Sample-path large deviations for unbounded additive functionals of the reflected random walk

Mihail Bazhba
Quantitative Economics, University of Amsterdam, Netherlands, M.Bazhba@uva.nl

Jose Blanchet
Management Science and Engineering, Stanford University, USA, jose.blanchet@stanford.edu

Chang-Han Rhee
Industrial Engineering and Management Sciences, Northwestern University, USA, chang-han.rhee@northwestern.edu

Bert Zwart
Stochastics Group, CWI and Eindhoven University of Technology, Netherlands, bert.zwart@cwi.nl

We prove a sample-path large deviation principle (LDP) with sub-linear speed for unbounded functionals of certain Markov chains induced by the Lindley recursion. The LDP holds in the Skorokhod space $D[0,1]$ equipped with the M'_1 topology. Our technique hinges on a suitable decomposition of the Markov chain in terms of regeneration cycles. Each regeneration cycle denotes the area accumulated during the busy period of the reflected random walk. We prove a large deviation principle for the area under the busy period of the MRW, and we show that it exhibits a heavy-tailed behavior.

Key words: Lindley recursion, busy period asymptotics, sample-path large deviations, heavy tails.

1. Introduction In this paper we develop sample-path large deviation principles (LDP) for additive functionals of a Markov chain which is important in Operations Research (OR), namely, Lindley’s recursion. This Markov chain describes the waiting time sequence in a single-server queue under a FIFO discipline and under independent and identically distributed (i.i.d.) inter-arrival times and service times. We focus on the case in which the input is light-tailed, i.e. the service times and inter-arrival times have a finite moment generating function in a neighborhood of the origin.

While the model that we consider is vital to many OR applications, and therefore important in its own right, our main contributions are also fundamental from a methodological standpoint. We contribute, as we shall explain, to the development of key tools in the study of sample-path large deviations for additive functionals of light-tailed and geometrically ergodic Markov chains.

A rich body of theory, pioneered by Donsker and Varadhan in classical work which goes back over forty years (see, for example, [9]) provides powerful tools designed to study large deviations for additive functionals of light-tailed and geometrically ergodic Markov chains. Roughly speaking,
these are chains which converge exponentially fast to stationarity and whose stationary distribution is light-tailed.

Unfortunately, despite remarkable developments in the area, including the more recent contributions in [13], the prevailing assumptions in the literature are often not applicable to natural functionals of well-behaved geometrically ergodic models, such as Lindley’s recursion with light-tailed input.

In particular, every existing general result describing sample-path large deviations of functionals of a process such as Lindley’s recursion, must assume the function of interest to be bounded. Hence, the current state-of-the-art rules out very important cases, such as the sample-path behavior of the empirical average of the waiting time sequence in single-server queue over large time scales. Our development allows one to study sample-path large deviations for the cumulative waiting time sequence of a single-server queue. In particular, we provide methodological ideas which, we believe, will be useful in further development of the general theory of sample-path large deviations for additive functionals of geometrically ergodic Markov processes. More precisely, our contributions are summarized as follows,

A) Let \(\{X_k, k \geq 0\} \) follow Lindley’s recursion. Assume that the associated increments have a finite moment generating function in a neighborhood of the origin, the traffic intensity is less than one, and let \(f(x) = x^p \) for any \(p > 0 \). We establish a sample-path large deviation principle for \(\tilde{Y}_n(\cdot) = \sum_{k=1}^{\lfloor n \cdot \rfloor} f(X_k)/n \) as \(n \to \infty \) w.r.t. the \(M'_1 \) topology on \(D[0,T] \) with a good rate function and a sublinear speed function, all of which are fully characterized in Theorem 2.1. Though our result only pertains to a specific Markov chain, they can be extended to more general stochastic recursions, and diffusions; this will be pursued in future work. Related work, covering the case of one-dimensional Langevin diffusions can be seen in [1].

B) We believe that our overall strategy for establishing Theorem 2.1 can be applied generally to the sample-path large deviations analysis of additive functionals of geometrically ergodic Markov chains. Our strategy involves splitting the sample path in cycles, roughly corresponding to returns to a compact set (in the case of the Lindley recursion, the origin). Then, we show that the additive functional in a cycle has a Weibullian tail. Finally, we use ideas similar to those developed in [3], involving sample-path large deviations for random walks with Weibullian increments for the analysis. The result in [3], however, cannot be applied directly to our setting here because of two reasons. First, the cycle in progress at the end of the time interval is different from the rest. Second, the number of cycles (and thus the number of terms in the decomposition) is random.

The sublinear speed of convergence highlighted in A) underscores the main qualitative difference between our result and those traditionally obtained in the Donsker-Varadhan setting. In our setting, as hinted in B), the large deviations behavior of \(\tilde{Y}_n \) is characterized by heavy-tailed phenomena (in
the form of Weibullian tails) which arise when studying the tails of the additive functional over a given busy period. Our choice of \(f(\cdot) \) underscores the frailty of the boundedness assumptions required to apply the Donsker-Varadhan type theory. Note that although \(f(\cdot) \) grows slowly when \(p \approx 0 \), just a small amount of growth derails the application of the standard theory.

The choice of topology is an important aspect of our result. In [3] it is argued that \(M'_1 \) is a natural topology to consider for developing a full sample-path large deviation principle for random walks with Weibullian increments. It is explained that such a result is impossible in the context of the \(J_1 \) topology in \(D[0,T] \). Actually, to be precise, the topology that we consider is a stronger variation of the one considered by [17] and [18], who introduced the \(M'_1 \) topology in \(D[0,\infty) \), but in such a way that its direct projection onto \(D[0,T] \) loses important continuous functions (such as the maximum of the path in the interval). The key aspect in our variation is the evaluation of the metric at the right endpoint. The version that we consider merges the jumps, in the same way in which it is done at the left endpoint in the standard \(M'_1 \) description. This variation results in a stronger topology when restricted to functions on compact intervals and it includes the maximum as a continuous function. An important reason for using the \(M'_1 \) topology is that it allows merging jumps. This seems to be particularly relevant given that in our setting the large deviations behavior will eventually merge the increments within the busy periods.

In addition to the two elements mentioned in B), which make the result in [3] not directly applicable, our choice of a strong topology also makes the approach in [3] difficult to use. In fact, in contrast to [3], in this paper, we use a projective limit strategy to obtain our large deviation principle. A direct approach we explored, using the result in [3], consisted in replacing the random number of busy periods by its fluid limits (for which there is a large deviations companion with a linear speed rate). Then, we tried to verify that this replacement results in an exponentially good approximation. This would have been a successful strategy if we had used the version of the \(M'_1 \) topology considered by [17], but unfortunately such exponential approximation does not hold in the presence of our stronger topology.

The development of Theorem 2.1 highlights interesting and somewhat surprising qualitative insights. For example, consider the case \(f(x) = x \), corresponding to the area drawn under the waiting time as a curve. As we show, deviations of order \(O(1) \) upwards from the typical behavior of the process \(\bar{Y}_n(\cdot) \) occur due to extreme behavior in a single busy period of duration \(O(n^{1/2}) \). A somewhat surprising insight involves the busy period in process at time \(n \), which is split into two parts of size \(O(n^{1/2}) \) involving the age and forward life time of the cycle (the former contributes to the area calculations, while the latter does not). This asymmetry, relative to the other busy periods during the time horizon \([0,n]\), which are completely accounted for inside the area calculation, raises the question of whether a correction in the LDP is needed, due to this effect, at the end of the time
horizon. The answer is no; the contribution to the current busy period and the ones inside the time horizon are symmetric. This result is highlighted in Theorems 2.2 and 2.3, which characterize the variational problem governing extreme busy periods.

There are several related works that deal with large deviations for the area under the waiting time sequence in a busy period. But they focus on queue length as in [4], or assume that the moment generating function of the increment is finite everywhere, as in [10]. None of these works obtain sample-path results. Instead, we do not assume that the moment generating function of the service times or inter-arrival times is finite everywhere. To handle this level of generality, we employ recently developed sampled-path LDP’s [5, 6, 21]. This level of generality requires us to put in a substantial amount of work to rule out discontinuous solutions of the functional optimization problems that appear in the large deviations analysis.

Another hurdle in developing tail asymptotics for the additive functional in a busy period (reported in Theorems 2.2 and 2.3) is the fact that the functional describing the area under the busy period is not continuous. To deal with this, we exploit path properties of the most probable—in asymptotic sense—trajectories of the busy period along with the continuity of the area functional over a fixed time horizon. In particular, we rigorously show how to approximate the area over the busy period (which has a random endpoint) with the area over a large, fixed horizon. This is counter-intuitive at first, because the former approach allows one to remove the reflection operator. However, the latter approach does not have a first passage time (which is a discontinuous function) as horizon, and this turns out to carry more weight. The proof of our sample-path LDP is provided in Section 3. Section 4 focuses on the technical details behind deriving the tail asymptotics for the area under a busy period. The paper is closed with two appendices covering auxiliary duality results for Markov chains as well as large deviations results.

2. Model description and main results

2.1. Preliminaries We consider the time-homogeneous Markov chain \(\{X_n, n \geq 0\} \) that is induced by the Lindley recursion, i.e. \(X_{n+1} \overset{\Delta}{=} [X_n + U_{n+1}]^+ \), \(n \geq 0 \), and \(X_0 = 0 \). Note that the r.v.’s \(\{U_i, i \geq 1\} \) are i.i.d. copies of a random variable \(U \) such that \(\mu \overset{\Delta}{=} \mathbb{E}(U) < 0 \). The state space of the Markov chain \(\{X_n, n \geq 0\} \) is the half-line of non-negative real numbers. We make the following technical but necessary assumptions:

Assumption 2.1. Let \(\theta_+ \) and \(\theta_- \) be the supremum and infimum of the set \(\{\theta : \mathbb{E}(e^{\theta U}) < \infty\} \) respectively. We assume that \(-\infty \leq \theta_- < 0 < \theta_+ \leq \infty \).

Assumption 2.2. For \(\theta_+ \) and \(\theta_- \) in Assumption 2.1,

\[
\lim_{n \to \infty} \frac{\log \mathbb{P}(U \geq n)}{n} = -\theta_+ \quad \text{and} \quad \lim_{n \to \infty} \frac{\log \mathbb{P}(-U \geq n)}{n} = \theta_-.
\]
Assumption 2.3. \(P(U > 0) > 0. \)

The purpose of this paper is to prove a sample-path LDP for \(\bar{Y}_n = \{\bar{Y}_n(t), t \in [0, T]\} \), where

\[
\bar{Y}_n(t) \triangleq \frac{1}{n} \sum_{i=1}^{[nt]} X_i^p, \quad t \in [0, 1],
\]

and \(p > 0 \) is a fixed constant. We introduce basic notions that are used in the statement of one of our main results (Theorem 2.1). First, we set \(\alpha \triangleq 1/(1 + p) \). Let \(\mathbb{D}[0, T] \) denote the Skorokhod space—the space of càdlàg paths from \([0, T]\) to \(\mathbb{R} \). We sometimes also consider the space \(\mathbb{D}[0, \infty) \) of càdlàg paths from \([0, \infty)\) to \(\mathbb{R} \).

Let \(\mathcal{T}_{M_1^\prime} \) denote the \(M_1^\prime \) Skorokhod topology, whose precise definition is provided below. Unless specified otherwise, we assume that \(\mathbb{D}[0, T] \) is equipped with \(\mathcal{T}_{M_1^\prime} \) throughout the rest of this paper.

Definition 2.1. For \(\xi \in \mathbb{D}[0, T] \), define the extended completed graph \(\Gamma'(\xi) \) of \(\xi \) as

\[
\Gamma'(\xi) \triangleq \{(u, t) \in \mathbb{R} \times [0, T] : u \in [\xi(t-) \wedge \xi(t), \xi(t-) \vee \xi(t)]\},
\]

where \(\xi(0-) \triangleq 0 \). Define an order on the graph \(\Gamma'(\xi) \) by setting \((u_1, t_1) < (u_2, t_2)\) if either \(t_1 < t_2 \), or \(t_1 = t_2 \) and \(|\xi(t_1-) - u_1| < |\xi(t_2-) - u_2| \). We call a continuous nondecreasing function \((u, t) = ((u(s), t(s)), s \in [0, T])\) from \([0, T]\) to \(\Gamma'(\xi) \) a parametrization of \(\Gamma'(\xi) \) if \(\Gamma'(\xi) = \{(u(s), t(s)) : s \in [0, T]\} \). We also call such \((u, t)\) a parametrization of \(\xi \), and we denote the set of all parametrizations of \(\xi \) with \(\Pi'(\xi) \).

Definition 2.2. Define the \(M_1^\prime \) metric \(d_{M_1^\prime} \) on \(\mathbb{D} \) as follows

\[
d_{M_1^\prime}(\xi, \zeta) \triangleq \inf_{(u, t) \in \Pi'(\xi)} \{||u - v||_\infty + ||t - r||_\infty\}.\]

We say that \(\xi \in \mathbb{D}[0, T] \) is a pure jump path if \(\xi = \sum_{i=1}^{\infty} x_i \mathbb{1}_{[u_i, T]} \) such that \(x_i \in \mathbb{R} \) and \(u_i \in [0, T] \) for each \(i \geq 1 \) and the \(u_i \)'s are all distinct. Let \(\mathbb{D}^+_\infty[0, T] \) be the subspace of \(\mathbb{D}[0, T] \) consisting of non-decreasing pure jump paths that assume non-negative values at the origin. Let \(\mathbb{BV}[0, T] \) be the subspace of \(\mathbb{D}[0, T] \) consisting of paths with finite variation. Every \(\xi \in \mathbb{BV}[0, T] \) has a Lebesgue decomposition with respect to the Lebesgue measure. That is, \(\xi = \xi^{(a)} + \xi^{(s)} \), where \(\xi^{(a)} \) denotes the absolutely continuous part of \(\xi \), and \(\xi^{(s)} \) denotes the singular part of \(\xi \). Subsequently, using Hahn’s decomposition theorem we can decompose \(\xi^{(s)} \) into its non-decreasing singular part \(\xi^{(u)} \) and non-increasing singular part \(\xi^{(d)} \) so that \(\xi^{(s)} = \xi^{(u)} + \xi^{(d)} \). Without loss of generality (w.l.o.g.), we assume that \(\xi^{(u)}(0) = \xi^{(d)}(0) = 0 \). We will sometimes also consider \(\mathbb{BV}[0, \infty) \) - the subspace of \(\mathbb{D}[0, \infty) \) consisting of paths that are of bounded variation on any compact interval.
2.2. Sample-path large deviations In this subsection, we present the sample-path large deviation principle for \bar{Y}_n and the main ideas of its proof. We start with a few definitions. Let Ψ be the reflection map defined by $\Psi(\xi)(t) = \inf_{s \in [0,t]} \{\xi(s) \wedge 0\}, \forall t \geq 0$. Define $T(\xi) = \inf\{t > 0 : \Psi(\xi)(t) = 0\}$, $B_y = \{\xi \in BV[0,\infty] : \xi(0) = y, \int_0^{T(\xi)} \Psi(\xi)(s)p\,ds \geq 1\}$, and $\Lambda^*(y) = \sup_{\theta \in \mathbb{R}} \{\theta y - \log E(e^{\theta U})\}$. Set

$$I_y(\xi) = \begin{cases} \int_0^{T(\xi)} \Lambda^*(\xi(s))\,ds + \theta + \xi(\alpha)(T(\xi)) + \theta - \xi^{(d)}(T(\xi)) & \text{if } \xi(0) = y \text{ and } \xi \in BV[0,\infty), \\ \infty & \text{otherwise,} \end{cases}$$

and denote with B_y^* the optimal value of the variational problem

$$B_y^* = \inf_{\xi \in B_y} I_y(\xi). \quad (B_y)$$

Similarly, denote with B_{π}^* the optimal value of the variational problem

$$B_{\pi}^* = \inf_{y \in [0,\infty), \xi \in B_y} \{\beta y + I_y(\xi)\}, \quad (B_{\pi})$$

where $\beta = \sup\{\theta \geq 0 : E(e^{\theta U}) \leq 1\}$ is the decay rate of the steady state distribution π of the reflected random walk (see Result B.2). Note that $\beta \leq \theta_+$ and β is strictly positive in View of Assumption 1 and the assumption that $\mu < 0$. Note also that $B_{\pi}^* = \inf_{y \in [0,\infty)} \{\beta y + B_y^*\}$.

Let $T_0 = 0$ and $T_i = \inf\{k > T_{i-1} : X_k = 0\}$ for $i \geq 1$, and subsequently, define $\lambda = E(\sum_{i=1}^{T_1} X_i^p)/E(T_1)$. Define $\mathbb{D}^{(\lambda)}[0,T] = \{\xi \in \mathbb{D}[0,T] : \xi(t) = \lambda t + \zeta(t), \forall t \in [0,T], \zeta \in \mathbb{D}_{\zeta_{\infty}}[0,T]\}$, i.e., the subspace of increasing paths with slope λ and countable upward jumps. Recall that $\alpha = 1/(1+p)$.

THEOREM 2.1. The stochastic process \bar{Y}_n satisfies a large deviation principle in $(\mathbb{D}[0,T], T_{M_1})$ with the speed n^α and the rate function $I_Y : \mathbb{D}[0,T] \to \mathbb{R}_+$, defined as

$$I_Y(\zeta) = \begin{cases} \sum_{t \in \zeta (t) \neq \zeta (t-)} (\zeta(t) - \zeta(t-))^\alpha & \text{if } \zeta \in \mathbb{D}^{(\lambda)}[0,T], \\ \infty & \text{otherwise.} \end{cases} \quad (2.1)$$

That is, for any measurable set A,

$$- \inf_{A^c} I_Y(\zeta) \leq \liminf_{n \to \infty} \frac{\log P(\bar{Y}_n \in A)}{n^\alpha} \leq \limsup_{n \to \infty} \frac{\log P(\bar{Y}_n \in A)}{n^\alpha} \leq - \inf_{A} I_Y(\zeta). \quad (2.2)$$

The full proof of Theorem 2.1 is deferred to Section 3. The strategy relies on a suitable representation for \bar{Y}_n using renewal theory, which is presented next. The sequence $\{T_j, j \geq 1\}$ induces a renewal process $\{N(t), t \geq 0\}$ defined by $N(t) = \max\{k \geq 0 : T_k \leq t\}$, $t \geq 0$. We decompose the process \bar{Y}_n as follows. For fixed $t \geq 0$:

$$\bar{Y}_n(t) = \frac{1}{n} \sum_{j=1}^{N(nt)T_j} X_i^p + \frac{1}{n} \sum_{i=T_{N(nt)}+1}^{\lceil nt \rceil} X_i^p,$$

with the convention that $\sum_{i=T_{N(nt)}+1}^{\lceil nt \rceil} X_i^p$ is zero in case the superscript $\lceil nt \rceil$ is strictly smaller than the subscript $T_{N(nt)}$. We introduce some notation for the analysis of \bar{Y}_n. Define
\(\tau_j \triangleq T_j - T_{j-1}, j \geq 1\), the inter-arrival times of the renewal process \(N\),
- \(W_j \triangleq \sum_{i=1}^{T_j} X^p_i, j \geq 1\), the “area” under \(X^p_i\) during the \(j^{th}\) busy period of \(X_n\),
- \(\tilde{Z}_n(t) \triangleq \frac{1}{n} \sum_{j=1}^{n(t)} W_j, t \in [0, 1]\), the aggregate process (excluding the last regeneration cycle),
- \(\tilde{R}_n(t) \triangleq \frac{1}{n} \sum_{i=n(t)}^n X^p_i, t \in [0, 1]\), the process that equals \(Y_n\) during the last regeneration cycle,
- \(V_n \triangleq \sum_{i=n}^n X^p_i\), the “area” under \(X^p_i\) during the last regeneration cycle,
- \(\tilde{S}_n(t) \triangleq \frac{1}{n} V_n \mathbb{1}_{\{1\}}(t)\), the process with one jump, which aggregates the “area” under \(X^p_i\) during the last regeneration cycle.

We often refer to the functions associated with these quantities by dropping the argument; for example by writing \(\tilde{R}_n\) we refer to \(\{\tilde{R}_n(t), t \in [0, T]\}\). The strategy to prove our main result, Theorem 2.1, builds on tail estimates for \(W_1\) and \(V_n\), which are presented in Theorems 2.2 and 2.3 below. Using Theorem 2.3, we derive an LDP for \(\tilde{S}_n\) in Lemma 3.1. For the LDP of \(\tilde{Z}_n\) in \(\mathbb{D}[0, T]\), we start by obtaining an LDP for the finite projections of \(\tilde{Z}_n\) in Lemmas 3.2, 3.3, and 3.4. Then, the finite-dimensional LDP is lifted in the standard projective limit to the pointwise convergence topology in Lemma 3.6, and finally extended to the \(M'_1\) topology using the continuity of the identity map in the subspace of increasing càdlàg paths in Lemma 3.7. In the last step, we infer an LDP for \(\tilde{Z}_n + \tilde{S}_n\) through the use of a continuous mapping approach, and hence, we obtain the LDP for \(Y_n\). For the sample-path LDP of \(Y_n\), we prove the exponential equivalence of \(Y_n\) and \(\tilde{Z}_n + \tilde{S}_n\) in Lemma 3.8 by considering the \(M'_1\) distance of \(Y_n\) with the aggregate process \(\tilde{Z}_n\) and the last regeneration cycle \(\tilde{R}_n\) pushed to the end of the time horizon. Consequently, the LDP of \(Y_n\) is deduced, due to the LDPs of \(\tilde{S}_n\) and \(\tilde{Z}_n\) in \(\mathbb{D}[0, T], M'_1\).

Before embarking on the execution of this technical program, it is worth commenting on the role of \(\tilde{R}_n\), since this element will allow us to expose the importance of a careful analysis involving the area during a busy period. As mentioned in the introduction, one may wonder if the contribution of \(\tilde{R}_n\) may end up counting different in the form of the LDP. The typical path for \(Y_n\) is a straight line with drift equal to the steady-state workload. Our developments indicate that most likely large deviations behavior away from the most likely path occur due to isolated busy periods which exhibit extreme behavior. For example, in the case \(p = 1\), substantially extreme busy periods (leading to large deviations of order \(O(n)\)) have a duration of \(O(n^{1/2})\) and exhibit excursions of order \(O(n^{1/2})\), therefore accumulating an area of order \(O(n)\).

Each busy period, including the one in progress at the end of the time horizon contributes the same way in the rate function. This follows from Theorems 2.2 and 2.3 given below, but may be somewhat remarkable. The reason is that when the cycle in progress at the end of the time horizon is extreme, its duration is of order \(O(n^{1/2})\). This suggests that the remainder of the cycle is also of order \(O(n^{1/2})\). It turns out that this long time duration has no significant contribution to the total area: while the remainder of the cycle in progress may be large, the position of the chain is
actually of order $o(n^{1/2})$ from the end of the time horizon, so the total contribution to the area of the remaining portion of the cycle is negligible. This calculation is exposed in Proposition 4.3 below, and a time-reversal argument given in Appendix A.

2.3. Busy period asymptotics

It is clear that a large deviations analysis of the area under a busy period is indispensable for deriving the sample-path LDP of \bar{Y}_n in Theorem 2.1. Our next two theorems provide the asymptotic estimation for the tails of W_1 and V_n, showing that they exhibit Weibull behavior. We will discuss their statements and defer their proofs to Section 4.

Theorem 2.2. Recall that $W_1 = \sum_{k=1}^{T_1} X_k^p$ and $\alpha = 1/(1 + p)$. It holds that

$$\lim_{t \to \infty} \frac{1}{t^\alpha} \log P(W_1 \geq t) = -B^*_0. \quad (2.4)$$

For V_n, our analysis points to Weibull-like asymptotic behavior similar to W_1 except that the pre-factor associated with V_n is B^*_π (instead of B^*_0). It turns out that (see Proposition 4.3) the pre-factor B^*_π is equal to B^*_0. This leads to the conclusion that every busy period, including the one in progress at the end of the time horizon, has the same tail asymptotics.

Theorem 2.3. For the area of the last busy period, we have the following tail asymptotics: for any $b \geq 0$,

$$\lim_{n \to \infty} \frac{1}{n^\alpha} \log P(V_n \geq nb) = -B^*_0 \cdot b^\alpha. \quad (2.5)$$

The tail asymptotics for W_1 and V_n are derived using a recently developed LDP for random walks with light-tailed increments due to [5, 6, 21], cf. Result B.3 below. Specifically, the tail probability of W_1 can be written as the tail probability of the image $\Phi(\bar{K}_0^n(t))$ of the unrestricted scaled random walk $\{\bar{K}_0^n(t), t \in [0,T]\}$, where $\bar{K}_0^n(t) \triangleq y + \frac{1}{n} K_{\lfloor nt \rfloor}$, $K_n \triangleq \sum_{i=1}^n U_i$, and the functional Φ is defined as $\Phi(\xi) \triangleq \int_0^T (\Psi(\xi)(s))^p ds$. Note that $\Phi : D[0,\infty) \to \mathbb{R}_+$ is not continuous, and hence, the proof for the tail asymptotics of W_1 gets more involved than simply applying the contraction principle. We derive large deviations upper and lower bounds and show that they coincide.

For the upper bound, we replace the hitting time T_1 with a sufficiently large value T. This enables us to study the area of X_n over the finite time horizon $[0,T]$. For T large enough, we show that the area of the reflected random walk over the whole time horizon $[0,T]$ serves as an asymptotic upper bound for W_1 (see the proof of Proposition 4.2), and it is expressed as a functional of \bar{K}_n (see Lemma 4.6). This functional is shown to be uniformly continuous in the M'_1 topology on level sets of the rate function associated with the LDP for \bar{K}_n (cf. Lemma 5.2). Invoking Result B.3, recently established in [21], we get a large deviation upper bound.

For the lower bound, we confine the functional of the area under the busy period, over a fixed time horizon by imposing an extra condition, see the proof of Proposition 4.2. Subsequently, we exploit
some regularity properties of a variational problem associated with the lower bound to show that B_0 has the same optimal value as the variational problem associated with the large deviation upper and lower bounds. We have organized the presentation in such a way that analytic details associated to variational problems are gathered in Section 5.

For V_n, we follow the same approach with some slight modifications. In order to carry out our analysis for V_n, we associate the tail of V_n with the tail of W_1 through Lemmas A.1 and A.2. In particular, we prove that

$$\lim_{n \to \infty} \frac{\log P_0(V_n > nx)}{n^\alpha} = \lim_{n \to \infty} \frac{\log P_\pi(W_1 > nx)}{n^\alpha}. $$

To show this, we also rely on Result B.2 from [16], describing the asymptotic behavior of the invariant measure π. Lastly, we repeat similar steps as in the analysis of W_1.

The constant B^*_0 appears in all our theorems, and is the solution of a variational problem. We show in Proposition 4.1 that $B^*_0 \in (0, \infty)$. This property is all that is needed for our main sample-path large deviations results. Nevertheless, it is of interest to compute B^*_0. This can be done by solving a suitable variational problem which in turn is typically done using the associated Euler-Lagrange equations. However, for the Euler-Lagrange equations to characterize the solution, it must be shown that an optimizing path ξ^* exist which is sufficiently smooth, i.e. not just absolutely continuous, but differentiable with continuous derivative. In general, showing a priori sufficient smoothness of an optimizer is a non-trivial task, but we explain how to execute this for the case $p=1$, using a framework presented in [7]. The details can be found in Appendix C.

3. Proof of the sample-path LDP
In this section, we prove Theorem 2.1. For notational convenience, we take $T = 1$ throughout this section. We begin our analysis with a lemma that establishes the large-deviations behavior of the area under the busy period active at time n. To this end, define $\mathbb{D}[0,1]^{\leq 1} \triangleq \{ \xi \in \mathbb{D}[0,1] : \xi = x1_{\{1\}} \text{ for some } x \geq 0 \}$. Recall that $\bar{S}_n = \frac{1}{n} V_n 1_{\{1\}}$ and $V_n = \sum_{i=T_{N(n)}+1}^{n} X_p$.

Lemma 3.1. \bar{S}_n satisfies the LDP in $(\mathbb{D}[0,1], \mathcal{T}_{M^*_1})$ with the speed n^α and the rate function $I_{\bar{S}} : \mathbb{D}[0,1] \to \mathbb{R}_+$, where

$$I_{\bar{S}}(\zeta) \triangleq \begin{cases} B^*_0 \left(\zeta(1) - \zeta(1^-) \right)^\alpha & \text{if } \zeta \in \mathbb{D}[0,1]^{\leq 1}, \\ \infty & \text{otherwise.} \end{cases} \quad (3.1)$$

Proof. Define a function $\Upsilon : \mathbb{R}_+ \to \mathbb{D}[0,1]^{\leq 1}$ as $\Upsilon(x) \triangleq x \cdot 1_{\{1\}}$. Then, $\bar{S}_n = \Upsilon(\frac{1}{n} V_n)$ and it is straightforward to see that Υ is a continuous function w.r.t. the M^*_1 topology. Therefore, the desired LDP follows from the contraction principle if we prove that $\frac{1}{n} V_n$ satisfies an LDP in \mathbb{R}_+ with the sub-linear speed n^α and the good rate function $I_{V} : \mathbb{R}_+ \to \mathbb{R}_+$, where $I_{V}(x) \triangleq B^*_0 \cdot x^\alpha$. To prove the LDP for $\frac{1}{n} V_n$, note first that $P(\frac{1}{n} V_n \in \cdot)$ is exponentially tight (w.r.t. the speed n^α) from Theorem 2.3.
Therefore, it is enough to establish the weak LDP. For the weak LDP, we start with showing that for any \(a,b \in \mathbb{R}, \ B \triangleq (a,b) \cap \mathbb{R}_+ \) satisfies \(\limsup_{n \to \infty} \frac{\log P(\frac{1}{n}V_n \in B)}{n^\alpha} = \liminf_{n \to \infty} \frac{\log P(\frac{1}{n}V_n \in B)}{n^\alpha} \). Since this holds trivially with value \(-\infty\) if \(0 \geq b \) or \(a \geq b \), we assume that \(0 \lor a < b \). Note that, from Theorem 2.3, \[
abla \frac{\lim \sup}{n \to \infty} \frac{\log P(\frac{1}{n}V_n \in B)}{n^\alpha} \leq \frac{\lim \inf}{n \to \infty} \frac{\log P(\frac{1}{n}V_n \geq 0 \lor a)}{n^\alpha} \leq -B_0^* \cdot (0 \lor a)^\alpha.
\]
For the lower bound, note that Theorem 2.3 implies that \(P(\frac{1}{n}V_n \geq b)/P(\frac{1}{n}V_n \geq 0 \lor a + \epsilon) \to 0 \) for any \(\epsilon > 0 \). Therefore, we obtain \[
abla \frac{\lim \inf}{n \to \infty} \frac{\log P(\frac{1}{n}V_n \in B)}{n^\alpha} \geq \frac{\lim \inf}{n \to \infty} \frac{\log \left(P(\frac{1}{n}V_n \geq 0 \lor a + \epsilon) - P(\frac{1}{n}V_n \geq b) \right)}{n^\alpha} \geq \frac{\lim \inf}{n \to \infty} \frac{\log \left(1 - \frac{P(\frac{1}{n}V_n \geq b)}{P(\frac{1}{n}V_n \geq 0 \lor a + \epsilon)} \right)}{n^\alpha} = \frac{\lim \inf}{n \to \infty} \frac{\log P(\frac{1}{n}V_n \geq 0 \lor a + \epsilon)}{n^\alpha} = -B_0^* \cdot (0 \lor a + \epsilon)^\alpha.
\]
Taking \(\epsilon \to 0 \), we see that the limit supremum and the limit infimum coincide. Since \(\{(a,b) \cap \mathbb{R}_+ : a,b \in \mathbb{R}, a \leq b\} \) forms a base of the Euclidean topology on \(\mathbb{R}_+ \), Theorem 4.1.11 of [8] applies, and hence, proves the desired weak LDP with the rate function \(I_V \). This concludes the proof. \(\square \)

We next work towards a sample-path LDP for \(\tilde{Z}_n \). We employ a well-known technique, based on the projective limit theorem by Dawson and Gärtnér; see Theorem 4.6.1 in [8]. The following three lemmas lead to the first key step in this approach, which consists of obtaining the finite-dimensional LDP for \(\tilde{Z}_n \).

Lemma 3.2. For any given \(0 = t_0 < t_1 < t_2 < \ldots < t_k \), let \(\Delta t_i \triangleq t_i - t_{i-1} \) for \(i = 1, \ldots, k \). Then, \[
\limsup_{n \to \infty} \frac{1}{n^\alpha} \log P \left(\sum_{j=1}^{N(nt_k)} W_j \geq \sum_{j=N(nt_{k-1})+1}^{N(nt_k)} W_j \geq na_k \right) \leq -B_0^* \left(\sum_{i=1}^k (a_i - \lambda \Delta t_i)^\alpha \right), \tag{3.2}
\]
\[
\liminf_{n \to \infty} \frac{1}{n^\alpha} \log P \left(\sum_{j=1}^{N(nt_k)} W_j \geq \sum_{j=N(nt_{k-1})+1}^{N(nt_k)} W_j \geq na_k \right) \geq -B_0^* \left(\sum_{i=1}^k (a_i - \lambda \Delta t_i)^\alpha \right), \tag{3.3}
\]
where \((x)_+ \triangleq x \lor 0 \).

Proof. Recall that \(\tau_j = T_j - T_{j-1} \), where \(T_j \) is the \(j \)th hitting time of \(0 \). Fix an arbitrary \(\epsilon > 0 \) and let \(E_i^{(n)}(\epsilon) \triangleq n[l_i, u_i] \), where \(l_i \triangleq t_i/E \tau_1 - \epsilon \) and \(u_i \triangleq t_i/E \tau_1 + \epsilon \). We will use this notation throughout the proof of this lemma. For the upper bound in Equation (3.2), note that \[
P \left(\sum_{j=1}^{N(nt_k)} W_j \geq na_1, \ldots, \sum_{j=N(nt_{k-1})+1}^{N(nt_k)} W_j \geq na_k \right) \leq \sum_{i=1}^k P \left(N(nt_i) \notin E_i^{(n)}(\epsilon) \right) \tag{4}
\]
\[
+ P \left(\sum_{j=1}^{N(nt_k)} W_j \geq na_1, \ldots, \sum_{j=N(nt_{k-1})+1}^{N(nt_k)} W_j \geq na_k, N(nt_i) \notin E_i^{(n)}(\epsilon) \right. \tag{11}
\]

Note also that τ_1 is light-tailed because $P(\tau_1 \geq k) = P\left(\sum_{i=1}^{j} U_i \geq 0, j = 1, \ldots, k\right) \leq P\left(\frac{1}{k} \sum_{i=1}^{k} U_i \geq 0\right)$, and $P\left(\frac{1}{k} \sum_{i=1}^{k} U_i \geq 0\right)$ decays at a geometric rate as $k \to \infty$ due to our assumptions that $\mathbb{E}U_1 < 0$ and $\theta_+ > 0$, along with Cramér’s Theorem. Moreover,

$$\left\{ N(nt_i) \notin E_1^{(n)} \right\} = \left\{ N(n(l_i + \epsilon)E_\tau) < [nl_i] \right\} \cup \left\{ N(n(u_i - \epsilon)E_\tau) > [nu_i] \right\} \leq \left\{ \frac{n(l_i + \epsilon)}{nl_i} E_\tau \right\} \cup \left\{ \frac{n(u_i - \epsilon)}{nu_i} E_\tau \right\}.$$

Therefore, again, by Cramér’s theorem,

$$\limsup_{n \to \infty} \frac{\log(I)}{n^\alpha} = -\infty. \tag{3.4}$$

Shifting our attention to (II),

$$P\left(\sum_{j=1}^{N(nt_k)} W_j \geq na_1, \ldots, \sum_{j=1}^{N(nt_k)} W_j \geq na_k, N(nt_i) \in E_1^{(n)}(\epsilon) \text{ for } i = 1, \ldots, k\right)$$

$$\leq \sum_{i_1=[n(t_1/E_\tau + \epsilon)]}^{[n(t_1/E_\tau + \epsilon)]} \cdots \sum_{i_k=[n(t_k/E_\tau + \epsilon)]}^{[n(t_k/E_\tau + \epsilon)]} P\left(\sum_{j=1}^{i_1} W_j \geq na_1, \ldots, \sum_{j=1}^{i_k} W_j \geq na_k, N(nt_i) = i_l \text{ for } l = 1, \ldots, k\right)$$

$$\leq \sum_{i_1=[n(t_1/E_\tau + \epsilon)]}^{[n(t_1/E_\tau + \epsilon)]} \cdots \sum_{i_k=[n(t_k/E_\tau + \epsilon)]}^{[n(t_k/E_\tau + \epsilon)]} P\left(\sum_{i_1=[n(t_1/E_\tau + \epsilon)]}^{[n(t_1/E_\tau + \epsilon)]} W_j \geq na_1\right) \cdots P\left(\sum_{i_k=[n(t_k/E_\tau + \epsilon)]}^{[n(t_k/E_\tau + \epsilon)]} W_j \geq na_k\right)$$

$$\leq (2\epsilon n)^k P\left(\sum_{j=1}^{[n(t_1/E_\tau + \epsilon)]} W_j \geq na_1\right) \cdots P\left(\sum_{j=[n(t_k/E_\tau + \epsilon)]}^{[n(t_k/E_\tau + \epsilon)]} W_j \geq na_k\right).$$

Now, we have that from Result B.1 and Theorem 2.2,

$$\limsup_{n \to \infty} \frac{1}{n^\alpha} \log(II) \leq \sum_{i=1}^{k} \limsup_{n \to \infty} \frac{1}{n^\alpha} \log\left(\sum_{j=[n(t_i/E_\tau + \epsilon)]}^{[n(t_i/E_\tau + \epsilon)]} W_j \geq na_i\right) + \limsup_{n \to \infty} \frac{\log(2\epsilon n)^k}{n^\alpha}$$

$$\leq -B_0^* \sum_{i=1}^{k} (a_i - \lambda(\Delta t_i + 2\epsilon E_\tau))_+^\alpha.$$

Taking $\epsilon \to 0$, we arrive at

$$\limsup_{n \to \infty} \frac{1}{n^\alpha} \log(II) \leq -B_0^* \sum_{i=1}^{k} (a_i - \lambda \Delta t_i)_+^\alpha. \tag{3.5}$$

In view of (3.4) and (3.5),

$$\limsup_{n \to \infty} \frac{1}{n^\alpha} \log\left(\sum_{j=1}^{N(nt_k)-1} W_j \geq na_1, \ldots, \sum_{j=1}^{N(nt_k)-1} W_j \geq na_i, \ldots, \sum_{j=1}^{N(nt_k)-1} W_j \geq na_k\right)$$

$$\leq \max\left\{ \limsup_{n \to \infty} \frac{\log(I)}{n^\alpha}, \limsup_{n \to \infty} \frac{\log(II)}{n^\alpha} \right\} \leq -B_0^* \sum_{i=1}^{k} (a_i - \lambda \Delta t_i)_+^\alpha.$$
For the lower bound in Equation (3.3), notice that
\[
\begin{aligned}
P \left(\sum_{j=1}^{N(n t_1) - 1} W_j > n a_1, \ldots, \sum_{j=1}^{N(n t_k) - 1} W_j > n a_k \right) \\
\geq P \left(\sum_{j=1}^{N(n t_1) - 1} W_j > n a_1, \ldots, \sum_{j=1}^{N(n t_k) - 1} W_j > n a_k, N(n t_i) \in E_i^{(n)}(\epsilon) \text{ for } i = 1, \ldots, k \right) \\
\geq P \left(\sum_{j=1}^{[n t_1/E_1 - \epsilon]^{-1}} W_j > n a_1, \ldots, \sum_{j=1}^{[n t_k/E_1 - \epsilon]^{-1}} W_j > n a_k, N(n t_i) \in E_i^{(n)}(\epsilon) \text{ for } i = 1, \ldots, k \right) \\
\geq P \left(\sum_{j=1}^{[n t_1/E_1 - \epsilon]^{-1}} W_j > n a_1, \ldots, \sum_{j=1}^{[n t_k/E_1 - \epsilon]^{-1}} W_j > n a_k \right) - (I) \\
= P \left(\sum_{j=1}^{[n t_1/E_1 - \epsilon]^{-1}} W_j > n a_1 \right) \prod_{i=2}^{k} P \left(\sum_{j=1}^{[n t_i/E_1 - \epsilon]^{-1}} W_j > n a_i \right) - (I) \\
=(III)
\end{aligned}
\]}

From Theorem 2.2, Result B.1 and (3.4), we get \((\frac{1}{n})^{(III)} \to 0 \text{ as } n \to \infty. \) Therefore, (3.6) leads to
\[
\begin{aligned}
\lim_{n \to \infty} \frac{1}{n^a} \log P \left(\sum_{j=1}^{N(n t_1) - 1} W_j > n a_1, \ldots, \sum_{j=1}^{N(n t_k) - 1} W_j > n a_k \right) \\
\geq \lim_{n \to \infty} \frac{1}{n^a} \log \left((III) \left(1 - \frac{1}{(III)} \right) \right) = \lim_{n \to \infty} \frac{1}{n^a} \log (III) \\
= -B_0^* \sum_{i=1}^{k} (a_i - \lambda (\Delta t_i - 2\epsilon E_1))^a.
\end{aligned}
\]

Taking \(\epsilon \to 0, \) we arrive at (3.3) concluding the proof. \(\square \)

Our next lemma establishes the LDP for \(\left(\frac{1}{n} \sum_{j=1}^{N(n t_1)} W_j, \ldots, \frac{1}{n} \sum_{j=1}^{N(n t_k)} W_j \right). \)

Lemma 3.3. For any given \(t = (t_1, \ldots, t_k) \) such that \(0 = t_0 \leq t_1 < \ldots < t_k \leq 1, \) the probability measures \(\mu_n \) of \(\left(\frac{1}{n} \sum_{j=1}^{N(n t_1)} W_j, \ldots, \frac{1}{n} \sum_{j=1}^{N(n t_k)} W_j \right) \) satisfy the LDP in \(\mathbb{R}_+^k \) w.r.t. Euclidean topology with the speed \(n^a \) and the good rate function \(I_k : \mathbb{R}_+^k \to \mathbb{R}_+: \)

\[
I_k(x_1, \ldots, x_k) \triangleq \begin{cases} B_0^* \sum_{i=1}^{k} (x_i - \lambda \Delta t_i)^a & \text{if } x_i \geq \lambda \Delta t_i, \forall i = 1, \ldots, k, \\ \infty & \text{otherwise.} \end{cases}
\] (3.7)

Proof. Note that it is straightforward from (3.2) of Lemma 3.2 to see that \(\left(\frac{1}{n} \sum_{j=0}^{N(n t_1)} W_j, \ldots, \frac{1}{n} \sum_{j=0}^{N(n t_k)} W_j \right) \) is exponentially tight by considering compact sets \(\prod_{i=1}^{k} [0, a_i] \) for sufficiently large \(a_i \)'s. Also, we claim that \(\left(\frac{1}{n} \sum_{j=0}^{N(n t_1)} W_j, \ldots, \frac{1}{n} \sum_{j=0}^{N(n t_k)} W_j \right) \) satisfies a weak
LDP. Once this claim is established, Lemma 1.2.18 of [8] applies, showing that the full LDP is satisfied. Now, to prove the claimed weak LDP, we start by showing that

$$\limsup_{n \to \infty} \frac{\log \mu_n(A)}{n^\alpha} = \liminf_{n \to \infty} \frac{\log \mu_n(A)}{n^\alpha}$$

(3.8)

for every $A \in A \triangleq \{ \prod_{i=1}^k ((a_i, b_i) \cap \mathbb{R}_+) : a_i < b_i \}$. Let

$$\mathcal{L}_A \triangleq \left\{ -B_0 \sum_{i=1}^k (a_i - \lambda \Delta t_i)^\alpha \quad \text{if} \quad b_i \geq \lambda \Delta t_i \quad \text{for} \quad i = 1, \ldots, k, \right. \quad \text{otherwise.}$$

We will prove (3.8) by showing that $\mathcal{Z}_A \leq \mathcal{L}_A \leq \mathcal{L}_A$. We consider two cases:

1. $b_i \geq \lambda \Delta t_i$ for $i = 1, \ldots, k$,
2. $b_i < \lambda \Delta t_i$ for some $i \in \{1, \ldots, k\}$.

Let $A \equiv \prod_{i=1}^k ((a_i, b_i) \cap \mathbb{R}_+)$ and $a_i < b_i$ for $i = 1, \ldots, k$. We start with Case 1. Since $A \subseteq \prod_{i=1}^k (a_i, b_i)$,

$$\mathcal{Z}_A \leq \limsup_{n \to \infty} \frac{1}{n^\alpha} \log P \left(\sum_{j=1}^{N(n,t_1)} W_j \geq na_1, \ldots, \sum_{j=N(n,t_k)+1}^{N(n,t_k)} W_j \geq na_k \right) \leq -B_0 \sum_{i=1}^k (a_i - \lambda \Delta t_i)^\alpha = \mathcal{L}_A,$$

(3.9)

where the second inequality is from (3.2). Since $\prod_{i=1}^k (a_i + \epsilon, b_i) \subseteq A$ for small enough $\epsilon > 0$,

$$\mathcal{L}_A \geq \liminf_{n \to \infty} \frac{1}{n^\alpha} \log \left(\frac{1}{n} \sum_{j=0}^{N(n,t_1)} W_j, \ldots, \frac{1}{n} \sum_{j=N(n,t_k)+1}^{N(n,t_k)} W_j \right) \subseteq \prod_{i=1}^k (a_i + \epsilon, b_i)$$

$$\geq \liminf_{n \to \infty} \frac{1}{n^\alpha} \log \left(\sum_{j=0}^{N(n,t_1)} W_j > a_1 + \epsilon, \ldots, \frac{1}{n} \sum_{j=N(n,t_k)+1}^{N(n,t_k)} W_j > a_k + \epsilon \right)$$

$$- \sum_{l=1}^k \log \left(\sum_{j=N(n,t_l-1)+1}^{N(n,t_k)} W_j \geq na_l \forall i \neq l, \sum_{j=N(n,t_l-1)+1}^{N(n,t_k)} W_j \geq nb_l \right)$$

$$\geq \liminf_{n \to \infty} \frac{1}{n^\alpha} \log \left(\sum_{j=0}^{N(n,t_1)} W_j > a_1 + \epsilon, \ldots, \frac{1}{n} \sum_{j=N(n,t_k)+1}^{N(n,t_k)} W_j > a_k + \epsilon \right)$$

$$+ \liminf_{n \to \infty} \frac{1}{n^\alpha} \log \left(1 - \frac{1}{n} \sum_{j=1}^{N(n,t_1)} W_j \geq a_1 + \epsilon \forall i \neq l, \frac{1}{n} \sum_{j=N(n,t_l-1)+1}^{N(n,t_k)} W_j \geq b_l \right)$$

(3.10)

Note that, due to the logarithmic asymptotics of Lemma 3.2, for every $l \in \{1, \ldots, k\}$,

$$\frac{P \left(\frac{1}{n} \sum_{j=N(n,t_l)+1}^{N(n,t_k)} W_j \geq a_i + \epsilon \right) \setminus l, \frac{1}{n} \sum_{j=N(n,t_l)+1}^{N(n,t_k)} W_j \geq b_j \right)}{P \left(\frac{1}{n} \sum_{j=1}^{N(n,t_k)} W_j \geq a_1 + \epsilon, \ldots, \frac{1}{n} \sum_{j=N(n,t_k)+1}^{N(n,t_k)} W_j \geq a_k + \epsilon \right)} \to 0,$$

and hence, the second term of (3.10) disappears. Therefore,

$$\mathcal{L}_A \geq \liminf_{n \to \infty} \frac{\log P \left(\frac{1}{n} \sum_{j=1}^{N(n,t_1)} W_j > a_1 + \epsilon, \ldots, \frac{1}{n} \sum_{j=N(n,t_k)+1}^{N(n,t_k)} W_j > a_k + \epsilon \right)}{n^\alpha}$$

$$\geq -B_0 \sum_{i=1}^k (a_i + \epsilon - \lambda \Delta t_i)^\alpha.$$
Taking $\epsilon \to 0$, we arrive at $\mathcal{L}_A \geq \mathcal{L}_A$, which, together with (3.9), proves (3.8) for Case 1.

For Case 2, note that by Result B.1,

$$\bar{Z}_A \leq \limsup_{n \to \infty} \frac{1}{n^\alpha} \log P \left(\sum_{j=N(nt_{i-1})+1}^{N(nt_i)} W_j < nb_i \right) = -\infty,$$

and hence, $\bar{Z}_A = \mathcal{L}_A = \mathcal{L}_A = -\infty$.

Now note also that

$$I_t(x_1, \ldots, x_k) = \sup \{ -\mathcal{L}_A : A \in \mathcal{A}, (x_1, \ldots, x_k) \in A \}. \quad (3.11)$$

Since \mathcal{A} is a base of the Euclidean topology, the desired weak LDP follows from (3.8), (3.11), and Theorem 4.1.11 of [8].

The following is an immediate corollary of Lemma 3.3.

Lemma 3.4. For any given $t = (t_1, \ldots, t_k)$ such that $0 = t_0 \leq t_1 < \ldots < t_k \leq 1$, the probability measures (μ_n) of $\left(\frac{1}{n} \sum_{j=0}^{N(nt_1)} W_j, \ldots, \frac{1}{n} \sum_{j=0}^{N(nt_k)} W_j \right)$ satisfy an LDP in \mathbb{R}^k_+ with the speed n^α and with the good rate function, $\tilde{I}_t : \mathbb{R}^k_+ \to \mathbb{R}_+$,

$$\tilde{I}_t(x_1, \ldots, x_k) \triangleq \begin{cases}
\mathcal{B}_0^* \sum_{i=1}^{k} (x_i - x_{i-1} - \lambda \Delta t_i)^\alpha & \text{if } x_i - x_{i-1} \geq \lambda \Delta t_i, \text{ for } i = 1, \ldots, k, \\
\infty & \text{otherwise.}
\end{cases} \quad (3.12)$$

Proof. The proof is an application of the contraction principle ([8]). To this end, consider the function $f : \mathbb{R}^k_+ \to \mathbb{R}^k_+$, $f(x_1, x_2, \ldots, x_k) \triangleq (x_1, x_1 + x_2, \ldots, x_1 + \ldots + x_k)$. Notice that

$$\left(\frac{1}{n} \sum_{j=0}^{N(nt_1)} W_j, \ldots, \frac{1}{n} \sum_{j=0}^{N(nt_k)} W_j \right) = f \left(\frac{1}{n} \sum_{j=0}^{N(nt_1)} W_j, \ldots, \frac{1}{n} \sum_{j=0}^{N(nt_k)} W_j \right),$$

where f is a continuous function. That is, $\left(\frac{1}{n} \sum_{j=0}^{N(nt_1)} W_j, \ldots, \frac{1}{n} \sum_{j=0}^{N(nt_k)} W_j \right)$ satisfies a large deviation principle with the rate function $\tilde{I}_t(y_1, \ldots, y_k) = \inf \{ I_t(x_1, \ldots, x_k) : y = f(x_1, \ldots, x_k) \}$. However, since $(y_1, \ldots, y_k) = f(x_1, \ldots, x_k)$, it is immediate that $y_1 \leq y_2 \leq \ldots \leq y_k$. Therefore,

$$\tilde{I}_t(y_1, \ldots, y_k) = \begin{cases}
\mathcal{B}_0^* \sum_{i=1}^{k} (y_i - y_{i-1} - \lambda \Delta t_i)^\alpha & \text{if } y_{i+1} - y_i \geq \lambda \Delta t_i \text{ for } i = 1, \ldots, k, \\
\infty & \text{otherwise.}
\end{cases} \quad (3.13)$$

Now, for a path $\xi \in \mathbb{D}[0,1]$, let

$$I_Z(\xi) \triangleq \begin{cases}
\mathcal{B}_0^* \sum_{t \in \xi : \xi(t) \neq \xi(t-)} (\xi(t) - \xi(t-))^\alpha & \text{if } \xi \in \mathbb{D}^{(\lambda)}[0,1], \\
\infty & \text{otherwise.}
\end{cases} \quad (3.13)$$

Since Z_n satisfies a finite-dimensional LDP, we can show that the Dawson-Gärtner projective limit theorem implies that \bar{Z}_n satisfies an LDP in $\mathbb{D}[0,1]$ endowed with the pointwise convergence topology. The next lemma verifies that the rate function associated with the LDP of \bar{Z}_n, is indeed I_Z.
Lemma 3.5. Let $T \triangleq \bigcup_{d=1}^{\infty} \{(t_1, \ldots, t_k) : 0 \leq t_1 < t_2 < \cdots < t_d \leq 1\}$ be the collection of all ordered (in the increasing order) finite subsets of $[0, 1]$. Then

$$\sup_{t \in T} \bar{I}_t(\xi(t_1), \ldots, \xi(t_k)) = I_Z(\xi).$$

Proof. The proof is essentially identical to the proof of Lemma 4 of [12] and hence omitted. □

We derive the sample-path LDP for the stochastic process \bar{Z}_n w.r.t. the pointwise convergence topology, which we denote with \mathcal{W}. Recall that $\mathbb{D}^{(\lambda)}[0, 1]$ denotes the subspace of increasing paths with slope λ.

Lemma 3.6. The stochastic process \bar{Z}_n satisfies a large deviation principle in $(\mathbb{D}[0, 1], \mathcal{W})$, with the speed n^{α} and the good rate function I_Z.

Proof. This is an immediate consequence of the Dawson and Gärtner projective limit theorem, (Theorem 4.6.1 of [8]), Lemma 3.4 and Lemma 3.5. □

Next, we establish the sample-path LDP for the stochastic process \bar{Z}_n in $(\mathbb{D}[0, 1], \mathcal{T}_{M}').$

Lemma 3.7. The stochastic process \bar{Z}_n satisfies a large deviation principle in $\mathbb{D}[0, 1]$ w.r.t. the M'_1 topology with the speed n^{α} and the good rate function I_Z.

Proof. For the upper bound, consider a set $K_M \triangleq \{\xi \in \mathbb{D}[0, 1] : \xi \text{ is nondecreasing}, \xi(0) \geq 0, \|\xi\|_{\infty} \leq M\}$. Let F be a closed set in $(\mathbb{D}[0, 1], \mathcal{T}_{M}').$ Then,

$$\limsup_{n \to \infty} \frac{1}{n^{\alpha}} \log P \left(\bar{Z}_n \in F \right) \leq \limsup_{n \to \infty} \frac{1}{n^{\alpha}} \log \left\{ P \left(\bar{Z}_n \in F \cap K_M \right) + P \left(\bar{Z}_n \in K_M^c \right) \right\}$$

$$\leq \limsup_{n \to \infty} \frac{1}{n^{\alpha}} \log \left\{ P \left(\bar{Z}_n \in F \cap K_M \right) + P \left(\sum_{j=1}^{M} W_j \geq M \right) \right\}.$$
\(1+\lambda/k\) \(\subseteq G\). Note that, since \(\xi \in \mathbb{D}^{(\lambda)[0,1]}\) and \(\bar{Z}_n\) is non-decreasing, \(|\bar{Z}_n(i/k) - \xi(i/k)| < 1/k\), for \(i = 0, \ldots, k\) \(\subseteq \{\bar{Z}_n \in B_{M_1}(\xi; 1/k)\}\). Therefore, in view of Lemma 3.4,

\[
\liminf_{n \to \infty} \frac{1}{n^\alpha} \log \mathbb{P} \left(\bar{Z}_n \in G \right) \geq \liminf_{n \to \infty} \frac{1}{n^\alpha} \log \mathbb{P} \left(\bar{Z}_n \in B_{M_1}(\xi; 1/k) \right) \\
\geq \liminf_{n \to \infty} \frac{1}{n^\alpha} \log \mathbb{P} \left(|\bar{Z}_n(i/k) - \xi(i/k)| < 1/k, \text{ for } i = 0, \ldots, k \right) \\
= -\sup_{(y_1, \ldots, y_k) \in \prod_{i=1}^{k} (\xi(i/k) - 1/k, \xi(i/k) + 1/k)} \inf_{i/k} \bar{I}_{\lambda}(y_1, \ldots, y_k) \\
\geq -B_0(p) \sum_{i=1}^{k} \left(\xi(i/k) - \xi((i-1)/k) - \lambda/k \right)^\alpha \\
\geq -B_0(p) \sum_{t \in \xi(t) \neq \xi(t-1)} (\xi(t) - \xi(t-1))^\alpha = -I_Z(\xi).
\]

Since \(\xi\) was an arbitrary element of \(G \cap \mathbb{D}^{(\lambda)[0,1]}\), we arrive at the desired lower bound:

\[-\inf_{\xi \in G} I_Z(\xi) = -\inf_{\xi \in G \cap \mathbb{D}^{(\lambda)[0,1]}} I_Z(\xi) \leq \liminf_{n \to \infty} \frac{1}{n^\alpha} \log \mathbb{P} \left(\bar{Z}_n \in G \right).
\]

Our next lemma shows that \(\bar{Z}_n + \bar{S}_n\) is exponentially equivalent to \(\bar{Y}_n\).

Lemma 3.8. \(\bar{Y}_n\) and \(\bar{Z}_n + \bar{S}_n\) are exponentially equivalent in \((\mathbb{D}[0,1], T_{M_1})\).

Proof. Due to the construction of \(\bar{Y}_n\), \(\bar{Z}_n\), and \(\bar{S}_n\), we have that for any \(\delta > 0\),

\[
\{d_{M_1}(\bar{Y}_n, \bar{Z}_n + \bar{S}_n) \geq \delta\} \subseteq \{(n - T_{N(n)})/n \geq \delta\} \cup \{\exists j \leq N(n) : \tau_j \geq n\delta\}. \tag{3.14}
\]

To bound the probability of the first set, define \(D_n(\epsilon) \triangleq \{N(n)/n \geq 1/\mathbb{E}\tau_1 - \epsilon\}\) for any \(\epsilon > 0\) and notice that \(\mathbb{P} \left((n - T_{N(n)})/n \geq \delta \right) = \mathbb{P} \left(T_{N(n)} \leq n(1 - \delta) \right) = \mathbb{P} \left(T_{N(n)} \leq n(1 - \delta), D_n(\epsilon) \right) + \mathbb{P} \left(T_{N(n)} \leq n(1 - \delta), D_n(\epsilon)^c \right), \) and hence,

\[
\limsup_{n \to \infty} \frac{1}{n^\alpha} \log \mathbb{P} \left((n - T_{N(n)})/n \geq \delta \right) \\
\leq \limsup_{n \to \infty} \frac{1}{n^\alpha} \log \left\{ \mathbb{P} \left(T_{N(n)} \leq n(1 - \delta), D_n(\epsilon) \right) + \mathbb{P} \left(D_n(\epsilon)^c \right) \right\} \\
= \max \left\{ \limsup_{n \to \infty} \frac{1}{n^\alpha} \log \mathbb{P} \left(T_{N(n)} \leq n(1 - \delta), D_n(\epsilon) \right), \limsup_{n \to \infty} \frac{1}{n^\alpha} \log \mathbb{P} \left(D_n(\epsilon)^c \right) \right\}. \tag{3.15}
\]

Letting \(\epsilon < \delta/(2\mathbb{E}\tau_1)\), we see that from the same argument as the one preceding (3.4),

\[
\limsup_{n \to \infty} \frac{1}{n^\alpha} \log \mathbb{P} \left(T_{N(n)} \leq n(1 - \delta), D_n(\epsilon) \right) \leq \limsup_{n \to \infty} \frac{1}{n^\alpha} \log \mathbb{P} \left(T_{\left\lceil n \left(\frac{1}{\mathbb{E}\tau_1} - \epsilon \right) \right\rceil} \leq n(1 - \delta), D_n(\epsilon) \right) \\
= \limsup_{n \to \infty} \frac{1}{n^\alpha} \log \mathbb{P} \left(N(n(1 - \delta)) \geq \left\lceil n \left(\frac{1}{\mathbb{E}\tau_1} - \epsilon \right) \right\rceil, D_n(\epsilon) \right) \\
= -\infty.
\]
Using the definition of a renewal process and Cramér's theorem we obtain
\[
\limsup_{n \to \infty} \frac{1}{n^\alpha} \log P(D_n(\epsilon) = -\infty. \tag{3.16}
\]
Therefore,
\[
\limsup_{n \to \infty} \frac{1}{n^\alpha} \log P((n - T_{N(n)})/n > \delta) = -\infty. \tag{3.17}
\]
Moving on to the bound for the probability of the second term in (3.14), for any \(\epsilon > 0\),
\[
P\{\exists j \leq N(n) : \tau_j \geq n\delta\} = P\{\exists j \leq N(n) : \tau_j \geq n\delta, N(n)/n \leq 1/\mathbb{E}\tau_1 + \epsilon\} + P\{N(n)/n > 1/\mathbb{E}\tau_1 + \epsilon\}
\leq P\{\exists j \leq n/\mathbb{E}(\tau_1) + n\epsilon : \tau_j \geq n\delta\} + P\{N(n)/n > 1/\mathbb{E}\tau_1 + \epsilon\}
\leq [n/\mathbb{E}(\tau_1) + n\epsilon] \mathbb{P}(\tau_1 \geq n\delta) + P\{N(n)/n > 1/\mathbb{E}\tau_1 + \epsilon\}.
\]
Since \(\mathbb{P}(\tau_1 \geq n\delta)\) and \(P\{N(n)/n > 1/\mathbb{E}\tau_1 + \epsilon\}\) both decay at an exponential rate,
\[
\limsup_{n \to \infty} \frac{1}{n^\alpha} \log P\{\exists j \leq N(n) : \tau_j \geq n\delta\} = -\infty.
\]
This, along with (3.17) and (3.14), proves the desired exponential equivalence. \(\square\)

Now, we have all the necessary components to prove Theorem 2.1.

Proof of Theorem 2.1. The preceding sequence of lemmas has resulted in LDPs of \(\tilde{Z}_n\) (Lemma 3.7) and \(\tilde{S}_n\) (Lemma 3.1). Since \(\tilde{Z}_n\) and \(\tilde{S}_n\) are independent, \((\tilde{Z}_n, \tilde{S}_n)\) satisfies an LDP in \(\prod_{i=1}^2 \mathbb{D}[0,1]\) with the rate function \(I_{Z,S}(\zeta, \xi) \triangleq I_Z(\zeta) + I_S(\xi)\); see, for example, Theorem 4.14 of [11].

Let \(\phi : \prod_{i=1}^2 \mathbb{D}[0,1] \to \mathbb{D}[0,1]\) denote the addition function \(\phi(\xi, \zeta) = \xi + \zeta\). Since \(\phi\) is continuous on \((\xi, \zeta)\) as far as \(\xi\) and \(\zeta\) do not share a jump time with opposite directions (which follows from a straightforward modification of Lemma B.1 in [2]), \(\phi\) is continuous on the effective domain of \(I_{Z,S}\). Let \(I_W(\zeta) \triangleq \inf\{I_{Z,S}(\xi_1, \xi_2) : \zeta = \xi_1 + \xi_2, \xi_1 \in \mathbb{D}^{(+)\mathbb{Z}}, \xi_2 \in \mathbb{D}^{(-\mathbb{Z})}\}\), and note that it is straightforward to check that \(I_W = I_Y\). By the extended contraction principle (see [17]), we conclude that \(\tilde{Z}_n + \tilde{S}_n\) satisfies the sample-path LDP with the rate function \(I_Y\).

We now prove the large deviation upper bound. Let \(F\) be a closed set w.r.t. the \(M_1^\prime\) topology, and let \(F_\epsilon \triangleq \{\xi \in \mathbb{D}[0,1] : d_{M_1^\prime}(\xi, F) \leq \epsilon\}\). Then,
\[
\limsup_{n \to \infty} \frac{1}{n^\alpha} \log P(\tilde{Y}_n \in F)
= \limsup_{n \to \infty} \frac{1}{n^\alpha} \log \left\{P(\tilde{Y}_n \in F, d_{M_1^\prime}(\tilde{Y}_n, \tilde{Z}_n + \tilde{S}_n) \leq \epsilon) + P\left(d_{M_1^\prime}(\tilde{Y}_n, \tilde{Z}_n + \tilde{S}_n) > \epsilon\right)\right\}
\leq \limsup_{n \to \infty} \frac{1}{n^\alpha} \log P(\tilde{Z}_n + \tilde{S}_n \in F_\epsilon) \leq -\inf_{\zeta \in F} I_Y(\zeta),
\]
where the first inequality is due to Lemma 3.8. Note that \(\inf_{\epsilon \to 0}\inf_{\xi \in F_\epsilon} I_Y(\zeta) = \inf_{\xi \in F} I_Y(\zeta)\), since \(I_W\) is good w.r.t. \(J_{M_1^\prime}\) (see Proposition A.3 of [3]). The desired large deviation upper bound follows by taking \(\epsilon \to 0\).
For the lower bound, let G be an open set in $T_{M'_1}$. We assume that $\inf_{\xi \in G} I_Y(\xi) < \infty$ since the lower bound is trivial otherwise. For any given $\epsilon > 0$, pick $\zeta \in G$ such that $I(\zeta) \leq \inf_{\xi \in G} I_Y(\xi) + \epsilon$. Let $\delta > 0$ be such that $B_{M'_1}(\zeta, 2\delta) \in G$. Then, we know from Lemma 3.8, $P\left(d(\bar{Y}_n, \bar{Z}_n + \bar{S}_n) < \delta\right)/P\left(\bar{Z}_n + \bar{S}_n \in B_{M'_1}(\zeta, \delta)\right) \to 0$, and hence,

$$
\liminf_{n \to \infty} \frac{1}{n^\alpha} \log P\left(\bar{Y}_n \in G\right) \geq \liminf_{n \to \infty} \frac{1}{n^\alpha} \log P\left(\bar{Z}_n + \bar{S}_n \in B_{M'_1}(\zeta, \delta), d(\bar{Y}_n, \bar{Z}_n + \bar{S}_n) < \delta\right)
$$

$$
\geq \liminf_{n \to \infty} \frac{1}{n^\alpha} \log P\left(\bar{Z}_n + \bar{S}_n \in B_{M'_1}(\zeta, \delta)\right) \left\{1 - \frac{P\left(d(\bar{Y}_n, \bar{Z}_n + \bar{S}_n) < \delta\right)}{P\left(\bar{Z}_n + \bar{S}_n \in B_{M'_1}(\zeta, \delta)\right)}\right\}
$$

$$
= \liminf_{n \to \infty} \frac{1}{n^\alpha} \log P\left(\bar{Z}_n + \bar{S}_n \in B_{M'_1}(\zeta, \delta)\right) \geq -\inf_{\xi \in B_{M'_1}(\zeta, \delta)} I_Y(\xi) \geq -I_Y(\zeta) \geq -\inf_{\xi \in G} I_Y(\xi) - \epsilon.
$$

Taking $\epsilon \to 0$, we arrive at the desired lower bound. \qed

4. Tail asymptotics for the area of a busy period. Our focus in this section is on proving Theorem 2.2 and Theorem 2.3. In Section 4.1, we collect several analytic properties of key variational problems related to these theorems. The proofs of these analytic properties as well as some other analytic results are deferred to Section 5 to keep the focus of this section on probabilistic arguments as much as possible. In Section 4.2, we state two key propositions (Proposition 4.2 and Proposition 4.3) which are applied to providing the proofs of Theorem 2.2 and Theorem 2.3. The rest of this section is devoted to the proofs of Proposition 4.2 and 4.3. The focus is again on probabilistic ideas, the substantial number of additional analytical arguments that are directly needed are stated as lemmas of which the proofs can be found in Section 5.

4.1. Key auxiliary variational problems and related properties Recall that $B^A_{\infty} = B_y \cap A[0, \infty)$. Our first lemma establishes that the infimum defining B^*_y, taken over paths of bounded variation, can be confined to absolutely continuous paths. Its proof is given in Section 5.1.

Lemma 4.1. Recall that B^*_y is the optimal value of the variational problem (B_y).

(i) Let $\bar{y} \triangleq (|\mu|p + 1)^\alpha$. For any $y \geq \bar{y}$, there exists a path $\xi^* \in B^A_{\infty}$ so that $I_y(\xi^*) = 0$ and $B^*_y = 0$.

(ii) For any $y \geq 0$, $B^*_y = \inf_{\xi \in B^A_{\infty}} I_y(\xi)$.

We provide the proof of the following proposition in Section 5.2. It facilitates the proof of Proposition 4.3, which is a key result for the tail asymptotics of W_1 and V_n.

Proposition 4.1. The optimal value B^*_y of (B_y) satisfies the following properties:

(i) $y \mapsto B^*_y$ is non-increasing in y, $y \in [0, \bar{y}]$.
(ii) $y \mapsto B^*_y$ is Lipschitz continuous, $y \in [0, \bar{y}]$.

(iii) for every $y \in [0, \bar{y}]$, $B^*_y \in (0, \infty)$.

Fix $T > 0$ and consider a functional $\Phi_T : \mathbb{D}[0, T] \to \mathbb{R}_+$, where $\Phi_T(\xi) = \int_0^T (\Psi(\xi)(s))^p ds$. Now, let V^*_y denote the optimal value of the optimization problem

$$V^*_y \triangleq \inf_{\xi \in V^*_y} I^{BV[0, T]}(\xi),$$

where

$$V^*_y \triangleq \{ \xi \in \mathbb{D}[0, T] : \xi(0) = y, \Phi_T(\xi) \geq 1 \},$$

and

$$I^{BV[0, T]}(\xi) \triangleq \begin{cases} \int_0^T \Lambda^*(\xi^{(u)}(s)) ds + \theta_+ \xi^{(u)}(T) + \theta_- \xi^{(d)}(T) & \text{if } \xi(0) = y \text{ and } \xi \in BV[0, T], \\ \infty & \text{otherwise.} \end{cases}$$

The variational problem (V^*_y) will naturally appear in large deviations estimates. The next lemma, proved in Section 5.3, summarizes several of its properties.

Lemma 4.2. Consider an arbitrary path $\xi \in BV[0, T]$ and set $y \triangleq \xi(0)$.

(i) There exists a path $\zeta_1 \in BV[0, T]$ such that

i-1) $\zeta_1(0) = y$,

i-2) $\Phi_T(\zeta_1) \geq \Phi_T(\xi)$,

i-3) $I^{BV[0, T]}(\zeta_1) \leq I^{BV[0, T]}(\xi)$,

i-4) For some $t \in [0, T]$, ζ_1 is nonnegative over $[0, t]$ and ζ_1 is linear with slope μ over $[t, T]$.

(ii) There exists a path $\zeta_2 \in A\mathbb{C}[0, T]$ and a $z \in [0, \xi^{(u)}(T)]$ such that

ii-1) $\zeta_2(0) = y + z$,

ii-2) $\Phi_T(\zeta_2) \geq \Phi_T(\xi)$,

ii-3) $\theta_+ \cdot z + I^{BV[0, T]}(\zeta_2) \leq I^{BV[0, T]}(\xi)$, where we interpret $\theta_+ \cdot z$ as 0 if $\theta_+ = \infty$ and $z = 0$,

ii-4) For some $t \in [0, T]$, ζ_2 is nonnegative over $[0, t]$ and ζ_2 is linear with slope μ over $[t, T]$.

(iii) If, in addition, $\xi \in A\mathbb{C}[0, T]$, there exists a path $\zeta_3 \in A\mathbb{C}[0, T]$ such that

iii-1) $\zeta_3(0) = y$,

iii-2) $\Phi_T(\zeta_3) \geq \Phi_T(\xi)$,

iii-3) $I^{BV[0, T]}(\zeta_3) \leq I^{BV[0, T]}(\xi)$,

iii-4) ζ_3 is concave over $[0, T]$ and its derivative is bounded by μ from below.

4.2. Proof of Theorem 2.2 and Theorem 2.3 The following propositions are instrumental.

Proposition 4.2. (i) Recall that $T_1 = \inf\{k > 0 : X_k = 0\}$. Then,

$$\limsup_{x \to \infty} \frac{1}{x} \log P_x \left(\int_0^{T_1/x} (X_{(u)}(x))^p du \geq 1 \right) \leq -B^*_y.$$
(ii) Recall that \(W_1 = \sum_{i=1}^{T_1} X_i^p \). Then,
\[
\liminf_{u \to \infty} \frac{1}{u^\alpha} \log P_0 (W_1 > u) \geq -B_0^*.
\]
We provide the proof of Proposition 4.2 in Section 4.3.

Proposition 4.3.

(i) \(\sum_{k=0}^{m-1} X_k^p > x^{1+p} \iff \int_0^{m/x} \left(\frac{X_{\lfloor ux \rfloor}}{x} \right)^p du > 1, \)

(ii) it holds that \(B_0^* = B_\pi^* \),

(iii) finally,
\[
\lim \inf_{k \to \infty} \frac{i-1}{k} \beta \bar{y} + B_\pi^* \bar{y} = \inf_{\beta \in [0, \infty)} \{ \beta \bar{y} + B_\pi^* \bar{y} \} = B_\pi^*.
\]
We provide the proof of Proposition 4.3 in Section 4.4.

With Proposition 4.2 and Proposition 4.3 in our hands, we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. For the upper bound, setting \(t = x^{p+1} = x^{1/\alpha} \),
\[
\limsup_{t \to \infty} \frac{1}{t^\alpha} \log P(W_1 \geq t) = \limsup_{x \to \infty} \frac{1}{x} \log P_0 \left(\sum_{k=0}^{T_1-1} X_k^p \geq x^{1+p} \right)
\]
\[
= \limsup_{x \to \infty} \frac{1}{x} \log P_0 \left(\int_0^{T_1/x} \left(\frac{X_{\lfloor ux \rfloor}}{x} \right)^p du \geq 1 \right)
\]
\[
\leq -B_0^*.
\]
We used \(\sum_{i=1}^{T_1} X_i^p = \sum_{i=0}^{T_1-1} X_i^p \) to obtain the first equality, applied part (i) of Proposition 4.3 to derive the second equality, and invoked part (i) of Proposition 4.2 to establish the inequality. Together with the matching lower bound in part (ii) of Proposition 4.2, this yields the desired asymptotics (2.4).

□

The proof of Theorem 2.3 is slightly more involved.

Proof of Theorem 2.3. We start by proving the large deviation upper bound for \(\frac{1}{n} V_n \). Denote the time-reversed Markov process of \(\{ X_k, k = 1, \ldots, n \} \) with \(\{ X^*_k, k = 0, \ldots, n \} \), and let \(T_1^* \triangleq \inf \{ i > 0 : X^*_i = 0 \} \). Let \(\bar{y} \triangleq (|\mu|(p+1))^{\alpha} \) and fix \(b > 0 \). Setting \(x^{p+1} \triangleq nb \), we obtain that
\[
P_0 \left(\frac{1}{n} V_n \geq b \right) = P_0 \left(\sum_{i=T(N(n)+1)}^{n} X_i^p \geq nb \right) = \frac{1}{\pi(0)} P_\pi \left(\sum_{i=0}^{T_1^*-1} (X_i^*)^p \geq nb, X^*_1 = 0 \right)
\]
\[
\leq \frac{n+1}{\pi(0)} P_\pi \left(\sum_{i=0}^{T_1-1} X_i^p \geq nb \right) = \frac{n}{\pi(0)} P_\pi \left(\int_0^{T_1/x} \left(\frac{X_{\lfloor ux \rfloor}}{x} \right)^p du \geq 1 \right),
\]
where the second equality follows from Lemma A.1 with \(g(y_0, \ldots, y_n) = 1(\sum_{i=0}^n y_i^p > nb) \), the second inequality follows from the upper bound in Lemma A.2, and the last equality follows from part (i) of Proposition 4.3.
From the tower property, we have that
\[
P_\pi \left(\int_0^{T_1/x} (X_{\lfloor xu \rfloor}/x)^p \text{d}u \geq 1 \right)
= E_\pi \left(\mathbb{1} \{ X_0 \geq x\bar{y} \} + \sum_{i=1}^k \mathbb{1} \{ X_0 \in \left[\frac{i-1}{k} x\bar{y}, \frac{i}{k} x\bar{y} \right) \} \right) P \left(\int_0^{T_1/x} (X_{\lfloor xu \rfloor}/x)^p \text{d}u \geq 1 \bigg| X_0 \right)
\leq E_\pi \mathbb{1} \{ X_0 \geq x\bar{y} \} + \sum_{i=1}^k E_\pi \mathbb{1} \{ X_0 \in \left[\frac{i-1}{k} x\bar{y}, \infty \right) \} P_{\frac{i}{k} x\bar{y}} \left(\int_0^{T_1/x} (X_{\lfloor xu \rfloor}/x)^p \text{d}u \geq 1 \right)
\leq \pi [x\bar{y}, \infty) + \sum_{i=1}^k \pi \left[i - \frac{1}{k} \frac{1}{x\bar{y}}, \infty \right) P_{\frac{i}{k} x\bar{y}} \left(\int_0^{T_1/x} (X_{\lfloor xu \rfloor}/x)^p \text{d}u \geq 1 \right)
\tag{4.2}
\]
where in the first inequality we used that the Markov chain \(\{X_n, n \geq 1\} \) is monotone with respect to the initial state. Therefore, by the principle of the maximum term and part (i) of Proposition 4.2,
\[
\limsup_{x \to \infty} \frac{1}{x} \log P \left(\int_0^{T_1/x} (X_{\lfloor xu \rfloor}/x)^p \text{d}u \geq 1 \right)
\leq \limsup_{x \to \infty} \frac{1}{x} \log \pi [x\bar{y}, \infty)
\vee \max_{i=1, \ldots, k} \left\{ \limsup_{x \to \infty} \frac{1}{x} \log \left(\pi \left[\frac{i-1}{k} \frac{1}{x\bar{y}}, \infty \right) P_{\frac{i}{k} x\bar{y}} \left(\int_0^{T_1/x} (X_{\lfloor xu \rfloor}/x)^p \text{d}u \geq 1 \right) \right) \right\}
= (-\beta \bar{y}) \vee \max_{i=1, \ldots, k} \left\{ -\frac{i-1}{k} \beta \bar{y} + \limsup_{x \to \infty} \frac{1}{x} \log P_{\frac{i}{k} x\bar{y}} \left(\int_0^{T_1/x} (X_{\lfloor xu \rfloor}/x)^p \text{d}u \geq 1 \right) \right\}
\leq (-\beta \bar{y}) \vee \max_{i=1, \ldots, k} \left\{ -\frac{i-1}{k} \beta \bar{y} - B^*_y \right\}
\]
Note that since \(B^*_y = 0 \) for \(y \geq \bar{y} \) due to part (i) of Lemma 4.1,
\[
(-\beta \bar{y}) \vee \max_{i=1, \ldots, k} \left\{ -\frac{i-1}{k} \beta \bar{y} - B^*_y \right\} = \max_{i \geq 1} \left\{ -\frac{i-1}{k} \beta \bar{y} - B^*_y \right\} = -\min_{i \geq 1} \left\{ \frac{i-1}{k} \beta \bar{y} + B^*_y \right\}
\]
Taking \(k \to \infty \) and applying part (ii) and (iii) of Proposition 4.3,
\[
\limsup_{x \to \infty} \frac{1}{x} \log P \left(\int_0^{T_1/x} (X_{\lfloor xu \rfloor}/x)^p \text{d}u \geq 1 \right) \leq -B^*_y = -B^*_{0y}
\]
From this, along with (4.1), we arrive at the desired upper bound:
\[
\limsup_{x \to \infty} \frac{1}{n^\alpha} \log P \left(\frac{1}{n} V_n \geq b \right) \leq \limsup_{x \to \infty} \frac{1}{x} \log P \left(\int_0^{T_1/x} (X_{\lfloor xu \rfloor}/x)^p \text{d}u \geq 1 \right) \cdot b^\alpha \leq -B^*_y \cdot b^\alpha.
\]
Next, for \(n \) sufficiently large, using the lower bound of Lemma A.2 for \(n \geq n_0 \):
\[
P_0 \left(\frac{1}{n} V_n \geq b \right) = P_0 \left(\sum_{i=T_{N_{(n)}}+1}^n X^+_i \geq nb \right) = \frac{1}{\pi(0)} P_\pi \left(\sum_{i=0}^{T_1-1} (X^+_i)^p \geq nb, X^+_n = 0 \right)
\geq \pi(0) \frac{n}{2} P_0 \left(\sum_{i=1}^{T_1} V_i^+ > nb \right) - \mathcal{O}(e^{-cn}) = \frac{\pi(0)}{2} P_0 (W_1 > nb) - \mathcal{O}(e^{-cn}).
\tag{4.3}
\]
We can now apply part (ii) of Proposition 4.2 to (4.3) and obtain the matching lower bound:

$$
\liminf_{n \to \infty} \frac{1}{n^a} \log P_0 \left(\frac{1}{n} V_n \geq b \right) \geq -B_0^* \cdot b^a.
$$

\[\square\]

4.3. Proof of Proposition 4.2 We first state a number of preliminary results. These results are analytic in nature, and their proofs can be found in Sections 5.4 and 5.5. For a fixed $M > 0$, let

$$
B^{AC,M}_y \triangleq B^{AC}_y \cap \{ \xi \in \mathbb{D}[0, \infty) : T(\xi) \leq M \}
$$

and $B^M_y \triangleq B_y \cap \{ \xi \in \mathbb{D}[0, \infty) : T(\xi) \leq M \}$.

Lemma 4.3. For any given $y \geq 0$, there exists a constant $M = M(y) > 0$ such that

(i) for each $\xi \in B^{AC}_y$, there exists a path $\zeta \in B^{AC,M}_y$ satisfying $I_y(\zeta) \leq I_y(\xi)$.

(ii) It holds that

$$
\inf_{\xi \in B^{AC}_y} I_y(\xi) = \inf_{\xi \in B^{AC,M}_y} I_y(\xi).
$$

(iii) Moreover, $M(y) \leq cy + d$ for some $c > 0$ and $d > 0$.

Lemma 4.4. Let $M > 0$ be the constant in Lemma 4.3. Then, $B^*_y = V^*_y$ for any $T \geq M$.

Set

$$
K_t \triangleq \left\{ \xi \in \mathbb{D}[0, t] : \xi(0) = 0, \int_0^t (\Psi(\xi)(s))^p ds \geq 1, \xi(s) \geq 0 \text{ for } s \in [0, t] \right\}.
$$

The following corollary is immediate from the previous lemma and Lemma 4.3.

Corollary 4.1. Let $M > 0$ be the constant in Lemma 4.3. For any $y \geq 0$,

$$
\inf_{t \in [0, M]} \inf_{\xi \in K_t} I^0_{BV[0,t]}(\xi) = V^*_0 = B^*_0.
$$

Next, we formulate a key preparatory lemma. This lemma is motivated by a result of [21], stated as Result B.3 (ii) below. To apply this result, we need to verify a uniform continuity result. The next lemma provides the desired uniform continuity, whose proof is deferred to Section 5.6.

Recall the function $\Phi_T : \mathbb{D}[0, T] \to [0, \infty)$ defined as $\Phi_T(\xi) = \int_0^T (\Psi(\xi)(s))^p ds$ and $I^0_{BV[0,T]}$ defined as

$$
I^0_{BV[0,T]}(\xi) \triangleq \left\{ \int_0^T \Lambda^*(\dot{\xi}(s)) ds + \theta_+ (\xi^{(a)}(T)) + \theta_- |\xi^{(d)}(T)| \right\} \text{ if } \xi \in BV[0,T] \text{ and } \xi(0) = 0,
$$

otherwise.

Lemma 4.5. For each $\gamma \geq 0$, Φ_T is uniformly continuous on the set $\{\xi : I^0_{BV[0,T]}(\xi) \leq \gamma\}$ w.r.t. the M_1' metric.

We apply this lemma in our next and final preparatory lemma:

Lemma 4.6. (i) For any $t, y \geq 0$ and $T > 0$,

$$
\limsup_{x \to \infty} \frac{1}{x} \log P_{xy}(T_1/x > T) \leq ty + T \log e^{U}.
$$

(4.5)
(ii) For any \(y \geq 0 \) and \(T > 0 \),
\[
\limsup_{x \to \infty} \frac{1}{x} \log P_{xy} \left(\int_0^T (X_{\lfloor sx \rfloor}/x)^p ds \geq 1 \right) \leq -\nu_y^{T*}.
\] (4.6)

Proof of Lemma 4.6 For part (i), note that
\[
P_{xy}(T_1 > xT) \leq P_{xy}(X_{\lfloor xT \rfloor} > 0) = P \left(\sum_{i=1}^{\lfloor xT \rfloor} U_i > -xy \right) \leq e^{xy} \mathbb{E} (e^{tU})^{[xT]},
\]
where the last inequality is from the Markov inequality. Taking logarithms, dividing both sides by \(x \), and taking \(\limsup \), we get (4.5).

For part (ii), note that conditional on \(X_0 = xy \), \(\int_0^T (X_{\lfloor sx \rfloor}/x)^p ds = \Phi_T(K_x + y) \). From Lemma 5.2, we know that \(\Phi_T \) is uniformly continuous over the sub-level sets of the rate function \(I_{y}^{BV[0,T]} \) of \(K_x + y \). Hence, we can apply Result B.3 (ii) to obtain
\[
\limsup_{x \to \infty} \frac{1}{x} \log P_{xy} \left(\int_0^T (X_{\lfloor sx \rfloor}/x)^p ds \geq 1 \right) \leq -\inf_{a \in [1,\infty)} J_y(a),
\]
where \(J_y(a) \triangleq \inf \{ I_{y}^{BV[0,T]}(\xi) : \xi \in \mathbb{D}[0,T], \xi(0) = y, \Phi_T(\xi) = a \} \). Obviously, \(\inf_{a \in [1,\infty)} J_y(a) = \nu_y^{T*} \) and (4.6) follows. \(\square \)

Now we are ready to prove Proposition 4.2.

Proof of Proposition 4.2. For part (i), consider a small enough \(t_0 > 0 \) so that \(\mathbb{E} e^{t_0 U} < 1 \) which is possible since \(\mathbb{E} U < 0 \) and \(U \) is light-tailed. Then, thanks to Lemma 4.4, we can pick a sufficiently large \(T > 0 \) so that \(B^*_{y} = \nu_{y}^{T*} \) and \(t_0 y + T \log \mathbb{E} e^{t_0 U} < -B^*_{y} \). Considering the case \(T_1/x \leq T \) and \(T_1/x > T \) separately and then applying the principle of the maximum term,
\[
\limsup_{x \to \infty} \frac{1}{x} \log P_{xy} \left(\int_0^{T_1/x} (X_{\lfloor sx \rfloor}/x)^p du \geq 1 \right)
\leq \limsup_{x \to \infty} \frac{1}{x} \log \left\{ P_{xy} \left(\int_0^{T_1/x} (X_{\lfloor sx \rfloor}/x)^p du \geq 1, T_1/x \leq T \right) + P_{xy}(T_1/x > T) \right\}
\leq \limsup_{x \to \infty} \frac{1}{x} \log P_{xy} \left(\int_0^{T} (X_{\lfloor sx \rfloor}/x)^p du \geq 1 \right) \lor \limsup_{x \to \infty} \frac{1}{x} \log P_{xy}(T_1/x > T)
\leq \left(-\nu_{y}^{T*} \right) \lor (t_0 y + T \log \mathbb{E} e^{t_0 U}) = \left(-B^*_{y} \right) \lor (t_0 y + T \log \mathbb{E} e^{t_0 U}) = -B^*_{y},
\] (4.7)

where we used Lemma 4.6 for the third inequality.

Next, we move on to part (ii). For any given \(t > 0 \), let
- \(A_{t,\epsilon} \triangleq \{ \xi \in \mathbb{D}[0,t] : \xi(0) = \epsilon, \int_0^t \Psi(\xi)(s)^p ds > 1, \xi(s) > 0, \forall s \in [0,t] \} \) and
- \(\tilde{A}_{t,\epsilon} \triangleq \{ \xi \in \mathbb{D}[0,t] : \xi(0) = \epsilon, \int_0^t \Psi(\xi)(s)^p ds > 1, \xi(s) > \epsilon/2, \forall s \in [0,t] \} \).
Set \(u = x^{1+p} \). Let \(\epsilon \) be small enough such that \(P(U_1 > \sqrt{\epsilon}) > 0 \). Define the event \(B_{x,\epsilon} \triangleq \{ U_i > \sqrt{\epsilon}, i = 1, \ldots, [x\sqrt{\epsilon}] \} \). Setting \(k^* = \lceil x\sqrt{\epsilon} \rceil + 1 \), we obtain

\[
\liminf_{u \to \infty} \frac{1}{u^\alpha} \log P_0(W_1 > u) = \liminf_{x \to \infty} \frac{1}{x} \log P_0 \left(\sum_{k=0}^{T_1} X^p_k > x^{1+p} \right) \\
\geq \liminf_{x \to \infty} \frac{1}{x} \log P_0 \left(\sum_{k=0}^{T_1} X^p_k > x^{1+p}, B_{x,\epsilon} \right) \\
= \liminf_{x \to \infty} \frac{1}{x} \log \left[P_0 \left(\sum_{k=k^*}^{T_1} X^p_k > x^{1+p} \right) P_0(B_{x,\epsilon}) \right] \\
\geq \liminf_{x \to \infty} \frac{1}{x} \log \left[P_{ex} \left(\int_0^{T_1/x} \frac{1}{x} (X_{[sx]}/x)^p ds > 1 \right) P_0(B_{x,\epsilon}) \right] \\
\geq \liminf_{x \to \infty} \frac{1}{x} \log \left[P_{ex} \left(\int_0^t (X_{[sx]}/x)^p ds > 1, T_1 > xt \right) P_0(B_{x,\epsilon}) \right] \\
\geq \liminf_{x \to \infty} \frac{1}{x} \log \left[P_{ex} \left(\int_0^t (X_{[sx]}/x)^p ds > 1, X_{[sx]}/x > 0, \forall s \in [0,t] \right) P_0(B_{x,\epsilon}) \right] \\
\geq \liminf_{x \to \infty} \frac{1}{x} \log \left[P_{ex} \left(\tilde{K}_{x} \in \tilde{A}_{t,\epsilon} \right) P_0(B_{x,\epsilon}) \right] \\
\geq - \inf_{\xi \in (\tilde{A}_{t,\epsilon})^o} I^{BV[0,t]}_\epsilon(\xi) + \sqrt{\epsilon} \log P(U_1 > \sqrt{\epsilon}) \\
\geq - \inf_{\xi \in (\tilde{A}_{t,\epsilon})^o} I^{BV[0,t]}_\epsilon(\xi) + \sqrt{\epsilon} \log P(U_1 > \sqrt{\epsilon}),
\]

where the third equality is from part \((i) \) of Proposition 4.3. The second to last inequality follows from part \((i) \) of Result B.3 since the integral and the infimum are both continuous in the \(M_1 \) topology (see, respectively Theorem 11.5.1 and Theorem 13.4.1 of [22]). Recall that

\[
K_t = \left\{ \xi \in \mathbb{D} : [0,t] : \xi(0) = 0, \int_0^t (\Psi(t)(s))^p ds \geq 1, \xi(s) \geq 0 \text{ for } s \in [0,t] \right\}.
\]

Note that for all \(\epsilon > 0 \),

\[
\inf_{\xi \in \tilde{A}_{t,\epsilon}} I^{BV[0,t]}_\epsilon(\xi) \leq \inf_{\xi \in K_t} I^{BV[0,t]}_\epsilon(\xi). \tag{4.8}
\]

To see this, suppose that \(\xi \in K_t \). Then, \(\tilde{\xi} = \epsilon + \xi \) belongs to \(\tilde{A}_{t,\epsilon} \) and \(I^{BV[0,t]}_\epsilon(\tilde{\xi}) = I^{BV[0,t]}_\epsilon(\xi) \). Since the construction holds for every \(\xi \in K_t \), we have that \(\inf_{\xi \in K_t} I^{BV[0,t]}_\epsilon(\xi) \geq \inf_{\xi \in \tilde{A}_{t,\epsilon}} I^{BV[0,t]}_\epsilon(\xi) \). Therefore,

\[
\liminf_{u \to \infty} \frac{1}{u^\alpha} \log P_0(W_1 > u) \geq - \inf_{\xi \in K_t} I^{BV[0,t]}_\epsilon(\xi) + \sqrt{\epsilon} \log P(U_1 > \sqrt{\epsilon}).
\]

Since \(\epsilon \) and \(t \) are arbitrary, taking \(\epsilon \to 0 \) and taking the infimum over \(t \in [0,M] \), Corollary 4.1 gives

\[
\liminf_{u \to \infty} \frac{1}{u^\alpha} \log P_0(W_1 > u) \geq - \inf_{t \in [0,M]} \inf_{\xi \in K_t} I^{BV[0,t]}_\epsilon(\xi) = -B'_0.
\]

\(\square \)
4.4. Proof of Proposition 4.3 For part (i), note that
\[
\frac{1}{x^{1+p}} \sum_{k=0}^{m-1} X_k^p = \frac{1}{x^{1+p}} \int_0^m X_p(u) \, du = \frac{1}{x^{1+p}} \int_0^{m/x} x X_p([x]s) \, ds = \int_0^{m/x} \left(\frac{X([x]s)}{x} \right)^p \, ds,
\]
where the second equality is from the change of variable \(u = xs \). The claimed equivalence is immediate from this.

For part (iii), note that
\[
\lim \min_{k \to \infty} \left\{ \frac{i-1}{k} \beta y + B_i^\pi \right\} = \lim_{k \to \infty} \left(\min \{ \beta k y + B_i^\pi \} - \frac{1}{k} \beta y \right) = \lim_{k \to \infty} \min \left\{ \frac{i}{k} \beta y + B_i^\pi \right\}.
\]
Moreover, from part (ii) of Proposition 4.1,
\[
\lim \min_{k \to \infty} \left\{ \frac{i}{k} \beta y + B_i^\pi \right\} = \inf_{y \in [0, \infty)} \{ \beta y + B_0^\pi \}.
\]

For part (ii), note that by definition, \(B_i^\pi \geq B_0^\pi \). Therefore, we only have to prove that \(B_0^\pi \leq B_0^\pi \). Recall that \(\beta = \sup\{ \theta > 0 : \mathbb{E}(e^{\theta U}) \leq 1 \} \) and \(\theta_+ = \sup\{ \theta \in \mathbb{R} : \mathbb{E}(e^{\theta U}) < \infty \} \). For the rest of this proof, let \(\Lambda \) be the log-moment generating function and let \(D_\Lambda \) denote the effective domain of \(\Lambda \), i.e. \(D_\Lambda = \{ x : \Lambda(x) < \infty \} \). We start with a claim: for any \(\epsilon > 0 \) there exists a \(u > 0 \) such that
\[
\Lambda^*(u)/u \leq \beta + \epsilon.
\]
(4.9)
To prove (4.9) we distinguish between the cases \(\beta < \theta_+ \) and \(\beta = \theta_+ \). For the first case note that \(\beta \in D_\Lambda^\circ \).
In view of the convexity and continuity of \(\mathbb{E}(e^{\theta U}) \), \(\mathbb{E}(e^{\beta U}) = 1 \). Due to Lemma 2.2.5 (c) in [8], \(\Lambda \) is a differentiable function in \(D_\Lambda^\circ \) with \(\Lambda'(\eta) = \frac{\mathbb{E}(U^{\eta} e^{\beta U})}{\mathbb{E}(e^{\beta U})} \). Since \(\beta \in D_\Lambda^\circ \) we have that \(\Lambda'(\beta) = \mathbb{E}(U e^{\beta U}) < \infty \). In addition, \(\Lambda'(0) = \mathbb{E}(U) < 0 \) implies that \(\Lambda(\eta) \) is decreasing for small values of \(\eta \). Now, the strict convexity and differentiability of \(\Lambda \) over its effective domain implies that \(\Lambda' \) is increasing at \(\beta \) and thus \(\mathbb{E}(U e^{\beta U}) > 0 \). It can be checked that, for \(u = \mathbb{E}(U e^{\beta U}) \),
\[
\frac{\Lambda^*(u)}{u} = \frac{\beta \mathbb{E}(U e^{\beta U}) - \log \mathbb{E}(e^{\beta U})}{\mathbb{E}(e^{\beta U})} = \beta,
\]
and hence our claim is proved. Consider now the case \(\beta = \theta_+ \). In view of Equation (5.5) in [15],
\[
\lim_{x \to \infty} \frac{\Lambda^*(x)}{x} = \theta_+. \quad \text{That is, for any } \epsilon > 0 \text{ we can choose a } u \text{ so that } \Lambda^*(u)/u \leq \theta_+ + \epsilon = \beta + \epsilon. \text{ We proved the claim (4.9).}
\]

Back to the inequality \(B_0^\pi \leq B_0^\pi \), we will show that for any given \(\epsilon > 0 \) and any given path \(\xi \in B_y \), we can construct a path \(\zeta \in B_0 \) so that \(I_0(\zeta) \leq I_y(\xi) + \beta y + \epsilon \). To this end, let \(u > 0 \) be such that
\[
\Lambda^*(u)/u \leq \beta + \epsilon/y
\]
and set
\[
\zeta(s) \triangleq \frac{us}{x} \mathbb{1}_{\{s \leq y/u\}} + \frac{x(s - y/u) \mathbb{1}_{\{s > y/u\}}}{x}.
\]
Then \(\zeta(0) = 0 \), \(\zeta(y/u) = y \), and \(\zeta \in B_0 \). Also, one can see that \(I_y(\zeta) = (y/u)\Lambda^*(u) + \int_0^\infty \Lambda^*(\zeta(s)) \, ds + \theta_+ \zeta(u)(\mathbb{1}(\zeta)) = (y/u)\Lambda^*(u) + I_y(\zeta) \). From the construction of \(u \),
\[
I_0(\zeta) \leq \beta y + \epsilon + I_y(\zeta)
\]
as desired. This concludes the proof of part (iv).
5. Additional technical lemmas and proofs

5.1. Proof of Lemma 4.1 We first state a lemma on the monotonicity of the reflection map which is useful in the proof of Lemma 4.1.

Lemma 5.1. Suppose that $\alpha, \beta, \gamma \in \mathbb{D}[0,T]$, $\alpha(s) = \beta(s) + \gamma(s)$, and $\gamma(s)$ is non-negative and non-decreasing. Then, $\Psi(\alpha)(t) \geq \Psi(\beta)(t)$ for all $t \in [0,T]$.

Proof. The proof of this lemma is an immediate consequence of Theorem 14.2.2 of [19].

Proof of Lemma 4.1. For (i), consider $\xi^*(t) \overset{\Delta}{=} y + \mu \cdot t$ and note that $I_y(\xi^*) = 0$. Also, $y \geq \bar{y}$ implies that $\xi^* \in B_y$, and hence, $B_y^* = 0$. For part (ii), we first show that $B_y^* = \inf_{\xi \in B_y \cap J_+} I_y(\xi)$, where $J_+ = \{ \xi \in \mathbb{D}[0,\infty) : \xi(d) \equiv 0 \}$. To prove this, let $\xi \in B_y$ be given arbitrarily. We construct a path ξ_2 so that $\xi_2 \in B_y \cap J_+$ and $I_y(\xi_2) \leq I_y(\xi)$. Towards this, discard the downward jumps of ξ and let $\xi_1 \overset{\Delta}{=} \xi^{(a)} + \xi^{(u)}$. Then, set $\xi_2(t) \overset{\Delta}{=} \xi_1(t \wedge T(\xi)) + \mu([t - T(\xi)]^+) \gtrless 0$. In view of Lemma 5.1, $\Psi(\xi_2) \geq \Psi(\xi)$ over $[0,T(\xi)]$, and hence, $\xi_2 \in B_y$ and $I_y(\xi) = I_y(\xi_1) + \theta_\gamma \xi^{(d)}(T(\xi)) = I_y(\xi_2) + \theta_\gamma \xi^{(d)}(T(\xi)) \geq I_y(\xi_2)$. This proves $B_y^* = \inf_{\xi \in B_y \cap J_+} I_y(\xi)$.

Now, suppose that $\xi \in B_y \cap J_+$ is given. It is sufficient to prove that there exists a constant $c_\xi \in (0,\infty)$ such that for any given $\epsilon > 0$, one can construct a $\tilde{\xi}_\epsilon \in \mathcal{B}^\Lambda_c$ such that

$$I_y(\tilde{\xi}_\epsilon) \leq I_y(\xi) + \epsilon \cdot c_\xi. \quad (5.1)$$

In case $y \geq \bar{y}$, simply consider $\tilde{\xi}(t) \overset{\Delta}{=} y + \mu \cdot t$ regardless of ξ and ϵ. Then, $\tilde{\xi}_\epsilon \in \mathcal{B}^{\Lambda_c}_y$ and $I_y(\tilde{\xi}_\epsilon) = 0 \leq I_y(\xi) + \epsilon \cdot c_\xi$ with $c_\xi = 0$. In case $y < \bar{y}$, we first prove the following claim w.r.t. the local rate function Λ^*: for any $\epsilon > 0$ there exists a $y_\epsilon \in \mathbb{R}_+$ such that

$$\Lambda^*(y) \leq (\theta_+ + \epsilon) y, \quad \forall y \geq y_\epsilon.$$

Since this is trivially true if $\theta_+ = \infty$, we prove the claim with the assumption that $\theta_+ < \infty$. Note that, due to Jensen’s inequality and the monotonicity of the map $x \mapsto \log x$, we see that $\Lambda(\theta) = \log(\mathbb{E}(e^{\theta U_1})) \geq \log e^{\theta \mathbb{E}(U_1)} = \mu \cdot \theta$. This implies, for any $\theta < \theta_+$,

$$y\theta - \Lambda(\theta) \leq y\theta - \mu \theta \leq y\theta_+ - \mu \theta_+ \leq (\theta_+ + \epsilon) y, \quad \forall y \geq -\mu \theta_+/\epsilon.$$

Therefore,

$$\Lambda^*(y) = \sup_{\theta \leq \theta_+} \{ y\theta - \Lambda(\theta) \} \leq (\theta_+ + \epsilon) y, \quad \forall y \geq -\mu \theta_+/\epsilon,$$

which is the claim with $y_\epsilon = -\mu \theta_+/\epsilon$.

To conclude the proof, pick $\xi \in B_y \cap J_+$ and assume w.l.o.g. that $I_y(\xi) < \infty$ (since (5.1) is trivial otherwise). For any given $\epsilon > 0$, we construct a path $\tilde{\xi}_\epsilon$ such that $\tilde{\xi}_\epsilon \in \mathcal{B}^{\Lambda_c}_y$ and $I_y(\tilde{\xi}_\epsilon) \leq I_y(\xi) + \epsilon$.

\[\xi(u)(T(\xi)), \text{ which is (5.1) with } c_\xi = \xi(u)(T(\xi)). \] Set \(\xi_t(t) = y + y_t t \) for \(t \in [0, \xi(u)(T(\xi))/y] \), and \(\xi_t(t) = \xi(a)(t - \xi(u)(T(\xi))/y) + \xi(u)(T(\xi)) \) for \(t > \xi(u)(T(\xi))/y \), with \(y_t = -\mu \theta_+ / \epsilon \). Then it is straightforward to check that \(\xi_t \in B_{B_y^\alpha}^\Lambda \) from its construction and Lemma 5.1. In addition, \(\xi_t(T(\xi) + \xi(u)(T(\xi))/y) = \xi(a)(T(\xi)) + \xi(u)(T(\xi)) = 0 \) since \(\xi \in B_y \cap J_+ \), and hence, \(T(\xi) \leq T(\xi) + \xi(a)(T(\xi))/y.e. \) Consequently,

\[
I_y(\xi_t) = \int_0^{T(\xi_t)} \Lambda^*(\xi_t(s))ds = \frac{\xi(u)(T(\xi))}{y} \Lambda^*(y) + \int_{\xi(u)(T(\xi))/y}^{T(\xi)/y} \Lambda^*(\xi(s) - \xi(u)(T(\xi))/y)ds \\
\leq \xi(u)(T(\xi))(\theta_+ + \epsilon) + \int_0^{T(\xi)} \Lambda^*(\xi(s)ds \leq I_y(\xi) + \epsilon \cdot \xi(u)(T(\xi)).
\]

We arrived at the desired inequality. \(\square \)

5.2. Proof of Proposition 4.1 For part (i), let \(x, y \) be such that \(0 \leq x < y \). We will show that for any \(\epsilon > 0 \), there exists \(\xi \in B_{B_y^\alpha}^\Lambda \) such that \(I_y(\xi) < B_x^\epsilon + \epsilon \). To show this, note from Lemma 4.1 and Lemma 4.3 that there exists \(\xi \in B_{B_y^\alpha}^\Lambda \) such that \(I_x(\xi) < B_x^\epsilon + \epsilon \) and \(T(\xi) < \infty \). Set

\[\zeta(t) \triangleq (y - x) + \xi(t \wedge T(\xi)) + \mu \cdot [t - T(\xi)]^+. \]

Since \(\zeta(0) = y \), and \(\zeta(t) - \xi(t) \) is non-negative and non-decreasing on \(t \in [0, \xi(u)(T(\xi)] \), Lemma 5.1 implies that \(\Psi(\zeta)(t) > \Psi(\xi)(t) \) on \(t \in [0, \xi(u)(T(\xi)] \), and hence, \(\zeta \in B_{B_y^\alpha}^\Lambda \). Moreover, note that \(T(\xi) \leq T(\xi) \), and \(\Lambda^*(\tilde{\xi}(s)) = \Lambda^*(\mu) = 0 \) on \(s \in [T(\xi), T(\xi)] \). Therefore,

\[
I_y(\zeta) = \int_0^{T(\xi)} \Lambda^*(\zeta(s))ds = \int_0^{T(\xi)} \Lambda^*(\tilde{\xi}(s))ds = \int_0^{T(\xi)} \Lambda^*(\tilde{\xi}(s))ds = I_x(\xi) < B_x^\epsilon + \epsilon.
\]

For part (ii), note that we only need to prove one side of the inequality thanks to part (i). That is, it is enough to show that if \(0 \leq x < y \), then \(B_x^\epsilon \leq B_y^\sigma + (y - x)\Lambda^*(1) \). Fix an \(\epsilon > 0 \) and pick \(\xi \in B_{B_y^\alpha}^\Lambda \) such that \(I_y(\xi) \leq B_x^\epsilon + \epsilon \), which is always possible due to part (ii) of Lemma 4.1. Set

\[\xi(t) \triangleq (x + t)1_{[0,y-x]}(t) + (y - x - t)1_{[y-x,\infty]}(t). \]

It follows that \(T(\xi) = T(\zeta) + y - x \), and hence,

\[
I_x(\xi) = \int_0^{y-x} \Lambda^*(1)ds + \int_0^{T(\xi)} \Lambda^*(\tilde{\xi}(s))ds = (y - x)\Lambda^*(1) + \int_{y-x}^{T(\xi) + y-x} \Lambda^*(\tilde{\xi}(s))ds \\
= (y - x)\Lambda^*(1) + \int_0^{T(\xi)} \Lambda^*(\tilde{\xi}(s) + (y - x))ds = (y - x)\Lambda^*(1) + \int_0^{T(\xi)} \Lambda^*(\tilde{\xi}(s))ds \\
= (y - x)\Lambda^*(1) + I_y(\xi) \leq (y - x)\Lambda^*(1) + B_x^\epsilon + \epsilon.
\]

Since \(\xi \in B_x, B_x^\epsilon \leq (y - x)\Lambda^*(1) + B_x^\epsilon + \epsilon \). Taking \(\epsilon \to 0 \) yields (ii).

For part (iii), we first note that \(B_y^\alpha < \infty \) if we set \(\xi(t) \triangleq (|\mu|(p + 1))\alpha(1 + \mu(t - 1))1_{[1,\infty)}(t) \), then
\[\xi \in B^A_y \text{ and } I_y(\xi) < \infty. \] To show that \(B^*_y > 0 \), we can take \(y \in (0, \bar{y}) \) without loss of generality in view of (i). Define \(\bar{y}(t) = \bar{y} + \mu t \) and set \(T_\mu = \mathcal{T}(\bar{y}(\cdot)) = \bar{y}/|\mu| \). Write

\[B^*_y = \min \left\{ \inf_{t \in [0, T_\mu]} \inf_{\xi \in B^A_y, \mathcal{T}(\xi) = t} I_y(\xi), \inf_{t \in [T_\mu, \infty]} \inf_{\xi \in B^A_y, \mathcal{T}(\xi) = t} I_y(\xi) \right\}. \tag{5.2} \]

We show that each of the two infima in this minimum is strictly positive. Observe that

\[\inf_{t \in [T_\mu, \infty]} \inf_{\xi \in B^A_y, \mathcal{T}(\xi) = t} I_y(\xi) \geq \inf_{t \in [T_\mu, \infty]} \inf_{\xi(0) = y, \xi \in A_C, \mathcal{T}(\xi) = t} \int_0^t \Lambda^*(\xi(s))ds \]

\[\geq \inf_{t \in [T_\mu, \infty]} t\Lambda^*(-y/t) \geq \frac{\bar{y}}{|\mu|} \Lambda^* \left(\frac{\bar{y}}{|\mu|} \right) > 0, \]

using that \(\Lambda^* \) is a convex non-negative function with \(\Lambda^*(\mu) = 0 \), and Jensen’s inequality.

To lower bound the double infimum in (5.2), observe that, since \(y < \bar{y} \), the area constraint \(\int_0^t \xi(s)\rho ds \geq 1 \) can only be valid if there exists an \(s \in [0, t] \) such that \(\xi(s) \geq \bar{y} + \mu s \). Consequently,

\[\inf_{\xi \in B^A_y, \mathcal{T}(\xi) = t} I_y(\xi) \geq \inf_{s \leq t, \xi \in A_C, \xi(0) = y, \xi(s) \geq \bar{y} + \mu s} I_y(\xi) \]

\[\geq \inf_{s \leq t, \xi \in A_C, \xi(0) = y, \xi(s) \geq \bar{y} + \mu s} \int_0^s \Lambda^*(\xi(u))du \]

\[= \inf_{s \leq t, \xi \in A_C, \xi(0) = y, \xi(s) \geq \bar{y} + \mu s} \int_0^s \Lambda^*(\xi(u))du \]

\[\geq \inf_{s \leq t} s \Lambda^* \left(\frac{\bar{y} - y}{s} + \mu \right), \]

where we applied Jensen’s inequality in the last step. Consequently,

\[\inf_{t \in [0, T_\mu]} \inf_{\xi \in B^A_y, \mathcal{T}(\xi) = t} I_y(\xi) \geq \inf_{s \leq T_\mu} s \Lambda^* \left(\frac{\bar{y} - y}{s} + \mu \right) = \frac{\bar{y}}{|\mu|} \Lambda^* \left(\mu + |\mu| \frac{\bar{y} - y}{y} \right) > 0. \]

The equality holds since \(\Lambda^* \) is a strictly convex non-negative function with \(\Lambda^*(\mu) = 0 \). \(\square \)

5.3. Proof of Lemma 4.2
For part (i), we first construct a new trajectory \(\xi_1 \) from \(\xi \) by discarding the downward jumps, i.e., \(\xi_1 = \xi^a + \xi^u \). Obviously, \(I^B_{y,[0,T]}(\xi_1) \leq I^B_{y,[0,T]}(\xi) \). Note that \(\xi_1 = \xi + (-\xi^d) \), where \(-\xi^d \) is non-negative and non-decreasing. From Lemma 5.1 we have that \(\Psi(\xi_1)(t) \geq \Psi(\xi)(t) \) for all \(t \in [0, T] \), and hence, \(\Phi_\tau(\xi_1) \geq \Phi_\tau(\xi) \). For each \(t \in [0, T] \), let \(l(t) \triangleq \inf \{ s \in [0, T] : \Psi(\xi)(u) > 0 \text{ for all } u \in [s, t] \} \), \(r(t) \triangleq \sup \{ s \in [0, T] : \Psi(\xi)(u) > 0 \text{ for all } u \in [t, s] \} \), and \(\sigma(t) \triangleq [l(t), r(t)] \). Set \(C^+_t \triangleq \{ \sigma(t) \subseteq [0, T] : t \in [0, T] \} \). Note that, by construction, the elements of \(C^+_t \) cannot overlap, and hence, there can be at most countable number of elements in \(C^+_t \). In view of this, we write \(C^+_t = \{ [l_i, r_i] : i \in \mathbb{N} \} \) and let \(\sigma_i \triangleq [l_i, r_i] \). The following observations are immediate from the construction of \(C^+_t \), the right continuity of \(\xi \), and the fact that \(\xi_1 \) does not have any downward jumps.

O1. If \(t \in [0, T] \) does not belong to any of the elements of \(C^+_t \), then \(\Psi(\xi_1)(t) = 0 \).
O2. \(\Phi(\xi_1) \) is continuous on the right end of the intervals \(\sigma_i \) except for the case \(r_i = T \).

Note that O1 also implies that \(\xi_1(t) = \xi_1(t-) \) for such \(t \)'s. Let \(s_n \equiv \sum_{i=1}^{n-1} (r_i - l_i) \) for \(n \in \mathbb{N} \). Note that \(s_n \to s_\infty \in [0, T] \) as \(n \to \infty \). Let \(\dot{\xi}^{(a)}(t) \) denote the time derivative \(\frac{d}{dt} \xi^{(a)}(t) \) of \(\xi^{(a)} \) at \(t \), and set

\[
\zeta_1(t) \triangleq y + \int_0^t \zeta_1(s)ds + \zeta_1^{(u)}(t),
\]

where

\[
\dot{\zeta}_1(t) \triangleq \sum_{i \in \mathbb{N}} \dot{\xi}^{(a)}(t - s_i + l_i) \mathbb{I}_{[s_i, s_{i+1})}(t) + \mu \mathbb{I}_{[s_\infty, T]}(t),
\]

and

\[
\zeta_1^{(u)}(t) \triangleq \sum_{i \in \mathbb{N}} (\xi^{(u)}(t \wedge s_{i+1} - s_i + l_i) - \xi^{(u)}(l_i-)) \mathbb{I}_{[s_i, T]}(t).
\]

That is, on the interval \([s_i, s_{i+1})\), \(\zeta_1 \) behaves the same way as \(\xi_1 \) does on the interval \([l_i, r_i)\), whereas \(\zeta_1 \) decreases linearly at the rate \(|\mu|\) outside of those intervals. Given this, it can be checked that

O3. \(\int_{s_i}^{s_{i+1}} (\Psi(\zeta_1(s)))^p \, ds \geq \int_{l_i}^{r_i} (\Psi(\xi_1(s)))^p \, ds \)

O4. \(\int_{l_i}^{r_i} \Lambda^*(\dot{\xi}^{(a)}(s)) \, ds = \int_{s_i}^{s_{i+1}} \Lambda^*(\dot{\zeta}_1^{(a)}(s)) \, ds \)

O5. \(\zeta_1^{(u)}(s_{i+1} -) - \zeta_1^{(u)}(s_i -) = \xi_1^{(u)}(r_i -) - \xi_1^{(u)}(l_i -) \)

Now, we verify the conditions \(i-1, i-2, i-3, i-4 \). Note first that the conditions \(i-1 \) and \(i-4 \) are obvious from the construction of \(\zeta_1 \). We can verify \(i-2 \) as follows:

\[
\Phi_T(\xi_2) = \int_0^T (\Psi(\zeta_1(s)))^p \, ds \geq \int_0^{s_\infty} (\Psi(\zeta_1(s)))^p \, ds = \sum_{i=1}^{s_\infty} \int_{s_i}^{s_{i+1}} (\Psi(\zeta_1(s)))^p \, ds \\
\geq \sum_{i=1}^{s_\infty} \int_{s_i}^{s_{i+1}} (\Psi(\xi_1(s)))^p \, ds = \int_0^T (\Psi(\xi_1(s)))^p \, ds = \Phi_T(\xi_1),
\]

where the second inequality is from O3, and the second last equality is from O1. Moving onto \(i-3 \), note that, due to the left continuity of \(\zeta_1 \), \(s_n \to s_\infty \) implies that \(\xi(s_n-) \to \xi(s_\infty-) \). Also, \(\zeta_1^{(u)}(s_\infty-) - \zeta_1^{(u)}(s_\infty-) = 0 \) and \(\dot{\zeta}_1^{(u)} \) is constant on \([s_\infty, T]\). Therefore, \(\sum_{i=1}^{s_\infty} \left(\zeta_1^{(u)}(s_{i+1}-) - \zeta_1^{(u)}(s_i-)) \right) = \lim_{n \to \infty} \zeta_1^{(u)}(s_{n+1}-) = \zeta_1^{(u)}(s_\infty-) = \xi_1^{(u)}(T) \), where we adopted the convention that \(\zeta_1^{(u)}(0-) = 0 \). From O4, O5, and this observation,

\[
\int_0^{BV[0,T]}(\xi_1) = \int_0^T \Lambda^*(\dot{\xi}_1(t)) \, dt + \theta_+ \cdot \xi_1^{(u)}(T) \\
= \sum_{i=1}^{\infty} \int_{s_i}^{s_{i+1}} \Lambda^*(\dot{\zeta}_1(t)) \, dt + \theta_+ \cdot \sum_{i=1}^{\infty} \left(\xi_1^{(u)}(s_{i+1}-) - \zeta_1^{(u)}(s_i-) \right) \\
= \sum_{i=1}^{\infty} \int_{s_i}^{s_{i+1}} \Lambda^*(\dot{\xi}^{(a)}(t)) \, dt + \theta_+ \cdot \sum_{i=1}^{s_\infty} \left(\xi^{(u)}(r_i -) - \xi^{(u)}(l_i -) \right) \\
\leq \int_0^T \Lambda^*(\dot{\xi}^{(a)}(t)) \, dt + \theta_+ \cdot \xi^{(u)}(T) = \int_0^{BV[0,T]}(\xi_1).
\]
For part (ii), we construct ζ_2 from ζ_1 by moving all the jumps of $\xi^{(u)}$ to time 0. This neither increases $I_y^{BV[0,T]}$ nor decreases Φ_T. That is, if we set

$$\zeta_2(t) \equiv y + \int_0^t \dot{\zeta}_1(s)ds + \zeta_1^{(u)}(T),$$

then $\Phi_T(\zeta_2) \geq \Phi_T(\zeta_1)$ obviously, and $\theta_{+} \cdot \zeta_1^{(u)}(T) + \Gamma^T_{y + \zeta_1^{(u)}(T)}(\zeta_2) \leq I_y^{T}(\zeta_1)$. Noting that $\zeta_1^{(u)}(T) \leq \xi^{(u)}(T)$, we see that ζ satisfies all the claims of the lemma.

For part (iii), let $\zeta \in AC[0,T]$ be a concave majorant of ξ. Then there exists a non-increasing $\dot{\zeta} \in \mathbb{D}[0,T]$ such that $\zeta(t) = \xi(0) + \int_0^t \dot{\zeta}(s)ds$. (Due to the continuity of ξ, $\xi(0)$ and $\zeta(0)$ should coincide.) Let $\zeta_3(t) \equiv \xi(0) + \int_0^t \mu \vee \dot{\zeta}(s)ds$. Note that (iii-1), (iii-2), and (iii-4) are straightforward to check from the construction. To show that (iii-3) is also satisfied, we construct $C_2^+ \equiv \{(l_i',r_i') \in [0,T]: i \in \mathbb{N}\}$ in a similar way to C_2^+ so that the elements of C_2^+ are non-overlapping, and $\xi(s) < \zeta_3(s)$ if and only if $s \in (l_i',r_i')$ for some $i \in \mathbb{N}$. Note that, due to the continuity of ζ and ξ, $\zeta(l_i') = \xi(l_i')$ and $\zeta(r_i') = \xi(r_i')$, and ζ has to be a straight line on (l_i',r_i') for each $i \in \mathbb{N}$. Set $s_0 \equiv 0 \vee \sup \{t \in [0,T]: \dot{\zeta}(t) \geq \mu\}$. Then, no interval in C_2^+ contains s_0, because otherwise, ζ has to be a straight line in a neighborhood of s_0, and hence, ζ has to be constant there, but this is contradictory to the definition of s_0. Now, let $\dot{\zeta}$ denote a derivative of ζ. Then $\int_{l_i'}^{r_i'} \Lambda^*(\mu \wedge \dot{\zeta}(s))ds = \int_{l_i'}^{r_i'} \Lambda^*(\mu)ds = 0$ for i’s such that $r_i' > s_0$, and hence,

$$I_y^{BV[0,T]}(\zeta) - I_y^{BV[0,T]}(\zeta_3) = \int_0^T \Lambda^*(\dot{\zeta}(s))ds - \int_0^T \Lambda^*(\mu_\vee \dot{\zeta}(s))ds \geq \sum_{i \in \mathbb{N}: r_i' \leq s_0} \int_{l_i'}^{r_i'} \left(\Lambda^*(\dot{\zeta}(s)) - \Lambda^*(\dot{\zeta}(s)) \right)ds.$$

Note that from the construction of C_2^+, if $s \in [l_i',r_i']$ for some i such that $r_i' \leq s_0$, we have that $\dot{\zeta}(s) = (\zeta_3(r_i') - \zeta_3(l_i'))/(r_i' - l_i') = (\xi(r_i') - \xi(l_i'))/(r_i' - l_i')$, and hence, from Jensen’s inequality,

$$\int_{l_i'}^{r_i'} \left(\Lambda^*(\dot{\zeta}(s)) - \Lambda^*(\dot{\zeta}(s)) \right)ds = \int_{l_i'}^{r_i'} \Lambda^*(\dot{\zeta}(s))ds - \int_{l_i'}^{r_i'} \Lambda^*((\xi(r_i') - \xi(l_i'))/(r_i' - l_i'))ds$$

$$= \int_{l_i'}^{r_i'} \Lambda^*(\dot{\zeta}(s))ds - (r_i' - l_i') \cdot \Lambda^* \left(\int_{l_i'}^{r_i'} \dot{\zeta}(s)ds/(r_i' - l_i') \right) \geq 0.$$

Therefore, ζ_3 satisfies (iii-3) as well.

\[\square\]

5.4. Proof of Lemma 4.3 Recall that $\bar{y} \equiv (|\mu|(p+1))^{1/p}$. If $y \geq \bar{y}$, the equality in (4.4) holds with the optimal values of the LHS and RHS both being zero: to see this, we invoke Lemma 4.1—part i). Moving on to the case $y < \bar{y}$, it is enough to show that there exists $M > 0$ such that

$$\text{for any given } \xi \in B^{AC}_y \setminus B^{AC:M}_y, \text{ one can find } \zeta \in B^{AC:M}_y \text{ such that } I_y(\zeta) \leq I_y(\xi). \quad (5.3)$$
To construct such M, consider w and z such that $\mu < w < 0 < z$, $\Lambda^*(w) < \infty$ and $\Lambda^*(z) < \infty$. We consider a piece-wise linear path

$$
\zeta(t) \triangleq (y + zt) 1_{[0,(\bar{y} - y)/z]}(t) + (\bar{y} + \mu(t - (\bar{y} - y)/z)) 1_{((\bar{y} - y)/z,\infty)}(t)
$$

so that $\zeta \in B_y^{AC:M}$ and $I_y(\zeta) = \Lambda^*(z) \frac{\bar{y} - y}{z}$. Let

$$
M \triangleq \max \left\{ \frac{(\bar{y} - y)\Lambda^*(z)}{z\Lambda^*(w)}, \frac{(\bar{y} - y)}{z - \bar{y}/\mu}, -y/w \right\}.
$$

Suppose that $\xi \in B_y^{AC} \setminus B_y^{AC:M}$, and hence, $T(\xi) > M$. Note that $\mu < w < -y/T(\xi)$ by the construction of M. We can now estimate

$$
I_y(\xi) = \int_0^{T(\xi)} \Lambda^*(\xi(s)) ds \geq T(\xi) \cdot \Lambda^*\left(-y/T(\xi)\right) \geq T(\xi) \cdot \Lambda^*(w) \geq M \cdot \Lambda^*(w) \geq \frac{(\bar{y} - y)}{z} \Lambda^*(z) = I_y(\zeta).
$$

In this derivation, the first inequality is from Jensen’s inequality. The second inequality follows since $\Lambda^*(x)$ is non-decreasing in $x \geq \mu$. The third and the fourth inequalities are from the choice of ξ and the construction of M, respectively. This concludes the proof of (5.3).

To see the existence of $c > 0$ and $d > 0$, note that for the case $y \geq \bar{y}$, our construction of $M(y)$ is linear in y, whereas $M(y)$ is bounded for the case $y < \bar{y}$. \square

5.5. Proof of Lemma 4.4

The proof that $B_y^* = V_{y^T}$ for sufficiently large t’s follows immediately from the following claims along with Lemma 4.1.

Claim 1: V_y^{T*} is nonincreasing in T.

Proof of Claim 1. Let $t_1 < t_2$. For each $\xi_1 \in V_y^{t_1}$, consider $\xi_2 = \xi_1(s \wedge t_1) + \mu(s - t_1) 1_{(t_1,t_2]}(t)$. Then, $\xi_2 \in V_y^{t_2}$ and $\int_{(0,t_1]}^{y^{BV\cdot t_2}}(\xi_1) = \int_{(0,t_2]}^{y^{BV\cdot t_2}}(\xi_2)$. Therefore, $V_y^{t_2*}$ is at least as small as $V_y^{t_1*}$.

Claim 2: If $M > 0$ is such that $\inf_{\xi \in B_y^{AC:M}} I_y(\xi) = \inf_{\xi \in B_y^{AC}} I_y(\xi)$ as in Lemma 4.3, then

$$
\inf_{\xi \in B_y^{AC:M}} I_y(\xi) \geq V_y^{M*}.
$$

Proof of Claim 2. Given an $\varepsilon > 0$, consider $\xi_\varepsilon \in B_y^{AC:M}$ such that $I_y(\xi_\varepsilon) \leq \inf_{\xi \in B_y^{AC:M}} I_y(\xi) + \varepsilon$. Set $\zeta(\xi) \triangleq \xi_\varepsilon(t \wedge T(\xi_\varepsilon)) + \mu(t - T(\xi_\varepsilon)) 1_{(T(\xi_\varepsilon),M]}(t)$. Then, $\zeta_\varepsilon \in V_y^M$ and hence,

$$
V_y^{M*} = \inf_{\xi \in B_y^M} \int_{(0,M]}^{y^{BV\cdot M}}(\xi) \leq \int_{(0,M]}^{y^{BV\cdot M}}(\zeta_\varepsilon) = I_y(\xi_\varepsilon) \leq \inf_{\xi \in B_y^M} I_y(\xi) + \varepsilon.
$$

Taking $\varepsilon \to 0$, we arrive at Claim 2.

Claim 3: For any $T > 0$,

$$
\inf_{\xi \in B_y} I_y(\xi) \leq V_y^{T*}.
$$

Proof of Claim 3. (Throughout this proof, we interpret $\theta_+ \cdot z$ as 0 if $\theta_+ = \infty$ and $z = 0$. Likewise, we interpret $\epsilon/z = \infty$ if $z = 0$.) First note that the claim is trivial if $V_y^{T*} = \infty$, and hence, we only
consider the case that \(V^*_y < \infty \). Fix an \(\epsilon > 0 \) and consider \(\xi_1 \in V^*_y \) such that \(I^y_{B^V[0,T]}(\xi_1) < V^*_y + \epsilon \).

(Note that this implies that \(\xi_1^{(u)}(T) = 0 \) if \(\theta_+ = \infty \).) Due to Lemma 4.2 part-(iii), there exists a path \(\xi_2 \in A\mathbb{C}[0,T] \) such that \(\xi_2(0) = y + z, \) \(0 \leq z \leq \xi_1^{(u)}(T) \), \(\xi_2 \) is nonnegative over \([0,t_0]\) for some \(t_0 \in [0,T] \), \(\xi_2 \) is affine with slope \(\mu \) over \([t_0,T] \), \(\Phi_T(\xi_2) \geq \Phi_T(\xi_1) \geq 1 \), and

\[
\theta_+ \cdot z + I^y_{B^V[0,T]}(\xi_2) \leq I^y_{B^V[0,T]}(\xi_1) \leq V^*_y + \epsilon. \tag{5.4}
\]

Recall the well known property of \(\Lambda^* \) that \(\lim_{x \to \infty} \frac{\Lambda^*(x)}{x} = \theta_+ \) (see, for example, equation (5.5) in [15]). Consequently, we can choose a \(u > 0 \) large enough so that

\[
\Lambda^*(u)/u \leq \theta_+ + \epsilon/z. \tag{5.5}
\]

Set \(\hat{T} \triangleq z/u + T \) and consider \(\xi_3 \in A\mathbb{C}[0,\hat{T}] \) such that

\[
\xi_3(s) = (y + us)1_{[0,z/u]}(s) + \xi_2(s - z/u)1_{(z/u,\hat{T}]}(s), \quad s \in [0,\hat{T}].
\]

Then, \(\xi_3(0) = y \) and \(\Phi_T(\xi_3) \geq \Phi_T(\xi_2) \geq 1 \). Moreover, in view of (5.4) and (5.5),

\[
I^y_{B^V[0,T]}(\xi_3) = (z/u)\Lambda^*(u) + \int_{z/u}^{\hat{T}} \Lambda^*(\xi_3(s))ds
\]

\[
= (z/u)\Lambda^*(u) + \int_{0}^{\hat{T}} \Lambda^*(\xi_2(s))ds
\]

\[
\leq \theta_+ \cdot z + \epsilon + I^y_{B^V[0,T]}(\xi_2)
\]

\[
\leq V^*_y + 2\epsilon.
\]

Next, from part (iii) of Lemma 4.2, we know that there exists a path \(\xi_4 \in A\mathbb{C}[0,\hat{T}] \) such that \(\xi_4(0) = y \), \(\Phi_T(\xi_4) \geq \Phi_T(\xi_3) \geq 1 \), \(I^y_{B^V[0,T]}(\xi_4) \leq I^y_{B^V[0,T]}(\xi_3) \leq V^*_y + 2\epsilon \), \(\xi_4 \) is concave on \([0,\hat{T}] \), and \(\xi_4 \) is bounded by \(\mu \) from below. Finally, define \(\xi \in \mathbb{D}[0,\infty) \) as

\[
\xi(t) \triangleq \xi_4(t \wedge \hat{T}) + \mu([t - \hat{T}]^+), \quad t \geq 0.
\]

Note that if \(T(\xi) \leq \hat{T} \), due to the concavity of \(\xi \), \(\Psi(\xi) \) and \(\Psi(\xi_4) \) are zero after \(T(\xi) \). Therefore, \(\Phi(\xi) = \Phi_T(\xi_4) \geq 1 \). If \(T(\xi) > \hat{T} \), then \(\Phi(\xi) > \Phi_T(\xi_4) \geq 1 \). That is, \(\xi \in B_y \) in all cases. Moreover, since \(\dot{\xi}(t) = \mu \) for \(t \geq \hat{T} \), \(I_y(\xi) = I^y_{B^V[0,T]}(\xi_4) \leq V^*_y + 2\epsilon \). Therefore,

\[
\inf_{\xi \in B_y} I_y(\xi) \leq V^*_y + 2\epsilon.
\]

Since \(\epsilon \) is arbitrary, this proves Claim 3. \(\square \)
5.6. Uniform continuity: proof of Lemma 4.5. We first state two preparatory lemmas. Let TV(ξ) be the total variation of ξ.

Lemma 5.2. For any $M < \infty$, the function $H : \mathbb{D}[0,T] \to [0,\infty)$ given by $H(\xi) \triangleq \int_0^T \xi(s)ds$ is Lipschitz continuous on the set $\{ \xi : TV(\xi) + \xi(0) \leq M \}$ w.r.t. the M'_1 metric.

Proof. Let ξ be such that $TV(\xi) + \xi(0) \leq M$ and let ζ be such that $d_{M'_1}(\xi, \zeta) \leq \epsilon$. Set $\eta_-(t) \triangleq \inf \{ x : d((x, t), \Gamma(\xi)) \leq \epsilon \}$, where $\Gamma(\xi)$ is the completed graph of ξ and d is the L_1 distance in \mathbb{R}^2, i.e., $d((x,t), (u,s)) = |x-y| + |t-s|$. Then $d_{M'_1}(\xi, \zeta) \leq \epsilon$ implies that $\zeta(t) \geq \eta_-(t)$ for all $t \in [0, T]$. Note that, if we denote the arc length of $\Gamma(\xi)$ with $\text{len}(\Gamma(\xi))$, then $\text{len}(\Gamma(\xi))$ is bounded by $T + TV(\xi) + \xi(0)$. Due to the construction of η and the fact that L_1 balls are contained in L_2 balls of the same radius, the difference between the area below ξ and the area below η is bounded by $\text{len}(\Gamma(\xi)) \cdot \epsilon$. Putting everything together, we conclude that

$$
\int_0^T \xi(s)ds - \int_0^T \zeta(s)ds \leq \int_0^T \xi(s)ds - \int_0^T \eta_-(s)ds \leq \text{len}(\Gamma(\xi)) \cdot \epsilon \leq (T + TV(\xi) + \xi(0)) \cdot \epsilon \leq (T + M) \cdot \epsilon.
$$

Similarly, by majorizing ζ with $\eta_+(t) \triangleq \inf \{ x : d((x, t), \Gamma(\xi)) \leq \epsilon \}$, we also get

$$
\int_0^T \xi(s)ds - \int_0^T \zeta(s) \geq (T + M) \cdot \epsilon,
$$

proving the Lipschitz continuity of H with Lipschitz constant $(T + M)$.

Lemma 5.3. The reflection map Ψ is a Lipschitz continuous map from $\mathbb{D}[0,T]$ to $\mathbb{D}[0,T]$ w.r.t. the M'_1 topology with Lipschitz constant 2.

Proof. The proof is a straightforward adaptation of the proof of Lipschitz continuity given in Theorem 13.5.1 of [22] for the M_1 topology. That theorem is based on elementary estimates, and the key Lemma 13.5.3 in [22], which establishes that parametric representation of a path $\xi \in \mathbb{D}[0,T]$ is preserved under taking projections. The proof of this property for M_1, given in [22], p. 440 extends to M'_1 by using the definition of extended completed graph Γ' for M'_1, rather than the completed graph Γ for M_1. Along this lines, it follows that if (u,t) is a parametric representation of $\Gamma'(\xi)$, then $(\Psi(u),t)$ is a parametric representation of $\Gamma'(\Psi(\xi))$. Using this result, the steps in the proof of Theorem 13.5.1 of [22] follow verbatim for M'_1. We omit the details.

Now we are ready to prove Lemma 4.5.

Proof of Lemma 4.5. Suppose that $I^{{\text{BV}}[0,T]}_0(\xi), I^{{\text{BV}}[0,T]}_0(\zeta) \in [0,\gamma]$. Then, from the inequality (13) in [21], we know that there exists γ' such that $TV(\xi), TV(\zeta) \in [0,\gamma']$. To prove the uniform continuity, suppose that $d_{M'_1}(\xi, \zeta) < \epsilon$. Then, $d_{M'_1}(\Psi(\xi), \Psi(\zeta)) < 2\epsilon$ by Lemma 5.3, and $TV(\Psi(\xi)), TV(\Psi(\zeta)) \in [0,2\gamma']$. In turn, we have that $d_{M'_1}(\Psi(\xi) \lor \epsilon, \Psi(\zeta) \lor \epsilon) < 2\epsilon$ and $TV(\Psi(\xi) \lor \epsilon), TV(\Psi(\zeta) \lor \epsilon) \in [0,2\gamma']$. Therefore, $d_{M'_1}(\xi, \zeta) < \epsilon$ and $TV(\xi), TV(\zeta) \in [0,\gamma']$. Thus, $TV(\xi) + \xi(0) \leq M$ and $TV(\zeta) + \zeta(0) \leq M'$, which implies $d_{M'_1}(\xi, \zeta) \leq \epsilon$ by Lemma 5.2. Thus, the uniform continuity of Ψ follows.
Using the mean value theorem, we obtain the following inequality for \(x, y, a, b \in [0, \infty) \) such that \(x, y \in [a, b] \):

\[
|x^p - y^p| \leq p(a^{p-1} \vee b^{p-1})|x - y|.
\]

(5.6)

Now, suppose that \((u, t)\) and \((v, s)\) are the parametric representations of \(\Psi(\xi) \vee \epsilon \) and \(\Psi(\zeta) \vee \epsilon \), respectively. Then, there exists \(r_\xi \in [0, 1] \) such that \(u(r) \leq \epsilon \) for \(r \leq r_\xi \) and \(u(r) \geq \epsilon \) for \(r \geq r_\xi \). Likewise, there exists \(r_\zeta \in [0, 1] \) such that \(v(r) \leq \epsilon \) for \(r \leq r_\zeta \) and \(v(r) \geq \epsilon \) for \(r \geq r_\zeta \). We assume w.l.o.g. that \(r_\xi \leq r_\zeta \). Note that, since \(u(r), v(r) \in [0, \epsilon] \) on \(r \in [0, r_\epsilon] \), we get

\[
\sup_{[0, r_\epsilon]} |u^p(r) - v^p(r)| \leq \epsilon^p.
\]

Also, since \(u(r) \in [\epsilon, 2\gamma'] \) and \(v(r) \in [0, \epsilon] \) on \(r \in [r_\epsilon, r_\zeta] \), we get from (5.6)

\[
\begin{align*}
\sup_{[r_\epsilon, r_\zeta]} |u^p(r) - v^p(r)| &\leq \sup_{[r_\epsilon, r_\zeta]} \{ |u^p(r) - \epsilon^p| + |\epsilon^p - v^p(r)| \} \\
&\leq \sup_{[r_\epsilon, r_\zeta]} \{ p(\epsilon^{p-1} \vee (2\gamma')^{p-1})|u(r) - \epsilon| + \epsilon^p \} \\
&\leq \sup_{[r_\epsilon, r_\zeta]} \{ p(\epsilon^{p-1} \vee (2\gamma')^{p-1})\left(|u(r) - v(r)| + |v(r) - \epsilon| \right) + \epsilon^p \} \\
&\leq \sup_{[r_\epsilon, r_\zeta]} \{ p(\epsilon^{p-1} \vee (2\gamma')^{p-1})\left(|u(r) - v(r)| + \epsilon \right) + \epsilon^p \} \\
&\leq p(\epsilon^{p-1} \vee (2\gamma')^{p-1})\left(\|u - v\|_\infty + \epsilon \right) + \epsilon^p.
\end{align*}
\]

Finally, since \(u(r), v(r) \in [\epsilon, 2\gamma'] \) on \(r \in [r_\zeta, 1] \), we get again from (5.6)

\[
\begin{align*}
\sup_{[r_\zeta, 1]} |u^p(r) - v^p(r)| &\leq \sup_{[r_\zeta, 1]} p(\epsilon^{p-1} \vee (2\gamma')^{p-1})|u(r) - v(r)| \\
&\leq p(\epsilon^{p-1} \vee (2\gamma')^{p-1})\|u - v\|_\infty.
\end{align*}
\]

From these inequalities, we see that if \((u, t) \in \Gamma'((\Psi(\xi) \setminus \epsilon)^p) \) and \((v, s) \in \Gamma'((\Psi(\zeta) \setminus \epsilon)^p) \),

\[
\begin{align*}
\|u^p - v^p\|_\infty &= \sup_{[0, r_\epsilon]} |u^p(r) - v^p(r)| \vee \sup_{[r_\epsilon, r_\zeta]} |u^p(r) - v^p(r)| \vee \sup_{[r_\zeta, 1]} |u^p(r) - v^p(r)| \\
&\leq p(\epsilon^{p-1} \vee (2\gamma')^{p-1})\|u - v\|_\infty + \epsilon^p.
\end{align*}
\]

Now, we can bound the \(M_p^p \) distance between \((\Psi(\xi) \setminus \epsilon)^p \) and \((\Psi(\zeta) \setminus \epsilon)^p \) as follows:

\[
\begin{align*}
d_{M_p^p} \left((\Psi(\xi) \setminus \epsilon)^p, (\Psi(\zeta) \setminus \epsilon)^p \right) &= \inf_{(u, t) \in \Gamma'((\Psi(\xi) \setminus \epsilon)^p)} \{\|u - v\|_\infty + \|t - s\|_\infty\} \\
&= \inf_{(u, t) \in \Gamma'((\Psi(\xi) \setminus \epsilon)^p)} \{\|u^p - v^p\|_\infty + \|t - s\|_\infty\} \\
&\leq \inf_{(u, t) \in \Gamma'((\Psi(\xi) \setminus \epsilon)^p)} \{p(\epsilon^{p-1} \vee (2\gamma')^{p-1})\|u - v\|_\infty + \epsilon^p + \|t - s\|_\infty\}
\end{align*}
\]
Therefore,

$$\delta$$

Similarly,

$$\leq \left(1 \lor \left(p(e^{p-1} \lor (2\gamma')^{p-1}) \right) \right) \inf_{(u,t) \in \Gamma((\Psi(\xi) \lor \epsilon) \lor \epsilon)} \left\{ \|u - v\|_\infty + \|t - s\|_\infty \right\} + p(e^{p-1} \lor (2\gamma')^{p-1})\epsilon + \epsilon^p$$

$$= \left(1 \lor \left(p(e^{p-1} \lor (2\gamma')^{p-1}) \right) \right) d_M(H(\Psi(\xi)) \lor \epsilon, H(\Psi(\xi)) \lor \epsilon) + p(e^{p-1} \lor (2\gamma')^{p-1})\epsilon + \epsilon^p$$

$$\leq \left(1 \lor \left(p(e^{p-1} \lor (2\gamma')^{p-1}) \right) \right) 2\epsilon + p(e^{p-1} \lor (2\gamma')^{p-1})\epsilon + \epsilon^p$$

$$\overset{\triangle}{=} \delta(\epsilon).$$

Note that $\delta(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$.

To apply Lemma 5.2, we examine the total variations of $(\Psi(\xi) \lor \epsilon)^p$ and $(\Psi(\xi) \lor \epsilon)^p$. Recall the notation $T = \bigcup_{d=1}^{\infty} \{ (t_1, \ldots, t_d) : 0 \leq t_1 < t_2 < \cdots < t_d \leq 1 \}$. From (5.6),

$$TV((\Psi(\xi) \lor \epsilon)^p) = \sup_{t \in \mathcal{P}} \sum_{i=1}^{n_k} |(\Psi(\xi) \lor \epsilon)^p(t_i) - (\Psi(\xi) \lor \epsilon)^p(t_{i-1})|$$

$$\leq p(e^{p-1} \lor (2\gamma')^{p-1}) \sup_{(t_0, \ldots, t_k) \in T} \sum_{i=1}^{k} |(\Psi(\xi) \lor \epsilon)(t_i) - (\Psi(\xi) \lor \epsilon)(t_{i-1})|$$

$$= p(e^{p-1} \lor (2\gamma')^{p-1}) TV(\Psi(\xi) \lor \epsilon)$$

$$\leq p(e^{p-1} \lor (2\gamma')^{p-1}) 2\gamma'.$$

Similarly,

$$TV((\Psi(\xi) \lor \epsilon)^p) \leq p(e^{p-1} \lor (2\gamma')^{p-1}) 2\gamma'.$$

These two bounds allow us to apply Lemma 5.2 to H to obtain

$$d_M(H((\Psi(\xi) \lor \epsilon)^p), H((\Psi(\xi) \lor \epsilon)^p)) \leq (T + 2\gamma' p(e^{p-1} \lor (2\gamma')^{p-1})) \cdot d_M(H(\Psi(\xi)) \lor \epsilon^p, G(\xi) \lor \epsilon^p)$$

$$\leq (T + 2\gamma' p(e^{p-1} \lor (2\gamma')^{p-1})) \delta(\epsilon).$$

Therefore,

$$d_M(H(T(\xi), T(\xi)))$$

$$= d_M(H(G(\xi), H(G(\xi)))$$

$$\leq d_M(H(G(\xi), H(G(\xi) \lor \epsilon^p)) + d_M(H(G(\xi) \lor \epsilon^p), H(G(\xi) \lor \epsilon^p)) + d_M(H(G(\xi) \lor \epsilon^p), H(G(\xi)))$$

$$\leq e^p T + \delta(\epsilon) + e^p T.$$

This concludes the proof of the desired uniform continuity. \qed
Appendix A: Results on the theory of Markov chains. Let \(\{X_m, -\infty < m < \infty\} \) be a geometrically ergodic stationary Markov chain on the state space \(S \) (which includes an element 0) and invariant distribution \(\pi \), such that \(\pi(\{0\}) = \pi(0) > 0 \). Let \(\{X^*_m, -\infty < m < \infty\} \) be the time-reversed stationary version of \(\{X_m, -\infty < m < \infty\} \). It is well known that \((X^*_0, ..., X^*_k) \approx (X_k, ..., X_0) \) for any \(k \geq 0 \); see, [20] and references therein for a discussion on reversibility for general state-space Markov chains. The following lemma follows directly by applying this identity.

Lemma A.1. It holds that

\[
P_0(X_i \in A_i : 1 \leq i \leq k) = \frac{1}{\pi(0)} P_\pi(X^*_i \in A_{k-i} : 0 \leq i \leq k-1, X^*_k = 0),
\]

(A.1)

\[
E_0[g(X_0, X_1, ..., X_k)] = \frac{1}{\pi(0)} E_\pi[g(X^*_k, X^*_{k-1}, ..., X^*_0) I(X^*_k = 0)],
\]

(A.2)

for any non-negative integer \(k \) and measurable \(g: \mathbb{R}^{k+1} \to \mathbb{R} \).

Using the previous result, we can now establish the following lemma.

Lemma A.2. Define \(T = \inf\{n \geq 1 : X_n = 0\} \), \(T^* = \inf\{n \geq 1 : X^*_n = 0\} \), and suppose that \(P_0(T > n) = \mathcal{O}(e^{-cn}) \) for some \(c > 0 \). In addition, let \(n_0 \) be such that \(\inf_{k \geq n_0} P_0(X_k = 0) \geq \pi(0)/2 \). Then,

\[
P_\pi \left(\sum_{k=0}^{T^*-1} (X^*_k)^p \geq x, X^*_n = 0 \right) \leq (n + 1) P_\pi \left(\sum_{k=0}^{T-1} X^*_k \geq x \right),
\]

(A.3)

and

\[
P_\pi \left(\sum_{k=0}^{T^*-1} (X^*_k)^p \geq x, X^*_n = 0 \right) \geq (\pi(0)/2) P_0 \left(\sum_{k=1}^{T} X^*_k \geq x \right) - \mathcal{O}(e^{-cn}).
\]

(A.4)

Proof. We first derive the upper bound by noting that

\[
P_\pi \left(\sum_{k=0}^{T^*-1} (X^*_k)^p \geq x, X^*_n = 0 \right) = \sum_{m=0}^{n} P_\pi \left(\sum_{k=0}^{m-1} (X^*_k)^p \geq x, T^* = m, X^*_n = 0 \right)
\]

\[
= \sum_{m=0}^{n} P_\pi \left(\sum_{k=0}^{m-1} (X^*_k)^p \geq x, X^*_1 > 0, ..., X^*_{m-1} > 0, X^*_m = 0, X^*_n = 0 \right)
\]

\[
\leq \sum_{m=0}^{n} P_\pi \left(\sum_{k=0}^{m-1} (X^*_k)^p \geq x, X^*_1 > 0, ..., X^*_{m-1} > 0 \right)
\]

\[
= \sum_{m=0}^{n} P_\pi \left(\sum_{k=0}^{m-1} X^*_k \geq x, X_{m-1} > 0, ..., X_1 > 0 \right)
\]

\[
= \sum_{m=0}^{n} P_\pi \left(\sum_{k=0}^{m-1} X^*_k \geq x, T \geq m \right) \leq \sum_{m=0}^{n} P_\pi \left(\sum_{k=0}^{T-1} X^*_k \geq x, T \geq m \right)
\]

\[
\leq (n + 1) P_\pi \left(\sum_{k=0}^{T-1} X^*_k \geq x \right).
\]
For the lower bound, first write
\[
P_\pi \left(\sum_{k=0}^{T^*-1} (X_k^*)^p \geq x, X_n^* = 0 \right) = \sum_{m=1}^{n} P_\pi \left(\sum_{k=0}^{m-1} (X_k^*)^p \geq x, T^* = m, X_n^* = 0 \right) \\
= \sum_{m=1}^{n} P_\pi \left(\sum_{k=0}^{m-1} (X_k^*)^p \geq x, T^* = m \right) P_0 (X_{n-m} = 0).
\]

Applying Lemma A.1 with \(k = m \) and \(g(y_0, \ldots, y_m) = I(\sum_{i=0}^{m} y_i^p > x, y_0 > 0, y_1 > 0, \ldots, y_{m-1} > 0) \), we obtain
\[
P_\pi \left(\sum_{k=0}^{m-1} (X_k^*)^p \geq x, T^* = m \right) = P_\pi \left(\sum_{k=0}^{m-1} (X_k^*)^p \geq x, X_0^* > 0, \ldots, X_{m-1}^* > 0, X_m^* = 0 \right) \\
= P_\pi \left(\sum_{k=0}^{m} (X_k^*)^p \geq x, X_0^* > 0, \ldots, X_{m-1}^* > 0, X_m^* = 0 \right) \\
= \pi(0) P_0 \left(\sum_{k=1}^{m} X_k^p \geq x, X_i^* > 0, i = 1, \ldots, m-1 \right) \\
= \pi(0) P_0 \left(\sum_{k=1}^{m} X_k^p \geq x, T \geq m \right) \\
\geq \pi(0) P_0 \left(\sum_{k=1}^{m} X_k^p \geq x, T = m \right).
\]

Consequently, for every fixed \(n_0 \) such that \(\inf_{k \geq n_0} P_0 (X_k = 0) \geq \pi(0)/2 \),
\[
P_\pi \left(\sum_{k=0}^{T^*-1} (X_k^*)^p \geq x, X_n^* = 0 \right) \geq \pi(0) \sum_{m=1}^{n-n_0} P_0 \left(\sum_{k=1}^{T} X_k^p \geq x, T = m \right) P_0 (X_{n-m} = 0) \\
\geq \pi(0) P_0 \left(\sum_{k=1}^{T} X_k^p \geq x, T \leq n - n_0 \right) \inf_{k \geq n_0} P_0 (X_k = 0).
\]

\[\geq (\pi(0)^2/2) P_0 \left(\sum_{k=1}^{T} X_k^p \geq x \right) - O(e^{-cn}).\]

\[\square\]

Appendix B: LDP results. We collect some LDP results that have appeared in the literature. A straightforward adaptation of Corollary 3.2 in [3] to our context is the following:

Result B.1 Let \(\bar{\kappa}_n \triangleq \frac{1}{n} \sum_{i=1}^{[nt]} \mathcal{U}_i, t \in [0,1] \) be the scaled random walk driven by an i.i.d. sequence \(\{\mathcal{U}_i, i \geq 1\} \). Assume that \(\mathbb{E}[e^{\alpha \mathcal{U}_1}] < \infty \) for some \(s < 0 \), and \(\mathbb{P}(\mathcal{U}_1 \geq x) = e^{-L(x)x^\alpha} \) for \(\alpha \in (0,1) \). Suppose that \(L \) is a slowly-varying function, and \(L(x)x^{-\alpha-1} \) is eventually decreasing. Then, \(\bar{\kappa}_n \) satisfies the LDP in \((\mathbb{D}[0,T], \mathcal{T}_{M_1'}) \) with the speed \(L(n)n^\alpha \) and the rate function \(I_{M_1'} : \mathbb{D}[0,T] \to [0,\infty] \),
\[
I_{M_1'} (\xi) \triangleq \begin{cases}
\sum_{t \in [0,1]} (\xi(t) - \xi(t-))^\alpha & \text{if } \xi \in \mathbb{D}^{(\mathcal{E}(\mathcal{U}_1))}[0,T] \text{ with } \xi(0) \geq 0, \\
\infty & \text{otherwise}.
\end{cases}
\]
The following result, which is folklore, but explicitly stated in [16], provides the logarithmic asymptotics for the invariant distribution \(\pi \) of \(\{X_n\}_{n \geq 0} \) with \(X_{n+1} = X_n + U_{n+1} \), \(n \geq 0 \), with \(\{U_i, i \geq 1\} \) are i.i.d. such that \(\mathbf{E}(U_1) = \mu < 0 \).

Result B.2 ([16]) Recall that \(\beta = \sup \{ s : \mathbf{E}[e^{sU}] \leq 1 \} \). It holds that,

\[
\lim_{n \to \infty} \frac{\log \pi([n, \infty))}{n} = -\beta.
\]

Finally, we mention a recent sample-path LDP for random walks with light-tailed increments, developed in [21], that we use in this paper.

Result B.3 Recall that \(\bar{K}_y^x = y + \frac{1}{x} \sum_{i=1}^{\lfloor xT \rfloor} U_i \), \(t \in [0,1] \) is the scaled random walk driven by the i.i.d. sequence \(\{U_i, i \geq 1\} \), which satisfies Assumptions 2.1 and 2.2. Recall also that \(I_{yBV[0,T]}(\xi) = \begin{cases} \int_0^T \Lambda^*(\xi(u)(s)) ds + \theta_+ (\xi(u)(T)) + \theta_- |\xi(0)(T)| & \text{if } \xi \in BV[0,1] \text{ and } \xi(0) = y, \\ \infty & \text{otherwise.} \end{cases} \)

\[(B.1)\]

(i) ([5, 6]) \(\bar{K}_y^x \) (as \(x \to \infty \)) satisfies a large deviations lower bound in the \(M_1 \) topology with the rate function \(I_{yBV[0,T]} \).

(ii) ([21]) Let \(\phi \) be a real-valued function on \(\mathbb{D}[0,T] \) which is uniformly continuous in the \(M'_1 \) topology on the level sets \(\{\xi : I_{yBV[0,T]}(\xi) \leq \alpha, \alpha < \infty \} \). Then \(\phi(\bar{K}_y^x) \) satisfies an LDP with the rate function \(\bar{d}(J_\phi) \), where \(\bar{d}(J_\phi) \) is the lower-semicontinuous regularization of \(J_\phi(u) = \inf_{\xi : \phi(\xi) = u} I_{yBV[0,T]}(\xi) \).

Appendix C: Computing \(B_0^* \): finding a smooth minimizer In this appendix, we provide some details which could facilitate the computation of \(B_0^* \). Note that it is not straightforward that the infimum in the representation of \(B_0^* \) in (\(B_y \)) is attained, since the associated objective function does not have compact level sets, unless the moment generating function of \(U_1 \) is finite everywhere, cf. [14]. The following proposition, however, facilitates the characterization of \(B_0^* \).

Proposition C.1. Let \(B_y^{AC} = B_y \cap AC[0,\infty) \), \(B_y^{CNCV} = B_y^{AC} \cap \{ \xi \in AC[0,\infty) : \xi \text{ is concave} \} \), and recall that \(B_y^x = \inf_{\xi \in B_y} I_y(\xi) \). Then,

\[
B_y^* = \inf_{\xi \in B_y^{AC}} I_y(\xi) = \inf_{\xi \in B_y^{CNCV}} I_y(\xi).
\]

We defer the proof of this proposition to the end of this appendix. We apply Proposition C.1 to write

\[
B_y^* = \inf_{\xi \in B_y^{CNCV}} I_y(\xi) = \inf_{z_0,z_T,\xi(0) \geq z_T} \inf_{T \geq 0} \inf_{\xi \in F^{y}_{z_0,z_T,T}} I_y(\xi),
\]

where \(F^{y}_{z_0,z_T,T} = \{ \xi : \xi(0) \in B_y^{CNCV}, \dot{\xi}(T) = z_T, \xi(T) = 0 \} \). We next ensure compactness of \(F^{y}_{z_0,z_T,T} \) in the following lemma, which is also proven at the end of this appendix.
Lemma C.1. \(F_{y_0,z_T,T}^y \) is a compact set with respect to the \(J_1 \) topology.

On the set \(F_{y_0,z_T,T}^y \), the conditions \(\xi(0) = y, \xi(T) = 0 \), and concavity imply that \(\xi(s) > 0 \) for \(s \in (0,T) \). Therefore, the identity \(I_y(\xi) = \int_0^T \Lambda^*(\xi(s))ds \) holds. The RHS of this identity is lower-semi continuous in \(\xi \) on the compact set \(F_{y_0,z_T,T}^y \), and therefore attains a minimum \(\xi^* \), as long as the set \(F_{y_0,z_T,T}^y \) is non-empty. The latter property holds if the solution \(\xi \) with slope \(z_0 > 0 \) on \([0,T[z_T]/(z_0 + |z_T|)]\) and slope \(z_T < 0 \) on \([T[z_T]/(z_0 + |z_T|),T] \) yields an area of at least 1.

We now characterize the minimizer of the inner infimum of the RHS in Lemma C.1 through Euler-Lagrange equations. Such a characterization is usually only possible if the minimum is sufficiently smooth (e.g. not just AC, but \(C^1 \)). This requires additional assumptions. We use Lagrange duality, and note that the feasible region of admissible paths is only convex (and hence, the absence of a duality gap is only guaranteed) if \(p \leq 1 \). In addition, we utilize sufficient conditions for smoothness of optimal solutions of variational problems developed in [7], Chapter 2.6, which seems to exclude the case \(p < 1 \), so in what follows we assume \(p = 1 \). We make the additional assumption that \(\Lambda(\theta) = \log E[\exp\{\theta U\}] \) is steep at \(\theta_+ \) and \(\theta_- \), i.e. \(\lim_{\theta \to \theta_+} \nabla \Lambda(\theta) = \infty \) and \(\lim_{\theta \to \theta_-} \nabla \Lambda(\theta) = -\infty \). Under these assumptions, \(\Lambda^*(z) = z\theta(z) - \Lambda(\theta(z)) \), with \(\theta(z) \) the unique solution of \(z = \nabla \Lambda(\theta) \). The steepness assumptions make \(\Lambda^* \) a smooth \((C^\infty)\) function on the entire real line. Its derivative satisfies \(\nabla \Lambda^*(z) = (\nabla \Lambda)^{-1}(z) \). To reduce our setting to the framework in [7], Chapter 2.6, we first incorporate our area constraint into a Lagrangian. Fix \(\ell \geq 0 \) and define

\[
f_\ell(\xi(t),\dot{\xi}(t)) = \Lambda^*(\xi(t)) - \ell[\xi(s) - 1/T].
\]

(C.2)

The Lagrangian \(L_\ell(\xi) \) of our problem w.r.t. the constraint \(\int_0^T \xi(s)ds \geq 1 \) is \(\int_0^T f_\ell(\xi(s),\dot{\xi}(s))ds \). We show that the problem of minimizing \(L_\ell(\xi) \) over the set of concave absolutely continuous paths \(\xi \) such that \(\xi(0) = \xi(T) = 0, \xi'(0) = z_0, \xi'(T) = z_T, z_0 > 0 > z_T \) produces a solution which is \(C^1 \) for every \(\ell \geq 0 \). Because \(\nabla \Lambda^* \) is strictly increasing, \(f_\ell \) satisfies (2.6.1) of [7] which demands that \(f_\ell^{(y)}(x,y) = \frac{d}{dy} f_\ell^{(y)}(x,y) = \nabla \Lambda^*(y) \) is strictly increasing. Property (2.6.4) in [7], which demands that \(|f_\ell^{(y)}(x,y)| = |\nabla \Lambda^*(y)| \to \infty \) as \(|y| \to \infty \), uniform in \(x \geq 0 \), follows from the fact that \(\Lambda \) is steep. We next propose an AC candidate solution \(\xi^* \) which satisfies the Euler-Lagrange equation almost everywhere. In our setting, this equation is given by, for some constant \(c \),

\[
\nabla \Lambda^*(\dot{\xi}^*(s)) = c - \ell s, s \in [0,T].
\]

(C.3)

Since \(\dot{\xi}(0) = z_0, c = \nabla \Lambda^*(z_0) \). Apply \(\nabla \Lambda^*(z) = (\nabla \Lambda)^{-1}(z) \) to write, for almost every \(s \),

\[
\dot{\xi}^*(s) = \nabla \Lambda (\nabla \Lambda^*(z) - \ell s), s \in [0,T].
\]

(C.4)

Since \(f_\ell \) is \(C^1 \), and \(\dot{\xi}^*(t) \in [z_T, z_0] \) on \([0,T]\), we can now conclude from Theorem 2.6.ii in [7] that \(\xi^* \) is \(C^1 \) on \([0,T]\), so that (C.4) is valid for for all \(t \in [0,T] \). This expression can now be substituted into
the Lagrangian \(L_\ell(\xi) \). Maximizing this over \(\ell \) gives an expression for the inner infimum in (C.1), which can then be optimized further over \(z_0, z_T, T \).

Proof of Proposition C.1. Due to Lemma 4.1 (ii), \(B_y = \inf_{\xi \in B^AC} I_y(\xi) \). Since \(B^\text{CNCV}_y \subseteq B^AC_y \), we only have to prove that \(\inf_{\xi \in B^\text{CNCV}_y} I_y(\xi) \geq \inf_{\xi \in B^AC_y} I_y(\xi) \). For this, we show that for any given \(\xi \in B^AC_y \), there is \(\zeta \in B^\text{CNCV}_y \) such that \(I_y(\zeta) \leq I_y(\xi) \). To construct such \(\zeta \), we first note that we can find \(\xi_1 \in B^AC_y \) such that \(T(\xi_1) < \infty \) and \(I_y(\xi_1) \leq I_y(\xi) \) thanks to Lemma 4.3. Now set \(T = T(\xi_1) \) and denote the restriction of \(\xi_1 \) on \([0, T]\) with \(\xi_1 \) —i.e., \(\xi_1 \in AC[0, T] \) and \(\xi_1(t) = \xi(t) \) for \(t \in [0, T] \). We appeal to (iii) of Lemma 4.2 to pick a path \(\xi_2 \in AC[0, T] \) such that \(\xi_2(0) = y, \Phi_T(\xi_2) \geq \Phi_T(\xi_1) \geq 1, I^\text{BV}_{y[0,T]}(\xi_2) \leq I^\text{BV}_{y[0,T]}(\xi_1) = I_y(\xi_1) \leq I_y(\xi)_1 \), and \(\xi_2 \) concave on \([0, T]\) with the derivative bounded by \(\mu \) from below. Now, set \(\zeta = \xi_2(t \wedge T) + \mu([t-T]^+) \), \(t \geq 0 \). Then, \(\zeta \in B^\text{CNCV}_y \) and \(I_y(\zeta) = I^\text{BV}_{y[0,T]}(\xi_2) \leq I_y(\xi) \).

We end this section with the proof of compactness of \(F^y_{z_0, z_T, T} \).

Proof of Lemma C.1.

Recall that \(F^y_{z_0, z_T, T} = \{ \xi : \xi \in B^\text{CNCV}_y, \dot{\xi}(0) = z_0, \dot{\xi}(T) = z_T, \xi(T) = 0 \} \). Let \(\mathcal{P}([0, T]) \) denote the space of all Borel probability measures. Consider \(\varphi : \mathcal{P}([0, T]) \to \mathbb{D}[0, T] \), a mapping defined for each \(\nu \in \mathcal{P}([0, T]) \) as follows:

\[
\varphi(\nu)(t) \triangleq y + \int_0^t \left(z_0 + (z_T - z_o)\nu([0, s]) \right) ds.
\]

We consider the weak topology on \(\mathcal{P}([0, T]) \) and the \(J_1 \) topology on \(\mathbb{D}[0, T] \). Note that \(\mathcal{P}([0, T]) \) is a compact space due to Prokhorov’s theorem. Now, observe that

\[
F^y_{z_0, z_T, T} = \varphi(\mathcal{P}([0, T])) \cap \{ \xi \in \mathbb{D}[0, T] : \xi(T) = 0 \}.
\]

Since \(\{ \xi \in \mathbb{D}[0, T] : \xi(T) = 0 \} \) is closed, the proof of this lemma is complete if \(\varphi \) is continuous. To confirm the continuity of \(\varphi \), consider a sequence \(\nu_n \) that converges to \(\nu \) in \(\mathcal{P}([0, T]) \). Note that

\[
d_{J_1}(\varphi(\nu_n), \varphi(\nu)) \leq \| \varphi(\nu_n) - \varphi(\nu) \|_\infty = \sup_{t \in [0, T]} \left| (z_T - z_0) \int_0^t (\nu_n([0, s]) - \nu([0, s])) ds \right|
\]

\[
\leq |z_0 - z_T| \int_0^T |\nu_n([0, s]) - \nu([0, s])| ds,
\]

(C.5)

and \(|\nu_n([0, s]) - \nu([0, s])| \) is bounded by 2 for each \(n \). Since the (weak) convergence of \(\nu_n \) to \(\nu \) implies that \(|\nu_n([0, s]) - \nu([0, s])] \to 0 \) for almost every \(s \in [0, T] \), the bounded convergence theorem guarantees that (C.5) converges to zero as \(n \to \infty \), proving the continuity of \(\varphi \). This concludes the proof of the desired compactness of \(F^y_{z_0, z_T, T} \).
Acknowledgements The research of BZ and MB is supported by NWO grant 639.033.413. The research of JB is supported by NSF grants 1915967, 1820942, 1838576 as well as DARPA award N660011824028. The research of C-HR is supported by NSF grant CMMI-2146530. The authors are grateful to Oliver Tse and Vladislav Vysotsky for useful discussions and to the referees for comments that helped to improve the exposition of the paper.

References
[1] Bazhba M, Blanchet J, Laeven RJA, Zwart B (2022) Large deviations asymptotics for unbounded additive functionals of diffusion processes. URL http://dx.doi.org/10.48550/ARXIV.2202.10799.
[2] Bazhba M, Blanchet J, Rhee CH, Zwart B (2019) Queue length asymptotics for the multiple-server queue with heavy-tailed Weibull service times. Queueing Syst. 93(3-4):195–226, URL http://dx.doi.org/10.1007/s11134-019-09640-z.
[3] Bazhba M, Blanchet J, Rhee CH, Zwart B (2020) Sample path large deviations for Lévy processes and random walks with Weibull increments. The Annals of Applied Probability 30(6):2695–2739, URL http://dx.doi.org/10.1214/20-AAP1570.
[4] Blanchet J, Glynn P, Meyn S (2013) Large deviations for the empirical mean of an $M/M/1$ queue. Queueing Systems 73(4):425–446, URL http://dx.doi.org/10.1007/s11134-013-9349-7.
[5] Borovkov AA, Mogulskii AA (2013) Large deviation principles for random walk trajectories. II. Theory of Probability and its Applications 57(1):1–27, ISSN 0040-585X, URL http://dx.doi.org/10.1137/S0040585X97985765.
[6] Borovkov AA, Mogulskii AA (2014) Large deviation principles for random walk trajectories. III. Theory of Probability and its Applications 58(1):25–37, ISSN 0040-585X, URL http://dx.doi.org/10.1137/S0040585X97986370.
[7] Cesari L (1983) Optimization—theory and applications, volume 17 of Applications of Mathematics (New York) (Springer-Verlag, New York), problems with ordinary differential equations.
[8] Dembo A, Zeitouni O (2010) Large deviations techniques and applications, volume 38 of Stochastic Modelling and Applied Probability (Springer-Verlag, Berlin), ISBN 978-3-642-03310-0, URL http://dx.doi.org/10.1007/978-3-642-03311-7, corrected reprint of the second (1998) edition.
[9] Donsker M, Varadhan S (1975) Asymptotic evaluation of certain markov process expectations for large time, ii. Communications on Pure and Applied Mathematics 28(2):279–301.
[10] Duffy KR, Meyn SP (2014) Large deviation asymptotics for busy periods. Stochastic Systems 4(1):300–319, URL http://dx.doi.org/10.1214/13-SSY098.
[11] Ganesh A, O’Connell N, Wischik D (2004) Big queues, volume 1838 of Lecture Notes in Mathematics (Springer-Verlag, Berlin), ISBN 3-540-20912-3, URL http://dx.doi.org/10.1007/b95197.
[12] Gantert N (1998) Functional Erdos-Renyi laws for semiexponential random variables. The Annals of Probability 26(3):1356–1369, ISSN 0091-1798, URL http://dx.doi.org/10.1214/aop/1022855755.
[13] Kontoyiannis I, Meyn SP (2003) Spectral theory and limit theorems for geometrically ergodic Markov processes. The Annals of Applied Probability 13(1):304 – 362, URL http://dx.doi.org/10.1214/aoap/1042765670.

[14] Lynch J, Sethuraman J (1987) Large Deviations for Processes with Independent Increments. The Annals of Probability 15(2):610 – 627, URL http://dx.doi.org/10.1214/aop/1176992161.

[15] Mogulskii AA (1993) Large Deviations for Processes with Independent Increments. The Annals of Probability 21(1):202 – 215, URL http://dx.doi.org/10.1214/aop/1176989401.

[16] Nuyens M, Zwart B (2006) A large-deviations analysis of the GI/GI/1 SRPT queue. Queueing Systems 54(2):85–97, ISSN 0257-0130, URL http://dx.doi.org/10.1007/s11134-006-8767-1.

[17] Puhalskii AA, Whitt W (1997) Functional large deviation principles for first-passage-time processes. The Annals of Applied Probability 7(2):362 – 381, URL http://dx.doi.org/10.1214/aoap/1034625336.

[18] Puhalskii AA, Whitt W (1998) Functional large deviation principles for waiting and departure processes. Probab. Engrg. Inform. Sci. 12(4):479–507, ISSN 0269-9648, URL http://dx.doi.org/10.1017/S0269964800005349.

[19] Ramasubramanian S (2000) A subsidy-surplus model and the Skorokhod problem in an orthant. Mathematics of Operations Research 25(3):509–538, ISSN 0364-765X, URL http://dx.doi.org/10.1287/moor.25.3.509.12215.

[20] Sforzo R (2005) Reversible markov processes on general spaces and spatial migration processes. Advances in Applied Probability 37(3):801–818.

[21] Vysotsky V (2021) Contraction principle for trajectories of random walks and Cramér’s theorem for kernel-weighted sums. ALEA. Latin American Journal of Probability and Mathematical Statistics 18(2):1103–1125.

[22] Whitt W (2002) Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues. (Springer Science & Business Media).