FRACTIONAL DIFFERENTIAL EQUATIONS:
\(\alpha\)-ENTIRE SOLUTIONS,
REGULAR AND IRREGULAR SINGULARITIES

Anatoly N. Kochubei *

Abstract

We consider fractional differential equations of order \(\alpha \in (0, 1)\) for functions of one independent variable \(t \in (0, \infty)\) with the Riemann-Liouville and Caputo-Dzhrbashyan fractional derivatives. A precise estimate for the order of growth of \(\alpha\)-entire solutions is given. An analog of the Frobenius method for systems with regular singularity is developed. For a model example of an equation with a kind of an irregular singularity, a series for a formal solution is shown to be convergent for \(t > 0\) (if \(\alpha\) is an irrational number poorly approximated by rational ones) but divergent in the distribution sense.

Mathematics Subject Classification: 26A33, 34M99

Key Words and Phrases: fractional differential equation; Riemann-Liouville derivative; Caputo-Dzhrbashyan derivative; regular singularity; irregular singularity

* Partially supported by the Scientific Program of the National Academy of Sciences of Ukraine, Project No. 0107U002029, by the DFG, Grant 436 UKR 113/87/01, and by the Ukrainian Foundation for Fundamental Research, Grant 14.1/003
1. Introduction

Fractional differential equations are widely used for modeling anomalous relaxation and diffusion phenomena; see [3, 12] for further references. Meanwhile the mathematical theory of such equations is still in its initial stage. In particular, a systematic development of the analytic theory of fractional differential equations with variable coefficients was initiated only recently, in the paper by Kilbas, Rivero, Rodríguez-Germá, and Trujillo [11] (see also Section 7.5 in [12]). For equations of order $\alpha \in (0, 1)$, of the form

$$(D_0^\alpha u)(t) = a(t)u(t), \quad t > 0,$$

(1)

where D_0^α is the Riemann-Liouville fractional derivative, or

$$(D^{(\alpha)} u)(t) = a(t)u(t), \quad t > 0,$$

(2)

where $D^{(\alpha)}$ is the Caputo-Dzhrbashyan fractional derivative, their main results are as follows. If $a(t) = A(t^\alpha)$, and $A(z)$ is a real function possessing an absolutely convergent Taylor expansion on an interval $|z| < \theta$, then the equation (1) possesses a solution of the form

$$u(t) = t^{\alpha-1} \sum_{n=0}^{\infty} a_n t^{\alpha n}, \quad 0 < t < \theta,$$

while the equation (2) has a solution

$$u(t) = \sum_{n=0}^{\infty} b_n t^{\alpha n}, \quad 0 \leq t < \theta.$$

In both cases the solutions are unique, if appropriate initial conditions are prescribed.

Thus, for example, the property of α-analyticity of the coefficient $a(t)$ (defined above) implies a similar property of a solution of the equation (2). In fact, we have $u(t) = U(t^\alpha)$, where U is holomorphic in a disk $\{z \in \mathbb{C}, \ |z| < \theta\}$. The coefficient a may be complex-valued as well.

The above results open the way for developing a theory of α-analytic solutions of fractional differential equations in the spirit of classical analytic theory of ordinary differential equations. Here we give some results in this direction.
If in (2) $a(t) = A(t^\alpha)$ where A is an entire function, then the above results from [11] with $\theta = \infty$ (stated there in a weaker form, only for real arguments of analytic functions, than actually proved) show that the solution of the Cauchy problem for the equation (2) is of the form $u(t) = U(t^\alpha)$, where U is an entire function. Following [11, 12] we call such solutions α-entire. In particular, that is true, if A is a polynomial. A natural question is about the order of U (here we investigate this subject just for the equation (2) since its properties are closer to those of ordinary differential equations).

It is known (see, for example, [2] or [8]) that every nontrivial solution of the equation $u^{(k)}(z) = A(z)u(z), \ k \in \mathbb{N}$, with a polynomial coefficient A, is an entire function of order $1 + \deg(A)/k$. In this paper we prove that the orders of the entire functions U corresponding to solutions of (2) do not exceed $(1 + \deg(A))/\alpha$. As $\alpha \to 1$, this agrees with the above differential equation result. On the other hand, if $\deg(A) = 0$, that is $A(z) = \lambda, \ \lambda \in \mathbb{C}$, then $U(z) = E_{\alpha}(\lambda z)$, where E_{α} is the Mittag-Leffler function whose order is $1/\alpha [3, 12]$, which shows the exactness of our general estimate.

Next, we investigate systems of fractional equations with regular singularity, that is the equations

$$t^\alpha \left(D_{0^+}^\alpha u \right)(t) = A(t^\alpha)u(t) \quad (3)$$
and

$$t^\alpha \left(D^{\alpha} u \right)(t) = A(t^\alpha)u(t), \quad (4)$$

where $A(z)$ is a holomorphic matrix-function. Under some assumptions, we prove that formal power series solutions of (3) and (4) converge near the origin and develop an analog of the classical Frobenius method of finding a solution. For scalar equations, the latter problem was considered in [12, 15].

Finally, in order to clarify characteristic features of fractional equations with irregular singularity, we study a model example, the equation

$$t^{2\alpha} \left(\mathcal{D}^{(\alpha)} u \right)(t) = \lambda u(t), \quad \lambda \in \mathbb{C}, \quad (5)$$

where, as before, $0 < \alpha < 1$. Assuming that α is irrational and satisfies a Diophantine condition (that is α is poorly approximated by rational numbers), we construct a kind of a formal solution of (5) convergent for $t > 0$. We prove that the series for the formal solution does not converge in the distribution sense, within a theory of distributions associated with the fractional calculus (see [16, 18]). Thus, the formal solution $u(t)$ cannot be interpreted as a distribution solution. It is interesting that $u(t)$ is
closely connected with a class of analytic functions with irregular behavior introduced by Hardy [6].

2. Preliminaries

2.1. Fractional derivatives and integrals [3, 12, 18]. Let $\alpha \in (0, 1)$ be a fixed number. The Riemann-Liouville fractional integral of order α of a function $\varphi \in L_1(0, T)$ is defined as

$$
(I^\alpha_{0+}\varphi)(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-\tau)^{\alpha-1} \varphi(\tau) \, d\tau, \quad 0 < t \leq T.
$$

The Riemann-Liouville fractional derivative of order α is given by the expression

$$
(D^\alpha_{0+}\varphi)(t) = \frac{1}{\Gamma(1-\alpha)} \frac{d}{dt} \int_0^t (t-\tau)^{-\alpha} \varphi(\tau) \, d\tau, \quad 0 < t \leq T,
$$

that is $(D^\alpha_{0+}\varphi)(t) = \frac{d}{dt} (I^{1-\alpha}_{0+}\varphi)(t)$, provided the fractional integral $I^{1-\alpha}_{0+}\varphi$ is an absolutely continuous function. If φ is defined on the whole half-axis $(0, \infty)$, then $I^\alpha_{0+}\varphi$ and $D^\alpha_{0+}\varphi$ are also defined on $(0, \infty)$. Below we will consider just this case.

Note that the Riemann-Liouville derivative is defined for some functions with a singularity at the origin. For example, if $\varphi(t) = t^d$, $d > -1$, then

$$
(D^\alpha_{0+}\varphi)(t) = \frac{\Gamma(d+1)}{\Gamma(d+1-\alpha)} t^{d-\alpha},
$$

so that $D^\alpha_{0+}\varphi = 0$, if $\varphi(t) = t^{\alpha-1}$. For $\varphi(t) = t^d$, $d > -1$, we have also

$$
(I^\alpha_{0+}\varphi)(t) = \frac{\Gamma(d+1)}{\Gamma(d+1+\alpha)} t^{d+\alpha}.
$$

The Riemann-Liouville fractional differentiation and integration are inverse to each other in the following sense. If $\varphi \in L_1(0, T)$, then $D^\alpha_{0+} I^\alpha_{0+} \varphi = \varphi$. The equality $I^\alpha_{0+} D^\alpha_{0+} \varphi = \varphi$ holds under the stronger assumption that $\varphi = I^\alpha_{0+} \psi$ with some $\psi \in L_1(0, T)$. The latter is equivalent to the conditions of absolute continuity of $I^{1-\alpha}_{0+}\varphi$ on $[0, T]$ and the equality $(I^{1-\alpha}_{0+}\varphi)(0) = 0$.

Let a function φ be continuous on $[0, T]$ and possess the Riemann-Liouville fractional derivative of order α. The function
\[
\left(D^{\alpha} \varphi \right) (t) = \frac{1}{\Gamma(1-\alpha)} \left[\frac{d}{dt} \int_0^t (t-\tau)^{-\alpha} \varphi(\tau) d\tau - t^{-\alpha} \varphi(0) \right]
\]
is called the Caputo-Dzhrbashyan, or regularized, fractional derivative. If φ is absolutely continuous on $[0, T]$, then
\[
\left(D^{\alpha} \varphi \right) (t) = \frac{1}{\Gamma(1-\alpha)} \int_0^t (t-\tau)^{-\alpha} \varphi'(\tau) d\tau.
\]
In contrast to D^{α}_{0+}, D^{α} is defined only on continuous functions and vanishes on constant functions. In most of physical applications, equations with D^{α} are used, because a solution of an equation with the Riemann-Liouville derivative typically has a singularity at the origin $t = 0$, so that the initial state of a system to be described by the equation is not defined.

Let $v(z) = \sum_{n=0}^{\infty} c_n z^n$ be an entire function. Consider the Caputo-Dzhrbashyan derivative of the function
\[
\varphi(t) = v(t^\alpha) = \sum_{n=0}^{\infty} c_n t^{\alpha n}.
\]
It follows from (6) and (8) that
\[
\left(D^{\alpha} \varphi \right) (t) = \sum_{n=1}^{\infty} c_n \beta(n) t^{\alpha(n-1)} = \left(\mathfrak{D}_\alpha v \right) (t^\alpha)
\]
where
\[
\beta(n) = \frac{\Gamma(n\alpha + 1)}{\Gamma(n\alpha + 1 - \alpha)},
\]
and the operator
\[
\left(\mathfrak{D}_\alpha v \right) (z) = \sum_{n=1}^{\infty} c_n \beta(n) z^{n-1}
\]
is known as the Gelfond-Leontiev (G-L) operator of generalized differentiation (see [13, pp. 72-85], [18, pp. 426-427]; in fact, \mathfrak{D}_α is defined for wider classes of functions). As a matter of fact, this is a generalized G-L
differentiation operator with respect to the Mittag-Leffler function (see e.g. in [13, 18]):

\[E_\alpha(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(n\alpha + 1)}, \quad \alpha > 0, \]

and for the G-L operators with respect to (arbitrary) entire function \(\varphi(z) \), see the original work [4].

The operator, right inverse to \(D_\alpha \), has the form

\[(I_\alpha f)(z) = z \frac{\Gamma(\alpha)}{1} \int_0^1 (1-t)^{\alpha-1} f(zt^\alpha) \, dt \]

(see Sect. 22.3 in [18]). It will be convenient to make a change of variables setting \(z = Re^{i\theta}, \, r = R^{1/\alpha} \). Then

\[(I_\alpha f)(Re^{i\theta}) = e^{i\theta} \frac{R^{1/\alpha}}{\Gamma(\alpha)} \int_0^R \left[\left(\frac{R}{r} \right)^{1/\alpha} - 1 \right]^{\alpha-1} f(re^{i\theta}) \, dr. \quad (11) \]

If \(f(z) = \sum_{k=0}^{\infty} f_k z^k \), then

\[(I_\alpha f)(z) = \sum_{k=0}^{\infty} \frac{\Gamma(ak + 1)}{\Gamma(ak + 1 + \alpha)} f_k z^{k+1}, \]

and it is easy to check that

\[(I_\alpha D_\alpha v)(z) = v(z) - v(0). \quad (12) \]

2.2. A class of distributions. Spaces of test functions and distributions behaving reasonably under the action of fractional integration operators were introduced by Rubin [16] (for a brief exposition see also [18]; both in [18] and [16] there are references regarding other approaches and earlier publications in this field). Proceeding from [16], it is easy to come to a class of distributions, where the Caputo-Dzhrbashyan derivative \(D_\alpha^{(\alpha)} \) is defined in a natural way.

Let \(S(0, \infty) \) be the Schwartz space of smooth functions on \([0, \infty) \) with rapid decay at infinity. Denote

\[\mathcal{S}_+ = \{ \varphi \in S(0, \infty) : \varphi^{(l)}(0) = 0, \, l = 0, 1, 2, \ldots \}, \]

\[\Phi^{1-\alpha}_+ = \left\{ \varphi \in \mathcal{S}_+ : \int_0^{\infty} \varphi(x)x^{1-\alpha-k} \, dx = 0, \, k = 1, 2, \ldots \right\}. \]
\(\Phi_{+}^{\alpha-1} = \left\{ \varphi \in \mathcal{S}_+ : \int_0^\infty \varphi(x)x^{\alpha-1-k} \, dx = 0, \ k = 0, 1, 2, \ldots \right\} \).

These spaces are interpreted as topological vector spaces with the topologies induced from \(\mathcal{S}(0, \infty) \); see [16] for various descriptions of these topologies including the description by seminorms.

Together with the Riemann-Liouville fractional integration operator \(I_{0+}^\alpha \), it is convenient to use the operator
\[
(I_{0+}^\alpha \varphi)(t) = \frac{1}{\Gamma(\alpha)} \int_t^\infty (\tau - t)^{\alpha-1} \varphi(\tau) \, d\tau, \quad t > 0.
\]

If \(\varphi, \psi \) are sufficiently good functions, for example, if \(\varphi \in L_p(0, \infty) \), \(\psi \in L_q(0, \infty) \), \(p, q > 1 \), \(\frac{1}{p} + \frac{1}{q} = 2 - \alpha \), then
\[
\int_0^\infty \varphi(x) \left(I_{0+}^{1-\alpha} \psi \right)(x) \, dx = \int_0^\infty \psi(x) \left(I_{1-}^{1-\alpha} \varphi \right)(x) \, dx
\]
(see Section 2.5.1 in [18]). We will write this in the notation
\[
\langle \varphi, I_{0+}^{1-\alpha} \psi \rangle = \langle \psi, I_{1-}^{1-\alpha} \varphi \rangle.
\]

In particular, if \(\psi = u' \), where \(u \in \mathcal{S}(0, \infty) \), then
\[
\langle \varphi, D^{(\alpha)} u \rangle = \langle u', I_{1-}^{1-\alpha} \varphi \rangle.
\] (13)

It is known [16] that \(I_{1-}^{1-\alpha} \) acts continuously from \(\Phi_{+}^{1-\alpha} \) onto \(\Phi_{+}^{\alpha-1} \). Therefore the identity (13) can be used to define \(D^{(\alpha)} u \) as a distribution from \((\Phi_{+}^{1-\alpha})' \), if \(u \in C^1(0, \infty) \), and \(u' \) has no more than a power-like growth near zero and infinity. This definition agrees with the classical one: if \(u \) is continuously differentiable at the origin too, then
\[
\langle u', I_{1-}^{1-\alpha} \varphi \rangle = \frac{1}{\Gamma(1-\alpha)} \int_0^\infty u'(x) \, dx \int_x^\infty (t-x)^{-\alpha} \varphi(t) \, dt
\]
\[
= \frac{1}{\Gamma(1-\alpha)} \int_0^\infty \varphi(t) \, dt \int_0^t (t-x)^{-\alpha} u'(x) \, dx = \left\langle \varphi, D^{(\alpha)} u \right\rangle,
\]
where \(D^{(\alpha)} u \) is understood in the sense of (9).
A typical example of a function from $\Phi^{1-\alpha}_+$ is the function

$$\kappa_\alpha(x) = x^{\alpha-2} \exp\left(-\frac{\log^2 x}{4}\right) \sin\left(\frac{\pi}{2} \log x\right).$$

It is clear that $\kappa_\alpha \in \mathcal{S}_+$. Next, if

$$\kappa(x) = \exp\left(-\frac{\log^2 x}{4}\right) \sin\left(\frac{\pi}{2} \log x\right),$$

then we can write explicitly the Mellin transform

$$\tilde{\kappa}(z) = \int_0^{\infty} x^{z-1} \kappa(x) \, dx.$$

Namely, by the formula (4.133.1) from [5],

$$\tilde{\kappa}(z) = 2 \int_0^{\infty} e^{-t^2/4} \sinh(zt) \sin\left(\frac{\pi}{2} t\right) \, dt = 2\sqrt{\pi} e^{-\frac{z^2}{4}} \sin \pi z. \quad (14)$$

In particular,

$$\int_0^{\infty} \kappa_\alpha(x)x^{1-\alpha-k} \, dx = \tilde{\kappa}^{(-k)} = 0, \quad k = 0, 1, 2, \ldots,$$

so that indeed $\kappa_\alpha \in \Phi^{1-\alpha}_+$.

In order to have a full concept of a class of distributions, one needs a result regarding density of a space of test functions in some space of integrable functions. This gives a one-to-one correspondence between ordinary functions and distributions they generate. Here we present such a result though it will not be used directly in this paper. For similar properties in other situations see [17].

Proposition 1. The space $\Phi^{1-\alpha}_+$ is dense in $L_p((0, \infty), t^{-1} \, dt)$, $1 \leq p < \infty$.

Proof. Let $R = \int_0^{\infty} \kappa_\alpha(t)t^{-1} \, dt$. We have

$$R = \tilde{\kappa}(\alpha - 2) = 2\sqrt{\pi} \exp\left((\alpha - 2)^2 - \frac{\pi^2}{4}\right) \sin \pi \alpha > 0.$$
Denote
\[z_N(x) = \frac{N}{R} \zeta_\alpha(x^N), \quad N = 1, 2, \ldots. \]

Then
\[\int_0^\infty z_N(x)x^{-1}dx = \frac{1}{R} \int_0^\infty \zeta_\alpha(t)t^{-1}dt = 1. \quad (15) \]

Suppose that \(f \in L_p((0, \infty), t^{-1}dt) \). Consider the so-called Mellin convolution
\[(z_N *_M f)(t) = \int_0^\infty z_N(\tau)f\left(\frac{t}{\tau}\right)\tau^{-1}d\tau, \]
that is actually the convolution on the multiplicative group \((0, \infty)\) (note that \(t^{-1}dt\) is a Haar measure on that group). Obviously, \(z_N *_M f \in \Phi_1^{1-\alpha} \).

Denote by \(\| \cdot \|_p \) the norm in \(L_p((0, \infty), t^{-1}dt) \).

Using (15) we can write
\[(z_N *_M f)(t) - f(t) = \int_0^\infty z_N(\tau)\left[f\left(\frac{t}{\tau}\right) - f(t)\right] \tau^{-1}d\tau. \]

By the generalized Minkowski inequality,
\[\|z_N *_M f - f\|_p \leq \int_0^\infty |z_N(\tau)| \left\{ \int_0^\infty \left|f\left(\frac{t}{\tau}\right) - f(t)\right|^p t^{-1}dt \right\}^{1/p} d\tau. \]

Next we use the \(L_p \)-continuity of shifts on the multiplicative group \((0, \infty)\) (see [10], Theorem 20.4). For any \(\varepsilon > 0 \), there exists \(\delta > 0 \), such that
\[\left\{ \int_0^\infty \left|f\left(\frac{t}{\tau}\right) - f(t)\right|^p t^{-1}dt \right\}^{1/p} < \varepsilon, \]
if \(|\tau - 1| < \delta \). Thus,
\[\|z_N *_M f - f\|_p \leq 2\|f\|_p \int_{|\tau - 1| \geq \delta} |z_N(\tau)|\tau^{-1}d\tau + \varepsilon \int_{|\tau - 1| < \delta} |z_N(\tau)|\tau^{-1}d\tau. \]

Note that
\[\int_0^\infty |z_N(\tau)|\tau^{-1}d\tau = \frac{N}{R} \int_0^\infty |\zeta_\alpha(x^N)|x^{-1}dx = \frac{1}{R} \int_0^\infty |\zeta_\alpha(t)|t^{-1}dt = C_1 \]
where the constant C_1 does not depend on N. On the other hand,

$$|z_N(x)| \leq C_2N^xN^{(a-2)}\exp\left(-\frac{N^2\log^2 x}{4}\right).$$

If $|x-1| \geq \delta$, then $\log^2 x \geq b > 0$, so that

$$\int_{1+\delta}^{\infty} |z_N(x)|x^{-1}dx \leq C_3\varepsilon \frac{N^2\varepsilon}{(1+\delta)^{N(a-2)}} \to 0,$$

as $N \to \infty$, and (for $\delta < 1$)

$$\int_{-\delta}^{1-\delta} |z_N(x)|x^{-1}dx \leq C_2N \int_{-\infty}^{\log(1-\delta)} \exp\left\{Nt(a-2) - \frac{N^2t^2}{4}\right\} dt$$

$$= C_2 \int_{-\infty}^{N\log(1-\delta)} \exp\left\{s(a-2) - \frac{s^2}{4}\right\} ds \to 0,$$

as $N \to \infty$.

As a result, we see that, if N is large enough, the first summand in (16) does not exceed $2\|f\|_p\varepsilon$, while the second $\leq C_1\varepsilon$. Thus,

$$\|z_N * Mf - f\|_p \to 0, \quad \text{as } N \to \infty.$$

\section{2.3. On ratios of the Gamma functions.} We will often use the function

$$\rho(t) = \frac{\Gamma(t+1)}{\Gamma(t+1-a)}, \quad -1 < t < \infty. \quad (17)$$

Here we collect some of its properties.

If $t > a - 1$, the integral representation

$$\frac{1}{\rho(t)} = \frac{1}{\Gamma(a)} \int_0^\infty e^{-st}e^{(a-1)s}(1-e^{-s})^{a-1}ds \quad (18)$$

holds (see Chapter 4 in [14]). It follows from (18) that the function $t \mapsto \frac{1}{\rho(t)}$ is strictly monotone decreasing and $\frac{1}{\rho(t)} \to 0$, as $t \to \infty$. Since $\Gamma(t+1-a)$ has a pole at $t = \alpha - 1$, it is seen from (17) that $\rho(t) \to 0$, as $t \to \alpha - 1 + 0$.
If \(-1 < t < \alpha - 1\), then (by a well-known identity for the Gamma function)
\[
\rho(t) = \frac{\Gamma(-t + \alpha)}{\Gamma(-t)} \cdot \frac{\sin \pi(t + 1)}{\sin \pi(t + 1 - \alpha)}.
\]
The integral representation for the ratio of the Gamma functions [14] leads, after an elementary investigation, to the conclusion that \(\rho(t)\) is strictly monotone increasing from \(-\infty\) to 0.

Thus, we conclude that on the interval \((-1, \infty)\) the function \(\rho(t)\) is strictly monotone increasing from \(-\infty\) to \(\infty\). The inverse function \(\gamma(\lambda)\) solving the equation
\[
\rho(t) = \lambda, \quad \lambda \in \mathbb{R},
\]
is a well-defined continuous function. Note that \(\rho(0) = \frac{1}{\Gamma(1 - \alpha)}\), so that
\[
\gamma(\lambda) \geq 0, \text{ if } \lambda \geq \frac{1}{\Gamma(1 - \alpha)}.
\]
It is known ([14], Chapter 4) that
\[
\frac{\Gamma(t + a)}{\Gamma(t + b)} \sim t^{a-b}(1 + O(t^{-1})), \quad t \to \infty,
\]
if \(b > a\). In particular,
\[
\rho(t) \sim t^\alpha, \quad \text{as } t \to \infty.
\]

For the sequence \(\beta(n)\) defined in (10) and appearing in the definition of the Gelfond-Leontiev generalized differentiation operator \(D_\alpha\), we have \(\beta(n) = \rho(\alpha n)\), so that the above asymptotics implies the relation
\[
\beta(n) \sim Cn^\alpha, \quad n = 0, 1, 2, \ldots.
\]

3. \(\alpha\)-Entire solutions

Let us consider \(\alpha\)-entire solutions of the equation (2) with \(a(t) = A(t^\alpha)\), where \(A\) is a polynomial of degree \(m \geq 0\). We assume the initial condition \(u(0) = u_0\).

Theorem 1. Under the above assumptions, the solution \(u(t)\) of the equation (2) has the form \(u(t) = v(t^\alpha)\), where \(v\) is an entire function whose order does not exceed \((1 + m)/\alpha\).
Proof. Seeking the function v, we have $(\mathcal{D}_\alpha v)(z) = a(z)v(z)$. Let us apply the operator \mathcal{I}_α (see (11)) to both sides of this equality. We get from (11) and (12) that

$$v(Re^{i\theta}) - v(0) = \frac{e^{i\theta}}{\alpha \Gamma(\alpha)} \int_0^R \left[\left(\frac{R}{r} \right)^{1/\alpha} - 1 \right]^{\alpha-1} a(re^{i\theta})v(re^{i\theta}) \, dr,$$

which implies the inequality

$$|v(Re^{i\theta})| \leq |v(0)| + C \int_0^R \left[\left(\frac{R}{r} \right)^{1/\alpha} - 1 \right]^{\alpha-1} |a(re^{i\theta})||v(re^{i\theta})| \, dr$$

(here and below we denote by the same letter C various positive constants).

We have the asymptotic relations

$$t^{1/\alpha} - 1 \sim \frac{1}{\alpha}(t - 1), \quad \text{as } t \to 1 + 0;$$

$$\left(t^{1/\alpha} - 1 \right)^{\alpha-1} \sim t^{\frac{\alpha-1}{\alpha}}, \quad \text{as } t \to \infty.$$

Therefore

$$\left(t^{1/\alpha} - 1 \right)^{\alpha-1} \leq C(t - 1)^{\alpha-1}t^{\frac{1}{\alpha} - \frac{1}{\alpha}}, \quad t \geq 1,$$

so that

$$|v(Re^{i\theta})| \leq |v(0)| + CR^{2\frac{1}{\alpha} - \frac{1}{\alpha}} \int_0^R (R - r)^{\alpha-1}r^{\frac{1}{\alpha} - 1}|a(re^{i\theta})||v(re^{i\theta})| \, dr.$$

Since $a(z)$ is a polynomial of degree m, we get

$$|v(Re^{i\theta})| \leq |v(0)| + CR^{2\frac{1}{\alpha} - \frac{1}{\alpha}} \int_0^R (R - r)^{\alpha-1}r^{\frac{1}{\alpha} - 1 + m}|v(re^{i\theta})| \, dr,$$

where C does not depend on R, θ. Fixing θ and denoting

$$w(r) = \frac{|v(re^{i\theta})|}{r^{2\frac{1}{\alpha} - \frac{1}{\alpha}}},$$
we come to the inequality
\[w(R) \leq \frac{|v(0)|}{R^{2-\frac{1}{\alpha}}} + C \int_0^R (R - r)^{\alpha - 1} r^{1-\alpha + m} w(r) \, dr. \]
(21)

Now we are in a position to apply Henry’s theorem (see Lemma 7.1.2 from [9]), which states that the inequality (21) implies the inequality
\[w(R) \leq \frac{|v(0)|}{R^{2-\frac{1}{\alpha}}} E_{\alpha,2-\alpha+m}(CR) \]
where \(E_{\alpha,\sigma}(s) \) is a certain function admitting the estimate
\[E_{\alpha,\sigma}(s) \leq Cs^{\frac{1}{2}} \left(\frac{\alpha + 1}{\alpha + \sigma - 1} \right) \exp \left(\frac{\alpha}{\alpha + \sigma - 1} s^{\alpha + \sigma - 1} \right). \]

Thus,
\[|v(Re^{i\theta})| \leq C \exp \left(\mu R^{\frac{1+m}{\alpha}} \right) \]
for some \(\mu \geq 0 \), as desired. \(\blacksquare \)

4. Regular singularity

4.1. Formal and \(\alpha \)-analytic solutions. Let us consider systems of equations of the form
\[t^\alpha \left(D_0^\alpha u \right)(t) = A(t^\alpha)u(t), \]
(22)
where
\[A(z) = A_0 + \sum_{m=1}^{\infty} A_m z^m, \]
\(A_m \) are \(n \times n \) complex matrices and
\[\|A_m\| \leq M\mu^m \ (\mu > 0), \quad m = 0, 1, 2, \ldots. \]

Suppose we have a formal series
\[u(t) = \sum_{k=0}^{\infty} u_k t^{\alpha k}, \quad u_k \in \mathbb{C}^n. \]
(23)
Let us substitute the series (23) formally into (22). We get, in accordance with (6), that
\[\sum_{k=0}^{\infty} \beta(k) u_k t^{\alpha k} = \sum_{m,k=0}^{\infty} A_m u_k t^{\alpha(m+k)} \]
where \(\beta(k) \) is the sequence (10). Collecting and comparing the terms we find that
\[\beta(l) u_l = \sum_{k=0}^{l} A_k u_{l-k}, \quad l = 0, 1, 2, \ldots, \]
or, equivalently,
\[A_0 u_0 = \frac{1}{\Gamma(1 - \alpha)} u_0; \quad (24) \]
\[[A_0 - \beta(l)] u_l = -\sum_{k=1}^{l} A_k u_{l-k}, \quad l \geq 1. \quad (25) \]

It is natural to call the formal series (23) a formal solution of the system (22) if the relations (24), (25) hold.

Proposition 2. If a formal series (23) is a formal solution of the system (22), then the series (23) is absolutely convergent on some neighbourhood of the origin.

Proof. It follows from (19) that
\[\| [A_0 - \beta(l)]^{-1} \| \leq C l^{-\alpha}, \quad l \geq l_0. \]
In particular, we may assume that
\[\| [A_0 - \beta(l)]^{-1} \| \leq 1, \quad l \geq l_0. \]
Considering, if necessary, \(\lambda u(t) \) instead of \(u(t) \), with \(|\lambda| \) small enough, we may assume that \(\|u_0\| \leq 1. \)

Let us choose so big \(r > 0 \) that \(\|u_l\| \leq r^l \) for \(l \leq l_0 \) and
\[M \sum_{k=1}^{\infty} \left(\frac{\mu}{r} \right)^k \leq 1. \]
Then
\[\|u_l\| \leq r^l \] for all \(l. \)
Indeed, if this inequality is proved up to some value of $l \geq l_0$, then
\[\|u_{l+1}\| \leq \left\| \sum_{k=1}^{l+1} A_k u_{l+1-k} \right\| \leq M \sum_{k=1}^{l+1} \mu^kk^{l+1-k} = Mr^{l+1} \sum_{k=1}^{l+1} \left(\frac{\mu}{r} \right)^k \leq r^{l+1}, \]
and the above inequality implying local convergence in (23) has been proved.

The above arguments remain valid for systems of the form
\[t^\alpha \left(D_{0+}^{\alpha} u \right)(t) = A(t^\alpha)u(t). \] (26)

The only difference is that, instead of (24), we get the relation $A_0u_0 = 0$, just as in the classical case (see [7]).

4.2. Model scalar equations. Consider the equation
\[t^\alpha \left(D_{0+}^{\alpha} \varphi \right)(t) = \lambda \varphi(t), \quad \lambda \in \mathbb{R}. \] (27)

By the relation (6), a solution of the equation (27) is const $t^\gamma(\lambda)$, where γ (the inverse function to ρ) was defined in Section 2.3. For example, if $\lambda = 0$, then we have $\gamma(0) = \alpha - 1$.

If we consider an equation similar to (27), but with the Caputo-Dzhrbashyan derivative, that is
\[t^\alpha \left(D_{1-}^{\alpha} \varphi \right)(t) = \lambda \varphi(t), \] (28)
then the constant function is a solution of (28) for $\lambda = 0$. Suppose that $\lambda \neq 0$, and φ is a solution of (28), that is $\varphi \in C[0, T]$, the function
\[\left(I_{0+}^{1-\alpha} \varphi \right)(t) = \frac{1}{\Gamma(1-\alpha)} \int_0^t (t-\tau)^{-\alpha} \varphi(\tau) d\tau \]
is absolutely continuous, and (28) is satisfied with
\[\left(D_{\alpha}^{\alpha} \varphi \right)(t) = \frac{d}{dt} \left(I_{0+}^{1-\alpha} \varphi \right)(t) - \frac{1}{t^\alpha \Gamma(1-\alpha)} \varphi(0). \]

We have
\[\left(I_{0+}^{1-\alpha} \varphi \right)(t) = \frac{t^{1-\alpha}}{\Gamma(1-\alpha)} \int_0^1 (1-s)^{-\alpha} \varphi(st) ds, \]
and since \(\varphi \) is continuous,

\[
(t_{0+}^{1-\alpha} \varphi)(t) \to 0, \quad \text{as } t \to +0.
\]

It is known [18] that in these circumstances \(I_{0+}^\alpha D_{0+}^\alpha \varphi = \varphi \). Note also that \(I_{0+}^\alpha \) transforms the function \(t^{-\alpha} \) into the constant \(\Gamma(1-\alpha) \). Dividing the equation (28) by \(t^\alpha \) and applying \(I_{0+}^\alpha \) to both sides, we find that

\[
\varphi(t) - \varphi(0) = \frac{\lambda}{\Gamma(\alpha)} \int_0^t (t-\tau)^{-1+\alpha} \tau^{-\alpha} \varphi(\tau) d\tau
\]

\[
= \frac{\lambda}{\Gamma(\alpha)} \int_0^1 (1-s)^{-1+\alpha} s^{-\alpha} \varphi(ts) ds.
\]

Passing to the limit, as \(t \to 0 \), and taking into account the continuity of \(\varphi \), we obtain the identity

\[
\frac{\lambda \varphi(0)}{\Gamma(\alpha)} \int_0^1 (1-s)^{-1+\alpha} s^{-\alpha} ds = 0,
\]

whence \(\varphi(0) = 0 \).

Thus, for \(\lambda \neq 0 \), the equation (28) is equivalent to (27), if (27) is considered for continuous functions vanishing at the origin. The power solution \(Ct^{\gamma(\lambda)} \) belongs to this class, if \(\lambda > \frac{1}{\Gamma(1-\alpha)} \). It may be instructive to see these solutions, satisfying the equation

\[
\varphi(t) = \frac{\lambda}{\Gamma(\alpha)} \int_0^t (t-\tau)^{-1+\alpha} \tau^{-\alpha} \varphi(\tau) d\tau,
\]

as examples of non-uniqueness of solutions of linear Volterra integral equations occurring due to the singularity of a kernel.

4.3. Systems with good spectrum. Let us consider the equation (3) with

\[
A(z) = \sum_{m=0}^{\infty} A_m z^m
\]

where \(A_m \) are complex \(n \times n \) matrices, the matrix \(A_0 \) is Hermitian, and the series converges on a neighbourhood of the origin. Without restricting generality, we may assume that

\[
A_0 = \text{diag}(\lambda_1, \ldots, \lambda_n), \quad \lambda_1, \ldots, \lambda_n \in \mathbb{R}.
\]
Following the classical method (see, for example, [1]) we look for a matrix-valued solution \((a \text{ fundamental solution})\) of the equation (3), in the form

\[
u(t) = S(t^\alpha)\psi(t)
\]

where \(\psi(t) = \text{diag}(t^{\gamma(\lambda_1)}, \ldots, t^{\gamma(\lambda_n)})\), \(S(z) = \sum_{\nu=0}^\infty \sigma_\nu z^\nu\), \(\sigma_\nu \ (\nu \geq 1)\) are some unknown matrices, \(\sigma_0 = I\).

We have

\[
u(t) = \sum_{\nu=0}^\infty \sigma_\nu \text{diag}(t^{\gamma(\lambda_1)+\alpha \nu}, \ldots, t^{\gamma(\lambda_n)+\alpha \nu}),
\]

whence

\[
u(t) = \sum_{\nu=0}^\infty \sigma_\nu R_\nu \text{diag}(t^{\gamma(\lambda_1)+\alpha \nu}, \ldots, t^{\gamma(\lambda_n)+\alpha \nu}),
\]

(30)

where

\[
R_\nu = \text{diag}
\begin{pmatrix}
\Gamma(\gamma(\lambda_1) + \alpha \nu + 1)
\Gamma(\gamma(\lambda_1) + \alpha \nu + 1 - \alpha)
\Gamma(\gamma(\lambda_2) + \alpha \nu + 1)
\Gamma(\gamma(\lambda_2) + \alpha \nu + 1 - \alpha)
\end{pmatrix}.
\]

On the other hand,

\[
A(t^\alpha)u(t) = \sum_{\nu=0}^\infty \left(\sum_{m=0}^\nu A_m \sigma_{\nu-m} \right) \text{diag}(t^{\gamma(\lambda_1)+\alpha \nu}, \ldots, t^{\gamma(\lambda_n)+\alpha \nu}).
\]

(31)

Note that \(R_0 = \text{diag}(\lambda_1, \ldots, \lambda_n) = A_0\), and since \(\sigma_0 = I\), the coefficients corresponding to \(\nu = 0\) in (30) and (31) coincide. Comparing the rest of the coefficients, we obtain the following system of equations for the matrices \(\sigma_k\):

\[
\sigma_k R_k - A_0 \sigma_k = \sum_{l=0}^{k-1} A_{k-l} \sigma_l, \quad k \geq 1.
\]

(32)

For each \(k\), the matrix equation (32) for \(\sigma_k\) has a unique solution if the spectra of the matrices \(R_k\) and \(A_0\) are disjoint (see Appendix A.1 in [1]), that is

\[
\frac{\Gamma(\gamma(\lambda_i) + \alpha k + 1)}{\Gamma(\gamma(\lambda_i) + \alpha k + 1 - \alpha)} \neq \lambda_j
\]

for all \(i, j \in \{1, \ldots, n\}\), or, equivalently, since the left-hand side of (33) equals \(\rho(\gamma(\lambda_i) + \alpha k)\),

\[
\gamma(\lambda_j) - \gamma(\lambda_i) \neq \alpha k, \quad \text{for all} \ i, j \in \{1, \ldots, n\}.
\]
We call our system (3) a system with good spectrum, if
\[\gamma(\lambda_j) - \gamma(\lambda_i) \notin \alpha\mathbb{N}, \quad \text{for all } i, j \in \{1, \ldots, n\}. \] (34)
This definition extends the classical one [1], since for \(\alpha = 1 \) we would have \(\rho(t) = \gamma(t) = t \), and the condition (34) would mean that the eigenvalues of \(A_0 \) must not differ by a natural number.

Theorem 2. If a system (3) has a good spectrum, then it possesses a fundamental solution (29) where the series for \(S(z) \) has a positive radius of convergence.

Proof. By the asymptotic relation (19),
\[\frac{\Gamma(\gamma(\lambda_j) + \alpha k + 1)}{\Gamma(\gamma(\lambda_j) + \alpha k + 1 - \alpha)} \sim (\alpha k)^\alpha (1 + O(k^{-1})) \quad k \to \infty, \]
for all \(j = 1, \ldots, n \). Therefore
\[(\alpha k)^{-\alpha} R_k = I + O(k^{-1}), \quad k \to \infty. \] (35)

Let us divide both sides of the equation (32) by \((\alpha k)^\alpha\). The resulting equation, considered as a system of scalar equations for \(n^2 \) elements of the matrix \(\sigma_k \), has the coefficients bounded in \(k \) and the determinant, which is different from zero for each \(k \) and tends to 1, as \(k \to \infty \). This implies the estimate
\[\| \sigma_k \| \leq a k^{-\alpha} \sum_{l=0}^{k-1} A_{k-l} \| \sigma_l \|, \quad k \geq 1, \] (36)
where the constant \(a > 0 \) does not depend on \(k \). It follows from (35), (36), and the convergence near the origin of the power series for \(A(z) \) that
\[\| \sigma_k \| \leq a_1 k^{-\alpha} \sum_{l=0}^{k-1} b^{k-l} \| \sigma_l \|, \quad k \geq 1, \]
where \(a_1 \) and \(b \) are positive constants independent of \(k \).

Define a sequence \(\{ s_k \}_{0}^{\infty} \) of positive numbers, setting \(s_0 = 1 \),
\[s_k = a_1 k^{-\alpha} \sum_{l=0}^{k-1} b^{k-l} s_l, \quad k \geq 1. \]
The induction on \(k \) yields the inequality \(\|\sigma_k\| \leq s_k \) for all \(k \geq 0 \). On the other hand,

\[
s_{k+1} = a_1(k + 1)^{-\alpha} \sum_{l=0}^{k} b^{k+1-l}s_l
\]

\[
= \frac{(k + 1)^{-\alpha}}{k^{-\alpha}} \left[a_1k^{-\alpha} \left(b \sum_{l=0}^{k-1} b^{k-l}s_l + bs_k \right) \right]
\]

\[
= \frac{(k + 1)^{-\alpha}}{k^{-\alpha}} (bs_k + a_1k^{-\alpha}bs_k) = \frac{(k + 1)^{-\alpha}b}{k^{-\alpha}} (1 + a_1k^{-\alpha}) s_k.
\]

Therefore

\[
\frac{s_k}{s_{k+1}} \rightarrow b^{-1}, \quad \text{as} \quad k \rightarrow \infty. \quad (37)
\]

It follows from (37) that the series \(\sum_{k=0}^{\infty} s_k z^k \) has the convergence radius \(b^{-1} \) (see Section 2.6 in [21]). Moreover, the series \(\sum_{\nu=0}^{\infty} \sigma_\nu z^\nu \) converges for \(|z| < b^{-1} \).

For the equation (26), a similar construction is valid, if we assume that \(\lambda_1, \ldots, \lambda_n \geq \frac{1}{\Gamma(1 - \alpha)} \).

5. Irregular singularity: An example

5.1. A formal solution. In this section we construct a solution, in a sense to be specified, of the equation (5). Looking at classical first order equations, corresponding formally to \(\alpha = 1 \), we have to consider the equation \(t^2y'(t) = \lambda y(t) \) whose solution is \(y(t) = \exp(-\lambda t^{-1}) \). Therefore it is natural to seek a solution of the equation (5) in the form

\[
u(t) = \sum_{n=0}^{\infty} c_n t^{-n\alpha}, \quad c_n \in \mathbb{C}. \quad (38)
\]

A fractional derivative of any term in (38) with \(n > \alpha^{-1} \) does not make sense classically. However we may apply the distribution theory from Section 2.2. Below we understand the fractional derivative \(D^{(\alpha)} \) in the sense of (13).
Proposition 3. (i) If $\mu < 0$, $\mu \neq -1, -2, \ldots$, then
\[D^{(\alpha)} t^\mu = \frac{\Gamma(\mu + 1)}{\Gamma(\mu + 1 - \alpha)} t^{\mu - \alpha}. \tag{39} \]

(ii) If k is a natural number, then
\[D^{(\alpha)} t^{-k} = \frac{(-1)^{k-1}}{(k-1)!} \frac{\Gamma(\mu + 1 - \alpha)}{\Gamma(\mu + 1 - \alpha - k)} t^{-k - \alpha} \log t. \tag{40} \]

Proof. Let $\varphi \in \Phi_{1+}^{1-\alpha}$. By (13),
\[\langle D^{(\alpha)} t^\mu, \varphi(t) \rangle = \mu \langle t^{\mu-1}, (I_{1+}^{1-\alpha} \varphi)(t) \rangle. \tag{41} \]

It is clear that the right-hand side of (41) is an entire function of μ. For $\mu > 0$, by virtue of (7),
\[\langle t^{\mu-1}, (I_{1+}^{1-\alpha} \varphi)(t) \rangle = \frac{\Gamma(\mu)}{\Gamma(\mu + 1 - \alpha)} \langle t^{\mu-\alpha}, \varphi(t) \rangle. \]

For $\mu < 0$, $\mu \neq -1, -2, \ldots$, the analytic continuation gives the equality (39).

Next, consider the entire function
\[F(\mu) = \langle t^{\mu-\alpha}, \varphi(t) \rangle, \quad \mu \in \mathbb{C}. \]

Note that $F(-k) = 0$, $k \in \mathbb{N}$, by the definition of the space $\Phi_{1+}^{1-\alpha}$. We have
\[F'(\mu) = \langle \log t \cdot e^{(\mu-\alpha)\log t}, \varphi \rangle. \]

In particular,
\[F'(-k) = \int_0^\infty t^{-\alpha-k} \log t \cdot \varphi(t) \, dt. \]

As μ belongs to a small neighbourhood of the point $-k$, $F(\mu) = F'(-k)(\mu + k) + o(\mu + k)$. Since the residue of $\Gamma(\mu + 1)$ at $\mu = -k$ equals $\frac{(-1)^{k-1}}{(k-1)!}$ (see Section 4.4.1 of [20]), we see that the function $\Gamma(\mu + 1) F(\mu)$ is holomorphic at $\mu = -k$ (in fact, it is entire) and
\[\Gamma(\mu + 1) F(\mu) |_{\mu = -k} = \frac{(-1)^{k-1}}{(k-1)!} \int_0^\infty t^{-\alpha-k} \log t \cdot \varphi(t) \, dt. \]
Now the equality (39) implies (40).

Returning to (38), we will formally apply $D^{(\alpha)}$ termwise and find the coefficients c_n comparing resulting terms in (5). It is clear from the equality (40) that such a procedure would fail if some of the numbers $n\alpha$ are integers. Thus, we have to assume that α is irrational. Using (39) we find that (formally)

$$ t^{2\alpha} (D^{(\alpha)} u)(t) = \sum_{n=1}^{\infty} c_n \frac{\Gamma(-n\alpha + 1)}{\Gamma(-n\alpha + 1 - \alpha)} t^{-n\alpha + \alpha}. $$

Substituting this into (5) we come to the recurrence relation

$$ c_{n+1} = \lambda \frac{\Gamma(1-(n+2)\alpha)}{\Gamma(1-(n+1)\alpha)} c_n, \quad n \geq 0, $$

and it is easy to find by induction that

$$ c_n = \lambda^n \frac{\Gamma(1-(n+1)\alpha)}{\Gamma(1-\alpha)} c_0. $$

Thus, we have found a formal solution

$$ u(t) = \frac{c_0}{\Gamma(1-\alpha)} \sum_{n=0}^{\infty} \Gamma(1-(n+1)\alpha) t^{-n\alpha} $$

of the equation (5). Using the identity

$$ \Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z} $$

we can rewrite (42) in the form

$$ u(t) = \frac{c_0\pi}{\Gamma(1-\alpha)} \sum_{n=0}^{\infty} \frac{1}{\sin(\pi(n+1)\alpha)} \frac{t^{-n\alpha}}{\Gamma((n+1)\alpha)}. $$

5.2. The convergence problem. The convergence of the series (43) depends on the arithmetic properties of the irrational number α. It was shown by Hardy [6] that α can be chosen in such a way (to be well approximated by rational numbers) that the series (43) would diverge for small values of t.
An irrational number $\alpha \in (0, 1)$ is said to be poorly approximated by rational numbers, if there exist such $\varepsilon > 0$, $c > 0$ that for any rational number $\frac{p}{q}$, $p, q \in \mathbb{N}$,

$$\left| \alpha - \frac{p}{q} \right| \geq cq^{-2-\varepsilon}. \quad (44)$$

By the Thue-Siegel-Roth theorem (see [19]) such are all algebraic numbers.

The first statement of the next theorem is actually contained already in the paper [6].

Theorem 3. If α is poorly approximated by rational numbers, then the series (43) converges for any $t > 0$. However this series diverges in the space of distributions $(\Phi^{1-\alpha}_+)^t$.

Proof. It follows from (44) that

$$|q\alpha - p| \geq cq^{-1-\varepsilon} \quad \text{for any } p \in \mathbb{N},$$

so that

$$\text{dist}((n+1)\alpha, \mathbb{Z}_+) \geq c(n+1)^{-1-\varepsilon},$$

and taking $l \in \mathbb{Z}_+$, such that $|(n+1)\alpha - l| \leq \frac{1}{2}$, we find that

$$|\sin(\pi(n+1)\alpha)| = |\sin(\pi((n+1)\alpha - l)| \geq 2|(n+1)\alpha - l|$$

$$\geq 2 \text{dist}((n+1)\alpha, \mathbb{Z}_+) \geq 2c(n+1)^{-1-\varepsilon}.$$

Using the Stirling formula we obtain that the series (43) converges for each $t > 0$.

To prove the second assertion, consider $(t^{-an}, \kappa_\alpha(t))$, where the function κ_α was defined in Section 2.2. We have, by (14), that

$$\langle t^{-an}, \kappa_\alpha(t) \rangle = \int_0^\infty t^{-an} \kappa_\alpha(t) \, dt = \tilde{Z}_\alpha(1 - \alpha n) = \tilde{Z}(\alpha - 1 - \alpha n)$$

$$= 2\sqrt{\pi} \exp \left((\alpha - 1 - \alpha n)^2 - \frac{\pi^2}{4} \right) \sin(\pi(\alpha - 1 - \alpha n)).$$

Now we can give a lower estimate of the coefficients in the series (43) understood in the distribution sense: there are such $a, a_1, b > 0$ that
\[
\frac{1}{\sin(\pi(n+1)\alpha)} \left\{ \frac{(t^{-\alpha}, x_0(t))}{\Gamma((n+1)\alpha)} \right\} \\
\geq a(n+1)^{-b(n+1)}|\sin(\pi\alpha(n-1))|\exp(\alpha^2n^2 - 2\alpha(\alpha - 1)n) \\
\geq a_1(n+1)^{-b(n+1)-1-\varepsilon}\exp(\alpha^2n^2 - 2\alpha(\alpha - 1)n) \\
= a_1 \exp \left\{ \alpha^2n^2 - 2\alpha(\alpha - 1)n - (bn + b + 1 + \varepsilon) \log(n + 1) \right\} \to \infty,
\]
as \(n \to \infty\). Therefore the series (43) does not converge in \((\Phi_1^{1-\alpha})'\).

References

[1] W. Balser, Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations. Springer, New York (2000).
[2] I. Chyzhykov, G.G. Gundersen, and J. Heittokangas, Linear differential equations and logarithmic derivative estimates. Proc. London Math. Soc. 86 (2003), 735-754.
[3] S.D. Eidelman, S.D. Ivasyshen, and A.N. Kochubei, Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type. Birkhäuser, Basel (2004).
[4] A.O. Gelfond, A.F. Leontiev, On a generalization of the Fourier series. Mat. Sbornik 29 (1951), 477-500 (In Russian).
[5] I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Series and Products. Academic Press, New York (1980).
[6] G.H. Hardy, On a class of analytic functions. Proc. London Math. Soc. 3 (1905), 441-460.
[7] Ph. Hartman, Ordinary Differential Equations. Wiley, New York (1964).
[8] J. Heittokangas, R. Korhonen, and J. Rättyä, Growth estimates for solutions of linear complex differential equations. Ann. Acad. Sci. Fenn. Math. 29 (2004), 233-246.
[9] D. Henry, Geometric Theory of Semilinear Parabolic Equations. Lect. Notes Math. Vol. 840, Springer, Berlin (1981).
[10] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis, Vol. 1. Springer, Berlin (1963).
[11] A.A. Kilbas, M. Rivero, L. Rodríguez-Germá, and J.J. Trujillo, α-
Analytic solutions of some linear fractional differential equations with
variable coefficients. *Appl. Math. Comput.* **187** (2007), 239-249.

[12] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, *Theory and Applica-
tions of Fractional Differential Equations*. Elsevier, Amsterdam (2006).

[13] V.S. Kiryakova, *Generalized Fractional Calculus and Applications*, Wiley,
New York (1994).

[14] F.W.J. Olver, *Asymptotics and Special Functions*. Academic Press,
New York (1974).

[15] M. Rivero, L. Rodríguez-Germá, and J.J. Trujillo, Linear fractional
differential equations with variable coefficients. *Appl. Math. Lett.* **21**
(2008), 892-897.

[16] B. Rubin, On fractional integration of generalized functions on a half-
line. *Proc. Edinburgh Math. Soc.* **38** (1995), 387-396.

[17] S.G. Samko, Denseness of the Lizorkin-type spaces Φ_V in $L_p(\mathbb{R}^n)$.
*Math. Notes** **31** (1982), 432-437.

[18] S.G. Samko, A.A. Kilbas, and O.I. Marichev, *Fractional Integrals and
Derivatives: Theory and Applications*. Gordon and Breach, New York
(1993).

[19] W.M. Schmidt, *Diophantine Approximation*. Lect. Notes Math. Vol.
785, Springer, Berlin (1980).

[20] E.C. Titchmarsh, *The Theory of Functions*. Oxford University Press
(1939).

[21] E.T. Whittaker and G.N. Watson, *A Course of Modern Analysis*. Cam-
bridge University Press (1927).

* Institute of Mathematics, National Academy of Sciences of Ukraine,
Tereshchenkovska 3, Kiev, 01601 UKRAINE

Received: September 17, 2008
e-mail: kochubei@i.com.ua