Single Dual-X Current Conveyor based BASK/BPSK Modulators

Deva Nand
Department of Electronics and Communication Engineering
Delhi Technological University, Delhi, India.
devkamboj07@gmail.com

Abstract. Two voltage mode digital modulators have been proposed i.e. Binary Amplitude Shift Keying (BASK) modulator and Binary Phase Shift Keying (BPSK) modulator. Both circuits use Dual-X Second Generation Current Conveyor (DXCCII) as the active building block and have the advantages of proper input impedances and use of grounded resistor. Detailed mathematical analysis of both circuits are given. The circuits have been simulated with SPICE using 0.35µm CMOS technology parameters. The supply voltage of ±1.8 V is used. Much satisfactory results have been obtained with the proposed circuits.

Keywords: BASK; BPSK; DXCCII; modulators.

1. Introduction

Modulation is a process where one of the parameters of the carrier signal, which can be amplitude, phase or frequency, is varied linearly according to the variations in the message signal or modulating signal. With the modulation, the information contained in the message signal is transferred to the carrier signal. When modulation is done for the digital signals then it is known as the digital modulation. The device that performs this modulation is known as the digital modulator. The digital signal is a basically a binary signal in the form of 0s and 1s and it is a low pass signal and can’t be transmitted through the wireless medium, so in order to transmit the digital signal through wireless medium, modulation is required. In Binary Amplitude Shift Keying (BASK), the binary 1 is represented by the presence of carrier signal while binary 0 is represented by the absence of carrier signal whereas in Binary Phase Shift Keying (BPSK), the binary 1 is represented by the presence of in phase carrier signal while binary 0 is represented by the presence of 180° out of phase carrier signal. Infrared (IR) remote controls, transmitter and receiver in optical fiber communication employ BASK, and broadband modems, satellite communication, mobile phones employ BPSK.

Many new active building blocks have been introduced in recent past to explore above mentioned applications and one such trendy block is second generation current conveyor (CCII) [1] and inverting CCII [2]. Literature survey shows that one another most trending block that can be explored to implement modulation process is dual X second generation current conveyor (DXCCII) [3,4]. As per literature survey, two EXCCII based voltage mode digital modulator circuits are reported in [5] and [6] which provide simultaneous ASK and BPSK modulation processes. A current mode BASK modulator circuit has been reported in [7] making use of two MO-CCCCTA. A voltage mode BASK
modulator using only one CC III+ has been reported in [8]. Voltage mode memristor based BASK and BPSK modulators are presented in [9]. DPCCII based BASK modulator is reported in [10]. Further voltage mode MO-CCCCC, digitally programmable CDTA and MO-OTA based BASK and BPSK modulator circuits are reported in [11], [12] and [13] respectively. A DXCCII based modulator topology has also been presented in [6] which performs BPSK modulations but unexplored and unanalyzed.

The newly proposed BASK modulator circuit employs single DXCCII, one NMOS transistor and one grounded resistor while BPSK modulator circuit uses single DXCCII, one NMOS and one PMOS transistor and one grounded resistor. This article includes total of six sections including introduction in Section-1. DXCCII block description is given in Section-2 followed by proposed BASK and BPSK modulators in Section-3 & 4 respectively. Proposals simulation verification is reported in Section-5 and concluded in Section-6.

2. DXCCII Description

The DXCCII, conceptually, is a combination of CCII [1] and ICCII [2]. It is therefore more versatile building block as it has the features of both the current conveyors i.e. CCII and ICCII. The block diagram of DXCCII [3] is shown below in Fig. 1. It has 5 terminals named as Y, Xp, Xn, Zp and Zn. Xp is called as the non-inverting X terminal while Xn is called as the inverting X terminal. Y is an input terminal with high impedance. Xp and Xn are terminals with low impedance while Zp and Zn are terminals with high impedance.

Figure 1. Block diagram of DXCCII [3].

Table 1. (W/L) Ratio of CMOS for DXCCII [3].

Transistor	W(µm)	L(µm)
M1, M2	1.4	0.7
M3, M7, M8	2.8	0.7
M4, M5	2.4	0.7
M6, M9, M10	4.8	0.7
M11 to M20	9.6	0.7

Ideally, the voltages and currents relationships of various terminals can be described by the following matrix [3] mentioned below in (1).

\[
\begin{bmatrix}
 I_Y \\
 V_{Xp} \\
 V_{Xn} \\
 I_{Zp} \\
 I_{Zn}
\end{bmatrix} =
\begin{bmatrix}
 0 & 0 & 0 & 0 & 0 \\
 1 & 0 & 0 & 0 & 0 \\
 -1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
 V_Y \\
 I_{Xp} \\
 I_{Xn} \\
 I_{Zp} \\
 I_{Zn}
\end{bmatrix}
\] (1)
The CMOS implementation of the DXCCII used in the proposed circuits is shown in Fig. 2. The aspect ratio of transistors used in the implementation of DXCCII are given in Table 1 [3].

3. Proposed BASK Modulator

The proposed BASK modulator is shown in Fig. 3 below.

3.1 Operation of the proposed BASK modulator

V_c is the sinusoidal carrier signal. It carries the modulating signal V_m. Voltage V_c is applied at the high input impedance terminal Y of the DXCCII. Voltage V_c is given as

$$V_c = A_c \sin(2\pi f_c t)$$

Where

- A_c is the amplitude of the carrier signal voltage V_c,
- t is the time period and f_c is the frequency in hertz (Hz) or cycles/second.

This carrier signal voltage V_c is copied at the Xp terminal of the DXCCII, that is

$$V_{Zp} = V_{Xp} = V_c$$

voltage V_m is the bipolar modulating signal.

voltage V_{ASK} is the BASK modulated output voltage signal.

The M_{T1} is used as a switch. The modulating signal V_m is applied at the high impedance gate terminal of this transistor. When voltage V_m is positive, the M_{T1} turns on and works as a closed switch, and when voltage V_m is negative, the M_{T1} turns off and works as an open switch. The gate voltage of M_{T1} depends on the amplitude of the modulating signal V_m. And the drain voltage of M_{T1} depends on the amplitude of the carrier signal V_c, which is very small as voltage V_c is much smaller in magnitude than voltage V_m. The source voltage of M_{T1} depends on the voltage V_{ASK} developed across the resistor R.
Therefore, whenever M_{T1} is on, it always works in the non-saturation region or the ohmic region as it always holds the condition of working in ohmic region which is given as

$$V_{DSn} < V_{GSn} - V_{THn} \quad (4)$$

where V_{DSn} is the drain to source voltage of M_{T1}, V_{GSn} is the gate to source voltage of M_{T1}, and V_{THn} is the threshold voltage of M_{T1}. V_{THn} for NMOS is positive.

The on resistance of this M_{T1} used as a switch is denoted by $R_{on,n}$. From [6], for the ohmic region, the resistance $R_{on,n}$ is therefore expressed as

$$R_{on,n} = \frac{1}{(W/L_n) \mu_n C_{ox,n}(V_{GSn} - V_{THn} - V_{DSn})} \quad (5)$$

Where $(W/L)_n$ is the aspect ratio of M_{T1}, μ_n is the mobility of electron, and $C_{ox,n}$ is the gate oxide capacitance per unit area, of M_{T1}. It can be seen from the equation (5) that the $R_{on,n}$ varies with voltage V_{GSn} and voltage V_{DSn}. But, since the on resistance $R_{on,n}$ is much smaller in magnitude than the magnitude of the external resistor R, therefore the effect of variation of $R_{on,n}$ on the BASK modulated output voltage V_{ASK} is negligible. Mathematically, it can be expressed by the following equations written below

$$R_{on,n} \ll R \quad (6)$$

The BASK modulated output voltage is given as

$$V_{ASK} = I_{out} \times R \quad (7)$$

The voltage V_A at node A is equal to the voltage V_{Xp}, that is

$$V_A = V_{Xp} \quad (8)$$

Also, when the M_{T1} is on, then the total resistance $R_{total,n}$ between node A and ground is equal to the sum of the on resistance $R_{on,n}$ of the M_{T1} and the external resistance R, i.e.

$$R_{total,n} = R_{on,n} + R \quad (9)$$

The output current I_{out} is given as

$$I_{out} = \frac{V_A}{R_{total,n}} \quad (10)$$

From equations (8), (9) and (10)

$$I_{out} = \frac{V_{Xp}}{R_{on,n} + R} \quad (11)$$

From equations (6) and (9)

$$R_{total,n} = R_{on,n} + R \cong R \quad (12)$$

Therefore from equations (11) and (12), I_{out} is given as

$$I_{out} \cong \frac{V_{Xp}}{R} \quad (13)$$

Thus from the equations (7) and (13), it can be concluded that the variation in the output current I_{out} because of $R_{on,n}$ is negligible and therefore, the effect on the output voltage V_{ASK} because of the variations in $R_{on,n}$ is also negligible. When the M_{T1} working as a switch is in off condition than the associated resistance is denoted by $R_{off,n}$. $R_{off,n}$ is ideally infinite as the M_{T1} is in non-conducting state. Now when the voltage of the modulating signal V_m is positive (logic high), M_{T1} turns on and the equal amount of the currents developed at Xp and Zp terminals of the DXCCII flow towards the node A, which then get added up at the node A as no current goes to the gate terminal of M_{T1} and then the
net current flows through the transistor MT1 and then flows through the resistor R and then goes to the ground. The two currents developed at Xp and Zp terminals of the DXCCII linearly depend on the voltage V_{XP} as can be observed from the equation (13). As the voltage V_{XP} is AC in nature therefore the currents developed because of it are also AC in nature and since these two currents add up at the node A and therefore the resultant current is also AC in nature which flows through the resistor R developing an AC voltage V_{ASK} in return across it which is in phase with the carrier signal voltage V_c. When the voltage of the modulating signal V_m is negative (logic low), MT1 turns off and therefore no current flows through the resistor R and the voltage V_{ASK} developed across it is zero. This way, the ASK modulated output voltage V_{ASK} is thus obtained across the resistor R.

The overall operation of the proposed BASK modulator can therefore be summarized by these two equations as mentioned below

$$V_{ASK} = I_{out} \times R \cong V_c$$

when V_m is positive or logic high (NMOS MT1 is on)

$$V_{ASK} = 0;$$

when V_m is negative or logic low (NMOS MT1 is off)

4. Proposed BPSK Modulator

The proposed BPSK modulator is shown in Fig. 4.

4.1 Operation of the proposed BPSK modulator

V_c is the sinusoidal carrier signal. It carries the modulating signal V_m. V_c is applied at the high input impedance terminal Y of the DXCCII. V_c is given as

$$V_c = A_c \sin(2\pi f_c t)$$

Where

A_c is the amplitude of the carrier signal voltage V_c, t is the time period and f_c is the frequency in hertz (Hz) or cycles/second. This carrier voltage V_c is copied at the Xp terminal of the DXCCII, that is

$$V_{zp} = V_{xp} = V_c = A_c \sin(2\pi f_c t)$$

And the voltage developed at the Xn terminal of DXCCII is the inverted carrier voltage V_c, that is

$$V_{zn} = V_{xn} = -V_c = A_c \sin(2\pi f_c t)$$

V_m is the bipolar modulating signal. V_{PSK} is the BPSK modulated output voltage signal.

The MT1 and MT2 are used as the two switches. The modulating signal V_m is applied at the high impedance gate terminals of these transistors, MT1 and MT2. When voltage V_m is positive MT1 turns on and works as a closed switch while MT2 turns off and works as an open switch. And when voltage V_m is negative MT1 turns off and works as an open switch while MT2 turns on and works as a closed switch. The gate voltages of MT1 and MT2 depend on the amplitude of the modulating signal V_m. And the drain voltage of MT1 and the source voltage of MT2 depend on the amplitude of the carrier signal V_c, which are very small as voltage V_c is much smaller in magnitude than voltage V_m. The source voltage of MT1 and the drain voltage of MT2 depend on the voltage developed across the resistor R. Therefore, whenever MT1 and MT2 are on, they always work in the non-saturation region or the ohmic region as they always hold the condition of working in the ohmic region. The conditions for operation in the ohmic region for MT1 and MT2 are given below in equations (17) and (18) respectively.

For MT1

$$V_{DSn} < V_{GSn} - V_{THn}$$

For MT2

$$V_{DSn} < V_{GSn} - V_{THn}$$
\[V_{DSP} > V_{GSP} - |V_{THp}| \]

where

\(V_{DSn} \) is the drain to source voltage of \(M_{T1} \), \(V_{GSp} \) is the gate to source voltage of \(M_{T1} \).

\(V_{THn} \) is the threshold voltage of the \(M_{T1} \). \(V_{THn} \) for NMOS is positive,

\(V_{DSP} \) is the drain to source voltage of \(M_{T2} \), \(V_{GSp} \) is the gate to source voltage of \(M_{T2} \), and

\(V_{THp} \) is the threshold voltage of the \(M_{T2} \). \(V_{THp} \) for PMOS is negative.

The on resistances of the transistors \(M_{T1} \) and \(M_{T2} \) used as switches are denoted by \(R_{on,n} \) and \(R_{on,p} \) respectively. From [6], for the ohmic region, the resistances \(R_{on,n} \) and \(R_{on,p} \) can be expressed as

\[R_{on,n} = \frac{1}{(W/L)_n \mu_n C_{ox,n} (V_{GSp} - V_{THn} - V_{DSn})} \]

and

\[R_{on,p} = \frac{1}{(W/L)_p \mu_p C_{ox,p} (V_{GSp} - V_{THp} - V_{DSP})} \]

where

\((W/L)_n \) is the aspect ratio of the \(M_{T1} \), \(\mu_n \) is the mobility of electron, \(C_{ox,n} \) is the gate oxide capacitance per unit area, of \(M_{T1} \), \((W/L)_p \) is the aspect ratio of \(M_{T2} \), \(\mu_p \) is the mobility of hole, \(C_{ox,p} \) is the gate oxide capacitance per unit area, of \(M_{T2} \).

It can be seen from the above equations (19) and (20), that \(R_{on,n} \) varies with the \(V_{GSp} \) and \(V_{DSn} \), while \(R_{on,p} \) varies with the \(V_{GSp} \) and \(V_{DSP} \). But, since both of these on resistances i.e. \(R_{on,n} \) and \(R_{on,p} \) are much smaller in magnitude than the magnitude of the external resistor \(R \) therefore the effect of variations of \(R_{on,n} \) and \(R_{on,p} \) on the BPSK modulated output voltage \(V_{PSK} \) is negligible. Mathematically, it can be expressed by the following two equations written below

\[R_{on,n} \ll R \]

\[R_{on,p} \ll R \]

The BPSK modulated output voltage is given as

\[V_{PSK} = I_{out} \times R \]

The voltage \(V_A \) at node A is equal to the voltage \(V_{XP} \), that is

\[V_A = V_{XP} \]

The voltage \(V_B \) at node B is equal to the voltage \(V_{XN} \), that is

\[V_B = V_{XN} \]

Also, only of the transistors is on at a time i.e. either \(M_{T1} \) or \(M_{T2} \). When \(M_{T1} \) is on, then the total resistance \(R_{total,n} \) between node A and ground is equal to the sum of the on resistance \(R_{on,n} \) of the \(M_{T1} \) and the external resistance \(R \). And when the \(M_{T2} \) is on, then the total resistance \(R_{total,p} \) between node B and ground is equal to the sum of the on resistance \(R_{on,p} \) of \(M_{T2} \) and the external resistance \(R \). Mathematically \(R_{total,n} \) and \(R_{total,p} \) are given as

\[R_{total,n} = R_{on,n} + R \]

\[R_{total,p} = R_{on,p} + R \]

When only \(M_{T1} \) is on, then the output current \(I_{out} \) is

\[I_{out} = \frac{V_A}{R_{total,n}} = \frac{V_{XP}}{R_{on,n} + R} \]

From equations (21) and (26)

\[R_{total,n} = R_{on,n} + R \approx R \]
Therefore, from equations (28) and (29)

\[I_{\text{out}} = \frac{V_{Xp}}{R} \]

(30)

Now when only \(M_{T2} \) is on, then the output current \(I_{\text{out}} \) is

\[I_{\text{out}} = \frac{V_B}{R_{\text{total,p}}} = \frac{V_{Xn}}{R_{\text{on,p}} + R} \]

(31)

From equations (22) and (27)

\[R_{\text{total,p}} = R_{\text{on,p}} + R \approx R \]

(32)

Therefore from equations (31) and (32), \(I_{\text{out}} \) is given as

\[I_{\text{out}} = \frac{V_{Xn}}{R} \]

(33)

Thus from the equations (30) and (33), it can be concluded that the variation in the output current \(I_{\text{out}} \) due of \(R_{\text{on,n}} \) and \(R_{\text{on,p}} \) is negligible and therefore, the effect on the output voltage \(V_{\text{PSK}} \) because of the variations in \(R_{\text{on,n}} \) and \(R_{\text{on,p}} \) is also negligible.

When \(M_{T1} \) and \(M_{T2} \) working as the switches are in off condition than the associated resistances are denoted by \(R_{\text{off,n}} \) and \(R_{\text{off,p}} \) respectively. \(R_{\text{off,n}} \) and \(R_{\text{off,p}} \) are infinite ideally as the \(M_{T1} \) and \(M_{T2} \) transistors are in non-conducting state or off state. Now when the voltage of the modulating signal \(V_m \) is positive (logic high), \(M_{T1} \) turns on and \(M_{T2} \) turns off and the currents developed at \(Xp \) and \(Zp \) terminals of DXCCII flow towards node \(A \), which then get added up at node \(A \) as no current goes in to the gate terminal of \(M_{T1} \) and then the net current flows through the transistor \(M_{T1} \) and then through the resistor \(R \) and then goes to the ground. The two currents developed at \(Xp \) and \(Zp \) terminals of DXCCII linearly depend on the voltage \(V_{Xp} \) as can be seen in equation (30). As the voltage \(V_{Xp} \) is AC in nature therefore the currents developed because of it are also AC in nature and since these two currents add up at the node \(A \) and therefore the resultant current is also AC in nature which flows through the resistor \(R \) developing an AC voltage \(V_{\text{PSK}} \) in return across it which is in phase with the carrier signal voltage \(V_c \). And when the voltage of the modulating signal \(V_m \) is negative (logic low), \(M_{T1} \) turns off and \(M_{T2} \) turns on and the currents developed at \(Xn \) and \(Zn \) terminals of DXCCII flow towards node \(B \), which then get added up at node \(B \) as no current goes in to the gate terminal of \(M_{T2} \) and then the net current flows through the \(M_{T2} \) and then through the resistor \(R \) and then goes to the ground. The two currents developed at \(Xn \) and \(Zn \) terminals of DXCCII linearly depend on the voltage \(V_{Xn} \) and it can be seen in equation (33). As the voltage \(V_{Xn} \) is AC in nature therefore the currents developed because of it are also AC in nature and since these two currents add up at the node \(A \) and therefore the resultant current is also AC in nature which flows through the resistor \(R \) developing an AC voltage \(V_{\text{PSK}} \) in return across it which is 180° out of phase with the carrier signal voltage \(V_c \).

The operation can be summarized by these two equations as mentioned below

\[V_{\text{out}} = I_{\text{out}} \times R \equiv V_c = A_c \sin(2\pi f_c t); \quad \text{when } V_m \text{ is positive or logic high} \]

\[V_{\text{out}} = I_{\text{out}} \times R \equiv -V_c = -A_c \sin(2\pi f_c t); \quad \text{when } V_m \text{ is negative or logic low} \]

In conclusion, the output voltage \(V_{\text{ASK}} \) of the proposed BASK modulator and the output voltage \(V_{\text{PSK}} \) of the proposed BPSK modulator can mathematically be written in the tabulated form as shown below in the Table 2.

Modulating signal \(V_m \)	BASK output \((V_{\text{ASK}}) \)	BPSK output \((V_{\text{PSK}}) \)
Logic HIGH \((1V)\)	\(A_c \sin(2\pi f_c t) \)	\(A_c \sin(2\pi f_c t) \)
Logic LOW \((-1V)\)	0	\(-A_c \sin(2\pi f_c t) \)

Table 2. Summary of outputs of the proposed BASK and BPSK modulators.
5. Simulation results of the proposed BASK and BPSK modulator

The BASK & BPSK modulators are simulated with SPICE using CMOS implementation of the active block DXCCII [35] and 0.35µm CMOS technology parameters. The supply voltage for the active block DXCCII is taken as ±1.8V and the voltage V_{bias} is set to 1.05V. The aspect ratios (W/L) of the transistors M_{T1} and M_{T2} used as the switches are same i.e. 30µm/0.7µm. The value of external resistor R is selected as 5KΩ. The waveform of the input carrier voltage signal V_c is shown in Fig. 5. The carrier signal V_c is having a peak amplitude A_c of 100mV and frequency f_c of 20MHz. The waveform for the modulating signal V_m is shown in Fig. 6. The waveforms for the ASK modulated output voltage V_{ASK} and PSK modulated output voltage V_{PSK} are shown above in Fig. 7 and Fig. 8 respectively.

The logic high and logic low levels of the modulating signal V_m are defined as follows

$$V_m = 1V;$$ \hspace{1cm} \text{for logic high or logic 1 or bit 1}

$$V_m = -1V;$$ \hspace{1cm} \text{for logic low or logic 0 or bit 0}

\begin{figure}[h]
 \centering
 \includegraphics[width=\textwidth]{carrier_signal}
 \caption{Waveform of the carrier signal V_c}
\end{figure}

\begin{figure}[h]
 \centering
 \includegraphics[width=\textwidth]{modulating_signal}
 \caption{Waveform of the modulating signal V_m}
\end{figure}
Figure 7. ASK modulated output voltage V_{ASK}

Figure 8. PSK modulated output voltage V_{PSK}

Table 3. Comparison of the various Modulators

Ref. no.	Active elements	No. of floating/grounded resistors	No. of capacitors	No. of MOS	BASK/ BPSK	Max. carrier frequency (Hz)	Supply voltage
[5]	1 EXCCII	1/0	0	23+1	Both	20M	±1.25
	1 MOS						
[6]	1 EXCCII	0/3	0	21+2	Both	20M	±1.25
	2 MOS						
[7]	2 MO-CCCCCTA	0/0	3	2×26	ASK	2.11M	±0.9
[8]	1 CCCII+	0/1	2	NA	ASK	20.78M	±1.5
[9]	1 VCCS Memristors	0/1	1	NA	Both	1K	NA
[10]	1 DPCCII	0/2	0	18	ASK	125K	±0.75
[11]	1 MO-CCCCC	1/2	3	NA	Both	1.5M	NA
[12]	1 Digitally programmable CDTA	0/2	2	67	Both	34.39M	±0.8
[13]	2 MO-OTA	0/1	3	NA	Both	NA	NA
Proposed	1 DXCCII, 1 MOS	0/1	0	20+1	ASK	20M	±1.8
Proposed	1 DXCCII, 2 MOS	0/1	0	20+2	PSK	20M	±1.8
6. Conclusion

Two voltage mode digital modulators have been proposed namely BASK and BPSK. BASK employs one DXCCII, one grounded resistor and one NMOS transistor while BPSK employs one DXCCII, one grounded resistor, one NMOS and one PMOS transistor. Both the above proposed circuits provide the advantage of having proper input impedances and use of grounded resistor. A comparative study table of various digital modulators available in the open literature is given in table 3. All the proposed circuits have been simulated with SPICE using 0.35µm CMOS technology parameters. The supply voltage of ±1.8V is used. Convincing results have been obtained with all the proposed circuits.

References

[1] Sedra, A. S., Smith, K. C., “A second generation current conveyor and its applications”, IEEE Transactions on Circuit Theory, 17, pp. 132-134, 1970.
[2] Awad, I. A., Soliman, A. M., “Inverting second generation current conveyor: the missing building blocks, CMOS realizations and applications”, Int. J. Electron. (AEÜ), 86, pp. 413-432, 1999.
[3] Zeki, A., Toker, A., “The dual-X current conveyor (DXCCII): a new active device for tunable continuous-time filters”, Int. J. Electron. (AEÜ), 89(12), pp. 913-923, 2002.
[4] Mohan, J., Chaturvedi, B., Maheshwari, S., “Novel current-mode all-pass filter with minimum component count”, I.J. Image, Graphics and Signal Processing, 12, pp. 32-37, 2013.
[5] Maheshwari, S., “Voltage-mode full-wave precision rectifier and an extended application as ASK/BPSK circuit using a single EXCCII”, Int. J. Electron. (AEÜ), 84, pp. 234-241, 2018.
[6] Maheshwari, S., “Realization of simple electronic functions using EXCCII”, 26(11), Journal of Circuits, Systems, and Computers, 2017.
[7] Chen, H., Hwang, Y., Ku, Y., “Voltage-mode and current-mode resistorless third-order quadrature oscillator”, Appl. Sci., 6, 2016.
[8] Khan A. M., “Generation of ASK and FSK from digitally controlled CCCII+ oscillator”, The International Journal of Engineering and Science (IJES), 2(10), pp. 19-22, 2013.
[9] Goknar, I. C., Oncul, F., Minayi, E., “New memristor applications: AM, ASK, FSK and BPSK modulators”, IEEE Antennas Wave Propag. Mag., 55(2), pp. 304-313, 2013.
[10] Khan, I. A., Simsim, M. T., “An ASK modulator for RFID applications using low voltage digitally controlled programmable CMOS-CCII”, Saudi Int. Electronics, Communication, and Photonics Conf., pp. 1-4, 2013.
[11] Abuelma’Atti M.T., “New ASK/FSK/PSK/QAM wave generator using a single-current-controlled multiple output current conveyor”, Int. J. Electron. (AEÜ), 89(1), pp. 35-43, 2002.
[12] Xia, Z., Wang, C., Jin, J., Du, S., Lin, H., Yang, H., “Novel AM/FM/ASK/FSK/PSK/QAM signal generator based on a digitally programmable CDTA”, Circuits Syst Signal Process, 34(5), pp. 1635-1653, 2014.
[13] Abuelma’Atti, M.T., “New ASK/FSK/PSK/QAM wave generator using multiple-output operational transconductance amplifiers”, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 48(4), pp. 487-490, 2001.

Deva Nand did his B.Tech in Electronics and Communication Engineering, M.Tech in Microelectronics and VLSI Design from Kurukshetra University, Kurukshetra, India and Ph.D. from Delhi Technological University, Delhi, India. At present he is Assistant Professor in Department of Electronics and Communication Engineering, Delhi Technological University, Delhi, India. A life member of ISTE, member of IEEE, USA, life member of IAENG and member of IAASSE. His research interests include analog mixed signal VLSI design and digital system design.