Spin Properties of Low Density One-Dimensional Wires

K. J. Thomas, J. T. Nicholls, M. Pepper, W. R. Tribe, M. Y. Simmons*, and D. A. Ritchie
Cavendish Laboratory, Madingley Road, Cambridge, CB3 OHE, United Kingdom
(March 21, 2022)

We report conductance measurements of a ballistic one-dimensional (1D) wire defined in the lower two-dimensional electron gas of a GaAs/AlGaAs double quantum well. At low temperatures there is an additional structure at \(0.7(2e^2/h)\) in the conductance, which tends to \(e^2/h\) as the electron density is decreased. We find evidence for complete spin polarization in a weakly disordered 1D wire at zero magnetic field through the observation of a conductance plateau at \(e^2/h\), which strengthens in an in-plane magnetic field and disappears with increasing electron density. In all cases studied, with increasing temperature structure occurs at \(0.6(2e^2/h)\). We suggest that the 0.7 structure is a many-body spin state excited out of, either the spin-polarized electron gas at low densities, or the spin-degenerate electron gas at high densities.

One-dimensional (1D) semiconductor systems can be fabricated by a variety of techniques. Some of the best quality devices, as determined by the clarity of the quantized plateaus in the conductance characteristics, are obtained by electrostatically squeezing a two-dimensional electron gas (2DEG) at a GaAs/AlGaAs interface using a split-gate defined by electron-beam lithography. The conductance, measured as a function of the split-gate voltage, exhibits plateaus quantized at integer multiples of \(2e^2/h\), a result that is well understood as the adiabatic transmission of spin-degenerate 1D subbands. However, after the last 1D subband has been depopulated, an additional structure in the conductance has been measured at \(0.7(2e^2/h)\). One of the most revealing properties of this so-called 0.7 structure is its evolution into the spin-split plateau at \(e^2/h\) in a strong in-plane magnetic field. There is also an enhancement of the \(g\)-factor as the 1D carrier density is reduced. Both results suggest that there is a possible spin polarization of the 1D electron gas at zero magnetic field.

Hartree-Fock calculations of electrons confined in a cylindrical wire show that correlation effects are weak, and that at low electron densities exchange interactions will drive a spontaneous spin polarization. A spin polarization at zero magnetic field would give an extra plateau in the conductance at \(e^2/h\) rather than \(0.7(2e^2/h)\). To explain this discrepancy various theories invoking spin have been put forward. Recent quantum Monte Carlo calculations show that in 1D the paramagnetic state is always lower in energy than the ferromagnetic state, so it is not clear whether the Hartree-Fock calculations are in conflict with the Lieb-Mattis prediction that there is no ferromagnetic order in a 1D system. The role of disorder in 1D systems is little understood, but it has been shown within mean-field theory that for dimensions \(d \leq 2\) a disordered system may exhibit a partial spin polarization, even though the system without disorder is paramagnetic.

The 0.7 structure is distinctly different from the conductance plateaus measured at multiples of \(\alpha(2e^2/h)\) in long wires fabricated by overgrowth on a cleaved edge. The renormalization of all the conductance plateaus by the same factor, \(\alpha \approx 0.85\), has been interpreted as a reduction in the transmission probability, due to poor impedance matching between the two-dimensional (2D) contacts and the 1D wire. Wires created at the apex of a V-groove GaAs-AlGaAs heterojunction also show renormalized conductance plateaus due to poor 1D-2D coupling. The structure at \(0.7(2e^2/h)\) occurs in addition to the usual plateaus \(n(2e^2/h)\) which are correctly quantized, confirming that the source and drain reservoirs are adiabatically connected to the 1D constriction. The 0.7 structure has been observed in other GaAs-based 1D wires, such as those created by wet etching or by gating an undoped heterostructure. Zero-field spin splitting of 1D subbands has been observed in constrictions fabricated from PbTe, a material that has a high dielectric constant which is expected to suppress the electron-electron interactions.

In this paper we present new measurements of ballistic 1D wires that remain relatively free of impurity effects at electron densities as low as \(n \approx 3 \times 10^{10} \text{ cm}^{-2}\), equal to a 1D electron density estimated to be \(n_{1D} \approx 1.2 \times 10^7 \text{ m}^{-1}\). This has been achieved using coupled 1D wires, where a negative voltage \(V_{sg}\) on the split-gate creates two parallel wires (2 \(\times\) 1D) out of a double quantum well system. A voltage, \(V_{mid}\), applied to a narrow midline gate positioned in the center of the split gate, allows charge to be shifted from one wire to the other in a controllable fashion. When only one of the two wires is conducting, the conductance characteristics show cleaner plateaus than 1D constrictions fabricated at a single heterojunction. There is evidence of a plateau at \(e^2/h\) as the 2D electron density \(n\) is decreased, and we show how the previously measured 0.7 structure is related to this fully spin polarized state.

Two \(2 \times 1\) D samples, A and B, were fabricated from double quantum well wafers grown by molecular beam epitaxy, comprising two \(150 \text{ Å}\)-wide GaAs quantum wells separated by a \(20 \text{ Å}\) (sample A) or \(25 \text{ Å}\) (sample B)
degenerate plateaus at 2
measurements of the wires were carried out in a dilution
to characterize the 1D constrictions, are measured from
bands that are separated by a gap that is larger than the
onance, forming symmetric and antisymmetric 1D sub-
electron densities of the two wires brings them into res-
of 1
decreased
ing a back-gate, and the conductance of the 0.7 structure
occurs when the density is reduced from 1
structure from 0
SG
depressed both above and below using 2000 Å of Si-doped
\((1.2 \times 10^{17} \text{ cm}^{-3}) \) Al\(_{0.33}\)Ga\(_{0.67}\)As, offset by 600 Å and
700 Å Al\(_{0.33}\)Ga\(_{0.67}\)As spacer layers, respectively. The
electron density in each layer is approximately 1.3 \times 10^{11} \text{ cm}^{-2}, with an average mobility of 1.45 \times 10^{6} \text{ cm}^{2}/\text{Vs}.
The wafers were processed into Hall bars with AuNiGe
Ohmic contacts that connect to both 2DEGs. Split-gates
were defined by electron-beam lithography with the pat-
tern shown in the Fig. 1 inset. The split-gates have a
length of 0.4 \mu m and a gap width of 1.2 \mu m, and the
midline gate has a width 0.4 \mu m.

Two-terminal differential conductance \(G = dI/dV \) measurements of the wires were carried out in a dilution
refrigerator using standard techniques. To align the spin-
degenerate plateaus at \(2e^2/h \) and \(4e^2/h \) series resistances
of \(R_s = 700 \Omega \) and \(R_s = 750 \Omega \) have been subtracted
from the zero-field conductance traces of sample A and
B; these \(R_s \) values are greater than the sample resistance
when \(V_{sg} = 0 \text{ V} \) (345 \Omega and 380 \Omega for samples A and B).

When an in-plane magnetic field \(B_{\parallel} \) is applied parallel
to the length of the split gate, \(R_s \) can become as high
as 1.5 k\(\Omega \); however, at a given \(B_{\parallel} \) the same resistance
correction can be applied to all the traces measured at
different \(V_{mid} \). The 2D electron densities \(n \), which we use
to characterize the 1D constructions, are measured from
the number of edge states that are transmitted by the
wire in the quantum Hall regime.

A previous investigation of sample B, which is
strongly coupled, showed that matching the widths and
electron densities of the two wires brings them into res-
onance, forming symmetric and antisymmetric 1D sub-
bands that are separated by a gap that is larger than the
2D value (\(\Delta_{SAS} = 1.4 \text{ meV} \)). In the measurements
presented here, similar strongly coupled wires are operated
away from resonance, in the regime where the top wire is
pinched off. Conduction proceeds only through the lower
wire, and the energy gap is unimportant.

Figure 1 shows the conductance characteristics \(G(V_{sg}) \)
of sample A at 50 mK, obtained at different electron
densities as controlled by \(V_{mid} \). From left to right the
\(G(V_{sg}) \) traces are measured as \(V_{mid} \) is varied from \(-1.2 \text{ V} \)
to \(-5.4 \text{ V} \) in steps of 0.3 \text{ V}. In this range of \(V_{mid} \), the
upper 1D wire is completely depopulated and the con-
ductance, quantized in units of \(2e^2/h \), originates from
transport through the lower wire. A clear 0.7 structure is
present in all traces, with a gradual shift of the structure
to lower conductance as the electron density is lowered
with a more negative \(V_{mid} \). In previous measurements
of the 0.7 structure, the electron density was varied using
a back-gate, and the conductance of the 0.7 structure
decreased by 10\% as the density was changed from 1.4
to \(1.1 \times 10^{11} \text{ cm}^{-2} \). The lowering of the conductance
structure from 0.7 \((2e^2/h) \) to 0.53 \((2e^2/h) \) shown in Fig. 1
occurs when the density is reduced from \(1.3 \times 10^{11} \text{ cm}^{-2} \)
to \(3 \times 10^{10} \text{ cm}^{-2} \). The midline gate has a stronger effect
on the electron density in the 1D channel than a back-
gate, with the additional advantage that the 2D regions
that constitute the source and drain are not affected by \(V_{mid} \). More significantly, there is little degradation of
the quantization or flatness of the conductance plateaus
as the electron density \(n \) is decreased to \(3 \times 10^{10} \text{ cm}^{-2} \).
It is thought that the second parallel electron gas, situated
only 200 Å away, screens the electrons passing through
the entrance and exit of the constriction from impurities.

Figure 2 shows the temperature dependence of the
0.7 structure in sample A on a second cooldown. For
\(V_{mid} = 0 \text{ V} \), where the density is \(n = 1.3 \times 10^{11} \text{ cm}^{-2} \)
the 0.7 structure drops down to 0.6\((2e^2/h) \) as the tem-
perature is increased from 0.12 K to 1.9 K. In contrast,
when the density is \(n = 3 \times 10^{10} \text{ cm}^{-2} \) at \(V_{mid} = -2.4 \text{ V} \),
the structure at 0.55 \((2e^2/h) \) rises up to 0.6\((2e^2/h) \) as the
temperature increases. Therefore, the conductance tends
to 0.6\((2e^2/h) \) for temperatures greater than 2 K, how-
ever the electron density. In a strong parallel magnetic
field we have observed\[\text{Fig. 2}\]the evolution of the 0.7 struc-
ture to a spin-split plateau at \(e^2/h \). If this high-field
state is warmed to 2-3 K it also moves to 0.6\((2e^2/h) \).
Similar to the behavior at low densities seen in the right
hand side traces of Fig. 2. In both cases, the higher in-
dex plateaus do not rise with temperature, showing that
there is no change in the series resistance.

On taking 2 \times 1D devices to low electron densities,
some samples show cleaner conductance characteristics
than others. Figure 1(a) shows the \(G(V_{sg}) \) characteris-
tics for sample B at 80 mK, where due to impurities
the conductance plateaus are not as flat as in sample
A. What is most surprising about this sample is that
on taking 2 \times 1D devices to low electron densities,
some samples show cleaner conductance characteristics
than others. Figure 1(a) shows the \(G(V_{sg}) \) characteris-
tics for sample B at 80 mK, where due to impurities
the conductance plateaus are not as flat as in sample
A. What is most surprising about this sample is that
its conductance plateaus are not as flat as in sample
A, but appears suddenly as the electron density
is decreased to 3 \times 10^{10} \text{ cm}^{-2} (\(V_{mid} < -0.94 \text{ V} \)) a plateau at \(e^2/h \) is observed at zero
magnetic field; this has been measured on three different
cooldowns. This zero-field \(e^2/h \) plateau does not origi-
nate from a 0.7 structure with decreasing density, as in
sample A, but appears suddenly as the electron density
is decreased. When the conductance measurements are
repeated at 1.3 K, see Fig. 1(b), the \(2e^2/h \) plateau be-
comes cleaner and the \(e^2/h \) plateau develops into a strong
structure at 0.6\((2e^2/h) \). This high-temperature structure
is present in all traces in Fig. 1(b), even when there is no
corresponding \(e^2/h \) plateau at 80 mK.

The low density \(e^2/h \) plateau in sample B has been
investigated for in-plane magnetic fields \(B_{\parallel} \) up to 16 T.
Figure 3 shows \(G(V_{sg}) \) traces at \(V_{mid} = -1.06 \text{ V} \) as \(B_{\parallel} \)
is increased in steps of 2 T. The zero-field \(e^2/h \) plateau
strengthens and remains at \(e^2/h \) as \(B_{\parallel} \) is increased,
indicating a spin splitting at \(B_{\parallel} = 0 \). Sample A, which
is believed to have less impurities than sample B at the
same carrier density, does not show a zero-field plateau
at \(e^2/h \). This suggests that the spontaneous spin polari-
zation in sample B is induced by weak disorder, similar
to the case studied in Ref. 4.

Our previous work\[\text{Fig. 4}\]showed that the 0.7 structure is
due to a possible spin polarization, which was accompa-
nied by an enhancement of the \(g \)-factor, both suggest-
ing the importance of many-body interactions. Here we
have shown that as the electron concentration is reduced at low temperatures, the 0.7 structure shifts down towards 0.5(2e^2/h), suggesting that the system is moving towards a spin polarized ground state. Whether or not such a spin polarized ground state is possible in 1D is still an open question. Lieb and Mattis have proven that in 1D the unpolarized state is always lower in energy than the polarized state; real devices, however, are not strictly 1D because they have finite length and non-zero width. Reimann et al. have predicted that in finite 1D wires there may be a spin-density wave (SDW), which could be a precursor to complete spin polarization. The SDW may give rise to localized states at the entrance and exit of the 1D wire, causing additional scattering that will reduce the conductance below 2e^2/h. We also report the case of a complete spin splitting at zero magnetic field, which may come about through the presence of disorder, though further clarification of this is required.

As shown by the Copenhagen group, it appears that the 0.7 structure is an excited state, which at the lowest temperatures moves into the completely spin degenerate state at 2e^2/h. We show here that at low temperatures the 0.7 structure moves into the spin polarised e^2/h state at low electron concentrations, with weak disorder, or in an external in-plane magnetic field. In all cases, the spin-split plateau at 0.5(2e^2/h) moves to a slightly higher conductance, typically 0.6(2e^2/h), when the temperature is raised. At present it is not clear why there is a 0.7 structure rather than plateau at e^2/h at low temperatures and high densities, there maybe a partial spin polarisation due to a hybridization of the spin-up and spin-down state at higher temperatures.

In conclusion, we have shown that using just one of the wires in a 2 × 1D device, the electron density in the constriction can be taken to 3 × 10^{10} cm^{-2}, without the conductance characteristics suffering so readily from impurity effects. At low electron densities the 0.7 structure moves towards 0.5(2e^2/h) at low temperatures. We have also presented evidence for a spontaneous spin polarization, possibly brought about by weak disorder, giving rise to a plateau at e^2/h. In all cases studied, for T > 2 K, structure is observed close to 0.6(2e^2/h). The temperature dependence suggests that the 0.7 structure is a many-body state that is excited out of the spin polarized 1D electron gas at low densities, or out of the spin-degenerate electron gas at high densities.

We thank the Engineering and Physical Sciences Research Council (UK) for supporting this work, and JTN acknowledges an Advanced EPSRC Fellowship.

* Present address: Semiconductor Nanofabrication Facility, School of Physics, University of New South Wales, Sydney 2052, Australia.

1. D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J. Phys. C 21, L209 (1988).
2. K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R. Mace, and D. A. Ritchie, Phys. Rev. Lett. 77, 135 (1996).
3. A. Gold and L. Calmels, Phil. Mag. Lett. 74, 33 (1996).
4. C. K. Wang and K.-F. Berggren, Phys. Rev. B 57, 4552 (1998).
5. D. Schmeltzer, E. Kogan, R. Berkovits, and M. Kaveh, Phil. Mag. B 77, 1189 (1998).
6. T. Rejec, A. Ramia, and J. H. Jefferson, preprint, cond-mat/0001175.
7. V. V. Flambaum and M. Y. Kuchiev, Phys. Rev. B 61, 20385 (2000), cond-mat/9910417.
8. B. Spivak and F. Zhou, preprint, cond-mat/9911175.
9. A. Malatesta, and G. Senatore, preprint, cond-mat/9912343.
10. E. H. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962).
11. A. V. Andreev and A. Kamenev, Phys. Rev. Lett. 81, 3199 (1998).
12. A. Yacoby, H. L. Stormer, N. S. Wingreen, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 77, 4612 (1996).
13. A. Y. Alekseev and V. V. Cheianov, Phys. Rev. B 57, 6834 (1998).
14. D. Kaufman, Y. Berk, B. Dwir, A. Ridra, A. Palevski, and E. Kapon, Phys. Rev. B 59, R10433 (1999).
15. K. J. Thomas, J. T. Nicholls, N. J. Appleyard, M. Pepper, M. Y. Simmons, D. R. Mace, and D. A. Ritchie, Phys. Rev. B 58, 4846 (1998).
16. A. Kristensen, M. Zaffalon, J. Hollingbery, C. B. Sorensen, S. M. Reimann, P. E. Lindelof, M. Michel, and A. Forchel, J. Appl. Phys. 83, 607 (1998).
17. B. E. Kane, G. R. Facer, A. S. Dzurak, N. E. Lumpkin, R. G. Clark, L. N. Pfeiffer, and K. W. West, Appl. Phys. Lett. 72, 3506 (1998).
18. D. J. Reilly, G. R. Facer, A. S. Dzurak, B. E. Kane, R. G. Clark, P. J. Stiles, J. L. O’Brien, N. E. Lumpkin, L. N. Pfeiffer, and K. W. West, preprint, cond-mat/0001174.
19. G. Grabecki, J. Wröbel, T. Dietl, K. Byczuk, E. Papis, E. Kamińska, A. Piotrowska, G. Springholz, M. Pinczolits, and G. Bauer, Phys. Rev. B 60, R5133 (1999).
20. K. J. Thomas, J. T. Nicholls, M. Y. Simmons, W. R. Tribe, A. G. Davies, and M. Pepper, Phys. Rev. B 59, 12252 (1999).
21. K. J. Thomas, Ph.D. thesis, University of Cambridge, 1997.
22. S. M. Reimann, M. Koskinen, and M. Manninen, Phys. Rev. B 59, 1613 (1999).
FIG. 2. Temperature dependence of $G(V_{sg})$ characteristics of sample A on a different cooldown. The different sets of traces correspond to $V_{mid} = 0, -1.2, -1.8, \text{ and } -2.4 \text{ V (left to right). At } T = 2 \text{ K structure occurs at } 0.6(e^2/h) \text{ for all densities.}$

FIG. 3. Zero-field conductance characteristics $G(V_{sg})$ of sample B at (a) $T = 80 \text{ mK, and (b) } T = 1.3 \text{ K. At both temperatures } V_{mid} \text{ is decreased (left to right) from } -0.86 \text{ V to } -1.0 \text{ V, in steps of } 0.01 \text{ V. The plateau at } e^2/h \text{ measured at } 80 \text{ mK moves to } 0.6(e^2/h) \text{ at higher temperatures.}$

FIG. 4. Conductance characteristics $G(V_{sg})$ of sample B at 80 mK and $V_{mid} = -1.06 \text{ V. From left to right the in-plane magnetic field } B_{||} \text{ is increased from } 0 \text{ to } 16 \text{ T in steps of } 2 \text{ T; the plateau at } e^2/h \text{ strengthens with } B_{||}. \text{ For clarity, successive traces have been horizontally offset by } 114 \text{ mV. The zero-field pinch-off characteristics are slightly different from those in Fig. 3(a), as the two measurements were taken four days apart.
Fig. 1, Thomas et al. (2000)
Fig. 2, Thomas et al. (2000)
Fig. 3, Thomas et al. (2000)

(a) $T = 80 \text{ mK}$

(b) $T = 1.3 \text{ K}$
Fig. 4, Thomas et al. (2000)