Terahertz waveform synthesis from integrated lithium niobate circuits

Alexa Herter,1 Amirhassan Shams-Ansari,2 Francesca Fabiana Settembrini,1 Hana K. Warner,2 Jérôme Faist,1 Marko Lončar,2 and Ileana-Cristina Benea-Chelmus3

1ETH Zurich, Institute of Quantum Electronics, Zurich, Switzerland
2Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
3EPF Lausanne, Hybrid Photonics Laboratory, Switzerland

(Dated: April 26, 2022)

Bridging the “terahertz (THz) gap” relies upon synthesizing arbitrary waveforms in the THz domain enabling applications that require both narrow band sources for sensing and few-cycle drives for classical and quantum objects. However, realization of custom-tailored waveforms needed for these applications is currently hindered due to limited flexibility for optical rectification of femtosecond pulses in bulk crystals. Here, we experimentally demonstrate that thin-film lithium niobate (TFLN) circuits provide a versatile solution for such waveform synthesis through combining the merits of complex integrated architectures, low-loss distribution of pump pulses on-chip, and an efficient optical rectification. Our distributed pulse phase-matching scheme grants shaping the temporal, spectral, phase, amplitude, and farfield characteristics of the emitted THz field through designer on-chip components. This strictly circumvents prior limitations caused by the phase-delay mismatch in conventional systems and relaxes the requirement for cumbersome spectral pre-engineering of the pumping light. We provide a toolbox of basic blocks that produce broadband emission up to 680 GHz with adaptable phase and coherence properties by using near-infrared pump pulse energies below 100 pJ.

I. INTRODUCTION

The terahertz (THz) region (typically defined between 0.1 THz and 10 THz) has proven to be critical for numerous applications in both fundamental science and industry, including communications [1–3], sensing [4], non-invasive imaging [5], nanoscopy [4, 6, 7] and ultrafast classical and quantum systems. In particular, detecting THz radiation is central to spectroscopy since the THz range hosts low-energy material resonances. For example, THz radiation plays an ever increasing role in security and diagnostic medicine, due to its non-invasive, non-ionizing [8] ability to distinguish between different types of materials with higher resolution than microwaves: metals, water, and various organic compounds. On the other hand, THz waves can be utilized to control elementary excitations such as electrons [9], spins [10], molecular motion [11] and photons [12] on shorter timescales than microwaves in miniaturized transducers that link THz systems with other systems. This speed advantage is crucial for the exploration of novel materials and their ultimate limits such as low-dimensional, magnetic [13], Pockels [14] or superconducting [15] materials e.g. before decoherence times. Finally, in communications, THz wireless links may leverage the possibility to employ narrow-angle, directional beams [16] as an information channel instead of wide-angle broadcasting that is nowadays the standard in the microwaves.

The realization of these applications is contingent on the ability to control the temporal waveform of THz fields on sub-THz-cycle scales. Thus, providing means for their synthesis at-will is of high importance. As a result, the next generation of THz systems requires custom-tailoring various features of the electromagnetic waves including their amplitude, frequency and phase down to a single cycle of oscillation. Currently, technologies that allow this level of

* Contributed equally to this work
Fig. 1. Chip-based terahertz (THz) waveform synthesis from thin-film lithium niobate (TFLN) circuits. A single THz emitter consists of an etched TFLN waveguide and a THz antenna (upper center chip design). Femtosecond pulses (shown in red) are coupled into the low-loss TFLN waveguides of width $w_{wg} = 1.5 \mu m$ and pass through the two electrodes of a THz bow-tie antenna (shown in yellow) separated by a width w_g (inset V). THz radiation (shown in blue/purple) is generated through optical rectification in the antenna gap region delimited by parallel gold bars of length l_{gap}. The femtosecond pump pulse (inset I) generates a second-order polarization $P^{(2)}(t)$ that follows its envelope inside the $\chi^{(2)}$ waveguide (inset II). The nonlinear polarization inside the gap drives the emission of a broadband THz field $E_{THz}(t)$ into free space at the resonance frequency of the antenna (inset III). Several antennas may be combined to a single device. The layout of the waveguides on chip and the relative position of antennas set the timing and the interference pattern in the farfield of THz emission. Parallel (lower left chip design) and serial (lower right chip design) blocks of antennas enable tailoring the temporal and spectral properties of the THz radiation. In the parallel configuration, the emitted waves from each antenna can interfere constructively and/or destructively following the phase-relation set by the relative distance between the two antennas in the farfield (inset IV). In the series configuration, the same pulse arrives at each antennas at different times. Each of the antennas generate a THz field of arbitrary shape and amplitude (denoted by colorful few-cycle THz pulses), resulting in new features in the THz emission field (inset VI). A cross-section of the generation region is provided (inset V).
processes driven by compact and high-power ultrafast lasers in the near-infrared region. Optical rectification is a
generation mechanism for THz radiation that exhibits many useful features and in particular has been extensively used
for the generation of high electric field strengths. In this \(\chi^{(2)}\) process, an intense laser beam generates a nonlinear
polarization \(P^{(2)}(t)\) following its intensity envelope \(I_0(t)\). If the incident optical beam is a femtosecond pulse, the
generated field can be a broadband THz pulse that contains few cycles [23, 24]. Lithium niobate (LN) [24–27] has
always been an excellent choice of material for THz generation, owing to its high nonlinear coefficient of
\(d_{33} = 27 \text{ pm/V}\) [28], and low optical losses in the near-infrared. LN’s high optical power handling is crucial for optical rectification since
the power of the generated THz signal depends quadratically on the optical pump power.

To date, the THz generation schemes through optical rectification have been largely limited to bulk systems which
come with several shortcomings. First, there is a very limited leverage over tailoring the generated THz emission unless
through complex pump pulse shaping [29, 30], external switches [31] or multi-pulse setups [32]. Second, the phase
matching properties are fixed by the refractive index mismatch at THz and pumping frequencies in bulk crystals and
can not be controlled. This fact results into emission of Cherenkov radiation at a fixed angle in bulk LN. Third, bulk
LN crystals need to be pumped close to their surface to avoid the high absorption of THz radiation in this material,
but ensuring minimal distance to the surface is challenging in bulk crystals that provide no fine-tuned control over the
exact propagation of the pumping field. Finally, achieving sub-THz-cycle precision of various degrees of freedom in
the waveform design is extremely challenging as their high number would inevitably increase the complexity of bulk
systems. Early work recognized that miniaturization may provide solutions to these issues, such as e.g. ion slicing bulk
crystals into thinner slabs [33]. With advances in nano-structuring TFLN [23], few theoretical proposals to generate THz
radiation appeared recently [24], along with experimental proposals of using topological confinement in laser-written LN
slabs [35].

In this work, we establish a novel platform for the generation of THz radiation from miniaturized integrated photonic
circuits in LN that circumvents shortcomings of bulk systems and additionally provides uniquely versatile control over the
temporal, spectral, phase, amplitude, and farfield characteristics of the generated waveform. We exploit several unique
features of TFLN platform which in particular allows THz generation close to the surface, minimizing the absorption.
Furthermore, we borrow the basic components of this platform such as grating couplers, y-splitters, and combiners for
the proposed arbitrary waveform synthesis. The wide transmission window of LN and its high power resilience allows
to guide powerful pump pulses through complex device architectures without significant losses or denaturation of the
nonlinear material. Their monolithic integration with THz antenna technology provides the missing ability to not only
engineer the spectral and temporal properties of the emitted THz radiation, but also its emission pattern into the farfield.

A. Design concept

In our THz emission scheme, single mode TFLN waveguides are used to guide sub-picosecond laser pulses of intensity
\(I_0(t)\) at a central wavelength of 1560 nm to the gap of THz gold bow-tie antennas as depicted in Fig. I and in more
detail in insets I and II. The propagating ultrashort pump pulses induce a nonlinear polarization \(P^{(2)}(t)\) (inset II) that
generates a local electric field amplitude \(dE_{\text{local}}(\Omega, y)\) at all positions along the antenna gap:

\[
dE_{\text{local}}(\Omega, y) = C_{\text{gap}} \cdot I_0(\Omega) \cdot \Omega \cdot \exp \left(-i \frac{n_g \Omega}{c} y \right) dy,
\]

which sums up to an overall field \(E_{\text{OR}}(\Omega) = \int_0^{\text{gap}} dE_{\text{local}}(\Omega, y)\) acting as a source of THz radiation (Fig. I inset III). Here \(C_{\text{gap}}\) is a constant that depends on the material properties, \(\Omega = 2\pi f_{\text{THz}}\) the generated angular THz frequency,
\(I_0(\Omega)\) the Fourier transformation of the optical intensity envelope \(I_0(t)\) and \(dy\) is the length element along the pump
propagation direction (derivation in section B2 of the supplementary information). At low frequencies the THz field profile is independent of the pulse length, therefore its amplitude increases linearly with frequency. In the antenna’s gap, the portion of the THz field matching the resonance, described by a responsivity function $R(\Omega)$, is outcoupled from the waveguide into free-space with a dipolar emission pattern (Fig. I inset III). The total outcoupled field is given by:

$$E_{THz}(\Omega) = E_{OR}(\Omega) \cdot R(\Omega). \quad (2)$$

The resulting temporal waveform depends on the center frequency and linewidth of the antenna as well as the spectral and temporal characteristics of the pumping pulse. In TFLN platform, we can safely ignore THz absorption in LN due to small propagation length of the emitted wave inside (see inset V and supporting transmission characterisation of the bulk substrate in section A3 of the supplementary information). Furthermore, an antenna gap of width $w_g = 3\, \mu m$ supports efficient generation along the gap while maintaining low absorption losses of the pump pulse caused by antenna electrodes (see supplementary information section A1 and A2). The phase delay associated with each position along the antenna gap where the terahertz is generated is linked to the group velocity of the optical pulse $v_g = \frac{c}{n_g}$ (simulation providing n_g in supplementary information section A2). In conclusion, the effective generation length can be written as:

$$l_{eff}(\Omega) = \left| \int_0^{l_{gap}} \exp \left(-\frac{n_g \Omega}{c} y \right) \, dy \right| = l_{gap} \cdot \left| \sin\left(\frac{n_g \Omega}{2c} l_{gap} \right) \right|. \quad (3)$$

l_{gap} corresponds in the present study to a fraction of the THz field period (hence $l_{gap} < \frac{2\lambda_{THz}}{n_g f_{THz}}$) for the antenna designs investigated (detailed derivation in section B2 of supplementary information). We define the coherence length as $l_{coh} = \frac{c}{4n_g f_{THz}}$.

B. Distributed pulse phase matching

The low near-infrared losses of the TFLN platform [36] allows the pumping of several antennas using a single pulse. This provides an additional knob to tailor the THz emission, besides the individual antenna design parameters. We introduce a parallel, and a serial architecture where one pulse is used to pump multiple devices (Fig. [I] bottom devices). In this scheme, the resulting THz waveform depends strictly on the arrangement of antennas on-chip, their geometric distances and the group delay of the pumping pulses. This dependency can be summarized as a phase matching mechanism - to which we refer as distributed pulse phase matching - that is conceptually related to phased arrays with few cycle pulses as the interfering fields (see section B3 in the supplementary information). Distributed pulse phase matching is critical for the synthesis of arbitrary electric fields (the theoretical formalism is given in section B4 of the supplementary information). In the parallel block this enables constructive or destructive interference of THz pulses (inset IV), if antennas with identical parameters are employed. In the serial case, once the group delay τ_g of the pumping pulse between two serial antennas matches their resonant period T_{THz} (and hence $\tau_g = \frac{1}{f_{THz}} = T_{THz}$), the generated pulses interfere constructively out-of-plane and increase the temporal coherence of the generated radiation (inset VI). Furthermore, the in-plane arrangement of antennas impacts the three-dimensional pattern of the emission, e.g. by increasing the aperture of generated THz light.
II. EXPERIMENTAL RESULTS

Here, we experimentally tailor the THz radiation by designed chip-scale structures and generate THz waveforms with different properties enabled by distributed pulse phase matching. We employ a dual wavelength THz time-domain setup to measure the electric field emitted by our devices on sub-THz-cycle time scales (description of setup in the methods section IVB and section D1 of the supplementary material).

First, we experimentally tailor the temporal, spectral and amplitude of THz waveforms only by sweeping the antenna design parameters (Fig. 2) see Tab. I of supplementary information for detailed parameters). In particular, we study the impact of the antenna length L_{ant}, and gap length l_{gap}. l_{gap} delimits the generation length by the geometrical...
dimensions of the two parallel gold bars. L_{ant} determines the antenna resonance frequency and the temporal shape of the emitted THz fields. The measured time-trace of the THz electric field displays several rapid cycles for the shorter antenna ($L_{\text{ant}} = 57 \mu m$) compared to the larger antenna ($L_{\text{ant}} = 200 \mu m$) that rather emits a strong pulse with a slower cycle (Fig. 2a and b). The latter is followed by low-frequency oscillations that are a characteristic of antenna’s lower resonant frequency. The peak-to-peak electric field measures in both cases roughly 0.25 V/m. In the frequency domain, the initial portion of the THz pulse in Fig. 2b corresponds to a broad resonant background spanning up to 350 GHz that is typical for bow-tie antennas, whereas the lasting oscillations afterwards can be associated with the resonance frequency of the antenna at 200 GHz shown in Fig. 2c (light blue line).

The measured spectra of antennas with various L_{ant} (40 – 200 \mu m) showcase a tailorable THz emission between 180 GHz to 680 GHz. The peak of the emission shifts towards higher frequencies for the shorter L_{ant} (Fig. 2c). We choose l_{gap} to correspond to only a fraction of the THz resonant frequency ($l_{\text{gap}} = \frac{L_{\text{ant}}}{2}$) for all antennas. The frequency generated by optical rectification is limited by the pulse duration of the pump signal which is dispersed by the input fiber to the TFLN chip (setup described the methods section IVB and in detail in the supplementary information section D1). In combination with the lower emission efficiency of smaller bow-tie antennas the signal strength decreases for higher frequencies. Thereby our experimental results are in full agreement with finite elements method simulations performed using CST Microwave studio (details in section C1 of the supplementary information).

The generation length l_{gap} influences the amplitude of the THz field through the effective generation length and must generally satisfy $l_{\text{gap}} < l_{\text{coh}}$. We demonstrate this dependence experimentally and fix the arm length at $L_{\text{ant}} = 90 \mu m$ while sweeping l_{gap} between 15 – 60 \mu m, in increments of 15 \mu m (Fig. 2d). The measured peak of the THz spectrum shifts towards lower frequencies for larger l_{gap} due to different resonance frequencies (details in section C2 of the supplementary information). Optical rectification efficiency increases with the generation length, as expected, since all generation lengths l_{gap} are shorter than corresponding coherence lengths, therefore, the observed increase in the emission amplitude is not limited by phase-matching. The deviation from a quadratic increase of the intensity is well reproduced by taking into account that the resonance frequency decreases for shorter gap lengths (Fig. 2e, details about the simulations are provided in section C2 of the supplementary information).

In a second experiment, we demonstrate the potential of distributed pulse phase matching to achieve full control over the temporal coherence of the emitted THz waveform at the level of single cycles of oscillation using a serial block. We largely benefit from our ultralow-loss TFLN platform. We fabricate four devices consisting of arrays of one to four antennas ($\Omega_{\text{res}} \sim 180 \text{GHz}$) and record their emission in the time domain (Fig. 3b-e). We keep $l_{\text{gap}} = 120 \mu m$ below the coherence length for a frequency of 180 GHz ($l_{\text{coh}} = 178 \mu m$). The pump pulse propagates through the antennas with the group velocity $v_g = \frac{c}{n_g} \quad (n_g = 2.33)$ and triggers them consecutively. The spacing between antennas (δL) sets the time delay between the generated THz signals and thereby their resulting superposition in the farfield. Here, a $\delta L = 710 \mu m$ between two successive antennas corresponds to a group delay that matches one single THz cycle at its peak resonance, resulting into a phase matched emission at normal exit angle from the chip. In this way, we generate few-cycle waveforms with an arbitrary number of oscillation cycles and modified temporal coherence, as shown in Fig. 3b-e. The device with four serial antenna exhibits a $\sim 40\%$ narrower linewidth of the spectral intensity around the fundamental resonance frequency (Fig. 3f). The second peak in the spectrum ($n = 2$, 360GHz) corresponds to the second harmonic, since the serial block is phase matched for any n-th harmonic of the fundamental THz frequency (due to a phase delay of $2\pi n$), and thereby also for the second harmonic.

Finally, we demonstrate the ability to engineer the temporal phase characteristics (a phase-shift of $\pi/2$ and a phase flip) of a waveform on sub-THz-cycle scales by a parallel block in Fig. 4. In the frequency domain, this opens up the possibility to synthesise narrow band radiation characterized with quality factors that can not be achieved by the single bow-tie antennas. Two pumping pulses are split to individually trigger two antennas. The difference in their arrival at
Fig. 3. **The serial block: Single-THz-cycle temporal coherence synthesis.** a: Schematic of the proposed serial configuration. The input pulse pumps all antennas subsequently. The synthesised THz waveform results from the spatio-temporal superposition of all emitted single-cycle pulses enabled by low-propagation loss of the TFLN platform. This allows engineering the temporal coherence at the level of one single THz cycle. b–e: time-domain electric field emitted by each serial block of antennas. The distance between the antennas measures $\delta L = 710 \mu m$ in all cases leading to a phase-shift of 2π and constructive interference of the THz pulses in the farfield. f: Spectral intensity of 4 subsequent antennas compared to a single one. Resonance narrowing of the emitted THz frequency at 183 GHz from a full width half maximum of 59GHz to 36GHz was observed. The device with 4-antennas exhibits THz emission suppression between the fundamental at 183 GHz and the first harmonic at 363 GHz due to additional periodic phase coherence condition imposed by the linear array. Both spectra are normalized to their respective peak intensity. The insets show optical microscope pictures of the serial block devices.

The antennas determines the time delay between the two emitted THz signals. We analyse two scenarios that correspond to in-phase and out-of-phase emission of THz pulses (Fig. 4a). We trigger the two antennas simultaneously (zero relative group delay) and then with a π phase difference. We demonstrate that out-of-phase time-traces exhibit a phase shift of $\pi/2$ after half a THz cycle and a phase flip of π after one full cycle compared to the in-phase scenario (Fig. 4b and c). For the in-phase configuration, the Fourier transform of the time-domain signal reveals a bright mode around the resonance frequency (Fig. 4d). On the other hand, the phase change for the out-of-phase geometry manifests itself as
a suppression in the emission leading to creation of a dark mode in the farfield at 320 GHz (Fig. 4 e). This allows us to achieve narrow band radiation around 250 GHz and 390 GHz, with quality factors of $Q = 4.5$ and $Q = 9.3$, respectively. Compared to the bare emission of bow-tie antennas which has a $Q = 2.8$, this demonstrates our ability to also synthesise narrow band radiation with this approach.

III. DISCUSSION AND CONCLUSION

In summary, we demonstrated that designer low-loss integrated circuits on TFLN platform provide unique opportunities for the synthesis of at-will THz waveforms using optical rectification. The combination of existing integrated components on this platform together with our proposed antenna schemes enable unprecedented flexibility to take con-

Fig. 4. The parallel block: sub-THz-cycle Temporal phase synthesis. a: Schematic of the proposed parallel configuration. The on-chip pumping pulses are split into several parallel channels using on-chip y-splitters. Antenna’s relative displacement δL sets the phase relationship between the emitted THz pulses out-of-plane (in-phase or out-of-phase). The interference of these pulses determines the temporal shape of the farfield. b and c: Temporal electric field evolution emitted by two in-phase antennas ($\delta L = 0 \mu m$) and by two out-of-phase antennas ($\delta L = 130 \mu m$, corresponding to half a THz cycle $\delta L = \frac{c_0}{n_0} \frac{\tau_{THz}}{2}$ or a phase delay of π). The out-of-phase configuration displays different temporal phase properties than the in-phase configuration: at 5.5 ps, the phase of the two waveforms is identical, at 6.7 ps the phase difference is $\pi/2$ and at 8.1 ps the phase difference is π. As highlighted by the vertical dashed lines, this phase engineering occurs on sub-THz cycle scales of the time-trace. d and e: Spectral intensities corresponding to the time-traces shown in plot a and b are retrieved by Fourier transform. For the in-phase emission, one broad peak with a quality factor of $Q = \frac{\Omega_{peak}}{\Delta \Omega} = 2.8$ occurs. $\Delta \Omega$ is defined as the full width at half maximum spectral intensity around the particular peak angular frequency ω_{peak}. For the out-of-phase emission, the phase-delay of π at the resonance frequency leads to a suppression of the amplitude and two narrow peaks of higher quality factors $Q = 4.5$ and $Q = 9.3$. The insets show optical microscope images of the in-phase and out-of-phase devices.
trol over almost all degrees of freedom of generated THz pulses. We engineer their temporal, spectral, phase, coherence and farfield properties by various basic blocks. This could open up opportunities in realization of high-performance and versatile THz synthesizers. Similar systems may benefit in the future from the high intrinsic electro-optic bandwidth, and fast switching of TFLN devices to offer dynamic reconfigurability of the THz emission at speeds up to gigahertz. While the current intensity of THz pulses is limited by the pump pulse energy, this platform can provide a new momentum to high-field THz generation owing to the possibility to use high-power pump pulses and waveguide dispersion engineering. The latter may be explored to achieve pulse compression and Fourier-limited pump pulses locally in the generation region, thereby increasing the generation efficiency and the spectral bandwidth of the signal generated by optical rectification up to several THz \[37\]. The concept of distributed pulse phase matching may be further explored in combination with periodic poling \[38–41\] and group delay engineering to synthesise arbitrary patterns of THz radiation by a decomposition into temporal modes \[42\]. Finally, we note that LN circuits are ideal candidates also for THz metrology \[12, 43\] where femtosecond pulses in the near-infrared could enable a sub-cycle resolution of the electric field of THz signals and have already proven extremely resourceful for quantum applications by characterization of quantum states of light through their sub-cycle electric field signatures \[44, 45\]. As a result, fully integrated detectors may be added to our platform. With the compatibility of chip-scale high-power lasers with TFLN platform \[46\], hand-held, compact time-domain spectroscopy systems may be envisioned for the future.

IV. METHODS

A. Fabrication

Devices are fabricated on 600-nm x-cut Lithium Niobate (LN) bonded on 2 µm of thermally grown oxide on a double-side polished silicon carrier. The waveguides are defined using negative-tone Hydrogen silsesquioxane (HSQ) (FOx-16) by means of Electron-beam lithography under multipass exposure (Elionix F-125). The pattern is then transferred to LN through a physical etching process using Reactive Ion Etching with Ar\(^+\) ions. The etch depth target is 300-nm to form a ridge waveguide. We further confirm the thickness of the remaining film by means of an optical profiler (Filmetrics). We used a wet chemical process to clean the resist and redeposited material after the physical etching. The chip is then cladded with 800-nm of Plasma Enhanced Chemical Vapor Deposition (PECVD) SiO\(_2\). We then defined the electrodes using a positive-tone polymethyl methacrylate (PMMA) A9 series (ELS-HS50). To avoid any misalignment, the same resist was used to etch the PECVD SiO\(_2\), and the metallic antennas. A bilayer of Ti/Au (15/285-nm) were deposited on our devices using Electron-beam evaporation (Denton).

B. Optical setup

A novel dual wavelength terahertz time-domain setup was developed to characterize the emission properties of our chip-scale emitters. A detailed sketch of the characterization setup is provided in the supplementary material section D1. In short, femtosecond pulses from an erbium doped fiber laser in the near-infrared are coupled from free-space to the chip by grating couplers. The femtosecond pulses act as a pump signal for the THz emitters, and the emitted terahertz signal is collected from the back side (silicon side) of the TFLN chip. Two parabolic mirrors collimate and focus the emitted THz radiation onto a zinc telluride where electro-optic sampling enables the measurement of the entire temporal evolution of the emitted THz field. The probe signal at 780 nm originates from the same laser oscillator as the pump signal at 1560 nm, allowing for coherent detection of the emitted radiation. The 780 nm probing pulse overlaps spatially with the focus of the THz beam inside an nonlinear zinc telluride crystal. The interaction between THz and
probe field results in a polarization change of the probe beam, which is measured in a balanced detection scheme.

Data and Code Availability All data and codes associated with this manuscript will be uploaded on the Zenodo database prior to publication.

Acknowledgements We acknowledge support from Christian Reimer from Hyperlight during fabrication and mask design and Mathieu Bertrand for fruitful discussions. A.H. acknowledges financial support from Swiss National Science Foundation (SNF) (grand 200020_192330/1), F.F.S. from the National Centre of Competence in Research Quantum Science and Technology (QSIT) (grant 51NF40-185902), A.S.A. and M.L. acknowledge funding from Defense Advanced Research Projects Agency (DARPALUMOS) (HR0011-20-C-0137). H.K.W. acknowledges financial support from the NSF GRFP under award no. DGE1745303. I.-C. Benea-Chelmus acknowledges financial support through the independent research grant from the Hans Eggenberger foundation. The fabrication of these chips was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the National Science Foundation under NSF Award no. 1541959.

Author contributions I.C.B.C. designed the project and conceived the concept of THz waveform synthesis by distributed pulse phase matching. All authors developed the concept further. A.H. built the dual-color THz time-domain fiber-coupled setup with help from F.F.S.. A.H., A.S.A. and H.K.W. carried out the measurements and acquired the data. A.H. and I.C.B.C. performed the CST simulations. A.S.A. designed and fabricated the devices. A.S.A and H.K.W. performed waveguide loss characterisation by transmission spectroscopy. A.H., I.C.B.C., and A.S.A wrote the manuscript with help from other co-authors. The work was done under the supervision of I.C.B.C, M.L and J.F.

Competing interests The authors declare no competing interests.

Disclaimer The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. The authors declare no competing interests.

Corresponding authors Correspondence to Alexa Herter (aherter@ethz.ch), Amirhassan Shams-Ansari (ashamsansari@seas.harvard.edu) or Ileana-Cristina Benea-Chelmus (cristina.benea@epfl.ch).

[1] M. H. Rahaman, A. Bandyopadhyay, S. Pal, and K. P. Ray. “Reviewing the Scope of THz Communication and a Technology Roadmap for Implementation.” IETE Technical Review, 38(5):465–478 (2020).

[2] H. Elayan, O. Amin, B. Shihada, R. M. Shubair, and M.-S. Alouini. “Terahertz Band: The Last Piece of RF Spectrum Puzzle for Communication Systems.” IEEE Open Journal of the Communications Society, 1:1–32 (2020).

[3] J. Yu, J. Chen, P. Zhou, Z. Li, H. Li, P. Yan, D. Hou, and W. Hong. “A 300-GHz Transmitter Front End With -4.1-dBm Peak Output Power for Sub-THz Communication Using 130-nm SiGe BiCMOS Technology.” IEEE Transactions on Microwave Theory and Techniques, 69(11):4925–4936 (2021).

[4] H.-W. Hübers, H. Richter, and M. Wienold. “High-resolution terahertz spectroscopy with quantum-cascade lasers.” Journal of Applied Physics, 125(15) (2019).

[5] D. M. Mittleman. “Twenty years of terahertz imaging Invited.” Optics express, 26(8):9417–9431 (2018).

[6] S. E. Ammerman, V. Jelic, Y. Wei, V. N. Breslin, M. Hassan, N. Everett, S. Lee, Q. Sun, C. A. Pignedoli, P. Ruffieux, R. Fasel, and T. L. Cocker. “Lightwave-driven scanning tunnelling spectroscopy of atomically precise graphene nanoribbons.” Nature Communications, 12 (2021).

[7] T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. J. Burgess, G. D. L. Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann. “An ultrafast terahertz scanning tunnelling microscope.” Nature Photonics, 7(8):620–625 (2013).
[8] A. Bandyopadhyay and A. Sengupta. “A Review of the Concept, Applications and Implementation Issues of Terahertz Spectral Imaging Technique.” IETE Technical Review, pages 1–19 (2021).

[9] T. Rybka, M. Ludwig, M. F. Schmalz, V. Knittel, D. Brida, and A. Leitenstorfer. “Sub-cycle optical phase control of nanotunnelling in the single-electron regime.” Nature Photonics, 10(10):667–670 (2016).

[10] S. Schlauderer, C. Lange, S. Baierl, T. Ebnet, C. P. Schmid, D. C. Valovcin, A. K. Zvezdin, A. V. Kinel, R. V. Mikhailovskiy, and R. Huber. “Temporal and spectral fingerprints of ultrafast all-coherent spin switching.” Nature, 569:383–387 (2019).

[11] D. Repp. “Antiferromagnetic opto-spintronics.” Nature Physics, 15(3):229–241 (2018).

[12] J. Lu and H. Liu. “A critical review on the carrier dynamics in 2D layered materials investigated using THz spectroscopy.” Optics Communications, 406:24–35 (2018).

[13] J. Tetsumoto, T. Nagatsu, M. E. Fermann, G. Navickaite, M. Geiselmann, and A. Rolland. “High-field single- to few-cycle THz generation with lithium niobate.” Laser & Photonics Reviews, 15(2):211–217 (2021).

[14] B. Zhang, Z. Ma, X. Wu, C. Ouyang, D. Kong, T. Hong, X. Wang, P. Yang, L. Chen, Y. Li, and J. Zhang. “1.4–mJ High Energy Terahertz Radiation from Lithium Niobates.” Laser & Photonics Reviews, 15(2021).

[15] P. Günter, J.-P. Huignard, and A. M. Glass. Photorefractive materials and their applications. Springer (1988).

[16] J. Ahn, A. Efimov, R. Averitt, and A. Taylor. “Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses.” Optics Express, 11(20):2486–2496 (2003).
[30] Y. Liu, S.-G. Park, and A. M. Weiner. “Terahertz waveform synthesis via optical pulse shaping.” IEEE Journal of Selected Topics in Quantum Electronics, 2(3):709–719 (1996).

[31] B. Mayer, C. Schmidt, J. Bühler, J. Fischer, D. V. Seletskiy, D. Brida, A. Pashkin, and A. Leitenstorfer. “Tailoring of High-Field Multi-THz Waveforms with Sub-Cycle Precision.” In “19th International Conference on Ultrafast Phenomena,” volume 162, pages 805–808. OSA, Washington, D.C.

[32] L. Shu, Y. Li, L. Chen, J. Shi, L. Chai, C. Wang, A. B. Fedotov, and A. M. Zheltikov. “Quarter-cycle engineering of terahertz field waveforms.” Laser Physics Letters, 11(8) (2014).

[33] D. W. Ward, E. R. Statz, K. A. Nelson, R. M. Roth, and R. M. Osgood. “Terahertz wave generation and propagation in thin-film lithium niobate produced by crystal ion slicing.” Applied Physics Letters, 86(2) (2005).

[34] J. Yang and C. Wang. “Efficient terahertz generation scheme in a thin-film lithium niobate-silicon hybrid platform.” Optics Express, 29(11):16477 (2021).

[35] J. Wang, S. Xia, R. Wang, R. Ma, Y. Lu, X. Zhang, D. Song, Q. Wu, R. Morandotti, J. Xu, and Z. Chen. “Topologically tuned terahertz confinement in a nonlinear photonic chip.”

[36] C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Lončar. “Second harmonic generation in nano-structured thin-film lithium niobate waveguides.” Optics express, 25(6):6963–6973 (2017).

[37] L. Guiramand, J. E. Nkeck, X. Ropagnol, T. Ozaki, and F. Blanchard. “Near-optimal intense and powerful terahertz source by optical rectification in lithium niobate crystal.”

[38] C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar. “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides.” Optica, 5(11):1438–1441 (2018).

[39] F. Lemery, T. Vinatier, F. Mayet, R. Aßmann, E. Baynard, J. Demailly, U. Dorda, B. Lucas, A.-K. Pandey, and M. Pittman. “Highly scalable multicycle THz production with a homemade periodically poled macrolens.” Communications Physics, 3(1):3797 (2020).

[40] C. Weiss, G. Torosyan, Y. Avetisyan, and R. Beigang. “Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate.” Optics letters, 26(8):563–565 (2001).

[41] C. Zhang, Y. Avetisyan, A. Glosser, I. Kawayama, H. Murakami, and M. Tonouchi. “Bandwidth tunable THz wave generation in large-area periodically poled lithium niobate waveguides.” Optics express, 20(8):8784–8790 (2012).

[42] S. W. Jolly, N. H. Matlis, F. Ahr, V. Leroux, T. Eichner, A.-L. Calendron, H. Ishizuki, T. Taira, F. X. Kärtner, and A. R. Maier. “Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation.” Nature communications, 10(1):2591 (2019).

[43] Y. Salamin, I.-C. Benea-Chelmus, Y. Fedoryshyn, W. Heni, D. L. Elder, L. R. Dalton, J. Faist, and J. Leuthold. “Compact and ultra-efficient broadband plasmonic terahertz field detector.” Nature communications, 10(1):5550 (2019).

[44] C. Riek, D. V. Seletskiy, A. S. Moskalenko, J. F. Schmidt, P. Krauspe, S. Eckart, S. Eggert, G. Burkard, and A. Leitenstorfer. “Direct sampling of electric-field vacuum fluctuations.” Science (New York, N.Y.), 350(6259):420–423 (2015).

[45] I.-C. Benea-Chelmus, F. F. Settembrini, G. Scalari, and J. Faist. “Electric field correlation measurements on the electromagnetic vacuum state.” Nature, 568:202–206 (2019).

[46] A. Shams-Ansari, D. Renaud, R. Cheng, L. Shao, L. He, D. Zhu, M. Yu, H. R. Grant, L. Johansson, M. Zhang, et al. “Electrically-pumped high-power laser transmitter integrated on thin-film lithium niobate.” arXiv preprint arXiv:2111.08473 (2021).