Review

Plant Preparations and Compounds with Activities against Biofilms Formed by Candida spp.

Tomasz M. Karpinski 1,*, Marcin Ozarowski 2,*, Agnieszka Seremak-Mrozikiewicz 3,4,5, Hubert Wolski 3,6 and Artur Adamczak 7,*

1 Department of Medical Microbiology, Poznan University of Medical Sciences, Wieniawskiego 3, 61-712 Poznan, Poland
2 Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, National Research Institute, Wojska Polskiego 71b, 60-630 Poznan, Poland; marcin.ozarowski@iwnirz.pl
3 Division of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland; asm@data.pl (A.S.-M.); hubertwolski@wp.pl (H.W.)
4 Laboratory of Molecular Biology in Division of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland
5 Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, National Research Institute, Kolejowa 2, 62-064 Plewiska, Poland
6 Division of Gynecology and Obstetrics, Podhale Multidisciplinary Hospital, Szpitalna 14, 34-400 Nowy Targ, Poland
7 Department of Botany, Breeding and Agricultural Technology of Medicinal Plants, Institute of Natural Fibres and Medicinal Plants, National Research Institute, Kolejowa 2, 62-064 Plewiska, Poland; artur.adamczak@iwnirz.pl

* Correspondence: tkarpin@ump.edu.pl; Tel.: +48-61-854-61-38

Abstract: Fungi from the genus Candida are very important human and animal pathogens. Many strains can produce biofilms, which inhibit the activity of antifungal drugs and increase the tolerance or resistance to them as well. Clinically, this process leads to persistent infections and increased mortality. Today, many Candida species are resistant to drugs, including C. auris, which is a multiresistant pathogen. Natural compounds may potentially be used to combat multiresistant and biofilm-forming strains. The aim of this review was to present plant-derived preparations and compounds that inhibit Candida biofilm formation by at least 50%. A total of 29 essential oils and 16 plant extracts demonstrate activity against Candida biofilms, with the following families predominating: Lamiaceae, Myrtaceae, Asteraceae, Fabaceae, and Apiaceae. Lavandula dentata (0.045–0.07 mg/L), Satureja macrocephon (0.06–8 mg/L), and Ziziphora tenuior (2.5 mg/L) have the best antifungal activity. High efficacy has also been observed with Artemisia judaica, Lawsonia inermis, and Thymus vulgaris. Moreover, 69 plant compounds demonstrate activity against Candida biofilms. Activity in concentrations below 16 mg/L was observed with phenolic compounds (thymol, pterostilbene, and eugenol), sesquiterpene derivatives (warburganal, polygodial, and ivalin), chalconoid (lichochalcone A), steroidal saponin (dioscin), flavonoid (baicalein), alkaloids (waltheriones), macrocyclic bisbibenzyl (riccardin D), and cannabinoid (cannabidiol). The above compounds act on biofilm formation and/or mature biofilms. In summary, plant preparations and compounds exhibit anti-biofilm activity against Candida. Given this, they may be a promising alternative to antifungal drugs.

Keywords: Candida; biofilm; treatment; antifungals; natural compounds; essential oil; extract; minimal inhibitory concentration (MIC)

1. Introduction

The genus Candida contains about 150 species; however, most are environmental organisms. The most medically important is Candida albicans, which accounts for about 80% of infections. C. albicans causes more than 400,000 cases of bloodstream life-threatening infections annually, with a mortality rate of about 42% [1]. Candida non-albicans species that
are mainly responsible for infections are \textit{C. glabrata}, \textit{C. parapsilosis}, \textit{C. tropicalis}, \textit{C. krusei}, and \textit{C. dubliniensis} [2]. Less frequently identified are \textit{C. guilliermondii}, \textit{C. lusitaniae}, \textit{C. rugosa}, \textit{C. orthopsilosis}, \textit{C. metapsilosis}, \textit{C. famata}, \textit{C. inconspicua}, and \textit{C. kefyr} [3].

\textit{C. albicans} is a member of the commensal microflora. It colonizes the oral mucosal surface of 30–50% of healthy people. The rate of carriage increases with age and in persons with dental prostheses up to 60% [4–6]. Opportunistic infection caused by \textit{Candida} species is termed candidiasis. At least one episode of vulvovaginal candidiasis (or thrush) concerns 50 to 75% of women of childbearing age [7]. Candidiasis can also affect the oral cavity, penis, skin, nails, cornea, and other parts of the body. In immunocompromised persons, untreated candidiasis poses the risk of systemic infection and fungemia [5,8]. \textit{Candida} can be an important etiological factor in the infection of chronic wounds that are difficult to treat; this is mainly related to the production of biofilm [9].

Treatment of candidiasis depends on the infection site and the patient’s condition. According to guidelines, vulvovaginal candidiasis should be treated with oral or topical fluconazole; however, regarding \textit{C. glabrata} infection, topical boric acid, nystatin, or fluocytosine is suggested. In oropharyngeal candidiasis, the treatment options include clotrimazole, miconazole, or nystatin, and in severe disease, fluconazole or voriconazole. In candidemia and invasive candidiasis, the drugs of choice are echinocandins (caspofungin, micafungin, anidulafungin), fluconazole, or voriconazole; in resistant strains, amphotericin B is used. In selected cases of candidemia caused by \textit{C. krusei}, voriconazole is recommended [10–12]. More details can be found in the Guidelines of the Infectious Diseases Society of America [12] and the European Society of Clinical Microbiology and Infectious Diseases [11]. Increasingly, \textit{Candida} species are becoming resistant to drugs. Marak and Dhanashree [13] tested the resistance of 90 \textit{Candida} strains isolated from different clinical samples, such as pus, urine, blood, and body fluid. Their study revealed that about 41% of \textit{C. albicans} strains are resistant to fluconazole and voriconazole. Simultaneously, about 41% of \textit{C. tropicalis} strains are resistant to voriconazole and about 36% of strains to fluconazole. In strains of \textit{C. krusei}, about 23% are resistant to fluconazole and about 18% to voriconazole. Rudramurthy et al. [14] studied resistance in \textit{C. auris}, which is considered a multiresistant pathogen. Among 74 strains obtained from patients with candidemia, over 90% of strains were resistant to fluconazole and about 73% to voriconazole. Virulence factors of \textit{Candida} species include the secretion of hydrolases, the transition of yeast to hyphae, phenotypic switching, and biofilm formation [15,16]. All microorganisms in biofilm form are more resistant to antimicrobial and host factors, which leads to difficulties in eradication [17]. It has also been shown that resistance to drugs increases significantly in the case of \textit{Candida} biofilm occurrence. Biofilm prevents the spread of antifungals; moreover, fluconazole is bound by the biofilm matrix [18]. The formation of a \textit{Candida} biofilm during infection increases mortality, length of hospital stay, and cost of antifungal therapy [19].

Due to the above, new antifungal drugs are sought that could effectively combat not only planktonic fungi but also fungal biofilms. The natural compounds offer promise, with many acting on \textit{Candida} species or biofilms in vitro [20].

The aim of this review was to present plant-derived natural compounds that have an effect against biofilms formed by \textit{Candida} species.

2. Materials and Methods

In this review, publications available in PubMed and Scopus databases and through the Google search engine were taken into account. The following keywords and their combinations were used: “antifungal,” “\textit{Candida},” “anti-biofilm,” “biofilm,” “plant,” “compound,” “extract,” and “essential oil.” The principal inclusion criterion was the inhibition of biofilm formation by at least 50%. We focused on biofilm inhibition assays, in which the time of culture allowed for \textit{Candida} biofilm maturation was at least 24 hours. Articles from the year 2000 to the present were taken into account. All articles published in predatory journals were rejected.
3. Results and Discussion

3.1. Plant Preparations That Display Activity against Candida Biofilms

The present review includes 60 articles in which Candida biofilm formation was inhibited by at least 50%. It has been shown that preparations from 34 plants demonstrate activity against Candida biofilms. Among them were 29 essential oils and 16 extracts. The plants from the following families dominated: Lamiaceae (6 species in 5 genera), Myrtaceae (5 species in 4 genera), Asteraceae (4 species in 4 genera), Fabaceae (3 species in 3 genera), and Apiaceae (4 species in 2 genera).

Plants from the Lamiaceae family had the best antifungal activity, including Lavandula dentata (0.045–0.07 mg/L) [21], Satureja macrospiron (0.06–8 mg/L) [22], and Zizia phora tenuior (2.5 mg/L) [23]. Artemisia judaica (2.5–12.5 mg/L) from the Asteraceae family [24], Lawsonia inermis (2.5 mg/L) from the Lythraceae family [25], and Thymus vulgaris (12.5 mg/L) from the Lamiaceae family [26] likewise exhibited good antifungal activity (Table 1). All preparations were essential oils, with the exception of Lawsonia inermis, which was an extract. Most of the plant preparations presented in Table 1 acted on biofilm formation and/or mature biofilms.

Table 1. Antifungal (MICs) and anti-biofilm (inhibition >50%) activity of plant preparations (essential oils or extracts).

Name of Plant (Family)	Main Compounds Presented in the Reference (EO: Essential Oil)	Targeted Species of Candida	MICs (mg/L; mL/L)	Inhibition of Biofilm Formation by at Least 50% (mg/L; mL/L)	Inhibited Stage of Biofilm; Method of Biofilm Detection	Ref.
Acorus calamus var. angustatus Besser = A. tatarinowii Schott (Acoraceae)	EO: asaraldehyde, 1-(2,4,5-trimethoxyphenyl)-1,2-propanediol, α-asarone, β-asarone, γ-asarone, acotatarone C	C. albicans	51.2	50–200	Mature biofilm; crystal violet	[27]
Allium sativum L. (Amaryllidaceae)	Extract: allin	C. albicans	400	60	Biofilm formation	[28]
Aloysia gratissima (All & Hook) Tr (Verbenaceae)	EO: E-pipercamphone (16.5%), β-pinene (12.01%), guaoli (8.53%), E-pipercarveol acetate (8.19%)	C. albicans	15	50	Biofilm formation; crystal violet	[29]
Artemisia judaica L. (Asteraceae)	EO: piperitone (30.4%), camphor (16.1%), ethyl cinnamate (11.0%), chrysanthone (6.7%)	C. albicans	1.25	2.5	Mature biofilm; XTT	[24]
Buchea totentosa Eichler (Comrertaceae)	Extract: gallic acid, kaemoperol, epicatechin, elagic acid, vitexin, and corilagin	C. albicans	625	312.5	Biofilm formation and mature biofilm, culture	[30]
Chamomilla recutita (L.) Gaertn. (Asteraceae)	EO: E-pinocarveol acetate (8.19%)	C. albicans	250	15.62	Biofilm formation and mature biofilm; MTT	[31]
Cinnamomum verum J. Presl (Lauraceae)	EO: eugenol (77.22%), benzyl benzoate (4.53%), trans-caryophyllene (3.39%), acetyl eugenol (2.75%), linalool 2.11%	C. albicans	1000	150	Biofilm adhesion; XTT	[32]
Citrus limon (L.) Osbeck (Rutaceae)	EO: limonene (53.4%), nerol (11%), geraniol (9%), trans-limonene oxide (7%), nerol (6%)	C. glabrata	250	1000	Biofilm formation and mature biofilm, XTT	[33]
Coriandrum sativum L. (Apiaceae)	EO: 1-decanol (33.91%), E-2-decen-1-ol (23.59%), 2-decanol-1-ol (13.06%), E-2-tetradecen-1-ol (5.46%)	C. albicans	7	250	Biofilm formation; crystal violet	[29]
Copaifera paupera (Herzog) Dwyer (Fabaceae)	Extract: galloylquinic acids, quereotrin, afzelin	C. glabrata	5.89	46.87	Biofilm formation and mature biofilm, XTT	[34]
Copaifera reticulata Ducke (Fabaceae)	Extract: galloylquinic acids, quereotrin, afzelin	C. glabrata	5.89	46.87	Biofilm formation and mature biofilm, XTT	[34]
Copaifera reticulata Ducke (Fabaceae)	EO: decanol (19.09%), trans-2-decanol (17.54%), 2-decan-1-ol (12.33%), cyclohexane (12.15%)	C. albicans	31.2	62.5–250	Biofilm adhesion; crystal violet	[35]
Table 1. Cont.

Name of Plant (Family)	Main Compounds Presented in the Reference (EO: Essential Oil)	Targeted Species of Candida	MICs (µg/L; mL/L)	Inhibition of Biofilm Formation by at Least 50% (µg/mL; mL/L)	Inhibited Stage of Biofilm; Method of Biofilm Detection	Ref.
Croton elateria (L.) W.Wright (Euphorbiaceae)	EO: α-pinene (29.3%), β-pinene (19.3%), camphene (10.31%), 1,8-cineole (9.68%)	C. albicans	4000	5–500	Biofilm formation; confocal laser microscopy	[36]
Capparis spinosa L.	EO: α-pinene (29.4%), β-pinene (19.3%), camphene (10.31%), 1,8-cineole (9.68%)	C. albicans	250	1000		
Capparis spinosa L.	EO: α-pinene (29.4%), β-pinene (19.3%), camphene (10.31%), 1,8-cineole (9.68%)	C. albicans	31.25	250		
Capparis spinosa L.	EO: α-pinene (29.4%), β-pinene (19.3%), camphene (10.31%), 1,8-cineole (9.68%)	C. albicans	62.5	62.5		
Capparis spinosa L.	EO: α-pinene (29.4%), β-pinene (19.3%), camphene (10.31%), 1,8-cineole (9.68%)	C. albicans	31.25	125		
Capparis spinosa L.	EO: α-pinene (29.4%), β-pinene (19.3%), camphene (10.31%), 1,8-cineole (9.68%)	C. albicans	62.5	500		
Capparis spinosa L.	EO: α-pinene (29.4%), β-pinene (19.3%), camphene (10.31%), 1,8-cineole (9.68%)	C. albicans	250	500		
Capparis spinosa L.	EO: α-pinene (29.4%), β-pinene (19.3%), camphene (10.31%), 1,8-cineole (9.68%)	C. albicans	180-360	22.5–180	Biofilm formation; XTT	[37]
Capparis spinosa L.	EO: α-pinene (29.4%), β-pinene (19.3%), camphene (10.31%), 1,8-cineole (9.68%)	C. albicans	16,800	800	Biofilm formation; XTT	[38]
Capparis spinosa L.	EO: α-pinene (29.4%), β-pinene (19.3%), camphene (10.31%), 1,8-cineole (9.68%)	C. albicans	1000	2500–5000	Biofilm adhesion; XTT	[39]
Capparis spinosa L.	EO: α-pinene (29.4%), β-pinene (19.3%), camphene (10.31%), 1,8-cineole (9.68%)	C. albicans	500–1000	5000–10,000		
Capparis spinosa L.	EO: α-pinene (29.4%), β-pinene (19.3%), camphene (10.31%), 1,8-cineole (9.68%)	C. albicans	219	11,250–22,500	Mature biofilm; scanning electron microscopy	[40]
Capparis spinosa L.	EO: α-pinene (29.4%), β-pinene (19.3%), camphene (10.31%), 1,8-cineole (9.68%)	C. albicans	219	11,250–22,500	Mature biofilm; scanning electron microscopy	[41]
Capparis spinosa L.	EO: α-pinene (29.4%), β-pinene (19.3%), camphene (10.31%), 1,8-cineole (9.68%)	C. albicans	885	11,250–22,500		
Capparis spinosa L.	EO: no composition	C. albicans	8400	500	Biofilm formation; XTT	[38]
Capparis spinosa L.	EO: no composition	C. albicans	15.62–31.25	156	Mature biofilm; scanning electron microscopy	[42]
Capparis spinosa L.	EO: no composition	C. albicans	15.62–250	156	Mature biofilm; scanning electron microscopy	[42]
Helichrysum italicum (Roth) (Asteraceae)	EO: α-pinene (27.64%), γ-terpinene (22.84%), β-caryophyllene (13.05%), α-longipinene (11.25%)	C. albicans	6000	10–500	Biofilm formation; confocal laser microscopy	[36]
Helichrysum italicum (Roth) (Asteraceae)	EO: α-pinene (27.64%), γ-terpinene (22.84%), β-caryophyllene (13.05%), α-longipinene (11.25%)	C. albicans	1250	6300	Biofilm formation; confocal laser microscopy	[43]
Helichrysum italicum (Roth) (Asteraceae)	EO: α-pinene (27.64%), γ-terpinene (22.84%), β-caryophyllene (13.05%), α-longipinene (11.25%)	C. albicans	1250	6300	Biofilm formation; confocal laser microscopy	[43]
Helichrysum italicum (Roth) (Asteraceae)	EO: α-pinene (27.64%), γ-terpinene (22.84%), β-caryophyllene (13.05%), α-longipinene (11.25%)	C. albicans	5000	10,000	Biofilm formation; confocal laser microscopy	[43]
Helichrysum italicum (Roth) (Asteraceae)	EO: α-pinene (27.64%), γ-terpinene (22.84%), β-caryophyllene (13.05%), α-longipinene (11.25%)	C. albicans	5000	10,000	Biofilm formation; confocal laser microscopy	[43]
Helichrysum italicum (Roth) (Asteraceae)	EO: α-pinene (27.64%), γ-terpinene (22.84%), β-caryophyllene (13.05%), α-longipinene (11.25%)	C. albicans	7500	15,000	Biofilm formation; MTT	[29]
Helichrysum italicum (Roth) (Asteraceae)	EO: α-pinene (27.64%), γ-terpinene (22.84%), β-caryophyllene (13.05%), α-longipinene (11.25%)	C. albicans	7500	37,500	Biofilm formation; MTT	[29]
Lavandula dentata L. (Lamiaceae)	EO: eucalyptol (42.66%), α-pinene (8.59%), trans-α-bisabolene (6.34%), pinocarveol (6.3%)	C. albicans	0.15–0.18	0.045–0.07	Mature biofilm; XTT	[37]
Lavandula dentata L. (Lamiaceae)	EO: eucalyptol (42.66%), α-pinene (8.59%), trans-α-bisabolene (6.34%), pinocarveol (6.3%)	C. albicans	10	2.5–12.5	Mature biofilm; MTT	[29]
Lavandula dentata L. (Lamiaceae)	EO: eucalyptol (42.66%), α-pinene (8.59%), trans-α-bisabolene (6.34%), pinocarveol (6.3%)	C. albicans	10	2.5–12.5	Mature biofilm; MTT	[29]
Lavandula dentata L. (Lamiaceae)	EO: eucalyptol (42.66%), α-pinene (8.59%), trans-α-bisabolene (6.34%), pinocarveol (6.3%)	C. albicans	500	2000		
Lavandula dentata L. (Lamiaceae)	EO: eucalyptol (42.66%), α-pinene (8.59%), trans-α-bisabolene (6.34%), pinocarveol (6.3%)	C. albicans	250	500		
Lavandula dentata L. (Lamiaceae)	EO: eucalyptol (42.66%), α-pinene (8.59%), trans-α-bisabolene (6.34%), pinocarveol (6.3%)	C. albicans	500	2000		
Lavandula dentata L. (Lamiaceae)	EO: eucalyptol (42.66%), α-pinene (8.59%), trans-α-bisabolene (6.34%), pinocarveol (6.3%)	C. albicans	250	500		
Lavandula dentata L. (Lamiaceae)	EO: eucalyptol (42.66%), α-pinene (8.59%), trans-α-bisabolene (6.34%), pinocarveol (6.3%)	C. albicans	250	500		
Lavandula dentata L. (Lamiaceae)	EO: eucalyptol (42.66%), α-pinene (8.59%), trans-α-bisabolene (6.34%), pinocarveol (6.3%)	C. albicans	250	500		
Lavandula dentata L. (Lamiaceae)	EO: eucalyptol (42.66%), α-pinene (8.59%), trans-α-bisabolene (6.34%), pinocarveol (6.3%)	C. albicans	250	500		
Antibiofilm activity may vary between plants in the same family. For example, in the Lamiaceae family, essential oil from *Lavandula dentata* acted against *C. albicans* biofilm at concentrations of 0.045–0.07 µg/mL [21], while essential oil from *Satureja hortensis* acted against the same biofilm at concentrations of 400–4800 mg/L [51]. There may also be large differences within the same species, due to various reasons. This may be influenced by, for example, different research methodologies, the use of different strains of fungi, and different chemical compositions depending on the plant variety, country, and season of harvest. A notable example of such a difference is observed with *Mentha piperita*. In studies by Benzaid et al. [44], essential oil of *M. piperita* acted against *Candida* biofilm at a concentration of 10 µL/mL. However, the work of Agarwal et al. [38] showed that the same essential oil was active at 800 µL/mL.

Changes in the content of active substances were described by Gonçalves et al. [56]. They showed that in essential oil from *Mentha cervina* collected in August, the amount of

Table 1. Cont.

Name of Plant (Family)	Main Compounds Presented in the Reference (EO: Essential Oil)	Targeted Species of *Candida*	MICs (µg/mL)	Inhibition of Biofilm Formation by at Least 50% (µg/mL)	Inhibited Stage of Biofilm; Method of Biofilm Detection	Ref.
Myrtus communis L. (Myrtaceae)	EO: α-pinene (39.8%), 1,8-cineole (24.8%), limonene (10.7%), linalool (6.4%)	*C. albicans*	1250–10,000	None or 1250	No data; no data	[45]
Ononis spinosa L. (Fabaceae)	Extract: kaempferol-O-dihexoside, kaempferol-O-hexose-pentoside, kaempferol-O-hexose, quercetin-O-hexose-pentoside, acetylquercetin-O-hexose	*C. albicans*	620	10,000	Mature biofilm; luminescence	[46]
Pelargonium graveolens (Miq.) C. P.	EO: neralidios	*C. albicans*	125	4000–8000	Mature biofilm; XTT	[47]
Piper longum L. (Piperaceae)	EO: neralidios	*C. albicans*	125	4000–8000	Mature biofilm; XTT	[48]
Portulaca oleracea L. (Portulacaceae)	Extract: no composition	*C. albicans*	10	12.5	Mature biofilm; MTT	[25]
Punica granatum L. (Lythraceae)	Extract: ellagic acid	*C. albicans*	1000	100–750	Biofilm formation and mature biofilm; crystal violet	[49]
Santolina impresta Hoffmanns. & Link (Asteraceae)	EO: β-pinene (22.5%), 1,8-cineole (10.0%), limonene (9.1%), camphor (8.1%), β-phellandrene (8.0%)	*C. albicans*	540	70–1050	Biofilm formation; XTT	[50]
Satureja hortensis L. (Lamiaceae)	EO: thymol (45.9%), gamma-terpinen (16.71%), carvacrol (12.81%), p-phenylen (9.61%)	*C. albicans*	200–400	400–4800	Biofilm adhesion, formation, and mature biofilm; MTT	[51]
Satureja macrophylla (Coms.) = *Mircromeria macrophylla* Coms. (Lamiaceae)	EO: linalool (28.46%), borneol (16.22%), terpinen-4-ol (14.58%), cis-sabinene hydrate (12.96%)	*C. albicans*	0.06–4	0.06–8	Biofilm formation; XTT	[22]
Syzygium aromaticum (L.) Merr. & L.M.Perry = *Eugenia Caryophyllus* (Sparr.) Bullf. & S.G. Harrison (Myrtaceae)	EO: no composition	*C. albicans*	100–200	50	Biofilm formation; XTT	[37]
Thymus vulgaris L. (Lamiaceae)	EO: thymol (54.73%), carvacrol (12.42%), terpinol (4.0%), neral acetate (2.86%), fenol (0.5%)	*C. albicans*	1.56–25	12.5	Biofilm formation; absorbance, crystal violet, and scanning electron microscopy	[26]
Warburgia agrodendron Sprague (Cameliaceae)	Extract: ugarionial A, warbuganal, polygodial, alpha-linollenic acid ALA	*C. albicans*	Lack of data	1000	Biofilm formation and mature biofilm; XTT and confocal laser microscopy	[52]
Ziziphus mauritiana L. (Lamiaceae)	EO: pulegone (46.8%), p-metho-3-en-5-ol (12.5%), isomenthol (6.6%), 1-hydroxymenthol (6.2%), isomenthop (4.7%)	*C. albicans*	1.25	2.5	Mature biofilm; XTT	[23]
Zuccagnia punctata L. (Fabaceae)	Extract: no composition	*C. albicans*	400	100	Biofilm formation and mature biofilm; XTT and crystal violet	[53]

Legend: MIC—minimal inhibitory concentration; XTT—reduction assay of 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[carboxylphenylamino]-2H-tetrazolium hydroxide; MTT—reduction assay of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide [54,55].
isomenthone was 8.7% and pulegone was 75.1%. However, in essential oil collected in February, the ratio of the two compounds reversed and amounted to 77.0% for isomenthone and 12.9% for pulegone. The method of obtaining the compounds likewise had an influence on their content in the final essential oil. In a study by Čavar et al. [57], the composition of essential oils of *Calamintha glandulosa* differed depending on the extraction method. The level of menthone was 3.3% using aqueous reflux extraction, 4.7% using hydrodistillation, and 8.3% using steam distillation, while the concentration of shisofuran was only 0.1% using hydrodistillation and steam distillation, while aqueous reflux yielded 9.7%.

3.2. Plant Compounds That Display Activity against Candida Biofilm

It has been shown that 69 compounds obtained from plants demonstrate activity against *Candida* biofilms (Table 2). Among these, the most common are monoterpenes (20), followed by sesquiterpene lactones (7) and sesquiterpenes (6). Another big group is also phenolic compounds, including phenols (6), phenolic acids (5), phenolic aldehydes (2), polyphenols (2), and phenolic alcohol (1).

In terms of activity, large differences were found, depending on the authors cited. Eugenol and thymol serve as good examples. Both compounds exhibited excellent activity in some studies (from 12.5 mg/L for eugenol [58] and 1.56 mg/L for thymol [26]), and in other studies, the activity was very poor (up to 80,000 for both [59]). These differences may be related, for example, to a different purity of the compound, a different fungal suspension density, or even to the use of other *Candida* strains with different sensitivities to chemical substances. A number of other factors, such as the type of culture medium, pH of the medium, incubation time, and temperature may likewise influence the antimicrobial activity [20].

According to the European Committee on Antimicrobial Susceptibility Testing (EUCAST), the antifungal clinical breakpoints are between 0.001 mg/L and 16 mg/L [60]. Using EUCAST guidelines in this review, the most active compounds that inhibit (>50%) *Candida* biofilm formation are lichochalcone A (from 0.2 mg/L) [61], thymol (from 3.12 mg/L) [26], dioscin (from 3.9 mg/L) [31], baicalein (from 4 mg/L) [62], warburganal (4.5 mg/L) [52], pterostilbene, waltheriones and riccardin D (both from 8 mg/L) [63–65], polygodial (10.8 mg/L) [52], cannabidiol and eugenol (both from 12.5 mg/L) [58,66], and ivalin (15.4 mg/L) [67]. It is interesting that monoterpenes, which represent the highest percentage of substances listed in Table 2, are not the most active compounds. The two larger groups with the best activity are phenolic compounds (thymol, pterostilbene, and eugenol), and sesquiterpene derivatives (warburganal, polygodial, and ivalin). Single compounds with the highest observed activity belong to chalconoids (lichochalcone A), steroidal saponins (dioscin), flavonoids (baicalein), alkaloids (waltheriones), macrocyclic bisbibenzyls (riccardin D), and cannabinoins (cannabidiol). Most of the compounds presented in Table 2 acted on biofilm formation and/or mature biofilm.

Active Compound (alkaloid)	Example of Plant Origin	Targeted Fungus	MICs (mg/L, mL/L)	Inhibition of Biofilm Formation by at Least 50% (mg/L, mL/L)	Inhibited Stage of Biofilm; Method of Biofilm Detection	Ref.
Waltheria indica, W. brachypetala	C. albicans	32	16	Mature biofilm, XTT	[63]	
C. glabrata	>32	16				
C. krusei	16	16				
C. parapsilosis	4	16				
C. tropicalis	>32	16				

Active Compound (phenolic aldehyde)	Example of Plant Origin	Targeted Fungus	MICs (mg/L, mL/L)	Inhibition of Biofilm Formation by at Least 50% (mg/L, mL/L)	Inhibited Stage of Biofilm; Method of Biofilm Detection	Ref.
Pimpinella anisum, Foeniculum vulgare	C. albicans	500	500	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[68]	
Pimpinella anisum	C. albicans	4000	4000	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[68]	
Pimpinella anisum	C. albicans	31	500	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[68]	
Scutellaria baicalensis, S. lateriflora	C. albicans	No data	4–32	Biofilm formation, XTT	[62]	
Active Compound	Example of Plant Origin	Targeted Fungus	MICs (mg/L, mL/L)	Inhibition of Biofilm Formation by at Least 50% (mg/L, mL/L)	Inhibited Stage of Biofilm; Method of Biofilm Detection	Ref.
-----------------	--------------------------	-----------------	------------------	--	--	------
Camphene (monoterpenes)	Croton eluteria, Cinnamomum verum	C. albicans	No data	500	Biofilm formation; confocal laser microscopy	[36]
		C. albicans	1000	2000	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[69]
Campher (bicyclic monoterpenes)	Cinnamomum camphora, Artemisia annua	C. albicans	125–250	Not or 62.5–250	Biofilm formation; crystal violet and absorbance	[70]
		C. glabrata	175	Not		
		C. kruzei	350	Not		
		C. parapsilosis	125	Not		
		C. tropicalis	175	175		
Cannabidiol (cannabinoid)	Cannabis sativa	C. albicans	No data	12.5–100	Biofilm formation; confocal laser microscopy	[66]
Carvacrol (phenol)	Thymus serpyllum, Cuminum carvi, Origanum vulgare	C. albicans	250	500	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[69]
	C. glabrata	100–20,000	300–1250	Mature biofilm, XTT	[71]	
		1000	750–1500	Biofilm formation; MTT	[72]	
	C. parapsilosis	100–20,000	300–1250	Mature biofilm, XTT	[71]	
		C. tropicalis	100–20,000	300–1250		
	Citrus × aurantium, Citrus limon	C. albicans	1000	4000	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[69]
		C. kruzei	>4000	250	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[69]
	Helichrysum italicum, Capparis spinosa	C. albicans	No data	100–500	Biofilm formation; confocal laser microscopy	[36]
1,4-Cineole (monoterpenes)	Rosmarinus officinalis, Thymus vulgaris	C. albicans	>4000	4000	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[69]
		C. glabrata	4000	4000	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[69]
		C. tropicalis	8	4	Mature biofilm, luminescence	[46]
		Eucalyptus globulus, Salvia officinalis, Pinus sylvestris				
	1,8-Cineole/Eucalyptol (monoterpenes)					
Active Compound	Example of Plant Origin	Targeted Fungus	MICs (mg/L, mL/L)	Inhibition of Biofilm Formation by at Least 50% (mg/L, mL/L)	Inhibited Stage of Biofilm; Method of Biofilm Detection	Ref.
-----------------	-------------------------	----------------	------------------	---	--	------
4α,5α-Epoxy-10β,14β,11-epi-muurol-8(9)-ene (sesquiterpene lactone)	Carposium macrophleum	C. albicans	>128		Biofilm formation and mature biofilm, XTT	[67]
Eugenol (phenol)	Syzygium aromaticum	C. albicans	50–400	12.5–200	Mature biofilm, XTT	[58]
			250	500	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[69]
			500	500	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[68]
			1200	10,000–30,000	Mature biofilm, XTT	[69]
Farnesol (sesquiterpene)	Tilia sp., Cymbopogon sp.	C. albicans	1000	500	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[58]
			1000	500	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[69]
Gallic acid (phenolic acid)	Polygonum sp., Buchenavia tomentosa	C. albicans	5000	2500	Biofilm formation and mature biofilm, culture	[58]
Geraniol (monoterpane)	Pelargonium graveolens, Ros sp.	C. albicans	1000	1000	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[69]
			100–20,000	300–1250	Mature biofilm, XTT	[71]
			No data	1000–4000	Mature biofilm, XTT	[47]
			100–20,000	300–1250	Mature biofilm, XTT	[71]
Guaiaicol (phenol)	Cunicium officinale, Atriplex graveolens	C. albicans	50	1000	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[68]
Hydroxysuccinicol (phenol)	Piper betle	C. albicans	125–500	125–1000	Biofilm formation and mature biofilm, XTT	[74]
β-limonene (carotenoid)	Laurus nobilis, Camellia sinensis	C. albicans	250	250	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[69]
			50	250	Mature biofilm; luminescence	[58]
			200	250	Mature biofilm; luminescence	[58]
Isopulegol (monoterpane)	Mentha rotundifolia, Melissa officinalis	C. albicans	>4000	250	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[69]
Ivalin (sesquiterpene lactone)	Geigeria aegyptiaca, Carposium macrophleum	C. albicans	>128	15.4	Biofilm formation and mature biofilm, XTT	[67]
Laserpitoline (sesquiterpene lactone)	Laserpitium latifolium, Laserpitiumhalleri	C. albicans	200	400	Mature biofilm; luminescence	[58]
Lichochalcone A (chalconoid)	Glycyrrhiza sp.	C. albicans	6.25–12.5	0.2–20	Biofilm formation, crystal violet	[58]
Linanol (monoterpane)	Laranula officinalis, Pelargonium graveolens	C. albicans	No data	100–500	Biofilm formation; confocal laser microscopy	[36]
			2000	1000	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[69]
			No data	1000–8000	Mature biofilm, XTT	[47]
α-Longipinene (sesquiterpene lactone)	Croton eluteria, Helichrysum italicum	C. albicans	No data	100–500	Biofilm formation; confocal laser microscopy	[36]
Menthol (monoterpane)	Mentha sp.	C. albicans	>4000	2000	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[69]
Montanellide (sesquiterpene lactone)	Laserpitium ochridanum, L. zernyi	C. albicans	200	400	Mature biofilm, XTT	[59]
			200	400	Mature biofilm, luminescence	[43]
Morin (flavonoid)	Prunus dulcis, Morus alba	C. albicans	150	37.5–600	Biofilm formation, crystal violet	[75]
Myrcene (monoterpane)	Hamulus lapulus, Cassinia sativa	C. albicans	1000	2000	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[69]
Nerol (monoterpane)	Citrus × aurantium, Hamulus lapulus	C. albicans	2000	500	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[69]
Nerolidol (sesquiterpene lactone)	Citrus × aurantium, Pimpinella dracaenifolia	C. albicans	15,600–62,500	2500–10,000	Mature biofilm, MT	[48]
α-Pinene (monoterpane)	Pinus sylvestris, Picea abies	C. albicans	3125	3125	Biofilm formation, XTT	[76]
β-Pinene (monoterpane)	Pinus sylvestris, Picea abies	C. albicans	2000	4000	Mature biofilm, XTT, crystal violet, and inverted light microscopy	[69]
Polygodial (sesquiterpene lactone)	Warburgia angononos, Polygous hipadloper	C. albicans	4.1	10.8	Biofilm formation and mature biofilm, XTT and confocal laser microscopy	[52]
Table 2. Cont.

Active Compound	Example of Plant Origin	Targeted Fungus	MICs (mg/L, mL/L)	Inhibition of Biofilm Formation by at Least 50% (mg/L, mL/L)	Inhibited Stage of Biofilm; Method of Biofilm Detection	Ref.
Pterostilbene	*Pterocarpus marsupium*, *Pterocarpus santalinus*, *Vitis vinifera*	*C. albicans*	No data	8–32	Biofilm formation and mature biofilm; XTT	[65]
Riccardin D	*Dunorina hirsuta*	*C. albicans*	16	8–64	Mature biofilm; XTT	[64]
Salicylaldehyde	*Filipendula ulmaria*, *Fagopyrum esculentum*	*C. albicans*	31	125	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[68]
Salicylic acid	*Salis sp.*, *Filipendula ulmaria*	*C. albicans*	4000	2000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[68]
Scopoletin	*Mitracarpus frigidus*, *Scopolia carniola*	*C. tropicalis*	50	50	Biofilm adhesion, formation, and mature biofilm, absorbance and digital scanning	[77]
6-Shogaol	*Zingiber officinale*	*C. auris*	32–64	16–64	Mature biofilm; crystal violet	[78]
Tarodil (sesquiterpene lactone)	*Laserpitium schidigianum*, *L. terryi*	*C. albicans*	400	1000	Mature biofilm; luminescence	[63]
Telekin (sesquiterpene lactone)	*Carpeolus macrocephalus*, *Telesia speciosa*	*C. albicans*	>128	36	Biofilm formation and mature biofilm; XTT	[67]
Terpinolene	*Cannabis sativa*, *Citrus limon*	*C. albicans*	2000	4000	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]
Tetramethoxyflavone (flavonoid)	*Psidium punciulale*, *Kamptera parviflora*	*C. albicans*	>4000	500	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]
Thymol (phenol)	*Thymus vulgaris*, *Thachipormum cyprium*	*C. albicans*	250	250	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[69]
Tn-AFP1 (protein)	*Trapa natans*	*C. tropicalis*	1.56–50	3.12	Biofilm formation; absorbance, crystal violet, and scanned electron microscopy	[26]
5,6,8-Trihydroxy-7,4'-dimethoxy flavone (flavonoid)	*Thymus membranaceus subsp. membranaceus*, *Dalenaea vicosa var. angustifolia*	*C. albicans*	32–128	128	Biofilm adhesion and mature biofilm; XTT	[60]
5(R)-Vanessine	*Waltheria indica*	*C. albicans*	100	40	Biofilm formation; crystal violet	[79]
5,6,8-Trihydroxy-7,4'-dimethoxy flavone (flavonoid)	*Thymus membranaceus subsp. membranaceus*, *Dalenaea vicosa var. angustifolia*	*C. albicans*	390	390	Biofilm formation and mature biofilm; MTT	[63]
Valininc acid	*Angelica sinensis*, *Solium tuberosum*	*C. albicans*	>4000	4000	Biofilm formation and mature biofilm; XTT	[68]
Vanillin (phenol)	*Vanilla plantifera*	*C. albicans*	1000	500	Mature biofilm; XTT, crystal violet, and inverted light microscopy	[68]
Walthorosines (alkaloid)	*Waltheria indica*, *W. microsperma*	*C. albicans*	4–32	8–32	Mature biofilm; XTT	[63]
Warburganal (sesquiterpene)	*Wurbergia sp.*	*C. albicans*	4	4.5	Biofilm formation and mature biofilm; XTT and confocal laser microscopy	[52]

Legend: MIC—minimal inhibitory concentration; XTT—reduction assay of 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(carbonyl[phenylamino])-2H-tetrazolium hydroxide; MTT—reduction assay of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide [54,55].
4. Conclusions

Plant preparations (essential oils and extracts) and pure compounds exhibit anti-biofilm activity against Candida species. Some of them are characterized by high activity in concentrations below 16 mg/L. Given this activity at relatively low concentrations, some may prove to be promising alternatives to antifungal drugs, especially in the cases of resistant or multiresistant strains of Candida. Moreover, the simple chemical structures involved and relative ease of extraction from natural sources warrant further research into the development of new, promising, and much-needed plant-based antifungals.

Author Contributions: Conceptualization, T.M.K. and M.O.; methodology, T.M.K.; analysis of results, T.M.K. and M.O.; writing—original draft preparation, T.M.K., M.O., A.S.-M., H.W., and A.A.; writing—review and editing, T.M.K. and M.O.; supervision, T.M.K.; funding acquisition, T.M.K. and H.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We are very grateful to Mark Stasiewicz for English language corrections.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012, 4, 165rv13. [CrossRef]
2. Ciurea, C.N.; Kosovsky, I.-B.; Mare, A.D.; Toma, F.; Pintea-Simon, I.A.; Man, A. Candida and Candidiasis—Opportunism Versus Pathogenicity: A Review of the Virulence Traits. Microorganisms 2020, 8, 857. [CrossRef] [PubMed]
3. Moran, G.; Coleman, D.; Sullivan, D. An Introduction to the Medically Important Candida Species. In Candida and Candidiasis, 2nd ed.; Wiley: Hoboken, NJ, USA, 2012; pp. 11–25.
4. Buranarom, N.; Komin, O.; Matangkasombut, O. Hyposalivation, Oral Health, and Candida Colonization in Independent Dentate Elders. PLoS ONE 2020, 15, e0242832. [CrossRef] [PubMed]
5. Arya, N.R.; Naureen, R.B. Candidiasis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021.
6. Millet, N.; Solis, N.V.; Swidergall, M. Mucosal IgA Prevents Commensal Candida Albicans Dysbiosis in the Oral Cavity. Front. Immunol. 2020, 11, 55363. [CrossRef] [PubMed]
7. Sobel, J.D. Vulvovaginal Candidiosis. Lancet 2007, 369, 1961–1971. [CrossRef]
8. Vila, T.; Sultan, A.S.; Montelongo-Jauregui, D.; Jabra-Rizk, M.A. Oral Candidiasis: A Disease of Opportunity. J. Fungi 2020, 6, 15. [CrossRef] [PubMed]
9. Karpiński, T.; Sopata, M.; Mańkowski, B. The Antimicrobial Effectiveness of Antiseptics as a Challenge in Hard to Heal Wounds. Leczenie Ran 2020, 17, 88–94. [CrossRef]
10. Bhattacharya, S.; Sae-Tia, S.; Fries, B.C. Candidiasis and Mechanisms of Antifungal Resistance. Antibiotics 2020, 9, 312. [CrossRef]
11. Conely, O.A.; Bassetti, M.; Calandra, T.; Garbino, J.; Kullberg, B.J.; Lortholary, O.; Meersseman, W.; Akova, M.; Arendrup, M.C.; Arikan-Akdagli, S.; et al. ESCMID* Guideline for the Diagnosis and Management of Candida Diseases 2012: Non-Neutropenic Adult Patients. Clin. Microbiol. Infect. 2012, 18 (Suppl. 7), 19–37. [CrossRef]
12. Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [CrossRef] [PubMed]
13. Marak, M.B.; Dhanashree, B. Antifungal Susceptibility and Biofilm Production of Candida Spp. Isolated from Clinical Samples. Int. J. Microbiol. 2018, 2018, 7495218. [CrossRef] [PubMed]
14. Rudramurthy, S.M.; Chakrabarti, A.; Paul, R.A.; Sood, P.; Kaur, H.; Capoor, M.R.; Kindo, A.J.; Marak, R.S.K.; Arora, A.; Sardana, R.; et al. Candida auris Candidaemia in Indian ICUs: Analysis of Risk Factors. J. Antimicrob. Chemother. 2017, 72, 1794–1801. [CrossRef] [PubMed]
15. Mayer, F.L.; Wilson, D.; Hube, B. Candida Albicans Pathogenicity Mechanisms. Virulence 2013, 4, 119–128. [CrossRef] [PubMed]
16. Laska, G.; Sienkiewicz, A. Antifungal Activity of the Rhizome Extracts of Pulsatilla Vulgaris against Candida Glabrata. Eur. J. Biol. Res. 2019, 9, 93–103.
17. Gebreyohannes, G.; Nyerere, A.; Bi, C.; Sbhatu, D.B. Challenges of Intervention, Treatment, and Antibiotic Resistance of Biofilm-Forming Microorganisms. Helixion 2019, 5, e02192. [CrossRef]
18. Pereira, R.; Dos Santos Fontenelle, R.O.; de Brito, E.H.S.; de Morais, S.M. Biofilm of Candida Albicans: Formation, Regulation and Resistance. J. Appl. Microbiol. 2020. [CrossRef] [PubMed]
41. Quatrin, P.M.; Verdi, C.M.; de Souza, M.E.; de Godoi, S.N.; Klein, B.; Gundel, A.; Wagner, R.; de Almeida Vaucher, R.; Ourique, A.F.; Santos, R.C.V. Antimicrobial and Antibiofilm Activities of Nanoemulsions Containing Eucalyptus Globulus Oil against Pseudomonas Aeruginosa and Candida spp. Microb. Pathog. 2017, 112, 230–242. [CrossRef] [PubMed]

42. Sardi, J.D.C.O.; Freires, I.A.; Lazarini, J.G.; Infante, J.; de Alencar, S.M.; Rosalen, P.L. Unexplored Endemic Fruit Species from Brazil: Antibiofilm Properties, Insights into Mode of Action, and Systemic Toxicity of Four Eugenia spp. Microb. Pathog. 2017, 105, 280–287. [CrossRef]

43. Popović, V.; Stojković, D.; Nikolić, M.; Heyerick, A.; Petrović, S.; Soković, M.; Niketić, M. Extracts of Three Laserpitium L. Species and Their Principal Components Laserpitine and Sesquiterpene Lactones Inhibit Microbial Growth and Biofilm Formation by Oral Candida Isolates. Food. Funct. 2015, 6, 1205–1211. [CrossRef]

44. Benzaid, C.; Belmadani, A.; Djeribi, R.; Rouabhia, M. The Effects of Mentha × Piperita Essential Oil on C. Albicans Growth, Transition, Biofilm Formation, and the Expression of Secreted Aspartyl Proteinases Genes. Antibiotics 2019, 8, 10. [CrossRef] [PubMed]

45. Cannas, S.; Molicotti, P.; Usai, D.; Maxia, A.; Zanetti, S. Antifungal, Anti-Biofilm and Adhesion Activity of the Essential Oil of Myrtus Commumis L. against Candida Species. Nat. Prod. Res. 2014, 28, 2173–2177. [CrossRef]

46. Stojković, D.; Dias, M.I.; Drakulić, D.; Barros, L.; Stevanović, M.; C.F.R. Ferreira, I.; D Soković, M. Methanolic Extract of the Herb Ononis Spinosa and Their Principal Components Laserpitine and Sesquiterpene Lactones Inhibit Microbial Growth and Biofilm Formation by Oral Candida Isolates. Food. Funct. 2015, 6, 1205–1211. [CrossRef]

47. Souza, C.M.C.; Pereira Junior, S.A.; Moraes, T.d.S.; Damasceno, J.L.; Amorim Mendes, S.; Dias, H.J.; Stefani, R.; Tavares, D.C.; Martins, C.H.G.; Crotti, A.E.M.; et al. Antifungal Activity of Plant-Derived Essential Oils on Candida Tropicalis Planktonic and Biofilms. Med. Mycol. 2016, 54, 515–523. [CrossRef] [PubMed]

48. Curvelo, J.A.R.; Marques, A.M.; Barreto, A.L.S.; Romanos, M.T.V.; Portela, M.B.; Kaplan, M.A.C.; Soares, R.M.A. A Novel Nerolidol-Rich Essential Oil from Piper Closseniium Modulates Candida Albicans Biofilm. J. Med. Microbiol. 2014, 63, 697–702. [CrossRef] [PubMed]

49. Bakkkyiaraj, D.; Nandhini, J.R.; Malathy, B.; Pandian, S.K. The Anti-Biofilm Potential of Pomegranate (Punica Granatum L.) Extract against Human Bacterial and Fungal Pathogens. Biofouling 2013, 29, 929–937. [CrossRef] [PubMed]

50. Alves-Silva, J.M.; Zuzarte, M.; Gonçalves, M.J.; Cruz, M.T.; Cavaleiro, C.; Salgueiro, L. Unveiling the Bioactive Potential of the Essential Oil of a Portuguese Endemism, Santolina Impressa. J. Ethnopharmacol. 2019, 244, 112120. [CrossRef]

51. Sharifzadeh, A.; Khosravi, A.R.; Ahmadian, S. Chemical Composition and Antifungal Activity of Satureja Hortensis L. Essential Oil against Planktonic and Biofilm Growth of Candida Albicans Isolates from Buccal Lesions of HIV(+) Individuals. Microb. Pathog. 2016, 96, 1–9. [CrossRef]

52. Kipanga, P.N.; Liu, M.; Panda, S.K.; Mai, A.H.; Veryser, C.; Van Puyvelde, L.; De Borggraeve, W.M.; Van Dijck, P.; Matasyoh, J.; Luyten, W. Biofilm Inhibiting Properties of Compounds from the Leaves of Warburgia Ugandensis. J. Antimicrob. Chemother. 2016, 71, 698–707. [CrossRef] [PubMed]

53. Gabriela, N.; Rosa, A.M.; Catiana, Z.I.; Soledad, C.; Mabel, O.R.; Esteban, S.J.; Veronica, B.; Daniel, W.; Ines, I.M. The Effect of Zuccagnia Punctata, an Argentine Medicinal Plant, on Virulence Factors from Candida Species. Nat. Prod. Commun. 2014, 9, 933–936. [CrossRef]

54. Karpinska, T.M. Efficacy of Ocidentine against Pseudomonas Aeruginosa Strains. Eur. J. Biol. Res. 2019, 9, 135–140.

55. Loures, F.V.; Levitz, S.M. XTT Assay of Antifungal Activity. Pseudomonas Aeruginosa 2016, 32, 280–287. [CrossRef]

56. Gonçalves, M.J.; Vicente, A.M.; Cavaleiro, C.; Salgueiro, L. Composition and Antifungal Activity of the Essential Oil of Mentha× Pterostilbene Against Candida Albicans. Int. J. Antimicrob. Agents 2012, 39, 1–6. [CrossRef] [PubMed]

57. ´Cavar, S.; Vidic, D.; Maksimovi´ c, M. Volatile Constituents, Phenolic Compounds, and Antioxidant Activity of Myrtus Communis from Portugal. J. Sci. Food Agric. 2007, 87, 230–242. [CrossRef] [PubMed]

58. Khan, M.S.A.; Ahmad, I. Antibiofilm Activity of Certain Phytochemicals and Their Synergy with Fluconazole against Candida Albicans Biofilms. J. Antimicrob. Chemother. 2012, 67, 618–621. [CrossRef]

59. Pemmaraaju, S.C.; Pruthi, P.A.; Prasad, R.; Pruthi, V. Candida Albicans Biofilm Inhibition by Synergistic Action of Terpenes and Fluconazole. Indian J. Exp. Biol. 2013, 51, 1032–1037.

60. EUCAST: Breakpoints for Antifungals. Available online: https://eucast.org/astoffungi/clinicalbreakpointsforantifungals/ (accessed on 19 March 2021).
66. Feldman, M.; Sionov, R.V.; Mechoulam, R.; Steinberg, D. Anti-Biofilm Activity of Cannabidiol against Candida Albicans. Microorganisms 2021, 9, 441. [CrossRef] [PubMed]

67. Xie, C.; Sun, L.; Meng, L.; Wang, M.; Xu, J.; Bartlam, M.; Guo, Y. Sesquiterpenes from Carpesium Macrocephalum Inhibit Candida Albicans Biofilm Formation and Dimorphism. Bioorg. Med. Chem. Lett. 2015, 25, 5409–5411. [CrossRef] [PubMed]

68. Raut, J.S.; Shinde, R.B.; Chauhan, N.M.; Karuppayil, S.M. Phenylpropanoids of Plant Origin as Inhibitors of Biofilm Formation by Candida Albicans. J. Microbiol. Biotechnol. 2014, 24, 1216–1225. [CrossRef] [PubMed]

69. Raut, J.S.; Shinde, R.B.; Chauhan, N.M.; Karuppayil, S.M. Terpenoids of Plant Origin Inhibit Morphogenesis, Adhesion, and Biofilm Formation by Candida Albicans. Biofouling 2013, 29, 87–96. [CrossRef] [PubMed]

70. Ivanov, M.; Kannan, A.; Stojković, D.S.; Glamočlija, J.; Calhelha, R.C.; Ferreira, I.C.F.R.; Sanglard, D.; Soković, M. Camphor and Eucalyptol-Anticandidal Spectrum, Antivirulence Effect, Efflux Pumps Interference and Cytotoxicity. Int. J. Mol. Sci. 2021, 22, 483. [CrossRef] [PubMed]

71. Dalleau, S.; Cateau, E.; Bergès, T.; Berjeaud, J.-M.; Imbert, C. In Vitro Activity of Terpenes against Candida Biofilms. Int. J. Antimicrob. Agents 2008, 31, 572–576. [CrossRef] [PubMed]

72. Touil, H.F.Z.; Boucherit, K.; Boucherit-Otmani, Z.; Khoder, G.; Madkour, M.; Soliman, S.S.M. Optimum Inhibition of Amphotericin-B-Resistant Candida Albicans Strain in Single- and Mixed-Species Biofilms by Candida and Non-Candida Terpenoids. Biomolecules 2020, 10, 342. [CrossRef]

73. Janecko, M.; Maslyk, M.; Kubínský, K.; Golczyk, H. Emodin, a Natural Inhibitor of Protein Kinase CK2, Suppresses Growth, Hyphal Development, and Biofilm Formation of Candida Albicans. Yeast 2017, 34, 253–265. [CrossRef] [PubMed]

74. Ali, I.; Khan, F.G.; Suri, K.A.; Gupta, B.D.; Satti, N.K.; Dutt, P.; Afrin, F.; Qazi, G.N.; Khan, I.A. In Vitro Antifungal Activity of Hydroxychavicol Isolated from Piper Betle L. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 7. [CrossRef] [PubMed]

75. Abirami, G.; Alexpandi, R.; Durgadevi, R.; Kannappan, A.; Veera Ravi, A. Inhibitory Effect of Morin Against Candida Albicans Pathogenicity and Virulence Factor Production: An in Vitro and in Vivo Approaches. Front. Microbiol. 2020, 11, 561298. [CrossRef] [PubMed]

76. Rivas da Silva, A.C.; Lopes, P.M.; Barros de Azevedo, M.M.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological Activities of α-Pinene and β-Pinene Enantiomers. Molecules 2012, 17, 6305–6316. [CrossRef] [PubMed]

77. Lemos, A.S.O.; Florêncio, J.R.; Pinto, N.C.C.; Campos, L.M.; Silva, T.P.; Grazul, R.M.; Pinto, P.F.; Tavares, G.D.; Scio, E.; Apolônio, A.C.M.; et al. Antifungal Activity of the Natural Coumarin Scopoletin Against Planktonic Cells and Biofilms From a Multidrug-Resistant Candida Tropicalis Strain. Front. Microbiol. 2020, 11, 1525. [CrossRef] [PubMed]

78. Kim, H.-R.; Eom, Y.-B. Antifungal and Anti-Biofilm Effects of 6-Shogaol against Candida Auris. J. Appl. Microbiol. 2020. [CrossRef] [PubMed]

79. Dal Piaz, F.; Bader, A.; Malafronte, N.; D’Ambola, M.; Petrone, A.M.; Porta, A.; Ben Hadda, T.; De Tommasi, N.; Bisio, A.; Severino, L. Phytochemistry of Compounds Isolated from the Leaf-Surface Extract of Psidium Punctulata (DC.) Vatke Growing in Saudi Arabia. Phytochemistry 2018, 155, 191–202. [CrossRef] [PubMed]

80. Shu, C.; Sun, L.; Zhang, W. Thymol Has Antifungal Activity against Candida Albicans during Infection and Maintains the Innate Immune Response Required for Function of the P38 MAPK Signaling Pathway in Caenorhabditis Elegans. Immunol. Res. 2016, 64, 1013–1024. [CrossRef] [PubMed]

81. Braga, P.C.; Culici, M.; Alfieri, M.; Dal Sasso, M. Thymol Inhibits Candida Albicans Biofilm Formation and Mature Biofilm. Int. J. Antimicrob. Agents 2008, 31, 472–477. [CrossRef]

82. Mandal, S.M.; Migliolo, L.; Franco, O.L.; Ghosh, A.K. Identification of an Antifungal Peptide from Trapa Natans Fruits with Inhibitory Effects on Candida Tropicalis Biofilm Formation. Peptides 2011, 32, 1741–1747. [CrossRef] [PubMed]