Bioimage informatics

Neuron tracing from light microscopy images: automation, deep learning and bench testing

Yufeng Liu¹,†, Gaoyu Wang²,†, Giorgio A. Ascoli³, Jiangning Zhou⁴ and Lijuan Liu 性的:].

¹School of Biological Science and Medical Engineering, Southeast University, Nanjing, China, ²School of Computer Science and Engineering, Southeast University, Nanjing, China, ³Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA and ⁴Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, China

†To whom correspondence should be addressed.

The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Hanchuan Peng

Received on September 28, 2022; revised on October 19, 2022; editorial decision on October 20, 2022; accepted on October 26, 2022

Abstract

Motivation: Large-scale neuronal morphologies are essential to neuronal typing, connectivity characterization and brain modeling. It is widely accepted that automation is critical to the production of neuronal morphology. Despite previous survey papers about neuron tracing from light microscopy data in the last decade, thanks to the rapid development of the field, there is a need to update recent progress in a review focusing on new methods and remarkable applications.

Results: This review outlines neuron tracing in various scenarios with the goal to help the community understand and navigate tools and resources. We describe the status, examples and accessibility of automatic neuron tracing. We survey recent advances of the increasingly popular deep-learning enhanced methods. We highlight the semi-automatic methods for single neuron tracing of mammalian whole brains as well as the resulting datasets, each containing thousands of full neuron morphologies. Finally, we exemplify the commonly used datasets and metrics for neuron tracing bench testing.

Contact: lijuan-liu@seu.edu.cn

1 Introduction

Neuronal morphology, specifically the neurite arbors of dendrites and axons stemming from the soma, can be represented as a treelike structure in a more concise digital form compared to the image of the neuron. The generation of this tree is called neuron tracing, also known as neuron reconstruction, which lays the foundation for systematic and quantitative investigation of the nervous system.

Figure 1 highlights a small number of selected, highly visible studies of light microscopy-oriented neuron tracing, with an emphasis on the last 15 years. At the very beginning, neurites were recorded by time-consuming and labor-intensive free-hand drawings. Semi-automated methods were then introduced by integrating computer-aided algorithms to relieve the vast burden of human labor (Glaser and Van Der Loos, 1965). Fully automatic methods without any manual intervention are in great demand for large-scale data generation and were proposed in the early 1970s (Garvey et al., 1973). Despite the numerous efforts expended since then, there is still a gap between the level of automation and the high-quality tracing required, especially for full morphology tracing of long-projection neurons at the whole-brain level.

The major challenges of automatic methods are the dense arbors of neurites, background noises, fuzzy and inhomogeneous signals along the neurites. Dense arbors may artificially intersect in light microscopic images, leading to crossover structures in the reconstruction. On the other hand, noise and fuzzy signals will lead to early stop of tracing. Many image pre-processing algorithms, noise-insensitive tracing methods and morphology post-processing methods were proposed to alleviate these problems. Powerful feature extraction methods, especially deep-learning-based methods including segmentation and critical point detection, were widely leveraged in recent years.

Full morphology in the mammalian whole-brain containing complete dendritic and axonal arbors is critical for the anatomical and functional characterization of neurons. How to trace the long projection and dense axonal branches introduces additional challenges for whole-brain high-resolution imaging, reconstruction methods and cloud platforms. Until recently, several groups have made breakthroughs in reconstructing full morphologies through the combination of auto-tracing and manual modification. However, the contribution of auto-tracing is in urgent need of improvement.

Several previous survey articles summarized neuron tracing methods (Acciai et al., 2016; Donohue and Ascoli, 2011;
Meijering, 2010; Senft, 2011). The last few years have witnessed an explosion of development of new neuron tracing methods (Table 1), especially in two directions, (i) effective discrimination and exclusion of noisy patterns from signals, represented by graph-based pruning methods, such as All-Path Pruning (e.g. Xiao and Peng, 2013) and (ii) sophisticated classifiers that separate noises from signals, represented by recent deep-learning enhanced methods [e.g. Li et al. (2017) and Zhou et al. (2018)]. In addition, seminal work on scaling-up base tracing methods to virtually unlimited image volume was also developed, such as UltraTracer (Peng et al., 2017). Community collaboration is also becoming a trend, which led to the worldwide BigNeuron project (Peng et al., 2015). Therefore, here, we present an overview of neuron tracing from light microscopy images, focusing on the major milestones in the past few years, including cutting-edge automatic methods, deep-learning-based algorithms, bench testing, databases and single neuron tracing at the mammalian whole-brain level (Fig. 1).

2 Automatic tracing algorithms

A considerable number of automatic algorithms (Acciai et al., 2016; Meijering, 2010) have been proposed since the 1970s and then boosted by initiatives like the DIADEM challenge (Brown et al., 2011) and the BigNeuron project (Peng et al., 2015), which provide standardized datasets, metrics and hackathons. While these algorithms vary greatly in implementation, they share a similar workflow including an optional image pre-processing step and a tracing step that models a tree-like structure from the image (Fig. 2a). The tracing performance is bench tested using many metrics by comparing the reconstructions to ‘gold standards’.

2.1 Image pre-processing

Many image pre-processing methods exist for neuronal image processing, with the aim of denoising, illumination correction and fibrous signal enhancement. There are numerous denoising methods, ranging from morphological operations and spatial and frequency domain filters (Buades et al., 2005; Dabov et al., 2006) to more complex methods like sparse coding (Xu et al., 2018), low-rank decomposition (Jin and Ye, 2017) and non-negative matrix factorization-based methods (Guo et al., 2022). Several other methods focus on addressing illumination imbalance in microscopic images, such as CIDRE (Smith et al., 2015), BaSiC (Peng et al., 2017) and AGC (Rahman et al., 2016). For neuronal images, vascular images, or other biomedical images containing vessel-like tissues, methods based on the anisotropic filter (Zhou et al., 2015a) and Hessian Matrix (Frangi et al., 1998; Liang et al., 2017; Mukherjee and Acton, 2015; Sato et al., 1998; Sofka and Stewart, 2006) have been demonstrated to be effective in enhancing tubular structures.

Segmentation as a pre-processing step is becoming more and more popular, such as methods based on the Hessian measurements (Mukherjee et al., 2014; Santamaría-Pang et al., 2015), support vector machine (Chen et al., 2015; Jiménez et al., 2015; Kayasandik et al., 2018), convex optimization (Li et al., 2020) and region-growing (Callara et al., 2020). Besides, deep-learning-based neurite segmentation is demonstrated to be important for high accuracy and robustness, which will be discussed in Section 3.1.

2.2 Tracing

Once a neuron image is pre-processed, it will be traced to obtain the tree-like morphology, represented in suc (Cannon et al., 1998; Stockley et al., 1995) or euc (Nanda et al., 2018) format. We classify tracing methods into three types, similar to Acciai et al. (2016), many of which are summarized in Table 1.

- Local methods where the morphology is reconstructed locally along the extension of signals. As the name indicates, local methods detect putative neurites based on local features, and thus there are prone to get an incorrect topology.
- Global methods detect and connect neuronal nodes or segments based on both local features and global information. The incorporation of global information allows for better discrimination of noises and incorrect connections.
- Meta methods that build on top of existing methods. These methods are orthogonal to base tracers and are often independent modules or frameworks that can combine with any base tracer. In this way, they are always gainful without extra implementation.
Table 1. Accessibility of automatic neuron tracing methods discussed in this review

Methods	Paper	Open source	Platforms
Rodriguez et al. (2003)	Rodriguez et al. (2003)	Yes	NeuronStudio (Rodriguez et al., 2008)
ORION	Losavio et al. (2008)	Yes	ORION
Yuan et al. (2009)	Yuan et al. (2009)	Yes	FARSIGHT (Luisi et al., 2011)
Neural Circuit Tracer	Chothani et al. (2011)	Yes	Neural Circuit Tracer
Open-Curve Snake	Wang et al. (2011)	Yes	FARSIGHT
FarSlight Snake	Narayanaswamy et al. (2011)	Yes	Vaa3D (Peng et al., 2010b)
RPCT	Bas and Erdogmus (2011)	Yes	Vaa3D
neuTube	Zhao et al. (2011)	Yes	Vaa3D & neuTube (Feng et al., 2015)
APP1	Peng et al. (2011)	Yes	Vaa3D
Lee et al. (2012)	Lee et al. (2012)	Yes	Vaa3D & FlyCircuit (Chiang et al., 2011)
APP2	Xiao and Peng (2013)	Yes	Vaa3D
SimpleTracing	Yang et al. (2013)	Yes	Vaa3D
Ming et al. (2013)	Ming et al. (2013)	Yes	flNeuronTool
MOST	Wu et al. (2014)	Yes	Vaa3D
Gala et al. (2014)	Gala et al. (2014)	Yes	Neural Circuit Tracer
SmartTracing	Chen et al. (2015)	Yes	Vaa3D
ORION2	Jiménez et al. (2015)	Yes	ORION
Neuron Crawler	Zhou et al. (2015b)	Yes	Vaa3D
TReMAP	Zhou et al. (2016)	Yes	Vaa3D
NeuroGPS-Tree	Quan et al. (2016)	Yes	Vaa3D & NeuroGPS-Tree
SparseTracer	Li et al. (2017)	No	SparseTracer
ENT	Wang et al. (2017)	Yes	Vaa3D
PHD	Radojević and Meijering (2017a)	Yes	ImageJ (Schneider et al., 2012)
UltraTracer	Peng et al. (2017)	Yes	Vaa3D
Rivulet2	Liu et al. (2018c)	Yes	Vaa3D
FMST	Yang et al. (2019)	Yes	Vaa3D
DiMorSC	Wang et al. (2018)	Yes	DiMorSC
ShuTu	Jin et al. (2019)	Yes	ShuTu
Dai et al. (2019)	Dai et al. (2019)	Yes	NA
PNR	Radojević and Meijering (2019)	Yes	Vaa3D
CAAT	Huang et al. (2021)	Yes	GTree (Zhou et al., 2021)
ViterBrain	Athey et al. (2022)	Yes	Brainlit
NeuroStalker	NA	Yes	Vaa3D
LCMBoost	NA	Yes	Vaa3D
Advantra	NA	Yes	Vaa3D
NeuronChaser	NA	Yes	Vaa3D
Axis Analyzer	NA	Yes	Vaa3D
PYZH	NA	Yes	Vaa3D

Note: The accessibility of each method is researched based on original paper and respective content on the Internet. This table may not reflect the latest information of a specific method.

2.2.1 Local methods

Local methods usually start from a seed point, either pinpointed manually or detected automatically, and trace greedily along putative fibers estimated based on the signals around the current location. Aybward and Bullitt (2002) defined a ridge criterion based on the Hessian Matrix. Starting from the seed point, the morphology extends to the next rigid point, which is the local maximum in the normal plane shifted from the current point along the approximated tangent direction calculated by Hessian Matrix. Instead of using Eigen analysis of Hessian Matrix, Al-Kofahi et al. (2002) leveraged template fitting to determine the tracing direction, where a template contains four parallel edge detectors. Srinivasan et al. (2010) employed a moving sphere strategy to gradually fit and propagate through the neurite centerline, the direction of which is computed using the preceding 10 centers, and constrained to a preset angle range to avoid backtracking. The active contour (snake) (Kass et al., 1988) method is proposed by Schmitt et al. (2004), where branch points, terminations and cell bodies are manually defined. Wang et al. (2011) proposed a tracing framework based on a 3D open-curve snake model, which is an upgraded version of the active contour by initializing branching points automatically with snakes colliding. A recursive principal curve tracing (RPCT) that first detects samples on the 1D principal set of intensity function and iteratively traces the principal curve from the given location is proposed by Bas and Erdogmus (2011). Li et al. (2017) proposed a two-stage algorithm SparseTracer using the region-to-region connection method for initial tracing, followed by principal curves estimation to trace the discontinuous neurites. A cylindrical fitting model is introduced in neuTube (Zhao et al., 2011) to sequentially propagate the seed point along the neurite’s principle axis. Ming et al. (2013) used a prediction-and-refinement strategy that is based on the exploration of local neuron structural features. MOST (Wu et al., 2014) simulates blood flow and applies a voxel scooping algorithm (Rodriguez et al., 2009) to trace the centerlines from initial seeds. Huang et al. (2021) optimized this by using the Content-Aware Adaptive Tracing (CAAT) to trace broken neurites. Rivulet (Zhang et al., 2016) and Rivulet2 (Liu et al., 2018c) iteratively use the fourth-order Runge–Kutta algorithm (RK4) for tracking the neuronal arbor from the uncovered furthest potential termini based on the time-crossing map generated by Multi-Stencils Fast Marching. Instead of operating the neuron tracing deterministically, Radojević et al. (2015) and Radojević and Meijering (2017a) proposed methods using Bayesian sequential filtering and Probability Hypothesis Density filtering (PHD) to trace the neuronal structures probabilistically. This approach was further improved by PNR (Radojević and Meijering, 2017b, 2019) and PAT (Skibbe et al., 2019) using Monte Carlo filtering.
digraphs, where each node is a filament in the skeleton extracted from the segmentation map, and the directed edge between two nodes represents the corresponding filaments. These skeleton-based methods perform well on high-quality images, while loops and spurs occur frequently when the image quality is poor.

Tracing through seed points detection and connection is another common framework, which often employs Dijkstra’s algorithm to find the shortest path from a starting seed point to other points (Meijering et al., 2003). The method can be optimized using a discrete deformable curve model to achieve more visually appealing tracks (Peng et al., 2010a). The Fast-Marching Method (FMM) (Sethian, 1999), enhanced by weighted distance, is another algorithm employed to find the minimal path by solving the Eikonal equation for a grid map (Benmansour and Cohen, 2011). ORION (Losavio et al., 2008) detects the soma center points and terminations automatically, and then connects them using FMM. Xie et al. (2010) and Jimenez et al. (2013, 2015) combined seed point detection and shortest-path finding by searching the local intensity maximum and connecting using Dijkstra’s algorithm. Kayasandik et al. (2018) optimized the method by integrating prior information, which assumed the neurite orientation changes in a smooth way, and the candidate seeds are searched in a restricted range to alleviate crossover errors. Turetken et al. (2012, 2013) optimized the seed point detection according to fibrous structure probability and then find the optimal tree by Mixed Integer Program. Basu and Racoceanu (2014) and Basu et al. (2016) employed Gradient Vector Field and FMM to detect critical points and link them based on the speed map. Gala et al. (2014) leveraged active learning to reconnect branches dismantled from the tracing generated by FMM from multiple seed points. Wang et al. (2018, 2020) extracted the seed points using Discrete Morse Theory, followed by a shortest-path approach to generate a tree. The performance of seed point-based methods depends on the reliability of seed point detection, and the trace may deviate from the centerline of fibers.

Several methods use a graph-based over-tracing and pruning framework, where the neuron is firstly over-traced and then pruned to final morphology. The first version of All-Path Pruning (APP1) was proposed by Peng et al. (2011), which builds an over-tracing tree by finding the shortest geodesic paths from the soma location to all foreground voxels using Dijkstra’s algorithm. Redundant nodes are pruned based on the proposed maximal covering minimal-redundant algorithm. APP1 is an orthogonal, substantial derivative of the graph-augmented deformable model (GD), which is a graph-based algorithm that treats every pixel/voxel as a graph vertex and finds the geodesic shortest path between seed points. Different from the bottom-up pruning strategy of APP1, the APP2 algorithm (Xiao and Peng, 2013) accelerates the tracing process through a top-down long-segment-first hierarchical pruning strategy to remove redundant neuronal structures/segments. It also introduced a gray-weighted distance transformation and fast-marching algorithm to improve the robustness and speed. Tang et al. (2017) presented an exhaustive neuron tracing framework, in which the neuron is initially traced by over-tracing and redundant branches pruning, followed by an enhanced iteration method to identify the mis-traced structured. FMST (Yang et al., 2019) combines APP1 and MST by recreating the tree generated by APP1 using the MST.

2.2.2 Global methods

Many global methods extract the skeletons from images and produce a set of unordered skeleton voxels, which are subsequently connected. Cohen et al. (1994) proposed a method of sequential segmentation, skeletonization and graph extraction. Critical points including tips, branch points and crossover points are detected from the skeleton, and connected using the volume seed fill operation by this method. To prevent topology collapse in the skeleton, He et al. (2003) leveraged an adaptive 3D skeletonization algorithm to prevent erosion of skeletons. Wearne et al. (2005) introduced a Rayburst sampling strategy to estimate the branch diameter after image thresholding and skeletonization, also applied tree smoothing and branch points repositioning to optimize the tree. Urban et al. (2006) improved the traditional pipeline by combining Otsu binarization and distance transform-based skeletonization.

Yuan et al. (2009) employed an intensity-weighted Minimal Spanning Tree algorithm to construct the graph from skeleton points generated by eigenanalysis of the Jacobian Matrix and uses a minimum description length principle to filter out the artifacts introduced in the skeletonization step. Basu et al. (2013) and Jin et al. (2019) optimized the misconnections by distance and angle-based estimation of interconnections between putative components generated by Hessian-based neurite detection and skeletonization. De et al. (2016) formulated the tracing process as label propagation on Carlo filtering. Zhang et al. (2018), Dai et al. (2019) and Balaram et al. (2019) reformulated the tracing as a behavior problem and introduced a deep reinforcement learning strategy to guide the tracing process. Athey et al. (2022) connected the broken components traced by the Bayesian appearance imaging model employing a hidden Markov model. Without awareness of global information, local methods are sensitive to noises and inhomogeneous fibers, which may require integration of the global information (Quan et al., 2016) or an additional post-processing step, such as branch merging (Al-Kofahi et al., 2008) or segment connecting (Liu et al., 2016, 2018c; Zhang et al., 2016).

2.2.3 Meta methods

SmartTracing (Chen et al., 2015) introduces a self-learning framework that trains an SVM classifier based on the initial tracing of base tracers, relieving the human intervention of parameter tuning. SmartTracing is a high-level framework that can be applied on top of any base tracers, and can substantially improve their performances. Instead of tracing 3D neuron images directly, TreeMAP (Zhou et al., 2016) reconstructs the 2D projections and then reverse-maps the 2D reconstructions into 3D space, using 3D Virtual Finger techniques (Peng et al., 2014b).

Based on the hypothesis that different tracers perform complementarily on different datasets, ENT (Wang et al., 2017) proposed an ensemble framework combining data perturbation and model selection. Base tracers are applied to trace the images differently
modified, followed by model selection and ensemble. The best re-
construction is then selected as the output.

Axons may have very long projections to their targeting regions,
and sometimes even cross hemispheres. The traversed volumes of
these neurons are as huge as billions of voxels for current microscop-
ic images; thus, their full morphology tracing is intractable for most
tracing algorithms. To address this issue, Zhou et al. (2013b) devel-
oped an automatic 3D neuron tracing method called Neuron
Crawler, which traces a small image block using APP2 first and
propagates to adjacent blocks containing signals connecting to exist-
ing fibers. Reconstructed fibers at the boundary regions (10% in
width) are discarded to avoid false tracing, and the next block is
started from the overlapped region. A subsequent fusion method is
designed to avoid over-tracing and topological errors in the overlap-
ing areas. Neuron Crawler has comparable tracing accuracy with
much lower memory overhead (<10%) than base tracers. Peng et al.
(2017) upgraded the framework and proposed UltraTracer. Similar
to Neuron Crawler, the initial block is reconstructed by a base
tracer, and then the tips close to six boundary faces are detected and
pushed into a tip queue. New blocks are estimated and traced based
on these tips. This process iterates until no tips are left. In addition,
by analyzing the spatial distribution of numerous neuron compart-
ments, prior-based TDAW, which uses adaptive window size for
regions of different densities, is introduced for higher efficiency.
Inspired by UltraTracer, Wang et al. (2018) and Zhao et al. (2020)
adopted similar block-by-block protocols for large-scale image
tracing.

Examples of the three tracing categories are shown in Figure 2b.
As a local method, neuTube may be affected by discontinuous sig-
als, which lead to the missing of fibers. APP2 (global method) is
more robust in this case but may suffer from fiber crossing for inter-

3 Deep-learning enhanced tracing

Deep-learning methods have shown their superior power in com-
puter vision, natural language processing, recommendation, game
playing, etc. Specifically, Convolutional Neural Networks (CNNs)
continue to dominate most computer vision tasks and also boost
neuron tracing substantially, among which 3D Visualization-Assisted
Analysis (Va3D) is the most frequently adopted (Table 1).

3.1 Neuron segmentation

An effective solution to remove noises and bypass inhomogeneous
signals is segmentation prior to tracing. Neuron segmentation is
conventionally conducted by thresholding, which achieves good per-
formance in high-quality images but is less effective for noisy
images. The neural network is more adept in this case. The encoder-
decoder architecture of U-Net (Çiçek et al., 2016; Ronneberger
et al., 2015) is well suited to this task and is thus gaining popularity.

While most of these methods share a similar framework, they differ
in the subtle design of architectures, training policy and supervision.

Li et al. (2017) is one of the pioneering works utilizing 3D CNN
in neuron segmentation by integrating an Inception network
(Szegedy et al., 2015) with different kernel sizes and residual struc-
tures (He et al., 2016) to learn multiscale representation and allevi-
ate the gradient vanishing problem.

The vanilla 3D CNN model is of great complexity in both mem-
ory and time usage, thus several methods are proposed to relieve the
requirement of memory and computing capacity. Liu et al. (2017)
replaced 3D images with 2D projections using a Triple-Crossing
2.5D CNN. Inspired by the development of transfer learning
(Hinton et al., 2015; Kong et al., 2018), a knowledge distillation
framework is adopted in Wang et al. (2019b), in which the large
teacher model is used to guide the learning of the small student
model to facilitate its training and representation. A method based
on the ray-shooting model (Liu et al., 2018a) and dual channel bidir-
ectional LSTM is proposed by Jiang et al. (2020), which converts
the 3D image-segmentation task into multiple 1D sequence segmen-
tation tasks, where voxel-intensities and boundary-response features
of nodes extracted by the ray-shooting model are leveraged to pre-
dict the foreground probability of nodes.

Advanced neural network building blocks, such as feature fusion
and reasoning modules have demonstrated their power in other
fields, and are also adopted for neuron segmentation. The 3D U-Net
with multiscale kernels fusion and spatial features fusion is proposed in
Wang et al. (2019a) to learn different scales of neuronal structure
features. Li and Shen (2020) introduced dilated convolutions (Chen
et al., 2018) and spatial pyramid pooling layers (He et al., 2015) to
capture the global information of the image. Inspired by the great
success of multi-head self-attention-based Transformer architectures
(Yaswani et al., 2017) for computer vision tasks (Dosovitskiy et al.,
2020), Wu et al. (2021), Pan et al. (2022) and Zhang et al. (2022)
introduced Transformer into tubular structure segmentation by con-
verting the image features into 1D sequence and modeling both the
local contextual information and the long-range dependencies.

The fibrous tree structure of neurons is highly specified, and this
domain-specific knowledge is also leveraged in improving segmenta-
tion performance. Liu et al. (2018b) designed anisotropic convolu-
tion kernels to model the anisotropy of image stacks. He et al. (2020)
optimized the segmentation by removing irrelevant segments, and
and neuronal structure detection into one model to generate con-
tinuous segments. A class-aware voxel-wise simple Siamese (Chen
and He, 2021) learning paradigm is designed to better learn the lat-
ent information for voxels of 3D neuron-image stacks. Li and Shen
(2022) proposed a 3D WaveUNet to denoise the 3D neuron image
and maintain the structure of nerve fibers. Wang et al. (2022) gener-
ated the neuronal centerline by learning latent neuron structure dis-
tribution using features extracted by the 3D tubular flux model.

The above methods require manual annotated high-quality gold
standards, which are difficult to acquire. Several methods have been
tried to alleviate the data requirement. Liu et al. (2018b) generated
syntetic center lines of neuronal structures as labels for subsequent
training by applying the Scale-Space Distance Transform to the
image. Zhao et al. (2019) proposed a progressive framework that
combines 3D CNN and traditional neuron tracing algorithms. The
pseudo labels are generated by conventional tracing methods and
then used to train a CNN model. The procedure is iterated until the
converging of the segmentation. Huang et al. (2020) produced train-
ing labels by automatic tracing methods and then refines them by
region-growing and skeletonization methods without manual label-
ing. Horlet et al. (2020) pre-trained the encoder of 3D U-Net
by predicting the correct order of permuted slices in a self-
supervised way and employed an information-weighted loss func-
tion to alleviate the penalization of poor performance on images
with few axons. Liu et al. (2022) proposed a two-stage image simu-
lation method to generate high-quality image-segmentation pairs for
training segmentation networks. In the first stage, prior knowledge
is incorporated into a simple model to generate draft image stacks
with voxel-wise labels. In the second stage, an MPGAN is applied to adjust the stacks.

3.2 Critical point detection

The critical points of neuron structures, including tips, bifurcations and pseudo-crossing points, are topology determinants and are frequently used in graph- or seed-based neuron tracing algorithms.

Many deep-learning-based methods have recently been applied in critical point detection tasks (Chen et al., 2020; Guo et al., 2021; Tan et al., 2019). To improve the efficiency of 3D CNNs-based applications on the 3D volumetric image, Tan et al. (2019) proposed a two-level cascaded framework to detect branch points in 3D neuronal images. Candidate regions containing branching points are detected by 3D U-Net. A Multi-View CNN (Su et al., 2015) is used to identify the true branch points from false positives (FPs). Chen et al. (2020) applied a 2D multi-stream model to classify the candidates selected on the neuronal skeleton into termination, branching point, crossover point or non-critical point on the basis of features extracted by spherical-patches extraction. Based on these results, a Crossover Structure Separation (CSS) method is presented by Guo et al. (2021) to separate the crossover structures. The detected crossover fibers are deformed and separated based on intensity distribution and the angle between crossover fibers in the CSS method.

4 Single neuron tracing at whole-brain level

Human brains contain about 86 billion neurons, including large numbers of cross-hemispheric long-projection neurons. The mouse brain is an ideal, tradeoff model for studying human brains. Although neurons are clearly identifiable in sparsely labeled mouse brains, the packaged and intertwined neurites cannot be well reconstructed yet by fully automatic methods in high quality. The majority of mammalian neurons traced were still produced in semi-automatic ways. There are only thousands of high-quality mammalian full reconstructions.

Figure 1 shows a few recent eye-catching studies in this field. The MouseLight project (Winnubst et al., 2019) generated 1000 or so mouse neurons in their full morphology at a submicron scale from two-photon microscopic images, which adopted a semi-automated pipeline to accelerate the reconstruction. The pipeline starts with neurites identification using a pre-trained classifier, and then the derived probability map from the classifier is thresholded, skeletonized and fitted with line segments. To avoid possible crossover structures, all segments are broken at the branching points and crossing points, and connected by annotators. A 3D visualization and annotation platform (Janelia Workstation) (Murphy et al., 2014) is developed to facilitate this procedure by integrating various functionalities including visualization, annotation and proofreading. Peng et al. (2021) reconstructed 1741 morphologically diverse single neurons from multiple fluorescence Micro-Optical Section Tomography (MOST) (Gong et al., 2013)-imaged mouse brains under the BRAIN Initiative Cell Census Network (Ecker et al., 2017) initiative. The reconstructions were accomplished in a semi-automatic way (a key summary of the protocol is shown in Fig. 3), by integrating several intelligent pinpointing algorithms, from points to line segments. The protocol includes two progressive levels of reconstructions: level L1 accomplishes ballpark tracing including the soma location, whole dendritic structure and sketch of the axon, which are mainly produced by a combination of automatic tracing and manual modification. L1 reconstruction answers the neuronal location and targeting regions for biological information. The higher level L2 reconstruction further finishes all the traceable axonal signals. L2 reconstruction supplies the projection strength in every target brain region on the L1 basis. In this study, Virtual Finger (Peng et al., 2014b) was used for fast annotation of fibers by reverse-mapping the annotator’s inputs in the 2D plane of a computer screen to the 3D space. To facilitate neuron tracing on terabyte-scale images, Vaa3D-TeraFly (Bria et al., 2015, 2018) was used to visualize and manipulate the ultra-large-scale images. TeraVR (Wang et al., 2019c), an open-source virtual reality annotation system, was implemented and made morphology visualization and annotation more precisely from the first-person point of view. All the tools were implemented on the open-source Vaa3D (Peng et al., 2010b, 2014a), which is a cross-platform software for neuroinformatics and brain informatics research.

Gao et al. (2022) generated axonal tracing of 6337 neurons in the mouse prefrontal cortex based on fMOST images. A software package, Fast Neurite Tracer (FNT), was developed for neuron tracing and analysis. Large-scale images are firstly split into small cubes similar to Vaa3D-TeraFly blocks. The FNT-tracer package is then used in a semi-automatic style in three steps: finding a putative path by Dijkstra’s algorithm between the start position and target position located by the annotator, similar to GD (Peng et al., 2010b), evaluating the path by comparing it to real fiber signals of neuron structure.

5 Bench testing: datasets and metrics

5.1 Datasets

The conventional way to evaluate the performance of an automatic algorithm is to compare its reconstructions with corresponding gold standards, which is similar to the ground truth in machine learning. In general, a loosely defined ‘gold standard’ dataset contains expert-annotated reconstructions, which are supposed to be confident to some degree. As shown in Figure 1, a centralized public neuron structure database NeuroMorpho.Org (Ascoli et al., 2007) is to date the largest neuron morphology repository containing 185 949 morphologies contributed from over 900 research labs worldwide. Several other databases also archived a considerable number of high-quality reconstructions, e.g. FlyCircuits (Chiang et al., 2011) and FlyLight (Jenett et al., 2012) contain over 20 000 reconstructions and primary neuronal images in Drosophila brain. Researchers at Allen Institute released In Vitro Single Cell Characterization database for human and mouse neurons (Wang et al., 2020), which integrates electrophysiological, morphological, histological, transcriptomic data etc. The NIH Brain Image Library database (Benninger et al., 2020) archived over 6000 brain image entries of various organisms and modalities. These databases can be conveniently accessed for sharing, mining and interacting through their web interface. About 400 high-quality neuronal images and their corresponding gold standards are maintained in DIADEM (Brown et al., 2011) and BigNeuron project (Peng et al., 2015), which contains a number of species (e.g. fruitfly, silk moth, dragonfly, zebrafish, Xenopus, chick, mouse, rat and human) and anatomical regions (cortical and subcortical areas, retina and peripheral nervous system). Synthetic data are also a good starting point dataset for prototyping new algorithms due to their correctness and simplicity. These synthetic neuronal images are usually generated according to predefined morphologies (Radujević and Meijering, 2019; Vasilkoski and Stepanyants, 2009).

The algorithms can be bench tested according to the similarity of reconstructions to gold standards and calibrated by metrics.

5.2 Distance metrics

Distance metrics are widely employed, by calculating the node-wise minimal distances for all nodes in subject morphology to the gold standard. Practically, the two morphologies should be uniformly resampled to guarantee the distances between two connecting nodes are of the same spatial distance (SD). SD, one of the most commonly used metrics, is computed by averaging the reciprocal minimal Euclidean distances of nodes in two morphologies. Substantial spatial distance is defined as the average SD of nodes with SDs greater than some distance threshold, usually two voxels, to remove the positional deviations. The percentile of different structures (Peng et al., 2011) is also a frequently used metric, in which the different structure refers to nodes that have a minimal distance larger than the defined distance threshold. On top of these distance metrics, statistical metrics precision, recall and F1-score are also used (Liu et al., 2018c). A node is regarded as a true positive (TP) if at least one node in the gold standard has a distance of fewer than several voxels.
Precision is computed as

\[\text{Precision} = \frac{TP}{TP + FP} \]

while the recall is defined as

\[\text{Recall} = \frac{TP}{TP + FN} \]

The F1-score balances precision and recall as

\[F_1 = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \]

Distance metrics evaluate the reconstructions using geometric distance but ignore the connectivity of the morphology, thus insensitive to the topology errors.

5.3 Topology metrics

Some topology metrics rely on the matching of topological components, including paths and subgraphs. The DIADEM metric (Gillette et al., 2011) was the default metric in the DIADEM challenge. It is widely used to measure the morphological similarity between two morphologies by matching the locations of bifurcations, terminations and the topology between them. To compute the correspondence of the critical points between the gold standard and the subject reconstruction, the corresponding node in the automatic tracing is searched in a cylindrical region around the node for each node in the gold standard. Path length error is calculated to determine the matches between the gold standard paths and the traced paths, based on geometric deviations between them. Path2Path (Basu et al., 2011) is a path matching method, which decomposes a neuron hierarchically into paths and calculates the minimum geometric deformation from paths in one neuron to the other. The path deformation energy is estimated as the SD of the path between two neurons, which combines hierarchical path level and path concurrence. NetMets (Mayerich et al., 2012) compares both the geometry and connectivity of the two traces using four normalized values based on seed points mapping and path matching: geometric FN rate, geometric FP rate, connective FN rate and connective FP rate.

Instead of measuring the morphological similarity through component matching, some metrics calculate the topological features of each neuron and map them into subspace as a feature vector or matrix. Li et al. (2017) proposed a topological persistence-based vectorization framework, which encodes a neuron into a 1D feature vector. Ljungquist et al. (2022) optimized the method by combining the morphometrical characteristics calculated by L-Measure (Scorcioni et al., 2008), followed by a maximum likelihood-based automatic dimensionality selection using principal component analysis. Topological Morphology Descriptor (Kanari et al., 2018) maps each branch of the morphology to a lifetime line connecting the start and end points of the branch. The lines are arranged based on some ordering function, resulting in a unique ‘barcode’ signature.

In addition to the metrics mentioned above, metrics for vessel-like structure evaluation can also be adapted to neurons. For instance, Mut et al. (2014) employed the distribution of morphological characteristics for morphological similarity estimation. Another three metrics, OPT-P, OPT-J and OPT-G were proposed (Citraro et al., 2020) for road evaluation, which are based on path, junction and subgraph, respectively.

6 Conclusion

Large-scale neuron morphologies are critical for delineating the mechanism of brain function, neuronal types and circuit connectivity, which call for reconstruction in a fully automatic way. The dense packing of neurite arbors, noisy and inhomogeneous signals in current light microscopic images make the automatic methods hard to produce accurate tracing. Deep-learning methods can improve accuracy and robustness, but it still has a long way to go. Given the imperfect neuronal images, one practical way might be to...
incorporate as much domain knowledge of neuron morphology, either from existing reconstructions or biological insights, and tracing progressively and comprehensively like an expert.

Mammals including mice and non-human primates are good model animals for human brain studies because of their functional conservation and much easier feasibility. Several frameworks, e.g., Neuron Crawler and UltraTracer, were proposed to tackle the tracing of long-projection neurons that widely exist in mammalian brains. These frameworks share a similar block-by-block design; however, they could not produce quantitative analyses accurately enough. All complete neuron models for mammalian whole brains were generated semi-automatically to date. To foster the development of neuron tracing algorithms, various initiatives including DIADEM and BigNeuron were organized. Standardized metrics and datasets were provided for critical benchmarking and comparing in DIADEM and BigNeuron.

Except for the tracing methods, cloud platforms and tools, which are applicable for ultra-scale images and metadata visualization, collaborative manipulation and interactive analyses are equally important for large-scale morphology generation. These platforms could provide gold standards resources and ground truth for tracing algorithms tracing and quality control of reconstructions. Existing platforms and tools are not well prepared for such ultra-scale neuronal data processing and community collaboration is in demand.

Nevertheless, compared with 10 years ago, we believe the proposed high-throughput neuron reconstruction has greatly evolved and could be achieved in the near future. With the rapid development of imaging and automation, we believe that neuron tracing from light microscopy images can be of much higher quality in the next decade.

Author contributions

Y.L. and L.L. designed the overall framework, drew the figures and revised the manuscript. G.W. collected most of the materials and drafted the first version. G.A.A. assisted with the overall framework and edited the manuscript. J.Z. and L.L. collaborated in whole-brain imaging collection.

Funding

This work was supported by Southeast University (SEU) to support informatics data management and analysis pipeline of full neuronal reconstruction platform. This work was also supported by a MOST (China) Brain Research Project, ‘Mammalian Whole Brain Mesoscopic Stereotaxic 3D Atlas’ [2022ZD0205200 and 2022ZD0205204]. G.A.A. acknowledges funding from NIH grants [R01NS6000, RF1MH128693 and R01NS6082].

Conflict of Interest: none declared.

Acknowledgements

We thank Zhiyi Yun for preparing some visualization.

References

Acciai,L. et al. (2016) Automated neuron tracing methods: an updated account. Neuroinformatics, 14, 353–367.

Al-Kofahi,Y.,[2002] Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE Trans. Inf. Technol. Biomed., 6, 171–187.

Al-Kofahi,Y.,[2008] Improved detection of branching points in algorithms for automated neuron tracing from 3D confocal images. Cytometry A, 73, 36–43.

Ascoli,G.A. et al. (2007) NeuroMorpho.Org: a central resource for neuronal morphologies. J. Neurosci., 27, 9247–9258.

Athey,T.L. et al. (2022) Hidden Markov modeling for maximum probability neuron reconstruction. Commun. Biol., 5, 1–11.

Ayward,S.R. and Bullitt,E. (2002) Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging, 21, 61–75.
Neuron tracing from light microscopy images

Ecker,J.R. et al. (2017) The BRAIN initiative cell census consortium: lessons learned toward generating a comprehensive brain cell atlas. *Neuron*, 96, 542–557.

Frangi,A.F. et al. (1998) Multiscale vessel enhancement filtering. In: Wells,W.M. et al. (eds) *Medical Image Computing and Computer-Assisted Intervention — MICCAI’98*, Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 130–137.

Gala,R. et al. (2014) Active learning of neuron morphology for accurate auto-
tracing of neurites. *Front. Neuroanat.*, 8, 37.

Gao,L. et al. (2019) Multiscale vessel enhancement filtering. In: Wells,W.M. et al. (eds) *Medical Image Computing and Computer-Assisted Intervention — MICCAI’19*, Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 350–358.

Guo,S. et al. (2019) Centerline extraction. In: Martel,A.L. (eds) *Introduction to the Analysis of Neuronal Morphology*. *IEEE Trans. Biomed. Eng.*, 12, 22–31.

He,K. et al. (2020) Active learning of neuron morphology for accurate autotracing of neurites. *Front. Neuroanat.*, 8, 37.

Hinton,G. et al. (2012) A topological representation of branching neuronal structures of neural morphology. *Neuroinformatics*, 1, 22–31.

Huang,Q. et al. (2012) SparseTracer: the reconstruction of discontinuous neuronal morphology in noisy images. *Neuroinformatics*, 15, 133–149.

Li,S. et al. (2020) Brain-wide shape reconstruction of a traced neuron using the convex image segmentation method. *Bioinformatics*, 18, 199–218.

Li,Y. et al. (2017) Metrics for comparing neuronal tree shapes based on persistent homology. *PLoS One*, 12, e0182184.

Li,Q. and Shen,L. (2020) 3D neuron reconstruction in tangled neuronal image with deep networks. *IEEE Trans. Med. Imaging*, 39, 425–435.

Liu,M. et al. (2018a) 3D neuron tip detection in volumetric microscopy images using an adaptive ray-shooting model. *Pattern Recognit.*, 75, 263–271.

Liu,M. et al. (2018b) Improved V-Net based image segmentation for 3D neuron reconstruction. In: *2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)*. pp. 443–448. IEEE, Madrid, Spain.

Liu,S. et al. (2016) Rivalnet: 3D neuron morphology tracing with iterative back-tracking. *Bioinformatics*, 14, 387–401.

Liu,S. et al. (2017) Triple-crossing 2D convolutional neural network for detecting neuronal arbours in 3D microscopic images. In: *International Workshop on Machine Learning in Medical Imaging*, pp. 185–193. Springer.

Liu,S. et al. (2018c) Automated 3-D neuron tracing with precise branch tracing and confidence controlled back tracking. *IEEE Trans. Med. Imaging*, 37, 2441–2452.

Ljungquist,B. et al. (2022) Large scale similarity search across digital reconstructions of neuronal morphology. *Neurosci. Res.*, 181, 39–45.

Lusario,R.E. et al. (2008) Live neuron morphology automatically reconstructed from multiphoton and confocal imaging data. *J. Neurosci.*, 100, 2422–2442.

Mayerich,D. et al. (2012) NetMets: software for quantifying and visualizing errors in biological network segmentation. *BMC Bioinformatics*, 13, 1–19.

Meijering,E. et al. (2003) A novel approach to neurite tracing in fluorescence microscopy images. In: *SIP*, pp. 491–495.

Meijering,E. (2010) Neuron tracing in perspective. *Cytometry A*, 77, 693–704.

Ming,X. et al. (2013) Rapid reconstruction of 3D neuronal morphology from light microscopy images with augmented rayburst sampling. *PLoS One*, 8, e84557.

Mukherjee,S. and Acton,S.T. (2015) Oriented filters for vessel contrast enhancement with local directional evidence. In: *2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI)*. pp. 503–506. IEEE.

Mukherjee,S. et al. (2014) Tubularity flow field—a technique for automatic neuron segmentation. *IEEE Trans. Image Process.*, 24, 374–389.

Murphy,S. et al. (2014) The Janelia workspace for neuroscience. *Keystone Big Data Biol.*, 341, 342.

Mut,F. et al. (2014) Morphometric, geographic, and territorial characterization of brain arterial trees: characterization of brain arterial trees. *Int. J. Numer. Methods Biomed. Eng.*, 30, 755–766.

Nanda,S. et al. (2018) Design and implementation of multi-signal and time-varying neuronal reconstructions. *Sci. Data*, 5, 170207.

Pan,C. et al. (2022) Deep 3D vessel segmentation based on cross transformer network.

Peng,H. et al. (2010a) Automatic reconstruction of 3D neuron structures using a graph-augmented deformable model. *Bioinformatics*, 26, 138–146.

Peng,H. et al. (2010b) V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. *Nat. Biotechnol.*, 28, 348–353.

Peng,H. et al. (2011) Automatic 3D neuron tracing using all-path pruning. *Bioinformatics*, 27, 1239–1247.

Peng,H. et al. (2014a) Extensible visualization and analysis for multidimensional images using Vaa3D. *Nat. Protoc.*, 9, 193–208.

Peng,H. et al. (2014b) Virtual finger boosts three-dimensional imaging and microscopy as well as terabyte volume image visualization and analysis. *Nat. Commun.*, 5, 4342.

Peng,H. et al. (2015) BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. *Neuron*, 87, 232–256.

Peng,H. et al. (2017) Automatic tracing of ultra-volumes of neuronal images. *Nat. Methods*, 14, 332–333.

Peng,H. et al. (2021) Morphological diversity of single neurons in molecularly defined cell types. *Nature*, 598, 174–181.
Zhao, J. et al. (2020) Neuronal population reconstruction from ultra-scale optical microscopy images via progressive learning. IEEE Trans. Med. Imaging, 39, 4034–4046.

Zhao, T. et al. (2011) Automated reconstruction of neuronal morphology based on local geometrical and global structural models. Neuroinformatics, 9, 247–261.

Zhou, H. et al. (2022) Super-resolution segmentation network for reconstruction of packed neurites. Neuroinformatics, 20, 1155–1167.

Zhou, Z. et al. (2015a) Adaptive image enhancement for tracing 3D morphologies of neurons and brain vasculatures. Neuroinformatics, 13, 153–166.

Zhou, Z. et al. (2015b) Neuron crawler: an automatic tracing algorithm for very large neuron images. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 870–874.

Zhou, Z. et al. (2016) TReMAP: automatic 3D neuron reconstruction based on tracing, reverse mapping and assembling of 2D projections. Neuroinformatics, 14, 41–50.

Zhou, Z. et al. (2018) DeepNeuron: an open deep learning toolbox for neuron tracing. Brain Inf., 5, 3.