Upper Bounds and Extreme Results for Conflict-free Vertex-connection Number

Meng Ji1,*, Xueliang Li2,3 and Ingo Schiermeyer4

1College of Mathematical Sciences, Tianjin Normal University, Tianjin, China
2Center for Combinatorics and LPMC, Nankai University, Tianjin, China
3School of Mathematics and Statistics, Qinghai Normal University, Xining, China
4Institut fü'r Diskrete Mathematik und Algebra, Technische Universität Bergakademie Freiberg, 09596 Freiberg, Germany

*Corresponding author email: mji@tjnu.edu.cn

Abstract. A path of a vertex-colored graph is conflict-free path, if there exists a color used only on one of its vertices; a vertex-colored graph is conflict-free vertex-connected, if there is a conflict-free path between each pair of distinct vertices of the graph. For a connected graph G, the minimum number of colors required to make G conflict-free vertex-connected is conflict-free vertex-connection number of G, denoted by $vcfc(G)$. In this paper, we first showed an upper bound of $vcfc(G)$ for the general graph by structural method. And then, we gave a partial solution to the conjecture on the conflict-free vertex-connection number by contradiction, posed by Doan and Schiermeyer in [Conflict-free vertex connection number at most 3 and size of graphs, Discuss. Math. Graph Theory].

Keywords: Conflict-free vertex-connection number; Upper bounds; Size of a graph.

AMS subject classification 2010: 05C15, 05C40.

1. Introduction

All graphs mentioned in this paper are simple, undirected and finite. We follow Bondy and Murty’s book [4] for undefined notation and terminology. A block of a graph is a maximal connected subgraph of G that has no cut-vertex. Then a block of a graph is either a cut-edge, called a trivial block, or a maximal 2-connected subgraph, called a nontrivial block.

Even et al. in [14] introduced the concept of hypergraph conflict-free coloring. The coloring was motivated to solve the problem of assigning frequencies to different base stations in cellular networks. There are a number of base stations and clients in the network. Each base station is a vertex in the hypergraph which needs to be allocated to a frequency. For each client, in order to make connection with one of the base station in the range, there must be at least one base station with a unique frequency in the range for fear of interference. Unnecessarily, many different frequencies can be expensive, so this situation may be converted to a conflict-free vertex-coloring problem of a hypergraph seeking for the minimum number of colors which is defined as the conflict-free chromatic number of the hypergraph. Scholars have studied various geometric hypergraphs, more information for the conflict-free coloring can be seen from the papers [3, 9, 10, 23].

As an important deformation and extension of conflict-free coloring of hyper-graphs, conflict-free coloring on neighborhoods [1, 15, 16, 21, 22] and conflict-free (vertex-)connection coloring of simple graphs are introduced and widely developed, which are correspond to the conflict-free coloring of special hypergraphs. Czap et al. [11] introduced the concept of conflict-free connection of the graph...
inspired by the theory of conflict-free coloring of the hypergraph by Even et al. in [14]. A path in an edge-colored graph \(G \) is called conflict-free if there is a color appearing only once on the path. The graph \(G \) is called conflict-free connected if there is a conflict-free path between each pair of distinct vertices of \(G \). For a connected graph \(G \), the minimum number of colors required to make \(G \) conflict-free connected is called the conflict-free connection number of \(G \), denoted by \(\text{cfc}(G) \). Up to now, there have shown the basic characterizations, the bounds of \(\text{cfc}(G) \) for the graph \(G \) in [5, 6, 7, 12], the hardness was also showed that deciding the \(\text{vcfc}(G) \) is NP-hard for the graph \(G \) in [17, 18].

As a natural counterpart of the conflict-free connection, Li et al. in [19] introduced the concept of conflict-free vertex-connection of graphs. A path in a vertex-colored graph is called conflict-free if there is a color appearing on only one vertex of the path. A vertex-colored graph is called conflict-free vertex-connected if there is a conflict-free path between every pair of distinct vertices of \(G \). For a connected graph \(G \), the minimum number of colors required to make \(G \) conflict-free vertex-connected is called the conflict-free vertex-connection number of \(G \), denoted by \(\text{vcfc}(G) \). They characterized some graphs with \(\text{vcfc}(G) = 3 \) and general upper bounds in [19], and Li and Wu showed upper bound of the conflict-free vertex-connection number for a connected graph \(G \) is the conflict-free vertex-connection number of its spanning tree in [20]. Doan and Schiermeyer showed an extreme result for conflict-free vertex-connection number at most 3 and posed a conjecture in [13].

Conjecture 1.1 [13] Let \(k \geq 3 \) be an integer, and \(G \) be a connected graph of order \(n \). If \(|E(G)| \geq \left(n - \left(\frac{2^k - 2}{2} \right) \right) + 2k - 1 \), then \(\text{vcfc}(G) \leq k \).

Li and Wu [20] show an upper bound of \(G \) that the conflict-free vertex-connection number of the connected graph \(G \) with order \(n \) is no more than the conflict-free vertex-connection number of \(P_n \).

Lemma 1.2 [19] If \(P_n \) is a path of order \(n \), then \(\text{vcfc}(P_n) = \lceil \log_2(n+1) \rceil \).

Lemma 1.3 [20] For a connected graph \(G \) of order \(n \), \(\text{vcfc}(G) \leq \text{vcfc}(P_n) \).

Now we give another one upper bound for \(\text{vcfc}(G) \) using the number of cut-vertices and the number of blocks.

Theorem 1.4 Let \(G \) be a connected graph with \(t \) cut-vertices. Then \(\text{vcfc}(G) \leq \lceil \log_2(t+1) \rceil + 1 \).

From Theorem 1.4 we have the following result.

Theorem 1.5 Let \(k \geq 3 \) be a positive integer, and \(G \) be a connected graph of order \(n \). If \(|E(G)| \geq \left(n - \left(\frac{2^k - 2}{2} \right) \right) + 2k - 1 \) and \(1 > 2^k \left(1 - \left(\frac{1}{2} \right)^{\frac{k}{2}} \right) \) for \(0 < \varepsilon < 1 \), then \(\text{vcfc}(G) \leq k \).

In addition, we also need another two auxiliary lemmas to show our theorems.

Lemma 1.6 Let \(G \) be a 2-connected graph and \(x \) be a vertex of \(G \). Then for any two vertices \(u \) and \(v \) in \(G \), there is a \(u-v \) path containing the vertex \(x \).

Lemma 1.7 [13] Let \(t \) be an integer and \(G \) be a connected graph. If \(G \) contains \(t \) cut-vertices, then \(|E(G)| \leq \left(\frac{n-t}{2} \right) + t \).

2. The Proof of Theorems

For a connected graph \(G \) of order \(n \) with \(t \) cut-vertices and \(s \) leaves, if \(t + s = n \), then it is called a cactus-like graph.

Proof of Theorem 1.4. Let \(B_1, B_2, ..., B_k \) be the blocks of \(G \). For each nontrivial block \(B_i \) with \(i \in [k] \), if there is only one cut-vertex in \(B_i \), then we retain the cut-vertex and one neighbor of it in \(B_i \); if there are exactly two cut-vertices \(v_1, v_2 \) in \(B_i \), then we replace \(B_i \) by \(v_1v_2 \); if there are at least \(r \geq 3 \) cut-vertices in \(B_i \), then we construct the structure \(R \): if there is a path, in which each internal vertex is not cut-vertex, between each pair of two cut-vertices, then we replace the path by an edge. Thus we replace \(B_k \) by \(R \); retain the trivial block. Clearly, the resulting graph is a cactus-like graph, denoted by \(H_G \). Let \(H_0 \) contain \(s \) leaves. We call \(H_0 \) a cactus-like graph from \(G \).

We denote by \(H \) the resulting graph by deleting \(s \) leaves of \(H_0 \). It follows that \(\text{vcfc}(H) \leq \lceil \log_2(t+1) \rceil \) by Lemma 1.2 and Lemma 1.3. Let \(TH \) be a spanning tree of \(H \). Clearly, there exists a conflict-free vertex-connection coloring \(c^* : V(TH) \rightarrow \{ \lceil \log_2(t+1) \rceil \} \) for the tree \(T_n \), thus there always exists a unique coloring in the connected subtree of \(T_n \). Now we first define a coloring \(c : V(H_0) \rightarrow \{ \lceil \log_2(t+1) \rceil + 1 \} \) of \(H_0 \) by assigning the vertices of \(V(H) \) with the coloring \(c^* \) to make it conflict-free vertex-connected and assigning the \(s \) leaves with one fresh color \(\lceil \log_2(t+1) \rceil + 1 \). We can check
easily that the coloring is a conflict-free vertex-coloring. Hence, \(\text{vcfc}(H_0) \leq \log_2(t + 1) + 1\). Next, we define a coloring \(c'\) of \(G\): \(c'(v) = c(v)\) for each cut-vertex \(v \in V(G)\); \(c'(v) = \lceil \log_2(t + 1) \rceil + 1\) for the remaining vertices. For each pair of vertices contained in the same block in \(G\), since there is a unique color used on some cut-vertex \(x\) in the block by the coloring, there is a conflict-free path containing \(x\) assigned by a unique color by Lemma 1.6. For each pair of vertices \(u\) and \(v\) contained in two distinct blocks in \(G\), suppose that \(y_1\) is one cut-vertex contained in the block containing \(u\) and \(y_l\) is one cut-vertex contained in the block containing \(v\). Clearly, there is conflict-free path by the coloring of \(H_G\). Assume that there are \(l\) cut-vertices, say \(y_1, y_2, \ldots, y_l\) in order, contained in the path connecting \(y_1\) and \(y_l\). Without loss of generality, let \(y_i\) be the cut-vertex assigned by the unique color in the conflict-free path between \(y_1\) and \(y_l\). Clearly, there is also a conflict-free path containing \(y_i\). Hence, \(\text{vcfc}(G) \leq \lceil \log_2(t + 1) \rceil + 1\).

Proof of Theorem 1.5. Suppose, on the contrary, that there is a connected graph \(G\) such that \(|E(G)| \geq \binom{n-(2^k-2)}{2} + 2^k - 1\), but \(\text{vcfc}(G) \geq k + 1\). Assume that \(G\) has \(t\) cut-vertices. By Theorem 1.4, we have \(\text{vcfc}(G) \leq \lceil \log_2(t + 1) \rceil + 1\). Thus, \(k \leq \lceil \log_2(t + 1) \rceil\).

If \(\lceil \log_2(t + 1) \rceil = \log_2(t + 1)\), then we have \(2^k - 1 \leq t\). Thus, \(\binom{n-(2^k-1)}{2} + 2^k - 1\). On the other hand, we have that \(|E(G)| \leq \binom{n}{2} + t\) by Lemma 1.7. Hence, \(|E(G)| \leq \binom{n-(2^k-1)}{2} + 2^k - 1\) contradicts to \(|E(G)| \geq \binom{n-(2^k-2)}{2} + 2^k - 1\).

If \(\lceil \log_2(t + 1) \rceil = \log_2(t + 1) + \varepsilon\), where \(0 < \varepsilon < 1\), then it is clear to see that \(2^{k-\varepsilon} - 1 < t\). Thus, \(\binom{n}{2} + t \leq \binom{n-(2^k-\varepsilon-1)}{2} + 2^k - 1\). However, \(|E(G)| \leq \binom{n}{2} + t\) by Lemma 1.7. Hence, \(|E(G)| \leq \binom{n-(2^k-\varepsilon-1)}{2} + 2^k - 1\) \(1 > 2^k \left(1 - \left(\frac{1}{2}\right)^k\right)\), which again contradicts to \(|E(G)| \geq \binom{n-(2^k-2)}{2} + 2^k - 1\).

3. Conclusion
We have showed that Theorem 1.5 using a new upper bound of conflict-free vertex-connection number by a nice structure. It illustrated that this method is worked. In the future work, we will prove the conjecture by more structure.

Acknowledgement
This work was supported by Doctoral research project of Tianjin Normal University(52XB2111), NSFCNo.11871034, 11531011 and NSFQHNo.2017-ZJ-790.

References
[1] Z. Abel, V. Alvarez, E. D. Demaine, S. P. Fekete, A. Gour, A. Hesterberg, P. Keldenich, and C. Scheffer, Conflict-Free Coloring of Graphs, SIAM J. Discrete Math. 32 (4) (2018), 2675-2702.
[2] J. Akiyama, F. Harary, A graph and its complement with specified properties I: Connectivity, J. Math. & Math. Sci. 2(2)(1979), 223-228.
[3] A. Bar-Noy, P. Cheilaris, S. Olonetsky S. Smorodinsky, Online Conflict-Free Colouring for Hypergraphs, Comb. Probab. Comput. 19 (4) (2010), 493-516.
[4] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[5] H. Chang, T.D. Doan, Z. Huang, S. Jendrol’, X. Li, I. Schiermeyer, Graphs with conflict-free connection number two, Graphs Combin. 34 (6) (2018), 1553-1563.
[6] H. Chang, Z. Huang, X. Li, Y. Mao, H. Zhao, On conflict-free connection of graphs, Discrete Appl. Math. 255(2019), 167-182.
[7] H. Chang, M. Ji, X. Li, J. Zhang, Conflict-free connection of trees. J Comb. Optim. (2018), doi.org/10.1007/s10878-018-0363-x.
[8] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohemica 133 (1) (2008), 85-98.
[9] K. Chen, A. Fiat, H. Kaplan, M. Levy, J. Matouek, E. Mossel, J. Pach, M. Sharir, S. Smorodinsky, U. Wagner, E. Welzl, Online Conflict-Free Coloring for Intervals, SIAM J. Comput. 36 (5) (2007), 1342-1359.

[10] K. Chen, H. Kaplan, M. Sharir, Online conflict-free coloring for halfplanes, congruent disks, and axis-parallel rectangles, ACM Trans. Algorithms 5 (2) (2009), 16:1-16:24.

[11] J. Czap, S. Jendrol’, J. Valiska, Conflict-free connection of graphs, Discuss. Math. Graph Theory 38 (4) (2018), 911-920.

[12] B. Deng, W. Li, X. Li, Y. Mao, H. Zhao, Conflict-free connection numbers of line graphs, Lecture Notes in Computer Science 10627, 141-151. Proc. COCOA 2017, Shanghai, China.

[13] T.D. Doan, I. Schiermeyer, Conflict-Free Vertex Connection Number At Most 3 and Size of Graphs. Discuss. Math. Graph Theory, 41 (2021), 617-632.

[14] G. Even, Z. Lotker, D. Ron, S. Smorodinsky, Conflict-free coloring of simple geometric regions with applications to frequency assignment in cellular networks, SIAM J. Comput. 33 (2003), 94-136.

[15] L. Gargano, A. A. Rescigno, Complexity of conflict-free colorings of graphs, Theor. Comput. Sci. 566 (2015), 39-49.

[16] R. Glebov, T. Szab, G. Tardos, Conflict-free colouring of graphs, Comb. Probab. Comput. 23 (3) (2014), 434-448.

[17] Z. Huang, X. Li, Hardness results for three kinds of colored connections of graphs, Theor. Comput. Sci. 841(2020), 27-38.

[18] M. Ji, X. Li, X. Zhu, (Strong) conflict-free connectivity: Algorithm and complexity, Theoretical Computer Science 804 (2020), 72-80.

[19] X. Li, Y. Zhang, X. Zhu, Y. Mao, H. Zhao, S. Jendrol’, Conflict-free vertex-connections of graphs. Discuss. Math. Graph Theory, 40 (2020), 51-65.

[20] Z. Li, B. Wu, On the maximum value of conflict-free vertex-connection number of graphs, Discrete Mathematics, Algorithms and Applications, 10 (5) (2018), 1850059.

[21] J. Pach, G. Tardos, Conflict-free colourings of graphs and hypergraphs, Comb. Probab. Comput. 18 (5) (2009), 819-834.

[22] I. V. Reddy, Parameterized algorithms for conflict-free colorings of graphs, Theor. Comput. Sci. 745 (2018), 53-62.

[23] S. Smorodinsky, Conflict-Free Coloring and its Applications. In: I. B’ar’any, K.J. B’or’oczky, G.F. T’oth, Pach J. (eds) Geometry Intuitive, Discrete, and Convex. Bolyai Society Mathematical Studies, vol 24. Springer, Berlin, Hei-delberg, 2013.