Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Table 1

Features	Percent of Population	aOR	\(P \) Value	Confidence Low	Confidence High
Antithrombotic use					
Age category:					
65–69 y	10.7%	1.41	<0.001	1.06	1.88
70–74 y	13.1%	1.70	<0.001	1.30	2.23
75–79 y	14.9%	1.79	<0.001	1.38	2.34
80–84 y	14.7%	2.42	<0.001	1.87	3.15
85–89 y	15.5%	3.03	<0.001	2.35	3.93
90 y and older	19.1%	3.71	<0.001	2.89	4.79
<65 y	12.0%				
Sex:					
Male	35.6%	1.69	<0.001	1.49	1.92
Female	64.4%				
Medical conditions:					
Cancer	12.3%	0.72	<0.001	0.60	0.87
CKD	30.3%	1.70	<0.001	1.50	1.93
COPD	48.7%	1.07	0.41	0.85	1.30
CAD CHF	42.8%	1.13	<0.05	1.00	1.28
Thrombosis	4.0%	0.76	0.06	0.54	1.04

CAD, coronary artery disease; CHF, congestive heart failure; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease.

Acknowledgments

The authors wish to thank J. Michelle Graham PharmD, BCPS.

References

1. Harris-Kojetin L, Sengupta M, Lendon JP, Rome V, Valverde R, Caffrey C. Long-term care providers and services users in the United States, 2015–2016. National Center for Health Statistics. Vital Health Stat 2019;3:1–78.
2. The New York Times. Nearly One-Third of U.S. Coronavirus Deaths Are Linked to Nursing Homes, 2021. Accessed September 15, 2021. https://www.nytimes.com/interactive/2020/us/coronavirus-nursing-homes.html
3. Nopp S, Moik F, Jilma B, Pabinger I, Ay C. Risk of venous thromboembolism in patients with COVID-19: a systematic review and meta-analysis. Res Pract Thromb Haemost 2020;4:1178119.
4. Wichmann D, Sperhake JP, Lutgehetmann M, Steurer S, et al. Autopsy study. Ann Int Med 2020;173:268
5. The ATTACC, ACTIV-4a, and REMAP-CAP Investigators. Therapeutic anticoagulation with heparin in noncritically ill patients with Covid-19. N Engl J Med 2021;385:790–802.
6. Baumann Kreuziger L, Lee AY, Garcia D; DeSancho M, Connors JM; American Society of Hematology. COVID-19 and VTE/Anticoagulation: Frequently Asked Questions (Version 11.0; last updated July 15, 2021), Accessed September 15, 2021. https://www.hematology.org/covid-19/covid-19-and-vte-anticoagulation
7. National Institutes of Health. Antithrombotic Therapy in Patients with COVID-19, 2021. Accessed September 15, 2021. https://www.covid19treatmentguidelines.nih.gov/therapies/antithrombotic-therapy/
8. AMDA - The Society for Post-Acute and Long-Term Care Medicine. Q & A Document for COVID-19 Updated January 29, 2021, 2021. Accessed September 15, 2021. https://paltc.org/sites/default/files/COVID20QAs20210221.pdf

Laurent Adler, MD, Cathy Lipton, MD, Clay C. Watson, MD Complex Care Management, Optum Inc, United Health Group Eden Prairie, MN, USA
Shanieek Lawrence, PhD, Alexa Richie, DHSc Optum Center for Research and Innovation, Optum Inc, UnitedHealth Group Eden Prairie, MN, USA
Clare Spain, BA, Kevin Heltemes, MPH Health Care Economics, Optum Inc, United Health Group Eden Prairie, MN, USA

Excess Mortality in Long-Term Care Residents With and Without Personal Contact With Family or Friends During the COVID-19 Pandemic

Despite evidence of disparities in excess mortality during the COVID-19 pandemic, less is known about the unequal impacts within long-term care (LTC). Even pre-pandemic, many residents experienced loneliness and social isolation. The most isolated—those without living family or friends, or who are geographically distant or estranged from them—often receive increased care and support from LTC staff. With the demands of COVID-19, these efforts may not have been possible to sustain. This may have led already socially vulnerable residents to be disproportionately affected by COVID-19, especially without family and friends to advocate for needed care or provide emotional support. Our objective was to compare excess mortality early in the COVID-19 pandemic in LTC residents with and without personal contact with family or friends.

Methods

We conducted an interrupted time series analysis to evaluate changes in all-cause mortality rates of LTC residents with and without contact with family or friends in Ontario, Canada, from January 1, 2017, to September 30, 2020. Residents were identified using the Continuing Care Reporting System database. Although pandemic-related restrictions in LTC (eg, visitor bans, suspension of congregate dining) led to widespread social isolation of residents, most remained in contact with family and friends virtually or by phone. We defined residents as having no personal contact (including phone calls) with family and friends in the past 7 days if the assessor indicated “yes” to item F2E (absence of personal contact with family or friends), based on their most recent annual assessment and venous thromboembolism from the Resident Assessment Instrument Minimum Dataset (version 2.0). Item F2E is a reliable measure of family or friend contact. We found 93.5% agreement across annual assessments over a 5-year lookback window and 95.8% agreement between the last 2 assessments (Supplementary Table 1), with a prevalence- and bias-adjusted Kappa coefficient of 0.92 (95% CI 0.91, 0.92) (Supplementary Table 2). Deaths were ascertained using Ontario’s Registered Persons Database and other health administrative databases. These datasets were linked using unique encoded identifiers and analyzed at ICES.

We used March 14, 2020, as the deadline for implementation of an infection prevention and control intervention in Ontario as COVID-19 began to spread in the community, to define the pre-pandemic and pandemic periods. Segmented regression models with autocorrelated errors were fitted for each resident group to...
evaluate changes in mortality rates. Models included time in months (prepandemic trend), intervention period (prepandemic vs pandemic, representing the change in rates just after March 14, 2020), an interaction between the intervention period and time (pandemic trend, representing time elapsed since March 14, and season (October–March, April–September) as explanatory variables.

Excess mortality in the pandemic period was calculated in each group as absolute and relative differences in observed and expected mortality, based on pre-COVID-19 trends. We calculated the difference in excess mortality in residents with and without family or friend contact using a difference-in-differences analysis. Resident characteristics were compared using standardized differences (SD); differences >0.10 were considered meaningful.7 Data use was authorized under section 45 of Ontario’s Personal Health Information Protection Act and did not require ethics review.

Results

As of March 14, 2020, 2.3% (1550/67,589) of residents had no personal contact with family or friends (mean and range across study: 2.9%, 2.3%–5.9%). These residents were younger [mean (standard deviation): 81.9 (9.2) years vs 85.4 (8.3), SD (p < 0.01)], less often women (63.0% vs 70.4%, SD = 0.16), and had fewer comorbid conditions [3.6 (1.9) vs 4.0 (1.9), SD = 0.20], but were similar to residents with family or friend contact in physical function [activities of daily living score, 17.0 (7.0) vs 17.6 (6.7), SD = 0.09] and dementia prevalence [75.2% vs 72.5%, SD = 0.06].

During the pandemic period, there was a 57.8% relative increase (absolute change, 12.6 excess deaths per 1000) in mortality in residents without family or friend contact and a 17.1% increase (4.8 deaths per 1000) in residents with family or friend contact, representing 34.8% greater excess mortality in residents without personal contact with family or friends (difference-in-difference, 7.8 deaths per 1000) (Table 1). Patterns were consistent across sexes and in residents ≥85 years (data not shown). Excess mortality was highest in April, returning to pre—COVID-19 levels by June–July when community transmission was low. Overall, 9.5% (54/567) of deaths in residents without family or friend contact occurred in those with confirmed COVID-19 compared with 13.4% (1788/13,337) of deaths in residents with family or friend contact. Residents without family or friend contact had lower hospital transfer rates prior to death in April and May despite similar rates in March (data not shown).

Discussion

LTC residents without personal contact with family or friends experienced 35% greater excess mortality early in the COVID-19 pandemic relative to residents who had personal contact with family or friends. These residents may have experienced reduced access8 and/or other deficiencies in care (eg, delayed treatment decisions)9 if stripped of the extra care typically provided by staff, and with no family or friends to advocate for needed care. They may have also been less resilient to pandemic-related stressors because of their isolation; loneliness and social isolation have been shown to increase the risk for premature mortality.10

Although our findings were consistent across sex and age strata and residents without family or friend contact were younger and generally healthier, unmeasured factors may be driving observed differences. Further research is needed to understand underlying mechanisms to minimize further harm to socially vulnerable residents.

Acknowledgment

The authors thank Stephanie Chamberlain, PhD, University of Alberta, for her insight on measuring isolation among residents in Canadian long-term care homes.

References

1. Rossen LM, Ahmad FB, Anderson RN, et al. Disparities in excess mortality associated with COVID-19 — United States, 2020. MMWR Morb Mortal Wkly Rep 2021;70:1114–1119.
2. Gorges RJ, Konetzka RT. Factors associated with racial differences in deaths among nursing home residents with COVID-19 infection in the US. JAMA Netw Open 2021;4:e2037431.
3. Victor CR. Loneliness in care homes: a neglected area of research? Aging Health 2012;8:637–646.
4. Chamberlain SA, Duggleby W, Teaster PB, et al. Characteristics of socially isolated residents in long-term care: a retrospective cohort study. Gerontol Geriatr Med 2020;6:2333721420975321.

Table 1

Month	Residents With Personal Contact With Family or Friends	Residents Without Personal Contact With Family or Friends	Difference-in-Differences				
	Rate/1000 Residents	Excess Mortality	Rate/1000 Residents	Excess Mortality	Absolute Rate Difference (95% CI)		
	Observed	Expected†	Absolute Rate Difference (95% CI)	Observed	Expected†	Absolute Rate Difference (95% CI)	
Overall	32.8	28.0	4.8 (4.0, 5.6)	34.3	21.8	12.6 (8.9, 16.2)	7.8 (4.1, 11.5)
March	38.5	33.3	5.2 (2.3, 8.1)	50.3	25.7	24.7 (5.2, 44.1)	19.4 (–0.2, 39.1)
April	48.2	28.2	20.0 (17.0, 23.0)	55.1	23.5	31.6 (13.6, 49.5)	11.5 (–6.7, 29.8)
May	34.2	27.0	7.6 (2.9, 13.3)	38.1	19.9	18.2 (3.8, 32.6)	12.5 (–2.1, 27.2)
June	26.1	26.1	0.0 (–2.5, 2.6)	34.9	21.5	13.3 (0.1, 26.6)	13.3 (–0.2, 26.8)
July	26.1	27.1	–1.0 (–3.6, 1.7)	27.3	22.3	5.0 (–6.7, 16.1)	5.9 (–6.0, 17.8)
August	26.7	27.5	–0.8 (–3.4, 1.9)	24.3	20.5	3.8 (–6.5, 14.1)	4.5 (–6.1, 15.2)
September	29.7	26.9	2.8 (0.1, 5.5)	28.7	21.1	7.6 (2.6, 17.9)	4.8 (–5.8, 15.4)

*As of March 1, 2020, a total of 77,291 residents lived in Ontario’s 623 licensed LTC homes, where they received personal and nursing care, subsidized accommodations, and prescription medications through a publicly funded program. At the start of the pandemic period (March 14, 2020), 67,589 Ontario nursing home residents were alive and had an annual Resident Assessment Instrument Minimum Dataset (RAI-MDS) assessment—66,039 had personal contact with family and friends and 1550 had no contact.

†Expected mortality rates were estimated based on pre-COVID-19 trend (January 1, 2017—March 13, 2020) using segmented regression models with autocorrelated errors and seasonality adjustment.

1Relative percentage change, calculated as (observed — expected)/expected, of 17.1% (95% CI 14.1, 20.1).

2Relative percentage change of 57.8% (95% CI 36.8, 78.8).

3Relative difference-in-difference, calculated as [(34.3/21.8)/(32.8/28.0)], of 34.8%.

4Chamberlain SA, Duggleby W, Teaster PB, et al. Characteristics of socially isolated residents in long-term care: a retrospective cohort study. Gerontol Geriatr Med 2020;6:2333721420975321.
5. Chamberlain SA, Duggleby W, Teaster PB, et al. Challenges in caring for unbefriended residents in long-term care homes: a qualitative study. J Gerontol B Psychol Sci Soc Sci 2020;75:2050–2061.

6. Mor V. A comprehensive clinical assessment tool to inform policy and practice: applications of the minimum data set. Med Care 2004;42(4 Suppl): III50–III59.

7. Austin PC. Using the standardized difference to compare the prevalence of a binary variable between two groups in observational research. Commun Stat Simul Comput 2009;38:1228–1234.

8. Brown KA, Daneman N, Buchan SA, et al. Variation in care of community and nursing home residents who died of COVID-19 in Ontario, Canada. J Am Med Dir Assoc 2021;22:1149–1150.

9. Cohen AB, Benjamin AZ, Fried TR. End-of-life decision making and treatment for patients with professional guardians. J Am Geriatr Soc 2019;67:2161–2166.

10. Holt-Lunstad J, Smith TB, Baker M, et al. Loneliness and social isolation as risk factors for mortality: a meta-analytic review. Perspect Psychol Sci 2015;10:227–237.

Rachel D. Savage, PhD
Women’s Age Lab and Women's College Research Institute
Women's College Hospital
Toronto, Ontario, Canada
ICES
Toronto, Ontario, Canada

Paula A. Rochon, MD, MPH
Women’s Age Lab and Women’s College Research Institute
Women’s College Hospital
Toronto, Ontario, Canada
ICES
Toronto, Ontario, Canada

Institute of Health Policy, Management and Evaluation
Dalla Lana School of Public Health
University of Toronto
Toronto, Ontario, Canada

Division of Geriatric Medicine
Department of Medicine
University of Toronto
Toronto, Ontario, Canada

Yingbo Na, MSc
Women’s Age Lab and Women’s College Research Institute
Women’s College Hospital
Toronto, Ontario, Canada
ICES
Toronto, Ontario, Canada

Rachel Strauss, MPH
ICES
Toronto, Ontario, Canada

Kevin A. Brown, PhD
ICES
Toronto, Ontario, Canada

Public Health Ontario
Toronto, Ontario, Canada

Dalla Lana School of Public Health
University of Toronto
Toronto, Ontario, Canada

Andrew P. Costa, PhD
ICES
Toronto, Ontario, Canada

https://doi.org/10.1016/j.jamda.2021.12.015
Supplementary Table 1
Measurement of Within-Individual Reliability of Item F2E Over Repeated Annual Assessments Based on Both a 5-Year Lookback Window and the Last 2 Assessments

Last Assessment Year*	Assessments Looking Back 5 y	Last 2 Assessments		
	n	Percentage Agreement	n	Percentage Agreement
2017	27,044	94.8	20,356	97.3
2018	27,162	95.3	20,215	97.7
2019	36,573	95.5	27,349	97.8
2020	74,598	91.4	62,623	93.7
Overall	165,377	93.5	130,543	95.8

*The year in which the residents’ last (or most recent) annual assessment was completed. A 5-year lookback window from the last assessment year was used to calculate percentage agreement among all completed annual assessments.

Supplementary Table 2
Prevalence- and Bias-Adjusted Kappa Coefficient Based on the Last 2 Annual Assessments of Item F2E, Over the Study Period

Last Assessment Year*	Kappa (95% CI)
2017	0.95 (0.94, 0.95)
2018	0.95 (0.95, 0.96)
2019	0.96 (0.95, 0.96)
2020	0.87 (0.87, 0.88)
Overall	0.92 (0.91, 0.92)

*The year in which the residents’ last (or most recent) annual assessment was completed.