Research progress concerning m^6A methylation and cancer (Review)

YANG ZHOU, JIE YANG, ZHENG TIAN, JING ZENG and WEIGAN SHEN

Department of Cell Biology, School of Medicine of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China

Received May 28, 2021; Accepted August 20, 2021

DOI: 10.3892/ol.2021.13036

Abstract. N6-methyladenosine (m^6A) methylation is a type of methylation modification on RNA molecules, which was first discovered in 1974, and has become a hot topic in life science in recent years. m^6A modification is an epigenetic regulation similar to DNA and histone modification and is dynamically reversible in mammalian cells. This chemical marker of RNA is produced by m^6A ‘writers’ (methylase) and can be degraded by m^6A ‘erasers’ (demethylase). Methylated reading protein is the ‘reader’, that can recognize the mRNA containing m^6A and regulate the expression of downstream genes accordingly. m^6A methylation is involved in all stages of the RNA life cycle, including RNA processing, nuclear export, translation and regulation of RNA degradation, indicating that m^6A plays a crucial role in RNA metabolism. Recent studies have shown that m^6A modification is a complicated regulatory network in different cell lines, tissues and spatio-temporal models, and m^6A methylation is associated with the occurrence and development of tumors. The present review describes the regulatory mechanism and physiological functions of m^6A methylation, and its research progress in several types of human tumor, to provide novel approaches for early diagnosis and targeted treatment of cancer.

Correspondence to: Professor Weigan Shen, Department of Cell Biology, School of Medicine of Yangzhou University, 136 Jiangyang Middle Road, Yangzhou, Jiangsu 225000, P.R. China
E-mail: shenweigan@hotmail.com

Abbreviations: m^6A, N6-methyladenosine; FTO, fat mass and obesity-associated protein; ALKBH5, AlkB homologous protein 5; YTHDF2, YTH N6-methyladenosine RNA binding protein 2; eIFs, eukaryotic initiation factors; MeRIP-Seq, methylated RNA immunoprecipitation sequencing; miCLIP-seq, m^6A individual nucleotide resolution cross-linking and immunoprecipitation; HCC, hepatocellular carcinoma; RCC, renal cell carcinoma; SAM, S-adenosylmethionine; PDAC, pancreatic ductal adenocarcinoma; CSCC, cervical squamous cell carcinoma; HIF, hypoxia-inducible factors; IGF2BP2, insulin like growth factor 2 mRNA binding protein 2; snRNA, small nuclear RNA; BCSCs, breast cancer stem cells; ZFP217, zinc-finger protein 217

Key words: RNA methylation, m^6A methylation, tumor

Contents

1. Introduction
2. Composition and function of m^6A modified enzyme
3. Detection methods of m^6A methylation
4. Prediction methods of m^6A methylation sites
5. Association between m^6A modification and malignancies
6. Conclusions

1. Introduction

Cancer is a gene-related disease with heredity and can be caused by various physical, chemical or biological factors (1). It is usually characterized by abnormal differentiation and proliferation of cells, which differ from normal cell proliferation and apoptosis (2). In addition, tumor cells have invasive and metastasis abilities, and promote angiogenesis. N6-methyladenosine (m^6A) methylation is an epigenetic modification of RNA, first discovered in the mRNA of eukaryotes in the 1970s (3). However, due to the limitation of technology, scientists hypothesized that the m^6A methylation site only existed in mRNA. In recent years, m^6A methylation has been found in different types of RNA, such as long non-coding RNA (IncRNA) (4), microRNA (5) and mRNA (6). With the rapid development of high-throughput sequencing technology, a variety of bioinformatics platforms, for predicting m^6A methylation sites, have been developed, which increased the investigation of m^6A methylation (7). In the process of carcinogenesis, m^6A methylation has been associated with the occurrence and development of cancer by regulating the expression level of oncogenes and cancer suppressor genes. For example, in leukemia, METTL-14 causes the occurrence and development of leukemia via m^6A RNA modification of MYB/myc (8). In liver cancer, METTL-3 promotes cancer progression through YTHDF2 dependent posttranscriptional silencing of SOCS2 (9). Similar to DNA methylation, m^6A methylation is regulated by methyltransferase and demethylase, which modulates post-transcriptional modifications without alternating the gene sequence (10). However, its regulatory mechanism is more complicated than DNA methylation. The present review explains the m^6A-related enzymes, research methods and research progress of m^6A methylation and cancer, and to describe the association between m^6A methylation and tumor occurrence and development. An improved
understanding of m^6^A methylation could assist with identifying potential biomarkers and targets for molecular diagnosis and targeted therapy of cancer.

2. Composition and function of m^6^A modified enzyme

m^6^A is a dynamic and reversible modification process, which mainly involves three types of catalytic enzymes: Methyltransferase, demethylase and methylated reading protein (Table 1). Methyltransferase, also known as mRNA ‘writer’, methylates adenosine in mRNA (11). METTL-14 and METTL-3 can form a methyltransferase complex by binding to the regulatory protein, WT1 associated protein (WTAP) and subsequently promote methylation. m^6^A modified mRNA specifically binds to methylated reading protein, termed as ‘reader’, and results in various effects on gene expression (12). Demethylase (mRNA erasers) can remove the methyl group on adenosine bases for m^6^A demethylation. The mRNA writers and erasers make m^6^A modification a dynamic and reversible process. Previous studies hypothesized that m^6^A modification could change the secondary structure of RNA, promote the combination of RNA binding protein with RNA segments, interfere with RNA modification and subsequently regulate gene expression (13,14). However, the underlying mechanism remains unclear.

mRNA writers. m^6^A methylation is catalyzed by mRNA writers, including METTL-3, METTL-14, WTAP, VIRMA and RBM15. The core components of the m^6^A methyltransferase complex (METTL-3, METTL-14, WTAP and VIR) are highly conserved in most eukaryotes (15). The study of the m^6^A site on human small nuclear (sn) RNA U6 showed that human cells express at least one activated m^6^A methyltransferase, apart from METTL-14 and METTL-3. However, these enzymes have not been identified due to the limitation in technology.

METTL-3. METTL-3, also known as MT-A70, is the earliest reported m^6^A methylase. Barbieri et al (16) reported that the upregulation of METTL-3 expression significantly promoted the m^6^A methylation of mRNA transcribed by the oncogene SP1, resulting in an increased expression of the SPI protein, which was associated with the differentiation of hematopoietic stem cells into acute myeloid leukemia (AML) cells. In addition, Vu et al (17) confirmed that downregulation of METTL-3 gene expression increased the phosphorylation of AKT and promoted the differentiation of hematopoietic stem cells into AML cells. The two studies provide novel directions for the diagnosis and treatment of AML.

In addition, some studies have shown that under hypoxia, the transcription factor zinc-finger protein 217 (ZNF217) inhibited the m^6^A modification of KLF4 and NANOG by binding to METTL-3, leading to elevated expression of KLF4 and NANOG, and the promotion of breast cancer (18). Cai et al (19) have found that high expression of METTL-3 in breast cancer cells induced m^6^A modification on HBXIP mRNA. HBXIP promoted the m^6^A modification of METTL-3 by reducing the expression level of tumor suppressor gene LET-7G, which forms a positive feedback pathway with HBXIP/LET-7G/METTL-3/HBXIP and promoted the malignant biological behaviors of breast cancer. These studies provide new approaches for the diagnosis and treatment of breast cancer.

Furthermore, Chen et al (9) found that overexpressed METTL-3 in primary hepatocellular carcinoma (HCC) could change the m^6^A modification of the tumor suppressor gene, SOCS2, leading to degradation of SOCS2 mRNA and promotion of cancer cell proliferation and migration. This study showed that hypermethylation was associated with the progression of HCC. Taketo et al (20) found that, in pancreatic cancer cell lines with low expression of METTL-3, the cancer cells were more sensitive to gemcitabine and other anticancer drugs [Evelomustin (21) or Eleemene (22)] and external radiation. In addition, METTL-3 was associated with cell cycle regulation, mitogen-activated protein kinase cascade and RNA splicing, suggesting that METTL-3 may be one of the potential targets to improve the therapeutic efficacy in patients with pancreatic cancer.

However, in renal cell carcinoma (RCC), METTL-3 exhibited tumor-suppressing activity (23). In vivo experiments confirmed that lower expression of METTL-3 was significantly associated with tumor histological grade and tumor size. In addition, patients with RCC and overexpression of METTL-3 had a higher overall survival rate and good prognosis. Downregulation of the METTL-3 gene expression in a RCC cell line could promote cell epithelial-mesenchymal transition (EMT), proliferation, invasion and metastasis. It was suggested that METTL-3 could be used as a new marker for the treatment of RCC, however, further studies are required to investigate the role of METTL-3 and related factors in carcinogenesis to further understand the biological mechanism of the occurrence and development of RCC.

The aforementioned studies have investigated the different activities of METTL-3 in various types of cancer, indicating that m^6^A methyltransferase, METTL-3 could be a potential target for developing novel therapeutic strategies, and investigating the mechanism of the occurrence and development of cancer.

METTL-14. METTL-14 is a homologous heterodimer of METTL-3 in the MT-A70 methyltransferase family (24). It has been reported that knockout of the METTL-14 gene in HeLa cells led to a decrease in m^6^A methylation level, suggesting that METTL-14 was an important part of the m^6^A methyltransferase complex (25). Since METTL-3 is a subunit with catalytic activity, METTL-14 is responsible for identifying substrates. The two proteins are combined to form a stable methyltransferase complex with a ratio of 1:1 in vivo, which allows the catalyzation of m^6^A modification in target RNA (26). Weng et al (8) found that the knockout of METTL-14 in AML cell lines could effectively inhibit the proliferation of the AML cells. METTL-14 was negatively regulated by SPI at the protein level and induced cancer promotion by regulating target genes via m^6^A modification. This study firstly revealed the role of the SPI-METTL-14-MYB/MYC signal axis in the progression, maintenance, and self-renewal of leukemia, providing new ideas for the diagnosis and treatment of AML.

In addition, Ma et al (27) proved that the decrease in expression of METTL-14 in HCC tissue was an independent factor in predicting cancer recurrence. The reduction of METTL-14 led to a decreased level of m^6^A methylation, which inhibited...
Table I. m^6^A modification-related enzymes and their biological functions in tumors.

Type	Gene	Function
Writer	METTL-3	Methyltransferase
	METTL-14	Enhancing radiotherapy and chemosensitivity
	METTL-16	Enhancing mRNA initiation translation
	WTAP	Plays a role in both transcriptional and post-transcriptional
		regulation of certain cellular genes
Eraser	WTAP	Demethylation, downregulating mRNA transcription levels.
	ALKBH5	Promoting chemotheraphy resistance
Reader	YTHDF1/2	Recognition and binding of m^6^A sites selectively and
		mediating mRNA degradation
	eIF3	Promoting translation independent of 5'-UTR under stress
		conditions

eIF3, eukaryotic initiation factors; UTR, untranslated region; YTHDF2, YTH N6-methyladenosine RNA binding protein 2; ALKBH5, AlkB homologous protein 5; WTAP, WT1 associated protein; m^6^A, N6-methyladenosine.

cell proliferation and promoted apoptosis of HCC cells. In a
HCC cell line, METTL-14 mediated the decreased expression of
miR-126, leading to the invasion and metastasis of HCC.
Furthermore, Ma et al also found that the expression level of
METTL-14 and demethylase WTAP in HCC was decreased,
indicating that m^6^A modification has a complicated feedback
regulation mechanism. Therefore, the investigation into the
interaction between METTL-14 and micro (mi) RNA could
provide novel targets for the treatment of HCC.

METTL-16. METTL-16 is a newly discovered m^6^A methyl-
transferase (28). The downregulated expression of METTL-16
led to a decrease in the level of m^6^A methylation in cells.
Warda et al (29) found that METTL-16 could bind to snRNA
U6, long non-coding (lnc) RNA and pre-mRNA via cDNA
cross-linking analysis, which deepened the understanding of
the interaction between m^6^A and other RNA.

S-adenosylmethionine (SAM) is an important methyl
donor of DNA methylation and acts as a key regulator controlling
gene expression (30). It has previously been reported that
SAM played an important role in RNA methylation (31). The study suggested that METTL-16 maintained the stability of
intracellular SAM by regulating the alternative splicing of
MAT2A. The absence of SAM increased the residence time
of METTL-16 in the hairpin of MAT2A 3’ untranslated region
(UTR) and promoted the alternative splicing of MAT2A,
subsequently regulating the homeostasis of intracellular SAM
content (32). The association between RNA modification and alternative splicing was established by this mechanism.
However, the association between METTL-16 and the occur-
rence and development of cancer remains unclear. Therefore,
further studies are required to investigate the role of METTL-16
in cancer development.

WTAP. WTAP is an essential component in m^6^A methyla-
tion modification. Ping et al (33) proved that WTAP assisted
with the accurate location of the METTL-3-METTL-14
heterodimer and promoted m^6^A methylation. In addition,
either knockdown or overexpression of METTL-3 led to an
elevation of WTAP expression, indicating that METTL-3
plays an important role in the regulation of WTAP func-
tion (34). However, the upregulation of WTAP could
not promote cancer cell proliferation in the absence of
METTL-3. Therefore, the carcinogenic effect of WTAP
is associated with the m^6^A methyltransferase complex. The association between WTAP and the occurrence and develop-
ment of cancer is unclear. Xi et al (35) found that WTAP
was highly expressed in glioma tissue and was associated
with pathological grade and poor postoperative survival rate.
Li et al (36) confirmed that the expression level of WTAP
was significantly increased in both the cytoplasm and nucleus
of pancreatic ductal adenocarcinoma (PDAC), whereas the
high expression level in the nucleus was significantly asso-
ciated with sex and tumor stage and was considered to be
an independent prognostic factor of PDAC. Tang et al (37)
reported that the high expression level of WTAP in patients
with RCC was associated with poor overall survival rate and
prognosis. The study also found that WTAP may promote
the proliferation of RCC cells by regulating the stability of
CDK2 mRNA, leading to the occurrence and development of
cancer. Therefore, WTAP may become a new target for the
diagnosis and treatment of RCC.

mRNA erasers, α-ketoglutarate-dependent dioxygenase FTO
protein (FTO) encoded by the obesity gene, FTO was the
first demethylase found in mammals, which proved that m^6^A
modification was dynamically reversible (38). Similarly, AlkB
homologous protein 5 (ALKBH5) in mammals could also
catalyze the restoration of m^6^A methylation (39). Currently,
it is not clear whether demethylases exist in lower-grade eu-
karyotes. Some studies have found that when the first nucleotide
adjacent to the cap in the nucleotide sequence is adenosine,
FTO cannot induce demethylation, but the specific mechanism is unclear.

FTO. The FTO gene is located on chromosome 16 (16q12.2) and is widely expressed in all stages of human growth (40). Its main functions are to regulate the rate of fat consumption, promote the overall metabolic rate, and ensure the energy balance of the body (41). Jia et al (42) first confirmed that the FTO protein was a crucial demethylase in both DNA and RNA modification, especially in m^A demethylation. This report ushered in the era of m^A research. Selberg et al (26) confirmed that the level of m^A in mRNA was increased in FTO knockout leukemia cells or gastric cancer cells and vice versa. However, the expression of m^A methylase METTL3 was not affected. Based on these results, researchers preliminarily proved that the methylation process of m^A was reversibly and dynamically regulated. Previous studies have shown that the expression of the FTO gene was associated with breast cancer (41), thyroid cancer (43), endometrial cancer (44), gastric cancer (45), and other types of cancer (46,47). Li et al (48) found that FTO increased leukemia oncogene-mediated cell transformation and leukemogenesis by reducing the m^A modification of ASB2 and RARA genes, which led to the inhibition of AML cell differentiation induced by all-trans retinoic acid. In another study, Zhou et al (49) found that the expression of the FTO gene was significantly increased in patients with cervical squamous cell carcinoma (CSCC), and the increased expression of FTO and β-catenin indicated a poor prognosis. Therefore, the expression level of FTO and β-catenin could predict the prognosis of CSCC. In short, few studies have focused on the mechanism of FTO-induced m^A modification in the carcinogenesis and development of cancer. More studies are required to clarify the relevant molecular biological mechanisms involved in FTO-induced m^A modification. However, it remains controversial whether the activity of methylase and demethylase is limited to catalyzing m^A modification on RNA.

ALKBH5. ALKBH5 belongs to the AlkB family, but unlike other family members, ALKBH5 only has demethylation ability on single-stranded RNA/DNA (50). With the participation of hypoxia-inducible factors (HIF), ALKBH5 can induce the transformation of breast cancer cells into tumor stem cells by reducing the m^A methylation of NANONG, which improves the stability of NANONG mRNA and elevates its expression (51). Similarly, Zhang et al (52) found that ALKBH5 was significantly overexpressed in glial stem cell-like cells (GSCs) and the interference of ALKBH5 could inhibit the proliferation of GSCs. In addition, the study also found that IncRNA FOXM1-AS promoted the interaction between ALKBH5 and FOXM1, indicating that m^A demethylase ALKBH5 acted as an oncogene in glioma. Recently, low expression of ALKBH5 in pancreatic cancer cell lines was found to promote the m^A demethylation of IncRNA KCNK15-AS1, resulting in a decreased ability of cancer invasion and metastasis (53). This provided a new direction for the diagnosis and treatment of pancreatic cancer.

In summary, further studies are required to investigate whether ALKBH5 is associated with the occurrence and development of other types of cancer and whether these key demethylation modifications are associated with the stability, translation, and alternative splicing of mRNA.

mRNA readers. The term, mRNA readers, refers to proteins that can specifically bind to mRNA with m^A methylation. The YTH domain is the marker of m^A binding protein on mRNA. Their affinity with m^A methylated mRNA is higher than that of unmethylated mRNA (54). The carboxyl terminal domain of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) selectively binds to the m^A modified mRNA, which assists the YTHDF2-mRNA complex to move to the RNA decay site of the cell, thus inducing the degradation of mRNA. The degradation of mRNA plays an important role in stem cell differentiation by regulating key pluripotent factors (55). In different situations, the YTH protein can interact with different subsets of the m^A locus and induce different effects on gene expression. Insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) is another m^A reader using the Khomlog (KH) domain to selectively bind m^A modified RNA and promote mRNA translation, which is different from proteins with the YTH domain (56). This discovery increased the understanding of the mechanism and function of the m^A binding protein. In addition, m^A modification could destroy the complementary pairing of nucleotides, improve the accessibility of single-stranded RNA motifs, and promote the recognition of m^A binding proteins heterogeneous nuclear ribonucleoprotein C and G.

YT521-B homology. The YTH domain recognizes m^A methylation in a methylation-dependent manner (57). A total of five proteins in the human body contain YTH domains. YTHDC1 can regulate the expression of mRNA in the nucleus by affecting the alternative splicing of mRNA precursors (58). Zhao et al (35) found that the expression of YTHDF1 was significantly increased in patients with advanced HCC. In addition, potential target genes regulated by the YTHDF1 protein may be associated with the cell cycle of the tumor, degradation of different amino acids and metabolism of various lipids. Li et al (59) reported that overexpression of miR-493-3p in YTHDF2 knockdown prostate cancer cell lines promoted m^A modification and thereby inhibited the proliferation and migration of the cancer cells. These findings lay a foundation for further investigation of the biological function of m^A and RNA epigenetics and provide a new direction for investigating the underlying mechanism of cancer development. Currently, the role of YTH family members in m^A methylation has become a hot topic, which provides novel approaches for investigating cancer-related mechanisms.

Eukaryotic initiation factors (eIFs). There are numerous and complex eIFs. Up to now, a total of 13 eIFs have been identified (60), eIF3 is the most complex factor in eIF translation and plays an important role in the initiation of protein translation. Li et al (61) first found that eIF3e was an independent prognostic factor for overall survival and disease-free survival time in patients with colon cancer. Downregulation of eIF3e expression could inhibit proliferation and promote apoptosis of colon cancer cells. Furthermore, the interaction between METTL3 and eIF3h could increase mRNA translation and form dense polyribosomes, which was necessary for
carcinogenic transformation (62). The study by Chao et al (39) revealed the regulatory mechanism of protein translation based on the mRNA cycle and indicated that METTL-3-eIF3h could be a potential therapeutic target for patients with lung cancer.

3. Detection methods of m^6A methylation

In the early days, due to the limitation of technology, researchers could not detect m^6A methylation sites. As m^6A methylation of RNA does not affect its reverse transcription and it cannot be specifically cleaved, like M7G methylation, it is very difficult to identify the m^6A site in the initial study (63). However, with the emergence of second-generation sequencing (seq), two techniques, screening m^6A methylation site-m^6A-seq (64) and methylated RNA immunoprecipitation sequencing (MeRIP-seq) have been developed (65). These methods were designed to capture RNA fragments with m^6A methylation using co-immunoprecipitation then identify the sequences by second-generation sequencing. Subsequently, a multitude of m^6A methylation sites were found, and researchers found up to 12,000 m^6A signal peaks in >7,000 genes in humans and mice, all of which were enriched near the stop codon at the 3' end (66). These sites were highly conserved in both humans and mice. This finding provided strong evidence for the post-transcriptional regulation of m^6A methylation for gene expression and the modification may be associated with various genetic diseases (67-68). A limitation of this technique is that the RNA fragments captured are limited to 100-200 nucleotides and the technique cannot identify two very-close m^6A sites, so this method cannot accurately identify the m^6A methylation sites in the full transcriptome (69). In addition, a novel m^6A modification was found at the 5' end of mRNA (70). Asm^6A modification has the same methyl site with m^6A modification, both m^6A-seq and MeRIP-seq may misinterpret this modification as m^6A modification.

Based on the aforementioned limitations, the detection technology was improved by researchers. In 2015, three laboratories reported that the application of purple diplomatic co-immunoprecipitation could accurately capture m^6A methylation sites on a single base of RNA, which is the core technology of m6A individual-nucleotide-resolution cross-linking and immunoprecipitation (miCLIP) (69), photo-cross-linking-m^6A-seq (71), and m^6A-CLIP (or UV-CLIP) (72). Another technique for detecting m^6A methylation site is m^6A-LAIC-seq, which introduces spike-in-RNAs as an internal reference on the basis of m^6A-seq to calculate the m^6A methylation level of each gene in the full transcriptome (73). The disadvantage of this method is that a single m^6A methylation site cannot be detected. In addition to Qualcomm sequencing, the methods detecting the m^6A methylation site of a single gene are also important. The most famous one is site-specific cleavage and radioactive-labeling followed by ligation-assisted extraction and thin-layer chromatography (SCARLET) test (74), which can accurately detect a single m^6A methylation site in mRNA and lncRNA, and calculate the m^6A methylation level of the whole RNA (73). SCARLET is a low-throughput test with high expenses; however, its high accuracy makes it a common method for testing the accuracy of high-throughput detection of m^6A methylation sites. In addition, SCARLET can be used to detect other types of epigenetic modifications of RNA, such as M5C modification and \(\psi \) modification (75). Fluorescence quantitative PCR can also be used to detect the level of m^6A methylation. Golovina et al (76) found that different m^6A methylation levels in the same RNA will produce different melting curves under fluorescence quantitative PCR detection, which is due to the different melting temperatures of the RNA-DNA complex with different m^6A methylation levels. Therefore, Golovina et al proposed a high-resolution melting detection method, which could detect the alternation of the known m^6A methylation level in RNA. However, the experiments were only performed with ribosomal RNA, total RNA and snRNA.

Method	Application	Characteristic
m^6A-Seq	The region of m^6A hypermethylation was identified, but the resolution of single base could not be achieved	High-throughput
MeRIP-Seq	The RNA fragments containing m^6A were enriched with m^6A antibody, and then the enriched fragments were sequenced	High-throughput
miCLIP-Seq	M^6A antibody was used to enrich m^6A modification, combined with UV crosslinking technology to identify m^6A modification at single base level in the whole genome	High-throughput, unit point
m^6A-CLIP	M^6A antibody was used to enrich m^6A modification, combined with UV crosslinking technology to identify m^6A modification at single base level in the whole genome	High-throughput, unit point
PA-m^6A-Seq	M^6A antibody was used to enrich m^6A modification, combined with UV crosslinking technology to identify m^6A modification at single base level in the whole genome	High-throughput, unit point

m^6A, N6-methyladenosine; seq, sequencing; MeRIP, methylated RNA immunoprecipitation sequencing; miCLIP, m^6A individual-nucleotide-resolution cross-linking and immunoprecipitation; PA, photo-cross-linking.
so whether this technology can be extended to other types of RNA remains to be verified.

With the progress of high-throughput sequencing and antibody-specific enrichment technology, a new detection method, methylated RNA immunoprecipitation sequencing (MeRIP-seq), was developed with the advantage of identifying almost all m^A modifications in different types of RNA, such as mRNA (77), lncRNA (78) and circular RNA (79). In MeRIP-seq, specific antibody of m^A is used to extract co-immunoprecipitated RNA fragments, which are further identified using high-throughput sequencing (80). Then, the m^A modification can be systematically investigated in combination with bioinformatics analysis. However, the main limitation of MeRIP-seq is that MeRIP-seq can only identify hypermethylated regions of the RNA, but cannot locate a certain m^A site (81).

Subsequently, a novel sequencing method, miCLIP-seq, was developed to identify the specific site of m^A modification. Apart from the application of m^A antibodies to identify and enrich m^A modification, miCLIP-seq also uses UV cross-linking method to identify m^A modification at the single-base level in the whole genome. Therefore, miCLIP-seq can efficiently detect the m^A residue with high resolution and perform m^A cluster analysis on the whole RNA, which provides a novel technique to investigate the unique epigenetic trait of RNA. Furthermore, miCLIP can also detect the m^A modification in a class of small non-coding RNA, such as small nucleolus RNA, which cannot be obtained using previous techniques. High throughput sequencing technology has improved and is effective, but fluorescence quantitative detection is still one of the most economical and convenient molecular detection methods. There is clear importance to develop fluorescence quantitative PCR for m^A detection. With the gradual improvement of the detection methods of m^A methylation sites, a deeper understanding of m^A methylation will develop, which lays a solid foundation for the study into the association between m^A methylation and various diseases, particularly cancer. Table II lists the characteristics of five detection methods.

4. Prediction methods of m^A methylation sites

As the detection of the m^A methylation site is expensive and time consuming, bioinformatics prediction has been used to improve the research efficiency with high cost-effectiveness. In recent years, bioinformatics has developed rapidly and been widely used in molecular biology research. The following methods can assist with the prediction of the methylation sites of m^A more effectively. Yu-Chen et al (82) first proposed the use of the Hidden Markov Model (HMM) to predict the residual sites around known sites. Li et al (83) developed the pRNAm-PC method to predict loci faster and was more stable. In addition, Chen et al (84) developed the iRNA-Methyl method. Based on these, Jia et al (85) developed the RNA-methylPred method, which is more stable and efficient than the former. After that, Li et al (83) proposed an improved Target m^A method, but this method could only predict the methylation site of m^A in the primary RNA sequence. On the other hand, Zhou et al (86) synthesized several mathematical models and proposed the sequence-based RNA adenosine methylation site predictor (SRAMP) method, which could effectively predict m^A methylation sites in mammalian RNA. Recently, an online database called, RMBase-V2.0, has been established (http://rna.sysu.edu.cn/rmbase/), which contains a number of RNA epigenetic modification sequence data of 13 species, including a high amount of data on m^A methylation sites.

5. Association between m^A modification and malignancies

m^A modification and breast cancer. Breast cancer stem cells (BCSCs) can proliferate indefinitely via self-renewal and forming recurrent or metastatic tumors (87). In the hypoxic tumor microenvironment, ALKBH5 could reduce m^A methylation in NANO2 mRNA, increase the expression of NANO2 mRNA and mediate the enrichment of BCSCs in a HIF-dependent manner (51). Zinc-finger protein 217 (ZFP217) and ALKBH5 play complementary roles in regulating m^A methylation in RNA (18). Hypoxia-induced ZFP217 inhibited m^A methylation of NANO2 mRNA, whereas ALKBH5 induced m^A demethylation. Taken together, they can increase the expression of NANO2 mRNA and protein and enrich BCSCs. In addition, ZFP217 and ALKBH5 were associated with a more malignant phenotype of breast cancer by inhibiting m^A methyltransferase-related modifiers or inducing HIF-dependent hypoxia (88). A recent study reported that m^A modification regulated the expression of early polyadenylation (premature polyadenylation; PPA), which blocked the expression of tumor suppressor genes and lead to carcinogenesis (89). In breast cancer cells, premature polyadenylation causes oncogenic truncations of the tumor suppressor genes MAGI3 (90), LATS1 (91) and BRCA1 (92). The activation and truncation of PPA in tumor suppressor genes was regulated by m^A modification. Compared with that in normal breast cells, m^A methylation, activated by PPA significantly, was decreased in tumor suppressor gene-related exons. However, there are no conclusions on how breast cancer cells regulate the level of m^A in exons to trigger PPA.

m^A modification and colon cancer. As an ATP-dependent RNA helicase and a member of the YTH family, YTHDF2 promoted initial translation by unlocking the 5'-UTR of mRNA, and the transcription and translation of metastasis-related factors by inducing m^A methylation, thereby enhancing the metastasis of cancer cells (93). In colon cancer, YTHDF2 promoted metastasis by promoting the translation of HIF-1α. Knockdown of the YTHDF2 gene could reduce the expression level of metastasis-related genes, such as HIF-1α and inhibit the metastasis of colon cancer cells in vitro and in vivo (94). In addition, the expression level of YTHDF2 was positively associated with the stage of colon cancer. At present, few studies have identified the function and target of YTHDF2 in the progression and metastasis of colon cancer. However, these findings will provide new insights into the role of RNA demethylase in tumorigenesis.

m^A modification and liver cancer. Hou et al (95) have revealed that YTHDF2 was positively associated with the malignant grade of HCC. miR-145 could increase the level of m^A methylation by targeting the 3'-UTR of YTHDF2 mRNA in HCC cells, leading to the malignant progression of HCC.
In addition, *YTHDF1* was highly expressed in human HCC tissues and associated with the regulation of the cell cycle and metabolism of HCC cells. Furthermore, the deletion of m^6^A methylation was associated with the metastasis of HCC with the downregulation of *METTL-14*. In HCC, *METTL-3* mediated the methylation of m^6^A in the mRNA of the chromosome (or critical) region in DiGeorge syndrome (96). *METTL-14* could significantly upregulate the level of miR-126 modified by m^6^A methylation, thus promoting the maturation of miR-126 and inhibiting the metastasis of HCC cells (97). At present, the mechanism of how *METTL-14* has a low expression in liver cancer cells remains unclear. More in-depth investigation is required to clarify the structure and biological function of *METTL-14* in cancer to determine whether *METTL-14* can be used as a therapeutic target for the treatment of liver cancer. However, the interaction between *METTL-14* and *YTHDF1/2* with miRNA still provides clues for identifying new approaches to treat liver cancer.

m^6^A modification and pancreatic cancer. The role of *METTL-14* in pancreatic cancer has also been confirmed. The methylase, *METTL-14* was highly expressed in pancreatic cancer tissues. *METTL-14* could promote the proliferation, invasion, and metastasis of pancreatic cancer cells by increasing the level of m^6^A methylation, inhibiting the expression of miR-1-3p, and activating the mitogen-activated protein kinase (MAPK) pathway (98). In addition, a new mechanism of lncRNA with m^6^A methylation in cancer development. *ALKBH5* inhibited the progression of pancreatic cancer by promoting m^6^A demethylation of lncRNA potassium two-pore domain channel subfamily K member 15 (*KCNK15*) and WNT1-induced signal pathway protein 2 (*WISP2*) antisense IncCNK15-AS1 (53). This finding reveals a new area for investigating the role of lncRNA methylation in cancer development.

m^6^A modification and hematopoietic tumor. WTAP, as an m^6^A demethylase, plays a carcinogenic role in AML. Both *In vivo* and *in vitro* research has proved that WTAP was associated with cell transformation and all-trans retinoic acid (ATRA)-mediated leukemia cell differentiation (48). In addition, *METTL-3* inhibited the differentiation of hematopoietic stem/progenitor cell in patients with AML by inducing m^6^A methylation, which maintained the undifferentiated phenotype of the leukemia cells and promoted the occurrence of AML. On the other hand, the knockdown or deletion of *METTL-3* could activate a translation process to promote cell differentiation and apoptosis, leading to the suppression of leukemia cells without affecting normal hematopoietic cells (17). Similarly, *METTL-14* plays a key role in both normal myelopoiesis and pathogenesis of AML (8). *METTL-14* could block normal myeloid differentiation and promote malignant bone marrow formation by mediating m^6^A methylation. These studies provide new insights into the molecular mechanism of hematological tumorogenesis, suggesting that inhibition of *METTL-3/14* may be used as a strategy for the treatment of malignant myeloid tumors.

m^6^A modification and endometrial carcinoma. In 2018, a study found that m^6^A methylation in mRNA played a crucial role in endometrial carcinogenesis with the activation of protein kinase B (PKB) signal (99). m^6^A methylation reduced the expression of PKB negative regulator PH domain and leucine-rich repetitive protein phosphatase 2, whereas the expression of the positive PKB regulator mammalian target of rapamycin c2 was elevated, which promoted the proliferation and invasion endometrial cancer cells (49).

m^6^A modification and cervical cancer. Previous studies have found that a low level of m^6^A was associated with the occurrence of cervical cancer. In addition, the decrease in m^6^A level was positively associated with The International Federation of Gynecology and Obstetrics stage, tumor size, degree of differentiation, lymph node invasion and tumor recurrence (100). The results suggested that m^6^A methylation site in mRNA may serve as a potential therapeutic target for cervical cancer and could be used as an independent prognostic factor for predicting disease-free survival and overall survival times in patients with cervical cancer (101,102).

m^6^A modification and gastric cancer. In gastric cancer, the expression level of *ALKBH5*, a m^6^A ‘eraser’, was significantly decreased in highly invasive diffuse gastric adenocarcinoma compared with that in adjacent tissues. The knockdown of *ALKBH5* could decrease the mRNA and protein expression levels of E-cadherin and increase the expression level of interstitial markers, such as snail (103) and N-cadherin (104). Further investigation showed that the downregulation of *ALKBH5* could decrease the ability of mRNA demethylation and promote the methylation level, which reduced the stability of E-cadherin mRNA and promoted the invasion of tumor cells. Furthermore, *ALKBH5*, as a tumor suppressor gene in gastric cancer (105), could suppress EMT, migration, and invasion of gastric cancer cells by inhibiting the mRNA and protein expression levels of *MMP-2* and *MMP-9*. In addition, *WTAP* was found to play an important role in the progression and metastasis of gastric cancer, and was associated with poor differentiation, lymph node metastasis, high TNM stages and poor prognosis (106). M^6^A may also be an important molecular marker for monitoring gastric cancer. Furthermore, the expression level of *METTL-3* was positively associated with the prognosis, tumor grade and tumor stage in patients with gastric cancer (107). In addition, *METTL-3* was associated with the mRNA and protein expression levels of a-smooth muscle actin to regulate the proliferation and migration of gastric cancer cells, which could be a potential target for the treatment of gastric cancer in the future (108,109).

m^6^A modification and other types of cancer. They regulate the level of m^6^A through direct or indirect modification and participate in tumor progression. *WTAP* enhanced the expression of marco zinc finger 1 (*MZF1*) by reducing the level of m^6^A and destabilizing MZF1 mRNA in bone, thus promoting the progression of lung squamous cell carcinoma. *YTHDF2* and miR-495 inhibited the progression of prostate cancer by indirectly downregulating the level of m^6^A methylation (110). *ALKBH5* maintained the expression level of fork box protein M1 mRNA by promoting m^6^A demethylation, which retained the tumorigenicity of glioblastoma stem cells (52). The aforementioned studies revealed the importance of m^6^A
modification in different types of cancer. The dynamic change of m^6^A methylation has various regulatory effects on cancer cells (111). By revealing the previously unidentified regulation mechanism in tumors, further studies will provide bases for exploring the pathogenesis of tumors and developing new potential targets for cancer treatment (112,113).

6. Conclusions

Since m^6^A methylation plays an important role in numerous types of malignant tumor, m^6^A modification could be used as a diagnostic/prognostic target. Due to the effect of various related factors, the results of from several researchers are sometimes contradictory. This requires more multicenter and large-scale research for further investigation, thus laying the foundation for accurate treatment of human tumors.

Acknowledgements

The authors would like to thank Mrs. Wei Zhou and Mrs. Keyan Wu (Department of Cell Biology, School of Medicine of Yangzhou University) for their help with the literature search.

Funding

No funding was received.

Availability of data and materials

Not applicable.

Author's contributions

YZ conceived and designed this study. The literature search was carried out by JY. ZT and JZ were involved in drafting the manuscript or revising it critically for important intellectual content, in addition they resolved any disagreements. The manuscript was drafted by YZ and WS. Manuscript revisions and modifications were carried out by YZ. Final changes were made by JY and WS. All authors have read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for participation

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Neal DE, Metcalfe C, Donovan JL, Lane JA, Davis M, Young GJ, Dutton SJ, Walsh EL, Martin RM, Peters TJ, et al: Ten-year mortality, disease progression, and treatment-related side effects in men with localised prostate cancer from the protecT randomised controlled trial according to treatment received. Eur Urol 77: 320-330, 2020.
2. Enane FO, Saunthararajah Y and Korc M: Differentiation therapy and the mechanisms that terminate cancer cell proliferation without harming normal cells. Cell Death Dis 9: 912, 2018.
3. Li J, Yang X, Qi Z, Sang Y, Liu Y, Xu B, Liu W, Xu Z and Deng Y: The role of mRNA m^6^A methylation in the nervous system. Cell Biosci 9: 66, 2019.
4. Lv Z, Sun L, Xu Q, Xing C and Yuan Y: Joint analysis of IncRNA m^6^A methyomle and IncRNA/mRNA expression profiles in gastric cancer. Cancer Cell Int 20: 464, 2020.
5. Pan X, Hong X, Li S, Meng P and Xiao F: METTL3 promotes adriamycin resistance in MCF-7 breast cancer cells by accelerating pri-microRNA-221-3p maturation in a m^6^A-dependent manner. Exp Mol Med 53: 91-102, 2021.
6. Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, Baitis W, Cao G, Kroehling L, Chen Y, et al: m^6^A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 548: 338-342, 2017.
7. Liu K and Chen W: iMRM: A platform for simultaneously identifying multiple kinds of RNA modifications. Bioinformatics 36: 3336-3342, 2020.
8. Weng H, Huang H, Wu H, Qin X, Zhao BS, Dong L, Shi H, Skibbe J, Shen C, Hu C, et al: METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m^6^A modification. Cell Stem Cell 22: 191-205.e9, 2018.
9. Chen M, Wei L, Law CT, Tsang FH, Shen J, Cheng CL, Tsang LH, Ho JY, Chin DK, Lee JM, et al: RNA methylation enzymology: a methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology 67: 2254-2270, 2018.
10. Chen J, Zhang YC, Huang C, Shen H, Sun B, Cheng X, Zhang YJ, Yang Y, Guo Q, Yang Y and Li X: m^6^A regulates neurogenesis and neuronal development by modulating histone methyltransferase EzH2. Genomics Proteomics Bioinformatics 17: 154-168, 2019.
11. Lin S, Choe J, Du P, Triboulet R and Gregory RI: The (m)6A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell 62: 335-345, 2016.
12. Shi H, Wei J and He C: Where, when, and how: Context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell 74: 640-650, 2019.
13. Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L and Pan T: N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res 45: 6051-6063, 2017.
14. Liu N, Dai Q, Zheng G, He C, Parisien M and Pan T: N (m^6^A)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518: 560-564, 2015.
15. Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S and Liu T: The critical role of RNA m^6^A methylation in cancer. Cancer Res 79: 1285-1292, 2019.
16. Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millán-Zambrano G, Robson SC, Aspris D, Migliori V, Bannister AJ, Han N, et al: Promoter-bound METTL3 maintains myeloid leukaemia by m^6^ A-dependent translation control. Nature 552: 126-131, 2017.
17. Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, Chou T, Chow A, Saleatore Y, MacKay M, et al: The N6-methyladenosine (m^6^A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med 23: 1369-1376, 2017.
18. Zhang C, Zhi WI, Lu H, Samanta D, Chen I, Gabrielson E and Semenza GL: Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217 and ALKBH5-mediated modulation of RNA methylation in breast cancer cells. Oncotarget 7: 64527-64542, 2016.
19. Cai X, Wang X, Cao C, Gao Y, Zhang S, Yang Z, Liu Y, Zhang X, Zhang W and Ye L: HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett 415: 11-19, 2018.
20. Taketo K, Konno M, Asai A, Koski J, Toratani A, Fuke T, Doki Y, Mori M, Ishii H and Ogawa K: The epitranscriptome m^6^A writer METTL3 promotes chemo- and radioresistance in gastric cancer. Cancer Cell Int 20: 464, 2020.
21. Liu K, Li Q, Li G, Zhang Q, Zhuo L, Han X, Zhang M, Chen X, Fang Y, Yan L, et al: The mechanism of m^6^A methyltransferase METTL3-mediated autophagy in reversing gefitinib resistance in NSCLC cells by β-elemene. Cell Death DIS 11: 969, 2020.
23. Li X, Tang J, Huang W, Wang F, Li P, Qin C, Qin Z, Zou Q, Wei J, Hua L, et al: The M6A methyltransferase METTL3: Acting as a tumor suppressor in renal cell carcinoma. Oncotarget 8: 103341‑103351, 2017.

24. Robinson M, Shah P, Cui YH and He YY: The role of dynamic m^6^A RNA methylation in photobiology. Photochem Photobiol 95: 95‑104, 2019.

25. Du Y, Hou G, Zhang H, Dou J, He J, Guo Y, Li L, Chen R, Wang Y, Deng R, et al: SUMOylation of the m6A‑RNA methyltransferase METTL3 modulates its function. Nuclear Acids Res 46: 5152‑5208, 2018.

26. Selberg S, Blokhina D, Aaoten M, Koivisto P, Siltanen A, Mervaala E, Kankuri E and Karelson M: Discovery of small molecules that activate RNA methylation through cooperative binding to the METTL14‑eIF3h‑WTAP complex active site. Cell Rep 26: 3762‑3771.e5, 2019.

27. Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH, Wang F, Wang TT, Xu QQ, Zhou WP and Sun SH: METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N^6^‑methyladenosine‑dependent primary MicroRNA processing. Hepatology 65: 529‑543, 2017.

28. Ruskowska A: METTL16, methyltransferase‑like protein 16: Current insights into structure and function. Int J Mol Sci 22: 2176, 2021.

29. Warda A, Kretschmer J, Hackert P, Lenz C, Urlaub H, Hüttemann C, Sloan KE and Bohnsack MT: Human METTL16 is a N^6^‑methyladenosine (m^6^A) methyltransferase that targets pre‑mRNAs and various non‑coding RNAs. EMBO Rep 18: 2004‑2014, 2017.

30. Detich N, Hamm S, Just G, Knox JD and Szyf M: The methyl donor S‑adenosylmethionine inhibits active demethylation of DNA: A candidate novel mechanism for the pharmacological effects of S‑Adenosylmethionine. J Biol Chem 278: 20812‑20820, 2003.

31. Shima H, Matsumoto M, Ishigami Y, Ebina M, Muto A, Sato Y, Kumagai S, Ochiai K, Suzuki T and Igarashi K: S‑Adenosylmethionine synthase is regulated by selective N6‑adenosine methylation and mRNA degradation involving METTL16 and YTHDC1. Cell Rep 21: 3354‑3363, 2017.

32. Schwartz S, Mumbach MR, Jovanovic M, Jovanovic M, Wu S, Ivanov A, Wang T, Macaig K, Baskin GJ, Mertins P, Ter‑Ovanessian D, Habib N, et al: Perturbation of mRNA translation at internal and 5' sites. Cell Rep 8: 284‑296, 2014.

33. Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, et al: Mammalian WTAP is a regulatory subunit of the RNA N6‑methyladenosine methyltransferase. Cell Rep 24: 177‑189, 2019.

34. Sorci M, Iannello Z, Cruciani S, Larivera S, Ginnistrelli LC, Capuano E, Marchioni M, Fazi F and Fatica A: METTL3 regulates WTAP‑dependent protein homeostasis. Cell Death Dis 9: 796, 2018.

35. Xi Z, Xue Y, Zheng J, Liu X, Ma J and Liu Y: WTAP expression predicts diagnosis in malignant glioma patients. J Mol Neurosci 60: 131‑136, 2016.

36. Li BQ, Huang S, Shao QQ, Sun J, Zhou L, You L, Zhang TP, Liao Q, Guo JC and Zhao YP: WT1‑associated protein is a novel tumor marker for stage I and II breast cancer. Cancer Commun 521: 499‑506, 2020.

37. Tang J, Wang F, Cheng G, Si S, Sun X, Han J, Hu Y, Zhang W, Lv Q, Wei JF and Yang H: Wilms' tumor 1‑associating protein promotes renal cell carcinoma proliferation by regulating CDK2 mRNA stability. J Exp Clin Cancer Res 37: 40, 2018.

38. Su R, Li Z, Weng H, Weng X and Chen J: FTO Plays an oncogenic role in glioblastoma by regulating the tumor suppressor gene MLH1. Cell Physiol Biochem 48: 838‑846, 2018.

39. Lee Y, Choe J, Park OH and Kim YK: Molecular mechanisms driving mRNA degradation by m6A modification. Trends Genet 36: 177‑188, 2020.

40. Sheng H, Li Z, Su S, Sun W, Zhang X, Li L, Li J, Liu S, Bu Z, Zhang S and Shan C: YTH domain family 2 promotes lung cancer cell growth by regulating 6‑phosphogluconate dehydrogenase mRNA translation. Mol Cancer Res 11: 521‑530, 2013.

41. Li Z, Wang H, Yang Y, Yuan H, Li Y, Wang Y, Wang X, Xue Y, Li J, Liu Y and Xue L: Downregulation of N6‑methyladenosine binding YTHDF2 protein mediated by miR‑93‑3p suppresses prostate cancer by elevating N6‑methyladenosine levels. Oncotarget 9: 3752‑3764, 2017.

42. Bhargava U, Powell P and Goss D: Eukaryotic initiation factor 1eIF3 mediates barley yellow dwarf viral mRNA 3'‑5'UTR interactions and 40S ribosomal subunit binding to facilitate cap‑independent translation. Nuclear Acids Res 47: 6225‑6235, 2019.

43. Li Z, Lin S, Jiang T, Wang J, Li H, Tang H and Fan J: Overexpression of eIF3e is correlated with colon tumor development and poor prognosis. Int J Clin Exp Pathol 7: 6462‑6474, 2014.

44. Choe J, Lin S, Zhang W, Liu Q, Wang L, Ramirez‑Moya J, Yu Y, Kim W, Tang S, Shiz P, et al: mRNA circularization by METTL3‑eIF3h enhances translation and promotes oncogenesis. Nature 561: 556‑560, 2018.
DNA misogynists D, Moschitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Unger L, Olsenberg S, Cesarkas K, Jacob-Hirsch J, Amarioglio N, Kupiec M, et al: Topology of the human and mouse circular RNA methyomes revealed by m6A-seq. Nature 485: 201-206, 2012.

Antanaviciute A, Baquero-Perez B, Watson CM, Harrison SM, Lascelles C, Crinnion L, Markham AF, Bonthron DT, Whitehouse A and Carr IM: m6AViewer: Software for the detection, analysis, and visualization of N6-methyladenosine peaks from m6A-seq/ME‑RIP sequencing data. RNA 23: 1493-1501, 2017.

Zhang SY, Zhang SW, Fan XN, Zhang T, Meng J and Huang Y: FunDMDeep-m6A: Identification and prioritization of functional differential m6A methylation genes. Bioinformatics 35: 890-898, 2019.

Meng KD, Saletore Y, Zunmbo P, Elemento O, Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation reveals enrichment in 3’UTRs and near stop codons. Cell 149: 1635-1646, 2012.

Chandula U, Das R and Panda B: Role of the N6-methyladenosine RNA mark in gene regulation and its implications on development and disease. Brief Funct Genomics 14: 169-175, 2015.

Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C and Chen Y: The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 6: 74, 2021.

Linder B, Grozhik AV, Olarrein-George AO, Meydan C, Mason CE and Jaffrey SR: Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 12: 767-772, 2015.

Maurer J, Luo X, Blanojio A, Jiao X, Grozhik AV, Patil DP, Linder B, Pickering BF, Vasseur J, Chen Q, et al: Reversible methylation of the m6A RNA modification status at single nucleotide resolution in m6A and 5cap controls mRNA stability. Nature 541: 371-375, 2017.

Chen K, Lu Z, Wang X, Fu Y, Luo GZ, Liu N, Han D, Dominissini D, Dai Q, Pan T, et al: High-resolution N(6)-methyladenosine (m6A) map using photo-crosslinking-assisted m6A A sequencing. Angew Chem Int Ed Engl 54: 1587-1600, 2015.

Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, et al: A majority of m6A residues are in the last exons, allowing the potential for 3’UTR regulation. Genes Dev 29: 2037-2053, 2015.

Ma X, Li Y, Wen J and Zhao Y: m6A RNA methylation regulators and metastasis of pancreatic cancer. Mol Cancer 19: 130, 2020.

Du S, Hu W, Zhao YL, Zhou H, Wen W, Xu M, Zhao P and Liu K: Long non-coding RNA MAGI2-AS3 inhibits breast cancer cell migration and invasion via sponging microRNA-374a. Cancer Biomark 24: 269-277, 2019.

Zhang Z, Wang Q, Zheng Y, Zhu Q, Wang Y, Wang H, Xi F, Wang H, Han X, Liu D, Yang Q, Jian J and Peng J: m6A RNA methylation to orchestrate transcriptional and post-transcriptional regulation to promote adipo-geneic differentiation. Nucleic Acids Res 47: 6130-6144, 2019.

Zhang X and Cui L: Development and validation of a m6A RNA methylation regulators-based signature for predicting the prognosis of head and neck squamous cell carcinoma. Am J Cancer Res 9: 2156-2168, 2019.

Chandola U, Das R and Panda B: Role of the N6-methyladenosine RNA mark in gene regulation and its implications on development and disease. Brief Funct Genomics 14: 169-175, 2015.

Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C and Chen Y: The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther 6: 74, 2021.

Linder B, Grozhik AV, Olarrein-George AO, Meydan C, Mason CE and Jaffrey SR: Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods 12: 767-772, 2015.

Maurer J, Luo X, Blanojio A, Jiao X, Grozhik AV, Patil DP, Linder B, Pickering BF, Vasseur J, Chen Q, et al: Reversible methylation of the m6A RNA modification status at single nucleotide resolution in m6A and 5cap controls mRNA stability. Nature 541: 371-375, 2017.

Chen K, Lu Z, Wang X, Fu Y, Luo GZ, Liu N, Han D, Dominissini D, Dai Q, Pan T, et al: High-resolution N(6)-methyladenosine (m6A) map using photo-crosslinking-assisted m6A A sequencing. Angew Chem Int Ed Engl 54: 1587-1600, 2015.

Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, et al: A majority of m6A residues are in the last exons, allowing the potential for 3’UTR regulation. Genes Dev 29: 2037-2053, 2015.

Ma X, Li Y, Wen J and Zhao Y: m6A RNA methylation regulators and metastasis of pancreatic cancer. Mol Cancer 19: 130, 2020.

Du S, Hu W, Zhao YL, Zhou H, Wen W, Xu M, Zhao P and Liu K: Long non-coding RNA MAGI2-AS3 inhibits breast cancer cell migration and invasion via sponging microRNA-374a. Cancer Biomark 24: 269-277, 2019.

Zhang Z, Wang Q, Zheng Y, Zhu Q, Wang Y, Wang H, Xi F, Wang H, Han X, Liu D, Yang Q, Jian J and Peng J: m6A RNA methylation to orchestrate transcriptional and post-transcriptional regulation to promote adipo-geneic differentiation. Nucleic Acids Res 47: 6130-6144, 2019.

Zhang X and Cui L: Development and validation of a m6A RNA methylation regulators-based signature for predicting the prognosis of head and neck squamous cell carcinoma. Am J Cancer Res 9: 2156-2168, 2019.
103. Lin X, Chai G, Wu Y, Chen F, Liu J, Luo G, Tauler J, Du J, Lin S, He C and Wang H: RNA m(6)A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat Commun 10: 2065, 2019.

104. Huang GZ, Wu QQ, Zheng ZN, Shao TR, Chen YC, Zeng WS and Lv XZ: M6A-related bioinformatics analysis reveals that HNRNPC facilitates progression of OSCC via EMT. Aging (Albany NY) 12: 11667-11684, 2020.

105. Yue B, Song C, Yang L, Cui R, Cheng X, Zhang Z and Zhao G: METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Mol Cancer 18: 142, 2019.

106. Li H, Su Q, Li B, Lan L, Wang C, Li W, Wang G, Chen W, He Y and Zhang C: High expression of WTAP leads to poor prognosis of gastric cancer by influencing tumour-associated T lymphocyte infiltration. J Cell Mol Med 24: 4452-4465, 2020.

107. Sun Y, Li S, Yu W, Zhao Z, Gao J, Chen C, Wei M, Liu T, Li L and Liu L: N6-methyladenosine-dependent pri-miR-17-92 maturation suppresses PTEN/TMEM127 and promotes sensitivity to everolimus in gastric cancer. Cell Death Dis 11: 836, 2020.

108. Lin S, Liu J, Jiang W, Wang P, Sun C, Wang X, Chen Y and Wang H: METTL3 promotes the proliferation and mobility of gastric cancer cells. Open Med (Wars) 14: 25-31, 2019.

109. Liu T, Yang S, Sui J, Xu SY, Cheng YP, Shen B, Zhang Y, Zhang XM, Yin LH, Pu YP and Liang GY: Dysregulated N6-methyladenosine methylation writer METTL3 contributes to the proliferation and migration of gastric cancer. J Cell Physiol 235: 548-562, 2020.

110. Du C, Lv C, Feng Y and Yu S: Activation of the KDM5A/miRNA-495/YTHDF2/m6A-MO3B axis facilitates prostate cancer progression. J Exp Clin Cancer Res 39: 223, 2020.

111. Liu T, Wei Q, Jin J, Luo Q, Liu Y, Yang Y, Cheng C, Li L, Pi J, Si Y, et al: The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res 48: 3816-3831, 2020.

112. Huang H, Weng H and Chen J: m(6)A modification in coding and non-coding RNAs: Roles and therapeutic implications in cancer. Cancer Cell 37: 270-288, 2020.

113. Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G, Yuan W, Kan Q and Sun Z: The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol 12: 121, 2019.