ON THE TOPOLOGY OF THE ZERO SETS OF MONOCHROMATIC RANDOM WAVES

YAIZA CANZANI AND PETER SARNAK

Abstract. This note concerns the topology of the connected components of the zero sets of monochromatic random waves on compact Riemannian manifolds without boundary. In [SW] it is shown that these are distributed according to a universal measure on the space of smooth topological types. We determine the support of this measure.

1. Introduction

For \(\ell \geq 0 \) and \(n \geq 2 \) let \(\mathcal{E}_\ell(S^n) \) denote the real linear space of (homogeneous) spherical harmonics of degree \(\ell \) in \((n + 1) \) variables. These are eigenfunctions of the Laplacian \(\Delta_{S^n} \) on the sphere \(S^n \) endowed with the round metric sitting in \(\mathbb{R}^{n+1} \). With the corresponding \(L^2 \)-inner product

\[
\langle f, g \rangle = \int_{S^n} f(w)g(w) \, d\sigma(w),
\]

we get a Gaussian probability density \(P \) on \(\mathcal{E}_\ell(S^n) \). Namely,

\[
P(A) = \int_A e^{-\langle f,f \rangle} \, df,
\]

where \(df \) is the normalized Haar measure on \(\mathcal{E}_\ell(S^n) \) and \(A \subset \mathcal{E}_\ell(S^n) \).

We are interested in the zero set \(V(f) = f^{-1}(0) \) of a typical \(f \in (\mathcal{E}_\ell(S^n), P) \) as \(\ell \to \infty \). Let \(C(f) \) denote the connected components of \(V(f) \). Then, for almost all \(f \) these components are smooth, compact, \((n-1) \)-dimensional manifolds. The distribution of topologies of \(V(f) \) is given by

\[
\mu_f := \frac{1}{|C(f)|} \sum_{c \in C(f)} \delta_{t(c)},
\]

where \(t(c) \) is the diffeomorphism type of \(c \), and \(\delta_\tau \) is the point measure at \(\tau \). If we denote these types by \(\overline{H}(n-1) \) (it is a countable discrete set), then clearly \(\mu_f \) is a probability measure on \(\overline{H}(n-1) \). Let \(H(n-1) \) denote the subset of \(\overline{H}(n-1) \) consisting of all those types that can be realized as embedded submanifolds of \(\mathbb{R}^n \).

Nazarov and Sodin [NS] have shown that for a typical \(f \in \mathcal{E}_\ell(S^n) \) and \(\ell \to +\infty \),

\[
|C(f)| \sim c_n \ell^n,
\]

\[\text{The research of Y.C. is partially supported by an NSERC Postdoctoral Fellowship and by NSF grant DMS-1128155. The research of P.S. is supported by an NSF grant.}\]
for some $c_n > 0$. Since $C(f)$ consists of many components, it makes sense to examine the behavior of μ_f as $\ell \to +\infty$. In the recent work [SW] it is shown that there is a probability measure μ_{mono} on $H(n-1)$ (denoted by $\mu_{C,n,1}$ in [SW]) such that for any $\varepsilon > 0$

\[\mathbb{P} \{ f \in \mathcal{E}_\ell(S^n) : D(\mu_f, \mu_{\text{mono}}) > \varepsilon \} \to 0, \]

as $\ell \to +\infty$. Here the discrepancy D between two measures μ and ν is given by

\[D(\mu, \nu) = \sup \{ |\mu(F) - \nu(F)| : F \subset \tilde{H}(n-1), F \text{ is finite} \}. \]

(3)

In fact, the same is proved for Gaussian ensembles of monochromatic waves on any given compact Riemannian manifold (M, g) of dimension n with no boundary ([SW]).

If (M, g) is a compact Riemannian manifold, a monochromatic random wave of energy T is defined as the Gaussian ensemble of functions on M given by

\[f(x) = \sum_{T-\eta(T) \leq t_j \leq T} c_j \varphi_j(x). \]

Here, the functions φ_j form an orthonormal basis of $L^2(M, g, \mathbb{R})$ and are eigenfunctions of the Laplacian $\Delta_g \varphi_j + t_j^2 \varphi_j = 0$. The coefficients c_j are independent Gaussian random variables of mean 0 and variance 1. Also, $\eta(T) = o(T)$ and $\eta(T) \to +\infty$ as $T \to +\infty$.

The measure μ_{mono} is the universal distribution for the topologies of the zero set of a typical monochromatic wave. Our aim in this note is to identify the support of this measure.

Theorem 1. The support of μ_{mono} is equal to $H(n-1)$. That is, for all $c \in H(n-1)$,

\[\mu_{\text{mono}}(c) > 0. \]

As shown in [SW], the following criterion, extending the condition $(\rho \, 4)$ of Sodin [Sod, (1.2.2)], suffices to establish the above theorem: Given $c \in H(n-1)$ find a trigonometric polynomial f on \mathbb{R}^n of the form

\[f(x) = \sum_{\xi \in S^{n-1}} a_\xi e^{i\langle x, \xi \rangle}, \]

such that $f^{-1}(0)$ contains c as one of its components. The sum in (4) is over a finite set of ξ's, and the coefficients should satisfy $a_\xi = \overline{a_{-\xi}}$.

We note that for $n = 2$, $H(1)$ is a point and so the statement of Theorem 1 is trivial. For $n = 3$, $H(2) = \{0, 1, 2, \ldots\}$ with each $c \in H(2)$ being identified with its genus $g(c)$, and in this case (4) is verified in [SW] by deforming a carefully constructed f. For $n \geq 4$ the sets $H(n-1)$ are not known explicitly and we proceed here by more abstract and general arguments.

First, we give a number of criteria which are equivalent to (4) and which are closely connected to the underlying translation invariant Gaussian field on \mathbb{R}^n. The functions (4) satisfy

\[(\Delta + 1)f(x) = 0 \quad \text{on } \mathbb{R}^n, \]

and the various criteria reflect this (these f's being monochromatic!). We then apply some differential topology and Whitney’s approximation Theorem to realize c as an
embedded real analytic submanifold of \(\mathbb{R}^n \). Then, following some of the techniques in [EP]] we find suitable approximations of \(f \) which satisfy (3) and whose zero set contains a diffeomorphic copy of \(c \). The construction of \(f \) hinges on the Lax-Malgrange Theorem and Thom’s isotopy Theorem.

1.1. Acknowledgement. We thank D. Jakobson for pointing out to us the paper [EP] by Enciso and Peralta-Salas, and I. Wigman for his valuable comments.

2. Proof of Theorem

Our interest is in the monochromatic Gaussian field on \(\mathbb{R}^n \) which is a special case of the band limited Gaussian fields considered in [SW], and which is fundamental in the proof of (2) above. For \(0 \leq \alpha \leq 1 \), define the annulus \(A_\alpha = \{ \xi \in \mathbb{R}^n : \alpha \leq |\xi| \leq 1 \} \) and let \(\sigma_\alpha \) be the Haar measure on \(A_\alpha \) normalized so that \(\sigma_\alpha(A_\alpha) = 1 \). Using that the transformation \(\xi \mapsto -\xi \) preserves \(A_\alpha \) we choose a real valued orthonormal basis \(\{ \phi_j \}_{j=1}^\infty \) of \(L^2(A_\alpha, \sigma_\alpha) \) satisfying

\[
\phi_j(-\xi) = (-1)^{\eta_j} \phi_j(\xi), \quad \eta_j \in \{0, 1\}.
\]

(6)

The band limited Gaussian field \(H_{n,\alpha} \) is defined to be the random real valued functions \(f \) on \(\mathbb{R}^n \) given by

\[
f(x) = \sum_{j=1}^\infty b_j \hat{\phi}_j(x)
\]

(7)

where

\[
\hat{\phi}_j(x) = \int_{\mathbb{R}^n} \phi_j(\xi)e^{-i(x,\xi)}d\sigma_\alpha(\xi)
\]

(8)

and the \(b_j \)'s are identically distributed, independent, real valued, standard Gaussian variables. We note that the field \(H_{n,\alpha} \) does not depend on the choice of the orthonormal basis \(\{ \phi_j \} \).

The distributional identity \(\sum_{j=1}^\infty \phi_j(\xi)\phi_j(\eta) = \delta(\xi - \eta) \) on \(A_\alpha \) together with (6) lead to the explicit expression for the covariance function:

\[
\text{Cov}(x, y) = \mathbb{E}_{H_{n,\alpha}}(f(x)f(y)) = \int_{\mathbb{R}^n} e^{i(x-y,\xi)}d\sigma_\alpha(\xi).
\]

(9)

From (9), or directly from (7), it follows that almost all \(f \)'s in \(H_{n,\alpha} \) are analytic in \(x \) [AT]. For the monochromatic case \(\alpha = 1 \) we have

\[
\text{Cov}(x, y) = \frac{1}{(2\pi)^{\frac{n}{2}}} \frac{J_\nu(|x - y|)}{|x - y|^{\nu}},
\]

(10)

where to ease notation we have set

\[
\nu := \frac{n - 2}{2}.
\]

In this case there is also a natural choice of a basis for \(L^2(S^{n-1}, d\sigma) = L^2(A_1, \mu_1) \) given by spherical harmonics. Let \(\{ Y^\ell_m \}_{m=1}^{d_\ell} \) be a real valued basis for the space of spherical harmonics \(\mathcal{E}_\ell(S^{n-1}) \) of eigenvalue \(\ell(\ell + n - 2) \), where \(d_\ell = \dim \mathcal{E}_\ell(S^{n-1}) \). We compute the Fourier transforms for the elements of this basis.
\textbf{Proposition 2.} For every $\ell \geq 0$ and $m = 1, \ldots, d_\ell$, we have

$$\widehat{Y}_m^\ell(x) = (2\pi)^{-\frac{3}{2}} i^\ell Y_m^\ell \left(\frac{x}{|x|} \right) \frac{J_{\ell+\nu}(|x|)}{|x|^\nu}. \quad (11)$$

\textbf{Proof.} We give a proof using the theory of point pair invariants [Sel] which places such calculations in a general and conceptual setting. The sphere S^{n-1} with its round metric is a rank 1 symmetric space and $\langle \dot{x}, \dot{y} \rangle$ for $\dot{x}, \dot{y} \in S^{n-1}$ is a point pair invariant (here \langle , \rangle is the standard inner product on \mathbb{R}^n restricted to S^{n-1}). Hence, by the theory of these pairs we know that for every function $h : \mathbb{R} \to \mathbb{C}$ we have

$$\int_{S^{n-1}} h(\langle \dot{x}, \dot{y} \rangle) Y(\dot{y}) \, d\sigma(\dot{y}) = \lambda_h(\ell) Y(\dot{x}), \quad (12)$$

where Y is any spherical harmonic of degree ℓ and $\lambda_h(\ell)$ is the spherical transform. The latter can be computed explicitly using the zonal spherical function of degree ℓ. Fix any $\dot{x} \in S^{n-1}$ and let $Z^\ell_{\dot{x}}$ be the unique spherical harmonic of degree ℓ which is rotationally invariant by motions of S^{n-1} fixing \dot{x} and so that $Z^\ell_{\dot{x}}(\dot{x}) = 1$. Then,

$$\lambda_h(\ell) = \int_{S^{n-1}} h(\langle \dot{x}, \dot{y} \rangle) Z^\ell_{\dot{x}}(\dot{y}) \, d\sigma(\dot{y}). \quad (13)$$

The function $Z^\ell_{\dot{x}}(\dot{y})$ may be expressed in terms of the Gegenbauer polynomials [GR, (8.930)] as

$$Z^\ell_{\dot{x}}(\dot{y}) = \frac{C^\nu_{\ell}(\langle \dot{x}, \dot{y} \rangle)}{C^\nu_1(1)}. \quad (14)$$

Now, for $x \in \mathbb{R}^n$,

$$\widehat{Y}_m^\ell(x) = \int_{S^{n-1}} h_x(\langle \frac{x}{|x|}, \dot{y} \rangle) Y_m^\ell(\dot{y}) \, d\sigma(\dot{y}),$$

where we have set $h_x(t) = e^{-i|x|t}$. Hence, by [12] we have

$$\widehat{Y}_m^\ell(x) = \lambda_{h_x}(\ell) Y_m^\ell(\frac{x}{|x|}),$$

with

$$\lambda_{h_x}(\ell) = \int_{S^{n-1}} e^{-i|x|\langle \frac{x}{|x|}, \dot{y} \rangle} Z^\ell_{\dot{x}}(\dot{y}) \, d\sigma(\dot{y}) = \frac{\text{vol}(S^{n-2})}{C^\nu_1(1)} \int_{-1}^1 e^{-it|x|} C^\nu_{\ell}(t) (1-t^2)^{\nu-\frac{1}{2}} \, dt. \quad (15)$$

The last term in (15) can be computed using [GR, (7.321)]. This gives

$$\lambda_{h_x}(\ell) = (2\pi)^{\frac{3}{2}} i^\ell \frac{J_{\ell+\nu}(|x|)}{|x|^\nu},$$

as desired. \qed

\textbf{Corollary 3.} The monochromatic Gaussian ensemble $H_{n,1}$ is given by random f’s of the form

$$f(x) = (2\pi)^{\frac{3}{2}} \sum_{\ell=0}^\infty \sum_{m=1}^{d_\ell} b_{\ell,m} Y_m^\ell \left(\frac{x}{|x|} \right) \frac{J_{\ell+\nu}(|x|)}{|x|^\nu},$$

where the $b_{\ell,m}$’s are i.i.d standard Gaussian variables.
The functions \(x \mapsto Y_m^\ell \left(\frac{x}{|x|} \right) \frac{J_{\ell+\nu}(|x|)}{|x|^{\nu}} \), \(x \mapsto e^{i(x,\xi)} \) with \(|\xi| = 1\), and those in (7) for which the series converges rapidly (e.g. for almost all \(f \) in \(H_{n,1} \)), all satisfy (5). We therefore introduce the space

\[
E_1 := \{ f : \mathbb{R}^n \to \mathbb{R} : f \in \text{Ker}(\Delta + 1) \}.
\]

In addition, consider the subspaces \(P_1 \) and \(T_1 \) of \(E_1 \) defined by

\[
P_1 := \text{span} \left\{ x \mapsto Y_m^\ell \left(\frac{x}{|x|} \right) \frac{J_{\ell+\nu}(|x|)}{|x|^{\nu}} : \ell \geq 0, \ m = 1, \ldots, d_\ell \right\},
\]

\[
T_1 := \text{span} \left\{ x \mapsto \frac{e^{i(x,\xi)} + e^{-i(x,\xi)}}{2}, \ x \mapsto \frac{e^{i(x,\xi)} - e^{-i(x,\xi)}}{2i} : |\xi| = 1 \right\}.
\]

Proposition 4. Let \(f \in E_1 \) and let \(K \subset \mathbb{R}^n \) be a compact set. Then, for any \(t \geq 0 \) and \(\varepsilon > 0 \) there are \(g \in P_1 \) and \(h \in T_1 \) such that

\[
\| f - g \|_{C^t(K)} < \varepsilon \quad \text{and} \quad \| f - h \|_{C^t(K)} < \varepsilon.
\]

That is, we can approximate \(f \) on compact subsets in the \(C^t \)-topology by elements of \(P_1 \) and \(T_1 \) respectively.

Proof. Let \(f \in E_1 \). Since \(f \) is analytic we can expand it in a rapidly convergent series in the \(Y_m^\ell \)'s. That is,

\[
f(x) = \sum_{\ell=0}^{\infty} \sum_{m=1}^{d_\ell} a_{m,\ell}(|x|) Y_m^\ell \left(\frac{x}{|x|} \right).
\]

Moreover, for \(r > 0 \),

\[
\int_{S^{n-1}} |f(r\hat{x})|^2 d\sigma(\hat{x}) = \sum_{\ell=0}^{\infty} \sum_{m=1}^{d_\ell} |a_{m,\ell}(r)|^2.
\]

In polar coordinates, \((r, \theta) \in (0, +\infty) \times S^{n-1}\), the Laplace operator in \(\mathbb{R}^n \) is given by

\[
\Delta = \partial_r^2 + \frac{n-1}{r} \partial_r + \frac{1}{r^2} \Delta_{S^{n-1}},
\]

and hence for each \(\ell, m \) we have that

\[
r^2 a_{m,\ell}''(r) + (n-1) r a_{m,\ell}'(r) + (r^2 - \ell(\ell + n - 2)) a_{m,\ell}(r) = 0.
\]

where \(\ell \) is some positive integer. There are two linearly independent solutions to (17). One is \(r^{-\nu} J_{\ell+\nu}(r) \) and the other blows up as \(r \to 0 \). Since the left hand side of (16) is finite as \(r \to 0 \), it follows that the \(a_{m,\ell} \)'s cannot pick up any component of the blowing up solution. That is, for \(r \geq 0 \)

\[
a_{m,\ell}(r) = c_{\ell,m} \frac{J_{\ell+\nu}(r)}{r^{\nu}},
\]

for some \(c_{m,\ell} \in \mathbb{R} \). Hence,

\[
f(x) = \sum_{\ell=0}^{\infty} \sum_{m=1}^{d_\ell} c_{\ell,m} Y_m^\ell \left(\frac{x}{|x|} \right) \frac{J_{\ell+\nu}(|x|)}{|x|^{\nu}}.
\]
Furthermore, this series converges absolutely and uniformly on compact subsets, as also do its derivatives. Thus, \(f \) can be approximated by members of \(P_1 \) as claimed, by simply truncating the series in (18).

To deduce the same for \(T_1 \) it suffices to approximate each fixed \(Y^f_m \left(\frac{x}{|x|} \right) \frac{f_\ell + \nu(|x|)}{|x|^n} \). To this end let \(\xi_1, -\xi_1, \xi_2, -\xi_2, \ldots, \xi_N, -\xi_N \) be a sequence of points in \(S^{n-1} \) which become equidistributed with respect to \(d\sigma \) as \(N \to \infty \). Then, as \(N \to \infty \),

\[
\frac{1}{2N} \sum_{j=1}^{N} \left(e^{-i(x,\xi_j)_{\cdot}} Y^f_m(\xi_j) + (-1)^{\ell} e^{i(x,\xi_j)_{\cdot}} Y^f_m(\xi_j) \right) \to \int_{S^{n-1}} e^{-i(x,\xi)_{\cdot}} Y^f_m(\xi) \, d\sigma(\xi). \tag{19}
\]

The proof follows since \((2\pi)^{\frac{n}{2}} t^\ell \frac{J_{\ell + \nu(|x|)}}{|x|^n} = \int_{S^{n-1}} e^{-i(x,\xi)_{\cdot}} Y^f_m(\xi) \, d\sigma(\xi)\). Indeed, the convergence in (19) is uniform over compact subsets in \(x \).

Remark 1. For \(\Omega \subset \mathbb{R}^n \) open, let \(E_1(\Omega) \) denote the eigenfunctions on \(\Omega \) satisfying \(\Delta f(x) + f(x) = 0 \) for \(x \in \Omega \). Any function \(g \) on \(\Omega \) which is a limit (uniform over compact subsets of \(\Omega \)) of members of \(E_1 \) must be in \(E_1(\Omega) \). While the converse is not true in general, note that if \(\Omega = B \) is a ball in \(\mathbb{R}^n \), then the proof of Proposition 4 shows that the uniform limits of members of \(E_1 \) (or \(P_1 \), or \(T_1 \)) on compact subsets in \(B \) is precisely \(E_1(B) \).

With these equivalent means of approximating functions by suitable members of \(H_{n,1} \) we are ready to prove Theorem 1. To verify the criterion following Theorem 1 we can use any function in \(E_1 \).

2.1. Proof of Theorem 1

By the discussion above it follows that given a representative \(c \) of a class \(t(c) \in H(n - 1) \), it suffices to find \(f \in E_1 \) for which \(C(f) \) contains a diffeomorphic copy of \(c \).

To begin the proof we claim that we may assume that \(c \) is real analytic. Indeed, if we start with \(\tilde{c} \) smooth, of the desired topological type, we may construct a tubular neighbourhood \(V_{\tilde{c}} \) of \(\tilde{c} \) and a smooth function

\[
H_{\tilde{c}} : V_{\tilde{c}} \to \mathbb{R} \quad \text{with} \quad \tilde{c} = H_{\tilde{c}}^{-1}(0).
\]

Note that without loss of generality we may assume that \(\inf_{x \in V_{\tilde{c}}} \|\nabla H_{\tilde{c}}(x)\| > 0 \). Fix any \(\epsilon > 0 \). We apply Thom’s isotopy Theorem [AR Thm 20.2] to obtain the existence of a constant \(\delta_\epsilon > 0 \) so that for any function \(F \) with \(\|F - H_{\tilde{c}}\|_{C^1(V_{\tilde{c}})} < \delta_\epsilon \) there exists \(\Psi_F : \mathbb{R}^n \to \mathbb{R}^n \) diffeomorphism with \(\|\Psi_F - Id\|_{C^0(\mathbb{R}^n)} < \epsilon \), \(\text{supp}(\Psi_F - Id) \subset V_{\tilde{c}} \), and

\[
\Psi_F(\tilde{c}) = F^{-1}(0) \cap V_{\tilde{c}}.
\]

To construct a suitable \(F \) we use Whitney’s approximation Theorem [Wh Lemma 6] which yields the existence of a real analytic approximation \(F : V_{\tilde{c}} \to \mathbb{R}^{mc} \) of \(H_{\tilde{c}} \) that satisfies \(\|F - H_{\tilde{c}}\|_{C^1(V_{\tilde{c}})} < \delta_\epsilon \). It follows that \(\tilde{c} \) is diffeomorphic to \(c := \Psi_F(\tilde{c}) \) and \(c \) is real analytic as desired.

By the Jordan-Brouwer Separation Theorem [L3], the hypersurface \(c \) separates \(\mathbb{R}^n \) into two connected components. We write \(A_c \) for the corresponding bounded component of \(\mathbb{R}^n \setminus c \). Let \(\lambda^2 \) be the first Dirichlet eigenvalue for the domain \(A_c \) and let \(h_\lambda \) be
the corresponding eigenfunction:
\[
\begin{cases}
(\Delta + \lambda^2)h_\lambda(x) = 0 & x \in \overline{A_c}, \\
h_\lambda(x) = 0 & x \in c.
\end{cases}
\]

Consider the rescaled function
\[
h(x) := h_\lambda(x/\lambda),
\]
defined on the rescaled domain \(\lambda A_c := \{x \in \mathbb{R}^n : x/\lambda \in A_c\}\). Since \((\Delta + 1)h = 0\) in \(\lambda A_c\), and \(\partial(\lambda A_c)\) is real analytic, \(h\) may be extended to some open set \(B_c \subset \mathbb{R}^n\) with \(\lambda A_c \subset B_c\) so that
\[
\begin{cases}
(\Delta + 1)h(x) = 0 & x \in B_c, \\
h(x) = 0 & x \in \lambda c,
\end{cases}
\]
where \(\lambda c\) is the rescaled hypersurface \(\lambda c := \{x \in \mathbb{R}^n : x/\lambda \in c\}\). Note that since \(h_\lambda\) is the first Dirichlet eigenfunction, then we know that there exists a tubular neighbourhood \(V_{\lambda c}\) of \(\lambda c\) on which \(\inf_{x \in V_{\lambda c}} \|\nabla h(x)\| > 0\) (see Lemma 3.1 in [BHM]). Without loss of generality assume that \(V_{\lambda c} \subset B_c\).

Given any \(\varepsilon > 0\) we apply Thom’s isotopy Theorem [AR, Thm 20.2] to obtain the existence of a constant \(\delta > 0\) so that for any function \(f\) with \(\|f - h\|_{C^1(V_{\lambda c})} < \delta\) there exists \(\Psi_f : \mathbb{R}^n \to \mathbb{R}^n\) diffeomorphism so that \(\|\Psi_f - Id\|_{C^0(\mathbb{R}^n)} < \varepsilon\), \(\text{supp}(\Psi_f - Id) \subset V_{\lambda c}\), and
\[
\Psi_f(\lambda c) = f^{-1}(0) \cap V_{\lambda c}.
\]
Since \(\mathbb{R}^n \setminus B_c\) has no compact components, Lax-Malgrange’s Theorem [Kr, p. 549] yields the existence of a global solution \(f : \mathbb{R}^n \to \mathbb{R}\) to the elliptic equation \((\Delta + 1)f = 0\) in \(\mathbb{R}^n\) with \(\|f - h\|_{C^1(B_c)} < \delta\).

We have then constructed a solution to \((\Delta + 1)f = 0\) in \(\mathbb{R}^n\), i.e. \(f \in E_1\), for which \(f^{-1}(0)\) contains a diffeomorphic copy of \(c\) (namely, \(\Psi_f(\lambda c)\)). This concludes the proof of the theorem.

We note that the problem of finding a solution to \((\Delta + 1)f = 0\) for which \(C(f)\) contains a diffeomorphic copy of \(c\) is related to the work [EP] of A. Enciso and D. Peralta-Salas. In [EP] the authors seek to find solutions to the problem \((\Delta - q)f = 0\) in \(\mathbb{R}^n\) so that \(C(f)\) contains a diffeomorphic copy of \(c\), where \(q\) is a nonnegative, real analytic, potential and \(c\) is a (possibly infinite) collection of compact or unbounded “tentacled” hypersurfaces. The construction of the solution \(f\) that we presented is based on the ideas used in [EP]. Since our setting and goals are simpler than theirs, the construction of \(f\) is much shorter and straightforward.
References

[AR] R. Abraham and J. Robbin. Transversal mappings and flows. Benjamin, New York (1967).

[AT] R. Adler and J. Taylor. Random fields and geometry. Springer Monographs in Mathematics. Vol 115 (2009).

[BHM] R. Brown, P. Hislop and A. Martinez. Lower bounds on eigenfunctions and the first eigenvalue gap. Differential equations with Applications to Mathematical Physics. Mathematics in Science and Engineering (1993) 192, 1-352.

[DX] F. Dai and Y. Xu. Approximation Theory and Harmonic Analysis on Spheres and Balls. New York: Springer (2013).

[Li] E. Lima. The Jordan-Brouwer separation theorem for smooth hypersurfaces. American Mathematical Monthly (1988): 39-42.

[EP] A. Enciso and D. Peralta-Salas. Submanifolds that are level sets of solutions to a second-order elliptic PDE. Advances in Mathematics (2013) 249, 204-249.

[GR] I. Gradshteyn and M. Ryzhik. Table of integrals, series, and products. Academic Press (2007).

[Kr] M. Krzysztof. The Riemann legacy: Riemannian ideas in mathematics and physics. Springer (1997) Vol. 417.

[NS] F. Nazarov and M. Sodin. On the number of nodal domains of random spherical harmonics. American Journal of Mathematics 131.5 (2009) 1337-1357.

[Sel] A. Selberg. Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. Journal of the Indian Mathematical Society 20 (1956): 47-87.

[Sod] M. Sodin. Lectures on random nodal portraits. Lecture Notes for a Mini-course Given at the St. Petersburg Summer School in Probability and Statistical Physics (2012).

[SW] P. Sarnak and I. Wigman. Topologies of nodal sets of random band limited functions. Preprint arXiv:1312.7858 (2013).

[Wh] H. Whitney. Analytic extension of differentiable functions defined on closed sets. Transactions of the American Mathematical Society (1934) 36, 63-89.

(Y. Canzani) Institute for Advanced Study and Harvard University.

E-mail address: canzani@math.ias.edu

(P. Sarnak) Institute for Advanced Study and Princeton University.

E-mail address: sarnak@math.ias.edu