Kinetic Modelling of In-situ Treatment of Petroleum Hydrocarbon Contaminated Soil Using Bone Char and NPK Fertilizers

Obumneme O. Okwonna (✉ obumneme.okwonna@uniport.edu.ng)
University of Port Harcourt https://orcid.org/0000-0001-8517-4541

Ipeghan J. Otaraku
University of Port Harcourt

Research

Keywords: kinetic model, bioremediation, bone char, NPK, hydrocarbon, microbial growth

Posted Date: June 11th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-585647/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Kinetic Modelling of In situ Treatment of Petroleum Hydrocarbon Contaminated Soil

Using Bone Char and NPK Fertilizers

Obumneme O. Okwonna* and Ipeghan J. Otaraku

Department of Chemical Engineering, University of Port Harcourt, PMB 5323 Port Harcourt, Rivers State, Nigeria.

*Correspondence: obumneme.okwonna@uniport.edu.ng

Abstract

This study investigates the effectiveness of bone char (organic) and NPK (inorganic) fertilizers as stimulants in the degradability of petroleum hydrocarbon contaminants on soil. The physicochemical properties of the hydrocarbon sludge were used to assess the effectiveness of this process over an 8-week period using 0.5 – 3.5kg mass of each fertilizer at different experiments. A first order kinetic model was used to estimate the rate of degradation of the total hydrocarbon content (THC) and total organic carbon (TOC) contaminants and the half-life of the remediation process. The microbial population within the period was also determined. The P-Value (P<0.05) indicate that these fertilizers were effective in degrading these contaminants on the soil, because of the significant difference between the treated and the control soil samples. A direct relationship was observed between with the mass and performance of the fertilizers. With 3.5 kg mass of the fertilizers, rate constants of 0.018 day\(^{-1}\) and 0.019 day\(^{-1}\) were obtained for the removal of the THC and TOC contaminants, respectively using the bone char fertilizer, whereas NPK fertilizer gave rates of 0.03 day\(^{-1}\) and 0.023 day\(^{-1}\) respectively. The performance of the NPK fertilizer is attributable to its Nitrogen and Phosphorous content. The model adequately described the process and showed the effectiveness of both fertilizers in the remediation process.

Keywords: kinetic model, bioremediation, bone char, NPK, hydrocarbon, microbial growth
Introduction

Crude oil exploration and exploitation has given rise to the problem of environmental pollution in many parts of the world. The large scale production and oil exploration activities in the Niger Delta region of Nigeria, renowned for its huge deposit of crude oil and natural gas reserve, has given rise to oil spillage which has impacted negatively on the environment leading to air, water, and land pollution. The effects on terrestrial and aquatic lives are equally huge and devastating, and these consequences include surface layer poisoning, distortion of macro and micro ecology, as well as other environmental degradation and health impacts. The land desolation, soil and water body degradation associated with these spills leads to reduced agricultural production [1].

To this end, the need for remediation of these soils has become vital. Bioremediation has been shown to be an efficient and viable approach in the management of oil spilled soils. This technique involves the use of microorganisms such as bacteria, yeast, and fungi to degrade toxic and nontoxic substances. Hence, it involves the breakdown of these substances using living organisms [2, 3]. Various techniques of this approach exist and these include: bio-stimulation, bioaugmentation, bioventing, land farming, phytoremediation, intrinsic bioremediation and controlled natural attenuation, and could be applied in-situ or ex-situ depending on other factors of consideration [4 – 8].

This study which considered the bio-stimulation approach involved the enhancement of the hydrocarbon degradation process through microbial activities which were stimulated through the addition of nutrients. Wise et al. [2] and Chorom [9] reported that water, temperature, pH, oxygen content of the soil as well as availability of the contaminants to microorganisms could affect the degradation rate. The most widely reported application of this technique involves the use of NPK fertilizers. Increase in soil pH, mineral leaching, and other environmental effects are
among the adverse effects reported with the use of inorganic fertilizers, in addition to the huge cost consideration which remains a significant factor of consideration with these materials. On the other hand, organic fertilizers have been reported to fare better in these areas [10]. This study investigates the effectiveness of bone char (organic) and NPK (inorganic) fertilizers as stimulants in the remediation of an oil contaminated site with a view to determining the kinetics of the process.

Materials and Methods

Study Area

An experimental site located within the University of Port Harcourt (4.9069 °N, 6.9170°E), Rivers State-Nigeria was used for this study after due authorization by the University research and ethics committee. The area is a tropical rainforest region, which has an average daily minimum temperature of 23°C and a mean temperature of $31.5 \, ^\circ$C. It has about seven (7) months of rainfall annually (April to October), an average annual rainfall of 2400 ml, and a mean relative humidity of 85% per month.

Sample Preparation

NPK Fertilizer

30g of NPK fertilizer was purchased from a commercial retail outlet in Port Harcourt metropolis, Rivers State, Nigeria.

Bone Char Fertilizer

Bone char sourced from an abattoir within the study area was subjected to pyrolysis treatment at the Chemical Engineering laboratory, University of Port Harcourt, to obtain an organic fertilizer.
Crude Oil sample

The crude oil sample used for this experiment was sourced from an oil spill site at Abua/Odual Local Government Area, Rivers State-Nigeria using a plastic container. 200 litres of the crude sample was collected from recovery tanks installed by the clean-up contractor. The sample was collected under the supervision and assessment of Department of Petroleum Resources (DPR) to ensure conformity and compliance with product and environment standards. Other chemicals used in this experiment were purchased from a retail outlet, Austino Laboratory Services Ltd, Choba, Port Harcourt (Nigeria) and were of analytical grade.

Soil Preparation and in-situ bioremediation procedure

The land portion, with no known history of crude oil contamination, was segmented into 7 cells of similar dimension demarcated from each other with a 10 cm wooden structure. Each cell, having a dimension of 1.5metres x 1.5metres and a depth of 30cm (contaminated soil depth), was polluted with 20 litres of the crude oil sample to form a sludge which was allowed to stand for 2 weeks under continuous monitoring. At the end of this period, the vegetations on the study site were observed to have died. Thereafter, different concentrations of the bone char and NPK fertilizers were administered on these cells (Table 1), and the soil tilled to expose its surface area for treatment and to enhance oxygen availability to bacteria and fungi for effective chemical reactions. Tilling of the soil was done in every 3 days whereas a daily irrigation of the site helped ensure that the optimal soil moisture condition of the site was maintained. Moreover, the experiment was conducted in an uncontrolled environment during the dry season. The effect of bioremediation on the contaminated soil was observed for a period of 8 weeks. Previous studies by Daka et al. [11] and Ayotamuno et al. [12] employed a similar approach under different experimental conditions.
The analytical soil samples were collected at depths of 6, 18, and 27cm from the cells at the experimental site using a spade. The soil samples were, thereafter, mixed into composite samples, labeled and sealed in small polyethylene bags for analysis.

Table 1: Soil treatment conditions

S/N	Site Code	Treatment		
		Crude oil sludge (l)	NPK (kg)	Bone Char (kg)
1	C	20	-	-
2	X₁	20	0.5	-
3	X₂	20	-	0.5
4	Y₁	20	2	-
5	Y₂	20	-	2
6	Z₁	20	3.5	-
7	Z₂	20	-	3.5

NB: C is the Control experiment

Characterization of Soil Sample

Physicochemical properties such as pH, Total Hydrocarbon content, organic carbon, extractable phosphorous and total nitrogen content were used as indices to evaluate the contamination levels of the soil. Samples collected from contaminated site were air dried and homogenized by passing them through a 2 mm mesh sieve. The physiochemical properties were determined as follows:
a. Total Hydrocarbon Content (THC)

10 g of the representative soil sample was shaken vigorously with 10 ml of toluene for 10 mins. The extract was analyzed with 420nm Bausch & Lamb spectronic-70 spectrophotometer (Bamko-surplus, Texas, United States). The concentration of the extract was obtained from the spectrophotometer and compared with a standard curve of another substance with known concentration. The total hydrocarbon content was evaluated with reference to the standard curve and multiplied by the appropriate dilution factor in line with the study of Ikiogha et al. [13].

b. Total Nitrogen (TN)

2 g of the soil sample was air dried, weighed and added into a 150ml beaker. 10 ml each of the following were added alongside: selenium, copper sulphate (CuSO₄), sodium sulphate (Na₂SO₄), and sulphuric acid (H₂SO₄). These reagents were of analytical grade. The mixture was agitated by gentle swirling and digested in a Foss Tecator digester (Kjedahl™ Model 2300, Pittsburgh, USA) for 15 mins until an ash coloured solution was formed. The setup was heated for an hour and cooled for about same time. The digest was emptied into a 250ml capacity beaker and made up with distilled water. An auto-analyzer was used to determine the ammonium nitrogen of the aliquots. The percentage nitrogen content was thereafter evaluated with due consideration of the dilution factors.

c. pH

This was done using a corning pH meter model 7 (Corning Scientific, NY, USA) by dipping the electrode into a 1:25 sample and water suspension which had been stirred and allowed to equilibrate for about an hour.
d. Phosphorous Content

The phosphorus content was determined using the Bray and Kurtz method [14]. 2.85 g of sample was weighed into a clean and dry sample bottle. 20ml of Bray No.1 extractant was added (0.025N + 0.03N NH4) and shaken for 60 sec. Thereafter, 10 ml filtrate was added into a 50ml capacity volumetric flask using a pipette. The mixture was diluted (made up) with about 20 ml of distilled water, after which 4 ml ascorbic acid solution was added. This setup was allowed to rest for 30 mins, during which a change in colour was observed, before being analyzed with a spectronic-20 spectrophotometer operating at 660nm wavelength. This analysis was carried out in accordance with the manufacturer’s specification.

e. Total Organic Carbon (TOC)

This was evaluated using the wet combustion method by measuring 1g of the finely ground soil sample into 3 different 500 ml beakers with 10ml of potassium dichromate (K2Cr2O7) solution added alongside amidst continuous stirring using a magnetic stirrer. 20 ml sulphuric acid (H2SO4) was added to the content of the beakers using a graduated cylinder and, thereafter, the beaker was rotated and allowed to stand for 10 minutes while distilled water was equally added for dilution, by making up the solution to the 200 ml mark of the beaker. 25 ml of 10.5N ferrous ammonium sulphate (NH42FE(SO4)26H20) and 0.4N potassium permanganate (KMnO4) were also added under strong light.

f. Soil Texture

This was evaluated using the Bouyoucous hydrometer [15] in accordance with the method of Day [16].
Evaluation of Microbial Population

This process was carried out using the methods of Cowan and Steel [17] and Buchanan and Gibbons [18]. Prior to the experimental process, all the media and diluents were first sterilized in an autoclave operating at a temperature condition of 120°C for 15 mins. The glass wares were dried in a hot air oven for 3 mins. The saline solution was prepared by weighing 0.85g NaCl into a clean 500ml beaker containing 100 ml of distilled water amidst continuous agitation. The solution was thereafter transferred into the various 9ml capacity test tubes used for the experiments for sterilization under a temperature condition of 120°C for 15 mins. The solution was also used for the serial dilution of the soil samples. Cultivation and enumeration of the soil bacteria was done by adding 1g of the air-dried soil sample into 1ml of the sterile distilled water amidst vigorous agitation to obtain a homogeneous mixture. 1 ml of the 10^{-1} solution was added into a 9ml test tube containing the diluents and serially diluted stepwise to obtain a 10^{-3} dilution. A spatula was used to transfer 0.1ml aliquot of the solution into the sterilized nutrient agar plates in such a way that most of the surface area was exposed for reaction. The inoculated plates were incubated at a temperature of 37 °C for 24 hours, before the nutrient agar plates were examined for bacterial growth. The total viable heterotrophic bacteria were evaluated based on the number of the Colony Forming Units (CFU) using the colony counting technique to determine the number of cells capable of splitting [19]. The CFU was evaluated using the correlation:

$$\text{CFU/g} = \frac{\text{number of colonies} \times \text{dilution factor}}{\text{volume of culture plate}}$$

a. Identification and Isolation of soil bacteria: The bacteria culture was isolated by aseptically streaking colonies of different culture seen on the plate to a freshly prepared nutrient agar plate. The setup was incubated at 28 °C and allowed to stand for 24 hours to allow the bacteria grow. Based on the colony morphology and exhibition of zones of inhibition on the primary culture,
isolates were selected. Isolate purification was done using dilute nutrient broth and agar media and stocked at -80 °C. Characterization of these isolates was done using gram stain (methyl and violet test) to confirm the bacterial growth while the viable count was conducted manually. The isolates were observed under an inverted microscope at × 100 oil immersion following the method of Khan et al. [20] while the CFU was evaluated.

b. Isolation and identification of soil fungi: This was done using dilution plate method on potato dextrose agar. Isolates of soil fungi which were examined macroscopically and microscopically were identified by matching the characteristics of the fungus obtained from observations in accordance with the work of Umboh et al. [21].

Kinetics of the Process

With an assumption of a first order kinetic, the rate equation of the process for reactant of measured concentration (C) is given by:

\[
\frac{\delta C}{\delta t} = -k_1 C \quad (1)
\]

The half-life is given by:

\[
t_{1/2} = \frac{\ln 2}{k_1} = \frac{0.6933}{k_1} \quad (2)
\]

\[
\ln C_t = -k_1 t + \ln C_0 \quad (3)
\]

\[
C_t = C_0 \exp(-k_1 t) \quad (4)
\]

\[
\frac{C_0 - C_t}{C_0} = FE \quad (5)
\]

Where

FE = Fractional Efficiency

\[
C_t = C_0(1 - FE) \quad (6)
\]
\[t = \frac{-1}{k_1} \ln(1 - FE) \]

(7)

\[\ln(1 - FE) = -k_1 t \]

(8)

Equation (8) describes a straight line graph of the form \(y = mx \)

Where:

\[y = \ln(1 - FE) \]

\[m = -k_1 \]

\(C_0 = \) initial concentration

\(C_t = \) Concentration at time \(t \)

\(t = \) elapsed time

Degradation

The hydrocarbon degradation was evaluated through the concentration of the Total Carbon Content using the correlation:

\[D = \frac{TC_0 - TC_i}{TC_0} \times 100 \]

(9)

Where:

\(TC_0 = \) Initial Total Carbon Concentration

\(TC_i = \) Residual Total Carbon Concentration
Bio-Stimulation Efficiency

The bio-stimulation efficiency was used to estimate all the treatability options provided by the optimization rates of the bio-stimulants and was obtained using Equation 10. This was done to ascertain the effect of the biotic and abiotic factors in the bioremediation process.

\[
BE = \frac{C_t - C_u}{C_t} \tag{10}
\]

Where:

- **BE** = Bio-stimulation efficiency
- **Ct** = percentage of crude oil removed from the treated soil.
- **Cu** = percentage of crude oil removed from the untreated soil (control)

Statistical Analysis

T-test was used to analyze the obtained THC data to evaluate the bioremediation process on the contaminated soil. The choice of the test instrument was based on the sample size. The treated soil samples were compared with that of the control site and the following conditional statements were considered:

1. If \(P > 0.05 \) accept null hypothesis \((H_0)\) (no appreciable effect on the process) and reject alternative hypothesis \((H_1)\) (significant effect on the process).
2. If \(P < 0.0 \) reject null hypothesis \((H_0)\) (no appreciable effect on the process) and we accept alternative hypothesis \((H_1)\) (significant effect on the process).

The Pearson Correlation coefficient and t-stat values were also obtained. Microsoft excel and SPSS version 17 were used for this process.
Results and Discussion

Soil Properties

The particle size analysis of the soil texture within the depth of interest (30cm) prior to treatment showed it to comprise of the following: Soil – 75%, clay – 15% and silt – 10%. The soil texture, which is a classification of the soil based on its physical characteristics, was used to assess the soil sample to ascertain the air and water retention capability, rate of water movement in and out of the soil, as well as the ease of working with the soil sample. The texture triangle (Figure 1) indicate the soil texture to comprise of both sand and loamy sand and corroborates the work of Odokuma and Dickson [22] for the top soil of tropical rainforest.
The physicochemical and microbial properties of the soil samples (Table 2) are presented:

Table 2: Physicochemical and microbial properties of soil samples

Description	Property	Soil sample	
		Uncontaminated	Contaminated
Physicochemical Properties	Soil Porosity (%)	85	52
	THC (mg/kg)	136.74	198949.47
	Total Nitrogen (%)	0.85	0.27
	pH	5.86	6.74
	Phosphorous Content(mg/kg)	18.24	6.41
	Total Organic Carbon (%)	3.28	8.52
	Nitrate (mg/kg)	0.85	0.27
	Phosphate (mg/kg)	55.92	84.28
	Sodium (mg/kg)	10.28	4.17
	Potassium (mg/kg)	163.74	42.79
	Calcium (mg/kg)	1305.82	153.80
	Sulphate (mg/kg)	5.86	13.85
	Sodium Adsorption Ratio	2.05	11.47
	Moisture Content (%)	8.46	6.24
	Oil and Grease (mg/l)	305.86	14720.73
	CEC (meq/100g)	13.94	74
	Electrical Conductivity (μs/cm)	30	79
Microbial properties	Total Bacteria Count (cfu/ml)	3.46×10^6	1.31×10^2
	Hydrocarbon Utilizing Bacteria (cfu/ml)	2.23×10^2	1.64×10^2
	Hydrocarbon Utilizing Fungi (sfu/ml)	1.05×10^2	1.01×10^2

The physicochemical properties and microbial properties of the sandy loam soil were adversely affected by the contamination of the petroleum hydrocarbon. Both the trace metal contents and the microbial population of the soil were greatly depleted. The pH conditions in this study were optimum and favourable for microbial growth and higher than the minimum growth pH reported.
by Parker et al. [23]. Slight changes in the pH could alter the ionization of amino-acid functional
groups and interfere with the hydrogen bonding leading to their denaturation thereby rendering
them ineffective for use in the biodegradation of the hydrocarbon [24]. This study corroborates
previous findings on the effect of petroleum hydrocarbon contamination on soil moisture [25].
Increase in the electrical conductivity and cation exchange capacity (CEC) indicates the
dissociation of ion charges into the soil due to crude oil contamination. These ions are attracted
to the water molecules in the soil which carry polar charges. The ionic solutions become
electrolytes capable of conducting electricity.

Fertilizer Properties

The physiochemical properties of the bone char and NPK fertilizers (Table 3) are presented. The
constituents of these fertilizers and their physical properties are critical to their performance in
the degradation of the hydrocarbon contaminant.

Table 3: Physicochemical Properties of Bone Char

S/N	Property	Amount	
		Bone Char	NPK
1	pH	7.18	7.01
2	Moisture Content (%)	1.86	1.0
3	Density (g/ml)	3.06	1.26
4	Porosity (%)	5.80	15.0
5	Calcium ion (mg/kg)	3740.36	0.0
6	Total Nitrogen (%)	3.05	15.0
7	Potassium (%)	98.20	15.0
8	Phosphorous (%)	0	15.0
The effect of the structural-mechanical properties fertilizer granules have been reported [26] and these are fundamental in the exposure of the reactant surface area necessary for these reactions to occur as well as for the interaction of the microbes with the substrate. Various authors have shown the effect of these fertilizers on growth characteristics and soil nutrients [27 – 30] and bioremediation [31 – 35]. This study corroborates these findings. Moreover, the use of organic compounds such as formaldehyde and biuret, in the production of NPK fertilizer, would facilitate the microbial growth and the degradation process.

Effects of In-Situ Treatment of the Contaminated Soil

The effect of both grades of fertilizers (organic and inorganic) on the experimental site was evaluated through an analysis of the physicochemical properties of the soil samples (Table 2) and the Total Hydrocarbon Content (Figure 2) of the soil.

![Figure 2: Bioremediation treatment on Total Hydrocarbon Content](image)

Both grades of fertilizer drastically reduced the total hydrocarbon content of the contaminated soil over time. This indicates that bioremediation was effective in reducing the Total
Hydrocarbon Content from the contaminated soil. There is a link between the mass of fertilizer and performance in the bioremediation process for both grades of fertilizers. 3.5 kg mass of both fertilizers had the highest reduction of the THC and TOC contaminants; efficiency for all treated samples on the Total Hydrocarbon Content was above 60% (Figure 7a). Comparatively, the NPK grade gave a better performance; however, its synthetic nature could give rise to other adverse effects on the environment and potential increase in heavy metal concentration [31]. The effectiveness of the bone char grade of fertilizer could be linked with its ion content leading to the degradation of the hydrocarbon contaminant [36]. A similar pattern was observed for the TOC (Figure 3 and 7b) within this period which confirms the bioremediation effects of these grades of fertilizers.

![Graph showing effect of bioremediation treatment on Total Organic Carbon](image)

Figure 3: Effect of bioremediation treatment on Total Organic Carbon

The bacillus and pseudomonas species were predominant on the contaminated soil. Addition of these fertilizers resulted in a significant increment in the heterotrophic bacteria and heterotrophic
fungi. Total Bacterial Count (TBC) was used to obtain a quantitative idea of the microorganisms present in the soil. TBC is indicative of the number of colony forming units of the soil sample and formed the basis to analyze the degradation rate of the crude oil in the polluted soil.

Prolonged period of the bioremediation treatment with both grades of fertilizers favoured the production of the microbes (Figure 4). The NPK fertilizer grade gave higher bacterial count than the Bone Char grade whereas higher mass of both fertilizers favoured the Total Bacterial Count and consequently their performance in the remediation process. Chorom et al. [9] reported that excessive application of fertilizers makes survival conditions of these microbes critical.

![Figure 5: Effect of bioremediation treatment on Total Bacteria Count](image)

Hydrocarbon Utilizing Bacteria (HUB) degrades aliphatic alkanes through various metabolic activities. They utilize the linear hydrocarbon chains in petroleum as their main energy source under aerobic conditions. Additionally, when exposed with other sufficient limiting nutrients like Nitrogen and Phosphorous, they produce surfactant glycolipids which help reduce water tension and the updatake of hydrocarbon eg alpha-proteobacteria Alcanivorax, Alcanivorax borkumensis.
etc. Performance of the both grades of fertilizer in the isolation of the HUB was shown to be time and dose-dependent (Figure 5). The higher performance of the NPK fertilizer in the remediation process could be attributed to its higher Nitrogen and Phosphorous content which makes it possible to isolate more of the desirable microbe population to produce the surfactant glycol lipids that reduce surface tension thereby making it possible to degrade the contaminant hydrocarbon. The bio-stimulation efficiency (Figure 8) further corroborates this.

Similarly, hydrocarbon utilizing fungi has proven to be very effective in the removal of a wide array of toxins or contaminants from the environment. This is achieved through the degradation of the hydrocarbon components to non-toxic substances. The growth rate of the HUF (Figure 6) followed a similar pattern as that of the HUB, and the NPK fertilizer favoured the production of the HUF as it consistently gave a higher count of the HUF than the bone char within the period of study. Performance of the both grades of fertilizer in the isolation of the HUF has been shown to be time and quantity-dependent. Kumar et al. [37] and Chikere et al. [38] reported the species of this capable of degrading petroleum hydrocarbons in contaminated soils to include: *Penicillium* sp., *Candida* sp., *A. Niger*, *Rhizopus* sp., *Mucor* sp., *Talaromyces* sp., *Saccharomyces* sp., *Cladosporium* sp., *Fusarium* sp., *Rhodotorula* sp. and *Aspergillus flavus*.
The steady increase in the growth rate of these microorganisms with time entails a rapid reproduction of the crude oil degrading mechanisms which were responsible for the attenuation of the soil contaminants and this corroborates the works of Baheri and Meysami [39].
Statistical Analysis

The results of the statistical analysis are shown:

Table 4: Statistical Analysis

Soil Sample	THC	TOC		
	R^2 t-Stat	P-Value	R^2 t-Stat	P-Value
0.5kg Bone Char	0.9865 4.92811	0.00264	0.96638 4.87701	0.00277
0.5 kg NPK	0.9878 9.04522	0.0001	0.93465 6.14734	0.00085
2kg Bone Char	0.9919 7.70261	0.00025	0.95774 6.07293	0.00091
2kg NPK	0.9826 12.0418 2E-05	0.91986	7.36838 0.00032	
3.5kg Bone Char	0.9885 10.0233 5.7E-05	0.93606	6.47146 0.00065	
3.5kg NPK	0.9929 14.476 6.8E-06	0.93571	7.56739 0.00028	

The R^2, t-stat and P-values were used to study the effectiveness of the bioremediation treatment in the removal of the THC and TOC contents. The analysis was done in comparison with the control sample based on the P-value for significance level (P<0.05). Appreciable significant differences were observed for all the samples. Hence we reject the null hypothesis (H_0) and accept the alternative hypothesis (H_1). There was significant effect of the remediation treatment process on the contaminated soil which gave rise to an appreciable reduction of Total Hydrocarbon (THC) and Total Organic Carbon (TOC) contents.
Figure 7a: Degradation of THC

Figure 7b: Degradation of TOC
Figure 8: Biostimulation Efficiency

Kinetics of the Process

The first order kinetic model, which proposes that rate of degradation of substrate is directly proportional to its concentration, was used to model the degradation level of total hydrocarbon carbon (THC) and total organic carbon (TOC) content in the contaminated soil. High K value implies high degradation rate (Table 5), while the fractional efficiency was plotted against time for all samples (Figures 9 - 14).
Fig 9: First Order Kinetic Pattern of THC reduction for the Control Sample

Fig 10: First Order Kinetic Pattern of THC reduction for Bone Char Treated Soil Samples
Fig 11: First Order Kinetic Pattern of THC reduction for NPK Treated Soil Samples

y = -0.0195x
$R^2 = 0.9093$

y = -0.0271x
$R^2 = 0.9405$

y = -0.0308x
$R^2 = 0.8821$

Fig 12: First Order Kinetic Pattern of TOC reduction for the Control Sample

y = -0.0033x
$R^2 = 0.9188$
Fig 13: First Order Kinetic Pattern of TOC reduction for Bone Char Treated Soil Samples

Fig 14: First Order Kinetic Pattern of TOC reduction for NPK Treated Soil Samples
Table 5: Summary of the Kinetic Model Parameters for THC and TOC reduction

Treatment Condition	THC	TOC	THC	TOC		
	R^2	K (day$^{-1}$)	Half life	R^2	K (day$^{-1}$)	Half life
Control	0.959	0.002	346.65	0.918	0.003	231.1
0.5 Kg Bone Char	0.938	0.016	43.3125	0.912	0.017	40.78235
2.0 Kg Bone Char	0.951	0.018	38.5167	0.898	0.017	40.78235
3.5 Kg Bone Char	0.891	0.018	38.5167	0.874	0.019	36.48947
0.5 Kg NPK	0.909	0.019	36.48947	0.882	0.019	36.48947
2.0 Kg NPK	0.94	0.027	25.67778	0.848	0.02	34.665
3.5 Kg NPK	0.882	0.03	23.11	0.853	0.023	30.14348

Positive correlations were observed for the degradation of THC and TOC in the soil with respect to time. In both cases, 3.5 kg NPK treatment had the highest degradation rate constant (0.03 and 0.023/day) and consequently half life of 23 and 30 days respectively. This is further proof of the effectiveness of this pretreatment method in the bioremediation process. The high values of the R^2 statistic across most of the treatment conditions indicate the sufficiency of the model in predicting these processes. It also shows that the models adequately describe the variability of the removal of the THC and TOC contaminants to the extent of their correlation. Physical inspection of the site indicates tremendous effect of the remediation process on the contaminated soil (Figure 15).

The general trend in the THC degradation profile was observed to follow similar trend reported by Wami and Ogoni [40] Latinwo and Agarry [41] and Ofoegbu et al. [42]. The kinetics of the
remediation process also corroborated the physical evidence of the process (Figure 15). The kinetic studies of the first order constant obtained in this study, using NPK as biostimulant for the remediation of the soil, is well within the range of $0.0022 - 0.0335 \text{ day}^{-1}$ corroborates the range of $0.007 - 0.042 \text{ day}^{-1}$ and $0.003 - 0.024 \text{ day}^{-1}$ reported by Ofoegbu, et al. [42] and Latinwo and Agarry [41], respectively. Results from this work also show the significant effect and contribution of bone char as a bio-stimulant in the remediation of the hydrocarbon contaminated site. These effects were comparable to those of the NPK grade which indicate their suitability as a viable alternative. More so, the first order kinetics is comparable to that obtained for the NPK grade. Although the higher performance of the NPK grade fertilizer has been attributed to its Nitrogen and Phosphorous content, leaching of the soil nutrients and loss of soil texture are some of the side effects associated with its use an on the toxicity of aquatic life [43, 44]. In both cases, the bio-stimulation efficiency was above 70% for both THC and TOC in crude oil contaminated soil and the degradation was above 60% which is a strong indication of the effectiveness of the process. The R^2 value obtained from the kinetic models indicates the reliability of the models for future predictions and the attenuation of the samples. Based on the indices considered in this study, it can be deduced that enrichment of the bone char fertilizer can make it a credible alternative for NPK (inorganic fertilizer).
Delineated portion contaminated with crude oil

Crude oil contaminated soil with dead plants (2 weeks after contamination)

Remediation treatment with Bone Char/NPK

14 days after remediation treatment

30 days after remediation with growths

45 days after remediation

60 days after remediation

Figure 15: Pictorial views of experimental site at various stages of treatment
Conclusion

This work has successfully shown that the efficacy of the bone char (organic) and NPK (inorganic) fertilizers in the remediation of hydrocarbon contaminated soil. Vital information on the kinetics of the process, degradation, and biostimulation efficiency have been provided. Although the inorganic fertilizer improved the contaminated soil, the organic fertilizer has been shown to provide a viable alternative. The amount of fertilizer had a direct effect on soil improvement and microbial growth. There treatment had a significant effect on the contaminated soil which gave rise to an appreciable reduction of Total Hydrocarbon (THC) and Total Organic Carbon (TOC) contents. Enrichment of the organic fertilizer will boost its capacity for improving the recovery of oil contaminated soil of oil spilled sites across this region.

ORCID
Obumneme Onyeka Okwonna: 0000-0001-8517-4541
Ipeghan Jonathan Otaraku: 0000-0003-0901-3492

Acknowledgement

The authors are grateful to the management and staff of Chemical Engineering laboratory and Austino Research and analysis resources Ltd Port Harcourt for their technical support.

-Ethical Approval: The protocol for the experiment was approved by the Research and Ethics Committee of University of Port Harcourt

Funding: No funding was received for this study

-Consent to Participate: Not applicable
-Consent to Publish: All authors have given their consent for publication
Authors Contributions: OOO: Data curation, Bench work and draft manuscript preparation, data analysis and modelling; IJO: conceptualization, supervision and bench work

Competing Interests: Authors confirm that there was no conflict of interest

Availability of data and materials: All data have been provided

References

[1] S. Yavari, A. Malakahmael, N. Sapari, A review on phytoremediation of crude oil spills, water, J. Water, Air, & Soil Pollution (2015) 226 (2015) 1 – 18, https://doi.org/10.1007/s11270-015-2550-z

[2] P.J. Alvares and W.A. Illman, Bioremediation and Natural Attenuation: Process Fundamentals and Mathematical Models, Wiley Interscience New Jersey (2006) 1 – 619, doi.10.1002/047173862X

[3] D. L. Wise, D.J. Trantolo, E. J. Cichon, H. I. Inyong, U. Stottmester, Remediation Engineering of Contaminated Soils, CRC Publishers, Marcel Dekker Inc., NY, Basel (2000).

[4] J.N. Bhakta, Handbook of research on inventive bioremediation techniques, IGI Global Engineering Science Reference (2017) 24-45.

[5] M. J. Zwetsloot, J. Lehmann, D. Solomon, Recycling slaughterhouse waste into fertilizer: How do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry?, Journal of the Science of Food and Agriculture 95 (2015) 281–88, https://doi.org/10.1002/jsfa.6716
[6] C.C. Azubuike, C.B. Chikere, G.C. Okpokwasili, Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects, World J Microbiol Biotechnol 32 (2016) 180, https://doi:10.1007/s11274-016-2137-x

[7] R. R. Kalantary, A. Mohseni-Bandpi, A. Esrafili, S. Nasseri, F. R. Ashmagh, S. Sahand Jorfi, M. Ja’fari, Effectiveness of biostimulation through nutrient content on the bioremediation of phenanthrene contaminated soil, Journal of Environmental Health Science & Engineering 12 (2014) 1-9, https://doi.10.1186/s40201-014-0143-1

[8] S. Mishra, J. Jyot, R. C. Kuhad, L. Lal, Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil, Applied Environmental Microbiology 67 (2001) 1675-1681, doi.10.1128/AEM.67.4.1675-1681.2001

[9] M. Chorom, H. S. Sharrifi, H. Motamedi, Bioremediation of a crude oil-polluted soil by application of fertilizers, Iranian Journal Of Environmental Health Science And Engineering (IJEHSE) 7 (2010) 314 – 326,

[10] R. C. Eneje, C. Nwagbara, I. Uwuwarongie, E. G. Uori, Amelioration of chemical properties of crude oil contaminated soil using compost from calapoigeniummucunoides and poultry manure, International Research Journal of Agricultural Science and Soil Science 2 (2012) 246-251.

[11] E. R. Daka, M. Moslen, C. A. Ekeh, I. K. E. Ekweozor, Sediment Quality Status of Two Creeks in the Upper Bonny Estuary, Niger Delta, in Relation to Urban/Industrial Activities, Bull Environ Contam Toxicol 78 (2007) 515–521, https://doi.org/10.1007/s00128-007-9151-5
[12] M. J. Ayotamuno, R. B. Kogbara, J. C. Agunwamba, Bioremediation of Petroleum Hydrocarbon Polluted Agricultural Soil at Various Levels of Soil Tillage in Port Harcourt, Nigeria, Nigerian Journal of Technology 25 (2006) 44-55.

[13] D. B. Ikiogha, I. J. Otaraku, O. L. Y. Momoh, M. O. Welcome, Comparative Effects of Bone Char and NPK Agricultural Fertilizers on Hydrocarbon Utilizing Bacteria and Fungi in Crude Oil Polluted Soil, American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) 55 (2019) 35-49.

[14] R. H. Bray, L. T. Kurtz, Determination of total, organic, and available forms of phosphorus in soils, J. Soil Science, 59 (1945) 39-45.

[15] G. J. Bouyoucos, Hydrometer method improved for making particle size analysis of soils, Agron Journal 54 (1962) 464-465, https://doi.org/10.2134/agronj1962.00021962005400050028x

[16] R. P. Day, Particle fractionation and particle-size analysis, Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling, Agronomy monographs 9 (1965) 545-567, https://doi.org/10.2134/agronmonogr9.1.c43

[17] S. T. Cowan, K. J Steel, Manual for the identification of medical bacteria, Manual for the Identification of Medical Bacteria, 2nd edn. Cambridge, London: Cambridge University Press (1974) 1-165.

[18] R. E. Buchanan, N. E. Gibbons, Bergey’s Manual of Determinative Bacteriology, 8th edn. Baltimore, MD, USA: Baltimore, Williams and Wilkins Co. (1974).
[19] W. F. Harrigan, M. E. McCane, Laboratory Methods in Food and Diary Microbiology, 8th edn. Academic Press London, (1990).

[20] T. F. Khan, M. M. Ahmed, S. M. Imamul Huq, Effects of biochar on the abundance of three agriculturally important soil bacteria, Journal of Agricultural Chemistry and Environment 3 (2014) 31-39, 10.4236/jacen.2014.32005

[21] S. D. Umboh, C. L. Salaki, M. Tulung, L. C. Mandey, R. T. D. Maramis, The isolation and identification of fungi from the soil in gardens of cabbage were contaminated with pesticide residues in Subdistrict Modoinding, International Journal of Research in Engineering and Science 4 (2016) 25-32.

[22] L. O. Odokuma, A. A. Dickson, Bioremediation of a Crude Oil Polluted Tropical Rainforest Soil, Global of Applied Sciences and Environment 2 (2003) 29-40, 10.4314/gjes.v2i1.2403

[23] N. Parker, M. Schneegurt, A. Thi Tu, P. Lister, B. M. Forster, Microbiology, OpenStax Publisher, Texas, (2016), https://openstax.org/books/microbiology/pages/1-introduction

[24] M. Kalita, A. Devi, Study on the effects of soil pH and addition of N-P-K fertilizer on degradation of petroleum hydrocarbon present in oil-contaminated soil, International Journal of Chemical and Petrochemical Technology (IJCPT) 2 (2012) 9-22.

[25] E. Hewelke, J. Szatyłowicz, P. Hewelke, T. Gnatowski, R. Aghalarov, The impact of diesel oil pollution on the hydrophobicity and CO2 efflux of forest soils, J. Water, Air, & Soil Pollution 229 (2018) 1-11, doi: 10.1007/s11270-018-3720-6
[26] K. G. Gorbovskiy, A. M. Norov, I. M. Kochetov, V. V. Sokolov, A. I. Mikhaylichenko, Study of Structural and Mechanical Properties of Mineral Fertilizer Granules, *Theoretical Foundations of Chemical Engineering* 53 (2019) 620–625, 10.1134/S0040579519040067

[27] S. J. Kwon, H. R. Kim, S. K. Roy, H. J. Kim, H. O. Boo, S.H. Woo, H. H. Kim, Effects of nitrogen, phosphorus and potassium fertilizers on growth characteristics of two species of bellflower (Platycodon grandiflorum), *Journal of Crop Science and Biotechnology* 22 (2019) 481-487, doi.org/10.1007/s12892-019-0277-0

[28] K. Okonwu, S. I. Mensah, Effects of NPK (15:15:15) fertilizer on some growth indices of pumpkin, *Asian Journal of Agricultural Research* 6 (2012) 137-143, 10.3923/ajar.2012.137.143

[29] A. K. Nafiu, O. A. Togun, M. O. Abiodun, V. O. Chude, Effects of NPK fertilizer on growth, dry matter production and yield of eggplant in southwestern Nigeria, *Agriculture and Biology Journal of North America* 2 (2011) 1117-1125.

[30] R. C. Adhikari, Effect of NPK on vegetative growth and yield of Desiree and Kufri Sindhuri potato, *Nepal Agriculture Research Journal* 9 (2009) 67 – 75, https://doi.org/10.3126/narj.v9i0.11643

[31] C. B. Chikere, C. C. Obieze, B. O. Chikere, Biodegradation of artisanally refined diesel and the influence of organic wastes on oil-polluted soil remediation, *Scientific African* 8 e00385 (2020) 1- 15, https://doi.org/10.1016/j.sciaf.2020.e00385

[32] R. M. Hesnawi, M. M. Adbeib, Effect of nutrient source on indigenous biodegradation of diesel fuel contaminated soil, *Apcbee Procedia* 5 (2013) 557-561, https://doi.org/10.1016/j.apcbee.2013.05.093
[33] J. K. Nduka, L. N. Umeh, I. O. Okerulu, L. N. Umedum, H. N. Okoye, Utilization of different microbes in bioremediation of hydrocarbon contaminated soils stimulated with inorganic and organic fertilizers, J Pet Environ Biotechnol 3 (2012) 1-9, http://dx.doi.org/10.4172/2157-7463.1000116

[34] R. Thavasi, S. Jayalakshmi, I. M. Banat, Effect of biosurfactant and fertilizer on biodegradation of crude oil by marine isolates of Bacillus megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa, Bioresource technology 102, 2: (2011) 772-778, https://doi.org/10.1016/j.biortech.2010.08.099

[35] T. K. Vyas, B. P. Dave, Effect of addition of nitrogen, phosphorus and potassium fertilizers on biodegradation of crude oil by marine bacteria, Indian Journal of Geo-Marine Sciences (IJMS) 39 (2010) 143 – 150.

[36] J. Rawat, J. Saxena, P. Sanwal, Biochar: a sustainable approach for improving plant growth and soil properties, In Biochar-an imperative amendment for soil and the environment, IntechOpen (2019), doi:10.5772/intechopen.82151

[37] S. Kumar, G. Stecher, K. Tamura, MEGA7: molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Mol Biol Evol 33 (2016) 1870–1874, doi:10.1093/molbev/msw054

[38] C.B. Chikere, C.C. Obieze, P. Okrentugba, Molecular Assessment of Microbial Species Involved in the Biodegradation of Crude Oil in Saline Niger Delta Sediments Using Bioreactors, J Bioremediation Biodegrad 06 (2015) 1–7, doi:10.4172/21556199.1000307
[39] H. Baheri, P. Meysami, Feasibility of fungi bioaugmentation in composting a flare pit soil, Journal of Hazardous Materials 89 (2002) 279-286, doi.org/10.1016/S0304-3894(01)00318-1

[40] E. N. Wami, H. A. Ogoni, Kinetic Model for Biodegradation of Petroleum Hydrocarbon Mixture Bonnylight Crude, J. Nigerian Society of Chemical Engineers 16 (1997) 24-32.

[41] G. K. Latinwo, S. E. Agarry, Kinetic Modelling of Bioremediation of Water Contaminated With Bonny Light Crude Oil using Biostimulation-Bioaugmentation Agent, Universal Journal of Environmental Research & Technology 5 (2015) 188 – 200.

[42] R. U. Ofoegbu, Y. O. Momoh, I. I. Nwaogzie, Bioremediation of crude oil contaminated soil using organic and inorganic fertilizers, Journal of Petroleum & Environmental Biotechnology 6 (2015) 1-6, http://dx.doi.org/10.4172/2157-7463.1000198

[43] M. N. Islam, M. M. Rahman, M. J. A. Mian, M. H. Khan, R. Barua, Leaching Losses of Nitrogen, Phosphorus and Potassium From The Sandy Loam Soil Of Old Brahmaputra Floodplain (Aez-9) Under Continuous Standing Water Condition, Bangladesh J. Agril. Res. 39 (2014) 437-446, https://doi.org/10.3329/bjar.v39i3.21987

[44] R. Jagadeeswaran, V. Murugappan, M. Govindaswamy, Effect of Slow Release NPK Fertilizer Sources on the Nutrient use Efficiency in Turmeric (Curcuma longa L.), World Journal of Agricultural Sciences 1 (2005) 65-69.
Figure 1

Soil Texture Triangle
Figure 2

Bioremediation treatment on Total Hydrocarbon Content

Figure 3
Effect of bioremediation treatment on Total Organic Carbon

![Graph showing the effect of bioremediation treatment on Total Organic Carbon.](image)

Figure 4

Effect of bioremediation treatment on Total Bacteria Count

![Graph showing the effect of bioremediation treatment on Total Bacteria Count.](image)

Figure 5
Heterotrophic Utilizing Bacteria

Figure 6

Heterotrophic Utilizing Fungi
Figure 7

a: Degradation of THC. b: Degradation of TOC.
Figure 8

Biostimulation Efficiency

Figure 9

First Order Kinetic Pattern of THC reduction for the Control Sample

\[y = -0.0021x \]
\[R^2 = 0.9593 \]
Figure 10

First Order Kinetic Pattern of THC reduction for Bone Char Treated Soil Samples

Figure 11

First Order Kinetic Pattern of THC reduction for NPK Treated Soil Samples
Figure 12
First Order Kinetic Pattern of TOC reduction for the Control Sample

Figure 13
First Order Kinetic Pattern of TOC reduction for Bone Char Treated Soil Samples
Figure 14

First Order Kinetic Pattern of TOC reduction for NPK Treated Soil Samples
Figure 15

Pictorial views of experimental site at various stages of treatment