Search for a two-Higgs-boson doublet using a simplified model in \(p\bar{p} \) collisions at \(\sqrt{s} = 1.96 \text{ TeV} \)

T. Aaltonen,22 J. Adelman,58 B. Álvarez González,10 S. Amerio,41 D. Amidei,33 A. Anastassov,16 A. Anno,18 J. Antos,13 G. Apollinari,16 J.A. Apple,16 T. Arisawa,55 A. Artikov,14 J. Asaadi,50 W. Ashmanskas,16 B. Auerbach,58 A. Aurisano,50 F. Azfar,40 W. Badgett,16 T. Bae,26 A. Barbaro-Galtieri,27 V.E. Barnes,45 B.A. Barnett,24 P. Barria,43 P. Bartos,43 M. Bauce,41 F. Bedeschi,43 S. Behari,24 G. Bellettini49,43 J. Bellinger,57 D. Benjamin,15 A. Beretvas,16 A. Bhattacharjee,41 I. Bizjak,59 K.R. Bland,5 B. Blumenfeld,24 A. Bocci,15 A. Bodek,46 D. Bortoletto,45 J. Boudreau,44 A. Boveia,12 L. Brigliadori,6 C. Bronberg,34 E. Brucken,22 J. Budagov,14 H.S. Budd,46 K. Burkett,16 G. Busetto,41 P. Bussey,20 A. Buzatu,32 A. Calamba,11 C. Calancha,30 S. Camarda,4 M. Campanelli,29 M. Campbell,33 F. Canelli,12,16 B. Carls,23 D. Carlsmith,57 R. Carosi,43 S. Carrillo,17 S. Carron,16 B. Casali,10 M. Casarsa,51 A. Castro,6 P. Castastini,21 D. Cauz,51 V. Cavaliere,23 M. Cavalli-Sforza,4 A. Cerri,59 L. Cerrito,59 Y.C. Chen,1 M. Chertok,7 G. Chiarelli,43 G. Chlachidze,16 F. Chlebana,16 K. Choo,26 D. Chokheli,14 W.H. Chung,57 Y.S. Chung,56 M.A. Ciocci,43 A. Clark,19 C. Clarke,56 G. Compostella,41 M.E. Convery,16 J. Conway,7 M. Corbo,16 M. Cordelli,18 C.A. Cox,7 D.J. Cox,7 F. Crescioli49,43 J. Cuevas,10 R. Cubertson,16 D. Dagenhart,16 N. d’Ascosen,16 M. Datta,16 P. de Barbaro,46 M. Dell’Orso,43 L. Demortier,47 M. Denimo,5 F. Devoto,22 M. D’Errico,51 A. D’Canto,49,43 D. Biurz,16 J.R. Dittmann,5 M. D’Onorio,58 S. Donati,49,43 P. Dong,16 M. Dorigo,21 T. Dorigo,11 K. Ebina,55 A. Elagin,50 A. Eppig,33 R. Erbacher,7 S. Errede,34 N. Ershaidat,16 R. Eusebi,50 S. Farrington,40 M. Feindt,25 J.P. Fernandez,30 R. Field,17 G. Flanagan,16 R. Forrest,7 M.J. Frank,5 M. Franklin,17 J.C. Freeman,16 Y. Funakoshi,55 I. Furic,17 M. Gallinaro,47 J.E. Garcia,19 A.F. Garfinkel,45 P. Garosi,16 H. Gerberich,23 E. Gerchtein,16 S. Giagu,48 V. Giakouvopoulos,3 P. Giannetti,43 K. Gibson,44 C.M. Ginsburg,16 N. Giokaris,3 P. Giromini,18 G. Giorgi,24 V. Gligorov,14 D. Glenzinski,16 M. Gold,36 D. Goldin,50 N. Goldschmidt,17 A. Golossanov,16 G. Gomez,10 G. Gomez-Ceballos,31 M. Goncharov,31 O. González,30 I. Gorelov,36 A.T. Goshaw,15 K. Goulianos,47 S. Grinstein,4 C. Grosso-Pilcher,12 R.C. Group,16 J. Guimaraes da Costa,23 S.R. Hahn,16 E. Halkiadakis,49 A. Hamaguchi,39 J.Y. Han,46 F. Happracher,18 K. Hara,52 D. Harry,49 M. Hare,53 R.F. Harr,56 K. Hatakeyama,3 C. Hayes,40 M. Heck,25 J. Heinrich,42 M. Herndon,57 S. Hewamanage,5 A. Hoeker,16 W. Hopkins,16 D. Horn,25 S. Hou,1 R.E. Hughes,37 M. Hurwitz,32 U. Husemann,58 N. Hussain,32 M. Hussein,34 J. Huston,34 G. Introzi,43 M. Iori,48 A. Ivanov,7 E. James,16 D. Jang,11 B. Jayatilaka,15 E.J. Jeon,26 S. Jindariani,16 A. Johnstone,8 M. Jones,45 K.K. Joo,26 S.Y. Jun,11 T.R. Junk,16 T. Kamon,25 P.E. Karchin,56 A. Kashi,5 Y. Kato,39 W. Ketchum,12 J. Keung,42 V. Khotilovich,50 B. Kilminster,16 D.H. Kim,26 H.S. Kim,26 J.E. Kim,26 M.J. Kim,18 S.B. Kim,26 S.H. Kim,52 Y.K. Kim,12 J.Y. Kim,26 N. Kimura,55 M. Kimura,17 K. Knoepfel,16 K. Kondo,55 D.J. Kong,26 J. Konigsberg,17 A.V. Kotwal,15 M. Kreps,25 J. Kroll,12 D. Krop,12 M. Kruse,15 V. Krutelyov,50 T. Kuhr,25 M. Kurata,22 S. Kwang,12 T.A. Laasanen,45 S. Lami,43 S. Lammler,16 M. Lancaster,29 R.L. Landau,7 K. Lannon49,37 A. Lath,49 G. Latino,43 T. LeCompte,19 E. Lee,50 H.S. Lee,9 12 J.S. Lee,26 S.W. Lee,50 S. Leog,43 S. Leone,43 J.D. Lewis,16 A. Limosani,15 C.-J. Lin,27 M. Lindgren,16 E. Lipeles,14 A. Lister,39 D.O. Litvintsev,16 C. Liu,44 H. Liu,54 Q. Liu,45 T. Liu,16 S. Lockwitz,58 A. Loginov,58 D. Lucchesi,41 J. Lueck,25 P. Lujan,27 P. Luksen,16 G. Lungu,47 J. Lyons,27 R. Lysak,13 R. Madrak,16 K. Maeshima,16 P. Maestre,43 S. Malik,47 G. Manca,9,28 A. Manousakis-Katsikakis,13 F. Margaroli,48 C. Marino,25 M. Martínez,4 P. Mastandrea,48 K. Materia,23 M.E. Mattsson,56 A. Mazzacane,16 P. Mazzanti,6 K.S. McFarland,5 P. McIntyre,50 R. McNulty,28 A. Mehta,28 P. Mehtala,22 C. Mesropian,47 T. Miao,16 D. Mietlicki,33 A. Mitra,1 H. Miyake,52 D. Moed,16 N. Moggi,6 M.N. Mondragon,16 C.S. Moon,26 R. Moore,16 J.M. Morello,43 J. Morlock,25 P. Movilla Fernandez,16 A. Mukherjee,16 Th. Muller,25 P. Murat,16 M. Mussineice,23 J. Nachtmann,16 Y. Nagai,52 J. Nagano,55 I. Nakano,38 A. Napier,35 J. Nett,50 C. Neu,54 M.S. Neuhauser,23 J. Nielsen,27 L. Nodulman,2 S.Y. Noh,26 O. Noriella,23 L. Oakes,40 S.H. Oh,15 Y.D. Oh,26 I. Oksuzian,54 T. Okusawa,39 R. Orava,22 L. Ortolan,4 S. Pagan Grisof,41 C. Pagliarone,51 E. Palencia,10 V. Papadimitriou,22 A.A. Paramonov,2 J. Patrick,16 G. Pauletti,46,43 M. Paulini,11 C. Paus,31 D.E. Pellett,7 A. Penzo,43 T.J. Phillips,15 G. Piacentino,43 E. Pianori,42 J. Pilot,37 K. Pits,23 C. Plager,9 L. Pondrom,57 S. Poprocki,16 K. Potamianos,45 F. Prokoshin,14 A. Pranko,27 F. Ptohos,18 G. Punzi,49 A. Rahaman,44 V. Ramakrishnan,57 N. Ranjan,45 K. Rao,8 I. Redondo,40 P. Renton,40 M. Rescigno,58 T. Riddick,29 F. Rimondini,6 L. Ristori,17 A. Robson,20 T. Rodrigo,10 T. Rodriguez,42 K. Rogers,23 S. Rolli,53 R. Roser,16 F. Ruffini,43

arXiv:1212.3837v1 [hep-ex] 16 Dec 2012
We present a search for new particles in an extension to the standard model that includes a heavy Higgs boson (H^0), a lighter charged Higgs boson (H^\pm), and an even-lighter Higgs boson h^0, with decays leading to a W-boson pair and a bottom-antibottom quark pair in the final state. We use events with exactly one lepton, missing transverse momentum, and at least four jets in data corresponding to an integrated luminosity of 8.7 fb$^{-1}$ collected by the CDF II detector in proton-antiproton collisions at $\sqrt{s} = 1.96$ TeV. We find the data to be consistent with standard model predictions and report the results in terms of a simplified Higgs-cascade-decay model, setting 95% confidence level upper limits on the product of cross-section and branching fraction from 1.3 pb to 15 fb as a function of H^0 and H^\pm masses for $m_{h^0} = 126$ GeV/c^2.

PACS numbers: 12.60.-i, 13.85.Rm, 14.80.-j

*Deceased

1With visitors from 4Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, Cagliari, Italy, 4University of CA Irvine, Irvine, CA 92697, USA, *University of CA Santa Barbara, Santa Barbara, CA 93106, USA, 4University of CA Santa Cruz, Santa Cruz, CA 95064, USA, 4University of CA Berkeley, Berkeley, CA 94720, USA, 4Institute of Physics, Academy of Sciences of the Czech Republic, Czech Republic, 4CERN, CH-1211 Geneva, Switzerland, 9Cornell University, Ithaca, NY 14853, USA, 4University of Cyprus, Nicosia CY-1678, Cyprus, 1Office of Science, U.S. Department of Energy, Washington, DC 20585, USA, 4University College Dublin, Dublin 4, Ireland, 4ETH, 8092 Zurich, Switzerland, 4University of Fukui, Fukui City, Fukui Prefecture, Japan 910-017, 4 Universidad Iberoamericana, Mexico D.F., Mexico, 4University of Iowa, Iowa City, IA 52242, USA, 4Kinki University, Higashi-Osaka City, Japan 577-8502, 4Kansas State University, Manhattan, KS 66506, USA, 4Ewha Womans University, Seoul, 120-750, Korea, 4University of Manchester, Manchester M13 9PL, United Kingdom, 4Queen Mary, University of London, London, E1 4NS, United Kingdom, 4University of Melbourne, Victoria 3010, Australia, 4University of Melbourne, Victoria 3010, Australia, 4University of Notre Dame, Notre Dame, IN 46556, USA, 4University of Oviedo, E-33007 Oviedo, Spain, 4aCNRS-IN2P3, Paris, F-75205 France, 4bTexas Tech University, Lubbock, TX 79009, USA, 4cUniversidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile, 4ddYarmouk University, Irbid 211-63, Jordan, 4University of New Mexico, Albuquerque, New Mexico 87131, USA, 4The Ohio State University, Columbus, Ohio 43210, USA, 4Okayama University, Okayama 700-8530, Japan, 4Osaka City University, Osaka 588, Japan, 4University of Oxford, Oxford OX1 3RH, United Kingdom, 41Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, 41University of Padova, I-35131 Padova, Italy, 42University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA, 43Istituto Nazionale di Fisica Nucleare Pisa, 44Istituto Nazionale di Fisica Nucleare Trieste/ Udine, 45Purdue University, West Lafayette, Indiana 47907, USA, 46University of Rochester, Rochester, New York 14627, USA, 47The Rockefeller University, New York, New York 10065, USA, 48Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, 49Sapienza Università di Roma, I-00185 Roma, Italy, 49University of Virginia, Charlottesville, Virginia 22906, USA, 50University of Wisconsin, Madison, Wisconsin 53706, USA, 51University of Manchester, Manchester M13 9PL, United Kingdom, 51University of Oxford, Oxford OX1 3RH, United Kingdom, 52University of Padova, I-35131 Padova, Italy, 53University of Rome "La Sapienza", Rome, Italy, 54University of California Santa Barbara, Santa Barbara, CA 93106, USA, 55University of California Berkeley, Berkeley, CA 94720, USA, 56Wayne State University, Detroit, Michigan 48201, USA, 57University of Wisconsin, Madison, Wisconsin 53706, USA, 58Yale University, New Haven, Connecticut 06520, USA.

The study of the mechanism of electroweak-symmetry breaking is one of the major thrusts of the experimental high-energy-physics program. Following the discovery of a Higgs-like boson at ATLAS [1] and CMS [2] with a mass of approximately 126 GeV/c^2 and complementary evidence from CDF and D0 [3], the most pressing question is whether this state is in fact the Higgs boson of the standard model (SM), part of an extended Higgs sector (such as that of the minimal supersymmetric standard model, MSSM [4]), a composite Higgs [5], or a completely different particle with Higgs-like couplings (such as a radion in warped extra dimensions [6] or a dilaton [7]).

We search for particles in an extension to the standard model that includes a light neutral Higgs boson, h^0, with...
mass $m_{h^0} = 126$ GeV/c^2. Rather than assuming a particular theoretical framework (such as the MSSM), we follow a phenomenological approach, using a general two-Higgs doublet model as a convenient simplified model [8], which contains a heavy charged Higgs boson H^\pm and a heavier neutral state H^0. In this approach, the search for a number of specific final states that have the strongest couplings to Higgs particles is motivated [9, 10]. The final state of a W-boson pair (WW) is enhanced by WW scattering in models where the Higgs sector is strongly coupled [11]. This signal has been the subject of much detailed investigation [12]. The phenomenology of resonant production of the final states Zh^0 [13] and W^+W^-Z [14] has also been investigated.

In this letter, we focus on the final state $W^+W^-b\bar{b}$ [15], which can have a large production rate from the process $gg \to H^0$ followed by $H^0 \to H^\pm W^\mp$ with $H^\pm \to W^\pm h^0 \to W^\pm b\bar{b}$. The $W^+W^-b\bar{b}$ final state is also the final state of top-quark pair production, and has been extensively studied. However, no search for Higgs-boson cascades as described here has been reported previously, though searches have been performed for charged Higgs bosons in top-quark pair decays $t \to H^\pm b$ [16, 17].

We analyze a data sample corresponding to an integrated luminosity of 8.7±0.5 fb$^{-1}$ recorded by the CDF II detector [19], a general purpose detector designed to study $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV in the Fermilab Tevatron collider. The CDF tracking system consists of a silicon microstrip tracker and a drift chamber that are immersed in a 1.4 T axial magnetic field [20]. Projective-tower-geometry electromagnetic and hadronic calorimeters surrounding the tracking system measure particle energies, with muon detection provided by additional drift chambers located outside the calorimeters.

The signature of $H^0 \to W^+H^\pm \to W^-h^0 \to W^-W^+b\bar{b}$ is a charged lepton (e or μ) missing transverse momentum, two jets arising from b quarks, and two additional jets from a W-boson hadronic decay. Events are selected online (triggered) by the requirement of an electron (e) or muon (μ) candidate [21] with transverse momentum $p_T > 18$ GeV/c. After trigger selection, events are retained if the electron or muon candidate has a pseudorapidity $|\eta| < 1.1$ [22], $p_T > 20$ GeV/c, and satisfies the standard CDF identification and isolation requirements [21]. We reconstruct jets in the calorimeter using the JETCLU [23] algorithm with a clustering radius of 0.4 in $\eta - \phi$ space. The jets are calibrated using the techniques outlined in Ref. [24]. At least four jets are required, each with transverse energy $E_T > 15$ GeV and $|\eta| < 2.4$. Missing transverse momentum p_T [25] is reconstructed using calorimeter and muon information [21]; in the $W^+W^-b\bar{b}$ experimental signature, the missing transverse momentum is mostly due to the neutrino from the leptonically-decaying W boson. We require $E_T > 20$ GeV/c. Since such a signal would yield two jets originating from b quarks, we require (with minimal loss of efficiency) evidence of decay of a b hadron in at least one jet. This requirement, called b-tagging, makes use of the secvtx algorithm, which identifies jets from b quarks via their secondary vertices [26].

We model the production of H^0 bosons with $m_{H^0} = 325-1100$ GeV/c^2 and subsequent decays $H^0 \to W^+H^\pm$ with $m_{H^\pm} = 225-600$ GeV/c^2 and decays $H^\pm \to W^\pm h^0$ with $m_{h^0} = 126$ GeV/c^2, all with MAdGraph [27]. Additional radiation, hadronization, and showering are described by PYTHIA [28]. The detector response for all simulated samples is modeled by the GEANT-based CDF II detector simulation [29].

The dominant SM background to this signature is top-quark pair production. We model this background using PYTHIA with a top-quark mass $m_t = 172.5$ GeV/c^2 [30]. We normalize the $t\bar{t}$ background to the theoretical calculation at next-to-next-to-leading order (NNLO) in the strong interaction coupling constant, α_s. In addition, events generated by a next-to-leading order program, MC@NLO [32], are used in estimating an uncertainty in modeling the radiation of an additional jet.

The second largest SM background process is the associated production of a W boson and jets. Samples of W-boson+jets events with light- and heavy-flavor (b, c) quark jets are generated using ALPGEN [33], and interfaced with a parton-shower model from PYTHIA. The W-boson+jets samples are normalized to the measured W-boson-production cross section, with an additional multiplicative factor for the relative contribution of heavy- and light-flavor jets, following Ref. [29].

Backgrounds due to production of a Z boson with additional jets, where the second lepton from the Z-boson decay is not reconstructed, are small compared to the W-boson background and are modeled using events generated with ALPGEN interfaced to the parton-shower model from PYTHIA. The multi-jet background, in which a jet is misreconstructed as a lepton, is modeled using events triggered on jets and normalized to a background-dominated region at low missing transverse momentum where the multi-jet background is large.

The SM backgrounds due to production of single top quarks and pairs of vector bosons are modeled using MAdGraph interfaced with PYTHIA parton-shower models and PYTHIA, respectively, and normalized to next-to-leading-order cross sections [31, 32].

The Higgs-boson candidate mass reconstruction begins with identification of the leptonically-decaying W boson, assuming the missing transverse momentum is due to the resulting neutrino. Of the multiple solutions for the neutrino pseudorapidity, we use the smallest value that yields the reconstructed W mass closest to the known value. The hadronically-decaying W boson is identified as the pair of jets that yield the reconstructed dijet mass closest to the known W mass, excluding jets with a b-tag. If fewer than two jets without b-tags are present, the same procedure is used but modified to include the b-tagged...
jets. The light \(h^0 \) is reconstructed from the remaining \(b \)-tagged jets. If fewer than two \(b \)-tagged jets remain, the jet or jets with largest transverse momentum not associated with the hadronic \(W \)-boson decay are used instead, without significant loss of mass resolution. Figure 1 shows distributions of the reconstructed mass for several choices of Higgs masses.

We enhance the signal-to-background ratio through requirements on the mass of the \(W^+W^-bb \) and \(W^\pm b\bar{b} \) systems, and search for an excess of events above expectations from backgrounds in event distributions versus the mass of the \(b\bar{b} \) system (\(h^0 \to b\bar{b} \)). Backgrounds have broad, smoothly decreasing distributions while a signal would be reconstructed near the Higgs-boson mass.

We consider several sources of systematic uncertainty on the predicted background rates and distributions, as well as on the expectations for a signal. Each systematic uncertainty affects the expected sensitivity to a signal, expressed as an expected cross-section upper limit in the no-signal assumption. The dominant systematic uncertainty is the jet-energy-scale uncertainty \(^{24}\), followed by theoretical uncertainties on the cross sections of the background processes. To probe the description of additional jets, we compare our nominal \(tt \) model to one generated by \textsc{MC@NLO} and take the full difference as a systematic uncertainty. We also consider systematic uncertainties associated with the description of initial- and final-state radiation \(^{30}\), uncertainties in the efficiency of reconstructing leptons and identifying \(b \)-quark jets, and uncertainties in the contribution from multiple interactions. In addition, we consider a variation of the \(Q^2 \) scale of \(W \)-boson-plus-jet events in ALPGEN. In each case, we treat the unknown underlying quantity as a nuisance parameter. Except in the case of the normalization uncertainty, which affects only the overall rates, for each source of uncertainty we measure the distortion of the \(m_{bb} \) spectrum for positive and negative fluctuations of the underlying quantity. Table I lists the contributions of each of these sources of systematic uncertainty to the yields.

![FIG. 1: Distribution of reconstructed Higgs-boson masses in simulated events. Top: \(m_{bb} = 126 \text{ GeV}/c^2 \) reconstructed as \(m_{bb} \), center: \(m_{H^\pm} \) as \(m_{W^+b} \), and bottom: \(m_{H^0} \) as \(m_{W^0b} \).](image)

Process	\(tt \)	\(W \)-boson+jets	Total bg.	Higgs
Predicted yield	229	43	294	341
Jet energy scale	23%	-	17%	12%
Radiation	3%	-	2%	8%
\(Q^2 \) scale	-	18%	3%	-
Mult. interactions	1%	6%	2%	-
\(tt \) generator	5%	-	4%	-
Normalization	10%	30%	16%	-
Total syst. uncert.	26%	35%	24%	15%

TABLE I: Contributions to the systematic uncertainty on the expected numbers of events for the two main background processes, the total background yield, and an example 500 GeV/c\(^2\) Higgs-boson signal with an assumed total cross section of 1 pb.

We validate our modeling of the SM backgrounds in four background-dominated control regions. Each control region preserves the one lepton and at least four jet requirements with additional requirements per region. Events in the first region are used to study the \(W^+W^-bb \) and \(W^\pm b\bar{b} \) mass reconstruction, requiring at least one \(b \)-tagged jet and \(bb \) mass smaller than 100 GeV/c\(^2\). The second region probes \(bb \) and \(W^+W^-bb \) mass reconstruction, requiring at least one \(b \)-tagged jet and \(W^\pm b\bar{b} \) mass smaller than 250 GeV/c\(^2\). The third region tests the modeling of \(W^\pm bb \) and \(bb \) mass reconstruction, requiring at least one \(b \)-tagged jet and \(W^+W^-bb \) mass less than 450 GeV/c\(^2\). The fourth region tests the modeling of the \(W \)-boson-plus-jets background, requiring exactly zero \(b \)-tagged jets and \(W^+W^-bb \) mass greater than 450 GeV/c\(^2\). Assuming an \(H^0 \) production cross section of 250 fb, each control region is expected to have negligible signal contamination, with the exception of the zero \(b \)-tag region which would include signal events at approximately 10% of the sample. For two of the control regions, Fig. 2 shows the reconstructed \(bb \) mass distributions which, along with other similar distributions, indicate that the background
mass distributions are well modeled within systematic uncertainties.

Figure 3 shows the observed distribution of events in a representative signal region compared to possible signals and estimated backgrounds. At each Higgs boson mass hypothesis, we fit the most likely value of the Higgs boson cross section by performing a maximum-likelihood fit in the binned mass distribution, allowing for systematic and statistical fluctuations via template morphing \cite{37}. No evidence is found for the presence of Higgs boson cascade decays in WWbb events. We set upper limits on Higgs production at 95% confidence level using the CLs method \cite{38}, without profiling the systematic uncertainties. The observed limits are consistent with expectation for the background-only hypothesis. See Fig. 4 and Table 11.

In conclusion, we report on the first search for multiple Higgs bosons in cascade decays. For each accepted event, we reconstruct the lightest neutral Higgs boson mass (m_{H^0}), and find the CDF data to be consistent with standard model background predictions. We calculate 95% C.L. upper limits on the cross section of such Higgs boson production, assuming 100% branching ratio of H^0 to $W^\pm H^\mp$ and H^\pm to $W^\mp h_0$, from 1.3 pb to 0.015 pb for masses ranging from ($m_{H^0} = 325, m_{H^\pm} = 225$) GeV/c2 to ($m_{H^0} = 1100, m_{H^\pm} = 600$) GeV/c2 respectively, and interpret the limits in terms of a simplified two-Higgs-doublet model. While the limits cited here do not exclude any region in the $m_{H^0} - m_{H^\pm}$-plane in the simplified model used, there are the first such limits available. The larger center-of-mass energy and integrated luminosity of data collected by the LHC experiments are likely to

![Image](https://via.placeholder.com/150)

FIG. 2: Distribution of events versus reconstructed $b\bar{b}$ invariant mass (m_{bb}) for observed data and expected backgrounds in two control regions. Top, control region consisting of events with at least four jets, exactly zero b-tags and $m_{WWbb} < 450$ GeV/c2. Bottom, control region consisting of events with at least four jets and $m_{WWbb} < 250$ GeV/c2. The lower panels give the relative difference between the observed and expected distributions; the hatched areas show the combined statistical and systematic uncertainties of the expected background. The small dip near 80 GeV/c2 is mainly due to the W-boson mass reconstruction.

![Image](https://via.placeholder.com/150)

FIG. 3: Distribution of events versus reconstructed $b\bar{b}$ invariant mass (m_{bb}) for observed data and expected backgrounds in the signal region. A signal hypothesis is shown, assuming a total cross section of 250 fb, $m_{H^0} = 500$ GeV/c2, and $m_{H^\pm} = 300$ GeV/c2. See Fig. 2 for descriptions of lower panel and hatching.

![Image](https://via.placeholder.com/150)

FIG. 4: Upper limits at 95% C.L. on the cross section times branching fraction as a function of the Higgs-boson masses m_{H^\pm} and m_{H^0}; m_{H^0} is fixed to 126 GeV/c2 in each case. Diamonds show the grid of probed masses; the intermediate values are interpolated.
TABLE II: Signal region definitions and expected and observed 95% C.L. upper limits on the production cross section times branching fraction for each Higgs-boson mass hypothesis. Theoretical predictions are also shown [39–41].

\(m_{H^0}\) (GeV/\(c^2\))	\(m_{H^\pm}\) (GeV/\(c^2\))	\(m_{H^\mp}\) (GeV/\(c^2\))	Exp (Obs)	Limit (fb)	Theory
325, 225	> 175	> 275	1100 (1300)	34	18
400, 300	> 225	> 325	960 (1100)	13	3.9
425, 225	> 200	> 375	900 (960)	13	3.9
500, 300	> 200	> 450	470 (590)	3.9	2.5
500, 400	> 350	> 450	510 (700)	3.9	2.5
525, 225	> 100	> 500	420 (460)	2.5	2.5
600, 300	> 200	> 550	200 (180)	0.76	0.76
600, 400	> 350	> 550	210 (250)	0.76	0.76
700, 400	> 325	> 650	90 (100)	0.15	0.15
700, 600	> 450	> 650	10 (96)	0.15	0.15
725, 225	> 425	> 700	90 (120)	0.10	0.10
800, 300	> 275	> 750	50 (51)	3 \times 10^{-2}	3 \times 10^{-2}
800, 600	> 475	> 725	43 (46)	3 \times 10^{-2}	3 \times 10^{-2}
900, 400	> 450	> 775	28 (36)	6 \times 10^{-3}	6 \times 10^{-3}
900, 600	> 475	> 800	24 (29)	6 \times 10^{-3}	6 \times 10^{-3}
1100, 600	> 475	> 975	13 (15)	2 \times 10^{-4}	2 \times 10^{-4}

The Table lists the sensitivity to discover or exclude such models.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Council of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC).

[1] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012).
[2] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012).
[3] T. Aaltonen et al., (CDF and D0 Collaborations), Phys. Rev. Lett. 109, 071804 (2012).
[4] H. P. Nilles, Phys. Rept. 110, 1 (1984); H. E. Haber and G. L. Kane, Phys. Rept. 117, 75 (1985).
[5] D. B. Kaplan and H. Georgi, Phys. Lett. B136, 183 (1984).
[6] C. Csaki, M. Graesser, L. Randall, and J. Terning, Phys. Rev. D 62, 045015 (2000); G. F. Giudice, R. Rattazzi, and J. D. Wells, Nucl. Phys. B595, 250 (2001).
[7] W. D. Goldberger, B. Grinstein, and W. Skiba, Phys. Rev. Lett. 100, 111802 (2008).
[8] D. Alves et al., J. Phys. G 39, 105005 (2012).
[9] J. A. Evans and M. A. Luty, Phys. Rev. Lett. 103, 101801 (2009).
[10] S. Chang, J. A. Evans, and M. A. Luty, simplified model “Multiple Weak Bosons from Strong Spin-0 Resonances,” http://lhcnewphysics.org/leptons
[11] B. W. Lee, C. Quigg, and H. B. Thacker, Phys. Rev. D 16, 1519 (1977); M. S. Chanowitz and M. K. Gaillard, Nucl. Phys. B261, 379 (1985).
[12] J. Bagger, V. D. Barger, K. -m. Cheung, J. F. Gunion, T. Han, G. A. Ladinsky, R. Rosenfeld and C. -P. Yuan, Phys. Rev. D 52, 3878 (1995); J. M. Butterworth, B. E. Cox, and J. R. Forshaw, Phys. Rev. D 65, 096014 (2002).
[13] S. Abdullin, H. Baer, C. Kao, N. Stepanov, and X. Tata, Phys. Rev. D 54, 6728 (1996).
[14] S. Chang, J. Evans, and M. Luty, Phys. Rev. D 84, 095030 (2011).
[15] J. A. Evans, B. Kilminster, M. Luty, D. Whiteson, B. Kilminster, M. A. Luty and D. Whiteson, Phys. Rev. D 85, 055009 (2012).
[16] G. Aad et al. (ATLAS Collaboration), J. High Energy Phys. 06 (2012) 039.
[17] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 103, 101803 (2009).
[18] V. M. Abazov et al. (D0 Collaboration), Phys. Lett. B 682, 278 (2009).
[19] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 71, 032001 (2005).
[20] C. S. Hill, Nucl. Instrum. Methods A 530, 1 (2004).
[21] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 97, 082004 (2006); T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 94, 091803 (2005).
[22] CDF uses a cylindrical coordinate system with the z axis along the proton beam axis. For a particle or a jet, pseudorapidity is \(\eta \equiv -\ln(\tan(\theta/2))\), where \(\theta\) is the polar angle of a particle or a jet relative to the proton beam direction, and \(\phi\) is the azimuthal angle while transverse momentum is \(p_T = |p| \sin\theta\), and the transverse energy is \(E_T = E \sin\theta\).
[23] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 45, 001448 (1992).
[24] A. Bhatti et al., Nucl. Instrum. Methods A 566, 375 (2006).
[25] Missing transverse momentum, \(E_T\), is defined as the magnitude of the vector \(-\sum E_T \vec{n}_i\) where \(E_T\) are the magnitudes of transverse energy contained in each calorimeter tower \(i\), and \(\vec{n}_i\) is the unit vector from the interaction vertex to the tower centroid in the transverse (\(x, y\)) plane.
[26] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 74, 072006 (2006).
[27] J. Alwall, P. Demin, S. de Visscher, R. Frederix, M. Herquet, F. Maltoni, T. Plehn, D. L. Rainwater and T. Stelzer, J. High Energy Phys. 09 (2007) 028.
[28] T. Sjostrand, P. Eden, C. Friberg, L. Lonnblad, G. Miu, S. Mrenna and J. Stirling, Comput. Phys. Commun. 138, 135 (2001), version 6.422.
[29] E. Gerchtein and M. Paulini, arXiv:physics/0306031 (2003).
[30] Electroweak Group (CDF and D0 Collaborations), arXiv:1107.5255 (2011). We use a top-quark mass of 172.5 GeV/\(c^2\) which is compatible with the current Tevatron
combination of 173.2±0.9 GeV/c².

[31] U. Langenfeld, S. Moch and P. Uwer, Phys. Rev. D 80, 054009 (2009).
[32] S. Frixione, P. Nason, and B. Webber, J. High Energy Phys. 08 (2003) 007.
[33] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A. D. Polosa, J. High Energy Phys. 07 (2003) 001.
[34] J.M. Campbell and R.K. Ellis, Phys. Rev. D 60, 113006 (1999).
[35] B.W. Harris, E. Laenen, L. Phaf, Z. Sullivan, and S. Weinzierl, Phys. Rev. D 66, 054024 (2002).
[36] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 73, 032003 (2006).
[37] A. Read, Nucl. Instrum. Methods A 425, 357 (1999).
[38] A. Read, J. Phys. G 28, 2693 (2002); T. Junk, Nucl. Instrum. Methods A 434, 425 (1999).
[39] J. Baglio and A. Djouadi, J. High Energy Phys. 10 (2010) 064.
[40] J. Baglio and A. Djouadi, J. High Energy Phys. 03 (2011) 055.
[41] J. Baglio and A. Djouadi, *private communication* (2012).