The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/172596

Please be advised that this information was generated on 2020-03-10 and may be subject to change.
Fusarium: Molecular Diversity and Intrinsic Drug Resistance

Abdullah M. S. Al-Hatmi1,2,3*, Jacques F. Meis4,5, G. Sybren de Hoog1,2,6,7

1 CBS-KNAW Fungal Biodiversity Centre, Utrecht, the Netherlands, 2 Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands, 3 Directorate General of Health Services, Ministry of Health, Ibri Hospital, Ibri, Oman, 4 Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands, 5 Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands, 6 Basic Pathology Department, Federal University of Paraná State, Curitiba, Paraná, Brazil, 7 Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

* a.alhatmi@cbs.knaw.nl

The Increasing Incidence of Fusariosis

The fungal genus Fusarium contains an extraordinary genetic diversity and is globally distributed in plants, soil, water, and manmade habitats. Plant-pathogenic members of the genus cause diseases in many agriculturally important crops, with billions of dollars of economic losses annually. Their presence as food contaminants is detrimental because of production of biologically active, highly toxic secondary metabolites.

Remarkably, human fusariosis does not have a long history. This is in contrast to comparable opportunistic pathogens like Scedosporium spp., which have been known since the 19th century. The first case of human Fusarium infection was reported only in 1958 and concerned an eye infection caused by a blow from a cow tail [1]. Fusarium causes a very wide spectrum of diseases, ranging from mildly superficial to fatally disseminated [2]. During the initial years, most reported infections were caused by traumatic inoculation. Keratitis is still the most common infection by Fusarium species, occurring especially in the warmer climates of India, China, and Brazil [3]. After 1960, the increasing use of antibiotics became a major predisposing condition [4]. Since 1970, prolonged neutropenia due to intensified cytotoxic treatment of hematologic malignancies was the leading risk factor in novel types of fusariosis [5]. Since 1980, Fusarium infections have been seen in severely immunocompromised patients with a 100% mortality rate, e.g., in cases of cerebral involvement [6]. Today, invasive surgery, organ transplantation, chronic steroid treatment, and aggressive cytotoxic therapy are the main risk factors of fusariosis [7]. Fusarium shows a dynamic response to opportunities provided by underlying disorders of the host.

Long-Distance Dispersal of Opportunists

Emergence of infectious diseases in humans might be expected to be caused by host shifts from animal reservoirs to humans [8], as is the case, e.g., in dermatophytes. Fusarium is different. Plant pathogens are dispersed via direct contact, wind, water, vectors such as insects, or the germline of contaminated seeds [9]. Host ranges can be broad or narrow; some species seem to be host-specific (e.g., Fusarium ficicrescens on figs), while others are found on widely different hosts (e.g., Fusarium oxysporum). Some species are associated with specific geographic areas (e.g., Fusarium lactis in California), but most fusaria are ubiquitous [10]. It is possible that outbreaks leading to repeated isolation from the same host plant masquerades as host-specificity; for most species, plant inoculation experiments have not been done and ecological specialization has not been proven.
The genus *Fusarium* was first described in the early 19th century. In 1935, Wollenweber and Reinking used morphological differences to organize the genus into 16 sections with 65 species, 55 varieties, and 22 forms [11], but later Booth simplified this to only 14 species [12]. When Leslie and Summerell used morphological and phylogenetic information, they ended up with 70 species, most of which formed falcate, multi-septate macroconidia with a beaked apex and a pedicellate basal cell. The microconidia are one- to two-celled and pyriform, fusiform, or ovoid in shape. Both macro and microconidia are produced in the aerial mycelium on phialides [13]. At present, with the dawn of molecular sequencing, more than 200 species are recognized in 22 species complexes, differing by morphology, host association, and molecular parameters [14]. Currently, 74 taxonomic species have been suggested to cause human infections (Fig 1) [15], judging from their isolation from clinical samples, and this number is expanding. To date, about 36 of the alleged human opportunists carry a name, while 38 are still unnamed and can only be identified by multilocus sequence analysis (MLSA). Thus far, 21 species have been described with proven case reports [16], and more have been published in the literature.

The most common route of human infection is by inoculation via contaminated thorns or plant leaves, which particularly affects farmers and agricultural workers. However, *Fusarium* poses a challenge for human disease management because propagules may disperse over long distances in the atmosphere, and new resources and susceptible hosts are quickly found [17]. Smith et al. [18] noted that *Fusarium* conidia are waterborne and become airborne when dried. Schmale et al. [19] showed that large-scale atmospheric features known as Lagrangian coherent structures (LCSs) enhance transport of *Fusarium* in the lower atmosphere. Lin et al. [20] demonstrated that atmospheric populations of fusaria are mixed and that conidial counts do not vary across consecutive sampling intervals, demonstrating constant airborne transport.

One of the major risk factors for compromised hosts is inhalation of contaminated air. Morretti et al. [21] established a link between *Fusarium* in the air and in the blood of infected patients, and suggested unfiltered hospital air may be problematic for these patients. Short et al. [22] investigated hospital plumbing systems for the occurrence of fungi and found that these systems are a hidden reservoir for *Fusarium*. Prevalence of *Fusarium* species in compromised patient populations is not proportional to their environmental abundance [23], suggesting that infection is not merely a random process.

Prevalence of *Fusarium* Antifungal Resistance

Fusarium species are intrinsically resistant toazole antifungals. Five azole fungicides are widely used for plant protection: propiconazole, bromuconazole, epoxiconazole, difenoconazole, and tebuconazole. Azoles are generally inexpensive and have broad-spectrum activity and long stability. Azoles that are used clinically have derivatives such as imidazole or triazole rings [24]. The azoles used in agriculture are different, but all azoles target the same active site, i.e., lanosterol-14α-demethylase [25]. Effects on *Fusarium* population dynamics in agricultural fields are likely due to decreased competition with susceptible species [26]. This may be reinforced by antifungal prophylaxis in high-risk patients in clinical settings, enhancing selective pressure that favours multidrug-resistant fungi, including *Fusarium* [27]. Population dynamic effects have not been seen before because *Fusarium* was not considered to be a matter of concern [28]. The growing incidence of severe human *Fusarium* infections may change this situation.

Multiresistance Against Different Classes of Antifungals

Clinically relevant members of *Fusarium* are resistant to almost all currently used antifungals—not only azoles, but also echinocandins and polyenes. This poses a major challenge to medicine and agriculture, particularly with emerging and globally spreading fungi like *Fusarium*.
There are only a few options left for treating patients and crops. Intrinsic, primary resistance is found naturally among some *Fusarium* species without prior exposure to the drug [29]. Secondary resistance to azoles develops among previously susceptible strains after exposure to the antifungal agent, as seen, e.g., in *Aspergillus fumigatus*, and is usually dependent on altered expression of CYP51, the gene encoding sterol 14α-demethylase [30]. Recently, Fan et al. showed that CYP51 in *Fusarium* has three paralogues (CYP51A, -B, and -C), with CYP51C being unique to the genus [31]. CYP51A deletion usually causes secondary resistance in fungi such as *A. fumigatus* [25], whereas the opposite was found in *Fusarium*: CYP51A deletion increases the sensitivity of *Fusarium graminearum* to azoles and other fungicides (prochloraz, tebuconazole, and epoxiconazole) that are used in plant protection [31]. The exact resistance mechanisms in *Fusarium* are not entirely understood, but combinations of CYP51A amino acid alterations and/or CYP51A gene overexpression might be involved.

Recent findings indicate that a mutation occurring in the FKS1 gene might contribute to the intrinsic echinocandin resistance in *Fusarium*. In support of this, evidence has been presented that hot spot 1 substitution P647A and F639Y in FKS1 contribute to resistance of *Fusarium solani* [32]. Furthermore, *Fusarium* has an effective efflux mechanism to remove xenobiotics from its cells [33], and this may also reduce azole sensitivity. Amphotericin B, second-generation broad spectrum triazoles (fluconazole, itraconazole, voriconazole, and posaconazole), antimetabolites (5-fluorocytosine), and echinocandins (caspofungin, anidulafungin, and micafungin) all have limited activity against *Fusarium* species. High-level cross-resistance to fluconazole and itraconazole was reported in almost all *Fusarium* species. Cross-resistance has been observed among the three echinocandins in *Fusarium* species (Fig 2). In vitro data showed that there is potential for azole cross-resistance to echinocandins and polyenes, but no clinical information on this phenomenon is available.

Management of *Fusarium* Infections: New Drugs or Drug Combinations?

Treatment of fusariosis is a major challenge. For disseminated fusariosis in immunocompromised patients, the 12-week survival time has increased significantly in the last decade in single center studies [34], national studies, [35] and worldwide evaluations [36]. This better outcome of treatment is probably associated with the introduction of voriconazole in 2002. Therapy with amphotericin B deoxycholate gives poor survival results of 28% when compared to lipid amphotericin B (53%) or voriconazole (60%) [36]. Recent European guidelines [37] suggest treating disseminated fusariosis with voriconazole and lipid amphotericin B, although evidence is based on expert opinion and case series rather than on clinical trials. Of the azoles, only the new triazoles, voriconazole and posaconazole, show moderate activity, with mode minimal inhibitory concentrations (MICs) of 2–8 mg/L and 0.5–8 mg/L, respectively, depending on the species complex. The mode MIC of amphotericin B is 2 mg/L irrespective of the species complex (Fig 2) [38]. The newest class of antifungal drugs, the echinocandins, have activity against *Candida* and *Aspergillus* species [30], but for *Fusarium* they appear to be inactive with high MICs of >16 mg/L (Fig 2). Terbinafine is another option to treat some *Fusarium* species, but this compound is only registered to treatment of superficial infections [39]. Natamycin (5%) and/or topical amphotericin B (0.5%) are first-line treatment of fungal keratitis in some countries. Elsewhere, topical 1% voriconazole and/or 5% natamycin are used for this type of infection [40].
species	MIC/MEC (µg/ml)							
	AMB	5FC	FLC	ITZ	VOR	POS	AND	CAS
F. ananatum	1	>64	>64	>16	4	0.5	>16	>16
F. guttiforme	0.5	>64	>64	>16	2	>16	>16	>16
F. temperatum	0.25	>64	>64	>16	0.5	>0.25	>16	>16
F. anthophilum	0.25	>64	>64	>16	2	0.5	>16	>16
F. subglutinans	1	>64	>64	>16	1	0.25	>16	>16
F. acutatum	1	>64	>64	>16	4	2	>16	>16
F. sacchari	2	>64	>64	>16	4	>16	>16	>16
F. fujikuroi	0.5	>64	>64	>16	2	1	>16	>16
F. proliferatum	0.5	>64	>64	>16	4	2	>16	>16
F. globosum	0.5	>64	>64	>16	4	2	>16	>16
F. thapsinum	2	>64	>64	>16	8	>16	>16	>16
F. aridiyazi	2	32	>64	>16	1	0.25	>16	>16
F. napiforme	4	>64	>64	>16	1	0.25	>16	>16
F. nygamai	4	>64	>64	>16	8	>16	>16	>16
F. verticillioides	2	>64	>64	>16	1	0.25	>16	>16
F. musae	4	>64	>64	>16	8	1	>16	>16
F. oxysporum	0.5	>64	>64	>16	2	1	>16	>16
F. concolor	2	>64	>64	>16	4	2	>16	>16
F. petrophilum	0.5	>64	>64	>16	8	>16	>16	>16
F. solani-4	2	>64	>64	>16	2	4	>16	>16
F. lichenicola	1	>64	>64	>16	4	8	>16	>16
F. keratoplasticum	2	>64	>64	>16	8	>16	>16	>16
F. solani-5	1	>64	>64	>16	8	4	>16	>16
F. falciforme	1	>64	>64	>16	4	8	>16	>16
F. chlamydomosporum	4	>64	>64	>16	2	>16	>16	>16
F. equiseti	1	>64	>64	>16	4	2	>16	>16
F. incarnatum	0.5	>64	>64	>16	4	4	>16	>16
F. brachyiibiosorus	-	-	-	-	-	-	-	-
F. armeniacum	-	-	-	-	-	-	-	-
F. sporidrichicides	4	-	-	-	>16	-	-	-
F. langsethiae	>32	>64	>64	1	0.5	-	-	-
F. acuminatum	-	-	-	-	-	-	-	-
F. flocciferum	-	-	-	-	-	-	-	-
F. dimerum	0.5	>64	>64	>64	2	>16	>16	>16
F. delphinoides	1	>64	>64	>16	4	>16	>16	>16
F. penzigii	-	-	-	-	-	-	-	-
Considering the poor outcome obtained with monotherapy, attempts have been made to determine whether combinations of drugs lead to improved efficacy. Spader et al. [41] reported that synergistic interactions were observed for the combinations of amphotericin B with caspofungin (68.7%), amphotericin B with rifampin (68.7%), amphotericin B with 5-flucytosine (59.3%), and amphotericin B with voriconazole (37.5%). Al-Hatmi et al. [42] determined in vitro antifungal activity of natamycin alone and in combination with voriconazole for *Fusarium* keratitis, and found that MICs of these compounds alone were >4 and 4–8 mg/L, respectively, and that the combinations tested displayed (70%) in vitro synergistic effects against a significant number of isolates. MICs values were reduced to 0.02–0.5 mg/L and to 0.13–2 mg/L in combination, respectively [42]. Combinations of voriconazole, amphotericin B, and posaconazole showed poor efficacy in experimental murine infections by *F. verticillioides*, while the combination of liposomal amphotericin B and terbinafine showed good results [23]. However, clinical studies have not been performed, and the most efficacious combination remains to be explored. Further work on interactions in animal models or clinical trials with the aim to obtain higher cure rates of *Fusarium* infections is overdue.

References

1. Mikami R, Stemmermann GN (1958) Keratonycosis caused by *Fusarium oxysporum*. Am J Clin Pathol 29: 257–262. PMID: 13520660
2. Nucci M, Varon AG, Garnica M, Akiti T, Barreiros G, et al. (2013) Increased incidence of invasive fusariosis with cutaneous portal of entry, Brazil. Emerg Infect Dis 19: 1567–1572. doi: 10.3201/eid1910.120847 PMID: 24050318
3. Oechsler R, Yamakata T, Bispo PJ, Sartori J, Yu MC, et al. (2013) *Fusarium* keratitis in Brazil: genotyping, in vitro susceptibilities, and clinical outcomes. Clin Ophthalmol 7: 1693–1701. doi: 10.2147/OPTH.S40063 PMID: 24039389
4. Perea S, Patterson TF (2002) Antifungal resistance in pathogenic fungi. Clin Infect Dis 35: 1073–1080. PMID: 12384841
5. Musa MO, Al Eisa A, Halim M, Sahovic E, Gyger M, et al. (2000) The spectrum of *Fusarium* infection in immunocompromised patients with haematological malignancies and in non-immunocompromised patients: a single institution experience over 10 years. Br J Haematol 108: 544–548. PMID: 10759712
6. Garcia RR, Min Z, Narasimhan S, Bhanot N (2015) *Fusarium* brain abscess: case report and literature review. Mycoses 58: 22–26.
7. Crabol Y and Lortholary O (2014) Invasive mold infections in solid organ transplant recipients. Scientifica 2014; 2014:821969. doi: 10.1155/2014/821969 PMID: 25525551
8. Engering A, Hogerwerf L, Slingenbergh J (2013) Pathogen–host–environment interplay and disease emergence. Emerg Microbes Infect 2: e5. doi: 10.1038/emi.2013.5 PMID: 26038452
9. Nagarajan S, Singh D V (1990) Long-distance dispersal of rust pathogens. Annu Rev Phytopathol 28: 139–153. doi: 10.1146/annurev.py.28.090190.001035 PMID: 20540608
10. Al-Hatmi AMS, Mirabolfathy M, Hagen F, Normand A-C, Stielow JB, et al. (2016) DNA barcoding, MALDI-TOF and AFLP data support *Fusarium ficicrescens* as a distinct species within the *F. fujikuroi* species complex. Fungal Biol 120:265–278. doi: 10.1016/j.fusbi.2015.08.001 PMID: 26781381
11. Wollenweber HW, Reinking OA (1935) The Fusaria: Their description, injurious effects and control. Paul Parey, Berlin 8: 1–135
12. Booth C (1971) The genus *Fusarium*. Kew. Commonwealth Mycological Institute; p. 237.
13. Leslie JF, Summerell BA (2006) *The Fusarium laboratory manual*. (Blackwell Publishing, Ames, IA).
14. Laurence MH, Walsh JL, Shuttleworth LA, Robinson DM, Johansen RM, et al. (2015) Six novel species of *Fusarium* from natural ecosystems in Australia. Fungal Divers doi: 10.1007/s13225-015-0337
15. Al-Hatmi AMS, Gerrits van den Ende A. H. G., Stielow JB, van Diepeningen AD, Seifert KA, et al. (2016) Evaluation of two novel barcodes for species recognition of opportunistic pathogens in Fusarium. Fungal Biol 120:231–245. doi: 10.1016/j.funbio.2015.08.006 PMID: 26781379
16. de Hoog GS, Guarro J, Gené J, Figueras MJ, 2011. Atlas of Clinical Fungi, 3rd ed. Centraalbureau voor Schimmelcultures, Utrecht, Netherlands.
17. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, et al. (2012) Hidden killers: human fungal infections. Sci Transl Med 4: 165rv13. doi: 10.1126/scitranslmed.3004404 PMID: 23253612
18. Smith SN (2007) An overview of ecological and habitat aspects in the genus Fusarium with special emphasis on the soil-borne pathogenic forms. Plant Pathology Bulletin 16: 97–120.
19. Schmale DG, Ross SD, Fetters T, Tallapragada P, Wood-Jones A, et al. (2012) Isolates of Fusarium graminearum collected 40–320 meters above ground level cause Fusarium head blight in wheat and produce trichotheccene mycotoxins. Aerobiologia 28: 1–11.
20. Lin B, Bozorgmagham AE, Ross S, Schmale DG (2013) Small fluctuations in the recovery of fusaria across consecutive sampling intervals with unmanned aircraft 100 m above ground level. Aerobiologia 29: 45–54.
21. Moretti ML, Busso-Lopes A, Moraes R, Muraosa Y, Mikami Y, et al. (2014) Environment as a potential source of Fusarium spp. invasive infections in immunocompromised patients. Open Forum Infect Dis 1 (suppl 1): S38. doi: 10.1093/ofid/ofu051.102
22. Short DPG, O’Donnell K, Zhang N, Juba JH, Geiser DM (2011) Widespread occurrence of diverse pathogenic types of the fungus Fusarium in bathroom plumbing drains. J Clin Microbiol 49: 4264–272. doi: 10.1128/JCM.05468-11 PMID: 21976755
23. Guarro J (2013) Fusariosis, a complex infection caused by a high diversity of fungal species refractory to treatment. Eur. J Clin Microbiol Infect Dis 32:1491–500.
24. Chowdhary A, Kathuria S, Xu J, Sharma C, Sundar G, et al. (2012) Clonal expansion and emergence of environmental multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR34/L98H mutations in the cyp51A gene in India. PLoS ONE. 7:e52871. doi: 10.1371/journal.pone.0052871 PMID: 23285210
25. Chowdhary A, Kathuria S, Xu J, Meis JF (2013) Emergence of azole-resistant Aspergillus fumigatus strains due to agricultural azole use creates an increasing threat to human health. PLoS Pathog 9: e1003633. doi: 10.1371/journal.ppat.1003633 PMID: 24204249
26. Kretschmer M, Leroch M, Mosbach A, Walker A-S, Fillinger S, et al (2009) Fungicide driven evolution of environmental multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR34/L98H mutations in the cyp51A gene in India. PLoS ONE. 7:e52871. doi: 10.1371/journal.pone.0052871 PMID: 23285210
27. White TC, Marr KA, Bowden RA (1998) Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11: 382–402. PMID: 9564569
28. Hawkins NJ, Cools HJ, Sierotzki H, Shaw MW, Knogge W, et al. (2014) Paralog re-emergence: a novel, historically contingent mechanism in the evolution of antimicrobial resistance. Mol Biol Evol 31: 1793–1802. doi: 10.1093/molbev/msu134 PMID: 24732957
29. Al-Hatmi AMS, van Diepeningen A, Curfs-Breuker I, de Hoog GS, Meis JF (2015) Specific antifungal susceptibility profiles of opportunists in the Fusarium fujikuroi complex. J Antimicrob Chemother 70: 1068–1071. doi: 10.1093/jac/dku505 PMID: 25538167
30. Heyn K, Tredup A, Salvenmoser S, Müller FM (2005) Effect of voriconazole combined with micafungin against Candida, Aspergillus, and Scedosporium spp. and Fusarium solani. Antimicrob Agents Chemother 49: 5157–5159. PMID: 16304192
31. Fan J, Urban M, Parker JE, Brewer HC, Kelly SL, et al. (2013) Characterization of the sterol 14α-demethylases of Fusarium graminearum identifies a novel genus-specific CYP51 function. New Phytolet 198: 821–835. doi: 10.1111/nph.12193 PMID: 23442154
32. Katiyar SK, Edlind TD (2009) Role for Fks1 in the intrinsic echinocandin resistance of Fusarium solani as evidenced by hybrid expression in Saccharomyces cerevisiae. Antimicrob Agents Chemother 53: 1772–1778. doi: 10.1128/AAC.00200-09 PMID: 19258277
33. Berthiller F, Crews C, Dall’Asta C, Saeger SD, Haesaert G, et al (2013) Masked mycotoxins: a review. Mol Nutr Food Res 57: 165–186. doi: 10.1002/mnr.2101100764 PMID: 23047235
34. Stempel JM, Hammond SP, Sutton DA, Weiser LM, Marty FM. (2015) Invasive fusariosis in the voriconazole era: Single-center 13-year experience. Open Forum Infect Dis. 2(3):ofv099. doi: 10.1093/ofid/ofv099 PMID: 26258156
35. Horn DL, Freifeld AG, Schuster MG, Azie NE, Franks B et al. (2014) Treatment and outcomes of invasive fusariosis: review of 65 cases from the PATH Alliance registry. Mycoses. 57:652–658. doi: 10.1111/myc.12212 PMID: 24943384
36. Nucci M, Marr KA, Vehreschild MJ, de Souza CA, Velasco E, et al. (2014) Improvement in the outcome of invasive fusariosis in the last decade. Clin Microbiol Infect 20: 580–585. doi: 10.1111/1469-0691.12409 PMID: 24118322

37. Tortorano AM, Richardson M, Rollides E, van Diepeningen A, Caira M, et al. (2014) ESCMID and ECMM joint guidelines on diagnosis and management of hyalohyphomycosis: Fusarium spp., Scedosporium spp. and others. Clin Microbiol Infect 20: Suppl 3:27–46. doi: 10.1111/1469-0691.12465 PMID: 24548001

38. Espinel-Ingroff A, Colombo AL, Cordoba S, Dufresne PJ, Fuller J, et al (2016) An international evaluation of MIC distributions and ECV definition for Fusarium species identified by molecular methods for the CLSI broth microdilution method. Antimicrob Agents Chemother. 60:1079–84. doi: 10.1128/AAC.02456-15

39. Ghannoum M, Isham N (2014) Fungal nail infections (Onychomycosis): A never-ending story? PLoS Pathog 10: doi: 10.1371/journal.ppat.1004105

40. Sharma S, Das S, Virdi A, Fernandes M, Sahu SK, et al (2015) Re-appraisal of topical 1% voriconazole and 5% natamycin in the treatment of fungal keratitis in a randomised trial. Br J Ophthalmol 99:1190–1195. doi: 10.1136/bjophthalmol-2014-306485 PMID: 25740805

41. Spader TB, Venturini TP, Rossato L, Denardi LB, Cavalheiro PB, et al. (2013) Synergism of voriconazole or itraconazole with other antifungal agents against species of Fusarium. Rev Iberoam Micol 30: 200–204. doi: 10.1016/j.riam.2013.01.002 PMID: 23402831

42. Al-Hatmi AMS, Meletiadis J, Curfs-Breuker I, Bonifaz A, Meis JF, et al. (2016) In vitro combinations of natamycin with voriconazole, itraconazole and micafungin against clinical Fusarium isolates causing keratitis. J Antimicrob Chemother 71: doi: 10.1093/jac/dkv421