Persistence of Skewed X-Chromosome Inactivation in Pre-B Acute Lymphoblastic Leukemia of a Female ATRX Mutation Carrier

Abstract:
X-linked α-thalassemia mental retardation syndrome (ATR-X) is a rare familial disorder. Somatic mutations of ATRX are reported as a driver gene in various cancers including acute lymphoblastic leukemia (ALL). Here we present a case of pre-B ALL in a female with a germline ATRX mutation who developed highly aggressive leukemia relapsing after allogeneic stem cell transplantation (allo-SCT) with rapid clonal evolution. We investigated whether germline ATRX mutation was associated with leukemia development through activation of the mutant gene. Leukemic blasts were flow-sorted from pre- and post-transplant bone marrows. T cells were isolated from pre-transplant blood as germline control. Whole genome sequencing (WGS) was performed to cover 100x in tumor cells and 30x in control cells, paired with RNA-seq with 40M reads per sample. WGS confirmed germline mutation of ATRX in both leukemic blasts and germline control, however transcripts of mutant ATRX gene were not detectable in RNA-seq indicating a skewed inactivation of mutant X in both tumor and normal cells. Unsupervised clustering of variant allele frequencies (VAF) of 121 shared somatic mutations in pre- and post-transplant blasts identified founding clones harboring high VAF and three additional sub-clones. RNAseq analysis revealed significant up-regulations of genes enriched in the NOD-like receptor and Jak-STAT signaling pathways. The finding does not support ATRX germline mutation as causative gene in this case, but conversely demonstrated that germline mutation is not always pathologic in tumor cells. Our case study indicates that the biological significance of germline ATRX mutation can vary according to sex and tumor type.

Conflict of interest: COI declared - see note

COI notes: Dr. Montgomery: Ventana Biosystems (research and travel funding), ArcherDx (research collaboration) Dr. Foster: Shire Plc (honorarium), Bellicum Pharmaceuticals (grant), Novartis Pharmaceuticals (Fees paid to my institution), Amgen Inc. (Fees paid to my institution) Other authors declare no conflict of interest.

Preprint server: No;

Author contributions and disclosures: Study concept and design (CB, JB, RG, SI); in vitro experiment and data collection (CB, RP, SI); analysis and interpretation of data (CB, CC, KO, KC, CY, JB, RJ, SI); drafting of the manuscript (CB, CC, KO, NDM, MB, JB, RG, SI); bioinformatic and statistical analysis (CC, CY); clinical data collection (SH, KO, CY, PP, NDM, MCF, MB, JB, RG, SI); and obtained funding and study supervision (JB, SI)

Non-author contributions and disclosures: No;

Agreement to Share Publication-Related Data and Data Sharing Statement: Sequencing data will be deposited to public repositories.

Clinical trial registration information (if any): ClinicalTrials.gov NCT02226861 and NCT00071045
Title: Persistence of Skewed X-Chromosome Inactivation in Pre-B Acute Lymphoblastic Leukemia of a Female ATRX Mutation Carrier

Authors: Christian Bradley1*, Cai Chen2*, Karolyn Oetjen1, Cheng Yan3, Reema Panjwani1, Sara Hauffe1, Katherine Calvo4, Constance Yuan5, Prapti Patel6, Nathan D. Montgomery7, Matthew C. Foster8, Minoo Battiwalla15, A. John Barrett19, Richard J. Gibbons9, and Sawa Ito1§

1Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
2Admera Health, LLC, South Plainfield, NJ, USA
3Genetron Health Technologies Inc., Research Triangle Park, NC, USA
4Department of Laboratory Medicine, Clinical Center, National Institutes of Health
5Flow Cytometry Unit, Center for Cancer Research, National Cancer Institute
6Hematologic Malignancies/BMT Program, Harold C. Simmons Comprehensive Cancer Center, University of Texas South Western
7Department of Pathology & Laboratory Medicine, University of North Carolina at Chapel Hill
*Equally contributed to the manuscript
8Leukemia, Lymphoma and Myeloma Program, UNC Lineberger Comprehensive Cancer Center
9Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford.
Current addresses:
$ Sarah Cannon Research Institute. 1100 Charlotte Ave, Suite 800, Nashville, TN 37203
¶ GW Cancer Center, George Washington University, 900 23rd St NW, Washington, DC 20037
§Corresponding author and current address: Sawa Ito, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, Phone: 412-623-1416, Fax 412-623-4840, Email: itos3@upmc.edu
Keywords: ATRX, acute lymphoblastic leukemia, chromosome X inactivation

Word counts (limit 1200): 1193

Figure Count: 2, Supplementary Materials: Table 3, Figure 4

References (limit 25): 17
Introduction

X-linked α-thalassemia mental retardation syndrome (ATR-X) is a rare familial disorder associated with distinctive craniofacial abnormalities, developmental delay, and α-thalassemia which predominantly affect males.\(^1\)\(^3\) Gibbons et al. first identified the causative gene \textit{ATRX} on chromosome Xq13.3\(^4\), which encodes for a chromatin remodeling factor of the SW1/SNF family and modulates transcription regulation, DNA repair, and mitotic recombination.\(^5\)\(^6\) Recently, somatic mutations of \textit{ATRX} were reported in various human cancers including acute lymphoblastic leukemia (ALL).\(^7\)\(^8\) \textit{ATRX} deficiency results in genetic instability through impairment of nonhomologous end joining and increase in sensitivity to DNA-damage in mouse glioma model.\(^9\) However, the exact role of \textit{ATRX} in human carcinogenesis remains unknown. Here we present a female carrier of ATR-X who developed highly aggressive pre-B ALL, relapsing after allogeneic stem cell transplantation (allo-SCT). We performed whole genome sequencing (WGS) and RNA sequencing (RNA-seq) to investigate the role of germline \textit{ATRX} mutation in leukemogenesis of this case.

Methods

\textit{Case Report}

A 29-year-old woman was diagnosed with pre-B ALL after presenting with back pain and lymphadenopathy. Her two brothers have X-linked α-thalassemia mental retardation syndrome with germline mutations in the \textit{ATRX} gene (c.4617_4622del; p.1540_1541delDE, NM_000489.3) while she was found to be a carrier. Her mother, the presumed \textit{ATRX} mutation carrier, was diagnosed with metastatic melanoma and her maternal uncle died from glioma.

Despite of failure to first induction therapy, she achieved a complete remission with clofarabine-based salvage chemotherapy. Eighteen months after the diagnosis, she developed an extramedullary and central nervous system relapse. She was treated with radiation therapy, blinatumomab and intrathecal chemotherapy and referred for allo-SCT using her father as a donor. The pre-transplant evaluation showed a PET-avid lesion in the spine and the bone marrow involvement of 25% B-ALL with a complex
cytogenetic abnormality. She received cranial radiation and clofarabine immediately prior to a myeloablative conditioning regimen using total body irradiation 12Gy, fludarabine, donor lymphocyte infusion (DLI) 2x 10^8/kg CD3+ cells (day -6), and post DLI-cyclophosphamide. A haplo-identical peripheral blood stem graft of 8.0x10^6/kg CD34+ cells was infused followed by sirolimus with ultra-low dose IL-2 for graft versus host disease (GVHD) prophylaxis. Engraftment was rapid with full donor chimerism of CD3 and myeloid cells by day 14. She developed steroid-responsive grade II acute GVHD. On day 74 her leukemia relapsed in bone marrow containing 87% leukemic blasts with increased complexities of cytogenetics consistent with clonal evolution. Despite salvage chemotherapy, she died from septic shock and multi-organ failure.

Biospecimen Collection, Cell and Nucleotide Isolation

Informed consent was obtained for research use of biospecimen in compliance with the Declaration of Helsinki under the protocols approved by the Institutional Review Board of the National Heart, Lung, and Blood Institute (Clinicaltrial.gov: NCT02226861 and NCT00071045). Leukemic blasts were flow-sorted on FACS sorter ARIA II (BD Bioscience, San Jose, CA, USA) and peripheral blood CD3+ T cells (germline control) and donor B cells were isolated using Robosep (Stemcell Technologies, Vancouver, Canada). Genomic DNA and total RNA were extracted using a column purification method (Allprep DNA/RNA mini kit, Cat No. 80204, Qiagen, Germany).

Whole Genome Sequencing, RNA Sequencing, and Bioinformatic Analysis

WGS was performed on three samples to cover 100x in two leukemia samples (pre and post-transplant leukemias) and 30x in control cells (germline T cells). RNA-seq with 150-bp and 40 million reads per sample were performed on four samples (germline T cells, two leukemias, and father B cells). Library generation, reverse transcription, and cDNA amplification were performed according to manufacturer’s instructions, and both WGS and RNA-seq libraries were sequenced on Illumina HiSeq 3000 (Illumina, San Diego, CA, USA). Somatic mutations were called by Varscan and Mutect2, followed
by annotation using SnpEff. SciClone was used to infer an evolution of sub-clones.10 Circros was used for graphic demonstration of genomic landscape.11 Transcriptome was analyzed using STAR alignment and DESeq.12 Gene Ontology (GO) annotation analysis13 and Ingenuity Pathway Analysis (Qiagen, Hilden, Germany) were used for gene expression pathway analysis.

Results

WGS confirmed germline mutation of \textit{ATRX} (c.4617_4622del; p.1540_1541delDE, NM_000489.3) in both leukemic blasts and T cell controls as a high confidence germline mutation. However, transcripts of mutant \textit{ATRX} gene were not detected in RNAseq in leukemic blasts and normal cells, indicating an inactivation of the mutant X. Most female carriers of ATR-X are known to have skewed X-chromosome inactivation (XCI) of the mutant \textit{ATRX} allele. To confirm selective inactivation of maternally inherited X-chromosome, we analyzed heterozygosity of multiple single nucleotide polymorphism (SNP) site on the X chromosome. As shown in Figure 1, most SNPs in the X chromosome (from Xp22.11 to Xq28) were selectively activated in the paternal alleles. Transcriptions of the maternal SNP allele were only detectable in pseudoautosomal region (PAR1) (Supplementary Figure 1). This highly skewed inactivation of maternal X chromosome persisted in leukemic blasts. Expression levels of the entire \textit{ATRX} transcript by RNAseq also showed no significant changes in expressions between leukemic blasts and controls (Supplementary Table 1).

WGS identified various somatic mutations, gene fusions (Supplementary Table 2), and copy number variation in pre-transplant leukemia (Figure 2A) and post-transplant leukemia (Figure 2B). Among somatic mutations, 119 mutations in protein coding genes were persistently detected in both pre- and post-leukemic blasts. Clonal inference and evolution analysis using Sciclone revealed founding clones (cluster 1) with high variant allele frequency (VAF) and three additional sub-clones. One of three sub-clones (cluster 2) showed an increase in VAF following transplant which suggests the clones inherited survival advantages, possibly escaping from graft-versus-leukemia (GVL) effects. (Supplementary Figure 2, Supplementary Table 3). RNA-seq analysis revealed upregulations of genes
in the NOD-like receptor and Jak-STAT signaling pathway in post-transplant blasts in comparison to pre-transplant blasts. (Supplementary Figure 3 and 4).

Discussion

Here we report a female carrier of an ATRX germline mutation with a strong family history of malignancy who developed a highly aggressive pre-B ALL. Notably, the leukemia could not be attributed to the ATRX mutation because the leukemic blasts consistently retained an inactive X-chromosome bearing the mutant ATRX. Instead, the leukemia cells demonstrated numerous non-ATRX mutations, which may explain pathophysiology of this highly aggressive and refractory leukemia.

Recently two independent groups14,15 reported osteosarcomas in male ATR-X patients, suggesting genetic predisposition of germline ATRX mutations to cancer development. In contrast, ATRX germline mutation was not a provocative event for the pre-B ALL in our heterozygous female carrier. In a mouse model, skewed XCI in female carriers occurred over time by selection of the cells expressing the wild type ATRX allele. The hematopoietic cells underwent selection at the earliest stage of definitive hematopoiesis resulting in highly skewed XCI in adult blood.16 Therefore, it is likely that XCI in hematopoietic lineage cells is highly conserved, even in leukemic blasts. However, ATRX mutations may play a different role in non-hematological cancers. For example, ATRX is one of the genes involved in escape from X-inactivation tumor-suppressor (EXITS) contributing to cancer sex bias.17 ATRX mutations have been associated with low grade gliomas in males, whereas escape from X-inactivation of ATRX has been described in female brain tissue. Our case study indicates that the biological significance of germline ATRX mutation can vary according to sex and tumor type and that germline ATRX mutation needs to be interpreted with caution, as it is not always pathologic in tumor cells.
Disclosures:

Dr. Montgomery: Ventana Biosystems (research and travel funding), ArcherDx (research collaboration)

Dr. Foster: Shire Plc (honorarium), Bellicum Pharmaceuticals (grant), Novartis Pharmaceuticals (Fees paid to my institution), Amgen Inc. (Fees paid to my institution)

Other authors declare no conflict of interest.

Authorship contributions:

Study concept and design (CB, JB., RG, SI); in vitro experiment and data collection (CB, RP, SI); analysis and interpretation of data (CB, CC, KO, KC, CY, JB, RJ, SI); drafting of the manuscript (CB, CC, KO, NDM, MB, JB, RG, SI); bioinformatic and statistical analysis (CC, CY); clinical data collection (SH, KO, CY, PP, NDM, MCF, MB, JB, RG, SI); and obtained funding and study supervision (JB, SI)
References

1. Gibbons RJ, Higgs DR. Molecular-clinical spectrum of the ATR-X syndrome. *Am J Med Genet.* 2000;97(3):204-212.
2. Gibbons RJ, Picketts DJ, Villard L, Higgs DR. Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome). *Cell.* 1999;80(6):837-845.
3. Weatherall DJ, Higgs DR, Bunch C, et al. Hemoglobin H disease and mental retardation: a new syndrome or a remarkable coincidence? *N Engl J Med.* 1981;305(11):607-612.
4. Gibbons RJ, Suthers GK, Wilkie AO, Buckle VJ, Higgs DR. X-linked alpha-thalassemia/mental retardation (ATR-X) syndrome: localization to Xq12-q21.31 by X inactivation and linkage analysis. *Am J Hum Genet.* 1992;51(5):1136-1149.
5. Drane P, Ouararhni K, Depaux A, Shuaib M, Hamiche A. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. *Genes Dev.* 2010;24(12):1253-1265.
6. Goldberg AD, Banaszynski LA, Noh KM, et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. *Cell.* 2010;140(5):678-691.
7. Dyer MA, Qadeer ZA, Valle-Garcia D, Bernstein E. ATRX and DAXX: Mechanisms and Mutations. *Cold Spring Harb Perspect Med.* 2017;7(3).
8. Lindqvist CM, Lundmark A, Nordlund J, et al. Deep targeted sequencing in pediatric acute lymphoblastic leukemia unveils distinct mutational patterns between genetic subtypes and novel relapse-associated genes. *Oncotarget.* 2016;7(39):64071-64088.
9. Koschmann C, Calinescu AA, Nunez FJ, et al. ATRX loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma. *Sci Transl Med.* 2016;8(328):328ra328.
10. Miller CA, White BS, Dees ND, et al. SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. *PLoS Comput Biol.* 2014;10(8):e1003665.
11. Krzywinski M, Schein J, Birol I, et al. Circos: an information aesthetic for comparative genomics. *Genome Res.* 2009;19(9):1639-1645.
12. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. *BMC Bioinformatics.* 2011;12:323.
13. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nat Genet.* 2000;25(1):25-29.
14. Ji J, Quindipan C, Parham D, et al. Inherited germline ATRX mutation in two brothers with ATR-X syndrome and osteosarcoma. *Am J Med Genet A.* 2017;173(5):1390-1395.
15. Masliah-Planchon J, Levy D, Heron D, et al. Does ATRX germline variation predispose to osteosarcoma? Three additional cases of osteosarcoma in two ATR-X syndrome patients. *Eur J Hum Genet.* 2018;26(8):1217-1221.
16. Muers MR, Sharpe JA, Garrick D, et al. Defining the cause of skewed X-chromosome inactivation in X-linked mental retardation by use of a mouse model. *Am J Hum Genet.* 2007;80(6):1138-1149.
17. Dunford A, Weinstock DM, Savova V, et al. Tumor-suppressor genes that escape from X-inactivation contribute to cancer sex bias. *Nat Genet.* 2017;49(1):10-16.
Figure legends

Figure 1. Heatmap of single nucleotide polymorphism (SNP) allele expression pattern in X chromosome. Variant allele frequencies (VAF) of SNP genotype from whole genome sequencing (WGS) data were plotted on the first left column. VAF of SNP expressions of four samples from RNAseq data were plotted on the right four columns. Despite whole genome sequencing (WGS) data shows the presence of heterozygosity (i.e. VAF ranges 25-75%) in each SNP loci, RNAseq data demonstrated the loss of heterozygosity (either 0% or 100%) in majority of leukemia and germline cells, which exclusively express SNP alleles inherited from her father except FAM104B and pseudoautosomal region (Supplementary Figure 1). This finding is consistent with persisted X chromosome inactivation in hematopoietic lineage cells in the patient.

Figure 2. Genomic landscape of somatic mutations, gene fusions, and copy number variations in leukemia. Dark blue dots represent somatic mutation with VAF. Light blue lines represent fusion genes. Dark bars represent copy number variations. A) In pre-transplant leukemia, WGS and RNAseq identified 270 somatic mutations (251 mutations in protein-coding genes, 16 in intergenic regions, and 3 in non-coding RNA), 16 fusion genes, and 725 gene loci with copy number variations. B) Post-transplant leukemia harbors 312 somatic mutations (296 in protein coding genes, 19 in intergenic regions, and 6 in non-coding RNA), 13 fusion genes, and 332 gene loci with copy number variations.
Figure 1

[Image of a vertical bar chart showing gene expression levels across different samples, with the gene ATRX highlighted.]

Gene expression levels across different samples including WGS, RNA-seq, Germline T cells, Pre-Tx Leukemia, Post-Tx Leukemia, and Father B cells.
