Passerine swarm optimization algorithm for solving optimal reactive power dispatch problem

Lenin Kanagasabai
Department of EEE, Prasad V. Potluri Siddhartha Institute of Technology, India

ABSTRACT

This paper presents Passerine Swarm Optimization Algorithm (PSOA) for solving optimal reactive power dispatch problem. This algorithm is based on behaviour of social communications of Passerine bird. Basically, Passerine bird has three common behaviours: search behaviour, adherence behaviour and expedition behaviour. Through the shared communications Passerine bird will search for the food and also run away from hunters. By using the Passerine bird communications and behaviour, five basic rules have been created in the PSOA approach to solve the optimal reactive power dispatch problem. Key aspect is to reduce the real power loss and also to keep the variables within the limits. Proposed Passerine Swarm Optimization Algorithm (PSOA) has been tested in standard IEEE 30 bus test system and simulations results reveal about the better performance of the proposed algorithm in reducing the real power loss and enhancing the static voltage stability margin.

Keywords: Optimal Passerine bird Reactive power Swarm-intelligence Transmission loss

This is an open access article under the CC BY-SA license.

1. INTRODUCTION

Optimal reactive power dispatch problem is subject to number of uncertainties and at least in the best case to uncertainty parameters given in the demand and about the availability equivalent amount of shunt reactive power compensators. Optimal reactive power dispatch plays a major role for the operation of power systems, and it should be carried out in a proper manner, such that system reliability is not got affected. The main objective of the optimal reactive power dispatch is to maintain the level of voltage and reactive power flow within the specified limits under various operating conditions and network configurations. By utilizing a number of control tools such as switching of shunt reactive power sources, changing generator voltages or by adjusting transformer tap-settings the reactive power dispatch can be done. By doing optimal adjustment of these controls in different levels, the redistribution of the reactive power would minimize transmission losses. This procedure forms an optimal reactive power dispatch problem and it has a major influence on secure and economic operation of power systems. Various mathematical techniques like the gradient method Alsac et al. Lee et al and linear programming mangoli et al [1-7] have been adopted to solve the optimal reactive power dispatch problem. Both the gradient and Newton methods has the difficulty in handling inequality constraints. If linear programming is applied then the input- output function has to be expressed as a set of linear functions which mostly lead to loss of accuracy. This paper formulates by combining both the real power loss minimization and maximization of static voltage stability margin (SVSM) as the objectives. Global optimization has received extensive research attention, and a great number

Journal homepage: http://ijaas.iaesco.com
of methods have been applied to solve this problem. Many Evolutionary algorithms Aparajita Mukherjee et al., Hu et al., Mahalechumi et al., Sulaiman et al., Pandiarajan et al., have been already proposed to solve the reactive power flow problem. This paper presents Passerine Swarm Optimization Algorithm (PSOA) for solving optimal reactive power dispatch problem. This algorithm is based on behaviour of social communications of Passerine bird Anderson et al., Barnard et al., Beauchamp et al., Bednekoff et al., Coolen et al. [8-13]. Basically Passerine bird has three common behaviours: search behaviour, adherence behaviour and expedition behaviour. Through the shared communications Passerine bird will search for the food and also run away from hunters [14-20]. By using the Passerine bird communications and behaviour, five basic rules have been created in the PSOA approach to solve the optimal reactive power dispatch problem. Key aspect is to reduce the real power loss and also to keep the variables within the limits. Proposed Passerine Swarm Optimization Algorithm (PSOA) has been tested in standard IEEE 30 bus test system and simulations results reveal about the better performance of the proposed algorithm in reducing the real power loss and enhancing the static voltage stability margin.

2. VOLTAGE STABILITY EVALUATION

Modal analysis for voltage stability evaluation: Modal analysis is one among best methods for voltage stability enhancement in power systems. The steady state system power flow are given by (1).

\[
\begin{bmatrix}
\Delta P \\
\Delta Q
\end{bmatrix} =
\begin{bmatrix}
J_{\theta \theta} & J_{\theta V} \\
J_{V \theta} & J_{V V}
\end{bmatrix}
\begin{bmatrix}
\Delta \theta \\
\Delta V
\end{bmatrix}
\] (1)

Where
\(\Delta P \) = Incremental change in bus real power.
\(\Delta Q \) = Incremental change in bus reactive Power injection
\(\Delta \theta \) = Incremental change in bus voltage angle.
\(\Delta V \) = Incremental change in bus voltage Magnitude
\(J_{\theta \theta} \), \(J_{\theta V} \), \(J_{V \theta} \), \(J_{V V} \) jacobian matrix are the sub-matrixes of the System voltage stability is affected by both P and Q.

To reduce (1), let \(\Delta P = 0 \), then.

\[
\begin{align*}
\Delta Q &= \begin{bmatrix} J_{\theta V} - J_{\theta 0}P_0^{-1}J_{V \theta} \end{bmatrix} \Delta V = J_R \Delta V \\
\Delta V &= J^{-1} - \Delta Q
\end{align*}
\] (2)

Where
\[
J_R = \begin{bmatrix} J_{\theta V} - J_{\theta 0}P_0^{-1}J_{V \theta} \end{bmatrix}
\] (4)

\(J_R \) is called the reduced Jacobian matrix of the system.

Modes of Voltage instability:
Voltage Stability characteristics of the system have been identified by computing the Eigen values and Eigen vectors.
Let

\[
J_R = \xi \Lambda \eta
\] (5)

Where,
\(\xi \) = right eigenvector matrix of JR
\(\eta \) = left eigenvector matrix of JR
\(\Lambda \) = diagonal eigenvalue matrix of JR and

\[
J_R^{-1} = \xi \Lambda^{-1} \eta
\] (6)

From (5) and (8), we have

\[
\Delta V = \xi \Lambda^{-1} \eta \Delta Q
\] (7)

Or
\[\Delta V = \sum_{i} \xi_{i} \eta_{i} \Delta Q \]

(8)

Where \(\xi_{i} \) is the \(i \)th column right eigenvector and \(\eta \) the \(i \)th row left eigenvector of \(JR \). \(\lambda_{i} \) is the \(i \)th Eigen value of \(JR \). The \(i \)th modal reactive power variation is,

\[\Delta Q_{mi} = K_{i} \xi_{i} \]

(9)

where,

\[K_{i} = \sum_{j} \xi_{ij}^{2} - 1 \]

(10)

Where \(\xi_{ji} \) is the \(j \)th element of \(\xi_{i} \).

The corresponding \(i \)th modal voltage variation is

\[\Delta V_{mi} = [1/\lambda_{i}] \Delta Q_{mi} \]

(11)

If \(|\lambda_{i}| = 0 \) then the \(i \)th modal voltage will collapse.

In (10), let \(\Delta Q = ek \) where \(ek \) has all its elements zero except the \(k \)th one being 1. Then,

\[\Delta V = \sum_{i} \eta_{ik} \xi_{i} \lambda_{i} \]

(12)

\(\eta_{ik} \) \(k \)th element of \(\eta_{i} \)

V – Q sensitivity at bus \(k \)

\[\frac{\partial V_{k}}{\partial Q_{k}} = \sum_{i} \frac{\eta_{ik} \xi_{i}}{\lambda_{i}} = \sum_{i} \frac{P_{ki}}{\lambda_{i}} \]

(13)

3. PROBLEM FORMULATION

The objectives of the reactive power dispatch problem is to minimize the system real power loss and maximize the static voltage stability margins (SVSM).

3.1. Minimization of real power loss

Minimization of the real power loss (Ploss) in transmission lines is mathematically stated as (14).

\[P_{\text{loss}} = \sum_{k=1}^{n} g_{k}(V_{i}^{2} + V_{j}^{2} - 2V_{i}V_{j}\cos\theta_{ij}) \]

(14)

Where \(n \) is the number of transmission lines, \(g_{k} \) is the conductance of branch \(k \), \(V_{i} \) and \(V_{j} \) are voltage magnitude at bus \(i \) and bus \(j \), and \(\theta_{ij} \) is the voltage angle difference between bus \(i \) and bus \(j \).

Minimization of Voltage Deviation. Minimization of the voltage deviation magnitudes (VD) at load buses is mathematically stated as (15).

Minimize \(VD = \sum_{k=1}^{n_{l}} |V_{k} - 1.0| \)

(15)

Where \(n_{l} \) is the number of load buses and \(V_{k} \) is the voltage magnitude at bus \(k \).

3.2. System constraints

The following is an objective function that experiences constraints.

a. Load flow equality constraints:

\[P_{Gi} - P_{Di} - V_{i} \sum_{j=1}^{nb} V_{j} \left[G_{ij} \cos \theta_{ij} + B_{ij} \sin \theta_{ij} \right] = 0, i = 1, 2, ..., nb \]

(16)

\[Q_{Gi} - Q_{Di} - V_{i} \sum_{j=1}^{nb} V_{j} \left[G_{ij} \sin \theta_{ij} + B_{ij} \cos \theta_{ij} \right] = 0, i = 1, 2, ..., nb \]

(17)
where, \(nb\) is the number of buses, \(PG\) and \(QG\) are the real and reactive power of the generator, \(PD\) and \(QD\) are the real and reactive load of the generator, and \(Gij\) and \(Bij\) are the mutual conductance and susceptance between bus \(i\) and bus \(j\).

b. Generator bus voltage (\(VGi\)) inequality constraint:

\[
V_{Gi}^{\min} \leq V_{Gi} \leq V_{Gi}^{\max}, \ i \in ng
\]

(18)

c. Load bus voltage (\(VLi\)) inequality constraint:

\[
V_{Li}^{\min} \leq V_{Li} \leq V_{Li}^{\max}, \ i \in nl
\]

(19)

d. Switchable reactive power compensations (\(QCi\)) inequality constraint:

\[
Q_{Ci}^{\min} \leq Q_{Ci} \leq Q_{Ci}^{\max}, \ i \in nc
\]

(20)

e. Reactive power generation (\(QGi\)) inequality constraint:

\[
Q_{Gi}^{\min} \leq Q_{Gi} \leq Q_{Gi}^{\max}, \ i \in ng
\]

(21)

f. Transformers tap setting (\(Ti\)) inequality constraint:

\[
T_{i}^{\min} \leq T_{i} \leq T_{i}^{\max}, \ i \in nt
\]

(22)

g. Transmission line flow (\(SLi\)) inequality constraint:

\[
S_{Li}^{\min} \leq S_{Li} \leq S_{Li}^{\max}, \ i \in nl
\]

(23)

Where, \(nc\), \(ng\) and \(nt\) are numbers of the switchable reactive power sources, generators and transformers.

4. PASSERINE BIRD SWARM HYPOTHESIS

The Passerine bird Figure 1 social behavior’s can be written as follows:

a) Rule 1. Every Passerine bird has choice to alter between the adherence behaviour and search behaviour. Whether the Passerine bird searches or in observance, it is molded as a stochastic decision.

b) Rule 2. While search, each Passerine bird can promptly record and renovate its previous most outstanding experience and the swarms’ previous most outstanding experience about food area. This information has been used to discover food. Social information is shared rapidly among the whole swarm.

c) Rule 3. During adherence, every Passerine will attempt to move near to the centre of the swarm. This behaviour can be embroidered by the interference tempted by the rivalry among swarm. The Passerine with the uppermost reserves would be more prone to lie nearer to the centre of the swarm.

d) Rule 4. While flying Passerine may often change between generating and sponging. The Passerine with the uppermost reserves would be a creator, while the one with the bottom most reserves would be a sponger. Passerine have reserves between the uppermost and bottom most reserves would randomly choose to be creator and sponger.

e) Rule 5. Creators with desire search for food. Spongers would randomly follow a creator to search for food. By the above Rules the mathematical model for the problem has been developed.

All \(N\) virtual Passerine bird, portrayed by their position \(Z_{t}^{i} (i \in [1...N])\) at time step \(t\), search for food and fly in an organized space.
Figure 1. Passerine bird

4.1. Search behaviour

Every Passerine will search for food according to its experience. Rule 2 can be written in (24) as follows,

\[Z_{i,j}^{t+1} = Z_{i,j}^t + (k_{i,j} - Z_{i,j}^t) \times M \times \text{rand}(0,1) + (l_j - Z_{i,j}^t) \times N \times \text{rand}(0,1) \] \hspace{1cm} (24)

Where \(j \in [1, \ldots, C] \), rand (0, 1) denotes independent uniformly distributed numbers in (0, 1).

M and N are two positive numbers, which can be respectively called as cognitive and social accelerated coefficients. \(k_{i,j} \) is the best preceding position of the \(i_{th} \) passerine and \(l_j \) is the most excellent preceding position shared by the swarm.

The Rule 1 can be defined as a stochastic decision. If a uniform arbitrary number in (0, 1) is smaller than, \(K (K \in (0,1)) \) a constant value, the Passerine would search for food. Otherwise, the passerine would carry on observance.

4.2. Adherence behaviour

Rule 3 indicates that passerine would try to move near the Centre of the swarm, and they would inevitably contend with each other. Thus, each Passerine cannot directly move towards the Centre of the swarm. This drive can be written as follows:

\[Z_{i,j}^{t+1} = Z + F1(\text{mean}_v - Z_{i,j}^t) \times \text{rand}(0,1) + F2(K_{k,i} - Z_{i,j}^t) \times \text{rand}(-1,1) \] \hspace{1cm} (25)

\[F1 = f1 \times \exp \left(-\frac{\text{sumFit}_i}{\text{sumFit}^* + \varepsilon} \times N \right) \] \hspace{1cm} (26)

\[F2 = f2 \times \exp \left(\frac{\text{Fit}_i - \text{fit}_r}{\text{sumFit}^*_r} \frac{N \times \text{fit}_r}{\text{sumFit}^*_r} \right) \] \hspace{1cm} (27)

Where \(k (k \neq 1) \) is a positive integer, which is illogically chosen between 1 and N. \(f1 \) and \(f2 \) are two positive constants in [0, 2], \(kFit_i \) denotes the \(i_{th} \) passerine best fitness value and \(\text{sumFit} \) represents the sum of the swarms’ best fitness value. 1, which is used to keep away from zero-division error, \(\text{mean}_v \) denotes the \(j_{th} \) element of the average position of the whole swarm. When a Passerine move near the Centre of the swarm, it will unavoidably compete with each other. The average fitness value of the swarm is measured by the surrounding swarm when a Passerine move to the Centre of the swarm. Each Passerine always wants to position at the Centre of the swarm, the product of F1 and rand (0, 1) should not be more than 1. Here, F2 is used to create the direct effect persuaded by interference when a Passerine move to the Centre of the swarm. If the most outstanding fitness value of a random \(k_{th} \) Passerine \((k - i) \) is greater than that of the \(i_{th} \) Passerine, then \(F2, f2 \) which means that the \(i_{th} \) may bear Passerine a greater interference than the \(k_{th} \) Passerine. The \(k_{th} \) Passerine would be move near the centre of the swarm than the \(i_{th} \) passerine.
4.3. Expedition behaviour

Passerine may fly to other areas due to countless reasons. When the Passerine arrived at an innovative site, they would again search for food. Some Passerine as creators would search for food patches, while other Passerine try to feed from the food patch found by the creators. By the Rule 4 the creators and spongers can be detached from the swarm. The behaviors of the creators and spongers can be written as follows:

\[Z_{i,j}^{t+1} = Z_{i,j}^{t} + \text{randn}(0,1) \times Z_{i,j}^{t} \]
(28)

\[Z_{i,j}^{t+1} = Z_{i,j}^{t} + (Z_{k,j}^{t} - Z_{i,j}^{t}) \times GH \times \text{rand}(0,1) \]
(29)

Where \(\text{randn}(0,1) \) denotes Gaussian distributed arbitrary number with mean zero and standard deviation 1, \(k \in \{1,2,3,\ldots,N\}, k \neq i.GH(GH \in [0,2]) \) means that the sponger would follow the creator to search for food. We assume that each Passerine fly to alternative place every GH (positive integer) unit interval.

4.4. Passerine bird Swarm optimization Algorithm for optimal reactive power dispatch problem

Enter: P: the number of individuals (passerine) bounded in the population, Q: the utmost number of iterations, GH: the rate of repetition of Passerine expedition behaviors’, K: the probability of searching for food, M, N, f1, f2, GH: are five constant parameters, \(t = 0 \); Initialize the population
Assessment of the N individuals’ fitness value, and find the most outstanding solution

While \((t < Q) \)
If \((\% GH \neq 0) \)
For \(\text{For} \), \(= 1:N \)
If \(\text{rand} (0,1) < K \)
At that juncture Passerine searches for food (24)
Else
The Passerine keep surveillance (25)
End if
End for
Else
Classifying swarms as creators and spongers.
For \(i = 1:N \)
If \(i \) is a creator
Then Create (28)
Else
It will be Sponger (29)
End if
End for
End if

Calculate innovative solutions. If the innovative solutions are greater to their previous ones, renovate them. Find the current most outstanding solution

\[t = t + 1; \]
End while
Output:
The individual with the finest objective function value in the population

5. SIMULATION RESULTS

The efficiency of the proposed Passerine Swarm Optimization Algorithm (PSOA) method is demonstrated by testing it on standard IEEE-30 bus system. The IEEE-30 bus system has 6 generator buses, 24 load buses and 41 transmission lines of which four branches are (6-9), (6-10), (4-12) and (28-27) - are with the tap setting transformers. The lower voltage magnitude limits at all buses are 0.95 p.u. and the upper limits are 1.05 p.u. for all the PV buses and 1.0 p.u. for all the PQ buses and the reference bus. The simulation results have been presented in Tables 1, Table 2, Table 3 & Table 4. The Table 5 shows the proposed algorithm powerfully reduces the real power losses when compared to other given algorithms. The optimal values of the control variables along with the minimum loss obtained are given in Table 1. Corresponding to this control variable setting, it was found that there are no limit violations in any of the state variables.

Optimal Reactive Power Dispatch problem together with voltage stability constraint problem was handled in this case as a multi-objective optimization problem where both power loss and maximum voltage
Passerine swarm optimization algorithm for solving optimal stability margin of the system were optimized simultaneously. Table 2 indicates the optimal values of these control variables. Also it is found that there are no limit violations of the state variables. It indicates the voltage stability index has increased from 0.2452 to 0.2466, an advance in the system voltage stability. To determine the voltage security of the system, contingency analysis was conducted using the control variable setting obtained in case 1 and case 2. The Eigen values equivalents to the four critical contingencies are given in Table 3. From this result it is observed that the Eigen value has been improved considerably for all contingencies in the second case.

Table 1. Results of PSOA – ORPD optimal control variables

Control variables	Variable setting
V1	1.032
V2	1.030
V5	1.033
V8	1.031
V11	1.000
V13	1.029
T11	1.000
T12	1.000
T15	1.000
T36	1.010
Qc10	2
Qc12	2
Qc15	3
Qc17	0
Qc20	2
Qc23	3
Qc24	3
Qc29	2
Real power loss	4.2502
SVSM	0.2452

Table 2. Results of PSOA - voltage stability control reactive power dispatch optimal control variables

Control Variables	Variable Setting
V1	1.040
V2	1.039
V5	1.040
V8	1.029
V11	1.000
V13	1.030
T11	0.090
T12	0.090
T15	0.090
T36	0.090
Qc10	3
Qc12	3
Qc15	2
Qc17	3
Qc20	0
Qc23	2
Qc24	2
Qc29	3
Real power loss	4.9860
SVSM	0.2466

Table 3. Voltage stability under contingency state

Sl.No	Contingency	ORPD Setting	VSCRPD Setting
1	28-27	0.1409	0.1424
2	4-12	0.1649	0.1652
3	1-3	0.1769	0.1779
4	2-4	0.2029	0.2041

Passerine swarm optimization algorithm for solving optimal... (Kanagasabai Lenin)
6. CONCLUSION

In this paper, Passerine bird Swarm Optimization (PSOA) algorithm has been successfully implemented to solve optimal reactive power dispatch problem. By using the Passerine bird communications and behaviour, five basic rules have been created in the PSOA approach to solve the optimal reactive power dispatch problem. Key aspect is to reduce the real power loss and also to keep the variables within the limits. Proposed Passerine Swarm Optimization Algorithm (PSOA) has been tested in standard IEEE 30 bus test system and simulations results reveal about the better performance of the proposed algorithm in reducing the real power loss and enhancing the static voltage stability margin.

REFERENCES

[1] O. Alsac, and B. Scott, “Optimal load flow with steady state security,” IEEE Transaction. PAS, pp. 745-751, 1973.
[2] Lee K. Y., Paru Y. M., Ortiz J. L., “A united approach to optimal real and reactive power dispatch,” IEEE Transactions on power Apparatus and systems, PAS-104, pp. 1147-1153, 1985.
[3] A. Monticelli, M. V. F Pereira, S. Granville, “Security constrained optimal power flow with post contingency corrective rescheduling,” IEEE Transactions on Power Systems, PWRS-2, no. 1, pp. 175-182, 1987.
[4] Deeb N., Shahidehpur S. M., “Linear reactive power optimization in a large power network using the decomposition approach,” IEEE Transactions on power system, vol. 5, no. 2, pp. 428-435, 1990.
[5] E. Hobson., “Network constrained reactive power control using linear programming,” IEEE Transactions on power systems, PAS-99, no. 4, pp. 868-877, 1980.
[6] K. Y Lee, Y. M Park, and J. L Ortiz, “Fuel-cost optimization for both real and reactive power dispatches,” IEEE Proc, vol. 131C, no. 3, pp. 85-93, 1984.

Table 4. Limit violation checking of state variables

State variables	limits	ORPD	VSCRPD	
Lower	upper			
Q1	-20	152	1.3422	-1.3269
Q2	-20	61	8.9900	9.8232
Q5	-15	49.92	25.920	26.001
Q8	-10	63.52	38.8200	40.802
Q11	-15	42	2.9300	5.0023
Q13	-15	48	8.1025	6.033
V3	0.95	1.05	0.0372	1.0392
V4	0.95	1.05	0.0370	1.0328
V6	0.95	1.05	0.0282	1.0298
V7	0.95	1.05	0.0101	1.0152
V9	0.95	1.05	0.0146	1.0412
V10	0.95	1.05	0.0148	1.0498
V12	0.95	1.05	0.0400	1.0466
V14	0.95	1.05	0.0474	1.0443
V15	0.95	1.05	0.0457	1.0413
V16	0.95	1.05	0.0426	1.0405
V17	0.95	1.05	0.0382	1.0396
V18	0.95	1.05	0.0392	1.0400
V19	0.95	1.05	0.0381	1.0394
V20	0.95	1.05	0.1112	1.0194
V21	0.95	1.05	0.0435	1.0243
V22	0.95	1.05	0.0448	1.0396
V23	0.95	1.05	0.0472	1.0372
V24	0.95	1.05	0.0484	1.0372
V25	0.95	1.05	0.0142	1.0192
V26	0.95	1.05	0.0494	1.0422
V27	0.95	1.05	0.0472	1.0452
V28	0.95	1.05	0.0243	1.0283
V29	0.95	1.05	0.0439	1.0419
V30	0.95	1.05	0.0418	1.0397

Table 5. Comparison of real power loss

Method	Minimum loss (MW)
Evolutionary programming [21]	5.0159
Genetic algorithm [22]	4.665
Real coded GA with Lindex as SVSM [23]	4.568
Real coded genetic algorithm [24]	4.5015
Proposed PSOA method	4.2502
[7] M.K. Mangoli, and K.Y. Lee, “Optimal real and reactive power control using linear programming,” Electr. Power Syst. Res., vol. 26, pp. 1-10, 1993.

[8] Aparajita Mukherjee, Vivekananda Mukherjee, “Solution of optimal reactive power dispatch by chaotic krill herd algorithm,” IET Gener. Transm. Distrib., vol. 9, no. 15, pp. 2351-2362, 2015.

[9] Hu, Z., Wang, X. & Taylor, G., “Stochastic optimal reactive power dispatch: Formulation and solution method,” Electr. Power Energy Syst., vol. 32, pp. 615-621, 2010.

[10] Mahalethchumi A/P Morgan, Nor Rul Hasma Abdullah, Mohd Herwan Sulaiman, Mahfuzah Mustafa and Rosdiyana Samad, “Computational intelligence technique for static VAR compensator (SVC) installation considering multi-contingencies (N-n),” ARPN Journal of Engineering and Applied Sciences, vol. 10, no. 22, Dec 2015.

[11] Mohd Herwan Sulaiman, Zuriani Mustaffa, Hamdan Danyial, Mohd Ruslim Mohamed and Omar Aliman, “Solving Optimal Reactive Power Planning Problem Utilizing Nature Inspired Computing Techniques,” ARPN Journal of Engineering and Applied Sciences, vol. 10, no. 21, pp. 9779-9785, Nov 2015.

[12] Mohd Herwan Sulaiman, Wong Lo Ing, Zuriani Mustaffa and Mohd Ruslim Mohamed, “Grey Wolf Optimizer for Solving Economic Dispatch Problem with Valve-Loading Effects,” ARPN Journal of Engineering and Applied Sciences, vol. 10, no. 21, pp. 9796-9801, Nov 2015.

[13] Pandiarajan, K. & Babulal, C. K., “Fuzzy harmony search algorithm based optimal power flow for power system security enhancement,” International Journal Electric Power Energy Syst., vol. 78, pp. 72-79, 2016.

[14] Mustaffa, Z., Sulaiman, M. H., Yusof, Y., Kamarulzaman, S. F., “A novel hybrid metaheuristic algorithm for short term load forecasting,” International Journal of Simulation: Systems, Science and Technology, vol. 17, no. 41, pp. 6.1-6.6, 2017.

[15] Anderson, T. R., “Biology of the ubiquitous house sparrow: From genes to populations,” Oxford: Oxford University Press, 2006.

[16] Barnard, C. J., & Sibly, R. M., “Producers and scroungers: A general model and its application to captive flocks of house sparrows,” Animal Behavior, vol. 29, pp. 543-550, 1998.

[17] Beauchamp, G. “The effect of group size on mean food intake rate in birds,” Biological Reviews, vol. 73, pp. 449-472, 1998.

[18] Beauchamp, G., “Group-size effects on vigilance: A search for mechanisms,” Behavioral Processes, vol. 63, pp. 111-121, 2003.

[19] Bednekoff, B. A., & Lima, S. L., “Randomness, chaos and confusion in the study of antipredator vigilance,” Trends in Ecology and Evolution, vol. 13, pp. 284-287, 1998.

[20] Coolen, L., Giraldieu, L. A., & Lavoie, M., “Head position as an indicator of producer and scrounger tactics in a ground-feeding bird,” Animal Behavior, vol. 61, pp. 895-903, 2001. doi:10.1006/anbe.2000.1678.

[21] Wu Q H, Ma J T. “Power system optimal reactive power dispatch using evolutionary programming.” IEEE Transactions on power systems, vol. 10, no. 3, pp. 1243-1248, 1995.

[22] S. Durairaj, D. Devaraj, P.S. Kannan, “Genetic algorithm applications to optimal reactive power dispatch with voltage stability enhancement,” IETI Journal-EL, vol. 87, Sept 2006.

[23] D. Devaraj, “Improved genetic algorithm for multi-objective reactive power dispatch problem,” European Transactions on electrical power, vol. 17, pp. 569-581, 2007.

[24] P. Aruna Jeyanthy and Dr. D. Devaraj, “Optimal Reactive Power Dispatch for Voltage Stability Enhancement Using Real Coded Genetic Algorithm,” International Journal of Computer and Electrical Engineering, vol. 2, no. 4, pp. 1793-8163, Aug 2010.