ORIGINAL ARTICLE

Investigating a Potential Causal Relationship Between Maternal Blood Pressure During Pregnancy and Future Offspring Cardiometabolic Health

Geng Wang,† Laxmi Bhatta,† Gunn-Helen Moen, Liang-Dar Hwang, John P. Kemp, Tom A. Bond, Bjørn Olav Åsvold, Ben Brumpton,† David M. Evans,† Nicole M. Warrington†

ABSTRACT: Observational epidemiological studies have reported that higher maternal blood pressure (BP) during pregnancy is associated with increased future risk of offspring cardiometabolic disease. However, it is unclear whether this association represents a causal relationship through intrauterine mechanisms. We used a Mendelian randomization (MR) framework to examine the relationship between unweighted maternal genetic scores for systolic BP and diastolic BP and a range of cardiometabolic risk factors in the offspring of up to 29,708 genotyped mother-offspring pairs from the UKB study (UK Biobank) and the HUNT study (Trøndelag Health). We conducted similar analyses in up to 21,423 father-offspring pairs from the same cohorts. We confirmed that the BP-associated genetic variants from the general population sample also had similar effects on maternal BP during pregnancy in independent cohorts. We did not detect any association between maternal (or paternal) unweighted genetic scores and cardiometabolic offspring outcomes in the meta-analysis of UKB and HUNT after adjusting for offspring genotypes at the same loci. We find little evidence to support the notion that maternal BP is a major causal risk factor for adverse offspring cardiometabolic outcomes in later life. (Hypertension. 2022;79:170–177. DOI: 10.1161/HYPERTENSIONAHA.121.17701.) • Supplemental Material

Key Words: adult children ■ blood pressure ■ cardiometabolic risk factors ■ cohort studies ■ genotype ■ pregnancy ■ Mendelian randomization analysis

Observational epidemiological studies using multivariable regression have shown that gestational hypertensive disorders are associated with increased risk of offspring cardiometabolic diseases in later life, including cardiovascular diseases and type 2 diabetes.7–9 These associations could be due to intrauterine effects (ie, developmental programming), in which case intervening to prevent gestational hypertensive disorders could also lower cardiometabolic risk in the offspring.6 However, although maternal blood pressure (BP) during pregnancy is associated with offspring cardiometabolic risk factors, in particular offspring BP7 sibling studies have indicated that the associations could be explained by confounding due to postnatal environmental factors or inherited genetic variants instead of intrauterine programming.9–10 Consequently, definitive evidence as to whether increased maternal BP during pregnancy has long-term impacts on offspring cardiometabolic health in human populations is lacking. Understanding this relationship will help determine whether intervening on maternal BP during pregnancy will combat the rising incidence of offspring cardiometabolic diseases in adulthood.

Correspondence to: Nicole M. Warrington, Translational Research Institute, The University of Queensland Diamantina Institute, Level 5, 37 Kent St, Woolloongabba, QLD 4102, Australia. Email n.warrington@uq.edu.au
†G. Wang and L. Bhatta contributed equally.
††B. Brumpton, D.M. Evans, and N.M. Warrington jointly supervised this work.
This paper was sent to Morris J. Brown, Guest Editor, for review by expert referees, editorial decision, and final disposition.
Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/HYPERTENSIONAHA.121.17701.
For Sources of Funding and Disclosures, see page 175.
© 2021 The Authors. Hypertension is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited. Hypertension is available at www.ahajournals.org/journal/hyp
Mendelian randomization (MR) is an epidemiological method used to estimate the causal relationship between a modifiable environmental exposure of interest and a medically relevant trait or disease. Mendel's Laws of Inheritance (ie, segregation, independent assortment) mean that genetic variants are often less susceptible to confounding and reverse causality than the variables used in traditional observational epidemiological studies. We have previously developed a MR framework to investigate the potential maternal exposures on offspring’s health and disease in later life (Figure S1A).

Most previous MR studies investigating the relationship between early life environmental exposures and later-life cardiometabolic traits and diseases have not distinguished between maternal and offspring genetic effects, which has complicated interpretation of the results of such investigations. This has partly been due to the paucity of cohorts world-wide with genotyped mother-offspring pairs and offspring of advanced age, hindering the estimation of maternal genetic effects on offspring who have developed cardiometabolic disease. In the current study, we addressed these issues by performing a genetic association study in up to 29,708 genotyped mother-offspring pairs and up to 21,423 father-offspring pairs from the UKB study (UK Biobank) and HUNT study (Trøndelag Health). Specifically, we regressed offspring cardiometabolic risk factors on maternal genetic risk scores (GRSs) for BP while simultaneously conditioning on offspring genotypes at the same loci, thereby accounting for the potential contaminating influences of genetic pleiotropy through the offspring genome. Associations between maternal GRSs and offspring outcomes would be consistent with a causal effect of maternal BP on the offspring outcomes.

METHODS

Data Availability

Human genotype and phenotype data from the UKB on which the results of this study were based were accessed with accession ID 12703 and 53641. The genotype and phenotype data are available upon application to the UKB (http://www.ukbiobank.ac.uk/). Phenotype and genotype data from the ALSPAC (Avon Longitudinal Study of Parents and Children) and HUNT studies are archived centrally with the corresponding cohort studies. Individual-level data can be made available to researchers upon application to the resources. Requirements for data access to the UKB, ALSPAC, and the HUNT studies are described at https://www.ukbiobank.ac.uk/, http://www.bristol.ac.uk/alspac/, and www.ntnu.edu/hunt/, respectively.

UKB Study

The UKB study is a study of over 500,000 volunteers (with 5.45% response rate of those invited), recruited from across the United Kingdom at age 40 to 69 years between 2006 and 2010, with a broad range of health-related information and genome-wide genetic data (further details are provided in the Supplemental Material). Only individuals of European ancestry were included in the present study (Supplemental Material). Parent-offspring relationships were inferred by the KING software using genotyping data (Supplemental Material).
After cleaning, there were 4119 mother-offspring pairs and 1829 father-offspring pairs available for analysis (not all offspring had phenotypic data available for each of the cardiometabolic risk factors of interest, so the numbers are smaller for each specific analysis; Table S1).

The HUNT Study

The HUNT is a large population-based study of ≈240,000 participants (with >50% response rate of those invited) with a broad range of health-related information and genome-wide genetic data. Similar to the UKB, parent-offspring pairs were identified using the KING software. Only individuals of European ancestry were included in the study (Supplemental Material). After cleaning, there were 26,057 mother-offspring pairs and 19,792 father-offspring pairs available for analysis (Table S1).

Offspring Cardiometabolic Risk Factors

The offspring cardiometabolic risk factors included in our analysis were systolic BP, diastolic BP, body mass index, lipid profile (ie, ApoA [Apolipoprotein A], ApoB [Apolipoprotein B], total cholesterol, LDL-C [low-density lipoprotein cholesterol], Lp(a) [lipoprotein A], HDL-C [high-density lipoprotein cholesterol], and triglycerides), glycemic biomarkers (ie, nonfasting glucose, glycated hemoglobin, and IGF-1 [insulin-like growth factor 1]), and other relevant cardiometabolic traits (ie, CRP [C-reactive protein] and urate). Further details of the collection and availability of UKB and HUNT variables are given in the Supplemental Material and Table S1.

Selection of BP-Associated single nucleotide polymorphisms (SNPs)

The BP-associated SNPs were identified from external genome-wide association studies performed by the International Blood Pressure Consortium. The genome-wide association studies of BP used for the selection of instruments did not include participants from the UKB or HUNT studies in the discovery stages, which avoids potential sample overlap with mothers/fathers that were included in the current analysis. Unweighted genetic scores were constructed by summing BP-raising alleles (Supplemental Material and Table S2).

We conducted 3 analyses to confirm that the BP-associated SNPs from the general population sample have similar effects on BP during pregnancy (further details are given in the Supplemental Material). We meta-analyzed the results of the primary analyses from the UKB and HUNT studies for each offspring variable using Stouffer Z score which weights each study’s contribution by the square root of the sample size; this facilitated meta-analysis of variables that were scaled differently in UKB versus HUNT.

RESULTS

SNPs Associated With BP in Pregnancy

We found strong evidence that our selected BP-associated SNPs from the general population sample have relatively consistent direction of effects on BP during pregnancy and gestational hypertensive disorders in independent cohorts (FinnGen and ALSPAC; Supplemental Material, Figure S2 and Tables S4 and S5).

Association Between Maternal Genetic Scores and Later-Life Offspring Traits in UKB and HUNT

The results from the analyses assessing the association between unweighted maternal genetic scores for systolic BP- or diastolic BP-associated SNPs and offspring cardiometabolic traits, after adjusting for offspring genetic scores, in the UKB and HUNT studies are presented in the Table, along with the meta-analysis P values. We did not detect any association between maternal unweighted genetic scores and cardiometabolic offspring outcomes in the meta-analysis (Table S6). The results of the main analyses in individual cohorts (UKB and HUNT) are presented in the Table, and the results of sensitivity analyses are given in Tables S7 through S14.

Power Calculations

Power calculations indicated that we had ≥80% power to detect a maternal genetic effect that explained as little as 0.035% of the variance in the offspring cardiometabolic trait with 29,708 mother-offspring pairs (2-tailed
α = 0.05). For the traits that were available in the UKB only, with 3756 mother-offspring pairs, we were underpowered (19%) to detect an effect size as low as 0.04%; however, we had >80% power to detect a large effect size of 0.28% of the variance in the offspring cardiometabolic outcome (Figures S3 and S4, Table S15, and Supplemental Material).

DISCUSSION

Our investigation is the largest genetic study to date to have explored the impact of maternal BP during pregnancy on long-term offspring cardiometabolic health. Our study leverages the considerable number of genotyped mother-offspring (and father-offspring) pairs in the UKB and HUNT studies to examine a possible causal relationship between these variables using MR. Importantly, all offspring from the UKB and the majority of offspring from the HUNT study are middle-aged and elderly adults who are old enough to manifest elevated levels of risk factors for cardiometabolic disease. Our results in general, however, did not support a strong association between genetically predicted maternal BP and offspring cardiometabolic risk factors. The implication is that modest increases in maternal BP during pregnancy are unlikely to drive large increases in offspring cardiometabolic risk.

Exposure	Offspring’s outcomes, units	UK Biobank	HUNT				
	β (SE)	P value	N pairs	β (SE)	P value	N pairs	P_{meta}
Maternal SBP genetic score*							
SBP, mmHg	0.0339 (0.0569)	0.5516	3756	0.0053 (0.0229)	0.8154	25 948	0.6786
DBP, mmHg	−0.0203 (0.0396)	0.6077	3756	0.0041 (0.0154)	0.7866	25 948	0.9472
BMI, kg/m²	0.0366 (0.0193)	0.0580	3704	0.0001 (0.0002)	0.646	25 952	0.2552
ApoA, g/L	0.0001 (0.0001)	0.9375	3254	NA	NA	NA	NA
ApoB, g/L	0.0028 (0.0009)	0.0029†	3568	NA	NA	NA	NA
TC, mmol/L	0.0112 (0.0038)	0.0033†	3582	−0.0003 (0.0003)	0.822	25 589	0.3993
LDL-C, mmol/L	0.0092 (0.0003)	0.0021†	3577	−0.0006 (0.0000)	0.6526	25 536	0.4978
Lp(a), nmol/L	−0.115 (0.2183)	0.5983	2875	NA	NA	NA	NA
HDL-C, mmol/L	−0.0001 (0.0013)	0.9662	3263	0 (0.0005)	0.954	25 560	0.9886
TG, mmol/L	0.0041 (0.0002)	0.0419†	3586	−0.0001 (0.0000)	0.9451	25 923	0.5537
Glucose, mmol/L	−0.0008 (0.0026)	0.7601	3222	0.0003 (0.0003)	0.2921	25 509	0.4009
HbA1c, mmol/mol	0.0259 (0.0151)	0.0867	3566	−0.0001 (0.0005)	0.9894	16 770	0.4792
IGF-1, μmol/L	0.0142 (0.0217)	0.5119	3535	NA	NA	NA	NA
CRP, μmol/L	0.0094 (0.0043)	0.0281†	3587	0.0016 (0.0008)	0.3724	22 088	0.1007
Urate, μmol/L	0.1965 (0.2396)	0.4121	3586	NA	NA	NA	NA
Maternal DBP genetic score							
DBP, mmHg	−0.0249 (0.0378)	0.5102	3756	−0.0102 (0.0148)	0.49	25 948	0.3798
SBP, mmHg	0.0087 (0.0545)	0.8727	3756	−0.0285 (0.0222)	0.1956	25 948	0.2486
BMI, kg/m²	0.0369 (0.0185)	0.0339†	3704	−0.0002 (0.0002)	0.3864	25 952	0.8528
ApoA, g/L	−0.0011 (0.0009)	0.2638	3254	NA	NA	NA	NA
ApoB, g/L	0.0019 (0.0008)	0.0200†	3568	NA	NA	NA	NA
TC, mmol/L	0.0068 (0.0036)	0.0614	3582	−0.0001 (0.0004)	0.9689	25 589	0.5560
LDL-C, mmol/L	0.006 (0.0029)	0.0347†	3577	−0.0003 (0.0003)	0.8466	25 536	0.6000
Lp(a), nmol/L	−0.1058 (0.2076)	0.6104	2875	NA	NA	NA	NA
HDL-C, mmol/L	−0.0011 (0.0013)	0.3958	3263	0.0001 (0.0004)	0.8802	25 560	0.9598
TG, mmol/L	0.0024 (0.0019)	0.2119	3586	0.0003 (0.0007)	0.7018	25 923	0.4026
Glucose, mmol/L	−0.0013 (0.0025)	0.6113	3222	0.0001 (0.0002)	0.7099	25 509	0.7635
HbA1c, mmol/mol	0.0227 (0.0144)	0.1011	3566	0.0007 (0.0082)	0.9311	16 770	0.4427
IGF-1, μmol/L	−0.0037 (0.0207)	0.8565	3535	NA	NA	NA	NA
CRP, μmol/L	0.0073 (0.0041)	0.0735	3587	0.0008 (0.00017)	0.6544	22 088	0.2796
Urate, μmol/L	0.0121 (0.2287)	0.9578	3586	NA	NA	NA	NA

β indicates beta coefficient; BMI, body mass index; CRP, C-reactive protein; DBP, diastolic blood pressure; HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein cholesterol; HUNT, Trøndelag Health; IGF-1, insulin-like growth factor 1; LDL-C, low-density lipoprotein cholesterol; Lp(a), lipoprotein A; N pairs, number of mother-offspring pairs; NA, not applicable; P_{meta}, P value of meta-analyses; SBP, systolic blood pressure; SE, standard error; TC, total cholesterol; and TG, triglycerides.

*Genetic scores were constructed by summing blood pressure-raising alleles.
†P < 0.05.
in later life. This implication is consistent with a previous study of siblings in HUNT.9 That study reported that offspring born to hypertensive pregnancies had similar cardiovascular risk factors in young adulthood as their siblings born after normotensive pregnancies, suggesting that the association observed in the unrelated sample was driven by shared genetic or environmental factors, instead of intrauterine effects.

We did not find any strong indications of effects of maternal BP on offspring outcomes, however, in the smaller and underpowered analysis of UKB alone, we did identify 2 nominal associations between maternal systolic BP risk score and ApoB. We were unable to meta-analyze/replicate this finding in the HUNT study as ApoB was not available for analysis. It is also likely given that the UKB analysis on its own is underpowered, that the finding may be due to type 1 error (false positives). Thus, the association needs to be replicated in a larger sample of mother-offspring pairs.

Asymptotic power calculations suggested that our study was well powered (≥80%) to detect an effect size as low as 0.035% of the variance explained in the offspring outcome by the unweighted maternal genetic score. However, given that an unweighted genetic score of BP variants explains about 0.8% in maternal BP, the above power calculation translates to a causal effect of maternal BP on offspring cardiometabolic risk which is quite large (ie, standardized $\beta =0.2$). This implies that whilst our study is well powered to rule out strong effects of maternal BP on offspring cardiometabolic risk factors, it has less power to investigate small to moderate effects. The corollary is that the nominal associations found in the UKB are likely to reflect false positives (type 1 error) brought about by multiple testing.

Differences in results between UKB and HUNT may reflect differences in sample size between the studies, and potentially, contrasting selection biases. For example, over 50% of the inhabitants in the Nord-Trøndelag County participated in the HUNT study,20 while the UKB study only had a participation rate of 5.45%, tending to enroll healthier people with higher socioeconomic status than the general population.24,55

Previous observational association studies in humans1–4 have focused on the relationship between gestational hypertension and preeclampsia (ie, gestational hypertension accompanied by maternal organ dysfunction during the second half of pregnancy). We did not specifically investigate gestational hypertension or preeclampsia in the current study due to the lack of genetic variants associated specifically with these diagnoses. A recent genome-wide association study of preeclampsia identified 2 regions of the genome that reached genome-wide significance, both of which have been previously associated with BP in nonpregnant women and men.56 Additionally, that study showed that a GRS for hypertension in a sample of nonpregnant women associated with preeclampsia,56 providing further evidence for the genetic overlap between the 2 diagnoses. It is, therefore, likely that the GRSSs used in our study not only increase maternal BP during pregnancy but also increase risk of preeclampsia.

Our analyses used genetic variants that were associated with BP as a quantitative trait in population-based samples of individuals. We, therefore, did not explicitly model the effect of gestational hypertensive disorders (or preterm births/adverse birth outcomes) in our analyses. However, as GRSSs which increase maternal BP are also likely to increase the risk of gestational hypertensive disorders, we expect that the presence of mothers with gestational hypertensive disorders in our data set may also contribute to any association between maternal (BP associated) GRS and future cardiometabolic risk in offspring. Nevertheless, it is difficult to assess the relative contribution of each of these sources of variation to our results without detailed clinical information across pregnancy, with the caveat that our study is likely to be better powered to detect the causal effect of quantitative changes in maternal BP during pregnancy particularly within the normal range (systolic BP<140 mmHg; diastolic BP<90 mmHg).57 That being said, we note that it is still possible that extreme exposures like gestational hypertension and preeclampsia may causally increase future offspring cardiometabolic risk, but it is difficult to examine these hypotheses via MR until the scientific community discovers genetic instruments that specifically instrument gestational hypertension/preeclampsia.

There are several limitations to the current study. First, our framework does not formally estimate the size of the causal effect of maternal BP on offspring cardiometabolic traits as is done in most MR analyses (ie, because the magnitude of SNP-BP associations may differ in pregnancy compared to in the general population), but it nevertheless uses MR principles to provide evidence for or against a causal relationship between these traits.14 Second, we have assumed that genetic variants identified in large genome-wide association studies of BP in males and nonpregnant females are also associated with BP (in a similar direction) in pregnant women. Our analyses performed in pregnant mothers in ALSPAC and FinnGen support the assumption that many BP-associated loci operating in the general population also exert similar effects during pregnancy. Third, we assume a linear relationship between and within maternal BP-associated loci and later-life cardiometabolic traits in their offspring, which may not optimally capture the true relationship between the two. Fourth, the blood tests for lipid and glucose traits were performed using nonfasting samples in both UKB and the HUNT studies which may have influenced the estimates for triglycerides and glucose; however, other biomarkers such as glycated hemoglobin, cholesterol, and lipoprotein levels do not change or only
differ minimally in fasting versus nonfasting tests.58 Fifth, our model did not completely control for possible plei-
otropic through the maternal genome. Although the cur-
rent model blocks pleiotropic paths through the offspring
genome (and addresses the possibility of postnatal pleio-
tropic effects by performing the same analyses in father-
offspring pairs), BP-associated SNPs in the mother
could still exert prenatal pleiotropic effects and maternal-
specific postnatal effects on offspring cardiometabolic
risk through effects other than raising BP. However, this
is perhaps less of a concern for the negative results in
our study, as any pleiotropic effect would have to have
an equal and opposite effect to obscure a true effect
of maternal BP on offspring cardiometabolic risk, which
is an unlikely scenario. Furthermore, our models do not
account for assortative mating, but it seems unlikely that
this would cause our observed negative results.59 Sixth,
we did not have enough power with the current sample
size to conduct analyses stratified by offspring sex, to
investigate sexual dimorphism in the maternal genetic
effects under study. Seventh, because the analyses were
conducted only in participants of European descent, the
results need to be replicated in other populations. Finally,
only a selection of cardiometabolic traits of interest was
available in the HUNT study. Therefore, we could not
replicate the association between genetically predicted
maternal BP and offspring outcomes, such as ApoB and
CRP. These associations will need to be replicated in
larger cohorts.

PERSPECTIVES
In conclusion, our results suggest that perturbations in
maternal BP during pregnancy are unlikely to cause large
increases in the risk of offspring cardiometabolic disease
in later life. Although previous conventional epidemiologi-
cal studies have found some evidence for associations
between maternal BP and offspring cardiometabolic risk
factors, our analyses, which provide a more rigorous
assessment of causality, suggest that offspring genetic
effects and confounding by environmental factors may
be the predominant explanation for such population-level
associations. MR studies that specifically examine the
long-term effects of extreme exposures like gestational
hypertension and preeclampsia on future offspring
-cardiometabolic risk are needed.

ARTICLE INFORMATION
Received May 11, 2021; accepted October 20, 2021.

Affiliations
The University of Queensland Diamantina Institute (G.W., G.-H.M., L.-D.H., JPK,
T.A.B., D.M.E., N.M.W.), The University of Queensland, Brisbane, Australia. K.G. Jebsen Center
for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Nor-
wegian University of Science and Technology, Trondheim, Norway (L.B., G.-H.M.,
B.O.A., B.B., N.M.W.), Institute of Clinical Medicine, Faculty of Medicine, University
of Oslo, Norway (G.-H.M.). Population Health Sciences, Bristol Medical School
(G.-H.M., T.A.B.) and Medical Research Council Integrative Epidemiology Unit
(JPK, T.A.B., D.M.E., N.M.W.), University of Bristol, United Kingdom. Department of
Endocrinology, Clinic of Medicine (B.O.A.) and Clinic of Medicine (B.B.), St Olavs Hospital, Trondheim University Hospital, Norway. HUNT Research Center,
Department of Public Health and Nursing, NTNU, Norwegian University of Sci-
techology, Levanger, Norway (B.O.A., B.B.).

Acknowledgments
We thank the research participants of the UK Biobank, HUNT (Trøndelag Health),
and FinnGen studies and are extremely grateful to all the families who took part
in the ALSPAC study (Avon Longitudinal Study of Parents and Children), the
midwives for their help in recruiting them, and the whole ALSPAC team, which
includes interviewers, computer and laboratory technicians, clerical workers, re-
search scientists, volunteers, managers, receptionists, and nurses. This research
has been conducted using the UK Biobank (Reference 12703 and 53641),
ALSPAC (Reference B3544) and HUNT resources. The HUNT study is a col-
laboration between HUNT Research Center (Faculty of Medicine and Health
Sciences, Norwegian University of Science and Technology NTNU), Trøndelag
County Council, Central Norway Regional Health Authority, and the Norwegian
Institute of Public Health.

Sources of Funding
G. Wang is supported by The University of Queensland Graduate School Scholar-
ship (UQOGSS). D.M. Evans is funded by an Australian National Health and Medi-
cal Research Council Senior Research Fellowship (APP1137714), and this
work was funded by NHMRC project grants (GNT1157714 and GNT11763074). N.M.
Warrington is affiliated with a unit that is supported by the UK Medical Research
Council (MC_UU_00011/63 and MC_UU_00011/60). J.P. Kemp is funded by a
National Health and Medical Research Council (Australia) Investigator grant
(GNT1179388). G.-H. Moen is supported by the Norwegian Research Council
(Post doctoral mobility research grant 287198), the Norwegian Diabetes Asso-
ciation, Oslo Diabetes Research Centre, and Nils Normans minnegave. T.A. Bond
works in/vs affiliated with a unit that is supported by the UK Medical Research
Council (MC_UU_00011/60) and is supported by the British Heart Foundation
Accelerator Award at the University of Bristol (R100643-101). L. Bhatta, B.O.
Åsvold, and B. Brumpton receive support from the K.G. Jebsen Center for Genetic
Epidemiology funded by Stiftelsen Kristian Gerhard Jebsen; Faculty of Medicine
and Health Sciences, NTNU; The Liaison Committee for education, research and
innovation in Central Norway; and the Joint Research Committee between St
Olavs Hospital and the Faculty of Medicine and Health Sciences, NTNU. The
genotyping in HUNT was financed by the National Institute of Health (NIH); Uni-
versity of Michigan; The Research Council of Norway; The Liaison Committee
for education, research and innovation in Central Norway; and the Joint Research
Committee between St Olavs Hospital and the Faculty of Medicine and Health
Sciences, NTNU. The UK Medical Research Council and Wellcome (Grant ref:
217065/Z/19/Z) and the University of Bristol provide core support for ALSPAC
(Avon Longitudinal Study of Parents and Children). A comprehensive list of grants
funding is available on the ALSPAC website (http://www.bristol.ac.uk/alspac/e-
ternal/documents/grant-acknowledgements.pdf); this research was specifically
funded by Lifelong Health and Wellbeing (LLHW) via the MRC (G1001357),
Wellcome Trust (WT092830/Z/10/Z, and WT088806), and the British Heart
Foundation (SP/07/008/24066). Genome-wide association studies (GWAS)
data were generated by Sample Logistics and Genotyping Facilities at Wellcome
Foundation (SP/07/008/24066). Genome-wide association studies (GWAS)

REFERENCES
1. Davis EF, Lazdam M, Lewandowski AJ, Worton SA, Kelly B, Kenworthy Y, Adwani S, Wilkinson AR, McCormick K, Sargent I, et al. Cardio-
vascular risk factors in children and young adults born to preeclamptic preg-
nancies: a systematic review. Pediatrics. 2012;129:1552–1561. doi: 10.1542/peds.2011-3093
2. Kajantie E, Eriksson JG, Osmond C, Thornburg K, Barker DJP. Pre-
eeclampsia is associated with increased risk of stroke in the adult off-
spring: the Helsinki birth cohort study. Stroke. 2009;40:1176–1180. doi: 10.1161/STROKEAHA.108.538025
Jansen MA, Fruygen LP, Dalmeijer GW, Groenhouck TJ, Uiterwaal CS, Smit HA, van Rossum L. Hypertensive disorders of pregnancy and cardiovascular outcomes in childhood: a systematic review. Eur J Prev Cardiol 2019;26:1718–1747. doi: 10.1177/2047431319852716

Goff SM, Derrajk JGB, Groom KM, Cutfield WS. Maternal pre-eclampsia and long-term offspring health: Is there a shadow cast? Pregnancy Hypertens. 2018;12:11–15. doi: 10.1016/j.preghy.2018.02.003

Kajantie E, Osman C, Eriksson JG. Gestational hypertension is associated with increased risk of type 2 diabetes in adult offspring: the Helsinki Birth Cohort Study. Am J Obstet Gynecol. 2017;216:281.e1–281.e7. doi: 10.1016/j.ajo.2016.10.041

Herrera-Garcia G, Contag S. Maternal preeclampsia and risk for cardiovascular disease in offspring. Curr Hypertens Rep. 2014;16:475. doi: 10.1007/s11906-014-0475-3

Andraweera PH, Lass S. Cardiovascular risk factors in offspring of pre-eclamptic pregnancies: systematic review and meta-analysis. J Pediatr. 2019;208:104–113.e6. doi: 10.1016/j.jpeds.2018.12.008

Warington NM, Beaumont RN, Horikoshi M, Day FR, Helgeland Ø, Laurin C, Bacelis J, Peng S, Hao K, Feenstra B, et al; EGG Consortium. Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat Genet 2019;51:804–814. doi: 10.1038/s41588-019-0403-1

Aines IV, Vatten LJ, Fraser A, Bjørgaard JH, Rich-Edwards J, Romundstad PR, Åsvold BO. Hypertension in pregnancy and offspring cardiovascular risk in young adulthood: prospective and sibling studies in the HUNT Study (Nord-Trøndelag Health Study) in Norway. Hypertension. 2017;69:591–598. doi: 10.1161/HYPERTENSIONAHA.116.08414

Kurbasic E, Frisell M, Holm M, Frisch-Petersen N, Rich-Edwards JW, Timpka S. Maternal hypertensive disorders of pregnancy and offspring risk of hypertension: A Population-Based Cohort and Sibling Study. Am J Hypertens. 2019;32:331–334. doi: 10.1093/ajh/hpy176

Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 2006;27:1133–1162. doi: 10.1002/sim.3034

Smith GD, Ebrahim S. ‘Mendelian randomisation’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 2003;32:21–22. doi: 10.1093/ije/dyg070

Smith GD, Lawlor DA, Harbord R, Timpson N, Day I, Ebrahim S. Clustered environments and randomized genes: a fundamental distinction between conventional and genetic epidemiology. PLoS Med 2007;4:e532. doi: 10.1371/journal.pmed.0040532

Evans DM, Moen GH, Hwang LD, Lawlor DA, Warington NM. Elucidating the role of maternal environmental exposures on offspring health and disease using two-sample Mendelian randomization. Int J Epidemiol 2019;48:861–875. doi: 10.1093/ije/dyz209

Birth-Geno Study Working Group; Huang T, Wang T, Zheng Y, Eerikinen C, Li X, Gao M, Fang Z, Chai JF, Alhualawa TVS, Wang Y, et al. Association of birth weight with type 2 diabetes and glycemic traits: A Mendelian Randomization Study. JAMA Netw Open. 2019;2:e190103. doi: 10.1001/jamanetworkopen.2019.10915

Zanetti D, Tikkkanen E, Gustafsson S, Priest JR, Burgess S, Ingelsson E. Birth weight, type 2 diabetes mellitus, and cardiovascular disease: addressing the Barker hypothesis with mendelian randomization. Circ Genom Precis Med 2018;1:e002054. doi: 10.1161/CIRCGEN.117.002054

Wang T, Huang T, Li Y, Zheng Y, Manzon JE, Hu FB. Low birthweight and risk of type 2 diabetes: a Mendelian randomisation study. Diabetologia 2016;59:1920–1927. doi: 10.1007/s00125-016-4019-z

D’Urso S, Wang G, Hwang LD, Moen GH, Warington NM, Evans DM. A cautionary note on using Mendelian randomization to examine the Barker hypothesis and Developmental Origins of Health and Disease (DOHaD). J Dev Origin Health Dis. 2020;12:688–693. doi: 10.1016/j.jodhd.2020.01.015

Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, et al; UK biobank: an open access resource for conventional and genetic epidemiology. PLoS Med 2013;10:e1001442. doi: 10.1371/journal.pmed.1001442

Boekholdt SM, Arsenault BJ, Mora S, Pedersen TR, LaRosa JC, Nestel PJ, Sartori R, Durrington P, Hitman GA, Weich KM, et al. Association of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: a meta-analysis. JAMA 2012;307:1302–1309. doi: 10.1001/jama.2012.366

Locke AE, Steinberg KM, Chiang CWK, Service SK, Havulinna AS, Stell L, Prinien M, Abel HI, Chiang CC, Fulton RS, et al; FinnGen Project. Exome sequencing of Finnish isolates enhances rare-variant association power. Nature 2011;478:103–109. doi: 10.1038/nature10405

Tobin MD, Sheehan NA, Scurrah KJ, Burton PR. Adjusting for treatment and disease biology. Nat Rev Genet 2003;3:1–22. doi: 10.1038/nrg825

Chasman DI, Smith AV, Tobin MD, Verwoert GC, Hwang S-J, et al. Genetic association studies. Annu Rev Genomics Hum Genet. 2013;14:281–306. doi: 10.1146/annurev-genom-091012-142328

Boekholdt SM, Arsenault BJ, Mora S, Pedersen TR, LaRosa JC, Nestel PJ, Sartori R, Durrington P, Hitman GA, Weich KM, et al. Association of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: a meta-analysis. JAMA 2012;307:1302–1309. doi: 10.1001/jama.2012.366

Locke AE, Steinberg KM, Chiang CWK, Service SK, Havulinna AS, Stell L, Prinien M, Abel HI, Chiang CC, Fulton RS, et al; FinnGen Project. Exome sequencing of Finnish isolates enhances rare-variant association power. Nature 2011;478:103–109. doi: 10.1038/nature10405

Tobin MD, Sheehan NA, Scurrah KJ, Burton PR. Adjusting for treatment and disease biology. Nat Rev Genet 2003;3:1–22. doi: 10.1038/nrg825
