A generalized solution of a modified Cauchy problem of class R_2 for a hyperbolic equation of the second kind

A Abdullayev¹, K Zhukanov¹ and K Ruzmetov²

¹Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, 39 Kary-Niyazova St., Tashkent, 100000, Republic of Uzbekistan
²Tashkent State Agrarian University, 2a Universitetskaya St., 100140, Tashkent region, Republic of Uzbekistan

E-mail: t.fozil86@mail.ru

Abstract. One of the main problems in the theory of partial differential equations is the study of equations of mixed type. The modified Cauchy problem for some values of α is stated and investigated. The modified Cauchy problem for some values of α is stated and investigated. A convenient representation of the generalized solution of the modified Cauchy problem is obtained.

1. Introduction

One of the main problems of the theory of partial differential equations is the study of equations of mixed type, which is of both theoretical and practical interest. The first fundamental research in this area was carried out by F. Tricomi [1] in the early twenties of the last century.

The mixed-type equations began to be studied systematically, after F.I. Frankl [2] pointed out their applications to the problems of transonic and supersonic gas dynamics. In this regard, the purpose of this work was to find out whether it is possible to find a more convenient form of representation of the solution of the Cauchy problem for a differential equation, with the help of which it would be possible to solve boundary value problems for a mixed type equation of both parabolic-hyperbolic and elliptic-hyperbolic types. The modified Cauchy problem for some values of α is stated and investigated. A convenient representation of the generalized solution of the modified Cauchy problem is obtained.

The modified Cauchy problem for some values of α is stated and investigated.

The mixed-type equations began to be studied systematically, after F.I. Frankl [2] pointed out their applications to the problems of transonic and supersonic gas dynamics. In this regard, the purpose of this work was to find out whether it is possible to find a more convenient form of representation of the solution of the Cauchy problem for a differential equation, with the help of which it would be possible to solve boundary value problems for a mixed type equation of both parabolic-hyperbolic and elliptic-hyperbolic types.

The modified Cauchy problem for some values of α is stated and investigated. A convenient representation of the generalized solution of the modified Cauchy problem is obtained.

The modified Cauchy problem for some values of α is stated and investigated.

The modified Cauchy problem for some values of α is stated and investigated.
2. Statement of the modified Cauchy problem and illustration of obtaining its solution

We study the equation

\[
0 = \begin{cases}
\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial y} + a(x,y)u, & y \geq 0, \\
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial u}{\partial y}, & y < 0,
\end{cases}
\]

where \(a(x,y) \) - given function, and

\[a(x,y) < 0, \quad \forall (x,y) \in D_1, \quad a(x,y) \in C^{(0,h)}(D_1), \quad 0 < h < 1. \]

in the region \(D=D_1 \cup D_2 \cup AB \), and the region \(D_1 \) is bounded for \(y>0 \) by the segments \(AB, BB_0, A_0B_0, AA_0 \) of straight lines \(y=0, x=1, y=1, x=0 \), respectively, and the region \(D_2 \) is bounded for \(y<0 \) characteristics of equation (2):

\[AC: x - 2\sqrt{-y} = 0, \quad BC: x + 2\sqrt{-y} = 1; \quad AB: y=0, \quad 0 \leq x \leq 1. \]

Consider the equation

\[
0 = \begin{cases}
\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial y} + a(x,y)u, & y \geq 0, \\
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial u}{\partial y}, & y < 0,
\end{cases}
\]

in the region \(D_2 \), i.e.

\[L_\alpha u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \alpha \frac{\partial u}{\partial y} = 0, \quad y < 0. \]

Continuous solution of the modified Cauchy problem for the equation \(L_\alpha u = 0 \) in the domain \(D_2 \) for values \(\alpha \in (-3;2.5) \) with initial data

\[u(x,0) = \tau(x) \]

\[\lim_{y \to -0} (y)^{-\alpha} [u - A_\alpha(\tau)] = \nu(x) \]

in characteristic variables \((\xi, \eta) \) has the form [28], [29]

\[u(\xi, \eta) = \gamma_1 (\eta - \xi)^{-\beta-\gamma} \left\{ \int_\xi^\eta (t)(\eta - t)^{\beta+1} (t - \xi)^{-\gamma} \, dt + \frac{2}{(\beta + 3)(2\beta + 1)} \int_\xi^\eta \int_\xi^t (t)(\eta - t)^{\beta+3} (t - \xi)^{-\gamma} \, dt \, dt
+ \frac{3}{4(\beta + 3)(\beta + 4)(2\beta + 1)(2\beta + 3)} \int_\xi^\eta \int_\xi^t \int_\xi^t (t)(\eta - t)^{\beta+4} (t - \xi)^{-\gamma} \, dt \, dt \, dt
+ \frac{1}{8(\beta + 3)(\beta + 4)(2\beta + 1)(2\beta + 3)(2\beta + 5)} \int_\xi^\eta \int_\xi^t \int_\xi^t \int_\xi^t (t)(\eta - t)^{\beta+5} (t - \xi)^{-\gamma} \, dt \, dt \, dt \, dt \right\} + \right. \]

(4)
Continuous solution of the modified Cauchy problem for the equation \(L_2 u = 0 \) in the domain \(D \) for values \(\alpha \in (-3,5;3) \) with initial data
\[
\lim_{y \to -0} \left[u(x,0) - A_4 \tau(x) \right] = v(x)
\]
in characteristic variables \((\xi, \eta)\) has the form \([28],[29]\)
\[
u(\xi,\eta) = \gamma_1 (\eta - \xi)^{-2\beta} \int_{\xi}^{\eta} \tau(t)(\eta - t)^{\beta+3}(t - \xi)^{\beta+3} dt + \\
+ \frac{2}{(\beta + 4)(2\beta + 1)} \int_{\xi}^{\eta} \tau(2)(t)(\eta - t)^{\beta+4}(t - \xi)^{\beta+4} dt + \\
+ \frac{3}{2(\beta + 4)(\beta + 5)(2\beta + 1)(2\beta + 3)} \int_{\xi}^{\eta} \tau(4)(t)(\eta - t)^{\beta+5}(t - \xi)^{\beta+5} dt + \\
+ \frac{1}{16(\beta + 4)(\beta + 5)(\beta + 6)(\beta + 2)(2\beta + 1)(2\beta + 3)(2\beta + 5)} \int_{\xi}^{\eta} \tau(6)(t)(\eta - t)^{\beta+6}(t - \xi)^{\beta+6} dt + \\
+ 1 \int_{\xi}^{\eta} \tau(8)(t)(\eta - t)^{-\beta}(t - \xi)^{-\beta} dt \equiv \gamma_2 \int_{\xi}^{\eta} \nu(t)(\eta - t)^{-\beta}(t - \xi)^{-\beta} dt = \\
= A_4 \tau(x) - 2^{2(\beta - 1)} \gamma_2 \int_{\xi}^{\eta} \nu(t)(\eta - t)^{-\beta}(t - \xi)^{-\beta} dt,
\]
\[
\tau(x) \in C^{(10)}[0,1]; \quad v(x) \in C^{(2)}[0,1], \quad \xi = x - 2\sqrt{-y}, \quad \eta = x + 2\sqrt{-y};
\]
\[
\gamma_1 = \frac{\Gamma(2\beta + 8)}{\Gamma(\beta + 4)}, \quad \gamma_2 = \left(1 - \frac{1}{2}\right)^{-1} \frac{\Gamma(2\beta - 2\beta)}{\Gamma(1 - \beta)}, \quad \beta = \alpha - \frac{1}{2}.
\]

Definition. The function \(u(\xi, \eta) \) defined by formula \((4) \) or \((5) \) is called a generalized solution of the equation \(L_2 u = 0 \) of class\([33]\) \(R \) in the domain \(D \) if the function \(\tau(x) \) can be represented in the form
\[
\tau(x) = \int_{0}^{x} (x - t)^{-2\beta} T(t) dt,
\]
where \(u(x) \) and \(T(t) \) are some continuous integrable functions on \((0; 1)\), also \(6 < -2\beta < 7 \) and \(7 < -2\beta < 8 \), respectively.

The generalized solution to the \(u \in R_2 \) is continuous in \(D_2 \), and the derivatives \(u_x \) and \(u_y \) are continuous in \(D_2 \), and the function \(u - A(\tau) \), \(i=3,4 \), is continuous up to the line of type change.

Based on (6), we find

\[
\begin{align*}
\tau^{(2)}(x) &= 2\beta(2\beta+1) \int_0^1 (x-t)^{-2\beta-2} T(t) dt, \\
\tau^{(4)}(x) &= 2\beta(2\beta+1)(2\beta+2)(2\beta+3) \int_0^1 (x-t)^{-2\beta-4} T(t) dt, \\
\tau^{(6)}(x) &= 2\beta(2\beta+1)(2\beta+2)(2\beta+3)(2\beta+4)(2\beta+5) \int_0^1 (x-t)^{-2\beta-6} T(t) dt, \\
\tau^{(8)}(x) &= 2\beta(2\beta+1)(2\beta+2)(2\beta+3)(2\beta+4)(2\beta+5)(2\beta+6)(2\beta+7) \int_0^1 (x-t)^{-2\beta-8} T(t) dt.
\end{align*}
\]

The proof of the representation of the generalized solution of the class \(R_2 \) for \(\alpha \in (-3, -2.5) \) is similarly investigated as a change in the parameter \(\alpha \in (-2.5, -2) \) [29].

3. Generalized solution results

Here we give a representation of the generalized solution [32-34] of class \(R_2 \) for \(\alpha \in (-3, -2.5, -3) \). Substituting the above equalities and (6) into (5), we have

\[
\begin{align*}
u(x, t) &= \int_0^t T(t) \left[(\eta-t)^{\beta+3}(t-\xi)^{\beta+3}(t-\zeta)^{-2\beta} + \frac{4\beta}{\beta+4} (\eta-t)^{\beta+4}(t-\xi)^{\beta+4}(t-\zeta)^{-2\beta-2} + \frac{6\beta(\beta+1)}{(\beta+4)(\beta+5)} (\eta-t)^{\beta+5}(t-\xi)^{\beta+5}(t-\zeta)^{-2\beta-4} + \frac{4\beta(\beta+1)(\beta+2)}{(\beta+4)(\beta+5)(\beta+6)} (\eta-t)^{\beta+6}(t-\xi)^{\beta+6}(t-\zeta)^{-2\beta-6} + \frac{\beta(\beta+1)(\beta+2)(\beta+3)}{(\beta+4)(\beta+5)(\beta+6)(\beta+7)} (\eta-t)^{\beta+7}(t-\xi)^{\beta+7}(t-\zeta)^{-2\beta-8} \right] d\zeta dt - 2^{2(2\beta-1)} \gamma_1 \int_0^\eta \nu(t)(\eta-t)^{-\beta}(t-\xi)^{-\beta} dt \equiv \gamma_1(\eta-\xi)^{-2\beta-7} J_1 - J_2.
\end{align*}
\]

In the expression for \(J_1 \), we divide the interval of integration over \(\zeta \) into two, \((0, \xi)\) and \((\xi, t)\). Then, changing the order of integration, we get

\[
J_1 = \int_0^\xi I_1(\xi, \eta; \xi) T(\xi) d\xi + \int_\xi^\eta I_2(\xi, \eta; \xi) T(\xi) d\xi, \quad (7)
\]

where
To calculate these expressions, we use the integral representation of hypergeometric functions [31]:

\[
\int_\zeta^\eta (\eta - t)^{\alpha_1} (\eta - \zeta)^{\beta_1} dt = \frac{\Gamma(k+1)\Gamma(l+1)}{\Gamma(k+l+2)} (\eta - \zeta)^{k+l+1}(\eta - \zeta)^m \cdot (k+1,-m,k+l+2;\frac{\eta - \zeta}{\eta - \zeta})
\]

We have

\[
I_1 = \frac{\Gamma^2(\beta + 4)}{\Gamma(2\beta + 8)} (\eta - \zeta)^{2\beta} F(\beta + 4,2\beta,2\beta + 8;z) + \frac{2\beta}{2\beta + 9} z^2 F(\beta + 5,2\beta + 2,2\beta + 10;z) + \frac{3(\beta + 1)}{2(2\beta + 9)(2\beta + 11)} z^4 F(\beta + 6,2\beta + 12;z) + \frac{\beta(\beta + 1)(\beta + 2)}{2(2\beta + 9)(2\beta + 11)(2\beta + 13)} z^6 F(\beta + 7,2\beta + 14;z) + \frac{\beta(\beta + 1)(\beta + 2)(\beta + 3)}{16(2\beta + 9)(2\beta + 11)(2\beta + 13)(2\beta + 15)} z^8 F(\beta + 8,2\beta + 16;z),
\]

\[
z = \frac{\eta - \zeta}{\eta - \zeta};
\]

\[
I_2 = \frac{\beta(\beta + 1)(\beta + 2)(\beta + 3)\Gamma(\beta + 4)\Gamma(-2\beta - 7)}{\Gamma(1 - \beta)} (\eta - \zeta)^{\beta} (\eta - \zeta)^{\beta} \times F(\beta + 8,-7,1 - \beta;z_i) + \frac{8(2\beta + 7)}{1 - \beta} z_i F(\beta + 7,-6,2 - \beta;z_i) + \frac{2(2\beta + 7)(2\beta + 5)}{1 - \beta}(\beta + 4,2\beta + 11) z_i^2 F(\beta + 6,\beta - 5,3 - \beta;z_i) + \frac{3(2\beta + 7)(2\beta + 5)(2\beta + 3)}{(1 - \beta)(2 - \beta)(3 - \beta)} z_i^3 F(\beta + 5,\beta - 4,4 - \beta;z_i) + \frac{16(2\beta + 7)(2\beta + 5)(2\beta + 3)(2\beta + 1)}{(1 - \beta)(2 - \beta)(3 - \beta)(4 - \beta)} z_i^4 F(\beta + 4,\beta - 3,5 - \beta;z_i),
\]

\[
z_1 = \frac{\eta - \zeta}{\eta - \zeta}.
\]

Lemma. The identities are valid:

\[
F(\beta + 4,2\beta,2\beta + 8;z) + \frac{2\beta}{2\beta + 9} z^2 F(\beta + 5,2\beta + 2,2\beta + 10;z) + \frac{3(\beta + 1)}{2(2\beta + 9)(2\beta + 11)} z^4 F(\beta + 7,2\beta + 14;z) + \frac{\beta(\beta + 1)(\beta + 2)}{2(2\beta + 9)(2\beta + 11)(2\beta + 13)} z^6 F(\beta + 8,2\beta + 16;z) = (1 - z)^p,
\]

\[
\frac{\beta(\beta + 1)(\beta + 2)(\beta + 3)}{16(2\beta + 9)(2\beta + 11)(2\beta + 13)(2\beta + 15)} z^8 F(\beta + 8,2\beta + 16;z) = (1 - z)^p.
\]
\begin{align*}
F(\beta + 8, -\beta - 7, 1 - \beta; z_i) + \frac{8(2\beta + 7)}{1 - \beta} \zeta F(\beta + 7, -\beta - 6, 2 - \beta; z_i) + \\
+ \frac{24(2\beta + 7)(2\beta + 5)}{(1 - \beta)(2 - \beta)} z^2 F(\beta + 6, -\beta - 5, 3 - \beta; z_i) + \\
+ \frac{32(2\beta + 7)(2\beta + 5)(2\beta + 3)}{(1 - \beta)(2 - \beta)(3 - \beta)} z^3 F(\beta + 5, -\beta - 4, 4 - \beta; z_i) + \\
+ \frac{16(2\beta + 7)(2\beta + 5)(2\beta + 3)(2\beta + 1)}{(1 - \beta)(2 - \beta)(3 - \beta)(4 - \beta)} z^4 F(\beta + 4, -\beta - 3, 5 - \beta; z_i) = (1 - z_i)^{\beta} \\
\end{align*}

Evidence:

Proof. We use the expression for the hypergeometric function in the form of a series

\[F(a,b,c; z) = \sum_{i=0}^{\infty} \frac{(a)_i (b)_i}{(c)_i i!} z^i \]

where \((a)_i = a(a+1)(a+2)...(a+i-1)\), \((a)_0 = 1\).

\[(1 - z)^{\beta} = 1 + \beta z + \frac{\beta(\beta + 1)}{2!} z^2 + \frac{\beta(\beta + 1)(\beta + 2)}{3!} z^3 + ... + \frac{\beta(\beta + 1)\ldots(\beta + n - 1)}{n!} z^n + ... \]

Let us turn to the proof of identity (8). For this, we expand the hypergeometric functions on the left-hand side and the polynomial on the right-hand side of identity (8) in a series:

\[
\sum_{i=0}^{\infty} \frac{(\beta + 4)_i (\beta + 1)_i}{(2\beta + 8)_i i!} z^i + \frac{2\beta}{2\beta + 9} \sum_{i=0}^{\infty} \frac{(\beta + 5)_i (2\beta + 2)_i}{(2\beta + 10)_i i!} z^i + \frac{3\beta(\beta + 1)}{2(2\beta + 9)(2\beta + 11)} z^4 .
\]

\[
\sum_{i=0}^{\infty} \frac{(\beta + 6)_i (2\beta + 4)_i}{(2\beta + 12)_i i!} z^i + \frac{\beta(\beta + 1)(\beta + 2)}{2(2\beta + 9)(2\beta + 11)(2\beta + 13)} z^6 \sum_{i=0}^{\infty} \frac{(\beta + 7)_i (2\beta + 6)_i}{(2\beta + 14)_i i!} z^i + \\
\frac{\beta(\beta + 1)(\beta + 2)(\beta + 3)}{2(2\beta + 9)(2\beta + 11)(2\beta + 13)(2\beta + 15)} z^8 \sum_{i=0}^{\infty} \frac{(\beta + 8)_i (2\beta + 8)_i}{(2\beta + 16)_i i!} z^i = \\
= 1 + \beta z + \frac{\beta(\beta + 1)}{2!} z^2 + \frac{\beta(\beta + 1)(\beta + 2)}{3!} z^3 + ... + \frac{\beta(\beta + 1)\ldots(\beta + n - 1)}{n!} z^n + ... \\
\]

Further, substituting the expressions for the hypergeometric functions using a series into the last equation and calculating the coefficients at the same powers of \(z\), we have:

\[
z^0 : \frac{(\beta + 4)_0 (2\beta)_0}{(2\beta + 8)_0 0!} = 1, \quad z^1 : \frac{(\beta + 4)_1 (2\beta)_1}{(2\beta + 8)_1 1!} = \beta \\
z^2 : \frac{(\beta + 4)_2 (2\beta)_2}{(2\beta + 8)_2 2!} + \frac{2\beta}{2\beta + 9} = \frac{(\beta + 4)(\beta + 5)(2\beta)(2\beta + 1)}{(2\beta + 8)(2\beta + 9)2!} + \frac{2\beta}{2\beta + 9} = \frac{\beta(\beta + 1)}{2!} \\
z^3 : \frac{(\beta + 4)_3 (2\beta)_3}{(2\beta + 8)_3 3!} + \frac{2\beta}{2\beta + 9} = \frac{(\beta + 4)(\beta + 5)(\beta + 6)(2\beta)(2\beta + 1)(2\beta + 2)}{(2\beta + 8)(2\beta + 9)(2\beta + 10)3!} + \\
+ \frac{2\beta(\beta + 5)(2\beta + 2)}{(2\beta + 9)(2\beta + 10)} = \frac{\beta(\beta + 1)(\beta + 2)}{3!} \\
\]

Similarly, continuing the calculation of the coefficient at \(z^n\), we obtain the following:
\[z^n = \frac{(\beta + 4)n(2\beta_n)}{(2\beta + 8)_n \cdot n!} + \frac{2\beta}{2\beta + 9} \frac{(\beta + 5)_n \cdot (2\beta + 2)_n \cdot n!}{(2\beta + 10)_{n-2} \cdot (n-2)!} + \frac{3\beta(\beta + 1)}{2(2\beta + 9)(2\beta + 11)} \frac{(\beta + 6)_n \cdot (2\beta + 4)_n \cdot n!}{(2\beta + 12)_{n-4} \cdot (n-4)!} + \frac{\beta(\beta + 1)(\beta + 2)}{2(2\beta + 9)(2\beta + 11)} \frac{(\beta + 7)_n \cdot (2\beta + 6)_n \cdot n!}{(2\beta + 13)(2\beta + 15)} \frac{(\beta + 2)(\beta + 3)}{2(2\beta + 9)}(2\beta + 11)(2\beta + 13)_{n-6} \cdot (n-6)! + \frac{\beta(\beta + 1)(\beta + 2)(\beta + 3)(\beta + 8)_{n-8} \cdot (2\beta + 8)_n \cdot n!}{(2\beta + 16)_{n-8} \cdot (n-8)!} .
\]

Using the expansion \(a_r \) and grouping the corresponding terms in the last equality, we obtain the following common factor:
\[\frac{\beta(\beta + 1)(\beta + 2)(\beta + 3)(\beta + 8)_{n-8} \cdot (2\beta + 8)_n \cdot n!}{(2\beta + 9)(2\beta + 11)(2\beta + 13)(2\beta + 15)(2\beta + 16)_{n-8} \cdot (n-8)!} .
\]

and taking this into account, from the last expression we have the following coefficient for \(z^n \):
\[\frac{\beta(\beta + 1)(\beta + 2)(\beta + 3)(\beta + 8)_{n-8} \cdot (2\beta + 8)_n \cdot n!}{(2\beta + 9)(2\beta + 11)(2\beta + 13)(2\beta + 15)(2\beta + 16)_{n-8} \cdot (n-8)!} \cdot \frac{16(\beta + n)(\beta + n + 1)\beta + n + 2) \cdot (\beta + n + 3)(\beta + 1)(\beta + 2)(\beta + 3)(\beta + 2)(\beta + 5) + 12(\beta + n)(\beta + n + 1)(\beta + n + 2)\beta + 3(\beta + 5) \cdot (\beta + 2)(n(n - 1) + 24(\beta + n)(\beta + n + 1)(\beta + 5)(\beta + 7) \cdot n(n - 1)(n - 2)(n - 3)(n - 4)(n - 5) + n(n - 1)(n - 2)(n - 3)(n - 4)(n - 5)(n - 6)(n - 7) .
\]

Now, opening all the inner brackets and performing calculations, we get:
\[\frac{\beta(\beta + 1)(\beta + 2)(\beta + 3)(\beta + 8)_{n-8} \cdot (2\beta + 8)_n \cdot n!}{(2\beta + 9)(2\beta + 11)(2\beta + 13)(2\beta + 15)(2\beta + 16)_{n-8} \cdot (n-8)!} \cdot \frac{500 n + 13068 n^2 + 13132 n^3 + 88}{500 n + 13068 n^2 + 13132 n^3 + 88} .
\]

It is easy to make sure that the coefficients for \(z^n \) in the left and right sides have the appropriate form:
\[500 n + 13068 n^2 + 13132 n^3 + 6769 n^4 + 1960 n^5 + 322 n^6 + 28 n^7 + n^8 + 10080 \beta + 52272 n\beta + 78792 n^2\beta + 54152 n^3\beta + 19600 n^4\beta + 392 n^5\beta + 16 n^6\beta + 52272 n^2\beta + 157584 n^3\beta + 162456 n^4\beta + +112 n^5\beta + 105056 \beta^2 + 216608 n\beta^3 + +156800 n^2\beta^3 + 78400 n^3\beta^3 + 448 n^4\beta^3 + 108304 n^5\beta^3 + 156800 n^6\beta^3 + +77280 n^7\beta^3 + 15680 n^8\beta^3 + 1120 n^9\beta^3 + 62720 n^10\beta^3 + 61824 n^11\beta^3 + 18816 n^{12}\beta^3 + +192 n^{13}\beta^3 + 12544 n^14\beta^3 + 256 \beta^8} .
\]

\[= (n + 2\beta)(n + 2\beta + 1)(n + 2\beta + 2)(n + 2\beta + 3)(n + 2\beta + 4) \cdot (n + 2\beta + 5)(n + 2\beta + 6)(n + 2\beta + 7) .
\]
Therefore,
\[
\frac{(\beta + 8)_{n}}{n!} \beta + 1(\beta + 2)(\beta + 3)(\beta + 5)(\beta + 6)(\beta + 7) = \frac{\beta}{n!}
\]
Thus, the first identity in the lemma is proved. The second identity (9) is proved in a similar way. Based on the lemma, the expressions \(I_1(\xi, \eta; \zeta) \) and \(I_2(\xi, \eta; \zeta) \) take the form
\[
I_1(\xi, \eta; \zeta) = \Gamma(\beta + 4) (\eta - \xi)^{2\beta - 7} (\eta - \zeta)^{\beta} (\xi - \zeta)^{-\beta}
\]
\[
I_2(\xi, \eta; \zeta) = \frac{\beta(\beta + 1)(\beta + 2)(\beta + 3)\Gamma(\beta + 4)\Gamma(-2\beta - 7)}{\Gamma(1 - \beta)} \times (\eta - \xi)^{2\beta - 7} (\eta - \zeta)^{\beta} (\xi - \zeta)^{-\beta}.
\]
Substituting (10), (11) into (7), we obtain a representation of the generalized solution of the class \(R_2 \)
\[
u(\xi, \eta) = \int_0^\xi (\eta - \zeta)^{-\beta} (\xi - \zeta)^{-\beta} T(\zeta) d\zeta + \int_\xi^\eta (\eta - \zeta)^{-\beta} (\zeta - \xi)^{-\beta} N(\zeta) d\zeta,
\]
where
\[
N(\zeta) = \frac{1}{2\cos \pi \beta} T(\zeta) - 2^{4\beta - 2} \gamma_1 v(\zeta).
\]
For all values of \(\alpha \) under consideration, a representation of the generalized solution of the \(R_2 \) class is obtained.

4. Conclusions
Got the result of the modified Cauchy problem for some values of \(\alpha \) is stated and investigated and a convenient representation of the generalized solution of the modified Cauchy problem is obtained.

References
[1] Tricomi F O 1947 *On linear equations of mixed type*. (Moscow: Gostekhizdat) p 212
[2] Frankl F I 1945 On Chaplygin's problems for mixed sub-and supersonic flows *Izv. USSR Academy of Sciences ser. mat. 9*(2) 121-42
[3] Salakhitdinov M S and Mirsaburov M S 2005 The generalized Frankl problem for the Chaplygin equation with singular coefficients *DAN. Ruz.* 2 4-8
[4] Bitsadze A V 1970 On the theory of a class of equations of mixed type *Some problems of mathematics and mechanics* 112-9
[5] Salakhitdinov M S and Dzhuraev T D 1971 On a mixed problem for equations of the third order of parabolic-hyperbolic type *Izv. Academy of Sciences of the Uzbek SSR. Ser. Phys and mat. Sciences* 4 26-31
[6] Khudayarov B A, Komilova K M and Turaev F Z 2020 Numerical study of the effect of viscoelastic properties of the material and bases on vibration fatigue of pipelines conveying pulsating fluid flow *Engineering Failure Analysis* 115 104635
[7] Khudayarov B A, Turayev F, Zhuvonov Q, Vahabov V, Kucharov O and Kholturayev Kh 2020 Oscillation modeling of viscoelastic elements of thin-walled structures *IOP Conference Series: Materials Science and Engineering* 883(1) 012188
[8] Turayev F, Khudayarov B, Kucharov O, Rakhmatullaev A, Zhuvonov K and Gulomov O Dynamic 2020 stability of thin-walled structure elements considering hereditary and inhomogeneous properties of the material *IOP Conference Series: Materials Science and Engineering* 883(1) 012187
[9] Khudayarov B, Turaev F, Vakhobov V, Gulamov O and Shodiyev S 2020 Dynamic stability and vibrations of thin-walled structures considering heredity properties of the material *IOP Conference Series: Materials Science and Engineering* **869**(5) 052021

[10] Khudayarov B A, Komilova Kh M and Turaev F Zh 2020 Dynamic analysis of the suspended composite pipelines conveying pulsating fluid *Journal of Natural Gas Science and Engineering* **75** 103148

[11] Khudayarov B A, Komilova Kh M, Turaev F Zh and Aliyarov J A 2020 Numerical simulation of vibration of composite pipelines conveying fluids with account for lumped masses *International Journal of Pressure Vessels and Piping* **179** 104034

[12] Khudayarov B A, Ruzmetov K Sh, Turaev F Zh, Vaxobov V V, Hidoyatova M A, Mirzaev S S and Abdikarimov R 2020 Numerical modeling of nonlinear vibrations of viscoelastic shallow shells *Engineering Solid Mechanics* **8**(3) 199-204

[13] Khudayarov B A, Komilova Kh M and Turaev F Zh 2019 Numerical Simulation of Vibration of Composite Pipelines Conveying Pulsating Fluid *International Journal of Applied Mechanics* **11**(9) 1950090

[14] Khudayarov B A and Komilova Kh M 2019 Vibration and dynamic stability of composite pipelines conveying a two-phase fluid flows *Engineering Failure Analysis* **104** 500-12

[15] Khudayarov B A, Komilova Kh M and Turaev F Zh 2019 The effect of two-parameter Pasternak foundations on the oscillations of composite pipelines conveying gas-containing fluids *International Journal of Pressure Vessels and Piping* **176** 103946

[16] Khudayarov B A and Komilova Kh M 2019 Numerical modeling of vibrations of viscoelastic pipelines conveying two-phase slug flow *Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika* **61** 95-110

[17] Khudayarov B, Turaev F and Kucharov O 2019 Computer simulation of oscillatory processes of viscoelastic elements of thin-walled structures in a gas flow *E3S Web of Conferences* **97** 06008

[18] Khudayarov B A 2019 Modeling of supersonic nonlinear flutter of plates on a visco-elastic foundation *Advances in aircraft and spacecraft science* **6**(3) 257-72

[19] Khudayarov B A and Turaev F Zh 2019 Mathematical Simulation of Nonlinear Oscillations of Viscoelastic Pipelines Conveying Fluid *Applied Mathematical Modelling* **66** 662-79

[20] Khudayarov B A and Komilova K M 2019 Numerical simulation of vibrations of viscoelastic pipelines conveying two-phase medium in a slug flow regime *Bulletin of Tomsk State University, Mathematics and Mekhanika* **61** 95-110

[21] Khudayarov B A and Turaev F Zh 2019 Nonlinear vibrations of fluid transporting pipelines on a viscoelastic foundation *Magazine of Civil Engineering* **86**(2) 30-45

[22] Khudayarov B A and Turaev F Zh 2019 Nonlinear supersonic flutter for the viscoelastic orthotropic cylindrical shells in supersonic flow *Aerospace Science and Technology* **84** 120-30

[23] Khudayarov B A 2010 Flutter of a viscoelastic plate in a supersonic gas flow *International Applied Mechanics* **46**(4) 455-60

[24] Khudayarov B A and Bandurin N G 2007 Numerical investigation of nonlinear vibrations of viscoelastic plates and cylindrical panels in a gas flow *Journal of Applied Mechanics and Technical Physics* **48**(2) 279-84

[25] Khudayarov B A 2005 Flutter analysis of viscoelastic sandwich plate in supersonic flow *American Society of Mechanical Engineers Applied Mechanics Division* **256** 11-7

[26] Khudayarov B A 2005 Numerical analysis of the nonlinear flutter of viscoelastic plates *International Applied Mechanics* **41**(5) 538-42

[27] Khudayarov B A 2004 Behavior of viscoelastic three-layered structures in a gas flow *Problems of machine building and reliability of machines* **6** 87-90

[28] Tersenov S A 1961 On the theory of hyperbolic equations with data on a degeneration line of type *Siberian. mat. Journal* **2**(6) 931-5

[29] Mamadaliev N K 1998 On two identities associated with obtaining: representations of the
generalized solution of a hyperbolic equation DAS R Uz. 10 11-3

[30] Smirnov V I 1974 Higher mathematics course (Moscow: The science) p 310
[31] Smirnov M M 1970 Mixed type equations (Moscow: The science) p 320
[32] Abdullayev A A and Ergashev T G 2020 Poincare-tricomi problem for the equation of a mixed elliptico-hyperbolic type of second kind Tomsk State University Bulletin Mathematics and Mechanics 65 5-21
[33] Islomov B I and Abdullayev A A 2018 On a problem for an elliptic type equation of the second kind with a conormal and integral condition Nanosystems: Physics Chemistry Mathematics 9(3) 307-18
[34] Abdullaev A A and Hidoyatova M 2020 Innovative distance learning technologies Journal of Critical Reviews 7(11) 337-9
[35] Vahobov V, Abdullayev A A, Kholturayev Kh, Hidoyatova M and Raxmatullayev 2020 A On asymptotics of optimal parameters of statistical acceptance control Journal of Critical Reviews 7(11) 330-2
[36] Yuldashev T K, Islomov B I and Abdullaev A A 2021 On solvability of a Poincare-Tricomi type problem for an elliptic-hyperbolic equation of the second kind Lobachevskii Journal of Mathematics 42(3) 662-74