INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE FOR (α, m)-GA-CONVEX FUNCTIONS

AI-PING JI, TIAN-YU ZHANG, AND FENG QI

Abstract. In the paper, the authors introduce a notion “(α, m)-GA-convex functions” and establish some integral inequalities of Hermite-Hadamard type for (α, m)-GA-convex functions.

1. Introduction

In [8, 11], the concepts of m-convex functions and (α, m)-convex functions were introduced as follows.

Definition 1.1 ([11]). A function $f : [0, b] \to \mathbb{R}$ is said to be m-convex for $m \in (0, 1]$ if the inequality

$$f(\alpha x + m(1 - \alpha)y) \leq \alpha f(x) + m(1 - \alpha)f(y)$$

(1.1)

holds for all $x, y \in [0, b]$ and $\alpha \in [0, 1]$.

Definition 1.2 ([8]). For $f : [0, b] \to \mathbb{R}$ and $(\alpha, m) \in (0, 1]^2$, if

$$f(tx + m(1-t)y) \leq t^\alpha f(x) + m(1-t^\alpha)f(y)$$

(1.2)

is valid for all $x, y \in [0, b]$ and $t \in [0, 1]$, then we say that $f(x)$ is an (α, m)-convex function on $[0, b]$.

Hereafter, a few of inequalities of Hermite-Hadamard type for the m-convex and (α, m)-convex functions were presented, some of them can be recited as following theorems.

Theorem 1.1 ([3, Theorems 2.2]). Let $I \supset \mathbb{R}_0 = [0, \infty)$ be an open interval and let $f : I \to \mathbb{R}$ be a differentiable function on I such that $f' \in L([a, b])$ for $0 \leq a < b < \infty$, where $L([a, b])$ denotes the set of all Lebesgue integrable functions on $[a, b]$. If $|f'(x)|^q$ is m-convex on $[a, b]$ for some given numbers $m \in (0, 1]$ and $q \geq 1$, then

$$\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f(x) \, dx \right| \leq \frac{b-a}{4} \min \left\{ \left[\frac{|f'(a)|^q + m|f'(b)/m|^q}{2} \right]^{1/q} \cdot \left[\frac{m|f'(a/m)|^q + |f'(b)|^q}{2} \right]^{1/q} \right\}.$$

(1.3)

2010 Mathematics Subject Classification. Primary 26A51; Secondary 26D15, 41A55.

Key words and phrases. Integral inequalities of Hermite-Hadamard type; m-convex function; (α, m)-convex function; (α, m)-GA-convex function; Hölder inequality.

This work was partially supported by the Foundation of the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region under grant number NJZY13159, China.

This paper was typeset using \LaTeX.
Theorem 1.2 ([3, Theorem 3.1]). Let $I \supset [0, \infty)$ be an open interval and let $f : I \to (-\infty, \infty)$ be a differentiable function on I such that $f^{\prime} \in L([a, b])$ for $0 \leq a < b < \infty$. If $|f^{\prime}(x)|^q$ is (α, m)-convex on $[a, b]$ for some given numbers $m, \alpha \in (0, 1]$, and $q \geq 1$, then

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_a^b f(x) \, dx \right| \leq \frac{b - a}{2} \left(\frac{1}{2} \right)^{1-1/q} \times \min \left\{ \left[v_1 |f^{\prime}(a)|^q + v_2 m \left| f^{\prime} \left(\frac{b}{m} \right) \right|^q \right]^{1/q}, \left[v_2 m \left| f^{\prime} \left(\frac{a}{m} \right) \right|^q + v_1 |f^{\prime}(b)|^q \right]^{1/q} \right\},$$

where

$$v_1 = \frac{1}{(\alpha + 1)(\alpha + 2)} \left(\alpha + \frac{1}{2^\alpha} \right)$$

and

$$v_2 = \frac{1}{(\alpha + 1)(\alpha + 2)} \left(\frac{\alpha^2 + \alpha + 2}{2} - \frac{1}{2^\alpha} \right).$$

For more information on Hermite-Hadamard type inequalities for various kinds of convex functions, please refer to the monograph [5], the recently published papers [1, 2, 4, 6, 7, 12, 13], and closely related references therein.

In this paper, we will introduce a new concept “(α, m)-geometric-arithmetically convex function” (simply speaking, (α, m)-GA-convex function) and establish some integral inequalities of Hermite-Hadamard type for (α, m)-GA-convex functions.

2. A Definition and a Lemma

Now we introduce the so-called (α, m)-GA-convex functions.

Definition 2.1. Let $f : [0, b] \to \mathbb{R}$ and $(\alpha, m) \in [0, 1]^2$. If

$$f(x^\lambda y^{m(1-\lambda)}) \leq \lambda^\alpha f(x) + m(1 - \lambda^\alpha) f(y)$$

for all $x, y \in [0, b]$ and $\lambda \in [0, 1]$, then $f(x)$ is said to be a (α, m)-geometric-arithmetically convex function or, simply speaking, an (α, m)-GA-convex function. If (2.1) is reversed, then $f(x)$ is said to be a (α, m)-geometric-arithmetically concave function or, simply speaking, a (α, m)-GA-concave function.

Remark 2.1. When $m = \alpha = 1$, the (α, m)-GA-convex (concave) function defined in Defintion 2.1 becomes a GA-convex (concave) function defined in [9, 10].

To establish some new Hermite-Hadamard type inequalities for (α, m)-GA-convex functions, we need the following lemma.

Lemma 2.1. Let $f : I \subseteq \mathbb{R}_+ = (0, \infty) \to \mathbb{R}$ be a differentiable function and $a, b \in I$ with $a < b$. If $f^{\prime}(x) \in L([a, b])$, then

$$\frac{b^2 f(b) - a^2 f(a)}{2} - \int_a^b x f(x) \, dx = \frac{\ln b - \ln a}{2} \int_0^1 a^{3(1-t)b^3 t} f^{\prime}(a^{1-t}b^t) \, dt. \tag{2.2}$$

Proof. Let $x = a^{1-t}b^t$ for $0 \leq t \leq 1$. Then

$$(\ln b - \ln a) \int_0^1 a^{3(1-t)b^3 t} f^{\prime}(a^{1-t}b^t) \, dt = \int_a^b x^2 f^{\prime}(x) \, dx.$$
Lemma 2.1 is thus proved. \hfill \Box

3. Inequalities of Hermite-Hadamard Type

Now we turn our attention to establish inequalities of Hermite-Hadamard type for \((\alpha, m)\)-GA-convex functions.

Theorem 3.1. Let \(f : \mathbb{R}_0 = [0, \infty) \to \mathbb{R}\) be a differentiable function and \(f' \in L([a, b])\) for \(0 < a < b < \infty\). If \(|f'|^q\) is \((\alpha, m)\)-GA-convex on \([0, \max\{a^{1/m}, b\}]\) for \((\alpha, m) \in (0, 1]^2\) and \(q \geq 1\), then

\[
\left| \frac{b^2 f(b) - a^2 f(a)}{2} - \int_a^b x f(x) \, dx \right| \leq \frac{\ln b - \ln a}{2} \left[\int_0^1 a^{3(1-t)} b^{3t} |f'(a^{1/m})|^q \right]^{1/q} \times \left\{ m[L(a^3, b^3) - G(\alpha, 3)] |f'(a^{1/m})|^q + G(\alpha, 3) |f'(b)|^q \right\}^{1/q},
\]

where

\[
G(\alpha, \ell) = \int_0^1 t^\alpha a^{\ell(1-t)} b^{\ell t} \, dt
\]

for \(\ell \geq 0\) and

\[
L(x, y) = \frac{y - x}{\ln y - \ln x}
\]

for \(x, y > 0\) with \(x \neq y\).

Proof. Making use of the \((\alpha, m)\)-GA-convexity of \(|f'(x)|^q\) on \([0, \max\{a^{1/m}, b\}]\), Lemma 2.1, and Hölder inequality yields

\[
\left| \frac{b^2 f(b) - a^2 f(a)}{2} - \int_a^b x f(x) \, dx \right| \leq \frac{\ln b - \ln a}{2} \left[\int_0^1 a^{3(1-t)} b^{3t} |f'(a^{1/m})|^q \right]^{1/q} \times \left\{ m[L(a^3, b^3) - G(\alpha, 3)] |f'(a^{1/m})|^q + G(\alpha, 3) |f'(b)|^q \right\}^{1/q}
\]

as a result, the inequality (3.1) follows. The proof of Theorem 3.1 is complete. \hfill \Box

Corollary 3.1.1. Under the conditions of Theorem 3.1, if \(q = 1\), then

\[
\left| \frac{b^2 f(b) - a^2 f(a)}{2} - \int_a^b x f(x) \, dx \right| \leq \frac{\ln b - \ln a}{2} \left\{ m[L(a^3, b^3) - G(\alpha, 3)] |f'(a^{1/m})| + G(\alpha, 3) |f'(b)| \right\}.
\]
Corollary 3.1.2. Under the conditions of Theorem 3.1, if $\alpha = 1$, then

$$\left| \frac{b^2 f(b) - a^2 f(a)}{2} - \int_a^b x f(x) \, dx \right| \leq \frac{(b^3 - a^3)^{1-1/q} \times m[L(a^3, b^3) - a^3] f'(a^{1/m}) |q} + [b^3 - L(a^3, b^3)] f'(b) q^{1/q}}{6}. \quad (3.5)$$

Proof. This follows from the fact that

$$G(1, 3) = \int_0^1 ta^{3(1-t)} b^{3t} \, dt = \frac{b^3 - L(a^3, b^3)}{3(\ln b - \ln a)}.$$

The proof of Corollary 3.1.2 is complete. \qed

Corollary 3.1.3. Under the conditions of Theorem 3.1, we have

$$\left| \frac{b^2 f(b) - a^2 f(a)}{2} - \int_a^b x f(x) \, dx \right| \leq \frac{\ln b - \ln a}{2} [L(a^3, b^3)]^{1-1/q}$$

$$\times \left(\frac{1}{\alpha + 1} \right)^{1/q} \left\{ m [(\alpha + 1)L(a^3, b^3) - b^3] f'(a^{1/m}) q^q + b^3 q f'(b) q^{1/q} \right\}. \quad (3.6)$$

and

$$\left| \frac{b^2 f(b) - a^2 f(a)}{2} - \int_a^b x f(x) \, dx \right| \leq \frac{\ln b - \ln a}{2} L(a^3, b^3) |f'(b)|. \quad (3.7)$$

Proof. Using $\left(\frac{b}{a} \right)^3 \leq \left(\frac{b}{a} \right)$ for $t \in [0, 1]$ in (3.2) gives

$$G(\alpha, 3) = a^3 \int_0^1 t^\alpha \left(\frac{b}{a} \right)^{3t} \, dt \leq \frac{b^3}{\alpha + 1}.$$ Substituting this inequality into (3.1) yields (3.6). Utilizing $t^\alpha \leq 1$ for $t \in [0, 1]$ in (3.2) reveals

$$G(\alpha, 3) \leq \int_0^1 a^{3(1-t)} b^{3t} \, dt = L(a^3, b^3).$$ Combining this inequality with (3.1) yields (3.7). Corollary 3.1.3 is thus proved. \qed

Theorem 3.2. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function and $f' \in L([a, b])$ with $0 < a < b < \infty$. If $|f'|^q$ is (α, m)-GA-convex on $[0, \max\{a^{1/m}, b\}]$ for $(\alpha, m) \in (0, 1]^2$ and $q > 1$, then

$$\left| \frac{b^2 f(b) - a^2 f(a)}{2} - \int_a^b x f(x) \, dx \right| \leq \frac{\ln b - \ln a}{2} \left(\frac{1}{\alpha + 1} \right)^{1/q}$$

$$\times \left[L(a^{3q/(q-1)}, b^{3q/(q-1)}) \right]^{1-1/q} \left[||f'(b)||^q + \alpha m |f'(a^{1/m})|^q \right]^{1/q}, \quad (3.8)$$

where L is defined by (3.3).

Proof. Since $|f'(x)|^q$ is (α, m)-GA-convex on $[0, \max\{a^{1/m}, b\}]$, from Lemma 2.1 and Hölder inequality, we have

$$\left| \frac{b^2 f(b) - a^2 f(a)}{2} - \int_a^b x f(x) \, dx \right| \leq \frac{\ln b - \ln a}{2} \int_0^1 a^{3(1-t)} b^{3t} |f'(a^{1-t}b^t)| \, dt$$

$$\leq \frac{\ln b - \ln a}{2} \left[\int_0^1 a^{3q/(q-1)(1-t)} b^{3q/(q-1)t} \, dt \right]^{1-1/q} \left[\int_0^1 |f'(a^{1/m})^{m(1-t)} b^t|^q \, dt \right]^{1/q}$$.

Theorem 3.2. Let \(f : \mathbb{R}_0 \to \mathbb{R} \) be a differentiable function and \(f' \in L([a, b]) \) for \(0 < a < b < \infty \). If \(|f'|^q \) is \((\alpha, m)\)-GA-convex on \([0, \max\{a^{1/m}, b\}]\) for \(q > 1 \) and \((\alpha, m) \in (0, 1]^2\), then

\[
\begin{align*}
\frac{b^2 f(b) - a^2 f(a)}{2} - \int_a^b x f(x) \, dx &\leq \frac{\ln b - \ln a}{2} \left[\frac{b^{3q/(q-1)} - a^{3q/(q-1)}}{\ln b^{3q/(q-1)} - \ln a^{3q/(q-1)}} \right]^{1-1/q} \\
& \times \left[\int_0^1 (t^\alpha |f'(b)|^q + m(1-t^\alpha)|f'(a^{1/m})|^q) \, dt \right]^{1/q} \\
= \frac{\ln b - \ln a}{2} [L(a^{3q/(q-1)}, b^{3q/(q-1)})]^{1-1/q} \left[\frac{1}{\alpha + 1} |f'(b)|^q + \frac{\alpha m}{\alpha + 1} |f'(a^{1/m})|^q \right]^{1/q}.
\end{align*}
\]

The proof of Theorem 3.2 is complete. \(\square \)

Corollary 3.3.1. Under the conditions of Theorem 3.2, if \(\alpha = 1 \), then

\[
\begin{align*}
\frac{b^2 f(b) - a^2 f(a)}{2} - \int_a^b x f(x) \, dx &\leq \frac{\ln b - \ln a}{2} \left[\frac{b^{3q/(q-1)} - a^{3q/(q-1)}}{\ln b^{3q/(q-1)} - \ln a^{3q/(q-1)}} \right]^{1-1/q} \\
& \times \left[\int_0^1 (t^\alpha |f'(b)|^q + m(1-t^\alpha)|f'(a^{1/m})|^q) \, dt \right]^{1/q} \\
= \frac{\ln b - \ln a}{2} [L(a^{3q/(q-1)}, b^{3q/(q-1)})]^{1-1/q} \left[\frac{1}{\alpha + 1} |f'(b)|^q + \frac{\alpha m}{\alpha + 1} |f'(a^{1/m})|^q \right]^{1/q}.
\end{align*}
\]
Theorem 3.4. Let \(f : \mathbb{R}_0 \to \mathbb{R} \) be a differentiable function and \(f' \in L([a, b]) \) for \(0 < a < b < \infty \). If \(|f'|^q \) is \((\alpha, m)\)-GA-convex on \([0, \max\{a^{1/m}, b\}]\) for \(q > 1 \), \(q > p > 0 \), and \((\alpha, m) \in (0, 1)^2\), then

\[
\left| \frac{b^2 f(b) - a^2 f(a)}{2} - \int_a^b x f(x) \, dx \right| \leq \frac{\ln b - \ln a}{2} \left[L(a^{3(q-p)/(q-1)}, b^{3(q-p)/(q-1)}) \right]^{1-1/q}
\]

\[
\times \left\{ m \left[L(a^{3p}, b^{3p}) - G(\alpha, 3p) \right] |f'(a^{1/m})|^q + G(\alpha, 3p) |f'(b)|^q \right\}^{1/q},
\]

where \(G \) and \(L \) are respectively defined by (3.2) and (3.3).

Proof. Since \(|f'(x)|^q \) is \((\alpha, m)\)-GA-convex on \([0, \max\{a^{1/m}, b\}]\), from Lemma 2.1 and H"older inequality, we have

\[
\left| \frac{b^2 f(b) - a^2 f(a)}{2} - \int_a^b x f(x) \, dx \right| \leq \frac{\ln b - \ln a}{2} \left[\int_0^1 a^{3(q-p)/(q-1)(1-t)} b^{3(q-p)/(q-1)t} \, dt \right]^{1-1/q}
\]

\[
\times \left[\int_0^1 a^{3p(1-t)} b^{3p(1-t)} \left(f' \left(\left(a^{1/m} \right)^{m(1-t)} b^t \right) \right)^q \, dt \right]^{1/q}
\]

\[
\leq \frac{\ln b - \ln a}{2} \left[\frac{b^{3(q-p)/(q-1)} - a^{3(q-p)/(q-1)}}{\ln b^{3(q-p)/(q-1)} - \ln a^{3(q-p)/(q-1)}} \right]^{1-1/q}
\]

\[
\times \left[\int_0^1 a^{3p(1-t)} b^{3p(1-t)} \left(t^{\alpha} |f'(b)|^q + m(1-t^{\alpha}) |f'(a^{1/m})|^q \right) \, dt \right]^{1/q}
\]

\[
= \frac{\ln b - \ln a}{2} \left[L(a^{3(q-p)/(q-1)}, b^{3(q-p)/(q-1)}) \right]^{1-1/q}
\]

\[
\times \left\{ m \left[L(a^{3p}, b^{3p}) - a^{3p} \right] |f'(a^{1/m})|^q + b^{3p} - L(a^{3p}, b^{3p}) \right\}^{1/q}.\]

The proof of Theorem 3.4 is complete. \(\square \)

Corollary 3.4.1. Under the conditions of Theorem 3.4, if \(\alpha = 1 \), then

\[
\left| \frac{b^2 f(b) - a^2 f(a)}{2} - \int_a^b x f(x) \, dx \right| \leq \frac{\ln b - \ln a}{2} \left(\frac{1}{3p} \right)^{1/q}
\]

\[
\times \left[L(a^{3(q-p)/(q-1)}, b^{3(q-p)/(q-1)}) \right]^{1-1/q}
\]

\[
\times \left\{ m \left[L(a^{3p}, b^{3p}) - a^{3p} \right] |f'(a^{1/m})|^q + b^{3p} - L(a^{3p}, b^{3p}) \right\}^{1/q}.\]

Proof. By

\[
G(1, 3p) = \int_0^1 ta^{3p(1-t)} b^{3pt} \, dt = \frac{b^{3p} - L(a^{3p}, b^{3p})}{\ln b^{3p} - \ln a^{3p}},
\]

Corollary 3.4.1 can be proved easily. \(\square \)

Theorem 3.5. Let \(f, g : \mathbb{R}_0 \to \mathbb{R}_0 \) and \(fg \in L([a, b]) \) for \(0 < a < b < \infty \). If \(f^q(x) \) is \((\alpha_1, m_1)\)-GA-convex on \([0, \max\{a^{1/m_1}, b\}]\) and \(g^q(x) \) is \((\alpha_2, m_2)\)-GA-convex on \([0, \max\{a^{1/m_2}, b\}]\) for \(q > 1 \), \((\alpha_1, m_1) \), and \((\alpha_2, m_2) \in (0, 1]^2\), then

\[
\int_a^b f(x) g(x) \, dx \leq (\ln b - \ln a)[L(a, b)]^{1-1/q} \left\{ m_1 m_2 [L(a, b) - G(\alpha_1, 1) - G(\alpha_2, 1) + G(\alpha_1 + \alpha_2, 1)] f^q(a^{1/m_1}) g^q(a^{1/m_2}) + m_1 G(a, 1) - G(\alpha_1, 1) - G(\alpha_1 + \alpha_2, 1)] f^q(a^{1/m_1}) g^q(b)
\]
where \(G \) and \(L \) are respectively defined by (3.2) and (3.3).

Proof. Using the \((\alpha_1, m_1) \)-GA-convexity of \(f^q(x) \) and the \((\alpha_2, m_2) \)-GA-convexity of \(g^q(x) \), we have

\[
f^q(a^{1-t}b^t) \leq t^{\alpha_1} f^q(b) + m_1(1 - t^{\alpha_1}) f^q(a^{1/m_1})
\]

and

\[
g^q(a^{1-t}b^t) \leq t^{\alpha_2} g^q(b) + m_2(1 - t^{\alpha_2}) g^q(a^{1/m_2})
\]

for \(0 \leq t \leq 1 \). Letting \(x = a^{1-t}b^t \) for \(0 \leq t \leq 1 \) and using Hölder’s inequality figure out

\[
\int_a^b f(x)g(x) \, dx = (\ln b - \ln a) \int_0^1 a^{1-t}b^t f(a^{1-t}b^t) g(a^{1-t}b^t) \, dt
\]

\[
\leq (\ln b - \ln a) \left(\int_0^1 a^{1-t}b^t dt \right)^{1-1/q} \left\{ \int_0^1 a^{1-t}b^t [f(a^{1-t}b^t)g(a^{1-t}b^t)]^q \, dt \right\}^{1/q}
\]

\[
\leq (\ln b - \ln a) \left(\int_0^1 a^{1-t}b^t dt \right)^{1-1/q} \left\{ \int_0^1 a^{1-t}b^t [t^{\alpha_1} f^q(b)
\]

\[
+ m_1(1 - t^{\alpha_1}) f^q(a^{1/m_1}) [t^{\alpha_2} g^q(b) + m_2(1 - t^{\alpha_2}) g^q(a^{1/m_2})] \, dt \right\}^{1/q}
\]

\[
= (\ln b - \ln a)[L(a, b)]^{1-1/q} \left\{ \int_0^1 a^{1-t}b^t [t^{\alpha_1} + m_1(1 - t^{\alpha_1})] f^q(a^{1/m_1})g^q(a^{1/m_2}) \, dt \right\}^{1/q}
\]

\[
+ m_2(1 - t^{\alpha_1})(1 - t^{\alpha_2}) f^q(a^{1/m_1})g^q(a^{1/m_2})] \, dt \right\}^{1/q}
\]

\[
= (\ln b - \ln a)[L(a, b)]^{1-1/q} \left\{ m_1 m_2[L(a, b) - G(\alpha_1, 1)
\]

\[
+ G(\alpha_2, 1) + G(\alpha_1, \alpha_2, 1)] f^q(a^{1/m_1})g^q(a^{1/m_2}) \right\}^{1/q}
\]

\[+ m_1[G(\alpha_2, 1) - G(\alpha_1, \alpha_2, 1)] f^q(a^{1/m_1})g^q(a^{1/m_2}) \right\}^{1/q}.
\]

The proof of Theorem 3.5 is complete. \(\square \)

Corollary 3.5.1. Under the conditions of Theorem 3.5,

1. if \(q = 1 \), then

\[
\int_a^b f(x)g(x) \, dx \leq (\ln b - \ln a) \left\{ m_1 m_2[L(a, b) - G(\alpha_1, 1) - G(\alpha_2, 1)
\]

\[
+ G(\alpha_1, \alpha_2, 1)] f^q(a^{1/m_1})g^q(a^{1/m_2}) + m_1[G(\alpha_2, 1) - G(\alpha_1, \alpha_2, 1)] f^q(a^{1/m_1})g(b)
\]

\[
+ m_2[G(\alpha_1, 1) - G(\alpha_2, 1)] f^q(b)g^q(a^{1/m_2}) + G(\alpha_1, \alpha_2, 1) f^q(b)g^q(b) \right\}, \quad (3.15)
\]

2. if \(q = 1 \) and \(\alpha_1 = \alpha_2 = m_1 = m_2 = 1 \), then

\[
\int_a^b f(x)g(x) \, dx \leq \frac{1}{\ln b - \ln a} \left\{ [2L(a, b) - a(\ln b - \ln a) - 2a] f(a)g(a) + [a + b}
\]

\[
- a^2 \ln b + b^2 \ln a + 2ab - a^2 - b^2 \right\}.
\]
(3) if \(\alpha_1 = \alpha_2 = m_1 = m_2 = 1 \), then
\[
\int_a^b f(x)g(x) \, dx \leq \frac{[L(a, b)]^{1 - 1/q}}{(\ln b - \ln a)^{2/(q-1)}} \left\{ [2L(a, b) - a(\ln b - \ln a) - 2a]f^q(a) g^q(a) + [a + b - 2L(a, b)][f^q(a) g^q(b) + f^q(b) g^q(a)]
ight. \\
\left. + [2L(a, b) + b(\ln b - \ln a) - 2b]f^q(b) g^q(b) \right\}^{1/q}.
\]

Theorem 3.6. Let \(f, g : \mathbb{R}_0 \to \mathbb{R}_0 \) and \(f, g \in L([a, b]) \) for \(0 < a < b < \infty \). If \(f^q(x) \) is \((\alpha_1, m_1)\)-GA-convex on \([0, \max\{a^{1/m_1}, b\}]\) and \(g^{q/(q-1)}(x) \) is \((\alpha_2, m_2)\)-GA-convex on \([0, \max\{a^{1/m_2}, b\}]\) for \(q > 1 \), \((\alpha_1, m_1)\), and \((\alpha_2, m_2)\) \in \((0, 1]^2\), then
\[
\int_a^b f(x)g(x) \, dx \leq (\ln b - \ln a) \left\{ m_1 f^q(a^{1/m_1}) L(a, b) \\
+ G(\alpha_1, 1) [f^q(b) - m_1 f^q(a^{1/m_1})] \right\}^{1/q} \left\{ m_2 g^{q/(q-1)}(a^{1/m_2}) L(a, b) \\
+ G(\alpha_2, 1) [g^{q/(q-1)}(b) - m_2 g^{q/(q-1)}(a^{1/m_2})] \right\}^{1 - 1/q},
\]
where \(G \) and \(L \) are respectively defined by (3.2) and (3.3).

Proof. By the \((\alpha_1, m_1)\)-GA-convexity of \(f^q(x) \) and the \((\alpha_2, m_2)\)-GA-convexity of \(g^{q/(q-1)}(x) \), we have
\[
f^q(a^{-t}b^t) \leq t^{\alpha_1} f^q(b) + m_1 (1 - t^{\alpha_1}) f^q(a^{1/m_1})
\]
and
\[
g^{q/(q-1)}(a^{-1} b^t) \leq t^{\alpha_2} g^{q/(q-1)}(b) + m_2 (1 - t^{\alpha_2}) g^{q/(q-1)}(a^{1/m_2})
\]
for \(t \in [0, 1] \). Letting \(x = a^{1-t} b^t \) for \(0 \leq t \leq 1 \) and employing Hölder’s inequality yield
\[
\int_a^b f(x)g(x) \, dx \leq \left\{ \int_a^b f^q(x) \, dx \right\}^{1/q} \left\{ \int_a^b g^{q/(q-1)}(x) \, dx \right\}^{1 - 1/q} \\
= (\ln b - \ln a) \left\{ \int_0^1 a^{-t} b^t f^q(a^{-1} b^t) \, dt \right\}^{1/q} \left\{ \int_0^1 a^{-1} b^t g^{q/(q-1)}(a^{1-t} b^t) \, dt \right\}^{1 - 1/q} \\
\leq (\ln b - \ln a) \left\{ \int_0^1 a^{-t} b^t \left[t^{\alpha_1} f^q(b) + m_1 (1 - t^{\alpha_1}) f^q(a^{1/m_1}) \right] \, dt \right\}^{1/q} \\
\times \left[\int_0^1 a^{-1} b^t \left[t^{\alpha_2} g^{q/(q-1)}(b) + m_2 (1 - t^{\alpha_2}) g^{q/(q-1)}(a^{1/m_2}) \right] \, dt \right\}^{1 - 1/q} \\
= (\ln b - \ln a) \left\{ m_1 f^q(a^{1/m_1}) L(a, b) + G(\alpha_1, 1) [f^q(b) - m_1 f^q(a^{1/m_1})] \right\}^{1/q} \\
\times \left\{ m_2 g^{q/(q-1)}(a^{1/m_2}) L(a, b) \\
+ G(\alpha_2, 1) [g^{q/(q-1)}(b) - m_2 g^{q/(q-1)}(a^{1/m_2})] \right\}^{1 - 1/q}.
\]
The proof of Theorem 3.6 is complete. \(\square \)

Corollary 3.6.1. Under the conditions of Theorem 3.6, if \(\alpha_1 = \alpha_2 = m_1 = m_2 = 1 \), then
\[
\int_a^b f(x)g(x) \, dx \leq \{ f^q(b) L(a, b) - a \} + \{ b - L(a, b) f^q(b) \}^{1/q}
\]
Under the conditions of Theorem 3.7, if Corollary 3.7.1. The proof of Theorem 3.7 is complete.

\[\int_a^b f(x)g(x) \, dx \geq (\ln b - \ln a) \{ m_1 m_2[L(a, b) - G(\alpha_1, 1) - G(\alpha_2, 1) \\
+ G(\alpha_1 + \alpha_2, 1)]f(a^{1/\alpha_1})g(a^{1/\alpha_2}) + m_1[G(\alpha_2, 1) - G(\alpha_1 + \alpha_2, 1)]f(a^{1/\alpha_1})g(b) \\
+ m_2[G(\alpha_1, 1) - G(\alpha_1 + \alpha_2, 1)]f(b)g(a^{1/\alpha_2}) G + G(\alpha_1 + \alpha_2, 1)f(b)g(a^{1/\alpha_2}) \} \]

where \(G \) and \(L \) are respectively defined by (3.2) and (3.3).

Proof. Since \(f(x) \) is \((\alpha_1, m_1)\)-GA-concave on \([0, \max\{a^{1/m_1}, b\}]\) and \(g(x) \) is \((\alpha_2, m_2)\)-GA-concave on \([0, \max\{a^{1/m_2}, b\}]\), we have

\[f(a^{-1-t}b^t) \geq t^{\alpha_1} f(b) + m_1(1 - t^{\alpha_1}) f(a^{1/\alpha_1}) \]

and

\[g(a^{-1-t}b^t) \geq t^{\alpha_2} g(b) + m_2(1 - t^{\alpha_2}) g(a^{1/\alpha_2}) \]

for \(t \in [0, 1] \). Further letting \(x = a^{-1-t}b^t \) for \(0 \leq t \leq 1 \) and utilizing Hölder’s inequality reveal

\[\int_a^b f(x)g(x) \, dx \geq (\ln b - \ln a) \left\{ \int_0^1 a^{-1-t}b^t f(a^{-1-t}b^t) g(a^{-1-t}b^t) \, dt \right\} \]

\[\geq (\ln b - \ln a) \left\{ \int_0^1 a^{-1-t}b^t \left[t^{\alpha_1} f(b) + m_1(1 - t^{\alpha_1}) f(a^{1/\alpha_1}) \right] \right. \times \left. \left[t^{\alpha_2} g(b) + m_2(1 - t^{\alpha_2}) g(a^{1/\alpha_2}) \right] \, dt \right\} \]

\[= (\ln b - \ln a) \int_0^1 a^{-1-t}b^t \left[t^{\alpha_1+\alpha_2} f(b)g(b) + m_1(1 - t^{\alpha_1}) t^{\alpha_2} f(a^{1/\alpha_1})g(b) \\
+ m_2 t^{\alpha_1}(1 - t^{\alpha_2}) f(b)g(a^{1/\alpha_2}) + m_1 m_2(1 - t^{\alpha_1})(1 - t^{\alpha_2}) g(a^{1/\alpha_2}) f(a^{1/\alpha_1}) \right] \, dt \]

The proof of Theorem 3.7 is complete. \qed

Corollary 3.7.1. Under the conditions of Theorem 3.7, if \(\alpha_1 = \alpha_2 = m_1 = m_2 = 1 \), we have

\[\int_a^b f(x)g(x) \, dx \geq (\ln b - \ln a) \left\{ [2L(a, b) - a(\ln b - \ln a) - 2a] f(a)g(a) + [a + b \\
- 2L(a, b)] [f(a)g(b) + f(b)g(a)] + [2L(a, b) + b(\ln b - \ln a) - 2b] f(b)g(b) \right\} \] (3.21)
References

[1] R.-F. Bai, F. Qi, and B.-Y. Xi, Hermite-Hadamard type inequalities for the \(m\)\text{-} and \((\alpha, m)\)-logarithmically convex functions, Filomat 27 (2013), no. 1, 1–7.

[2] S.-P. Bai, S.-H. Wang, and F. Qi, Some Hermite-Hadamard type inequalities for \(n\)-time differentiable \((\alpha, m)\)-convex functions, J. Inequal. Appl. 2012, 2012:267, 11 pages; Available online at http://dx.doi.org/10.1186/1029-242X-2012-267.

[3] M. K. Bakula, M. E. Özdemir, and J. Pečarić, Hadamard type inequalities for \(m\)-convex and \((\alpha, m)\)-convex functions, J. Inequal. Pure Appl. Math. 9 (2008), no. 4, Art. 96, 12 pages; Available online at http://www.emis.de/journals/JIPAM/article1032.html.

[4] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (1998), no. 5, 91–95; Available online at http://dx.doi.org/10.1016/S0893-9659(98)00086-X.

[5] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Type Inequalities and Applications, RGMIA Monographs, Victoria University, 2000; Available online at http://rgmia.org/monographs/hermite_hadamard.html.

[6] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput. 147 (2004), no. 1, 137–146; Available online at http://dx.doi.org/10.1016/S0096-3003(02)00657-4.

[7] U. S. Kirmaci, M. K. Bakula, M. E. Özdemir, and J. Pečarić, Hadamard-type inequalities for \(s\)-convex functions, Appl. Math. Comput. 193 (2007), no. 1, 26–35; Available online at http://dx.doi.org/10.1016/j.amc.2007.03.030.

[8] V. G. Mihešan, A generalization of the convexity, Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, 1993. (Romania)

[9] C. P. Niculescu, Convexity according to the geometric mean, Math. Inequal. Appl. 3 (2000), no. 2, 155–167; Available online at http://dx.doi.org/10.7153/mia-03-19.

[10] C. P. Niculescu, Convexity according to means, Math. Inequal. Appl. 6 (2003), no. 4, 571–579; Available online at http://dx.doi.org/10.7153/mia-06-53.

[11] G. Toader, Some generalizations of the convexity, Proc. Colloq. Approx. Optim., Univ. Cluj-Napoca, Cluj-Napoca, 1985, 329–338.

[12] S.-H. Wang, B.-Y. Xi, and F. Qi, On Hermite-Hadamard type inequalities for \((\alpha, m)\)-convex functions, Int. J. Open Probl. Comput. Sci. Math. 5 (2012), no. 4, 47–56.

[13] B.-Y. Xi, R.-F. Bai, and F. Qi, Hermite-Hadamard type inequalities for the \(m\)- and \((\alpha, m)\)-geometrically convex functions, Aequationes Math. 84 (2012), no. 3, 261–269; Available online at http://dx.doi.org/10.1007/s00010-011-0114-x.

(A.-P. Ji) College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, 028043, China
E-mail address: jiaiping999126.com

(T.-Y. Zhang) College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, 028043, China
E-mail address: zhangtianyu7010@126.com

(F. Qi) School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China; Department of Mathematics, School of Science, Tianjin Polytechnic University, Tianjin City, 300387, China
E-mail address: qifeng618@gmail.com, qifeng618@hotmail.com, qifeng618@qq.com
URL: http://qifeng618.wordpress.com