LOCALIZED ENERGY ESTIMATES FOR WAVE EQUATIONS ON HIGH DIMENSIONAL SCHWARZSCHILD SPACE-TIMES

PARUL LAUL AND JASON METCALFE

Abstract. The localized energy estimate for the wave equation is known to be a fairly robust measure of dispersion. Recent analogs on the \((1 + 3)\)-dimensional Schwarzschild space-time have played a key role in a number of subsequent results, including a proof of Price’s law. In this article, we explore similar localized energy estimates for wave equations on \((1 + n)\)-dimensional hyperspherical Schwarzschild space-times.

1. Introduction

One of the more robust measures of dispersion for the wave equation is the so called localized energy estimates. These estimates have played a role in understanding scattering theory, as means of summing local in time Strichartz estimates to obtain global in time Strichartz estimates on a compact set, as an essential tool for proving long time existence of quasilinear wave equations in exterior domains, and as means to handle errors in certain parametrix constructions.

Estimates of this form originated in \([28]\) where it was shown that solutions to the constant coefficient, homogeneous wave equation

\[
(\partial_t^2 - \Delta)u = 0, \quad u(0) = u_0, \quad \partial_t u(0) = u_1
\]
on \(\mathbb{R}_+ \times \mathbb{R}^n, \, n \geq 3\) satisfy

\[
\int_0^T \int_{\mathbb{R}^n} \frac{1}{|x|} |\nabla u|^2(t, x) \, dx \, dt \lesssim \|\nabla u_0\|_2^2 + \|u_1\|_2^2
\]

where \(\nabla\) denotes the angular derivatives. Though not the original method of proof, one can obtain this estimate by multiplying \(\Box u\) by \(\partial_r u + \frac{n-1}{2} u\), integrating over a space-time slab, and integrating by parts. One can also obtain control on \(\partial_r u\) and \(\partial_t u\) in a fixed dyadic annulus. Attempting to sum over these dyadic annuli comes at the cost of a logarithmic blow up in time. One may otherwise introduce an additional component of the weight that permits summability. In this case, it can be shown that for \(u\) as above and \(n \geq 4\)

\[
\|\langle x \rangle^{-1/2} u'\|_{L^2_{t,x}([0,T] \times \mathbb{R}^n)} + \|\langle x \rangle^{-3/2} u\|_{L^2_{t,x}([0,T] \times \mathbb{R}^n)} \lesssim \|\nabla u_0\|_2 + \|u_1\|_2.
\]

Here \(\langle x \rangle = \sqrt{1 + |x|^2}\) denotes the Japanese bracket and \(u' = (\partial_t u, \nabla_x u)\) represents the space-time gradient. An estimate akin to (1.1) also holds for \(n = 3\) but in this case the weight \(\langle x \rangle^{-3/2}\) in the second term in the left side must be replaced by \(\langle x \rangle^{-3/2}\). To prove (1.1), one multiplies the equation instead by \(f(r) \partial_r u + \frac{n-1}{2} \frac{f(r)}{r} u\) where \(f(r) = \frac{r}{r+2j}, \, j \geq 0\).

The second author was supported in part by the NSF through grant DMS0800678.
and integrates by parts. For fixed \(j \), this yields an estimate for the left side over \(|x| \approx 2^j \) with weight \((x)^{-1/2} \) in the first term. Introducing the additional weight and summing over \(j \) produces (1.1). See, e.g., [18], [19], [20], [23], [29], [31], [32]. Analogous estimates have been shown for small, asymptotically flat, possibly time-dependent perturbations of the d’Alembertian in [1], [24], [25, 26] as well as for time-independent, asymptotically flat, nontrapping perturbations in e.g. [11], [12], [30].

A particular case of interest which does not fall into these latter categories is the wave equation on (1+3)-dimensional Schwarzschild space-times. While asymptotically flat and time independent, this metric is not, however, nontrapping. There is trapping which occurs on the so called photon sphere which necessitates a loss in the estimates as compared to those for the Minkowski wave equation. Despite this complication, a number of proofs of estimates akin to (1.1) exist for the wave equation on Schwarzschild space-times. See e.g. [4]-[9], [14, 15], [22]. In [35], these estimates have been extended to Kerr space-times with small angular momentums. Here an additional difficulty is encountered as [2] shows that the estimates will not follow from an analog of the argument above with any first order differential multiplier.

The goal of this article is to extend the known localized energy estimates on (1 + 3)-dimensional Schwarzschild space-times to (1 + n)-dimensional Schwarzschild space-times for \(n \geq 3 \). There are multiple notions of the Schwarzschild space-time for \(n \geq 4 \), and we restrict our attention to the hyperspherical case. For a derivation and discussion of such black hole space times, see e.g. [33], [27]. An alternative notion of higher dimensional Schwarzschild space-times is discussed e.g. in [17]. We shall not explore these hyper-cylindrical Schwarzschild manifolds or other notions of higher dimensional black holes here.

The exterior of a (1 + n)-dimensional hyperspherical Schwarzschild black hole \((\mathcal{M}, g)\) is described by the manifold \(\mathcal{M} = \mathbb{R} \times (r_s, \infty) \times \mathbb{S}^{d+2} \) and the line element

\[
 ds^2 = -\left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right) dt^2 + \left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right)^{-1} dr^2 + r^2 d\omega^2.
\]

Here \(d = n - 3 \), \(r_s \) denotes the Schwarzschild radius (i.e. \(r = r_s \) is the event horizon), and \(d\omega \) is the surface measure on the sphere \(\mathbb{S}^{d+2} = \mathbb{S}^{n-1} \). Here, the d’Alembertian is given by

\[
 \Box_g \phi = \nabla^a \partial_a \phi = -\left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right)^{-1} \partial_t^2 \phi + r^{-(d+2)} \partial_r \left[r^{d+2} \left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right) \partial_r \phi \right] + \nabla \cdot \nabla \phi.
\]

The Killing vector field \(\partial_t \) yields the conserved energy

\[
 E[\phi](t) = \int_{\mathbb{S}^{d+2}} \int_{r \geq r_s} \left[\left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right)^{-1} (\partial_t \phi)^2(t, r, \omega) \right.
 + \left. \left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right)(\partial_r \phi)^2(t, r, \omega) + |\nabla \phi|^2(t, r, \omega) \right] r^{d+2} dr d\omega.
\]

That is, when \(\Box_g \phi = 0 \), \(E[\phi](t) = E[\phi](0) \) for all \(t \).
We now define our localized energy norm. To this end, we set

\[
\|\phi\|_{LE}^2 = \int_0^\infty \int_{S^{d+2}} \int_{r \geq r_*} \left[c_r(r) \left(1 - \left(\frac{r_*}{r} \right)^{d+1} \right) \left(\partial_r \phi \right)^2(t, r, \omega) + c_\omega(r) |\nabla \phi|^2(t, r, \omega) + c_0(r) \phi^2(t, r, \omega) \right] r^{d+2} \, dr \, d\omega \, dt
\]

where

\[
c_r = \frac{1}{r^{d+3} \left(1 - \log \left(\frac{r-r_*}{r} \right) \right)^2}, \quad c_\omega = \frac{1}{r \left(r - r_{ps} \right)^2}, \quad c_0 = \frac{1}{r^3 \left(1 - \log \left(\frac{r-r_*}{r} \right) \right)^4}.
\]

Here \(r_{ps} = \left(\frac{d+3}{2} \right)^{\frac{d-1}{d+3}} r_*, \) which is the location of the photon sphere. The main result of this article then states that a localized energy estimate holds on \(\mathcal{M}. \)

Theorem 1.1. Let \(\phi \) solve the homogeneous wave equation \(\Box_g \phi = 0 \) on a \((1+n)\)-dimensional hyperspherical Schwarzschild manifold with \(n \geq 4 \). Then we have

\[
\sup_{t \geq 0} E[\phi](t) + \|\phi\|_{LE}^2 \lesssim E[\phi](0).
\]

We note that by modifying the lower order portion of the multiplier which appears in the next section that it is straightforward to obtain an estimate on \(\partial_t \phi \) as well. Moreover, one can obtain an analogous estimate for the inhomogeneous wave equation by placing the forcing term in an appropriate dual norm. The necessary decay of the coefficient \(c_r \) at \(\infty \) can also be significantly improved. It is relatively simple to carry out these modifications, but for the sake of clarity, we omit the details.

As in the \((1+3)\)-dimensional case, the higher dimensional hyperspherical Schwarzschild space-times have a photon sphere where trapping occurs. Rays initially located on this sphere and moving initially tangent to it will stay on the surface for all times. Such trapping is an obstacle to many types of dispersive estimates, and the vanishing in the coefficient \(c_\omega \) at the trapped set is a loss, when compared to the nontrapping Minkowski setting, which results from this trapping.

The proof follows by constructing an appropriate differential multiplier. This is carried out in the next section, and the construction most closely resembles that which appears in \([22]\). Some significant technicalities needed to be resolved, however, in order to find a construction which works in all dimensions \(d \geq 1 \).

The localized energy estimates on \((1+3)\)-dimensional Schwarzschild manifolds have played a key role in a number of subsequent results. See, e.g., \([3, 4, 9, 10, 13-16, 21, 22, 34, 35]\). Theorem 1.1 permits possible generalizations of these studies to higher dimensions, and a portion of these will be explored in the first author’s upcoming doctoral dissertation and other subsequent works.
2. Construction of the multiplier

Associated to \Box_g is the energy-momentum tensor

$$Q_{\alpha\beta}[\phi] = \partial_\alpha \phi \partial_\beta \phi - \frac{1}{2} g_{\alpha\beta} \partial^\gamma \phi \partial_\gamma \phi$$

whose most important property is the following divergence condition

$$\nabla^\alpha Q_{\alpha\beta}[\phi] = \partial_\beta \phi \Box_g \phi.$$

Contracting $Q_{\alpha\beta}$ with the radial vector field $X = f(r)\left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right)\partial_r$, we form the momentum density $P_\alpha[\phi, X] = Q_{\alpha\beta}[\phi]X^\beta$. Calculating the divergence of this quantity we have

$$\nabla^\alpha P_\alpha[\phi, X] = \Box_g \phi X \phi + f'(r)\left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right)^2 (\partial_r \phi)^2 + \left(\frac{r^{d+1} - \frac{d+1}{r} r_s^{d+1}}{r^{d+1}}\right) f(r) |\nabla \phi|^2 \nabla^\alpha \phi \partial_\gamma \phi.$$

The last term involving the Lagrangian is not signed. In order to eliminate it, we utilize a lower order term in the multiplier. To this end, we modify the momentum density

$$\tilde{P}_\alpha[\phi, X] = P_\alpha[\phi, X] + \frac{1}{2} \left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right)^{-d+2} \partial_r \left(f(r) \right) \frac{1}{r} |\nabla \phi|^2 \partial_\alpha \phi$$

and recompute the divergence

$$\nabla^\alpha \tilde{P}_\alpha[\phi, X] = \Box_g \phi \left[X \phi + \frac{1}{2} \left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right)^{-d+2} \partial_r \left(f(r) \right) \frac{1}{r} |\nabla \phi|^2 \right]$$

(2.1) $$= \left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right)^2 f'(r) (\partial_r \phi)^2 + \left(\frac{r^{d+1} - \frac{d+1}{r} r_s^{d+1}}{r^{d+1}}\right) f(r) |\nabla \phi|^2 \nabla^\alpha \phi \partial_\gamma \phi.$$

Ideally one would choose $f(r)$ to be smooth, bounded, and so that the coefficients in the last three terms on the right are all nonnegative. Indeed, this is precisely what is done in, e.g., [31] and [24] when $r_s = 0$, i.e. in Minkowski space-time. The localized energy estimate then follows from an application of the divergence theorem as well as an application of a Hardy inequality and the energy estimate in order to handle the time boundary terms. Unfortunately, in the current setting it does not appear possible to construct such an f. We shall instead construct f so that the last term in the right can be bounded below by a positive quantity minus a fractional multiple of the second term in the right.

We let $g(r) = \frac{r^{d+2} - r_s^{d+2}}{r^{d+2}}$ and $h(r) = \ln\left(\frac{r^{d+1} - \frac{d+1}{r} r_s^{d+1}}{r^{d+1}}\right)$. The multiplier will be defined piecewise, and it will be convenient to parametrize in terms of the values of $h(r)$. To this end, we fix the notation r_θ to denote the value of r so that $h(r_\theta) = \theta$. Note, e.g.,
that \(r_\infty = r_s \) and \(r_{ps} = r_0 \). More explicitly, \(r_s^{d+1} = r_s^{d+1} \left(\frac{d+1}{r} + 1 \right) \). An approximate multiplier is

\[
g(r) + \frac{d + 2 r_{ps} r_s^{d+1}}{d + 3} h(r).
\]

We must, however, smooth out the logarithmic blow up at \(r = r_s \). We must also smooth out \(h(r) \) near \(\infty \) in order to prevent a term in \(f'(r) \) which has an unfavorable sign.

In order to accomplish this, set

\[
a(x) = \begin{cases}
-\frac{1}{\varepsilon} \delta(x+1) - \frac{1}{\varepsilon}, & x \leq -\frac{1}{\varepsilon} \\
-\frac{1}{\varepsilon} \leq x \leq 0 \\
x - \frac{2}{\delta x^2 x^3 + \frac{1}{\varepsilon} x^3}, & 0 \leq x \leq \alpha \\
x \geq \alpha.
\end{cases}
\]

Here \(\alpha = 5 - \delta_0 \) for some \(0 < \delta_0 \ll 1 \). Then, set

\[
f(r) = g(r) + \frac{d + 2 r_{ps} r_s^{d+1}}{d + 3} a(h(r)).
\]

We notice that \(f \) is \(C^2 \) with the exception of a jump in the second derivative at \(r_{1/\varepsilon} \).

Using that \(\Box g \phi = 0 \), integrating (2.11) over \([0, T] \times (r_s, \infty) \times S^{d+2} \), and applying the divergence theorem, we have

\[
(2.2) \quad -\int \int f(r) \partial_t \phi \partial_r r^{d+2} dr d\omega \bigg|_0^T - \frac{1}{2} \int \int \frac{1}{r^{d+2}} \partial_r (f(r) r^{d+2}) \partial_t \phi r^{d+2} dr d\omega \bigg|_0^T
\]

\[
= \int_0^T \int \left\{ \left(1 - \left(\frac{r_s}{r}\right)^{d+1} \right)^2 f'(r) (\partial_r \phi)^2 + \left(\frac{r^{d+1} - r_{ps}^{d+1}}{r^{d+1}} \right) f(r) |\nabla \phi|^2 \\
+ l(f) \phi^2 \right\} r^{d+2} dr d\omega dt
\]

\[
+ \frac{1}{4} r_{d-1/\varepsilon}^2 \left(1 - \left(\frac{r_s}{r_{1/\varepsilon}}\right)^{d+1} \right)^2 \left(f''(r_{1/\varepsilon}) - f''(r_{1/\varepsilon}) \right) \int_0^T \int \phi^2 |\phi|^2 d\omega dt
\]

where

\[
l(f) = -\frac{1}{4} r_{d-1/\varepsilon}^{(d+2)} \partial_r \left[\left(1 - \left(\frac{r_s}{r}\right)^{d+1} \right)^2 \partial_r \left(\left(1 - \left(\frac{r_s}{r}\right)^{d+1} \right) \right) \right] f''(r_{1/\varepsilon}) - f''(r_{1/\varepsilon}) \right) \int_0^T \int \phi^2 |\phi|^2 d\omega dt
\]

We first make a note about the boundary terms at \(r_{1/\varepsilon} \). Indeed, an elementary calculation shows

\[
f''(r_{1/\varepsilon}) - f''(r_{1/\varepsilon}) = \frac{d + 2 r_{ps} r_s^{d+1}}{d + 3} \phi''(-1/\varepsilon)(h'(r_{1/\varepsilon}))^2
\]

\[
= 2\varepsilon \frac{d + 2 r_{ps} r_s^{d+1}}{d + 3} \phi''(h'(r_{1/\varepsilon}))^2 \approx \delta \varepsilon \varepsilon^{2/\varepsilon}.
\]

Of particular interest is that the coefficient of the resulting boundary term at \(r_{1/\varepsilon} \) is \(O(\varepsilon) \).

We now proceed to showing that the sum of the first three terms in the right of (2.2) produce a positive contribution. To do so, we will examine \(f \) on a case by case basis and show
\[f'(r) > 0 \text{ for all } r > r_s \]
\[f(r) < 0 \text{ for } r < r_{ps} \text{ and } f(r) > 0 \text{ for } r > r_{ps}. \]
\[\int l(f) \phi^2 r^{d+2} dr d\omega dt \text{ is bounded below by a positive term minus a fractional multiple of the } (\partial_r \phi)^2 \text{ term and a } r_{-1/\varepsilon} \text{ boundary term.} \]

By absorbing these latter pieces into those previously shown to positively contribute, the estimate shall nearly be in hand. It will only remain to examine the time boundary terms, and in particular, establish the Hardy inequality which will permit a direct application of conservation of energy.

Case 1: \(r_s \leq r \leq r_{-1/\varepsilon}.\)

The multiplier in this region is constructed to smooth out the logarithmic blow up at the event horizon. This is the only case in which we shall not be able to just show that \(l(f) \geq 0.\)

Noting that \(a(x) \leq -1/\varepsilon \) for \(x \leq -1/\varepsilon,\) we immediately see that \(f(r) < 0\) on this range. We also compute

\[
(2.3) \quad f'(r) = \frac{(d + 2)r^{d+2}_{ps}}{d+3} - \frac{(d + 2)^2 r_{ps}r_s^{d+1}}{d+3} a(h(r)) \\
+ \frac{d + 2 r_{ps}r_s^{d+1}}{d+3} \frac{1}{r^{d+2}} (\delta \varepsilon h(r) + \delta - 1)^2 r^{d+1} - r_s^{d+1}.
\]

Each of these summands is nonnegative on the given range, yielding the desired sign for \(f'(r).\)

It remains to show an appropriate lower bound for the \(l(f)\phi^2\) term of (2.2). Calculating \(l(f)\) we find

\[
(2.4) \quad l(g(r)) = \left(\frac{d + 2}{d+3} \frac{r_{ps}r_s^{d+1}}{r^{d+2}} a(h(r)) \right) \\
+ \frac{(d + 1)(d + 2)}{2} \frac{r_{ps}r_s^{d+1}}{r^{2d+6}} (r^{d+1} - r_s^{d+1}) a'(h(r)) \\
+ \frac{(d + 1)^2(d + 2)(d + 5)}{4(d+3)} \frac{r_{ps}r_s^{d+1}}{r^{d+5}} a''(h(r)) \\
- \frac{(d + 1)^3(d + 2)}{4(d+3)} \frac{1}{r^{d+1} - r_s^{d+1}} a'''(h(r)).
\]

As \(a'(h(r)) = (\delta \varepsilon h(r) + \delta - 1)^{-2}\) and \(r < r_{ps}\) in this regime, the second term in the right has the desired sign. The third term in the right of (2.4) also has the desired sign as \(a''(h(r)) = -2\delta \varepsilon / (\varepsilon \delta h(r) + \delta - 1)^3\) and \(h(r) \leq -1/\varepsilon\) here.

The key step is to control the contribution of the last term in the right of (2.4). We shall abbreviate \(R(r) = \delta \varepsilon h(r) + \delta - 1\). By the Fundamental Theorem of Calculus, we observe

\[
\int_{r_s}^{r_{-1/\varepsilon}} \left(\frac{2\delta \varepsilon (d + 1)^2(d + 2)}{d+3} \frac{r_{ps}r_s^{d+1}}{r^{2d+6}} a(h(r)) \right) dr = - \frac{2\delta \varepsilon (d + 1)^2(d + 2)}{d+3} \frac{r_{ps}r_s^{d+1}}{r^{2d+6}} \phi(r_{-1/\varepsilon})^2.
\]
Evaluating the derivative in the left side yields

\[(2.5) \int_{r_s}^{r_{-1/\varepsilon}} 6\delta^2 \varepsilon^2 (d + 1)^3 (d + 2) \frac{r \phi}{\phi^2 (R(r))^4} \frac{\phi^2}{r^d} dr = - \int_{r_s}^{r_{-1/\varepsilon}} 4\delta^2 \varepsilon^2 (d + 1)^2 (d + 2) \frac{r \phi}{\phi^2 (R(r))^2} \phi^2 dr + \int_{r_s}^{r_{-1/\varepsilon}} 4\delta^2 \varepsilon^2 (d + 1)^2 (d + 2) \frac{r \phi}{\phi^2 (R(r))^3} \phi \partial_r \phi dr + \frac{2\delta^2 \varepsilon^2 (d + 1)^2 (d + 2)}{d + 3} \frac{r \phi}{\phi^2 (R(r))^2} \phi (r_{-1/\varepsilon})^2.\]

To the second term in the right, we apply the Schwarz inequality to obtain

\[(2.6) \int_{r_s}^{r_{-1/\varepsilon}} 4\delta^2 \varepsilon^2 (d + 1)^2 (d + 2) \frac{r \phi}{\phi^2 (R(r))^3} \phi \partial_r \phi dr \leq \int_{r_s}^{r_{-1/\varepsilon}} 3\delta^2 \varepsilon^2 (d + 2)(d + 1)^3 \frac{r \phi}{\phi^2 (R(r))^6} \phi^2 dr + \frac{4}{3} \int_{r_s}^{r_{-1/\varepsilon}} (d + 1)(d + 1) \frac{r \phi}{\phi^2 (R(r))^3} \phi \partial_r \phi^2 dr + \frac{2\delta^2 \varepsilon^2 (d + 1)^2 (d + 2) r \phi}{d + 3} \phi (r_{-1/\varepsilon})^2.\]

Plugging (2.6) into (2.5) yields

\[(2.7) \int_{r_s}^{r_{-1/\varepsilon}} 3\delta^2 \varepsilon^2 (d + 1)^3 (d + 2) \frac{r \phi}{\phi^2 (R(r))^3} \phi \partial_r \phi dr \leq - \int_{r_s}^{r_{-1/\varepsilon}} 4\delta^2 \varepsilon^2 (d + 1)^2 (d + 2) \frac{r \phi}{\phi^2 (R(r))^3} \phi^2 dr + \frac{4}{3} \int_{r_s}^{r_{-1/\varepsilon}} (d + 1)(d + 1) \frac{r \phi}{\phi^2 (R(r))^3} \phi \partial_r \phi^2 dr + \frac{2\delta^2 \varepsilon^2 (d + 1)^2 (d + 2) r \phi}{d + 3} \phi (r_{-1/\varepsilon})^2.\]

This shows that

\[(2.8) \left(\frac{1}{4} + \frac{1}{48}\right) \int_{\{r \in [r_s, r_{-1/\varepsilon}]\}} \frac{(d + 1)^3 (d + 2)}{d + 3} \frac{r \phi}{\phi^2 (R(r))^3} \frac{1}{r^d + 1 - r^d + 1 a''(h(r))} \phi^2 r^{d+2} dr d\omega dt \leq \frac{13}{12} \int_{\{r \in [r_s, r_{-1/\varepsilon}]\}} \frac{(d + 1)^2 (d + 2)}{(d + 3)} \frac{r \phi}{\phi^2 (R(r))^6} \phi \partial_r \phi^2 r^{d+2} dr d\omega dt + \frac{13}{18} \int_{\{r \in [r_s, r_{-1/\varepsilon}]\}} \frac{(d + 2)(d + 1)}{(d + 3)} \frac{r \phi}{\phi^2 (R(r))^6} \phi \partial_r \phi^2 r^{d+2} dr d\omega dt + \frac{13 \delta^2 \varepsilon^2 (d + 1)^2 (d + 2) r \phi}{d + 3} \frac{r \phi}{\phi^2 (R(r))^2} \phi (r_{-1/\varepsilon})^2 \int_{\phi \mid r = r_{-1/\varepsilon} = 0}.\]
We now use (2.8) and the fact that $\frac{d}{r^2} \leq \frac{d^2}{r^{d+1}}$ for $d \geq 1$ to account for the last term in (2.9). We then see that

$$
(2.9) \quad \int_{\{|r| \leq r_{-1/\varepsilon}\}} l(f) \phi^2 r^{d+2} \, dr \, dt \geq \int_{\{|r| \leq r_{-1/\varepsilon}\}} l(g) \phi^2 r^{d+2} \, dr \, dt + \frac{1}{48} \int_{\{|r| \leq r_{-1/\varepsilon}\}} \frac{(d+1)^3(d+2)}{d+3} \frac{r_{ps}^{d+1}}{r^4} \frac{1}{r^{d+1} - r_s^{d+1}} a''(h(r)) \phi^2 r^{d+2} \, dr \, dt
$$

$$
- \frac{13}{18} \int_{\{|r| \leq r_{-1/\varepsilon}\}} \left(1 - \frac{r_{ps}^{d+1}}{r^{d+1}}\right)^2 f'(r)(\partial_r \phi)^2 r^{d+2} \, dr \, dt
$$

$$
- \frac{13 \varepsilon (d+1)^2(d+2)}{12} \frac{r_{ps} r_s^{d+1}}{r_{-1/\varepsilon}^{d+1}} \int \phi^2 |r=r_{-1/\varepsilon}| \, ds \, dt.
$$

Here we have also used (2.8). As $l(g)$ remains bounded in the relevant region and as the coefficient in the integrand of the second term in the right of (2.9) is $\geq \varepsilon^2 d^{1/\varepsilon} \gg 1$ on the said region, the first term in the right can be controlled by a fraction of the second provided ε is sufficiently small. This finally yields

$$
(2.10) \quad \int_{\{|r| \leq r_{-1/\varepsilon}\}} l(f) \phi^2 r^{d+2} \, dr \, dt \geq \frac{1}{96} \int_{\{|r| \leq r_{-1/\varepsilon}\}} \frac{(d+1)^3(d+2)}{d+3} \frac{r_{ps}^{d+1}}{r^4} \frac{1}{r^{d+1} - r_s^{d+1}} a''(h(r)) \phi^2 r^{d+2} \, dr \, dt
$$

$$
- \frac{13}{18} \int_{\{|r| \leq r_{-1/\varepsilon}\}} \left(1 - \frac{r_{ps}^{d+1}}{r^{d+1}}\right)^2 f'(r)(\partial_r \phi)^2 r^{d+2} \, dr \, dt
$$

$$
- \frac{13 \varepsilon (d+1)^2(d+2)}{12} \frac{r_{ps} r_s^{d+1}}{r_{-1/\varepsilon}^{d+1}} \int \phi^2 |r=r_{-1/\varepsilon}| \, ds \, dt.
$$

The second term on the right can be bootstrapped into the positive contribution provided by the first term in the right of (2.2). The remaining boundary term at $r_{-1/\varepsilon}$ will be controlled at the end of this section using pieces from the subsequent case.

Case 2: $r_{-1/\varepsilon} \leq r \leq r_{ps}$

For r in this range, we simply have

$$
f(r) = \frac{r^{d+2} - r_{ps}^{d+2}}{r^{d+2}} + \frac{d + 2 r_{ps} r_s^{d+1}}{d + 3} \frac{r_{ps}^{d+1} - r_s^{d+1}}{r^{d+2}} \ln \left(\frac{r_{ps}^{d+1} - r_s^{d+1}}{d + 1} \frac{r^{d+1} - r_s^{d+1}}{d + 1} \right)
$$

which is negative, as is desired in order to guarantee a positive contribution from the $|\nabla \phi|^2$ term of (2.2). Moreover, we have

$$
f'(r) = \frac{(d + 2) r_{ps}^{d+2}}{r^{d+3}} + \frac{d + 2 r_{ps} r_s^{d+1}}{d + 3} \frac{d + 1}{r^{d+1} - r_s^{d+1}} - \frac{(d + 2)^2 r_{ps} r_s^{d+1}}{d + 3} \frac{r_{ps}^{d+1} - r_s^{d+1}}{r^{d+3}} \ln \left(\frac{r_{ps}^{d+1} - r_s^{d+1}}{d + 1} \frac{r^{d+1} - r_s^{d+1}}{d + 1} \right)
$$

whose every term is positive for $r_s < r \leq r_{ps}$.

It only remains to examine $l(f(r))$ for this region. Here, we first note that

$$
l(g(r)) = \frac{d + 2}{4r^{2d+5}} \left(r_{ps}^{2d+2} + (d + 3) r_s^{d+1} r^{d+1} - (d + 2)^2 r_{ps}^{2d+2} \right)
$$
and
\[
(2.12) \quad l \left(\frac{d + 2}{d + 3} \frac{r_{ps} r_{s}^{d+1}}{r_{s}^{d+2}} h(r) \right) = -\frac{(d + 2)(d + 1)}{4} \frac{r_{ps} r_{s}^{d+1}}{r_{s}^{d+2}} (2r_{s}^{d+1} - (d + 3)r_{s}^{d+1}).
\]
Since (2.12) is nonnegative for \(r \leq r_{ps} \), we have
\[
l \left(\frac{d + 2}{d + 3} \frac{r_{ps} r_{s}^{d+1}}{r_{s}^{d+2}} h(r) \right) \geq -\frac{(d + 2)(d + 1)}{4} \frac{r_{s}^{d+1}}{r_{s}^{d+5}} (2r_{s}^{d+1} - (d + 3)r_{s}^{d+1})
\]
for \(r \leq r_{ps} \). Summing this with (2.11), we have
\[
l(f(r)) \geq \frac{d + 2}{4r^{d+5}} (r_{s}^{d+1} - r_{s}^{d+1}) (dr_{s}^{d+1} + r_{s}^{d+1})
\]
which is clearly nonnegative for \(r \geq r_{s} \).

Case 3: \(r_{ps} \leq r \leq r_{s} \).

This region corresponds precisely to \(h(r) \in [0, \alpha] \). We, thus, see that
\[
f(r) = \frac{r_{d+2} - r_{ps}^{d+2}}{r_{d+2}} + \frac{d + 2}{d + 3} \frac{r_{ps} r_{s}^{d+1}}{r_{s}^{d+2}} h(r) \frac{(3h(r)^4 - 10h(r)^2\alpha^2 + 15\alpha^4)}{15\alpha^4}
\]
which is easily seen to be positive. Moreover,
\[
f'(r) = \frac{(d + 2)\frac{d_{r}^{d+2}}{r_{d+2}}}{d + 3} + \frac{d + 2}{d + 3} \frac{r_{ps} r_{s}^{d+1}}{r_{s}^{d+2}} \frac{h(r)}{\alpha^4} + \frac{d + 2}{d + 3} \frac{(d + 1)\frac{d_{r}^{d+1}}{r_{s}^{d+1}}}{r_{s}^{d+2} - r_{s}^{d+1}} \frac{h(r) - \alpha^2}{\alpha^4}.
\]
As \(a(h(r)) \) takes on a maximum value of \(\frac{8\alpha}{15} \) and as \(\frac{(d+2)(d+3)}{2} - \frac{(d+2)^2}{d+3} \frac{8\alpha}{15} > 0 \) for \(d \geq 1 \) and \(\alpha < 5 \), the sum of the first two terms is positive. And as the last term is clearly positive, we see that \(f'(r) > 0 \) as desired.

It remains to verify that \(l(f) \) is positive. We begin by calculating
\[
l(f) = \frac{d + 2}{4r^{d+5}} \left(d_{r}^{d+2} + (d + 3)r_{s}^{d+1}r_{s}^{d+1} - (d + 2)^2 r_{s}^{2d+2} \right)
\]
\[
+ \frac{d + 2}{d + 3} \frac{(d + 1)r_{s}^{d+1}r_{ps}}{r_{s}^{d+2}} \left(-2(d + 3)(r_{s}^{d+1} - r_{ps}^{d+1})(r_{s}^{d+1} - r_{s}^{d+1})a'(h(r)) \right)
\]
\[
+ (d + 1)(d + 5)r_{s}^{d+1}r_{s}^{d+1}a''(h(r)) - (d + 2)^2 r_{s}^{2d+2}a'''(h(r)) \right).
\]
Setting
\[
p(r) = r(d_{r}^{d+2} + (d + 3)r_{s}^{d+1}r_{s}^{d+1} - (d + 2)^2 r_{s}^{2d+2})
\]
\[
n_{1}(r) = -r_{ps} r_{s}^{d+1}(d + 1)(2r_{s}^{d+1} - r_{s}^{d+1})(d + 3) \frac{(h(r)^2 - \alpha^2)^2}{\alpha^4}
\]
\[
n_{2}(r) = r_{ps} r_{s}^{d+1} \frac{(d + 1)^2 (d + 5)}{d + 3} r_{s}^{d+1} \frac{4h(r)(h(r)^2 - \alpha^2)}{\alpha^4}
\]
\[
n_{3}(r) = r_{ps} r_{s}^{d+1} \frac{(d + 1)^3}{d + 3} \frac{r_{s}^{2d+2}}{r_{s}^{d+1} - r_{s}^{d+1}} \frac{4 \alpha^2 - 3h(r)^2}{\alpha^4},
\]
it remains to show that
\[
p(r) + n_{1}(r) + n_{2}(r) + n_{3}(r) > 0.
\]
The dominant term is $p(r)$, and we shall show
\begin{align}
(2.13) \quad & \frac{1}{3}p(r) + n_1(r) > 0, \\
(2.14) \quad & \frac{1}{2}p(r) + n_2(r) \geq 0, \\
(2.15) \quad & \frac{1}{6}p(r) + n_3(r) \geq 0.
\end{align}

Proof of (2.13): Using that we are in the regime $r \geq r_{ps}$ and that $(h(r)^2 - \alpha^2)^2$ is maximized when $h(r) = 0$, we have
\[
\frac{1}{3}p(r) + n_1(r) \geq \frac{1}{3}r_{ps}(d r_{ps}^{2d+2} + (d + 3)r_s^{d+1}r_{ps}^d - (d + 2)^2r_s^{2d+2}) \nonumber \\
\quad - (d + 1)r_{ps}r_s^{d+1}(2r_{ps}^d + (d + 3)r_{ps}^d) \\
\quad = \frac{1}{3}r_{ps}(d r_{ps}^{2d+2} - (5d + 3)r_s^{d+1}r_{ps}^d + (2d^2 + 8d + 5)r_s^{2d+2}) \\
\quad = \frac{1}{3}r_{ps}\left[d\left(r_{ps}^{d+1} - \frac{5d + 3}{2d}r_s^{d+1}\right)^2 + \frac{1}{4d}(d + 1)^2(8d - 9)r_s^{2d+2}\right].
\]
The last quantity is clearly positive, as desired, for $d > 1$.

For the case $d = 1$,
\[
\frac{1}{3}p(r) + n_1(r) \geq \frac{1}{3}r_1[r_1^4 + 4r_s^2r_1^2 - 9r_s^4] - 2\sqrt{2}r_1^3(2r_1^2 - 4r_s^2) \\
\quad = \frac{1}{3}\left(3\sqrt{2}r_1^3 - 13r_s^4(r - \sqrt{2}r_s) + 20\sqrt{2}r_1^3(r - \sqrt{2}r_s)^2 + 24r_1^2(r - \sqrt{2}r_s)^3 \\
\quad \quad + 5\sqrt{2}r_1(r - \sqrt{2}r_s)^4 + (r - \sqrt{2}r_s)^5\right) \\
\quad \geq \frac{1}{3}\left(3\sqrt{2}r_1^3 - 13r_s^4(r - \sqrt{2}r_s) + 20\sqrt{2}r_1^3(r - \sqrt{2}r_s)^2\right)
\]
which is an everywhere positive quadratic.

Proof of (2.14): Here, again, we use that we are studying the regime that $r \geq r_{ps}$ and that $h^2 - \alpha^2$ is minimized when $h(r) = 0$. It is thus obtained that
\begin{align}
(2.16) \quad & \frac{1}{2}p(r) + n_2(r) \geq \frac{1}{2}r_{ps}(dr_{ps}^{2d+2} + (d + 3)r_s^{d+1}r_{ps}^d - (d + 2)^2r_s^{2d+2}) \\
\quad & \quad - \frac{4r_{ps}r_s^{d+1}(d + 1)^2(d + 5)}{\alpha^2}\frac{r_{ps}^d}{d + 3}h(r) \\
\quad & = \frac{1}{2}r_{ps}\left(d(r_{ps}^{d+1} - r_s^{d+1}r_{ps}^d) + 3(d + 1)r_s^{d+1}(r_{ps}^{d+1} - r_s^{d+1}) - (d + 1)^2r_s^{2d+2} \\
\quad & \quad - \frac{8r_s^{d+1}(d + 1)^2(d + 5)}{\alpha^2}\frac{r_{ps}^d}{d + 3}h(r)\right).
\end{align}
Here, we make the change of variables $x = h(r)$. Thus,
\[
\frac{1}{2}p(r) + n_2(r) = \frac{d + 1}{2}r_{ps}^{d+1}e^x.
\]
The right side of (2.16) can be rewritten as
\[
\frac{r_{ps}}{2}r_s^{2d+2}(d + 1)^2\left[\frac{d}{4}x^2 + \frac{3}{2}e^x - 1 - \frac{4}{\alpha^2}\frac{(d + 5)(d + 1)}{d + 3}x e^x - \frac{8}{\alpha^2}\frac{d + 5}{d + 3}x\right].
\]
Setting \[q(x) = \frac{d}{4}e^{2x} + \frac{3}{2}e^x - 1 - \frac{4(d+5)(d+1)}{\alpha^2 d + 3}xe^x - \frac{8d+5}{\alpha^2 d + 3}x \]

and noticing that \(q(0) > 0 \), it will suffice to show that \(q'(x) \geq 0 \) for \(x \) between 0 and \(\alpha \). We compute

\[q'(x) = \frac{1}{2}e^x(3 + 6e^x) - \frac{4}{\alpha^2 d + 3} \left[2 + (d+1)e^x(1+x) \right]. \]

As \(\frac{d+3}{2d+3} \leq \frac{3}{2} \) for \(d \geq 1 \) and as \(1 + x \leq e^x \), it follows that

\[q'(x) \geq \frac{1}{2}e^x(3 + 6e^x) - \frac{6}{25} \left(2e^x + (d+1)e^x \right) > 0, \quad d \geq 1, \alpha = 5.\]

The latter inequality follows from the fact that \(\frac{d+3}{2d+3} \leq \frac{3}{2} \) and \(\frac{d+3}{d+1} \) provided \(d \geq 1 \). Since the above inequality holds for \(\alpha = 5 \), by continuity, we have that it also holds for \(\alpha = 5 - \delta_0 \) for some \(\delta_0 > 0 \), which completes the proof.

Proof of (2.15): Using that we are examining the region \(r \geq r_{ps} \), and rewriting \(l(g) \) as in the previous case, we have

\[
\frac{1}{6} p(r) + n_3(r) \geq \frac{1}{6} r_{ps} \left[d(r^{d+1} - r_s^{d+1})^2 + 3(d+1)r_s^{d+1}(r^{d+1} - r_s^{d+1}) - (d+1)^2r_s^{2d+2}\right. \\
+ \frac{24r_s^{d+1}}{\alpha^2} (d+1)^3 \left(1 - \frac{3}{\alpha^2}(h(r))^2 \right) \left. \left((r^{d+1} - r_s^{d+1}) + (r^{d+1} - r_s^{d+1}) \right) \right].
\]

Using that

\[
\frac{24r_s^{d+1}}{\alpha^2} (d+1)^3 \left(1 - \frac{3}{\alpha^2}(h(r))^2 \right) \frac{r_s^{2d+2}}{r^{d+1} - r_s^{d+1}} \geq -\frac{72r_s^{d+1}}{\alpha^2} (d+1)^3 (h(r))^2 \frac{r_s^{2d+2}}{r^{d+1} - r_s^{d+1}} \geq -\frac{144}{\alpha^4}r_s^{2d+2}(d+1)^2(h(r))^2,
\]

when \(r \geq r_{ps} \), we obtain

\[
\frac{1}{6} p(r) + n_3(r) \geq \frac{1}{6} r_{ps} \left[d(r^{d+1} - r_s^{d+1})^2 + 3(d+1)r_s^{d+1}(r^{d+1} - r_s^{d+1}) - (d+1)^2r_s^{2d+2}\right. \\
+ \frac{24r_s^{d+1}}{\alpha^2} (d+1)^3 \left(1 - \frac{3}{\alpha^2}(h(r))^2 \right) \left. \left((r^{d+1} - r_s^{d+1}) + (r^{d+1} - r_s^{d+1}) \right) \right] \geq -\frac{144}{\alpha^4}r_s^{2d+2}(d+1)^2(h(r))^2.
\]

Proceeding as above with the change of variables \(x = h(r) \), this is

\[
= \frac{(d+1)^2}{6} r_{ps}^2 r_s^{2d+2} \left[\left(\frac{d}{4}e^{2x} + \frac{3}{2}e^x - 1 + \frac{24d+1}{\alpha^2 d + 3} \left(1 - \frac{3}{\alpha^2}x^2 \right) \left((d+1)^2e^x + 2 \right) - \frac{144}{\alpha^4} \right. \right. \\
\left. \left. \frac{1}{d+3} \right] \right. \right. \\
Setting \[s(x) = \frac{d}{4}e^{2x} + \frac{3}{2}e^x - 1 + \frac{24d+1}{\alpha^2 d + 3} \left(1 - \frac{3}{\alpha^2}x^2 \right) \left((d+1)^2e^x + 2 \right) - \frac{144}{\alpha^4} \frac{1}{d+3} x^2, \]
we first note that \(s(0) > 0 \). For \(x \leq 5 \), we furthermore have
\[
s'(x) = \frac{1}{2\alpha^4(d+3)} \left[24\alpha^2(d+1)^2x^3 + \alpha^4(d+3)e^x(3+de^x) - 72x(8(d+2) + (d+1)^2e^x(x+2)) \right]
\geq \frac{1}{2\alpha^4(d+3)} \left[24\alpha^2(d+1)^2 + \alpha^4(d+3)e^x(3+de^x) - 72e^x(8(d+2) + 7(d+1)^2e^x) \right].
\]
For \(\alpha = 5 \), this is
\[
\frac{1}{1250(d+3)}e^x\left(5073 - 504e^x + 51d(49 + 17e^x) + d^2(600 + 121e^x)\right),
\]
which is easily seen to be positive for \(d \geq 1 \). By continuity, positivity also follows for \(\alpha = 5 - \delta_0 \) provided \(\delta_0 \) is sufficiently small.

Case 4: \(r \geq r_\alpha \).

In this regime,
\[
f(r) = \frac{r^{d+2} - r_s^{d+2}}{r^{d+2}} + \frac{8\alpha d + 2 r_ps^{d+1}}{15 d + 3} \frac{r^{d+2}}{r^{d+2}},
\]
which is clearly positive. Moreover,
\[
f'(r) = \frac{(d+2)r^{d+1}r_ps}{r^{d+2}} \left(\frac{d + 3}{2} - \frac{8\alpha d + 2}{15 d + 3} \right)
\]
which is also positive since \(\alpha < 5 \leq \frac{15(d+3)^2}{16(d+2)} \) for \(d \geq 1 \). Finally, we notice that \(l(f(r)) = l(g(r)) \) when in this case. Thus, as in the proof of (2.14), we have
\[
l(f(r)) = r_ps \left(d(r^{d+1} - r_s^{d+1})^2 + 3(d+1)r_s^{d+1}(r^{d+1} - r_s^{d+1}) - (d+1)^2r_s^{2d+2} \right).
\]
As \(r^{d+1} - r_s^{d+1} \geq \frac{d+1}{2}r_s^{d+1} \) for \(r \geq r_ps \), we see that \(l(f(r)) > 0 \) as desired.

Boundary term at \(r_{-1/\varepsilon} \):

In order to finish showing that the right side of (2.2) is nonnegative, it remains to examine the \(r_{-1/\varepsilon} \) boundary term in (2.2) as well as the subsequent contribution from (2.10). Here, we simply utilize the Fundamental Theorem of Calculus to control these terms via the positive contributions of the first and third term in the right of (2.2) in the range \([r_{-1/\varepsilon}, r_{ps}]\). The scaling parameter \(\delta \) insures the necessary smallness.

Fix a smooth cutoff \(\beta \) which is identity for, say, \(r \leq r_{-1} \) and which vanishes for \(r \geq r_{ps} \). Then, for \(r \leq r_{-1} \), we have
\[
\phi(r) = -\int_r^{r_{ps}} \partial_s(\beta \phi) \, ds.
\]
Using the Schwarz inequality, this yields
\[
\phi^2(r) \leq \int_r^{r_{ps}} |\beta|^2 |\phi|^2 \, ds - h(r) \int_r^{r_{ps}} (s^{d+1} - r_s^{d+1})\beta(\partial_s \phi)^2 \, ds.
\]
Applying this at \(r_{-1/\varepsilon} \) yields
\[
\varepsilon \phi^2(r_{-1/\varepsilon}) \leq \int_{r_{-1/\varepsilon}}^{r_{ps}} \nabla^\alpha \hat{P}_\alpha[\phi, X]^{d+2} \, dr.
\]
Multiplying both sides by \(\delta \) and integrating over \([0, T] \times \mathbb{S}^{d+2}, \) we see that these boundary terms can be bootstrapped into the contributions of Case 2.
In the previous section, we constructed a multiplier so that the right side of (2.2) provides a positive contribution. By inspection, the coefficients are easily seen to correspond to those in (1.2). What remains is to control the left side of (2.2) in terms of the initial energy. For the first term, this is straightforward. For the second term in the left side of (2.2), a Hardy-type inequality is employed, which shall be proved below.

For the first term in (2.2), we need only apply the Schwarz inequality to see that
\[\int f(r)\partial_t\phi(t, \cdot)\partial_r\phi(t, \cdot) r^{d+2} dr d\omega \lesssim E[\phi](t). \]
And thus, by conservation of energy, these terms are controlled by $E[\phi](0)$ as desired.

For the second term in (2.2), we again apply the Schwarz inequality. It remains to show that
\[(3.1) \int \left[\frac{1}{r^d} r^{d+2} \right]^2 \left(1 - \frac{r^{d+1}}{r^{d+2}} \right) \phi^2(t, \cdot) r^{d+2} dr d\omega \lesssim E[\phi](t) \]
as a subsequent application of conservation of energy will complete the proof.

In order to show (3.1), we shall prove a Hardy-type inequality which is in the spirit of that which appears in [14]. Indeed, we notice that the coefficient in the integrand in the left side of (3.1) is $O\left((\log(r - r_s))^{-2} (r - r_s)^{-1} \right)$ as $r \to r_s$ and is $O(r^{-2})$ as $r \to \infty$.

Thus, it will suffice to show that
\[(3.2) \int_{r_s}^{\infty} \frac{1}{r^d} \frac{1}{1 - \log \left(\frac{r-r_s}{r} \right)} \phi^2 r^{d+2} dr \lesssim \int_{r_s}^{\infty} \frac{r-r_s}{r} (\partial_r\phi)^2 r^{d+2} dr. \]

To this end, we set
\[\rho(r) = \int_{r_s}^{r} \frac{x^d}{1 - \log \left(\frac{x-r_s}{x} \right)} \left(\frac{x-r_s}{x} \right) dx. \]
Notice that $\rho(r) \sim r^{d+1}$ as $r \to \infty$ and $\rho(r) \sim \left[1 - \log \left(\frac{r-r_s}{r} \right) \right]^{-1}$ as $r \to r_s$.

Writing the left side of (3.2) as $\int \rho'(r)\phi^2 dr$, integrating by parts, and applying the Schwarz inequality, we have
\[\int \rho'(r)\phi^2 dr = -2 \int \rho(r)\phi\partial_r\phi dr \lesssim \left(\int \frac{(\rho(r))^2}{\rho'(r)} (\partial_r\phi)^2 dr \right)^{1/2} \left(\int \rho'(r)\phi^2 dr \right)^{1/2}. \]
This completes the proof of (3.2) as $\rho(r)/\rho'(r) \sim r^{d+2}$ as $r \to \infty$ and $\rho(r)/\rho'(r) \sim (r - r_s)$ as $r \to r_s$.

\[\text{LOCALIZED ENERGY ESTIMATES ON SCHWARZSCHILD SPACE-TIMES} \]
References

[1] S. Alinhac: On the Morawetz–Keel-Smith-Sogge inequality for the wave equation on a curved background. Publ. Res. Inst. Math. Sci. 42 (2006), 705–720.

[2] S. Alinhac: Energy multipliers for perturbations of the Schwarzschild metric. Comm. Math. Phys. 288 (2009), 199–224.

[3] P. Blue: Decay of the Maxwell field on the Schwarzschild manifold. J. Hyperbolic Diff. Equ. 5 (2008), 807–856.

[4] P. Blue and A. Soffer: Semilinear wave equations on the Schwarzschild manifold I: Local decay estimates. Adv. Differential Equations 8 (2003), 595–614.

[5] P. Blue and A. Soffer: The wave equation on the Schwarzschild metric II: Local decay for the spin-2 Regge-Wheeler equation. J. Math. Phys. 46 (2005), 9pp.

[6] P. Blue and A. Soffer: Errata for “Global existence and scattering for the nonlinear Schrödinger equation on Schwarzschild manifolds”, “Semilinear wave equations on the Schwarzschild manifold I: Local decay estimates”, and “The wave equation on the Schwarzschild metric II: Local decay for the spin 2 Regge Wheeler equation”, preprint. (ArXiv: gr-qc/0608073)

[7] P. Blue and A. Soffer: Phase space analysis on some black hole manifolds. J. Funct. Anal. 256 (2009), 1–90.

[8] P. Blue and A. Soffer: Improved decay rates with small regularity loss for the wave equation about a Schwarzschild black hole, preprint. (ArXiv: math/0612168)

[9] P. Blue and A. Soffer: A space-time integral estimate for a large data semi-linear wave equation on the Schwarzschild manifold, preprint. (ArXiv: 0710.017)

[10] M. Dafermos and I. Rodnianski: Small-amplitude nonlinear waves on a black hole background. J. Math. Pures Appl. 84 (2005), 1147–1172.

[11] M. Dafermos and I. Rodnianski: The red-shift effect and radiation decay on black hole spacetimes. Comm. Pure Appl. Math. 62 (2009), 859–919.

[12] M. Dafermos and I. Rodnianski: A note on energy currents and decay for the wave equation on a Schwarzschild background, preprint. (ArXiv: 0710.017)

[13] M. Dafermos and I. Rodnianski: A new physical-space approach to decay for the wave equation with applications to black hole spacetimes, preprint. (ArXiv: 0910.4957)

[14] R. Gregory and R. Laflamme: Hypercylindrical black holes. Phys. Rev. D 37 (1988), 305–308.

[15] K. Hidano and K. Yokoyama: A remark on the almost global existence theorems of Keel, Smith, and Sogge. Funkcial. Ekvac. 48 (2005), 1–34.

[16] K. Hidano and K. Yokoyama: Almost global existence for some semilinear wave equations. J. Anal. Math. 87 (2002), 265–279.

[17] C. E. Kenig, G. Ponce, and L. Vega: On the Zakharov and Zakharov-Schulman systems. J. Funct. Anal. 127 (1995), 204–234.

[18] J. Luk: Improved decay for solutions to the linear wave equation on a Schwarzschild black hole, preprint. (ArXiv: 0906.5588)

[19] J. Marzuola, J. Metcalfe, D. Tataru, and M. Tohaneanu: Strichartz estimates on Schwarzschild black hole backgrounds. Comm. Math. Phys. 293 (2010), 37–83.

[20] J. Metcalfe: Global existence for semilinear wave equations exterior to nontrapping obstacles. Houston J. Math. 30 (2004), 259–281.

[21] J. Metcalfe and C. D. Sogge: Long-time existence of quasilinear wave equations exterior to star-shaped obstacles via energy methods. SIAM J. Math. Anal. 38 (2006), 391–420.

[22] J. Metcalfe and D. Tataru: Global parametrices and dispersive estimates for variable coefficient wave equations. Math. Ann., to appear.

[23] J. Metcalfe and D. Tataru: Decay estimates for variable coefficient wave equations in exterior domains. Advances in Phase Space Analysis of Partial Differential Equations, In Honor of Ferruccio
Colombini’s 60th Birthday, Progress in Nonlinear Differential Equations and Their Applications, Vol 78, 2009. p. 201–217.

[27] R. C. Myers and M. J. Perry: Black holes in higher dimensional space-times. Ann. Physics 172 (1986), 304–347.

[28] C. Morawetz: Time decay for the nonlinear Klein-Gordon equations. Proc. Roy. Soc. Ser. A. 306 (1968), 291–296.

[29] H. F. Smith and C. D. Sogge: Global Strichartz estimates for nontrapping perturbations of the Laplacian. Comm. Partial Differential Equations 25 (2000), 2171–2183.

[30] C. D. Sogge and C. Wang: Concerning the wave equation on asymptotically Euclidean manifolds, preprint. (ArXiv: 0901.0022)

[31] J. Sterbenz: Angular regularity and Strichartz estimates for the wave equation. With an appendix by I. Rodnianski. Int. Math. Res. Not. 2005, 187–231.

[32] W. A. Strauss: Dispersal of waves vanishing on the boundary of an exterior domain. Comm. Pure Appl. Math. 28 (1975), 265–278.

[33] F. R. Tangherlini: Schwarzschild field in n dimensions and the dimensionality of space problem. Nuovo Cimento 27 (1963), 636–651.

[34] D. Tataru: Local decay of waves on asymptotically flat stationary space-times, preprint. (ArXiv: 0910.5290)

[35] D. Tataru and M. Tohaneanu: Local energy estimate on Kerr black hole backgrounds, preprint. (ArXiv: 0810.5766)
LOCALIZED ENERGY ESTIMATES FOR WAVE EQUATIONS ON
HIGH DIMENSIONAL SCHWARZSCHILD SPACE-TIMES

PARUL LAUL AND JASON METCALFE

Abstract. The localized energy estimate for the wave equation is known to be a fairly robust measure of dispersion. Recent analogs on the (1 + 3)-dimensional Schwarzschild space-time have played a key role in a number of subsequent results, including a proof of Price’s law. In this article, we explore similar localized energy estimates for wave equations on (1 + n)-dimensional hyperspherical Schwarzschild space-times.

1. Introduction

One of the more robust measures of dispersion for the wave equation is the so called localized energy estimates. These estimates have played a role in understanding scattering theory, as means of summing local in time Strichartz estimates to obtain global in time Strichartz estimates on a compact set, as an essential tool for proving long time existence of quasilinear wave equations in exterior domains, and as means to handle errors in certain parametrix constructions.

Estimates of this form originated in [30] where it was shown that solutions to the constant coefficient, homogeneous wave equation
\[(\partial^2_t - \Delta)u = 0, \quad u(0) = u_0, \quad \partial_t u(0) = u_1\]
on \(\mathbb{R}_+ \times \mathbb{R}^n, n \geq 3\) satisfy
\[
\int_0^T \int_{\mathbb{R}^n} \frac{1}{|x|} |\nabla u|^2(t, x) \, dx \, dt \lesssim \|\nabla u_0\|_2^2 + \|u_1\|_2^2
\]
where \(\nabla\) denotes the angular derivatives. Though not the original method of proof, one can obtain this estimate by multiplying \(\Box u\) by \(\partial_r u + \frac{n-1}{2} u\) integrating over a space-time slab, and integrating by parts. One can also obtain control on \(\partial_t u\) and \(\partial_t\) in a fixed dyadic annulus. Attempting to sum over these dyadic annuli comes at the cost of a logarithmic blow up in time. One may otherwise introduce an additional component of the weight that permits summability. In this case, it can be shown that for \(u\) as above and \(n \geq 4\)
\[
\|\langle x \rangle^{-1/2} u\|_{L^2_{t,x}(0,T \times \mathbb{R}^n)} + \|\langle x \rangle^{-3/2} u\|_{L^2_{t,x}(0,T \times \mathbb{R}^n)} \lesssim \|\nabla u_0\|_2 + \|u_1\|_2.
\]
(1.1)

Here \(\langle x \rangle = \sqrt{1 + |x|^2}\) denotes the Japanese bracket and \(u' = (\partial_t u, \nabla_x u)\) represents the space-time gradient. An estimate akin to (1.1) also holds for \(n = 3\) but in this case the weight \(\langle x \rangle^{-3/2}\) in the second term in the left side must be replaced by \(\langle x \rangle^{-3/2}\). To prove (1.1), one multiplies the equation instead by \(f(r)\partial_r u + \frac{a-1}{2} \frac{f'(r)}{r} u\) where \(f(r) = \frac{r}{1+2j}, j \geq 0\)

The second author was supported in part by the NSF through grant DMS0800678.
and integrates by parts. For fixed j, this yields an estimate for the left side over $|x| \approx 2^j$ with weight $(x)^{-1/2}$ in the first term. Introducing the additional weight and summing over j produces (1.1). See, e.g., [20], [21], [22], [25], [32], [34], [35]. Analogous estimates have been shown for small, asymptotically flat, possibly time-dependent perturbations of the d’Alembertian in [1], [26], [27, 28] as well as for time-independent, asymptotically flat, nontrapping perturbations in e.g. [12], [13], [33].

A particular case of interest which does not fall into these latter categories is the wave equation on (1+3)-dimensional Schwarzschild space-times. While asymptotically flat and time independent, this metric is not, however, nontrapping. There is trapping which occurs on the so called photon sphere which necessitates a loss in the estimates as compared to those for the Minkowski wave equation. Despite this complication, a number of proofs of estimates akin to (1.1) exist for the wave equation on Schwarzschild space-times. See [5]-[10], [15, 16], [24]. In [38], [17], and [3], these estimates have been extended to Kerr space-times with small angular momentums. Here an additional difficulty is encountered as [2] shows that the estimates will not follow from an analog of the argument above with any first order differential multiplier.

The goal of this article is to extend the known localized energy estimates on (1 + 3)-dimensional Schwarzschild space-times to (1 + n)-dimensional Schwarzschild space-times for $n \geq 3$. There are multiple notions of the Schwarzschild space-time for $n \geq 4$, and we restrict our attention to the hyperspherical case. For a derivation and discussion of such black hole space times, see e.g. [36], [29]. An alternative notion of higher dimensional Schwarzschild space-times is discussed e.g. in [19]. We shall not explore these hypercylindrical Schwarzschild manifolds or other notions of higher dimensional black holes here.

The exterior of a (1 + n)-dimensional hyperspherical Schwarzschild black hole (\mathcal{M}, g) is described by the manifold $\mathcal{M} = \mathbb{R} \times (r_s, \infty) \times S^{d+2}$ and the line element

$$ds^2 = -\left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right)dt^2 + \left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right)^{-1}dr^2 + r^2d\omega^2.$$

Here $d = n - 3$, r_s denotes the Schwarzschild radius (i.e. $r = r_s$ is the event horizon), and $d\omega$ is the surface measure on the sphere $S^{d+2} = S^{n-1}$. Here, the d’Alembertian is given by

$$\Box_g \phi = \nabla^a \partial_a \phi$$

$$= -\left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right)^{-1} \partial_t^2 \phi + r^{-(d+2)}\partial_r \left[r^{d+2}\left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right) \partial_r \phi \right] + \nabla \cdot \nabla \phi.$$

The Killing vector field ∂_t yields the conserved energy

$$E[\phi](t) = \int_{S^{d+2}} \int_{r \geq r_s} \left[\left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right)^{-1}(\partial_t \phi)^2(t, r, \omega) \right.$$

$$\left. + \left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right)(\partial_r \phi)^2(t, r, \omega) + |\nabla \phi|^2(t, r, \omega) \right] r^{d+2} dr d\omega.$$

That is, when $\Box_g \phi = 0$, $E[\phi](t) = E[\phi](0)$ for all t.
We now define our localized energy norm. To this end, we set

\[
\|\phi\|_{LE}^2 = \int_0^\infty \int_{S^{d+2}} \int_{r \geq r_s} \left[c_r(r) \left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right)(\partial_r \phi)^2(t, r, \omega) + c_\omega(r)|\nabla\phi|^2(t, r, \omega) + c_0(r)\phi^2(t, r, \omega)\right] r^{d+2} dr d\omega dt
\]

where

\[
c_r = \frac{1}{r^{d+3}} \left(1 - \log\left(\frac{r-r_s}{r}\right)\right)^2, \quad c_\omega = \frac{1}{r^4} \left(1 - \log\left(\frac{r-r_s}{r}\right)\right)^2, \quad c_0 = \left(\frac{r-r_s}{r}\right)^{-1} \frac{1}{r^3 \left(1 - \log\left(\frac{r-r_s}{r}\right)\right)}.
\]

Here \(r_{ps} = \left(\frac{d+3}{2}\right)^{\frac{1}{d+1}} r_s\), which is the location of the photon sphere. The main result of this article then states that a localized energy estimate holds on \(M\).

Theorem 1.1. Let \(\phi\) solve the homogeneous wave equation \(\Box g \phi = 0\) on a \((1+n)\)-dimensional hyperspherical Schwarzschild manifold with \(n \geq 4\). Then we have

\[
(1.3) \sup_{t \geq 0} E[\phi](t) + \|\phi\|_{LE}^2 \lesssim E[\phi](0).
\]

We note that by modifying the lower order portion of the multiplier which appears in the next section that it is straightforward to obtain an estimate on \(\partial_t \phi\) as well. Moreover, one can obtain an analogous estimate for the inhomogeneous wave equation by placing the forcing term in an appropriate dual norm. The necessary decay of the coefficient \(c_r\) at \(\infty\) can also be significantly improved. It is relatively simple to carry out these modifications, but for the sake of clarity, we omit the details.

As in the \((1+3)\)-dimensional case, the higher dimensional hyperspherical Schwarzschild space-times have a photon sphere where trapping occurs. Rays initially located on this sphere and moving initially tangent to it will stay on the surface for all times. Such trapping is an obstacle to many types of dispersive estimates, and the vanishing in the coefficient \(c_\omega\) at the trapped set is a loss, when compared to the nontrapping Minkowski setting, which results from this trapping.

The proof follows by constructing an appropriate differential multiplier. This is carried out in the next section, and the construction most closely resembles that which appears in [24]. Some significant technicalities needed to be resolved, however, in order to find a construction which works in all dimensions \(d \geq 1\).

The localized energy estimates on \((1+3)\)-dimensional Schwarzschild manifolds have played a key role in a number of subsequent results. See, e.g., [4], [7]-[10], [11],[14]-[18], [23], [24], [37], [38]. Theorem 1.1 permits possible generalizations of these studies to higher dimensions, and a portion of these will be explored in the first author’s upcoming doctoral dissertation and other subsequent works.

\[\footnote{Upon completion of this work, the authors learned that a version of Theorem 1.1 was also obtained independently in the forthcoming [31].}\]
2. CONSTRUCTION OF THE MULTIPLIER

Associated to \(\Box_g\) is the energy-momentum tensor

\[
Q_{\alpha\beta}[\phi] = \partial_\alpha \phi \partial_\beta \phi - \frac{1}{2} g_{\alpha\beta} \partial^\gamma \phi \partial_\gamma \phi
\]

whose most important property is the following divergence condition

\[
\nabla^\alpha Q_{\alpha\beta}[\phi] = \partial_\beta \phi \Box_g \phi.
\]

Contracting \(Q_{\alpha\beta}\) with the radial vector field \(X = f(r) \left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right) \partial_r\), we form the momentum density \(P_\alpha[\phi, X] = Q_{\alpha\beta}[\phi] X^\beta\). Calculating the divergence of this quantity we have

\[
\nabla^\alpha P_\alpha[\phi, X] = \Box_g \phi X^\phi + f'(r) \left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right)^2 \left(\partial_r \phi\right)^2 + \left(\frac{r^{d+1} + \frac{d+1}{2} r_s^{d+1}}{r^{d+1}}\right) f(r) |\nabla \phi|^2
\]

\[
- \frac{1}{2} \left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right) r^{-(d+2)} \partial_r (r^{d+2} f(r)) |\nabla \phi|^2.
\]

The last term involving the Lagrangian is not signed. In order to eliminate it, we utilize a lower order term in the multiplier. To this end, we modify the momentum density

\[
\tilde{P}_\alpha[\phi, X] = P_\alpha[\phi, X] + \frac{1}{2} \left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right) r^{-(d+2)} \partial_r (r^{d+2} f(r)) \phi \partial_\alpha \phi
\]

and recompute the divergence

\[
(2.1) \quad \nabla^\alpha \tilde{P}_\alpha[\phi, X] = \Box_g \phi \left[X^\phi + \frac{1}{2} \left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right) r^{-(d+2)} \partial_r (f(r)r^{d+2})\right]
\]

\[
+ \left(1 - \left(\frac{r_s}{r}\right)^{d+1}\right)^2 f'(r) (\partial_r \phi)^2 + \left(\frac{r^{d+1} + \frac{d+1}{2} r_s^{d+1}}{r^{d+1}}\right) f(r) |\nabla \phi|^2
\]

\[
- \frac{1}{4} \nabla^\alpha \partial_\alpha \left[1 - \left(\frac{r_s}{r}\right)^{d+1}\right] r^{-(d+2)} \partial_r (f(r)r^{d+2}) |\nabla \phi|^2.
\]

Ideally one would choose \(f(r)\) to be smooth, bounded, and so that the coefficients in the last three terms on the right are all nonnegative. Indeed, this is precisely what is done in, e.g., [34] and [26] when \(r_s = 0\), i.e., in Minkowski space-time. The localized energy estimate then follows from an application of the divergence theorem as well as an application of a Hardy inequality and the energy estimate in order to handle the time boundary terms. Unfortunately, in the current setting it does not appear possible to construct such an \(f\). We shall instead construct \(f\) so that the last term in the right can be bounded below by a positive quantity minus a fractional multiple of the second term in the right.

We let \(g(r) = \frac{r^{d+2}-r_s^{d+2}}{r^{d+2}}\) and \(h(r) = \ln \left(\frac{r^{d+1}+r_s^{d+1}}{r^{d+1}}\right)\). The multiplier will be defined piecewise, and it will be convenient to parametrize in terms of the values of \(h(r)\). To this end, we fix the notation \(r_0\) to denote the value of \(r\) so that \(h(r_0) = \theta\). Note, e.g.,
that $r_{-\infty} = r_s$ and $r_{ps} = r_0$. More explicitly, $r^{d+1}_0 = r^{d+1}_s \left(\frac{d+1}{d+2} \phi + 1 \right)$. An approximate multiplier is

$$g(r) + \frac{d + 2 \, r_{ps} r^{d+1}_s}{d + 3 \, r^{d+2}} \, h(r).$$

We must, however, smooth out the logarithmic blow up at $r = r_s$. We must also smooth out $h(r)$ near ∞ in order to prevent a term in $f'(r)$ which has an unfavorable sign.

In order to accomplish this, set

$$a(x) = \begin{cases} -\frac{1}{\varepsilon} \frac{\epsilon \delta}{(x+1)-1} - \frac{1}{\varepsilon}, & x \leq -\frac{1}{\varepsilon} \\ x, & -\frac{1}{\varepsilon} \leq x \leq 0 \\ x - \frac{2}{\delta} x^3 + \frac{1}{\delta} x^5, & 0 \leq x \leq \alpha \\ \frac{8}{15}, & x \geq \alpha. \end{cases}$$

Here $\alpha = 5 - \delta_0$ for some $0 < \delta_0 < 1$. Then, set

$$f(r) = g(r) + \frac{d + 2 \, r_{ps} r^{d+1}_s}{d + 3 \, r^{d+2}} \, a(h(r)).$$

We notice that f is C^2 with the exception of a jump in the second derivative at $r_{-1/\varepsilon}$.

Using that $\Box_g \phi = 0$, integrating (2.1) over $[0, T] \times (r_s, \infty) \times \mathbb{S}^{d+2}$, and applying the divergence theorem, we have

$$\frac{d}{dr} \int_0^T \int \left\{\left(1 - \left(\frac{r_s}{r} \right)^{d+1} \right)^2 f''(r)(\partial_r \phi)^2 + \left(\frac{r^{d+1} - r^{d+1}_s}{r^{d+1}} \right) \frac{f(r)}{r} |\nabla \phi|^2 \right\} dr \, d\omega \, dr \, dt$$

$$+ \frac{1}{4} r^{-\frac{d+2}{1/\varepsilon}} \left(1 - \left(\frac{r_s}{r_{-1/\varepsilon}} \right)^{d+1} \right)^2 \left(f''(r_{-1/\varepsilon}) - f''(r_{+1/\varepsilon}) \right) \int_0^T \int \phi_2^2 |r=r_{-1/\varepsilon}| \, d\omega \, dt$$

where

$$l(f) = -\frac{1}{4} r^{-(d+2)} \partial_r \left\{ \left(1 - \left(\frac{r_s}{r} \right)^{d+1} \right)^r \partial_r \partial_r \left\{ \left(1 - \left(\frac{r_s}{r} \right)^{d+1} \right)^{r-(d+2)} \partial_r \left(f(r) r^{d+2} \right) \right\} \right\}.$$
• $f'(r) > 0$ for all $r > r_s$
• $f(r) < 0$ for $r < r_{ps}$ and $f(r) > 0$ for $r > r_{ps}$.
• $\int l(f)\phi^2 r^{d+2} \, dr \, d\omega \, dt$ is bounded below by a positive term minus a fractional multiple of the $(\partial_r \phi)^2$ term and a $r_{-1/\varepsilon}$ boundary term.

By absorbing these latter pieces into those previously shown to positively contribute, the estimate shall nearly be in hand. It will only remain to examine the time boundary terms, and in particular, establish the Hardy inequality which will permit a direct application of conservation of energy.

Case 1: $r_s \leq r \leq r_{-1/\varepsilon}$.

The multiplier in this region is constructed to smooth out the logarithmic blow up at the event horizon. This is the only case in which we shall not be able to just show that $l(f) \geq 0$.

Noting that $a(x) \leq -1/\varepsilon$ for $x \leq -1/\varepsilon$, we immediately see that $f(r) < 0$ on this range. We also compute

\[
(2.3) \quad f'(r) = \frac{(d+2)r_{ps}^{d+1}}{r^{d+3}} \frac{r_{ps}^{d+1}}{d+3} a(h(r)) + \frac{d+2}{r^{d+3}} \frac{1}{\varepsilon} \frac{(d+1)r^d}{(\varepsilon h(r) + \delta -1)^2 r^{d+1} - r_{ps}^{d+1}}.
\]

Each of these summands is nonnegative on the given range, yielding the desired sign for $f'(r)$.

It remains to show an appropriate lower bound for the $l(f)\phi^2$ term of (2.2). Calculating $l(f)$ we find

\[
(2.4) \quad l(g(r)) + l\left(\frac{(d+2)r_{ps}^{d+1}}{d+3} a(h(r))\right) = \frac{d+2}{4r^{2d+5}} \left(d r^{2d+2} + (d+3)r_s^{d+1}r^{d+1} - (d+2)^2 r_{ps}^{d+2} \right) + \frac{(d+1)(d+2)}{2} \frac{r_{ps}^{d+1}}{r^{2d+6}} (r_{ps}^{d+1} - r^{d+1}) a'(h(r)) + \frac{(d+1)^2(d+2)(d+5)}{4(d+3)} \frac{r_{ps}^{d+1}}{r^{d+5}} a''(h(r)) - \frac{(d+1)^3(d+2)}{4(d+3)} \frac{r_{ps}^{d+1}}{r^4} \frac{1}{r^{d+1} - r_{ps}^{d+1}} a'''(h(r)).
\]

As $a'(h(r)) = (\delta \varepsilon h(r) + \delta -1)^{-2}$ and $r < r_{ps}$ in this regime, the second term in the right has the desired sign. The third term in the right of (2.4) also has the desired sign as $a''(h(r)) = -2\delta \varepsilon / (\varepsilon h(r) + \delta -1)^3$ and $h(r) \leq -1/\varepsilon$ here.

The key step is to control the contribution of the last term in the right of (2.4). We shall abbreviate $R(r) = \delta \varepsilon h(r) + \delta -1$. By the Fundamental Theorem of Calculus, we observe

\[
\int_{r_s}^{r_{-1/\varepsilon}} \partial_r \left(\frac{2\delta \varepsilon (d+1)^2(d+2)}{d+3} \frac{r_{ps}^{d+1}}{r^2 R(r)^3} \phi^2 \right) \, dr = -\frac{2\delta \varepsilon (d+1)^2(d+2)}{d+3} \frac{r_{ps}^{d+1}}{r_{-1/\varepsilon}^2} \phi(r_{-1/\varepsilon}^2).
\]
Evaluating the derivative in the left side yields

\[\int_{r_s}^{r_{1/\varepsilon}} 6\delta^2 \varepsilon^2 (d + 1)^3 (d + 2) \frac{r ps r_s^{d+1}}{d + 3} \frac{r^d}{r^2(R(r))^4 r^{d+1} - r_s^{d+1}} \phi^2 \, dr \]
\[= - \int_{r_s}^{r_{1/\varepsilon}} 4\delta\varepsilon (d + 1)^2 (d + 2) \frac{r ps r_s^{d+1}}{d + 3} \frac{r^d}{r^2(R(r))^3} \phi^2 \, dr \]
\[+ \int_{r_s}^{r_{1/\varepsilon}} 4\delta\varepsilon (d + 1)^2 (d + 2) \frac{r ps r_s^{d+1}}{d + 3} \frac{r^d}{r^2(R(r))^3} \phi \partial_r \phi \, dr \]
\[+ \frac{2\delta\varepsilon (d + 1)^2 (d + 2)}{d + 3} \frac{r ps r_s^{d+1}}{r_{1/\varepsilon}^2} \phi (r_{1/\varepsilon})^2. \]

To the second term in the right, we apply the Schwarz inequality to obtain

\[\int_{r_s}^{r_{1/\varepsilon}} \frac{4\delta\varepsilon (d + 1)^2 (d + 2)}{d + 3} \frac{r ps r_s^{d+1}}{r^2(R(r))^3} \phi \partial_r \phi \, dr \]
\[\leq \int_{r_s}^{r_{1/\varepsilon}} 3\delta^2 \varepsilon^2 (d + 2)(d + 1)^3 \frac{r ps r_s^{d+1} r^{d-2}}{d + 3} \frac{r^d}{r^2(R(r))^3} \phi^2 \, dr \]
\[+ \frac{4}{3} \int_{r_s}^{r_{1/\varepsilon}} (d + 2)(d + 1) \frac{r ps r_s^{d+1} r^{d+1} - r_s^{d+1}}{r^{d+2}} \frac{r^d}{r^2(R(r))^2} (\partial_r \phi)^2 \, dr. \]

Plugging (2.6) into (2.5) yields

\[\int_{r_s}^{r_{1/\varepsilon}} 3\delta^2 \varepsilon^2 (d + 2)(d + 1)^3 \frac{r ps r_s^{d+1}}{d + 3} \frac{r^d}{r^2(R(r))^3} r^{d+1} - r_s^{d+1} \phi^2 \, dr \]
\[\leq - \int_{r_s}^{r_{1/\varepsilon}} 4\delta\varepsilon (d + 1)^2 (d + 2) \frac{r ps r_s^{d+1}}{d + 3} \frac{r^d}{r^2(R(r))^3} \phi^2 \, dr \]
\[+ \frac{4}{3} \int_{r_s}^{r_{1/\varepsilon}} (d + 2)(d + 1) \frac{r ps r_s^{d+1} r^{d+1} - r_s^{d+1}}{d + 3} \frac{r^d}{r^2(R(r))^2} (\partial_r \phi)^2 \, dr \]
\[+ \frac{2\delta\varepsilon (d + 1)^2 (d + 2)}{d + 3} \frac{r ps r_s^{d+1}}{r_{1/\varepsilon}^2} \phi (r_{1/\varepsilon})^2. \]

This shows that

\[\left(\frac{1}{4} + \frac{1}{48} \right) \int_{\{r \in [r_s, r_{1/\varepsilon}]\}} \frac{(d + 1)^3 (d + 2)}{d + 3} \frac{r ps r_s^{d+1}}{r^4} \frac{1}{r^{d+1} - r_s^{d+1}} a''(h(r)) \phi^2 \, r^{d+2} \, dr \, d\omega \, dt \]
\[\leq \frac{13}{12} \int_{\{r \in [r_s, r_{1/\varepsilon}]\}} \frac{(d + 1)^2 (d + 2)}{(d + 3)} \frac{r ps r_s^{d+1}}{r^{d+5}} a''(h(r)) \phi^2 \, r^{d+2} \, dr \, d\omega \, dt \]
\[+ \frac{13}{18} \int_{\{r \in [r_s, r_{1/\varepsilon}]\}} \frac{(d + 2)(d + 1)}{(d + 3)} \frac{r ps r_s^{d+1}}{r^{d+3}} \left(1 - \frac{r^{d+1}}{r_s^{d+1}} \right) \frac{1}{(r^2(R(r))^2)} (\partial_r \phi)^2 \, r^{d+2} \, dr \, d\omega \, dt \]
\[+ \frac{13}{12} \frac{\delta \varepsilon (d + 1)^2 (d + 2)}{d + 3} \frac{r ps r_s^{d+1}}{r_{1/\varepsilon}^2} \int_{\{r = r_{1/\varepsilon}\}} \phi^2 \, dr \, d\sigma \, dt. \]
We now use (2.9) and the fact that \(\frac{d}{r} \leq \frac{d+2}{r} \) for \(d \geq 1 \) to account for the last term in (2.10). We then see that

\[
\int_{\{r \in [r, r_{-1/\varepsilon}]\}} l(f)\phi^2 r^{d+2} dr d\omega dt \geq \int_{\{r \in [r, r_{-1/\varepsilon}]\}} l(g)\phi^2 r^{d+2} dr d\omega dt
\]

\[
+ \frac{1}{48} \int_{\{r \in [r, r_{-1/\varepsilon}]\}} (d+1)^3(d+2) r_p s\phi^d+1 \frac{1}{d+3} \frac{a''(h(r))\phi^2 r^{d+2}}{r^{d+1} - r_s^d} dr d\omega dt
\]

\[
- \frac{13}{18} \int_{\{r \in [r, r_{-1/\varepsilon}]\}} \left(1 - \frac{r_s^d}{r^{d+1}}\right)^2 f'(r) (\partial_r \phi)^2 r^{d+2} dr d\omega dt
\]

Here we have also used (2.9). As \(l(g) \) remains bounded in the relevant region and as the coefficient in the integrand of the second term in the right of (2.10) is \(\gtrsim \varepsilon^2 \) on the said region, the first term in the right can be controlled by a fraction of the second provided \(\varepsilon \) is sufficiently small. This finally yields

\[
\int_{\{r \in [r, r_{-1/\varepsilon}]\}} l(f)\phi^2 r^{d+2} dr d\omega dt
\]

\[
\geq \frac{1}{96} \int_{\{r \in [r, r_{-1/\varepsilon}]\}} (d+1)^3(d+2) r_p s\phi^d+1 \frac{1}{d+3} \frac{a''(h(r))\phi^2 r^{d+2}}{r^{d+1} - r_s^d} dr d\omega dt
\]

\[
- \frac{13}{18} \int_{\{r \in [r, r_{-1/\varepsilon}]\}} \left(1 - \frac{r_s^d}{r^{d+1}}\right)^2 f'(r) (\partial_r \phi)^2 r^{d+2} dr d\omega dt
\]

The second term on the right can be bootstrapped into the positive contribution provided by the first term in the right of (2.9). The remaining boundary term at \(r_{-1/\varepsilon} \) will be controlled at the end of this section using pieces from the subsequent case.

Case 2: \(r_{-1/\varepsilon} \leq r \leq r_p \).

For \(r \) in this range, we simply have

\[
f(r) = \frac{\phi^d+2 - \phi^{d+2}}{\phi^{d+2}} + \frac{d+2}{d+3} \frac{r_p s\phi^d+1}{\phi^d+1} \ln \left(\frac{\phi^{d+1} - \phi^{d+2}}{\phi^{d+2}}\right)
\]

which is negative, as is desired in order to guarantee a positive contribution from the \(|\nabla \phi|^2 \) term of (2.2). Moreover, we have

\[
f'(r) = \frac{(d+2)\phi^{d+2}}{\phi^{d+3}} + \frac{d+2}{d+3} \frac{r_p s\phi^d+1}{\phi^d+1} \frac{d+1}{d+3} \frac{r_p s^d+1}{\phi^{d+1} - \phi^{d+2}} - \frac{(d+2)^2}{d+3} \frac{r_p s^d+1}{\phi^{d+3}} \ln \left(\frac{\phi^{d+1} - \phi^{d+2}}{\phi^{d+2}}\right)
\]

whose every term is positive for \(r_s < r \leq r_p \).

It only remains to examine \(l(f(r)) \) for this region. Here, we first note that

\[
l(g) = \frac{d+2}{4r^{2d+5}} \left((d+3)r_p s^d+1 - (d+2)^2 r_p s^{2d+2}\right)
\]
and

$$l \left(\frac{d + 2}{d + 3} \frac{r_p s^{d+1}}{r^{d+2}} \right. h(r) \left. \right) = -\frac{(d + 2)(d + 1)}{4} \frac{r_p s^{d+1}}{r^{2d+6}} \left(2r^{d+1} - (d + 3)r_s^{d+1} \right).$$

Since (2.12) is nonnegative for $r \leq r_p$, we have

$$l \left(\frac{d + 2}{d + 3} \frac{r_p s^{d+1}}{r^{d+2}} \right. h(r) \left. \right) \geq -\frac{(d + 2)(d + 1)}{4} \frac{s^{d+1}}{r^{2d+5}} \left(2r^{d+1} - (d + 3)r_s^{d+1} \right)$$

for $r \leq r_p$. Summing this with (2.11), we have

$$l(f(r)) \geq \frac{d + 2}{4r^{2d+5}} (r^{d+1} - r_s^{d+1}) (dr^{d+1} + r_s^{d+1}),$$

which is clearly nonnegative for $r \geq r_s$.

Case 3: $r_p \leq r \leq r_\alpha$.

This region corresponds precisely to $h(r) \in [0, \alpha]$. We, thus, see that

$$f(r) = \frac{r^{d+2} - r_p^{d+2}}{r^{d+2}} + \frac{d + 2}{d + 3} \frac{r_p r_s^{d+1}}{r^{d+2}} h(r) \frac{(3h(r)^4 - 10h(r)^2 \alpha^2 + 15\alpha^4)}{15\alpha^2}$$

which is easily seen to be positive. Moreover,

$$f'(r) = \frac{(d + 2) r_p^{d+2}}{r^{d+3}} - \frac{(d + 2)^2 r_p r_s^{d+1}}{(d + 3) r^{d+3}} a(h(r)) + \frac{d + 2}{d + 3} \frac{(d + 1) r_p r_s^{d+1}}{r^{d+3}} \frac{(h(r)^2 - \alpha^2)^2}{\alpha^4}.$$

As $a(h(r))$ takes on a maximum value of $\frac{8\alpha}{15}$ and as $\frac{(d+2)(d+3)}{2} - \frac{(d+2)^2 8\alpha}{d+3} > 0$ for $d \geq 1$ and $\alpha < 5$, the sum of the first two terms is positive. And as the last term is clearly positive, we see that $f'(r) > 0$ as desired.

It remains to verify that $l(f)$ is positive. We begin by calculating

$$l(f) = \frac{d + 2}{4r^{2d+5}} \left(dr^{2d+2} + (d + 3) r_s^{d+1} r^{d+1} - (d + 2)^2 r_s^{2d+2} \right)$$

$$+ \frac{(d + 2)(d + 1) r_p r_s^{d+1}}{4(d + 3) r^{2d+6}} \left(-2(d + 3)(r^{d+1} - r_p^{d+1})(r^{d+1} - r_s^{d+1})a'(h(r)) \right.

$$

$$\left. + (d + 1)(d + 5) r^{d+1} (r^{d+1} - r_s^{d+1})a'(h(r)) \right) - (d + 1)^2 r^{2d+2} a''(h(r))).$$

Setting

$$p(r) = r(dr^{2d+2} + (d + 3) r_s^{d+1} r^{d+1} - (d + 2)^2 r_s^{2d+2})$$

$$n_1(r) = -r_p r_s^{d+1} (d + 1)(2r^{d+1} - r_s^{d+1} (d + 3)) \frac{h(r)^2 - \alpha^2}{\alpha^4}$$

$$n_2(r) = r_p r_s^{d+1} \frac{(d + 1)^2 (d + 5)}{d + 3} r^{d+1} 4h(r)(h(r)^2 - \alpha^2) \frac{\alpha^4}{\alpha^4}$$

$$n_3(r) = r_p r_s^{d+1} \frac{(d + 1)^3}{d + 3} r^{2d+2} \frac{\alpha^2 - 3h(r)^2}{\alpha^4},$$

it remains to show that

$$p(r) + n_1(r) + n_2(r) + n_3(r) > 0.$$
The dominant term is $p(r)$, and we shall show

(2.13) \[\frac{1}{3} p(r) + n_1(r) > 0, \]

(2.14) \[\frac{1}{2} p(r) + n_2(r) \geq 0, \]

(2.15) \[\frac{1}{6} p(r) + n_3(r) \geq 0. \]

Proof of (2.13): Using that we are in the regime $r \geq r_{ps}$ and that $(h(r)^2 - \alpha^2)^2$ is maximized when $h(r) = 0$, we have

\[
\frac{1}{3} p(r) + n_1(r) \geq \frac{1}{3} r_{ps}(dr_{ps}^{2d+2} + (d + 3)r_s^{d+1}r_{ps}^{d+1} - (d + 2)^2r_s^{2d+2}) - (d + 1)r_{ps}r_s^{d+1}(2r_{ps}^{d+1} + (d + 3)r_s^{d+1})
\]

\[
= \frac{1}{3} r_{ps} \left(dr_{ps}^{2d+2} - (5d + 3)r_s^{d+1}r_{ps}^{d+1} + (2d^2 + 8d + 5)r_s^{2d+2} \right)
\]

\[
= \frac{1}{3} r_{ps} \left[d \left(r_{ps}^{d+1} - \frac{5d + 3}{2d} r_s^{d+1} \right)^2 + \frac{1}{4d} (d + 1)^2 (8d - 9)r_s^{2d+2} \right].
\]

The last quantity is clearly positive, as desired, for $d > 1$.

For the case $d = 1$,

\[
\frac{1}{3} p(r) + n_1(r) \geq \frac{1}{3} r^{d+1}(4r_{ps}^{2d+2} - 9r_s^{2d+2}) - 2\sqrt{2}r_s^3(2r^2 - 4r_s^2)
\]

\[
= \frac{1}{3} \left(3\sqrt{2}r_s^5 - 13r_s^4(r - \sqrt{2}r_s) + 20\sqrt{2}r_s^3(r - \sqrt{2}r_s)^2 + 24r_s^2(r - \sqrt{2}r_s)^3 \right.
\]

\[
+ 5\sqrt{2}r_s(r - \sqrt{2}r_s)^4 + (r - \sqrt{2}r_s)^5 \}
\]

\[
\geq \frac{1}{3} \left(3\sqrt{2}r_s^6 - 13r_s^5(r - \sqrt{2}r_s) + 20\sqrt{2}r_s^3(r - \sqrt{2}r_s)^2 \right)
\]

which is an everywhere positive quadratic.

Proof of (2.14): Here, again, we use that we are studying the regime that $r \geq r_{ps}$ and that $h_2^2 - \alpha^2$ is minimized when $h(r) = 0$. It is thus obtained that

(2.16) \[\frac{1}{2} p(r) + n_2(r) \geq \frac{1}{2} r_{ps}(dr_{ps}^{2d+2} + (d + 3)r_s^{d+1}r_{ps}^{d+1} - (d + 2)^2r_s^{2d+2}) - \frac{4r_{ps}r_s^{d+1}(d + 1)^2(d + 5)}{\alpha^2} r_s^{d+1} h(r) \]

\[
= \frac{1}{2} r_{ps} \left(d(r_{ps}^{d+1} - r_s^{d+1})^2 + 3(d + 1)r_s^{d+1}(r_{ps}^{d+1} - r_s^{d+1}) - (d + 1)^2r_s^{2d+2} \right.
\]

\[
- \frac{8r_s^{d+1}(d + 1)^2(d + 5)}{\alpha^2} r_s^{d+1} h(r) \right).
\]

Here, we make the change of variables $x = h(r)$. Thus, $r_{ps}^{d+1} - r_s^{d+1} = \frac{d + 1}{\alpha^2} r_s^{d+1} e^x$. The right side of (2.16) can be rewritten as

\[
\frac{r_{ps}}{2} r_s^{2d+2}(d + 1)^2 \left[\frac{d}{4} e^{2x} + \frac{3}{2} e^{x} - 1 - \frac{4}{\alpha^2} \frac{(d + 5)(d + 1)}{d + 3} r_s^{d+1} e^x \right].
\]
Setting

\[q(x) = \frac{d}{4} e^{2x} + \frac{3}{2} e^x - 1 - \frac{4}{\alpha^2} \frac{(d + 5)(d + 1)}{d + 3} x e^x - \frac{8}{\alpha^2} \frac{d + 5}{d + 3} x \]

and noticing that \(q(0) > 0 \), it will suffice to show that \(q'(x) \geq 0 \) for \(x \) between 0 and \(\alpha \). We compute

\[q'(x) = \frac{1}{2} e^x (3 + de^x) - \frac{4}{\alpha^2} \frac{d + 5}{d + 3} \left[2 + (1 + d)e^x (1 + x) \right]. \]

As \(\frac{d^2 + 5}{d + 3} \leq \frac{d}{2} \) for \(d \geq 1 \) and as \(1 + x \leq e^x \), it follows that

\[q'(x) \geq \frac{1}{2} e^x (3 + de^x) - \frac{6}{25} \left(2e^x + (d + 1)e^{2x} \right) > 0, \quad d \geq 1, \alpha = 5. \]

The latter inequality follows from the fact that \(\frac{d}{2} \geq \frac{d}{4}(d + 1) \) provided \(d \geq 1 \). Since the above inequality holds for \(\alpha = 5 \), by continuity, we have that it also holds for \(\alpha = 5 - \delta_0 \) for some \(\delta_0 > 0 \), which completes the proof.

Proof of (2.15): Using that we are examining the region \(r \geq r_{ps} \) and rewriting \(I(g) \) as in the previous case, we have

\[
\frac{1}{6} p(r) + n_3(r) \geq \frac{1}{6} r_{ps} \left[d(r^{d+1} - r_s^{d+1})^2 + 3(d+1)r_s^{d+1}(r^{d+1} - r_s^{d+1}) - (d+1)^2 r_s^{2d+2} \right. \\
+ \frac{24r_s^{d+1}(d+1)^3}{\alpha^2} \left. \frac{r_s^{2d+2}}{d+3} \left(1 - \frac{3}{\alpha^2} \langle h(r) \rangle^2 \right) \right] \geq \frac{72r_s^{d+1}(d+1)^3}{\alpha^2} \frac{r_s^{2d+2}}{d+3} \langle h(r) \rangle^2 \\
\geq \frac{144}{\alpha^4} r_s^{2d+2} \frac{(d+1)^2}{d+3} \langle h(r) \rangle^2.
\]

when \(r \geq r_{ps} \), we obtain

\[
\frac{1}{6} p(r) + n_3(r) \geq \frac{1}{6} r_{ps} \left[d(r^{d+1} - r_s^{d+1})^2 + 3(d+1)r_s^{d+1}(r^{d+1} - r_s^{d+1}) - (d+1)^2 r_s^{2d+2} \right. \\
+ \frac{24r_s^{d+1}(d+1)^3}{\alpha^2} \left. \frac{r_s^{2d+2}}{d+3} \left(1 - \frac{3}{\alpha^2} \langle h(r) \rangle^2 \right) \right] \\
- \frac{144}{\alpha^4} r_s^{2d+2} \frac{(d+1)^2}{d+3} \langle h(r) \rangle^2.
\]

Proceeding as above with the change of variables \(x = h(r) \), this is

\[
= \frac{(d+1)^2}{6} r_{ps} \frac{2d+2}{s} \left[\frac{d}{4} e^{2x} + \frac{3}{2} e^x - 1 + \frac{24 d + 1}{\alpha^2} \frac{d + 1}{d + 3} \frac{1}{\alpha^2} \langle h(r) \rangle^2 \left(\frac{d}{2} e^x + 2 \right) - \frac{144}{\alpha^4} \frac{1}{d + 3} \langle h(r) \rangle^2 \right].
\]

Setting

\[
s(x) = \frac{d}{4} e^{2x} + \frac{3}{2} e^x - 1 + \frac{24 d + 1}{\alpha^2} \frac{d + 1}{d + 3} \left(\frac{d}{2} e^x + 2 \right) - \frac{144}{\alpha^4} \frac{1}{d + 3} x^2,
\]

\[
\frac{d^2 + 5}{d + 3} \leq \frac{d}{2} \frac{d + 1}{d + 3}.
\]

Since the above inequality holds for \(\alpha = 5 \), by continuity, we have that it also holds for \(\alpha = 5 - \delta_0 \) for some \(\delta_0 > 0 \), which completes the proof.
we first note that $s(0) > 0$. For $x \leq 5$, we furthermore have

$$s'(x) = \frac{1}{2a^4(d+3)} \left[24a^2(d+1)^2e^x + \alpha^4(d+3)e^x(3+de^x) - 72x(8(d+2) + (d+1)^2e^x(x+2)) \right]$$

$$\geq \frac{1}{2a^4(d+3)} \left[24a^2(d+1)^2e^x + \alpha^4(d+3)e^x(3+de^x) - 72e^x(8(d+2) + 7(d+1)^2e^x) \right].$$

For $\alpha = 5$, this is

$$\frac{1}{1250(d+3)}e^x \left(5073 - 504e^x + 51d(49 + 17e^x) + d^2(600 + 121e^x) \right),$$

which is easily seen to be positive for $d \geq 1$. By continuity, positivity also follows for $\alpha = 5 - \delta_0$ provided δ_0 is sufficiently small.

Case 4: $r \geq r_\alpha$.

In this regime,

$$f(r) = \frac{r^{d+2} - r^{d+2}_{ps}}{r^{d+2}} + \frac{8\alpha + 2}{15} \frac{r^{d+1}_{ps}r^{d+1}}{r^{d+2}},$$

which is clearly positive. Moreover,

$$f'(r) = \frac{(d+2)r^{d+1}_{ps}}{r^{d+3}} \left(\frac{d+3}{2} - \frac{8\alpha + 2}{15} \right)$$

which is also positive since $\alpha < 5 \leq \frac{15}{16} \frac{(d+3)^2}{d+2}$ for $d \geq 1$. Finally, we notice that $l(f(r)) = l(g(r))$ when in this case. Thus, as in the proof of (2.14), we have

$$l(f(r)) = r_{ps} \left(d(r^{d+1} - r^{d+1}_{s})^2 + 3(d+1)r^{d+1} (r^{d+1} - r^{d+1}_{s}) - (d+1)^2 r^{d+1}_{s} \right).$$

As $r^{d+1} - r^{d+1}_{s} \geq \frac{d+1}{2} r^{d+1}_{s}$ for $r \geq r_{ps}$, we see that $l(f(r)) > 0$ as desired.

Boundary term at $r_{-1/\varepsilon}$:

In order to finish showing that the right side of (2.2) is nonnegative, it remains to examine the $r_{-1/\varepsilon}$ boundary term in (2.2) as well as the subsequent contribution from (2.10). Here, we simply utilize the Fundamental Theorem of Calculus to control these terms via the positive contributions of the first and third term in the right of (2.2) in the range $[r_{-1/\varepsilon}, r_{ps}]$. The scaling parameter δ insures the necessary smallness.

Fix a smooth cutoff β which is identity for, say, $r \leq r_{-1}$ and which vanishes for $r \geq r_{ps}$. Then, for $r \leq r_{-1}$, we have

$$\phi(r) = -\int_r^{r_{ps}} \partial_t(\beta \phi) \, ds.$$

Using the Schwarz inequality, this yields

$$\phi^2(r) \lesssim \int_r^{r_{ps}} |\beta'| \phi^2 \, ds - h(r) \int_r^{r_{ps}} (s^{d+1} - r^{d+1}_{s}) \beta(\partial_t \phi)^2 \, ds.$$

Applying this at $r_{-1/\varepsilon}$ yields

$$\varepsilon \phi^2(r_{-1/\varepsilon}) \lesssim \int_{r_{-1/\varepsilon}}^{r_{ps}} \nabla^\alpha \tilde{P}_\alpha[\phi, X] \phi^2 \, dr.$$

Multiplying both sides by δ and integrating over $[0, T] \times \mathbb{S}^{d+2}$, we see that these boundary terms can be bootstrapped into the contributions of Case 2.
3. A HARDY INEQUALITY AND THE TIME BOUNDARY TERMS

In the previous section, we constructed a multiplier so that the right side of (2.2) provides a positive contribution. By inspection, the coefficients are easily seen to correspond to those in (1.2). What remains is to control the left side of (2.2) in terms of the initial energy. For the first term, this is straightforward. For the second term in the left side of (2.2), a Hardy-type inequality is employed, which shall be proved below.

For the first term in (2.2), we need only apply the Schwarz inequality to see that
\[
\int f(r)\partial_t\phi(t, \cdot)\partial_r\phi(t, \cdot) r^{d+2} \, dr \, d\omega \lesssim E[\phi](t).
\]
And thus, by conservation of energy, these terms are controlled by \(E[\phi](0)\) as desired.

For the second term in (2.2), we again apply the Schwarz inequality. It remains to show that
\[
\int_{r_s}^{\infty} \frac{1}{r^d} \left(1 - \frac{1}{r^d}\right)^2 \left(1 - \frac{r_s^d}{r^d}\right)^2 \phi^2(t, \cdot) r^{d+2} \, dr \, d\omega \lesssim E[\phi](t)
\]
as a subsequent application of conservation of energy will complete the proof.

In order to show (3.1), we shall prove a Hardy-type inequality which is in the spirit of that which appears in [15]. Indeed, we notice that the coefficient in the integrand in the left side of (3.1) is \(O((\log(r - r_s))^2(r - r_s)^{-1})\) as \(r \to \infty\) and \(O(r^{-2})\) as \(r \to r_s\).

Thus, it will suffice to show that
\[
\int_{r_s}^{\infty} \frac{1}{r^d} \left(1 - \log\left(\frac{r - r_s}{r}\right)\right)^2 \left(1 - \log\left(\frac{r - r_s}{r}\right)\right) \phi^2 \, dr \lesssim \int_{r_s}^{\infty} \left(\frac{r - r_s}{r}\right)^2 (\partial_r\phi)^2 \, dr.
\]

To this end, we set
\[
\rho(r) = \int_{r_s}^{r} \frac{x^d}{\left(1 - \log\left(\frac{x - r_s}{r}\right)\right)^2 \left(1 - \log\left(\frac{x - r_s}{r}\right)\right)} \, dx.
\]
Notice that \(\rho(r) \sim r^{d+1}\) as \(r \to \infty\) and \(\rho(r) \sim \left(1 - \log\left(\frac{r - r_s}{r}\right)\right)^{-1}\) as \(r \to r_s\).

Writing the left side of (3.2) as \(\int \rho'(r)\phi^2 \, dr\), integrating by parts, and applying the Schwarz inequality, we have
\[
\int \rho'(r)\phi^2 \, dr = -2 \int \rho(r)\partial_r\phi \, dr \lesssim \left(\int \frac{(\rho(r))^2}{\rho'(r)}(\partial_r\phi)^2 \, dr\right)^{1/2} \left(\int \rho'(r)\phi^2 \, dr\right)^{1/2}.
\]
This completes the proof of (3.2) as \(\frac{(\rho(r))^2}{\rho'(r)} \sim r^{d+2}\) as \(r \to \infty\) and \(\frac{(\rho(r))^2}{\rho'(r)} \sim (r - r_s)\) as \(r \to r_s\).
1. S. Alinhac: *On the Morawetz–Keel-Smith-Sogge inequality for the wave equation on a curved background*. Publ. Res. Inst. Math. Sci. 42 (2006), 705–720.
2. S. Alinhac: *Energy multipliers for perturbations of the Schwarzschild metric*. Comm. Math. Phys. 288 (2009), 199–224.
3. L. Andersson and P. Blue: *Hidden symmetries and decay for the wave equation on the Kerr spacetime*, preprint. (arXiv: 0906.2265)
4. P. Blue: *Decay of the Maxwell field on the Schwarzschild manifold*. J. Hyperbolic Diff. Equ. 5 (2008), 807–856.
5. P. Blue and A. Soffer: *Semilinear wave equations on the Schwarzschild manifold I: Local decay estimates*. Adv. Differential Equations 8 (2003), 595–614.
6. P. Blue and A. Soffer: *The wave equation on the Schwarzschild metric II: Local decay for the spin-2 Regge-Wheeler equation*. J. Math. Phys. 46 (2005), 9pp.
7. P. Blue and A. Soffer: Errata for “Global existence and scattering for the nonlinear Schrödinger equation on Schwarzschild manifolds”, “Semilinear wave equations on the Schwarzschild manifold I: Local decay estimates”, and “The wave equation on the Schwarzschild metric II: Local decay for the spin 2 Regge Wheeler equation”, preprint. (ArXiv: gr-qc/0608073)
8. P. Blue and A. Soffer: *Phase space analysis on some black hole manifolds*. J. Funct. Anal. 256 (2009), 1–90.
9. P. Blue and A. Soffer: Improved decay rates with small regularity loss for the wave equation about a Schwarzschild black hole, preprint. (ArXiv: math/0612168)
10. P. Blue and J. Sterbenz: *Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space*. Comm. Math. Phys. 268 (2006), 481–504.
11. J.-F. Bony and D. Häfner: *The semi-linear wave equation on asymptotically Euclidean manifolds*, preprint. (ArXiv: 0810.0464)
12. N. Burq: *Global Strichartz estimates for nontrapping geometries: about an article by H. F. Smith and C. D. Sogge “Global Strichartz estimates for nontrapping perturbations of the Laplacian”*. Comm. Partial Differential Equations 28 (2003), 1675–1683.
13. M. Dafermos and I. Rodnianski: *Small-amplitude nonlinear waves on a black hole background*. J. Math. Pures Appl. 84 (2005), 1147–1172.
14. M. Dafermos and I. Rodnianski: *The red-shift effect and radiation decay on black hole spacetimes*. Comm. Pure Appl. Math. 62 (2009), 859–919.
15. M. Dafermos and I. Rodnianski: *A note on energy currents and decay for the wave equation on a Schwarzschild background*, preprint. (ArXiv: 0710.017)
16. M. Dafermos and I. Rodnianski: *Lectures on black holes and linear waves*, preprint. (arXiv: 0811.0354)
17. R. Gregory and R. Laflamme: *Hypercylindrical black holes*. Phys. Rev. D 37 (1988), 305–308.
18. K. Hidano and K. Yokoyama: *A remark on the almost global existence theorems of Keel, Smith, and Sogge*. Funkcial. Ekvac. 48 (2005), 1–34.
19. M. Keel, H. Smith, and C. D. Sogge: *Almost global existence for some semilinear wave equations*. J. Anal. Math. 87 (2002), 265–279.
20. C. E. Kenig, G. Ponce, and L. Vega: *On the Zakharov and Zakharov-Schulman systems*. J. Funct. Anal. 127 (1995), 204–234.
21. J. Luk: *Improved decay for solutions to the linear wave equation on a Schwarzschild black hole*, preprint. (ArXiv: 0906.5588)
22. J. Marzuola, J. Metcalfe, D. Tataru, and M. Tohaneanu: *Strichartz estimates on Schwarzschild black hole backgrounds*. Comm. Math. Phys. 293 (2010), 37–83.
23. J. Metcalfe: *Global existence for semilinear wave equations exterior to nontrapping obstacles*. Houston J. Math. 30 (2004), 259–281.
24. J. Metcalfe and C. D. Sogge: *Long-time existence of quasilinear wave equations exterior to star-shaped obstacles via energy methods*. SIAM J. Math. Anal. 38 (2006), 391–420.
[27] J. Metcalfe and D. Tataru: Global parametrices and dispersive estimates for variable coefficient wave equations. Math. Ann., to appear.

[28] J. Metcalfe and D. Tataru: Decay estimates for variable coefficient wave equations in exterior domains. Advances in Phase Space Analysis of Partial Differential Equations, In Honor of Ferruccio Colombini’s 60th Birthday, Progress in Nonlinear Differential Equations and Their Applications, Vol 78, 2009, p. 201–217.

[29] R. C. Myers and M. J. Perry: Black holes in higher dimensional space-times. Ann. Physics 172 (1986), 304–347.

[30] C. Morawetz: Time decay for the nonlinear Klein-Gordon equations. Proc. Roy. Soc. Ser. A. 306 (1968), 291–296.

[31] V. Schlue: Linear waves on higher dimensional Schwarzschild black holes, preprint.

[32] H. F. Smith and C. D. Sogge: Global Strichartz estimates for nontrapping perturbations of the Laplacian. Comm. Partial Differential Equations 25 (2000), 2171–2183.

[33] C. D. Sogge and C. Wang: Concerning the wave equation on asymptotically Euclidean manifolds, preprint. (ArXiv: 0901.0022)

[34] J. Sterbenz: Angular regularity and Strichartz estimates for the wave equation. With an appendix by I. Rodnianski. Int. Math. Res. Not. 2005, 187–231.

[35] W. A. Strauss: Dispersal of waves vanishing on the boundary of an exterior domain. Comm. Pure Appl. Math. 28 (1975), 265–278.

[36] F. R. Tangherlini: Schwarzschild field in n dimensions and the dimensionality of space problem. Nuovo Cimento 27 (1963), 636–651.

[37] D. Tataru: Local decay of waves on asymptotically flat stationary space-times, preprint. (ArXiv: 0910.5290)

[38] D. Tataru and M. Tohaneanu: Local energy estimate on Kerr black hole backgrounds, preprint. (ArXiv: 0810.5766)