Inhibition of cAMP-Dependent PKA Activates β2-Adrenergic Receptor Stimulation of Cytosolic Phospholipase A2 via Raf-1/MEK/ERK and IP3-Dependent Ca2+ Signaling in Atrial Myocytes

M. R. Pabbidi1, X. Ji2, J. T. Maxwell2, G. A. Mignery2, A. M. Samarel3, S. L. Lipsius2

1 Department of Pharmacology, University of Mississippi Medical Center, Jackson, MS, United States of America, 2 Department of Physiology, Loyola University Medical Center, Maywood, IL, United States of America, 3 Department of Medicine, Loyola University Medical Center, Maywood, IL, United States of America

* mpabbidi@umc.edu

Abstract

We previously reported in atrial myocytes that inhibition of cAMP-dependent protein kinase (PKA) by laminin (LMN)-integrin signaling activates β2-adrenergic receptor (β2-AR) stimulation of cytosolic phospholipase A2 (cPLA2). The present study sought to determine the signaling mechanisms by which inhibition of PKA activates β2-AR stimulation of cPLA2. We therefore determined the effects of zinterol (0.1 μM; zint-β2-AR) to stimulate Ica,L in atrial myocytes in the absence (+PKA) and presence (-PKA) of the PKA inhibitor (1 μM) KT5720 and compared these results with atrial myocytes attached to laminin (+LMN). Inhibition of Raf-1 (10 μM GW5074), phospholipase C (PLC; 0.5 μM edelfosine), PKC (4 μM chelerythrine) or IP3 receptor (IP3R) signaling (2 μM 2-APB) significantly inhibited zint-β2-AR stimulation of Ica,L in–PKA but not +PKA myocytes. Western blots showed that zint-β2-AR stimulation increased ERK1/2 phosphorylation in–PKA compared to +PKA myocytes. Adenoviral (Adv) expression of dominant negative (dn) -PKCa, dn-Raf-1 or an IP3 affinity trap, each inhibited zint-β2-AR stimulation of Ica,L in–PKA compared to +PKA myocytes [20]. However, disruption of caveolae formation by 10 mM methyl-β-cyclodextrin inhibited zint-β2-AR stimulation of Ica,L in–PKA myocytes significantly more than in +PKA myocytes. We conclude that inhibition of PKA removes inhibition of Raf-1 and thereby allows β2-AR stimulation to act via PKCa/Raf-1/MEK/ERK1/2 and IP3-mediated Ca2+ signaling to stimulate cPLA2 signaling within caveolae. These findings may be relevant to the remodeling of β-AR signaling in failing and/or aging heart, both of which exhibit decreases in adenylyl cyclase activity.
Introduction

We previously reported that attachment of atrial myocytes to the extracellular matrix protein laminin (LMN) acts via β1 integrin receptors to decrease β1-AR and increase β2-AR stimulation of L-type Ca2+ current (I_{Ca,L}) [1]. Cell attachment to LMN decreases β1-AR signaling by inhibiting adenylate cyclase activity and diminishing cAMP levels via integrin-dependent activation of focal adhesion kinase (FAK)/phosphatidylinositol-3' kinase (PI-3K)/protein kinase B (Akt) signaling [2]. We also reported that atrial cell attachment to LMN enhances β2-AR signaling by activating Gi/ERK/cytosolic phospholipase A2 (cPLA2)/arachidonic acid (AA) stimulation of I_{Ca,L} [3]. β2-AR activation of cPLA2 signaling is dependent on concomitant LMN-mediated inhibition of adenylate cyclase/cAMP-dependent kinase (PKA) [3]. In other words, cell attachment to LMN acts via inhibition of adenylate cyclase/PKA to both inhibit β1-AR signaling and enhance β2-AR signaling through activation of cPLA2. In embryonic chick ventricular myocytes [4] and rat ventricular myocytes [5] β2-AR stimulation also activates cPLA2/AA signaling. Moreover, these authors proposed that activation of β2-AR/cPLA2 signaling may compensate for depressed cAMP signaling [4]. Interestingly, in both of these studies by Pavoine et al. (1999) and Ait-Mamar et al., (2005) cardiomyocytes were cultured on LMN, supporting our findings that cell attachment to LMN may be responsible for inhibition of PKA and activation of β2-AR/cPLA2 signaling. However, the mechanism by which PKA inhibition activates β2-AR/cPLA2 signaling is not clear.

Our initial experiments indicated that in atrial myocytes β2-AR activation of cPLA2 is Ca2+-dependent and mediated via ERK1/2 signaling [3]. This is consistent with studies in embryonic chick ventricular myocytes (cultured on LMN) in which β2-AR stimulation acts via ERK1/2 signaling to activate cPLA2 [6]. Moreover, in a variety of cell systems Raf-1 activates downstream ERK1/2 and PKA inhibits Raf-1 [7, 8]. Therefore, inhibition of PKA should remove inhibition of Raf-1, thereby allowing β2-AR stimulation to act via Raf-1/MEK/ERK1/2 signaling. Moreover, protein kinase C (PKC) activates Raf-1 [9, 10]. In other words, PKA inhibits and PKC activates Raf-1/MEK/ERK1/2 signaling. Based on these considerations we sought to determine whether inhibition of PKA facilitates β2-AR stimulation to act via PKC/Raf-1/MEK/ERK1/2 to activate cPLA2. These findings may be relevant to the remodeling of β2-AR signaling in the failing and/or aging heart, both of which exhibit decreases in adenylate cyclase activity.

Materials and Methods

Ethics Statement

The animal and experimental protocols used in this study were approved by the Institutional Animal Care and Use Committee (IACUC) of Loyola University Medical Center, Maywood, IL. IACUC prescribed the rules for the animal care and supervised their enforcement. Animals were obtained from a licensed vendor (R & R Research, Howard City, MI., USA), and housed and fed in our AAALAC approved Comparative Medicine Department. Adult cats of either sex (n = 32 cats) were anesthetized with sodium pentobarbital (50 mg/kg, IP).

Isolation of atrial myocytes

Once fully anesthetized, a bilateral thoracotomy was performed, and the heart was rapidly excised and mounted on a Langendorff perfusion apparatus. After enzyme (collagenase; type II, Worthington Biochemical) digestion, atrial myocytes were isolated as previously reported [11].
Perforated patch clamp experiments

Electrophysiological recordings from atrial myocytes were performed in the perforated (nystatin) patch whole-cell configuration at room temperature, as previously described [11]. L-type Ca\(^{2+}\) current (I\(_{\text{Ca,L}}\)) was activated by depolarizing pulses from a holding potential of -40 mV to 0 mV for 200 ms every 5 s and measured in relation to steady-state current. \(\beta_2\)-AR stimulation was achieved by 0.1 \(\mu\)M zinterol (zint-\(\beta_2\)-AR), a specific \(\beta_2\)-AR agonist [12]. Agonist was applied for approximately 4 min and the effects on peak I\(_{\text{Ca,L}}\) amplitude were recorded at the steady-state response.

Plating of atrial myocytes on LMN coated glass coverslips

Generally, we compared freshly isolated atrial myocytes obtained from the same hearts, as previously described [3]; atrial myocytes on uncoated glass cover-slips in the absence of PKA inhibitor (+PKA) and atrial myocytes on uncoated glass coverslips exposed to the specific PKA inhibitor (1 \(\mu\)M) KT5720 (-PKA). Because pharmacological inhibition of PKA elicits signaling mechanisms that are similar to those elicited by LMN-integrin signaling, we performed some experiments on atrial myocytes attached to glass cover-slips coated with laminin (+LMN; 40 ug/ml) for at least 2 hrs, as previously described [11]. Inhibition of PKA by KT5720 typically decreases basal I\(_{\text{Ca,L}}\) amplitude by 15–20% [3], consistent with the relatively high endogenous PKA activity in cat atrial myocytes [11]. In addition, a variety of experimental results indicate that atrial cell attachment to LMN is not restoring LMN-mediated signaling somehow lost during the cell isolation procedure. For example, control experiments have shown that atrial myocytes plated on poly-L-lysine, a non-specific substrate for cell attachment, fail to exhibit changes in \(\beta\)-AR signaling similar to cells attached to LMN [1]. Moreover, freshly isolated cardiomyocytes not plated on LMN exhibit responses to \(\beta\)-AR stimulation which are similar to multicellular cardiac preparations, i.e. exhibit predominantly \(\beta_1\)-AR over \(\beta_2\)-AR signaling [1]. However, cell attachment to LMN decreases the \(\beta_1\)/\(\beta_2\) signaling ratio resulting in predominantly \(\beta_2\)-AR over \(\beta_1\)-AR signaling [1]. Moreover, pharmacological inhibition of PKA in myocytes not attached to LMN mimics the effects of cell attachment to LMN [3].

Adenoviral infection of atrial myocytes

In some experiments, atrial myocytes were attached to laminin (2h) and then infected (100 moi, 24h) with replication-defective adenovirus (Adv) prior to electrophysiological recording. PKC\(\alpha\) was inhibited by infection with an Adv expressing kinase-inactive mouse PKC\(\alpha\) [13], kindly provided by Dr. Trevor Biden, Garvan Institute of Medical Research, St. Vincent’s Hospital, Sydney Australia. An Adv expressing a dominant-negative (dn) mutant of rabbit PKC\(\varepsilon\) [14] was kindly provided by Dr. Peipei Ping, University of California-Los Angeles. Adv expressing wild type, and a non-phosphorylatable mutant of human cPLA\(_2\) (S515A/S505A double mutant) [15] were generously provided by Dr. K.U. Malik, University of Tennessee Health Science Center, Memphis, TN. An Adv expressing a dn mutant of human Raf-1 [9] was kindly provided by Dr. Dan Kuppuswamy, Medical University of South Carolina, Charleston, SC. A control Adv expressing nuclear-encoded \(\beta\)-galactosidase (Adv-\(\beta\)gal) was used to control for nonspecific effects of adenoviral infection [16]. Adenoviruses were amplified and purified using HEK293 cells, and the multiplicity of infection (moi) for each virus was determined by dilution assay in HEK293 cells grown in 96 well clusters, as previously described [16]. Preliminary experiments using 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-gal) staining of Adv-\(\beta\)gal infected cells determined that a concentration of 100 moi infected 93±3% (n = 3 expts, 400–700 cells/expt) of cultured myocytes. The IP\(_3\) affinity trap consists of the ligand binding domain of the rat type 1 IP\(_3\)R. The construction of this vector and subsequent
production of adenovirus was previously described in detail [17]. Freshly isolated atrial myocytes were infected with Adv-IP$_3$ affinity trap or the Adv-βgal (control) for 1 h, followed by 18 h short-term culture at 37°C.

Western blot

Atrial myocytes were plated on poly-L-lysine, a biologically inactive substrate and therefore represent +PKA myocytes. Atrial myocytes were either untreated or treated with Zinterol, KT5720 alone (PKA inhibitor) and KT combined with Zinterol. A positive control showing ERK1/2 and p38MAPK phosphorylation in A7r5 cells is used after stimulation with 1 μM angiotensin II (5 min). Briefly atrial homogenates were centrifuged at 10,000 g for 2 min and the supernatant was collected. The protein concentrations of the samples were determined using the Bradford protein assay (Bio-Rad). Aliquots of the samples (40 μg) were dissolved in a Laemmli Sample buffer containing: 60 mM Tris-HCl, 2% SDS, 20% Glycerol, 5% β-mercaptoethanol, 0.01% bromophenol blue (pH 6.8) and the proteins were separated on a 4–15% Mini-PROTEAN TGX Gel (Bio-Rad). After transfer, the membrane was blocked with TBS-T Buffer containing 20 mM Tris pH 7.5, 150 mM NaCl, 0.05% Tween, and a 5% blocking powder (Bio Rad) at 4°C for 1 hr. The blot was probed with primary and secondary antibodies for phospho-ERK1/2 and phosphor-p38MAPK that were purchased from cell signaling technologies (Danvers, MA). The blot was subsequently probed with GAPDH primary antibody for 2 hrs, followed by HRP-conjugated goat anti-mouse secondary antibody (1:10,000, Santa Cruz Biotechnology) at 4°C for 1 hr. Specific binding was visualized by chemiluminescence (Immun-Star Western C Kit, Bio-Rad) using a ChemiDoc XRS imager (Bio-Rad Life Science Research, Hercules, CA). The intensities of the bands corresponding to each protein were quantified using ImageLab software (Bio-Rad). The relative intensity for each band was normalized to the intensity of the GAPDH staining.

Chemicals

Zinterol, AACOCF$_3$, GW5074, edelfosine (ET-18-OCH$_3$), chelerythrine, 2-aminoethyl diphenyl borate (2-APB), KT5720, methyl-β-cyclodextrin, ryanodine, thapsigargin (Sigma Chemical).

Statistics

Data are mean ± standard error (SE) of the mean. Measurements were analyzed using either paired or unpaired Student’s t test for significance at P<0.05. Multiple comparisons were performed by ANOVA followed by a Student–Newman–Keuls test with significance at P<0.05.

Results

Role of Raf-1 in +PKA and –PKA atrial myocytes

As shown in Fig 1 we determined the effects of 10 μM GW5074, a potent Raf-1 inhibitor [8] on zint-β$_2$-AR stimulation of I$_{Ca,L}$ in +PKA and –PKA atrial myocytes. In +PKA myocytes (A) 0.1 μM zint-β$_2$-AR stimulation elicited a typical increase in I$_{Ca,L}$ (124±12%, N = 3). In another group of +PKA myocytes from the same hearts (A), prior exposure to GW5074 for 30 min had no significant effects on basal I$_{Ca,L}$ amplitude (open bar) or zint-β$_2$-AR stimulation of I$_{Ca,L}$ (126±11%, N = 3). In contrast, as shown in panel B, control zint-β$_2$-AR stimulation of I$_{Ca,L}$ in –PKA myocytes (B; 207±23%, N = 3) was enhanced compared to +PKA myocytes (A; 124±12%, N = 3) due to activation of cPLA$_2$ signaling, as previously reported [4]. In –PKA myocytes, GW5074 had no effects on basal I$_{Ca,L}$ amplitudes (open bars) but in contrast to +PKA myocytes, GW5074 significantly inhibited zint-β$_2$-AR stimulation of I$_{Ca,L}$ (B; 40±5%, N = 3).
Additional experiments showed that zint-β₂-AR stimulation of I_{Ca,L} in +LMN myocytes produced results similar to those found in –PKA myocytes (control; 192±13%, N = 3) and (GW5074; 33±9%, N = 3) (see S1 Fig for data).

Comparison of zint-β₂-AR induced I_{Ca,L} currents in the Adv-βgal and dn-Raf-1 mutant infected atrial myocytes

To further establish the role of Raf-1, we infected atrial myocytes with an Adv that expresses a dn-Raf-1 mutant (generously provided by Dr. Kuppuswamy [9, 18]. Control cells were infected with Adv-βgal. Infected cells were cultured on LMN overnight and therefore represent +LMN myocytes. As shown in Fig 2A, in control +LMN myocytes expressing βgal, zint-β₂-AR stimulation elicited a typically enhanced increase in I_{Ca,L} (202±19%). In +LMN myocytes expressing the dn-Raf-1 mutant, zint-β₂-AR stimulation of I_{Ca,L} was significantly inhibited (105±14%, P<0.02) compared to control. Together, these findings indicate that Raf-1 signaling plays no role in β₂-AR stimulation of I_{Ca,L} in freshly isolated atrial myocytes not attached to LMN (Fig 1A). However, when PKA is inhibited by either PKA inhibitor or cell attachment to LMN, β₂-AR stimulation acts via Raf-1 to activate cPLA₂ and stimulate I_{Ca,L}.
Inhibition of PKA, increases ERK1/2 phosphorylation in atrial myocytes

It is well established that Raf-1 activates downstream MEK/ERK1/2 signaling [7, 8]. Moreover, our previous results indicated that inhibition of MEK/ERK1/2 signaling by U0126 inhibited zint-β₂-AR stimulation cPLA₂ signaling [3]. Therefore, inhibition of PKA should activate β₂-AR stimulation of ERK1/2 phosphorylation. As shown in Fig 3, we performed Western blots and probed for zint-β₂-AR-mediated ERK1/2 and p38MAPK phosphorylation in the absence (+PKA) and presence of PKA inhibitor (–PKA). Atrial myocytes were plated on poly-L-lysine, a biologically inactive substrate and therefore represent +PKA myocytes. As shown in Fig 3 in control +PKA myocytes zint-β₂-AR stimulation modestly increased ERK1/2 phosphorylation (solid bars). Exposure of +PKA myocytes to the PKA inhibitor (1 μM) KT5720, (–PKA
β₂-AR Stimulation of cPLA₂ Signaling

Figure:

- **WB: phospho-ERK1/2**
- **WB: phospho-p38^{MAPK}**
- **WB: GAPDH**

Graph:

- **phospho-ERK1/2**
- **phospho-p38^{MAPK}**

Condition	Phospho-ERK1/2	Phospho-p38^{MAPK}
Untreated	1	2
Zinterol	2	4
KT 572O	5	6
KT 572O + Zinterol	8	10
A7r5 Cells + AngII		

Significant difference from untreated.
myocytes) further increased ERK1/2 phosphorylation, suggesting that inhibition of basal PKA activity removes PKA-induced inhibition of basal ERK1/2 phosphorylation. In ~PKA atrial myocytes, zint-β2-AR stimulation modestly increased ERK1/2 phosphorylation (open bars) or zint-β2-AR stimulation of I_{Ca,L} in +PKA and~PKA atrial myocytes. In control cells (A), edelfosine had little effect on basal I_{Ca,L} amplitude (open bars) or zint-β2-AR stimulation of I_{Ca,L} (zint, 125±3% vs edelfosine, 114±7%). In ~PKA myocytes (B) zint-β2-AR stimulation elicited a typically enhanced increase in I_{Ca,L} (215±5%) compared to control responses (A) due to activation of cPLA₂ [3]. In contrast to +PKA myocytes, edelfosine now significantly inhibited zint-β2-AR stimulation of I_{Ca,L} (78±11%; P<0.0005). Additional experiments in +LMN myocytes showed results similar to those found in ~PKA myocytes, i.e. zint, 204±2% vs edelfosine, 84±8%; P<0.03 (see S2 Fig for data). In other words, inhibition of PKA allows β2-AR stimulation to act via PLC to stimulate cPLA₂ signaling.

Role of PKC in the enhanced zint-β2-AR induced I_{Ca,L} currents in ~PKA atrial myocytes

Because activation of PLC produces diacylglycerol and activation of PKC we next determined the effects of 4 μM chelerythrine, an inhibitor of Ca^{2+}-dependent and Ca^{2+}-independent PKCs [20] on zint-β2-AR stimulation of I_{Ca,L} in +PKA and ~PKA atrial myocytes. As shown in Fig 5, in +PKA myocytes (panel A), chelerythrine had no significant effects on basal I_{Ca,L} amplitude (open bars) or zint-β2-AR stimulation of I_{Ca,L} (control, 106±8% vs chelery, 116±3%). In ~PKA myocytes (panel B) zint-β2-AR stimulation elicited a typically enhanced increase in I_{Ca,L} (278±13%) compared to control (panel A) due to activation of cPLA₂ [3]. In contrast to +PKA myocytes, chelerythrine now significantly inhibited zint-β2-AR stimulation of I_{Ca,L} (71±13%; P<0.002). These findings indicate PKC signaling plays no role in β2-AR stimulation of I_{Ca,L} in freshly isolated atrial myocytes. However when PKA is inhibited β2-AR stimulation acts via PKC to stimulate cPLA₂, consistent with β2-AR stimulation of PLC.
In another approach we infected atrial myocyte with an Adv expressing a dominant-negative mutant of Ca2+-dependent PKC\textalpha\ (dn-PKC\textalpha). Control cells were infected with Adv-\beta-gal. Infected cells were cultured overnight on LMN and therefore represent +LMN myocytes. As shown in Fig 5C, in control +LMN myocytes (Adv-\beta-gal) zint-\beta\textsubscript{2}-AR stimulation elicited a typically enhanced increase in I\textsubscript{Ca,L} compared to +PKA myocytes (panel A). In +LMN myocytes expressing the dn-PKC\textalpha\ mutant, zint-\beta\textsubscript{2}-AR stimulation of I\textsubscript{Ca,L} was significantly inhibited (control, 208\pm8\%) vs dn-PKC\textalpha, 57\pm5\%; P\textlt;0.002). Similar experiments performed on +LMN myocytes expressing a dn-PKC\varepsilon\ mutant showed no differences with control +LMN (\beta-gal) myocytes (control, 158\pm21\% vs dn-PKC\varepsilon, 165\pm31\%, N = 4). These findings provide additional support for the idea that \beta\textsubscript{2}-AR stimulation acts via Ca2+-dependent PKC\textalpha to activate cPLA\textsubscript{2}.

Role of cPLA2 in the enhanced zint-\beta\textsubscript{2}-AR induced I\textsubscript{Ca,L} currents in LMN plated atrial myocytes

Activation of cPLA\textsubscript{2} requires phosphorylation at serine sites S505 and S515 [21–23]. We therefore determined the effect of \beta\textsubscript{2}-AR stimulation in +LMN myocytes infected with Adv that either expressed a non-phosphorylatable dominant-negative cPLA\textsubscript{2} (dn-cPLA\textsubscript{2}SS505A/SS515A) mutant, wild-type cPLA\textsubscript{2} (wt-cPLA\textsubscript{2}) or \beta\textsubscript{gal} as control. Infected atrial myocytes were cultured on LMN overnight and therefore represent +LMN myocytes. Fig 6 shows that in control +LMN myocytes expressing \beta\textsubscript{gal}, \beta\textsubscript{2}-AR stimulation elicited a typical increase in I\textsubscript{Ca,L} (166\pm11\%). In +LMN myocytes expressing the double dn-cPLA\textsubscript{2}SS505A/SS515A \beta\textsubscript{2}-AR stimulation of I\textsubscript{Ca,L} was significantly attenuated (84\pm8\%) compared to control. In +LMN myocytes overexpressing wt-cPLA\textsubscript{2}, \beta\textsubscript{2}-AR stimulation of I\textsubscript{Ca,L} was significantly enhanced (307\pm8\%) compared to either control or dn-cPLA\textsubscript{2}SS505A/SS515A. These results confirm that cell attachment to LMN activates \beta\textsubscript{2}-AR/cPLA\textsubscript{2} signaling and further indicates that \beta\textsubscript{2}-AR stimulation of cPLA\textsubscript{2} requires serine phosphorylation at one or both sites.
Role of IP3 receptor in the enhanced zint-β2-AR induced I_{Ca,L} currents in -PKA atrial myocytes

Our previous work showed that β2-AR stimulation of cPLA2 signaling is dependent on intracellular Ca^{2+} [3]. The fact that β2-AR stimulation acts via PLC to activate cPLA2 (Fig 3) suggests the potential involvement of IP3-mediated Ca^{2+} signaling. We therefore determined the effects of 2 μM 2-APB, a putative IP3 receptor (IP3R) blocking agent [24], on β2-AR stimulation of I_{Ca,L} in +PKA and–PKA myocytes. As shown in Fig 7A, in +PKA myocytes 2-APB had
Fig 6. Effects of dn-cPLA$_2^{S515A/S505A}$ and wt-cPLA$_2$ on zint-β_2-AR stimulation of I$_{ca,L}$ in +LMN myocytes. Compared to control +LMN myocytes (βgal), zint-β_2-AR stimulation of I$_{ca,L}$ was significantly inhibited and enhanced in myocytes overexpressing dn-cPLA$_2^{S515A/S505A}$ and expressing wt-cPLA$_2$, respectively. Numbers in parentheses indicate that number of cells studied. * = P<0.05.

doi:10.1371/journal.pone.0168505.g006

Fig 7. Effects of 2 μM 2-APB on zint-β_2-AR stimulation of I$_{ca,L}$ in +PKA (A), -PKA atrial myocytes. A: in control +PKA myocytes, 2-APB had no significant effects on zint-β_2-AR stimulation of I$_{ca,L}$. B: in -PKA myocytes, zint-β_2-AR stimulation elicited a typically enhanced increase in I$_{ca,L}$ compared to controls (A) and 2-APB significantly inhibited zint-β_2-AR stimulation of I$_{ca,L}$. Numbers in parentheses indicate the number of myocytes studied. * = P<0.05.

doi:10.1371/journal.pone.0168505.g007
no significant effect on basal $I_{Ca,L}$ (open bars) or zint-β_2-AR stimulation of $I_{Ca,L}$ (control, 121 ±4% vs 2-APB, 113±5%). In–PKA myocytes (B) zint-β_2-AR stimulation elicited a typically enhanced increase in $I_{Ca,L}$ compared to control responses (panel A). In contrast to +PKA myocytes, 2-APB significantly inhibited zint-β_2-AR stimulation of $I_{Ca,L}$ (control, 245±25% vs 2-APB, 89±19%; P<0.02). Similar results were obtained in +LMN myocytes where zint-β_2-AR stimulation of $I_{Ca,L}$ also was significantly blocked by 2-APB (control, 186±26%; N = 4 vs 87 ±7%; N = 4, P<0.01) (see S3 Fig online data).

In another approach, we infected atrial myocytes with an adenovirus that expresses an IP$_3$ affinity trap which binds to IP$_3$ in the cytosol and thereby inhibits IP$_3$-mediated Ca$^{2+}$ signaling by preventing IP$_3$ from reaching and activating the IP$_3$ receptor (IP$_3$R) [17]. Cells were cultured overnight on LMN and therefore represent +LMN myocytes. As shown in Fig 8, in control +LMN myocytes expressing βgal, zint-β_2-AR stimulation of $I_{Ca,L}$ (182±4%) was significantly inhibited compared to controls (P<0.002).
Together, these findings suggest that IP₃R signaling plays no role in zint-β₂-AR stimulation of I_{Ca,L} in freshly isolated atrial myocytes. However, when PKA is inhibited by either PKA inhibitor (Fig 7) or cell attachment to LMN (Fig 8), β₂-AR stimulation of cPLA₂ is dependent on IP₃-mediated Ca^{2+} signaling.

Role of IP₃ receptors located on SR or nuclear envelope in the enhanced zint-β₂-AR induced I_{Ca,L} currents in -PKA atrial myocytes

IP₃Rs are thought to be located primarily on the sarcoplasmic reticulum (SR) and nuclear envelope membranes. Because the SR and nuclear envelope membranes are highly interconnected, inhibition of SR Ca^{2+} uptake by thapsigargin depletes intracellular Ca^{2+} stores from both sites [25]. Therefore, in Fig 9 we determined whether depletion of SR and nuclear Ca^{2+} by 5 μM thapsigargin (10 min; Thaps) inhibits β₂-AR stimulation of I_{Ca,L} in +PKA (A) and -PKA (B) myocytes. In +PKA myocytes (A) thapsigargin had no effect on basal I_{Ca,L} amplitude (open bars). Compared to control responses (107±8%), thapsigargin slightly enhanced zint-β₂-AR stimulation of I_{Ca,L} (143±4%), although the change was not statistically significant. This modest increase in β₂-AR stimulation of I_{Ca,L} is consistent with the effects of thapsigargin to inhibit SR Ca^{2+} release and thereby inhibit Ca^{2+}-mediated inactivation of I_{Ca,L}. In fact, separate experiments showed that thapsigargin ablished SR Ca^{2+} transients (data not shown). In -PKA myocytes (B), zint-β₂-AR stimulation of I_{Ca,L} (207±17%) was typically enhanced compared to control responses (107±8%) obtained in +PKA myocytes (A). Interestingly, in -PKA myocytes treated with thapsigargin β₂-AR stimulation of I_{Ca,L} (238±12%) was still enhanced. In other words, depletion of Ca^{2+} from SR and nuclear membranes failed to prevent PKA inhibition from enhancing β₂-AR signaling. Moreover, the last column in Fig 9B shows that in -PKA myocytes treated with thapsigargin, AACOCF₃ (cPLA₂ inhibitor) significantly inhibited zint-β₂-AR stimulation of I_{Ca,L} (62±12%), indicating that the enhanced response to zint-β₂-AR stimulation was in fact due to activation of cPLA₂ signaling and that depletion of SR and

Fig 9. Effects of 5 μM thapsigargin (10 min; Thaps) on zint-β₂-AR stimulation of I_{Ca,L} in +PKA(A) and -PKA (B) myocytes. A: in +PKA myocytes, compared to control responses, thapsigargin slightly enhanced zint-β₂-AR stimulation of I_{Ca,L}. B: in -PKA myocytes, zint-β₂-AR stimulation elicited a typically enhanced increase in I_{Ca,L} compared to control (A) that was not prevented by treatment with thapsigargin. The addition of 10 μM AACOCF₃ (+ thaps) significantly inhibited zint-β₂-AR stimulation of I_{Ca,L} indicating that thapsigargin did not prevent zint-β₂-AR stimulation of cPLA₂. Numbers in parentheses indicate the number of myocytes studied. * = P<0.05.

doi:10.1371/journal.pone.0168505.g009
nuclear Ca\(^{2+}\) stores failed to prevent \(\beta_2\)-AR/cPLA\(_2\) signaling. Similar results were obtained when Ca\(^{2+}\) stores were depleted by treatment (10 min) with 10 \(\mu\)M ryanodine (data not shown). These results indicate that IP\(_3\)-dependent Ca\(^{2+}\) signaling is not mediated via IP\(_3\)Rs located on SR or nuclear envelope membranes.

Role of IP3 receptors located in caveolae in the enhanced zint-\(\beta_2\)-AR induced \(I_{Ca,L}\) currents in -PKA atrial myocytes

Alternatively, IP\(_3\)R protein is present in caveolae [26, 27], which are abundant in atrial myocytes [28]. We therefore determined the effects of 10 mM methyl-\(\beta\)-cyclodextrin (MCD; 30 min), an agent that disrupts caveolae formation [29], on zint-\(\beta_2\)-AR stimulation of \(I_{Ca,L}\) in +PKA and–PKA myocytes. As shown in Fig 10A, in +PKA myocytes MCD caused a modest but significant inhibition of zint-\(\beta_2\)-AR stimulation of \(I_{Ca,L}\) (control, 122\(\pm\)5\% vs MCD, 93\(\pm\)7\%; \(P<0.05\)), representing a 24\% decrease. This is consistent with the idea that \(\beta_2\)-ARs are normally localized to caveolae [30]. However, in–PKA myocytes (B) MCD elicited a significantly larger inhibition of zint-\(\beta_2\)-AR stimulation of \(I_{Ca,L}\) (control, 235\(\pm\)7\% vs MCD, 54\(\pm\)12\%; \(P<0.008\)), representing a 77\% decrease. The fact that MCD elicited a significantly larger inhibition of \(\beta_2\)-AR signaling in–PKA compared to +PKA myocytes supports the idea that the IP\(_3\)Rs that are essential for \(\beta_2\)-AR/cPLA\(_2\) signaling are localized to the caveolae.

Discussion

We previously reported that in atrial myocytes inhibition of adenylate cyclase/PKA by either cell attachment to LMN or inhibition of PKA in cells not attached to LMN activates \(\beta_2\)-AR/cPLA\(_2\) signaling [2, 3]. The present study extends those findings by showing that when PKA is inhibited, \(\beta_2\)-AR stimulation acts via PKC\(\alpha\)/Raf-1/MEK/ERK1/2 and IP\(_3\)-dependent Ca\(^{2+}\) signaling to activate cPLA\(_2\).

![Fig 10](https://doi.org/10.1371/journal.pone.0168505.g010)

Fig 10. Effect of 2 mM methyl-\(\beta\)-cyclodextrin (MCD; 30 min) on zint-\(\beta_2\)-AR stimulation of \(I_{Ca,L}\) in +PKA (A) and -PKA (B) myocytes. A; in +PKA myocytes, MCD significantly decreased zint-\(\beta_2\)-AR stimulation of \(I_{Ca,L}\) compared to control responses (-24\%). B; in–PKA myocytes, zint-\(\beta_2\)-AR stimulation elicited a typically enhanced increase in \(I_{Ca,L}\) compared to +PKA myocytes (A) and the effect of MCD to decrease zint-\(\beta_2\)-AR stimulation of \(I_{Ca,L}\) was enhanced (-77\%) compared to +PKA myocytes (A). Numbers in parentheses indicate the number of myocytes studied. * = \(P<0.05\).

doi:10.1371/journal.pone.0168505.g010
In the present experiments, we showed that inhibition of PKA prominently stimulates β_2-AR-mediated phosphorylation of ERK1/2, consistent with β_2-AR stimulation of $I_{Ca,L}$ via MEK/ERK1/2 signaling [3]. Moreover, inhibition of Raf-1 by either GW5074 or adenosinergic expression of a dn-Raf-1 mutant significantly inhibited β_2-AR stimulation of $I_{Ca,L}$ in–PKA or +LMN myocytes but failed to affect β_2-AR signaling in +PKA myocytes. These findings can be explained by the fact that PKA inhibits Raf-1 and Raf-1 activates MEK/ERK1/2 signaling [7, 31, 32]. Because atrial myocytes normally exhibit relatively high endogenous levels of adenylate cyclase/PKA activity [11], Raf-1 is normally inhibited and therefore β_2-AR stimulation is unable to activate Raf-1/MEK/ERK1/2 signaling in +PKA myocytes. However, when PKA is inhibited (–PKA or +LMN myocytes) β_2-AR stimulation acts via Raf-1/MEK/ERK1/2 to activate cPLA$_2$. The present experiments also show that adenosinergic overexpression of wt-cPLA$_2$ or expression of a dn-cPLA$_2$ S505A/S515A mutant in +LMN myocytes significantly enhanced or inhibited, respectively, β_2-AR stimulation of $I_{Ca,L}$ compared to control +LMN myocytes expressing βgal. In various cell systems including vascular smooth muscle and fibroblasts ERK1/2 phosphorylates cPLA$_2$ at S505 and S515 [15, 21–23]. In cardiac ventricular myocytes (cultured on LMN) β_2-AR stimulation acts via ERK1/2 and p38 MAPK to phosphorylate cPLA$_2$ at S505 [6].

In atrial myocytes, β_2-ARs are coupled to both Gi- and Gi-mediated signaling pathways [12]. We [3] and others [4] have reported that β_2-ARs act via pertussis toxin-sensitive Gi to activate cPLA$_2$. In various cell systems, including rat ventricular myocytes [33] activation of PKA phosphorylates β_2-ARs and thereby switches β_2-AR coupling from Gi-mediated adenylate cyclase to Gi-mediated ERK1/2 signaling [34, 35]. Moreover, inhibition of PKA by H-89 inhibited β_2-AR/G$_i$-mediated ERK1/2 signaling. These findings are not consistent with the present results, which indicate that in adult atrial myocytes inhibition of PKA by H-89 or KT5720 activates (rather than inhibits) β_2-AR/G$_i$-mediated ERK1/2 signaling [3]. However, our findings are consistent with reports that PKA inhibits Raf-1 and its downstream MEK/ERK1/2 signaling pathway [7, 31, 32]. Therefore, in atrial myocytes inhibition of PKA removes Raf-1 inhibition and thereby activates β_2-AR/G$_i$ stimulation of Raf-1/MEK/ERK1/2 signaling.

The present results also indicate that inhibition of PLC (edelfosine) or PKC (chelerythrine or dn-PKCα) significantly inhibited β_2-AR stimulation of $I_{Ca,L}$ in–PKA or +LMN myocytes but not in +PKA myocytes. Moreover, in +LMN myocytes expression of dn-PKCa significantly inhibited β_2-AR signaling while expression of dn-PKCe had no effect, indicating that β_2-ARs act via Ca$^{2+}$-dependent PKCa to activate cPLA$_2$. These findings are consistent with reports that PKC activates Raf-1/MEK/ERK1/2 signaling in adult cardiac myocytes [9, 18] and that PKC activates cPLA$_2$ signaling [10].

Our previous findings showed that strong chelation of intracellular Ca$^{2+}$ by BAPTA prevented β_2-AR stimulation via cPLA$_2$. This is consistent with the fact that several of the signaling molecules involved in the proposed β_2-AR/cPLA$_2$ signaling cascade are Ca$^{2+}$-dependent, including PLC, PKCα and cPLA$_2$. In the present study, we investigated more specifically which source of intracellular Ca$^{2+}$ is required for β_2-AR/cPLA$_2$ signaling. We found that 2-APB, an agent that inhibits IP$_3$-mediated Ca$^{2+}$ release in cat atrial myocytes [24] significantly inhibited β_2-AR stimulation of $I_{Ca,L}$ in both–PKA and +LMN myocytes but not in +PKA myocytes. Moreover, adenosinergic expression of an IP$_3$ affinity trap which inhibits IP$_3$-mediated Ca$^{2+}$ signaling [17] resulted in a similar inhibition of β_2-AR signaling in +LMN myocytes. The fact that 2-APB had no effect on β_2-AR signaling in control +PKA myocytes and that it exerted effects similar to those of the Adv-IP$_3$ affinity trap suggests that 2-APB acted specifically to inhibit IP$_3$-mediated Ca$^{2+}$ signaling. Together, these results indicate that β_2-AR stimulation of cPLA$_2$ is dependent on IP$_3$-mediated Ca$^{2+}$ signaling. Although IP$_3$Rs are typically located on SR and nuclear membranes, the present results showed that thapsigargin, an agent that depletes both
SR and nuclear envelope Ca$^{2+}$ stores [25] failed to prevent β2-AR stimulation of I$_{Ca,L}$ via cPLA$_2$. However, disruption of caveolae formation by methyl-β-cyclodextrin elicited a significantly larger inhibition of β2-AR stimulation in–PKA myocytes than control +PKA myocytes. We therefore conclude that IP$_3$Rs on the SR and nuclear envelope membranes are not involved in the Ca$^{2+}$ signaling required for β2-AR stimulation of cPLA$_2$. Alternatively, β2-AR stimulation of I$_{Ca,L}$ via cPLA$_2$ is dependent on IP$_3$-mediated Ca$^{2+}$ signaling in caveolae. In endothelial and smooth muscle cells plasmalemmal caveolae contain IP$_3$R protein that is speculated to mediate Ca$^{2+}$ influx through the caveolar membrane [26, 27]. Moreover, in rat ventricular myocytes (cultured on laminin) β2-ARs stimulate translocation of cPLA$_2$ to the low density caveolin-3 enriched membrane fraction suggesting that cPLA$_2$ translocates to caveolae [5]. In fact, lipid rafts i.e. caveolae contain a wide variety of signaling components including β2-ARs, G$_s$, PKC, Raf-1, ERK1/2, IP$_3$Rs [36], involved in β2-AR/cPLA$_2$ signaling.

We therefore propose (see Fig 11) that under normal conditions (A; +PKA myocytes), β2-AR/G$_b$ stimulation acts via adenylate cyclase (AC)/cAMP/PKA to stimulate I$_{Ca,L}$. The relatively high basal levels of endogenous PKA activity and β2-AR-stimulated PKA activity both inhibit Raf-1 signaling, thereby preventing β2-AR stimulation from normally activating cPLA$_2$. However, inhibition of PKA by either PKA inhibitor (B;–PKA myocytes) or by cell attachment to LMN (C; +LMN myocytes), removes inhibition of Raf-1. Under these conditions, β2-AR/G$_b$ stimulation of PLC activates PKC$_\alpha$ and IP$_3$R-mediated Ca$^{2+}$ signaling in caveolae. With PKA inhibited, PKC$_\alpha$ is now able to stimulate Raf-1/MEK/ERK1/2 signaling. Therefore, β2-AR/G$_b$-mediated activation of both ERK1/2 and IP$_3$-dependent Ca$^{2+}$ signaling stimulates cPLA$_2$/AA. We previously reported that arachidonic acid (AA) stimulates I$_{Ca,L}$ [3]. This scenario is consistent with the fact that cPLA$_2$ activation requires both elevation of submicromolar intracellular [Ca$^{2+}$] and phosphorylation by various kinases (see also [21–23]).

Conclusions

These findings may have important implications with respect to the aging and/or failing heart, both of which exhibit decreases in adenylate cyclase activity. In both animal models [37] and in the human right atrium [38], increasing age is associated with a decrease in β1-AR function that results from a decrease in adenylate cyclase activity. Likewise, adenylate cyclase activity is depressed in the failing human heart [39] and canine pacing-induced heart failure [40, 41] and yet β2-AR signaling is preserved. Previous studies by Nalli et al suggest that PKA and PKG phosphorylates PLCβ3 in gastric smooth muscle cells and decreases PI hydrolysis [42]. The decrease in PI hydrolysis has been suggested to diminish IP$_3$-mediated Ca$^{2+}$ release decreasing muscle contraction. Along these lines, the present studies also suggest that feline atrial cardiomyocytes exhibit a similar regulation as that seen in gastric muscle. Our research also suggests that increases in extracellular matrix proteins, i.e. fibrosis, may contribute to decreases in adenylate cyclase/PKA activity in the aging and/or failing heart, which in turn switches β2-AR signaling from cAMP/PKA to cPLA$_2$/AA. This mechanism may be responsible for the preservation of β2-AR signaling while β1-AR signaling is depressed. Thus, the diminished PKA activity in cardiac fibrosis may decrease phosphorylation of PLC resulting in an increase in IP hydrolysis, Ca$^{2+}$ release and greater contraction. Indeed, our present results indicate that inhibition of PLC significantly inhibited β2-AR stimulation of I$_{Ca,L}$ in–PKA or +LMN myocytes but not in +PKA myocytes. In addition, our results suggest that 2-APB, an agent that inhibits IP$_3$-mediated Ca$^{2+}$ release in cat atrial myocytes [24] significantly inhibited β2-AR stimulation of I$_{Ca,L}$ in both–PKA and +LMN myocytes but not in +PKA myocytes. Together, these results indicate that β2-AR stimulation of cPLA$_2$ in both–PKA and +LMN myocytes is dependent on PLC/IP$_3$-mediated Ca$^{2+}$ signaling. Given that cPLA$_2$/AA signaling is a potentially pro-
Fig 11. Schematic summary showing the proposed signaling mechanisms underlying zint-β₂-AR stimulation of I_{Ca,L} in +PKA (A), -PKA (B) atrial myocytes. A; in +PKA myocytes, zint-β₂-AR stimulation acts via G_s to activate adenylate cyclase (AC)/cAMP-dependent kinase (PKA) which in turn stimulates I_{Ca,L}. Both basal and stimulated PKA activity inhibits Raf-1 signaling, thereby preventing zint-β₂-AR stimulation of I_{Ca,L} via cPLA₂. B; in cells not attached to LMN, inhibition of PKA by KT5720 removes inhibition of Raf-1. C; cell attachment to LMN acts via β₁ integrins and FAK/PI-(3)K/Akt signaling to inhibit adenylate cyclase (AC)/cAMP-dependent kinase (PKA) activity, thereby removing inhibition of Raf-1. β₂-AR stimulation acts via G_i to stimulate PLC leading to activation of PKCα and IP₃-mediated Ca²⁺ signaling within caveolae. With PKA inhibited, PKCα stimulates Raf-1/MEK/ERK1/2 signaling. Together, ERK1/2 and IP₃-mediated Ca²⁺ signaling activate cPLA₂/AA, resulting in stimulation of I_{Ca,L}.

doi:10.1371/journal.pone.0168505.g011
inflammatory mediator, the present findings suggest that fibrosis in the aging and/or failing heart may predispose inflammation and atrial dysfunction. In fact, AA is reported to slow atrial conduction and has been implicated in the development of postoperative atrial fibrillation [43]. On the other hand, activation of the Raf/MEK/ERK pathway may be cardioprotective [44]. In fact, inhibition of adenylate cyclase/PKA and subsequent activation of Raf-1/MEK/ERK1/2 signaling enhances cardiac resistance to oxidative stress, increases cell survival, and extends lifespan [45]. Therefore, inhibition of adenylate cyclase/PKA activity and the remodeling of β2-AR signaling to activate Raf/MEK/ERK1/2 may help ameliorate the deterioration of function that occurs in the aging and/or failing atrium. Previous studies have indicated that, beside inhibition of COX, aspirin has COX-independent mechanisms that plays a role in tumor suppression [46, 47]. Aspirin reportedly inhibits PI3K/Akt kinase activity in epithelial ovarian cancer cells [48]. Aspirin down regulates the expression of PI3K, Akt and ERK in rodent model of acute pulmonary embolism [49] and in turn inhibit the release of inflammatory cytokines [50]. On the other hand, our studies indicate that laminin acts via FAK/PI(3)K/Akt signaling to inhibit adenylate cyclase-mediated stimulation of I_{Ca,L}. Although, there is no direct evidence suggesting that aspirin or NSAIDs play a role in cardiomyocyte aging, we hypothesize that aspirin or NSAIDs may influence cPLA2/AA pathway and this requires further investigation.

Supporting Information

S1 Fig. Effects of Raf-1 inhibition (10 μM GW5074) on zint-β2-AR stimulation of I_{Ca,L} in +LMN atrial myocytes. A: In +LMN myocytes, zint-β2-AR stimulation of I_{Ca,L} was enhanced and GW5074 significantly inhibited zint-β2-AR stimulation of I_{Ca,L}. Numbers in parentheses indicate the number of myocytes studied. * = P<0.004. (TIF)

S2 Fig. Effects of 0.5 μM edelfosine on zint-β2-AR stimulation of I_{Ca,L} in +LMN atrial myocytes. A: In +LMN myocytes zint-β2-AR stimulation elicited a typically enhanced increase in I_{Ca,L} and edelfosine significantly inhibited zint-β2-AR stimulation of I_{Ca,L}. Numbers in parentheses indicate the number of myocytes studied. * = P<0.03. (TIF)

S3 Fig. Effects of 2 μM 2-APB on zint-β2-AR stimulation of I_{Ca,L} in +LMN atrial myocytes. A: +LMN myocytes, zint-β2-AR stimulation elicited a typically enhanced increase in I_{Ca,L} and 2-APB significantly inhibited zint-β2-AR stimulation of I_{Ca,L}. Numbers in parentheses indicate the number of myocytes studied. * = P<0.01. (TIF)

Acknowledgments

We thank Ms. Rekha Iyenger for her expert technical assistance with the adenoviral experiments.

Author Contributions

Conceptualization: MRP AMS SLL.

Data curation: MRP AMS SLL.

Formal analysis: MRP SLL.

Funding acquisition: MRP AMS SLL.
Investigation: MRP XJ JTM GAM.
Methodology: MRP XJ JTM GAM.
Project administration: AMS SLL.
Resources: MRP AMS SLL.
Software: MRP AMS SLL.
Supervision: AMS SLL.
Validation: MRP SLL.
Visualization: MRP SLL.
Writing – original draft: MRP SLL.
Writing – review & editing: MRP SLL.

References
1. Wang YG, Samarel AM, Lipsius SL. Laminin binding to beta1-integrins selectively alters beta1- and beta2-adrenergic receptor signalling in cat atrial myocytes. The Journal of physiology. 2000; 527 Pt 1:3–9. Epub 2000/08/16. PubMed Central PMCID: PMCPMC2270063.
2. Wang YG, Ji X, Pabbidi M, Samarel AM, Lipsius SL. Laminin acts via focal adhesion kinase/phosphatidylinositol-3' kinase/protein kinase B to down-regulate beta1-adrenergic receptor signalling in cat atrial myocytes. The Journal of physiology. 2009; 587(3):541–50. Epub 2008/12/10. 19064616; PubMed Central PMCID: PMCPMC2670079. doi: 10.1113/jphysiol.2008.163824 PMID: 19064616
3. Pabbidi MR, Ji X, Samarel AM, Lipsius SL. Laminin enhances beta(2)-adrenergic receptor stimulation of L-type Ca(2+) current via cytosolic phospholipase A(2) signalling in cat atrial myocytes. The Journal of physiology. 2009; 587(Pt 20):4785–97. Epub 2009/08/26. PubMed Central PMCID: PMCPMC2770147. doi: 10.1113/jphysiol.2009.179226 PMID: 19703961
4. Magne S, Couchie D, Pecker F, Pavoine C. Beta(2)-adrenergic receptor agonists increase intracellular free Ca(2+) concentration cycling in ventricular cardiomyocytes through p38 and p42/44 MAPK-mediated cytosolic phospholipase A(2) activation. The Journal of biological chemistry. 2001; 276 (43):39539–48. Epub 2001/08/17. doi: 10.1074/jbc.M100328200 PMID: 11507067
5. Gerits N, Kostenko S, Shiraev A, Johannessen M, Moens U. Relations between the mitogen-activated protein kinase and the cAMP-dependent protein kinase pathways: comradeship and hostility. Cellular signalling. 2008; 20(9):1592–607. Epub 2008/04/22. doi: 10.1016/j.cellsig.2008.02.022 PMID: 19423978
6. Kohno M, Pouyssegur J. Pharmacological inhibitors of the ERK signaling pathway: application as anticancer drugs. Progress in cell cycle research. 2003; 5:219–24. Epub 2003/11/05. PMID: 14593716
7. Iijima Y, Laser M, Shiraiishi H, Willey CD, Sundaravadivel B, Xu L, et al. c-Raf/MEK/ERK pathway controls protein kinase C-mediated p70S6K activation in adult cardiac muscle cells. The Journal of biological chemistry. 2002; 277(25):23065–75. Epub 2002/04/10. doi: 10.1074/jbc.M200100200 PMID: 11940578
8. van Rossum DB, Patterson RL. PKC and PLA2: probing the complexities of the calcium network. Cell calcium. 2009; 45(6):535–45. Epub 2009/04/07. doi: 10.1016/j.ceca.2009.02.008 PMID: 19345415
9. Wang YG, Samarel AM, Lipsius SL. Laminin acts via beta 1 integrin signalling to alter cholinergic regulation of L-type Ca(2+) current in cat atrial myocytes. The Journal of physiology. 2000; 526 Pt 1:57–68. Epub 2000/07/06. PubMed Central PMCID: PMCPMC2269985.
10. Wang YG, Dedkova EN, Steinberg SF, Blatter LA, Lipsius SL. Beta 2-adrenergic receptor signaling acts via NO release to mediate ACh-induced activation of ATP-sensitive K+ current in cat atrial myocytes.
Fujimoto T, Nakade S, Miyawaki A, Mikoshiba K, Ogawa K. Localization of inositol 1,4,5-trisphosphate 25.

Wu X, Bers DM. Sarcoplasmic reticulum and nuclear envelope are one highly interconnected Ca2+

Zima AV, Blatter LA. Inositol-1,4,5-trisphosphate-dependent Ca(2+) signalling in cat atrial excitation-

Ghosh M, Tucker DE, Butt SA, Leslie CC. Properties of the Group IV phospholipase A2 family.

Schnitzer JE, Oh P, Jacobson BS, Dvorak AM. Caveolae from luminal plasmalemma of rat lung endo-

Moschella PC, Rao VU, McDermott PJ, Kuppuswamy D. Regulation of mTOR and S6K1 activation by

Hirabayashi T, Murayama T, Shimizu T. Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biological & pharmaceutical research communications. 1990; 172(3):993–9. Epub 1990/05/15. PMID: 10080535

Powis G, Seewald MJ, Gratas C, Melder D, Riebow J, Modest EJ. Selective inhibition of phosphatidylinositol phospholipase C by cytotoxic ether lipid analogues. Cancer research. 1992; 52(10):2835–40. Epub 1992/05/15. PMID: 1316230

Herbert JM, Augereau JM, Gleye J, Maffrand JP. Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochemical and biophysical research communications. 1990; 172(3):993–9. Epub 1990/11/15. PMID: 2244923

Ghosh M, Tucker DE, Burchett SA, Leslie CC. Properties of the Group IV phospholipase A2 family. Progress in lipid research. 2006; 45(6):487–510. Epub 2006/07/04. doi: 10.1016/j.plipres.2006.05.003 PMID: 16814865

Gijon MA, Leslie CC. Regulation of arachidonic acid release and cytosolic phospholipase A2 activation. Journal of leukocyte biology. 1999; 65(3):330–6. Epub 1999/03/18. PMID: 10080535

Hirabayashi T, Murayama T, Shimizu T. Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biological & pharmaceutical bulletin. 2004; 27(8):1168–73. Epub 2004/08/12.

Zima AV, Blatter LA. Inositol-1,4,5-trisphosphate-dependent Ca(2+) signalling in cat atrial excitation-contraction coupling and arrhythmias. The Journal of physiology. 2004; 555(Pt 1):143–57. Epub 2005/06/11. PubMed Central PMCID: PMCPMC1474159. doi: 10.1113/jphysiol.2003.058529 PMID: 11754996

Wu X, Bers DM. Sarcoplasmic reticulum and nuclear envelope are one highly interconnected Ca2+-store throughout cardiac myocyte. Circulation research. 2006; 99(3):283–91. Epub 2006/06/24. doi: 10.1161/01.RES.000023386.02708.72 PMID: 16794184

Fujimoto T, Nakade S, Miyawaki K, Ogawa K. Localization of inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae. The Journal of cell biology. 1992; 119(6):1507–13. Epub 1992/12/01. PubMed Central PMCID: PMCPMC2289753. PMID: 1334960

Schnitzer JE, Oh P, Jacobson BS, Dvorak AM. Caveolae from luminal plasmalemma of rat lung endothelium: microdomains enriched in caveolin, Ca(2+)-ATPase, and inositol triphosphate receptor. Proceedings of the National Academy of Sciences of the United States of America. 1995; 92(5):1759–63. Epub 1995/02/28. PubMed Central PMCID: PMCPMC42599. PMID: 7878055

Wang YG, Dedkova EN, Ji X, Blatter LA, Lipsius SL. Phenylephrine acts via IP3-dependent intracellular NO release to stimulate L-type Ca2+ current in cat atrial myocytes. The Journal of physiology. 2005; 567(Pt 1):143–57. Epub 2005/06/11. PubMed Central PMCID: PMCPMC1474159. doi: 10.1113/jphysiol.2005.090035 PMID: 15946966

Smart EJ, Anderson RG. Alterations in membrane cholesterol that affect structure and function of caveolae. Methods in enzymology. 2002; 353:131–9. Epub 2002/06/25. PMID: 12078489

Rybin VO, Xu X, Lisanti MP, Steinberg SF. Differential targeting of beta-adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. The Journal of biological chemistry. 2000; 275(32):41447–57. Epub 2000/09/28. doi: 10.1074/jbc.M006951200 PMID: 11006286
31. Cook SJ, McCormick F. Inhibition by CAMP of Ras-dependent activation of Raf. Science (New York, NY). 1993; 262(5136):1069–72. Epub 1993/11/12.

32. Hafner S, Adler HS, Mischak H, Janosch P, Heidegger G, Wolfman A, et al. Mechanism of inhibition of Raf-1 by protein kinase A. Molecular and cellular biology. 1994; 14(10):6696–703. Epub 1994/10/01. PubMed Central PMID: PMCPMC359200. PMID: 7935389

33. Lefkowitz RJ, Pierce KL, Luttrell LM. Dancing with different partners: protein kinase a phosphorylation of seven membrane-spanning receptors regulates their G protein-coupling specificity. Molecular pharmacology. 2002; 62(5):971–4. Epub 2002/10/23. PMID: 12391258

34. Daaka Y, Luttrell LM, Lefkowitz RJ. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature. 1997; 390(6655):88–91. Epub 1997/11/18. doi: 10.1038/36362 PMID: 9363896

35. Zamah AM, Delahunty M, Luttrell LM, Lefkowitz RJ. Protein kinase A-mediated phosphorylation of the beta 2-adrenergic receptor regulates its coupling to Gs and Gi. Demonstration in a reconstituted system. The Journal of biological chemistry. 2002; 277(34):31249–56. Epub 2002/06/14. doi: 10.1074/jbc.M202753200 PMID: 12063255

36. Anderson RG. The caveolae membrane system. Annual review of biochemistry. 1998; 67:199–225. Epub 1998/10/06. doi: 10.1146/annurev.biochem.67.1.199 PMID: 9759488

37. Farrell SR, Howlett SE. The age-related decrease in catecholamine sensitivity is mediated by beta(1)-adrenergic receptors linked to a decrease in adenylate cyclase activity in ventricular myocytes from male Fischer 344 rats. Mechanisms of ageing and development. 2008; 129(12):735–44. Epub 2008/11/01. doi: 10.1016/j.mad.2008.09.017 PMID: 18973772

38. Brodde OE, Zerkowski HR, Schranz D, Broede-Sitz A, Michel-Reher M, Schafer-Beisenbusch E, et al. Age-dependent changes in the beta-adrenoceptor-G-protein(s)-adenyl cyclase system in human right atrium. Journal of cardiovascular pharmacology. 1995; 26(1):20–6. Epub 1995/07/01. PMID: 7564360

39. Bristow MR, Hershberger RE, Port JD, Minobe W, Rasmussen R. Beta 1- and beta 2-adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. Molecular pharmacology. 1989; 35(3):295–303. Epub 1989/03/01. PMID: 2564629

40. Ishikawa Y, Sorota S, Kuchi K, Shannon RP, Komamura K, Katsushika S, et al. Downregulation of adenylcyclase types V and VI mRNA levels in pacing-induced heart failure in dogs. The Journal of clinical investigation. 1994; 93(5):2224–9. Epub 1994/05/01. PubMed Central PMID: PMCPMC294370. doi: 10.1172/JCI117219 PMID: 8182154

41. Marzo KP, Frey MJ, Wilson JR, Liang BT, Manning DR, Lanoce V, et al. Beta-adrenergic receptor-G protein-adenylate cyclase complex in experimental canine congestive heart failure produced by rapid ventricular pacing. Circulation research. 1991; 69(6):1546–56. Epub 1991/12/01. PMID: 1699503

42. Nalli AD, Kumar DP, Al-Shboul O, Mahavadi S, Kuemmerle JF, Grider JR, et al. Regulation of Gbetagamma-dependent PLC-beta3 activity in smooth muscle: inhibitory phosphorylation of PLC-beta3 by PKA and PKG and stimulatory phosphorylation of Galpha-i-GTPase-activating protein RGS2 by PKG. Cell biochemistry and biophysics. 2014; 70(2):867–80. Epub 2014/04/03. PubMed Central PMID: PMCPMC4184950. doi: 10.1007/s12013-014-9992-6 PMID: 24777815

43. Tselentakis EV, Woodford E, Chandy J, Gaudette GR, Saltman AE. Inflammation effects on the electrical properties of atrial tissue and inducibility of postoperative atrial fibrillation. The Journal of surgical research. 2006; 135(1):68–75. Epub 2006/05/03. doi: 10.1016/j.jsrs.2006.03.024 PMID: 16650669

44. Taylor RP, Stames JW. Age, cell signalling and cardioprotection. Acta physiologica Scandinavica. 2003; 178(2):107–16. Epub 2003/06/05. doi: 10.1046/j.1369-913X.2003.01152.x PMID: 12798384

45. Yan L, Vatner DE, O’Connor JP, Ivesa A, Ge H, Chen W, et al. Type 5 adenyl cyclase disruption increases longevity and protects against stress. Cell. 2007; 130(2):247–58. Epub 2007/07/31. doi: 10.1016/j.cell.2007.05.038 PMID: 17662940

46. Goel A, Chang DK, Ricciardiello L, Gasche C, Boland CR. A novel mechanism for aspirin-mediated growth inhibition of human colon cancer cells. Clinical cancer research: an official journal of the American Association for Cancer Research. 2003; 9(1):383–90. Epub 2003/01/23.

47. Luciani MG, Campregher G, Gasche C. Aspirin blocks proliferation in colon cells by inducing a G1 arrest and apoptosis through activation of the checkpoint kinase ATM. Carcinogenesis. 2007; 28(10):2207–17. Epub 2007/05/19. doi: 10.1093/carcin/bgm101 PMID: 17510082

48. Uddin S, Ahmad M, Hussain A, Assad L, Al-Dayel F, Bavi P, et al. Cyclooxygenase-2 inhibition inhibits PI3K/AKT kinase activity in epithelial ovarian cancer. International journal of cancer. 2010; 126(2):382–94. Epub 2009/07/22. doi: 10.1002/ijc.24757 PMID: 19821391

49. Wang L, Wu J, Zhang W, Zhi Y, Wu Y, Jiang R, et al. Effects of aspirin on the ERK and PI3K/Akt signaling pathways in rats with acute pulmonary embolism. Molecular medicine reports. 2013; 8(5):1465–71. doi: 10.3892/mmr.2013.1676 PMID: 24026640
50. Liu YC, Kao SJ, Chuang IC, Chen HI. Nitric oxide modulates air embolism-induced lung injury in rats with normotension and hypertension. Clinical and experimental pharmacology & physiology. 2007; 34 (11):1173–80. Epub 2007/09/21.