Solving a Large-Scale Nonlinear System of Monotone Equations by using a Projection Technique

Nabiha Kahtan Dreeb, Karrar Habeeb Hashim, Mohammed Maad Mahdi, H.A. Wasi, Hasan Hadi Dwail, Mushtak A.K. Shiker and Hussein Ali Hussein
Department of Mathematics, College for Pure Science, University of Babylon, Hillah, Iraq

Abstract: In this study, we suggest a new projection algorithm for solving nonlinear systems of monotone equations. The projection methods are an efficient family of derivative free methods for solving nonlinear systems of monotone equation that is in each iteration, the current iterate is strictly separated from the solution set of the problem by an appropriate hyperplane that constructs by the new projection algorithm. Then the current iterate is projected onto this hyperplane to determine the new approximation. Under standard assumptions, the global convergence of the proposed algorithm are proved. The numerical experiments indicate the efficiency of the proposed algorithm.

Key words: Nonlinear system of equations, projection method, monotone strategy, global convergence, experiments, assumptions

INTRODUCTION

The nonlinear systems and their solutions are of great importance in the various sciences which have included different fields and aspects. It is an important part of the sciences of mathematical and physics (since, most physical systems are nonlinear) as well as their importance in engineering, especially, mechanical engineering, electricity, management, economy, population growth, weather and other natural phenomena. The nonlinear systems are studied alongside the linear system because of the possibility of converting nonlinear problems into linear ones from many variables. Consider the following nonlinear system of equations:

\[F(x) = 0 \]

(1)

where, \(F \) is a continuous and monotone function from \(\mathbb{R}^n \) to \(\mathbb{R}^n \) condition of monotony mean:

\[(F(x) - F(y))^T (x-y) \geq 0, \forall x, y \in \mathbb{R}^n \]

(2)

The solution of nonlinear system equations is one of the problem and difficulties in the mathematical and engineering applications that analyzing it by analytical methods is difficult. Therefore, we can only rely on iterative methods that use the iterative procedure to obtain approximate solutions. The Newton method may be one of the best numerical methods that use the iterative method to solve these systems and it is consider a smooth method to find approximate values of equations.

In recent years, many modifications have been made to the Newton method these suggested methods may be equivalent to (or better than) the Newton method to solve the nonlinear system of equations. The line search method and the trust region method are the most important two methods to solve these systems.

The important idea of the line search method is finding the step length in the specified direction but the trust region method always cares to find a neighborhood of the current step \(x_k \), so that, the new iterate falls within the trust region determined by its radius (Amini et al., 2016) also this technique is used to solve unconstrained optimization (Shiker and Sahib, 2018).

Some methods proved ineffective for solving large-scale nonlinear system of equations as Newton method and quasi-Newton methods (Hager and Zhang, 2005; Li, 2017; Hassan and Shiker, 2018) because they need to solve the Jacobian matrix or an approximation of it in each iterative.

This research focuses on solving the system of large-scale non-linear equations by a new projection technique. The simple idea of the projection technique is always interested in separating the present approximation from the result set of the problem (Eq. 1) by appropriate hyperplane that is built in each iterate and then projecting this approximation on the same hyperplane to obtain the new approximation (Koorapatse et al., 2019). Several researchers use conjugate gradient approaches combining with projection techniques for solving (Eq. 1) as well as optimization issues (Dai, 2002).
The first projection approach was suggested by Solodov and Svaiter (1998) and it showed the totally convergent of solving nonlinear problems. In this study, the new algorithm is used to solve the nonlinear systems, we proved its global convergence. Then we compare with two famous methods, SBM method by Yan et al. (2010) and DFPB1 by Ahookhosh et al. (2013), the new algorithm will be more efficient.

The framework: The projection technique is one of the ways that proved to be active in solving nonlinear problems and it is a suitable and applicable way to solve large-scale difficulties these methods use a series of repetitions to arrive to the next iterate:

\[x_{k+1} = x_k + \alpha_k d_k \] \hspace{1cm} (3)

Where:
- \(\alpha_k \) = A step length
- \(d_k \) = The step direction

These processes are called an iterative procedures (Ortega and Rheinboldt, 1970), so, the projection techniques are called iterative methods. The projection approaches are family of derivative free. To define these effective methods, we use the projection operator \(\Phi_{\Omega} \). Let \(\Phi_{\Omega}[.] \) be a mapping from \(\mathbb{R}^n \) to \(\Omega \) where \(\Omega \) is non-empty closed convex set (Wang et al., 2003):

\[\Phi_{\Omega}[x] = \arg\min\{\|x-z\|, z \in \Omega\}, \forall x \in \mathbb{R}^n \] \hspace{1cm} (4)

The projection operator has interesting features is non-expansive property:

\[\|\Phi_{\Omega}(x) - \Phi_{\Omega}(y)\| \leq \|x-y\|, \forall x, y \in \mathbb{R}^n \] \hspace{1cm} (5)

As a result produces:

\[\|\Phi_{\Omega}(x) - y\| \leq \|x-y\|, \forall x, y \in \Omega \] \hspace{1cm} (6)

After a series of iterations, in every iteration, the present approximation \(x_k \) is isolated from the result set of the problem by the hyperplane \(H_k \) that is construction by using a line search technique:

\[H_k = \{x \in \mathbb{R}^n / F(z_k)^\top(x-z_k) = 0\} \] \hspace{1cm} (7)

where:

\[z_k = x_k + \alpha_k d_k \] \hspace{1cm} (8)

By Solodov and Svaiter (1998) suggestion, the following iterate \(x_{k+1} \) can be resolve by projection \(z_k \) onto \(H_k \) where:

\[C_k = \{x \in \mathbb{R}^n / F(z_k)^\top(x-z_k) \leq 0\} \] \hspace{1cm} (9)

The approximation that is best among all result of system (Eq. 1) can be determined by projection \(x_k \) onto \(C_k \) but \(x_k \not\in C_k \). Then the following approximation, \(x_{k+1} \) can be determined by:

\[x_{k+1} = P_c(x_k) = \arg\min\{\|x-x_k\|, x \in C_k\} \]

So:

\[x_{k+1} = x_k - \frac{F(z_k)^\top(x_k-z_k)}{\|F(z_k)\|^2} F(z_k) \] \hspace{1cm} (10)

The suggested method, built on the projection free-derivatives method for the system of nonlinear equations, determine a direction \(d_k \), a new direction has foreword as:

\[d_k = \begin{cases}
-\frac{F(x_k)}{\|F(x_k)\|^2} & \text{if } k = 0 \\
-\mu F(x_k) + \tau_k & \text{otherwise}
\end{cases} \] \hspace{1cm} (11)

Where:

\[\mu_k = \frac{s_k}{\|s_k\|^2}, s_k = x_{k+1} - x_k, y_k = F(x_{k+1}) - F(x_k) \]

With:

\[\tau_k = \frac{F(x_{k+1})y_k}{\|F(x_{k+1})\|^2} \]

Generally, used the direction \(d_k \) which satisfies:

\[F^\top d_k \leq -C\|F_x\|^2 \] \hspace{1cm} (12)

\[F(z_k)^\top(x_k-z_k) > 0 \] \hspace{1cm} (13)

where, \(C \) is appositive constant (Ahookhosh et al., 2013). By Shiker and Amini (2018), introduced a new line search strategy for separating hyperplane in projection technique, encourage us to take advantages of this line search which needs \(\alpha_k = \{\beta\theta : i = 0, 1, 2, \ldots\} \) satisfies the condition:

\[-F(x_k + \alpha_k d_k)^\top d_k \geq \theta \alpha_k \|F(z_k)\| \] \hspace{1cm} (14)

where, \(\lambda_k = \lambda/1+\|d_k\|^2 \) and \(\theta, \lambda \) are parameters. Our new algorithm will be state as below.
J. Eng. Applied Sci., 14 (Special Issue 7): 10102-10108, 2019

Algorithm 1 (NBM):
Input: An initial point $x_0 \in \mathbb{R}^n$ and the parameters $\theta, \lambda, \varepsilon \in (0.2)$ and $\beta \in (0.1)$.

Start
Set $k = 0$
$F_0 = F(x_0)$
$d_0 = -F_0$
While $||F_k|| > \varepsilon$

Step 1: Compute $||F_k||$. If $||F_k|| \leq \varepsilon$ stop
Set $\alpha_k = \beta$;
Find the minimum index $i_k \in \{1, 2, 3, \ldots\}$ such that
$-F(x_k + \alpha_k d_k)^T d_k \geq \theta \lambda ||F(z_k)||$
Where $\lambda_k = \lambda / (1 + ||d_k||^2)$
While $\alpha_k = \theta \lambda ||F(z_k)||$
Set $z_k = x_k + \alpha_k d_k$
End while

Step 2: If $||F(z_k)|| \leq \varepsilon$, stop, otherwise compute x_{k+1} by Eq. 10.

Step 3: Compute d_k by Eq. 11:
$F_{k+1} = F(x_{k+1})$
If $F_{k+1}^T d_k > -\varepsilon ||F_k||^2$
$d_k = -F_k$
End if
$k = k + 1$
End while

End

Remark (R1): Shiker and Amini (2018) from stage 3 of algorithm 1, it is easy to note that the introduced direction satisfy the sufficient descent condition and for any k, $F_k^T d_k \geq -\varepsilon ||F_k||^2$.

Convergence possessions: In this part, we need some interesting lemmas and assumptions in showing the global convergence of algorithm 1.

Assumption (B1): The result set of (Eq. 1) is nonempty.

Assumption (B2): The mapping $F(x)$ is Lipschitz continuous on \mathbb{R}^n such that there exists a positive constant M, i.e:
$$||F(x) - F(y)|| \leq M||x - y||, \forall x, y \in \mathbb{R}^n$$

Assumption (B3): The mapping $F(x)$ is monotone on \mathbb{R}^n such that:
$$(F(x) - F(y))^T (x - y) \geq 0, \forall x, y \in \mathbb{R}^n$$

Lemma (L1): Zarantonello (1971) let the set $\Omega \subset \mathbb{R}^n$ be nonempty closed convex set and the projection operator $\Phi_0(x)$ be the projection of x onto closed convex set Ω. For any $x, y \in \mathbb{R}^n$, the next statements hold:
- $\forall i \in \Omega, \langle \Phi_0(x) - x, z - \Phi_0(x) \rangle \geq 0$
- $\langle \Phi_0(x) - \Phi_0(y), x - y \rangle \geq 0$ and the inequality is strict when $\Phi_0(x) \neq \Phi_0(y)$
- $||\Phi_0(x) - \Phi_0(y)|| \leq ||x - y||$

Lemma (L2): Solodov and Svaiter (1998) assume the assumption B_1, B_2 and B_3 hold and the sequence $\{x_k\}$ is generated via algorithm 1. For any x^* such that $F(x^*) = 0$ then:
$$||x_{k+1} - x^*|| \leq ||x_k - x^*|| + ||x_{k+1} - x_k||$$
(15)
And the sequence $\{x_k\}$ is bounded. Moreover, either the sequence $\{x_k\}$ is finite although, the last iterate is a solution of (Eq. 1) or the sequence $\{x_k\}$ is infinite and:
$$\lim_{k \to \infty} ||x_{k+1} - x_k|| = 0$$
(16)

Proof: Let $x^* \in \mathbb{R}^n$ be any point such that $F(x^*) = 0$ by monotonicity of $F(F(y), x - y)^T \geq 0$. The hyperplane $H = \{s \in \mathbb{R}^n | F(y), s - y) = 0\}$ separates x_k from x^*, it is easy to satisfy that x_{k+1} is the projection of x_k onto the hyperplane H. Since x^* belongs to this hyperplane from properties of the projection operator (Zarantonello, 1971) we get:
$$||x_{k+1} - x^*||^2 = ||x_k - x_{k+1}||^2 + ||x_{k+1} - x^*||^2 + 2\langle x_k - x_{k+1}, x_{k+1} - x^* \rangle ^T \geq$$
$$\left(\frac{F(y)}{||F(y)||}\right)^T + ||x_{k+1} - x^*||^2$$

Lemma (L3): Solodov and Svaiter (1998) assume that the assumption B_1, B_2 and B_3 holds and the sequences $\{x_k\}$ and $\{z_k\}$ are generated by algorithm 1 then:
$$\alpha_k \geq \min \left[\beta, \theta \frac{||F_k||^2}{M||d_k^T + \lambda ||F(z_k)||}\right]$$
(17)

Proof: By the line search rule (Eq. 14), if $\alpha_k \neq \beta$ then $\alpha_k = \theta \alpha_k$ does not satisfy (Eq. 14) this mean that:
$$-F(x_k + \theta \alpha_k d_k)^T d_k < 0 \theta \alpha_k \gamma_k ||F(z_k)|| \leq \lambda \alpha_k ||F(z_k)||$$
where, $\gamma_k = 1/1 + ||d_k||^2$. By the Lipchitz continuity of F and (Eq. 12) we get:
$$C||F_k||^2 \leq -F_k^T d_k = (F(z_k) - F(x_k))^T d_k - F(z_k)^T d_k \leq$$
$$||F(z_k) - F(x_k)||||d_k|| + \lambda \alpha_k ||F(z_k)|| = \alpha_k (M||d_k||^2 + \lambda ||F(z_k)||)$$
So:
$$\alpha_k \geq \frac{\theta \alpha_k}{M||d_k||^2 + \lambda ||F(z_k)||}$$

The proof is complete and (Eq. 17) is correct. The results of Lemma L3 found that the line search of algorithm 1 is well defined.
Theorem (T1): Assume that B_2 and B_3 hold and the sequence \{x_k\} is generated by algorithm 1 then:

\[\lim_{k \to \infty} ||F_k|| = 0 \]

Proof: From Eq. 10 and Eq. 14 we get:

\[||F(z_k) - F(x_k)|| \leq M(d_k) = \alpha_k \frac{\lambda}{1+\lambda} ||d_k|| \]

By lemma 3 from Ahookhosh et al. (2013), the sequence of direction \{d_k\} that generated by algorithm 1 are bounded there is a constant N>0 such that:

\[||F(x_k)|| \leq N \]

And result that for all k there exists a constant L>0 such that:

\[||d_k|| \leq L \]

By the Lipschitz continuity of F, it can be concluded that:

\[||F(z_k) - F(x_k)|| + ||F(x_k)|| \leq M(d_k) + ||F(x_k)|| \]

From (19) together with (21) gives:

\[\lim_{k \to \infty} \alpha_k ||d_k|| = 0 \]

Now by using Cauchy Schwartz inequality along with (Eq. 12), we get:

\[C ||F_k||^2 \leq -\alpha_k ||F_k||^2 \leq ||F_k|| ||d_k|| \]

So:

\[||d_k|| \geq C ||F_k|| \]

For all k. Giving to this condition and (Eq. 23), it follows that:

\[\lim_{k \to \infty} \alpha_k = 0 \]

On the other hand, multiplying (Eq. 17) by ||d_k||^2 result that:

\[\alpha_k ||d_k||^2 = \min \left\{ \beta ||d_k||^2, \frac{\theta M^2 ||F_k||^2}{ML^2 + \lambda (M\alpha_k ||d_k|| + N)} \right\} \]

From (24) and (26) we have:

\[\lambda_o ||d_k|| \leq ||d_k||^2 \]

Where:

\[\lambda_o = \min \left\{ \beta ||d_k||^2, \frac{\theta M^2}{ML^2 + \lambda (M\alpha_k ||d_k|| + N)} \right\} \]

The relation (23) and (27) conclude that \(\lim_{k \to \infty} ||F_k|| = 0 \).

Numerical experiment: In this study, we compare the performance of the new algorithm (NBM) with tow famous algorithms:

SBM: This technique is taken from Yan et al. (2010) and it uses two modified HS approaches with the projection technique by Solodov and Svaiter (1998).

DFPB1: This technique is taken from Ahookhosh et al. (2013), it uses a three-term PRP-based conjugate gradient direction.

The performances of these approaches are compared with reference to the number of iterations N_i, the number of function evaluations N_f and CPU time. In order to compare these algorithms, some well-known test problems by Ahookhosh et al. (2013) and Yan et al. (2010) are used where the dimensions are confined between 5000-50000 for the taken primary points.

The tests were run on a PC with CPU 2.70 GHz and 4 GB RAM. All of the codes were written in MATLAB R2014 a programming environment. The running of the codes checks if the provided data for problems in all algorithms converges to the equal points. All of the algorithms terminate whenever \(||F_k|| < 10^{-8} \) or \(||F(z_k)|| < 10^{-4} \) or the whole number of iterates surpasses 500000. In all of the algorithms, the parameters are stated as follows \(\theta = 0.4, \beta = 0.9, \lambda = 0.1, \epsilon = 10^{-4} \). The numerical results of consecutively the algorithms are registered in Table 1 and 2. Table 1 contains N_i and N_f while Table 2 contains the numerical results of CPU time.

From Table 1, we can see that the new approach NBM is better than the other two methods SBM and DFPB1 that it has a number of iterations and number of evaluation functions less than in the other methods in most of the problems with most of initial points. As well as the results in Table 2, we can see that the CPU time spent by the new technique NBM is lower than in the other two methods in most of problem that indicated the efficiency and quality of our new method.
Table 1: Numerical results (Ni and Nf)

p-value/Dim	SP	NBM				MHS						DFPB			
NBM MHS DFPB															
-------------	------	-------------	------	-------------	------	-------------	------	-------------	------	-------------	------	-------------	------	-------------	------
P1	50000	x1	11	91	1421	13288	1421	13288							
	50000	x2	19	200	1421	13288	1421	13288							
	50000	x3	13	110	142	880	142	880							
	50000	x4	16	162	142	880	142	880							
	50000	x5	18	281	5404	53012	9	21							
	50000	x6	9	96	17	65	17	65							
	50000	x7	25	188	4439	40363	88	504							
	50000	x8	25	198	2222	19238	88	504							
P2	50000	x1	11	91	1421	13288	1421	13288							
	50000	x2	18	228	1371	12933	1421	13288							
	50000	x3	13	110	142	880	142	880							
	50000	x4	19	256	155	1086	142	880							
	50000	x5	80	1120	3859	36651	9	21							
	50000	x6	99	6	1	7	6	5	1	7	6	5			
	50000	x7	56	666	7274	72430	88	504							
	50000	x8	49	498	581	3673	88	504							
P3	10000	x1	16975	213353	418081	3099340	178397	721899							
	10000	x2	67640	981540	415836	3005275	187559	759768							
	10000	x3	14647	189321	390297	2977500	162500	656715							
	10000	x4	55909	839601	402816	2960816	178197	720729							
	10000	x5	47471	729546	371496	2766314	165523	668916							
	10000	x6	54499	855259	368053	2766114	162292	655726							
	10000	x7	22901	321922	163175	1263922	68435	276645							
	10000	x8	22313	312113	1553214	1138115	68436	276649							
P4	10000	x1	24	255	20751	230201	469	4001							
	10000	x2	370	5289	7709	73104	1494	4896							
	10000	x3	18	183	2231	20120	155	1029							
	10000	x4	365	5294	12747	135225	244	1713							
	10000	x5	198	2896	27023	302729	85	395							
	10000	x6	144	2092	11484	121948	76	314							
	10000	x7	45	568	17308	191471	113	620							
	10000	x8	27	291	2215	18879	113	620							
P5	50000	x1	494	5834	154735	2156312	75926	1027957							
	50000	x2	379	4285	147988	2085617	75401	1019862							
	50000	x3	278	3260	153015	2148172	75883	1027291							
	50000	x4	341	3944	149814	2109510	341	3944							
	50000	x5	346	3797	158114	2198306	75839	1026614							
	50000	x6	333	3718	156045	2174637	75843	1026679							
	50000	x7	384	4216	146366	2075659	75872	1027109							
	50000	x8	301	3459	152515	2142193	75850	1026796							
P6	50000	x1	5	12	18560	45738	1421	13288							
	50000	x2	22	280	1675	15191	1421	13288							
	50000	x3	13	110	17325	34836	142	880							
	50000	x4	19	256	158	1099	142	880							
	50000	x5	12	138	993	1988	9	21							
	50000	x6	4	16	16926	33854	17	65							
	50000	x7	151	1728	17089	34332	88	504							
	50000	x8	45	430	17089	34332	88	504							
Table 2: Numerical results (CPU time)

p-value/Dim	SP	NBM	MHS	FPB
50000 x 1	0.15625	21.21875	20.62500	
50000 x 2	0.26562	22.26562	20.90625	
50000 x 3	0.140625	1.15625	1.0625	
50000 x 4	0.15625	1.140625	1.0000	
50000 x 5	0.328125	55.01562	0.01562	
50000 x 6	0.140625	0.1875	0.10937	
50000 x 7	0.26562	43.78125	0.60937	
50000 x 8	0.25000	20.68750	0.51562	
10000 x 1	0.12500	21.50000	20.79687	
10000 x 2	0.28125	21.09375	20.9375	
10000 x 3	0.10937	1.12500	1.0000	
10000 x 4	0.31250	1.32812	1.04687	
10000 x 5	1.10937	39.98437	0.10937	
10000 x 6	0.140625	0.10937	0.12500	
10000 x 7	0.62500	80.98437	0.53125	
10000 x 8	0.54687	4.65625	0.68750	
5000 x 1	0.98437	3.34639	1.47290	
5000 x 2	0.68750	3.17734	1.54468	
5000 x 3	0.51562	3.32609	1.56765	
5000 x 4	0.53125	3.32687	0.00593	
5000 x 5	0.59375	3.40265	1.56156	
5000 x 6	0.60937	3.3593	1.56953	
5000 x 7	0.71875	3.16562	1.56218	
5000 x 8	0.67187	3.2864	1.57656	
50000 x 1	0.21875	0.58468	16.76562	
50000 x 2	0.4375	1.73859	32.28125	
50000 x 3	0.53125	0.71421	3.25000	
50000 x 4	0.60937	0.01062	8.23437	
50000 x 5	0.48347	0.79390	5.1875	
50000 x 6	0.59375	0.00109	5.43750	
50000 x 7	0.5625	0.25359	0.46875	
50000 x 8	0.67187	0.34156	4.34375	
10000 x 1	0.01562	92.42187	20.92187	
10000 x 2	0.34375	22.23437	21.37500	
10000 x 3	0.09375	74.35937	0.92187	
10000 x 4	0.20312	1.15625	1.09375	
10000 x 5	0.09375	4.14062	0.03125	
10000 x 6	0.03125	73.79687	0.12500	
10000 x 7	0.16562	74.9375	0.59375	
10000 x 8	0.40625	73.34375	0.60937	

CONCLUSION

The current research suggests a new projection technique for solving a system of large-scale nonlinear monotone equations. The projection-based algorithms belongs to the class of derivative-free function-value based approaches and it does not use any feature function and derivatives. Likewise, this method allows a simple globalization. The global convergence of the suggested algorithm is proved under standard assumptions. The numerical experiments indicated that the suggested algorithm is very efficient.

REFERENCES

Ahookhosh, M., K. Amini and S. Bahrami, 2013. Two derivative-free projection approaches for systems of large-scale nonlinear monotone equations. Numer. Algorithms, 64: 21-42.

Amini, K., M.A. Shiker and M. Kimiaei, 2016. A line search trust-region algorithm with nonmonotone adaptive radius for a system of nonlinear equations. 4OR, 14: 133-152.

Dai, Y.H., 2002. Convergence properties of the BFGS algorithm. SIAM. J. Optim., 13: 693-701.

Hager, W.W and H.C. Zhang, 2005. A new conjugate gradient method with guaranteed descent and efficient line search. SIAM J. Optimizat., 16: 170-192.

Hassan, Z.A.H. and M.A.K. Shiker, 2018. Using of generalized bayes theorem to evaluate the reliability of aircraft systems. J. Eng. Appl. Sci., 13: 10797-10801.

Koorapetse, M., P. Kaelo and E.R. Offen, 2019. A scaled derivative-free projection method for solving nonlinear monotone equations. Bull. Iran. Math. Soc., 45: 755-770.

Li, M., 2017. An liu-storey-type method for solving large-scale nonlinear monotone equations. Numer. Funct. Anal. Optim., 35: 310-322.

Ortega, J.M. and W.C. Rheinboldt, 1970. Iterative Solution of Nonlinear Equations in Several Variables. SIAM, Bangkok, Thailand, ISBN:9780898719468, Pages: 572.

Shiker, M.A. K. and K. Amini, 2018. A new projection-based algorithm for solving a large-scale nonlinear system of monotone equations. Croatian Oper. Res. Rev., 9: 63-73.

Shiker, M.A.K. and Z. Sahib, 2018. A modified technique for solving unconstrained optimization. J. Eng. Applied Sci., 13: 9667-9671.
Solodov, M.V. and B.F. Svaiter, 1998. A Globally Convergent Inexact Newton Method for Systems of Monotone Equations. In: Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Fukushima, M. and L. Qi (Eds.). Springer, Boston, Massachusetts, ISBN:978-1-4419-4805-2, pp: 355-369.

Wang, Y.J., N.H. Xiu and J.Z. Zhang, 2003. Modified extragradient method for variational inequalities and verification of solution existence. J. Optim. Theor. Appl., 119: 167-183.

Yan, Q.R., X.Z. Peng and D.H. Li, 2010. A globally convergent derivative-free method for solving large-scale nonlinear monotone equations. J. Computat. Applied Math., 234: 649-657.

Zarantonello, E.H., 1971. Projections on Convex Sets in Hilbert Space and Spectral Theory: Part I. Projections on Convex Sets: Part II. Spectral Theory. In: Contributions to Nonlinear Functional Analysis, Zarantonello, E.H. (Ed.). Academic Press, New York, USA., pp: 237-424.