Odd character degrees for $\text{Sp}(2n, 2)$

Degrés de caractères impairs sur $\text{Sp}_{2n}(2)$

Marc Cabanes

Institut de Mathématiques de Jussieu, Université Paris 7, 175 rue du Chevaleret, F-75013 Paris, France

1. Introduction

If G is a finite group and ℓ is a prime number, denote by $\text{Irr}_{\ell'}(G)$ the set of irreducible characters of G with degree prime to ℓ. The McKay conjecture asserts that

$$|\text{Irr}_{\ell'}(G)| = |\text{Irr}_{\ell'}(N_G(P))|$$

for P a Sylow ℓ-subgroup of G. This conjecture has gained new interest since appearance of Isaacs–Malle–Navarro’s theorem reducing it to a related conjecture on quasi-simple groups (see [7]). The latter has been checked for all quasi-simple groups not of Lie type.

Among groups of Lie type and for ℓ being the defining prime, the group $\text{Sp}_{2m}(2)$ remained open (see [13]). This is the main purpose of this note (see Corollary 4 below). The method is by use of the Jordan decomposition of characters for the $\text{Irr}_{\ell'}(G)$ side (see Proposition 2), while, for the $|\text{Irr}_{\ell'}(N_G(P))|$ side, we compute the abelian quotient of the Sylow 2-subgroup (Proposition 3), the latter an exception pointed by [6].

In a joint work with B. Späth, we developed some general methods which also cover the case $\text{Sp}_{2m}(2^m)$ (see [2]) for $n > 2$, $m > 1$. Here, we present however the case of $\text{Sp}_{2m}(2^m)$ which requires some ad hoc analysis (see Section 3).

Notations. When ℓ is a prime and $n > 1$ an integer, one denotes by n_ℓ the greatest power of ℓ dividing n and $n_{\ell'} := n/n_\ell$. If H is a finite group and $X \subseteq \text{Irr}(H)$, one denotes $X_{\ell'} := X \cap \text{Irr}_{\ell'}(H)$.

If H acts on a set Y, one denotes by Y^H the subset of fixed points. For finite reductive groups G^F and their characters, we follow the notations of [4].
2. Odd character degrees for $\text{Sp}_{2n}(2)$

Let us denote by \mathbb{F} the algebraic closure of \mathbb{F}_2 the field with 2 elements. Let $n \geq 2$ be an integer, let $G = \text{Sp}_{2n}(\mathbb{F})$ with Frobenius endomorphism $F_0 : G \to G$ squaring matrix entries. Let $G = G^0 = \text{Sp}_{2n}(\mathbb{F}_2)$, also denoted by $\text{Sp}_{2n}(2)$ or $\text{Sp}(2n, 2)$.

2.1. The global case

We refer to [4] for the notion of unipotent characters. Let $n \geq 2$ be an integer. For our first lemma, see [9] 6.8.

Lemma 1. $\text{Sp}_{2n}(2)$ has five unipotent characters of odd degrees.

Proposition 2. $\text{Sp}_{2n}(2)$ has 2^{n+1} characters of odd degrees.

Proof. Recall $G = \text{Sp}_{2n}(\mathbb{F})$ with Frobenius endomorphism $F_0 : G \to G$ squaring matrix entries. Let $G = G^0 = \text{Sp}_{2n}(2)$ (part of case (a) in [8] Section 8). Note that G has (trivial) connected center.

By [8] p. 164, \mathbb{F} being of characteristic 2, there is an isogeny between G and its dual G^* inducing a bijection between rational semi-simple elements with isomorphism of centralizers of corresponding elements. This, along with property (A) of [8] 7.8 shows that $\text{Irr}(G)$ is in bijection with the disjoint union of the $\mathcal{E}(C_G(s), 1)$'s for s ranging over the semi-simple conjugacy classes of G (see [8] 8.7.6). Through this Jordan decomposition, the degrees are multiplied by $|G^F|_2^2 |C_G(s)|_2^{-1}$, so $|\text{Irr}_2(G)| = \sum s |C_G(s), 1|_2$, a sum over the semi-simple classes of G.

Characteristic polynomials provide a bijection between the classes of semi-simple elements of $\text{Sp}_{2n}(2)$ and the set of self dual polynomials $f \in \mathbb{F}_2[X]$ of degree $2n$. If s corresponds with f, then $C_G(s) \cong \text{Sp}_{2n}(2) \times C_2$ where C_2 is a product of finite linear groups and $2m$ is the multiplicity of $(X - 1)$ in f. For a given $m < n$, the number of such classes is 2^{n-m-1}. This is because one has to count the polynomials $f = (X - 1)^{2m}$ with a self dual $g(X) = 1 + a_1X + \cdots + a_{n-m}X^{n-m-1} + a_{n-m}X^{n-m} + a_{n-m-1}X^{n-m+1} + \cdots + a_1X^{2n-2m-1} + X^{2n-2m}$ such that $g(1) \neq 0$. Such g's are 2^{n-m-1}, corresponding to the choice of coefficients at degrees $1, 2, \ldots, n - m - 1$ since $g(1) = a_{n-m}$ has to be $= 1$. For $m = n$ (central element) there is 1 conjugacy class ($s = 1$).

The unipotent characters of finite reductive groups of type A in characteristic 2 are of even degrees except the trivial character (see for instance [6] or [9] 6.8). Then Lemma 1 implies that each semi-simple class s corresponding with m as above satisfies $|\mathcal{E}(C_G(s), 1)|_2 = 5$ for $m \geq 2$, $|\mathcal{E}(C_G(s), 1)|_2 = 1$ otherwise. So the above indeed implies $|\text{Irr}_2(G)| = 5 \sum_{m=2}^{n} 2^{n-m-1} + 5 + 2^{n-2} + 2^{n-1} = 5 \cdot 2^{n-2} + 3 \cdot 2^{n-2} = 2^{n+1}$. □

2.2. The local case

We use the description of $\text{Sp}_{2n}(\mathbb{F}_2) \subset G = \text{GL}_{2n}(\mathbb{F}_2)$ as the subgroup of matrices u such that $u(\begin{smallmatrix}0 & J \\ J & 0 \end{smallmatrix})u^T = \begin{smallmatrix}0 & J \\ J & 0 \end{smallmatrix}$ where J denotes the matrix with coefficients $\delta_{i,j+1}1 \leq i, j \leq n$ and u^T denotes transposition (see [4] 15.2). Let $U := \{\begin{smallmatrix}x & s \\ 0 & s^T \end{smallmatrix} \mid x \in G, s \in \text{Sym}_n\}$ where Sym_n (resp. V) is the set of symmetric (resp. upper triangular unipotent) matrices of order n with coefficients in \mathbb{F}_2, and one denotes $s = x^{-1}$. We have

Proposition 3. U is a Sylow 2-subgroup of $G = \text{Sp}_{2n}(2)$ for $n \geq 2$. Moreover $N_G(U) = U$ and $U/[U, U]$ is of order 2^{n+1}.

Corollary 4. McKay conjecture (on character degrees) is satisfied in $G = \text{Sp}_{2n}(2)$ for the prime 2 ($n \geq 2$). That is, the normalizer of any Sylow 2-subgroup of G has the same number of characters of odd degrees as G itself.

Proof. By Proposition 3, the irreducible characters of $N_G(U)$ of odd degrees are exactly the linear characters of U. So their number is the cardinality of $U/[U, U]$, that is 2^{n+1} thanks to Proposition 3 again. Combining with Proposition 2 gives our claim. □

Proof of Proposition 3. Note that U equals the group of elements over \mathbb{F}_2 of a rational Borel subgroup (see [4] 15.2), so it equals its normalizer by the axioms of finite BN-pairs which are satisfied by this group. Thus our first claim.

Note also the semi-direct decomposition $U \cong \text{Sym}_n \rtimes V$ for the action of V on Sym_n given by $x.s = xsx^T$ for $x \in V$, $s \in \text{Sym}_n$. Since Sym_n is abelian and since the Sylow 2-subgroup V of $\text{GL}_{2n}(\mathbb{F}_2)$ is known to satisfy $|V|/|V : V| = 2^{n-1}$ (see for instance [4] p. 129 and [6]), our claim about $U/[U, U]$ reduces to show that $\text{Sym}_n/\text{Sym}_n \cdot V$ is of order 4. So we have to prove that the sum $S' = \sum_{x \in V} \theta_s(\text{Sym}_n)$ of images of endomorphisms $\theta_s : s \mapsto xsx^T - s$ of Sym_n has codimension 2.

For $1 \leq i, j \leq n$, let us denote by E_{ij} the usual elementary matrix of order n. We have $E_{ij} + E_{ji} \in S'$ for any $1 \leq i < j \leq n$, by computing $\theta_s(s)$ for $s = E_{ij}$, $i = I_n + E_{ij}$. We also have $E_{ij} + E_{ji} \in S'$ for any $1 \leq i < j \leq n$ with $(i, j) \neq (n-1, n)$ (taking $s = E_{ij} + E_{ji}$ and $x = I_n + E_{ik}$ for some $k > i, k \neq j$). This shows that S' contains the E_{ij} plus E_{ji}'s for $1 \leq i < j \leq n$ with $(i, j) \neq (n-1, n)$, along with $E_{11}, E_{22}, \ldots, E_{n-2,n-2}$ and $E_{n-1,n} + E_{n,n-1} + E_{n-1,n-1}$. This makes a subspace of codimension

$2^{n+1} - 1 = 2^{n+1}$.
2 in Sym_n, a supplement subspace being generated by $E_{n-1,n-1}$ and $E_{n,n}$. The action of V on the quotient is easily checked to be trivial (one just has to check the images of $E_{n-1,n-1}$ and $E_{n,n}$ by θ_k for $x = I_n + E_{ij}$ — which we just did above — since the latter generate V as a group, using again the fact that the field has two elements). So this subspace is indeed the sum of the images of all the θ_k’s for $x \in V$. □

Theorem 5. Let $n \geq 3$ be an integer. Then $\text{Sp}_{2n}(2)$ is a simple group that satisfies the conditions of [7] Section 10 for all prime numbers.

Proof. When $n = 3$, $\text{Sp}_6(2)$ satisfies the theorem by [10] 4.1. When $n > 3$, $\text{Sp}_{2n}(2)$ has trivial Schur multiplier and trivial outer automorphism group (see [5]), so the checking required by [7] just amounts to the McKay conjecture itself (see [7] 10.3). For $\ell = 2$, it is Corollary 4. In the case of other primes, this is a consequence of Malle’s parametrization [9] 7.8 along with Späth’s extensibility results (see [11] 1.2, [12] 1.2, 8.4). □

3. $\text{Sp}_4(2^m)$

Theorem 6. Let $m \geq 2$ be an integer. Then $\text{Sp}_4(2^m)$ is a simple group that satisfies the conditions of [7] Section 10 for all prime numbers.

We keep F as above and let $G = \text{Sp}_4(F)$. We denote by T_0 its diagonal torus and $(F, +) \rightarrow G$, $t \mapsto x_0(t)$ its minimal unipotent F-stable torus, and latter Levi subgroups, we refer to [4] p. 113). Arguing as in the proof of [9] 5.14, any Sylow ℓ-subgroup P has a unique maximal toral elementary abelian subgroup whose normalizer N in G is then also $N := N_G(S_\ell) = N_G(T_\ell)$. It is stable by any automorphism σ such that $\sigma(P) = P$. From what has been said about possible σ’s, and noting that N has an abelian normal subgroup T_ℓ' with ℓ' index, we see that we must just prove that

$$|\text{Irr}_{\ell'}(G)^{F_\ell}| = |\text{Irr}(N)^{x_{F_\ell'}}| \quad (E)$$

for any F' a power of F_0 and some $x \in G$ is such that $F'(S_\ell) = S_\ell^x$.

Bringing (T_ℓ, F) to $(T_0, w_\ell F)$ by conjugacy with some $g \in G$ such that $g^{-1}F(g) \in w_\ell T_0$, we may rewrite the above as

$$|\text{Irr}_{\ell'}(G)^{F'_\ell}| = |\text{Irr}_0(N_0T_0)^{w_\ell F'}|^\ell \quad (E')$$

when F'' is an isogeny commuting with $w_\ell F$ and is in the same class as F' mod inner automorphisms of G.

Recall Malle’s bijection $\text{Irr}_{\ell'}(G) \rightarrow \text{Irr}_{\ell'}(N)$ which, among other properties, sends components of $R_\ell^G \theta$ to components of $\text{Ind}_{T_\ell}^G \theta$ for relevant $\theta \in \text{Irr}(T_\ell^G)$ (see [9] Section 7.1).

Let us first look at regular characters $\pm R_\ell^G(\theta)$. They are of degree ℓ^r if and only if $T_\ell = C_G(S_\ell)$ (see [9] 4.6). Such a character is fixed by F_0 if and only if $F'(T_\ell, \theta)$ and (T_ℓ, θ) are G^F-conjugate (see [1] Section 2.1.2). This is equivalent to $x_{F'}(\theta)$ being N_0T_0-conjugate to θ ([9] 5.11). This is also the criterion for $\text{Ind}_{T_\ell}^G(\theta)$ being $x_{F'}$-fixed as can be seen easily from the definition of induced characters. Thus our claim (E).

Let us now turn to unipotent characters. From [9] 6.5, we know that they have to be in $E(G^F, T_\ell)$, the set of irreducible characters occurring in the generalized character R_ℓ^G. So we have to check that $E(G^F, T_\ell)^{F'}$ and $\text{Irr}(N/T_\ell^F)^{F'}$ have same cardinality.

As for the first set, one knows that among the six unipotent characters of $\text{Sp}_4(2^m)$, only the two that are of generic degree $\frac{1}{2}q(q^2 + 1)$ are not fixed by F_0 (see [9] 3.9.a). Those are among unipotent characters of degree prime to ℓ only when $\ell = 1$ or 2. So it suffices to check that all characters of N_0/T_ℓ^F but 2 are fixed by $x_{F'}$ in case $e = 1$ or 2 and F' is an odd power of F_0, and that all are fixed otherwise.

In cases $e = 1$ or 2, $w_1 = 1$, $w_2 = s_1s_2s_1$, both are fixed by F_0, so one may take $F'' = F'$ in (E') above. Recall that F_0 acts on W by permuting s_1 and s_2. The group W is dihedral of order 8, so F_0 induces an automorphism of order two of W_{ab}, so two linear characters out of four are F_0-fixed, while the character of degree two is fixed. Hence our claim for any...
odd power of F'. In the case of an even power, the action is trivial, as expected. In the case $e = 4$, one may take $w_4 = s_{152}$ and $F'' = (s_1 F'_0)^a$ when $F' = (F'_0)^a$. Then the action of F'' on $(N_G(T_0)w_4^F)w_4 = C_W(w_4)$ is trivial.

We now assume $\mathcal{E}(G, s)^F \neq \emptyset$ for an s that is neither central nor regular. The group $C_G(s)$ is always a Levi subgroup of G (see proof of Proposition 2 above) and by [9] 6.5 it must contain a Sylow ϕ_1-torus. A proper F-stable Levi subgroup of G can contain a ϕ_1-Sylow for types (L_{s_1}, F) and (L_{s_2}, F) and a ϕ_2-Sylow for types $(L_{s_1}, s_2s_1s_2F)$ and $(L_{s_2}, s_1s_2s_1F)$. In each case the corresponding finite group has two unipotent characters, the trivial and the Steinberg characters, of distinct degrees, so that for an s whose class is F'-stable with such a centralizer in the dual, $\mathcal{E}(G, s)$ has two elements with distinct degrees, so F' acts trivially on $\mathcal{E}(G, s)$.

The corresponding statement on the local side is as follows: if θ is a non-regular non-central linear character of T_0^wF, then $\text{Ind}_{T_0^wF}^{N_G(T_0)^wF} \theta$ has two elements both F''-fixed if $F''(\theta) \in N_G(T_0)^wF. \theta$. This holds because non-regularity implies $(N_G(T_0)^wF)_{\theta}/T_0^wF$ is of order 2, but then F'' can act only trivially on it.

References

[1] O. Brunat, On the inductive McKay condition in the defining characteristic, Math. Z. 263 (2) (2009) 411–424.
[2] M. Cabanes, B. Späth, Equivariance and extendibility in finite reductive groups with connected center, in preparation, 2011.
[3] R. Carter, Simple Groups of Lie Type, Wiley, New York, 1972.
[4] F. Digne, J. Michel, Representations of Finite Groups of Lie Type, Cambridge University Press, 1991.
[5] D. Gorenstein, R. Lyons, R. Solomon, The Classification of the Finite Simple Groups, Math. Surveys Monogr., vol. 3, Amer. Math. Soc., Providence, 1998.
[6] R. Howlett, On the degrees of Steinberg characters of Chevalley groups, Math. Z. 135 (1974) 125–135.
[7] M. Isaacs, G. Malle, G. Navarro, A reduction theorem for McKay conjecture, Invent. Math. 170 (2007) 33–101.
[8] G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977) 125–175.
[9] G. Malle, Height 0 characters of finite groups of Lie type, Represent. Theory 11 (2007) 192–220.
[10] G. Malle, The inductive McKay condition for simple groups not of Lie type, Comm. Algebra 36 (2) (2008) 455–463.
[11] B. Späth, Sylow d-tori of classical groups and the McKay conjecture II, J. Algebra 323 (2010) 2494–2509.
[12] B. Späth, Inductive McKay condition in defining characteristic, preprint, arXiv:1009.0463, 2010.