ALKBH5 suppresses tumor progression via an m⁶A-dependent epigenetic silencing of pre-miR-181b-1/YAP signaling axis in osteosarcoma

Ye Yuan¹²³⁴, Gege Yan¹, Mingyu He¹, Hong Lei¹, Linqiang Li⁵, Yang Wang²³, Xiaqi He¹, Guanghui Li¹, Quan Wang¹, Yuelin Gao¹, Zhezhe Qu¹, Zhongting Mei¹, Zhihua Shen³, Jiaying Pu²³, Ao Wang²³, Wei Zhao¹², Huiwei Jiang¹², Weijie Du¹ and Lei Yang¹

Abstract
ALKBH5 is the main enzyme for m⁶A-based demethylation of RNAs and it has been implicated in many biological and pathophysiological processes. Here, we aimed to explore the potential involvement of ALKBH5 in osteosarcoma and decipher the underlying cellular/molecular mechanisms. We discovered downregulated levels of demethylase ALKBH5 were correlated with increased m⁶A methylation in osteosarcoma cells/tissues compared with normal osteoblasts cells/tissues. ALKBH5 overexpression significantly suppressed osteosarcoma cell growth, migration, invasion, and triggered cell apoptosis. In contrast, inhibition of ALKBH5 produced the opposite effects. Whereas ALKBH5 silence enhanced m⁶A methylations of pre-miR-181b-1 and YAP-mRNA exerting oncogenic functions in osteosarcoma. Moreover, upregulation of YAP or downregulation of mature miR-181b-5p displayed a remarkable attenuation of anti-tumor activities caused by ALKBH5. Further results revealed that m⁶A methylated pre-miR-181b-1 was subsequently recognized by m⁶A-binding protein YTHDF2 to mediate RNA degradation. However, methylated YAP transcripts were recognized by YTHDF1 to promote its translation. Therefore, ALKBH5-based m⁶A demethylation suppressed osteosarcoma cancer progression through m⁶A-based direct/indirect regulation of YAP. Thus, ALKBH5 overexpression might be considered a new approach of replacement therapy for osteosarcoma treatment.

Introduction
Osteosarcoma is one of the most common primary solid malignancy of bone, primarily affecting teenagers and young adults¹². Standard treatments for patients include chemotherapy and surgery. Survival has increased considerably due to the advanced treatment strategies³, however, there is still no known way to prevent it. Thus, it is urgent to get insight into the underlying mechanism, and develop new therapeutic agents against osteosarcoma.

N⁶-methyadenosine (m⁶A) is an abundant modification of messenger RNAs (mRNAs) in eukaryotes⁴⁻⁶. The effects of m⁶A modification on RNA are determined by the interplay between m⁶A methyltransferases (writers), demethylases (erasers), and binding proteins (readers). Recently, the key components of m⁶A writers have been identified including a stable heterodimer core complex of methyltransferase-like 3—methyltransferase-like 14 (METTL3-METTL14) that functions in cellular m⁶A deposition on mammalian nuclear RNAs, as well as Wilms’ tumor 1-associating protein (WTAP), as a splicing factor, interacting with this complex and affecting this methylation⁷. While, m⁶A erasers including fat mass and obesity-associated protein (FTO) and ALKB homolog 5
(ALKBH5) remove m\(^6\)A modification from RNA, which interacts with m\(^6\)A readers such as YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) and insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1)\(^9\) ect. It has been reported m\(^6\)A-based modification exerts diverse biological functions\(^10-14\). For instance, FTO acts as an oncogenic factor in acute myeloid leukemia (AML)\(^15\). ALKBH5 has been shown to be involved in pancreatic cancer\(^16\), glioblastoma\(^17\), and to impacts male mouse fertility\(^18\). However, it remains largely unknown the functions and underlying mechanism of m\(^6\)A modification in human osteosarcoma.

Here, we reported that ALKBH5-induced m\(^6\)A demethylation inhibits human osteosarcoma tumor cell growth, migration, and invasion through m\(^6\)A-based post-transcriptional regulation of pre-miRNA-181b-1 and an oncogenic transcriptional co-activator Yes-associcated protein 1 (YAP).

Results

The m\(^6\)A demethylase ALKBH5 is downregulated in human osteosarcoma

We firstly quantified m\(^6\)A contents by m\(^6\)A ELISA and immunofluorescence (IF) assays in human osteosarcoma cell lines such as U2OS, Saos2, 143B, and human osteoblast (hOB) hFOB1.19 cell line. The results showed that m\(^6\)A contents were significantly increased in osteosarcoma cells (Fig. 1A–C). Moreover, there was a significant decrease in demethylase ALKBH5 mRNA inversely correlated with m\(^6\)A contents in all three osteosarcoma cell lines as compared with hOB cells, but not in METTL3, METTL14, WTAP, and FTO (Fig. 1D). Meanwhile, immunostaining confirmed a significant decrease of ALKBH5 in U2OS, Saos2, 143B osteosarcoma cell lines, as compared with hOB cells (Fig. 1E, F). Furthermore, lower protein expression of ALKBH5 was detected in human osteosarcoma tissues as compared with normal bone tissues (Fig. 1G). Kaplan–Meier survival analysis from The Cancer Genome Atlas (TCGA) data set (http://www.oncolnc.org/) showed that patients with high ALKBH5 expression exhibited a superior survival, while patients with low ALKBH5 expression exhibited poor survival rate (Fig. 1I). The above results demonstrated that ALKBH5 is generally downregulated and may mediate m\(^6\)A modification having predominant roles in human osteosarcoma.

ALKBH5-dependent m\(^6\)A demethylation of RNAs severely impacted the growth and motility of osteosarcoma cells

To determine whether ALKBH5 regulated m\(^6\)A modification has a role in osteosarcoma cells, we conducted gain-of-function and loss-of-function studies. As depicted in Fig. 2A, B, the transfection efficiency of ALKBH5 plasmids or siRNA was confirmed by qRT-PCR and western blot. Next, we examined the effect of ALKBH5 on cell proliferation, migration, and invasion. Indeed, over-expressed ALKBH5 remarkably inhibited cell proliferation, invasion, and migration abilities in U2OS cells in both EdU staining, wound-healing cell migration, and the Transwell cell invasion assays, while inhibition of ALKBH5 induced the opposite effects (Fig. 2C–E). In addition, the percentage of both early and late apoptotic cells based on Annexin V/PI staining were significantly increased upon overexpression of ALKBH5, while little effects were observed on ALKBH5 knockdown (Fig. 2F). Moreover, elevated ALKBH5 decreased, or depleting ALKBH5 increased the colony-formation capacities of U2OS osteosarcoma cells (Fig. 2G). In line with the results for U2OS, these effects of ALKBH5 were further confirmed in another osteosarcoma cell line Saos2 (Supplementary Fig. S2).

Identification of ALKBH5/m\(^6\)A—pre-miR-181b-1/miR-181b-5p—YAP axis as a novel pathway leading to osteosarcoma tumor suppression

As shown above, we have demonstrated the importance of ALKBH5-dependent m\(^6\)A demethylation of RNAs for osteosarcoma tumor suppression with both gain- and loss-of-function approaches. Next, we went on to get further insight into the mechanisms accounting for our findings. It has been reported that in addition to protein-coding genes, large non-coding RNAs function as gene regulators during the progression of bone cancer\(^19,20\). MiRNA processing is also regulated specifically for osteosarcoma. However, no reports have shown the biological function of m\(^6\)A modification during miRNA processing in osteosarcoma. Therefore, we used m\(^6\)A epitranscriptomic microarray to identify the modified miRNAs precursor of ALKBH5 in control- and over-expressed ALKBH5-transfected U2OS cells (Fig. 3A). Of 773 pre-miRNAs detected by the microarray, we identified 11 pre-miRNAs with >20% decrease (>-1.2-fold decrease) in ALKBH5 overexpression-treated cells relative to those in the control cells. The top 10 ALKBH5-mediated m\(^6\)A-demethylated pre-miRNAs are listed in Table 1. Notably, among the pre-miRNAs, pre-miR-181b-1 methylation was markedly decreased upon overexpression of ALKBH5. More importantly, pre-miR-181b-1 sequences are broadly conserved across species. These findings suggest pre-miR-181b-1 as a potential target for ALKBH5 actions in osteosarcoma. Next, we confirmed
ALKBH5 overexpression effects on m^6^A level changes of pre-miR-181b-1 using gene-specific m^6^A-qPCR. As shown in Fig. 3B, we observed a strong enrichment of pre-miR-181b-1 in the m^6^A-RIP but not in the IgG-IP fractions. In addition, both pre-miR-181b-1 and mature miR-181b-5p was much lower in osteosarcoma cells than in hOB cells (Fig. 3C). Overexpression of ALKBH5 produced significant increases in the expression levels of both pre-miR-181b-1 and miR-181b-5p in U2OS cells. On the contrary, inhibition of ALKBH5 produced the opposite effects (Fig. 3D). As we expected, miR-181b-5p resulted in a decrease in cell migration (Fig. 3E) and cell proliferation (Fig. 3F). Moreover, downregulation of miR-181b-5p (AMO-181b-5p) partly rescued the decreased cell migration and proliferation caused by ALKBH5 overexpression in U2OS cells (Fig. 3G, H).

We then searched for the candidate target genes by computational prediction. In this way, we identified Yes-associated protein 1 (YAP) as a potential target gene for miR-181-5p (Fig. 4A). It has been reported that YAP is an oncogene having important roles in multiple tumor developments^21,22^. Increased expression of YAP can
significantly facilitate the malignant transformation of cells. We next confirmed that overexpressed the level of miR-181b-5p indeed directly repressed its target gene YAP expression in osteosarcoma cells (Fig. 4B). In addition, we found that overexpressed ALKBH5 obviously silenced both mRNA and protein levels of YAP in U2OS cells (Fig. 4C), whereas suppressed ALKBH5 present elevating expression of YAP (Fig. 4D). Next, we further confirmed the effects of YAP on osteosarcoma cell growth. The silence of YAP by siRNA dramatically suppressed the proliferation, invasion, migration, and colony-forming abilities of U2OS cells (Fig. 4E–H). On the contrary, overexpression of YAP produced the opposite effects in osteosarcoma cells (Supplementary Fig. S3).

To establish the relationship between ALKBH5 and YAP, we further analyzed the effects of cell growth upon
co-transfection by two overexpressed plasmids of ALKBH5 and YAP in osteosarcoma cells. As shown in Fig. 5A, cell proliferation was significantly increased in the group of co-transfection by two plasmids as compared with alone ALKBH5 overexpression. Furthermore, YAP counteracted the inhibitory effects of ALKBH5 on the invasion and migration of U2OS cells (Fig. 5B, C). In line with the findings above, co-transfection of ALKBH5 and YAP markedly increased the percentage of live cells, decreased apoptotic cells (Fig. 5D), and recovered the ability of colony formation (Fig. 5E). Next, we assessed the in vivo effectiveness of ALKBH5-mediated m^A demethylation using an osteosarcoma xenograft mouse model. ALKBH5 overexpression reduced osteosarcoma tumor growth as evidenced by lower tumor volumes and weights, and this effect was abrogated by co-transfection of overexpressed YAP (Fig. 5F–I).

Because ALKBH5-mediated m^A demethylation appeared to increase pre-miR-181b-1 expression, we hypothesized that pre-miR-181b-1 is a target of YTHDF2
(Fig. 6A), the m⁶A reader protein that promotes the decay of m⁶A methylated RNAs. Consistent with our hypothesis, we observed a strong enrichment of pre-miR-181b-1 in the YTHDF2-IP fractions (Fig. 6B). We then silenced YTHDF2 expression by siRNA confirmed by qRT-PCR (Fig. 6C), and western blot (Fig. 6D). siRNA of YTHDF2 increased expression of both pre-miR-181b-1 and miR-181b-5p after transfection with siYTHDF2 in U2OS cells (Fig. 6E, F). Moreover, the tumor-suppressive effects of ALKBH5 overexpression were further enhanced by siYTHDF2 (Fig. 6G, H). The above data indicated that ALKBH5-mediated pre-miR-181b-1 m⁶A demethylation have key roles in osteosarcoma.

Identification of YAP mRNA as a direct target of ALKBH5 in osteosarcoma

Interestingly, according to a sequence-based SRAMP m⁶A modification site predictor (http://www.cuilab.cn/sramp), we observed mRNA of YAP gene carrying nine potential m⁶A modification sites (Fig. 7A and Supplementary Fig. S4). We next clarified whether ALKBH5 could directly regulate the m⁶A methylation and gene degradation of YAP. We performed gene-specific m⁶A-qPCR to test the expression of YAP. The m⁶A abundance in YAP mRNA was markedly decreased upon overexpressed ALKBH5 in the m⁶A-methylation group but was not in the IgG-RIP group (Fig. 7B). Additionally, siALKBH5 enhanced the stability of YAP mRNA in the presence of transcription inhibitor actinomycin D (ActD) as compared with siNC group in U2OS cells (Fig. 7C). Meanwhile, siALKBH5 inhibited the degradation of YAP in the presence of translation inhibitor cycloheximide (CHX) (Fig. 7D). However, as shown in Fig. 7E, F, ALKBH5 overexpression produced the opposite effects resulting in a significant decrease in the YAP-mRNA stability and an increase in the YAP-protein degradation in osteosarcoma cells.

The above results revealed that ALKBH5-mediated m⁶A demethylation inhibits YAP expression, we hypothesized that methylated YAP transcripts are potential targets of YTHDF1, the m⁶A reader protein promoting the translation of methylated transcripts. The abundance in YAP mRNA was markedly increased in the YTHDF1-RIP group as compared with the IgG-RIP group (Fig. 8A), suggesting that YTHDF1 can recognize the m⁶A-modification sites in YAP mRNA. Next, we found that YTHDF1 siRNA (siYTHDF1) decreased YAP-protein levels (Fig. 8B). Overexpressed YTHDF1 leads to an increased YAP in the presence of ALKBH5 overexpression in U2OS cells (Fig. 8C). As expected, upregulated the level of YTHDF1 could partially restore the inhibition effects in U2OS cell proliferation, invasion, migration, apoptosis, and colony-formation abilities (Fig. 8D–H). In line with the results for U2OS, we also observed similar effects of overexpressed YTHDF1 on cell proliferation and migration in another osteosarcoma cell line Saos2 (Supplementary Fig. S5).

Discussion

The present study generated a number of new findings. First, m⁶A demethylase ALKBH5 expression levels are decreased, and m⁶A methylation substantially increased in human osteosarcoma. Second, ALKBH5 exerts tumor-suppressive effects as its overexpression inhibits osteosarcoma cell growth, migration, invasion, and its silence produces the opposite effects. Third, m⁶A modification of

Table 1 Top 10 pre-miRNAs with ALKBH5-mediated m⁶A demethylation.

Gene symbol	Control (IP)	ALKBH5 (IP) Control (supernatant)	ALKBH5 (supernatant)	Control (methylation level)	ALKBH5 (methylation level)	Fold change (control/ALKBH5)	Conserved	
pre-miR-3182	−2.73	−2.62	−2.60	−1.40	0.48	0.30	1.59	Poorly
pre-miR-890	−4.66	−6.51	−4.97	−5.66	0.55	0.36	1.55	Poorly
pre-miR-1260b	−1.20	−2.05	−1.50	−1.65	0.55	0.43	1.28	Poorly
pre-miR-181b-1	−4.07	−5.45	−4.75	−5.35	0.62	0.48	1.28	Yes
pre-miR-4779	−0.99	−4.93	−4.54	−6.31	0.92	0.72	1.28	Poorly
pre-miR-27a	−4.63	−0.17	−2.88	−2.01	0.23	0.18	1.27	Yes
pre-miR-6763	−4.23	−5.84	−4.36	−5.37	0.52	0.42	1.25	Poorly
pre-miR-1208	−4.73	−5.57	−3.05	−3.50	0.24	0.19	1.24	Poorly
pre-miR-4465	−4.63	−6.25	−4.98	−5.99	0.56	0.45	1.23	Poorly
pre-miR-4293	−5.28	−5.63	−5.07	−4.94	0.46	0.38	1.21	Poorly

Pre-miRNA or pre-miR precursor miRNA, IP immunoprecipitation. Bold values: the target gene having highly conserved.
RNAs likely promotes tumor progressions induced by ALKBH5 inhibition; specifically, m^6^A methylation of pre-miR-181b-1 in the nucleus by the m^6^A mechanism causes considerable downregulation of mature miR-181b-5p in the cytoplasm, which may account at least partially for the tumor growth. Forth, our results further demonstrated that YAP is a major target gene for miR-181b-5p, and thus ALKBH5 downregulates YAP level through increasing pre-miR-181b-1/miR-181b-5p. Furthermore, we found that ALKBH5 directly inhibits m^6^A methylation of YAP, and suppresses its mRNA stability and translation thereby its cellular levels. These findings, therefore, suggest that abnormal downregulation of ALKBH5 is likely one of the mechanisms underlying the osteosarcoma (Fig. 8I). Under such a theme, we proposed that ALKBH5 is a tumor-suppressor gene, and ALKBH5 overexpression might be a new approach of replacement therapy for the treatment of human osteosarcoma.

Recent studies have demonstrated that the m^6^A demethylases were dysregulated in several malignant tumors. Li et al. provided that FTO promotes non-small cell lung cancer (NSCLC) and breast tumor progressions through increasing the expression of USP7 as well as inhibiting BNIP3 respectively. However, before the present study, it was unclear whether m^6^A demethylases exerted effects on osteosarcoma. We for the first time revealed that demethylase ALKBH5 overexpression could lead to downregulation of YAP level upon demethylation of its transcripts by m^6^A. In contrast, silencing of ALKBH5-induced m^6^A methylation resulting in upregulation of YAP. Consistent with our findings, Song et al. have demonstrated that m^6^A methyltransferase METTL3 was increased and promoting
osteosarcoma cell progression by regulating the m^6^A level of LEF1 and activating Wnt/β-catenin signaling pathway. Yet, in addition to RNA methyltransferases and demethylases, m^6^A modification exerts biological functions via interplaying with binding proteins. It has been previously reported that recognition of m^6^A mRNA sites by IGF2BP proteins
enhancing mRNA stability29, and recognition of m6A by YTHDF1 result in enhanced protein synthesis24. Several studies have revealed the roles of m6A binding proteins in multiple cancer developments. For instance, SRY (sex-determining region Y)-box 2 (SOX2) was the downstream gene of METTL3, and its expression positively correlated with METTL3 and IGF2BP2 in colorectal carcinoma (CRC)30. Silencing YTHDF1 significantly inhibited Wnt/β-catenin pathway activity in CRC26. However, it also remains unclear whether these binding proteins function in osteosarcoma. Our data showed increases in both mRNA and protein expression of YAP after ALKBH5 overexpression in osteosarcoma cells. We then for the first time confirmed that YAP is a target of both YTHDF1 promoting translation of m6A methylated YAP transcripts.

Interestingly, we found ALKBH5 mRNA levels were much higher in Saos2 cells than in U2OS and 143B cells, while the protein levels of ALKBH5 were similar in all three cell lines. As we know, many complicated post-transcriptional mechanisms were involved in translating from mRNA into protein31. We assume that ALKBH5 mRNA may be modified by methylation etc. and its stability may then be different in Saos2 cells. Moreover, ALKBH5 Protein stability was also another factor. A pre-miRNA is generally exported by Exportin-5 from the nucleus to the cytoplasm where its loop structure of hairpin is further cleaved by the RNase III enzyme Dicer to generate mature a miRNA32. Once a mature miRNA is incorporated into the RNA-induced silencing complex (RISC), the expression of its targeted genes is repressed. Several studies have revealed the roles of miRNAs in osteosarcoma. For instance, miR-379 suppresses osteosarcoma progression by targeting PDK133. MiR-491 inhibits osteosarcoma lung metastasis and chemoresistance by targeting αB-crystallin34. Our m6A-RIP-microarray data demonstrated that pre-miR-181b-1 was enriched in m6A-RIP fraction with ALKBH5 inhibition, which suppressed osteosarcoma tumor growth. Here, we found that pre-miRNAs can be methylated in the nucleus leading to reduced biogenesis of mature miRNAs. Yet, it remains unknown how exactly the methylation of pre-miR-181b-1 in the nucleus affects its maturation in the cytosol. This issue merits future studies in detail. A previous study has reported that recognition of m6A mRNA sites by YTHDF2 result in mRNA degradation23 mainly by starting with the shortening of the poly(A) tail and subsequent mRNA degradation. But the decay of the m6A-containing RNA may start by 5′-decapping or endo-
Fig. 7 ALKBH5 directly regulates mRNA and protein stability of YAP. A Nine potentially m^6^A sites of YAP mRNA predicted by SRAMP program. B Schematic diagram illustrating the procedure of gene-specific m^6^A-qPCR on left. Change of m^6^A modification in specific regions of YAP transcripts with ALKBH5 overexpression in U2OS cells on right (n = 4). C qRT-PCR showing YAP transcripts stability in ActD-treated cells after transfected with ALKBH5 siRNA. (n = 3). D YAP-protein stability after ALKBH5 silencing. Cells were harvested at 0 and 8 h after CHX treatments. E qRT-PCR showing YAP transcripts stability in ActD-treated cells after transfected with ALKBH5 plasmids. (n = 3). F YAP-protein stability after ALKBH5 overexpression. Cells were harvested at 0 and 8 h after CHX treatments. Data are expressed as mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001.
However, we must admit that the deeply underlying mechanisms of YTHDF2 on pre-miRNAs are at present unknown.

It is known that YAP is a potent oncogene, which is one of the main effectors of the Hippo-YAP/TAZ tumor-suppressor pathway controlling cell proliferation and apoptosis. Recent studies indicated that YAP/TAZ is essential for cancer initiation or growth of most solid tumors. Additionally, YAP/TAZ have also been act as therapeutic targets in various cancers. For instance, TNF receptor-associated factor 6 (TRAF6) promoted the migration and colony formation of pancreatic cancer cells through the regulation of YAP. Neurotrophic Receptor Tyrosine Kinase 1 (NTRK1) inhibition suppressed YAP-driven transcription, cancer cell proliferation, and migration. Downregulating MK5 expression inhibited the survival of YAP-activated cancer cell lines and mouse xenograft models. More importantly, a study has demonstrated that YAP found to be highly expressed in both human and mouse osteosarcoma tissues. Moreover, the Hippo signaling pathway has an essential role in chemoresistance as well. Of the Hippo pathways members, activation of YAP/TAZ displays resistance to chemotherapeutic drugs in tumor cells. Notably, YAP has acted as a potential target for reducing osteosarcoma chemoresistance. An intriguing new finding here is that YAP can be m^6^A methylated directly in the nucleus leading to enhance its mRNA
stability, translation, and its cellular level in human osteosarcoma.

Collectively, our results for the first time suggest that ALKBH5 is an anti-tumor factor or a pro-apoptotic factor, acting at least partially by suppressing YAP expression through dual mechanisms with direct m6A methylation of YAP and indirect downregulation of YAP level due to methylation of pre-miR-181b-1. We have also demonstrated that pre-miRNAs could be methylated by the ALKBH5 mechanism in the nucleus leading to significant alterations of their maturation in the cytosol.

Material and methods

Cell culture and treatment

Human osteosarcoma cell line U2OS was cultured in Dulbecco’s modified Eagle medium (DMEM) (Life Technologies Corporation, California, USA) supplemented with 10% fetal bovine serum (FBS) (Biological Industries, Israel). Saos2 was grown in McCoy’s 5A medium (HyClone, California, USA) supplemented with 15% fetal bovine serum. 143B was cultivated in RPMI Medium 1640 basic medium (ThermoFisher Scientific, Massachusetts, USA). While human osteoblasts (hOB) cell line hFOB1.19 was cultured in DMEM/F-12 (1:1) basic medium (ThermoFisher Scientific, Massachusetts, USA) supplemented with 10% fetal bovine serum. All cell lines were maintained in an incubator at 37 °C in an atmosphere containing 5% CO2, except hFOB1.19 cells, which were incubated at 33.5 °C. All cell lines were tested for mycoplasma contamination. Cycloheximide (CHX, Cat# HY-12320, MedChemExpress, China) was treated cells for 0 and 8 h by adding into the medium at 100 μg/mL before harvesting.

M6A enzyme-linked immunosorbent assay (ELISA)

The m6A RNA methylation assay kit (Cat#ab185912; Abcam, Cambridge, UK) was used to measure the m6A content in total RNAs following the manufacturer’s protocol. Briefly, 400 ng RNAs were coated on assay wells, and then incubated at 37 °C for 90 min. 50 μL capture antibody solution and 50 μL detection antibody solution was then added to assay wells separately incubated for 60 and 30 min at room temperature (RT). The m6A levels were quantified using a microplate reader at a wavelength of 450 nm.

Immunofluorescence (IF)

2 x 10^5 cells were cultured in a glass-bottom cell culture dish for 24 h, and washed with PBS three times. Fixed the cells with 4% paraformaldehyde at RT for 15 min and then washed the cells three times with PBS. Permeabilized cells with 0.3% Triton X-100 (Sigma-Aldrich) for 15 min, and then blocked with goat serum. After washing twice with PBS, treated the cells with primary antibodies of m6A (1:200 dilution, Synaptic Systems, Germany) and ALKBH5 (1:200 dilution, Millipore, Billerica, USA) and incubated at 4 °C overnight. Finally, incubated cells with secondary antibody at RT. Fluorescent images were visualized using a confocal microscope (Fv10i).

RNA extraction

Total RNA was isolated using the miRNeasy Mini Kit (Cat# 217004; QIAGEN, Germany) according to the manufacturer’s protocol. Briefly, cells were disrupted and homogenized with QIAzol Lysis Reagent at RT for 5 min. Then chloroform was added to the samples followed by vigorous shaking for 15 s. After centrifugation at 12,000 x g at 4 °C for 15 min, the upper aqueous phase was transferred to a new collection tube and mixed with ethanol thoroughly. The sample of 700 μL was pipetted into an RNase Mini column followed by centrifugation at 8000 x g at RT for 15 s to discard the flow-through. After washing sequentially with buffer RWT and buffer RPE, RNA was dissolved with RNase-free water.

Quantitative real-time PCR

Total RNA sample of 500 ng was reverse transcribed to cDNA using High Capacity cDNA Reverse Transcription Kit (Cat# 00676299; ThermoFisher Scientific, Waltham, USA). Amplification and detection were performed using 7500HT Fast Real-Time PCR System (Applied Biosystems) with SYBR Green PCR Master Mix (Cat# 217004; QIAGEN, Germany) according to the manufacture’s protocol. Briefly, cells were disrupted and homogenized with QIAzol Lysis Reagent at RT for 5 min. Then chloroform was added to the samples followed by vigorous shaking for 15 s. After centrifugation at 12,000 x g at 4 °C for 15 min, the upper aqueous phase was transferred to a new collection tube and mixed with ethanol thoroughly. The sample of 700 μL was pipetted into an RNase Mini column followed by centrifugation at 8000 x g at RT for 15 s to discard the flow-through. After washing sequentially with buffer RWT and buffer RPE, RNA was dissolved with RNase-free water.

RT-qPCR primers

Primer	Sequence
METTL3	F: CGACCGGAAGTGATCGCTTGCA R: TTCACCGAGTCAGCATATG
METTL14	F: GTCTTAGTCTTGAGTATAGTT R: AATTGATGAGATGACAGCACC
FTO	F: GACCTGTCCACCAGATTTTCA R: AGCAGAGCAGCATACACAGTA
ALKBH5	F: ACTGAGCACAGTCGTCTCT R: GCCGTCATCAAGACTACCAG
WTAP	F: TTACCTTTCCACTCAGTGC R: AGATGACTTTTCTTTTCTCA
YAP – F: TGGCATACGCTAAGGA
YAP – R: GGTGCCACTGTTAAGGA
YTHDF1 – F: ACCTGTCCAGCTTACCCCG
YTHDF1 – R: TGGTGAGGTATGGAATCGGAG
YTHDF2 – F: CAGGCATCAGTAGGGCAACA
YTHDF2 – R: TTATGACCAGACCTGAGCC
GAPDH – F: AGCCACATCGCTCAGACAC
GAPDH – R: GCCCAATACGACCAAATCC

Tissue microarrays (TMAs) and Immunohistochemistry (IHC) analysis

Osteosarcoma tissue microarrays were purchased from the Bioaitech Company (Xi’an, China), comprised of 2 normal bone tissues, 100 malignant osteosarcoma cores. The slide was baked at 60 °C for 10 min to boil, cease-fire for 5 min, and washed with PBS for 5 min × 3 times. Endogenous peroxidase was blocked with 3% H2O2-methanol at RT for 10 min and washed with PBS for 5 min × 3 times. Streptomyces anti-biotin protein-peroxidase was added and incubated at RT for 10 min followed by washing with 0.1% tween-20 PBS × 3 times. Biotin-labeled sheep anti-mouse/rabbit IgG was added and incubated at RT for 10 min followed by washing with 0.1% tween-20 PBS for 5 min × 3 times. Streptomyces anti-biotin protein-peroxidase was added and incubated at RT for 10 min. DAB working solution was incubated for 5 min and stopped by distilled water washing. After hematoxylin re-staining, washing and differentiation, the slide returned to be blue with full washing followed with regular dehydration transparent and being sealed by neutral gum. The percentage of ALKBH5 positive cells were counted in 5 (×400) high-power fields (upper, lower, left, right, and middle) under the microscope, and the mean values were then calculated.

Western blot analysis

The western blot analysis was described as previously. Briefly, osteosarcoma cell lines were lysed in cell lysis buffer (Cat# P0013B; Beyotime Biotechnology, Shanghai, China) supplemented with PMSF protease inhibitor on ice for 30 min, followed by centrifuging at 13,500 × g at 4 °C for 15 min. The protein concentration was quantified using a BCA Protein Assay Kit (Cat# P0010S; Beyotime Biotechnology) following the manufacturer’s instructions. The protein sample (50 μg) was separated on a polyacrylamide gel and transferred to a nitrocellulose membrane and then blocked with 5% fat-free dry milk at RT for 1 h. Then, the membrane was incubated with a rabbit anti-YAP antibody (1:1000; Cat# D8H1X; Cell Signaling Technology), a rabbit anti-ALKBH5 antibody (1:1000; Cat# ABE547; Millipore, Billerica, USA), a rabbit anti-YTHDF1 antibody (1:1000; Cat# 17479-1-AP; Proteintech, Wuhan, China), a rabbit anti-YTHDF2 antibody (1:1000; Cat# 17479-1-AP; Proteintech), a mouse anti-Tubulin antibody (1:1000; Cat# ab97051; Abcam) and a mouse anti-β-actin antibody (1:1000; Cat# sc-47778; Santa Cruz Biotechnology, Dallas, Texas, United States), a mouse anti-GAPDH antibody (1:500; Cat# ab830030; Absin, Shanghai, China), a mouse anti-YAP antibody (1:1000; Cat# ab97051; Abcam) or monoclonal anti-mouse IgG (1:5000; Cat# ab6789; Abcam) at RT for 1 h. Western blot bands were imaged by odyssey CLx and quantified with LI-COR Image Studio Software (LI-COR Biosciences, Lincoln, NE, USA).

siRNAs transfection

Cells were transfected to knockdown the expression of ALKBH5, YAP, YTHDF1, YTHDF2, and miR-181b-5p using Lipofectamine TM 3000 Transfection Reagent (Cat# L3000-015; Invitrogen, California, USA) according to the manufacturer’s instructions. Briefly, 2 × 105 cells were seed in a 6-well plate and they will be 70% confluent at the time of transfection. 6 μL Lipofectamine TM 3000 reagent and 40 nM siRNA (Gene Pharma, Shanghai, China) were diluted in 125 μL Opti-MEM (Cat# 31985-070; gibco, Grand Island, USA) medium respectively. After Mix and incubation for 2 min separately, these two regents were then mixed and incubated for another 10 min and then added it to cells. Subsequent experimental measurements were performed 24 h after transfection. The siRNAs and miR-181b-5p inhibitor sequence used are as following:

ALKBH5 siRNA: 5’ – CUGCGCAACAAGUACUUCUTT – 3’
YAP siRNA: 5’ – GGUGAUACUUCAAACCAAATT – 3’
YTHDF1 siRNA: 5’ – CCUGCUCCUUAGCGCUAAUTT – 3’
YTHDF2 siRNA: 5’ – AAGGACGUUCCAAUAGCCAAATT – 3’
miR – 181b – 5p inhibitor (AMO):

5’ – ACCCACCACGCAAUGAAUGUU – 3’
Plasmid transfection
ALKBH5- and YAP-carrying plasmid for overexpression were constructed by Cyagen (Suzhou, China). The YTHDF1-carrying plasmid was obtained from Genechem (Shanghai, China). miR-181b-5p mimic was obtained from Gene Pharma. Cells were transfected with 500 ng plasmid using Lipofectamine TM 3000 Transfection Reagent according to the manufacturer’s protocols. Cells were collected 24 h after transfection. The miR-181b-5p mimic sequence used is 5’-AACAUUCAUUGCUGC GGUGGGU-3’.

Ethynyl-2-deoxyuridine (EdU) staining assay
EdU Apollo DNA in vitro kit (Ribobio, Guangzhou, China) was used to detect cell proliferation. Cells were plated into a glass-bottom cell culture dish (NEST, Hong Kong, China) at a density of 2.0 × 10^5. Briefly, cells were fixed with 4% paraformaldehyde (m/v) for 30 min, and followed by incubation of 30 μM EdU at 37 °C for 90 min. After permeabilized in 0.5% Triton X-100, the Apollo staining solution was added into the cell culture medium for 30 min in the dark. Finally, the cells were incubated with 20 μg/mL 4′,6-diamidino-2-phenylindole (DAPI) for 10 min. The EdU positive cells over total cells in each microscopic field were captured at 0 and 24 h after wounding with standard light microscopy (ECLIPSE TS100, Nikon, Japan). The wound area was measured using ImageJ software (National Institutes of Health (NIH), USA).

Invasion assays
A 24 mm Transwell® chambers (Corning #3412, USA) was used to detect cell invasive abilities according to the manufacturer’s protocol. 5 × 10^4 cells infected with plasmid or siRNAs were resuspended in 200 μL serum-free DMEM medium, and seeded in the upper chamber. DMEM medium contained with 10% FBS was added into the lower chamber. After 24 h, cells migrated through the membrane were stained with 0.1% crystal violet (Beyotime manufacturer) for 20 min, separately. Colonies were air-dried and counted. The experiments were repeated three times.

Flow cytometry
FITC Annexin V Apoptosis Detection Kit I (BD Pharmingen, Cat# 556547) was used to detected apoptosis according to the manufacturer’s instructions. Briefly, cells were moistened and washed with precooled PBS twice, and then centrifuged at 1500 rpm for 5 min. Cells were diluted with 300 μL 1x Binding Buffer, 5 μL FITC-labeled Annexin V and 5 μL propidium iodide (PI) were added in cell suspension and stained for 15 min. Data were analyzed with CytExpert software.

Human m^6^A epitranscriptomic microarray analysis
Total RNA samples were extracted from ALKBH5-overexpressed U2OS cells and the corresponding negative control cells. The samples were incubated with m^6^A antibody for immunoprecipitation (IP). The modified RNAs were eluted from the immunoprecipitated magnetic beads as the “IP”, and the unmodified RNAs were recovered from the supernatant as “Sup”. The RNAs were labeled with Cy5 and Cy3, respectively, and designated as cRNAs in separate reactions using Arraystar Super RNA Labeling Kit (Arraystar, Rockville, USA). The cRNAs were combined and hybridized onto Arraystar Mouse Epi-transectomic Microarray (8×60K, Arraystar). After washing the slides, the arrays were scanned in two-color channels by an Agilent Scanner G2505C. Raw intensities of IP (Cy5-labeled) and Sup (supernatant, Cy3-labeled) were normalized with an average of log2-scaled Spike-in RNA intensities. After Spike-in normalization, the probe signals having Present (P) or Marginal (M) QC flags in at least 1 out of 2 samples were retained as “All Targets Value” in the excel sheet for determination of m^6^A methylation level and m^6^A quantity. m^6^A methylation level was calculated as the percentage of modification based on the IP (Cy5-labeled) and Sup (Cy3-labeled) normalized intensities. m^6^A quantity was calculated to indicate the degree of m^6^A methylation of RNAs based on the IP-normalized intensities. Differentially m^6^A-methylated RNAs were identified by filtering with the fold changes of >1.2.

m^6^A quantification
Quantification of m^6^A RNA methylation was detected by m^6^A RNA methylation assay kit (Cat# ab185912; Abcam, Cambridge, UK) following the manufacture’s protocol. Total RNA samples of 400 ng for each group were used to determine the percentage of m^6^A. The
absorpti on was measured at 450 nm using a microplate reader and the percentage of m^6^A in total RNA was calculated using the following equation:

\[m^6A\% = \frac{(\text{SampleOD} - \text{NCOD}) \times S}{(\text{PCOD} - \text{NCOD}) \times P} \times 100\% \]

where \(S \) represents the amount of input RNA sample in ng, and \(P \) the amount of input of positive control in ng.

Methylated RNA immunoprecipitation (MeRIP)-qPCR

The Magna MeRIP Kit (Cat# CR203146; Millipore, Massachusetts, USA) was used according to the manufacturer’s instructions to examine m^6^A modification on genes. Cells were harvested prior to washing with ice-cold PBS twice and subsequently collected by centrifugation at 1500 rpm at 4°C for 5 min. Having removed the supernatant, the cells were mixed with 100 μL RIP lysis buffer and incubated with the lysate on ice for 5 min. The cell preparation was then stored at −80°C. m^6^A antibody (5 μg) was added to a tube containing magnetic beads, followed by rotation at RT for 30 min. The beads were washed with RIP wash buffer twice and resuspended in 900 μL RIP immunoprecipitation buffer mixed with 100 μL cell lysate followed by centrifugation at 14,000 rpm at 4°C for 10 min. After rotation at 4°C overnight, the beads were washed with high salt buffer, followed by extraction with RIP wash buffer. RNA enrichment was analyzed by qRT-PCR.

RNA stability assay

Cells were seeded in a 6-well plate and transfected with desired constructs as described above. After 24 h transfection, cells were treated with actinomycin D (5 μg/mL; Cat# HY-17559; SIGMA-ALDRICH) for 0, 3, and 6 h before collection. Total RNAs were isolated for qRT-PCR analysis.

Xenograft tumorigenesis model

Three-week-old BABL/c female nude mice were purchased from Beijing Vital River Laboratory Animal Technology Limited Company (Beijing, China) and randomized into three groups. 5 × 10^6^ 143B cells were subcutaneously injected in mice, and the tumor volume was assessed every 2 weeks. Eight weeks after injection, the animals were killed. The xenograft tumors were harvested and the tumor volumes were calculated by the standard formula: \(\text{length} \times \text{width}^2/2 \). All animal studies were approved by the Animal Care and Use Committee of Harbin Medical University.

Statistical analysis

The investigators were blinded to the group allocation during the experiments of the study. Data are expressed as mean ± SEM. Statistical analysis was performed using GraphPad Prism5 software and analyzed with Student's t-test (two-tailed). All experiments were independently repeated at least three times, with similar results obtained. *\(P < 0.05 \), **\(P < 0.01 \), ***\(P < 0.001 \).

Acknowledgements

This work was supported by grants from the National Natural Science Fund of China (81972117), Natural Science Foundation of Heilongjiang Province of China for outstanding youth (YQ2020H019), College of Pharmacy, Harbin Medical University Excellent Young Talents Funding (2019-YQ-13), Heilongjiang Innovative Talent Training Fund for Young Teachers (UNPYSTC-2017073), Special Fund for the Development of Local Colleges and Universities supported by the Central Finance (Outstanding Young Talents Support Project, 0103/30011190007), and Youth Reserve Talent Fund of Harbin Science and Technology Bureau (2017RAQXJ163).

Author details

1Department of Orthopedics at The First Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, 150086 Harbin, China. 2Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, 150086 Harbin, China. 3Department of Clinical pharmacology, College of Pharmacy, Harbin Medical University, 150086 Harbin, China. 4Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU670 Harbin, China. 5Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, 150001 Harbin, China.

Author contributions

Y.Y., G.Y., M.H., and H.L. designed the study and wrote the manuscript. Y.Y., G.Y., M.H., and H.L., L.L., Y.W., X.H., G.L., Q.W., Y.G., Z.Q., Z.M., J.P., A.W., W.Z., and H.J. performed research; Y.Y., G.Y., M.H., and H.L. analyzed data; Y.Y., W.D., and L.Y. designed the study and wrote the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Written informed consent was obtained from all participants in accordance with the Declaration of Helsinki. All the collection of specimens and animal handling in this study was reviewed and approved by the Medical Ethics Committee of the Second Affiliated Hospital of Harbin Medical University (KY2018-185).

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

accompanies this paper at (https://doi.org/10.1038/s41419-020-03315-x).

Received: 28 May 2020 Revised: 30 November 2020 Accepted: 1 December 2020Published online: 11 January 2021

References

1. Ottaviani, G. & Jaffe, N. The epidemiology of osteosarcoma. Cancer Treat. Res. 152, 3–13 (2009).
2. Mirabello, L., Troisi, R. J. & Savage, S. A. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer 115, 1531–1543 (2009).
3. Yuan, G., Chen, J., Wu, D. & Gao, C. Neoadjuvant chemotherapy combined with limb salvage surgery in patients with limb osteosarcoma of Enneking stage II: a retrospective study. Oncotargets Ther. 10, 2745–2750 (2017).
4. Gao, G., Li, H. B., Yin, Z. & Flavell, R. A. Recent advances in dynamic m6A RNA modification. Open Biol. 6, 160003 (2016).
5. Yue, Y., Liu, J. & He, C. RNA N6-methyladenosine methylation in post-transcriptional gene regulation. Genes Dev. 29, 1343–1355 (2015).

6. Desrosiers, R., Fridencki, K. & Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl Acad. Sci USA 71, 3971–3975 (1974).

7. Liu, J. et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95 (2014).

8. Ping, X. L. et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24, 177–189 (2014).

9. Yang, Y., Hsu, P. J., Chen, Y. S. & Yang, Y. G. Dynamic transcriptomic m(6)A decoration: writers, erasers and functions in RNA metabolism. Cell Res. 28, 616–624 (2018).

10. Pan, Y., Ma, P., Liu, Y., Li, W. & Shu, Y. Multiple functions of m(6)A RNA methylation in cancer. J. Hematol. Oncol. 11, 48 (2018).

11. Lan, Q. et al. The critical role of RNA m(6)A methylation in cancer. Cancer Res. 79, 1285–1292 (2019).

12. Liu, X. et al. RNA m(6)A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat. Commun. 10, 2065 (2019).

13. Yang, S. et al. m(6)A demethylase FTO regulates melanoma tumorigenesis and response to anti-PD-1 blockade. Nat. Commun. 10, 2782 (2019).

14. Huang, H., Weng, H. & Chen, J. m(6)A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell 37, 270–288 (2020).

15. Li, Z. et al. FTO plays an oncogenic role in acute myeloid leukemia as a N(6)-methyladenosine RNA demethylase. Cancer Cell 31, 127–141 (2017).

16. Cho, S. H. et al. ALKBH5 gene is a novel biomarker that predicts the prognosis of pancreatic cancer: a retrospective multicohort study. Ann. Hepato-Biliary-Pancreat. Surg. 22, 305–309 (2018).

17. Doro, D., Xie, Q., Rich, J. N. & Zhao, J. C. Messenger RNA methylation regulates glioblastoma tumorigenesis. Cancer Cell 31, 474–475 (2017).

18. Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

19. Wu, Y. et al. Circular RNA circTADA2A promotes osteosarcoma progression and metastasis by sponging miR-20a-3p and regulating CREB3 expression. Mol. Cancer 18, 73 (2019).

20. Yang, Z. et al. Circular RNAs: regulators of cancer-related signaling pathways and potential diagnostic biomarkers for human cancers. Theranostics 7, 3106–3117 (2017).

21. Zhang, X. et al. The role of YAP/TAZ activity in cancer metabolic reprogramming. Mol. Cancer 17, 134 (2018).

22. Maguen-Sacca, M. & De Maria, R. The Hippo pathway in normal development and cancer. Pharmacol. Ther. 186, 60–72 (2018).

23. Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

24. Wang, Y. et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).

25. Li, J. et al. The mA demethylase FTO promotes the growth of lung cancer cells by regulating the m6A level of USP7 mRNA. Biochem. Biophys. Res. Commun. 512, 479–485 (2019).

26. Bai, Y. et al. YTHDF1 regulates tumorigenicity and cancer stem cell-like activity in human colorectal carcinoma. Front. Oncol. 9, 332 (2019).

27. Niu, Y. et al. RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol. Cancer 18, 46 (2019).

28. Miao, W., Chen, J., Jia, L., Ma, J. & Song, D. The m6A methyltransferase METTL3 promotes osteosarcoma progression by regulating the m6A level of LET1. Biochem. Biophys. Res. Commun. 516, 719–725 (2019).

29. Huang, H. et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20, 285–295 (2018).

30. Zhou, X. et al. YAP aggravates inflammatory bowel disease by regulating M1/ M2 macrophage polarization and gut microbial homeostasis. Cell Rep. 27, 1176–1189.e1175 (2019).

31. Greenbaum, D., Colangelo, C., Williams, K. & Gerstein, M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4, 117 (2003).

32. Lund, E. & Dahlberg, J. E. Substrate selectivity of exportin 5 and Dicer in the regulation of methylated nucleotides. Cold Spring Harb. Symp. Quant. Biol. 71, 59–66 (2006).

33. Li, Z., Shen, J., Chan, M. T. & Wu, W. K. MicroRNA-379 suppresses osteosarcoma progression by targeting PDK1. J. Cell Mol. Med. 21, 315–327 (2017).

34. Wang, S. N. et al. miR-491 inhibits osteosarcoma lung metastasis and chemoresistance by targeting alphab-crystallin. Mol. Ther. 25, 2140–2149 (2017).

35. Du, H. et al. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat. Commun. 7, 12626 (2016).

36. Ahmed, A. A., Mohamed, A. D., Gener, M., Li, W. & Tabaeeda, E. YAP and the Hippo pathway in pediatric cancer. Mol. Cell Oncol. 4, e1295127 (2017).

37. Zanconato, F., Cordenoni, M. & Piccolo, S. YAP/TAZ at the roots of cancer. Cancer Cell 29, 783–803 (2016).

38. Lee, J. Y. et al. YAP-independent mecanotransduction drives breast cancer progression. Nat. Commun. 10, 1848 (2019).

39. Zanconato, F., Battilana, G., Cordenoni, M. & Piccolo, S. YAP/TAZ as therapeutic targets in cancer. Curr. Opin. Pharmacol. 29, 26–33 (2016).

40. Li, J. A. et al. TRAF5 regulates YAP signaling by promoting the ubiquitination and degradation of MST1 in pancreatic cancer. Clin. Exp. Med. 19, 211–218 (2019).

41. Yang, X. et al. NTRK1 is a positive regulator of YAP oncogenic function. Oncogene 38, 2778–2787 (2019).

42. Seo, J. et al. MK5 regulates YAP stability and is a molecular target in YAP-driven cancers. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-19-1339 (2019).

43. Chan, L. H. et al. Hedgehog signaling induces osteosarcoma development through Yap1 and H19 overexpression. Oncogene 33, 4857–4866 (2014).

44. Wang, D. Y. et al. Hippo-YAP signaling pathway is involved in osteosarcoma chemoresistance. Chin. J. Cancer 35, 47 (2016).

45. Yeh, C. M. et al. Melatonin as a potential inhibitory agent in head and neck cancer. Oncotarget 8, 90545–90556 (2017).