1 Introduction

1.1 Motivation

For some infinite-dimensional groups G and suitable subgroups K there exists a monoid structure on the set $K\backslash G/K$ of double cosets of G with respect to K. This can be seen, for example, for the group S_{∞} of the finitely supported permutations of \mathbb{N}, for infinite-dimensional classical Lie groups, for groups of automorphisms of measure spaces and for $\text{Aut}(F_{\infty})$, a direct limit of the groups of automorphisms of the free groups F_n.

The study of these structures was pioneered by R. S. Ismagilov, followed by G. I. Olshanski, who used them in the representation theory of infinite-dimensional classical Lie groups ([15], [17]). More recently there is the work of Y. A. Neretin for the infinite tri-symmetric group and $\text{Aut}(F_{\infty})$ ([11], [8], [5]).

In this paper we show that the group B_{∞}, of the finite braids on infinitely many strands, admits such a structure.

We also show how the multiplication defined for this group is related to the one defined in $\text{Aut}(F_{\infty})$, when B_{∞} is regarded as a subgroup of $\text{Aut}(F_{\infty})$ and the one defined in $GL(\infty)$. Furthermore we define a one-parameter monoid structure on $GL(\infty)$ which generalizes the usual structure (see [7]) and show that the Burau representation provides a functor between the categories of double cosets.

1.2 The infinite braid group and double cosets

The Artin braid group on n strings B_n has the presentation with $n-1$ generators $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}$ and the so-called braid relations:

$$\sigma_i \sigma_j = \sigma_j \sigma_i, \quad |i - j| \geq 2, \quad i, j \in \{1, \ldots, n-1\},$$

and

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \quad 1 \leq i \leq n-2.$$

The generators σ_i are called elementary braids. For each n, consider the monomorphism $i_n : B_n \to B_{n+1}$ sending the k-th elementary braid of B_n to the k-th elementary braid of B_{n+1}. Geometrically this operation corresponds to adding a new string to the right of the braid, without creating any new crossings, as in the picture below:

![Braid Diagram](image)

Figure 1: The monomorphism i_n

The direct limit of this sequence of groups, with respect to the homomorphisms i_n, is the infinite braid group

$$B_{\infty} = \lim_{\longrightarrow} B_n,$$

consisting of braids with countably many strings and finitely many crossings. This group has the presentation:

$$B_{\infty} = \left\langle \sigma_i, i \in \mathbb{N} \left| \begin{array}{l} \sigma_i \sigma_j = \sigma_j \sigma_i, |i - j| \geq 2 \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \end{array} \right. \right\rangle.$$

For each non-negative integer α, let $B_{\infty}[\alpha]$ be the subgroup of B_{∞} given by

$$B_{\infty}[\alpha] = \langle \sigma_j | j > \alpha \rangle.$$
Definition 1.1. Let G be a group, $g \in G$ and K and L be subgroups of G. The double coset on G containing g with respect to the pair (K, L) is the set KgL. Denote by $K\setminus G/L$ the set of double cosets on G with respect to the pair (K, L).

1.3 The Burau representation of B_∞

The Burau representation is the homomorphism $\eta_n : B_n \to GL(n, \mathbb{Z}[t, t^{-1}])$ given by

$$\eta_n(\sigma_i) = \begin{pmatrix} I_{i-1} & (1-t & t) \\ (1-t & 1 & 0) \\ 1_{n-i-1} \end{pmatrix}.$$

Consider the homomorphisms $j_n : GL(n) \to GL(n + 1)$ given by

$$j_n(T) = \begin{pmatrix} T \\ 0 \\ 0 \end{pmatrix}.$$

The group $GL(\infty)$ is the direct limit of $GL(n)$ with respect to the homomorphisms j_n and consists of infinite matrices that differ from the identity matrix only in finitely many entries. Due the commutativity of the diagram:

$$\begin{array}{c}
B_n \xrightarrow{\eta_n} GL(n) \\
\downarrow j_n \\
B_{n+1} \xrightarrow{\eta_{n+1}} GL(n + 1)
\end{array}$$

we can construct a representation $\eta : B_\infty \to GL(\infty)$ of B_∞ by taking the limit of the representations η_n. More precisely, η is given by the following formulas:

$$\eta(\sigma_i) = \begin{pmatrix} 1_{i-1} \\ (1-t & t) \\ 1_{\infty} \end{pmatrix}.$$

With this representation in mind we will define an operation on the double cosets of $GL(\infty)$ such that the Burau representation will be functorial between the categories of double cosets.

1.4 Main results

Consider the double cosets on B_∞ with respect to the subgroups $B_\infty[\alpha]$. Given double cosets $p \in B_\infty[\alpha]\setminus B_\infty/B_\infty[\beta]$ and $q \in B_\infty[\beta]\setminus B_\infty/B_\infty[\gamma]$, we are going to define an element $p \circ q \in B_\infty[\alpha]\setminus B_\infty/B_\infty[\gamma]$. To this purpose we first introduce the following:

Definition 1.2. For integers $\beta \geq 0$ and $n > 0$, denote by $\tau_i^{(n)}$ the braid:

$$\tau_i^{(n)} = \sigma_n + \beta + \sigma_n + \beta + \ldots + \sigma_{\beta + i}.$$

Further we define the element $\theta_n[\beta] \in B_\infty[\beta]$ as:

$$\theta_n[\beta] = \tau_0^{(n)} \tau_1^{(n)} \cdots \tau_{n-1}^{(n)}.$$
Finally, the definition of the product of the double cosets is as follows:

Definition 1.3. Let \(p \in B_\infty[\alpha] \backslash B_\infty / B_\infty[\beta] \) and \(q \in B_\infty[\beta] \backslash B_\infty / B_\infty[\gamma] \) be double cosets. Consider \(p \in p \) and \(q \in q \) representatives of these double cosets. Then we define their product as

\[
p \circ q = B_\infty[\alpha] p \theta_n[\beta] q B_\infty[\gamma],
\]

for sufficiently large \(n \).

Theorem 1.4. The operation defined above does not depend on the choice of the representatives of the double cosets for \(n \) large enough. Moreover it is associative.

As a consequence we have that \((B_\infty[\alpha] \backslash B_\infty / B_\infty[\alpha], \circ) \) is a monoid, for each non-negative integer \(\alpha \).

Remark 1.5. We will show that exists some \(n_0(\alpha, \gamma, p, q) \) such that \(B_\infty[\alpha] p \theta_n[\beta] q B_\infty[\gamma] = B_\infty[\alpha] p \theta_{n_0}[\beta] q B_\infty[\gamma] \) for all \(n \geq n_0 \). We can make \(n_0 \) more precise. In fact \(n_0 = \max\{\text{supp } p, \text{supp } q, \alpha, \gamma\} + 1 \), where \(\text{supp} \) is the support of a braid, defined in 2.1.

There is a natural one-to-one correspondence between the set \(B_\infty[\alpha] \backslash (B_\infty \times B_\infty[\alpha]) / B_\infty[\alpha] \) and the set of conjugacy classes \(B_\infty / B_\infty[\alpha] \) (here \(B_\infty[\alpha] \subset B_\infty^2 \) is the image of the subgroup \(B_\infty[\alpha] \) by the diagonal map). Therefore the conjugacy problem in \(B_\infty \) is equivalent to the word problem in \(B_\infty[\alpha] \backslash (B_\infty \times B_\infty[\alpha]) / B_\infty[\alpha] \). Furthermore, since it is a submonoid of \(B_\infty[\alpha] \backslash (B_\infty \times B_\infty[\alpha]) / B_\infty[\alpha] \), this correspondence gives a monoid structure to \(B_\infty / B_\infty[\alpha] \).

As a consequence of the existence of a solution for the conjugacy problem for the braid groups and the fact that the injections \(i_n \) do not merge conjugacy classes (see González-Meneses [3]) we have,

Proposition 1.6. The conjugacy problem for \(B_\infty \) has a solution.

Combining the observations above, we see that the word problem for \(B_\infty[0] \backslash B_\infty \times B_\infty[0] \) has a solution.

Consider the subgroup of \(GL(\infty) \) given by

\[
G[n] = \left\{ \begin{pmatrix} 1 & \ast \\ T \end{pmatrix} : T \in GL(\infty), v^T T = v^T, Tu = u \right\}
\]

where \(v = (1, t, t^2, \ldots) \) and \(u = (1, 1, 1, 1, \ldots) \) are vectors. It is easy to see that the image of \(B_\infty[n] \) by the Burau representation is contained in \(G[n] \).
Definition 1.7. Consider the matrix

\[\Theta_j[k] = \begin{pmatrix} 1_k & 0 & 0 & 0 \\
0 & V_j & t^j 1_j & 0 \\
0 & 1_j & 0 & 0 \\
0 & 0 & 0 & 1_{\infty} \end{pmatrix} \]

where

\[V_j = (1-t) \begin{pmatrix} 1 & t & \cdots & t^{j-1} \\
\vdots & \vdots & \ddots & \vdots \\
1 & t & \cdots & t^{j-1} \end{pmatrix} \]

Let \(p \in p \) and \(q \in q \) be representatives of the double cosets \(p \in G[n] \backslash GL(\infty)/G[k] \) and \(q \in G[k] \backslash GL(\infty)/G[m] \). Then we define their product as:

\[p \ast q = G[n] p \Theta_j[k] q G[m], \]

for sufficiently large \(j \).

Theorem 1.8. The operation defined above does not depend on the choice of representatives of double cosets for \(j \) large enough. Moreover, it is associative.

Remark 1.9. We will show that exists some \(j_0(n, m, p, q) \) such that \(G[n] p \Theta_j[k] q G[m] = G[n] p \Theta_{j_0}[k] q G[m] \) for all \(j \geq j_0 \). We can make \(j_0 \) more precise. In fact let \(N \in \mathbb{N} \) be such that \(p \) and \(q \) can be written as diagonal block matrices

\[\begin{pmatrix} A & 0 \\
0 & 1_{\infty} \end{pmatrix}, \]

where \(A \) is a square matrix of dimension \(k + N \). Then \(j_0 = \max\{m, n, k + N\} \).

Remark 1.10. The operation \(\ast \) generalizes the usual multiplication defined on the doubles cosets of \(GL(\infty) \) in the sense that setting the parameter \(t = 1 \) we recover the usual multiplication.

When there is a well defined operation on the set of double cosets of a group \(G \) with respect to a set of subgroups \(\{K[r]; s \in \mathbb{N}\} \), consider the category \(K(G, K) \) of double cosets, where the objects are nonnegative integers and the morphisms are given by \(Hom(r, s) = K[r]G/K[r] \). Then,

Proposition 1.11. The Burau representation \(\eta : B_{\infty} \rightarrow GL(\infty) \) induces a functor between the categories \(K(B_{\infty}, B_{\infty}[\ast]) \) and \(K(GL(\infty), G) \).

As a special case, when \(G \) is the bisymmetric group (the group that consists of pairs \((g, h)\) of permutations of \(\mathbb{N} \) such that \(gh^{-1} \) is a finite permutation) and \(K \) is its diagonal subgroup, we get a special category, called the train category of the pair \((G, K)\). This category admits a transparent combinatorial description and encode information about the representations of the bisymmetric group (see [16], [10]).

1.5 Comments

Let \(p \in B_{\infty}[\alpha] \backslash B_{\infty}/B_{\infty}[\beta] \) and \(q \in B_{\infty}[\beta] \backslash B_{\infty}/B_{\infty}[\gamma] \). Notice that the cosets \(B_{\infty}[\alpha] pq B_{\infty}[\gamma] \) do not always coincide for all choices of \(p \in p \) and \(q \in q \). For instance \(\sigma_2 \) and \(\sigma_3 \sigma_2 \) are representatives of the same double coset in \(B_{\infty}[2] \backslash B_{\infty}/B_{\infty}[2] \). But \(\sigma_2^2 \) and \(\sigma_3 \sigma_2 \sigma_3 \sigma_2 \) represent distinct cosets. To see this we consider the permutation associated to each braid. For the braid \(\sigma_2^2 \) it is the identity and for the braid \(\sigma_3 \sigma_2 \sigma_3 \sigma_2 \) it is \((432) \). Since no braid in \(B_{\infty}[2] \) permutes the point 2 we see that these are in fact distinct double cosets.

2 Proofs of main results

2.1 Proof of Theorem 1.3

Before we proceed we introduce the notion of of support which will be needed later.

Definition 2.1. Let \(p \) be a braid in \(B_{\infty} \). The support of \(p \) is

\[\text{supp} \, p = \min\{j \in \mathbb{N}; p \in \langle \sigma_1, \ldots, \sigma_j \rangle \}. \]
Notice that p has no factors in $B_{\infty}[\text{supp } p]$, hence p commutes with every element of $B_{\infty}[1 + \text{supp } p]$. Also, we can identify p with an element of $B_{1 + \text{supp } p}$. We define $\text{supp } 1 = 0$.

Consider p and q representatives of the double cosets

$$p \in B_{\infty}[\alpha]\backslash B_{\infty}/B_{\infty}[\beta], \quad q \in B_{\infty}[\beta]\backslash B_{\infty}/B_{\infty}[\gamma].$$

Set $r_j = B_{\infty}[\alpha]p\theta_j[\beta]q B_{\infty}[\gamma]$ to be the sequence of double cosets in $B_{\infty}[\alpha]\backslash B_{\infty}/B_{\infty}[\gamma]$ defined in Definition 2.3.

Proposition 2.2. The sequence $(r_j)_{j \geq 1}$ defined above is eventually constant.

Proof. We are going to give a proof in several steps:

Step 1. Given $m > 0$ we have $r_i^{(m+1)} = \sigma_{m+i+1} \tau_i^{(m)}$ for all $0 \leq i \leq m - 1$.

Indeed, since $\text{supp } \tau_i^{(m)} = m + \beta + j$ and $\sigma_{m+i+2} \in B_{\infty}[1 + \beta + j]$, we find that σ_{m+i+2} commutes with $\tau_i^{(m)}$.

Step 2. For all $j \leq i$ we have $\sigma_{m+i+2} r_j^{(m)} = r_i^{(m)} \sigma_{m+i+2}$.

Step 3. Define $u = (\sigma_{m+i+1} \sigma_{m+i+2} \cdots \sigma_{2m+i})^{-1}$ and $\ell^{-1} = \tau_i^{(m+1)}$. Then $\theta_m[\beta] = u \theta_{m+1}[\beta] \ell$.

Step 4. Let $M = \max\{\text{supp } p, \text{supp } q, \alpha, \gamma\} + 1$. Suppose that, for some $m \geq M$, we have $r_m = r_M$. We are going to show that $r_m = r_{m+1}$. Let u and ℓ be like in step 3. Since $u, \ell \in B_{\infty}[m + \beta]$ it follows that $u \in B_{\infty}[\alpha]$, $\ell \in B_{\infty}[\gamma]$ and they commute with p and q. Therefore:

$$u(p \theta_{m+1}[\beta] q) \ell = p(u \theta_{m+1}[\beta] \ell) q = p \theta_m[\beta] q.$$

Hence $r_m = r_{m+1}$. What proves Proposition 2.2.

The following technical lemma will be used in Lemma 2.4 which in turn is used in Proposition 2.5 and more extensively in Theorem 2.6.

Lemma 2.3. Let $\{(v_j)_{j=1}^n\}_{i=1}^M$ be a family of sequences of positive integers such that $v_j < v_k$ whenever $i = n$ and $k < j$ or $i < n$ and $k = j$; in other words, the sequences $(v_j)_{j=1}^n$ are decreasing and the sequences $(v_j)_{j=1}^n$ are increasing. If $\mu_j = \prod_{k=1}^i \sigma_{v_k}$ and $\lambda_i = \prod_{k=1}^i \sigma_{v_k}$, then $\mu_1 \cdots \mu_n = P = \lambda_1 \cdots \lambda_n$.

Proof. We prove the lemma by induction on the pair (g, ℓ). The statement is trivial for $g = \ell = 1$. Assume it is true for (g, ℓ), we prove it is true for $(g + 1, \ell)$ and $(g, \ell + 1)$.

(i) For \((g + 1, \ell)\), notice that:
\[
\prod_{s=1}^{g+1} \prod_{r=1}^{\ell} \sigma_{v^+_r} = \left(\prod_{s=1}^{g} \prod_{r=1}^{\ell} \sigma_{v^+_r} \right) \left(\prod_{r=1}^{\ell} \sigma_{v^{g+1}_r} \right) = \left(\prod_{s=1}^{g} \prod_{r=1}^{\ell} \sigma_{v^+_r} \right) \left(\prod_{r=1}^{g+1} \sigma_{v^{g+1}_r} \right).
\]
If \(x_r = \prod_{s=1}^{g} \sigma_{v^+_r}\) we have that \(x_r \sigma_{v^{g+1}_r} = \sigma_{v^{g+1}_r} x_r\) for \(r > t\), this follows from the inequalities \(v^+_r < v^{g+1}_r < v^{g+1}_t\) for \(s < g + 1\). Therefore:
\[
\left(\prod_{r=1}^{\ell} x_r \right) \left(\prod_{r=1}^{\ell} \sigma_{v^{g+1}_r} \right) = x_1 \cdots x_\ell \sigma_{v^{g+1}_1} \cdots \sigma_{v^{g+1}_\ell} = x_1 \sigma_{v^{g+1}_1} x_2 \sigma_{v^{g+1}_2} \cdots x_\ell \sigma_{v^{g+1}_\ell} = \prod_{r=1}^{\ell} x_r \sigma_{v^{g+1}_r} = \prod_{r=1}^{g+1} \prod_{s=1}^{\ell} \sigma_{v^+_r}.
\]

(ii) For \((g, \ell + 1)\) we have:
\[
\prod_{s=1}^{\ell+1} \prod_{r=1}^{g} \sigma_{v^+_r} = \left(\prod_{s=1}^{g} \prod_{r=1}^{\ell} \sigma_{v^+_r} \right) \left(\prod_{s=1}^{g} \sigma_{v^{\ell+1}_s} \right) = \left(\prod_{s=1}^{g} \prod_{r=1}^{\ell} \sigma_{v^+_r} \right) \left(\prod_{r=1}^{\ell+1} \sigma_{v^{\ell+1}_r} \right).\]
If \(y_s = \prod_{r=1}^{\ell} \sigma_{v^{\ell+1}_r}\) notice that \(y_s \sigma_{v^{\ell+1}_r} = \sigma_{v^{\ell+1}_r} y_s\) for \(s > t\), this follows from the inequalities \(v^{\ell+1}_r < v^{\ell+1}_t < v^+_r\) for \(r < \ell + 1\). Therefore:
\[
\left(\prod_{s=1}^{g} y_s \right) \left(\prod_{s=1}^{g} \sigma_{v^{\ell+1}_s} \right) = y_1 \cdots y_g \sigma_{v^{\ell+1}_1} \cdots \sigma_{v^{\ell+1}_g} = y_1 \sigma_{v^{\ell+1}_1} y_2 \sigma_{v^{\ell+1}_2} \cdots y_g \sigma_{v^{\ell+1}_g} = \prod_{s=1}^{g} y_s \sigma_{v^{\ell+1}_s} = \prod_{s=1}^{g} \prod_{r=1}^{\ell+1} \sigma_{v^+_r}.
\]

It will be useful to write the product \(P\) from Lemma 2.3 as a matrix, where the indices increase from right to left and from top to bottom.
\[
P = \begin{bmatrix}
v_1^1 & \cdots & v_1^g \\
\downarrow & \ddots & \downarrow \\
v_1^g & \cdots & v_1^g
\end{bmatrix}.
\]
In this way \(\lambda_1 \cdots \lambda_\ell\) is the column-wise product and \(\mu_1 \cdots \mu_g\) is the row-wise product.

Consider, for each positive integer \(m\), the homomorphism \(C_m : B_\infty \to B_\infty\) given by \(C_m(\sigma_j) = \sigma_{m+j}\). Then we have the following lemma.

Lemma 2.4. Let \(\beta\) and \(j\) be nonnegative integers with \(j > 1\). If \(d \in (\sigma_{\beta+1}, \ldots, \sigma_{\beta+j-1})\), then:

(i) \(d \theta_j[\beta] = \theta_j[\beta] C_j(d)\).

(ii) \(\theta_j[\beta] d = C_j(d) \theta_j[\beta]\).

Proof. Since \(C_j\) is a homomorphism, it is enough to prove both statements of the proposition for the case where \(d = \sigma_k\), for some \(\beta + 1 \leq k \leq \beta + j - 1\).

(i) Recall that \(\theta_j[\beta] = \tau_{i_0}^{(j)} \cdots \tau_{j-1}^{(j)}\). We claim that the following holds:
\[
\sigma_{k+i} \tau_i^{(j)} = \tau_{i_0}^{(j)} \sigma_{k+i+1}, \quad 0 \leq i \leq j - 1.
\]
Indeed, since \(\sigma_{k+i}\) is a letter of \(\tau_i^{(j)}\), but it is different from \(\sigma_{j+\beta+i}\), we have:
\[
\sigma_{k+i} \tau_i^{(j)} = \sigma_{k+i} (\sigma_{j+\beta+i} \cdots \sigma_{j+1+i}) = \\
= \sigma_{j+\beta+i} \cdots \sigma_{j+2+i} \sigma_{j+i+1} \sigma_{j+i+1} \sigma_{j+i+1} \cdots \sigma_{j+1+i} = \\
= \sigma_{j+\beta+i} \cdots \sigma_{j+2+i} \sigma_{j+i+1} \sigma_{j+i+1} \sigma_{j+i+1} \cdots \sigma_{j+1+i} = \\
= \sigma_{j+\beta+i} \cdots \sigma_{j+2+i} \sigma_{j+i+1} \sigma_{j+i+1} \tau_i^{(j)} \sigma_{k+i+1}.
\]
Therefore:
\[
\sigma_k \theta_j[\beta] = \sigma_k \tau_{i_0}^{(j)} \cdots \tau_{j-1}^{(j)} = \tau_{i_0}^{(j)} \sigma_{k+1} \tau_1^{(j)} \cdots \tau_{j-1}^{(j)} = \cdots = \tau_{i_0}^{(j)} \sigma_{k+j-1} \tau_{j-1}^{(j)} = \tau_{i_0}^{(j)} \cdots \tau_{i_{j-1}}^{(j)} \sigma_{k+j} = \theta_j[\beta] \sigma_{k+j}.
\]}
(ii) Let \(v^*_r = j + \beta - s - r \) for \(r \) and \(s \) positive integers. The family \(\{ (v^*_r) \}_{r,s=1}^j \) satisfies the hypothesis of Lemma 2.3 and therefore \(\mu_1 \cdots \mu_j = \lambda_1 \cdots \lambda_j \), where

\[
\mu_i = \sigma_{j+\beta-i+1} \cdots \sigma_{\beta+i} \quad \text{and} \quad \lambda_i = \sigma_{j+\beta-i+1} \cdots \sigma_{2j+\beta-i}.
\]

Since \(\mu_i = \gamma_{i-1}^{(j)} \) we see that \(\theta_{j}[\beta] = \lambda_1 \cdots \lambda_j \). As we saw in item (i), we have that

\[
\lambda_{j-i} \sigma_{k+i} = \sigma_{k+i+1} \lambda_{j-i}, \quad 0 \leq i \leq j - 1.
\]

What completes the proof. \(\Box \)

![Figure 3: \(\sigma_3 \theta_3[1] = \theta_3[1] \sigma_6 \)](image)

Our next step is to prove that the product does not depend on the chosen representatives.

Proposition 2.5. Let \(p' \) and \(q' \) be other two representatives of \(p \) and \(q \) respectively. Consider the sequence

\[
v'_j = B_\infty[\alpha] \; p' \theta_j[\beta] q' B_\infty[\gamma].
\]

Then there exists an integer \(N > 0 \) such that

\[v'_j = v_j, \quad \text{for all } j \geq N.\]

Proof. Since \(p \) and \(p' \) are representatives of the same double coset, there exist \(r \in B_\infty[\alpha] \) and \(h \in B_\infty[\beta] \) such that \(p' = rph \). In a similar way, there exist \(k \in B_\infty[\beta] \) and \(s \in B_\infty[\gamma] \) such that \(q' = kqs \). Therefore,

\[v'_j = B_\infty[\alpha] \; p' \theta_j[\beta] q' B_\infty[\gamma] = B_\infty[\alpha] \; rph \theta_j[\beta] kqs B_\infty[\gamma] = B_\infty[\alpha] \; ph \theta_j[\beta] kq B_\infty[\gamma].\]

Consider \(N = \max\{\supp p, \supp q, \supp h, \supp k, \alpha, \gamma\} + 1 \). Given \(j \geq N \), let \(\tilde{h} = C_j(h^{-1}) \) and \(\tilde{k} = C_j(k^{-1}) \). Then \(\tilde{h}, \tilde{k} \in B_\infty[j + \beta] \) and hence \(\tilde{h} \in B_\infty[\gamma] \) and \(\tilde{k} \in B_\infty[\alpha] \). Furthermore, \(\tilde{h} \) commutes with \(q \) and \(k \), and \(\tilde{k} \) commutes with \(p \) and \(h \). Now:

\[
\tilde{h} \tilde{k} \theta_j[\beta] kqh = \phi \tilde{k} \tilde{h} \theta_j[\beta] kqh = \phi \tilde{k} C_j(k) \theta_j[\beta] \tilde{h} q = \phi \tilde{k} C_j(k^{-1}) C_j(k) \theta_j[\beta] \tilde{h} q = \phi \tilde{h} \theta_j[\beta] \tilde{k} q = \phi \tilde{h} \theta_j[\beta] q.
\]

Therefore, for all pairs \((p, q) \in B_\infty[\alpha] \setminus B_\infty[B_\infty[\beta]] \times B_\infty[B_\infty[\beta]] \setminus B_\infty[B_\infty[\gamma]] \) we have a well defined product \(p \circ q \in B_\infty[\alpha] \setminus B_\infty[B_\infty[\beta]] \) given by

\[p \circ q = B_\infty[\alpha] \; p \theta_j[\beta] q B_\infty[\gamma],
\]

\(p \in p, q \in q \) and \(j \) sufficiently large.

Finally, we are going to prove the associativity of the operation \(\circ \).
Proposition 2.6. The product of double cosets is associative.

Proof. Let $\alpha, \beta, \gamma, \delta \in \mathbb{N}$ and consider $a \in B_\infty[\alpha] \setminus B_\infty[\beta], b \in B_\infty[\beta] \setminus B_\infty[\gamma]$ and $c \in B_\infty[\gamma] \setminus B_\infty[\delta]$. Choose representatives $a \in a, b \in b$ and $c \in c$; put $k = \max\{\alpha, \beta, \gamma, \delta, \supp a, \supp b, \supp c\} + 1$. Then,

$$ab = B_\infty[\alpha] a \theta_k[\beta] b B_\infty[\gamma] \text{ and } bc = B_\infty[\beta] b \theta_k[\gamma] c B_\infty[\delta].$$

If $l = \supp\{a \theta_k[\beta] b\} + 1 = 2k + \beta$ and $l' = \supp\{b \theta_k[\gamma] c\} + 1 = 2k + \gamma$ we have

$$(ab)c = B_\infty[\alpha] a \theta_k[\beta] b \theta_l[\gamma] c B_\infty[\delta] \text{ and } a(bc) = B_\infty[\alpha] a \theta_l[\beta] b \theta_k[\gamma] c B_\infty[\delta].$$

To prove our claim we are going to show that both double cosets above are the same, by exhibiting two representatives that are equal (figures 4 and 5 give an example of the process involved). Here we are assuming $\beta \leq \gamma$, the case $\gamma < \beta$ is analogous.

Throughout the rest of the proof we will use the symbol $a \equiv b$ to signify that a and b are representatives of the same double coset of $B_\infty[\alpha] \setminus B_\infty[\beta]$ or $B_\infty[\beta] \setminus B_\infty[\gamma]$, that is, we can find elements $h \in B_\infty[\alpha]$ and $k \in B_\infty[\gamma]$ such that $hak = b$.

Using the notation of Lemma 2.3 we can write

$$a \theta_k[\beta] b \theta_l[\gamma] c = a \begin{bmatrix} k + \beta & \rightarrow & \beta + 1 \\ 2k + \beta - 1 & \rightarrow & k + \beta \\ 3k + \gamma & \rightarrow & 2k + \beta + \gamma \end{bmatrix} b \begin{bmatrix} 2k + \beta + \gamma & \rightarrow & \gamma + 1 \\ 4k + 2\beta + \gamma - 1 & \rightarrow & 2k + \gamma + \beta \end{bmatrix} c $$

$$a \theta_l[\beta] b \theta_k[\gamma] c = a \begin{bmatrix} 2k + \gamma + \beta & \rightarrow & \beta + 1 \\ 4k + 2\gamma + \beta - 1 & \rightarrow & 2k + \gamma + \beta \end{bmatrix} b \begin{bmatrix} k + \gamma & \rightarrow & \gamma + 1 \\ 2k + \gamma - 1 & \rightarrow & k + \gamma \end{bmatrix} c.$$

Using the same lemma, we can see that

$$\theta_k[\beta] = R_1 P; \quad P = \begin{bmatrix} k + 1 & \rightarrow & \beta + 1 \\ 2k & \rightarrow & k + \beta \end{bmatrix} \quad R_1 = \begin{bmatrix} k + \beta & \rightarrow & k + 2 \\ 2k + \beta - 1 & \rightarrow & 2k + 1 \end{bmatrix}$$

$$\theta_l[\beta] = R_2 P_2; \quad P_2 = \begin{bmatrix} k + 1 & \rightarrow & \beta + 1 \\ 3k + \gamma & \rightarrow & 2k + \beta + \gamma \end{bmatrix} \quad R_2 = \begin{bmatrix} 2k + \beta + \gamma & \rightarrow & k + 2 \\ 4k + 2\gamma + \beta - 1 & \rightarrow & 3k + \gamma + 1 \end{bmatrix}$$

$$\theta_k[\gamma] = P_3 R_3; \quad P_3 = \begin{bmatrix} k + \gamma & \rightarrow & \gamma + 1 \\ 2k & \rightarrow & k + 1 \end{bmatrix} \quad R_3 = \begin{bmatrix} 2k + 1 & \rightarrow & k + 2 \\ 2k + \gamma - 1 & \rightarrow & k + \gamma \end{bmatrix}$$

$$\theta_l[\gamma] = P_4 R_4; \quad P_4 = \begin{bmatrix} 2k + \beta + \gamma & \rightarrow & \gamma + 1 \\ 3k + \beta & \rightarrow & k + 1 \end{bmatrix} \quad R_4 = \begin{bmatrix} 3k + \beta & \rightarrow & k + 2 \\ 4k + 2\beta + \gamma - 1 & \rightarrow & 2k + \beta + \gamma \end{bmatrix}.$$

Since $R_i \in B_\infty[k + 1], 1 \leq i \leq 4$ we have

$$a R_1 P b P_4 R_4 c = a a P b P_4 c \quad a R_2 P_2 P_3 R_3 c = a P b P_3 c \equiv a P b P_3 c.$$

Notice also that $P_4 = R_5 W$, where

$$R_5 = \begin{bmatrix} 2k + \beta + \gamma & \rightarrow & 2k + 2 \\ 3k + \beta & \rightarrow & 3k - \gamma + 2 \end{bmatrix} \quad \text{and} \quad W = \begin{bmatrix} 2k + 1 & \rightarrow & \gamma + 1 \\ 3k - \gamma + 1 & \rightarrow & k + 1 \end{bmatrix}.$$
and notice that $P_2 = PF$. Since $F \in B_\infty[k]$ we see that $bF = Fb$.

Moreover, $F = EL$ where

$$
E = \left[\begin{array}{c} 2k + 1 \\ \downarrow \\ 2k - \beta + \gamma \\ \downarrow \\ k + \gamma + 1 \\ \downarrow \\ k + \gamma \end{array} \right] \quad \text{and} \quad L = \left[\begin{array}{c} 2k - \beta + \gamma + 1 \\ \downarrow \\ 3k + \gamma \\ \downarrow \\ k + \gamma + 1 \\ \downarrow \\ 2k + \beta + \gamma \end{array} \right].
$$

Step 2. $LP_3c \equiv CP_3c$ for some C. In fact, consider

$$
C = \left[\begin{array}{c} 2k + \gamma - \beta + 1 \\ \downarrow \\ 3k - \beta + 1 \\ \downarrow \\ k + \gamma + 1 \\ \downarrow \\ 2k + 1 \end{array} \right] \quad \text{and} \quad D = \left[\begin{array}{c} 3k - \beta + 2 \\ \downarrow \\ 3k + \gamma \\ \downarrow \\ 2k + 2 \\ \downarrow \\ 2k + \beta + \gamma \end{array} \right].
$$

Then $L = CD$ and, since $D \in B_\infty[2k + 1]$ and $supp P_3 = 2k$, we have $DP_3c = P_3cD \equiv P_3c$. Hence $LP_3c \equiv CP_3c$.

Step 3. $CP_3 = AW$ for some A. In fact, consider $A = \left[\begin{array}{c} 2k + \gamma - \beta + 1 \\ \downarrow \\ 3k - \beta + 1 \\ \downarrow \\ 2k + 2 \\ \downarrow \end{array} \right] \quad \text{Then,}

$$
CP_3 = \left[\begin{array}{c} 2k + \gamma - \beta + 1 \\ \downarrow \\ 3k - \beta + 1 \\ \downarrow \\ k + \gamma + 1 \\ \downarrow \\ 2k + 1 \end{array} \right] \left[\begin{array}{c} k + \gamma \\ \downarrow \\ 3k - \beta + 1 \\ \downarrow \\ k + \gamma + 1 \\ \downarrow \\ 2k \end{array} \right] = AW
$$

Therefore, $aP_2bP_3c = aPbELP_3c \equiv aPbECP_3c = aPbEAWc$. At last, consider

$$
\tilde{W} = \left[\begin{array}{c} 3k - \beta + 2 \\ \downarrow \\ 4k - 2\beta + \gamma + 1 \end{array} \right] \rightarrow \left[\begin{array}{c} k + 2 \\ \downarrow \\ 2k - \beta + \gamma + 1 \end{array} \right].
$$

Then $A\tilde{W} = \theta_r[\gamma]$ with $r = 2k - \beta + 1$. Hence $aPbEAWc \equiv aPbE\theta_r[\gamma]c$ and, by Lemma \ref{lemma:lem1}, $E\theta_r[\gamma] = \theta_r[\gamma]C_r(E)$.

Therefore,

$$
aPbE\theta_r[\gamma]c = aPb\theta_r[\gamma]C_r(E)c = aPb\theta_r[\gamma]cC_r(E) \equiv aPb\theta_r[\gamma]c \equiv aPbAWc.
$$

Furthermore, since $A \in B_\infty[2k + 1]$ and $supp P = 2k$,

$$
aPbAWc = aPAbWc = AaPbWc \equiv aPbWc.
$$

This proves Theorem \ref{thm:thm2}.

\textbf{Example 2.7.} In this example we illustrate the method described in the proof of the theorem above. Here we used $a = \sigma_2^{-1}\sigma_1^{-1}, b = \sigma_1^2, c = \sigma_2^2\sigma_2^2, \alpha = \delta = 3, \beta = 1$ and $\gamma = 2$.

\hfill \Box

9
Figure 4: The equality $aθ_k[β|θ_1[γ]c = aPbWc$.
2.2 Proof of Proposition 1.6

The conjugacy problem for the braid group has a solution (see [1],[2]). This fact yields a solution for the conjugacy problem in B_∞. In fact, consider the monomorphisms $I_n : B_n \to B_\infty$ given by the direct limit (these homomorphisms consist of adding countably many strands to the right of the braid, without creating any new crossing).

Then, for two braids p and q in B_∞, there exists $n \in \mathbb{N}$ such that $p = I_n(x)$ and $q = I_n(y)$ for some $x, y \in B_n$. If x and y are conjugate, there exists $z \in B_n$ such that $x = yz^{-1}$. Hence, $p = I_n(z)yI_n(z)^{-1}$, that is, p and q are conjugated. Now, suppose that p and q are conjugated. Then $p = rqr^{-1}$ for some $r \in B_\infty$. As before, there exists $m \in \mathbb{N}$, with $m \geq n$, and $w \in B_m$ such that $r = I_m(w)$. Then,

$$rqr^{-1} = I_m(w)I_n(y)I_m(w^{-1}) = I_n(x) = p.$$

But, since $I_n = I_m i_{m-1} i_{m-2} \cdots i_n$ we have

$$I_m(w)I_n(y)I_m(w^{-1}) = I_m(w)I_m(i_{m-1} i_{m-2} \cdots i_n(y))I_m(w^{-1}) = I_m(i_{m-1} i_{m-2} \cdots i_n(x)) = I_n(x),$$

which yields

$$w(i_{m-1} i_{m-2} \cdots i_n(y))w^{-1} = i_{m-1} i_{m-2} \cdots i_n(x).$$

Since the monomorphism $i_{m-1} i_{m-2} \cdots i_n$ does not merge conjugacy classes (see [3]) we conclude that x and y are conjugated in B_n.

2.3 Proof of Theorem 1.8

Let p and q be representatives of the double cosets $p \in G[n] \backslash \text{GL}(\infty)/G[k]$ and $q \in G[k] \backslash \text{GL}(\infty)/G[m]$, respectively. Define the sequence of double cosets

$$v_j = G[n] p \Theta_j[k] q G[m],$$

in $G[n] \backslash \text{GL}(\infty)/G[m]$.

We remark the following identity:
Lemma 2.8. For \(\eta : B_\infty \to GL(\infty) \) the Burau representation, the following holds
\[
\Theta_j[k] = \eta(\theta_j[k]), \quad \text{for all } j, k \in \mathbb{N}.
\]

Proposition 2.9. The sequence \(\tau_j \) above is eventually constant and its limit does not depends on the choice of representatives.

Proof. Let \(N \in \mathbb{N} \) be such that \(N > \max\{m, k, n\} \) and \(p \) and \(q \) can be written in the following block configuration:
\[
p = \begin{pmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1_\infty \end{pmatrix}, \quad q = \begin{pmatrix} x & y & 0 \\ z & w & 0 \\ 0 & 0 & 1_\infty \end{pmatrix}.
\]

Where \(d \) and \(w \) are square matrices of dimension \(N \) and \(a \) and \(x \) are square matrices of dimension \(k \). Suppose that for \(i \geq N \) we have \(\tau_i = \tau_N \). We show that \(\tau_i = \tau_{i+1} \). As we saw in Proposition 2.2, there are elements \(u, l \in B_\infty \) such that \(\theta_i[k] = u\theta_{i+1}[k]l \). Hence, if \(U = \eta(u) \) and \(L = \eta(l) \) we have
\[
\Theta_i[k] = U\Theta_{i+1}[k]L.
\]

Furthermore, \(U \) and \(L \) have the following block configuration
\[
U = \begin{pmatrix} 1_k & 0 & 0 \\ 0 & 1_i & 0 \\ 0 & 0 & 1_\infty \end{pmatrix}, \quad L = \begin{pmatrix} 1_k & 0 & 0 \\ 0 & 1_i & 0 \\ 0 & 0 & 1_\infty \end{pmatrix}.
\]

Thus,
\[
Up = pU \quad \text{and} \quad Lq = qL.
\]

Consequently,
\[
p\Theta_i[k]q = pU\Theta_{i+1}[k]Lq = Up\Theta_{i+1}[k]qL.
\]

Since \(U \) and \(L \) are elements of the image of the Burau representation \(\eta \) we have that \(U, L \in G[k] \) and therefore
\[
\tau_{i+1} = G[n] p\Theta_{i+1}[k]qG[m] = G[n] U p\Theta_{i+1}[k]qLG[m] = G[n] p\Theta_i[k]qG[m] = \tau_i
\]

To show that the limit of the sequence \(\tau_i \) does not depend on the choice of representatives, it suffices to show that for any \(H \) and \(J \) in \(G[k] \) we have
\[
\lim G[n] p\Theta_i[k]qG[m] = \lim G[n] pJ\Theta_i[k]HqG[m].
\]

Let \(N > 0 \) be as before. Consider \(M > N \) such that \(H \) and \(J \) have the block configuration:
\[
H = \begin{pmatrix} 1_k & 0 & 0 \\ 0 & h & 0 \\ 0 & 0 & 1_\infty \end{pmatrix}, \quad J = \begin{pmatrix} 1_k & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & 1_\infty \end{pmatrix},
\]

Where \(j \) and \(h \) are square matrices of size \(M \). Now, since \(H \) preserves the vector \(v \), we have that \(V_M h = V_M \). Similarly, \(j V_M = V_M \). Therefore,
\[
J\Theta_M[k]H = \begin{pmatrix} 1_k & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & 1_\infty \end{pmatrix} \begin{pmatrix} 1_k & 0 & 0 \\ 0 & V_M & t^M 1_M \\ 0 & 0 & 1_\infty \end{pmatrix} = \begin{pmatrix} 1_k & 0 & 0 \\ 0 & j V_M h & t^M h \\ 0 & 0 & 1_\infty \end{pmatrix} = \begin{pmatrix} 1_k & 0 & 0 \\ 0 & j V_M & t^M h \\ 0 & 0 & 1_\infty \end{pmatrix} = \begin{pmatrix} 1_k & 0 & 0 \\ 0 & V_M & t^M 1_M \\ 0 & 0 & 1_\infty \end{pmatrix} = \begin{pmatrix} 1_k & 0 & 0 \\ 0 & V_M & t^M 1_M \\ 0 & 0 & 1_\infty \end{pmatrix} = \begin{pmatrix} 1_k & 0 & 0 \\ 0 & 1_M & 0 \\ 0 & 0 & 1_\infty \end{pmatrix} = \begin{pmatrix} 1_k & 0 & 0 \\ 0 & 1_M & 0 \\ 0 & 0 & 1_\infty \end{pmatrix} = \begin{pmatrix} 1_k & 0 & 0 \\ 0 & 1_M & 0 \\ 0 & 0 & 1_\infty \end{pmatrix}.
\]
Call these new matrices containing the blocks j and h, J' and H', respectively. Then we have
\[pJ\Theta_M[k]Hq = pH'\Theta_M[k]J'q = H'p\Theta_M[k]qJ'. \]
Therefore, $p\Theta_M[k]q$ and $pJ\Theta_M[k]Hq$ belong to the same double coset, for M sufficiently large, what completes the proof.

Therefore we have a well defined product of the double cosets p and q given by
\[p \ast q = \lim_{n \to \infty} G[n]p\Theta_j[k]qG[n]. \]

Proposition 2.10. The operation defined above is associative. Furthermore, the Burau representation is functor between the categories of double cosets of $GL(\infty)$ and of B_∞.

Proof. The proof of the associative property is analogous to the proof of Theorem 2.6 using Lemma 2.8. The functoriality follows from Lemma 2.8.

3 Further connexions and generalizations

We can extend the above constructions to the product $G^{[n]} = B_\infty \times \cdots \times B_\infty$ of n copies of the infinite braid group. Let K be the diagonal subgroup of $G^{[n]}$. Clearly, K is naturally isomorphic to B_∞. Let $K[\alpha]$ be the image of $B_\infty[\alpha]$ under this isomorphism. We define the product of double cosets componentwise.

Corollary 3.1. Consider two double cosets
\[p \in K[\alpha]\backslash G^{[n]}/K[\beta], \quad q \in K[\beta]\backslash G^{[n]}/K[\gamma], \]
and let p and q be their respective representatives. Then the operation given by
\[p \circ q = K[\alpha]p\Theta_j[\beta]qK[\beta], \]
for j sufficiently large, is well defined and associative.

Proof. It follows from Propositions 2.2, 2.5 and 2.6.

Let $\psi : B_\infty \to G$ be a epimorphism and G a group. Let $G[\alpha]$ be the image of $B_\infty[\alpha]$ by ψ, for $\alpha \in \mathbb{N}$. Then, the product of double cosets on B_∞ induces a product on the double cosets of G of the form $G[\alpha]\backslash G/G[\beta]$. In fact, this follows from the fact that in the definition of the product of double cosets, the sequence of double cosets defined not only converges, it becomes constant.

For each $n \in \mathbb{N}$, consider the symmetric group S_n (of the permutations of n elements). If s_i is the permutation $(i, i+1)$ then we have the following presentation
\[S_n = \left\{s_1, s_2, \ldots, s_{n-1} \mid s_is_j = s_js_i, |i - j| \geq 2, s_is_{i+1}s_i = s_{i+1}s_is_{i+1}, s_i^2 = 1\right\}. \]
Therefore we can regard S_n as the quotient group of B_n by the relation $\sigma_i^2 = 1, 1 \leq i \leq n - 1$. Let $\xi_n : B_n \to S_n$ be the projection map, then this homomorphism gives a correspondence between a braid and the induced permutation of its endpoints. The kernel P_n of ξ_n is the subgroup of the pure braids in n strands.

As we did for the braid group, consider the direct limit S_∞ of the groups S_n with relation to the monomorphisms $r_n : S_n \to S_{n+1}$, that take the permutation $(k, k+1) \in S_n$ to the permutation $(k, k + 1) \in S_{n+1}$. Since we have that
\[\xi_n r_n = i_n \xi_{n+1}, \]
there exists an homomorphism $\xi : B_\infty \to S_\infty$.

Using the remarks above, we can define a multiplicative structure on the set of double cosets of S_∞ (in fact, this structure coincide with the one defined by Neretin in [10, 8, 6]). Now, it is easy to see that ξ is an epimorphism.
As a last remark, we point out some similarities between the multiplicative structure defined in B_∞ and that of $\text{Aut}(F_\infty)$. The group $\text{Aut}(F_\infty)$ is defined as follows: Let F_n be the free group with n generators x_1, \ldots, x_n and denote by $\text{Aut}(F_n)$ the group of automorphisms of F_n. Then

$$\text{Aut}(F_\infty) = \lim \text{Aut}(F_n).$$

The limit is taken with relation to the obvious inclusion $\text{Aut}(F_n) \to \text{Aut}(F_{n+1})$.

For each $\alpha \in \mathbb{N}$ consider the subgroup $H(\alpha)$ of $\text{Aut}(F_\infty)$ of automorphisms h such that $h(x_i) = x_i$ for $i \leq \alpha$. In [11], it is defined a product on the double cosets of $\text{Aut}(F_\infty)$ in the following way: Consider the automorphism $\vartheta_j[\beta] \in \text{Aut}(F_\infty)$ given by

$$\vartheta_j[\beta](x_i) = \begin{cases} x_i, & i \leq \beta, i > 2j + \beta \\ x_{i+j}, & \beta < i \leq \beta + j \\ x_{i-j}, & \beta + j < i \leq 2\beta + j. \end{cases}$$

Then, for p and q in $\text{Aut}(F_\infty)$, the product of the double cosets $H(\alpha)\backslash p/H(\beta)$ and $H(\beta)\backslash q/H(\gamma)$ is the double coset limit of the sequence $p\vartheta_j[m]q$ in $H(\alpha)\backslash \text{Aut}(F_\infty)/H(\gamma)$.

For each $n \in \mathbb{N}$ we have a monomorphism $i_n : B_n \to \text{Aut}(F_n)$, given by

$$i_n(\sigma_j)(x_k) = \begin{cases} x_j, & k = j + 1 \\ x_jx_{j+1}x_j^{-1}, & k = j \\ x_k, & \text{otherwise}. \end{cases}$$

Therefore we can identify B_n with the image of i_n in $\text{Aut}(F_n)$. Consider the limit homomorphism $i_\infty : B_\infty \to \text{Aut}(F_\infty)$. The element $\vartheta_j[m]$ is related to the image of the element i_n as we see in the following proposition.

Proposition 3.2. Let β be a fixed positive integer. For each $k \in \mathbb{N}$, consider $y_k = x_{\beta+k}x_{\beta+k-1} \cdots x_{\beta+1} \in F_\infty$. Then

$$i_\infty(\theta_k[\beta])(x_i) = \begin{cases} x_i, & i \leq \beta, i > 2k + \beta \\ y_k^{-1}x_{i+k}y_k, & \beta + 1 \leq i \leq k + \beta \\ x_{i-k}, & k + \beta < i \leq 2k + \beta. \end{cases}$$

In other words

$$i_\infty(\theta_k[\beta])(x_i) = \begin{cases} y_k^{-1}\vartheta_k[\beta](x_i)y_k, & \beta + 1 \leq i \leq k + \beta \\ \vartheta_k[\beta](x_i), & \text{otherwise}. \end{cases}$$

Proof. For $k = 1$ we have that $\theta_1[\beta] = \sigma_{\beta+1}$ and therefore

$$i_\infty(\theta_1[\beta])(x_i) = i_\infty(\sigma_{\beta+1})(x_i) = \begin{cases} x_i, & i \leq \beta, i > \beta + 2 \\ x_i^{-1}x_{i+1}x_{i+1}, & i = 1 + \beta \\ x_{i-1}, & i = 2 + \beta. \end{cases}$$

We are going to show the truth of the identity by induction on k. Suppose the identity true for k. We can write $\theta_{k+1}[\beta]$ as

$$\theta_{k+1}[\beta] = \sigma_{k+\beta+1} \cdots \sigma_{2k+\beta+1} \theta_k[\beta] \sigma_{2k+\beta+1} \cdots \sigma_{k+\beta+1}.$$

If we put $w = \sigma_{k+\beta+1} \cdots \sigma_{2k+\beta+1}$ and $s = \sigma_{2k+\beta+1} \cdots \sigma_{k+\beta+1}$ we can re-write the equation above as

$$\theta_{k+1}[\beta] = w\theta_k[\beta]s.$$

We have five cases to analyse:

Case 1 When $\beta + 1 \leq i \leq k + \beta$, notice that $i_\infty(s)(x_i) = x_i$ and $i_\infty(\theta_k[\beta])(x_i) = y_k^{-1}x_{i+k}y_k$, therefore $i_\infty(\theta_{k+1}[\beta])(x_i) = i_\infty(w)(y_k^{-1}x_{i+k}y_k)$. Now,

$$i_\infty(w)(x_{i+k}) = i_\infty(\sigma_{k+\beta+1} \cdots \sigma_{i+k-1})i_\infty(\sigma_{i+k})(x_{i+k}) = i_\infty(\sigma_{k+\beta+1} \cdots \sigma_{i+k-2})i_\infty(\sigma_{i+k-1})(x_{i+k}^{-1}x_{i+k+1}x_{i+k}) = i_\infty(\sigma_{k+\beta+1} \cdots \sigma_{i+k-3})i_\infty(\sigma_{i+k-2})(x_{i+k-1}^{-1}x_{i+k+1}x_{i+k-1}) = \cdots = i_\infty(\sigma_{k+\beta+1})(x_{k+\beta+2}x_{k+i+1}x_{k+i+2}) = x_{k+\beta+1}^{-1}x_{k+i+1}x_{k+\beta+1}.$$

14
Hence,
\[i_{\infty}(w)(y_k^{-1}x_{i+k}y_k) = y_k^{-1}i_{\infty}(w)(x_{i+k})y_k = y_k^{-1}x_{k+\beta+1}x_k^{i+1}x_k^{\beta+1}y_k = y_k^{-1}x_{k+1}^{i+1}y_k. \]

Case 2 When \(i = k + \beta + 1 \), we have that
\[i_{\infty}(s)(x_{k+i+\beta}) = x_{k+\beta+1}^{-1}\cdots x_{2k+\beta}^{-1}x_{2k+\beta+1}^{-1}\cdots x_{k+\beta+1}. \]

Hence,
\[i_{\infty}(\theta_k[\beta]s)(x_{k+i+\beta}) = i_{\infty}(\theta_k[\beta])(x_{k+\beta+1}^{-1}\cdots x_{2k+\beta}^{-1}x_{2k+\beta+1}^{-1}\cdots x_{k+\beta+1}) = x_{k+1}^{-1}\cdots x_{2k+\beta}^{-1}x_{2k+\beta+1}^{-1}x_{k+\beta+1}^{-1} = y_k^{-1}x_{k+\beta+1}^{-1}y_k. \]

Furthermore, \(i_{\infty}(w)(x_{2k+\beta+1}) = x_{k+\beta+1}^{-1}x_{2k+\beta+2}^{-1}x_{k+\beta+1}^{-1} \) and hence
\[i_{\infty}(\theta_k+1[\beta])(x_{k+\beta+1}) = i_{\infty}(w)(y_k^{-1}x_{2k+\beta+1}y_k) = y_k^{-1}x_{k+\beta+1}^{-1}x_{2k+\beta+2}^{-1}x_{k+\beta+1}^{-1} = y_k^{-1}x_{k+\beta+2}y_k. \]

Case 3 When \(k + \beta + 1 < i \leq 2k + \beta + 1 \), it is sufficient to notice that \(i_{\infty}(s)(x_i) = x_{i-1}, i_{\infty}(\theta_k[\beta])(x_{i-1}) = x_{i-k-1} \) and \(i_{\infty}(w)(x_{i-k-1}) = x_{i-k-1}. \)

Case 4 For the case \(i = 2k + \beta + 2 \) we have \(i_{\infty}(\theta_k[\beta]s)(x_{2k+\beta+2}) = x_{2k+\beta+2} \). Furthermore, \(i_{\infty}(w)(x_{2k+\beta+2}) = x_{k+\beta+1}^{-1} \).

Case 5 For \(i \leq \beta \) or \(i > 2k + \beta + 2 \), we have that \(i_{\infty}(w)(x_i) = i_{\infty}(\theta_k[\beta])(x_i) = i_{\infty}(s)(x_i) = x_i \) and the result follows.

Thus the elements \(\theta_j[\beta] \) and \(i_{\infty}(\theta_j[\beta]) \) are always conjugate in \(\text{Aut}(F_{\infty}) \) (in particular, by an element of \(H(\beta) \)). Nevertheless, \(i_{\infty} \) does not induce a homomorphism between the monoids of double cosets. In fact, consider the braid \(\omega = \sigma_2^{-1}\sigma_3\sigma_1\sigma_3\sigma_2 \) in \(B_{\infty} \) and its projection \([\omega] \) in \(\langle B_2 \rangle \backslash B_{\infty}/B_2 \). Then \(i_{\infty}(\omega\theta_2[2]\omega) \) and \(i_{\infty}(\omega)\theta_2[2]i_{\infty}(\omega) \) do not belong to the same double coset of \(H(2) \backslash \text{Aut}(F_{\infty})/H(2) \).

Acknowledgement. This research was supported by FAPESP process 2015/03341-9. We are indebted to L. Funar and A. K. M. Libardi for the useful discussions and continuous support.

References

[1] E. Artin. Theory of braids. *Annals Math.*, 48:101–126, 1947.

[2] P. Dehornoy. A fast method for comparing braids. *Adv. Math.*, 125(2):200–235, 1997.

[3] J. González-Meneses. Geometric embeddings of braid groups do not merge conjugacy classes. *Bol. Soc. Mat. Mex.* (3), 20(2):297–305, 2014.

[4] A. A. Kirillov. *Elements of the theory of representations*. Springer-Verlag, Berlin-New York, 1976.

[5] Y. A. Neretin. *Categories of symmetries and infinite-dimensional groups*, volume 16 of *London Mathematical Society Monographs. New Series*. The Clarendon Press, Oxford University Press, New York, 1996.

[6] Y. A. Neretin. Infinite symmetric group and combinatorial descriptions of semigroups of double cosets. *arXiv: 1106.1161*, 2011.

[7] Y. A. Neretin. Sphericity and multiplication of double cosets for infinite-dimensional classical groups. *Funct. Anal. Appl.*, 45(3):225–239, 2011.

[8] Y. A. Neretin. Infinite tri-symmetric group, multiplication of double cosets, and checker topological field theories. *Int. Math. Res. Not. IMRN*, 3:501–523, 2012.
Y. A. Neretin. On multiplication of double cosets for $GL(\infty)$ over a finite field. [arXiv:1310.1596] 2013.

Y. A. Neretin. Infinite symmetric groups and combinatorial constructions of topological field theory type. *Russ. Math. Surv.*, 70(4):143–204, 2015.

Y. A. Neretin. Several remarks on groups of automorphisms of free groups. *J. Math. Sci.*, 215(6):748–754, 2016.

G. I. Olshanski. Infinite-dimensional classical groups of finite R-rank: description of representations and asymptotic theory. *Funct. Anal. Appl.*, 18(1):22–34, 1984.

G. I. Olshanski. Unitary representations of the group $SO_0(\infty, \infty)$ as limits of unitary representations of the groups $SO_0(n, \infty)$ as $n \to \infty$. *Funct. Anal. Appl.*, 20(4):292–301, 1986.

G. I. Olshanski. The method of holomorphic extensions in the theory of unitary representations of infinite-dimensional classical groups. *Funct. Anal. Appl.*, 22(4):273–285, 1989.

G. I. Olshanski. Unitary representations of (G, K)-pairs connected with the infinite symmetric group $S(\infty)$. *Leningrad Math. J.*, 1(4):983–1014, 1990.

G. I. Olshanski. Unitary representations of infinite dimensional pairs (G, K) and the formalism of R. Howe. In Representation of Lie groups and related topics. *Adv. Stud. Contemp. Math.*, 7:269–463, 1990.

G. I. Olshanski. On semigroups related to infinite-dimensional groups. In: Topics in representation theory (A. A. Kirillov, ed.). *Advances in Soviet Math.*, Amer. Math. Soc., 2:67–101, 1991.

Pablo Gonzalez Pagotto
Institut Fourier, UMR 5582, Laboratoire de Mathématiques
Université Grenoble Alpes, CS 40700, 38058 Grenoble cedex 9, France
pablo.gonzalez-pagotto@univ-grenoble-alpes.fr