Drag Analysis of Three Rudder-Shaped Like Bodies

Mohd Azzeri Md Naiem¹,²,³, Ezzul Hanis Othman¹,², Adi Maimun¹,², Arifah Ali³,², Faizul Amri Adnan⁴, Philip A Wilson⁵, Mohd Zarhamdy Md. Zain¹

¹ School of Mechanical Engineering, Universiti Teknologi Malaysia, 81210 Skudai, Johor, Malaysia
² Marine Technology Center, Universiti Teknologi Malaysia, 81210 Skudai, Johor, Malaysia
³ Faculty of Science & Defence Technology, Universiti Pertahanan Nasional Malaysia, 57000 Kuala Lumpur, Malaysia
⁴ Marine Cons. & Maintenance Tech., Malaysian Institute of Marine Engineering Technology, 32200 Lumut, Malaysia
⁵ Fluid-Structure Interactions Research Group, Faculty of Engineering and the Environment University of Southampton, Burgess Road, Southampton, United Kingdom

ARTICLE INFO

ABSTRACT

This paper presents an investigation of Rudder Shaped-Like (RSL) hull configurations with low-drag characteristic using the resistance model tests and numerical analysis. The new design of the floating platform using three hulls with a self-maneuvering system as Unmanned Surface Vehicle (USV) and capable of collecting the same data as a hydrography boat is needed. This platform was designed with three hulls placed in a triangle position in the form of rudder shape and vertically placed as a slender body shape using National Advisory Committee for Aeronautics (NACA) 0012 profile. This provides the low-drag characteristic to USV. The results from the experimental and numerical analysis revealed that a larger configuration distance between three hulls leads to a reduction in resistance of the same speed. This result may help to accomplish the required concept design related to low-drag and minimum power operation.

Keywords:
Rudder shaped-like; Unmanned Surface Vehicle; Resistance

1. Introduction

The new design of floating platform using three hulls with a self-maneuvering system as Unmanned Surface Vehicle (USV) and capable of collecting the same data as a hydrography boat is needed. This new platform provides moderate speed with long endurance and is kept in station at the one reference point for ocean measurement activities such as recording wave data, meteorological data, current data, sea surface data, and other oceanographic measurements with improved capabilities of resistance and seakeeping [1].

Investigations into the resistance of three hulls or trimaran have proven that such hull forms have lower resistance at high speeds when compared with catamarans and mono hull of similar displacement [2]. In recent years, the term trimaran has been associated with a vessel made of three

* Corresponding author.
E-mail address: azzerinaiem@yahoo.com

https://doi.org/10.37934/arfmts.78.1.1122
hulls with a larger central main hull and two smaller side hulls called the outriggers. Another term of a vessel made of three-hull is Tricore but it is different from the trimaran because it is a vessel which are made of three identical hulls of the same shape [3]. The study of rudder-shaped like (RSL) is similar to the Tricore to increase the speed of a vessel with corresponding reduction in required power.

Ship resistance is the force required to move it in calm water at constant velocity and considered as one of the important factors in designing the ship. Most previous research has focused on methods employed to determine the resistance of each trimaran model on simulation studies comprise computational fluid dynamic (CFD) and model test experimental investigation [4-10]. The use of CFD to determine ship resistance is not new as it consume less time [11]. Furthermore, CFD allows ship designers to simulate the model of a ship at various speeds, thus it is much easier to understand the complicated flow around the hull. However, the simulation studies still lack support and verification from real experimental data. Furthermore, if the research is conducted using simulations and experiment, the results obtained are validated with experimental data. The simulation results are in good agreement with the experimental data.

Therefore, this study presents an investigation of RSL hull configurations with low-drag characteristic that uses resistance model tests and CFD codes. In ship hydrodynamics, drag is also named “resistance” [12]. This allows the study to determine if the total resistance of the RSL platform is at an acceptable level or relative error which are less than 10%. Other than that, the positions of the hulls are very important in order to optimise their performance [13] especially for resistance. The optimisation was conducted by studying the arrangement of the RSL model. This RSL design uses three RSL bodies in columns with National Advisory Committee for Aeronautics (NACA) 0012 profile hull form for low-drag determination.

2. Hull Form and Three Hull Configurations

The basic concept of this RSL model platform of the design is the combination of three identical hulls (tricore) with NACA 0012 profiles as shown in Figure 1. This model operates in low speed (0.2 ms⁻¹ to 0.6 ms⁻¹). In fact, the three hulls for trimaran types are usually faced with a high resistance at a low speed due to large wetted surface area, which are affected by the high percentage of frictional resistance [14]. By using NACA profile shape that provides the model with low-drag characteristic, minimum power requirements are needed in manoeuvring and station-keeping. Table 1 shows the particulars of the RSL model.
Main particulars of RSL hull model

Main Particulars	Hull Spacing (m)		
	0.5	0.6	0.7
Length Overall (m)	0.733	0.820	0.906
Beam Overall (m)	0.620	0.720	0.820
Height (m)	0.325	0.325	0.325
Draft (m)	0.268	0.268	0.268
Wetted Surface Area (m²)	1.311	1.311	1.311

This concept is used to accomplish the design requirements related to the low drag and minimum power in operation. The autonomous system needs to be developed using specific programming as a core of the self-manoeuvring vehicle [15]. Each hull will be put a motor thruster system at the bottom as propulsion system. This means the motor thruster functions as propulsion as well as steering system.

3. Model Test

Model testing is an accurate and reliable method for measuring and investigating ship resistance. The model is designed down half scale of the prototype size. The design only consists of three fiberglass moulded hulls and one plywood as a platform, with four selected spacing between the three hulls which are placed in a triangle position. The selected spacing of the hull is 0.5m, 0.6m and 0.7m. Figure 2 shows an example of the distance between hulls which are represent by spacing of 0.7m. The size of the model was 0.7 m long, 0.85 m wide, and 0.4 m depth with a total weight of 18 kg.

The model tests were carried out to support the existing design work and validate numerical predictions of hull form resistance. In this study, the model tests were accomplished in a towing tank at the Southampton Solent University (SSU) Towing Tank (as shown in Figure 3), while the principal dimensions consist of length, breadth, depth and maximum carriage speed are 60 meters, 3.70 meters, 1.85 meters, and 4.50 meters/second respectively. Also based on Figure 3, the experimental setup at the SSU towing tank consists of a single tow post dynamometer constraining the model in surge, sway, and yaw. Moreover, through the tow post, the model was connected to the towing carriage which runs on rails during performing the tests.
The aims of the test are to measure the total resistance of the RSL model at five condition speeds and four location configurations of the hulls. The test was conducted in calm water. The model speed was set at 0.2 to 0.6 ms\(^{-1}\) after extrapolating using Froude Scale. In order to guide the testing of the models to improve the test results, International Towing Tank Conference ITTC [16] recommended the ITTC procedures to be followed as closely as possible. The underwater cameras (as shown in Figure 4) were also used to record the movement of the model according to the test speed and get a visual of current flow on the submerged model body.

4. Numerical Solution
4.1 Mathematical Model

Viscous flow solver Ansys CFX version 2016 was used in this study for the simulation along with the Reynolds and Navier-Stokes (RANS) code to simulate the turbulent flow with the free surface effect based on the development of longitudinal vortices and on the viscous component of resistance. The equations of Navier-Stokes are the basic governing equations for a viscous, which is compressible actual fluid and it is a vector equation obtained by applying Newton’s Law of Motion. Furthermore, it is also known as momentum equation with the implementation of continuity equation and both of these equations are shown in Eq. (1) and Eq. (2) respectively.

\[
\frac{∂p}{∂t} + \frac{∂}{∂x_j} [ρu_j] = 0
\]

(1)
\[
\frac{\partial}{\partial t} (\rho u_i) + \frac{\partial}{\partial x_j} \left(\rho u_i u_j + p \delta_{ij} - \tau_{ij} \right) = 0
\]
(2)

where, \(i = 1, 2, 3\)

In order to predict the wave pattern, the free surface has to be simulated using the viscous code. In this study, the simulation was made by using interface-capturing method, Volume of Fluids (VOF), where this method is applied to assess free surface fluid motion in the simulation. Based on the concept of fractional volume of fluid Eulerian fixed-grid technique, the VOF can determines the shape and location of the free surface. Eq. (3) shows the governing of this method.

\[
\frac{DF}{Dt} = \frac{\partial F(\bar{x}, t)}{\partial t} + (\nabla \cdot \nabla) F(\bar{x}, t) = 0
\]
(3)

\(F = 0\) : corresponds to any empty element occupied by no fluid
\(F = 1\) : corresponds to a full element occupied by the fluid
\(0 < F < 1\) : if cell contains the interface between the fluids

In addition, Shear Stress Transport (SST) turbulent model was used. The SST turbulence model is the combination of \(k-\epsilon\) model at the inner boundary and \(k-\omega\) model at the outer boundary [17] which has been implemented into Ansys CFX in order to achieve an optimal model formulation for a wide range of applications. As the concern on the accuracy at the boundary layer, this model is recommended in this study. Eq. (4) shows the equation formulation used in the SST model.

\[
\nabla \cdot (\rho U k) = \nabla \left[\left(\mu + \frac{\mu_t}{\sigma k^3} \right) \nabla k \right] + P k - \beta' \rho k \omega
\]

\[
\nabla \cdot (\rho U \omega) = \nabla \cdot \left[\left(\mu + \frac{\mu_t}{\sigma \omega^3} \right) \nabla \omega \right] + (1 - F 1) \rho \frac{2}{\sigma \omega^2 \omega} \nabla k \nabla \omega + \alpha \frac{\omega}{k} P k - \beta \rho \omega^2
\]
(4)

4.2 Computational Grid

Computational grid is an important matter that needs to be considered during performing CFD validation as to ensure the accuracy of the results. An unstructured mesh (tetrahedral) was employed by using Ansys ICEM around the free surface of the three-hull model of the RSL as shown in Figure 5(a). Based on Figure 5(b), the free surface and surface area of the three-hull RSL model were set to be prism.

In this study, different meshing grids were used to study the grid independence on the configuration of 0.7 m RSL hull model. There are four cases of number of elements with different size of an element as shown in Table 2. This is a critical part in the simulation process as selecting number elements needs to be used for the simulation accuracy. The domain with higher number of elements may consume longer time to converge, while the domain with a smaller number of elements may affect the accuracy of the results [18].
Fig. 5. Meshing grids on domain and rudder shaped-like hull of USV model

Study Case	Case 1	Case 2	Case 3	Case 4
Max. Element Size	0.42	0.36	0.30	0.27
No. of Elements	1.8m	2.5m	3.8m	4.8m
No. of Nodes	381k	544k	807k	990k

4.3 Domain and Boundary Conditions

The boundary condition and physical of the computational domain as shown in Figure 6 are both same for all of the configurations of the three RSL and cylindrical-columns model of the USVs. The total resistance calculated in this simulation is the sum of the pressure force and the friction force. Furthermore, the wave resistance is predicted from the pressure force obtained in the simulation because it is the sum of the viscous pressure force and wave force.

The inlet is set with defined volume fraction and turbulence intensity of 0.05, while the outlet is set as opening with entrainment and relative pressure is downstream pressure. Both inlet and outlet boundary were set as subsonic flow each. On the hulls surface, the boundary condition was defined as wall with no-slip condition. Then, for the both side of the domain including the top and base is defined as wall with free slip condition. The boundary conditions involved are as follows. The inlet boundary for the simulation is extends for 1.50L in front of the model; outlet boundary is 3.00L behind the model, 1.85L to the port and starboard respectively and 1.85L under the keel of the model. While for the air layer, it extends 0.40L above the free surface. The total resistance calculated in this simulation is the sum of the pressure and friction forces. Furthermore, the wave resistance is predicted from the pressure force obtained in the simulation because it is the sum of the viscous pressure and wave forces. Then, after the simulation, the wave profile and pressure distribution contour will illustrate the wave pattern generated from the three-hull RSL model.
4.4 CFX Solver

CFX is one of the software that is capable and familiar in calculating the ship resistance [11,19]. The problem in multiphase flow can be solved using turbulence model, the fluid region and different mesh style in this solver. For this study, the flow was considered as steady state in CFX calculations, and the finite volume method is used for the discretization process.

5. Results and Discussion
5.1 Grid Independent Study

From the simulation by Ansys CFX, the results of the grid independent study were plotted as shown in Figure 7. It was found that the graph is gradually increase from case number 1 to case number 2 with numbers of elements 1.8 million and 2.5 million respectively. Then it was constant from case number 2 till case number 4. Thus, this indicates that this simulation has reached a solution value that is independent of the mesh resolution. For further analysis, the case 3 with 3.8 million numbers of elements were used. This is because, case number 3 is in between case number 2 and case number 4. Thus, this indicates that this meshing case have the capability to reduce the error. Even case number 4 which has a greater number of elements should act more dependent, but due to large number of elements, it may consume a lot of time to reach discretization.

Fig. 7. Grid independence study cases for RSL model with the configuration of 0.7 m at the speed of 0.6 m/s
5.2 Numerical Validation

Even though the grid independent study has been performed, it still requires the true value of the results from an experiment as to control the percentage of the relative errors. The true value was obtained by conducting the experiments, while the measured value was getting through the simulations. The results obtained from experimental and numerical studies of the RSL model between configuration 0.5, 0.6, and 0.7 m are compared as shown in Figure 8, 9, and 10. As a practice, the results from CFD analysis need to be validated by comparing them with the results of model tests in the preliminary step of ship design.

![Graph](image)

Fig. 8. Comparison of total resistance RSL model between experiment and CFD test at 0.5 m configuration

![Graph](image)

Fig. 9. Comparison of total resistance RSL model between experiment and CFD test at 0.6m configuration
As shown in these figures, in all states, it was observed that numerical results are in good agreement with experimental results with the variation about 4% to 9%. This error can be due to the following reasons. The trim and sinkage of the model are kept fixed in CFD modeling, unlike the model test conditions. This may be the effect from the wave making and interference effect between the hulls that affect the total resistance of the model. Another reason may be due to the weakness of this CFD code for calculating wave making resistance.

5.3 Variation of Hulls Spacing

Figure 11 shows the comparison between the RSL model at different separation of hulls which are 0.5m, 0.6m and 0.7m. The graphs patterns are all the same where it is increase gradually from speed 0.2 m s\(^{-1}\) to speed 0.4 m s\(^{-1}\) before it is drastically increase from speed 0.4 m s\(^{-1}\) to 0.6 m s\(^{-1}\). At low speed, the resistance was dominated by the viscous resistance before it is slowly dominated by wave making resistance as the speed increase as shown in Figure 12 and Figure 13 respectively.

![Fig. 10. Comparison of total resistance RSL model between experiment and CFD test at 0.7 m configuration](image-url)

![Fig. 11. Total resistance of the model at spacing 0.5m, 0.6m and 0.7m](image-url)
In addition, by referring to Figure 11, it was found that the resistance decreases as the separation becomes wider. Comparison of the total resistance between speeds at 0.2 ms$^{-1}$ to 0.4 ms$^{-1}$ are quite bigger compared to the different at 0.5 ms$^{-1}$ and 0.6 ms$^{-1}$ which are much closer but still the resistance is decrease as the separation becomes wider. Even though the wetted surface of these three configurations is same, but the spacing are different thus affect the total resistance. The different of the results is due to the existing of the interference effect between the hulls which can be beneficial or harmful to the model. In other words, the interference effect is caused by the wave making resistance as shown in Figure 14 which is produced from the front hull which then interacts with the hull at the back. The interaction is different due to the different spacing thus affect the total resistance.
6. Conclusion

By taking into account the general considerations in the ship design, a proper positioning of hulls in multi-hull configurations can bring significant benefits to hydrodynamic characteristics of the particulars on the ship resistance point of view. The experimental and numerical analysis using the results obtained from a RSL model shows that the position of the configurations on defined hulls has a significant effect on vessel motion characteristics.

It can be concluded that a larger configuration distance between three hulls leads to a reduction in resistance for identical hulls that have similar speed, and the resistance increases when the speed increases for all configurations of the three hulls. This result may help to accomplish the concept design required which is related to low-drag and minimum power operation.

Due to the complexity of the flow around the ship hull, model test is still the most accurate method for determining ship resistance, so a mixed use of both model test and CFD codes can be very helpful for ship design and ship hydrodynamics. However, there is still no support and verification from actual experimental information for the simulation research. In addition, the findings will be validated with experimental information if the study is performed using simulations. The findings of the good simulation results are in good agreement with the experimental results.

Acknowledgement

We would like to acknowledge the reviewer(s) for the helpful advice and comments provided. The authors wish to thank the Research Management Center, UTM, for the financial support of this study through UTM Research University Grant (RUG) number Q.J130000.2524.06H08.

References

[1] Azzeri, M. N., F. A. Adnan, M. Adi, and MZ Md Zain. "A concept design of three rudders-shaped like body in columns for low-drag USV." In International Conference on Innovative Research, pp. 1-8. 2016. https://doi.org/10.1088/1757-899X/133/1/012062

[2] Mynard, Thomas, Prasanta K. Sahoo, Jon Mikkelsen, and Dan McGreer. "Numerical and experimental study of wave resistance for trimaran hull forms." Australian Maritime College, Australia (2008): 117-132.

[3] Dubrovsky, Victor A. "Ships with outriggers." Backbone Publishing Company, USA, ISBN: 0-9742019-0-1 (2004).
[4] Ackers, Benjamin B., Thad J. Michael, D. ANDREWS, BL HUTCHISON, and OW TREDENNICK. "An investigation of the resistance characteristics of powered trimaran side-hull configurations. Discussion. Authors' closure." Transactions-Society of Naval Architects and Marine Engineers 105 (1997): 349-373.

[5] Mizine, Igor, Eduard Amromin, Leonard Crook, William Day, and Richard Korpus. "High-speed trimaran drag: Numerical analysis and model tests." Journal of Ship Research 48, no. 3 (2004): 248-259.

[6] Mizine, Igor, Gabor Karafiath, Patrick Queutey, and Michel Visonneau. "Interference phenomenon in design of trimaran ship." In Proceedings of the 10th International Conference on Fast Sea Transportation-FAST. 2009.

[7] Maki, K. J., L. J. Doctors, S. H. Rhee, W. M. Wilson, R. F. Beck, and A. W. Troesch. Resistance predictions for a high-speed sealift trimaran. MICHIGAN UNIV ANN ARBOR, 2007.

[8] Muscat-Fenech, C. M. D. M., and Andrea M. Grech La Rosa. "Resistance analysis for trimaran." International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering 8, no. 1 (2014): 7-14.

[9] Dubrovsky, V. A. "Triple-hull ships with small water-plane area: Towing test results and some full-scale comparisons." Ships and Offshore Structures 1, no. 3 (2006): 185-189. https://doi.org/10.1533/saos.2006.0104

[10] Akhtar, Salina, Goutam Kumar Saha, and Md Abdul Alim. "Numerical Computation of Wave Resistance Around Wigely Hull using Computational Fluid Dynamics Tools." Advance Shipping and Ocean Engineering 2, no. 3 (2013): 84-95.

[11] Ahmed, Yasser M., O. B. Yaakoba, M. F. A. Rashid, and A. H. Elbatran. "Determining ship resistance using computational fluid dynamics (CFD)." Journal of Transport System Engineering 2, no. 1 (2015): 20-25.

[12] Akhtar, Salina. "Drag analysis of different ship models using computational fluid dynamics tools." (2012).

[13] Migali, Amedeo, Salvatore Miranda, and Claudio Pensa. "Experimental study on the efficiency of trimaran configuration for high-speed very large ships." Proceedings of Fast, RINA, Southampton (2001): 4-6.

[14] Hafez, Khaled A. "Comparative Analysis of the Outriggers Immersion Influence on the Hydrodynamic Performance of High Speed Trimarans." Corrosion Detection in 'T'Bend Oil Pipelines Based on Fuzzy Implementation (2012): 1559.

[15] Azzeri, M. N., F. A. Adnan, and MZ Md Zain. "Review of course keeping control system for unmanned surface vehicle." Jurnal Teknologi 74, no. 5 (2015). https://doi.org/10.11113/jt.v74.4635

[16] ITTC, SC. "Final Report and Recommendation to the 25th ITTC." Proceedings of the 25th ITTC. The Seakeeping Committee (2008).

[17] Mentor, F., J. C. Ferreira, T. Esch, and B. Konno. "The SST Turbulence Model with Improved Wall Treatment for Heat Tranfer Predictions in Gas Turbines." In Proceedings of the International Gas Turbine Congress, IGTC-2003-TS-059. 2003.

[18] Owen, Steven J. "A survey of unstructured mesh generation technology." IMR 239 (1998): 267.

[19] Ali, Arifah, Adi Maimun, and Y. M. Ahmed. "CFD Application in Resistance Analysis for Advanced Semi-SWATH Vehicle." In Applied Mechanics and Materials, vol. 465, pp. 44-49. Trans Tech Publications Ltd, 2014. https://doi.org/10.4028/www.scientific.net/AMM.465-466.44