Ethnobotanical study of medicinal plants used by local people in Menz Gera Midir District, North Shewa Zone, Amhara Regional State, Ethiopia

Seble W. Yohannis¹*; Zemede Asfaw² and Ensermu Kelbessa²

¹Department of Biology, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia.
²Department of Plant Biology and Biodiversity Management, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.

Received 7 June, 2018; Accepted 18 July, 2018

This study was conducted in Menz Gera Midir (Ethiopia) to document medicinal plants and related indigenous knowledge of local people. Data were collected from 72 (12 of them key) informants using semi-structured interview, group discussion and guided field walk. Priority ranking, paired comparison and direct matrix ranking were used in data analysis. A total of 155 medicinal plant species, 104 (67.1%) from natural vegetation and 51 (32.9%) from home gardens were collected. From the total species, 115 were reported to cure only human diseases, 10 species for livestock ailments and 30 for both. Asteraceae contributed 16 species and ranked first followed by Lamiaceae with 12 species. Frequently used plant parts were leaves (43.9%) and roots (31%). The recurrent mode of preparation was pounding (27.9%) followed by powdering (16%) and mostly administrated through oral drinking (33%) and dermal cream (15.7%). Paired comparison revealed that Cucurbita pepo was the most preferred species to treat headache. However, Olea europaea subsp. cuspidata was reported as the most multipurpose plant species. Priority ranking indicated that Lupinus albus was the rarest medicinal plant in the study area. The medicinal plant resources of the area were threatened by agricultural expansion, charcoal making, firewood collection and overgrazing.

Key words: Ethnobotany, indigenous knowledge, medicinal plants, Menz Gera Midir.

INTRODUCTION

Historically, relationship between plants and human are not only limited to the use of plants for food, clothing and shelter but also includes their use for religious ceremonies, ornamentation and healthcare (Schultes, 1992). Traditional people around the world acquire unique knowledge of plant resources on which they depend for food, medicine, cultural and religious practice (Martin, 1995). Ethnobotany is then the way of scientific investigation on the use of these plants in traditional culture for food, medicine, magic, rituals, building,
Household utensils and implements, musical instruments, firewood, pesticides, clothing, shelter and other purposes (Urga et al., 2004).

Medicinal plants preferably have significant contributions in the healthcare scheme of local communities as the main resource of medicine for the mainstream of the rural population (Hailemariam et al., 2009). About 80% of the world’s population relies chiefly on traditional medicine for their healthcare practices (Brown, 1992). This is because the traditional systems are culturally more acceptable and convene the psychological needs of people than modern medicine (Brown, 1992). Thus, medicinal plants are widely used for the treatment of numerous human and livestock ailments in different parts of the world.

Ethiopia has a long history of traditional medication and developed practices to treat diseases using diverse cultural systems found in the country (Shimeils et al., 2012). Healing in Ethiopian traditional medicine is not only concerned with curing of diseases but also with the protection and promotion of human physical, spiritual, social, mental and material wellbeing (Bishaw, 1991). It was widely believed in Ethiopia that the skill of traditional health practitioners is ‘given by God’ and knowledge on traditional medicines is passed orally from father to a favorite child, usually a son or is acquired by some spiritual procedures. Traditional healing knowledge is maintained by certain families or social groups (Gidaya et al., 2009), although needed to meet the goals of a wider coverage of primary healthcare delivery in all countries.

In Ethiopia, 80% of the population use traditional medicine due to the cultural acceptability of healers and local pharmacopeias, the relative low cost of herbal medicine and the limited access to modern health facilities (Deribe et al., 2006). In addition, there is cultural diversity and the use pattern of the various flora differ accordingly (Balemie et al., 2004). Although the medicinal plants were playing a key role for the development and advancement of modern drugs (Heinrich, 2000), both human and natural factors are heavily contributing to the loss of these plants and cause gradual displacement of associated indigenous knowledge.

Ethiopian people used to transfer indigenous knowledge about traditional medicinal plants mostly in a secret way from generation to generation orally. So then, there is a gap in the documentation and records about traditional knowledge on medicinal plants, even if they are serving as remedies for both human and livestock diseases. Whereas, the knowledge and use of plants is an integral part of many ethnic rural cultures in Ethiopia, the extent of which has not yet been studied in depth (Abbink, 1995). For instance, the ethnobotanical study in the people of Menz Gera Midir has remained unexplored and no documentation has been done on the medicinal plants and the associated knowledge available before this study.

Therefore, this study was conducted to document medicinal plants used by local people and the associated indigenous knowledge acquired regarding the methods to preparation, prioritize for use and the routes of administration in Menz Gera Midir District, Ethiopia.

MATERIALS AND METHODS

Description of the study area

Menz Gera Midir is one of Districts found in North Shewa (Figure 1) in the Amhara Regional State. It is located 282 km Northeast of Addis Ababa, capital city of Ethiopia. The total area coverage is 116,816 hectare comprising 20 kebeles (small administrative
category next to District). The estimated population was 93,738 (47,994 female and 45,744 male) and 99.56% of them are Orthodox Christianity followers belonging to the Amhara ethnic group and speaking Amharic as their native language. The elevation of study area ranges from 1680 to 3600 m. a. s. l. and lies between 10°5' to 10°32' N and 38° 28' to 38° 49' E. The soil types of the study area was 61.8% Brown, 18.2% Clay, 13% Red and 7% Gray, and has major agro-climatic zones described as WURCH (Afroalpine), DEGA (highland area) and WEINA-DEGA (middle altitude). Data obtained from the unpublished National Meteorological Service (NMSA) Agency showed that the annual rainfall was 888 mm and the distribution is bimodal and minimum and maximum temperatures was 8.7°C and 20°C, respectively (NMSA, 2013). The vegetation of the area is dry evergreen Afromontane type characterized by the presence of major tree species that include Juniperus procera, Acacia abyssinica, Podocarpus falcatus, Olea europea subsp. cuspidata, Hagenia abyssinica, Eucalyptus globulus and Afro-alpine type with most conspicuous giant lobelia (Lobelia rhynchopetalum) and sub-afr alpine ecosystem. The current land use in the study area was predominantly (85%) smallholder agriculture with an average landholding size of one hectare per household. The seed farming complex was a common practice where barely (Hordeum vulgare), wheat (Triticum spp.), faba bean (Vicia faba) and lentil (Lens culinaris) are the dominant crops. In addition, livestock rearing was also an integral part of the agricultural system in the study area.

Study sites and informant selection

In the Menz Gera Midir District, about 20 kebeles were found. Out of these, 12 kebeles were selected purposely through guidance of District’s Tourism Office employees based on availability of traditional healers and plant species for the study. These kebeles are: AREGO, ATEDAS-GEANBO, DERGAGN, GEYA, KELADUHA, KEWOSA, MESALE MARIAM, NEGASI AMBA, SHOLA, SRA GEDEL, TSEHAY SINA and WEZED. A total of 72 informants (47 male and 25 female) aged between 20-90 years (12 of them were key informant taking 1 from each kebele) were selected by the recommendation of elders and local authorities. Out of total informants, 38 completed grade 3-12 and the remaining 34 were illiterate. All informants (62 married, 5 divorced and 5 single) are Orthodox Christian Religion followers and native Amharic speakers.

Ethnobotanical data collection

The data were collected from November 2012 to January 2013 using ethnobotanical data collection techniques such as semi-structured interview, group discussion and guided field walk. Informants were interviewed at least twice for same question to evaluate reliability of the information.

Data analysis

In this study, both qualitative and quantitative analytical tools were used for data analysis following approaches of Martin (1995) and Cottin (1996). The Informant Consensus Factor (ICF) was calculated for each disease category to identify the agreements of the informants on the reported cures for eight human disease categories. The ICF was calculated as follows: number of use citations in each category (Nur) minus the number of species used (Nt), divided by the numbers of use citations in each category minus one (Heinerich et al., 1998). Priority ranking were conducted by asking people to list plants that are becoming increasingly rare in their communal forests. Therefore, a set of eight medicinal plants were selected from the lists reported by most informants as scarce in the study area. Then, selected plants were presented to eight randomly selected key informants to rank them according to their degree of scarcity using numerical value (1, 2, 3, and so on). The most scarce medicinal plant species were given the highest value while abundant one was assigned a value of 1. Then, the numbers were summed and ranked. For the degree of informants herbal remedies preference to treat headache in the study area, paired comparison was done (Martin, 1995). For this purpose, eight key informants were randomly selected and allowed to show their responses independently for pairs of medicinal plants that are noted for treating headache. All possible combinations were made and sequence of pairs and order within each pair was randomized before every pair was presented to selected informants. Their responses were recorded carefully and then the total values were summarized and ranked based on the informants report. Specificity for a certain disease was then also checked by fidelity level calculation (Friedman et al., 1986). The medicinal plants which have multipurpose nature for local people were checked using direct matrix ranking method. According to informants’ indication, eight multipurpose plant species were selected for seven use diversities. Then eight key informants were asked to assign use values: 5= excellent, 4= very good, 3 = good, 2 = less used, 1= least used, 0 = not used, for each species based on the multiple purpose. Finally, ethnobotanical data were entered in to excel spreadsheet and interpreted using tables, and descriptive statistics.

RESULTS

Taxonomic diversity of medicinal plants

A total of 155 medicinal plant species distributed in 133 genera and 65 families were collected, identified and documented (Appendix 1). From the total families, 61 (93.84%) were angiosperms, 2 (3.08%) gymnosperms and 2 (3.08%) were cryptograms. Among the angiosperms, the most dominant (92%) group were the dicotyledons, whereas 8% were monocotyledons. Asteraceae was found to be the most dominant family that contained 16 medicinal plant species under 13 genera followed by Lamiaceae, which had 12 species distributed in 10 genera. Out of the total collected medicinal plants, 13 species are endemic to Ethiopia and 5 species are placed under the near endemic category since they were found both in Ethiopia and Eritrea. Herbs constituted the largest category of medicinal plants (68; 43.9%) species followed by shrubs (47; 30.3%) in the study area. The natural vegetation of the study area was categorized visually into six major groups based on the dominance of the plant species:

1) The J. procera- dominated plant community type was predominantly found in three Kebeles (KEWOSA, MESALE MARIAM and SRA GEDEL) and around few churches at an altitudinal range of 2700-2930 m. a.s.l. Under this, 4 species of medicinal plants were obtained;

2) The Lobelia rhynchopetalum-dominated community type was mainly dominated by a single species and found in DERGAGN Kebele, located at the mountain tops (3458 m. a. s. l.);
(3) The *E. globulus*-dominated community type was the plantation found in almost all parts of the study area. This species has been widely planted in the area as it is one of the good money generating species for the farmers in the locality. *A. africanus* and *P. sphacelatum* were common herbaceous medicinal plants found in this community;

(4) The *O. rochetiana* and *R. vulgaris*–dominated plant community type is more diversified and found in SRA GEDEL Kebele, particularly at GAJELO forest. It is located at an altitude ranging between 2500-2850 m a.s.l. It encompasses 14 medicinal plant species and the most dominant one are *Carissa spinarum*, *Clutia abyssinica*, *Maesa lanceolata*, *Maytenus arbutilfolia*, *Podocarpus falcatus*, *Pteridium aquilinium*, and *Vernonia amygdalina*;

(5) The other plant community type in the study area was the *Dodonaea angustifolia* and *Rumex nervosus*-dominated type. This plant community encompasses 38 species of medicinal plants distributed in three Kebeles (MESALE MARIAM, SRA GEDEL and KEWOSA) at altitude ranging between 2197-2860 m a.s.l. The medicinal plants found in this community type were *Croton macrostachyus*, *Cyphostemma adenoacule*, *Euclea divinorum*, *Euphorbia abyssinica*, *Myrsine africana*, *Ostostegia integrifolia*, *Premna schimperii*;

(6) The *Helichrysum* sp.–dominated community contains mainly a single species and dominantly found in WEZED Kebele at an altitude ranging from 2850-3010 m a.s.l. This plant community type harbours the medicinal plants *Dovyalis abyssinica*, *Hagenia abyssinica*, *Inula confertiflora*, *Laggera tomentosa* and *Vernonia bipontini*.

Furthermore, home gardens were also another source of medicinal plant in the study area. Some of medicinal plant species obtained in the home garden includes *Foeniculum vulgare*, *Achyranthes aspera*, *Allium sativum*, *Artemisia rehan*, *Ruta chalepensis*, *Brassica oleracea*, *Capsicum annuum*, *Catha edulis*, *Cucurbita pepo*, *Daucus carota*, *Euphorbia amyphllyda*, *Kalanchoe petittiana*, *Leonotis ocymifolia*, *Lippia adoensis*, *Malus sylvestris*, *Ocimum lamifolium*, *Opuntia ficusindica*, *Phytolacca dodecandra*, *Ricinus communis*, *Sansevieria ehrenbergii*, *Urtica simensis*, *Zehneria scabra* *Allium cepa*, *Citrus aurantifolia*, *Citrus limon*, *Citrus medica*, *Lagenaria siceraria*, *lycopersicon esculentum*, *Myrtus communis* and *Saccharum officinarum*.

Distribution of medicinal plants and indigenous knowledge

This study revealed that medicinal plants were unevenly distributed in the different plant community types. Of the 155 medicinal plants, 104 (67.1%) species belonged to 86 genera and 52 families found in the wild vegetation whereas 51 (32.9%) species which belong to 47 genera and 28 families were obtained from home garden (Appendix 1). Most of the traditional knowledge of medicinal plants is passed orally and through secret along the family line from parents. Of the total informants, 73.6% gained their medicinal plant knowledge from families and some others by observation (19.4%) and learning (7%) from the other people. Out of the total identified medicinal plants, 115 (74.2%) species belonging to 101 genera and 51 families were those cited as traditional medicine for human ailments, whereas 10 (6.45%) species belonging to 10 genera and 9 families are used to treat merely livestock ailments. Only 30 (19.35%) species under 30 genera and 21 families were used for both livestock and human ailments. The local people were frequently using leaves (43.9%) followed by roots (31%) to prepare plant remedy. As informants mentioned, plant remedies were used in fresh form (67; 43.2%), while (49; 31.6%) were used in the dried form and (39; 25.2%) in either of the two.

In the study area, traditional healers used different ways of medicinal plant remedy preparation. Among these principal methods, pounding ranked first (27.9%), followed by powdering (16%), and squeezing (15.3%) and cooking was the least (0.34%). The prepared remedies were mostly taken oral drinking (33%) followed by dermal application in the form of cream (15.7%) and eating (11.9%). Dosage was estimated using spoon, cup, cans, and glass for liquids, and for powders spoonful counting or in some cases handful (EFEIGN) was used. The dosage is mostly age and patient status dependent.

Human and livestock ailments treated by medicinal plants

In the present study, 83 ailments (68 in human, 6 in livestock and 9 in both humans and livestock) were reported to be treated by medicinal plants (Table 2; Appendix 1). The informants also cite top commonly known medicinal plants in the study area using ranks and *C. ficifolius* were cited by 50 (69.44%) informants and ranked 1st, *Artemisia abyssinica* was cited by 49 (68.05%), and *L. ocymifolia* by 48 (66.66 %) (Table 1).

The abundance and scarcity of medicinal plants in the study area was checked by preference ranking exercise conducted on eight species by eight key informants. The results showed that *L. albus* was the scarcest medicinal plant, cultivated only by limited number of individuals in their home garden who asserted that they get the seeds from around Bahir Dar (Table 3).

Moreover, paired comparison was also made to determine the most preferred medicinal plants among the five species that were used to treat headache in the study area. Traditional healers are well experienced to treat headache using different herbal medicine in the study area. Then, the paired comparison techniques were done to select the most promising medicinal plant form the others to treat it.

Thus, eight key informants participated in this activity...
and indicated that *C. pepo* was used more to treat headache followed by *M. salicifolia* (Table 4). Medicinal plants in the study area had also multiple uses for the community. Direct matrix ranking showed that *O. europaea* subsp. *cuspidata* ranked first due to the multipurpose role it has for the community and this was followed by *E. globulus* and *J. procera* (Table 5). The fidelity level of the data was calculated based on the diseases frequently reported by informants and traditional use of medicinal plant for treatments. The diseases include evil eye, "EYNEWOG", wound, eczema, stomach ache; eye disease, fibril illness and common cold which were confirmed to frequently occur in the area. Consequently, traditional healers employed their indigenous knowledge to manage these frequent diseases using selected medicinal plant species (Table 5).

In Menz Gera Midir District, there are natural and human made factors that cause the threat on medicinal

Medicinal plant	Number of informants	% of informants
Cucumis ficifolius	50	69.44
Artemisia abyssinica	49	68.05
Leonotis ocymifolia	48	66.66
Allium sativum	46	63.9
Clematis sinensis	45	62.5
Ruta chalepensis	45	62.5
Gomphocarpus purpurascens	40	55.55
Verbascum sinaticum	33	45.83
Vernonia bipontini	33	45.83
Withania somnifera	32	44.44

Table 2. Informant consensus factor for eight disease categories

Category of diseases	Number of species	Number of use citation	ICF
Skin diseases	64	382	0.83
Ailments associated with organs and throat	20	80	0.76
Gastrointestinal tract diseases	46	328	0.86
Organ diseases	34	123	0.73
Genitourinary problems	17	57	0.71
Acute sickness	45	250	0.82
Birth problems	5	8	0.43
Others: rabies, anemia and fibril illness	10	33	0.72

Table 3. Ranking of scarce medicinal plants in the study area

Medicinal plant	Key Informants (1-18)	Total score	Rank
Milletia ferruginea	I1 5 2 3 13 4 4 2 2 3	27	6th
Capparis tomentosa	I2 5 5 4 5 3 4 3 3 3 3	32	3rd
Tragia cinerea	I3 4 5 4 4 3 3 3 4 4	30	4th
Lupinus albus	I4 5 5 5 4 5 5 4 5 4	37	1st
Sansevieria ehrenbergii	I5 5 3 3 4 3 4 3 3 3	28	5th
Cyphostemma adenocaule	I6 4 3 2 3 2 4 3 4 2	25	7th
Cucumis ficifolius	I7 4 5 3 1 2 3 4 2 4	24	8th
Withania somnifera	I8 5 5 5 4 3 4 5 4 4	35	2nd

I, Informants.
plants. This study confirms that the most threatening factor for medicinal plants and the associated indigenous knowledge disappearance are anthropogenic factors such as deforestation and overexploitation of landscape for charcoal, fire wood, for construction overgrazing, and agricultural expansion. Informants ranked agricultural expansion as the most serious threat for medicinal plants followed by charcoal making (Table 7).

Local people in the area have strong and actual belief on healing power of plants and they know their habitats, distribution, harvesting techniques, time of harvest and the status of a plant. The healers also know the site in which medicinal plants were found and the parts to be harvested. Plant apex, main root and regenerating parts are not harvested. This is to keep and increase the regeneration capacity of the plant. Therefore, the appropriate way of harvesting technique has direct or indirect contribution for the conservation of medicinal plants, since they limit excessive loss of these plants in one way or another.

Furthermore, sites dominated by *O. rochetiana* and *R. vulgaris* plant community types and church forests were protected in SRA GEDEL Kebele. In these areas, medicinal plants are sheltered and conserved. On the other hand, it was also observed that the local farmers make use of their indigenous knowledge in protecting important plant species on their farm lands, home gardens, and as live fence. In some cases, few traditional healers cultivate very rare species in their home gardens like *L. albus*.

DISCUSSION

Menz Gera Midir District has relatively high taxonomic diversity in medicinal plants with 155 species reported under 133 genera and 65 families. Asteraceae was the family with the highest number of medicinal plants, which is largely a result of the abundance and wide distribution of members of the family in the flora of Ethiopia and Eritrea (Tadesse, 2004). It is also reported to be the family that encompasses large number of medicinal plant species along with the Lamiaceae and Fabaceae in the nearby Minjar-Shenkora District (Alemayehu et al., 2015).

In the study area, wild medicinal plant species were more dominant (104, 67.1%) and harvested from the natural vegetation. Similarly, ethnobotanical studies undertaken elsewhere in Ethiopia (Birhane et al., 2011; Yirga et al., 2011; Alemayehu et al., 2015; Meragiaw et al., 2016) have repeatedly shown that wild areas are primary sources of medicinal plants. In addition to this, farmlands and home gardens maintain a considerable number (51, 32.9 %) of species used in traditional herbal medicine. Informants during interview and group discussion categorized the medicinal plants of the area into common, medium and rare species. From the total medicinal plant species, 27.74% were recorded as rare, 29% as common and 42.26% as medium in the study.
area. As compiled from informant's interview, indigenous knowledge on medicinal plants was differing among age and gender. Although elders are generally considered to be more knowledgeable than the younger (Hailemariam et al., 2009), the traditional medicine practitioners in the study area were more dominated by male individuals with religious education as found in other areas (Giday et al., 2009). Investigations in different parts of Ethiopia showed that transfer of indigenous knowledge between generations was affected by modernization like access to modern education and ignoring the traditional knowledge in addition to health services expansion (Balemie et al.,

Disease treated	Medicinal plants	Ni	N	Ni/N	Ni/N x 100 (%)
Wound	Aloe pulcherrima	4	5	0.8	80
	Datura stramonium	14	18	0.78	78
	Lagdera tomentosa	10	15	0.67	67
Evil eye	Capparis tomentosa	15	15	1	100
	Withania somnifera	16	16	1	100
Eczema	Clematis simensis	20	25	0.8	80
	Gomphocarpus purpurascens	10	30	0.3	30
	Urta simensis	5	7	0.71	71
“EYNEWOG*	Otostegia integrifolia	8	15	0.53	53
	Verbascum sinaiticum	13	20	0.65	65
Common cold	Thymus schimperi	4	5	0.8	80
	Artemisia abyssinica	24	25	0.96	96
Stomach ache	Cucumis ficifolius	25	25	1	100
	Ruta chalepensis	20	25	0.8	80
	Allium sativum	21	25	0.84	84
	Lepidium sativum	12	18	0.67	67
Fibril illness	Leonotis ocymifolia	23	25	0.92	92
	Eucalyptus globules	3	6	0.5	50
Eye disease	Inula confertiflora	3	4	0.75	75
	Vernonia bipontini	10	23	0.43	43

Table 7. Ranking of threats to medicinal plants.

Major threats	Key Informants (I1-18)	Total score	Rank
Agricultural expansion	I1 1 2 3 4 5 6 7 8	34	1st
Drought	I1 2 3 4 5	17	5th
Construction material	I1 2 3 4	16	6th
Charcoal making	I1 2 3 4	29	2nd
Overgrazing	I1 2 3 4	18	4th
Fire wood collection	I1 2 3 4	27	3rd

5: very highly destructive; 4: highly destructive; 3: medium; 2-destructive; 1, less destructiveness.
Mostly traditional knowledge was transferred between family members from parents (73.6%) secretly and orally to more favoured individuals. The findings of Gebeyehu et al. (2014), in Mecha District, West Gojjam confirmed this reality. The second (19.4%) source of knowledge acquisition was observation and learning from the other people. In this case, knowledge was gained from other knowledgeable individuals by payment or careful repeated observation from friends. Currently, 75% of the traditional healers involved in this study planned to transfer their medicinal plant knowledge to their sons (16.7%) to daughters, 8.3% are positive to transfer to any member of the community without compensation. The types of medicinal plants used by local people in Menz Gera Midir were herbs 68 (43.87%) followed by shrubs 47 (30.32%). This result agrees with the findings of other researchers (Friedman et al., 1986; Addisie et al., 2012). This is due to the fact that herbs can grow everywhere and dominate during the wet seasons as compared to others such as trees, shrubs and woody climbers/lianas.

The current study confirmed that considerable number of medicinal plant species were collected and documented for treatment of human and livestock ailments. Out of the collected medicinal plants, more species were reported as being used to treat human diseases compared to medicinal plant species used for livestock ailments. Fewer numbers (6 of livestock diseases) and 10 medicinal plants were reported as compared to humans (68 diseases and 115 species). This showed that people of the study area are more conscious and give more attention for their ailments than the livestock diseases (Megersa et al., 2013). Traditional healers are dominantly using the leaves (43.9%) because of presence of high bioactive compounds which increase efficacy of remedies followed by roots (31%). This is consistent with other findings (Hailiemariam et al., 2009; Chekole et al., 2015; Adefa and Abbraha, 2011) elsewhere in Ethiopia. On the contrary, the numbers found in some other parts of the country reported that roots are the most widely used plant parts for medicinal value (Birhane et al., 2011; Mesfin et al., 2009; Flatie et al., 2009). Most of the plant remedies are prepared by pounding (27.9%) followed by powdering (16%) which is positively supported by the finding of Getaneh and Girma (2014) in Deber Libanos District. However, squeezing came in the first place as a way of preparation in Mecha District (Chekole et al., 2015). The prepared remedies were efficiently used in fresh (43.22%) form followed by dried (31.61%) and either of the two (25.17%) to treat ailments. Different findings were also reported in consonance with this study (Meragiaw et al., 2016; Megersa et al., 2013; Yineger et al., 2008).

The routes of administration mostly depend on the nature of ailments to be treated. The most popular way of administration of traditional herbal/plant medicines are oral (47.96%) followed by dermal (28.57%). Various ethnomedical reports elsewhere in Ethiopia have indicated that oral administration is the predominant route (Hailiemariam et al., 2009; Birhane et al., 2011; Yirga et al., 2011; Mesfin et al., 2009). The dosages of remedies are not yet standardized. Because healers are using equipment which are available near their homes for measuring the doses of traditional herbal medicines. However, the dosage is age, physical and health condition dependent of the patient.

Thus, this is expected to cause risk due to under dose and over dose during treatment of patients. Then, lack of precision and standardization has been mentioned as drawbacks of traditional medication (Sofowora, 1982; Abebe, 1986; Araya et al., 2015). Sometimes traditional healers impose the restrictions when certain types of remedies are taken by patients. For instance, patients who take a remedy against impotency prepared from the root of M. ferruginea were instructed that their body parts should not touch water for 24 hours to increase efficacy of the remedy. Healers also advise patients to take additives like milk, coffee, tea, tela, butter and honey to improve medication efficacy and reduce the adverse effects of remedies during traditional medication.

The use of medicinal plants was calculated on frequently reported diseases with respect to medicinal plant species. The fidelity level of Capparis tomentosa and W. somnifera for evil eye and C. ficifolius for stomach ache was scored 100. Since these plant species are highly known by the healers and also have high efficacy to treat these diseases. Furthermore, there is no any modern drug that used to heal evil eye. Priority ranking confirmed the existence of some medicinal plants which are referred by local people at scarce situations. The scarcity is resulted because of anthropogenic and natural factors like deforestation for agricultural expansion, fire wood collection, fire, overgrazing and urbanization as major threats of medicinal plants in Ethiopia (Gebeeyehu et al., 2014; Getaneh and Girma, 2014; Alemayehu et al., 2015; Kewessa et al., 2015; Chekole et al., 2015).

In the area, informants reported that several medicinal plants have already disappeared from their common habitats and some of them are at risk of extinction. The first factors for the declining of medicinal plants were agricultural expansion followed by charcoal making in the study area. Other reports (Mesfin et al., 2009; Meragiaw et al., 2016) indicated that agricultural expansion was the major threat on medicinal plants both in Wonago and Northwestern Wello districts. In most situations, the home gardens maintain threatened medicinal plants by protecting from grazing and unwise harvesting. This is a good opportunity for wise use and better transfer of the indigenous knowledge to the younger generation. However, in-situ conservation in the natural environment is the best recommended method to save important medicinal plant species for keeping them in their natural condition.
Conclusion
The results of this study indicated that the potential and abundance of medicinal plant species (155) in the Menz Gera Midir District is an important resource for the present and future generations.

The higher proportion (74%) of these plants was used to treat human ailments further indicates the important role that the medicinal flora has for the healthcare of the immediate society and others. The number of human and livestock ailments (83 diseases) treated with medicinal plants also indicates how important these plants are to the society in Menz Gera Midir District.

From this, we can conclude that the community in this area was achieving alternative relief of diseases if the modern therapy is lacking. The natural vegetation in Menz Gera Midir is rich in medicinal plants (104 species) although a good number of species (51 species) were available in the home gardens. The results also showed that herbs are the leading remedies in the area while shrubs and trees also had their contributions.

The traditional healers revealed that the leaves are the most frequently used plant parts with roots having their shares to prepare mostly in fresh condition and predominantly administered through oral route. Traditional healers’ indigenous knowledge has variation among age and gender in which elders and men are solely shelf their knowledge on herbal medicine and transfer through strict secret. However, modern education is partially contributing to the undermining of traditional knowledge acquisition in younger generation.

The results further showed that many wild medicinal plant species are under threat by the various natural and human factors sending signals for the attention needed to conserve these medicinal plants.

CONFICT OF INTEREST
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

ACKNOWLEDGEMENTS
The authors are indebted to the Department of Plant Biology and Biodiversity Management and the staff of the National Herbarium for the support provided during this study. The deepest gratitude was forward to Late Prof. Ensermu Kelbessa for his unlimited contribution on species identification, conformation and several round editing of this paper. Appreciation also goes to the people of Menz Gera Midir, particularly the informants and employees of district offices, for their hospitality and kind help.

REFERENCES
Abbink J (1995). Medicinal and ritual plants of the Ethiopian Southwest: an account of recent research. Indigenous knowledge and development monitor 3(2):6-8.
Abebe D (1986). Traditional medicine in Ethiopia: the attempts being made to promote it for effective and better utilization. SINET 9(Suppl):61-69.
Adefa M, Abraha B (2011). Ethnobotanical survey of traditional medicinal plants in Tehulder district, South Wollo, Ethiopia. Journal of Medicinal Plants Research 5(26):6233-6242.
Alemayehu G, Asfaw Z, Kelbessa E (2015). Ethnobotanical study of medicinal plants used by local communities of Minjar-Shenkora District, North Shewa Zone of Amhara Region, Ethiopia. Journal of Medicinal Plants Studies 3(6):01-11.
Alexiades M (1996). Collecting ethnobotanical data: An introduction to basic concepts and techniques. Selected Guidelines for Ethnobotanical Research: A Field Manual; Alexiades, MN, Ed. i9780893274047
Araya S, Abera B, Giday M (2015). Study of plants traditionally used in public and animal health management in Sisharti Samre District, Southern Tigray, Ethiopia. Journal of ethnobiology and ethnomedicine 11(1):22.
Baleme K, Kelbessa E, Asfaw Z (2004). Indigenous medicinal plant utilization, management and threats in Fentalle area, Eastern Shewa, Ethiopia. Ethiopian Journal of Biological Sciences 3(1):37-58.
Birhane E, Aynenku E, Mekuria, W, Endale D (2011). Management, use and ecology of medicinal plants in the degraded dry lands of Tigray, Northern Ethiopia. Journal of Medicinal Plants Research 5(3):309-318.
Bishaw M (1991). Promoting traditional medicine in Ethiopia: A brief historical review of government policy. Social science and medicine 33(2):193-200.
Brown K (1992). Medicinal plants, indigenous medicine and conservation of biodiversity in Ghana. Centre for Social and Economic Research on the Global Environment. Working Paper GEC 92-36. University of East Anglia, UK.
Chekole G, Asfaw Z, Kelbessa E (2015). Ethnobotanical study of medicinal plants in the environs of Tara-gedam and Amba remnant forests of Libo Kemkem District, northwest Ethiopia. Journal of ethnobotany and ethnomedicine 11(1):4.
Cotton CM (1996). Ethnobotany: Principles and Applications. John Willey and Sons LTD. New York.
Deribe T, Amberbir A, Getachew B, Mussema Y (2006). A historical overview of traditional medicine practices and policy in Ethiopia. Ethiopian Journal of Health Development 20(2):127-134.
Flatie T, Gedif T, Asres K, Gebre-Mariam T (2009). Ethnomedical survey of Berta ethnic group Assosa Zone, Benishangul-Gumuz regional state, mid-west Ethiopia. Journal of Ethnobotany and Ethnomedicine 5(1):14.
Friedman J, Yaniv Z, Dafni A, Palewitch D (1986). A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev Desert, Israel. Journal of ethnopharmacology 16(2-3):275-287.
Gebeeyehu G, Asfaw Z, Enyw A, Raja N (2014). Ethnobotanical study of traditional medicinal plants and their conservation status in Mecha Wereda West Gojam Zone of Ethiopia. International Journal of Pharmacueticals and Health Care Research 2(3):137-154.
Getanesh S,irma Z (2014). An ethnobotanical study of medicinal plants in Debre Libanos Wereda, Central Ethiopia. African Journal of Plant Science 8(7):366-379.
Giday M, Asfaw Z, Woldu Z, Teklehaimanot T (2009). Medicinal plant knowledge of the Bench ethnic group of Ethiopia: an ethnobotanical investigation. Journal of Ethnobiology and Ethnomedicine 5(1):34.
Gidaya M, Asfaw Z, Woldu Z (2009). Medicinal plants of the Meinit ethnic group of Ethiopia: an ethnobotanical study. Journal of Ethnopharmacology 124(3):513-521.
Hailemariam T, Demissew S, Asfaw Z (2009). An ethnobotanical study of medicinal plants used by local people in the lowlands of Konta Special Woreda, southern nations, nationalities and peoples regional state, Ethiopia. Journal of Ethnobiology and Ethnomedicine 3(1):26.
Heinrich M (2000). Ethnobotany and its role in drug development. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product
Derivatives 14(7):479-488.
Kewessa G, Abebe T, Demessie A (2015). Indigenous knowledge on the use and management of medicinal trees and shrubs in Dale District, Sidama Zone, Southern Ethiopia. Ethnobotany Research and Applications 14:171-182
Martin GJ (1995). Ethnobotany: A Method Manual. Chapman and Hall, London, UK.
Megersa M, Asfaw Z, Kelbessa E, Beyene A, Woldeab B (2013). An ethnobotanical study of medicinal plants in Wayu Tuka district, east Welega zone of oromia regional state, West Ethiopia. Journal of ethnobiology and ethnomedicine 9(1):68.
Mekelle E (2012). Traditional medicinal plants used by people in Libo-Kemkem district, south Gondar, Ethiopia. Asian Journal of Agricultural Sciences 4(3):171-176.
Meragiaw M, Asfaw Z, Argaw M (2016). The status of ethnobotanical knowledge of medicinal plants and the impacts of resettlement in Delanta, northwestern Wello, northern Ethiopia. Evidence-Based Complementary and Alternative Medicine 2016.
Mesfin F, Demissew S, Teklehaimanot T (2009). An ethnobotanical study of medicinal plants in Wonago Woreda, SNNPR, Ethiopia. Journal of Ethnobiology and Ethnomedicine 5(1):28.
Schultes RE (1992). Ethnobotany and technology in the Northwest Amazon: A partnership. Sustainable harvest and marketing of rain forest products P 45.
Shimeles ND, Asticioli S, Baraldo M, Tirillini B, Lulekal E, Murgia V (2012). Researching accessible and affordable treatment for common dermatological problems in developing countries. An Ethiopian experience. International journal of dermatology 51(7):790-795.
Sofowora A (1982). Medicinal plants and traditional medicine in Africa. John Wiley and Sons, New York, in association with Spectrum Books Ltd, Ibadan, Nigeria pp. 142-145
Tadesse M (2004). Asteraceae (Compositae). In: Flora of Ethiopia and Eritrea, vol. 4, Part 2, Hedberg I, Friis I, and Persson, E eds. Addis Ababa University, Ethiopia, Uppsalan University, Sweden.
Urga K, Ayale A, Merga G (2004). Traditional medicine in Ethiopia proceedings of a national work shop held in Addis Ababa, Ethiopia, 30 June-2 July 2003. Addis Ababa, Ethiopia.
Yineger H, Yewhalaw D, Teketay D (2008). Ethnomedicinal plant knowledge and practice of the Oromo ethnic group in southwestern Ethiopia. Journal of Ethnobiology and Ethnomedicine 4(1):11.
Yirga G, Teferi M, Kasaye M (2011). Survey of medicinal plants used to treat human ailments in Hawzen district, Northern Ethiopia. International Journal of Biodiversity and Conservation 3(13):709-714.
Appendix 1. Medicinal plants distribution and use by local people in the study area

S/N	Scientific Name	Family	Local Name	Habit	Habitat	Ab	PU	CP	Disease/symptoms claimed to be treated	Route	Altit (m)	Geographical Location	Collection Number
1	*Acacia abyssinica*	Fabaceae	GIRAR	T	HG	M	Fr	F/D	Orchitcil	Oral	2433	10° 13'15.4"N 039° 32' 47.3E	SW101
2	*Achyranthes aspera* L.	Amaranthacea	TELENGZ	H	HG	C	R and L	F	Stabbing pain, Uvulillia	Dermal, Nasal	2933	10° 17'52.7"N 039° 34' 54.8E	SW017
3	*Acokanthera schimperi* Schweinf.	Apocynaceae	MIRIENZ	T	W	M	R	D	Intestinal parasite, Evil eye	Oral, Nasal	2371	10° 12'44"N 039° 32' 23.2E	SW108
4	*Allium cepa* L.	Alliaceae	KEY SHINKURT	H	HG	C	Bu	F	Tinea versicolor	Dermal	2310	10° 13'22.2N 039° 31' 47.8E	SW055
5	*Allium sativum* L.	Alliaceae	NECH SHINKURT	H	HG	C	Bu	F	Jaundice, Malaria, Ascaries, "Eeyenewog", Cocoides	Oral	2956	10° 21'05.1N 039° 34' 42.6E	SW030
6	*Aloe pulcherrima* Gilbert and sebsebe	Aloeaceae	SETIE - IRET	H	HG	Ra	Lt	F	Wound, Diarrhoea	Dermal Oral	2960	10° 17'59.5N 039° 34' 52.4E	SW075
7	*Aloe debrana* Christian	Aloeaceae	WONDIE – IRET	H	W	C	Lt	F	Stomach ache, Vomiting and Diabetes	Oral	2972	10° 18'05.6N 039° 39' 53.9E	SW078
8	*Artemisia abyssinica* Sch.Bip.	Asteraceae	CHIKUGN	H	W	C	F		Common cold, Evil eye, Typhus	Nasal Neck	2894	10° 17'40.9N 039° 35' 04.8E	SW018
9	*Artemisia rehart* Chiov.	Asteraceae	ARTI	H	HG	C	R	F	Abdominal pain and Stomach ache	Oral	2921	10° 17'50.2N 039° 34' 55.6E	SW132
11	*Asplenium aethopicum* (Burm.f.)	Aspleniaceae	-	H	W	C	L	D	Uvulillia	Dermal	2917	10° 17'53.4N 039° 34' 53.3E	SW064
12	*Berberis holstii* Engl.	Berberidaceae	ZINKELA	S	W	M	R	D	Heart disease	Oral	2961	10° 18'04.4N 039° 34' 53.5E	SW131
13	*Bersama abyssinica* Fresen.	Melianthaceae	AZAMIR	S	W	M	L and R	D	Hypertension, Cough and Ascaris	Oral	2490	10° 13'34.6N 039° 33'29.9E	SW125
14	*Brassica carinata* A. Br.	Brassicaceae	GOMENZER	H	HG	C	L	F	Jaundice	Oral	3074	10° 18'31.2N 039° 39'22.7E	SW153
15	*Brassica oleracea* L.	Brassicaceae	TQL GOMEN	H	HG	C	L	F	Gastritis	Oral	2884	10° 18'31.2N 039° 39'22.7E	SW135
16	*Buddleja polystachya* Fresen.	Loganiaceae	ANFAR	T	HG	M	L	F	Leech	Oral	2927	10° 17'53.4N 039° 34'54.1E	SW071
17	*Capparis tomentosa* Lam.	Capparidaceae	GUMER0	S	W	Ra	R	D	Evil eye, kin disease, "EYENEWOG"	Oral Neck	2197	10° 12'31.2N 039° 39'14.7E	SW096
18	*Capsicum annuum* L.	Solanaceae	KARIA	H	HG	M	Fr	F	Malaria	Oral	2801	10° 23'27.3N 039° 29'45.3E	SW152
No	Scientific Name	Family	Genus	Species	Common Name	Disease/symptom	Route	Code Number	Reference Code				
----	-----------------	----------------	----------------	-----------	-----------------------------------	-------------------------------------	-------	-------------	----------------				
19	Carissa spinarum L.	Apocynaceae	AGAM	S	Evil eye, Wound, “EYENEWOG”	Oral and Nasal		2798	SW050				
20	Carthamus tinctorius L.	Asteraceae	SUF	H	Cough	Oral		2207	SW090				
21	Cassipourea malosa* Aubl.	Rhizophoraceae	WERER	T	Leech	Nasal		2320	SW087				
22	Catha edulis* (Vahl) Forsk. ex Endl.	Celastraceae	CHAT	T	Asthma	Oral		2936	SW083				
23	Chenopodium ambrosioides L.	Chenopodiaceae	AMEDMADO	H	Wound	Dermal		3077	SW141				
24	Citrus limon* (L.) Burm.f.	Rutaceae	BETRE LOMI	T	Liver disease	Oral		2277	SW150				
25	Citrus aurantifolia* (Christm.) Swingle	Rutaceae	LOMI	T	Tinea versicolor, Cancer	Dermal		2320	SW053				
26	Citrus medica* L.	Rutaceae	TRINGO	T	Loss of appetite	Oral		2278	SW147				
27	Clematis sinensis Fresen.	Ranunculaceae	YEAZO AREG	Cl	Wart, Eczema, Retained placenta, KUNKHIR	Dermal	Oral	2856	SW020				
28	Clerodendrum myricoides (Hochst.) Valke	Lamiaceae	MISRICH	S	Evil eye, Jaundice	Oral and Nasal		2432	SW094				
29	Clitia abyssinica + Jaub. and Spach.	Euphorbiaceae	FYELEFEG	S	Evil eye, Jaundice, “EYENEWOG”	Oral and Nasal		2830	SW044				
30	Coffea arabica* L.	Rubiaceae	BUNNA	T	Common cold	Oral		2275	SW063				
31	Cordia africana Lam.	Boraginaceae	WANZA	T	Tumour and Wart	Dermal		2435	SW137				
32	Croton macrostachybus Del.	Euphorbiaceae	BISANA	T	Evil eye, Jaundice, Eye disease	Oral, Nasal,Ocular		2363	SW060				
33	Cucumis ficifolius+ Rich.	Cucurbitaceae	YEMDIR EMBWAY	H	Stomach ache, Gonorrhoea, Rabies	Oral		2299	SW057				
34	Cucurbita pepo* L.	Cucurbitaceae	DUBA	Cl	Headache	Dermal		2800	SW161				
35	Cyathula polycephala Bak.	Amaranthaceae	CHEGOGOTE	H	Fibril illness	Oral		2289	SW099				
Appendix 1. Contd.

No.	Plant Name	Family	Genus	Species	Synonym	Part	Condition	Location	Pressures (mmHg)	Notes			
36	*Cyathula uncinulata* (Schrad.) Schinz	Amaranthaceae	YEKIL FIKIR	H	W	C	R	F	Stabbing pain	Dermal 2830	10° 14'12.5N 039° 30'38.7E	SW046	
37	*Cymbopogon citrates* (DC.) Stapf.	Poaceae	TEJESAR	H	HG	Ra	R	D	Evil eye	Oral and Nasal 3069	10° 18'25.6N 039° 39'20.4E	SW129	
38	*Cyphostemma adenocaulé* (Stud. et A. Rich.)	Vitaceae	ASERKUSH TEBETEBKUS	Cl	W	Ra	R	L	Rabies, Congenital abnormality	Oral, Dermal 2273	10° 13'18.1N 039° 31'49.1E	SW085	
39	*Cyphostemma cyphopetalum* (Fresen.)	Vitaceae	GINDOSH	Cl	W	Ra	R	D	Cancer	Dermal 2437	10° 13'20.5N 039° 33'05.9E	SW151	
40	*Datura stramonium* L.	Solanaceae	ASTENAGER	H	HG	M	Se and	L	Tumour	Oral 2909	10° 17'40.6N 039° 34'59.3E	SW022	
41	*Daucus carota* L.	Apiaceae	KARROT	H	HG	M	R	F	Kidney problem and Night blindness	Oral 3071	10° 18'25.9N 039° 39'21.6E	SW128	
42	*Dodonaea angustifolia* L.f.	Sapindaceae	KITKTA	S	W	M	L	D	Eczema	Dermal 2832	10° 14'12.2N 039° 30'38.6E	SW045	
43	*Dovyalis abyssinica* (A. Rich.) Warb.	Flacouriaceae	KOSHIM	S	W	M	L and	Fr	Fibril illness, Boules	Dermal 2813	10° 31'10.5N 039° 46'57.7E	SW126	
44	*Echinops kebericho*** Mesfin	Asteraceae	KEBERICHO	H	W	Ra	R	D	Evil eye	Oral and Nasal 2890	10° 17'42.1N 039° 35'07.9E	SW019	
45	*Echinops longisetus*** A. Rich.	Asteraceae	KOSHELIE	S	W	C	L	D	Wound	Dermal 2828	10° 17'54.5N 039° 34'51.6E	SW142	
46	*Eucalyptus globulus* Labill.	Myrtaceae	NECH BAHIRZAF	T	W	C	L	F	Fibril illness, "GOLEBA"	Oral and Nasal 2718	10° 31'11.3N 039° 47'09.6E	SW005	
47	*Euclea divinorum* Hiern.	Ebenaceae	DEDHO	S	W	M	Br L	F and	D	Intestinal parasite, Skin disease	Oral 2411	10° 12'56.9N 039° 32'32.3E	SW107
48	*Euphorbia abyssinica* Gmel.	Euphoiaceae	YEBEREHA KULKUAL	T	W	M	Lt	F	"KUNCHIR"	Dermal 2270	10° 12'32N 039° 31'48.7E	SW114	
49	*Euphorbia ampliphylla* Pax	Euphoiaceae	KULKUAL	T	HG	C	Lt	F	Ascaries, Syphilis	Oral 2927	10° 17'53.3N 039° 34'52.8E	SW065	
50	*Euphorbia tirucalli* L.	Euphoiaceae	KINCHIB	S	W	Ra	Lt	F	Cancer, "Kunchir"	Dermal 2299	10° 13'22.2N 039° 31'47.8E	SW086	
51	*Ferula communis* L.	Apiaceae	DOG	H	W	Ra	R	D	Impotency	Oral 2800	10° 14'05.8N 039° 30'42''E	SW049	
52	*Ficus sur* Forssk.	Moraceae	SHOLA	T	W	Ra	Fr	F and	D	Constipation	Oral 2407	10° 12'56.9N 039° 32'38.8E	SW106
53	*Ficus vasta* Forssk.	Moraceae	WARKA	T	W	Ra	L	Br and	L	AZURIT, Eye disease	Oral Ocular 2300	10° 12'39.7N 039° 32'07''E	SW117
54	*Foeniculum vulgare* Mill.	Apiaceae	ENSILLAL	H	HG	M	L, St. Wh	F and	D	Urinary retention, Tonsillitis, Gonorrhea, Wart	Oral Dermal 2930	10° 18'01.9N 039° 34'36.6E	SW039
Appendix 1. Contd.

No.	Latin Name	Family	Common Name	Habit	Location	Mode of Action	Disease	Note	Latitude	Longitude	Reference
55	*Gomphocarpus purpurascens*** A. Rich.	Asclepiadaceae	TIFRNO	S	W	C	L and Lt	F Ring worms, Ring worms, Rf factor	10° 18'52.7N	039° 40'18'E	SW011
56	*Guizotia schimperi* Sch. Bip. ex Walp.	Asteraceae	MECH	H	W	C	L	F Tape worm	10° 20'58.9N	039° 34'42.7E	SW031
57	*Hagenia abyssinica* (Bruce) J.F. Gmel.	Rosaceae	KOSSO	T	W	M	L and F	I Allergic dermatia, Wound, Tape worm	10° 30'26.3N	039° 46'49.2E	SW016
58	*Haplocarpha schimperi* (Sch. Bip. Beauv.)	Asteraceae	GETIN	H	W	C	L	F Skin cut	10° 18'55N	039° 40'00.4E	SW163
59	*Helichrysum sp.*	Asteraceae	NECHLO	S	W	C	L	F Impotency	10° 30'18.7N	039° 46'49.6E	SW134
60	*Heteromorpha arborescens* (Spreng.)	Apiaceae	YEGIB-MIRKUZ	S	W	Pa	L	F Inborn Physical abnormality	10° 13'11.7N	039° 32'43.8E	SW104
61	*Hordeum vulgare* L.	Poaceae	GEBS	H	W	C	Se	D Diarrhoea	10° 31'07.6N	039° 46'54.8E	SW159
62	*Impatiens rathii* Hook.f.	Balsaminaceae	GISILT	H	W	M	R	F Fire burn	10°15'09.1N	039° 30'35.9E	SW061
63	*Indigofera vohemarensis* - Ball.	Fabaceae	KUAKUCHA	H	W	M	R	F Blood Complication	10° 13'13.9N	039° 32'55.9E	SW121
64	*Inula confertiflora*** Rich.	Asteraceae	WOYNAGIFT (EGA)	S	W	C	L	D Eye disease	10° 20'59.4N	039° 34'48.9E	SW028
65	*Jasminum abyssinicum* Hochst. ex DC.	Oleaceae	TEMBELEL	Cl	W	M	L	F Tape worm, Blotting	10° 14'16.1N	039° 30'42.1E	SW047
66	*Juniperus procerka* Hochst. ex Endl.	Cupressaceae	YABESHA TID	T	W	C	L	F “Goleba”	10° 31'02.9N	039° 47'06E	SW067
67	*Justicia schimperiana* Hochst.ex Nees	Acanthaceae	SENSEL	S	W	M	L	F Jaundice	10°13'34.9N	039° 33'31.8E	SW081
68	*Kalanchoe petilliana***+ A. Rich.	Crassulaceae	ENDAHAHUL A	H	HG	C	L and R	F Tape worm, Bone fracture, Rabies	10° 17'51.6N	039° 34'54.4E	SW066
69	*Lagenaria sic vara* (Molina) Standl.	Cucurbitaceae	QIL	Cl	HG	M	L	F Ear lesion	10° 13'34.7N	039° 33'32.6E	SW133
70	*Laggera tormentosa*** (Sch. Bip. ex A. Rich.) Oliv. and Hiern	Asteraceae	KESKESO	H	W	C	L	F and D Typhus , Wound, Common cold	10° 20'59.4N	039° 34'49.2E	SW027
71	*Launaea petilliana* (A. Rich.:) N. Killian	Asteraceae	YEBEG WOTET	H	HG	M	R	F Stomach ache	10° 21'47.1N	039° 34'53.4E	SW024
72	*Lens culinaris* Medik	Fabaceae	MSR	H	W	C	Se	D Herpes zoster	10° 18'44.4N	039° 40'28.8E	SW010
Appendix 1. Contd.

Plant Name	Family	Common Name	Uses	Condition	Route	Uses (Specific)					
Leonotis ocymifolia	Lamiaceae	RAS KMR	S	HG	C	L	F	Acute mountain sickness, Fibril illness, "Goleba"	Oral	10° 18′44.3N 039° 40′32.2E	SW014
Lepidium sativum L.	Brassicaceae	FETO	H	HG	C	Se	D	Abdominal pain, Coccoides	Oral	10° 18′25.5N 039° 39′20.5E	SW012
Linum usitatissimum L.	Linaceae	TELBA	H	W	C	Se	D	Gastric	Oral	10°18′53.6N 039° 40′16.3E	SW015
Lippia adoesra Hochst. ex Walp.	Verbenaceae	KESSIE	H	HG	C	R	D	Smallpox	Oral and Nasal	10°17′54.4N 039° 34′50.9E	SW098
Lobelia rhynchopetalum Hemsl.	Lobeliaceae	JIBRA	H	W	M	R	D	Evil eye, “Eyewog”	Oral and Nasal	10°25′31N 039° 47′49.5E	SW146
Lupinus albus L.	Fabaceae	GBTO	H	HG	Ra	Se	F/D	Hypertension	Oral	10° 18′26.7N 039° 39′20E	SW158
Lycopersicon esculentum Mill.	Solanaceae	TIMATIM	H	HG	M	L and St	F	Gonorrhoea	Oral	10° 13′23.1N 039° 31′48.7E	SW056
Maesa lanceolata Forsk.	Myrsinaceae	KELAWA	S	W	M	L	F	Tape worm	Oral	10° 31′02.4N 039° 47′07E	SW084
Malus sylvestris Miller	Rosaceae	APPLE	T	HG	M	Fr	F	Diabetes	Oral	10° 17′51.5N 039° 34′47.9E	SW156
Malva parviflora Hojer	Malvaceae	ALENKUATA	H	HG	C	L	F	Wound	Dermal	10° 17′53.4N 039° 34′53E	SW072
Maytenus arbutifolia (A. Rich.) Wilczek	Celastraceae	ATAT	S	W	M	R	D	Kidney problem	Oral	10° 30′03.4N 039° 47′06E	SW139
Mentha spicata L.	Lamiaceae	NANA	H	HG	Ra	L	D	Headache	Oral	10° 18′26N 039° 39′21.7E	SW136
Millettia ferruginea (Hochst.) Bak.	Fabaceae	BIRBIRA	T	W	Ra	R	D	Impotency	Oral	10° 12′32.2N 039° 31′45.6E	SW032
Momordica foetida Schumach.	Cucurbitaceae	KURA HARG	Cl	W	Ra	L and R	D	Intestinal parasite, Syphilis	Oral, Dermal	10° 13′31N 039° 33′21.7E	SW123
Musa x paradisiaca L.	Musaceae	MUSE	H	HG	M	Fr	F	Eczema	Dermal	10° 12′32.2N 039° 31′45.9E	SW145
Myrica salicifolia A. Rich.	Myricaceae	SHINET	T	W	M	Br	F and D	Headache, Intestinal parasite	Oral, Dermal	10° 14′20.3N 039° 30′46.5E	SW051
Myrtus communis L.	Myrtaceae	ADES	S	HG	Ra	L	D	Dandruff	Dermal	10° 13′22N 039° 31′48.8E	SW089
Myrsine africana L.	Myrsinaceae	QECHEMO	S	W	M	Fr	F	Tape worm	Oral	10° 13′12.2N 039° 32′44.5E	SW103
Nicotiana tabacum L.	Solanaceae	TINBAHO	H	HG	M	L	F	Leech	Nasal	10° 17′52.7N 039° 34′34.2E	SW009
Appendix 1. Contd.

No.	Species	Family	API	W	M	R	D	Symptom	Route	Latitude	Longitude	Notes	
92	Nuxia congesta RBr. ex Fresen.	Loganiaceae	ATQUAR	T	W	M	R	D	Evil eye	Oral and Nasal	2924	10° 17'54.5N 039° 34'53.9E	SW155
93	Ocimum lamillilium* Hochst. ex Benth.	Lamiaceae	DAMA KESSIE	S	HG	M	L	F	Fibril illness	Oral	3068	10° 18'26N 039° 39'23.7E	SW154
94	Olea europaea subsp. cuspidata (Wall. ex G.	Oleaceae	WEYRA	T	W	M	L	D	Eye disease	Ocular	2921	10° 17'52N 039° 34'53.9E	SW040
95	Olinia rocheliana A. Juss.	Oliniaceae	TIFIE	S	W	M	L	D	Wart, Eczema	Dermal	2830	10° 14'13.7N 039° 30'38.9E	SW042
96	Opuntia ficus-indica* (L.) Miller	Cactaceae	BELES	S	HG	Ra	Fr	F	Heart failure	Oral	2933	10° 17'53N 039° 34'55.1E	SW130
97	Osyris quadrifartita Decn.	Santalaceae	KERET	S	W	M	L	F	Circumcision wound, Toothache	Dermal	2963	10° 17'47.6N 039° 35'05.5E	SW021
98	Otostegia fruticosa (frossk.) ex Penzig	Lamiaceae	BARIANATRA	S	W	M	R	D	Evil eye	Oral and Nasal	2437	10° 13'15.2N 039° 32'47.3E	SW102
99	Otostegia integrifolia* + Benth.	Lamiaceae	TNJUT	S	W	M	L	F	Acute mountain sickness “EYENEWOG”	Oral	2358	10° 13'25.9N 039° 31'47.7E	SW059
100	Pennisetum sphacelatum’ (Nees) Th. Dur. and Schinz	Poaceae	SINDEDO	H	W	C	R	D	Blood Complication	Neck	2974	10° 18'03.6N 039° 34'52.4E	SW077
101	Periploca linearifolia Quant. Dill. and A. Rich.	Asclepiadaceae	MOIDER	CI	W	Ra	R	D	Evil eye	Oral and Nasal	2446	10° 13'33.6N 039° 33'24.4E	SW124
102	Peucedanum winkleri Wolff	Apioideae	QERSHASHIBA	H	HG	M	R	D	Evil eye	Oral and Nasal	2928	10° 17'51.8N 039° 34'54.3E	SW140
103	Phagnalon abyssinicum* Sch. Bip.	Asteraceae	NIBASEL	H	W	M	L	F	Blotting and Urinary retention	Oral	2987	10° 19'17.8N 039° 35'05.0E	SW079
104	Phoenix reclinata Jacq.	Arecaceae	SENIEL	T	W	Ra	R	F	Impotency	Oral	2455	10° 13'01.9N 039° 32'41.7E	SW144
105	Phytolacca dodecandra* L’Hérît	Phytolaccaceae	MEHAN ENDOD	S	HG	C	L	F	Jaundice	Oral	2927	10° 17'53.7N 039° 34'53.7E	SW004
106	Pistacia falcata Mart.	Anacardiaceae	TANA GEBEZ	T	W	Ra	R	D	Evil eye	Oral and Nasal	2303	10° 12'42.1N 039° 33'44.4E	SW112
107	Plantago lanceolata L.	Plantaginaceae	GORTEB	H	W	C	L	F	Wound	Dermal	2855	10° 17'35N 039° 35'03E	SW041
108	Plectranthus punctatus + (L. f.) L’Herit.	Lamiaceae	TIBTIBO	H	W	M	L	F	Diarrhoea “EyeneWog”	Oral	2940	10° 21'19.1N 039° 32'06.6E	SW026
Appendix 1. Contd.

No.	Plant Name	Family	Code	State	Part	Use	Route	Latitude	Longitude	Other Notes				
109	Podocarpus falcatus	Podocarpaceae	ZGBA	T	M	L,Fr,Br	F and D	Inborn physical abnormality, Eye disease, Melasma	Dermal Ocular	2718	10° 31'11.3N 039°47'09.6E	SW082		
110	Polygala rupicola + A. Rich.	Polygalaceae	ETSE LBONA	H	W	M	R,St	F/D	Snake bit	Oral	2331	10° 13'23.4N 039° 31'47.2E	SW058	
111	Polygonum aviculare L.	Polygonaceae	KECHKECH	H	W	C	L	D	Eczema	Dermal	2798	10°23'27.6N 039° 29'43.9E	SW069	
112	Premna schimperi Engl.	Lamiaceae	CHOCHO	S	W	M	L	F	Tinea pedis	Dermal	2333	10° 12'42.1N 039° 32'15.E	SW118	
113	Pteridium aquilinum L.	Pteridaceae	EMSE FER	H	W	Ra	L	D	Fire burn	Dermal	2750	10° 31'11.4N 039° 47'06.8E	SW160	
114	Ranunculus stagnalis	Ranunculaceae	GUDGN	H	W	C	L	F/D	Wart and “Kunchir”, Eczema	Dermal	2951	10° 21'07.1N 039° 34'42.9E	SW029	
115	Pterolobium stellatum	Fabaceae	KENTEFA	S	W	M				Dermal	2248	10° 12'32.4N 039° 31'46.1E	SW080	
116	Rhhamnus prinoides* L'Herit	Rhamnaceae	GESHO	S	HG	C	L and Fr	F and D	Scabies, Uvulitia	Dermal Oral	2937	10° 17'52.2N 039° 34'54.2E	SW007	
117	Rhus natalensis Krauss	Anacardiaceae	CHAKMA	S	W	Ra	L	F	Tape worm	Oral	2451	10° 13'28.1N 039° 33'11.8E	SW100	
118	Rhus retinorhoea Oliv.	Anacardiaceae	TLEM	S	W	M	L	F	Inborn abnormality	Physical	Dermal	2292	10° 12'43.4N 039° 32'02.2E	SW116
119	Rhus vulgaris Oliv.	Anacardiaceae	EMBIS	T	W	C	R	D	Evil eye	Neck	2800	10° 23'28N 039° 29'44.9E	SW068	
120	Ricinus communis* L.	Euphorbiaceae	GULO	H	HG	M	Fr and L	F and D	Cancer, Anal eropli	Dermal Anal	2922	10° 17'53.4N 039° 34'53.8E	SW038	
121	Rosa abyssinica Lindley	Rosaceae	KEGA	S	W	M	Fr	F	Ascaries	Oral	2815	10° 30'53.4N 039° 46'57.7E	SW127	
122	Rosa x richardi“Rehd.	Rosaceae	TIGIEREDA	S	HG	Ra	R	F/D	Eye disease	Neck	2923	10° 17'53.6N 039° 34'48.2E	SW138	
123	Rubus steudneri Schweinf.	Rosaceae	ENGORY	S	W	Ra	L	F	Anemia	Oral	2265	10° 12'31.9N 039° 31'47.8E	SW093	
124	Rumex abyssinicus Jacq.	Polygonaceae	MEKMEKO	H	W	M	R	F	Tinea versicolor, Hypertension	Dermal	2961	10° 18'28.7N 039° 34'52.1E	SW006	
125	Rumex nepalensis Spreng.	Polygonaceae	TULT	H	W	C	R	F	Acute mountain sickness haemorrhage	Oral Dermal	3121	10° 18'56.4N 039° 40'57.6E	SW013	
126	Rumex nervosus + Vahl	Polygonaceae	EMBACHO	S	W	M	L	F	Circumcision wound, Leech	Dermal Oral	2836	10° 15'00.8N 039° 31'03.2E	SW052	
127	Ruta chalepensis* L.	Rutaceae	TENADAM	H	HG	C	Fr	F	Hypertension, Diabetes	Oral Dermal	3098	10° 18'56.5N 039° 40'08.3E	SW002	
Appendix 1. Contd.

No.	Common Name	Family	Genus	Species	Synonyms	Parts	Action	Route	Total Dose	Dosage	Ref.
128	*Saccharum officinarum* L.	Poaceae	Poa	Poa							
129	*Salvia nilotica* Juss. ex Jacq.	Lamiaceae	Salvia	Salvia							
130	*Salvia schimperi* Benth.	Lamiaceae	Salvia	Salvia							
131	*Sansevieria ehrenbergii* Schweinf. ex Baker	Dracaenaceae	Sansevieria	Sansevieria							
132	*Satureja abyssinica* (Benth.) Brig.	Lamiaceae	Satureja	Satureja							
133	*Schinus molle* L.	Anacardiaceae	Schinus	Schinus							
134	*Sida schimperiana* Hochst. ex A.Rich.	Malvaceae	Sida	Sida							
135	*Sideroxylon oxyacanthum* *Baill.*	Sapotaceae	Sideroxylon	Sideroxylon							
136	*Silene macrosolen* A. Rich.	Caryophyllaceae	Silene	Silene							
137	*Solanecio gigas* **+** (Vatke) C. Jeffrey	Asteraceae	Solanaceae	Solanecio							
138	*Solanum anguivi* Lam.	Solanaceae	Solanum	Solanum							
139	*Solanum benadrense* Chiov.	Solanaceae	Solanum	Solanum							
140	*Solanum marginatum* **+** L.f.	Solanaceae	Solanum	Solanum							
141	*Sphenosyllis* Stenocarpa (Hochst. ex A. Rich.)	Fabaceae	Sphenosyllis	Sphenosyllis							
142	*Stephania abyssinica* (Dillon. & A. Rich.)	Menispermaceae	Stephania	Stephania							
143	*Tagetes minuta* ‘L.’	Asteraceae	Tagetes	Tagetes							
144	*Tephrosia bracteolata* Guill. & Perr.	Fabaceae	Tephrosia	Tephrosia							
145	*Thymus schimperi* **+** Ronniger	Lamiaceae	Thymus	Thymus							
146	*Tragia cinerea* + (pax) Gilbert and Radd.-Smith	Euphorbiaceae	Tragia	Tragia							
Appendix 1. Contd.

No.	Species	Family	Genus	Species	Common Name	Mode of Administration	Dosage	Lat.	Long.				
147	*Trigonella foenum-graecum* L.	Fabaceae	ABISH	H	W	C	Se	D	Melasma, Gastritis	Dermal Oral	2906	10° 17' 52.7 N 039° 34' 5 E	SW062
148	*Urtica simensis* Steudel	Urticaceae	SAMA	H	HG	C	L	F	Gastritis and Heart failure	Oral	3006	10° 29' 03.4 N 039° 46' 56.5 E	SW003
149	*Verbascum sinaticum* + Benth.	Scrophulariaceae	YE'AHIYA JORO	H	W	C	R	F	Allergic dermatitis, Retained placenta	Dermal	2924	10° 17' 52.4 N 039° 34' 53 E	SW037
150	*Verbena officinalis* L.	Verbenaceae	ATUCH	H	HG	Ra	L	F	Uvulitis, Young disease	Oral	2888	10° 21' 45.9 N 039° 33' 16 E	SW023
151	*Vernonia amygdalina* Del.	Asteraceae	GIRAWA	S	W	Ra	L	F	Acute sickness and Abdominal pain	Oral	2744	10° 31' 11.5 N 039° 47' 07.8 E	SW097
152	*Vernonia biporntini* + Vatke	Asteraceae	MUZIGN	H	W	C	L	F	Nasal bleeding Diarrhoea	Nasal Oral	2895	10° 21' 47 N 039° 33' 16 E	SW149
153	*Viscum tuberculosis* + A.Rich.	Viscaceae	YEMRENZ TEKETSLA	S	W	Ra	L	D	Evil eye “Eyewog”	Oral and Nasal	2299	10°12'42.1 N 039° 32'05.6 E	SW113
154	*Withania somniferas* + (L.) Dunal in DC.	Solanaceae	GIZIEWA	S	W	Ra	R	D	Impotency “Eyewog”	Oral	2315	10° 13' 23.2 N 039° 31' 49 E	SW054
155	*Zehneria scabra* (Linn. f.) Sond.	Cucurbitaceae	BUHAREG	Cl	HG	C	L	F	Eye disease, Wart	Oral Dermal	2928	10° 17' 53.5 N 039° 34' 53 E	SW073

Cultivated medicinal -*. Endemic medicinal plant-**. Both cultivated and endemic medicinal plant-***. Climber-CI, Herb-H, Shrub-S, Tree-T. Wild- W, Home garden- HG, Medium-M, Common-C, Rare- Ra, Abundance –Ab, Condition of Preparation –CP, Plant Parts used for Aliment treatment-PU, Friut-Fr, Root-R, Stem-St, Leaf-L, Flower-Fi, Seed-Se, Bark-Br, Bulb-Bu, Latex-Lt, Fresh-F, Dried-D, For Both human & livestock +++, for Animals only-+.