Performances of Hybrid Dent Maize Cultivars in Bingöl Conditions

Kağan KÖKTEN¹, Mevlüt AKÇURA²

¹Bingöl University, Faculty of Agriculture, Department of Field Crops, 12000, Bingöl.
²Çanakkale Onsekiz Mart University, Faculty of Agriculture, Department of Field Crops, 17000, Çanakkale

Abstract: The research was conducted with aim to investigate adaptation capability of twenty five hybrid dent corn cultivars, and to determine relationships among traits in maize at Bingol, East Anatolia Region, conditions of Turkey during 2014 and 2015 growing seasons. The experiment was set up according to the Randomized Complete-Block Design with three replicates. Results of the research showed that differences among the grain yields and yield components of cultivars were statistically significant in both years. The highest and the lowest value of yield components varied according to cultivars and years. The grain yield of maize cultivars varied in between 5521.3-10442.0 kg ha⁻¹ in the first year and in between 6362.0-14296.7 kg ha⁻¹ in the second year. The highest grain yields were determined in ADV-2898 cultivar (10442.0 kg ha⁻¹) in the first year and Tuano cultivar (14296.7 kg ha⁻¹) in the second year. The lowest grain yield was identified in Şafak cultivar (5521.3 kg ha⁻¹) in the first year and Dian cultivar (6362.0 kg ha⁻¹) in the second year. According to correlation analysis, grain yield was positively and significantly correlated with ear length, ear diameter number of kernel per ear, ear weight and 1000 grain weight of maize. The non-significant correlations were determined in between grain yield with plant height and stem diameter.
production can be increased due to bias may be genetically modified organism of maize imported from USA and Europe countries. Generally, the hybrid cultivars have sown in Cukurova, Mediterranean and Southeastern Anatolia regions because of favorable climatic conditions. The hybrid cultivars not enough have sown in the Black Sea and Eastern Anatolia regions. Therefore, maize grain yield lowered in these regions. There are many studies on adaptation of hybrid maize varieties in Turkey, but, there aren’t enough information and research on hybrid maize cultivars in the Eastern Anatolia regions. The Eastern Anatolia regions is a region where mainly livestock (sheep, goats and cows). Therefore, maize production is significant as green forage, industrial feed (seed) and silage in the Eastern Anatolia regions. Many researchers reported that grain yield and yield components of hybrid dent maize varieties varied according to genetic traits of cultivars, soil and climatic conditions, and agronomic characteristics [4-8].

The correlation analysis could be used determining the relationship between yield and yield related traits. The correlation coefficients generally show relationships among independent variables. Dash et al. [8] stated that the most positive effect on grain yield was plant height, ear length and 1000 grain weight. Torun and Kocyü [10] reported that number of kernels per ear and ear length had a significant effect, while plant height had no significant effect on grain yield, and plant height had a negative indirect effect on grain yield. Şekeroglu et al. [11] recorded that the grain yield was positively correlated with all the character investigated.

The aim of the study was to investigate adaptation capability of twenty five hybrid dent corn cultivars at Bingöl conditions, and to determine relationships among traits in maize.

2. Materials and Methods

The experiment was conducted at Bingöl conditions, East Anatolia Region, of Turkey in 2014 and 2015 years. The experiment was set up according to the Randomized Complete-Block Design with three replicates. The hybrid dent corn (Zea mays indedanta L.) cultivars used in the research is shown at Table 1.

The experiment area was tilled with plough pan and prepared by pulling of cultivator on soils. The plot size was 2.8m x 8m= 22.4 m² and consisted of 4 rows. The experiments were set up in the first week of May in both years. Seeds were sown at 5-6 cm depths using a dibbler in 70 cm x 20 cm row spaces. Fertilizers were applied to the rows at the rate 250 kg ha⁻¹ ammonium sulphate and 100 kg ha⁻¹ triple super phosphate as pure. The total quantity of phosphorus was applied at the time of sowing and nitrogen was applied in two equal amounts at the time of sowing, 10 cm seedling height and 35-40 cm height stages. The irrigation was watered using a drip system.

2.1. Climatic data of the experimental area

Bingöl province has 1050 m altitude. Bingöl has terrestrial climatic character in the East Anatolia region. Climatic data of experiment area in growing season is shown at Table 2. The average temperature from May to September was 23.1 °C, and total rainfall was 157.7 mm in 2014 year. The same period for 2015 year average temperature was 23.6 °C, and rainfall was 30.7 mm (Table 2).

Cultivars	Companies	FAO group
31P41	Pioneer Seeds	-
30874	Pioneer Seeds	-
31Y43	Pioneer Seeds	600
31A34	Pioneer Seeds	-
RJ 4 H.D	Pioneer seeds	600
12-219	Panam France Seed Company	610
12-218	Panam France Seed Company	610
12-231H0	Panam France Seed Company	630
Dian	Panam France Seed Company	590
Marvin	Panam France Seed Company	590
Eldora	Panam France Seed Company	590
DKC-955	Monsanto Company	800
DKC-6903	Monsanto Company	700
DKC-6589	Monsanto Company	650
DKC-7211	Monsanto Company	750
DKC-6590	Monsanto Company	700
Wayne	Italy Venturoli	700
Şafak	BATEM	700
Batem efe	BATEM	700
Burak	BATEM	700
Īzmir	BATEM	700
Seime Kukuruza 877	Serbia	700
Seime Kukuruza 873	Serbia	700
ADV-2898	Limagrain seeds	-
Truva	Limagrain seeds	-
Tuano	Betaagriculture	600

2.2. Soil structure

Soil in a depth of 60 cm was sampled before the start of the experiment. Soil was lowed in organic matter (1.26%), medium acid in (pH: 6.37), low in calcium carbonate (0.15%) and high in P (79.1 kg ha⁻¹ P₂O₅) and low amount of in K₂O (24.5 kg ha⁻¹) contest.

2.3. Yield and its components

When the kernel moisture was about 15% in each cultivar, two rows in the center of each plot were harvested, manually, in between 15-30 September according to cultivar characteristics. Then, the grains are dried under sun until the moisture content falls below 13%. N content was determined by using Kjeldahl method. The plant height, stem diameter, grain yield and yield components including ear diameter, ear length, number of kernels per ear, ear weight and 1000 kernel weight were determined as describe by Gokmen et al, 2001. Grain yield was calculated by multiplying by 10000/plot sizes/m².
All the data were analyzed with analysis of variance (ANOVA) using SPSS Statistical Package Program. Means were compared using the DUNCAN test.

3. Results and Discussion

In the research, differences in between the years were statistically significant in all the characters. Data of the first year was higher than in the second year, except for plant height. Results of the research showed that differences among the cultivars in term of grain yield, plant height, stem diameter and yield components including ear length, ear diameter, number of kernels per ear, ear weight and 1000 kernel weight were statistically significant in both years. The highest and the lowest value belonging to plant height, stem diameter, ear length, ear diameter, number of kernels per ear, ear weight and 1000 kernel weight of maize cultivars varied according to cultivars and years. The grain yield of maize cultivars varied in between 5521.3-10442.0 kg ha\(^{-1}\) in the first year and in between 6362.0-14296.7 kg ha\(^{-1}\) in the second year in Bingöl conditions that terrestrial climatic character. The highest grain yield was determined in ADV-2898 cultivar (10442.0 kg ha\(^{-1}\)) in the first year and Tuano cultivar (14296.7 kg ha\(^{-1}\)) in the second year. The lowest grain yield was identified in Şafak (5521.3 kg ha\(^{-1}\)) in the first year and Dian (6362.0 kg ha\(^{-1}\)) in the second year. Batem Efe cultivar followed to ADV-2898 and Tuano cultivars in both years. Generally, ear length, ear diameter, number of kernels per ear, ear weight and 1000 kernel weight of ADV-2898, Tuano and Batem Efe cultivars were higher than the others cultivars (Table 3). In conducted studies in different regions of Turkey, hybrid dent maize grain yield were between 8110-1636 kg ha\(^{-1}\) in Harran plain [5], 7910-13322 kg ha\(^{-1}\) in Kahramanmaras conditions [12], 7259-8996 kg ha\(^{-1}\) in Manisa conditions [13], 6500-10370 kg ha\(^{-1}\) in Konya conditions [14], 8912-13120 kg ha\(^{-1}\) in Amik plain conditions [15], 9300-15110 kg ha\(^{-1}\) in Adapazari, 7840-12910 kg ha\(^{-1}\) in Adana and 9100-12190 kg ha\(^{-1}\) in Samsun conditions [6]. In compared with the above researches, we can say that commercial maize production can be done in Bingöl conditions. The differences in grain yield among cultivars can be result from variety characteristics, genetic traits, root length, nutrient uptake, maturity periods of cultivars, climatic factors and agricultural practices [12, 14-19].

According to correlation analysis results of maize, there is high positive correlation between grain yield with ear length, ear diameter, number of kernel per ear, ear weight and 1000 grain weight. The highest significant positive correlation (0.925**) was observed in between grain yield and ear weight. The non-significant correlations were determined in between grain yield with plant height and stem diameter. There were negative correlations in between ear diameter with plant height and stem diameter (Table 4). This result was parallel with the finding of Sekeroğlu et al. [10] stated that the grain yield was positively correlated with plant height, ear length, ear diameter, number of kernels per ear and 1000 kernel weight. Another study reported that the number of kernels per ear and ear length had a significant direct effect, while plant height had no significant effect on grain yield [9].

4. Conclusion

In the research, grain yield and yield components including ear length, ear diameter, number of kernels per ear, ear weight and 1000 kernel weight varied according to cultivars and years. The grain yield varied in between 5521.3-10442.0 kg ha\(^{-1}\) in 2014 and 6362.0-14296.7 kg ha\(^{-1}\) in 2015 in Bingöl conditions. Among the cultivars, the highest grain yields were obtained from ADV-2898, Tuano and Batem Efe cultivars in the Bingöl conditions.

Correlation coefficients showed that there was positive correlation between grain yield with ear length, ear diameter number of kernel per ear, ear weight and 1000 grain weight, while the non-significant correlations were determined in between grain yield with plant height and stem diameter.

As a result, 1- It is possible to say that commercial maize production can be done in Bingöl conditions. 2- We could advise ADV-2898, Tuano and Batem Efe cultivars because of its higher yields in the Bingöl conditions. 3- According to correlation analysis results, between the grain yield and ear weight was the highest positive and significant relation in maize.

Table 2. Climatic data of the experiment area in growing season*

Climatic factors	Years	May	June	July	August	September	Mean/Total
Mean Temperature (°C)	2014	17.2	22.3	27.4	27.7	21.0	23.1
Long years	2014	16.2	22.3	26.8	26.4	21.0	22.5
Precipitation (mm)	2014	63.2	25.9	4.0	0.9	63.7	157.7
Long years	2014	21.2	8.1	-	0.6	0.8	30.7

* Bingöl Meteorology Station
Table 3. Grain yield and yield components of hybrid dent maize cultivars across growing seasons

Cultivars	Plant height (cm)	Stem diameter (mm)	Ear length (cm)	Ear diameter (mm)				
2014	2015	2014	2015	2014	2015	2014	2015	
31P41	223.8 b	213.8 b	22.7 abc	21.2 abc	16.5 a	14.5 k	42.0 c	35.6 m
30B74	273.5 a	260.5 a	29.6 a	24.0 abc	14.3 d	19.0 bc	37.0 jk	39.6 li
31Y43	234.7 h	226.3 ab	24.1 abc	16.9 a	13.6 a	39.1 k	39.0 li	
31A34	218.5 d	228.2 ab	21.0 bc	24.2 abc	16.8 a	15.8 i	41.1 c	40.6 k
12-21	238.6 bc	208.3 b	19.7 bc	24.4 abc	15.3 bcd	18.9 bcd	39.0 h	43.1 d
12-218	228.7 b	210.5 b	19.8 bc	23.3 abc	15.8 bcd	18.4 cf	36.3 k	40.7 l
12-231H0	216.5 e	201.3 b	21.6 bc	22.7 abc	14.7 cd	16.8 g	40.3 i	40.3 k
DKC-955	237.3 bcd	211.5 b	23.6 abc	23.6 b	17.6 ab	39.7 j	42.9 g	
DKC-6903	218.4 d	214.0 b	18.2 bc	21.7 abc	15.8 bcd	14.4 cd	41.0 c	40.6 l
DKC-6589	201.2 hi	216.1 b	20.1 bc	26.9 abc	14.5 d	13.2 l	42.6 f	43.6 e
DKC-7211	230.4 f	208.2 b	19.4 bc	23.5 abc	17.7 b	39.6 j	41.3 k	43.6 e
DKC-593	212.9 b	208.2 b	19.4 bc	21.9 abc	15.2 bc	46.0 a	42.7 e	
RJ4 H.D	219.6 b	197.5 b	21.6 bc	22.5 abc	15.8 bcd	17.9 c	43.7 abc	43.3 c
Dian	199.5 i	196.5 b	17.4 c	20.8 abc	15.7 bc	42.1 c	42.0 k	
Marvin	207.3 gh	193.0 b	19.6 bc	21.6 abc	16.0 bcd	17.5 g	43.6 abc	43.0 d
Eldora	213.6 h	201.6 b	18.7 bc	19.9 abc	16.8 abd	14.9 jk	42.7 f	
Wayne	230.3 f	204.7 b	23.2 abc	24.3 abc	15.7 bcd	15.8 i	43.0 e	46.3 a
Şafak	235.2 e	213.7 b	25.6 ab	26.7 a	14.8 cd	18.3 cf	38.0 jk	
Batem efe	244.2 b	217.3 b	24.1 abc	24.5 abc	18.0 ab	17.4 ghi	40.6 idi	45.3 ab
Tsoso	244.4 b	228.3 ab	21.4abc	21.8 abc	17.3abc	20.1 ab	42.5 f	
Barak	243.7 b	212.6 b	24.0 abc	26.4 aba	16.3 ab	34.3 l	45.6 a	
S. Kukuruza 873	216.1 e	203.5 b	20.2 bc	23.6 abc	15.4 bcd	18.3 cd	43.3 d	
S. Kukuruza 873	219.6 c	206.0 b	19.2 bc	24.3 abc	16.6 a	18.5 cf	40.0 i	42.6 e
ADV-2989	214.9 h	214.6 b	22.1 abc	22.3 abc	19.2 a	19.1 bc	45.3 ab	44.6 d
Truva	225.3 b	219.7 b	21.8 bc	22.4 abc	16.7 ab	16.8 gh	41.6 c	43.2 e
Years	226.1 A	212.7 B	21.4 B	25.3 A	16.1 B	17.2 A	40.9 B	42.4 A

Mean square 773.04 552.91 31.05 21.08 14.64 10.60 22.81 18.34

F value 9.89** 5.04* 5.67* 4.34* 6.36* 31.84** 13.46** 29.85**

CV (%) 3.91 7.74 16.63 10.57 7.70 4.34 3.17 4.84

Table 4. Correlation coefficients of yield and yield components in maize

Yield characteristics	Grain yield	Plant height	Plant stem	Ear length	Ear diameter	Num. of kernel per ear	Ear weight
Plant height	0.144**	1.00	0.64**	1.00			
Stem diameter	0.037**	0.526**	1.00	0.64**	1.00		
Ear length	0.489**	0.240*	0.254*	1.00			
Ear diameter	0.573**	-0.293**	-0.195**	0.175**	1.00		
Num. of ker. per ear	0.729**	0.230*	0.067**	0.357**	0.304**	1.00	
Ear weight	0.925**	0.277*	0.186**	0.504**	0.488**	1.00	0.759**
1000 grain weight	0.941**	0.289*	0.153**	0.517**	0.135*	0.77**	0.468**

Means in the same columns followed by the same letters are not significantly different as statistically, **: significant at P<0.05 and P<0.01 probability levels, respectively.
References

[1] TUİK, 2015. Turkey Statistical Official-2015.

[2] FAOSTAT, 2015. Food and Agriculture Organization of the United Nations Statistics Division, 2015.

[3] Özcân, S. 2009. Corn, indispensable crop of the modern world: Contribution of genetically modified (Transgenic) corn on agricultural production. Journal of Turkey Science Reviews, 2(2009), 1-34.

[4] Kara, B. 2011. Fresh ear yield and growing degree-days of sweet corn in different sowing dates in Southwestern Anatolia Region. Turkish Journal of Field Crops, 16(2): 166-171.

[5] Öktem, A., Öktem, A.G. 2009. Determination of performances of some dent corn (Zea mays indentata) genotypes in the Harran plain conditions. Harran Uni Journal of Agric. Faculty, 13 (2009), 49-58.

[6] Öner, F., Sezer, İ., Gümüşser, A. 2012. Comparison of dent corn (Zea mays indendata L.) varieties and lines growthin different locations in terms of agronomic traits. Journal of Tekirdağ Agric Faculty, 9(2012), 1-5.

[7] İdikut, L., Kara, S.N. 2013. Determination of some yield components with grain starch ratios of second crop corn for grain growing. Kahramamaraş Sütçü İmam Uni. Journal of Natural Science, 16(2013), 8-15.

[8] Coşkun, A., Coşkun, Y., Koşar, I. 2014. Adaptation of some dent corn varieties under the Harran plain the second crop conditions. Turkish Journal of Agriculture and Natural Science, 1(2014), 454-461.

[9] Dash, B., Singh, S.V., Shahi, J.P. 1992. Character association and path analysis in s1 lines of maize (Zea mays L.). Orissa Journal of Agriculture Research, 5 (1992), 10-16.

[10] Torun, M., Köycü, C. 1999. Study on the determination of the relationship between grain yield and certain yield components of corn using correlation and path analysis. Turkish Journal of Agric and Forestry, 23(1999), 1021-1027.

[11] Sekeroğlu, N., Dede, O., Deveci, M., Kara, S.M. 2000. Determining the relationship between grain yield and yield components in hybrid maize populations by path analysis. Gaziosmanpasa Uni Journal of Agriculture Faculty, 17(2000), 79-82.

[12] Özşişli, B., İdikut, L., Gölkesen, M., Çöküzgün, A. 2009. The determination of some plant and quality chara cteristi cs of the middle early hiybrid varieties in the first and second season. Turkey VIII. Field Crops Congress, 19-22 October 2009, p: 585-588.

[13] Kuşaksız, T., Kuşaksız, E. 2009. Determination of some corn (Zea mays indentata) performances in the Manias ecological conditions. Turkey VIII. Field Crops Congress, 19-22 October 2009, p: 589-593.

[14] Soylu, S., Akman, H., Gürbüz, B. 2008. The study on grain maize agronomy in Sarayonu region conditions of Konya. National Cereals Symposium, 2-5 June 2008, p. 776-781.

[15] Konușkan, Ö., Atış, İ., Gözübenli, H. 2015. Yield and yield components of some dent maize genotypes grown as main-crop in Amik plain conditions. Mustafa Kemal Uni Journal of Agric. Faculty, 20(2015), 1-6.

[16] Öz, A., Tezel, M., Kapar, H., Üstün, A. 2008. A study on development maize cultivars Adaptable of Samsun and Konya conditions. National Cereals Symposium 2-5 June 2008, p. 137-146.

[17] Özata, E., Kapar, H. 2013. Determination of yield and quality of some hybrid dent corn (Zea mays indentata Sturt) genotypes under Samsun conditions. Journal of Agric. Science Research, 6(2013), 19-26.

[18] Kara, B., Kirtok, Y. 2006. Determination of the yield, nitrogen uptake and use efficiency of corn on the different plant density and nitrogen doses in the Çukurova conditions. Journal of Çukurova University Agric Faculty, 21(2006), 23-32.

[19] Kara, B., Atar, B., Gül, B. 2012. Effects of different sowing dates on protein, sugar and dry matter of sweet corn. Research on Crops, 13 (2012), 493-497.