Approximation algorithms on k– cycle covering and k– clique covering

Zhongzheng Tang b,c Zhuo Diao a

a School of Statistics and Mathematics, Central University of Finance and Economics
Beijing 100081, China

b Academy of Mathematics and Systems Science, Chinese Academy of Sciences
Beijing 100190, China

c School of Mathematical Sciences, University of Chinese Academy of Sciences
Beijing 100049, China

Abstract

Given a weighted graph $G(V,E)$ with weight $w : E \to \mathbb{Z}^{|E|}_+$. A k– cycle covering is an edge subset A of E such that $G - A$ has no k–cycle. The minimum weight of k–cycle covering is the weighted covering number on k–cycle, denoted by $\tau_k(G_w)$. In this paper, we design a $k-1/2$ approximation algorithm for the weighted covering number on k–cycle when k is odd.

Given a weighted graph $G(V,E)$ with weight $w : E \to \mathbb{Z}^{|E|}_+$. A k– clique covering is an edge subset A of E such that $G - A$ has no k–clique. The minimum weight of k–clique covering is the weighted covering number on k–clique, denoted by $\hat{\tau}_k(G_w)$. In this paper, we design a $(k^2 - k - 1)/2$ approximation algorithm for the weighted covering number on k–clique. Last, we discuss the relationship between k–clique covering and k–clique packing in complete graph K_n.

Keywords: k– cycle covering, k– clique covering, k– clique packing

1 k-cycle covering

Given a weighted graph $G(V,E)$ with weight $w : E \to \mathbb{Z}^{|E|}_+$. A k– cycle covering is an edge subset A of E such that $G - A$ has no k–cycle. The problem of minimum weight of k–cycle covering can be described as follows:

$$\tau_k(G_w) = \min \{ w^T x : A x \geq 1, x \in \{0, 1\} \}$$ (1)

Where A is a k-cycle-edge adjacent matrix and w is the weight vector. x represents the characteristic vector of edge. We obtain the relaxed programming of (1) as follows:

$$\min \{ w^T x : A x \geq 1, 0 \leq x \leq 1 \}$$ (2)

We compute the optimal solution \hat{x}^* of (2) in polynomial time, then we transfer \hat{x}^* to integral vector:

$$x_e = \begin{cases} 1 & \hat{x}_e^* \geq 1/k \\ 0 & o.w. \end{cases}$$ (3)

Obviously, x is a feasible solution of ILP (1) and $w^T x \leq k w^T \hat{x}^*$, which implies a k-approximation algorithm of minimum k-cycle covering problem.

* Corresponding author. E-mail: diaozhuo@amss.ac.cn
ALGORITHM 1: Approximation algorithm of minimum k-cycle covering

Input: Weighted vector w, k-cycle-edge adjacent matrix A

Output: A feasible solution x of ILP\(^1\), which reaches objective value no more than k times of the optimal value.

1. Solve LP\(^2\) and get the optimal solution \hat{x}^*.
2. Compute x by equation(3).

2 The $(k - \frac{1}{2})$-approximation algorithm when k is odd

We take advantage of specific strategy to reach better performance when k is odd.

ALGORITHM 2: Approximation algorithm of minimum k-cycle covering

Input: Weighted graph (G, w)

Output: A Edge set E_k, which covers every k-cycle in G.

0. Set $E_{k_1} = \emptyset$.
1. Solve LP\(^2\) and get the optimal solution \hat{x}^*.
2. For every $e \in E$
3. If $\hat{x}_e^* \geq 2/(2k - 1)$ Then $E_{k_1} = E_{k_1} \cup \{e\}$.
4. Suppose E' are these edges of all k-cycles in $G - E_{k_1}$ and let G' be a subgraph of G induced by the edge set E'.
6. Using the Greedy Algorithm or Random Algorithm, we can find an approximate solution of maximum weight bipartite graph
7. $B = (V_1, V_2, E_B)$, which satisfies $W(E_B) \geq (1/2)W(E')$. Set $E_{k_2} = E' \setminus E_B$.
8. Output $E_k = E_{k_1} \cup E_{k_2}$.

Theorem 2.1. The Algorithm 2 has $(k - \frac{1}{2})$-approximate ratio for the minimum k-cycle covering problem.

Proof. Suppose \hat{x}^* and x^* are the optimal solution of LP\(^2\) and ILP\(^1\), respectively.

Firstly, we indicate that E_k is a k-cycle covering. Actually, for every k-cycle C_k in G, if it doesn’t contain any edge in E_{k_1}, then it is a k-cycle in $G - E_{k_1}$, thus it is a k-cycle in G'. Because $G' - E_{k_2}$ is a bipartite graph, of course, $G' - E_{k_2}$ has no k-cycle (here k is odd). Thus C_k contains some edge in E_{k_2}. Above all, we prove that E_k is a k-cycle covering of G.

Additionally, we will show the approximate ratio.

On one hand, according to the rounding regulation, we know that:

$$\sum_{e \in E_{k_1}} w_e \leq (k - \frac{1}{2}) \sum_{e \in E_{k_1}} w_e \hat{x}_e^*.$$ \(4\)

On the other hand, every \hat{x}_e^* related to $e \in E'$ has the lower bound $1 - 2(k - 1)/(2k - 1) = 1/(2k - 1)$ on the grounds that there exists a k-cycle C_k in G' containing e, satisfying $\hat{x}_e^* \leq 2/(2k - 1)$ and $\sum_{e \in C_k} \hat{x}_e^* \geq 1$.

$$\sum_{e \in E_{k_2}} w_e \leq (1/2) \sum_{e \in E'} w_e \leq (1/2)(2k - 1) \sum_{e \in E'} w_e \hat{x}_e^* \leq (k - \frac{1}{2}) \sum_{e \in E \setminus E_{k_2}} w_e \hat{x}_e^*.$$ \(5\)

2
Combine inequalities (12) and (13):

\[\sum_{e \in E} w_e \leq \left(k - \frac{1}{2} \right) \sum_{e \in E} w_e \hat{x}_e^* \leq \left(k - \frac{1}{2} \right) \sum_{e \in E} w_e x_e^*. \]

(6)

which completes the proof.

3 The hardness of k-cycle covering when k is even

According to Algorithm 1, we trivially derive the k approximate ratio whatever k is odd or even. In previous section, we have shown $(k - \frac{1}{2})$ approximate ratio when k is odd, but unfortunately we can’t improve the approximate ratio when k is even by using similar techniques. The following Theorem may tell us a possible reason and the hardness of the problem when k is even.

Theorem 3.1. (Paul Erdős, Arthur Stone, 1946[1]) The extremal function $ex(n; H)$ is defined to be the maximum number of edges in a graph of order n not containing a subgraph isomorphic to H.

\[ex(n; H) = \left(\frac{r - 2}{r - 1} + o(1) \right) \left(\frac{n}{2} \right) \]

(7)

where r is the color number of H.

It is known that, when H is bipartite, $ex(n; H) = o(n^2)$. Consider the special case, H is an even cycle C_k, $ex(n; C_k) = o(n^2)$ thus $\tau_k(K_n) = \left(\binom{n}{2} \right) - o(n^2)$. We have:

\[\lim_{n \to \infty} \tau_k(K_n) = \left(\frac{n}{2} \right) = 1 \]

(8)

Thus there doesn’t exist constant $0 < c < 1$ such that for every graph $G(V, E)$, $\tau_k(G) \leq cm$ holds on which is a key quality in our Algorithm 2.

4 k-clique covering

Given a weighted graph $G(V, E)$ with weight $w : E \to \mathbb{Z}^{|E|}$. A k–clique covering is an edge subset A of E such that $G - A$ has no k–clique. The problem of minimum weight of k–clique covering can be described as follows:

\[\tau_k(G_w) = \min \{ w^T x : Ax \geq 1, x \in \{0, 1\} \} \]

(9)

Where A is a k-clique-edge adjacent matrix and w is the weight vector. x represents the characteristic vector of edge. We obtain the relaxed programming of (11) as follows:

\[\min \{ w^T x : Ax \geq 1, 0 \leq x \leq 1 \} \]

(10)

We compute the optimal solution \hat{x}^* of (10) in polynomial time, then we transfer \hat{x}^* to integral vector:

\[x_e = \begin{cases}
1 & \hat{x}_e^* \geq \frac{k}{2} \\
0 & \text{o.w.}
\end{cases} \]

(11)

Obviously, x is a feasible solution of ILP (6) and $w^T x \leq \left(\binom{k}{2} \right) w^T \hat{x}^*$, which implies a $\left(\frac{k}{2} \right)$-approximation algorithm of minimum k-clique covering problem.
ALGORITHM 3: Approximation algorithm of minimum k-clique covering

Input: Weighted vector \(w \), k-clique-edge adjacent matrix \(A \)

Output: A feasible solution \(x \) of ILP (9), which reaches objective value no more than \(\left(\frac{k}{2} \right) \) times of the optimal value.

1. Solve LP (10) and get the optimal solution \(\hat{x}^* \).
2. Compute \(x \) by equation (11).

5 The \((k^2 - k - 1) / 2 \)-approximation algorithm for minimum k-clique covering problem

Similarly with Algorithm 2, we have the following approximation algorithm for minimum k-clique covering problem.

ALGORITHM 4: Approximation algorithm of k-clique covering

Input: Weighted graph \((G, w)\)

Output: A Edge set \(E_k \), which covers every k-clique in \(G \).

0. Set \(E_{k1} = \emptyset \).
1. Solve LP (2) and get the optimal solution \(\hat{x}^* \).
2. For every \(e \in E \)
3. If \(\hat{x}_e^* \geq 2 / (2k^2 - 1) \)
4. Suppose \(E' \) are these edges of all k-cliques in \(G - E_{k1} \) and let \(G' \) be a subgraph of \(G \) induced by the edge set \(E' \).
5. Using the Greedy Algorithm or Random Algorithm, we can find an approximate solution of maximum weight bipartite graph \(B = (V_1, V_2, E_B) \), which satisfies \(W(E_B) \geq (1/2)W(E') \). Set \(E_{k2} = E' \setminus E_B \).
6. Output \(E_k = E_{k1} \cup E_{k2} \).

Theorem 5.1. The Algorithm 4 has \((k^2 - k - 1) / 2 \) approximate ratio for the minimum k-clique covering problem.

Proof. Suppose \(\hat{x}^* \) and \(x^* \) are the optimal solution of LP (10) and ILP (9), respectively.

Firstly, we indicate that \(E_k \) is a k-clique covering. Actually, for every k-clique \(K_k \) in \(G \), if it doesn’t contain any edge in \(E_{k1} \), then it is a k-clique in \(G - E_{k1} \), thus it is a k-clique in \(G' \). Because \(G' - E_{k2} \) is a bipartite graph, of course, \(G' - E_{k2} \) has no k-clique (\(G' - E_{k2} \) has no triangle). Thus \(K_k \) contains some edge in \(E_{k2} \). Above all, we prove that \(E_k \) is a k-clique covering of \(G \).

Additionally, we will show the approximate ratio.

On one hand, according to the rounding regulation, we know that:

\[
\sum_{e \in E_{k1}} w_e \leq \left(\frac{k}{2} \right) - \frac{1}{2} \sum_{e \in E_{k1}} w_e \hat{x}_e^*.
\] \((12) \)

On the other hand, every \(\hat{x}_e^* \) related to \(e \in E' \) has the lower bound \(1 - 2((k^2 - 1) / (2k^2 - 1)) \) on
the grounds that there exists a k-clique K_k in G' containing e, satisfying $\hat{x}^*_e \leq \frac{1}{2}(\binom{k}{2} - 1)$ and $\sum_{e \in K_k} \hat{x}^*_e \geq 1$.

$$\sum_{e \in E_{\overline{k}}} w_e \leq \frac{1}{2} \sum_{e \in E'} w_e \leq (\frac{1}{2}) (\binom{k}{2} - 1) \sum_{e \in E'} w_e \hat{x}^*_e \leq (\frac{k}{2}) - \frac{1}{2} \sum_{e \in E \setminus E_k} w_e \hat{x}^*_e. \quad (13)$$

Combine inequalities (12) and (13):

$$\sum_{e \in E_k} w_e \leq (\frac{1}{2}) \sum_{e \in E} w_e \hat{x}^*_e \leq (\frac{k}{2}) - \frac{1}{2} \sum_{e \in E} w_e x^*_e. \quad (14)$$

which completes the proof.

\[\square \]

6 k-clique covering and k-clique packing in K_n

Given a graph $G(V, E)$, a k-clique packing is a set of edge-disjoint k-cliques in G. The problem of maximum number of k-clique packing can be described as follows:

$$\tilde{\nu}^*_k(G) = \max \{ 1^T x : A^T y \leq 1, y \in \{0, 1\} \} \quad (15)$$

It is easy to see for every graph G, $\tilde{\nu}^*_k(G) \leq \tilde{\tau}_k(G) \leq \binom{k}{2} \tilde{\nu}^*_k(G)$ holds on.

According to Theorem 3.1 the k-clique covering number of K_n is $\tilde{\tau}_k(K_n) = (1/(k - 1) - o(1)) (\frac{n}{k})$.

As for the packing number, we need the classical results in Block Design Theory.

A 2-design (or BIBD, standing for balanced incomplete block design), denoted by (v, k, λ)-BIBD, is a family of k-element subsets of X, called blocks, such that any pair of distinct points x and y in X is contained in λ blocks. Here v is number of points, number of elements of X, k is number of points in a block, λ is number of blocks containing any two distinct points. We have next famous theorem:

Theorem 6.1. (23) Given positive integers k and λ, (v, k, λ)-BIBD exist for all sufficiently large integers v for which the congruences $\lambda (v - 1) \equiv 0 \pmod{k - 1}$ and $\lambda v (v - 1) \equiv 0 \pmod{k(k-1)}$ are valid.

When $\lambda = 1$, it is easy to see $(n, k, 1)$-BIBD exists if and only if K_n contains a perfect k-clique packing, which is a k-clique packing such that every edge belongs to a k-clique. Thus the above Theorem 6.1 is equivalent to the following Theorem:

Theorem 6.2. For all sufficiently large integers n satisfying $n \equiv 1, k \pmod{k(k-1)}$, then K_n contains a perfect k-clique packing.

For all sufficiently large integers n satisfying $n \equiv 1, k \pmod{k(k-1)}$, K_n contains $\frac{n(n-1)}{k(k-1)}$ edge-disjoint k-clique. So we have $\tilde{\nu}_k(K_n) \sim \frac{n(n-1)}{k(k-1)}$ and k-clique covering number over k-clique packing number in K_n is $k/2$ when $n \to \infty$, that is:

$$\lim_{n \to \infty} \tilde{\tau}_k(K_n)/\tilde{\nu}^*_k(K_n) = \lim_{n \to \infty} (1/(k - 1) - o(1)) \left(\frac{n}{2} \right) \frac{n(n-1)}{k(k-1)} = k/2 \quad (16)$$

Recall Tuza’s Conjecture, which is related to the ratio of triangle covering number and triangle packing number:

Conjecture 6.3. (Tuza, 1981) $\tau(G) \leq 2 \nu(G)$ holds for every graph G.

For the ratio of k-clique covering number and k-clique packing number in graph G, the trivial upper bound is $\left(\frac{k}{2} \right)$. We guess there exists a upper bound between $k/2$ and $\left(\frac{k}{2} \right)$ for every graph G.

5
References

[1] A. H. Stone P. Erdös. On the structure of linear graphs. *Bulletin of the American Mathematical Society*, 52:1087–1091, 1946.

[2] Richard M. Wilson. An existence theory for pairwise balanced designs, iii: Proof of the existence conjectures. *Journal of Combinatorial Theory, Series A*, 18:71–79, 1975.

[3] Zsolt Tuza. Conjecture in: Finite and infinite sets. In *Proceedings of Colloque Mathematical Society Jnos Bolyai*, page 888. Eger, Hungary, North-Holland, 1981.