Statistical anomalies in 2011–2012 Russian elections revealed by 2D correlation analysis

Dmitry Kobak
Imperial College London, UK

Sergey Shpilkin

Maxim S. Pshenichnikov

May 1, 2014

Here we perform a statistical analysis of the official data from recent Russian parliamentary and presidential elections (held on December 4th, 2011 and March 4th, 2012, respectively). A number of anomalies are identified that persistently skew the results in favour of the pro-government party, United Russia (UR), and its leader Vladimir Putin. The main irregularities are: (i) remarkably high correlation between turnout and voting results; (ii) a large number of polling stations where the UR/Putin results are given by a round number of percent; (iii) constituencies showing improbably low or (iv) anomalously high dispersion of results across polling stations; (v) substantial difference between results at paper-based and electronic polling stations. These anomalies, albeit less prominent in the presidential elections, hardly conform to the assumptions of fair and free voting. The approaches proposed here can be readily extended to quantify fingerprints of electoral fraud in any other problematic elections.

The election data are officially available online at Russian Central Election Committee website (izbirkom.ru) detailed to a single polling station. Seven parties participated in the parliamentary elections with four of them having passed the 7% threshold; five candidates ran for president (see Methods for details). There are ∼95000 polling stations in Russia, grouped in 2744 constituencies in 83 regions. The election statistics comprises more than 109 million of registered voters with 65.7 and...
Figure 1: Summary of results by United Russia and Vladimir Putin. (A) Ballots obtained at polling stations showing a certain turnout and result of United Russia (in $1\% \times 1\%$ bins). Number of ballots is colour-coded; the cluster in the upper right corner is heavily saturated to enable other data to be visible. The black curve depicts an overall result for each turnout bin. White lines show linear fits to the black curve before and after the 50% turnout; the $R^2$ value and the regression coefficient are depicted next to each fit. (B) Total number of ballots cast for each party depending on the result at the polling station (in $0.5\%$ bins). Inset shows the Fourier power spectrum of the United Russia trace. (C) Number of ballots depending on the turnout (0.5% bins). The colour coding is the same as in (B). Dashed line shows the part of UR trace proportional to the sum of all other parties; red shading shows the difference. The UR trace is truncated at 100% turnout for the sake of clarity; the maximal value is $9.98 \times 10^6$. (D) Two-dimensional histograms for three other elected parties. Colour scale is the same as in (A). (E–H) Similar plots for the presidential elections.

71.7 million votes cast in legislative and presidential elections, respectively. United Russia (UR) won the parliamentary elections with a result of 49.31%, while Vladimir Putin defeated his rivals with a landsliding figure of 63.60%.

Figures 1A and 1E show 2D histograms of the number of ballots in favour of UR/Putin as a function of turnout and respective vote share at each polling station. Apart from the main clusters at $\sim 52%$ turnout and $\sim 30\%$ votes for UR and $\sim 60\% / 55\%$ for Putin, there are two prominent features at both plots that clearly distinguish them from other participants’ histograms (Figs. 1D,H): (i) an unusual cluster of votes in the vicinity of 95% turnout, and (ii) a long tail of votes beginning at the central peak which shows a high correlation of the results with the turnout (marked by black curves, known in 2D spectroscopy as the centre line [5]). The clusters at 90–100% turnout yield $\sim 3.5$ million ballots for the winners in both elections and can be traced back to six republics of North Caucasian Federal District, and Republics of Mordovia, Bashkortostan, and Tatarstan. In each of these nine regions, there are a number of constituencies that exhibit voting results with extremely low dispersion across polling stations, significantly lower than dispersion value imposed by binomial model (e.g., 25 constituencies with $p < 0.0001$ for parliamentary and 9 constituencies for presidential elections, see Table S1 and Methods). This suggests that the results in these constituencies were artificially fixed to certain percentage values.

It is instructive to consider a projection of the 2D histograms onto the vertical axis, which gives a distribution of the number of ballots cast for UR and Putin depending on their results at every polling station (Figs. 1B,F). The unique feature of these histograms is sharp peaks located at “round” numbers of 65%, 70%, 75% etc. The periodic character of these peaks is evident from the Fourier spectra that show prominent harmonics at $1/5\%$−1 (insets). By far the highest peak in both cases is located at 99.5% and originates solely from a single region of Chechen Republic. Other peaks can also be traced back to particular constituencies, but are usually not confined to a single region. These peaks, which are highly statistically significant (see Table 1 and Methods), comprise $\sim 1.4$ million ballots for UR and $\sim 1.3$ million ballots for Putin. The supernatu-
ral character of the peaks strongly suggests that the votes for the winners were manipulated a posteriori to fix the vote shares at appealing round values.

The second prominent feature of the 2D histogram in Figs. 1A,E is a remarkable correlation between the turnout and the result of UR (correlation coefficient of 0.68) and Putin (0.53). Note that at lower turnouts both correlations are negative, becoming positive only at turnouts higher than the position of the main clusters. The histograms for other competitors show exactly opposite behaviour: low or even positive correlation at lower turnouts and negative correlation further on (Figs. 1D,H). In general, correlation between turnout and voting results is a well-known phenomenon, observed in many countries [6]. However, dependencies as strong as found here are hard to explain without an assumption of administrative pressure and/or vote manipulation [3, 1, 2].

The correlation between turnout and voting results at the national scale could have arisen due to aggregation of widely dispersed but otherwise uncorrelated results from different territories, given large cultural and socio-economic differences between regions of Russia as well as between urban and rural areas. To address this issue, the data presented on Figs. 1A,E were decomposed into three parts: urban areas, rural areas, and the nine aforementioned republics (see Fig. S1 and Methods). Both urban and rural areas separately exhibit high correlations; further detalization to the region level shows that high correlation is not characteristic for every region but is confined to only some regions of Russia. Furthermore, in regions demonstrating high correlations, similar correlations are already observed at the level of individual constituencies (see Supplementary Information). This shows that the observed correlations are not an aggregation artifact but an internal feature of specific constituencies (see SI).

One of the most striking examples of such correlations is given by the city of Moscow where parliamentary elections resulted in an extremely high correlation between turnout and UR result (Fig. 2A). The situation was totally reversed in the presidential elections, where Putin’s result was strongly anticorrelated with the turnout (Fig. 2B). Also, the horizontal projections of the 2D histograms (which show the number of ballots as a function of turnout) acquired similar shapes for all candidates (Fig. 2D), in contrast to the parliamentary elections where the UR curve had a pronounced tail at high turnouts (Fig. 2C). Moreover, averaged standard deviation (SD) of the UR/Putin results across polling stations in each Moscow constituency decreased sharply from 12±5% (parliamentary elections, mean±s.d.) to 4±2% (presidential elections).

This drastic change in the electoral data is most naturally explained by the tight public control implemented by angry citizens in Moscow after alleged falsifications in the parliamentary elections. Moscow results demonstrate that dispersion across polling stations in each constituency can serve as yet another metrics of election anomalies. In urban constituencies one expects to find a relatively uniform voting (i.e. with low dispersion) due to population homogeneity. In both elections, there is a dense cluster of urban constituencies (Fig. 3) showing SDs of around 2–7%, which probably indicates the normal range of SDs. At the same time,
in the parliamentary elections (Fig. 3A) there are many constituencies showing much larger SDs, up to 27% (see Table S2). Furthermore, there is a strong correlation between the SD and the overall UR result (correlation coefficient 0.62), indicating that high SDs might be induced by manipulated results at some (but not all) polling stations in a constituency. In contrast, the similar data for the presidential elections (Fig. 3B) are much more confined, with the number of constituencies with SD over 10% dropping from 185 to 28. Again, the most parsimonious explanation is that in the presidential elections votes in most (but still not all) Russian cities were counted in a more fair way than in the parliamentary elections.

To estimate the amount of ballots gained by the winners due to unusually high correlation of their votes with turnout, we begin with the parliamentary elections and consider the projection of the 2D diagram (Fig. 1A) onto the horizontal axis (Fig. 1C). It looks similar to its vertical counterpart (Fig. 1B), with sharp peaks at several round percentage values and an extra maximum at large turnout. Note that, like in the Moscow case (Fig. 2C), corresponding histograms for other parties look quite different from that for UR, but very similar to each other. The part of UR histogram that is not proportional to the cumulative histogram of other parties (and is directly related to the positive correlation of UR result with turnout) can easily be separated by summing up votes for all parties except UR and rescaling the resulting curve to fit the UR curve at lower turnouts, as shown schematically in Fig. 1C. A more accurate calculation, performed individually for urban and rural parts of every region (see Table S3 and Methods), yields ~11 million votes for UR (out of total 32.4 million) associated with the turnout-UR correlation. One may speculate that this part of ballots for UR was in some way “unfair” (stuffed, fraudulently counted, or obtained in non-voluntary voting settings). If the applied procedure were entirely accurate, discarding these votes would decrease the nationwide UR result to ~39%. However, as some part of the observed correlation between UR result and turnout could have arisen naturally (due to, for instance, social conformity [7] or other confounding factors), this number probably represents an upper estimate. The similar procedure applied to the presidential elections yields a more modest result of ~7 million votes (out of total 45.6 million) for Putin, which is consistent with the increased public control and official anti-forgery measures.

Finally, at both elections, some polling stations (~5.5% nationwide) were equipped with electronic ballot boxes to scan the ballots and count votes automatically, thereby reducing possibility of human interference. Our analysis revealed (Fig. 4) that within the same constituencies UR result at the electronic polling stations was on average 7.1% lower than at the traditional paper-based ones (difference significant with $p = 10^{-51}$, see Table S4 and Methods), and Putin’s result was 4.7% lower ($p = 10^{-35}$). While it cannot be taken for granted that electronic polling stations constitute a representative sub-ensemble, these differences are fairly consistent with our estimates above.

Concluding, we have used the 2D correlation analysis to efficiently pinpoint a number of anomalies in recent Russian elections, with a short summary given by Table 1. Even though in all metrics discussed the presidential elections appear to be fairer than the parliamentary ones, various anomalies still amount to millions of ballots. While statistical analysis per se does not (and cannot) serve as
Figure 4: Correlation between winners’ results at the electronic and the paper-based polling stations at all constituencies with electronic polling stations in parliamentary (A) and presidential (B) elections. Circle areas are proportional to the number of registered voters in a constituency. Filled circles show constituencies located in the nine republics. Red circles show constituencies where UR/Putin results at electronic and paper-based polling stations are significantly different with \( p < 0.05 \) (Mann-Whitney-Wilcoxon ranksum test); blue circles show all the remaining constituencies.

a concluding proof of any possible fraud, it clearly highlights the alarming fingerprints in the voting results.

Methods

General background

Seven parties participated in the parliamentary elections: United Russia (49.3%), Communist Party (19.2%), A Just Russia (13.2%), Liberal Democratic Party (11.7%), Yabloko (3.4%), Patriots of Russia (1.0%), and Right Cause (0.6%). Five candidates participated in the presidential elections: Vladimir Putin (leader of United Russia, 63.6%), Gennady Ziuganov (Communist Party, 17.1%), Mikhail Prokhorov (independent, 7.9%), Vladimir Zhirinovsky (Liberal Democratic Party, 6.2%), and Sergey Mironov (A Just Russia, 3.9%).

Data acquisition

The raw election data are officially available at Russian Central Election Committee website (izbirkom.ru) as multiple separate HTML pages and Excel reports; the data from 95228/95416 (here and below numbers refer to the parliamentary/presidential elections) polling stations were downloaded programmatically to form a database. The accuracy of the resulting databases was verified by checking regional totals and comparing a number of randomly chosen polling stations with the respective information at the official website. The list of urban constituencies was composed by taking all 792 constituencies conforming to certain name patterns (for instance, having the word “city” in the name) and manually adding 53 obviously urban constituencies (total number of constituencies is 2744). Total number of ballots cast in these urban constituencies was 37.1/41.1 million, and 28.3/30.1 million in the remaining (“rural”) ones; additional 0.3/0.5 million ballots were collected abroad. Both election databases along with the explanatory text are available in the online supplementary materials. The nationwide lists of electronic polling stations are not officially available. Therefore, the lists of 4373/4943 polling stations with electronic ballot boxes in 72/76 regions of Russia were compiled of data gathered at the websites of regional electoral committees (e.g., st-petersburg.izbirkom.ru/etc/138_1pril.doc for St. Petersburg) and the government purchasing portal (e.g., zakupki.gov.ru/pgz/documentdownload?documentId=54880223 for Irkutsk region).

Data analysis

To plot the curves presented in Figs. 1, 2, and S1, we added an artificial white noise (uniformly distributed from −0.5 to +0.5 votes) to the number of ballots obtained by each party/candidate on each polling station \( \mathbb{N} \) and summed up the ballots within a bin of 0.5% for both turnout and result. The procedure was repeated 10 times, and the average was displayed. This eliminates possible artefact peaks associated with division of integers (for example, turnout is the ratio of two integer numbers).

Correlations

In all cases, we use Spearman’s correlation coefficients, as they are more robust to outliers than the more conventional Pearson’s ones (e.g., military or hospital polling stations often behave like outliers, with turnout close to 100%; moreover, polling stations located at the airports and train
Table 1: Anomalies in the voting data. The term koibatost is derived from a Russian name of the electronic ballot scanning device, KOIB.

stations, where turnout is not defined, are officially assigned the turnout of exactly 100%). None of our conclusions depend on this choice: we repeated all our analyses using Pearson’s correlation coefficients, and the difference was always negligible (below 5%).

Analysis of peaks

The area under the peaks in Figs.1B,F was calculated as the area between the actual curve and its smoothed version (filter cutoff frequency 0.2%−1, intervals ±2% around each peak substituted by a horizontal line segment before smoothing) in the intervals ±0.5% around each peak. The curve is quite noisy and so some peaks could have appeared by chance; assuming this as a null hypothesis, we can estimate the significance of peaks. First, standard deviation $\sigma$ was calculated as the root-mean-squared difference between the curve and its smoothed version in the interval from 30%/50% to 90% skipping intervals ±2% around peaks located at 65%, 70%, 75%, 80% and 85%, and the height of each peak $h_i$ was expressed in the resulting $\sigma$ values. The p-values were then calculated as $1 - \text{erf}(h_i/\sqrt{2})$, where erf denotes the error function. For parliamentary elections the height of the 65% peak is $\sim 9\sigma$, which corresponds to $p \approx 10^{-19}$; the product of p-values for the first 5 peaks we estimate to be at least $10^{-70}$. For presidential elections the highest peak is located at 75% and is 3.9$\sigma$ high ($p = 5 \cdot 10^{-5}$); the cumulative p-value for the same five peak positions is equal to $10^{-15}$. As we are multiplying five separate p-values, the values as low as $0.05 \approx 10^{-7}$ can still be considered not significant; p-values obtained here are many orders of magnitude lower than that.
Anomalously low variance of results per constituency

First of all, we disregarded all polling stations with less than 50 registered voters (these are mostly temporary polling stations, often located on ships, and therefore not representative of other polling stations in the same constituency), and took all 2681 constituencies with more than 5 remaining polling stations. For each of these constituencies, we estimated the standard deviation of UR/Putin shares across polling stations as median absolute deviation multiplied by 1.48 (median absolute deviation is the median of deviations from the median; for a Gaussian random variable it is 1.48 smaller than standard deviation) as a more robust alternative to calculating standard deviation directly. If \( p \) is the median share and \( n \) is the median number of ballots across polling stations in the constituency, then the standard deviation would be given by \( \sqrt{p(1-p)/n} \), assuming the purely binomial distribution of voting at every polling station with probability of each person to vote for UR/Putin being \( p \). As expected, in 97% of constituencies under consideration the observed standard deviation was larger than the binomial one, which is the case if actual value of \( p \) varies across polling stations (for instance, due to local inhomogeneities). However, in 83/87 constituencies the observed standard deviation was smaller than the binomial one.

To estimate the statistical significance for each of these 83/87 constituencies, we assume binomial voting as our null hypothesis, i.e. we assume that on a polling station where the share of votes for UR/Putin is \( p \), every person votes for UR/Putin independently with probability \( p \). Let us now define \( k \) as the number of polling stations in a constituency. We take the half of the polling stations \( k/2 \) where the UR/Putin share is closest to the median value of \( p \), and set \( p_1 \) and \( p_2 \) as the minimal and maximal share in these \( k/2 \) polling stations. The probability \( p_0 \) to obtain a result between \( p_1 \) and \( p_2 \) on a polling station with \( n \) ballots, assuming a binomial distribution of voting, can then be readily calculated as \( F(\lfloor np_2 \rfloor, n, p) - F(\lfloor np_1 \rfloor, n, p) \), where \( F \) is binomial cumulative distribution function (when \( \lfloor np_1 \rfloor \) was equal to \( \lfloor np_2 \rfloor \) we took \( \lfloor np_1 \rfloor - 1 \) instead). Finally, we calculate the \( p \)-value as the probability to get at least \( k \) successes out of \( k \) trials with probability of success being \( p_0 \), i.e. \( F(k/2, k, p_0) \). There are 25/9 constituencies with \( p < 0.0001 \) and 10/4 with \( p < 10^{-10} \). Most notably, in 8/2 of these 25/9 constituencies the observed variance is not only lower than the binomial one, but also the lowest possible: at each of these \( 5/4 \) polling stations the number of ballots in favour of UR/Putin is given by multiplying the total number of ballots by a fixed probability \( p_0 \), and rounding the result to the nearest integer number (the resulting variance is nonzero only because of this rounding). While theoretically this could have happened by chance, in reality it is extremely unlikely. All of these 25/9 constituencies are located in the aforementioned nine republics (six republics of North Caucasian Federal District, and Republics of Bashkortostan, Tatarstan and Mordovia), which justifies considering them separately.

Standard deviations in urban constituencies

The data presented in Fig. 3 are derived from all urban constituencies, with the nine republics excluded. To calculate the standard deviation in each constituency, we disregarded all polling stations with less than 1000 registered voters. Smaller polling stations, that are not typical for urban areas, are often situated in hospitals or military zones, and therefore might substantially increase the standard deviation. The 49 constituencies with less than eight remaining polling stations were also omitted as it is not possible to reliably estimate standard deviation with only few data points. This left 730 constituencies to be analysed.

Estimating the amount of votes associated with the turnout-outcome correlation

Figure 1C shows the distribution \( f \) of votes in favour of United Russia depending on the turnout, and the distribution \( g \) for the sum of votes for all other parties. Until a threshold turnout of ~50%, these two distributions are excellently proportional, \( f = \alpha g \) (with \( \alpha \) being a scale coefficient), while at higher turnouts United Russia’s distribution starts to rise. The number of additional UR ballots is thus given by \( \Sigma (f - \alpha g) \). The computation for the case of presidential elections is exactly the same.
We performed this analysis for every region, separately for urban and rural parts, each time setting the turnout threshold in such a way that 20% of all ballots come from the polling stations with this or lower turnout. This particular threshold value was chosen to reflect the turnout intervals where the number of UR ballots is still proportional to the sum of ballots for all other parties. Then $\alpha$ was found with a least-squares fit, and the amount of additional UR/Putin ballots was calculated by taking the sum starting from the threshold turnout. Seven regions belonging to North Caucasian Federal District were analysed altogether, with threshold turnout set manually to 75%. In this Federal District UR/Putin results at higher turnouts increase rapidly and cease being proportional to the sum of votes for all other parties.

**Analysis of results from electronic polling stations**

To calculate differences between UR/Putin results at paper-based and electronic polling stations, we took all 509/454 (out of 2744) constituencies that had at least two electronic and at least two paper-based stations. In 422/371 of these constituencies, the joint UR/Putin result at all traditional polling stations was higher than at all electronic ones (see Fig. S3). The mode of the difference distribution was 0.2%/0.7%, while the average difference was 7.1%/4.7%, which was significantly higher than the mode with $p = 10^{-51}/10^{-35}$ (Wilcoxon signed-rank test). The slight non-zero mode of the distribution might be due to some bias in how the electronic stations were located (e.g., in the city centres, where UR/Putin support might have been lower than in the city outskirts).

**References**

[1] V. Mikhailov. Regional elections and democratization in russia. In Cameron Ross, editor, *Russian Politics under Putin*. Manchester University Press, 2004.

[2] M.G. Myagkov, P.C. Ordershoo, and D. Shakin. The forensics of Election Fraud: Russia and Ukraine. Cambridge University Press, 2009.

[3] P. Klimek, Y. Yegorov, R. Hanel, and S. Thurner. It’s not the voting that’s democracy, it’s the counting: Statistical detection of systematic election irregularities. *Arxiv preprint arXiv:1201.3087*, 2012.

[4] P. Hamm and M. Zanni. *Concepts and Methods of 2D Infrared Spectroscopy*. Cambridge University Press, 2011.

[5] S. Roy, M. S. Pshenichnikov, and T. L. C. Jansen. Analysis of 2d cs spectra for systems with non-gaussian dynamics. *J. Phys. Chem. B.*, 115:5431, 2011.

[6] T.G. Hansford and B.T. Gomez. Estimating the electoral effects of voter turnout. *American Political Science Review*, 104:268–288, 2010.

[7] S. Coleman. The effect of social conformity on collective voting. *Polit. Anal.*, 12:76–96, 2004.

[8] R.G. Johnston, S.D. Schroder, and A.R. Mallawaratchy. Statistical artifacts in the ratio of discrete quantities. *The American Statistician*, 49:285–291, 1995.

**Acknowledgements**

We thank S.Slyusarev and B.Ovchinnikov for comments and suggestions, and A.Shipilev for providing preliminary election data on the fly. B.Ovchinnikov is especially acknowledged for drawing our attention to high dispersion across polling stations in each constituency as one of the metrics for election anomalies.
Supplementary Discussion

1. Correlation strength at different aggregation levels

Even though there is strong positive correlation between turnout and UR/Putin result in the nationwide data, in some regions this correlation is absent or even negative. In 11/20 regions (here and below: parliamentary/presidential elections) the urban part demonstrates significant ($p < 0.05$) negative correlation between turnout and UR/Putin result, and in 27/23 regions urban correlation does not significantly differ from zero ($p > 0.05$). For rural parts these numbers are 2/1 and 4/6, respectively. In general, correlation increases at higher aggregation levels: if all individual polling stations are considered, the correlation coefficient is 0.68/0.53, as stated in the main text; taking all constituencies as data points yields the result of 0.80/0.63; taking all regions — 0.82/0.69.

Intraregional correlations between turnout and UR/Putin results do not arise due to aggregation of different constituencies: these correlations can already be observed inside individual constituencies. To show that, for both urban and rural parts of every region we computed the overall correlation coefficient $R_i$ and the constituency-level correlation coefficient $Q_i$, given by computing correlation coefficients inside each constituency and averaging over constituencies. Values of $R_i$ and $Q_i$ were highly correlated with correlation coefficient of 0.85/0.89 and regression slope of 0.74/0.77. Overall, positive and significant ($p < 0.05$) correlation is present inside 46%/35% of all constituencies (in 23%/15% for $p < 0.001$), as opposed to only 3%/4% showing significant ($p < 0.05$) negative correlations.

2. Relation between high koibatost and high standard deviation on the constituency level

For urban constituencies in the parliamentary elections there is a high correlation (0.66) between standard deviation of UR results and paper-electronic difference (calculated over 264 constituencies where the data are available, see Methods). Moreover, the same constituency (in the city of Magnitogorsk) holds the top positions according to both criteria (see Tables S2 and S4, which can hardly be a coincidence. This additionally proves that high standard deviation is indeed a useful metric for election anomalies.

3. Urban-rural separation

One point of concern with the urban-rural separation is that only the polling stations from fully urban constituencies are classified as urban. As a result, “rural” part still contains numerous small towns. This might induce a spurious correlation between turnout and UR/Putin results, as smaller settlements tend to demonstrate higher turnout and higher UR/Putin results. To address this issue, we separated “rural” part of each region into two parts: large rural polling stations with the number of registered voters over 950 (mostly small towns and large villages), and small rural polling stations with the number of registered voters less than 950 (mostly small villages). The 950 threshold was chosen because the distribution of polling stations by the number of registered voters is bimodal with a node around 950. Such an approach indeed reduces “rural” turnout-UR correlations (for instance, for the parliamentary elections from 0.64 to 0.58), but the overall estimate of the number of votes associated with correlations, when computed separately for urban, large rural and small rural polling stations in each region, remains almost the same (for the parliamentary elections the number slightly decreased from 11 million to 10.5 million).

Supplementary Figures and Tables

See next page.
Region and constituency | p | Region and constituency | p
--- | --- | --- | ---
1 Republika Dagestan, Dahadaevskaja | < 10⁻¹⁵ | Republika Severnaja Osetija, Levoberezhnoj chasti g.Vladikavkaza | 2 · 10⁻¹⁴ |
2 Kabardino-Balkarskaja Republika, Prohdnenskaja | 1 · 10⁻¹⁵ | Republika Dagestan, Derbentskaja gorodskaja | 1 · 10⁻¹³ |
3 Republika Dagestan, Sulejman-Stal’skaja | 5 · 10⁻¹⁵ | Republika Dagestan, Kiziljurtovskaja | 1 · 10⁻¹² |
4 Republika Dagestan, Mahakhala, Sovetskaja | 4 · 10⁻¹⁴ | Kabardino-Balkarskaja Republika, Prohdnenskaja | 7 · 10⁻¹¹ |
5 Republika Dagestan, Babajurtovskaja | 4 · 10⁻¹³ | Republika Dagestan, Hunzahskaja | 2 · 10⁻¹⁰ |
6 Respublika Bashkortostan, Sterlitamalskaja gorodskaja | 6 · 10⁻¹³ | Republika Dagestan, Kizljarskaja | 2 · 10⁻⁹ |
7 Respublika Severnaja Osetija, Levoberezhnoj chasti g.Vladikavkaza | 2 · 10⁻¹² | Respublika Tatarstan, Zainskaja | 6 · 10⁻⁶ |
8 Respublika Dagestan, Sergokalinskaja | 2 · 10⁻¹² | Kabardino-Balkarskaja Republika, Baksanska | 3 · 10⁻⁵ |
9 Respublika Dagestan, Hunzahskaja | 6 · 10⁻¹² | Respublika Tatarstan, Nurlatskaja | 6 · 10⁻⁵ |
10 Respublika Dagestan, Kizljarskaja | 8 · 10⁻¹² | Respublika Dagestan, Bezhinskaja | 3 · 10⁻⁴ |

Table S1: Top ten constituencies with the most anomalously low dispersions

Region and constituency | p | Region and constituency | p
--- | --- | --- | ---
1 Cheljabinskaja oblast’, Magnitogorsk, Pravoberezhnaja | 27.3% | St. Petersburg, #17 | 16.3% |
2 Cheljabinskaja oblast’, Magnitogorsk, Ordzhonikidzevskaja | 26.8% | Krasnodarskij kraj, Novorossijskij, Vostochnaja | 16.0% |
3 Vladimirskaja oblast’, Vladimir, Oktjabr’skaja | 25.5% | St. Petersburg, #30 | 15.4% |
4 Moscow, rajon Gol’janovo | 23.5% | St. Petersburg, #19 | 15.2% |
5 Cheljabinskaja oblast’, Magnitogorsk, Leninskaja | 23.3% | St. Petersburg, #27 | 13.9% |
6 Moscow, rajon Severnoe Butovo | 22.4% | St. Petersburg, #2 | 13.7% |
7 Vladimirskaja oblast’, Krovovskaja gorodskaja | 22.0% | St. Petersburg, #1 | 13.5% |
8 Moscow, rajon Hamovniki | 21.8% | St. Petersburg, #11 | 12.9% |
9 Moscow, rajon Bogorodskoe | 21.7% | St. Petersburg, #24 | 12.8% |
10 Moscow, rajon Prospekt Vernadskogo | 21.3% | St. Petersburg, #29 | 12.8% |

Table S2: Top ten urban constituencies with largest standard deviations (SDs)
### 2011

| Region and constituency | Region and constituency | Koibatost |
|-------------------------|-------------------------|------------|
| Cheljabinska oblast, Magnitogorsk, Pravoberezhnaja | Cheljabinska oblast', Magnitogorsk, Ordzhonikidzevskaja | 36.8% |
| Astrahanskaja oblast, Astrahan, Leninskaja | Astrahanskaja oblast', Astrahan', Kirovskaja | 34.1% |
| Tjumenskaja oblast', Jurginskaja | Tjumenskaja oblast', Vostochnaja | 31.3% |
| Saratovskaja oblast', Petrovskaja | Saratovskaja oblast', Rtiwevskaja | 31.3% |
| Tjumenskaja oblast', Tjumen', Vostochnaja | Tjumenskaja oblast', Tjumen', Pravoberezhnaja | 31.3% |
| Republika Mordovija, Ruzaevskaja | Respublika Mordovija, Ruzaevskaja | 30.5% |

### Table S3: Top ten regions with largest amounts of correlation-related votes

| Region and constituency | Koibatost |
|-------------------------|------------|
| Cheljabinska oblast, Magnitogorsk, Pravoberezhnaja | 36.8% |
| Astrahanskaja oblast, Astrahan, Leninskaja | 34.1% |
| Tjumenskaja oblast', Magnitogorsk, Ordzhonikidzevskaja | 34.1% |
| Astrahanskaja oblast', Astrahan', Kirovskaja | 33.3% |
| Tjumenskaja oblast', Jurginskaja | 31.6% |
| Saratovskaja oblast', Petrovskaja | 31.4% |
| Saratovskaja oblast', Rtiwevskaja | 31.3% |
| Tjumenskaja oblast', Tjumen', Vostochnaja | 31.3% |
| Republika Mordovija, Ruzaevskaja | 31.0% |

### 2012

| Region and constituency | Region and constituency | Koibatost |
|-------------------------|-------------------------|------------|
| Republika Bashkortostan, Kiginskaja | Republika Bashkortostan, Belokatajskaja | 31.1% |
| Astrahanskaja oblast, Astrahan, Leninskaja | Astrahanskaja oblast', Privolzhskaja | 26.9% |
| Republika Bashkortostan, Kiginskaja | Republika Bashkortostan, Belokatajskaja | 26.1% |
| Tjumenskaja oblast', Jurginskaja | Tjumenskaja oblast', Kazanskaja | 24.5% |
| Tjumenskaja oblast', Abatskaja | Tjumenskaja oblast', Kugarchinskaja | 23.6% |
| Tjumenskaja oblast', Omutinskaja | Tjumenskaja oblast', Omutinskaja | 21.7% |
| Tjumenskaja oblast', Sorokinskaja | Respublika Mordovija, Sorokinskaja | 20.2% |

### Table S4: Top ten constituencies with largest values of koibatost. Koibatost refers to the difference between the results at paper-based and electronic polling stations.
Figure S1: Decomposition of two-dimensional histogram of UR (A–C) and Putin (D–F) votes shown in Figs. 1A,E into three parts: urban territories (A,D), rural territories (B,E), and the nine republics (C,F) that form a separate cluster at very high turnout values (see text). Black lines show overall result for each turnout bin; white numbers stand for correlation coefficients. Horizontal projections in the lower panel are analogous to Fig. 1C and show total number votes depending on the turnout (0.5% bin). Black numbers represent total number of ballots in these areas, red numbers show the amount of votes associated with turnout-result correlation. Red shading is only an illustrative sketch as the actual calculations were performed for each region separately (see text). The colour code corresponds to thousands of votes in a $1 \times 1\%$ bin. Note the shining dot in (D) at 60% turnout and 80% result that can be traced to the city of St. Petersburg and comprises $\sim$36.5 thousand votes for Putin (2.6% of the city total votes).