Morphological characteristic of local clove varieties in East Halmahera

Hermawati Cahyaningrum¹ Fredy Lala¹ Agus Polakitan² and Abdul Wahab¹
¹Assessment Institute of Agricultural Technology of North Maluku, Sofifi, North Maluku, Indonesia.
²Assessment Institute of Agricultural Technology of North Sulawesi, Manado, North Sulawesi, Indonesia.

E-mail: fredylala69@gmail.com

Abstract. The distinctive characteristics of local clove plants could be evaluated through morphological observations. The research was assessed during June - October 2019 in Talaga Jaya, South Wasile, East Halmahera. The study was conducted by survey method with the age of observed plants were more than 10 years old and which species consist of 10 productive trees, selected randomly. The research using local clove with comparative superior varieties of Afo. Leaf, flower, fruit, seed, and the symptom of blister blight disease were observed at 1 m² area on each tree. Form of the trees, stems, branches, leaves, flowers, fruits, and seeds were observed. The results showed that the characteristics morphology of local clove varieties was similar to Afo. The disease severity of blister blight in this study was mild with a 4.28% disease intensity. Morphological characteristics similar to Afo cloves and mild disease intensity of blister blight indicate that local clove varieties have the potential to be developed into new varieties.

1. Introduction
Closes (Syzygium aromaticum L. Merr& Perry) was the main plantation commodities originally from Indonesia [1], which used as an ingredient for cigarette and trade [2]. Cloves has known as a fragrant spice consist of 80% eugenol and 5% eugenic [3]. The economic rate in Southeast Asia in the 14th century increased because the Portuguese and Spanish bought cloves directly from the Maluku Islands [4]. Because of a high economic value of the clove, the farmers continue to maintain them generation to generation. High demand to the commodities was depend on the plant conditions and the flowering season. In general, the clove plantation in North Maluku was not cultivated optimally because fertilization and sanitation are not done properly.

The information of cloves diversity and types in North Maluku was limited. The diversity of clove could be done by observing the morphological characteristics on the field. The cloves in Talaga Jaya village consist of several varieties such as Afo, Zanzibar, Sikotok, and local varieties which known as superior local clove. This local varieties were similar to the other three, but if a detailed observation was carried out, it will show the morphological difference between the four types of plants. The differences can be seen from the shape of the tree, flower, fruit, flower color, leaf shape, and color of leaf [5]. This morphological character can be used to developed new varieties of cloves in the future.
The number of disease intensity from blister blight disease can be used to complete the information of local varieties. The morphological characteristics information of local varieties is important. This research needs to be done in order to determine the information including the number of blister blight disease intensity on local varieties.

2. Materials and Methods
The study was conducted by survey method with the age of observed plants were more than 10 years old and which species consist of 10 productive trees, selected randomly in the field of Talaga Jaya (0°51′45″N, 127°41′54″E), South Wasile, East Halmahera from June – October, 2019. The research using local clove with comparative superior varieties of Afo. Leaf, flower, fruit, seed, and the symptom of leaf blight disease were observed at 1 m² area on each tree [8] (n=10). Form of the trees, stems, branches, leaves, flowers, fruits, and seeds were observed. The 4th healthy leaf from shoots was selected for morphological observation [9]. The morphological character determination such as leaf, flower shape and other components based on the opinion of [5] and [10].

The disease intensity observed by the category of symptoms on each observed leaf and it was calculated using the equation given by [7] as follows:

\[
I = \frac{\sum (n \times v)}{N \times Z} \times 100\%
\]

Information:
- \(I\) = Desease Intensity (%)
- \(n\) = Number of infected leaves in each category
- \(v\) = Numerical value of leaves observed
- \(N\) = Number of leaves observed
- \(Z\) = Numeric value of highest category

3. Results and Discussion
3.1 Morphological characteristic of local superior clove varieties in East Halmahera
The height of local varieties was more than 15 m with cone (cylindrical) canopy types (Figure 1a). The main trunk divides into 2 – 3 branches with a diameter of 55 – 70 cm. High branch straight up forming an angle of 45°- 90°. It has long symmetrical oval-shaped leaves with a length of 11.2–13.5 cm and a width of 4.6 – 6.4 cm. Young leaves were light green (Figure 1b) while the older leaves were dark green (Figure 1c), leaf surface was smooth and the base of the petiole were circular red. The type of flower arrangement is medium peduncle consist of 11 – 21 flowers per stalk with weight of 6.9 – 7.4 g per flower (Figure 1d). The shape of young flower was slender and slightly funnel rednessgreen colored with length of 1.8 – 2.1 cm and 5 – 8 mm in diameter and weight of 0.2 – 0.3 g (Figure 1e). Ripe flowers are reddish yellow (Figure 1f), source of seed was ripe fruit with reddish black colored (Figure 1g), while the seeds have a creamy look (Figure 1h).
Figure 1. (a) local cloves superior tree (b) young leaf (c) old leaf (d) flowers arrangement (e) young flower (f) ripe flower (g) ripe fruit (h) flower seed

Table 1. Comparison of the morphological characters of Afo cloves with local superior.

No.	Morphology characters	Afo cloves (*)	Local superior cloves (**)
1.	Main stem	Divide	Divide
2.	Canopy tips	Cone	Cone
3.	Branching	Irregular	Irregular
4.	Leaf shape	Oval	Oval
5.	Old leaf color	Dark green	Dark green
6.	Leaf surface	Smooth	Smooth
7.	Leaf length (cm)	8.7-12.3	11.2-12.5
8.	Leaf width (cm)	3.6-4.6	4.6-6.4
9.	Flower arrangement type	Long spadix	Spadix medium
10.	Number of flowers per bunch	18-27	11-21
11.	Flower shape	Slender slightly funnel	Slender slightly funnel
12.	The young flower color	Reddish green	Reddish green
13.	Ripe flower color	Reddish yellow	Reddish yellow
14.	Flower crown shape	Round taper	Round taper
15.	Weight 100 grains of wet flowers (g)	27.05-30.23	27.30-30.20
16.	Weight of 100 grains dried flowers (g)	9.25-10.58	9.1-10.1
17.	Eugenol content (%)	70.65-73.19 (flower)	78-80 (leaf)
18.	Fruit shape	Long konis	Long konis
19.	Fruit weight (g)	3.2-3.5	2.9-3.3
20.	The young fruit color	Reddish yellow	Reddish yellow
21.	Ripe fruit color	Reddish black	Reddish black
22.	Seed shape	Long konis	Long konis
23.	Seed weight (g)	2.1-2.3	1.5-2.0
24.	Color	Dark brown-black	Cream
25.	Seed long (cm)	2.85-2.99	2.2-2.4
26.	Potential production of wet flower / trees (kg/tree/year)	87-119	39-66
27.	Potential production of dry flower / trees (kg/tree/year)	30-41	13-22
28.	Resilience Pests and Diseases	Moderately resistant	Moderately resistant

Source: (*) = Decree the Minister of Agriculture RI, No. 3680/Kpts/SR.120/11/2010.
(**) = Characterization results, 2020.
Morphological characteristics of local superior cloves become a clue of their potential and superiority in the framework of development and compounding so as to become candidates for new varieties in the future [16]. Although it does not have the potential for production such as the existing superior varieties but the morphological characters of local superior cloves are similar to those of Afo cloves (Table 1). Superior local cloves have 58.62% morphological characters that are similar with Afo cloves and two characters (length and leaf width) are greater than Afo cloves. Superior local clove in East Halmahera have the potential as a genetic resource in the development of new local varieties.

Temperature, humidity and rainfall data from the site were 27.6 °C, 82% and 2.552 mm/year [18]. Local superior cloves in East Halmahera are planted on dry land with altitude between 0 – 900 m from sea level and 200 – 600 m from sea level for flowering [15]. Rainfall is one of the factors that influence local superior clove productivity. Optimum rainfall for local superior clove growth is 1500 – 2500 mm/year [5].

3.2 Disease intensity of blister blight disease on cloves in East Halmahera
Blister blight disease of cloves is caused by Phyllosticta sp. The initial symptoms are black spots with red edges on the leaf then it became blister and malformation, severe attack cause the leaves to fall and the plant becomes bald (Figure 2). The disease severity of blister blight in this study was mild with a 4.28% disease intensity. It shows that the local superior cloves in East Halmahera have disease intensity > 0 ≤ 10% (skor 1) [17]. This information can be used for the development of new cloves varieties.

![Figure 2. Disease symptom of blister blight of cloves](image)

(a) young leaf (b) older leaf

The eugenol content of local cloves varieties in East Halmahera is quite high, ranging from 78 – 85% [11], this indicates that the plant has a good resistance to pathogen. Phenolic compound in cloves includes flavonoid, isoflavonoid and tannin. Flavonoids play a role in synthesizing chitinase and phenylalanine ammonium lyase (PAL) in plant resistance mechanism [12] as an inducer of resistance to pathogenic infection [13]. The phenolic compound will generally be produced as form of plant pathogenic infection which will be expressed especially at the infection sites [14].

4. Conclusion
Morphological characteristic and plant response against pathogenic infection can be used as information in the development of new varieties. Superior local clove in East Halmahera have the potential source as a genetic resource in the development of new local varieties.

Acknowledgments
The author wishes to thank to the Assessment Institute of Agricultural Technology of North Maluku, Ministry of Agriculture of Republic Indonesia for funding this research.
References

[1] Anonim 2016 Statistik Perkebunan Indonesia Komoditas Cengkeh 2015 – 2017 p 39
[2] Directorate General of Plantations Ministry of Agriculture of Republic Indonesia 2013 Pedoman Teknis Pengembangan Tanaman Cengkeh p 45
[3] Boughendjioua H 2018 International Research Journal of Pharmacy and Medical Sciences 1(3)26 – 28
[4] Kamatou G P, Vermaak I and Viljoen A M 2012 Molecules 17 6953 – 6981
[5] Suparman, Nurhasanah and Papuanan N 2017 Pros. Sem. Nas. Penerapan Ilmu Pengetahuan dan Teknologi p 239– 244
[6] Alfian A, Mahulette A S, Zainal, Hardin M and Bahrun A H 2019 IOP Conf. Series: Earth and Environmental Science 343 012150
[7] Herwidyarti K H, Ratih S and Sembodo D R J 2013 Jurnal Agroteknologi Tropika 1(1) 102 – 106
[8] Tresniawati C and Randriani 2016 Buletin Plasma Nutfah 17 40 – 5
[9] Ruhnayat A and Wahid 2007 Monograf Tanaman Cengkhi 2 pp 44 – 47
[10] Randriani E and Syafaruddin 2011 Buletin RISTRI 2 (3) 405 – 410
[11] Lala F, Hidayat Y, Cahyaninggrum H, Bayuaji H and Suwintono B 2019 Laporan Hasil Kajian Teknologi Peningkatan Produktivitas Tanaman Cengkeh Spesifik Lokasi Di Maluku Utara p.50
[12] Putri A O T, Hadisutrisno B and Wibowo A 2016 Jurnal Pemuliaan Tanaman Hutan 10 (2) 145 – 154
[13] Volpin H, Elkind Y, Okon Y and Kapulnik Y 1994 Plant Physiology 104: 683 – 689
[14] Agrios G N 2005 Plant pathology5th ed (USA: Elsevier Academic Press) 952 p
[15] Farwati E, Prasasti I and Effendi I 2004 Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital1 (1): 35 – 45
[16] Syukur C and Bemawie 2016 Jurnal Penelitian Tanaman Industri 2229 – 36
[17] Hartati, S.Y. 2013. Buletin Litro Vol. 23 No. 1: 42-48
[18] Badan Pusat Statistik 2019 Kondisi Iklim Kabupaten Halmahera Timur Tahun 2019 p 98