Abstract
We focus on the problem of finding an optimal strategy for a team of two players that faces an opponent in an imperfect-information zero-sum extensive-form game. Team members are not allowed to communicate during play but can coordinate before the game. In that setting, it is known that the best the team can do is sample a profile of potentially randomized strategies (one per player) from a joint (a.k.a. correlated) probability distribution at the beginning of the game. In this paper, we first provide new modeling results about computing such an optimal distribution by drawing a connection to a different literature on extensive-form correlation. Second, we provide an algorithm that computes such an optimal distribution by only using profiles where only one of the team members gets to randomize in each profile. We can also cap the number of such profiles we allow in the solution. This begets an anytime algorithm by increasing the cap. We find that often a handful of well-chosen such profiles suffices to reach optimal utility for the team. This enables team members to reach coordination through a relatively simple and understandable plan. Finally, inspired by this observation and leveraging theoretical concepts that we introduce, we develop an efficient column-generation algorithm for finding an optimal distribution for the team. We evaluate it on a suite of common benchmark games. It is three orders of magnitude faster than the prior state of the art on games that the latter can solve and it can also solve several games that were previously unsolvable.

1. Introduction
Much of the computational game theory literature has focused on finding strong strategies for large two-player zero-sum extensive-form games. In that setting, perfect game playing corresponds to playing strategies that belong to a Nash equilibrium, and such strategies can be found in polynomial time in the size of the game. Recent landmark results, such as superhuman agents for heads-up limit and no-limit Texas hold’em poker (Bowling et al., 2015; Brown & Sandholm, 2019; Moravčík et al., 2017) show that the problem of computing strong strategies in two-player zero-sum games is well understood both in theory and in practice. The same cannot be said for almost any type of strategic multi-player interaction, where computing strong strategies is generally hard in the worst case. Also, all superhuman AI gaming milestones have been in two-player zero-sum games, with the exception of multi-player no-limit Texas hold’em recently (Brown & Sandholm, 2019).

In this paper, we study adversarial team games, that is, games in which a team of coordinating (colluding) players faces an opponent. We will focus on a two-player team coordinating against a third player. Team members can plan...
jointly at will before the game, but are not allowed to communicate during the game (other than through their actions in the game). These games are a popular middle ground between two-player zero-sum games and multiplayer games (von Stengel & Kolle, 1997; Celli & Gatti, 2018). They can be used to model many strategic interactions of practical relevance. For example, how should two players colluding against a third at a poker table play? Or, how would the two defenders in Bridge (who are prohibited from communicating privately during the game) play optimally against the declarer? Even though adversarial team games are conceptually zero-sum interactions between two entities—the team and the opponent—computing optimal strategies is hard in this setting. Even finding a best-response strategy for the team given a fixed strategy for the opponent is hard (Celli & Gatti, 2018).

One might think that finding the optimal strategy for the team simply amounts to finding an optimal profile of potentially mixed (a.k.a. randomized) strategies, one strategy per team members. A solution of this type that yields maximum expected sum of utilities for the team players against a rational (that is, best-responding) opponent is known as a team-maxmin equilibrium (TME) strategy (Basilico et al., 2018; Zhang et al., 2020). In this paper, we are interested in a more powerful model. Before the game starts, the team members are able to sample a profile from a joint (a.k.a. correlated) distribution. This form of ex-ante coordination is known to be the best a team can do and comes with two major advantages. First, it offers the team larger (or equal) expected utility than TME—sometimes with dramatic gains (Celli & Gatti, 2018). Second, it makes the problem of computing the optimal team strategy convex—and thus more amenable to the plethora of convex optimization algorithms that have been developed over the past 80 years—whereas the problem of computing a TME strategy is not convex. In our model, an optimal distribution for the team is known as a team-maxmin equilibrium with coordination device (TMECor) strategy (Celli & Gatti, 2018; Farina et al., 2018). Finding a TMECor strategy is NP-hard and inapproximable (Celli & Gatti, 2018).

We propose a new formulation for the problem of finding a TMECor strategy. In doing so, we introduce the key notion of a semi-randomized correlation plan and draw connections with a particular strategy polytope defined by von Stengel & Forges (2008). Second, we propose an algorithm for computing a TMECor strategy when only a fixed number of pairs of semi-randomized correlation plans is allowed. This begets an anytime algorithm by increasing that fixed number. We find that often a handful of well-chosen semi-randomized correlation plans is enough to reach optimal utility. This enables team members to reach coordination through simple and understandable strategies. Finally, by leveraging the theoretical concepts that we introduce, we develop an efficient optimal column-generation algorithm for finding a TMECor strategy. We evaluate it on a suite of common benchmark games. It is three orders of magnitude faster than the prior state of the art on games that the latter can solve. It can also solve many games that were previously unsolvable.

2. Preliminaries: Extensive-Form Games

Extensive-form games (EFGs) are a standard model in game theory. They model games that are played on a game tree, and can capture both sequential and simultaneous moves, as well as private information. In this paper, we focus on three-player zero-sum games where two players—T1 and T2—play as a team against the opponent player, denoted by O.

Each node v in the game tree belongs to exactly one player $i \in \{T1, T2, O\} \cup \{C\}$ whose turn is to move. Player c is a special player, called the chance player. It models exogenous stochasticity in the environment, such as drawing a card from a deck or tossing a coin. The edges leaving v represent the actions available at that node. Any node without outgoing edges is called a leaf and represents an end state of the game. We denote the set of such nodes by Z. Each $z \in Z$ is associated with a tuple of payoffs specifying the payoff $u_i(z)$ of each player $i \in \{T1, T2, O\}$ at z. The product of the probabilities of all actions of c on the path from the root of the game to leaf z is denoted by $p_z(z)$.

Private information is represented via information set (infoset). In particular, the set of nodes belonging to $i \in \{T1, T2, O\}$ is partitioned into a collection I_i of non-empty sets: each $I \in I_i$ groups together nodes that Player i cannot distinguish among, given what they have observed. Necessarily, for any $I \in I_i$ and $v, w \in I$, nodes v and w must have the same set of available actions. Consequently, we denote the set of actions available at all nodes of I by A_I. As it is customary in the related literature, we assume perfect recall, that is, no player forgets what he/she knew earlier in the game. Finally, given players i and j, two infosets $I_i \in I_i, I_j \in I_j$ are connected, denoted by $I_i \Rightarrow I_j$, if there exist $v \in I_i$ and $w \in I_j$ such that the path from the root to v passes through w or vice versa.

Sequences. The set of sequences of Player i, denoted by Σ_i, is defined as $\Sigma_i := \{(I, a) : I \in I_i, a \in A_I \} \cup \{\emptyset\}$, where the special element \emptyset is called the empty sequence of Player i. The parent sequence of a node v of Player i, denoted $\sigma(v)$, is the last sequence (information set-action pair) for Player i encountered on the path from the root of the game to that node. Since the game has perfect recall, for each $I \in I_i$, nodes belonging to I share the same parent sequence. So, given $I \in I_i$, we denote by $\sigma(I) \in \Sigma_i$ the unique parent sequence of nodes in I. Additionally, we let $\sigma(I) = \emptyset$ if
Player i never acts before infoset I.

Relevant sequences. A pair of sequences $\sigma_i \in \Sigma_i$, $\sigma_j \in \Sigma_j$ is relevant if either one is the empty sequence, or if the can be written as $\sigma_i = (I_i, a_i)$ and $\sigma_j = (I_j, a_j)$ with $I_i \Rightarrow I_j$. We write $\sigma_i \bowtie \sigma_j$ to denote that they form a pair of relevant sequences. Given two players i and j, we let $\Sigma_i \bowtie \Sigma_j := \{(\sigma_i, \sigma_j) : \sigma_i \in \Sigma_i, \sigma_j \in \Sigma_j, \sigma_i \bowtie \sigma_j\}$. Similarly, given σ_i and $I_j \in I_j$, we say that (σ_i, I_j) forms a relevant sequence-information set pair $(\sigma_i \bowtie I_j)$, if $\sigma_i = \emptyset$ or if $\sigma_i = (I_i, a_i)$ and $I_i \Rightarrow I_j$.

Reduced-normal-form plans. A reduced-normal-form plan π_i for Player i defines a choice of action for every information set $I \in \mathcal{I}_i$ that is still reachable as a result of the other choices in π itself. The set of reduced-normal-form plans of Player i is denoted Π_i. We denote by $\Pi_i(I)$ the subset of reduced-normal-form plans that prescribe all actions for Player i on the path from the root to information set $I \in \mathcal{I}_i$. Similarly, given $\sigma = (I, a) \in \Sigma_i$, let $\Pi_i(\sigma) \subseteq \Pi_i(I)$ be the set of reduced-normal-form plans belonging to $\Pi_i(I)$ where Player i plays action a at I, and let $\Pi_i(\emptyset) := \Pi_i$. Finally, given a leaf $z \in Z$, we denote with $\Pi_i(z) \subseteq \Pi_i$ the set of reduced-normal-form where Player i plays so as to reach z.

Sequence-form strategies. A sequence-form strategy is a compact strategy representation for perfect-recall players in EFGs (Romanovski 1962; Koller et al. 1996). Given a player $i \in \{T1, T2, O\}$ and a normal-form strategy $\mu \in \Delta(\Pi_i)$ the sequence-form strategy induced by μ is the real vector y, indexed over $\sigma \in \Sigma_i$, defined as $y[\sigma] := \sum_{\pi \in \Pi_i(\sigma)} \mu(\pi)$. The set of sequence-form strategies that can be induced as μ varies over $\Delta(\Pi_i)$ is denoted by \mathcal{Y}_i and is known to be a convex polytope (called the sequence-form polytope) defined by a number of constraints equal to $|\mathcal{I}_i|$ (Koller et al. 1996).

3. TMECor Formulation and Prior Work

A TMECor strategy is a probability distribution μ_T over the set of randomized strategy profiles $\mathcal{Y}_{T1} \times \mathcal{Y}_{T2}$ that guarantees maximum expected utility for the team against the best-responding opponent O. Since each player has perfect recall, any randomized strategy for a player is equivalent to a distribution over reduced-normal-form pure strategies (Kuhn 1953). Hence, any distribution over profiles of randomized strategies of the team members can be expressed in an equivalent way as a distribution over deterministic strategy profiles $\Pi_{T1} \times \Pi_{T2}$. The benefit of this transformation is that $\Pi_{T1} \times \Pi_{T2}$ is a finite set, unlike $\mathcal{Y}_{T1} \times \mathcal{Y}_{T2}$. For this reason, TMECor is usually defined in the literature as a distribution over $\Pi_{T1} \times \Pi_{T2}$ without loss of generality. We will follow the same approach in our characterization.

$^1\Delta(X)$ denotes the probability simplex over the finite set X.

TMECor as a Bilinear Saddle-Point Problem. For each leaf z, let $u_T(z) := (u_{T1}(z) + u_{T2}(z))p_c(z)$. The expected utility of the team can be written as the following function of the distributions of play $\mu_T \in \Delta(\Pi_{T1} \times \Pi_{T2})$, $\mu_O \in \Delta(\Pi_O)$:

$$u_T(\mu_T, \mu_O) := \sum_{z \in Z} \hat{u}_T(z) \left(\sum_{\pi_{T1} \in \Pi_{T1}(z)} \mu_T(\pi_{T1}) \right) \left(\sum_{\pi_{T2} \in \Pi_{T2}(z)} \mu_O(\pi_{T2}) \right).$$

By definition, a team-maximin equilibrium with coordination device (TMECor) is a Nash equilibrium of the game where the team plays according to the coordinated strategy $\mu_T \in \Delta(\Pi_{T1} \times \Pi_{T2})$. In the zero-sum setting, this amounts to finding a solution of the optimization problem

$$\arg \max_{\mu_T \in \Delta(\Pi_{T1} \times \Pi_{T2})} \min_{\mu_O \in \Delta(\Pi_O)} u_T(\mu_T, \mu_O).$$

The opponent’s strategy μ_O can be compactly represented through its equivalent sequence-form representation. This is not the case for μ_T, which cannot be represented concisely through the sequence form as shown by Farina et al. (2018).

Prior algorithms. Prior work on the computation of TMECor mainly differs in the way the team’s distribution μ_T is represented. Celli & Gatti (2018) directly represent the strategy as a probability distribution over the set of joint reduced-normal-form plans $\Pi_{T1} \times \Pi_{T2}$. The number of bits required to store such a distribution is exponential in the size of the game tree in the worst case. They propose a column-generation approach in which, at each iteration, a new pair of pure strategies is added to the support of the distribution μ_T. Farina et al. (2018) show that it suffices to employ $|Z|$-dimensional vectors of realizations where each z is mapped to its probability of being reached when the team follows μ_T. A realization-form strategy is a more concise representation than the original distribution μ_T. The authors propose a structural decomposition of the problem which is then used to prove convergence of a fictitious-play-like algorithm.

4. A Formulation of TMECor Based on Extensive-Form Correlation Plans

We propose using a different representation of the correlated distribution of play μ_T, inspired by the growing body of literature on extensive-form correlated equilibria. Like the realization form by Farina et al. (2018), in our approach we represent μ_T as a vector with only a polynomial number of components. However, unlike the realization form, the number of components scales as the product of the number of sequences of the two players, which can be significantly larger than the number of leaves. This downside is amply outweighed by the following benefits. First, we show that in practice our proposed representation of μ_T enables us to
compute best responses for the team significantly faster than the prior representations. Second, in certain classes of games, we even show that our proposed representation enables the computation of a TMECor in polynomial time. This is the case, for example, in Goofspiel, a popular benchmark game in computational game theory \cite{Ross1971}.

4.1. Extensive-Form Correlation Plans

Our representation is based on the concept of extensive-form correlation plans, introduced by \cite{VonStengelForges2008} in their seminal paper on extensive-form correlation. In particular, we map the correlated distribution of play μ_T of the team to the vector ξ_T indexed over pairs of sequences $(\sigma_{T_1}, \sigma_{T_2}) \in \Sigma_{T_1} \bowtie \Sigma_{T_2}$, where each entry is defined as

$$\xi_T((\sigma_{T_1}, \sigma_{T_2}) = \sum_{(\pi_{T_1} \in \Pi_{T_1}(\sigma_{T_1}) \cap \Sigma_{T_1} \bowtie \Pi_{T_2}(\sigma_{T_2}) \cap \Sigma_{T_2})} \mu_T((\pi_{T_1}, \pi_{T_2})].$$

Here ξ_T is not indexed over all pairs of sequences $(\sigma_{T_1}, \sigma_{T_2})$—only relevant sequence pairs. While there are games in which this distinction is meaningless (that is, games in which all sequences pairs for the team members are relevant), in practice the number of relevant sequence pairs is only a tiny fraction of the total number of sequence pairs, as shown in Table 1(b).

The set of extensive-form correlation plans ξ_T that can be induced as μ_T varies over the set of all correlated distributions of play for the team members is a convex polytope. We denote it as Ξ_T and call it the polytope of correlation plans. We will recall existing results and provide new ones about the structure of Ξ_T in Section 5.

4.2. Computing a TMECor using Correlation Plans

Extensive-form correlation plans encode a superset of the information encoded by realization plans. Indeed, for all z, $\xi_T[\sigma_{T_1}(z), \sigma_{T_2}(z)] = \rho_T(z)$. Using the previous identity, we can rewrite the problem of computing a TMECor of a constant-sum game T as

$$\arg \max_{\xi_T \in \Xi_T} \min_{y_0} \sum_{z \in Z} \sum_{z \in Z} \bar{u}_T(z) \xi_T[\sigma_{T_1}(z), \sigma_{T_2}(z)] y[\sigma_0(z)].$$

By dualizing the inner linear minimization problem over y_0, we get the following proposition that shows that a TMECor can be found as the solution to a linear program (LP) with a polynomial number of variables. (All the proofs of this paper can be found in the appendix.)

Proposition 1. An extensive-form correlation plan ξ_T is a TMECor if and only if it is a solution to the LP

$$\begin{align*}
\arg & \max_{\xi_T} \min_{y_0} \sum_{z \in Z} \bar{u}_T(z) \xi_T[\sigma_{T_1}(z), \sigma_{T_2}(z)] y[\sigma_0(z)] \\
\text{subject to:} & \quad \sum_{\sigma_{T_1} \in A_{T_1}} \xi_T[\sigma_{T_1}(z), \sigma_{T_2}(z)] \sigma_{T_2}(z) = 1 \\
& \quad \sum_{\sigma_{T_1} \in A_{T_1}} \xi_T[\sigma_{T_1}(z), \sigma_{T_2}(z)] \sigma_{T_2}(z) = 1 \\
& \quad \sum_{\sigma_{T_1} \in A_{T_1}} \xi_T[\sigma_{T_1}(z), \sigma_{T_2}(z)] \sigma_{T_2}(z) = 1
\end{align*}$$

As a direct consequence of Proposition 1, a TMECor can be found in polynomial time whenever Ξ_T can be represented as the intersection of a set of polynomially many linear constraints. In Section 5 we recall when that is the case.

5. Semi-Randomized Correlation Plans and the Structure of Ξ_T

Even though Ξ_T is a convex polytope, the set of (potentially exponentially many) linear constraints that define it is not known in general. So, alternative characterizations of the set Ξ_T are needed before the LP in Proposition 1 can be solved. In this section, we recall two known results about the structure of Ξ_T and propose a new one (Proposition 3). We will use our result to arrive at two different approaches to tackle the LP of Proposition 1 in Section 6 and 7 respectively.

5.1. Containment in the von Stengel-Forges Polytope

The first result about the structure of Ξ_T has to do with a particular polytope that was introduced by \cite{VonStengelForges2008}.

Definition 1. The von Stengel-Forges polytope of the team, denoted \mathcal{V}_T, is the polytope of all vectors $\xi \in [\Sigma_{T_1} \bowtie \Sigma_{T_2}]^{\mathbb{R}_{\geq 0}}$ indexed over relevant sequence pairs that satisfy the following polynomially-sized set of linear constraints.

$$\begin{align*}
\quad & 1 \\
\quad & (I_{T_1}, a_{T_1}, a_{T_2}) = (I_{T_1}, a_{T_2}) \\
\quad & (I_{T_1}, a_{T_1}, a_{T_2}) = (I_{T_2}, a_{T_2})
\end{align*}$$

These can be interpreted as “probability mass conservation” constraints. They are interlaced sequence-form constraints.

The following result by \cite{VonStengelForges2008} is immediate from the definition of ξ_T in Ξ_T.

Proposition 2 (von Stengel &Forges (2008)). The set of extensive-form correlation plans is a subset of the von Stengel-Forges polytope. Formally, $\Xi_T \subseteq \mathcal{V}_T$.

and the corresponding polytopes O is the convex hull of the set $T_2 0 T_2 \times \ldots, \lambda \leq 1$. Furthermore, the polytopes O with $\Sigma \in O T_2$ is the convex hull $\bigcup T_2 O \in \Sigma$, which we introduce $\in \Sigma$ and $O = \text{co} (\Xi T_2, O)$.

We introduce $\in \Sigma$ and number of $O = 6$:

- $\in \Sigma$ and $O = 3$
- $\in \Sigma$ and $O = 2$
- $\in \Sigma$ and $O = 1$

For all games reported in the subtable, we chose the first two players to act as the team members. (c) The subtable reports whether the interaction of the team members is triangle-free (Farina & Sandholm, 2020), given the opponent player O.

5.2. Triangle-Freeness and Polynomial-Time Computation of TMECor

Proposition 2 shows that ΞT is a subset of the von Stengel-Forges polytope. There are games where the reverse inclusion does not hold. Farina & Sandholm (2020) gave a sufficient condition—called triangle-freeness—for the reverse inclusion to hold. We state the condition for our setting.

Definition 2 (Farina & Sandholm, 2020). The interaction of the team members T_1 and T_2 is triangle-free if, for any choice of distinct information sets $I_1, I_2 \in I_T$ with $\sigma_{T_1}(I_1) = \sigma_{T_1}(I_2)$ and any choice of distinct information sets $J_1, J_2 \in I_T$ with $\sigma_{T_2}(J_1) = \sigma_{T_2}(J_2)$, it is never the case that $(I_1 \equiv I_1) \land (I_2 \equiv I_2) \land (I_1 \equiv I_2)$.

Farina & Sandholm (2020) show that when the information structure of correlating players (in our case, the team members) is triangle-free, then $\Xi T = \nu_T$. So, when the interaction of the team is triangle-free, a TMECor can be found in polynomial time by substituting constraint 3 in the LP in Proposition 1 with the von Stengel-Forges constraints of Definition 1. As far as we are aware, this positive complexity result has not been noted before in the literature. We show in Table 1(c) that Goofspiel is triangle free (and that none of the other common benchmark games that we consider are).

5.3. Semi-Randomized Correlation Plans

We now give a third result about the structure of ΞT, which will enable us to replace Constraint 3 of Proposition 1 with something more practical. First, we introduce *semi-randomized correlation plans*, which are subsets of the von Stengel-Forges polytope of the team. They represent strategy profiles in which one of the players plays a deterministic strategy, while the other player in the team independently plays a randomized strategy. Formally, we define the set of semi-randomized correlation plans for T_1 and T_2 as

$$\Xi^{*}_{T_1} = \{ \xi \in V_T : \xi[\emptyset, \sigma_{T_2}] \in \{0, 1\} \land \sigma_{T_2} \in \Sigma_T \},$$

$$\Xi^{*}_{T_2} = \{ \xi \in V_T : \xi[\sigma_{T_1}, \emptyset] \in \{0, 1\} \land \sigma_{T_1} \in \Sigma_T \},$$

respectively. Crucially, a point $\xi \in \Xi^*_T$ for $i \in \{T_1, T_2\}$ can be expressed using real and binary variables, in addition to the linear constraints the define V (Definition 1).

With that, we can show the following structural result for the polytope of extensive-form correlation plans ΞT.

Proposition 3. In every game, ΞT is the convex hull of the set Ξ_{T_1}, or equivalently of the set Ξ_{T_2}. Formally, $\Xi_T = \text{co} \Xi_{T_1} = \text{co} \Xi_{T_2} = \text{co} (\Xi_{T_1} \cup \Xi_{T_2})$.

6. Computing TMECor with a Small Support of Semi-Randomized Plans of Fixed Size

From Proposition 3, it is known that ΞT is the convex hull of Ξ_{T_1} and Ξ_{T_2}. Furthermore, the polytopes Ξ_{T_1} and Ξ_{T_2} can be described via a number of linear constraints that is quadratic in the game size and a number of integer variables that is linear in the game size. So, we can replace Constraint 3 in Proposition 1 with the constraint that ξ_T be a convex combination of elements from Ξ_{T_1} and Ξ_{T_2}. We introduce variables $\xi^{(1)}_T, \ldots, \xi^{(n)}_T \in \Xi_{T_1} \cup \Xi_{T_2}$ and the corresponding convex combination coefficients $\lambda^{(1)}, \ldots, \lambda^{(n)}$, and replace Constraint 3 with the linear constraint $\xi_T = \sum_{i=1}^{n} \lambda^{(i)} \xi^{(i)}_T$.

Here, n is a parameter with which we can cap the number of semi-randomized correlation plans that can be included in the
strategy. This gives the following mixed integer LP:

$$\arg\max \begin{bmatrix} \frac{\epsilon_1^{(i)}, \ldots, \epsilon_n^{(i)}}{\lambda_1^{(i)}, \ldots, \lambda_n^{(i)}} \end{bmatrix} \quad \text{subject to:}

\begin{align*}
\text{constraints}\ & \text{ of Proposition 1} \\
\text{3} & \sum_{i=1}^{n} \lambda^{(i)} = \sum_{i=1}^{n} \lambda^{(i)} = \text{1, } \lambda^{(i)} \geq 0 \quad \forall i \in \{1, \ldots, n\}.
\end{align*}

The larger n is, the higher the solution value obtained, but the slower the program. We can make this into an anytime algorithm by solving the integer program for increasing values of n. By Caratheodory’s theorem, this program already yields an optimal solution to the LP in Proposition 1 when $n \geq |\Sigma_1 \times \Sigma_2| + 1$. As we show in detail in Section 8 in practice we found that near-optimal coordination can be achieved through strategies with a significantly smaller value of n. Hence, oftentimes the team does not need a large number of complex profiles of randomized strategies to play optimally: a handful of carefully selected simple strategies often result in optimal coordination.

7. A Fast Column Generation Approach

In this section, we show a different approach to solving the LP in Proposition 1—using column generation (Ford & Fulkerson 1958). First, we proceed with a seeding phase. We pick a set S containing one or more points of $\tilde{\xi}_T^{(1)}, \tilde{\xi}_T^{(2)}, \ldots, \tilde{\xi}_T^{(m)}$ that are known to belong to Ξ_T. Then, the main loop starts. First, for $i \in \{1, \ldots, |S|\}$, let

$$\beta^{(i)}(\sigma) := \frac{\tilde{u}_T(z)\xi_T^{(i)}[\sigma_T(z), \sigma_{T2}(z)]}{\forall \sigma \in \Sigma_O}.$$

Then we solve the LP of Proposition 1 where Constraint 3 has been substituted with $\xi_T^{(i)} = \in \co S$:

$$\arg\max \begin{bmatrix} \frac{\epsilon_1^{(i)}, \ldots, \epsilon_n^{(i)}}{\lambda_1^{(i)}, \ldots, \lambda_n^{(i)}} \end{bmatrix} \quad \text{subject to:}

\begin{align*}
\text{1} & \sum_{i=1}^{n} \lambda^{(i)} = \text{1, } \lambda^{(i)} \geq 0 \quad \forall i \in \{1, \ldots, n\}.
\end{align*}

This is called the master LP.

Given the solution to the master LP, a pricing problem is created. The goal of the pricing problem is to generate a new element $\xi_T^{(S)+1}$ to be added to S so as to increase the team utility in the next iteration, that is, the next solve of the master LP that then has an additional variable. This main loop of solving the larger and larger master LP keeps repeating until termination (discussed later).

1 In Constraint 3 we alternate the set of semi-randomized correlation plans (i.e., we alternate which player’s turn it is to play a deterministic strategy). Empirically, this increases the diversity of the strategies of Ξ_T that can be represented with small values of n and leads to higher utilities for the team.

2 In (*) the convex combination is among given correlation plans, while in the MIP of Section 6 the elements to combine are themselves variables.
7.1. The Pricing Problem

The pricing problem consist of finding a correlation plan \(\hat{\xi}_T \in \Xi_T \) which, if included in the convex combination computed by (\(*\)), would lead to the maximum gradient of the objective (that is, the maximum reduced cost). By exploiting the theory of linear programming duality, such a correlation plan can be computed starting from the solution of the dual of (\(*\)).

In particular, let \(\gamma \) be the \(|\Sigma_O|\)-dimensional vector of dual variables corresponding to Constraints (1) and (2) of (\(*\)), and \(\gamma' \in \mathbb{R} \) be the dual variable corresponding to Constraint (3). Then, the reduced cost of any candidate \(\hat{\xi}_T \) is

\[
c(\hat{\xi}_T) := -\gamma' + \sum_{z \in Z} \hat{u}_T(z)\hat{\xi}_T[\sigma_{T1}(z), \sigma_{T2}(z)]\gamma[\sigma_O(z)].
\]

Now comes our crucial observation. Since \(c(\hat{\xi}_T) \) is a linear function, and since from Proposition \([5]\) we know that \(\Xi_T = co \Xi_{T1} \), by convexity

\[
\max_{\xi_T \in \Xi_T} c(\hat{\xi}_T) = \max_{\xi_T \in \Xi_{T1}} c(\hat{\xi}_T).
\]

We want to solve the LP on the left hand side, but—as discussed in Section \([5]\)—the constraints defining \(\Xi_T \) are not known. The above equality enables us to solve the problem because the right hand side is a well-defined mixed integer LP (MIP). We can use a commercial solver such as Gurobi to solve it. When the objective value of the pricing problem is non-positive, there is no variable that can be added to the master LP which would increase its value. Thus, the optimal solution to the master LP is guaranteed to be optimal for the LP in Proposition \([1]\) and the main loop terminates.

7.2. Implementation Details

We further speed up the solution of the pricing problem in our implementation by the following techniques.

Seeding phase. To avoid having to go through many iterations of the main loop, each of which requires solving the pricing problem, we want to seed the master LP up front with a set of good candidate variables. While any seeding maintains optimality of the overall algorithm, seeding it with variables that are likely to be part of the optimal solution increases speed the most. We initializes the set of correlation plans \(S \) by running \(m \) iterations of a self-play no-external-regret algorithm. Specifically, we let each player run CFR+ \((\text{Tammelin et al., 2015}; \text{Bowling et al., 2015})\) and, at each iteration of that algorithm, we sample a pair of pure normal-form plans for the two team members according to the current strategies of the two players. At each iteration of that no-regret method, we set the utility of each team member to \(u_{T1} + u_{T2} \). Finally, for each pair \((\pi_{T1}, \pi_{T2}) \in \Pi_{T1} \times \Pi_{T2} \) of normal-form plans generated by that no-regret algorithm, we compute and add to \(S \) the correlation plan corresponding to the distribution \(\mu \) that assigns probability 1 to \((\pi_{T1}, \pi_{T2})\) using Eq. (2). While self-play no-regret methods guarantee convergence to Nash equilibrium in two-player zero-sum game, no guarantee is available in our setting. However, we empirically find that this seeding strategy leads to a strong initial set of correlation plans.

Linear relaxation. Before solving the MIP formulation of the pricing problem, we first try to solve its linear relaxation \(\max_{\xi_T \in \Psi_T} c(\hat{\xi}_T) \). We found that in many cases it outputs semi-randomized correlation plans, thus avoiding the overhead of having to solve a MIP.

Solution pools. Modern commercial MIP solvers such as Gurobi keep track of additional suboptimal feasible solutions (in addition to the optimal one) that were found during the process of solving a MIP. Since accessing those additional solutions is essentially free computationally, we add to \(S \) all the solutions (even suboptimal ones) that were produced in the process of solving the MIP. This can be viewed as a form of dynamic seeding and does not affect the optimality of the overall algorithm.

Termination. Because fast integer and LP solvers work with real-valued variables, near the end of the column-generation loop the new variables that are generated in the pricing problem have reduced costs that are very close to zero. It is not clear whether they are actually positive or zero. Therefore, we set the numeric tolerance so that we stop the column-generation loop if the value of the pricing problem solution is less than \(10^{-6} \).

Dual values. To obtain the dual values used in the pricing problem, we do not need to formulate and solve a dual LP as modern LP solvers already keep track of dual values.

8. Experimental Evaluation

We computationally evaluate the algorithms proposed in Section \([6]\) and Section \([7]\). We test on the common parametric games shown in Table \([1]\). Appendix \([8]\) provides additional detail about the games. We ran the experiments on a machine with a 16-core 2.40GHz CPU and 32GB of RAM. We used Gurobi 9.0.3 to solve LPs and MIPs.

Small-Supported TMECor in Practice. Table \([2]\) describes the maximum expected utility that the team can obtain by limiting the support of its distribution to \(n \in \{1, 2, 3\} \) semi-randomized correlation plans. Columns denoted by \(n = \infty \) show the optimal expected utility of the team at the TMECor (without any limit on the support size). We ran experiments with the opponent as the first \((O = 1)\), second \((O = 2)\), and third player \((O = 3)\) of each game. In all the games, distributions with as few as two or three semi-randomized coordination plans gave the team near-optimal expected utility. Moreover, in several games, one or two
Table 3: (a) Runtime comparison between our algorithm, FTP, and CG-18. The seeded version of our algorithm runs $m = 1000$ iterations of CFR+ (Section 7.2), while the non seeded version runs $m = 1$. ‘†’: since the TMECor value for the game is exactly zero, we measure how long it took the algorithm to find a distribution with expected value at least $-\epsilon/10$ for the team. (b) Number of times the pricing problem for our column-generation algorithm was solved to optimality by the linear relaxation (‘Relax’) and by the MIP solver (‘MIP’) when using our column-generation algorithm. (c) Quality of the initial strategy of the team obtained for varying sizes of S compared to the expected utility of the team at the TMECor. ‘oom’: out of memory.

Game	Ours	Fictitious Team Play (FTP)	CG-18									
	Seeded	Not seeded	$\epsilon = 50\%$	$\epsilon = 10\%$	$\epsilon = 1\%$	Team utility after seeding	Team utility after seeding					
	ϵ	ρ	μ	λ	ν	σ	η	ζ	δ	γ		
[A]	1ms	1ms	2s	10s	11ms	175ms	1	0	-0.500	0	0	0
[B]	1ms	34ms	3m	52s	37m	51s	6h	6h	6h	6h	6h	6h
[C]	17.20s	18.61s	4h	42m	> 6h							
[D]	267ms	682ms	50s	5ms	9m	21s	6h	6h	6h	6h	6h	6h
[E]	1.34s	1.77s	2h	51s	2h	82m	6h	6h	6h	6h	6h	6h
[F]	1m 41s	11m 22s	> 6h									
[G]	> 6h											
[H]	5m 20s	5m 53s	> 6h									
[I]	1h 30m	1h 44m	> 6h									
[J]	11m 08s	14m 49s	> 6h									

(a) — Comparison of run times
(b) (c)
the team members gets to randomize in each profile. We can cap the number of such profiles we allow in the solution. This begets an anytime algorithm by increasing the cap. Moreover, we showed that often a handful of well-chosen such profiles suffices to reach optimal utility for the team. Inspired by this observation and leveraging theoretical concepts that we introduced, we developed an efficient column-generation algorithm for finding an optimal strategy for the team. We tested our algorithm on a suite of standard games, showing that it is three order of magnitudes faster than the state of the art and also solves many games that were previously intractable.

Broader Impact

Enabling the computation of strong, game-theoretic strategies for imperfect-information adversarial team games has complex effects. Such technology could be used by a team of malicious players to exploit an interaction or a specific opponent. On the other hand, the technology could also be used defensively, to play in such a way as to minimize the value that can be extracted from the agent herself. Whether the technology has a positive or negative societal impact (or none) varies depending on the nature of the imperfect-information interaction and the way the technology is implemented. We believe that publishing the algorithm increases its dissemination, thereby helping even the playing field between educated expert players and ones who might be less privileged and could thus benefit more from algorithmic strategy support.

Acknowledgments

This material is based on work supported by the National Science Foundation under grants IIS-1718457, IIS-1617590, IIS-1901403, and CCF-1733556, and the ARO under awards W911NF-17-1-0082 and W911NF2010081. Gabriele Farina is supported by a Facebook fellowship.

References

Basilico, N., Celli, A., Nittis, G. D., and Gatti, N. Teammaxmin equilibrium: efficiency bounds and algorithms. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 356–362, 2017.

Bowling, M., Burch, N., Johanson, M., and Tammelin, O. Heads-up limit hold’em poker is solved. Science, 347 (6218), January 2015.

Brown, G. W. Iterative solutions of games by fictitious play. In Koopmans, T. C. (ed.), Activity Analysis of Production and Allocation, pp. 374–376. John Wiley & Sons, 1951.

Brown, N. and Sandholm, T. Superhuman AI for multiplayer poker. Science, 365(6456):885–890, 2019.

Celli, A. and Gatti, N. Computational results for extensive-form adversarial team games. In AAAI Conference on Artificial Intelligence (AAAI), pp. 965–972, 2018.

Farina, G. and Sandholm, T. Polynomial-time computation of optimal correlated equilibria in two-player extensive-form games with public chance moves and beyond. In ArXiv preprint, 2020.

Farina, G., Celli, A., Gatti, N., and Sandholm, T. Ex ante coordination and collusion in zero-sum multi-player extensive-form games. In Advances in Neural Information Processing Systems, pp. 9638–9648, 2018.

Ford, L. R. and Fulkerson, D. R. A suggested computation for the maxmin equilibrium: efficiency bounds and algorithms. Management Science, 5(1):97–103, 1958. doi: 10.1287/mnsc.5.1.97.

Koller, D., Megiddo, N., and von Stengel, B. Efficient computation of equilibria for extensive two-person games. Games and Economic Behavior, 14(2), 1996.

Kuhn, H. W. A simplified two-person poker. In Kuhn, H. W. and Tucker, A. W. (eds.), Contributions to the Theory of Games, volume 1 of Annals of Mathematics Studies, 24, pp. 97–103. Princeton University Press, Princeton, New Jersey, 1950.

Kuhn, H. W. Extensive games and the problem of information. In Kuhn, H. W. and Tucker, A. W. (eds.), Contributions to the Theory of Games, volume 2 of Annals of Mathematics Studies, 28, pp. 193–216. Princeton University Press, Princeton, NJ, 1953.

Lancot, M., Waugh, K., Zinkevich, M., and Bowling, M. Monte Carlo sampling for regret minimization in extensive games. In Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS), 2009.

Lišý, V., Lancot, M., and Bowling, M. Online Monte Carlo counteरfactual regret minimization for search in imperfect information games. In Proceedings of the 2015 international conference on autonomous agents and multiagent systems, pp. 27–36, 2015.

Moravčík, M., Schmid, M., Burch, N., Lišý, V., Morrill, D., Bard, N., Davis, T., Waugh, K., Johanson, M., and Bowling, M. Deepstack: Expert-level artificial intelligence in heads-up no-limit poker. Science, May 2017.

Romanovskii, I. Reduction of a game with complete memory to a matrix game. Soviet Mathematics, 3, 1962.

Ross, S. M. Goofspielthe game of pure strategy. Journal of Applied Probability, 8(3):621–625, 1971.
Southey, F., Bowling, M., Larson, B., Piccione, C., Burch, N., Billings, D., and Rayner, C. Bayes’ bluff: Opponent modelling in poker. In *Proceedings of the 21st Annual Conference on Uncertainty in Artificial Intelligence (UAI)*, July 2005.

Tammelin, O., Burch, N., Johanson, M., and Bowling, M. Solving heads-up limit Texas hold’em. In *Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI)*, 2015.

von Stengel, B. Efficient computation of behavior strategies. *Games and Economic Behavior*, 14(2):220–246, 1996.

von Stengel, B. and Forges, F. Extensive-form correlated equilibrium: Definition and computational complexity. *Mathematics of Operations Research*, 33(4):1002–1022, 2008.

von Stengel, B. and Koller, D. Team-maxmin equilibria. *Games and Economic Behavior*, 21(1–2):309–321, 1997.

Zhang, Y. and An, B. Computing team-maxmin equilibria in zero-sum multiplayer extensive-form games. In *AAAI Conference on Artificial Intelligence (AAAI)*, pp. 2318–2325, 2020a.

Zhang, Y. and An, B. Converging to team-maxmin equilibria in zero-sum multiplayer games. In *International Conference on Machine Learning (ICML)*, 2020b.
A. Theoretical Details

A.1. Representing Distributions of Play via Extensive-Form Correlation Plans

As mentioned in the body, every distribution over randomized strategy profiles for the team members is equivalent to a different distribution over deterministic strategy profiles by means of Kuhn's theorem [Kuhn 1953], one of the most fundamental results about extensive-form game playing. Specifically, given two independent mixed strategies \(y_{T1} \in \mathcal{Y}_{T1} \) and \(y_{T2} \in \mathcal{Y}_{T2} \) for the team members, let \(\mu_{T1} \) and \(\mu_{T2} \) be the distributions over normal-form plans \(\Pi_{T1}, \Pi_{T2} \) equivalent to \(y_{T1} \) and \(y_{T2} \), respectively. Then, the distribution \(\Pi_{T1} \times \Pi_{T2} \) over randomized strategy profiles that assigns probability 1 to \((y_{T1}, y_{T2})\) is equivalent to the product distribution of \(\mu_{T1} \) and \(\mu_{T2} \), that is, the distribution \(\Pi_{T1} \times \Pi_{T2} \) picks a generic profile \((\pi_{T1}, \pi_{T2})\) with probability \(\pi_{T1} \times \pi_{T2} \). The reverse is also true: a product distribution over \(\Pi_{T1} \times \Pi_{T2} \) is equivalent to a distribution over randomized profiles that picks exactly one profile with probability 1.

We now show that a similar result holds when the distribution over normal-form plans is represented as an extensive-form correlation plan.

Definition 3. Let \(\xi_T \in \mathcal{V} \) be a vector in the von Stengel-Forges polytope. We say that \(\xi_T \) is a product correlation plan if \(\xi_T[\sigma_{T1}, \sigma_{T2}] = \xi_T[\sigma_{T1}, \emptyset] \cdot \xi_T[\emptyset, \sigma_{T2}] \) for all \((\sigma_{T1}, \sigma_{T2}) \in \Sigma_{T1} \times \Sigma_{T2} \).

Lemma 1. A product correlation plan is always an element of \(\Xi_T \).

Proof. Let \(\xi_T \) be a product correlation plan. Since by definition, \(\xi_T \in \mathcal{V} \), the vectors \(y_{T1}, y_{T2} \) indexed over \(\Sigma_{T1} \) and \(\Sigma_{T2} \), respectively, and defined as \(y[\sigma_{T1}] = \xi_T[\sigma_{T1}, \emptyset], y[\sigma_{T2}] = \xi_T[\emptyset, \sigma_{T2}] \) are sequence-form strategies. By Kuhn's theorem, there exist distributions \(\mu_{T1}, \mu_{T2} \) over \(\Pi_{T1} \) and \(\Pi_{T2} \), respectively, such that

\[
y[\sigma_{T1}] = \sum_{\pi_{T1} \in \Pi_{T1}(\sigma_{T1})} \mu_{T1}[\pi_{T1}] \quad \forall \sigma_{T1} \in \Sigma_{T1}, \tag{3}
\]
\[
y[\sigma_{T2}] = \sum_{\pi_{T2} \in \Pi_{T2}(\sigma_{T2})} \mu_{T2}[\pi_{T2}] \quad \forall \sigma_{T2} \in \Sigma_{T2}. \tag{4}
\]

Consider the distribution \(\mu_T \) over \(\Pi_{T1} \times \Pi_{T2} \) defined as the product distribution \(\mu_{T1} \otimes \mu_{T2} \), that is, \(\mu_T[\pi_{T1}, \pi_{T2}] := \mu_{T1}[\pi_{T1}] \cdot \mu_{T2}[\pi_{T2}] \) for all \((\pi_{T1}, \pi_{T2}) \in \Pi_{T1} \times \Pi_{T2} \). We will show that is the extensive-form correlation plan corresponding to \(\mu_T \) according to \((2) \), that is,

\[
x_T[\sigma_{T1}, \sigma_{T2}] := \sum_{\pi_{T1} \in \Pi_{T1}(\sigma_{T1}), \pi_{T2} \in \Pi_{T2}(\sigma_{T2})} \mu_T[\pi_{T1}, \pi_{T2}]
\]

for all \((\sigma_{T1}, \sigma_{T2}) \in \Sigma_{T1} \times \Sigma_{T2} \). Indeed, using the fact that \(\xi_T \) is a product correlation plan together with \((3) \) and \((4) \):

\[
x_T[\sigma_{T1}, \sigma_{T2}] = \xi_T[\sigma_{T1}, \emptyset] \cdot \xi_T[\emptyset, \sigma_{T2}]
\]
\[
= y_{T1}[\sigma_{T1}] \cdot y_{T2}[\sigma_{T2}]
\]
\[
= \left(\sum_{\pi_{T1} \in \Pi_{T1}(\sigma_{T1})} \mu_{T1}[\pi_{T1}] \right) \left(\sum_{\pi_{T2} \in \Pi_{T2}(\sigma_{T2})} \mu_{T2}[\pi_{T2}] \right)
\]
\[
= \sum_{\pi_{T1} \in \Pi_{T1}(\sigma_{T1}), \pi_{T2} \in \Pi_{T2}(\sigma_{T2})} \mu_{T1}[\pi_{T1}] \cdot \mu_{T2}[\pi_{T2}]
\]
\[
= \sum_{\pi_{T1} \in \Pi_{T1}(\sigma_{T1}), \pi_{T2} \in \Pi_{T2}(\sigma_{T2})} \mu_T[\pi_{T1}, \pi_{T2}].
\]

This concludes the proof. \(\square \)

Lemma 2. An extensive-form correlation plan is equivalent to a distribution of play for the team that picks one profile of randomized strategies \((y_{T1}, y_{T2}) \in \mathcal{Y}_{T1} \times \mathcal{Y}_{T2}\) if and only if \(\xi_T \) is a product correlation plan. Furthermore, when that is the case, \(y_{T1}[\sigma_{T1}] = \xi_T[\sigma_{T1}, \emptyset], y_{T2}[\sigma_{T2}] = \xi_T[\emptyset, \sigma_{T2}] \) for all \(\sigma_{T1} \in \Sigma_{T1}, \sigma_{T2} \in \Sigma_{T2} \).

Proof. The proof of Lemma 1 already shows that when \(\xi_T \) is a product correlation plan, it is equivalent to playing according to the distribution of play for the team with singleton support \((y_{T1}, y_{T2})\), where \(y_{T1}[\sigma_{T1}] = \xi_T[\sigma_{T1}, \emptyset], y_{T2}[\sigma_{T2}] = \xi_T[\emptyset, \sigma_{T2}] \) for all \(\sigma_{T1} \in \Sigma_{T1}, \sigma_{T2} \in \Sigma_{T2} \). So, the only statement that remains to prove is that distributions \(\mu_T \) over randomized strategy profiles for the team members with a singleton support are mapped (Eq. \((2) \)) to product correlation plans.

Let \(\{(y_{T1}, y_{T2})\} \subseteq \mathcal{Y}_{T1} \times \mathcal{Y}_{T2} \) be the (singleton) support of \(\mu_T \), and let \(\mu_{T1}, \mu_{T2} \) be distributions over \(\Pi_{T1} \) and \(\Pi_{T2} \), respectively, equivalent to \(y_{T1} \) and \(y_{T2} \). Then,

\[
y[\sigma_{T1}] = \sum_{\pi_{T1} \in \Pi_{T1}(\sigma_{T1})} \mu_{T1}[\pi_{T1}] \quad \forall \sigma_{T1} \in \Sigma_{T1}, \tag{5}
\]
\[
y[\sigma_{T2}] = \sum_{\pi_{T2} \in \Pi_{T2}(\sigma_{T2})} \mu_{T2}[\pi_{T2}] \quad \forall \sigma_{T2} \in \Sigma_{T2}. \tag{6}
\]

Since by assumption the two team members sample strategies independently, their equivalent distribution of play over deterministic strategies is the product distribution \(\mu_T := \mu_{T1} \otimes \mu_{T2} \). Using \((2) \), \(\mu_T \) has a representation as extensive-form
correlation plan given by
\[
\xi_T[\sigma_{T1}, \sigma_{T2}] = \sum_{\pi_{T1} \in \Pi_{T1}(\sigma_{T1})} \sum_{\pi_{T2} \in \Pi_{T2}(\sigma_{T2})} \mu_{T1}[\pi_{T1}] \cdot \mu_{T2}[\pi_{T2}]
\]
for all \((\sigma_{T1}, \sigma_{T2}) \in \Sigma_{T1} \times \Sigma_{T2}\). In particular, choosing \(\sigma_{T2} = \emptyset\) in (7), and using the fact that \(y_{T2}[\emptyset] = 1\), we obtain
\[
\xi_T[\sigma_{T1}, \emptyset] = y_{T1}[\sigma_{T1}] \quad \forall \sigma_{T1} \in \Sigma_{T1}.
\]
Similarly,
\[
\xi_T[\emptyset, \sigma_{T2}] = y_{T2}[\sigma_{T2}] \quad \forall \sigma_{T2} \in \Sigma_{T2}.
\]
Substituting the last two equalities into (7) we can write
\[
\xi_T[\sigma_{T1}, \sigma_{T2}] = \xi_T[\sigma_{T1}, \emptyset] \cdot \xi_T[\emptyset, \sigma_{T2}]
\]
for all \((\sigma_{T1}, \sigma_{T2}) \in \Sigma_{T1} \times \Sigma_{T2}\). That, together with the inclusion \(\Xi_T \subseteq \mathcal{V}\), shows that \(\xi_T\) is a product correlation plan.

\section*{Semi-randomized correlation plans are product plans}

In the body we mentioned that semi-randomized correlation plans correspond to a distribution of play where one team member plays a deterministic strategy and the other team member plays a randomized strategy. We now give more formal grounding that that assertion.

\textbf{Lemma 3.} Let \(\xi_T \in \Xi_{T1}^* \cup \Xi_{T2}^*\) be a semi-randomized plan. Then, \(\xi_T\) is a product plan.

We reuse some ideas that already appeared in Farina & Sandholm (2020) to prove Lemma 3. In particular, in the proof we will make use of the following lemma.

\textbf{Lemma 4 (Farina & Sandholm (2020, Lemma 6)).} Let \(\xi_T \in \mathcal{V}\). For all \(\sigma_{T1} \in \Sigma_{T1}\) such that \(\xi_T[\sigma_{T1}, \emptyset] = 0\), \(\xi_T[\sigma_{T1}, \sigma_{T2}] = 0\) for all \(\sigma_{T2} \in \Sigma_{T2}: \sigma_{T1} \bowtie \sigma_{T2}\). Similarly, for all \(\sigma_{T2} \in \Sigma_{T2}\) such that \(\xi_T[\emptyset, \sigma_{T2}] = 0\), \(\xi_T[\sigma_{T1}, \sigma_{T2}] = 0\) for all \(\sigma_{T1} \in \Sigma_{T1}: \sigma_{T1} \bowtie \sigma_{T2}\).

\textbf{Proof of Lemma 3} We will only show the proof for the case \(\xi_T \in \Xi_{T1}^*\). The other case \(\xi_T \in \Xi_{T2}^*\) is symmetric.

To show that
\[
\xi_T[\sigma_{T1}, \sigma_{T2}] = \xi_T[\sigma_{T1}, \emptyset] \cdot \xi_T[\emptyset, \sigma_{T2}]
\]
for all \((\sigma_{T1}, \sigma_{T2}) \in \Sigma_{T1} \bowtie \Sigma_{T2}\), we perform induction on the depth of the sequence \(\sigma_{T2}\). The depth \(\text{depth}(\sigma_{T2})\) of a generic sequence \(\sigma_{T2} = (J, b) \in \Sigma_{T2}\) of Player \(i\) is defined as the number of actions that Player \(T2\) plays on the path from the root of the tree down to action \(b\) at information set \(J\), included. Conventionally, we let the depth of the empty sequence be 0.

The base case for the induction proof corresponds to the case where \(\sigma_{T2}\) has depth 0, that is, \(\sigma_{T2} = \emptyset\). In that case, the theorem is clearly true, because \(\xi_T[\emptyset, \emptyset] = 1\) as part of the von Stengel-Forges constraints (Definition 1).

Now, suppose that the statement holds as long as \(\text{depth}(\sigma_{T2}) \leq d\). We will show that the statement will hold for any \((\sigma_{T1}, \sigma_{T2}) \in \Sigma_{T1} \bowtie \Sigma_{T2}\) such that \(\text{depth}(\sigma_{T2}) \leq d + 1\). Indeed, consider \((\sigma_{T1}, \sigma_{T2}) \in \Sigma_{T1} \bowtie \Sigma_{T2}\) such that \(\sigma_{T2} = (J, b)\) with \(\text{depth}(\sigma_{T2}) = d + 1\).

There are only two possible cases:

- **Case 1:** \(\xi_T[\emptyset, \sigma_{T2}] = 0\). From Lemma 3, \(\xi_T[\sigma_{T1}, \sigma_{T2}] = 0\) and the statement holds.

- **Case 2:** \(\xi_T[\emptyset, \sigma_{T2}] = 1\). From the von Stengel-Forges constraints, \(\xi_T[\emptyset, (J, b')] = 1 + \sum_{b' \in A_J} \xi_T[\emptyset, (J, b')] \geq 1\). Hence, because all entries of \(\xi_T[\emptyset, \sigma_{T2}]\) are in \(\{0, 1\}\) by definition of \(\Xi_T\), it must be \(\xi_T[\emptyset, (J, b')] = 1\) and \(\xi_T[\emptyset, (J, b')] = 0\) for all \(b' \in A_J, b' \neq b\).

Using the inductive hypothesis, we have that
\[
\xi_T[\sigma_{T1}, (J, b')] = \xi_T[\sigma_{T1}, \emptyset] \cdot \xi_T[\emptyset, (J, b')] = \xi_T[\sigma_{T1}, \emptyset] \cdot \xi_T[\emptyset, \sigma_{T2}]
\]
for all \(\sigma_{T1} \bowtie (J, b')\). On the other hand, since \(\xi_T[\emptyset, (J, b')] = 0\) for all \(b' \in A_J, b' \neq b\), from Lemma 3 we have that
\[
\xi_T[\sigma_{T1}, (J, b')] = 0 \quad \forall \sigma_{T1} \bowtie (J, b').
\]
Hence, summing over all \(b' \in A_J\) and using the von Stengel-Forges constraints, we get
\[
\xi_T[\sigma_{T1}, \emptyset] = \sum_{b' \in A_J} \xi_T[\sigma_{T1}, (J, b')] = \xi_T[\sigma_{T1}, \sigma_{T2}]
\]
for all \(\sigma_{T1} \bowtie (J, b)\). This concludes the proof by induction.

So, from Lemma 3 it follows that semi-randomized plans correspond to distributions of play over randomized profiles with the singleton support \((y_{T1}, y_{T2}) \in \mathcal{V}_{T1} \times \mathcal{V}_{T2}\). Furthermore, because of the second part of Lemma 2 when \(\xi_T \in \Xi_{T1}^*, y_{T2}[\sigma_{T2}] \in \{0, 1\}\) for all \(\sigma_{T2} \in \Sigma_{T2}\), which means that \(y_{T2}\) is a deterministic strategy for Player \(T2\) (a similar statement holds for \(\xi_T \in \Xi_{T2}^*\)).
Convex combinations of product plans Both of the algorithms we presented in the paper ultimately produce an extensive-form correlation plan ξ_T that is a convex combination of semi-randomized plans $\xi_T^{(1)}, \ldots, \xi_T^{(n)}$, that is,
of the form

$$\xi_T = \lambda^{(1)} \xi_T^{(1)} + \ldots + \lambda^{(n)} \xi_T^{(n)}$$

for $\lambda^{(i)} \geq 0$ such that $\lambda^{(1)} + \ldots + \lambda^{(n)} = 1$. Since semi-randomized correlation plans are product correlation plans (Lemma 3), from Lemma 2 each $\xi_T^{(i)}$ is equivalent to the team playing a single profile of randomized strategies $(y_{1i}^{(i)}, y_{2i}^{(i)}) \in \mathcal{Y}_{1i} \times \mathcal{Y}_{2i}$ with probability 1. By linearity, it is immediate to show that ξ_T is equivalent to playing according to the distribution over randomized strategies for the team that picks $(y_{1i}^{(i)}, y_{2i}^{(i)})$ with probability $\lambda^{(i)}$.

A.2. TMECor Formulation Based on Extensive-Form Correlation Plans

Proposition 1. An extensive-form correlation plan ξ_T is a TMECor if and only if it is a solution to the LP

$$\arg \max_{\xi_T} \quad v_{\emptyset}, \quad \text{subject to:}$$

1. $v_I - \sum_{I' \in \mathcal{I}_O} \sum_{\sigma_0(I') = (I,a)} \hat{u}_T(z) \xi_T[\sigma_T(z), \sigma_{T2}(z)] \leq \sum_{\sigma_0(z) = (I,a)} \hat{u}_T(z) \xi_T[\sigma_T(z), \sigma_{T2}(z)]$
2. $v_{\emptyset} - \sum_{I' \in \emptyset} \sum_{\sigma_0(I') = \emptyset} \hat{u}_T(z) \xi_T[\sigma_T(z), \sigma_{T2}(z)] \leq \sum_{\sigma_0(z) = \emptyset} \hat{u}_T(z) \xi_T[\sigma_T(z), \sigma_{T2}(z)]$
3. v_{\emptyset} free, v_I free $\quad \forall I \in \mathcal{I}_O$
4. $\xi_T \in \Xi_T$.

Proof. We follow the steps mentioned in the body, starting from the bilinear saddle point problem formulation of the problem of computing a TMECor strategy for the team:

$$\arg \max_{\xi_T} \min_{\mathcal{Y}_O} \sum_{z \in \mathcal{Z}} \hat{u}_T(z) \xi_T[\sigma_T(z), \sigma_{T2}(z)] y[\sigma_0(z)].$$

Expanding the constraint $y_0 \in \mathcal{Y}_O$ using the sequence-form constraints (Koller et al., 1996; von Stengel, 1996), the inner minimization problem is

$$\min_{y_0} \sum_{z \in \mathcal{Z}} \hat{u}_T(z) \xi_T[\sigma_T(z), \sigma_{T2}(z)] y[\sigma_0(z)]$$

Subject to:
1. $-y[I] + \sum_{a \in A_I} y_0[(I,a)] = 0 \quad \forall I \in \mathcal{I}_O$
2. $y_0[\emptyset] = 1$
3. $y_0[\sigma_0] \geq 0 \quad \forall \sigma_0 \in \Sigma_0$.

Introducing the free dual variables $\{v_I : I \in \mathcal{I}_O\}$ for Constraint 1, and the free dual variable v_{\emptyset} for Constraint 2, we obtain the dual linear program

$$\max_{v_{\emptyset}, v_I} \quad v_{\emptyset}, \quad \text{subject to:}$$

1. $v_I - \sum_{I' \in \mathcal{I}_O} \sum_{\sigma_0(I') = (I,a)} \hat{u}_T(z) \xi_T[\sigma_T(z), \sigma_{T2}(z)] \leq \sum_{\sigma_0(z) = (I,a)} \hat{u}_T(z) \xi_T[\sigma_T(z), \sigma_{T2}(z)]$
2. $v_{\emptyset} - \sum_{I' \in \emptyset} \sum_{\sigma_0(I') = \emptyset} \hat{u}_T(z) \xi_T[\sigma_T(z), \sigma_{T2}(z)] \leq \sum_{\sigma_0(z) = \emptyset} \hat{u}_T(z) \xi_T[\sigma_T(z), \sigma_{T2}(z)]$
3. v_{\emptyset} free, v_I free $\quad \forall I \in \mathcal{I}_O$.

So, ξ_T is a TMECor if and only if it is a solution of $\max_{\xi_T \in \Xi_T} (D)$, which is exactly the statement.

A.3. Semi-Randomized Correlation Plans

Proposition 3. In every game, Ξ_T is the convex hull of the set Ξ_{T1}, or equivalently of the set Ξ_{T2}. Formally, $\Xi_T = \text{co} \Xi_{T1} = \text{co} \Xi_{T2} = \text{co} (\Xi_{T1} \cup \Xi_{T2})$.

Proof. We will show that $\Xi_T = \text{co} \Xi_{T1}$. The proof that $\Xi_T = \text{co} \Xi_{T2}$ is symmetric.

We will break the proof of $\Xi_T = \text{co} \Xi_{T1}$ into two parts:

1. In the first part of the proof, we argue that $\text{co} \Xi_{T1} \subseteq \Xi_T$. This is straightforward: from Lemma 3 we know that all elements of Ξ_{T1} are product correlation plans (Definition 3), which implies that $\Xi_{T1} \subseteq \Xi_T$ by Lemma 1. Since convex hulls preserve inclusions, we have $\text{co} \Xi_{T1} \subseteq \text{co} \Xi_T$, which is exactly the statement $\Xi_{T1} \subseteq \Xi_T$ upon using the known fact that Ξ_T is a convex polytope and therefore $\text{co} \Xi_T = \Xi_T$.

2. To complete the proof, we now argue that the reverse inclusion holds. Let $\mu_T : \xi_T \mapsto \mu_T$ be the mapping from the distribution of play $\mu_T \in \Delta(\Pi_{T1} \times \Pi_{T2})$ to its corresponding extensive-form correlation plan defined in Eq. 2. By definition, $\Xi_T = \text{co} \Delta(\Pi_{T1} \times \Pi_{T2})$. Let $I(\pi_{T1}, \pi_{T2})$ denote the distribution of play with singleton support (π_{T1}, π_{T2}), that is, the distribution of play that assigns the deterministic strategy profile (π_{T1}, π_{T2}) for the team with probability 1. Since μ_T is linear, and since $\Delta(\Pi_{T1} \times \Pi_{T2}) = \text{co} \{ I(\pi_{T1}, \pi_{T2}) : \pi_{T1} \in \Pi_{T1}, \pi_{T2} \in \Pi_{T2} \}$, we have

$$\Xi_T = \text{co} \{ f(I(\pi_{T1}, \pi_{T2})) : \pi_{T1} \in \Pi_{T1}, \pi_{T2} \in \Pi_{T2} \}.$$
it holds that $f(I_{(\pi_1,\pi_2)}) \in \Xi^*_T$. Since $I_{(\pi_1,\pi_2)}$ assigns probability 1 to one profile and 0 to all other profiles, $f(I_{(\pi_1,\pi_2)})$ is an extensive-form correlation plan whose entries are in \{0, 1\}. So, in particular, $f(I_{(\pi_1,\pi_2)}) \in \Xi^*_T$. This concludes the proof of the inclusion $\Xi^*_T \subseteq co\Xi^*_T$.

Together, the two statements that we just prove show that $\Xi^*_T = co\Xi^*_T$.

Finally, using the fact that unions and convex hulls commute, we have

$$co(\Xi^*_T \cup \Xi^*_T) = (co\Xi^*_T) \cup (co\Xi^*_T) = \Xi^*_T \cup \Xi^*_T = \Xi_T,$$

thereby concluding the proof. \qed

B. Game Instances

The size of the parametric instances we use as benchmark is described in Table 1. In the following, we provide a detailed explanation of the rules of each game.

Kuhn poker Two-player Kuhn poker was originally proposed by Kuhn (1950). We employ the three-player variation described in Farina et al. (2018). In a three-player Kuhn poker game with rank r there are r possible cards. At the beginning of the game, each player pays one chip to the pot, and each player is dealt a single private card. The first player can check or bet, i.e., putting an additional chip in the pot. Then, the second player can check or bet after a first player’s check, or fold/call the first player’s bet. If no bet was previously made, the third player can either check or bet. Otherwise, the player has to fold or call. After a bet of the second player (resp., third player), the first player (resp., the first and the second players) still has to decide whether to fold or to call the bet. At the showdown, the player with the highest card who has not folded wins all the chips in the pot.

Goofspiel This bidding game was originally introduced by Ross (1971). We use a 3-rank variant, that is, each player has a hand of cards with values \{-1, 0, 1\}. A third stack of cards with values \{-1, 0, 1\} is shuffled and placed on the table. At each turn, a prize card is revealed, and each player privately chooses one of his/her cards to bid, with the highest card winning the current prize. In case of a tie, the prize is split evenly among the winners. After 3 turns, all the prizes have been dealt out and the payoff of each player is computed as follows: each prize cards value is equal to its face value and the players scores are computed as the sum of the values of the prize cards they have won.

Goofspiel with limited information This is a variant of Goofspiel introduced by Lanctot et al. (2003). In this variation, in each turn the players do not reveal the cards that they have played. Rather, they show their cards to a fair umpire, which determines which player has played the highest card and should therefore receive the prize card. In case of tie, the umpire directs the players to split the prize evenly among the winners, just like in the Goofspiel game. This makes the game strategically more challenging as players have less information regarding previous opponents actions.

Leduc poker We use a three-player version of the classical Leduc hold’em poker introduced by Southey et al. (2005). We employ game instances of rank 3, in which the deck consists of three suits with 3 cards each. Our instances are parametric in the maximum number of bets, which in limit hold’em is not necessarily tied to the number of players. The maximum number of raise per betting round can be either 1, 2 or 3. As the game starts players pay one chip to the pot. There are two betting rounds. In the first one a single private card is dealt to each player while in the second round a single board card is revealed. The raise amount is set to 2 and 4 in the first and second round, respectively.

Liar’s dice Liar’s dice is another standard benchmark introduced by Lisy et al. (2015). In our three-player implementation, at the beginning of the game each of the three players privately rolls an unbiased k-face die. Then, the three players alternate in making (potentially false) claims about their toss. The first player begins bidding, announcing any face value up to k and the minimum number of dice that the player believes are showing that value among the dice of all the players. Then, each player has two choices during their turn: to make a higher bid, or to challenge the previous bid by declaring the previous bidder a “liar”. A bid is higher than the previous one if either the face value is higher, or the number of dice is higher. If the current player challenges the previous bid, all dice are revealed. If the bid is valid, the last bidder wins and obtains a reward of +1 while the challenger obtains a negative payoff of -1. Otherwise, the challenger wins and gets reward +1, and the last bidder obtains reward of -1. All the other players obtain reward 0. We test our algorithms on Liar’s dice instances with $k = 3$ and $k = 4$.

C. Additional Experimental Results

All experiments were run 10 times, and the experimental tables show average run times. We always use the same random seed to sample no-regret strategies for the team members in the seeding phase of our column-generation algorithm. The seed was never changed, and we don’t treat it as a hyperparameter. So, all algorithms are deterministic, and the only source of randomness in the run time is due to system load. Consequently, we observed small standard deviations in the run times, less than 10% in all cases.
We used the same time limit for FTP that was found to be beneficial by the original authors (Farina et al., 2018), namely 15 seconds. For FTP and CG-18, we used the original implementations, with permission from the authors. In all algorithms, we observed that the majority of time is spent within Gurobi.

Table 4 and Table 5 show the comparison between our column-generation algorithm, FTP, and CG-18 when the opponent plays as the first and as the second player, respectively.

Comparison between the Algorithm of Section 6 and the Prior State of the Art

Depending on the cap n on the number or semi-randomized correlation plans, the algorithm we describe in Section 6 might not reach the optimal TMECor value for the team (although, as we argue in Section 8, a very small n already guarantees a large fraction of the optimal value empirically).

For completeness, we report the run time of the algorithm for a sample instance. We employ instance [H] with $O = 3$ as it is has a good trade-off between dimensions and manageability. When $n = 1$ the algorithm reaches an optimal solution in 9.74s. The optimal solution with $n = 1$ achieves 63% of the optimal utility with no restrictions on the number of plans. With $n = 2$ the run time is 5m38s and the solution reaches 84% of the optimal value.

The column-generation algorithm has better run time performances and guarantees to reach an optimal solution without having to pick the right support size. However, we observe that the algorithm of Section 6 already outperforms FTP and CG-18. Specifically, FTP cannot reach a strategy guaranteeing 50% of the optimal utility within the time limit, while our algorithm guarantees 84% of the optimal value within roughly 5 minutes. On the other hand, CG-18 cannot complete even a single iteration within the time limit. This confirms the our pricing formulation is significantly tighter than previous formulations.
Table 4: Results for $O = 1$. (a) Runtime comparison between our algorithm, FTP, and CG-18. The seeded version of our algorithm runs $m = 1000$ iterations of CFR+ (Section 7.2), while the non seeded version runs $m = 1$. ‘†’: since the TMECor value for the game is exactly zero, we measure how long it took the algorithm to find a distribution with expected value at least $-\epsilon / 10$ for the team. (b) Number of times the pricing problem for our column-generation algorithm was solved to optimality by the linear relaxation (‘Relax’) and by the MIP solver (‘MIP’) when using our column-generation algorithm (seeded version with $m = 1000$). (c) Quality of the initial strategy of the team obtained for varying sizes of S compared to the expected utility of the team at the TMECor. ‘oom’: out of memory.

Game	Ours	Team utility after seeding	CG-18									
	Seeded	Not seed.	$\epsilon = 50\%$	$\epsilon = 10\%$	$\epsilon = 1\%$	$m = 1$	1000	10000				
[A]	2ms	1ms	0ms1	15.00s1	2m 35s1	66ms	5	0	-0.567	-0.133	-0.133	0
[B]	21ms	3ms	0ms1	16m 39s	> 6h	1.01s	0	3	-0.375	0.037	0.038	0.038
[C]	5.69s	5.79s	7m 36s	> 6h	> 6h	8	41	0	-0.166	0.058	0.058	0.066
[D]	186ms	304ms	2ms	> 6h	> 6h	1m 56s	19	0	-0.492	0.251	0.253	0.253
[E]	464ms	860ms	6ms	> 6h	> 6h	23m 17s	33	0	-1.000	0.249	0.253	0.253
[F]	2.14s	4.21s	19m 25s	> 6h	> 6h	> 6h	1	0	-0.748	0	0.253	0.253
[G]	1m 11s	4m 23s	> 6h	> 6h	> 6h	> 6h	0	2	-0.721	0.063	oom	0.063
[H]	43.72s	1m 24s	2h 49m	> 6h	> 6h	> 6h	9	79	-3.142	0.210	0.228	0.277
[I]	43m 58s	46m 08s	> 6h	> 6h	> 6h	> 6h	0	614	-3.091	0.111	0.122	0.142
[J]	3m 48s	11m 36s	> 6h	> 6h	> 6h	> 6h	1612	37	-4.000	0.627	0.651	0.836

Table 5: Results for $O = 2$. (a) Runtime comparison between our algorithm, FTP, and CG-18. The seeded version of our algorithm runs $m = 1000$ iterations of CFR+ (Section 7.2), while the non seeded version runs $m = 1$. ‘†’: since the TMECor value for the game is exactly zero, we measure how long it took the algorithm to find a distribution with expected value at least $-\epsilon / 10$ for the team. (b) Number of times the pricing problem for our column-generation algorithm was solved to optimality by the linear relaxation (‘Relax’) and by the MIP solver (‘MIP’) when using our column-generation algorithm (seeded version with $m = 1000$). (c) Quality of the initial strategy of the team obtained for varying sizes of S compared to the expected utility of the team at the TMECor. ‘oom’: out of memory.

Game	Ours	Team utility after seeding	CG-18									
	Seeded	Not seed.	$\epsilon = 50\%$	$\epsilon = 10\%$	$\epsilon = 1\%$	$m = 1$	1000	10000				
[A]	0ms	1ms	0ms1	19s1	3m 09s1	147ms	1	0	-0.633	0.000	0.000	0
[B]	0ms	11ms	1m 39s	> 6h	> 6h	7.53s	1	0	-0.250	0.027	0.027	0.027
[C]	6.47s	5.64s	48m 08s	> 6h	> 6h	> 6h	6	33	-0.126	0.027	0.033	0.038
[D]	144ms	368ms	1ms	> 6h	> 6h	1m 46s	14	0	-0.384	0.252	0.252	0.252
[E]	641ms	904ms	1.39s	> 6h	> 6h	12m 30s	40	0	-3.000	0.252	0.252	0.253
[F]	55.00s	8m 59s	1h 30m	> 6h	> 6h	> 6h	21	0	-0.630	0.256	0.256	0.256
[G]	> 6h	> 6h	> 6h	> 6h	> 6h	> 6h	—	—	-0.766	0.264	oom	—
[H]	7m 30s	8m 05s	> 6h	> 6h	> 6h	> 6h	25	335	-2.002	0.177	0.201	0.345
[I]	57m 32s	1h 09m	> 6h	> 6h	> 6h	> 6h	1	492	-2.505	0.096	0.110	0.142
[J]	7m 11s	5m 16s	> 6h	> 6h	> 6h	> 6h	2508	37	-7.500	0.630	0.819	0.971

(a) — Comparison of run times (b) — Comparison of run times (c) — Comparison of run times