Rotational Temperature of AlO Molecule from Fourier Transform Spectrum of the 0-1 band of B²Σ⁺ - X²Σ⁺ System

C. T. Londhe¹, P. B. Undre²

¹Department of Physics, Mahatma Gandhi Mahavidyalaya, Ahmedpur – 413515, India.

²Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad – 431004, India.

*Corresponding author email: londhetc@gmail.com

Abstract: Rotational structure of (0-1) bands of the B²Σ⁺ - X²Σ⁺ system of AlO molecule was recorded on Fourier Transform Spectrometer. Intensity distribution among the well-resolved rotational lines of R1 and R2 for each band was recorded and average rotational temperature calculated from these lines which is 1813 K.

1. Introduction
The vibrational and rotational temperature derived from the band spectra are of importance in spectroscopy, chemical physics, thermodynamics etc. The blue–green system, B²Σ⁺ - X²Σ⁺ transition, of AlO has been known for over 100 years and extensively studied both experimentally and theoretically [1–12]. The astrophysical importance of AlO and its aeronomical significance is well known [13–17]. The existence of AlO molecule in cool stellar atmospheres has been shown through the identification of B–X system in spectrum of some normal Mira giants and Mira variables [13, 17]. In stars of lower temperature the absorption of the head of 0–0 band of the B–X system strengthens. The strengthening of AlO (λ = 4842Å) intensity, in these stars is quite variable from cycle to cycle. In normal Mira giants because of higher temperature the band is seen in emission. In Mira variables the AlO absorption is greater than in normal giants and the maximum intensities far exceed those obtained in the normal M giants. Spectroscopic temperature of AlO molecules is of interest. Mentall & Nicholls [18] derived the vibrational temperature of AlO using laser produced plasma. Dores, et al [19] determined the vibrational temperature using laser ablation technique. They used the 266 nm radiation from a Nd: YAG laser and the alumina Al₂O₃ as a target. Recently Chaudhari, et al [20] also determine rotational temperature using dc arc discharge. They use dc arc in air running between two aluminium electrodes of about 1 cm in diameter and tapered towards tips. The arc current was 3 A at 110 V. The B²Σ⁺ - X²Σ⁺ system of AlO was photographed in the first order of a 10.6 m concave spectrograph. In present study the rotational temperature of AlO is determined by exciting the molecule in the microwave discharge.
2. **Experimental**
The spectrum of AlO was excited in a microwave discharge (2450 MHz, 180 W) through a flowing mixture of AlCl$_3$ vapours, buffer gas argon and a small amount of oxygen. The AlCl$_3$ kept in a small quartz boat of side arm of a discharge tube was heated by an electrical furnace and vapours, along with argon and oxygen, were let in the discharge zone. In order to stop the possibility of AlCl$_3$ vapors going to pump oil, a liquid nitrogen trap was connected between the discharge tube and the rotary pump. The gas pressures were so optimized as to give very intense characteristic glow of AlO [21]. A spherical lens was used to focus the emission signal into the interferometer. The spectra in the region 18000 – 22000 cm$^{-1}$ were recorded with BOMEM DA8 Fourier transform spectrometer with an apodized resolution of 0.05 cm$^{-1}$ using quartz UV beam splitter and silicon detector. The emission signal being strong no filter was required. Fifty scans (integration time ~75 min.) were co-added to obtain an improved signal-to-noise ratio. The prints of the traces of (0,1) bands are shown in Figure 1. The areas of the profiles of the rotational lines were measured with the help of a digital planimeter with an accuracy of 10^{-2} cm2 and more. Intensity measurement of rotational lines of (0,1) band shown in table 1. To avoid the congregation of point’s graph of R_1 and R_2 lines for each band is shown separately in Figure 2 and Figure 3 respectively. From the slope of each graph the rotational temperature is calculated. Average intensity of each line was employed to calculate the rotational temperature and results are summarized in table 2.

![Figure 1. Rotational fine structure of (0,1) band of B$^2\Sigma^+$-X$^2\Sigma^+$ transition of AlO](image1)

![Figure 2. Plot of R_1 branch ln(I$_{em}$ / K+1) vs $B_v(K+1)^*(K'+1)$ of (0,1) band of the B$^2\Sigma^+$-X$^2\Sigma^+$ system of AlO molecule](image2)
Figure 3. Plot of R_2 branch $\ln(I_{em}/K+1)$ vs $B_{v'}(K+1)^*(K'+1)$ of (0,1) band of the $B^2\Sigma^+-X^2\Sigma^+$ system of AlO molecule.

Table 1: Intensity measurements of the rotational lines of (0,1) band of $B^2\Sigma^+-X^2\Sigma^+$ System of AlO molecule

K	$K+1$	I_{em}	$\ln[I_{em}/K+1]$	$B_{v'}(K+1)^*(K+2)$	K	$K+1$	I_{em}	$\ln[I_{em}/K+1]$	$B_{v'}(K+1)^*(K+2)$
54	55	0.3	-5.21131	1839.407	55	56	0.3	-5.22932	1906.294
53	54	0.3	-5.19296	1773.714	55	55	0.9	-4.11269	1839.407
52	53	0.3	-5.17426	1709.215	54	54	0.2	-5.59842	1773.714
51	52	0.1	-6.25383	1645.911	52	53	0.3	-5.17426	1709.215
50	51	0.3	-5.1358	1583.801	51	52	0.4	-4.86753	1645.911
49	50	0.3	-5.116	1522.886	50	51	0.3	-5.1358	1583.801
48	49	1.2	-3.7095	1463.165	49	50	0.2	-5.52146	1522.886
47	48	0.3	-5.07517	1404.638	48	49	0.9	-3.99718	1463.165
46	47	1.1	-3.75484	1347.306	47	48	0.4	-4.78749	1404.638
45	46	0.3	-5.03261	1291.168	46	47	0.3	-5.05412	1347.306
44	45	0.3	-5.01064	1236.225	45	46	0.3	-5.03261	1291.168
43	44	0.3	-4.98816	1182.476	44	45	0.4	-4.72295	1236.225
42	43	0.9	-3.86656	1129.921	43	44	0.5	-4.47734	1182.476
41	42	0.4	-4.65396	1078.561	42	43	0.4	-4.67749	1129.921
40	41	0.2	-5.32301	1028.396	41	42	0.3	-4.94164	1078.561
39	40	0.4	-4.60517	979.4244	40	41	0.4	-4.62986	1028.396
38	39	0.3	-4.86753	931.6476	39	40	0.9	-3.79424	979.4244
37	38	1.1	-3.54228	885.0652	38	39	0.3	-4.86753	931.6476
36	37	0.4	-4.52721	839.6773	37	38	0.2	-5.24702	885.0652
35	36	0.3	-4.78749	795.4837	36	37	0.3	-4.81489	839.6773
34	35	1	-3.55535	752.4846	35	36	0.4	-4.49981	795.4837
33	34	0.4	-4.44265	710.6799	34	35	0.4	-4.47164	752.4846
32	33	0.4	-4.4128	670.0696	33	34	0.5	-4.21951	710.6799
31	32	0.7	-3.82241	630.6538	32	33	0.4	-4.4128	670.0696
30	31	0.4	-4.35028	592.4323	31	32	0.5	-4.15888	630.6538
29	30	0.4	-4.31749	555.4053	30	31	0.4	-4.35028	592.4323
Table 2: Rotational temperature of AlO molecule

Band	B’v	Branch	Slope x10^{-4}	Rot. Temp.
(0,1) Band	0.59946	R1	7.91	1819
		R2	7.96	1807
Mean				1813

3. **Calculations of rotational temperature**

Assuming the Maxwell Boltzmann distribution valid, the intensity of the rotational line can be given by the expression,

\[I_{J'} = C S_{J'} \exp \left\{ -F_{v'}(J') / k T_{\text{rot}} \right\} \]

Where \(J' \) and \(J'' \) are the rotational quantum numbers of the upper and lower energy states. \(C \) is a constant and \(S_{J'} \) is a HÖnl London factor [22]. \(F_{v'}(J') \) is the rotational energy in cm\(^{-1}\) for dimensionless factor of the exponential \(F_{v'}(J') \) is to be multiplied by \(\hbar c T_{\text{rot}} \) is the rotational temperature and \(k \) is Boltzmann constant. For \(^2\Sigma - ^2\Sigma \) transition \(J \) is replaced by \(K \). The slope of the graph between \(\ln \left(I_{J'} / S_{J'} \right) \) against \(F_{v'}(K') \) is \(-\hbar c / kT_{\text{rot}}\).

In present work the R branch lines are chosen for intensity measurements, especially those which are free from overlap. The B-X system is a \(^2\Sigma - ^2\Sigma \) transition and so two P branches and two R branches are expected. Due to higher resolution it was possible to resolve the R\(_1\) and R\(_2\) components. The HÖnl London factor for \(^2\Sigma - ^2\Sigma \) transition is given by the equation,

\[S_{J}^R = (J''+1+ \Lambda'') (J''+1- \Lambda'') / J'' +1 = (J+ \Lambda) (J'+ \Lambda) / J' = J' \]

For R branch lines \(J' = J+1 \) i.e. \((K+1) \) and \(J'' = J \) i.e. \(K \)

Thus a graph of \(\ln(I_{J'}) / J' \) vs \(B_{v'} J(J'+1) \) gives a slope \(-\hbar c / kT_{\text{rot}}\). knowing all other quantities \(T_{\text{rot}} \) can be calculated.

Here, \(J' = K+1 \) and \(J'' = K \), then on ordinate axis \(\ln(I_K / K) \) is taken and on abscissa axis \(B_{v'} (K+1)(K+2) \) is plotted. The expression for \(T_{\text{rot}} \) is

\[T_{\text{rot}} = \left(\hbar c / k \right)(1/slope) = 1.439/ \text{slope} \]

4. **Results and discussion**

The vibrational temperature of AlO reported by Mentall and Nicholls [18] is 3600 ± 400 K where they have used Laser produced plasma as an excitation source. A Ruby laser having out put power of 2.5 J with pulse duration of the order of 500 μ sec was employed. The spectrum was recorded on a Bausch & Lamb 1.5 m spectrograph having a reciprocal dispersion 15A/mm\(^{-1}\). A rotational temperature of AlO reported by Dors et al [19] is 3384 K. They used the laser ablation technique using a 266 nm lines from Nd: YAG laser. The spectrograph was 0.275 m Jarell Ash equipment fitted with Optical Multichannel Analyser (OMA). The rotational temperature of AlO using the arc source has yielded \(T_{\text{rot}} \) as 2880 ± 100 K, reported by Chaudhari et al which is lower, compared to that of Mentall and also of Dors et al. The rotational temperature of 0-1 band of the B \(^2\Sigma^+ - X ^2\Sigma^+ \) system of AlO molecule measured using microwave discharge has shown still lower \(T_{\text{rot}} \), which is 1813 K which is agreement with Behere and et al [23].

5. **Conclusions**

Rotational Temperature of (0-1) band of the B \(^2\Sigma^+ - X ^2\Sigma^+ \) system of AlO molecule has been calculated from well-resolved rotational lines of R\(_1\) and R\(_2\) and the average rotational temperature calculated from these lines which is 1813 K.
Acknowledgement

The authors express their sincere thanks to Dr. M. D. Saksena, Dr. K. Sunnanda and Dr. M. N. Deo, Bhabha Atomic research Centre, Trombay, Mumbai, for providing facilities of recording spectrum on an FT spectrometer and for the helpful suggestions during this research work.

References

[1] Mecke R 1925 Band Spectra Physikalische Zeitschrift 26 217–225.
[2] Pomeroy W C 1927 The Quantum Analysis of the Band Spectrum of Aluminum Oxide Phys. Rev. 29 (1) 59–78.
[3] Dehalu F P 1937 Bull. Acad. R. Belgium 23 604–608.
[4] Coheur F P, Rosen B 1941 Le spectre de bandes de l’oxyde d’aluminium Mem. Soc. Roy Sci. Liege 10 405–413.
[5] Rosen B 1945 Special Cases of Predissociation Phys. Rev. 68 (5-6) 124–126.
[6] Lagerqvist A, Nilsson N E Lennart and R F Barrow 1956 On a Supposed Predissociation in the Spectrum of AlO Proc. Phys. Soc. A 69 (4) 356.
[7] Goodlett V W, Innes K K 1959 Hollow-Cathode Emission of the AIO Spectrum Nature (London) 183 243–244.
[8] McDonald J K, Innes K K 1959 A low-lying excited electronic state of the AIO molecule and the ground-state dissociation energy Journal of Molecular Spectroscopy 32 501–510.
[9] McDonald J K, Goodlett V W, Tolbert T W 1969 A regular 2Π state of the AIO molecule Journal of Molecular Spectroscopy 32 511–512.
[10] Schamps J 1973 The energy spectrum of aluminium monoxide Chemical Physics 2 352–366.
[11] Bernard R, Gravina Z 1984 On the Infrared A2Π–X2Σ+ System of Aluminium Monoxide in Relation with the Spectra of M Giant-and Mira-Type Stars Naturforsch. 39a 1049–1055.
[12] Walvekar A P, Rama M A 1984 FC Factors by PSHM & Variation of Electronic Transition Moment for A10 Blue-Green Band System Indian Journal of Applied Physics 22 53–55.
[13] Merrill P W, Deutsch A J, Keenan P C 1962 Absorption Spectra of M-Type Mira Variables Astrophysical Journal 136 21–34.
[14] Authier B, Blamont J E, Carpentier G 1964 Mesure de la température de l’ionosphère à partir de la fluorescence crépusculaire du monoxyde d’aluminium Annales de Geophysique 20 342–345.
[15] Harang O, 1964 Excitation of A10 bands in the sunlit atmosphere and the determination of the temperature from the distribution among the vibrational levels Planetary and Space Science 12 (6) 567–571.
[16] Johnson R E 1965 Twilight resonance radiation of AIO in the upper atmosphere Journal of Geophysical Research 70 1275–1277.
[17] Keenan P C, Deutsch A J, Garrison R F 1969 The Anomalous Behavior of Aluminum Oxide Bands in Mira Variables The Astrophysical Journal 158 261–268.
[18] Mentall J E and Nicholls R W 1967 Spectroscopic Temperature Measurements on Laser-Produced Flames The Journal of Chemical Physics, 46, 2881 (1967)
[19] Dors IG, Parigger C, Lewis JW. Spectroscopic temperature determination of aluminum monoxide in laser ablation with 266-nm radiation. Optics Letters. 23: 1778-80.
[20] Chaudhari M M, Londhe C T, Behere S H 2006 Determination of rotational temperature of AIO from the B2Σ+–X2Σ+ system. Pramana 66 (3) 597-600
[21] Saksena M D, Deo M N , Sunanda K, Behere S H, Londhe C T 2008 Fourier transform spectral study of B2Σ+–X2Σ+ system of AIO Journal of Molecular Spectroscopy 247 (1) 47-56
[22] Herzberg G, Spectra of diatomic molecules, Van Nostrand Reinhold Company, New York, (1950)
[23] Supriya S. Behere, Nakul H. Mhaske, Chandrakant T. Londhe 2018 Measurement of rotational temperature of AIO molecule from Fourier transform spectrum of the 0–0 band of B2Σ+–X2Σ+ band system. The European Physical Journal D 72(9) 146.