The calcium application to control yellow latex in mangosteen fruit (*Garcinia mangostana*)

S Yuniarti, S Lestari, M C Hadiatry and R Purba

Banten Assessment Institute for Agricultural Technology (AIAT). Jl. Ciptayasa
Km.01 Ciruas, Serang, Banten, 42182, Indonesia

E-mail: silvia_yuniarti@yahoo.com

Abstract. The main problem of mangosteen production is yellow latex in the rind and aril of the mangosteen fruit. The yellow latex occurs from the yellow latex channel's rupture and contaminates the arils or mangosteen rind. The rupture is thought due to the lack of calcium in the epithelial cell walls of the yellow latex ducts. The present study aimed to determine the effect of calcium in reducing yellow latex in the mangosteen fruit. The study was conducted in Luhur Jaya Village, Lebak Regency of Banten Province. The study used a randomized block design, consisting of 6 treatments and 5 replications with treatment P0=control, P1=dose of calcium/dolomite lime 2 kg/tree, P2=dose of calcium/dolomite lime 3 kg/tree, P3=dose of calcium/dolomite lime 4 kg/tree, P4=dose of calcium/dolomite lime 5 kg/tree, P5=dose of calcium/dolomite lime 6 kg/tree. The calcium was given when the mangosteen plant started to flower. From the results, the application of calcium using dolomite (CaMg(CO$_3$)$_2$) reduced yellow latex contamination in mangosteen rind at doses of 5 kg/tree. All doses of calcium applied (2, 3, 4, 5, and 6 kg/tree) reduced yellow latex contamination in arils. The application of calcium with dolomite (CaMg(CO$_3$)$_2$) did not affect fruit weight and dotted on mangosteen.

1. Introduction

Mangosteen (*Garcinia mangostana* L.) is a queen of tropical fruits [1], a tropical plant that can grow in the lowlands to the highlands 1,000 m above sea level. Optimal production will be obtained if it is at an altitude of 0-600 m above sea level with temperatures ranging from 25-30°C [2]. The mangosteen fruit is one of Indonesia's mainstays to several countries in Asia and Europe, with the volume of exports increasing every year. Based on data from Statistics Indonesia, mangosteen exports in 2018 reached 38,830 tons, increasing 324%, compared to 2017, which was only 9,167 tons [3]. Although the production continues to grow every year, it has not been followed by increased fruit quality. According to [4], only 20% of Indonesia's mangosteen fruit was eligible for export. The cause of the low quality of Indonesian mangosteen is due to yellow latex in the rind and aril of the mangosteen fruit.

Yellow latex is a natural sap produced in every organ of the mangosteen plant [5]. The yellow latex contamination occurs when the sap comes out of the broken channel and contaminates the arils (pulp) or mangosteen rind due to pressure that causes epithelial cells to break when the cell walls are weak. The weak and fragile cell walls are thought to be due to the lack of calcium in the walls of the epithelial cells of the yellow lymph channels [6]. The rupture of the lymph channels is related to the calcium content element. The calcium content of the pericarp of mangosteen contaminated with yellow latex is lower than usual fruit [7, 8, 9]. Lack of calcium in the mangosteen plant can increase the yellow latex contamination of the fruit [10].
Calcium is an important element in building cell walls. The calcium ions strengthen cell walls, pectin surface, and middle lamella, so that cell structure becomes stronger. It is a guideline for reducing yellow latex in mangosteen, caused by rupturing of yellow latex channels due to a weak wall structure [11]. In other fruit commodities such as lychees, calcium is also used to reduce fruit breaking [12].

Banten Province is one of the mangosteen-producing provinces that contribute to exports. Mangosteen quality improvement can be made through research in reducing yellow latex contamination. Therefore, the present study aimed to determine the effect of calcium in reducing yellow latex in the mangosteen fruit.

2. Materials and methods

2.1. Research site and materials

The research was conducted at the Hegar Jaya Farmers Group, Luhur Jaya Village, Cipanas District, Lebak Regency, Banten Province. The preparation of sample plant selection and calcium application was conducted from September to December 2014. The results were observed from January to April 2015. The materials used were mangosteen plants grown from seeds that were ± 20 years old, dolomite lime (CaMg\((CO_3)_2\)), etc.

2.2. Design experiment and management of the crop

The study used a randomized block design with 6 treatments and 5 replications. Each experimental unit consist of 2 trees with a total of 60 mangosteen trees. The treatment was 6 levels of calcium dose, namely P0 = control, P1 = dose of calcium/dolomite lime 2 kg/tree, P2 = dose of calcium/dolomite lime 3 kg/tree, P3 = dose of calcium/dolomite lime 4 kg/tree, P4 = dose of calcium/dolomite lime 5 kg/tree, P5 = dose of calcium/dolomite lime 6 kg/tree.

Calcium was applied before flowering mangosteen. It was used by spreading it evenly in a circle under the canopy of the mangosteen plant. The soil around the canopy was hoed in a circle with a distance of 1.5 meters roots. Then the dolomite was spread on the hoed soil and then covered again with soil. The next stage was to provide labeling on the treatment tree.

Observations were conducted at the time of fruit harvesting. Each observation of mangosteen fruit was taken randomly, as many as ten fruits per tree, and observations were done four times with a span of one week of observation. The variables observed were fruit weight, dotted fruit, the contamination of yellow latex on the outer skin (pericarp), and the contamination of yellow latex on the inside of the fruit (arils). The observation of dotted fruit, the contamination of yellow latex on pericarp and arils were done based on a scoring method; present (1) and absent (0).

2.3. Data analysis

Data were analyzed statistically using Analysis of Variance (ANOVA). The difference in mean values was carried out by the Duncan Multiple Range Test (DMRT) at the level of 5%.

3. Result and discussion

The observations of total fruit weight and dotted fruit at week 1 to week 4 showed no significant differences for all levels of treatment doses (table 1). It means that calcium's addition does not affect weight gain or dots' appearance on the mangosteen fruit. These results are in line with the results study of [11], which showed no difference in fruit weight in the addition of dolomite. The results indicated that differences in the availability of calcium in the soil did not affect the formation of the cell walls that comprise the fruit's skin. They further explained that each calcium application treatment has the same ability to use Ca\(^{2+}\) ions as a constituent component of the middle lamellae in the cell wall. Thus, the addition of Ca\(^{2+}\) ions is not directly involved in increasing the size and weight of the fruit [11].
In the second week, the treatment dose was 4 to 6 kg/tree and the arils were tough. The results found that the calcium carbonate (CaCO₃) concentration at the 5 to 6 kg/tree treatment doses (P4 and P5) showed a reduction in yellow latex contamination. At the third week of observation, the yellow latex contamination reduced at the 5 to 6 kg/tree treatment doses (P4 and P5). As for the fourth-week observation, all the doses were not significantly different, which means the yellow latex contamination had started to reappear in the fourth week. From these results, it was found that the higher the dose of calcium given, the less yellow latex contamination of the fruit skin. However, the effect of calcium decreased in the last observation, namely in the fourth week. The results study found that the calcium chloride (CaCl₂) application by spraying it at the 6th, 7th, and 8th weeks after blooming caused the percentage of fruit that did not have yellow latex to increase [13]. It was related to an increase in the concentration of calcium in the skin and pulp of the mangosteen fruit caused by calcium chloride (CaCl₂). The results study of [11] also reported that the application of calcium at a dose of 3.5 tonnes/ha reduced the yellow latex on the mangosteen rind. Furthermore, the results study of [8] in 2016 found that the provision of calcium from both dolomite (CaMg(CO₃)₂) and calcite (CaCO₃) was able to reduce yellow latex contamination on arils and mangosteen rind. It also stated, based on efficiency and effectiveness, the dose of calcium calcite (CaCO₃) fertilizer of 1.6 kg/tree/year is a better dose than the treatment of 3.2 kg of calcium dolomite/tree/year [8].

Table 2. Effect of various doses of calcium on yellow latex contamination in rind and arils.

Treatments	Yellow latex on mangosteen rind	Yellow latex on mangosteen aril						
	1st week	2nd week	3rd week	4th week	1st week	2nd week	3rd week	4th week
Control	1.0ᵃ	1.0ᵇ	1.0ᵇ	1.0ᵃ	0.6ᵃ	0.8ᵇ	0.8ᵇ	1.0ᵇ
P1	1.0ᵃ	1.0ᵇ	1.0ᵇ	1.0ᵃ	0.2ᵇ	0.0ᵇ	0.0ᵇ	0.0ᵇ
P2	0.0ᵇ	0.6ᵇ	0.8ᵇ	0.8ᵃ	0.0ᵇ	0.2ᵇ	0.0ᵇ	0.0ᵇ
P3	0.0ᵇ	0.6ᵇ	0.8ᵃ	0.8ᵃ	0.0ᵇ	0.2ᵇ	0.0ᵇ	0.0ᵇ
P4	0.2ᵇ	0.2ᵇ	0.2ᵇ	0.8ᵃ	0.2ᵇ	0.0ᵇ	0.0ᵇ	0.0ᵇ
P5	0.2ᵇ	0.2ᵇ	0.0ᵇ	0.8ᵃ	0.0ᵇ	0.0ᵇ	0.0ᵇ	0.0ᵇ

Calcium is the most important nutrient in maintaining the integrity of the cell walls and the elasticity of cell support in fruit trees. Fruit trees that are deficient in calcium will cause cell membranes to be weak and leaky. The fruit becomes soft and rotten and is susceptible to pests and diseases [14].

Table 2 also shows that all treatments from a dose of 2 to 6 kg/tree (P1-P5) for the yellow latex contamination on arils had a significant effect compared to controls starting at the 2nd week of observation the 4th week. These results showed that the addition of calcium could reduce yellow latex on arils. According to [2], the decreased percentage of yellow latex on fruit arils was thought to be related to the fulfillment of calcium and boron needs in the mangosteen rind, which caused the walls of the epithelial cells of the yellow latex channels in the fruit arils to be tough. The results study by [15] found that the provision of calcium using gypsum reduced the percentage of yellow gummy fruit.

Table 1. Effect of various doses of calcium on fruit weight and fruit dots.

Treatments	1st week	2nd week	3rd week	4th week	1st week	2nd week	3rd week	4th week
Control	79.56ᵇ	75.26ᵇ	76.50ᵇ	88.98ᵃ	1ᵃ	1ᵃ	1ᵃ	1ᵃ
P1	80.44ᵇ	79.28ᵇ	60.06ᵇ	82.48ᵃ	1ᵃ	1ᵃ	1ᵃ	1ᵃ
P2	89.44ᵃ	75.90ᵇ	70.72ᵇ	81.48ᵃ	1ᵃ	1ᵃ	1ᵃ	1ᵃ
P3	88.66ᵃ	82.54ᵇ	80.70ᵃ	90.12ᵃ	1ᵃ	1ᵃ	1ᵃ	1ᵃ
P4	75.70ᵇ	91.30ᵃ	69.82ᵇ	88.36ᵃ	1ᵃ	1ᵃ	1ᵃ	1ᵃ
P5	70.19ᶜ	77.76ᵇ	77.84ᵃ	83.86ᵃ	1ᵃ	1ᵃ	1ᵃ	1ᵃ

Table 2 shows that the treatment of calcium doses 3-6 kg/tree (P2-P5) is significantly different from 2 kg/tree (P1) and control. It means that observation could reduce yellow latex in the mangosteen fruit at a dose of 3 to 6 kg/tree in the first week. In the second week, the treatment dose was 4 to 6 kg/tree (P3-P5) showed a reduction in yellow latex contamination. At the third week of observation, the yellow latex contamination reduced at the 5 to 6 kg/tree treatment doses (P4-P5). As for the fourth-week observation, all the doses were not significantly different, which means the yellow latex contamination had started to reappear in the fourth week. From these results, it was found that the higher the dose of calcium given, the less yellow latex contamination of the fruit skin. However, the effect of calcium decreased in the last observation, namely in the fourth week.
Furthermore, it also stated that the highest rate of fruits with no yellow latex was obtained at a dose of 6 kg of gypsum/tree.

4. Conclusion
The application of calcium using dolomite (CaMg(CO$_3$)$_2$) was able to reduce yellow latex contamination in mangosteen rind at doses of 5 kg/tree, and all doses of calcium applied (2, 3, 4, 5, and 6 kg/tree) were able to reduce yellow latex contamination in arils. The application of calcium with dolomite (CaMg(CO$_3$)$_2$) did not affect fruit weight and dotted on mangosteen.

Acknowledgments
Thank the Indonesian Agency for Agricultural Research and Development (IAARD), the Indonesian Ministry of Agriculture for providing the research funding.

References
[1] Kusuma E dan Verheij E W M 1994 Mangosteen, the queen of tropical fruit: problem and suggested research in Indonesia Journal IARD 16 (3) 33-40
[2] Purnama T 2016 Optimasi dosis pupuk kalsium dan boron untuk mengendalikan cemaran getah kuning pada buah manggis Jurnal Informatika Pertanian 25 (1) 29-40
[3] Badan Pusat Statistika 2018 Statistik: Hortikultura https://www.bps.go.id Diakses 10 Desember 2020
[4] Poerwanto R, Efendi D, Sobir dan Subhartoro R 2008 Improving productivity and quality of Indonesian mangosteen Acta Hort 769 285-288
[5] Poerwanto R, Dorly dan Martius M 2010 Getah kuning pada buah manggis dalam reorientasi riset untuk mengoptimalkan produksi dan rantai nilai hortikultura Proc. Seminar Nasional Hortikultura (Bali: Perhimpunan Hortikultura Indonesia Denpasar) p 255-260
[6] Dorly, Tjitosimeto S, Poerwanto R dan Juliarni 2008 Secretory duct structure and phytochemistry compounds of yellow latex in mangosteen fruit Hayati Journal of Biosciences 15 (3) 99-104
[7] Purnama T, Poerwanto R dan Efendi D 2013 Aplikasi kalsium dan boron untuk pengendalian cemaran getah kuning pada buah manggis Jurnal Hortikultura 23 (4) 350-357
[8] Kurniadinata O F, Poerwanto R, Efendi D dan Wachjar A 2016 Mengatasi cemaran getah kuning pada buah manggis (Garcinia mangostana L.) dengan aplikasi kalsium dan teknologi lubang resapan biopori Jurnal Hortikultura 26 (1) 59-66
[9] Kurniawan V, Poerwanto R dan Efendi D 2016 Waktu dan dosis aplikasi kalsium dan boron untuk pengendalian getah kuning pada buah manggis (Garcinia mangostana L) di tiga sentra produksi Jurnal Hortikultura Indonesia 7 (1) 21-30
[10] Poovarodom S and Boonplang N 2008 Soil calcium application and pre-harvest calcium and boron sprays on mangosteen fruit quality (Portugal:Proceeding of the VI International Symposium on Mineral Nutrition of Fruit Crops) Faro
[11] Wulandari I dan Poerwanto R 2010 Pengaruh aplikasi kalsium terhadap getah kuning pada buah manggis (Garcinia mangostana L.) Jurnal Hortikultura Indonesia 1(1) 27-31
[12] Huang X, Wang M H C, Li J, Yuan W, Lu J dan Huang H B 2005 An overview of calcium’s role in lychee fruit cracking Acta. Hort. 66 (5) 231-240
[13] Pechkeo S, Sudodee S and Nilnond C 2007 The effects of calcium and boron sprays on the incidence of translucent flesh disorder and gamboge disorder in mangosteen (Garcinia mangostana L.) Kasetsart Journal Nat. Science 41 (4) 621-632
[14] Weir R G and Creswell G C 1995 Plant Nutrient Disorder 2: Tropical Fruit and Nuts Crop (Australia: Inkata Press)
[15] Rai I N, Wiratta AJ W, Semarajaya C G A dan Dana Arsana I G K 2013 Pengendalian getah kuning buah manggis dengan irigasi tetes dan pemupukan kalsium J. Horti. Indo. 4 (1) 9-15