Abstract. For any non-degenerate, quasi-homogeneous hypersurface singularity W and an admissible group of diagonal symmetries G, Fan, Jarvis, and Ruan have constructed a cohomological field theory which is a candidate for the mathematical structure behind the Landau-Ginzburg A-model. When using the orbifold Milnor ring of a singularity W as a B-model, and the Frobenius algebra $\mathcal{H}_{W,G}$ constructed by Fan, Jarvis, and Ruan, as an A-model, the following conjecture is obtained: For a quasi-homogeneous singularity W and a group G of symmetries of W, there is a dual singularity W^T such that the orbifold A-model of W/G is isomorphic to the B-model of W^T. I will show that this conjecture holds for a two-dimensional invertible loop potential W with its maximal group of diagonal symmetries G_W.

1. Introduction

In a recent paper [FJR], Fan, Jarvis, and Ruan constructed the mathematical theory (FJRW-theory) behind the Landau-Ginzburg A-model. Their construction gives, among other things, a Frobenius algebra $\mathcal{H}_{W,G}$ which is determined by a non-degenerate quasi-homogeneous polynomial W and an admissible group G of diagonal symmetries of W.

Landau-Ginzburg models have been studied extensively in the physics literature (see for example [GP]). In particular, a mirror construction for these models was suggested by Berglund and Hübsch [BH]. This mirror construction used the so-called ‘invertible’ potentials: quasi-homogeneous polynomials with the same number of monomials and variables. In the FJRW theory, these potentials must satisfy non-degeneracy conditions given by,

1. The potential W must have an isolated singularity at the origin.
2. The weights (charges) of W must be uniquely determined.

These non-degeneracy conditions imply that the invertible potentials will be of two kinds [KS],

\begin{align*}
W_{\text{loop}} &= X_1^{a_1}X_2 + \cdots + X_{N-1}^{a_{N-1}}X_N + X_N^{a_N}X_1 \\
W_{\text{chain}} &= X_1^{a_1}X_2 + \cdots + X_{N-1}^{a_{N-1}}X_N + X_N^{a_N}
\end{align*}

In [K], Kreuzer proved that the Berglund-Hübsch construction can be used to show that the types of potentials previously described satisfy a certain type of mirror symmetry. Based on Kreuzer’s work, Krawitz [Kr] conjectured that the FJRW construction satisfies the following,

Conjecture. (Landau-Ginzburg Mirror Symmetry Conjecture): For a non-degenerate, quasi-homogeneous, invertible singularity W and its maximal group of diagonal symmetries G_W, there is a dual singularity W^T such that the FJRW-ring of \mathcal{H}_{W,G_W} is isomorphic to the (unorbifolded) Milnor ring of W^T.

This conjecture has been verified for simple singularities by Fan, Jarvis, and Ruan in [FJR], and for unimodal and bimodal singularities by Priddis et al. in [Pr]. Recently, Fan and Shen [FS] proved that this conjecture is true for all chain-type potentials in two dimensions ($N = 2$). Following some of the ideas of Kreuzer, I will show that the Landau-Ginzburg Mirror Symmetry conjecture is true for loop-type potentials in two dimensions.

Date: June 4, 2009.
Combined with the work of Fan and Shen, this completes the proof of the conjecture for all superpotentials in two dimensions. In a recent preprint [Kr], Krawitz has shown us a proof of the conjecture for $N = 3$ and higher.

1.1. Outline of the Paper. The organization of the paper is as follows. First, a review of the FJRW construction will be given in Section 1.3. Section 1.4 describes some additional notation that will be used throughout the paper. In Section 2, a proof of the conjecture will be given for loop potentials in two dimensions.

1.2. Acknowledgments. The author would like to thank T. Jarvis for helpful discussions and comments. He also thanks M. Krawitz and N. Priddis for fruitful discussions. Special acknowledgments are given to the Department of Mathematics of Brigham Young University for their support.

1.3. Review of the Construction. In this section, I will present a simplified description of the FJRW-theory, similar to the one outlined in [Pr]. For a full description of the theory, the reader is referred to the original paper of Fan, Jarvis, and Ruan [FJR].

A quasi-homogeneous polynomial $W \in \mathbb{C}[X_1, \ldots, X_N]$ is defined as a polynomial for which there exist rational positive degrees $q_1, \ldots, q_N \in \mathbb{Q}^{>0}$, such that for any $\lambda \in \mathbb{C}^*$

$$W(\lambda^{q_1} X_1, \ldots, \lambda^{q_N} X_N) = W(X_1, \ldots, X_N).$$

For $i \in \{1, ..., N\}$, we will call q_i the weight of the variable X_i.

Let $W : \mathbb{C}^N \rightarrow \mathbb{C}$ be a quasi-homogeneous polynomial satisfying the non-degeneracy conditions (1) and (2). We define the local algebra of W, also known as the Milnor ring, by

$$\mathcal{O}_W := \mathbb{C}[X_1, \ldots, X_N]/\text{Jac}(W),$$

where Jac(W) is the Jacobian ideal of W, generated by partial derivatives

$$\text{Jac}(W) := \left(\frac{\partial W}{\partial X_1}, \ldots, \frac{\partial W}{\partial X_N} \right).$$

It is easy to see that the local algebra is generated by monomials of the form $\prod X_i^{b_i}$. The local algebra is graded by the weighted-degree of each monomial, where X_i has weight q_i.

The local algebra contains a unique highest-degree element given by $\det \left(\frac{\partial^2 W}{\partial X_i \partial X_j} \right)$, whose degree is given by

$$\hat{c}_W = \sum_{i=1}^N \left(1 - 2q_i \right).$$

Also, the dimension of the local algebra as a vector space over \mathbb{C} is given by

$$\mu = \prod_{i=1}^N \left(\frac{1}{q_i} - 1 \right).$$

For $f, g \in \mathcal{O}_W$, we define the residue pairing $\langle f, g \rangle : \mathcal{O}_W \times \mathcal{O}_W \rightarrow \mathbb{C}$ by

$$fg = \frac{\langle f, g \rangle}{\mu} \det \left(\frac{\partial^2 W}{\partial X_i \partial X_j} \right) + \text{lower order terms.}$$

This pairing endows the local algebra with the structure of a Frobenius algebra. This structure is known as the unorbifolded Landau-Ginzburg B-model.

In order to define the FJRW-ring $\mathcal{H}_{W,G}$, or A-model, we need both a potential W and an admissible group of diagonal symmetries G of W. For the definition of admissible, see [FJR]. We define the maximal group G_W of diagonal symmetries of W by

$$G_W := \{ (\alpha_1, \ldots, \alpha_N) \in (\mathbb{C}^*)^N \mid W(\alpha_1 X_1, \ldots, \alpha_N X_N) = W(X_1, \ldots, X_N) \}$$

(7)
This group is known to be admissible and, as shown in [FJR], when W satisfies the non-degeneracy conditions, the group G_W is finite. Also note that the element J, defined by

$$J := (e^{2\pi i q_1}, \ldots, e^{2\pi i q_n})$$

always belongs to G_W, and the group $\langle J \rangle$ generated by J is always admissible.

The original definition of the state space of $\mathcal{H}_{W,G}$ is in terms of Lefschetz thimbles. However, it can be described more simply in terms of sums of local algebras.

For $g \in G$, let $\text{Fix } g \subseteq \mathbb{C}^N$ be the set of fixed points of g, and let N_g be its dimension. Also, let $W|\text{Fix } g$ be the potential restricted to the fixed point locus of g. Define the vector space \mathcal{H}_g by

$$\mathcal{H}_g := \mathcal{D}_{W|\text{Fix } g} \cdot \omega,$$

where $\omega = dX_{i_1} \wedge dX_{i_2} \wedge \cdots \wedge dX_{i_{N_g}}$.

The state space of $\mathcal{H}_{W,G}$ is defined as the G-invariant subspace of the sum of the \mathcal{H}_g:

$$\mathcal{H}_{W,G} := \left(\bigoplus_{g \in G} \mathcal{H}_g \right)^G.$$

This space can be graded by the so-called W-degree. In order to define the W-degree of each element in $\mathcal{H}_{W,G}$, we note that any element $g \in G$ can be written in the form

$$g = (e^{2\pi i \theta_1^g}, \ldots, e^{2\pi i \theta_N^g}).$$

If the phases θ_j^g satisfy the condition $0 \leq \theta_j^g < 1$, then we denote them by Θ_j^g. Note that any element $g \in G$ can be uniquely written in the form

$$g = (e^{2\pi i \Theta_1^g}, \ldots, e^{2\pi i \Theta_N^g}), \quad \text{with} \quad 0 \leq \Theta_j^g < 1.$$

Let $\alpha_g \in (\mathcal{H}_g)^G$, then we define the W-degree of α_g by

$$\deg_W(\alpha_g) := N_g + 2 \sum_{j=1}^N (\Theta_j^g - q_j).$$

From (11), it is easy to check that $\text{Fix } g = \text{Fix } g^{-1}$ and thus there is a canonical isomorphism $I : \mathcal{H}_g \to \mathcal{H}_{g^{-1}}$. From this we can see that the pairing on $\mathcal{D}_{W|\text{Fix } g}$ induces a pairing η_g

$$\eta_g : (\mathcal{H}_g)^G \otimes (\mathcal{H}_{g^{-1}})^G \to \mathbb{C}, \quad \text{given by} \quad \eta_g(a,b) = \langle a, I^{-1}(b) \rangle.$$

The pairing on $\mathcal{H}_{W,G}$ is the direct sum of the pairings η_g. Fixing a basis for $\mathcal{H}_{W,G}$, we denote the pairing by a matrix $\eta_{\alpha,\beta} = \langle \alpha, \beta \rangle$, with inverse $\eta^{\alpha,\beta}$.

For each pair of non-negative integers g and n, with $2g - 2 + n > 0$, the Fan-Jarvis-Ruan-Witten (FJRW) cohomological field theory produces classes $A^W_{g,n}(\alpha_1, \alpha_2, \ldots, \alpha_n) \in H^*(\overline{\mathcal{M}}_{g,n})$ of complex codimension D for each n-tuple $(\alpha_1, \alpha_2, \ldots, \alpha_n) \in (\mathcal{H}_{W,G})^n$. Here, $\overline{\mathcal{M}}_{g,n}$ is the stack of stable curves of genus g with n marked points, and the codimension D is given by

$$D := \hat{c}_W(g-1) + \frac{1}{2} \sum_{n=1}^n \deg_W(\alpha_i),$$

We define three-point correlators by

$$\langle \alpha_1, \alpha_2, \alpha_3 \rangle := \int_{\overline{\mathcal{M}}_{0,3}} A^W_{0,3}(\alpha_1, \alpha_2, \alpha_3).$$
The three-point correlator \(\langle \alpha_1, \alpha_2, \alpha_3 \rangle \) vanishes unless \(D \) is zero. These three-point correlators can be used to define structure constants for a multiplication on \(\mathcal{H}_{W,G} \). If \(r, s \in \mathcal{H}_{W,G} \), this multiplication is defined by

\[
r \star s := \sum_{\alpha, \beta} \langle r, s, \alpha \rangle \eta^{\alpha, \beta},
\]

where the sum is taken over all choices of \(\alpha \) and \(\beta \) in a fixed basis of \(\mathcal{H}_{W,G} \).

As described in [EP], in genus zero with three marked points, the class \(\Lambda^W_{g,3}(\alpha_1, \alpha_2, \alpha_3) \) satisfies the following axioms that allow us to compute most of the three-point correlators \(\langle \alpha_1, \alpha_2, \alpha_3 \rangle \) explicitly.

Axiom 1. Dimension: If \(2D \notin \mathbb{Z} \), then \(\Lambda^W_{g,n}(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0 \). Otherwise, \(2D \) is the real codimension of the class \(\Lambda^W_{g,n}(\alpha_1, \alpha_2, \ldots, \alpha_n) \). In particular, if \(g = 0 \) and \(n = 3 \), then \(\langle \alpha_1, \alpha_2, \alpha_3 \rangle = 0 \) unless \(D = 0 \).

Notice that in the case where \(g = 0 \) and \(n = 3 \), if \(D \) is the codimension of the class \(\Lambda^W_{0,3}(\alpha_1, \alpha_2, \alpha_3) \), then \(D = 0 \) if and only if \(\sum_{i=1}^3 \deg W \alpha_i = 2\mathcal{E} \).

Axiom 2. Symmetry: Let \(\sigma \in S_n \). Then

\[
\Lambda^W_{g,n}(\alpha_1, \alpha_2, \ldots, \alpha_n) = \Lambda^W_{g,n}(\alpha_{\sigma(1)}, \alpha_{\sigma(2)}, \ldots, \alpha_{\sigma(n)})
\]

The next few axioms rely on the degrees of line bundles \(\mathcal{L}_1, \ldots, \mathcal{L}_N \) endowing an orbicurve with a so-called \(W \)-structure; however, this can be reduced to a simple numerical criterion. Consider the class \(\Lambda^W_{g,n}(\alpha_1, \alpha_2, \ldots, \alpha_k) \), with \(\alpha_j \in (\mathcal{H}_g)^{G} \) for each \(j \). For each variable \(X_j \), define \(l_j \) to be the degree of the line bundle \(\mathcal{L}_j \). By [FJR], this degree is given by the equation

\[
l_j = q_j(2g - 2 + k) - \sum_{i=1}^k \Theta^i_j.
\]

Axiom 3. Integer degrees: If \(l_j \notin \mathbb{Z} \) for some \(j \in \{1, \ldots, N\} \), then \(\Lambda^W_{g,n}(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0 \).

Axiom 4. Concavity: If \(l_j < 0 \) for all \(j \in \{1, 2, 3\} \), then \(\langle \alpha_1, \alpha_2, \alpha_3 \rangle = 1 \).

The next axiom is related to the Witten map:

\[
W : \bigoplus_{j=1}^N H^0(\mathcal{E}, \mathcal{L}_j) \to \bigoplus_{j=1}^N H^1(\mathcal{E}, \mathcal{L}_j)
\]

\[
W = \left(\frac{\partial W}{\partial x_1}, \frac{\partial W}{\partial x_2}, \ldots, \frac{\partial W}{\partial x_N} \right)
\]

The dimensions of the cohomologies \(H^0(\mathcal{E}, \mathcal{L}_j) \) and \(H^1(\mathcal{E}, \mathcal{L}_j) \) are \(h^0_j \) and \(h^1_j \) respectively. These dimensions are known to be given by

\[
h^0_j := \begin{cases} 0 & \text{if } l_j < 0 \\ l_j + 1 & \text{if } l_j \geq 0 \end{cases}
\]

\[
h^1_j := \begin{cases} -l_j - 1 & \text{if } l_j < 0 \\ 0 & \text{if } l_j \geq 0 \end{cases}
\]

so that both are non-negative integers satisfying \(h^0_j - h^1_j = l_j + 1 \). Moreover, we have that \(D = \sum_{j=1}^N (h^0_j - h^1_j) \).

In \(\mathcal{H}_{g,n} \), if \(\Lambda^W_{g,n}(\alpha_1, \alpha_2, \ldots, \alpha_n) \) is a class of codimension zero, then these classes are constant and so, abusing notation, we will simply consider \(\Lambda^W_{g,n}(\alpha_1, \alpha_2, \ldots, \alpha_n) \) to be a complex number. We will use this convention through the rest of the paper.

Axiom 5. Index Zero: Consider the class \(\Lambda^W_{g,n}(\alpha_1, \alpha_2, \ldots, \alpha_n) \), with \(\alpha_i \in \mathcal{H}_{g_i,G} \). If \(\text{Fix } \gamma_i = \{0\} \) for each \(i \in \{1, 2, \ldots, n\} \) and

\[
D = \sum_{j=1}^N (h^0_j - h^1_j) = 0,
\]
Theorem 2.1. For an arbitrary two-dimensional loop potential \(\Lambda \), the group of diagonal symmetries \(G \) is of codimension zero and \(\Lambda_{g,n}(\alpha_1,\alpha_2,\ldots,\alpha_n) \) is equal to the degree of the Witten map.

Axiom 6. Composition: If the four-point class, \(\Lambda^W_{g,n}(\alpha_1,\alpha_2,\alpha_3,\alpha_4) \) is of codimension zero, then it decomposes as sums of three-point correlators in the following way:

\[
\Lambda^W_{0,4}(\alpha_1,\alpha_2,\alpha_3,\alpha_4) = \sum_{\beta,\delta} \langle \alpha_1,\alpha_2,\beta \rangle \eta_{\beta,\delta} \langle \delta,\alpha_3,\alpha_4 \rangle = \sum_{\beta,\delta} \langle \alpha_1,\alpha_2,\beta \rangle \eta_{\beta,\delta} \langle \delta,\alpha_2,\alpha_4 \rangle.
\]

Note that \(\text{Fix} J = \{0\} \) so \(\mathcal{H}_J \cong \mathbb{C} \). Let \(\mathbf{1} \) be the element in \(\mathcal{H}_J \) corresponding to \(1 \in \mathbb{C} \). This element has \(\text{deg} \mathbf{1} = 0 \) and it turns out to be the identity element in the FJRW-ring. The next axiom deals with this element.

Axiom 7. Pairing: For any \(\alpha_1,\alpha_2 \in \mathcal{H}_{W,G} \), we have \(\langle \alpha_1,\alpha_2,\mathbf{1} \rangle = \eta_{\alpha_1,\alpha_2} \).

Axiom 8. Sums of singularities: If \(W_1 \in \mathbb{C}[X_1,\ldots,X_r] \) and \(W_2 \in \mathbb{C}[Y_1,\ldots,Y_s] \) are two non-degenerate, quasi-homogeneous polynomials with maximal symmetry groups \(G_1 \) and \(G_2 \), then the maximal symmetry group of \(W = W_1 + W_2 \) is \(G = G_1 \times G_2 \), and there is an isomorphism of Frobenius algebras

\[
\mathcal{H}_{W,G} \cong \mathcal{H}_{W_1,G_{W_1}} \otimes \mathcal{H}_{W_2,G_{W_2}}
\]

1.4. Additional Notation. Throughout this paper we adopt the following notation. Let \(g \in G_W \). If \(\text{Fix} g = \{0\} \), define

\[
e_g := 1 \in \mathcal{H}_g \cong \mathbb{C},
\]

otherwise, if \(g \) fixes the variables \(X_{i_1},\ldots,X_{i_{N_g}} \), define

\[
e_g := dX_{i_1} \wedge dX_{i_2} \wedge \cdots \wedge dX_{i_{N_g}} \in \mathcal{H}_g.
\]

The identity element of \(G_W \) will be denoted by \(i_W \).

2. Two-Dimensional Loop Potentials

In this section we show that the Landau-Ginzburg Mirror Symmetry Conjecture holds for the so-called loop potentials in two dimensions. These potentials are of the form

\[
W = X_1^{a_1}X_2 + X_2^{a_2}X_1,
\]

where \(a_1, a_2 \in \mathbb{N}^{>1} \). Note that quasi-homogeneity implies that \(a_1q_1 + q_2 = 1 \) and \(a_2q_2 + q_1 = 1 \) for the weights \(q_1, q_2 \) of the loop potential, so \(q_1 = \frac{|G_W| - 1}{a_1 a_2 - 1} \) and \(q_2 = \frac{|G_W| - 1}{a_1 a_2 - 1} \).

Theorem 2.1. For an arbitrary two-dimensional loop potential

\[
W = X_1^{a_1}X_2 + X_2^{a_2}X_1
\]

the group of diagonal symmetries \(G_W \) is cyclic of order

\[
|G_W| = a_1 a_2 - 1.
\]

Moreover, \(G_W \) can be generated by either one of the following elements: \(g_1 := (e^{2 \pi i \theta_1^{(1)}}, e^{2 \pi i \theta_2^{(1)}}) \) or \(g_2 := (e^{2 \pi i \theta_1^{(2)}}, e^{2 \pi i \theta_2^{(2)}}) \), where

\[
\theta_1^{(1)} := \frac{-1}{|G_W|}, \quad \theta_2^{(1)} := \frac{a_1}{|G_W|}, \quad \theta_1^{(2)} := \frac{a_2}{|G_W|}, \quad \theta_2^{(2)} := \frac{-1}{|G_W|}.
\]

Proof. From the definition of the maximal group of diagonal symmetries, we see that any \(g \in G_W \) can be expressed in the form \(g = (\alpha_1,\alpha_2) \), satisfying the conditions

\[
\alpha_1^{a_1} = 1 \quad \text{and} \quad \alpha_2^{a_2} = 1.
\]
This implies that $a_1^{a_1 a_2 - 1} = 1$ and $a_2^{a_1 a_2 - 1} = 1$. Thus, a_1 and a_2 are primitive roots of unity of order $a_1 a_2 - 1$. From (16) it is clear that determining the value of a_1 fixes the value of a_2, and therefore G_W must be isomorphic to the additive group of integers modulo $a_1 a_2 - 1$. Hence, G_W is cyclic of order $|G_W| = a_1 a_2 - 1$.

From (15) it is clear that $g_2, g_2 \in G_W$, and that they are generators of the group.

\[\square\]

Remark 2.2. Note that $g_1^{-a_2} = g_2$ and $g_2^{-a_1} = g_1$.

We now want to construct the state space of $\mathcal{H}_{G,W}$. As mentioned in Section 1.3 it is possible to do this in terms of Milnor rings.

Theorem 2.3. The state space of the FJRW-ring of a two-dimensional loop potential W with maximal group diagonal of symmetries G_W is given by

$$\mathcal{H}_{W,G_W} = \left(X_1^{a_1^{-1}} \right) e_{i_W} \oplus \left(X_2^{a_2^{-1}} \right) e_{i_W} \bigoplus_{g \in G_W} \mathbb{C} e_g$$

Proof. Since $G_W = \langle g_i \rangle$ for $i \in \{1, 2\}$, we have that we can construct the state space of the FJRW-ring by taking powers of any of the generators g_i, i.e.

$$\mathcal{H}_{W,G_W} = \left(\bigoplus_{k=0}^{|G_W|-1} \mathcal{H}_{g_i}^k \right)^{G_W}.$$

By looking at (15), it is not hard to see that $|G_W|$ and $|G_W| \theta_j^{(i)}$ are relatively prime for any of the phases $\theta_j^{(i)}$ of g_i. From this result we see that $\text{Fix} g_k^i = \{0\}$ for $k \neq 0$, and therefore $N_{g_k}^i = 0$. Thus, we only need to find the elements in \mathcal{H}_{g_i} that are invariant under the action of G_W. We first note that $\text{Fix} g_0^i = \text{Fix} i_W = \mathbb{C}^2$, where i_W is the identity of G_W. In order to find \mathcal{H}_{i_W} then, we need to compute the Milnor ring of W. We recall that this ring is given by,

$$\mathcal{D}_W = \mathbb{C}[X_1, X_2]/\text{Jac}(W)$$

where $\text{Jac}(W)$ is the Jacobian ideal of W. From these relations, we find that a basis for \mathcal{D}_W as a vector space over \mathbb{C} is given by monomials of the form

$$X_1^{b_1} X_2^{b_2}$$

(17)

where $0 \leq b_1 < a_1$ and $0 \leq b_2 < a_2$.

As described in Section 1.3 a basis for \mathcal{H}_{i_W} is therefore given by elements of the form

$$\left(X_1^{b_1} X_2^{b_2} \right) e_{i_W}, \quad 0 \leq b_1 < a_1, \quad 0 \leq b_2 < a_2.$$

The elements in \mathcal{H}_{i_W} invariant under the action of G_W must satisfy

$$\sum_{j=1}^2 \theta_j^{(i)} b_j + \sum_{j=1}^2 \theta_j^{(i)} = m, \quad \text{where} \quad m \in \mathbb{Z}$$

(18)

This relation must hold true for any generator g_i of G_W, so in particular we can pick $i = 1$ in the above condition. Since $\theta_1^{(1)}$ is negative and $\theta_2^{(1)}$ is positive, we have that the maximum and minimum values of (20) will be attained by $(X_2^{a_2^{-1}}) e_{i_W}$ and $(X_1^{a_1^{-1}}) e_{i_W}$, respectively. The value of m in these cases will be 1 and 0 respectively. If we take any other element of \mathcal{H}_{i_W} the value of (18) will be strictly between 0 and 1. Therefore, the only elements of \mathcal{H}_{i_W} fixed under the action of G_W are $(X_1^{a_1^{-1}}) e_{i_W}$ and $(X_2^{a_2^{-1}}) e_{i_W}$.

\[\square\]

Remark 2.4. The dimension of \mathcal{H}_{W,G_W} as a vector space over \mathbb{C} is given by $a_1 a_2$.

Now that we have constructed the state space for \mathcal{H}_{W,G_W}, we would like to find the potential W^T that will be the mirror dual of W. From the Berglund-Hübsch mirror construction [BH], this dual potential is given by

$$W^T = \overline{X}_1 X_2 + \overline{X}_2 X_1.$$ \hfill (19)

Let \overline{q}_i be the weight of the variable \overline{X}_i in W^T. It is not hard to check that

$$a_1 \overline{q}_2 + \overline{q}_1 = 1 \quad \text{and} \quad a_2 \overline{q}_1 + \overline{q}_2 = 1,$$ \hfill (20)

and that

$$\overline{q}_i := \theta_1^{(i)} + \theta_2^{(i)}, \quad i \in \{1, 2\}.$$ \hfill (21)

We claim that this new potential W^T is the mirror dual of W, which means that $(\mathcal{H}_{W,G_W}, *) \cong \mathcal{D}_{W^T}$ and $(\mathcal{H}_{W^T,G_{W^T}}, *) \cong \mathcal{D}_W$, where $*$ is the multiplication defined in (13).

Theorem 2.5. For a loop potential $W = X_1^{a_1} X_2 + X_1 X_2^{a_2}$ with maximal group of diagonal symmetries G_W, there is a dual potential W^T given by

$$W^T = \overline{X}_1 X_2 + \overline{X}_2 X_1$$

such that $\mathcal{H}_{W,G_W} \cong \mathcal{D}_{W^T}$ as graded Frobenius algebras, where \mathcal{H}_{W,G_W} is graded by W-degree and \mathcal{D}_{W^T} is graded by the weighted degree of monomials.

In order to prove Theorem 2.5, we must first prove a series of results:

Lemma 2.6. Every element $g \in G_W$ can be written in the form $g = Jg_1^{\alpha} g_2^\beta$ in a unique way, where $0 \leq \alpha \leq a_2 - 1$ and $0 \leq \beta \leq a_1 - 1$, with the exception of $i_W = Jg_1^{a_2 - 1} = Jg_2^{a_1 - 1}$.

Proof. First, note that

$$Jg_1^{a_2 - 1} = (e^{2\pi i (q_1+(a_2-1)\theta_1^{(1)})}, e^{2\pi i (q_2+(a_2-1)\theta_2^{(1)})}) = i_W,$$

and that

$$Jg_2^{a_1 - 1} = (e^{2\pi i (q_1+(a_1-1)\theta_1^{(2)})}, e^{2\pi i (q_2+(a_1-1)\theta_2^{(2)})}) = i_W.$$

Now suppose that for some $g \in G_W$ with $g \neq i_W$, we have that $g = Jg_1^{\alpha_1} g_2^{\beta_1} = Jg_1^{\alpha_2} g_2^{\beta_2}$, where $0 \leq \alpha_1, \alpha_2 \leq a_2 - 1$ and $0 \leq \beta_1, \beta_2 \leq a_1 - 1$. Assume without loss of generality that $\alpha_2 \geq \alpha_1$. If we divide one representation by the other, we find that

$$i_W = g_1^{\alpha_2 - \alpha_1} g_2^{\beta_2 - \beta_1} = g_1^{\alpha_2 - \alpha_1} g_1^{\alpha_2 - \alpha_1} g_1^{\alpha_2 - \alpha_1} g_1^{\alpha_2 - \alpha_1},$$

where the last equality comes after invoking Remark 2.2. This implies that $\alpha_2 - \alpha_1 - a_2(\beta_2 - \beta_1) = m|G_W|$, where m is an integer. It is not hard to show that

$$-a_2(a_1 - 1) \leq \alpha_2 - \alpha_1 - a_2(\beta_2 - \beta_1) \leq a_2 - 1 + a_2(a_1 - 1) = |G_W|,$$

and therefore, the only possible values that m can take are 0 and 1. The only way in which $m = 1$ is by letting $\alpha_2 = a_2 - 1, \alpha_1 = 0, \beta_2 = 0$, and $\beta_1 = a_1 - 1$. However, this would mean that $g = i_W$, which is impossible.

It is straightforward to show that the only way in which $m = 0$ is that $\alpha_1 = \alpha_2$ and that $\beta_1 = \beta_2$, but this means that the representation of g in the form $Jg_1^{\alpha} g_2^{\beta}$ is unique.

We have thus far shown that there are exactly $a_1 a_2 - 1$ different elements of G_W that can be written in the form $Jg_1^{\alpha} g_2^{\beta}$, with $0 \leq \alpha \leq a_2 - 1$ and $0 \leq \beta \leq a_1 - 1$. Since the order of G_W is also $a_1 a_2 - 1$, then every element of G_W can be written uniquely in the form $Jg_1^{\alpha} g_2^{\beta}$, with the exception of i_W. \hfill \Box

Corollary 2.7. Let $\gamma \in \mathcal{H}_{W,G_W}$, and suppose that $\gamma \in \mathcal{H}_g$ for some $g \in G_W$, where $g = Jg_1^{\alpha} g_2^\beta$, $0 \leq \alpha \leq a_2 - 1$, $0 \leq \beta \leq a_1 - 1$. Then the W-degree of γ is given by

$$\deg_W(\gamma) = 2(\alpha \overline{q}_1 + \beta \overline{q}_2).$$
Proof. We divide the proof in two cases: $g = i_W$ and $g \neq i_W$.

Case 1: Suppose that $\gamma \in \mathcal{H}_i$. Then, the W-degree of γ will be given by

$$
\deg_W(\gamma) = N_i + 2(0 - q_1) + 2(0 - q_2) = 2 - 2q_1 - 2q_2.
$$

A simple computation shows that $\deg_W(\gamma) = 2(a_2 - 1)\bar{q}_1 = 2(a_1 - 1)\bar{q}_2$.

Case 2: Suppose that $g \neq i_W$ and that $\gamma \in \mathcal{H}_g$. Let $g = Jg_1^a g_2^b$, where $0 \leq \alpha \leq a_2 - 1$, $0 \leq \beta \leq a_1 - 1$. Then

$$
\theta_1^a = q_1 + \alpha \theta_1^{(1)} + \beta \theta_1^{(2)} \quad \text{and} \quad \theta_2^b = q_2 + \alpha \theta_2^{(1)} + \beta \theta_2^{(2)}.
$$

It is not hard to show that $0 \leq q_1 + \alpha \theta_1^{(1)} + \beta \theta_1^{(2)} \leq 1$ and that $0 \leq q_2 + \alpha \theta_2^{(1)} + \beta \theta_2^{(2)} \leq 1$. Note that the only time that $\theta_1^a = 1$ or $\theta_2^b = 1$ is when $g = i_W$, but this was considered in Case 1, so we will assume that $0 \leq \theta_1^a, \theta_2^b < 1$. Therefore, we have that $\Theta_1^a = \theta_1^a$ and $\Theta_2^b = \theta_2^b$. We can now use (12) to compute the W-degree of γ

$$
\deg_W(\gamma) = N_\gamma + 2(q_1 + \alpha \theta_1^{(1)} + \beta \theta_1^{(2)} - q_1) + 2(q_2 + \alpha \theta_2^{(1)} + \beta \theta_2^{(2)} - q_2) = 0 + 2\alpha(\theta_1^{(1)} + \theta_2^{(2)}) + 2\beta(\theta_1^{(2)} + \theta_2^{(1)}) = 2(\alpha \bar{q}_1 + \beta \bar{q}_2).
$$

Lemma 2.8. For any integer c with $0 \leq c < a_1 - 1$, we have that $(e_{Jg_i})^c = e_{Jg_i^c}$, where $i \in \{1, 2\}$.

Proof. For $c = 0$ the result is trivial since

$$
(e_{Jg_i^c})^0 = 1 = e_J = e_{Jg_i^0}.
$$

Now suppose that for $1 \leq c < a_1 - 1$, we have that $(e_{Jg_i})^{c-1} = e_{Jg_i^{c-1}}$, and consider the product $(e_{Jg_i})^{c-1} \ast e_{Jg_i}$. By definition, this product will be given by $\sum_{\alpha, \beta} \langle (e_{Jg_i})^{c-1}, e_{Jg_i}, \alpha \rangle \eta^{\alpha, \beta}$. Using our assumption, we find that

$$
\langle (e_{Jg_i})^{c-1} \ast e_{Jg_i}, \alpha \rangle = \sum_{\alpha, \beta} \langle e_{Jg_i^{c-1}}, e_{Jg_i}, \alpha \rangle \eta^{\alpha, \beta}.
$$

(22)

For these correlators to be non-zero we need $\deg_W(e_{Jg_i^{c-1}}) + \deg_W(e_{Jg_i}) + \deg_W(\alpha) = 2c$. Using Corollary 2.7, we find that this last relation is equivalent to

$$
2c\bar{q}_i + \deg_W(\alpha) = 2(a_i - 1)\bar{q}_i + 2(a_i - 1)\bar{q}_i + 2(a_i - 1)\bar{q}_i + 2(a_i - 1)\bar{q}_i,
$$

$$
\Rightarrow \deg_W(\alpha) = 2(a_i - 1 - c)\bar{q}_i + 2(a_i - 1)\bar{q}_i.
$$

From Corollary 2.7, it is easy to see that if $\gamma = Jg_i^{a_i - 1 - c} g_{i+1}^{-1}$, then $\deg_W(e_{\gamma}) = \deg_W(\alpha)$, and since $\gamma \neq i_W$, there is only one basis element coming from \mathcal{H}_g, and thus, the sum in equation (22) reduces to a single term. Also note that $\gamma g_i^c = i_W$, and therefore, e_γ pairs up with $e_{Jg_i^c}$, which gives

$$
\langle (e_{Jg_i})^{c-1} \ast e_{Jg_i}, \alpha \rangle = \langle e_{Jg_i^{c-1}}, e_{Jg_i}, e_\gamma \rangle \eta^{e_\gamma, e_{Jg_i^c}}.
$$

To find the value of $\langle e_{Jg_i^{c-1}}, e_{Jg_i}, e_\gamma \rangle$ we must compute the degrees of its line bundles. From Section 1.3, we see that

$$
l_1 = q_1 - (q_1 + (c - 1)\theta_1^{(2)} + q_1 + (a_2 - 1)\theta_1^{(1)} + (a_1 - c - 1)\theta_1^{(2)} = -1.
$$

$$
l_2 = q_2 - (q_2 + (c - 1)\theta_2^{(2)} + q_2 + (a_2 - 1)\theta_2^{(1)} + (a_1 - c - 1)\theta_2^{(2)} = -1.
$$

Therefore, by Axioms 3 and 4 we have that $\langle e_{Jg_i^{c-1}}, e_{Jg_i}, e_\gamma \rangle = 1$. In a similar way it can be shown that $\eta^{e_\gamma, e_{Jg_i^c}} = 1$, and thus we find that $(e_{Jg_i})^c = e_{Jg_i^c}$, which concludes the proof of Lemma 2.8. \qed
Lemma 2.9. In $(\mathcal{H}_{W,G_{W}}, \ast)$
\[
ed_{h_{2}} + a_{2} e_{h_{2}} \ast \ned_{h_{1}} = 0 \quad \text{and} \quad \ned_{h_{2}} + a_{1} e_{h_{1}} \ast \ned_{h_{2}} = 0,
\]
where $h_{i} = Jg_{i}$, $i \in \{1, 2\}$.

Proof. Using the Lemma 2.8, we see that $\ned_{h_{2}} = e_{h_{2}}^{{a_{2}}^{-2}}$, and thus
\[
\ned_{h_{2}}^{-1} = \sum_{\alpha, \beta} \langle e_{Jg_{1}^{{a_{1}}^{-2}}, e_{Jg_{2}}, \alpha} \rangle \eta^{\alpha, \beta},
\]
where we need $\deg_{W}(e_{Jg_{1}^{{a_{1}}^{-2}}}) + \deg_{W}(e_{Jg_{2}}) + \deg_{W}(\alpha) = 2\hat{c}$. Making use of Corollary 2.7, we note that this last relation is equivalent to $\deg_{W} \alpha = \hat{c}$. However, this is only possible if $\alpha \in \mathcal{H}_{W}$. Therefore, we have that
\[
\ned_{h_{2}}^{-1} = \sum_{\alpha, \beta} \langle e_{Jg_{1}^{{a_{1}}^{-2}}, e_{Jg_{2}}, \alpha} \rangle \eta^{\alpha, \beta}, \quad \text{where} \ \alpha, \beta \in \{(X_{1}^{{a_{1}}^{-1}}) e_{i_{W}}, (X_{2}^{{a_{2}}^{-1}}) e_{i_{W}}\}
\]
\[
\Rightarrow \ned_{h_{2}} = \sum_{\alpha, \beta} \langle e_{Jg_{1}^{{a_{1}}^{-2}}, e_{Jg_{2}}, \alpha} \rangle \eta^{\alpha, \beta} \langle \beta, e_{Jg_{2}}, e_{Jg_{1}^{{a_{1}}^{-2}}} \rangle \eta^{e_{Jg_{1}^{{a_{1}}^{-2}}, \delta}}
\]
\[
= \Lambda_{W}(e_{Jg_{1}^{{a_{1}}^{-2}}, e_{Jg_{2}}, e_{Jg_{1}^{{a_{1}}^{-2}}}) \eta^{e_{Jg_{1}^{{a_{1}}^{-2}}, \delta}}.
\]
The inverse of $Jg_{1}^{{a_{1}}^{-2}}$ is given by $Jg_{1}^{{a_{2}}^{-1}}$, and so $\delta = e_{Jg_{1}^{{a_{2}}^{-1}} g_{2}}$. It is not hard to show that $\eta^{e_{Jg_{1}^{{a_{2}}^{-1}}}} = 1$, which gives us that
\[
\ned_{h_{2}} = \Lambda_{W}(e_{Jg_{1}^{{a_{1}}^{-2}}, e_{Jg_{2}}, e_{Jg_{1}^{{a_{1}}^{-2}}}) e_{Jg_{1}^{{a_{2}}^{-1}} g_{2}}.
\]
To find the value of this four-point class, we compute the degrees of its line bundles,
\[
\begin{align*}
l_{1} &= 2q_{1} - (q_{1} + (a_{1} - 2)\theta_{1}^{(1)}) + q_{1} + \theta_{1}^{(1)} + q_{1} + (a_{1} - 2)\theta_{1}^{(1)} = -2, \\
l_{2} &= 2q_{2} - (q_{2} + (a_{1} - 2)\theta_{2}^{(1)}) + q_{2} + \theta_{2}^{(1)} + q_{2} + (a_{1} - 2)\theta_{2}^{(1)} = 0.
\end{align*}
\]
Using Axiom 5, we find that $\Lambda_{W}(e_{Jg_{1}^{{a_{1}}^{-2}}, e_{Jg_{2}}, e_{Jg_{1}^{{a_{1}}^{-2}}}) = a_{2}$, and thus
\[
\ned_{h_{2}} = -a_{2} e_{Jg_{1}^{{a_{2}}^{-1}} g_{2}}.
\]
In the same way (25) was obtained, one can show that
\[
\ned_{h_{1}}^{-1} = \sum_{\alpha, \beta} \langle e_{Jg_{1}^{{a_{1}}^{-2}}, e_{Jg_{1}}, \alpha} \rangle \eta^{\alpha, \beta}, \quad \text{where} \ \alpha, \beta \in \{(X_{1}^{{a_{1}}^{-1}}) e_{i_{W}}, (X_{2}^{{a_{2}}^{-1}}) e_{i_{W}}\}
\]
\[
\Rightarrow \ned_{h_{1}} \ast \ned_{h_{1}}^{-1} = \sum_{\alpha, \beta} \langle e_{Jg_{1}^{{a_{1}}^{-2}}, e_{Jg_{1}}, \alpha} \rangle \eta^{\alpha, \beta} \langle \beta, e_{Jg_{1}}, e_{Jg_{1}^{{a_{1}}^{-2}}} \rangle \eta^{e_{Jg_{1}^{{a_{1}}^{-2}}, e_{Jg_{1}^{{a_{1}}^{-2}}}}}
\]
\[
= \Lambda_{W}(e_{Jg_{1}^{{a_{1}}^{-2}}, e_{Jg_{1}}, e_{Jg_{1}^{{a_{1}}^{-2}}}) \eta^{e_{Jg_{1}^{{a_{1}}^{-2}}, e_{Jg_{1}^{{a_{1}}^{-2}}}}}
\]
It is not hard to show that $\eta^{e_{Jg_{1}^{{a_{1}}^{-2}}, e_{Jg_{1}^{{a_{1}}^{-2}}}} = 1$. Now, to find the value of the four-point class we compute its line bundle degrees,
\[
\begin{align*}
l_{1} &= 2q_{1} - (q_{1} + (a_{2} - 2)\theta_{1}^{(1)}) + q_{1} + \theta_{1}^{(1)} + q_{1} + (a_{1} - 2)\theta_{1}^{(1)} = -1, \\
l_{2} &= 2q_{2} - (q_{2} + (a_{2} - 2)\theta_{2}^{(1)}) + q_{2} + \theta_{2}^{(1)} + q_{2} + (a_{1} - 2)\theta_{2}^{(1)} = -1,
\end{align*}
\]
and so by Axioms 3 and 4 we have that $\Lambda_{W}(e_{Jg_{1}^{{a_{1}}^{-2}}, e_{Jg_{1}}, e_{Jg_{1}^{{a_{1}}^{-2}}}) = 1$. Therefore, we have that
\[
\ned_{h_{1}} \ast \ned_{h_{1}}^{-1} = e_{Jg_{1}^{{a_{2}}^{-1}} g_{2}}.
\]
Putting this together with (26) allows us to show that $\ned_{h_{2}} + a_{2} e_{h_{2}} \ast \ned_{h_{1}} = 0$. Following the steps that led us to this relation, one can show that $\ned_{h_{1}} + a_{1} e_{h_{1}} \ast \ned_{h_{2}} = 0$. \qed
We are now in a position to prove Theorem 2.5,

Proof of Theorem 2.5:

Consider the map \(\varphi : Q_{W,\tau} \rightarrow H_{W,\mathcal{G}W} \) given by

\[
X^\alpha_1 X^\beta_2 \mapsto e_j g_{\alpha_1} g_{\beta_2}^T, \quad X^\alpha_1 \mapsto (X^\alpha_1) e_{i_1}, \quad X^\alpha_2 \mapsto (X^\alpha_2 - 1) e_{i_2},
\]

where \(0 \leq \alpha \leq a_2 - 1 \) and \(0 \leq \beta \leq a_1 - 1 \).

From Lemma 2.6, it is easy to see that this map is surjective, and because the dimensions of \(Q_{W,\tau} \) and \(H_{W,\mathcal{G}W} \) are equal, \(\varphi \) must be bijective.

Note that \(e_j, i \in \{1, 2\} \), and that the relations in \(Q_{W,\tau} \) are given by its Jacobian ideal, i.e.

\[
X^\alpha_2 + a_2 X^\alpha_1 X^\alpha_2 - 1 = 0, \quad X^\alpha_1 + a_1 X^\alpha_2 X^\alpha_2 - 1 = 0.
\]

Therefore, by Lemma 2.9, \(\text{Jac}(W^T) \subseteq \ker(\varphi) \), and we have that \(\varphi \) is the desired degree preserving isomorphism.

References

BH. P. Berglund and T. Hubsch, *A generalized construction of mirror manifolds*. Nuclear Physics B. 393:377, (1993).

FS. H. Fan and Y. Shen, *Quantum ring of singularity x^p + xy^q*. [arXiv:0902.2327v1 [math.AG]], February 2009.

FJR. Huijun Fan, Tyler J. Jarvis, and Yongbin Ruan, *The witten equation, mirror symmetry and quantum singularity theory*. [arXiv:0712.4021v3 [math.AG]], January 2009.

GP. B.R. Greene and M.R. Plesser. Nuclear Physics B. 338:15, (1990).

Kr. M. Kreuzer, *FJRW-ring and Landau-Ginzburg mirror symmetry*. In preparation.

K. M. Kreuzer, *The mirror map for invertible LG models*. Physics Letters B. 328:312-318, (1994).

KS. M. Kreuzer and H. Skarke. Commun. Math. Phys. B 411:559, (1992).

Pr. N. Prididd, M. Kreuzer, P. Acosta, N. Wilde N. and H. Rathnakamura, *FJRW-rings and mirror symmetry*. [arXiv:0903.3220v1 [math.AG]], March 2009.

Department of Mathematics, Brigham Young University, Provo, UT 84602, USA

E-mail address: pacosta@byu.net