Table S1. Effect of organic solvents and cultivation parameters on microalgae growth and metabolism.

Strain	Solvent	Concentration	Exposure time	Effect on growth	Effect on metabolism	Ref.	
Selenastrum capricornutum	DMF	1.27-2.31 g/L (17.4-31.6 mM)	96h	50% inhibition	n.d.	[78]	
Selenastrum capricornutum	DMF	0.094-0.94 g/L (0.01-0.1 v/v %)	14 days	Slight stimulation observed	n.d.	[79]	
Pseudokirchneriella subcapitata	Methanol	82 g/L (2570 mM)	up to 2 h	50% inhibition^a	Decreased oxygen evolution rate	[73]	
Pseudokirchneriella subcapitata	DMF	152.5 g/L (2089 mM)	72h	50% inhibition	n.d.	[47]	
Botryococcus braunii	Methanol	~23 g/L (3%)	10 days	100% stimulation	n.d.	[45]	
Chlamydomonas reinhardtii	Methanol	1.6 g/L (50 mM)	6 days	35% stimulation	Protein content- (30% increase)^a Free amino acid content- (31% increase)^a A change in amino acid composition^b	[42]	
Chlorella minutissima	Methanol	3.96 g/L (0.5 v/v %)	6 days	45% stimulation^a 27% inhibition^a 74% inhibition^b	n.d.	[40]	
Chlorella minutissima	Methanol	7.92 g/L (1 v/v %)	45 days	91% stimulation	40% increase in lipid content	[41]	
Chlorella sorokiniana	Methanol	0.5 g/L (500 ppm)	10 days	69% increase	160% increase in Chl a productivity	[43]	
Scenedesmus obliquus	Methanol	3.96 g/L (0.5 v/v %)	120 h	133% stimulation	20% decrease in LHCII amount^{eb}	[44]	
Arthrospira platensis	Ethanol	0.15-1.21 g/L	8 days	24% stimulation	n.d.	[55]	
Monodus subterraneus	Ethanol	7.89-15.78 g/L (1-2 v/v %)	6 days	13-44% inhibition	n.d.	[70]	
Scenedesmus obtusus	Ethanol	1.84 g/L	9 days	3-fold stimulation	n.d.	[56]	
Chlorella	Ethanol	1.38 g/L (0.03 M/L)	24 days	140% stimulation¹ 332% increase¹	n.d.	[63]	
Spirulina platensis	Ethanol	16.56 g/L (0.36 M)	8 days	50% inhibition	50% inhibition of oxygen evolution	[68]	
Organism	Type of Alcohol	Concentration	Time	Effect	Chlorophyll a (increase)	Vitamin A (increase)	Vitamin E (increase)
----------	----------------	---------------	------	--------	-------------------------	---------------------	---------------------
Synechocystis sp.	Ethanol	11.83 g/L (1.59 M)	24h	50 % inhibition	100% increase	105% increase	105% increase
Synechocystis sp.	Ethanol	11.83 g/L (1.59 M)	24h	No effect	54%	54%	n.d.
Synechocystis sp.	Ethanol	2 g/L	20h	No effect	40%	48%	n.d.
Synechocystis sp.	Ethanol	2 g/L	20h	No effect	91%	90%	n.d.
Synechocystis sp.	Ethanol	2 g/L	20h	No effect	40%	48%	n.d.
Chlorella vulgaris	Ethanol	3.94 g/L	20h	86%	102% increase	105% increase	105% increase
Chlorella vulgaris	Methanol	3.96 g/L	20h	69%	7-fold increase	39% increase	62% increase
Chlorella vulgaris	DMSO	5.5 g/L	20h	No inhibition	38%	13%	9%
Selenastrium capricornutum	Ethanol	3.94 g/L	4 days	7% inhibition	37%	7%	n.d.
Selenastrium capricornutum	Methanol	3.96 g/L	4 days	21%	13%	9%	n.d.
Selenastrium capricornutum	DMSO	5.5 g/L	4 days	38%	13%	9%	n.d.
Selenastrium capricornutum	DMF	4.72 g/L	4 days	38%	13%	9%	n.d.
Euglena gracilis	Ethanol	4.6 g/L (100 mM)	20 days	200% stimulation	Chlorophyll (98% increase)	α-Tocopherol (7-fold decrease)	
Euglena gracilis	Ethanol	10 g/L	7 days	57% Decrease	Vitamin A (105% increase)	Vitamin E (105% increase)	
Euglena gracilis	Ethanol	10 g/L	72h	163% stimulation	α-Tocopherol (39% increase)	α-Tocopherol (62% increase)	
Euglena gracilis (wild)	Ethanol	10 g/L	72h	142% stimulation	α-Tocopherol (62% increase)	α-Tocopherol (62% increase)	
Euglena gracilis (chloroplast-deficient)	Ethanol	10 g/L	72h	142% stimulation	α-Tocopherol (62% increase)	α-Tocopherol (62% increase)	
Scenedesmus sp.	Ethanol	1.42 g/L (0.18 v/v %)	9 days	50% stimulation	n.d.	34 % increase in lipid content	
Scenedesmus sp.	Ethanol	1.42 g/L (0.18 v/v %)	10 days	3-fold stimulation	24% decrease in lipid content	4-fold increase in respiratory rate	
Nannochloropsis sp.	Ethanol	1.38 g/L (30 mM)	7 or 8 days	32% decrease (Het)	3.4-fold increase in respiratory rate	Increase in C16:0, C18:0	
Nannochloropsis sp.	Ethanol	1.38 g/L (30 mM)	7 or 8 days	32% decrease (Het)	3.4-fold increase in respiratory rate	Increase in C16:0, C18:0	

N.b. [69] [71] [46] [53] [54] [52] [57] [58] [59]
Species	Alcohols, acetone, or aldehydes	Concentration	Time	Response	Ref.		
Chlorella kessleri	Ethanol	2.3 g/L (50 mM)	3 weeks	2.5-fold stimulation Increase in C_{16:0} Decrease in C_{16:1}, C_{16:2}	[60]		
Dunaliella tertiolecta	Methanol, ethanol, DMSO, DMF, acetone	Methanol: 23 g/L (23000 ppm) Ethanol: 16 g/L (16000 ppm) DMSO: 21 g/L (21000 ppm) DMF: 15 g/L (15000 ppm) Acetone: 10 g/L (10000 ppm)	96h	50% Inhibition	n.d.		
Isochrysis galbana	Methanol, ethanol, DMSO, DMF, acetone	Methanol: 21 g/L (21000 ppm) Ethanol: 15 g/L (15000 ppm) DMSO: 5 g/L (5000 ppm) DMF: 7 g/L (7000 ppm) Acetone: 4 g/L (4000 ppm)	96h	50% Inhibition	n.d.	[49]	
Heterosigma akashiwo	Methanol, ethanol, DMSO, DMF, acetone	Methanol: 0.5 g/L (500 ppm) Ethanol: 2.5 g/L (2500 ppm) DMSO: 7 g/L (7000 ppm) DMF: 7 g/L (7000 ppm) Acetone: 3 g/L (3000 ppm)	96h	50% Inhibition	n.d.		
Chlorella pyrenoidosa	Methanol, ethanol, DMSO, DMF, acetone	Acetone: 12 g/L (1.52 v/v %) Ethanol: 1.42 g/L (0.18 v/v %) DMSO: 16.39 (1.49 v/v %) DMF: 9.44 g/L (1 v/v %)	96h	50% Inhibition	n.d.	[48]	
Pseudokirchneriella subcapitata	Acetone	Acetone: 6.4 g/L	72h	50% Inhibition	n.d.	[75]	
Pseudokirchneriella subcapitata	Acetone	Acetone: 5.28 g/L	48h	50% Inhibition	n.d.	[74]	
Pseudokirchneriella subcapitata	Acetaldehyde	Acetaldehyde: 0.017 mg/L	48h	50% Inhibition	n.d.	[74]	
Pseudokirchneriella subcapitata	Butanone	Butanone: 8.6 g/L	72h	50% Inhibition	n.d.	[76]	
Pseudokirchneriella subcapitata	Butanone	Butanone: 1.56 g/L	72h	50% Inhibition	n.d.	[75]	
Anabaena variabilis	Hexane, DMSO	Hexane: 43.75 g/L (6.58 v/v %) DMSO: 39.27 g/L (3.57 v/v %)	10-14 days	50% inhibition	n.d.	[80]	
Anabaena inaequalis	Hexane, DMSO	Hexane: 11.13 g/L (1.7 v/v %) DMSO: 18.8 g/L (1.71 v/v %)	10-14 days	50% inhibition	n.d.	[75]	
	Octanol	Octanol: 2.1 mg/L	72h	50% Inhibition	n.d.	[75]	
Species/Mixture	Solvent	Concentration	Time	Effect			
----------------	---------	---------------	------	--------			
Pseudokirchneriella subcapitata	Hexanol	115 mg/L		Inhibition			
	Pentanol	370 mg/L					
	Butanol	1561 mg/L					
Pseudokirchneriella subcapitata	1-propanol	4.95 g/L	48h	50% Inhibition			
	2-propanol	8.47 g/L					
Chlorella vulgaris	Isopropanol (IPA)	16 g/L	360h	47% inhibition IPA conversion to acetone			
Pseudokirchneriella subcapitata	1-butanol	1.56 g/L	72h	50% Inhibition			
	Iso-butanol	1.69 g/L					
Chlorella vulgaris	1-propanol	4.95 g/L	48h	50% Inhibition			
	2-propanol	8.47 g/L					
Glycols	EG	10.9 g/L	96h	50% Inhibition			
	PG	20.6 g/L					
Pseudokirchneriella subcapitata	EG	36.6 g/L	72h	50% Inhibition			
	EGBE	1.84 g/L					
Pseudokirchneriella subcapitata	EGBE	1.84 g/L	72h	50% Inhibition			
Chlorella protothecoides	EG	2.59 g/L	10 days	Growth confirmed Acidification of medium			
	PG	2.1 g/L					
Cyclic solvents	Furanidine (THF)	2.57 g/L (0.29 v/v %)	96h	50% Inhibition			
Microcystis aeruginosa	Dioxane	5.6 g/L	8 days	Toxicity threshold			
Pseudokirchneriella subcapitata	Cyclohexane	19.3 mg/L	72h	50% Inhibition			
	Cyclohexanol	411 mg/L					
	Cyclohexanone	1.16 g/L					
Chlorella pyrenoidosa	1,558 g/L (0.2 v/v %)	10 days		Full growth inhibition			
	Cyclohexane	25 days		100-150% stimulation			
Chlorella vulgaris	DCM	13.3 mg/L	72h	50% Inhibition			
Selenastrum capricornutum	DCM	2 µg/L-2 mg/L	8 days	No effect on growth			
	Trichloroethylene	3 µg/L-3 mg/L					
Volvulina steinii	DCM	2 µg/L-2 mg/L		100% inhibition and cell death			
	Trichloroethylene	3 µg/L-3 mg/L					
Raphidocelis subcapitata	Trichloroethylene (glass enclosure assay)	0.55 g/L	72h	50% inhibition			
		0.1 g/L	72h	23% stimulation			
	Trichloroethylene (plate assay)	0.45 g/L	144h	50% inhibition			
		0.05 g/L	144h	72% stimulation			
Desmodesmus subspicatus	Trichloroethylene (glass enclosure assay)	0.3 g/L	72h	50% inhibition			
	Trichloroethylene (plate assay)	0.35 g/L	72h	50% inhibition			
Chlorella kessleri	Trichloroethylene (glass enclosure assay)	0.5 g/L	24h	50% inhibition			
	Trichloroethylene (plate assay)	0.2 g/L	24h	50% inhibition			
Species	Solvent	Concentration	Time	Inhibition	Comments		
-------------------------	-------------------	---------------	-------	------------	---		
Chlamydomonas reinhardtii	Trichloroethylene	36.5 mg/L	72h	50%	n.d. [90]		
	Tetrachloroethylene	3.64 mg/L					
Synechococcus elongatus	Trichloroethylene	1.357 g/L		36%	increase in lipid peroxidation and activity of SOD and Peroxidase [91]		
	Tetrachloroethylene	0.149 g/L	24h	50%			
	Tetrachloroethane	2.86 g/L		59%	Decrease in Chl content/cell		
Chlamydomonas reinhardtii	Tetra-chloromethane	0.246 mg/L	72h	50%	n.d. [90]		
Pseudokirchneriella subcapitata	Chloroform	233 mg/L	72h	50%	n.d. [75]		
	Tetra-chloromethane	10.7 mg/L					
Pseudokirchneriella subcapitata	trans-1,2-	36.4 mg/L	48h	50%	n.d. [74]		
	dichloroethylene						
	cis-1,2-	59.7 mg/L					
	dichloroethylene						
Aromatic solvents							
Amphidinium carterae	Benzene	0.1-10 mg/L	2nd or 3rd day of logarithmic growth	35% inhibition	n.d.		
	Toluene			30%			
	Xylene			15%			
Skeletonema costatum	Benzene	0.1-10 mg/L	2nd or 3rd day of logarithmic growth	No effect	n.d. [96]		
	Toluene			No effect			
	Xylene			25%-0%	inhibition		
Dunaliella tertiolecta	Benzene	0.1-10 mg/L	2nd or 3rd day of logarithmic growth	10% stimulation	n.d.		
	Xylene			20%	stimulation to 10% inhibition		
Cricosphaera carterae	Benzene	0.1-10 mg/L	2nd or 3rd day of logarithmic growth	No effect	n.d.		
	Toluene			35%	stimulation		
	Xylene			20%			
Pseudokirchneriella subcapitata	Benzene	15.7 mg/L	48h	50%	Inhibition		
	Toluene	14.2 mg/L		n.d.			
	Nitrobenzene	13.9 mg/L					
Pseudokirchneriella subcapitata	Benzene	124 mg/L	72h	50%	Inhibition		
	Toluene	25.5 mg/L		n.d.			
	Xylene	8-26 mg/L					
Selenastrum capricornutum	BTEX	22.7 mg/L	8 days	50%	possible damage to membrane integrity [101]		
	(52% benzene, 28% toluene, 5% ethylbenzene, 5% of o-, m- and p-xylene)						
Scenedesmus obliquus	m-Cresol	1.5 mM (CO₂)	5 days	No effect			
		1.5 mM (glc)					
		1.5 mM (CO₂+glc)	1.5 mM	0.162 g/L (1.5 mM)	5 days	81% stimulation	No stress effect on photosynthetic apparatus observed [109]
		(limCO₂)					
Ochromonas danica	p-Cresol	0.054-0.432 g/L (0.5-4 mM)	up to 12 days	Growth supported in the dark	n.d. [107]		
		0.016 g/L	5 days	20%	No stress effect on photosynthetic apparatus [108]		
		(0.15 mM)	1 day	No effect			
Strain	ILs	Conc.	Exposure time	Effect on growth	Effect on metabolism	Ref.	
-------------------------	----------------------------	-----------	---------------	------------------	--	------	
Pseudokirchneriella subcapitata	[C3MIM]Br, [C3MPy]Br	>205 g/L (>1000 mM)	up to 2 h	50% inhibition	Decreased oxygen evolution rate	[110]	
	[C3MIM]Br, [C3MPy]Br	11.59 g/L (53.7 mM)					
Scenedesmus rubescens	[C4MIM]BF4, [C8MIM]BF4	>200 mg/L	24 h	50% inhibition		[114]	
	[C4MIM]BF4, [C8MIM]BF4	>200 mg/L	72h				
	[C4MIM]BF4, [C8MIM]BF4	2.97 mg/L	24h		50% inhibition	n.d.	
Organism/Species	Ionic Liquid	Concentration (mg/L)	Time (h)	50% Inhibition	References		
------------------	--------------	----------------------	---------	----------------	-----------		
Scenedesmus obliquus	[C4MIM]Br	0.31	72h		[115]		
		40	24h				
		24.1	48h				
		23.6	72h				
		22.2	96h				
	[C4MIM]Br	17.67	24h	50%			
		14.7	48h				
		8.63	72h				
		5.88	96h	n.d.			
	[C6MIM]Br	24.1	48h				
		23.6	72h				
		22.2	96h				
	[C4MIM]Br	26.95	24h	50%			
		24.2	48h				
		10.83	72h				
		5.88	96h	n.d.			
	[C6MIM]Br	17.67	24h				
		14.7	48h				
		8.63	72h				
		5.88	96h	n.d.			
	[C4MPy]Br	1.127	96h	50%			
		5.72	n.d.				
		2.73	n.d.				
		13.3	n.d.				
	[C4MPyrr]Br	1.127	96h	50%			
		5.72	n.d.				
		2.73	n.d.				
		13.3	n.d.				
	[C4Py]Tf2N	7.05	72h	50%			
		>100	72h				
		26.5	72h				
	[C4MPyr]Tf2N	353	72h	50%			
		17.2	72h				
		0.084	72h				
	[C4MIM]Br	0.466	96h	50%			
		0.5	n.d.				
		0.567	n.d.				
		0.372	n.d.				
		0.05	n.d.				
	[C4MIM]Cl	1.36	48h	50%			
		0.027	48h				
		0.012	48h				
	[C4MIM]BF4	38.5	48h	50%			
		1.1	n.d.				
		4.1	n.d.				
		12.9	n.d.				
	[C4MIM]PF6	17.46	15 days	~50%			
		0.1	n.d.				
	[C4MIM]SbF6	0.466	96h	50%			
		0.5	n.d.				
		0.567	n.d.				
		0.372	n.d.				
		0.05	n.d.				
	[C4MIM]BF4	100	24h	16%			
		48%	24h				
	[C4MIM]BF4	100	24h	58%			
	Dunaliella tertiolecta	100	24h	58%			

Inhibition of esterase activity.
Damage to cell wall and membranes.
Damaged structures of chloroplasts, thylakoids and mitochondria.
Increased deposits in vacuoles.
Chlorophyll increase (500%).
Organism	Ionic Liquid	Concentration	Effect Time	% Inhibition	Effect Description	Reference
Skeletonema marinoi	[C₄MIM]Cl	21 mg/L	72h	50%	Chlorophyll increase (466%)	[128]
					Carotenoid increase (225%)	
					Chlorophyll increase (233%)	
Phaeodactylum tricornutum	[C₄MIM]Cl	(220 mg/L)	72h	50%	Interference in silica uptake and cell wall organization [1.3-3.4]	
		1.26 mM				
					Increase in soluble protein content (136%)	[130]
					Increase in POD activity (110%), SOD activity (33%) and CAT activity (75%)	
					Increase in MDA content (145%)	
Synechococcus sp.	[HOC₂MIM]Cl	120 mg/L	96h		No effect on growth	[131]
					No change in Chl a content	
					Increase in soluble protein content (60%)	
					Increase in SOD activity (44%)	
					Increase in MDA content (60%)	
Phaeodactylum tricornutum	[C₈MIM]Br	8.9 mg/L	96h	50%	Decrease in Chl a content (43.8%)	[132]
					Increase in soluble protein content (100%)	
					Increase in SOD activity (84%)	
					Increase in ROS level (316%) and MDA content (163%)	
Skeletonema costatum	[C₈MIM]Br	40 mg/L	96h	50%	Increase in ROS production (22%)	[122]
					Increase in ROS production (233%)	
					Increase in protein content (22%)	
	[MOC₂MPyr]NTf₂	(0.55 g/L)	72h	50%	n.d.	
		1.3 mM			Increase in protein content (32%)	
		(0.36 g/L)		Limited		
		0.9 mM		inhibition		
Raphidocelis subcapitata	[MOC₂MPyr]BF₄	(0.55 g/L)	72h	50%	n.d.	
		2.4 mM		Limited		
		(0.39 g/L)		inhibition		
		1.7 mM				
Scenedesmus obliquus	L-(+)[C₄MIM]L	>1 g/L	24h	50%	Increase in ROS production (22%)	[123]
		(>5 mM)			Increase in ROS production (233%)	
	D-(−)[C₄MIM]L	0.45 g/L		50%	n.d.	
		(2.25 mM)				
Euglena gracilis	L-(+)[C₄MIM]L	1.31 g/L	24h	50%	Increase in CMP (530%)	
		(6.58 mM)			Increase in CMP (150%)	
	D-(−)[C₄MIM]L	1.25 g/L				
		(6.24 mM)				
Scenedesmus obliquus	L-(+)[H₄MIM]T	16 mg/L	24h	50%	Increase in CMP (479%)	[124]
		7.9 mg/L			Increase in CMP (120%)	
	D-(−)[H₄MIM]T	28.3 mg/L		50%		
		12.2 mg/L				
	[OHC₂MIM]Cl	>0.254 g/L				
		(>1 mM)				
Species	Compound	Concentration (µg/L)	Concentration (µM)	Exposure Time	Inhibition	Reference
-----------------------------	---------------------------	----------------------	--------------------	--------------	------------	-----------
Scenedesmus vacuolatus	[OHC-MIM]NTf₂	61	150	24h	50%	[120]
	[C-MIM]Cl	88.2	602			
	[C-MIM]Cl	0.46	0.002			
	[C₈-MIM]Cl	0.077	0.3 nM			
	[MP-bBIM]Br	10.33	0.035			
	[C₂O-bBIM]Br	13.66	0.042			
	[C₆-bBIM]Br	0.513	1.66			
	[C₆-bBIM]I	0.345	0.97			
		50% inhibition	n.d.			
Chlorella vulgaris	[MDP-b(Py)AcOM]Br	441				
	[MDP-b(PyAcO)AcOM]Br	294				
Pseudokirchneriella subcapitata	[MDP-b(Py)AcOM]Br	587				
	[MDP-b(PyAcO)AcOM]Br	281				
Raphidocelis subcapitata	[Chol]Bic	252				
	[Chol]Bit	27				
	[Chol]DHCit	87				
	[Chol]Cl	72				
	[Bzchol]Cl	196				
		50% inhibition	n.d.			

CMP – cell membrane permeability

NTf₂=N(CF₃SO₂)₂
S3. Calculation scheme

1. Calculation Procedure

Fundamental energy requirements and production cost were analysed for isolation of demanded product. The analyses were carried out in simplified form under following assumptions: 1) total solvent recovery, 2) no heat losses, 3) no heat recovery and 4) equipment amortization is not taken into account.

Figure S1. Scheme of Calculation Procedure.

Figure S1. shows a model for the calculation procedure. All lab-scale technologies are composed of these technological steps - pretreatment, extraction and solvent recovery including its recycling. The specific energy requirement E_{SEP} (J kg$^{-1}$) and the specific production cost C_{SEP} (€ kg$^{-1}$) of separation process used were calculated as follows:

$$E_{SEP} = \frac{E_{TOTAL}}{m_{PRODUCT}}$$ \hspace{1cm} (1)

$$C_{SEP} = \frac{C_{TOTAL}}{m_{PRODUCT}}$$ \hspace{1cm} (2)

where E_{TOTAL} is total energy requirement of separation process (J), C_{TOTAL} is total costs for product separation (€) and $m_{PRODUCT}$ is weight of the product (kg) defined as

$$m_{product} = w_{dB} \cdot m_{wB} \cdot y_{product}$$ \hspace{1cm} (3)

where m_{wB} is the mass of wet biomass (kg), w_{dB} is mass fraction of dried biomass (-) and $y_{product}$ is the yield of product related to dried biomass (-).

The total energy demand of extraction using liquid solvent was calculated:

$$E_{TOTAL} = E_{PT} + E_{EM} + E_{SSP} + E_{SC}$$ \hspace{1cm} (4)

where E_{PT} is the energy needed for pretreatment (J), E_{EM} is the energy needed for mixing during extraction (J), E_{SSP} is the energy needed for solvent separation from an extract (J) and E_{SC} is the energy needed for reverse solvent condensation (J).

The energy requirement needed for pretreatment E_{PT} was calculated:

$$E_{PT} = P_{PT} \cdot t_{PT} = \varepsilon_{PT} \cdot V_{PT} \cdot t_{PT}$$ \hspace{1cm} (5)
where P_{PT} is the power input of equipment used for pretreatment (W), V_{PT} is the volume of pretreated mixture (m3), t_{PT} is the time of pretreatment (s) and ε_{PT} is the specific power requirement of pretreatment (W m$^{-3}$).

The energy requirement needed for mixing during extraction was calculated:

$$E_{EM} = \varepsilon_{EM} \cdot V_{EM} \cdot t_{EM}$$

(6)

where ε_{EM} is the specific power input for mixing (W m$^{-3}$), V_{EM} is the volume of mixture during extraction (m3), t_{EM} is the time of mixing during extraction (s). The specific power input for mixing $\varepsilon_{EM} = 300$ W m$^{-3}$ was assumed for calculation.

Assuming that the multi-component solvent is totally separated from an extract by the evaporation the energy needed for separation was calculated in simplified form as follows:

$$E_{SSP} = \sum_j \Delta H_{j}^{vap}(T) \cdot m_{S-j}$$

(7)

where $\Delta H_{j}^{vap}(T)$ is the heat of vaporization of jth component of the solvent solution (J kg$^{-1}$) at temperature T (K) and m_{S-j} is the mass of jth component of the solvent solution (kg). The heat of vaporization was calculated using following formula:

$$\Delta H_{j}^{vap}(T) = A \cdot \exp(-\alpha \cdot T_r) \cdot (1 - T_r)^\beta$$

(8)

where A, α and β are parameters overtaken from NIST database for given component, T_r is reduced temperature calculated as ratio of temperature T and critical temperature T_c of given component. The evaporation at normal pressure was assumed. The heats of vaporization were calculated at normal boiling temperature for given component. Assuming that the reverse condensation of solvent components occurs at the same conditions as evaporation the energy needed for condensation E_{SC} equals to E_{SSP}.

The total cost for extraction process was calculated:

$$C_{TOTAL} = C_{CH} + C_{PT} + C_{EM} + C_{SSP} + C_{SC}$$

(9)

where C_{CH} is the cost of chemicals (€), C_{PT} is the price of electricity required for pretreatment (€), C_{EM} is the price of electricity required for mixing during extraction (€), C_{SSP} is the price of water steam needed for solvent evaporation (€) and C_{SC} is the price of cooling water needed for reverse solvent condensation (€).

The prices of electricity needed for pretreatment and for mixing during extraction were calculated as follows:

$$C_{PT} = c_{el} \cdot E_{PT}$$

(10)

$$C_{EM} = c_{el} \cdot E_{EM}$$

(11)

where c_{el} is the price of electricity (€ MJ$^{-1}$).

The condensation of saturated water steam was assumed as an energy source for solvent evaporation. The price of water steam needed was calculated:

$$C_{SSP} = c_{steam} \cdot \left(\frac{E_{SSP}}{\Delta H_{steam}^{cond}} \right)$$

(12)

where c_{steam} is the price of water steam (€ kg$^{-1}$) and $\Delta H_{steam}^{cond}(T_{cond}$) is the heat of condensation of water steam at condensation temperature T_{cond}. The saturated water steam at temperature of 150°C was assumed for solvent evaporation.

The price of cooling water needed for solvent condensation was calculated:
The costs of the chemicals were estimated on the basis of the following prices: 1) chloroform p.a.: 5 750 € m⁻³, 2) hexane p.a.: 20 500 € m⁻³, 3) dichloromethane p.a.: 6 800 € m⁻³, 4) methanol p.a.: 2 300 € m⁻³, 5) acetone p.a.: 2 900 € m⁻³, 6) ethyl acetate p.a.: 93 000 € m⁻³, 7) ionic liquid THPC: 271 000 € m⁻³, 8) ionic liquid [BMIM]HSO₄: 590 500 € m⁻³, 9) ionic liquid EMIM DBP: 135 000 € m⁻³, 10) water: 4 € m⁻³, 11) CO₂ (food quality): 1.8 € kg⁻¹ and 12) ethanol absolute: 28.5 € kg⁻¹.

The energy costs were estimated on the basis of the actual mean prices: 1) electricity: 126 000 € MJ⁻¹, 2) saturated water steam: 20 € t⁻¹, 3) cooling water: 0.1 € t⁻¹.

The error of presented estimations is 20 % in maximum for both energy requirement and production costs.

2. Supercritical Extraction Technology

The supercritical extraction was calculated under following assumptions: 1) two-stage solvent compression with inter- and after cooling of compressed solvent, 2) reversible adiabatic compression, 3) adiabatic efficiency of 60 % for irreversible compression, 4) mechanical efficiency of 96 % of driving unit, 5) inlet temperature of 20°C and pressure of 101.325 kPa of the solvent before first-stage compression, 6) outlet solvent temperature from coolers equals to extraction temperature reported in the cited article and 7) Poisson constant κ = 1.29.

The total energy requirement of supercritical extraction was calculated as

\[E_{total} = E_C + E_{GSC} \] \hspace{1cm} (14)

where \(E_C \) is the energy needed for solvent compression (J) and \(E_{GSC} \) is the energy needed for cooling of compressed solvent cooling after compression (J).

The energy needed for solvent compression in \(i \)th compression stage was calculated as follows:

\[E_{Ci} = n_{solvent} \cdot \left(1/\eta_{ad}\right) \cdot \left(1/\eta_{m}\right) \cdot w_{t-rev} \] \hspace{1cm} (15)

where

\[w_{t-rev} = \left(\kappa/(1-\kappa)\right) \cdot p_{in} \cdot v_{in} \cdot \left[\left(p_{in} / p_{out}\right)^{(1-\kappa)/\kappa} - 1\right] \] \hspace{1cm} (16)

where \(n_{solvent} \) is the number of moles of compressed solvent (mol), \(p_{in} \) is the stage inlet pressure (Pa), \(p_{out} \) is the stage outlet pressure (Pa), \(v_{in} \) is molar volume of the solvent in the stage inlet (m³ mol⁻¹), \(\eta_{ad} \) is the adiabatic efficiency of irreversible compression (-), \(\eta_{m} \) is the efficiency of the driving unit (-), \(w_{t-rev} \) is the shaft work of reversible compression (J mol⁻¹) in the stage and \(\kappa \) is the Poisson constant (-).

The pressure between compression stages was estimated using formula:

\[p_{12} = (p_{in-1} \cdot p_{out-2})^{1/2} \] \hspace{1cm} (17)

where \(p_{in-1} \) is the inlet pressure to the compressor, \(p_{out-2} \) is the outlet pressure from the compressor.

The energy needed for cooling of compressed solvent after \(i \)th compression stage was calculated as follows:
\[E_{GSCi} = n_{solvent} \cdot \sum_j x_j \cdot (-\Delta h_j^{cooling}) \] \hspace{1cm} (18)

where

\[\Delta h_j^{cooling} = \int_{T_{in-c}}^{T_{out-c}} c_{pj}(T) \cdot dT \] \hspace{1cm} (19)

where \(x_j \) is the mole fraction of the \(j \)-th solvent component (-), \(\Delta h_j^{cooling} \) is the enthalpy change of the \(j \)-th solvent component during solvent cooling (J mol\(^{-1}\)), \(T_{in-c} \) and \(T_{out-c} \) are the temperatures at inlet and outlet of the cooler of the \(i \)-th compression stage (K) and \(c_{pj}(T) \) is the temperature dependence of the molar heat capacity of the \(j \)-th solvent component (J mol\(^{-1}\)K\(^{-1}\)).

The inlet temperature to the cooler \(T_{in-c} \) was calculated from the following relation:

\[w_{t-irrev} = w_{t-rev} \cdot (1 / \eta_{ad}) = \frac{c_p \cdot (T_{in-c} - T_{in})}{\eta} \] \hspace{1cm} (20)

where \(T_{in} \) is the solvent temperature at stage inlet (K), \(c_p \) is the average molar heat capacity of the solvent in the given temperature range (J mol\(^{-1}\)K\(^{-1}\)). It was found that gas behavior in stage output is close to ideal gas behavior. Therefore, the molar heat capacity for ideal gas was used for calculation in this case.

The total cost for supercritical extraction was calculated:

\[C_{total} = C_C + C_{GSC} \] \hspace{1cm} (21)

where \(C_C \) is the price of electricity needed for solvent compression (€) and \(C_{GSC} \) is the price of cooling water needed for cooling of compressed solvent after compression (€).

The price of electricity needed for compression was calculated as follows:

\[C_C = c_{el} \cdot E_C \] \hspace{1cm} (22)

where \(c_{el} \) is the price of electricity (€ MJ\(^{-1}\)). The price of cooling water needed for cooling of compressed solvent after compression was calculated:

\[C_{GSC} = c_{cw} \cdot (E_{GSC} / (c_{pcw} \cdot \Delta T_{cw})) \] \hspace{1cm} (23)

where \(c_{cw} \) is the price of cooling water (€ kg\(^{-1}\)), \(c_{pcw} \) is the specific heat capacity of cooling water (J mol\(^{-1}\)K\(^{-1}\)) and \(\Delta T_{cw} \) is allowed temperature increase of cooling water. The allowed temperature increase of 15 K and specific heat capacity of cooling water of 4182 (J mol\(^{-1}\)K\(^{-1}\)) were assumed and used for calculation.