Nuclear magnetic resonance (NMR) spectroscopy is the gold standard for characterizing molecules in solution, with its only real weakness in comparison to other spectroscopic methods being its intrinsically low sensitivity. At room temperature, and the magnetic fields typically used for NMR today (e.g., 9.4 T), the nuclear spin states are polarized to only 0.01%. There is thus intense interest in methods for actively increasing NMR sensitivity. One of the most promising approaches to increasing sensitivity is to transiently increase the polarization of the NMR transitions by so-called hyperpolarization methods, with dynamic nuclear polarization (DNP) being at the forefront of these efforts. DNP allows the transfer of the much larger polarization of unpaired electron spins to nuclei. DNP has been very successful in solid-state NMR, but its implementation in solution-state NMR has proved much more challenging. Transient hyperpolarized NMR signals can be observed at room temperature using the dissolution DNP approach, where a frozen sample is polarized at 1.2 K followed by rapid dissolution and then shuttling of the solution to an NMR spectrometer. This method provides signal enhancements of 4–5 orders of magnitude on target molecules or bulk solvent molecules with promising applications in magnetic resonance imaging. However, the hyperpolarization decays rapidly after dissolution and the technique offers a limited sample throughput. A variety of other approaches to producing transient hyperpolarization such as parahydrogen-induced polarization (PHIP), triplet DNP, and relay of optically enhanced polarization via the nuclear Overhauser effect (NOE) have also been proposed.

The Overhauser effect (OE) DNP mechanism is the most promising approach for obtaining steady-state continuous hyperpolarization of nuclei in situ and at room temperature. Indeed, while the magnetic field dependence of OE is generally unfavorable, it has recently been shown that OE DNP can yield significant ^{13}C or ^{31}P signal enhancements at magnetic fields of $\lesssim 14$ T. For example, Orlando et al. have shown ^{13}C enhancements of $\lesssim 600$ at 9.4 T for a 35 nL sample in a helix resonator. Dubroca et al. also showed a ^{13}C enhancement of 70 and a ^{31}P enhancement of 160 with sample volumes of 100 μL at 14.1 T, using a custom solution NMR probe and microwave gating to minimize sample heating. In contrast, OE DNP to hyperpolarize ^{1}H in solution at high field is very inefficient. For example, Prisner and coworkers were able to hyperpolarize water with enhancements of ~ 80 at 9.2 T, but only by using microwave superheated temperatures of 160 °C in an ~ 1 nL sample volume; recent improvements in probe design allowed sample volumes of $\lesssim 100$ nL. There is thus great interest in hyperpolarizing ^{1}H nuclei in solution.

Here we demonstrate a straightforward approach for obtaining ^{1}H DNP enhancements on chloroform, 1,1,2,2-tetrachloroethane (TCE), and phenylacetylene by transferring ^{13}C hyperpolarization generated by OE DNP to the attached ^{1}H spins using the insensitive nuclei enhanced by polarization transfer scheme. We demonstrate this approach using a 400 MHz gyrotroon-equipped 3.2 mm magic angle spinning DNP system to obtain ^{1}H DNP enhancement factors of 48, 8, and 6 for chloroform, tetrachloroethane, and phenylacetylene, respectively, at room temperature.
Although ^{13}C NMR is intrinsically less sensitive than ^1H NMR, ^{13}C nuclei can in general be much more efficiently hyperpolarized in solution Overhauser DNP experiments. This is primarily due to the large difference in the coupling factors (ξ) between ^{13}C and ^1H, as shown in Figure 1A for factors typical for most protons and for carbons such as the ones in chloroform.

\[
\epsilon = 1 - f (1 - T_{1n}/T_{1n,\text{dia}}) \frac{\gamma_e}{\gamma_n}
\]

where γ_e and γ_n are the gyromagnetic ratios of the electron and the nuclear spin, respectively, f is the leakage factor ($f = 1 - T_{1n}/T_{1n,\text{dia}}$ where T_{1n} and $T_{1n,\text{dia}}$ are the nuclear T_1 values in the presence and absence of radicals, respectively), s is the saturation factor (described further below), and the coupling factor is determined by the relative weights of the scalar and dipolar hyperfine contributions (as detailed in the Supporting Information). We also see from Figure 1A that the efficiency of OE DNP decreases significantly at higher fields due to the magnetic field dependence of the coupling factors.

Although the pure scalar hyperfine mechanism is independent of field, the contribution of the dipolar mechanism results in a decay of the coupling factor at high fields. Consequently, ^1H DNP enhancements, which typically rely on direct dipolar contributions between the unpaired electron and ^1H spins, are minimal at high fields.

Here, we suggest that a simple way to obtain ^1H enhancements is to transfer the hyperpolarization from ^{13}C to ^1H using, for example, a reverse INEPT sequence (Figure 1B) or cross-polarization in a ^{13}C-enriched substrate. Combining these polarization transfer tools with other approaches to hyperpolarization, including dissolution DNP and PHIP, has been demonstrated. Notably, Dey et al. have previously performed $^1\text{H} \rightarrow ^{13}\text{C}$ transfers to enhance the ^{13}C sensitivity using Overhauser DNP at low fields where ^1H...
INEPT is a well-established method for enhancing the NMR sensitivity of low-gyromagnetic ratio nuclei and/or obtaining through-bond correlation spectra via J couplings. For a fully 13C enriched sample at thermal equilibrium, the 1H magnetization produced by a 13C→1H INEPT experiment will be 25% of that of a directly excited 1H NMR spectrum (in an ideal NMR spectrometer). However, in INEPT experiments under hyperpolarization conditions, the overall sensitivity of the observed nucleus is not only proportional to the ratio of the gyromagnetic ratios of the corresponding nuclei but also determined by the relative hyperpolarization levels. If 13C DNP enhancements of 10^{-100} can be obtained, neglecting the differences in 1H and 13C T_1 relaxation times, the overall 1H sensitivity could be increased by factors of $2.5-25$, corresponding to decreases in experimental times of $1-3$ orders of magnitude. At natural abundance, the sensitivity gain in comparison to a one-dimensional (1D) 1H NMR spectrum will of course be reduced by 99% due to the low natural abundance of 13C (NA = 1.1%) as only 1.1% of 1H spins will be hyperpolarized. In addition to abundance, the relaxation rates of the involved nuclei, because they are affected by paramagnetic interactions with the radical polarizing agent (vide infra), will affect the INEPT efficiencies, and any differences in efficiency of the two radiofrequency channels in the probe will also impact the sensitivity gains.

Figure 2 shows the direct 1D 1H and 13C Overhauser DNP enhancements obtained for chloroform, TCE, and phenylacetylene using 10 mM 15N-d_{16}-TEMPONE (denoted hereafter as 15N-TN). High-power microwaves (50 W, corresponding to an estimated ν_{1e} of \sim1.3 MHz) were applied using a 263 GHz gyrotron microwave source, with 10 μL of the sample placed in 3.2 mm sapphire rotors. While the sapphire rotors that are typical in MAS DNP experiments provide good microwave penetration, the small sample volumes help to minimize temperature gradients. To compensate for the heating caused by microwave irradiation, a low-temperature nitrogen gas flow was applied. With chloroform, we performed experiments using a 100% 13C-labeled solvent. As expected, the direct 1H DNP enhancement was low ($\epsilon_{^1H} = 0.6$) due to the poor efficiency of the dipolar Overhauser DNP mechanism. However, a large 13C enhancement ($\epsilon_{^{13}C}$) of 51 was obtained, which is higher than the enhancement of 17 previously observed at 14.1 T using a similar commercial MAS DNP spectrometer. 13C→1H INEPT experiments were performed using the pulse sequence of Figure 1B to yield a high indirect 1H enhancement ($\epsilon_{^1H}$) of 48, showing that the enhancement can be transferred from 13C to 1H with >90% efficiency. This corresponds to an overall increase in 1H polarization by a factor 12 ($48 \times \gamma_{^{13}C}/\gamma_{^1H}$).

To demonstrate the generality of this method, we performed experiments with (natural abundance) samples of TCE and phenylacetylene. With TCE, a direct 13C DNP enhancement of 9 was observed and a corresponding 13C→1H INEPT enhancement of 8 was obtained. Note that the enhancement...
decreases from chloroform to TCE likely due to weaker electron–nuclear scalar hyperfine couplings resulting in a coupling factor that is 16% of that of chloroform, assuming the same saturation and leakage factors. Phenylacetylene has a terminal alkyne carbon that interacts with nitroxide radicals and has been shown to display reasonable enhancements.24,26 With our protocol, we observed a 13C enhancement of 7 and an INEPT enhancement of 5 on the alkyne CH group, which are larger than the enhancements for the other carbons in the molecule, in good agreement with the literature (Figure S1).24,26

The frequency of collision between radicals and the target species has been shown to be important to the OE DNP mechanism.29,41 We studied the enhancements as a function of the degree of 13C labeling and radical concentration to obtain optimal DNP enhancements (Figure 3). As the results shown in panels A and B of Figure 3 illustrate, neither the degree of 13C labeling nor the radical concentration affects the direct 13C DNP enhancement of chloroform by >15%. The 13C DNP enhancement is not expected to change with the degree of 13C labeling because the frequency of collision per 13C remains unchanged. Note that the 13C enhancement obtained for chloroform here is larger than that of the terminal carbon of phenylacetylene by a factor of 7, while a factor of 2 was observed in a previous study at 14.1 T using 13C-labeled samples; however, these experiments were performed in dilute solutions.26 On the contrary, we expected the enhancements to be dependent on radical concentration as demonstrated previously24,26 the absence of a significant change in 13C DNP enhancement (Figure 3B) suggests that changes in the coupling and the saturation factors likely cancel each other here.

DNP enhancements measured at different microwave powers verified that the optimal condition is at the maximum microwave power attainable with our system because both 13C and INEPT enhancements increase almost linearly with microwave power (Figure 3C). By using eq 1 and the coupling factor from the literature,27 we back-calculated the saturation factor at 50 W to be 0.115 (see section S3.1 of the Supporting Information), which supports that the enhancement is saturation-limited. Consistent with our observation, the saturation factor of eq 2a53 for two coupled hyperfine transitions shows a linear relationship with B_{1e}^2, which is proportional to the microwave power, when $\gamma e^2 B_{1e}^2 T_{1e} T_{2e} \ll 1$ as shown in eq 2b.

$$\frac{1}{s} = \frac{2(\omega_{1e} + \omega_{t,1}) + \omega_{2e}}{2(\omega_{1e} + \omega_{t,1}) + \omega_{2e}} + \frac{2}{\gamma e^2 B_{1e}^2 T_{1e} T_{2e}} \quad (2a)$$

where ω_{1e}, $\omega_{t,1}$ and ω_{2e} are the electron spin–lattice relaxation rate [$\omega_{1e} = 1/(2T_{1e})$], the nuclear spin relaxation rate [$\omega_{t,1} = 1/T_{1n}$], and the Heisenberg spin exchange rate, respectively, and where we find

$$s = \frac{1}{2} \gamma e^2 B_{1e}^2 T_{1e} T_{2e} \quad (2b)$$

when $\gamma e^2 B_{1e}^2 T_{1e} T_{2e} \ll 1$. Furthermore, from eq 2a, we estimate that the corresponding B_{1e} field in the sample is approximately 0.05 mT ($\nu_e = 1.3$ MHz) by using $T_{1e} T_{2e} = 3.5 \times 10^{-15}$ s2 from the literature24 (see section S3.1). In comparison, a microwave field of 0.16 mT was obtained previously with 30 W of power on a specialized liquid-state Overhauser DNP probe.26

Upon microwave irradiation, significant peak broadening was observed, which can be attributed to a temperature gradient across the sample as we meanwhile observed T_2 changes within the peak (see Figure S3). To further examine the impact of sample temperature, we carried out a series of experiments with and without microwave irradiation at different temperatures by actively adjusting the temperature of the cooling gas (Tables S8 and S9). To avoid boiling the chloroform, we tested the behavior below ambient temperature. The measured temperature dependence of the enhancement depicted in Figure 3D clearly shows decreasing DNP performance with lower temperatures. When the temperature was decreased from 300 to 255 K, an 80% reduction in enhancement was observed. This trend has been observed with CCL\textsubscript{4} and can be explained by a less negative coupling factor at low temperature as suggested by theoretical studies.25,27

The performance of the INEPT scheme is impacted if there is significant relaxation during the τ and τ' delays. The INEPT efficiency is related to the measured relaxation times according to

$$I_{\text{INEPT}} = \sin(2\pi\tau) \times \sin(2\pi\tau') \times e^{-(\frac{1}{\gamma e^2 B_{1e}^2 T_{1e} T_{2e}})}$$

(3)

During the τ and τ' delays of the INEPT sequence, the antiphase coherences leading to the INEPT signal will decay with the relaxation times of both 1H and 13C. (Because the $^1J_{CH}$ coupling constant in chloroform is 210 Hz, both τ and τ' were therefore set to 1/4$^1J_{CH}$, 1.19 ms.) For the samples with a radical concentration of 10 mM, the nuclear relaxation times are longer than τ by at least 1 order of magnitude as Figure 4A shows, which means that the magnetization of 13C can be successfully transferred to 1H, with INEPT efficiencies of >90% as shown in Figure 4B. However, when the radical concentration is increased from 10 to >100 mM, the efficiency of INEPT transfer decreases significantly, to ~25% at 500 mM (Figure 4B).

Because the absolute transfer efficiency is dependent on relaxation, the differences in nuclear relaxation times between microwave ON and OFF experiments due to the temperature gradient will make the DNP enhancement measured by INEPT deviate from the direct 13C enhancement (Figure S2). Among our experiments using chloroform, we consistently observed shorter overall nuclear T_2 values under microwave irradiation (Table S5). Consequently, the INEPT efficiency with microwave irradiation is lower than the corresponding efficiency without microwaves, which reduces the INEPT DNP enhancement. However, this effect is negligible when nuclear relaxation times are significantly longer than τ, which is the case at a low radical concentration as we show in Figure 4B when the radical concentration is 10 mM. When these two effects are combined, the high radical concentration is not favorable for INEPT due to the low absolute INEPT efficiency and the sensitivity of INEPT efficiency to relaxation time fluctuation.

In conclusion, we have demonstrated a simple method for obtaining bulk 1H hyperpolarization in solution by efficiently transferring 13C hyperpolarization generated by the Overhauser effect to 1H with a reverse INEPT pulse sequence. Here, this method yields an overall increase in 1H polarization of a factor 12 for a bulk solution of 13C-labeled chloroform and is limited by the constraints of our experimental setup. This should be a generally applicable method for hyperpolarizing 1H nuclei that
otherwise give intrinsically poor OE DNP enhancement at high magnetic fields. The approach demonstrated here could also be potentially extended to sources containing other abundant heteronuclei such as 31P.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcl.2c01956.

Additional figures, tables, and experimental details and a link to all of the raw NMR data (PDF)

AUTHOR INFORMATION

Corresponding Author
Lyndon Emsley – Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; orcid.org/0000-0001-5319-9269; Email: lyndon.emsley@epfl.ch

Authors
Yu Rao – Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; orcid.org/0000-0002-9787-5596

Amrit Venkatesh – Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; orcid.org/0000-0001-5319-9269

Pinelopi Moutzouri – Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpcl.2c01956

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from Swiss National Science Foundation Grant 200020_178860 is acknowledged. A.V. acknowledges an H2020 Marie Skłodowska-Curie individual fellowship (Grant 10102436).

REFERENCES

(1) Keeler, J. Understanding NMR spectroscopy; John Wiley & Sons, 2011.
(2) Ardenkjaer-Larsen, J. H.; Boebinger, G. S.; Comment, A.; Duckett, S.; Edison, A. S.; Engelle, F.; Griesinger, C.; Griffin, R. G.; Hilty, C.; Maeda, H.; Parigi, G.; Priser, T.; Ravera, E.; van Bentum, J.; Vega, S.; Webb, A.; Luchinat, C.; Schwab, H.; Frydman, L. Facing and overcoming sensitivity challenges in biomolecular NMR spectroscopy. Angew. Chem., Int. Ed. 2015, 54, 9162–9185.
(3) Jeschke, G.; Frydman, L. Nuclear hyperpolarization comes of age. J. Magn. Reson. 2016, 264, 1–2.
(4) Abrahams, A. The principles of nuclear magnetism; Oxford University Press, 1961.
(5) Maly, T.; Debelouchina, G. T.; Bajaj, V. S.; Hu, K. N.; Joo, C. G.; Mak-Jurkaukas, M. L.; Sirigiri, J. R.; van der Wel, P. C. A.; Herzfeld, J.; Temkin, R. J.; Griffin, R. G. Dynamic nuclear polarization at high magnetic fields. J. Chem. Phys. 2008, 128, 052211.
(6) Lesage, A.; Lelli, M.; Gajan, D.; Caporini, M. A.; Vitzthum, V.; Mieville, P.; Alauzun, J.; Roussy, A.; Thieuleux, C.; Mehdi, A.; Bodenhausen, G.; Coperet, A.; Emsley, L. Surface enhanced NMR spectroscopy by dynamic nuclear polarization. J. Am. Chem. Soc. 2010, 132, 15459–15461.
(7) Rossini, A. J.; Zagdoun, A.; Lelli, M.; Lesage, A.; Coperet, A.; Emsley, L. Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc. Chem. Res. 2013, 46, 1942–1951.
(8) Ni, Q.; Z.; Daviso, E.; Can, T. V.; Markhasin, E.; Jawla, S. K.; Swager, T. M.; Temkin, R. J.; Herzfeld, J.; Griffin, R. G. High frequency dynamic nuclear polarization. Acc. Chem. Res. 2013, 46, 1933–1941.
(9) Lilly Thankamony, A. S.; Wittmann, J. J.; Kaushik, M.; Corzilius, B. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. Prog. Nucl. Magn. Reson. Spectros. 2017, 102–103, 120–195.
(10) Reif, B.; Ashbrook, S. E.; Emsley, L.; Hong, M. Solid-state NMR spectroscopy. Nat. Rev. Methods Primers 2021, 1, 4.
(11) Ardenkjaer-Larsen, J. H.; Fridlund, B.; Gram, A.; Hansson, G.; Hansson, L.; Lerche, M. H.; Servin, R.; Thaning, M.; Golman, K. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 10158–10163.
(12) Ardenkjaer-Larsen, J. H. On the present and future of dissolution-DNP. J. Magn. Reson. 2016, 264, 3–12.
(13) Hilty, C.; Kurzbach, D.; Frydman, L. Hyperpolarized water as universal sensitivity booster in biomolecular NMR. Nat. Protoc. 2022, 17, 1621–1657.
(14) Jannin, S.; Dumez, J. N.; Giraudou, P.; Kurzbach, D. Application and methodology of dissolution dynamic nuclear polarization in physical, chemical and biological contexts. J. Magn. Reson. 2019, 305, 41–50.

(15) Duckett, S. B.; Mewis, R. E. Application of parahydrogen induced polarization techniques in NMR spectroscopy and imaging. Acc. Chem. Res. 2012, 45, 1247–1257.

(16) Dale, M. W.; Wedge, C. J. Optically generated hyperpolarization for sensitivity enhancement in solution-state NMR spectroscopy. Chem. Commun. 2016, 52, 13221–13224.

(17) Liu, G. Q.; Liou, S. H.; Enkin, N.; Tkach, I.; Bennati, M. Photo-induced radical polarization and liquid-state dynamic nuclear polarization using fullerene nitroxide derivatives. Phys. Chem. Chem. Phys. 2017, 19, 31823–31829.

(18) Eichhorn, T. R.; Parker, A. J.; Josten, F.; Muller, C.; Scheuer, J.; Steiner, J. M.; Gierse, M.; Handwerker, J.; Keim, M.; Lucas, S.; Qureshi, M. U.; Marshall, A.; Salhov, A.; Quan, Y. F.; Binder, J.; Jahnke, K. D.; Neumann, P.; Knecht, S.; Blanchard, J. W.; Plenio, M. B.; Jelezko, F.; Emley, L.; Vassiliou, C. C.; Haulie, P.; Schwartz, I. Hyperpolarized solution-state NMR spectroscopy with optically polarized crystals. J. Am. Chem. Soc. 2022, 144, 2511–2519.

(19) Hauser, K. H.; Stehlik, D. Dynamic nuclear polarization in liquids. In Advances in Magnetic and Optical Resonance; Waugh, J. S., Ed.; Advances in Magnetic Resonance, Vol. 3; Academic Press, 1968; pp 79–139.

(20) Mullerwurmuth, W.; Meisegresch, K. Molecular motions and interactions as studied by dynamic nuclear polarization (DNP) in free radical solutions. Adv. Magn. Reson. 1983, 11, 1–45.

(21) Loening, N. M.; Rosay, M.; Weis, V.; Griffin, R. G. Solution-state dynamic nuclear polarization at high magnetic field. J. Am. Chem. Soc. 2002, 124, 8808–8809.

(22) Hofer, P.; Parigi, G.; Luchinat, C.; Carl, P.; Guthausen, G.; Reese, M.; Carlomagno, T.; Griesinger, C.; Bennati, M. Field-dependent dynamic nuclear polarization with radicals in aqueous solution. J. Am. Chem. Soc. 2008, 130, 3254–3255.

(23) Denysenko, V.; Prandolini, M. J.; Gafurov, M.; Sezer, D.; Endeward, B.; Prisner, T. F. Liquid state DNP using a 260 GHz high power gyrotron. Phys. Chem. Chem. Phys. 2010, 12, 5786–5790.

(24) Wang, X.; Isleiy, W. C., III; Salido, S. I.; Sun, Z.; Song, L.; Lu, R.; Levien, M.; Tkach, I.; Prisner, T.; Benatti, M. One thousand-fold enhancement of high field liquid state dynamic nuclear polarization. J. Phys. Chem. Lett. 2022, 13, 7749–7755.
frozen photosynthetic reaction center. *J. Magn. Reson.* 2018, 293, 82–91.

(52) Dey, A.; Banerjee, A.; Chandrakumar, N. Transferred Overhauser DNP: a fast, efficient approach for room temperature 13C ODNP at moderately low fields and natural abundance. *J. Phys. Chem. B* 2017, 121, 7156–7162.

(53) Turke, M. T.; Parigi, G.; Luchinat, C.; Bennati, M. Overhauser DNP with 15N labelled Fremy's salt at 0.35 T. *Phys. Chem. Chem. Phys.* 2012, 14, 502–510.

(54) Denysenkov, V. P.; Prandolini, M. J.; Krahn, A.; Gafurov, M.; Endeward, B.; Prisner, T. F. High-field DNP spectrometer for liquids. *Appl. Magn. Reson.* 2008, 34, 289–299.