Integrable (2k)-Dimensional Hitchin Equations

R. S. Ward

Department of Mathematical Sciences,
Durham University, Durham DH1 3LE.

April 26, 2016

Abstract

This letter describes a completely-integrable system of Yang-Mills-Higgs equations which generalizes the Hitchin equations on a Riemann surface to arbitrary k-dimensional complex manifolds. The system arises as a dimensional reduction of a set of integrable Yang-Mills equations in 4k real dimensions. Our integrable system implies other generalizations such as the Simpson equations and the non-abelian Seiberg-Witten equations. Some simple solutions in the $k = 2$ case are described.

MSC: 81T13, 53C26.

Keywords: gauge theory, Higgs, integrable system.

1 Introduction

This note concerns completely-integrable systems of Yang-Mills-Higgs equations, and in particular those which may be viewed as higher-dimensional generalizations of the two-dimensional Hitchin equations (the self-duality equations on a Riemann surface). Let us begin by briefly setting out the notation.
We denote local coordinates on \mathbb{R}^n by x^μ with $\mu = 1, \ldots, n$. For simplicity we take the gauge group to be SU(2) throughout. A gauge potential A_μ takes values in the Lie algebra $\mathfrak{su}(2)$, so each of A_1, \ldots, A_n is an anti-hermitian 2×2 matrix. The curvature (gauge field) is $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + [A_\mu, A_\nu]$. A Higgs field Φ takes values in the Lie algebra, or, if complex, in the complexified Lie algebra $\mathfrak{sl}(2, \mathbb{C})$. Its covariant derivative is $D_\mu = \partial_\mu \Phi + [A_\mu, \Phi]$, and gauge transformations act by $\Phi \mapsto \Lambda^{-1} \Phi \Lambda$.

The prototype system is the simplest 2-dimensional reduction \cite{14} of the 4-dimensional anti-self-dual Yang-Mills equations

\begin{align}
F_{12} + F_{34} = 0, \quad F_{13} + F_{42} = 0, \quad F_{14} + F_{23} = 0.
\end{align}

This reduction can be written as a conformally-invariant system on the complex plane \mathbb{C}, or more generally on a Riemann surface \cite{12}, and is effected as follows. If we take all the fields to depend only on the coordinates (x^1, x^2), and we define a complex coordinate $z = x^1 + ix^2$ and a complex Higgs field $\Phi = A_3 + iA_4$, then (1) reduces to the Hitchin equations

\begin{align}
D_z \Phi = 0, \quad F_{zz} + \frac{1}{4} [\Phi, \Phi^*] = 0.
\end{align}

Several higher-dimensional generalizations of (2) have been introduced and studied over the years. But most such generalizations lack a notable property of the original system (2), namely its complete integrability. The purpose of this note is to describe some features, and some solutions, of an integrable $(2k)$-dimensional generalization of (2).

Let us focus specifically on generalizations to $2k$ real (or k complex) dimensions which involve $2k$ real (or k complex) Higgs fields. Such systems may naturally be viewed as dimensional reductions of pure-gauge systems in $4k$ dimensions, satisfying linear relations on curvature such as (1). Of greatest interest are those that have the eigenvalue form \cite{4}

\begin{align}
F_{\mu\nu} = \frac{1}{2} T_{\mu\nu\alpha\beta} F_{\alpha\beta},
\end{align}

where $T_{\mu\nu\alpha\beta}$ is totally-skew, because the Bianchi identities then imply that the gauge field satisfies the second-order Yang-Mills equations.
Perhaps the best-known example is the ‘octonionic’ system of \(k = 2 \), which may be written

\[
F_{12} + F_{34} + F_{56} + F_{78} = 0, \\
F_{13} + F_{42} + F_{57} + F_{86} = 0, \\
F_{14} + F_{23} + F_{76} + F_{35} = 0, \\
F_{15} + F_{62} + F_{73} + F_{48} = 0, \\
F_{16} + F_{25} + F_{38} + F_{47} = 0, \\
F_{17} + F_{82} + F_{35} + F_{64} = 0, \\
F_{18} + F_{27} + F_{63} + F_{54} = 0.
\]

(4)

Whereas the prototype (1) is essentially based on the quaternions, this system (4) is based on the octonions: the components of \(T_{\mu\rho\alpha\beta} \) are constructed from the Cayley numbers. It is invariant under the group \(\text{Spin}(7) \), and its 7-dimensional reduction is invariant under \(G_2 \). We now reduce to four dimensions by requiring the fields to depend only on the variables \((x_1, x_2, x_5, x_6)\), defining two complex variables and two complex Higgs fields by

\[
z^1 = x^1 + ix^2, \quad z^2 = x^5 + ix^6, \quad \Phi_1 = A_5 + iA_6, \quad \Phi_2 = A_7 + iA_8.
\]

(5)

Then the reduction of (4) is

\[
F_{1\bar{1}} + F_{2\bar{2}} + \frac{1}{4}[\Phi_1, \Phi_1^*] + \frac{1}{4}[\Phi_2, \Phi_2^*] = 0, \\
F_{1\bar{2}} - \frac{1}{4}[\Phi_1, \Phi_2] = 0, \\
D_1\Phi_1 - D_2\Phi_2^* = 0, \quad D_2\Phi_1 + D_1\Phi_2^* = 0.
\]

(6)

Here the subscript 1 in \(F_{1\bar{1}} \) and \(D_1 \) refers to \(z^1 \), whereas \(\bar{1} \) refers to the complex conjugate variable \(\bar{z}^1 \). The equations (6) are more familiar in the \(\mathbb{R}^4 \) (real) form

\[
(F - \frac{1}{2}[\Phi \wedge \Phi])^+ = 0, \quad (D\Phi)^- = 0, \quad D \ast \Phi = 0,
\]

(7)

where \(\Phi = \Phi_\mu dx^\mu \) is a Lie-algebra-valued 1-form formed from the four real Higgs fields. The ‘plus’ superscript denotes the self-dual part of a 2-form, and the ‘minus’ superscript the anti-self-dual part. This system has appeared in several contexts over the years [6, 2, 13, 11, 8, 3], and has variously been referred to as the non-abelian Seiberg-Witten equations or the
Kapustin-Witten equations. Known solutions include several obtained using a generalized ’t Hooft ansatz \[7\].

A different generalization of (2), defined on any Kähler manifold, is one attributed to Simpson \[18\]. In \(k\) complex dimensions, with complex coordinates \(z^a, a = 1, \ldots, k\), it takes the form

\[
F_{1\bar{1}} + \ldots + F_{k\bar{k}} + \frac{i}{4}[\Phi_1, \Phi_1^*] + \ldots + \frac{i}{4}[\Phi_k, \Phi_k^*] = 0,
\]

\[
F_{ab} = 0, \ [\Phi_a, \Phi_b] = 0, \ D_a\Phi_b = 0.
\] \(8\)

Note that for \(k = 1\), this system reduces to the prototype (2). For \(k = 2\), it clearly it implies (6). The converse is not true in general, but it is if one imposes appropriate global conditions: in particular for smooth fields on a compact Kähler surface, it has recently been shown that (8) and (6) are equivalent \[19\].

2 An integrable version

Another approach to generalizing the basic 4-dimensional system (1) is to look for higher-dimensional versions which are completely-integrable \[20\]. For simplicity, we begin with the case \(k = 2\). An integrable 8-dimensional Yang-Mills system is

\[
F_{12} + F_{34} = F_{56} + F_{78} = 0,
\]

\[
F_{13} + F_{42} = F_{57} + F_{86} = 0,
\]

\[
F_{14} + F_{23} = F_{76} + F_{85} = 0,
\]

\[
F_{15} = F_{26} = F_{37} = F_{48},
\]

\[
F_{16} = F_{32} = F_{53} = F_{47},
\]

\[
F_{17} = F_{28} = F_{53} = F_{64},
\]

\[
F_{18} = F_{72} = F_{36} = F_{54},
\] \(9\)

which clearly implies the octonionic equations (4). The system (9) has the symmetry group \([\text{Sp}(1) \times \text{Sp}(2)] / \mathbb{Z}_2 \subset \text{SO}(8)\), which corresponds to a quaternionic Kähler structure \[17\]. The ADHM construction of instantons [1] generalizes to this case \[17\] 5 15. Consider now the reduction to four
dimensions, with the same complex variables (5) as before. Then (9) reduces to
\[D_a \Phi_b = 0, \quad F_{ab} + \frac{1}{4} [\Phi_a, \Phi_b^*] = 0, \quad [\Phi_a, \Phi_b] = 0, \quad F_{ab} = 0, \quad D_{[a} \Phi_{b]} = 0, \quad (10) \]
where \(a, b \in \{1, 2\} \). This system is even more overdetermined than (5). So we have a string of implications, where (10) implies (8) implies (6) implies the four-dimensional Yang-Mills-Higgs equations (the reduction of pure Yang-Mills from eight dimensions).

Generalizing (10) to \(k \) complex dimensions is straightforward: we simply allow the indices \(a, b \) to range from 1 to \(k \). The system (10) has a very large symmetry group, since it involves only the holomorphic structure of the underlying complex manifold. This becomes clearer if we define
\[\Phi = \sum_a \Phi_a \, dz^a \]
as a \((1, 0)\)-form with values in the complexified Lie algebra: then (10) can be written
\[D \Phi = 0, \quad F^{1,1} + \frac{1}{4} [\Phi \wedge \Phi^*] = 0, \quad [\Phi \wedge \Phi] = 0, \quad F^{2,0} = 0, \quad (11) \]
where \(D \) now denotes the covariant exterior derivative. By contrast, the less-overdetermined systems (8) and (6) depend on an underlying geometric structure, and have less symmetry.

The system (10) is completely-integrable by virtue of being the consistency condition for a ‘Lax (2k)-tet’, namely
\[\bar{\partial}_a = D_a + \frac{1}{2} \zeta \Phi_a, \quad \bar{\partial}_{\bar{a}} = D_{\bar{a}} + \frac{1}{2} \zeta^{-1} \Phi_{\bar{a}}, \quad (12) \]
where \(\zeta \) is a complex parameter. The integrability conditions
\[[\bar{\partial}_a, \bar{\partial}_b] = 0 = [\bar{\partial}_a, \bar{\partial}_{\bar{b}}] \]
for all \(\zeta \) are equivalent to the equations (10).

3 Some solutions

The aim now is to describe some solutions of (10): these will therefore also be solutions of the other systems (8), and (7) in the \(k = 2 \) case. The equations (10) or (11) are defined on any \(k \)-dimensional complex manifold, and
in general one may also allow singularities. For example, in the $k = 1$ case on a compact Riemann surface of genus g, smooth solutions of (2) exist only when $g \geq 2$; on the 2-sphere and the 2-torus, solutions necessarily have singularities \[12\]. Note that the functions $G_{ab} = \text{tr}(\Phi_a \Phi_b)$ are holomorphic, by virtue of the equations (11). In what follows, we look for solutions which are smooth on \mathbb{C}^2, and for which G_{ab} is a polynomial in z^a. So they may also be viewed as being defined on the projective plane $\mathbb{C}P^2$, with a singularity on the line at infinity.

To illustrate, let us first consider the abelian case, with the fields being diagonal, namely $\Phi_a = \phi_a \sigma_3$, where $\sigma_3 = \text{diag}(1, -1)$. Then the equations (11) are easily solved. The gauge field vanishes, and therefore we may take the gauge potential to vanish as well. The remaining equations give $\Phi = d\theta$, where $\theta(z^a)$ is an arbitrary polynomial on \mathbb{C}^2. This is the general abelian solution.

For the non-abelian $\text{SU}(2)$ case, we adopt a simplifying ansatz which is familiar from the lower-dimensional version $[10]$. Namely let us assume that the gauge potential is diagonal: in other words, $A_a = h_a \sigma_3$. (It should be emphasized that there are solutions for which this assumption does not hold.) Then the general local solution is determined by a holomorphic function $\theta(z^a)$, plus a solution $u = u(\theta, \bar{\theta})$ of the elliptic sinh-Gordon equation

$$\partial_{\theta} \partial_{\bar{\theta}} \log |u| = \frac{1}{4} \left(|u|^2 - |u|^{-2}\right). \quad (13)$$

In terms of these, the Higgs fields are given by

$$\Phi_a = (\partial_a \theta) \begin{pmatrix} 0 & u \\ u^{-1} & 0 \end{pmatrix},$$

and the functions determining the gauge potential are

$$h_a = -\frac{1}{2} \partial_a \log(u).$$

Note that one solution of (13) is $u = 1$, but this is effectively the abelian case of the previous paragraph. In order to get genuine non-abelian fields, we choose $\theta(z^a)$ to have branch singularities, and then to get smooth fields one needs $u \neq 1$. The simplest such fields are embeddings of solutions of (2) on \mathbb{C} into \mathbb{C}^2, depending on z^a only via a fixed linear combination $z = \alpha z^1 + \beta z^2$.
For example, $\theta(z) = z^{3/2}$ gives an embedding of the ‘one-lump’ solution on \mathbb{C} [21]. Some simple solutions that are not of this embedded type are as follows.

Let $P(z^a)$ be a polynomial of degree at least two, and take $\theta = 2\frac{3}{2}P^{3/2}$. This gives Higgs fields of the form

$$\Phi_a = (\partial_a P) \begin{pmatrix} 0 & Pe^{\psi/2} \\ e^{-\psi/2} & 0 \end{pmatrix},$$

where $\psi(P, \bar{P})$ satisfies

$$\partial_P \partial_{\bar{P}} \psi = \frac{1}{2} (|P|^2 e^\psi - e^{-\psi}).$$

(15)

We now need a smooth solution of (15) satisfying the boundary condition $\psi \sim -\log |P|$ as $|P| \to \infty$. There exists a unique such solution, which is essentially a Painlevé-III function [9, 21]. In fact, if we define $h(t) = t^{-1/3}e^{-\psi/2}$, where $t = |P|^{3/2}$, then (15) becomes an equation of Painlevé-III type, namely

$$h'' - \frac{(h')^2}{h} + \frac{h'}{t} + \frac{4}{9h} - \frac{4h^3}{9} = 0.$$

(16)

This has a unique solution with the required asymptotics.

The upshot is that any polynomial $P(z^a)$ gives a solution of (11) which is smooth on \mathbb{C}^2 and has

$$G_{ab} = \text{tr}(\Phi_a \Phi_b) = 2P(\partial_a P)(\partial_b P).$$

It appears (see for example the figure below) that the gauge field $F_{\mu\nu}$ is concentrated around the zero-set of P. In the general k-complex-dimensional case, one expects the gauge field to be concentrated around a submanifold of complex codimension 1, and for the field to be approximately abelian elsewhere.

The simplest case has P quadratic, so that $P(z^a) = 0$ is a conic. Figure 1 is a plot of the norm $|F|$ of the gauge field, on the real slice $(z^1, z^2) \in \mathbb{R}^2$, for the solutions corresponding to the choices $P(z^a) = 2(z^1)^2 + (z^2)^2 - 4$ (on the left), and $P(z^a) = z^1(z^1 + 2z^2)$ (on the right). Here $|F|$ is computed using the metric $ds^2 = dz^1 d\bar{z}^1 + dz^2 d\bar{z}^2$ on \mathbb{C}^2, which leads to the formula

$$|F| = |e^{-\psi} - |P|^2 e^{\psi}| \left(|\partial_1 P|^2 + |\partial_2 P|^2\right).$$

(17)
The figures were generated by solving (16) numerically to get ψ, and then using this formula (17). Clearly $|F|$ is concentrated around the conic $P(z^a) = 0$. The right-hand case corresponds to a degenerate conic, and is the reduced version of what was called ‘instantons at angles’ [16] for solutions of (9).

4 Remarks

There are some compact complex manifolds X on which smooth solutions of (11) exist. As a trivial example, one could take X to be a product $S \times X'$, where S is a Riemann surface of genus at least two, and X' is any other manifold: then a solution of (2) on S is also a solution of (11) on $S \times X'$.

The moduli space of solutions on any compact manifold, if it is non-empty, has a natural L^2 metric, which on general grounds one expects to be hyperkähler. Even more generally, one could allow singularities of a specified type, or equivalently for the ambient space to be non-compact. In this latter case, some of the parameters in the solution space may have L^2 variation, giving rise to a moduli space with a well-defined metric. Analysing the possible moduli space geometries which arise in this way would be worthwhile, although a considerable task.

In this note, we have focused on a particular type of reduction of the integrable system (9), and of its $(4k)$-dimensional generalization. There are
several other dimensional reductions of the octonionic system \[\text{(4)}\] which are of interest: see, for example, reference \[\text{(3)}\]. In each case, the appropriate reduction of \[\text{(9)}\] gives an integrable sub-system, and hence a source of solutions.

Acknowledgments. This work was prompted by a communication from Sergey Cherkis. The author acknowledges support from the UK Particle Science and Technology Facilities Council, through the Consolidated Grant ST/L000407/1.

References

[1] Atiyah, M. F., Drinfeld, V. G., Hitchin, N. J. and Manin, Y. I.: Construction of instantons. Phys. Lett. A **65**, 185–187 (1978).

[2] Baulieu, L., Kanno, H. and Singer, I. M.: Special quantum field theories in eight and other dimensions. Commun. Math. Phys. **194**, 149–175 (1998).

[3] Cherkis, S. A.: Octonions, monopoles, and knots. Lett. Math. Phys. **105**, 641–659 (2015).

[4] Corrigan, E., Devchand, C., Fairlie, D. B. and Nuyts, J.: First-order equations for gauge fields in spaces of dimension greater than four. Nuclear Physics B **214**, 452–464 (1983).

[5] Corrigan, E., Goddard, P. and Kent, A.: Some comments on the ADHM construction in 4k dimensions. Commun. Math. Phys. **100**, 1–13 (1985).

[6] Donaldson, S. K. and Thomas, R. P.: Gauge theory in higher dimensions. In: Huggett, S. A. et al (eds), The Geometric Universe, pp. 31–47. Oxford University Press, Oxford (1998).

[7] Dunajski, M. and Hoegner, M.: SU(2) solutions to self-duality equations in eight dimensions. J. Geom. Phys. 62 1747–1759 (2012).

[8] Gagliardo, M. and Uhlenbeck, K.: Geometric aspects of the Kapustin Witten equations. J. Fixed Point Theory Appl. **11**, 185–198 (2012).
[9] Gaiotto, D., Moore, G. W. and Neitzke, A.: Wall-crossing, Hitchin systems, and the WKB approximation. Adv. Math. 234, 239–403 (2013).

[10] Harland, D. and Ward, R. S.: Dynamics of periodic monopoles. Physics Letters B 675, 262–266 (2009).

[11] Haydys, A.: Gauge theory, calibrated geometry and harmonic spinors. J. London Math. Soc. 86, 482–498 (2012).

[12] Hitchin, N. J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. 55, 59–126 (1987).

[13] Kapustin, A. and Witten, E.: Electromagnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1, 1–236 (2007).

[14] Lohe, M. A.: Two- and three-dimensional instantons. Phys. Lett. B 70, 325–328 (1977).

[15] Mamone Capria, M. and Salamon, S. M.: Yang-Mills fields on quaternionic spaces. Nonlinearity 1, 517–530 (1988).

[16] Papadopoulos, G. and Teschendorff, A.: Instantons at angles. Physics Letters B 419, 115–122 (1998).

[17] Salamon, S. M.: Quaternionic structures and twistor spaces. In: Willmore, T. J. and Hitchin, N. (eds), Global Riemannian Geometry, pp. 65–74. Ellis Horwood, Chichester (1984).

[18] Simpson, C. T.: Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. J. Amer. Math. Soc. 1, 867–918 (1988).

[19] Tanaka, Y.: On the singular sets of solutions to the Kapustin-Witten equations on compact Kähler surfaces. (2015, ArXiv e-prints). arXiv:1510.07739

[20] Ward, R. S.: Completely-solvable gauge-field equations in dimension greater than four. Nuclear Physics B 236, 381–396 (1984).
[21] Ward, R. S.: Geometry of solutions of Hitchin equations on \mathbb{R}^2. Nonlinearity 29, 756–765 (2016).