The Association of Angiotensin-converting Enzyme I/D and Angiotensinogen M235T Polymorphism Genes with Essential Hypertension: A Meta-analysis

Agus Wibowo†, Pramudji Hastuti‡*, Vinayanti Susanti§

1Department of Biochemistry, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, National Institute of Health Research and Development, Indonesia Ministry of Health, Yogyakarta, Indonesia; 2Department of Biochemistry, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; 3Department of Internal Medicine Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia

Abstract

BACKGROUND: Essential or primary hypertension in developing countries has become a major problem. Recent hypertension-related research has revealed susceptibility genes in genome-wide association studies. Several studies have associated angiotensin-converting enzyme (ACE) I/D and angiotensinogen (AGT) M235T polymorphisms with essential hypertension, but results have been inconsistent.

AIM: This meta-analysis aimed to clarify the association of AGT and ACE polymorphisms with the risk of primary hypertension.

METHODS: PubMed, Embase database, Medline, Google Scholar, and Scopus.com, as well portal Garuda (www.garuda.ristekdikti.go.id) and Cochrane were used to retrieve all publications from 2006 to 2020 relating risk factors for hypertension with ACE I/D and AGT M235T polymorphisms. The meta-analysis was conducted from January to April 2020. All association studies were identified and data extracted from each study. Revman 5.3 software was used for meta-analysis to estimate odds ratios (OR) after extracting data and evaluating the quality of the enrolled studies.

RESULTS: Twenty-seven studies (totaling 5105 patients and 5196 controls) were identified. The overall effect suggested ACE I/D was significantly associated with primary hypertension (OR: 95% confidence interval = 1.51 [1.29–1.77], p = 0.004). There was no association between AGT M235T with the risk of essential hypertension.

CONCLUSION: This meta-analysis found a significant association between ACE I/D gene polymorphisms with primary hypertension susceptibility. However, the AGT M235T gene had no association with the risk of primary hypertension. The Adrenoreceptor-beta/Renin-angiotensin System A allele should be considered a risk factor for essential hypertension.

Introduction

Essential or primary hypertension is a treatable disease that involves complex interactions between environmental and genetic factors [1], [2]. In developing countries such as in Asia and Africa, essential hypertension affects 25%–35% of the adult population [3]. In the past decade, many genes have been associated with high blood pressure and hypertension. The most extensively studied candidate genes for essential hypertension are Renin-angiotensin System (RAS) genes, which include angiotensinogen (AGT) and angiotensin-converting enzyme (ACE) genes [4]. Identified in the etiopathogenesis of hypertension, ACE is a key component of RAS [5].

The AGT gene is one of the major structural genes in the RAS pathway and it also regulates AGT expression, particularly the renin substrate. Research showed that the renin substrate is cleaved by renin into angiotensin I and then into vasoactive angiotensin II by ACE [6]. These two genes are the most prominent candidate genes being analyzed for their close association with the development of essential hypertension. However, in some populations, the results were inconclusive. Due to several limitations, the previous meta-analyses were not adequate to determine the actual correlation between ACE and AGT with hypertension because of its complex, multifactorial etiology, and the close but confusing links between Adrenoreceptor-beta/RAS (ADRB/RAS) polymorphisms and ethnicity.

Our present meta-analysis aimed to clarify the association between ACE I/D and AGT M235T gene polymorphisms and the risk of essential hypertension in populations from Asia to Africa, which have almost the same socio-economic conditions as other developing countries. Our meta-analysis results may be able to establish a clearer association in this topic.
Materials and Methods

The PubMed, Embase.com, Medline, Google Scholar, Scopus.com, and Cochrane databases were used to retrieve all publications from 2006 to 2020 relating risk factors for hypertension and single ADRB/A CE polymorphisms. The meta-analysis was conducted from January to April 2020. All association studies were identified and data extracted from each study. The first step in this study involved evaluating the quality of enrolled studies and extracting data. After that, software RevMan 5.3 was used for this meta-analysis to estimate odds ratios (OR). These publications were related to case-control and cross-sectional studies that reported a relation/link between the risk of essential hypertension and ADRB/ACE polymorphisms using the keywords: AGT AND ACE AND polymorphism AND blood pressure OR Hypertension AND Genetic AND Variation to retrieve the related documents. The document retrieval was limited to English-language articles (Figure 1).

Inclusion criteria and data extraction

Inclusion criteria

The following inclusion criteria were used in this meta-analysis: (1) The published articles reported studies of the correlation between ACE I/D or AGT M235T polymorphisms and incidence of essential hypertension; (2) the articles discussed cross-sectional or case-control studies, where the control group included healthy or relatively healthy people without hypertension and the case group was patients with essential hypertension; (3) the articles provided studies of the frequency distribution of the ACE I/D or AGT M235T directly or indirectly in cases and control groups or in the cross-sectional study; (4) genetic polymorphisms of ACE I/D and AGT M235 T were in line with Hardy–Weinberg equilibrium (HWE) or not in equilibrium; and (5) hypertension was defined as the presence of systolic blood pressure measurement of at least 140 mmHg and diastolic blood pressure measurement of at least 90 mmHg. In addition, for ACE and AGT genotypes, there were six ethnic groupings, either from Asia or from Africa (Table 1).

Two investigators (P.H and V.Y.S) extracted data independently and if there were differences, the consensus was reached by discussing or consulting a third party. The following contents were extracted from the studies: The first author’s name, year of publication, ethnicity (Asia or Africa) of the study population, the characteristics of each group in cases and controls or cross-sectional study, the genotyping method, controls’ source, and sample sizes of cases and controls or cross-sectional study. The allele frequencies and genotypic distributions in both cases and controls or cross-sectional study were calculated. In addition, the HWE status in each group was tested for this study (Table 1).

Results

Data synthesis

A total of 27 studies consisting of 22 articles concerning ACE I/D and 15 articles discussing AGT M235T were included in our analysis. The cumulative genotype percentages for DD, ID, and II for ACE were 31.5%, 43.2%, and 2.3%, respectively, and for AGT, there were MM 28.8%, MT 37.7%, and TT 33.6 %, while in the control group, the percentages were 26.9%, 43.2%, and 2.3%, respectively, and for AGT, MM 31.5%, MT 43.2%, and TT 2.3%. Overall, our analysis found that the D allele (OR: 95% CI = 1.51 [1.28–1.77], p < 0.00001) (Figure 2a) and DD genotype (OR: 95% CI = 1.54 [1.15–2.06], p = 0.004) were
significantly associated with increased risk of essential hypertension (Figure 2b) but the TT allele (OR: 95% CI = 1.03 [0.74–1.43], p = 0.86) (Figure 3b) and T allele (OR: 95% CI = 1.20 [0.90–1.61], p = 0.22) were not associated with essential hypertension (Figure 3a). To establish a comprehensive analysis, we also performed a sub-group analysis according to the continent of origin and gender. Continent sub-group analysis consisted of Asian and African sub-groups.

In the Asian sub-group analysis, the genotype percentages were DD 28.0%, ID 45.4%, and II 26.6% and for MM, MT, and TT in patients with essential hypertension, there were 25.5%, 38.0%, and 36.3%, respectively. Meanwhile, in the control group, the percentages were 25.1%, 43.2%, and 31.7% for DD, ID, and II, respectively, and for AGT M235T, there were MM 28.7%, MT 36.8%, and TT 34.5%. In the African continent sub-groups, the percentages were DD 44.6%, ID 41.8%, and II 13.6% and for the AGT 235 gene, the percentages were MM 8.2%, MT 19.2%, and TT 72.5% in patients with essential hypertension. In the control group, the genotype percentages for ACE I/D were DD 24.0%, ID 43.7%, and II 28.7%.

In AGT M235T, there were MM 11.3%, MT 17.2%, and TT 71.4%. In the gender sub-group, the percentages of ACE I/D in males were DD 29.7%, ID 46.4%, and II 23.8% and for the AGT 235 gene, the percentages were MM 10.7%, MT 36.1%, and TT 53.3% in patients with essential hypertension. In the control group, the genotype percentages for ACE I/D in males were DD 29.6%, ID 41.0%, and II 29.4%. In AGT M235T, there were MM 13.7%, MT 33.1%, and TT 53.2%. Moreover, in females, there were DD 31.3%, ID 40.2%, and II 28.5% and for the AGT 235 gene, the percentages were MM 8.7%, MT 33.1%, and TT 58.2% in patients with essential hypertension. In the female control group, the genotype percentages for ACE I/D were DD 23.6%, ID 41.6%, and II 24.8%. In M235T, there were MM 9.7%, MT 33.4%, and TT 56.9%.

Our results found associations between ACE I/D gene polymorphisms and the risk of essential hypertension.
hypertension in the Asian DD genotype (OR: 95% CI = 1.39 [1.04–1.87], p = 0.03) (Figure 2c) and African continent DD genotype sub-group (OR: 95% CI = 2.66 [1.53–4.62], p = 0.00005) (Figure 2d), while in the gender sub-groups, our results did not find any increased risk of essential hypertension in the DD genotype male sub-groups (OR: 95% CI = 0.87 [0.49–1.54], p = 0.64) nor female sub-groups (OR: 95% CI = 0.94 [0.33–2.66], p = 0.91) (Figure 2e and f).

Oppositely, the results showed some association between the increased risk of essential hypertension and the AGT TT genotype (OR: 95% CI = 1.03 [0.74–1.43], p = 0.86). Our results also found no association between AGT M235T polymorphisms and the risk of essential hypertension in the Asian gender sub-groups (OR: 95% CI = 1.03 [0.66–1.58], p = 0.92), while there were in the African sub-groups (OR: 95% CI = 1.57 [0.75–3.30], p = 0.23), and AGT M235T in males (OR: 95% CI = 1.35 [0.62–2.93], p = 0.45), and in females (OR: 95% CI = 1.45 [0.78–2.70], p = 0.24) (Figure 3).

Sensitivity analysis and publication bias

The Begg’s funnel plot and Egger’s regression tests were used to perform analysis of sensitivity and publication bias. In this study, these tests were performed to assess the publication bias in dominant comparison (ACE I/D=0.1753). This study did not find that the combined OR values changed significantly, which indicated the meta-analysis was stable and reliable. For the funnel plot analysis (Figure 4), the symmetry of each genotype funnel plot displayed no publication bias. The selected studies were considered more representative due to evaluation of the funnel plot symmetry with Begg’s and Egger’s tests which showed that there was no significant publication bias in the various publications.

Discussion

Essential hypertension is a complex, multifactorial disease with genetic, and environmental risk factors that contribute to its growing incidence [31], [32], [33]. Hypertension causes significant morbidity and mortality worldwide [34], [33]. Genome-wide association studies have contributed significantly to the present research concerning
essential hypertension by providing the typology for 100,000s of single nucleotide polymorphisms through extensive cohorts [35] Results showed that as many as 22 genome-wide scans have identified genetic loci for blood pressure [36] The contribution of genetic types to blood pressure variation is estimated to range from 30% to 50% The identification of genotypic variants can enrich our understanding of the etiology of hypertension while also helping to clarify the biochemical and physiological pathways in the disease pathophysiology [32] The first candidate genes linked to essential hypertension were AGT and ACE [34] RAS is an important component of blood pressure regulation and associated with hypertension [37], [38] The classical pathway of the RAS begins with renin cleaving its substrate, AGT, to produce the inactive peptide, angiotensin I, which is then converted to angiotensin II by endothelial ACE ACE activation of angiotensin II occurs especially in the lungs [39], [40] Many studies have investigated the relationship between genetic susceptibility and essential hypertension Research about AGT M235T and ACE I/D showed some association with essential hypertension in Caucasian populations but not in Asians and Africans We collected 41 papers that investigated

Figure 4: (a) Funnel plot angiotensin-converting enzyme I/D and (b) Funnel plot angiotensigen M235T

Table 1: The baselines characteristics of the study populations in this meta-analysis

Study years	Country	HWE	Method	Polymorphism	Age	SBP	DBP					
Das et al. 2008 [7]	India	No	PCR	19 ± 12	NA	NA	NA					
Ghazali et al. 2008 [3]	Malaysia	No	PCR-Sequencing	NA	NA	57 ± 16	136	53 ± 6.4	132.2 ± 16.8	78.6 ± 10.2		
Bawazier et al. 2010 [8]	Indonesia	No	PCR	1	39	NA	NA	45.2 ± 7.0	149.8 ± 19.2	95.1 ± 9.8		
Saab et al. 2011 [9]	Lebanon	Yes	PCR-RFLP	78	37	9	34	72	18	NA	NA	68 ± 2.7
Koffe et al. 2012 [10]	Nigeria	Yes	PCR-RFLP	NA	NA	4	67	541	51.3 ± 13.76	161.14 ± 23.247	93.25 ± 13.768	
Vamsi et al. 2012 [6]	India	Yes	PCR-RFLP	NA	NA	2	52	642	31.9 ± 10.27	116.76 ± 9.19	72.181 ± 8.41	
Shamaa et al. 2013 [11]	Egypt	No	PCR-RFLP	NA	NA	12	18	53	53.5 ± 7.4	145.8 ± 7.0	91.2 ± 2.15	
Singh et al. 2014 [12]	India	Yes	PCR-RFLP	83	88	40	13	81	117.33 ± 4.27	19.7 ± 3.46		
Heidarai et al. 2014 [13]	Malaysia	Yes	PCR	43	24	4	NA	47.2 ± 11.3	152 ± 13.0	NA		
Yang et al. 2015 [14]	China	Yes	PCR-RFLP	41	106	97	14	78	152	61.148 ± 13.491	NA	
Alsaifar et al. 2015 [15]	UAE	Yes	PCR-RFLP	98	135	2	NA	NA	NA	NA	NA	
Tchelougou et al. 2015 [16]	Africa	Yes	PCR	135	57	10	2	29	171	51 ± 10.01	160 ± 20.66	95 ± 11.87
Krishnan et al. 2016 [17]	India	Yes	PCR-RFLP	73	104	27	3	24	177	49.50 ± 13.54	120 ± 11.47	70 ± 8.24
Ramu et al. 2017 [18]	India	No	PCR-RFLP	44	58	118	NA	NA	42.78 ± 5.7	123.34 ± 1.8	69.89 ± 5.9	
Hussain et al. 2017 [19]	Pakistan	Yes	PCR-RFLP	101	190	153	NA	NA	47.4 ± 4.4	117.5 ± 5.04	78.2 ± 2.03	
Nawaz et al. 2011 [20]	Pakistan	Yes	PCR-RFLP	74	143	62	NA	NA	28.3 ± 10.45	112 ± 13.3		
Niu et al. 2015 [21]	Kazakhstan	Yes	PCR-RFLP	181	184	156	NA	NA	52.3 ± 12.4	159.3 ± 23.6	91.6 ± 11.8	
Srivastava et al. 2012 [22]	India	Yes	PCR-RFLP	222	187	214	NA	NA	40.2 ± 14.3	117.9 ± 11.6	74.2 ± 8.2	
Jiang 2019 [23]	China	No	PCR-RFLP	29	108	83	NA	NA	62.2 ± 6.1	159.0 ± 12.9	94.8 ± 8.5	
AbdRahib 2017 [24]	Egypt	Yes	PCR-RFLP	13	112	110	NA	NA	0.1 ± 7.7	119.7 ± 10.1	77.7 ± 6.8	
Amrani 2015 [25]	Algeria	Yes	PCR-RFLP	25	52	16	7	42	7.3	131 ± 14.3	82 ± 7.2	
Badarudinza 2012 [26]	India	Yes	PCR-RFLP	18	49	24	NA	NA	52.30 ± 6.54	147.38 ± 11.49	92.53 ± 10.35	
Meht 2012 [27]	Tunisia	Yes	PCR-RFLP	57	65	20	23	67	52	61.4	161.8 ± 16.4	100.4 ± 11.2
Niu 2007 [28]	Tibet	Yes	PCR-RFLP	34	83	74	60	82	49	60.1	126.8 ± 5.5	82.5 ± 4.3
Niu 2009 [29]	China	Yes	PCR-RFLP	175	451	300	496	361	69	50.2 ± 6.58	160.95 ± 18.07	99.64 ± 10.59
Rana 2018 [30]	India	No	PCR	92	89	65	NA	NA	NA	NA	NA	

ACE: Angiotensin converting enzyme, AGT: Angiotensinogen, HWE: Hardy-Weinberg equilibrium, NA: Not available, PCR: Polymerase chain reaction, PCR-RFLP: Polymerase chain reaction restriction fragment length polymorphism, SBP: Systolic blood pressure, DBP: Diastolic blood pressure.
links between genotypes and essential hypertension. Twenty-seven papers found associations between ACE I/D and the risk of essential hypertension, and eight found no association with hypertension. Six studies showed significant correlations between AGT M235T and essential hypertension while six did not find any association. In the present meta-analysis, our results support the findings of some association of ACE I/D polymorphisms with essential hypertension.

Our meta-analysis results concerning ACE I/D are consistent with the previous studies that found the DD genotype has strong association with essential hypertension. In the sub-group analysis in the Asian population, consistent results were showing that the DD genotype has association with essential hypertension. In addition, in the African sub-groups, the DD genotype was also associated with essential hypertension. However, in the gender sub-group analysis, there was no association in the male or female sub-groups between the DD genotype with essential hypertension. Interestingly, the meta-analysis conducted by Staessen et al. [41] found a significant association between allele D with hypertension in female and Asian populations.

Jeunemaitre et al. [42] initially identified that AGT M235T was associated with severe hypertension cases compared to controls, and the 235T variant was correlated with increased plasma AGT (20% higher in 235T homozygotes than in 235M homozygotes). Further findings in Caucasian populations in North America, Europe, Australia, Japan, and Taiwan, and in black populations in the Caribbean, United States, and Africa showed contradictory associations between 235T and hypertension [34]. Our results found no association between the genotype TT with essential hypertension in all analysis and ethnic subgroups. The same result was shown by Ghazali et al. [3] in the Malaysian population. Meanwhile, different results from the meta-analysis conducted by Staessen et al. [43] showed that the T allele was associated with essential hypertension in Caucasian populations but that the association between hypertension and the T allele may be weaker in black and Asian populations.

Several limitations were noted in the present meta-analysis study. First, since only articles published and written in the English language were retrieved for analysis, this might introduce a potential selection bias. Second, this meta-analysis was not based on individual participant data of each qualified study, such as body mass index, level of physical activity, limiting analysis for gene-to-environment interaction, and age of the participant. Third, the analysis was limited to specific genes for only polymorphism I/D in ACE and AGT M235T genes but other functional genes in the promoter region such as A-240T polymorphisms and AT1R A1166C were not analyzed because of the insufficient data and limited availability. In addition, for allele frequency across studies, the ACE I/D polymorphism exhibited wide divergences, indicating the presence of allele heterogeneity. Fourth, some sub-group analyzes may have been lower for power analysis due to the limited number of studies and small sample sizes involved.

Furthermore, in the present meta-analysis of the included studies, deviations from the HWE were also found. These Hardy–Weinberg inconsistencies might be considered as significant limitations, which might drive some of the false-positive findings. The previous studies might be considered to have a low level of evidence due to these limitations to confer strength to the overall association results.

Conclusion

The present meta-analysis suggests that angiotensin converting enzyme (ACE I/D) polymorphisms are associated with increased risks of essential hypertension, especially among Asian and African populations. Some studies with different results showed that AGT M235T has no association in Asian and African populations. These findings seem to show that differences in gene pool at different frequencies for each population have different effects on the onset of disease, but the gender-based sub-groups do not differ in expression between men and women. However, in the future, larger sample size studies conducted in different ethnic populations are required to further evaluate our conclusions.

References

1. Merlo J, Bengtsson-Boström K, Lindblad U, Råstam L, Melander O. Multilevel analysis of systolic blood pressure and ACE gene I/D polymorphism in 438 Swedish families a public health perspective. BMC Med Genet. 2006;7:14. https://doi.org/10.1186/1471-2350-7-14 PMid:16509973
2. Mondry A, Loh M, Liu P, Zhu AL, Nagel M. Polymorphisms of the insertion/deletion ACE and M235T AGT genes and hypertension: Surprising new findings and meta-analysis of data. BMC Nephrol. 2005;6:1-11.
3. Ghazali DM, Rehman A, Rahman AR. Candidate gene polymorphisms and their association with hypertension in Malays. Clin Chim Acta. 2008;388(1-2):46-50. https://doi.org/10.1016/j.cca.2007.10.002 PMid:17977523
4. Gui-Yan W, Yan-Hua W, Qun X, Wei-Jun T, Ming-Ling G, Jian W, et al. Associations between RAS gene polymorphisms, environmental factors and hypertension in Mongolian people. Eur J Epidemiol. 2006;21(4):287-92. https://doi.org/10.1007/s10654-005-6006-4 PMid:16685579
5. Crews DE, Williams SR. Molecular aspects of blood pressure. Hum Biol. 1999;71(4):475-503.
6. Mohana VU, Swapna N, Surender RS, Vishnupriya S, Padma T. Gender-related association of AGT gene variants (M235T and T174M) with essential hypertension A case-control study. Clin Exp Hypertens. 2012;34(1):38-44. https://doi.org/10.3109/10641963.2011.618207
PMid:22148914

7. Das M, Pal S, Ghosh A. Angiotensin converting enzyme gene polymorphism (Insertion/Deletion) and hypertension in adult Asian Indians: A population-based study from Calcutta, India. Hum Biol. 2009;80(3):303-12. https://doi.org/10.3378/1534-6617-80.3.303
PMid:19130799

8. Bawazier LA, Sja'bani M, Haryana SM, Soesatyo MH, Sadewa AH. Relationship of angiotensin converting enzyme gene polymorphism and hypertension in Yogyakarta, Indonesia. Acta Med Indones. 2010;42(4):192-8. PMid:21063039

9. Saab YB, Gard PR, Overall ADJ. The association of hypertension with renin-angiotensin system gene polymorphisms in the Lebanese population. J Renin Angiotensin Aldosterone Syst. 2011;12(4):588-94. https://doi.org/10.1177/1470320311408465
PMid:21628354

10. Kooffreh ME, Anumudu CI, Akpan EE, Ikpeme EV, Kumar PL. Correlation between some renin-angiotensin system gene variants and hypertension in a sample population of Calabar and Uyo, Nigeria. Egypt J Med Hum Genet. 2013;14(1):13-9. http://dx.doi.org/10.1016/j.ewhmg.2012.06.007

11. Tripathi G, Dharmani P, Khan F, Sharma RK, Pandirikkal V, Agrawal S. High prevalence of ACE DD genotype among north Indian end stage renal disease patients. BMC Nephrol. 2006;7:1-7. https://doi.org/10.1186/1471-2369-7-15
PMid:17042963

12. Singh KD, Jajodia A, Kaur H, Kukreti R, Karthikeyan M. Gender specific association of RAS gene polymorphism with essential hypertension: A case-control study. Biomed Res Int. 2014;2014:538053. https://doi.org/10.1155/2014/538053
PMid:24860821

13. Heidari F, Vasudevan R, Mohd Ali SZ, Ismail P, Etemad A, Mohd Ali SZ. Correlation of angiotensin-converting enzyme gene among Malay male hypertensive infjects in response to ACE inhibitors. J Renin Angiotensin Aldosterone Syst. 2015;16(4):872-9. https://doi.org/10.1177/1470320315598627
PMid:25702132

14. Yang YL, Mo YP, He YS, Yang F, Xu Y, Li CC, He YS. Association of angiotensin converting enzyme gene insertion/deletion polymorphism with essential hypertension in north Indian Punjabi population. Int J Hum Genet. 2011;11(1):31-40. https://doi.org/10.1080/09723757.2011.11866120

15. Alsafar H, Hassoun A, Almazroui S, Kamal W, Almaini M, Hassoun A. Synergistic effects of gene polymorphisms of the renin-angiotensin-aldosterone system on essential hypertension in Kazakhs in Xinjiang. Clin Exp Hypertens. 2016;38(1):63-70. https://doi.org/10.1080/14703203.2015.1000985
PMid:26305278

16. Srivastava K, Sundriyal R, Meena PC, Bhatia J, Narang R, Saluja D. Association of angiotensin converting enzyme (insertion/deletion) gene polymorphism with essential hypertension in Northern Indian subjects. Genet Test Mol Biomarkers. 2012;16(3):174-7. https://doi.org/10.1089/gtm.2011.0155
PMid:22103580

17. Jiang X, Sheng H, Li J, Xun P, Cheng Y, Huang J, et al. Association between renin-angiotensin system gene polymorphism and essential hypertension: A community-based study. J Hum Hypertens. 2009;23(3):176-81. https://doi.org/10.1038/jhh.2008.123
PMid:18830250

18. Badaruddoza, Sudhir N. No evidence for association between ACE gene insertion/deletion polymorphism and essential hypertension in a South Indian Tamilian population. Int J Hum Genet. 2011;11(1):31-40. https://doi.org/10.1080/09723757.2011.11866120

19. Ramu P, Uمامaheswaran G, Shewade DG, Swaminathan RP, Dutta TK, Balachander J, et al. Candidate gene polymorphisms of renin angiotensin system and essential hypertension in a South Indian population. Genes Dis. 2016;3(2):159-63. https://doi.org/10.1016/j.gendis.2016.03.001
PMid:30258884

20. Nawaz SK, Hasnain S. Effect of ACE polymorphisms on the association between noise and hypertension in a Pakistani population. J Renin Angiotensin Aldosterone Syst. 2011;12(4):516-20. https://doi.org/10.1177/1470320310395799
PMid:21436208

21. Liu S, Zhang B, Zhang K, Zhu P, Li J, Sun Y, et al. Synergistic effects of gene polymorphisms of the renin-angiotensin-aldosterone system on essential hypertension in a sample of Algerian population. Clin Exp Hypertens. 2018;40(2):186-91. https://doi.org/10.1080/10641963.2017.1356842
PMid:29058472

22. Badaruddoza, Sudhir N. No evidence for association between ACE gene insertion/deletion polymorphism and essential hypertension in a South Indian population. Int J Hum Genet. 2011;11(1):31-40. https://doi.org/10.1080/09723757.2011.11866120

23. Mehri S, Mahjoub S, Hammami S, Zaroui A, Frih A, Betbout F, Hammami S. Candidate gene polymorphisms of Angiotensinogen and Angiotensin converting enzyme gene, and hypertension status and obesity in a Tunisian population. Mol Biol Rep. 2012;39(4):4059-65. https://doi.org/10.1007/s11033-011-1188-6
PMid:21779803

24. Badaruddoza, Sudhir N. No evidence for association between ACE gene insertion (I)/deletion (D) polymorphism and hypertension in north Indian Punjabi population. Int J Hum Genet. 2012;12(3):177-83. https://doi.org/10.1080/09723757.2012.69.82
PMid:19921155

25. Amrani A, Hamed MB, Talebbendia FM. Association of angiotensin converting enzyme (insertion/deletion) gene polymorphism with essential hypertension in a sample of Algerian population: Case control study. Ann Biol Clin (Paris). 2015;73(5):557-63. https://doi.org/10.1684/abc.2015.1069
PMid:26498814

26. Badaruddoza, Sudhir N. No evidence for association between ACE gene insertion (I)/deletion (D) polymorphism and hypertension in north Indian Punjabi population. Int J Hum Genet. 2012;12(3):177-83. https://doi.org/10.1080/09723757.2012.69.82
PMid:19921155

27. Mehri S, Mahjoub S, Hammami S, Zaroui A, Frih A, Betbout F, Hammami S. Candidate gene polymorphisms of Angiotensinogen and Angiotensin converting enzyme gene, and hypertension status and obesity in a Tunisian population. Mol Biol Rep. 2012;39(4):4059-65. https://doi.org/10.1007/s11033-011-1188-6
PMid:21779803

28. Niu W, Qi Y, Cen W, Cui C, Zhuoma C. Genetic Polymorphisms of Angiotensinogen and. Hypertens Res. 2007;30(11):1129-37. https://doi.org/10.1291/hypres.30.11.1129
PMid:18250562
29. Niu W, Qi Y, Hou S, Zhai X, Zhou W, Qiu C. Haplotype-based association of the renin-angiotensin-aldosterone system genes polymorphisms with essential hypertension among Han Chinese: The Fangshan study. J Hypertens. 2009;27(7):1384-91. https://doi.org/10.1097/HJH.0b013e32832b7e0d
PMid:19412130

30. Rana G, Yadav S, Joshi S, Saraswathy KN. Association of DD genotype of angiotensin-converting enzyme gene (I/D) polymorphism with hypertension among a North Indian population. J Community Genet. 2018;9(1):51-5. https://doi.org/10.1007/s12687-017-0321-9
PMid:28770441

31. Butler MG. Genetics of hypertension current status. J Med Liban. 2010;58(3):175-8.
PMid:21462849

32. Tanira MO, Al Balushi KA. Genetic variations related to hypertension: A review. J Hum Hypertens. 2005;19(1):7-19.
PMid:15361889

33. Siyad AR. Hypertension. Hygeia J D Med. 2011;3(1):1-16.
PMid:24792593

34. Dickson ME, Sigmund CD. Genetic basis of hypertension: Revisiting angiotensinogen. Hypertension. 2006;48(1):14-20. https://doi.org/10.1161/01.HYP.0000227932.13687.60
PMid:16754793

35. Russo A, Di Gaetano C, Cugliari G, Matullo G. Advances in the genetics of hypertension: The effect of rare variants. Int J Mol Sci. 2018;19(3):688. https://doi.org/10.3390/ijms19030688
PMid:29495953

36. Hopkins PN, Hunt SC. Genetics of hypertension. Genet Med. 2003;5(6):413-20. https://doi.org/10.1097/01.gim.0000096375.88710.a6
PMid:14614392

37. Heidari F, Vasudevan R, Mohd Ali SZ, Ismail P, Arkani M. RAS genetic variants in interaction with ACE inhibitors drugs influences essential hypertension control. Arch Med Res. 2017;48(1):88-95. https://doi.org/10.1016/j.arcmed.2017.03.003
PMid:28577874

38. Ismail M, Akhtar N, Nasir M, Firasat S, Ayub Q, Khaliq S. Association between the angiotensin-converting enzyme gene insertion/deletion polymorphism and essential hypertension in young Pakistani patients. J Biochem Mol Biol. 2004;37(5):552-5. https://doi.org/10.5483/bmbrep.2004.37.5.552
PMid:15479618

39. Naomi A, Fisher DL. Overview of the Renin-angiotensin System; 2019. p. 1-25. Available from: https://www.uptodate.com [Last accessed on 2021 Apr 20].

40. Seidel E, Scholl UI. Genetic mechanisms of human hypertension and their implications for blood pressure physiology. Physiol Genomics. 2017;49(11):630-52. https://doi.org/10.1152/physiolgenomics.00032.2017

41. Staessen JA, Wang JG, Ginocchio G, Petrov V, Soubrier F, et al. The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular renal risk. J Hypertens. 1997;15(12 Pt 2):1579-92. https://doi.org/10.1097/00004872-199715120-00005
PMid:9488209

42. Jeunemaitre X, Lifton RP, Charru A, Hunt SC, Hopkins PN, Williama RR, et al. Molecular basis of human hypertension: Role of angiotensinogen. Cell. 1992;71(1):169-80. https://doi.org/10.1016/0092-8674(92)90275-h
PMid:1394429

43. Staessen JA, Kuznetsova T, Wang JG, Emelianov D, Vlietinck R, Fagard R. M235T angiotensinogen gene polymorphism and cardiovascular renal risk. J Hypertens. 1999;17(1):9-17. https://doi.org/10.1097/00004872-199917010-00003
PMid:10100088