ON PRESENTATIONS OF INTEGER POLYNOMIAL POINTS OF SIMPLE GROUPS OVER NUMBER FIELDS

AMIR MOHAMMADI & KEVIN WORTMAN

In this paper we prove the following

Theorem 1. Let K be a number field and let \mathcal{O}_K be its ring of integers. Let G be a connected, noncommutative, absolutely almost simple algebraic K-group. If the K-rank of G equals 2, then $G(\mathcal{O}_K[t])$ is not finitely presented.

Actually, we will prove a slightly stronger version of Theorem 1 by showing that if $G(\mathcal{O}_K[t])$ is as in Theorem 1 then $G(\mathcal{O}_K[t])$ is not of type FP_2.

0.1. Related results. Krstić-McCool proved that $GL_3(A)$ is not finitely presented if there is an epimorphism from A to $F[t]$ for some field F [K-M].

Suslin proved that $SL_n(A[t_1,\ldots,t_k])$ is generated by elementary matrices if $n \geq 3$, A is a regular ring, and $K_1(A) \cong A^\times$ [Su]. Grunewald-Mennicke-Vaserstein proved that $Sp_{2n}(A[t_1,\ldots,t_k])$ is generated by elementary matrices if $n \geq 2$ and A is a Euclidean ring or a local principal ideal ring [G-M-V].

In Bux-Mohammadi-Wortman, it’s shown that $SL_n(\mathbb{Z}[t])$ is not of type FP_{n-1} [B-M-W]. The case when $n = 3$ is a special case of Theorem 1.

While most of the results listed above allow for more general rings than $\mathcal{O}_K[t]$, the result of this paper, and the techniques used to prove it, are distinguished by their applicability to a class of semisimple groups that extends beyond special linear and symplectic groups.

1. PRELIMINARY AND NOTATION

Throughout the remainder, we let G be as in Theorem 1 and we let $\Gamma = G(\mathcal{O}_K[t])$.

The writing of this paper was supported in part by NSF Grant No. DMS-0905891.
Let L be an algebraically closed field containing $K((t^{-1}))$ fixed once and for all. In the sequel the Zariski topology is defined with this fixed algebraically closed field in mind.

Let S be a maximal K-split torus of G. Let \{\alpha, \beta\} be a set of simple K-roots for (G, S), and define $T = (\ker(\alpha))^o$, the connected component containing the identity.

Let P be a maximal K-parabolic subgroup of G that has $Z_G(T)$ as a Levi subgroup where $Z_G(T)$ denotes the centralizer of T in G. Let U be unipotent radical of P. We have $P = UZ_G(T)$. We can further write

$$P = UHMT$$

where $H \leq Z_G(T)$ is a simple K-group of K-rank 1 and M is a K-anisotropic torus contained in the center of $Z_G(T)$.

If $x \in K((t^{-1}))$ is algebraic over K then $x \in K$, hence G has $K((t^{-1}))$-rank 2 as well and P is a $K((t^{-1}))$-maximal parabolic of G. It also follows that H has $K((t^{-1}))$-rank 1 and that M is $K((t^{-1}))$-anisotropic.

We let G, S, P, U, M, H and T denote the $K((t^{-1}))$-points of G, S, P, U, M, H, and T, respectively.

Let X denote the Bruhat-Tits building associated to G. This is a 2-dimensional simplicial complex, and the apartments (maximal flats) correspond to maximal $K((t^{-1}))$-split tori.

We fix once and for all a K-embedding of G in some SL_n. Using this embedding we realize $G(K[t])$ and Γ as subgroups of $\text{SL}(K[t])$ and $\text{SL}(O_K[t])$ respectively. This embedding also gives an isometric embedding of X into \mathbb{A}_{n-1}, the building of $\text{SL}_n(K((t^{-1})))$; see [La].

2. Stabilizers of the Γ-action on its Euclidean building

Lemma 2. If X is the Euclidean building for G, then the Γ stabilizers of cells in X are FP_m for all m.

Proof. We first recall the proof of [B-M-W] Lemma 2. Let $x_0 \in \mathbb{A}_{n-1}$ be the vertex stabilized by $\text{SL}_n(K[[t^{-1}]]))$. We denote a diagonal matrix in $\text{GL}_n(K((t^{-1})))$ with entries $s_1, s_2, \ldots, s_n \in K((t^{-1}))^\times$ by $D(s_1, s_2, \ldots, s_n)$, and we let $\mathcal{G} \subseteq \mathbb{A}_{n-1}$ be the sector based at x_0 and containing vertices of the form $D(t^{m_1}, t^{m_2}, \ldots, t^{m_n})x_0$ where each $m_i \in \mathbb{Z}$ and $m_1 \geq m_2 \geq \ldots \geq m_n$.

The sector \mathcal{G} is a fundamental domain for the action of $\text{SL}_n(K[t])$ on \mathbb{A}_{n-1} (see [So]). In particular, for any vertex $z \in \mathbb{A}_{n-1}$, there is some $h_z' \in \text{SL}_n(K[t])$ and some integers $m_1 \geq m_2 \geq \ldots \geq m_n$ with $z = h_z'D_z(t^{m_1}, t^{m_2}, \ldots, t^{m_n})x_0$. We let $h_z = h_z'D_z(t^{m_1}, t^{m_2}, \ldots, t^{m_n})$.

For any \(N \in \mathbb{N} \), let \(W_N \) be the \((N+1)\)-dimensional vector space
\[
W_N = \{ p(t) \in \mathbb{C}[t] \mid \deg(p(t)) \leq N \}
\]
which is endowed with the obvious \(K \)-structure. If \(N_1, \ldots, N_{n^2} \) in \(\mathbb{N} \) are arbitrary then let
\[
G_{\{N_1, \ldots, N_{n^2}\}} = \{ x \in \prod_{i=1}^{n^2} W_{N_i} \mid \det(x) = 1 \}
\]
where \(\det(x) \) is a polynomial in the coordinates of \(x \). To be more precise this is obtained from the usual determinant function when one considers the usual \(n \times n \) matrix presentation of \(x \), and calculates the determinant in \(\text{Mat}_n(\mathbb{C}[t]) \).

For our choice of vertex \(z \in \tilde{A}_{n-1} \) above, the stabilizer of \(z \) in \(\text{SL}_n(K((t^{-1})) \) equals \(h_z \text{SL}_n(K[[t]]) h_z^{-1} \). And with our fixed choice of \(h_z \), there clearly exist some \(N_i \in \mathbb{N} \) such that the stabilizer of the vertex \(z \) in \(\text{SL}_n(K[t]) \) is \(G_{\{N_i^z, \ldots, N_{n^2}^z\}}(K) \). Furthermore, conditions on \(N_i^z \) force a group structure on \(G_z = G_{\{N_i^z, \ldots, N_{n^2}^z\}} \). Therefore, the stabilizer of \(z \) in \(\text{SL}_n(K[t]) \) is the \(K \)-points of the affine \(K \)-group \(G_z \), and the stabilizer of \(z \) in \(\text{SL}_n(\mathcal{O}_K[t]) \) is \(G_z(\mathcal{O}_K) \).

Let \(\sigma \) be a cell in \(\tilde{A}_{n-1} \). The action of \(\text{SL}_n(K[t]) \) on \(\tilde{A}_{n-1} \) is type preserving, so if \(\sigma \subset \mathfrak{A} \) is a simplex with vertices \(z_1, z_2, \ldots, z_m \), then the stabilizer of \(\sigma \) in \(\text{SL}_n(\mathcal{O}_K[t]) \) is
\[
(G_{z_1} \cap \cdots \cap G_{z_m})(\mathcal{O}_K)
\]
Which implies that the stabilizer of \(\sigma \) in \(\Gamma \) is \(G_\sigma(\mathcal{O}_K) \) where \(G_\sigma = G \cap G_{z_1} \cap \cdots \cap G_{z_m} \).

If \(\psi \subset X \) is a cell, then we let \(\sigma_1, \ldots, \sigma_k \) be simplices of \(\tilde{A}_{n-1} \) such that their union contains \(\psi \), and such that their union is contained in the union of any other set of simplices of \(\tilde{A}_{n-1} \) that contains \(\psi \).

The group \(\Gamma \) may not act on \(X \) type-preservingly, but the stabilizer of \(\psi \) in \(\Gamma \) will contain a finite index subgroup that fixes \(\psi \) pointwise. Because \(\Gamma \) does act type-preservingly on \(\tilde{A}_{n-1} \), we have that the stabilizer of \(\psi \) in \(\Gamma \) contains
\[
(G_{\sigma_1} \cap \cdots \cap G_{\sigma_k})(\mathcal{O}_K)
\]
as a finite index subgroup. This is an arithmetic group, and Borel-Serre [B-S] proved that any such group is \(FP_m \) for all \(m \).

\[\square\]

3. An unbounded ray in \(\Gamma \backslash X \)

The group \(\Gamma \) does not act cocompactly on \(X \). Our next lemma is a generalization of Mahler’s compactness criterion, and it will help us
identify a ray in X whose projection to $\Gamma \setminus X$ is proper. Our proof is similar to [B-M-W, Lemma 11].

Lemma 3. If $e \in X$, $a \in G$, $u \in \Gamma$ is nontrivial, and $a^{-n}ua^n \to 1$ as $n \to \infty$, then $\{\Gamma a^n : n \geq 0\} \subset \Gamma \setminus X$ is unbounded.

Proof. Since G acts on X with bounded point stabilizers, it suffices to show that $\{\Gamma a^n : n \geq 0\} \subset \Gamma \setminus G$ is unbounded.

If $\{\Gamma a^n : n \geq 0\}$ is bounded, then it is contained in a set ΓB where $B \subset G$ is a bounded set. Thus, for any a^n, we have $a^n = \gamma b$ for some $\gamma \in \Gamma$ and $b \in B$. Hence $a^{-n}ua^n = b^{-1}\gamma^{-1}u\gamma b$.

Because u is nontrivial, $\gamma^{-1}u\gamma \in \Gamma - 1$ is bounded away from 1, and thus $b^{-1}\gamma^{-1}u\gamma b$ is bounded away from 1. That’s a contradiction. \qed

4. **An unbounded semisimple element in $H(\mathcal{O}_K[t])$**

Recall that H has $K((t^{-1}))$-rank 1 (and K-rank 1), hence the Bruhat-Tits building of H, which will be denoted by X_H, is a tree. Let S' be a maximal K-split, thus $K((t^{-1}))$-split, torus of H and let Q^+ and Q^- be opposite K-parabolic subgroups of H with Levi subgroup $Z_H(S')$.

We denote the unpotent radical of Q^\pm as $R_u(Q^\pm)$, and we let $Q^\pm = Q^\pm(K((t^{-1})))$, $R_u(Q^\pm) = R_u(Q^\pm)(K((t^{-1})))$, and $S' = S'(K((t^{-1})))$.

See [Se, Proposition 25] for the next lemma.

Lemma 4. Let $u^+ \in R_u(Q^+)$ and $u^- \in R_u(Q^-)$ and let $F^\pm = \text{Fix}_{X_H}(u^\pm)$. Assume that $F^+ \cap F^- = \emptyset$. Then u^+u^- is a hyperbolic isometry of X_H.

Proof. Let x be the midpoint between F^+ and F^-. Let p_1 be the path between x and F^+ and let p_2 be the path between x and F^-, and let ψ be an edge containing x, contained in $p_1 \cup p_2$, not contained in p_2, and oriented towards F^+.

Notice that $u^-p_2 \cup p_2$ is an embedded path between x and u^-x and that $p_1 \cup u^+p_1 \cup u^+p_2 \cup u^+u^-p_2$ is an embedded path between x and u^+u^-x. The edge $u^+u^-\psi$ is a continuation of the latter path that is oriented away from both u^+u^-x and x.

If u^+u^- is elliptic, then it fixes the midpoint of the path between x and u^+u^-x and maps ψ to an oriented edge pointed towards x. Therefore, u^+u^- is hyperbolic. \qed

Lemma 5. There exists elements $u^\pm \in R_u(Q^\pm)(\mathcal{O}_K[t])$ of arbitrarily large norm.

Proof. After perhaps replacing α with 2α, there is a root group $U_\alpha \leq R_u(Q^\pm)$ and a K-isomorphism of algebraic groups $f : \mathbb{A}^k \to U_\alpha$ for some affine space \mathbb{A}^k.

The regular function \(f \) is defined by polynomials \(f_i \in K[x_1, \ldots, x_k] \). Because \(f \) maps the identity element to the identity element, each \(f_i \) has a constant term of 0.

The field of fractions of \(\mathcal{O}_K \) is \(K \). We let \(N \) be the product of the denominators of the coefficients of the \(f_i \). Then the image under \(f \) of the points \((Nt^1, \ldots, Nt^j)\) forms an unbounded sequence in \(j \) of points in \(U_\alpha(\mathcal{O}_K[t]) \).

\[\square \]

Lemma 6. There exists a hyperbolic isometry \(b \in \text{H}(\mathcal{O}_K[t]) \) of the tree \(X_H \).

Proof. Let \(\ell' \subseteq X_H \) be the geodesic corresponding to \(S' \), and choose \(u\pm \in R_u(Q)\mathcal{O}_K[t] \) of sufficient norm such that \(\ell' \cap F^+ \) is disjoint from \(\ell' \cap F^- \). Since \(F^+ \) and \(F^- \) are convex, and \(\ell' - (F^+ \cup F^-) \) is the geodesic between them, it follows that \(F^+ \cap F^- = \emptyset \). Now apply Lemma 4. \(\square \)

5. **Construction of cycles in \(X \) near \(\Gamma \)**

Let \(b \in \text{H}(\mathcal{O}_K[t]) \) be as in Lemma 6, and let \(S'' \) be the \(K((t^{-1})) \)-split one dimensional torus corresponding to the axis of \(b \) in \(X_H \). Define the \(K((t^{-1})) \)-split torus \(A = \langle S'', T \rangle \leq P \) and let \(A = A(K((t^{-1}))) \). Let \(A \) denote the apartment in \(X \) corresponding to \(A \).

Recall that any unbounded element \(a \in T \) translates \(A \), and that the axis for the translation is any geodesic in \(A \) that joins \(P \) with its opposite parabolic \(P^{\text{op}} \), as usual \(P^{\text{op}} = P^{\text{op}}(K((t^{-1}))) \) where \(P^{\text{op}} \) is the opposite parabolic containing \(Z_G(T) \).

Note that \(b \) acts by translation on \(A \). In fact, \(b \) translates orthogonal to any geodesic in \(A \) that joins \(P \) with \(P^{\text{op}} \). Indeed, choose an element \(w \) of the Weyl group with respect to \(A \) that reflects through a geodesic joining \(P \) and \(P^{\text{op}} \). Thus \(w \) fixes both parabolic groups, and their common Levi subgroup, and hence \(H \). Since \(S' = A \cap H \), \(w \) fixes \(S' \) and thus fixes any axis for \(b \) in \(A \). Therefore, either \(b \) translates orthogonal to any geodesic in \(A \) that joins \(P \) with \(P^{\text{op}} \), or else \(b \) translates along a geodesic in \(A \) that joins \(P \) with \(P^{\text{op}} \). The latter option would contradict Lemma 3 since for any \(e \in A \), we have \(\Gamma b^ae = \Gamma a^e \in \Gamma \setminus X \) and yet there is an unbounded \(a \in T \) such that the ray determined by \(a^e \) is parallel to the ray determined by \(b^ae \) and yet \(a^{-n}ua^n \to 1 \) either for any \(u \in U(\mathcal{O}_K[t]) \) or for any \(u \) in the \(\mathcal{O}_K[t] \)-points of the unipotent radical of \(P^{\text{op}} \).

The spherical Tits building for \(G \) and \(X \) is a graph, and the apartment \(A \) corresponds to a circle in the spherical Tits building. Suppose
this circle has vertices P_1, \ldots, P_n and edges Q_1, \ldots, Q_n where each P_i is a maximal proper $K((t^{-1}))$-parabolic subgroup of G containing A, each Q_i is a minimal $K((t^{-1}))$-parabolic subgroup of G containing A, and $P_1 = P$. We further assume that mod n, the edge Q_i has vertices P_i and $P_i + 1$.

Notice that $U \leq Q_1 \cap Q_n$ since $P = P_1$ contains both Q_1 and Q_n. That is, any element of $U(O_K)$ fixes the edges Q_1 and Q_n.

Let U_1 be the root group corresponding to the half circle that contains Q_1 but not Q_2, so that $U_1 \leq U$ but $U_1 \cap Q_2 = 1$. Let U_n be the root group corresponding to the half circle that contains Q_n but not Q_{n-1}, so that $U_n \leq U$ but $U_n \cap Q_{n-1} = 1$.

It follows that $U - Q_i$ has codimension in U at least 1 for $i = 2, n-1$. Since $U(O_K)$ is Zariski dense in U, there is some $u \in U(O_K) - (Q_2 \cup Q_{n-1})$. It follows that u fixes the edges Q_n and Q_1, but no other edges in the circle corresponding to A.

Since u is a bounded element of G, it fixes a point in X. Therefore, u fixes a geodesic ray in X that limits to an interior point of the edge corresponding to Q_1 in the spherical building. Any such geodesic ray must contain a point in A, which is to say that u fixes a point in A.

Define a height function $q : A \to \mathbb{R}$ such that the pre-image of any point is an axis of translation for b, such that $s \leq t$ if and only if any geodesic ray in A that eminates from $q^{-1}(s)$ and limits to P contains a point from $q^{-1}(t)$.

Let $F = \{ x \in A \mid ux = x \}$, let $I = \inf_{f \in F} \{ q(f) \}$, and let $E = \{ f \in F \mid q(f) = I \}$. Since the fixed set of u in the circle at infinity of A equals the union of the two edges Q_1 and Q_n, and since F is convex, I exists and E is either a point of, a subray of, a line segment of, or an entire axis of translation for b.

Notice that E is bounded, otherwise u would fix the point at infinity that a subray of E limited to. This point at infinity would have distance $\pi/2$ from the vertex P in the spherical metric, but this is not possible as the previously identified fixed set of u in the boundary circle is centered at P and has radius at most $\pi/3$. (The bound $\pi/3$ is realized exactly when the root system for G is of type A_2.) Thus E is either a point or a compact interval.

Since the fix set of u in the boundary circle is exactly the union of Q_1 and Q_n, and since F is convex, F is precisely the union of all geodesic rays eminating from points in E and limiting to points in the arc $Q_1 \cup Q_n$. That is F is a polyhedral region in A that is symmetric with respect to a reflection of A through a geodesic that limits to P.
and the opposite point of P. If E is a point, then F has two geodesic rays as its boundary: one ray that limits to P_2, and the other that limits to P_n. If E is a nontrivial interval, then the boundary of F is the union of E, a ray from an endpoint of E that limits to P_2, and a ray from the other endpoint of E that limits to P_n.

If E is an interval, we label its endpoints e^+ and e^- such that E is both oriented in the direction of translation of b, and in the direction towards e^+, and away from e^-. Let e_0 be the midpoint of E. If E is a point, then $e_0 = e^+ = e^-$ is that point.

For n_0 sufficiently large and for any $n \geq n_0$, we define $\sigma_n \subseteq A$ as the geodesic segment between $b^{-n}e^+$ and $b^n e^-$. Notice that $b^{-n}e^+$ is the only point in σ_n that is fixed by $g_n = b^{-n}ub^n$, and that $b^n e^-$ is the only point in σ_n that is fixed by $h_n = b^n ub^{-n}$.

Recall that A is the apartment corresponding to A and $T \subset A$ is a K-split one dimensional torus of G. Recall also that $P = UZ_G(T)$. Let $a \in T$ be such that $a^{-n}ua^n \to 1$ as $n \to \infty$ so that $a^n e_0$ converges to the cell at infinity corresponding to P as $n \to \infty$.

Let Δ_n be the triangle with one face equal to σ_n, a second face contained in the boundary of $b^{-n}\text{Fix}_A(u) = \text{Fix}_A(g_n)$, a third face contained in the boundary of $b^n\text{Fix}_A(u) = \text{Fix}_A(h_n)$, and vertices $b^n e^-$, $b^{-n} e^+$, and a uniquely determined point $y_n \in \partial\text{Fix}_A(g_n) \cap \partial\text{Fix}_A(h_n)$. Thus y_n converges to the cell at infinity corresponding to P as $n \to \infty$.

Note that

1. U is a unipotent group so $\text{[[[g_n, h_n], \cdots], h_n], h_n]} = 1$ for some fixed number of nested commutators that’s independent of n.
2. If w is a word in $\{g_n, h_n, g_n^{-1}, h_n^{-1}\}$ and $d \in \{g_n, h_n, g_n^{-1}, h_n^{-1}\}$, then $w \sigma_n$ and $w d \sigma_n$ are incident.

(1) and (2) imply that the word $\text{[[[g_n, h_n], \cdots], h_n], h_n]}$ (or possibly a subword) describes a 1-cycle that is the union of translates of σ_n by subwords of $\text{[[[g_n, h_n], \cdots], h_n], h_n]}$. We name this 1-cycle c_n.

The cone of c_n at the point y_n is the topological image of a 2-disk $\phi_n : D^2 \to X$ such that $\phi_n(\partial D^2) = c_n$.

If we let

$$X_0 = \Gamma \sigma_{n_0}$$

then clearly $c_n \in X_0$ for all n since $b, g_n, h_n \in \Gamma$ and $\sigma_n \subseteq (b) \sigma_{n_0}$.

6. PROOF OF THEOREM [1]

We choose a Γ-invariant and cocompact space $X_i \subseteq X$ to satisfy the inclusions

$$X_0 \subseteq X_1 \subseteq X_2 \subseteq \ldots \subseteq \cup_{i=1}^\infty X_i = X$$
In our present context, Brown’s criterion takes on the following form

Brown’s Filtration Criterion 7. By Lemma 2, the group Γ is not of type FP_2 (and hence not finitely presented) if for any $i \in \mathbb{N}$, there exists some class in the homology group $\tilde{H}_1(X_0, \mathbb{Z})$ which is nonzero in $\tilde{H}_1(X_i, \mathbb{Z})$.

Since $\Gamma \setminus X_i$ is compact it follows from Lemma 3 that for any i there exists some j_i such that $a_j e_0 \not\in X_i$. Choose n sufficiently large so that $a_j e_0 \in \Delta_n \subseteq \phi_n$. Recall that $c_n \subseteq X_0$. Since X is contractible and 2-dimensional, any filling disk for c_n must contain $a_j e_0$. That is, c_n represents a nontrivial class in the homology of $X - \{a_j e_0\}$, and hence is nontrivial in the homology of X_i.

7. Other ranks

The proof of Proposition 4.1 in [B-W] gives a short proof that $\text{SL}_2(\mathbb{Z}[t])$ is not finitely generated by examining the action of $\text{SL}_2(\mathbb{Z}[t])$ on the tree for $\text{SL}_2(\mathbb{Q}((t^{-1})))$. Replacing some of the remarks for $\text{SL}_2(\mathbb{Z}[t])$ in that paper with straightforward analogues from lemmas in this paper, it is easy to see that the proof in [B-W] applies to show that if H is a connected, noncommutative, absolutely almost simple algebraic K-group of K-rank 1, then $H(\mathcal{O}_K[t])$ is not finitely generated.

It seems natural to state the following

Conjecture 1. Suppose H is a connected, noncommutative, absolutely almost simple algebraic K-group whose K-rank equals k. Then $H(\mathcal{O}_K[t])$ is not of type F_k or FP_k.

The conjecture has been verified when $K = \mathbb{Q}$ and $H = \text{SL}_n$ [B-M-W].

References

[B-S] A. Borel, J-P. Serre, *Corners and arithmetic groups*. Comm. Math. Helv. **48** (1973) p. 436-491.

[Br] Brown, K., *Finiteness properties of groups*. J. Pure Appl. Algebra **44** (1987), 45-75.

[B-M-W] Bux, K.-U., Mohammadi, A., Wortman, K. *SL_n(\mathbb{Z}[t]) is not FP_{n-1}*. Comm. Math. Helv. **85** (2010), 151-164.

[B-W] Bux, K.-U., and Wortman, K., *Geometric proof that SL_2(\mathbb{Z}[t^{-1}]) is not finitely presented*. Algebr. Geom. Topol. **6** (2006), 839-852.

[G-M-V] Grunewald, F., Mennicke, J., and Vaserstein, L., *On symplectic groups over polynomial rings*. Math. Z. **206** (1991), 35-56.

[K-M] Krstić, S., and McCool, J., *Presenting GL_n(k(T)).* J. Pure Appl. Algebra **141** (1999), 175-183.
Ref	Author	Title	Journal/Book Details
La	Landvogt, E.	Some functorial properties of the Bruhat-Tits building.	J. Reine Angew. Math. 518 (2000) p.213-241.
Se	Serre, J.-P.	Trees.	Translated from the French original by John Stillwell. Corrected 2nd printing of the 1980 English translation. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003.
So	Soulé, C.	Chevalley groups over polynomial rings.	Homological Group Theory, LMS 36 (1977), 359-367.
Su	Suslin, A. A.	The structure of the special linear group over rings of polynomials.	Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), 235-252.