Plerixafor is effective given either preemptively or as a rescue strategy in poor stem cell mobilizing patients with multiple myeloma

Jian Cheng,1,2 Michael Schmitt,1 Patrick Wuchter,1 Eike C. Buss,1 Mathias Witzens-Harig,1 Kai Neben,1 Michael Hundemer,1 Jens Hillengass,1 Renate Alexi,1 Hartmut Goldschmidt,1 Bao-an Chen,2 Anthony D. Ho,1 and Anita Schmitt1

BACKGROUND: Harvest of more than one CD34+ stem cell transplant has become the standard, to ensure the option for a second autologous transplantation in patients with relapsed or progressive multiple myeloma (MM). Additional administration of the CXCR-4 inhibitor plerixafor has been shown to increase the efficiency of CD34+ stem cell harvest. However, the algorithm when to apply plerixafor is still under debate.

STUDY DESIGN AND METHODS: In this retrospective study, 46 MM patients were categorized into four groups according to their CD34+ stem cell count in peripheral blood (PB) and mobilization with or without plerixafor: Group A comprised poor mobilizers with CD34+ cell counts of fewer than 20 × 10⁶/L in PB. Group B included inadequate mobilizers with CD34+ cell counts of 20 × 10⁶/L or more in PB and a low CD34+ stem cell yield in the first leukapheresis session. Patients receiving plerixafor preemptively (Group A1) and as a rescue strategy (Group B1) were compared to patients continuing stem cell collection with granulocyte–colony-stimulating factor alone (Groups A2 and B2).

RESULTS: In both, the preemptive and the rescue settings, plerixafor enhanced the CD34+ stem cell yield significantly. Poor mobilization and administration of plerixafor was not associated with delayed engraftment.

CONCLUSION: Our data demonstrate that administration of plerixafor is safe and effective and facilitates a significantly higher CD34+ stem cell harvest. Based on the presented data, we propose an algorithm for the use of plerixafor for CD34+ stem cell mobilization and harvesting in poor mobilizing myeloma patients.

High-dose chemotherapy followed by autologous stem cell transplantation (ASCT) in patients with multiple myeloma (MM) is the current standard of care in patients younger than 70 years without serious comorbidities.1,2 Recent clinical studies reported that tandem transplantation may provide a longer disease-free survival than single transplantation in patients with MM. Harvest of two or more adequate stem cell grafts will ensure that the option for a second or third autologous transplantation is retained for patients with relapsed or progressive MM.3,4 A successful ASCT is dependent on a sufficient amount of CD34+ cells for a prompt and durable engraftment. The required number of CD34+ cells for transplantation is still a matter

ABBREVIATIONS: ASCT = autologous stem cell transplantation; BW = body weight; EFS = event-free survival; IM(s) = inadequate mobilizer(s); MM = multiple myeloma; PB = peripheral blood; PBSCs = peripheral blood stem cell(s); PM(s) = poor mobilizer(s).

From the 1Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany; and the 2Department of Hematology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.

Address reprint requests to: Anita Schmitt, Department of Internal Medicine V, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; e-mail: anita.schmitt@med.uni-heidelberg.de.

Received for publication May 14, 2014; revision received July 4, 2014, and accepted July 8, 2014.

doi: 10.1111/trf.12813

© 2014 The Authors. Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

TRANSFUSION 2015;55:275–283.
of debate; however, most transplant centers regard a minimum of 2×10^8 CD34+ cells/kg body weight (BW) per transplant as sufficient.5

Mobilized peripheral blood stem cells (PBSCs) have become the main source for ASCT in patients with MM. The use of granulocyte-colony-stimulating factor (G-CSF), alone or in combination with chemotherapy (chemomobilization), is currently the most common strategy applied to collect PBSCs.6 PBSC mobilization and collection has been optimized in numerous clinical trials, but a significant proportion of patients failed to mobilize and therefore required a second round of mobilization using salvage regimens.7,8 Even salvage regimens showed significant failure in mobilization and are associated with toxicity, morbidity, and increased costs.9-11 These patients face some serious consequences such as inability to undergo potential curative transplantation, slow recovery of blood counts after autografting, and higher rate of relapse.12-14

In recent years, some of the underlying physiology of PBSCs has been elucidated, leading to the development of new mobilization strategies. Plerixafor (syn. AMD3100) belongs to a new class of small molecules that reversibly inhibits stromal cell–derived factor-1α binding to its cognate receptor chemokine receptor 4 (CXCR4).15,16 Plerixafor has been described as a mobilization agent, mobilizing CD34+ cells and CD34+ stem cell harvest.17-20 Although the effect of plerixafor in increasing the CD34+ stem cell yield has been investigated in many studies, the appropriate usage of plerixafor, that is, preemptively or as a rescue strategy, is still under discussion.21 Current evidence suggests that the addition of plerixafor is safe and effective in the majority of patients with a low CD34+ stem cell count in PB after mobilization and/or with a poor CD34+ stem cell yield.22

Many studies defined poor mobilizers (PMs) as patients with a CD34+ stem cell count of fewer than 20×10^6 in PB at maximum stimulation or a collection yield of fewer than 2×10^6 CD34+ cells/kg BW with a maximum of four apheresis procedures. Approximately 15% of all patients are considered to be PMs.2-23 Even for some patients with CD34+ levels of more than $20 \times 10^6/L$ in PB it is difficult to collect an adequate graft for a second transplantation. We defined these patients as inadequate mobilizers (IMs).

We previously demonstrated the efficiency and the economic impact of a rescue stem cell mobilization with plerixafor.21 In the present retrospective follow-up analysis we compared the efficiency of plerixafor as a preemptive and rescue strategy in poor and inadequate mobilizing MM patients. On the basis of these findings we developed an algorithm for a rationale use of plerixafor for CD34+ stem cell mobilization.

MATERIALS AND METHODS

Patients

A group of 46 MM patients mobilizing poor or inadequately were scheduled to receive an ASCT between 2009 and 2012 at the Department of Internal Medicine V at the University Hospital Heidelberg. The patients were categorized into four groups according to their CD34+ stem cell count in PB and mobilization with or without plerixafor. Two groups were considered to be PMs due to a CD34+ cell count below $20 \times 10^6/L$ in PB (Group A1, CD34+ cell counts $<20 \times 10^6/L$ in PB without plerixafor; Group A2, CD34+ cell counts $<20 \times 10^6/L$ in PB with plerixafor). An additional two groups were considered to be IMs with CD34+ cell counts of more than $20 \times 10^6/L$ in PB and comparatively poor yield of collection with first apheresis below one-third of the individual collection goal and/or second apheresis below one-third of the individual collection goal (Group B1, CD34+ cell counts $\geq 20 \times 10^6/L$ in PB with plerixafor; and Group B2, CD34+ cell counts $\geq 20 \times 10^6/L$ in PB without plerixafor). Patients’ age, sex, number of previous therapies, and remission status was evaluated as outlined in Table 1.

Mobilization methods

The following chemotherapy regimens were used for mobilization: CAD (1000 mg/m2/day cyclophosphamide on Day 1, 15 mg/m2/day adriamycin on Days 1-4, and 40 mg/day dexamethasone on Days 1-4); Cy (2000 mg/m2/day cyclophosphamide on Days 1 and 2); VCD (1.3 mg/m2/day bortezomib on Days 1, 4, 8, and 11; 900 mg/m2/day cyclophosphamide on Day 1; 40 mg/day dexamethasone on Days 1, 4, 8, 9, 11, and 12); and RD (25 mg/day lenalidomide on Days 1-21; 20 mg/day dexamethasone on Days 1-4, 0-12, and 17-29).

All patients received G-CSF at a dose of 5 to 10 μg/kg BW/day subcutaneously until the end of the stem cell collection period. Patients in Group A1 and Group B1 received additionally plerixafor about 12 hours before the next apheresis procedure due to a poor yield of CD34+ stem cells in the transplant. A median of two injections of plerixafor were administrated to patients of Group A1. In Group B1, patients received a median of one injection of plerixafor.

The clinical goal for 43 patients was to collect three transplants, while for three patients above the age of 70 only two transplants were required (Table 1). Patients’ mobilization regimens were evaluated as outlined in Table 2.

Transplantation

The patients underwent high-dose chemotherapy and subsequent transplantation using the collected and
cryopreserved autologous CD34+ stem cells. The minimum number of stem cells for transplantation was 2×10^6 CD34+ cells/kg BW.

Clinical data collection

Demographic data, medical histories, laboratory values, and transplant results were extracted from the patients' charts. In addition to white blood cell (WBC) counts and CD34+ stem cell counts in PB, the number of CD34+ cells collected per apheresis, the total CD34+ stem cell yield, and the number of apheresis procedures performed were recorded. The retrospective analysis was approved by the institutional review board and conducted according to the Declaration of Helsinki.

Statistical analysis

Statistics for quantitative data were described as median with ranges, while categorical data were expressed as a percentage. p values were calculated by t test for quantitative data and by chi-square test for the categorical data. Two-sided p values of less than 0.05 were considered to indicate statistical significance. All calculations and statistical analyses were conducted with computer software (SPSS Statistics 18.0 for Windows, SPSS, Inc., Chicago, IL).

TABLE 1. Patients’ clinical characteristics

Parameter	CD34+ < 20 × 10^6/L PB	CD34+ ≥ 20 × 10^6/L PB		
	Group A1, plerixafor	Group A2, no plerixafor	Group B1, plerixafor	Group B2, no plerixafor
Number of patients	11	11	12	12
Age (years)*	65 (61-73)	63 (47-71)	61 (40-67)	61 (46-72)
Sex (male:female)	7:4	7:4	7:5	9:3
Previous CTx cycles*	3 (1-8)	4 (3-25)	3 (2-7)	3 (1-6)
Time from diagnosis to mobilization (months)†	4 (3-63)	6 (3-60)	4.5 (3-8)	5 (3-114)
Previous irradiation	1	2	3	4
Previous transplantation	1	4	1	1
Remission state at collection				
CR	0	1	1	0
nCR	10	9	8	11
VGPR	1	1	3	0
PR	8	5	5	8
MR	2	2	1	1
SD	1	1	3	0
PD	0	0	0	1
Median CD34+ cells × 10^6/L PB	9	13	42	42

* Data are reported as median (range).
† Data are reported as number (range).

CR = complete remission; CTx = chemotherapy; MR = minimal response; nCR = near complete remission; NE = not evaluated; PD = progressive disease; PR = partial remission; SD = stable disease; VGPR = very good partial remission.

TABLE 2. Mobilization regimens in the different groups of patients

Parameter	CD34+ < 20 × 10^6/L PB	CD34+ ≥ 20 × 10^6/L PB		
	Group A1, plerixafor	Group A2, no plerixafor	Group B1, plerixafor	Group B2, no plerixafor
Number of patients	11	11	12	12
Dose of G-CSF (μg/kg BW)	6.3 (3.3-11.5)	6.1 (5.0-7.9)	6.3 (4.8-11.5)	6.4 (4.8-10.4)
Dose of plerixafor (mg/kg BW)	0.25 (0.2-0.4)	0.29 (0.2-0.4)	0.25 (0.2-0.4)	0.29 (0.2-0.4)
CAD	9	8	10	7
CY	1	1	0	2
CD	0	0	1	2
No preceding CTx	1	0	0	1
VCD	0	0	1	0
RD	0	2	0	0

CAD = cyclophosphamide, adriamycin, dexamethasone; CD = cyclophosphamide, dexamethasone; CTx = chemotherapy; CY = cyclophosphamide; RD = lenalidomide, dexamethasone; VCD = bortezomib, cyclophosphamide, dexamethasone.
RESULTS

Patient characteristics

The demographic features and clinical characteristics of patients mobilized with or without plerixafor are summarized in Table 1. The four groups were not statistically different in age, sex, number of previous therapies, prior radiotherapy, and mobilization regimens.

PB CD34+ stem cell count and plerixafor administration

The CD34+ stem cell count in PB plus blood count was determined as decision guidance for the starting time point of stem cell collection via apheresis. For the PMs the median CD34+ stem cell count in PB at starting time point of apheresis was 11×10^6 cells/L and for the IMs the median was 42×10^6 cells/L.

We administered plerixafor in PM and IM patients when the first, second, and/or third apheresis yield was below one transplant (i.e., $<2.0 \times 10^6$ CD34+ cells/kg BW). In the group of PM patients 64% (7/11) started plerixafor in the second apheresis procedure and 36% (4/11) in the third apheresis procedure. Seventeen percent (2/12) of IM patients started plerixafor in the second apheresis procedure, 67% (8/12) in the third apheresis procedure, and 17% (2/12) in the fourth apheresis procedure.

Mobilization harvest

In PM patients, the median (range) harvest of CD34+ cells was 5.6×10^6 (2.3×10^6-9.4×10^6) CD34+ cells/kg BW in patients with plerixafor and 3.5×10^6 (2.1×10^6-9.2×10^6) CD34+ cells/kg BW in patients without plerixafor ($p = 0.282$). The IM patients in Group B1 harvested significantly more with 8.5×10^6 (5.5×10^6-16.4×10^6) CD34+ cells/kg BW in comparison to 4.8×10^6 (2.2×10^6-10.0×10^6) CD34+ cells/kg BW in Group B2 ($p = 0.003$). All patients reached a minimum cell yield of at least one-third of the individual collection goal. In Group A1, 64% (7/11) of patients collected two transplants and 36% (4/11) collected three transplants when compared to patients in Group A2 with only 36% (4/11) and 18% (2/11), respectively. In Group B1, 75% (9/12) of patients collected three transplants when compared to 17% (2/12) of patients in Group B2 (Fig. 1C).

Comparison of Group A1 versus Group A2

The median number of CD34+ cells harvested in Group A1 significantly increased from 0.8×10^6 (0.2×10^6-1.8×10^6) CD34+ cells/kg BW up to 1.9×10^6 (0.7×10^6-4.6×10^6) CD34+ cells/kg BW ($p = 0.0003$) after the administration of plerixafor (Fig. 2A1). In contrast, the number of harvested CD34+ cells per day was not significantly different for Group A2 (Fig. 2A2).

Comparison of Group B1 versus Group B2

The median number of CD34+ cells harvested in Group B1 increased significantly from 1.9×10^6 (0.9×10^6-2.6×10^6)/kg BW to 3.7×10^6 (2.7×10^6-14.1×10^6)/kg BW ($p = 0.005$) after plerixafor administration (Fig. 2B1). No significant differences between the consecutive harvest days were found for patients in Group B2 (Fig. 2B2). A greater proportion of patients in the plerixafor group achieved two (100% vs. 58%, $p = 0.019$) or even three transplants (75% vs. 17%, $p = 0.006$) when compared to the patients without plerixafor (Fig. 1C).
Transplantation and engraftment

PMs: patients with (Group A1) or without plerixafor (Group A2)

In both groups, nine of 11 patients underwent first transplantation after initial mobilization with or without plerixafor. Patients in both groups were transplanted with a median of 2.8×10^6 CD34+ cells/kg BW. For the patients with plerixafor, the median time of WBC recovery to 1.0×10^9/L was 16 (11-23) days, whereas the patients without plerixafor needed 14 (10-19) days. This difference was not significant. The median time to platelet (PLT) recovery to an unmaintained level of more than 20×10^9/L was 11 (10-15) days. Again, this difference was not significant. Three of 11 patients in Group A1 underwent a second transplantation versus one of 11 patients in Group A2. The median number of CD34+ cells for the second transplantation in patients of Group A1 and Group A2 ranged approximately 2.1×10^6 and 2.7×10^6/kg BW, respectively. Engraftment of neutrophils and PLTs in both groups was similar (Table 3).

IMs: patients with (Group B1) or without plerixafor (Group B2)

All patients with plerixafor underwent transplantation and four of 12 of them underwent tandem transplantation.

Table 3. Summary of apheresis yields and transplantation in the different groups of patients

Parameter	CD34+ < 20 x 10^6/L PB	CD34+ ≥ 20 x 10^6/L PB
	Group A1, plerixafor	Group A2, no plerixafor
Yield $\times 10^6$ CD34+ cells/kg BW	5.6 (2.3-9.4)	3.5 (2.1-9.2)
Number of patients collecting three or more transplants	4	2
Number of patients collecting two or more transplants	7	4
Number of patients collecting one or more transplant	11	11
Patients proceeding to first transplantation	9 (81.8)	9 (81.8)
Number of CD34+ cells/kg BW	2.8 (2.1-4.4)	2.8 (2.1-4.0)
Days to WBC count > 1.0 x 10^9/L	16 (11-23)	14 (10-19)
Days to PLT count > 20 x 10^9/L	13 (12-16)	11 (10-15)
Patients proceeding to second transplantation	3.2 (27.3)	1.9 (91)
Number of CD34+ cells/kg BW	2.1 (2.1-2.7)	2.7 (-)
Days to WBC count > 1.0 x 10^9/L	14 (12-18)	14 (-)
Days to PLT count > 20 x 10^9/L	12.5 (11-19)	10 (-)

* Data are reported as median (range) or number (%).
comparison, 10 of 12 patients without plerixafor underwent transplantation and no patient proceeded to tandem transplantation. The number of CD34+ cells transplanted, engraftment of neutrophils, and PLTs was analyzed separately and the results for all subgroups are summarized in Table 3.

DISCUSSION

Despite major advances in the treatment of myeloma, the disease remains incurable with a median survival of approximately 44 months from the time of diagnosis. ASCT has been considered to constitute the standard approach for first-line therapy of MM patients eligible for transplantation. This has been based on several randomized trials comparing ASCT to conventional chemotherapy. Giralt summarized the data for six of the largest randomized trials comparing single ASCT with conventional alkylator-based chemotherapy. Complete remission rates were significantly higher in the ASCT arms in five of the six trials, the event-free survival (EFS) was superior for ASCT in three of the trials, and two trials showed a survival benefit. A meta-analysis performed on nine randomized trials confirmed that single ASCT was associated with a benefit for the EFS, but not in terms of overall survival. Some studies showed that tandem ASCT significantly improved both EFS and overall survival. The benefit was mostly restricted to those not achieving a very good partial remission with the first ASCT. Therefore, a CD34+ stem cell harvest of more than two transplants should be collected before first ASCT. The addition of plerixafor to G-CSF as first-line regimen for PBSC mobilization has been shown to be safe and effective in several Phase III randomized studies in MM and NHL patients undergoing ASCT as well as in multiple Phase II and retrospective studies in difficult-to-mobilize patients. Plerixafor was already administered before the first apheresis procedure in these studies. However, the optimal timing of plerixafor administration is still under debate. Currently an EBMT group of experts published a position paper on this subject. So far most studies focused on the prediction of PMs and on the administration of plerixafor according to the CD34+ stem cell count in PB. Rosenbaum and colleagues has validated a formula on the basis of the CD34+ stem cell count in the PB and the processed blood volume to predict the CD34+ stem cell yield thereupon to make a rationale decision on the use of plerixafor. However, the absence of a uniformly accepted algorithm

Fig. 3. Recommendation of plerixafor administration in the course of CD34+ stem cell mobilization in MM patients. After chemomobilization of MM patients measurement of CD34+ stem cells in PB is performed to identify poor and borderline PMs. In case of fewer than 10 × 10^6 CD34+ cells/L PB administration of plerixafor is recommended in accordance with EBMT guidelines. Borderline PMs should be subjected to an evaluation leukapheresis procedure if the individual collection goal is not more than two transplants. The second decision-making step depends on the result of the first leukapheresis procedure. If less than one-third of the individual collection goal can be reached, the administration of plerixafor is recommended. This decision-making process is continued until a sufficient stem cell number has been reached.
predicting a mobilization failure and internationally differing costs for the use of plerixafor and apheresis procedures have led to institute-specific algorithms for mobilization.

In our study we examined the efficiency of plerixafor for mobilization and stem cell harvest of at least two and more transplants after the first, second, or third apheresis procedure in poor and inadequately mobilizing MM patients and developed consequently an algorithm for the rationale timing of plerixafor.

We found a significant increase in the median number of CD34+ stem cells harvested after the administration of plerixafor (p ≤ 0.005). All patients reached one transplant. However, a significantly higher proportion of all patients receiving plerixafor achieved at least two (83% vs. 48%) or even three transplants (57% vs. 17%) than patients without plerixafor. Moreover, plerixafor could even rescue the CD34+ stem cell harvest again when it subsided under G-CSF mobilization by the second and/or third apheresis procedure.

Based on the observation that patients in the PM group with a CD34+ cell count in between 11 × 10^6 and 19 × 10^6 cells/L defined as borderline PMs collected a median below 1.5 × 10^6 CD34+ stem cells/kg BW and needed at least two apheresis procedures to reach one transplant, we developed an algorithm indicating the administration of plerixafor at an early stage in PM patients to increase the chance for the collection of two to three transplants (Fig. 3).

Furthermore, according to our engraftment data poor mobilization and the administration of plerixafor for stem cell mobilization was not associated with delayed engraftment as long as 2.0 × 10^6 of CD34+ cells/kg BW could be harvested and transplanted. Furthermore, more patients in the group with plerixafor had a chance to proceed to a second transplantation.

In summary, administration of plerixafor in the preemptive and rescue setting is safe and effective and results in a higher probability to achieve the CD34+ stem cell yield for a second transplantation in MM patients. According to our data, the administration of plerixafor should be considered at an early stage in PM patients. For IM patients, the administration of plerixafor can start at a later stage. We propose a treatment algorithm as summarized in Fig. 3. Further studies will help to validate this recommendation in the clinical setting of CD34+ stem cell mobilization in patients.

CONFLICT OF INTEREST
The first author and all co-authors have no potential conflicts of interest to disclose, except the following: PW—received honorarium for lectures from Sanofi and consulting fee or honorarium from ETICHO; MH—received speaker’s fee from Celgene and grants for scientific research from Celgene and Genzyme; ADH—consultancy, honoraria, and membership on Advisory Boards of Genzyme/Sanofi-Aventis; AS—received a research grant from Sanofi.

REFERENCES
1. Barlogie B, Kyle RA, Anderson KC, et al. Standard chemotherapy compared with high-dose chemoradiotherapy for multiple myeloma: final results of phase III US Intergroup Trial S9321. J Clin Oncol 2006;24:929-36.
2. Fermand JP, Katsahian S, Divine M, et al. High-dose therapy and autologous blood stem-cell transplantation compared with conventional treatment in myeloma patients aged 55 to 65 years: long-term results of a randomized control trial from the Group Myelome-Autogreffe. J Clin Oncol 2005;23:9227-33.
3. Sunami K, Shinagawa K, Sawamura M, et al. Phase I/II study of tandem high-dose chemotherapy with autologous peripheral blood stem cell transplantation for advanced multiple myeloma. Int J Hematol 2009;90:635-42.
4. Michaelis LC, Saad A, Zhong X, et al. Salvage second hematopoietic cell transplantation in myeloma. Biol Blood Marrow Transplant 2013;19:760-6.
5. To LB, Haylock DN, Simmons PJ, et al. The biology and clinical uses of blood stem cells. Blood 1997;89:2233-58.
6. Fruehauf S, Seeger T. New strategies for mobilization of hematopoietic stem cells. Future Oncol 2005;1:375-83.
7. Wuchter P, Ran D, Bruckner T, et al. Poor mobilization of hematopoietic stem cells—definitions, incidence, risk factors, and impact on outcome of autologous transplantation. Biol Blood Marrow Transplant 2010;16:490-9.
8. Fruehauf S, Seggewiss R. It’s moving day: factors affecting peripheral blood stem cell mobilization and strategies for improvement [corrected]. Br J Haematol 2003;122:360-75.
9. Pusic I, Jiang SY, Landua S, et al. Impact of mobilization and remobilization strategies on achieving sufficient stem cell yields for autologous transplantation. Biol Blood Marrow Transplant 2008;14:1045-56.
10. Vose JM, Ho AD, Coiffier B, et al. Advances in mobilization for the optimization of autologous stem cell transplantation. Leuk Lymphoma 2009;50:1412-21.
11. Gotteris R, Hernandez-Boluda JC, Teruel A, et al. Impact of different strategies of second-line stem cell harvest on the outcome of autologous transplantation in poor peripheral blood stem cell mobilizers. Bone Marrow Transplant 2005;36:847-53.
12. Tomblyn M, Burns LJ, Blazar B, et al. Difficult stem cell mobilization despite adequate CD34+ cell dose predicts shortened progression free and overall survival after autologous HSCT for lymphoma. Bone Marrow Transplant 2007;40:111-8.
13. Pavone V, Gaudio F, Console G, et al. Poor mobilization is an independent prognostic factor in patients with malig-
nant lymphomas treated by peripheral blood stem cell transplantation. Bone Marrow Transplant 2006;37:719-24.

14. Tricot G, Cottler-Fox MH, Calandra G. Safety and efficacy assessment of plerixafor in patients with multiple myeloma proven or predicted to be poor mobilizers, including assessment of tumor cell mobilization. Bone Marrow Transplant 2010;45:63-8.

15. Broxmeyer HE, Orschell CM, Clapp DW, et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 2005;201:1307-18.

16. Rosenkilde MM, Gerlach LO, Hatse S, et al. Molecular mechanism of action of monocyclam versus bicyclam non-peptide antagonists in the CXCR4 chemokine receptor. J Biol Chem 2007;282:27354-65.

17. Liles WC, Rodger E, Broxmeyer HE, et al. Augmented mobilization and collection of CD34+ hematopoietic cells from normal human volunteers stimulated with granulocyte-colony-stimulating factor by single-dose administration of AMD3100, a CXCR4 antagonist. Transfusion 2005;45:295-300.

18. Fruehauf S, Veldwijk MR, Seeger T, et al. A combination of granulocyte-colony-stimulating factor (G-CSF) and plerixafor mobilizes more primitive peripheral blood progenitor cells than G-CSF alone: results of a European phase II study. Cytotherapy 2009;11:992-1001.

19. DiPersio JF, Stadtmueller EA, Nademanee A, et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 2009;113:5720-6.

20. Lemoli RM. New strategies for stem cell mobilization. Mediterr J Hematol Infect Dis 2012;4:e2012066.

21. Hundemer M, Engelhardt M, Bruckner T, et al. Rescue stem cell mobilization with plerixafor economizes leukapheresis in patients with multiple myeloma. J Clin Apher 2014 Apr 26. doi: 10.1002/jca.21323. [Epub ahead of print].

22. Jantunen E, Lemoli RM. Preemptive use of plerixafor in difficult-to-mobilize patients: an emerging concept. Transfusion 2012;52:906-14.

23. Piccirillo N, Vaccia M, Lanti A, et al. Poor mobilizer: a retrospective study on proven and predicted incidence according to GITMO criteria. Transfus Apher Sci 2012;47:217-21.

24. Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008;112:2516-20.

25. Attal M, Harousseau JL, Stoppa AM, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med 1996;335:91-7.

26. Child JA, Morgan GJ, Davies FE, et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med 2003;348:1875-83.

27. Palumbo A, Brighen S, Petrucci MT, et al. Intermediate-dose melphalan improves survival of myeloma patients aged 50 to 70: results of a randomized controlled trial. Blood 2004;104:3052-7.

28. Giralt S. Stem cell transplantation for multiple myeloma: current and future status. Hematol Am Soc Hematol Educ Program 2011;2011:191-6.

29. Kumar S. Stem cell transplantation for multiple myeloma. Curr Opin Oncol 2009;21:162-70.

30. Nademanee AP, DiPersio JF, Maziarz RT, et al. Plerixafor plus granulocyte colony-stimulating factor versus placebo plus granulocyte colony-stimulating factor for mobilization of CD34(+) hematopoietic stem cells in patients with multiple myeloma and low peripheral blood CD34(+) cell count: results of a subset analysis of a randomized trial. Biol Blood Marrow Transplant 2012;18:1564-72.

31. Stewart DA, Smith C, MacFarland R, et al. Pharmacoepidemiology and pharmacodynamics of plerixafor in patients with non-Hodgkin lymphoma and multiple myeloma. Biol Blood Marrow Transplant 2009;15:39-46.

32. Hubel K, Fresen MM, Apperley JF, et al. European data on stem cell mobilization with plerixafor in non-Hodgkin’s lymphoma, Hodgkin’s lymphoma and multiple myeloma patients. A subgroup analysis of the European Consortium of stem cell mobilization. Bone Marrow Transplant 2012;47:1046-50.

33. Devine SM, Vij R, Rettig M, et al. Rapid mobilization of functional donor hematopoietic cells without G-CSF using AMD3100, an antagonist of the CXCR4/SDF-1 interaction. Blood 2008;112:990-8.

34. Cashen A, Lopez S, Gao F, et al. A phase II study of plerixafor (AMD3100) plus G-CSF for autologous hematopoietic progenitor cell mobilization in patients with multiple myeloma and lymphoma patients: a position statement from the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant 2014:49:865-72.

35. Costa LJ, Alexander ET, Hogan KR, et al. Development and validation of a decision-making algorithm to guide the use of plerixafor for autologous hematopoietic stem cell mobilization. Bone Marrow Transplant 2011;46:64-9.

36. Alexander ET, Towery JA, Miller AN, et al. Beyond CD34+ cell dose: impact of method of peripheral blood hematopoietic stem cell mobilization (granulocyte-colony-stimulating factor [G-CSF], G-CSF plus plerixafor, or cyclophosphamide G-CSF/granulocyte- macrophage [GM]-CSF) on number of colony-forming unit-GM, engraftment, and Day +100 hematopoietic graft function. Transfusion 2011;51:1995-2000.

37. Sinha S, Gastineau D, Micallef I, et al. Predicting PBSC harvest failure using circulating CD34 levels: developing
target-based cutoff points for early intervention. Bone Marrow Transplant 2011;46:943-9.

39. Maziarz RT, Nademanee AP, Micallef IN, et al. Plerixafor plus granulocyte colony-stimulating factor improves the mobilization of hematopoietic stem cells in patients with non-Hodgkin lymphoma and low circulating peripheral blood CD34+ cells. Biol Blood Marrow Transplant 2013;19:670-5.

40. Li J, Hamilton E, Vaughn L, et al. Effectiveness and cost analysis of “just-in-time” salvage plerixafor administration in autologous transplant patients with poor stem cell mobilization kinetics. Transfusion 2011;51:2175-82.

41. Rosenbaum ER, O’Connell B, Cottler-Fox M. Validation of a formula for predicting daily CD34(+) cell collection by leukapheresis. Cytotherapy 2012;14:461-6.