The iatrogenic elevation of neutrophils possibly aggravates lung injury after COVID-19 infection: A case report

Jian Tang
Department of Infectious Diseases, The First Affiliated Hospital, University of South China

Bao Sun
Department of Clinical Pharmacology, Xiangya Hospital, Central South University

Jinsong Cao
Department of Clinical Pharmacology, Xiangya Hospital, Central South University

Xia Xie
Department of Infectious Diseases, The First Affiliated Hospital, University of South China

Xuyu Zu
Institute of Clinical Medicine, The First Affiliated Hospital, University of South China

Bin Huang
Institute of Clinical Medicine, The First Affiliated Hospital, University of South China

Hui Fu
Department of Critical Care Medicine, The First Affiliated Hospital, University of South China

Jiecun Zhou (skylo2008@163.com)
Institute of Clinical Medicine, The First Affiliated Hospital, University of South China

Qiaosheng Wang (docwqa@163.com)
Department of Critical Care Medicine, The First Affiliated Hospital, University of South China

Xiaqing Tang (txq01001@163.com)
Institute of Clinical Medicine, The First Affiliated Hospital, University of South China

Case Report

Keywords: COVID-19; recombinant human granulocyte stimulating factor; neutrophils; ARDS; case report

DOI: https://doi.org/10.21203/rs.3.rs-31217/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Coronavirus disease-2019 (COVID-19) caused by SARS-CoV-2 is a rapidly escalating epidemic in most of countries. Symptom of COVID-19 usually present as the normal or decrease of leucocytes and the decrease of lymphocytes, which may be the body's response for SARS-CoV-2 infection. However, it is unknown that whether rising leukocytes, especially neutrophils, will aggravate lung injury in COVID-19. Here we report a case of aggravated lung injury induced by rising neutrophils with the usage of recombinant human granulocyte stimulating factor (GSF) for the first time.

Case presentation: A patient aged 46 years old was infected with SARS-CoV-2 without hypoxemia on admission, but his leucocytes decreased gradually after admission. After following injected with recombinant human granulocyte stimulating factor(GSF) 150 μg , the absolute value of leucocytes reached to 32.81×10⁹ /L, and neutrophils were 31.57×10⁹/L. Then, the patient's condition deteriorated rapidly and he appeared a series of symptoms, such as short breath, hemoptysis, hypoxemia, increased range of lung lesions and secondary acute respiratory distress syndrome (ARDS). However, those symptoms were alleviated and leucocytes recover to normal level gradually after stopping recombinant human GSF treatment. Eventually, Re-examination of CT showed that lung lesions were absorbed significantly and he was cured and discharged from hospital.

Conclusion: This case report showed that iatrogenic increase of leucocytes (especially neutrophils) may worsen lung injury and leucocyte increasing agents were used with caution in the early stage of COVID-19 patients. At the same time, the phenomenon remains to be further confirmed in the future study.

Background

Since late December 2019, an outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has occurred in Wuhan, and subsequently spread rapidly to all provinces of China. Currently, COVID-19 has been epidemic in most countries of the world. Clinical data indicate that COVID-19 infection may lead to multiple organ failure (MOF) such as acute respiratory distress syndrome (ARDS), cardiac failure, shock and acute kidney injury (AKI), but the mechanism is still unclear [1-3]. Recent studies indicate that the decrease of leucocyte counts (especially for lymphocytes) and the increase of C-reactive protein (CRP) are positively correlated with the severity of COVID-19[4]. However, so far it has not been reported that whether the increase of leucocytes will worsen the lung injury in the early stage of SARS-CoV-2 infection. Here we reported a case that iatrogenic elevation of leucocytes (especially neutrophils) potentially aggravated lung injury of COVID-19 patient by using recombinant human granulocyte stimulating factor (GSF).

Case Presentation

On January 26th 2020, a 46-year-old man was admitted to a local hospital with symptoms of fever for 3 days and cough for 1 day and he had no any history including hypertension, coronary heart disease, hematopathy, diabetes and genetic disease. The patient was fever up to 39 °C without chills in the early stage. Then, the patient developed symptoms of moderate cough with white sticky sputum, head discomfort, cough, aching pain in right gastrocnemius, without shortness of breath, poor appetite, fatigue, diarrhea and other discomfort. Thoracic computed tomography (CT) scan showed patchy ground glass opacities in bilateral subpleural areas infectious lesions in both lungs (Figure 1a). He was hospitalized for suspected viral pneumonia.

On admission, His body temperature was 38.1°C, and his blood pressure was 124/70mmHg, with heart rate of 96 bpm per minute, respiratory rate of 20 breaths per minute. Clinical laboratory results were showed in Table 1 during hospitalization. On the day of admission (January 26), blood tests revealed leukocytes (5.61×10⁹/L), lymphocytes (0.78×10⁹/L), and neutrophils (4.48×10⁹/L). On January 27, IgG tests for serum chlamydia pneumoniae and mycobacterium tuberculosis were weak positive. IgM tests for chlamydia pneumoniae, mycoplasma pneumoniae, respiratory syncytial virus, parainfluenza virus, influenza A and B virus and legionella pneumophilia were negative. On January 28, the Centers for Disease Control (CDC) confirmed that the patient's oropharyngeal swab tested of SARS-CoV-2 by real-time reverse-transcriptase–polymerase-chain-reaction (rRT-PCR) assay was positive. According to the diagnostic criteria in China (General Office of National Health Commission, 2020), he was diagnosed as a common type of COVID-19.

Antiviral drug consisting of Lopinavir 200 mg and Ritonavir 50 mg was treated twice a day. On January 29, the patient's condition did not improve, and he was still fever and even as high as 39.5°C. Meanwhile, compared with the CT imaging on January 26, multilobed segments of both lungs were scattered in patchy and flaky high-density foci, and some of them showed more inflated bronchial signs and blurred edges (Figure 1b). Based on the symptoms, the patient was intravenous-drip with methylprednisolone 80 mg daily for anti-inflammatory treatment, because of considering the progression of lung disease. However, the absolute value of leucocytes continued decrease, especially lymphocytes and monocytes. Local doctors took clinic strategic to increase leucocytes through treating with 20mg leucoson, 20mg vitamin B4 and 150 μg recombinant human GSF on January 30.
On January 31, the patient no longer had fever. Meanwhile, re-examination of CT showed that the lung lesions were significantly more severe than before (Figure 1c). On February 1, the patient had obvious shortness of breath, intermittent cough with white sticky sputum and bloodshot sputum. Oxygenation index further decreased to 202 (oxygen concentration 53%). Blood tests indicated that leukocytes reached to 32.81×10^9/L, and neutrophils were 31.57×10^9/L.

Because of the exacerbation of patient's condition including obvious shortness of breath after activity and hypoxemia (moderate ARDS), he was transferred to the First Affiliated Hospital of University of South China on February 1. After ICU admission, the patient received high-flow nasal oxygen (oxygen concentration 30% -45%, flow rate 30L/min) and antiviral therapy including lopinavir 200 mg, ritonavir 50 mg and 5 million units of IFN-α (course 14 days). Meanwhile, 40 mg methylprednisolone and 15g human immunoglobulin were administered intravenously daily (course of treatment for 5 days), and 4.5 g piperacillin-tazobactam continued to be administered intravenously every 8 hours for preventing secondary infection. Considering the abnormal increase of leukocytes with no obvious bacterial infection, we conjectured that it might be associated with the usage of recombinant human GSF. Therefore, we suspended this medicine immediately. Gradually, the patient's leukocytes and neutrophils decreased and recovered to normal level. The patient's respiratory symptoms improved and maintained normal body temperature. Re-examination of CT showed that lung lesions were absorbed significantly (Figure 1d-g). SARS-CoV-2 RNA of oropharyngeal swab remained negative for twice (over 24-hour intervals) by rRT-PCR. The patient stated that there was obvious improvement of his symptoms and was eventually cured discharged from hospital on February 20.

Discussion And Conclusion

Lung was the primary organ affected by SARS-CoV-2 infection. Most of patients had mild symptom, but part of them can develop to severe or critical symptom. The risk of death significantly increased with the progress of heart failure, acute kidney injury and ARDS[2, 5, 6]. However, the pathogenesis of SARS-CoV-2 infection was still unclear. It was documented that the C-reaction protein, IL-6 and TNF-α are all significantly upregulated in COVID-19 patients[7]. Among the secondarily symptoms, cytokine storm was identified as the inducer, which could be association with excessive activation of immune cells[8]. Based on these, some researchers presumed that excessive immune response promote cytokine storm and further evoke MOF[9, 10]. However, so far, the role of neutrophils is not clear in lung injury induced by SARS-CoV-2.

We found that, in the early stage of the disease, patient's leucocytes, including neutrophils, lymphocytes and monocytes, decreased with the disease progresses. Although the patient's lung damaged, he did not develop significant hypoxemia. After the treatment with recombinant human GSF, the patient's leucocytes increased rapidly, especially with a significant increase in neutrophils. Afterwards, the patient's condition further deteriorated and developed to moderate ARDS. Considering that leukocyte elevation was not associated with other infections such as secondary bacterial infections, we supposed that the iatrogenic elevation of neutrophils might aggravate lung injury.

In addition, there are several issues that need to be clarified. Firstly, promoting leukocytes, especially neutrophils, may worsen lung injury induced by SARS-CoV-2 infection in early progression stage. In classical pathogenesis of ARDS, the activation of alveolar-macrophages resulted in persistent inflammation and tissue damage, which contributed to produce proinflammatory factor, recruit leucocyte (neutrophils, monocytes/macrophages, effector T cells), and activate alveolar epithelial cells[11-13]. Moreover, many literatures had shown that neutrophils played an important role in the development of ARDS[14-17]. It was shown that chemokines CCL2 and CCL7 synergized with C-X-C Motif Chemokine Ligand 8(CXCL8) to promote neutrophils migration into the pulmonary interstitium and alveoli, aggravating lung injury[18]. Up to now, few studies focused on the role of neutrophils in lung injury induced by viral infection. It was documented that the number of neutrophils in the lower respiratory tract is correlated with disease severity during severe influenza pneumonia and highly pathogenic avian influenza infection[16]. Therefore, improper promotion of neutrophils may aggravate lung injury in SARS-CoV-2 infection early stage.

Secondly, it was considered that the mechanism of organ damage caused by virus infection was related to the induced immune response. The overactivated leucocytes (monocytes, T lymphocytes, and macrophages) can lead to ARDS and sequential organ failure[9, 19]. At present, the detection results from clinical lab showed that SARS-CoV-2 infection usually led to the decrease of leucocytes (including neutrophils, monocytes and lymphocytes)[4]. Maybe the cytokine storm was also weakened with the decrease of inflammatory cells, which may conducive to delaying the progress of the disease. Thus, enhancing leucocytes, especially neutrophils may accelerate the deterioration of illness at this moment.

Finally, it was difficult for us to find the direct evidence of the increase of neutrophils in lung tissue and exclude the possibility of progress of the disease itself. This case report showed that there is a certain correlation between the progress of the lung injury and the rise of iatrogenic leucocytes, especially neutrophils. Further studies are warranted to confirm this correlation.

This case report showed that iatrogenic increase of leucocytes (especially neutrophils) may worsen lung injury and leucocyte increasing agents were used with caution in the early stage of COVID-19 patients. At the same time, the phenomenon remains to be further confirmed in the future study.
Abbreviations

AKI: Acute kidney injury; ARDS: Acute respiratory distress syndrome; CCL2: Chemokine 2; CCL7: Chemokine 7; CDC: Centers for Disease Control; COVID-19: Coronavirus disease-2019; CRP: C-reaction protein; CT: Computed tomography; CXCL8: C-X-C Motif Chemokine Ligand 8; GSF: Granulocyte stimulating factor; IL-6: Interleukin-6; MOF: Multiple organ failure; rRT-PCR: Real-time reverse-transcriptase–polymerase-chain-reaction; SARS-COV-2: Severe acute respiratory syndrome coronavirus 2; TNF-α: Tumor necrosis factor-α.

Declarations

Ethics approval and consent to participate

This study is approved by the Ethics Committees from the First Affiliated Hospital of University of South China and the patient is consent to participate.

Consent for publication

Written informed consent for publication of the clinical details and/or clinical images was obtained from the patient.

Availability of data and materials

All data generated or analysed during this study are included in this published article.

Competing interests

The authors declare that they have no conflict of interest regarding the publication of this case report.

Funding

The clinical care and management of the patient were supported by Fund Project of University of South China for Prevention and Control of COVID-19 (No.2020-25 and 2020-26), Fund Project of Hunan province for Prevention and Control of COVID-19 (2020SK3010) and Fund Project of Hengyang city for Prevention and Control of COVID-19 (2020hjcz6713, 2020hjcz6715, 2020hjcz6716). The data collection and analysis were supported by Scientific Research Fund of Hunan Provincial Education Department (No.19A418) and Scientific Research Fund Project of Hunan Provincial Health Commission (No.20201973).020021309-Basic Research Project Prevention and Control of Novel Coronavirus Pneumonia of Hengyang city(No.15) contributed to this manuscript writing and publication.

Authors’ contributions

JT, XX, QW, BH and HF contributed to the clinical patient care and management. JZ, HF and QW contributed to the acquisition and interpretation of data. BS and JZ contributed to the manuscript preparation. JT, JC and XZ carried out the data analysis. XT contributed to the manuscript verification. All authors have read and approved the manuscript.

Acknowledgments

Not applicable.

References

1. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y et al: Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323(11):1061-1069.

2. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X et al: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. LANCET 2020, 395(10223):497-506.

3. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y et al: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. LANCET 2020, 395(10223):507-513.

4. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, Wang Z, Li J, Li J, Feng C et al: Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. SCI CHINA LIFE SCI 2020, 63(3):364-374.

5. Park SE: Epidemiology, virology, and clinical features of severe acute respiratory syndrome -coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clin Exp Pediatr 2020, 63(4):119-124.

6. Li C, Xu BH: The viral, epidemiologic, clinical characteristics and potential therapy options for COVID-19: a review. Eur Rev Med Pharmacol Sci 2020, 24(8):4576-4584.
7. Tufan A, Avanoglu GA, Matucci-Cerinic M: COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. *TURK J MED SCI* 2020, 50(SI-1):620-632.

8. Cheng XW, Lu J, Wu CL, Yi LN, Xie X, Shi XD, Fang SS, Zan H, Kung HF, He ML: Three fatal cases of pandemic 2009 influenza A virus infection in Shenzhen are associated with cytokine storm. *Respir Physiol Neurobiol* 2011, 175(1):185-187.

9. Garanina E, Martynova E, Davidyuk Y, Kabwe E, Ivanov K, Titova A, Markelova M, Zhuravleva M, Cherepnev G, Shakirova VG et al: Cytokine Storm Combined with Humoral Immune Response Defect in Fatal Hemorrhagic Fever with Renal Syndrome Case, Tatarstan, Russia. *Viruses* 2019, 11(7):601.

10. Demirkol D, Yildizdas D, Bayrakci B, Karapinar B, Kendirli T, Koroglu TF, Dursun O, Erkek N, Gedik H, Citak A et al: Hyperferritinemia in the critically ill child with secondary hemophagocytic lymphohistiocytosis/sepsis/multiple organ dysfunction syndrome/macrophage activation syndrome: what is the treatment? *CRIT CARE* 2012, 16(2):R52.

11. Song C, Li H, Li Y, Dai M, Zhang L, Liu S, Tan H, Deng P, Liu J, Mao Z et al: NETs promote ALI/ARDS inflammation by regulating alveolar macrophage polarization. *EXP CELL RES* 2019, 382(2):111486.

12. Huang X, Xiu H, Zhang S, Zhang G: The Role of Macrophages in the Pathogenesis of ALI/ARDS. *Mediators Inflamm* 2018, 2018:1264913.

13. Thompson BT, Chambers RC, Liu KD: Acute Respiratory Distress Syndrome. *N Engl J Med* 2017, 377(6):562-572.

14. Potey PM, Rossi AG, Lucas CD, Dorward DA: Neutrophils in the initiation and resolution of acute pulmonary inflammation: understanding biological function and therapeutic potential. *J PATHOL* 2019, 247(5):672-685.

15. Rebetz J, Semple JW, Kapur R: The Pathogenic Involvement of Neutrophils in Acute Respiratory Distress Syndrome and Transfusion-Related Acute Lung Injury. *Transfus Med Hemother* 2018, 45(5):290-298.

16. Camp JV, Jonsson CB: A Role for Neutrophils in Viral Respiratory Disease. *FRONT IMMUNOL* 2017, 8:550.

17. Zhou X, Dai Q, Huang X: Neutrophils in acute lung injury. *Front Biosci (Landmark Ed)* 2012, 17:2278-2283.

18. Williams AE, Jose RJ, Mercer PF, Brealey D, Parekh D, Thickett DR, O’Kane C, McAuley DF, Chambers RC: Evidence for chemokine synergy during neutrophil migration in ARDS. *THORAX* 2017, 72(1):66-73.

19. Channappanavar R, Perlman S: Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. *SEMIN IMMUNOPATHOL* 2017, 39(5):529-539.

Table

Table 1 The detection results from clinical laboratory
Measure	Reference Range	1 Jan 26	2 Jan 27	3 Jan 28	4 Jan 29	5* Jan 30	6* Jan 31	7 Feb 1	8 Feb 2
Leukocyte Count (x10^9/L)	4.00-10.00	5.61	3.945	3.455	-	2.225	8.43	32.81k	26.18k
Lymphocyte Count (x10^9/L)	0.8-4.0	0.78	1.04	0.525	-	0.465	0.375	0.605	0.635
Neutrophil Count (x10^9/L)	2.0-7.0	4.48	2.68	2.85	-	1.675	7.84k	31.57k	25.05
Monocyte Count (x10^9/L)	0.12-0.8	-	0.22	0.085	-	0.095	0.22	0.61	0.50
Eosinophil Count (x10^9/L)	0.05-0.5	-	0.005	0.005	-	0.005	0.005	-	-
Basophil Count (x10^9/L)	0.0-0.1	-	0.00	0.00	-	0.00	0.00	0.03	-
Total protein (g/L)	60-83	-	67.00	62.00	-	60.00	55.004	59.004	60.30
Albumin (g/L)	33-55	-	41.30	37.20	-	35.50	31.804	32.504	36.00
Glutamic oxaloacetic transaminase (U/L)	0-41	-	27.0	30.0	-	54.06	46.06	40.0	33.5
Dehydrogenase (U/L)	125-300	-	267.0	287.0	-	3246	297	3216	4576
Glutamic oxaloacetic transaminase isoenzyme (U/L)	20-220	-	198.0	147.0	-	105.0	75.0	51.0	45.0
Troponin (ng/L)	0-14	-	Negative	Negative	-	Negative	-	-	-
Pro-BNP (pg/mL)	1-450	-	-	-	-	-	-	506.80k	-
Procalcitonin (ng/mL)	0.02-0.05	-	0.02	0.01	-	-	0.02	0.02	<0.02
C-reactive protein (mg/L)	0-8.2	-	61.546	34.176	-	41.716	14.96	24.396	31.626
PH	7.35-7.45	-	-	-	7.49k	-	7.465k	-	7.487k
PaCO₂ (mmHg)	32-45	-	-	-	32.15	-	30.15	28.55	27.1
PaO₂ (mmHg)	83-108	-	-	-	101.00	-	121.30	107.10	61.00
FiO₂ (%)	21-100	25	25	25	29	40	50	50	30
Finger pulse oxygen (%)	0-100	97	95	98	98	95	94	93	93
Blood Lactate (mmol/L)	≥300	-	-	-	348	-	242.6	214.2	203

Note: 5 indicates values within the normal range.

Page 6/8
Measure	Reference Range	Hospital Day 9 Feb 3	Hospital Day 10 Feb 4	Hospital Day 11 Feb 5	Hospital Day 12 Feb 6	Hospital Day 13 Feb 7	Hospital Day 14 Feb 8	Hospital Day 16 Feb 10	Hospital Day 18 Feb 12
Leukocyte Count (x10^9/L)	4.00-10.00	17.66^k	11.98^k	9.94	11.94^k	7.71	7.06	5.16	7.15
Lymphocyte Count (x10^9/L)	0.8-4.0	0.72^k	0.58^k	0.78^k	0.76^k	0.57^k	0.39^k	0.94	2.44
Neutrophil Count (x10^9/L)	2.0-7.0	16.39^k	10.90^k	8.47^k	10.39^k	6.62	6.23	4.09	3.98
Monocyte Count (x10^9/L)	0.12-0.8	0.55	0.48	0.63	0.74	0.42	4.70	0.12	0.65
Eosinophil Count (x10^9/L)	0.05-0.5	0.00^k	0.00^k	0.02^k	0.05	0.06	0.08	0.00	0.08
Basophil Count (x10^9/L)	0.0-0.1	0.00	0.02	0.05	0.00	0.05	0.03	0.01	0.00
Total protein (g/L)	60-83	64.8	67.2	60.9	61.80	-	58.40	59.70	-
Albumin (g/L)	2.44								

Continued

The patient was treated with taking 20mg leucoson and 20mg vitamin B4. * The patient was treated with 150 μg recombinant human granulocyte stimulating factor administered subcutaneously. & The value in the patient was above normal. $ The value in the patient was below normal.

Figures
Figure 1

The CT imaging change of patient's lung at different time point