Characteristics of Complete Mitochondrial Genomes Reveals a Potential Division of Genus Modiolus into Three Genera

Houmei Li (lihoumei@qdio.ac.cn)
Institute of Oceanology Chinese Academy of Sciences

Peizhen Ma
Institute of Oceanology Chinese Academy of Sciences

Yumeng Liu
Institute of Oceanology Chinese Academy of Sciences

Cui Li
Institute of Oceanology Chinese Academy of Sciences

Chenghua Li
Ningbo University

Haiyan Wang
Institute of Oceanology Chinese Academy of Sciences

Zhen Zhang
Institute of Oceanology Chinese Academy of Sciences https://orcid.org/0000-0002-7445-9442

Research Article

Keywords: Modiolus modulaides, mitogenome, Mytilidae, phylogeny

Posted Date: January 31st, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1287793/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Backgrounds Mussels have been one of the most abundant and highly evolved marine biological groups with high level of genetic differentiation between and within species. The yellow-banded horse mussel, *Modiolus modulaides* (Röding, 1798), is an important economic species in Philippines and an endangered species in Japan, with no whole mitogenome characterized.

Methods and Results In this study, we sequenced the whole mitochondrial genome of *Modiolus modulaides* (Röding, 1798), a medium-sized mussel collected from Guangxi, China. Result shows a 15,422 bp closed-circular DNA molecule, including 12 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes. The genome composition is obviously A+T biased (62.5%), with 23.1% A, 39.4% T, 25.4% G and 12.0% C, making AT-skew and GC-skew being -0.26 and 0.36, respectively. Phylogenetic analysis of *Modiolus modulaides* and other 36 mussel species based on 12 protein-coding genes and two ribosomal RNAs of mitogenomes shows that *Modiolus modulaides* is most closely related with *Modiolus phillippinum* (Hanley, 1843).

Conclusions A hypothesis that the current genus *Modiolus* should be separated three distinctive genera was raised based on morphological and phylogenetic characteristics, as well as gene patterns of mitogenomes. These results put forward new insight of phylogenetic relationship of *Modiolus* species and will help to further study the taxonomy and phylogeny of Mytilidae.

Introduction

Mitochondrial DNA (mtDNA) exhibits special characteristics that differ from the nuclear genome, such as rapid evolution, maternal inheritance, and lack of recombination [1], and has been an efficient tool and widely used in molluscan evolutionary and phylogenetic analyses [2, 3]. Molluscan mtDNA is nearly a closed circular molecule, always containing 13 protein-coding genes (NADH dehydrogenase subunits 1–6 and 4L, ATPase subunits six and eight, cytochrome oxidase subunits 1-3, and cytochrome b), 22 transfer RNA genes and two ribosomal RNAs (rrnS and rrnL) [4, 5], with missing ATPase subunits eight, variable tRNAs and extra rrnS in some species [6–8]. Different mtDNA composition would result in functional diversity, as mtDNA carries genetic information essential to mitochondrial function [9], thus it's interesting to explore the difference of mtDNA related to adaptive evolution. Nonetheless, the gene organization and arrangement of mitochondrial protein-coding genes in closely related species are relatively conservative [10] and can be used to analyze phylogenetic relationships between and above genera [11]. Though development of sequencing technology and the establishment of mitochondrial genome database provides convenience and comprehensive information for molluscan phylogeny studies [12], quantity of current mitogenomes seems far from adequate in comparison with enormous amounts of Mollusca species.

As one of the most abundant and highly evolved groups in Mollusca, mussels (Bivalvia, Pteriomorphia, Mytilida) exhibit a highly variable morphological characteristics and adapt to multiple habitats from fresh
water, intertidal zone, to deep sea, resulting in diversity of mitogenomes [13, 14]. To date, mitochondrial genomes of only 42 mussel species belonging to 18 genera of 9 subfamilies are available from NCBI. The yellow-banded horse mussel, *Modiolus modulaides* (Röding, 1798), known as an important economic species in Philippines [15] and an endangered species in Japan [16], is widely distributed in tropical, subtropical and temperate regions of Indo-West Pacific [17]. However, synonymic as *Musculus modulaides* (Röding, 1798), *Modiolus metcalfei* (Hanley, 1843), *Modiola triangulum* (Koch in Philippi, 1847), etc., taxonomic and phylogenetic status of this species remains in dispute. Lack of whole mitogenome of *Modiolus modulaides* limits further studies in taxonomy, utilization and protection.

Only five complete mtDNAs of the *Modiolus* species have been previously characterized. We here sequenced the whole mitochondrial genome of *Modiolus modulaides*, aiming to: (i) show the mitogenomic organization of *Modiolus modulaides*; (ii) compare the mitogenomic characteristics of *Modiolus* species; and (iii) analyze the phylogenetic relationship of Mytilidae species based on mitogenomic characteristics.

Materials And Methods

Sample collection, DNA extraction and Sequencing

The specimen of *Modiolus modulaides* was collected from Guangxi Zhuang Autonomous Region, China (108°4′25.02″N, 21°32′1.46″E) in May 2010, stored in 95% alcohol, and deposited in the Marine Biological Museum, Chinese Academy of Sciences with the Specimen code IOCAS_museum_4-02-1450). The specimen was identified according to morphological characteristics. Total genomic DNA was extracted from the adductor muscle using TIANamp Marine Animals DNA kit (DP324-03, TIANGEN BIOTECH Co., Ltd, Beijing, China) following the manufacturer’s protocols. Genomic DNA adopted the Whole Genome Shotgun strategy to construct the library, and used the Next Generation Sequencing to sequence based on Illumina NovaSeq sequencing platform (Qingdao Insight Exbio Technology co., ltd, Qingdao, China).

Sequence assembly, annotation and analyses

A5-miseq v20150522 and SPAdesv3.9.0 were used for De Novo assembly of high-quality data. The complete mitochondrial genome sequence was uploaded to the MITOS2 web server (http://mitos2.bioinf.uni-leipzig.de/index.py) for functional annotation. The genetic code selection was set to 05, and the other settings were set according to the default parameters. The boundaries of protein-coding genes (PCGs) were determined by ORF Finder (https://www.ncbi.nlm.nih.gov/orffinder). The transfer RNA genes (tRNA) were identified using tRNAscan-SE with the default search mode and the invertebrate mitochondrial genetic code source, and the two ribosomal RNA genes (rRNA) were identified by sequence comparison with previously reported *Modiolus* rRNA genes. The mitochondrial genome circle map was drawn by CGView Server.

Nucleotide base composition was calculated using MEGA 7.0. The following formula were used to calculate AT-skew and GC-skew: AT-skew = (A - T)/(A + T) and GC-skew= (G - C)/(G + C), in which A, T, G
and C represented the frequencies of the four bases. Codon usage for each PCG was estimated using the invertebrate mitochondrial code in the web server Codon Usage (http://www.bioinformatics.org/sms2/codon_usage.html). Values of nonsynonymous substitutions per nonsynonymous site to the number of synonymous substitutions per synonymous site by pairwise comparison between *Modiolus modulaides* and other species of *Modiolus* were calculated by DnaSP v5.

Phylogenetic analysis

The complete mitogenome of *Modiolus modulaides* and other 46 Mytilidae mitochondrial genome sequences available from GenBank (Table 1) were included to estimate phylogenetic relationships, with *Crassostrea gigas* (Ostreidae) and *Anadara sativa* (Arcidae) being outgroups. The nucleotide sequences of 12 PCGs and two rRNA genes of all mitogenomes were aligned using MAFFT v7.313. The nucleotide sequences of 12 PCGs was then imported into MACSE v2.03 for optimization. Gblocks v.0.91b was used with default settings to obtain conserved regions of the aligned sequences. The best-fit substitution model for the data set were detected using ModelFinder. Phylogenetic relationships were reported using maximum likelihood (ML) with IQ-TREE v.3.2.6 and Bayesian inference (BI) by MrBayes v.3.2.6. The ML tree consisted of 5,000 bootstrap replicates and automatic algorithm. The BI analyses were performed using 4 parallel Markov chain Monte Carlo (MCMC) chains for 2,000,000 generations, sampling every 100 generations and discarding the first 25% generations as burn-in. The phylogenetic trees were viewed and edited by iTOL (https://itol.embl.de/).

Results

Mitochondrial genome characterization

The mtDNA of *Modiolus modulaides* is a closed circular DNA molecule with a length of 15,422 bp (GenBank: OL853493). It contains 36 genes, including 12 PCGs, 2 rRNA genes and 22 tRNA genes (Table 2). With the exception of trnT, all of these genes are encoded on the heavy strand (H strand). The nucleotide formation of the complete mitogenome is equal to 23.1% A, 39.4% T, 25.4% G and 12.0% C. The AT content and GC content are 62.5% and 37.4%, respectively. A significant AT bias was detected. AT-skew of mitochondrial genome of *Modiolus modulaides* is negative and GC-skew is positive, yielding -0.26 and 0.36, respectively. There are five base overlaps between adjacent genes, ranging in size from 1 bp to 8 bp, summing to a full 16 bp gene overlap. And the longest base overlap locates between rrnL and trnS2, whereas the smallest one is between cob and nad4l. Additionally, the mtDNA of *Modiolus modulaides* contains 1209 bp intergenic spacer regions at 27 locations ranging from 1 bp to 478 bp. The longest intergenic spacer lies between trnl and nad2.

PCGs and codon usage

The overall length of the PCGs is 10,873 bp, and it occupies 74.9% of the whole mitochondrial genome of *Modiolus modulaides*. The base composition of PCGs was 21.3% A, 40.52% T, 25.75% G and 12.43% C,
yielding an AT content of 61.82%. The 12 PCGs are NADH dehydrogenase subunit 1–6 and 4L (nad1–6 and nad4l), cytochrome c oxidase subunit 1–3 (cox 1–3), cytochrome b (Cytb) and one ATPase subunits six (atp6), which are all encoded on heavy strand. The size of 12 PCGs ranged from 276 bp (nad4l) to 1695 bp (nad5). Seven PCGs start with ATG, except for gene nad6 (TTG), nad4 and cox3 (ATT) and atp6 (GTG), while six PCGs (cox1, nad3, nad6, cob, nad5, cox2) stop with TAA and five PCGs (atp6, nad4, nad2, nad4l, nad1) stop with TAG. The cox3 of *Modiolus modulaides* has incomplete stop codon, which is T for TAA. Each amino acid is encoded by at least two codons in the PCGs of *Modiolus modulaides*. The most frequently used codons are TTT (Phe, N = 339 times used, 6.598%). CGC (Arg, N = 10 times used, 0.195%) and ACC (Thr, N = 10 times used, 0.195%) are the least frequently used codons. The most frequent amino acids in the PCGs of *Modiolus modulaides* is Leucine and the least used amino acid is Histidine, which is consistent with other five *Modiolus* species. The predominant amino acids (with frequency above 6%) are Leucine, Serine, Valine, Phenylalanine (Fig. 1a). The amino acid codons ended with A/T are more frequent than those terminated with G/C, reflecting that a high A+T content occurred. According to the ratio of nonsynonymous (Ka) to synonymous (Ks) substitutions, we confirmed that average values of all the protein-coding genes in the mitogenomes of *Modiolus* species are less than 1, indicating purification selection pressures, with only Ka/Ks values of atp6 and nad6 are higher than 0.25 (Fig. 1b).

Ribosomal RNAs and transfer RNAs

The rrnS and rrnL of *Modiolus modulaides* are 771 bp and 1144 bp, respectively. The rrnL genes of *Modiolus* species are uniformly arranged between trnF and trnS, but the rrnS genes are arranged between different genes (Fig. 1c). The rrnS of both *Modiolus modulaides* and *Modiolus philipinarum* is located between trnS and trnM, while between trnK and atp6 in *Modiolus nipponicus*, and between trnK and trnQ in other three species (Fig. 1c). The rrnS and rrnL exhibit a AT-skew -0.087 and -0.088, respectively. The mitogenome of *Modiolus modulaides* has 22 tRNAs of 1441 bp, ranging from 60 bp (trnS2) to 70 bp (trnL and trnQ) (Table 2), of which trnL and trnS have one replication. The number of tRNAs in *Modiolus modulaides* is exactly identical to other *Modiolus* species except *Modiolus comptus* since it has two copies of trnQ. All tRNAs have a typical clover structure and are encoded in H-chain, except that trnS (TGA) lacks the entire dihydrouridine (DHU) arm and trnT is encoded in L-chain. Difference of quantity and arrangement of tRNA occurs clockwise between nad1 and nad4 within *Modiolus*, along with the extra atp8 in *Modiolus modiolus* (Fig. 1c).

Phylogenetic analysis

The topological structure of ML and BI phylogenetic tree constructed by 14 mt-genes (12 PCGs and 2 rRNAs) is almost consistent, except for the position of *Bathymodiolus japonicus* and *Bathymodiolus childressi*, with most branches being highly supported, i.e., bootstrap support=100, posterior probability=1 (Fig. 2). Our result of the phylogenetic trees support that all Mytilidae species are divided into two clades, of which clade1 includes the subfamilies of Mytilinae, Musculinae, Arcuatulinae, Septiferinae, Brachidontinae, and Mytiliseptinae and clade 2 includes the subfamilies of Bathymodiolineae, Modoliinae and Arcuatulinae (*Limnoperna fortunei*). However, the phylogenetic relationships are not in accordance with the existing subfamily-level classification that several species that were commonly supposed to
belong to Mytilinae actually should occupy different oppositions. Genera *Perna* and *Mytella* are closely related with *Arcuatula*, and genera both *Semimytilus* and *Perna perna* are sister to genera from subfamily Brachidontinae. *Limnoperna fortunei* is more closely related with Modiolinae and Bathymodiolinae species than other Arcuatulinae species.

Within genus *Modiolus*, the phylogenetic trees shows that three groupings are highly supported and can be easily recognized. *Modiolus modulaides* is the most closely related with *Modiolus philippinarum*, making up to grouping 1, which is then gathers with grouping 2 (*Modiolus comptus* + *Modiolus nipponicus*). Grouping 3 (*Modiolus kurilensis* + *Modiolus modiolus*) has further genetic distance with the other two groupings.

Discussion

Characteristics of mitogenomes of Mytilidae

The constitution of protein-coding genes of *Modiolus modulaides* is in accordance with most known Mytilidae mitogenome, except for additional gene atp8 in *Mytilus, Bathymodiolus, Brachidontes exustus* [18, 19], and even *Modiolus modiolus* from the same genus [20]. Song et al. [21] hypothesized that the absence of gene atp8 resulted from the adaptive evolution of environment, but it was detected in both fresh water and seawater bivalves. An anthropogenic factor might be the false annotation of the protein-coding gene due to the structural properties (such as short length) and extreme variability of atp8 among bivalves [22]. Boore & Brown [23] proposed that gene rearrangements are infrequent and generally remain unchanged during many years of evolutionlong periods of evolutionary time, thus retaining the signal of ancient common ancestor. Nonetheless, the constitution and arrangement of tRNAs is more variable within *Modiolus*, which presents questions about the previous taxonomy of *Modiolus*. Here, based on the considerable translocation of tRNA, we think new genus and subgenus should be raised from the previous *Modiolus*. In addition, we find the replication and translocation of tRNA genes occurs clockwise between nad1 and nad4 within *Modiolus*, which makes it a highly active region. Duplication of tRNA is common in mollusks, for example, *Mytilus edulis, Mytilus galloprovincialis* and *Mutilus trossulus* have a second trnM [24, 25], and *Mutilus trossulus* has an additional copy of trnQ [25]. The secondary structure of trnS2 lacks a DHU arm, forming a simple loop, which is conserved across metazoans [26]. The missing of the DHU arm in trnS2 can be functional in the structural compensation mechanism between other arms [27]. There are five base overlaps between adjacent genes in the mitogenome of *Modiolus modulaides*, possibly promoting the miniaturization of mitochondrial genome in response to the natural selection [28].

The mitogenome of *Modiolus modulaides* exhibits an evident AT bias, identical to all known Mytilidae species [29, 30]. This is also reflected in the differential codon usage patterns and amino acid compositions. The initiation codon ATG is a typical start codon in metazoan [31] as well as in *Modiolus*
modulaides. The incomplete stop codon of cox3 here in *Modiolus modulaides* is presumed to be completed by post-translational polyadenylation [32]. We found that the frequency of amino acid usage is conserved in *Modiolus* species, strongly correlates with GC content and perhaps, expression level of genes [33]. As mitochondria are energy producing organelles that play a central role in amino acid homeostasis [34], the homogeneous amino acid usage may be a sign of congener similarities in environmental suitability. The Ka/Ks (nonsynonymous/synonymous substitution rates) ratio was commonly used to estimate the effect of selection pressure on the diversity molecular evolution of related species [35]. Result indicates that gene atp6 of *Modiolus modulaides* is under the least purification selection pressure and suffered a rapid, recent evolution [36]. It can provide valuable information into various adaptive mechanisms [37]. Gene atp6 has the highest Ka/Ks value and receives the least purification selection. Meanwhile, continuous purification selection of cox1 genes means the genes are strongly constrained by evolution to maintain their functional stability and thus often used in species identification [16].

Phylogenetic relationships in Mytilidae

The recognition of subfamilies in the family Mytilidae or genera in the subfamily remains inconsistent in different taxonomic systems [11]. The two-clades model of subfamilies in Mytilidae based on mitochondrial characters was also proposed by Lee et al. [3], though detailed division was different from our study. The phylogenetic result in this study strongly recommends that genus *Perna* (including *Perna canaliculus* and *Perna viridis*) should be rearranged into subfamily Arcuatulinae, as it is closest related with *Mytella strigata* from Arcuatulinae, which can be supported by the similar shell morphology as well [38, 39]. Additionally, the sister relationship between *Perna* and *Arcuatula* species were proposed by recent phylogenetic studies based on not only anatomical but also molecular features [3, 11, 14]. The genus *Semimytilus* under subfamily Mytilinae was described for the first time by Soot-Ryen [40] to include *Mytilus algosus* and only this one *Semimytilus* species (synonymised as *Semimytilus patagonicus*) has been identified till now [41]. And no one doubted the subfamily status of this species before. Here in our study and research of Lubosny et al. [42], *Semimytilus* is clustered with *Perumytilus* from subfamily Brachidontinae and then sister to *Mytilisepta* from subfamily Mytiliseptinae. Therefore, the genus *Semimytilus* is more likely to belong to subfamily Brachidontinae than Mytilinae based on the phylogenetic relationship in this study, though more morphological, anatomical data and molecular evidence should be considered. Subfamily Mytiliseptinae was firstly proposed by Morton et al. [43] to contain *Mytilisepta* species. But we insist that *Mytilisepta* should be retained within the *Brachidontes* as *Mytilisepta keenae* is placed among representatives of the Brachidontinae. As for genus *Perna*, Lee. et al. [3] argued the same manifestation in this study that *Perna perna* was not clustered with two congeneric species, *Perna canaliculus* and *Perna viridis*, but with *Brachidontes* species from the subfamily Brachiodontinae instead, with no unanimous conclusion. We agree with a polyphyletic model for *Perna* genus and that the current taxonomy of this genus may be questionable [44].

Within clade 2, Modiolinae is clustered with Bathymodiolinae, implying their close evolutionary relationships, and then sister to a freshwater mussel *Limnoperna fortunei*, which agrees with previous
studies [11, 45], but contradicts phylogenetic models based on 18S and anatomical characteristics [14, 46]. The gene arrangements also shows that the Modiolinae and Bathymodiolinae are closely related [3]. *Modiolus* is a large and diverse genus and no recent review is available [47]. As previous studies proposed, subfamily Modiolinae was polyphyletic [11, 46]. Interestingly, our phylogenetic tree shows more complicated relationships among three *Modiolus* species that three groupings could be easily recognized. Although the same protein-coding gene pattern is shared by all six species, the differences in tRNA arrangement cannot be neglected, as gene order is rather highly conserved at lower taxonomic levels in Bivalvia [1]. Consequently, based on the phylogenetic relationships and corresponding to the considerable translocation of tRNA, we harbor the idea that the current genus *Modiolus* should be separated into three genera, including species of (*Modiolus modulaides* + *Modiolus philippinarum*), (*Modiolus comptus* + *Modiolus nipponicus*) and (*Modiolus kurilensis* + *Modiolus modiolus*), respectively. Morphological characteristics summarized by Wang [48] provided evidences for this hypothesis. Both *Modiolus comptus* and *Modiolus nipponicus* are small or medium sized, while the other four species are bigger, with adult shells up to 80 mm or more. The dorsal horn of *Modiolus modulaides* and *Modiolus kurilensis* is obvious and high, and the hair is very thin, making them easily confused. Besides, both *Modiolus philippinarum* and *Modiolus modiolus* have low dorsal angle and thick hair. The common features within groupings are easily observed and concluded, supporting the three genera hypothesis.

Declarations

Funding

This work was supported by the National Key R&D Program of China (2019YFD0902100, 2019YFD0900802, 2019YFD0901303); the Biological Resources Programme, Chinese Academy of Sciences (KFJ-BRP-017-40); and the National Natural Science Foundation of China (Nos. 42006080, 41906083).

Author contributions

Hou-Mei Li and Pei-Zhen Ma conducted the investigation, data curation, formal analysis and original draft. Yu-Meng Liu helped carrying out the data analysis. Cui Li, Hai-Yan Wang and Cheng-Hua Li reviewed and edited the manuscript. Zhen Zhang was in charge of the methodology and funding provision. All authors contributed to the article and approved the submitted version.

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable

Consent to participate
Not applicable

Consent to publish

Not applicable

References

1. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27(8):1767–1780. https://doi.org/10.1093/nar/27.8.1767

2. Ozawa G, Shimamura S, Takaki Y et al (2017) Updated mitochondrial phylogeny of Pteriomorph and Heterodont Bivalvia, including deep-sea chemosymbiotic Bathymodiolus mussels, vesicomyid clams and the thyasirid clam Conchocele cf. bisecta. Mar Genomics 31,: 43-52. https://doi.org/10.1016/j.margen.2016.09.003

3. Lee Y, Kwak H, Shin J et al (2019) A mitochondrial genome phylogeny of Mytilidae (Bivalvia: Mytilida). Mol Phylogenet Evol 139:106533. https://doi.org/10.1016/j.ympev.2019.106533

4. Curole JP, Kocher TD (1999) Mitogenomics: digging deeper with complete mitochondrial genomes. Trends Ecol Evol 14(10):394–398. https://doi.org/10.1016/s0169-5347(99)01660-2

5. Wang Y, Yang Y, Liu HY et al (2021) Phylogeny of Veneridae (Bivalvia) based on mitochondrial genomes. Zool Scr 00(1):1–13. https://doi.org/10.1111/zsc.12454

6. Breton S, Stewart DT, Hoeh WR (2010) Characterization of a mitochondrial ORF from the gender-associated mtDNAs of Mytilus spp. (Bivalvia: Mytilidae): identification of the "missing" ATPase 8 gene. Mar Genomics 3(1):11–18. https://doi.org/10.1016/j.margen.2010.01.001

7. Ren JF, Shen X, Jiang F et al (2010) The mitochondrial genomes of two scallops, Argopecten irradians and Chlamys farreri (Mollusca: Bivalvia): the most highly rearranged gene order in the family Pectinidae. J Mol Evol 70(1):57–68. https://doi.org/10.1007/s00239-009-9308-4

8. Ren JF, Xiao L, Zhang GF et al (2009) "Tandem duplication-random loss" is not a real feature of oyster mitochondrial genomes. BMC Genom 10:84. https://doi.org/10.1186/1471-2164-10-84

9. Hutchison CA, Newbold JE, Potter SS et al (1974) Maternal inheritance of mammalian mitochondrial DNA. Nature 251(5475):536–538. https://doi.org/10.1038/251536a0

10. Boutet I, Jollivet D, Shillito B et al (2009) Molecular identification of differentially regulated genes in the hydrothermal-vent species Bathymodiolus thermophilus and Paralvinella pandorae in response to temperature. BMC Genom 10(1):222. https://doi.org/10.1186/1471-2164-10-222

11. Liu J, Liu HL, Zhang HB (2018) Phylogeny and evolutionary radiation of the marine mussels (Bivalvia: Mytilidae) based on mitochondrial and nuclear genes. Mol Phylogenet Evol 126,:233–240. https://doi.org/10.1016/j.ympev.2018.04.019
12. Liu FY, Li YL, Yu HW et al (2021) MolluscDB: an integrated functional and evolutionary genomics database for the hyper-diverse animal phylum Mollusca. Nucleic Acids Res 49(D1):D988–D997. https://doi.org/10.1093/nar/gkaa918

13. Sun J, Zhang Y, Xu T et al (2017) Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. Nat Ecol Evol 1(5):121. https://doi.org/10.1038/s41559-017-0121

14. Morton B (2015) Evolution and adaptive radiation in the Mytiloidea (Bivalvia): clues from the pericardial-posterior byssal retractor musculature complex. Molluscan Res 35(4):227–245. https://doi.org/10.1080/13235818.2015.1053167

15. Tumanda MI, Yap HT, McManus LT et al (1997) Growth, mortality and recruitment pattern of the brown mussel, Modiolus metcalfei (Bivalvia: Mytilacea), in Panguil Bay, Southern Philippines. Aquaculture 154(3-4): 233-245. https://doi.org/10.1016/S0044-8486(97)00049-5

16. Matsumoto M (2003) Phylogenetic analysis of the subclass Pteriomorphia (Bivalvia) from mtDNA COI sequences. Mol Phylogenet Evol 27(3):429–440. https://doi.org/10.1016/S1055-7903(03)00013-7

17. Uba KIN, Monteclaro HM (2020) Habitat characteristics of the horse mussel Modiolus modulaides (Röding 1798) in Iloilo, Philippines. Philipp J Sci 149(3–a):977–987

18. Bennett KF, Bailey AW, Brambert DJ et al (2016) The F type mitochondrial genome of the scorched mussel: Brachidontes exustus. Mitochondrial DNA Part A 27(2):1501–1502. https://doi.org/10.3109/19401736.2014.953111. Mytiloida, Mytilidae

19. Hoffmann RJ, Boore JL, Brown WM (1992) A novel mitochondrial genome organization for the blue mussel, Mytilus edulis. Genetics 131(2):397–412. https://doi.org/10.1093/genetics/131.2.397

20. Robicheau BM, Breton S, Stewart DT (2017) Sequence motifs associated with paternal transmission of mitochondrial DNA in the horse mussel, Modiolus modiolus. Gene 605:32–42. Bivalvia: Mytilidaehttps://doi.org/10.1016/j.gene.2016.12.025

21. Song WT, Gao XG, Li YF et al (2009) Comparison of mitochondrial genomes of bivalves. Hereditas 31(11):1127–1134

22. Gaitán-Espitia JD, Quintero-Galvis JF, Mesas A et al (2016) Mitogenomics of southern hemisphere blue mussels (Bivalvia: Pteriomorphia): Insights into the evolutionary characteristics of the Mytilus edulis complex. Sci Rep 6:26853. https://doi.org/10.1038/srep26853

23. Boore J, Lavrov DV, Brown WM (1998) Gene translocation links insects and crustaceans. Nature 392(6677):667–668. https://doi.org/10.1038/33577

24. Mizi A, Zouros E, Moschonas N et al (2005) The complete maternal and paternal mitochondrial genomes of the Mediterranean mussel Mytilus galloprovincialis: implications for the doubly uniparental inheritance mode of mtDNA. Mol Biol Evol 22(4):952–967. https://doi.org/10.1093/molbev/msi079

25. Breton S, Burger G, Stewart DT et al (2006) Comparative analysis of gender-associated complete mitochondrial genomes in marine mussels (Mytilus spp.). Genetics 172(2):1107–1119. https://doi.org/10.1534/genetics.105.047159
26. Juehling F, Puetz J, Bernt M et al (2012) Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res 40(7):2833–2845. https://doi.org/10.1093/nar/gkr1131

27. Steinberg S, Cedergren R (1994) Structural compensation in atypical mitochondrial tRNAs. Nat Struct Mol Biol 1(8):507–510. https://doi.org/10.1038/nsb0894-507

28. Boyce TM, Zwick ME, Aquadro CF (1989) Mitochondrial DNA in the bark weevils: size, structure and heteroplasmy. Genetics 123(4):825–836. https://doi.org/10.1093/genetics/123.4.825

29. Zhang Z, Ma PZ, Hu LS et al (2019) The complete mitochondrial genome of a marine mussel, Modiolus comptus (Mollusca: Mytilidae), and its phylogenetic implication. Mitochondrial DNA Part B 4(2):4057–4058. https://doi.org/10.1080/23802359.2019.1688728

30. Lubośny M, Śmiertanka B, Przyłucka A et al (2020) Highly divergent mitogenomes of Geukensia demissa (Bivalvia, Mytilidae) with extreme AT content. J Zoolog Syst Evol Res 00(2):1–10. https://doi.org/10.1111/jzs.12354

31. Wang QQ, Zhang ZQ, Tang GH (2016) The mitochondrial genome of Atrijuglans hetaohei Yang (Lepidoptera: Gelechioidea) and related phylogenetic analyses. Gene 581(1):66–74. https://doi.org/10.1016/j.gene.2016.01.027

32. Yong HS, Chua KO, Song SL et al (2021) Complete mitochondrial genome of Dacus vijaysegarani and phylogenetic relationships with congeners and other tephritid fruit flies (Insecta: Diptera). Mol Biol Rep 48(8):6047–6056. https://doi.org/10.1007/s11033-021-06608-2

33. Schaber J, Rispe C, Wernegreen J et al (2005) Gene expression levels influence amino acid usage and evolutionary rates in endosymbiotic bacteria. Gene 352:109–117. https://doi.org/10.1016/j.gene.2005.04.003

34. Johnson MA, Vidoni S, Durigon R et al (2014) Amino acid starvation has opposite effects on mitochondrial and cytosolic protein synthesis. PLoS ONE 9(4):e93597. https://doi.org/10.1371/journal.pone.0093597

35. Hurst LD (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 18(9):486–487. https://doi.org/10.1016/s0168-9525(02)02722-1

36. Navarro A, Barton NH (2003) Chromosomal speciation and molecular divergence - accelerated evolution in rearranged chromosomes. Science 300(5617):321–324. https://doi.org/10.1126/science.1080600

37. Zhang J, Xie PH, Lascoux M et al (2013) Rapidly evolving genes and stress adaptation of two desert poplars, Populus euphratica and P. pruinosa. PLoS One 8(6): e66370. https://doi.org/10.1371/journal.pone.0066370

38. Lim JY, Tay TS, Lim CS et al (2018) Mytella strigata (Bivalvia: Mytilidae): an alien mussel recently introduced to Singapore and spreading rapidly. Molluscan Res 38(3):170–186. https://doi.org/10.1080/13235818.2018.1423858
39. Alves FAdS, Beasley CR, Hoeh WR et al (2012) Detection of mitochondrial DNA heteroplasmy suggests a doubly uniparental inheritance pattern in the mussel *Mytella charruana*. Revista Brasileira de Biociências 10(2):176–185

40. Soot-Ryen T (1955) A report on the family Mytilidae (Pelecypoda). Allan Hancock Pacif Exped 20:1–174

41. Signorelli J, Pastorino G (2021) *Semimytilus patagonicus* (d'Orbigny, 1842) (Bivalvia: Mytilidae) revealed as the valid name with priority over *Semimytilus algosus*. Archiv für Molluskenkunde 1850(1):55–63. https://doi.org/10.1127/arch.moll/150/055-063. Gould

42. Lubosny M, Smietanka B, Przylucka A et al (2020) Highly divergent mitogenomes of *Geukensia demissa* (Bivalvia, Mytilidae) with extreme AT content. J Zoolog Syst Evol Res 58(2):571–580. https://doi.org/10.1111/jzs.12354

43. Morton B, Leung PTY, Wei JH et al (2020) A morphological and genetic comparison of *Septifer bilocularis, Mytilisepta virgata* and *Brachidontes variabilis* (Bivalvia: Mytiloidea) from Hong Kong and erection of the Mytiliseptiferinae sub-fam. nov. Reg Stud Reg Sci 34:100981. https://doi.org/10.1016/j.rsma.2019.100981

44. Uliano-Silva M, Americo JA, Costa I et al (2016) The complete mitochondrial genome of the golden mussel *Limnoperna fortunei* and comparative mitogenomics of Mytilidae. Gene 577(2):202–208. https://doi.org/10.1016/j.gene.2015.11.043

45. Samadi S, Quéméré E, Lorion J et al (2007) Molecular phylogeny in mytilids supports the wooden steps to deep-sea vents hypothesis. C R Biol 330(5):446–456. https://doi.org/10.1016/j.crvi.2007.04.001

46. Distel DL (2000) Phylogenetic relationships among Mytilidae (Bivalvia): 18S rRNA data suggest convergence in mytilid body plans. Mol Phylogenet Evol 15(1):25–33. https://doi.org/10.1006/mpev.1999.0733

47. Huber M (2010) Compendium of bivalves. A full-color guide to 3,300 of the World's Marine Bivalves. A status on Bivalvia after 250 years of research. ConchBooks, Hackenheim

48. Wang ZR (1997) Fauna sinica phylum molludca order mytiloida. Science Press, Beijing

Tables

Table 1

Complete mitochondrial genomes used for phylogenetic analysis in this study, with 39 species including *Crassostres gigas* and *Anadara sativa* as outgroups, and 47 sequences in total. Female-lineage and male-lineage mitogenomes are marked by “-F” and “-M” respectively following the scientific names.
Species	Subfamily	Length (bp)	GenBank accession number
Bathymodiolus japonicus	Bathymodiolinae	17510	AP014560
Bathymodiolus septemdierum	Bathymodiolinae	17069	AP014562
Bathymodiolus sp.5 South	Bathymodiolinae	18376	MT916740
Bathymodiolus aduloides	Bathymodiolinae	17243	MT916741
Bathymodiolus azoricus	Bathymodiolinae	17598	MT916742
Bathymodiolus brooksi	Bathymodiolinae	17728	MT916743
Bathymodiolus childressi	Bathymodiolinae	17637	MT916744
Bathymodiolus marisindicus	Bathymodiolinae	17138	MT916745
Bathymodiolus securiformis	Bathymodiolinae	17199	KY270857
Gigantidas haimaensis	Bathymodiolinae	18283	MT916746
Gigantidas platifrons	Bathymodiolinae	17653	AP014561
Modiolus modiolus	Modiolinae	15816	KX821782
Modiolus kurilensis	Modiolinae	16210	KY242717
Modiolus philippinarum	Modiolinae	16389	KY705073
Modiolus modulaides	Modiolinae	15422	This study
Modiolus comptus	Modiolinae	15591	MN602036
Modiolus nipponicus	Modiolinae	15638	MK721547
Mytilus edulis	Mytilinae	16740	AY484747
Mytilus galloprovincialis	Mytilinae	16744	AY497292
Mytilus galloprovincialis	Mytilinae	17671	AY363687
Mytilus trossulus	Mytilinae	18652	AY823625
Mytilus trossulus	Mytilinae	16601	GQ438250
Mytilus chilensis	Mytilinae	16748	KT966847
Mytilus chilensis	Mytilinae	16765	KP100300
Mytilus unguiculatus	Mytilinae	16642	KJ577549
Mytilus californianus	Mytilinae	16729	JX486124
Mytilus californianus	Mytilinae	16122	JX486123
Species	Family	Length	Accession
--	-----------------	--------	------------
Perna viridis	Mytilinae	16014	JQ970425
Perna perna	Mytilinae	18415	KM655841
Perna canaliculus	Mytilinae	16005	MG766134
Semimytilus patagonicus	Mytilinae	18113	MT026712
Semimytilus patagonicus	Mytilinae	24347	MT026713
Crenomytilus grayanus	Mytilinae	17582	MK721543
Arcuatula senhousia	Arcuatulinae	21557	GU001953
Arcuatula senhousia	Arcuatulinae	20612	GU001954
Limnoperma fortunei	Arcuatulinae	18145	KP756905
Mytella strigata	Arcuatulinae	16302	MT991018
Brachidontes exustus	Brachidontinae	16600	KM233636
Geukensia demissa	Brachidontinae	15838	MN449487
Geukensia demissa	Brachidontinae	15893	MN449488
Perumytilus purpuratus	Brachidontinae	16540	MH330331
Perumytilus purpuratus	Brachidontinae	16963	MH330332
Mytilisepta keenae	Mytiliseptinae	15902	MK721542
Gregariella coralliophaga	Musculinae	16273	MK721545
Septifer bilocularis	Septiferinae	16253	MK721549
Crassostrea gigas	—	18224	AF177226
Anadara sativa	—	48161	KF667521

Table 2

Genetic characteristics of the *Modiolus modulaides* mitogenome
Gene	Position (bp)	Size (bp)	Strand	Codon	Anticodon	Intergenic nucleotides (bp)	
	From	To			Start	Stop	
cox1	1	1548	1548	H	ATG	TAA	8
trnK	1557	1623	67	H	TTT	9	
trnY	1633	1696	64	H	GTA	331	
trnP	2028	2094	67	H	TGG	-3	
trnE	2092	2158	67	H	TTC	8	
trnL1	2167	2232	66	H	TAG	1	
nad3	2234	2590	357	H	ATG	26	
trnC	2617	2681	65	H	GCA	2	
trnL2	2684	2750	67	H	TAA	223	
trnR	2974	3040	67	H	TCG	3	
trnS1	3044	3107	64	H	GCT	10	
rnrS	3118	3888	771	H		11	
trnM	3900	3964	65	H	CAT	4	
trnQ	3969	4038	70	H	TTG	8	
atp6	4047	4778	732	H	GTG	6	
trnV	4785	4845	61	H	TAC	2	
nad4	4948	6152	1305	H	ATT	TAG -2	
trnN	6151	6216	66	H	GTT	3	
cox3	6220	6985	766	H	ATT	T(AA) 10	
trnF	6996	7060	65	H	GAA	0	
rnrL	7061	8204	1144	H		-8	
trnS2	8197	8256	60	H	TGA	2	
trnD	8259	8325	67	H	GTC	33	
nad6	8359	8817	459	H	TTG	TAA 10	
trnI	8828	8897	70	H	GAT	478	
nad2	9376	10350	975	H	ATT	TAG 0	
trnW	10351	10416	66	H	TCA	8	
Gene	Start	End	Length	Codon	Function		
-------	--------	-------	--------	-------	----------		
trnG	10425	10491	67	H	TCC	4	
trnT	10496	10558	63	L	TGT	1	
cob	10560	11696	1137	H	ATG	TAA -1	
nad4l	11696	11971	276	H	ATG	TAG -2	
trnA	11970	12033	64	H	TGC	0	
trnH	12034	12096	63	H	GTG	0	
nad5	12097	13791	1695	H	ATG	TAA 1	
cox2	13793	14497	705	H	ATG	TAA 3	
nad1	14501	15418	918	H	ATG	TAG 4	

Figures

(a) Amino Acids in PCs

(b) Protein-coding genes

(c) Modiolus comptus

Figure 1
Characteristics of mitochondrial genome in genus *Modiolus*, including: (a) Frequency of amino acids in the protein-coding genes; (b) Ka/Ks ratio of 12 protein-coding genes in *Modiolus modulaides* versus genes from other 5 *Modiolus* species; (c) Gene arrangements, with tRNAs marked by abbreviations for amino acids.

Figure 2
Bayesian tree based on 12 protein-coding genes and 2 rRNAs showing phylogenetic relationships of 37 Mytilidae species, with *Crassostres gigas* and *Anadara sativa* being outgroups. Numbers near the nodes are branch support values (Bayesian posterior probabilities followed by ML bootstrap supports).