The current agonists and positive allosteric modulators of \(\alpha_7 \) nAChR for CNS indications in clinical trials

Taoyi Yang\(^a\), Ting Xiao\(^a\), Qi Sun\(^b\), Keweif Wang\(^{a,c,*}\)

\(^a\)Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
\(^b\)State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
\(^c\)Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China

Received 5 May 2017; received in revised form 2 August 2017; accepted 25 August 2017

Abstract The alpha-7 nicotinic acetylcholine receptor (\(\alpha_7 \) nAChR), consisting of homomeric \(\alpha_7 \) subunits, is a ligand-gated Ca\(^{2+}\)-permeable ion channel implicated in cognition and neuropsychiatric disorders. Enhancement of \(\alpha_7 \) nAChR function is considered to be a potential therapeutic strategy aiming at ameliorating cognitive deficits of neuropsychiatric disorders such as Alzheimer’s disease (AD) and schizophrenia. Currently, a number of \(\alpha_7 \) nAChR modulators have been reported and several of them have advanced into clinical trials. In this brief review, we outline recent progress made in understanding the role of the \(\alpha_7 \) nAChR in multiple neuropsychiatric disorders and the pharmacological effects of \(\alpha_7 \) nAChR modulators used in clinical trials.

\(\alpha_7 \) nAChR modulators

Abbreviations: 5-CSRTT, five-choice serial reaction time task; 5-HT, serotonin; ACh, acetylcholine; AD, Alzheimer’s disease; ADHD, attention deficit hyperactivity disorder; Aβ, amyloid-\(\beta \) peptide; CNS, central nervous system; DMTS, delayed matching-to-sample; ECD, extracellular domain; GABA, \(\gamma \)-aminobutyric acid; MLA, methyllycaconitine; nAChR, nicotinic acetylcholine receptor; NOR, novel object recognition; PAMs, positive allosteric modulators; PCP, neonatal phencyclidine; PD, Parkinson’s disease; PPI, prepulse inhibition; SAR, structure–activity relationship; TMD, transmembrane domains; \(\alpha \)-Btx, \(\alpha \)-bungarotoxin

*Corresponding author.

E-mail address: wangkw@bjmu.edu.cn (Keweif Wang).

Peer review under responsibility of Institute of Materia Medica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical Association.
1. Structure and function of α7 nAChRs in the brain

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that are activated by the neurotransmitter acetylcholine (ACH) for signaling, and they also respond to drugs including the nicotinic receptor agonist nicotine. The nAChRs can be classified into 5 muscle nAChR subtypes (α1, β1, δ1, ε1, δ2) and 12 neuronal nAChR subtypes (α2–10, β2–4)1,2. Among the neuronal nAChR subtypes, the α7 nAChR (also known as α7 receptor) that was first isolated and evaluated in 1990s from avian and rodents are homomeric pentamers widely distributed in the central nervous system (CNS) and periphery organs such as spleen and lymph nodes3,4. The five identical α7 nAChR subunits are symmetrically organized around the central pore, and each subunit consists of a large amino-terminal extracellular domain (ECD), four transmembrane domains (TMD, TM1–TM4) and a cytoplasmic domain5. In each homomeric α7 nAChR, there are five ACh binding sites within the ECD, which are located at the interface of every two subunits6,7.

Compared with other subtypes of nAChRs, the α7 nAChR exhibits unique functional properties including: 1) fast activation and desensitization by agonists (on a millisecond scale); 2) high calcium permeability (PCa/PNa ≈ 10); and 3) selective inhibition by α-bungarotoxin (α-Btx) and methyllycaconitine (MLA)8,9,10–12. In the brain, α7 nAChRs are abundantly expressed in the regions underlying cognition and memory, such as the hippocampus and frontal cortex13,14. In neurons, the presynaptically localized α7 nAChRs are physiologically more important although they are widely localized in the synapses (both pre- and postsynaptically) and extrasynaptically13,14. Presynaptic α7 nAChRs play a major role in facilitating glutamate release in the cerebellum, auditory cortex, hippocampus and many other brain areas15–20. Together with α4β2 nAChRs, presynaptic α7 nAChRs also stimulate γ-aminobutyric acid (GABA) release in the hippocampus21. Post-synaptic and extrasynaptic α7 nAChRs are also capable of modulating neuronal activity and neurotransmission22. In addition, the α7 nAChRs are also expressed in non-neuronal cells in the brain, including astrocytes, microglia, microvascular endothelial cells, and lymphocytes, playing a role in immunity, inflammation and neuroprotection23–28.

2. The relevance of α7 nAChR in CNS diseases and therapy

The function of α7 nAChRs is critical for cognition, sensory processing, attention, working memory, and reward. On the contrary, dysfunctional α7 nAChRs are associated with multiple psychiatric and neurologic diseases including schizophrenia, AD, attention deficit hyperactivity disorder (ADHD), addiction, pain and Parkinson's disease (PD). Thus, modulation of α7 nAChR function is an attractive strategy for potential therapy of CNS diseases.

Schizophrenia, with a lifetime prevalence of approximately 1%, chronically and severely afflict patients all over the world29,30. There are at least three distinct symptoms of schizophrenia, including positive symptoms (hallucinations, delusions, thought disorder, and paranoia), negative symptoms (anhedonia, social withdrawal, and thought poverty), and cognitive dysfunction (loss of intellectual abilities such as perception, understanding, working memory, and executive function)31. Almost all the first and second line drugs, including but not limited to chlorpromazine, clozapine, risperidone, olanzapine, and quetiapine, markedly improve positive symptoms for many patients with schizophrenia. However, they show very limited therapeutic effect on negative symptoms and cognitive dysfunction32. Genetic studies show that CHRNA7, the gene encoding α7 nAChR protein, and a partial duplication of CHRNA7, CHRFAM7A, are associated with inhibitory sensory gating deficit in schizophrenic patients33,34,35. It has also been reported that there is diminished mRNA of CHRNA7 and decreased α-Btx binding in post mortem brain tissue samples from patients with schizophrenia36–38. It has been reported that exposure to the non-selective nAChR agonist, nicotine, shows the effect of improving or normalizing sensory deficits in schizophrenia39.

Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by a slow onset of memory loss and a late development of disorientation, mood swings and behavioral problems40. The cause for AD is still mostly unknown except for less than 10% of cases in which genetic variations have been identified41. One of the most convincing theories is that aberrant extracellular amyloid-β peptide (Aβ) deposits are the fundamental cause of AD42,43. Aβ is a peptide of 36–43 amino acids crucially involved in AD as the main component of the amyloid plaques found in the brain neurons of AD patients. Aβ exhibits relatively high binding affinity with α7 nAChRs, and they are co-localized in cortical regions and the hippocampus in the brains of AD patients44,45. It is controversial as to whether Aβ and its oligomers, Aβ1–42, are weak agonists or antagonists, but in either role, they are capable of inhibiting endogenous ACh from activating α7 nAChRs by desensitization or non-competitive antagonism46,47. The Aβ-α7 nAChR interaction influences neurotransmission, synaptic plasticity, learning and memory48–50. Directly or indirectly, the Aβ-α7 nAChR interaction is an important aspect of AD50. From 1993 to 2001, several acetylcholinesterase inhibitors (AChEIs) including tacrine (approved in 1993), donepezil (1996), rivastigmine (2000) and galantamine (2001) which non-selectively enhance nAChR function have been approved for treatment of mild to moderate AD51,52. However, there are no AChEIs approved since then. A number of AChEIs such as eptastigmine, phenserine, huperzine A, and dimebon have failed or were discontinued in clinical trials due to adverse effects or insignificant benefits53–56.

α7 nAChR is also reported to be relevant to multiple CNS disorders including cigarette addiction, PD and pain57–59. The opioid antagonist naltrexone, which inhibits the activity of α7 nAChR, was indicated for potential application in tobacco-use cessation60. Application of the α7 nAChR selective agonist PNU-282987 has been shown to decrease motivation for nicotine use in rats57,61. In the temporal cortices of post-mortem PD patients' brains, α7-expressing neurons are significantly less abundant than in the control group62. Accumulating evidence also shows that activation of α7 nAChR can alleviate PD symptoms in animal models58,63–65. Modulation of α7 nAChR function by agonists and positive allosteric modulators (PAMs) exhibits antinociceptive effects in acute and persistent pain66–72. Genetic silencing of α7 reveals phenotypes of hyperalgesia and allodynia in mice, whereas α7-hypersensitive mice display decreased pain sensitivity73. Altogether, these studies indicate that α7 nAChR serves as a potential therapeutic target for indications such as schizophrenia, AD, ADHD, addiction, pain, PD and other related CNS disorders.

3. α7 nAChR modulators

Over the past two decades, medicinal chemists and biologists have carried out extensive studies in identification and evaluation of α7
Figure 1 Current α7 nAChR agonists and PAMs in clinical trials for different indications. There are 11 drug candidates, of which ten agonists and one PAM are currently being tested for treatment of schizophrenia, nine agonists for AD, three agonists for nicotinic addiction, two agonists for ADHD, and one agonist each for PD and pain.

nAChR modulators. The major focus was in finding potent and selective compounds and bringing them into therapeutic applications. As summarized in Fig. 1 and Table 1 (25-120), twelve α7 nAChR modulators were tested in clinical trials since 2006.

3.1. α7 nAChR agonists

Currently, most developed α7 nAChR agonists are partial agonists. Unlike full agonists such as endogenous ACh, α7 nAChR partial agonists are orthosteric ligands that can only produce a small maximal current even at concentrations where all receptors occupied (121).

Tropisetron ([1R,5S]-8-methyl-8-azabicyclo[3.2.1]octan-3-yl)-1H-indole-3-carboxylate), firstly identified as 5-HT3 receptor antagonist (K_i = 5.3 mmol/L), is used clinically in preventing and treating nausea and vomiting after cancer therapy (122,123). In 2001, Macor et al. (124) evaluated activity of several 5-HT3 receptor antagonists on α7 nAChRs and found that tropisetron acted as a selective α7 nAChR partial agonist (K_i = 6.9 nmol/L; EC_50 = 0.6 μmol/L; E_max = 25%). Researchers showed that tropisetron could attenuate or improve cognitive deficits in animal models (125-127). However, tropisetron has not been shown to be effective in improving cognitive deficits in clinical trials. In a Phase II clinical trial of tropisetron in patients with schizophrenia, administration of tropisetron significantly improved auditory sensory gating P50 deficits and sustained visual attention, which supports the safety and efficacy of adjunctive tropisetron for treatment of cognitive deficits in schizophrenia (128).

GTS-21 (3-(2,4-dimethoxybenzylidene)-anabaseine), also named DMXB-A, is a derivative of the natural product anabaseine identified as an α7 nAChR agonist and brought into clinical trials (129-131). This compound has been extensively characterized in vitro and in vivo. This compound acts as a partial agonist in α7 nAChRs and displays better potency and efficacy on rat α7 nAChRs (EC_50 = 5.2 μmol/L; E_max = 32%) than with human nAChRs (EC_50 = 11 μmol/L; E_max = 9%) in Xenopus oocytes (132). Selectivity of GTS-21 is not favorable in ion flux studies as it inhibits α4β2 nAChRs (IC_50 = 17 μmol/L) and activates α3β4 nAChRs (EC_50 = 21 μmol/L). However, in electrophysiological recordings in Xenopus oocytes, 100 μmol/L GTS-21 barely evoked current from α4β2 and α3β4 nAChRs (33). Extensive in vivo studies were carried out to confirm the pharmacological effect of GTS-21 on cognitive deficits and sensory gating models of rodents and primates (Table 1). Scientists from Abbot and the University of South Florida found that intraperitoneally injecting GTS-21 significantly enhanced the learning and memory ability of aged rats in a water maze, 17-arm radical maze, and Lashley III maze tests (120,121). When the cognition of aged rats was further impaired by isoflurane, GTS-21 still could mitigate such cognitive deficits (122). Moreover, acquisition, retention and relearning abilities in eyelink classical conditioning are much improved in GTS-21-treated aged rabbits than in the vehicle group (123). Cognitive deficits or dementia in rodents and primates as induced by chemical impairment could also be attenuated or normalized by treatment with GTS-21. For instance, Chen et al. (124) reported that treatment with GTS-21 (1 mg/kg) perfectly prevented Aβ25-35 induced depression of the α7 nAChR response, which further led to cognitive deficits in mice. These results indicate that GTS-21 may have substantive therapeutic value in the treatment of cognitive deficit in age-associated memory impairment, AD and schizophrenia. Furthermore, sensory gating deficits in rodents could be improved with GTS-21. This compound improved deficient sensory inhibition in DBA/2 mice, and normalized auditory gating in isolation-reared rats, and also ameliorated prepulse inhibition (PPI) deficits induced by apomorphine or MK-801 (125). These data show that GTS-21 might have a therapeutic potential for schizophrenia. In 2014, GTS-21 was in phase II clinical studies for treatment of schizophrenia, AD and ADHD. Though GTS-21 failed in improving cognition in schizophrenia patients, high dose of GTS-21 significantly improved negative symptoms in schizophrenia (126). However, GTS-21 is not a prototypical α7 nAChR agonist due to its relatively higher affinity for α4β2 nAChRs (K_i = 20 nmol/L at human and 19 nmol/L at rat) compared with α7 nAChRs (K_i = 2000 nmol/L at human and 650 nmol/L at rat) (127). Thus, the clinical benefits of GTS-21 cannot be simply attributed to α7 nAChR pharmacology.

The most explored structure of α7 nAChR agonists to date is quinuclidine derivatives such as spirooxazolidinones and quinuclidine carbamates, amides, and ethers. The first spirooxazolidinone, AR-R17779 ([1R]-spiro[1-azabicyclo[2.2.2]octane-3,5’-oxazolidin-2’-one]) was identified and evaluated in vitro and in vivo (128). However, the cross reactivity with 5-HT3 receptors and poor penetration of AR-R17779 into the CNS remains a great challenge for clinical development (22). AZD0328 ((29 R)-spiro-[1-azabicyclo[2.2.2]octane-3,5’-([3R]-furo[2,3-b]pyridine) di-tartrate] is an optimized molecule identified as α7 nAChR agonist by AstraZeneca from the spirooxazolidinone series compounds based on AR-R17779 through structure–activity relationship (SAR) studies (129). AZD0328 acts as a partial α7 nAChR agonist exhibiting an EC_50 of 338 nmol/L and an efficacy of 65% on Xenopus oocytes expressing human α7 nAChRs (129). Compared with the maximal current elicited by serotonin (5-HT) on human nAChRs (EC_50 = 11 μmol/L; E_max = 9%) in Xenopus oocytes (130). Selectivity of GTS-21 is not favorable in ion flux studies as it inhibits α4β2 nAChRs (IC_50 = 17 μmol/L) and activates α3β4 nAChRs (EC_50 = 21 μmol/L) (131). However, in electrophysiological recordings in Xenopus oocytes, 100 μmol/L GTS-21 barely evoked current from α4β2 and α3β4 nAChRs (33). Extensive in vivo studies were carried out to confirm the pharmacological effect of GTS-21 on cognitive deficits and sensory gating models of rodents and primates (Table 1). Scientists from Abbot and the University of South Florida found that intraperitoneally injecting GTS-21 significantly enhanced the learning and memory ability of aged rats in a water maze, 17-arm radical maze, and Lashley III maze tests (120,121). When the cognition of aged rats was further impaired by isoflurane, GTS-21 still could mitigate such cognitive deficits (122). Moreover, acquisition, retention and relearning abilities in eyelink classical conditioning are much improved in GTS-21-treated aged rabbits than in the vehicle group (123). Cognitive deficits or dementia in rodents and primates as induced by chemical impairment could also be attenuated or normalized by treatment with GTS-21. For instance, Chen et al. (124) reported that treatment with GTS-21 (1 mg/kg) perfectly prevented Aβ25-35 induced depression of the α7 nAChR response, which further led to cognitive deficits in mice. These results indicate that GTS-21 may have substantive therapeutic value in the treatment of cognitive deficit in age-associated memory impairment, AD and schizophrenia. Furthermore, sensory gating deficits in rodents could be improved with GTS-21. This compound improved deficient sensory inhibition in DBA/2 mice, and normalized auditory gating in isolation-reared rats, and also ameliorated prepulse inhibition (PPI) deficits induced by apomorphine or MK-801 (125). These data show that GTS-21 might have a therapeutic potential for schizophrenia. In 2014, GTS-21 was in phase II clinical studies for treatment of schizophrenia, AD and ADHD. Though GTS-21 failed in improving cognition in schizophrenia patients, high dose of GTS-21 significantly improved negative symptoms in schizophrenia (126). However, GTS-21 is not a prototypical α7 nAChR agonist due to its relatively higher affinity for α4β2 nAChRs (K_i = 20 nmol/L at human and 19 nmol/L at rat) compared with α7 nAChRs (K_i = 2000 nmol/L at human and 650 nmol/L at rat) (127). Thus, the clinical benefits of GTS-21 cannot be simply attributed to α7 nAChR pharmacology.

The most explored structure of α7 nAChR agonists to date is quinuclidine derivatives such as spirooxazolidinones and quinuclidine carbamates, amides, and ethers. The first spirooxazolidinone, AR-R17779 ([1R]-spiro[1-azabicyclo[2.2.2]octane-3,5’-oxazolidin-2’-one]) was identified and evaluated in vitro and in vivo (128). However, the cross reactivity with 5-HT3 receptors and poor penetration of AR-R17779 into the CNS remains a great challenge for clinical development (22). AZD0328 ((29 R)-spiro-[1-azabicyclo[2.2.2]octane-3,5’-([3R]-furo[2,3-b]pyridine) di-tartrate] is an optimized molecule identified as α7 nAChR agonist by AstraZeneca from the spirooxazolidinone series compounds based on AR-R17779 through structure–activity relationship (SAR) studies (129). AZD0328 acts as a partial α7 nAChR agonist exhibiting an EC_50 of 338 nmol/L and an efficacy of 65% on Xenopus oocytes expressing human α7 nAChRs (129). Compared with the maximal current elicited by serotonin (5-HT) on human 5-HT3A receptors and ACh on human nAChRs, maximal activity of AZD0328 was only about 12% for human 5-HT3A receptors, 4% for α4β2 nAChRs and no activity on α3β4 nAChRs (20). Studies showed that AZD0328 is very stable and has favorable pharmacokinetic (PK) properties, which suggests that this compound is acceptable for clinical trials (20,129). Through activation of α7 nAChRs, AZD0328 is able to enhance cortical dopamine release in rats and improve novel object recognition (NOR) in mice (20,97). AZD0328 also displays efficacy in improving working memory in a spatial delayed response task in Rhesus macaques (129). In 2008,
Table 1 α7 nAChR agonists and PAM in clinical trials.

Compound	Classification	Potency & efficacy	Animal model on CNS disorders	Indication	Clinical status (Sponsor)
Tropisetron	Partial agonist	Binding affinity:	Mice: phencyclidine-induced cognitive deficits⁷³; Rats: young and aged rats⁷⁷; naloxyone-induced place aversion⁷⁷.	Pain	Phase IV (completed in 2009)
		K_i: 6.9 nM/L (in α7)⁷³			(University Hospital, Clermont-Ferrand)
		Electrophysiology activity:	Mice: phencyclidine-induced cognitive deficits⁷⁵; Rats: young and aged rats⁷⁷; naloxyone-induced place aversion⁷⁷.	Smoking cessation; schizophrenia	Phase III (completed in 2011)
		H_7 in oocytes: $EC_{50} = 0.6 \mu M$; $E_{max} = 25%$			
					(University Hospital, Clermont-Ferrand)
		M_7 in oocytes: $EC_{50} = 1.3 \mu M$; $E_{max} = 36%$			
GTS-21/DMXB-A	Partial agonist	Binding affinity:	Rats: normal or isoflurane-induced cognitive impairment aged rats⁸⁰–⁸²; ibotenic acid-induced dementia⁸³; mecamylamine-caused learning impairment⁷⁹; auditory gating in isolation-reared rats⁸⁵; apomorphine/MK-801-elicited PPI deficits^{86,87}.	Schizophrenia	Phase II (completed in 2015)
		K_i: 2000 nM/L (in hα7)⁷⁸			(University of Colorado)
		Electrophysiology activity:			
		H_7 in oocytes: $EC_{50} = 11.0 \mu M$; $E_{max} = 9%$			
					(University of Colorado)
		R_7 in oocytes: $EC_{50} = 5.2 \mu M$; $E_{max} = 32%$			
ABT-126	Agonist	Binding affinity:	Monkeys: Parkinsson monkeys⁸⁷.	AD	Phase II (terminated in 2014)
		K_i: 12–14 nM/L (in hα7, α7 and mα7)⁹³			(AbbVie)
		Electrophysiology activity:			
		H_7 in oocytes: $EC_{50} = 338 \mu M$; $E_{max} = 64.7%$			
					(AbbVie)
		R_7 in oocytes: $EC_{50} = 150 \mu M$; $E_{max} = 61.0%$			
AZD0328	Partial agonist	Binding affinity:	Mice: NOR in normal mice^{96,97}.	AD	Phase II (completed in 2008)
		K_i: 3.0 and 4.7 nM/L (in hα7 and α7)⁹³			(AstraZeneca)
		Electrophysiology activity:			
		H_7 in oocytes: $EC_{50} = 0.29 \mu M$; $E_{max} = 24%$			
					(AstraZeneca)
		R_7 in oocytes: $EC_{50} = 0.14 \mu M$; $E_{max} = 27%$			
BMS-933043	Partial agonist	Binding affinity:	Rats: MK-801-induced cognitive deficits⁷³; S(+)-ketamine-induced sensory gating deficits⁷³.	Schizophrenia	Phase I (completed in 2013)
		K_i: 8.1 and 3.3 nM/L (in hα7 and α7)⁷³			(Bristol-Myers Squibb)
		Ca²⁺ flux assays:			
		H_7 in HEK293 cell line: $EC_{50} = 23.4 \mu M$			
		Electrophysiology activity:			
		H_7 in oocytes: $EC_{50} = 0.29 \mu M$; $E_{max} = 24%$			
		R_7 in oocytes: $EC_{50} = 0.14 \mu M$; $E_{max} = 27%$			
EVP-6124/Encenicline	Partial agonist	Binding affinity:	Rats: scopolamine-induced deficit⁷⁵; delay-dependent forgetting in the NOR⁷⁵; low attentive rats⁷⁵.	AD; dementia	Phase III (terminated in 2017)
		K_i: 9.98 nM/L (in α7)⁷⁹			(FORUM)
		Electrophysiology activity:			
		H_7 in oocytes: $EC_{50} = 0.39 \mu M$; $E_{max} = 42%$			
					(FORUM)
		R_7 in oocytes: $EC_{50} = 0.14 \mu M$; $E_{max} = 27%$			

Taoyi Yang et al. 614
Compound	Action	Binding affinity	Applications	Status
MEM3454/RG3487	Partial agonist	K_i: 6 nmol/L (in α_7)	Rats: attentional performance in normal rats; aged rats; apomorphine-induced deficits in sensorimotor gating.	AD Phase II (completed in 2007)
				Schizophrenia Phase II (unknown)
AQW051	Partial agonist	K_i: 27 nmol/L	Mice: NOR in normal mice; Monkeys: Parkinsonian monkeys.	Schizophrenia Phase II (completed in 2013) (Novartis)
		Ca^{2+} flux assays:		
TC-5619	Full agonist	K_i: 1 and 1.4 nmol/L (in α_7 and τ_7)	Mice: θ(k)/θ(k^*) mice; apomorphine-induced PPI deficits; NOR in normal mice.	Schizophrenia Phase II (completed in 2013) (Targacept)
		Ca^{2+} flux assays:		
SSR-180711	Partial agonist	K_i: 14 and 22 nmol/L (in α_7 and τ_7)	Rats: MK-801/PCP-induced cognitive deficits; depressive disorders rates; neurodevelopmental latent inhibition models of schizophrenia.	AD Phase II (completed in 2011) (Targacept)
				ADHD Phase II (completed in 2012) (Targacept)
				AD Phase II (terminated in 2008) (Sanofi)
APN1125	Partial agonist	K_i: 1.16 mmol/L	Rats: NOR in normal rats.	Schizophrenia Phase I / Phase II (suspended in 2016) (CoMentis)
(Structure Undisclosed)				
AVL-3288/XY4083/CCMI	Type I PAM		Mice: DBA2 mouse model of sensory-gating deficit; MK-801-induced hyperlocomotion mode eight-arm radial maze in normal mice; NOR in normal mice; Rats: 5-CSRTT in normal rats; ketamine-induced cognitive deficits and social withdrawal.	Schizophrenia; schizoaffective disorder Phase I (recruiting) (New York State Psychiatric Institute; University of Colorado)

DMTS, delayed matching-to-sample; NOR, novel object recognition; PCP, neonatal phencyclidine; 5-CSRTT, five-choice serial reaction time task. Indications and clinical status of $a7$ nAChR modulators above are obtained from https://clinicaltrials.gov/.
AstraZeneca terminated AZD0328 for a phase II clinical trial for being “unlikely to meet the current target product profile”\(^\text{103}\).\(^\text{104}\)

Reported in 2016, a new spirooxazolidinone named BMS-933043 (\((\pi R)-N-(6-(1H-azidamol-1-yl)-4-pyrimidinyl)-4-H\)-spiro[4-azabicyclo[2.2.2]octane-2,5.5\(^{-}\)[1,3]oxazol]-2-amine) was identified by Bristol-Myers Squibb as a selective partial agonist for the \(\alpha_7\) nAChR (\(K_i = 8.1\) nmol/L at human \(\alpha_7\) nAChRs)\(^\text{33}\). Preclinical studies showed cognition enhancement and sensory gating improvement in rodents\(^\text{5}\). This compound was advanced into a phase I clinical trial for schizophrenia in 2012.\(^\text{33}\)

Analogs with quinuclidine, aromatic moieties, and functional linkers such as amidic and ethers have been substantially explored. EVP-6124 \(((\pi R)-7-chloro-N-quinuclidin-3-yl)benzo[b] thiophene-2-carboxamide) is a representative quinuclidine amide analog developed by FORUM (formerly EnVivo) that acts as a potent \(\alpha_7\) nAChR PAM\(^\text{105}\).\(^\text{106}\). AQW051 (\(2-(((1\pi R,3\pi R,4S,5S,7\pi S)-1-azadadamantam-4-yloxy)-5-phenyl-3,4-thiadiazole), developed by AbbVie (formerly Abbott), is an azadamantane derivative that acted as an \(\alpha_7\) nAChR agonist (\(K_i = 12–14\) nmol/L)\(^\text{107}\). In phase II clinical trials in patients with mild-to-moderate AD, ABT-126 demonstrated significant improvement compared with placebo in the primary efficacy endpoint\(^\text{5}\).\(^\text{108}\). A Phase II trial of ABT-126 for treatment of cognitive impairment in schizophrenia was also conducted and revealed that this compound demonstrated a procognitive effect in nonsmoking subjects\(^\text{109}\). However, in a phase Ib clinical trial, ABT-126 did not demonstrate a consistent effect on cognition in nonsmoking subjects with schizophrenia but a trend toward an effect on negative symptoms\(^\text{110}\).\(^\text{111}\)

Researchers from Sanoﬁ described a diazabicycloheptane \(\alpha_7\) nAChR partial agonist named SSRI80711 (4-bromophenyl (15,5S)-1-diazabicyclo[3.2.2]nonane-4-carboxylate, \(K_i = 14\) nmol/L at human \(\alpha_7\) nAChRs)\(^\text{112}\).\(^\text{113}\). SSRI80711 displayed effects of antidepressive, procognition and sensory gating improvement in multiple \(\text{i}n\ \text{vivo}\) studies in rodents\(^\text{114}\).\(^\text{115}\). However, the phase II clinical trial was terminated in 2008 for insufficient expected benefit and risk. APN1125 developed by Comentis with an undisclosed structure also acted as an \(\alpha_7\) nAChR partial agonist (\(EC_{50}=1.16\) nmol/L; \(E_{max}=41%\) at human \(\alpha_7\) nAChRs)\(^\text{116}\). It is currently suspended in a phase I/phase II clinical trial for schizophrenia for business reasons\(^\text{117}\).\(^\text{118}\)

Most of the clinical trials conducted with \(\alpha_7\) nAChR agonists showed a paucity of effects. With limited clear reports, we can only assume the lack of sufficient selectivity over 5-HT\(_3\) receptors and improper designation of clinical trials might be the cause of the discontinued compounds. However, the crucial function of \(\alpha_7\) nAChRs in the brain and the compelling evidence of preclinical studies still suggest that selective agonists activating \(\alpha_7\) nAChRs may be an attractive therapeutic strategy for schizophrenia, AD and other CNS diseases.

3.2. \(\alpha_7\) nAChR PAMs and ago-PAMs

A large number of compounds modulate \(\alpha_7\) nAChR function by binding to allosteric sites instead of the orthosteric site that binds agonists and antagonists. \(\alpha_7\) nAChR-positive allosteric modulators (PAMs) are a category of these compounds that can potentiate \(\alpha_7\) currents in the presence of an agonist such as acetylcholine. On the basis of their macroscopic effects, \(\alpha_7\) nAChR PAMs have been classified and distinguished as type I and type II. Type I PAMs mainly enhance agonist-evoked peak currents without delaying desensitization and do not reactivate desensitized receptors, whereas type II PAMs can delay desensitization and reactivate desensitized receptors\(^\text{119}\). When compared with agonists, \(\alpha_7\) nAChR PAMs are more promising therapeutic tools because of their maintenance of endogenous activation characteristics, better selectivity profile, higher structural diversity and better final effects with an extra neuroprotection effect\(^\text{120}\). \(\alpha_7\) nAChR ago-PAMs can
activate receptors from non-orthosteric sites while still retaining the properties of PAMs. AVL-3288 (E)-N-(4-chlorophenyl)-3-((4-chlorophenyl)amino)-2-(3-methylisoxazol-5-yl)acrylamide), which also named XY4083 or CCMI, is a representative type I α7 nAChR PAM. Screened from a small library of GABAA receptor PAM analogues, researchers from University of California, Irvine identified a highly selective type I α7 nAChR PAM, AVL-3288. In rodent models, treatment with AVL-3288 in the presence or absence of agonist both corrected the sensory deficits and improved cognition. In 2017, AVL-3288 has advanced into a phase I clinical trial for schizophrenia and schizoaffective disorder, which demonstrated that a type I PAM can be safely administered to humans and that it has potential positive neurocognitive effects in CNS disorders.

NS1738 (1-(5-chloro-2-hydroxy-phenyl)-3-(2-chloro-5-trifluoromethyl-phenyl)-urea) developed by NeuroSearch and LY2087101 ((2-[4-fluorophenyl]amino)-4-methyl-5-thiazolyl)-3-thienylmethanone) by Eli Lilly are also type I α7 nAChR PAMs. NS1738 was also reported to enhance agonist potency in rescuing scopolamine-induced cognitive deficits. Both of NS1738 and LY2087101 have not brought into clinical trials yet.

The first selective type II PAM PNU-120596 (1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl)-urea) developed by Pfizer was shown to not only potentiate the peak α7 current but also delay desensitization of α7 nAChRs. Though this compound augmented the proconvective effects of an acetylcholinesterase inhibitor in rodents and non-human primates, it was not able to advance into clinical trial for its potential toxic effects resulting from excessively high calcium influx. A-867744 (4-(5-(4-chlorophenyl)-2-methyl-3-propionyl-1H-pyrrol-1-yl)benzenesulfonamide) is type II PAM with moderate potency and efficacy (EC50=1.12 μmol/L; E_max=733% to ACh-evoked α7 current in Xenopus oocytes) developed by AbbVie. Other reported type II PAMs such as TQS (4-naphthalene-1-yl-3a,4,5,9b-tetrahydro-3H-cyclopenta[d]quinoline-8-sulfonic acid amide), JNJ-1930942 (2-[4-fluoro-3-(trifluoromethyl)phenyl]amino)-4-(4-pyridinyl)-5-thiazolene) and ROS5126946 ((5-chloro-N-{[(3S,3'R)-2,2-dimethyl-3-(4-sulfamoyl-phenyl)-cyclopropyl]-2-methoxy-benzamide}) also exhibited α7 potentiation effects in vitro and precognition effects in vivo.

On the basis of the previously identified type II α7 nAChR PAM TQS, researchers from the Eli Lilly identified a compound named GAT-107 or 4BP-TQS (4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[d]quinoline-8-sulfonamide), which exhibited potent allosteric agonist and allosteric potentiation at α7 nAChRs. Moreover, with GAT-107 as a tool, it is reported that the direct allosteric activation site is located in the interface of α7 nAChR subunits.

Exploiting α7 nAChR PAMs and ago-PAMs is still in its early stages, and clinical trials of these compounds are still in their infancy. However, with the property of modulating α7 nAChR activity, α7 nAChR PAMs and ago-PAMs represent an additional therapeutic possibility for CNS diseases.

4. Concluding remarks

Abundant literature has shown us the critical role of α7 nAChRs in cognition, learning, memory, and sensory processing in animal models. Compelling preclinical evidence has shown that α7 nAChR agonists and PAMs could enhance cognition and alleviate sensory gating deficiency.

Most clinical trials of α7 nAChR agonists are terminated or suspended. With the limited data, we are not able to assign the cause of clinical failure. However, almost all of the α7 nAChR agonists show cross-activity with 5-HT3 receptors. Thus, we assume that the lack of selectivity over 5-HT3 receptors might be one reason for the failure of α7 nAChR agonists in clinical trials. In phase II clinical trials for cognitive deficits in schizophrenia, GTS-21 and ABT-126 showed significant improvement in negative symptoms but not in ameliorating cognitive deficits. In addition, EVP-6124 failed to reach the primary clinical endpoint because of the unexpected high effect of the placebo. Therefore, improper design of clinical trials might be another reason for the failure of α7 nAChR agonists in clinical trials.

As for α7 nAChR PAMs and ago-PAMs, the cytotoxic effect of PNU-120596 indicates that a too-potent activity of type II PAM is not favorable in drug discovery. However, the reported precognition and sensory gating improvement effects in animal models demonstrates a promising future for α7 nAChR PAMs. Moreover, positive results of AVL-3288 in a phase I clinical trial indicates that an α7 nAChR PAM is a potential new therapy for cognitive deficit in schizophrenia. Pharmacological studies on α7 nAChR ago-PAMs have not been reported yet. However, based on the activity of GAT-107 in enhancing α7 nAChR function, ago-PAMs remain a possible choice in developing therapeutic solution in CNS disorders. Taken together, α7 nAChR agonists and PAMs (including ago-PAMs) remain a viable therapeutic strategy for the treatment of AD, schizophrenia, and other neuropsychiatric disorders. While developing α7 nAChR modulators, selectivity and toxicity profiles should be further improved. And before clinical trials, scientific and well-rounded clinical plans should be designed.

References

1. Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 2007;47:699–729.
2. Kalamida D, Poulos K, Avramopoulos V, Fostieri E, Lagooumentzis G, Lazaridis K, et al. Muscle and neuronal nicotinic acetylcholine receptors. Struct. Funct Pathol FEBS J 2007;274:3799–845.
3. Seguela P, Wadiche J, Dinelle-Miller K, Dani JA, Patrick JW. Molecular cloning, functional properties, and distribution of rat brain α7: a nicotinic cation channel highly permeable to calcium. J Neurosci 1993;13:596–604.
4. Couturier S, Bertrand D, Matter JM, Hernandez MC, Bertrand S, Millar N, et al. A neuronal nicotinic acetylcholine receptor subunit (α7) is developmentally regulated and forms a homo-oligomeric channel blocked by α-BTX. Neuron 1990;5:847–56.
5. Schoepfer R, Conroy WG, Whiting P, Gore M, Lindstrom J. Brain α-bungarotoxin binding protein cDNAs and MAbs reveal subtypes of this branch of the ligand-gated ion channel gene superfamily. Neuron 1990;5:35–48.
6. Khiroug SS, Harkness PC, Lamb PW, Sudweeks SN, Khiroug L, Millar NS, et al. Rat nicotinic ACh receptor α7 and β2 subunits cossemble to form functional heteromeric nicotinic receptor channels. J Physiol 2002;540:425–34.
7. Wang H, Yu M, Ochni M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature 2003;421:384–8.
8. Taly A, Corringer PJ, Guedin D, Lestage P, Changeux JP. Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov 2009;8:733–50.
9. Dineley KT, Pandya AA, Yakel JL. Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends Pharmacol Sci 2015;36:96–108.
10. Bertrand D, Gázi JL, Devillers-Thiéry A, Bertrand S, Changeux JP. Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal α7 nicotinic receptor. Proc Natl Acad Sci U S A 1993;90:6971–5.
11. Peng X, Katz M, Gerzanich V, Anand R, Lindstrom J. Human α7 acetylcholine receptor: cloning of the α7 subunit from the SH-SYSY cell line and determination of pharmacological properties of native receptors and functional α7 homomers expressed in Xenopus oocytes. Mol Pharmacol 1994;45:546–54.
12. Turek JW, Kang CH, Campbell JE, Arneric SP, Sullivan JP. A 2-base pair deletion polymorphism in the partial duplication of the α7 nicotinic acetylcholine gene (CHRNA7) on chromosome 15q14 is associated with schizophrenia. Brain Res 2009;1291:1–11.
13. Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 2006;27:482–91.
14. Wonnacott S. Presynaptic nicotinic ac receptors. Trends Neurosci 1997;20:92–8.
15. Aramakis VB, Metherate R. Nicotine selectively enhances NMDA receptor-mediated synaptic transmission during postnatal development in sensory neocortex. J Neurosci 1998;18:8485–95.
16. Barik J, Wonnacott S. Indirect modulation by α7 nicotinic acetylcholine receptors of noradrenaline release in rat hippocampal slices: interaction with glutamate and GABA systems and effect of nicotine withdrawal. Mol Pharmacol 2006;69:618–28.
17. De Filippi G, Baldwinson T, Sher E. Evidence for nicotinic acetylcholine receptor activation in rat cerebellar slices. Pharmacol Biochem Behav 2001;70:447–55.
18. Kawa K. Acute synaptic modulation by nicotinic agonists in developing cerebellar Purkinje cells of the rat. J Physiol 2002;538:87–102.
19. Radcliffe KA, Dani JA. Nicotinic stimulation produces multiple forms of increased glutamatergic synaptic transmission. J Neurosci 1998;18:7075–83.
20. Sher E, Chen Y, Sharples TJ, Broad LM, Benedetti G, Zwart R, et al. Physiological roles of neuronal nicotinic receptors subtypes: new insights on the nicotinic modulation of neurotransmitter release, synaptic transmission and plasticity. Curr Top Med Chem 2004;4:283–97.
21. Maggi L, Sher E, Cherubini E. Regulation of GABA release by nicotinic acetylcholine receptors in the neonatal rat hippocampus. J Physiol 2001;536:89–100.
22. Bertrand D, Lee CH, Flood D, Marger F, Donnelly-Roberts D. Therapeutic potential of α7 nicotinic acetylcholine receptors. Pharmacol Rev 2015;67:1025–73.
23. Hawkins BT, Egleton RD, Davis TP. Modulation of cerebral microvascular permeability by endothelial nicotinic acetylcholine receptors. Am J Physiol Heart Circ Physiol 2005;289:H212–9.
24. Sharma G, Vjijayaraghavan S. Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci U S A 2001;98:4148–53.
25. Shen JX, Yakel JL. Functional α7 nicotinic ac receptors on astrocytes in rat hippocampal CA1 slices. J Mol Neurosci 2012;48:14–21.
26. Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, et al. Cholinergic modulation of microglial activation by α7 nicotinic receptors. J Neurochem 2004;89:337–43.
27. Vélez-Fort M, Audinat E, Angulo MC. Functional α7-containing nicotinic receptors of NG2-expressing cells in the hippocampus. Glia 2009;57:1104–14.
28. Suzuki T, Hide I, Matsubara A, Hama C, Harada K, Miyano K, et al. Microglial α7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. J Neurosci Res 2006;83:1461–70.
α7 agonists and PAMs in clinical trials

48. Wu J, Khan GM, Nichols RA. Dopamine release in prefrontal cortex in response to β-amyloid activation of α7 nicotinic receptors. Brain Res 2007;1182:82–9.

49. Wonnacott S, Gates and filters: unveiling the physiological roles of nicotinic acetylcholine receptors in dopaminergic transmission. Br J Pharmacol 2008;153 Suppl 1:S2–4.

50. Parii HR, Hernandez CM, Dineley KT. Research update: α7 nicotinic acetylcholine receptor mechanisms in Alzheimer's disease. Biochem Pharmacol 2011;82:931–42.

51. Singh M, Kaur M, Kukreja H, Chugh R, Silakari O, Singh D. Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. Eur J Med Chem 2013;70:165–88.

52. Galimberti D, Scarpini E. Old and new acetylcholinesterase inhibitors for Alzheimer's disease. Expert Opin Investig Drugs 2016;25:1181–7.

53. Braida D, Sala M. Eptastigmine: ten years of pharmacology, toxicology, pharmacokinetic, and clinical studies. CNS Drug Rev 2001;7:369–86.

54. Klein J. Phenserine. Expert Opin Investig Drugs 2007;16:1087–97.

55. Qian Z, Ke Y. Huperzine A: is it an effective disease-modifying drug for Alzheimer’s disease?. Front Aging Neurosci 2014;6:216.

56. Chau S, Herrmann N, Ruthirakunah MT, Chen JJ, Lancot KL. Latrepirdine for Alzheimer's disease. Cochrane Database Syst Rev 2015;CD009524.

57. Brunzell DH, McIntosh JM. α7 nicotinic acetylcholine receptors modulate motivation to self-administer nicotine: implications for smoking and schizophrenia. Neupysropharmacology 2012;37:1134–43.

58. Quik M, Zhang D, McGregor M, Bordia T. α7 nicotinic receptors as therapeutic targets for Parkinson's disease. Biochem Pharmacol 2015;97:399–407.

59. Alsharabi SD, Freitas K, Damaj MI. Functional role of α7 nicotinic receptor in chronic neuropathic and inflammatory pain: studies in transgenic mice. Biochem Pharmacol 2013;86:1201–7.

60. Almeida LE, Pereira EF, Alkondon M, Fawcett WP, Randall WR, Albuquerque EX. The opioid antagonist naltrexone inhibits activity and alters expression of α7 and α4β2 nicotinic receptors in hippocampal neurons: implications for smoking cessation programs. Neuropsychopharmacology 2000;29:2740–55.

61. Brunzell DH, McIntosh JM, Papke RL. Diverse strategies targeting α7 homomeric and α6β2 heteromeric nicotinic acetylcholine receptors for smoking cessation. Ann N Y Acad Sci 2014;1327:27–45.

62. Banerjee C, Nyengaard JR, Wevers A, de Vos RA, Jansen Steur EN, Lindstrom J, et al. Cellular expression of α7 nicotinic acetylcholine receptor protein in the temporal cortex in Alzheimer's and Parkinson's disease—a stereological approach. Neurobiol Dis 2000;7:666–72.

63. Liu Y, Zeng X, Hui Y, Zhu C, Wu J, Taylor DH, et al. Activation of α7 nicotinic acetylcholine receptors protects astrocytes against oxidative stress-induced apoptosis: implications for Parkinson's disease. Neuropharmacology 2015;91:87–96.

64. Sérrière S, Domène A, Vercoullie J, Mothes C, Bodard S, Rodrigues N, et al. Assessment of the protection of dopaminergic neurons by an α7 nicotinic receptor agonist, PHA 543613 using [11F]FBT-999 in a Parkinson's disease rat model. Front Med (Lausanne) 2015;2:61.

65. Zhang D, McGregor M, Bordia T, Perez XA, McIntosh JM, Decker MW, et al. α7 nicotinic receptor agonists reduce levodopa-induced dyskinesias with severe nigrostriatal damage. Mov Disord 2015;30:1901–11.

66. Damaj MI, Meyer EM, Martin BR. The antinoceptive effects of α7 nicotinic agonists in an acute pain model. Neuropharmacology 2000;39:2785–91.

67. Feuerbach D, Lingenhoehl K, Olpe HR, Vassout A, Gentsch C, Chapiron F, et al. The selective nicotinic acetylcholine receptor α7 agonist JNJ403 is active in animal models of cognition, sensory gating, epilepsy and pain. Neuropharmacology 2009;56:254–63.

68. Freitas K, Carroll FI, Damaj MI. The antinoceptive effects of nicotinic receptors α7-positive allosteric modulators in murine acute and tonic pain models. J Pharmacol Exp Ther 2013;344:264–75.
related sensorimotor gating deficits in wistar rats. Biochem Pharma-
col 2011;82:1039.
87. Callahan PM, Terry Jr AV, Tehim A. Effects of the nicotinic α7
receptor partial agonist GTS-21 on NMDA-glutamatergic receptor
related deficits in sensorimotor gating and recognition memory in
rats. Psychopharmacology 2014;231:3695–706.
88. Simovsky JK, Stevens KE, Kem WR, Freedman R. Intragastic
DMXB-A, an α7 nicotinic agonist, improves deficient sensory
inhibition in DBA/2 mice. Biol Psychiatry 2001;50:493–500.
89. Lewis AS, Garvey K, Mineur YS, Picciotto MR. Reduction of
aggressive behavior in mouse models by the selective α7 nicotinic
partial agonist GTS-21. Biochem Pharmacol 2015;97:632–3.
90. Woodruff-Pak DS, Green JT, Coleman-Valencia C, Pak JT. A
nicotinic cholinergic agonist (GTS-21) and eyeblink classical condi-
tioning: acquisition, retention, and relearning in older rabbits. Exp
Aging Res 2000;26:323–36.
91. Woodruff-Pak DS, Li YT, Kem WR. A nicotinic agonist (GTS-21),
eyeblink classical conditioning and nicotinic receptor binding in
rabbit brain. Brain Res 1994;645:309–17.
92. Cannon CE, Puri V, Vivian JA, Egbertson MS, Eddins D, Uslaner
JM. The nicotinic α7 receptor agonist GTS-21 improves cognitive
performance in ketamine impaired rhesus monkeys. Neuropsycho-
diagnosis 2013;6:191–6.
93. Florian H, Meier A, Gauthier S, Lipschitz S, Lin Y, Tang Q, et al.
Efficacy and safety of ABT-126 in subjects with mild-to-moderate
Alzheimer’s disease on stable doses of acetylcholinesterase inhibi-
tors: a randomized, double-blind, placebo-controlled study. J Alzhei-
mers Dis 2016;51:1237–47.
94. Gault LM, Lenz RA, Ritchie CW, Meier A, Othman AA, Tang Q,
et al. ABT-126 monotherapy in mild-to-moderate Alzheimer’s
dementia: randomized double-blind, placebo and active controlled
adaptive trial and open-label extension. Alzheimers Res Ther
2016;8:44.
95. McGregor G, Zhang D, Bordia T, PerezXA, Deck MW, Quik M.
Antidyskinetic effect of the novel α7 nicotinic receptor agonist ABT-
126 in parkinsonian monkeys. Biochem Pharmacol 2015;97:629.
96. Syderuff S, Sutton EJ, Song D, Quirk MC, Maciag C, Li C, et al.
Selective α7 nicotinic receptor activation by AZD3032 enhances
cortical dopamine release and improves learning and attentional
processes. Biochem Pharmacol 2009;78:880–8.
97. Werkheiser JL, Syderuff S, Hubbs SJ, Ding M, Eisman MS, Perry D,
et al. Ultra-low exposure to α7 nicotinic acetylcholine receptor partial
agonists elicits an improvement in cognition that corresponds with an
increase in α7 receptor expression in rodents: implications for low
dose clinical efficacy. Neuroscience 2011;186:76–87.
98. Castner SA, Smagin GN, Piser TM, Wang Y, Smith JS, Christian EP,
et al. Immediate and sustained improvements in working memory
after selective stimulation of α7 nicotinic acetylcholine receptors.
Biol Psychiatry 2011;69:12–8.
99. Prickhaerts J, van Goethem NP, Chiesworth R, Shapiro G, Boess FG,
Methefessel C, et al. EVP-6124, a novel and selective α7 nicotinic
acetylcholine receptor partial agonist, improves memory performance
by potentiating the acetylcholine response of α7 nicotinic acetylcho-
line receptors. Neurpharmacology 2012;62:1099–110.
100. van Goethem NP, Prickhaerts J, Walty D, Flood DG, Koenig G.
Continuous infusion of the α7 nicotinic acetylcholine receptor agonist
EVP-6124 produces no signs of tolerance at memory-enhancing
doses in rats: a pharmacokinetic and behavioral study. Behav
Pharmacol 2015;26:403–6.
101. Hayward A, Adamson L, Neill JC. Partial agonism at the α7 nicotinic
acetylcholine receptor improves attention, impulsive action and
vigilance in low attentive rats. Eur Neuropsychopharmacol
2017;27:325–35.
102. Wallace TL, Callahan PM, Tehim A, Bertrand D, Tombaugh G,
Wang S, et al. RG3487, a novel α7 nicotinic receptor partial agonist,
improves cognition and sensorimotor gating in rodents. J Pharmacol
Exp Ther 2011;336:242–53.
103. Rezvani AH, Kholdebarin E, Brucato FH, Callahan PM, Lowe DA,
Levin ED. Effect of R3487/ME3454, a novel nicotinic α7 receptor
partial agonist and 5-HT3 antagonist on sustained attention in rats.
Prog Neuropsychopharmacol Biol Psychiatry 2009;33:269–75.
104. Lopez CL, Johns D, Weiss M, Feuerbach D. Pharmacological
characterisation and phase I evaluation in healthy volunteers of the
nAChR agonist, AQU051. Eur Neuropsychopharmacol 2013;23
Suppl 2:S288–9.
105. Feuerbach D, Pezonus N, Weiss M, Shakeri-Nejad K, Lingenhoehl
K, Hoyer D, et al. AQU051, a novel, potent and selective α7 nicotinic
ACh receptor partial agonist: pharmacological characterization and
phase I evaluation. Br J Pharmacol 2015;172:1292–304.
106. Di Paolo T, Gregoire L, Feuerbach D, Elbacht W, Weiss M, Gomez-
Mancilla B, AQU051, a novel and selective nicotinic acetylcholine
receptor α7 partial agonist, reduces 1-Dopa-induced dyskinesias and
extends the duration of 1-Dopa effects in parkinsonian monkeys. Park
Relat Disord 2014;20:1119–23.
107. Mazurov AA, Kombo DC, Hauser TA, Miao L, Dunn G, Genus JF,
et al. Discovery of (2,3R)-N-[2-(pyridin-3-ylmethyl)-1-azacyclo-
[2.2.2]oct-3-yl]benzo[b]fur-2-carboxamide (TC-5619), a selective
α7 nicotinic acetylcholine receptor agonist, for the treatment of
cognitive disorders. J Med Chem 2012;55:9793–809.
108. Hauser TA, Kucinski A, Jordan KD, Gatto GJ, Weisinger SR, Hesse
RA, et al. TC-5619: an α7 neuronal nicotinic receptor-selective agonist
that demonstrates efficacy in animal models of the positive
and negative symptoms and cognitive dysfunction of schizophrenia.
Biochem Pharmacol 2009;78:803–12.
109. Hauser TA, Benchnerf M, Lippiello PM, Jordan KD, Gatto GJ. TC-
5619: an α7 neuronal nicotinic receptor-selective agonist with the
potential to treat schizophrenia. Eur Neuropsychopharmacol 2006;
16 (Suppl 4):S394.
110. Biton B, Bergis OE, Galli F, Nedelev A, Lochead AW, Jegham S,
et al. SSR180711, a novel selective α7 nicotinic receptor partial
agonist: (1) binding and functional profile. Neuropsychopharmacol-
yology 2007;32:1–16.
111. Pichat P, Bergis OE, Terranova JP, Urania A, Duarte C, Santucci V,
et al. SSR180711, a novel selective α7 nicotinic receptor partial
agonist: (ii) efficacy in experimental models predictive of activity
against cognitive symptoms of schizophrenia. Neuropsychopharmaco-
yology 2007;32:17–34.
112. Barak S, Arad M, Le Devie A, Black MD, Griebel G, Weiner I. Pro-
cognitive and antipsychotic efficacy of the α7 nicotinic partial agonist
SSR180711 in pharmacological and neurodevelopmental latent
inhibition models of schizophrenia. Neuropsychopharmacology
2009;34:1753–63.
113. Stemmlin J, Cohen C, Bergis O, Griebel G. The α7 nACh receptor
agonist, SSR180711, displays antidepressant-like effects in rodents.
Behav Pharmacol 2005;16:547.
114. Urani A, Bergis OE, Griebel G. SSR180711, an α7 nicotinic receptor
partial agonist, reverses memory deficits induced by β35–39 amyloid
peptide icv administration in mice. Eur Neuropsychopharmacol
2006;16(Suppl 4):S489.
115. Hashimoto K, Ishima T, Fujita Y, Matsuo M, Kobashi T, Takahagi
M, et al. Phencyclidine-induced cognitive deficits in mice are
improved by subsequent subchronic administration of the novel
selective α7 nicotinic receptor agonist SSR180711. Biol Psychiatry
2008;63:92–7.
116. Andreasen JT, Redrobe JP, Nielsen EO. Combined
swim and tail suspension tests: a comparison of SSR180711 and
APN1125: a clinical stage nAChR agonist, AQW051. Eur Neuropsycho-
opharmacology 2012;33:269–75.
a7 agonists and PAMs in clinical trials

621

modulator derived from GABA3 receptor modulators. Proc Natl Acad Sci U S A 2007;104:8059–64.

Nikiforuk A, Kos T, Potasiewicz A, Popik P. Positive allosteric modulation of a7 nicotinic acetylcholine receptors enhances recognition memory and cognitive flexibility in rats. Eur Neuropsychopharmacol 2015;25:1300–13.

Nikiforuk A, Kos T, Holuj M, Potasiewicz A, Popik P. Positive allosteric modulators of a7 nicotinic acetylcholine receptors reverse ketamine-induced schizophrenia-like deficits in rats. Neuropsychopharmacology. 2016;101:389–400.

Lape R, Colquhoun D, Sivilotti LG. On the nature of partial agonism in the nicotinic receptor superfamily. Nature 2008;454:722–7.

Lacerda JF, Martins C, Carmo JA, Lourenço MF, Pereira A, Rodrigues A, et al. Randomized trial of ondansetron, granisetron, and tropisetron in the prevention of acute nausea and vomiting. Transplant Proc 2000;32:2680–1.

Macor JE, Garley D, Lanthorn T, Loch J, Mack RA, Mullen G, et al. The 5-HT3 antagonist tropisetron (ICS 205-930) is a potent and selective a7 nicotinic receptor partial agonist. Bioorg Med Chem Lett 2001;11:319–21.

Shina A, Shirayama Y, Niiits T, Hashimoto T, Yoshida T, Hasegawa T, et al. A randomised, double-blind, placebo-controlled trial ofropisetron in patients with schizophrenia. Ann Gen Psychiatry 2010:9:27.

de Fiebre CM, Meyer EM, Henry JC, Muraskin SI, Kem WR, Papke Mullen G, Napier J, Balestra M, DeCory T, Hale G, Macor J, et al. Nikiforuk A, Kos T, Potasiewicz A, Popik P. Positive allosteric modulators of a7 nicotinic acetylcholine receptors enhance glutamate release. Psychopharmacology 2014;231:2199–210.

Umbricht D, Keefe RS, Murray S, Lowe DA, Porter R, Garibaldi G, et al. A randomized, placebo-controlled study investigating the nicotinic a7 agonist, RG3487, for cognitive deficits in schizophrenia. Neuropsychopharmacology 2014;39:1568–77.

Lieberman JA, Dunbar G, Segreti AC, Girgis RR, Seoane F, Beaver M, et al. A randomized exploratory trial of an a7 nicotinic receptor agonist (TC-5619) for cognitive enhancement in schizophrenia. Neuropsychopharmacology 2013:38:968–75.

Hosford D, Dvergsten C, Beaver J, Segreti AC, Toler S, Farr MG, et al. Phase 2 clinical trial of TC-5619, an a7 nicotinic receptor agonist in the treatment of negative and cognitive symptoms in schizophrenia. Eur Neuropsychopharmacology 2014;24 Suppl 2:S531–2.

Walling D, Marder SR, Kane J, Fleischhacker WW, Keefe RS, Hosford DA, et al. Phase 2 trial of an a7 nicotinic receptor agonist (TC-5619) in negative and cognitive symptoms of schizophrenia. Schizophr Bull 2016;42:335–43.

Trenkwalder C, Berg D, Rascio O, Eggert K, Ceballos-Baumann A, Corvol JC, et al. A placebo-controlled trial of AQW051 in patients with moderate to severe levodopa-induced dyskinesia. Mov Disord 2016:31:1049–54.

Haig GM, Bain EE, Robieson WZ, Baker JD, Othman AA. A randomized trial to assess the efficacy and safety of ABT-126, a selective a7 nicotinic acetylcholine receptor agonist, in the treatment of cognitive impairment in schizophrenia. Am J Psychiatry 2016;173:827–35.

Haig G, Wang D, Othman AA, Zhao J. The a7 nicotinic agonist ABT-126 in the treatment of cognitive impairment associated with schizophrenia in non-smokers: results from a randomized controlled phase 2b study. Neuropsychopharmacology 2016:41:2893–902.

ClinicalTrials.gov. Safety, tolerability, and pharmacokinetics of APN1125 in subjects with schizophrenia; 2016.

Corradi J, Bouzat C. Understanding the bases of function and modulation of a7 nicotinic receptors: implications for drug discovery. Mol Pharmacol 2016;90:288–99.

Thomsen MS, El-Sayed M, Mikkelsen JD. Differential immediate and sustained memory enhancing effects of a7 nicotinic receptor agonists and allosteric modulators in rats. PLoS One 2011;6:e27014.

Gee KW, Olincy A, Kanner R, Johnson L, Hogenkamp D, Harris J, et al. First in human trial of a type 1 positive allosteric modulator of a7-nicotinic acetylcholine receptors: pharmacokinetics, safety, and evidence for neurocognitive effect of AVL-3288. J Psychopharmacology 2017:31:434–41.

Timmernann DB, Gronlrien JH, Kohlihaas KL, Nielsen EO, Dam E, Jorgensen TD, et al. An allosteric modulator of the a7 nicotinic acetylcholine receptor possessing cognition-enhancing properties in vivo. J Pharmacol Exp Ther 2007;323:294–307.

Broad LM, Zwart R, Pearson KH, Lee M, Wallace L, McPhie GI, et al. Identification and pharmacological profile of a new class of selective nicotinic acetylcholine receptor potentiators. J Pharmacol Exp Ther 2006;318:1108–17.

Hurst RS, Hajós M, Raggenbass M, Wall TM, Higdon NR, Lawson JA, et al. A novel positive allosteric modulator of the a7 neuronal nicotinic acetylcholine receptor: in vitro and in vivo characterization. J Neurosci 2005;25:4396–405.

Callahan PM, Hutchings EJ, Kille NJ, Chapman JM, Terry Jr. AV. Positive allosteric modulator of a7 nicotinic-acetylcholine receptors, PNU-120596 augments the eects of donepezil on learning and memory in aged rodents and non-human primates. Neuropharmacology 2013:67:201–12.

Malyss J, Gronljen JH, Anderson DJ, Hakerud M, Thorin-Hagene K, Ween H, et al. In vitro pharmacological characterization of a novel
allosteric modulator of α7 neuronal acetylcholine receptor, 4-(5-(4-chlorophenyl)-2-methyl-3-propionyl-1H-pyrrol-1-yl)benzenesulfonamide (A-867744), exhibiting unique pharmacological profile. *J Pharmacol Exp Ther* 2009;**330**:257–67.

Dinklo T, Shaban H, Thuring JW, Lavreysen H, Stevens KE, Zheng L, et al. Characterization of 2-[[4-fluoro-3-(trifluoromethyl)phenyl]amino]-4-(4-pyridinyl)-5-thiazolemethanol (JNJ-1930942), a novel positive allosteric modulator of the α7 nicotinic acetylcholine receptor. *J Pharmacol Exp Ther* 2011;**336**:560–74.

Sahdeo S, Wallace T, Hirakawa R, Knoffach F, Bertrand D, Maag H, et al. Characterization of RO5126946, a novel α7 nicotinic acetylcholine receptor-positive allosteric modulator. *J Pharmacol Exp Ther* 2014;**350**:455–68.

Grønlien JH, Håkerud M, Ween H, Thorin-Hagene K, Briggs CA, Gopalakrishnan M, et al. Distinct profiles of α7 nAChR positive allosteric modulation revealed by structurally diverse chemotypes. *Mol Pharmacol* 2007;**72**:715–24.

Gill JK, Savolainen M, Young GT, Zwart R, Sher E, Millar NS. Agonist activation of α7 nicotinic acetylcholine receptors via an allosteric transmembrane site. *Proc Natl Acad Sci U S A* 2011;**108**:5867–72.

Papke RL, Horenstein NA, Kulkarni AR, Stokes C, Corrie LW, Maeng CY, et al. The activity of GAT107, an allosteric activator and positive modulator of α7 nicotinic acetylcholine receptors (nAChR), is regulated by aromatic amino acids that span the subunit interface. *J Biol Chem* 2014;**289**:4515–31.

Horenstein NA, Papke RL, Kulkarni AR, Chaturbhuj GU, Stokes C, Manther K, et al. Critical molecular determinants of α7 nicotinic acetylcholine receptor allosteric activation: separation of direct allosteric activation and positive allosteric modulation. *J Biol Chem* 2016;**291**:5049–67.