A REMARK ON OSCILLATORY INTEGRALS ASSOCIATED WITH FEW NOMIALS

SHAOMING GUO

Abstract. We prove that the L^2 bound of an oscillatory integral associated with a polynomial depends only on the number of monomials that this polynomial consists of.

1. Introduction

Given $d \in \mathbb{N}$. Consider the operator

$$H_Q f(x) := \int_{\mathbb{R}} f(x - t)e^{iQ(t)}\frac{dt}{t},$$

(1.1)

with

$$Q(t) = a_1 t^{\alpha_1} + \cdots + a_d t^{\alpha_d}.$$

(1.2)

Here $a_i \in \mathbb{R}$ and α_i is a positive integer for each $1 \leq i \leq d$.

Theorem 1.1. Given $d \in \mathbb{N}$. We have

$$\|H_Q f\|_2 \leq C_d \|f\|_2.$$

(1.3)

Here C_d is a constant that depends only on d, but not on any a_i or α_i.

On \mathbb{R}^2, define the Hilbert transform along the polynomial curve $(t, Q(t))_{t \in \mathbb{R}}$ by

$$H_Q f(x, y) = \int_{\mathbb{R}} f(x - t, y - Q(t))\frac{dt}{t}.$$

(1.4)

As a corollary of Theorem 1.1, we have

Corollary 1.2. Given $d \in \mathbb{N}$. We have

$$\|H_Q f\|_2 \leq C_d \|f\|_2.$$

(1.5)

Here C_d is a constant that depends only on d, but not on any a_i or α_i.

Corollary 1.2 follows from Theorem 1.1 via applying Plancherel’s theorem to the second variable of $H_Q f$. We leave out the details.

Denote by n the degree of the polynomial Q given by (1.2). Then it is well-known that the estimate (1.3) holds true if we replace C_d by C_n, a constant that is allowed to depend on the degree n. Moreover, Parissis \[Par08\] proved that

$$\sup_{P \in \mathcal{P}_n} \left| \int_{\mathbb{R}} f(x - t)e^{iP(t)}\frac{dt}{t} \right| \sim \log n,$$

(1.6)

where \mathcal{P}_n is the collection of all real polynomials of degree at most n. It would also be interesting to know whether the constant C_d in (1.3) can be made to $(\log d)^c$ for some $c > 0$.

Acknowledgements. This material is based upon work supported by the National Science Foundation under Grant No. DMS-1440140 while the author was in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Spring semester of 2017.

Date: July 18, 2018.
2. Reduction to monomials

We start the proof. In this section, we will split \(\mathbb{R} \) into different intervals, and show that for all but finitely many of these intervals, there always exists a monomial which “dominates” our polynomial \(Q \). In dimension one, this idea has been used extensively in the literature. Here we follow the formulation of Li and Xiao \([LX16]\).

Notice that we can always let the function \(f \) absorb the linear term of \(Q \). Hence we assume that \(1 < \alpha_1 < \cdots < \alpha_d \). Denote by \(n \) the degree of the polynomial \(Q \), that is \(n = \alpha_d \). Denote \(\lambda = 2^{1/2} \). Define \(b_j \in \mathbb{Z} \) such that

\[
\lambda^{b_j} \leq |a_j| < \lambda^{b_j+1}.
\]

(2.1)

We define a few bad scales. For \(1 \leq j_1 < j_2 \leq d \), define

\[
\mathcal{J}_{bad}(\Gamma_0, j_1, j_2) := \{ l \in \mathbb{Z} : 2^{-\Gamma_0}|a_{j_2}\lambda^{\alpha_{j_2}l}| \leq |a_{j_1} \lambda^{\alpha_{j_1}l}| \leq 2^{\Gamma_0}|a_{j_2} \lambda^{\alpha_{j_2}l}| \}.
\]

(2.2)

Here \(\Gamma_0 := 2^{10d} \). Notice that \(l \) satisfies

\[
-2 - n\Gamma_0 + b_{j_2} - b_{j_1} \leq (\alpha_{j_1} - \alpha_{j_2})l \leq n\Gamma_0 + b_{j_2} - b_{j_1} + 2.
\]

(2.3)

Hence \(\mathcal{J}_{bad}(\Gamma_0, j_1, j_2) \) is a connected set whose cardinality is smaller than \(4n\Gamma_0 \). Define

\[
\mathcal{J}_{good}^{(0)} := \left(\bigcup_{j_1 \neq j_2} \mathcal{J}_{bad}(\Gamma_0, j_1, j_2) \right)^c
\]

(2.4)

Notice that \(\mathcal{J}_{good}^{(0)} \) has at most \(d^2 \) connected components. Moreover, on each component, there is exactly one monomial which is “dominating”.

Similarly, we define

\[
\mathcal{J}_{bad}^{(1)}(\Gamma_0, j_1, j_2) := \{ l \in \mathbb{Z} : 2^{-\Gamma_0}|a_{j_2}(\alpha_{j_2} - 1)a_{j_2} \lambda^{\alpha_{j_2}l}| \leq |a_{j_1}(\alpha_{j_1} - 1)a_{j_1} \lambda^{\alpha_{j_1}l}| \leq 2^{\Gamma_0}|a_{j_2}(\alpha_{j_2} - 1)a_{j_2} \lambda^{\alpha_{j_2}l}| \}.
\]

(2.5)

Moreover,

\[
\mathcal{J}_{bad} := \bigcup_{j_1 \neq j_2} \mathcal{J}_{bad}^{(1)}(\Gamma_0, j_1, j_2) \text{ and } \mathcal{J}_{good} := \mathcal{J}_{good}^{(0)} \setminus \mathcal{J}_{bad}.
\]

(2.6)

Analogously, \(\mathcal{J}_{good} \) has at most \(d^4 \) connected components.

3. Bad scales

Due to the control on the cardinalities of various bad sets, the contributions from those \(l \notin \mathcal{J}_{good} \) can be controlled by a multiple of the Hardy-Littlewood maximal function.

Let us be more precise. Suppose that we are working on the collection of bad scales \(\mathcal{J}_{bad}(\Gamma_0, j_1, j_2) \) for some \(j_1 \) and \(j_2 \). Define

\[
H_l f(x) = \int_{\mathbb{R}} f(x - t) e^{iQ(t)} \psi(t) \frac{dt}{t}.
\]

(3.1)

Here \(\psi_0 \) is a non-negative smooth bump function supported on \([-\lambda^2, -\lambda^{-1}] \cup [\lambda^{-1}, \lambda^2] \) such that

\[
\sum_{l \in \mathbb{Z}} \psi_l(t) = 1 \text{ for every } t \neq 0, \text{ with } \psi_l(t) := \psi_0\left(\frac{t}{\lambda^l}\right).
\]

(3.2)

By the triangle inequality, we have

\[
\left| \sum_{l \in \mathcal{J}_{bad}^{(0)}(\Gamma_0, j_1, j_2)} H_l f(x) \right| \leq \sum_{l \in \mathcal{J}_{bad}^{(0)}(\Gamma_0, j_1, j_2)} \int_{\mathbb{R}} |f(x - t)| \psi_l(t) \frac{dt}{|t|}.
\]

(3.3)
Recall that the cardinality of $J^{(0)}_{bad}(\Gamma_0, j_1, j_2)$ is at most $4n\Gamma_0$. Now we partition the set $J^{(0)}_{bad}(\Gamma_0, j_1, j_2)$ into subsets of consecutive elements, and each subset contains exactly n elements, with possibly one exception which can be handled in the same way. The scale that these n elements can see is $\lambda^n = 2$. Hence the contribution from each of these subsets can be controlled by $2M f(x)$. Here M denotes the Hardy-Littlewood maximal operator. Hence the right hand side of (4.3) can be controlled by $8\Gamma_0 \cdot M f(x)$. This takes care of the contribution from bad scales.

4. Good scales

Suppose we are working on one connected component of J_{good}. Assume that $a_{j_1} t^{\alpha_{j_1}}$ dominates $Q(t)$ in the sense of (2.2), and $a_{j_2} \alpha_{j_2}(\alpha_{j_2} - 1)t^{\alpha_{j_2} - 2}$ dominates $Q^{''}(t)$ in the sense of (2.3). Let us call such a set $J_{good}(j_1, j_2)$. Under this assumption, we have the estimates

$$|Q(t)| \leq 2|a_{j_1} t^{\alpha_{j_1}}| \text{ and } |Q^{''}(t)| \geq |a_{j_1} t^{\alpha_{j_1} - 2}|,$$

for every $t \in \{\lambda^{j_1}, \lambda^{j_1 + 1}\}$ with $l \in J_{good}(j_1, j_2)$. Recall that $\lambda = 2\pi$ is the smallest scale that we will work with. This scale is only visible when $a_n t^n$ dominates. When some other monomial dominates, at such a small scale, our polynomial will not have enough room to see the oscillation. Define $\lambda_{j_1} := 2\pi \frac{1}{\gamma}$. We choose this scale because the monomial $a_{j_1} t^{\alpha_{j_1}}$ dominates. Define

$$H_l^{(j_1)} f(x) = \int f(x - t)e^{iQ(t)} \psi(t) \frac{dt}{t}. \quad (4.2)$$

Here $\psi(\cdot)$ is a non-negative smooth bump function supported on $[-\lambda^{j_1}, -\lambda^{j_1 - 1}] \cup [\lambda^{j_1 - 1}, \lambda^{j_1}]$ such that

$$\sum_{l \in \mathbb{Z}} \psi_l^{(j_1)} = 1 \text{ for every } t \neq 0, \text{ with } \psi_l^{(j_1)}(t) := \psi_0^{(j_1)}(\frac{t}{\lambda_{j_1}}). \quad (4.3)$$

We define $B_{j_1} \in \mathbb{Z}$ such that

$$\lambda_{j_1}^{-B_{j_1}} \leq |a_{j_1}| < \lambda_{j_1}^{-B_{j_1} + 1}, \quad (4.4)$$

denote $\gamma_{j_1} = B_{j_1}/\alpha_{j_1}$ and split the sum in l into two cases.

$$\sum_{l \in J_{good}(j_1, j_2)} H_l^{(j_1)} f = \sum_{l \leq \gamma_{j_1}} H_l^{(j_1)} f + \sum_{l > \gamma_{j_1}} H_l^{(j_1)} f. \quad (4.5)$$

The former term can be controlled by the maximal function and the maximal Hilbert transform. To be precise, we have a bound

$$H^* f(x) + 2M f(x) + \sum_{l \leq \gamma_{j_1}} \left| \int f(x - t)(e^{iQ(t)} - 1) \psi_l^{(j_1)}(t) \frac{dt}{t} \right|. \quad (4.6)$$

Here H^* stands for the maximally truncated Hilbert transform. We added twice the maximal functions just to take care of some boundary effects. The last term in (4.6) can be further controlled by

$$\sum_{l \leq \gamma_{j_1}} \int f(x - t)||a_{j_1} t^{\alpha_{j_1}}| \psi_l^{(j_1)}(t) \frac{dt}{t} | \leq \sum_{l \in \mathbb{N}} \int_{\lambda_{j_1}^{-l}}^{\lambda_{j_1}^{-l+1}} |f(x - t)||a_{j_1}| t^{\alpha_{j_1} - 1} dt \quad (4.7)$$

$$\leq \sum_{l \in \mathbb{N}} \lambda_{j_1}^{\gamma_{j_1} - l - 1} ||a_{j_1} - 1|| \int_{\lambda_{j_1}^{-l-2}}^{\lambda_{j_1}^{-l}} |f(x - t)||a_{j_1}| dt \leq 8M f(x).$$

Hence it remains to handle the latter term from (4.5). We will prove that there exists $\delta > 0$ such that

$$\|H_l^{(j_1)} f\|_2 \leq C_\delta 2^{-\delta l} \|f\|_2, \text{ for every } l \geq 0, \quad (4.8)$$
with a constant C_d depending only on d. This amounts to proving a decay for the multiplier
\[
\int_{\mathbb{R}} e^{i(Q(t)+it\xi_j j_1)} \frac{dt}{t} = \int_{\mathbb{R}} e^{i(Q(\lambda_j^{\gamma_{j_1}} t)+i\lambda_j^{\gamma_{j_1}} t \xi_j j_1)} \frac{dt}{t}.
\] (4.9)

We calculate the second order derivative of the phase function:
\[
\lambda_j^{2\gamma_{j_1} + 2l} |Q''(\lambda_j^{\gamma_{j_1}} t)| \geq \frac{1}{2} |a_j| \lambda_j^{B_{j_1} + \alpha_{j_1}} \geq 2^{d-2}.
\] (4.10)

Hence the desired estimate follows from van der Corput’s lemma.

REFERENCES

[LX16] X. Li and L. Xiao. Uniform estimates for bilinear Hilbert transforms and bilinear maximal functions associated to polynomials. Amer. J. Math. 138 (2016), no. 4, 907–962.
[Par08] I. Parissis. A sharp bound for the Stein-Wainger oscillatory integral. Proc. Amer. Math. Soc. 136 (2008), no. 3, 963-972.

Department of Mathematics, Indiana University, 831 East 3rd St., Bloomington IN 47405
Email address: shaoguo@iu.edu