A Study of Controlled Release of Nano Particle Liquid Medicated Formulation using the RP-HPLC Method for Determination of Norethindrone into Dissolution Media

G. Lino Steffy Aster a, M. Vijey Aanandhi a and S. Rama Chandran a*

a Department of Pharmaceutical Chemistry and Analysis, Vels Institute of Science Technology and Advanced Studies (VISTAS), Chennai, 600 117, Tamil Nadu, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

ABSTRACT

The determination of norethindrone can be done using a variety of approaches. Both sophisticated and validation strategies are included in this technique. The purpose of this research was to improve and test a smooth overturned segment-excessive standard performance liquid chromatographic technique for assessing norethindrone in dissolution media. The column is a C18 column from Thermo Scientific (250 mm x 4.6mm ID, 5m length). Deionized water, acetonitrile (50:50, v/v), and 5 ml/l acetic acid was made up with the cellular phase. The detecting wavelength was changed to 245 nm and the glide rate was changed to 1.3 ml/minute. The basic approach that was utilised was to investigate norethindrone release from a nanoparticle liquid medication device (LMF). The results showed that the procedure has become easy, precise, and particular.

Keywords: Norethindrone, chromatography; drugs and formulations; drug estimation; drug content material.

*Corresponding author: E-mail: ramachandrans.sps@velsuniv.ac.in;
1. INTRODUCTION

Norethindrone is a safe synthetic intercourse steroidal hormone that has both androgenic and estrogenic properties [1]. Oral contraceptive pills containing norethindrone are available [2]. It is also used to treat some infections and disorders, such as premenstrual syndrome, painful menstruation, and normal excessive bleeding to reduce the length of the menstrual syndrome. It has also been used to treat non-responsive cyclical mastalgia (3) and to help prevent uterine bleeding in complex non-surgical or pre-surgical gynecological cases. There have been multiple procedures documented for the dedication of norethindrone on my own or with different tablets/metabolites in various dose amounts. For the devotion of norethindrone in plasma, these procedures could not be used.

It is necessary to remove norethindrone from plasma proteins. In the range of 2-20 mg/ml, a linear high typical performance liquid chromatography (HPLC)-UV technique was developed. Plasma samples were extracted with a collection of hexane methylene chloride [4]. A system that contains more than 5 mg of norethindrone is not accessible. Modern evidence suggests that it does not control menorrhagia at standard levels (5-10 mg/day) [5].

Norethindrone is accessible as a pill to take by mouth and is administered on different schedules depending on the ailment being treated and how well norethindrone works to treat it [6]. It is used at a modest dose to treat dysfunctional uterine bleeding, polymenorrhoea, menorrhagia, neuropathy, haemorrhagia, premenstrual syndrome, and menstrual delay, but at an excessive dose to treat disseminated cancer of the breast [7].

1.1 Reverse Phase High Performance Liquid Chromatography RP-HPLC

Hydrophobic strengthened pressing, commonly octa decyl or octyl sensible accumulating, and a polar fluid portable degree are used in switch level chromatography. Polar chemicals elute first and discard closer to the portable level. As a result of the hydrophobic person solutes, observed protection will increase. For the most part, the lower the portable section’s edge, the higher the eluent electricity. (8)

1.2 Norethindrone Method of Analysis by RP-HPLC in Dissolution Media

1.2.1 Liquid chromatographic conditions

The chromatographic section was replaced to a Thermo Scientific C18 (250 mm 4.6 mm ID, 5 m pore size) segment that was operated at ambient temperature. Deionized water, acetonitrile (50:50 v/v), and five ml/l acidic corrosives make up the flexible level. The flexible level was sorted through a 0.45 m recovered cellulose movie channel, and the move rate was increased to 1.3 ml/min. The drug changed into identified at 245 nm, and the infusion volume was 20 l. [9]

1.2.2 Validation of the RP-HPLC method of analysis

The RP-HPLC method for investigation of norethindrone was approved as some distance as linearity, accuracy, explicitness, cut-off of recognition (LOD), the breaking point of assessment (LOQ) also known as lower cut-off of quantitation (LLOQ), and dishonour research as indicated by using the ICH Guidelines.[10]

1.2.3 Linearity

As part of norethindrone recognition, the linearity was tested by infusing the seven organised popular preparations and plotting the areas. (11)

1.2.4 Accuracy and precision

First-class control (QC) checks of norethindrone at three fixation levels were used to determine exactness and accuracy (qc low, qc mid, and qc high). On three days in a row, the QC tests were fed into the HPLC framework.
1.3 Specificity

Tests were done with the appropriate levels of the excipients and injected to demonstrate that the medication's dosage was unaffected by their presence.

2. RESULTS AND DISCUSSION

2.1 Range

The following minimum unique tiers for the dissolution strategy are recommended by the ICH: 20% over the intended variety. For the linearity evaluation to be valid, the amount recovered at the preliminary pull point must be less than a hundred and twenty percent of the usual drug content material. However, it's usually noted in the literature that the range covers 27 percent to 200 percent of the analyte's nominal focus [13]. The test cognizance in this study was 2.30 g/ml, with a range ranging from 0 to 5 g/ml. Furthermore, the ICH recommends comparing no more than 5 concentrations to determine linearity.

In this method, seven concentrations have been evaluated and the QC Low and QC High samples had been bracketed amongst them. The Chromatogram of norethindrone at concentration 0.5µg/ml in aqueous sample is figure 2.

![Chromatogram of norethindrone at concentration 0.5µg/ml in aqueous sample](image)

Fig. 2 Chromatogram of norethindrone at concentration 0.5µg/ml in aqueous sample

Table 1. Linearity of the HPLC method of analysis of norethindrone in dissolution media

Concentration(µg/ml)	Calib.curve no.	0.05	0.10	0.25	0.50	1.00	2.00	5.00	slope	Intercept	R²
Area under peak	1	408	814	2362	4961	8091	17378	44636	8901	-81	0.9996
	2	500	1142	2302	4574	7875	17282	44941	8953	-152	0.9995
	3	444	980	2323	4562	7785	17669	43811	8761	-56	0.9997
	4	421	862	2249	4420	8139	17095	44918	8969	-246	0.9997
	5	405	817	2444	4174	7796	17649	44715	8959	-247	0.9996
	6	556	1144	2301	4572	7871	17279	44930	8947	-140	0.9995

2.2 Linearity

The ability of an analytical technique to deliver results for a performed test that are directly proportional to the amount of analyte in the sample is referred to as linearity [10] which is shown in Table 1.

For all six calibration curves, the coefficient of correlation (R) charge increased to greater than 0.999, which is typically seen as evidence of appropriate statistical matching to the failure line [12].

2.3 Accuracy and Precision

The ICH recommendations endorses for the accuracy assessment.

Normally, for assay strategy, RSD among the two units of records should be ≤2.0% [13; 14].

2.4 Limit of Detection and Limit Of Quantitation

LOD of a logical approach is the generally minimal sum of analyte in an example which may be recognized but no longer genuinely quantitated as correct well worth. The LOQ is the most decreased degree of analyte in an instance which can not simply settle with an reasonable precision and accuracy [15,16,17].

2.5 Specificity

Specificity refers to the method's capacity to precisely measure the analyte in the presence of a variety of atoms. Pollution, degradants, excipients, and other materials can be found. Comparable effects have been received in 0.1 N Hydrochloric acid [18,19,20].
3. CONCLUSION

A novel RP-HPLC approach tied with UV-Vis detection became the advanced method for the estimation of norethindrone in one-of-a-kind dissolution media and it was demonstrated regularly with the ICH guidelines. The method has become easy: no derivation or extraction changed into desired, the float of the cellular section became isocratic, simplest one detector have become used and there has been no want for coupling or more detectors. The method turned linear within the variables studied, correct and specific. Forced degradation research indicated that the drug exhibited perfect stability in both situations and became exceptionally more strong in a simple scenario.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGEMENT

The authors are immensely thankful to the organization Vels Institute of Science, Technology and Advanced Studies (VISTAS) for providing helpful support for the study.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Kajtár. M, Microbial 1α-hydroxylation of Norethindrone, Steroids,1975; 25(1): 99-106.
2. Islam, R, Khan EM, Ahmed K, Development, and validation of RP-HPLC – DAD Stability Indicating Related Substances Method for the Estimation of Impurities of Norethindrone tablets and their Degradation Products, Pharmaceutical Analytical Chemistry, 2017; 3: 2
3. Santos M, Hendry D, Sangi- Haghpeykar H, Dietrich JE, Retrospective review of norethindrone use in adolescents, J Pediatr Adolesc Gynecol, 2014;27(1): 41-44.
4. Loo JC, Brien R. Analysis of norethindrone in plasma by high-performance liquid chromatography. J Liq Chromatogr, 1981;4(5):871-7.
5. Coulter A, Kelland J, Peto V, Rees M, Treating menorrhagia in primary care: an overview of drug trials and a survey of prescribing practice, Int J Technol Assess Health Care. 1995;11(3): 456–471.
6. Effective health care: No 9. The management of menorrhagia. York: NHS Centre for reviews and dissemination, 1995.
7. Medline Plus. Norethindrone. Accessed 13 November Available: https://medlineplus.gov/druginfo/meds/a604034.html.
8. Sanjay K.D, Kumar H.D, Importance of RP-HPLC in analytical method development: A review. Int. J. Pharm. Sci. Res, 2012; 3(12): 4626–4633.
9. Altaani B.M, RP-HPLC method for determination of norethindrone in dissolution media and application to study release from a controlled release nano particulate liquid medicated formulation, Journal of Applied Pharmaceutical Science, 2019; 9(2): 79-86.
10. International conference on the harmonization of technical requirements for the registration of pharmaceuticals for human use. ICH harmonized tripartite guideline validation of analytical procedures: text and methodology. Nov 2005
11. Tiwari G, Tiwari R, Bioanalytical method validation: an updated review, Pharm Methods, 2010;1(1):25–38.
12. Suresh R, Anarthanan S, Manavalan R, Aspects of validation in HPLC method development for pharmaceutical analysis— comparison of validation requirements by
13. Validation of Compendial Procedures. USP30NF25; 2008.

14. Rao R, Talluri MV, Raju AN, Development of a validated RP-LC/ESI-MS–MS method for separation, identification, and determination of related substances of Tamsulosin in bulk drugs and formulations, J Pharm Biomed Anal, 2008; 46(1):94–103.

15. Analytical Best Practices. Establishing acceptance criteria for analytical methods. 2016.

16. Bansal K, Pant P, Rao PRT, Padhee K, Sathapathy A, Kochhar PS. Micronization and dissolution enhancement of norethindrone. IJRPC, 2011a;1(3):315–9.

17. Bansal K, Pant P, Rao PRT, Venkateswar Reddy M, Padhee K, Sathapathy A, Reddy LS, Reddy SLNP, Reddy GS. Development and validation of a stability indicating liquid chromatographic method for simultaneous estimation of dutasteride and tamsulosin in combined dosage form. Orient J Chem, 2013;29(4):1665–73.

19. Hashem H, Abd El-Hay S, Jira T. A rapid stability indicating HPLC-method for determination of norethisterone acetate in plasma, tablets and in a mixture with other steroids. Int J Pharm Pharmaceut Sci, 2015;n7:279–82.

20. Hirai S, Hussain A, Babhair S. Sensitive method for determination of ethinyl estradiol in presence of norethindrone. J Pharm Sci, 1980;69:857–9.