The starburst-GRB connection

Jens Dreyer†, Julia K. Becker∗† and Wolfgang Rhode∗

∗Technische Universität Dortmund, Fakultät für Physik, D-44221 Dortmund, Germany
†Institut für Theoretische Physik, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Abstract. As starburst galaxies show a star formation rate up to several hundred times larger than the one in a typical galaxy, the expected supernova rate is higher than average. This in turn implies a high rate of long gamma ray bursts (GRBs), which are extreme supernova events. We present a catalog of 127 local starburst galaxies with redshifts of $z < 0.03$. Using this catalog we investigate the possibility of detecting neutrinos from Gamma Ray Bursts from nearby starburst galaxies. We show that the rate of long GRBs is correlated to the supernova rate which in turn is correlated to the far infrared output. For the entire catalog, 0.03 GRB per year are expected to occur. The true number can even be higher since only the brightest sources were included in the catalog.

Keywords: Starburst galaxies, GRBs, neutrinos

I. INTRODUCTION

In our work [1] we present a systematic investigation of radiative emission from starburst galaxies. We explain there the correlation between radio emission and the far infrared and high energy photons and neutrinos. In this contribution we will focus on the possibility to detect secondaries from gamma ray bursts in starburst galaxies. In section II the sample of 127 starburst galaxies used will be presented. Section III explains the connection between starburst galaxies and gamma ray bursts while section IV presents the neutrino spectrum for GRBs. Expected event rates in the IceCube detector for GRBs from nearby starburst galaxies are shown in sub section IV-A.

II. A LOCAL STARBURST SAMPLE

First a sample of 127 nearby starburst galaxies is selected. For the data of the individual sources see [1]. Appendix A. This is a local sample containing only sources with $z < 0.03$. The sources were selected from a larger catalog of starbursts which contained 309 sources. To ensure completeness of the sample, cuts in the radio flux as well as in the FIR flux were applied. To ensure that the selected sources were indeed starbursts, only sources with a high ratio of FIR flux and radio flux, $S_{60\mu\text{m}}/S_{1.4\text{GHz}} > 30$ were selected. $S_{60\mu\text{m}}$ denotes the FIR flux density at $60\mu\text{m}$ wavelength measured by the IRAS satellite, $S_{1.4\text{GHz}}$ denotes the radio flux density at 1.4 GHz. This criterium removes possible contamination of the sample by Seyfert galaxies. The ratio is ~ 10 for Seyfert galaxies and ~ 300 for starbursts.

Further, luminosity cuts were applied. It was required that $S_{1.4\text{GHz}} > 20\text{mJy}$ and $S_{60\mu\text{m}} > 4\text{Jy}$.

Figure 1a and figure 1b show the luminosity of the starburst galaxies versus their luminosity distance at $60\mu\text{m}$ resp. at 1.4 GHz. The crosses represent all 309 starbursts that were selected in the beginning, the triangles show the remaining 127 sources after the cuts $S_{60\mu\text{m}} > 4\text{Jy}$ and $S_{1.4\text{GHz}} > 20\text{mJy}$ and $z < 0.03$. The dotted lines represent the sensitivity for 4 Jy and 20 mJy, respectively with those cuts applied, a complete, local sample in both wavelengths, FIR and radio is obtained. Since all sources in the sample have a redshift of $z < 0.03$, many of them are located in the supergalactic plane. Therefore, the number of sources with a flux density larger than S, $N(> S)$ is expected to follow a powerlaw behavior of $S^{-1} = S^{-1.5}$. For a flat cylinder a pure S^{-1} behavior is expected while a spherical distribution results in an $S^{-1.5}$ behavior. Figure 2 shows the logarithmic number of sources above an FIR flux density $S_{60\mu\text{m}}$. The data was fitted with the following function:

$$N(> S) = N_0 \cdot (S + S_0)^{-\beta}$$

Here, N_0, S_0 and β are the fit parameters. Using an error of \sqrt{N}, the parameters are determined to

$$N_0 = 3155 \pm 1297.9$$
$$S_0 = (10.56 \pm 3.78) \text{Jy}$$
$$\beta = 1.2 \pm 0.2.$$

The behavior $N(> S) \sim S^{-1.5 \pm 0.2}$ matches the expectation that the function should lie between $S^{-1.0}$ and $S^{-1.5}$.

The next section will explain the connection between starburst galaxies and gamma ray bursts which will result in a flux estimation for high energy neutrinos from GRBs inside starburst galaxies.

III. GAMMA RAY BURSTS AND STARBURSTS

Starburst galaxies show an enhanced rate of supernova explosions due to their large star formation rate. Thus an increasing rate of long Gamma Ray Bursts (GRBs) directly linked to SN-Ic events [2] is expected. If long GRBs are the dominant sources of UHECRs, the contribution from nearby objects should follow the distribution of starburst galaxies. In the following calculations, it is assumed that every SN-Ic explosion is accompanied by a particle jet along the former star’s rotation axis, i.e. by

1Jansky (Jy) = 10^{-26} W m$^{-2}$ Hz$^{-1}$
(1) Luminosity-distance diagrams. Crosses denote all 309 pre-selected star burst galaxies, triangles show the remaining after the cuts $S_{60\mu} > 4 \text{ Jy}$ and $S_{1.4\text{ GHz}} > 20 \text{ mJy}$ and $z < 0.03$. The dashed lines show the sensitivity for $S_{60\mu} = 4 \text{ Jy}$ and $S_{1.4\text{ GHz}} = 20 \text{ mJy}$ respectively.

(a) Luminosity at 60 μm versus the luminosity distance

(b) Luminosity at 1.4 GHz versus the luminosity distance

Fig. 1. Luminosity-distance diagrams. Crosses denote all 309 pre-selected star burst galaxies, triangles show the remaining after the cuts $S_{60\mu} > 4 \text{ Jy}$ and $S_{1.4\text{ GHz}} > 20 \text{ mJy}$ and $z < 0.03$. The dashed lines show the sensitivity for $S_{60\mu} = 4 \text{ Jy}$ and $S_{1.4\text{ GHz}} = 20 \text{ mJy}$ respectively.

Fig. 2. $log(N) - log(S)$ representation of the catalog. An $S^{-1.2}$ fit matches the data nicely, with a turnover at $S_0 = 10.56 \text{ Jy}$.

A GRB. The opening angle of the GRB jet, θ determines, how many SN-Ic can be observed as GRBs, see e.g. [3].

$$\hat{n}_{\text{GRB}} = \epsilon \cdot \hat{n}_{\text{SN-Ic}}.$$ (2)

Here, \hat{n}_{GRB} is the GRB rate in a galaxy and $\epsilon = (1 - \cos(\theta))$ is the fraction of SN-Ic which can be seen as GRB. The opening angle is expected to be less than $\sim 10^\circ$ for the prompt emission. Afterglow emissions and precursors can have a larger opening angles [5]. Putting the focus on prompt emission, an optimistic opening angle of $\sim 10^\circ$ is used, yielding

$$\epsilon = 0.015.$$ (3)

Further, observational data show that core collapse supernovae of type Ic contribute with 11% to the total supernovarate in starbursts [6]. Using equation 4 the GRB rate in a starburst galaxy is directly correlated to the supernova rate \hat{n}_{SN}.

$$\hat{n}_{\text{GRB}} = \epsilon \cdot \xi \cdot \hat{n}_{\text{SN}}$$ (4)

with $\xi \sim 0.11$ as the fraction of heavy SN among all SN. The supernova rate is correlated with the FIR luminosity of the galaxy [7],

$$\hat{n}_{\text{SN}} = (2.4 \pm 0.1) \cdot 10^{-12} \cdot \left(\frac{L_{\text{FIR}}}{L_{\odot}} \right) \text{ yr}^{-1}. \quad (5)$$

The FIR luminosity is expressed in terms of the solar luminosity $L_{\odot} = 3.839 \cdot 10^{33} \text{ ergs}$ and is given in the range of 60 μm and 100 μm by [8]

$$L_{\text{FIR}} = 4 \pi d_l^2 \cdot F_{\text{FIR}}. \quad (6)$$

Here, d_l is the luminosity distance of the individual source and

$$F_{\text{FIR}} = 1.26 \cdot 10^{-14} \cdot (2.58 \cdot S_{60\mu} + S_{100\mu}) \text{ W m}^{-2} \quad (7)$$

is the FIR flux density as defined in [9]. $S_{60\mu}$ and $S_{100\mu}$ are the measured flux densities at 60 μm and 100 μm, both measured in Jy. Using equation 5 to determine the supernova rate, equation 4 yields a rate of

$$\hat{n}_{\text{GRB}} = 3.8 \cdot 10^{-15} \cdot \left(\frac{L_{\text{FIR}}}{L_{\odot}} \right) \cdot \left(\frac{\epsilon}{0.015} \right) \cdot \left(\frac{\xi}{0.11} \right) \text{ yr}^{-1} \quad (8)$$

per starburst. For a 1 km3 neutrino detector with a lifetime of 10 years (like IceCube or KM3NeT) luminosities of around $3 \cdot 10^{47} \text{ ergs}$ are required for a single event within these 10 years. None of the sources in the catalog provides such a high luminosity. However, if a larger number of starburst is considered for an analysis, the total luminosity increases and so does the probability of observing a GRB. Figure 4 shows the total GRB rate for a number of $N_{\text{starbursts}}$ galaxies,

$$\hat{n}_{\text{GRB total}}(N_{\text{starbursts}}) = \sum_{i=1}^{N_{\text{starbursts}}} \hat{n}_{\text{GRB}}(i\text{th starburst}). \quad (9)$$

In the figure the GRB rates achieved in the single starbursts are summed up, starting with the most luminous source, adding sources in descending luminosity order. The points show the GRB rate summing up over all starbursts in the sample, starting with the strongest one.
and adding the next strongest sources subsequently. On total, 0.03 GRBs per year are expected to be observable in the sample. The squares display the total GRB rate, summing up sources in the northern hemisphere, which corresponds to IceCube’s Field of View (FoV). Here, 0.02 GRBs per year are expected. This number can be enhanced significantly when taking weaker sources into account which were not included in the sample in order to ensure completeness, see section III.

IV. Enhanced neutrino flux from GRBs in starbursts

Due to the high atmospheric background seen by high-energy neutrino telescopes, the detection of a diffuse neutrino signal from GRBs in nearby starbursts will not be possible. However, with a timing analysis one might be able to identify Gamma Ray Bursts in neutrinos. In such an analysis, the location of a nearby starburst can be chosen as a potential neutrino hot-spot. By selecting a time window of the typical duration of a long GRB (≈ 100 s) the atmospheric background can then be reduced to close to zero. In this context the general neutrino intensity and in particular the possibility of neutrino detection with IceCube are discussed.

For the first time the neutrino energy spectrum during the prompt photon emission phase in a GRB was determined by Waxman & Bahcall [10], [11] and can be expressed as

$$\frac{dN_\nu}{dE_\nu} = A_\nu \cdot E_\nu^{-2} \left\{ \begin{array}{ll}
E_\nu^{-\alpha_\nu} & \text{if } E_\nu < \epsilon^b_\nu, \\
E_\nu^{-\beta_\nu} & \text{if } \epsilon^b_\nu \leq E_\nu \leq \epsilon^S_\nu, \\
E_\nu^{-\beta_\nu+1} & \text{if } E_\nu > \epsilon^S_\nu
\end{array} \right. $$

The spectrum includes two spectral indices, α_ν and β_ν, two break energies, ϵ^b_ν and ϵ^S_ν, and a normalization factor A_ν. For the GRBs in starbursts, these parameters were discussed in detail in [11]. Their numerical values were determined to

$$\begin{align*}
\alpha_\nu &= 1 \\
\beta_\nu &= 2 \\
\epsilon^b_\nu &\approx 3 \times 10^9 \text{GeV} \\
\epsilon^S_\nu &\approx 3 \times 10^{10} \text{GeV} \\
A_\nu &\propto d_l^{-2}
\end{align*}$$

The normalization constant A_ν is calculated for each individual source. It depends on d_l^{-2} as well as on the fraction of energy transferred into electrons and the fraction of energy transferred into charged pions. In addition, the normalization of the neutrino spectrum scales with the luminosity of the burst. This released energy varies from burst to burst. In addition to the burst-to-burst fluctuation, regular GRBs are distinguished from low-luminosity bursts. Regular, long bursts emit a total isotropic energy of 10^{52} erg for a duration (t_{90}) of the burst of ≈ 10 s. Low-luminosity bursts last longer and have a lower luminosity. Although only few low-luminosity bursts are observed yet, they are expected to be much more frequent than regular GRBs. For this class, we expect an energy release of $\sim 10^{50}$ erg within around 1000 s. The closest burst observed so far was GRB980425, which was found to be associated with the supernova SN1998bw [12]. The host galaxy lies at a redshift of only $z = 0.0085$. This burst shows a total energy release of $\sim 10^{57}$ erg, which is an extremely low-luminosity burst. As the luminosity distribution is not well-known at this point, due to low statistics, we use a fixed value of 10^{51} erg. An actual burst can be about one order of magnitude more or less luminous. Now, to estimate the neutrino flux from a standard GRB for a single starburst in the sample, dependent on the distance of the starburst, the normalization is calculated. The other parameters are kept constant and hence the results can only serve as a rough estimate. Both, the break energies as well as the spectral indices vary for each individual burst as described in [13].

A. Expected event rates in IceCube

As shown in figure 3, 0.02 GRBs per year are expected to occur in the 96 starbursts in the sample in the northern hemisphere, IceCube’s FoV. However, this rate can be enhanced if all sources in the northern hemisphere would be taken into account. For completeness reasons only the brightest ones were considered here. This enhances the possibility to detect a GRB from a starburst in the super galactic plane within the lifetime (10 years) of IceCube. The prospects for KM3NeT are slightly worse, since only 0.01 GRB per year is expected in the southern hemisphere, where KM3NeT’s FoV will be focused.

The number of events per GRB expected in IceCube can be calculated by folding IceCube’s effective area...
The expected event rates for high energy neutrinos in the IceCube detector have been calculated to reach up to more than 100 events per year. If a GRB occurs in one of the 127 starbursts, for detectors with a wide field of view the detection probability is best. IceCube should be able to see the strongest events (~ 100 neutrinos) immediately, while the weaker events (~ 5−10 neutrinos) can be found in a specific analysis for the selected starbursts. Since most of the sources are located in the northern hemisphere, detectors like IceCube, HAWC and Auger north are optimal for such a study. A detection of neutrinos from a GRB would enable detailed studies of hadronic emission processes of GRBs.

ACKNOWLEDGMENTS

We would like to thank Jay Gallagher, Francis Halzen and Kotha Murase for helpful discussions. JD, JKB and WR are supported by the IceCube grants BMBF (05 C15PE1/0) and (05 A08PE1). J.K. Becker and J. Dreyer acknowledge the support from the ‘Research Department of Plasmas with complex interactions’.

REFERENCES

[1] Becker, J. K. and Biermann, P. L., Dreyer, J., Kneiske, T. M., Cosmic Rays VI - Starburst galaxies at multifrequency lengths, arXiv 0901.1775, 2009
[2] Mazzali, P. A. et al. The Type Ic Hypernova SN 2003dh/GRB 030329, Astroph. J. Lett. 599, L95, 2003
[3] Berger, E. et al. A common origin for cosmic explosions inferred from calorimetry of GRB030329, Nature 426, 154-157, 2003
[4] Racusin, J. L. et al. Broadband observations of the naked-eye γ-ray burst GRB080319B, Nature 455, 183-188, 2008
[5] Morsony, B. C., et al. Jitter Radiation as a Possible Mechanism for Gamma-Ray Burst Afterglows: Spectra and Light Curves, Astroph. J. 666, 339-345, 2007
[6] Cappellaro, E. and Turatto, M. Supernova Types and Rates, Astrophysics and space science library 264, 199, 2001
[7] Mannucci, F. et al. The infrared supernova rate in starburst galaxies, Astronomy and Astrophysics 401, 519-530, 2003
[8] Xu, C., et al. Star-formation histories and the mass-normalized FIR/ratio correlation in late-type galaxies, Astronomy and Astrophysics 282, 19, 1994
[9] Helou, G. et al. IRAS observations of galaxies in the Virgo cluster area, Astrophysical Journal Supplement Series 68, 151, 1988
[10] Waxman, E. and Bahcall, J. High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs, Physical Review Letters 78, 2292-2295, 1997
[11] Waxman, E. and Bahcall, J. High energy neutrinos from astrophysical sources: An upper bound, Physical Review D 59, 2302, 1999
[12] Galama, A. An unusual supernova in the error box of the γ-ray burst of 25 April 1998, Nature 395, 670, 1998
[13] Guetta, D. et al. Neutrinos from individual gamma-ray bursts in the BATSE catalog, Astroparticle Physics 20, 429-455, 2004
[14] Montaruli, T. (IceCube Coll.) First Results of the IceCube Observatory on High Energy Neutrino Astronomy, Journal of Physics Conference Series 120, 062009, 2007
[15] Ahrens, J. (IceCube Coll.) Sensitivity of the IceCube detector to astrophysical sources of high energy muon neutrinos, Astroparticle Physics 20, 507-532, 2004