AURKA rs2273535 T>A Polymorphism Associated With Cancer Risk: A Systematic Review With Meta-Analysis

Shujie Wang 1,2†, Jian Qi 1,2†, Meiling Zhu 4*, Meng Wang 3* and Jinfu Nie 1,2,3*

1 Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China, 2 Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China, 3 Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Hefei, China, 4 Department of Oncology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Aurora kinase A (AURKA) is a cell cycle regulatory serine/threonine kinase that promotes cell cycle progression. It plays an important role in regulating the transition from G2 to M phase during mitosis. The association between the AURKA rs2273535 T>A polymorphism and cancer risk has been investigated, but the results remain inconsistent. To get a more accurate conclusion, we conducted a comprehensive meta-analysis of 36 case-control studies, involving 22,884 cancer cases and 30,497 healthy controls. Crude odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to determine the association of interest. Pooled analysis indicated that the AURKA rs2273535 T>A polymorphism increased the overall risk of cancer (homozygous: OR = 1.17, 95% CI = 1.04-1.33; recessive: OR = 1.15, 95% CI = 1.05-1.25; allele: OR = 1.07, 95% CI = 1.02-1.13). Stratification analysis by cancer type further showed that this polymorphism was associated with an increased breast cancer risk. This meta-analysis indicated that the AURKA rs2273535 T>A polymorphism was associated with an overall increased cancer risk, especially breast cancer. Further validation experiments are needed to strengthen our conclusion.

Keywords: meta-analysis, cell cycle, AURKA F31I, tumor, cancer risk

INTRODUCTION

Aurora kinase A (AURKA) is a cell-cycle regulatory serine/threonine kinase that promotes cell cycle progression (1). AURKA is expressed in proliferating cells, especially in the G2 and mitotic phases of the cell cycle. It has various roles in promoting cell division, including the establishment of the mitotic spindle and centrosome separation (1). The AURKA gene is located at chromosomal locus 20q13.2 according to the HUGO Gene Nomenclature Committee (HGNC), and is often amplified in cancers (2–4). AURKA amplification has been found in certain tumor types, including colorectal, leukemia, and pancreatic cancers (3, 5, 6). Overexpression of AURKA can promote cellular transformation and may potentiate the activity of other oncogenes, such as RAS, further promoting tumorigenesis (7).
AURKA rs2273535 T>A, also known as F31I or Phe31Ile, is caused by a T-to-A transversion at position 91 in the AURKA coding sequence. This single nucleotide polymorphism is located in the Aurora Box1 (aa 5-40) motif, which belongs to the NH2-terminal region of aurora-A. This motif is thought to act on ubiquitin-based proteolysis (8).

Up until now, there have been many studies that have investigated the association between the AURKA F31I polymorphism and the risk of different types of cancer in different populations. However, the results are inconsistent, most likely because the sample size is relatively small in each published study, and the impact of the polymorphism on cancer risk might be small. Therefore, we conducted a comprehensive meta-analysis by identifying as many relevant articles as possible to identify evidence for the link between the AURKA F31I polymorphism and cancer risk.

MATERIALS AND METHODS

Search Strategy

Two authors (JQ and SW) conducted the search for relevant articles before December 2018, using the following terms, “AURKA or Aurora Kinase A,” “tumor or cancer or carcinoma or neoplasm,” and “polymorphism or single-nucleotide polymorphism (SNP) or variant,” in the PubMed, EMBASE, CNKI, WANFANG, and Vip databases. We also examined the references of the retrieved publications for additional eligible studies.
Eligibility Criteria
Publications retrieved from the various databases were assessed for eligibility according to the following criteria: (1) the publication was published in English or Chinese; (2) the publication evaluated the association between the AURKA gene rs2273535 polymorphism and cancer risk; (3) the publication was a case-control study; the publication with the largest number of individuals was selected if studies had duplicate subjects. In addition, publications were excluded according to the following criteria: (1) genotype data included were not sufficient to calculate an odds ratio (OR) and 95% confidence interval (CI); (2) only survival data was included; (3) the genotype frequency distribution departed from Hardy-Weinberg equilibrium (HWE) in the controls.

Name	Year	STROBE score	Risk of bias
Miao	2004	22	Moderate
Zhiyu Bao	2017	28	Moderate
Zheng	2013	27	Moderate
Zhang	2006	21	Moderate
Ying-ChuLin	2017	23	Moderate
Ying-ChuLin	2017	23	Moderate
Xiaoyan Zhou	2018	24	Moderate
Webb	2006	20	Moderate
Vidarsdottir	2007	23	Moderate
Tchatchou	2007	21	Moderate
Sun	2004	20	Moderate
Shi	2011	27	Moderate
Shan Li	2015	25	Moderate
Ruan	2011	26	Moderate
Nicholas J. Taylor	2015	30	High
Nicholas J. Taylor	2015	30	High
Ming Zhao	2014	14	Low
Milam	2007	22	Moderate
Marie-Genica	2010	26	Moderate
Lo	2005	23	Moderate
Li-Yuan Zheng	2015	28	Moderate
Li Chen	2005	12	Low
Jue Tang	2018	23	Moderate
Ju	2006	21	Moderate
Hammerschmied	2007	20	Moderate
Guenard	2009	21	Moderate
Gu	2007	27	Moderate
Feik	2009	22	Moderate
Cox	2006	23	Moderate
Chi-Pin Lee	2015	25	Moderate
Chia-Hsuan Chou	2017	16	Moderate
Chen	2007	20	Moderate
Chen	2009	21	Moderate
Bin Wang	2018	25	Moderate
Aner Mesic	2016	22	Moderate
Andrés López-Cortés	2017	23	Moderate

Data Extraction
The following information was independently extracted by two authors (SW and JQ): first author name, year of publication, cancer type, region, ethnicity, genotyping method, source of controls (hospital-based, population-based, and mixed), the genotype counts of cases, and controls for the investigated polymorphism.

Quality Assessment
Two authors (SW and JQ) independently assessed the quality of the included studies according to the Strengthening the Reporting of Observational studies in Epidemiology (STROBE) quality scoring system (9). Forty evaluation items related to quality assessment were used in meta-analysis, with scores ranging from 0 to 40. Based on the STROBE score, the included studies were classified as low quality (0-19), moderate quality (20-29), and high quality (30-40) (10). If the studies were of low quality, moderate, or high quality, they were considered to be at high, moderate or low risk of bias, respectively. If two authors had contradictory information, a third author (MW) was consulted.

Statistical Analysis
Pooled ORs and 95% CIs were evaluated to assess the relationship between the AURKA rs2273535 T>A polymorphism and overall cancer risk under the heterozygous (AT vs. TT), homozygous (AA vs. TT), dominant (AT+AA vs. TT), recessive (AA vs. AT+TT), and allele contrast (A vs. T) models. We conducted stratification analyses by ethnicity, cancer type (others: one cancer type was investigated in less than 3 studies), study design (mixed: the source of controls contained both hospital-based and population-based subjects) and risk of bias. The Chi-square-based Q-test was used to calculate the heterogeneity among studies. A random-effect model was adopted when \(P < 0.1 \) (heterogeneity). Otherwise, a fixed-effect model was adopted (11). Funnel plots were used to evaluate potential publication bias (12). All data analyses were performed using R software. All of the \(P \) values were two-tailed; \(P < 0.05 \) indicated statistical significance.

RESULTS

Literature Search
As shown in Figure 1, 255 potentially relevant studies were selected from the PubMed, CNKI, EMBASE, WANFANG, and Vip databases. We excluded 86 duplicate articles and 109 publications not investigating the association between the AURKA gene rs2273535 polymorphism and cancer risk after reviewing titles and abstracts. Then, the full texts of the remaining articles were evaluated. One publication (13) was removed for containing overlapping data. We also excluded 17 publications (14–30) because no useful data was reported to calculate ORs and 95% CIs. In addition, we eliminated 3 publications (31–33) presenting survival data only. Lastly, we excluded 5 publications (34–38) due to deviation from the HWE. Overall, 34 publications with a total of 22,884 cancer cases and 30,497 healthy controls were included in the meta-analysis.
Description and Quality of the Studies

The 34 publications actually consisted of 36 case-control studies, because 2 publications included 2 individual studies. The characteristics of these studies were shown in Supplemental Table 1. Among these publications, 12 focused on breast cancer (39–50), 5 on gastric cancer (51–55), 3 on colorectal cancer (56–58), 2 on esophageal cancer (59, 60), 2 on liver cancer (61, 62), and 2 on oral cancer (63, 64). Moreover, there was only 1 study for each of the following cancers: lung cancer (65), neuroblastoma cancer (66), ovarian cancer (67), prostate cancer (68), renal cancer (69), urinary tract urothelial cancer (70), uterine cancer (71), bladder cancer (70), and endometrial cancer (72). As evident in Table 1, among these case-control studies, 2 of them had low risk of bias, 31 had moderate risk of bias, while 3 had high risk of bias. The shortcomings of low risk of bias research mainly focused on the lack of some descriptions in the results section (describing the numbers of individuals at each stage of the study, reasons for non-participation at each stage and a flow diagram) and methods section (describing comparability of assessment methods, address potential sources of bias, the estimation of the study size). In addition to the shortcomings involved in the low-risk bias study, the moderate-risk bias study also lacked the description in the methods section (explaining how missing data were addressed, how missing data were addressed and how quantitative variables were handled in the analyses), results section (indicating the number of participants with missing data and if relevant, considering translating estimates of relative risk into absolute risk for a meaningful time period) and discussion section (reporting category boundaries when continuous variables were categorized). High-risk bias study not only included the above-mentioned defects, but included the lack of giving the sources and methods of case ascertainment and control selection, the rationale for the choice of cases and controls and matching criteria and the number of controls, clearly defining all outcomes, exposures, predictors, potential confounders, effect modifiers and describing any sensitivity analyses in the methods section. Finally, this meta-analysis contained 19 hospital-based and 15 population-based studies.

Meta-Analysis Results

As evident in Table 2, Figures 2, 3, there is significant inter-study heterogeneity under all the genetic models; thus, we used a random-effect model. After calculating crude ORs and 95% CIs, we found that the AURKA gene rs2273535 T>A polymorphism was associated with increased overall cancer susceptibility (homozygous: OR = 1.17, 95% CI = 1.04-1.33; recessive: OR = 1.15, 95% CI = 1.05-1.25; allele: OR = 1.07, 95% CI = 1.02-1.13). Figures 2, 3 depicted forest plot of the association between the AURKA rs2273535 T>A polymorphism and overall cancer risk under the dominant and homozygous model. We performed stratification analyses by cancer type, ethnicity, study design and risk of bias. Stratification analysis further indicated that the AURKA gene rs2273535 T>A polymorphism was associated with increased risk of breast cancer (homozygous: OR = 1.28, 95% CI = 1.12-1.47; recessive: OR = 1.17, 95% CI = 1.05-1.31; allele: OR = 1.09, 95% CI = 1.02-1.17). Figures 4, 5 show stratification analysis of the association between the AURKA rs2273535 T>A polymorphism and cancer risk by cancer type under the dominant and homozygous model. We also checked the association in the Asian population. Interestingly, we only observed significant associations in Asians (recessive: OR = 1.17, 95% CI = 1.05-1.32; allele: OR = 1.09, 95% CI = 1.02-1.13).

Table 2: The association between the AURKA rs2273535 T>A polymorphism and cancer risk in the meta-analysis.

Variables	No. of studies	Homozygous	Heterozygous	Recessive	Dominant	Allele					
		AA vs. TT	AT vs. TT	AA vs. AT+TT	AT+AA vs. TT	A vs. T					
OR (95% CI)	phet	OR (95% CI)	phet	OR (95% CI)	phet	OR (95% CI)	phet				
All	36	1.17 (1.04-1.33)	0.000	1.02 (0.97-1.02)	0.096	1.15 (1.05-1.25)	0.000	1.06 (0.99-1.13)	0.003	1.07 (1.02-1.13)	0.000
Cancer type											
Breast	13	1.28 (1.12-1.47)	0.000	1.02 (0.96-1.08)	0.098	1.17 (1.05-1.31)	0.008	1.10 (0.99-1.21)	0.042	1.09 (1.02-1.17)	0.006
Colorectal	3	1.13 (0.61-2.08)	0.038	1.05 (0.93-1.17)	0.258	1.15 (0.67-1.98)	0.012	1.01 (0.68-1.51)	0.074	1.05 (0.73-1.50)	0.003
Gastric	5	0.82 (0.60-1.13)	0.310	0.83 (0.63-1.09)	0.654	0.99 (0.79-1.24)	0.140	0.83 (0.64-1.07)	0.479	0.96 (0.80-1.14)	0.132
Others	15	1.15 (0.91-1.45)	0.000	1.02 (0.95-1.10)	0.130	1.14 (0.96-1.38)	0.000	1.05 (0.94-1.17)	0.013	1.08 (0.98-1.18)	0.000
Ethnicity											
Caucasian	14	1.15 (0.95-1.39)	0.000	1.02 (0.96-1.08)	0.959	1.11 (0.96-1.28)	0.007	1.04 (0.98-1.10)	0.357	1.05 (0.99-1.11)	0.090
Asian	20	1.15 (0.98-1.34)	0.000	1.00 (0.93-1.07)	0.194	1.17 (1.05-1.32)	0.000	1.04 (0.94-1.15)	0.011	1.09 (1.01-1.18)	0.000
Strobe score											
30-40	2	1.12 (0.92-1.78)	0.604	1.39 (0.99-1.95)	0.391	0.95 (0.83-1.08)	0.419	1.31 (0.95-1.82)	0.541	1.00 (0.89-1.12)	0.636
20-29	31	1.17 (1.02-1.34)	0.000	1.01 (0.95-1.07)	0.097	1.17 (1.06-1.29)	0.000	1.05 (0.97-1.12)	0.002	1.08 (1.02-1.14)	0.000
0-19	3	1.18 (0.90-1.53)	0.431	1.07 (0.90-1.28)	0.524	1.15 (0.92-1.45)	0.762	1.10 (0.93-1.30)	0.443	1.09 (0.97-1.23)	0.497
Design											
HB	19	1.10 (0.91-1.33)	0.000	1.01 (0.95-1.08)	0.684	1.10 (0.95-1.27)	0.000	1.02 (0.94-1.11)	0.157	1.05 (0.97-1.13)	0.000
PB	16	1.25 (1.07-1.46)	0.002	1.02 (0.96-1.08)	0.009	1.19 (1.07-1.33)	0.001	1.10 (0.99-1.22)	0.001	1.10 (1.03-1.19)	0.000

OR, odds ratio; CI, confidence interval; Het, heterogeneity;
CI = 1.01-1.18). Moreover, the association remained significant in the subgroups with population-based studies (homozygous: OR = 1.25, 95% CI = 1.07-1.46; recessive: OR = 1.19, 95% CI = 1.07-1.33; allele: OR = 1.10, 95% CI = 1.03-1.19) and moderate risk of bias (homozygous: OR = 1.17, 95% CI = 1.02-1.34; recessive: OR = 1.17, 95% CI = 1.06-1.29; allele: OR = 1.08, 95% CI = 1.02-1.14). Figure 6 revealed stratification analysis of the association between the AURKA rs2273535 T>A polymorphism and cancer risk by risk of bias under the homozygous model.

Publication Bias
Symmetry in the funnel plots (Figures 7, 8) suggested that there was no significant publication bias in this meta-analysis (homozygous: P = 0.585; heterozygous: P = 0.939; recessive: P = 0.586; dominant: P = 0.546; allele: P = 0.657).

DISCUSSION
AURKA is a key factor in regulating the transition from G2 to M phase during mitosis. The AURKA protein includes a...
129-amino acid N-terminal domain that facilitates AURKA nuclear-translocation during mitosis and a 274-amino acid C-terminal kinase catalytic domain (73). AURKA has been reportedly associated with poor prognosis in medulloblastoma and over-expression in various types of cancer (74). AURKA protein amplification and over-expression in breast and other tumors is related to centrosomal amplification, dysfunction of cytokinesis, and aneuploidy. Based on genetic mapping studies, AURKA is a potential genetic target for cancer therapy (16). The AURKA F31I polymorphism (T>A)(phenylalanine (Phe) > isoleucine (Ile)) is related to cellular transformation and distinctly enhances chromosomal instability (75). This polymorphism can also cause an obstruction in p53 binding and decreased degradation of AURKA by changing the activity of the AURKA box 1 (16). Research has shown that the stabilized over-expression of AURKA results in centrosomal amplification, abnormal cytokinesis, chromosomal instability, and the promotion of tumorigenesis. Numerous studies have been performed to explore the association between the rs2273535 polymorphism and the risk of various types of cancer.

![FIGURE 3](image-url) Forest plot of the association between the AURKA rs2273535 T>A polymorphism and overall cancer risk under the homozygous model (AA vs. TT).
Wang et al. AURKA Associated With Cancer Risk

FIGURE 4 | Stratification analysis of the association between the AURKA rs2273535 T>A polymorphism and cancer risk by cancer type under the dominant model (AT+AA vs. TT).

Study	Experimental Events	Control Events	Odds Ratio	OR	95%−CI	Weight
Cancer = Breast						
Vidarsdottir 2007	330	759	252	653	1.22	[0.99; 1.51]
Tchatchou 2007	690	727	772	819	1.14	[0.73; 1.77]
Sun 2004	470	520	454	520	1.17	[0.53; 2.62]
Shi 2011	736	763	1445	1516	1.37	[0.93; 2.03]
Shan Li 2015	335	446	318	400	0.78	[0.56; 1.10]
Ruan 2011	735	1334	852	1568	1.03	[0.89; 1.19]
Nicholas J. Taylor 2015	725	741	636	658	1.57	[0.82; 3.01]
Nicholas J. Taylor 2015	1149	1204	1028	1089	1.24	[0.85; 1.80]
MARIE–GENICA 2010	1263	3136	2176	5466	1.02	[0.93; 1.12]
Lo 2005	636	707	1773	1969	0.99	[0.74; 1.32]
Guernard 2009	32	96	33	96	0.95	[0.52; 1.74]
Cox 2006	467	1241	636	1711	1.02	[0.88; 1.19]
Andrés López–Cortés 2017	77	100	54	100	2.85	[1.55; 5.25]
Random effects model	11774	16565			1.10	[0.99; 1.21]

Heterogeneity: $I^2 = 44\%, \tau^2 = 0.0114, \ p = 4.20e-02$

Cancer = Colorectal						
Zhang 2006	253	283	241	283	1.47	[0.89; 2.42]
Webb 2006	994	2558	1013	2680	1.05	[0.94; 1.17]
Chen 2007	16	60	27	65	0.51	[0.24; 1.09]
Random effects model	2901	3028			1.01	[0.68; 1.51]

Heterogeneity: $I^2 = 62\%, \tau^2 = 0.0768, \ p = 7.39e-02$

Cancer = Others						
Li–Yuan Zheng 2015	291	530	447	825	1.03	[0.83; 1.28]
Miao 2004	598	656	565	656	1.66	[1.17; 2.35]
Chen 2009	145	188	286	324	0.45	[0.28; 0.72]
Zhiyu Bao 2017	716	788	725	815	1.23	[0.89; 1.71]
Bin Wang 2018	160	312	314	624	1.04	[0.79; 1.36]
Gu 2007	410	1098	388	1027	0.98	[0.82; 1.17]
Jue Tang 2018	211	393	435	812	1.00	[0.79; 1.28]
Chi–Pin Lee 2015	465	507	681	767	1.40	[0.95; 2.06]
Chia–Hsuan Chou 2017	472	876	617	1200	1.10	[0.93; 1.31]
Ying–ChuLin 2018	26	46	97	188	1.22	[0.64; 2.33]
Feik 2008	333	824	442	1081	0.98	[0.82; 1.19]
Hammerschmied 2007	64	156	77	158	0.73	[0.47; 1.14]
Ying–ChuLin 2017	101	185	97	188	1.13	[0.75; 1.69]
Milam 2007	62	140	68	189	1.41	[0.90; 2.21]
Random effects model	6986	9472			1.05	[0.94; 1.17]

Heterogeneity: $I^2 = 51\%, \tau^2 = 0.0203, \ p = 1.27e-02$

Cancer = Gastric						
Xiaoan Zhou 2018	345	381	438	468	0.66	[0.40; 1.09]
Ming Zhao 2014	125	148	87	100	0.81	[0.38; 1.69]
Li Chen 2005	63	68	65	75	1.94	[0.63; 5.99]
Ju 2006	426	501	369	427	0.89	[0.62; 1.29]
Aner Mesic 2016	118	125	349	362	0.63	[0.24; 1.61]
Random effects model	1223	1432			0.83	[0.64; 1.07]

Heterogeneity: $I^2 = 0\%, \tau^2 = 0, \ p = 4.79e-01$

| Random effects model | 22884 | 30497 | | | 1.06 | [0.99; 1.13] |

Heterogeneity: $I^2 = 44\%, \tau^2 = 0.0129, \ p = 3.25e-03$

Residual heterogeneity: $I^2 = 45\%, \ p = 2.74e-03$
Study

Cancer = Breast	Experimental Events	Control Events	Odds Ratio	OR	95%-CI	Weight
Vidsardottir 2007	42 471 21	422	1.87 [1.09; 3.21]	2.6%		
Tchatchou 2007	433 470 485	532	1.13 [0.72; 1.78]	3.1%		
Sun 2004	256 306	132 258	1.76 [1.17; 2.66]	3.4%		
Shi 2011	514 511 96 1058	0.81 [0.56; 1.17]	3.6%			
Shan Li 2015	147 258 134 216	1.40 [0.89; 2.11]	3.1%			
Ruan 2011	167 766 161 877	1.24 [0.97; 1.58]	4.5%			
Nicholas J. Taylor 2015	517 533 477 499	1.49 [0.77; 2.87]	2.1%			
Nicholas J. Taylor 2015	740 795 673 734	1.22 [0.83; 1.78]	3.6%			
MARIE-GENICA 2010	167 2040 249 3539	1.18 [0.96; 1.44]	4.7%			
Lo 2005	348 419 886 1082	1.08 [0.80; 1.46]	4.1%			
Guenard 2009	7 18	5 58	3.83 [1.62; 9.05]	1.5%		
Cox 2006	66 840	114 660	1.41 [0.99; 2.01]	3.7%		
Andrés López–Cortés 2017	23 46 12 58	3.83 [1.62; 9.05]	1.5%			

Cancer = Colorectal

Cancer = Others	Experimental Events	Control Events	Odds Ratio	OR	95%-CI	Weight
Zhang 2006	142 172 104 146	1.91 [1.12; 3.26]	2.7%			
Webb 2006	114 1678 125 1792	0.97 [0.75; 1.26]	4.3%			
Chen 2007	3 47 6 44	0.43 [0.10; 1.65]	0.6%			

Cancer = Gastric

Cancer = Gastric	Experimental Events	Control Events	Odds Ratio	OR	95%-CI	Weight
Xiaoyan Zhou 2018	182 218 261 291	0.58 [0.35; 0.98]	2.7%			
Ming Zhao 2014	67 90 44 57	0.86 [0.39; 1.88]	1.7%			
Li Chen 2005	36 41 33 43	2.18 [0.68; 7.05]	0.9%			
Ju 2006	211 286 179 237	0.91 [0.61; 1.36]	3.5%			
Aner Mesic 2016	85 92 230 243	0.69 [0.26; 1.78]	1.3%			

FIGURE 5 | Stratification analysis of the association between the AURKA rs2273535 T>A polymorphism and cancer risk by cancer type under the homozgyous model (AA vs. TT).
FIGURE 6 | Stratification analysis of the association between the AURKA rs2273535 T>A polymorphism and cancer risk by risk of bias under the homozygous model (AA vs. TT).

Study	Experimental Events	Control Events	Odds Ratio	OR	95% CI	Weight
high risk of bias						
Ming Zhao 2014	67	90	44 57	0.86	[0.39; 1.88]	1.7%
Li Chen 2005	36	41	33 43	2.18	[0.68; 7.05]	0.9%
Chia–Hsuan Chou 2017	104	508	127 710	1.18	[0.89; 1.58]	4.2%
Random effects model				1.18	[0.90; 1.53]	6.0%
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 4.31e-01$						
moderate risk of bias						
Miao 2004	308	366	249 340	1.94	[1.34; 2.81]	3.6%
Zhiyu Bao 2017	421	493	347 437	1.52	[1.08; 2.13]	3.6%
Zheng 2013	24	155	64 338	0.78	[0.47; 1.31]	2.6%
Zhang 2006	142	172	104 146	1.91	[1.12; 3.26]	2.7%
Ying–ChuLin 2017	23	107	12 103	2.08	[0.97; 4.43]	1.7%
Ying–ChuLin 2018	5	25	12 103	1.90	[0.60; 5.99]	0.9%
Xiaoyan Zhou 2018	182	218	261 291	0.58	[0.35; 0.98]	2.7%
Webb 2006	114	1678	125 1792	0.97	[0.75; 1.26]	4.3%
Vidsardottir 2007	42	471	21 422	1.87	[1.09; 3.21]	2.6%
Tchatchou 2007	433	470	485 532	1.13	[0.72; 1.78]	3.1%
Sun 2004	256	306	192 258	1.76	[1.17; 2.66]	3.4%
Shi 2011	514	541	967 1038	1.40	[0.89; 2.11]	3.1%
Shan Li 2015	147	258	134 216	0.81	[0.56; 1.17]	3.6%
Ruan 2011	167	766	161 877	1.24	[0.97; 1.56]	4.5%
Milam 2007	13	91	2 123	10.08	[2.21; 45.90]	0.6%
MARIE–GENICA 2010	167	2040	249 3539	1.18	[0.96; 1.44]	4.7%
Lo 2005	348	419	886 1082	1.08	[0.80; 1.46]	4.1%
Li–Yuan Zheng 2015	51	290	87 465	0.93	[0.63; 1.36]	3.5%
Jue Tang 2018	40	222	95 472	0.87	[0.58; 1.31]	3.4%
Ju 2006	211	286	179 237	0.91	[0.61; 1.36]	3.5%
Hammerschmied 2007	7	99	12 93	0.51	[0.19; 1.37]	1.2%
Guenard 2009	7	71	5 68	1.38	[0.42; 4.57]	0.9%
Gu 2007	38	726	56 695	0.63	[0.41; 0.96]	3.3%
Feik 2009	47	538	44 683	1.39	[0.91; 2.13]	3.3%
Cox 2006	66	840	65 1140	1.41	[0.99; 2.01]	3.7%
Chi–Pin Lee 2015	255	297	355 441	1.47	[0.98; 2.20]	3.4%
Chen 2007	3	47	6 44	0.43	[0.10; 1.85]	0.6%
Chen 2009	66	109	118 156	0.49	[0.29; 0.84]	2.7%
Bin Wang 2018	36	188	57 367	1.29	[0.81; 2.04]	3.1%
Aner Mesic 2016	85	92	230 243	0.69	[0.26; 1.78]	1.3%
Andrés L...pez–Cort...s 2017	46	12	58	3.83	[1.62; 9.05]	1.5%
Random effects model	12427	16799		1.17	[1.02; 1.34]	87.6%
Heterogeneity: $I^2 = 65\%$, $\tau^2 = 0.0848$, $p = 3.20e-07$						
low risk of bias						
Nicholas J. Taylor 2015	517	533	477 499	1.49	[0.77; 2.87]	2.1%
Nicholas J. Taylor 2015	740	795	673 734	1.22	[0.83; 1.78]	3.6%
Random effects model	1328	1233		1.28	[0.92; 1.78]	5.7%
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 6.04e-01$						

Random effects model 14394 18842

Heterogeneity: $I^2 = 60\%$, $\tau^2 = 0.0708$, $p = 2.04e-06$
Residual heterogeneity: $I^2 = 62\%$, $p = 8.34e-07$ 0.1 0.5 1 2 10

1.17 [1.04; 1.33] 100.0%

FIGURE 6 | Stratification analysis of the association between the AURKA rs2273535 T>A polymorphism and cancer risk by risk of bias under the homozygous model (AA vs. TT).
Wang et al. AURKA Associated With Cancer Risk

FIGURE 7 | Funnel plot of the association between the AURKA rs2273535 T>A polymorphism and overall cancer risk under the dominant model (AT+AA vs. TT).

FIGURE 8 | Funnel plot of the association between the AURKA rs2273535 T>A polymorphism and overall cancer risk under the homozygous model (AA vs. TT).

López-Cortés et al. (50) carried out a study in 2018 to investigate the role of single nucleotide polymorphism AURKA T91A (rs2273535) in a high altitude Ecuadorian Mestizo population consisting of 100 patients and 100 controls, and found a significant relationship between the rs2273535 genotype and a higher risk of breast cancer development. This association was confirmed in different types of cancer, including hepatocellular carcinoma (HCC) by Bao et al. (62) with 788 cases and 815 controls, urinary tract urothelial cancer by Lin et al. (70) with 185 cases and 188 controls, gastric cancer by Zhou et al. (51) with 381 cases and 468 controls, as well as other types of cancer. However, opposing results were also frequently reported. A case-control study containing 501 prostate cancer and 427 control subjects conducted by Feik et al. (68) revealed that the AURKA rs2273535 polymorphism was not found to be related to prostate cancer risk. Additionally, Ju et al. (54) reported that this polymorphism was not related to gastric cancer susceptibility, by studying 501 cases and 427 controls. Tang et al. (66) selected 393 cases and 812 controls, and the results indicated that none of the AURKA polymorphisms were associated with neuroblastoma susceptibility in two distinct Chinese populations. Several meta-analyses have also been conducted, and unfortunately the results were still inconclusive (76–80). In this meta-analysis, the association between the AURKA gene rs2273535 T>A polymorphism and cancer risk based on 36 eligible case-control studies, with a total of 22,884 cancer cases and 30,497 healthy controls, was estimated. Among these case-control studies, 2 of them had low risk of bias, 31 had moderate risk of bias, while 3 had high risk of bias. Most quality scores of the included studies were higher than 20 (low to moderate risk of bias). Overall, our results indicated that this polymorphism might increase the overall risk of cancer, especially breast cancer.

However, there were some limitations in this meta-analysis. First, only publications written in Chinese or English were selected. Second, the number of studies for certain cancer types was inadequate, such as colorectal cancer (<5 studies). There were 3 included studies having high risk of bias (0 ≤ STROBE score ≤ 19); further studies with low risk of bias are needed to validate the true association. In addition, other factors may also influence cancer risk, such as age and living habits. Our findings might suffer from potential confounding bias due to the lack of original data. Taken together, the results should be interpreted with caution.

To conclude, this meta-analysis suggests that the AURKA gene rs2273535 T>A polymorphism is significantly associated with an overall increased cancer risk, especially breast cancer. In the research, most of the included studies had low to moderate risk of bias. Future well-designed, large-scale studies that report upon the association of the rs2273535 polymorphism and cancer, in multiple cancer types, are required to validate the findings of this study.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

SW, MW, MZ and JN conceived and designed the study. SW, JQ, and MW conducted the literature searches, extracted the data, analyzed the data and prepared the figures and tables. SW,
MW, and JQ wrote the draft of manuscript. SW, MW, and JN revised the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the CASHIPS Director's Fund (Grant number: YZJJ2019QN20), National Science Foundation for Young Scholars of China (Grant number: 21702207), National Natural Science Foundation of China (Grant number: 81602666) and One Hundred Talents Projects of the Chinese Academy of Sciences to JN.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2020.01040/full#supplementary-material

REFERENCES

1. Carvalhal S, Ribeiro SA, Arocena M, Kasciukovic T, Temme A, Koehler K, et al. The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation. *Mol Biol Cell.* (2015) 26:3424–38. doi: 10.1091/mbc.E15-02-0113
2. Zhou H, Huang J, Zhong L, Kuo WL, Gray JW, Sahin A, et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. *Nat. Genet.* (1998) 20:189–93. doi: 10.1038/2496
3. Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B, et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. *EMBO J.* (1998) 17:3052–65. doi: 10.1093/emboj/17.11.3052
4. Sen S, Zhou H, Zhang RD, Yoon DS, Vakar-Lopez F, Ito S, et al. Amplification/overexpression of a mitotic kinase gene in human bladder cancer. *J Natl Cancer Inst.* (2002) 94:1320–9. doi: 10.1093/jnci/94.17.1320
5. Ochi T, Fujisawa H, Suemori K, Azuma T, Yakushijin Y, Hato T, et al. Aurora-A kinase: a novel target of cellular immunotherapy for leukemia. *Blood.* (2009) 113:66–74. doi: 10.1182/blood-2008-06-164889
6. Li D, Zhu J, Firozi PF, Abbruzzese JL, Evans DB, Cleary K, et al. Overexpression of oncogenic STK15/BTAK/Aurora A kinase in human pancreatic cancer. *Clin. Cancer Res.* (2003) 9:991–7. doi: 10.1093/carcin/24.3.613
7. Tatsuoka M, Sato S, Kitajima S, Sato S, Kawai H, Miyaiuchi M, et al. Overexpression of Aurora-A potentiates HRAS-mediated oncogenic transformation and is implicated in oral carcinogenesis. *Oncogene.* (2005) 24:1122–7. doi: 10.1038/sj/onc.1208293
8. Littlepage LE, Ruderman JV. Identification of a new APC/C recognition domain, the A box, which is required for the Cdh1-dependent destruction of the kinase Aurora-A during mitotic exit. *Genes Dev.* (2002) 16:2274–85. doi: 10.1101/gad.1007302
9. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *J Clin Epidemiol.* (2008) 61:344–9. doi: 10.1016/j.jclinepi.2007.11.008
10. Wu S, Han Y, Hu Q, Zhang X, Cui G, Li Z, et al. Effects of common polymorphisms in the MTHFR and ACE genes on diabetic peripheral neuropathy progression: a meta-analysis. *Mol Neurobiol.* (2017) 54:2435–44. doi: 10.1007/s12035-016-9823-4
11. He J, Liao XY, Zhu JH, Xue WQ, Shen GP, Huang SY, et al. Association of MTHFR C677T and A1298C polymorphisms with non-Hodgkin lymphoma susceptibility: evidence from a meta-analysis. *Sci Rep.* (2014) 4:6159. doi: 10.1038/srep06159
12. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. *Biometrics.* (1994) 50:1088–1101. doi: 10.2307/2533446
13. Li S. AURKA T91A Gene Polymorphism and Breast Cancer Correlation Study of Uygur and Han in Xinjiang, Wulumuqi: Xinjiang Medical University (2014).
14. Torchio EC, Chen Y, Sheng H, Katayama H, Fitzpatrick J, Brinkley WR, et al. A genetic variant of Aurora kinase A promotes genomic instability leading to highly malignant skin tumors. *Cancer Res.* (2009) 69:7207–15. doi: 10.1158/0008-5472.CAN-09-1059
15. Srivastava V, Sen S. Genetic variation in coding region of Aurora kinase A gene leads to cancer susceptibility. *Cancer Epidemiol.* (2014) 38:109–10. doi: 10.1016/j.canep.2014.03.002
16. Ewart-Toland A, Briassouli P, de Koning JP, Mao JH, Yuan J, Chan F, et al. Identification of 566/STK15 as a candidate low-penetration tumor-susceptibility gene in mouse and human. *Nat. Genet.* (2003) 34:403–12. doi: 10.1038/ng1220
17. Klinke OK, Mizani T, Baldwin G, Bancel B, Devouassoux-Shisheboran M, Scoazec JY, et al. KIT mutation and Loss of 14q may be sufficient for the development of clinically symptomatic very low-risk GIST. *PLoS ONE.* (2015) 10:e0130149. doi: 10.1371/journal.pone.0130149
18. Dillon JL, Mockus SM, Ananda G, Spotlow V, Wells WA, Tsongalis GJ, et al. Somatic gene mutation analysis of triple negative breast cancers. *Breast.* (2016) 29:202–207. doi: 10.1016/j.breast.2016.06.018
19. Chen GL, Hou GL, Sun F, Jiang HL, Xue JF, Li XS, et al. Upregulation of STK15 in esophageal squamous cell carcinomas in a Mongolian population. *Asian Pac J Cancer Prev.* (2014) 15:6021–4. doi: 10.7314/APJCP.2014.15.15.6021
20. Koleck TA, Bender CM, Clark BZ, Ryan CM, Ghotkar F, Brusfoy A, et al. An exploratory study of host polymorphisms in genes that clinically characterize breast cancer tumors and pretreatment cognitive performance in breast cancer survivors. *Breast Cancer (Dove Med Press).* (2017) 9:95–110. doi: 10.2147/BCTT.S132785
21. Baumann A, Buchberger AM, Piontek G, Schuttler D, Rudelius M, Reiter R, et al. The Aurora-Kinase A Phe31-Ile polymorphism as possible predictor of response to treatment in head and neck squamous cell carcinoma. *Onco-target.* (2018) 9:12769–80. doi: 10.18632/oncotarget.24355
22. Liu C. The association between AURKA T91A polymorphism and breast cancer risk. *Breast Cancer Res Treat.* (2011) 129:281–3. doi: 10.1007/s10549-011-1497-z.
23. Pickhard A, Siegl M, Baumann A, Huhm M, Wirth M, Reiter R, et al. The response of head and neck squamous cell carcinoma to cetuximab treatment depends on Aurora kinase A polymorphism. *Onco-target.* (2014) 5:5428–38. doi: 10.18632/oncotarget.2117
24. Pan YJ, Ayani JA, Gu J, Gong Y, Qin A, Hung M, et al. Association of Aurora-A (STK15) kinase polymorphisms with clinical outcome of esophageal cancer treated with preoperative chemoradiation. *Cancer.* (2012) 118:4346–53. doi: 10.1002/cncr.26581
25. Niu H, Shin H, Gao F, Zhang J, Bahamon B, Danaei H, et al. Aurora A functional single nucleotide polymorphism (SNP) correlates with clinical outcome in patients with advanced solid tumors treated with alisertib, an investigational aurora A kinase inhibitor. *EBioMedicine.* (2017) 25:50–7. doi: 10.1016/j.ebiom.2017.10.015
26. Chen L, Ao X, Ren Q, Wang ZN, Lu C, Xu Y, et al. Linkage disequilibrium and haplotype analysis of two single nucleotide polymorphisms in STK15 in Chinese. *Acta genetica Sinica.* (2005) 32:331–6.
27. Matarasso N, Bar-Shira A, Rozovski U, Rosner S, Orr-Urtreger A. Functional single nucleotide polymorphism (SNP) correlates with clinical outcome of esophageal cancer treated with preoperative chemoradiation. *Cancer.* (2012) 118:4346–53. doi: 10.1002/cncr.26581
28. Provencio M, Camps C, Cobo M, Desai E, Masotti B, Blanco R, et al. Prospective assessment of X RCC3, XPD and Aurora kinase A single-nucleotide polymorphisms in advanced lung cancer. *Cancer Chemother. Pharmacol.* (2012) 70:883–90. doi: 10.1007/s00280-012-1985-9
29. Pohl A, Azuma M, Zhang W, Yang D, Ning Y, Winder T, et al. Pharmacogenetic profiling of Aurora kinase B is associated with overall survival in metastatic colorectal cancer. *Pharmacogenomics.* (2011) 11:93–9. doi: 10.1080/17470381.2010.1747038
30. Giacomazzi J, Aguiar E, Palmero EI, Schmidt AV, Skonieski G, Duarte Filho D, et al. Prevalence of the STK15 F31I polymorphism and its relationship with mammographic density. Braz J Med Biol Res. (2011) 44:291–6. doi: 10.1590/S0100-879X201100500029

31. Chen J, Etzel CJ, Amos CI, Zhang Q, Viscooky N, Lindor NM, et al. Genetic variants in the cell cycle control pathways contribute to early onset colorectal cancer in Lynch syndrome. Cancer Causes Control. (2009) 20:1769–77. doi: 10.1007/s10552-009-9416-x

32. Boonstra JJ, van Marion R, Tilanus HW, Dinjens WN. Functional polymorphisms associated with disease-free survival in resected carcinoma of the esophagus. J Gastrointest Surg. (2011) 15:48–56. doi: 10.1007/s11605-010-1358-9

33. Necchi A, Pintarelli G, Raggi D, Giannatempo P, Colombo F. Association of an aurora kinase a (AURKA) gene polymorphism with progression-free survival in patients with advanced urothelial carcinoma treated with the selective aurora kinase a inhibitor alisertib. Invest New Drugs. (2017) 35:324–8. doi: 10.1007/s10637-017-0440-5

34. Golmohammadri N, Namazi MJ, Going JJ, Derakhshan MH. A single nucleotide polymorphism in codon F31I and V57I of the AURKA gene in invasive ductal breast carcinoma in Middle East. Medicine. (2017) 96:e7933. doi: 10.1097/MD.0000000000007933

35. Couch FJ, Sinilnikova O, Vierkant RA, Pankratz VS, Frederiksen ZS, and ABCB1 genes modulate menopausal hormone therapy associated breast cancer risk. Polymorphisms in the BRCA1 and ABCB1 genes modulate menopausal hormone therapy associated breast cancer risk in postmenopausal women. Breast Cancer Res Treat. (2010) 120:727–36. doi: 10.1007/s10549-009-0489-8

36. Wang N, Wang GY, Guo W, Dong XJ, Li Y. Study on the association between genetic polymorphism and breast cancer susceptibility of Xinjiang Uygur and Han population. Mol Carcinog. (2009) 54:152–61. doi: 10.1002/mc.22055

37. Wang N, Wang GY, Guo W, Wang Y, Zhang X, Tan W, Lin D. Functional STK15 Phe31Ile polymorphism and esophageal squamous cell carcinoma. Chin J Epidemiol. (2007) 28:394–7.

38. Chua S, Mohan V, Pasupuleti N, Latha MM, Khan IA, Upendra P, et al. Evaluation of Aurora-A gene polymorphism and esophageal cancer risk in a South Indian population. Genet Test Mol Biomarkers. (2011) 15:185–9. doi: 10.1089/gtmb.2010.0143

39. Chong ET, Goh LP, See EU, Chuah JA, Chua KH, Lee PC. Association between genetic polymorphism and breast cancer risk. Cancer Lett. (2006) 247:266–72. doi: 10.1016/j.canlet.2006.07.002

40. Sun T, Miao X, Wang J, Tan W, Zhou Y, Yu C, et al. Breast cancer risk associated with genotype polymorphisms of the aurora kinase a gene (AURKA): a case-control study in a high altitude ecuadorian mestizo population. Pathol Oncol Res. (2018) 24:457–65. doi: 10.1007/s12253-017-0267-6

41. Zhou X, Wang P, Zhao H. The association between AURKA rs2273535 polymorphism and gastric cancer risk in a chinese population. Front Physiol. (2018) 9:1124. doi: 10.3389/fphys.2018.01124

42. Zhao M. The Study on the Relationship Between the Aurora-A Polymorphism and EBV-Associated Gastric Carcinoma. Qingsdao: Qingsdaou University (2014).

43. Chen L. Genetic Polymorphisms and Disease Risks: STK15 Gene and Risk for Gastric Cancer, MMP9 Gene and Risk for Thoracic Aortic Aneurysm and Thoracic Aortic Dissection. Shenyang: China Medical University (2005).

44. Lu J, Cho H, Kim YS, Kim WH, Ihm C, Noh SM, et al. Functional polymorphism 57Val->Ile of aurora kinase A associated with increased risk of gastric cancer progression. Cancer Lett. (2006) 242:273–9. doi: 10.1016/j.canlet.2005.11.015

45. Mesic A, Rogar M, Hudler P. Association of the AURKA and AURKC gene polymorphisms with an increased risk of gastric cancer. IUBMB life. (2016) 68:634–44. doi: 10.1002/iub.1521

46. Zhang WJ, Miao XP, Sun T, Zhang XM, Qu SN, Tan W, et al. Association between genetic polymorphism in STK15 and risk of colorectal cancer in a Chinese population. Chin J Oncol. (2006) 28:43–6. doi: 10.1007/s11769-006-0026-1

47. Webb EL, Rudd MF, Holuesta LS. Case-control, kin-cohort and meta-analyses provide no support for STK15 F31I as a low penetrance colorectal cancer allele. Br J Cancer. (2006) 95:1047–9. doi: 10.1038/sj.bjc.6603382

48. Chen J, Sen S, Amos CI, Wei C, Jones JS, Lynch P, et al. Association between Aurora-A kinase polymorphisms and age of onset of hereditary nonpolyposis colorectal cancer in a Caucasian population. Mol Carcinog. (2007) 46:249–56. doi: 10.1002/mc.20285

49. Chen XR, Chen GL, Liu IN, Yang JZ, Du PK, Lin DX, et al. Genetic polymorphisms in STK15 and MMP-2 associated susceptibility to esophageal cancer in Mongolian population. Chin J Prev Med. (2009) 43:559–64.

50. Miao X, Sun T, Wang Y, Zhang X, Tan W, Lin D. Functional STK15 Phe31Ile polymorphism is associated with the occurrence and advanced disease status of esophageal squamous cell carcinoma. Cancer Res. (2004) 64:2680–3. doi: 10.1158/0008-5472.CAN-04-0651

51. Wang B, Hsu CJ, Chou CH, Lee HL, Chiang WL, Su CM, et al. Variations in the AURKA Gene: Biomarkers for the Development and Progression of Hepatocellular Carcinoma. Int J Med Sci. (2018) 15:170–5. doi: 10.7150/ijms.22513

52. Zhao X, Liu J, Liu X, Guo B, Zhai Y, Li Y, et al. Association between the functional polymorphism Ile31Phe in the AURKA gene and susceptibility of hepatocellular carcinoma in chronic hepatitis B virus carriers. Oncotarget. (2017) 8:54904–12. doi: 10.18632/oncotarget.18613

53. Chou CH, Chou YE, Chuang CY, Yang SF, Lin CW. Combined effect of genetic polymorphisms of AURKA and environmental factors on oral cancer development in Taiwan. PLoS ONE. (2017) 12:e0171583. doi: 10.1371/journal.pone.0171583
65. Gu J, Gong Y, Huang M, Lu C, Spitz MR, Wu X. Polymorphisms of STK15 (Aurora-A) gene and lung cancer risk in Caucasians. *Carcinogenesis*. (2007) 28:350–5. doi: 10.1093/carcin/bgl149

66. Tang J, Qian Y, Zhu J, Zhang J, Wang FH, Zeng JH, et al. Lack of associations between AURKA gene polymorphisms and neuroblastoma susceptibility in Chinese children. *Biosci Rep.* (2018) 38:1–7. doi: 10.1042/BSR20180292

67. Zheng L, Song A, Ruan Y, Chen L, Liu D, Li X, et al. Genetic polymorphisms in AURKA, BRCA1, CCNE1 and CDK2 are associated with ovarian cancer susceptibility among Chinese Han women. *Cancer Epidemiol.* (2013) 37:639–46. doi: 10.1016/j.canep.2013.04.018

68. Feik E, Baierl A, Madersbacher S, Schatzl G, Maj-Hes A, Berges R, et al. Common genetic polymorphisms of AURKA and prostate cancer risk. *Cancer Causes Control*. (2009) 20:147–52. doi: 10.1007/s10552-008-9227-5

69. Hammerschmied CG, Stoehr R, Walter B, Wieland WF, Hartmann A, Blaszyk H, et al. Role of the STK15 Phe31Ile polymorphism in renal cell carcinoma. *Oncol Rep.* (2007) 17:3–7. doi: 10.3892/or.17.1.3

70. Lin YC, Hour TC, Tsai YC, Huang SP, Wu WJ, Chen CH, et al. Preliminary evidence of polymorphisms of cell cycle regulatory genes and their roles in urinary tract urothelial cancer susceptibility and prognosis in a Taiwan population. *Urol Oncol.* (2017) 35:543.e547–e543.e516. doi: 10.1016/j.urolonc.2016.08.001

71. Milam MR, Gu J, Yang H, Celestino J, Wu W, Horwitz IB, et al. STK15 F31I polymorphism is associated with increased uterine cancer risk: a pilot study. *Gynecol Oncol.* (2007) 107:71–4. doi: 10.1016/j.ygyno.2007.05.025

72. Zheng LX, Song AP, Chen L, Liu DG, Li XH, Guo HY, et al. Association of genetic polymorphisms in AURKA, BRCA1, CCNE1 and CDK2 with the risk of endometrial carcinoma and clinicopathological parameters among Chinese Han women. *Eur J Obstet Gynecol Reprod Biol.* (2015) 184:65–72. doi: 10.1016/j.ejogrb.2014.11.001

73. Cheetham GM, Knechtel RM, Coll JT, Renwick SB, Swenson L, Weber P, et al. Crystal structure of aurora-2, an oncogenic serine/threonine kinase. *J Biol Chem.* (2002) 277:42419–22. doi: 10.1074/jbc.C200426200

74. Neben K, Korschunov A, Benner A, Wrobel G, Hahn M, Kokociński F, et al. Microarray-based screening for molecular markers in medulloblastoma revealed STK15 as independent predictor for survival. *Cancer Res.* (2004) 64:3103–11. doi: 10.1158/0008-5472.CAN-03-3968

75. Chen J, Li D, Wei C, Sen S, Killary AM, Amos CI, et al. Aurora-A and pI6 polymorphisms contribute to an earlier age at diagnosis of pancreatic cancer in Caucasians. *Clin Cancer Res.* (2007) 13:3100–4. doi: 10.1158/1078-0432.CCR-06-2319

76. Dai ZJ, Kang HF, Wang XL, Shao YP, Lin S, Zhao Y, et al. Association between genetic polymorphisms in AURKA (rs2273535 and rs1047972) and breast cancer risk: a meta-analysis involving 37,221 subjects. *Cancer Cell Int.* (2014) 14:91. doi: 10.1186/s12935-014-0091-y

77. Qin K, Wu C, Wu X. Two nonsynonymous polymorphisms (F31I and V57I) of the STK15 gene and breast cancer risk: a meta-analysis based on 5966 cases and 7609 controls. *J Int Med Res.* (2013) 41:956–63. doi: 10.1177/0300060513490087

78. Sun H, Bai J, Chen F, Jin Y, Yu Y, Fu S. Lack of an association between AURKA T91A polymorphisms and breast cancer: a meta-analysis involving 32,141 subjects. *Breast Cancer Res Treat.* (2011) 125:175–9. doi: 10.1007/s10549-010-0936-6

79. Ewart-Toland A, Dai Q, Gao YT, Nagase H, Dunlop MG, Farrington SM, et al. Aurora-A/STK15 T+91A is a general low penetrance cancer susceptibility gene: a meta-analysis of multiple cancer types. *Carcinogenesis*. (2005) 26:1368–73. doi: 10.1093/carcin/bg8085

80. Guo XG, Zheng L, Feng WB, Xia Y. The AURKA gene rs2273535 polymorphism contributes to breast carcinoma risk - meta-analysis of eleven studies. *Asian Pacific J Cancer Prev.* (2014) 15:6709–14. doi: 10.7314/APJCP.2014.15.16.6709

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Wang, Qi, Zhu, Wang and Nie. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.