Scaling of the elastic energy of small balls for maps between manifolds with different curvature tensors

Milan Krömer and Stefan Müller

December 12, 2022

Contents

1 Introduction 1
2 Preliminaries 3
3 A new notion of convergence for blow-ups 4
4 Compactness and \(\Gamma\)-convergence 8
5 Convergence of the energy 13

1 Introduction

Motivated by experiments and formal asymptotic expansions in the physics literature \[1\], Maor and Shachar \[9\] studied the behaviour of a model elastic energy of maps between manifolds with incompatible metrics. For thin objects they analysed the scaling of the minimal elastic energy as a function of the thickness. In particular, they established the following result.

Theorem 1.1 (\[9\], Thm 1.1). Let \((M, g)\) be an oriented \(n\)-dimensional Riemannian manifold. Let \(p \in M\) and consider a small ball \(B_h(p)\) around \(p\). For a map \(u\) in the Sobolev space \(W^{1,2}(B_h(p); \mathbb{R}^n)\) define the energy

\[
E_{B_h(p)}(u) = \int_{B_h(p)} \text{dist}^2(du, \text{SO}(g,e)) \, d\text{Vol}_g
\]

where \(\text{SO}(g,e)(p')\) denotes the set of orientation preserving isometries from \(T_{p'}M\) to \(\mathbb{R}^n\) (equipped with the Euclidean metric \(e\) and the standard orientation) and where the distance is taken with respect to the Frobenius norm for tensors in \(\mathbb{R}^n \otimes T^*_pM\), see (2.4) and (2.5) below for explicit formulae. For a measure \(\nu\) the average with respect to \(\nu\) is denoted by \(\int_E f \, d\nu = (\nu(E))^{-1} \int f \, d\nu\).

For a tensor \(A \in T_pM \otimes (T^*_pM)^{\otimes 3}\) define a map \(B : T_pM \supset B_1(0) \to T_pM \otimes T^*_pM\) by \(B(X)(Y) = A(X,Y,X)\) and an energy

\[
\mathcal{I}_A := \min_{f \in W^{1,2}(B_1(0);T_pM)} \int_{B_1(0)} |\text{sym} \, df - \frac{1}{6} B|^2 \, d\text{Vol}_{g(p)}.
\]

Then

\[
\lim_{h \to 0} \frac{1}{h^2} \inf E_{B_h(p)} = \mathcal{I}_{\mathcal{R}(p)},
\]

where \(\mathcal{R}(p)\) is the Riemann curvature tensor at \(p\).

In (1.2) the norm is the Frobenius norm of tensors in \(T_pM \otimes T^*_pM\) and the symmetric part of a linear map \(L : T_pM \to T_pM\) is defined by \(\text{sym} \, L = \frac{1}{2}(L + L^T)\) where \(L^T\) is the adjoint map given by \(g(p)(L^T X, Y) = g(p)(X, LY)\).
In [9] it is shown that the quadratic quantity \(I_{\mathcal{R}(p)} \) is actually induced by a scalar product and in particular \(I_{\mathcal{R}(p)} = 0 \) if and only if \(\mathcal{R}(p) = 0 \). Recall that by Gauss’ theorema egregium, a small ball \(B_h(p) \) in \(\mathcal{M} \) can be mapped into \(\mathbb{R}^n \) with zero energy \(E_{B_h(p)} \) if and only if \(\mathcal{R} \equiv 0 \) on \(B_h(p) \).

In local coordinates \(\mathcal{I}_A \) is given as follows. Let \(e_1, \ldots, e_n \) be any \(g(p) \)-orthonormal basis of \(T_p\mathcal{M} \). Then

\[
\mathcal{I}_A = \min_{f \in W^{1,2}(B_1(0);\mathbb{R}^n)} \int_{B_1(0)} \frac{1}{2} \left(\frac{\partial \tilde{f}^i}{\partial x^j} + \frac{\partial \tilde{f}^j}{\partial x^i} \right)^2 - \frac{1}{6} \sum_{j,l=1}^n A_{ijkl} x^j x^l \, dx
\]

where now \(B_1(0) \) is the unit ball in \(\mathbb{R}^n \) and

\[
A_{ijkl} = g(p)(e_i, A(e_j, e_k, e_l)).
\]

The functions \(f \) and \(\tilde{f} \) are related by the identity \(\tilde{f}^i(x) = g(p)(e_i, f(\sum_{j=1}^n x^j e_j)) \).

Based on Theorem 1.1 and heuristic reasoning in the physics literature, Maor and Shachar raise the question whether Theorem 1.1 can be generalized to non-flat targets with \(\mathcal{R} \) replaced by the difference of the curvature tensors in the target and the domain [9]. Here we show that this is true if the difference of the curvature tensors is properly interpreted.

Theorem 1.2. Let \((\mathcal{M}, g) \) and \((\tilde{\mathcal{M}}, \tilde{g}) \) be smooth oriented Riemannian manifolds and suppose that \(\tilde{\mathcal{M}} \) is compact. For \(p \in \mathcal{M}, h > 0 \) and a map \(u \) in the Sobolev space \(W^{1,2}(B_h(p);\mathcal{M}) \) define the energy

\[
E_{B_h(p)}(u) = \int_{B_h(p)} \text{dist}^2(du, SO(g, \tilde{g})) \, d\text{Vol}_g
\]

where \(\text{dist}(du, SO(g, \tilde{g}))(p') \) denotes the Fronenius distance in \(T_u(p', \tilde{\mathcal{M}} \otimes T_p^*\mathcal{M}) \) of \(du(p') \) from the set of orientation preserving isometries from \(T_{p'}\tilde{\mathcal{M}} \) to \(T_u(p', \mathcal{M}) \). Then

\[
\lim_{h \to 0} \frac{1}{h^4} \inf \min_{q \in \mathcal{M}} \min_{Q \in SO(T_p\mathcal{M}, T_p\tilde{\mathcal{M}})} \mathcal{I}_{\mathcal{R}(p) - RQ},
\]

where \(\mathcal{R}^Q \) is the pullback of the the Riemann curvature tensor \(\mathcal{R}(q) \) under \(Q \), i.e.,

\[
\mathcal{R}^Q(X, Y, Z) = Q^{-1} \mathcal{R}(q)(QX, QY, QZ)
\]

and where \(SO(T_p\mathcal{M}, T_p\tilde{\mathcal{M}}) \) denotes the set of orientation preserving isometries from \(T_p\mathcal{M} \) (equipped with the metric \(g(p) \)) and \(T_q(\tilde{\mathcal{M}}) \) (equipped with the metric \(\tilde{g}(q) \)).

The result can be extended to noncompact targets \(\tilde{\mathcal{M}} \), if \(\tilde{\mathcal{M}} \) satisfies a uniform regularity condition near infinity and if the minimum over \(q \) is replaced by an infimum, see Corollary 5.2 below. In particular the result holds for the hyperbolic space \(\mathbb{H}^n_K \) of constant curvature \(K < 0 \), and we recover Theorem 1.1 if we take \(\tilde{\mathcal{M}} = \mathbb{R}^n \).

The heuristic argument for the validity of both theorems is simple. In normal coordinates (i.e., those induced by the exponential map) in a neighbourhood of \(p \in \mathcal{M} \) and \(q = u(p) \in \tilde{\mathcal{M}} \) the metrics behave like \(g(v) = \text{Id} + q(v) + \mathcal{O}(|v|^3) \) and \(\tilde{g}(v) = \text{Id} + \tilde{q}(v) + \mathcal{O}(|v|^3) \) where \(q \) and \(\tilde{q} \) are homogeneous of degree 2 and determined by the Riemann curvature tensors at \(p \) and \(q \), respectively, see [2] below. This suggests to look for approximate minimizers of the elastic energy of the form

\[
u(\exp_p X) = \exp_q(Q(X + h^3 f(X/h)))
\]

with \(Q \in SO(T_p\mathcal{M}, T_q\tilde{\mathcal{M}}) \) and \(f : T_p\mathcal{M} \to T_q\mathcal{M} \). Then \(d(\exp_q^{-1} \circ u \circ \exp_p) = \text{Id} + h^2 df \) and optimization over \(f \) and \(Q \) should yield the asymptotically optimal behaviour of the energy.

Similar to the reasoning in [9], the proof of Theorem 1.2 relies on a corresponding \(\Gamma \)-convergence result where the notion of convergence of sequences of maps \(u_h : B_h(p) \to \tilde{\mathcal{M}} \) incorporates a blow-up which reveals the map \(f \). One key additional difficulty for non-flat targets is that maps
u_h with small energy need not be continuous. Thus $u_h(B_h(p))$ may not be contained in a single chart of $\tilde{\mathcal{M}}$ and we cannot rely on Taylor expansion in exponential coordinates in the target.

To overcome this difficulty, we define a new notion of convergence of the maps u_h which is based on Lipschitz approximations and exploits the fact that Sobolev maps agree with Lipschitz maps on a large subset. The idea to use Lipschitz approximation to treat manifold-valued maps has already been used in \cite{1}, pp. 390–391. The use of Lipschitz approximations to define a suitable notion of convergence after blow-up seems, however, to be new. We believe that this approach might be useful for other problem involving manifold-valued maps, too.

The remainder of this paper is organized as follows. In Section 2 we introduce the relevant notation and definitions, in particular the definition of Sobolev maps with values in a Riemannian manifold. In Section 3 we introduce a new notion of convergence based on blow-ups of Lipschitz approximations and show that the limit is well-defined, and in particular does not depend on which Lipschitz approximation is used. Based on this convergence notion we establish compactness and Γ-convergence results in Section 4. Finally, in Section 5 we deduce Theorem 1.2, i.e. convergence of the rescaled energy, in the usual way from compactness and Γ-convergence.

2 Preliminaries

Here we recall three facts: the notion of Sobolev spaces of maps with values in a Riemannian manifold, the expression of $\text{dist}(du, SO(g, \hat{g}))$ in local coordinates, and the expansion of the metric near the origin in normal coordinates.

For the rest of this paper (\mathcal{M}, g), $(\tilde{\mathcal{M}}, \tilde{g})$ will always denote smooth oriented Riemannian n-dimensional manifolds. We often drop g or \hat{g} in the notation. We denote by d_g the inner metric of \mathcal{M}, i.e. $d_g(p, p')$ is given by the infimum of the length of curves connecting p and p'.

The Sobolev spaces $W^{1,p}(\mathcal{M})$ of functions $u : \mathcal{M} \to \mathbb{R}$ are defined by using a partition of unity and local charts. The definition of Sobolev maps with values in $\tilde{\mathcal{M}}$ is more subtle, since Sobolev maps need not be continuous and hence the image of a small ball in \mathcal{M} may not be contained in a single chart of $\tilde{\mathcal{M}}$. To overcome this difficulty, we use the fact that $\tilde{\mathcal{M}}$ can be isometrically embedded in some \mathbb{R}^s if s is chosen sufficiently large. We thus may assume that $\tilde{\mathcal{M}} \subset \mathbb{R}^s$ and for an open subset $U \subset \mathcal{M}$ we define

$$W^{1,p}(U; \tilde{\mathcal{M}}) = \left\{ u \in W^{1,p}(\mathcal{M}; \mathbb{R}^s) : u(x) \in \tilde{\mathcal{M}} \text{ for a.e. } x \in U \right\}. \quad (2.1)$$

It is easy to check that for a map $u \in W^{1,p}(U; \tilde{\mathcal{M}})$ the weak differential du (obtained by viewing u as a map with values in \mathbb{R}^s) satisfies $\text{range}(du(x)) \subset T_{u(x)}\tilde{\mathcal{M}}$ for a.e. $x \in U$.

Equivalently, one can define the Sobolev space $W^{1,p}(U; \tilde{\mathcal{M}})$ by viewing $\tilde{\mathcal{M}}$ as a metric space with the inner metric $d_{\tilde{g}}$ and use the theory of Sobolev spaces with values in a metric space, see, for example, \cite{5} and \cite{11}. Alternatively, one can use the intrinsic definition Sobolev maps with values in manifolds, introduced by Convent and van Schaftingen [2].

We denote by $\mathbb{R}^{n \times n}$ the space of real $n \times n$ matrices and by $O(n) = \left\{ A \in \mathbb{R}^{n \times n} : A^T A = \text{Id} \right\}$ and $SO(n) = \left\{ A \in O(n) : \det A = 1 \right\}$ the orthogonal and special orthogonal group. On $\mathbb{R}^{n \times n}$ we use the Frobenius norm given by

$$|A|^2 = \text{tr} A^T A = \sum_{i,j=1}^{n} A_{ij}^2. \quad (2.2)$$

This norm is invariant under the left and right action of $O(n)$:

$$|RAQ| = |A| \quad \forall R, Q \in O(n). \quad (2.3)$$
For a (weakly) differentiable map u from an open subset of (\mathcal{M}, g) to $(\hat{\mathcal{M}}, \hat{g})$ we define $\text{dist}(du, SO(g, \hat{g}))$ as follows. For $p \in \mathcal{M}$ let $V = (V_1, \ldots, V_n)$ be a positively oriented orthonormal basis of $(T_p\mathcal{M}, g(p))$, let \hat{V} be a positively oriented orthonormal basis of $T_{u(p)}\hat{\mathcal{M}}$ and let $A = (du)_V \hat{V}$ be the matrix representation of $du(p)$ in these bases, i.e., $du(p)V_j = \sum_{i=1}^n A_{ij} \hat{V}_i$. Then

$$\text{dist}(du, SO(g, \hat{g})) := \min_{Q \in SO(n)} |(du)_V \hat{V} - Q|. \quad (2.4)$$

In view of (2.3), the right hand side does not depend on the choice of (positively oriented) orthonormal bases. If \tilde{X} and $\tilde{\hat{X}}$ are general positively oriented bases and if we define matrices $(g_{\tilde{X}})_{ij} = g(p)(X_i, X_j)$ and $(\hat{g}_{\tilde{\hat{X}}})_{ij} = \hat{g}(u(p))(\hat{X}_i, \hat{X}_j)$ then $V_i = \sum_{j=1}^n (g_{\tilde{X}})_{ij}^{-1/2} X_j$ and $\hat{V}_i = \sum_{j=1}^n (\hat{g}_{\tilde{\hat{X}}})_{ij}^{-1/2} \hat{X}_j$ define orthonormal bases. Thus, if $(du)_X \tilde{X}$ is the matrix representation with respect to X and \tilde{X} we get

$$\text{dist}(du, SO(g, \hat{g})) = \min_{Q \in SO(n)} |\hat{g}^{1/2}(du)_X \tilde{X} \hat{g}^{-1/2} - Q|. \quad (2.5)$$

In particular we see that $\text{dist}(du, SO(g, \hat{g}))$ behaves natural under pullback. More precisely, if N and \hat{N} are oriented n-dimensional manifolds and $\varphi : N \to \mathcal{M}$, $\psi : \hat{N} \to \hat{\mathcal{M}}$ are smooth orientation-preserving diffeomorphisms then

$$\text{dist}(du, SO(g, \hat{g})) = \text{dist}(d(\psi^{-1} \circ u \circ \varphi), SO(\varphi^*g, \psi^*\hat{g})) \quad (2.6)$$

where φ^*g denotes the pullback metric given by $\varphi^*g(x)(X, Y) = g(\varphi(x))(d\varphi X, d\varphi Y)$ and $\psi^*\hat{g}$ is given by the analogous expression.

Finally we recall the expansion of the metric in local coordinates. Let $p \in \mathcal{M}$, let $V = (V_1, \ldots, V_n)$ be an orthonormal basis of $(T_p\mathcal{M}, g(p))$, let $n_V : \mathbb{R}^n \to T_p\mathcal{M}$ be given by $n_V(x) = \sum_{j=1}^n x^j V_j$, and let (e_1, \ldots, e_n) denote the standard basis of \mathbb{R}^n. Then

$$\left((\exp_p \circ n_V)^* \hat{g} \right)_{ik} (x) := \left((\exp_p \circ n_V)^* g \right)(x)(e_i, e_k) = \delta_{ik} + \frac{1}{3} \mathcal{R}^i_{jkl}(p)x^j x^l + \mathcal{O}(|x|^3). \quad (2.7)$$

where \mathcal{R} is the Riemann curvature tensor, i.e.,

$$\mathcal{R}(U, V, W) = \nabla_U \nabla_V W - \nabla_V \nabla_U W - \nabla_{[U, V]} W \quad (2.8)$$

and

$$\mathcal{R}^i_{jkl}(p) = g(p)(V_i, \mathcal{R}(p)(V_j, V_k, V_l)). \quad (2.9)$$

3 A new notion of convergence for blow-ups

In this section we introduce a notion of convergence of blow-ups of a sequence of maps $u_{h_k} : B_{h_k}(p) \to \mathcal{M}$ which is based on a suitable approximation by Lipschitz maps. We show in particular that this notion of convergence does not depend on the precise choice of the approximation.

Let $p \in \mathcal{M}$. We set $B(h) = \{ p' \in \mathcal{M} : d_g(p, p') < h \}$ where d_g is the inner metric induced by the Riemannian metric g on \mathcal{M}. In $T_p\mathcal{M}$ we consider the balls $B_r(0) = \{ X \in T_p\mathcal{M} : g(p)(X, X) < r^2 \}$. Let $\text{inj}(p)$ denote the injectivity radius, i.e., the supremum of all $r > 0$ such that the exponential map \exp_p is injective on $B_r(0)$. Then for $h < \text{inj}(p)$ the exponential map is a smooth diffeomorphism from $B_h(0) \subset T_p\mathcal{M}$ to $B_{h}(p) \subset \mathcal{M}$.

Using a positively oriented orthonormal frame $V = (V_1, \ldots, V_n)$ of $T_p\mathcal{M}$ and the corresponding map $n_V : \mathbb{R}^n \to T_p\mathcal{M}$ given by $n_V(x) = \sum_{j=1}^n x^j V_j$ we can identify maps $f : B_1(0) \subset T_p\mathcal{M} \to T_p\mathcal{M}$

\footnote{Some authors define the Riemann curvature tensor by $\mathcal{R}'(U, V, W) = \mathcal{R}(U, V, W)$ where $\mathcal{R}(U, V, W)$ is given by (2.3). Then $\mathcal{R}'(X, Y, X) = \mathcal{R}(Y, X, X) = -\mathcal{R}(X, Y, X)$ and thus $\left((\exp_p \circ n_V)^* \hat{g} \right)_{ik} (x) = \delta_{ik} - \frac{1}{3} \mathcal{R}^i_{jkl}(p)x^j x^l + \mathcal{O}(|x|^3)$.}
with maps \(\tilde{f} : B_1(0) \subset \mathbb{R}^n \to \mathbb{R}^n \) by setting \(\tilde{f} = \psi^{-1} \circ f \circ \psi \). In this way we can define the Sobolev space \(W^{1,2}(B_1(0), \mathbb{R}^n) \) with \(B_1(0) \subset T_pM \) and we introduce the following equivalence relation on that space

\[
\tag{3.1}
f \sim g \quad \text{if } f - g \text{ is affine and } D(f - g) \text{ is skew-symmetric.}
\]

Here symmetry of \(Df \) is defined using the scalar product \(g(p) \). Equivalently, \(Df \) is symmetric if and only if \(D\bar{f} \) is symmetric as a map from \(\mathbb{R}^n \) to \(\mathbb{R}^n \) with respect to the standard Euclidean metric.

For \(p \in M \) and \(q' \in \hat{M} \) we denote by \(SO(T_pM, T_q\hat{M}) \) the set of orientation preserving linear isometries from \(T_pM \) to \(T_q\hat{M} \) (equipped with the metrics \(g(p) \) and \(\hat{g}(q') \), respectively). By \(\mu \) we denote the standard measure on \(M \): \(\mu(E) = \int_E d\text{Vol}_g \). Recall that for a measure \(\nu \) we denote the average with respect to \(\nu \) by \(\int_E f d\nu = (\nu(E))^{-1} \int_E f d\nu \).

Definition 3.1. Let \(h_k > 0 \) with \(\lim_{k \to \infty} h_k = 0 \), let \(p \in M \), and let \(u_k \) be a sequence of maps in \(W^{1,2}(B_{h_k}(p); M) \). Let \(q \in M \), \(Q \in SO(T_pM, T_q\hat{M}) \), and \(f \in W^{1,2}(B_1(0), T_pM) \sim \) where \(B_1(0) \subset T_pM \).

We say that \(u_k \) converges to the triple \((q, Q, f) \), if the following three conditions hold.

(i) \(u_k \) converges to the constant map \(q \) in measure, i.e.,

\[
\lim_{k \to \infty} \frac{1}{\mu(B_{h_k}(p))} \mu \left(\{ x \in B_{h_k}(p) : d_{q}(u_k(x), q) \geq \delta \} \right) = 0 \quad \text{for every } \delta > 0;
\]

(ii) there exist Lipschitz maps \(w_k : B_{h_k}(p) \to \hat{M} \) such that

\[
\sup_k \text{Lip } w_k < \infty,
\]

\[
\sup_k \frac{1}{h_k} \frac{1}{\mu(B_{h_k}(p))} \mu \left(\{ x \in B_{h_k}(p) : w_k(x) \neq u_k(x) \} \right) < \infty;
\]

(iii) Set

\[
q_k := \exp_q \left(\int_{B_1(0)} (\exp_{q^{-1}} \circ w_k \circ \exp_p)(h_k X) d\text{Vol}_{g(p)}(X) \right).
\]

Then there exist \(Q_k \in SO(T_pM, T_q\hat{M}) \), \(c_k \in \mathbb{R}^n \), and an element \(\tilde{f} \) of the equivalence class \(f \) such that \(Q_k \to Q \) and the maps \(f_k : B_1(0) \subset T_pM \to T_pM \) defined by

\[
f_k(X) := \frac{1}{h_k} \left\{ Q_k^{-1} \left(\exp_{q^{-1}} \circ w_k \circ \exp_p \right)(h_k X) - X - c_k \right\}
\]

satisfy

\[
f_k \to \tilde{f} \quad \text{in } W^{1,2}(B_1(0), T_pM)
\]

We denote this convergence by \(u_k \to (q, Q, f) \).

Remark 3.2. 1. To see that the right hand sides of (3.5) and (3.6) are well defined for sufficiently large \(k \) note that it follows from (3.2), (3.3), and (3.4) that

\[
\lim_{k \to \infty} \sup_{p' \in B_{h_k}(p)} d_g(w_k(p'), q) = 0.
\]

Hence, for large enough \(k \), the set \(w_k(B_{h_k}(x)) \) is contained in a ball around \(q \) on which \(\exp_q^{-1} \) is defined and a diffeomorphism. Moreover (3.8) implies that

\[
\lim_{k \to \infty} d_g(q_k, q) = 0
\]

and thus \(\exp_{q_k^{-1}} \circ w_k \) is also well-defined for \(k \) large enough.
2. The linear maps Q_k have different target spaces. To define the convergence $Q_k \to Q$ one uses a local trivialization of the tangent bundle $T\mathcal{M}$. More explicitly, one can check convergence by expressing Q_k in a smooth local frame, see the proof of Lemma 3.3 below.

3. The reader might wonder why we introduce the points q_k rather than defining f_k simply by using \exp_q^{-1}. The point is that the Lipschitz estimate on w_k ensures that the image $w_k(B_{h_k}(p))$ is contained in a ball of radius $C h_k$ around q_k. Thus in normal coordinates around q_k, one can obtain estimates like (2.7) with error terms of order $O(h_k^2)$. Normal coordinates around q give only weaker estimates since we know $d_{\bar{g}}(q_k,q) \to 0$, but in general there is no rate of convergence in terms of h_k.

4. Instead of the points q_k one can use in (3.6) a more intrinsically defined Riemannian centre of mass which depends only on the maps w_k and not on q. Indeed, the Lipschitz condition on w_k and the fact that the images of the maps w_k stays in a bounded set of \mathcal{M} imply that, for sufficiently large k, there exists a unique point \tilde{q}_k which minimizes the quantity $D(q') = \int_{B_{h_k}(p)} d^2_{\bar{g}}(w_k(q'),d\text{Vol}_q$, see [6, Def. 1.3]. We have opted for the more pedestrian definition (3.5) because it is simpler and is sufficient for our purposes.

We show next that if $u_k \to (q,Q,f)$, then Q and f are uniquely determined by the sequence u_k. In particular, they do not depend on the choices of $w_k, Q_k,$ and c_k. Note that q is determined by u_k in view of (3.2). We also show that c_k is of order h_k.

Lemma 3.3. Suppose that $u_k, w_k, Q_k, c_k, q, Q, f,$ and \tilde{f} are as in Definition 3.1 and in particular conditions (3.2)–(3.7) hold. Suppose that there exist $w_k', Q_k', c_k', f_k', Q', f'$ and \tilde{f}' such that conditions (3.3)–(3.7) hold for the primed quantities. Then $Q' = Q$ and $f' = f$ (as equivalence classes).

Moreover, if conditions (i)–(iii) in Definition 3.1 are satisfied, then

$$\sup_k \frac{|c_k|}{h_k} < \infty. \quad (3.10)$$

Proof. Step 1: Estimate for $d_{\bar{g}}(q_k,q_k')$.

Let $\tilde{w}_k(X) = w_k(\exp_p h_k X)$, $\tilde{w}_k'(X) = w_k'(\exp_p h_k X)$. Then, by (3.3),

$$\text{Lip} \tilde{w}_k + \text{Lip} \tilde{w}_k' \leq Ch_k,$$

and, by (3.4),

$$\mu(\{X \in B_{1}(0) : \tilde{w}_k(X) \neq \tilde{w}_k'(X)\}) \leq Ch_k^4.$$

Thus for each $X \in B_{1}(0)$ there exists $Y \in B_{1}(0)$ such that $|Y - X| \leq Ch_k^{4/n}$ and $\tilde{w}_k(Y) = \tilde{w}_k'(Y)$. It follows that

$$\sup_X |\tilde{w}_k(X) - \tilde{w}_k'(X)| \leq Ch_k^{1+4/n},$$

and

$$\sup_{x \in B_{h_k}(p)} |\exp_q^{-1} w_k(x) - \exp_q^{-1} w_k'(x)| \leq Ch_k^{1+4/n}.$$

Since

$$\frac{1}{\mu(B_{h_k}(p))} \mu(\{x : \exp_q^{-1} w_k(x) \neq \exp_q^{-1} w_k'(x)\}) \leq Ch_k^4,$$

we get

$$d_{\bar{g}}(q_k,q_k') \leq \frac{C}{h_k^{n}} (Ch_k^{4+n} h_k^{1+4/n}) \leq Ch_k^{5+4/n}.$$
Step 2: Comparison of $\exp^{-1}_{q_k}$ and $\exp^{-1}_{q_k'}$.

Here and in the rest of the argument it is convenient to work in local coordinates. Thus let $\hat{V} = (\hat{V}_1, \ldots, \hat{V}_n)$ be a smooth, positively oriented, orthonormal frame defined in an open neighbourhood of q. For q' in that neighbourhood consider the isometries $V_{q'(q')}: \mathbb{R}^n \to TM_{q'}$ given by $V_{q'(q')} := \sum_{j=1}^n y_j \hat{V}_j(q')$. Similarly, fix a positively oriented orthonormal basis \tilde{V} of $T_p\mathcal{M}$ and define \tilde{V} in the same way.

Recall that $\text{inj}(q)$ denotes the injectivity radius of \exp_q. Thus there exists a $\rho > 0$ such that for $\tilde{q}, \tilde{q}' \in B_\rho(q)$ and $x \in B_{\text{inj}(q)/2}(0) \subset \mathbb{R}^n$ the expression

$$v_{\tilde{q}, \tilde{q}'}(x) = (\tilde{r}_{-1}^{\tilde{q}} \circ \exp_{\tilde{q}}^{-1} \circ \exp_q \circ \tilde{r}_q)(x)$$

is well defined and smooth as a map from $B_\rho(q) \times B_\rho(q) \times B_{\text{inj}(q)/2}(0)$ to \mathbb{R}^n. Moreover $v_{\tilde{q}, \tilde{q}'} \equiv \text{Id}$. Thus

$$\|dv_{\tilde{q}, \tilde{q}'}(x) - \text{Id}\| \leq C d\tilde{q} \circ \tilde{q}' \quad \forall \tilde{q}, \tilde{q}' \in B_\rho/2(q), \quad \forall x \in B_{\text{inj}(q)/4}(0). \quad (3.11)$$

It follows from (3.9) and Step 1 that the maps \tilde{v}_k given by

$$\tilde{v}_k(x) = \frac{1}{h_k} \left(\tilde{r}_{-1}^{\tilde{q}_k} \circ \exp_{\tilde{q}_k}^{-1} \circ \exp_{q_k} \circ \tilde{r}_q \right)(h_k x) \quad (3.12)$$

are well-defined for sufficiently large k and $x \in B_{\text{inj}(q)/2h_k}$ and satisfy

$$|d\tilde{v}_k(x) - \text{Id}| \leq C h_k^{5+4/n} \quad \forall x \in B_{\text{inj}(q)/4h_k}. \quad (3.13)$$

Step 3: Uniqueness of Q and f.

Using the frames introduced in Step 2, we define maps $\tilde{f}_k: B_1(0) \subset \mathbb{R}^n \to \mathbb{R}^n$ and linear maps $\tilde{Q}_k: \mathbb{R}^n \to \mathbb{R}^n$ by

$$\tilde{Q}_k = \tilde{r}_k^{-1} \circ Q_k \circ \tilde{r}_q, \quad (3.14)$$

$$\tilde{f}_k = \tilde{r}_k^{-1} \circ f_k \circ \tilde{r}_q. \quad (3.15)$$

and similarly for the primed quantities. We use the analogous definitions for the limits Q and \hat{f} (with q_k replaced by q). Then $\tilde{Q}_k, \tilde{Q}_k' \in SO(n)$ and $Q_k \to Q$ if and only if $\tilde{Q}_k \to \hat{Q}$. Similarly $f_k \to \hat{f}$ in $W^{1,2}$ if and only if $\tilde{f}_k \to \tilde{f}$ in $W^{1,2}$.

We also define the following maps from $B_1(0) \subset \mathbb{R}^n$ to \mathbb{R}^n:

$$\tilde{w}_k(x) = \frac{1}{h_k} \left(\tilde{r}_{-1}^{\tilde{q}_k} \circ \exp_{\tilde{q}_k}^{-1} \circ \exp_q \circ \tilde{r}_q \right)(h_k x), \quad (3.16)$$

$$\tilde{w}_k'(x) = \frac{1}{h_k} \left(\tilde{r}_{-1}^{\tilde{q}_k'} \circ \exp_{\tilde{q}_k'}^{-1} \circ \exp_q \circ \tilde{r}_q \right)(h_k x), \quad (3.17)$$

$$\tilde{w}_k''(x) = \frac{1}{h_k} \left(\tilde{r}_{-1}^{\tilde{q}_k} \circ \exp_{\tilde{q}_k}^{-1} \circ \exp_q \circ \tilde{r}_q \right)(h_k x). \quad (3.18)$$

Then

$$\tilde{w}_k' = \tilde{v}_k \circ \tilde{w}_k',$$

where \tilde{v}_k is given by (3.12), and

$$\text{Lip} \tilde{w}_k + \text{Lip} \tilde{w}_k' \leq C, \quad \mathcal{L}^n(\{|\tilde{w}_k \neq \tilde{w}_k'\}) \leq C h_k^4. \quad (3.19)$$

It follows from the definitions of f_k and f_k', as well as the definition of \tilde{v}_k in (3.12) that

$$df_k = \frac{1}{h_k^2} \left((\tilde{Q}_k)^{-1} d\tilde{w}_k - \text{Id} \right), \quad (3.20)$$

$$d\tilde{f}_k' = \frac{1}{h_k^2} \left((\tilde{Q}_k')^{-1} d\tilde{v}_k \circ \tilde{w}_k' - \text{Id} \right). \quad (3.21)$$
Now we first exploit the second estimate in (3.19) and the estimate (3.13) for $d\bar{\nu}_k - \text{Id}$ to show that Q_k and \bar{Q}_k have the same limit. Let $E_k = \{ \bar{\nu}_k \neq \bar{\nu}'_k \}$. Then $d\bar{\nu}_k = d\bar{\nu}'_k$ a.e. in $B_1(0) \setminus E_k$. Thus, by (3.13) and the estimates of the Lipschitz constants in (3.19), we get

$$|d(\bar{\nu}_k \circ \bar{\nu}'_k) - d\bar{\nu}_k)| \leq C h_k^{5+4/n} \quad \text{a.e. in } B_1(0) \setminus E_k. \tag{3.22}$$

Let $\bar{R}_k := \bar{Q}_k^{-1} \bar{Q}'_k$, multiply (3.21) by $-\bar{R}_k$, add (3.20), and multiply the resulting equation by $h_k^2 (1 - 1_{E_k})$. This yields

$$h_k^2 (d\bar{f}_k - \bar{R}_k d\bar{f}'_k) (1 - 1_{E_k}) = O(h_k^{5+4/n}) + (\bar{R}_k - \text{Id}) (1 - 1_{E_k}). \tag{3.23}$$

Since \bar{f}_k and \bar{f}'_k converge weakly in L^2, $\bar{R}_k \in SO(n)$, and $\mathcal{L}^n(\bar{E}_k) \to 0$, it follows that $|\bar{R}_k - \text{Id}| \leq C h_k^5$. In particular, $\bar{R}_k \to \text{Id}$ as $h_k \to 0$ and hence $\bar{Q} = \bar{Q}'$. To show that $\bar{f} \sim \bar{f}'$, we note that there exists a subsequence $k_j \to \infty$ such that the limit

$$A := \lim_{j \to \infty} \frac{\bar{R}_{k_j} - \text{Id}}{h_{k_j}^2}$$

exists. Since $\bar{R}_k \in SO(n)$, it follows that A is skewsymmetric. Dividing (3.23) by h_k^2 and passing to the limit along the subsequence k_j, we get $d\bar{f} - d\bar{f}' = A$. Thus $\bar{f} \sim \bar{f}'$. This is equivalent to $\bar{f} \sim \bar{f}'$ or $f = f'$ (as equivalence classes).

Step 4: Proof of (3.10).

It follows from the definition of q_k and the Lipschitz bound on w_k that $w_k(B_{h_k}(p))$ is contained in a ball $B_{Ch_k}(q_k)$. Thus Taylor expansion of $\bar{\nu}_k = \exp^{-1}_{q_k} \circ \exp_q$ around $Z_k = \exp^{-1}_q(q_k)$ yields

$$\exp^{-1}_{q_k} \circ w_k = \bar{\nu}_k \circ \exp^{-1}_q \circ w_k = 0 + d\bar{\nu}_k(Z_k)[\exp^{-1}_q \circ w_k - Z_k] + O(h_k^2).$$

Hence

$$\int_{B_1(0)} (\exp^{-1}_{q_k} \circ w_k \circ \exp_p)(h_k X) \, d\text{Vol}_{g(p)}(X)$$

$$= d\bar{\nu}_k(Z_k) \left[\int_{B_1(0)} \left((\exp^{-1}_q \circ w_k \circ \exp_p)(h_k X) - Z_k \right) \, d\text{Vol}_{g(p)}(X) \right] + O(h_k^2)$$

$$= O(h_k^2) \tag{3.24}$$

where we used the definition (3.5) of q_k for the last identity. Since f_k is bounded in L^2, equation (3.10) now follows by integrating (3.24) over $X \in B_1(0)$ and using (3.24).

\[\square \]

4 Compactness and Γ-convergence

For $u_h \in W^{1,2}(B_h(p); \hat{\mathcal{M}})$ define the energy of u_h by

$$E_{B_h(p)}(u_h) := \int_{B_h(p)} \text{dist}^2(du_h, SO(g, \hat{g})) \, d\text{Vol}_{g}.$$

For points $p \in \mathcal{M}$ and $q \in \hat{\mathcal{M}}$, an orientation preserving isometry $Q \in SO(T_p \mathcal{M}, T_q \hat{\mathcal{M}})$, and the unit ball $B_1(0)$ in $T_p \mathcal{M}$ we define a functional $T^Q : W^{1,2}(B_1(0); T_p \mathcal{M}) \to \mathbb{R}$ by

$$T^Q(u) = \int_{B_1(0)} |\text{sym} \, df(X) - B(X)|^2 \, d\text{Vol}_{g(p)}(X), \tag{4.1}$$
where $|\cdot|$ denotes the Frobenius norm on $T_p\mathcal{M} \otimes T_p^*\mathcal{M}$ and $\mathcal{B}(X)$ is the element of $T_p\mathcal{M} \otimes T_p^*\mathcal{M}$ given by

$$
\mathcal{B}(X)(Y) = \frac{1}{6} \left(\mathcal{R}(p)(X,Y,X) - \tilde{\mathcal{R}}^Q(X,Y,X) \right)
$$

with

$$
\tilde{\mathcal{R}}^Q(X,Y,X) := Q^{-1}\mathcal{R}(q)(QX,QY,QX).
$$

It follows directly from the definition that $\mathcal{T}^{q,Q}$ depends only on the equivalence class of f (where the equivalence relation is given by \mathcal{A}). We will thus view $\mathcal{T}^{q,Q}$ also as a functional on the space $W^{1,2}(B_1(0); T_p\mathcal{M})/\sim$ without change of notation.

Our main result is the following compactness and Γ-convergence result.

Theorem 4.1. Let (\mathcal{M}, g) and $(\tilde{\mathcal{M}}, \tilde{g})$ be smooth, oriented, n-dimensional Riemannian manifolds. Then the following assertions hold:

(i) Compactness: Assume in addition that $\tilde{\mathcal{M}}$ is compact. Let $h_k \to 0$ and assume that there exists a constant $C > 0$ such the maps $u_k : B_{h_k}(p) \to \tilde{\mathcal{M}}$ satisfy $E_{h_k}(u_k) \leq Ch_k^4$. Then there exists a subsequence $h_{k_j} \to 0$ such that

$$u_{k_j} \longrightarrow (q, Q, f)$$

in the sense of Definition 6.1.

(ii) $\Gamma - \lim \inf$ inequality: if $h_k \to 0$ and $u_k \rightarrow (q, Q, f)$, then

$$
\lim_{k \to \infty} \frac{1}{h_k^4} E_{h_k}(u_k) \geq \mathcal{T}^{q,Q}(f).
$$

(iii) Recovery sequence: Given a triple (q, Q, f) and $h_k \to 0$, there exists u_k such that $u_k \rightarrow (q, Q, f)$ and

$$
\lim_{k \to \infty} \frac{1}{h_k^4} E_{h_k}(u_k) = \mathcal{T}^{q,Q}(f).
$$

The combination of properties (ii) and (iii) can be stated concisely as the fact that $\frac{1}{h_k^4} E_{h_k} \Gamma$-converges (with respect to the convergence in Definition 6.1) to \mathcal{T} with $\mathcal{T}(q, Q, f) = \mathcal{T}^{q,Q}(f)$.

To prove compactness, we use the following result on Lipschitz approximation of \mathbb{R}^s-valued Sobolev maps. This is a minor variation of the classical result by Liu [8, Thm. 1], see also [3, Section 6.6.3, Thm. 3].

Lemma 4.2 ([3], Prop. A.1). Let $s, n \geq 1$ and $1 \leq p < \infty$ and suppose $U \subset \mathbb{R}^n$ is a bounded Lipschitz domain. Then there exists a constant $C = C(U, n, s, p)$ with the following property:

For each $u \in W^{1,p}(U, \mathbb{R}^s)$ and each $\lambda > 0$ there exists $v : U \to \mathbb{R}^s$ such that

(i) $\text{Lip} v \leq C \lambda$,

(ii) $L^n \left(\{ x \in U : u(x) \neq v(x) \} \right) \leq \frac{C}{\lambda^p} \int_{\{ x \in U : |u(x)| > \lambda \} \cap \{ x \in U : |v(x)| > \lambda \}} |du|^p_e \, dx$.

Here $|\cdot|_e$ denotes the Frobenius norm with the respect to the standard scalar products on \mathbb{R}^n and \mathbb{R}^s.

Remark 4.3. It is easy to see that the constant $C(U, n, s, p)$ can be chosen invariant under dilations of U, i.e., $C(rU, n, s, p) = C(U, n, s, p)$. Indeed, given $u \in W^{1,p}(rU, \mathbb{R}^s)$ apply the lemma to the rescaled function $\tilde{u} : U \to \mathbb{R}^s$ given by $\tilde{u}(x) = r^{-1}u(rx)$, obtain a Lipschitz approximation $\tilde{v} : U \to \mathbb{R}^s$ and define v by $v(y) = r\tilde{v}(y/r)$.
Proof of Theorem 4.1 (compactness). We proceed in two steps. First we show that there exists a good Lipschitz approximation \(w_k \) of \(u_k \) and then deduce compactness by expressing \(\text{dist}(dw_k, SO(g, \tilde{g})) \) in terms of normal coordinates in \(M \) and \(\tilde{M} \).

Step 1: Lipschitz approximation: There exists a constant \(C > 0 \) and Lipschitz maps \(w_k : B_{h_k}(p) \to \tilde{M} \) such that, for all sufficiently large \(k \),

\[
\text{Lip} \ w_k \leq C, \quad \frac{1}{\mu(B_{h_k}(p))}\mu(\{u_k \neq w_k\}) \leq Ch_k^4. \tag{4.4, 4.5}
\]

The construction of the maps \(w_k \) is very similar to the construction in \([7]\) pp. 390–391]. We include the details for the convenience of the reader. To construct \(w_k \), we recall that in view of the Nash imbedding theorem \([10]\) Theorem 3), we can view \(\tilde{M} \) as a subset of \(\mathbb{R}^s \) for large \(s \), with the metric on the tangent space of \(\tilde{M} \) induced by the Euclidean metric of \(\mathbb{R}^s \). Let \(\mathcal{V} = (V_1, \ldots, V_n) \) be a positively oriented, orthonormal basis of \(T_pM \) and define \(\hat{u}_k : B_{h_k}(0) \subset \mathbb{R}^n \to \tilde{M} \subset \mathbb{R}^s \) by

\[
\hat{u}_k = u_k \circ \exp_p \circ \mathcal{V}_k(x) = \sum_{j=1}^n x^jV_j. \quad \text{Let } (\tilde{g})_{ij} = ((\exp_p \circ \mathcal{V}_k)^*g)(e_i, e_j) \text{ be the coefficients of the pullback metric in the standard Euclidean basis. Then by (2.7) that}
\]

\[
|\tilde{g}_{ij} - \delta_{ij}| \leq Ch_k^2 \quad \text{on } B_{h_k}(0). \tag{4.6}
\]

Since the Frobenius norm of a map in \(SO(n) \) is \(\sqrt{n} \) and since \(\tilde{M} \) is isometrically imbedded into \(\mathbb{R}^s \) it follows from (4.6) that

\[
|d\hat{u}_k|_e \leq (1 + Ch_k^2)(\sqrt{n} + \text{dist}(du_k, SO(g, \tilde{g}))) \tag{4.7}
\]

In particular for sufficiently large \(k \) we have

\[
|d\hat{u}_k|_e \geq 4\sqrt{n} \quad \implies \quad \text{dist}(du_k, SO(g, \tilde{g})) \geq \frac{1}{2}|d\hat{u}_k|_e \geq 2\sqrt{n}. \tag{4.8}
\]

Now apply Lemma 4.2 and Remark 4.3 with \(u = u_k, U = B_{h_k}(0) \) and \(\lambda = 4\sqrt{n} \). Denote the corresponding Lipschitz approximation by \(\tilde{u}_k \) and set \(E_k^2 = \{x \in B_{h_k}(0) : \tilde{u}_k \neq \hat{u}_k\} \). Then

\[
\text{Lip} \ \tilde{u}_k \leq C. \tag{4.9}
\]

Using that, in addition, \(\det \tilde{g}(x) \geq (1 + Ch_k^2)^{-1} \geq \frac{1}{2} \) we get

\[
\mathcal{L}^n(E_k^2) = \frac{C}{\lambda^2} \int_{\{x \in B_{h_k}(0) : \|d\hat{u}_k|_e \geq \lambda\}} |d\hat{u}_k|_e^2 \ dx \leq \frac{C}{\lambda^2} \int_{B_{h_k}(0)} \text{dist}^2(du_k, SO(g, \tilde{g})) \ Vol_g \ \leq \ C\mu(B_{h_k}(p))h_k^4. \tag{4.10}
\]

In general, the map \(\tilde{u}_k \) takes values in \(\mathbb{R}^s \) rather than in \(\tilde{M} \). This difficulty can be easily overcome by projecting back to \(M \). Indeed, since \(M \) is compact, there exists a \(\rho > 0 \) and a smooth projection \(\pi_{\tilde{M}} \) from a \(\rho \)-neighbourhood of \(\tilde{M} \) in \(\mathbb{R}^s \) to \(M \). Now by (4.10), there exists an \(x' \in B_{h_k}(0) \) such that \(\tilde{u}_k(x') = \hat{u}_k(x') \in \tilde{M} \). Since the distance function is 1-Lipschitz we deduce that \(\text{dist}(\tilde{u}_k(x), M) \leq C|x - x'| \leq Ch_k \) for all \(x \in B_{h_k}(0) \). Then \(\hat{u}_k := \pi_{\tilde{M}} \circ \tilde{u}_k \) is well-defined for sufficiently large \(k \) and satisfies \(\text{Lip} \hat{u}_k \leq C \). Since \(\pi|_{\tilde{M}} = \text{id} \) we have \(\{\hat{u}_k \neq \tilde{u}_k\} \subset \{\tilde{u}_k \neq \hat{u}_k\} \). Finally, using that \(\exp_p \circ \mathcal{V}_k \), is Bilipschitz in a neighbourhood of 0, we see that \(w_k := \hat{u}_k \circ (\exp_p \circ \mathcal{V}_k)^{-1} \) satisfies (4.4) and (4.5).
Step 2: Compactness
The estimate $\text{Lip } w_k \leq C$ implies that the image of w_k is contained in the ball $B(w_k(p), Ch_k)$. Since \mathcal{M} is compact, there exists a subsequence $k_j \to \infty$ and $q \in \mathcal{M}$ such that $w_{k_j}(p) \to q$ as $j \to \infty$. Hence $\lim_{j \to \infty} \sup_{B_{h_{k_j}}} d_g(w_{k_j}, q) = 0$ and in view of (1.5) we get, for all $\delta > 0$,

$$\lim_{j \to \infty} \frac{1}{\mu(B_{h_{k_j}}(p))} \mu \left(\left\{ p' \in B_{h_{k_j}}(p) : d_g(w_{k_j}(p'), q) \geq \delta \right\} \right) = 0.$$

Thus condition (i) in Definition 3.1 is satisfied for the subsequence k_j. Condition (ii) in Definition 3.1 is equivalent to (4.4) and (4.5).

To verify condition (iii) in Definition 3.1 consider the points q_{k_j} defined by

$$q_{k_j} := \exp_q \left(\int_{B_1(0)} (\exp^{-1}_q \circ w_{k_j} \circ \exp_p)(h_{k_j} x) d \text{Vol}_g(X) \right).$$

Since \exp_q and \exp_p are Bilipschitz with Bilipschitz constant close to one in a small neighbourhood of the origin, it follows that $q_{k_j} \to q$ as $j \to \infty$ and that the image of w_{k_j} is contained in $B_{2Ch_{k_j}}(q_{k_j})$ for j sufficiently large.

Note also that the approximation properties (4.4) and (4.5) in combination with the hypothesis $E_{B_{h_{k_j}}}(u_k) \leq Ch_k^4$ imply that

$$\int_{B_{h_{k_j}}(p)} \text{dist}^2(dw_k, SO(g, \tilde{g})) d \text{Vol}_g \leq Ch_k^4. \quad (4.11)$$

Now it is convenient to work in local coordinates, as in the proof of Lemma 3.3. To simplify the notation, we write w_k instead of w_{k_j}. Consider again the maps $\tilde{w}_k : B_1(0) \subset \mathbb{R}^n \to \mathbb{R}^n$ given by

$$\tilde{w}_k(x) = \frac{1}{h_k} (i^{-1}_{\text{Vol}(q_k)} \circ \exp^{-1}_q \circ w_k \circ \exp_p \circ \text{Vol}(h_k)) (h_k x). \quad (4.12)$$

We now apply first the formula (2.10) for $\text{dist}(du, SO(g, \tilde{g}))$ with $\varphi_k(x) = \exp_p \circ \text{Vol}(h_k) (h_k x)$ and $\psi_k(x) = \exp_q \circ \text{Vol}(q_k) (h_k x)$ and then (2.25). This yields

$$\text{dist}(dw_k(\varphi(x)), SO(g, \tilde{g})) = \text{dist} \left((\tilde{g}^{(k)} \circ \tilde{w}_k(x))^{1/2} dw_k (\tilde{g}^{(k)})^{-1/2}(x), SO(n) \right), \quad (4.13)$$

where $\tilde{g}^{(k)}$ is the metric (expressed in the standard basis of \mathbb{R}^n) obtained from the metric g on \mathcal{M} by pullback under φ_k and similarly for $\tilde{g}^{(k)}$.

Using the expansion (2.7) of the metric in normal coordinates and Proposition 4.4 below we deduce that

$$\text{dist}(d\tilde{w}_k, SO(n))(x) \leq (1 + Ch_k^2) \text{dist}(dw_k, SO(g, \tilde{g})) (\exp_p \circ \text{Vol}(h_k x)) + Ch_k^2. \quad (4.14)$$

In view of (4.11) this implies that

$$\int_{B_1(0)} \text{dist}^2 (d\tilde{w}_k, SO(n)) dx \leq Ch_k^4. \quad (4.15)$$

By the rigidity estimate in [4] Thm. 3.1 there exists a constant rotation $\tilde{Q}_k \in SO(n)$ such that

$$\int_{B(0,1)} \left| \tilde{Q}_k^{-1} d\tilde{w}_k - \text{Id} \right|^2 dx \leq Ch_k^4. \quad (4.16)$$

Thus there exists $\tilde{c}_k \in \mathbb{R}^n$ such that the functions

$$\tilde{f}_k = \frac{1}{h_k^2} (\tilde{Q}_k^{-1} w_k - \text{Id} - \tilde{c}_k)$$

are uniformly Lipschitz in \mathbb{R}^n. This completes the proof of Claim 3.1.
are bounded in $W^{1,2}(B_1(0);\mathbb{R}^n)$ and hence a subsequence converges weakly in $W^{1,2}(B_1(0);\mathbb{R}^n)$. Unwinding definitions, we see that condition (iii) in Definition 3.1 is satisfied.

\[\square \]

Proposition 4.4. Let $A, B, F \in \mathbb{R}^{n\times n}$ and assume that A and B are invertible. Then

\[
\text{dist}(F, SO(n)) \\
\leq (1 + |A^{-1} - \text{Id}|)(1 + |B^{-1} - \text{Id}|) \text{dist}(AFB, SO(n)) \\
+ |A^{-1} - \text{Id}| + |B^{-1} - \text{Id}| + |A^{-1} - \text{Id}||B^{-1} - \text{Id}|.
\]

(4.17)

For $A = \text{diag}(a^{-1}, 1, \ldots, 1)$, $B = \text{diag}(b^{-1}, 1, \ldots, 1)$, $F = \text{diag}(abc, 1, \ldots, 1)$, with $a, b, c > 1$ the equality holds.

Proof. There exist $Q \in SO(n)$ such that $\text{dist}(AFB, SO(n)) = |AFB - Q|$. Set $A_Q = Q^{-1}AQ$ and $\tilde{F}_Q = Q^{-1}F$. Then $\text{dist}(AFB, SO(n)) = |A_Q\tilde{F}_QB - \text{Id}|$ and

\[
|F - Q| = |\tilde{F}_Q - \text{Id}| \leq |\tilde{F}_Q - A_Q^{-1}B^{-1}| + |A_Q^{-1}B^{-1} - \text{Id}|
\]

(4.18)

Now expand B^{-1} and A_Q^{-1} as $B^{-1} = \text{Id}+(B^{-1}-\text{Id})$ and $A_Q^{-1} = Q^{-1}A_Q^{-1}Q = \text{Id}+Q^{-1}(A^{-1}-\text{Id})Q$ and use that $|XY| \leq |X| |Y|$ and $|Q^{-1}(A^{-1} - \text{Id})Q| = |A^{-1} - \text{Id}|$.

Proof of Theorem 4.4 (T - $\lim\inf$ inequality). Let $V = (V_1, \ldots, V_n)$ be a positively oriented orthonormal basis of T_pM and set $\tilde{V}_k = (Q_k V_1, \ldots, Q_k V_n)$. Then \tilde{V}_k is a positively oriented orthonormal basis of $T_{q_k}M$. Set $\varphi_k(x) = (\exp_{q_k} \circ \tilde{V}_k)(h_kx)$ and $\psi_k(x) = (\exp_{q_k} \circ \tilde{V}_k)(h_kx)$. Let w_k be as in Definition 4.1 and define

\[
\tilde{w}_k := \psi_k^{-1} \circ w_k \circ \varphi_k, \quad \tilde{E}_k := \{ x : w_k \circ \varphi_k(x) \neq \text{Id} \circ \varphi_k(x) \}.
\]

(4.19)

Then $\mathcal{L}^n(\tilde{E}_k) \leq Ch_k^4$ and

\[
E_{h_k}(w_k) \geq \int_{B_1(0) \setminus \tilde{E}_k(x)} 1_{B_1(0)}(x) \text{dist}(dw_k(\varphi_k(x)), SO(g, \tilde{g})) d\text{Vol}_{\tilde{g}}(x).
\]

(4.20)

Since the functions w_k satisfy a uniform Lipschitz bound, we can obtain the lower bound by expressing $\text{dist}(dw_k(\varphi_k(x)), SO(g, \tilde{g}))$ in normal coordinates at p and q_k and using Taylor expansion on the large set where dw_k is close to $SO(g, \tilde{g})$. Specifically, using (4.13) we get

\[
\text{dist}(dw_k(\varphi(x)), SO(g, \tilde{g})) = \text{dist} \left((\tilde{g}^{(k)})^{1/2}(\tilde{w}_k(x)) \right. \left. d\tilde{w}_k \left(\tilde{g}^{(k)} \right)^{-1/2}(x), SO(n) \right),
\]

(4.21)

where $\tilde{g}^{(k)}$ is the metric obtained from g by pullback under φ_k and similarly for \tilde{g}. The expansion (2.7) of the metric in normal coordinates yields

\[
\tilde{g}^{(k)}_{im}(x) = h_k^2 \left(\delta_{im} - \frac{1}{3} \sum_{j,l=1}^n g(p)(V_i, R(p)(V_j, V_m, V_l)) h_k^2 x^j x^l + O(h_k^3 |x|^3) \right),
\]

(4.22)

\[
\tilde{g}^{(k)}_{im}(y) = h_k^2 \left(\delta_{im} - \frac{1}{3} \sum_{j,l=1}^n g(q_k)(Q_k V_i, \tilde{R}(q_k)(Q_k V_j, Q_k V_m, Q_k V_l)) h_k^2 y^j y^l \right. \left. + O(h_k^3 |y|^3) \right).
\]

(4.23)

Moreover, it follows from the definition of \tilde{w}_k and f_k that

\[
\tilde{w}_k = \text{id} + t_k \tilde{w}^{-1}_k \circ f_k \circ \tilde{t}_k + t_k^{-1} e_k.
\]
Now by (3.10) we have \(c_k \to 0 \). Since \(f_k \) is bounded in \(L^2 \) it follows that \(\tilde{w}_k \to \text{id} \) in \(L^2 \). In view of the uniform Lipschitz bound on \(\tilde{w}_k \) we see that \(\tilde{w}_k \to \text{id} \) uniformly. Thus

\[
G_k := \left(\ell(\ell(k))^{1/2} \circ \tilde{w}_k \right) / h^2_k \to G \quad \text{in} \quad L^2(B_1(0); \mathbb{R}^{n \times n})
\]

(4.24)

with

\[
G_{\text{im}}(x) = d(\ell \circ \tilde{f} \circ \nu)(x) - \sum_{j,l=1}^n A_{jml} x^j x^l, \quad \text{and} \quad A_{jml} = \frac{1}{6} g(p)(V_i, (\mathcal{R}(p) - \mathcal{R}Q)(V_j, V_m, V_l)).
\]

(4.25)

Now set \(F_k := \{ x \in B_1(0) : |h_G^2 G_k| > h_k \} \) and for \(x \notin F_k \) use the Taylor expansion

\[
\text{dist}^2(\text{Id} + h_G^2 G_k, SO(n)) = |\text{sym} \ h_G^2 G_k|^2 + \mathcal{O}(h_k)|h_G^2 G_k|^2.
\]

By (2.7) we have \(d\text{Vol}_{g(x)} = h^n(1 + \mathcal{O}(h_k^n))\mathcal{L}^n \). Using that \(\mathcal{L}^n(\bar{E}_k \cup F_k) \to 0 \) and that positive semidefinite quadratic forms are weakly lower semi-continuous, we deduce that

\[
\begin{align*}
\liminf_{k \to \infty} \frac{1}{h_k^2} \int_{B_1(0)} \left(1_{B_1(0)} \text{sym} \ h_G^2 G_k \right) d\text{Vol}_{g(x)} &
\geq \liminf_{k \to \infty} \int_{B_1(0)} |1_{B_1(0)} \text{sym} \ G_k|^2 \ dx \\
&\geq \int_{B_1(0)} |\text{sym} \ G_k|^2 \ dx.
\end{align*}
\]

(4.26)

Now the assertion follows from (4.20), (4.21), (4.24), (4.25) and (4.26).

Proof of Theorem 4.1 (recovery sequence). Let \(q \in \mathcal{M} \), \(Q \in SO(n)(T_p M, T_p \mathcal{M}) \) and let \(\tilde{f} \in W^{1,2}(B_1(0), T_p M) \) be a representative of \(f \). There exists Lipschitz maps \(\tilde{f}_k \) such that \(\tilde{f}_k \to \tilde{f} \) in \(W^{1,2} \) and \(\text{Lip} \tilde{f}_k \leq h_k^{-1} \). Set \(c_k = -h_k^2 \int_{B_1(0)} \tilde{f}_k \) and define

\[
u_k(\exp_p(h_k X)) := w_k(\exp_p(h_k X)) := \exp_q(h_k Q(X + h_k^2 \tilde{f}_k(X) + c_k)).
\]

(4.27)

Then (3.2)–(3.4) hold, and the definition (3.5) of \(q_k \) in combination with the definition of \(c_k \) implies that \(q_k = q \). The definition (3.6) of \(f_k \) with the choice \(Q_k = Q \) yields \(f_k = \tilde{f}_k \). Thus \(u_k \to (q, Q, f) \).

To show convergence of the rescaled energy, we define \(G_k \) as in (4.24) and (4.19), with the frame \(\tilde{Y}_k = (QV_1, \ldots, QV_n) \) in the target space (recall that \(q_k = q \) and \(Q_k = Q \)). Then \(G_k \to G \) in \(L^2 \) (strongly), with \(G \) given by (4.24). Since \(\text{dist}^2(F, SO(n)) \leq C |F - \text{Id}|^2 \) and \(\int_{|G_k| \geq h_k^{-1}} |G_k|^2 \ dx \to 0 \), Taylor expansion shows that

\[
\lim_{k \to \infty} \frac{1}{h_k^2} \int_{B_1(0)} \text{dist}(\text{Id} + h_G^2 G_k, SO(n)) \ dx = \int_{B_1(0)} |\text{sym} \ G|^2 \ dx.
\]

In view of (4.24) and the choice \(u_k = w_k \), we get the desired assertion.

5 Convergence of the energy

It is easy to see that the quadratic functional \(f \to T^{q, Q}(f) \) attains its minimum in \(W^{1,2}(B_1(0), T_p M) \). Set

\[
m^{q, Q} := \min_{f \in W^{1,2}(B_1(0), T_p M)} T^{q, Q}(f).
\]

(5.1)

Theorem 5.1. Let \(\mathcal{M} \) be compact. Then

\[
\lim_{k \to 0} \frac{1}{h_k^2} \min_{u \in W^{1,2}(B_k(p); \mathcal{M})} E_{B_k(p)}(u) = \bar{m} := \min_{q \in \mathcal{M}} \min_{Q \in SO(T_p M, T_q \mathcal{M})} m^{q, Q}.
\]

(5.2)
Proof. This is a standard consequence of Theorem 4.1. We include the details for the convenience of the reader.

It is easy to see that the map \(q, Q \mapsto m^{q, Q} \) is continuous as a map from the subbundle \(SO(T_p M, T\bar{M}) \subset T M \otimes T^*_p M \) to \(\mathbb{R} \). Since \(\bar{M} \) is compact, so is \(SO(T_p M, T\bar{M}) \). Thus the minimum on the right hand side of (5.2) exists.

Upper bound: set \(L^+ = \limsup_{h \to 0} h^{-4} \inf_{u \in W^{1,2}(B_h(p), \bar{M})} E_{B_h(p)}(u) \) and let \(h_k \to 0 \) be a subsequence along which the limit superior is realised. Let \(q \in \mathcal{M} \), \(Q \in SO(T_p M, T_q \bar{M}) \), and let \(f \) be a minimiser of \(T^{q, Q} \). It follows from Theorem 4.1 (iii) that \(L^+ \leq m^{q, Q} \). Optimising over \(Q \) and \(q \), we get \(L^+ \leq \tilde{m} \).

Lower bound: set \(L^- = \liminf_{h \to 0} h^{-4} \inf_{u \in W^{1,2}(B_h(p), \bar{M})} E_{B_h(p)}(u) \) and let \(h_k \to 0 \) be a subsequence which realises the limit inferior. Then there exist maps \(u_k \) such that

\[
\lim_{k \to \infty} \frac{1}{h_k} E_{B_{h_k}(p)}(u_k) = L^-.
\]

By Theorem 4.1 (iii) there exists a subsequence \(u_{k_j} \) which converges to \((q, Q, f)\) in the sense of Definition 3.1. Thus Theorem 4.1 (iii) implies that \(L^- \geq T^{q, Q}(f) \geq m^{q, Q} \geq \tilde{m} \).

A slight modification of the arguments in the proof of Theorem 4.1 yields the following extension for non-compact targets.

Corollary 5.2. Suppose that \(\bar{M} \) is complete and satisfies the following uniform regularity condition: there exists a \(\rho > 0 \) such that the injectivity radius satisfies \(\text{inj}(q) \geq \rho \) for all \(q \in \mathcal{M} \) and the the pullback metrics \(\exp_q^* g \) are uniformly bounded in \(C^3(B_\rho(0)) \). Then

\[
\lim_{h \to 0} \frac{1}{h} \inf_{u \in W^{1,2}(B_h(p), \bar{M})} E_{B_h(p)}(u) = \inf_{q \in \mathcal{M}} \min_{Q \in SO(T_p M, T_q \bar{M})} m^{q, Q}.
\]

Acknowledgements

The authors thank Cy Maor for very helpful suggestions and for pointing out reference [7]. This work is an extension of the first author’s B.Sc. thesis at the University of Bonn. In that thesis a recovery sequence is constructed, and compactness and the \(\Gamma - \lim \inf \) inequality are shown under the additional hypothesis that the original sequence \(u_k \) satisfies a uniform Lipschitz bound and \(u_k(p) \) is fixed. The second author has been supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the Hausdorff Center for Mathematics (GZ EXC 59 and 2047/1, Projekt-ID 390685813) and the collaborative research centre *The mathematics of emerging effects* (CRC 1060, Projekt-ID 211504053).

References

[1] H. Aharoni, J.M. Kolinski, M. Moshe, I. Meirzada, I., and E. Sharon, Internal stresses lead to net forces and torques on extended elastic bodies, Physical Review Letters 117 (2016), 124101.

[2] A. Convent and J. Van Schaftingen, Intrinsic co-local weak derivatives and Sobolev spaces between manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. 16 (5) (2016), 97–128.

[3] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions, CRC Press, 1992.

[4] G. Friesecke, R.D. James, and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math. 55 (2002), 1461–1506.
[5] J. Heinonen, P. Koskela, N. Shanmugalingam, and J.T. Tyson, Sobolev spaces on metric measure spaces – an approach based on upper gradient, Cambridge Univ. Press, 2015.

[6] H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math. 30 (1977), 509–541.

[7] R. Kupferman, C. Maor, A. Shachar, Reshetnyak rigidity for Riemannian manifolds, Arch. Rat. Mech. Anal. 231 (2019), 367–408.

[8] F.-C. Liu, A Luzin type property of Sobolev functions, Indiana Univ. Math. J. 26 (1977), 645–651.

[9] C. Maor and A. Shachar, On the role of curvature in the elastic energy of non-Euclidean thin bodies. J. Elasticity, 134 (2019), 149–173.

[10] J. Nash, The imbedding problem for Riemannian manifolds, Ann. Math. 63 (1956), 20–63.

[11] Y.G. Reshetnyak, Y. G., Sobolev classes of functions with values in a metric space, Sib. Math. Journal 38 (1997), 567–583.