PCOS Features and Steroid Profiles Among Young Adult Women with a History of Premature Adrenarche

Jussi Tennilä¹, Jarmo Jääskeläinen¹, Pauliina Utriainen²,³, Raimo Voutilainen¹, Merja Häkkinen⁴, Seppo Auriola⁴, Laure Morin-Papunen⁵,⁶, Jani Liimatta¹

¹ Kuopio Pediatric Research Unit, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
² Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
³ Pediatric Research Center, Children's Hospital, Helsinki University Hospital, Helsinki, Finland
⁴ School of Pharmacy, University of Eastern Finland, Kuopio, Finland
⁵ Department of Obstetrics and Gynecology, University Hospital of Oulu, Oulu, Finland
⁶ Medical Research Center and PEDEGO Research Unit, University of Oulu, Oulu, Finland

Correspondence and reprint requests:
Jani Liimatta, Department of Pediatrics, Kuopio University Hospital
P.O. Box 100, FI-70029 Kuopio, Finland
Tel +358 17 173 311
Fax +358 17 172 410
Email jani.liimatta@kuh.fi

© The Author(s) 2021. Published by Oxford University Press on behalf of the Endocrine Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Disclosure summary: The authors report no conflicts of interest in this work.

Grants: This work was supported by Kuopio University Hospital (Kuopio, Finland), the Foundation for Pediatric Research (Helsinki, Finland), the Finnish Medical Foundation (Helsinki, Finland), the Päiviikki and Sakari Sohlberg Foundation (Helsinki, Finland), the Sigrid Jusélius Foundation (Helsinki, Finland), and the Emil Aaltonen Foundation (Tampere, Finland). The funders had no role in: (1) study design; (2) the collection, analysis, and interpretation of data; (3) writing of the report; and (4) the decision to submit the paper for publication.
Abstract

Context: Premature adrenarche (PA) may increase the risk for polycystic ovary syndrome (PCOS).

Objective: To study features of PCOS in young adult women with a history of PA.

Design and participants: Thirty PA and forty-two control females were followed from prepuberty to young adulthood (median age 18.1 years).

Main outcome measures: Ovarian function, the use of contraceptives, and clinical and biochemical indicators of hyperandrogenism.

Results: We found no differences in the use of hormonal contraceptives (50 vs 50%, PA vs controls, respectively; \(P > .999 \)), indication for using contraceptives (\(P = .193 \)), or in the history of oligo- (17 vs 26%, \(P = .392 \)) and amenorrhea (0 vs 0%, \(P > .999 \)). Among women not using hormonal contraceptives, those with a history of PA had a higher prevalence of hirsutism (27 vs 0%, \(P = .023 \)) but not acne (87 vs 67%, \(P = .252 \)). Steroid profiles were broadly comparable between the groups, but PA women had lower sex hormone-binding globulin (SHBG) concentrations (30.1 vs 62.4 nmol/l, \(P < .001 \)) resulting in higher free androgen index (3.94 vs 2.14, \(P < .001 \)). The difference in SHBG levels persisted through BMI adjustment. SHBG correlated negatively with HOMA-IR (\(r = -0.498, P = .003 \)). Anti-Mullerian hormone concentrations were comparable between the groups (39.3 vs. 32.1 pmol/l, \(P = .619 \)).

Conclusions: PA was not associated with evident ovarian dysfunction in young adult women. However, women with a history of PA had decreased SHBG levels and thus, increased bioavailability of circulating androgens.

1. Keywords: adrenarche, polycystic ovary syndrome, dehydroepiandrosterone sulfate, sex hormone-binding globulin, ovarian function, hyperandrogenism
2. Introduction

Adrenarche refers to reactivation of adrenal androgen production in childhood (1,2). It is considered premature (PA), when there is evidence of increased adrenal androgen production for age, and at least one clinical sign of androgen action (pubic or axillary hair, acne, comedones, oily hair, or adult type body odor) is present before the age of 8 and 9 years in girls and boys, respectively. Other causes for androgen excess must be excluded. Premature pubarche (PP) refers to the presence of pubic hair before the above-mentioned ages. PA is the most common etiology for PP.

PA girls who are Tanner 1 for breast development tend to be taller and weigh more than healthy peers (1). By definition, the children with PA have increased concentrations of adrenal androgen precursors (1). Later they have more advanced pubertal development and earlier menarche (3). Risks for development of metabolic syndrome and polycystic ovary syndrome (PCOS) in girls with PA/PP remain controversial (1,2).

PCOS is an etiologically and clinically heterogeneous syndrome, characterized by clinical and/or biochemical hyperandrogenism, altered ovarian morphology, and ovarian dysfunction (4-7). The Rotterdam criteria and the New International Guidelines (8,9) define PCOS as the presence of two out of these three conditions. The most reliable sign of clinical hyperandrogenism is hirsutism (10) and ovarian dysfunction includes poly-, oligo-, and amenorrhea (11). Before PCOS diagnosis, other etiologies of hyperandrogenism and ovarian dysfunction need to be excluded.

The linkage between high levels of insulin and IGF-1, hyperandrogenism, dysmenorrhea and PCOS is well known (5). Adolescents presenting with some of these features have been considered being at risk for PCOS (5-7), although diagnosing PCOS during adolescence is challenging because features of normal pubertal development overlap with adult PCOS (12,13). Regardless, it has been postulated that PA is not a separate condition, but rather a phase in a sequence of events beginning with being born small for gestational age (SGA), continuing with enhanced (early) growth, increased body mass index (BMI) and hyperinsulinemia in childhood, and hyperandrogenism, PCOS, and metabolic syndrome in adulthood (14,15). Previous studies have found an increased prevalence of hirsutism, acne, and ovarian dysfunction in PA/PP (16-20) but, so far, ovarian function, clinical signs of hyperandrogenism, and steroid profiles in adult women with prior PA/PP have not been well characterized.

Previously, we have presented the long term cardiometabolic outcome of PA in a prospective study, following previously characterized PA and age-matched control girls from prepubertal age until early adulthood (21). The same cohort was now examined to study if there are differences in ovarian function, clinical signs of hyperandrogenism or precise steroid profiles between women with a history of PA and their matched controls.
2. Subjects and Methods

A. Subjects and design

In this follow-up study, we investigated 30 women with a history of PA and 42 healthy controls who had been followed from prepubertal stage to young adult age of 18 years (22,23). All PA girls were originally recruited by clinical signs and they had presented with at least one sign of hyperandrogenism (pubic or axillary hair, acne, comedones, oily hair, or adult type body odor) before the age of 8 years. Sixteen (53%) of the PA girls had PP. Among the other 14 PA girls without PP at baseline, 57% presented with adult type body odor, 43% with oily hair, and 21% with acne/comedones. Children with a diagnosed endocrine disorder or long-term medication (including oral/inhaled corticosteroids) were excluded. All PA girls had increased serum dehydroepiandrosterone sulfate (DHEAS) concentration by age, and other sources of excessive androgen production (central puberty, congenital adrenal hyperplasia, external androgen exposure, androgen producing tumors) had been excluded. Most of the PA girls (n = 25, 83%) had serum DHEAS concentration > 1 µmol/l and in the other five PA girls, serum DHEAS concentrations were between 0.5 and 1 µmol/l. The control children were age-matched healthy girls without any clinical sign of androgen action, and they were recruited from the general community of the same Kuopio area as the PA girls. At young adult age, none of the PA or control women reported any significant health issues or the use of long-term medications which could have a significant impact on the results. All subjects were examined in the pediatric outpatient clinic of Kuopio University Hospital at the median age of 7.3 years and at a follow-up visit at the median age of 18.1 years. The study protocol was approved by the Research Ethics Committee of the Hospital District of Northern Savo. Informed consents were obtained from all subjects in accordance with the ethical principles stated in the Declaration of Helsinki.

B. Clinical assessment

Data at birth (gestational age and birth weight and length) were collected from local electronical birth registers. Clinical examinations at the baseline (P.U.) and follow-up visits (J.L.) were performed by a single physician and a single trained research nurse. Height, as a mean of three repeated measurements, was measured with a calibrated Harpenden stadiometer (Holtain Ltd., Crymych, UK) and recorded to the nearest 0.1 cm. Weight was measured after an overnight fast using a calibrated electronic scale and recorded to the nearest 0.1 kg. BMI was calculated as weight in kilograms divided by the square of height in meters. Anthropometric measures at birth and at prepuberty were converted to standard deviation scores (SDS) according to the recently updated Finnish references (24,25). For those women who presented with terminal coarse body hair in a male-like pattern, i.e. in the face, chest, back, or abdomen, we calculated modified Ferriman-Gallwey score (FGS) and defined hirsutism as FGS ≥6, the cut-off generally used in Nordic countries (26). The presence and
degree of acne was evaluated clinically, and divided into three categories: 1 no acne, 2 mild (comedones or small number of papules and pustules), and 3 severe (large number of papules and pustules with inflammation, or nodulocystic and conglobate acne with many large nodular or pustular lesions along with many smaller papules, pustules and comedones, and/or earlier postpubertal isotretinoin treatment).

C. Gynecological data

At follow-up examination, our aim was to examine all women in the follicular phase of their menstrual cycle (1-14 days since the beginning of the last menstruation). Gynecological information was obtained by direct structured interviews. Obtained information included menstrual history and the use of contraceptives (including the indication for contraceptives). Menstrual history (before using contraceptives if any) included menstrual cycle, menstrual duration and history of oligo- and amenorrhea. Menstrual cycles of ≥ 35 days, or ≤ 10 total cycles in a year were recorded as oligomenorrhea. Primary amenorrhea was defined as failure to reach menarche before the age of 16, and absence of previously regular or irregular cycles for more than 3 months was considered secondary amenorrhea.

D. Biochemical analyses

The biochemical results of this study are reported only for those women who did not use hormonal contraceptives. All blood samples were collected after an overnight fast between 9:00-10:00 a.m. (baseline) or 7:00 – 8:00 a.m. (follow-up visit). All serum samples were stored at -80°C until analyzed.

At baseline examination, serum DHEAS and testosterone concentrations were determined using RIAs (Diagnostic Products, LA, CA) (27), serum insulin and SHBG concentrations using specific time-resolved fluorimunoassays (PerkinElmer Life and Analytical Sciences, Turku, Finland) (27), and serum anti-müllerian hormone (AMH) concentration using ELISA (Diagnostic Systems Laboratories Inc., Webster, TX) (28).

At the follow-up visit, serum DHEAS and AMH concentrations were analyzed using ELISA with an ELx808 microplate reader (Biotek Instruments Inc., Winooski, VT) and specific kits (DHEAS, cat 1950, Alpha Diagnostic International, San Antonio, TX; AMH, cat A79765, Beckman Coulter Diagnostics, Brea, CA) (29,30). Sex hormone-binding globulin concentrations were analyzed using electrochemiluminescence immunoassays with Cobas e601 analyzer (Hitachi High Technology CO, Tokyo, Japan) and specific kits (cat 03052001 190, Roche Diagnostics GmbH, Mannheim, Germany) (31). Serum steroids other than DHEAS were measured using liquid chromatography – tandem mass
spectrometry (LC-MS/MS) as previously described (32). Fasting plasma glucose was analyzed by the hexokinase method and serum insulin concentrations by an electrochemiluminescence immunoassay (33) using either the Cobas c501 (fasting glucose) or Cobas e601 (fasting insulin) analyzers (Hitachi High Technology CO, Tokyo, Japan).

In the DHEAS assay, the intra-assay coefficient of variation (CV) was 3.2 - 5.3% and the inter-assay CV was 5.5 - 11%. In the AMH assay, the intra-assay CV was 2.4 - 4.6% and the inter-assay CV was 4.8 - 8.0%. The lower limits of detection for DHEAS and AMH assays were 0.25 µmol/l and 1 pmol/l, respectively.

Free androgen index (FAI) was calculated with the following formula: [testosterone (nmol/l)/SHBG (nmol/l)]*100. Homeostasis model assessment for insulin resistance (HOMA-IR) was calculated with the following formula: [fasting glucose (mg/dL) × fasting insulin (mU/L)]/405. Insulin resistance was defined as HOMA-IR ≥ 2.94 (34).

E. Statistical analyses

All statistical analyses were performed with the SPSS 25.0 software (IBM Corp., Armonk, NY). All continuous variables are expressed as median (interquartile range) and were analyzed using the Mann-Whitney U-test. Categorical variables are expressed as n (%). With categorical variables, Pearson Chi-square or the Fischer’s exact test was used when assessing differences between groups. When analysing biochemical concentrations with BMI adjustment, we used one-way ANCOVA (after logarithmic transformation in case of non-normally distributed variables). For calculations of correlations, we used the Spearman correlation test. A P value < .05 was considered statistically significant.

3. Results

First, we analyzed clinical data for all 30 PA and 42 control women in this study. As the use of hormonal contraceptives has a significant impact on many studied variables, we then focused only on those 15 PA and 21 control women who were not using hormonal contraceptives.

A. Clinical data of all 30 PA and 42 control women

There were no differences in birth measures between the study groups: The mean gestational age 40.1 vs 40.1 weeks (P = .686; PA and control women, respectively), mean birth weight SDS -0.17 vs 0.17 (P = .204), and mean birth length SDS -0.17 vs 0.25 (P = .064). Most women had been born at term (92/90 % of the PA/control females, respectively) and appropriate for gestational age (AGA, 96/98 %).
At presentation, all PA patients and control subjects were Tanner 1 for breast development with the median age of 7.6 years (interquartile range 6.8-8.0) for the PA girls and with the median age of 7.4 (6.8-8.0) for the control girls. At this prepubertal evaluation, the PA girls were taller (mean height SDS 0.92 vs -0.23, \(P < .001 \)) and had higher mean BMI SDS (0.77 vs 0.10, \(P = .020 \)) than the controls.

At the follow-up visit, all PA and control women were Tanner 5 for breast development with the median age of 18.1 years (interquartile range 17.8-19.6) for the PA women and with the median age of 18.1 (17.9-18.3) for the control women. PA and control women had comparable adult height (\(P = .059 \)) and BMI (\(P = .068 \)). The data illustrating menstrual history, the use of hormonal contraceptives, and the indications for using hormonal contraceptives are listed in Table 1. There were no statistically significant differences in the proportions of women using hormonal contraceptives or in the indications for the use of contraceptives between the study groups. We found no significant differences in the menstrual history between the study groups.

When we compared only women with PP (n = 16) to those without PP (nonPP, n = 14), we did not find significant differences in the proportions of women using hormonal contraceptives (57 vs 44%, \(P = .715 \), respectively) or in the indications for the use of contraceptives (\(P > .999 \)).

B. Clinical data of the 15 PA and 21 control women who did not use hormonal contraceptives

Gestational, prepubertal and adulthood data of the 15 PA and 21 control women not using hormonal contraceptives are listed in Table 2. There were no differences in gestational age or birth size between the study groups. Only one PA woman was born preterm (29 weeks) and SGA (birth weight -2.12 SDS) while all other women in the PA and control groups were born full-term and AGA. At presentation, the PA girls were taller and had higher BMI SDS. By the prepubertal examination, 9 of the 15 PA girls (60 %) had pubarche. The PA girls achieved menarche earlier than the controls (11.5 vs 13.0 years, \(P = .001 \)).

At young adult age, median BMI values of the PA and control women not using contraceptives were comparable (\(P = .083 \)). The PA women had higher prevalence of hirsutism compared to the controls (4 vs. 0, \(P = .023 \)), but there was no difference in the prevalence or severity of acne between the groups. Among the four women with hirsutism, modified FGSSs were 6, 10, 13 and 18. Altogether 20 (55.6%) women who did not use hormonal contraceptives were in the follicular phase of their menstrual cycle at the time of examination (10 women in both groups, 66.7% in the PA group vs 47.6% in the control group, \(P = .296 \)).

When analyzing only women with a history of PA and not using hormonal contraceptives, there was no significant difference between the PP (n = 9) and nonPP (n = 6) subgroups in the prevalence of hirsutism (2 women in both subgroups; 22 vs 33%, \(P > .999 \), respectively) or acne (9 vs 4 women; 100 vs 67%, \(P = .273 \), respectively).
C. Biochemical data of the 15 PA and 21 control women who did not use hormonal contraceptives

At baseline, prepubertal PA girls had increased serum testosterone, DHEAS, and insulin concentrations, lower SHBG concentrations, and higher calculated FAI compared to controls. Prepubertal AMH concentrations were comparable between the study groups (Table 2).

Table 3 depicts serum steroid and AMH concentrations and FAI, and Figure 1 indicates the association between BMI and SHBG, testosterone, and FAI in the PA and control women without hormonal contraceptives at young adult age. While serum DHEAS concentrations did not differ significantly, the PA women had higher dehydroepiandrosterone (DHEA) and androstenedione (DHA4) concentrations than the controls, also when adjusted for BMI ($P = .006$ and $.032$, respectively). Testosterone levels were similar, but SHBG concentrations were lower in the PA group, resulting in higher FAI in PA women compared to controls. The difference in SHBG levels persisted also after BMI adjustment ($P = .004$). Although SHBG concentrations correlated negatively with BMI among all women (PA and control groups combined) without hormonal contraceptives ($r = -.454, P = .005$), this correlation vanished when analyzing only the PA group (Figure 2). There was also a moderate negative correlation between SHBG and HOMA-IR ($r = -.498, P = .003$) and a positive correlation between BMI and HOMA-IR ($r = .486, P = .004$) among all women (PA and control groups combined) without hormonal contraceptives, but these correlations disappeared when analyzing the PA and control groups separately (Figure 2). Otherwise, we found no statistically significant differences in steroid profiles of the two groups.

At young adult age, AMH concentrations were comparable between the study groups (Table 3), but the PA women had higher levels of fasting serum insulin ($P = .033$), resulting in increased HOMA-IR ($P = .030$) and a higher prevalence of insulin resistance ($P = .011$). Among the PA women, there were no significant differences in any biochemical parameter between the PP and nonPP subgroups ($P > .220$ for all).

4. Discussion

In this study, we followed a group of females with and without PA from childhood and investigated possible differences in the prevalence of biochemical and clinical signs of hyperandrogenism and ovulatory disturbances at young adult age. In addition, we measured steroid profiles using the sensitive LC-MS/MS method. We did not find evidence that the history of PA associates with an increased risk of ovulatory dysfunction or acne at young adult age. However, the prevalence of hirsutism was higher among PA women. While the androgen profiles were comparable between the study groups, the PA women had significantly lower SHBG concentrations leading to increased FAI. Surprisingly, lower SHBG concentrations in PA women were not associated with BMI. AMH levels did not differ between the two study groups.

Before starting contraceptives, the length of menstrual cycle and the prevalence of oligo- and amenorrhea in the PA women did not differ from those of the controls. There were no differences in the percentage of women using contraceptives or in the indications for contraceptive use in the two
The results suggest that a history of PA is not associated with an increased incidence of ovulatory dysfunction in early adult age. Our results are compatible with previous studies which have found women with prior PA to have normal ovulatory function (19,20). However, inconsistent results have also been found in some cross-sectional studies. In one from Spain, late (>3 years) postmenarcheal girls (mean age 16.3 years) with prior PP had more anovulatory cycles compared to controls (16). In another more recent study from Brazil, a high prevalence (41.2%) of diagnosed PCOS among 34 prior PA subjects (age range 15.2-28.2 years) was reported, but this study had no controls (18).

In our current follow-up study on PA and control women, we found an increased prevalence of hirsutism among PA women. This result is consistent with prior studies investigating Spanish (mean age 15.4 years), American (mean age 14.6 years), French (mean age 17.4 years), and Brazilian postpubertal women with prior PP (median age 20.3, range 15.2-28.2 years) (17-20). The prevalence and severity of acne, however, were comparable between the PA and control groups in our current study. Similar results were found in the aforementioned French study (20), whereas others have found increased acne in addition to hirsutism (17-19). The inconsistency between our and previous studies could be explained by confounding factors, including ethnicity and birth size, which may play a substantial role in long term outcomes of PA (35,36). Also, it may be explained by the differences in phenotypes of the study subjects, as prepubertal PA subjects with PP seem to have clinically and biochemically more advanced phenotype than those with other androgenic signs (37).

Despite having similar levels of total testosterone and comparable androgen profiles, the PA women had decreased SHBG concentrations leading to higher FAI, which may be one factor explaining the increased prevalence of hirsutism. Earlier studies of PP women have yielded similar results (17,20). Low SHBG and increased FAI are associated with a significantly increased risk for PCOS, type 2 diabetes, insulin resistance and hyperandrogenism (38). Multiple mechanisms by which low SHBG associates with PCOS have been described. These include obesity, and obesity-related dyslipidemia and low-grade inflammation, abnormal glucose metabolism and hyperinsulinemia, hyperandrogenism, hypothyroidism and SHBG gene polymorphisms (39). In our previous studies with the same cohort, we found no difference in lipid profiles or low-grade inflammation markers between the PA and control groups but did observe a higher prevalence of insulin resistance in the PA group, and the difference was associated with central fat mass (21). Previous studies have found increased insulin levels among prepubertal (37,40) and postpubertal PA/PP subjects (41). These results, combined with prior knowledge of childhood obesity significantly increasing the risk for obesity in adulthood (42), lead us to suggest that some subjects with former PA may be prone to adulthood metabolic disturbances due to childhood obesity, impaired glucose metabolism and failure to maintain a healthy diet, hence leading to increased central adiposity and insulin resistance by adulthood (21). In the current study, PA women had lower SHBG levels, which correlated negatively with HOMA-IR but not with BMI. Obesity is the most common reason for insulin resistance, but insulin resistance occurs independently of obesity in PCOS women. The mechanism of obesity-independent insulin resistance in PCOS is not completely understood (43), but hyperinsulinemia associated with insulin resistance has been linked to decreased hepatic nuclear factor 4 alpha expression leading to lower hepatic SHBG gene expression (44). Decreased SHBG levels equal higher levels of free testosterone, which leads to elevated insulin concentrations hence resulting in a vicious circle (39,45).
Novel data in the present study were obtained by the LC-MS/MS measurements of steroid profiles. There were no differences in testosterone, dihydrotestosterone or androstenedione concentrations between the PA and control groups. Levels of 11-hydroxytestosterone and 11β-hydroxyandrostenedione, considered well suited for assessing adrenal hyperandrogenism because of their adrenal origin (46), were similar. Concentrations of 11-ketotestosterone, previously suggested to be the main mediator of many androgenic processes (47), were also similar. However, PA women had higher concentrations of DHEA, also after adjustment for BMI. Our steroid data suggest that adrenal androgen synthesis in PA girls attenuates during adolescence and that PA does not lead to ovarian hyperandrogenism by young adult age.

AMH levels of the subjects in this study have been measured twice. They were found to be lower in PA than control subjects in prepuberty when we previously analyzed the whole original cohort (28). In the current follow-up study, AMH concentrations in the PA women without hormonal contraceptives were comparable to those in the control women without hormonal contraceptives. Previous studies have shown that adult women with PCOS have typically elevated AMH levels, and AMH levels correlate positively with the antral follicle count, i.e. the presence of polycystic ovaries at ultrasound. Thus, AMH has been proposed as a substitute for antral follicle count in the diagnosis of PCOS (48). Moreover, AMH has been shown to correlate with the severity of PCOS phenotype (49). On the other hand, the recent International Guidelines for PCOS (9) concluded that serum AMH levels should not yet be used as an alternative for the detection of polycystic ovaries at ultrasound and do not recommend AMH measurement as a single test for the diagnosis of PCOS. In line with this, a previous Finnish study showed that AMH levels associated with PCOS-linked features (such as testosterone levels and oligo-amenorrhea) in adolescence (at age 16) but were not able to predict PCOS-associated features reliably in early adulthood at the age of 26 years (50).

The strength of this study lies in its prospective design, and steroid measuring technique (LC-MS/MS). However, a relatively small sample size, and the lack of maternal gynecological information diminish the strength of the study. We also aimed to perform gynecological ultrasounds for all women, but because of refusals and other study subject related reasons, too few of the women were ultimately examined and the results are thus unreliable and ineligible for presentation. However, according to the newest International Guidelines (9), ultrasound should not be used for the diagnosis of PCOS in those with a gynecological age of < 8 years (< 8 years after menarche), due to the high incidence of multi-follicular ovaries at this life stage. The median age of our patients was 18.1 years for both PA women and controls, and for most of them, menarche had occurred less than 8 years ago. Therefore, ovarian ultrasound examination would not be recommendable for the diagnosis of PCOS. Although we detected no differences in the clinical and biochemical parameters between the PP and nonPP subgroups among the adult PA women, it should be noted that the number of subjects in these subgroups was quite low, which hinders meaningful statistical analyses.

In conclusion, our study suggests that PA does not lead to unfavorable ovarian function, at least by early adult age, in PA women born appropriate for gestational age. Although young adult PA women have comparable serum androgen profiles with their peers, they tend to have lower SHBG levels leading to increased bioavailability of circulating free androgens. This may be explained by hyperinsulinemia associated with insulin resistance. Our findings should be confirmed by a larger prospective case-control study, preferably with the assessment of ovarian morphology.
5. Acknowledgments

Anneli Paloranta, Leila Antikainen, Marianne Kamaja, and Annaleena Heikkilä are acknowledged for their valuable contributions in the clinical phase of this follow-up study. The authors want to thank Biocenter Finland and Biocenter Kuopio for supporting their core LC-MS laboratory facility.

Financial support: This work was supported by Kuopio University Hospital (Kuopio, Finland), the Foundation for Pediatric Research (Helsinki, Finland), the Finnish Medical Foundation (Helsinki, Finland), the Päivikki and Sakari Sohlberg Foundation (Helsinki, Finland), the Sigrid Jusélius Foundation (Helsinki, Finland), and the Emil Aaltonen Foundation (Tampere, Finland).

Correspondence and reprint requests: Jani Liimatta, MD, PhD, Department of Pediatrics, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland. E-mail: jani.liimatta@kuh.fi.

Disclosure summary: The authors have nothing to disclose.

Data availability: Some or all datasets generated and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.
6. References

1. Utriainen P, Laakso S, Liimatta J, Jääskeläinen J, Voutilainen R. Premature adrenarche - A common condition with variable presentation. Horm Res Paediatr. 2015;83(4):221-231.

2. Voutilainen R, Jääskeläinen J. Premature adrenarche: Etiology, clinical findings, and consequences. J Steroid Biochem Mol Biol. 2015;145:226-236.

3. Liimatta J, Utriainen P, Voutilainen R, Jääskeläinen J. Girls with a history of premature adrenarche have advanced growth and pubertal development at the age of 12 years. Front Endocrinol (Lausanne). 2017;8:291.

4. Escobar-Morreale HF. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14(5):270-284.

5. Witchel SF, Oberfield SE, Peña AS. Polycystic ovary syndrome: Pathophysiology, presentation, and treatment with emphasis on adolescent girls. J Endocr Soc. 2019;3(8):1545-1573.

6. Ibáñez L, Oberfield SE, Witchel S, Aachus RJ, Chang RJ, Codner E, Dabadghao P, Darendeliler F, Elbarbary NS, Gambineri A, Rudaz CG, Hoeger KM, López-Bermejo A, Ong K, Peña AS, Reinehr T, Santoro N, Tena-Sempere M, Tao R, Yildiz BO, Alkhayyat H, Deeb A, Joel D, Horikawa R, de Zegher F, Lee PA. An International Consortium Update: Pathophysiology, diagnosis, and treatment of polycystic ovarian syndrome in adolescence. Horm Res Paediatr. 2017;88(6):371-395.

7. Witchel SF, Oberfield S, Rosenfield RL, Codner E, Bonny A, Ibáñez L, Pena A, Horikawa R, Gomez-Lobo V, Joel D, Tfayli H, Arslanian S, Dabadghao B, Rudaz CG, Lee PA. The diagnosis of polycystic ovary syndrome during adolescence. Horm Res Paediatr. 2015;83:376-389.

8. Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril. 2016;106(1):6-15.

9. Teede, HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, Piltonen T, Norman RJ; International PCOS Network. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod. 2018;33(9):1602-1618.

10. Escobar-Morreale HF, Carmina E, Dewailly D, Gambineri A, Kelestimur F, Moghetti P, Pugeat M, Qiao J, Wijeyaratne CN, Witchel SF, Norman RJ. Epidemiology, diagnosis and management of hirsutism: A consensus statement by the androgen excess and polycystic ovary syndrome society. Hum Reprod Update. 2012;18(2):146-170.

11. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, Janssen O E, Legro RS, Norman RJ, Taylor AE, Witchel SF; Task Force on the Phenotype of the Polycystic Ovary Syndrome of The Androgen Excess and PCOS Society. The androgen excess and PCOS society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril. 2009;91(2):456-488.
12. Pena AS, Witchel S, Hoeger KM, Oberfield SE, Vogiatzi MG, Misso M, Garad R, Dabadghao P, Teede H. Adolescent polycystic ovary syndrome according to the international evidence-based guideline. BMC Medicine, 2020;18:72.

13. Ramezani Tehrani F, Amiri M. Polycystic ovary syndrome in adolescents: Challenges in diagnosis and treatment. Int J Endocrinol Metab. 2019;17(3):e91554.

14. Ibáñez L, de Zegher F, Potau N. Premature pubarche, ovarian hyperandrogenism, hyperinsulinism and the polycystic ovary syndrome: From a complex constellation to a simple sequence of prenatal onset. J Endocrinol Invest. 1998;21(9):558-566.

15. Ibáñez L, Dimartino-Nardi J, Potau N, Saenger P. Premature adrenarche--normal variant or forerunner of adult disease? Endocr Rev. 2000;21(6):671-696.

16. Ibáñez L, de Zegher F, Potau N. Anovulation after precocious pubarche: Early markers and time course in adolescence. J Clin Endocrinol Metab. 1999;84(8):2691-2695.

17. Ibáñez L, Potau N, Virdis R, Zampolli M, Terzi C, Gussinyye M, Carrascosa A, Vicens-Calvet E. Postpubertal outcome in girls diagnosed of premature pubarche during childhood: Increased frequency of functional ovarian hyperandrogenism. J Clin Endocrinol Metab. 1993;76(6):1599-1603.

18. Ribeiro FA, Resende EAMR, Silva APD, Tomé JM, Palhares, HMDC, Borges MF. Metabolic and hormonal assessment of adolescent and young adult women with prior premature adrenarche. Clinics (Sao Paulo). 2019;74:e836.

19. Miller D, Emans SJ, Kohane I. Follow-up study of adolescent girls with a history of premature pubarche. J Adolesc Health. 1996;18(4):301-305.

20. Meas T, Chevenne D, Thibaud E, Leger J, Cabrol S, Czernichow P, Levy-Marchal C. Endocrine consequences of premature pubarche in post-pubertal Caucasian girls. Clin Endocrinol (Oxf). 2002;57(1):101-106.

21. Liimatta J, Utriainen P, Laitinen T, Voutilainen R, Jääskeläinen J. Cardiometabolic risk profile among young adult females with a history of premature adrenarche. J Endocr Soc. 2019;3(10):1771-1783.

22. Utriainen P, Voutilainen R, Jääskeläinen J. Continuum of phenotypes and sympathoadrenal function in premature adrenarche. Eur J Endocrinol. 2009;160(4):657-665.

23. Liimatta J, Utriainen P, Voutilainen R, Jääskeläinen J. Trajectories of growth and serum DHEAS and IGF-1 concentrations in girls with a history of premature adrenarche: Attenuation of the phenotype by adulthood. Front Endocrinol (Lausanne). 2018;9:375.

24. Sankilampi U, Hannila M, Saari A, Gissler M, Dunkel L. New population-based references for birth weight, length, and head circumference in singletons and twins from 23 to 43 gestation weeks. Ann Med. 2013;45(5-6):446-454.
25. Saari A, Sankilampi U, Hannila M-L, Kiviniemi V, Kesseli K, Dunkel L. New Finnish growth references for children and adolescents aged 0 to 20 years: Length/height-for-age, weight-for-length/height, and body mass index-for-age. Ann Med. 2011;43(3):235-248.

26. Morin-Papunen L, Vanky E, Ravn P. Polycystic ovary syndrome (PCOS): reproductive and metabolic aspects. Sundhed.dk digital repository 2020. Deposited 12 August 2020. https://www.sundhed.dk/sundhedsfaglig/opslag-og-værktoejer/laereboeger/obstetrics-gynecology/gynecology/polycystic-ovary-syndrome-pcos/

27. Utriainen P, Voutilainen R, Jääskeläinen J. Girls with premature adrenarche have accelerated early childhood growth. J Pediatr. 2009;154(6):882-887.

28. Utriainen P, Jääskeläinen J, Voutilainen R. Serum anti-müllerian hormone concentrations in prepubertal girls with and without premature adrenarche: The influence of body mass index. Horm Res Paediatr. 2010;74(3):207-211.

29. RRID:AB_2819763, https://scicrunch.org/resolver/AB_2819763

30. RRID:AB_2800500, https://scicrunch.org/resolver/AB_2800500

31. RRID: 03052001190, Roche cat# AE00293

32. Häkkinen MR, Murtola T, Voutilainen R, Poutanen M, Linnanen T, Koskivuori J, Jääskeläinen J, Auriola S. Simultaneous analysis by LC-MS/MS of 22 ketosteroids with hydroxylamine derivatization and underivatized estradiol from human plasma, serum and prostate tissue. J Pharm Biomed Anal. 2019;164:642-652.

33. RRID:AB_2756877, https://scicrunch.org/resolver/AB_2756877

34. Shashaj B, Luciano R, Contoli B, Morino GS, Spreghini MR, Rustico C, Sforza RW, Dallapiccola B, Manco M. Reference ranges of HOMA-IR in normal-weight and obese young Caucasians. Acta Diabetol. 2016;53(2):251–260.

35. Rosenfield RL, Lipton RB, Drum ML. Thelarche, pubarche, and menarche attainment in children with normal and elevated body mass index. Pediatrics. 2009;123(1):84-88.

36. Verkauskiene R, Petraitienė I, Albertsson Wikland K. Puberty in children born small for gestational age. Horm Res Paediatr. 2013;80(2):69-77.

37. Utriainen P, Jääskeläinen J, Romppanen J, Voutilainen R. Childhood metabolic syndrome and its components in premature adrenarche. J Clin Endocrinol Metab. 2007;92(11):4282-4285.

38. Deswal R, Yadav A, Suneja Dang A. Sex hormone binding globulin – an important biomarker for predicting PCOS risk: A systemic review and meta-analyses. Syst Biol Reprod Med. 2018;64(1):12-24.

39. Zhu Jl, Chen Z, Feng Wj, Long Sl, Mo ZC. Sex hormone-binding globulin and polycystic ovary syndrome Clin Chim Acta. 2019;499:142-148.
40. Ibañez L, Potau N, Chacon P, Pascual C, Carrascosa A. Hyperinsulinaemia, dyslipaemia and cardiovascular risk in girls with a history of premature pubarche. Diabetologia. 1998;41(9):1057–1063.

41. Ibanez L, Potau N, Zampolli M, Prat N, Virdis R, Vicens-Calvet E, Carrascosa A. Hyperinsulinemia in postpubertal girls with a history of premature pubarche and functional ovarian hyperandrogenism. J Clin Endocrinol Metab. 1996;81(3):1237-1243.

42. Simmonds M, Llewellyn A, Owen CG, Woolacott N. Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. Obes Rev. 2016;17(2):95–107.

43. Stener-Victorin E, Padmanabhan V, Walters K, Campbell R, Benrick A, Giacobini P, Dumesic D, Abbott D Animal models to understand the etiology and pathophysiology of polycystic ovary syndrome. Endocr Rev. 2020;41(4):538–576.

44. Aydin B, Winters SJ. Sex hormone-binding globulin in children and adolescents. J Clin Res Pediatr Endocrinol. 2016;8(1):1-12.

45. Nestler J. Sex hormone-binding globulin: a marker for hyperinsulinemia and/or insulin resistance? J Clin Endocrinol Metab. 1993;76(2):273-274.

46. Nanba AT, Rege J, Ren J, Auchus RJ, Rainey WE, Turcu AF. 11-oxygenated C19 steroids do not decline with age in women. J Clin Endocrinol Metab. 2019;104(7):2615-2622.

47. Rege J, Turcu AF, Kasa-Vubu JZ, Lerario AM, Auchus GC, Auchus RJ, Smith JM, White PC, Rainey WE. 11-ketotestosterone is the dominant circulating bioactive androgen during normal and premature adrenarche. J Clin Endocrinol Metab. 2018;103(12):4589-4598.

48. Dewailly D, Yding Andersen C, Balen A, Broekmans F, Dilaver N, Fanchin R, Griesinger G, Kelsey TW, La Marca A, Lambalk C, Mason H, Nelson SM, Visser JA, Wallace WH, Anderson RA. The physiology and clinical utility of anti-Mullerian hormone in women. Human Reprod Update. 2014;20(3):270-285.

49. Jacob SL, Field HP, Calder N, Picton HM, Balen AH, Barth JH. Anti-mullerian hormone reflects the severity of polycystic ovary syndrome. Clin Endocrinol (Oxf). 2017;86(3):395-400.

50. Pinola P, Morin-Papunen LC, Bloigu A, Puukka K, Ruokonen A, Järvelin MR, Franks S, Tapanainen JS, Lashen H. Anti-Müllerian hormone: correlation with testosterone and oligo- or amenorrhoea in female adolescence in a population-based cohort study. Hum Reprod. 2014;29(10):2317-2325.
Table 1. Menstrual history and the use and indications for the use of hormonal contraceptives in young adult premature adrenarche (PA) and control women (median age 18.1 years)

	PA (n=30)	Control (n=42)	P
Menstrual history (before using contraceptives if any)			
Menstrual cycle, days\(^a\)	30 (28-30)	29 (28-30)	.610
Menstrual duration, days\(^a\)	6 (5-7)	5 (5-6)	.093
Oligomenorrhea	5 (17)	11 (26)	.392
Amenorrhea	0 (0)	0 (0)	>.999
Using hormonal contraceptives			>.999
Acne	3 (20)	0 (0)	
Dysmenorrhea	4 (27)	6 (29)	.193
Irregular menstruation	2 (13)	3 (14)	
Birth control	6 (40)	12 (57)	

Variables are categorical, expressed as n (%), and analyzed with the Pearson chi-square test unless noted otherwise.

Notes: \(^a\) Continuous variables, expressed as median (interquartile range) and analyzed using the Mann-Whitney U-test; \(^b\) n = 15 (PA) and n = 21 (controls).
Table 2. Characteristics and clinical data of the premature adrenarche (PA) and control females without using hormonal contraceptives

	PA (n=15)	Control (n=21)	P
At birth			
Gestational age, weeks	40.0 (38.2-41.2)	40.1 (39.4-41.4)	.434
Birth length, cm	50.0 (48.8-51.3)	50.0 (50.0-51.5)	.727
Birth length, SD score	0.111 (-0.565-0.812)	0.171 (-0.229-0.695)	.803
Birth weight, g	3550 (3060-3750)	3550 (3290-3970)	.434
Birth weight, SD score	-0.160 (-0.755-0.565)	0.014 (-0.350-0.806)	.342
At prepuberty			
Age, years	7.32 (6.58-7.87)	7.32 (6.53-7.83)	.874
Heigh, cm	130 (125-138)	124 (120-127)	.005
Height, SD score	0.990 (0.536-1.76)	-0.342 (-0.945-0.340)	.001
Weight, kg	33.6 (26.0-37.7)	24.2 (22.2-27.7)	.001
BMI, SD score	0.712 (0.230-2.36)	0.031 (-0.488-0.573)	.021
DHEAS, µmol/l	2.05 (1.30-2.70)	0.85 (0.53-1.38)	<.001
Testosterone, nmol/l	0.460 (0.350-0.675)	0.350 (0.350-0.455)	.043
SHBG, nmol/l	66.0 (45.5-91.0)	106.0 (88.3-122.5)	.002
FAIb	0.809 (0.433-1.060)	0.340 (0.320-0.490)	<.001
fS-insulin, mU/L	6.10 (5.10-8.30)	3.50 (2.90-4.40)	.001
AMH, pmol/l	16.4 (12.9-28.6)	21.4 (13.2-31.1)	.699
At postpuberty			
Age, years	18.1 (17.7-18.3)	18.1 (17.7-18.3)	.751
Menarcheal age, years	11.5 (11.0-12.0)	13.0 (12.0-13.5)	.001
Height, cm	168 (163-171)	165 (161-167)	.089
Weight, kg	69.3 (59.7-89.4)	58.8 (55.0-66.1)	.004
BMI, kg/m²	25.0 (22.0-30.8)	21.7 (19.3-25.5)	.083
Measure	Value 1 (Range)	Value 2 (Range)	p-value
-----------------------------	-----------------	-----------------	---------
fS-insulin, mU/L	11.4 (7.20-15.3)	6.90 (5.70-10.2)	.033
fP-glucose, mg/dL	95.5 (90.1-99.1)	91.9 (89.2-94.6)	.125
HOMA-IR	2.74 (1.63-3.74)	1.87 (1.24-2.31)	.030
Insulin resistance^{d,e}	7 (46.7)	1 (4.8)	.011
Acne^e	13 (87)	14 (67)	.252
Degree of acne^e			
Mild	8 (62)	11 (79)	.262
Severe	5 (38)	3 (21)	
Hirsutism^{e,f}	4 (27)	0 (0)	.023

All variables are expressed as median (interquartile range) and analyzed using the Mann-Whitney U-test, unless noted otherwise. Bold values denote significant p-values at the p < 0.01 level.

Abbreviations: AMH, anti-müllerian hormone; PA, premature adrenarche; BMI, body mass index; DHEAS, dehydroepiandrosterone sulfate; SHBG, sex hormone-binding globulin; FAI, free androgen index; HOMA-IR, Homeostasis Model Assessment for Insulin Resistance.

Notes:
^a Tanner 1 for breast development;
^b FAI calculated as 100 x (testosterone (nmol/l) / SHBG (nmol/l));
^c Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) calculated with the formula of [fasting glucose (mg/dL) x fasting insulin (mU/L)]/405;
^d defined as HOMA-IR >2.94;
^e categorical variables are expressed as n (%) and analyzed with the Fischer exact test;
^f modified Ferriman-Gallwey score ≥ 6.
	PA (n=15)	Control (n=21)	P
DHEA (nmol/l)	59.3 (42.9-70.7)	34.1 (27.8-47.6)	.005
DHEAS (µmol/l)\(^a\)	8.30 (6.30-15.0)	6.40 (4.55-8.90)	.067
Testosterone (nmol/l)	1.36 (0.93-1.99)	1.61 (1.09-1.82)	.849
11K-testosterone (nmol/l)	1.05 (0.678-1.90)	1.25 (1.02-1.91)	.409
11OH-testosterone (nmol/l)	0.340 (0.317-0.692)	0.487 (0.292-0.761)	.634
SHBG (nmol/l)\(^a\)	30.1 (23.5-36.2)	62.4 (49.2-89.4)	<.001
FAI\(^b\)	3.94 (2.68-6.85)	2.14 (1.42-3.22)	<.001
DHT (nmol/l)	0.403 (0.352-0.549)	0.411 (0.359-0.532)	>.999
Androstenedione (nmol/l)	6.99 (5.07-9.63)	6.68 (5.05-8.13)	.374
11K-androstenedione (nmol/l)	0.798 (0.641-1.18)	0.759 (0.644-1.100)	.612
11βOH-androstenedione (nmol/l)	5.71 (4.10-9.73)	5.39 (4.11-7.59)	.590
Androstanedione (nmol/l)	0.566 (0.377-0.752)	0.327 (0.254-0.437)	.025
Progesterone (nmol/l)	0.483 (0.255-9.840)	0.347 (0.268-1.100)	.505
17OH-progesterone (nmol/l)	1.94 (1.34-5.04)	2.16 (1.17-3.09)	.776
21OH-progesterone (nmol/l)	0.159 (0.109-0.303)	0.189 (0.125-0.286)	.680
Pregnenolone (nmol/l) 9.72 (5.24-14.5) 7.20 (5.06-9.86) .309
17OH-pregnenolone (nmol/l) 17.4 (9.95-28.9) 11.4 (8.68-18.6) .226
Estrone (pmol/l) 196 (141-421) 226 (145-371) .899
AMH (pmol/l)\(^a\) 39.3 (27.1-54.3) 32.1 (20.4-57.5) .619

Measured by liquid chromatography tandem-mass spectrometry, unless noted otherwise. All variables are expressed as median (interquartile range) and analyzed using the Mann-Whitney U-test.

Abbreviations: DHEA, dehydroepiandrosterone; K, keto-; OH-, hydroxy-; FAI, free androgen index; AMH, anti-Mullerian hormone.

Notes: \(^a\) measured using ELISA; \(^b\) calculated with the following formula: (testosterone (nmol/l)/ SHBG (nmol/l))*100.
Figure 1. Associations between body mass index (BMI) and sex hormone-binding globulin (SHBG), testosterone, and free androgen index (FAI) in young adult premature adrenarche (PA) and control females (median age 18.1 years) without the use of hormonal contraceptives. Free androgen index (FAI) was calculated with the following formula: (testosterone/SHBG)*100. Solid and dotted lines indicate associations of the parameters in the PA and control groups, respectively.

Figure 2. Associations of Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) with sex hormone-binding globulin (SHBG) and body mass index (BMI) in young adult premature adrenarche (PA) and control females (median age 18.1 years). Solid and dotted lines indicate associations of the parameters in the PA and control groups, respectively.
Figure 2

SHBG (nmol/l)

BMI (kg/m²)

HOMA-IR

○ Control
● PA

$r = -0.296, p = 0.218$
$r = -0.489, p = 0.064$

$r = 0.400, p = 0.140$
$r = 0.419, p = 0.074$