Systematic Review of Pharmacogenetics of ABC and SLC Transporter Genes in Acute Myeloid Leukemia

Juan Eduardo Megías-Vericat 1, David Martínez-Cuadrón 2, Antonio Solana-Altabella 1,3, José Luis Poveda 1 and Pau Montesinos 2,*

1 Servicio de Farmacia, Área del Medicamento, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain; megias_jua@gva.es (J.E.M.-V.); solana_ant@gva.es (A.S.-A.); poveda_josand@gva.es (J.L.P.)
2 Servicio de Hematología y Hemoterapia, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain; martinez_davcu@gva.es
3 Instituto de Investigación Sanitaria La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain
* Correspondence: montesinos_pau@gva.es; Tel.: +34-961-245876

Abstract: Antineoplastic uptake by blast cells in acute myeloid leukemia (AML) could be influenced by influx and efflux transporters, especially solute carriers (SLCs) and ATP-binding cassette family (ABC) pumps. Genetic variability in SLC and ABC could produce interindividual differences in clinical outcomes. A systematic review was performed to evaluate the influence of SLC and ABC polymorphisms and their combinations on efficacy and safety in AML cohorts. Anthracycline intake was especially influenced by SLCO1B1 polymorphisms, associated with lower hepatic uptake, showing higher survival rates and toxicity in AML studies. The variant alleles of ABCB1 were related to anthracycline intracellular accumulation, increasing complete remission, survival and toxicity. Similar findings have been suggested with ABC1 and ABCG2 polymorphisms. Polymorphisms of SLC29A1, responsible for cytarabine uptake, demonstrated significant associations with survival and response in Asian populations. Promising results were observed with SLC and ABC combinations regarding anthracycline toxicities. Knowledge of the role of transporter pharmacogenetics could explain the differences observed in drug disposition in the blast. Further studies including novel targeted therapies should be performed to determine the influence of genetic variability to individualize chemotherapy schemes.

Keywords: SLCO1B1; ABCB1; SLC29A1; ABCG2; ABCC1; polymorphism; anthracyclines; cytarabine; acute myeloid leukemia

1. Introduction

Acute myeloid leukemia (AML) is a clinically and biologically heterogeneous hematologic malignant disease characterized by an excess of blast cells in bone marrow and blood. Approximately 60–80% of young AML patients achieve complete remission (CR) using conventional 3 + 7 schedules of anthracyclines and cytarabine, which might be followed by an allogeneic hematopoietic stem cell transplant (allo-HSCT) to prevent relapse [1,2]. Unfortunately, half of these patients finally relapsed or died from different causes, including: low efficacy eliminating the minimal residual disease, severe toxicity of chemotherapy, refractory disease. This interindividual variability of outcomes between AML patients could be related to their genetic variability [3,4].

Drug uptake by blast cells can be affected by different transporters, including influx and efflux transporters, especially solute carriers (SLCs) and ATP-binding cassette family (ABC) pumps, respectively [3,4]. Previous pharmacogenetic studies have suggested that single nucleotide polymorphisms (SNPs) of SLC and ABC transporters may play a promising role in drug exposure and have been associated with clinical response and toxicity [3–7]. However, the findings and the interpretation of these individual studies...
appear contradictory and inconclusive. Furthermore, for new targeted therapies, potential drug–drug interactions with P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and organic anion transporting polypeptides (OATP) were tested in preclinical studies, but the influence of SNPs in these transporters is unknown in these new therapies. We performed a systematic review of all the studies that have analyzed polymorphisms of membrane transporters in AML patients.

2. Materials and Methods

Search Strategy and Selection of Studies

A systematic search was performed following the PRISMA guidelines by two independent reviewers (JEMV and ASA) [8]. Pubmed, EMBASE, the Cochrane Central Register, the Web of Science and the Database of Abstracts of Reviews of Effects (DARE) databases were searched without restrictions. In addition, the reference lists of important studies and reviews were hand searched. The reference lists of relevant reviews and studies were manually searched. The last literature search was conducted on 26 January 2022. This systematic review was included in the PROSPERO registry (ID 314292).

Similar keywords were used in different databases: (“ATP-binding cassette transporters” [MeSH Terms] or “organic anion transporters” [MeSH] or “organic cation transport proteins” [MeSH]) and “acute myeloid leukemia” [MeSH].

Studies that fulfilled the following criteria were included: (1) studies based on clinical data in AML patients (excluding preclinical and in vitro studies); (2) AML studies analyzing the associations between ABC and/or SLC polymorphisms and clinical response to chemotherapy; and (3) AML studies analyzing the impact on safety of ABC and/or SLC polymorphisms.

3. Results

Our systematic search obtained 569 citations from databases and journals and 21 records were identified through other sources (Figure 1). Of the 44 citations selected for full reading, 37 fulfilled the inclusion criteria and were included. The agreement in the study selection between the reviewers was excellent (kappa = 0.97).

Figure 1. Summary of evidence search and selection.

3.1. Influx Transporters: SLC Family

The intake by blast cells and other tissues of the antineoplastics employed in AML therapy and other xenobiotics is mediated by SLC transporters, a family that includes more
than 400 transporters. Different SLC transporters have been related to anthracycline uptake, especially the organic anion transporter polypeptide-1B1 (OATP1B1, encoded by SLCO1B1) and the organic cation transporter SLC22A16 (Figure 2). However, cytarabine is mainly transported by human equilibrative nucleoside transporter (hENT1 and hENT2, encoded by the SLC29A1 and SCL29A2 genes; Figure 2), and in lower proportions by the human concentrative nucleoside transporters (hCNT3 encoded by the SLC28A3 gene).

Figure 2. Key candidate genes involved in drug transport in acute myeloid leukemia.

The OATP1B1 (SLCO1B1) is predominantly expressed in the liver and is involved in the hepatic uptake and plasma clearance of several organic anionic compounds, including anthracyclines and other drugs such as statins [9–12]. The most relevant SLCO1B1 polymorphisms are 521T>C (rs4149056), 388A>G (rs2306283) and 597C>T (rs2291075), which are partially in linkage disequilibrium. The minor allele of rs4149056 has been consistently associated with a lower hepatic uptake and higher drug circulating concentrations, increasing the plasma levels and the risk of toxicity in tissues [10,11]. In AML studies (Table 1), the variant allele of SLCO1B1 rs4149056 was associated with a higher liver toxicity in adult patients [5] and higher overall survival (OS) in AML children [13]. In a recent study, the wild-type TT genotype of this SNP was related to a higher induction death, probably associated with a higher idarubicin uptake in tissues and therefore a higher potential toxicity [14]. The previous study in AML pediatric patients also obtained a higher OS and event-free survival (EFS) in carriers of the variant allele of the SLCO1B1 polymorphism (rs2291075), as well as those of the SLCO1B1 haplotype *1A/*1A,*1B/*1B (rs2291075, rs4149056 and rs2306283) [13].

SLC22A12 encodes a solute carrier that is mainly expressed in kidney and other tissues and is involved in urate–anion exchange [15]. Moreover, it is associated with the transport of different drugs, especially uricosurics (allopurinol and oxypurinol). The wild-type homozygote of SLC22A12 rs11231825 showed a higher infusion-related reactions after gemtuzumab ozogamicin administration (Table 1) [5]. An association between the wild-
type genotypes of different SLC22A12, SLC25A37 and SLC28A3 polymorphisms showed a lower disease-free survival (DFS), although these associations were lost after the correction for multiple testing (Table 1) [16].

SLC22A16 encodes an organic cation transporter of L-carnitine, a metabolism cofactor related to different disease states. This carrier also imports several drugs, including anthracyclines. This transporter is constitutively expressed in the brain and kidney. SLC22A16 is over-expressed in AML and is related to the growth and viability of the blast cells, providing a potential target for future AML therapies [17]. In breast cancer cohorts, variant alleles of SLC22A16 (rs714368) were found to be related to higher exposure levels of doxorubicin and doxorubicinol [6] and dose delays by anthracycline toxicities (lower with rs714368, rs6907567, rs723685 and higher with rs12210538) [7]. In a recent AML study, associations were not observed between SLC22A16 rs12210538 and rs714368 and response or safety outcomes (Table 1) [14].

The concentrative nucleoside transporter hCNT1 encoded by the SLC28A1 gene has a substrate specificity for physiological pyrimidine nucleosides. Besides this function, hCNT1 has been implicated in tumor suppression. Various SLC28A1 SNPs were analyzed in several AML studies [18–20] (Table 1). Carriers of the SLC28A1 rs2242046 polymorphism showed a higher neutropenia [19], whereas studies with SLC28A1 rs2290272 [18] and SLC28A1 rs8025045 [20] did not find any clinical association. SLC28A2 encodes a sodium-dependent selective transporter of purines expressed in the kidney and other tissues. Only a pediatric AML study found a lower OS and EFS with the wild-type genotype of SLC28A2 rs10519020 [13].

hCNT3 (SLC28A3 gene) is a sodium-dependent pyrimidine and purine nucleoside carrier expressed in the pancreas, trachea, bone marrow and mammary glands. hCNT3 is a minor cytarabine transporter compared to hENT1, and this carrier has been associated with the uptake of different anthracyclines [21]. In four pediatric cancer cohorts, the variant alleles of SLC28A3 rs7853758 and rs885004 were correlated with cardiotoxicity associated with anthracyclines (doxorubicin and daunorubicin) [22–25], whereas this finding with SLC28A3 rs7853758 was not reproduced in cohorts of breast cancer [26,27] or B-cell lymphoma [28]. SLC28A3 rs7853758 and rs885004 SNPs are in high linkage disequilibrium and have been related to lower expression in different cell lines [29,30]. Only one study in AML patients has reported an association of SLC28A3 rs11140500 with a lower DFS, but the significance disappeared after Bonferroni correction (Table 1) [16].

hENT1 (encoded by the SLC29A1 gene) is responsible for up to 80% of cytarabine influx in blast cells. Schemes with high doses of cytarabine (2–3 g/m² daily), used in consolidation or intensification therapy, can saturate the pump-mediated transport of hENT1 with concentrations >10 µmol/L and produce free diffusion into the cell [31,32]. Nevertheless, intracellular cytarabine concentrations obtained with induction therapy (200 mg/m²) are mediated by hENT1 [33]. Moreover, the intracellular influx is strongly correlated with the abundance of hENT1 in cell surface [34], so the bioavailability and clinical response depend on hENT1 expression [35]. In addition, SLC29A1 expression can be affected by hypoxia inducible factor 1 (Hif-1) at the promoter or by the transcription factor peroxisome proliferator activated receptorα (PPARα) [36,37]. In AML, patients with a low SLC29A1 mRNA expression had a significantly shorter DFS and OS in an adult cohort [38], but this had no influence in a pediatric AML cohort [39].

Two nonsynonymous and four synonymous polymorphisms were identified in a functional study of SLC29A1, but no influence in cytarabine uptake was measured [40]. In contrast, the haplotype of three SLC29A1 polymorphisms (−1345C>G, −1050G>A and 706G>C) was correlated with higher mRNA expression [41]. Another study showed only a modest elevation in hENT1 gene expression with the variant −706G>C, but no influence on cytarabine toxicity in normal blood cells [42]. The minor alleles of SLC29A1 polymorphisms only reach relevant frequencies in Asian populations, as is reflected in AML studies (Table 1). The variant A allele SLC29A1 rs3734703 was associated with a lower OS and RFS alone [43] or combined with TYMS rs2612100 [44], but a higher CR was related
to the A allele [20] and CC + AA genotypes [43]. The SLC29A1 rs9394992 polymorphism was related to a lower CR [43], OS, DFS and mRNA expression, and a higher relapse rate (RR) [45], but no influence was found in another cohort [46]. Similarly, the variant allele of SLC29A1 rs324148 (alone or in combination rs9394992) was associated with a lower OS, DFS and mRNA expression, and a higher RR [45], as well as a higher CR haplotype ht3 with rs734703, rs9394992, rs693955, rs507964 and rs747199 but had no effect alone [43]. On the other hand, the SLC29A1 rs693955 polymorphism was correlated to a lower time to relapse and neutropenia recovery [4].

3.2. Efflux Transporters: ABC Family

The ABC family of transporters includes several efflux pumps involved in the active efflux of drugs and xenobiotics from inside the cells with a potential increase in drug resistance [47]. The effect of these pumps is well-known in anthracycline disposition in blast cells and tissues, highlighting ABCB1, ABCC1, ABCC3 and ABCG2 (Figure 2) [47,48]. In addition, cytarabine uptake is influenced by two members of the “multidrug resistance-associated protein” (MRP) family, MRP7 and MRP8 (encoded by ABCC10 and ABCC11 genes), which have been related to deoxynucleotide efflux (Figure 2) [49,50].

The P-glycoprotein (P-gp), encoded by the ABCB1 gene, is the most studied efflux pump of the ABC family. The pharmacogenetics of ABCB1 have been widely analyzed in AML patients (Table 2), especially ABCB1 3435C>T (rs1045642), 2677G>A/T (rs2032582) and 1236C>T (rs1128503) polymorphisms [13,16,19,20,51–69]. An in vitro study associated the P-gp expression with a lower intracellular daunorubicin accumulation [70]. The pharmacokinetics of daunorubicin and its metabolite daunorubicinol were not affected by ABCB1 polymorphisms, nor was mRNA expression in an Indian AML cohort [69]. However, previous studies in breast cancer have shown a higher doxorubicin clearance and lower peak levels of doxorubicinol with the wild-type haplotype of ABCB1 [47].

Lower pump function was related to the variant alleles of ABCB1, favoring anthracycline intracellular accumulation with a higher potential efficacy and toxicity [61,71,72], but some studies did not reproduce this effect [51,54,58]. Following this hypothesis, better responses (higher CR and survival rates) has been reported in AML cohorts with different ABCB1 polymorphisms [51,57,59,61,63,65–68], whereas in other studies, these SNPs showed no influence or a worse response [20,53–56,62,64] (Table 2). This finding of a higher CR and OS with variant alleles of ABCB1 3435C>T, 2677G>A/T and 1236C>T was reproduced in two meta-analyses [73,74]. The study of Rafiee et al. showed an association between three ABCB1 SNPs and a higher EFS and DFS and a lower relapse rate on gemtuzumab ozogamicin, highlighting the role of P-gp in calicheamicin efflux [64].

The toxicity of anthracyclines has only been evaluated in four AML studies, showing no associations in two studies [54,56] and relevant anthracycline related-toxicities in two studies [60,62]. He et al. found higher nausea and vomiting grades (3/4) with wild-type genotypes of ABCB1 3435C>T and 2677G>A/T (alone and in haplotype) in an Asian cohort [60]. On the other hand, in a Caucasian cohort, the variant alleles of ABCB1 3435C>T, 2677G>A/T and 1236C>T and their haplotypes were associated with higher organ toxicities (renal, hepatic and neutropenia), as well as with higher induction death [62]. In other malignancies, ABCB1 SNPs were correlated with higher cardiotoxicity [22,23,75,76], but this was not reproduced in these AML studies [54,56,60,62], nor in a large study analyzing the potential correlation between ABCB1 polymorphisms and the left ventricular ejection fraction (LVEF) [77].
SNP	Study	n	Age (Range)	Ethnicity (Country)	HWE	LMA Status (%)	Chemotherapy Scheme	Clinical Outcomes
SLCO1B1								
T521C	Iacobucci et al., 2012 [5]	94	51 (19–65)	Caucasian (Italy)	Yes	De novo (80.9%) Secondary (19.1%)	Ara C + IDA + FLUDA + GO	- CR: no influence
								- Toxicity: CC/CT liver toxicity
	Drenberg et al., 2016 [13]	164	9.1 (0–21)	White (70%) Black (20%) Others (10%)	Yes	De novo	Ara C + DAUNO + ETOP + MIT	- OS: TT ↓OS (p: 0.05)
								- EFS: no influence
								- Toxicity: no influence
								- Haplotype *1A/*1A,*1B/*1B (rs2291075, rs4149056 & rs2306283): ↓OS y ↓EFS
	Megías-Vericat et al., 2021 [14]	225	52.5 (16–78)	Caucasian	Yes	De novo	Ara C + IDA	- CR: no influence
								- Induction death: TT ↑induction death (p: 0.049)
								- Toxicity: no influence
597C>T	Drenberg et al., 2016 [13]	164	9.1 (0–21)	White (70%) Black (20%) Others (10%)	Yes	De novo	Ara C + DAUNO + ETOP + MIT	- OS: CC ↓OS (p: 0.012)
								- EFS: CC ↓EFS (p: 0.006)
								- Toxicity: no influence
								- Haplotype *1A/*1A,*1B/*1B (rs2291075, rs4149056 & rs2306283): ↓OS y ↓EFS
388A>G	Drenberg et al., 2016 [13]	164	9.1 (0–21)	White (70%) Black (20%) Others (10%)	Yes	De novo	Ara C + DAUNO + ETOP + MIT	- OS: no influence
								- EFS: no influence
								- Toxicity: no influence
								- Haplotype *1A/*1A,*1B/*1B (rs2291075, rs4149056 & rs2306283): ↓OS y ↓EFS
SLC22A12								
T1246C	Iacobucci et al., 2012 [5]	94	51 (19–65)	Caucasian (Italy)	Yes	De novo (80.9%) Secondary (19.1%)	Ara C + IDA + FLUDA + GO	- CR: no influence
								- Toxicity: TT/CT ↑fever reaction (associated with GO administration)
rs528211	Yee et al., 2013 [16]	154	NR	Caucasian (Europe)	NR	NR	Ara C + ETOP + BUSUL (pre-TX)	- DFS (pre-TX): GG ↓DFS (p: 0.0048). No influence in non-Caucasian cohort
(G>A)								
rs2360872	Yee et al., 2013 [16]	154	NR	Caucasian (Europe)	NR	NR	Ara C + ETOP + BUSUL (pre-TX)	- DFS (pre-TX): CC ↓DFS (p: 0.0048). No influence in non-Caucasian cohort
Table 1. Cont.

SNP	Study	n	Age (Range)	Ethnia (Country)	HWE	LMA Status (%)	Chemotherapy Scheme	Clinical Outcomes
rs505802	Yee et al., 2013 [16] ²	154	NR	Caucasian (Europe)	NR	NR	Ara C + ETOP + BUSUL (pre-TX)	DFS (preTX): AA ↓DFS (p: 0.0048). No influence in non-Caucasian cohort
rs524023	Yee et al., 2013 [16] ²	154	NR	Caucasian (Europe)	NR	NR	Ara C + ETOP + BUSUL (pre-TX)	DFS (preTX): GG ↓DFS (p: 0.0048). No influence in non-Caucasian cohort
rs9734313	Yee et al., 2013 [16] ²	154	NR	Caucasian (Europe)	NR	NR	Ara C + ETOP + BUSUL (pre-TX)	DFS (preTX): TT ↓DFS (p: 0.0048). No influence in non-Caucasian cohort
rs11231825	Yee et al., 2013 [16] ²	154	NR	Caucasian (Europe)	NR	NR	Ara C + ETOP + BUSUL (pre-TX)	DFS (preTX): CC ↓DFS (p: 0.0048). No influence in non-Caucasian cohort
rs1160370	Yee et al., 2013 [16] ²	154	NR	Caucasian (Europe)	NR	NR	Ara C + ETOP + BUSUL (pre-TX)	DFS (preTX): AA ↓DFS (p: 0.005). No influence in non-Caucasian cohort
rs893006	Yee et al., 2013 [16] ²	154	NR	Caucasian (Europe)	NR	NR	Ara C + ETOP + BUSUL (pre-TX)	DFS (preTX): TT ↓DFS (p: 0.0055). No influence in non-Caucasian cohort

SLC22A16

SNP	Study	n	Age (Range)	Ethnia (Country)	HWE	LMA Status (%)	Chemotherapy Scheme	Clinical Outcomes
rs12210538	Megías-Vericat et al., 2021 [14]	225	52.5 (16–78)	Caucasian (Spain)	Yes	De novo	Ara C + IDA	CR and induction death: no influence Toxicity: no influence
rs714368	Megías-Vericat et al., 2021 [14]	225	52.5 (16–78)	Caucasian (Spain)	Yes	De novo	Ara C + IDA	CR and induction death: no influence Toxicity: no influence

SLC25A37

SNP	Study	n	Age (Range)	Ethnia (Country)	HWE	LMA Status (%)	Chemotherapy Scheme	Clinical Outcomes
rs7818607	Yee et al., 2013 [16] ²	154	NR	Caucasian (Europe)	NR	NR	Ara C + ETOP + BUSUL (pre-TX)	DFS (preTX): AA ↑DFS (p: 0.0057). No influence in non-Caucasian cohort
SNP	Study	n	Age (Range)	Ethnicity	HWE	LMA Status (%)	Chemotherapy Scheme	Clinical Outcomes
-----------	------------------------	----	-------------	-----------------	-----	----------------	---------------------------------------	---
rs8534	Yee et al., 2013 [16]	154	NR	Caucasian (Europe)	NR	NR	Ara C + ETOP + BUSUL (pre-TX)	DFS (preTX): TT ↓ DFS (p: 0.0067), No influence in non-Caucasian cohort
SNPs								
rs2290272	Müller et al., 2008 [18]	139	46.3 (15–86)	Jews (61.2%) Arab (38.8%)	Yes	De novo	Ara C + ANT ± FLUDA ± MIT	OS (TX censured): no influence
rs2242046	Seeringer et al., 2009 [19]	322	<60	Caucasian (Germany)	NR	NR (normal cytogenetic status)	Ara C + IDA + ETOP	-
rs8025045	Cao et al., 2017 [20]	206	67.2 (22–98)	Asian (China)	Yes	De novo	Ara C + ANT	- CR: no influence - OS: no influence - RFS: no influence - Toxicity: no influence
rs10519020	Drenberg et al., 2016 [13]	164	9.1 (0–21)	White (70%) Black (20%) Others (10%)	Yes	De novo	Ara C + DAUNO + ETOP + MIT	OS: GG ↓ OS (p: 0.002) - EFS: GG ↓ EFS (p: 0.001)
rs11149500	Yee et al., 2013 [16]	154	NR	Caucasian (Europe)	NR	NR	Ara C + ETOP + BUSUL (pre-TX)	DFS (preTX): TT ↓ DFS (p: 0.00018), No influence in non-Caucasian cohort
rs3734703	Kim et al., 2013 [44]	97	50 (16–76)	Asian (South Korea)	Yes	De novo	Ara C + IDA	- CR, OS, RFS: no influence individually - OS, RFS: AA/AC combined with TYMS AA genotype (rs2612100) ≫ OS and RFS (OS loses statistically significant after multivariable analysis) - Toxicity (hematologic): no influence

Table 1. Cont.
SNP	Study	n	Age (Range)	Ethnicity (Country)	HWE	LMA Status (%)	Chemotherapy Scheme	Clinical Outcomes
T>C	Wan et al., 2014 [45]	100	43 (17–76)	Asian (China)	Yes	De novo	Ara C + DAUNO or IDA	RR: CC ↓RR (p: 0.0004)
T>C	Wan et al., 2014 [45]	100	43 (17–76)	Asian (China)	Yes	De novo	Ara C + DAUNO or IDA	OS: CC ↓OS against CT (p: 0.02) and TT (p: 0.005)
T>C	Wan et al., 2014 [45]	100	43 (17–76)	Asian (China)	Yes	De novo	Ara C + DAUNO or IDA	mRNA expression: CC ↑expression (p < 0.01)
T>C	Wan et al., 2014 [45]	100	43 (17–76)	Asian (China)	Yes	De novo	Ara C + DAUNO or IDA	SNP-SNP interaction: CC+CT/TT (rs9394992) ↓OS (p < 0.001) and ↓DFS (p: 0.005)
T>C	Wan et al., 2014 [45]	100	43 (17–76)	Asian (China)	Yes	De novo	Ara C + DAUNO or IDA	SNP-SNP interaction: CC+CT/TT (rs324148) ↓OS (p < 0.001) and ↓DFS (p: 0.005)
T>C	Wan et al., 2014 [45]	100	43 (17–76)	Asian (China)	Yes	De novo	Ara C + DAUNO or IDA	SNP-SNP interaction: CC+CT/TT (rs324148) ↓OS (p < 0.001) and ↓DFS (p: 0.005)

Table 1. Cont.
SNP	Study	n	Age (Range)	Ethnia (Country)	HWE	LMA Status (%)	Chemotherapy Scheme	Clinical Outcomes
	Kim et al., 2016 [43]	103	50.4 (16–76)	Asian (South Korea)	Yes	De novo	Ara C + IDA	CR: no influence, ↑CR haplotype ht3 (p: 0.01)
A>C	Amaki et al., 2015 [46]	39	54 (23–71)	Asian (Japan)	Yes	De novo	Ara C + IDA or DAUNO (consolidation: Ara C high doses)	OS: no influence. TTR: CC ↓ TTR (p: 0.00261; 0.0096 in multivariable analysis) Hematologic toxicity: CC ↓ neutropenia duration
rs693955								
rs507964	Kim et al., 2016 [43]	103	50.4 (16–76)	Asian (South Korea)	Yes	De novo	Ara C + IDA	CR: no influence, ↑CR haplotype ht3 (p: 0.01)
(A>C)								
rs747199	Kim et al., 2016 [43]	103	50.4 (16–76)	Asian (South Korea)	Yes	De novo	Ara C + IDA	CR: G allele ↑CR (p: 0.02; p Bonferroni:NS) and haplotype ht3 (p: 0.01)
(C>G)								

Abbreviations: AMSA: amsacrine; ANT: anthracycline; BUSUL: busulfan; CR: complete remission; DAUNO: daunorubicin; DFS: disease-free survival; EFS: event-free survival; ETOP: etoposide; FLUDA: fludarabine; GO: gemtuzumab–ozogamicin; HWE: Hardy–Weinberg equilibrium; IDA: idarubicin; MIT: mitoxantrone; NR: not reported; OS: overall survival; RFS: relapse-free survival; RR: rate of relapse; TX: hematologic transplant. ¹—This study [13] analyzed 1936 SNPs of 225 genes with a multi-SNP-based approach (including ABC and SLC transporters). Only SNPs with significant results were cited. ²—This study [16] analyzed 1659 SNPs of 42 genes with multi-SNP based approach. Only SNPs with significant results were cited. ³—This study [19] included SNPs of genes potentially involved in the response to Ara C (hCNT1, hENT1, hENT2, DCK, CDA), but only specified the SNPs with significant effect. ⁴—This study [44] included 139 SNPs of 10 genes potentially involved in the response to Ara C, but only specified the SNPs with significant effect.
ABCB11 encodes a canalicular transporter of bile salts also called the “bile salt export pump” (BSEP) which has been associated with the efflux of some anticancer drugs in liver cells. The ABCB11 rs4668115 and ABCB4 rs2302387 polymorphisms reduced transporter expression and were found to be related to ≥grade 3 transaminitis after anthracycline infusion (mithramycin) in patients with refractory thoracic malignancies [78]. The wild-type genotype of ABCB11 rs4668115 was correlated with a lower OS and EFS in AML patients (Table 2) [13].

ABCC1 encodes the MRP1 pump, which mediates the export of organic anions and drugs from the cytoplasm, including methotrexate, antivirals and anthracyclines. The function of this pump confers resistance to anticancer drugs by decreasing their accumulation in cells and by mediating ATP- and GSH-dependent drug export [79]. Pharmacokinetic in vitro studies have shown decreased transport and higher maximum velocity (Vmax) of doxorubicin disposition with ABCC1 (rs60782127) [80], whereas MRP expression reduced the intracellular daunorubicin accumulation [70]. Previous studies in other cancers have associated ABCC1 (rs3743527, rs246221, rs4148350) with higher cardiotoxicity [22,23,27,81]. A small cohort performed in an Arab population correlated the expression of 4 ABCC1 SNPs with a lower CR, drug sensitivity and relapsed/refractory disease in acute leukemia (Table 2) [82]. Subsequently, several AML studies analyzed the role of different ABCC1 genotypes in clinical outcomes and safety (Table 2) [20,56,62,83]. Despite the fact that the association between cardiotoxicity and ABCC1 polymorphisms was not reproduced in AML [20,56,62,83], ABCC1 rs4148350 was related to hepatotoxicity [62], ABCC1 rs212090 with gastrointestinal toxicity and rs212091 and rs3743527 with myelosuppression [20]. In addition, the ABCC1 rs212090 and rs3743527 variant alleles showed lower survival rates, whereas ABCC1 rs129081 increased OS and DFS [83].

ABCC2 expresses MPR2, an export pump localized to the apical membrane of polarized cells, especially those hepatocytes with functions in biliary transport. This protein appears to contribute to the drug resistance of different anticancer drugs including anthracyclines [84]. Polymorphisms of ABCC2 have been correlated with anthracycline toxicities in other malignancies: cardiotoxicity in non-Hodgkin lymphoma (rs45511401) [26], in survivors of HSCT (rs8187710) [85] and in pediatric cancer (rs4148350) [22], febrile neutropenia in breast cancer (rs4148350) [27] and leucopenia in osteosarcoma (17222723) [86]. In AML patients, only one cohort has analyzed ABCC2 rs8187710, without any significant influence in response or toxicity [62].

ABCC3 encodes a protein that may play a role in biliary transport and the intestinal excretion of organic anions, which is also related to drug efflux. The expression of ABCC3 was found to be significantly higher in AML patients resistant to daunorubicin [87]. Clinical studies in AML cohorts corroborated this finding with ABCC3 polymorphisms (Table 2) [16,18,88]. A lower DFS was reported with variant alleles of ABCC3 polymorphisms (rs4148405, rs1989983, rs2301835, rs8079740), whereas other ABCC3 (rs2277624, rs757420) SNPs showed a higher DFS [16]. A similarly higher OS was observed with the variant allele of ABCC3, rs4793665 [18]. A recent cohort reproduced the previous findings of lower OS rates with the minor allele of ABCC3, rs4148405 [88].

The ABCG2 gene expresses the “breast cancer resistant protein” (BCRP), a well-known ABC pump responsible for anthracycline efflux [91]. BCRP is localized in the cell membranes of epithelial cells of the small intestine, liver, kidney, brain and placenta [92]. In AML, an overexpression of ABCG2 was observed in 33% of blast cells and this BCRP expression correlated with a worse prognosis and lower OS [93–96]. The two most common ABCG2 SNPs are rs2231137 and rs2231142, and the minor alleles of these SNPs are related
to a reduced level of BCRP expression [92]. No influence in anthracycline pharmacokinetics was reported with ABCG2 in an AML cohort with daunorubicin (rs2231137, rs2231142, rs769188) [69] or a breast cancer cohort with doxorubicin (rs2231142) [47]. Several studies have described the impact of ABCG2 genotypes in AML (Table 2) [18,56,62,97,98]. Contradictory results were observed with ABCG2 rs2231137, showing a lower OS and lower risk of toxicities ≥ grade three with the GG wild-type genotype in a Caucasian cohort [56], but a higher OS and DFS in a mixed AML/ALL Asian cohort [97] and no influence in a Caucasian cohort [62]. On the other hand, three different cohorts reproduced an increase in OS in wild-type ABCG2 rs2231142 carriers [56,97,98] and cardiac and lung toxicities were associated with the variant allele in another study [62]. Similar OS and DFS increases were obtained with the wild-type genotype of ABCG2 rs2231149, as well as with its haplotype with the ABCG2 rs2231137 and rs2231142 polymorphisms [97]. No effect in LVEF was observed with 16 different ABCG2 polymorphisms in a large study [77].

Table 2. Characteristics of the studies included in the systematic review for polymorphisms of the ABC transporter family.

SNP	Study	n	Age (Range)	Ethnia (Country)	HWE	LMA Status (%)	Chemotherapy Scheme	Clinical Outcomes
ABCB1								
C3435T	Illmer et al., 2002 [51]	405	53 (17–78)	Caucasian (Germany)	Yes	De novo	Ara C + MIT + ETOP + AMSA	- CR: no influence.
								- OS and DFS at 4 years (TX censured): CC ↓ OS (CC vs. CT p < 0.01, CC vs. CT/TT p: 0.05).
								- Haplotype with G2677T/A and C1236T: wild-type ↓ OS and DFS at 4 years.
								- mRNA expression: CC ↓ expression (p < 0.05)
Kaya et al., 2005 [52]	28	36 (20–64)	Arabs (Turkey)	NR	NR	Ara C + ANT	- Drug sensitive/resistant: no differences (mixed with ALL cohort)	
Kim DH et al., 2006 [53]	81	39 (15–72)	Asian (South Korea)	Yes	De novo	Ara C + IDA	- CR: CC ↑ CR (p: 0.05)	
								- OS at 3 years (TX censured): no influence.
								- EFS at 3 years (TX censured): CC ↑ EFS (p: 0.01)
								- Haplotype with G2677T/A: wild-type ↑ CR and EFS at 3 years.
								- mRNA expression: CC ↓ expression (p: 0.03)
Van der Holt et al., 2006 [54]	150	67 (60–85)	Caucasian (Netherlands)	No	De novo: 79Secondary: 21	Ara C + DAUNO	- CR, OS, EFS, DFS at 5 years: no influence.	
								- Expression and activity of P-gp: no influence
Hur et al., 2008 [55]	200	44 (NR)	Asian (South Korea)	Yes	De novo	Ara C + ANT	- CR, OS, RFS and EFS at 5 years: no influence	
Hampras et al., 2010 [56]	261	61.5 (20–65)	Caucasian (86%) Others (14%) (USA)	Yes	De novo: 79Secondary: 25	Ara C + ANT	- OS (TX censured): no influence	
								- Toxicity: no influence
Table 2. Cont.

SNP	Study	n	Age (Range)	Ethnia (Country)	HWE	LMA Status (%)	Chemotherapy Scheme	Clinical Outcomes
Green et al., 2012 [57]	100	63	20–85	Caucasian (Europe)	Yes	De novo (normal karyotype)	Ara C + ANT or MIT +/- or Others	- OS at 4 years (TX censured): no influence
Scheiner et al., 2012 [58] ²	109 (44)	34	<1–86	Others: White (69.7%) Non-white (30.3%)	No	De novo: 72.5Secondary: 18.3	Ara C + IDA	- OS at 5 years: no influence. EFS at 5 years: CT ↑EFS (p: 0.001) - Expression and activity of P-gp: no influence
Falk et al., 2014 [59] ³	201	59	18–85	Caucasian (Sweden)	Yes	De novo (normal karyotype)	Ara C + DAUNO or IDA +/- ETOP +/- or Others	- CR, OS, EFS: no influence (similar results in FLT3 wild-type subgroup).
He et al., 2014 [60]	215	43.6	14–57	Asian (China)	Yes	De novo (high doses)	Ara C + DAUNO	- Toxicity: CC ↑acute nausea and vomiting grades 3/4 (p: 0.035, 0.010). In multivariable CC was a risk factor of vomiting (p: 0.016). Haplotype with ABCB1 G2677T/A (rs2032582) CC/GG ↑acute nausea and vomiting grades (p: 0.003; 0.026) and multivariable (0.003; 0.039)
He et al., 2015 [61]	263	45.4	14–58	Asian (China)	Yes	De novo (intermediate cytogenetic risk)	Ara C + DAUNO +/MIT	- OS, RFS: TT ↑OS (p: 0.004), ↑RFS (p: 0.019) - Haplotype with G2677T/A and C1236T: TTT ↑OS (p < 0.001), ↑RFS (p: 0.005), both maintained in multivariable analysis (p: 0.001 and 0.009). - mRNA expression: TTT haplotype ↓mRNA expression than other genotypes (p: 0.004)
Megías-Vericat et al., 2017 [62]	225	52.5	16–78	Caucasian	Yes	De novo	Ara C + DAUNO	- CR, induction death: no influence - Toxicity: TT genotype ↑renal toxicity (p: 0.008) Haplotype C3435T, G2677T/A and C1236T: TTT ↑induction death (p: 0.020), ↑renal (p: 0.016) and hepatic (p < 0.001) toxicities.
Table 2. Cont.

SNP	Study	n	Age (Range)	Ethnia (Country)	HWE	LMA Status (%)	Chemotherapy Scheme	Clinical Outcomes	
	Raffie et al., 2019 [63]	942	9.7 (0–30)	Caucasian (81%) Black (13%) Asian (5%) Others (1%)	Yes	De novo	Ara C + IDA + ETOP ± GO	- OS: in GO arm CT/TT trend to ↑ OS at 5 years (p: 0.068)	
								- EFS: in GO arm CT/TT↑EFS at 5 years (p: 0.022)	
								- DFS: in GO arm CT/TT↑DFS at 5 years (p: 0.044)	
								- RR: in GO arm CT/TT↓RR at 5 years (p: 0.007)	
	* These results were observed especially at standard risk group								
	Short et al., 2020 [64]	104	68 (24–88)	Caucasian (86%) Black (13%)		NR	GO + DAC	- CR, ORR, CIR, OS, RFS: no influence	
	G2677T/A rs2032582	Van den Heuvel et al., 2001 [65]	30	34.6 (1–67)	Caucasian (Netherlands)		Relapsed: 100	Ara C + ANT + Others	- OS after relapse at 3 years: GT ↑OS (p: 0.02)
								- RFS after relapse at 3 years: GT ↑RFS (p: 0.002)	
	Illmer et al., 2002 [51]	405	53 (17–78)	Caucasian (Germany)	Yes	De novo	Ara C + MIT + ETOP + AMSA	- CR: no influence.	
								- OS and DFS at 4 years (TX censured): no influence.	
								- Haplotype with C3435T and C1236T: wild-type ↑CR and EFS at 3 years.	
								- mRNA expression: GG ↓expression (p: 0.05)	
	Kaya et al., 2005 [52]	28	36 (20–64)	Arabs (Turkey)		NR	Ara C + ANT	- Drug sensitive/resistant: no differences (mixed with ALL)	
	Kim DH et al., 2006 [53]	81	39 (15–72)	Asian (South Korea)	Yes	De novo	Ara C + IDA	- CR: GG ↑CR (p: 0.04)	
								- OS and EFS at 3 years (TX censured): no influence.	
								- Haplotype with C3435T: wild-type ↑CR and EFS at 3 years.	
								- mRNA expression: no influence.	
	Van der Holt et al., 2006 [54]	150	67 (60–85)	Caucasian (Netherlands)	Yes	De novo: 79Secondary: 21	Ara C + DAUNO	- CR, OS, EFS, DFS at 5 years: no influence.	
								- Expression and activity of P-gp: no influence.	
	Hampras et al., 2010 [56]	261	61.5 (20–85)	Caucasian (86%) Others (14%) (USA)	Yes	De novo: 75Secondary: 25	Ara C + ANT	- OS (TX censured): no influence.	
								- Toxicity: no influence.	
	Kim YK et al., 2010 [66]	94	38 (17–79)	Asian (South Korea)		NR	Ara C + IDA + BH-AC	- CR, ORR, CIR, OS, RFS: no influence	
								- RR: GG ↑RR (p: 0.031)	
								- RFS: GG ↑RFS (p: 0.005)	
SNP	Study	n	Age (Range)	Ethnicity (Country)	HWE	LMA Status (%)	Chemotherapy Scheme	Clinical Outcomes	
---	------------------------------	-----	-------------	---------------------	-----	----------------	---------------------	-------------------	
	Green et al., 2012 [57]	100	63 (20–85)	Caucasian (Europe)	Yes	De novo (normal karyotype)	Ara C + ANT or MIT +/or Others	- OS at 4 years (TX censured): GG ↓ OS (p: 0.02)	
	Falk et al., 2014 [59]	201	59 (18–85)	Caucasian (Sweden)	Yes	De novo (normal karyotype)	Ara C + DAUNO or IDA ± ETOP +/or Others	- CR, OS, EFS: no influence FLT3 wild-type subgroup: GG ↑ OS (p: 0.039) against GT/TT genotypes.	
	He et al., 2014 [60]	215	43.6 (14–57)	Asian (China)	Yes	De novo (normal karyotype)	Ara C (high doses)	- Toxicity: CC ↑ acute nausea and vomiting grades 3/4 (p: 0.041, 0.038). Both lost in multivariable analyses. Haplotype with ABCB1 G2677T/A (rs1045642) CC/GG ↑ acute nausea and vomiting grades 3 (0.003; 0.026) and multivariable (0.003; 0.039)	
	He et al., 2015 [61]	263	45.4 (14–58)	Asian (China)	Yes	De novo (intermediate cytogenetic risk)	Ara C + DAUNO ± MIT	- OS, RFS: TT ↑ OS (p: 0.017), ↑ RFS (p: 0.033) - Haplotype with C3435T and C1236T: TTT ↑ OS (p < 0.001), ↑ RFS (p: 0.005), both maintained in multivariable analysis (p: 0.001 and 0.009) - mRNA expression: TTT haplotype ↓ mRNA expression than other genotypes (p: 0.004)	
	Megías-Vericat et al., 2017 [62]	225	52.5 (16–78)	Caucasian	Yes	De novo (De novo)	Ara C + IDA	- CR, induction death: no influence - Toxicity: TT genotype ↑ renal (p: 0.001), hepatic (p: 0.049) toxicities & ↑ time to neutropenia recovery (p: 0.047) - Haplotype C3435T, G2677T/A and C1236T: TTT ↑ induction death (p: 0.020), ↑ renal (p: 0.016) and hepatic (p < 0.001) toxicities.	
	Rafiee et al., 2019 [63]	942	9.7 (0–30)	Caucasian (81%)	Yes	De novo (De novo)	Ara C + IDA + ETOP ± GO	- OS: no influence - EFS: in GO arm GT/TT/EFS at 5 years (p: 0.016) - DFS: in GO arm GT/TT ↓ DFS at 5 years (p: 0.048) - RR: in GO arm GT/TT ↓ RR at 5 years (p: 0.001)	
Table 2. Cont.

SNP	Study	n	Age (Range)	Ethnia (Country)	HWE	LMA Status (%)	Chemotherapy Scheme	Clinical Outcomes
C1236T rs1128503	Illmer et al., 2002 [51]	405	53 (17–78)	Caucasian (Germany)	Yes	De novo	Ara C + MIT + ETOP + AMSA	CR: no influence. OS and DFS at 4 years (TX censured): no influence. Haplotype with C3435T and G2677T/A: wild-type ↓ OS and DFS at 4 years. mRNA expression: no influence.
	Van der Holt et al., 2006 [51]¹	150	67 (60–85)	Caucasian (Netherlands)	Yes	De novo: 79Secondary: 21	Ara C + DAUNO	CR, OS, EFS, DFS at 5 years: no influence. Expression and activity of P-gp: no influence
	Hampras et al., 2010 [56]	261	61.5 (20–85)	Caucasian (86%) Others (14%) (USA)	Yes	De novo: 75Secondary: 25	Ara C + ANT	OS (TX censured): no influence. Toxicity: no influence
	Kim YK et al., 2010 [66]	94	38 (17–79)	Asian (South Korea)	NR	De novo (t (8,21) and inv (16))	Ara C + IDA +BH-AC	CR, RR, OS and RFS: no influence
	Green et al., 2012 [57]	100	63 (20–85)	Caucasian (Europe)	Yes	De novo (normal karyotype)	Ara C + ANT or MIT +/or Others	OS at 4 years(TX censured): CC ↓ OS (p: 0.03)
	Scheiner et al., 2012 [58]²	109(44)	34 (<1-86)	Others: White (69.7%) Non-white (30.3%)	Yes	De novo: 72.5Secondary: 18.3	Ara C + IDA	OS at 5 years: CC ↑ OS (p: 0.04) EFS at 5 years: CC ↑ EFS (p: 0.007) Expression and activity of P-gp: no influence
	Falk et al., 2014 [59]³	201	59 (18–85)	Caucasian (Sweden)	Yes	De novo (normal karyotype)	Ara C + DAUNO or IDA ± ETOP +/or Others	CR, OS, EFS: no influence. FLT3 wild-type subgroup: CC ↑ OS (p: 0.017) against CT/TT genotypes.
	He et al., 2014 [60]	215	43.6 (14–57)	Asian (China)	No	De novo	Ara C (high doses)	Toxicity: not analyzed (excluded by HWE)
	He et al., 2015 [61]	263	45.4 (14–58)	Asian (China)	Yes	De novo (intermediate cytogenetic risk)	Ara C + DAUNO ± MIT	OS, RFS: TT ↑ OS (p: 0.002), tRFS (p: 0.001). Haplotype with C3435T and G2677T/A: TTT ↑ OS (p < 0.001), tRFS (p: 0.005), both maintained in multivariable analysis (p: 0.001 and 0.009). mRNA expression: TTT haplotype mRNA expression greater than other genotypes (p: 0.004)
SNP	Study	n	Age (Range)	Ethnicity (Country)	HWE	LMA Status (%)	Chemotherapy Scheme	Clinical Outcomes
---------------------	------------------------	-------	-------------	---------------------	-----	----------------	---------------------	-------------------
G1199A rs2229109	Green et al., 2012 [57]	100	63 (20–85)	Caucasian (Europe)	Yes	De novo	Ara C + ANTI or MIT +/or Others	CR, ORR, CIR, OS, RFS: no influence
C174967T rs6980101	Kim YK et al., 2007 [67]	49	37 (17–69)	Asian (South Korea)	NR	De novo	Ara C + IDA + ETOP +/or Others	CR: 1CT vs. CC (p: 0.03), OS, RFS, RR: no influence
G146792C rs10256836	Kim YK et al., 2007 [67]	49	37 (17–69)	Asian (South Korea)	NR	De novo	Ara C + IDA + ETOP +/or Others	CR: 1GG vs. GC (p: 0.03), OS, RFS, RR: no influence
T134575A rs17327442	Kim YK et al., 2007 [67]	49	37 (17–69)	Asian (South Korea)	NR	De novo	Ara C + IDA + ETOP +/or Others	CR: 1TT vs. TA (p: 0.01), OS, RFS, RR: no influence
A113516G rs41485732	Kim YK et al., 2007 [67]	49	37 (17–69)	Asian (South Korea)	NR	De novo	Ara C + IDA + ETOP +/or Others	CR: 1AA vs. AG (p: 0.001), OS, RFS, RR: no influence
C193T rs121918619	Monzo et al., 2006 [67]	110	44 (16–60)	Caucasian (Spain)	Yes	De novo	Ara C + IDA + ETOP +/or Others	RR: CC/CT 1RR (p: 0.02) OS at 2 years: no influence (but affect in multivariable analysis, CC 1OS)
lile144Met	Monzo et al., 2006 [67]	110	44 (16–60)	Caucasian (Spain)	NR	De novo	Ara C + IDA + ETOP +/or Others	RR: OS: no influence
SNP	Study	n	Age (Range)	Ethnia (Country)	HWE	LMA Status (%)	Chemotherapy Scheme	Clinical Outcomes
-----------	------------------------	-----	-------------	-----------------	-----	----------------	---------------------	-------------------------------------
rs3842	Cao et al., 2017 [20]	206	67.2 (22–98)	Asian (China)	Yes	De novo	Ara C + ANT	CR: no influence
								OS: no influence
								DFS: no influence
								Toxicity: no influence
rs2235015	Rafiee et al., 2019 [63]	942	9.7 (0–30)	Caucasian	Yes	De novo	Ara C + IDA + ETOP ± GO	OS: no influence
(G>T)				(81%) Black (13%) Asian (5%) Others (1%)				EFS: no influence
								DFS: no influence
								RR: no influence
rs2235033	Rafiee et al., 2019 [63]	942	9.7 (0–30)	Caucasian	Yes	De novo	Ara C + IDA + ETOP ± GO	OS: no influence
(T>C)				(81%) Black (13%) Asian (5%) Others (1%)				EFS: no influence
								DFS: no influence
								RR: no influence
rs1922242	Rafiee et al., 2019 [63]	942	9.7 (0–30)	Caucasian	Yes	De novo	Ara C + IDA + ETOP ± GO	OS: no influence
(A>T)				(81%) Black (13%) Asian (5%) Others (1%)				EFS: no influence
rs1922240	Rafiee et al., 2019 [63]	942	9.7 (0–30)	Caucasian	Yes	De novo	Ara C + IDA + ETOP ± GO	OS: no influence
(T>C)				(81%) Black (13%) Asian (5%) Others (1%)				EFS: no influence
								DFS: no influence
								RR: no influence
rs1989830	Rafiee et al., 2019 [63]	942	9.7 (0–30)	Caucasian	Yes	De novo	Ara C + IDA + ETOP ± GO	OS: no influence
(C>T)				(81%) Black (13%) Asian (5%) Others (1%)				EFS: no influence
rs2235040	Rafiee et al., 2019 [63]	942	9.7 (0–30)	Caucasian	Yes	De novo	Ara C + IDA + ETOP ± GO	OS: no influence
(G>A)				(81%) Black (13%) Asian (5%) Others (1%)				EFS: no influence
ABCB11								DFS: no influence
								RR: no influence
rs4668115	Drenberg et al., 2016 [13]	164	9.1 (0–21)	White (70%) Black (20%) Others (10%)		De novo	Ara C + DAUNO + ETOP + MIT	OS: GG ↓ OS (p: 0.03)
(G>A)								EFS: GG ↓ EFS (p: 0.05)
ABC1								
T2684C	Mahjoubi et al., 2008 [82]	111	NR	Arabs (Iran)		52 AMLNR	NR	CR: no influence
								Expression of ABC1 related to lower CR, drug sensitive and R/R rate
C2007T	Mahjoubi et al., 2008 [82]	111	NR	Arabs (Iran)		52 AMLNR	NR	CR: no influence
rs2301666								Expression of ABC1 related to lower CR, drug sensitive and R/R rate
G2012T	Mahjoubi et al., 2008 [82]	111	NR	Arabs (Iran)		52 AMLNR	NR	CR: no influence
rs45511401								Expression of ABC1 related to lower CR, drug sensitive and R/R rate
Table 2. Cont.

SNP	Study	n	Age (Range)	Ethnia (Country)	HWE	LMA Status (%)	Chemotherapy Scheme	Clinical Outcomes
C2665T	Mahjoubi et al., 2008 [82]	111	NR	Arabs (Iran)	NR	52 AMLNR	NR	- CR: no influence
								- Expression of ABCC1 related to lower CR, drug sensitive and R/R rate
T825C	Hampras et al., 2010 [56]	261	61.5 (20–85)	Caucasian (86%) (USA)	Yes	De novo: 75Secondary: 25	Ara C + ANT	- OS (TX censored): no influence
rs246221				Others (14%) (USA)				- Toxicity: no influence
T1062C	Hampras et al., 2010 [56]	261	61.5 (20–85)	Caucasian (86%) (USA)	Yes	De novo: 75Secondary: 25	Ara C + ANT	- OS (TX censored): no influence
rs35587				Others (14%) (USA)				- Toxicity: no influence
G4002A	Hampras et al., 2010 [56]	261	61.5 (20–85)	Caucasian (86%) (USA)	Yes	De novo: 75Secondary: 25	Ara C + ANT	- OS (TX censored): no influence
rs2230671				Others (14%) (USA)				- Toxicity: no influence
rs4148350	Megías-Vericat et al., 2017 [62]	225	52.5 (16–78)	Caucasian	Yes	De novo	Ara C + IDA	- CR, induction death: no influence
								- Toxicity: wild-type GG ↑hepatic severe toxicity grade 3–4 (p: 0.044)
rs129081	Kunadt et al., 2020 [83]	160	46 (18–60)	Caucasian (Germany)	Yes	NK AMLDe novo: 93.1Secondary: 6.9	Ara C + DAUNO	- CR: no influence
(C>G)								- OS: GG/O 98:7 at 5 years (p: 0.035)
rs212090	Cao et al., 2017 [20]	206	67.2 (22–98)	Asian (China)	Yes	De novo	Ara C + ANT	- DFS: TT ↑DFS at 5 years (p: 0.021)
(A>T)								- RR: no influence
rs212091	Cao et al., 2017 [20]	206	67.2 (22–98)	Asian (China)	Yes	De novo	Ara C + ANT	- Toxicity: AT ↑gastrointestinal toxicity (p: 0.010)
(A>G)								
rs129091	Kunadt et al., 2020 [83]	160	46 (18–60)	Caucasian (Germany)	Yes	NK AMLDe novo: 93.1Secondary: 6.9	Ara C + DAUNO	- CR: no influence
								- OS: no influence
rs212089	Cao et al., 2017 [20]	206	67.2 (22–98)	Asian (China)	Yes	De novo	Ara C + ANT	- DFS: TT ↑DFS at 5 years (p: 0.021)
								- RR: no influence
								- Toxicity: no influence
rs212091	Kunadt et al., 2020 [83]	160	46 (18–60)	Caucasian (Germany)	Yes	NK AMLDe novo: 93.1Secondary: 6.9	Ara C + DAUNO	- CR: no influence
(A>G)								- OS: GG ↓OS at 5 years (p: 0.006)
								- DFS: GG ↓DFS at 5 years (p: 0.016)
								- RR: no influence
								- Toxicity: no influence
SNP	Study	n	Age (Range)	Ethnicity (Country)	HWE	LMA Status (%)	Chemotherapy Scheme	Clinical Outcomes
-----------	------------------------	-----	-------------	---------------------	-----	----------------	---------------------	---
rs3743527 (C>T)	Cao et al., 2017 [20]	206	67.2 (22–98)	Asian (China)	Yes	De novo	Ara C + ANT	- CR: no influence - OS: no influence - RFS: no influence - Toxicity: TT ↑myelosuppression (p: 0.007)
rs4148380 (G>A)	Cao et al., 2017 [20]	206	67.2 (22–98)	Asian (China)	Yes	De novo	Ara C + ANT	- CR: no influence - OS: no influence - RFS: no influence - Toxicity: no influence
ABCC2								
G4544A	Megías-Verical et al., 2017 [62]	225	52.5 (16–78)	Caucasian	Yes	De novo	Ara C + IDA	- CR, induction death: no influence - Toxicity: no influence
rs1989983 (G>A)	Yee et al., 2013 [16]	54	NR	Caucasian (Europe)	NR	NR	Ara C + ETOP + BUSUL (pre-TX)	- DFS (preTX): GG ↓DFS (p: 9.45 × 10^{-6}; remained significant after Bonferroni correction). No influence in non-Caucasian cohort
rs2301835 (C>T)	Yee et al., 2013 [16]	154	NR	Caucasian (Europe)	NR	NR	Ara C + ETOP + BUSUL (pre-TX)	- DFS (preTX): TT ↑DFS (p: 0.0029). No influence in non-Caucasian cohort
rs2277624 (A>G)	Yee et al., 2013 [16]	154	NR	Caucasian (Europe)	NR	NR	Ara C + ETOP + BUSUL (pre-TX)	- DFS (preTX): AA ↓DFS (p: 0.004). No influence in non-Caucasian cohort
rs8079740 (A>G)	Yee et al., 2013 [16]	154	NR	Caucasian (Europe)	NR	NR	Ara C + ETOP + BUSUL (pre-TX)	- DFS (preTX): GG ↓DFS (p: 0.0078). No influence in non-Caucasian cohort
rs757420 (T>C)	Yee et al., 2013 [16]	154	NR	Caucasian (Europe)	NR	NR	Ara C + ETOP + BUSUL (pre-TX)	- DFS (preTX): TT ↑DFS (p: 0.0079). No influence in non-Caucasian cohort
C211T	Müller et al., 2008 [18]	139	46.3 (15–86)	Jews (61.2%) Arabs (38.8%)	Yes	De novo	Ara C + ANT ± FLUDA ± MIT	- OS (TX censured): CC ↓OS (p: 0.018)
rs4793665	Butrym et al., 2021 [88]	95	61 (22–90)	Caucasian (Poland)	Yes	De novo	Ara C + DAUNO or low dose Ara C or AZA	- CR: no influence - OS: no influence

Table 2. Cont.
Table 2. Cont.

SNP	Study	n	Age	Ethnia (Country)	HWE	LMA Status (%)	Chemotherapy Scheme	Clinical Outcomes
ABCG2	Hampras et al., 2010 [56]	261	61.5 (20–85)	Caucasian (86%)	NR	De novo: 75%	Secondary: 25% Ara C + ANT	OS (TX censored); GG ↓ OS (p: 0.05) Toxicity: AA/AG ↑ risk of toxicity grade 3 or more
	Wang et al., 2011 [97]	141	32 (5–70)	Asian (China)	NR	De novo: Mixed with ALL Ara C + DAUNO/MITO	-	
	Megías-Vericat et al., 2017 [62]	225	52.5 (16–78)	Caucasian	Yes	De novo: Ara C + IDA	-	
	Muller et al., 2008 [18]	139	46.3 (15–86)	Jews (61.2%)	Yes	De novo: Ara C + ANT + FLUDA ± MIT	-	
	Hampras et al., 2010 [56]	261	61.5 (20–85)	Caucasian (86%)	Yes	De novo: 75%	Secondary: 25% Ara C + ANT	CR: trend to GG ↑ CR (p: 0.053), Mixed with ALL patients OS: GG/OS (p < 0.001), Mixed with ALL patients DFS: GC/DFS (p < 0.001), Mixed with ALL patients Haplotype GG (rs2231137) with CA (rs2231142) and CT (rs2231149) ↓ DFS/OS (p < 0.001)
	Wang et al., 2011 [97]	141	32 (5–70)	Asian (China)	NR	De novo: Mixed with ALL Ara C + DAUNO/MITO	-	
	Tiribelli et al., 2013 [98]	125	59.2 (20–84)	Caucasian (Italy)	Yes	NR Ara C + IDA + FLUDA ± ETOP	-	
	Megías-Vericat et al., 2017 [62]	225	52.5 (16–78)	Caucasian	Yes	De novo: Ara C + IDA	-	
	Wang et al., 2011 [97]	141	32 (5–70)	Asian (China)	NR	De novo: Mixed with ALL Ara C + DAUNO/MITO	-	
	Ile619Ile (C>T) Wang et al., 2011 [97]	141	32 (5–70)	Asian (China)	NR	De novo: Mixed with ALL Ara C + DAUNO/MITO	-	
Table 2. Cont.

SNP	Study	n	Age (Range)	Ethnia (Country)	HWE	LMA Status (%)	Chemotherapy Scheme	Clinical Outcomes
rs2231149 (C>T)	Wang et al., 2011 [97]	141	32 (5–70)	Asian (China)	NR	De novo Mixed with ALL	Ara C + DAUNO/MITO	- CR: no influence. Mixed with ALL patients
								- OS: CC?OS (p < 0.01; lost in multivariate analysis)
								Mixed with ALL patients
								Mixed with ALL patients
								- DFS: CC↑ (p < 0.05; lost in multivariate analysis)
								Mixed with ALL patients
								Mixed with ALL patients
								Haplotype GG (rs2231137) with CA (rs2231142) and CT (rs2231149) ↓DFS/OS (p < 0.001)
rs2231162 (C>T)	Wang et al., 2011 [97]	141	32 (5–70)	Asian (China)	NR	De novo Mixed with ALL	Ara C + DAUNO/MITO	- CR, OS, DFS: no influence. Mixed with ALL patients
rs2231164 (C>T)	Wang et al., 2011 [97]	141	32 (5–70)	Asian (China)	NR	De novo Mixed with ALL	Ara C + DAUNO/MITO	- CR, OS, DFS: no influence. Mixed with ALL patients

Abbreviations: ALL: acute lymphoblastic leukemia; AML: acute myeloid leukemia; AMSA: amsacrine; ANT: anthracycline; AZA: azacitidine; BH-AC: N4-behenoyl-1D-arabinofuranosycytosine; BUSUL: busulfan; CIR: cumulative incidence of relapse; CR: complete remission; DAC: decitabine; DAUNO: daunorubicin; DFS: disease-free survival; EFS: event-free survival; ETOP: etoposide; FLUDA: fludarabine; GO: gemtuzumab ozogamicin; HWE: Hardy–Weinberg equilibrium; IDA: idarubicin; MIT: mitoxantrone; NK: normal karyotype; NR: not reported; ORR: overall response rate; OS: overall survival; RFS: relapse-free survival; RR: rate of relapse; R/R: relapse/refractory; TX: hematologic transplant. 1—Allele frequency and treatment outcomes only reported in 115 patients for C1236T, 142 patients for G2677T/A and 130 patients for C3435T. 2—Allele frequency only reported in 103 patients and treatment outcomes only in 44 patients (AML M3 subtype, secondary AML and patients with comorbidities or poor performance status were excluded). 3—A total of 100 patients were previously collected and published in Green et al., 2012 [57]. 4—This study [13] analyzed 1936 SNPs of 225 genes with a multi-SNP-based approach (including ABC and SLC transporters). Only SNPs with significant results were cited. 5—This study [83] included 48 SNPs within 7 genes of 7 ABC transporters (ABCA2, ABCA3, ABCB1, ABCB2, ABCB5, ABCB7 and ABCC1), but only specified the SNPs with significant effect. 6—This study [16] analyzed 1659 SNPs of 42 genes with a multi-SNP-based approach. Only SNPs with significant results were cited.

3.3. SNP-SNP Combinations of Transporters

Most of the included pharmacogenetic studies employed the candidate genes approach based on the pharmacologic pathway of the drugs. The drug intake depends on the combination of input and output transporters, but only a few studies analyzed the genetic variability of both types of carriers together. A recent study explored the combination of SLC wild-type genotypes (functional SLCO1B1 and/or SLC22A16), ensuring the anthracycline uptake in cells, with the variant genotypes of ABC pumps (defective expression of ABCB1, ABCC1, ABCC2 or ABCG2), avoiding anthracycline expulsion [14]. Several novel findings were reported with the combinations of ABCB1 and SLC polymorphisms, including higher hepatic and renal toxicities, mucositis and neutropenia, as well as a higher incidence of induction death (Table 3). All of these are probably associated with a higher intracellular idarubicin accumulation and have been previously reported with ABCB1 SNPs [62]. In addition, the combination of the SLC22A16 rs714368 wild-type genotype with the variant allele of ABCG2 rs2231142 was related to a higher cardiac toxicity (Table 3), reproducing the previous association [62]. On the other hand, no associations were found with ABCC1 rs4148350 and ABC2 rs8187710 SNPs combined with SLCO1B1/SLC22A16 wild-type genotypes. Combinations of SLCO1B1 and ABC polymorphisms were also described with irinotecan [99,100] and statins [101,102]. Regarding cytarabine intake, two different studies analyzed the combined influence of SNPs in SLC29A1 with genes of the main enzymes of the cytarabine pathway (DCK, CDA, etc.) [43,44], but the combination with ABC pumps was not explored.
Table 3. Characteristics of the studies included in the systematic review for SNP–SNP combinations of ABC and SLC transporters.

SNP	Study	n	Age (Range)	Ethnia (Country)	HWE	LMA Status (%)	Chemotherapy Scheme	Clinical Outcomes
ABCB1 + SLC								
ABCB1 C3435T rs1045642	Megías-Vericat et al., 2017 [62]	225	52.5 (16–78)	Caucasian	Yes	De novo	Ara C + IDA	CR, induction death: no influence
SLC01B1 rs4149056 (T>C)								Toxicity: TT + TT genotype ↑hepatic toxicity (p: 0.038)
ABCB1 C3435T rs1045642		225	52.5 (16–78)	Caucasian	Yes	De novo	Ara C + IDA	CR, induction death: no influence
SLC22A16 rs12210538 (A>G)								Toxicity: TT + AA genotype ↑hepatic toxicity (p: 0.019), mucositis (p: 0.004), neutropenia (p: 0.034)
ABCB1 G2677T/A rs2032582		225	52.5 (16–78)	Caucasian	Yes	De novo	Ara C + IDA	CR, induction death: no influence
SLC01B1 rs4149056 (T>C)								Toxicity: TT + TT genotype ↑renal (p: 0.030), hepatic toxicity (p: 0.002)
ABCB1 G2677T/A rs2032582		225	52.5 (16–78)	Caucasian	Yes	De novo	Ara C + IDA	CR, induction death: no influence
SLC22A16 rs12210538 (A>G)								Toxicity: TT + AA genotype ↑renal (p: 0.026), hepatic toxicity (p: 0.008)
ABCB1 G2677T/A rs2032582		225	52.5 (16–78)	Caucasian	Yes	De novo	Ara C + IDA	CR, induction death: no influence
SLC22A16 rs714368 (A>G)								Toxicity: TT + AA genotype ↑renal (p: 0.026), hepatic toxicity (p: 0.008)
ABCB1 C1236T rs1128503		225	52.5 (16–78)	Caucasian	Yes	De novo	Ara C + IDA	CR: no influence
SLC01B1 rs4149056 (T>C)								Induction death: TT + TT genotype ↑induction death (p: 0.018)
								Toxicity: TT + TT genotype ↑renal (p: 0.048), hepatic toxicity (p < 0.001)
SNP	Study	n	Age (Range)	Ethnia (Country)	HWE	LMA Status (%)	Chemotherapy Scheme	Clinical Outcomes
-----	-------	----	-------------	------------------	-----	----------------	---------------------	-------------------
ABCB1 haplotype¹								
SLCO1B1 rs4149056 (T>C) | Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA | - CR: no influence
- Induction death: TT/TT/TT + TT genotype ↑induction death (p: 0.009)
- Toxicity: TT/TT/TT + TT genotype ↑renal (p: 0.017), hepatic toxicity (p < 0.001) |
| **ABCB1 haplotype**¹
SLC22A16 rs12210538 (A>G) | Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA | - CR, induction death: no influence
- Toxicity: TT/TT/TT +AA genotype ↑renal (0.036), hepatic toxicity (p: 0.015) |
| **ABCB1 haplotype**¹
SLC22A16 rs714368 (A>G) | Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA | - CR, induction death: no influence
- Toxicity: TT/TT/TT +AA genotype ↑hepatic toxicity (p: 0.001) |
| **ABCC1 + SLC** | | | | | | | | |
| **ABCC1 rs4148350
SLCO1B1/SLC22A16** | Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA | - CR, induction death: no influence
- Toxicity: no influence |
| **ABCC2 + SLC** | | | | | | | | |
| **ABCC2 rs8187710
SLCO1B1/SLC22A16** | Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA | - CR, induction death: no influence
- Toxicity: no influence |
| **ABCG2 + SLC** | | | | | | | | |
| **ABCG2 rs2231142 (C>A)
SLC22A16 rs714368 (A>G)** | Megías-Vericat et al., 2017 [62] | 225 | 52.5 (16–78) | Caucasian | Yes | De novo | Ara C + IDA | - CR, induction death: no influence
- Toxicity: AC + AA genotype ↑cardiac toxicity (p: 0.033) |

Abbreviations: AML: acute myeloid leukemia; CR: complete remission; HWE: Hardy–Weinberg equilibrium; IDA: idarubicin; NR: not reported; OS: overall survival. ¹The **ABCB1** haplotype included the polymorphisms rs1128503, rs1045642 and rs2032582.
4. Conclusions

Transporters of the SLC and ABC families play crucial roles in the absorption, disposition and elimination of antineoplastic drugs. In AML, the expression of these transporters has been proposed as one of the main drug resistance mechanisms and has been widely studied for standard chemotherapy 3 + 7 schedules based on anthracyclines and cytarabine. However, the impact of genetic variability in the SLC and ABC genes remains controversial. This review aims is to demonstrate that polymorphisms in transporter genes may have a potential impact on the clinical outcomes of AML therapy.

Despite this, only a few studies have analyzed the role of SLC carriers in AML therapy; promising findings were obtained with polymorphisms in the SLCO1B1 and SLC29A1 genes. Variant alleles of SLCO1B1 were correlated with a lower function, decreasing anthracycline hepatic uptake and metabolism [10,11] and showed higher survival rates and toxicity in AML studies [5,13,14]. Polymorphisms of SLC29A1, responsible for cytarabine uptake, showed a relevant impact on CR and survival rates, especially in Asian populations [20,42–45].

Meanwhile, the variant alleles of ABCB1 have been widely studied in AML, demonstrating a clear association with lower pump function, as well as higher CR and survival rates in meta-analyses [73,74]. The influence of ABCB1 polymorphisms in anthracycline-related toxicities remains more controversial in AML, with scarce relevant findings [60,62] and without evidence of higher cardiotoxicity unlike studies in other malignancies [22,23,75,76]. Encouraging relationships were discovered in AML studies with ABCCI [20,62,82,83] and ABCG2 polymorphisms [56,62,97,98].

SNP–SNP combinations of transporters could play a crucial role in characterizing the anthracycline pathway, which involves complex pharmacokinetic and pharmacodynamic mechanisms, although this was only evaluated in a Caucasian AML cohort [14]. In addition, it has been hypothesized that SNP–SNP combinations could increase the power of detection of significant associations where individual SNPs of SLC or ABC genes only demonstrate a minor effect that could be affected by their combination [103]. Combinations of transporters with other relevant SNPs such as enzymes have been explored in previous studies in AML with cytarabine [43,44].

The influence of ABC pumps in anthracycline pharmacokinetics has been suggested in vitro [70,80] and studies in other cancers [47], but a population pharmacokinetic study performed in AML failed to reproduce these findings with ABCB1 and ABCG2 polymorphisms [68]. Furthermore, the AML studies included did not analyze the influence of transporter SNPs together in drug pharmacokinetic levels and clinical response. In this line, a study in AML demonstrated a correlation between cytarabine plasma level and CDA genotype, the main enzyme responsible for liver metabolism of cytarabine [104]. In chronic myeloid leukemia, a relevant decrease in imatinib clearance was associated with variant alleles of ABCB1 and SLCO1B3 [105]. Similarly, in acute lymphoblastic leukemia, the SLCO1B1 521T>C SNP reduced methotrexate clearance [106]. Previous reviews focused on the impact of ABC and SLC SNPs in drug bioavailability have found the same limited evidence of PK studies in the AML context [47,107,108].

The influence of genetic variability in AML therapy has been previously analyzed by other authors, especially focused of the main SNPs of the cytarabine and anthracycline metabolic pathways [3,4,109,110] or only in SNPs of transporter genes [47,107,108,111]. Pinto et al. [112] recently performed a systematic review of the general state of pharmacogenetics in AML including, as a novelty, polymorphisms with a potential impact in new targeted therapies (e.g., FLT3 inhibitors, GO, hypomethylating agents and IDH inhibitors). On the other hand, our review centers on evaluating the influence of polymorphisms in transporter genes (SLC and ABC and their combinations) in AML studies, which was briefly explained in this recent review [112].

Most of the reported pharmacogenetic studies were performed in patients treated with a standard 3 + 7 scheme with a candidate genes approach. The importance of pharmacogenetics for the multiple new drugs recently approved for AML treatment remains
unknown. Although these therapies are more tolerable than classical antineoplastics, potential drug–drug interactions involving P-gp, BCRP and OATP transporters have been described [113]. The genetic variability of SLC and ABC genes should be analyzed in further studies involving these novel therapies. In this line, a higher response to gemtuzumab ozogamicin was reported with the variant alleles of ABCB1 in a pediatric cohort [63], but no influence was observed in adult AML patients treated with gemtuzumab ozogamicin and decitabine [64].

In conclusion, pharmacogenetic studies based on candidate genes have reported relevant associations between SNPs in transporters (SLC and ABC) with AML outcomes and safety profiles. Unfortunately, most of these studies were observational and involved retrospective cohorts, and only anecdotally were these transporter genes analyzed together with metabolic enzymes, molecular targets and DNA repair genes. In the future, randomized clinical trials on larger populations including those of different age, ethnic and therapy groups should be developed in order to validate the clinical benefit of pharmacogenetics in AML patients.

Author Contributions: J.E.M.-V. and P.M. participated in discussions and development of the manuscript, A.S.-A., D.M.-C. and J.L.P. contributed to correcting the draft manuscript, provided additional recommendations and have read and approved the final manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by grants from the “Instituto Carlos III” (PIE13/00046) and the “Instituto Investigación Sanitaria La Fe” 2013/0331 and 2019-052-1 assigned to the Pharmacy and Hematology Departments. In addition, this work was partially supported by the Cooperative Research Thematic Network (RTICC), grant RD12/0036/014 (ISCIII & ERDF).

Conflicts of Interest: P.M. reports these potential conflicts of interest, AbbVie: advisory board, speakers bureau, research support; Astellas: research support, consultant, speakers bureau, advisory board; Agios: consultant; Tolero Pharmaceutical: consultant; Glycomimetics: consultant; Forma Therapeutics: consultant; Celgene: research support, consultant, speakers bureau, advisory board; Daiichi Sankyo: research support, consultant, speakers bureau, advisory board; Incyte: speakers bureau, advisory board; Janssen: research support, speakers bureau, advisory board; Karyopharm: research support, advisory board; Novartis: research support, speakers bureau, advisory board; Pfizer: research support, speakers bureau, advisory board; Teva: research support, speakers bureau, advisory board. D.M.-C. reports these potential conflicts of interest, Astellas: speakers bureau, advisory board; Daiichi Sankyo: advisory board; Jazz Pharmaceuticals: advisory board, speakers bureau; Novartis: advisory board; Teva: speakers bureau, advisory board. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

References

1. Tallman, M.S.; Wang, E.S.; Altman, J.K.; Appelbaum, F.R.; Bhatt, V.R.; Bixby, D.; Coutre, S.E.; De Lima, M.; Fathi, A.T.; Fiorella, M.; et al. Acute Myeloid Leukemia, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2019, 17, 721–749. [CrossRef] [PubMed]
2. Medeiros, B.C.; Chan, S.M.; Daver, N.G.; Jonas, B.A.; Pollyea, D.A. Optimizing survival outcomes with post-remission therapy in acute myeloid leukemia. Am. J. Hematol. 2019, 94, 803–811. [CrossRef] [PubMed]
3. Megias-Vericat, J.E.; Montesinos, P.; Herrero, M.J.; Bosó, V.; Martinez-Cuadrón, D.; Poveda, J.L.; Sanz, M.Á.; Aliño, S.F. Pharmacogenomics and the treatment of acute myeloid leukemia. Pharmaceuticals 2016, 17, 1245–1272. [CrossRef] [PubMed]
4. Megias-Vericat, J.E.; Martinez-Cuadrón, D.; Herrero, M.J.; Alino, S.F.; Poveda, J.L.; Sanz, M.Á.; Montesinos, P. Pharmacogenetics of metabolic genes of anthracyclines in acute myeloid leukemia. Curr. Drug Metab. 2018, 19, 55–74. [CrossRef]
5. Iacobucci, I.; Lonetti, A.; Candoni, A.; Sazzini, M.; Papayannidis, C.; Formica, S.; Ottaviani, E.; Ferrari, A.; Michelutti, A.; Simeone, E.; et al. Profiling of drug-metabolizing enzymes/transports in CD33+ acute myeloid leukemia patients treated with Gemtuzumab-Ozogamicin and Fludarabine, Cytarabine and Idarubicin. Pharm. J. 2012, 13, 335–341. [CrossRef]
6. Lal, S.; Wong, Z.W.; Jada, S.R.; Xiang, X.; Chen Shu, X.; Ang, P.C.; Figg, W.D.; Lee, E.J.; Chowbay, B. Novel SLC22A16 polymorphisms and influence on doxorubicin pharmacokinetics in Asian breast cancer patients. Pharmacogenomics 2007, 8, 567–575. [CrossRef]
7. Bray, J.; Sludden, J.; Griffin, M.J.; Cole, M.; Verrill, M.; Jamieson, D.; Boddy, A.V. Influence of pharmacogenomics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide. Br. J. Cancer 2010, 102, 1003–1009. [CrossRef]

8. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [CrossRef]

9. Lee, H.H.; Leake, B.F.; Kim, R.B.; Ho, R.H. Contribution of Organic Anion-Transporting Polypeptides 1A1/1B to Doxorubicin Uptake and Clearance. Mol. Pharmacol. 2017, 91, 14–24. [CrossRef]

10. Niemi, M.; Pasanen, M.K.; Neuvonen, P.J. Organic Anion Transporting Polypeptide 1B1: A Genetically Polymorphic Transporter of Major Importance for Hepatic Drug Uptake. Pharmacol. Rev. 2011, 63, 157–181. [CrossRef]

11. Oshiro, C.; Mangravite, L.; Klein, T.; Altman, R. PharmGKB very important pharmacogene: SLC22A1. Pharm. Genom. 2010, 20, 211–216. [CrossRef] [PubMed]

12. Durmus, S.; Naik, J.; Buil, L.; Wagenaar, E.; van Tellingen, O.; Schinkel, A.H. In vivo disposition of doxorubicin is affected by mouse Oatp1a1/1b and human OATP1A1/1B transporters. Int. J. Cancer. 2014, 135, 1700–1710. [CrossRef] [PubMed]

13. Drenberg, C.D.; Faugh, S.W.; Pounds, S.B.; Shi, L.; Orwick, S.J.; Li, L.; Hu, S.; Gibson, A.A.; Ribeiro, R.C.; Rubnitz, J.; et al. Inherited variation in OATP1B1 is associated with treatment outcome in acute myeloid leukemia. Clin. Pharmacol. Ther. 2016, 99, 651–660. [CrossRef] [PubMed]

14. Megías-Vericat, J.E.; Martínez-Cuadrón, D.; Herrero, M.J.; Rodríguez-Veiga, R.; Solana-Altabella, A.; Boluda, B.; Balles-taLópez, O.; Cano, I.; Acuña-Cruz, E.; Cervera, J.; et al. Impact of combinations of single-nucleotide polymorphisms of anthracycline transporter genes upon the efficacy and toxicity of induction chemotherapies in acute myeloid leukemia. Leuk. Lymphoma. 2021, 62, 659–668. [CrossRef] [PubMed]

15. Yee, S.W.; Giacomini, K.M. Emerging Roles of the Human Solute Carrier 22 Family. Drug metabolism and disposition: The pharmacogenomics of transporters. Drug Metab. Dispos. 2021, 50. [CrossRef]

16. Yee, S.W.; Mefford, J.A.; Singh, N.; Percival, M.M.; Stecula, A.; Yang, K.; Witte, J.S.; Takahashi, A.; Kubo, M.; Matsuda, K.; et al. Impact of polymorphisms in drug pathway genes on disease-free survival in adults with acute myeloid leukemia. J. Hum. Genet. 2013, 58, 353–361. [CrossRef] [PubMed]

17. Wu, Y.; Hurren, R.; MacLean, N.; Gronda, M.; Jitkova, Y.; Sukhai, M.A.; Minden, M.D.; Schimmer, A.D. Carnitine transporter CT2 (SLC22A16) is over-expressed in acute myeloid leukemia (AML) and target knockdown reduces growth and viability of AML cells. Apoptosis 2015, 20, 1099–1108. [CrossRef]

18. Müller, P.; Asher, N.; Heled, M.; Cohen, S.B.; Risch, A.; Rund, D. Polymorphisms in transporter and phase II metabolism genes as potential modifiers of the predisposition to and treatment outcome of de novo acute myeloid leukemia in Israeli ethnic groups. Leuk. Res. 2008, 32, 919–929. [CrossRef]

19. Seereng, A.; Yi-Jing, H.; Schlenk, R.; Doehner, K.; Kirchheiner, J.; Doehner, H. 9242 Pharmacogenetic factors in metabolism, transport and toxicity of cytarabine treatment in patients with AML. Eur. J. Cancer Suppl. 2009, 7, 572–573. [CrossRef]

20. Cao, H.X.; Miao, C.F.; Yan, L.; Tang, P.; Zhang, L.R.; Sun, L. Polymorphisms at microRNA binding sites of Ara-C and anthracyclines-metabolic pathway genes are associated with outcome of acute myeloid leukemia patients. J. Transl. Med. 2017, 15, 235. [CrossRef]

21. Gray, J.H.; Owen, R.P.; Giacomini, K.M. The concentrative nucleoside transporter family, SLC28. Pflügers Archiv. 2004, 447, 728–734. [CrossRef] [PubMed]

22. Visscher, H.; Ross, C.J.; Rassekh, S.R.; Barhdadi, A.; Dubé, M.P.; Al-Saoloos, H.; Sandor, G.S.; Caron, H.N.; van Dalen, E.C.; Kremer, L.C.; et al. Canadian Pharmacogenomics Network for Drug Safety Consortium. Pharmacogenomic prediction of anthracycline-induced cardio-toxicity in children. J. Clin. Oncol. 2012, 30, 1422–1428. [CrossRef] [PubMed]

23. Visscher, H.; Ross, C.J.; Rassekh, S.R.; Sandor, G.S.; Caron, H.N.; Van Dalen, E.C.; Kremer, L.C.; Van Der Pal, H.J.; Rogers, P.C.; Rieder, M.J.; et al. Validation of variants in SLC28A3 and UGT1A6 as genetic markers predictive of anthracycline-induced cardiotoxicity in children. Pediatr. Blood Cancer 2013, 60, 1375–1381. [CrossRef] [PubMed]

24. Aminkeng, F.; Bhavsar, A.P.; Visscher, H.; Rassekh, S.R.; Li, Y.; Lee, J.W.; Brunham, L.R.; Caron, H.N.; van Dalen, E.C.; Kremer, L.C.; et al. Canadian Pharmacogenomics Network for Drug Safety Consortium. A coding variant in RARG confers susceptibility to anthracyline-induced cardiotoxicity in childhood cancer. Nat Genet. 2015, 47, 1079–1084. [CrossRef] [PubMed]

25. Sági, J.C.; Egyed, B.; Kelemen, A.; Kutszegi, N.; Hegyi, M.; Gézsi, A.; Herlitschke, M.A.; Rzepeil, A.; Fodor, L.E.; Ottoffy, G.; et al. Possible roles of genetic variations in chemotherapy related cardiotoxicity in pediatric acute lymphoblastic leukemia and osteosarcoma. BMC Cancer 2018, 18, 704. [CrossRef]

26. Wojnowski, L.; Kulle, B.; Schirmer, M.; Schlüter, G.; Schmidt, A.; Rosenberger, A.; Vonhof, S.; Bickeboller, H.; Toliat, M.R.; Suk, E.K.; et al. NAD(P)H Oxidase and Multidrug Resistance Protein Genetic Polymorphisms Are Associated With Doxorubicin-Induced Cardiotoxicity. Circulation 2005, 112, 3754–3762. [CrossRef]

27. Vulsteke, C.; Pfeil, A.M.; Maggen, C.; Schwenklenks, M.; Pettengell, R.; Szucs, T.D.; Lambrechts, D.; Dieudonné, A.-S.; Hatse, S.; Neven, P.; et al. Clinical and genetic risk factors for epirubicin-induced cardiac toxicity in early breast cancer patients. Breast Cancer Res. Treat. 2015, 152, 67–76. [CrossRef]

28. Reichwagen, A.; Ziepert, M.; Kreuz, M.; Gödtel-Armbrust, U.; Rixecker, T.; Poeschel, V.; Reza Toliat, M.; Nürnberg, P.; Tzvetkov, M.; Deng, S.; et al. Association of NADPH oxidase poly-morphisms with anthracycline-induced cardiotoxicity in the RICOVER60 trial of patients with aggressive CD20(+) B-cell lymphoma. Pharmacogenomics 2015, 16, 361–372. [CrossRef]
29. Zeller, T.; Wild, P.; Szymczak, S.; Retival, M.; Schillert, A.; Castagne, R.; Maouche, S.; Germain, M.; Lackner, K.; Rossmann, H.; et al. Genetics and beyond—the trans-scrip-tome of human monocytes and disease susceptibility. *PloS ONE* 2010, 5, e10693. [CrossRef]

30. Dimas, A.S.; Deutsch, S.; Stranger, B.E.; Montgomery, S.B.; Borel, C.; Attar-Cohen, H.; Ingle, C.; Beazley, C.; Arcelus, M.G.; Sekowska, M.; et al. Common Regulatory Variation Impacts Gene Expression in a Cell Type–Dependent Manner. *Science* 2009, 325, 1246–1250. [CrossRef]

31. White, J.C.; Rathmell, J.P.; Capizzi, R.L. Membrane transport influences the rate of accumulation of cytosine arabinoside in human leukemia cells. *J. Clin. Investig.* 1987, 79, 380–387. [CrossRef] [PubMed]

32. Kessel, D.; Hall, T.C.; Rosenthal, D. Uptake and phosphorylation of cytosine arabinoside by normal and leukemic human blood cells in vitro. *Cancer Res.* 1969, 29, 459–463. [PubMed]

33. Eltzschig, H.K.; Abdulla, P.; Hoffman, E.; Hamilton, K.E.; Daniels, D.; Schonfeld, C.; Loffler, M.; Reyes, G.; Duszenko, M.; Karhausen, J.; et al. HIF-1–dependent repression of equilibrative nucleoside transporter (ENT1) in hypoxia. *J. Exp. Med.* 2005, 202, 1493–1505. [CrossRef]

34. Gati, W.P.; Paterson, A.R.; Larratt, L.M.; Turner, A.R.; Belch, A.R. Sensitivity of acute leukemia cells to cytarabine is a correlate of cellular equilibrative nucleoside transporter site content measured by flow cytometry with SAENTA-fluorescein. *Blood* 1997, 90, 346–353. [CrossRef] [PubMed]

35. Zhang, J.; Visser, F.; King, K.M.; Baldwin, S.A.; Young, J.D.; Cass, C.E. The role of nucleoside transporters in cancer chemotherapy with nucleoside drugs. *Cancer Metastasis Rev.* 2007, 26, 85–110. [CrossRef]

36. Eltzschig, H.K.; Abdulla, P.; Hoffman, E.; Hamilton, K.E.; Daniels, D.; Schonfeld, C.; Loffler, M.; Reyes, G.; Duszenko, M.; Karhausen, J.; et al. Influence of equilibrative nucleoside transporter (ENT1) in hypoxia. *J. Exp. Med.* 2005, 202, 1493–1505. [CrossRef]

37. Montero, T.D.; Raccord, D.; Bravo, L.; Owen, G.I.; Bronfman, M.L.; Leisewitz, A.V. PPARalpha and PPARgamma regulate the nucleoside transporter hENT1. *Biochim. Biophys. Res. Commun.* 2012, 419, 405–411. [CrossRef] [PubMed]

38. Galmarini, C.M.; Thomas, X.; Calvo, F.; Rousselot, P.; Rabilloud, M.; El Jaffari, A.; Cros, E.; Dumontet, C. In vivo mechanisms of resistance to cytarabine in acute myeloid leukaemia. *Br. J. Haematol.* 2002, 117, 860–868. [CrossRef]

39. Jaramillo, A.C.; Hubeek, L.; Broekhuizen, R.; Pastor-Anglada, M.; Kaspers, G.J.; Jansen, G.; Cloos, J.; Peters, G.J. Expression of SLC29A1 (ENT1) polymorphisms in cytarabine arabinoside metabolic pathway on clinical outcomes in adult acute myeloid leukaemia. *Nucleosides Nucleotides Nucleic Acids* 2020, 39, 1379–1388. [CrossRef]

40. Osato, D.H.; Huang, C.C.; Kawamoto, M.; Johns, S.J.; Stryke, D.; Wang, J.; Ferrin, T.E.; Herskowitz, I.; Giacomini, K.M. Functional characterization in yeast of genetic variants in the human equilibrative nucleoside transporter, ENT1. *Pharmacogenomics* 2003, 13, 297–301. [CrossRef]

41. Myers, S.N.; Goyal, R.K.; Roy, J.D.; Fairfull, L.D.; Wilson, J.W.; Ferrell, R.E. Functional single nucleotide polymorphism haplotypes in the human equilibrative nucleoside transporter 1. *Pharm. Genom.* 2006, 16, 315–320. [CrossRef] [PubMed]

42. Parmar, S.; Seeringer, A.; Denich, D.; Gärtner, F.; Pitterle, K.; Syrovets, T.; Ohmle, B.; Stingl, J.C. Variability in transport and biotransformation of cytarabine is associated with its toxicity in peripheral blood mononuclear cells. *Pharmacogenomics* 2011, 12, 503–514. [CrossRef] [PubMed]

43. Kim, J.-H.; Lee, C.; Cheong, H.S.; Koh, Y.; Ahn, K.-S.; Kim, H.-L.; Shin, H.D.; Yoon, S.-S. SLC29A1 (ENT1) polymorphisms and polymorphisms as independent prognostic predictors for survival of patients with acute myeloid leukaemia. *Cancer Res.* 2016, 76, 533–540. [CrossRef] [PubMed]

44. Kim, K.I.; Huh, I.-S.; Kim, I.-W.; Park, T.; Ahn, K.-S.; Yoon, J.-H.; Oh, J.M. Combined interaction of multi-locus genetic resistance factors for nucleoside analogues and epothilone B. *Cancer Res.* 2009, 69, 178–184. [CrossRef]

45. International Transporter Consortium; Giacomini, K.M.; Huang, S.M.; Tweedie, D.J.; Benet, L.Z.; Brouwer, K.L.; Chu, X.; Dahlin, J.; et al. HIF-1–dependent repression of equilibrative nucleoside transporter (ENT1) Implicated in the Cellular Uptake of Adenosine and Anti-cancer Drugs. *J. Biol. Chem.* 2001, 276, 45270–45275. [CrossRef] [PubMed]

46. Lal, S.; Wong, Z.W.; Sandanaraj, E.; Xiang, X.; Ang, P.C.S.; Lee, E.J.D.; Chowbay, B. Influence of ABCB1 and ABCG2 polymorphisms on doxorubicin disposition in Asian breast cancer patients. *Int. J. Hematol.* 2008, 860–868. [CrossRef]

47. Amaki, J.; Onizuka, M.; Ohmachi, K.; Aoyama, Y.; Hara, R.; Ichiki, A.; Kawai, H.; Sat0, A.; Miyamoto, M.; Toyosaki, M.; et al. Expression of ABCB1 and ABCG2 polymorphisms in the human equilibrative nucleoside transporter (ENT1) Implicated in the Cellular Uptake of Adenosine and Anti-cancer Drugs. *J. Biol. Chem.* 2001, 276, 45270–45275. [CrossRef] [PubMed]

48. Guo, Y.; Köck, K.; Ritter, C.A.; Chen, Z.-S.; Grube, M.; Jeddittschky, G.; Illmer, T.; Ayres, M.; Beck, J.F.; Siegmund, W.; et al. Expression of ABCC1-Type Nucleoside Exporters in Blasts of Adult Acute Myeloid Leukemia: Relation to Long-term Survival. *Clin. Cancer Res.* 2009, 15, 1762–1769. [CrossRef]

49. Lal, S.; Wong, Z.W.; Sandanaraj, E.; Xiang, X.; Ang, P.C.S.; Lee, E.J.D.; Chowbay, B. Influence of ABCB1 and ABCG2 polymorphisms on doxorubicin disposition in Asian breast cancer patients. *Cancer Sci.* 2008, 99, 816–823. [CrossRef] [PubMed]

50. Guo, Y.; Köck, K.; Ritter, C.A.; Chen, Z.-S.; Grube, M.; Jeddittschky, G.; Illmer, T.; Ayres, M.; Beck, J.F.; Siegmund, W.; et al. Expression of ABCC1-Type Nucleoside Exporters in Blasts of Adult Acute Myeloid Leukemia: Relation to Long-term Survival. *Clin. Cancer Res.* 2009, 15, 1762–1769. [CrossRef]

51. Hooper-Borge, E.; Xu, X.; Shen, T.; Shi, Z.; Chen, Z.-S.; Kruh, G.D. Human Multidrug Resistance Protein 7 (ABCC10) Is a Resistance Factor for Nucleoside Analogues and Epipodophiles B. *Cancer Res.* 2009, 69, 178–184. [CrossRef] [PubMed]

52. Illmer, T.; Schuler, U.S.; Thiede, C.; Schwarz, U.; Kim, R.B.; Gotthard, S.; Freund, D.; Schäkel, U.; Ehninger, G.; Schaich, M. MDR1 gene polymorphisms affect therapy outcome in acute myeloid leukemia patients. *Cancer Res.* 2002, 62, 4955–4962. [PubMed]
52. Kaya, P.; Gündüz, U.; Arpacı, F.; Ural, A.U.; Guran, S. Identification of polymorphisms on theMDR1 gene among Turkish population and their effects on multidrug resistance in acute leukemia patients. *Am. J. Hematol.* 2005, 80, 26–34. [CrossRef] [PubMed]
53. Kim, D.H.; Park, J.Y.; Sohn, S.K.; Lee, N.Y.; Baek, J.H.; Jeon, S.B.; Kim, J.G.; Sub, J.S.; Do, Y.R. Multidrug resistance-1 gene polymorphism associated with the treatment outcomes in de novo acute myeloid leukemia. *J. Clin. Oncol.* 2005, 23, 6550. [CrossRef]
54. Van Der Holt, B.; Vandenheuvel-Eibrink, M.; Van Schaik, R.H.N.; Van Der Heiden, I.P.; Wiemer, E.A.C.; Vossebeld, P.J.M.; Löwenberg, B.; Sonneveld, P. ABCB1 gene polymorphisms are not associated with treatment outcome in elderly acute myeloid leukemia patients. *Clin. Pharmacol. Ther.* 2006, 80, 427–439. [CrossRef]
55. Hur, E.-H.; Lee, J.-H.; Lee, M.J.; Choi, S.-J.; Lee, J.-H.; Kang, M.J.; Seol, M.; Jang, Y.E.; Lee, H.-J.; Kang, I.-S.; et al. C3435T polymorphism of the MDR1 gene is not associated with P-glycoprotein function of leukemic blasts and clinical outcome in patients with acute myeloid leukemia. *Leuk. Res.* 2008, 32, 1601–1604. [CrossRef]
56. Hampras, S.S.; Sucheston, L.; Weiss, J.; Baer, M.R.; Zirpoli, G.; Singh, P.K.; Wetzler, M.; Chennamaneni, R.; Blanco, J.G.; Ford, L.; et al. Genetic polymorphisms of ATP-binding cassette (ABC) proteins, overall survival and drug toxicity in patients with Acute Myeloid Leukemia. *Int. J. Mol. Epidemiol. Genet.* 2010, 1, 201–207.
57. Gréen, H.; Falk, I.J.; Lotfi, K.; Paul, E.; Hermansson, M.; Rosenquist, R.; Paul, C.; Nahi, H. Association of ABCB1 polymorphisms with survival and in vitro cytotoxicity in de novo acute myeloid leukemia with normal karyotype. *Pharm. J.* 2010, 12, 111–118. [CrossRef]
58. Scheiner, M.A.M.; Vasconcelos, Ed.C.; Matta, R.R.d.; Figueira, R.D.B., Jr.; Maia, R.C. ABCB1 genetic variation and P-glycoprotein expression/activity in a cohort of Brazilian acute myeloid leukemia patients. *J. Cancer Res. Clin. Oncol.* 2012, 138, 959–969. [CrossRef]
59. Jakobsen Falk, I.; Fyrberg, A.; Paul, E.; Nahi, H.; Hermansson, M.; Rosenquist, R.; Höglund, M.; Palmqvist, L.; Stockelberg, D.; Wei, Y.; et al. Impact of ABCB1 single nucleotide polymorphisms 1236C>T and 2677G>T on overall survival in FLT3 wild-type de novo AML patients with normal karyotype. *Br. J. Haematol.* 2014, 167, 671–680. [CrossRef]
60. He, H.; Yin, J.-Y.; Xu, Y.-J.; Li, X.; Zhang, Y.; Liu, Z.-G.; Zhou, F.; Zhai, M.; Li, Y.; Li, X.-P.; et al. Association of ABCB1 Polymorphisms with the Efficacy of Ondansetron in Chemotherapy-induced Nausea and Vomiting. *Clin. Ther.* 2014, 36, 1242–1252.e2. [CrossRef]
61. He, H.; Yin, J.; Li, X.; Zhang, Y.; Xu, X.; Zhai, M.; Chen, J.; Qian, C.; Zhou, H.; Liu, Z. Association of ABCB1 polymorphisms with prognosis outcomes of anthracycline and cytarabine in Chinese patients with acute myeloid leukemia. *Eur. J. Clin. Pharmacol.* 2015, 71, 293–302. [CrossRef] [PubMed]
62. Megas-Vericat, J.E.; Montesinos, P.; Herrero, M.J.; Moscardó, F.; Bosó, V.; Rojas, L.; Martínez-Cuadrón, D.; Herrvás, D.; Boluda, B.; García-Robles, A.; et al. Impact of ABC single nucleotide polymorphisms upon the efficacy and toxicity of induction chemotherapy in acute myeloid leukemia. *Leuk. Lymphoma.* 2017, 58, 1197–1206. [CrossRef] [PubMed]
63. Rafee, R.; Chauhan, L.; Alonzo, T.A.; Wang, Y.-C.; Lee, N.Y.; Baek, J.H.; Jeon, S.B.; Kim, J.G.; Sub, J.S.; Do, Y.R. Multidrug resistance-1 gene polymorphism associated with the treatment outcomes in de novo acute myeloid leukemia. *Clin. Pharmacol. Ther.* 2010, 88, 360–361. [CrossRef]
64. Kim, Y.-K.; Kim, H.-N.; Kim, N.Y.; Kim, H.J.; Bang, S.-M.; Jo, D.-Y.; Won, J.-H.; Lee, N.-R.; Kwak, J.-Y.; et al. Prognostic Impact of DNA Repair and MDR-1 Gene Polymorphisms In De Novo Acute Myeloid Leukemia with t(8;21) or Inv(16). *Blood* 2010, 116, 1714. [CrossRef]
65. Kim, Y.-K.; Kim, H.-N.; Lee, I.-K.; Bang, S.-M.; Jo, D.-Y.; Won, J.-H.; Kwak, J.-Y.; et al. Prognostic Significance of ABCB1 (MDR1) Gene Polymorphisms In De Novo Acute Myeloid Leukemia with t(8;21) or Inv(16). *Blood* 2007, 110, 4271. [CrossRef]
66. Monzo, M.; Brunet, S.; Urbano-Ispizua, A.; Navarro, A.; Perea, G.; Esteve, J.; Artells, R.; Granell, M.; Berlanga, J.; Ribera, J.M.; et al. Genomic polymorphisms provide prognostic information in intermediate-risk acute myeloblastic leukemia. *Blood* 2006, 107, 4871–4879. [CrossRef]
67. Varatharajan, S.; Panetta, J.; Abraham, A.; Karathedath, S.; Mohanan, E.; Lakshmi, K.M.; Arthur, N.; Srivastava, V.M.; Nemani, S.; George, B.; et al. Population pharmacokinetics of Daunorubicin in adult patients with acute myeloid leukemia. *Cancer Chemother. Pharmacol.* 2016, 78, 1051–1058. [CrossRef]
68. Borg, A.G.; Burgess, R.; Green, L.M.; Schepet, R.J.; Yin, J.A.L. P-glycoprotein and multidrug resistance-associated protein, but not lung resistance protein, lower the intracellular daunorubicin accumulation in acute myeloid leukaemic cells. *Br. J. Haematol.* 2000, 108, 48–54. [CrossRef]
71. Seedhouse, C.H.; Grundy, M.; White, P.; Li, Y.; Fisher, J.; Yakunina, D.; Moorman, A.; Hoy, T.; Russell, N.; Burnett, A.; et al. Sequential Influences of Leukemia-Specific and Genetic Factors on P-Glycoprotein Expression in Blasts from 817 Patients Entered into the National Cancer Research Network Acute Myeloid Leukemia 14 and 15 Trials. *Clin. Cancer Res.* 2007, 13, 7059–7066. [CrossRef] [PubMed]

72. Lamba, J.; Strom, S.; Venkataramanan, R.; Thummel, K.E.; Lin, Y.S.; Liu, W.; Cheng, C.; Lamba, V.; Watkins, P.B.; Schuetz, E. MDR1 genotype is associated with hepatic cytochrome P450 3A4 basal and induction phenotype. *Clin. Pharmacol. Ther.* 2006, 79, 325–338. [CrossRef] [PubMed]

73. Megías-Vericat, J.E.; Rojas, L.; Herrero, M.J.; Bosó, V.; Montesinos, P.; Moscardó, F.; Poveda, J.L.; Sanz, M.Á.; Aliño, S.F. Influence of ABCB1 polymorphisms upon the effectiveness of standard treatment for acute myeloid leukemia: A systematic review and meta-analysis of observational studies. *Pharm. J.* 2015, 10, 109–118. [CrossRef]

74. Megías-Vericat, J.E.; Rojas, L.; Herrero, M.J.; Bosó, V.; Montesinos, P.; Moscardó, F.; Poveda, J.L.; Sanz, M.Á.; Aliño, S.F. Positive impact of ABCB1 polymorphisms on the outcome of treatment and complete remission in acute myeloid leukemia: A systematic review and meta-analysis. *Pharm. J.* 2016, 16, 1–2. [CrossRef] [PubMed]

75. Hertz, D.L.; Caram, M.V.; Kidwell, K.M.; Thibert, J.N.; Gersch, C.; Seewald, N.J.; Smerage, J.; Rubenfire, M.; Henry, N.L.; Cooney, K.A.; et al. Evidence for association of SNPs in ABCB1 and CBR3 but not RAC2, NCF4 SLC28A3 or TOP2B with chronic cardiotoxicity in a cohort of breast cancer patients treated with anthracyclines. *Pharmacogenomics* 2016, 17, 231–240. [CrossRef]

76. Rossi, D.; Rasi, S.; Franceschetti, S.; Capello, D.; Castelli, A.; De Paoli, L.; Ramponi, A.; Chiappella, A.; Pogliani, E.M.; Vitolo, U.; et al. Analysis of the host pharmacogenetic background for prediction of outcome and toxicity in diffuse large B-cell lymphoma treated with R-CHOP21. *Leukemia* 2009, 23, 1118–1126. [CrossRef] [PubMed]

77. Lubieniecka, J.M.; Graham, J.; Heffner, D.; Mottus, R.; Reid, R.; Hogge, D.; Grigliatti, T.A.; Riggs, W.K. A discovery study of daunorubicin induced cardiotoxicity in a sample of acute myeloid leukemia patients prioritizes P450 oxidoreductase polymorphisms as a potential risk factor. *Front. Genet.* 2013, 4, 231. [CrossRef]

78. Sissung, T.M.; Huang, P.A.; Hauke, R.J.; McCrea, E.M.; Peer, C.J.; Barbier, R.H.; Strope, J.D.; Ley, A.M.; Zhang, M.; Hong, J.A.; et al. Severe Hepatotoxicity of Mithramycin Therapy Caused by Altered Expression of Hepatocellular Bile Transporters. *Mol. Pharmacol.* 2019, 96, 158–167. [CrossRef]

79. Stride, B.D.; Grant, C.E.; Loe, D.W.; Hipfner, D.R.; Leier, I.; Keppler, D. Pharmacological Characterization of the Murine and Human Orthologs of Multidrug-Resistant Transporter Protein in Transfected Human Embryonic Kidney Cells. *Mol. Pharmacol.* 1997, 52, 344–353. [CrossRef]

80. Conrad, S.; Kaufmann, H.-M.; Ito, K.-I.; Leslie, E.; Deeley, R.G.; Schrenk, D.; Cole, S. A naturally occurring mutation in MRPI results in a selective decrease in organic anion transport and in increased doxorubicin resistance. *Pharmacogenetics* 2002, 12, 321–330. [CrossRef]

81. Semsei, A.F.; Erdelyi, D.J.; Ungvári, I.; Csagoly, E.; Hegyi, M.; Kiszel, P.S.; Lautner-Csorba, O.; Szabolcs, J.; Masat, P.; Fekete, G.; et al. ABCC1 polymorphisms in anthracycline-induced cardiotoxicity in childhood acute lymphoblastic leukaemia. *Cell Biol. Int.* 2012, 36, 79–86. [CrossRef] [PubMed]

82. Mahjoubi, F.; Akbari, S.; Montazeri, M.; Moshyri, F. MRPI polymorphisms (T2684C, C2007T, C2012T, and C2665T) are not associated with multidrug resistance in leukemic patients. *Genet. Mol. Res.* 2008, 7, 1369–1374. [CrossRef] [PubMed]

83. Kunadt, D.; Dransfeld, C.; Dill, C.; Schmiedgen, M.; Kramer, M.; Altmann, H.; Röllig, C.; Bornhäuser, M.; Mahlknecht, U.; Schaich, M.; et al. Multidrug-related protein 1 (MRP1) polymorphisms rs129081, rs212090, and rs212091 predict survival in normal karyotype acute myeloid leukemia. *Ann. Hematol.* 2020, 99, 2173–2180. [CrossRef] [PubMed]

84. Cui, Y.; König, J.; Buchholz, J.K.; Spring, H.; Leier, I.; Keppler, D. Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. *Mol. Pharmacol.* 1999, 55, 929–937.

85. Armenian, S.H.; Ding, Y.; Mills, G.; Sun, C.; Venkataramanan, K.; Wong, F.L.; Neuhausen, L.S.; Senitzer, D.; Wang, S.; Forman, S.J.; et al. Genetic susceptibility to anthracycline-related congestive heart failure in survivors of haematopoietic cell transplantation. *Br. J. Haematol.* 2013, 163, 205–213. [CrossRef]

86. Windsor, R.E.; Strauss, S.J.; Kallis, C.; Wood, N.E.; Whelan, J.S. Germline genetic polymorphisms may influence chemotherapy response and disease outcome in osteosarcoma: A pilot study. *Cancer 2012, 118*, 1856–1867. [CrossRef]

87. Varatharajan, S.; Abraham, A.; Karathedath, S.; Ganesan, S.; Lakshmi, K.M.; Arthur, N.; Srivastava, V.M.; George, B.; Srivastava, A.; Mathews, V.; et al. ATP-binding cassette transporter expression in acute myeloid leukemia: Association with in vitro cytotoxicity and prognostic markers. *Pharmacogenomics* 2017, 18, 235–244. [CrossRef]

88. Butrym, A.; Lacina, P.; Bogunia-Kubiak, K.; Mazur, G. ABCG2 and GSTM5 gene polymorphisms affect overall survival in Polish acute myeloid leukemia patients. *Curr. Probl. Cancer* 2021, 45, 100729. [CrossRef]

89. Hu, S.; Chen, Z.; Franke, R.; Orwick, S.; Zhao, M.; Rudek, M.A.; Sparreboom, A.; Baker, S.D. Interaction of the Multikinase Inhibitors Sorafenib and Sunitinib with Solute Carriers and ATP-Binding Cassette Transporters. *Clin. Cancer Res.* 2009, 15, 6062–6069. [CrossRef]

90. Hu, S.; Niu, H.; Inaba, H.; Orwick, S.; Rose, C.; Panetta, J.; Yang, S.; Pounds, S.; Fan, Y.; Calabrese, C.; et al. Activity of the Multikinase Inhibitor Sorafenib in Combination with Cytarabine in Acute Myeloid Leukemia. *JNCI J. Natl. Cancer Inst.* 2011, 103, 893–905. [CrossRef]
Pharmaceutics 2022, 14, 878

91. Doyle, L.A.; Yang, W.; Abruzzo, L.V.; Krogmann, T.; Gao, Y.; Rishi, A.K.; Ross, D.D. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl. Acad. Sci. USA 1998, 95, 15665–15670. [CrossRef] [PubMed]

92. Chen, L.; Mananotou, J.E.; Rasmussen, T.P.; Zhong, X.B. Development of precision medicine approaches based on interindividual variability of ABCR/ ABCG2. Acta Pharm. Sin. B 2019, 9, 659–674. [CrossRef] [PubMed]

93. Ross, D.D.; Karp, J.E.; Chen, T.T.; Doyle, L.A. Expression of breast cancer resistance protein in blast cells from patients with acute leukemia. Blood 2000, 96, 365–366. [CrossRef] [PubMed]

94. Benderra, Z.; Faussat, A.-M.; Sayada, L.; Perrot, J.-Y.; Chaoui, D.; Marie, J.-P.; Legrand, O. Breast Cancer Resistance Protein and P-Glycoprotein in 149 Adult Acute Myeloid Leukemias. Clin. Cancer Res. 2004, 10, 7896–7902. [CrossRef]

95. Benderra, Z.; Faussat, A.M.; Sayada, L.; Perrot, J.-Y.; Tang, R.; Chaoui, D.; Morjani, H.; Marzac, C.; Marie, J.-P.; Legrand, O.; MRP3, BCRP, and P-Glycoprotein Activities are Prognostic Factors in Adult Acute Myeloid Leukemia. Clin. Cancer Res. 2005, 11, 7764–7772. [CrossRef]

96. Tiribelli, M.; Geromin, A.; Michelutti, A.; Cavallin, M.; Pianta, A.; Fabbro, D.; Russo, D.; Damante, G.; Fanin, R.; Damiani, D. Concomitant ABCG2 overexpression and FLT3-ITD mutation identify a subset of acute myeloid leukemia patients at high risk of relapse. Cancer 2010, 117, 2156–2162. [CrossRef]

97. Wang, F.; Liang, Y.-J.; Wu, X.-P.; Chen, L.-M.; To, K.K.W.; Dai, C.-L.; Yan, Y.-Y.; Wang, Y.-S.; Tong, X.-Z.; Fu, L.-W. Prognostic value of the multidrug resistance transporter ABCG2 gene polymorphisms in Chinese patients with de novo acute leukaemia. Eur. J. Cancer 2011, 47, 1990–1999. [CrossRef]

98. Tiribelli, M.; Fabbro, D.; Franzoni, A.; Fanin, R.; Damante, G.; Damiani, D. Q141K polymorphism of ABCG2 protein is associated with poor prognosis in adult acute myeloid leukemia treated with idarubicin-based chemotherapy. Haematologica 2013, 98, e28–e29. [CrossRef]

99. Rhodes, K.E.; Zhang, W.; Yang, D.; Press, O.A.; Gordon, M.; Vallböhmer, D.; Schultheis, A.M.; Lurje, G.; Ladner, R.D.; Fazzone, W.; et al. ABCB1, SLCO1B1 and UGT1A1 gene polymorphisms are associated with toxicity in metastatic colorectal cancer patients treated with first-line irinotecan. Drug Metab. Lett. 2007, 1, 23–30. [CrossRef]

100. Sai, K.; Saito, Y.; Maekawa, K.; Kim, S.; Kaniwa, N.; Nishimaki-Mogami, T.; Sawada, J.-I.; Shirao, K.; Hamaguchi, T.; Yamamoto, N.; et al. Additive effects of drug transporter genetic polymorphisms on irinotecan pharmacokinetics/pharmacodynamics in Japanese cancer patients. Cancer Chemother. Pharmacol. 2010, 66, 95–105. [CrossRef]

101. Peters, B.J.; Rodin, A.S.; Knudsen, P.B.; Elavsky, V.; de Boer, A.; der Zee, A.-H.M.-V. Pharmacogenomic interactions between ABCB1 and SLCO1B1 tagging SNPs and the effectiveness of statins in the prevention of myocardial infarction. Pharmacogenomics 2010, 11, 1065–1076. [CrossRef] [PubMed]

102. Neve, E.P.; Artursson, P.; Ingelman-Sundberg, M.; Karigren, M. An Integrated In Vitro Model for Simultaneous Assessment of Drug Uptake, Metabolism, and Efflux. Mol. Pharm. 2013, 10, 3152–3163. [CrossRef] [PubMed]

103. Lane, H.-Y.; Tsai, G.E.; Lin, E. Assessing Gene-Gene Interactions in Pharmacogenomics. Mol. Diagn. Ther. 2012, 16, 15–27. [CrossRef] [PubMed]

104. Donnete, M.; Solas, C.; Giocanti, M.; Venton, G.; Farnault, L.; Berda-Haddad, Y.; Hau, L.T.T.; Costello, R.; Ouafik, L.; Lacarelle, B.; et al. Simultaneous determination of cytotoxic arabinosides and its metabolite uracil arabinoside in human plasma by LC-MS/MS: Application to pharmacokinetics-pharmacogenetics pilot study in AML patients. J. Chromatogr. B 2019, 1126–1127, 121770. [CrossRef]

105. Yamakawa, Y.; Hamada, A.; Nakashima, R.; Yuki, M.; Hirayama, C.; Kawaguchi, T.; Saito, H. Association of genetic polymorphisms in the influx transporter SLCO1B3 and the efflux transporter ABCB1 with imatinib pharmacokinetics in patients with chronic myeloid leukemia. Ther. Drug Monit. 2011, 33, 244–250. [PubMed]

106. Zhang, H.; He, X.; Li, J.; Wang, Y.; Wang, C.; Chen, Y.; Niu, C.; Gao, P; SLCO1B1c. 521T>C gene polymorphisms are associated with high-dose methotrexate pharmacokinetics and clinical outcome of pediatric acute lymphoblastic leukemia. Zhonghua Er Ke Za Zhi—Chin. J. Pediatr. 2014, 52, 770–776.

107. Bruhn, O.; Casorbi, I. Polymorphisms of the drug transporters ABCB1, ABCG2, ABC2C and ABC3 and their impact on drug bioavailability and clinical relevance. Expert Opin. Drug Metab. Toxicol. 2014, 10, 1337–1354. [CrossRef]

108. Bruckmueller, H.; Casorbi, I. ABCB1, ABCG2, ABC1C, ABC2C, and ABC3 drug transporter polymorphisms and their impact on drug bioavailability: What is our current understanding? Expert Opin. Drug. Metab. Toxicol. 2021, 17, 369–396. [CrossRef]

109. Roumier, C.; Cheok, M.H. Pharmacogenomics in acute myeloid leukemia. Pharmacogenomics 2009, 10, 1839–1851. [CrossRef]

110. Emadi, A.; Karp, J. The clinically relevant pharmacogenomic changes in acute myelogenous leukemia. Pharmacogenomics 2012, 13, 1257–1269. [CrossRef]

111. Vasconcelos, F.C.; de Souza, P.S.; Hancio, T.; de Faria, F.C.C.; Maia, R.C. Update on drug transporter proteins in acute myeloid leukemia: Pathological implication and clinical setting. Crit. Rev. Oncol. 2021, 160, 103281. [CrossRef] [PubMed]

112. Pinto-Merino, A.; Labrador, J.; Zubiaur, P.; Alcaraz, R.; Herrero, M.J.; Montesinos, P.; Abad-Santos, F.; Saiz-Rodriguez, M. Role of Pharmacogenetics in the Treatment of Acute Myeloid Leukemia: Systematic Review and Future Perspectives. Pharmaceutics 2022, 14, 559. [CrossRef] [PubMed]

113. Megias-Vericat, J.E.; Solana-Altabella, A.; Ballesta-Lopez, O.; Martinez-Cuadrón, D.; Montesinos, P. Drug-drug interactions of approved new small molecule inhibitors for acute myeloid leukemia. Ann. Hematol. 2020, 99, 1989–2007. [CrossRef] [PubMed]