Human Lectins, Their Carbohydrate Affinities and Where to Find Them

Cláudia D. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1

1 LAQV-Requimte, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; mtb@fct.unl.pt
2 Glanbia-AgriChemWhey, Lisheen Mine, Killoran, Moyne, Co. Tipperary E41 R622, Ireland; canelasab@gmail.com
* Correspondence: piccfa@gmail.com; Tel.: +351-212948550

Abstract: Lectins are a class of proteins responsible for several biological roles such as cell-cell interactions, signaling pathways, and several innate immune responses against pathogens. Since lectins are able to bind to carbohydrates, they can be a viable target for targeted drug delivery systems. In fact, several lectins were approved by Food and Drug Administration for that purpose. Information about specific carbohydrate recognition by lectin receptors was gathered herein, plus the specific organs where those lectins can be found within the human body.

Keywords: human lectins; carbohydrate specific recognition; biological applications; targeted drug delivery systems; protein expression

1. Introduction

Lectins are an attractive class of proteins of non-immune origin that can either be free or linked to cell surfaces, and are involved in numerous biological processes, such as cell-cell interactions, signaling pathways, cell development, and immune responses[1]. Lectins selectively recognize carbohydrates and reversibly bind to them as long as the ligands are oriented in a specific manner. Some of the commonly occurring carbohydrates that are found in Nature are D-fructose, D-galactose, L-arabinose, D-xylene, D-mannose, D-glucose, D-glucosamine, D-galactosamine, L-fucose, various uronic acids, sialic acid, and their combinations to form other di- and oligosaccharides, or other biomolecules (Figure 1) [2].

Figure 1. Structures of the carbohydrate building blocks found in Nature.

Lectins in vertebrates can be classified either by their subcellular location, or by their structure. Division based on their location includes integral lectins located in membranes
as structural components, or soluble lectins present in intra- and intercellular fluids, which can move freely.

Division according to lectin structure consists of several different types of lectins, such as C-type lectins (binding is Ca²⁺ dependent), I-type lectins (carbohydrate recognition domain is similar to immunoglobulins), galectin family (or S-type, which are thiol dependent), pentraxins (pentameric lectins) and P-type lectins (specific to glycoproteins containing mannose 6-phosphate) [3].

Different lectins have high similarity in the residues that bind to saccharides, most of which coordinate to metal ions, and water molecules. Nearly all animal lectins possess several pockets that recognize molecules other than carbohydrates, meaning that they are multivalent and can present 2 to 12 sites of interaction, allowing the binding of several ligands simultaneously. The specificity and affinity of the lectin-carbohydrate complex depends on the lectin, which can be very sensitive to the structure of the carbohydrate (e.g., mannose versus glucose, Figure 1), or to the orientation of the anomeric substituent (α versus β anomer, e.g., in Figure 2), or both. Lectin-carbohydrate interactions are achieved mainly through hydrogen bonds, van der Waals (steric interactions), and hydrophobic forces (example is given in Figure 3) [3,4].

Figure 2. Structures of α- and β-D-glucose.

Figure 3. Asialoglycoprotein receptor (Protein Data Bank entry 1DV8, gene symbol ASGR1) binding interactions with N-acetylgalactosamine: (a) ligand conformation inside the binding site; (b) specific interactions are hydrogen bonds (blue dashed lines) and steric interactions (red dashed lines).

It has been shown that the majority of lectins are conserved through evolution, suggesting that these proteins play a crucial role in the sugar-recognition activities necessary for the living process and development [5,6].

Although lectins are present in animals, plants, lichens, bacteria, and higher fungi [3], this review focuses only on human lectins for targeted drug delivery[7] purposes, their specificity towards carbohydrates and the organs where they are expressed. When referring to gene expression (or RNA expression), one means that those specific organs or cells have that specific gene coded. If active, it produces the respective protein, and one
says that the protein is expressed in that organ or cell. In this review, we focus only on protein expression, since that information is the only relevant one for the development of targeted drug delivery systems. More information about carbohydrate-based nanocarriers for targeted drug delivery systems can be found elsewhere[8–10]. Since lectins are able to recognize and transport carbohydrates and their derivatives, lectin targeting can be relevant in research and development of new medicines [7,11,12]. The metabolism of cancer cells, for example, is different from normal cells due to intense glycolytic activity (Warburg effect) [13]. Cancer cells require glucose and/or glucose for cell growth, and glucose transporter isoforms 1 and 2 (gene symbols GLUT1 and GLUT2, respectively) showed an increase in activity in several tumors (gastrointestinal carcinoma, squamous cell carcinoma of the head and neck, breast carcinoma, renal cell carcinoma, gastric and ovarian cancer)[14,15].

The herein adopted lectin nomenclature is in accordance with the Human Genome Group (HUGO) Gene Nomenclature Committee. However, most common designated aliases (non-standard names) are also included (and appear first). The expression data for all lectin-coding genes was compiled from The Human Protein Atlas [16,17] and GeneCards [18] databases.

2. C-Type Lectins

C-type lectins are involved in the recognition of saccharides in a Ca2+-dependent manner but exhibit low affinities to carbohydrates, requiring multiple valencies of carbohydrate ligands to mediate signaling pathways, such as DC-SIGN2 which gene symbol is CLEC4M (Most genes carry the information to make proteins. The gene name is often used when referring to the corresponding protein). MINCLE (gene symbol CLEC4E), on the other hand, shows high affinity and can detect small numbers of glycolipids on fungal surfaces [19,20]. Most of the lectin-like domains contain some of the conserved residues required to establish the domain fold, but do not present the residues required for carbohydrate recognition [21]. The amino acid residues known to be involved in calcium-dependent sugar-binding are the EPN motif (mannose-binding), the QPD motif (for galactose binding), and the WND motif (for Ca2+-binding) [22]. More information about glycan affinity and binding to proteins can be found elsewhere [23]. A comprehensive list of C-type lectins is presented in Table 1, divided by subfamilies that differ in the architecture of the domain [22,24], along with the carbohydrates that they recognize and the human tissues where they are expressed.

Table 1. C-type superfamily, their carbohydrate ligands and protein expression in human organs.

Common Name (HUGO Name if Different)	Gene Symbol	Carbohydrate Preferential Affinity	Protein Expression in the Organs
Proteoglycans or lecticans			
Aggrecan	ACAN	Hyaluronic acid [25]	Cartilage, soft tissue
Brevican	BCAN	Hyaluronic acid [26,27]	Brain
Neurocan	NCAN	Hyaluronic acid [28]	Brain
Versican	VCAN	Hyaluronic acid [29]	Brain
FRAS1 related extracellular matrix 1	FREM1	[b]	
			Adrenal gland, appendix, colon, duodenum, epididymis, kidney, lung, pancreas, placenta, rectum, salivary gland, small intestine, stomach, testis, tonsil, thyroid gland

Type II transmembrane receptors

| Blood Dendritic Cell Antigen 2 (C-type lectin domain family 4 member C) | CLEC4C | Gal-β-(1-3 or 1-4)-GlNAc-β-(1-2)-Man trisaccharides [30,31] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
| DC-SIGN (CD209 molecule) | CD209 | High N-linked d-Mannose- | Bone marrow, lung |
Common Name (HUGO Name if Different)	Gene Symbol	Carbohydrate Preferential Affinity	Protein Expression in the Organs	
Dectin-2 (C-type lectin domain containing 6A)	CLEC6A	Mannose, fucose and weakly interacts with N-acetylgalcosamine	Bone marrow, spleen, lung	
Dendritic cell immunoreceptor (DCIR) (C-type lectin domain family 4 member A)	CLEC4A	N-acetylgalacosamine, mannose, N-acetylgalacosome, fucose. Note that OH-3 and OH-4 should be free for recognition, and preferentially equatorial.	Lymph node, bone marrow, spleen, appendix, tonsil, skin	
Fc fragment of IgE receptor II	FCER2	Terminal β-D-galactose and N-acetylgalacosamine units	Stomach, liver, gallbladder	
Hepatic Asialoglycoprotein Receptor 1	ASGR1	Terminal β-D-galactose and N-acetylgalacosamine units	Liver	
Hepatic Asialoglycoprotein Receptor 2	ASGR2	Terminal β-D-galactose and N-acetylgalacosamine units	Liver	
Kupffer Cell receptor (C-type lectin domain family 4 member F)	CLEC4F	Galactose, fucose, and N-acetylgalacosamine	Liver	
Langerin (CD207 molecule)	CD207	N-acetylgalacosome showed less affinity; thereby axial derivatives should be avoided. Sulfated mannosylated glycans, keratan sulfate and β-glucans	Lymph node, tonsil, skin, spleen	
Liver sinusoidal epithelial cell lectin (LSECtin) (C-type lectin domain family 4 member G)	CLEC4G	Mannose, N-acetylgalcosamine and fucose	Lymph node, brain, colon, kidney, liver, testis	
Macrophage Asialoglycoprotein Receptor	CLEC10A	Terminal galactose and N-acetylgalacosamine residues	Bone marrow, brain, lymph node, oral mucosa, Trehalose 6,6-dimyclolate, α-D-mannans18	Liver
Macrophage C-type Lectin (MCL)	CLEC4D	α-D-mannans18 (however it was suggested that MCL is not a carbohydrate-binding lectin)	Bone marrow, lung, lymph node, spleen, tonsil	
MINCLE (C-type lectin domain family 4 member E)	CLEC4E	α-mannose, trehalose-6,6-dimyclolate, glucose	α	

Collectins

Common Name	Gene Symbol	Carbohydrate Preferential Affinity	Protein Expression in the Organs
Collectin-K1 (collectin subfamily member 11)	COLEC11	High mannoseline oligosaccharides with at least α-(1-2)-mannose residue	α
Collectin-L1 (collectin subfamily member 10)	COLEC10	Galactose, mannoseline, fucose, N-acetylgalacosamine	α
Mannose-binding lectin 2	MBL2	Mannose, fucose, N-acetylgalacosamine	Liver
Pulmonary surfactant protein 1 (surfactant protein A1)	SFTPA1	Mannose, glucose, poorly to galactose. Preferentially oligosaccharides	α
Pulmonary surfactant protein 2 (surfactant protein A2)	SFTPA2	N-acetylgalacosamine, 1-fucosyl, mannoseline, glucose, poorly to galactose	α
Common Name (HUGO Name if Different)	Gene Symbol	Carbohydrate Preferential Affinity	Protein Expression in the Organs
--------------------------------------	-------------	----------------------------------	---------------------------------
Pulmonary surfactant protein B (surfactant protein B)	SFTPB	Galactose. Preferentially oligosaccharides [47]	Lung
Pulmonary surfactant protein C (surfactant protein C)	SFTPC	Lipopolysaccharides [47]	Lung
Pulmonary surfactant protein D (surfactant protein D)	SFTPD	Maltose, glucose, mannose, poorly to galactose. Preferentially oligosaccharides [47]	Lung
Scavenger receptor with CTLD (SRCL) (collactin subfamily member 12)	COLEC12	D-galactose, L- and D-fucose, N-acetylgalactosamine (internalizes specifically in nurse-like cells), sialyl Lewis X, or a trisaccharide and asialo-orosomucoid (ASOR). May also play a role in the clearance of amyloid-beta in Alzheimer disease [48]	Brain, lung, placenta
Selectin E	SELE	Sialyl Lewis x, a [49]	Bone marrow, colon, nasopharynx
Selectin E	SELL	Sialyl Lewis x [50]	Appendix, bone marrow, lymph node, spleen, tonsil
Selectin P	SELP	Sialyl Lewis x [49]	Bone marrow, colon
Selectins			
C-type lectin domain family 2 member L	CLEC2L	Fucose, mannose, N-acetylgalactosamine, N-acetylmuramic acid-β(1-4)-N-acetylgalactosamine [51]	Brain, skeletal muscle
C-type lectin domain containing 5A	CLEC5A		Blood
CD72 molecule	CD72		Appendix, bone marrow, lymph node, spleen, tonsil
Killer cell lectin-like receptor G1	KLRG1	Mannose [52]	Appendix, cervix (uterine), colon, duodenum, small intestine, stomach, tonsil
Killer cell lectin-like receptor G2	KLRG2		Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
CD69 molecule	CD69	Fucoidan (weak), N-acetylamide was reported but not supported by a second report. Does not bind glucose, galactose, mannose, fucose or N-acetylgalactosamine [53]	Appendix, bone marrow, lymph node, spleen, tonsil
Killer cell lectin-like receptor F1	KLRF1	Predicted to not bind carbohydrates [54]	Blood
			Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, proximal digestive tract, skin
C-type lectin domain family 2 member B	CLEC2B	Known to bind to KLRF1	
Oxidized low-density lipoprotein receptor 1	OLR1	Predicted to not bind to carbohydrates[55] α-(2-3)-linked NeuAc on multi-antennary N-glycan, heparin, sulfate-containing polysaccharides [56]	
Killer cell lectin-like receptor D1	KLRL1	Predicted to not bind to carbohydrates [57]	
C-type lectin domain family 1 member A	CLEC1A		
C-type lectin domain family 1 member B	CLEC1B		
C-type lectin domain family 12 member B	CLEC12B		
C-type lectin-like 1	CLEC1L	Predicted to not bind to carbohydrates [21]	
Common Name (HUGO Name if Different)	Gene Symbol	Carbohydrate Preferential Affinity	Protein Expression in the Organs
-------------------------------------	-------------	----------------------------------	---------------------------------
C-type lectin domain family 12 member A	CLEC12A	Specific interactions were not discovered yet, although it is known that this lectin binds to α-actin filaments and β-spectrin [59]	Bone marrow, lung, spleen
DNGR (C-type lectin domain containing 9A)	CLEC9A	β-(1,3)- and β-(1,6)-Gal-Glycans (neither mono- or short oligosaccharides/polymers are recognized) [60]	Blood, bone marrow
C-type lectin domain family 2 member A	CLEC2A		Skin
Dectin-1 (C-type lectin domain containing 7A)	CLEC7A	Terminal Gal-α-(1,3)-Gal, N-acetyllactosamine, [62] Sucrose octasulphate [63]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Killer cell lectin-like receptor B1	KLRB1	α-(2-3)-NeuAc-containing N-glycans[64], heparin, heparan sulfate [56]	Appendix, lymph node, spleen, tonsil
Killer cell lectin-like receptor C1	KLRC1	Terminal Gal-α-(1,3)-Gal, N-acetyllactosamine, [62] Sucrose octasulphate [63]	Colon, duodenum, small intestine, stomach, tonsil
Killer cell lectin-like receptor C2	KLRC2		
Killer cell lectin-like receptor C3	KLRC3		
Killer cell lectin-like receptor C4	KLRC4		
Killer cell lectin-like receptor K1	KLRK1		

Macrophage Mannose Receptor (MMR)

- **Endo180 (Mannose receptor C type 2)**
 - MRC2
 - Mannose, fucose, N-acetylgalactosamine [65]
- **Lymphocyte antigen 75**
 - LY75
 - Predicted to not bind carbohydrates [65]
- **Mannose receptor C-type 1**
 - MRC1
 - Mannose, fucose, glucose, N-acetylgalactosamine [66] (C-type 4-O-sulphated GalNAc (R-type) Predicted to not bind carbohydrates [65] but known to bind collagen
- **Phospholipase A2 receptor**
 - PLA2R1
 - |t|

Free C-type Lectin Domains (CTLDs)

- **C-type lectin domain containing 19A**
 - CLEC19A
 - Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
- **Lithostathine-alpha (Regenerating family member 1 alpha)**
 - REG1A
 - Duodenum, pancreas, small intestine, stomach
- **Lithostathine-beta (Regenerating family member 1 beta)**
 - REG1B
 - Duodenum, pancreas, small intestine, stomach
- **Regenerating family member 3 alpha**
 - REG3A
 - Peptidoglycan (binding affinity increases with the length of the carbohydrate moiety) [67]
- **Regenerating family member 3 gamma**
 - REG3G
 - Peptidoglycan [67]
- **Regenerating family member 4**
 - REG4
 - Mannans, heparin [67]

Type I receptors

- **Chondrolectin**
 - CHODL
 - Adipose and soft tissue, bone marrow and
- **Layilin**
 - LAYN
 - Hyaluronan [69]
| Common Name (HUGO Name if Different) | Gene Symbol | Carbohydrate Preferential Affinity | Protein Expression in the Organs |
|--------------------------------------|-------------|-----------------------------------|---------------------------------|
| Tetranectin Cartilage-derived C-type lectin domain family 3 member A | CLEC3A | Expected to bind sulfated polysaccharides such as heparin [70] | lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
| Stem cell growth factor (SCGF) (C-type lectin domain containing 11A) | CLEC11A | Expected to bind galactosyl and glucosyl residues. Might bind oligosaccharides with mannosyl moieties [71] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, pancreas, proximal digestive tract, skin |
| Tetranectin (C-type lectin domain family 3 member B) | CLEC3B | Sulfated polysaccharides such as heparin [70] | |
| Polycystin Polycystin 1 like 3, transient receptor potential channel interacting | PKD1L3 | Predicted to not bind carbohydrates | |
| Polycystin 1, transient receptor potential channel interacting | PKD1 | Predicted to bind galactosyl and glucosyl residues. Might bind oligosaccharides with mannosyl moieties [71] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, pancreas, proximal digestive tract, skin |
| Attractin Attractin | ATRN | Expected to bind carbohydrates | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, pancreas, proximal digestive tract, skin |
| Attractin-like 1 | ATRNL1 | Expected to bind carbohydrates | |
| CTLD/acidic neck CD302 molecule | CD302 | Heparin [72] | |
| Proteoglycan 2, pro eosinophil major basic protein | PRG2 | Heparin [73] | Bone marrow, placenta |
| Proteoglycan 3, pro eosinophil major basic protein 2 | PRG3 | | Bone marrow |
| Endosialin CD93 molecule | CD93 | | Bone marrow, brain, colon, kidney, lung, spleen Appendix, brain, cervix (uterine), colon, duodenum, esophagus, gallbladder, heart muscle, kidney, lung, pancreas, prostate, rectum, skin, small intestine, stomach, testis |
| C-type lectin domain containing 14A | CLEC14A | | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, pancreas, proximal digestive tract, skin |
| Endosialin (CD248 molecule) | CD248 | | |
| Thrombomodulin | THBD | | |
| Others C-type lectin domain family 18 member A | CLEC18A | Fucoidan, β-glucans, β-galactans [74] | |
| Prolectin (C-type lectin domain containing 17A) | CLEC17A | Terminal α-D-mannose and fucose residues [75] | Appendix, lymph node, spleen, stomach, tonsil |
| DiGeorge syndrome critical region gene 2 | DGR2 | | Pancreas |
| FRAS1 related extracellular matrix 1 | FREM1 | | Adrenal gland, appendix, colon, duodenum, epididymis, kidney, lung, pancreas, placenta, rectum, salivary gland, small intestine, stomach, testis, tonsil, thyroid gland |

* Only RNA expression data available in The Human Protein Atlas [16,17] and GeneCards [18] databases. ** Carbohydrate moieties recognized by this protein have not been discovered yet. ^ FDA-approved drug target.
3. Chitolectins (or Chilectins)

There are two types of proteins that are able to recognize chitin: chitinases and chitolectins. The first ones are active proteins that bind and hydrolyze oligosaccharides, whereas the latter ones are able to bind oligosaccharides but do not hydrolyze them [76,77] and are presented in Table 2.

Table 2. Human chitolectins (also called chilectins), their carbohydrate ligands and protein expression in the organs.

Common Name (HUGO Name if Different)	Gene Symbol	Carbohydrate Preferential Affinity	Protein Expression in the Organs
Chitinase 3 like 1	CHI3L1	Chitin [78]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, proximal digestive tract
Chitinase 3 like 2	CHI3L2	Chitooligosaccharides (GlcNAc) and (GlcNAc)s showed the highest affinities [79]	Fallopian tube
Oviductin (Oviductal glycoprotein 1)	OVGP1	Chitin [80]	
Stabilin-1 interacting chitinase-like protein	CLP	GalNAc, GlcNAc, ribose, mannose. Prefers to bind oligosaccharides with a four-sugar ring core [81]	

a) Only RNA expression data available in The Human Protein Atlas [16,17] and GeneCards [18] databases.

4. F-Type Lectins

F-type lectins, also called fucolectins, are characterized by an α-L-fucose recognition domain and display both unique carbohydrate- and calcium-binding sequence motifs [76]. F-type lectins are immune-recognition proteins and are presented in Table 3. Fucose is recognized by specific interactions with O5 (pyranose acetal oxygen), 3-OH and 4-OH [82], the reason why these atoms must be available to form these interactions after the synthesis of fucose derivatives.

Table 3. Human f-type lectins, their carbohydrate ligands and protein expression in the organs.

Common Name (HUGO Name if Different)	Gene Symbol	Carbohydrate Preferential Affinity	Protein Expression in the Organs
Coagulation factor V	F5	Fucose [83]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
APC, WNT signalling pathway regulator	APC	Fucose [83]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin

a) FDA-approved drug target. b) Only RNA expression data available in The Human Protein Atlas [16,17] and GeneCards [18] databases. c) Carbohydrate moieties recognized by this protein have not been discovered yet.

5. F-Box Lectins

F-box proteins are the substrate-recognition subunits of the SCF (Skp1-Cul1-F-box protein) complex. They have an F-box domain that binds to S-phase kinase-associated protein 1 (Skp1) [84]. The F-box proteins were divided into three different classes: Fbw5 are those that contains WD-40 domains, Fbls containing leucine-rich repeats, and Fbxs that have either different protein-protein interaction modules or no recognizable motifs [85]. Although F-box proteins are a superfamily of proteins, only five are known to recognize N-linked glycoproteins [84] as presented in Table 4.
Table 4. Human F-box lectins, their carbohydrate ligands and protein expression in the organs.

Common Name (HUGO Name if Different)	Gene Symbol	Carbohydrate Preferential Affinity	Protein Expression in the Organs
Cyclin F	CCNF	N-acetylgalactosamine disaccharide chitobiose	Appendix, bone marrow, lung, lymph node, skin, spleen, tonsil
F-box protein 2	FBXO2		Breast, ovary, pancreas
F-box protein 3	FBXO3		
F-box protein 4	FBXO4		
F-box protein 5	FBXO5		Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
F-box protein 6	FBXO6	High-mannose glycoproteins [87]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
F-box protein 7	FBXO7		Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
F-box protein 8	FBXO8		Bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
F-box protein 9	FBXO9		
F-box protein 10	FBXO10		Cervix (uterine), colon, duodenum, endometrium, fallopian tube, lung, prostate, rectum, seminal vesicle, small intestine, testis
F-box protein 11	FBXO11		
F-box protein 15	FBXO15		
F-box protein 16	FBXO16		Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
F-box protein 17	FBXO17	Sulfated and galactose-terminated glycoproteins [88]	
F-box protein, helicase, 18	FBXO18		Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
LIM domain 7	LMO7		
F-box protein 21	FBXO21		
F-box protein 22	FBXO22		
Tetraspanin 17	TSPAN17		
F-box protein 24	FBXO24		
F-box protein 25	FBXO25		
F-box protein 27	FBXO27		
F-box protein 28	FBXO28		
F-box protein 30	FBXO30		
F-box protein 31	FBXO31		
F-box protein 32	FBXO32		
F-box protein 33	FBXO33		
F-box protein 34	FBXO34		
F-box protein 36	FBXO36		
F-box protein 38	FBXO38		
F-box protein 39	FBXO39		
F-box protein 40	FBXO40		
F-box protein 41	FBXO41		
F-box protein 42	FBXO42		Bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin

Carbohydrate preferential affinity: 86: N-acetylgalactosamine disaccharide chitobiose; 87: High-mannose glycoproteins; 88: Sulfated and galactose-terminated glycoproteins.
Table 5. Human ficolins, their carbohydrate ligands and protein expression in the organs.

Common Name (HUGO Name if Different)	Gene Symbol	Carbohydrate Preferential Affinity	Protein Expression in the Organs
Ficolin 1 (FCN1)		GlcNAc, GalNAc; sialic acid [89]	a)
Ficolin 2 (FCN2)		GlcNAc (acetyl group); β-(1-3)-D-glucan [89]	a)
Ficolin 3 (FCN3)		N-acetylgalactose, fucose, lipopolysaccharides [89]	a)

a) Carbohydrate moieties recognized by this protein have not been discovered yet. b) Only RNA expression data available in The Human Protein Atlas [16,17] and GeneCards [18] databases.

6. Ficolins

Ficolins play an important role in innate immunity by recognizing and binding to carbohydrates present on the surface of Gram-positive and Gram-negative bacteria [89]. There are three human ficolins and they are presented in Table 5.

7. I-Type Lectins

I-type lectins are a subset of the immunoglobulin superfamily that specifically recognizes sialic acids and other carbohydrate ligands. Most of the members of this group of lectins are siglecs, which are type I transmembrane proteins, and can be divided into two groups: the CD33-related group that includes CD33 (siglec3) siglecs5–11, and siglec14 while the other group includes siglec1, CD22 (siglec2), MAG (siglec4) and Siglec15 [90,91]. CD33-related groups possess between 1 and 4 C-set domains and feature cytoplasmic tyrosine-based motifs involved in signaling and endocytosis. Siglec1 possesses 16 C-set domains, CD22 has 6 C-set domains and MAG presents 4 C-set domains. MAG is the only siglec not found on cells of the immune system. Members of this I-type superfamily are presented in Table 6 along with their carbohydrate ligands and protein expression. An example of a drug delivery system was developed by Spence, Greene and co-workers who developed polymeric nanoparticles of poly(lactic-co-glycolic acid) decorated with sialic acid [92,93].
Table 6. Human I-type lectins, their carbohydrate ligands and protein expression in the organs.

Common Name (HUGO Name if Different)	Gene Symbol	Carbohydrate Preferential Affinity	Protein Expression in the Organs
Siglec11 (Sialic acid binding Ig like lectin 1)	SIGLEC1	α-(2-3)-Sialic acid, α-(2-6)-Sialic acid, α-(2-8)-Sialic acid [94]	Bone marrow, lung
Siglec2 (CD22 molecule)	CD22	α-(2-6)-Sialic acid [95,96]	Appendix, lymph node, spleen, tonsil
Siglec3 (CD33 molecule)	CD33	α-(2-6)-Sialic acid, α-(2-3)-Sialic acid	Appendix, bone marrow, lung, lymph node, skin, spleen, tonsil
Siglec4a, MAG (Myelin associated glycoprotein)	MAG	α-(2-3)-Sialic acid [98]	Brain
Siglec5 (Sialic acid binding Ig like lectin 5)	SIGLEC5	α-(2-3)-Sialic acid, α-(2-6)-Sialic acid, α-(2-8)-Sialic acid [99]	Bone marrow, lymph node, placenta, spleen, tonsil
Siglec6 (Sialic acid binding Ig like lectin 6)	SIGLEC6	α-(2-6)-N-acetylgalactosamine (Sialyl-Tn) [100]	Placenta
Siglec7	SIGLEC7	α-(2-3)-Sialic acid, α-(2-6)-Sialic acid, α-(2-8)-Sialic acid [101] and disialogangliosides [102-104]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Siglec8	SIGLEC8	α-(2-3)-Sialic acid, α-(2-6)-Sialic acid [105]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Siglec9 (Sialic acid binding Ig like lectin 9)	SIGLEC9	α-(2-3)-Sialic acid, Sialyl Lewis x, α-(2-6)-Sialic acid, α-(2-8)-Sialic acid [106]	Appendix, bone marrow, lymph node, soft tissue, spleen, tonsil
Siglec10 (Sialic acid binding Ig like lectin 10)	SIGLEC10	α-(2-3)-Sialic acid, α-(2-6)-Sialic acid [107]	Appendix, bone marrow, lung, lymph node, spleen, tonsil
Siglec11 (Sialic acid binding Ig like lectin 11)	SIGLEC11	α-(2-8)-Sialic acid [101]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Siglec14 (Sialic acid binding Ig like lectin 14)	SIGLEC14	Sialic acid-α-(2-6)-N-acetylgalactosamine (Sialyl-Tn), N-acetylnexaminic acid [108]	Appendix, bone marrow, brain, endometrium, fallopian tube, kidney, lung, lymph node, spleen, testis, tonsil
Siglec15 (Sialic acid binding Ig like lectin 15)	SIGLEC15	Sialyl-Tn [109]	Appendix, lymph node, spleen, tonsil
CD2 molecule	CD2	N-glycans with fucose [110]	Appendix, bone marrow, lung, lymph node, spleen, tonsil
CD83 molecule	CD83	Sialic acid [111]	Appendix, bone marrow, brain, endometrium, fallopian tube, kidney, lung, lymph node, spleen, testis, tonsil
Intercellular adhesion molecule 1	ICAM1	Hyaluronan [112]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, proximal digestive tract, skin
L1 cell adhesion molecule	L1CAM	α-(2-3)-Sialic acid [113]	Bronchus, esophagus, fallopian tube, small intestine, soft tissue, stomach, testis
Myelin protein zero	MPZ	SOc-3GlucA-β-(1-3)-Gal-β-(1-4)-GlcNac (HNK-1 antigen) [101]	Brain, colon, heart muscle, pancreas, smooth muscle, soft tissue, thyroid gland
Neural cell adhesion molecule 1	NCAM1	High N-linked d-mannose [114]	Brain, bronchus, colon, duodenum, gallbladder, ovary, rectum, small intestine, soft tissue, testis
Neural cell adhesion molecule 2	NCAM2		

a) FDA-approved drug target. b) Only RNA expression data available in The Human Protein Atlas [16,17] and GeneCards [18] databases. c) Carbohydrate moieties recognized by this protein have not been discovered yet.

8. L-Type Lectins

L-type lectins are distinguished from other lectins on the basis of tertiary structure, not the primary sequence, and are composed of antiparallel β-sheets connected by short loops and β-bends, usually lacking any α-helices [115]. Members of this family of lectins present different glycan-binding specificities as presented in Table 7. L-type superfamily
includes Pentraxins [116,117] that require Ca\(^{2+}\) ions for ligand binding. Both LMAN1 and LMAN2 also require Ca\(^{2+}\) ions for their binding activity [115].

Table 7. Human L-type lectins, their carbohydrate ligands and protein expression in the organs.

Common Name (HUGO Name if Different)	Gene Symbol	Carbohydrate Preferential Affinity	Protein Expression in the Organs
Calnexin	CANX	Non-reducing glucose residues in an oligosaccharide (Glc(Man)(GlcNAc)\(_2\)) [118]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Calreticulin	CALR	Non-reducing glucose residues in an oligosaccharide (Glc(Man)(GlcNAc)\(_2\)) [119]	Bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, pancreas
Calreticulin 3	CALR3	\(\alpha\)-(1-2) mannans with free OH-3, OH-4 and OH-6 [120]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Lectin, mannos-binding 1	LMAN1	High \(\alpha\)-(1-2) mannans, Low affinity for D-glucose and N-acetylglucosamine [121]	Bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, pancreas
Lectin, mannos-binding 1 like	LMANIL	\(\alpha\)-(1-2) trimannose [122]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Lectin, mannos-binding 2	LMAN2	\(\alpha\)-(1-2) trimannose [122]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Adhesion G protein-coupled receptor D1	ADGRD1	Heparin, dextran sulfate proteoglycans [123]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Adhesion G protein-coupled receptor D2	ADGRD2	Gal-\(\alpha\)-(1-4)-GalNAc, other phosphate-containing ligands [124,125]	Liver, gallbladder, soft tissue
Amyloid P component, serum	APCS	Galactose 6-phosphate, Gal-\(\beta\)-(1-3)-GalNAc, Gal-\(\beta\)-(1-4)-Gal-\(\beta\)-(1-4)-GalNAc, Gal-\(\beta\)-(1-3)-GalNAc, Gal-\(\beta\)-(1-4)-GalNAc, other phosphate-containing ligands [124,125]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
C-reactive protein	CRP	Gal-\(\beta\)-(1-4)-GalNAc, Gal-\(\beta\)-(1-3)-GalNAc, other phosphate-containing ligands [124,125]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin

\(\alpha\) Carbohydrate moieties recognized by this protein have not been discovered yet. \(\beta\) Only RNA expression data available in The Human Protein Atlas [16,17] and GeneCards [18] databases.

9. M-Type Lectins

M-type family of lectins consists of \(\alpha\)-mannosidases, which are proteins involved in both the maturation and the degradation of Asn-linked oligosaccharides [127]. Members of this family, their binding affinities and protein expression are presented in Table 8.
Table 8. Human M-type lectins, their carbohydrate ligands and protein expression in the organs.

Common Name	Gene Symbol	Carbohydrate Preferential Affinity	Protein Expression in the Organs
Mannosidase alpha class 1A member 1	MAN1A1	α-(1-2)-mannans [128,129]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Mannosidase alpha class 1A member 2	MAN1A2	α-(1-2)-mannans [128,129]	Bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Mannosidase alpha class 1B member 1	MAN1B1	α-(1-2)-mannans [128,129]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Mannosidase alpha class 1C member 1	MAN1C1	α-(1-2)-mannans [128,129]	Bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin

10. P-Type Lectins

P-type lectins constitute a two-member family of mannose-6-phosphate receptors (Table 9) that play an essential role in the generation of functional lysosomes. The phosphate group is key to high-affinity ligand recognition by these proteins. Furthermore, optimal ligand-binding ability of M6PR is achieved in the presence of divalent cations, particularly Mn$^{2+}$ cation [130,131].

Table 9. Human P-type lectins, their carbohydrate ligands and protein expression in the organs.

Common Name	Gene Symbol	Carbohydrate Preferential Affinity	Protein Expression in the Organs
Mannose-6-phosphate receptor, cation dependent a)	M6PR	Mannose-6-phosphate residues [132,133]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Insulin-like growth factor 2 receptor b)	IGF2R	Mannose-6-phosphate residues [132,133]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, male tissues, muscle tissues, pancreas, proximal digestive tract, skin

a) FDA-approved drug target. b) Only RNA expression data available in The Human Protein Atlas [16,17] and GeneCards[18] databases.

11. R-Type Lectins

R-type lectins are protein-UDP acetylgalactosaminyltransferases that contain an R-type carbohydrate recognition domain, which is conserved between animal and bacterial lectins[135]. Members of this superfamily recognize Gal/GalNAc residues and are expressed in several tissues as presented in Table 10.

Table 10. Human R-type lectins, their carbohydrate ligands and protein expression in the organs.

Common Name	Gene Symbol	Carbohydrate Preferential Affinity	Protein Expression in the Organs
Polypeptide N-acetylgalactosaminyltransferase 1	GALNT1	GalNAc [136]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Polypeptide N-acetylgalactosaminyltransferase 2	GALNT2	GalNAc [136,137]	Bone marrow and lymphoid tissues, brain, endocrine tissues, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Polypeptide N-acetylgalactosaminyltransferase 3	GALNT3	GalNAc [136]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, muscle tissues, pancreas, proximal digestive tract, skin

Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Common Name (HUGO Name if Different)	Gene Symbol	Carbohydrate Preferential Affinity	Protein Expression in the Organs
Polypeptide N-acetylgalactosaminyltransferase 4	GALNT4	GalNAc, GalNAc-glycosylated substrates [136,138]	gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Polypeptide N-acetylgalactosaminyltransferase 5	GALNT5	GalNAc [136]	Appendix, bronchus, cervix (uterine), colon, duodenum, esophagus, gallbladder, lung, oral mucosa, rectum, salivary gland, small intestine, stomach, tonsil, vagina
Polypeptide N-acetylgalactosaminyltransferase 6	GALNT6	GalNAc [136]	Bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Polypeptide N-acetylgalactosaminyltransferase 7	GALNT7	GalNAc, GalNAc-glycosylated substrates [100]	Bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Polypeptide N-acetylgalactosaminyltransferase 8	GALNT8	GalNAc [139]	Bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Polypeptide N-acetylgalactosaminyltransferase 9	GALNT9	GalNAc [140]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Polypeptide N-acetylgalactosaminyltransferase 10	GALNT10	GalNAc [141]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Polypeptide N-acetylgalactosaminyltransferase 11	GALNT11	GalNAc [142]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Polypeptide N-acetylgalactosaminyltransferase 12	GALNT12	GalNAc [143]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Polypeptide N-acetylgalactosaminyltransferase 13	GALNT13	GalNAc [144]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Polypeptide N-acetylgalactosaminyltransferase 14	GALNT14	GalNAc [145]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Polypeptide N-acetylgalactosaminyltransferase 15	GALNT15	GalNAc [146]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Polypeptide N-acetylgalactosaminyltransferase 16	GALNT16	GalNAc [147]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Polypeptide N-acetylgalactosaminyltransferase 17	GALNT17	GalNAc [148]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Polypeptide N-acetylgalactosaminyltransferase 18	GALNT18	GalNAc [149]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Polypeptide N-acetylgalactosaminyltransferase like 5	GALNTL5	o [150]	Testis

a) Only RNA expression data available in The Human Protein Atlas [16,17] and GeneCards [18] databases.
b) FDA-approved drug target. c) Carbohydrate moieties recognized by this protein have not been discovered yet.

12. S-Type Lectins

S-type lectins are known nowadays as galectins and are a superfamily of proteins that show a high affinity for β-galactoside sugars (Table 11). Formerly called S-type lectins because of their sulphhydryl dependency, galectins are the most widely expressed
class of lectins in all organisms. Human galectins have been classified into three major
groups according to their structure: prototypical, chimeric and tandem-repeat [151–153].

Galectins play important roles in immune responses and promoting inflammation. They are also known for having a crucial role in cancer-causing tumor invasion, progression, metastasis and angiogenesis [154–156].

Table 11. Human S-type lectins, their carbohydrate ligands and protein expression in the organs.

Common Name (HUGO Name if Different)	Gene Symbol	Carbohydrate Preferential Affinity	Protein Expression in the Organs
Galectin 1	LGALS1	β-δ-galactosides, poly-N-acetyllactosamine-enriched glycoconjugates [157,158]	Bone marrow, brain, cervix (uterine), endometrium, lymph node, ovary, parathyroid gland, placenta, smooth muscle, skin, spleen, testis, tonsil, vagina Appendix, colon, duodenum, gallbladder, kidney, liver, lymph node, pancreas, rectum, small intestine, spleen, tonsil
Galectin 2	LGALS2	β-δ-galactosides, lactose [159]	
Galectin 3	LGALS3	β-δ-galactosides, LacNAc [160]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract
Galectin 3 binding protein	LGALS3BP	β-δ-galactosides, lactose [161]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, proximal digestive tract, skin
Galectin 4	LGALS4	β-δ-galactosides, lactose [162]	Appendix, colon, duodenum, gallbladder, pancreas, rectum, small intestine, stomach
Galectin 7	LGALS7	Gal, GalNAc, Lac, LacNAc [163]	Cervix (uterine), esophagus, oral mucosa, salivary gland, skin, tonsil, vagina
Galectin 8	LGALS8	β-δ-galactosides. Preferentially binds to 3′-O-sialylated and 3′-O-sulfated glycans [164]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Galectin 9	LGALS9	β-δ-galactosides. Forsmann pentasaccharide, lactose, N-acetyllactosamine [165]	Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin
Galectin 9B	LGALS9B	β-δ-galactosides [166]	Appendix, bone marrow, breast, lymph node, spleen, tonsil
Galectin 9C	LGALS9C	β-δ-galactosides [166]	Appendix, bronchus, colon, duodenum, gallbladder, lung, pancreas, spleen, stomach, tonsil
Galectin 10	LGALS10	Binds weakly to lactose, N-acetyl-δ-glucosamine and δ-mannose [167]	Lymph node, spleen, tonsil
Galectin 12	LGALS12	β-δ-galacto and lactose [168,169]	
Galectin 13	LGALS13	N-acetyllactosamine, mannose and N-acetyllactosamine [170]. Contrary to other galectins, Galectin 13 does not bind β-δ-galactosides [171]	Kidney, placenta, spleen, urinary bladder
Placental Protein 13 (Galectin 14)	LGALS14	N-acetyllactosamine [172]	Adrenal gland, colon, kidney
Galectin 16	LGALS16	N-acetyllactosamine, β-δ-galacto and lactose [172]	Placenta

a) Only RNA expression data available in The Human Protein Atlas [16,17] and GeneCards [18] databases.
13. X-Type Lectins

Intelectins (Table 12) were classified as X-type lectins because they do not have a typical lectin domain, instead, they contain a fibrinogen-like domain and a unique intelectin-specific region [173].

Common Name (HUGO Name if Different)	Gene Symbol	Carbohydrate Preferential Affinity	Protein Expression in the Organs
Intelectin 1 (ITLN1)		Terminal acyclic 1,2-diol-containing structures, including β-d-galactofuranose, d-phosph glycerol-modified glycans, d-glycero-d-talo-oct-2-ulosonic acid, 3-deoxy-d-manno-oct-2-ulosonic acid [174]	Appendix, colon, duodenum, rectum, small intestine
Intelectin 2 (ITLN2)			Appendix, colon, duodenum, rectum, small intestine

* Carbohydrate moieties recognized by this protein have not been discovered yet.

14. Orphans

Orphan lectins are those that do not belong to known lectin structural families [175]. Proteins that bind to sulfated glycosaminoglycans are usually not considered as lectins [101], however, the specific binding of these proteins to sulfated glycosaminoglycans can provide a valuable tool to develop targeted drug delivery systems. Glycosaminoglycan binding interactions with proteins were described in detail by Vallet, Clerc and Ricard-Blum [176] which information is outside of the scope of this review.

Author Contributions: conceptualization, C.D.R.; methodology, C.D.R. and A.B.C.; resources, M.T.B.; writing—original draft preparation, C.D.R.; writing—review and editing, A.B.C. and M.T.B.; visualization, C.D.R.; supervision, M.T.B.; funding acquisition, M.T.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by Fundação para a Ciência e a Tecnologia, grant number PD/BD/109680/2015. This work was also supported by the Associate Laboratory for Green Chemistry, LAQV, which is financed by national funds from FCT/MEC (UID/QUI/50006/2013 and UID/QUI/50006/2019) and co-financed by the ERDF under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007265).

Acknowledgments: The authors acknowledge Christopher D. Maycock for having reviewed this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lepenies, B.; Lang, R. Lectins and Their Ligands in Shaping Immune Responses. *Front. Immunol.* 2019, 10, 2379.
2. Stick, R. *Carbohydrates: The Sweet Molecules of Life*, 1st ed.; Academic Press: New York, NY, USA, 2001.
3. Santos, A.F.S.; Da Silva, M.D.C.; Napoleão, T.H.; Paiva, P.M.G.; Correia, M.T.S.; Coelho, L.C.B.B. Lectins: Function, structure, biological properties and potential applications. *Curr. Top. Pept. Protein Res.* 2014, 15, 41–62.
4. Wang, B.; Boons, G.-J. Carbohydrate Recognition: Biological Problems, Methods and Applications, 1st ed.; John Wiley & Sons, Inc.: Danvers, MA, USA, 2011; ISBN 9780470892076.
5. Hirabayashi, J.; Kasai, K.J. Evolution of Animal Lectins. In *Molecular Evolution: Evidence for Monophyly of Metazoa*; Jeanteur, P., Kuchino, Y., Muller, W.E.G., Paine, P.L., Eds.; Springer: Berlin, Germany, 1998; Volume 19, ISBN 9783642487477.
6. Drickamer, K. Evolution of Ca2+-dependent Animal Lectins. *Prog. Nucleic Acid Res. Mol. Biol.* 1993, 45, 207–232.
7. Himri, I.; Guadaaoui, A. Cell and organ drug targeting: Types of drug delivery systems and advanced targeting strategies. In *Nanostructures for the Engineering of Cells, Tissues and Organs*; Grumezescu, A., Ed.; Elsevier Inc.: Norwich, UK, 2018; pp. 1–66, ISBN 9780128136652.
8. Liu, K.; Jiang, X.; Hunziker, P. Carbohydrate-based amphiphilic nano delivery systems for cancer therapy. *Nanoscale* 2016, 8, 16091–16156.
9. Zhang, X.; Huang, G.; Huang, H. The glyconanoparticle as carrier for drug delivery. *Drug Deliv.* 2018, 25, 1840–1845.
10. Mosiab, T.; Farr, D.C.; Kiefel, M.J.; Houston, T.A. Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. *Adv. Drug Deliv. Rev.* **2019**, *151–152*, 94–129.
11. Hossain, F.; Andreana, P.R. Developments in Carbohydrate-Based Cancer Therapeutics. *Pharmaceuticals* **2019**, *12*, 1–18.
12. Keshavarz-fathi, M.; Rezaei, N. Vaccines, Adjuvants, and Delivery Systems. In *Vaccines for Cancer Immunotherapy*; Keshavarz-Fathi, M., Rezaei, N., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 45–59, ISBN 9780128140390.
13. Warburg, O. On the origin of cancer cells. *Science* **1956**, *123*, 309–314.
14. Chiaradonna, F.; Moresco, R.M.; Airoldi, C.; Gagliò, D.; Palorini, R.; Nicotra, F.; Messa, C.; Alberghina, L. From cancer metabolism to new biomarkers and drug targets. *Biotechnol. Adv.* **2012**, *30*, 30–51.
15. Wesener, D.A.; Wangkanont, K.; McBride, R.; Song, X.; Kraft, M.B.; Hodges, H.L.; Zarling, L.C.; Splain, R.A.; Smith, D.F.; Cummings, R.D.; et al. Recognition of Microbial Glycans by Human Intelectin. *Nat. Struct. Mol. Biol.* **2015**, *22*, 603–610.
16. Knut & Alice Wallenberg Foundation. The Human Protein Atlas. Available online: https://www.proteinatlas.org/ (accessed on 5 September 2020).
17. Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Sivertsson, Å.; Jörnvall, H.; Tammi, M.; et al. Tissue-based map of the human proteome. *Science* **2015**, *347*, 394–403.
18. *Gene Trees, Version: 3.12.404*; Weizmann Institute of Science: Rehovot, Israel, 2015.
19. Furukawa, A.; Kamishikiro, J.; Morí, D.; Toyonaga, K.; Okabe, Y.; Toji, A.; Kanda, R.; Miyake, Y.; Ose, T.; Yamashiki, S.; et al. Structural analysis for glycolipid recognition by the C-type lectins Mincle and MCL. *Proc. Natl. Acad. Sci. USA* **2013**, *110*, 17438–17443.
20. Feinberg, H.; Park-snyder, S.; Kolakar, A.R.; Heise, C.T.; Taylor, M.E.; Weiss, W.I. Structure of a C-type Carbohydrate Recognition Domain from the Macrophage Mannose Receptor. *J. Biol. Chem.* **2000**, *275*, 21539–21548.
21. Ryan, E.J.; Marshall, A.J.; Magaletti, D.; Floyd, H.; Draves, K.E.; Olson, N.E.; Clark, E.A. Dendritic Cell-Associated Lectin-1: A Novel Dendritic Cell-Associated, C-Type Lectin-Like Molecule Enhances T Cell Secretion of IL-4. *J. Immunol.* **2002**, *169*, 5638–5648.
22. Cummings, R.D.; McEver, R.P. C-Type Lectins. In *Essentials of Glycobiology*; Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Gerald, H.W., Etzler, M.E., Eds.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2017.
23. Feinberg, H.; Park-snyder, S.; Kolakar, A.R.; Heise, C.T.; Taylor, M.E.; Weiss, W.I. String reconstruction of glycolipid recognition by the Ctype lectin domain family 4, member C (CLEC4C/BDCA2). *J. Cell Biol.* **2016**, *205*, 695, ISBN 9780128140390.
24. Imperial College Human CTLD Database. Available online: https://www.imperial.ac.uk/research/animallectins/cctl/mammals/humandata updated.html (accessed on 24 December 2020).
25. Olin, A.I.; Mörgelin, M.; Sasaki, T.; Timpl, R.; Heinegård, D.; Aspberg, A. The proteoglycans aggrecan and versican form networks with fibulin-2 through their lectin domain binding. *J. Biol. Chem.* **2001**, *276*, 1253–1261.
26. Jaworski, D.M.; Kelly, G.M.; Hockfield, S. BEHAB, a New Member of the Proteoglycan Tandem Repeat Family of Hyaluronan-binding Proteins That Is Restricted to the Brain. *J. Cell Biol.* **1994**, *125*, 495–509.
27. Yamaguchi, Y.; Brevcik, A. Major proteoglycan in adult brain. *Perspect Dev. Neurobiol.* **1996**, *3*, 307–317.
28. Rauch, U.; Gao, P.; Janetzko, A.; Flaccus, A.; Hilgenberg, L.; Tekotte, H.; Margolis, R.K.; Margolis, R.U. Isolation and characterization of developmentally regulated chondroitin sulfate and chondroitin/keratan sulfate proteoglycans of brain identified with monoclonal antibodies. *J. Biol. Chem.* **1991**, *266*, 14785–14801.
29. LeBaron, R.G.; Zimmermann, D.R.; Ruoslahti, E. Hyaluronate binding properties of versican. *J. Biol. Chem.* **1992**, *267*, 10003–10010.
30. Riboldi, E.; Daniele, R.; Parola, C.; Infuzorio, A.; Arnold, P.L.; Bosisio, D.; Fremont, D.H.; Bastone, A.; Colonna, M.; Sozzani, S. Human C-type lectin domain family 4, member C (CLEC4C/BDCA2-CD303) is a receptor for asialogalactosyl-oligosaccharides. *J. Biol. Chem.* **2011**, *286*, 35329–35333.
31. Jégouzo, S.A.F.; Feinberg, H.; Dungarwalla, T.; Drickamer, K.; Weiss, W.I.; Taylor, M.E. A novel mechanism for binding of galactose-terminated glycans by the C-type carbohydrate recognition domain in blood dendritic cell antigen 2. *J. Biol. Chem.* **2015**, *290*, 16759–16771.
32. Geurtsen, J.; Driessen, N.N.; Appelmelk, B.J. Mannose–fucose recognition by DC-SIGN. In *Microbial Glycobiology*; Elsevier Inc.: Amsterdam, The Netherlands, 2010; pp. 673–695, ISBN 978-0-12-374546-0.
33. Feinberg, H.; Jégouzo, S.A.F.; Rex, M.J.; Drickamer, K.; Weiss, W.I.; Taylor, M.E. Mechanism of pathogen recognition by human dectin-2. *J. Biol. Chem.* **2017**, *292*, 13402–13414.
34. Lord, A.K.; Vyas, J.M. Host Defenses to Fungal Pathogens. In *Clinical Immunology*; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; pp. 413–424.e1, ISBN 9780702068966.
35. Nagae, M.; Ikeda, A.; Hanashima, S.; Kojima, T.; Matsumoto, N.; Yamamoto, K.; Yamaguchi, Y. Crystal structure of human dendritic cell inhibitory receptor C-type lectin domain reveals the binding mode with N-glycan. *FEBS Lett.* **2016**, *590*, 1280–1288.
36. Sun, P.D. Human CD23: Is It a Lectin in Disguise? *Structure* **2006**, *14*, 950–951.
37. Kijimoto-Ochiai, S.; Toshimitsu, U. CD23 molecule acts as a galactose-binding lectin in the cell aggregation of EBV-transformed human B-cell lines. *Glycobiology* **1995**, *5*, 443–448.
38. Meier, M.; Bider, M.D.; Malashkevich, V.N.; Spiess, M.; Burkhard, P. Crystal structure of the carbohydrate recognition domain of the H1 subunit of the asialoglycoprotein receptor. *J. Mol. Biol.* **2000**, *300*, 857–865.
39. Yang, C.Y.; Chen, J.B.; Tsai, T.F.; Tsai, Y.C.; Tsai, C.Y.; Liang, P.H.; Hsu, T.L.; Wu, C.Y.; Netea, M.G.; Wong, C.H.; et al. CLEC4F Is an Inducible C-Type Lectin in F4/80-Positive Cells and Is Involved in Alpha-Galactosylceramide Presentation in Liver. *PLoS ONE* **2013**, *8*, e65070.
40. Stambach, N.S.; Taylor, M.E. Characterization of carbohydrate recognition by langerin, a C-type lectin of Langerhans cell. Glycobiochemistry 2003, 13, 401–410.

41. Liu, W.; Tang, L.; Zhang, G.; Wei, H.; Cui, Y.; Guo, L.; Gou, Z.; Chen, X.; Jiang, D.; Zhu, Y.; et al. Characterization of a novel C-type lectin-like gene, LSECtin: Demonstration of carbohydrate binding and expression in sinusoidal endothelial cells of liver and lymph node. J. Biol. Chem. 2004, 279, 18748–18758.

42. Nollau, P.; Wolters-Eisfeld, G.; Mortezaei, N.; Kurze, A.K.; Klampe, B.; Debus, A.; Bockhorn, M.; Niendorf, A.; Wagener, C. Protein Domain Histochemistry (PDH): Binding of the Carbohydrate Recognition Domain (CRD) of Recombinant Human Glyco receptor CLEC10A (CD301) to Formalin-Fixed, Paraffin-Embedded Breast Cancer Tissues. J. Histochem. Cytochem. 2013, 61, 199–205.

43. Richardson, M.B.; Williams, S.J. MCL and Mincle: C-type lectin receptors that sense damaged self and pathogen-associated molecular patterns. Front. Immunol. 2014, 5, 1–9.

44. Venkatraman Girija, U.; Furze, C.M.; Gingeras, A.R.; Yoshizaki, T.; Ohtani, K.; Marshall, J.E.; Walls, A.K.; Schwaeble, W.J.; El-Mezgueldi, M.; Mitchell, D.A.; et al. Molecular basis of sugar recognition by collectin-K1 and the effects of mutations associated with 3MC syndrome. BMC Biol. 2015, 13, 1–14.

45. Ohtani, K.; Suzuki, Y.; Eda, S.; Kawai, T.; Kase, T.; Yamazaki, H.; Shimada, T.; Keshi, H.; Sakai, Y.; Fukuhou, A.; et al. Molecular cloning of a novel human collectin from liver (CL-L1). J. Biol. Chem. 1999, 274, 13681–13689.

46. Muto, S.; Sakuma, K.; Taniguchi, A.; Matsumoto, K. Human mannose-binding lectin preferentially binds to human colon adenocarcinoma cell lines expressing high amount of Lewis A and Lewis B antigens. Biol. Pharm. Bull. 1999, 22, 347–352.

47. Wright, J.R. Immunoregulatory functions of surfactant proteins. Nat. Rev. Immunol. 2005, 5, 58–68.

48. Coombs, P.J.; Graham, S.A.; Drickamer, K.; Taylor, M.E. Selective binding of the scavenger receptor C-type lectin to Lewis x trisaccharide and related glycan ligands. J. Biol. Chem. 2008, 283, 22993–22999.

49. Erbe, D.V.; Watson, S.R.; Presta, L.G.; Wolitzky, B.A.; Foxall, C.; Brandley, B.K.; Lasky, L.A. P- and E-selectin use common sites for carbohydrate ligand recognition and cell adhesion. J. Cell Biol. 1993, 120, 1227–1236.

50. Ivetic, A.; Green, H.L.H.; Hart, S.J. L-selectin: A major regulator of leukocyte adhesion, migration and signaling. Front. Immunol. 2019, 10, 1–22.

51. Sung, P.S.; Hsieh, S.L. CLEC2 and CLEC5A: Pathogenic Host Factors in Acute Viral Infections. Front. Immunol. 2019, 10, 1–9.

52. Binsack, R.; Pecht, I. The mast cell function-associated antigen exhibits saccharide binding capacity. Eur. J. Immunol. 1997, 27, 2557–2561.

53. Wong, S.; Arsequell, G. Immunobiology of Carbohydrates; Wong, S., Arsequell, G., Eds.; Springer: New York, NY, USA, 2003.

54. Roda-Navarro, P.; Arce, I.; Renedo, M.; Montgomery, K.; Kucherlapati, R.; Fernández-Ruiz, E. Human KLRF1, a novel member of the killer cell lectin-like receptor gene family: Molecular characterization, genomic structure, physical mapping to the NK gene complex and expression analysis. Eur. J. Immunol. 2000, 30, 568–576.

55. Ohki, I.; Ishigaki, T.; Oyama, T.; Matsunaga, S.; Xie, Q.; Ohnishi-Kameyama, M.; Murata, T.; Tsuchiya, D.; Machida, S.; Morikawa, K.; et al. Crystal structure of human lectin-like, oxidized low-density lipoprotein receptor 1 ligand binding domain and its ligand recognition mode to OXLDL. Structure 2005, 13, 905–917.

56. Higai, K.; Imaiizu, Y.; Suzuki, C.; Azuma, Y.; Matsumoto, K. NKG2D and CD94 bind to heparin and sulfate-containing polysaccharides. Biochem. Biophys. Res. Commun. 2009, 386, 709–714.

57. Chiffoleau, E. C-type lectin-like receptors as emerging orchestrators of sterile inflammation represent potential therapeutic targets. Front. Immunol. 2018, 9, 1–9.

58. Watson, A.A.; Brown, J.; Harlos, K.; Eble, J.A.; Walter, T.S.; O’Callaghan, C.A. The crystal structure and mutational binding analysis of the extracellular domain of the platelet-activating receptor CLEC-2. J. Biol. Chem. 2007, 282, 3165–3172.

59. Zhang, J.G.; Czabotar, P.E.; Policheni, A.N.; Caminschi, I.; San Wan, S.; Kitsoulis, S.; Tulliet, K.M.; Robin, A.Y.; Brammananth, R.; van Delft, M.F.; et al. The Dendritic Cell Receptor Clec9A Binds Damaged Cells via Exposed Actin Filaments. Immunity 2012, 36, 646–657.

60. Schorey, J.; Lawrence, C. The Pattern Recognition Receptor Dectin-1: From Fungi to Mycobacteria. Curr. Drug Targets 2008, 9, 123–129.

61. Gange, C.T.; Quinn, J.M.W.; Zhou, H.; Kartsogiannis, V.; Gillespie, M.T.; Ng, K.W. Characterization of sugar binding by osteoclast inhibitory lectin. J. Biol. Chem. 2004, 279, 29043–29049.

62. Christiansen, D.; Moultouris, E.; Milland, J.; Zingoni, A.; Santoni, A.; Sandrin, M.S. Recognition of a carbohydrate xenoepitope by human NKRPIA (CD161). Xenotransplantation 2006, 13, 440–446.

63. Kogelberg, H.; Frenkidi, T.A.; Birdsal, B.; Chai, W.; Muskett, F.W. Binding of Sucrose Octasulphate to the C-Type Lectin-Like Domain of the Recombinant Natural Killer Cell Receptor NKRPIA Observed by NMR Spectroscopy. ChemBioChem 2002, 3, 1072–1077.

64. Imaizumi, Y.; Higai, K.; Suzuki, C.; Azuma, Y.; Matsumoto, K. NKG2D and CD94 bind to multimeric α2,3-linked N-acetylgalactosaminic acid. Biochem. Biophys. Res. Commun. 2009, 382, 604–608.

65. East, L.; Rushston, S.; Taylor, M.E.; Isacke, C.M. Characterization of sugar binding by the mannose receptor family member, Endo180. J. Biol. Chem. 2002, 277, 50469–50475.

66. Taylor, M.E.; Bezouska, K.; Drickamer, K. Contribution to ligand binding by multiple carbohydrate-recognition domains in the macrophage mannose receptor. J. Biol. Chem. 1992, 267, 1719–1726.
67. Chen, Z.; Downing, S.; Tzanakakis, E.S. Four Decades After the Discovery of Regenerating Islet-Derived (Reg) Proteins: Current Understanding and Challenges. Front. Cell Dev. Biol. 2019, 7, 1–16.
68. Weng, L.; Smits, P.; Wauters, J.; Merregaert, J. Molecular cloning and characterization of human chondrolectin, a novel type I transmembrane protein homologous to C-type lectins. Genomics 2002, 80, 62–70.
69. Bono, P.; Rubin, K.; Higgins, J.M.G.; Hynes, R.O. Layilin, a novel integral membrane protein, is a hyaluronan receptor. Mol. Biol. Cell 2001, 12, 891–900.
70. Neame, P.J.; Tapp, H.; Grimm, D.R. The cartilage-derived, C-type lectin (CLECSF1): Structure of the gene and chromosomal location. Biochim. Biophys. Acta Gene Struct. Expr. 1999, 1446, 193–202.
71. Pletnev, V.; Huether, R.; Habeberger, L.; Habeberger, L.; Schultz, W.; Duax, W. Rational proteomics of PKD1. I. Modeling the three dimensional structure and ligand specificity of the C3c,1 binding domain of Polycystin-1. J. Mol. Model. 2007, 13, 891–896.
72. Lo, T.-H; Silveira, P.A.; Fromm, P.D.; Verma, N.D.; Vu, P.A.; Kupresanin, F.; Adam, R.; Kato, M.; Cogger, V.C.; Clark, G.J.; et al. Characterization of the Expression and Function of the C-Type Lectin Receptor CD302 in Mice and Humans Reveals a Role in Dendritic Cell Migration. J. Immunol. 2016, 197, 885–898.
73. Swaminathan, G.J.; Myszka, D.G.; Katsamba, P.S.; Ohnuki, L.E.; Gleich, G.J.; Acharya, K.R. Eosinophil-granule major basic protein, a C-type lectin, binds heparin. Biochim. Biophys. Acta 2005, 14412–14158.
74. Huang, Y.L.; Pai, F.S.; Tsou, Y.T.; Mon, H.C.; Hsu, T.L.; Wu, C.Y.; Chou, T.Y.; Yang, W. Bin; Chen, C.H.; Wong, C.H.; et al. Human CLEC18 gene cluster contains C-type lectins with differential glycan-binding specificity. J. Biol. Chem. 2015, 290, 21252–21263.
75. Graham, S.A.; Jégouzo, S.A.F.; Yan, S.; Powlson, J.C.; Brady, J.P.; Taylor, M.E.; Drickamer, K. Prolectin, a glycan-binding receptor on dividing B cells in germinal centers. J. Biol. Chem. 2009, 284, 18537–18544.
76. Zaheer-ul-Haq; Dalal, P.; Aronson, N.N., Jr; Madura, J.D. Family 18 Chitotectins: Comparison of MGP40 and HUMGP39. Biochem. Biophys. Res. Commun 2007, 359, 221–226.
77. Kilpatrick, D.C. Animal lectins: A historical introduction and overview. Biochim. Biophys. Acta 2002, 1572, 187–197.
78. Renkema, G.H.; Boot, R.G.; Au, F.L.; Donker-koopman, W.E.; Strijland, A.; Muijser, A.O.; Heebiek, M.; Aerts, J.M.F.G. Chitotriosidase as a chitinase, and the 39-kDa human cartilage glycoprotein, a chitin-binding lectin, are homologues of family 18 glycosyl hydrolases secreted by human macrophages. Eur. J. Biochem. 1998, 251, 504–509.
79. Boot, R.G.; Blommaart, E.F.C.; Swart, E.; Ghoumsari-van der Vlugt, K.; Bijl, N.; Moe, C.; Place, A.; Aerts, J.M.F.G. Identification of a Novel Acidic Mammalian Chitinase Distinct from Chitotriosidase. J. Biol. Chem. 2001, 276, 6770–6778.
80. Fusetti, F.; Pijning, T.; Kalk, K.H.; Bos, E.; Dijkstra, B.W. Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39. J. Biol. Chem. 2003, 278, 37753–37760.
81. Schimml, M.; Rush, C.L.; Betou, M.; Eggleston, L.M.; Recklies, A.D.; Aalten, D.M.F. V. Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide-binding properties. Biochem. J. 2012, 446, 149–157.
82. Malette, B.; Paquette, Y.; Merlen, Y.; Bleau, G. Oviductins possess chitinase- and mucin-like domains: A lead in the search for the biological function of these oviduct-specific ZP-associating glycoproteins. Mol. Reprod. Dev. 1995, 41, 384–397.
83. Aronson, N.N.; Kuranda, M.J. Lysosomal degradation of Asn-linked glycoproteins. FASEB J. 1989, 3, 2615–2622.
84. Meng, G.; Zhao, Y.; Bai, X.; Liu, Y.; Green, T.J.; Luo, M.; Zheng, X. Structure of human Stabilin-1 Interacting Chitinase-Like Protein (SI-CLP) reveals a saccharide-binding cleft with lower sugar-binding selectivity. J. Biol. Chem. 2010, 285, 39898–39904.
85. Bianchet, M.A.; Odem, E.W.; Vasta, G.R.; Amzel, L.M. A novel fucose recognition fold involved in innate immunity. Nat. Struct. Biol. 2002, 9, 628–634.
86. Vasta, G.R.; Mario Amzel, L.; Bianchet, M.A.; Cammarata, M.; Feng, C.; Saito, K. F-Type Lectins: A highly diversified family of fucoside-binding proteins with a unique sequence motif and structural fold, involved in self/non-self-recognition. Front. Immunol. 2017, 8, 1648.
87. Yoshida, Y. F-box proteins that contain sugar-binding domains. Biosci. Biotechnol. Biochem. 2007, 71, 2623–2631.
88. Cenciarelli, C.; Chiaur, D.S.; Guardavaccaro, D.; Parks, W.; Vidal, M.; Pagano, M. Identification of a family of human F-box proteins. Curr. Biol. 1999, 9, 1177–1179.
89. Mizushima, T.; Hiro, T.; Yoshida, Y.; Lee, S.J.; Chiba, T.; Iwai, K.; Yamaguchi, Y.; Kato, K.; Tsukihara, T.; Tanaka, K. Structural basis of sugar-recognizing ubiquitin ligase. Nat. Struct. Mol. Biol. 2004, 11, 365–370.
90. Yoshida, Y. A novel role for N-glycans in the ERAD pathway. J. Biochem. 2003, 134, 183–190.
91. Glenn, K.A.; Nelson, R.F.; Wen, H.M.; Mallinger, A.J.; Paulson, H.L. Diversity in tissue expression, substrate binding, and SCF complex formation for a lectin family of ubiquitin ligases. J. Biol. Chem. 2008, 283, 12717–12729.
92. Matsushita, M. Ficolins: Complement-activating lectins involved in innate immunity. J. Innate Immun. 2009, 2, 24–32.
93. Chen, L.; Li, J.; Yang, G. A comparative review of intelectins. Scand J. Immunol. 2020, 92, e12882.
94. Crocker, P.R.; Redelinghuys, P. SiglecCs as positive and negative regulators of the immune system. Biochem. Soc. Trans. 2008, 36, 1467–1471.
95. Varki, A.; Angata, T. SiglecCs – The major subfamily of I-type lectins. Glycobiology 2006, 16, 1–27.
96. Spence, S.; Greene, M.K.; Fay, F.; Hams, E.; Saunders, S.P.; Hamid, U.; Fitzgerald, M.; Beck, J.; Bains, B.K.; Smyth, P.; et al. Targeting SiglecCs with a sialic acid-decorated nanoparticle abrogates inflammation. Sci. Transl. Med. 2015, 7, 1–13.
97. Crocker, P.R.; Kelm, S.; Dubois, C.; Martin, B.; McWilliam, A.S.; Shotton, D.M.; Paulson, J.C.; Gordon, S. Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages. EMBO J. 1991, 10, 1661–1669.
98. Powell, L.D.; Varki, A. The oligosaccharide binding specificities of CD22f2, a sialic acid- specific lectin of B cells. J. Biol. Chem. 1994, 269, 10628–10636.
99. Kelm, S.; Pelz, A.; Schauer, R.; Filbin, M.T.; Tang, S.; de Bellard, M.E.; Schnaar, R.L.; Mahoney, J.A.; Hartnell, A.; Bradfield, P.; et al. Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. *Curr. Biol.* 1994, 4, 965–972.

100. Freeman, S.D.; Kelm, S.; Barber, E.K.; Crocker, P.R. Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. *Blood* 1995, 85, 2005–2012.

101. Collins, B.E.; Yang, L.J.S.; Mukhopadhyay, G.; Filbin, M.T.; Kiso, M.; Hasegawa, A.; Schnaar, R.L. Sialic acid specificity of myelin-associated glycoprotein binding. *J. Biol. Chem.* 1997, 272, 1248–1255.

102. Cornish, A.L.; Freeman, S.; Forbes, G.; Ni, J.; Zhang, M.; Cepeda, M.; Gentz, R.; Augustus, M.; Carter, K.C.; Crocker, P.R. Characterization of siglec-5, a novel glycoprotein expressed on myeloid cells related to CD33. *Blood* 1998, 92, 2123–2132.

103. Patel, N.; Der Linden, E.C.M.B.; Altman, S.W.; Gish, K.; Balasubramanian, S.; Timans, J.C.; Peterson, D.; Bell, M.P.; Bazan, J.F.; Varki, A.; et al. OB-BP1/Siglec-6 A Leptin and Sialic Acid-Binding Protein of The Immunoglobulin Superfamily. *J. Biol. Chem.* 1999, 274, 22729–22738.

104. Angata, T., Brinkman-Van der Linden E. I-type lectins. *Biochim. Biophys. Acta* 2002, 1572, 294–316, doi: 10.1016/s0304-4165(02)00316-1.

105. Nicoll, G.; Ni, J.; Liu, D.; Klenerman, P.; Munday, J.; Dubock, S.; Mattei, M.G.; Crocker, P.R.; Floyd, H.; Ni, J.; et al. Identification and characterization of a novel Siglec, Siglec-7, expressed by human natural killer cells and monocytes. Siglec-8: A novel eosinophil-specific member of the immunoglobulin superfamily. *Chemtracts* 2000, 13, 689–694.

106. Ito, A.; Handa, K.; Withers, D.A.; Satoh, M.; Hakomori, S. Ii-tiroh Binding specificity of siglec7 to disialogangliosides of renal cell carcinoma: Possible role of disialogangliosides in tumor progression. *FEBS Lett.* 2001, 504, 82–86.

107. Falco, M.; Biassoni, R.; Bottino, C.; Vitale, S.; Sivori, S.; Augugliaro, R.; Moretta, L.; Moretta, A. Identification and molecular cloning of p75/AIRM1, a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells. *J. Exp. Med.* 1999, 190, 793–801.

108. Floyd, H.; Ni, J.; Cornish, A.L.; Zeng, Z.; Liu, D.; Carter, K.C.; Steel, J.; Crocker, P.R. Siglec-8 A novel Eosinophil-Specific member of The Immunoglobulin Superfamily. *J. Biol. Chem.* 2000, 275, 861–866.

109. Zhang, J.Q.; Nicoll, G.; Jones, C.; Crocker, P.R. Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. *J. Biol. Chem.* 2000, 275, 22121–22126.

110. Munday, J.; Kerr, S.; Ni, J.; Cornish, A.L.; Zhang, J.Q.; Nicoll, G.; Floyd, H.; Mattei, M.G.; Moore, P.; Liu, D.; et al. Identification, characterization and leucocyte expression of Siglec-10, a novel human sialic acid-binding receptor. *Biochem. J.* 2001, 355, 498–497.

111. Angata, T.; Hayakawa, T.; Yamanaka, M.; Varki, A.; Nakamura, M. Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. *FASEB J.* 2006, 20, 1964–1973.

112. Angata, T.; Tabuchi, Y.; Nakamura, K.; Nakamura, M. Siglec-15: An immune system Siglec conserved throughout vertebrate evolution. *Glycobiology* 2007, 17, 838–846.

113. Warren, H.S.; Altin, J.G.; Waldron, J.C.; Kinnear, B.F.; Parish, C.R. A carbohydrate structure associated with CD15 (Lewisx) on myeloid cells is a novel ligand for CD2. *J. Immunol.* 1996, 156, 2866–2873.

114. Scholler, N.; Hayden-Ledbetter, M.; Hellström, K.-E.; Hellström, I.; Ledbetter, J.A. CD83 Is A Sialic Acid-Binding Ig-Like Lectin (Siglec) Adhesion Receptor That Binds Monocytes and a Subset of Activated CD8+ T Cells. *J. Immunol.* 2001, 166, 3865–3872.

115. McCourt, P.A.G.; Ek, B.; Forsberg, N.; Gustafson, S. Intercellular adhesion molecule-1 is a cell surface receptor for hyaluronan. *J. Biol. Chem.* 1994, 269, 30081–30084.

116. Kleene, R.; Yang, H.; Kutsche, M.; Schachner, M. The Neural Recognition Molecule L1 is a Sialic Acid-Binding Lectin for CD24, Which Induces Promotion and Inhibition of Neurite Outgrowth. *J. Biol. Chem.* 2001, 276, 21656–21663.

117. Horstkorte, R.; Schachner, M.; Magyar, J.P.; Vorherr, T.; Schmitz, B. The fourth immunoglobulin-like domain of NCAM contains a carbohydrate recognition domain for oligomannosidic glycans implicated in association with L1 and neurite outgrowth. *J. Cell Biol.* 1993, 121, 1409–1422.

118. Etzler, M.E.; Surulia, A.; Cummings, R.D. L-Type Lectins. In *Essentials of Glycobiology*; Harbor Laboratory Press: New York, NY, USA, 2009.

119. Bottazzi, B.; Garlanda, C.; Teixeira, M.M. The Role of Pentraxins: From Inflammation, Tissue Repair and Immunity to Biomarkers; Frontiers Media SA: Lausanne, Switzerland, 2020; ISBN 9782889633876.

120. Cloé, T.W. Du Pentraxins: Structure, Function, and Role in Inflammation. *ISRN Inflamm.* 2013, 2013, 1–22.

121. Ware, F.E.; Vassilakos, A.; Peterson, P.A.; Jackson, M.R.; Lehman, M.A.; Williams, D.B. The molecular chaperone calnexin binds GlcMan9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. *J. Biol. Chem.* 1995, 270, 4697–4704.

122. Spirito, R.G.; Zhu, Q.; Bhoyroo, V.; Söling, H.D. Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi. *J. Biol. Chem.* 1996, 271, 11588–11594.

123. Zheng, C.; Page, R.C.; Das, V.; Nix, J.C.; Wigren, E.; Misra, S.; Zhang, B. Structural characterization of carbohydrate binding by LMAN1 protein provides new insight into the endoplasmic reticulum export of factors V (FV) and VIII (FVIII). *J. Biol. Chem.* 2013, 288, 20499–20509.

124. Kamiya, Y.; Yamaguchi, Y.; Takahashi, M.; Arata, Y.; Kasai, K.I.; Ibara, Y.; Matsumo, I.; Ito, Y.; Yamamoto, K.; Kato, K. Sugar-binding properties of VIP36, an intracellular animal lectin operating as a cargo receptor. *J. Biol. Chem.* 2005, 280, 37178–37182.
125. Kamiya, Y.; Kamiya, D.; Yamamoto, K.; Nyfefer, B.; Hauri, H.P.; Kato, K. Molecular basis of sugar recognition by the human L-type lectins ERGIC-53, V1PL, and VIP36. *J. Biol. Chem.* 2008, 283, 1857–1861.

126. Zahedi, K. Characterization of the binding of serum amyloid P to Laminin. *J. Biol. Chem.* 1997, 272, 2143–2148.

127. Köttgen, E.; Hell, B.; Kage, A.; Tauber, R.; Köttgen, E. Lectin specificity and binding characteristics of human C-reactive protein. *J. Immunol.* 1992, 149, 445–453.

128. Lee, R.T.; Lee, Y.C. Carbohydrate ligands of human C-reactive protein: Binding of neoglycoconjugates containing galactose-6-phosphate and galactose-terminated disaccharide. *Glycoconj. J.* 2006, 23, 317–327.

129. Deban, L.; Jarha, H.; Lehtinen, M.J.; Bottazzi, B.; Bastone, A.; Doni, A.; Jokiranta, T.S.; Mantovani, A.; Meri, S. Binding of the Long Pentraxin PTX3 to Factor H: Interacting Domains and Function in the Regulation of Complement Activation. *J. Immunol.* 2008, 181, 8433–8440.

130. Gonzalez, D.S.; Jordan, I.K. The alpha-Mannosidas: Phylogeny and Adaptive Diversification. *Mol. Biol. Evol.* 2000, 17, 292–300.

131. Vallet, S.D.; Clerc, O.; Ricard-Blum, S. Glycosaminoglycan–Protein Interactions: The First Draft of the Glycosaminoglycan Interactome. *J. Histochem. Cytochem.* 2020, doi:10.1369/0022155420946403.

132. Bischoff, J.; Kornfeld, R. The soluble form of rat liver α-mannosidase is immunologically related to the endoplasmic reticulum membrane α-mannosidase. *J. Biol. Chem.* 1986, 261, 4758–4765.

133. Tremblay, L.O.; Dyke, N.C.; Herscovics, A. Molecular cloning, chromosomal mapping and tissue-specific expression of a novel human α1,2-mannosidase gene involved in N-glycan maturation. *Glycosobiology* 1998, 8, 585–595.

134. Dahms, N.M.; Hancock, M.K. P-type lectins. *Biochim. Biophys. Acta Gen. Subj.* 2002, 1572, 317–340.

135. Tong, P.Y.; Gregory, W.; Kornfeld, S. Ligand interactions of the cation-independent mannose 6-phosphate receptor. The stoichiometry of mannose 6-phosphate binding. *J. Biol. Chem.* 1989, 264, 7962–7969.

136. Tong, P.Y.; Kornfeld, S. Ligand interactions of the cation-dependent mannose 6-phosphate receptor. Comparison with the cation-independent mannose 6-phosphate receptor. *J. Biol. Chem.* 1989, 264, 7970–7975.

137. Gary-Bobo, M.; Nirde, P.; Jeanjean, A.; Morere, A.; Garcia, M. Mannose 6-Phosphate Receptor Targeting and its Applications in Human Diseases. *Curr. Med. Chem.* 2007, 14, 2945–2953.

138. Cummings, R.D.; Schnaar, R.L. R-Type Lectins. In Essentials of Glycobiology; Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Parker, N.H., Prestegard, J.H., et al., Eds.; Cold Spring Harbor: New York, NY, USA, 2015; pp. 401–412.

139. Clausen, H.; Bennett, E.P. A family of UDP-GalNAc: Polypeptide N-acetylgalactosaminy1transferases control the initiation of mucin-type O-linked glycosylation. *Glycobiology* 1996, 6, 635–646.

140. Iwasaki, H.; Zhang, Y.; Tachibana, K.; Gotoh, M.; Kikuchi, N.; Kwon, Y.D.; Togayachi, A.; Kudo, T.; Kubota, T.; Narimatsu, H. Initiation of O-glycan synthesis in IgA1 hinge region is determined by a single enzyme, UDP-N-acetylα-D-galactomannose: Polypeptide N-acetylgalactosaminy1transferase-7, with specificity for partial GalNAc-glycosylated acceptor substrates. *FEBS Lett.* 1999, 460, 226–230.

141. White, K.E.; Lorenz, B.; Evans, W.E.; Meitinger, T.; Strom, T.M.; Econs, M.J. Molecular cloning of a novel human UDP-GalNAc: Polypeptide N-acetylgalactosaminy1transferase, GalNAc-T8, and analysis as a candidate autosomal dominant hypophosphatemic rickets (ADHR) gene. *Gene* 2000, 246, 347–356.

142. Toba, S.; Tenno, M.; Konishi, M.; Mikami, T.; Itoh, N.; Kurosaka, A. Brain-specific expression of a novel human UDP-GalNAc: Polypeptide N-acetylgalactosaminy1transferase (GalNAc-T9). *Biochim. Biophys. Acta Gene Struct. Expr.* 2000, 1493, 264–268.

143. Cheng, L.; Tachibana, K.; Zhang, Y.; Guo, J.M.; Kakori Tachibana, K.; Kameyama, A.; Wang, H.; Hiruma, T.; Iwasaki, H.; Togayachi, A.; et al. Characterization of a novel human UDP-GalNAc: Polypeptide N-acetylgalactosaminy1transferase, pp-GalNAc-T10. *FEBS Lett.* 2002, 531, 115–121.

144. Boskovski, M.T.; Yuan, S.; Pedersen, N.B.; Goth, C.K.; Makova, S.; Clausen, H.; Brueckner, M.; Khokha, M.K. The Heteroatxy gene, GALNT11, glycosylates Notch to orchestrate cilia type and laterality. *Nature 2013, 504, 456–459.*

145. Guo, J.M.; Zhang, Y.; Cheng, L.; Iwasaki, H.; Wang, H.; Kubota, T.; Tachibana, K.; Narimatsu, H. Molecular cloning and characterization of a novel member of the UDP-GalNAc:Polypeptide N-acetylgalactosaminy1transferase family, pp-GalNAc-T12. *FEBS Lett.* 2002, 524, 211–218.

146. Zhang, Y.; Iwasaki, H.; Wang, H.; Kudo, T.; Kalka, T.B.; Hennett, T.; Kubota, T.; Cheng, L.; Inaba, N.; Gotoh, M.; et al. Cloning and characterization of a new UDP-N-acetylα-D-galactosaminy1transferase, designated pp-GalNAc-T13, that is specifically expressed in neurons and synthesizes GalNAc α-serine/threonine antigen. *J. Biol. Chem.* 2003, 278, 573–584.

147. Wang, H.; Tachibana, K.; Zhang, Y.; Iwasaki, H.; Kameyama, A.; Cheng, L.; Guo, J.M.; Hiruma, T.; Togayachi, A.; Kudo, T.; et al. Cloning and characterization of a novel UDP-GalNAc:Polypeptide N-acetylgalactosaminy1transferase, pp-GalNAc-T14. *Biochim. Biophys. Res. Commun.* 2003, 300, 738–744.

148. Cheng, L.; Tachibana, K.; Iwasaki, H.; Kameyama, A.; Zhang, Y.; Kubota, T.; Hiruma, T.; Tachibana, K.; Kudo, T.; Guo, J.M.; et al. Characterization of a novel human UDP-GalNAc:transferase, pp-GalNAc-T15. *FEBS Lett.* 2004, 56, 17–24.
151. Raman, J.; Guan, Y.; Perrine, C.L.; Gerken, T.A.; Tabak, L.A. UDP-N-acetyl α-d-galactosamine: Polypeptide N-acetylgalactosaminyltransferases: Completion of the family tree. Glycobiology 2012, 22, 768–777.

152. Nakayama, Y.; Nakamura, N.; Oki, S.; Wakabayashi, M.; Ishihama, Y.; Miyake, A.; Itoh, N.; Kurosaka, A. A putative polypeptide N-acetylgalactosaminyltransferase/Williams-Beuren syndrome chromosome region 17 (WBSCR17) regulates lamellipodium formation and macropinocytosis. J. Biol. Chem. 2012, 287, 32222–32235.

153. Li, X.; Wang, J.; Li, W.; Xu, Y.; Shao, D.; Xie, Y.; Xie, W.; Kubota, T.; Narimatsu, H.; Zhang, Y. Characterization of ppGalNAc-T18, a member of the vertebrate-specific y subfamily of UDP-N-acetyl-d-galactosamine:polypeptide N-acetylgalactosaminyltransferases. Glycobiology 2012, 22, 602–615.

154. Takasaki, N.; Tachibana, K.; Ogasawara, S.; Matsuizaki, H.; Hagiuuda, J.; Ishihawa, H.; Mochida, K.; Inoue, K.; Ogonuki, N.; Ogura, A.; et al. A heterozygous mutation of GALNTL5 affects male infertility with impairment of sperm motility. Proc. Natl. Acad. Sci. USA 2014, 111, 1120–1125.

155. Cummings, R.D.; Liu, F.-T. Galectins. In Essentials of Glycobiology; Variki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Gerald, H.W., Etzler, M.E., Eds.; Harbor Laboratory Press: New York, NY, USA, 2009.

156. Johannes, L.; Jacob, R.; Leffler, H. Galectins. Structure and function of a large family of animal lectins. J. Biol. Chem. 1994, 269, 20807–20810.

157. Barondes, S.H.; Cooper, D.N.W.; Gitt, M.A.; Leffler, H. Galectins. Structure and function of a large family of animal lectins. J. Biol. Chem. 1994, 269, 20807–20810.

158. Chetry, M.; Thapa, S.; Hu, X.; Song, Y.; Zhang, J.; Zhu, H.; Zhu, X. The role of galectins in tumor progression, treatment and prognosis of gynecological cancers. J. Cancer 2018, 9, 4742–4755.

159. Ebrahimi, A.H.; Alalawi, Z.; Mirandola, L.; Rakshshanda, R.; Dahlebeck, S.; Nguyen, D.; Jenkins, M.; Grizzi, F.; Cobos, E.; Figueiredo, J.A.; et al. Galectins in cancer: Carcinogenesis, diagnosis and therapy. Ann. Transl. Med. 2014, 2, 1–7.

160. Chou, F.C.; Chen, H.Y.; Kuo, C.C.; Sytwu, H.K. Role of galectins in tumors and in clinical immunotherapy. Int. J. Mol. Sci. 2018, 19, 430.

161. Cho, M.; Cummings, R.D. Galectin-1, a β-galactoside-binding lectin in Chinese hamster ovary cells. I. Physical and chemical characterization. J. Biol. Chem. 1995, 270, 5198–5206.

162. Di Lella, S.; Ma, L.; Diaz Ricci, J.C.; Rabinovich, G.A.; Asher, S.A.; Alvarez, R.M.S. Critical role of the solvent environment in galectin-1 binding to the disaccharide lactose. Biochemistry 2009, 48, 786–791.

163. Gitt, M.A.; Massa, S.M.; Leffler, H.; Barondes, S.H. Isolation and Expression of a Gene Encoding L-14-II, a New Human Soluble Lactose-binding Lectin. J. Biol. Chem. 1992, 267, 10601–10606.

164. Cederfur, C.; Salomonsson, E.; Nilsson, J.; Halim, A.; Obreg, C.T.; Larson, G.; Nilsson, U.J.; Leffler, H. Different affinity of galectins for human serum glycoproteins: Galectin-3 binds many protease inhibitors and acute phase proteins. Glycobiology 2008, 18, 384–394.

165. Koths, K.; Taylor, E.; Halenbeck, R.; Casipit, C.; Wang, A. Cloning and characterization of a human Mac-2-binding protein, a new member of the superfamily defined by the macrophage scavenger receptor cysteine-rich domain. J. Biol. Chem. 1993, 268, 14245–14249.

166. Huflet, M.E.; Leffler, H. Galectin-4 in normal tissues and cancer. Glycoconj. J. 2003, 20, 247–255.

167. Leonidas, D.D.; Vatzaki, E.H.; Vorum, H.; Celis, J.E.; Madsen, P.; Acharya, K.R. Structural basis for the recognition of carbohydrates by human galectin-7. Biochemistry 1998, 37, 13930–13940.

168. Ideo, H.; Matsuizaki, T.; Nonaka, T.; Sako, A.; Yamashita, K. Galectin-8-N-Domain Recognition Mechanism for Sialylated and Sulfated Glycans. J. Biol. Chem. 2011, 286, 11346–11355.

169. Nagae, M.; Nishi, N.; Nakamura-Tsuruta, S.; Hirabayashi, J.; Wakatsuki, S.; Kato, R. Structural Analysis of the Human Galectin-9 N-terminal Carbohydrate Recognition Domain Reveals Unexpected Properties that Differ from the Mouse Orthologue. J. Mol. Biol. 2008, 375, 119–135.

170. Heusschen, R.; Griffioen, A.W.; Thijssen, V.L. Galectin-9 in tumor biology: A jack of multiple trades. Biochim. Biophys. Acta Rev. Cancer 2013, 1836, 177–185.

171. Su, J. A brief history of Charcot-Leyden crystal protein/galectin-10 research. Molecules 2018, 23, 1–16.

172. Hotta, K.; Funahashi, T.; Matsukawa, Y.; Takahashi, M.; Nishizawa, H.; Kishida, K.; Matsuda, M.; Kuriyama, H.; Kihara, S.; Nakamura, T.; et al. Galectin-12, an Adipose-expressed Galectin-like Molecule Possessing Apoptosis-inducing Activity. J. Biol. Chem. 2001, 276, 34097–34097.