Cathepsin S Controls Angiogenesis and Tumor Growth via Matrix-derived Angiogenic Factors

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Wang, Bing, Jiusong Sun, Shiro Kitamoto, Min Yang, Anders Grubb, Harold A. Chapman, Raghu Kalluri, and Guo-Ping Shi. 2006. “Cathepsin S Controls Angiogenesis and Tumor Growth via Matrix-Derived Angiogenic Factors.” Journal of Biological Chemistry 281 (9): 6020–29. doi:10.1074/jbc.M509134200.

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41543160

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
The cysteine protease cathepsin S is highly expressed in malignant tissues. By using a mouse model of multistage murine pancreatic islet cell carcinogenesis in which cysteine cathepsin activity has been functionally implicated, we demonstrated that selective cathepsin S deficiency impaired angiogenesis and tumor cell proliferation, thereby impairing angiogenic islet formation and the growth of solid tumors, whereas the absence of its endogenous inhibitor cystatin C resulted in opposite phenotypes. Although mitogenic vascular endothelial growth factor, transforming growth factor-β1, and the anti-angiogenic endostatin levels in either serum or carcinoma tissue extracts did not change in cathepsin S- or cystatin C-null mice, tumor tissue basic fibroblast growth factor and serum type 1 insulin growth factor levels were higher in cystatin C-null mice, and serum type 1 insulin growth factor levels were also increased in cathepsin S-null mice. Furthermore, cathepsin S affected the production of type IV collagen-derived anti-angiogenic peptides and the generation of bioactive pro-angiogenic γ2 fragments from laminin-5, revealing a functional role for cathepsin S in angiogenesis and neoplastic progression.

Angiogenesis, the development of the microvasculature, is an essential process occurring under many pathological and physiological circumstances and depends on tightly controlled interactions between cells and extracellular matrix (ECM)2 mediated by integral membrane proteins. These include integrins, which provide a link between ECM and the cytoskeleton, and extracellular proteases and their inhibitors, which mediate focal degradation of ECM components (1, 2), generate cell growth factors (3), and produce angiogenic regulatory factors (4).

Lysosomal cysteine protease cathepsins have been shown to be highly expressed in human and murine tumors (5), where angiogenesis plays essential roles. Interruption of their expression either by antisense RNA (6) or RNA interference (7, 8) reduced tumor cell invasion, angiogenesis, and tumor growth. A recent study also demonstrated that inhibition of the activities of cysteine proteases with a broad inhibitor reduced angiogenesis and growth of pancreatic β-cell islet carcinoma in mice with an SV40 T antigen (Tag) transgene driven by the rat insulin II promoter (RIP1-Tag2) (9). Administration of JPM-ethyl ester (10), which affects all activities of cysteinylic cathepsins, significantly diminished the angiogenic switch, tumor burden, and tumor cell proliferation (11). However, many important questions are still unanswered; for example, which cathepsin(s) is the most important and by what mechanisms do these cysteinylic cathepsins affect tumor progression? Earlier studies suggested the importance of cathepsin (Cat) B in tumor angiogenesis and growth (6–8). However, additional studies also demonstrated constitutive expression of Cat B in several cell types or tissues (12, 13). Therefore, cathepsins other than Cat B may also be involved in angiogenesis, tumor growth, cell proliferation, and metastasis. We tested this hypothesis in our previous study with Cat S-deficient endothelial cells in vitro. Inhibition of Cat S activity or the absence of Cat S expression reduced microvessel formation in Matrigel (14). Here we introduced mutant alleles of Cat S or its inhibitor cystatin (Cyst) C into the RIP1-Tag2 transgenic tumor model, in which the angiogenic switch is a key step in islet cell carcinogenesis, to test whether the absence of Cat S or Cyst C expression affected tumor growth and, if so, to investigate the underlying molecular mechanisms.

EXPERIMENTAL PROCEDURES

Generation of RIP1-Tag2/Cat S−/− and RIP1-Tag2/Cyst C−/− Mice —RIP1-Tag2 transgenic mice (in C57/B16 background) (11) were cross-bred with Cat S−/− mice (in C57/B16 background), and the resulting RIP1-Tag2/Cat S−/− mice were backcrossed to Cat S−/− or wild-type mice to generate both RIP1-Tag2/Cat S−/− and RIP1-Tag2/Cat S+/− mice. Cyst C−/− (mixed background) (15) mice were also cross-bred with RIP1-Tag2 transgenic mice. The resulting RIP1-Tag2/Cyst C−/− mice were used as breeding pairs to generate RIP1-Tag2/Cyst C−/− and RIP1-Tag2/Cyst C−/− littermates. When mice were 10.5 weeks old, serum was collected, and pancreatic angiogenic islets were harvested, counted, and optimal cutting temperature compound (OCT)-embedded. At 12.5 weeks, mouse serum samples were collected, islet cell carcinomas were harvested, and tumors were measured according to the formula (volume = 0.52 × (width)2 × length in mm3) and embedded in OCT for tissue-section staining or protein extraction into pH 7.2 lysis buffer (150 mM NaCl, 1% Triton X-100, 0.015 mM CaCl2, 0.1% SDS, 0.5% sodium deoxycholate) for MMPzymogram, ELISA, and immunoblot analysis or pH 5.5 lysis buffer (1 mM EDTA, 0.05% Triton X-100, 20 mM sodium acetate) for cysteine protease active-site labeling. Immunohistochemistry—Serial cryostat sections (6 μm) of pancreatic islet cell carcinoma were fixed in acetone (−20 °C, 10 min) and
stained by the avidin-biotin-peroxidase method (ABC kit, Vector Laboratories). After peroxidase activity was limited with 0.3% hydrogen peroxide and nonspecific binding of primary antibody with 5% species-appropriate normal serum, sections were incubated with primary antibodies diluted in PBS overnight at 4 °C. Incubation with secondary antibodies for 30 min was followed by incubation with the avidin-biotin complex conjugated with horseradish peroxidase for another 30 min. The reaction was visualized with 3,3′-diaminobenzidine (Vector Laboratories) followed by counterstaining with Gill’s hematoxylin solution (Fisher) or methyl green (DAKO). The antibodies used were rat anti-mouse CD31 (1:800; Pharmingen), rabbit anti-human Ki67 (1:1000; Novacastra Laboratories, UK), and rabbit anti-mouse canstatin, tumstatin, and arresten (1:500) (16–18).

Microvessel density of each tumor was determined by measuring the pixel area of CD31-positive staining in five random areas using the image analysis software Image-Pro Plus as described previously (15, 19). A total of 16–20 tumors per group were selected, and data were presented as percentage of CD31-positive areas (mean ± S.E.), CD31-positive area versus image area (×100). The percentage of Ki67-positive cells was determined by scanning rabbit anti-human Ki67 antibody-stained slides and choosing five random areas per tumor to count both Ki67-positive and total cell numbers, with data presented as mean ± S.E. of the Ki67-positive cell percentage.

Percentages of positive areas of canstatin, arresten, and tumstatin were determined by capturing five random areas of each slide (×100), and positive staining on each image was quantified using the same image analysis software Image-Pro Plus as we described previously (15), and data were presented as mean ± S.E.

Cysteine Protease Active-site Labeling and MMP Zymography—Tumor tissue cysteine protease and MMP activities were determined by pulverizing tumor tissues and extracting into pH 5.5 buffer (cysteine proteases) or pH 7.2 buffer (MMPs). Protein concentrations were determined with the Dc protein assay kit (Bio-Rad). Cysteine protease activities were measured by labeling equal amounts of protein (100 μg) of each sample with 125I-JPM at 37 °C for 1 h as described previously (15) followed by separation on 14% SDS-PAGE. MMP activities were assessed by separating 2 μg of protein from each sample on 10% SDS-PAGE containing 1 mg/ml gelatin and then visualizing active MMP-9 and MMP-2 signals by a protocol described previously (20).

Blood Glucose Measurement—Commercial blood glucose strips were purchased from Home Diagnosis Inc. (Ft. Lauderdale, FL). One drop of blood was applied to the strip, and the glucose was measured directly on the supplied blood glucose meter.

ELISA—VEGF (R & D Systems, Minneapolis, MN), bFGF (R & D Systems), IGF-1 (Immunodiagnostic Systems, UK), TGF-β1 (Biogenex, Camarillo, CA), and endostatin (Cytimmune Sciences, Rockville, MD) in tumor tissue lysates and serum were determined with commercially available ELISA kits according to the manufacturers’ protocols. In brief, tissue lysates, sera, and known concentrations of recombinant growth factors, as internal standards, were added to the wells of 96-well microtiter plates, which were precoated with capturing antibodies to the specific growth factor being assessed. After a 2-h incubation at room temperature, the plate was washed four times, and a biotinylated detecting antibody to the growth factor was added and incubated for another hour followed by 30 min of incubation with streptavidin-horseradish peroxidase conjugate. The plate was then washed four times, and a premixed TMB substrate solution was added. The plate was developed at room temperature in the dark for 30 min before the reaction was stopped. The absorbance of each well was measured at 450 nm with an ELISA reader.

Immunoblot Analysis—Equal amounts of tumor extracts (40 μg) or equal volumes of serum (2 μl) from each mouse were separated on 8% (to detect laminin-5 γ2 chains) or 14% (to detect canstatin) SDS-PAGE and...
Cathepsin S in Angiogenesis and Tumor Growth

FIGURE 2. Impact of Cat S and Cyst C expression on the expression of other cysteine proteases, animal life span, and hypoglycemia. A, RIP1-Tag2 tumor extracts from 12.5-week-old different knock-out mice were labeled with ³H-JPM and separated on 14% SDS-PAGE. Different active cathepsins are indicated by arrowheads. B, mouse life span was monitored and recorded weekly. Cat S deficiency extended the life spans of RIP1-Tag2 mice by 2 weeks on average (15.2 ± 0.6 versus 13.3 ± 0.3, p < 0.05). C, serum glucose levels were measured at 10.5 weeks in each group of mice. All RIP1-Tag2 transgenic mice had decreased serum glucose levels, and Cat S deficiency significantly increased serum glucose levels.

blotted onto a polyvinylidene difluoride membrane. Primary antibodies included rabbit anti-mouse canstatin (1:1000) (16) and mouse laminin-5 γ2 chain monoclonal antibody (γ2LE4-6; 1:1000) (21). A β-actin immunoblot was performed as a loading control for tumor extract proteins (1:5000; Sigma).

Canstatin and Arresten Degradation by Recombinant Cat S—One microgram of purified recombinant murine canstatin (16) or arresten (17) was incubated with various amounts of recombinant human Cat S (0.1, 0.1, 1, and 10 nM) in a pH 5.5 reaction buffer containing 50 mM sodium acetate, 0.1% Triton, and 6 mM dithiothreitol for 1 h at 37°C. Reactions were separated on a 10% SDS-PAGE followed with immunoblot detection with rabbit polyclonal antibodies against murine canstatin and arresten (1:1000).

Laminin-5 Degradation by Recombinant Human Cat S—Human epidermoid carcinoma A431 cells were cultured in 150-mm cell culture dishes in Dulbecco’s modified Eagle’s medium with 10% fetal calf serum until confluent. Cells were then lysed and washed in 1× PBS containing 0.5% Triton four times for 10 min at 4°C as described to remove intracellular proteins (22). Cell skeletons were prepared by washing cells with 2 m urea in 1 M NaCl for 10 min at 4°C followed by another wash with 1× PBS. Cell skeleton preparations were collected into 1.5-ml Eppendorf tubes and then incubated with or without recombinant human Cat S at different concentrations (60, 3, 0.15, and 0.0075 nM) in a pH 5.5 reaction buffer for 1 h at 37°C. Reaction mixtures were separated directly on 8% SDS-PAGE followed by silver staining, and peptide specificity was verified with an immunoblot analysis using human laminin-5 monoclonal antibody (21).

The bioactivity of purified laminin-5 γ2 fragments was examined with an aortic ring assay as described previously (24). Briefly, a 96-well plate was covered with 50 µl of Matrigel (BD Biosciences). A 1-mm-long mouse aortic ring was laid on the top of the Matrigel and covered with another 100 µl of Matrigel. After 30 min of solidification, 100 µl of Dulbecco’s modified Eagle’s medium without fetal calf serum, with or without purified laminin-5 γ2 fragments, was added to each well to a final concentration of 10 ng/ml. The combination of bFGF (10 ng/ml) and interferon-γ (500 units/ml) was used as a positive control (24). After 10 days of culture, the gels were photographed, and the endothelial outgrowth was analyzed by manually circulating and computing square pixels and quantified by Image-Pro Plus software. Data were presented as mean area ± S.E. (mm²). p values <0.05 were considered significant (Mann-Whitney test).

RESULTS

Deficiency of Cat S and Its Inhibitor Cyst C in Mice Altered Angiogenesis, Tumor Growth, and Life Span—RIP1-Tag2 transgenic mice (9) develop pancreatic islet cell carcinoma over time in stages. At the age of 12–14 weeks, well established solid tumors can be detected. Beginning at 10.5 weeks of age, nascent solid tumors form by progressing from a dysplastic stage called angiogenic islets, only a small fraction of which ultimately progress into mature carcinomas. This model provides a useful system for assessing the contribution of proteases and protease inhibitors to angiogenesis and tumor growth. To examine whether cysteine protease Cat S participates in these pathologic events, we generated Cat S-deficient (Cat S−/−) RIP1-Tag2 mice (in C57/B6J background). Relative to RIP1-Tag2/Cat S−/− mice (wild type for Cat S), RIP1-Tag2/Cat S−/− mice developed much smaller tumors at 12.5...
Cyst C-deficient (Cyst C cathepsins are up-regulated in this model; see Ref. 11), we generated cathepsins in angiogenesis and tumor growth (given that six cysteine Cyst C and to assess further the importance of Cat S and other cysteine tissues under inflammatory conditions (15). To examine the impact of absence of Cyst C increased the activities of cysteinyl cathepsins in inhibitory competency for Cat S (25). A previous study reported that the absence of Cyst C increased hyperplasia in Cyst C mice (10.5 weeks) (Fig. 1A). Consistently, the density of CD31-positive microvessels increased hyperplasia in Cyst C mice (Fig. 1A). Consistently, the density of CD31-positive microvessels weeks of age (Fig. 1A) and significantly fewer angiogenic islets at age 10.5 weeks (Fig. 1B). Immunostaining for endothelial cells (CD31) demonstrated reduced microvessel density in tumors from RIP1-Tag2/Cat S mice (Fig. 1C).

Cyst C is an endogenous inhibitor of cysteine proteases, with highest inhibitory competency for Cat S (25). A previous study reported that the absence of Cyst C increased the activities of cysteinkinins in tissues under inflammatory conditions (15). To examine the impact of Cyst C and to assess further the importance of Cat S and other cysteine cathepsins in angiogenesis and tumor growth (given that six cysteine cathepsins are up-regulated in this model; see Ref. 11), we generated Cyst C-deficient (Cyst C) RIP1-Tag2 mice (C57/BL6/129S mixed background). Relative to their RIP1-Tag2/Cyst C littermates, RIP1-Tag2/Cyst C mice developed much larger islet cell carcinomas at age 12.5 weeks (Fig. 1D) and significantly more angiogenic islets at age 10.5 weeks (Fig. 1E). Consistently, the density of CD31-positive microvessels from the tumors was much higher in the RIP1-Tag2/Cyst C mice (Fig. 1F).

To examine whether the lack of Cat S or Cyst C in RIP1-Tag2 mice affected other cathepsins or even MMPs activity that might contribute to the phenotypes in Fig. 1, we labeled tumor extracts from the RIP1-Tag2/Cat S and RIP1-Tag2/Cyst C mice and their corresponding wild-type controls by 125I-JPM, which labels only active cysteine proteases (23), and we then performed a gelatin zymogram assay to assess the relative MMP-2 and MMP-9 activity in these tissues. We detected no changes in any cathepsins other than a difference in Cat S expression between RIP1-Tag2/Cat S and RIP1-Tag2/Cat S mice (Fig. 2A). In contrast, we detected more 125I-JPM-labeled cathepsin signals, especially Cat S and Cat L, in tumor extracts from RIP1-Tag2/Cyst C mice than in those from RIP1-Tag2/Cyst C mice (Fig. 2A), although we observed no differences in MMP activity in the presence or absence of Cat S or Cyst C (data not shown). Therefore, altered Cat S activity is evidently one of the factors affecting altered tumor growth and angiogenesis in RIP1-Tag2/Cat S and RIP1-Tag2/Cyst C mice (Fig. 1).

Because of the absence of Cat S-reduced tumor growth, we asked whether such alteration might prolong the life span of tumor-bearing mice. RIP1-Tag2 mice receiving a chow diet are known to die of hypoglycemia any time after 12 weeks of age (9). We monitored 12 mice from each group (RIP1-Tag2/Cat S and RIP1-Tag2/Cat S) and noted that Cat S deficiency prolonged the life span of RIP1-Tag2 mice by an average of 2 weeks (13.3 ± 0.3 versus 15.2 ± 0.6, p < 0.05) (Mann-Whitney test). Consistent with earlier findings (9), mice bearing the RIP1-Tag2 transgene demonstrated significantly lower serum glucose levels than their counterparts without the transgene (Fig. 2C). Among all RIP1-Tag2 mice tested, RIP1-Tag2/Cat S mice showed higher serum glucose levels than RIP1-Tag2/Cat S mice (Fig. 2C), which may also contribute to the prolonged life span observed in RIP1-Tag2/Cat S mice. Consistent with insignificant changes in serum glucose levels between RIP1-Tag2/Cyst C and RIP1-Tag2/Cyst C mice, we detected no significant differences in life span (15.7 ± 0.8 versus 16.7 ± 0.7, p = 0.3), although both groups lived significantly longer than RIP1-Tag2/Cat S mice did, likely because of the genetic background differences.

Cat S Activity on Tumor Cell Proliferation, Pro-angiogenic Growth Factors, and Anti-angiogenic Endostatin—Inhibition of cysteinkinins by JPM-ethyl ester has been found to impair tumor cell proliferation in the RIP1-Tag2 islet cell carcinoma model (11). By using this same tumor model with the absence of Cat S expression, we observed a similar phenotype. Tumor cell proliferation was reduced in RIP1-Tag2/Cat S tumors, with significant reduction of the percentage of Ki67-positive cells (Fig. 3, A and B). In contrast, the percentage of Ki67-positive cells was increased in RIP1-Tag2/Cyst C tumors, most likely because of enhanced cysteinkinin cathepsin activity and loss of Cyst C activity in antagonizing cell proliferation (26, 27) (Fig. 3, A and B). Thus, Cat S activity is functionally involved in regulating tumor cell proliferation in a nonredundant fashion, given that five other cysteine cathepsins are expressed (11). Despite the fact that Cat S deficiency impairs the neoplastic phenotype, we cannot exclude the possibility that these other cathepsins are also contributing to tumor cell proliferation.

Cellular growth factors play essential roles in regulating cell migration, proliferation, protease expression, and matrix remodeling, angiogenesis, tumor growth, and metastasis. Multiple studies have demonstrated that proteases participate in the release of growth factors from the extracellular matrix and basement membranes, either by converting them from their latent forms or degrading their associated inhibitors (9,
28–31). We therefore asked whether a deficiency of Cat S or an increase in the expression of cysteinyl cathepsins because of the lack of Cyst C had any impact on levels of angiogenesis-associated growth factors. Such effects might explain the phenotypes shown in Figs. 1 and 3. We measured circulating VEGF, bFGF, IGF-1, and TGF-β1 in mouse tumor tissue extracts and serum samples with ELISA (Table 1). Although the absence of Cat S or Cyst C did not show a significant impact on the levels of VEGF and TGF-β1, the absence of Cyst C increased bFGF levels in the tumor extract and IGF levels in the serum, which may partially account for increased tumor cell proliferation (Fig. 3) and tumor growth (Fig. 1, D–F) in these mice. However, increased tumor tissue bFGF was also detected in Cat S−/− mice, although accompanied with reduced tumor cell proliferation (Fig. 3) and tumor growth (Fig. 1, A–C), suggesting involvement of additional mechanisms.

Endostatin is a proteolytic fragment of type XVIII collagen generated by several proteases in vitro, including cysteinyl cathepsins (32, 33), serine elastases (34), and MMPs (35). It is possible that Cat S or other cathepsins affect the circulating levels of this anti-angiogenic peptide in live animals. However, by using an endostatin ELISA, we detected no significant differences in endostatin levels in mouse sera or tumor extracts in the presence or absence of Cat S or Cyst C expression (Table 1), suggesting a minor effect of Cat S in endostatin production although the contribution of other cathepsins in collagen XVIII degradation and endostatin production may require further investigation.

Cat S Regulated the Levels of Type IV Collagen-derived Anti-angiogenic Peptides—Canstatin, arresten, and tumstatin are three novel anti-angiogenic peptides recently identified from the processing products of the basement membrane type IV collagen (16–18). Both in vitro and in vivo, these peptides demonstrably inhibit endothelial cell proliferation, angiogenesis, and tumor growth (16–18, 36–38). Although the exact proteases responsible for the generation of canstatin and arresten are unknown, MMP-9 has been shown to be responsible for the production of tumstatin from the α3 chain of type IV collagen (38). We did not detect significant effects of Cat S or Cyst C on endostatin production from type XVIII collagen (Table 1), and we thus asked whether Cat S affected the production of type IV collagen-derived anti-angiogenic peptide. By using an immunostaining technique, we were able to measure quantitatively the differences in the areas positive for canstatin, arresten, and tumstatin in tumor sections from four groups of tumor mice (Fig. 4). We found no statistical differences in the percentage of tumstatin-positive areas of RIP1-Tag2/Cat S+/− and RIP1-Tag2/Cat S−/− mice nor between RIP1-Tag2/Cyst C−/− and RIP1-Tag2/Cyst C+/− mice (Fig. 4C), but we noted an enhancement in both canstatin-positive (Fig. 4A) and arresten-positive (Fig. 4B) areas in RIP1-Tag2/Cat S−/− tumors and a reduction in RIP1-Tag2/Cyst C−/− tumors. These differences suggest the participation of Cat S in the clearance of these anti-angiogenic peptides via either direct degradation of canstatin and arresten or inactivation of proteases responsible for the production of these peptides. To examine this hypothesis, murine canstatin and arresten were digested with recombinant Cat S in vitro. Under physiological concentrations (0.1–1 nM; see Ref. 39), Cat S degraded both canstatin and arresten or inactivation of proteases responsible for the production of these peptides. By using an immunoblotting technique, we were able to measure quantitatively the differences in the areas positive for canstatin, arresten, and tumstatin in tumor sections from four groups of tumor mice (Fig. 4).

Results were similar when tumor tissue extracts or serum samples were used for immunoblot analysis. Levels of canstatin were increased in both the RIP1-Tag2/Cat S−/− tumor extracts (Fig. 6A, left panel) and serum samples (Fig. 6B, left panel). In contrast, canstatin immunoreactivity was reduced in tumor extracts (Fig. 6A, right panel) and serum samples (Fig. 6B, right panel) from the RIP1-Tag2/Cyst C−/− mice, which showed increased Cat S activity (Fig. 2A), further supporting the primary importance of Cat S in regulating the levels of anti-angiogenic peptide, which may contribute to the decrease in angiogenic switching and tumor burden in RIP1-Tag2/Cat S−/− mice (Fig. 1).

Cat S Generated Pro-angiogenic γ2 Fragments from Laminin-5—Like type IV collagen, laminin-5 is a common basement membrane matrix protein composed of three glycoprotein subunits, α3, β3, and γ2, which regulate the adhesion, migration, proliferation, invasion, and morphogenesis of tumor cells via interactions with cell-surface α3β1 and α6β4 integrins (40–42). Such proteins, particularly the γ2 subunits, are preferentially expressed in the cytoplasm of epithelial cancer cells located at the advancing edges of the tumors. Interruptions in laminin-5 integrin interactions block the migration of cancer cells (43). However, proteol-
ysis of laminin-5 and production of its degradation fragments, the γ2-derived fragments, promote cancer cell migration, invasion, and associated vasculogenesis (43, 44). The γ2 subunit of the laminin-5 complex is a 155-kDa polypeptide that can be processed into a 100-kDa pro-angiogenic peptide termed γ2' and a 30-kDa epidermal growth factor-like motif. Further proteolysis of γ2' results in another 80-kDa pro-angiogenic γ2χ peptide (45). Therefore, the proteases responsible for the generation of γ2' and γ2χ peptides become important to angiogenesis and tumor growth. Earlier studies demonstrated the participation of matrix and astacin-like metalloproteinases in the initial γ2 cleavage (46–48). When we used lysates of tumor tissue from the RIP1-Tag2 mice for immunoblot analysis with murine laminin-5 monoclonal antibodies (γ2LE4-6; see Ref. 21), we detected less 80-kDa γ2' and 100-kDa γ2 but comparable levels of the 50-kDa γ2 fragment, which we named γ2'', in mice lacking Cat S expression (Fig. 7A). In contrast, both γ2' and γ2χ peptide production were enhanced in tumor extracts from the RIP1-Tag2/Cyst C''/'' mice relative to production in RIP1-Tag2/Cyst C''/'' mice, presumably due to increased activity of Cat S or other cysteine proteases (Fig. 7B), suggesting a participation of Cat S in γ2 processing, possibly contributing to the altered angiogenesis and tumor progression shown in Fig. 1.

We confirmed a direct involvement of Cat S in γ2 processing using recombinant human Cat S and Cat S-deficient mouse endothelial cells. Human laminin-5-containing epidermoid carcinoma A431 cell skeleton complex preparation, generated by washing off intracellular proteins with 1% Triton followed with 2M urea in 1M NaCl (22), was digested with recombinant human Cat S. Under physiological concentrations (0.15–3 nM), Cat S cleaved γ2 and produced γ2' and γ2χ peptides (Fig. 7C), which can be preferentially detected by monoclonal antibody 19562 (Chemicon; see Ref. 49). Higher concentrations (60 nM) of

FIGURE 4. Cat S and Cyst C expression affects tumor levels of anti-angiogenic canstatin, arresten, and tumstatin. Section of RIP1-Tag2 tumor (12.5 weeks) immunostained with canstatin (A), arresten (B), and tumstatin (C) demonstrated increased percentages of areas of positive immunostaining of these anti-angiogenic peptides in Cat S’/’ tumors (left panel) but reduced percentages in Cyst C’/’ tumors (middle panel). Right panels are representative immunostaining sections for all three antigens from four groups of mice as indicated.
Cat S produced more 50-kDa γ2' fragments. We consistently demonstrated impaired production of γ2', γ2χ, and γ2'' peptides in Cat S−/− endothelial cells cultured with the same A431 cell skeleton complex preparation. The absence of Cat S in endothelial cells led to decreased γ2" and γ2χ peptides in culture media and decreased all three (γ2', γ2χ, and γ2") peptides in the lysate fraction, which contains both endothelial cells and residual A431 cell skeleton proteins (Fig. 7D), demonstrating a novel function of Cat S in the production of pro-angiogenic γ2 fragments.

To examine whether γ2' (100 kDa), γ2χ (80 kDa), and γ2" (50 kDa) peptides (Fig. 7C) produced by Cat S are bioactive, we immunopurified these peptides from the digestion pool of various amount of recombinant Cat S with A431 cell skeleton complex preparation using an affinity gel coated with laminin-5 γ2'-monoclonal antibody. Purified proteins were verified by both silver staining and immunoblot analysis with laminin-5 γ2'-monoclonal antibody. We were able to purify three fractions containing the γ2', γ2χ with γ2'', and γ2'' alone (Fig. 8A). Purified peptides permitted us to assess their bioactivity in promoting microvessel growth in an aortic ring assay. Consistent with earlier reports (43, 44), Cat S-produced γ2' and γ2χ peptides, but not γ2'', showed significant activity in promoting microvessel sprouting from the aortic rings (Fig. 8B), providing another possible mechanistic explanation for the regulation of angiogenesis and tumor growth by Cat S in vivo.

DISCUSSION

A role for cysteine proteases in tumor progression was proposed decades ago (50). Until recently, however, investigations have been focused on demonstrating that inhibition of cysteine protease activities affects angiogenesis and tumor invasion in vivo (6–8, 11) and therefore highlighted the significance of this family of proteases in tumor pathogenesis. Although we have proposed a role for cysteine protease Cat S in angiogenesis and presumably in tumor growth, we have had no direct in vivo evidence for or any mechanistic explanation of Cat S involvement. Several in vitro experiments demonstrated cysteine protease activities in the generation of anti-angiogenic endostatin (32, 33), conversion of pro-angiogenic factor TGF-β (51, 52), and activation of tumor invasion-associated urokinase-type plasminogen activator (53). It remains uncertain whether these in vitro activities of cysteine proteases have any pathophysiologic relevance in vivo.

The present study demonstrated an important role for Cat S and its endogenous inhibitor Cyst C in regulating angiogenesis and tumor growth in a genetically engineered mouse model of pancreatic islet cancer (9). By using gene knock-out mice, we have clearly demonstrated that Cat S contributes to angiogenesis and tumor progression, likely in several ways. First, Cat S regulates levels of anti-angiogenic arresten and canstatin, two degradation products of the basement membrane matrix protein type IV collagen α1 and α2 chains, respectively (16–18, 36, 37). Several in vitro and in vivo experiments demonstrated that these peptides inhibited angiogenesis and tumor progression via expression of cell-surface proteoglycan and integrins (α1β1 and αvβ3) to affect cell apoptosis (16), cell cycle protein cyclin D1, or proteases (54). For example, overexpression of canstatin in culture inhibited the migration and proliferation of endothelial cells, induced apoptosis of endothelial cells (16, 17), and suppressed murine melanoma growth in vivo (17). However, the proteases responsible for initial type IV collagen degradation have not been identified. In this study, we found a decreased level of these peptides whenever Cat S was expressed. Reduced expression of Cat S expression was associated with increased levels of these peptides, suggesting a participation of this protease in the degradation of anti-angiogenic peptides or inactivation of proteases responsible for the generation of such peptides. Indeed, recombinant Cat S degraded both canstatin and arresten in vitro under physiological concentrations. More importantly, expression of Cat S did not affect serum levels of endostatin, a well known collagen-XVIII degradation product, although many cathepsins, including Cat L and Cat S, have been shown to produce such peptides in vitro (32, 33). Altered expression of these cysteine proteases in the RIP1-Tag2/Cyst C−/− mice (Fig. 2A) did not affect circulating endostatin levels (Table 1). Although we cannot exclude the possibility that other cathepsins, including Cat L, regulate endostatin levels in vivo, Cat S is probably less important in the production or degradation of endostatin, because a lack of Cat S expression had no significant impact on endostatin levels in either sera or tumor extracts (Table 1).

Second, Cat S produces the pro-angiogenic γ2 subunits γ2' and γ2χ from the laminin-5 complex, another major component of the basement membrane matrix that plays an important role in tumor cell adhesion, migration, invasion, and metastasis. Data from experiments with cultured Cat S-deficient endothelial cells, recombinant Cat S, and Cat S−/− mice all supported this conclusion. Increased levels of these γ2 peptides in the RIP1-Tag2/Cyst C−/− mice tumor extracts, which had enhanced Cat S activity, reciprocally support a participation of Cat S in γ2 peptide proliferation. Third, Cat S affects tumor cell proliferation, although we do not yet know the mechanism responsible for this observation. We did not detect significant changes in circulating or tumor tissue growth factors (Table 1), including VEGF, IGF, and TGF-β1. In contrast, bFGF levels in Cat S−/− tumor tissue extracts was even higher than those from Cat S+/+ tumor extracts (Table 1). Therefore, additional mechanisms may be involved in the alteration of tumor cell proliferation via Cat S (Fig. 3).

The role of Cyst C in tumor growth (Fig. 1, D–F) or tumor cell proliferation (Fig. 3) could be more than just inhibiting cysteine protease activity, although the lack of Cyst C did increase cathepsin activity (Fig. 2A). For instance, RIP1-Tag2/Cyst C−/− mice had significantly higher tissue bFGF and serum IGF (Table 1), which may explain the increased tumor burden (Fig. 1, D–F) and tumor cell proliferation (Fig. 3). Such increases in mitogenic factors cannot be explained by the increase in cysteine protease activity alone. Indeed, tumor tissues from RIP1-Tag2/Cat S−/− mice contained more bFGF than those from RIP1-Tag2/Cat S+/+ mice (Table 1). Therefore, additional mechanisms may be involved. For instance, Cyst C may act as an antagonist of the TGF-β receptor and therefore interfere with TGF-β signaling and further affect cancer cell growth (26, 27).

Although Cat S deficiency significantly reduced the number of pan-
creatic islet cell carcinomas as well as angiogenic islets (Fig. 1), the life span of RIP1-Tag2/Cat S−/− mice was extended by only 2 weeks on average relative to that of RIP1-Tag2/Cat S+/+ mice (Fig. 2). Therefore, altered angiogenesis may primarily affect tumor growth in this model, with a lesser effect on life span, which may be influenced by additional mechanisms. Many RIP1-Tag2 transgenic mice bear the phenotype of islet hyperplasia, leading to hypoglycemia, a cause of sudden death in RIP1-Tag2 transgenic mice (9). Although we detected no difference between the serum glucose levels of Cat S−/− mice and C57/Bl6 wild-type mice or Cyst C−/− mice and their wild-type littermates, all RIP1-Tag2 transgenic mice had reduced serum glucose levels (Fig. 2C). The serum glucose levels of most mice from the RIP1-Tag2/Cat S+/+, RIP1-Tag2/Cyst C+/+, and RIP1-Tag2/Cyst C−/− groups were ∼25 mg/dl, values significantly lower than those of their nontransgenic counterparts. This is probably why we did not detect significant differences in life span between RIP1-Tag2/Cyst C+/+ and RIP1-Tag2/Cyst C−/− mice, as both groups had lower serum glucose levels. In contrast, RIP1-Tag2 mice with Cat S deficiency had much higher glucose levels than their Cat S+/+ counterparts, which could be one cause of the 2-week extension in life span of the deficient mice (Fig. 2), although such levels are still lower than those of nontransgenic counterparts. Additional sugar in the diet prolonged the life span of RIP1-Tag2 transgenic mice by up to 20 weeks (9). Therefore, Cat S deficiency impaired islet hyperplasia (Fig. 3), consequently increasing serum glucose levels (Fig. 2C) and ultimately prolonging life span (Fig. 2).

It remains unexplained why RIP1-Tag2/Cat S+/+ and RIP1-Tag2/Cyst C+/+ mice differed in their tumor sizes (Fig. 1), numbers of proliferating tumor cells (Fig. 3), tumor canstatin levels (Fig. 4B and Fig. 5, A and B), and even life span (13.3 ± 0.3 versus 15.7 ± 0.7, p = 0.02), although the mice were wild type for both Cat S and Cyst C. Such discrepancies could be due to their different genetic backgrounds. RIP1-Tag2/Cat S−/− mice were on pure C57/Bl6 background, whereas RIP1-
Tag2/Cyst $C^+/+$ mice were on C57/Bl6/129S mixed background. It has been shown that VEGF and bFGF behaved differently in mice with C57/BL6 and 129S backgrounds in inducing tumor growth or neovascularization (55, 56). Indeed, the numbers of both endothelial progenitor cells and circulating blood endothelial cells, which are subsequently incorporated into distal sites of ongoing sprouting angiogenesis, were different among various genetic backgrounds (56). Therefore, more investigations are required to reveal the factors that lead to the different phenotypes of RIP1-Tag2/Cyst $C^+/+$ mice and RIP1-Tag2/Cyst $C^+/+$ mice from this study.

In conclusion, our findings support the hypothesis that Cat S is required for angiogenesis (14) and is associated with the pathobiology of tumor growth, at least in the RIP1-Tag2 model system. The reduction in tumor sizes through the inhibition of total cysteine proteases with JPM-ethyl ester (11) may also occur, at least in part, via its inhibitory effect on Cat S. Therefore, it might be possible to manage tumor growth critically dependent on angiogenesis by targeting Cat S activity.

Acknowledgments—We thank Dr. D. Hanahan (University of California, San Francisco) for the RIP1-Tag2 mice, advice during the initiation of the project, and critical comments on the manuscript. We thank Dr. Johanna Joyce (Memorial Sloan Kettering Cancer Center, New York) for assistance with the RIP1-Tag2 mice characterization. We also thank Dr. R. Timpl (Max-Planck-Institut für Biochemie, Germany) for providing the murine laminin-5 $\gamma 2$ monoclonal antibodies and Dr. M. E. Hemler (Harvard University) for critical reading of the manuscript.

REFERENCES
1. Folkman, J. (1971) N. Engl. J. Med. 285, 1182–1186
2. Folkman, J. (1995) Nat. Med. 1, 27–31
3. Mook, O. R., Frederiks, W. M., and Van Noorden, C. J. (2004) Biochim. Biophys. Acta 1705, 69–89
4. Pepper, M. S. (2001) Thromb. Haemostasis 86, 346–355
5. Jedeszko, C., and Sloane, B. F. (2004) Biol. Chem. 385, 1017–1027
6. Yanamandra, N., Gumidyala, K. V., Waldron, K. G., Gujrati, M., Olivero, W. C., Dinh, D. H., Rao, J. S., and Mohanam, S. (2004) Oncogene 23, 2224–2230
Cathepsin S Controls Angiogenesis and Tumor Growth via Matrix-derived Angiogenic Factors
Bing Wang, Jiusong Sun, Shiro Kitamoto, Min Yang, Anders Grubb, Harold A. Chapman, Raghu Kalluri and Guo-Ping Shi

J. Biol. Chem. 2006, 281:6020-6029.
doi: 10.1074/jbc.M509134200 originally published online December 19, 2005

Access the most updated version of this article at doi: 10.1074/jbc.M509134200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 55 references, 21 of which can be accessed free at http://www.jbc.org/content/281/9/6020.full.html#ref-list-1