Relationship between Rad51 G135C and G172T Variants and the Susceptibility to Cancer: A Meta-Analysis Involving 54 Case-Control Studies

Mengmeng Zhao¹, Pin Chen², Yanbin Dong¹, Xianji Zhu¹, Xilong Zhang¹*

1 Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 2 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China

Abstract

Background: The associations between Rad51 gene polymorphisms (G135C and G172T) and risk of cancer have been investigated, but the results were inconclusive. To get a comprehensive evaluation of the association above, we performed a meta-analysis of published studies.

Methods: A computerized search of PubMed, Embase and Web of Knowledge databases for all relevant studies was performed and the data were analyzed in a meta-analysis. The overall odds ratio (OR) with the 95% confidence interval (95% CI) was calculated to assess the strength of the association between Rad51 polymorphisms and cancer risk. Data were analyzed using fixed- or random-effects model when appropriate. Sensitivity analysis and publication bias test were also estimated.

Results: Overall, a total of 54 case-control studies were included in the current meta-analysis, among which 42 studies with 19,142 cases and 20,363 controls for RAD51 G135C polymorphism and 12 studies with 6,646 cases and 6,783 controls for G172T polymorphism. For G135C polymorphism, the pooled results indicated that significantly increased risk was found in overall cancers (homozygote model: OR = 1.776, 95% CI = 1.288–2.449; allelic genetic model: OR = 1.169, 95% CI = 1.016–1.345; recessive model: OR = 1.946, 95% CI = 1.336–2.835), especially in breast cancer (homozygote model: OR = 1.498, 95% CI = 1.026–2.189; recessive model: OR = 1.732, 95% CI = 1.170–2.562). For G172T polymorphism, a decreased cancer risk was observed in head and neck cancer (homozygote model: OR = 0.621, 95% CI = 0.460–0.837; allelic genetic model: OR = 0.824, 95% CI = 0.716–0.948; recessive model: OR = 0.639, 95% CI = 0.488–0.837).

Conclusions: Our results suggested that the Rad51 G135C polymorphism is a candidate for susceptibility to overall cancers, especially to breast cancer, and that the Rad51 G172T might play a protective role in the development of head and neck cancer.

Introduction

Human cancer is still one of the leading causes of death worldwide, resulting in one of the most challenging global health issues confronted by mankind today. According to etiological studies, carcinogenesis of cancer is a complex, multistep and multifactor process, in which many genetic and environmental factors are involved. In recent years, it has become clear that individual variation in genetic backgrounds can lead to various consequences following the environmental exposure and may ultimately contribute to the cancer pathogenesis and progression [1–3].

DNA repair pathways are responsible for maintaining the genomic stability and integrity and play a pivotal role in protecting against genetic mutations [4]. DNA repair genes have been proposed as considerable factors in the prevention of genomic damage and continuously monitor chromosomes to correct injuries caused by exogenous agents such as ultraviolet light or cigarette smoke, and endogenous mutagens [5,6]. Recent reports have indicated that genetic variation in DNA repair genes could cause altered DNA repair capacity, leading to accumulation of DNA damage, followed by programmed cell death or unregulated cell growth and may account, in part, for the cancer development [7].

Human RAD51, one of the key proteins for homologous recombination, is essential to meiotic and mitotic recombination and plays a crucial role in homologous recombination repair of DNA double-strand breaks [8]. It functions by forming nucleo-protein filaments on single stranded DNA, inducing homologous
pairing and mediating strand exchange reactions between single and double stranded DNA during repair [9]. The RAD51 gene is located on chromosome 15q15.1 in humans and thought to participate in a common double-strand break repair pathway. In recent years, RAD51 gene polymorphisms have attracted widespread attention. Two commonly studied polymorphisms of RAD51 gene are G135C (rs1801320), a G to C transition at position +135, and G172T (rs1801321), a G to T transversion in the 172 position. Both of them are located in the 5′ untranslated region and seem to be of functional relevance. These two polymorphisms were shown to affect mRNA stability or translational efficiency, leading to altered polypeptide product levels and altering the function of encoding RAD51 protein, and influenced the DNA repair capacity to some extent [10,11].

In the past decade, a number of molecular epidemiological studies have been done to evaluate the association between RAD51 gene polymorphisms (G135C and G172T) and cancer risk in diverse populations, but the results remained controversial. Therefore, to derive a more precise estimation of the association between RAD51 G135C and G172T polymorphisms and cancer risk, a meta-analysis was performed. To the best of our knowledge, this is the most comprehensive meta-analysis regarding the RAD51 polymorphisms and cancer risk.

Materials and Methods

Search strategy and data extraction

All studies investigating the association between the RAD51 gene polymorphisms (G135C and G172T) and risk of cancer were identified by comprehensive computer-based searches of PubMed, Embase and Web of Knowledge databases (the last search update on August 25, 2013). The search was performed using various combinations of keywords like (“RAD51 gene” OR “RAD51 recombinase gene”) AND (“polymorphism” OR “variant” OR “variants”). The exact search is available on request from the authors. Additional studies were also identified by a hand search of all the references of retrieved articles. Our search was restricted to studies published in the English language.

Inclusion and Exclusion criteria

Studies included in the current meta-analysis had to meet all the following criteria: (1) studies to investigate the associations between the polymorphisms of G135C or G172T in RAD51 gene and risk of cancer; (2) an unrelated case-control or cohort design; (3) sufficient data (genotype distributions for cases and controls) to calculate an odds ratio (OR) with its 95% CI; (4) studies published in English; (5) genotype distribution of control population consistent with Hardy-Weinberg Equilibrium (HWE). We did not consider abstracts or unpublished reports. Case reports, editorials, review articles, and letters were excluded. Articles were also excluded if they did not include a control population and did not determine genotype frequency. If studies with the same or overlapping data were published by the same authors, the study with the larger sample size was selected. The supporting PRISMA checklist is available as supporting information; see Checklist S1.

Data extraction

Two authors extracted information from all eligible publications independently according to the inclusion criteria listed above. Disagreement was resolved by the evaluation of a third reviewer and discussion until a consensus was reached. The following characteristics were collected from each study: the first author, year of publication, country, patient ethnicity, cancer type, source of control groups (population- or hospital-based controls or mixed (composed of both population- and hospital-based controls)), and genotype frequencies in case and control groups. Meanwhile, we did not define any minimum number of cases or controls to be included in our meta-analysis.

Statistical analysis

We first analyzed HWE in the controls for each study using goodness-of-fit test (chi-square or Fisher’s exact test) and violation of HWE was determined by P<0.05. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association between the RAD51 gene polymorphisms and cancer susceptibility. The pooled ORs for RAD51 G135C polymorphism were performed under dominant model (CC+GC vs. GG), recessive model (CC vs. GG+GC), homozygote model (CC vs. GG) and allelic genetic model (C vs. G). C and G represent the minor and the major allele respectively. The same methods were applied to the analysis of the RAD51 G172T polymorphism. Stratified analyses were conducted with respect to ethnicity, cancer type and source of controls.

A χ²-based Q-test was performed to test the heterogeneity across the eligible comparisons, which is considered to be significant if P<0.05. The variation caused by heterogeneity was estimated by calculating the inconsistency index I², with I²<25%, 25-75% and >75% representing low, moderate or high degrees of inconsistency, respectively [12]. The pooled OR was calculated by a fixed-effects model (the Mantel-Haenszel method) if the result of the Q test was P>0.05, which indicated that the between-study heterogeneity was not significant [13]. Otherwise, a random-effects model (the Der-Simonian and Laird method) was used [14]. Sensitivity analysis was carried out by removing each study at a time to evaluate the stability of the results under either genotypic models or the allelic model. Additionally, Begg’s test and Egger’s linear regression test by visual inspection of the funnel plot were carried out to address the potential publication bias and P<0.05 was considered as an indicator of significant publication bias [15].

All statistical analyses were performed using the STATA software (version 11; Stata Corporation, College Station, Texas). Two-sided P values less than 0.05 were considered significant.

Results

Studies included in the meta-analysis

The initial literature search through PubMed, Embase and Web of Knowledge databases yielded 203 published articles after duplicates were removed. When reviewed by titles or abstracts, 115 records did not fulfill the inclusion criteria, leaving 88 potentially relevant studies that were reviewed in full-text. Among the remaining 88 articles, 10 were not concerned with G135C or G172T polymorphisms in RAD51 gene, 7 were not human studies, 4 was not published in English, 6 were not case-control studies, 5 were no usable reported data, 2 were meeting abstracts, 4 were meta-analysis, and 11 were not in HWE; these publications were also excluded. Finally, a total of 54 case-control studies in 37 articles were identified in the current meta-analysis [16–54], among which 42 with 19142 cases and 20363 controls for RAD51 G135C polymorphism and 12 with 6646 cases and 6783 controls for G172T polymorphism. Genotype distributions in the controls of all selected studies are in agreement with HWE. The flow of study selection is shown in Figure 1, and the main characteristics of eligible studies were shown in Table 1 and Table 2.
Meta-analysis result

The pooled results of meta-analysis for the association between RAD51 polymorphisms (G135C and G172T) and cancer susceptibility are shown in Tables 3 and Tables 4.

As for G135C polymorphism, a total of 42 case-control studies in 37 publications with 19,142 cases and 20,363 controls were identified. Overall, significantly elevated cancer risk was found in all genetic models (homozygote model: OR = 1.776, 95% CI = 1.288–2.449, Figure 2; allelic genetic model: OR = 1.169, 95% CI = 1.016–1.345; recessive model: OR = 1.946, 95% CI = 1.336–2.835 except in dominant model (OR = 1.039, 95% CI = 0.942–1.146). The heterogeneity was significant in all genetic models and the detailed data are shown in Table 3. These eligible studies were analyzed by stratified analysis. In the stratified analysis of the effect of cancer types, a significant association was found for breast cancer (homozygote model: OR = 1.498, 95% CI = 1.026 –2.189; recessive model: OR = 1.732, 95% CI = 1.170–2.562). However, no significant association with cancer risk was demonstrated in overall population with ovarian cancer, colorectal cancer, acute myelocytic leukemia as well as head and neck cancers. As for ethnicity, our results showed G135C polymorphism was associated with increased risk of cancer among all populations under homozygote model and recessive model. When stratified based on source of controls, significantly increased risks were also observed in both population-based control subgroups and hospital-based control subgroups (Table 3).

With respect to G172T polymorphism, a total of 12 case-control studies in 9 publications with 6,646 cases and 6,783 controls were selected. As shown in Table 4, the pooled results revealed no significant associations between G172T polymorphism and cancer susceptibility in all genetic models (homozygote model: OR = 1.014, 95% CI = 0.872–1.173; dominant model: OR = 0.980, 95% CI = 0.906–1.061, Figure 3; recessive model: OR = 1.011, 95% CI = 1.241–14.879; allelic genetic model: OR = 0.993, 95% CI = 0.941–1.048). The heterogeneity was significant in all genetic models except for dominant model (P = 0.414). We also analyzed these eligible studies by stratified analysis. As we divided the studies by cancer type, the result suggested that a decreased cancer risk was found in head and neck cancers (homozygote model: OR = 0.621, 95% CI = 0.460–0.837; allelic genetic model: OR = 0.824, 95% CI = 0.716–0.948; recessive genetic model: OR = 0.639, 95% CI = 0.488–0.837) Nevertheless, we did not find significant association between G172T polymorphism and breast cancer and ovarian cancer. When stratified according to ethnicity, the result showed no evidence that the G172T polymorphism was significantly associated with an increased cancer risk in Caucasian populations. In the subgroup analysis by source of controls, no significant association with cancer risk was observed in both population-based and hospital-based control subgroups (Table 4).
Given that the significant between-study heterogeneity for RAD51 G135C and G172T polymorphisms, the random-effect model was used to calculate the pooled results if the heterogeneity was significant. Meanwhile, we also performed a sensitivity analysis to assess the effects of each study on the pooled ORs by omission of individual studies. The sensitivity analysis showed that, for each polymorphism, no single study qualitatively changed the...
many functional studies revealed that these polymorphisms could
be located in the recombination region, which seems to be of functional relevance. Furthermore, a meta-analysis
showed pooled ORs, suggesting that the results of this meta-analysis were statistically stable and reliable (Figure_S1 and Figure_S2).

Publication bias diagnostics
We further identify the potential publication biases of literatures by Egger’s test and funnel plot. In all studies, no funnel plot asymmetry was found. The results of the Egger’s test for RAD51 G135C and G172T polymorphisms did not show any evidence of publication bias ($t = -1.11, P = 0.275$ for G135C under homozygote comparison model, Figure 4; $t = -0.09, P = 0.929$ for G172T under homozygote comparison model, Figure 5).

Discussion
It is well reported that double-strand break damage is the most
dangerous lesion observed in eukaryotic cells because it may cause
cell death or constitute a serious threat to cell viability and genome
stability. It has the potentiality to permanently arrest cell cycle
progression and endanger cell survival [55]. Since DNA repair
mechanisms are essential to preserve genomic stability and functionality, defects in DNA repair can result in the development of chromosomal aberrations which may lead to an increased susceptibility to cancer [4,56,57]. Homologous recombination and non-homologous end joining have been extensively studied as two distinct pathways in the repair of double-strand breaks in mammalian cells. Homologous recombination is a high-fidelity process that utilizes DNA sequence, a sister chromatid or
homologous chromosome in close proximity to the break as a
template [38–60]. In this repair process, an early procedure is the
resection of the 3’ ends of the DSBs to form single stranded tails
that invade the intact homologous DNA double helix forming a Holliday junction [61,62]. RAD51, a kind of ubiquitous strand exchange protein, is known to be a central enzyme involved in DNA double-strand break repair by homologous recombination. It could polymerize onto single-stranded DNA and searches for homology in a duplex donor DNA molecule, usually the sister chromatid [63]. Recent researches have suggested two common polymorphisms (G135C and G172T) located in the 5’ untranslated region seems to be of functional relevance. Furthermore, many functional studies revealed that these polymorphisms could
affect mRNA stability or translational efficiency, resulting in changes in both polypeptide product levels and the function of encoding RAD51 protein, and thus influenced the DNA repair capacity to some extent [10,11]. In addition, the association of Rad51 variants (G135C and G172T) and risk of cancer has been extensively investigated in different populations. However, the results of these studies were inconsistent. Therefore, we conducted a meta-analysis to summarize the effects of Rad51 variation on risk of cancer.

In this meta-analysis, 54 case-control studies (42 for G135C polymorphism, 12 for G172T polymorphism) were performed to provide the most comprehensive assessment of the relationship between RAD51 polymorphisms and cancer risk. For Rad51 G135C polymorphism, the C allele of G135C polymorphism had significant association with the cancer susceptibility for the homozygote model, allelic genetic model, and recessive genetic model in overall populations. Nevertheless, the results suggested that Rad51 G172T polymorphism was not associated with overall cancer risk when all studies were accumulated together. Considering the possible role of ethnic differences in genetic backgrounds, we performed subgroup analysis based on ethnicity. Consequently, significant association was found in both Caucasians and Asians for Rad51 G135C polymorphism but not for G172T polymorphism. When stratified by the source of controls, our results found evidence of an association between cancer risk and G135C polymorphism in both population-based and hospital-based controls, while no significant association was indicated in either population-based or hospital-based controls for G172T polymorphism. In the stratified analysis by cancer type, our results strongly indicated that Rad51 G135C polymorphism was associated with increased breast cancer risk while G172T polymorphism with decreased head and neck cancer risk.

Previous meta-analyses were carried out to assess the effect of Rad51 G135C polymorphism on either the risk of breast cancer or acute leukemia [64,65]. Comparing with them, our study has some improvements. First, this is the first report not only to analyze two polymorphisms in Rad51 gene (G135C and G172T) and cancer risk in different cancer forms, but also to identify the G172T polymorphism as a risk factor for head and neck cancers. Second, we provided a more comprehensive data analysis by calculating

Table 2. Characteristics of the studies included on Rad51 G172T polymorphism.

First author	Year	Country	Ethnicity	Cancer type	Source of control	Cases	Controls	GG	GC	TT	GG	GC	TT	HWE
Kuschel	2002	Germany	Caucasian	Breast	PB	2235	736	744	1061	430	226	371	139	0.54
Auranen(1)	2005	UK	Caucasian	Ovarian	PB	730	847	226	363	141	273	433	141	0.16
Auranen(2)	2005	UK	African	Ovarian	PB	321	412	119	145	57	149	189	74	0.30
Auranen(3)	2005	UK	Caucasian	Ovarian	PB	293	607	112	130	51	235	277	95	0.38
Auranen(4)	2005	UK	Caucasian	Ovarian	PB	300	736	94	157	49	226	371	139	0.54
Lee	2005	Korea	Asian	Breast	HB	784	591	721	54	9	533	54	4	0.05
Rollinson	2006	UK	Caucasian	AML	HB	469	940	144	225	100	331	445	164	0.49
Tu	2006	USA	American	HNC	HB	716	719	261	351	104	240	335	144	0.17
Silva	2009	Portugal	Caucasian	Breast	HB	288	548	94	139	55	168	275	105	0.69
Gresner	2012	Poland	Caucasian	HNC	PB	81	110	36	43	2	43	54	13	0.52
Romanowicz	2012	Poland	Caucasian	Colorectal	HB	320	320	81	150	89	84	142	94	0.05
Bastos	2009	Portugal	Caucasian	Thyroid	HB	109	217	28	51	30	76	98	43	0.27

PB: population based; HB: hospital based; HWE: Hardy-Weinberg equilibrium (significant at the 0.05 level)
AML: acute myelocytic leukemia; HNC: head and neck cancer

doi:10.1371/journal.pone.0087259.t002
Table 3. Meta-analysis of the Rad51 G135C polymorphism on cancer risk.

G135C	CC vs GG	C vs G	Dominant model	Recessive model												
	OR(95%CI)	Ph	OR(95%CI)	Ph	OR(95%CI)	Ph	OR(95%CI)	Ph								
G/C																
Overall	1.776 (1.286,2.449)*	<0.001	1.169(1.016,1.345)*	0.03	<0.001	85.5	1.039(0.942,1.146)	0.45	<0.001	59	1.946(1.336,2.835)*	<0.01	<0.001	76.2		
Source of controls																
PB	1.638(1.063,2.523)*	0.03	0.002	53	1.134(0.977,1.316)*	0.10	<0.001	69.9	1.031(0.901,1.181)*	0.65	0.003	52	1.820(1.185,2.796)*	<0.01	<0.001	57.7
HB	1.924(1.256,2.947)*	<0.001	0.001	59	1.166(0.909,1.495)*	0.23	<0.001	91.3	1.038(0.890,1.210)*	0.63	<0.001	68	1.946(1.131,3.381)*	<0.02	<0.001	78.6
Ethnicity																
Caucasian	1.793(1.179,2.727)*	0.01	<0.001	67	1.182(0.968,1.444)*	0.10	<0.001	88.5	1.018(0.886,1.169)*	0.80	<0.001	66	1.998(1.242,3.212)*	<0.01	<0.001	79.4
Asian	1.797(1.073,3.010)	0.03	0.361	1.9	1.056(0.880,1.267)	0.56	0.282	21.1	0.946(0.787,1.193)	0.77	0.53	0	1.840(1.102,3.074)	0.02	0.39	0
Mixed	1.522(1.036,2.235)	0.03	0.33	13	1.058(0.970,1.153)	0.20	0.408	2.3	1.041(0.949,1.141)	0.40	0.329	13	1.513(1.031,2.221)	0.04	0.309	15.8
Cancer type																
Breast	1.498(1.026,2.189)*	0.04	0.009	51	1.053(0.926,1.198)	0.43	<0.001	65	0.966(0.859,1.087)	0.57	0.026	44	1.732(1.170,2.562)*	0.01	0.001	58.7
Ovarian	1.135(0.869,2.283)	0.72	0.609	0	1.003(0.872,1.158)	0.94	0.071	50.8	1.000(0.861,1.163)	0.99	0.056	54	1.129(0.536,2.273)	0.73	0.622	0
AML	1.567(0.869,2.823)	0.14	0.454	0	1.074(0.719,1.605)	0.73	<0.001	77.4	1.052(0.686,1.614)	0.82	0.001	76	1.557(0.865,2.803)	0.14	0.475	0
HNC	1.690(0.708,4.036)	0.24	0.718	0	1.050(0.858,1.284)	0.64	0.253	26.5	1.025(0.825,1.274)	0.82	0.285	21	1.628(0.683,3.879)	0.27	0.738	0
Colorectal	2.887(0.615,13.555)*	0.18	0.01	78	1.512(0.546,4.185)	0.43	<0.001	95.1	1.212(0.654,2.245)	0.54	0.007	80	3.536(0.580,19.397)*	0.18	0.002	83.7

P-values for ORs; Ph values of Q-test for heterogeneity test; I^2 refers to the proportion of total variation owing to between-study heterogeneity Bold data represent the positive results.

*Random-effects model was used when Ph value for heterogeneity test <0.05; otherwise, fix-effects model was used.

doi:10.1371/journal.pone.0087259.t003
Table 4. Meta-analysis of the Rad51 G172T polymorphism on cancer risk.

G172T	TT vs GG	T vs G	Dominant model	Recessive model									
	G/T	OR (95%CI)	P	Ph	I²	OR (95%CI)	P	Ph	I²	OR (95%CI)	P	Ph	I²
Overall	1.014(0.852,1.206)*	0.016	0.88	0.016	0.88	0.993(0.941,1.048)	0.80	0.05	0.80	0.980(0.906,1.061)	0.62	0.414	3.1
Sources													
PB	0.991(0.857,1.146)	0.91	0.03	0.31	0.03	0.990(0.922,1.062)	0.77	0.457	0.457	0.961(0.866,1.067)	0.46	0.834	0
HB	1.087(0.783,1.508)	0.62	0.03	0.03	0.03	1.014(0.871,1.180)	0.86	0.011	0.011	1.006(0.892,1.135)	0.92	0.111	44.2
Ethnicity													
Caucasian	1.066(0.943,1.206)	0.31	0.31	0.31	0.31	1.027(0.966,1.091)	0.39	0.116	0.116	1.014(0.926,1.110)	0.76	0.373	7.5
Mixed	0.756(0.590,0.968)	0.03	0.03	0.03	0.03	0.882(0.781,0.996)	0.04	0.241	0.241	0.902(0.757,1.077)	0.25	0.613	0
Cancer type													
Breast	1.057(0.779,1.417)	0.67	0.67	0.67	0.67	0.949(0.860,1.048)	0.30	0.875	0.875	0.880(0.763,1.016)	0.08	0.863	0
Ovarian	1.059(0.881,1.273)	0.54	0.54	0.54	0.54	1.023(0.936,1.119)	0.61	0.642	0.642	1.014(0.888,1.157)	0.84	0.945	0
HNC	0.621(0.460,0.837)	0.01	0.01	0.01	0.01	0.824(0.716,0.948)	0.01	0.502	0.502	0.864(0.705,1.060)	0.16	0.788	0

P-values for ORs; Ph values of Q-test for heterogeneity test; I² refers to the proportion of total variation owing to between-study heterogeneity
Bold data represent the positive results.
PB: population based; HB: hospital based; AML: acute myelocytic leukemia; HNC: head and neck cancer
Random-effects model was used when Ph value for heterogeneity test <0.05; otherwise, fix-effects model was used.
doi:10.1371/journal.pone.0087259.t004
four different genetic models and performing subgroup analysis based on ethnicity, cancer types and source of controls. Third, we excluded those studies in which genotype distributions in the controls were not in agreement with HWE because they could influence the results.

Heterogeneity between studies should be noted because it may affect the strengths of the meta-analysis. In the current meta-analysis, significance heterogeneity was observed for both Rad51 G135C and G172T polymorphisms. Thus, random-effect models were used if significant heterogeneity was identified. Meanwhile, to diminish the heterogeneity, we carried out subgroup analysis based on ethnicity, cancer types and source of controls. The results indicated that heterogeneity reduced or disappeared in subgroups. We also performed sensitivity analysis to ascertain the primary origin of the heterogeneity. The analysis showed that no single study materially altered the pooled ORs, suggesting that the results of this meta-analysis were statistically stable and reliable. The publication bias for the association between these two polymorphism and cancer risk was not observed.

Some limitations of the present meta-analysis should be taken into consideration when interpreting the results. First of all, only published studies and papers written in English were searched in this meta-analysis, some unpublished studies or studies written in other language that might also meet the inclusion criteria were overlooked. Second, in some studies, detailed information such as age and sex in case and control of different genotypes were not available, which limited further estimates to a certain extent. Third, the current meta-analysis did not consider gene-gene and gene-environment interactions due to the lack of sufficient data. Further studies are needed to evaluate the possible gene-gene and...
gene-environment interactions in the association between Rad51 gene polymorphism and susceptibility to cancer. Fourth, most of the patients in our study were Caucasians, which may limit the general application of our results. In spite of these, our present meta-analysis also had some advantages. First, analyzing two Rad51 gene polymorphisms with a total of 54 case-control studies has a much greater statistical power compared with any single study. Second, we excluded the studies in which genotype frequencies in controls were not in accordance with HWE, providing sufficient evidence for drawing safe conclusions about

Study	OR(95%CI)	%Weight
Kuschel (2002)	0.69 (0.74, 1.06)	20.52
Auranen (2005)	1.06 (0.86, 1.31)	13.22
Auranen (2005)	0.96 (0.71, 1.30)	6.66
Auranen (2005)	1.02 (0.77, 1.36)	7.44
Auranen (2005)	0.97 (0.73, 1.30)	7.44
Lee (2005)	0.80 (0.55, 1.17)	4.89
Rollinson (2006)	1.23 (0.97, 1.56)	10.00
Lu (2006)	0.87 (0.70, 1.09)	14.00
Silva (2006)	0.91 (0.67, 1.24)	6.67
Gresner (2012)	0.60 (0.45, 1.44)	2.03
Romanowicz-Milowska (2012)	1.05 (0.74, 1.50)	4.80
Bastos (2009)	1.56 (0.93, 2.60)	1.95
Overall (i-squared = 3.1%, p = 0.414)	0.98 (0.91, 1.06)	100.00

Figure 3. Forest plot for association of Rad51 G172T polymorphism and cancer risk (dominant model, TT+GT vs. GG).
doi:10.1371/journal.pone.0087259.g003

Figure 4. Begg’s funnel plot for publication bias in studies on Rad51 G135C polymorphism and cancer (homozygote model, CC vs. GG).
doi:10.1371/journal.pone.0087259.g004
the association between the Rad51 polymorphisms and cancer risk. Third, the stability and credibility of the present meta-analysis was confirmed by the sensitivity analyses and publication biases analyses. Last, the findings highlight the association between Rad51 gene polymorphisms and cancer development and will provide directions for future research on molecular mechanism of cancer.

Conclusions

Our investigations suggested that the Rad51 G135C polymorphism is a candidate for susceptibility to overall cancers, especially to breast cancer, and that the G172T polymorphism is significantly associated with decreased risk of head and neck cancers. Further studies are needed with large sample size and deeper evaluation about the effect of gene-gene and gene-environment interactions on the Rad51 polymorphisms and cancer risk.

Supporting Information

Figure S1 Sensitivity analysis of the summary OR of the association between Rad51 G135C polymorphism and cancer susceptibility in homozygote model. (TIF)

Figure S2 Sensitivity analysis of the summary OR of the association between Rad51 G172T polymorphism and cancer susceptibility in homozygote model. (TIF)

Checklist S1 PRISMA Checklist. (DOCX)

Author Contributions

Conceived and designed the experiments: MMZ PC YBD XLZ. Performed the experiments: MMZ YBD XJZ. Analyzed the data: MMZ PC. Contributed reagents/materials/analysis tools: MMZ YBD XJZ XLZ. Wrote the paper: MMZ XLZ. Revised manuscript: MMZ PC XLZ.

References

1. Bredberg A (2011) Cancer: more of polygenic disease and less of multiple mutations? A quantitative viewpoint. Cancer 117: 440–445.
2. Pharoah PD, Dunning AM, Ponder BA, Easton DF (2004) Association studies for finding cancer-susceptibility genetic variants. Nat Rev Cancer 4: 850–860.
3. Horijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411: 366–374.
4. Dixon K, Kopras E (2004) Genetic alterations and DNA repair in human carcinogenesis. Semin Cancer Biol 14: 441–448.
5. Wood RD, Mitchell M, Sgu逗oos J, Lindahl T (2001) Human DNA repair genes. Science 291: 1284–1289.
6. Yu Z, Chen J, Ford BN, Brackley ME, Glickman BW (1999) Human DNA repair systems: an overview. Environ Mol Mutagen 33: 3–20.
7. Krajnovic M, Labuda D, Mathonnet G, Labuda M, Moghrabi A, et al. (2002) Polymorphisms in genes encoding drugs and xenobiotic metabolizing enzymes, DNA repair enzymes, and response to treatment of childhood acute lymphoblastic leukemia. Clin Cancer Res 8: 802–810.
8. Richardson C (2005) RAD51, genomic stability, and tumorigenesis. Cancer Lett 218: 127–139.
9. Vique S, Defais M (1997) Mammalian Rad51 protein: a RecA homologue with pleiotropic functions. Biochimie 79: 587–592.
10. Hassellbach L, Haase S, Fischer D, Kolberg HC, Sturzbecher HW (2005) Characterisation of the promoter region of the human DNA-repair gene Rad51. Eur J Gynaecol Oncol 26: 389–398.

11. Thacker J (2005) The RAD51 gene family, genetic instability and cancer. Cancer Let 219: 125–135.
12. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21: 1539–1558.
13. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22: 719–748.
14. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7: 177–188.
15. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315: 629–634.
16. Kuschel B, Auranen A, McBride S, Novik KL, Antoniou A, et al. (2002) Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum Mol Genet 11: 1399–1407.
17. Seedhouse C, Faulkner R, Ashraf N, Das-Gupta E, Russell N (2004) Polymorphisms in genes involved in homologous recombination repair interact to increase the risk of developing acute myeloid leukemia. Clin Cancer Res 10: 2675–2680.
18. Wang LE, Bondy ML, Shen H, El-Zein R, Aldape K, et al. (2004) Polymorphisms of DNA repair genes and risk of glioma. Cancer Res 64: 5560–5563.
19. Auranen A, Song H, Waterfall C, Diciccoio RA, Kuschel B, et al. (2005) Polymorphisms in DNA repair genes and epithelial ovarian cancer risk. Int J Cancer 117: 611–618.
Romanowicz-Makowska H, Smolarz B, Zadrozny M, Kulig A (2010) Genetic polymorphisms of selected DNA repair genes, estrogen and progesterone receptor status, and breast cancer risk. Clin Cancer Res 16: 4620–4626.

Romanowicz-Makowska H, Smolarz B, Kulig A (2005) Germ-line BRCA1 mutations and G/C polymorphism in the 5′-untranslated region of the RAD51 gene in Polish women with breast cancer. Pol J Pathol 56: 161–165.

Slivinski T, Krupa R, Majstercek I, Rykala J, Kolacinska A, et al. (2005) Polymorphisms of the BRCA2 and RAD51 genes in breast cancer. Breast Cancer Res Treat 94: 103–109.

Webb PM, Hopper JL, Newson B, Chen X, Kelemen L, et al. (2005) Double-strand break repair gene polymorphisms and risk of breast or ovarian cancer. Cancer Epidemiol Biomarkers Prev 14: 319–323.

Romanowicz-Makowska H, Smolarz B, Zadrozny M, Kulig A (2006) Analysis of RAD51 polymorphism and BRCA1 mutations in Polish women with breast cancer. Exp Oncol 28: 156–159.

Tarasov VA, Aslanyan MM, Tsyrendorzhiyeva ES, Litvinov SS, Gar’kavtseva RF, et al. (2006) Genetically determined subdivision of human populations with respect to the risk of breast cancer in women. Doki Biol Sci 496: 66–69.

Antonou AC, Sinilnikova OM, Simard J, Leone M, Dumont M, et al. (2007) RAD51 135G→C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Ann J Hum Genet 81: 1196–1200.

Costa S, Pinto D, Pereira D, Rodrigues H, Gomes-Teijeiro J, et al. (2007) DNA repair polymorphisms might contribute differently on familial and sporadic breast population: a study on a Portuguese population. Breast Cancer Res Treat 103: 209–217.

Figueroa JD, Malats N, Rothman N, Real FX, Silverman D, et al. (2007) Evaluation of genetic variation in the double-strand break repair pathway and breast cancer risk. PLoS Genet 3: e179.

Jakubowska A, Gronwald J, Menkiszak J, Gorski B, Huzarski T, et al. (2007) The RAD51 135G→C polymorphism modifies breast cancer and ovarian cancer risk in Polish women with breast cancer. Cancer Epidemiol Biomarkers Prev 16: 270–275.

Jara L, Acevedo ML, Blanco R, Castro VG, Bravo T, et al. (2007) RAD51 135G→C polymorphism and risk of familial breast cancer in a South American population. Cancer Genet Cytogenet 178: 65–69.

Li J, Wang LE, Xiong P, Sturgis EM, Spitz MR, et al. (2007) 172G→A polymorphism of the homologous recombination repair genes RAD51 and XRCC2 in breast cancer patients. Mutat Res 648: 1163–1170.

Liao L, Wang L, Li Y, Wang J, Li J, et al. (2011) RAD51 and XRCC3 gene polymorphisms: impact on the risk and treatment outcomes of de novo inv(16) or t(16;16)CBHbeta-MYH11(+) acute myeloid leukemia. Leuk Res 35: 1020–1026.

Gil J, Ramsey D, Stembalska A, Karpińska P, Pesz KA, et al. (2012) The C/A polymorphism in intron 11 of the XRCC1 gene plays a crucial role in the modulation of an individual’s susceptibility to sporadic colorectal cancer. Mol Biol Rep 39: 527–534.

Gresner P, Gromadzinska J, Polanska K, Twardowska E, Jurwicz J, et al. (2012) Genetic variability of Xrcc3 and Rad51 modulates the risk of head and neck cancer. Gene 494: 166–174.

Mucha B, Przybyłowska-Sygut K, Dziak L, Dziak A, Sygut A, et al. (2012) Lack of association between the 135G/C RAD51 gene polymorphism and the risk of colorectal cancer among Polish population. Pol Przegl Chir 84: 538–542.

Romanowicz-Makowska H, Samulik D, Michalska M, Sporny S, Langner E, et al. (2012) RAD51 gene polymorphisms and sporadic colorectal cancer risk in Poland. Pol J Pathol 63: 193–198.

Romanowicz-Makowska H, Smolarz B, Gajewska M, Kierszka K, Rydzanicz M, et al. (2012) Polymorphism of the DNA repair genes RAD51 and XRCC2 in smoking- and drinking-related laryngeal cancer in a Polish population. Arch Med Sci 8: 1065–1073.

Romanowicz-Makowska H, Smolarz B, Polacić I, Sporny S (2012) Single nucleotide polymorphisms of RAD51 G135C, XRCC2 C180A and XRCC3 C79G and risk of breast or ovarian cancer. Carcinogenesis 33: 117–123.

Sun H, Bai J, Chen F, Jin Y, Yu Y, et al. (2011) RAD51 G135C polymorphism is associated with breast cancer risk and common single nucleotide polymorphisms in homologous recombination DNA repair pathway genes XRCC1, XRCC3, NBS1 and RAD51. Cancer Epidemiol Biomarkers Prev 20: 720–275.

Hamdy MS, El-Haddad AM, Bahaa El-Din NM, Mahfouf MM, Abdel-Hamid SM (2011) RAD51 and XRCC3 gene polymorphisms and the risk of developing acute myeloid leukemia. J Investig Med 59: 1124–1130.

Krupa R, Sobczuk A, Poplawski T, Wozniak K, Blasiak J (2011) DNA damage and repair in endometrial cancer in correlation with the HOOG1 and RAD51 genes polymorphism. Mol Biol Rep 38: 1163–1170.

Liu L, Yang L, Mi Y, Wang J, Li J, et al. (2011) RAD51 and XRCC3 gene polymorphisms: impact on the risk and treatment outcomes of de novo inv(16) or t(16;16)CBHbeta-MYH11(+) acute myeloid leukemia. Leuk Res 35: 1020–1026.

Gresner P, Gromadzinska J, Polanska K, Twardowska E, Jurwicz J, et al. (2012) Genetic variability of Xrcc3 and Rad51 modulates the risk of head and neck cancer. Gene 494: 166–174.

Liu L, Wang L, Li Y, Wang J, Li J, et al. (2011) RAD51 and XRCC3 gene polymorphisms: impact on the risk and treatment outcomes of de novo inv(16) or t(16;16)CBHbeta-MYH11(+) acute myeloid leukemia. Leuk Res 35: 1020–1026.

Gresner P, Gromadzinska J, Polanska K, Twardowska E, Jurwicz J, et al. (2012) Genetic variability of Xrcc3 and Rad51 modulates the risk of head and neck cancer. Gene 494: 166–174.

Hamdy MS, El-Haddad AM, Bahaa El-Din NM, Mahfouf MM, Abdel-Hamid SM (2011) RAD51 and XRCC3 gene polymorphisms and the risk of developing acute myeloid leukemia. J Investig Med 59: 1124–1130.

Krupa R, Sobczuk A, Poplawski T, Wozniak K, Blasiak J (2011) DNA damage and repair in endometrial cancer in correlation with the HOOG1 and RAD51 genes polymorphism. Mol Biol Rep 38: 1163–1170.

Liu L, Yang L, Mi Y, Wang J, Li J, et al. (2011) RAD51 and XRCC3 gene polymorphisms: impact on the risk and treatment outcomes of de novo inv(16) or t(16;16)CBHbeta-MYH11(+) acute myeloid leukemia. Leuk Res 35: 1020–1026.

Gresner P, Gromadzinska J, Polanska K, Twardowska E, Jurwicz J, et al. (2012) Genetic variability of Xrcc3 and Rad51 modulates the risk of head and neck cancer. Gene 494: 166–174.

Liu L, Wang L, Li Y, Wang J, Li J, et al. (2011) RAD51 and XRCC3 gene polymorphisms: impact on the risk and treatment outcomes of de novo inv(16) or t(16;16)CBHbeta-MYH11(+) acute myeloid leukemia. Leuk Res 35: 1020–1026.

Gresner P, Gromadzinska J, Polanska K, Twardowska E, Jurwicz J, et al. (2012) Genetic variability of Xrcc3 and Rad51 modulates the risk of head and neck cancer. Gene 494: 166–174.

Liu L, Wang L, Li Y, Wang J, Li J, et al. (2011) RAD51 and XRCC3 gene polymorphisms: impact on the risk and treatment outcomes of de novo inv(16) or t(16;16)CBHbeta-MYH11(+) acute myeloid leukemia. Leuk Res 35: 1020–1026.

Gresner P, Gromadzinska J, Polanska K, Twardowska E, Jurwicz J, et al. (2012) Genetic variability of Xrcc3 and Rad51 modulates the risk of head and neck cancer. Gene 494: 166–174.