Sedimentation in the Volga Cascade reservoirs in the 21st century

V V Zakonov
Papanin Institute for Biology of Inland Waters, Russian Academy of Science, Borok, Russia
zak@ibiw.ru

Abstract. The complex surveys of sediments in the Volga River reservoir has begun in the 20th century and continued in the 21st century providing the basis for a modern quantitative assessment of the impact of bottom sediments on functioning of freshwater ecosystems. The results may be used in modelling of the multi-factor components in the water-bottom sediments-biota system, prediction, creating of object-oriented, special and thematic maps as well as for making decisions on elimination the negative consequences associated with water quality.

1. Introduction
In the 20th century, the construction of hydroelectric power plants proceeded at a faster pace than the studies of large plain reservoirs. Technical problems related to the resettlement of people, alienation of lands, energy production and transfer, navigation, water consumption, recreation, etc. were solved promptly, but hydroecological problems were not predictable still being relevant [1; 2]. The Volga reservoirs are the most studied ones in Russia, where the issues of sedimentation (formation, distribution and accumulation of bottom sediments) were given priority attention long before their design. The study of the bed of future reservoirs was of utmost importance, since it was the primary link in soil erosion and the place of formation of secondary soils - bottom sediments (BS) [3; 4].

Bottom sediments are multicomponent mineral-organic natural formations, reflecting all the diversity of intra-water basin, basin and planetary, hydrophysical and biogeochemical processes in their heterodispersity and chemogenic composition that affect the functioning of freshwater ecosystems through the interaction between water, sediments and biota.

The process of sedimentation – the deposition of suspended sediment (80–90%), biological substance and chemical deposition of salts, including pollutants in the sediment (10–20%) is not just a manifestation of the physical laws of hydrodynamics, but a complex formation of a new substance in nature, where, pollutants from various sources dissolved in water participate in the process along with suspended particles (seston) [5; 6].

The purpose of the article is to assess the specificity and direction of sedimentation processes at the beginning of the 21st century to use the information obtained in further hydrobiogeochemical studies.

2. Materials and methods
The paper summarizes the materials of monitoring studies of sedimentation in the Volga reservoirs from the middle of the 20th century, performed according to unified methods [3; 4]. Since 2001, the
second stage of water reservoirs’ existence began when the sedimentary processes became stable and predictable, which makes it possible to make situational forecasts to the 100th anniversary of the operation of technogenic reservoirs. As before, all complex hydrological surveys were carried out within a the standard grid of sampling stations. The error in determining the intensity of sedimentation is 10-20%, which is quite acceptable for this kind of calculations. The area covered by various types of BS was determined using bathymetric maps and project morphometric documentation, which characterizes the littoral, sublittoral and profundal zones of water bodies, taking into account their probabilistic distribution. Method error is about 5% and depends on the number of stations in the specified depth intervals.

3. Analysis of the results

The processes of sedimentation have their own peculiarities in each reservoir. However, the dynamics of the distribution of various types of soils and bottom alluvia in the Volga reservoirs with a 10-year ranking to the 100th anniversary of their operation, revealed general patterns of transformation of the bottom complex (drawing):

- Reduction of the areas occupied by soils, their transition to the category of transformed soils and newly formed hydromorphic soils - swamps and swamp-meadow;
- an increase in the areas of sandy alluvia;
- an increase in the ranges of clayey silts, and then their reduction.

The diagrams of the total magnitude of the latter (secondary sediments) demonstrate a gradual increase lasting for 30-40 years, and then a decrease and stabilization of areas.

![Figure 1](image)

Figure 1. Distribution of the area of the bottom complex in the Volga reservoirs. 1 – transformed soils, 2 – sandy alluvia, 3 – silty sediments, 4 – secondary sediments.

The morphological and hydrodynamic features of the reservoirs determine the specifics of the distribution and features of its bed formation [7] (table 1).

Changes in the morphometric characteristics of the reservoirs taking place in the result of their long-time functioning are caused by the alienation of areas of the reservoir due to formation of hydromorphic soil, accretion of quagmires with the bottom, the creation of new reservoirs (Cheboksary, Nizhnemanskoe), the cut-off and erosion of the coast (Volgograd), sand drifting of the bed. The provided table gives information on the zones of the erosion, which are mainly located in the lower reaches, river areas with high flow, as well as in shallow water reservoirs (Rybinsk) and lake-like stretches and extensions, which are dominated by the circulation of water caused by wind-wave processes for the first time. These areas are natural reactors saturating the water with oxygen and self-cleaning from harmful pollutants.
The results of the last bottom surveys at the junction of the centuries showed the stability of the structure of the bed and intensity of sedimentation by type:
- sedimentation - accumulation of all types of alluvia (coarse and finely dispersed) in the area of their distribution;
- sand drifts - on the area of the reservoir;
- Silt accumulation is the accumulation of aleuritic and perlitic fractions in their area (tables 2; 3).

Table 1. Structure of the bottom complex of Volga reservoirs in the beginning of 21st century.

Bed structure	Area	Average depth, cm	Volume, 10^6m3	Mass, 10^6t
	km2			
Ivankovo – 2012 [8]				
Hydromorphic bottoms	40	–	–	–
Erosion zones	43	–	–	–
Sandy alluvia	134	47	8.1	109
Silty alluvia	110	38	22.5	247
Uglich – 2012 [9]				
Hydromorphic bottoms	23	–	–	–
Erosion zones	24	–	–	–
Sandy alluvia	139	61	8.6	120
Silty alluvia	63	28	28.6	179
Rybinsk – 2010 [10]				
Hydromorphic bottoms	70	–	–	–
Erosion zones	567	13	–	–
Sandy alluvia	2639	59	8.1	2138
Silty alluvia	1274	28	41.0	5223
Gorky – 2010 [11]				
Hydromorphic bottoms	82	–	–	–
Erosion zones	202	13	–	–
Sandy alluvia	790	53	8.5	670
Silty alluvia	506	34	25.1	1270
Cheboksary – 2010 [12]				
Erosion zones	208	17	–	–
Sandy alluvia	630	53	3.3	208
Silty alluvia	362	30	8.8	319
Kuybyshiev – 2016 [13]				
Hydromorphic bottoms	30	–	–	–
Erosion zones	788	14	–	–
Sandy alluvia	2602	44	11.1	2888
Silty alluvia	2480	42	43.2	10714
Saratov – 2017				
Erosion zones	465	25	–	–
Sandy alluvia	1056	57	11.3	1192
Silty alluvia	312	18	45.0	1400
Volgograd – 2016				
Erosion zones	390	12	–	–
Sandy alluvia	1559	48	13.9	2167
Silty alluvia	1299	40	46.5	6040
Table 2. Average annual intensity of sediment formation in Volga reservoirs in the end of 20th century.

Reservoir	Sediment accumulation mm	Sediment accumulation kg/m²	Sand drifts mm	Sand drifts kg/m²	Silt accumulation mm	Silt accumulation kg/m²
Ivankovo	2.1	1.8	1.9	1.6	3.3	1.8
Uglich	2.5	1.9	1.9	1.4	5.6	1.9
Rybinsk	2.9	1.8	2.3	1.4	6.7	2.0
Gorky	2.8	2.1	2.2	1.7	4.5	2.3
Cheboksary	2.3	2.7	1.8	2.2	3.6	2.6
Kuybyshev	4.4	2.9	3.8	2.5	7.0	3.8
Saratov	3.7	4.3	2.7	3.1	9.1	6.0
Volgograd	5.4	4.7	4.6	4.0	8.0	5.3
R²	0.70	0.85	0.59	0.84	0.50	0.81

Table 3. Average annual intensity of sediment formation in Volga reservoirs in the beginning of the 21st century.

Reservoir	Sediment accumulation mm	Sediment accumulation kg/m²	Sand drifts mm	Sand drifts kg/m²	Silt accumulation mm	Silt accumulation kg/m²
Ivankovo	1.9	1.7	1.7	1.4	3.0	1.5
Uglich	2.1	1.6	1.8	1.4	4.0	1.3
Rybinsk	2.7	2.3	2.4	2.0	5.9	3.0
Gorky	2.7	2.0	2.2	1.7	4.6	2.4
Cheboksary	1.8	2.0	1.5	1.6	3.0	1.9
Kuybyshev	4.4	2.8	3.8	2.4	7.1	3.9
Saratov	3.8	4.3	2.8	3.2	9.0	6.4
Volgograd	4.9	4.4	4.3	3.9	8.0	5.3
R²	0.69	0.78	0.59	0.77	0.62	0.73

The geographic zoning of BS accumulation in the system of reservoirs of the Volga cascade is clearly traced despite the fluctuating character of sediment formation indices [14].

4. Conclusion
The study of sedimentation processes and conditions of sediment formation in limnic systems is very important, because in the first case, the characteristic of alluvia retention is given, which is necessary for calculating the operation time of a reservoir, and in others, hydroecological aspects are clarified related to: the peculiarities of the accumulation of bottom sediments, the bioproductivity of the bottom, the deposition of chemical elements, assessment of the risk of secondary water pollution, eutrophication of water bodies, operation, reconstruction, rehabilitation. This makes it possible to use an integrated geoecological approach in the study of bottom sediments:
- hydrological and geomorphological;
- sedimentological;
- hydrochemical;
- hydrobiological.

Acknowledgments
The work was carried out within the framework of the AAAA-A18-118012690104-3 theme and the priority project “Rehabilitation of the Volga” AAAA-A18-118052590015-9.
References

[1] Dams and Development. A new Framework for Decision-Making 2000 The Report of the World Commission on Dams London p 600

[2] Magilligan FJ and Nislov K H 2005 Changes in hydrologic regime by dams // Geomorphology 71 pp 61–78

[3] Butorin N V, Ziminova N A, Kurdin V P 1975 Donnye otlozheniya verkhnevolzhskikh vodokhranilishch [Bottom Sediments of the Upper Volga Reservoirs] (L: Nauka) p 160

[4] Zakonnov V V 2007 Osadkoobrazovaniye v vodokhranilishchakh Volzhskogo kaskada [Sediments formation in the reservoirs of the Volga cascade] Avtoref dis. … dokt. geogr. nauk M.: IGRAN p 39

[5] Ostroumov S A 2005 O samoochishchenii vodnykh ekosistem [On the process of self-purification of aquatic ecosystems] Antropogennoye vliyaniye na vodnye ekosistemy (M.: MGU) pp 94–119

[6] Wetzel 2001 Limnology: Lake and River Ecosystems. Academic Pres: San Diego 1006 pp

[7] Einstein N.A. 1950 The bedload function for sediment transportation in open channel Flow US Dept., Agris. Soil Cons. Tech. Bull. 1026. p 71

[8] Zakonnov V V, Grigor’yeva I L and Zakonnova A V 2018 Prostranstvenno-vremenennaya transformatsiya gruntovogo kompleksa vodokhranilishch Volgi. Soobshcheniye 5. Donnyye otlozheniya i kachestvo vody Ivan’kovskogo vodokhranilishcha [Spatial and Temporal Transformation of Bottom Sediments in the Volga River Reservoirs Communication 5. Bottom sediments and water quality of the Ivankovskoe reservoir] Vodnoye khozyaystvo Rossi 3 pp 35–48

[9] Zakonnov V V, Gershhevsky P, Zakonnova A V and Koshubsky M 2016 Prostranstvenno-vremenennaya transformatsiya donnykh otlozheniy vodokhranilishch Volgi. Soobshcheniye 3. Otseika izmeneniye morfometricheskih kharakteristik v rezultate naklopeniya donnykh otlozheniy v Uglichem vodokhranilishche [Spatial and Temporal Transformation of Bottom Sediments in the Volga River Reservoirs Communication 3. Assessment of Changes in Morphometric Characteristics as a Result of Accumulation of Bottom Sediments in the Uglich Reservoir] Vodnoye khozyaystvo Rossi 6 pp 61–72

[10] Zakonnov V V, Litvinov A S and Zakonnova A V 2015 Prostranstvenno-vremenennaya transformatsiya gruntovogo kompleksa vodokhranilishch Volgi. Soobshcheniye 2. Rezultaty monitoringa donnykh otlozheniy i posledstviya ponizheniya urovnya Rybinskogo vodokhranilishcha [Spatial and Temporal Transformation of Bottom Sediments in the Volga River Reservoirs Communication 2. The results of monitoring of bottom sediments and consequences of the decrease in the water level in the Rybinsk] Vodnoye khozyaystvo Rossi 4 pp 21–35

[11] Zakonnov V V, Kostrov A V and Zakonnova A V 2017 Prostranstvenno-vremenennaya transformatsiya gruntovogo kompleksa vodokhranilishch Volgi. Soobshcheniye 4. Rol’ beregozashchity v formirovanii donnykh otlozheniy Gorkovskogo vodokhranilishcha [Spatial and Temporal Transformation of Bottom Sediments in the Volga River Reservoirs Communication 4. The Role of Bank Protection in the Formation of Bottom Sediments of the Gorky Reservoir] Vodnoye khozyaystvo Rossi 4 pp 60–74

[12] Zakonnov V V, Komov V T and Zakonnova A V 2015 Prostranstvenno-vremenennaya transformatsiya gruntovogo kompleksa vodokhranilishch Volgi. Soobshcheniye 1. Donnyye otlozheniya i ikh izmeneniya v svyazi s povysheniym urovnya Cheboksarskogo vodokhranilishcha [Spatial and Temporal Transformation of Bottom Sediments in the Volga River Reservoirs. Communication 1. Bottom Sediments and their changes in connection with the Rise in the Level of the Cheboksary reservoir Vodnoye khozyaystvo Rossi 3 pp 4–19.

[13] Zakonnov V V, Ivanov D V, Khasanov R R, Zakonnova A V, Malanin V V and Marasov A A 2019 Prostranstvenno-vremenennaya transformatsiya gruntovogo kompleksa vodokhranilishch Volgi. Soobshcheniye 6. Donnyye otlozheniya Kuybyshevskogo vodokhranilishcha i ikh
Spatial and Temporal Transformation of Bottom Sediments in the Volga River Reservoirs Communication 6. The Kuybyshev Reservoir Bottom Sediments and their Mapping with the Use of Geo-information Techniques

[14] Zakonov V and, Zakonnova A V 2008 Geograficheskaya zonal'nost' osadkoobrazovaniya v sisteme volzhskikh vodokhranilishch [The Geographic zoning of sediment formation in the system of the Volga reservoirs] Izv. RAN. Ser. geogr. 2 pp 105–111