Are ACT’s scores increasing with better translation quality?

Najeh Hajlaoui
Idiap Research Institute
Rue Marconi 19
CH-1920 Martigny Switzerland
Najeh.Hajlaoui@idiap.ch

Abstract
This paper gives a detailed description of
the ACT (Accuracy of Connective Translation) metric, a reference-based metric
that assesses only connective translations.
ACT relies on automatic word-level align-
ment (using GIZA++) between a source
sentence and respectively the reference
and candidate translations, along with
other heuristics for comparing translations
discourse connectives. Using a diction-
ary of equivalents, the translations are
scored automatically or, for more accuracy,
semi-automatically. The accuracy of
the ACT metric was assessed by human
judges on sample data for English/French,
English/Arabic, English/Italian and En-
glish/German translations; the ACT scores
are within 2-5% of human scores.
The actual version of ACT is available
only for a limited language pairs. Conse-
quently, we are participating only for the
English/French and English/German lan-
guage pairs. Our hypothesis is that ACT
metric scores increase with better transla-
tion quality in terms of human evaluation.

1 Introduction
Discourse connectives should preserve their sense
during translation, as they are often ambiguous
and may convey more than one sense depending
on the inter-sentential relation (causality, conces-
sion, contrast or temporal). For instance, since
in English can express temporal simultaneity, but
also a causal sense.

In this paper, we present results of different Ma-
chine Translation systems for English-to-French
and English-to-German pairs. More specifically,
we measure the quality of machine translations
of eight English discourse connectives: although,
even though, meanwhile, since, though, while,
however, and yet, adopting different approaches.
This quality is measured using a dedicated met-
ric named ACT (Accuracy of Connective Transla-
tion), a reference-based metric that assesses only
connective translations.

The paper is organized as follows. In Section 2,
we present the ACT metric and its error rate. In
section 3, we compare the ACT metric to previous
machine translation evaluation metrics. Finally,
we present the results of the different English-to-
German and English-to-French MT systems (Sec-
tion 4).

2 ACT Metric
We described the ACT metric in (Hajlaoui and
Popescu-Belis, 2013) and (Hajlaoui and Popescu-
Belis, 2012). Its main idea is to detect, for a given
explicit source discourse connective, its transla-
tion in a reference translation and in a candidate
translation. ACT then compares and scores these
translations. To identify the translations, ACT first
uses a dictionary of possible translations of each
discourse connective type, collected from training
data and validated by humans. If a reference or a
candidate translation contains more than one pos-
sible translation of the source connective, align-
ment information is used to detect the correct con-
nective translation. If the alignment information is
irrelevant (not equal to a connective), it then com-
pares the word position (word index) of the source
connective alignment with the index in the trans-
lated sentence (candidate or reference) and the set
of candidate connectives to disambiguate the con-
nective’s translation. Finally, the nearest connective
to the alignment is taken.

ACT proceeds by checking whether the refer-
ence translation contains one of the possible trans-
lations of the connective in question. After that, it
similarly checks if the candidate translation con-
tains a possible translation of the connective. Fi-
nally, it checks if the reference connective found is equal (case 1), synonymous (case 2) or incompatible \(^1\) (case 3) to the candidate connective. Discourse relations can be implicit in the candidate (case 4), or in the reference (case 5) translation or in both of them (case 6). These different comparisons can be represented by the following 6 cases:

- **Case 1**: same connective in the reference (Ref) and candidate translation (Cand).
- **Case 2**: synonymous connective in Ref and Cand.
- **Case 3**: incompatible connective in Ref and Cand.
- **Case 4**: source connective translated in Ref but not in Cand.
- **Case 5**: source connective translated in Cand but not in Ref.
- **Case 6**: the source connective neither translated in Ref nor in Cand.

Based on the connective dictionary categorised by senses, ACT gives one point for identical (case 1) and equivalent translations (case 2), otherwise zero. ACT proposes a semi-automatic option by manually checking instances of case 5 and case \(^2\).

ACT returns the ratio of the total number of points to the number of source connectives according to the three versions: (1) \(ACT_a\) counts only case 1 and case 2 as correct and all others cases as wrong, (2) \(ACT_{a5+6}\) excludes case 5 and case 6 and (3) \(ACT_{m}\) considers the correct translations found by manual scoring of case 5 and case 6 noted respectively case5corr and case6corr to better consider these implicit cases.

\[
ACT_a = \frac{\sum_{i=1}^{6} | \text{case}_i |}{\sum_{i=1}^{6} | \text{case}_i |} \quad (1)
\]
\[
ACT_{a5+6} = \frac{\sum_{i=1}^{4} | \text{case}_i |}{\sum_{i=1}^{6} | \text{case}_i |} \quad (2)
\]
\[
ACT_m = ACT_a + \frac{\sum_{i=1}^{6} | \text{case5corr}_i |}{\sum_{i=1}^{6} | \text{case}_i |} \quad (3)
\]

\(^1\)In terms of connective sense.

\(^2\)We do not check manually case 4 because we observed that its instances propose generally explicit translations that do not belong to our dictionary, it means the SMT system tends to learn explicit translations for explicit source connective.

2.1 Configurations of ACT metric

As shown in Figure 1, ACT can be configured to use an optional disambiguation module. Two versions of this disambiguation module can be used: (1) without training, which means without saving an alignment model and only using GIZA++ as alignment tool; (2) with training and saving an alignment model using MGIZA++ (a multi-threaded version of GIZA++) trained on an external corpus to align the (Source, Reference) and the (Source, Candidate) data.

![ACT architecture](image)

ACT is more accurate using the disambiguation module. We encourage to use the version without training since it only requires the installation of the GIZA++ tool. Based on its heuristics and on its connective dictionaries categorised by senses, ACT has a higher precision to detect the right connective when more than one translation is possible. The following example illustrates the usefulness of the disambiguation module when we have more than one possible translation of the source connective. Without disambiguation, ACT detects the same connective \(\text{si}\) in both target sentences (wrong case 1), while the right translation of the source connective **although** is **bien que** and **même si** respectively in the reference and the candidate sentence (case 2).

Without disambiguation, case 1: \(C_{src} = \text{although},\ C_{ref} = \text{si},\ C_{cand} = \text{si}\)

With disambiguation, case 2: \(C_{src} = \text{although (concession)},\ C_{ref} = \text{bien que},\ C_{cand} = \text{même si}\)

- **SOURCE:** we did not have it so bad in ireland this time **although** we have had many serious wind storms on the atlantic .
In the following experiments, we used the recommended configuration of ACT (without training).

2.2 Error rate of the ACT metric

ACT is a free open-source Perl script licensed under GPL v3\(^3\). It has a reasonable and acceptable error score when comparing its results to human judgements (Hajlaoui and Popescu-Belis, 2013). Its accuracy was assessed by human judges on sample data for English-to-French, English-to-Arabic, English-to-Italian and English-to-German translations; the ACT scores are within 2-5% of human scores.

2.3 Multilingual architecture of ACT Metric

The ACT architecture is multilingual: it was initially developed for the English-French language pair, then ported to English-Arabic, English-Italian and English-German.

The main resource needed to port the ACT metric to another language pair is the dictionary of connectives matching possible synonyms and classifying connectives by sense. To find these possible translations of a given connective, we proposed an automatic method based on a large corpus analysis (Hajlaoui and Popescu-Belis, 2012). This method can be used for any language pair.

Estimating the effort that would have to be taken to port the ACT metric to new language pairs focusing on the same linguistic phenomena mainly depends on the size of parallel data sets containing the given source connective. The classification by sense depends also on the number of possible translations detected for a given source connective. This task is sometimes difficult, as some translations (target connectives) can be as ambiguous as the source connective. Native linguistic knowledge of the target language is therefore needed in order to complete a dictionary with the main meanings and senses of the connectives.

We think that the same process and the same effort can be taken to adapt ACT to new linguistic phenomena (verbs, pronouns, adverbs, etc).

3 Related works

ACT is different from existing MT metrics. The METEOR metric (Denkowski and Lavie, 2011) uses monolingual alignment between two translations to be compared: a system translation and a reference one. METEOR performs a mapping between unigrams: every unigram in each translation maps to zero or one unigram in the other translation. Unlike METEOR, the ACT metric uses a bilingual alignment (between the source and the reference sentences and between the source and the candidate sentences) and the word position information as additional information to disambiguate the connective situation in case there is more than one connective in the target (reference or candidate) sentence. ACT may work without this disambiguation.

The evaluation metric described in (Max et al., 2010) indicates for each individual source word which systems (among two or more systems or system versions) correctly translated it according to some reference translation(s). This allows carrying out detailed contrastive analyses at the word level, or at the level of any word class (e.g. part of speech, homonymous words, highly ambiguous words relative to the training corpus, etc.). The ACT metric relies on the independent comparison of one system’s hypothesis with a reference. An automatic diagnostics of machine translation and based on linguistic checkpoints (Zhou et al., 2008), (Naskar et al., 2011) constitute a different approach from our ACT metric. The approach essentially uses the BLEU score to separately evaluate translations of a set of predefined linguistic checkpoints such as specific parts of speech, types of phrases (e.g., noun phrases) or phrases with a certain function word. A different approach was proposed by (Popovic and Ney, 2011) to study the distribution of errors over five categories (inflectional errors, reordering errors, missing words, extra words, incorrect lexical choices) and to examine the number of errors in each category. This proposal was based on the calculation of Word Error Rate (WER) and Position-independent word Error Rate (PER), combined with different types of linguistic knowledge (base forms, part-of-speech tags, name entity tags, com-

\(^3\)Available from https://github.com/idiap/act.
pound words, suffixes, prefixes). This approach does not allow checking synonym words having the same meaning like the case of discourse connectives.

4 ACT-based comparative evaluation

We used the ACT metric to assess connective translations for 21 English-German systems and 23 English-French systems. It was computed on tokenized and lower-cased text using its second configuration “without training” (Hajlaoui and Popescu-Belis, 2013).

Table 1 shows only ACTa scores for the English-to-German translation systems since ACTa5+6 gives the same rank as ACTa. Table 2 present the same for the English-to-French systems. We are not presenting ACTm either because we didn’t check manually case 5 and case 6.

Metric	System	Value	Avg	SD
ACTa	cu-zeman.2724	0.772		
	online-B	0.647		
	LIMSI-N-S.2587	0.647		
	MES.2802	0.647		
	FDA.2890	0.638		
	KITprimary.2656	0.638		
	cu-zeman.2728	0.634		
	online-G	0.634		
	PROMT.2752	0.634		
	uedin-wmt13.2884	0.634		
	MES-inf-pr.2672	0.629		
	StdNLPGPTP.2765	0.629		
	DCUprimary.2827	0.625		
	JHU.2683	0.625		
	online-A	0.621		
	OmniFTEn-to-Fr.2647	0.616		
	RWTHp-Janepr.2639	0.612		
	OFITEEn.2645	0.591		
	rbmt-1	0.586		
	Its-LATL.2667	0.565		
	rbmt-3	0.565		
	rbmt-4	0.543		
	Its-LATL.2652	0.543		
	online-C	0.500		

Table 1: Metric scores for all En-De systems: ACTa and ACTa5+6 scores give the same rank; ACT V1.7. SD is the Standard Deviation.

Metric	System	Value	Avg	SD
ACTa	cu-zeman.2724	0.772		
	online-B	0.746		
	KITprimary.2663	0.737		
	StdNLPG.2764	0.733		
	JHU.2888	0.728		
	LIMSI-N-S.p.2589	0.720		
	online-G	0.720		
	Shew-proa.2748	0.720		
	RWTHJane.2676	0.711		
	uedin-wmt13.2638	0.707		
	UppsiaUnv.2698	0.707		
	online-A	0.698		
	rbmt-1	0.694		
	online-B	0.677		
	uedin-syntax.2611	0.672		
	online-C	0.664		
	FDA.2842	0.664		
	MES-reorder.2645	0.664		
	PROMT.2789	0.621		
	rbmt-4	0.513		

Table 2: Metric scores for all En-Fr systems: ACTa and ACTa5+6 scores give the same rank; ACT V1.7. SD is the Standard Deviation.

ACT can be also used semi-automatically. Consequently, the scores reflect more accurately the improvement in translation quality in terms of discourse connectives.

Theoretically, a better system should preserve the sense of discourse connectives. Our hypothesis is thus that ACT scores are increasing with better translation quality. We need access the human rankings of this task to validate if ACT’s scores indeed correlate with overall translation quality rankings.

5 Conclusion

The connective translation accuracy of the candidate systems cannot be measured correctly by current MT metrics such as BLEU and NIST. We therefore developed a new distance-based metric, ACT, to measure the improvement in connective translation. ACT is a reference-based metric that only compares the translations of discourse connectives. It is intended to capture the improvement of an MT system that can deal specifically with discourse connectives.

Acknowledgments

We are grateful to the Swiss National Science Foundation for its support through the COMTIS Sinergia Project, n. CRSI22_127510 (see www.idiap.ch/comtis/).

References

Marine Carpuat and Dekai Wu. 2005. Word sense disambiguation vs. statistical machine translation. In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics (ACL), pages 387–394, Sydney, Australia.

Marine Carpuat, Yihai Shen, Xiaofeng Yu, and Dekai Wu. 2006. Toward integrating word sense and entity disambiguation into statistical machine transla-
Michael Denkowski and Alon Lavie. 2011. Meteor
Laurence Danlos, Diégo Antolinos-Basso, Chloé
Laurence Danlos and Charlotte Roze. 2011. Traduc-
Jonathan Clark, Chris Dyer, Alon Lavie, and Noah
Bruno Cartoni and Thomas Meyer. 2012. Extracting
Marcello Federico, Nicola Bertoldi, and Mauro Cet-
Hugo Hernault, Danushka Bollegala, and Ishizuka Mit-
Najeh Hajlaoui and Andrei Popescu-Belis. 2013. As-
Najeh Hajlaoui and Andrei Popescu-Belis. 2012. Evalua-
Linguistics (ACL)
Annual Meeting of the Association for Computational
Sapporo, Japan.
Franz Josef Och. 2003. Minimum Error Rate Training
K. Naskar, S., A. Toral, F. Gaspari, and A. Way. 2011. A framework for diagnostic evaluation of mt based on linguistic checkpoints. In Proceedings of MT Summit XIII, Xiamen, China.
Franz Josef Och. 2003. Minimum Error Rate Training in Statistical Machine Translation. In Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics (ACL), pages 160–167, Sapporo, Japan.
M. Popovic and H. Ney. 2011. Towards automatic error analysis of machine translation output. Computational Linguistics, 37(4):657–688.
M. Zhou, B. Wang, S. Liu, M. Li, D. Zhang, and T. Zhao. 2008. Diagnostic evaluation of machine translation systems using automatically constructed linguistic check-points. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 399–409, Cambridge, MA.
Hugo Hernault, Helmut Prendergast, David A. duVerle, and Mitsuuru Ishizuka. 2010b. HILDA: A discourse parser using Support Vector Machine classification. Dialogue and Discourse, 3(1):1–33.
Alistair Knott and Chris Mellish. 1996. A feature-based account of the relations signalled by sentence and clause connectives. Language and Speech, 39(2–3):143–183.
Philipp Koehn and Hieu Hoang. 2007. Factored Translation Models. In Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing (EMNLP) and Computational Natural Language Learning (CONLL), pages 868–876, Prague, Czech Republic.
Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan Herbs. 2007. Moses: Open Source Toolkit for Statistical Machine Translation. In Proceedings of 45th Annual Meeting of the Association for Computational Linguistics (ACL), Demonstration Session, pages 177–180, Prague, Czech Republic.
Philipp Koehn. 2005. Europarl: A Parallel Corpus for Statistical Machine Translation. In Proceedings of MT Summit X, pages 79–86, Phuket, Thailand.
S. Kolachina, R. Prasad, D. Sharma, and A. Joshi. 2012. Evaluation of discourse relation annotation in the hindi discourse relation bank. In Proceedings of the eighth international conference on Language Resources and Evaluation (LREC), Istanbul, Turkey.
A. Max, J. M. Crego, and Yvon F. 2010. Contrastive lexical evaluation of machine translation. In Proceedings of the International Conference on Language Resources and Evaluation (LREC), Valletta, Malta.
K. Asahara, T. Uno, T. Ishige, H. Nakamura, and M. Inaba. 2005. A framework for statistical linking of lack of automatic linguistic recognition. In Proceedings of the 14th Annual Meeting of the Association for Computational Linguistics (ACL), pages 630–637, Prague, Czech Republic.
Najeh Hajlaoui and Andrei Popescu-Belis. 2013. Assessing the accuracy of discourse connective translations: Validation of an automatic metric. In Proceedings of the 14th International Conference on Intelligent Text Processing and Computational Linguistics, Samos, Greece.
Hugo Hernault, Danushka Bollegala, and Ishizuka Mis-
Related Media
of the 22rd International Conference on Computational Linguistics (COLING), pages 1121–1128, Manchester, UK.