Application of methods of identifying receptor binding models and analysis of parameters

Konstantin G Gurevich*

Address: UNESCO Chair in healthy life for sustainable development, Moscow State Dentistry Medical University (MSDMU), Delegatskaya street 20/1, 127473, Moscow, Russian Federation, Russia

Email: Konstantin G Gurevich* - kgurevich@newmail.ru

* Corresponding author

Abstract

Background: Possible methods for distinguishing receptor binding models and analysing their parameters are considered.

Results and Discussion: The conjugate gradients method is shown to be optimal for solving problems of the kind considered. Convergence with experimental data is rapidly achieved with the appropriate model but not with alternative models.

Conclusion: Lack of convergence using the conjugate gradients method can be taken to indicate inconsistency between the receptor binding model and the experimental data. Thus, the conjugate gradients method can be used to distinguish among receptor binding models.

Background

Most medicinal preparations and biologically active substances do not penetrate into cells and must therefore exert their influence on intracellular processes by interaction with specific protein molecules at the cell surface [1-3], for which the name “receptors” is in common use. Hormones and drugs that interact with receptors are known as “ligands”. Data from research in molecular biology, and also results from indirect studies, have established the following schemes of ligand-receptor interaction [see [4-6] represented by the general models:

Non-cooperative interaction between ligand and receptor:

\[R + L \xrightarrow{k_{+1}} RL \xleftarrow{k_{-1}} R + L \]

Cooperative interaction between ligand and receptor:

\[R + L \xrightarrow{k_{+1}} RL \xleftarrow{k_{-1}} R + L \]

\[RL + L \xrightarrow{k_{+2}} RL_2 \xleftarrow{k_{-2}} RL + L \]

\[RL_{n-1} + L \xrightarrow{k_{+n}} RL_n \xleftarrow{k_{-n}} RL_{n-1} + L \]
Interaction of one ligand with N types of binding sites

$$R_j + L \overset{k_{+j}}{\underset{k_{-j}}{\rightleftharpoons}} R_jL; \quad j = 1, N \ .$$ \hspace{1cm} (3)

Let us note that the ligand-receptor interaction can also involve a combination of all three of these schemes. The most frequently used method for studying ligand-receptor interactions is the radioreceptor method [7], based on measuring the amount of radioactively labelled ligand bound in some defined manner to the appropriate receptor. Thus, experimentally, direct measurements of ligand-receptor complex concentration, $[RL]$ are determined. The investigator has to solve two basic interrelated problems [6]:

1. discrimination among the ligand-receptor binding models (1–3 or modifications thereof);
2. determination of parameters that adequately relate the model to the experimental data.

From a pharmacological point of view, the most important parameters are the following:

$[R_0]$ (initial receptor concentration), and

$K_d = k_{1}/k_{+1}$ (dissociation constant) [7]

The concentration of receptors and the dissociation constant can be changed. Modification of these parameter values can occur in many physiological and pathophysiological situations. For instance, the receptor concentration can reflect functional receptor modifications, and the dissociation constant can reflect genetic alterations of the receptor [6].

To solve the two interrelated problems a series of graphic methods can be deployed, of which the most frequently used is the Scatchard method [7,8]. However, the application of graphic methods in many cases is limited because of experimental errors and/or receptor binding complexity [9,10]. In particular, graphic methods are inapplicable for definition of the cooperative binding parameters and for analysis of non-equilibrium binding.

Regression methods can be found for the measurement of ligand-receptor interaction constants [11]. As a matter of fact, these procedures computerize the graphic methods. Therefore, both regression methods and graphic methods are of limited applicability. The present paper argues that it is very difficult or impossible to discriminate reliably among receptor binding models or to analyse the parameters by traditional analytical methods.

Materials and methods

Let us write the law of mass action for each ligand-receptor interaction scheme as:

For the scheme (1)

$$\frac{d[RL]}{dt} = k_{+1}[R][L] - k_{-1}[RL] \ .$$ \hspace{1cm} (4)

But $[R] = [R_0] - [RL]$, $[L] = [L_0] - [RL]$.

So equation (4) can be rewritten:

$$\frac{d[RL]}{dt} = k_{+1}([R_0] - [RL])([L_0] - [RL]) - k_{-1}[RL] \ .$$ \hspace{1cm} (5)

This differential equation relates to the class of Rikkatty equations. It can be solved analytically with the help of a special substitution [12], but in all other cases the substitutions $[R] = [R_0] - [RL]$, $[L] = [L_0] - [RL]$ do not generate analytically soluble equations. Therefore, all equations of this form were solved numerically using the Runge-Kutta method [13,14].

The differential equations are as follows:

For scheme (2):

$$\begin{cases}
\frac{d[RL]}{dt} = k_{+1}[R][L] - k_{-1}[RL] - k_{+2}[RL][L] + k_{-2}[RL_2] \\
\frac{d[RL_n]}{dt} = k_{+n}[R][L_{n-1}][L] - k_{-n}[RL_n] .
\end{cases}$$ \hspace{1cm} (6)

For scheme (3):

$$\frac{d[R_jL]}{dt} = k_{+j}[R_j][L] - k_{-j}[R_jL]; \quad j = 1, N .$$ \hspace{1cm} (7)

Numerical solution of equations (5–7) was carried out to determine $[RL]_a$. Random error assuming the normal distribution law was superimposed on the magnitude of $[RL]_a$ and was calculated at 5, 10, 20 or 100 points.

The magnitude $[RT]_a$ was calculated using parameters other than $[RL]_a$ from models (1–3). These parameters were applied to the determination of $[RL]_a$ by the following functional minimization:

$$\Phi = ([RL]_a - [RL]_m)^2 \ .$$ \hspace{1cm} (8)

For functional minimization as per equation (8), Newton’s method and its variants (the conjugate gradients
method and coordinate descent method in various modifications) were used [15-17]. The iteration procedure stopped, when \(\Phi/|RL_u| \) was constant on the next iteration step.

It is clear from the literature [6] that \([R_0]\) and \(K_d\) cannot be \(<10^{-15}\text{ M}\) or \(>10^{-5}\text{ M}\). Hence the iteration procedure could be improved by re-scaling these parameters logarithmically, making \(10^{-15}\text{ M}\) equivalent to -1 on the new scale and \(10^{-5}\text{ M}\) equivalent to 1.

Results and discussion

The functional (8) contour plots are shown in fig. 1. From this figure, the degree of correlation between the parameters \([R_0]\) \(K_d\) can be seen. Therefore the magnification of the random error in evaluating the magnitude of \([RL_u]\) displaces the functional (8) global maximum from its true values. In a sufficiently large neighbourhood of the global maximum, the functional magnitude (8) is practically invariant. However, this modification becomes more essential for evaluating the ratio of the functional (8) to basis vector of values \([RL_u]\). Therefore this ratio was used with the inhibiting criterion choice.

The Newton method converges only in the close neighbourhood of the global maximum. However, modifications of the Newton method using second derivatives allow convergence to the global maximum after 1–2 iterations (fig. 1, line 1).

The conjugate gradients method converged after 2–3 iterations (fig. 1, line 2). When magnification of the random error in the evaluation of \([RL_u]\) was taken into account, the convergence of the conjugate gradients method varied less than that of the Newton method.

The coordinate descent method required an indeterminately large number of iterations before satisfactory convergence was reached. Use of the exhausting coordinate descent method accelerated the convergence procedure, but the number of iterative steps remained large (fig. 1, line 3).

It can be shown that 5 points suffice to identify the parameters of model (1) using the conjugate gradients method, whereas this method required >10 points for identifying the parameters in a more complicated model. The Newton methods required >7 and 12 points respectively, and the coordinate descent method required >10 and 18 points.

Functional (8) behaviour was analysed with respect to the evaluation of \([RL_u]\) using an incorrect binding model. In particular (see fig. 2), the functional (8) contour plot for model (1) with the attempt to approximate the given model by scheme (2). It follows from the figure that a discordant receptor binding model results in functional (8) contour plot modification.

Thus, the modification of the functional (8) contour plot from the type in fig. 1 to the type in fig. 2 can be used as the criterion for choosing a receptor binding model. With
the right choice, the contour plot is similar to that repre-
sented in fig. 1. With the incorrect choice, the contour plot
is similar to that shown in fig. 2.

It appears that when an incorrect choice of the receptor
binding model has been made, the conjugate gradients
method does not lead to convergence, whereas in some
cases the Newton method converges to one of the local
minima. Therefore, lack of convergence using the conju-
gate gradients method suggests an incorrect choice of
receptor binding model.

Conclusion
Possible methods have been explored for discriminating
among models for receptor binding model and for defin-
ing the relevant parameters. The procedure devised allows
one to determine the receptor binding model and its
parameters, even when the application of graphical methods is
difficult or impossible. As seen here, lack of convergence in
the conjugate gradients method indicates that an incorrect
choice of model has been made. It is also shown that for
the defining the parameters of the correct model, 5–10
data points are sufficient.

References
1. Barnard R, Wolff BC: Analysis and application of an equilibrium
model for in vivo bioassay systems with three components:
receptor, hormone, and hormone-binding-protein. J Theor Biol
1998, 190:333-339.
2. Cuatrecasas P: Hormone-receptor interaction. Molecular
aspects. In: American society for neurochemistry mono-
graph, neurochemistry of cholinergic receptors. Edited by: De
Robertis E, Schacht J. Raven Press, New York; 1974:37-48.
3. Minton AP: The bivalent ligand hypothesis. A Quantitative
model for hormone action. Male Pharmacol 1981, 19:1-14.
4. Cantor C, Schimmel PR: Biophysical chemistry. Volume III.
Freeman WH and Company, San Francisco; 1980:6-85.
5. Aranyi P: Kinetics of hormone-receptor interaction. Compe-
tition experiments with slowly equilibrating ligands. Biochim
Biophys Acta 1980, 628:220-227.
6. Varfolomeev SD, Gurevich KG: Biokinetics. The practice course
[in Russian]. Fair-press, Moscow; 1999:335-496.
7. Chard T: An introduction to radioimmunoassay and related
techniques. North-Holland Publishing Company, Amsterdam,
New-York, Oxford; 1978:9-84.
8. Scatchard G: The attraction of proteins for small molecules
and ions. Ann NY Acad Sci 1949, 51:660-665.
9. Jose MV, Larralde C: Alternative interpretation of unusual
Scatchard plots: contribution of interactions and heterogeneity.
Math Biosci 1982, 58:139-165.
10. Klotz IM: Number of receptor sites from Scatchard graphs:
facts and fantasies. Science 1982, 217:1247-1249.
11. Mannervik B: Regression analysis, experimental error and sta-
tistical criteria in the design and analysis of experiments for
discrimination between rival kinetic models. Methods Enzymol
1982, 87:370-390.
12. Gurevich KG: Definition of equilibrium, and kinetic constants
during changed the ligand concentration due to the ligand-
receptor interaction. Biochemistry (Moscow) 1997, 62:1047-1051.
13. Ames WF: Numerical methods for partial differential
equations. Academic Press, New York; 1977:121-142.
14. Stoer J, Bulirsch R: Introduction to numerical analysis. Springer-
Verlag, New-York; 1980:83-86.
15. Acton FS: Numerical methods. Mathematical Association of
America, Washington; 1990:457-468.