Research and dynamic analysis based on nonlinear identification of sports goods Econometrics

Chunhua Yang1, Wanjun Zhang2,3,*, Feng Zhang2,3, Xiaoping Gou1, Jingxuan Zhang1, Jingyi Zhang2, Jingyan Zhang2

1School of Physical Education, Longdong University, Qingyang 745000, China
2Gansu Zede Electronic Technology Company Limited, Gansu 741003, China
3Lanzhou Industry and Equipment Company Limited, Gansu 730050, China

*Corresponding author: gszwj_40@163.com

Abstract. On the basis of literature research, this paper analyses the sports econometric analysis method, discusses the contribution of sports goods sales and economic growth in China, and analyses the dynamic relationship between them. In this paper, a nonlinear identification algorithm based on the econometric economics of sporting goods is proposed, and a nonlinear identification model based on the econometrics of sporting goods is established. Finally, through the MATLAB simulation analysis, the results show that: sports goods econometric nonlinear identification method is suitable for the coordinated development of regional economy, social environment and sports industry. The simulation results verify the feasibility and effectiveness of the nonlinear identification method of sports econometrics, and provide reference for the stable development of sports economy.

Keywords: Sports goods econometrics, nonlinear identification, MATLAB simulation, dynamic analysis.

1. Introduction
Sports products are the most basic unit of sports industry. With the continuous integration of China's sports goods sales with the international standards, the sales scope is also facing the world, which also brings unprecedented development opportunities to the sports industry [1-3]. It is also an urgent problem to explore the relationship between sports goods sales and economic growth in China. Based on this, on the basis of literature research, this paper discusses the contribution of sports econometric analysis method and modeling euiew6.0 software from the Econometric Relationship between sports goods sales and economic growth in China, and analyzes the dynamic relationship between them [4-18]. The author obtains 48 monthly statistical data from 2008 to 2011 from China Statistical Yearbook, official website of the National Bureau of statistics of the people's Republic of China, China economic special network and China industry analysis platform [19-26]. The research scope is narrowed down, and the third industry represents the absolute gross domestic product (GDP) and China's sports goods sales income (CPXs) More accurate comparison, reduce the impact of multivariate fluctuations [27-36]. It is helpful to eliminate or reduce the influence of heteroscedasticity and reduce the fluctuation between the data by
using logarithmic form to standardize the monthly sales volume and economic growth data of sports products in China from January 2008 to December 2011 with InCpxs and lnGDP respectively.

On the whole, with the promotion of national attention to sports, the influencing factors of sports economic growth also show a diversified trend [37-42]. In addition to the general economic factors, the change of consumption concept and the improvement of cultural level also affect the sustainable growth of sports economy. However, the systematic research on sports economic growth factors is relatively less, and many studies mainly explore from some aspects such as economy or consumption, and the effectiveness of the research results needs to be studied. Based on the exploratory factor analysis of the expected indicators affecting sports economic growth [43-47], this paper empirically analyzes the influence of various factors on sports economic growth with the help of GMM model, so as to provide reference for the stable development of sports economy [48-57].

In this paper, a nonlinear identification algorithm based on the econometric economics of sporting goods is proposed, and a nonlinear identification model based on the econometrics of sporting goods is established. Finally, through the MATLAB simulation analysis, the results show that: sports goods econometric nonlinear identification method is suitable for the coordinated development of regional economy, social environment and sports industry. The simulation results verify the feasibility and effectiveness of the nonlinear identification method of sports econometrics, and provide reference for the stable development of sports economy.

2. Sports economic model
This paper proposes a GMM model identification algorithm for sports economic growth, and establishes a GMM model model identification algorithm for sports economic growth.

The actual system can be described by the following model:

\[
\begin{align*}
 z(k) &= \frac{B(z^{-1})}{A(z^{-1})} u(k) + n(k)
\end{align*}
\]

In the formula: \(u(k) \) and \(z(k) \) are the input and output variables of the system; \(n(k) \) is the additional noise of the system; and

\[
\begin{align*}
 A(z^{-1}) &= 1 + a_1 z^{-1} + a_2 z^{-2} + \ldots + a_{n_s} z^{-n_s} \\
 B(z^{-1}) &= b_1 z^{-1} + b_2 z^{-2} + \ldots + b_{n_s} z^{-n_s}
\end{align*}
\]

Let \(n_s \) and \(n_s \) are the input and output variables of the system; \(n \) is the additional noise of the system; and

\[
\begin{align*}
 \theta_0 &= \left[a_0^T, b_0^T \right]^T = \left[a_1, \ldots, a_{n_s}, b_1, \ldots, b_{n_s} \right]^T \\
 h(k) &= \left[-z^T(k), u^T(k) \right]^T = \left[-z(k-1), \ldots, -z(k-n), u(k-1), \ldots, u(k-n) \right]^T
\end{align*}
\]

In the formula: \(\theta_0 \) is the identification parameter of the \(a_1, \ldots, a_{n_s}, b_1, \ldots, b_{n_s} \) fixed model, and \(z \) is the output of the corresponding \(k \) th fixed model.

3. Nonlinear identification of sports goods Econometrics
The reference model can be written in the least square format:
\[z(k) = \Theta_{0}^{t} \cdot h(k) + e(k) \quad (4) \]

\(e(k) \) is colored noise, which can be expressed as:

\[e(k) = A(z^{-1}) \cdot n(k) \quad (5) \]

For convenience, the case of \(n(k) = 0 \) is considered first. According to the theoretical analysis, the result is also applicable to the case of \(n(k) \neq 0 \).

\[Z_{m}(k) = \frac{\hat{B}(z^{-1})}{\hat{A}(z^{-1})} u(k) \quad (6) \]

In the formula: \(u(k) \) and \(Z_{m}(k) \) are adjustable model input and output variables. Set

\[\begin{align*}
\hat{\Theta}(k) &= [\hat{\Theta}^{t}(k), \hat{\Theta}^{p}(k)]^{T} \\
\hat{h}_{m}(k) &= [-Z_{m}(k), u^{T}(k)]^{T} = [-z_{m}(k-1), \cdots, -z_{m}(k-n_{s}), u(k-1), \cdots, u(k-n_{s})]^{T}
\end{align*} \quad (7) \]

In the formula:

\[\begin{align*}
\begin{cases}
\Theta_{\hat{E}}(k) = \hat{\Theta}^{t}(k) + \hat{\Theta}^{p}(k) \\
\Theta(k) = \alpha \Theta_{\hat{E}}(k), \alpha \geq -0.5 \\
\Theta^{0}(k) = z(k) - \left[\hat{\Theta}^{t}(k-1) \right]^{T} \cdot \bar{h}_{m}(k) + \left[\hat{\Theta}^{p}(k-1) \right]^{T} \cdot Z_{m}(k) \\
\hat{\Theta}^{t}(k) = \hat{\Theta}^{t}(k-1) + \frac{P(k-1) \cdot \bar{h}_{m}(k) \cdot \Theta^{0}(k-1)}{1 + \bar{h}_{m}^{T}(k) \cdot [\bar{P}(k-1) + \bar{\Theta}(k-1)] \cdot \bar{h}_{m}(k)} \\
\hat{\Theta}^{p}(k) = \frac{\bar{\Theta}(k-1) \cdot \bar{h}_{m}(k) \cdot \Theta^{0}(k)}{1 + \bar{h}_{m}^{T}(k) \cdot [\bar{P}(k-1) + \bar{\Theta}(k-1)] \cdot \bar{h}_{m}(k)} \\
\bar{P}(k) = P(k-1) + \frac{\bar{P}(k-1) \cdot \bar{h}_{m}^{T}(k) \cdot \bar{h}_{m}(k) \cdot P(k-1)}{1 + \bar{h}_{m}^{T}(k) \cdot \bar{P}(k-1) \cdot \bar{h}_{m}(k)}, \bar{P}(k-1) > 0
\end{cases}
\end{align*} \quad (9) \]
Using the formula (3)- (9) iteration, the model parameter estimate can be obtained.

4. Experimental analysis and research
A nonlinear identification algorithm based on the econometric economics of sporting goods is proposed, and a nonlinear identification model based on the econometrics of sporting goods is established. Finally, through the MATLAB simulation analysis, the results show that: sports goods econometric nonlinear identification method is suitable for the coordinated development of regional economy, social environment and sports industry.

![Figure 1. Model system parameter identification laboratory.](image)

Through MATLAB simulation analysis, the results show that GMM model identification method is suitable for sports economic growth. Nonlinear identification of sports goods Econometrics GMM model 1, as shown in Fig.2.

![Figure 2. Nonlinear identification of sports goods Econometrics GMM model 1.](image)

Nonlinear identification of sports goods Econometrics GMM model 2, as shown in Fig.3.
Through, through MATLAB simulation analysis, the results show that GMM model identification method is suitable for sports economic growth. GMM model identification method 3, as shown in Fig. 5.

Nonlinear identification of sports goods Econometrics GMM model 3, as shown in Fig. 5.

Nonlinear identification of sports goods Econometrics GMM model 4.
In Figure 2, 3, 4 and 5, through the MATLAB simulation analysis, the results show that: sports goods econometric nonlinear identification method is suitable for the coordinated development of regional economy, social environment and sports industry. The simulation results verify the feasibility and effectiveness of the nonlinear identification method of sports econometrics, and provide reference for the stable development of sports economy.

5. Summary
In this paper, a nonlinear identification algorithm based on the econometric economics of sporting goods is proposed, and a nonlinear identification model based on the econometrics of sporting goods is established. Finally, through the MATLAB simulation analysis, the results show that: sports goods econometric nonlinear identification method is suitable for the coordinated development of regional economy, social environment and sports industry. The simulation results verify the feasibility and effectiveness of the nonlinear identification method of sports econometrics, and provide reference for the stable development of sports economy.

Acknowledgements
The authors thank the financial supports from Investigation and Research on the current situation of sports population in Shaanxi Gansu Ningxia old area (Grant no. YB113).

The authors thank the financial supports from National Natural Science Foundation of China (Grant no. 51165024) and Science and Technology Major Project of “High-grade NC Machine Tools and Basic Manufacturing Equipment” (2010ZX040001-181).

Communication author: Zhang Wanjun received the, M.S. and Ph.D. degrees from, Lanzhou University of technology, Xi'an Jiaotong University, in 2011 and 2019, respectively. I am currently an associate professor in the School of Mechanical Engineering, Xi'an Jiaotong University, I am currently a Senior Engineer and Senior economist in Gansu ZeDe Electronic Technology Company Limited. His research involved in artificial intelligence, NC, control of complex mechatronic system and failure diagnoses.

Zhang Wanjun, Male, doctor of Engineering (Bachelor of law, Bachelor of Management), senior engineer (senior engineer), senior economist (mechanical engineer, senior technologist), senior member of the Mechanical Engineering, senior member of the agricultural machinery, senior member of the Mechanical Engineering, senior member of the China Electronics Society, senior member of the China electrotechnical society, senior member of the China Instrumentation Society, member of China Invention Society, board member of China Invention Society, board member of Gansu Invention Society, member of Expert Committee of Modern Manufacturing Engineering (Chinese core, science and technology core), mainly engaged in numerical control technology equipment, control engineering (identification engineering, pattern recognition), new energy research and electromechanical transmission control and so on. The total number of patents granted has reached more than 600, of which more than 280 patents for inventions and utility models have been granted in the capacity of the first applicant (patentee) and the inventor, as the first applicant (the patentee) and the inventor, more than 380 design patents are granted, more than 50 academic papers are retrieved by SCI/EI/ISTP, among which more than 70 are by EI and 5 are by SCI, E-mail:gszwj_40@163.com.

References
[1] Fortmann SP, Taylor CD, Flora GA, et al. Effect of community health education on plasma cholesterol levels and diet [J]. Am J Epidemiol, 1993, 137 (10): 1039 - 1055.
[2] Berenson GS .Prevention of heart disease beginning in childhood through comprehensive school health [J]. Preventive Medicine, 1993, 22 (4): 507 - 512.
[3] Gou xiaoping, Zhang Wanjun, ZhangFeng, et,al. Research on Fuzzy PID Control of Physical Exercise Supporting Robot Speed Control System [J]. Materials Science and Engineering, 2019, 11, Vol. 782: 2052 - 2059.
[4] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Research on Key Technologies of Elders Exoskeleton Robot Assisted by Physical Exercise Based on Fuzzy PID Control [J]. Materials Science and Engineering, 2019, 11, Vol. 782: 2052 - 2059.

[5] Olanrewaju M J, Huang B, Afacan A. Online composition estimation and experiment validation of distillation processes with switching dynamics [J]. Chemical Engineering Science, 2010, 65 (5): 1597 - 1608.

[6] Combes P P, Duranton G, Gobillon L. The identification of agglomeration economies [J]. Journal of Economic Geography, 2011, 11 (2): 253 - 266.

[7] Shi Z K, Wu F X. Robust identification method for nonlinear model structures and its application to high-performance aircraft [J]. International Journal of Systems Science, 2013, 44 (6): 1040 - 1051.

[8] Dorobantu A, Murch A, Mettler B, Balas G. System identification for small, low-cost, fixed-wing unmanned aircraft [J]. Journal of Aircraft, 2013, 50 (4): 1117 - 1130.

[9] Wu Zaixin, Zhang Wanjun, Hu Chibing, et al. Research on NURBS curve modified interpolation for CNC system [J]. Chinese Journal of Manufacturing Automation, 2011, 33 (22): 48 - 50.

[10] Zhang Wanjun, Hu Chibing, Zhang Feng, et al. Honing machine motion control card three B spline curve interpolation algorithm [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 2012 (8): 80 - 82.

[11] Zhang Wanjun, Hu Chibing, Zhang Feng, et al. Modification algorithm of Three B Spline curve interpolation technology [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 2013 (02): 147 - 150.

[12] Zhang Wanjun, Zhang Feng, Zhang Wanliang, et al. Fuzzy Control of Wind Turbine Based on Directional Power Conversion [J]. Electric Power Construction, 2014, 10, 35 (10): 13 - 16.

[13] Zhang Wanjun, Zhang Feng, Zhang Guohua. Research on modification algorithm of Cubic B-spline curve interpolation technology [J]. Applied Mechanics and Materials, Vol. 687 - 691, pp. 1596-1599, December 2014.

[14] Zhang Wanjun, Zhang Feng, Zhang Guohua. Research on a algorithm of adaptive interpolation for NURBS curve [J]. Applied Mechanics and Materials, Vol. 687-691, pp. 1600-1603, December 2014.

[15] Zhang Wanjun, Zhang Feng, Zhang Guohua. Research on NURBS curve of timing/interrupt interpolation algorithm for CNC system [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 2015 (04): 210 - 214.

[16] Zhang Wanjun, Zhang Feng, Zhang Wanliang, et al. Research on NURBS curve of CNC system for B-Spline curve method of High-speed real-time interpolation arithmetic [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 2015 (08): 179 - 183.

[17] Zhang Wanjun, Hu Chibing, Zhang Feng, et al. Finite Element Analysis and Structural Optimization on the Fasteners Testing Head of Wind Power Equipment [J]. Chinese Journal of Mechanical Research & Application, 2016 (04): 19 - 22.

[18] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Application of PLC in the air driven control system [J]. Chinese Journal of Manufacturing Automation, 2017, 39 (05): 49 - 51, 58.

[19] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research on NURBS interpolation algorithm based on Newton-Rapson iteration method [J]. Chinese Journal of Industrial Instrumentation & Automation, 2017, 39 (05): 49 - 51, 58.

[20] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research on fuzzy control of reference model of brushless DC motor system [J]. Chinese Journal of Industrial Instrumentation & Automation, 2018, (05): 130 - 134.

[21] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research on Cross-coupled Contour Error Compensation Technology of CNC Machine Tool with Multi Axis Linkage [J]. Machine Tool & Hydraulics, 2019, 47 (2): 1 - 5.

[22] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Study on System Recognition Method for
Newton-Raphson Iterations[C] // Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 130 – 135.

[24] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. Modeling and identification of system model parameters based on information granularity method [C]//Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 114 – 118.

[25] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. Optimization of identification structure parameters based on recursive maximum likelihood iteration[C]/Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 119 – 124.

[26] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. Parameter optimization and model identification of identification model control based on improved generalized predictive control[C]// Proceeding of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 125 – 129.

[27] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. Cross coupled contour error compensation technology [J]. Materials Science and Engineering, 2018, 8, Vol. 394. 032031: 1 - 5.

[28] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. Research on the vector control system based on the difference frequency of wind turbine generator [J]. Materials Science and Engineering, 2018, 8, Vol. 394. 042020: 1 - 9.

[29] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. Curved Measurement Theory of Honing Pneumatic Measurement System and Optimization of Measurement Parameters [J]. Journal of Physics, 2018, 8, Vol. 1064. 012028: 1 - 14.

[30] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. Flow field analysis and parameter optimization of main and measured nozzles of differential pressure type gas momentum instrument based on CFD [J]. Journal of Physics, 2018, 8, Vol. 1064. 012028: 1 - 12.

[31] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. Research on a Kind of Adaptive Fuzzy Control Method and Its Application in Feeding System of CNC Honing Machine [J]. Materials Science and Engineering, 2018, 8, Vol. 452. 042076: 1 - 8.

[32] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. Application of PLC in Pneumatic Measurement Control System [J]. Materials Science and Engineering, 2018, 8, Vol. 042074: 1 - 11.

[33] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. Research and Analysis on the Identification Model of Multivariate Economic System [J]. Materials Science and Engineering, 2018, 8, Vol. 452. 022061: 1 - 11.

[34] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. Identification and Analysis of Economic Model Based on Longnan Southeast [J]. Materials Science and Engineering, 2018, 8, Vol. 452. 032058: 1 - 8.

[35] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. Based on Brushless DC Motor of Fuzzy and PID Control System [J]. Materials Science and Engineering, 2018, 8, Vol. 452. 042075:1-10.

[36] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. Application of digital image processing technology in polyaniline deposition on the surface of carbonyl iron powder [J]. Earth and Environmental Science, 2018,12, Vol. 252: 491 - 500.

[37] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. Effect of space stabilizer on in-situ deposition of polyaniline on carbonyl iron powder [J]. Earth and Environmental Science, 2018, 12, Vol. 252: 501 - 509.

[38] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. One-dimensional mathematical model of coal combustion in furnace and its simulation [J]. Earth and Environmental Science, 2018, 12, Vol. 252: 1822 - 1833.

[39] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et, al. Research on Fuzzy Control Based on Directional Power Conversion of Wind Generator [J]. Earth and Environmental Science, 2018, 12, Vol. 252: 1912 - 1923.

[40] Avlyanov J K, Josepowicz J Y, MacDiarmid A. G. Atomic force microscopy surface morphology studies of in situ deposited polyaniline thin films [J]. Synth Met, 1995, 73: 205 - 208.
[41] MacDiarmid A. G. Progress on the study of polyaniline [J]. Synth. Met. 1997, 84:27 - 32.
[42] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Research and analysis on parameter identification of model system based on running, gymnastics and other physical exercise population [J]. Earth and Environmental Science, 2020, 3, Vol. 612: 2048 - 2058.
[43] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Research on Simulation and Analysis of Monitoring Process of Hail-proof Apple Bagging Four-rotor Aircraft [J]. Materials Science and Engineering, 2019, 11, Vol. 612: 3826 - 3837.
[44] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Study on Quality Characteristics and Feasibility Analysis of Hail-proof Plastic Bagging of 5000 Mu in Gansu [J]. Earth and Environmental Science, 2020, 3, Vol. 612: 2038 - 2040.
[45] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Study on the Structure Design and Feasibility Analysis of Apple Inhaled Box Bags Based on Hailproof [J]. Earth and Environmental Science, 2018, 12, Vol. 252: 3826 - 3837.
[46] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Feasibility Analysis of Auxiliary Training Device for Backhand Turnover Based on Middle School Tumblers [J]. Advances in Computer, Signals and Systems, 2019, 9, Vol. 10: 252 - 260.
[47] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Research and Simulation of Table Tennis Track Prediction Based on Double Concave Round Table Tennis [J]. Advances in Computer, Signals and Systems, 2019, 9, Vol. 10: 261 - 270.
[48] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Based on the Physiological Performance Test of Sprinters Through Indoor Treadmill [J]. Materials Science and Engineering, 2019, 11, Vol. 612: 3826 - 3837.
[49] Zhang Wanjun, Gao Shanping, Zhang Sujia. Modification algorithm of NURBS curve interpolation [J]. Advances in Engineering Research, 2016, 83 (12): 507 - 512.
[50] Zhang Wanjun, Gao Shanping, Zhang Sujia. Modification algorithm of Cubic B-spline curve interpolation [J]. Advances in Engineering Research, 2016, 83 (12): 513 - 518.
[51] Zhang Wanjun, Gao Shanping, Zhang Sujia. Modification algorithm of NURBS curve interpolation[C]/2016 4th International Conference on Machinery, Materials and Information Technology Applications, 2016: 507 - 512.
[52] Zhang Wanjun, Gao Shanping, Zhang Sujia. Modification algorithm of Cubic B-spline curve interpolation[C]/2016 4th International Conference on Machinery, Materials and Information Technology Applications, 2016: 513 - 518.
[53] Zhang Wanjun, Gao Shanping, Zhang Sujia. A improved algorithm of three B-spline curve interpolation and simulation [J]. Advances in.Materials, Machinery, Electronics I, 2017 (2): 41 - 46.
[54] Yang Chunhua, Zhang Wanjun, Gou Xiaoping, et al. Research and Analysis on Adaptive Model Identification of System Parameters Based on Sports Safety Model for Children with Different Physique [J]. Materials Science and Engineering, 2020, 5, Vol. 612: 3816 - 3822.
[55] Guo Qurong, Zhang Wanjun, Gou Xiaoping, et al. Research on parameter system identification characteristics of physical exercise population in Gansu Province Based on walking and Taijiquan [J]. Materials Science and Engineering, 2020, 5, Vol. 612: 3826 - 3835.
[56] Freedman DS, Dietz WH, Srinivasan SR, et al. The relation of overweight to cardiovascular risk factors among children and adolescents: the Bogalusa Heart Study [J]. Cardiovascular Pediatrics, 1999, 103 (6): 1175 - 1182.
[57] Shen Zuyi. Hydraulic Turbine Regulation [M]. Beijing: China Water Power Press, 2008.
[58] Li Hong, Xue Haihong, Feng Wulong. Sociological analysis of the comparison between Chinese population and Chinese sports population [J]. Journal of Xi’an Institute of physical education, 2007 (4): 2528.