INTRODUCTION
In the past few years a growing interest in vitamin D can be observed in the clinical trials and in biomedical literature, due to findings demonstrating a low vitamin D status in the population (Figure 1). The determination of optimal 25(OH)D$_3$ levels in women during the reproductive period of their life would have a significant public health implications.

Data tells us, that even in Ancient Egypt people knew about the healing effect of the sun, through idolization of their Sun God Amun-Rah, whose rays could make «a single man stronger than a crowd» [1]. In Ancient Greece Herodotus recommended solaria as a cure for «weak and flabby muscles», ancient Olympians were instructed to lie exposed and train under the sun’s rays [2].

In the 1922 McCollum in the USA followed the sequential alphabetical designations and labeled the new substance «Vitamin D» [3]. For the chemical identification and chemical synthesis of vitamin D, earned A. Windaus the Noble Prize in 1928 [4]. Whereas Hulshinsky, Chick, Hume, Hess, and Weinstock discovered the curative effects of UV light [5].

Vitamin D is synthesized in the skin under influence of UV-B light. This is a purely photochemical reaction, where no enzymes are involved. However, the reaction requires a sufficiently large concentration of 7-dehydrocholesterol and UV-B (290-315 nm) light [5]. To be biologically active, vitamin D must be converted to 25(OH)D$_3$. Lastly, to be fully active, 25(OH)D$_3$ must be further converted to 1,25-dihydroxyvitamin D$_3$ (1,25(OH)$_2$D$_3$) via CYP27B1, a mitochondrial enzyme. Additionally, 1,25(OH)$_2$D$_3$ negatively regulates its own levels by inducing CYP24, that catalyzes both 1,25(OH)$_2$D$_3$ and 25(OH)D$_3$. The mechanism of action of the active form of 1,25(OH)$_2$D$_3$ is similar to that of other steroid hormones and is mediated by its binding to vitamin D receptor (VDR) [5].

Nearly all nucleated cells express the VDR in variable concentrations [5]. The tissue and cell type localization of VDR has been confirmed by binding studies, mRNA in situ hybridization, autoradiography, and protein immunocytochemistry. VDR belongs to a class of nuclear transcription factors [5]. The few cells of tissues that have low or absent VDR expression include red blood cells, mature striated muscle, and some highly differentiated brain cells, such as Purkinje cells of the cerebellum [6]. The VDR is a member of the superfamily of nuclear hormone receptors, including receptors for steroid and thyroid hormones and retinoic acid [8].

Although the proximal renal tubule is the major source of 1,25(OH)$_2$D$_3$ production for the body, the 1α-hydroxylase is also found in a number of extrarenal sites such as immune cells, epithelia of many tissues, bone and parathyroid glands, in which it functions to provide 1,25(OH)$_2$D$_3$ for local consumption as an intracrine or paracrine factor [8]. The mechanism of action of the active form of 1,25(OH)$_2$D$_3$ is mediated by its binding to VDR, and is similar to that of other steroid hormones. The nonclassic actions of vitamin D can be divided into three general functions: regulation of hormone secretion, regulation of immune function, and regulation of cell proliferation, differentiation and apoptosis.

Vitamin D and its metabolites are transported in the circulation bound to a plasma protein, DBP (vitamin D binding protein), which shares many structural and evolutionary similarities with albumin [5]. In DBP null mice, plasma concentrations of 25(OH)D$_3$ and 1,25(OH)$_2$D$_3$ are extremely low, and their metabolic clearance is markedly increased. DBP is filtered in the glomerulus of the nephron, but it is reabsorbed together with 25(OH)D$_3$ in the renal tubuli by the bulk car-
Vitamin D is a hormone which controls nearly 1/3 of human genome and over 200 genes, including those responsible for cell cycle control: proliferation, differentiation, apoptosis.
tive function by inducing hypothalamic dysfunction, which secondarily affects pituitary and ovarian physiology [15]. Evidence from observational studies shows higher rates of preeclampsia, preterm birth, bacterial vaginosis and gestational diabetes in women with low vitamin D levels. The regulation of VDR expression is one of the main mechanisms through which target cells respond to calcitriol. Different polymorphisms of this receptor can change the usual mode of functioning. Experimental studies have demonstrated that the ovary is a target organ for 1,25(OH)2D3. This active metabolite of vitamin D3 might play a role in modulating ovarian activity. The results of recent studies implied that VDR genetic variants may impact polycystic ovary syndrome (PCOS) and insulin resistance (IR) in women with PCOS. VDR may influence the acetylation of histones, as well as chromatin remodeling [25]. VDR gene contains 14 exons and is mapped on chromosome 12cen-q12. The function of the TaqI-specific hyper variable polymorphism is unclear. VDR gene variants have been associated to breast cancer risk, prostate cancer progression, colorectal cancer, diabetes, primary hyperparathyroidism, coronary artery disease and PCOS. The findings of Ranjazad et al. [26] demonstrate that there is a significant association between VDR TaqI CC genotype and serum concentrations of luteinizing hormone in women with PCOS. Their data suggest that the CC genotype of VDR TaqI in exon 9 (rs731236) is associated with PCOS. In PCOS women, low 25-hydroxyvitamin D (25(OH)D3) levels are associated with obesity, metabolic, and endocrine disturbances. Vitamin D3 supplementation might improve menstrual frequency and metabolic disturbances in those women [27].

Endometriosis during the menstrual cycle and early pregnancy is an extrarenal site of vitamin D3 synthesis and action. In endometriosis patients, the gene encoding for 1α-hydroxylase shows an enhanced expression in ectopic endometrium [28]. Endometriosis risk may also be influenced by vitamin D3 deficiency. Endometriosis is a disorder characterized by the presence of endometrial tissue outside the uterine cavity. Signs and symptoms vary in severity and include dysmenorrhea, dyspareunia, infertility, dysuria, and dyschezia [29]. Women with endometriosis exhibit changes in cell-mediated immunity, with altered T-helper cell, altered immune surveillance, with depressed cell-mediated immunity and heightened humoral immune response. Vitamin D3 may influence the development of endometriosis through its immunomodulatory effects. Vitamin D3 may influence endometriosis through suppression of proinflammatory processes. In vitro studies have demonstrated that 1,25(OH)2D3 inhibits proliferation of T helper 1 cells [29] and production of interleukin-2 (IL-2) and interferon γ [30] and stimulates development of T helper 2 cells [28].

1,25(OH)2D3 is an antitumor agent, that may be a potential nonsurgical therapeutic option for the treatment of uterine leiomyomas [31]. Uterine leiomyomas are the most common benign tumors in women of reproductive age. Treatment with 1,25(OH)2D3 significantly reduced leiomyoma tumor size in Eker rats. It also reduced leiomyoma size by suppressing cell growth and proliferation-related genes (Pcna, cyclin D1 [Ccnd1], Myc, Cdk1, Cdk2, and Cdk4), antiapoptotic genes (Bcl2 and Bcl2l1 [Bcl-x]), estrogen and progesterone receptors [31]. 1,25(OH)2D3 inhibits the proliferation of human uterine leiomyoma cells by inhibiting catechol-O-methyltransferase, an estrogen-metabolizing enzyme that is overexpressed in human uterine leiomyomas [32]. Halder SK et al [32] demonstrated, that 1,25(OH)2D3 reduced TGFβ3-induced fibrosis-related gene expressions in leiomyoma cells. Ding L. et al. [33] in their trial observed that 1,25(OH)2D3 treatment reduced protein expression of collagen type 1 and fibronectin in Eker rat leiomyoma tumors. Summarizing it, may be concerned that 1,25(OH)2D3—including therapy is an alternative and nonsurgical treatment option for uterine leiomyoma.

IMMUNOLOGY

The VDR is expressed in most cells of the immune system, including activated CD4+ and CD8+ T lymphocytes, as well as in antigen-presenting cells (APCs) such as macrophages and dendritic cells (DCs) [34, 35].

1α-hydroxylase or CYP27B1 is also expressed in macrophages, DCs, and even T and B lymphocytes. The 1α-hydroxylase present in immune cells is identical to the renal enzyme, but regulation of its expression and activity is different. Whereas the renal enzyme is under control of calcemic and bone signals, such as PTH and 1,25(OH)2D3 itself, but the macrophage enzyme is primarily regulated by immune signals, with interferon gamma (INF-γ) and Toll-like receptor [36]. This explains the massive local production of 1,25(OH)2D3 by disease-associated macrophages that is seen in patients with granulomatous diseases (sarcoidosis and tuberculosis), and the consequent possible spillover in the general circulation, eventually leading to systemic hypercalcemia [5]. In the last two decades there were made important discoveries: the presence of VDRs in activated human inflammatory cells, the ability of 1,25(OH)2D3 to inhibit T cell proliferation and the ability of disease activated macrophages to produce 1,25(OH)2D3. Vitamin D3 and CYP27B1 play important roles in both innate and adaptive immunity. Vitamin D3 deficiency is a well-known accompaniment of various infectious diseases such as tuberculosis [37]. 1,25(OH)2D3 has long been recognized to potentiate the killing of mycobacteria by monocytes. The monocytes, when activated by mycobacterial lipoproteins, express CYP27B1, producing 1,25(OH)2D3 from circulating 25(OH)D3 and in turn inducing cathelicidin, and antimicrobial peptide that enhances killing of mycobacterium [38]. Vitamin D3 exerts an inhibitory action on the adaptive immune system. In particular, 1,25(OH)2D3 suppresses proliferation and immunoglobulin production and retards the differentiation of B cell precursors into plasma cells [39]. 1,25(OH)2D3 inhibits T cell proliferation, T-helper (Th-1) cells capable of producing INF-γ and IL-2 and activating macrophages [39]. In the mid-1800s cod liver oil was used to treat tuberculosis. In the early 1900s heliotherapy was promoted for treating both skin and pulmonary tuberculosis. It was also recognized that young children with rickets had a much higher risk of developing pneumonia and upper respiratory tract infections. Bouillon et al [5] summarized, that 1, 25(OH)2D3 downregulates pro-inflammatory cytokines and interleukins such as IL-2, IL-4, IL-8, IL-12, tumor necrosis factor α (TNF-α), and INF-γ and up-regulates anti-inflammatory interleukins such as IL-10.

Vitamin D signalling pathways in cancer are shown at Figure 3.
DIABETES
Since the early observations in 1980 by Norman et al. [40] showed that pancreatic insulin secretion is inhibited by vitamin D deficiency. Several reports have demonstrated an active role for vitamin D in regulating the function of the endocrine pancreas, especially the insulin-producing beta cells [5]. VDR and calbindin-D 28k are found in pancreatic beta cells, and studies using calbindin-D28k null mice have suggested that calbindin-D28k by regulating intracellular calcium, can modulate depolarization-stimulated insulin release [41]. Calbindin-D28k by buffering calcium, can protect against cytokine mediated destruction of beta-cells [42, 43].

BRAIN
VDR and key enzymes of vitamin D metabolism are expressed in nearly all regions of the rodent brain [44]. The human equivalent of vitamin D effects on early brain development has not been fully explored. The brain not only has a VDR but also a 1α-hydroxylase. 1,25(OH)₂D₃ could also act by increasing serotonin levels in the brain. Low levels of 25-OHD in pregnant mothers has been associated with increased risk of schizophrenia of their children [45]. Low vitamin D status is also frequently observed in patients with Alzheimer’s disease and schizophrenia and in elderly subjects with cognitive dysfunction [46]. Furthermore, 1,25(OH)₂D₃ has also been demonstrated to stimulate amyloid-β phagocytosis and clearance by macrophages in Alzheimer patients.

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder, with multiple genetic and environmental risk factors. Vitamin D deficiency has recently been proposed as a possible environmental risk factor for ASD. Vitamin D has a unique role in brain homeostasis, embryogenesis and neurodevelopment, immunological modulation (including the brain’s immune system). Children with ASD had significantly lower serum levels of 25-hydroxy vitamin D than healthy children. Therefore vitamin D deficiency during pregnancy and early childhood may be an environmental trigger for ASD [47, 48].

VITAMIN D AND AGING
Vitamin D plays an important role in the modulation of leucocyte teloelere length (LTL), which is a predictor of aging-related disease and decreases with each cell cycle and increased inflammation [49].The liganded complex 1,25D-VRX-RXRXR (RXR-retinoid X receptor) binds to vitamin D response elements (VDERE) in the DNA. This complex is involved in regulation of cellular functions, including DNA repair. Vitamin D acts as an inhibitor of the inflammatory response through several pathways. Subsets of leukocytes have receptors for the active form of vitamin D that support the direct effect of vitamin D on these cells, which explains the connections between vitamin D and autoimmune disease. Furthermore, an inverse relation has been shown between vitamin D concentrations and C-reactive protein (CRP), a marker of inflammation. LTL is relatively short in persons with chronic inflammation, because the inflammatory response entails an increase in leucocyte turnover. Vascular diseases, autoimmune diseases such as lupus and arthritis have been associated with shorter LTL. In the large population of women in the present study, higher serum 25OHD concentrations were associated with longer LTL. Inflammation and oxidative stress are key determinants in the biology of aging [49, 50]. Vitamin D decreases the mediators of systemic inflammation, such as IL-2 and TNF-α. Vitamin D receptors are ubiquitously expressed in T and B lymphocytes, natural killers, monocytes [50].

SUMMARY
Summarizing all these data we can say, that vitamin D has an important public health implications. Vitamin D₃ deficiency is a hudge problem for women and men reproduction and fertility. Children, who are vitamin D-deficient are more likely to have delayed puberty, which leads to future reproduction troubles.
ПЛАНІРОВАННЯ СЕМ'И

REFERENCES /ЛІТЕРАТУРА

1. Monderson F. «The majesty of Egyptian gods an temples: a book of Egyptian poems.» Blooming, IN: Authorhouse (2007).

2. Mayer E. «The curative value of light: sunlight and sun lamp in health and disease.» Witefish, MT Kessinger Publishing (1932).

3. McCollum E.V., Simmonds N., Becker J.E., Shipley P.G. «Studies on experimental rickets. XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition.» J Biol Chem, 53(1922):293-312.

4. Girgis C.H.M., Roderick J., Clifton-Bligh, Hamrick M., Holick M., Gunton J. «The roles of vitamin D in skeletal muscle: form, function, metabolism.» End Rev, 34(1) (2013):33-83.

5. Bouillon R., Carmeliët G., Verlinden L., van Etten E., Verstuyf A., Ludérer H., Lieben L., Mathieu C., Demay M. «Vitamin D and human health: lessons from vitamin D receptor null mice.» Endocrine Reviews, 29(6) (2008):726-776.

6. Keisala T., Minasyan A., Lou Y.R., Zou J., Kaluwe A.V., Pyykko I., Tuohimaa P. «Premature aging in vitamin D receptor mutant mice.» J Steroid Mol Biol, 115(3-5) (2009):91-97.

7. Whitfield G.K., Dang H.T., Schluter S.F., Bernstein R.M., Bunag T., Manzon I.A., Hsieh G., Dominguez C.E., Youson J.H., Haussler M.R., Marchalonsis J.J. «Conn ing of a functional vitamin D receptor from the lamprey (Petromyzon marinus), an ancient vertebrate lacking a calcified skeleton and teeth.» Endocrinology, 144(2003):2704-2716.

8. van Schoor N.M., Lips P. «Worldwide vitamin D status.» Best Pract res Clin Endocrinol Metab, 25(2011):671-680.

9. Cooke N.E., Haddad J.G. «Vitamin D binding protein (GC-globulin).» Endocr Rev, 10(1989):294-307.

10. Rosen C.J., Adams J.S., Bikle D.D., Black D.M., Demay M.B., Manson J.E., Murad M.H., Kovacs C.S. «The nonskeletal effects of vitamin D: an Endocrine society scientific statement.» Endocrine Rev, 33(2012):456-592.

11. Halloran B.P., De Luca H.F. «Effect of vitamin D deficiency on fertility and reproductive capacity in the female rat.» J Nutr, 110(1980):1573-1580.

12. Kintu K., Tanaka H., Moriwake T., Aya K., Kato S., Seino Y. «Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads.» Endocrinology, 140(2001):1317-1324.

13. Bagheri M., Phil M., Abdi Rad I., Jazani Hosseini N., Nanbakhsh F. Int J Fertil Steril, 7(2) (2013):116-121.

14. Lerchbaum E., Rabe T. «Distribution of 1,25-dihydroxyvitamin D3 receptor immunoreactivity in the limbic system of rat.» Horm Metab Res, 33(9) (2001):525-531.

15. Dicken C.L., Israel D.D., Davis J.B., Sun Y., Shu J., Hardin J., Neal-Perry G., Mathieu C., Demay M., Nikzamir A., Zari M.R. «Vitamin D and human health: lessons from vitamin D receptor null mice.» Endocrine Reviews, 29(6) (2008):726-776.

16. Kinuta K., Tanaka H., Moriwake T., Aya K., Kato S., Seino Y. «Vitamin D is an important factor in estrogen biosynthesis of both female and male gonads.» Endocrinology, 140(2001):1317-1324.

17. Walbert T., Jirikowski G.F., Prufer K. «Distribution of 1,25-dihydroxyvitamin D3 receptor immunoreactivity in the limbic system of rat.» Horm Metab Res, 33(9) (2001):525-531.

18. Walker D.M., Juenger T.E., Gore A.C. «Expression of 1,25-dihydroxyvitamin D3 receptor in the immune system.» Arch Biochem Biophys, 374(2000):334-338.

19. Eyles D.W., Smith S., Kinobe R., Hewison M., McGrath J.J. «Nonclassical actions of vitamin D.», 94(1) (2009):26-34.

20. Stewart E.A. «Uterine fibroids.» Lancet, 357(2001):293-298.

21. Halder S.K., Goodwin J.S., Al-Hendy A. «1,25-dihydroxyvitamin D3 reduces TGF-beta3-induced fibrosis-related gene expression in human uterine leiomyoma cells.» J Clin Endocrinol Metab, 96(2011):E754-E762.

22. Ding L., Xu J., Luo X., Chegini N. «Vitamin D receptor silecing on the expression of LVSCC -A1C and the release of NGF in cortical neurons.» PLoS One, 6(3) (2011):e17553.

23. Gezen-Ak D., Dursun M., Mathieu C., Demay M., Nikzamir A., Zari M.R. «Vitamin D and human health: lessons from vitamin D receptor null mice.» Endocrine Reviews, 29(6) (2008):726-776.

24. Gezen-Ak D., Dursun M., Mathieu C., Demay M., Nikzamir A., Zari M.R. «Vitamin D and human health: lessons from vitamin D receptor null mice.» Endocrine Reviews, 29(6) (2008):726-776.

25. Ma Y.J., Hill D.F., Creswick K.E., Costa M.E., Cornea A., Lioubin M.N., Plowman G.D., Ojeda S.R. «Neuregulins signaling via a glial erbB-2-erbB-4 receptor complex contribute to the neuroendocrine control of mammalian sexual development.» J Neurosci, 19(22) (1999):9913-9929.

26. Ojeda S.R., Lommiciiz A., Loche A., Matagne V., Kaidar G., Sandau U.S., Dissen G.A. «The transcriptional control of female puberty.» Brain Res, 1364(2010):164-174.

27. Gezen-Ak D., Dursun E., Yilmazer S. «The effects of vitamin D receptor silencing on the expression of LVSCC-AIC and the release of NGF in cortical neurons.» PLos One, 6(3) (2011):e17553.

28. Malinima E., Druzin M., Johannson S. «Differential control of spontaneous and evoked GABA release by presynaptic L-type Ca ++ channels in the rat medial preoptic nucleus.» J Neurophysiol, 104(1):200-209.

29. Morteza Bagheri, Isa Abdi Rad, Nima Hosseini Jazani, Fariba Nanbaksh Int J Fertil Steril, 7(2) (2013):166-121.

30. Rajnajzad F., Mahban A., Shemirani A.I., Mahmoudi T., Vahedi M., Nikzamir A., Zari M.R. «The effects of vitamin D receptor silencing on the expression of LVSCC-AIC and the release of NGF in cortical neurons.» PLos One, 6(3) (2011):e17553.

31. Holly R. Harris, Chavarro J.E., Missmer S.A. «Premature aging in vitamin D receptor mutant mice.» J Steroid Mol Biol, 115(3-5) (2011):91-97.

32. Vignato E., Panina-Bordignon P., Besozzi M., Di Blasio A.M. «Vitamin D and human health: lessons from vitamin D receptor null mice.» Endocrine Reviews, 29(6) (2008):726-776.

33. Veldik D. «Nonclassical actions of vitamin D.», 94(1) (2009):26-34.

34. Veldik D. «Nonclassical actions of vitamin D.», 94(1) (2009):26-34.

35. Veldik D. «Nonclassical actions of vitamin D.», 94(1) (2009):26-34.

36. Veldik D. «Nonclassical actions of vitamin D.», 94(1) (2009):26-34.

37. Veldik D. «Nonclassical actions of vitamin D.», 94(1) (2009):26-34.

38. Veldik D. «Nonclassical actions of vitamin D.», 94(1) (2009):26-34.
NON CLASSICAL FUNCTION OF VITAMIN D – INFLUENCE ON REPRODUCTIVE HEALTH, PUBERTY AND FERTILITY

Chaykivska Elina, assistant professor of the Obstetrics, Gynecology and Perinatology Department, Lviv National Medical University, Lviv, Ukraine

Chaykivska Zlata, Jagiellonian University, Collegium Medicum, Cracow, Poland

In the past few years, there has been growing appreciation for the many roles of vitamin D and its active metabolites in a large number of tissues. Most tissues in the body, not just those participating in the classic action of vitamin D such as bone, kidney and gut, have receptors (VDR) for the active form of vitamin D – 1,25 dihydroxyvitamin D. The recent data on vitamin D from retrospective, prospective observational studies, case-control and experimental studies confirm the essential role of vitamin D in a variety of physiological functions. Last time there has been growing interest in this substance observed in the scientific researches and biomedical literature, due to findings which demonstrate a vitamin D deficiency status in the population.

This review is an analysis of the association between the vitamin D and the female and male reproduction and fertility. We highlight the latest findings from medical trials on vitamin D during last years. The aim of this article is to understand how vitamin D affects the female and male fertility.

Vitamin D is a hormone which controls nearly 1/3 of human and mice genome, over 200 genes in a human body, including those responsible for cell cycle control; proliferation, differentiation, apoptosis. Apart from basic functions, which are maintaining calcium-phosphoric balance, vitamin D takes active part in process of cell proliferation, epidermal keratinocyte differentiation, immune system stimulation, insulin secretion, brain metabolism, adipocytes function, puberty, reproduction and fertility. The vitamin D receptors (VDR) and vitamin D metabolizing enzymes are found in reproductive tissues of women and men. VDR knockout mice have significant gonadal insufficiency, decreased sperm count and motility, and histological abnormalities of testis, ovary and uterus. Assuming that 30 ng/ml (75 nmol/l) is a lower limit of normal concentration of 25(OH)D3 in serum, the number of people with vitamin D deficit equals about 1 billion worldwide.

Key words: vitamin D, fertility, puberty, vitamin D receptors, reproductive health.

NEКЛАСИЧНА ФУНКЦІЯ ВІТАМІНУ D – ВПЛИВ НА РЕПРОДУКТИВНЕ ЗДОРОВ’Я, ПУБЕРТАТ ТА ФЕРТИЛЬНІСТЬ

Чайківська Еліна, доцент кафедри акушерства, гінекології та перинатології, Львівський державний медичний університет ім. Данила Галицького, Львів, Україна

Чайківська Злата, Ягеллонський університет, Коллегіум Медікум, Краків, Польща

За останні кілька років дедалі частіше зустрічаються наукові підтвердження впливу вітаміну D та його активних метаболітів на фізіологію різних органів. Доведено, що більшість тканин організму мають відповідні рецептори (VDR) для активної форми вітаміну D – 1,25 дигідроксивітаміну D, і не тільки ті, що беруть участь в класичній дії вітаміну D (кістки, нирки і кишечник). Дані ретроспективних, випадок-контроль та експериментальних досліджень підтверджують важливу роль вітаміну D в різних фізіологічних функціях. Протягом останнього часу спостерігається зростаючий інтерес до даної субстанції у наукових дослідженнях та біомедичній літературі у зв’язку з висновками, які демонструють статус дефіциту вітаміну D в популяції.

Метою даної статті є аналіз зв’язку вітаміну D з фертильністю та репродуктивною функцією в організмі як жінок, так і чоловіків, з періоду пуберату до зрілого репродуктивного віку. Науковий досвід демонструє останні новини медичних досліджень, які підтверджують це.

Вітамін D є гормоном, який контролює близько 1/3 геному людини та мишей, понад 200 генів в організмі людини, в тому числі, що відповідають за контроль клітинного циклу: проліферацію, диференціацію, апоптоз. Артикул з основних функцій, таких як підтримка кальцієвого балансу, вітамін D бере активну участь у процесі диференціювання кератинових клітин, стимулює імунну систему, стимулює активність тимчасових імунних систем, секрецію інсуліну, метаболізму головного мозку, функції адипоцитів і фертильності. Рецептори для вітаміну D (VDR) і ферменти, що беруть участь у його метаболізмі, знаходяться в репродуктивних органах обох статей. VDR-нахиляння мишей мають значну гонадну недостатність, зниження кількості сперматозоїдів та їх рухливості, гістологічні аномалії яєчка, яєчників та матки. Якщо припустити, що 30 нг/мл (75 нмоль/л) — нижня межа нормальної концентрації 25(OH)D3, в сироватці крові, кількість людей з дефіцитом вітаміну D становить майже 1 млрд у всьому світі.

Ключові слова: вітамін D, фертильність, пуберат, рецептор для вітаміну D, репродуктивне здоров’я.