Characterization of coir pith for fluidized bed gasification

SA Ramjani, J John Gunasekar, P Vijayakumary and J Ramachandran

DOI: https://doi.org/10.22271/chemi.2020.v8.i6p.10912

Abstract

Biomass characteristics are necessary for the proper selection of the gasification system and to design and evaluate the performance of biomass gasifiers. The coir pith is analyzed for its physical properties, chemical composition and kinetic parameters. The mean particle size of coir pith was found to be 0.551 mm. The relative size range of the coir pith was found to be 0.817. The bulk density, porosity and particle density of coir pith were found to be 87.0 kg m$^{-3}$, 71.4% and 305.0 kg m$^{-3}$ respectively. Coir pith was found to have more volatiles (62.0%) than fixed carbon (26.0%) and ash (12.0%). The elemental carbon and oxygen were found to be 47.1 and 48.3 per cent respectively. The calorific value of coir pith was found to be 18.24 MJ kg$^{-1}$. Thermograms obtained for raw coir pith revealed distinct stages of thermal degradation. The ignition temperature was found to be 550°C.

Keywords: Coir pith, gasification, physical and chemical properties, thermogram

Introduction

Many technologies are available for the conversion of biomass into energy. Thermo chemical conversion has attracted particular attention for converting biomass into more useful and valuable energy product. Gasification is a process through which biomass materials can be subjected to a series of chemical changes to yield clean and combustible gas at high thermal efficiencies. Gasification is one of the promising thermo-chemical technologies that can produce a variety of fuels like syngas or fuel gas depending upon the feedstock and gasifying atmosphere (Gómez-Barea et al. (2009) [1] and Matsumoto et al. (2009) [2]). Fluidized bed gasification technology is a typical gasification technology that has been widely applied for production of industrial fuel gas, city gas and chemical syngas. The first fluidized bed gasifier was developed in 1920s and after continuous improvement it has shown great advantages were studied by Ju et al. (2010). Large quantities of various biomass wastes are generated in developing countries like India. It was estimated that around 7.5 million tonnes of coir pith is available annually in India which can produce about 129 PJ of heat and 8.7 million tonnes of CO$_2$ was reported by Sheeba et al. (2009) [6]. For gasification of coir pith fluidized bed gasification offers significant advantages such as isothermal operation, simple scaling up procedures, high capacities and a good turn down ratio, over other types of gasifier configuration. Biomass characteristics are necessary to properly select the gasification system and to design and to evaluate the performance of biomass gasifiers. Biomass can be characterized in terms of physical properties of raw coir pith, proximate analysis and Ultimate analysis, Calorific value – Higher Heating Value, ash deformation and Fusion temperature and Rate of devolatilization – Thermograms. In this paper, the physical, chemical and kinetic properties of coir pith were analyzed and the results of this study will be useful for proper selection of the gasification system and to design and evaluate the performance of biomass gasifiers.

Materials and Methods

The coir pith is analyzed for its physical properties, chemical composition and kinetic parameters.

Physical properties of coir pith

Particle mean size

Sieve analysis is the most common method used for the analysis of particles and is suitable for the size ranging from 0.075 to 3 mm approximately (Henderson and Perry, 1966) Coir pith [12% (w.b) moisture content] was used for sieve analysis.
Particle mean size is calculated by using set of Indian standard sieves and following the procedures of Warren and Smith (1976). The cumulative fractions of coir pith retained on various sieves were calculated to find the relative particle size range of coir pith.

\[
\text{Mean Particle size, } d_{mc} = \frac{1}{\Sigma(x_i / d_i)}
\]

Where
- \(d_{mc}\) = Mean particle size of coir pith
- \(x_i\) = Mass fractions retained, g.
- \(d_i\) = Average aperture size, mm.

\[
\text{Relative Particle size range} = \frac{1}{2}(d_{0.04} - d_{0.16})
\]

Where
- \(d_{0.04}\) = Particle size below which 84% of the mass of the sample lies, mm.
- \(d_{0.16}\) = Particle size below which 16% of the mass of sample lies, mm.

**Bulk density**

It is determined by filling a vessel of known volume with coir pith.

\[
\text{Bulk density, } \rho_{bc} = \frac{\text{Mass of Coir pith, kg}}{\text{Volume of vessel, m}^3}
\]

**Particle density**

To find particle density, porosity of coir pith is determined by using pressure bottle method.

\[
\text{Porosity, } P_e = \frac{H_2 - H_1}{H_1} \times 100
\]

Where
- \(H_1\) = initial manometer level, cm H₂O
- \(H_2\) = final manometer level, cm H₂O

\[
\text{Particle density, } \rho_{pc} = \frac{\rho_{bc}}{1 - P_e}
\]

**Terminal velocity of coir pith**

Terminal velocity of coir pith is calculated to keep the fluidizing air velocity between \(U_{mf}\) and \(U_t\) to avoid carry over of solids.

\[
U_t = \left[ \frac{4(\rho_{pc} - \rho_f)^2 g^2}{225 \mu_f \rho_f} \right]^{1/3} \times d_{mc}
\]

Where
- \(U_t\) = Terminal velocity ms⁻¹.
- \(\rho_{pc}\) = Particle density of coir pith kg m⁻³.
- \(\rho_f\) = Fluidizing air density, kg m⁻³.
- \(g\) = Acceleration due to gravity ms⁻².
- \(\mu_f\) = Viscosity of fluidizing air kg m⁻¹s⁻¹.
- \(d_{mc}\) = Particle mean size

**Angle of repose**

It is determined by dumping coir pith through a circular opening on a leveled horizontal surface and the product takes a shape of inverted cone.

\[
\text{Angle of Repose, } \theta_e = \tan^{-1}\left( \frac{h}{r} \right)
\]

Where
- \(h\) = height of the cone, cm.
- \(r\) = radius of the horizontal plate, cm.

**Chemical composition of coir pith**

**Proximate analysis**

ASTM standards D3172-73 through D3173-75, modified procedures recommended for volatile were used to determine the moisture content, ash content, volatile matter and fixed carbon of coir pith. Moisture content was determined by drying the known quantity of sample in an open crucible kept at 110°C in oven for one hour.

\[
\text{Moisture content of coirpith (w.b)} = \frac{W_1 - W_d}{W_1} \times 100
\]

Where,
- \(W_d\) = Oven dried sample, g.
- \(W_1\) = Initial weight of coir pith, g.

The ash content of coir pith was determined by gradually heating the oven dried sample to 750°C in a muffle furnace. The difference in weight was taken as the ash content.

\[
\text{Ash Content} = \frac{W_3}{W_2} \times 100
\]

Where
- \(W_2\) = Final weight of the sample taken out from the furnace, g.
- \(W_3\) = Final weight of the sample in a closed crucible, g.

Fixed carbon was found out by applying mass balance.

\[
\text{Fixed carbon} = W_d - \text{Ash Content} - \text{Volatile matter}
\]

The calorific value of the oven dried coir pith was determined in a standard bomb calorimeter (Toshniwall isothermal bomb calorimeter) by the ASTM D2075-77.

\[
\text{Calorific Value, } CV_e = \frac{WT}{M}, \text{cal g}^{-1}
\]

Where
- \(CV_e\) = Calorific value of the coir pith, cal/g
- \(W\) = Water equivalent of the calorimeter assembly in Cal °C⁻¹.
- \(T\) = Rise in temperature, °C.
- \(M\) = Mass of the sample burnt, g.
International Journal of Chemical Studies

Ultimate Analysis
The ultimate analysis was carried out to know the carbon, hydrogen, oxygen, nitrogen, using an elemental analyser EA1108 with auto sampler AS – 200 and Data processor DP 200 – PRC. The analytical methods employed in chemical composition analysis of coir pith are shown in table below.

| Parameter       | Methods                        | Reference                  |
|-----------------|--------------------------------|----------------------------|
| Total N         | Kjeldahl digestion             | Jones and Case (1990)      |
| Total P         | Vanadomolybdo phosphoric yellow colour methods | Piper (1966)               |
| Total K and Na  | Flame photometry               | Piper (1966)               |
| Total Ca and Mg | Complexometric titration method | Lanyan and Heald (1982)    |
| Fe, Mn, Zn, Cu  | Atomic absorption spectrometry  | Jackson (1973)             |
| Lignin          | H2SO4 treatment method         | Sadasivam and Manikam (1996) |
| Cellulose       | Anthrone reagent method        | Sadasivam and Manikan (1996) |
| Organic carbon  | Wet chromic acid digestion     | Walkely and Black (1934)   |

TGA studies
TGA studies of coir pith was carried out CECRI, Karaikudi, to study the kinetics of reactions including pyrolysis as a function of temperature. The sample was heated in an inert atmosphere (alpha - alumina) at the rate of 50°C per minute. The thermogram obtained by plotting percent weight loss per °C as a function of temperature was analysed to know the temperature at which pyrolysis gets initiated, reached maximum and when it is completed. The activation energy (E) and frequency factor (A) were calculated by using the following modified Arhenius equation (Bining and Jenkins, 1992) and drawing reciprocal plots [1/T x 1000, K-1 Vs. ln[-ln (1-x) / T2] and least square fits were made. The slope of the linear equation was taken as the value of E/R where E is the apparent activation energy and R is the gas constant.

\[
C_1 = \ln \left[ \frac{AR}{qE} \left( \frac{1 - \frac{2RT}{E}}{1 - S \left( \frac{RT}{E} \right)^2} \right) \right] - \frac{E}{RT}
\]

Where
- \(C_1\) = Y intercept in the reciprocal plot = \(\ln (-\ln (1-x) / T^2)\)
- \(X\) = extent of reaction in terms of mass fraction
- \(E\) = activation energy,
- \(R\) = gas constant, 8.314 J °K-1 mol-1
- \(E/R\) = \(C_2\)
- \(C_2\) = slope in the reciprocal plot
- \(q\) = heating rate °K min⁻¹,
- \(A\) = frequency factor, s⁻¹
- \(T\) = temperature °K

Results and Discussion
Physical properties of Coir Pith
The mean particle size of coir pith was found to be 0.551mm (Fig. 1.).

The mass fractions under sizes of 0.84 and 0.16 were 1.3 and 0.4 respectively. The relative size range of the coir pith was found to be 0.817. The other physical properties of coir pith are tabulated as follows.

![Cumulative Fraction curve of Coir pith](image-url)
Table 2: Physical properties of coir pith

| S. No. | Properties      | Values   |
|--------|-----------------|----------|
| 1      | Bulk density    | 87 kg/m³ |
| 2      | Porosity        | 71.4%    |
| 3      | Particle density| 305 kg/m³|
| 4      | Angle of repose | 36.7°    |
| 5      | Terminal velocity| 1.043 m/s|

Chemical composition of coir pith

The lignin content of coir pith was 40.6%, cellulose and organic carbon content were 26.8 and 30.23% respectively.

The elements which indicated manural value such as N, P and K were less than 1% and other elements such as Fe, Mn, Cu, were less than 0.1%. Coir pith had more volatiles 62.0% than fixed carbon 26.0% and ash 12.0%. The elemental carbon and oxygen were found to be 47.1 and 48.3% respectively. The calorific value of coir pith was found to be 18.25 MJ/kg.

Kinetic parameters of Coir pith

The kinetics of the devolutilisation of coir pith was determined in TGA (Fig. 2.).

The thermograms can be divided into four distinct stages (A to E) the percentage and rate of mass loss is shown in the table.

Table 3: Stage wise percentage and rate of mass loss

| Stage | %     | Rate mg/min |
|-------|-------|-------------|
| A – B | 4.4   | 0.095       |
| B – C | 1.600 | 0.034       |
| C – D | 30.40 | 0.327       |
| D – E | 15.2  | 0.218       |

The percentage of mass loss in the stage A to B was due to the removal of moisture from the material. The sleep fall in the third stage C-D, contributed maximum mass loss due to removal of volatile matter from the materials. The volatiles removal commence at 300°C and reached completion at 550°C.

The mass reduction in the fourth stage may be considered as the start of ignition of fixed carbon. The ignition temp of coir pith was found to be 550°C. The apparent activation energy (E) and frequency factor (A) were 32-35 KJ mol⁻¹ and 874-1951 s⁻¹ respectively.

Air requirement for gasification of coir pith

The Stoichiometric air requirement for burning 1 kg of coir pith was found to be 3.29 m³ per kilogram of coir pith. For gasification 25 to 40.0% of stoichiometric air requirement is to be supplied.

Conclusion

The physical, chemical and kinetic properties of coir pith were analyzed. A major mass fraction (51.9%) was in the size range of +0.5 to 1.0 mm with particle mean size of 0.511 mm. The bulk density, porosity and particle density of coir pith were found to be 87.0 kg m⁻³, 71.4% and 305.0 kg m⁻³ respectively. Coir pith was found to have more volatiles (62.0%) than fixed carbon (26.0%) and ash (12.0%). The elemental carbon and oxygen were found to be 47.1 and 48.3% respectively. The calorific value of coir pith was found to be 18.24 MJ kg⁻¹. Thermograms obtained for raw coir pith revealed distinct stages of thermal degradation. The ignition temperature was found to be 550°C. The apparent activation energy (E) and frequency factor (A) were 32-35 KJ mol⁻¹ and 874-1951 s⁻¹ respectively.

References

1. Gómez-Barea A, Vilches L, Leiva C, Campoy M, Fernández-Pereira C. Plant optimisation and ash
recycling in fluidised bed waste gasification, Chem Eng, 2009;146:227-36.

2. Ju FH, Chen H, Yang X, Wang S, Zhang Liu D. Experimental study of a commercial circulated fluidized bed coal gasifier, Fuel Processing Technology 2010;91:818-822.

3. Kasaoka S, Sakata Y, Shimada M, Matsutomi T. A new kinetic model for temperature programmed thermogravimetry and its applications to the gasification of coal chars with steam and carbon dioxide. J Chem. Eng. Jpn 1985;18(5):426-432.

4. Matsumoto K, Takeno K, Ichinose T, Ogi T, Nakanishi, M. Gasification reaction kinetics on biomass char obtained as a by-product of gasification in an entrained-flow gasifier with steam and oxygen at 900–1000 C, Fuel 2009;88:519-527.

5. Pyle DL, Zaror CA. Heat transfer and kinetics in the low temperature pyrolysis of solids. Chemical Engineering Science 1984;39(1):147-158.

6. Sheeba KN, Babu SJC, Jaisankar S. Air gasification characteristics of coir pith in a circulating fluidized bed gasifier, Energy for Sustainable Development 2009;13:166-173.