Isolation, Morphological and Cultural Characterization of Azospirillum Isolated from Rhizospheric Soils of Various Non-Leguminous Crops of Ranchi Having Acidic pH

R. Narayan*, N.C. Gupta and D.K. Shahi

Department of Soil Science and Agricultural Chemistry, Birsa Agricultural University, Ranchi, Jharkhand, India

*Corresponding author

Abstract

Azospirillum is one of the versatile non-symbiotic, free living diazotrophic bacteria which appears to have a world-wide distribution and occurs in large number in the rhizosphere soil of a variety of grasses and cereals. The present study was carried out during Rabi and Kharif 2016-17 in the Department of Soil Science and Agricultural Chemistry, Birsa Agricultural University, Ranchi, Jharkhand. Efforts were made to screen out the presence of Azospirillum in rhizosphere of various non-leguminous crops and to characterize the isolates on the basis of morphological and cultural behaviours. On the basis of pH range (4.0-5.5), 54 rhizospheric soil samples were tentatively selected out of 100 samples for investigation. From the study conducted, presence of Azospirillum in rhizosphere of acidic pH was confirmed. Morphological characterization revealed that Azospirillum isolated from rhizosphere of various crops were gram negative and vibroid in shape. Cells were encapsulated i.e., were having capsules around them and formed microcyst in aged culture. Cultural characterisation revealed that colonies developed on agar slants were smooth, some of them were having raised while others were having flat elevation. Amount of growth of colonies observed were dense in 43 and thin in 11 colonies while they developed white sub-surface pellicle when grown in semi-solid Okon’s media. Out of 54 colonies, 41 were white, 5 were red and rest colonies were found yellow in colour.

Keywords
Azospirillum, Rhizosphere, Diazotrophic bacteria, Isolation, Characterisation, Microcyst, Capsule

Article Info
Accepted: 04 July 2018
Available Online: 10 August 2018

Introduction

Rhizosphere soil is a “hot-spot” for microbial growth and major microbial activities (Sachdev et al., 2009). It is the narrow zone of soil specifically influenced by the root system (Dobbelaere et al., 2003). This zone is rich in nutrients when compared with the bulk soil due to the accumulation of a variety of plant exudates such as amino acids and sugars providing a rich source of energy and nutrients for bacteria (Gray and Smith 2005). Root exudates are the substrate or fuel for the intense microbial (bacteria, fungi, algae, protozoa, nematodes and arthropods) activity within the rhizosphere. Thus it is the quantity and quality of the exudates and condition of the soil habitat that will determine the colonization potential of the rhizosphere (Lugtenberg et al., 2002). Azospirillum spp. isolated from various geographical regions of the world is one of the best-characterized
genus of plant growth-promoting rhizobacteria (PGPR). They are known to associate with the roots of wheat, tropical grasses, maize, and other cereals (Oh et al., 1999). The soil bacterium *Azospirillum* was first isolated from the Netherlands and originally named as *Spirillum lipoferum* by Beijerinck et al., (1925). Later Schroder (1932) isolated from the soils in Germany and Austria. Till now, they have been isolated from the rhizosphere of many grasses and cereals all over the world, in a wide variety of terrestrial and aquatic habitats of tropical as well as in temperate climates (Yooshinan, 2001). Its occurrence in the rhizosphere varied from 1 to 10 per cent to the total rhizosphere population (Okon, 1985). *Azospirilla* are gram-negative, free-living, nitrogen-fixing rhizospheric bacteria.

They display a versatile C and N metabolism which makes them well adapted to establish in the competitive environment of the rhizosphere (Hartmann and Zimmer 1994). *Azospirillum* flocs comprise a mixture of vegetative and encysted cells surrounded by a polysaccharide-rich network (capsule), conferring advantages such as stress tolerance, extended shelf life and enhanced survivability (Sadasivan and Neyra, 1985). *Azospirillum* cells appear in two distinct forms: the slightly vibroid form (V-form) occurring in young laboratory cultures and on plant roots (Tarrand et al., 1978), and the cyst form (C-form), occurring under stress or in old laboratory cultures (Sadasivan and Neyra, 1985). The C-form may be a survival structure. Occurrence of *Azospirillum* in soil is strongly pH-dependent with a pH around 7, being optimal. However, sporadic occurrence was observed even in soils with pH 4.8 (Magalhaes et al., 1983). Hence the present work was undertaken with a view to screen out the presence, isolate *Azospirillum* spp. from the rhizospheres of acidic soils of Ranchi (Jharkhand) and characterise them on the basis of their morphological and cultural behaviour.

Materials and Methods

Material

Azospirillum species studied in the present investigation were isolated from soil of rhizosphere having pH range of 4.0 to 5.5 of different non-leguminous crops grown in various blocks viz., Kanke, Aangara, Nagri, Bero, Itki of Ranchi district. Details of the location, soil pH and crop grown selected for isolation of *Azospirillum* are mentioned in Table 1.

Collection of rhizosphere soil

Rhizosphere soils were collected from the rhizospheric region of the plant at the depth of 5-6 cm near the periphery of roots of different crops from different blocks of Ranchi district in plastic bags. The soil samples were preserved in refrigerator.

pH of soil samples

Soil samples were collected from 100 different locations from Ranchi districts for pH analysis. The soil samples were air dried, grounded, sieved for estimation of pH by adopting standard methods. Soil pH was determined in a soil water suspension of 1:2.5 w/v, stirred at regular intervals for 30 minutes using pH meter (Jackson 1973). Details of selected 54 soil samples selected for isolation of *Azospirillum* has been presented in Table 1.

Isolation of *Azospirillum* spp.

Isolation of *Azospirillum* species from rhizospheric soils was done following the methods of serial dilution. From the soil samples selected on the basis of pH range (4.0-5.5), 1 g of soil was taken and serially diluted using sterile distilled water upto 10^{-6} dilutions. One ml of diluted sample from 10^{-4} to 10^{-6} dilutions were taken and 1ml of aliquot
was inoculated in tubes containing Okon’s Nfb (Nitrogen free bromothymol) semi-solid media. All the tubes were incubated at 35°C for 48 h and observed the growth by the formation of pellicles. Pellicles formation is considered as positive for *Azospirillum*.

Pellicles were streaked on petriplates containing Nfb Okon’s solid media and incubated at 35°C for 48 hours. Morphologically divergent *Azospirillum* colonies were picked from the plates of dilution 10⁻⁵ and streaked on basal minimal salt agar medium and incubated at 35°C for 24-48 hrs.

After attaining sufficient growth, all the isolates were preserved in a refrigerator for further investigation. The colonies developed on Okon’s agar medium (pH adjusted to 6.8) were transferred to slants of same medium and stored at 4°C.

Okon’s Media

Malic acid 5.00 g, KOH 4.00 g, K₂HPO₄ 0.50 g, FeSO₄.7H₂O 0.05 g, MnSO₄.7H₂O 0.01 g, MgSO₄.7H₂O 0.10 g, NaCl 0.02 g, CaCl₂ 0.01 g, Na₂MoO₄ 0.002 g, Bromothymol blue (0.5% in 95% methanol) 2.00 ml, Agar 1.8 g (semi-solid)/18 g(solid), NH₄Cl 1 g, Water 1 litre.

Purification of the culture

Purification of the culture was carried out by frequent transfer of colony of *Azospirillum* developed on Okon’s agar media to seal solid nitrogen free malate medium on petriplates (Okon *et al.*, 1977) having the following constituents: K₂HPO₄ 6.0 g, KH₂PO₄ 4.0 g, MgSO₄.7H₂O 0.2 g, NaCl 0.1 g, CaCl₂ 0.2 g, NH₄Cl 0.1 g, NaOH 3.0 g, Yeast extract 0.1 g, FeCl₃ 10.0 mg, Na₂MoO₄ 20.00 mg, MnSO₄ 2.10 mg, H₃BO₃ 2.80 mg, Cu(NO₃)₂ 0.04 mg, Agar 18 g, Water 1 litre

Morphological characterization

Gram reaction

Smears prepared from 48 hours old cultures were gram stained as per Huker modification (Rangaswami and Bagyaraj, 1996).

The slides were observed under compound microscope (oil immersion).

Capsule staining

Presence of capsules around the cells was observed on acetic crystal violet stained smears under oil immersion.

Microcyst formation

Stained smears of two weeks old cultures were observed under oil immersion.

Observations were recorded regarding presence of round thick walled cells as the preparation of microcysts.

Shape

Smears prepared from 48 hours old cultures were obtained and examined under oil immersion.

Cultural characterization

Different isolates of *Azospirillum* species were grown on respective standard media and their characteristic growth patterns were observed.

Serially diluted isolates of *Azospirillum* species were grown on Okon’s agar medium (Okon *et al.*, 1977) in petriplates and in tubes (for agar strokes) at 35°C for 72 hours then purification of colonies were done.

Observations were made with regard to nature of colonial growth.
Results and Discussion

In the present study, selectivity to grow on specific Nfb (Nitrogen free bromothymol) media and subsequently confirming their morphological, cultural and physiological identity with the type cultures as described in Bergey’s Manual (Buchanan and Gibbons, 1974) and Aquaspirillum taxonomy for Spirillum (Kreig and Hylemon, 1976) were taken as reference for investigation and characterization of Azospirillum isolates. A total of 54 isolates were studied under various morphological and cultural behaviours.

Morphological characteristics

All the isolates were studied for their morphological characteristics and results are presented in Table 2. Isolates were microscopically observed for their gram reaction, cell shape, presence of capsule and microcyst formation. Results revealed that the 54 isolates were gram negative in reaction and cell shape of all the isolates was vibroid when observed under microscope. These findings were confirmed by Rosemary et al., 2013 and Rasool et al., 2015. All the isolates were having capability of forming microcysts. Transition into cyst-like cells were observed in older cultures of Azospirillum was reported by Berlman (2004). Extracellular capsule was present in all 54 isolates which is in confirmity with reports of Madi et al., (1988).

Cultural characteristics

Data related to cultural characterisation has been presented in Table 2.

Colonial morphology

Study revealed that colonies developed on agar slants were smooth, some of them were having raised while others were having flat elevation. Amount of growth ranged from large to slight. 43 colonies were dense and 11 were thin in amount of growth.

Azospirillum displays high degree of pleomorphism with cellular and colony variations among the species as well as within each species depending on the strain, medium composition and culture conditions as reported by Becking, 1985. The same was investigated by Rasool et al., (2015).

Fig.1 White colonies of Azospirillum
Fig. 2 Yellow colonies of *Azospirillum*

Fig. 3 Red colonies of *Azospirillum*
Table 1 Details of 54 rhizospheric soil samples selected for isolation of *Azospirillum*

Sl. No.	Sample No.	Place of collection	pH of the soil	Crop (previous/ present)
1	AZM5	B.A.U Campus, SSAC, Kanke block	5.4	Maize
2	AZM6	B.A.U Campus, SSAC, Kanke block	5.3	Maize
3	AZM10	B.A.U Campus, SSAC, Kanke block	5.5	Rice
4	AZM15	B.A.U Campus, Tech park, Kanke block	5.1	Rice
5	AZM16	B.A.U Campus, Tech park, Kanke block	5.4	Ragi
6	AZM17	R.A.C Farm, W-section, Kanke block	5.3	Rice
7	AZM18	R.A.C Farm, W-section, Kanke block	5.1	Ragi
8	AZM19	R.A.C Farm, W-section, Kanke block	5.2	Rice
9	AZM22	R.A.C Farm, W-section, Kanke block	5.5	Wheat
10	AZM23	R.A.C Farm, W-section, Kanke block	5.4	Wheat
11	AZM25	Chamghati, Aangara block	5.5	Rice
12	AZM26	Chamghati, Aangara block	5.3	Rice
13	AZM27	Chamghati, Aangara block	5.1	Rice
14	AZM29	Chamghati, Aangara block	5.2	Rice
15	AZM30	Chamghati, Aangara block	5.4	Rice
16	AZM32	Chamghati, Aangara block	5.4	Rice
17	AZM33	Chamghati, Aangara block	5.3	Rice
18	AZM34	Chamghati, Aangara block	5.2	Rice
19	AZM35	Chauli patra, Nagri block	5.9	Pea
20	AZM36	Chauli patra, Nagri block	4.6	Ragi
21	AZM39	Itki mor, Itki block	4.7	Potato
22	AZM40	Itki mor, Itki block	4.6	Ragi
23	AZM42	Itki mor, Itki block	4.7	Mustard + Pea
24	AZM45	Garhgao, Itki block	4.6	Pea + Sugarcane
25	AZM46	Garhgao, Itki block	5.1	Wheat
26	AZM53	Devali, Itki block	5.4	Ragi
27	AZM55	Devali, Itki block	4.7	Potato
28	AZM56	Devali, Itki block	4.8	Maize
29	AZM60	Bhandra, Itki block	4.2	Maize
30	AZM61	Bhandra, Itki block	4.7	Onion
31	AZM62	Karmatoli, Bero block	4.1	Pea + Potato
32	AZM63	Karmatoli, Bero block	4.0	Potato
33	AZM64	Karmatoli, Bero block	4.0	Potato
34	AZM65	Kalanji, Bero block	4.0	Ginger
35	AZM66	Didhiya, Bero block	4.1	Mustard + Pea
36	AZM70	Tuko, Bero block	5.1	Pea
37	AZM71	Tuko, Bero block	4.4	Potato
38	AZM75	Parepara, Bero block	4.6	Pea
39	AZM76	Parepara, Bero block	4.9	Potato
40	AZM77	Parepara, Bero block	4.7	Lentil
41	AZM80	Jainathpur, Bero block	4.8	Pea
42	AZM81	Jainathpur, Bero block	4.9	Mustard
43	AZM83	Bhaishmuro, Bero block	4.4	Ginger
44	AZM84	Bhaishmuro, Bero block	4.8	Mustard
45	AZM85	Bhaishmuro, Bero block	4.4	Pea
46	AZM87	Bhaishmuro, Bero block	4.1	Ragi
47	AZM88	Bhaishmuro, Bero block	4.3	Potato
48	AZM89	Bhaishmuro, Bero block	4.4	Potato
49	AZM90	Bhaishmuro, Bero block	4.1	Potato
50	AZM93	Kundo, Bero block	4.2	Potato
51	AZM94	Kundo, Bero block	4.8	Ragi
52	AZM95	Kundo, Bero block	4.6	Maize
53	AZM99	Bero, Bero block	4.3	Potato
54	AZM100	Bero, Bero block	4.7	Ragi
Table.2 Morphological and cultural characterization of the new isolates of *Azospirillum*

Sl. No.	Azospirillum isolates	Gram reaction	Capsule	Microcyst formation	Shape of cell	Solid agar media	Semi-solid media	Color of colony
1.	AZM 5	Negative	Present	+	Vibroid	Smooth, Raised, Dense	White sub-surface pellicle	White
2.	AZM 6	Negative	Present	+	Vibroid	Smooth, Raised, Dense	White sub-surface pellicle	White
3.	AZM 10	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
4.	AZM 15	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
5.	AZM 16	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
6.	AZM 17	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
7.	AZM 18	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
8.	AZM 19	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
9.	AZM 22	Negative	Present	+	Vibroid	Smooth, Raised, Dense	White sub-surface pellicle	White
10.	AZM 23	Negative	Present	+	Vibroid	Smooth, Raised, Dense	White sub-surface pellicle	White
11.	AZM 25	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
12.	AZM 26	Negative	Present	+	Vibroid	Smooth, Raised, Dense	White sub-surface pellicle	White
13.	AZM 27	Negative	Present	+	Vibroid	Smooth, Raised, Dense	White sub-surface pellicle	White
14.	AZM 29	Negative	Present	+	Vibroid	Smooth, Raised, Dense	White sub-surface pellicle	White
15.	AZM 30	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
16.	AZM 32	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
17.	AZM 33	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
18.	AZM 34	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
19.	AZM 35	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
20.	AZM 36	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
21.	AZM 39	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
22.	AZM 40	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
23.	AZM 42	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
24.	AZM 45	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
25.	AZM 46	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
---	---	---	---	---	---			
26.	AZM 53	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
27.	AZM 55	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
28.	AZM 56	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
29.	AZM 60	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
30.	AZM 61	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
31.	AZM 62	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
32.	AZM 63	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
33.	AZM 64	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
34.	AZM 65	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
35.	AZM 66	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
36.	AZM 67	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
37.	AZM 68	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
38.	AZM 69	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
39.	AZM 70	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
40.	AZM 71	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
41.	AZM 72	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
42.	AZM 73	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
43.	AZM 74	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
44.	AZM 75	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
45.	AZM 76	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
46.	AZM 77	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
47.	AZM 78	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
48.	AZM 79	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
49.	AZM 80	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
50.	AZM 81	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
51.	AZM 82	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
52.	AZM 83	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
53.	AZM 84	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
54.	AZM 85	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
55.	AZM 86	Negative	Present	+	Vibroid	Smooth, Flat, Dense	White sub-surface pellicle	White
Colour production by colonies

Out of 54 colonies, colour of 41 was white, 5 were red and rest were yellow in colour (Fig. 1, 2 and 3). Tarrand et al., (1978) have reported that colonies of different N₂ fixing Azospirillum strain showed pink, deep pink, red or yellow colour. This was due to presence of different carotenoid pigment in that isolates as reported by Baldani et al., (1986) and Rasool et al., (2015).

Growth in semi-solid media

Investigation revealed that all the 54 isolates of Azospirillum were developed as white sub-surface pellicle in semi-solid agar media. In this zone the concentration of dissolved oxygen permits optimal respiration rates without inhibiting nitrogen fixation (Day and Dobereiner, 1976).

As growth continues and more oxygen is consumed, the pellicle moves towards the surface where a dense pellicle forms. This growth pattern of Azospirillum in semi-solid media was reported by Hossain et al., (2015). Free living diazotroph, Azospirillum are able to survive even at pH 4.0 i.e., under highly acidic conditions and they have wider availability in rhizospheric soils of different blocks of Ranchi district. They are negative to Gram’s reaction.

They are vibroid shaped cells having capsule and are able to form thick walled microcysts during unfavourable conditions which is their adaptive mechanism to survive in adverse conditions. Azospirillum spp. show high degree of polymorphism in respect to their colonial patterns, elevation etc which may be attributed to their isolation from different rhizospheric and soil conditions where they were surviving. Colour development in few colonies is due to presence of carotenoid pigments.

References

Baldani, V.L.D., Alvarez, M.A., Baldani, J.I. and Dobereiner, J. (1986) Establishment of inoculated Azospirillum sp. in the rhizosphere and in roots of field-grown wheat and sorghum. Plant and Soil 90, 35–46.

Becking, J.H. (1985) Pleomorphism in Azospirillum. In: Azospirillum III: Genetics, Physiology, Ecology. Edited by Klingmuller W. Springer, Berlin, pp 243–262.

Beijerinck, M.W. (1925) Uberein spirillum, Welches freien stickstoff bidenkann. Central Baktparasit Infect II Abstract Edition 63, 353-359.

Berlman, J.E., Hasselbring, B.M. and Bauer, C.E. (2004) Hypercyst mutants in Rhodospirillum centenum identify regulatory loci involved in cyst cell differentiation. Journal of Bacteriology 186, 5834-5841.

Buchanan, R.E. and Gibbons, N.E. (1974) Bergey's Manual of Determinative Bacteriology, 8th edition, Williams and Wilkins, Baltimore, pp. 196.

Day, J.M. and Dobereiner, J. (1976). Associative symbiosis in tropical grasses: characterization of microorganisms and dinitrogen fixing sites In: Proceedings of First International Symposium on N₂ fixation (W.E Newton and C.J. Nyman Eds.), Washington University Press, Pullman W.A. pp 518-538.

Dobbelaeere, S., Vanderleyden, J. and Okon, Y. (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences 22, 107-149.

Gray, E.J. and Smith, D.L. (2005). Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes. Soil Biology and Biochemistry 37, 395-412.

Hartmann, A. and Zimmer, W. (1994) Physiology of Azospirillum. In: Okon Y. (ed.) Azospirillum-plant associations. CRC, Boca Raton, Fla. pp 15-39.

Hossain, M., Jahan, I., Akter, S., Md. Rahman, N. and Badier R.S.M. (2015) Isolation and identification of Azospirillum isolates from different paddy fields of North
Bengal. Indian Journal of Research in Pharmacy and Biotechnology. 3, 74-80.
Jackson, M.L. (1973) Soil Chemical Analysis. Prentice Hall, New York, pp. 48-302.
Kreig, N.R. and Hylemon, P.B. (1976) Taxonomy of the chemoheterotrophic Spirilla. Annual Review of Microbiology 30, 303.
Lugtenberg, B.J.J., Chin-A-Woeng, T.F.C. and Bloemberg, G.V. (2002) Microbe-plant interactions: principles and mechanisms. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology 81, 373-383
Madi, L., Kessel, M., Sadovnik, E. and Henis, Y. (1988) Electron microscopic studies of aggregation and pellicle formation in Azospirillum sp. Plant and Soil 109, 115.
Magalhaes, F.M.M., Baldani, J.I., Souto, S.M., Kuykendall, J.R. and Doberiner, J. (1983) A new acid tolerant Azospirillum species. Annals of Academic Bras Cien 55, 417-420.
Oh K.H., Seong C.S., Lee S.W., Kwon O.S. and Park Y.S. (1999) Isolation of psychrotrophic Azospirillum spp. and characterization of its extracellular protease. FEMS Microbiology Letters 174, 173-178.
Okon, Y. (1985) Azospirillum as a potential inoculant for agriculture. Trends in Biotechnology 3, 223-228.
Okon, Y., Albrecht, S.L. and Burris, R.H. (1977) Methods for growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Applied and Environmental Microbiology 33, 85-87.
Rangaswami, G. and Bagyaraj, D.F. (1996) Agricultural Microbiology. Asian Publishing House, New Delhi.
Rasool, L., Asghar, M., Jamil, A. and Rehman, S.U. (2015) Identification of Azospirillum species from Wheat rhizosphere. Journal of Animal and Plant Sciences 25, 1018-1081.
Rosemary, O.C., OnahGloria, T. and Igbonewku, C.C. (2013) Isolation and characterization of nitrogen-fixing bacteria in the soil. International Journal of Life Science and Pharma Research 2, 2250-3137.
Sachdev, D., Chaudhari, H.G., Kasture, V.M., Dhavale, D.D. and Chopade, B.A. (2009) Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian Journal of Experimental Biology 47, 993-1000.
Sadasivan, L. and Neyra, C.A. (1985) Flocculation in A. brasilense and A. lipoferum. Exopoly-saccharides and cyst formation. Journal of Bacteriology 163, 716.
Scheroder, M. (1932) Die Assimilation des Luftstickstoffs durch Einzige Bakterien. Zentbl. Bakt. Parasitkde 85, 177-212.
Tarrand, J.J, Kreig, N.R. and Dobereiner, J. (1978) A taxonomic study of the Spirillum lipoferum group, with a descriptions of a new genus, Azospirillum gen. nov., and two species, Azospirillum lipoferum (Beijerink) comb. nov. and Azospirillum brasilense sp. nov. Canadian Journal of Microbiology 24, 967-980.
Yooshinan, S.U. (2001) Biological Nitrogen Fixation. Journal of Biological Association. 8, 50-55.