Synbiotic yoghurt with walnut and cereal brittle added as a next-generation bioactive compound: Development and characteristics

Ivan Fiodorovich Gorlov1,2 | Valeria Viktorovna Shishova2 | Marina
Ivanovna Slozhenkina1,2 | Olga Petrovna Serova2 | Natalia Ivanovna Mosolova1,2 | Elena Yurievna Zlobina1,3 | Tatiana Nikolaevna Barmina1

Abstract
The article presents a technology developed for the production of synbiotic Yoghurt with new bioactive filler based on natural components. The Yoghurt has prebiotic and sorption properties. A higher consumer appeal of the product developed has been substantiated; its characteristics compared with the Yoghurt of traditional production technology have been presented. The brittle, containing peeled walnuts, as well as barley, wheat, rye, oatmeal and buckwheat flakes, sugar, and water, was used as a filler. Optimum time and temperature regimes of boiling caramel mixtures and brewing raw walnut–cereal mass in the brittle have been selected. The formulation developed enables increasing the nutritional and biological values of the finished product. The research studies of the finished product involved an analysis of organoleptic, physicochemical, and microbiological points. When performing the tasks, the approved regulatory and technical documentation (GOST) was applied. Each measurement was carried out in triplicate. The physicochemical characteristics of the samples developed were compared with the requirements for the quality of fermented milk products. The nutritional and biological values were calculated. The increase in consumer properties, and nutritional and biological values of the finished dairy product was scientifically substantiated and experimentally confirmed.

KEYWORDS
bioavailability, meal plan models, micronutrient deficiency, nutrient intake, scaling up nutrition, supplementation

1 | INTRODUCTION
For millennia, microbes have been used in the production of food and beverages; the technology involves the fermentation process. In recent years, the attention of scientists has been attracted by identifying fundamental mechanisms and influence patterns of food and beverages on the human body, and as a consequence, the options of their use in the food industry for preventive and therapeutic purposes. As a result, the world community has got a new term "probiotics." Lactic acid bacteria (LAB) are normal microflora in the

Received: 24 April 2019 | Revised: 18 June 2019 | Accepted: 22 June 2019
DOI: 10.1002/fsn3.1135
intestines of mammals (Markowiak & Slizewska, 2018; Young, 1998). They play an important role in the process of vital activity and act as an immunomodulator. The LAB are widely used for prevention and treatment of gastrointestinal diseases, as well as for improvement of digestion and more complete absorption of nutrients. Probiotic microorganisms include lactic acid bacteria such as Lactobacillus acidophilus, L. bulgaricus, L. casei, L. plantarum, and L. rhamnosus. These applied live bacteria promote the development of the immune response and distribution of the vaccine component in the body. Complexes of pathogenic and nonpathogenic food microbes are currently evaluated as candidates for oral vaccines. Intestinal microflora plays a crucial role in the metabolism of various nutrient substrates in the vital activity. There are numerous studies of pre-, pro-, and synbiotics, confirming clinical efficiency in maintaining the balance of the gastrointestinal microbiota to improve health (Nakagawa, Yabuuchi, Yasokawa, & Nagashima, 2005; Quigley, 2019; Singh, Amdekar, Yadav, Mishra, & Jain, 2011; Sukhikh, Krumlikov, Evsukova, & Asyakina, 2017; Vyas & Ranganathan, 2012). Prebiotics are known to be food components that are not digested and absorbed in the upper gastrointestinal tract, since gastric enzymes cannot act on them; but they are fermented by the microflora of the human large intestine and stimulate its growth and vital activity. They reach the colon intact and are selectively fermented to have a beneficial effect. Probiotics are live cultures of microorganisms and substances of microbial and other origin. Symbiotics are combined bacterial preparations containing prebiotics and probiotics and belong to the innovation group of biologics (Mohanty, Mishra, Mohapatra, & Sahu, 2018; Roberfroid, 2000; de Vrese & Schrezenmeir, 2008).

A bioactive compound is a simple substance that has a biological activity associated with its ability to modulate one or more metabolic processes, which leads to improved health (Angiolillo, Nobile, & Conte, 2015; Watson & Preedy, 1998). One of the most important tasks in addressing the food safety and nutrition issues and achieving the goals of sustainable development due to changes in the structure of food consumption, that is, increasing the share of specialized meat and dairy products (the order of the Government of the Russian Federation dated 25.10.10). So, obvious is the relevance of expanding the range of functional fermented milk products that improve digestion, quickly eliminate hunger, and are a source of micro- and macronutrients (McAuliffe, Kilcawley, & Stefanovic, 2019; Slozhennika, Druker, Kryuchkova, & Zlobina, 2018; Slozhennika, Serova, Vodolazkova, & Zlobina, 2017). Among the variety of dairy products, Yoghurts can be considered the most common and attractive for the consumer; their advantages, in particular, include light texture, pleasant organoleptic characteristics, and various fillers and functional ingredients that are able to be added to the production technology and increase the biological and nutritional value of the product (Mohammadi-Sartang et al., 2018; Sivieri et al., 2017). Nontraditional components such as inulin (Mazloomi, Shekarforoush, Ebrahimnejad, & Sajedianfard, 2011), fructooligosaccharides (Madhu, Amrutha, & Prapulla, 2012), oat/barley beta-glucan (Ladjevardi, Yarmand, Emam-Djomeh, & Niasari-Naslaji, 2016; Vasiljevic, Kealy, & Mishra, 2007), different kinds of rice (Kumari, Ranadheera, Prasanna, Senevirathne, & Vidanarachchi, 2015; Wattananapakasem, Valenberg, Fogliano, Costabile, & Suwannaporn, 2018), pineapple peel powder (Sah, Vasiljevic, McKechnie, & Donkor, 2016), Lesser Yam Tubers (Dioscorea esculenta L.) (Winarti & Saputro, 2015), probiotics and prebiotics (Hill, Ross, Arendt, & Stanton, 2017), red ginger extract (Larasati, Panunggal, Alifah, Anjani, & Rustanti, 2017), Binahong Leaf Extract (Lestari, Nissa, Alifah, Anjani, & Rustanti, 2017), and Purple Sweet Potato (Tari, Handayani, & Hartati, 2018) are known to be used as fillers for the production of synergetic yoghurt.

The authors proposed a recipe and developed a technology for the production of a new synergetic Yoghurt using a nontraditional filler, that is, brittle of walnut and five cereal flakes (barley, wheat, rye, oats, and buckwheat) as a prebiotic component and plant sorbent (Figure 1).

FIGURE 1 Raw materials for enriched product: (a) walnuts; (b) cereal flakes; (c) sugar; (d) water; and (e) milk

Highlights
- A higher consumer appeal of the product developed has been substantiated; its characteristics compared with the Yoghurt of traditional production technology have been presented.
2 | MATERIALS AND METHODS

2.1 | The samples of raw materials and the production technology

The set yoghurt was produced in accordance with the traditional technological scheme (Tamime & Robinson, 2007) that includes the following steps: delivery of raw materials; filtering, cooling, and storage; heating, standardization, and homogenization; pasteurization and recooling; fermentation; filling, packaging, and labeling; souring and recooling; and storage (Figure 2 and Table 1).

At the fermentation stage, dry bacterial starter culture was used to produce dairy products based on *Lactobacillus bulgaricus*, *Lactobacillus casei*, and *Streptococcus thermophilus* (LbS 22.11 series, “AiBi,” OOO “Green Lines,” Russia). AiBi direct application starters are highly concentrated lyophilized cultures containing a mixture of precisely defined strains that provide effective and reliable development of the acidity, good texture of the product, precisely defined production process, and exactly determined time of ripening. They are phage-alternative and phage-resistant for a long time.

Brittle was chosen as bioactive filler with prebiotic and adsorbing properties; there was a developed formulation that included peeled walnuts, flakes of wheat, rye, oat, barley and buckwheat, sugar, and water. All brittle samples were produced according to one recipe, except for Test I sample added with citric acid (5 g per 100 g of the mixture). Three brittle samples were developed, that is, Control with low melting point; Test I with citric acid, and Test II with high melting point.

![Figure 2](image-url)
Figure 2 Technological scheme for the product enriched (thermostatic method)
The basic scheme of the brittle production included the operations of raw material preparation, syrup boiling, walnut–cereal mass brewing, forming, cooling, and storage (Figure 2 and Table 1).

Optimum time and temperature conditions for boiling caramel mixtures and brewing raw walnut–cereal masses in caramel were determined using a single-block logic programmable controller OVEN PLK 150–220.I–M (OOO Production Association OVEN, Russia) and the CODESYS v.2 programming system (CODESYS Group, 3S-Smart Software Solutions GmbH, Germany).

The experimental study to establish the optimum temperature and time of melting the caramel mixture was carried out as follows. The sugar syrup was stirred and boiled to a moisture content of 4%–6% at a temperature of 100–180°C (Table 2). Then, premixed walnuts and cereals were poured into the syrup and mixed. The walnut–cereal mass was molded and cooled to 20°C. In the metal container, there was a temperature sensor preinstalled and completely immersed in the area of the caramel mixture during the experiment. The sensor was connected to a monoblock controller with discrete and analogue inputs/outputs on board for the OVEN PLK 150 small systems automation; the temperature and time regimes were recorded continuously throughout all the preparation stages. The controller was programmed by the professional programming system CODESYS v.2. This program helped output the information to a computer screen; all processes were presented in a temperature–time curve (Figure 3a–c).

2.2 Analysis of the finished product characteristics

The research studies of the finished product involved an analysis of organoleptic, physicochemical, and microbiological points. When performing the tasks, the approved regulatory and technical documentation (GOST) was applied. Each measurement was carried out in triplicate. The physicochemical characteristics of the samples developed were compared with the requirements for the quality of fermented milk products.

Technical regulations of the Customs Union "On safety of milk and dairy products" (TR TS 033/2013) and GOST 31981–2013 "Yoghurts. General specifications." Sensory analysis of the developed enriched products was carried out in accordance with GOST R ISO 22935–2–2011 "Milk and milk products" and GOST R ISO 22935–3–2011 "Milk and milk products. Sensory analysis. Part 3. Guidance on a method for evaluation of compliance with product specifications for sensory properties by scoring" (a five-point scale applied). Microbiological characteristics of the developed milk products were determined in accordance with the requirements of GOST 32901–2014 "Milk and milk products. Methods of microbiological analysis." The amino acid composition was analyzed by a HPLC analyzer for physiological fluids with postcolumn ninhydrin derivatization in accordance with the manufacturer’s instruction manual (ARACUS, PMA GmbH, Germany). Photographs of the brittle samples structures were taken using the Mikmed-5 light microscope (AO LOMO, Russia), 10× magnification.

2.3 The calculation of the nutritional and biological values

The nutritional value (NV) was evaluated in accordance with the following formula:

\[
NV (\text{kcal}) = \frac{4 \cdot P + 9 \cdot F + 4 \cdot C}{100} \times 100 \text{g}
\]

where P is the percentage of protein, %; F is the percentage of fat, %; C is the percentage of carbohydrates, %.

TABLE 1 Recipe of synbiotic Yoghurt with filler

Raw material	Amount, kg per 1,000 kg
Fermented milk base	
Standardized milk	923.0
Skim milk powder	76.9
Culture	0.1
Total	1,000.0
Filler	
Walnuts	277.0
Five cereal flakes	277.0
Granulated sugar	277.0
Water	169.0
Total	1,000.0
Fermented milk base/filler, %	70/30

TABLE 2 Temperature and time regimes of melting and brewing caramel, walnut, and cereal mass

Process stage	Temperature, °C	Time, min	Description
Boiling the caramel mass			
Control	70	4–5	Start of melting
Test I	73	8	
Test II	75	5–6	
110	7–8		Start of boiling
119	10–11		Boiling the mixture
126	13	15	Homogeneous mixture
127	15	12	Darkening of the mass
127	17	25	
128	21–22	27	
129	17	18	
Brewing the nut–cereal mass			
Control	127	22	Brewing
Test I	170	28	
Test II	180	18	
80	23	19	Homogeneous mixture
110	29		
The amino acid score (AAS) was calculated as follows:

\[
\text{AAS (\%)} = \frac{\text{Evaluated protein amino acid content (g/100 g protein)}}{\text{FAO scoring model amino acid content (g/100 g protein)}} \times 100
\]

The coefficient of amino acid score difference (CAAS) was calculated by the following formula:

\[
\text{CAAS (\%)} = \frac{\sum (C_i - C_{\text{min}})}{n}
\]

where \(C_i \) is the excess of amino acid score, \%; \(C_{\text{min}} \) is the minimum score of essential amino acids of evaluated protein relative to the physiological norm (FAO scoring model amino acid content, \%).
The biological value (BV) was calculated by the following formula:

\[BV(\%) = 100 - CAAS \]

To assess the balance of essential amino acids with respect to the reference protein, the utility \(K_i \) coefficient was calculated.

\[K_i = \frac{AS_{min}}{AS_i} \]

where \(AS_i \) is the amino acid score of the i-indispensable amino acid in the product; \(AS_{min} \) is the amino acid score of the first limiting amino acid in this product.

The utility coefficient of the i-indispensable amino acid (\(A_i \)) was used to calculate the utility coefficient of the amino acid composition (\(U \)), which was a numerical characteristic that reflected the balance of essential amino acids with respect to the standard (\(A_{i, st} \)):

\[U = \frac{\sum_{i=1}^{n} (A_i K_i)}{\sum_{i=1}^{n} A_{i, st}} \]

2.4 | Statistical analysis

The experimental data were analyzed by the Statistica 10.0 package using conventional techniques. The threshold of 0.05 was considered a minimum threshold of the significance of differences (Johnson & Bhattacharyya, 2010). The MS Office 2010 was used for the graphical interpretation of the digital data.

3 | RESULTS AND DISCUSSION

3.1 | Comparative quality evaluation of the brittle samples

The Control brittle sample was made at low melting point of the caramel mass (up to 127°C); the moisture content in the finished product was within the range of 12.7–13.4%.

Abbreviation: ns, not significant at \(p > .05 \) compared with data on the Control sample. **\(p < .01 \); ***\(p < .05 \). *\(p < .001 \).

TABLE 4 Comparative characteristics of the Yoghurt samples

Parameter	Control (conventional technology)	Test (with filler)
Dry matter, %	13.44 ± 0.06	37.65 ± 2.44*
Protein, %	3.29 ± 0.05	4.41 ± 0.08*
Fat, %	3.69 ± 0.03	7.87 ± 0.04*
Carbohydrates, %	4.72 ± 0.04	18.25 ± 0.11*
Nutritional value, kcal/100 g	65.3	161.5

TABLE 5 Indices of the biological value of the Yoghurt samples

Amino acids, mg per 1 g of protein	Control Sample	Enriched Sample	Reference protein, FAO/WHO					
	AAS, %	∆AAS	CAAS,% BV	K_i	A_i, K_i	U	A_i, K_i	U
Valine	14.8	18.7	21.87	0.41	6.06	0.41	9.74	0.61
Lysine	12.9	26.88	11.72	0.56	7.27	0.56	11.69	0.86
Methionine + Cystine	4.9	21.35	6.20	0.77	3.48	0.77	28.98	2.00
Phenylalanine + Tyrosine	18.8	45.88	30.73	0.73	6.21	0.73	45.88	3.00
Threonine	7.3	29.36	14.21	0.50	3.79	0.50	29.36	0.50
Leucine + Isoleucine	22.8	30.56	15.41	0.50	13.79	0.50	30.56	0.50
Tryptophan	1.0	15.15	0.00	1.00	28.79	1.00	15.15	0.00

Abbreviations: AAS, amino acid score; BV, biological value; CAAS, a coefficient of amino acid score difference; \(K_i \), an utility coefficient; \(U \), an utility coefficient of the amino acid composition.
product exceeded the similar value in the Test ones by 4.99%
(p < .01) and 2.97% (p < .05), respectively. The Control sample was
inferior to the Test ones (Table 3). So, the consistency of the Control
sample was too short-brittle due to the insufficient caramelization
degree (Figure 3d). The higher moisture content in the Control
sample led to a lower content of macronutrients. So, the protein
content was lower by 0.13 (p < .05) and 0.08% (p < .05); fat content
by 0.81 (p < .05) and 0.41% (ns); and carbohydrate content by 1.49
(p < .05) and 0.87% (ns), respectively. In this regard, the Control
was characterized by a minimum nutritional value in comparison
with its analogues (by 3.62 and 1.96%, respectively). Taking into
account the defects of the Control sample caused by insufficient
heating, the caramelization temperature of the Test I sample was
brought to 170°C. However, despite the fact that this sample
was characterized by the highest content of macronutrients, by
organoleptic characteristics it was inferior to the Control and Test
II samples in too hard and dry consistency and unpleasant dark
brown color (Figure 3e). Moreover, citric acid in its composition
caused sour taste. The Test II sample was prepared at higher
melting point of the caramel mass (up to 180°C), without citric
acid added, which made it possible to obtain a sample with the
most attractive organoleptic and physicochemical characteristics
(Figure 3f). Thus, the most attractive brittle characteristics were
found to be achieved without citric acid, at the melting temperature
of the caramel mixture of 100–180°C and in-process time of 19 min
(Table 2 and Figures 3 and 4).

3.2 | Comparative quality evaluation the of finished
product samples

To evaluate the quality of the finished product, a brittle Yoghurt
sample (brittle was precrushed and mixed with Yoghurt)
was compared with the Yoghurt sample produced according
to conventional technology (Tamime & Robinson, 2007).
Comparative analysis of the Control sample and the enriched
one is given in Table 4. So, the introduction of a filler in Yoghurt
allowed increasing the content of dry substances in it by 24.21%
(p < .001); protein by 1.12% (p < .001); fat by 4.18% (p < .001);
and carbohydrates by 13.53% (p < .001). The nutritional value
of the product developed was 161.5 kcal per 100 g. According
to the microbiological points, the samples developed met the
requirements of the Technical Regulations of the Customs Union
"On the safety of milk and dairy products" (TR CU 033/2013).
The organoleptic analysis made it possible to design a profilogram
(Figure 4). This analysis also revealed the superiority of the
enriched product over the Control sample. So, this study found
a positive effect of the filler developed on the amino acid
composition of Yoghurt and its biological value (Table 5 and
Figure 5).

As the evaluation showed (Table 6), the formation of lactic
acid microorganisms was different in yoghurt samples enriched
with bioactive filler (Test) and not enriched (Control). The brit-
tle in Yoghurt influenced the growth and reproduction of lactic
microflora.

In the industrial Yoghurt production according to the technology
developed, the finished product was proposed to be packed in two-
section plastic cups. Yoghurt and filler should be mixed before eating
by the consumer.

4 | CONCLUSIONS

The technology was developed for the production of a new synbiotic
Yoghurt with a plant filler in form of brittle with prebiotic and
sorption properties. The brittle formulation was developed; in the
course of laboratory studies using specialized hardware support,
the temperature and time regimes of its production were optimized.
The increase in consumer properties, and nutritional and biological
values of the finished dairy product was scientifically substantiated
and experimentally confirmed.
ACKNOWLEDGMENTS

The authors are grateful to the Ministry of Science and Higher Education of the Russian Federation for the financial support in the implementation of this research according to the state assignment of NIIMMP.

CONFLICT OF INTEREST

The authors declare that they do not have any conflict of interest.

ETHICAL APPROVAL

This study does not involve any human or animal testing.

INFORMED CONSENT

Written informed consent was obtained from all study participants.

ORCID

Ivan Fiodorovich Gorlov https://orcid.org/0000-0002-8683-8159
Valeria Viktorovna Shishova https://orcid.org/0000-0002-1745-1591
Marina Ivanovna Slozhenkina https://orcid.org/0000-0001-9542-5893
Olga Petrovna Serova https://orcid.org/0000-0003-0492-7121
Natalia Ivanovna Mosolova https://orcid.org/0000-0001-6559-6595
Elena Yuievna Zlobina https://orcid.org/0000-0002-7508-3897

REFERENCES

Angiolillo, L., Del Nobile, M. A., & Conte, A. (2015). The extraction of bioactive compounds from food residues using microwaves. *Current Opinion in Food Science*, 5, 93–98. https://doi.org/10.1016/j.cofo.2015.10.001
de Vrese, M., & Schrezenmeir, J. (2008). Probiotics, prebiotics, and symbiotics. *Food Biotechnology*, 111, 1–66.
FAO, IFAD, UNICEF, WFP & WHO (2017). *The State of Food Security and Nutrition in the World. Building resilience for peace and food security*. Rome: FAO.
Hill, D., Ross, R. P., Arendt, E., & Stanton, C. (2017). Microbiology of yogurt and bio-yogurts containing probiotics and prebiotics. *Yogurt in Health and Disease Prevention*, 69–85.
Johnson, R. A., & Bhattacharyya, G. K. (2010). *Statistics principles and methods* (6th ed.). USA: John Wiley & Sons.
Kumari, A., Ranadheera, C. S., Prasanna, P. H. P., Senevirathne, N. D., & Vidanarachchi, J. K. (2015). Development of a rice incorporated symbiotic yogurt with low retrogradation properties. *International Food Research Journal*, 22, 2032–2040.
Ladjevardi, Z. S., Yarmard, M. S., Emam-Djomeh, Z., & Niasari-Naslaji, A. (2016). Physicochemical Properties and viability of probiotic bacteria of functional symbiotic camel yogurt affected by oat beta-glu can during storage. *Journal of Agricultural Science and Technology*, 18, 1233–1246.
Larasati, B. A., Panunggal, B., Afifah, D. N., Anjani, G., & Rustanti, N. (2017). Total lactic acid bacteria, antioxidant activity, and acceptance

TABLE 6 Microbiological indicators of Yoghurt samples
Indicator
Lactic acid microorganisms, not less
Coliforms, CFU/cm^3 (g)
Yeast, CFU/cm^3 (g)
Mold, CFU/cm^3 (g)

Indicator	Test Control Test Control Test Control Test Control Test Control					
Weight of the product that does not allow, g:	Coliforms	0.01				
Yeast, CFU/cm^3 (g)	not more than 50					
Mold, CFU/cm^3 (g)	not more than 50					
of synbiotic yoghurt with red ginger extract (Zingiberofficinale var. rubrum). 3rd International Conference on Tropical and Coastal Region Eco Development (ICTCRED). Yogyakarta, Indonesia.

Lestari, R. P., Nissa, C., Affiah, D. N., Anjani, G., & Rustanti, N. (2017). Total Lactic Acid Bacteria (LAB), Antioxidant Activity, and Acceptance of Synbiotic Yoghurt with BinaHong Leaf Extract (Anredera cordifolia (Ten.) Steenis). 3rd International Conference on Tropical and Coastal Region Eco Development (ICTCRED). Yogyakarta, Indonesia.

Madhu, A. N., Amrutha, N., & Prapulla, S. G. (2012). Characterization and antioxidant property of probiotic and synbiotic yogurts. Probiotics and Antimicrobial Proteins, 4, 90-97. https://doi.org/10.1007/s12602-012-9099-6

Markowiak, P., & Sliezewska, K. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathogens, 10. https://doi.org/10.1186/s13099-018-0250-0

Mazloomi, S. M., Shekarforoush, S. S., Ebrahimnejad, H., & Sajedianfard, J. (2018). The effect of adding inulin on microbial and physico-chemical properties of low fat probiotic yogurt. Iranian Journal of Veterinary Research, 12, 93–98.

McAuliffe, O., Kilcawley, K., & Stefanovic, E. (2019). Symposium review: Genomic investigations of flavor formation by dairy microbiota. Journal of Dairy Science, 102, 909–922. https://doi.org/10.3168/jds.2018-15385

Mohammadi-Sartang, M., Bellissimo, N., de Zepetnek, J. O. T., Brett, N. R., Mazloomi, S. M., Fararouie, M., ... Mazloom, Z. (2018). The effect of daily fortified yogurt consumption on weight loss in adults with metabolic syndrome: A 10-week randomized controlled trial. Nutrition Metabolism and Cardiovascular Diseases, 28, 565–574.

Mohanty, D., Mishra, S., Mohapatra, S., & Sahu, P. S. (2018). Prebiotics and synbiotics: Recent concepts in nutrition. Food Bioscience, 26, 152–160. https://doi.org/10.1016/j.fbio.2018.10.008

Nakagawa, R., Yabuuchi, H., Yasokawa, D., & Nagashima, K. (2005). Fermentation of soybean milk with Lactobacillus plantarum Hokkaido and its health function. Journal of the Japanese Society for Food Science and Technology-Nippon Shokuhin Kagaku Kagaku Kaishi, 52, 140–143. https://doi.org/10.3136/nsskk.52.140

Quigley, E. M. M. (2019). Prebiotics and Probiotics in Digestive Health. Clinical Gastroenterology and Hepatology, 17, 333–344. https://doi.org/10.1016/j.cgh.2018.09.028

Roberfroid, M. B. (2000). Prebiotics and probiotics: Are they functional foods? American Journal of Clinical Nutrition, 71, 1682S–1687S. https://doi.org/10.1093/ajcn/71.6.1682S

Sah, B. N. P., Vasiljevic, T., McKechnie, S., & Donkor, O. N. (2016). Physicochemical, textual and rheological properties of probiotic yogurt fortified with fibre-rich pineapple peel powder during re-figerated storage. LWT-Food Science and Technology, 65, 978–986. https://doi.org/10.1016/j.lwt.2015.09.027

Singh, V., Amdekar, S., Yadav, H., Mishra, N. N., & Jain, S. (2011). Future Application of Probiotics: A Boon from Dairy Biology (pp. 87–100). Microbes and Microbial Technology: Agricultural and Environmental Applications.

Sivieri, K., Freire, F. C., Lopes, N. P., Shiraishi, C. T. D., Pires, A., Lima, A. C. D., ... Bianchi, F. (2017). Synbiotic yogurts and the elderly. Yoghurt in Health and Disease Prevention, 259–271.

Složhenkina, M., Druker, O., Kryuchkova, V., & Zlobina, E. (2018). Application possibilities of vegetable and prebiotic components in fermented milk products. 17th International Scientific Conference: Engineering for Rural Development: 497-507.

Složhenkina, M., Serova, O., Vodolazkova, M., & Zlobina, E. (2017). Functional and technological characteristics of new cheese product with vegetable and prebiotic components. 16th International Scientific Conference: Engineering for Rural Development: 393-401

Sukhikh, S. A., Krumlikov, V. Y., Evsukova, A. O., & Asyakina, L. K. (2017). Formation and study of symbiotic consortium of lactobacilli to receive a direct application starter. Foods and Raw Materials, 5, 51–62. https://doi.org/10.21179/2308-4057-2017-1-51-62

Tamme, A. Y., & Robinson, R. K. (2007). Tamme and Robinson's Yoghurt Science and technology (3rd ed., XIII-XVI). London, UK: Woodhead Publishing.

Tari, A. I. N., Handayani, C. B., & Hartati, S. (2018). The characteristics of synbiotic yoghurt freeze-drying supplemented by purple sweet potato (study on sucrose concentration as cryoprotectant). Proceedings of the International Conference on Applied Science and Engineering (ICASE 2018), 175, 45–47.

The order of the Government of the Russian Federation dated 25.10.10, # 1873-p «Principles of State policy of the Russian Federation in the field of healthy nutrition of the population for the period till 2020» [Internet] Retrieved from: http://docs.cntd.ru/document/90224308. Data Access: April 24, 2019.

Vasiljevic, T., Kealy, T., & Mishra, V. K. (2007). Effects of beta-glucan addition to a Probiotic containing yogurt. Journal of Food Science, 72, C405–C411.

Vyas, U., & Ranganathan, N. (2012). Probiotics, Prebiotics, and Synbiotics: Gut and Beyond. Gastroenterology Research and Practice. Article ID 871716

Watson, R. R., & Preedy, V. R. (2015). Probiotics, Prebiotics, and Synbiotics. Bioactive Foods in Health Promotion (1st ed.). Elsevier: Academic Press.

Wattananapakasem, I., van Valenberg, H. J. F., Fogliano, V., Costabile, A., & Suwannaporn, P. (2018). Synbiotic microencapsulation from slow digestible colored rice and its effect on yoghurt quality. Food and Bioprocess Technology, 11, 1111–1124. https://doi.org/10.1007/s11947-018-2068-7

Winarti, S., & Saputro, E. A. (2015). Physicochemical and organoleptic properties of dried synbiotics yoghurt from lesser yam tubers (Dioscoreaesculenta L.). Bali, Indonesia: 3rd Bali International Seminar on Science & Technology (BISSTECH)

Young, J. (1998). European market developments in probiotic- and probiotic-containing foodstuffs. British Journal of Nutrition, 80, S231–S233. https://doi.org/10.1017/S0007114500006085

How to cite this article: Gorlov IF, Shishova VV, Složhenkina MI, et al. Synbiotic yoghurt with walnut and cereal brittle added as a next-generation bioactive compound: Development and characteristics. Food Sci Nutr. 2019;7:2731-2739. https://doi.org/10.1002/fsn3.1135