Online Adaptation of Parameters using GRU-based Neural Network with BO for Accurate Driving Model

Zhanhong Yang
Zhanhong.yan@ibm.com
IBM Research
Tokyo, Japan

Satoshi Masuda
smasuda@jp.ibm.com
IBM Research
Tokyo, Japan

Michiaki Tatsubori
mich@jp.ibm.com
IBM Research
Tokyo, Japan

ABSTRACT
Testing self-driving cars in different areas requires surrounding cars with accordingly different driving styles such as aggressive or conservative styles. A method of numerically measuring and differentiating human driving styles to create a virtual driver with a certain driving style is in demand. However, most methods for measuring human driving styles require thresholds or labels to classify the driving styles, and some require additional questionnaires for drivers about their driving attitude. These limitations are not suitable for creating a large virtual testing environment. Driving models (DMs) simulate human driving styles. Calibrating a DM makes the simulated driving behavior closer to human-driving behavior, and enable the simulation of human-driving cars. Conventional DM-calibrating methods do not take into account that the parameters in a DM vary while driving. These "fixed" calibrating methods cannot reflect an actual interactive driving scenario. In this paper, we propose a DM-calibration method for measuring human driving styles to reproduce real car-following behavior more accurately. The method includes 1) an objective entropy weight method for measuring and clustering human driving styles, and 2) online adaption of DM parameters based on deep learning by combining Bayesian optimization and a gated recurrent unit neural network. We conducted experiments to evaluate the proposed method, and the results indicate that it can be easily used to measure human driver styles. The experiments also showed that we can calibrate a corresponding DM in a virtual testing environment with up to 26% more accuracy than with fixed calibration methods.

CCS CONCEPTS
• Theory of computation → Bayesian analysis.

KEYWORDS
Online Adaptation, Bayesian optimization, Vehicle driving model

ACM Reference Format:
Zhanhong Yang, Satoshi Masuda, and Michiaki Tatsubori. 2021. Online Adaptation of Parameters using GRU-based Neural Network with BO for Accurate Driving Model. In . ACM, New York, NY, USA, 6 pages.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
ACM SIGSPATIAL 2021, .
© 2021 Association for Computing Machinery.

1 INTRODUCTION
Examples of human driving styles are aggressive, normal, and conservative. These styles vary among countries and areas. It is necessary to create a virtual environment with drivers from different countries and areas to fully test a self-driving car. For example, drivers in Japan have a relatively low accident rate than those in the USA [2]. Therefore, testing a self-driving car in the USA requires a more aggressive style than in Japan. The following two problems need to be solved to create such a testing environment:

(1) A driver’s driving style is an abstract concept, it is necessary to develop a method of measuring such styles numerically so that all driver styles in one area can be represented to create a corresponding testing environment.

(2) A driving model (DM) should simulate real human driving behavior.

A car-following model describes the movements of a following vehicle (FV) in response to the actions of the leading vehicle (LV) [16] and is used in a simulation environment such as Simulation of Urban Mobility (SUMO) [6]. In a DM, a driver’s behavior is controlled by a series math equations. Setting the parameters in a DM to make the simulated behavior closer to actual human driver behavior is called calibrating a DM. A well-calibrated DM enables the simulation of an actual car, but the parameters of the DM are fixed in the simulation [11].

We propose a DM-calibration method for measuring real driving styles and for online adaptation of DM parameters using a gated recurrent unit (GRU)-based neural network (NN) to reproduce real car-following behavior more accurately. The proposed method first uses the objective entropy weight method for measuring driving data [15] and clustering them. It then splits the driving data by...
using a short time window (e.g., 0.5 sec) and uses Bayesian optimization (BO) to search for optimized DM parameters for the time windows. It finally trains a GRU-based NN with the optimized DM parameters. We evaluated the proposed method by applying it to the Krauss car-following [13] and Wiedemann car-following [14] models with the public dataset of driving data Next Generation Simulation (NGSIM), Interstate 80 freeway, collected in California, USA [8]. The results indicate that the proposed method is effective in a real simulation environment, i.e., SUMO. The results also indicate that our method can easily numerically differentiate human driver styles throughout a dataset. Therefore, our method could reproduce more accurate DM than conventional DM-calibration methods that do not take into account that the parameters in a DM vary while driving. DM consists of car-following model and lane-changing model in microscopic traffic simulation tool [10]. In this paper, we focus on car-following model as a DM.

In response to the problems and limitations discussed above. Our proposed method includes the objective entropy weight method for measuring human driving styles.

(2) Our method also involves adaptive calibration.

(3) The experimental results indicate that our method can reproduce more accurate DM in simulating a driver’s velocity trajectory than conventional DM-calibration methods.

2 RELATED WORK

2.1 Measuring driving styles

The relationship between driving styles and external (traffic, weather…) and internal conditions (age, gender…) conditions have been investigated. Some studies focused on defining the correct method of labeling driving styles. Researchers classified drivers into discrete classes (aggressive, normal…) or continuous indexing (-1 to 1, for most dangerous to most conservative) Driving-style classification methods are also gaining attention such as rule-based, model-based, and learning-based methods covering supervised or unsupervised learning methods. Most of these methods set absolute criteria and require a clear label for classification [7].

2.2 Calibrating driving model

Many models have been developed regarding car-following behavior. Car-following models simulate the longitudinal movement of a vehicle and used to replicate the behavior of a driver when following another vehicle. The Krauss [13] and Wiedemann [14] models are two such examples. The Krauss model [13] can be described as

\[
\begin{align*}
\dot{v}_{des} &= \min (v_{max}, \dot{v} + aT_{step} + v_{safe}) \\
v_{safe} &= \frac{-b(t_r + \frac{L}{2}) + \sqrt{b^2(t_r + \frac{L}{2})^2 + 4b\Delta v_t + \frac{L^2}{4}} + 2g}{2a}
\end{align*}
\]

where \(v_{des}\) is the desired speed in the simulation environment, \(t_r\) is the driver’s overall reaction time, \(t_j\) is the driver’s decreasing reaction time; \(t_r\) and \(t_j\) are the inner parameters defining driving behavior (speed control). To reproduce a driver’s car-following behavior, calibrating \(t_r\) and \(t_j\) can make \(v_{des}\) closer to the real collected data. Therefore, a well-calibrated DM can naturally simulate a human driver’s car-following behavior. The other parameters are maximum deceleration \(b\), maximum acceleration \(a\), leading vehicle speed \(v_j\), distance (gap) between subject vehicle and leading vehicle \(g\), simulation frame interval \(T_{step}\), and maximum speed limit \(v_{max}\). The forward Euler method is then used to determine vehicle position and speed:

\[
\begin{align*}
V_{n}(t + \Delta T) &= V_{n}(t) + a_n(t) \cdot \Delta T \\
X_{n}(t + \Delta T) &= X_{n}(t) + V_{n}(t) \cdot \Delta T
\end{align*}
\]

The Wiedemann model [11] can be described as

- \(AX\) is the distance to the front vehicle when standing still, and is calculated as \(AX(t) = l_{tr-1} + AX_{add}\)
- \(ABX\) is the desired minimum distance to the front vehicle, and is calculated as \(ABX(t) = AX(t) + BX_{add}\).
- \(SDX\) is the maximum distance when following a vehicle, and is calculated as \(SDX(t) = SDX_{mult} \cdot ABX(t)\).
- \(SDV\) is the point when the driver notices that he/she is approaching a vehicle with a lower velocity, and is calculated as \(SDV(t) = \frac{2v(t) - AX(t)^2}{4}\).

- \(OPDV\) is the point when the driver notices that the front vehicle is driving away at a higher velocity, and is calculated as \(OPDV(t) = SDV(t) - (-OPDV_{add})\).

where \(AX_{add}, BX_{add}, SDX_{mult}, CX\), and \(OPDV_{add}\) are tuning parameters, and \(v(t) = \min(v_{ul}(t), v_{ul-1}(t))\). SUMO simulation uses the 10-parameter version of the Wiedemann model [4].

A DM-calibration method based on naturalistic driving data has been investigated. However, the dataset is not open, and the inner features are difficult to acquire in large-scale testing [16]. This previous study did not take into account an adaptive calibrating method, and the DM parameters in the simulation remained the same. An adaptive DM-calibration method is necessary to represent a real and complex driving scenario.

2.3 Bayesian optimization and Gated recurrent unit

BO is a design strategy for global optimization of black-box functions. It has appeared in machine learning literature as a means of optimizing difficult black box optimizations [12], e.g., BO was used to learn a set of robot parameters that maximize the velocity of a Sony AIBO ERS-7 robot [5]. We use BO to search for optimal parameters of a car-following model. The GRU is a gating mechanism in recurrent NNs [1], and is used for real-world applications such as predicting traffic flow [3].

3 PROPOSED METHOD

3.1 Measuring driving-style with objective entropy weight

Our proposed method includes the objective entropy weight method [15]. This method is based on the information provided by various attributes to find weights of the information entropy. The steps of calculating the weights are as follows:

(1) For one driving trajectory dataset, construct evaluation matrix \(E\). Assuming the set includes trajectory data of \(m\) vehicles with ID = \(1, 2, \ldots, m\), a vehicle with ID = \(i\), \(E = (e'_{ij})_{m \times n}\).
where \(n = 6 \), is
\[
E = \begin{pmatrix}
V_{\text{mean}1} & V_{\text{mean}i} & V_{\text{mean}m} \\
V_{\text{var}1} & V_{\text{var}i} & V_{\text{var}m} \\
A_{\text{mean}1} & A_{\text{mean}i} & A_{\text{mean}m} \\
A_{\text{var}1} & A_{\text{var}i} & A_{\text{var}m} \\
H_{t1} & H_{ti} & H_{tm} \\
H_{t1} & H_{ti} & H_{tm}
\end{pmatrix}
\] (5)

where \(V_{\text{mean}} \) is mean velocity, \(V_{\text{var}} \) is variance of velocity, \(A_{\text{mean}} \) is mean acceleration, \(A_{\text{var}} \) is variance of acceleration, \(H_t \) is average speed headway, and \(H_i \) is average time headway.

(2) Normalize \(E \) into \((0,1)\) and obtain \(E_{\text{nor}} = (e'_{ij})_{mxn} \). For column \(j \), normalize \(E \) in accordance with the following equations:
\[
e_{ij} = \begin{cases}
\frac{\text{Max}(e'_{ij}) - e_{ij}}{\text{Max}(e'_{ij}) - \text{Min}(e'_{ij})} (e'_{ij} < 0).
\frac{\text{Max}(e'_{ij}) - \text{Min}(e'_{ij})}{e'_{ij} - \text{Min}(e'_{ij})} (e'_{ij} > 0).
\end{cases}
\] (6)

Max \(e'_{ij} \) = max \((e'_{ij}, e'_{i2}, \ldots, e'_{im}) \)
Min \(e'_{ij} \) = max \((e'_{ij}, e'_{i2}, \ldots, e'_{im}) \)

(3) For column \(j \), calculate the percentage of data weight \(p_{ij} \):
\[
p_{ij} = \frac{e_{ij}}{\sum_{i=1}^{m} e_{ij}}
\] (7)

(4) Calculate the entropy score \(\text{ent}_j \):
\[
\text{ent}_j = -\frac{1}{\ln(m)} \sum_{i=1}^{m} p_{ij} \ln(p_{ij})
\] (8)

(5) Calculate the entropy weight vector \(W \):
\[
W = Wj = -\frac{1 - \text{ent}_j}{n - \sum_{j=1}^{n} \text{ent}_j}
\] (9)

For most cases, we consider that one driver drives the same vehicle in the dataset. Then, the exact driving style of vehicle ID=\(i \) (also driver ID=\(i \)) in \(E_{\text{nor}} \) is measured by a score that is represented as \(s_i \):
\[
s_i = [e_{i1}, \ldots, e_{ij}, \ldots, e_{i6}] \cdot W
\] (10)

The objective entropy weight method is used to divide and select the driving trajectory dataset.

3.2 Online adaptation of DM parameters

With the proposed method, different driving styles are in one dataset. To create an exact virtual testing environment, however, we need a method for reproducing a driver’s behavior. In simulation, a driver’s behavior is generally controlled using a DM in this study, we used the Kraus and Wiedemann models as DM models. A previous study proposed many fixed DM-calibration methods [16]. However, the main limitations with these methods are that they do not take into account that the inner parameters can vary when driving (hereafter, these methods are called “fixed calibration methods”). The proposed method uses BO and a GRU-based NN. Figure 2 shows the architecture of the GRU-based NN. Assuming that our reproducing target is a subject vehicle with a leading vehicle for a car-following DM. The output should be a policy \(\pi (v_p, v_s) \) used for the NN, which inputs both the leading vehicle state \(v_p \) and subject vehicle state \(v_s \), e.g., subject vehicle’s speed trajectory in the past few steps. The proposed method predicts the next possible parameters, which minimizes the difference between the actual and simulated trajectories.

Algorithm 1 shows the steps of the online adaptation of DM parameters. Assuming the target is to reproduce the driving behavior of the subject vehicle by using a DM with \(M \) inner parameters sets \(pM \{p1, p2, \ldots, pM\} \) to be calibrated. The data used for reproduction can be one driver (assuming he/she has an ID=\(i \), \(s_j \)). For driver \(i \) in the reproduction dataset, we assume the data from the subject vehicle as \(d_{s,i} \), and the data from the pre-coding as \(d_{p,i} \).

Algorithm 1 Algorithm for online adaption of DM parameters for vehicle \(i \)

Input: \(d_{s,i}, d_{p,i} \)

Output: \(\pi (v_p, v_s) \)

1. repeat
2. \(t=0, 2a, 4a \ldots \)
3. Split the \(d_{s,i}, d_{p,i} \) into short time windows every \(a \) steps, each window length is denoted as \(L \), obtain a sliced dataset from \(d_{s,i} \), \(d_{p,i} \) as \(d_p^{k=0, L}, d_p^{k=a, L+a}, \ldots; d_s^{k=0, L}, d_s^{k=a, L+a}, \ldots \), where \(k \) is the time frame.
4. repeat
5. \(L = \text{RMSE} (d_s^{k=j, L+j}, d_p^{k=j, L+j}) \)
6. For time step \(j \), search for the best inner-parameter set \(P_{M,j} \) by BO using \(d_p^{k=j, L+j}, d_s^{k=j, L+j} \)
7. until all \(d_p^{k=j, L+j}, d_s^{k=j, L+j} \) have been found
8. until \(d_{s,n}, d_{p,n} \) has been found
9. Train \(\pi (v_p, v_s) \) with input \(d_p^{k=j, L+j}, d_s^{k=j, L+j} \) and labels: \(P_{M,j} \)

4 EXPERIMENTS

4.1 Dataset

We conducted experiments on the NGSIM, Interstate 80 freeway (I-80) dataset, and collected data between 4:00 p.m. and 4:15 p.m. on April 13, 2005. The study area was approximately 500 meters (1,640
Figure 3: Driving-style measurement with distribution of driving styles

We calculated driving-style scores s_i for the I-80 Selected Data. Figure 3 shows the driving styles in the distribution. We divided the styles into three clusters on the basis of their percentile; cluster-0 (conservative), which is the bottom 25% (24 vehicles, driving score ≤ 0.380), cluster-1 (normal), which is the middle 50% (46 vehicles, $0.380 < \text{driving score} \leq 0.564$) and cluster-2 (aggressive), which is the top 25% (24 vehicles, driving score > 0.564).

4.2 Driving-style score

We calculated driving-style scores s_i for the I-80 Selected Data. Figure 3 shows the driving styles in the distribution. We divided the styles into three clusters on the basis of their percentile: cluster-0 (conservative), which is the bottom 25% (24 vehicles, driving score <0.380), cluster-1 (normal), which is the middle 50% (46 vehicles, $0.380 \leq \text{driving score} \leq 0.564$) and cluster-2 (aggressive), which is the top 25% (24 vehicles, driving score >0.564).

4.3 Online adaptation

4.3.1 Vehicle data for Krauss model. We first applied the proposed method to each pair of leading and following vehicles in the I-80 Selected Data. The two car-following models simulated the following vehicle in accordance with the leading vehicle, so we applied the proposed method to the following vehicle. The trajectory data were spliced into 0.5-second (5 frames) short time windows, and the parameters for the sliced dataset were searched for by BO. We used the first 80% of the trajectory data for training the GRU-based NN with 0.1 for validation split as a hyper-parameter of training. We used 5-fold cross validation for each cluster that was divided into three by entropy weight. We used 5-fold cross validation for each cluster to train and test the vehicle data in a cluster. For example, in cluster-0, which had 24 vehicles, the data of 19 vehicles were used to train the GRU-based NN and the data of 5 vehicles were used to test the NN. The training and testing were repeated for each 5-fold set.

4.3.2 Applying Krauss and Wiedemann models to each vehicle pair. We next evaluated the proposed method by applying it to each vehicle pair (94 pairs of leading and following vehicle data) for both the Krauss and Wiedemann models. The data of each vehicle pair were used to train and test, the same as in the previous experiment for the Krauss model. Figure 7 shows each following vehicle’s RMSE improvement with fixed parameters in the Krauss and Wiedemann models. Note that we eliminated the top and bottom 10% for the value of RMSE improvement as outlier.

4.3.3 Online adaptation for clusters. We then evaluated the RMSE improvement for each cluster that was divided into three by entropy weight. We used 5-fold cross validation for each cluster to train and test the vehicle data in a cluster. For example, in cluster-0, which had 24 vehicles, the data of 19 vehicles were used to train the GRU-based NN and the data of 5 vehicles were used to test the NN. The training and testing were repeated for each 5-fold set. Figure 8 shows the RMSE improvement with fixed parameters for clusters in the Krauss model, and Figure 9 shows the RMSE improvement with fixed parameters for clusters in the Wiedemann model.

4.3.4 Demonstration of proposed method. We demonstrated the proposed method on the microscopic traffic simulator SUMO. Figure 10 shows a demonstration of three types of following vehicle simulation in SUMO: real vehicle in the dataset, calibrated data by the proposed method and default parameters. SUMO can import maps from OpenStreetMap [9], and we imported the map of the

![Figure 3: Driving-style measurement with distribution of driving styles](image)

Table 1: Experiment on vehicle ID = 1 for Krauss model

	Default param.	Fixed param. (a)	Proposed (b)	Improvement (c) *
RMSE	3.393	1.033	0.666	35.5%

We evaluated the proposed method by comparing it with fixed calibration methods; one using the Krauss model with the initial default parameters, e.g., $t_f = 1.5$ and $t_i = 0.15$, (hereafter, the method is called default parameters) and with fixed parameters searched for by BO using 80% of the trajectory data (hereafter, this method is called fixed parameters). Note that this BO is only used in experiments and different from the BO in the proposed method. Figure 4 shows the results of default parameters with the velocity of the car-following simulation (Vel_Sim) and real data (Vel_Real) for the following vehicle ID=11 trajectory-data frames. Figure 5 shows the velocity on the same vehicle ID for fixed parameters, and Figure 6 shows the results of the proposed method, i.e., online adaptation of parameters. Table 1 shows the root mean square error (RMSE) between Vel_Sim and Vel_Real. The proposed method differed from fixed parameters. We focused on the improvement of the proposed method from fixed parameters to evaluate the accuracy of the proposed method. In the following vehicle ID=11 case, RMSE of the fixed parameters was 1.033 and the one of proposed method was 0.666, therefore, RMSE improvement of the proposed method from the fixed parameters was 35.5% ($(1.033-0.666)/1.033$) (hereafter, this improvement is called RMSE improvement for evaluation of the proposed method).
Figure 4: Default parameters

Figure 5: Fixed parameters

Figure 6: Proposed method

Figure 7: RMSE improvement with fixed parameters for each following vehicle

Figure 8: RMSE improvement with fixed parameters for clusters (Krauss model)

were simulated using real data, the proposed method, and default parameters. We confirmed that the proposed method is effective for a real simulator.

5 DISCUSSION

Regarding the challenge that a DM should simulate real human driving behavior, the proposed method enabled the calibration of a DM model (Wiedemann model) that is up to 26% more accurate than fixed parameters for all clusters, as shown in Figure 9. Average RMSE improvement for cluster-2 (aggressive driving) was greater than those for cluster-0 (conservative driving). This indicates that online adaptation of conservative driving is more difficult than aggressive driving, which may be due to conservative driving involving low velocity.

The RMSE improvement between the proposed method and fixed parameters depended on the vehicle pair, as shown Figure 7. The average RMSE improvement between both car-following models
were less than zero, which means they were worse than fixed parameters for each following vehicle. However, the average RMSE improvement for clusters were higher than zero. This is assumed due to the clusters having a greater amount of training data than each vehicle [pair?]. For example, the number of training data for vehicle ID=11 was only 134; however, cluster-0 had about 2500 time windows (≈ 19 vehicles × 134 time windows).

The proposed method with the Wiedemann model achieved better accuracy than with the Krauss model, as shown in Figures 8 and 9. This is considered due to fact that the number of parameters for each model were different. The Krauss model has two parameters and Wiedemann model has ten parameters.

6 CONCLUSION AND FUTURE WORK

The proposed method divided vehicle trajectory data in accordance with their driving styles and achieved more accurate than other DM-calibration methods. We applied the proposed method to two car-following models; however, we believe the method can also be applied to humanoid robots that imitate human behavior since such robots use models to simulate human actions.

REFERENCES

[1] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics, Doha, Qatar, 1724–1734. https://doi.org/10.3115/v1/D14-1179

[2] Graham Dixon, P. Sol Hart, Christopher Clarke, Nicole H. O’Donnell, and Jay Hmiełowski. 2020. What drives support for self-driving car technology in the United States? Journal of Risk Research 23, 3 (2020), 275–287. https://doi.org/10.1080/13669877.2018.1517384

[3] R. Fu, Z. Zhang, and L. Li. 2016. Using LSTM and GRU neural network methods for traffic flow prediction. In 2016 31st Youth Annual Conference of Chinese Association of Automation (YAC). 324–328. https://doi.org/10.1109/YAC.2016.7804912

[4] Guanghui Liu. 2016. W99 Car Following Model - How It Works. http://w99demo.com/. (2021/1/13 accessed).

[5] Daniel Lirotte, Tao Wang, Michael Bowling, and Dale Schuurmans. 2007. Automatic Gait Optimization with Gaussian Process Regression. In Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI’07). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 944–949.

[6] Pablo Álvarez Lopez, Michael Behrisch, Laura Bicker-Walt, Jakob Erdmann, Yun-Pang Flöteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wagner, and Evamarie Wießner. 2018. Microscopic Traffic Simulation using SUMO. In The 21st IEEE International Conference on Intelligent Transportation Systems. IEEE Intelligent Transportation Systems Conference (ITSC). https://dblp.de/124092/2

[7] C. Marina Martinez, M. Heucke, F. Wang, B. Gao, and D. Cao. 2018. Driving Style Recognition for Intelligent Vehicle Control and Advanced Driver Assistance: A Survey. IEEE Transactions on Intelligent Transportation Systems 19, 3 (2018), 666–676. https://doi.org/10.1109/TITS.2017.2706978

[8] Marcello Montanino and Vincenzo Punzo. 2013. Making NGSIM Data Useful for Studies on Traffic Flow Theory: Multistep Method for Vehicle Trajectory Reconstruction. Transportation Research Record 2390, 1 (2013), 99–111. https://doi.org/10.3141/2390-11 arXiv:https://doi.org/10.3141/2390-11

[9] OpenStreetMap contributors. 2017. Planet dump retrieved from https://planet.osm.org. https://www.openstreetmap.org.

[10] S. Panwai and H. Dia. 2005. Comparative evaluation of microscopic car-following behavior. IEEE Transactions on Intelligent Transportation Systems 6, 3 (2005), 314–325. https://doi.org/10.1109/TITS.2005.855705

[11] M. Pourabdollah, B. Jbjickvïk, F. Fizer, B. Lindenberg, and K. Burgdorf. 2017. Calibration and evaluation of car following models using real-world driving data. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). 1–6. https://doi.org/10.1109/ITSC.2017.8317836

[12] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical Bayesian Optimization of Machine Learning Algorithms. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2 (NIPS’12). Curran Associates Inc., Red Hook, NY, USA, 2951–2959.

[13] J. Song, Y. Wu, X. X. Xu, and X. Lin. 2014. Research on car-following model based on SUMO. In The 7th IEEE/International Conference on Advanced Infocomm Technology. 47–55. https://doi.org/10.1109/ICT.2014.7019528

[14] R. Wiedemann. 1974. Simulation des strassenverkehrslaufes. Proceedings of the Sächsischen Gesellschaft für Verkehrsrezechn und Investitionen (SGV). (1974).

[15] H. Zhi, G. Zhang, Y. Liu, and Y. Shen. 2017. A novel risk assessment model on software system combining modified fuzzy entropy-weight and AHP. In 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS). 451–454. https://doi.org/10.1109/ICSESS.2017.8342953

[16] Meein Zhu, Xuesong Wang, Andrew Tarko, and Shou’en Fang. 2018. Modeling car-following behavior on urban expressways in Shanghai: A naturalistic driving study. Transportation Research Part C: Emerging Technologies 93 (2018), 425–445. https://doi.org/10.1016/j.trc.2018.06.009