Curious congruences for cyclotomic polynomials

Shigeki Akiyama and Hajime Kaneko

Abstract

Let $\Phi^{(k)}_n(x)$ be the kth derivative of the nth cyclotomic polynomial. We are interested in the values $\Phi^{(k)}_n(1)$ for fixed positive integers n. D. H. Lehmer proved that $\Phi^{(k)}_n(1)/\Phi_n(1)$ is a polynomial of the Euler totient function $\phi(n)$ and the Jordan totient functions and gave it explicit formula. In this paper, we give a quick proof that $\Phi^{(k)}_n(1)/\Phi_n(1)$ is a polynomial of them without giving the explicit form. In the final section, we deduce some curious congruences: $2\Phi^{(3)}_n(1)$ is divisible by $\phi(n) - 2$. Moreover, if k is greater than 1, then $\Phi^{(2k+1)}_n(1)$ is divisible by $\phi(n) - 2k$. The proof depends on a new combinatorial identity for general self-reciprocal polynomials over \mathbb{Z}, which gives rise to a formula that expresses the value $\Phi^{(k)}_n(1)$ as a \mathbb{Z}-linear combination of the coefficients in the minimal polynomial of $2\cos(2\pi/n) - 2$. As a supplement, we show the monotonic increasing property of $\Phi_n(x)$ on $[1, \infty)$ in two ways.

Keywords: Cyclotomic polynomials, Euler’s totient function, Jordan totient function, congruence relation

Mathematics Subject Classification: Primary 11A25; Secondary 11A07, 11R18

1 Introduction

The nth cyclotomic polynomial

$$\Phi_n(x) = \prod_{0 < d | n \atop (d, n) = 1} \left(x - \exp \left(\frac{2\pi di}{n} \right) \right)$$

is the minimal polynomial of the nth primitive roots of unity over \mathbb{Q}. It is an irreducible polynomial in $\mathbb{Z}[x]$ of degree $\phi(n)$ where ϕ is the Euler totient function. From the relation $x^n - 1 = \prod_{d | n} \Phi_d(x)$, the well known formula

$$\Phi_n(x) = \prod_{d | n} \left(x^d - 1 \right)^{\mu(n/d)}$$

is derived by Möbius inversion. Here μ is the Möbius function. Motose [8,9] surmised that $\Phi_n(x)$ is an increasing function\(^1\) for $x > 1$. We start with a simple proof of this fact. It is probably known but we did not find it in the literature.

\(^1\)He did not give a proof of this fact, see the sentence before Theorem 3 in [8].
Theorem 1 For $j = 1, \ldots, \phi(n)$ we have

$$\Phi^j_N(1) > 0.$$

Consequently $\Phi^k_N(x)$ is strictly increasing for $x \geq 1$ and $k = 0, 1, \ldots, \phi(n) - 1$.

Proof Since $\Phi^1_N(1) = 1$ and $\Phi^2_N(1) = 1$, we may assume that $n \geq 3$. Then we have

$$\Phi_N(x) = \prod_{0 < d < n/2 \atop (d, n) = 1} \left(x - \exp \left(\frac{2\pi di}{n} \right) \right) \left(x - \exp \left(\frac{2\pi (n - d)i}{n} \right) \right) = \prod_{0 < d < n/2 \atop (d, n) = 1} \left(x^2 - 2 \cos \left(\frac{2\pi d}{n} \right) x + 1 \right).$$

Since all coefficients of

$$(x + 1)^2 + b(x + 1) + 1 = x^2 + (b + 2)x + b + 2$$

with $b \in (-2, 2)$ are positive, the expansion $\Phi_N(x + 1) = \sum_{j=0}^{d} \Phi^j_N(1)/j! \cdot x^j$ at $x = 0$ have positive coefficients $\Phi^j_N(1)/j!$ for $j \leq d = \phi(n)$. This proves the theorem.

Remark 1 The inequality $x \geq 1$ in Theorem 1 is sharp. If p is an odd prime, then

$$\Phi_p(1) = \frac{1 - (-x)^p}{1 + x}.$$

It is easy to confirm

$$\Phi'_p \left(1 - \frac{1}{\sqrt{p}} \right) = \frac{\left(2p - \sqrt{p} + \frac{1}{\sqrt{p}} \right) \left(1 - \frac{1}{\sqrt{p}} \right)^{p-1} - 1}{\left(2 - \frac{1}{\sqrt{p}} \right)^2} < 0. \quad (3)$$

Thus there exists no $\varepsilon > 0$ that $\Phi_p(x)$ is increasing on $[1 - \varepsilon, \infty)$ for any $n \geq 1$.

Remark 2 There is an alternative proof that only works for $k = 0$, giving a starting point for this paper. Since $\Phi_1(x) = x - 1$, we may assume that $n \geq 2$. From

$$\sum_{d \mid n} \mu(d) = 0 \quad (4)$$

for $n \geq 2$, we may replace $x^d - 1$ by $(x^d - 1)/(x - 1)$ in (2). Taking $x \to 1$, we have

$$\Phi_N(1) = \prod_{d \mid n} d^{\mu(n/d)}$$

which is a positive integer. We see this is rewritten as $\Phi_N(1) = \exp(\Lambda(n))$ with the von Mangoldt function

$$\Lambda(n) := \begin{cases} \log p & n = p^e \ (p \text{ prime}), \\ 0 & \text{otherwise}, \end{cases}$$
which plays a crucial role in analytic number theory. The fact above was proved by Lebesgue [5]. Using (4), we also have

\[
\log \Phi_n(x) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) \log \left(\frac{x^d - 1}{x - 1}\right)
\]

\[
\Phi_n'(x) / \Phi_n(x) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) \left(\frac{(d - 1)x^{d-2} + (d - 2)x^{d-3} + \cdots + 1}{x^{d-1} + x^{d-2} + \cdots + 1}\right).
\] (5)

Letting \(x \to 1\) and using (4) again, we obtain

\[
\Phi_n'(1) / \Phi_n(1) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) \frac{d - 1}{2} = \frac{1}{2} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) d = \frac{\phi(n)}{2}.
\]

Thus we see that

\[
\Phi_n'(1) = \frac{1}{2} \phi(n) \Phi_n(1) \geq 1 > 0,
\] (6)

which was proved by Hölder [4] (c.f. [1, Lemma 10]). Now we consider \(\Phi_n(z)\) as a polynomial of complex variable \(z \in \mathbb{C}\). Recalling Gauss–Lucas theorem, any root of \(\Phi_n(z)\) lies in the convex hull of the roots of \(\Phi_n(z)\) in the complex plane. Therefore from (1) and \(n \geq 2\), the real function \(\Phi_n'(x)\) has no root in \(x \geq 1\). This implies \(\Phi_n'(x) > 0\) for \(x \geq 1\) since \(\Phi_n'\) is continuous.

Remark 3 Let \(p\) be an odd prime. Then (3) and (6) imply that there exists a real root of \(\Phi_{2p}'(x)\) in the interval \((1 - 1/\sqrt{p}, 1)\).

Jordan totient function is defined by \(J_k(n) = \sum_{d \mid n} \mu(n/d)d^k\). This is multiplicative and we have

\[
J_k(n) = n^k \prod_{p \mid n} \left(1 - \frac{1}{p^k}\right)
\]

where \(p\) runs over prime divisors of \(n\). Clearly \(J_k(n)\) is a generalization of the Euler totient function \(\phi(n) = J_1(n)\). The name came from C. Jordan who studied linear groups over \(\mathbb{Z}/n\mathbb{Z}\) and deduced, e.g.,

\[
\text{Card}(GL_k(\mathbb{Z}/n\mathbb{Z})) = n^{k(k-1)/2} \prod_{j=1}^{k} J_j(n).
\]

As we observed in Remark 2, the special values \(\Phi_n^{(k)}(1)\) give important arithmetic functions such as the von Mangoldt function and the Euler totient function. Lehmer [6] gave an explicit formula of \(\Phi_n^{(k)}(1)/\Phi_n(1)\) as a polynomial of \(\phi(n)\) and \(J_{2j}(n)\) over \(\mathbb{Q}\), using Stirling numbers and Bernoulli numbers, see [3,7,10,11] for related developments. Here we give a quick proof of this fact but without the explicit form of the polynomial.

Theorem 2 (6) For \(n \geq 2\), \(\Phi_n^{(\ell)}(1)/\Phi_n(1)\) is expressed as a polynomial of \(\phi(n)\) and \(J_{2j}(n)\) \((1 \leq j \leq (\ell + 1)/2\) over \(\mathbb{Q}\), and its value is a positive integer\(^2\) for \(\phi(n) \geq \ell\).

\(^2\)Clearly \(\Phi_n^{(\ell)}(x) = 0\) for \(\phi(n) < \ell\).
Proof Applying Leibniz formula to (5),
\[\frac{\Phi_n^{(k+1)}(x)}{\Phi_n(x)} = \sum_{\ell=0}^{k} \binom{k}{\ell} \frac{\Phi_n^{(\ell)}(x)}{\Phi_n(x)} \sum_{d|n} \mu \left(\frac{n}{d} \right) \frac{\partial^{k-\ell}}{\partial x^{k-\ell}} \left(\frac{1 - dx^{d-1} + dx^d - x^d}{(x-1)(x^d - 1)} \right). \]

Substituting \(x \) by \(1 + t \), we get the Taylor expansion at \(t = 0 \):
\[\frac{(d-1)t - 1(t + 1)^{d-1} + 1}{t ((t + 1)^d - 1)} = \frac{d - 1}{2} + \left(\frac{d^2 - 6d + 5}{12} \right) t + \left(\frac{-d^2 + 4d - 3}{8} \right) t^2 + O(t^3). \] (7)

Regarding \(d \) as a real variable, we see that the numerator of (7) has the expansion at \(t = 0 \) of the form
\[\sum_{j \geq 0} df_j t^{j+2} \quad f_j \in \mathbb{Q}[d], \quad \text{deg}(f_j) = j + 1, \quad f_0 = (d - 1)/2. \]

Similarly, the denominator has the form
\[\sum_{j \geq 0} dg_j t^{j+2} \quad g_j \in \mathbb{Q}[d], \quad \text{deg}(g_j) = j, \quad g_0 = 1. \]

Thus, the \(\ell \)th Taylor coefficient of their quotient is a polynomial of \(d \) whose degree does not exceed \(\ell + 1 \). Using these Taylor coefficients, we recursively obtain the explicit formula for \(\Phi_n^{(\ell)}(1)/\Phi_n(1) \). Thus \(\Phi_n^{(\ell)}(1)/\Phi_n(1) \) a polynomial on \(J_1(n) \), \(J_2(n) \), \ldots, \(J_{\ell+1}(n) \) over \(\mathbb{Q} \). Moreover since
\[\frac{(d-1)t - 1(t + 1)^{d-1} + 1}{t ((t + 1)^d - 1)} - \frac{d}{2(t + 1)} = \frac{d}{2(t + 1)(t + 1)^d - 1} - \frac{1}{t} \]
is an even function on \(d \), the terms \(d^{2k+1} \) with \(k = 1, 2, \ldots \) do not show, i.e., \(J_{2k+1}(n) \) \((k = 1, 2, \ldots) \) never appear. By Theorem 1, \(\Phi_n^{(\ell)}(1)/\Phi_n(1) > 0 \) for \(\phi(n) \geq \ell \). Since
\[\Phi_n(1) = \exp(\Lambda(n)) = \begin{cases} p & n = p^e (p : \text{prime}), \\ 1 & \text{otherwise}, \end{cases} \]
it suffices to show \(\Phi_n^{(\ell)}(1) \equiv 0 \pmod p \). By
\[\Phi_p(x) = \frac{x^p - 1}{x^{p-1} - 1} = \Phi_p(x^{p-1}), \]
the case \(e > 1 \) is plain and the case \(e = 1 \) remains to be settled. Indeed we have,
\[\Phi_p^{(\ell)}(1) = \sum_{j=0}^{p-1} j(j - 1) \cdots (j - \ell + 1) = \frac{p(p - 1) \cdots (p - \ell)}{\ell + 1} \equiv 0 \pmod p. \]
\[\square \]
Corollary 1 We have

\[\frac{\Phi_n^{(2)}(1)}{\Phi_n(1)} = \frac{j_2(n)}{12} + \frac{\phi(n)^2}{4} - \frac{\phi(n)}{2}, \]
\[\frac{\Phi_n^{(3)}(1)}{\Phi_n(1)} = \frac{(\phi(n) - 2)(j_2(n) + \phi(n)(\phi(n) - 4))}{8}, \]
\[\frac{\Phi_n^{(4)}(1)}{\Phi_n(1)} = \frac{1}{240} \left(30j_2(n)\phi(n)^2 - 180j_2(n)\phi(n) + 5j_2(n)^2 + 220j_2(n) - 2j_4(n) \right. \]
\[\left. + 15\phi(n)^4 - 180\phi(n)^3 + 660\phi(n)^2 - 720\phi(n) \right), \]
\[\frac{\Phi_n^{(5)}(1)}{\Phi_n(1)(\phi(n) - 4)} = \frac{1}{96} \left(3\phi(n)^4 - 48\phi(n)^3 + 10j_2(n)\phi(n)^2 + 228\phi(n)^2 \right. \]
\[\left. - 80j_2(n)\phi(n) - 288\phi(n) + 5j_2(n)^2 + 100j_2(n) - 2j_4(n) \right). \]

Let

\[\Phi_n(x + 1) := \sum_{h=0}^{\phi(n)} b_n(h)x^h \quad \text{with} \quad b_n(h) = \frac{1}{h!} \Phi_n^{(h)}(1) \in \mathbb{Z}. \]

Lehmer [6] further stated an interesting observation on the coefficients \(b_n(h)\). For a real \(R\), set \(R[\ell] := R(R - 1) \cdots (R - \ell + 1)\). For a positive integer \(r\), let \(t_r := j_r(n)/(2r)\). We define Bernoulli numbers \(B_m\) \((m \geq 0)\) by

\[\frac{te^t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}. \]

Under the setting above, he claimed that

\[\frac{b_n(h)}{\Phi_n(1)} = t_1^{[h]} + 2 \sum_{\ell=1}^{\infty} B_{2\ell} \left(\frac{h}{2\ell} \right) (t_1 - \ell)^{[h-2\ell]} \Omega_\ell, \]

but the general form of \(\Omega_\ell\) is not given. He only wrote the first few terms:

\[\Omega_1 = t_2, \]
\[\Omega_2 = t_4 - 5t_2^{[2]}, \]
\[\Omega_3 = t_6 - 7t_4(t_2 - 1) + \frac{35}{3} t_2^{[3]} + \frac{14}{3} t_2, \]
\[\Omega_4 = t_8 - \frac{20}{3} t_6(t_2 - 1) - \frac{7}{3} t_4^{[2]} + \frac{70}{3} t_4(t_2 - 1)^{[2]} \]
\[- \frac{175}{3} t_2^{[4]} + \frac{10}{3} t_6 - \frac{280}{9} t_2^{[2]} + \frac{290}{9} t_2. \]

Both Corollary 1 and this observation suggest the following:

Conjecture 1 For any non-negative integer \(k\), \(\Phi_n^{(2k+1)}(1)/\Phi_n(1)\) is divisible by \(\phi(n) - 2k\) in the polynomial ring \(\mathbb{Q}(\phi(n), j_2(n), j_4(n), \ldots, j_{2(\ell+1)/2}(n))\).

We checked its validity for \(k \leq 15\). The goal of this paper is to prove intimately related divisibility:

\[\Phi_n^{(2k+1)}(1) \text{ is divisible by } \phi(n) - 2k \text{ in } \mathbb{Z}, \]
for \(k \geq 1 \), see Theorem 3. (The dividend should be doubled for the case \(k = 1 \).) We did not find yet a special meaning for this divisibility. For a fixed \(n \), such divisibility is proved using Theorem 2 and Proposition 1 below. However, such an individual proof does not seem to extend to the general case. Note that \(\Phi_n^{(2k+1)}(1)/\Phi_n(1) \) is likely to be divisible by \(\phi(n) - 2k \) for \(k > 1 \) but it can not be shown by our method.

Let \(\lambda(m) \) be the Carmichael lambda function, i.e., the exponent of \((\mathbb{Z}/m\mathbb{Z})^*\), the unit group of the ring \(\mathbb{Z}/m\mathbb{Z} \) (c.f. [2,10]). For an odd prime \(p \), \(\lambda(p^e) = \phi(p^e) \) holds since \((\mathbb{Z}/p^e\mathbb{Z})^* \) is cyclic. From
\[
(\mathbb{Z}/2^e\mathbb{Z})^* \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2^{e-2}\mathbb{Z}
\]
for \(e \geq 2 \), we have
\[
\lambda(2^e) = \begin{cases}
1 & e = 1, \\
2 & e = 2, \\
2^{e-2} & e \geq 3.
\end{cases}
\]
For a prime \(p \) and a positive integer \(e \), we write \(\lambda(p^e) \parallel k \) if both \(\lambda(p^e) \mid k \) and \(\lambda(p^{e+1}) \not\mid k \) hold. Proposition 1 may be known, but we give a proof for self-containedness.

Proposition 1 (Trivial congruence) For \(k \geq 3 \) and \(n \geq k + 2 \), we have
\[
J_k(n) \equiv 0 \pmod{\prod_{\lambda(p^e) \parallel k} p^e}.
\]

For \(M > \prod_{\lambda(p^e) \parallel k} p^e \) and any \(n_0 \in \mathbb{N} \), there exists \(n \geq n_0 \) such that \(J_k(n) \not\equiv 0 \pmod{M} \).

Proof There are only finitely many prime \(p \) such that \(\lambda(p^e) \parallel k \). For a prime factor \(q \) of \(n \), \(q^k - 1 \) is a factor of \(J_k(n) \). The condition \(\lambda(p^e) \mid k \) implies \(q^k - 1 \equiv 0 \pmod{p^e} \) for each \(q \) which is coprime with \(p \). Assume that
\[
n > \max\{p : \lambda(p^e) \parallel k\}.
\]
If \(n \) has two distinct prime factors \(p_1 \) and \(p_2 \), then \(J_k(n) \) is divisible by \((p_1^k - 1)(p_2^k - 1) \). We see \(p_1^k - 1 \) is divisible by \(p^e \) with \(p \neq p_1 \) if \(\lambda(p^e) \mid k \). This implies that \((p_1^k - 1)(p_2^k - 1) \) is divisible by \(\prod_{\lambda(p^e) \parallel k} p^e \). Thus we may assume that \(n = \) a power of a prime \(q \) and \(\lambda(q^e) \parallel k \), i.e., \(n = q^e \) and \(\ell \geq 2 \). In this case, \(J_k(n) \) is divisible by \(q^\ell k - q^{(\ell-1)k} = q^{(\ell-1)k}(q^k - 1) \). We see
\[
\prod_{\lambda(p^e) \parallel k, p \neq q} p^e \mid q^k - 1.
\]
When \(q \neq 2 \), since \(e \leq \lambda(q^e) \leq k \), we see \(q^e \) divides \(q^{(\ell-1)k} \) and the required congruence holds.

For \(q = 2 \) we only have \(e - 1 \leq \lambda(2^e) \leq k \) and hence \(e \leq 2k \). So additionally if \(\ell > 2 \), \(q^e \mid q^{(\ell-1)k} \) holds. Therefore our discussion fails only when \(n = 2^e, \lambda(2^e) \parallel k \) and \(e > k \). This happens when \(2k - 1 \leq k \), that is, \(k \leq 2 \). Summing up if \(k \geq 3 \), (8) implies our congruence. Moreover (8) holds if \(n > k + 1 \), because the worst case happens when \(k + 1 \) is an odd prime.

Take \(M > \prod_{\lambda(p^e) \parallel k} p^e \) and any \(n_0 \in \mathbb{N} \). There exists a prime power factor \(p^{e+1} \) of \(M \) such that \(\lambda(p^{e+1}) \) does not divide \(k \). From the definition of the exponent, there exists \(t \in \mathbb{N} \) which is coprime to \(p \) that \(t^k \equiv 1 \mod p^{e+1} \). By Dirichlet’s theorem, there exists a prime \(q \geq n_0 \) such that \(q \equiv t \pmod{p^{e+1}} \). Then \(J_k(q) = q^k - 1 \not\equiv 0 \mod M \). \(\square \)

Here is a table of the first numbers appearing in Proposition 1, see also [12].
2 Congruences for self-reciprocal polynomials

Let q be a positive integer and t_j be a complex number for $1 \leq j \leq q$. Let

$$\sum_{h=0}^{2q} b(t; h)x^h := \prod_{j=1}^{q}(x^2 + t_jx + t_j)$$

and

$$\sum_{\ell=0}^{q} a(t; \ell)y^\ell := \prod_{j=1}^{q}(y + t_j),$$

where $t = (t_j)_{1 \leq j \leq q}$. Our key result is a special combinatorial equality between $b(t; h)$ and $a(t; \ell)$.

Proposition 2 Let $t = (t_j)_{1 \leq j \leq q}$ be a sequence of complex numbers. Then, for any h with $0 \leq h \leq 2q$, we have

$$b(t; h) = \sum_{\ell=\max\{0, h-q\}}^{\lfloor h/2 \rfloor} \binom{q-\ell}{h-2\ell} a(t; \ell).$$

Proof We have

$$\prod_{j=1}^{q}(x^2 + t_jx + t_j) = (x + 1)^q \prod_{j=1}^{q}\left(\frac{x^2}{x + 1} + t_j\right)$$

$$= (x + 1)^q \sum_{\ell=0}^{q} a(t; \ell) \left(\frac{x^2}{x + 1}\right)^\ell$$

$$= \sum_{\ell=0}^{q} a(t; \ell)x^{2\ell} (x + 1)^{q-\ell}$$

$$= \sum_{\ell=0}^{q} a(t; \ell)x^{2\ell} \sum_{h=0}^{q-\ell} \binom{q-\ell}{h} x^h$$

$$= \sum_{\ell=0}^{q} a(t; \ell) \sum_{h=\ell}^{q+\ell} \binom{q-\ell}{h-2\ell} x^h$$

$$= \sum_{h=0}^{2q} \left(\sum_{\ell=\max\{0, h-q\}}^{\lfloor h/2 \rfloor} \binom{q-\ell}{h-2\ell} a(t; \ell)\right) x^h.$$

Comparing the coefficients, we get the desired result. \qed

Remark 4 Under the usual convention $\binom{m}{n} = 0$ for non negative integers m, n, with $m < n$, Proposition 2 is rephrased as

$$b(t; h) = \sum_{\ell=0}^{\lfloor h/2 \rfloor} \binom{q-\ell}{h-2\ell} a(t; \ell).$$
Example 1 Let a be a complex number. Setting $t_j = a$ for $j = 1, \ldots, q$, we obtain
\[
(x^2 + ax + a)^q = \sum_{h=0}^{2q} \left(\sum_{\ell=0}^{\lfloor h/2 \rfloor} \binom{q - \ell}{h - 2\ell} \binom{q}{\ell} a^{q-\ell} \right) x^h.
\]
This is also shown directly by the binomial theorem.

Example 2 Setting $t_j = \pm j$ for $j = 1, \ldots, q$, we have
\[
\prod_{j=1}^{q}(x^2 - jx - j) = \sum_{h=0}^{2q} \left(\sum_{\ell=0}^{\lfloor h/2 \rfloor} \binom{q - \ell}{h - 2\ell} s(q + 1, \ell + 1) \right) x^h,
\]
\[
\prod_{j=1}^{q}(x^2 + jx + j) = \sum_{h=0}^{2q} \left(\sum_{\ell=0}^{\lfloor h/2 \rfloor} \binom{q - \ell}{h - 2\ell} |s(q + 1, \ell + 1)| \right) x^h,
\]
where $s(m, n)$ is the Stirling number of the 1st kind defined by
\[
x(x-1) \cdots (x-m+1) = \sum_{n=0}^{m} s(m, n)x^n.
\]

We apply Proposition 2 to general self-reciprocal polynomials of even degree. Let $f(x) \in \mathbb{Z}[x]$ be a polynomial with degree $2q$ ($q \geq 1$). Suppose that $f(x)$ is self-reciprocal, that is, $x^{2q} f(x^{-1}) = f(x)$. It is easily seen by induction on q that there exists $g(y) \in \mathbb{Z}[y]$ such that $f(x) = x^q g(y)$ with $y = x + x^{-1}$. Let
\[
f(x + 1) := \sum_{h=0}^{2q} \beta(h)x^h, \quad g(y + 2) := \sum_{\ell=0}^{q} \alpha(\ell)y^\ell,
\]
where $\beta(2q) = \alpha(q)$. Then we have the following:

Proposition 3 For any h with $0 \leq h \leq 2q$, we have
\[
\beta(h) = \sum_{\ell=0}^{\lfloor h/2 \rfloor} \binom{q - \ell}{h - 2\ell} \alpha(\ell).
\]

Proof We now reduce Proposition 3 to Proposition 2. Let
\[
g(y) := \beta(2q) \prod_{j=1}^{q} (y + \gamma_j),
\]
where $\gamma_1, \ldots, \gamma_q$ are complex numbers. Then we see
\[
f(x) = \beta(2q) \prod_{j=1}^{q} (x^2 + \gamma_j x + 1),
\]
and so
\[
f(x + 1) = \beta(2q) \prod_{j=1}^{q} (x^2 + (\gamma_j + 2)x + \gamma_j + 2).
\]
On the other hand, using
\[
f(x) = x^q \cdot \beta(2q) \prod_{j=1}^{q} \left(x + \frac{1}{x} + \gamma_j \right) = x^q g(y),
\]
we see
\[
g(y+2) = \beta(2q) \prod_{j=1}^{q} (y + \gamma_j + 2).
\]
Hence, (9) and (10) hold with \(t_j = \gamma_j + 2 \) for \(j = 1, 2, \ldots, q \). Therefore, Proposition 3 follows from Proposition 2 and Remark 4.

Proposition 3 leads to the following congruences.

Proposition 4

(i) \(2f'''(1) \) is divisible by \(2q - 2 \). Moreover, if \(q \) is even, then \(f'''(1) \) is divisible by \(2q - 2 \).

(ii) Suppose that \(k \geq 2 \). Then \(f^{(2k+1)}(1) \) is divisible by \(2q - 2k \).

Proof

For the proof of (i), we may assume that \(2q \geq 3 \). Since \(2f'''(1) = 12\beta(3) \), (i) follows from Proposition 3 and

\[
12 \left(\frac{q}{3} \right) = (2q - 2) \cdot q(q - 2).
\]

The latter part of (i) is similarly proved because \(q \) is even.

For the proof of (ii), we may assume that \(2q \geq 2k + 1 \). Then (ii) follows from \(f^{(2k+1)}(1) = (2k + 1)!\beta(2k + 1) \) and Proposition 3.

Set

\[
c(\ell) := (2k + 1)! \left(\frac{q - \ell}{2k + 1 - 2\ell} \right).
\]

We shall show that \(c(\ell) \) is divisible by \(2q - 2k \). We may assume that \(c(\ell) \neq 0 \). Note that \((q - 2k + 1)(q - 2k) \) is even. If \(\ell = 0 \), then we see by \(k \geq 2 \) that

\[
c(0) = q(q - 1) \cdots (q - k) \cdots (q - 2k + 1)(q - 2k)
\]

is divisible by \(2q - 2k \). Moreover, if \(1 \leq \ell \leq k \), then

\[
c(\ell) = \frac{(2k + 1)!}{(2k + 1 - 2\ell)!} \cdot (q - \ell) \cdots (q - k) \cdots (q - 2k + \ell)
\]

is divisible by \(2q - 2k \) because \((2k + 1)!/(2k + 1 - 2\ell)! \) is even.

Recall that \(\Phi_n(x) \) is self-reciprocal. For \(f(x) = \Phi_n(x) \), the corresponding \(g(y) \) is the minimum polynomial of \(\zeta_n + \zeta_n^{-1} \), where \(\zeta_n \) is a primitive \(n \)-th root of unity. Proposition 3 gives a formula to express \(\Phi_n^{(k)}(1) \) as a \(\mathbb{Z} \)-linear combination of the coefficients of the minimal polynomial of \(\zeta_n + \zeta_n^{-1} - 2 \). Proposition 4 includes our curious congruences on cyclotomic polynomials.

Theorem 3

(i) \(24\Phi_n'''(1) \) is divisible by \(\phi(n) - 2 \). In particular, if \(\phi(n) \) is divisible by \(4 \), then \(\Phi_n'''(1) \) is divisible by \(\phi(n) - 2 \).

(ii) Suppose that \(k \geq 2 \). Then \(\Phi_n^{(2k+1)}(1) \) is divisible by \(\phi(n) - 2k \).

Acknowledgements

We would like to thank Pieter Moree and Michel Marcus for their comments and references to the earlier version. The presentation of this paper is largely improved by the suggestions of anonymous referees. In particular, we could reach the current concise form of Proposition 2 by a suggestion asking for a combinatorial reformulation. This research was partially supported by JSPS Grants 20K03528, 17K05159, 21H00989, 19K03439.

Note added in proof. After our presentation at RIMS on 12 Oct 2022, T. Matsusaka informed us of a proof of Conjecture 1. G. Shibukawa told us that this proof of Theorem 1 is published later in Japanese textbooks for cyclotomic polynomials.
by K. Motose. We also got to know that G. Shibukawa introduced a similar method to Proposition 2 in Fibonacci Quart. 58 (2020), no. 5, 200-221. We are hoping to discuss these in a future work.

Received: 9 May 2022 Accepted: 24 October 2022 Published online: 15 November 2022

References
1. Bzdęga, B., Herrera-Poyatos, A., Moree, P.: Cyclotomic polynomials at roots of unity. Acta Arith. 184(3), 215–230 (2018)
2. Carmichael, R.D.: Note on a new number theory function. Bull. Am. Math. Soc. 16(5), 232–238 (1910)
3. Herrera-Poyatos, A., Moree, P.: Coefficients and higher order derivatives of cyclotomic polynomials: old and new. Expo. Math. 39(3), 309–343 (2021)
4. Hölder, O.: Zur theorie der Kreisteilungsgleichung \(k_m(x) = 0 \). Prace Mat. Fiz. 43, 13–23 (1936)
5. Lebesgue, V.-A.: Démonstration de l’irréductibilité de l’équation aux racines primitives de l’unité. J. math. pures appl. 2 e tome 4, 105–110 (1859)
6. Lehmer, D.H.: Some properties of the cyclotomic polynomial. J. Math. Anal. Appl. 15, 105–117 (1966)
7. Moree, P., Eddin, S.S., Sedunova, A., Suzuki, Y.: Jordan totient quotients. J. Number Theory 209, 147–166 (2020)
8. Motose, K.: On values of cyclotomic polynomials. VII. Bull. Fac. Sci. Technol. Hirosaki Univ. 7(1), 1–8 (2004)
9. Motose, K.: Ramanujan’s sums and cyclotomic polynomials. Math. J. Okayama Univ. 47, 65–74 (2005)
10. Sándor, J., Crstici, B.: Handbook of Number Theory. II. Kluwer Academic Publishers, Dordrecht (2004)
11. Sanna, C.: A survey on coefficients of cyclotomic polynomials. Expo. Math. 40(3), 469–494 (2022)
12. Sloane, N.J.A.: Entry A079612. In: The Online Encyclopedia of Integer Sequences. OEIS Foundation, Inc. (2022). http://oeis.org/A079612

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.