Recent dating of extinct Atlantic gray whale fossils, *(Eschrichtius robustus)*, Georgia Bight and Florida, western Atlantic Ocean

Ervan G Garrison Corresp., 1, Gary S. Morgan 2, Krista McGrath 3, Camilla Speller Corresp., 3, 4, Alexander Cherkinsky 5

1 Geology, University of Georgia, Athens, GA, USA
2 New Mexico Museum of Natural History & Science, Albuquerque, NM, USA
3 University of York, BioArch Centre, York, UK
4 Department of Anthropology, University of British Columbia, Vancouver, British Columbia, Canada
5 Center for Applied Isotope Studies, University of Georgia, Athens, GA, United States

Corresponding Authors: Ervan G Garrison, Camilla Speller
Email address: egarriso@uga.edu, speller@palaeome.org

The Atlantic gray whale *(Eschrichtius robustus)* presents an interesting case study of climate related dispersal and extinction. While (limited) fossil records confirm its presence in the Atlantic up until the 18th Century, its abundance and distribution within the Eastern and Western basins are still not well understood. The discovery of presumed gray whale fossil remains from the Georgia Bight and the Atlantic coast of Florida, from the mid-1980s to late-2000s, provide a new opportunity to recover additional data regarding their chronology within the Western basin. Here we apply AMS (accelerator mass spectrometry) radiocarbon technique to eight fossil whale finds, identifying dates within Marine Isotope Stage (MIS) 3 (59-24 ka) and the late Holocene, ~2,000 yr BP. We additionally confirm the taxonomic identification of two fossil bone samples as *E. robustus* using collagen peptide mass fingerprinting (ZooMS). The obtained dates, when combined with a larger corpus of previously published Atlantic gray whale fossil dates, support the hypothesis for the decline of the Atlantic gray whale in the late Pleistocene and the late Holocene. These new data augment the findings of the Eastern Atlantic Basin and better incorporate the Western Atlantic Basin into a pan-ocean understanding for the species.
Recent dating of extinct Atlantic gray whale fossils (*Eschrichtius robustus*), Georgia Bight and Florida, western Atlantic Ocean

ERVAN G. GARRISON,¹ Geology, the University of Georgia, Athens, GA 30602, USA; GARY S. MORGAN, New Mexico Museum of Natural History & Science, Albuquerque, New Mexico, USA; KRISTA MCGRATH, BioArCh Centre, University of York, York YO10 5DD, United Kingdom; CAMILLA SPELLER, BioArCh Centre, University of York, York YO10 5DD, United Kingdom and Department of Anthropology, University of British Columbia, Vancouver, BC, V6T 1Z1. ALEXANDER CHERKINSKY, Center for Applied Isotope Studies, the University of Georgia, Athens, GA 30602, USA

ABSTRACT

The Atlantic gray whale (*Eschrichtius robustus*) presents an interesting case study of climate related dispersal and extinction. While (limited) fossil records confirm its presence in the Atlantic up until the 18th Century, its abundance and distribution within the Eastern and Western basins are still not well understood. The discovery of presumed gray whale fossil remains from the Georgia Bight and the Atlantic coast of Florida, from the mid-1980s to late-2000s, provide a new opportunity to recover additional data regarding their chronology within the Western basin. Here we apply AMS (accelerator mass spectrometry) radiocarbon technique to six fossil whale finds, identifying dates within Marine Isotope Stage (MIS) 3 (59-24 ka) and the late Holocene, ~2,000 yr BP. We additionally confirm the taxonomic identification of two fossil craniae as *E. robustus* using collagen peptide mass fingerprinting (ZooMS). The obtained dates, when combined with a larger corpus of previously published Atlantic gray whale fossil dates, support the hypothesis for the decline of the Atlantic gray whale in the late Pleistocene and the late Holocene. These new data augment the findings of the Eastern Atlantic Basin and better incorporate the Western Atlantic Basin into a pan-ocean understanding for the species.

Key words: gray whale, western Atlantic basin, paleontology, stable isotopes, radiocarbon dating, protein studies.
1 Corresponding author (e-mail: egarriso@uga.edu).

1. Introduction

Recent studies have suggested that changes in species distribution during the Late Pleistocene–Early Holocene transition were caused both by habitat tracking as well as by extirpation of populations outside of isolated habitat refugia (Dalén et al. 2007, de Bruyn et al. 2011, Hofreiter et al. 2004, Hofreiter 2008, Hofreiter and Stewart 2009; Stewart, 2009). The gray whale (Eschrichtius robustus) presents an interesting case study by which to study this type of climate-related dispersal and extinction. Based on fossil evidence, the gray whale was present in both the North Pacific and North Atlantic during the Late Pleistocene and early Holocene, and migration from the Pacific to the Atlantic is thought to have been strongly shaped by Pleistocene climate shifts affecting potential dispersal routes and benthic feeding habitats. Both fossil and historical accounts suggest that the Atlantic gray whale was extinct in the North Atlantic by the mid-1700’s (Mead and Mitchell 1984; Lindquist 2000), with both climate and anthropogenic factors implicated in its demise. Nevertheless, due to a paucity of fossil data in both the Eastern and Western basins, the diachronic distribution and abundance of gray whales prior to their disappearance is not well understood.

The gray whale family (Eschrichtiidae) is one of four families within the Cetacea suborder Mysticeti. Taxonomically, the phylogenetic placement of Eschrichtiidae has been controversial, with several suggested topologies (i.e., McLeod et al. 1993; Arnason et al. 1992, 1993; Arnason and Gullberg 1994, 1996; Sasaki et al. 2005). Ironically, the extant gray whale Eschrichtius robustus was originally described (as Balaenoptera robusta) based on a Holocene fossil skeleton from Gräsö, Sweden (Lilljeborg,
1861; English translation in Lilljeborg, 1867). *E. robustus* was discovered as a living animal in the Pacific shortly thereafter. The family Eschrichtiidae includes only one the living genus and species, *Eschrichtius robustus* but modern workers describe four putative genera of Eschrichtiidae: Eschrichtius, Archaeschrichtius, Eschrichtioides and Gricetoides (Bisconti, 2008; Deméré et al, 2008; Icshishima, et al, 2006 and Steeman 2007. As the North Atlantic gray whale population went extinct prior to formal analysis of its taxonomy (Barnes and McLeod 1984; Lindquist 2001), it was not clear if the Atlantic and Pacific populations represented distinct species. Nor is it clear what drove the extirpation of this species in the North Atlantic. Lindquist (2001) is by far the most authoritative review of this question particularly with regard to any anthropogenic causation - prehistoric and historic - such as whaling, either opportunistic procurement or systematic hunting. It is noteworthy that two separate archaeological studies using DNA and collagen peptide mass fingerprinting (ZooMS) methods, respectively found no evidence of gray whale in historic whaling assemblages in the western North Atlantic (McLeod et al. 2010) or eastern North Atlantic (Buckley et al. 2014). Recent genetic comparisons of North Atlantic fossil material and extant North Pacific populations by Alter et al. (2015), however, confirmed that they represent the same species, connected through intermittent inter-ocean exchange or dispersals from the Pacific during openings of the Bering Strait (Alter et al. 2015). Moreover, combined radiocarbon dating and genetic results led Alter et al. to conclude that “dispersal between the Pacific and Atlantic was climate-dependent, and occurred – at least twice - both during the Pleistocene prior to the last glacial period, and the early Holocene immediately following the opening of the Bering Strait.”

In the Eastern Atlantic Basin, Pleistocene marine mammal taxa are known from the southern part of the North Sea and the Eurogeul – recovered during the recent channel deepening project of the Rotterdam Harbor. Based on morphology and radiocarbon dates, the fossils from the Eurogeul locality belong to a cold Late Pleistocene fauna (Mol et al. 2006), and confirm with certainty the Late Pleistocene as well as the Holocene occurrence of gray whales in the eastern Atlantic Ocean. In
contrast, only a dozen fossils have been recovered from the Western Basin of the Atlantic, with the
majority of dated remains corresponding to Holocene (Mead and Mitchell 1984; Bryant, 1995). Only one
study to date has recorded a late Pleistocene presence in this region (Noakes et al. 2013), raising
questions about the extent to which the Western Basin was frequented by gray whales prior to the
Holocene, and the genetic relationship between Western and Eastern populations of Atlantic gray
whale. To date, relatively few archaeological or paleontological gray whale specimens have been
identified on the Eastern seaboard of North America, and ancient DNA (aDNA) surveys of historic
whaling assemblages in this region have failed to detect any additional gray whale specimens (Rastogi et
al. 2004; McLeod et al. 2008). This overall paucity of fossil and genetic data makes it difficult to draw
meaningful conclusions about the abundance, distribution, and chronology of Atlantic gray whales in the
Western Basin during both the Pleistocene and Holocene.

Here we apply AMS dating to five new fossil gray whale finds from Florida and Georgia, and
confirm taxonomic identifications of two craniae using collagen peptide mass fingerprinting. Our results
provide new evidence for the Late Pleistocene presence of gray whale in the Western basin, and
combined with other fossil dates for the Atlantic, support the decline of Atlantic gray whales in the
Pleistocene prior to post-glacial re-population.

2. Methods
In our study, we analyzed six-fossil gray whale specimens from the western Atlantic Ocean. We
newly applied AMS dating to three of the finds and collated with ages of previously published specimens
(Garrison et. 2012b). Collagen peptide mass fingerprinting (ZooMS) was performed to confirm
taxonomic identifications based on standard morphological comparisons. Two skulls were found on
Florida beaches (Fig. 1),-one dentary, and three puted dentary fragments were recovered from an
underwater site, offshore Georgia (Noakes et al. 2009; Garrison, et al. 2012b; Noakes et al. 2013) (Figs. 1, 2, 3).

The gray whale fossils from the Gray’s Reef and JY Reef localities, offshore Georgia, are cataloged in the paleontology collection of the Georgia Museum of Natural History (GMNH), University of Georgia, Athens. The fossils from the Hobe Sound and Jacksonville Beach localities in Florida are cataloged in the vertebrate paleontology collection of the Florida Museum of Natural History, University of Florida (specimen acronym UF), Gainesville.

Figure 1. The Georgia Bight and Florida Peninsula, showing the location of the gray whale specimens discussed in the text. These records include specimens from the JY Reef and Gray’s Reef National Marine Sanctuary in the Georgia Bight and Jacksonville Beach and Hobe Sound on the Atlantic Coast of Florida.

Figure 2. The late Pleistocene and Holocene specimens of the gray whale (*Eschrichtius robustus*), Research Ledge site, JY Reef, Georgia Bight used in this study. A: Lateral views of three dentary fragments (GMNH accession numbers, 00-28-09, 00-28-10, 00-28-13), B: Medial view of left dentary, (GMNH 4281) with comparison to North Sea specimen (top), Rotterdam Museum of Natural History collections, (NMR999100001783), scale is 20 cm. Measurements of these specimens are in Table 1.

Figure 3. Two partial Holocene skulls gray whales (*Eschrichtius robustus*) from Florida (USA). Top row (A-C), Jacksonville Beach (UF 99000), A. posterior view, B. right lateral view, C. ventral view; Middle row (D-F) Hobe Sound National Wildlife Refuge (NWR) (UF 69000), D. posterior, E. right lateral and F. ventral views); Bottom row, two views – medial and lateral - of the left periotic (internal ear bone) from the Hobe Sound skull. Both braincases are relatively intact from the condyles to the broken frontals. All Scale bars are 10 cm; overall dimensions in Table 1.
Fossil localities of the Georgia and Florida gray whales

The Georgia locality is J-Reef a low exposure of shell beds about 16 km north of the Gray's Reef (fig. 1).

At J-Reef the shell beds are in a conformable relationship with finer grained sediment that dates to no earlier than the late Pleistocene (Garrison, et al, 2012).

The four dentary (?) fragments shown in figure 2 were recovered from the fine sediment or adjacent to the same outcrop on the sea floor. During subsequent dives, in fall 2006, the large fossil dentary was discovered partially embedded in the coquina (fig. 2 b). This coquina sand, typically deposited on a beach or in a nearshore marine environment, was probably the original sediment, like that of the Hobe Sound skull, in which it was preserved before being exposed.

The following details on the discovery and exact location of the gray whale skull from Hobe Sound (Fig. 3, Specimen UF 69000) were provided by Burkett S. Neely, Jr. (in litt., 6 June 1983) of the U. S. Fish and Wildlife Service (USFWS). The skull was discovered by a Mr. and Mrs. Kornit on 19 January 1983 at the edge of the surf on the northern end of Jupiter Island about 10 km south of St. Lucie Inlet, on the Hobe Sound National Wildlife Refuge (NWR), Martin County, southeastern Atlantic Coast of Florida (fig. 1). Exact coordinates for the Hobe Sound skull are 27°07′40″ North latitude and 80°08′45″ West longitude. The skull was collected later that same day by USFWS personnel. The discovery of the Hobe Sound skull apparently coincided with extensive beach erosion that occurred during a strong winter storm. Through the generosity of Burkett S. Neely, Jr. and the USFWS, the Hobe Sound gray whale skull was placed on permanent loan in the vertebrate paleontology collection of the Florida Museum of Natural History (FLMNH), University of Florida (UF), Gainesville (catalogue number UF
Mead and Mitchell (1984, p. 48) stated that “The specimen consists of most of the cranium of what looks like an adult…” However, upon closer examination, this skull consists only of a braincase, including both periotics (Fig. 3), and is from a very young individual or calf probably less than a year old. Robert K. Bonde (in litt, 19 July 1983), likewise, estimated that this specimen was from a very young calf, probably less than three months old. The Hobe Sound skull represents the southernmost record of *E. robustus* in the Atlantic Ocean, based on distributional maps in Mead and Mitchell (1984). Attached to the internal portion of the periotic (Fig. 3) of this juvenile skull is a small sample of sediment, consisting of medium to coarse quartz sand and fragments of mollusk shells, forming a semi-indurated “coquina.” This coquina sand, possibly deposited on a beach or in a nearshore marine environment, was probably the original sediment in which the skull was preserved before being dislodged and washed up on the beach.

The second gray whale skull from Florida (FLMNH Specimen UF99000) was collected during the 1970s by Jesse S. Robertson of Jacksonville University on the beach at Jacksonville Beach, Duval County, northeastern Florida (approximate coordinates, 30°17’N, 81°23’W) (figs. 1). Although the collector was unable to remember the specific details surrounding the discovery of this fossil, he did recollect it was found after a strong storm. The Jacksonville Beach gray whale skull consists of a braincase of a juvenile, compared to that of the younger calf from Hobe Sound.

Carbon isotope analysis and AMS dating

For the stable isotope analysis of samples we used both a Finnigan MAT 252 mass spectrometer, which is a dual-inlet mass spectrometer as well as a National Electrostatics Corporation Model 1.5SDH-1...
Pelletron 500 kV compact Accelerator Mass Spectrometer (AMS) unit for precise analyses of carbon isotopes 12C, 13C and 14C. The Finnigan spectrometer is a double collector gas source mass spectrometer and allows for the measurement of two isotopes of oxygen and three isotopes of carbon with the double collector. It measures the ratio on the sample and the standard by alternating dual inlets. By contrast the Model 1.5SDH-1 Pelletron 500 kV only analyzed for the three isotopes of carbon using Faraday cup collectors at the end of the beam line array.

All samples were quite poorly preserved and did not retain sufficient collagen for AMS analysis, so we applied the bioapatite fraction dating technique (Cherkinsky 2009). Specimens were chemically pretreated to remove all secondary carbonate and organics, but leave bioapatite in the bone structure. Bioapatite belongs to the group of hexagonal calcium phosphates, of which hydroxyapatite, $(\text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_2)$, is closest in structure to biological apatite. It differs from geological apatite by a high degree of isomorphic substitutions and absorption of carbonate and small crystal size, properties that each result in a poorer crystallization of bone bioapatite (LeGeros, 1984).

The carbonate substituted within bioapatite maintains its carbon isotope signature in both stable and radioactive isotopes. Carbonate occurs in several locations in the crystals, as absorbed ions on the surface and within the crystals. Substitutions are mainly in the phosphate position and most likely in the hydroxyl position. The absorbed carbonates are more labile but substituted ones are much more stable (they are actually structure carbonates) and contribute to saving original isotope composition. Thus, they could be used for radiocarbon dating.

The specimens were treated with a weak acetic acid (CH$_3$COOH) bath under vacuum. Once washed and dried the samples were treated with phosphoric acid (H$_3$PO$_4$) in reaction tubes and heated to ensure removal of all carbonates. The bone samples generated CO$_2$ in the vacuum system and this gas was then
analyzed in the mass spectrometer against a Vienna Pee Dee Belemnite standard (VPDB) with the per mil [‰] values of δ^{13}C reported against VPDB and δ^{18}O reported against VPDB and VSMOW.

We have used the internal standards which are:

\[
\begin{array}{c|c|c}
\text{δ13C, %‰} & \text{δ18O, %‰} \\
\hline
\text{Fisher} & -0.64 & -14.90 \\
\text{A 1296} & +2.56 & -0.60 \\
\end{array}
\]

These standards were calibrated with National bureau of Standards (now NIST) NBS 19

\[
\begin{array}{c|c|c}
\text{δ13C, %‰} & \text{δ18O, %‰} \\
\hline
+1.95 & +28.60 \\
\end{array}
\]

For accelerator mass spectrometer isotopic analyses carbon dioxide was cryogenically purified from the other reaction products and catalytically converted to graphite using the method of Vogel et al. (1984). Graphite ^{14}C/^{13}C ratios were measured by the Model 1.5SDH-1 Pelletron 0.5 MeV accelerator mass spectrometer. The sample ratios were compared to the ratio measured from the Oxalic Acid I (NBS SRM 4990). The sample ^{13}C/^{12}C ratios were measured separately using a stable isotope ratio mass spectrometer and expressed as δ^{13}C with respect to VPDB, with an error of less than 0.1‰.

Collagen peptide mass fingerprinting

We attempted to taxonomically identify five specimens using peptide mass fingerprinting: the three dentary fragments from JY Reef, Georgia Bight (GMNH 00-28-09, 00-28-10, 00-28-13 and the two Florida skull specimens (UF 69000, UF 99000). Collagen peptide mass fingerprinting (PMF), also known as ZooMS, is a rapid and cost-effective technique, whereby taxonomic groups are discriminated based on difference in the collagen protein sequence. Robust species identification can be accomplished by comparing collagen peptide fingerprints with the fingerprints from known samples using mass
spectrometry (Collins et al. 2010). The success of this method has already been demonstrated for ancient North Atlantic cetacean species, including Atlantic gray whale (Kirby et al. 2013; Buckley et al. 2014).

Sample preparation, mass spectrometry and data analysis followed that described in Buckley et al (2014) and Evans et al. (2015) at the BioArCh centre, University of York. Briefly, between 10-30 mg of bone powder was fully demineralized through immersion in 0.6 M hydrochloric acid, followed by gelatinization in 100 μl of 50 mMol ammonium bicarbonate at 65°C for 1 hour. The resulting collagen was incubated with 0.4μg of trypsin overnight at 37°C, acidified to 0.1% trifluoroacetic acid and purified using a 100 μl C18 resin ZipTip® pipette tip (EMD Millipore). The collagen extract was spotted in triplicate on a 384 spot MALDI target plate, with calibration standards and run on a Bruker ultraflex III MALDI TOF/TOF mass spectrometer. mMass software (Strohalm et al., 2008) was used to average spectra replicates from each specimen, and compare to the list of m/z markers for marine mammals presented in Kirby et al. 2013 and Buckley et al. 2014.

3. Results

Paleontology

If the craniae and dentary elements are that of a gray whale, then systematic paleontology can be:
Class MAMMALIA Linneaus, 1758
Order CETACEA Brisson, 1762
Suborder MYSTICETI Gray, 1864
Family ESCHRICHTIIDAE Ellerman and Morrison-Scott, 1951
Genus ESCHRICHTIUS Gray, 1864
ESCHRICHTIUS ROBUSTUS.

Eschrichtius cf. E. robustus (Lilljeborg, 1867).

Table 1. Cranial measurements (in cm) of Quaternary gray whale (Eschrichtius robustus) skulls from Florida (this study).

We compared the two Florida gray whale skulls to descriptions and photographs of modern skulls of Eschrichtius robustus (True 1983; 1904; Barnes and McLeod 1984) and a late Pliocene skull from
Japan referred to *Eschrichtius* sp. (Ichishima et al., 2006). Because both Florida skulls consist only of the braincase, our comparisons are limited to characters present in posterior portion of the skull (Fig. 3; Table 1), as well as several characters of the periotics (see next paragraph). Characters the Florida skulls share with *E. robustus* include: triangular-shaped occipital shield with prominent paired occipital tuberosities (see Fig. 3A, UF 99000); large occipital condyles; concave exoccipitals lateral to occipital condyles; large and posteriorly oriented paroccipital processes; short, massive postglenoid processes of the squamosals that are parabolic in shape; and presence of a squamosal cleft.

Figures 3G and 3H are external (= medial = tympanic) and internal (= lateral = cerebral) views, respectively, of the left periotic from the juvenile gray whale skull from Hobe Sound, Florida (UF 69000). The right periotic of this specimen is still preserved intact in the skull (Fig. 3F). The posterior process of the right periotic (= posterior petrotympanic process of Ichishima et al., 2006) is still attached to the skull in the second Florida fossil, from Jacksonville Beach (UF 99000; Fig. 3C). The periotics from the Hobe Sound skull are very similar to periotics from modern skulls of *Eschrichtius robustus* and to the periotic of a Pliocene skull of *Eschrichtius* from Japan (Ichishima et al., 2006). Specifically, the periotic of UF 69000 is similar to that of *E. robustus* in the short, triangular-shaped anterior process, comparatively large cochlear portion (as large as the body and anterior process of the periotic but excluding the posterior process), relatively fibrous posterior process, and the confluence of the fenestra cochleae and the aperture for the cochlear aqueduct. The anterior process of the periotic is proportionally small relative to the cochlear portion (pars cochlearis) in the fossil and *Eschrichtius*, compared to balaenopterids in which the anterior process is much larger.

On the basis of the similarities in the cranial morphology, periotics and ZooMS results, we confidently refer the two Florida skulls to *Eschrichtius robustus*. Both Florida gray whale skulls represent
immature individuals based on the unfused basioccipital/basisphenoid joint or suture. Walsh and Berta (2011) examined the closure of the bones in the occipital region in 20 skulls of *E. robustus*, including 18 calves under one year of age. They found that the basioccipital/basisphenoid joint becomes completely ossified between 7 months and 1 year of age. The cranial measurements (Table 1), together with the unfused basioccipital/basisphenoid joint, indicate that the Hobe Sound skull (UF 69000) is most likely a newborn calf, whereas the somewhat larger Jacksonville Beach skull (UF 99000) was probably between seven months and a year old. Both Holocene skulls of gray whales from Florida are juveniles less than a year of age, lending credence to our suggestion that the east coast of Florida may have been a breeding ground for the western Atlantic population of *E. robustus* (see below under Discussion).

Comparisons with previously described and measured fossils skulls of *Eschrichtius*, as well as modern skulls of *E. robustus*, provide further clarification on the age at death of the two Florida Holocene gray whales. A juvenile fossil gray whale cranium from Cape Lookout, North Carolina measured 80 cm in width across the zygomatic processes (Mead and Mitchell, 1984). This compares to a width across the zygomatic processes in the two juvenile skulls from Florida of 76 cm in UF 99000 and 60 cm in UF 69000 (width of squamosals in Table 1). An adult fossil gray whale cranium from Corolla, North Carolina measured between 130 and 140 cm across the zygomatics (Mead and Mitchell, 1984). The width of the occipital condyles in the adult from Corolla is 31 cm, compared to 24 cm in UF 99000 and 22 cm in UF 69000 (Table 1). A juvenile Pliocene gray whale skull (*Eschrichtius* sp.) from Japan measured 54 cm across the paraoccipital processes (Ichishima et al., 2006), compared to widths across the paraoccipitals of 59 cm (UF 99000) and 45 cm (UF 69000) in the two Florida juvenile skulls (Table 1). Ichishima et al. (2006) noted that the paraoccipital measurement of the Japanese Pliocene fossil was comparable with the same measurement in a modern gray whale skull from an individual 7.25 m in body length and an age of approximately 30 weeks (Sumich et al., 2001). Comparative data from modern gray
whales, including both cranial measurements (Sumich et al., 2001) and fusion of cranial sutures (Walsh and Berta, 2011), support our assertion that the Hobe Sound skull was from a calf, younger than 30 weeks based on comparative measurements of the paraoccipitals, whereas the larger Jacksonville Beach skull was from an animal older than 30 weeks but less than a year old.

Our assessment together with earlier studies, are in line with that of two recently reported Holocene-to- Pleistocene aged gray whale finds in the western Pacific, off Taiwan (Tsai et al. 2014) and Japan (Kimura et al. 2018). The former study identified the paired tuberosities on the occipital shield as diagnostic of Eschrichtiidae sp. (supra). Both Florida gray whale skulls demonstrate these paired tuberosities, in particular UF 99000 (Fig. 3).

Furthermore, the collagen peptide mass fingerprinting results confirm the anatomical identification of Gray Whale for the two Holocene-aged Florida skulls (Fig. 4). The two skulls exhibited diagnostic gray whale specific markers presented in Kirby et al. 2013 (specifically, the presence of diagnostic collagen peptide F at 2899). The application of this technique to our other three Pleistocene-aged specimens, however, failed due a lack of preserved collagen in these ancient bones – a result mirrored in the lack of organic fraction available for radiocarbon dating (see below, and also Harvey et al. 2016).

Figure 4. MALDI-ToF Collagen peptide mass fingerprints for specimens UF69000 and UF99000, labelled according to Buckley et al. 2014 and Kirby et al. 2013 modern; inset displays unique gray whale peptide marker at 2899 for both successful specimens.

Radiocarbon (¹⁴C) dates
We dated the samples using the organic fraction and mineral fraction of bioapatite. The overall morphology of the bones was very well preserved, however, the collagen fraction was almost completely destroyed and the concentration of organic carbon was about 0.1% or lower. In all four cases the bioapatite fraction radiocarbon age estimate was older (33-37.5 ka) than that from the organic, collagen-like, fractions (8.3 to 23 ka). The per mil [‰] values of $\delta^{13}\text{C}$ reported against VPDB and $\delta^{18}\text{O}$ reported against VPDB and VSMOW and are shown in Table 2, and the AMS dates are displayed in Table 3.

Table 2. Isotopic results for Georgia Bight and Florida specimens of *Eschrichtius robustus*.

Table 3. Radiocarbon ages for Georgia Bight and Florida Specimens

Without doing a full statistical analysis, the results shown in Table 2 for the $\delta^{13}\text{C}$ of sample A (-5.11 ± 0.04 ‰) and sample B (-5.04 ± 0.04 ‰) seem to be more strongly related and are probably from the same whale, while sample C (-4.80 ± 0.04 ‰) differs slightly from the other samples. Sample C could also be from another individual, but because the difference from the other samples is not more than 1‰ it is likely that all three of the mysticete whale bone fragments are from the same individual.

4. Discussion

Our results have identified the presence of gray whale in the Georgia Bight and along the Atlantic Coast of Florida, in both the Pleistocene and late Holocene. We are confident in the identification of the two craniae, based on both our evaluation and our genomic findings using ZooMS.
and the dentary based on its previous diagnosis (Garrison, et al, 2012) as this unique mysticete whale

but both secure morphological and genomic attributes are lacking for the remainder of our sample—three dentary fragments. To include these latter specimens in our assessment of an extirpated population is problematic. We recognize this fact. In the absence of preserved biomolecules, the identity of these remaining specimens has to rest entirely on morphological identification criteria and provenance. In the case of the latter, this is to say that their find locations were in close proximity to UGA 4281 and later discovered cranial elements were identified as *Eschrichtius* in previous study (Noakes. et al 2013). By parsimony, we argue that if these are whale then they most likely are gray whale.

These observations, in particular the two late Holocene records of juveniles from Florida, potentially provide insight into this species migration route and calving grounds. The eastern Pacific population of gray whales annually migrates from summer grounds in the Bering Sea and Chukchi Sea between Alaska and Russia to winter/calving grounds in Mexico along the western coast of Baja California and the southern Gulf of California (Fig. 5). The best known calving sites of *Eschrichtius robustus* in the eastern Pacific are located in shallow lagoons along the coast of Baja California between 24° and 29° North latitude, including Laguna Ojo de Liebre (also known as “Scammon’s Lagoon”), Laguna San Ignacio, and Bahia Magdalena (Rice and Wolman, 1971). The presence of a fossil skull (UF 69000) representing a newborn gray whale calf from Jupiter Island along the southeastern coast of Florida suggests the possibility that this region may have been used as a calving ground by the now-extinct western Atlantic population of gray whales. Along the Atlantic coast of southeastern Florida between 24° and 29° N there are numerous shallow bays and protected lagoons, including Florida Bay, Biscayne Bay, Lake Worth, Hobe Sound, Indian River, Banana River, and Mosquito Lagoon, that would seem to have provided ideal calving grounds for gray whales.
Our results also provide additional insights into the ecological history of this enigmatic species. Current Atlantic Arctic species have evolved over periods whereby adaptation to profoundly different climate regimes was required, such as ca. 12,000 years ago when the Bering land bridge closed the western Arctic to Pacific water intrusion (Walsh 2008) or during the retreat of the great ice sheets and the opening continental shelves at the onset of the Holocene (Harington 2008). Climatic changes of the glacial cycles are thought to have been a major driver of arctic population declines and species extinctions, however, there is still not a full understanding of how marine species responded to past climate change.

It has been suggested that some Pleistocene cetacean lineages survived into the Holocene and their effective female population size increased rapidly, concurrent with a threefold increase in core suitable habitat (Evans, 1987). For example, using ancient DNA analysis, Foote et al. (2005; 2013) show that the bowhead whale (*Balaena mysticetus*), shifted its range and tracked its core suitable habitat northwards during the rapid climate change of the Pleistocene–Holocene transition. The case for this type of habitat tracking in Late Pleistocene Atlantic gray whale is not as straightforward. Pyenson and Lindberg (2011) argue for the adaptability of gray whales, suggesting that gray whales survived Pleistocene glacial maxima (e.g. LGM) and maintained substantial population sizes by employing a diverse set of feeding modes, similar to those seen in seasonal resident whales found today between northern Washington State and the coast of Vancouver Island. Molecular data, however, do not support a widespread (maternal) continuity in gray whale lineages across the LGM. In their analysis of Atlantic gray whale fossils, Alter et al (2015) detected little genetic continuity between the late Pleistocene and Holocene populations – within the dataset, only a single sample displayed a lineage that survived post-
LGM. The remaining Holocene samples from both the Western and Eastern basins shared a most recent common ancestor with Pacific gray whales dating to the early to mid-Holocene, suggesting that the majority of the Atlantic Holocene population were the result of a second colonization event when warming temperatures, sea-level rise, and decreases in sea ice permitted passage through the Bering Strait (Alter et al. 2015).

We examined these two hypotheses in light of the range and distribution of the 53 radiocarbon dates for all available Atlantic gray whale finds (Fig. 5). There are 15 late Pleistocene ages that range from >45,200 to 35,520 BP and 38 Holocene ages that range from 10,400 BP to 340 BP (Table 4, Fig.6). These ages are clearly bimodal in their distribution suggesting either that: (1) any population surviving post-LGM is geologically “invisible”, due to a lack of fossil evidence; or (2) the lack of finds reflects their true absence, indicating a significant decline or even the effective extirpation of gray whales across the north Atlantic Ocean in the period between ~40 ka and ~11 ka. The argument in favor for the latter may be further supported by geologic evidence for a much-reduced habitat in the north Atlantic during LGM due to the subaerial exposure of both the North Sea/Baltic and the Georgia Bight and Florida continental shelves (Alter et al. 2015; Garrison et al. 2008; 2012; Harris et al. 2013). Fossil evidence for the gray whale, however, may yet be found for the post- 40 ka – 11 ka interval on areas of the Atlantic continental shelf that were inundated at or during the last low stand. Nevertheless, the dates produced in our study for recent western Atlantic Ocean finds are in good alignment with these (predominantly Eastern basin) dates and, likewise, suggest a bi-modal distribution for Atlantic gray whales in the Western basin.
Figure 6. Scatter plot of 53 radiocarbon ages for Atlantic Basin gray whale finds, with gap between ~35,000 and ~11,000 BC (Logarithmic scale, base 10).

Table 4 **Pleistocene and Holocene eastern and western North Atlantic gray whale specimens**
5. Conclusions

In our results, collagen peptide mass fingerprinting and paleontological diagnoses confirm the two Florida finds to be the Atlantic gray whale, *Eschrichtius robustus*. Due to the lack of preserved collagen in the three Pleistocene aged fragmentary specimens, we cannot confirm the species identities through biomolecular analyses; paleontological diagnoses, however, support for our identification of the relatively well-preserved Georgia Bight dentary as gray whale as well is based on our previous diagnosis (Garrison, et al, 2012). Thus, the existence of both Pleistocene and Holocene gray whale populations in the western Atlantic Ocean are supported by these fossils and their radiocarbon dates. The results of our study may help explain the Late Quaternary occurrences of gray whales in the Georgia Bight and along the Atlantic Coast of Florida, in particular the two late Holocene records of juveniles from Florida. The presence of newborn gray whale calf’s skull from Jupiter Island as well as a juvenile gray whale’s dentary from the Georgia Bight suggests that the region between 24° and 29° N may have been used as a calving ground by the now-extinct western Atlantic population of gray whales.

ACKNOWLEDGMENTS

We thank the following colleagues and/or agencies for their assistance in the research that contributed to this article: Drs. Brenna McLeod and Tim Frazier, St. Mary’s University, Halifax, Nova Scotia, Canada; Dr. Michael Hofreiter, Potsdam University, Germany; Klaas Post, Natural History Museum, Rotterdam, The Netherlands; Keri Rowsell for technical assistance, University of York, UK; C.W. (Kees) Moeliker & H.P. (Henry) van der Es, Natural History Museum, Rotterdam, The Netherlands; Wendy van Bohemen, Naturalis Biodiversity Center, Leiden, The Netherlands; Dr. Scott E. Noakes, Center for Applied Isotope Studies, University of Georgia, Athens, GA;
Dr. Mark Williams; Amanda Thompson; Isabelle Cantin - The Laboratory for Archaeology, University of Georgia, Athens, GA.;

Dr. Nicholas Pyenson, Smithsonian Institution, Washington, DC; and the National Oceanic and Atmospheric Administration (NOAA).

REFERENCES

Alter, E., M. Meyer, Kl. Post, P. Czechowski, P. Gravlund, C. Gaines, H. C. Rosenbaum, K. Kaschner, S. T. Turvey, J. van der Plicht, B. Shapiro and M. Hofreiter. 2015. Climate impacts on trans-ocean dispersal and habitat in gray whales from the Pleistocene to 2100. Molecular Ecology 24.7: 1510-1522.

Arnason, U., S. Gretarsdottir and B. Widegren. 1992. Mysticete (baleen whale) relationships based upon the sequence of the common cetacean DNA satellite. Molecular and Biological Evolution 9:1018–1028. Available at http://mbe.oxfordjournals.org/content/9/6/1018.full.pdf

Arnason, U. and A. Gullberg. 1993. Comparison between the complete mtDNA sequences of the blue and the fin whale, two species that can hybridize in nature. Journal of Molecular Evolution 37:312–322. Available at http://www.springerlink.com/content/q21734t368661hk3/fulltext.pdf

Arnason, U. and A. Gullberg. 1994. Relationship of baleen whales established by cytochrome b gene sequence comparison. Nature 367:726–728. Available at http://www.nature.com/nature/journal/v367/n6465/pdf/367726a0.pdf
Arnason, U. and A. Gullberg. 1996. Cytochrome b nucleotide sequences and the identification of five primary lineages of extant cetaceans. Molecular Biology and Evolution 13:407–417. Available at http://mbe.oxfordjournals.org/content/13/2/407.full.pdf

Barnes, L.G. and S.A. McLeod. 1984. The fossil record and phyletic relations of Gray whales. In: M.L. Jones S.L. Swartz and S. Leatherwood, eds. The Gray Whale, *Eschrichtius robustus*. Academic Press, Inc. New York. Pp. 1-32.

Bischonti, M. 2008. Morphology and phylogenetic relationships of a new eschrichtiid genus (Cetacea; Mysticeti) from the Early Pliocene of northern Italy, *Zoological Journal of the Linnean Society*, 153:161-186

Brisson, M.J. 1762. *Le regnum animale in classes IX distributum, sive synopsis methodica sistens geenralem animalium distributiononem in classes IX, & duarum primarum classium, quadrapedum scilicet & cetaceorum, particularem dïbvisionem in ordines, sectiones, genera & species*. T. Haak. Paris. 296 p.

Bryant, P.J. 1995. Dating remains of Gray Whales from the Eastern North Atlantic, *Journal of Mammalogy* 76(3):857-61.

Buckley, M., S. Fraser, J. Herman, N.D. Melton, J. Mulville and A.H. Pálsdóttir. 2014. Species identification of archaeological marine mammals using collagen fingerprinting. *Journal of Archaeological Science* 41:631–641.
Cherkinsky, A. 2009. “Can We Get A Good Radiocarbon Age from “Bad Bone”? Determining the Reliability of Radiocarbon Age from Bioapatite.” Radiocarbon 51(2):647-655.

Collins, M., M. Buckley, H. H. Grundy, J. Thomas-Oates, J. Wilson and N. van Doorn. 2010. ZooMS: the collagen barcode and fingerprints. Spectroscopy Europe 22:6.

dalén, L., V. Nyström, C. Valdiosera, M. Germonpré, M. Sablin, E. Turner, A. Angerbjörn, J.L. Arsuaga and A. Götherström. 2007. Ancient DNA reveals lack of postglacial habitat tracking in the arctic fox. Proceedings of the National. Academy of Sciences. U. S. A. 104:6726–6729.

dé Bruyn, M., A.R. Hoelzel, G.R. Carvalhoand and M. Hofreiter. 2011. Faunal histories from Holocene ancient DNA. Trends in Ecological Evolution 26, 405–413.

Deméré, T.A., McGowen, M.R., Berta, A. and Gates, J. 2008. Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Systematic Biology, 57(1):15-37.

Ellerman, J.R. and J.C.S. Morrison-Scott. 1951. Checklist of Palaearctic and Indian Mammals, 1758-1946. British Museum (Natural History), London. 810 p.

Evans, S. and J. Mulville. 2018. Finding Moby: Identifying whales in the archaeological record. The SAA Archaeological Record, 18(4): 31-37.

Garrison, E.G., McFall, G. and Noakes, S.E. 2008. Shallow marine margin sediments,
modern marine erosion and the fate of sequence boundaries, Georgia Bight (USA).

Southeastern Geology, 45: 127-142.

Garrison, E. G., G. McFall, A. Cherkinsky and S.E. Noakes. 2012. Discovery of a Pleistocene mysticete whale, Georgia Bight (USA). Palaeontologica Electronica 15(3):10.

George, J. C., J. Zeh, R. Suydam and C. Clark. 2004. Abundance and population trend (1978–2001) of western Arctic bowhead whales surveyed near Barrow, Alaska. Marine Mammal Science, 20:755–773.

Gray, J.E. 1846. On British Cetacea. Annals and Magazine of Natural History, [ser. 1], 17:83.

Harington, C. R. 2008. The evolution of Arctic marine mammals. Ecological Applications 18(2):S23–S40.

Harvey, V. L., V.M. Egerton, A.T. Chamberlain, P.L. Manning, P. L., and M. Buckley. 2016. Collagen Fingerprinting: A New Screening Technique for Radiocarbon Dating Ancient Bone. PloS One, 11(3), e0150650.

Hofreiter, M. 2008. Long DNA sequences and large data sets: investigating the Quaternary via ancient DNA. Quaternary Science Reviews 27:2586–2592.

Hofreiter, M., D. Serre, N. Rohland, G. Rabeder, D. Nagel, N. Conrad. S. Münzel and S. Pääbo. 2004. Lack of phylogeography in European mammals before the last glaciation. Proceedings of the National Academy of Sciences. U. S. A. 101:12963–12968.
Hofreiter, M. and J. Stewart. 2009. Ecological change, range fluctuations and population dynamics during the Pleistocene. Current Biology 19:R584–94.

Icshishima, H., Sato, E., Sagayama, T. and Kimura, M. 2006. The oldest record of *Eschrichtidiidae* (Cetacea: Mysticeti) from the Late Pliocene, Hokkaido, Japan, *Journal of Paleontology*, 80(2): 367-379.

Kimura, T., Y. Hasegawa. and N. Kohno. 2017. A new species of the genus *Eschrichtius* (Cetacea: Mysticeti) from the Early Pleistocene of Japan. Paleontological Research, 22:, 1-19. (doi:10.2517/2017PR007).

Kirby, D.P., M. Buckley, E. Promise, S.A. Trauger and T.R. Holdcraft. 2013. Identification of collagen-based materials in cultural heritage. Analyst 138:4849–4858.

LeGeros, R.Z. and J.P. LeGeros. 1984. Phosphate minerals in human tissues. In *Phosphate Minerals* (Eds. J.O. Nriagu JO, and P.B. Moore). Springer-Verlag, Berlin Germany. Pp. 352-85.

Lilljeborg, W. 1861. Hvalben, Funna i jorden paa, Gräsön i Roslagen i Sverige. Forh. Skand. Naturf., 8th Mote. 1860, p. 599-616.

Lilljeborg, W. 1867. On two subfossil whales discovered in Sweden. Nova Acta Regiae Societatis Scientiarum Upsaliensis [3] 6(2):1-48.
Lindquist, O. 2000. The North Atlantic gray whale (*Eschrichtius robustus*): An historical outline based on Icelandic, Danish-Icelandic, English and Swedish sources dating from ca 1000 AD to 1792. Occasional Papers. The Carnegie Trust for Universities of Scotland. Universities of St. Andrews and Stirling.

Linnaeus, C. 1758. *Systema Naturae per regna tria naturae, secundum classis, ordines, genera, species cum characteribus, differentiis, synoymis, locis*. Tenth ed. Vol. 1. Laurentii Salvii, Stockholm. 824 p.

McLeod, B. A., M.W. Brown, M.J. Moore, W. Stevens, S.H. Barkham and B.N. White. 2008. Bowhead whales, and not right whales, were the primary target of 16th-to 17th-century Basque whalers in the western North Atlantic. *Arctic* 61-75.

Mead, J.G. and E. Mitchell. 1984. Atlantic Gray Whales. In: Jones M.L., Swartz S.L., Leatherwood S., eds. The Gray Whale, *Eschrichtius robustus*. Academic Press, Inc. New York. Pp. 33-53.

Noakes, S. E., E.G. Garrison and G. McFall. 2009. Underwater paleontology: recovery of a prehistoric whale mandible offshore Georgia. In: Pollock N.W. ed. Diving for Science 2009. Proceedings of the American Academy of Underwater Sciences 28th Symposium, Atlanta, GA. Pp. 245-251.

Noakes, S. E., N.D. Pyenson and G. McFall. 2013. Late Pleistocene gray whales (*Eschrichtius robustus*) offshore Georgia, USA, and the antiquity of gray whale migration in the North Atlantic Ocean. *Palaeogeography, Palaeoclimatology and Palaeoecology* 392:502-509.
Pyenson, N. D. and D.R. Lindberg. 2011. What happened to gray whales during the Pleistocene? The ecological impact of sea-level change on benthic feeding areas in the North Pacific Ocean. PLoS One 6(7):e21295.

Rastogi, T., M.W. Brown, B.A. McLeod, T.R. Frasier, R. Grenier, S.L. Cumbaa, J. Nadarajah and B.N. White. 2004. Genetic analysis of 16th-century whale bones prompts a revision of the impact of Basque whaling on right and bowhead whales in the western North Atlantic. Canadian Journal of Zoology 82(10):1647-1654.

Rice, D. W. and A. A. Wolman. 1971. The life history and ecology of the gray whale (Eschrichtius robustus). American Society of Mammalogists, Special Publication 3:1-142.

Sasaki, T., M. Nikaido, H. Hamilton, M. Goto, H. Kato, N. Kanda, L. A. Pastene, Y. Cao, R.E. Fordyce, M. Hasegawa and N. Okada. 2005. Mitochondrial phylogenetics and evolution of mysticete whales. Systematic Biology 54(1):77–90. Available at http://www.jstor.org/pss/20061212.

Steeman, M.E. 2007. Cladistic analysis and a revised classification of fossil and recent mysticetes. Zoological Journal of the Linnean Society, 150: 875-894.

Stewart, J.R. 2009. The evolutionary consequence of the individualistic response to climate change. Journal of evolutionary biology, 22(12):2363-2375.
Strohalm, M., M. Hassman, B. Kosata, and M. Kodícek. 2008. mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Communications in Mass Spectroscopy 22:905–908.

Tsai, C.-H., Fordyce, R.E., Chang, C.-H. and Lin, L.-K. 2014. Quaternary fossil gray whales from Taiwan. Paleontological Research, 18: 82-93. (doi:10.2517/2014pr009).

True, F. W. 1983. The whalebone whales of the western North Atlantic. Smithsonian Institution Press, Washington, DC. (True, F.W. 1904. The whalebone whales of the western North Atlantic. Smithsonian Contributions to Knowledge, 33:1-332.reprinted).

Tsai, C-H., R.E. Fordyce, C-H. Chang and L-K. Lin. 2014. Quaternary fossil gray whales from Taiwan. Paleontology Research 18(2):82-93.

Van Deinse, A.B. and G.C.A. Junge. 1937. Recent and older finds of the California gray whale in the Atlantic. Temminckia 2: 161–188.

Vogel, J.S., J.R. Southon, D.E. Nelson and T.A. Brown. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 5(2):289-293.

Walsh, J. E. 2008. Climate of the Arctic marine environment. Ecological Applications 18(2):S3–S22.
Figure 1

Location map J-Y Reef to Hobe Beach
Manuscript to be reviewed
Figure 2

The late Pleistocene and Holocene specimens of the gray whale (*Eschrichtius robustus*), Research Ledge site, JY Reef, Georgia Bight used in this study.
Figure 3

Two partial Holocene skulls gray whales (*Eschrichtius robustus*) from Florida (USA).
Figure 4

MALDI-ToF Collagen peptide mass fingerprints for specimens UF69000 and UF99000, labelled according to Buckley et al. 2014 and Kirby et al.
Figure 5

Global distribution of gray whale fossil finds.

- ▲ Fossil evidence for gray whales
- ● Historical evidence for gray whales
- ★ Fossil evidence for gray whales, this study
- □ Summer feeding grounds
- --- Gray Whale migration route
Figure 6

Scatter plot of 53 radiocarbon ages for Atlantic Basin gray whale finds, with gap between ~35,000 and ~11,000 BC (Logarithmic scale, base 10).
Table 1 (on next page)

Cranial measurements of Quaternary gray whale skulls

Cranial measurements (in cm) of Quaternary gray whales (*Eschrichtius robustus*) skulls from Florida (this study).
Table 1. Cranial measurements (in cm) of Quaternary gray whale (*Eschrichtius robustus*) skulls from Florida (this study).

Locality & Catalogue #	width of squamosals	width of paraocciptals	width of supraocciptals	width of occipital condyles	height of skull
Hobe Sound NWR UF 69000	60	45	39	22	41
Jacksonville Beach UF 99000	76	59	51	24	51
Table 2 (on next page)

Isotopic results for Georgia Bight specimens.

Isotopic results for the Georgia Bight and Florida specimens of *Eschrichtius robustus*.
Table 2. Isotopic results for Georgia Bight and Florida specimens of *Eschrichtius robustus*.

Laboratory #	δ^{13}C [%] vs. VPDB	δ^{18}O [%] vs. VPDB	δ^{18}O [%] vs. VSMOW
Dentary A (00-28-09)	-5.11	0.22	31.14
Dentary B (00-28-10)	-5.04	0.14	31.05
Dentary C (00-28-13)	-4.80	0.92	31.86
4281 (dentary)	-6.62	-10.34	20.25
UF 69000 (cranium)	-9.5	-	-
UF 99000 (cranium)	-10.3	-	-
Table 3 (on next page)

Radiocarbon ages for specimens.

Radiocarbon ages for Georgia Bight and Florida specimens.
Table 3. Radiocarbon ages for Georgia Bight and Florida Specimens

UGA #	Element	Condition	Find Location	14C age, years BP	Reservoir effect, ΔR	Calendar age, BP 95.4% probability
4281	Dentary	fossil	J-Reef	36,570±300	-120±78	40230-41550
4214	Dentary?	fossil	J-reef	33,520±160	-120±78	36240-37460
UF 69000	Cranium	fossil	Jacksonville Beach, Florida	2130+/−25	-90±131	1500-2150
UF 99000	Cranium	fossil	Hobe Sound, Florida	2190+/−20	-90±131	1570-2220
Table 4 (on next page)

Pleistocene and Holocene Atlantic gray whale specimens.

Pleistocene and Holocene eastern and western Atlantic gray whale specimens.
Table 4. Pleistocene and Holocene eastern and western North Atlantic gray whale specimens

Region	Date found	Cal yr BP	Citation	Current Location
Pentuan, England	1829	1,329 ± 195	Flower 1872; Bryant 1995; Alter et al. 2015	unknown
Gräsö, Sweden	1859	4,395 ±155	Lillieborg 1861; Persson 1986	unknown
Babbacombe Bay, England	1861		Gray 1864	unknown
Babbacombe Bay, England	1865	340 ±260	Gray 1866; Pengelly 1865, 1878; Bryant 1995; Alter et al. 2015	unknown
Ijmuiden, Netherlands	1879	8,330 ± 85	Van Deinse and Junge 1937; Bryant 1995	National Natural History Museum Naturalis, Leiden
Ijmuiden, Netherlands	1916	1,400	Van Deinse and Junge 1937; Bryant 1995	National Natural History Museum Naturalis, Leiden
Wieringermeer-Polder, Netherlands	1935	4,195 ± 45	Van Deinse and Junge 1937; Bryant 1995	National Natural History Museum Naturalis, Leiden
Oostduinkerke-Koksijde, Belgium	1978	2,024 ± 110	Asselberg 1981; Bryant 1995	Unknown
North Sea, Netherlands	2005	42,800 ±4100-2700	Post 2005	Natural History Museum, Rotterdam
North Sea, Netherlands	2005	>45,200	Mol et al. 2006	Natural History Museum, Rotterdam
North Sea, Netherlands	2001	1150–1270	Alter et al. 2015	Natural History Museum, Rotterdam
North Sea, Netherlands	No Data	1350–1500	Alter et al. 2015	Unknown
North Sea, Netherlands	1997	1350–1500	Alter et al. 2015	Natural History Museum, Rotterdam
North Sea, Netherlands	2003	2650–2730	Alter et al. 2015	Natural History Museum, Rotterdam
North Sea, Netherlands	No data	>48 000	Alter et al. 2015	Unknown
North Sea, Netherlands	2005	>48 000	Alter et al. 2015	Natural History Museum, Rotterdam
North Sea, Netherlands	2003	42 500–43 300	Alter et al. 2015	Natural History Museum, Rotterdam
North Sea, Netherlands	1879	9470–9550	Alter et al. 2015	National Natural History Museum Naturalis, Leiden
North Sea, Netherlands	1916	1600–1800	Alter et al. 2015	National Natural History Museum Naturalis, Leiden
North Sea, Netherlands	1935	4760–4850	Alter et al. 2015	National Natural History Museum Naturalis, Leiden
North Sea, Netherlands	No data	4950–5250	Alter et al. 2015	Natural History Museum, Rotterdam
North Sea, Netherlands	1954	3830–3960	Alter et al. 2015	Natural History Museum, Rotterdam
North Sea, Netherlands	1994	960–1120	Alter et al. 2015	Natural History Museum, Rotterdam
North Sea, Netherlands	1995	4230–4420	Alter et al. 2015	Natural History Museum, Rotterdam
North Sea, Netherlands	1996	>48 000	Alter et al. 2015	Natural History Museum, Rotterdam
North Sea, Netherlands	2005	1820–1950	Alter et al. 2015	Natural History Museum, Rotterdam
North Sea, Netherlands	2005	>50 000	Alter et al. 2015	Natural History Museum, Rotterdam
North Sea, Netherlands	2005	3480–3630	Alter et al. 2015	Natural History Museum, Rotterdam
Location	Year	Age Range	Reference	Institution
----------------------------------	------	----------------	----------------------------	--
North Sea, Netherlands	2005	10 000–10 180	Alter et al. 2015	Natural History Museum, Rotterdam
North Sea, Netherlands	2005	5280–5430	Alter et al. 2015	Natural History Museum, Rotterdam
North Sea, Netherlands	2005	6620–6700	Alter et al. 2015	Natural History Museum, Rotterdam
North Sea, Netherlands	No data	5320–5470	Alter et al. 2015	Unknown
North Sea, Netherlands	No data	3470–3620	Alter et al. 2015	Unknown
North Sea, Netherlands	No data	40 200–41 400	Alter et al. 2015	Natural History Museum, Rotterdam
North Sea, Netherlands	No data	1680–1800	Alter et al. 2015	Natural History Museum, Rotterdam
North Sea, Netherlands	No data	42 400–43 600	Alter et al. 2015	Natural History Museum, Rotterdam
North Sea, Netherlands	2007	3930–4070	Alter et al. 2015	Natural History Museum, Rotterdam
North Sea, Netherlands	No data	4020–4270	Alter et al. 2015	Unknown

Gray whale - Western Atlantic Basin

Location	Year	Age Range	Reference	Institution
Tom’s River, New Jersey	1850s	455 ± 90	Mead and Mitchell 1984	Smithsonian National Museum of Natural History, Washington D.C
Myrtle Beach, South Carolina	1959	865 ± 165	Mead and Mitchell 1984	unknown
Chesapeake Bay, Virginia	1969	10,140 ± 125	Mead and Mitchell 1984	unknown
Nags Head, North Carolina	1970’s	865 ± 50	Mead and Mitchell 1984	Smithsonian National Museum of Natural History, Washington D.C
Corolla, North Carolina	1976	2415 ± 90	Mead and Mitchell 1984	unknown
Southampton, New York	1977	275 ± 35	Mead and Mitchell 1984	unknown
Corolla, North Carolina	1977		Mead and Mitchell 1984	unknown
Rehobeth, Delaware	1978		Mead and Mitchell 1984	Smithsonian National Museum of Natural History, Washington D.C
Cape Lookout, North Carolina	1979	1190 ±245	Mead and Mitchell 1984	unknown
Jupiter Island, Florida	1983s	~1500-2150	this study	Florida Museum of Natural History (UF99000)
Jacksonville Beach, Florida	1970s	1570-2220	this study	Florida Museum of Natural History (UF99000)
South Atlantic Bight, Georgia	2006	~36,000 yBP	Noakes et al. 2008;Cherkinsky et al. 2009; Garrison et al., this study	Georgia Museum of Natural History (No. 4032)
South Atlantic Bight, Georgia	2006	41490-42070	This study	Georgia Museum of Natural History (No. 4024)
South Atlantic Bight, Georgia	2006	40230-41550	This study	Georgia Museum of Natural History No. 4281)
South Atlantic Bight, Georgia	2006	38350-39140	This study	Georgia Museum of Natural History (No. 4215)
South Atlantic Bight, Georgia	2006	36240-37460	This study	Georgia Museum of Natural History (No. 4214)
South Atlantic Bight, Georgia	2006	48550-50000	This study	Georgia Museum of Natural History (No. 7742a)