1

Update on String Theory

JOHN H. SCHWARZ
California Institute of Technology

Abstract

The first part of this report gives a very quick sketch of how string theory concepts originated and evolved during its first 25 years (1968-93). The second part presents a somewhat more detailed discussion of the highlights of the past decade. The final part discusses some of the major problems that remain to be solved.

1.1 Introduction

There are two primary goals in fundamental physics. The first is to construct a unified theory, incorporating relativity and quantum theory, that describes all fundamental forces, as well as all of the elementary particles. The second goal is to understand the origin and evolution of the Universe. Needless to say, these are both incredibly ambitious objectives, representing the extremes of microphysics and macrophysics. The only reason that we can even pose them with a straight face is the fact that so much progress toward each of these objectives has already been achieved.

Superstring theory (also known as M-theory) is a promising candidate for the fundamental underlying theory. It used to be believed that superstring theory is a collection of theories, but as we will discuss, it now appears that (in a certain precise sense) there is a unique theory with no adjustable parameters. But this theory is a work in progress — not yet fully formulated — and it is unclear how far its elucidation will take us toward realizing these lofty goals. Even in the most optimistic scenario, it will certainly take a long time.

This talk will take a somewhat historical tack in describing the subject. The first part will give a very quick sketch of how string theory concepts originated and evolved during its first 25 years (1968-93). In the second part a somewhat more detailed discussion of the highlights of the past decade will be presented. The final section will list and comment on some of the major problems that remain to be solved. The reader who wants a more thorough treatment is referred to the standard texts (Green, Schwarz, & Witten 1987; Polchinski 1998)

1.2 1968–1993

String theory arose in the late 1960s in an attempt to construct a theory of the strong nuclear force. Experiments in the 1960s revealed a rich spectrum of strongly interacting particles (hadrons) lying on nearly straight and parallel Regge trajectories. This means that there were families of particles identified whose spin increased linearly with the square
of their mass. This point of view was developed as part of the S matrix theory/bootstrap program that was fashionable in the 1960s. The linear Regge trajectories were interpreted in terms of poles of the analytic S matrix in the angular momentum plane. This picture successfully accounted for certain asymptotic properties of scattering amplitudes at high energy. This led Veneziano (1968) to propose a very simple mathematical function (basically the Euler beta function) as an approximate expression for a scattering amplitude that realized these properties. Over the next two years a small community of theorists generalized this to formulas for N-body scattering amplitudes with various interrelated consistency properties. The fact that this could be done suggested the possibility that Veneziano’s formula was not just a phenomenological amplitude (as originally intended) but actually part of a full-fledged theory.

Soon thereafter it was recognized independently by Nambu (1970), Susskind (1970), and Nielsen (1970) that the theory that was being developed could be understood physically as one based on one-dimensional structures (called strings), rather than pointlike particles. It then became clear how such a theory could account for various qualitative features of hadrons and their interactions. The basic idea is that specific particles correspond to specific oscillation modes of the string. S matrix theory, the bootstrap program, and Regge poles were abandoned (for good reasons) a long time ago. However, one cannot deny that they have left a lasting legacy. String theory probably could have been discovered by another route, but it might have taken many more years for that to happen. (Witten used to say that string theory is 21st century physics that happened to be discovered in the 20th century.) Be that as it may, the attempts to construct a string theory of hadrons were not fully successful. Moreover, in the early 1970s a quantum field theory description of the strong force — namely quantum chromodynamics (QCD) — was developed. It was universally accepted and string theory fell out of favor.

1.2.1 Problems with String Theory

Even though string theory had many attractive qualitative features, it began to unravel when one demanded that it should provide a full-fledged self-consistent theory of the hadrons. The original version of string theory turned out to have several fatal flaws. One was that consistency of perturbation theory, beyond the tree approximation, requires 25 spatial dimensions and one time dimension. A second major shortcoming is that this theory does not contain any fermions. Moreover, the perturbative spectrum contains tachyons and massless particles. The former imply an unstable vacuum, and the latter are not part of the hadron spectrum.

1.2.2 Supersymmetry

In an attempt to do better, a string theory that does contain fermions was introduced (Neveu & Schwarz 1971; Ramond 1971). It requires only nine spatial dimensions — not the desired answer, but a step in the right direction. The original version of this theory also had a tachyon in its spectrum, but it was later realized that there is a consistent truncation that eliminates it. Very importantly, the study of this theory led to the modern understanding of supersymmetry and superstrings. In the original version (with the tachyon) supersymmetry was present only on the two-dimensional world-sheet, a fact that was first pointed out by Gervais & Sakita (1971). The pioneering work of Wess & Zumino (1974) in the construction of supersymmetric quantum field theories was motivated by the search for four-dimensional
analogs of this two-dimensional symmetry. A few years later, Gliozzi, Scherk, & Olive (1976) realized that the truncation that eliminates the tachyon also results in 10-dimensional spacetime supersymmetry.

Supersymmetry is an important idea for several reasons. For one thing, given very weak assumptions, it is the unique possibility for a nontrivial extension of the usual (Poincaré group) symmetries of space and time. Moreover, it is a symmetry that relates bosons and fermions. That is, they belong to common irreducible representations. Most importantly, there is a good chance that the new particles required by supersymmetry will be discovered at accelerators in this decade. Basically every known elementary particle that is a fermion (i.e., the quarks and leptons) should have bosonic partners and every known elementary particle that is a boson (the gauge bosons and Higgs) should have fermionic partners.

There are several different reasons to expect that the masses of the superpartners should be roughly at the TeV scale. Finding them (perhaps at the LHC) may provide the best experimental support for superstring theory in the foreseeable future. There is a good chance that the lightest super particle (the LSP) is absolutely stable. It is a leading candidate for a cold dark matter WIMP. So it is possible that supersymmetry will be discovered first in dark matter searches.

1.2.3 Gravity and Unification

One of the major obstacles to using these string theories to describe hadron physics was the occurrence of massless particles in the string spectrum. This conflicts with the fact that all hadrons are massive. We spent several years unsuccessfully trying to construct string theories that look more like realistic hadron theories. That did not work, yet string theory (especially the 10-dimensional one) was too beautiful to abandon. So we finally decided to try to understand it on its own terms.

Eventually, it was realized (Scherk & Schwarz 1974; Yoneya 1974) that one of the massless particles in the closed string spectrum is spin 2 and interacts at low energy in exactly the right way to be identified as a graviton — the quantum of gravitation. Therefore Scherk and I (1974) proposed using string theory to describe gravity and unification rather than just the strong force. This requires the typical size of a string to be about 10^{-32} cm (the Planck scale) rather than 10^{-13} cm (the typical size of a hadron), as was previously assumed.

This proposal had two immediate benefits: (1) Previous approaches to quantum gravity give unacceptable infinities. String theory does not. (2) Extra dimensions can be acceptable in a gravitational theory, where spacetime geometry is determined dynamically. For these reasons, as well as the fact that string theory requires gravity, Scherk and I were convinced that superstring unification was an important idea. However, for the next 10 years only a few brave souls shared our enthusiasm.

1.2.4 The First Superstring Revolution

One of those brave souls was Michael Green. In 1984 my five-year collaboration with Green culminated in an explanation of how superstring theory can be compatible with parity violation (Green & Schwarz 1984), which is an important feature of the standard model. (This was previously considered to be impossible.) Following that other superstring theories were found (Gross et al. 1985), and there were specific proposals for the geometry of the extra six dimensions (Candelas et al. 1985), which come surprisingly close to explaining the standard model.
By the time the dust settled we had five consistent superstring theories:

I, IIA, IIB, HE, HO,

each of which requires 10 dimensions. The Type I and HO theories each have an SO(32) gauge group, whereas the HE theory has an \(E_8 \times E_8 \) gauge group. Each of these theories has \(\mathcal{N} = 1 \) supersymmetry in the 10-dimensional sense. This is the same amount of supersymmetry as what is called \(\mathcal{N} = 4 \) in four dimensions (16 conserved supercharges). The two Type II theories have twice as much supersymmetry, and do not exhibit any nonabelian gauge symmetry in 10 dimensions. It took another 10 years to figure out how to achieve nonabelian gauge symmetry (using D-branes) in these theories.

The most realistic schemes (in those days) involved the HE theory with six dimensions forming a Calabi-Yau space. A Calabi-Yau space is a Kähler manifold of SU(3) holonomy. Such manifolds have been much studied, since their relevance to string theory was recognized, and by now there is a great deal known about them. They have two important topological integers associated with them, called \(h_{11} \) and \(h_{21} \). \(h_{11} \) is the dimension of the space of Kähler forms, and \(h_{21} \) is the dimension of the space of complex structure deformations. In the context of the compactification of the HE theory, one ends up at low energy with a four-dimensional gauge theory with \(\mathcal{N} = 1 \) supersymmetry and gauge group \(E_6 \), though if the Calabi-Yau space is not simply connected this can be broken through the addition of Wilson lines to a gauge group very close to that of the standard model, possibly with additional \(U(1) \) factors. The number of generations of quarks and leptons is given by \(|h_{11} - h_{21}|/2 \). There are a number of known Calabi-Yau spaces that give the desired answer (three), but there are thousands of others that give different answers. There is no particular mathematical reason to prefer any of the three generation models. In any case, the analysis is carried out for weak coupling, and it is not clear that this is a good approximation.

One also needs to analyze the couplings of the gauge theory. Some relevant information, in the case of models with \(\mathcal{N} = 1 \) supersymmetry, is encoded in a holomorphic function called the superpotential. One wants to know the superpotential not only in the classical approximation but also for the quantum effective action. Over the years one has learned how to derive the effective superpotential, at least in certain cases, and to read off whether interesting phenomena such as confinement or dynamical supersymmetry breaking are implied by its structure.

With these discoveries string theory became a very active (though somewhat controversial) branch of theoretical high-energy physics. Over the subsequent 18 years it has become even more active (but less controversial).

1.2.5 T Duality

String theory exhibits many strange and surprising properties. In fact, one could argue that it represents a conceptual revolution comparable to that associated with quantum theory. One surprising property that was discovered in the late 1980s is called T duality. (The letter T has no particular significance. It was the symbol used by some authors for one of the low-energy fields.) A good review has been written by Giveon, Porrati, & Rabinovici (1994). When it is relevant, T duality implies that two different geometries for the extra dimensions are physically equivalent! For example, a circle of radius \(R \) can be equivalent to a circle of radius \(\ell^2/R \), where \(\ell \) is the fundamental string length scale. (String theorists often use \(\alpha' = \ell^2 \), which is the Regge slope parameter.)
Let me sketch an argument that should make this duality plausible, since at first sight it is highly counterintuitive. When there is a circular extra dimension, the momentum along that direction is quantized: \(p = n/R \), where \(n \) is an integer. Using the relativistic energy formula \(E^2 = M^2 + \sum (p_i)^2 \) (in units with \(c = 1 \)), one sees that the momentum along the circular dimension can be interpreted as contributing an amount \((n/R)^2\) to the mass squared as measured by an observer in the noncompact dimensions. This is true whether one is considering point particles, strings, or any other kinds of objects. However, in the special case of closed strings, there is a second kind of excitation that can also contribute to the mass squared. Namely, the string can be wound around the circle, so that it is caught up on the topology of the space. The string tension is (now also setting \(\hbar = 1 \)) given by the string scale as \(1/(2\pi\ell^2) \). The contribution to the mass squared is the square of this tension times the length of wrapped string, which is \(2\pi R m \), if it wraps \(m \) times. Multiplying, the contribution to the mass squared is \((Rm/\ell^2)^2\). Now we can make the key observation: under T duality the role of momentum excitations and winding-mode excitations are interchanged. Note that the contributions to the mass squared match if one interchanges \(m \) and \(n \) at the same time that \(R \to \ell^2/R \).

Usually T duality relates two different theories. Two particularly important examples are IIA \(\leftrightarrow\) IIB and HE \(\leftrightarrow\) HO. Therefore IIA & IIB (also HE & HO) should be regarded as a single theory. More precisely, they represent opposite ends of a continuum of geometries as one varies the radius of a circular dimension. This radius is not a parameter of the underlying theory. Rather, it arises as the vacuum expectation value of a scalar field. Thus, in principle it is determined dynamically, though in the most symmetrical examples there is a flat potential so that any value is possible. (Such scalar fields that do not appear in the potential are called “moduli.” Moduli probably should not be part of a realistic solution, since they tend to give a scalar component to long-range gravitational strength forces.)

These T duality identifications reduce the list from five to three superstring theories. When other equivalences (such as S duality discussed below) are also taken into account, we conclude that there is actually a unique theory! What could be better? We are led to a unique underlying theory, free from arbitrary parameters, as the only possibility for a consistent quantum theory containing gravity. Well, there are a few details that still need to be fleshed out. (See the final section of this report.)

There are also fancier examples of T-duality-like equivalences, such as the physical equivalence of Type IIA superstring theory compactified on a Calabi-Yau space and Type IIB compactified on the “mirror” Calabi-Yau space. This mirror pairing of topologically distinct Calabi-Yau spaces was a striking mathematical discovery made by physicists (Greene & Plesser 1990), which has subsequently been explored by mathematicians. The two Hodge numbers \(h_{11} \) and \(h_{21} \), discussed above, are interchanged in the mirror transformation.

T duality suggests a possible way for a big crunch to turn into a big bang (Brandenberger & Vafa 1989). The heuristic idea is that a contracting space when it becomes smaller than the string scale can be reinterpreted as an expanding space that is larger than the string scale, without the need for any exotic forces to halt the contraction. However, to be perfectly honest, we do not yet have the tools to analyze such time-dependent scenarios reliably.

T duality implies that usual geometric concepts break down at the string scale. Another manifestation of this is “noncommutative geometry,” which arises when certain fields are
J. H. Schwarz

turned on (Connes, Douglas, & Schwarz 1998; Seiberg & Witten 1999). It results in an “uncertainty relation” of the form $\Delta x \Delta y \geq \theta$, analogous to the more familiar $\Delta x \Delta p \geq h$, limiting one’s ability to localize a particle in two orthogonal directions at once.

1.3 1994–Present

For its first 25 years string theory was studied entirely in terms of perturbation expansions in a string coupling constant g, which characterizes the strength of interaction. The Feynman diagrams of string theory are given by two-dimensional surfaces that represent the string world sheet. The story is especially simple in the case of oriented closed strings, since then there is a single Feynman diagram at each order of the perturbation expansion, in striking contrast to quantum field theory. The classification is given in terms of closed Riemann surfaces, with the genus corresponding to the number of loops. Perturbation theory is the way one often studies quantum field theory, as well. As is known from the example of QED, this can work very well when the coupling is small. However, as illustrated by QCD at low energy, for example, such perturbation expansions are not the whole story. New phenomena (such as confinement and chiral symmetry breaking in the case of QCD) arise when g is not small.

In string theory g is not a free parameter. Rather, it is determined dynamically as the value of a certain string field (the dilaton). When perturbation theory makes sense the dilaton is one of the moduli. In a realistic model it probably should not be a modulus, and then other methods of calculation may be required.

1.3.1 S Duality

Another kind of duality — called S duality — was discovered as part of the “second superstring revolution” in the mid 1990s. S duality allows us to go beyond perturbation theory. It relates g to $1/g$ in the same way that T duality relates R to $1/R$. The two basic examples (Hull & Townsend 1995; Witten 1995) are

$I \leftrightarrow HO$ and $IIB \leftrightarrow IIB$.

Thus we learn how these three theories behave when $g \gg 1$. For example, strongly coupled Type I theory is equivalent to the weakly coupled SO(32) heterotic theory.

The transformation g to $1/g$ (or, more precisely, the corresponding transformation of the dilaton field) is a symmetry of the Type IIB theory. In fact, this is a subgroup of an infinite discrete symmetry group SL(2, Z). If some of the extra dimensions are compactified to give a torus, even larger discrete symmetry groups that combine the S duality and T duality groups arise (Hull & Townsend 1995), in which case one sometimes speaks of U duality. This story has been reviewed by Obers & Pioline (1999).

1.3.2 M Theory

S duality tells us how three of the five original superstring theories behave at strong coupling. This raises the following question: what happens to the other two superstring theories — IIA and HE — when g is large? The answer is quite remarkable: They grow an 11th dimension of size $g \ell$. This new dimension is a circle in the IIA case (Townsend 1995; Witten 1995) and a line interval in the HE case (Horava & Witten 1995). It is not visible in perturbation theory, since that involves expansions about $g = 0$.

When the 11th dimension is large, one is outside the regime of perturbative string theory,
and new techniques are required. At low energies, the 11-dimensional theory can be approximated by 11-dimensional supergravity (Cremmer, Julia, & Scherk 1978). However, that is only a classical theory. What we need is a full-fledged quantum theory, for which Witten has proposed the name M theory. Since it is unclear how best to formulate it, he imagined that M stands for “mysterious” or “magical.” Others have suggested “membrane” and “mother.”

One more or less obvious idea is to try to construct a realistic four-dimensional theory by starting in 11 dimensions and choosing a suitable 7-manifold for the extra dimensions. This raises the question: what 7-manifolds are suitable? It is generally assumed that one wants to end up with a low-energy theory that looks more or less like the minimal supersymmetric extension of the standard model, which has \(\mathcal{N} = 1 \) supersymmetry. That is what one achieved by Calabi-Yau compactification of the HE theory.

Starting from M theory, one can prove that the way to get \(\mathcal{N} = 1 \) supersymmetry is to require that the 7-manifold have \(G_2 \) holonomy. \(G_2 \) is one of the exceptional Lie groups — the only one that can occur as a holonomy group. The study of \(G_2 \) manifolds is more difficult and less well understood than that of Calabi-Yau manifolds. Relatively few examples are known. One basic fact is that if the \(G_2 \) manifold is smooth, the resulting four-dimensional theory cannot have nonabelian gauge symmetry or chiral fermions. Therefore to get interesting models, it is necessary to consider \(G_2 \) manifolds with particular kinds of singularities. This has been an active area of study in the past few years, and some progress has been made, but there is still a long way to go. It is possible that some models constructed this way will turn out to be dual to ones constructed by Calabi-Yau compactification of the HE theory. That would be interesting, because each description would be better suited for exploring certain regimes. For example, the M theory picture should allow one to understand phenomena that are nonperturbative in the heterotic picture.

1.3.3 \(p \)-branes

Superstring theory requires new objects, called \(p \)-branes, in addition to the fundamental strings. (\(p \) is the number of spatial dimensions; e.g., a string is a 1-brane.) All \(p \)-branes, other than the fundamental string, become infinitely heavy as \(g \to 0 \), and therefore they do not appear in perturbation theory. On the other hand, at strong coupling this distinction no longer applies, and they are just as important as the fundamental strings.

Superstring theory contains a number of higher rank analogs of gauge fields with antisymmetrized indices, which are interpreted geometrically as differential forms. They can couple to higher dimensional objects, much like U(1) gauge fields can couple to charged point particles. Specifically, a \((p+1)\)-form gauge field can couple electrically to a \(p \)-brane or magnetically to a \((d−p−3)\)-brane, where \(d \) is the number of spacetime dimensions. Because of supersymmetry, the energy density of such a charged brane is bounded from below, and when the (BPS) bound is saturated, a certain amount of the supersymmetry remains unbroken, and the brane is stable.

1.3.4 \(D \)-branes

An important class of \(p \)-branes, called D-branes, has the (defining) property that fundamental strings can end on them (Polchinski 1995). This implies that quantum field theories are associated with D-branes. These field theories are of the Yang-Mills type, like the standard model (Witten 1996). D-branes have a tension (or energy density) that scales with the string coupling like \(1/g \). This is to be contrasted with the more characteristic
solitonic $1/g^2$ behavior, exhibited by the NS5-branes, which are the magnetic duals of the fundamental strings in the Type II and heterotic theories.

An interesting possibility is that we experience four dimensions, because we are confined to live on D3-branes, which are embedded in a spacetime with six additional spatial directions. To be compatible with the observed $1/r^2$ force law for gravity, the extra dimensions would need to either have a size $\ll 1 \text{ mm}$ (so as not to have been detected in Cavendish-type experiments) or else be very “warped” — which means that the 4d geometry depends on the position in the other six dimensions.

The stable D-branes in the IIA theory have an even number of spatial dimensions, whereas those in the IIB theory have an odd number of spatial dimensions. Thus, as a particular example, the IIA theory contains D0-branes, which are pointlike objects. These are like extremal black holes that carry just one unit of a certain conserved $U(1)$ gauge symmetry charge. Recall that the IIA theory actually has a circular 11th dimension. The $U(1)$ charge is nothing but the integer that characterizes the momentum along this circle. Thus a D0-brane actually has one unit of momentum along the circle. As we have argued earlier, the mass of such a particle (if there is no other contribution to its mass) should just be $1/R$. However, we have said that the radius is $g\ell$. Therefore, one deduces that the mass of a D0-brane must be $1/(g\ell)$, which is in fact the correct value.

As we indicated earlier, 11-dimensional M theory requires a precise quantum definition, which is not provided by 11-dimensional supergravity. A specific proposal, called matrix theory, was put forward by Banks et al. (1997). In this proposal one builds the theory out of N D0-branes and considers a limit in which $N \to \infty$. This corresponds to going to the infinite momentum frame along the compactified circle. In the limit one can also decompactify the circle, so as to end up with a description of M theory in a flat 11-dimensional spacetime. This proposal has passed a number of nontrivial tests, and it is probably correct. However, it is awkward to work with. In particular, 11-dimensional Lorentz invariance seems very mysterious in this setup.

1.3.5 **Black Hole Entropy**

The gravitational field of the D-branes causes warpage of the spacetime geometry and creates event horizons, like those associated with black holes. In fact, studies of D-branes have led to a much deeper understanding of black hole thermodynamics in terms of string theory microphysics. In special cases, starting with a five-dimensional example analyzed by Strominger & Vafa (1996), one can count the microstates associated with D-brane excitations and compare them with the area of the corresponding black hole’s event horizon, confirming the existence of statistical physics underpinnings for the Bekenstein-Hawking entropy formula. Although many examples have been studied and no discrepancies have been found, we are not yet able to establish this correspondence in full generality. The problem is that one needs to extrapolate from the weakly coupled D-brane picture to the strongly coupled black hole one, and mathematical control of this extrapolation is only straightforward when there is a generous measure of unbroken supersymmetry.

1.3.6 **AdS/CFT**

In a remarkable development, Maldacena (1997) conjectured that the quantum field theory that lives on a collection of D3-branes (in the IIB theory) is actually equivalent to Type IIB string theory in the geometry that the gravitational field of the D3-branes creates. This
J. H. Schwarz

proposal was further elucidated by Witten (1998) and by Gubser, Klebanov, & Polyakov (1998). An excellent review followed a couple years later (Aharony et al. 2000).

In the IIB/D3-brane example a certain (conformally invariant) four-dimensional quantum field theory (CFT), called $\mathcal{N} = 4$ super Yang-Mills theory (Brink, Scherk, & Schwarz 1977; Gliozzi, Scherk, & Olive 1977), is precisely equivalent to Type IIB string theory in a 10-dimensional spacetime that is a product of a five-dimensional anti de Sitter (AdS) spacetime and a five-dimensional sphere (Schwarz 1983). Maldacena also proposed several other analogous dualities. This astonishing proposal has been extended and generalized in a couple thousand subsequent papers.

While I cannot hope to convince you here that these AdS/CFT dualities are sensible, I can point out that the first check is that the symmetries match. An important ingredient in this matching is the fact that the isometry group of anti de Sitter space in $D + 1$ dimensions is $SO(D,2)$, the same as the conformal group in D dimensions. The fact that the four-dimensional gauge theory with $\mathcal{N} = 4$ supersymmetry is conformal at the quantum level is itself a highly nontrivial fact discovered around 1980. It requires that all the UV divergences cancel and the coupling constant does not vary with energy (vanishing beta function) so that renormalization does not introduce a scale.

The study of AdS/CFT duality and its generalizations is serving as a theoretical laboratory for exploring many deep truths about the inner works of superstring theory and its relation to more conventional quantum field theories. As one example of the type of insight that is emerging, let me note that by breaking the conformal symmetry and deforming the AdS geometry one can construct examples in which renormalization group flow in the four-dimensional quantum field theory corresponds to radial motion in the higher dimensional string theory spacetime.

This correspondence raises the hope that (among other things) we can close the circle of ideas — and solve our original problem, namely to find a string theory description of QCD, the theory of the strong nuclear force! That problem is now viewed as a low-energy analog of the unification problem. As yet, the 10-dimensional geometry that gives the string theory dual of QCD has not been identified. There are a number of technical hurdles that need to be overcome that I will not go into here. Presumably, none of them is insuperable.

On the other hand, the duality (discussed above) between supersymmetrical Yang-Mills theory with $\mathcal{N} = 4$ supersymmetry and SU(N) gauge symmetry, and Type IIB superstring theory in an $AdS_5 \times S^5$ spacetime background with N units of five-form (Ramond-Ramond) flux, are very beautiful and surely correct. However, our inability to carry out concrete string theory calculations in this background has been a source of frustration. Even though this geometry has almost as much symmetry as flat spacetime, calculations are much more difficult. As a result, most studies use a low-energy supergravity approximation to the string theory, which corresponds to restricting the dual gauge theory to a certain corner of its parameter space, where gauge theory calculations are difficult. Despite a number of interesting suggestions, I think it is fair to say that no practical scheme for doing string theory calculations in this background is known. While this problem has not been solved, there is an interesting limit in which it can be sidestepped.

1.3.7 The Plane-wave Limit

Recently, using a method due to Penrose (1976), Blau et al. (2002) constructed a plane-wave limit of the Type IIB superstring in the $AdS_5 \times S^5$ spacetime background. The
limiting plane-wave background is also maximally supersymmetric. Following that, Metsaev (2002) showed that Type IIB superstrings in this plane-wave background are described in the Green-Schwarz light-cone gauge formalism by free massive bosons and fermions, so that explicit string calculations are tractable. The essential difference from flat space is the addition of mass terms in the world sheet action, something that would have been regarded as very peculiar without this motivation. Then Berenstein, Maldacena, & Nastase (2002) identified the corresponding limit of the gauge theory and carried out some checks of the duality. I will describe this subject in a little more detail than any of the preceding ones, because it is my current research interest.

Let me first describe how the Penrose limit works in this case. The AdS space (in global coordinates) is described by the metric

\[ds^2(AdS_5) = R^2(-\cosh^2 \rho \, dt^2 + d\rho^2 + \sinh^2 \rho \, d\Omega_3^2), \]

where the scale \(R \) has been factored out. Similarly the five-sphere is described by the metric

\[ds^2(S^5) = R^2(\cos^2 \theta \, d\phi^2 + d\theta^2 + \sin^2 \theta \, d\Omega_3^2). \]

In order to describe the desired limit, it is convenient to make the changes of variables

\[r = R \sinh \rho, \quad y = R \sin \theta \]
\[x^+ = t/\mu, \quad x^- = \mu R^2 (\phi - t). \]

Here \(\mu \) is an arbitrary mass scale. The coordinate \(x^- \) has period \(2\pi \mu R^2 \), since \(\phi \) is an angle. Therefore the conjugate (angular) momentum is

\[P_- = J/\mu R^2, \]

where \(J \) is an integer.

In terms of the new coordinates, the \(AdS_5 \times S^5 \) metric becomes

\[ds^2 = 2 \left(1 - y^2/R^2\right) dx^+ dx^- - \mu^2 (r^2 + y^2) (dx^+)^2 + \frac{1}{\mu^2 R^2} \left(1 - y^2/R^2\right) (dx^-)^2 + ds^2_\perp, \]

where

\[ds^2_\perp = r^2 d\Omega_3^2 + \frac{R^2}{R^2 + r^2} dr^2 + y^2 d\Omega_3^2 + \frac{R^2}{R^2 - y^2} dy^2 \]

and

\[y^2 = \sum_{I=1}^4 (x^I)^2 \text{ and } r^2 = \sum_{I=5}^8 (x^I)^2. \]

The limit \(R \to \infty \) gives the desired plane-wave geometry:

\[ds^2 = 2 dx^+ dx^- - \mu^2 (x^+)^2 dx^+ + dx^+ dx^- + \sum_{I=1}^8 (x^I)^2. \]

This differs from flat 10-dimensional Minkowski spacetime only by the presence of the mass term, which acts rather like a confining harmonic oscillator potential in the eight transverse dimensions.

This subject has aroused a great deal of interest over the past year, because for the first
time we have a setup in which tractable gauge theory calculations can be compared to tractable string theory calculations. However, neither of these is easy, and there are any number of subtle issues to be sorted out. So this keeps a lot of clever people busy.

Let me sketch some of the essential features of the duality. Calling the coupling constant of the gauge theory g_{YM}, $\lambda = g_{YM}^2 N$ is a combination that ’t Hooft identified long ago as important in the large-N limit. In the AdS/CFT duality g_{YM}^2 corresponds to the string coupling g, and λ corresponds to $(R/\ell)^4$ in the string theory. The plane-wave limit introduces some additional identifications. For one thing the gauge theory has a global SU(4) symmetry. Picking an arbitrary U(1) subgroup and calling the associated charge J, one identifies J with $\mu R^2 P - \nu$ in the plane-wave geometry. (We argued earlier that this should be an integer.) Furthermore the limit $R \to \infty$ corresponds in the gauge theory to letting $J, N \to \infty$ while holding fixed the combination $\lambda' = g_{YM}^2 N/\mu$. This is possible because the BMN operators are almost supersymmetric in the large-N limit. This may be a lot to swallow if you have not seen it before. But hopefully, you get the general idea.

To explore this duality in detail, it is necessary to establish a precise dictionary between single-trace gauge-invariant BMN operators and string states. This is fairly straightforward to leading order in the string coupling, but at higher order the correct matching requires mixing of single-trace and double-trace operators in the gauge theory. For the BMN sector of the gauge theory, the perturbation expansion can be organized as a double expansion in λ' (instead of λ) and $g_2 = g_{YM}^2$. The order in the latter parameter corresponds to the genus of the Feynman diagram (when expressed in double line notation following ’t Hooft). In the string side of the duality, the perturbation expansion corresponds to the expansion in g_2, but each order contains the complete λ' dependence, both perturbative and nonperturbative. Therefore computations of the first couple of orders in the string side provide powerful predictions for the gauge theory.

The leading order (in g_2) string prediction was given in the original BMN paper. It has been verified to all orders in λ' in the dual gauge theory (Santambrogio & Zanon 2002). The information at this order consists of a comparison of anomalous dimensions of BMN operators in the gauge theory and light-cone energies in the string theory. The next order in g_2 involves comparing three-string couplings with more complicated correlators in the gauge theory, and is much more challenging.

The only way known to formulate the order g_2 interactions in the string theory is in terms of light-cone gauge string field theory in the plane-wave geometry. The formulas in flat space were worked out long ago (Green & Schwarz 1983; Green, Schwarz, & Brink 1983). However, in flat space there are more efficient formalisms, so that the light-cone gauge string field theory approach was largely ignored until this year when the need arose to generalize it to the plane-wave geometry. That has been achieved by Spradlin & Volovich (2002, 2003) and by Pankiewicz & Stefanski (2003). However, the formulas involve inverses of infinite matrices, which need to be computed before one can make explicit gauge theory predictions to all orders in λ'. I am pleased to report that this has been achieved within the last couple of weeks (He et al. 2002).
1.4 Some Remaining Problems

Let me conclude by listing, and briefly commenting upon, some of the issues that still need to be resolved, if we are to achieve the lofty goals indicated at the beginning of this report. As will be evident, most of these are quite daunting, and the solution of any one of them would be an important achievement. Let me begin with the list that a particle theorist might make.

- **Find a complete and optimal formulation of the theory.** Although we have techniques for identifying large classes of consistent quantum vacua, we do not have a succinct and compelling formulation of the underlying theory of which they are vacua. Many things that we take for granted, such as the existence of a spacetime manifold, should probably be emergent properties of specific vacua rather than identifiable features of the underlying theory. If this is correct, then we clearly need something that is quite unlike all theories with which we are familiar. It is possible that when the proper formulation is found the name “string theory” will become obsolete.

- **Understand why the cosmological constant (the energy density of empty space) vanishes.** The exact value may be nonzero on cosmological scales, but a Lorentz invariant Minkowski spacetime, which requires a vanishing vacuum energy, is surely an excellent approximation to the real world for particle physics purposes. We can achieve an exact cancellation between the contributions of bosons and fermions when there is unbroken supersymmetry. There does not seem to be a good reason for such a cancellation when supersymmetry is broken, however. Many imaginative proposals have been made to solve this problem, and I have not studied each and every one of them. Still, I think it is fair to say that none of them has gained a wide following. My suspicion is that the right idea is yet to be found.

- **Find all static solutions (or quantum vacua) of the theory.** This is a tall order. Very many families of consistent supersymmetric vacua, often with a large number of moduli, have been found. The analysis becomes more difficult as the amount of unbroken supersymmetry decreases and the moduli (including the dilaton) are eliminated or made massive. Vacua without supersymmetry are a real problem. In addition to the issue of the cosmological constant, one must also address the issue of quantum stability. Stable nonsupersymmetric classical solutions are often destabilized by quantum corrections. As far as I am aware, there are no known examples for which this has been proved not to happen.

- **Determine which quantum vacuum describes all of particle physics and understand whether it is special or just an environmental accident.** Presumably, if one had a complete answer to the preceding item, one of the quantum vacua would be an excellent approximation to the microscopic world of particle physics. Obviously, it would be great to know the right solution, but we would also like to understand why it is the right solution. Is it picked out by some special mathematical property or is it just an accident of our particular corner of the Universe? The way this plays out will be important in determining the extent to which the observed world of particle physics can be deduced from first principles.

Next let me turn to the list that a cosmologist might make.

- **Understand why the cosmological constant (the energy density of empty space) is incredibly small, but not zero.** As you know, current observational evidence suggest that about 70% of the closure density is provided by negative pressure “dark energy.” The most straightforward candidate is a small cosmological constant, though other possibilities are being considered. Whether or not a cosmological constant is the right answer, string
theorists would certainly be pleased if they could give a compelling reason why it should vanish. (See the second item on the particle physics list.) We would then be in a better position to study possible sources of tiny deviations from zero.

- **Understand how string theory prevents quantum information from being destroyed by black holes.** Long ago, Hawking (1976) suggested that when matter falls into black holes and eventually comes back out as thermal radiation, quantum coherence is lost. In short, an initial pure state can evolve into a mixed state, in violation of the basic tenets of quantum mechanics. I am convinced that string theory is a unitary quantum theory in which this can never happen, and so Hawking must be wrong. Still, as far as I know, nobody has formulated a complete explanation of how string theory keeps track of quantum phase relations as black holes come and go.

- **Understand when and how string theory resolves spacetime singularities.** Singularities are a generic feature of nontrivial solutions to general relativity. Not only are they places where the theory breaks down, but, even worse, they undermine the Cauchy problem — the ability to deduce the future from initial data. The situation in string theory is surely better. Strings sense spacetime differently than point particles do. Certain classes of spacelike singularities, which would not be sensible in general relativity, are known to be entirely harmless in string theory. However, there are other important types of singularities that are not spacelike, and where current string theory technology is unable to say what happens. My guess is that some of them are acceptable and others are forbidden. But it remains to be explained which is which and how this works.

- **Understand and classify time-varying solutions.** Only within the past couple of years have people built up the courage to try to construct and analyze time-dependent solutions to string theory. To start with, one goal is to construct examples that can be analyzed in detail, and that do not lead to pathologies. This seems to be very hard to achieve. This subject seems to be badly in need of a breakthrough.

- **Figure out which time-varying solution describes the evolution of our Universe and understand whether it is special or just an environmental accident.** If we had a complete list of consistent time-dependent solutions, then we would face the same sort of question we asked earlier in the particle physics context. What is the principle by which a particular one is selected? How much of the observed large-scale structure of the Universe can be deduced from first principles? Was there a pre-big-bang era and how did the Universe begin?

There is one last item that is of a somewhat different character from the preceding ones, but certainly deserves to be included. We need to

- **Develop the mathematical tools and concepts required to solve all of the preceding problems.** String theory is up against the frontiers of most major branches of mathematics. Given our experience to date, there is little doubt that future developments in string theory will utilize many mathematical tools and concepts that do not currently exist. The need for cutting edge mathematics is promoting a very healthy relationship between large segments of the string theory and mathematics communities. Such relationships were sadly lacking throughout a large part of the twentieth century, and it is pleasing to see them blossoming now.

Acknowledgements. This work was supported in part by the U.S. Dept. of Energy under Grant No. DE-FG03-92-ER40701.
References

Aharony, O., Gubser, S. S., Maldacena, J., Ooguri, H., & Oz, Y. 2000, Phys. Rep. 323, 183
Banks, T., Fischler, W., Shenker, S. H., & Susskind, L. 1997, Phys. Rev. D, 55, 5112
Berenstein, D., Maldacena, J., & Nastase, H. 2002, JHEP, 0204, 013
Blau, M., Figueroa-O’Farrill, J., Hull, C., & Papadopoulos, G. 2002, JHEP, 0201, 047
Brandenberger, R. H., & Vafa, C. 1989, Nucl. Phys. B, 316, 391
Brink, L., Schwarz, J. H., & Scherk, J. 1977, Nucl. Phys. B, 121, 77
Candelas, P., Horowitz, G. T., Strominger, A., & Witten, E. 1985, Nucl. Phys. B, 258, 46
Connes, A., Douglas, M. R., & Schwarz, A. 1998, JHEP, 9802, 003
Cremmer, E., Julia, B., & Scherk, J. 1978, Phys. Lett. B, 76, 409
Gervais, J. L., & Sakita, B. 1971, Nucl. Phys. B, 34, 632
Giveon, A., Porrati, M., & Rabinovici, E. 1994, Phys. Rep., 244, 77
Gliozzi, F., Scherk, J., & Olive, D. 1976, Phys. Lett. B, 65, 282
——. 1977, Nucl. Phys. B, 122, 253
Green, M. B., & Schwarz, J. H. 1983, Nucl. Phys. B, 218, 43
——. 1984, Phys. Lett. B, 149, 117
Green, M. B., Schwarz, J. H., & Brink, L. 1983, Nucl. Phys. B, 219, 437
Green, M. B., Schwarz, J. H., & Witten, E. 1987, Superstring Theory (Cambridge: Cambridge Univ. Press)
Greene, B. R., & Plesser, M. R. 1990, Nucl. Phys. B, 338, 15
Gross, D. J., Harvey, J. A., Martinec, E. J., & Rohm, R. 1985, Phys. Rev. Lett., 54, 502
Gubser, S. S., Klebanov, I. R., & Polyakov, A. M. 1998, Phys. Lett. B, 428, 105
Hawking, S. W. 1976, Phys. Rev. D, 14, 2460
He, Y. H., Schwarz, J. H., Spradlin, M., & Volovich, A. 2002, preprint (hep-th/0211198)
Horava, P., & Witten, E. 1996, Nucl. Phys. B, 460, 506
Hull, C. M., & Townsend, P. K. 1995, Nucl. Phys. B, 438, 109
Maldacena, J. M. 1998, Adv. Theor. Math. Phys., 2, 231
Metsaev, R. R. 2002, Nucl. Phys. B, 625, 70
Nambu, Y. 1970, in Proc. Intern. Conf. on Symmetries and Quark Models, ed. R. Chand (New York: Gordon and Breach), 269
Neveu, A., & Schwarz, J. H. 1971, Nucl. Phys. B, 31, 86
Nielsen, H. B. 1970, unpublished
Obers, N. A., & Pioline, B. 1999, Phys. Rep., 318, 113
Pankiewicz, A., & Stefanski, B. 2003, Nucl. Phys. B, 657, 79
Penrose, R. 1976, in Differential Geometry and Relativity (Dordrecht: Reidel), 271
Polchinski, J. 1995, Phys. Rev. Lett., 75, 4724
——. 1998, String Theory (Cambridge: Cambridge Univ. Press)
Ramond, P. 1971, Phys. Rev. D, 3, 2415
Santambrogio, A., & Zanon, D. 2002, Phys. Lett. B, 545, 425
Scherk, J., & Schwarz, J. H. 1974, Nucl. Phys. B, 81, 118
Schwarz, J. H. 1983, Nucl. Phys. B, 226, 269
Seiberg, N., & Witten, E. 1999, JHEP, 9909, 032
Spradlin, M., & Volovich, A. 2002, Phys. Rev. D, 66, 086004
——. 2003, JHEP, 0301, 036
Strominger, A., & Vafa, C. 1996, Phys. Lett. B, 379, 99
Susskind, L. 1970, Nuovo Cim., 69A, 457
Townsend, P. K. 1995, Phys. Lett. B, 350, 184
Veneziano, G. 1968, Nuovo Cim., 57A, 190
Wess, J., & Zumino, B. 1974, Nucl. Phys. B, 70, 39
Witten, E. 1995, Nucl. Phys. B, 443, 85
——. 1996, Nucl. Phys. B, 460, 335
——. 1998, Adv. Theor. Math. Phys., 2, 253
Yoneya, T. 1974, Prog. Theor. Phys., 51, 1907