Transgenic Tomato Plants Expressing Satellite RNA Are Tolerant to Some Strains of Cucumber Mosaic Virus

P.B. McGarvey and M.S. Montasser
Department of Botany, University of Maryland, College Park, MD 20742

J.M. Kaper¹
Molecular Plant Pathology Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705

Additional index words: CMV, Lycopersicon esculentum, virus resistance

Abstract. Transgenic tomato plants (Lycopersicon esculentum Mill.) expressing cucumber mosaic virus (CMV) satellite RNA fused to a gene for β-glucuronidase were produced using Agrobacterium-mediated transformation. The R₀ progeny of self-crossed R₀ plants were challenge-inoculated with virion or RNA preparations of CMV or tomato aspermy virus (TAV). The transgenic plants challenged with CMV-1 showed mild disease symptoms in the first 2 weeks postchallenge followed by a decrease in symptoms, resulting in little difference between the transgenic and uninfected control group by the fourth week. Enzyme-linked immunosorbent assay results showed about a 10-fold decrease in virus accumulation in the transgenic plants compared to controls. Tolerance was evident only in plants that contained the recombinant insert and produced mature unit-length satellite RNA after CMV infection. Plants challenged with TAV showed no significant tolerance to virus-induced symptoms.

Cucumber mosaic virus (CMV) has been identified as one of the most economically important plant viruses in field-grown vegetable crops worldwide (Tomlinson, 1987). Outbreaks of diseases incited by CMV have caused large losses in tomato and pepper crops in several Mediterranean (Gallitelli et al., 1988; Jorda et al., 1992; Marrou and Duteil, 1974) and Asian countries (Sayama et al., 1993; Tien and Wu, 1991). In the United States, high incidences of CMV have been reported in several states (Daniels and Campbell, 1992; Davis and Shifriss, 1983; Gonsalves et al., 1982; Kearney et al., 1990).

Some strains of CMV contain a small linear satellite RNA, which depends on its helper virus for replication and spread. CMV satellite RNAs show no significant sequence homology to the viral genomic RNAs and seem to be unnecessary for any known viral functions (Collmer and Howell, 1992; Kaper and Collmer, 1988; Roossinck et al., 1992). In most cases, satellite RNAs attenuate CMV symptoms and reduce the amount of infectious virus found in plant tissues. However, a few satellite variants can induce new disease symptoms when combined with CMV in an appropriate host plant and have been implicated as the main etiological agent in several CMV epidemics (Jorda et al., 1992; Kaper et al., 1990a).

The attenuating properties of some satellite RNAs can be exploited to control viral diseases by preinoculating crops with an attenuating satellite RNA variant combined with virus. This technique can effectively protect against CMV disease in the field (Gallitelli et al., 1991; Montasser et al., 1991; Sayama et al., 1993; Tien and Wu, 1991; Tien et al., 1987). Transgenic tobacco plants expressing an endogenous CMV satellite RNA transcript have also been shown to be tolerant to mechanical and aphid-borne CMV infections (Baulcombe et al., 1986; Harrison et al., 1987; Jacquemond et al., 1988; Masuta et al., 1989). We have previously shown that transgenic tomato plants expressing a necrosis-inducing satellite RNA variant do not develop lethal tomato necrosis unless challenged with CMV (McGarvey et al., 1990), while a recent report by Saito et al. (1992) suggests that a mild variant will induce tolerance to CMV.

In this paper we present a more comprehensive analysis of the protective effects of an attenuating CMV satellite variant in transgenic tomato plants against subsequent challenge infections with CMV and the related cucumovirus tomato aspermy virus (TAV).

Materials and Methods.

Plant transformation. Monomeric cDNA clones of the attenuating CMV satellite CMV associated RNA 5 from CMV strain S (S-CARNA 5) (Collmer and Kaper, 1986) were inserted into the binary vector RG-2 (Fig. 1). RG-2 is a Bin19 derivative similar to pBI121 (Jefferson, 1990). Recombinant plasmids containing the satellite insert and the RG-2 vector [containing β-glucuronidase (GUS) alone] were engineered into Agrobacterium tumefaciens and inserted into two varieties of tomato, UC82b (Petoseed, Saticoy, Calif.) and an Asian variety CL143 (provided by R.T. Opena, AVRDC, Taiwan) by A. tumefaciens infection of cotyledons, which were regenerated into plants using a modification of the methods of Fillatti et al. (1987) and McCormick (1991). Putative transgenic plants were screened for inserted DNA by the polymerase chain reaction (PCR) (McGarvey and Kaper, 1991) and by southern blot hybridization (Maniatis et al., 1982), and for RNA expression by northern blot hybridization of RNA (see below). GUS expression was tested by a histochemical assay (Jefferson, 1990).

Challenge inoculations. Isolates of CMV-1 and TAV, free of satellite RNA, were used to infect transgenic tomato plants and control plants. CMV-1 (Kaper et al., 1981) produces symptoms of severe shoestring leaves, chlorosis, and stunting in tomato. TAV...
was a Canadian isolate (Stace-Smith and Tremaine, 1973) and produces stunting, mild chlorosis, leaf puckering, and a reduction in apical dominance in tomato. Virions were purified from infected tomato plants and viral RNA was extracted as described (Kaper and West, 1972; Lot et al., 1972). Plants were mechanically inoculated at the cotyledon stage using RNA at 10 μg·ml$^{-1}$ in 0.03 M Na$_2$HPO$_4$ or virions at 20 μg·ml$^{-1}$ in water. Purified S-CARNA 5 at 2.5 μg·ml$^{-1}$ was added in some positive control infections. Plants were kept in growth chambers at 24°C with a 16-h photoperiod using fluorescent light at 150 μE·m$^{-2}$·s$^{-1}$.

CMV-1. A total of 16 R$_1$ transgenic seedlings from a single UC82b-derived R$_0$ plant (designated UC47-2) were challenge-inoculated with CMV-1 RNA, and 10 similar seedlings were inoculated with CMV-1 virions. Six transgenic seedlings were mock-inoculated with CMV-1 virions. Four UC47-2-derived and four UC47-6-derived R$_1$ seedlings were inoculated with TAV RNA. As controls, eight nontransformed UC82b seedlings were inoculated with TAV RNA and six with TAV RNA plus S-CARNA 5. In addition, four UCRG2-1 transgenic seedlings were inoculated with TAV RNA as controls.

Symptom scoring and analysis. Plants were evaluated for disease symptoms at 2, 3, and 4 weeks after challenge inoculations and assigned a score of 0 = symptomless; 1 = mild chlorosis; 2 = full chlorosis or mild chlorosis plus mild shoestring leaves; 3 = shoestring leaves or other leaf or stem malformations; and 4 = severe stunting plus any combination of other symptoms. Evaluation was made without knowledge of the inoculum used or the plants’ status as transgenic or control. Disease intensity for a particular treatment was calculated by the formula DI = $\frac{\sum (s \times n)}{S \times N} \times 100\%$, where s = score of 0 to 4, n = number of plants with a particular numerical score, S = highest possible score, and N = total number of plants. Challenged plants that showed no viral infection by northern blot analysis or enzyme-linked immunosorbent assay (ELISA) were omitted from the final analysis as were R$_1$ plants that did not show the presence of the recombinant DNA insert as determined by PCR.

Serological detection of virus. ELISA was used to test for the presence of CMV in challenged plants. Tissue was collected 4 weeks after challenge and frozen at –70°C. Tissue was later ex-
tracted and ELISA was performed as described (Clark and Adams, 1977; Montasser et al., 1991), except that multiple dilutions of each sample were used and a dilution series of the purified CMV-1 virions was included as a standard. Statistical analysis was performed using Student's t test. Challenged plants that showed no sign of viral infection by northern blot hybridization or ELISA were omitted from the final analysis.

Results

Plant transformation. After transformation, two UC82b-derived (designated UC47-2 and UC47-6) and six Ci143-derived (designated 0110-1 to 6) primary (R0) transgenic plants were obtained. In morphology and fruiting behavior, the plants were essentially identical to nontransformed plants regenerated from tissue culture. The R1 generation seeds germinated in soil and developed like the control seedlings. Expression of the cDNA insert in the R0 transformed plants was determined by northern blot analysis, which showed an RNA transcript of ≈2.5 kb (Fig. 2), and by assaying for GUS activity, which was present in the transgenic plants and absent in controls (not shown). PCR screening of the R1 progeny showed that 41 of 51 UC47-2 progeny contained the gene, consistent with the 3:1 segregation ratio expected from a single insert in the primary transgenic plant (χ² = 0.79). The segregation ratio of the UC47-6 and 0110-1 offspring also suggested a single insert, but the numbers screened were insufficient for a final determination.

CMV-1 challenge. All 26 of the UC47-2 progeny challenged with either CMV-1 RNA or virions became infected with CMV-1. Twelve of the plants challenged with CMV-1 RNA and six plants challenged with virions showed the accumulation of single-stranded (ss) and double-stranded (ds) S-CARNA 5 (Fig. 2, lane 3; Fig. 3 a and b). S-CARNA 5 was observed only in plants that contained the transgenic satellite insert. Of the eight remaining offspring challenged with CMV-1, but in which no ss or ds S-CARNA 5 accumulated, five did not contain the recombinant insert, while

![Fig. 2. Northern blot hybridization of transgenic plant RNA. Poly(A)-enriched RNA was electrophoresed through a 1.5% agarose–formaldehyde gel, transferred to a nylon membrane, hybridized with a 32P riboprobe for S-CARNA 5, and visualized by autoradiography. Size standards were CMV-1 genomic RNAs (not shown) and the sizes are shown at left. Lanes contain 1) RNA (5 µg) from a healthy nontransgenic UC82b control tomato plant; 2) RNA (5 µg) from a healthy UC47-2 transgenic tomato plant; and, 3) RNA (5 µg) from a CMV-1 infected UC47-2 transgenic tomato plant containing the single and double stranded S-CARNA 5 produced after virus infection. Note that poly(A)-enriched RNA is ≈90% poly(A) RNA and, thus, still contains some mature satellite RNA.](image-url)
three of the plants challenged with virions did. The disease symptoms were scored, expressed as disease intensity, and are shown in Fig. 4. During the first 2 weeks, there were only small differences between the transgenic and control groups with most plants showing some mild chlorosis. However, by the third and fourth weeks, the systemic spread of viral disease seemed to stop and disease symptoms receded dramatically in the transgenic group until there was little obvious difference between challenged transgenic plants and the mock-inoculated transgenic and control plants, except for some mild chlorosis on the older leaves of some transgenic plants (Fig. 5). The transgenic offspring that lacked the recombinant DNA insert showed no symptom attenuation and were similar in appearance to the CMV-1-infected UC82b controls and the CMV-1-infected transgenic controls containing the RG-2 vector alone. ELISA showed a significant difference in virus titer between the transgenic group challenged with CMV-1 RNA and the control group, with averages of 31.6 (σ ± 24.5) µg·g⁻¹ and 355.0 (σ ± 15.8) µg·g⁻¹ (P = 0.01) tissue, respectively. A similar result was obtained in the groups challenged with virions: transgenic = 31.5 (σ ± 14.1) µg·g⁻¹; control = 500.0 (σ ± 178.0) µg·g⁻¹ (P = 0.005). The five transgenic offspring that did not contain the recombinant insert had an average virus titer of 370.0 (σ ± 95.0) µg·g⁻¹ tissue and the RG-2-containing transgenic control plants had an average virus titer of 398.0 (σ ± 97.1) µg·g⁻¹ tissue.
RNA transcript that also encodes an expressed protein (GUS), it suggests that satellite-mediated tolerance could be combined in a single RNA transcript with other forms of protection that require protein expression. However, any quantitative effects on protein expression remain to be determined. In tobacco, a combination of satellite and coat protein protection using separate promoters for the individual genes has recently been reported to provide increased levels of tolerance to CMV infection (Yie et al., 1992). The lack of symptom attenuation in TAV challenge infections is different from the reduction in symptoms reported for satellite transgenic tobacco (Harrison et al., 1987). In addition, when transgenic tomato plants expressing the necrogenic satellite D-CARNA 5 (McGarvey et al., 1990) were challenged with TAV, no necrosis or other symptom modulation was observed (unpublished data), although unit-length satellite accumulated in a manner similar to that seen for S-CARNA 5 (Fig. 3 a and b, lane 14) with a proportionately lower amount of ds D-CARNA 5. Similarly, control inoculations of nontransgenic UC82b tomato plants with S-CARNA 5 or D-CARNA 5 with TAV as a helper virus failed to modulate the symptoms of the TAV isolate used in our experiments. Moriones et al. (1992) have also reported differences in symptom modulation and CMV satellite accumulation between two different isolates of TAV and noticed a proportional decrease in the accumulation of the ds satellite with TAV infections compared to CMV infections. That lower ds/ss CARNA 5 proportions may relate to a failure in eliciting tomato necrosis has been shown for the Ixora strain of CMV (Kaper et al., 1990b). All this suggests that differences in the response of satellite-transgenic plants to infections by TAV and CMV strains may depend on qualitative and quantitative differences in satellite vs. virus replication, which in turn determines the ultimate biological effect.

Challenges of UC47-2- and UC47-6-derived transgenic plants using CMV-S and CMV-D also showed the accumulation of ss and ds S-CARNA 5 and a reduction in symptoms by the fourth week postchallenge (not shown). ELISA showed the presence of virus but was not quantified.

TAV RNA challenge. Three of four 47-2 and three of four 47-6 transgenic offspring became infected with TAV. All six of the infected plants contained the recombinant insert but only five of the six showed the presence of ss and ds S-CARNA 5. In each case, ds S-CARNA 5 did not accumulate to the amounts typical of the CMV infections (Fig. 3 a and b, lane 14). Little to no reduction in the accumulation of TAV RNA was observed in plants in which satellite RNA was found (not shown). Equally strong TAV symptoms were observed in the transgenic and control plants, regardless of whether satellite RNA accumulated or not.

Discussion

The results of the challenge infections with CMV-1 clearly show that transgenic tomato plants expressing an attenuating satellite RNA sequence have improved tolerance to CMV-induced disease (Figs. 4 and 5), probably as a result of about a 10-fold reduction in virus titer. This result had been predicted after our previous tomato transformation with a necrogenic satellite (McGarvey et al., 1990), and was recently also reported by Saito et al. (1992), who described their transformation of tomato plants expressing an attenuating satellite and showed preliminary data on RFP plant tolerance to CMV-O infection. In the more comprehensive analysis presented here, this tolerance was quantified with measurements of disease intensity and virus titer in RFP plants of two tomato varieties. Further, it was shown that tolerance holds for virion and RNA challenges, and the analysis was extended to TAV and other virus strains (see below). The practical importance of this result is that CMV satellite-mediated tolerance can be engineered into tomato for which, to date, no naturally resistant varieties have been found (Phills et al., 1977; Stamova et al., 1990). In addition, since the inserted satellite sequences lie embedded in a much larger RNA transcript that also encodes an expressed protein (GUS), it suggests that satellite-mediated tolerance could be combined in a single RNA transcript with other forms of protection that require protein expression. However, any quantitative effects on protein expression remain to be determined. In tobacco, a combination of satellite and coat protein protection using separate promoters for the individual genes has recently been reported to provide increased levels of tolerance to CMV infection (Yie et al., 1992).

The lack of symptom attenuation in TAV challenge infections is different from the reduction in symptoms reported for satellite transgenic tobacco (Harrison et al., 1987). In addition, when transgenic tomato plants expressing the necrogenic satellite D-CARNA 5 (McGarvey et al., 1990) were challenged with TAV, no necrosis or other symptom modulation was observed (unpublished data), although unit-length satellite accumulated in a manner similar to that seen for S-CARNA 5 (Fig. 3 a and b, lane 14) with a proportionately lower amount of ds D-CARNA 5. Similarly, control inoculations of nontransgenic UC82b tomato plants with S-CARNA 5 or D-CARNA 5 with TAV as a helper virus failed to modulate the symptoms of the TAV isolate used in our experiments. Moriones et al. (1992) have also reported differences in symptom modulation and CMV satellite accumulation between two different isolates of TAV and noticed a proportional decrease in the accumulation of the ds satellite with TAV infections compared to CMV infections. That lower ds/ss CARNA 5 proportions may relate to a failure in eliciting tomato necrosis has been shown for the Ixora strain of CMV (Kaper et al., 1990b). All this suggests that differences in the response of satellite-transgenic plants to infections by TAV and CMV strains may depend on qualitative and quantitative differences in satellite vs. virus replication, which in turn determines the ultimate biological effect.

Challenges of UC47-2-, UC47-6-, and 0110-1-derived transgenic plants using CMV-S and CMV-D also showed the accumulation of ss and ds S-CARNA 5 and a reduction in symptoms by the fourth week postchallenge (unpublished results). However, the engineered tolerance should not be assumed to extend to all CMV isolates until further testing of a wide variety of CMV isolates, including isolates containing their own satellite RNAs, is completed.
Literature Cited

Baulcombe, D.C., G.R. Saunders, M.W. Bevan, M.A. Mayo, and B.D. Harrison. 1986. Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Nature 321:446–449.

Clark, M.F. and A.N. Adams. 1977. Characteristics of the microparticle method of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34:475–483.

Collmer, C.W. and S.H. Howell. 1992. Role of satellite RNA in the expression of symptoms caused by plant viruses. Annu. Rev. Phytopathol. 30:419–442.

Collmer, C.W. and J.M. Kaper. 1986. Infectious RNA transcripts from cloned cDNAs of cucumber mosaic viral satellites. Biochem. Biophys. Res. Commun. 135:290–296.

Daniels, J. and R.N. Campbell. 1992. Characterization of cucumber mosaic virus isolates from California. Plant Dis. 76:1245–1250.

Davis, R.F. and O. Shifriss. 1983. Natural virus infection in silvery and nonsilvery lines of Cucurbita pepo. Plant Dis. 67(4):379–380.

Fillatti, J.J., J. Kiser, R. Rose, and L. Comai. 1987. Efficient transfer of a Kaper, J.M. and C.K. West. 1972. Polyacrylamide gel separation and characterization of a CARNA 5 incapable of inducing tomato necrosis. Phytopathology 67:801–809.

Gallitelli, D., A. DiFranco, and C. Vovlas. 1988. Epidemie del virus del cetriolo e di potyvirus in Italia meridionale repertorio dei virus e aspetti ecologici. L’Informatore Agrario 44:40–45.

Gallitelli, D., C. Vovlas, G.P. Martelli, M.S. Montasser, M.E. Toussignant, and J.M. Kaper. 1991. Satellite-mediated protection of tomato against cucumber mosaic virus. II. Field test under natural epidemic conditions in Southern Italy. Plant Dis. 75:93–95.

Gonsalves, D., R. Provvidenti, and M.C. Edwards. 1982. Tomato white-leaf: The relation of an apparent satellite RNA and cucumber mosaic virus RNA. Phytopathology 72:1533–1538.

Harrison, B.D., M.A. Mayo, and D.C. Baulcombe. 1987. Virus resistance in transgenic plants that express cucumber mosaic virus satellite RNA. Nature 328:799–802.

Jacquemond, M., J. Amselem, and M. Tepfer. 1988. D. Sleat, and P. Palukaitis. 1992. Satellite RNAs of plant viruses: Structures and biological effects. Microbiol. Rev. 56:265–279.

Montasser, M.S., M.E. Toussignant, and J.M. Kaper. 1991. Satellite-mediated protection of tomato against cucumber mosaic virus. I. Greenhouse experiments and simulated epidemic conditions in the field. Plant Dis. 75:86–92.

Moriones, E., I. Diaz, E. Rodriguez-Cerezo, A. Fraile, and F. Garcia-Arenal. 1992. Differential interactions among strains of tomato aspermy virus and satellite RNAs of cucumber mosaic virus. Virology 186:475–480.

Phillips, B.R., R. Provvidenti, and R.W. Robinson. 1977. Reaction of Solanum lycopersicoides to viral diseases of the tomato. Tomato Genet. Coop. Rpt. 27:18.

Roossinck, M.J., D. Sleat, and P. Palukaitis. 1992. Satellite RNAs of plant viruses: Structures and biological effects. Microbiol. Rev. 56:265–279.

Sayama, H., T. Sato, M. Kominato, T. Natsuaki, and J.M. Kaper. 1993. Field testing of a satellite-containing attenuated strain of cucumber mosaic virus for tomato protection in Japan. Phytopathology 83:405–410.

Stace-Smith, R. and J.H. Tremaine. 1973. Biophysical and biochemical properties of tomato aspermy virus. Virology 51:401–408.

Saito, Y., T. Komari, C. Masuta, Y. Hayashi, T. Kumashiro, and Y. Takamini. 1992. Cucumber mosaic virus-tolerant transgenic tomato plants expressing a satellite RNA. Theoretical Applied Genet. 83:679–683.

Tien, P., and G.S. Wu. 1991. Satellite RNA for the control of plant diseases caused by cucumber mosaic virus. Ann. Rev. Phytopathol. 5:155–171.

White, J.L. and J.M. Kaper. 1989. A simple method for detection of viral satellite RNAs in small plant tissue samples. J. Virol. Methods 23:83–90.

Yie, Y., F. Zhao, S.Z. Zhao, Y.Z. Liu, Y.L. Liu, and P. Tien. 1992. High resistance to cucumber mosaic virus conferred by satellite RNA and coat protein in transgenic commercial tobacco cultivar G-140. Mol. Plant-Microbe Interactions 5:460–465.