New Generalized Verma Modules and Multilinear Intertwining Differential Operators

V.K. Dobrev

Arnold Sommerfeld Institute for Mathematical Physics
Technical University Clausthal
Leibnizstr. 10, 38678 Clausthal-Zellerfeld, Germany
e-mail: ptvd@pt.tu-clausthal.de

and

International Center for Theoretical Physics
via Costiera 11, P.O. Box 586
34100 Trieste, Italy
e-mail: dobrev@ictp.trieste.it

Abstract

The present paper contains two interrelated developments. First are proposed new generalized Verma modules. They are called k-Verma modules, $k \in \mathbb{N}$, and coincide with the usual Verma modules for $k = 1$. As a vector space a k-Verma module is isomorphic to the symmetric tensor product of k copies of the universal enveloping algebra $U(G^-)$, where G^- is the subalgebra of lowering generators in the standard triangular decomposition of a simple Lie algebra $G = G^+ \oplus \mathcal{H} \oplus G^-$. The second development is the proposal of a procedure for the construction of multilinear intertwining differential operators for semisimple Lie groups G. This procedure uses k-Verma modules and coincides for $k = 1$ with a procedure for the construction of linear intertwining differential operators. For all k central role is played by the singular vectors of the k-Verma modules. Explicit formulae for series of such singular vectors are given. Using these are given explicitly many new examples of multilinear intertwining differential operators. In particular, for $G = SL(2, \mathbb{R})$ are given explicitly all bilinear intertwining differential operators. Using the latter, as an application are constructed $(n/2)$-differentials for all $n \in 2\mathbb{N}$, the ordinary Schwarzian being the case $n = 4$. As another application, in a Note Added we propose a new hierarchy of nonlinear equations, the lowest member being the KdV equation.

Key words: generalized Verma modules, intertwining operators, multilinear differential operators; MSC : 81R05, 22E47, 17B35, 34G20

* Permanent address : Bulgarian Academy of Sciences, Institute of Nuclear Research and Nuclear Energy, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria; e-mail: dobrev@inrne.bas.bg
1. Introduction

1.1. Operators intertwining representations of Lie groups play a very important role both in mathematics and physics. To recall the notions, consider a Lie group G and two representations T, T' of G acting in the representation spaces C, C', which may be Hilbert, Fréchet, etc. An intertwining operator \mathcal{I} for these two representations is a continuous linear map

$$\mathcal{I} : C \rightarrow C', \quad \mathcal{I} : f \mapsto j, \quad f \in C, \ j \in C'$$ \hspace{1cm} (1.1)

such that

$$\mathcal{I} \circ T(g) = T'(g) \circ \mathcal{I}, \quad \forall g \in G$$ \hspace{1cm} (1.2)

An important application of the intertwining operators is that they produce canonically invariant equations. Indeed, in the setting above the equation

$$\mathcal{I} f = j$$ \hspace{1cm} (1.3)

is a G-invariant equation. These are very useful in the applications, recall, e.g., the well known examples of Dirac, Maxwell equations. The intertwining operators are also very relevant for analyzing the structure of representations of Lie groups, especially of semisimple (or reductive) Lie groups, cf., e.g., [22], [24], [31], [32]. There are two types of intertwining operators: integral and differential. For the integral intertwining operators, which we shall not discuss here, we refer to [22], [31] for the mathematical side and to [11] for explicit examples and applications. For the intertwining differential operators we refer to [24], [32], [10]; (for early examples and partial cases see, e.g., [11], [18], [12], [26], [27], [9], [17], [5], [6], [30], [14], [19], [1], [2]).

1.2. In the present paper we discuss multilinear intertwining differential operators such that:

$$k \mathcal{I} : \underbrace{f \otimes \ldots \otimes f}_k \mapsto j, \quad f \in C, \ j \in C'$$ \hspace{1cm} (1.4)

$$k \mathcal{I} \circ T(g) \otimes \ldots \otimes T(g) = T'(g) \circ k \mathcal{I}, \quad \forall g \in G$$ \hspace{1cm} (1.5)

Clearly, for $k = 1$ (1.4), (1.5) reduce to (1.1), (1.2), resp.

Let us give an example of such operator for $k = 2$. Let $G = SL(2, \mathbb{R})$ and consider C^∞-functions so that the representation is acting as [13] :

$$T^c(g) f(x) = |\delta - \beta x|^{-c} f \left(\frac{\alpha x - \gamma}{\delta - \beta x} \right), \quad \delta - \beta x \neq 0$$ \hspace{1cm} (1.6a)

$$g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}, \quad \alpha \delta - \beta \gamma = 1, \ \alpha, \beta, \gamma, \ d \in \mathbb{R}$$ \hspace{1cm} (1.6b)
where $c \in \mathcal{C}$ is a parameter characterizing the representation (for more details see Section 4). Consider now the operator:

$$2 \mathcal{I}(f) = f''' f' - \frac{3}{2} (f'')^2$$

(1.7)

where f', f'', f''' are the first, second, third, resp. derivatives of f. Let us denote the space of functions with \((1.8)\) as transformation rule by \mathcal{C}^c. Then it is easy to show that $2 \mathcal{I}$ has the following intertwining property:

$$2 \mathcal{I} : f \otimes f \mapsto j, \quad f \in \mathcal{C}^0, \quad j \in \mathcal{C}^8$$

(1.8)

$$2 \mathcal{I} \circ (T^0(g) \otimes T^0(g)) = T^8(g) \circ 2 \mathcal{I}, \quad \forall g \in G$$

(1.9)

1.3. We would like to note that our problem is related to the problem of finding invariant n–differentials. In the simple example above such a relation is straightforward. Indeed an example of invariant quadratic differential is the Schwarzian (cf., e.g., \([20]\)):

$$\text{Sch}(f) \equiv \left(\frac{f'''}{f'} - \frac{3}{2} \left(\frac{f''}{f'} \right)^2 \right) (dx)^2$$

$$\text{Sch}(f \circ f_0) = \text{Sch}(f(x)) \circ f_0, \quad f_0(x) = \frac{\alpha x - \gamma}{\delta - \beta x}$$

(1.10)

$$\text{Sch}(f_0) = 0$$

Of course, such direct relations are an artifact of the simplicity of the situation. Our setting is more general than the problem of finding invariants as in \((1.10)\) since it allows in principle arbitrary representation parameters. Below we give such operators for any semisimple Lie group.

For other examples of multilinear invariant operators see, e.g., \([13]\), \([3]\). These examples rely on adaptations of the classical polynomial invariant theory of Weyl \([29]\). Another approach is to use invariant differentiation with respect to a Cartan connection \([7]\).

1.4. Our approach is different from those just mentioned. It is a natural generalization of the $k = 1$ procedure of \([10]\). More than that. The present paper contains two interrelated developments. First we propose new generalized Verma modules. They are called k - Verma modules, $k \in \mathbb{N}$, and coincide with the usual Verma modules for $k = 1$. As a vector space a k - Verma module is isomorphic to the symmetric tensor product of k copies of the universal enveloping algebra $U(\mathcal{G}^-)$, where \mathcal{G}^- is the subalgebra of lowering generators in the standard triangular decomposition of a simple Lie algebra $\mathcal{G} = \mathcal{G}^+ \oplus \mathcal{H} \oplus \mathcal{G}^-$. The second development is the proposal of a procedure for the construction of multilinear intertwining differential operators for semisimple Lie groups G. This procedure uses the k - Verma modules and coincides for $k = 1$ with our procedure for the construction of linear intertwining differential operators \([10]\). For all k central role is played by the singular vectors of the k - Verma modules. Explicit formulae for series of such singular vectors are given for arbitrary \mathcal{G}. Using these are given explicitly many new examples of multilinear intertwining differential operators. In particular, for $G = SL(2, \mathbb{R})$ are given explicitly all bilinear intertwining differential operators. Using the latter, as an application are constructed $(n/2)$-differentials for all $n \in 2\mathbb{N}$, the ordinary Schwarzian being the case $n = 4$.

3
1.5. The organization of the paper is as follows.

In Section 2 we first recall the usual Verma modules formulating their reducibility conditions in a way suitable for our purposes. Then we introduce the new generalization of the Verma modules, which we call \(k \)-Verma modules, and we give some of their general properties.

In Section 2 we consider the singular vectors of the \(k \)-Verma modules. Using the singular vectors we show that \(k \)-Verma modules are always reducible independently of the highest weight in sharp contrast with the ordinary Verma modules (\(k = 1 \)). We also give many important explicit examples of singular vectors for \(k = 2, 3 \). For bi-Verma (= 2-Verma) modules we give the general explicit formula for a class of singular vectors, which exhausts all possible cases for \(\mathcal{G} = sl(2) \).

In Section 4 we first recall the procedure of [10] for the construction of linear intertwining differential operators. Then we generalize this procedure for the construction of multilinear intertwining differential operators. This is a general result which produces a multilinear intertwining differential operator for every singular vector of a \(k \)-Verma module, the procedure of [10] being obtained for \(k = 1 \).

In Section 5 we study bilinear operators for \(G = SL(n, \mathbb{R}) \) mentioning also which results are extendable to \(SL(N, \mathbb{C}) \). We give explicit formulae for all bilinear intertwining differential operators for \(\mathcal{G} = sl(2, \mathbb{R}) \) and \(SL(2, \mathbb{R}) \), noting the difference between the algebra and group invariants. We study in some detail partial cases, in particular, an infinite hierarchy of even order intertwining differential operators producing \(\frac{3}{2} \)-differentials for all \(n \in 2\mathbb{N} \), the ordinary Schwarzian being the case \(n = 4 \). We also give many examples for \(SL(2, \mathbb{R}) \).

In Section 6 we give some examples which illustrate additional new features of the multilinear intertwining differential operators for \(k > 2 \).

In the Appendix we have summarized the notions of tensor, symmetric and universal enveloping algebras.

The end of formulations of: Definition, Remark, Corollary, quoted statement without proof is marked with ♦, the end of a Proof is marked with •.

2. \(k \)-Verma modules

2.1. Let \(F = \mathbb{C} \) or \(F = \mathbb{R} \). Let \(\mathcal{G} \) be a semisimple Lie algebra over \(F = \mathbb{C} \) or a split real semisimple Lie algebra over \(F = \mathbb{R} \). Thus \(\mathcal{G} \) has a triangular decomposition: \(\mathcal{G} = \mathcal{G}^+ \oplus \mathcal{H} \oplus \mathcal{G}^- \), where \(\mathcal{H} \) is a Cartan subalgebra of \(\mathcal{G} \) (the maximally non-compact Cartan subalgebra for \(F = \mathbb{R} \)), \(\mathcal{G}^+ \), resp., \(\mathcal{G}^- \), are the positive, resp., negative root vector spaces of the root system \(\Delta = \Delta(\mathcal{G}, \mathcal{H}) \), corresponding to the decomposition \(\Delta = \Delta^+ \cup \Delta^- \) into positive and negative roots. [For \(F = \mathbb{R} \) this decomposition is a partial case of a Bruhat decomposition.] In particular, one has: \(\mathcal{G}^\pm = \oplus_{\beta \in \Delta^\pm} \mathcal{G}_\beta^{\pm} \).
In our cases \(\dim \mathcal{G}_\beta^\pm = 1, \forall \beta \in \Delta^+, \) and further \(X_\beta^\pm \) will denote a vector spanning \(\mathcal{G}_\beta^\pm . \) Let \(\Delta_S \) be the system of simple roots of \(\Delta. \) Let \(\Gamma^+ \in \mathcal{H}^* \) denote the set of dominant weights, i.e., \(\nu \in \Gamma^+ \) iff \((\nu, \alpha_i^+) \in \mathbb{Z}_+ \) for all \(\alpha_i \in \Delta_S . \) Let \(U(\mathcal{G}) \) be the universal enveloping algebra of \(\mathcal{G} \) with unit vector denoted by \(1_u. \) (The notions of tensor, symmetric and universal enveloping algebras are recalled in Appendix A.)

Let us recall that a Verma module \(V^\Lambda \) is defined as the HWM over \(\mathcal{G} \) with highest weight \(\Lambda \in \mathcal{H}^* \) and highest weight vector \(v_0 \in V^\Lambda, \) induced from the one-dimensional representation \(V_0 \cong \mathcal{G}v_0 \) of \(U(\mathcal{B}), \) where \(\mathcal{B} = \mathcal{B}^+ = \mathcal{H} \oplus \mathcal{G}^+ \) is a Borel subalgebra of \(\mathcal{G}, \) such that:

\[
X v_0 = 0, \quad X \in \mathcal{G}^+
\]

\[
H v_0 = \Lambda(H) v_0, \quad H \in \mathcal{H}
\]

Thus one has:

\[
V^\Lambda \cong U(\mathcal{G}) \otimes_{U(\mathcal{B})} v_0 \cong U(\mathcal{G}^-) \otimes v_0
\]

(2.2)

(isomorphisms between vector spaces). One considers \(V^\Lambda \) as a left \(U(\mathcal{G}) \)–module (w.r.t. multiplication in \(U(\mathcal{G}) \)).

Verma modules are generically irreducible. A Verma module is reducible iff it has singular vectors (one or more) \([4]\). A singular vector of a Verma module \(V^\Lambda \) is a vector \(\varepsilon \in V^\Lambda, \) such that \(\varepsilon \in \mathcal{G}^+ \) and:

\[
X \varepsilon = 0, \quad X \in \mathcal{G}^+
\]

\[
H \varepsilon = (\Lambda(H) - \mu(H)) \varepsilon, \quad \mu \in \Gamma^+, \quad \mu \neq 0, \quad H \in \mathcal{H}
\]

(2.3)

The space \(U(\mathcal{G}^-) \otimes \varepsilon \) is a submodule of \(V^\Lambda \) isomorphic to the Verma module \(V^{\Lambda - \mu} = U(\mathcal{G}^-) \otimes v'_0 \) where \(v'_0 \) is the highest weight vector of \(V^{\Lambda - \mu}; \) the isomorphism being realized by \(\varepsilon \mapsto 1_u \otimes v'_0. \) Furthermore, there exists (at least one) decomposition \(\mu = \sum_{i=1}^{n} m_i \beta_i, \) \(m_i \in \mathbb{N}, \beta_i \in \Delta^+; \) the latter statement in the case \(n = 1 \) means that \(\mu = m \beta, m \in \mathbb{N}, \beta \in \Delta^+ . \) For each such decomposition there exists a composition of embeddings of the Verma modules \(V_i \equiv V^{\Lambda - \beta_i} \) which thus form a nested sequence of submodules, so that \(V_i \) is a submodule of \(V_{i-1}, \) \(i = 1, \ldots, n, \) \(V_0 \equiv V^\Lambda. \) Each such submodule is generated by a singular vector of weight \(m \beta. \) The singular vector of weight \(m \beta \) is given by \([10]\) :

\[
\varepsilon = \varepsilon^{m \beta} = \mathcal{P}^{m \beta}(X_1^-, \ldots, X_{\ell}^-) \otimes v_0
\]

(2.4)

where \(\mathcal{P}^{m \beta} \) is a homogeneous polynomial of degree \(mn_i, \) where \(n_i \in \mathbb{Z}_+ \) come from \(\beta = \sum \alpha_i \) \(\alpha_i \) form the system of simple roots \(\Delta_S. \) The polynomial \(\mathcal{P}^{m \beta} \) is unique up to a non-zero multiplicative constant. From this follows that the singular vector of weight \(\mu \) is given by:

\[
\varepsilon = \varepsilon^{m \beta} = \mathcal{P}^{m \beta_n} \ldots \mathcal{P}^{m \beta_1} \otimes v_0
\]

(2.5)

Finally, we should mention that in this setting the highest weight satisfies:

\[
(\Lambda + \rho, \beta_1^+) - m_1 = (\Lambda + \rho)(H_{\beta_1}) - m_1 = 0.
\]

(2.6)
where ρ is half the sum of all positive roots, $\alpha^\vee \equiv 2\alpha/(\alpha, \alpha)$ for any $\alpha \in \Delta$, $(,)$ is the scalar product in \mathcal{H}^*, $H_\alpha \in \mathcal{H}$ corresponds to $\alpha \in \Delta^+$ under the isomorphism $\mathcal{H} \cong \mathcal{H}^*$. As a consequence one has:

\[(\Lambda_{i-1} + \rho, \beta_i^\vee) = m_i, \quad i = 1, \ldots, n, \quad \Lambda_0 = \Lambda, \quad \Lambda_i = \Lambda_{i-1} - m_i\beta_i \quad (2.7)\]

One should note that the condition (2.6) is in fact necessary and sufficient for the reducibility of a Verma module. Thus one may say equivalently that the Verma module V^Λ is reducible iff there exists a root $\beta \in \Delta^+$ and $m \in \mathbb{N}$ so that holds [4]:

\[(\Lambda + \rho, \beta^\vee) - m = (\Lambda + \rho)(H\beta) - m = 0 \quad (2.8)\]

We have chosen a different exposition here since in the generalization of the Verma modules we introduce below we do not rely on an analogue of (2.8) and reducibility is discussed via singular vectors.

2.2. We introduce now a generalization of the Verma modules. Let k be a natural number, let $\mathcal{T}_k(\mathcal{G})$ be the tensor product:

\[\mathcal{T}_k(\mathcal{G}) \equiv T_k(U(\mathcal{G})) = \underbrace{U(\mathcal{G}) \otimes \ldots \otimes U(\mathcal{G})}_k\]

and let $\mathcal{S}_k(\mathcal{G})$ be the symmetric tensor product:

\[\mathcal{S}_k(\mathcal{G}) \equiv S_k(U(\mathcal{G})) = T_k(U(\mathcal{G}))/I_k(U(\mathcal{G})) \quad (2.10)\]

Then arbitrary elements of $\mathcal{S}_k(\mathcal{G})$ shall be denoted as follows:

\[u = \{u_1 \otimes \ldots \otimes u_k\}, \quad u_j \in U(\mathcal{G}), \quad (2.11)\]

where $\{ \ldots \}$ denotes the symmetric tensor product which is preserved under arbitrary permutations $u_i \leftrightarrow u_j$.

Definition: A **k-Verma module** kV^Λ is a highest weight module over \mathcal{G} induced from the one-dimensional representation of \mathcal{B} (cf. (2.1)) so that:

\[kV^\Lambda \cong \mathcal{S}_k(\mathcal{G}) \hat{\otimes} v_0 \cong \mathcal{S}_k(\mathcal{G}^-) \hat{\otimes} v_0, \quad \hat{\otimes} \equiv \otimes_{U(\mathcal{B})} \quad (2.12)\]

(isomorphisms between vector spaces). kV^Λ is considered a left $U(\mathcal{G})$-module (w.r.t. multiplication in $U(\mathcal{G})$). Denoting arbitrary elements v of kV^Λ consistently with (2.11):

\[v = \{u_1 \otimes \ldots \otimes u_k\} \hat{\otimes} v_0, \quad u_j \in U(\mathcal{G}^-) \quad (2.13)\]
we define the action of $U(G)$ as follows:

$$X v = \sum_{j=1}^{k} \{ u_{1} \otimes \ldots \otimes X u_{j} \otimes \ldots \otimes u_{k} \} \hat{\otimes} v_{0}, \quad X \in U(G). \quad \diamond \quad (2.14)$$

Remark 1: Clearly, 1 - Verma modules are usual Verma modules. \diamond

Corollary: (from the above definition) Let $H \in \mathcal{H}$, let u_{j} be from the PBW basis of $U(G^{-})$, let μ_{j} be the (negative) weight of u_{j}, i.e., $[H, u_{j}] = -\mu_{j}(H)u_{j}$. Then we have:

$$H v = \sum_{j=1}^{k} \{ u_{1} \otimes \ldots \otimes H u_{j} \otimes \ldots \otimes u_{k} \} \hat{\otimes} (H - \mu_{j}(H)) v_{0} = \left(k\Lambda(H) - \sum_{j=1}^{k} \mu_{j}(H) \right) v. \quad \diamond \quad (2.15)$$

2.3. We need some more notation to proceed further. Let $P(\mu) = \# \text{ of ways } \mu \in \Gamma^{+} \text{ can be presented as a sum of positive roots } \beta$. (In general, each root should be taken with its multiplicity; however, in the cases here all multiplicities are equal to 1.) By convention $P(0) \equiv 1$. Let $k\Gamma^{+} = \Gamma^{+} \times \ldots \times \Gamma^{+}$, k factors. Let $k\mu = (\mu_{1}, \ldots, \mu_{k}) \in k\Gamma^{+}$, $\mu_{j} \in \Gamma^{+}$, and let $\sigma(k\mu) = \sum_{j=1}^{k} \mu_{j} \in \Gamma^{+}$. Let $\mu \in \Gamma^{+}$ and let $P_{k}(\mu) = \# \text{ of elements } k\nu = (\nu_{1}, \ldots, \nu_{k}) \in k\Gamma^{+}$, such that $\sigma(k\nu) = \mu$, each such element being taken with multiplicity $\prod_{j=1}^{k} P(\nu_{j})$. Clearly, $P_{k}(0) = 1$, $P_{k}(\beta) = k$, $\forall \beta \in \Delta_{S}$. Finally we define:

$$k\Gamma_{\geq}^{+} = \{ k\mu = (\mu_{1}, \ldots, \mu_{k}) \in k\Gamma^{+} \mid \mu_{1} \geq \ldots \geq \mu_{k} \} \quad (2.16)$$

where some ordering of \mathcal{H}^{*}, (e.g., the lexicographical one), is implemented. Let $\mu \in \Gamma^{+}$ and let $P_{k}(\mu) = \# \text{ of elements } k\nu = (\nu_{1}, \ldots, \nu_{k}) \in k\Gamma_{\geq}^{+}$, such that $\sigma(k\nu) = \mu$, each such element being taken with multiplicity $\prod_{j=1}^{k} P(\nu_{j})$. Clearly, $P_{k}(0) = 1$, $P_{k}(\beta) = 1$, $\forall \beta \in \Delta_{S}$. Now one can prove the following:

Proposition 1: Let $\Lambda \in \mathcal{H}^{*}$ and let

$$kV_{\mu}^{\Lambda} = \{ v \in kV^{\Lambda} \mid H v = (k\Lambda(H) - \mu(H)) v \}. \quad (2.17)$$
Then we have:

\[k V^\Lambda = \bigoplus_{\mu \in \Gamma^+} k V^\Lambda_\mu \] \hspace{1cm} (2.18a)

\[\dim k V^\Lambda_\mu = P^>_k (\mu) \] \hspace{1cm} (2.18b)

\[k V^A_\mu = \sum_{k^\nu \in k^{\nu_\sigma \in \Gamma_+}} \sum_{\beta_1^1 \in \Delta^+} \ldots \sum_{\beta_k^k \in \Delta^+} \times \]
\[\times \left\{ X_{\beta_1^1} \ldots X_{\beta_n^1} \otimes \ldots \otimes X_{\beta_k^k} \ldots X_{\beta_n^k} \right\} \hat{\otimes} F v_0 \] \hspace{1cm} (2.18c)

\[k V^A_0 = \{ 1_u \otimes \ldots \otimes 1_u \} \hat{\otimes} F v_0 \] \hspace{1cm} (2.18d)

\[k V^A = S_k (G^-) k V^A_0, \quad G^+ k V^A_0 = 0 \] \hspace{1cm} (2.18e)

where in (2.18d) the ordering of the root system inherited from the ordering of \(H^* \) is implemented.

Proof: Completely analogous to the classical case \(k = 1 \) [8].

3. Singular vectors of \(k \) - Verma modules

3.1. In contrast to the ordinary Verma modules \((k = 1)\), the \(k \) - Verma modules for \(k \geq 2 \) are reducible independently of the highest weight, which is natural taking into account their tensor product character. This we show by exhibiting singular vectors for arbitrary highest weights.

We call a singular vector of a \(k \) - Verma module \(k V^\Lambda \) a vector \(v_s \in k V^\Lambda \), such that \(v_s \notin k V^\Lambda_0 \) and:

\[X v_s = 0, \quad X \in G^+ \] \hspace{1cm} (3.1a)

\[H v_s = (k\Lambda(H) - \mu(H)) v_s, \quad \mu \in \Gamma^+, \quad \mu \neq 0, \quad H \in \mathcal{H} \] \hspace{1cm} (3.1b)

i.e., \(v_s \) is homogeneous: \(v_s \in k V^\Lambda_\mu \) for some \(\mu \in \Gamma^+ \). For \(k = 1 \) (3.1) coincide with (2.3).

The space \(S_k (G^-) v_s \) is a submodule of \(k V^\Lambda \) isomorphic to the Verma module \(k V^{k\Lambda - \mu} = S_k (G^-) \otimes v'_0 \) where \(v'_0 \) is the highest weight vector of \(k V^{k\Lambda - \mu} \); the isomorphism being realized by \(v_s \mapsto \{ 1_u \otimes \ldots 1_u \} \hat{\otimes} v'_0 \).

In the next two Subsections we show some explicit examples for the cases \(k = 2, 3 \).
3.2. We consider now the case \(k = 2 \) i.e., bi-Verma (= 2-Verma) modules. We take a weight \(\mu = n\alpha \), where \(n \in \mathbb{N} \) and \(\alpha \in \Delta_S \) is any simple root. We have \(\dim 2V_{n\alpha}^\Lambda = \lceil n/2 \rceil + 1 \), where \(\lceil x \rceil \) is the biggest integer not exceeding \(x \). The possible singular vectors have the following form:

\[
2v_s^{n\alpha} = \sum_{j=0}^{\lceil n/2 \rceil} \gamma_{nj}^\Lambda \left\{ (X^-)^{n-j} \otimes (X^-)^j \right\} \otimes v_0
\]

(3.2)

The coefficients \(\gamma_{nj}^\Lambda \) are determined from the condition (3.1a) with \(X = X^+ \) — all other cases of (3.1) are fulfilled automatically. Thus we have:

Proposition 2: The singular vectors of the bi-Verma (= 2-Verma) module \(2V^\Lambda \) of weight \(\mu = n\alpha \), where \(n \in \mathbb{N} \) and \(\alpha \in \Delta_S \) is any simple root, are given by formula (3.2) with the coefficients \(\gamma_{nj}^\Lambda \) given explicitly (up to multiplicative renormalization) by:

\[
\gamma_{nj}^\Lambda = \gamma_0 \gamma(n,\Lambda(H)) (-1)^j (2 - \delta_{j,n/2}) \frac{\Gamma(\Lambda(H) + 1 - n + j) \Gamma(\Lambda(H) + 1 - j)}{\Gamma(\Lambda(H) + 1 - n) \Gamma(\Lambda(H) + 1)}
\]

\[
\gamma(n,\Lambda(H)) = \begin{cases}
1, & \text{for } n \text{ even and arbitrary } \Lambda(H) \\
1, & \text{for } n \text{ odd, } \Lambda(H) = n-1,n-2,\ldots,(n-1)/2 \\
0, & \text{for } n \text{ odd, } \Lambda(H) \neq n-1,n-2,\ldots,(n-1)/2
\end{cases}
\]

(3.3)

and \(\gamma_0 \) is an arbitrary non-zero constant.

Proof: By direct verification. ●

We give the lowest cases of the above general formula for illustration (fixing the overall constant \(\gamma_0 \) appropriately):

\[
2v_s^\alpha = \{ X^-_\alpha \otimes 1_u \} \otimes v_0, \quad \Lambda(H) = 0
\]

(3.4a)

\[
2v_s^{2\alpha} = \{ \Lambda(H) \ (X^-_\alpha)^2 \otimes 1_u - (\Lambda(H) - 1) X^-_\alpha \otimes X^-_\alpha \} \otimes v_0, \quad \forall \Lambda(H)
\]

(3.4b)

\[
2v_s^{3\alpha} = \{ \Lambda(H) \ (X^-_\alpha)^3 \otimes 1_u - 3 (\Lambda(H) - 2) (X^-_\alpha)^2 \otimes X^-_\alpha \} \otimes v_0, \quad \Lambda(H) = 1,2
\]

(3.4c)

\[
2v_s^{4\alpha} = \{ \Lambda(H) \ (\Lambda(H) - 1) \ (X^-_\alpha)^4 \otimes 1_u - 4 (\Lambda(H) - 1) (\Lambda(H) - 3) (X^-_\alpha)^3 \otimes X^-_\alpha + 3 (\Lambda(H) - 2) (\Lambda(H) - 3) (X^-_\alpha)^2 \otimes (X^-_\alpha)^2 \} \otimes v_0, \quad \forall \Lambda(H)
\]

(3.4d)

Proposition 2 confirms that bi-Verma modules are always reducible since they possess singular vectors independently of \(\Lambda \). In fact, they have an infinite number of singular
vectors of weights \(n\alpha_i \), for any even positive integer \(n \) and any simple root \(\alpha_i \). Moreover, they possess singular vectors of other weights, also independent of \(\Lambda \). For example we consider weights \(\mu_n = n\beta = n(\alpha_1 + \alpha_2) \), where \(\beta \) is a positive root, and \(\alpha_1, \alpha_2 \), are two simple roots, e.g., of equal minimal length (for simplicity). Then there exist singular vectors of these weights given by, e.g.:

\[
2v^{\beta}_s = \left\{ \Lambda_1 X_1^- X_2^- \otimes 1_u - \Lambda_2 X_2^- X_1^- \otimes 1_u - (\Lambda_1 + \Lambda_2 + 1) X_1^- \otimes X_2^- \right\} \otimes v_0 , \quad \forall \Lambda \tag{3.5}
\]

\[\Lambda_a \equiv \Lambda(H_a), \quad a = 1, 2\]

\[
2v^{2\beta}_s = \left\{ a_1 (X_3^-)^2 \otimes 1_u + a_2 X_2^- X_3^- X_1^- \otimes 1_u + a_3 (X_2^-)^2(X_1^-)^2 \otimes 1_u + b_1 X_3^- X_1^- \otimes X_2^- + b_2 X_2^- X_3^- \otimes X_1^- + c_1 X_3^- (X_1^-)^2 \otimes X_2^- + c_2 (X_2^-)^2 X_1^- \otimes X_1^- + d_1 X_3^- \otimes X_3^- + d_2 X_3^- \otimes X_2^- X_1^- + d_3 X_2^- X_1^- \otimes X_2^- X_1^- + d_4 (X_2^-)^2 \otimes (X_1^-)^2 \right\} \otimes v_0 , \quad \forall \Lambda \tag{3.6a}
\]

where for the two solutions (present in this case) the coefficients are:

\[
a_1 = \Lambda_1^2 \Lambda_2 (\Lambda_1 + \Lambda_2 + 1)(\Lambda_2 + 1) \\
a_2 = -\Lambda_1 \Lambda_2 (\Lambda_1 + \Lambda_2 + 1)(\Lambda_1 - \Lambda_2 - 2) \\
a_3 = -\Lambda_1 \Lambda_2 (\Lambda_1 + \Lambda_2 + 1) \\
b_1 = -\Lambda_1 (\Lambda_1 + \Lambda_2 + 1)(\Lambda_1 + \Lambda_2)(\Lambda_2 + 2) \\
b_2 = \Lambda_1 \Lambda_2 (\Lambda_1 + \Lambda_2 + 1)(\Lambda_1 + \Lambda_2) \\
c_1 = \Lambda_1 (\Lambda_1 + \Lambda_2 + 1)(\Lambda_1 + \Lambda_2) \\
c_2 = \Lambda_2 (\Lambda_1 + \Lambda_2 + 1)(\Lambda_1 + \Lambda_2) \\
d_1 = -\Lambda_1^2 (\Lambda_1 + \Lambda_2)(\Lambda_2^2 + \Lambda_2 + 1) \\
d_2 = \Lambda_1 (\Lambda_1 + \Lambda_2)(\Lambda_1 \Lambda_2 + 2\Lambda_1 - \Lambda_2^2 + \Lambda_2) \\
d_3 = -\Lambda_1 (\Lambda_1 + \Lambda_2)(\Lambda_1^2 + \Lambda_1 \Lambda_2 + \Lambda_2^2) \\
d_4 = 0 \tag{3.6b}
\]

\[
a_1 = 2\Lambda_1^2 \Lambda_2 (\Lambda_1 + \Lambda_2 + 1)(\Lambda_2^2 - \Lambda_2 - 1 + \Lambda_1 \Lambda_2) \\
a_2 = -\Lambda_1 (\Lambda_1 + \Lambda_2 + 1)(\Lambda_1 + \Lambda_2 - 1)(\Lambda_1 - \Lambda_2)(\Lambda_2 + 1) \\
a_3 = \Lambda_1 (\Lambda_1 + \Lambda_2 + 1)(\Lambda_1 + \Lambda_2 - 1)(\Lambda_1 - \Lambda_2) \\
b_1 = -\Lambda_1 (\Lambda_1 + \Lambda_2 + 1)^2(\Lambda_1 + \Lambda_2)(\Lambda_2 - 1) \\
b_2 = 2\Lambda_1 (\Lambda_1 + \Lambda_2 + 1)(\Lambda_1 + \Lambda_2)(\Lambda_2^2 - 2\Lambda_2 - 1 + \Lambda_1 \Lambda_2 + \Lambda_1) \\
c_1 = 0 \\
c_2 = -\Lambda_1 (\Lambda_1 + \Lambda_2 + 1)(\Lambda_1 + \Lambda_2 - 1)(\Lambda_1 + \Lambda_2)(\Lambda_1 - \Lambda_2) \\
d_1 = -\Lambda_1^2 (\Lambda_1 + \Lambda_2)(\Lambda_2 - 1)(\Lambda_1 \Lambda_2 + \Lambda_1 + \Lambda_2^2) \\
d_2 = -\Lambda_1 (\Lambda_1 + \Lambda_2)(\Lambda_2 - 1)(\Lambda_1 \Lambda_2 + \Lambda_1 + \Lambda_2^2) \\
d_3 = -\Lambda_1 (\Lambda_1 + \Lambda_2)(\Lambda_2 - 1)(\Lambda_1 \Lambda_2 + \Lambda_1 + \Lambda_2^2) \\
d_4 = \Lambda_1 (\Lambda_1 + \Lambda_2)(\Lambda_1 + \Lambda_2 + 1)^2 \tag{3.6c}
\]
Furthermore, the structure of the Verma modules is additionally complicated since there is no factorization of the singular vectors as for $k = 1$, cf. (2.7). For the latter consider the weight $\mu_0 = 2\alpha_1 + \alpha_2$, with α_1, α_2 as in the previous example. Then there exists a singular vector of this weight given by:

$$2v_{s}^{\mu_0} = \left\{ (2\Lambda_1\Lambda_2 + \Lambda_1 - \Lambda_2 - 2) \left(X_{1}^- \right)^2 X_{2}^- \otimes 1_u - 2\Lambda_1\Lambda_2 X_{1}^- X_{2}^- X_{1}^- \otimes 1_u + \\
+ (\Lambda_1 + \Lambda_2 + 1) \left(X_{1}^- \right)^2 \otimes X_{2}^- - 2(\Lambda_1 - 1) (\Lambda_2 + 1) X_{1}^- X_{2}^- \otimes X_{1}^- + \\
+ 2\Lambda_2 (\Lambda_1 - 1) X_{2}^- X_{1}^- \otimes X_{1}^- \right\} \otimes v_0, \quad \forall \Lambda$$

(3.7)

3.3. Here we consider the case $k = 3$, i.e., tri-Verma ($= 3$-Verma) modules over arbitrary \mathcal{G}. Consider a weight $\mu = n\alpha$, where $n \in \mathbb{N}$ and $\alpha \in \Delta_S$ is any simple root. We first note the dimension of the weight space:

$$\dim 3V_{n\alpha}^\Lambda = (n - 3 \left[\frac{n}{2} \right]) (1 + \left[\frac{n}{2} \right]) + \delta_{n,6} \left[\frac{n}{6} \right]$$

(3.8)

The possible singular vectors have the following form:

$$3v_{s}^{n\alpha} = \sum_{n-j-k \geq j \geq k} \gamma_{njk}^\Lambda \left\{ (X_{\alpha}^-)^{n-j-k} \otimes (X_{\alpha}^-)^j \otimes (X_{\alpha}^-)^k \right\} \hat{\otimes} v_0$$

(3.9)

The coefficients γ_{njk}^Λ are determined form the condition (3.10d) with $X = X_{\alpha}^+$ - all other cases in of (3.1) are fulfilled automatically. We give now the singular vectors for $n \leq 6$ denoting $\hat{\Lambda} \equiv \Lambda(H)$:

$$3v_{s}^{\alpha} = \left\{ X_{\alpha}^- \otimes 1_u \otimes 1_u \right\} \hat{\otimes} v_0, \quad \hat{\Lambda} = 0$$

(3.10a)

$$3v_{s}^{2\alpha} = \left\{ \hat{\Lambda} \left(X_{\alpha}^- \right)^2 \otimes 1_u \otimes 1_u - \\
- (\hat{\Lambda} - 1) X_{\alpha}^- \otimes X_{\alpha}^- \otimes 1_u \right\} \hat{\otimes} v_0, \quad \forall \hat{\Lambda}$$

(3.10b)

$$3v_{s}^{3\alpha} = \left\{ \hat{\Lambda}^2 \left(X_{\alpha}^- \right)^3 \otimes 1_u \otimes 1_u - \\
- 3 \hat{\Lambda} (\hat{\Lambda} - 2) \left(X_{\alpha}^- \right)^2 \otimes X_{\alpha}^- \otimes 1_u + \\
+ 2 (\hat{\Lambda} - 1) (\hat{\Lambda} - 2) X_{\alpha}^- \otimes X_{\alpha}^- \otimes X_{\alpha}^- \right\} \hat{\otimes} v_0, \quad \forall \hat{\Lambda}$$

(3.10c)

$$3v_{s}^{4\alpha} = \left\{ \hat{\Lambda} (\hat{\Lambda} - 1) \left(X_{\alpha}^- \right)^4 \otimes 1_u \otimes 1_u - \\
- 4 (\hat{\Lambda} - 1) (\hat{\Lambda} - 3) \left(X_{\alpha}^- \right)^3 \otimes X_{\alpha}^- \otimes 1_u + \\
+ 3 (\hat{\Lambda} - 2) (\hat{\Lambda} - 3) \left(X_{\alpha}^- \right)^2 \otimes \left(X_{\alpha}^- \right)^2 \otimes 1_u \right\} \hat{\otimes} v_0, \quad \forall \hat{\Lambda}$$

(3.10d)
\[3v_{s}^{4\alpha} = \left\{ (X_{\alpha}^{-})^{4} \otimes 1_u \otimes 1_u + 8 (X_{\alpha}^{-})^{3} \otimes X_{\alpha}^{-} \otimes 1_u + \right.\]
\[+ 12 (X_{\alpha}^{-})^{2} \otimes X_{\alpha}^{-} \otimes X_{\alpha}^{-}\left.\right\} \otimes v_0, \quad \hat{\Lambda} = 1 \quad (3.10d')\]

\[3v_{s}^{5\alpha} = \left\{ \hat{\Lambda}^{2} (\hat{\Lambda} - 1) (X_{\alpha}^{-})^{5} \otimes 1_u \otimes 1_u - \right.\]
\[- 5 \hat{\Lambda} (\hat{\Lambda} - 1) (\hat{\Lambda} - 4) (X_{\alpha}^{-})^{4} \otimes X_{\alpha}^{-} \otimes 1_u + \]
\[+ 2 \hat{\Lambda} (\hat{\Lambda} - 3) (\hat{\Lambda} - 4) (X_{\alpha}^{-})^{3} \otimes (X_{\alpha}^{-})^{2} \otimes 1_u + \quad (3.10e)\]
\[+ 8 (\hat{\Lambda} - 1) (\hat{\Lambda} - 3) (\hat{\Lambda} - 4) (X_{\alpha}^{-})^{3} \otimes X_{\alpha}^{-} \otimes X_{\alpha}^{-} - \]
\[- 6 (\hat{\Lambda} - 2) (\hat{\Lambda} - 3) (\hat{\Lambda} - 4) (X_{\alpha}^{-})^{2} \otimes (X_{\alpha}^{-})^{2} \otimes X_{\alpha}^{-}\left.\right\} \otimes v_0, \quad \forall \hat{\Lambda}\]

\[3v_{s}^{6\alpha} = \left\{ 2 (X_{\alpha}^{-})^{3} \otimes (X_{\alpha}^{-})^{2} u \otimes 1_u - \right.\]
\[\quad - (X_{\alpha}^{-})^{3} \otimes X_{\alpha}^{-} \otimes X_{\alpha}^{-}\left.\right\} \hat{\Lambda} = 2 \quad (3.10e')\]

\[3v_{s}^{7\alpha} = \left\{ \hat{\Lambda} (\hat{\Lambda} - 1) (\hat{\Lambda} - 2) (X_{\alpha}^{-})^{4} \otimes (X_{\alpha}^{-})^{2} \otimes 1_u - \right.\]
\[- (\hat{\Lambda} - 1)^{2} (\hat{\Lambda} - 2) (X_{\alpha}^{-})^{4} \otimes X_{\alpha}^{-} \otimes X_{\alpha}^{-} - \]
\[- \hat{\Lambda} (\hat{\Lambda} - 1) (\hat{\Lambda} - 3) (X_{\alpha}^{-})^{3} \otimes (X_{\alpha}^{-})^{3} \otimes 1_u + \quad (3.10f)\]
\[+ 2 (\hat{\Lambda} - 1) (\hat{\Lambda} - 2) (\hat{\Lambda} - 3) (X_{\alpha}^{-})^{3} \otimes (X_{\alpha}^{-})^{2} \otimes X_{\alpha}^{-} - \]
\[- (\hat{\Lambda} - 2)^{2} (\hat{\Lambda} - 3) (X_{\alpha}^{-})^{2} \otimes (X_{\alpha}^{-})^{2} \otimes (X_{\alpha}^{-})^{2}\left.\right\} \otimes v_0, \quad \forall \hat{\Lambda}\]

\[3v_{s}^{8\alpha} = \left\{ \hat{\Lambda} (\hat{\Lambda} - 1) (\hat{\Lambda} - 2) (X_{\alpha}^{-})^{6} \otimes 1_u \otimes 1_u - \right.\]
\[- 6 (\hat{\Lambda} - 1) (\hat{\Lambda} - 2) (\hat{\Lambda} - 5) (X_{\alpha}^{-})^{5} \otimes X_{\alpha}^{-} \otimes 1_u + \quad (3.10f')\]
\[+ 15 (\hat{\Lambda} - 2) (\hat{\Lambda} - 4) (\hat{\Lambda} - 5) (X_{\alpha}^{-})^{4} \otimes (X_{\alpha}^{-})^{2} \otimes 1_u - \]
\[- 10 (\hat{\Lambda} - 3) (\hat{\Lambda} - 4) (\hat{\Lambda} - 5) (X_{\alpha}^{-})^{3} \otimes (X_{\alpha}^{-})^{3} \otimes 1_u\left.\right\} \otimes v_0, \quad \forall \hat{\Lambda}\]

We give those examples in order to point out some new features appearing for tri-Verma modules in comparison with the bi-Verma modules:
• Independently of $Λ(H)$ there exists a singular vector at any level $nα$, except the lowest $n = 1$, while for bi-Verma modules singular vectors at odd levels exist only for special values of $Λ(H)$;

• There exists more than one singular vector at any fixed level $nα$ for $n ≥ 6$ and arbitrary $Λ(H)$. For special values of $Λ(H)$ there exists a second singular vector for $n = 4, 5$.

Similar facts hold for k-Verma modules for $k > 3$. These questions will be considered in another publication. In the present paper we would like to demonstrate on examples the usefulness of these modules, which we do in the next Sections.

4. Multilinear intertwining differential operators

4.1. We start here by sketching the procedure of [10] for construction of linear intertwining differential operators which we generalize in the next subsection for multilinear intertwining differential operators. Let G be a semisimple Lie group and let G denote its Lie algebra. (Note that the procedure works in the same way for a reductive Lie group, since only its semisimple subgroup is essential for the construction of the intertwining differential operators. We restrict to semisimple groups for simplicity. For more technical simplicity one may assume that in addition G is linear and connected.) Let $G = KA_0N_0$ be an Iwasawa decomposition of G, where K is the maximal compact subgroup of G, A_0 is abelian simply connected, the so-called vector subgroup of G, N_0 is a nilpotent simply connected subgroup of G preserved by the action of A_0. Further, let M_0 be the centralizer of A_0 in K. (M_0 has the structure $M_0 = M^d_0M^r_0$, where M^d_0 is a finite group, M^r_0 is reductive with the same Lie algebra as M_0.) Then $P_0 = M_0A_0N_0$ is called a \textit{minimal parabolic subgroup} of G. A \textit{parabolic subgroup} of G is any subgroup which is isomorphic to a subgroup $P = MAN$ such that: $P_0 ⊂ P ⊂ G$, $M_0 ⊂ M$, $A_0 ⊃ A$, $N_0 ⊃ N$. [Note that in the above considerations every subgroup N may be exchanged with its Cartan conjugate N^\ast.] The number of non-conjugate parabolic subgroups (counting also the case $P = G = M$) is 2^{r_0}, $r_0 = \dim A_0$.

Parabolic subgroups are important because the representations induced from them generate all admissible irreducible representations of G [23], [24]. In fact, for this it is enough to use only the so-called \textit{cuspidal} parabolic subgroups, singled out by the condition that rank $M = \text{rank } M \cap K$; thus M has discrete series representations.

Let P be a cuspidal parabolic subgroup and let μ fix a discrete series representation D^μ of M on the Hilbert space V^μ or the so-called limit of a discrete series representation (cf. [21]). Let ν be a (non-unitary) character of A, $\nu \in A^\ast$, where A is the Lie algebra of A. We call the induced representation $\chi = \text{Ind}_P^G(\mu \otimes \nu \otimes 1)$ an \textit{elementary representation} of G. (These are called \textit{generalized principal series representations} (or limits thereof) in [21].) Consider now the space of functions

$$C_\chi = \{ F \in C^\infty(G,V^\mu) \mid F(gman) = e^{\nu(H)}D^\mu(m^{-1})F(g) \} \quad (4.1)$$
where \(g \in G, m \in M, a = \exp(H), H \in A, n \in N \). The special property of the functions of \(C_X \) is called \textit{right covariance} \([10]\) (or \textit{equivariance}). It is well known that \(C_X \) can be thought of as the space of smooth sections of the homogeneous vector bundle (called also vector \(G \)-bundle) with base space \(G/P \) and fibre \(V_\mu \), (which is an associated bundle to the principal \(P \)-bundle with total space \(G \)).

Then the elementary representation (ER) \(T^X \) acts in \(C_X \), as the left regular representation (LRR), by:
\[
(T^X(g)F)(g') = F(g^{-1}g'), \quad g, g' \in G
\]
(4.2)
(In practice, the same induction is used with non-discrete series representations of \(M \) and also with non-cuspidal parabolic subgroups.) One can introduce in \(C_X \) a Fréchet space topology or complete it to a Hilbert space (cf. \([21]\)). The ERs differ from the LRR (which is highly reducible) by the specific representation spaces \(C_X \). In contrast, the ERs are generically irreducible. The reducible ERs form a measure zero set in the space of the representation parameters \(\mu, \nu \). (Reducibility here is topological in the sense that there exist nontrivial (closed) invariant subspace.) Next we note that in order to obtain the intertwining differential operators one may consider the infinitesimal version of (4.2), namely:
\[
(\mathcal{L}^X(X)F)(g) = \frac{d}{dt}F(\exp(-tX)g)|_{t=0}, \quad X \in G
\]
(4.3)

The feature of the ERs which makes them important for our considerations in \([10]\) and here is a highest weight module structure associated with them. [It would be lowest weight module structure, if one exchanges \(N \) with \(\tilde{N} \), as is actually done in \([10]\).] Let \(G_c = G \) if \(G \) is complex or real split, otherwise let \(G_c \) be the complexification of \(G \) with triangular decomposition: \(G_c = G_c^+ \oplus H_c \oplus G_c^- \). Further introduce the right action of \(G_c \) by the standard formula:
\[
(\hat{X}F)(g) = \frac{d}{dt}F(g\exp(tX))|_{t=0}
\]
(4.4)
where, \(X \in G_c, \ F \in C_X, \ g \in G \), which is defined first for \(X \in G \) and then is extended to \(G_c \) by linearity. Note that this action takes \(F \) out of \(C_X \) for some \(X \) but that is exactly why it is used for the construction of the intertwining differential operators.

We illustrate the highest weight module structure in the case of the minimal parabolic subgroup. In that case \(M = M_0 \) is compact and \(V_\mu \) is finite dimensional. Consider first the case when \(M_0 \) is non-abelian. Let \(v_0 \) be the highest weight vector of \(V_\mu \). Now we can introduce \(C \)-valued realization \(\tilde{C}_X \) of the space \(C_X \) by the formula:
\[
\varphi(g) \equiv \langle v_0, F(g) \rangle
\]
(4.5)
where \(\langle, \rangle \) is the \(M_0 \)-invariant scalar product in \(V_\mu \). On these functions the counterpart \(\tilde{T}^X \) of the LRR (1.2), its infinitesimal form (1.3) and the right action of \(G_c \) are defined as inherited from the functions \(F \) :
\[
\tilde{T}^X(g) \varphi \equiv \langle v_0, T^X(g) F \rangle
\]
(4.6a)
\[
\tilde{L}^X(X) \varphi \equiv \langle v_0, L^X(X) F \rangle
\]
(4.6b)
\[
\hat{X} \varphi \equiv \langle v_0, \hat{X} F \rangle
\]
(4.6b)
In the geometric language we have replaced the homogeneous vector bundle with base space G/P and fibre V_μ with a line bundle again with base space G/P (also associated to the principal P-bundle with total space G). The functions φ can be thought of as smooth sections of this line bundle. If M_0 is abelian or discrete then V_μ is one–dimensional and \tilde{C}_χ coincides with C_χ; so we set $\varphi = F$. Part of the main result of [10] is:

Proposition: The functions of the \mathcal{C}-valued realization \tilde{C}_χ of the ER C_χ satisfy:

\[
\hat{X}\varphi = \Lambda(X) \varphi, \quad X \in \mathcal{H}_c
\]

\[
\hat{X}\varphi = 0, \quad X \in \mathcal{G}_c^+\]

where $\Lambda = \Lambda_\chi \in (\mathcal{H}_c)^*$ is built canonically from χ and contains all the information from χ, except about the character ϵ of the finite group M_0^β. ♦

Now we note that conditions (4.7) are the defining conditions for the highest weight vector of a highest weight module (HWM) over \mathcal{G}_c with highest weight Λ, in particular, of a Verma module with this highest weight, cf. (2.1).

Let the signature χ of an ER be such that the corresponding $\Lambda = \Lambda_\chi$ satisfies (2.8) for some $\beta \in \Delta^+$ and some $m \in \mathbb{N}$. If β is a real root, then some conditions are imposed on the character ϵ representing the finite group M_0^β [28]. Then there exists an intertwining differential operator [10]:

\[
\mathcal{D}^{m\beta} : \tilde{C}_\chi \rightarrow \tilde{C}_{\chi'}
\]

\[
\mathcal{D}^{m\beta} \circ \tilde{T}_\chi(g) = \tilde{T}_{\chi'}(g) \circ \mathcal{D}^{m\beta}, \quad \forall g \in G
\]

where χ' is uniquely determined so that $\Lambda' = \Lambda_\chi' = \Lambda - m\beta$.

The important fact is that (4.8) is explicitly given by [10]:

\[
\mathcal{D}^{m\beta} \varphi(g) = P^{m\beta}(\hat{X}_1^-, \ldots, \hat{X}_\ell^-) \varphi(g)
\]

where $P^{m\beta}$ is the same polynomial as in (2.4) and \hat{X}_j^- denotes the action (4.6b). One important technical simplification is that the intertwining differential operators (4.9) are **scalar operators** since they intertwine two **line bundles** $\tilde{C}_\chi, \tilde{C}_{\chi'}$.

4.2. Now we generalize the above sketched construction of [10] to **multilinear intertwining differential operators**. We have the following.

Proposition 3: Let the signature χ of an ER be such that the k-Verma module kV_Λ^k with highest weight $\Lambda = \Lambda_\chi$, has a singular vector $k\nu_\mu^s \in kV_\mu^k$, i.e., (3.1) is satisfied for some $\mu \in \Gamma^+$. Let us denote:

\[
k\nu_\mu^s = k\mathcal{P}^\mu \otimes \nu_0
\]
where \(k \mathcal{P}^\mu \in S_k(G^-) \) is some concrete polynomial as in (2.18d). Then there exists a multilinear intertwining differential operator which we denote by \(k \mathcal{I}_\mu^\Lambda \) such that:

\[
\begin{align*}
 k \mathcal{I}_\mu^\Lambda : \varphi \otimes \ldots \otimes \varphi & \mapsto \psi , \quad \varphi \in \tilde{C}_\chi, \; \psi \in \tilde{C}_{\chi'} \\
 k \mathcal{I}_\mu^\Lambda \circ \sum_{j=1}^{k} 1_u \otimes \ldots \otimes \tilde{L}^\chi(X) \otimes \ldots \otimes 1_u & = \tilde{L}^{\chi'}(X) \circ k \mathcal{I}_\mu^\Lambda , \; \forall X \in G
\end{align*}
\]

where \(\chi' \) is uniquely determined (up to the representation parameters of the discrete subgroup \(M^d \)) so that \(\Lambda' = \Lambda_{\chi'} = k\Lambda - \mu \). The operator is given explicitly by the same polynomial as in (4.10), i.e.,

\[
\begin{align*}
 k \mathcal{I}_\mu^\Lambda (\varphi \otimes \ldots \otimes \varphi) & = \hat{k} \mathcal{P}^\mu (\varphi \otimes \ldots \otimes \varphi) \\
 k \mathcal{I}_\mu^\Lambda \circ \tilde{T}^\chi(g) \otimes \ldots \otimes \tilde{T}^\chi(g) & = \tilde{T}^{\chi'}(g) \circ k \mathcal{I}_\mu^\Lambda , \; \forall g \in G
\end{align*}
\]

Proof: Completely analogous to the case \(k = 1 \) (cf. [10]).

\[\Box\]

Remark 2: The analog of the intertwining property (1.12) on the group level, i.e.,

\[
 k \mathcal{I}_\mu^\Lambda \circ \tilde{T}^\chi(g) \otimes \ldots \otimes \tilde{T}^\chi(g) = \tilde{T}^{\chi'}(g) \circ k \mathcal{I}_\mu^\Lambda , \; \forall g \in G
\]

will hold, in general, for less values of \(\Lambda \) than (1.12). This in sharp contrast with the \(k = 1 \) case, where there is no difference in this respect. An additional feature on the group level common for all \(k \geq 1 \) is that some discrete representation parameters of \(\chi \), not represented in \(\Lambda \), get fixed. \[\Diamond\]

Remark 3: Let us stress that since we have realized arbitrary representations in the spaces of scalar-valued functions \(\varphi \) then also the intertwining differential operators are scalar operators in all cases — geometrically speaking, these operators intertwine (tensor products of) line bundles. This simplicity may be contrasted with the proliferation of tensor indices in the approaches relying on Weyl’s \(SO(n) \) polynomial invariant theory [29], cf., e.g., [13], [3], where \(G = SO(n+1,1), \; M = M_0 = SO(n), \; \dim A = 1 \). \[\Diamond\]
Finally we should mention that the simplest formulae are obtained of one restricts the functions to the conjugate to N subgroup \tilde{N}:

$$C_\chi \doteq \{ \phi = R \varphi \mid \varphi \in \tilde{C}_\chi \}, \quad (R\varphi)(\tilde{n}) \doteq \varphi(\tilde{n}), \quad \tilde{n} \in \tilde{N} \quad (4.16)$$

Clearly, the elements of C_χ and consequently \tilde{C}_χ are almost determined by their values on \tilde{N} because of right covariance (4.1) and because, up to a finite number of submanifolds of strictly lower dimension, every element of G belongs to $\tilde{N} MAN$. The latter are open dense submanifolds of G, of the same dimension forming non-global Bruhat decompositions of G. Connectedly, \tilde{N} is an open dense submanifold of G/P.

The ER T^x acts in this space by:

$$\left(T^x(g) \phi \right)(\tilde{n}) = e^{\mu(H)} D^\mu(m^{-1}) \phi(\tilde{n}')$$

$$D^\mu(m) \phi(\tilde{n}) = \langle v_0, D^\mu(m) F(\tilde{n}) \rangle \quad (4.17)$$

where $g \in G$, $\tilde{n}, \tilde{n}' \in \tilde{N}$, $m \in M$, $a = \exp(H), H \in A$, and we have used the Bruhat decomposition $g^{-1}\tilde{n} = \tilde{n}' man$, $(n \in N)$. [The transformation can also be defined separately for $g^{-1}\tilde{n} \notin \tilde{N} MAN$ and there exists smooth passage from (4.17) to these expressions. This is related to the passage between different coordinate patches of G/P.]

One may easily check that the restriction operator R intertwines the two representations, i.e.

$$T^x(g) R = R \tilde{T}^x(g), \quad \forall g \in G \quad (4.18)$$

5. Bilinear operators for SL(n,R) and SL(n,C)

5.1. In the present Section we restrict ourselves to the case $G = SL(n, \mathbb{R})$, mentioning also which results are extendable to $SL(n, \mathbb{C})$. We use the following matrix representations for G, its Lie algebra \mathcal{G} and some subgroups and subalgebras:

$$G = SL(n, \mathbb{R}) = \{ g \in gl(n, \mathbb{R}) \mid \det g = 1 \} \quad (5.1a)$$

$$\mathcal{G} = sl(n, \mathbb{R}) = \{ X \in gl(n, \mathbb{R}) \mid tr X = 0 \} \quad (5.1b)$$

$$K = SO(n) = \{ g \in SL(n, \mathbb{R}) \mid g g^t = g^t g = 1_n \} \quad (5.1c)$$

$$A_0 = \{ X \in sl(n, \mathbb{R}) \mid X \text{ diagonal} \} \quad (5.1d)$$

$$A_0 = \exp(A_0) = \{ g \in SL(n, \mathbb{R}) \mid g \text{ diagonal} \} \quad (5.1e)$$

$$M_0 = \{ m \in K \mid ma = am, \forall a \in A_0 \} =$$

$$= \{ m = \text{diag(}\delta_1, \delta_2, ..., \delta_n) \mid \delta_k = \pm, \delta_1 \delta_2 ... \delta_n = 1 \} = M_0^d \quad (5.1f)$$

$$N_0 = \{ X = (a_{ij}) \in gl(n, \mathbb{R}) \mid a_{ij} = 0, \quad i \geq j \} \quad (5.1g)$$

$$N_0 = \exp(N_0) = \{ X = (a_{ij}) \in gl(n, \mathbb{R}) \mid a_{ii} = 1, \quad a_{ij} = 0, \quad i > j \} \quad (5.1h)$$

$$\tilde{N}_0 = \{ X = (a_{ij}) \in gl(n, \mathbb{R}) \mid a_{ij} = 0, \quad i \leq j \} \quad (5.1i)$$

$$\tilde{N}_0 = \exp(\tilde{N}_0) = \{ X = (a_{ij}) \in gl(n, \mathbb{R}) \mid a_{ii} = 1, \quad a_{ij} = 0, \quad i < j \} \quad (5.1j)$$

17
Since the algebra \(sl(n, \mathbb{R}) \) is maximally split then the Bruhat decomposition with the minimal parabolic:
\[
\mathcal{G} = sl(n, \mathbb{R}) = \tilde{N}_0 \oplus A_0 \oplus \tilde{N}_0
\] (5.2)
may be viewed as a restriction from \(\mathcal{C} \) to \(\mathbb{R} \) of the triangular decomposition of its complexification:
\[
\mathcal{G}^\mathbb{C} = sl(n, \mathbb{C}) = \mathcal{G}_+^\mathbb{C} \oplus \mathcal{H} \oplus \mathcal{G}^\mathbb{C}_-
\] (5.3)
Accordingly, we may use for both cases the same Chevalley basis consisting of the \(3(n-1) \) generators \(X_i^+, X_i^-, H_i \) given explicitly by:
\[
X_i^+ = E_{i,i+1} \quad X_i^- = E_{i+1,i} \quad H_i = E_{ii} - E_{i+1,i+1} \quad i = 1, ..., n-1
\] (5.4)
where \(E_{ij} \) are the standard matrices with 1 on the intersection of the \(i \)-th row and \(j \)-th column and zeroes everywhere else. Note that \(X_i^+, X_i^-, H_i \), resp., generate \(\tilde{N}_0, \tilde{N}_0, A_0 \), resp., over \(\mathbb{R} \) and \(\mathcal{G}_+^\mathbb{C}, \mathcal{G}^\mathbb{C}_-, \mathcal{H} \), resp., over \(\mathcal{C} \).

5.2. We consider induction from the minimal parabolic case, i.e., \(P = M_0 A_0 N_0 \). The characters of the discrete group \(M_0 = M_0^d \) are labelled by the signature: \(\epsilon = (\epsilon_1, \epsilon_2, ..., \epsilon_{n-1}) \), \(\epsilon_k = 0, 1 \):
\[
\text{ch}_\epsilon(m) = \text{ch}_\epsilon(\delta_1, \delta_2, ..., \delta_n) \doteq \prod_{k=1}^{n-1} (\delta_k)^{\epsilon_k}, \quad m \in M_0
\] (5.5)
The (nonunitary) characters \(\nu \in A_0^* \) of \(A_0 \) are labelled by \(c_k \in \mathcal{C}, k = 1, ..., n-1 \), which is the value of \(\nu \) on \(H_k = \text{diag}(0, ..., 0, 1, -1, 0, ..., 0) \in A_0 \) (with the unity on \(k \)-th place), \(k = 1, ..., n-1 \), i.e., \(c_k = \nu(H_k) \):
\[
\text{ch}_c(a) = \text{ch}_c\left(\exp \sum_k t_k H_k\right) \doteq \exp \sum_k t_k \nu(H_k) = \exp \sum_k t_k c_k = \prod_k \hat{a}_k^{c_k}
\]
\[
a = \prod_k a_k \in A - 0 \quad a_k = \exp t_k H_k \in A_0 \quad t_k, \hat{a}_k = \exp t_k \in \mathbb{R}
\] (5.6)
Thus, the right covariance property (4.2) is:
\[
\mathcal{F}(gman) = \prod_{k=1}^{n-1} (\delta_k)^{\epsilon_k} \hat{a}_k^{c_k} \mathcal{F}(g)
\] (5.7)
and in this case we have scalar functions, i.e., \(\phi = \mathcal{F} \) because \(M_0 \) is discrete. Thus, the ER acts on the restricted functions as (cf. (4.17)):
\[
(T_c^\epsilon(g) \phi)(\tilde{n}) = \prod_{k=1}^{n-1} (\delta_k)^{\epsilon_k} \hat{a}_k^{c_k} \phi(\tilde{n}^r)
\] (5.8)
(note that $\delta_k = (\delta_k)^{-1}$). The functions ϕ depend on the $n(n-1)/2$ nontrivial elements of the matrices of N_0. For further use those will be denoted by z^i_j, i.e., for $\tilde{n} \in \tilde{N}_0$ we have $\tilde{n} = (a_{ij})$ with $a_{ij} = z^i_j$ for $i > j$, cf. (5.14).

The correspondence between the ER with signature $\chi = [c, \varepsilon]$ and the highest weight Λ, used in the general construction of the previous Section, here is very simple [11]: $\Lambda = -\nu$, so that $\Lambda(H) = -\nu(H)$. Further, we recall that the root system of $sl(n, \mathbb{C})$ is given by roots: $\pm \alpha_{ij}, i < j$, so that $\alpha_{ij} = \alpha_i + \alpha_{i+1} + \ldots + \alpha_{j-1}$ for $i + 1 < j$ and $\alpha_{i,i+1} = \alpha_i$, where $\alpha_i, i = 1, \ldots, n - 1$, are the simple roots with non-zero scalar products: $(\alpha_i, \alpha_i) = \alpha_i(H_i) = 2$, $(\alpha_i, \alpha_{i+1}) = \alpha_i(\alpha_{i+1}) = -1$, then $\alpha_i^\nu = \alpha_i$. Then we use $(\nu, \alpha_i) = \nu(H_i) = c_i$.

We need also the infinitesimal version of (5.8):

$$\tilde{\mathcal{L}}^c(Y) \phi(\tilde{n}) \cong \left(\frac{d}{dt} (T^{c,\varepsilon}(\exp tY) \phi)(\tilde{n}) \right)_{|t=0}, \quad Y \in \mathcal{G}$$

(5.9)

which we give for the Chevalley generators (5.4) explicitly:

$$\tilde{\mathcal{L}}^c(X^+_i) = z^{i+1}_i \left(c_i + \sum_{k=i+1}^{n} N^k_i - \sum_{k=i+1}^{n} N^k_{i+1} \right) - \sum_{s=1}^{i-1} z^{i+1}_s D^s_i + \sum_{k=i+2}^{n} z^{k}_{i+1} D^k_{i+1}$$

(5.10a)

$$\tilde{\mathcal{L}}^c(X^-_i) = -D^{i+1}_i - \sum_{s=1}^{i-1} z^i_s D^i_{s+1}$$

(5.10b)

$$\tilde{\mathcal{L}}^c(H_i) = c_i + \sum_{k=i+1}^{n} N^k_i - \sum_{k=i+2}^{n} N^k_{i+1} - \sum_{s=1}^{i-1} N^i_s + \sum_{s=1}^{i} N^i_{s+1}$$

(5.10c)

where $D^j_i \equiv \frac{\partial}{\partial z^j_i}$, $N^i_j \equiv z^i_j \frac{\partial}{\partial z^i_j}$, and we are using the convention that when the lower summation limit is bigger than the higher summation limit than the sum is zero.

We also need the right action (1.4) for the lowering generators which on the restricted functions is given explicitly by:

$$\tilde{X}^-_i \phi(\tilde{n}) = \left(D^{i+1}_i + \sum_{k=i+2}^{n} z^k_{i+1} D^k_i \right) \phi(\tilde{n})$$

(5.11)

Naturally the signature ε representing the discrete subgroup $M = M_0^d$ is not present in (5.10), (5.11). Thus, formulae (5.10), (5.11) are valid also for the holomorphic ERs of $SL(n, \mathbb{C})$.

Now to obtain explicit examples of multilinear intertwining differential operators it remains to substitute formula (5.11) in the corresponding formulae for the singular vectors of the k-Verma modules. We note that often a singular vector will produce many intertwining differential operators. For example each formula valid for any simple root will produce $n - 1$ formula, each formula valid for roots as $\alpha_1 + \alpha_2$ will produce $n - 2$ formulae for each $\alpha_i + \alpha_{i+1}$. To save space we shall not write these formulae except in a few examples in the cases $n = 2$ and $n = 3$.

19
5.3. Now we restrict ourselves to the case $G = SL(2, \mathbb{R})$. We denote: $x = z^2_1$, $c = c_1$, $\epsilon = \epsilon_1$, $X^\pm = X_1^\pm$, $H = H_1$. We start with bilinear intertwining differential operators, $k = 2$. We combine Propositions 2 & 3. For $G = sl(2, \mathbb{R})$ Proposition 2 gives all singular vectors of bi-Verma modules since all weights in Γ^+ are of the form $\mu = n\alpha$, $n \in \mathbb{N}$. Thus we have:

Theorem 1: All bilinear intertwining differential operators for the case of $G = sl(2, \mathbb{R})$ are given by the formula:

$$2I_{\alpha}^\Lambda(\phi) = \sum_{j=0}^{\lfloor n/2 \rfloor} \gamma_{nj}^\Lambda \phi^{(n-j)} \phi^{(j)}$$

(5.12)

where $\phi^{(p)} = (\partial_x)^p \phi(x)$, $\partial_x \equiv \partial/\partial x$, and the coefficients γ_{nj}^Λ are given in Proposition 2. The intertwining property is:

$$2I_{\alpha}^\Lambda \circ \left(\tilde{L}^\epsilon(X) \otimes 1_u + 1_u \otimes \tilde{L}^\epsilon(X) \right) = \tilde{L}^{\epsilon'}(X) \circ 2I_{\alpha}^\Lambda, \quad \forall X \in G$$

$$c = -\Lambda(H), \quad c' = 2(c + n)$$

(5.13)

Proof: Elementary combination of Propositions 2 & 3 in the present setting. In particular, $\Lambda' = 2\Lambda - n\alpha$, $c' = -\Lambda'(H) = -2\Lambda(H) + n\alpha(H) = 2(c + n)$. •

As we mentioned, the corresponding intertwining property on the group level is restricting the values of Λ and, as for $k = 1$, of some discrete parameters not represented in Λ. In the present case we have:

Theorem 2: All bilinear intertwining differential operators for the case of $G = SL(2, \mathbb{R})$ are given by formulae (5.12) and (5.3) with `integer' highest weight: $\Lambda(H) = p \in \mathbb{Z}$. The intertwining property is:

$$2I_{\alpha}^\Lambda \circ (T^{c,\epsilon}(g) \otimes T^{c,\epsilon}(g)) = T^{c',\epsilon'}(g) \circ 2I_{\alpha}^\Lambda, \quad \forall g \in G$$

$$c = -\Lambda(H) = -p, \quad c' = 2(c + n) = 2(n - p), \quad \epsilon = \epsilon' = p(\text{mod } 2)$$

(5.14)

Proof: Follows by using Theorem 1 and checking (5.14) for $g = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ which sends $x \neq 0$ into $-1/x$ •

Thus, the signatures of the two intertwined spaces coincide and are determined by the parameter p.

Next we consider the example of invariant functions ϕ, i.e., functions for which the transformation law (5.8) has no multipliers - this happens iff $c = \epsilon = 0$. For these functions the bilinear intertwining differential operators are given by the special case of
Theorem 2 when \(\Lambda(H) = p = 0 \), which by (3.3) further restricts \(n \) to be even or \(n = 1 \). Formula (5.12) with (3.3) substituted simplifies to:

\[
2T_{n\alpha}^0(\phi) = \sum_{j=1}^{n/2} (-1)^{j-1} \left(1 - \frac{1}{2}\delta_j, \frac{n-j}{n(n-1)} \right) \binom{n}{j} \binom{n-1}{j-1} \phi^{(n-j)} \phi^{(j)}, \quad n \in 2\mathbb{N}
\]

(5.15)

\[
2T_{\alpha}^0(\phi) = \phi \partial_x \phi = \phi \phi'
\]

(5.16)

and in addition we have fixed the constant \(\gamma_0 \) for later convenience. Let us write out the first several cases of (5.15):

\[
\begin{align*}
2T_{2\alpha}^0(\phi) &= \frac{1}{2} (\phi')^2 \\
2T_{4\alpha}^0(\phi) &= \phi''' \phi' - \frac{3}{2} (\phi'')^2 \\
2T_{6\alpha}^0(\phi) &= \phi^{(5)} \phi' - 10 \phi^{(4)} \phi'' + 10 (\phi''')^2
\end{align*}
\]

(5.17)

where (standardly) \(\phi' \equiv \partial_x \phi = \phi^{(1)} \), \(\phi'' \equiv \partial_x^2 \phi = \phi^{(2)} \), \(\phi''' \equiv \partial_x^3 \phi = \phi^{(3)} \). Note that (5.17c) (i.e., (5.13) for \(n = 4 \)) was already given in (1.7). We give now two important technical statements.

Lemma 1: For \(n > 2 \) the (formal) substitution \(\phi(x) \mapsto \frac{\alpha x - \gamma}{\delta - \beta x} \) in the intertwining differential operators (5.13) gives zero:

\[
2T_{n\alpha}^0(\phi_0) = 0, \quad \phi_0(x) \equiv \frac{\alpha x - \gamma}{\delta - \beta x}, \quad n \in 2 + 2\mathbb{N}
\]

(5.18)

Proof: By direct substitution. In the calculations one uses the fact:

\[
\partial_x^m \frac{\alpha x - \gamma}{\delta - \beta x} = \frac{(-1)^m m! \beta^{m-1}}{(\delta - \beta x)^{m+1}}, \quad m \in \mathbb{N}
\]

(5.19)

After the substitution of (5.19) in (5.15) the resulting expression is proportional to \((1 - 1)^{n-2}\) which is zero for \(n > 2 \); (the latter making clear why the Lemma is not valid for \(n = 2 \)).

Lemma 2: Let \(\phi, \psi \in \text{Diff}_0 S^1 \), the group of orientation preserving diffeomorphisms of the circle \(S^1 = \mathbb{R}/2\pi \mathbb{Z} \). Then we have:

\[
\begin{align*}
2T_{n\alpha}^0(\phi \circ \psi) &= (\psi')^n 2T_{n\alpha}^0(\phi), \quad n = 1, 2 \quad (5.20) \\
2T_{n\alpha}^0(\phi \circ \psi) &= (\psi')^n 2T_{n\alpha}^0(\phi) + (\phi')^2 2T_{n\alpha}^0(\psi) + P_n(\phi, \psi), \quad n \in 2 + 2\mathbb{N} \\
\quad + P_n(\phi, \phi_0) \quad (5.21a) \\
P_4(\phi, \psi) &= 0 \quad (5.21b) \\
P_n(\phi, \phi_0) &= 0, \quad n \in 4 + 2\mathbb{N} \quad (5.21c)
\end{align*}
\]

21
Proof: For (5.20) and (5.21a,b) this is just substitution. Further we note that:

\[2\mathcal{I}^0_{n\alpha} (\phi \circ \phi_0) = (\phi')^n 2\mathcal{I}^0_{n\alpha} (\phi), \quad \phi_0(x) = \frac{\alpha x - \gamma}{\delta - \beta x} \]

is just the intertwining property of \(2\mathcal{I}^0_{n\alpha} \) and then (5.21c) follows because of Lemma 1. ●

Remark 4: We give an example from the last Lemma:

\[P_6(\phi, \psi) = 10 (\psi')^2 \left(3 \phi''' \phi' - 4 (\phi'')^2 \right) 2\mathcal{I}^0_{4\alpha} (\psi) - 5 \phi'' \phi' \left(\psi^{(4)} (\psi')^2 - 6 \psi''' \psi'' \psi' + 6 (\psi'')^3 \right) \]

Using (5.19) it is straightforward to show \(P_6(\phi, \phi_0) = 0 \). In fact, the first term in (5.23) vanishes for \(\psi = \phi_0 \) because of (5.18). The vanishing of the second term in (5.23) prompts us that the trilinear expression in \(\psi \) is also a intertwining differential operator. This is indeed so, cf. the last Section for some more examples for trilinear operators. ◇

We can introduce now a hierarchy of \(GL(2, \mathbb{R}) \) invariant \(\frac{n}{2} \)-differentials for every \(n \in 2\mathbb{N} \):

\[\text{Sch}_n(\phi) = 2\mathcal{I}^0_{n\alpha} (\phi) \left(\frac{dx}{\phi'} \right)^{n/2}, \quad n \in 2\mathbb{N} \] (5.24a)

\[\text{Sch}_n (\phi \circ \phi_0) = \text{Sch}_n (\phi) \circ \phi_0, \quad \phi_0(x) = \frac{\alpha x - \gamma}{\delta - \beta x} \] (5.24b)

where the property (5.24b) is just a restatement of (5.22) for \(n > 2 \) and (5.20) for \(n = 2 \). The usual Schwarzian \(\text{Sch}_4 \) is one of these objects (cf. (1.10)). It has an additional property:

\[\text{Sch}_4 (\phi \circ \psi) = \text{Sch}_4 (\phi) \circ \psi + \text{Sch}_4 (\psi), \quad \phi, \psi \in \text{Diff}_0 S^1 \] (5.25)

showing that it is a 1-cocycle on \(\text{Diff}_0 S^1 \) [20], [19].

Remark 5: One may consider also \textit{half-differentials} and using (5.24a) and (5.16) write:

\[\text{Sch}_1(\phi) = 2\mathcal{I}^0_{\alpha} (\phi) \left(\frac{dx}{\phi'} \right)^{1/2} = \phi (\phi' dx)^{1/2} = \phi (d\phi)^{1/2} \] (5.26)

Property (5.24b) then follows from (5.20). ◇

Finally, we just mention the case when the resulting functions are invariant: \(c' = 0 \iff c = -n \). This is only possible when \(n \) is even, cf. (3.3). Formula (5.12) with (3.3) substituted simplifies considerably:

\[2\mathcal{I}^{-n}_{n\alpha} (\phi) = \sum_{j=0}^{n/2} (-1)^j \left(1 - \frac{1}{2} \delta j, n/2 \right) \phi^{(n-j)} \phi^{(j)} = \phi^{(n)} \phi - \phi^{(n-1)} \phi' + \phi^{(n-2)} \phi'' - \phi^{(n-3)} \phi''' + \ldots + \frac{1}{2} (-1)^{n/2} \left(\phi^{(n/2)} \right)^2, \quad n \in 2\mathbb{N} \] (5.27)

and we have fixed the constant \(\gamma_0 \) appropriately.
5.4. Now we consider to the case $G = SL(3, IR)$. We denote: $x = z_1^2$, $y = z_2^3$, $z = z_3^3$. The right action is $(\phi = \phi(x, y, z))$

\[
\hat{X}_1 \phi = (\partial_x + y \partial_z) \phi, \quad \hat{X}_2 \phi = \partial_y \phi, \quad \hat{X}_3 \phi = \partial_z \phi \quad (5.28)
\]

and we have given it also for the nonsimple root vector $X_3^- = [X_2^-, X_1^-]$.

The bilinear operator corresponding to (3.5) is:

\[
\frac{3}{2}T^\lambda_{\alpha}(\phi) = \phi \left((\Lambda_1 - \Lambda_2) (\phi_{xy} + y \phi_{yz}) - \Lambda_2 \phi_z \right) - (\Lambda_1 + \Lambda_2 + 1) \phi_y (\phi_x + y \phi_z) \quad (5.29)
\]

where $\alpha = \alpha_3 = \alpha_1 + \alpha_2$, $\phi_2 \equiv \frac{\partial \phi}{\partial z}$, etc. The two bilinear operators corresponding to (3.6) are given by:

\[
\frac{3}{2}T^\lambda_{2\alpha}(\phi) = (a_1 + a_2 + 2a_3) \phi \phi_{zz} + (a_2 + 2a_3) \phi \phi_{xyz} + (a_2 + 4a_3) y \phi \phi_{yzz} + \\
+ a_3 \phi \left(\phi_{xxyy} + y \phi_{xyyz} + y^2 \phi_{yyzz} \right) + \\
+ (b_1 + 2c_1) \phi_y (\phi_{xz} + y \phi_{zz}) + (b_2 - 2c_2) (\phi_x + y \phi_z) \phi_{yz} + \\
+ c_1 \phi_y (\phi_{xxy} + 2y \phi_{xyz} + y^2 \phi_{yz}) + \\
+ c_2 (\phi_x + y \phi_z) (\phi_{xyy} + y \phi_{yz}) + \\
+ (d_1 + d_2 + d_3) \phi_{z}^2 + (d_2 + 2d_3) \phi_z (\phi_{xy} + y \phi_z) + \\
+ d_3 (\phi_{xy} + y \phi_{yz})^2 + d_4 \phi_y^2 (\phi_x + y \phi_z)^2
\]

with constants as given in (3.6b, c).

The intertwining property is:

\[
\frac{3}{2}T^\lambda_{n\alpha} \circ \left(\hat{L}^c(X) \otimes 1_u + 1_u \otimes \hat{L}^c(X) \right) = \hat{L}^c(X) \circ \frac{3}{2}T^\lambda_{n\alpha}, \quad \forall X \in \mathcal{G} \quad (5.31)
\]

where $c_i = -\Lambda_i = -\Lambda(H_i)$, $\Lambda' = 2\Lambda - n\alpha$, $c_i' = -\Lambda'(H_i) = -2\Lambda(H_i) + n\alpha(H_i) = -2\Lambda_i + n = 2c_i + n$, $i = 1, 2$, since $\alpha(H_i) = (\alpha_1 + \alpha_2)(H_i) = 1$.

The case of invariant functions, i.e., $c_k = \epsilon_k = 0$ gives a trivial (zero) operator $n = 2$, while for $n = 1$ we have (up to scalar multiple):

\[
\frac{3}{2}T^0_{\alpha}(\phi) = \phi_y (\phi_x + y \phi_z) \quad (5.32)
\]

In the case of invariant resulting functions, i.e., $c_k' = \epsilon_k' = 0$, $\Lambda = n\alpha/2$, $\Lambda_i = n/2$, we have from (5.29):

\[
\frac{3}{2}T^\alpha_{1/2}(\phi) = \frac{1}{2} \phi_z + 2 \phi_y (\phi_x + y \phi_z) \quad (5.33)
\]
while from (3.30) we have two operators corresponding to the two solutions given by (3.6b,c), resp.:

\[\frac{3T^\alpha}{2} - 2 \phi \phi_{zz} + 2 y \phi \phi_{yzz} - \phi (\phi_{xyy} + y \phi_{xyyz} + y^2 \phi_{yxy}) - \]
\[- 2 \phi_y (\phi_{xz} + y \phi_{zz}) + 6 (\phi_x + y \phi_z) \phi_{yz} + \]
\[+ 2 \phi_y (\phi_{xy} + 2 y \phi_{xyz} + y^2 \phi_{yxx}) + \]
\[+ 2 (\phi_x + y \phi_z) (\phi_{xyy} + y \phi_{yxy}) - \]
\[- 2 \phi_{zz} - 2 \phi_z (\phi_{xy} + y \phi_{yz}) - 2 (\phi_{xy} + y \phi_{yz})^2 \] (5.34b)

\[\frac{3T^\alpha}{2} - 2 \phi \phi_{zz} = \phi^2 (\phi_x + y \phi_z)^2 \] (5.34a)

6. Examples with \(k \geq 3 \)

We return now to the \(\text{GL}(2, \mathbb{R}) \) setting to give examples of trilinear intertwining differential operators using the singular vectors of tri-Verma modules above. The trilinear intertwining differential operators for the case of \(G = \text{sl}(2, \mathbb{R}) \) are given by the formula:

\[3I_{n\alpha}^A (\phi) = \sum_{j,k \in \mathbb{Z}, \ n-j-k \geq j \geq k} \gamma^A_{njk} \phi^{(n-j-k)} \phi^{(j)} \phi^{(k)} \] (6.1)

where the coefficients \(\gamma^A_{njk} \) are given from the expressions for the corresponding singular vectors of tri-Verma modules, e.g., those given in the previous subsection.

If we pass to the group level then the possible weights are restricted to be 'integer' (as in Theorem 2) : \(\Lambda(H) = p \in \mathbb{Z} \) and the corresponding intertwining property is:

\[3I_{n\alpha}^A \circ (T^{c,e}(g) \otimes T^{c,e}(g) \otimes T^{c,e}(g)) = T^{c',e'}(g) \circ 3I_{n\alpha}^A , \quad \forall g \in G \]
\[c = -\Lambda(H) = -p, \quad c' = 3(c + n) = 3(n - p), \quad e = e' = p (\text{mod 2}) \] (6.2)

Next we restrict to the example of invariant functions \(\phi \), i.e., \(c = e = 0 \). The trilinear intertwining differential operators obtained from the singular vectors in (3.10) are:

\[3I_0^A (\phi) = (\phi)^2 \phi' \] (6.3a)
\[3I_2^A (\phi) = \phi (\phi')^2 \] (6.3b)
\[3I_3^A (\phi) = (\phi')^3 \] (6.3c)
\[3I_4^A (\phi) = \phi (\phi'' \phi' - \frac{3}{2} (\phi'')^2) \] (6.3d)
\[3I_5^A (\phi) = \phi' (\phi'' \phi' - \frac{3}{2} (\phi'')^2) \] (6.3e)
\[3I_6^A (\phi) = \phi^{(4)} (\phi')^2 - 6 \phi'' \phi'' \phi' + 6 (\phi'')^3 \] (6.3f)
\[3I_6^A (\phi) = \phi (\phi'' \phi' - 10 \phi' (\phi'')^2 + 10 (\phi'')^3) \] (6.3f')
We recall that the operator in (6.3f) has appeared in (5.23).

Analogously to Lemma 1 we note that for \(n > 3 \) the (formal) substitution \(\phi(x) \mapsto \frac{\alpha x - \gamma}{\delta - \beta x} \) in the intertwining differential operators (6.3) gives zero:

\[
3\mathcal{T}^0_{n\alpha}(\phi_0) = 0, \quad \phi_0(x) \equiv \frac{\alpha x - \gamma}{\delta - \beta x}, \quad n > 3
\]

which because of the factorization follows from Lemma 1 except for (6.3f).

Analogously to Lemma 2 for \(\phi, \psi \in \text{Diff}_0 S^1 \) one can check for the examples in (6.3):

\[
3\mathcal{T}^0_{n\alpha}(\phi \circ \psi) = (\psi')^n 3\mathcal{T}^0_{n\alpha}(\phi), \quad n = 1, 2, 3
\]

\[
3\mathcal{T}^0_{5\alpha}(\phi \circ \psi) = (\psi')^5 3\mathcal{T}^0_{5\alpha}(\phi) + (\phi')^3 3\mathcal{T}^0_{5\alpha}(\psi)
\]

\[
3\mathcal{T}^0_{6\alpha}(\phi \circ \psi) = (\psi')^6 3\mathcal{T}^0_{6\alpha}(\phi) + (\phi')^3 3\mathcal{T}^0_{6\alpha}(\psi) - 2 \phi'' (\phi' \psi')^2 2\mathcal{T}^0_{4\alpha}(\psi)
\]

Consider now the case of resulting invariant functions, i.e., \(c' = c'' = 0 \), i.e., \(p = \Lambda(H) = \hat{\Lambda} = n \). There is no operator for \(n = 1 \), while for \(n > 1 \) we get from (3.10):

\[
3v_{s}^{2\alpha} = 2 \phi'' \phi^2 - \phi'^2 \phi, \quad \hat{\Lambda} = 2
\]

\[
3v_{s}^{3\alpha} = 9 \phi''' \phi^2 - 9 \phi'' \phi' \phi + 4 \phi'^3, \quad \hat{\Lambda} = 3
\]

\[
3v_{s}^{4\alpha} = 2 \phi^{(4)} \phi^2 - 2 \phi''' \phi' \phi + (\phi'')^2 \phi, \quad \hat{\Lambda} = 4
\]

\[
3v_{s}^{5\alpha} = 25 \phi^{(5)} \phi^2 - 25 \phi^{(4)} \phi' \phi + 5 \phi''' \phi'' \phi + 16 \phi''' \phi'^2 - 9 (\phi'')^2 \phi', \quad \hat{\Lambda} = 5
\]

\[
3v_{s}^{6\alpha} = 60 \phi^{(4)} \phi' \phi - 50 \phi^{(4)} \phi'^2 - 45 \phi''' \phi^2 + 60 \phi''' \phi'' \phi' - 24 (\phi'')^3, \quad \hat{\Lambda} = 6
\]

\[
3v_{s}^{6\alpha} = 2 \phi^{(6)} \phi^2 - 2 \phi^{(5)} \phi' \phi + 2 \phi^{(4)} \phi'' \phi - \phi''' \phi^2, \quad \hat{\Lambda} = 6
\]

We see that at lower levels there occur many factorizations and trilinear operators are actually determined by bilinear ones. We illustrate this by two statements for arbitrary k-Verma modules and the corresponding multilinear intertwining differential operators.
Proposition 4: The singular vectors of the k-Verma modules kV^Λ of level $n\alpha$ with $n \in \mathbb{N}$, $n \leq k$, $\alpha \in \Delta_S$, in the case $\Lambda(H_\alpha) = 0$ are given by:

$$k^nv_n^{\alpha} = \gamma_0 \left\{ \prod_{n} X^-_\alpha \otimes \cdots \otimes X^-_\alpha \otimes \prod_{k-n} 1_u \otimes \cdots \otimes 1_u \right\} \otimes v_0, \quad 1 \leq n \leq k, \quad \Lambda(H_\alpha) = 0$$

(6.8)

Proof: By direct verification. •

Proposition 5: The $GL(2, \mathbb{R})$ multilinear intertwining differential operators with the property:

$$kT^0_{n\alpha} \circ T^{c,\epsilon}(g) \otimes \cdots \otimes T^{c,\epsilon}(g) = T^{c',\epsilon'}(g) \circ kT^0_{n\alpha}, \quad \forall g \in G$$

$$c = -\Lambda(H) = 0, \quad c' = kn, \quad \epsilon = \epsilon' = 0$$

are given by:

$$kT^0_{n\alpha}(\phi) = \phi^{n-k}(\phi')^n, \quad 1 \leq n \leq k, \quad \Lambda(H) = 0$$

(6.10)

Proof: Follows from Propositions 3 & 4. •

We note that the operators in (5.16), (5.17a), (5.3a,b,c) are partial cases of (6.10).

Appendix A. Tensor, symmetric and universal enveloping algebras

Let E be a vector space over F. The tensor algebra $T(E)$ over E is defined as the free algebra generated by the unit element. We have

$$T(E) = \bigoplus_{k=0}^{\infty} T_k(E), \quad T_k(E) \equiv \underbrace{E \otimes \cdots \otimes E}_k, \quad T_0(E) = F.1.$$ (A.1)

The elements $t \in T_k(E)$ are called covariant tensors of rank k

$$t = \sum t^{i_1 \ldots i_k} e_{i_1} \otimes \cdots \otimes e_{i_k}$$ (A.2)

where $e_i \in S$, S is a basis of E, $t^{i_1 \ldots i_k} \in F$. (The rank of a covariant tensor does not depend on the choice of basis of E.) The tensor t is called symmetric tensor if $t^{i_1 \ldots i_k}$ is symmetric in all indices. Let us denote

$$S(E) = \bigoplus_{k=0}^{\infty} S_k(E)$$ (A.3)
where \(S_k(E) \) is the subspace of all symmetric tensors of rank \(k \). Note that if \(\dim E = n < \infty \), then:
\[
\dim S_k(E) = \binom{n + k - 1}{k}
\]

Let \(I(E) \), resp., \(I_k(E) \), be the two–sided ideal of \(T(E) \), resp., \(T_k(E) \), generated by all elements of the type \(x \otimes y - y \otimes x \), \(x, y \in E \). Then we have
\[
T(E) = S(E) \oplus I(E), \quad S(E) \cong T(E)/I(E), \quad S_k(E) \cong T_k(E)/I_k(E) \tag{A.5}
\]

Consider now a Lie algebra \(\mathcal{G} \). The universal enveloping algebra \(U(\mathcal{G}) \) of \(\mathcal{G} \) is defined as the associative algebra with generators \(e_i \), where \(e_i \) forms a basis of \(\mathcal{G} \) and the relations
\[
e_i \otimes e_j - e_j \otimes e_i = \sum_k c_{ij}^k e_k \equiv [e_i, e_j] \tag{A.6}
\]
hold, where \(c_{ij}^k \) are the structure constants of \(\mathcal{G} \). Equivalently \(U(\mathcal{G}) \cong T(\mathcal{G})/J(\mathcal{G}) \), where \(T(\mathcal{G}) \) is the tensor algebra over \(\mathcal{G} \), \(J(\mathcal{G}) \) is the ideal generated by the elements \([x, y] - (x \otimes y - y \otimes x)\). Since \(T(\mathcal{G}) = U(\mathcal{G}) \oplus J(\mathcal{G}) = S(\mathcal{G}) \oplus I(\mathcal{G}) \) and \(J(\mathcal{G}) \cong I(\mathcal{G}) \) are isomorphic, then also \(U(\mathcal{G}) \cong S(\mathcal{G}) \) as vector spaces. This is the content of the Poincaré–Birkhoff–Witt (PBW) theorem.

Further in the case of \(U(\mathcal{G}) \) we shall omit the \(\otimes \) signs in the expressions for its elements. With this convention as a consequence of the PBW theorem \(U(\mathcal{G}) \) has the following basis:
\[
e_0 = 1, \quad e_{i_1 \ldots i_k} = e_{i_1} \ldots e_{i_k}, \quad i_1 \leq \ldots \leq i_k \tag{A.7}
\]
where we are assuming some ordering of the basis of \(\mathcal{G} \), e.g., the lexicographic one.

Finally we recall that \(\mathcal{G} \) and \(U(\mathcal{G}) \) are completely determined from the following commutation relations:
\[
[H_i , H_j] = 0, \quad [H_i , X^\pm_j] = \pm a_{ij} X_j^\pm \tag{A.8a}
\]
\[
[X^+_i , X^-_j] = \delta_{ij} H_i \tag{A.8b}
\]
and Serre relations:
\[
\sum_{k=0}^n (-1)^k \binom{n}{k} (x^\pm_i)^k x^\pm_j (x^\pm_i)^{n-k} = 0, \quad i \neq j, \quad n = 1 - a_{ij} \tag{A.9c}
\]
where \(X^\pm_i , H_i , i = 1, \ldots, \ell = \text{rank } \mathcal{G} \) are the Chevalley generators of \(\mathcal{G} \), (corresponding to the simple roots \(\alpha_i \)), \((a_{ij}) = (2(\alpha_i , \alpha_j)/(\alpha_i , \alpha_i)) \) is the Cartan matrix of \(\mathcal{G} \), and \((\cdot , \cdot) \) is normalized so that for the short roots \(\alpha \) we have \((\alpha , \alpha) = 2\).
7. Note Added

This note should be read after Remark 4. It was published first in our paper: Phys. Atom. Nucl. 61 (1998) 1735-1742.

Let us introduce the following notation:

\[
\tilde{\text{Sch}}_n(\phi) \doteq \frac{1}{\phi'^2} 2I_{\alpha}^n(\phi) .
\] (7.1)

It is well known (cf., e.g., [33]) that the famous KdV equation may be rewritten in the Krichever-Novikov form:

\[
\partial_t f + \tilde{\text{Sch}}_4(\phi) \cdot f' = 0 , \quad f = f(t,x) ,
\] (7.2)

noting that \(\tilde{\text{Sch}}_4(\phi)\) is the Schwarz derivative \(S[f]\), cf. (1.10). To pass to the standard KdV form:

\[
\partial_t u + u''' - 6uu' = 0 ,
\] (7.3)

one uses the substitution \(u = -\frac{1}{2} \tilde{\text{Sch}}_4(\phi)\), [33]. Motivated by the above we make the Conjecture that the following equations:

\[
\partial_t f + \tilde{\text{Sch}}_n(\phi) \cdot f' = 0 , \quad n \in 2\mathbb{N} + 2 ,
\] (7.4)

are integrable (true for \(n = 4\)). It may happen (if the conjecture is true) that this hierarchy of equations coincides with the KdV one. Then formulae (7.4), (7.1) and (5.13) would give an explicit expression for the whole KdV hierarchy in the Krichever-Novikov form.

Acknowledgments

The author would like to thank H.-D. Doebner for stimulating discussions and W. Scherer for pointing out ref. [19]. The author was supported in part by BNFR under contracts Ph-401 and Ph-643.
References

[1] Baston R.J.: Verma modules and differential conformal invariants. J. Diff. Geom. 32, 851-898 (1990)
[2] Baston R.J.: Almost Hermitian symmetric manifolds, I: Local twistor theory, II: Differential invariants. Duke. Math. J. 63, 81-111, 113-138 (1991)
[3] Bailey T.N., Eastwood M.G., Graham C.R.: Invariant theory for conformal and CR geometry. Ann. Math. 139, 491-552 (1994)
[4] Bernstein I.N., Gel’fand I.M., Gel’fand S.I.: Structure of representations generated by highest weight vectors. Funkts. Anal. Prilozh. 5 (1), 1–9 (1971); English translation: Funkt. Anal. Appl. 5, 1–8 (1971)
[5] Boe B.D., Collingwood D.H.: A comparison theory for the structure of induced representations I & II. J. Algebra, 94, 511-545 (1985) & Math. Z. 190, 1-11 (1985)
[6] Branson T.P.: Differential operators canonically associated to a conformal structure. Math. Scand. 57, 293-345 (1985)
[7] Čap A., Slovák J., Souček V.: Invariant operators on manifolds with almost hermitian structures, I. Invariant differentiation. preprint ESI 186, Vienna, 1994: II. Normal Cartan connections. to appear
[8] Dixmier J.: Enveloping Algebras. New York: North Holland 1977
[9] Dobrev V.K.: Elementary representations and intertwining operators for SU(2, 2): I. J. Math. Phys. 26, 235-251 (1985)
[10] Dobrev V.K.: Canonical construction of intertwining differential operators associated with representations of real semisimple Lie groups. Rep. Math. Phys. 25, 159-181 (1988)
[11] Dobrev V.K., Mack G., Petkova V.B., Petrova S.G., Todorov I.T.: Harmonic Analysis on the n - Dimensional Lorentz Group and Its Applications to Conformal Quantum Field Theory. Lecture Notes in Phys., No 63, Berlin: Springer-Verlag 1977
[12] Dobrev V.K., Petkova V.B.: Elementary representations and intertwining operators for the group SU*(4). Rep. Math. Phys. 13, 233-277 (1978)
[13] Eastwood M.G., Graham, C.R.: Invariants of conformal densities, Duke. Math. J. 63, 633-671 (1991)
[14] Eastwood M.G., Rice J.W.: Conformally invariant differential operators on Minkowski space and their curved analogues. Commun. Math. Phys. 109, 207-228 (1987)
[15] Gel’fand I.M., Graev M.I., Vilenkin N.Ya.: Generalized Functions, Vol. 5: Integral Geometry and Representation Theory. New York Academic Press 1966
[16] Gover A.R.: Conformally invariant operators of standard type. Quart. J. Math. 40, 197-208 (1989)
[17] Jakobsen H.P.: A spin-off from highest weight representations; conformal covariants, in particular for O(3, 2). in: Lecture Notes in Phys. Vol. 261, pp. 253-265. Berlin:
Springer-Verlag 1986;
Conformal covariants. Publ. RIMS, Kyoto Univ. 22, 345-364 (1986)

[18] Jakobsen H.P., Vergne M.: Wave and Dirac operators, and representations of the conformal group. J. Funct. Anal. 24, 52-106 (1977)

[19] Kirillov A.A.: Orbits of the group of diffeomorphisms of a circle and local Lie superalgebras, Funkts. Anal. Prilozh. 15 (2), 75-76 (1981); English translation: Funct. Anal. Appl. 15, 135-137 (1981)

[20] Kirillov A.A.: Infinite dimensional Lie groups, their orbits, invariants and representations. The geometry of moments. In: Doebner H.-D., Palev T.D. (eds.) Twistor Geometry and Non-Linear Systems. Proceedings, 4th Bulgarian Summer School on Mathematical Problems of Quantum Field Theory, Primorsko, 1980, pp. 101-123. Lecture Notes in Math., Vol. 970. Berlin: Springer-Verlag 1982

[21] Knapp A.W.: Representation Theory of Semisimple Groups (An Overview Based on Examples). Princeton: Princeton Univ. Press 1986

[22] Knapp A.W., Stein E.M.: Intertwining operators for semisimple groups. Ann. Math. 93, 489-578 (1971); II: Inv. Math. 60, 9-84 (1980)

[23] Knapp A.W., Zuckerman G.J.: Classification theorems for representations of semisimple Lie groups. In: Lecture Notes in Math. Vol. 587, pp. 138-159. Berlin: Springer-Verlag 1977;
Classification of irreducible tempered representations of semisimple groups. Ann. Math. 116, 389-501 (1982)

[24] Kostant B.: Verma modules and the existence of quasi-invariant differential operators. In: Lecture Notes in Math., Vol. 466. p. 101. Berlin: Springer-Verlag 1975

[25] Langlands R.P.: On the classification of irreducible representations of real algebraic groups. preprint, Institute for Advanced Study, Princeton (1973); published in: Representation Theory and Harmonic Analysis on Semisimple Lie Groups, eds. P. Sally and D. Vogan (1989) pp. 101-170.

[26] Ørsted B.: Conformally invariant differential equations and projective geometry. J. Funct. Anal. 44, 1-23 (1981)

[27] Petkova V.B., Sotkov G.M.: The six-point families of exceptional representations of the conformal group. Lett. Math. Phys. 8, 217-226 (1984)

[28] Speh B., Vogan D.A.: Reducibility of generalized principal series representations. Acta Math. 145, 227-299 (1980)

[29] Weyl H.: The Classical Groups. Princeton: Princeton Univ. Press, 1939

[30] Wünsch V.: On conformally invariant differential operators. Math. Nachr. 129, 269-281 (1986)

[31] Zhelobenko D.P.: Harmonic Analysis on Semisimple Complex Lie Groups. Moscow: Nauka 1974 (in Russian)

[32] Zhelobenko D.P.: Discrete symmetry operators for reductive Lie groups. Math. USSR Izv. 40, 1055-1083 (1976)

[33] Volkov A.Yu., Lett. Math. Phys. (1997) 39, 313.

30