Addendum: Ultrahigh-energy cosmic-ray bounds on nonbirefringent modified-Maxwell theory

F.R. Klinkhammer

Institute for Theoretical Physics, University of Karlsruhe (TH),
76128 Karlsruhe, Germany

M. Risse

University of Wuppertal, Physics Department,
Gaußstraße 20, 42097 Wuppertal, Germany

Abstract

Nonbirefringent modified-Maxwell theory, coupled to standard Dirac particles, involves nine dimensionless parameters, which can be bounded by the inferred absence of vacuum Cherenkov radiation for ultrahigh-energy cosmic rays (UHECRs). With selected UHECR events, two-sided bounds on the eight nonisotropic parameters are obtained at the 10^{-18} level, together with an improved one-sided bound on the single isotropic parameter at the 10^{-19} level.

PACS numbers: 11.30.Cp, 12.20.-m, 41.60.Bq, 98.70.Sa

Keywords: Lorentz violation, quantum electrodynamics, Cherenkov radiation, cosmic rays
In Ref. [1], ultrahigh-energy-cosmic-ray (UHECR) bounds have been given for the nine Lorentz-violating “deformation parameters” of nonbirefringent modified-Maxwell theory coupled to standard Dirac particles, where the parameters were restricted to a particular domain. In this addendum, we obtain corresponding results for two sets of nonisotropic parameters outside this domain (the two sets are, respectively, parity-odd and parity-even). These new bounds are essentially two-sided, whereas an improved bound on the single isotropic parameter remains one-sided. For convenience, the final bounds will be presented in terms of the widely-used standard-model-extension (SME) parameters [2, 3].

The ‘Note Added in Proof’ of Ref. [1] used 29 UHECR events [4, 5, 6] which, for completeness, are listed in Table I. From the energies and flight directions of these 29 UHECR events, the following two-σ bound was obtained on the quadratic sum of the nine nonbirefringent

Year	Day	E [EeV]	RA [deg]	DEC [deg]	Year	Day	E [EeV]	RA [deg]	DEC [deg]
1991	288	320	85.2	48.0	2006	81	79	201.1	−55.3
1993	337	210	18.9	21.1	2006	185	83	350.0	9.6
2004	125	70	267.1	−11.4	2006	296	69	52.8	−4.5
2004	142	84	199.7	−34.9	2006	299	69	200.9	−45.3
2004	282	66	208.0	−60.3	2007	13	148	192.7	−21.0
2004	339	83	268.5	−61.0	2007	51	58	331.7	2.9
2004	343	63	224.5	−44.2	2007	69	70	200.2	−43.4
2005	54	84	17.4	−37.9	2007	84	64	143.2	−18.3
2005	63	71	331.2	−1.2	2007	145	78	47.7	−12.8
2005	81	58	199.1	−48.6	2007	186	64	219.3	−53.8
2005	295	57	332.9	−38.2	2007	193	90	325.5	−33.5
2005	306	59	315.3	−0.3	2007	221	71	212.7	−3.3
2005	306	84	114.6	−43.1	2007	234	80	185.4	−27.9
2006	35	85	53.6	−7.8	2007	235	69	105.9	−22.9
2006	55	59	267.7	−60.7					
Lorentz-violating parameters α^l [1]:

$$\vec{\alpha} \in D^{(\text{open})}_{\text{causal}} : |\vec{\alpha}|^2 \equiv \sum_{l=0}^{8} (\alpha^l)^2 < A^2,$$

$$A = 3 \times 10^{-18} \left(\frac{M_{\text{prim}}}{56 \text{ GeV}/c^2} \right)^2,$$

showing explicitly the dependence on the mass of the primary charged particle (taken equal for all events). There are indications [4] that these UHECRs originate predominantly from protons but, in order to be on the safe side, we will later take the mass M_{prim} to be equal to that of iron, $M_{\text{prim}} = 56 \text{ GeV}/c^2$. Bound (1) as well as all other bounds in this addendum are based on the Cherenkov threshold condition (10) in Sec. II B of Ref. [1] and the reader is referred to this section, in particular, for further details.

The domain used in (1a) is defined by

$$D^{(\text{open})}_{\text{causal}} \equiv \{ \vec{\alpha} \in \mathbb{R}^9 : \forall \vec{x} \in \mathbb{R}^3 (\alpha^0 + \alpha^j \hat{x}^j + \tilde{\alpha}^{jk} \hat{x}^j \hat{x}^k) > 0 \},$$

where $\hat{x} \equiv \vec{x}/|\vec{x}|$ denotes a unit vector in Euclidean three-space and the traceless symmetric 3×3 matrix $\tilde{\alpha}^{jk}$ is defined in terms of the parameters α^l for $l = 4, \ldots, 8$ (see below). The parameter domain (2) allows for vacuum Cherenkov radiation in all directions and, with boundaries added, is believed to constitute a significant part of the physical domain of the theory, where, e.g., unitarity and microcausality hold; cf. Appendix C of Ref. [7]. It may, nevertheless, be of interest to get bounds outside this domain, because modified-Maxwell theory could be only part of the full Lorentz-noninvariant theory.

The crucial observation is that domain (2) shrinks to zero size in the hyperplane $\alpha^0 = \tilde{\alpha}^{jk} = 0$, so that bound (1a) becomes ineffective there. Still, the data from Table II can be used to get the following two–σ bound on the three parity-odd nonisotropic parameters in this hyperplane

$$\alpha^0 = \alpha^4 = \alpha^5 = \alpha^6 = \alpha^7 = \alpha^8 = 0 : \sum_{j=1}^{3} (\alpha^j)^2 < \left(4 \times 10^{-18} \right)^2 \left(\frac{M_{\text{prim}}}{56 \text{ GeV}/c^2} \right)^4 .$$

Similarly, there is a two–σ bound on the five parity-even nonisotropic parameters in an orthogonal hyperplane

$$\alpha^0 = \alpha^1 = \alpha^2 = \alpha^3 = 0 : \sum_{l=4}^{8} (\alpha^l)^2 < \left(4 \times 10^{-18} \right)^2 \left(\frac{M_{\text{prim}}}{56 \text{ GeV}/c^2} \right)^4 .$$

It is, in principle, possible to get other bounds for the eight nonisotropic parameters, but, for the moment, bounds (3) and (4) suffice.

If only a single parameter α^l for $l \in \{1, \ldots, 8\}$ is considered (all seven other nonisotropic parameters and the isotropic parameter α^0 being zero), bounds (3) and (4) give a two-sided
bound on that single isolated parameter. Setting $M_{\text{prim}} = 56 \text{ GeV}/c^2$ and showing explicitly the approximate one-σ error, these bounds are

$$l \in \{1, \ldots, 8\} : \quad |\alpha| < (2 \pm 1) \times 10^{-18},$$

(5)

for $\alpha^0 = \alpha^m = 0$ with $m \in \{1, \ldots, 8\}$ and $m \neq l$. Incidentally, the possibility of getting certain two-sided Cherenkov bounds from an isotropic set of UHECR events has already been noted in Appendix C of Ref. [7].

For completeness, we also give the following one-sided bound on the single α^0 parameter

$$\alpha^0 < (1.4 \pm 0.7) \times 10^{-19},$$

(6)

for $\alpha^m = 0$ with $m \in \{1, \ldots, 8\}$. Bound (6) has been derived by setting $M_{\text{prim}} = 56 \text{ GeV}/c^2$ and using the 148 EeV Auger event from Table II which has a reliable energy calibration [4]. For the Fly’s Eye event with an estimated energy of 320 EeV [5], bound (6) would be reduced by a factor of approximately 5 according to Eq. (10) in Ref. [1].

In order to facilitate the comparison with existing laboratory bounds and future ones, we provide a dictionary between our α^l (or $\tilde{\alpha}^{\mu\nu}$) parameters and the nonbirefringent SME parameters defined by Eq. (11) in Ref. [3]:

$$\tilde{\alpha} \equiv \begin{pmatrix} \alpha^0 \\ \alpha^1 \\ \alpha^2 \\ \alpha^3 \\ \alpha^4 \\ \alpha^5 \\ \alpha^6 \\ \alpha^7 \\ \alpha^8 \end{pmatrix} \equiv \begin{pmatrix} \tilde{\alpha}^{00} \\ \tilde{\alpha}^{01} \\ \tilde{\alpha}^{02} \\ \tilde{\alpha}^{03} \\ \tilde{\alpha}^{11} \\ \tilde{\alpha}^{12} \\ \tilde{\alpha}^{13} \\ \tilde{\alpha}^{22} \\ \tilde{\alpha}^{23} \end{pmatrix} = \begin{pmatrix} 2 \tilde{\kappa}_{\text{tr}} \\ -2 (\tilde{\kappa}_{\alpha+})^{(23)} \\ -2 (\tilde{\kappa}_{\alpha+})^{(31)} \\ -2 (\tilde{\kappa}_{\alpha+})^{(12)} \\ - (\tilde{\kappa}_{e-})^{(11)} \\ - (\tilde{\kappa}_{e-})^{(12)} \\ - (\tilde{\kappa}_{e-})^{(13)} \\ - (\tilde{\kappa}_{e-})^{(22)} \\ - (\tilde{\kappa}_{e-})^{(23)} \end{pmatrix}.$$

(7)

The Cartesian coordinates employed (cf. Sec. III A of Ref. [3]) are such that the flight-direction vector \hat{q} of an UHECR primary at the top of the Earth atmosphere is given by

$$\begin{pmatrix} \hat{q}_1 \\ \hat{q}_2 \\ \hat{q}_3 \end{pmatrix} = - \begin{pmatrix} \sin(\pi/2 - \delta) \cos \alpha \\ \sin(\pi/2 - \delta) \sin \alpha \\ \cos(\pi/2 - \delta) \end{pmatrix},$$

(8)

in terms of the celestial coordinates RA $\equiv \alpha$ and DEC $\equiv \delta$ from Table I.

Using the dictionary (7), bounds (5) and (6) give the following two-σ (95% CL) bounds
on the nine isolated SME parameters of nonbirefringent modified-Maxwell theory:

\[
\left| \left(\tilde{\kappa}_{o+} \right)_{(ij) = (23),(31),(12)} \right| < 2 \times 10^{-18}, \tag{9a}
\]

\[
\left| \left(\tilde{\kappa}_{e-} \right)_{(kl) = (11),(12),(13),(22),(23)} \right| < 4 \times 10^{-18}, \tag{9b}
\]

\[
\tilde{\kappa}_{tr} < 1.4 \times 10^{-19}, \tag{9c}
\]

for the Sun-centered Cartesian coordinate system employed in (8). The Cherenkov bounds (9a), (9b), and (9c) are significantly stronger than the current laboratory bounds at the 10^{-12}, 10^{-16}, and 10^{-7} levels, respectively; see the third paragraph of Sec. V in Ref. [1] for further discussion and references. It is to be emphasized that these Cherenkov bounds only depend on the measured energies and flight directions of the charged cosmic-ray primaries at the top of the Earth atmosphere.

ACKNOWLEDGMENTS

FRK acknowledges the hospitality of The Henryk Niewodniczański Institute of Nuclear Physics in Cracow, Poland, where part of this work was done, and the help of M. Schreck with the signs in (7). Both authors thank V.A. Kostelecký for useful suggestions regarding the presentation of the results of this addendum.

[1] F.R. Klinkhamer and M. Risse, “Ultrahigh-energy cosmic-ray bounds on nonbirefringent modified-Maxwell theory,” Phys. Rev. D 77, 016002 (2008), arXiv:0709.2502 [hep-ph].
[2] D. Colladay and V.A. Kostelecky, “Lorentz-violating extension of the standard model,” Phys. Rev. D 58, 116002 (1998), arXiv:hep-ph/9809521.
[3] V.A. Kostelecký and M. Mewes, “Signals for Lorentz violation in electrodynamics,” Phys. Rev. D 66, 056005 (2002), arXiv:hep-ph/0205211.
[4] J. Abraham et al. [Pierre Auger Collaboration], “Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei,” Astropart. Phys. 29, 188 (2008), arXiv:0712.2843v1 [astro-ph].
[5] D.J. Bird et al., “Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation,” Astrophys. J. 441, 144 (1995), arXiv:astro-ph/9410067.
[6] N. Hayashida et al., “Observation of a very energetic cosmic ray well beyond the predicted 2.7–K cutoff in the primary energy spectrum,” Phys. Rev. Lett. 73, 3491 (1994).
[7] C. Kaufhold and F.R. Klinkhamer, “Vacuum Cherenkov radiation in spacelike Maxwell–Chern–Simons theory,” Phys. Rev. D 76, 025024 (2007), arXiv:0704.3255 [hep-th].