From time series to networks in R with the ts2net package

Leonardo N. Ferreira

Abstract

Network science established itself as a prominent tool for modeling time series and complex systems. This modeling process consists of transforming a set or a single time series into a network. Nodes may represent complete time series, segments, or single values, while links define associations or similarities between the represented parts. R is one of the main programming languages used in data science, statistics, and machine learning, with many packages available. However, no single package provides the necessary methods to transform time series into networks. This paper presents a detailed revision of the main transformation methods in the literature and their implementation in the ts2net package in R. The package provides time series distance functions that can be easily computed in parallel and in supercomputers to process larger data sets and methods to transform distance matrices into networks. ts2net also provides methods to transform a single time series into a network, such as recurrence networks, visibility graphs, and transition networks. Together with other packages, ts2net permits the use of network science and graph mining tools to extract information from time series.

Keywords: Time series, Networks, Complex systems, Data science, R programming

Introduction

Networks are one of the most prominent tools for modeling complex systems (Mitchell 2006). Complex systems are commonly represented by a set of time series with interdependencies or similarities (Silva and Zhao 2018). This set can be modeled as a network where nodes represent time series, and links connect pairs of associated ones. Associations are usually measured by time series distance functions, carefully chosen by the user to capture the desired similarities. Thus, the network construction process consists of two steps. First, the distance between all pairs of time series is calculated and stored in a distance matrix. Then, this distance matrix is transformed into an adjacency matrix. The network topology permits not just the analysis of the small parts (nodes) in the system but also their relationship (edges). This powerful model allows network science and graph mining tools to extract information from different domains such as climate science (Boers et al. 2019; Ferreira et al. 2021a), social science (Ferreira et al. 2021b), neuroscience (Bullmore and Sporns 2009), and finance (Tumminello et al. 2010).
In recent years, networks have also been applied to model a single time series. The goal is to transform one time series into a network and apply network science techniques to perform time series analysis (Silva et al. 2021). Different modeling approaches have been proposed, and the general idea is to map single values (Lacasa et al. 2008), time windows, transitions (Campanharo et al. 2011), or recurrence (Donner et al. 2010) as nodes and their relationship by links. Then, the general goal is to use network science and graph mining tools to extract information from the modeled time series.

R is one of the most used programming languages in statistics, data science, machine learning, and complex networks. In the context of time series analysis, there are plenty of packages in R covering many types of analysis, such as characterization, filtering, modeling, pattern recognition, and prediction (Shumway and Stoffer 2017; Hyndman and Athanasopoulos 2021). For network science, R provides some packages including igraph (Csardi and Nepusz 2006) and sna (Butts 2020). Even with many resources available in R, there is no package that links time series analysis and network science.

This paper presents ts2net, a package to construct networks from time series in R. Ts2net permits the use of network science to study time series. Together with other R packages, ts2net permits distance calculations, network construction, visualization, statistical measures extraction, and pattern recognition using graph mining tools. Most of the key functions are implemented using multicore programming, and some useful methods make ts2net easy to run in supercomputers and computer clusters. The package is open-access and released under the MIT license.

In the following sections, I present a revision on the background concepts related to time series network modeling (Sect. 2), the ts2net package (Sect. 3), and two applications using real data (Sect. 4), followed by some final remarks.

Background Concepts

In summary, the whole network construction process involves the calculations of time series distance functions, represented by a distance matrix, and the transformation of this matrix into a network. This section presents a detailed revision on how to model time series into networks.

Distance functions

Time series comparison is a fundamental task in data analysis. This comparison can be estimated using similarity or distance functions (Deza and Deza 2009; Esling and Agon 2012; Wang et al. 2013). Some research domains use the concept of similarity, while others prefer distance functions. Similarity and distance are inverse concepts that have the same usefulness. Here in this paper, for simplicity, I use the distance concept. However, it is important to remember that a similarity function can be generally transformed into distance functions and vice-versa. The distance or metric \(d : \mathcal{X} \times \mathcal{X} \to \mathbb{R} \) is a function that for all time series \(X, Y, Z \in \mathcal{X} \), the following properties hold:

- **non-negativity**: \(d(X, Y) \geq 0 \),
- **symmetry**: \(d(X, Y) = d(Y, X) \),
- **reflexity**: \(d(X, Y) = 0 \iff X = Y \),
- **triangular difference**: \(d(X, Y) \leq d(X, Z) + d(Z, Y) \).
Some time series comparison measures used in ts2net are not true metrics because they do not follow one or more required properties above (Deza and Deza 2009). However, for simplicity reasons, this paper uses the term “distance” to generally refer to any of these functions.

The distance should be carefully chosen, as the network topology, and further analysis and conclusions will be directly affected by this choice. Choosing the appropriate distance depends on aspects such as the nature of the time series, the underlying patterns, or specific features. Given these many aspects, there is no simple rule that guides the choice of the distance function. Previous papers provide comprehensive reviews on distance functions that can help users in the selection process (Esling and Agon 2012; Wang et al. 2013). This paper covers the most used distance functions used to construct networks from time series.

The rest of Sect. 2.1 reviews the main distance functions implemented in the ts2net package.

Correlation-based distances

The Pearson Correlation Coefficient (PCC) r is one of the most used association measures (Asuero et al. 2006). Given two time series X and Y (both with length T), and their respective mean values \bar{X} and \bar{Y}, the PCC is defined as

$$r(X, Y) = \frac{\sum_{i=1}^{T}(X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{T}(X_i - \bar{X})^2(Y_i - \bar{Y})^2}}. \quad (1)$$

The PCC can be transformed into a distance function by considering the absolute value of r as follows:

$$d_{\text{cor}_\text{abs}}(X, Y) = 1 - |r(X, Y)|. \quad (2)$$

In this case (Eq. 2), both strong correlations ($r \approx 1$) and strong anti-correlation ($r \approx -1$) lead to $d_{\text{cor}_\text{abs}}(X, Y) \approx 0$. This distance is particularly useful if both correlated and anti-correlated time series should be linked in the network. Conversely, if only strong positive correlations or strong negative correlation should be mapped into links in the network, then Eq. 3 or Eq. 4 can be used instead.

$$d_{\text{cor}_\text{pos}}(X, Y) = 1 - \max(0, r(X, Y)) \quad (3)$$

$$d_{\text{cor}_\text{neg}}(X, Y) = 1 - \max(0, -r(X, Y)) \quad (4)$$

Cross-correlation is also a widely used measure to find lagged associations between time series. Instead of directly calculating the PCC, the cross-correlation function (CCF) applies different lags (displacement) to the series and then returns the correlation to each lag. Instead of returning a single correlation value, as in the PCC, the CCF returns an array of size $2 \cdot \tau_{\text{max}} + 1$, where $\tau_{\text{max}} \in \mathbb{N}$ is the maximum lag defined by the user. Each element of this array corresponds to the $r(X, Y_{\tau})$ between the time series X and Y_{τ}, which is the Y lagged by $\tau \in [-\tau_{\text{max}}, \tau_{\text{max}}]$ units.
The CCF can be transformed into a distance function in the same way as the PCC (Eqs. 2, 3, and 4). The maximum absolute (Eq. 5), positive (Eq. 6), or negative (Eq. 7) correlations $r(X, Y, \tau), \forall \tau \in [-\tau_{max}, \tau_{max}]$.

$$d_{ccor_abs}(X, Y) = 1 - \left(\max_{\tau \in [-\tau_{max}, \tau_{max}]} |r(X, Y, \tau)| \right).$$

(5)

$$d_{ccor_pos}(X, Y) = 1 - \left(\max_{\tau \in [-\tau_{max}, \tau_{max}]} \max(0, r(X, Y, \tau)) \right).$$

(6)

$$d_{ccor_neg}(X, Y) = 1 - \left(\max_{\tau \in [-\tau_{max}, \tau_{max}]} \max(0, -r(X, Y, \tau)) \right).$$

(7)

One crucial question is the correlation statistical significance. The significance test avoids spurious correlations and false links in the network. One way to test consists of using the Fisher z-transformation defined as (Asuero et al. 2006):

$$z(r) = \frac{1}{2} \ln \frac{1 + r}{1 - r} = \frac{(\ln(1 + r) - \ln(1 - r))}{2}.$$

(8)

This transformation stabilizes the variance and can be used to construct a confidence interval (CI) using standard normal theory, defined (in z scale) as

$$\left(z_{min} = z - \frac{q}{\sqrt{T - 3}}, z_{max} = z + \frac{q}{\sqrt{T - 3}} \right),$$

(9)

where q is the desired normal quantile and T is the length of the time series. The CI can be transformed back into the original scale using the inverse transformation:

$$r(z) = \frac{e^{2z} - 1}{e^{2z} + 1}.$$

(10)

leading to

$$\text{CI} = (r(z_{min}), r(z_{max})).$$

(11)

The correlation (Eqs. 2, 3, and 4) and cross-correlation distances (Eqs. 5, 6, and 7) can be adapted to consider the statistical test given a significance level α. These adaptations consist of substituting the correlation function $r(X, Y)$ in the equations with a binary

$$r_{test}(X, Y) = \begin{cases} 0 \text{ if } r(X, Y) \in \text{CI} (H_0 \text{ not discarded}) \\ 1 \text{ otherwise } (H_1 \text{ holds}). \end{cases}$$

(12)

Distances based on information theory

Mutual information (MI) is one of the most common measures used to detect non-linear relations between time series. The MI measures the average reduction in uncertainty about X that results from learning the value of Y or vice versa (MacKay 2003). The concept of information is directly linked to Shannon’s entropy, which captures the “amount...
of information” in a time series. Given a discrete time series X and its probability mass function $P(X)$, the marginal entropy $H(X)$ is defined as

$$H(X) = -\sum_{i=1}^{t} P(x_i) \log P(x_i).$$ \hspace{1cm} (13)

The conditional entropy $H(X|Y)$ measures how much uncertainty X has when Y is known.

$$H(X|Y) = -\sum_{i,j} P(X_i, Y_j) \log \frac{p(X_i, Y_j)}{p(Y_j)}$$ \hspace{1cm} (14)

A histogram can be used to estimate the probabilities. The number of bins in the histogram directly influences the entropy results and should be chosen accordingly. Some common options to estimate the number of bins are the Sturges’s, Scott’s, and Freedman-Diaconis criteria (Wand 1997).

The mutual information (MI) can be estimated using Eq. 15.

$$I(X, Y) = H(X) + H(Y) - H(X, Y)$$ \hspace{1cm} (15)

The mutual information has only a lower bound (zero), which makes it sometimes difficult to interpret the results. Some normalization methods can limit the MI to the interval $[0, 1]$ to make the comparison easier. The normalized mutual information (NMI) can be defined as

$$NMI(X, Y) = \frac{I(X, Y)}{U},$$ \hspace{1cm} (16)

where U is the normalization factor. Common normalization approaches are either the half of the sum of the entropies $U = 0.5H(X)H(Y)$, minimum entropy $U = \min(H(X), H(Y))$, maximum entropy $U = \max(H(X), H(Y))$, or the squared root of the entropies product $U = \sqrt{H(X)H(Y)}$ (Vinh et al. 2010). The NMI distance is

$$d_{nmi}(X, Y) = 1 - NMI(X, Y).$$ \hspace{1cm} (17)

Another common distance function based on MI is the Variation of Information (VoI) (Eq. 18) (Vinh et al. 2010). VoI, different from the MI, is a true metric.

$$d_{voi}(X, Y) = H(X) + H(Y) - 2I(X, Y)$$ \hspace{1cm} (18)

The maximal information coefficient (MIC) is an algorithm that searches for the largest MI between two series (Reshef et al. 2011). MIC considers that if there exists a relationship between two time series, then it is possible to draw a grid on the scatter plot of these two series that encapsulates that relationship. MIC automatically finds the best grid and returns the largest possible MI.

Dynamic time warping

The Dynamic Time Warping (DTW) (Berndt and Clifford 1994; Giorgino 2009) is an elastic distance function that uses a warping path to align two time series and then compare them. Different from lock-step measures (such as the Euclidean distance),
elastic measures use a warping path defining a mapping between the two series (Fig. 1). The optimal path minimizes the global warping cost. The DTW distance $d_{\text{DTW}}(X, Y) = dtw(i = t, j = t)$ between two time series X and Y (both of length T) can be defined using dynamic programming. The total distance is the cumulative distance calculated from the recurrence relation $dtw(i, j)$, defined as:

$$d_{\text{dtw}}(X, Y) = dtw(i = T, j = T) = \begin{cases} \infty & \text{if } i = 0 \text{ xor } j = 0 \\ 0 & \text{if } i = j = 0 \\ |X_i - Y_j| + \min \left\{ dtw(i-1, j), dtw(i, j-1), dtw(i-1, j-1) \right\} & \text{otherwise} \end{cases}$$

(19)

Event-based distances

The idea behind event-based distance functions is to compare marked time points where some events occur in the time series. The definition of an event is specific to the domain where the time series comes from. For example, Fig. 2a illustrates two ECG time series X and Y where events (black dots) can be defined as some local maximum values as the T wave representing the ventricular repolarization during the heartbeat. Another example is the concept of extreme events of precipitation that can be defined as the days with rainfall sums above the 99th percentiles of wet days during the rain season (Boers et al.)
Common approaches used to define events are local maxima and minima, values higher or lower than a threshold, values higher or lower percentiles, or outliers in the series. An event time series X^{ev} is here defined as a binary time series composed of ones and zeros representing the presence or absence of an event respectively in a time series X. Figure 2b and c illustrate these events time series for the ECG time series in Fig. 2a. Another common representation is the events sequence $X' = \{t_1, t_2, \cdots, t_N\}$ that defines the time indices where each event occurs.

Event-based distance functions try to find co-occurrences or synchronization between two event time series. The general aim is to count pairs of events in both time series that occur at the same time window of length. For example, considering the five events (black dots) in Fig. 2a, b shows the co-occurrence of events from X^{ev} to Y^{ev} considering a time window. For the five events, only the last one does not co-occur. Fig 2c shows the inverse process that can or not be equal depending on the specific distance function. Thus, functions can be symmetrical or not (directed). Symmetrical distances consider co-occurrences from X to Y but also from Y to X. Directed measures only consider the events in a precursor time series X compared to another one Y, but not the other way around.

Quiñon Quiroga et al. (2002) proposed a method to measure the synchronization between two event time series. Considering two event sequences $X' = \{t_1, \cdots, t_{N_X}\}$ and $Y' = \{t_1, \cdots, t_{N_Y}\}$, and a time lag τ, this method counts the number of times an event appears in X' shortly after it appears in Y' considering using the following equation

$$c^\tau(X'|Y') = \sum_{i=1}^{N_X} \sum_{j=1}^{N_Y} J_{ij}^\tau,$$ \hspace{1cm} (20)

where J_{ij}^τ is defined as

$$J_{ij}^\tau = \begin{cases} 1, & \text{if } 0 < t^X_i - t^Y_j \leq \tau \\ 1/2, & \text{if } t^X_i = t^Y_j \\ 0, & \text{otherwise} \end{cases}$$ \hspace{1cm} (21)

where t^X_i and t^Y_j are the time indices i and j from X' and Y' respectively. Analogously, $c^\tau(Y'|X')$ can also be calculated using Eq. 20. The symmetrical event-based distance between X' and Y', can be calculated using Eq. 22, where $d_q(X', Y') = 0$ indicates full synchronization.

$$d_{es}^{sy}(X', Y') = 1 - \frac{c^\tau(X'|Y') + c^\tau(Y'|X')}{\sqrt{N_X N_Y}}.$$ \hspace{1cm} (22)

The asymmetrical version counts only the number of events in X' that precede those in Y' (or the opposite in an analogous way), and it is originally defined in the interval $[-1,1]$. To standardize the interval with the other distances in this paper, Eq. 23 measures the asymmetrical distance where zero means that all events in X' precede those in Y', and one no synchronization.

$$d_{es}^{as}(X', Y') = 1 - \frac{c^\tau(Y'|X') - c^\tau(X'|Y') + \sqrt{N_X N_Y}}{2\sqrt{N_X N_Y}}.$$ \hspace{1cm} (23)
The authors also propose a local time window τ_{ij} when event rates changes in the time series. The counting function (Eq. 20) can be adapted to a local time window by replacing τ by

$$\tau_{ij} = \min(t_{i+1}^X - t_i^X, t_i^X - t_{i-1}^X, t_{i+1}^Y - t_i^Y, t_i^Y - t_{i-1}^Y)/2.$$

(24)

Boers et al. (2019) introduce a parameter τ_{max} that limits the maximum local time window (Eq. 24).

The van Rossum distance (v. Rossum 2001) is another method used to find synchronizations between events. The main idea is to transform each event into a real function and compare them, as illustrated in Fig. 3. The first step consists on mapping an event sequence $X' = \{t_1, \ldots, t_N\}$ into a function $V(X') = 1/N \sum_{i=1}^N h_\tau(t-X_i)u(t-x_i)$, where $h_\tau(t)$ is a filtering function. Examples of filtering functions include the Gaussian $h_\tau^G(t) = \exp(-t^2/(2\tau^2))/\sqrt{2\pi\tau^2}$ and the laplacian $h_\tau^L(t) = \exp(-|t|/\tau)/(2\tau)$ kernels. The parameter τ defines the co-occurrence time scale. The van Rossum distance can be calculated as

$$d_{\text{vr}}(X', Y') = \sqrt{\int_0^\infty [V(X') - V(X')]^2 dt}.$$

(25)

One common approach to test the significance of event-based distance functions considers surrogate data (Boers et al. 2019; Ferreira et al. 2021b). The idea is to generate artificial event sequences by shuffling the events in the two original time series and then measuring their distance. After repeating this process a multiple times, it is possible to construct a distribution of distances and use it as a confidence level for the comparison.

Transforming a set of time series into a network

A network or a graph (Bondy and Murty 2008; Barabási and Pósfai 2016), $G(V, E)$ is composed of a set of n nodes (also called vertices) V and a set of m links (also called edges) E connecting two nodes. The most common representation for a network is the adjacency matrix A whose entry $a_{ij} = 1$ if the nodes i and j are connected or $a_{ij} = 0$ otherwise. A weighted network can also be represented by A. In this case, each entry

Fig. 3 The general idea behind the van-Rossum distance (v. Rossum 2001). Two event time series a X_{ev} and b Y_{ev} where vertical segments represent the events in both time series. The von-Rossum distance transforms each event into a real function illustrated respectively in c and d. e Considering the difference between the two transformed time series $V_X - V_Y$, the von-Rossum distance corresponds to the area under this curve (light gray)
\[a_{ij} = w_{ij} \in \mathbb{R}_{\neq 0} \] corresponds to the weight \(w_{ij} \) between nodes \(i \) and \(j \), or \(a_{ij} = 0 \) if there is no link.

A set of time series \(\mathcal{X} \) can be transformed into a network by calculating the distance between all pairs of time series. These distances are represented by the distance matrix \(D \) whose position \(d_{ij} \) stores the distance between the time series \(i \) and \(j \). The network construction process consists of transforming the distance matrix \(D \) into an adjacency matrix \(A \) where each node represents a time series. The most common building approaches are (Silva and Zhao 2018; Qiao et al. 2018):

- **\(k \)-NN network**: In a \(k \) nearest neighbors network (\(k \)-NN), each node (representing a time series) is connected to the \(k \) other ones with the shortest distances. Thus, the construction process requires finding for each row \(i \) of \(D \) the \(k \) other elements with shortest distances, where \(k \in \mathbb{W} \) is a parameter defined by the user. Approximation algorithms speed up the construction process (Arya et al. 1998; Chen et al. 2009).

- **\(\epsilon \)-NN network**: In a \(\epsilon \) nearest neighbors network (\(\epsilon \)-NN), each node is connected to all the other ones if their distances are shorter than \(\epsilon \in \mathbb{R}_+ \), defined by the user. An advantage of the \(\epsilon \)- over \(k \)-NN networks is that the \(\epsilon \) permits a finer in the threshold choice. Another advantage is the fact that \(\epsilon \) can restrict the connections to only strong ones, while the \(k \)-NN will always connect nodes regardless if the \(k \) shortest distances are small or high. Similar to \(k \)-NN networks, approximations can speed up the construction process (Arya et al. 1998; Chen et al. 2009).

- **Weighted network**: Instead of limiting the number of links, a weighted network (Fig. 4c) can be constructed from \(D \) by simply connecting all pairs of nodes and using their distances to set weights. In general, link weights have the opposite definition of a distance, which means that the shorter the distance between two time series, the stronger the link connecting the respective nodes. Considering that \(D \) is in the interval \([0,1]\), the weighted adjacency matrix can be defined as \(A = 1 - D \). Conversely, if \(D \in [0, +\infty] \), \(D \) can be first normalized between \([0,1]\) (\(D_{\text{norm}} \)) and then consider \(A = 1 - D_{\text{norm}} \).

- **Networks with significant links**: In many applications, it is important to minimize the number of spurious links in the network. One way of minimizing these spuri-

![Fig. 4](image-url) The geometrical intuition behind three different network construction processes. Each time series is represented by a blue node in the network, except the reference time series represented in red. The figures show the distances from the reference time series to all the other ones. a In a \(k \)-NN (\(k=4 \)) network, the reference node is connected to the four other ones with the shortest distances. b In a \(\epsilon \)-NN (\(\epsilon = 0.4 \)) network, the reference node is linked to all the nodes whose distance is shorter than \(\epsilon \) (within the dashed circle). c In the weighted graph, the reference node is connected to all the other ones, and the link weight is \((w = 1 - d) \). The link thickness is proportional to the weight.
ous links is by considering statistical tests for the distance functions. In other words, this network construction process connects all pairs of nodes only if their distance is statistically significant. For example, the significance of the Pearson correlation coefficient can be tested using the z-transformation (Eq. 9) described in Sect. 2.1. This network construction process can be seen as a special case of \(\epsilon \)-NN network where \(\epsilon \) is a threshold for significant links. It is important to remember that this building approach minimizes the number of spurious links but does not guarantee that they will not appear.

Networks can be static or temporal (Holme and Saramäki 2012; Kivelä et al. 2014). A static network \(G(V, E) \) uses the whole historical data in a time series to construct a single network. Temporal networks divide the historical period into time windows that are used to construct layers in a temporal (multilayered) network. A temporal network is a sequence of static networks ordered in time. Each layer can be seen as a snapshot of the time window. The temporal network construction process requires the computation of a set of distance matrices \(D = \{D_1, \cdots, D_W\} \), one for each of the \(W \) windows. A time window is defined by the user and has a length \(\Delta t \) and a step \(s \) that defines the number of values that are included and excluded in each window. The temporal network construction consists of transforming each distance matrix \(D \in D \) into a network layer using the same process used for a static network previously described in this section. One of the main advantages of this approach is to make possible the temporal analysis (evolution) of the modeled system.

The network construction process has a combinatorial nature. Considering a set of \(n \) time series, the whole construction process requires \(\binom{n}{2} \) distance calculations in a static network or \(W \cdot \binom{n}{2} \) in a temporal network, where \(W \) is the number of layers. The transformation from the distance matrix to the adjacency matrix requires searches for pairs of shortest nodes, a task that is much faster than the distance calculations. For this reason, the conversion step \((D \rightarrow A) \) can be neglected in the total time complexity is \(O(\binom{n}{2}) \). This means that the number of distance computations can increase very fast for very large time series data sets, making the network modeling approach infeasible.

Transforming a single time series into a network

This section presents methods to transform a single time series into a network (Zou et al. 2019; Silva et al. 2021).

Proximity networks

The most straightforward method to perform this transformation consists of breaking the time series into time windows and using the same approach described for multiple time series (Sect. 2.2). Each time window is considered a time series and the network construction process requires calculating a distance matrix \(D \) between all time windows using a distance function. Then, \(D \) can be transformed into an adjacency matrix using methods such as \(k \)-NN and \(\epsilon \)-NN networks (Silva and Zhao 2018). The time window size should be carefully chosen. For example, time windows too small can be problematic when calculating
correlation distances. For this reason, this simple construction procedure may not be suitable for short time series because it could generate small time windows.

Transition networks

Transition networks map time series into symbols, represented by nodes and edges to link transitions between symbols. Campanharo et al. (2011) proposed a straightforward way of defining the symbols, which consists of first dividing a time series into equally spaced bins. Each bin corresponds to a symbol that is mapped to a node in the network. Each time series value is mapped to a sequence of symbols according to the bins they are inserted. Then, for every pair of consecutive symbols, a directed link is established between the corresponding nodes. Two equal consecutive symbols lead to self-loops in the network. Edge weights count the number of times that a transition between the two symbols occurs. After the construction process, the weights of the outgoing links from each node can be normalized and interpreted as a transition probability between symbols. In this case, the network can be seen as a Markov Chain. Figure 5 presents an example of a transition network.

Visibility graphs

Lacasa et al. (2008) proposed a method called visibility graph that transforms a time series into a network. The idea is to represent each value in a time series by a bar in a barplot, as illustrated in Fig. 6. Then, each value becomes a node and links connect them if they can “see” each other. In the original definition, called natural visibility graph (NVG), the concept of visibility is defined as a line in any direction that does not cross any other bar. Considering a time series $X = \{X_i, \ldots, X_N\}$ with N values and its natural visibility graph $NVG^X = \{v_i, \ldots, v_N\}$, two nodes v_i and v_j are connected if

$$X_k < X_i + (X_j - X_i) \frac{k - i}{j - k} \forall k \in \{i < k < j\}. \quad (26)$$

Other works adapted or restricted the idea of visibility. The horizontal visibility graph (HVG) (Luque et al. 2009) defines visibility as horizontal lines between bars (Fig. 6c, d). In this case, two nodes v_i and v_j from HVG^X are connected if

$$X_k < X_i, X_j \forall k \in \{i < k < j\}. \quad (27)$$
Threshold values can limit the maximum temporal distance between values (Ting-Ting et al. 2012). Visibility graphs can also be directed, representing the temporal order. Another important concern is the time complexity of the construction process. The original algorithms to construct NVGs and HVGs have quadratic time complexity $O(n^2)$, where n is the number of elements in the series. Improvements can reduce this time complexity to $O(n \log n)$ (Lan et al. 2015).

Recurrence networks

The transformation approach proposed by Donner et al. (2010) relies on the concept of recurrences in the phase space. The general idea consists of interpreting the recurrence matrix of a time series as an adjacency matrix. Nodes represent states in the phase-space and links connect recurrent ones. A recurrence matrix connects different points in time if the states are closely neighbored in phase space. Considering a time series X and its m-dimensional time delay embedding $\mathbf{x} = (X_t, X_{t+\tau}, \cdots, X_{t+(m-1)\tau})$ where τ is the delay, a recurrence matrix can be defined as

$$R_{ij}(\epsilon) = \Theta(\epsilon - d(\mathbf{x}_i - \mathbf{x}_j)),$$

where $\Theta(\cdot)$ is the Heaviside function, $d(\cdot)$ is a distance function (e.g., Euclidean or Manhattan), and ϵ is a threshold distance that defines close states. A recurrence matrix $R(\epsilon)$ can then be transformed into an adjacency matrix A of a network as:

$$A_{ij} = R_{ij}(\epsilon) - \delta_{i,j},$$

where $\delta_{i,j}$ is the Kronecker delta introduced to remove self-loops. The resulting network is unweighted, undirected, and without self-loops.

The ts2net Package

The goal of the ts2net package is to provide methods to model a single or a set of time series into a network in R. It implements time series distance functions, parallel distance calculations, network construction methods, and some useful functions. Some functions

![Fig. 6 Visibility graph construction. a and c An example of time series with values represented by the bars and points. Gray lines connect “visible” values as defined in the (a) natural (red) and (c) horizontal (blue) visibility graphs. The resulting natural (b) and horizontal (d) visibility graphs](image)
are fully implemented, while others are adapted from other packages. Thus, another goal
of the ts2net package is to put together useful methods from other packages.

The ts2net package is available on the Comprehensive R Archive Network (CRAN)
and can be installed with the following command:

\[
\text{install.packages("ts2net")}
\]

Another option is to install ts2net from GitHub using the install_github func-
tion from either remotes or devtools packages:

\[
\text{install.packages("remotes") # if not installed}
\text{remotes::install_github("lnferreira/ts2net")}
\]

Implementation aspects
The ts2net package relies on some other important packages. One of the most impor-
tant ones is igraph, which is used to model networks (Csardi and Nepusz 2006). The
igraph package provides different graph and network analysis tools, which can be used
to extract information from the modeled time series. The igraph objects can be easily
transformed or exported to other formats such as graphml, gml and edge list. Besides,
other network analysis packages commonly accept these objects. Examples are the sna
(Butts 2020), tsna (Bender-deMoll and Morris 2021), and muxViz (De Domenico et al.
2014).

The network construction process normally requires a high number of calculations.
For this reason, the most important functions in ts2net are implemented in parallel
using multi-core programming. The parallelization was implemented using the mclap-
ply function from the parallel, which comes with R. This implementation uses forks
to create multiple processes, an operation that is not available in Windows systems. It
means that, on Windows, all functions in ts2net with num_cores can only run with
one core.

Besides the multicore parallelization, the ts2net package was also constructed to be
run in supercomputers and computer clusters. The idea is to divide the distance calcu-
lations into jobs that could be calculated in parallel and then merged to construct the
distance matrix. The ts_dist_part and ts_dist_part_file functions make this
process easier.

The ts2net package provides the main functions to construct networks from time
series. Other R packages can be integrated in this process during or after the network
construction process. In the network construction process, the most related packages
mainly involve different time series distance functions as the TSclust (Montero and
Vilar 2014) and TSDist (Mori et al. 2016) packages. After the network construction,
the related packages mainly involve network analysis methods such as sna (Butts 2020).

Distance calculation
Functions to calculate the distance matrix:
- **ts_dist**: Calculates all pairs of distances and returns a distance matrix D. This function receives a list of time series that can either have or not have the same length. It runs serial or in parallel (except in Windows) using `mclapply` from `parallel` package. This function receives a distance function as a parameter. `Ts2net` provides some distance functions (functions starting with `tsdist_...`). Other distances can be easily implemented or adapted to be used within this function.

- **ts_dist_part**: Calculate distances between pairs of time series (similarly to `ts_dist`) in part of a list. This function is particularly useful to run in parallel as jobs in supercomputers or computer clusters (HPC). Instead of having a single job calculating all distances (with `ts_dist`), this function permits the user to divide the calculation into different jobs. The result is a data frame with the distances d_{ij} and indexes i and j. To construct the distance matrix D, the user can merge all the results using the functions `dist_parts_merge` or `dist_parts_file_merge`.

- **ts_dist_part_file**: This function works similarly as `ts_dist_part`. The difference is that it reads the time series from RDS files in a directory. The advantage of this approach is that it does not load all the time series in memory but reads them only when necessary. This means that this function requires much less memory and should be preferred when memory consumption is a concern, e.g., huge data sets or very long time series. The disadvantage of this approach is that it requires a high number of file read operations which considerably takes more time during the calculations. The user can merge all the results using the functions `dist_parts_merge` or `dist_parts_file_merge`.

List of distance functions:

- **tsdist_cor**: Absolute (Eq. 2), positive (Eq. 3), or negative (Eq. 4) correlation distances. This function optionally tests the significance of the correlation using the Fisher z-transformation (Eq. 8) (Asuero et al. 2006).

- **tsdist_ccf**: Absolute (Eq. 5), positive (Eq. 6), or negative (Eq. 7) cross-correlation distances.

- **tsdist_dtw**: Dynamic Time Warping (DTW) distance (Sect. 2.1.3). This function is a wrapper for the `dtw` function from the `dtw` package (Giorgino 2009).

- **tsdist_nmi**: Normalized mutual information distance (Eq. 17). The implementation uses functions from the `infotheo` package (Meyer 2014).

- **tsdist_voi**: Variation of information distance (Eq. 18). The implementation uses functions from the `infotheo` package (Meyer 2014).

- **tsdist_mic**: Maximal information coefficient (MIC) distance. This function transforms the `mine` function from the `minerva` package (Albanese et al. 2012) into a distance.

- **tsdist_es**: The events synchronization distance (Eq. 22) proposed by Quian Quiroga et al. (2002). This function can also use the modification proposed by Boers et al. (2019) (t_{max}). This function optionally tests the significance of the events synchronization by shuffling the events in the time series.
- **tsdist_vr**: Van Rossum distance. This function uses the fmetric function from the mmpp package (Hino et al. 2015). It optionally tests the significance of the events synchronization by shuffling the events in the time series.

Other distances can be easily applied in the ts2net. The only two requirements are that the distance function should accept two arrays and it must return a distance. The packages TSclust (Montero and Vilar 2014) and TSDist (Mori et al. 2016) provide many other distance functions that can be used to create networks with ts2net. For example, the Euclidean distance (diss.EUCL from TSclust) can be used to construct the distance matrix:

```r
install.packages("TSclust")
library(TSclust)
D <- ts_dist(ts_list, dist_func=diss.EUCL)
```

It is important to remember that the parameter dist_func receives a function, so no parenthesis is necessary (dist_func=diss.EUCL() is an error).

Another possibility is to implement specific functions and apply them. For example, the following code snippet implements a distance function that compares the mean values of each time series and applies it to calculate the distance matrix D:

```r
ts_dist_mean <- function(ts1, ts2) abs(mean(ts1) - mean(ts2))
D <- ts_dist(ts_list, dist_func=ts_dist_mean)
```

Network construction methods

Multiple time series into a network:

- **net_knn**: Constructs a k-NN network from a distance matrix D.
- **net_knn_approx**: Creates an approximated k-NN network from a distance matrix D. This implementation may omit some actual nearest neighbors, but it is considerably faster than net_knn. It uses the kNN function from the dbscan package.
- **net_enn**: Constructs an ϵ-NN network from a distance matrix D.
- **net_enn_approx**: Creates an approximated ϵ-NN network from a distance matrix D. This implementation may omit some actual nearest neighbors, but it is considerably faster than net_enn. It uses the frNN function from the dbscan package.
- **net_weighted**: Creates a full weighted network from a distance matrix D. In this case, D should be in the interval $[0, 1]$ (see dist_matrix_normalize). The link weights in the resulting network are $w_{ij} = 1 - d_{ij}$.
- **net_significant_links**: Construct a network with significant links.

A single time series into a network:

- **ts_to_windows**: Extract time windows from a time series. This function can be used to construct a network from time windows. It returns a list of windows that can be used as input for ts_dist to construct a distance matrix D.
- **tsnet_qn**: Creates transition (quantile) networks.
• \texttt{tsnet_vg}: Creates natural and horizontal visibility graphs. This function can be run in parallel.
• \texttt{tsnet_rn}: Creates a recurrence network from a time series. This function uses the \texttt{rqa} function from the \texttt{nonlinearTseries} package to obtain the recurrence matrix.

\textbf{Useful functions}

• \texttt{dist_matrix_normalize}: normalizes (min-max) a distance matrix \(D \) between zero and one.
• \texttt{dist_percentile}: Returns the distance value that corresponds to the desired percentile. This function is useful when the user wants to generate networks with different distance functions but with the same link density.
• \texttt{ts_dist_dirs_merge}: \texttt{ts_dist_dir} and \texttt{ts_dist_dir} calculate parts of the distance matrix \(D \). This function merges the results and constructs a distance matrix \(D \).
• \texttt{tsdist_file_parts_merge}: Merges the distance parts as \texttt{ts_dist_dirs_merge}, but reading them from files.
• \texttt{events_from_ts}: Function to extract events from a time series. For example, it can return the desired percentile of highest or lowest values. This function is particularly useful for event-based distance functions.

\textbf{Data}

• \texttt{dataset_sincos_generate}: Generates a data set with sine and cosine time series with arbitrary noise.
• \texttt{random_ets}: Creates random event time series with uniform probability.
• \texttt{us_cities_temperature_df}: A data set containing the temperature in 27 US cities between 2012 and 2017. This data set was adapted from the original (Beniaguev 2017) for simplicity reasons. Different from the original, this data set comprehends only cities in the US, grouped by month (mean value) temperature and without days with missing data. The data set is stored in a data frame with 61 rows and 28 variables where each column (except date), corresponds to the mean temperature values (°C) for each city.
• \texttt{us_cities_temperature_list}: Similar to \texttt{us_cities_temperature_df}, but in a list, which is the required format for distance calculations (e.g. \texttt{ts_dist}).

\textbf{Source code}

The ts2net is open-source and free to use according to the MIT License (https://github.com/lnferreira/ts2net/blob/main/LICENSE.md). All the code is available on Github at https://github.com/lnferreira/ts2net.
Applications
This section presents how the ts2net package can be used to transform a set or a single time series into networks. Two real data sets were used as examples. The goal here is not to present complicated applications and deep analyses but straightforward and didactic examples of how to use networks to model time series.

Transforming a set of time series into a network
This section presents a network modeling example using real data. The data set is composed of monthly temperature data from 27 cities in the US between 2012 and 2017, illustrated in Fig. 7a. The version presented here was extracted and adapted from Kaggle (Beniaguev 2017) for simplicity reasons by taking the monthly averages and keeping only US cities.

The following code calculates the distance matrix (Fig. 7b) using DTW, finds the ϵ that corresponds to the 30% of the shortest distances, and constructs a ϵ-NN network (Fig. 7c):

```r
data(us_cities_temperature_list)
D <- ts_dist(us_cities_temperature_list, dist_func = tsdist_dtw)
eps <- dist_percentile(D, percentile = 0.3)
net <- net_enh(D, eps)
```

Figure 7c illustrates the resulting network where nodes are conveniently placed according to their geographical position. Once the network is constructed, it can be analysed using measures and methods from network science, graph theory, and graph mining Barabási and Pósfai (2016). The most common analysis methods and measures are implemented in R packages such as igraph (Csardi and Nepusz 2006) and sna (Butts...
A typical analysis consists of finding the most central and peripheral nodes in the network using centrality measures (Barabási and Pósfai 2016). The closeness centrality is one example that be calculated using the following code:

```r
 closeness(net) %>% sort()
```

City	Distance
Minneapolis	0.01234568
Las Vegas	0.01250000
Miami	0.01265823
Phoenix	0.01351351
Jacksonville	0.01428571
San Francisco	0.01639344
Seattle	0.01666667
Chicago	0.01724138
San Diego	0.01754386
San Antonio	0.01785714
Dallas	0.01785714
Indianapolis	0.01785714
Detroit	0.01785714
Pittsburgh	0.01818182
Los Angeles	0.01818182
Denver	0.01818182
Houston	0.01818182
Philadelphia	0.02040816
Boston	0.02040816
Nashville	0.02127660
Portland	0.02127660
Kansas City	0.02173913
Saint Louis	0.02222222
Charlotte	0.02222222
Atlanta	0.02380952
Albuquerque	0.02439024

The closeness centrality shows that Minneapolis and Albuquerque are the least and most central nodes, respectively. This means that the distance in the network from Albuquerque to all the other cities is the smallest, while Minneapolis has the longest distance. Considering that DTW was applied to construct the network, the closeness centrality can be used to find the cities with the most and least different temperatures in terms of yearly variation and scale. Albuquerque presents more similarities in its temperature variation and scale to other cities than Minneapolis.

Another interesting network analysis is community detection, which consist of finding groups of highly connected nodes Girvan and Newman (2002). This analysis can be made using some community detection algorithms implemented in igraph. The following code exemplifies this process:

```r
 comm <- cluster_edge_betweenness(net)
 communities(comm)
```

The result of community detection is also illustrated in Fig. 7c, where node colors represent the two communities in the network. In this simple context, the two communities
represent groups of cities with similar temperatures. As expected, the two groups are divided by a latitude that splits the nodes into cities with cold (north) and hot (south) temperatures. This is a didactic example of how graph mining tools can be used to find meaningful information from a set of time series.

Transforming a single time series into a network

This section presents how a time series extracted from real data can be modeled as networks. The time series with the monthly atmospheric concentration of carbon dioxide (ppm) measured in the Mauna Loa Observatory between 1959 and 1997 (Keeling et al. 2005), illustrated in Fig. 8a. This data set was mainly chosen by its simplicity and accessibility (available with the base installation of R).

The following code generates a time-window network (net_w) with width 12 and one-value step, a visibility graph (net_vg), a recurrence network (net rn) with $\epsilon = 5$, and a transition network (net_qn) using 100 equally spaced bins using the ts2net package.

```r
net_w = as.vector(co2) |
  ts_to_windows(width = 12, by = 1) |
  ts_dist(cor_type = "++") |
  net_enm(eps = 0.25)
net_vg = as.vector(co2) |
  tnet_vg()
net_rn = as.vector(co2) |
  tnet_rn(radius = 5)
net_qn = as.vector(co2) |
  tnet_qn(breaks = 100)
```

Figure 8b–e illustrates the networks resulting from the transformation of the CO$_2$ time series. From the topology of the resulting networks, it is possible to extract useful information. For example, the time-window network (Fig. 8b) shows 12 groups representing each month (seasonality). These groups can be detected using community detection algorithms. The visibility graph (Fig. 8c) presents many small-degree nodes that represent the values on valleys while a few hubs connect peak values of CO$_2$ after 1990 to many other nodes. These hubs appear due to the increasing trend of CO$_2$ contraction and some slightly higher peaks during the seasons after 1980. The recurrence (Fig. 8d) and transition (Fig. 8e) networks present some local connections caused by the seasons, and a line shape, which is a result of the increasing trend in the CO$_2$ concentration over the years.

Final considerations

This paper presents ts2net, a package to transform time series into networks. This paper also presents a detailed revision of the main transformation methods in the literature. With ts2net, users can model one or multiple time series into networks and use network science tools to extract information from spatio-temporal data. No other package in R provides all the necessary tools to make these transformations. This package is useful for virtually any scientific domain dealing with temporal data.
One important drawback when transforming a set of time series into a network is the high computational cost required to construct a distance matrix (combinations of time series), making it unfeasible for huge data sets. To minimize this problem, ts2net provides tools to run distance functions in parallel and in high-performance computers via multiple jobs.

The examples presented in Sect. 4 were chosen for didactic reasons. The main goal is to show how the transformation process occurs and provide some simple ideas on how these methods can be used to extract information from time series. Each of these methods is by itself a subject for research, which makes the exploration of all these methods unfeasible in this paper. This paper was thought to be a starting point for the interested reader who can use all the references to explore each method in detail.

The ts2net’s goal is not to provide all transformation methods in the literature but the most used ones. It does not mean that this package cannot be extended or customized. As explained in Sect. 3.2, this package accepts time series distance functions implemented by other packages or the user. New distance functions can be incorporated into...
the package. Additional network construction methods, visualization, and computational improvements can also be added to the package in the future.

Finally, I would like to remember that ts2net is an open-source package that accepts contributions. I invite and encourage all interested users to contribute to this package.

Computational details
The ts2net package requires R version 4.1.0 or higher. R itself and all packages used are available from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/.

Author contribution
LNF implemented the package and wrote the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Declaration
Competing interests
The authors declare no competing interests.

Received: 26 July 2023 Accepted: 25 June 2024

References
Albanese D, Filosi M, Visintainer R, Riccadonna S, Jurman G, Furlanello C (2012) Minerva and minepy: a c engine for the mine suite and its r, python and matlab wrappers. Bioinformatics 707
Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY (1998) An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J ACM 45(6):891–923. https://doi.org/10.1145/293347.293348
Asuero AG, Sayago A, González AG (2006) The correlation coefficient: an overview. Crit Rev Anal Chem 36(1):41–59. https://doi.org/10.1080/10408340500526766
Barabási A-L, Pósfai M (2016) Network science. Cambridge University Press, Cambridge
Bender-deMoll S, Morris M (2021) Tsna: tools for temporal social network analysis
Beniaqveb D (2017) Historical Hourly Weather Data 2012–2017. https://www.kaggle.com/datasets/selfishgene/historical-hourly-weather-data. Online; Accessed 01 June 2022
Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. In: Proceedings of the 3rd international conference on knowledge discovery and data mining. AAAIWS’94. AAAI Press, pp 359–370
Boers N, Goswami B, Rheinwalt A, Bookhagen B, Hoskins B, Kurths J (2019) Complex networks reveal global pattern of extreme-rainfall teleconnections. Nature 566(744):373–377. https://doi.org/10.1038/s41586-018-0872-x
Bondy JA, Murty USR (2008) Graph theory. Springer, New York, p 663
Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198. https://doi.org/10.1038/nrn2575
Butts CT (2020) Sna: tools for social network analysis. R package version 2.6
Campanharo ASLO, Sirer MI, Malmgren RD, Ramos FM, Amaral LAN (2011) Duality between time series and networks. PLOS ONE 6(8):1–13. https://doi.org/10.1371/journal.pone.0023378
Chen J, Fang H-R, Saad Y (2009) Fast approximate KNN graph construction for high dimensional data via recursive Lanczos bisection. J Mach Learn Res 10:1989–2012
Csardi G, Nepusz T (2006) The igraph software package for complex network research. I J Comp Syst 1695
De Domenico M, Porter MA, Arenas A (2014) MuxViz: a tool for multilayer analysis and visualization of networks. J Comp Netw 3(2):159–176. https://doi.org/10.1093/comnet/cnu038
Deza MM, Deza E (2009) Encyclopedia of distances. In: Encyclopedia of distances. Springer, New York, pp 1–583
Donner RV, Zou Y, Donges JF, Marwan N, Kurths J (2010) Recurrence networks—A novel paradigm for nonlinear time series analysis. New J Phys 12(3):033025. https://doi.org/10.1088/1367-2630/12/3/033025
Esling P, Agon C (2012) Time-series data mining. ACM Comput Surv. https://doi.org/10.1145/2379776.2379788
Ferreira LN, Ferreira NCR, Macau EEN, Donner RV (2011) The effect of time series distance functions on functional climate networks. Eur Phys J Spec Top 230(14):2973–2998. https://doi.org/10.1140/epjj/s10477-011-0274-y
Ferreira LN, Hong I, Rutherford A, Cebrian M (2021) The small-world network of global protests. Sci Rep 11(1):19215. https://doi.org/10.1038/s41598-021-98628-y
Giorgino T (2009) Computing and visualizing dynamic time warping alignments in r: The dtw package. J Stat Softw 31(7):1–24. https://doi.org/10.18637/jss.v031.i07
Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci 99(12):7821–7826. https://doi.org/10.1073/pnas.122653799

Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE (2000) PhysioBank, physiotoolkit, and physionet. Circulation 101(23):215–220. https://doi.org/10.1161/01.CIR.101.23.e215

Hino H, Takano K, Murata N (2015) mnp: A package for calculating similarity and distance metrics for simple and marked temporal point processes. R J 7(2):237–248. https://doi.org/10.32614/RJ-2015-033

Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125. https://doi.org/10.1016/j.physrep.2012.03.001

Byndum RJ, Athanasiopoulos G (2021) Forecasting: principles and practice, 3rd edn. OTexts. https://books.google.com.br/books?id=Z4gECAAAJ

Keeling CD, Biernat EB, Wraith M, Horvath TP, Heintzmann R, Meijer HA (2005) In: Baldwin IT, Caldwell MM, Heldmaier G, Jackson RB, Lange OL, Mooney HA, Schulze E-D, Sommer U, Ehleringer JR, Denise Dearing M, Cerling TE (eds) Atmospheric CO2 and 13CO2: Exchange with the Terrestrial Biosphere and Oceans from 1978 to 2000: observations and carbon cycle implications. Springer, New York, NY., pp 83–113. https://doi.org/10.1007/b0-387-27048-5_5

Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2(3):203–271. https://doi.org/10.1093/comnet/cnu016

Lacasa L, Luque B, Lallemand F, Luque J, Nuño JC (2008) From time series to complex networks: the visibility graph. Proc Natl Acad Sci 105(13):4942–4947. https://doi.org/10.1073/pnas.0709247105

Lan X, Mo H, Chen S, Liu Q, Deng Y (2015) Fast transformation from time series to visibility graphs. Chaos: Interdiscip J Nonlinear Sci 25(8):083105. https://doi.org/10.1063/1.4927835

Liu C, Spring M, Li Q, Moody B, Juan RA, Chorto FJ, Castells F, Roig JM, Silva I, Johnson AEW, Syed Z, Schmidt SE, Papadaniil CD, Hadjileontiadis L, Nasen H, Moukadem A, Dieterlen A, Brandt C, Tang H, Samieinasab M, Samieinasab MR, Sameni R, Mark RG, Clifford GD (2016) An open access database for the evaluation of heart sound algorithms. Physiol Meas 37(12):2161–2173. https://doi.org/10.1088/0967-3334/37/12/2181

Luque B, Lacasa L, Ballesteros F, Luque J (2009) Horizontal visibility graphs: exact results for random time series. Phys Rev E 80:046103. https://doi.org/10.1103/PhysRevE.80.046103

MacKay DJC (2003) Information theory, inference and learning algorithms. Cambridge University Press, Cambridge

Meyer PE (2014) Infotheo: information-theoretic measures. R package version 1.2.0

Montero P, Vilar JA (2014) Tcslust: An r package for time series clustering. J Stat Softw 62(1):1–43. https://doi.org/10.18637/jss.v062.i01

Mori U, Mendiburu A, Lozano JA (2015) Distance measures for time series in R: the TSdist package. R J 8(2):451–459. https://doi.org/10.32614/RJ-2015-033

Qiao L, Zhang L, Chen S, Shen D (2018) Data-driven graph construction and graph learning: a review. Neurocomputing 312:336–351. https://doi.org/10.1016/j.neucom.2018.05.084

Quian Quiroga R, Kreuz T, Grassberger P (2002) Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. Phys Rev E 66:041904. https://doi.org/10.1103/PhysRevE.66.041904

Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, Lander ES, Mitzenmacher M, Sabeti PC (2011) Detecting novel associations in large data sets. Science 334(6062):1518–1524. https://doi.org/10.1126/science.1205438

Rossum MWC (2001) A novel spike distance. Neural Comput 13(4):751–763. https://doi.org/10.1162/089976601300014211

Shumway RH, Stoffer DS (2017) Time series analysis and its applications: with R examples. Springer Texts in Statistics. Springer.

Silva VF, Silva ME, Ribeiro P, Silva F (2021) Time series analysis via network science: concepts and algorithms. WIREs Data Mining Knowl Disc 11(3):e1360. https://doi.org/10.1002/widm.1360

Silva TC, Zhao L (2018) Machine learning in complex networks. Springer, New York

Silva VF, Silva ME, Ribeiro P, Silva F (2021) Time series analysis via network science: concepts and algorithms. WIREs Data Mining Knowl Disc 11(3):e1360. https://doi.org/10.1002/widm.1360

Vinh NX, Epps J, Bailey J (2010) Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J Mach Learn Res 11(55):2837–2854

Wand MP (1997) Data-based choice of histogram bin width. Am Stat 51(1):59–64. https://doi.org/10.1080/00031305.1997.10475391

Wang X, Mueen A, Ding H, Trajcevski G, Scheuermann P, Keogh E (2013) Experimental comparison of representation methods and distance measures for time series data. Data Min Knowl Disc 26(2):275–309. https://doi.org/10.1007/s10618-012-0250-5

Zou Y, Donner RV, Marwan N, Donges JF, Kurths J (2019) Complex network approaches to nonlinear time series analysis. Phys Rep 787:1–97. https://doi.org/10.1016/j.physrep.2018.10.005

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.