Palaeocene–Eocene deep water agglutinated foraminifera from the Numidian Flysch (Rif, Northern Morocco): their significance for the palaeoceanography of the Gibraltar gateway

MICHAEL A. KAMINSKI¹, WOLFGANG KUHNT² & JON D. RADLEY³
¹ Research School of Geological and Geophysical Sciences, Birkbeck College and University College London, Gower Street, London WC1E 6BT, UK.
² Geologisch-Paläontologisches Institut, Christian-Albrechts-Universität Kiel, Olshausenstr. 40, D-24118 Kiel, Germany.
³ Museum of Isle of Wight Geology, High Street, Sandown, Isle of Wight, PO36 8AF, UK.

ABSTRACT - A lower bathyal to abyssal agglutinated foraminiferal fauna (over 78 taxa belonging to 31 genera) is documented from Palaeocene–Eocene deep-water sediments of the Numidian Flysch (Talaa Lakrah Unit) in Northern Morocco. The sample locality is adjacent to the Strait of Gibraltar, which comprised an oceanic ‘gateway’ between the Tethys Ocean and the North Atlantic during the Palaeogene. The chronostratigraphy of the section is based upon long-distance comparisons with the stratigraphic ranges of identified species in the North Atlantic region and the Polish Carpathians. Although no major evolutionary turnover among deep-water agglutinated foraminifera (DWAF) is observed across the Palaeocene/Eocene boundary, a change from Palaeocene Assemblage a to an early Eocene Glomospira assemblage is recognized. This Glomospira biofacies occurs throughout the North Atlantic and western Tethys and may indicate lowered productivity and widespread oxygenated deep-water conditions during the early Eocene greenhouse conditions. A change to an overlying Reticuloflagrniun amplusens biofacies in green claystones reflects renewed higher productivity. Taxonomic affinities and the succession of benthic foraminiferal assemblages of the Gibraltar gateway display greater affinities to Tethyan assemblages than North Atlantic assemblages. This is interpreted as faunal evidence for a late Palaeocene to early Eocene equivalent of ‘Mediterranean outflow water’, flowing from the western Tethys into the Atlantic. J. Micropalaeontol. 15(1): 1–19, April 1996.

INTRODUCTION
The Palaeocene/Eocene boundary witnessed the greatest turnover in the taxonomic composition of deep-water benthic foraminiferal faunas of any time during the last 80 million years. At this time, the last of the typically Cretaceous benthic foraminifera became extinct, and the new deep-sea faunas of the Eocene migrated down into the ocean basins from the continental margins (Berggren & Olsson, 1986). Unfortunately, few continuous oceanic Palaeocene–Eocene records with deep-water agglutinated foraminifers (DWAF) are available from the North Atlantic area. In the northeastern North Atlantic, lithofacies changes associated with the Thulean volcanism and the onset of biosiliceous sedimentation render the sediments unfavourable for foraminiferal preservation, and many of the exposed sediments in passive margin settings in the Atlantic area are complicated by sequence boundaries.

One of the few land sections containing well-preserved assemblages of DWAF across the Palaeocene/Eocene boundary is in the Numidian Talaa Lakrah Flysch of northern Morocco. This series comprises a succession of distal deep-sea turbiditic sediments with thick hemipelagic layers that was deposited within the oceanic gateway between the North Atlantic and the western Tethys. This section enables us to examine faunal changes in a continuous deep-sea setting below the CCD. The main objective of this study is to investigate the nature of the Palaeogene turnover in DWAF in the Talaa Lakrah Flysch and assess their biostratigraphic and palaeoecological significance in light of palaeoceanographic changes that took place in the early Palaeogene.

GEOLOGIC SETTING
The Moroccan Rif mountain chain is an area of complex geology, characterized by numerous sub-basins and troughs that were folded and overthrusted during the Miocene collision of the African and Iberian plates and an intermediate Alboran microplate. Deep ocean sediments are mainly preserved in the ‘flysch nappes’ of the External Rif Zone, which was originally situated between the Alboran Block and the North African continental margin. Five different facial-tectonic units are distinguished (Durand-Delga, 1972; Suter, 1980; Wildi, 1983): (1) the Predorsalian Unit formed by the continental margin sediments of the Alboran microcontinent; (2) the Mauretanian Flysch Unit, deposited in a deep trench adjacent to the Alboran Block; (3) the Massylian Flysch Unit, which represents the basinal sedimentation of the ocean gateway between North Africa and Alboran/Iberia. The Massylian Flysch is generally restricted to the Cretaceous; (4) the Numidian Flysch Unit, situated in a similar palaeogeographic position relative to the Massylian Flysch, but which may overlap with the Mauretanian and Tellian sequences. The Numidian Flysch is comprised of uppermost Cretaceous, Palaeogene and Miocene deep water turbiditic sequences; (5) the Tellian deep water sediments deposited adjacent to the North African continental margin.
We sampled a continuous section within the lower part of the Numidian Flysch sequence in a Numidian subunit known as the Talaa Lakrah Flysch. The Talaa Lakrah Flysch Unit was first defined by Didon et al. (1973), based on the Miocene turbiditic sandstone unit exposed in the Strait of Gibraltar on the northern coast of Morocco approximately 18 km ENE of Tangier, near the village of Talaa Lakrah (Fig. 1). The unit consists of Campanian to Miocene deep-water sediments, and has been included in the Numidian Flysch, which is a geographically widespread unit extending from Sicily along the coast of North Africa to the Strait of Gibraltar. The Numidian Flysch represents the compressional phase of tectonics between the North African and European continents. The flysch unit is overthrust onto Cretaceous deep-water sequences that were probably based on oceanic substratum. The sediments comprising the Numidian Flysch are generally believed to be derived from the North African continent. However, a part of the detrital input to the Talaa Lakrah Unit may have been derived from the Alboran microplate.

The outcrop of the Palaeogene portion of the Talaa Lakrah Unit sampled in this study is situated above a retaining wall behind a Moroccan military outpost, immediately west of the mouth of the Lediane valley. The section is overturned, and consists of steeply dipping turbidite sandstones and interbedded claystones. The base of the sampled section is identified by a c.1 m thick sandstone ledge, overlain by dark bluish-grey, tectonically disturbed claystones. The sandstones in the sequence thin upwards, and the sand/shale ratio decreases. The colour of the hemipelagic claystones changes from bluish-grey at the base to reddish-brown, and then to greenish-grey at the top. The colour changes may reflect changing oxygenation of the bottom waters and sediment surface rather than sediment input, and invites comparisons to the coeval oceanic sequences of the North Atlantic.

MATERIAL AND METHODS

Fifteen large samples (Table 1) were collected from the Talaa Lakrah outcrop (Fig. 2). Samples were dried, weighed, and disaggregated by repeated boiling and drying using sodium carbonate solution. Samples were washed over a 63 μm screen. All foraminifera from the >125 μm fraction were picked and mounted onto cardboard microscope slides. In this material, the 63–125 μm fraction did not yield identifiable foraminifera. Smear slides were made of each sample, but all samples were barren of nannofossils. The green samples were tested for palynomorphs and found to be barren.

![Fig. 1](image-url)

Fig. 1. (a) Simplified geological map of the Northern Rif (after Didon et al., 1973 and Suter, 1980). (b) Palaeogene palaeogeography of the Atlantic-Tethys connection. (c) Simplified geological cross-section along the Moroccan side of the Strait of Gibraltar (after Didon et al., 1973).
Palaeocene–Eocene deep water agglutinated foraminifera from the Numidian Flysch

sample	colour	sediment	foraminiferal abundances (individuals/g)
JDR1	dark grey	fissile claystone	0.96
JDR2	mottled brown-grey-purple	brittle fissile claystone	0.17
JDR3	chocolate brown	fissile claystone	0.54
JDR4	chocolate brown	fissile claystone	0.8
JDR5	chocolate brown	fissile claystone	0.4
JDR6	chocolate brown	fissile claystone	0.48
JDR7	chocolate brown	hard fissile claystone	0.31
JDR8	ginger brown	fissile claystone	0.38
JDR9	ginger brown	fissile claystone	0.05
JDR10	brown-purple	highly fissile claystone	0.14
JDR11	ginger brown with green reduction spots	fissile claystone	0.07
JDR12	green	massive sandstone claystone	0.09
JDR13	green	fissile claystone	0.8
JDR14	ginger brown	friable fissile claystone	0.15
JDR15	green	friable green mudstone	0.3

Table 1. Lithologic description, weights, abundance of foraminifera.

BIOSTRATIGRAPHY

Because the Palaeogene autochthonous claystones were all barren of calcareous nannofossils, and palynomorphs were probably oxidized, the DWAF provide the only stratigraphic control to constrain the age of the sediments. The chronosratigraphy is necessarily based upon long-distance comparisons will the stratigraphic ranges of identified species in the North Atlantic region and the Polish Carpathians (Fig. 3).

The Palaeocene to Eocene benthic foraminiferal biostratigraphy of the North Sea region has been calibrated to the standard chronosratigraphy by the use of dinoflagellate zones (Charnock & Jones, 1990). In the Zumaya section of northern Spain, the stratigraphic ranges of DWAF are calibrated to planktonic foraminiferal zones in the Palaeocene to lower Eocene (Fig. 3). The DWAF biostratigraphy at Site 647 in the southern Labrador Sea is calibrated by the use of standard nannofossil zones (Kaminski et al., 1989), but this record only extends upward from lower Eocene Zone NPl 1. Although nearby DSDP Site 112 penetrated into the Palaeocene, the hole was spot-cored, and did not recover the Palaeocene/Eocene boundary (Miller et al., 1982). The biostratigraphy of DWAF in Trinidad was calibrated to the standard, low-latitude planktic foraminiferal zonation by Kaminski et al. (1988). This biostratigraphic scheme was based upon isolated samples from Zones P1c to P8. However, the Palaeocene/Eocene boundary in Trinidad is represented by

Fig. 2. View of the sampled outcrop at the beach west of the Lediane valley, redrawn from photos. Numbers 1–13 refer to collected samples.
Fig. 3. Ranges of selected Palaeogene DWAF species from the Polish Carpathians (Geroch & Nowak, 1984), the Basque Basin of northern Spain (Kaminski, 1988), Trinidad (Kaminski et al., 1988), and the North Sea (Charnock & Jones, 1990). Calibration to planktonic zones applies only to Trinidad and Zumaya. Notes: (1) FO of *R. amplicens* is in Zone P8 in the North Sea (M.A. Charnock, pers. comm., 1994); (2) reported as *Conglomphragmium coronation* by Charnock & Jones, 1990.

Age (m.y.)	NP	P	Stage
65	7	7	Late
60	7	7	Late
55	10	10	Middle Lutetian
50	10	10	Early Lutetian
45	15	15	Barton
40	19	19	Priabon
35	24	24	Priabon
30	29	29	Priabon
25	34	34	Priabon
20	39	39	Priabon
15	44	44	Priabon
10	49	49	Priabon
5	54	54	Ypresian
0	59	59	Danian

LEGEND

Stratigraphic scheme adapted from Berggren et al (1985)

- Trinidad
- Spain
- North Sea
- Polish Carpathians

The Palaeogene foraminiferal micropalaeontology of the Gibraltar seaway has not been formally described. The only previous micropalaeontological study from the north coast of Morocco is a preliminary note by Morgiel & Olszewksa (1982). In the Talaa Lakrah section, the interval from approximately the middle Palaeocene to middle Eocene is exposed in a continuous stratigraphic succession. In contrast to the Zumaya section which is a shallowing-upward sequence across the Palaeocene/Eocene boundary, the Talaa Lakrah Flysch remains a distal turbidite depositional environment throughout the Palaeogene with a more or less continuous record of hemipelagic deposition (Fig. 4). All the hemipelagic claystones we sampled yielded well-preserved DWAF.

The DWAF assemblages recovered from the Talaa Lakrah samples are generally diverse and show no signs of size sorting. Rare abraded specimens of calcareous benthic foraminifera in Samples 2, 5, 14, and 15 are considered to be redeposited from a shallow bathymetric setting. We recognized a total of 78 species and taxonomic groups in our samples (Table 2), but because a number of our counting...
Palaeocene–Eocene deep water agglutinated foraminifera from the Numidian Flysch

We discriminate five assemblages within the sampled interval based on the total ranges and relative abundances (Fig. 5) of characteristic species and taxonomic groups:

1. *Aschemocella–Saccammina placenta* assemblage

Samples at the base of the studied section (samples 1–6) are characterized by common occurrence of *Aschemocella* spp. and *Saccammina placenta*. The abundance of the former taxon reaches 30% in sample 6. Other common forms include species of *Rhabdammina* and *Paratrophamminoides*. In the modern deep ocean, tubular taxa are common in turbulent settings affected by deep currents (Kaminski, 1985). The species *A. carpatica* was first described from the upper surfaces of turbidite mudstones in the Romanian Flysch Carpathians (Neagu, 1964). Late Cretaceous *Aschemocella*-dominated assemblages occur mainly in areas with large amounts of fine-grained detrital supply provided by mud-turbidites. High abundances of *Aschemocella* may reflect high amounts of organic detritus from terrigenous sources, which provide nutrients for these large taxa.

2. *Trochamminoides/Paratrochamminoides–Recurvoides* assemblage

Samples 7–8 are dominated by the *Paratrochamminoides* and *Recurvoides* groups. Ammodiscids are also significant, but less dominant than in samples 9–14 (see below). The assemblage consists of numerous individuals and species, many of which are yet undescribed. The abundance of diverse *Paratrochamminoides* in the lower half of the studied section invites comparison to the Upper Cretaceous red clay environments of abyssal turbidite basins (= Flysch-type, high diversity, *Paratrochamminoides*-faunas of Kuhnt & Kaminski, 1989). These Late Cretaceous *Paratrochamminoides* assemblages probably characterized more oligotrophic environments. The Maastrichtian part of the Talaa Lakrah section also contains numerous *Paratrochamminoides* (Kuhnt & Kaminski, 1989). Although much of the Palaeocene to lower Eocene part of the Talaa Lakrah section does consist of reddish-brown sediments, there is a significant influence of detrital material.

The taxonomic composition and stratigraphic position of this assemblage is reminiscent of the ‘Trochamminoideschichten’ of Majzon (1943) from the Carpathian flysch. Morgiel & Olszewska (1981) recognized an acme of *Trochamminoides* spp. (inc. *Paratrochamminoides* s.s.) in the Palaeocene of the Polish Carpathians. However, Morgiel & Szymkowska (1978) correlated this acme to the lowermost Eocene. Reddish claystones containing common flattened *Paratrochamminoides* are also known from the lower Eocene *Subbotina patagonica* Zone (= Zones P7–P8) of the North Sea.

3. *Glonospira–Ammodiscus* assemblage

Samples 9 and 10 contain more than 60% ammodiscids (*Glonospira*, *Ammodiscus*, and *Glonospirella*). This assemblage correlates with *Glonospira*-dominated assemblages observed in other parts of the Atlantic (Kaminski et al., 1989) and western Tethys (Winkler, 1984). The interval is characterized by numerous small specimens of *Glonospira* spp. and *Ammodiscus tenuissimus*. A distinctive taxon in this interval is an undescribed species of *Glonospira* that has very irregular coiling. Our species *Glonospira* sp. 5 is a form that is probably new, and appears to be related to the Palaeogene species *Ammodiscus pennyi*.

The faunal abundance and the average size of specimens in this interval diminishes upsection, attaining minimum values in samples 10 and 11 (Fig. 4). This agrees with trends in calcareous benthic assemblages in the lower Eocene of the North Atlantic, which are reported to be depauperate (Berggren & Olsson, 1986).

4. *Karrerulina coniformis* assemblage

The first occurrence of *K. coniformis* is observed in sample 11, which also contains the maximum abundance of the genus (Fig. 5). In Trinidad the first occurrence (FO) of this species was observed in the lower Eocene (Zone P6b), at Site 647 its FO was observed within Zone NP11, below the *Glonospira* horizon. The stratigraphic distribution of *Karrerulina* species may be controlled by palaeoeceanog-
Table 2. Distribution of autochthonous agglutinated foraminifera in the examined samples.

Sample	JDR1	JDR2	JDR3	JDR4	JDR5	JDR6	JDR7	JDR8	JDR9	JDR10	JDR11	JDR12	JDR13	JDR14	JDR15
Bathysiphon sp.	1	1	1	1	2	1	1	1	1	2	1	1	1	1	1
Rhodarminina annulata
Rhodarminina sp.	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Rhizammina cf. indivisa
Rhizammina sp.
Psammosphaera irr降落
Psammosphaera sp.
Saccammina grzybowskii
Saccammina placenta
Saccammina sp.
Laganammina sp.
Hyperammina rapha
Taxonomical factors such as organic matter flux, since modern representatives of this group live infaunally.															

5. Reticulophragmoides amplectens assemblage

Samples 12 to 15 are characterized by the common occurrence of R. amplectens, which is a typical form of middle to upper Eocene sediments in the Atlantic and western Tethys. Other characteristic forms in the uppermost part of the section are Reophax elongatus and Karrerinlinia coniformis. Geroch & Nowak (1984) reported the range of Reophax elongatus as middle to upper Eocene in the Polish Carpathians. The ranges of all of these taxa extend to the Eocene/Oligocene boundary in the North Atlantic (Kaminski et al., 1989).
Early Eocene specimens from Labrador, which consist of named it the last whorl and few alveoles to be a separate species, and evolved from an early Emene ancestor by the acquisition of alveoles with ontogeny. Jurkiewicz (1987) had already reported that alveolar structure usually begins closer to the proloculus in specimens from younger stratigraphic horizons. Alveoles first appear between the 10th and 17th chamber in the microspheric generation of primitive individuals, and between the 5th and 13th chambers in more advanced individuals. Myatlyuk (1970) considered the smaller early Eocene morphotype of *R. amplectens* with 10 chambers in the last whorl and few alveoles to be a separate species, and named it *Cyclammina intermedia*. Although lower Eocene assemblages from the North Sea and the Carpathians undoubtedly contain the *Cyclammina intermedia* morphotype, this form is absent from our samples of the Numidian Flysch. In this regard, they are more similar to early Eocene specimens from Labrador, which consist of ‘advanced’ forms of *R. amplectens* with well-developed alveoles.

FAUNAL TURNOVER AT THE PALAEOCENE/EOcene BOUNDARY

A major turnover of deep-water calcareous benthic foraminiferal taxa at the Palaeocene/Eocene boundary has been observed in all the world’s oceans (Tjalsma, 1977; Schnitker, 1979; Tjalsma & Lohmann, 1983; Thomas & Shackleton, 1991; Pak & Miller, 1992). Utilizing benthic foraminiferal oxygen isotope records, Shackleton (1986) suggested that deep oceanic waters had a temperature of approximately 10°C in the earliest Palaeocene, increasing to 12°C in the early Eocene and then decreasing again. Miller et al. (1987a) suggested that the world ocean was ice-free throughout most of the Palaeocene and Eocene. Their oxygen isotope studies on calcareous benthic foraminifera also indicate rapid warming of sea water from mid-Palaeocene to early Eocene times, followed by a step-wise deterioration culminating in the late Eocene glaciations. Superimposed on this first-order trend are fluctuations that correspond to rapid climatic change. Kennett & Stott (1991) documented a rapid c.8°C warming of Antarctic surface waters that coincided with a 4% drop in foraminiferal δ¹³C and the extinction of about half of the calcareous benthic taxa. These authors suggested that deep water circulation was reduced resulting in lowered oxygenation of the deep sea. These isotopic changes have been confirmed in all the ocean basins (Stott, 1992), and show that the deep sea warmed to about 10°C. These unusually warm temperatures persisted for about 100,000 years. More importantly, the surface-to-deep foraminiferal δ¹³C gradient decreased from about 1.7‰ in the Palaeocene to near zero at Site 690 (Stott, 1992), which suggests that marine organic productivity was severely diminished. This observation corroborates the findings of Miller et al. (1987b) who noted decreased sediment grain size in the Pacific, which implies weaker trade winds and consequently reduced upwelling. The Palaeocene/Eocene warming has been attributed to increased supply of CO₂, as a consequence of global tectonic activity (e.g., opening of the Norwegian–Greenland Sea) and volcanism in the North Atlantic region (Owen & Rea, 1985).

The impact of climatic changes at the Palaeocene/Eocene (P/E) boundary on DWAF is still poorly documented. While all DWAF localities studied so far display a reduction in both abundance and taxonomic diversity from the upper Palaeocene to the lower Eocene, this turnover cannot be attributed to a single environmental cause (Kaminski, 1991). The bathyal foraminiferal assemblages of Zumaya Spain and the West Greenland, Labrador, and Norwegian continental shelves occur in shallowing-upward sequences. In these areas, Palaeocene agglutinated faunas are replaced by calcareous assemblages, or barren intervals. In the North Sea and Norwegian Sea regions, the boundary is contained within volcanoclastic sediments. In the central North Atlantic the P/E boundary occurs within a lithologic change from claystones to radiolarites that are barren of foraminifera. Biostratigraphic data from the upper Maastrichtian to middle Eocene Gurmiel-Schlieren flysch of Switzerland (Winkler, 1984) reveal the last occurrences of six species of DWAF at or just below the P/E boundary. No taxa with first occurrences near the boundary were recorded. In the Polish External Carpathians (Geroch & Nowak, 1984), five species have last occurrences approximately at

Fig. 5. Relative abundances of selected species and taxonomic groups in the Tala Lakrah Flysch.
the P/E boundary and two species have first occurrences just above the boundary. In the Guayaguayare and Lizard Spring Formations of Trinidad 15 species display LOs at or just below the boundary and only one incoming species occurs just above the boundary (Kaminski et al., 1988). The most dramatic faunal turnover of DWAF near the P/E boundary has been observed in the North Sea. As many as 20 species display LOs immediately below the P/E boundary and 35 species have FOs just above the boundary (Charnock & Jones, 1990). However, the effects of local palaeoenvironmental change in the North Sea area have probably amplified the magnitude of the faunal change.

At Talaa Lakrah, the following taxa have last occurrences between samples 5 and 9 (broadly coincident with the P/E boundary):

- **Saccammina placenta**
- **Glomospira gordialis**
- **Glomospira grzybowskii**
- **Glomospira sp. 4**
- **Aschemocella carpathica**
- **Aschemocella grandis**
- **Kalamopsis grzybowskii**
- **Paratrochamnionoides draco**
- **Paratrochamnionoides gorayskii**
- **Paratrochamnionoides irregularis**
- **Paratrochamnionoides uniformis**
- **Trochamnionoides proteus**
- **Trochamnionoides variolarius**

The only first occurrences observed in the sample 5–9 interval are **Karrerulina horrida** and **Subreophax pseudoscalaris**.

Aschemocella assemblages appear to comprise a statistically independent end-member of Late Cretaceous DWAF assemblages that are typically developed in fine-grained turbidite environments, such as the Maastrichtian flysch of the Carpathians and the lower bathyal turbidite units in the Campo de Gibraltar. In the Talaa Lakrah section, the occurrence of **Aschemocella** is restricted to samples from the Palaeocene that are associated with thick-bedded sandstones. Their disappearance across the P/E boundary may result from reduced amounts of organic detritus from terrigenous sources as well as marine organic productivity.

The majority of first and last occurrences across the P/E boundary in this section are among species that are known from the Palaeocene and Eocene at other localities. At Talaa Lakrah, these constitute local biostratigraphic events. In general, it appears that calcareous-cemented agglutinated taxa were especially prone to extinction at the Palaeocene/Eocene boundary. Therefore, the magnitude of the faunal turnover of agglutinated taxa is more pronounced at the marginal North Atlantic sites and is less important in the Tethyan sites below the CCD.

EARLY–MIDDLE EOCENE GLOMOSPIRA EVENT

Assemblages with common **Ammodiscus** and **Glomospira** have been found in the lower Eocene of the Alpine–Carpathian region (Jurkiewicz, 1967; Morgiel & Szymakowska, 1978; Morgiel & Olszewska, 1981, 1982) and the Moroccan flysch (Morgiel & Olszewska, 1982). Winkler (1984) discovered a level with common **Glomospira** in the lower part of Zone NP10–NP12 (undifferentiated) in the Schlieren flysch of the Alpine Flysch Zone of Switzerland. In the southern Labrador Sea, **Glomospira** spp. range throughout the Eocene and basal Oligocene at Site 647, but display a distinct acme in Zones NP13–NP15 (Kaminski et al., 1989). Characteristic species of this assemblage consist of **Glomospira irregularis**, **Glomospira charoiides**, **Ammodiscus cretacicus**, **Karrerulina coniformis**, **Trochamnionoides** spp. and **Haplothragmnois walteri**. At Site 643 in the Norwegian Sea the total range of **Glomospira** spp. is confined to the lower Eocene (Kaminski et al., 1990). The so-called ‘**Glomospira Event**’ is consequently of biostratigraphic use in the North Atlantic and western Tethys, bearing in mind the observation that it may be diachronous from east to west. In the Tellien Units in northern Morocco, we also observed a lower Eocene biosiliceous lithofacies which may correlate with the **Glomospira Event** in the Numidian Flysch. Immediately above these biosiliceous sediments are claystones with **Reticulohaplognoides ampluncens**.

Kuhnt & Kaminski (1989) noted increased abundances of ammodiscids, especially the genus **Glomospirella**, in lower Campanian green claystones reflecting poorly oxygenated benthic conditions in the North Atlantic. This distinct assemblage, termed ‘Biofacies B’, was subsequently found at different Cretaceous horizons at other deep sea localities such as in the Barremian at ODP Site 765 on the Argo Abyssal Plain (Kaminski et al., 1991). In the lower-middle Eocene at ODP Site 647, an interval with abundant **Glomospira** is characterized by an increase in deposition of biogenic silica (Bohrmann & Stein, 1989) and organic carbon (Kaminski et al., 1989), which is consistent with a scenario of increased biogenic productivity. Some modern species of **Glomospira** appear to be environmentally tolerant, and thrive in environments where oxygen and salinity levels are low. They have the ability to survive on organic-rich substrates, such as in an area of active petroleum seepage in the Gulf of Mexico. Alve (1990) recognized an **Ammodiscus?** [= **Glomospirella**] **gullmaresensis** assemblage in temperate water masses in Drammensfjord, southeast Norway, characterized by reduced salinity and very low dissolved oxygen content. Kaminski et al. (1989) speculated that **Glomospira** feed epifaunally on organic detritus, and was consequently well-adapted to areas of high productivity.

However, other aspects of the DWAF assemblages in the Talaa Lakrah section question the validity of this model for the lower Eocene reddish claystones. Both the abundance and relative size of DWAF decline steadily from the Palaeocene, reaching minimum values in the **Glomospira** acme (Fig. 4). The environmental significance of size and abundance trends in deep-sea benthic foraminifera has been examined by Pederson et al. (1988) and Herguera & Berger (1991) in their studies of modern and Pleistocene productivity in the Pacific. These studies demonstrated that both the average size of certain benthic foraminifera as well as benthic foraminiferal accumulation rates are positively correlated with the flux of organic matter to the sea floor, and can serve as good proxies for palaeoproductivity. At the
same time, the relative proportion of tubular forms reaches a minimum (Fig. 5). Because modern tubular taxa such as Rhabdamminia and Saccorhiza have been found to be suspension feeders (Altenbach et al., 1988; Linke & Lutze, 1993), the decline in tubes over this interval may be related to the reduction in food particles carried in suspension by bottom currents. It may simply be the case that Glomospira is an opportunist, inhabiting environments that have undergone rapid change, or occupying niches that have been left vacant by other species.

RETICULOPHRAGMOIDES AMPLECTENS ACME

Deep-water clastic sediments containing large proportions of *Reticulophragmium amplexicrens* are typically referred to the middle Eocene in the Polish Carpathians. In Poland, its first occurrence was reported in the lower Eocene (Zone NP12) by Olszewska & Smagowicz (1977). Its total range in the Polish Carpathians was given as lower to upper Eocene by Morgiel & Olszewska (1981), and its partial range and optimum occurrence characterizes the middle Eocene *Cyclammina amplexicrens* Zone of Geroch & Nowak (1984). In the Austrian Alps, *R. amplexicrens* was reported from the lower to middle Eocene Buntmergelserie (Rögl et al., 1986). In the Central North Sea the *R. amplexicrens* event is observed immediately above the lower/middle Eocene boundary as determined by palynological and micropalaeontological evidence, occurring in a unit of high gamma ray values (MA. Charnock, pers. comm., 1994). At Site 647 in the southern Labrador Sea its FO occurs in the upper part of Zone NP11 (below the *Glomospira* event), and its greatest abundance occurs in the middle Eocene. However, at Talaa Lakrah its first occurrence is above the *Glomospira* event, which is consistent with its occurrence in the Carpathians.

The palaeoecology of *R. amplexicrens* is not well understood, however, its symmetrical shape and circular outline recalls that of the modern deep-sea species *Melonis barleeanum*, a mobile infaunal detritivore (Corliss, 1985). Moreover, *R. amplexicrens* is one of the dominant taxa in the Eocene of the Labrador margin (beneath the oxygen minimum zone) but only comprises 5–10% of the assemblage at abyssal Site 647. This agrees with findings of Corliss & Chen (1988) and Corliss & Fois (1991), who observed a shift from dominant infaunal taxa in the upper-middle bathyal zone to dominant epifaunal taxa in the lower bathyal to abyssal zone. This changeover is related to the amount of food available to the infauna. If *R. amplexicrens* was indeed infaunal, then its dominance in the greenish claystones above the *Glomospira* event indicates a return to the more productive and/or less well oxygenated oceanographic conditions that favour significant proportions of infauna.

PALAEOENVIRONMENT AND PALAEOCEANOGRAPHY OF THE PALAEOGENE NUMIDIAN FLYSCH BASIN

The Palaeogene of the Talaa Lakrah Flysch is characterized by diverse flysch-type agglutinated foraminifera and a lack of autochthonous calcareous forms. They are interpreted as autochthonous assemblages and can be viewed as remnants of former benthic communities that flourished beneath the CCD.

It is surprising that two otherwise common early Palaeogene species are absent entirely (*Spiroplectammina spectabilis*) or extremely rare (a single specimen of *Rzehakina epigona* in sample 3) in our material from the Talaa Lakrah Flysch. *Spiroplectammina spectabilis* and *R. epigona* are among the most common and characteristic species of DWAF in Palaeocene deep-water sediments deposited along the North African continental margin, in Trinidad, and in the Central North Sea. Both species prefer to live in dark greenish shales with enhanced content of organic carbon and may characterize environments with high organic flux rates. Consequently, the absence of these species at Talaa Lakrah might reflect low abundances of organic matter or other nutrients.

Although the assemblages consist mainly of cosmopolitan species, the relative succession of benthic foraminiferal assemblages from the Gibraltar gateway displays a greater affinity to Tethyan assemblages than to assemblages from the North Atlantic. In particular the presence of an assemblage consisting of diverse species of *Paratrochamminoides* and *Trochamminoides* overlain by a *Glomospira*-dominated assemblage provides evidence of strong links with the Carpathian Palaeocene–Eocene deposits. This gives us some insight into the nature of the deep water masses. For example, studies of carbon isotopes (Katz & Miller, 1991) have revealed that the Southern ocean was a source of deep water during the late Palaeocene and again during the early Eocene, but that the supply of deep water decreased near the Palaeocene/Eocene boundary. This interpretation is supported by the observation of a late Palaeocene erosional hiatus on the Bermuda Rise, indicating strong bottom currents flowing into the North Atlantic from the south (Mountain & Miller, 1992). Sediment deposition resumed on the Bermuda Rise during the latest Palaeocene, a result of the reduction in deep-water circulation. General ocean circulation models have suggested that the eastern Tethys was a likely zone of high evaporation and therefore a prime site for the formation of warm, saline deep water (WSDW) (Barron & Peterson, 1990). It is possible that the change in the oxidation state of the sediments at Talaa Lakrah and the loss of large specimens is a reflection of differing bottom water sources. We suggest that the appearance of lower Eocene reddish shales reflects a proximal WSDW source which was well oxygenated and nutrient depleted.

The abrupt appearance of an *R. amplexicrens* dominated assemblage above the *Glomospira* event horizon may have palaeoceanographic significance. At DSDP Site 401 in the Bay of Biscay, Pak & Miller (1992) noted a change from an earliest Eocene *Nuttalides truncata* assemblage to an assemblage dominated by *Bulimina gracilis*, *Silostomella gracillima* and *Bulimina seminestata* in Zone P6c. In Zones P8–P9 *Silostomella* (an infaunal form) was dominant. This shift from epifaunal-dominated assemblages to ones dominated by infauna in the middle part of the early Eocene also points to similar changes in oxygenation and/or
palaeoproducitivity. Because the Bay of Biscay is distal to any proto-Mediterranean outflow water flowing northward around Portugal as an eastern boundary current, perhaps the assemblage changes in the Gibraltar and Biscay regions are linked. Indeed, based on their comparison of stable isotopic data, Pak & Miller believed that Site 401 monitored deep water of a western Tethyan origin.

CONCLUSIONS
The diverse (>78 taxa) DWAF assemblages of the Talaa Lakrah Flysch compare well with the diverse cosmopolitan flysch-type agglutinated assemblages in the sense of Gradstein & Berggren (1981). The depositional environment of the Palaeogene Talaa Lakrah turbidites was lower bathyal or abyssal, and below the calcium carbonate compensation depth.

The taxonomic affinities and relative succession of benthic foraminiferal assemblages from the Gibraltar gateway are more Tethyan than Atlantic. In particular, diverse Paratrochamminoides and Trochamminoides and the presence of an interval of reddish claystones with Glomospira provide strong links with the Palaeocene–Eocene assemblages of the Carpathians. We interpret this as faunal evidence for a late Palaeocene to early Eocene equivalent of ‘Mediterranean outflow water’, with bottom water flowing from the western Tethys into the Atlantic as it does today.

Despite the now well-documented Palaeocene/Eocene boundary extinction event among calcareous benthic foraminifera, there is surprisingly little taxonomic turnover among DWAF in the Talaa Lakrah section (in terms of species extinctions and originations). However, changes in the size, abundance, and relative proportions of agglutinated foraminifera across the Palaeocene/Eocene boundary interval undoubtedly reflect environmental changes that took place in the western Tethys. Reductions in the abundance and size of DWAF from the Palaeocene to the lower Eocene indicate decreasing nutrients and/or palaeoproducitivity. An early Eocene Glomospira-dominated biofacies can be attributed to a period of well-oxygenated, oligotrophic conditions, probably caused by reduced particulate organic matter flux. The sparse assemblages from oxygenated sediments may be linked to lowered surface water productivity during the early Eocene climatic optimum and/or warm, well-oxygenated deep water masses of possible Tethyan origin. The return to greenish-grey, biosiliceous claystones with successive Karrerulina-dominated and R. amplexens-dominated assemblages signalled the return to a more eutrophic environment.

TAXONOMIC NOTES
Because of the current need for revision of the suprageneric classification of the agglutinated foraminifera, the taxa below are simply listed alphabetically by genus. For the sake of brevity, only primary references and revisions of primary types are cited.

Annodiscus cretae (Reuss, 1845)
(Pl. 1, figs 1–2)
1845 Operculina cretae Reuss: 35, pl. 13, figs 64, 65
Annodiscus cf. pemyi Cushman & Jarvis, 1928
1928 Annodiscus pemyi Cushman & Jarvis: 87, pl. 12, figs 4–5
Annodiscus peruvianus Berry, 1928
(Pl. 1, fig. 3)
1928 Annodiscus peruvianus Berry: 342, pl. 27
Annodiscus tenuissimus Grzybowski, 1898
(Pl. 1, fig. 4)
1898 Annodiscus tenuissimus Grzybowski: 282, pl. 10, fig. 35
Ammospaeroidina sp.
(Pl. 2, fig. 15)
Aschemocella carpathica (Neagu, 1964)
(Pl. 2, fig. 3)
1964 Achemocella carpathica Neagu: 582, text-fig. 1/5–8, 2/2–4, 3/1–3, 4/166, pl. 27, figs 1–3
Aschemocella grandis (Grzybowski, 1898)
(Pl. 2, fig. 4)
1898 Aschemocella grandis Grzybowski: 277, pl. 10, figs 13–15
1993 Aschemocella grandis (Grzybowski); Kaminski & Geroch: 249, pl. 2, figs 8–10
Bathygypnion sp.
Fragments of elongate cylindrical tubes, thin walled and finely agglutinated.

Cribrarosomoides trinitatensis Cushman & Jarvis, 1928
(Pl. 2, fig. 14)
1928 Cribrarosomoides trinitatensis Cushman & Jarvis: 21, pl. 12, figs 12a–b
Glomospira charoide (Jones & Parker, 1860)
(Pl. 1, fig. 12)
1860 Trochammina squamata Jones & Parker var. charoide Jones & Parker: 304
1990 Glomospira charoide (Jones & Parker); Berggren & Kaminski: 60, pl. 1, fig. 2
Glomospira glomerata (Grzybowski, 1898)
(Pl. 1, fig. 13)
1898 Annodiscus glomeratus Grzybowski: 285, pl. 11, fig. 4
Glomospira gordialis (Jones & Parker, 1860)
(Pl. 1, fig. 14)
1860 Trochammina squamata Jones & Parker var. gordialis Jones & Parker, p. 304
1990 Glomospira gordialis (Jones & Parker); Berggren & Kaminski: pl. 1, fig. 1
Glomospira irregularis (Grzybowski, 1898)
(Pl. 1, fig. 9)
1898 Annodiscus irregularis Grzybowski: 285, pl. 11, figs 2, 3
1993 Glomospira irregularis (Grzybowski); Kaminski & Geroch: 256, pl. 6, figs 6–8b

Explanation of Plate 1
Figs. 1–2, Annodiscus cretae (Reuss), Sample 5. Fig. 1: x69, Fig. 2: x37. Fig. 3, Annodiscus peruvianus Berry, Sample 9, x55. Fig. 4, Annodiscus tenuissimus Grzybowski, Sample 6, x66. Figs. 5–8, Glomospira sp. 5, Fig. 5: Sample 6 x22, Fig. 6: Sample 3 x18, Fig. 7: Sample 1 x13, Fig. 8: Sample 7 x55, Fig. 9, Glomospira irregularis Grzybowski, Sample 2, x125, Figs. 10–11, Glomospirella biedai Samuel, Fig. 10: Sample 7, x35, Fig. 11: Sample 6, x37. Glomospira charoide (Jones & Parker), Sample 10, x69. Fig. 13, Glomospira glomerata (Grzybowski), Sample 6, x16, Fig. 14, Glomospira gordialis (Jones & Parker), Sample 9, x69. Fig. 15, Glomospira serpens (Grzybowski), Sample 3, x55. Fig. 16, Rzevakina epigona (Grzybaki), Sample 3, x69.
Palaeocene–Eocene deep water agglutinated foraminifera from the Numidian Flysch

Plate 1
Glomospira serpens (Grzybowski, 1898)
(Pl. 1, fig. 15)
1898 Ammodiscus serpens Grzybowski: 285, pl. 10, figs 31–33
1993 Glomospira serpens (Grzybowski); Kaminski & Geroch: 256, pl. 6, figs 2–5

Glomospira sp. 5
(Pl. 1, figs 5–8)
Medium to large-sized test, arranged in planispiral to irregularly glomospiral coils. Test wall thick, and relatively coarsely agglutinated. Although the test may be large, the chamber increases in diameter slowly and does not become more irregular with ontogeny, as in some other species of Glomospira. Differs from Ammodiscus pensy in its irregularly glomospiral coiling. Glomospira irregularis differs in its more enroled streptospiral coiling.

Glomospirella biedai Samuel, 1977
(Pl. 1, fig. 11)
1977 Glomospirella biedai Samuel: 29, pl. 3, fig. 16; pl. 21, fig. 3
Glomospirella grzybowskii (Jürkiewicz, 1960)
1960 Glomospira grzybowskii Jürkiewicz: 342, pl. 38, figs 7, 10, 11

Haplophragmoides horridus (Grzybowski, 1901)
1901 Haplophragmium horridum Grzybowski: 270–271, pl. 7, fig. 12
1993 Haplophragmoides horridus (Grzybowski); Kaminski & Geroch: 275, pl. 15, figs 6–8

Haplophragmoides porrectus Masłakowa, 1955
(Pl. 2, fig. 11)
1955 Haplophragmoides porrectus Masłakowa: 47, pl. 3, figs 5–6

Haplophragmoides walteri (Grzybowski, 1898)
(Pl. 2, fig. 10)
1898 Trochammina walteri Grzybowski: 290, pl. 11, fig. 31.
1993 Haplophragmoides walterii (Grzybowski); Kaminski & Geroch: 263, pl. 10, figs 3a–7e

Hormosinella distans (Brady, 1881)
(Pl. 2, fig. 6)
1881 Reophax distans Brady: 50

Hyperammina rugosa Verdeniias & Van Hinte 1983
(Pl. 1, fig. 7)
1983 Hyperammina rugosa Verdeniias & Van Hinte: 187, pl. 1, figs 12–14

Kalanopsis grzybowskii (Dyląganka, 1923)
(Pl. 2, fig. 11)
1923 Hyperammina grzybowskii Dylągankait: 65–66
1993 Kalanopsis grzybowskii (Dylągankait): Kaminski & Geroch: 281, pl. 17, figs 5a–8

Karreriella horrida Myatlyuk, 1970
(Pl. 2, fig. 17)
1970 Karreriella horrida Myatlyuk: 114–115, pl. 5, fig. 9; pl. 33, figs 15–16c

Lagenammina sp.

Litouibia lataformis (Brady, 1879)
1879 Trochammina lataformis Brady: 59, pl. 5, fig. 16

Paratrochammina spp.
We place in the genus Paratrochamminoides all forms with irregular streptospiral, glomospiral, trochospirial, or triloculine coiling (which may uncoil in the latter stage) and irregular rounded to elongate chambers. Trochamminoides is distinguished by its irregular planispiral coiling. The family Litoubiidae is in need of revision. Specimens classified here as Paratrochamminoides spp. are mostly badly preserved and/or fragmentary.

Paratrochamminoides acerualatus (Grzybowski, 1896)
1896 Trochammina acerualata Grzybowski: 284, pl. 9, fig. 4 a–c
1981 Trochammina acerualata Grzybowski: Liszka & Liszkowa: p. 176, pl. 3, fig. 1a–c

Explanation of Plate 2

Figs. 1–2, Saccamminina placenta (Grzybowski), Fig. 1: Sample 9, ×59. Fig. 2: Sample 5, ×33. Fig. 3, Aschemocella carpathica (Neagu), Sample 3 ×9. Fig. 4, Aschemocella grandis (Grzybowski), Sample 3 ×8. Fig. 5, Kalamospis grzybowskii (Dyląganka), Sample 4, ×35. Fig. 6, Hormosinella distans (Brady), Sample 13, ×69. Figs. 7–8, Reophax elongatus Grzybowski, Sample 13, ×35. Fig. 9, Subreophax scalaris (Grzybowski), Sample 3, ×55. Fig. 10, Haplophragmoides walteri (Grzybowski), Sample 9, ×90. Fig. 11, Haplophragmoides porrectus Masłakowa, Sample 1, ×95. Fig. 12, Reticulaphragmium amplexans (Grzybowski), Sample 12, ×42. Fig. 13, Recurvoisoides nucleolus (Grzybowski), Sample 1, ×45. Fig. 14, Cribratuloides nuttatlitanus Cushman & Jarvis, Sample 1, ×25. Fig. 15, Ammosphaeroidina sp., Sample 13, ×103. Fig. 16, Gerochammina conversa (Grzybowski), Sample 5, ×68. Fig. 17, Karreriella horrida Myatlyuk, Sample 8, ×68.

Explanation of Plate 3

Fig. 1, Trochamminoides dubius (Grzybowski), Sample 1, ×50. Fig. 2, Trochamminoides dubius (Grzybowski), Sample 8, ×48. Fig. 3, Trochamminoides dubius (Grzybowski), Sample 1, ×38. Fig. 4, Trochamminoides dubius (Grzybowski), Sample 3, ×38. Fig. 5, Trochamminoides variolarius (Grzybowski), Sample 3, ×38. Fig. 6, Paratrochamminoides uniformis (Grzybowski), Sample 7, ×38. Fig. 7, Trochamminoides subcoronatus (Grzybowski), ×27. Fig. 8, Paratrochamminoides draco (Grzybowski), ×26. Fig. 9, Trochamminoides septatus (Grzybowski), Sample 11, ×74. Fig. 10, Paratrochamminoides sp. 4, Sample 4, ×20. Fig. 11, Paratrochamminoides sp. 4, Sample 5, ×18. Fig. 12, Trochamminoides proteus (Karrer), Sample 5, ×26.

Explanation of Plate 4

Figs. 1a–2, Paratrochamminoides sp. 5, Sample 8, Fig. 1: ×52. Fig. 2: ×36. Figs. 3–5, Paratrochamminoides heteromorphus (Grzybowski), Fig. 3: Sample 1, ×40; Fig. 4: Sample 2, ×27. Fig. 5, Sample 3, ×13. Figs. 6–7, Paratrochamminoides gorayskii (Grzybowski), Fig. 6: Sample 6, ×27. Fig. 7: Sample 4, ×72. Fig. 8, Paratrochamminoides irregularis (White), Sample 5, ×20. Fig. 9, Paratrochamminoides miratus (Grzybowski), Sample 8, ×20. Fig. 10, Paratrochamminoides olšczewski (Grzybowski), Sample 7, ×38.
Palaeocene–Eocene deep water agglutinated foraminifera from the Numidian Flysch
Paratrochamminoides draco (Grzybowski, 1901)
(Pl. 3, fig. 8)
1901 Trochammina draco Grzybowski, p. 280, pl. 8, fig. 10
1993 Paratrochamminoides draco (Grzybowski); Kaminski & Geroch: 277, pl. 16, fig. 5a–c
Paratrochamminoides goryavski (Grzybowski, 1898)
(Pl. 4, figs 6–7)
1898 Anomodiscus goryavski Grzybowski, p. 283, pl. 11, fig. 5
1993 Paratrochamminoides goryavski (Grzybowski); Kaminski & Geroch: 255, pl. 5, fig. 8a–d
Paratrochamminoides heteromorphus (Grzybowski, 1898)
(Pl. 4, figs 3–5)
1898 Trochammina heteromorpha Grzybowski: 286, pl. 11, fig. 16
1993 Paratrochamminoides heteromorphus (Grzybowski); Kaminski & Geroch: 258, pl. 7, figs 3a–5b
Paratrochamminoides irregularis (White, 1928)
(Pl. 4, fig. 8)
1928 Trochamminoides irregularis White: 307, pl. 42, fig. 1
1990 Paratrochamminoides irregularis (White); Kuhnt: 320, pl. 5, fig. 10
Paratrochamminoides miratus (Grzybowski, 1901)
(Pl. 4, fig. 9)
1901 Trochammina mirata Grzybowski, p. 280, pl. 8, fig. 3
1993 Paratrochamminoides miratus (Grzybowski); Kaminski & Geroch: 278, pl. 16, figs 4a,b; 6a,b
Paratrochamminoides olszewskii (Grzybowski, 1898)
(Pl. 4, fig. 10)
1898 Trochammina olszewski Grzybowski: 298, pl. 11, fig. 6
1993 Paratrochamminoides olszewski (Grzybowski); Kaminski & Geroch: 257, pl. 7, figs 1a–2b
Paratrochamminoides uiformis (Grzybowski, 1901)
(Pl. 3, fig. 6)
1901 Trochammina uiformis Grzybowski: 281, pl. 8, figs 1–2
1993 Paratrochamminoides uiformis (Grzybowski); Kaminski & Geroch: 278, pl. 16, figs 4a,b; 6a,b
Paratrochamminoides sp. 4
(Pl. 3, figs 10–11)
Test medium to large, coiling irregularly glomospiral, rounded inflated chambers with depressed sutures increasing rapidly in size after first whorl. The glomospiral coiling and rapidly enlarging chambers distinguish this species from *P. acerulae* (Grzybowski, 1896).
Paratrochamminoides sp. 5
(Pl. 4, figs 1a–2)
Specimens small, compact, quadrate in outline, possessing rounded chambers. Coiling changes abruptly and at 180° angles, and is arranged around two orthogonal axes as in the genus *Thalmanammina*. Wall smooth, finely finished. Only a few specimens were found in our samples, but its distinctive mode of coiling sets this apart from all previously described species of *Paratrochamminoides*.
Psammophacera irregularis (Grzybowski, 1896)
1896 Keramophacera irregularis Grzybowski: 273, pl. 8, figs 12–13
1964 Psammophacera irregularis (Grzybowski); Grün et al: 248, pl. 3, fig. 7
Recurooides cf. imperfectus Hanzliková, 1965
1965 Recurooides imperfectus Hanzliková: 38, text fig. 7
Recurooides nucleolus (Grzybowski, 1898)
(Pl. 2, fig. 13)
1960 Recurooides deflexiformis (Noto); Geroch: 52, pl. 5, fig. 6
1993 Recurooides nucleolus (Grzybowski); Kaminski & Geroch: 265, pl. 11, fig. 4a–d.
Recurooides ex gr. gerochi Pflaumann, 1964
1960 Recurooides sp. 1., Geroch: 52, pl. 3, fig. 13
1964 Recurooides gerochi Pflaumann: 102–104, pl. 14, fig. 1 a–d
Recurooides sp. 2
Large streptospiral test, relatively coarse grained, chambers increase rapidly in size.
Reophax elongatus Grzybowski, 1898
(Pl. 2, figs 7–8)
1898 Reophax elongatus Grzybowski: 279, pl. 10, figs 19–20
Reticulophragmium amplectens (Grzybowski, 1898)
(Pl. 2, fig. 12)
1898 Cyclammina amplectens Grzybowski: 292, pl. 12, figs 1–3
1993 Reticulophragmium amplectens (Grzybowski); Kaminski & Geroch: 266, pl. 11, figs 5–7c
Rhabdamminoides annulatus Grzybowski, 1896
1996 Rhabdamminoides annulatus Grzybowski: 276, pl. 8, figs 8–9
1981 Reophax cf. subnodulosa Grzybowski; Lisza & Liszkowa: p. 166, pl. 1, fig. 4a
Rhabdamminoides cylindrica (Glaessner, 1937)
1937 Rhabdamminoides cylindrica Glaessner: 354, pl. 1, fig. 1
Rhabdamminoides robusta (Grzybowski, 1898)
(Pl. 1, figs 2, 18)
1898 Dendrophyra robusta Grzybowski: 273, pl. 10, fig. 7
1993 Rhabdamminoides robusta (Grzybowski); Kaminski & Geroch: 247, pl. 1, figs 7–9b, 16a,b
Rhizammina cf. inquisitiva Brady, 1884
1884 Rhizammina inquisitiva Brady: 277, pl. 29, figs 5–7
Rzechkiina epigona (Rzechak, 1895)
(Pl. 1, fig. 16)
1895 Silicina epigona Rzechak: 214, pl. 6, fig. 1
Saccammina grzybowskii (Schubert, 1902)
1902 Reophax grzybowskii Schubert: 20, pl. 1, fig. 13
1993 Saccammina grzybowskii (Schubert); Kaminski & Geroch: 248, pl. 2, figs 1a–4b
Saccammina placenta (Grzybowski, 1898)
(Pl. 2, figs 1–2)
1898 Reophax placenta Grzybowski: 276–277, pl. 10, figs 9–10
1993 Saccammina placenta (Grzybowski); Kaminski & Geroch: 249, pl. 2, figs 5–7
Subreophax pseudoscalaris (Samuel, 1977)
1977 Reophax pseudoscalaris Samuel: 36, pl. 3, fig. 4a–b
1988 Subreophax pseudoscalaris (Samuel); Kaminski et al: 187, pl. 3, figs 5–6
Subreophax scalaris (Grzybowski, 1896)
(Pl. 2, fig. 7)
1896 Reophax guttifera Brady var. scalaris Grzybowski: 277, pl. 8, fig. 26
1988 Subreophax scalaris (Grzybowski); Kaminski et al: 187, pl. 2, figs 16–17
Trochamminoides dubius (Grzybowski, 1898)
(Pl. 3, figs 1–2)
1901 Anomodiscus dubius Grzybowski: 274, pl. 8, figs 12, 14
1970 Trochamminoides dubius (Grzybowski); Neagu: 38, pl. 2, fig. 20
Trochamminoides folius (Grzybowski, 1898)
1898 Trochammina folium Grzybowski, p. 288, pl. 11, figs 7–9
1993 Trochamminoides folius (Grzybowski); Kaminski & Geroch: 261, pl. 9, figs 1a–4b
Trochamminoides proteus (Karrer, 1866)
(Pl. 3, fig. 12)
1866 Trochammina proteus Karrer, pl. 1, fig. 8
1928 Trochamminoides proteus (Karrer); White: 308, pl. 42, fig. 2
Trochamminoides septatus (Grzybowski, 1898)
(Pl. 3, fig. 9)
1898 Anomodiscus septatus Grzybowski: 283, pl. 11, fig. 1
1993 Trochamminoides septatus (Grzybowski); Kaminski & Geroch: 255, pl. 5, fig. 9a–c

Kaminski, Kuhnt & Radley
Acknowledgements

Field work was assisted by the German Research Council (DFG), project number WI-127/2, as part of the ALKEPA project at the University of Tübingen. We are grateful to the Geological Survey of Morocco (Drs Bensaid & Dahmani) for permission to work in the area. Drs Klaus Reicherter and Thomas Pletsch (University of Tübingen) helped collect samples. Jim Davy, Toby Stiles, George Dumitrescu, and Vaila Holbourn assisted with photography and drafting. Drs W.A. Berggren (WHOI) and M.A. Charnock (SPT) kindly reviewed the manuscript. JDR acknowledges the support of an Advanced Course Studentship from the Natural Environment Research Council. This is contribution number 36 of the Deep-Water Agglutinated Foraminiferal Project.

Manuscript received December 1993.
Manuscript accepted June 1995.

References

Altenbach, A. V., Unsöld, G. & Walger, E. 1988. The hydrodynamic environment of Saccorhiza ramosa (Brady). Meytnana, 40: 119–132.

Alve, E. 1990. Variations in estuarine foraminiferal bioclines with diminishing oxygen conditions in Drannensford, SE Norway. In Hemleben, C., Kaminski, M. A., Kuhnt, W. & Scott, D. B. (Eds), Palaeoecology, Biostatigraphy, Palaeoecography, and Taxonomy of Agglutinated Foraminifera, 661–694, NATO ASI Series C, Mathematical and Physical Sciences, 327: Kluwer Academic Publishers, Dordrecht.

Barron, E. J. & Peterson, W. H. 1990. Mid-Cretaceous Ocean Circulation: Results from model sensitivity studies. Palaeoecography, 5: 319–337.

Berggren, W. A. & Kaminski, M. A. 1990. Abyssal Agglutinates: Back to Basics. In Hemleben, C., Kaminski, M. A., Kuhnt, W. & Scott, D. B. (Eds), Palaeoecology, Biostatigraphy, Palaeoecography, and Taxonomy of Agglutinated Foraminifera, 53–76, NATO ASI Series C, Mathematical and Physical Sciences, 327: Kluwer Academic Publishers, Dordrecht.

Berggren, W. A., Kent, D. V., Flynn, J. J. & Van Couvcering, J. A. 1985. Cenozoic geochronology. Geological Society of America Bulletin, 96: 1407–1418.

Berggren, W. A. & Olsson, R. K. 1986. North Atlantic Mesoicic and Cenozoic Palaeobiogeography. In Vogt, P. R. & Tucholke, B. E. (Eds), The Geology of North America, Volume M, The Western North Atlantic Region, 565–587, Geological Society of America.

Berry, E. W. 1928. The smaller foraminifera of the middle Lobitos shales of northwestern Peru. Ecoloe Geologie Helveticae, 21: 390–405.

Bohmann, G. & Stein, R. 1989. Biogenic silica at ODP Site 647 in the southern Labrador Sea: occurrence, diagenesis, and Palaeoecographic implications. In Srivastava, S. P., Arthur, M., Clement, B. et al. Proceedings of the Ocean Drilling Program, Scientific Results, 105: 155–170.

Boles, H. 1957. The genera Globigerina and Globorotalia in the Palaeogene–Lower Eocene Lizard Springs Formation of Trinidade, B. W. I. US National Museum Bulletin, 215: 61–81.

Brough, H. B. 1879. Notes on some of the reticularian Rhizopoda of the ‘CHALLENGER’ Expedition; Part I: On new or little known Arenaceous types. Quarterly Journal of Microscopical Sciences, 19: 20–63.

Brough, H. B. 1881. Notes on some of the reticularian Rhizopoda on the ‘CHALLENGER’ Expedition; Part III. Quarterly Journal of Microscopical Sciences, 21: 31–71.

Brough, H. B. 1884. Report on the foraminifera dredged by H.M.S. CHALLENGER during the years 1873–1876. In Murray, J. (Ed.), Reports of the scientific results of the voyage of the H. M. S. Challenger, Zoology, 9: 1–814.

Charnock, M. A. & Jones, R. W. 1990. Agglutinated foraminifera from the Palaeogene of the North Sea. In Hemleben, C., Kaminski, M. A., Kuhnt, W. & Scott, D. B. (Eds), Palaeoecology, Biostatigraphy, Palaeoecography and Taxonomy of Agglutinated Foraminifera, 139–244, NATO ASI Series C, Mathematical and Physical Sciences, 327: Kluwer Academic Publishers, Dordrecht.

Corliss, B. H. 1985. Microhabitats of benthic foraminifera within deep-sea sediments. Nature, 314: 435–438.

Corliss, B. H. & Chen, C. 1988. Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications. Geology, 16: 716–719.

Corliss, B. H. & Foss, E. 1991. Morphotype analysis of deep-sea benthic foraminifera from the northwest Gulf of Mexico. PALAIOS, 6: 589–605.

Cushman, J. A. & Jarvis, P. W. 1928. Cretaceous foraminifera from Trinidad. Contributions from the Cushman Laboratory for Palaeoecinfrural Research, 4: 85–103.

Dercourt, J., Zonzharness L. P., Ricou, L. E., Kazmin, V. G., Le Pichon, X., Knipper, A. L., Grandjacquet, C., Sborshechik, I. M., Boulin, J., Sorokhtin, G., Geyssant, J., Lepvrier, C., Bijoux, B., Sibuet, J.-C., Savostin, L. A., Westphal, M. & Lauper, J.-P. 1985. Présentation de 9 cartes paléogéographiques au 1/20. 000. 000 s'étendant de l'Atlantique au Pamir la période du Lias à l'Actuel. Bulletin de la Société géologique de France, (8), 5: 637–652.

Dion, J., Durand-Delga, M. & Kororphost, J. 1973. Homologies géologiques entre les deux rives du détroit de Gibraltar. Bulletin de la Société géologique de France (7), 15: 77–105.

Durand-Delga, M. 1972. La coubrure de Gibraltar, extrémité occidentale des chaine alpines, unit l'Europe et l'Afrique. Ecologie Geologie Helveticae, 65: 267–278.

Dytycza, M. 1923. Warshwy inersowom w lomu w Szymburku koło Goricz. Rocznik Polskiego Towarzystwa Geologicznego, 1: 36–80.

Geroch, S. 1960. Microfaunal assemblages from the Cretaceous and Palaeogene Silesian Unit in the Beskid Skaiki Mts. (western Carpathians). Biotopny zarys Geologiczny, Warszawa, 153: 7–138.

Geroch, S. & Nowak, W. 1984. Proposal of Zonation for the late Tithonian – late Eocene, based upon arenaceous foraminifera from the outer Carpathians, Poland. In Oertli, H. (Ed.), Benthos 83: 2nd International Symposium on Benttic Foraminifera Pan (France), April 11–15, 1983, 223–239, Elf Aquitaine, ESSO REP and TOTAL, CIP, Paris & Bourdeaux.

Glassner, M. F. 1937. Studien über Foraminifern aus der Kreide und dem Tertiär des Kaukasus: 1. Die Foraminiferen der ältesten Tertiärschichten des Nordwest-Kaukas. Problems of Palaeontology, Moscow, 2–3: 349–408.

Gradstein, F. M. & Berggren, W. A. 1981. Flysch-type agglutinatad foraminifera and the Macaristitarian to Palaeogene history of the Labrador and North Seas. Marine Micropalaeontology, 6: 211–268.

Grön, W., Lauer, G., Niedermeyer, G. & Schnabel, W. 1964. Die Kreide-Tertiär Grenze im Wiernelwaldtss bei Hochstrass/Niederosterreich. Verhandlungen der Geologischen Bundesanstalt, Wien, 2: 226–283.

Grzybonski, J. 1896. Otoworczyci czyworcych kłów z Wadowic.
Palaeocene–Eocene deep water agglutinated foraminifera from the Numidian Flysch

Chiemsee in Bayern. Inaugural dissertation. Ludwig Maximilian Universität, München.
Reuss, A. E. 1845. Die Versteinerungen der böhmis chen Kreideformation. Abtheilung I. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.
Rössl, F., Fuchs, R., Schnabel, W., Seifert, P. & Wagner, L. 1986. Excursion Guide to the 2nd IWA F Excursion in Austria 1986. Second International Workshop on Agglutinated Foraminifera, Abstracts, Program and Excursion Guide, 60–92. H. Peter Press. Straßhof, Austria.
Rechak, A. 1895. Über einige merkwürdige Foraminiferen aus dem österreichischen Tertiär. Annalen des K. K. Naturhistorisches Hofmuseums, Wien, 10: 213–230.
Samuel, O. 1977. Agglutinated foraminifers from Palaeogene flysch formations in West Carpathians of Slovakia. Západoské Karpaty, série Paleontologie, 2–3: 7–70.
Schnitker, D. 1979. Cenozoic deep water benthic foraminifers, Bay of Biscay. In Montadert, L., Roberts, D. G., et al. , Initial Reports of the Deep Sea Drilling Project, 48: 377–414. Washington (U. S. Government Printing Office).
Schubert, R. J. 1992. Neue und interessante Foraminiferen aus dem südtiroischen Alhettär. Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, 14: 9–26.
Shackleton, N. J. 1986. Palaeogene stable isotope events. Palaeoecography, Palaeoclimatology, Palaeoecology, 57: 91–101.
Sinti, L. D. 1992. Higher temperatures and lower oceanic pCO2: A climatic enigma at the end of the Palaeocene epoch. Palaeogeography, 7: 395–404.
Suter, G. 1980. Carte géologique de la chaine rifaine. échelle 1/500 000. Notes et Mémoires du Service Géologique du Maroc: 245a.
Thomas, E. & Shackleton, N. J. 1991. Deep-sea circulation through the Cenozoic. Britain in the Ocean Drilling Program 1991 (abstracts).
Tjalsma, R. C. 1977. Cenozoic foraminifera from the south Atlantic. In Barker, P. F., Dalziel, I. W. D. et al. , Initial Reports of the Deep Sea Drilling Project, 36: 493–518. Washington (U. S. Government Printing Office).
Tjalsma, R. C. & Lohmann, G. P. 1983. Palaeocene–Eocene bathyal and abyssal benthic foraminifera from the Atlantic Ocean. Micropalaeontology Special Publication, 4: 1–90.
Verdenius, J. G. & Van Hinte, J. E. 1983. Central Norwegian-Greenland Sea: Tertiary arenaceous foraminifera, biostratigraphy and environment. Proceedings of the First Workshop Arenaceous Foraminifera, 7–9 Sept. 1981. Continental Shelf Institute Publication, 108: 173–224.
White, M. P. 1928. Some index foraminifera from the Tampico Embayment area of Mexico (Part 2). Journal of Paleontology, 2: 280–317.
Wildi, W. 1983. La chaîne tello-rifaine (Algérie, Maroc, Tunisie): Structure, stratigraphie et évolution du Trias au Miocène. Revue de Géologie Dynamique et de Géographie Physique, 24: 201–297.
Winkler, W. 1984. Rhabdammina-fauna: What relation to turbidites? Evidence from the Gurnigel-Schlieren Flysch. In Oertli, H. J. (Ed.), Benthos '84; 2nd International Symposium on Benthic Foraminifera Pau (France), April 11–15, 1983, 611–617 Elf Aquitaine, ESSO REP and TOTAL CFP, Pau & Bourdeaux.