Nonaqueous electrolytes play important roles in determining the performance of lithium-ion batteries. However, the high flammability, poor thermal stability, narrow electrochemical window, and slow electrode reaction kinetics seriously hinder the application of batteries. Compared with traditional electrolytes, high-concentration electrolytes (HCEs) have a higher ion transfer number, wider electrochemical window, higher thermal stability, lower volatility, good flame resistance, and passivation of Al current collector at high potential. The HCEs can effectively overcome the shortcomings of traditional electrolytes, and provide a new direction for the development of next-generation batteries. Therefore, it is very timely to write a perspective on HCEs for directing future research. Herein, the recent development of HCEs is described.

1. Introduction

With the rapid increase in energy demand and the appearance of increasingly serious global environmental problems, the development of high-energy-density storage devices, especially, lithium metal batteries (LMBs), is becoming even more urgent. Metallic Li is considered to be ideal anode due to the extremely low electrode potential (−3.045 V vs. standard hydrogen electrodes, SHEs) and ultrahigh specific capacity (1700 mAh g⁻¹). However, the uncontrollable growth of Li dendrites and low Coulombic efficiency (CE) in traditional electrolytes severely hinder their potential applications. Although electrolyte additives have made a significant contribution to the performance improvement of LMBs, they are still pure in high flammability, poor thermal stability, narrow electrochemical window, and slow electrode reaction kinetics, which seriously hinder the application of batteries.

High-concentration electrolytes (HCEs) (the concentration of lithium salt usually >3 M) show different physical and chemical properties from traditional electrolytes due to their unique solvation structure. In HCEs, the interaction between cations and anions is stronger, and there are almost no free solvent molecules, thereby reducing the decomposition of the solvent in solid electrolyte interphase (SEI), so the cycle stability and CE are higher. At the same time, the HCEs also have the advantages of higher electrochemical window, thermal stability, flame resistance, and passivation of the Al current collector at high potential, which can effectively improve the shortcomings of traditional electrolytes. However, the use of high salt concentration electrolyte also faces some challenges, such as high viscosity and high cost, so further research and development are needed. In this Perspective, we will introduce the development of HCEs, and discuss advantages and disadvantages for LMBs. Moreover, we also point out the future research direction in this field and expect that this Perspective will give some kindly guidance to related researchers in future.

2. Advantages of HCEs for LMBs

The electrolyte conductivity decreases as the electrolyte concentration increases in some degree, so 1 M is considered as the best electrolyte concentration. In this Perspective, we will introduce the development of HCEs, and discuss advantages and disadvantages for LMBs. Moreover, we also point out the future research direction in this field and expect that this Perspective will give some kindly guidance to related researchers in future.
thereby inhibiting the growth of Li dendrites and the side reaction between the electrolyte and Li metal, and the excellent cycle stability and rate performance of batteries will be achieved.[15,16,30]

To achieve high energy density, a high voltage window is usually required. However, under high potential, the LiPF₆ (1 M) electrolyte is unstable and will react with a trace of water to generate HF, and then dissolve transition metal ions and significantly corrode electrode materials.[31,32] LiN(SO₂CF₃)₂ (LiTFSA) salt, as a commonly used lithium salt of HCEs, is more stable. Under the high pressure of 5 V, the metal ions in the HCEs have almost no free solvent molecules that can be coordinated, and the constructed 3D network inhibits the diffusion of metal ions into the bulk electrolyte, effectively protecting Al and transition metals.[30] The HCEs overcome the problem that LiTFSA electrolyte cannot passivate the Al current collector, so that batteries can work under a higher electrochemical window and obtain a higher energy density.

Safety is an important indicator of battery application. In HCEs, a nonvolatile and nonflammable solvent can be selected. And there is a strong interaction between solvent molecules and Li⁺, which can effectively reduce the inherent volatility of the electrolyte.[33] In addition, SEI generated by anions has good passivation ability and can inhibit side reactions at the interface.[15] Therefore, in terms of safety, HCEs have unique advantages and show excellent safety. In the work of Yamada and coworkers,[30] the Li||LNMO cells with HCEs showed better electrochemical performance than traditional electrolytes at 0.5 C and 40 °C, as shown in Figure 1a,b. When the current density is 2 C, the Li||LNMO cells with HCEs showed more stable cycle performance (Figure 1c). Moreover, the linear sweep voltammetry

![Figure 1](https://www.advancedsciencenews.com)

Figure 1. Charge–discharge curves of Li||LNMO cells at 0.5 °C a) commercial electrolyte and b) HCE; c) Cycling stability of Li||LNMO cells at 0.25 °C; d) LSV of an aluminum electrode in various concentrations of LiFSA/DMC electrolytes in a three-electrode cell; Flame tests of e) commercial electrolyte and f) HCE. Reproduced under a Creative Commons Attribution 4.0 International License.[30] Copyright 2016, The Authors. Published by Springer Nature.
Figure 2. Cycling stability of Li||LNMO cells at 1 and 3 M electrolyte at a) 2 C and b) 5 C; c) the amount of transition metal deposited on the different cycled lithium plates in 1 and 3 M electrolytes at 2 C; d) schematic illustrations of passivation films in 1 and 3 M electrolytes. Reproduced under a Creative Commons Attribution 4.0 International License.© 2020, The Authors. Published by Springer Nature.
(LSV) (Figure 1d) indicated that as the electrolyte concentration increased, the oxidation stability of the Al electrode increased, so the Al current collector can be effectively protected. In addition, it can be observed in the combustion test (Figure 1e,f) that HCEs exhibited more excellent thermal stability and flame retardant ability, and the safety performance is significantly improved.

In addition, HCEs also have the function of protecting the electrode materials and inhibiting the dissolution of transition metals in the electrolytes. In the work of Qiu et al., 3 m LiPF$_6$-ethylene carbonate (EC)/ethyl methyl carbonate (EMC)/dimethyl carbonate (DMC) was used as the electrolyte, the Li sheet was used as the anode, and the cobalt-free Li$_{1.2}$Ni$_{0.15}$Fe$_{0.1}$Mn$_{0.55}$O$_2$ (LNFMO) as the cathode. As shown
in Figure 2a,b, the HCE can still remain stable after 500 cycles at current densities of 2 and 5 C. The discharge specific capacity was 150 and 125 mAh g⁻¹, and the capacity retention rate was 94% and 100% in the HCE, respectively. Moreover, the discharge specific capacity had obviously attenuated after 250 cycles in the traditional electrolyte. This demonstrates that the LMBs in the HCE not only have excellent cycle stability, but also exhibit excellent rate performance, which is beneficial to the rapid charge and discharge of the battery. In addition, it can be seen from the transition metal deposition graphs in different cycles (Figure 2c) that the transition metal deposition in the traditional electrolyte gradually increased with the increase in the number of cycles, whereas the transition metal deposition in the HCE only slightly increased, and further proved that the HCE suppressed the deposition of transition metals. Figure 2d shows a schematic diagram of cathode electrolyte interphase (CEI) formed in different electrolytes. In the traditional electrolyte, solvent molecules were decomposed to form organic-rich CEI, which exhibited fragile and nonuniform characteristics, so the electrode material cannot be protected, and a large amount of transition metal dissolved products were formed on the surface, resulting in poor cycle stability and rate performance, and low CE. Compared with the CEI formed by the decomposition of carbonates in commercial electrolytes, LiPF₆ prefers to be decomposed and participate in the formation of CEI in HCEs. The LiF-rich CEI exhibited strong, uniform, and dense characteristics, so it could protect electrode materials and inhibit the dissolution of transition metals, thus exhibiting excellent electrochemical performance.

3. Disadvantages and Improvement of HCEs

Although HCEs have many advantages, there are still some shortcomings that hinder their commercial development. High viscosity and high cost are currently the two main problems that restrict the practical applications of HCEs. Commercially, the batteries with traditional electrolytes require 24 h of wetting before use, whereas the batteries with HCEs have higher viscosity and therefore longer wetting times. When highly loaded electrode materials are used, the difficulty of wetting is bound to increase. In addition, the cost of the Li salt in the electrolyte is higher than other components, and the HCEs require more Li salt, which results in its cost significantly higher than that of traditional electrolytes. Therefore, these two problems must be solved first before commercial applications of HCEs.

To solve the above problems, an ideal diluent is proposed. First, the diluent has a low cost and can effectively reduce the viscosity of the electrolyte; second, the diluent does not change the local coordination environment and higher solubility of the HCEs, while ensuring that the electrochemical window is not shortened; finally, the diluent features high security. The 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TTFE), tris(2,2,2-trifluoroethyl)orthoformate (TFEO), and bis(2,2,2-trifluoroethyl) ether (BTFE) have been introduced into HCEs as diluents, forming a new type of local high-concentration electrolytes (LHCEs), which satisfied the aforementioned conditions while maintaining the excellent characteristics of HCEs. Recently, Zhang et al. prepared 1.2 M LiFSI in DMC/BTFE (1:2 by mol) as the electrolyte. In the Li||Cu cells, the average CE of 1.2 M LiFSI/DMC was only 9% in the first 10 cycles, whereas the average CE of 5.5 M LiFSI/DMC was as high as 92.2%. After BTFE dilution, the average CE of 2.5 M LiFSI/DMC-BTFE increased to 99.5%, and the average CE of 1.2 M LiFSI/DMC-BTFE solution also increased to 99.3%, indicating that the electrochemical behavior was improved after dilution. As shown in Figure 3a, the capacity of the traditional electrolyte decays rapidly at the current density of 1 C, with a capacity retention rate of only 40% after 100 cycles. In the HCEs, although the battery performance was improved, its capacity retention rate was 76%. After being diluted by BTFE, it is shown in Figure 3a that the discharge capacity remained stable at 150 mAh g⁻¹ (capacity retention rate is 95%) after 300 cycles, and the average CE was 99.7%. When the 1.2 M LiFSI/DMC-BTFE battery was charged at a current density of 0.5 C and discharged at a current density of 2 C, the specific discharge capacity could still maintain at about 150 mAh g⁻¹ after 700 cycles, and the capacity retention rate was >80% (Figure 3c). Figure 3d shows that the solvation of Li⁺ is mainly carried out by DMC molecules, while the interaction between BTFE and other electrolyte components was weak. In addition, it is shown in Figure 3e that the free DMC molecules in 1.2 M LiFSI/DMC-BTFE were reduced and weakened the association between Li⁺ and FS⁻. It took a role in improving the ionic conductivity and dynamic performance of the electrolyte, and provided a new direction for the development and application of HCEs. Although LMBs have shown excellent performance in LHCEs, the interaction between diluent and solvent is still unclear and needs to be optimized, so further improvement and exploration are needed.

4. Summary and Perspectives

In this perspective, we summarize the unique advantages of HCEs including lower interface resistance of the anion-derived SEI layer which promotes uniform Li electroplating/stripping, high voltage window to achieve higher energy density, high level of battery safety with low volatility and good flame retardancy. Moreover, it protects the electrode material and inhibits the dissolution of the cathode transition metal. However, the disadvantages of high viscosity and high cost are obstacles to the development of potential applications of HCEs. Therefore, the research of HCEs still needs to continue to explore and optimize.

The LHCEs have successfully solved the shortcomings of high viscosity and high cost of HCEs. At the same time, the introduced diluents will not change the solvation structure of the Li salt in the electrolytes, inheriting the unique advantages of HCEs. To maintain high safety, screening and optimizing nonflammable and low volatility diluents will be a direction for future exploration. Moreover, the diversity of electrolyte components, the formation mechanism of the electrode and electrolyte interface, the corresponding in situ characterization test, both the perfection of theoretical calculation models and application expansion (other metal-ion batteries) need to continue to explore and optimize, thus to further promote the development of HCEs.
Acknowledgements

This work was supported by the National Natural Science Foundation of China (nos. 11675051 and 18164213), the National Key R&D Program of China (2018YFB0104400), and the Key Research and Development Program of Hunan Province of China (no. 2018GKZ031).

Conflict of Interest

The authors declare no conflict of interest.

Keywords

batteries safety, high-concentration electrolytes, lithium dendrites, lithium metal batteries, metallic lithium anodes

Received: October 21, 2020
Revised: December 8, 2020
Published online: February 7, 2021

[1] J. B. Goodenough, Y. Kim, Chem. Mat. 2010, 22, 587.
[2] M. Armand, J. M. Tarascon, Nature 2003, 451, 652.
[3] X. B. Cheng, R. Zhang, C. Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403.
[4] H. P. Wang, J. He, J. D. Liu, S. H. Qi, M. G. Wu, J. Wen, Y. N. Chen, Y. Z. Feng, J. M. Ma, Adv. Funct. Mater. 2020, 30, 2002578.
[5] Q. Zhao, S. Stalin, C. Z. Zhao, L. A. Archer, Adv. Mat. 2020, 5, 229.
[6] Z. Y. Shen, W. D. Zhang, G. N. Zhu, Y. Q. Huang, Q. Feng, Y. Y. Lu, Small Methods 2020, 4, 1900592.
[7] Z. K. Xie, Z. J. Wu, X. W. An, X. Y. Yue, A. Yoshida, X. Du, X. G. Hao, A. Abudula, G. Q. Guan, Chem. Eng. J. 2020, 393, 124789.
[8] Z. Wang, Y. Sun, Y. Mao, F. Zhang, L. Zheng, D. Fu, Y. Shen, J. Hu, H. Dong, J. X. Wu, Energy Storage Mater. 2020, 30, 228.
[9] Q. Wang, C. Yang, J. Yang, K. Wu, C. Hu, J. Lu, W. Liu, X. Sun, J. Qiu, H. Zhou, Adv. Mater. 2019, 31, 1903248.
[10] J. Zheng, J. A. Lochala, A. Kwok, Z. D. Deng, J. Xiao, Adv. Sci. 2017, 4, 1700332.
[11] Y. Yamada, M. Yaegashi, T. Abe, A. Yamada, Chem. Commun. 2013, 49, 11194.
[12] K. Xu, Chem. Rev. 2004, 104, 4103.
[13] O. Borodin, X. M. Ren, J. Vatamanu, A. V. Cresce, J. Knap, K. Xu, Accounts Chem. Res. 2017, 50, 2886.
[14] K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki, S. Seki, K. Dokko, M. Watanabe, J. Am. Chem. Soc. 2011, 133, 13121.
[15] Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, A. Yamada, J. Am. Chem. Soc. 2014, 136, 5039.
[16] D. W. McOwen, D. M. Seo, O. Borodin, J. Vatamanu, P. D. Boyle, W. A. Henderson, Energy Environ. Sci. 2014, 7, 416.
[17] Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy 2019, 4, 269.
[18] O. Borodin, J. Self, K. A. Persson, C. Wang, K. Xu, Joule 2020, 4, 69.
[19] J. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada, Y. Tateyama, A. Yamada, Nat. Energy 2018, 3, 22.
[20] H. Wang, M. Matsui, H. Kuwata, H. Sonoki, Y. Matsuda, X. Shang, Y. Takeda, O. Yamamoto, N. Imanishi, Nat. Commun. 2017, 8, 15106.
[21] S. Chen, J. Zheng, D. Mei, K. S. Han, M. H. Engelhard, W. Zhao, W. Xu, J. Liu, J.-G. Zhang, Adv. Mater. 2018, 30, 1706102.
[22] Y. Jie, X. Ren, R. Cao, W. Cai, S. Jiao, Adv. Funct. Mater. 2020, 30, 1910777.
[23] Q. Zhao, X. T. Liu, S. Stalin, K. Khan, L. A. Archer, Nat. Energy 2019, 4, 365.
[24] S. Qi, H. Wang, J. He, J. Liu, Cui, M. Wu, F. Li, Y. Feng, J. Ma, Sci. Bull. 2020, https://doi.org/10.1016/j.scib.2020.09.018.
[25] S. Wu, Z. Zhang, M. Lan, S. Yang, J. Cheng, J. Cai, J. Shen, Y. Zhu, K. Zhang, W. Zhang, Adv. Mater. 2018, 30, 1705830.
[26] C. Yan, X.-B. Cheng, Y.-X. Yao, X. Shen, B.-Q. Li, W.-J. Li, R. Zhang, J.-Q. Huang, H. Li, Q. Zhang, Adv. Mater. 2018, 30, 1804461.
[27] F. Han, A. S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D. N. Leonard, N. Dudney, H. Wang, C. Wang, Nat. Energy 2019, 4, 187.
[28] K. Sodeyama, Y. Yamada, K. Aikawa, A. Yamada, Y. Tateyama, J. Phys. Chem. C 2014, 118, 14091.
[29] X. L. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Y. Yang, S. C. Liou, K. Amine, K. Xu, C. S. Wang, Nanotechnol. 2018, 13, 1191.
[30] J. Wang, Y. Yamada, K. Sodeyama, C. H. Chiang, Y. Tateyama, A. Yamada, Nat. Commun. 2016, 7, 12032.
[31] D. Aurbach, B. Markovsky, G. Salitra, E. Markevich, T. Talyossef, M. Koltypin, L. Nazar, B. Ellis, D. Kovacheva, J. Power Sources 2007, 165, 491.
[32] X. L. Fan, X. Ji, L. Chen, J. Chen, T. Deng, F. D. Han, J. Yue, N. Piao, R. X. Wang, X. Q. Zhou, X. Z. Xiao, L. X. Chen, C. S. Wang, Nat. Energy 2019, 4, 882.
[33] Z. Zeng, V. Murugesan, K. S. Han, X. Jiang, Y. Cao, L. Xiao, X. Ai, H. Yang, J.-G. Zhang, M. L. Sushko, J. Liu, Nat. Energy 2018, 3, 674.
[34] H. Liu, J. X. Li, W. T. Li, H. Y. Xu, C. Zhang, X. P. Qiu, Nat. Commun. 2020, 11, 3629.
[35] B. W. Xiao, X. L. Sun, Adv. Energy Mater. 2018, 8, 1802057.
[36] X. Cao, X. D. Ren, L. F. Zou, M. H. Engelhard, W. Huang, H. S. Wang, B. E. Matthews, H. Lee, C. J. Niu, B. W. Arey, Y. Cui, C. M. Wang, J. Xiao, J. Liu, W. Xu, J. G. Zhang, Nat. Energy 2019, 4, 796.
[37] G. J. Xu, X. H. Shangguan, S. M. Dong, X. H. Zhou, G. L. Cui, Angew. Chem. Int. Ed. 2020, 59, 3400.
[38] X. D. Ren, L. F. Zou, X. Cao, M. H. Engelhard, W. Liu, S. D. Burton, H. Lee, C. J. Niu, B. E. Matthews, Z. H. Zhu, C. M. Wang, B. W. Arey, J. Xiao, J. Liu, J. G. Zhang, W. Xu, Joule 2019, 3, 1662.

Gaoxue Jiang is currently a Ph.D. candidate at School of Physics & Electronics, Hunan University with a research interest in the energy storage and conversion, such as lithium metal batteries. He received his B.S. degree (2017) and M.S. degree (2020) in material science and engineering from the University of Jinan.
Fang Li received her B.S. degree in physics from the Qufu Normal University in 2010 and Master degree in optics from Nankai University. She received her Ph.D. degree from Hunan University and University of Wollongong, in 2018 and 2019, respectively. After graduation, she worked in Hunan University as a postdoctoral fellow. Her research focuses on energy storage materials and devices, including Li–S batteries, metal anodes, and electrolytes.

Huaping Wang is currently a Ph.D. candidate in School of Physics & Electronics at Hunan University. He received his B.S. degree in chemistry from the Hunan Normal University in 2019. His research interest focuses on the energy storage and conversion, such as lithium or sodium metal batteries.

Mingguang Wu is currently a Ph.D. candidate at College of School of Physics and Electronics, Hunan University. His research interests are energy storage devices including metal anodes and the wide temperature windows batteries.

Shihan Qi is currently a Ph.D. candidate in School of Physics & Electronics at Hunan University with a research interest in the electrolyte additive for lithium metal battery. He received his B.S. degree in chemical engineering from the Nanjing Forestry University and M.S. (2012) degree in physical chemistry from the Zhengzhou University, China.

Xinhua Liu is an assistant professor of School of Transportation Science & Engineering at Beihang University, a visiting lecturer of Dyson School of Design Engineering at Imperial College London (U.K.), and a lab manager of Beihang University (Zhejiang) New Energy Vehicle Institute. Her research interests mainly lie in the interface between electrochemical science and engineering applying a digital process, including designer energy materials for various energy storages; model-driven microstructure optimization for high performance batteries, cloud-control-based battery degradation mechanism, and diagnose and battery management system design.

Shichun Yang is dean of School of Transportation Science & Engineering at Beihang University, leading personnel of scientific and technological innovation in National Ten-thousand Talents Program, leading personnel among young and middle-aged in Ministry of Science and Technology, National outstanding scientific and technological worker, vice chairman of Electric Vehicle Division of National Technical Committee of Automobile Standardization (NTCAS), expert of Road Vehicle Specialized Committee of China Intelligent Transportation System Association (CTTSA), vice chairman of SAE Vehicle Safety and Information Security Technical Committee. His research focuses on scientific and technological research for EV power system safety, high-efficient optimal theory, and integrated control.
Jianmin Ma is a professor in the Hunan University, Changsha, China. He received his B.S. degree in chemistry from the Shanxi Normal University in 2003 and Ph.D. degree in materials physics and chemistry from Nankai University in 2011. During 2011–2015, he also conducted the research in several overseas universities as a postdoctoral research associate. His research interest focuses on the energy storage devices and components including metal anodes and electrolytes, and theoretical calculations from density functional theory and molecular dynamics to finite element analysis.