PERCENTAGE YIELD DIFFERENCE, AN INDEX FOR EVALUATING INTERCROPPING EFFICIENCY

A.I. Afe¹ and S. Atanda²

¹Department of Crop Production, Kwara State University, Malete, Nigeria.
²Kwara State Agricultural Development Project, Ilorin, Nigeria.

Authors’ contributions
This work was carried out in collaboration between the two authors, read and approved the final manuscript.

ABSTRACT.

Rationale: Percentage Yield Difference (PYD) has not been considered as one of the indices to interpret intercropping advantage in crop mixture.

Aim: To evaluate intercropping efficiency using percentage yield difference (PYD) and to compare the index with other indices.

Study design: The design was a 2 X 5 factorial in a randomized complete block design and replicated three times.

Location: The study was carried out at the Lower Niger River Basin Development Authority, Ejiba in the Southern Guinea Savannah zone of Nigeria in 2008 and 2009 cropping seasons.

Methodology: Erect and prostrate cowpeas and maize were mixed at five population ratios. Sole crops of each crop at full population were included as control treatments. Land Equivalent Ratio (LER), Area Time Equivalent Ratio (ATER), Monetary Equivalent Ratio (MER) and Percentage Yield Difference (PYD) were estimated and compared.

Results: Results of this study showed that LER, ATER, and PYD values were similar for the two cultivars in the two years.

LER values ranges between 1.18 — and 1.27 in 2008 and 1.12 — and 1.30 in 2009. MER did not follow the same trend as LER and ATER. Lower values were obtained particularly in 2009. However, the highest MER 1.35 and 1.23 in 2008 and 2009 respectively were obtained in prostrate cowpea / maize mixture at population ratio of 100:50. The PYD advantage varies between 5-33% in the two years.

Conclusion: The comparable values of PYD with other indices suggest that it can be used to evaluate intercropping efficiency in crop mixture.

Key words: Land Equivalent Ratio, Area Time Equivalent Ratio, Monetary Equivalent Ratio, Percentage Yield Difference, Intercropping efficiency.

INTRODUCTION

Intercropping as one of the types of mixed croppingis the practice of growing more than one crop on the same field at the same time. This practice is widely practiced among small holder and peasant farmers in the tropics [1,2]. Mutsears etal.[3] pointed out the potential advantagesof the system such as better utilizationof natural resources (solar radiation, mineral nutrients and water), higher labour productivity and reduced risk of crop failure as compared with sole cropping. [4]Reported the superiority of the system over sole cropping in early and late maturing cowpea /maize mixture. In another study, [5] also noted that intercropping could be an eco-friendly approach at reducing weed problem through non-chemical methods.

Efficiency of intercropping over sole cropping has been assessed by various indices. Mead and Willey [6] use the concept of land equivalent ratio(LER) defined as the totalland area required under sole cropping to give the yield obtained in the intercrop mixture. Adetiloye
and Ezedima [7] use the concept of land equivalent coefficient (LEC) defined as the product of land equivalent ratio in the intercrop. It was developed to assess the interaction and productive potential in crop mixtures. Hiebsch and Mc Collum [8] proposed the concept of area time equivalent ratio (ATER), as a modification for LER. This takes into consideration the crop dimension in the field that is, the time the crop occupies the field from planting to harvesting. Ofori and Stern [9] observed and noted that this index was appropriate in crop mixture where component crops have different maturity dates. Monetary equivalent ratio (MER) defined as the sum of the ratio of intercrop monetary returns to the highest sole crop monetary return to the entire land area occupy by all intercrops per unit time [10].

While all these indices and others relate with the yield differences that exist between the component crops in the mixture, percentage yield difference (PYD) as an index has not been documented and compared to interpret intercropping advantages. This research was therefore designed to interpret and evaluate intercropping advantages using percentage yield difference between the component intercrop and the sole crop and to compare the advantage with other indices.

MATERIALS AND METHODS

The result of field trial involving erect and prostrate cowpea in an intercrop with maize were evaluated for the efficiency of the intercropping system using the Land Equivalent Ratio (LER), Area Time Equivalent Ratio (ATER), Monetary Equivalent Ratio (MER) indices in 2008 and 2009 cropping in Ejiba, Southern Guinea Savannah agro ecological zone of which state? Nigeria. During 2008 and 2009 cropping were evaluated using the Land Equivalent Ratio (LER), Area Time Equivalent Ratio (ATER), Monetary Equivalent Ratio (MER) indices. The percentage yield difference of the treatments were also calculated and compared with the LER, ATER and MER values. The treatment consist of five population ratios of cowpea and maize combined in a 2 x 5 factorial and arranged in a randomized complete block in three replicates. Sole crop of cowpea and maize full population were included as control treatments. Phosphorous was applied as single super phosphate (18% P₂O₅) at the rate of 60 kg/ha of P₂O₅ two days before planting. Urea was split applied in two split to the maize at 3 and 6 weeks after planting at the rate of 120 kg N/ha. Pendimethalin herbicide was applied immediately after planting and cylothrin was sprayed at the rate of 40 ml/20 litres/2 ml/L of water using knapsack sprayer at the onset of flowering till harvesting of cowpea to control insect pests. Cobs from ten maize plants at the inner rows were harvested, while all the pods in each plot of cowpea were also harvested. Yield data collected were statistically analysed using [12] models and treatment means compared at P = .05 using Duncan’s Multiple Range Test.

\[
\text{LER} = \frac{Y_{ij}}{Y_{i}Y_{j}}
\]

Where:
- \(Y \) = yield per unit area
- \(Y_{i} \) and \(Y_{j} \) = sole crop yield of component crops i and j
- \(Y_{ij} \) and \(Y_{ji} \) = intercrop yield

\[
\text{ATER} = \frac{Y_{i}T_{i}}{Y_{s}T_{i}}
\]

Where:
- \(Y_{i} \) = Grain yield of intercrop species i
- \(T_{i} \) = Duration in days of the species with the longest growing period.
- \(Y_{s} \) = Grain yield of the sole cropped species
- \(T_{i} \) = Duration of growth cycle of species i.

\[
\text{MER} = \frac{ra + rb}{Ra}
\]

Where:
- \(ra \) and \(rb \) = Grain yield of component crops i and j
- \(Ra \) = Grain yield of the sole crop species

Comment [U4]: List the ratios. You must mention them here before the tables.

Comment [U5]: As what? And for what? And at what rate per ha?

Comment [U6]: What is the area of this inner area harvested for maize? What is the plot area or size from where cowpea was harvested?
Ra = Highest sole crop monetary return obtain from a; compared with the sole crop monetary return of crop b (Rb)

Ya=pa xya
Yb =pbxyb
Ra =paxYa
Rb=pbxYb
ra and rb = monetary returns of crop a and b under intercropping.
pa, pb= current market price of unit weight of crop a and b
ya, yb= intercrop yield a and b
Ya = sole crop yield of most economic sole crop from the land area equivalent that is occupied by all intercrop for the same given period of time.

PYD= 100 - \frac{Y_{Sa} - Y_{Si} - Y_{Sb} - Y_{Si}}{Y_{Sa} - Y_{Si}}

Where:
Y_{Sa} = sole crop yield of crops A
Y_{Sb} = sole crop yield of crops B
Y_{Si} = intercrop yield of crops A
Y_{Sb} = intercrop yield of crops B

PYD is defined as the yield difference between sole crop (100) and the intercrop expressed in percentage. It is based on the understanding that yield differences exist in crop mixture between the sole crop and the intercrop and that the sole crop was assumed to be hundred percent. Irrespective of the component population ratio employed, time of planting of component crop, plant geometry etc. the reduction of one crop is usually compensated by increased yield of the other crop. When this yield difference is expressed in percentage, the efficiency of the system in numerical value is shown. The PYD value gave the numerical value of intercropping advantage when the percentage intercrop was deducted from the sole crop. PYD value is inversely proportional to yield advantage that is, the lower the value the higher the efficiency of the system and vice versa.

RESULTS
LER, MER, ATER and PYD values for 2008 and 2009 cropping seasons are presented in Tables 1, 2, 3 and 4. The LER values varied between 1.18 and 1.27 for erect cowpea in 2008 and ranges from 1.12 to 1.30 in 2009. Similar values of ATER were recorded for the prostrate cowpea/maize mixture in the two years. In contrast, MER did not follow similar trend with ATER and LER, particularly for intercropping involving erect cowpea / maize intercropping. Indeed, there was no monetary advantage of intercropping of this cultivar over the two years except at 100:75 population ratios in 2009 where appreciable MER was recorded (1.07). However, reasonable MER values were obtained in prostrate cowpea / maize mixture in all the component population ratios in the two years except 50:50 population ratios in 2009. The value varied between 1.03 and 1.27 in 2008 and 0.94 and 1.16 in 2009.

The PYD showed similar trend with LER and ATER in all the treatment combinations in the two years. Yield advantage of 19-27% was obtained for erect cowpea in 2008 and 12-30% in 2009, while prostrate cowpea had 8-33% in 2008 and 12-33% in 2009.

DISCUSSION
The compared values of LER and ATER in all the parameter follow similar trend to the obtained percentage yield difference. This indicates that the yield reduction of component crop A was compensated by increased yield of component crop B. This yield difference when expressed in percentage will give the intercropping efficiency for the intercrop in land and in time dimensions.

The efficiency of the mixture when evaluated with MER did not follow similar trends with percentage yield difference values. The obtained values (MER) were lower than the
percentage yield difference in all the parameters. This contrasts suggests that the percentage yield difference cannot be used as an index to interpret intercropping efficiency when the objective of the end user is monetary advantage. This assumption is also valid for LER and ATER. This corroborated with the earlier findings of [8,12] who observed that the efficiency of intercropping might be misleading when LER alone is used, particularly when monetary gain is the primary objective of the end user.

These comparable similar values of PYD with LER and ATER make it a valid index for interpreting intercropping advantage in crop mixture. This simple and reliable method is adaptable for a wide range of crop mixtures.

Table 1. PYD, LER, ATER and MER in erect cowpea/maize intercrop in 2008.

Population Ratio	Yield	PYD**	LER*	MER*	ATER*
C : M					
100 : 75	.76	2.80	27.19ab	.90e	1.27a
100 : 50	.93	2.18	29.78a	1.31a	.80f
100 : 25	1.08	1.61	31.58a1.32a	.71g	1.32a
075 : 25	1.02	1.67	27.38ab1.16b	.67gh	1.32a
50 : 50	.78	2.32	16.97c1.18b	.80e	1.27bc
sole	1.10	4.82	100	1.00c1.00c	
Mean	38.82	1.21		.81	1.23

*Values with the same letter(s) in the same column or row are not significantly different at P=.05 level of probability by Duncan's Multiple Range Test.

**Values with the same letter(s) in the same column are not significantly different at P=.05 level of probability by Duncan's Multiple Range Test.

C=Cowpea, M= Maize, PYD= Percentage Yield Difference, LER= Land Equivalent Ratio, MER= Monetary Equivalent Ratio, ATER= Area Time Equivalent Ratio.

Table 2. PYD, LER, ATER and MER in prostrate cowpea/maize intercrop in 2008.

Population Ratio	Yield	PYD**	LER*	MER*	ATER*
C : M					
100 : 75	2.09	2.68	32.78a1.33a	1.27b	1.33a
100 : 50	2.38	2.01	29.52ab1.26ab	1.29ab	1.23b
100 : 25	2.65	1.61	21.86c1.31a	1.35a1.30a	
075 : 25	2.13	1.67	16.97c1.18b	.80e	1.27bc
50 : 50	1.67	2.23	100	1.00c1.00c	.99c
sole	2.71	4.82	100	1.00c1.00c	1.00c
Mean	33.941.19	1.171.6			

*Values with the same letter(s) in the same column or row are not significantly different at P=.05 level of probability by Duncan’s Multiple Range Test.

**Values with the same letter(s) in the same column are not significantly different at P=.05 level of probability by Duncan's Multiple Range Test.

C=Cowpea, M= Maize, PYD= Percentage Yield Difference, LER= Land Equivalent Ratio, MER= Monetary Equivalent Ratio, ATER= Area Time Equivalent Ratio.
Table 3. PYD, LER, ATER and MER in erect cowpea/maize intercrop in 2009.

Population Ratio	Yield	PYD**	LER*	MER*	ATER*	
100:75	.82	2.72	30.08a	1.30a	1.07c	1.30a
100:50	1.09	1.83	29.58a	1.29a	.97e	1.29a
100:25	1.15	1.56	27.70ab	1.27ab	.94ef	1.28ab
075:25	1.09	1.50	21.57b1.20c	.89d	1.21b	
50:50	.85	1.89	12.29c	1.12d	.87g	1.13c
Sole	1.284.	4.12	100.00	1.00fg	1.00ge	1.00e
Mean	1.02	36.871.2	.951.12	1.00fg	1.00de	1.00e

*Values with the same letter(s) in the same column or row are not significantly different at P=.05 level of probability by Duncan’s Multiple Range Test.

**Values with the same letter(s) in the same column are not significantly different at P=.05 level of probability by Duncan’s Multiple Range Test.

C=Cowpea, M=Maize, PYD=Percentage Yield Difference, LER=Land Equivalent Ratio, MER=Monetary Equivalent Ratio, ATER=Area Time Equivalent Ratio.

Table 4. PYD, LER, ATER and MER in prostrate cowpea/maize intercrop in 2009.

Population Ratio	Yield	PYD**	LER*	MER*	ATER*	
100:75	2.08	2.52	33.39a1.34a	1.16ab	1.33a	
100:50	2.55	1.67	26.66ab	1.27ab1.17ab1.19b		
100:25	2.80	1.43	31.93a1.33	1.23a 1.35a		
075:25	2.25	1.40	12.17e1.12de	1.13b 1.12c		
50:50	1.90	1.60	4.82d1.07df	.94ef 1.04de		
Sole	2.88	4.12	100.00	1.00fg	1.00de	1.00e
Mean	34.831.181.111.17					

*Values with the same letter(s) in the same column or row are not significantly different at P=.05 level of probability by Duncan’s Multiple Range Test.

**Values with the same letter(s) in the same column are not significantly different at P=.05 level of probability by Duncan’s Multiple Range Test.

C=Cowpea, M=Maize, PYD=Percentage Yield Difference, LER=Land Equivalent Ratio, MER=Monetary Equivalent Ratio, ATER=Area Time Equivalent Ratio.
REFERENCE

1. Ofuso-Amin J, Limbani NV. Effect of intercropping on the growth and yield of cucumber and okra. Int. J. Agric. Biol. 2007; 9(4): 594-239.

2. Bank P, Sasmalp, GHosal K bagchi DK, Evaluation of mustard (Brassica compestrisvartoris) and legume intercropping under 1:1 and 2:1 row-replacement series system. J. Agro. Crop science. 2000; 185:6-14

3. MustearsHUW, Ezumali HC and Osiru DSOCassava-based intercropping: A review. In. field crops research, 1993; 34 431-457.

4. Afe, Al and Olofintoye, JA. Response of cowpea cultivars of contrasting maturity dates to varying component population ratio of early maturing maize. J. Agric and Biod Res. 2013; ISSN 2277 – 0836; Vol. X, Issue X, pp xxx-xxx; [http://www.onlinereseardchjournal.org/JABR]

5. Takim, FO. Advantage of maize-cowpea intercropping over sole cropping through competition indices. J.Agric. and Biod Res. 2012; ISSN 2277-0836; Vol. 1- Issue 4, pp 53-59; July 2012

6. Mead R. and Willey RW. "The concept of a land equivalent ratio" and advantage in yield from intercropping. In. Expl agric., 1980; Vol. 16 pp. 217-228

7. Adetiloye PO and Ezedima FOC. A land equivalent co-efficient (LEC) concept for the evaluation of competitive and productive interaction in simple to complex crop mixture. Ecol. Modelling 1983; 19: 27 – 39.

8. Hiebsh, CK, RE Mc Collum. Area X time equivalent ratio a method for evaluating the production of intercrops. Agron. J. 1987; 99 : 15 – 22

9. Ofori, F. and WR. Stern. The combine effect of nitrogen fertilizer and density of the legume component on the production efficiency in a maize / cowpea intercrop system. Field Crops. 1987; Res. 16 : 43 – 52

10. Adetiloye, PO and AA Adekule. Concept of monetary equivalent ratio and it’s usefulness in the evaluation of intercropping advantage. Trop Agric (Trinidad),1989; 66:337 – 341.

11. SAS (statiscal Analysis System Inc). SAS/STAT Users Guide Version 1989, 4th end. Vol. 1, Cary, North Carolina, USA.

12. Afe, AI. Assessing intercropping population models with different intercropping efficiency indices in a cowpea / maize cropping system. Asian Academic Research Journal Of Multidisciplinary (AARJMD),2013; Vol. 1 Issue (16); ISSN : 2319 – 2801. PP 334 – 347.