Storage capacity analysis of Nipa Nipa regulation pond using Ripple method

S Satriani\textsuperscript{1,*}, R Lopa\textsuperscript{2} and F Maricar\textsuperscript{2}

\textsuperscript{1}Magister Course Student of Civil Engineering Department, Hasanuddin University, Jl. Malino, Borongloe, Bontomarannu, Kabupaten Gowa, Sulawesi Selatan 92119, Indonesia
\textsuperscript{2}Associate Professor of Civil Engineering Department, Hasanuddin University, I Jl. Malino, Borongloe, Bontomarannu, Kabupaten Gowa, Sulawesi Selatan 92119, Indonesia

* satrianitarang@gmail.com

Abstract. Tallo River has the potential to pose a threat of flooding because it is strongly influenced tide. Regulation Ponds are flood control structures built upstream from areas that will be protected from flood hazards. Storage Capacity Analysis of Nipa regulation pond using Ripple method. Flood routing results obtained a maximum of 3.395.116,79 m\textsuperscript{3}, while topographic conditions obtained a maximum of 3.583.270,96 m\textsuperscript{3} then optimization analysis based on the Ripple Method obtained with volume accommodated during 1980-1984 is 2.508.330,462 m\textsuperscript{3}, during 1985-1989 is 2.158.594,429 m\textsuperscript{3}, during 1990-1994 is 1.721.928,984 m\textsuperscript{3}, during 1995-1999 is 2.072.035,680 m\textsuperscript{3}, the volume accommodated during 2000-2004 is 2.526.941,033 m\textsuperscript{3}, volume accommodated during 2005-2009 is 1.996.205,351 m\textsuperscript{3} and volume accommodated during 2010-2014 is 1.913.798,405 m\textsuperscript{3}. This shows that storage capacity of regulation Pond can serve to reduce flood in Tallo River. Based on the cumulative storage analysis, a maximum storage of 10.592.032,714 m\textsuperscript{3} obtained from the inflow and outflow analysis, indicating that the Nipa regulation pond was able to reduce flood in amount of 38,07 % i.e. 4.032.440,62 m\textsuperscript{3}.

1. Introduction
Flood problems will attract attention after affecting human life and inflicting disaster/loss for communities around the river environment. Occurrence of flood can be distinguished by several kinds, namely the discharge too big or the capacity of the river is reduced. This can occur by natural symptoms or a consequence of the lack of liver activity of human activities in conducting the construction/management of rivers for various interests. In line with the pace of development of the community, especially those who live and do activities around the flood plains, the problems posed by flood, over time are increasing and need attention and efforts to overcome it well.

Flood is detrimental to the economic activity of society so it needs flood control [1]. Flood control is generally addressed by a sustained drainage system [2,3]. The sustainable drainage system is the management of drainage that starts from the utilization of rainwater, to collect and to store the run off and to throw away to deposit the sediment and the pollutant to adsorb it into the body of water [4].

Regulation pond is a means of flood control built in areas that are still empty or unproductive. Capacity of the regulation pond can be made in such a way that flood water flowing in the downstream
area does not exceed the existing capacity. With the development of the regulation pond is expected to reduce the peak of flood in order to be reduced to the flood overflow that is often occurred on river segment at the sand.

2. Research methodology
Location of this research was carried out in the Nipa Nipa Regulation Pond (119.52065923° EL; 5.16503546° SL) Located in the Village of Moncongloe Lapara, District of Moncongloe, Maros Regency.

Reservoir storage capacity can be analyzed using several methods. But in this study Ripple method was used. This method was first proposed by Ripple to calculate the amount of adequate reservoir capacity at a certain level of water demand [5]. Ripple / Mass curve is a line that shows the flow rate at a certain time, assuming that when the cumulative draft is greater than the cumulative inflow, the reservoir cannot serve the needs [6]. Reservoir volume accumulation curve is a function of inflow discharge which is described with the equation:

\[ Volume = \int Q dt = \sum Q(At) \]  

Where : \( Q dt \) = Reservoir inflow, both as function of time
The following calculation procedure:
  - Data Discharge is described as a mass of discharge lines (mass curve).
  - Water requirement is considered constant, so the cumulative needs can be described with a certain tilt.
  - Vertical distance between mass of discharge line with cumulative requirement line is capacity the largest vertical distance is the capacity required.

![Figure 1. Research location map.](image1)

![Figure 2. Ripple mass curve.](image2)
Reservoir mass curve has many useful applications in the design of a storage capacity, such as determination of reservoir capacity, operations procedure and flood routing.

3. Results and discussion
Analysis Flood Routing is carried out to get the maximum flow that will enter the pond, taking into account the abundant discharge to the spillway building. The overflow discharge is calculated starting above the top height i.e. 5.61 m Table 2 column 1 is the height of the overflow building, while column 2 is the overflow height.

Table 1. Calculation of the relationship between overflow and basin height.

| Elevation | Head | O   | A   | S    | S    | α2 |
|-----------|------|-----|-----|------|------|----|
| M         | M    | m/s | m²  | m³   | m³   | m³/s|
| 1.25      | 0.00 | 0.00| 28885.91 | -    | 0.00 | 0.00 |
| 2.25      | 1.00 | 289.00 | 764265.26 | 396.575.59 | 110.16 | 509.32 |
| 4.75      | 3.50 | 1892.34 | 813151.00 | 1874.019.20 | 520.561 | 2933.47 |
| 5.61      | 4.36 | 2631.04 | 834606.00 | 2660.589.91 | 739.053 | 4109.15 |
| 7.38      | 6.13 | 4386.20 | 848195.11 | 4032.440.62 | 1120.122 | 6626.45 |

From the calculations in Table 1 it can be seen that the maximum storage is 4.032.440.62 m³ at an elevation of 7.38 m.

Table 2. Calculation of inflow and outflow Q₂₀.

| T Hour | I m³/s | Q m³/s | t Hour | I m³/s | Q m³/s |
|--------|--------|--------|--------|--------|--------|
| 0      | 4.909  | 4.909  | 17     | 222.306| 282.907| 34    | 54.111 | 80.732 |
| 1      | 7.905  | 5.089  | 18     | 200.230| 264.907| 35    | 50.979 | 76.431 |
| 2      | 21.502 | 10.111 | 19     | 181.327| 241.037| 36    | 48.046 | 72.566 |
| 3      | 51.413 | 28.241 | 20     | 164.980| 220.594| 37    | 45.300 | 68.910 |
| 4      | 102.572| 42.299 | 21     | 150.742| 202.826| 38    | 42.729 | 65.451 |
| 5      | 179.491| 68.648 | 22     | 138.497| 187.246| 39    | 40.321 | 62.178 |
| 6      | 286.395| 90.112 | 23     | 127.280| 173.605| 40    | 38.067 | 59.081 |
| 7      | 427.006| 124.498| 24     | 117.005| 161.419| 41    | 35.956 | 56.150 |
| 8      | 470.352| 175.881| 25     | 107.593| 150.139| 42    | 33.980 | 53.376 |
| 9      | 483.002| 220.806| 26     | 98.971 | 139.694| 43    | 32.129 | 50.751 |
| 10     | 473.163| 260.371| 27     | 91.073 | 130.018| 44    | 30.396 | 48.266 |
| 11     | 448.222| 304.631| 28     | 82.006 | 121.050| 45    | 28.774 | 45.914 |
| 12     | 412.801| 331.052| 29     | 75.808 | 111.873| 46    | 27.254 | 43.687 |
| 13     | 367.411| 343.317| 30     | 70.421 | 103.190| 47    | 25.832 | 41.580 |
| 14     | 324.521| 337.221| 31     | 65.634 | 96.618 | 48    | 24.500 | 39.585 |
| 15     | 285.497| 327.145| 32     | 61.337 | 90.786 | 49    | 23.253 | 37.697 |
| 16     | 248.572| 304.770| 33     | 57.456 | 85.522 | 50    | 22.085 | 35.910 |

Figure 3. Flood routing.
The maximum flow of inflow into the pool is 483,002 m³/s while the outflow through the spillway is 327,080 m³/s then produces a graph like the one above which shows that the regulation pond capacity planning can be used to reduce the peak of flood that occurs in the Nipa-Nipa Regulation Pond.

Based on contour drawings and layout plans, the pond volume calculation is done using the truncated pyramid method [7,8].

Table 3. Calculation of slides based on topography.

| Elevation (m) | Height Difference (m) | Area (m²) | Volume (m³) | Cumulative Volume (m³) |
|---------------|-----------------------|-----------|-------------|------------------------|
| 1,25          | 1.00                  | 28.885,91 | 396.575,58  | 0.00                   |
| 2,25          | 2.50                  | 764.265,26| 1.971.770,32| 396.575,58             |
| 4,75          | 0.86                  | 813.151,00| 708.535,51  | 2.368.345,90           |
| 5,61          | 1.77                  | 834.606,00| 1.489.278,98| 3.076.881,41           |
| 7,38          |                       | 848.195,11|             | 4.566.160,40           |

Figura 4. Curved capacity of nipa nipa regulation pond.

The maximum reservoir height is at an altitude of 7,38 m where the surface area of the reservoir is 848.195,11 m² and the maximum storage capacity is 4.566.160,40 m³.

The mass curve is a curve that is used for the purposes of initial reservoir design and to see reservoir performance after it is operated. The Ripple diagram can be used as a tool to determine targeted benefits and the effective storage capacity needed [9,10]. The principle is that the reservoir serves to collect water during the rainy season.

Figure 5 shows that if the end points of the mass curve are connected by a straight line AB, the slope represents the average discharge from the flow during the total period during which the mass curve has been plotted. Reservoir to allow the release of water continuously at the average value of discharge for the entire period, the capacity required for the reservoir is represented by a vertical intercept between two straight lines A'B' and A "B" drawn parallel to AB and the tangent line to the mass curve at the lowest tangent C and the highest tangent D respectively. The reservoir is full at D and will be empty at C and the full reservoir at points E, F and I, between points G and H there will be water spills from the reservoir. Based on Figure 5, it can be seen that volume can be known water flowing during t = t₀ to t = t₁₁ (y₀ to y₁₁) is 2,693,267,986 m³. And the volume that was accommodated during 1980-1985 was 2,508,330,462 m³.
Figure 5. Mass curve 1980-1984.

Figure 6. Mass curve 1985-1989.

Figure 6 shows that if the end points of the mass curve are connected by a straight line AB, the slope represents the average discharge from the flow during the total period in which the mass curve has been plotted. Reservoir to allow the release of water continuously at the average discharge value for the entire period, the capacity required for the reservoir is represented by a vertical intercept between two straight lines A'B' and A "B" drawn parallel to AB and the tangent line to the mass curve at the lowest tangent C and the highest tangent D respectively. The reservoir is full at D and will be empty at C and the full reservoir at points E, F, and G, between points I and J there will be water spills from the reservoir. Figure 6 shows the volume flowing that it can be seen the volume of water flowing during \( t = t_0 \) to \( T = T_10 \) (Y0 to Y10) is 2,158,594,429 m\(^3\). And the volume that is accommodated during 1980-1985 is 2,158,594,429 m\(^3\).
Figure 7. Mass Curve 1990-1994.

Figure 7 shows that if the end points of the mass curve are connected by a straight line AB, the slope represents the average discharge from the flow during the total period in which the mass curve has been plotted. Reservoir to allow the release of water continuously at the average discharge value for the entire period, the capacity required for the reservoir is represented by a vertical intercept between two straight lines A'B' and A''B'' drawn parallel to AB and the tangent line to the mass curve at the lowest tangent C and the highest tangent D respectively. The reservoir is full at D and will be empty at C and the full reservoir at points E and F, between points I and J there will be water spills from the reservoir.

Figure 7, it appears that it can be known that the volume of water flowing during \( t = t_0 \) to \( T = Q_{12} \) (y0 to Y12) is 1,721,928.984 m³. And the volume that was displayed during the year 1990-1994 is 1,721,928.984 m³.

Figure 8. Mass Curve 1995-1999.
Figure 8 shows if the end points of the mass curve are connected by a straight line AB, the slope represents the average flowrate of the flow during the total period in which the mass curve has been plotted. If the reservoir is to be built to allow the release of water continuously at the average discharge value for the whole period then the capacity required for the reservoir is represented by a vertical intercept between two straight lines A ‘B’ and A “B” drawn parallel to AB and tangents to mass curve at the lowest tangent C and the highest tangent D respectively. If the reservoir that has this capacity contains the same volume of water as AA ‘at the beginning of the period, the reservoir will be full at D and will be empty at C and the full reservoir at points E, F and I, and between points G and H there will be water spills from the reservoir. Figure 8, it appears that the volume of water flowing during t = t0 to T = T10 (y0 to Y10) is 2,326,132.084 m³. And the volume that was displayed during the year 1995-1999 is 2,072,035.680 m³.

![Ripple Mass Curve 2000-2004](image)

**Figure 9.** Mass curve 2000-2004.

![Ripple Mass Curve 2005-2009](image)

**Figure 10.** Mass curve 2005-2009.

Figure 9 shows that if the end points of the mass curve are connected by a straight line AB, the slope represents the average discharge from the flow during the total period during which the mass curve has been plotted. If the reservoir is to be built to allow the release of water continuously at the average discharge value for the whole period then the capacity required for the reservoir is represented by a vertical intercept between two straight lines A ‘B’ and A “B” drawn parallel to AB and tangents to mass curve at the lowest tangent C and the highest tangent D respectively. If the reservoir that has this capacity
contains the same volume of water as AA at the beginning of the period, the reservoir will be full at D and will be empty at C and the full reservoir at points F, G and H in this period will not experience water spills. Figure 9, unknown volume of water flowing during t = t0 to T = T10 (y0 to Y10) is 2,526,941.033 m³. And the volume that was displayed during the year 1990-1994 is 2,526,941.033 m³.

Figure 10 shows that if the end points of the mass curve are connected by a straight line AB, the slope represents the average discharge from the flow during the total period during which the mass curve has been plotted. Reservoir to allow the release of water continuously at the average discharge value for the entire period then the capacity required for the tangent reservoir to the mass curve at the lowest tangent C and the highest tangent D respectively. The reservoir is full at D and will be empty at C and the full reservoir at points E, H and I, between points F and G there will be water spills from the reservoir as well as between points J and K. In Figure 10 can be known the volume of water flowing during t = t0 to T = t14 (y0 to Y14) is 2,590,093.931 m³. And the volume that was displayed during the year 2005-2009 is 1,996,205.351 m³.

**Figure 11. Mass curve 2010-2014.**

Figure 11 shows if the end points of the mass curve are connected by a straight line AB, then the slope represents the average flow rate of the flow during the total period in which the mass curve has been plotted. Reservoir to allow the release of water continuously at the average discharge value for the entire period, the capacity required for the reservoir is represented by a vertical intercept between two straight lines A'B' and A"B" drawn parallel to AB and the tangent line to the mass curve at the lowest tangent C and the highest tangent D respectively. The reservoir is full at D and will be empty at C and the full reservoir at point I, between points E and F there will be water spills from the reservoir as well as between points G and H. In Figure 11 can be known the volume of water flowing during t = t0 to T = t13 (y0 to Y13) is 2,482,642,818 m³. And the volume that was displayed during the year 2010-2014 is 1,913,798,405 m³.

Based on the cumulative storage analysis, a maximum storage of 10,592,032,174 m³ obtained from the inflow and outflow analysis, indicating that the Nipa Nipa regulation pond was able to reduce flood in the amount of 38.07 % that is 4,032,440.62 m³.

4. Conclusion
- Based on the analysis results obtained a maximum storage of 3,395,116.79 at an elevation of 7.38 m.
- Based on topographic conditions, the maximum height of the reservoir is at an elevation of 6.25 m where the surface area of the reservoir is 848,195,11 m² and the maximum storage capacity is 4,566,160,40 m³.

8
Based on the evaluation using the Ripple Method, the volume collected during 1980-1985 is 2,508,330,462 m$^3$, during 1985-1989 is 2,158,594,429 m$^3$, during 1990-1994 is 1,721,928,984 m$^3$, during 1995-1999 is 2,072,035,680 m$^3$, the volume accommodated during 2000-2004 is 2,526,941,033 m$^3$, the volume accommodated during 2005-2009 is 1,996,205,351 m$^3$ and the volume accommodated during 2010-2014 is 1,913,798,405 m$^3$ indicating that the Nipa Nipa Regulation Pond could reduce flood in Tallo River. Based on the cumulative storage reservoir of 10,592,032,174 m$^3$ obtained from the inflow and outflow analysis, it shows that the Nipa Nipa regulation pond is able to reduce flood by 38.07% that is 4,032,440,62 m$^3$.

References
[1] Breisinger C, Ecker O, Thiele R and Wiebelt M 2016 Effects of the 2008 flood on economic performance and food security in Yemen: a simulation analysis Disasters 40 304–26
[2] Dong X, Guo H and Zeng S 2017 Enhancing future resilience in urban drainage system: Green versus grey infrastructure Water Res. 124 280–9
[3] Bertilsson L, Wiklund K, de Moura Tebaldi I, Rezende O M, Veról A P and Miguez M G 2019 Urban flood resilience—A multi-criteria index to integrate flood resilience into urban planning J. Hydrol. 573 970–82
[4] Lopa R T 2016 Hydrological Engineering Teaching Materials Makassar: Civil Engineering University Hasanuddin
[5] Ripple 1883 Reservoir Operation Yogyakarta: Family of Civil Engineering Students at Gadjah Mada University
[6] Linsley Jr R K, Kohler M A and Paulhus J L 1989 Hydrology for Engineers, Third Edition, Yandi Hermawan Translation Jakarta: Penerbit Erlangga
[7] Hamdia K M, Ghasemi H, Zhuang X, Alajlan N and Rabczuk T 2019 Computational machine learning representation for the flexoelectricity effect in truncated pyramid structures Comput. Mater. Contin. 59 (2019), Nr. 1
[8] Shintani M, Nakatsuji K, Matsumoto M and Hagiwara Y 2018 Direct numerical simulation on turbulent flow over truncated pyramid in an open channel ASTFE Digital Library (Begel House Inc.)
[9] Bharali B 2015 Estimation of reservoir storage capacity by using residual mass curve J. Civ. Eng. Environ. Technol. 2 15–8
[10] Stam A, Salewicz K A and Aronson J E 1998 An interactive reservoir management system for Lake Kariba Eur. J. Oper. Res. 107 119–36