GENERAL HYPERPLANE SECTIONS OF NONSINGULAR FLOPS IN DIMENSION 3

YUJIRO KAWAMATA

Let \(X \) be a 3-dimensional complex manifold, and \(f : X \to Y \) a proper bimeromorphic morphism to a normal complex space which contracts an irreducible curve \(C \subset X \) to a singular point \(Q \in Y \) while inducing an isomorphism \(X \setminus C \cong Y \setminus \{Q\} \). We assume that the intersection number with the canonical divisor \((K_X \cdot C) \) is zero. In this case, it is known that the singularity of \(Y \) is Gorenstein terminal, and there exists a flop \(f^\# : X^\# \to Y([R]) \), which we call a nonsingular flop because \(X \) is nonsingular.

In order to investigate \(f \) analytically, we replace \(Y \) by its germ at \(Q \), and consider a general hyperplane section \(H \) of \(Y \) through \(Q \). Then \(H \) has only a rational double point, its pull-back \(L \subset X \) by \(f \) is normal, and the induced morphism \(f_H : L \to H \) factors the minimal resolution \(g : M \to H ([R]) \). The dual graph \(\Gamma \) of the exceptional curves of \(g \) is a Dynkin diagram of type \(A_n, D_n \), or \(E_n \). Let \(F = \sum_{k=1}^n m_k C_k \) be the fundamental cycle for \(g \) on \(M \). The natural morphism \(h : M \to L \) is obtained by contracting all the exceptional curves of \(g \) except the strict transform \(C_k^0 \) of \(C_k \).

Kollár defined an invariant of \(f \) called the length as the length of the scheme theoretic fiber \(f^{-1}(Q) \) at the generic point of \(C \). It coincides with the multiplicity \(m_{k_0} \) of the fundamental cycle at \(C_{k_0} \).

Katz and Morrison proved the following theorem ([KM, Main Theorem]). The purpose of this paper is to give its simple geometric proof.

Theorem. Let \(f : X \to Y \) be as above. Then the singularity of the general hyperplane section \(H \) and the partial resolution \(f_H : L \to H \) are determined by the length \(\ell \) of \(f \). More precisely, \(H \) has a rational double point of type \(A_1, D_4, E_6, E_7, E_8 \), or \(E_8 \), if \(\ell = 1, 2, 3, 4, 5 \) or \(6 \), respectively.

We note that there is only one irreducible component of \(g^{-1}(Q) \) whose multiplicity in \(F \) coincides with \(\ell \) in the above cases.

Proof. Let \(H' \) be another general hyperplane section of \(Y \) through \(Q \), and \(f_{H'} : L' \to H' \) the induced morphism. \(H \) and \(H' \) have the same type of singularities, and so do \(L \) and \(L' \). Let \(P \) and \(P' \) be the singular points of \(L \) of \(L' \), respectively.

Let \(D \) be the effective Cartier divisor on \(L \) given by \(L' \cap L \). Then \(D \) is a general member of the linear system of effective Cartier divisors on \(L \) which contain \(C \) and such that \((D \cdot C) = 0 \). In fact, if \(s_0 \) is the global section of \(\mathcal{O}_L(-C) \subset \mathcal{O}_L \) corresponding to \(D \), then from an exact sequence

\[
0 \to \mathcal{O}_X(-L) \to \mathcal{O}_X \to \mathcal{O}_L \to 0
\]
there exists a lifting $s \in H^0(X, \mathcal{O}_X)$ of s_0 which defines L', because $H^1(X, \mathcal{O}_X(-L)) = 0$.

Let \tilde{D} be the total transform of D on M. Then we can write $\tilde{D} = F + D'$ for some D' which is reduced, nonsingular and has no common irreducible components with F. If Γ is of type A_n, then D' has 2 irreducible components each of which intersects transversally one of the end components of F. Otherwise, D' is irreducible, and intersects transversally a component C_{k_1} of F such that $m_{k_1} = 2$ (k_1 may be equal to k_0).

Let t be the global section of \mathcal{O}_X corresponding to L. Then $s + ct$ is also a lifting of s_0 for any $c \in \mathbb{C}$. Let $L'(c)$ be the corresponding divisor on X.

Let P be a point on C which is different from the P_i. For local analytic coordinates $\{x, y, t\}$, we can write $s + ct = F(x, y) + t(G(x, y, t) + c)$. For a general choice of c, $(G(x, y, t) + c)|_C$ does not vanish at the singular points P'_i of $L' = L'(0)$ other than the P_i, and has only simple zeroes at some points P''_j. Then $L'' = L'(c)$ has singularities only at the P''_j, besides possibly at the P_i, with equations of the type $x^\ell + ty = 0$.

If we replace L' by L'', we conclude that L' has only singularities of type $A_{\ell-1}$ outside the P_i. We shall investigate the singularities of L' at the P_i case by case.

Let Γ_i be the dual graph of the exceptional curves of h over P_i, and F_i the corresponding fundamental cycle. From the description of \tilde{D} above, we can calculate the multiplicity d_i of D at the point P_i by $d_i = ((m_{k_0}C_{k_0} + D') \cdot F_i)$.

If $\ell = 1$ or 2, then we can check that $d_i \leq 3$, hence L' is nonsingular at the P_i. Then it follows that $\Gamma = A_1$ or D_4, respectively.

But if $\ell \geq 3$, then d_i can be bigger, and we should look at the singularity of L' more closely.

We assume first that $\ell = 3$. If $\Gamma = E_6$, then there is nothing to prove. We have to prove that $\Gamma \neq E_7, E_8$. If $\Gamma = E_7$, then L has two singular points P_1 and P_2, where F_1 meets D'. We have 2 cases; $\Gamma_1 = A_1$ and $\Gamma_2 = A_5$, or $\Gamma_1 = A_4$ and $\Gamma_2 = A_2$. In the former case, L' has at most A_1 singularity at P_1 because of the symmetry of L and L', while being nonsingular at P_2, since $d_2 = 3$. Therefore, L' has simpler singularities than L, a contradiction. In the latter case, it has at most A_2 at P_2. We shall prove that L' has A_1 at P_1.

Let $\mu : X^{(1)} \to X$ be the blowing-up at P_1, $E \simeq \mathbb{P}^2$ the exceptional divisor, and $L^{(1)}$ (resp. $L^{(1)'}$) the strict transform of L (resp. L'). $B = L^{(1)} \cap E$ consists of 2 lines B_1 and B_2, which correspond to the 2 end components of F_1. Since their multiplicities in F are 2 and $L^{(1)} \cdot E = B$, we deduce that $\mu^* L' = L^{(1)'} + 2E$, and neither of the B_1 are contained in $B' = L^{(1)'} \cap E$. Thus the intersection of 2 conics B and B' is equal to $(L^{(1)} \cap L^{(1)'}) \cap E$. We see from the description of \tilde{D} that it consists of 2 points, one at $B_1 \cap B_2$ and the other on one component B_1. Then B' must be a nonsingular conic, and L' has A_1 singularity at P_1.

If $\Gamma = E_8$, then we have again 2 cases; $\Gamma_1 = A_1$ and $\Gamma_2 = E_6$, or $\Gamma_1 = A_7$. In the former case, L' has at most A_1 singularity at P_1, while being nonsingular at P_2, since $d_2 = 3$. In the latter case, it has A_1 at P_1 as in the case of E_7.

Next we assume that $\ell = 4$. If $\Gamma = E_7$, then there is nothing to prove. If $\Gamma = E_8$, then we have 2 cases; $\Gamma_1 = D_5$ and $\Gamma_2 = A_2$, or $\Gamma_1 = A_6$ and $\Gamma_2 = A_1$.

In the former case, L' has at most A_1 singularity at P_1. By the symmetry of L.
and L', L' has D_5 at P_1. Let $\mu : X^{(1)} \to X, E, L^{(1)}$ and $L^{(1)'}$ as before. $B = L^{(1)} \cap E$ is a line, and $L^{(1)'} \cdot E = 2B$. Since the corresponding curve has multiplicity 4 in F, we have $\mu^* L' = L^{(1)'} + 2E$, and B is not contained in $B' = L^{(1)'} \cap E$. $L^{(1)}$ has 2 singular points $P_1^{(1)}$ and $P_2^{(1)}$ on B which are of types A_3 and A_1, respectively. We have $B \cap B' = P_1^{(1)}$ by the description of \tilde{D}.

Let $\nu : X^{(2)} \to X^{(1)}$ be the blowing-up at $P_1^{(1)}$, $E^{(1)} \simeq \mathbb{P}^2$ the exceptional divisor, and $L^{(2)}$ (resp. $L^{(2)'}$) the strict transform of $L^{(1)}$ (resp. $L^{(1)'}$). $B^{(1)} = L^{(2)} \cap E^{(1)}$ consists of 2 lines, and one of the corresponding curves on M has multiplicity 3 in F, hence $\nu^* L^{(1)'} = L^{(2)'} + E^{(1)}$, and $L^{(1)'}$ is nonsingular at $P_1^{(1)}$. But this contradicts the symmetry of L and L'.

In the latter case, L' has at most A_1 singularity at P_2. Let $\mu : X^{(1)} \to X$, etc., as before. $B = L^{(1)} \cap E$ consists of 2 lines B_1 and B_2, which correspond to the 2 end components of F_1. Since their multiplicities in F are 3 and 2, B_1 is contained in $B' = L^{(1)'} \cap E$, while B_2 is not. Thus we have $B' = B_1 + B_2'$ with $B_2 \neq B_2'$. The strict transform of C_{k_0} passes through the point $B_1 \cap B_2$, a contradiction to the symmetry.

Finally, if $\ell \geq 5$, the assertion of the theorem is clear. Q.E.D.

References

[KM] S. Katz and D. R. Morrison, Gorenstein threefold singularities with small resolutions via invariant theory of Weyl groups, J. Alg. Geom. 1, 449–530.

[R] M. Reid, Minimal models of canonical 3-folds, Adv. St. Pure Math. 1 (1983), 131–180.

Department of Mathematical Sciences, University of Tokyo, Hongo, Bunkyo, Tokyo, 113, Japan

E-mail address: kawamata@math.s.u-tokyo.ac.jp