Analysis host-recognition mechanism of staphylococcal kayvirus φSA039 reveals a novel strategy that protects *Staphylococcus aureus* against infection by *Staphylococcus pseudintermedius* *Siphoviridae* phages

Authors:

Aa Haeruman Azam\(^1\,\(^3\), Kenji Kadoi\(^1\), Kazuhiko Miyanaga\(^1\), Masaru Usui\(^2\), Yutaka Tamura\(^2\), Longzhu Cui\(^3\), and Yasunori Tanji\(^1\)\(^*\)

\(^1\)School of Life Science and Technology, Tokyo Institute of Technology, 4259 J2-15 Nagatsutacho, Midori-ku, Yokohama 226-8501, Japan.

\(^2\)Graduate School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyoudaimidorimachi, Ebetsu-shi, Hokkaido 069-0836, Japan.

\(^3\)Division of Bacteriology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi 329-0498

\(^*\) Correspondence author

Email: ytanji@bio.titech.ac.jp

Tel.: +81-45-924-5763

Fax: +81-45-924-5818
Abstract

Following the emergence of antibiotic resistant bacteria such as methicillin-resistant *Staphylococcus aureus* (MRSA) and methicillin-resistant *Staphylococcus pseudintermedius* (MRSP), phage therapy has attracted significant attention as an alternative to antibiotic treatment. Bacteriophages belonging to kayvirus (previously known as Twort-like phages) have broad host range and are strictly lytic in *Staphylococcus* spp. Previous work revealed that kayvirus ɸSA039 has a host-recognition mechanism distinct from those of other known kayviruses: most of kayviruses use the backbone of wall teichoic acid (WTA) as their receptor; by contrast, ɸSA039 uses the β-N-acetylglucosamine (β-GlcNAc) residue in WTA. In this study, we found that ɸSA039 could switch its receptor to be able to infect *S. aureus* lacking the β-GlcNAc residue by acquiring a spontaneous mutation in open reading frame (ORF) 100 and ORF102. Moreover, ɸSA039 could infect *S. pseudintermedius*, which has a different WTA structure than *S. aureus*. By comparison with newly isolated *S. pseudintermedius*–specific phage (SP phages), we determined that glycosylation in WTA of *S. pseudintermedius* is essential for adsorption of SP phages, but not ɸSA039. Finally, we describe a novel strategy of *S. aureus* which protects the bacteria from infection of SP phages. Notably, glycosylation of ribitol phosphate (RboP) WTA by TarM or/and TarS prevents infection of *S. aureus* by SP phages. These findings could help to establish a new strategy for treatment of *S. aureus* and *S. pseudintermedius* infection, as well as provide valuable insights into the biology of phage–host interactions.

Keyword: Kayvirus, phage therapy, host-recognition mechanism, *Staphylococcus pseudintermedius*, *Staphylococcus aureus*
Introduction

Staphylococcus is a Gram-positive bacterium that causes many kinds of infections. Two representative species, *S. aureus* and *S. pseudintermedius*, are coagulase-positive bacteria that are notoriously pathogenic in humans and animals (Kloos and Bannerman 1994; Pompilio et al. 2015). *S. aureus* is a commensal found on the skin and mucosae of humans, whereas *S. pseudintermedius* commonly inhabits dog skin. Both are common bacterial pathogens associated with chronic and recurrent skin infections that require long-term systemic antimicrobial therapy. Infection by *S. aureus* and *S. pseudintermedius* is becoming problematic due to the emergence of antibiotic-resistant strains, including methicillin-resistant (MRSA and MRSP) and vancomycin-resistant strains (VRSA) (Enright et al. 2002; Sakoulas et al. 2005). Virulent bacteriophages that can kill a wide range of *S. aureus* hosts represent promising alternatives to conventional antibiotic treatment (Alves et al. 2014; Iwano et al. 2018; Azam and Tanji 2019a). The success of phage infection depends on its host specificity, which is often determined by the interaction between a phage receptor-binding protein (RBP) and its cognate receptor on the surface of the host cell (Hyman and Abedon 2010).

Staphylococcal kayviruses (previously known as Twort-like phages) have broad host range and high lytic ability, making them suitable candidates for phage therapy (Lobocka et al. 2012). Most phages belonging to this group use the backbone of wall teichoic acid (WTA), the most abundant molecule in the cell wall of *Staphylococcus*, as their receptor (Xia et al. 2011). However, previous work showed that kayvirus *φ*SA039 uses the β-GlcNAc moiety in WTA of *S. aureus* SA003, a unique feature within the group (Azam et al. 2018).

The broad host range of kayviruses includes coagulase-negative staphylococci (CoNS) (Cui et al. 2012; Lobocka et al. 2012; Iwano et al. 2018). WTA in *S. aureus* generally consists of
repetitive 1,5-ribitol-phosphate (RboP) modified with a GlcNAc residue and D-alanine. The GlcNAc moieties are transferred onto WTA by the α-GlcNAc transferase TarM and the β-GlcNAc transferase TarS (Xia et al. 2010; Brown et al. 2012). By contrast, WTA of *S. pseudintermedius* and CoNS has glycerol-phosphate (GroP) as the backbone and various glycoepitopes (GlcNAc, GalNAc, or Glc) (Endl et al. 1983; Winstel et al. 2014).

Staphylococcal phages that use glycoepitopes in the WTA as their receptors, e.g., phages from families *Siphoviridae* and *Podoviridae*, target either the RboP or GroP type of WTA. For example, *Siphoviridae* φ11 only recognizes GlcNAc of RboP WTA, whereas φ187 only recognizes the glycoepitope of GroP WTA (Winstel et al. 2014). Therefore, the unique feature of φSA039, a kayvirus that requires the β-GlcNAc residue in the WTA of SA003 (RboP WTA), raises the question of whether this phage can also recognize other types of WTA from different *Staphylococcus* species. In this study, we evaluated the host range of φSA039 and its potential for phage therapy toward various strains of *S. pseudintermedius*, including MRSP. In addition, we also screened *S. pseudintermedius*–specific phages, evaluated them as potential antimicrobial agents, and compared them with φSA039.

In addition, a previous study showed that kayviruses such as φSA012 and φK have at least two RBPs (RBP1 and RBP2), which are responsible for these phages’ broad host range (O’Flaherty et al. 2004; Takeuchi et al. 2016). Mutant φSA012 has a modified RBP2 (ORF103) that enables the phage to infect mutant *S. aureus* SA003R38, which has an altered WTA and overproduces capsular polysaccharide (Takeuchi et al. 2016; Osada et al. 2017; Azam et al. 2018), indicating that mutated RBP2 may allow the phage to counter-adapt to resistant hosts by using an alternative component as a novel receptor (Takeuchi et al. 2016). Like φSA012, φSA039 also has two RBPs, RBP1 (ORF100) and RBP2 (ORF102) (Azam et al. 2018). Hence,
in light of the unique infection strategy of \(\phi \)SA039, we also investigated the ability of the phage to counter-adapt to phage-resistant host and analyzed the underlying mechanism.

Material and Methods

Bacterial strains, bacteriophages, and plasmids

Bacteria, phages, and plasmids used in this study are listed in Table 1. *S. aureus* RN4220 was used with the permission of Professor Richard P. Novick (Skirball Institute of Biomolecular Medicine, New York, NY, USA). *S. aureus* SA003 was isolated from milk of a mastitic cow (Synnott et al. 2009). The *S. aureus* virulent phages \(\phi \)SA039 and \(\phi \)SA012 were isolated from sewage in Japan (Synnott et al. 2009). All *S. pseudintermedius* isolates were isolated from the skin of dogs with canine pyoderma. Nine coagulase-negative *Staphylococcus* (CoNS) were isolated from a patient at Jichi Medical University hospital, and species identification was performed based on the 16S rRNA gene. *S. aureus* SA003, *S. pseudintermedius* SP015, *S. pseudintermedius* SP070, and *S. pseudintermedius* SP079 were deposited in the culture collection of NITE Biological Research Center, Kisarazu, Japan, under accession numbers NBRC110650, NBRC113855, NBRC113857 and NBRC113858, respectively. All phages used in this study are deposited in the corresponding author’s institution and distributed to other researcher by request. All primers used in this study are listed in Supplemental Table S1.

Isolation of *S. pseudintermedius*

Staphylococcus was isolated based on standard culture and biochemical tests on site. Screening of *S. pseudintermedius* was performed using the API®/ID32 kit (Sysmex-bioMérieux, Tokyo, Japan). To distinguish *S. pseudintermedius* and *S. intermedius*, restriction fragment length polymorphism (RFLP) analysis was performed on the *kat* gene (Blaiotta et al. 2010).
pseudintermedius strains were distinguished by PCR amplification of the hypervariable X region of the protein A gene (spa) (Moodley et al. 2009). Multilocus sequence typing (MLST) was performed following Bannoehr’s method, which targets five genes (16SrRNA, tuf, cpn60, pta, and agrD) (Bannoehr et al. 2007; Bannoehr et al. 2009).

Bacteriophage isolation and purification

Phage ϕDP001, which is capable of lysing S. pseudintermedius, was isolated from dog saliva. Saliva was collected using sterile cotton swabs, which were soaked in 1 ml SM buffer (100 mM NaCl, 8 mM MgSO₄, 50 mM Tris-HCl [pH 7.5], 0.01% gelatin), and incubated at 4°C for at least 1 h. After centrifugation (9730 g, 1 min), 100 μl supernatant was mixed with 100 μl overnight culture of S. pseudintermedius SP015 in 3 ml of 0.5% top agar, plated on LB agar, and incubated at 37°C overnight. ϕSP120, ϕSP197, and ϕSP276 were isolated by mitomycin induction; Mitomycin was added into S. epidermidis culture (OD = 0.5) at a final concentration of 0.5 μg/ml and incubated for 1 h. Phages were isolated from the supernatant after centrifugation (9730 g, 3 minutes). Propagation and purification of the phages was performed as previously described (Synnott et al. 2009).

Plaque assay and efficiency of plating (EOP)

Plaque assay was performed by mixing 100 μl of phage (10⁴ PFU/ml) with 100 μl overnight culture of bacteria in 3 ml of 0.5% top agar, plated on LB agar, and incubated at 37°C overnight. Experiments were conducted in triplicate. The EOP value was measured as a percentage of the number of observed plaques on the tested bacteria divided by the number of plaques observed on the wild-type strain.

Spot test
Two microliters of phage lysate at a titer of 10^8 plaque forming units (PFU) per ml (10^5 PFU) was dropped onto a lawn of bacteria and incubated overnight at 37°C. Experiments were conducted in triplicate.

Adsorption assay

The adsorption efficiency of phages on *S. aureus* strains was measured by titrating the presence of free phages in the supernatant after 20 minutes of cell–phage contact following previous study (Azam et al. 2018). Free phage was collected by centrifugation ($9730 \times g$, 1 min) and titrated using SA003 for ɸSA039 and SP070 for SP phages.

Isolation and characterization of spontaneous mutant of ɸSA039

Co-culture experiments were performed with *S. aureus* SA003 and ɸSA039. First, 4.5 ml of LB broth was inoculated with 1% overnight culture of SA003 and cultured until early exponential phase ($OD_{660}=0.1$) in a TVS062CA BioPhotorecorder (Advantec, Tokyo, Japan). Then, phage ɸSA039 was added at a multiplicity of infection (MOI) = 1. The mixture was cultured at 37°C with shaking at 40 rpm. After 2 days, the culture was transferred to 4.5 ml of fresh LB medium (1% dilution) and cultured under the same condition. Co-cultures were repeated until a spontaneous mutant of ɸSA039 that could infect TarS-null *S. aureus* was isolated. Two spontaneous mutants were isolated from the co-culture and were designated ɸM1 and ɸM2.

Checking for mutations in genes encoding tail and baseplate proteins

Genes encoding tail and baseplate proteins (ORF95–ORF102) in spontaneous mutant phages were amplified by plaque PCR using DirectAmpPCR (TAKARA, Shiga, Japan) and
analyzed by Sanger sequencing. Phage plaques were touched with a toothpick and mixed into the PCR mixtures.

Generation and characterization of chimeric phage

Chimeric phage was generated by homologous recombination using plasmid pNL9164 (Sigma-Aldrich, MO, USA) in *S. aureus* SA003. Mutated DNA fragments of ORF100 and ORF102 were amplified from spontaneous mutant phages by PCR using KOD-plus Neo enzyme (Toyobo, Shiga, Japan). PCR fragments and the plasmid were digested with appropriate restriction enzymes. The DNA fragment was inserted into plasmid pNL9164 using T4 DNA Ligase (New England BioLabs, Ipswich, MA, USA). The constructed plasmid was cloned into *Escherichia coli* JM109 competent cells (TAKARA, Shiga, Japan) and pre-introduced into restriction-deficient *S. aureus* RN4220 before being transformed into *S. aureus* SA003.

To perform homologous recombination, transformant SA003 harboring plasmid with homologous region was infected with phage (MOI = 1). The mixture was incubated at 37°C overnight. Recombinant phages were isolated from the supernatant fraction of the mixture after centrifugation (8000 × g, 3 minutes). SA003ΔTarS was used to screen recombinant phages from homologous recombination of ORF100, and RN4220 was used to screen recombinant phages from homologous recombination of ORF102. Mutated ORF100 from spontaneous mutant phage ɸM1 was introduced into wild-type ɸSA039, yielding chimeric phage ɸrM1/r-100. Mutated ORF102 of ɸM1 was introduced into ɸrM1/r-100, yielding chimeric phage ɸrM1/r-100&102.

Deletion of oatA gene in RN4220ΔtarMΔtarS

The gene was deleted by pCasSA plasmid with clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system (Chen et al. 2017). Plasmid construction was
performed as previously described (Chen et al. 2017; Azam et al. 2018). Spacers were manually
selected by searching the protospacer adjacent motif (PAM) region. Two oligos were designed as
single-stranded DNA for each spacer, and double-stranded spacer was generated by
phosphorylation with T4 PNK (New England BioLabs, Ipswich, MA, USA) and annealed at
95°C for three minutes. Plasmid pCasSA was digested with BsaI. The double-stranded spacer
and digested pCasSA were ligated with T4 DNA ligase (New England BioLabs, Ipswich, MA,
USA). Editing template was amplified by splicing by overlap extension (SOE) PCR using the
region flanking the target gene as the DNA template. The resultant plasmid was cloned into
Escherichia coli JM109 competent cells (TAKARA, Shiga, Japan) and transformed into *S.
aureus* RN4220ΔtarMΔtarS. Complementation of deletion mutants was performed using plasmid
pLI50 (purchased from Addgene [Cambridge, MA]) under the control of the P3 promoter
(pLIP3) (Jeong et al. 2011; Takeuchi et al. 2016). The wild-type allele from RN4220 was used as
the insert.

Selection of phage-resistant mutants of *S. pseudintermedius* SP015

Plaque assays were performed using SP015 and φSA039 at an MOI = 10 and incubated at
37°C overnight. Colonies (resistant mutants) were purified, inoculated onto LB plates, and
incubated at 37°C overnight. The phage resistance of isolated mutants was determined by spot
test and adsorption assay. Phage-resistant SP015-R1 which showed ability to inhibit phage
adsorption was further characterized.

DNA extraction, sequencing, and bioinformatics

Phage genome was extracted using phage DNA isolation kit (NORGEN, ON, Canada).
Bacterial genome was extracted using DNA extraction kit (Sigma-Aldrich, St. Louis, MO, USA).
Whole-genome sequencing was conducted on the Illumina HiSeq platform with genome coverage (sequencing depth) of 100-fold. Genomes were assembled using velvet ver 1.2.10. ORFs were predicted and annotated using the RAST server (http://rast.nmpdr.org/). The presence of toxin or virulence genes in the phage genome was determined using PHASTER (PHAge Search Tool Enhanced Release) server (phaster.ca).

Statistical analysis

Two-tailed Student’s *t*-test was used to determine statistical significance.

Accession number(s)

Genome data of three SP phages (ɸSP120, ɸSP197, and ɸSP276) and *S. pseudintermedius* SP079 were submitted to the DNA Data Bank of Japan (DDBJ) database under accession numbers AP019560, AP019561, AP019562, and AP019372, respectively.
Results

φSA039 can recognize WTA of *Staphylococcus pseudintermedius* SP015

φSA039 exhibited at least a moderate ability to infect various strains of *S. pseudintermedius*, and 12 CoNS (Table 2). A close relative of φSA039, φSA012, also had a broad host range toward the *Staphylococcus* species we tested. In this study, we also isolated *S. pseudintermedius*–specific phages (SP phages) φDP001, φSP120, φSP197, and φSP276, and compared them with φSA012 and φSA039.

As shown in Table 2, in 20 isolates of *S. pseudintermedius*, φSA012 and φSA039 exhibited at least a moderate infection (turbid plaque): φSA012 infected 95% of isolates (19/20), whereas φSA039 infected 90% (18/20). φSA012 and φSA039 could infect 93% of *S. aureus* isolates (13/14) and the 12 CoNS. Unlike φSA012 and φSA039, no SP phages could infect the *S. aureus* strains used in this study. Regarding *S. pseudintermedius*, φDP001 infected 50% of isolates (10/20), whereas the other three SP phages infected 95% of isolates (19/20). *S. pseudintermedius* SP079 was the only strain that was resistant against all SP phages. Whole-genome analysis revealed that this bacterium encodes CRISPR-Cas9 system in its genome. DNA fragments of φSP120 and φSP197 were identified in the CRISPR regions of the two SP079 (Supplementary Table 1). Four SP phages formed at least turbid plaques in CoNS, with the exception of *Staphylococcus saprophyticus*.

We speculated that SP phages recognize receptors in *S. pseudintermedius* and CoNS isolates that are absent in *S. aureus*. Because most staphylococcal phages require WTA as their receptor (Azam and Tanji 2019b), we sought to determine whether our SP phages also require WTA. To this end, we generated WTA-free *Staphylococcus* by inhibiting WTA synthesis in the
cell using tunicamycin (Zhu et al. 2018). \(\phi\)SA039, \(\phi\)SA012, and three SP phages (\(\phi\)DP001, \(\phi\)SP120, and \(\phi\)SP197) had no ability to infect WTA-free \emph{S. pseudintermedius} and \emph{S. epidermidis} (data not shown). The phages could not form a plaque and failed to adsorb onto WTA-free isolates. By contrast, \(\phi\)SP276 did not completely lose its infectivity toward WTA-free isolates, indicating that phage can use another component as a receptor. These findings indicated that all phages in this study utilize WTA in \emph{S. pseudintermedius} and \emph{S. epidermidis} as their receptor, but that the WTA of these bacteria is likely distinct from that of \emph{S. aureus}.

Accumulation of point mutations in ORF100 enables \(\phi\)SA039 to infect TarS-null \emph{S. aureus}

\(\phi\)SA039 requires \(\beta\)-GlcNAc glycosylation of WTA by TarS (Azam et al. 2018). In this study, we found that \(\phi\)SA039 could generate spontaneous mutants capable of infecting TarS-null \emph{S. aureus}. Mutants of \(\phi\)SA039 that could infect TarS-null \emph{S. aureus} were obtained from the fifth batch of two co-cultures. One spontaneous mutant phage (\(\phi\)M1 and \(\phi\)M2) was purified from each of co-culture and further characterized. In \(\text{SA003}\Delta\text{tarS}\), adsorption of \(\phi\)M1 and \(\phi\)M2 was around 8-fold than that of wild-type \(\phi\)SA039 (Fig 1a). \(\phi\)M1 and \(\phi\)M2 exhibited similar adsorption toward \(\text{SA003}\Delta\text{tarS}\). Because the phage tail fiber and baseplate region are thought to be involved in phages’ adsorption specificity, we amplified the genomic region encoding the tail and baseplate proteins (ORF94 until ORF102) using primers described in Supplemental Table S1. Spontaneous mutations were detected in ORF100 and ORF102. \(\phi\)M1 harbors three point mutations in ORF100 and one point mutation in ORF102, whereas \(\phi\)M2 only has three point mutations in ORF100. All mutations changed the amino acid sequence of the protein. The mutations in ORF100 were distributed among five locations (one near the N-terminus, two in the middle, and two near the C-terminus). A point mutation located at base 623 (TCT, S \(\rightarrow\) TAT, Y) was detected in both mutant phages. Point mutations at bases 907 (GAT, D \(\rightarrow\) TAT, N) and 1850 (ACG, T \(\rightarrow\) AGG,
R) were detected in ϕM1, whereas mutations at bases 1012 (GAA, E → AAA, K) and 1844 (ACA, T → AAA, K) were detected in ϕM2. The mutation in ORF102 was located in the C-terminus at base 1116 (AAA, K → ACA, T).

Because all ϕSA039 mutants had spontaneous base changes in ORF100, we speculated that these mutations enabled the phages to infect SA003ΔtarS. We hypothesized that by introducing the point mutation in ORF100 into wild type ϕSA039, we should be able to construct chimeric ϕSA039 capable of infecting SA003ΔtarS. Hence, we introduced ORF100 of ϕM1 into wild-type ϕSA039 by homologous recombination, yielding the chimeric phage ϕrM1/r-100.

Spot tests revealed that ϕrM1/r-100 could infect SA003ΔtarS (data not shown). We then performed an adsorption assay to determine whether the ability of the recombinant phages to infect SA003ΔtarS was due to an effect of adsorption as a result of replacement of ORF100. Indeed, adsorption of ϕrM1/r-100 on SA003ΔtarS was significantly elevated relative to wild-type ϕSA039 (Fig. 1a).

The α-GlcNAc residue in WTA blocks the infection of mutant ϕSA039 lacking a mutation in ORF102

S. aureus SA003 naturally lacks the gene encoding glycosyltransferase TarM (genome accession number: AP018376). Because certain *S. aureus* strains have *tarM* and *tarS* in their genome (Brown et al. 2012), in this study, we also used *S. aureus* RN4220, which has a complete set of WTAs (genome accession number: GCA_000212435.2), to characterize the mutant phage. As shown in Fig. 1b, wild-type ϕSA039 could not infect RN4220ΔtarS or RN4220ΔtarMΔtarS. However, mutant phages ϕM1 and ϕM2 exhibited completely different patterns of infectivity in the presence of *tarM*. Infection of ϕM2 was severely impaired toward RN4220, which has *tarM*.
Only 3.86% of φM2 could adsorb onto RN4220, whereas 38.93% of φM1 could do so. Deletion of the tarM gene in RN4220 (RN4220ΔTarM) improved adsorption of φM1 and φM2 to 63.97% and 28.04%, respectively. A similar pattern was observed in RN4220ΔTarS. The presence of tarM in RN4220ΔTarS decreased the adsorption efficiency of both φM1 and φM2, and conversely, deletion of tarM in RN4220ΔTarS (RN4220ΔTarMΔTarS) improved the adsorption of both mutant phages. Overall, the mutations in φM1 and φM2 decreased the ability of the phages to adsorb onto WTA glycosylated by TarM; in particular, adsorption of φM2 was almost completely abolished.

As with φM2, the chimeric phage φrM1/r-100 was unable to adsorb onto RN4220 (6.06%), but was infectious toward RN4220ΔTarM (14.60% adsorbed phage). Based on this observation, we hypothesized that the absence of a point mutation in ORF102 in φM2 and φrM1/r-100 may make these phages unable to infect RN4220. To test this idea, we introduced a point mutation in ORF102 into φrM1/r-100 by homologous recombination, yielding the chimeric phage φrM1/r-100&102. Indeed, adsorption of the chimeric phage φrM1/r-100&102 improved three times higher than that of φrM1/r-100 (fig 1b).

Whole-genome sequencing of SP phages

Because φSP120, φSP197, and φSP276 had a broad host range in *S. pseudintermedius*, we further investigated their potential as antimicrobial agents. To this end, we first sequenced the entire genomes of all three phages. In doing so, our primary goal was to investigate the presence of toxin, virulence, and antibiotic-resistance genes that could make them inappropriate for phage therapy.
The whole-genome sequencing analysis revealed that φSP120, φSP197, and φSP276 belong to Siphoviridae, with genome sizes of 40530, 41149, and 40711 bp, respectively. The GC content of φSP120, φSP197, and φSP276 was similar to that of S. pseudintermedius, but somewhat higher that of S. aureus (36%, 35%, and 36%, respectively). The genomes of the phages had a low degree of identity relative to one another. Their genomes were organized into six functional modules; lysogeny, DNA replication, packaging, head, tail, and lysis. The presence of integrase (CI) and repressor (Cro) genes in the genome indicate that these phages can undergo a lysogenic cycle (Xia and Wolz 2014). The integrases of the three phages were identical. Toxin, virulence, and antibiotic-resistance genes were absent from all three genomes, according to the PHASTER server.

Using the ViPTree online tool (https://www.genome.jp/viptree), we found that these phages are phylogenetically close to φ187 (Genome accession number: NC_007047). φ187 is a Siphoviridae phage isolated from the S. aureus ST395 lineage by mitomycin C induction (Asheshov and Jevons 1963). Other phages evolutionarily close to our SP phages were Stb27 (Genome accession number: NC_019914) and StB12 (Genome accession number: NC_020490), both of which were isolated from CoNS Staphylococcus hominis through mitomycin C induction (Deghorain et al. 2012). The WTA structure of the S. aureus ST395 lineage and CoNS are similar to that of S. pseudintermedius (Winstel et al. 2014).

WTA of S. pseudintermedius is different to that of S. aureus

Because SP phages cannot infect S. aureus, we speculated that the WTA of S. pseudintermedius is distinct from that of S. aureus. To date, the known WTAs of Staphylococcus bacteria are of at least two types, GroP and RboP (Brown et al. 2013; Winstel et al. 2014). Using
primers targeting the tagF gene, which encodes the GroP polymerase of *S. pseudintermedius* ED99, we determined that all *S. pseudintermedius* in our study likely possess GroP type WTA. Most of the isolates had WTA clusters similar to that of ED99 (genome accession number: NC_017568). Genes encoding glycosyl transferases TarM and TarS were absent from *S. pseudintermedius* isolates. As with *S. pseudintermedius*, CoNS also have GroP WTA (Endl et al. 1983; Winstel et al. 2014). Therefore, our SP phages may specifically recognize GroP WTA, whereas ϕSA012 and ϕSA039 recognize both GroP and RboP WTA.

ϕ187 can utilize WTA of *S. aureus* PS187, which belongs to the ST395 lineage, but not that of the common *S. aureus* lineage (Winstel et al. 2014). Unlike other *S. aureus*–type strains, *S. aureus* ST395 has GroP WTA with α-GalNAc glycosylation mediated by TagN (Winstel et al. 2013, Winstel et al. 2014). In this study, we detected the presence of tagN in most *S. pseudintermedius* isolates. However, *S. pseudintermedius* SP070 and SP190 lacked tagN but had a gene encodes glycosyltransferase that absent from other isolates (unpublished data).

SP phages can recognize non-glycosylated RboP WTA in *S. aureus*

WTA sugar modifications are highly variable in *Staphylococcus* species, and have been implicated in bacteriophage susceptibility and immunogenicity (Brown et al. 2013). The WTA of *S. aureus* contains α-GlcNAc and/or β-GlcNAc. In this study, we found that although no SP phages could infect *S. aureus* (Table 2), the absence of α-GlcNAc and β-GlcNAc in the WTA enabled the SP phages to infect this bacterium. SP phages could infect *S. aureus* RN4220ΔTarMΔTarS and SA003ΔTarS, both of which lack the GlcNAc modification in their WTA (Fig 2). Because SA003 naturally lacks TarM, SA003ΔTarS has a WTA similar to that of RN4220ΔTarMΔTarS. Although the observed plaques were slightly turbid, SP phages could
adsorb onto RN4220ΔTarMΔTarS (Fig 2). Adsorption efficiencies of φSP120, φSP197, and φSP276 onto RN4220ΔTarMΔTarS were 40.34%, 32.69%, and 43.75%, respectively. Complementation of either TarM (α-GlcNAc) or TarS (β-GlcNAc) blocked infection by SP phages; however, the complete absence of WTA in RN4220dtagO also prevented infection. Thus, SP phages can utilize non-glycosylated WTA as their recognition site on *S. aureus* cells.

6-O acetylation of muramic acid residues in peptidoglycan of *S. aureus* decreases the adsorption ability of staphylococcal *Siphoviridae* phages φ11 and φ52A (Li et al. 2016). To determine whether peptidoglycan acetylation is involved in SP phage adsorption onto RN4220ΔTarMΔTarS, we generated a deletion mutant of oatA and used this strain as a host for the adsorption assay. We did not observe a change in the adsorption of SP phages relative to RN4220ΔTarMΔTarS (data not shown), suggesting that peptidoglycan acetylation is not essential for SP phage adsorption onto *S. aureus*.

Glycoepitope of WTA in SP015 is essential for SP phages

Staphylococcal *Siphoviridae* phages require glycosylated WTA as their receptor (Xia et al. 2011). In RboP WTA, *Siphoviridae* phages recognize the GlcNAc residue, regardless of its stereochemistry. However, the host recognition mechanism of *Siphoviridae*, which recognizes GroP WTA, remains poorly understood. To analyze the host recognition mechanism of our SP phages, we generated phage-resistant *S. pseudintermedius* SP015.

Reduced adsorption of three SP phages was observed in phage-resistant SP015 R1 (Fig 3). Using primers targeting the WTA gene cluster in SP015, we identified a point mutation in *tagN* of R1 that caused a premature stop codon at amino acid 629 (Fig 3a). Complementation of *tagN* using a wild-type allele restored adsorption of SP phages around 50%. Notable, mutation in
R1 improved adsorption of ϕSA039 (56.20%), whereas complementation of *tagN* in R1 decreased adsorption of ϕSA039 (31.70%). In SP015 and its mutant derivatives, adsorption did not differ significantly between mutant ϕSA039 (ϕM1, ϕM2, ϕrM1/r-100, and ϕrM1/r-100&102) and wild-type ϕSA039 (Supplemental Figure S2).

Discussion

Alteration of RBP enables ϕSA039 to switch its receptor

Although ϕSA039 requires the β-GlcNAc moiety in WTA of *S. aureus*, it can switch its receptor by acquiring spontaneous mutation in its RBP. Alteration of phage receptors is a bacterial strategy used to prevent the initial step of phage infection (Capparelli et al. 2010; Hyman and Abedon 2010; Azam and Tanji 2019a). A previous study showed that spontaneous mutant *S. aureus* lacking the β-GlcNAc moiety in WTA can be easily obtained by co-culturing the bacteria with phage (Azam et al. 2018), suggesting that the emergence of phage-resistant *S. aureus* lacking β-GlcNAc moiety in WTA is possible in a real-world setting. However, in contrast to the situation with antibiotic resistance, ϕSA039 can counter-adapt phage-resistant host by acquiring mutations in ORF100. We confirmed that mutation in ORF100 is key to ϕSA039’s ability to infect TarS-null *S. aureus*. Spontaneous mutants with three point mutations in ORF100 could infect a TarS-null host. Chimeric phages harboring mutant ORF100, produced by homologous recombination, also exhibited similar infectivity. However, a phage with mutated ORF100 could not infect *S. aureus* RN4220, which has TarM (an enzyme responsible for glycosylation of α-GlcNAc of WTA). This residue is likely important for the infection of RN4220 by ϕSA039. Mutation in ORF100 caused the loss of binding ability of ϕSA039 onto
RN4220. Our hypothesis was consistent with these observations: φM2 and φrM1/r-100 could infect TarM-null RN4220 (RN4220∆TarM), and complementation of TarM in RN4220∆TarM blocked the infection of the phages.

Subsequent analysis revealed that a point mutation in ORF102 enabled the mutant phage to adsorb onto RN4220. Phage φM1, which has mutations in ORF100 and ORF102, was able to bind WTA of RN4220. Our hypothesis is consistent with the ability of a chimeric phage harboring point mutations in ORF100 and ORF102 (φrM1/r-100&102) to infect RN4220.

A similar phenomenon has been documented in phages infecting *Escherichia coli*: mutation in *gp38*, which encodes the tail protein of coliphage PP01, enables PP01 to infect *E. coli* O157:H7 lacking the receptor OmpC (Morita et al. 2002). Via such mutations, φSA039 and PP01 may acquire the ability to target new receptors other than their original cognate receptors. These indicate that even if the phage-resistant bacteria may appear, new infectious phage will nevertheless be available.

Staphylococcal kayvirus from family Myoviridae is a suitable candidate for phage therapy

Staphylococcal *Myoviridae* phages have a broad host range (Lobocka et al. 2012; Cui et al. 2017). In particular, kayvirus can infect multiple species of *Staphylococcus* (Lobocka et al. 2012). *Staphylococcus* species harbor various glycoepitopes (GlcNAc, GalNAc, or Glc) and two types of WTA backbone (RboP and GroP) (Endl et al. 1983; Brown et al. 2013). Commonly, the infectivity of staphylococcal phages that use glycoepitopes in the WTA as their receptors, e.g. phages from families *Siphoviridae* and *Podoviridae*, depend on the WTA type of the host. For example, *Siphoviridae* phage φ187 (a *S. aureus* ST395 specific phage) strictly requires the GalNAc residue in GroP WTA. The phage is not infective toward *S. aureus*, which has RboP
WTA (Winstel et al. 2014; Li et al. 2015). The phage can infect coagulase-negative staphylococci (CoNS) including animal-related CoPS, *S. pseudintermedius* (Winstel et al. 2014). The same study also showed that *Siphoviridae* phage ϕ11 and ϕ80α (*S. aureus*–specific phages) can infect *S. aureus* but not *Staphylococcus* species with GroP WTA. Therefore, the host range of phages belong to this group likely depends on the type of WTA.

In this study, we found that ϕSA039 could infect different *Staphylococcus* species with GroP or RboP WTA. The phage exhibited at least moderate infectivity toward *S. pseudintermedius* isolates and strong infection toward CoNS, all of which lack of the β-GlcNAc residue in their WTA and have a GroP backbone. We confirmed that ϕSA039 can utilize GroP- or RboP WTA in *Staphylococcus* bacteria as its receptor. TagN-mediated glycosylation of WTA in *S. pseudintermedius* SP015 likely inhibits the infection of ϕSA039.

Staphylococcal *Siphoviridae* phage often exhibit broad host range, but are specific for bacteria within the same species (Xia et al. 2011; Li et al. 2015). In this study, we demonstrated that SP phages can engage in inter-species infectivity in *Staphylococcus* that possess GroP WTA. Three SP phages (ϕSP120, ϕSP197, and ϕSP276) exhibited strong infectivity toward 19 isolates of *S. pseudintermedius* and 11 CoNS isolates. Unlike other CoNS, *S. saprophyticus* i.e. CCM883 strain has RboP-type WTA (Endl et al. 1983); hence, SP phages cannot infect this species. The absence of non-beneficial genes (toxin, virulence, and antibiotic resistance) in the genomes of ϕSP120, ϕSP197, and ϕSP276 lead us to consider them as potential antimicrobial agents for control of *S. pseudintermedius* infection.

Phage host range is an important criterion when considering a candidate phage for therapeutic application. According to our results, staphylococcal *Myoviridae*, especially those of
kayvirus group, are the best candidates in terms of host range; however, to establish efficient
treatment, it will be necessary to precisely determine the bacteria responsible for each infection.
For example, if one desires to treat *S. pseudintermedius* infection without affecting *S. aureus*, the
use of a SP *Siphoviridae* phage represents an alternative. For practical phage therapy, the use of
strictly lytic phages that lack non-desirable genes would preferable. Although our newly isolated
SP phages are lysogenic, non-desirable genes are absent from their genome; thus, selection of
spontaneous mutant phages that are exclusively lytic would be beneficial for practical
applications. A recent report described a practical method for screening for spontaneous mutant
lytic phages from a lysogenic strain (Gutiérrez et al. 2018), suggesting promising future
applications of such phages in therapy.

Glycosylation of RboP WTA protects *S. aureus* cell from infection by SP phages

Surface carbohydrate moieties are essential for bacterial communication and phage–
bacteria and host–pathogen interactions (Weidenmaier et al. 2005; Brown et al. 2013). Most *S.
aureus* strains produce RboP WTA substituted with α- and/or β-GlcNAc residues. Many *S.
aureus* strains have lost a major genetic barrier against phage infection, the CRISPR-Cas system
(Brussow et al. 2004). Consequently, *S. aureus* frequently exchanges genetic material via phage-
mediated horizontal gene transfer (HGT) events (Xia and Wolz 2014; Li et al. 2015). The
difference in WTA structure determines efficient HGT among *Staphylococcus* bacteria.
Staphylococcal *Siphoviridae* mediates HGT among *Staphylococcus* (Xia and Wolz 2014). Host
recognition of phages from this family depends on WTA structure (Azam and Tanji 2019b). For
example, *Siphoviridae* phages capable of infecting *S. aureus* (*SA Siphoviridae*), such as φ11 and
φ80A, can recognize GlcNAc of RboP WTA, but cannot recognize GroP WTA of CoNS (see
illustration in Fig 4). On the other hand, Siphoviridae that infect other Staphylococcus species have rarely been reported.

Within S. aureus species, the ST395 lineage harbors a unique WTA containing 1,3-glycerol-phosphate (GroP) modified with α-GalNAc and D-alanine (Winstel et al. 2013; Winstel et al. 2014). The WTA structure of the ST395 lineage resembles that of CoNS and S. pseudintermedius. Siphoviridae phages capable of infecting PS187 (a representative strain of the ST395 lineage) can also infect CoNS and other species with similar WTA structure (Winstel et al. 2014). In this study, we characterized Siphoviridae phages capable of infecting S. pseudintermedius (termed SP Siphoviridae). We demonstrated that the S. pseudintermedius strains used in our study have GroP WTA. In a representative strain (SP015), we observed that our SP Siphoviridae phages required glycosylated GroP WTA. A nonsense mutation resulting in deletion of the C-terminus of tagN, encoding glycosyl transferase for GroP WTA, caused a significant decrease in adsorption of SP phages onto SP015 but improved adsorption of φSA039. Adsorption of phages was not observed in the present of tunicamycin (an antibiotic which inhibits WTA synthesis), suggesting that SP phages and φSA039 required WTA for infection but glycosylation by TagN was dispensable for φSA039.

Interestingly, we showed that SP phages could recognize S. aureus harboring non-glycosylated WTA (due to lack of TarM and TarS). Although S. aureus lacking both TarM and TarS is not likely to be present in nature, our finding indicates that glycosylation of RboP WTA of S. aureus is a strategy used by the bacteria to protect themselves against infection by SP Siphoviridae, thereby limiting the HGT across different species with different WTA backbones. Similar strategies have been documented in other reports (Li et al. 2015) showing that TarM protects S. aureus against the lytic activity of Podoviridae. Staphylococcal Podoviridae require
precise WTA glycosylation pattern for infection. TarM-mediated α-GlcNAc glycosylation in RboP WTA prevents infection of Podoviridae while TarS-mediated β-GlcNAc glycosylation is important for S. aureus susceptibility to Podoviridae. Our findings reveal a novel strategy by which S. aureus protects itself against infection by phages capable of specifically infecting phylogenetically distant species. These finding provide novel insight into biology of staphylococcal phage. We suggested that host recognition mechanism of staphylococcal phage is likely more complex than our current understanding.

Acknowledgements: We thank Professor Kenji Kurokawa at the Faculty of Pharmaceutical Science of Nagasaki International University for providing us with the deletion mutant of RN4220.

Compliance with ethical standards

Conflict of interest: The authors declare that they have no competing interests.

Ethical approval: This article does not contain any studies with human participants or animal performed by any of the authors.
References

Alves DR, Gaudion A, Bean JE, Perez Esteban P, Arnot TC, Harper DR, Kot W, Hansen LH, Enright MC, Jenkins ATA (2014) Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Appl Environ Microbiol 80:6694–6703. doi: 10.1128/AEM.01789-14

Asheshov EA, Jevons MP (1963) The effect of heat on the ability of a host strain to support the growth of a Staphylococcus phage. J Gen Microbiol 31:97–107. doi: 10.1099/00221287-31-1-97

Azam AH, Hoshiga F, Takeuchi I, Miyanaga K, Tanji Y (2018) Analysis of phage resistance in Staphylococcus aureus SA003 reveals different binding mechanisms for the closely related Twort-like phages ϕSA012 and ϕSA039. Appl. Microbiol. Biotechnol. In press

Azam AH, Tanji Y (2019a) Bacteriophage-host arm race: An update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl Microbiol Biotechnol 103:2121–2131. doi: 10.1007/s00253-019-09629-x

Azam AH, Tanji Y (2019b) Peculiarities of Staphylococcus aureus phages and their possible application in phage therapy. Appl Microbiol Biotechnol In press. doi: 10.1007/s00253-019-09810-2

Bannoehr J, Ben Zakour NL, Waller AS, Guardabassi L, Thoday KL, Van Den Broek AHM, Fitzgerald JR (2007) Population genetic structure of the Staphylococcus intermedius group: Insights into agr diversification and the emergence of methicillin-resistant strains. J Bacteriol 189:8685–8692. doi: 10.1128/JB.01150-07
Bannoehr J, Franco A, Iurescia M, Battisti A, Fitzgerald JR (2009) Molecular diagnostic identification of *Staphylococcus pseudintermedius*. J Clin Microbiol 47:469–471. doi: 10.1128/JCM.01915-08

Blaiotta G, Fusco V, Ercolini D, Pepe O, Coppola S (2010) Diversity of *Staphylococcus* species strains based on partial kat (catalase) gene sequences and design of a PCR-restriction fragment length polymorphism assay for identification and differentiation of coagulase-positive species (*S. aureus*, *S. delphini*, *S. hyicus*, *S. intermedius*, *S. pseudintermedius*, and *S. schleiferi* subsp. *coagulans*). J Clin Microbiol 48:192–201. doi: 10.1128/JCM.00542-09

Brown S, Santa Maria JP, Walker S (2013) Wall teichoic acids of Gram-positive bacteria. Annu Rev Microbiol 67:313–336. doi: 10.1146/annurev-micro-092412-155620

Brown S, Xia G, Luhachack LG, Campbell J, Meredith TC, Chen C, Winstel V, Gekeler C, Irazoqui JE, Peschel A, Walker S (2012) Methicillin resistance in *Staphylococcus aureus* requires glycosylated wall teichoic acids. Proc Natl Acad Sci 109:18909–18914. doi: 10.1073/pnas.1209126109

Brussow H, Canchaya C, Hardt W-D (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602. doi: 10.1128/MMBR.68.3.560-602.2004

Capparelli R, Nocerino N, Lanzetta R, Silipo A, Amoresano A, Giangrande C, Becker K, Blaiotta G, Evidente A, Cimmino A, Iannaccone M, Parlato M, Medaglia C, Roperto S, Roperto F, Ramunno L, Iannelli D (2010) Bacteriophage-resistant *Staphylococcus aureus* mutant confers broad immunity against staphylococcal infection in mice. PLoS One 5. doi: 10.1371/journal.pone.0011720
Chen W, Zhang Y, Yeo WS, Bae T, Ji Q (2017) Rapid and efficient genome editing in *Staphylococcus aureus* by using an engineered CRISPR/Cas9 system. J Am Chem Soc 139:3790–3795. doi: 10.1021/jacs.6b13317

Cui Z, Guo X, Dong K, Zhang Y, Li Q, Zhu Y, Zeng L, Tang R, Li L (2017) Safety assessment of *Staphylococcus* phages of the family *Myoviridae* based on complete genome sequences. Sci Rep 7. doi: 10.1038/srep41259

Cui Z, Song Z, Wang Y, Zeng L, Shen W, Wang Z, Li Q, He P, Qin J, Guo X (2012) Complete genome sequence of wide-host-range *Staphylococcus aureus* phage JD007. J Virol 86:13880–1. doi: 10.1128/JVI.02728-12

Deghorain M, Bobay LM, Smeesters PR, Bousbata S, Vermeersch M, Perez-Morga D, Drèze PA, Rocha EPC, Touchon M, Van Melderen L (2012) Characterization of novel phages isolated in coagulase-negative staphylococci reveals evolutionary relationships with *Staphylococcus aureus* phages. J Bacteriol 194:5829–5839. doi: 10.1128/JB.01085-12

Endl J, Seidl HP, Fiedler F, Schleifer KH (1983) Chemical composition and structure of cell wall teichoic acids of staphylococci. Arch Microbiol 135:215–223. doi: 10.1007/BF00414483

Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG, Walsh CT (2002) The evolutionary history of methicillin-resistant *Staphylococcus aureus* (MRSA). Proc Natl Acad Sci 99:7687–7692

Gutiérrez D, Fernández L, Rodríguez A, García P (2018) Practical method for isolation of phage deletion mutants. Methods Protoc 1:6. doi: 10.3390/mps1010006

Hyman P, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl
Microbiol 70:217–248

Iwano H, Inoue Y, Takasago T, Kobayashi H, Furusawa T, Taniguchi K, Fujiki J, Yokota H, Usui M, Tanji Y, Hagiwara K, Higuchi H, Tamura Y (2018) Bacteriophage ΦSA012 has a broad host range against Staphylococcus aureus and effective lytic capacity in a mouse mastitis model. Biology (Basel) 7:8 doi: 10.3390/biology7010008

Jeong DW, Cho H, Lee H, Li C, Garza J, Fried M, Bae T (2011) Identification of the P3 promoter and distinct roles of the two promoters of the SaeRS two-component system in Staphylococcus aureus. J Bacteriol 193:4672–4684. doi: 10.1128/JB.00353-11

Kloos WE, Bannerman TL (1994) Update on clinical significance of coagulase-negative staphylococci. Clin Microbiol Rev 7:117–140

Li X, Gerlach D, Du X, Larsen J, Stegger M, Kuhner P, Peschel A, Xia G, Winstel V (2015) An accessory wall teichoic acid glycosyltransferase protects Staphylococcus aureus from the lytic activity of Podoviridae. Sci Rep 5:17219. doi: 10.1038/srep17219

Li X, Koç C, Kühner P, Stierhof Y-D, Krismer B, Enright MC, Penadés JR, Wolz C, Stehle T, Cambillau C, Peschel A, Xia G (2016) An essential role for the baseplate protein Gp45 in phage adsorption to Staphylococcus aureus. Nat Publ Gr 6:26455. doi: 10.1038/srep26455

Łobocka M, Hejnowicz MS, Dabrowski K, Gozdek A, Kosakowski J, Witkowska M, Ulatowska MI, Weber-Dabrowska B, Kwiatek M, Paraison S, Gawor J, Kosowska H, Głowacka A (2012) Genomics of Staphylococcal Twort-like Phages - Potential Therapeutics of the Post-Antibiotic Era. Adv Virus Res 83:143–216. doi: 10.1016/B978-0-12-394438-2.00005-0

Moodley A, Stegger M, Ben Zakour NL, Fitzgerald JR, Guardabassi L (2009) Tandem repeat
sequence analysis of staphylococcal protein A (spa) gene in methicillin-resistant

Staphylococcus pseudintermedius. Vet Microbiol 135:320–326. doi: 10.1016/j.vetmic.2008.09.070

Morita M, Fischer CR, Mizoguchi K, Yoichi M, Oda M, Tanji Y, Unno H (2002) Amino acid alterations in Gp38 of host range mutants of PP01 and evidence for their infection of an ompC null mutant of *Escherichia coli* O157:H7. FEMS Microbiol Lett 216:243–248. doi: 10.1016/S0378-1097(02)01025-X

O’Flaherty S, Coffey A, Edwards R, Meaney W, Fitzgerald GF, Ross RP (2004) Genome of staphylococcal phage K: A new lineage of myoviridae infecting Gram-positive bacteria with a low G+C content. J Bacteriol 186:2862–2871. doi: 10.1128/JB.186.9.2862-2871.2004

Osada K, Takeuchi I, Miyanaga K, Tanji Y (2017) Coevolution between *Staphylococcus aureus* isolated from mastitic milk and its lytic bacteriophage φSA012 in batch co-culture with serial transfer. Biochem Eng J 126:16–23. doi: 10.1016/j.bej.2017.06.022

Pompilio A, De Nicola S, Crocetta V, Guarnieri S, Savini V, Carretto E, Di Bonaventura G (2015) New insights in *Staphylococcus pseudintermedius* pathogenicity: Antibiotic-resistant biofilm formation by a human wound-associated strain. BMC Microbiol 15. doi: 10.1186/s12866-015-0449-x

Sakoulas G, Eliopoulos GM, Fowler VG, Moellering RC, Novick RP, Lucindo N, Yeaman MR, Bayer AS (2005) Reduced susceptibility of *Staphylococcus aureus* to Vancomycin and Platelet Microbicidal protein correlates with defective autolysis and loss of accessory gene regulator (agr) function. Antimicrob Agents Chemother 49:2687–2692. doi:
Synnott AJ, Kuang Y, Kurimoto M, Yamamichi K, Iwano H, Tanji Y (2009) Isolation from sewage influent and characterization of novel Staphylococcus aureus bacteriophages with wide host ranges and potent lytic capabilities. Appl Environ Microbiol 75:4483–4490. doi: 10.1128/AEM.02641-08

Takeuchi I, Osada K, Azam AH, Asakawa H, Miyanaga K, Tanji Y (2016) The presence of two receptor-binding proteins contributes to the wide host range of staphylococcal twort-like phages. Appl Environ Microbiol 82:5763–5774. doi: 10.1128/AEM.01385-16

Weidenmaier C, Peschel A, Xiong Y, Kristian SA, Dietz K, Yeaman MR, Bayer AS (2005) Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J Infect Dis 191:1771–1777. doi: 10.1086/429692

Winstel V, Liang C, Sanchez-Carballo P, Steglich M, Munar M, Broker BM, Penadés JR, Nübel U, Holst O, Dandekar T, Peschel A, Xia G (2013) Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens. Nat Commun 4 doi: 10.1038/ncomms3345

Winstel V, Sanchez-Carballo P, Holst O, Xia G, Peschel A (2014) Biosynthesis of the unique wall teichoic acid of Staphylococcus aureus lineage ST395. MBio 5 doi: 10.1128/mBio.00869-14

Xia G, Corrigan RM, Winstel V, Goerke C, Gründling A, Peschel A (2011) Wall teichoic acid-dependent adsorption of staphylococcal siphovirus and myovirus. J Bacteriol 193:4006–
Xia G, Maier L, Sanchez-Carballo P, Li M, Otto M, Holst O, Peschel A (2010) Glycosylation of wall teichoic acid in *Staphylococcus aureus* by TarM. J Biol Chem 285:13405–13415. doi: 10.1074/jbc.M109.096172

Xia G, Wolz C (2014) Phages of *Staphylococcus aureus* and their impact on host evolution. Infect Genet Evol 21:593–601. doi: 10.1016/j.meegid.2013.04.022

Zhu X, Liu D, Singh AK, Drolia R, Bai X, Tenguria S, Bhunia AK (2018) Tunicamycin mediated inhibition of wall teichoic acid affects *Staphylococcus aureus* and *Listeria monocytogenes* cell morphology, biofilm formation and virulence. Front Microbiol 9. doi: 10.3389/fmicb.2018.01352
Figure legends

Fig 1. Adsorption of ϕSA039 and its derivative mutants (spontaneous mutant ϕM1 and ϕM2, recombinant phage harboring point mutations in ORF100 [ϕrM1/r-100], and recombinant phage harboring point mutations in ORF100 and ORF102 [ϕrM1/r-100&102]) onto (a) SA003 and tarS deletion mutant (SA003ΔTarS), (b) wild-type RN4220, tarM deletion mutant (RN4220ΔTarM), tarS deletion mutant (RN4220ΔTarS), and tarM/tarS double deletion mutant (RN4220ΔTarMΔTarS). Statistical significance (P<0.05) is indicated with *.

Fig 2. Infectivity of SP phages (ϕSP120, ϕSP197, and ϕSP276) toward RN4220 and its deletion mutants; tarM deletion mutant (RN4220ΔTarM), tarS deletion mutant (RN4220ΔTarS), and tarM/tarS double deletion mutant (RN4220ΔTarMΔTarS), tagO deletion mutant (RN4220ΔTagO), tarM complemented mutant (RN4220ΔTarMΔTarS::pLIP3.TarM), and tarS complemented mutant (RN4220ΔTarMΔTarS::pLIP3.TarS), as determined by adsorption assay.

Fig 3. (a) Mutation that causes an early stop codon in tagN of SP015-R1. Susceptibility of SP015 wild-type, tunicamycin-induced Sp015 (final concentration 5µg/ml), tagN spontaneous mutant (SP015-R1), and TagN-complemented SP015-R1 to all phages, as determined by spot test (b); to phage ϕSP120, as determined by adsorption assay (c); and against phage ϕSA039, as determined by adsorption assay.

Fig 4. Mechanism of recognition of WTA by staphylococcal phages: (a) SA Siphoviridae and Myoviridae recognize glycosylated RboP WTA; (b) SP Siphoviridae and Myoviridae recognize glycosylated GroP WTA; and (c) SP Siphoviridae and Myoviridae recognize non-glycosylated RboP WTA. *Glycosylation by TagN is based on a report in the S. aureus ST395 lineage (Winstel et al. 2014).
Fig 1.

a.

	φSA039	φM1	φM2	φrM1/r-100	φrM1/r-100&102
Adsorbed phage (%)					
SA003					
SA003ΔTarS					

b.

	φSA039	φM1	φM2	φrM1/r-100	φrM1/r-100&102
Adsorbed phage (%)					
RN4220					
RNΔTarM					
RNΔTarS					
RNΔTarMΔTarS					

* denotes statistically significant difference.
Fig. 2

	Adsorbed phage (%)
RNΔTarMTarS::pLIP3.TarS	
RNΔTarMTarS::pLIP3.TarM	
RNΔTagO	
RNΔTarMTarS	
RNΔTarS	
RNΔTarM	
RN4220	

- φSP276
- φSP197
- φSP120

RNAΔTarMTarS::pLIP3.TarS
RNAΔTarMTarS::pLIP3.TarM
RNAΔTagO
RNAΔTarMTarS
RNAΔTarS
RNAΔTarM
RN4220

Adsorbed phage (%)
TagN of SP015

\[\text{KLKNRHIAS}^{*} \text{NTINIKKINQLVDSDLFEKNGTVP} \text{LATL} \text{TEHGMEGIEFS} \]

TagN of SP015-R1

\[\text{KLKNRHIAS}^{*} \text{NTINIKKINQLVDSDLFEKNGTVP} \text{LATL} \text{TEHGMEGIEFS} \]

Stop codon (TGA/TAA) is indicated

S. pseudintermedius SP015

	φSP120	φSP197	φSP276	φSA039
Wild-type	![Image](wild_type.png)	![Image](wild_type.png)	![Image](wild_type.png)	![Image](wild_type.png)
SP015 + tunicanycin	![Image](tunicanycin.png)	![Image](tunicanycin.png)	![Image](tunicanycin.png)	![Image](tunicanycin.png)
SP015-R1	![Image](r1.png)	![Image](r1.png)	![Image](r1.png)	![Image](r1.png)
SP015-R1::pLIP3.tagN	![Image](r1_pLIP3.png)	![Image](r1_pLIP3.png)	![Image](r1_pLIP3.png)	![Image](r1_pLIP3.png)

Statistical significance ($P<0.05$) is indicated.

Adsorbed phage (φSP120)

(%)
0
20
40
60
80
100

Adsorbed phage (φSA039)

(%)
0
20
40
60
80
100

Fig. 3

Page 34

Page 34
a. Glycosylated RboP WTA of RN4220

b. Glycosylated GroP WTA of SP015

c. non-glycosylated RboP WTA of RN4220ΔTarMΔTarS

Fig. 4

○ Phage can recognize × Phage cannot recognize
Bacterial strain, phage or plasmid	Description	Reference																			
Bacteria																					
E. coli JM109	Competent cells. Genotype recA1, endA1, gyrA96, thi-1, hsdR17(rK- mK+), e14' (mcrA'), supE44, relA1, Δ (lac-proAB); traD36, proAB', lac I', lacZΔM15].	(TAKARA, Shiga, Japan)																			
S. aureus RN4220																					
S. aureus RNΔTarM	*S. aureus* RN4220 lacking tarM gene	(Takeuchi et al. 2016)																			
S. aureus RN4220disruptant	*S. aureus* RN4220 disrupting tagO gene	(Azam et al. 2018)																			
S. aureus RNΔOatA	*S. aureus* RN4220 with deleted oatA gene	(Azam et al. 2018)																			
S. aureus RNΔTarS	*S. aureus* RN4220 lacking tarS gene	(Kurokawa et al. 2013)																			
S. aureus RNΔTarMΔTarS	*S. aureus* RN4220 lacking tarM and tarS genes	(Kurokawa et al. 2013)																			
RNΔTarMΔTarS.pLIP3.TarM	*S. aureus* RN4220 lacking tarM, tarS and oatA genes	This study																			
S. aureus SA003	*S. aureus* isolated from milk of mastitic cow	(Synnott et al. 2009)																			
SA003ΔtarS	*S. aureus* SA003 deficient in tarS	(Azam et al. 2018)																			
SA003ΔtarS::pLIP3.TarS	Complemented SA003ΔtarS with pLIP3.TarS	(Azam et al. 2018)																			
S. aureus SA001, 002, 003, 009, 019,020, 021,026, 028,029,031,033	*S. aureus* isolated from milk of mastitic cow	(Synnott et al. 2009)																			
S. pseudintermedius SP015, 017, 023, 040, 055, 042, 070, 079, 092, 120, 145, 188, 190, 195, 197, 251, 253, 276, 294, 296	*S. pseudintermedius* isolated from skin of Canine pyoderma	This study																			
SP015.R1	*S. pseudintermedius* SP015 with premature stop codon in tagN	This study																			
SP015.R1.pLIP3.TagN	Complemented SP015.R1 with pLIP3.TagN	This study																			
S. epidermidis NBRC 100911	*S. epidermidis* isolated from nose	(NBRC culture collection, Shizuoka, Japan)																			
S. warneri IAM-1296	*S. warneri* isolated from skin lesion	(JCM culture collection, Tsukuba, Japan)																			
S. epidermidis NBRC12993	Standard strain for Japanese pharmacopeia (microbial assay for antibiotics)	(NBRC culture collection, Shizuoka, Japan)																			
S. caprae JMUB-50	Strain isolated from patient at Jichi Medical University hospital	Jichi Medical University culture collection																			
S. epidermidis JMUB-51	Strain isolated from patient at Jichi Medical University hospital	Jichi Medical University culture collection																			
S. haemolyticus JMUB-57	Strain isolated from patient at Jichi Medical University hospital	Jichi Medical University culture collection																			
Strain	Description	Reference																			
-----------------	---	---																			
S. caprae JMUB-145	Strain isolated from patient at Jichi Medical University hospital																				
S. hominis JMUB-323	Strain isolated from patient at Jichi Medical University hospital																				
S. warneri JMUB-339	Strain isolated from patient at Jichi Medical University hospital																				
S. saprophyticus JMUB-344	Strain isolated from patient at Jichi Medical University hospital																				
S. lugdunensis JMUB-1729	Strain isolated from patient at Jichi Medical University hospital																				
S. capitis JMUB-1992	Strain isolated from patient at Jichi Medical University hospital																				
Phages																					
φSA012, φSA039	S. aureus phage isolated from sewage influent in Japan. (Synnott et al. 2009)																				
φM1	Spontaneous mutant of φSA039	This study																			
φM2	Spontaneous mutant of φSA039	This study																			
φM1/r-100	Chimeric phage of φSA039 harboring mutated ORF100 of φM1	This study																			
φM1/r-100&102	Chimeric phage of φSA039 harboring mutated ORF100 and ORF102 of φM1	This study																			
φSP120	S. pseudintermedius specific phage isolated by Mitomycin induction	This study																			
φSP197	S. pseudintermedius specific phage isolated by Mitomycin induction	This study																			
φSP276	S. pseudintermedius specific phage isolated by Mitomycin induction	This study																			
Plasmid																					
pNL9164	E. coli/S. aureus shuttle vector, AmpR (E. coli), ErmR (S. aureus)	(Sigma-Aldrich, St. Louis, MO, USA)																			
pNL.m1.100	Plasmid pNL9164 with inserted mutated ORF100 from φM1	This study																			
pNL.m1.102	Plasmid pNL9164 with inserted mutated-ORF102 from φM1	This study																			
pLI50	E. coli/S. aureus shuttle vector, AmpR (E. coli), CmR (S. aureus)	(Addgene, MA, USA)																			
pLIP3	Plasmid pLI50 with promoter P3 from S. aureus, CmR (S. aureus), AmpR (E. coli)	(Takeuchi et al. 2016)																			
pLIP3.TO	pLIP3 with inserted tagO gene from SA003	(Azam et al. 2018)																			
pLIP3.TagN	pLIP3 with inserted tagN gene from SP015	This study																			
pCasSA	Plasmid for genome editing in S. aureus by CRISPR/Cas9 system	(Chen et al. 2017)																			
pCasSA-oatA	pCasSA plasmid with spacer and editing template of the oatA gene from RN4220	(Azam et al. 2018)																			
pLIP3.oatA	pLIP3 with inserted oatA gene from RN4220	(Azam et al. 2018)																			
MLST	NT	71	110	194	71	36	NT	NT	NT	NT	5	NT	NT								
------	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----
WTA type	GroP																				
45SA039	C	T	T	C	N	T	T	C	T	T	T	T	N	T	C	C	C	C	T	T	
45SA012	C	T	T	C	N	T	T	C	T	T	C	T	C	T	C	C	C	C	T	T	
45SP0120	C	C	C	C	N	C	T	C	C	C	C	T	C	T	C	T	T	C	C	C	
45SP0197	C	C	C	C	N	C	C	C	C	C	C	C	C	T	C	C	C	C	C	C	
45SP276	C	C	C	C	N	C	C	C	C	C	C	C	C	C	C	C	T	C	C	C	
45DP001	C	T	T	T	N	N	N	C	T	T	N	N	N	N	C	C	C	N	N	N	

S. aureus

WTA type	RboP	GroP	GroP																			
45SA039	C	C	N	T	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C		
45SA012	C	C	T	C	N	C	C	C	T	C	C	C	C	C	C	C	C	C	C	C		
45SP120	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	C	C	C	C	C		
45SP197	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	C	C	C	C	C		
45SP276	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	C	C	C	C	C		
45DP001	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	C	T	T	C	C	C	

S. caprae

| JMUB-50 | JMUB-145 | JMUB-323 | JMUB-57 | JMUB-1729 | JMUB-344 | |
|--------|---------|---------|---------|-----------|-----------| |
Phage	GroP	RboP*
ϕA039	C	C
ϕA012	C	C
ϕSP120	C	C
ϕSP197	C	C
ϕSP276	C	C

MRSA = Methicillin-resistant *S. pseudintermedius*
MSSP = Methicillin-susceptible *S. pseudintermedius*
NT means Non type
C = Clear, T = Turbid, and N = No plaque

WTA was likely similar to the strain reported by Endl et al (1983)
Supplemental Table S1. Primers used in this study.

Primer name	Sequence	Description	Reference
F_orf94	ACAGTCTATGTACTTGAAGC	Primer to amplified orf94 of φSA039	This study
R_orf94	CTAATGTTTTCAAATGCTGAGG	Primer to amplified orf94 of φSA039	This study
F_orf95	CCTCAGCAATTGAACATTAG	Primer to amplified orf54 of φSA039	This study
R_orf95	GTCATCATATGAGAGCAAAAG	Primer to amplified orf95 of φSA039	This study
F_orf96	CAGACCTTATCATCAATATG	Primer to amplified orf96 of φSA039	This study
R_orf96	GGTTTTTTTTCTATTAGAC	Primer to amplified orf96 of φSA039	This study
F_orf97-98	CCATACGATAGTGAAGTAGTAAC	Primer to amplified orf97 of φSA039	This study
R_orf98-97	CTGTGTGATAACGGTTTATCT	Primer to amplified orf98 of φSA039	This study
R1_orf98	CTGTGTATCTCTGAATAATC	Primer to amplified orf98 of φSA039	This study
R2_orf98	GTTCAGCCTTAGCTATTAG	Primer to amplified orf98 of φSA039	This study
R3_orf98	CATAGCTCTACAACACGAG	Primer to amplified orf98 of φSA039	This study
F_orf99	CTCGTGTTCTAGACTTATAG	Primer to amplified orf99 of φSA039	This study
R_orf99	CTTTGACTGTAACCTTATTAC	Primer to amplified orf99 of φSA039	This study
R_orf101	GAGCTGTATGTTCATAACG	Primer to amplified orf101 of φSA039	This study
F_orf100	GCAAGGCTTGGTGATTGACCCTTCTT	Primer to amplified orf100 of φSA039 with HindIII site for insertion into pNL9164 and used for homologous recombination	This study
R_orf100	ATATGTACACTCCAAATGTTATTAATTCCTGC	Primer to amplified orf100 of φSA039 with BsrGI site for insertion into pNL9164 and used for homologous recombination	This study
R_orf100	CCATCGTCTCTGATACTATCTTAG	Primer to amplified orf100 of φSA039	This study
M_orf100	CAGCAAGTGAGATAACAAGTAG	Primer to amplified orf100 of φSA039	This study
Primer	Sequence	Description	Study
---------	-------------------------------------	---	--------
F_orf102	GCAAGCTTCAGAGCTATGATGGAAGTGC	Primer to amplified orf102 of φSA039 with HindIII site for insertion into pNL9164 and used for homologous recombination	This study
R_orf102	ATATGTACAGTCTAGATCAGATCCCAAC	Primer to amplified orf102 of φSA039 with BsrGI site for insertion into pNL9164 and used for homologous recombination	This study
F_tagN	GCAGGATCCGGGTGTACTAAGGAGAGTC	Primer to amplified tagN of S. pseudintermedius with BamHI site for insertion into pLIP3	This study
R_tagN	ATAAAGCTTTGTCAACCTTTTTCCATACAT	Primer to amplified tagN of S. pseudintermedius with HindIII site for insertion into pLIP3	This study
F_tagF1	CAGGGTTTGGAGGGATGATTG	Primer to amplified tagF1 of S. pseudintermedius	This study
R_tagF1	AGTTAGTTGAAGGCGAGCCC	Primer to amplified tagF1 of S. pseudintermedius	This study
F_tagF2	GATTTCACACGAAACATATAGC	Primer to amplified tagF2 of S. pseudintermedius	This study
R_tagF2	CAATCATCCCTCAAACCTTG	Primer to amplified tagF2 of S. pseudintermedius	This study
M_tagF2	CTGTAGATAACGGTCCGCTG	Primer to amplified tagF2 of S. pseudintermedius	This study
F_tagVN	GATATGATTAGGAAGTGGTAC	Primer to amplified tagVN of S. pseudintermedius	This study
R_tagN	CGATGATTGTCTGTTGTG	Primer to amplified tagN of S. pseudintermedius	This study
F_tagO	GATTGCAGATGAATGACAG	Primer to amplified tagO of S. pseudintermedius	This study
R_tagO	GTACTTTCCATGTGCCATT	Primer to amplified tagO of S. pseudintermedius	This study
SIspa-F	AACCTGCAGCAAGTTTCGATGAAG	Primer for spa typing of S. pseudintermedius	Moodley et al. 2009
SIspa-R	CGTGGTTTGTCTAGCTCTGTCGG	Primer for spa typing of S. pseudintermedius	Moodley et al. 2009
spaA-F	AAGTAGTGATATTCTTTGCT	Primer for spa typing of S. pseudintermedius	Ruscher et al. 2010
spA-R	CCAGGTTGACGACATGCAT	Primer for spa typing of S. pseudintermedius	Ruscher et al. 2010
SPspa1F	CCGCTCTATTTTAGGTTAATC	Primer for spa typing of S. pseudintermedius	Perretten et al. 2010
Primer	Sequence	Source	
---------	---------------------------------	---	
SIspaFlkR1	CGTAACAACCTCAATGCTACATA	Primer for spa typing of *S. pseudintermedius*	Perreten et al. 2010
tuf-F	CAATGCCCACAATACTCG	Primer for typing of *S. pseudintermedius*	Bannoehr et al. 2007
tuf-R	GCGACTGTAATTCGACAAAGCA	Primer for typing of *S. pseudintermedius*	
cpn60-F	GCGACTGTAATTCGACAAAGCA	Primer for typing of *S. pseudintermedius*	
cpn60-R	AACTGCAACCCTGCGTAAATG	Primer for typing of *S. pseudintermedius*	
pta-F	GTGGGTATCGTATTACCAGAAAGG	Primer for typing of *S. pseudintermedius*	
pta-R	GCAGAAACCTTTTTGTTGAGAAGC	Primer for typing of *S. pseudintermedius*	
agrD-F	GGGGTATTATTACAATCATTC	Primer for typing of *S. pseudintermedius*	
agrD-R	GTGATGGGAAATAAAGGGATTG	Primer for typing of *S. pseudintermedius*	
F_seqA.oatA	GCATCTAGAAATTATAGAACCTGCTTGG	Primer to amplify A region of *oatA* gene with *XbaI* site for pCasSA	Azam et al. 2018
R_seqA.oatA	CAAATCCCATAGTAACGCTG	Primer to amplify A region of *oatA* gene	Azam et al. 2018
F_seqB.oatA	CACCGTTACTATGGGATTGGTGATTTCATTACTGCAAT	Primer to amplify B region of *oatA* gene	Azam et al. 2018
R_seqB.oatA	ATACTCGAGCTCTTCCCATAGAAATGGG	Primer to amplify B region of *oatA* gene with *XhoI* site for pCasSA	Azam et al. 2018
Supplemental Figure S2

- a.

- b.
Supplemental Table S3. Spacers present in CRISPR of *S. pseudintermedius* SP079

Spacer	Sequence	Closest phage sequence in database*	Phage genome accession number
1	TTTTAATCCTATACGATTATGAAGGCTT	NA	
2	GAACAGTTTTGATTTATCCTGCTATATT	NA	
3	TGTTCGTGTTGATTTTATCTGTA	NA	
4	TGAACATACGGAACCTCTGTGAATTAA	NA	
5	GCGAACACGGTATGCTAGTGTAGTGTGT	φSP120	AP019560
6	TGCATTAAATCAAGAATCAAAGGGTGTC	NA	
7	AAAAGGCAAGTACAAAGGTCTATGTTAG	NA	
8	ATTAAGAACATATAATGTATCAGATTT	Phage SN8	MF428481
9	GCAATGGAATCAATGAGGCTCGTCAACAA	NA	
10	GTGATGTCAATGCATCTTACACCTCTCTCAATAC	NA	
11	GAACCTTTAAAGTGCTATCTTTTAGAAGACTT	NA	
12	AAAGATTATGCAATTCTACCTTTAACACAC	NA	
13	GATGAGAGGCTGTAAGGAAGCACAATTCATGA	NA	
14	TGTACGTTCAAGGCTTCTCTTTAAATTT	NA	
15	CGGCACAGATTTGTTGATTTGGTGACCTGA	NA	
16	TCAAAAAGTATTTCGTGAGATGGAGGGACTT	φSP197	AP019561
17	TGAGATTTCCCACGCAAATGTATTTTATA	Phage 2638A	AY954954
18	TAAAATCAGAAACAAAAAGGGCAAGCGGTT	NA	
19	CATTACCTTTGTGTTGATTTGTCT	NA	
20	GTAACTGAACCTGAGTTGCTGGCGTTGA	NA	
21	ACAGGCCCTTAAAGAATCATACAGTTTCTA	NA	
22	TTGaACCGTGCAAAAAATATCAAGGCGGC	NA	
23	GTTATGATGTGTCGATGGTCTGGTCTGT	NA	

*National Center for Biotechnology Information (NCBI) database was used in this study. NA means the data was not available in the database.