JONES INDEX THEOREM REVISITED

ANDREY YU. GLUBOKOV¹ AND IGOR V. NIKOLAEV²

Abstract. We prove the Jones Index Theorem using the K-theory of a cluster \(C^* \)-algebra of the Riemann sphere with two boundary components.

1. Introduction

The Jones Index Theorem is an analog of the Galois theory for the von Neumann algebras [Jones 1991] [5]. Recall that the factor is a von Neumann algebra \(\mathcal{M} \) with the trivial center. A subfactor \(\mathcal{N} \) of the factor \(\mathcal{M} \) is a subalgebra, such that \(\mathcal{N} \) is a factor. The index \([\mathcal{M} : \mathcal{N}]\) of a subfactor \(\mathcal{N} \) of a type II factor \(\mathcal{M} \) is a positive real number \(\dim_{\lambda \psi}(L^2(\mathcal{M})) \), where \(L^2(\mathcal{M}) \) is a representation of \(\mathcal{N} \) obtained from the canonical trace on \(\mathcal{M} \) using the GNS construction. We refer the reader to [Jones 1991] [5, Section 2.5] for the missing definitions and details. The Jones Index Theorem says that such subfactors exist only if:

\[[\mathcal{M} : \mathcal{N}] \in [4, \infty) \bigcup \{4 \cos^2 \left(\frac{\pi}{n} \right) \mid n \geq 3 \}. \]

The cluster algebra \(\mathcal{A}(\mathbf{x}, B) \) of rank \(n \) is a subring of the field of rational functions in \(n \) variables depending on a cluster of variables \(\mathbf{x} = (x_1, \ldots, x_n) \) and a skew-symmetric matrix \(B = (b_{ij}) \in M_n(\mathbb{Z}) \) [Fomin & Zelevinsky 2002] [3]. The pair \((\mathbf{x}, B) \) is called a seed. A new cluster \(\mathbf{x}' = (x_1, \ldots, x'_k, \ldots, x_n) \) and a new skew-symmetric matrix \(B' = (b'_{ij}) \) is obtained from \((\mathbf{x}, B) \) by the exchange relations:

\[
x_k x'_k = \prod_{i=1}^n x_i^{\max(b_{ik}, 0)} + \prod_{i=1}^n x_i^{\max(-b_{ik}, 0)},
\]

\[
b'_{ij} = \begin{cases} -b_{ij} & \text{if } i = k \text{ or } j = k \\ b_{ij} + \frac{b_{ik}b_{kj} + b_{ik}b_{kj}}{2} & \text{otherwise}. \end{cases}
\]
The seed \((x', B')\) is said to be a mutation of \((x, B)\) in direction \(k\), where \(1 \leq k \leq n\); the algebra \(\mathcal{A}(x, B)\) is generated by cluster variables \(\{x_i\}_{i=1}^{\infty}\) obtained from the initial seed \((x, B)\) by the iteration of mutations in all possible directions \(k\). The Laurent phenomenon says that \(\mathcal{A}(x, B) \subset \mathbb{Z}[x^\pm 1]\), where \(\mathbb{Z}[x^\pm 1]\) is the ring of the Laurent polynomials in variables \(x = (x_1, \ldots, x_n)\) depending on an initial seed \((x, B)\). The \(\mathcal{A}(x, B)\) is a commutative algebra with an additive abelian semigroup consisting of the Laurent polynomials with positive coefficients. In particular, it has an order satisfying the Riesz interpolation property, so that \(\mathcal{A}(x, B)\) becomes a dimension group [Effros 1981] [2, Theorem 3.1]. A cluster \(C^*\)-algebra \(\mathbb{A}(x, B)\) is an AF-algebra, such that \(K_0(\mathbb{A}(x, B)) \cong \mathcal{A}(x, B)\), where \(\cong\) is an isomorphism of the dimension groups [6, Section 4.4].

An annulus in the complex plane will be denoted by
\[
\mathcal{D} = \{z = x + iy \in \mathbb{C} \mid r \leq |z| \leq R\}.
\] (1.3)

Recall that the Riemann surfaces \(\mathcal{D}\) and \(\mathcal{D}'\) are conformally equivalent if and only if \(R/r = R'/r' := t\). By \(T_\mathcal{D} = \{t \in \mathbb{R} \mid t > 1\}\) we understand the Teichmüller space of the annulus \(\mathcal{D}\). The Penner coordinates on \(T_\mathcal{D}\) are encoded by the cluster algebra \(\mathcal{A}(x, B)\), where
\[
B = \begin{pmatrix}
0 & 2 \\
-2 & 0
\end{pmatrix},
\] (1.4)

see [Fomin, Shapiro & Thurston 2008] [4, Example 4.4] and [Williams 2014] [8, Section 3]. The corresponding cluster \(C^*\)-algebra \(\mathbb{A} (\mathcal{D})\) is given by the Bratteli diagram shown in Figure 1. The latter is known as a GICAR (Gauge Invariant Canonical Anticommutation Relations) algebra [Davidson 1996] [1, Example III.5.5] and [Effros 1980] [2, p.13(e)]. Moreover, there exists an embedding of \(\mathbb{A} (\mathcal{D})\) into the UHF-algebra given by the formula:
\[
\mathbb{A}(\mathcal{D}) \hookrightarrow M_{2^\infty} := \bigotimes_{i=1}^{\infty} M_2(\mathbb{C}).
\] (1.5)

The CAR (Canonical Anticommutation Relations) algebra \(M_{2^\infty}\) plays an outstanding rôle in the theory of subfactors [Jones 1991] [5, Section 5.6]. In this note we use (1.5) and geometry of \(\mathbb{A}(\mathcal{D})\) to give a new shorter proof of the Jones Index Theorem:

Theorem 1.1. There is a subfactor \(\mathcal{N}\) of the hyperfinite \(II_1\) factor \(\mathcal{M}\) only if \(\frac{[\mathcal{M} : \mathcal{N}]}{4} \in [4, \infty) \cup \{4 \cos^2\left(\frac{\pi}{n}\right) \mid n \geq 3\}\).
The article is organized as follows. Section 2 contains a brief review of preliminary results. Theorem 1.1 is proved in Section 3.

2. Preliminaries

2.1. Cluster algebras of rank 2. Let x_1 and x_2 be independent variables of a cluster algebra. For a pair of positive integers b and c, we define elements x_i by the exchange relations

$$x_{i-1}x_{i+1} = \begin{cases}
1 + x_i^b & \text{if } i \text{ odd}, \\
1 + x_i^c & \text{if } i \text{ even}.
\end{cases} \quad (2.1)$$

By a cluster algebra rank 2 we denote the algebra $\mathcal{A}(b, c)$ generated by the cluster variables x_i [Sherman & Zelevinsky 2004] [7, Section 2].

Let B be a basis of the algebra $\mathcal{A}(b, c)$.

Theorem 2.1. ([7, Theorem 2.8]) Suppose that $b = c = 2$ or $b = 1$ and $c = 4$. Then $B = \{x_i^p x_{i+1}^q \mid p, q \geq 0\} \cup \{T_n(x_1 x_4 - x_2 x_3) \mid n \geq 1\}$, where $T_n(x)$ are the Chebyshev polynomials of the first kind.

Let $r < R$ and consider an annulus \mathcal{D} of the form (1.3) having one marked point on each boundary component. The cluster algebra $\mathcal{A}(b, c)$ associated to an ideal triangulation of \mathcal{D} is given by the matrix (1.4) [Fomin, Shapiro & Thurston 2008] [4, Example 4.4]. The exchange relations in this case can be written as $x_{i-1}x_{i+1} = 1 + x_i^2$ and $B' = -B$. Comparing with the relations (2.1), we conclude that the $\mathcal{A}(b, c)$ is a cluster algebra of rank 2 with $b = c = 2$. Therefore the basis B of the cluster algebra $\mathcal{A}(b, c)$ is described by Theorem 2.1. On the other hand, the cluster algebra $\mathcal{A}(2, 2)$ is known to encode the Penner coordinates on the Teichmüller space $T_\mathcal{D} = \{t \in \mathbb{R} \mid t > 1\}$ of the annulus \mathcal{D} [Williams 2014] [8, Section 3].

Let $A(2, 2)$ be an AF-algebra, such that $K_0(A(2, 2)) \cong \mathcal{A}(2, 2)$. The Bratteli diagram of the cluster C^*-algebra $A(2, 2)$ has the form of a Pascal triangle shown in Figure 1 [6, Section 4.4]. Thus $A(2, 2)$ is a
GICAR algebra [Effros 1980] [2, p. 13(e)]. Consider a group of the modular automorphisms

\[\sigma_t : A(2, 2) \to A(2, 2) \]

constructed in [6, Section 4]. Such a group is generated by the geodesic flow on the Teichmüller space \(\mathcal{T}_g \), \(ibid. \).

2.2. Powers state. Let \(M_{2\infty} = \bigotimes_{i=1}^{\infty} M_2(\mathbb{C}) \) be the GICAR algebra [Davidson 1996][1, Example III.5.5] and [Effros 1980] [2, p. 13(c1)]. For \(0 < \lambda < 1 \) consider the Powers state \(\varphi_\lambda \) on the tensor product \(M_{2\infty} \) given by the formula:

\[\varphi_\lambda(x_1 \otimes \cdots \otimes x_n \otimes 1 \otimes \ldots) = \prod_{i=1}^{n} Tr \left(\frac{1}{1 + \lambda} \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix} x_i \right). \]

(2.3)

Applying the GNS construction to the pair \((M_{2\infty}, \varphi_\lambda) \) one gets a factor \(R_\lambda \). The product \(\{ \bigotimes_{i=1}^{\infty} \exp \left(\sqrt{-1} \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix} \right) \mid 0 < \lambda < 1 \} \) gives rise to a group of the modular automorphisms of \(R_\lambda \), see e.g. [Jones 1991][5, Section 1.10].

The GICAR algebra \(A(2, 2) \) embeds into the factor \(R_\lambda \) [Davidson 1996][1, Example III.5.5]. Moreover, a restriction of the modular automorphisms of \(R_\lambda \) coincides with the \(\sigma_t : A(2, 2) \to A(2, 2) \) constructed in [6, Section 4].

2.3. Basic construction. Denote by \(e_{ij} \) the matrix units of the algebra \(M_2(\mathbb{C}) \). Then \(e_t = \frac{1}{1+t} (e_{11} \otimes e_{11} + te_{21} \otimes e_{21} + \sqrt{t} (e_{12} \otimes e_{21} + e_{21} \otimes e_{12})) \) is a projection of the algebra \(M_2(\mathbb{C}) \otimes M_2(\mathbb{C}) \) for each \(t \in \mathbb{R} \). Proceeding by induction, one can define projections \(e_i(t) = \theta^i(e_t) \in M_{2^n} \), where \(\theta \) is the shift automorphism of the UHF-algebra \(M_{2\infty} \). The \(e_i := e_i(t) \) satisfy the following relations

\[\begin{cases}
 e_i e_j = e_j e_i, & \text{if } |i - j| \geq 2 \\
 e_i e_{i \pm 1} e_i = \frac{t}{(1+t)^2} e_i,
\end{cases} \]

(2.4)

so that \(Tr (xe_{n+1}) = [\mathcal{M} : \mathcal{N}]^{-1} Tr (x) \) [Jones 1991][5, Section 5.6]. The \(e_i(t) \) generate a subfactor \(\mathcal{N} \) of the type II von Neumann algebra \(\mathcal{M} \), such that

\[[\mathcal{M} : \mathcal{N}]^{-1} = \frac{t}{(1+t)^2}. \]

(2.5)
3. Proof

We shall use a simple analysis of the cluster algebra $\mathcal{A}(\mathcal{D}) \cong K_0(\mathcal{A}(\mathcal{D}))$ using the Sherman-Zelevinsky Theorem. Namely, such an algebra has a canonical basis of the form

$$B = \{x_i^p x_{i+1}^q \mid p, q \geq 0\} \cup \{T_n(x_1 x_4 - x_2 x_3) \mid n \geq 1\}, \quad (3.1)$$

where $T_n(x)$ are the Chebyshev polynomials of the first kind, see Theorem 2.1. We split the proof in two lemmas corresponding (roughly) to the cases $|B| = \infty$ and $|B| < \infty$, respectively.

Lemma 3.1. There exists a subfactor \mathcal{N} of the hyperfinite type II_1 factor \mathcal{M} whenever $[\mathcal{M} : \mathcal{N}] \in (4, \infty)$.

Proof. (i) Let us return to the inclusion (1.5) and consider the Powers state φ_λ on $M_{2\infty}$. The Powers modular automorphism of the factor R_λ induces a modular automorphism $\sigma_t : \mathcal{A}(\mathcal{D}) \to \mathcal{A}(\mathcal{D})$. The Penner coordinate $t = R/r > 1$ on $T_{\mathcal{D}}$ and the Powers parameter $0 < \lambda < 1$ are related by the formula:

$$t = \frac{1}{2} \left(\lambda + \frac{1}{\lambda} \right). \quad (3.2)$$

In other words, the Penner coordinates give the Powers states, i.e. for each $t > 1$ the evaluation map produces a positive homomorphism of $K_0(\mathcal{A}(\mathcal{D}))$ to \mathbb{R}, which correlates with a trace on the GICAR algebra $\sigma_t(\mathcal{A}(\mathcal{D}))$.

(ii) If $|B| = \infty$, then the Bratteli diagram of $\mathcal{A}(\mathcal{D})$ (Figure 1) is an infinite tower. The hyperfinite type II_1 factor \mathcal{M} is obtained from a factor \mathcal{N} by adjoining the Jones projections $e_i(t)$ using the basic construction (Section 2.3). The Penner coordinate $t > 1$ on $T_{\mathcal{D}}$ corresponds to the values of index $[\mathcal{M} : \mathcal{N}] = \frac{(1+t)^2}{t} > 4$ in view of formula (2.5). In other words, $[\mathcal{M} : \mathcal{N}] \in (4, \infty)$. Lemma 3.1 is proved. □

Lemma 3.2. There exists a subfactor \mathcal{N} of the hyperfinite type II_1 factor \mathcal{M} whenever $[\mathcal{M} : \mathcal{N}] \in \{4 \cos^2 \left(\frac{\pi n}{n} \right) \mid n \geq 3\} \cup \{4\}$.

Proof. (i) Recall that the Chebyshev polynomials satisfy the following relations:

$$T_0 = 1 \quad \text{and} \quad T_n \left[\frac{1}{2} (t + t^{-1}) \right] = \frac{1}{2} (t^n + t^{-n}). \quad (3.3)$$
In view of 2.1, we choose $\frac{1}{2}(t + t^{-1}) = x_1 x_4 - x_2 x_3$. (Such a parametrization is always possible since the Penner coordinates [Williams 2014] [8, Section 3.2] on T_D are given by the cluster (x_1, x_2), where each x_i is a function of t.)

The exchange relations (1.2) for $A(D)$ can be written as $x_{i-1} x_{i+1} = x_i^2 + 1$. It is easy to calculate that $x_1 x_4 - x_2 x_3 = \frac{x_1^2 + x_2^2}{x_1 x_2}$. An explicit resolution of cluster variables x_1 and x_2 is given by the formulas:

$$
\begin{align*}
 x_1 &= \frac{\sqrt{3}}{2} \sqrt{t + t^{-1}} \\
 x_2 &= \frac{\sqrt{3}}{2} \sqrt{t - t^{-1}}
\end{align*}
$$

(3.4)

The reader can verify, that equations (3.4) imply $x_1 x_4 - x_2 x_3 = \frac{1}{2}(t + t^{-1})$. The parametrization of the ordered K_0-group of the GICAR algebra $A(\mathcal{D})$ in this case differs from (3.2) in the sense that t is allowed to be a complex number. As we shall see, such an extension does not affect the property of the index to be a real number. The compatibility of traces under the embedding (1.5) is preserved.

(ii) If $|\mathcal{B}| < \infty$, then the Bratteli diagram of $A(\mathcal{D})$ (Figure 1) is a finite tower. In particular, the formulas (3.1) and (3.3) imply

$$
T_n(x_1 x_4 - x_2 x_3) = T_0 = 1
$$

(3.5)

for some integer $n \geq 1$. But $x_1 x_4 - x_2 x_3 = \frac{1}{2}(t + t^{-1})$ and using formula (3.3) for the Chebyshev polynomials, one gets an equation

$$
t^n + t^{-n} = 2
$$

(3.6)

for (possibly complex) values of t. Since (3.6) is equivalent to the equation $t^{2n} - 2t^n + 1 = (t^n - 1)^2 = 0$, one gets the n-th root of unity

$$
t \in \{e^{\frac{2\pi i}{n}} \mid n \geq 1\}.
$$

(3.7)

The value

$$
[\mathcal{M} : \mathcal{N}] = \frac{(1 + t)^2}{t} = 1 + 2 + t = 2 \left[\cos \left(\frac{2\pi}{n} \right) + 1 \right] = 4 \cos^2 \left(\frac{\pi}{n} \right)
$$

(3.8)

is a real number. We must exclude the case $n = 2$ corresponding to the value $t = -1$, because otherwise one gets a division by zero in (2.4).

Lemma 3.2 is proved.

Theorem 1.1 follows from lemmas 3.1 and 3.2.
REFERENCES

1. K. Davidson, C^*-Algebras by Example, Fields Institute Monographs, AMS 1996.
2. E. G. Effros, Dimensions and C^*-Algebras, in: Conf. Board of the Math. Sciences, Regional conference series in Math. 46, AMS, 1981.
3. S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002), 497-529.
4. S. Fomin, M. Shapiro and D. Thurston, Cluster algebras and triangulated surfaces, I. Cluster complexes, Acta Math. 201 (2008), 83-146.
5. V. F. R. Jones, Subfactors and Knots, CBMS Series 80, AMS, 1991.
6. I. V. Nikolaev, Noncommutative Geometry, De Gruyter Studies in Math. 66, Berlin, 2017.
7. P. Sherman and A. Zelevinsky, Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Moscow Math. J. 4 (2004), 947-974.
8. L. K. Williams, Cluster algebras: an introduction, Bull. Amer. Math. Soc. 51 (2014), 1-26.

1 DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, 150 N. UNIVERSITY STREET, WEST LAFAYETTE, IN 47907-2067, UNITED STATES.
 Email address: agluboko@purdue.edu

2 DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, ST. JOHN’S UNIVERSITY, 8000 UTOPIA PARKWAY, NEW YORK, NY 11439, UNITED STATES.
 Email address: igor.v.nikolaev@gmail.com