Abstract
The cuprizone (CPZ) model allows the study of the biochemical processes underlying nonautoimmune-mediated demyelination, remyelination, and chronic white matter disease progression. CPZ is a copper (Cu) chelator that chiefly causes oligodendrocyte apoptosis in the corpus callosum and cerebellum when administered in the mouse diet. While disruption of Cu homeostasis is known to cause neurodegeneration (as is observed in Wilson’s and Menkes disease), no consensus exists to date as to CPZ’s mechanism of action. We sought to determine whether CPZ-induced pathology is due to Cu depletion as is generally believed. Cu supplementation in chow, in stoichiometric excess to the added CPZ, did not reduce CPZ-induced demyelination in C57Bl/6 mice. Moreover, equivalent doses of other known Cu chelators neocuproine and D-penicillamine (D-Pen) failed to induce central nervous system (CNS) demyelination. Since administration of D-Pen in the treatment of Wilson’s disease can induce hypocupremia, we next sought to recreate penicillamine-induced Cu deficiency to compare with purported CPZ-induced Cu deficiency. The resulting clinical phenotype and histopathology were unlike that of CPZ. D-Pen-treated mice exhibited digit paralysis, tail flaccidity, subcutaneous hemorrhaging, and optic and sciatic neuropathy, all of which were prevented with Cu supplementation. No demyelination of the corpus callosum or cerebellum was observed, even with D-Pen doses tenfold higher than CPZ. Intriguingly, addition of D-Pen to the CPZ diet paradoxically prevented demyelination in a dose-dependent manner.

Summary Statement
The demyelinating effects of CPZ are not due to Cu deficiency but are instead consistent with acute toxicity of a CPZ + Cu complex.

Keywords
cuprizone, demyelination, multiple sclerosis, neurodegeneration, penicillamine

Introduction
Cuprizone (CPZ), a synthetic chelating compound originally used to detect trace Cu (Nilsson, 1950; Peterson & Bollier, 1955; Wetlesen, 1957), became of interest in biomedical research when it was discovered to exert toxic effects in the CNS of laboratory mice (Carlton, 1966). A 0.2-0.5% (w/w) CPZ dose added to normal rodent chow for several weeks causes oligodendrocyte death, gliosis and subsequent demyelination in the corpus callosum, cerebellum, and several other myelinated brain regions (Hiremath et al., 1998; Matsushima & Morell, 2001; Koutsoudaki et al., 2008; Gudi et al., 2009; Pott et al., 2009; Nyamoya et al., 2017). The CPZ model is now widely applied in multiple sclerosis (MS) research as an experimental tool to investigate the mechanisms underlying CNS demyelination and remyelination (Kipp et al., 2016), and has more recently been employed to examine how primary myelin degeneration can entrain a secondary immune response into the brain (Scheld et al., 2016; Caprariello et al., 2018; Almuslehi et al., 2020; Kaddatz et al., 2021).

Despite its use in the study of white matter injury and repair for over 50 years, the mechanism of CPZ-induced demyelination is still incompletely understood (reviewed by...
Kipp et al., 2009; Praet et al., 2014; Zirngibl et al., 2022). Since CPZ chelates Cu, it is widely presumed that CNS damage is a result of Cu dyshomeostasis, as is observed in Menkes and Wilson’s disease, and acquired Cu deficiency in the human (Prodan et al., 2002; Kumar, 2006). As Cu is an essential trace element for a number of metalloenzymes involved in cellular respiration, the prevailing hypothesis suggests that CPZ induces a state of Cu deprivation, which most prominently affects oligodendrocytes due to their elevated metabolic demands associated with myelination.

To explore this hypothesis, published studies aimed at determining the status of Cu in the brains of CPZ-treated mice have yielded discrepant results. An initial report by Venturini (1973) employed a colorimetric assay based on CPZ’s proclivity to turn blue when bound to trace amounts of Cu in solution (Peterson & Bollier, 1955). Brains from CPZ-fed mice, desiccated and reconstituted with dissolved CPZ, had lower absorbance values than control mouse brains, suggestive of a reduced Cu content. However, more recent experiments using inductively-coupled plasma spectroscopy and X-ray fluorescence reported normal brain Cu content (Jeyasingham et al., 1998; Moldovan et al., 2015). Disconcertingly, additional studies using atomic absorption spectrophotometry (Zatta et al., 2005) and commercial colorimetric Cu assay kits (Tezuka et al., 2013) reported increased brain Cu levels with CPZ treatment. To add to this ambiguity, several attempts by Carlton (1966, 1967) to supplement the CPZ diet with copper sulfate failed to prevent CNS abnormalities. However, the experiments used weanling mice, which are highly susceptible to CPZ toxicity, and used a maximum supplement of only 260 ppm copper sulfate. CPZ binds Cu with a stoichiometry of 2 CPZ:1 Cu (Zatta et al., 2005; Messori et al., 2007), therefore addition of 260 ppm Cu salts was greatly sub-stoichiometric given the 0.2% CPZ (bis(cyclohexanone)oxaldihydrazone, C9012, Sigma Aldrich), 0.15% neocuproine hydrochloride hydrate (N1626, Sigma Aldrich), 0.16% to 0.25% D(-)-Penicillamine (A11446.22, Alfa Aesar), 0.1% copper (II) sulfate pentahydrate (469130, Sigma Aldrich), or a combination of the above. To induce unambiguous Cu deficiency via chelation, the high affinity Cu chelator D(-)-Penicillamine (D-Pen) (Walshe, 1956; Birker & Freeman, 1977) was administered in the diet of 3-week-old C57Bl/6 female mice (either 2% D-Pen for 4 weeks or 1% D-Pen without or with 0.92% copper sulfate for 12 weeks). The binding stoichiometry of D-Pen to Cu is unclear (Birker & Freeman, 1977; Gergely & Sovagó, 1978; Ahmed & Iqbal, 2016), and so we replicated the CPZ + Cu experimental paradigm by assuming a similar binding ratio and supplementing with a 10% molar excess of Cu (2:1.1 D-Pen:Cu). Weanling females were used for the following three reasons: 1) older mice are less susceptible to the effects of D-Pen (Takeda et al., 1980; our own unpublished findings), 2) older mice are less susceptible to clinical manifestation of Cu deficiency in general (Prohaska, 1991; Prohaska & Brokate, 2002), and 3) to avoid the non-specific side effects of high-dose D-Pen observed in young male mice (Takeda et al., 1980). To compare 2% D-Pen to CPZ, 3-week-old female C57Bl6 mice were fed 0.2% CPZ for 4 weeks. Age- and sex-matched untreated control mice were fed normal chow for 2, 3, 4, or 12 weeks as appropriate.

For histological and immunohistochemical studies, mice were deeply anaesthetized with sodium pentobarbitial and transcardially perfused with 12 mL 1X PBS followed by 12 mL 4% paraformaldehyde. CNS and peripheral nervous system (PNS) tissues were harvested and postfixed overnight in 4% paraformaldehyde at 4°C. Tissues were then cryoprotected in 20% and 30% sucrose solutions (each overnight at 4°C) then frozen in optimal cutting temperature (OCT) compound (CA95057–838, VWR) using liquid nitrogen-cooled isopentane. Coronal brain sections and longitudinal optic nerve and sciatic nerve sections (20 μm) were prepared on VWR Superfrost plus microslides (3 sections per slide) using a Leica cryostat and stored at -20°C.

Histology and immunohistochemistry

To examine the extent of demyelination in the corpus callosum, brain sections were stained overnight at 60°C with Luxol fast blue (LFB) (Solvent Blue 38, Sigma-Aldrich) in 95% EtOH and 0.5% acetic acid. Sections were differentiated in 0.05% lithium carbonate solution, then 70% ethanol. Sections were then dehydrated in ascending ethanol solutions and xylene, then mounted in Micromount (3801730, Leica)

Materials and Methods

Animal experiments and tissue collection

All animal experiments were carried out in accordance with guidelines set out by the Canadian Council on Animal Care.
Biosystems). Brightfield images were collected on a Thorlabs Enviista slide scanning microscope with a 20x/0.75 air lens and a Thorlabs 4070 color CCD camera in ThorCam Tide LS software (version 2.1.0).

For immunohistochemistry, the M.O.M (Mouse on Mouse) Immunodetection Kit (BMK-2202, Vector Laboratories) was used for blocking and antibody dilution buffers. Sections were first delipidated in ethanol to expose the citrullinated myelin basic protein (MBP) epitope (1 min each in 50%, 70%, 95%, 100%, 100%, 95%, 70%, and 50% EtOH), then incubated with anti-MBP (RRID:AB_2920596, Citrulline R25, clone 1B8, MABT1510, Sigma-Aldrich, 1:500) and anti-Iba1 (RRID:AB_839504, Cat#:019-19741, Wako Chemicals USA, 1:500) antibodies overnight at 4°C. Sections were then rinsed in PBS and incubated with AlexaFluor 488 and 594 for 1 h at room temperature, then counterstained with DAPI. Fluorescence images were acquired on an Olympus VS120 slide scanner with a 20x/0.75 air lens and a Hamamatsu Orca Flash 4.0 sCMOS monochrome camera in VS-ASW-L100 software (version 2.9).

Mouse behavioural testing and clinical examination

To compare the clinical effects of D-Pen vs. CPZ treatment, mice were scored in a blinded fashion at baseline and once weekly using the hindlimb clasping test, wire hang test, and were also observed weekly for overt clinical signs such as tail flaccidity and digit paresis and paralysis (an inability to grip the metal bars of the cage top). The hindlimb clasping test was performed as previously described (Guyenet et al., 2010), wherein mice were lifted by the base of the tail, hindlimb position was observed for 10 s and scored from 0 to 3 based on limb retraction. The hindlimb clasping score for each mouse was presented as an average of three separate trials. The wire hang test was performed by placing the mouse on the wire cage top, which was then inverted. Performance was recorded as the latency from the beginning of the test to when the mouse fell. Mice were tested for a maximum of 60 s, and the score for each mouse was presented as an average of three separate trials.

Colorimetric assays of Cu chelators

Solutions of 1mM CPZ, D-Pen, and neocuproine were prepared separately in 1X PBS. To solubilize CPZ and neocuproine, 10mM was added to 30% EtOH and incubated on a shaker at 37°C until complete dissolution of the powder, and then the solution was diluted to 1mM in 1X PBS. The formation of the D-Pen + Cu/ neocuproine + Cu / CPZ + Cu complex was confirmed by observing a color change upon addition of copper sulfate to each of the above compounds (Nilsson, 1950; Gahler, 1954; Birker & Freeman, 1977). To test the relative affinities of each chelator for Cu, two solutions of 1mM CPZ + 0.5mM Cu were prepared, then either neocuproine or D-Pen powder was added and the color change was recorded. Once the color stabilized, excess CPZ was then added back into the solution to observe whether the solution reverted to its original blue color.

Image analysis and statistics

Brightfield and fluorescence images were analyzed using ImageTrak software (version 5.4.0a; https://stysneurolab.org/imagetrak) using thresholding to mask the area of LFB, citrullinated MBP, or Iba1 labeling. Statistical significance was determined using one-way ANOVA in GraphPad Prism software (version 9.3.1). P < 0.05 was considered significant. Results for each mouse are presented as an average of three tissue sections, with error bars representing standard error of the mean for each experimental group.

Data for digit paralysis and hindlimb clasping scores for mice treated with 1% D-Pen ± copper sulfate was analyzed using repeated measurements, two-way ANOVA. If the p value calculated for the main effect of the treatment was < 0.05, Fisher’s LSD post hoc tests were applied to each time point.

Results

Dietary Cu supplementation did not reduce CPZ-induced demyelination

To determine whether CPZ-induced pathology could be prevented with adequate (supra-stoichiometric) Cu supplementation, mice were fed 0.2% CPZ without or with 0.1% copper sulfate (Cu) added (i.e., a 2:1.1 stoichiometric ratio of CPZ (278g/mol) to CuSO₄•5H₂O (250g/mol) to ensure a slight excess of free Cu) for 3 weeks, and histopathology of the splenium of the corpus callosum was examined by LFB staining (Figure 1a). Since the extent and reproducibility of CPZ-induced pathology is highly dependent on mouse weight (Leopold et al., 2019), all mice were weighed at the start of each experiment to ensure an even distribution among groups (Figure 1b). While CPZ-fed mice exhibited reduced weight compared to controls, Cu supplementation had no effect, with CPZ±Cu mice maintaining similar weights throughout the 3-week experiment, indicating that food intake was not altered by the addition of copper sulfate. Contrary to expectations however, Cu supplementation did not prevent myelin loss after 3 weeks of CPZ treatment (Figure 1c).

Since demyelination of the medial corpus callosum was already extensive by week 3, to see whether Cu supplementation conferred more subtle improvements to CPZ-induced pathology, we shortened the CPZ duration to 2 weeks, wherein overt demyelination is not yet visible by LFB staining but white matter is hypercitrullinated (Caprariello et al., 2018) and microglia are activated (Hiremath et al., 1998) (Figure 1d-e). Citrullinated MBP,
largely absent in the naïve mouse corpus callosum, is a sensitive marker of early damage to myelin that both precedes and accompanies acute demyelination in both the CPZ model and in MS (Yang et al., 2016; Caprariello et al., 2018). This abbreviated sub-demyelinating CPZ paradigm induced citrullination of MBP and microgliosis in the medial corpus callosum as expected, but Cu supplementation again failed to rescue this subtle pathology (Figure 1f-h). Cu administration alone did not cause any white matter pathology.

Other Cu chelators failed to induce cerebral demyelination

To determine whether other well-established Cu chelating agents could create a similar pattern of demyelination as...
CPZ, we first identified other compounds that efficiently bind Cu. Since D-Pen, neocuproine, and CPZ each undergo color transformation in solution when complexed with Cu (to purple, yellow, and blue, respectively (Nilsson, 1950; Gahler, 1954; Birker & Freeman, 1977), Figure 2a), the relative affinity of each chelator for Cu could be examined. A solution of CPZ + Cu was prepared, and then either D-Pen or neocuproine was added. The color change in each case indicated that both D-Pen and neocuproine have a higher affinity for Cu than CPZ (Figure 2b). The final color was stable at room temperature for over 24 h, and did not change back to blue with the addition of more CPZ. From these experiments we concluded that a) compared to CPZ, both D-Pen and neocuproine will bind Cu more strongly, and b) these chelators will also extract Cu already bound by CPZ (supported by the color changes in Fig. 2). Having established that both D-Pen and neocuproine are also effective copper chelators, mice were then fed either D-Pen or neocuproine mixed in with standard rodent chow for 3 weeks. Since neocuproine also binds Cu in a 2:1 ratio (Özyürek et al., 2011), 0.15% neocuproine was used (a molar equivalent dose to 0.2% CPZ). The binding ratio of D-Pen to Cu is unclear (Birker & Freeman, 1977; Gergely & Sóvágó, 1978; Ahmed & Iqbal, 2016), and so 0.16% D-Pen was administered (a 50% higher molar amount than 0.2% CPZ). In striking contrast to CPZ, histopathology of the corpus callosum examined with LFB was unremarkable after a 3-week exposure to either of the two chelators (Figure 2c-d). Likewise, no behavioural changes were observed in any of the animals aside from weight loss in the neocuproine-treated mice (Figure 2e).

D-Pen-induced pathology was very distinct from CPZ

With the aforementioned results now casting doubt on the alleged Cu depleting mechanism of CPZ, we next sought to recreate a model of unambiguous Cu depletion via chelation in C57Bl/6 mice for a direct comparison with the CPZ model. Since administration of D-Pen for the treatment of Wilson’s disease can induce hypocupremia and CNS demyelination (Narayan & Kaveer, 2006), we aimed to produce a state of Cu deficiency in 3-week-old female weanling mice by using a high dose of D-Pen (2%) in the diet. Behaviour and histopathology were compared with age- and sex-matched control mice fed standard rodent chow or 0.2% CPZ for 4 weeks. The high D-Pen dose induced overt clinical symptoms within a few weeks. Experiments were terminated at week 4, when several mice died of sudden aortic rupture (Takeda et al., 1980). All surviving mice at week 4 presented with tail flaccidity, splayed hind toes with digit paralysis in both hindlimbs (Figure 3a), hindlimb weakness, and severely impaired hindlimb clasping and wire hang scores (Figure 3b-c). At necropsy, subcutaneous haemorrhaging was observed in all D-Pen-treated mice. Conversely, CPZ-treated mice were clinically and behaviourally indistinguishable from untreated controls at week 4, with the exception of one CPZ-treated mouse with hydrocephalus. Several CNS and PNS tissues were labeled for microglia/macrophages and citrullinated MBP; as expected, the medial corpus callosum and cerebellar white matter of CPZ-treated mice exhibited gliosis and MBP hypercitrullination (Figure 3d-e). D-Pen-treated mice, however, exhibited optic and sciatic neuropathy (Figure 3f-g). No evidence of white matter injury was found in the brain or cerebellum of D-Pen-treated mice despite using a dose tenfold higher than CPZ. No spinal cord pathology was detected in any of the treatment groups (data not shown).

To confirm whether the clinical phenotype observed in D-Pen-treated mice was due to Cu deficiency, a different cohort of weanling mice was fed 1% D-Pen ± 0.92% copper sulfate for up to 12 weeks and monitored weekly for clinical signs. A lower amount of D-Pen was used in this experiment
Figure 3. D-Pen-induced Cu deficiency was unlike purported CPZ-induced Cu deficiency. (a-c) After 4 weeks of 2% D-Pen supplementation in rodent chow, mice exhibited digit paralysis in both hindlimbs (an inability to grasp the metal wires of the cage top), along with high hindlimb clasping scores and low wire hang scores. CPZ-treated mice were clinically unremarkable and behaviourally indistinguishable from untreated control mice. (d-f) Mouse CNS and PNS cryosections labeled with anti-citrullinated MBP (citMBP) and anti-microglia/macrophage (Iba1) antibodies. (h-i) Mice were administered either 1% D-Pen or 1% D-Pen + 0.92% copper sulfate for 12 weeks, with digit paralysis and hindlimb clasping recorded weekly. 1%-D-Pen-treated mice began to exhibit digit paralysis at week 4, and progressed until week 12 when most mice had digit paralysis in both hindlimbs. Hindlimb clasping scores became statistically significant by week 6 of treatment. * indicates the first time point at which 1% D-Pen mice have scores that are significantly different from 1% D-Pen + Cu mice (p < 0.05, repeated measurements ANOVA with Fisher’s LSD post hoc tests). (j) At week 12, D-Pen-treated mice had significantly abnormal wire hang scores. Mice administered 1% D-Pen + Cu were clinically and behaviourally indistinguishable from untreated controls. Each dot on the graph in (a-c), and (j) represents one mouse. Error bars indicate SEM. Scale bars are 300 μm.
to prevent aortic rupture. Mice fed 1% D-Pen began to develop digit paralysis by week 4 (Figure 3h), displayed significantly abnormal hindlimb clasping scores by week 6 (Figure 3i), and at week 12 had severely impaired wire hang scores compared to untreated controls (Figure 3j). Cu supplementation completely prevented the appearance of clinical signs for the entire 12-week duration of the experiment.

D-Pen supplementation paradoxically prevented CPZ-induced demyelination

If the mechanism of action of CPZ-induced demyelination is depletion of Cu, one would expect that addition of a second (higher-affinity) chelator to CPZ in the chow would exacerbate callosal pathology or even induce more widespread CNS injury as is known to occur at higher doses of CPZ (Carlton, 1966; Kesterson & Carlton, 1971; Blakemore, 1972). When D-Pen was added to the 3-week 0.2% CPZ diet, it unexpectedly prevented myelin loss in a dose-dependent manner despite ostensibly causing even more Cu chelation (Figure 4a). Intriguingly, the higher the dose of D-Pen, the more protection was observed so that at 0.25% D-Pen completely protected against demyelination in all mice, resulting in the corpus callosum being histologically indistinguishable from controls (Figure 4b). All mice remained clinically unremarkable.

Discussion

The mechanism(s) of CPZ-mediated CNS demyelination in the rodent have never been firmly established. Given the selectivity and high affinity of CPZ for Cu (Peterson & Bollier, 1955; Rohde, 1966), together with reported demyelinating syndromes in hypocupremic patients (Prodan et al., 2002; Kumar, 2006), depletion of Cu as a main mechanism of toxicity of oligodendrocytes was a reasonable conclusion. If so, Cu supplementation should prevent the pathological effects of CPZ. We confirmed the well-known observation of demyelination of the medial corpus callosum by dietary CPZ (Hiremath et al., 1998; Matsushima & Morell, 2001). What was unexpected in our experiments was a complete inability of Cu (deliberately administered in stoichiometric excess to CPZ to ensure that all chelator was bound to exogenously supplied Cu) to rescue white matter pathology (Fig. 1). These results shed serious doubt on the notion that CPZ exerts toxicity by chelating and removing Cu. In other words, it appears that it is not a deficit of Cu that induces demyelination, but the presence of CPZ itself, either alone or as a CPZ·Cu complex. The fact that CPZ with Cu added in supрастoichiometric amounts had similar toxic effects implies that free CPZ was not the culprit, as all CPZ would be Cu-bound under such conditions. Nor was copper sulfate alone toxic, together indicating that a CPZ·Cu complex may be responsible. Strong evidence to support this conclusion was provided by exposing mice to CPZ together with another Cu chelator with a higher affinity for the metal (Fig. 2). Rather than exacerbating pathology as would be expected if Cu depletion were the mechanism, addition of D-Pen completely abolished the toxic effects of CPZ (Fig. 4). Taken together, we interpret the findings as being consistent with a Cu(CPZ)$_2$ complex as the toxic species (Messori et al., 2007; Yamamoto & Kuwata, 2009). Having a higher affinity for Cu than CPZ, D-Pen would remove this metal from the Cu(CPZ)$_2$ complex rendering it inert. How a Cu(CPZ)$_2$ complex would exert toxicity is unclear, but one possibility may involve the complex coordination chemistry between CPZ and the metal. Notably, after binding Cu$^{2+}$, studies have suggested that this process gives rise to an unusual high-valent Cu$^{3+}$ state yielding a Cu$^{3+}$(CPZ)$_2$ complex (Messori et al., 2007; Yamamoto & Kuwata, 2009; Kundu et al., 2016). Such high oxidation states of Cu could disrupt vital metalloproteins and can participate in Fenton-type redox reactions that could be particularly damaging to lipid-rich structures such as myelin via peroxidation. Indeed, mature oligodendrocytes are highly vulnerable to oxidative stress, due to their high levels of intracellular iron and low endogenous levels of manganese superoxide dismutase, glutathione, and metallothioneins (Griot et al., 1990; Connor & Menzies, 1995; Nakajima & Suzuki, 1995; Thorburne & Juurlink, 1995; Back et al., 1998; Juurlink et al., 1998; Bernardo et al., 2003). In support, CPZ has been shown to cause lipid peroxidation and subsequent ferroptosis of oligodendrocytes after only a few days of treatment (Jhelum et al., 2020). Finally, experiments using protein-bound Cu or small-molecule mimics of protein-Cu binding sites suggest that rather than actively chelating away Cu, CPZ complexes with these molecules (Lindström and Pettersson, 1974; Taraboletti et al., 2017), indicating that its demyelinating action could be caused by toxic gain-of-function and/or the formation of unstable complexes with cuproproteins (Messori et al., 2007).

The above apparent toxic gain-of-function due to a presumed Cu$^{3+}$(CPZ)$_2$ complex resulted in distinctly different pathology compared with Cu depletion by traditional chelators. D-Pen-treated mice displayed symptoms more akin to mottled mutants (a murine genetic analogue of Menkes disease (Tümer & Möller, 2010), which also display hindlimb weakness and susceptibility to aortic rupture (Rowe et al., 1974; Lenartowicz et al., 2012). D-Pen mice likewise displayed symptoms similar to mice treated with Cu-deficient diets from birth, which also present with splaying of the hind toes and hindlimb weakness (Zucconi et al., 2007). Parallel experiments performed on DDD mice with low doses of D-Pen administered chronically (Takeda et al., 1980) yielded similar sporadic clinical symptoms (e.g., digit paralysis and aortic aneurysm). None of the above clinical features were present in CPZ-treated mice. Also, dietary D-Pen induced a very different histological pattern, showing myelin alterations in the optic
nerve and PNS, with no evidence of callosal or cerebellar injury that is typical of CPZ. Importantly, Cu supplementation completely prevented D-Pen-induced abnormalities (Fig. 3) suggesting this chelator induced toxicity by actual depletion of Cu; this was in striking contrast to CPZ whose effects could not be rescued by Cu supplementation. Finally, pathological manifestation in the D-Pen model required several weeks of administration at high doses (2% w/w), presumably reflecting a slow depletion of total body Cu, whereas 0.2% CPZ induces significant loss of oligodendrocytes within just 48 h (Jhelum et al., 2020). To date, it remains unclear whether either of these Cu chelators enters the CNS. It is possible that CPZ more efficiently enters the corpus callosum to disrupt Cu homeostasis, resulting in differing histopathology.

Cu-bound CPZ may exert toxicity directly on oligodendrocytes, however, it may also act on CNS immune cells which then secondarily trigger cytotoxicity. Microglia and astrocyte activation are early events that precede demyelination in the CPZ model (Tezuka et al., 2013), and ablation of astrocytes reduces CPZ-induced demyelination (Madadi et al., 2019). Astrocytes are key regulators of copper homeostasis in the brain by controlling the intake, storage, and export of this metal within the cell (Dringen et al., 2013). Our data are consistent with in vivo CPZ experiments showing upregulation of astrocytic copper transporter markers in the white matter, suggesting increased (rather than decreased) Cu availability in CNS tissues (Colombo et al., 2021). The protective effect of D-Pen supplementation in the CPZ diet could therefore also be interpreted as high-affinity chelation of astrocyte-derived copper. For an extensive review on the numerous potential downstream effects of CPZ:Cu toxicity, whether via direct action on oligodendrocytes or via toxification of CNS innate immune cells, we refer to Zirngibl et al., 2022.

Although the mechanisms by which CPZ:Cu complexes damage intact white matter are unknown, the reported effects of Cu on glutamate receptors, particularly Ca-permeable N-Methyl-D-Aspartate (NMDA) receptors (You et al., 2012; Huang et al., 2018), may play an important role. NMDA receptors are dysregulated in both CPZ-treated mice and in MS NAWM, particularly in the corpus callosum (Tameh et al., 2013; Luchicchi et al., 2021), implicating the potential role of glutamate excitotoxicity, to which oligodendrocytes are exquisitely sensitive (Matute et al., 2001). We have reported on a unique signaling relationship between axons and their overlying myelin which we termed the axo-myelinic synapse, wherein glutamate is released from electrically active axons to activate NMDA and AMPA receptors on the adjacent adaxonal myelin (Micu et al., 2016; Saab et al., 2016; Micu et al., 2018). Given the potent effects of Cu ions on these receptors (You et al., 2012; Huang et al., 2018), including modulation of Ca levels in myelin itself (Tsutsui et al., 2022), it is plausible that toxic CPZ:Cu complexes perturb this signaling leading to excitotoxic damage. Recent data additionally suggest that the in vivo situation may be very complex involving indirect actions of astrocytes as important players in Cu dysregulation in the intact CNS (Colombo et al., 2021).

In conclusion, the well-known effects of the demyelinating agent CPZ are not due to depletion of Cu as might be expected, but instead are consistent with generation of toxic CPZ:Cu complexes. This may have implications for our understanding of injury mechanisms in disorders of white matter such as MS where pathological changes are similar to those induced by CPZ:Cu.Abbreviations
AMP A α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
CNS central nervous system
CPZ cuprizone
Cu copper
DDD mouse deutsche maus at Denken
D-Pen D-penicillamine
EtOH ethanol
LFB Luxol fast blue
MBP myelin basic protein
MS multiple sclerosis
NAWM normal-appearing white matter
Neo neocuproine
NMDA N-methyl-D-aspartate
PBS phosphate buffered saline
PNS peripheral nervous system
SEM standard error of the mean

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Multiple Sclerosis Society of Canada, Canada Research Chairs, Canadian Institutes for Health Research

ORCID iD
Megan L. Morgan https://orcid.org/0000-0003-2329-1413

References
Ahmed, M., & Iqbal, M. S. (2016). Solid-state synthesis and characterization of copper-penicillamine complexes. Inorganic and Nano-Metal Chemistry, 47(6), 818–823. doi:10.1080/15533174.2016.1218508

Almuslehi, M. S. M., Sen, M. K., Shortland, P. J., Mahns, D. A., & Coorssen, J. R. (2020). CD8 t-cell recruitment into the central nervous system of cuprizone-fed mice: Relevance to modeling the etiology of multiple sclerosis. Frontiers in Cellular Neuroscience, 14, 43. doi:10.3389/fncel.2020.00043

Back, S. A., Gan, X., Li, Y., Rosenburg, P. A., & Volpe, J. J. (1998). Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. The Journal of Neuroscience, 18(16), 6241–6253. doi:10.1523/JNEUROSCI.18-16-06241.1998

Bernardo, A., Greco, A., Levi, G., & Minghetti, L. (2003). Differential lipid peroxidation, Mn superoxide, and bel-2 expression contribute to the maturation-dependent vulnerability of oligodendrocytes to oxidative stress. Journal of Neuropathology & Experimental Neurology, 62(5), 509–519. doi:10.1093/jnen/62.5.509

Birker, P. J. M. W., & Freeman, H. C. (1977). Structure, properties, and function of a copper(I)-copper(II) complex of d-penicillamine: Pentahalium(I) μ8-chloro-dodeca(d-penicillaminate)-octacuprate(I) hexacuprate(II) n-hydrate. Journal of the American Chemical Society, 99(21), 6890–6899. doi:10.1021/ja00463a019

Blakemore, W. F. (1972). Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice. Journal of Neurocytology, 1(4), 413–426. doi:10.1007/BF01102943

Caprariello, A. V., Rogers, J. A., Morgan, M. L., Hoghooghi, V., Pleemel, J. R., Koebel, A., Tsutsui, S., Dunn, J. F., Kotra, L. P., Ousman, S. S., Yong, V. W., & Stys, P. K. (2018). Biochemically altered myelin triggers autoimmune demyelination. Proceedings of the National Academy of Sciences, 115(21), 5528–5533. doi:10.1073/pnas.1721115115

Carlton, W. W. (1966). Response of mice to the chelating agents sodium diethyldithiocarbamate, α-benzoinoxime, and bicslyc- hexanone oxalidihydrazone. Toxicology and Applied Pharmacology, 8(3), 512–521. doi:10.1016/0041-008X(66)90062-7

Carlton, W. W. (1967). Studies on the induction of hydrocephalus and spongy degeneration by cuprizone feeding and attempts to antidote the toxicity. Life Sciences, 6(1), 11–19. doi:10.1016/0024-3205(67)90356-6

Colombo, E., Triolo, D., Bassani, C., & Farina, C. (2021). Dysregulated copper transport in multiple sclerosis may cause demyelination via astrocytes. Proceedings of the National Academy of Sciences, 118(27), e2025804118. doi:10.1073/pnas.2025804118

Connor, J. R., & Menzies, S. L. (1995). Cellular management of iron in the brain. Journal of the Neurological Sciences, 134(Supplement), 33–44. doi:10.1016/0022-510X(95)00206-H

Dringen, R., Scheiber, I. F., & Mercer, J. F. B. (2013). Copper metabolism of astrocytes. Frontiers in Aging Neuroscience, 5, 9. doi:10.3389/fnagi.2013.00009

Gahler, A. R. (1954). Colorimetric determination of copper with neo- cuproine. Analytical Chemistry, 26(3), 577–579. doi:10.1021/ ac60087a052

Gergely, A., & Sovágó, I. (1978). Complexes of sulfur-containing ligands. I. Factors in influencing complex formation between d-pen- cillamine and copper(II) ion. Bioinorganic Chemistry, 9(1), 47– 60. doi:10.1016/S0006-3061(00)82005-0

Griot, C., Vanendevelde, M., Richard, A., Peterhans, E., & Stocker, R. (1990). Selective degeneration of oligodendrocytes mediated by reactive oxygen species. Free Radical Research Communications, 11(4–5), 181–193. doi:10.3109/107157690009088915

Gudi, V., Moharregh-Khiabani, D., Skripuletz, T., Koutsoudaki, P. N., Kotisiari, A., Skuljce, J., Trebst, C., & Stangel, M. (2009). Regional differences between grey and white matter in cuprizone induced demyelination. Brain Research, 1283, 127–138. doi:10.1016/j.brainres.2009.06.005

Guyenet, S. J., Furrer, S. A., Damian, V. M., Baughan, T. D., La Spada, A. R., & Garden, G. A. (2010). A simple composite phenotype scoring system for evaluating mouse models of cerebellar ataxia. JoVE, 39, 1787. doi: 10.3791/1787

Hiremath, M. M., Saito, Y., Knapp, G. W., Ting, J. P.-Y., Suzuki, K., & Matsushima, G. K. (1998). Microglial/macrophage accumulation during cuprizone-induced demyelination in C57BL/6 mice.
Lindström, A., & Pettersson, G. W. (1974). The mechanism of inhibition of pig-plasma benzylamine oxidase by the copper-chelating reagent cuprizone. European Journal of Biochemistry, 48(1), 229–236. doi:10.1111/j.1432-1033.1974.tb03760.x

Luchicchi, A., Hart, B., Frigerio, I., van Dam, A.-M., Perna, L., Offerhaus, H. L., Stys, P. K., Schenk, G. J., & Geurts, J. J. G. (2021). Axon-myelin unit blistering as early event in MS normal appearing white matter. Annals of Neurology, 89(4), 711–725. doi:10.1002/ana.26014

Madadi, S., Pasbakhsh, P., Tahmasebi, F., Mortezaee, K., Khanelzad, M., Boroujeni, F. B., Noorzehi, G., & Kashani, I. R. (2019). Astrocyte ablation induced by La-aminoadipate (L-AAA) potentiates remyelination in a cuprizone demyelinating mouse model. Metabolic Brain Disease, 34(2), 593–603. doi:10.1007/s11011-019-0385-9

Matsushima, G. K., & Morell, P. (2001). The Neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathology, 11(1), 107–116. doi:10.1111/j.1750-3639.2001.tb00385.x

Matsui, K., Alberda, E., Domercq, M., Pérez-Cerdá, F., Pérez-Samartín, A., & Sánchez-Gómez, M. A. (2001). The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends in Neurosciences, 24(4), 224–230. doi:10.1016/S0165-5728(01)00174-6

Messori, L., Casini, A., Gabbanini, C., Sorace, L., Muniz-Miranda, M., & Zatta, P. (2007). Unravelling the chemical nature of copper cuprizone. Dalton Transactions, 21(21), 2112–2114. doi:10.1039/b701896g

Micu, I., Plemel, J. R., Capriariello, A. V., Nave, K. A., & Stys, P. K. (2018). Axo-myelin neurotransmission: A novel mode of cell signalling in the central nervous system. Nature Reviews Neuroscience, 19(1), 49–58. doi:10.1038/nrn.2017.128

Micu, I., Plemel, J. R., Lachance, C., Profit, J., Jansen, A. J., Cummins, K., van Minnen, J., & Stys, P. K. (2016). The molecular physiology of the axo-myelin synapse. Experimental Neurology, 276, 41–50. doi:10.1016/j.expneurol.2015.10.006

Moldovan, N., Al-Ebraheem, A., Lobo, L., Park, R., Farquharson, M. J., & Bock, N. A. (2015). Altered transition metal homeostasis in the cuprizone model of demyelination. Neurotoxicology, 48, 1–8. doi:10.1016/j.neuro.2015.02.009

Nakajima, K., & Suzuki, K. (1995). Immunoochemical detection of metallothionein in brain. Neurochemistry International, 27(1), 73–87. doi:10.1016/0197-0186(94)00169-U

Narayan, S. K., & Kaveer, N. (2006). CNS Demyelination due to hypocupremia in Wilson’s disease from overzealous treatment. Neurology India, 54(1), 110–111. doi:10.4103/0008-2886.25146

Nilsson, G. (1950). A new colour reaction on copper and certain carbonyl compounds. Acta Chemica Scandinavica, 4, 205. doi:10.3891/acta.chem.scand.04-0205

Nymayo, S., Schweiger, F., Kipp, M., & Hochstrasser, T. (2017). Cuprizone as a model of myelin and axonal damage. Drug Discovery Today, Disease Models, 25-26: 63–68. doi:10.1016/j.ddmod.2018.09.003

Özyürek, M., Güçli, K., & Apak, R. (2011). The main and modified CUPRAC methods of antioxidant measurement. TrAC Trends in Analytical Chemistry, 30(4), 652–664. doi:10.1016/j.trac.2010.11.016

Peterson, R. E., & Bollier, M. E. (1955). Spectrophotometric Determination of Serum Copper with Biscyclohexanon oxalylhydrazide. Analytical Chemistry, 27(7), 1195–1197. doi:10.1021/ac60103a054

Pott, F., Gingele, S., Clarner, T., Dang, J., Baumgartner, W., Beyer, C., & Kipp, M. (2009). Cuprizone effect on myelination,
astrogliosis and microglia attraction in the basal ganglia.

Brain Research, 1305, 137–149. doi:10.1016/j.brainres.2009.09.084

Prata, J., Guglielmetti, C., Berneman, Z., Van der Linden, A., & Ponsaerts, P. (2014). Cellular and molecular neuropathology of the cuprizone mouse model: Clinical relevance for multiple sclerosis. Neuroscience & Biobehavioral Reviews, 47, 485–505. doi:10.1016/j.neubiorev.2014.10.004

Prodan, C. L., Holland, N. R., Wisdom, P. J., Burstein, S. A., & Bottomley, S. S. (2002). CNS Demyelination associated with copper deficiency and hyperzincemia. Neurology, 59(9), 1453–1456. doi:10.1212/01.WNL.0000032497.30439.F6

Prohaska, J. R. (1991). Changes in cu, zn-superoxide dismutase, cytochrome c oxidase, glutathione peroxidase and glutathione transferase activities in copper-deficient mice and rats. The Journal of Nutrition, 121(3), 355–363. doi:10.1093/jn/121.3.355

Prohaska, J. R., & Brokate, B. (2002). The timing of perinatal copper deficiency in mice influences offspring survival. The Journal of Nutrition, 132(10), 3142–3145. doi:10.1093/jn/131.10.3142

Rohde, R. K. (1966). Spectrophotometric determination of copper in lead, tin, aluminum, zinc, and their alloys with bis-cyclohexanone oxalylhydrazone. Analytical Chemistry, 38(7), 911–913. doi:10.1021/ac02390a29

Rowe, D. W., McGooindin, E. B., Martin, G. R., Sussman, M. D., Grahan, D., Faris, B., & Franzblau, C. (1974). A sex-linked defect in the cross-linking of collagen and elastin associated with the mottled locus in mice. Journal of Experimental Medicine, 139(1), 180–192. doi:10.1084/jem.139.1.180

Saab, A. S., Tzvetavana, I. D., Trevisiol, A., Baltan, S., Dibaj, P., Kusch, K., Möbius, W., Goetei, B., Jahn, H. M., Huang, W., Steffens, H., Schomburg, D., Pérez-Samartín, A., Pérez-Cerdá, F., Bakhtiar, D., Mute, C., Löwel, S., Griesinger, C., Hirrlinger, J., & Nave, K. A. (2016). Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron, 91(1), 119–132. doi:10.1016/j.neuron.2016.05.016

Scheld, M., Rüther, B. J., Große-Veldmann, R., Ohi, K., Tenbrock, K., Dreymüller, D., Fallier-Becker, P., Zendedel, A., Beyer, C., Clamer, T., & Kipp, M. (2016). Neurodegeneration triggers peripheral immune cell recruitment into the forebrain. Journal of Neuroscience, 36(4), 1410–1415. doi:10.1523/JNEUROSCI.2456-15.2016

Takeda, T., Yao, C.-S., Irimo, M., Tashiro, S.-I., & Yasuhira, K. (1980). D-Penicillamine toxicity in mice I. Pathological findings. Toxicology and Applied Pharmacology, 55(2), 324–333. doi:10.1016/0041-008X(80)90094-0

Tameh, A. A., Clarner, T., Beyer, C., Atlasi, M. A., Hassanzadeh, G., & Naderian, H. (2013). Regional regulation of glutamate signaling during cuprizine-induced demyelination in the brain. Annals of Anatomy - Anatomischer Anzeiger, 195(5), 415–423. doi:10.1016/j.aanat.2013.03.004

Tarabolletti, A., Walker, T., Avila, R., Huang, H., Caporoso, J., Manandhar, E., Leeper, T. C., Modarelli, D. A., Mediccy, S., & Shrivel, L. P. (2017). Cuprizone intoxication induces cell intrinsic alterations in oligodendrocyte metabolism independent of copper chelation. Biochemistry, 56(10), 1518–1528. doi:10.1021/acs.biochem.6b01072

Tezuka, T., Tamura, M., Kondo, M. A., Sakauke, M., Okada, K., Takemoto, K., Fukunari, A., Miwa, K., Ohzeki, H., Kano, S., Yasumatsu, H., Sawa, A., & Kajii, Y. (2013). Cuprizone short-term exposure: Astrocytic IL-6 activation and behavioral changes relevant to psychosis. Neurobiology of Disease, 59, 63–68. doi:10.1016/j.nbd.2013.07.003

Thorburn, S. K., & Juurlink, B. H. (1995). Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. Journal of Neurochemistry, 67(3), 1014–1022. doi:10.1046/j.1471-4159.1996.67031014.x

Tsutsui, S., Morgan, M., Telford, H., You, H., Zamponi, G. W., & Stys, P. K. (2022). Copper ions, prion protein and Aβ modulate Ca levels in central nervous system myelin in an NMDA receptor-dependent manner. Molecular Brain, 15(1), 67. doi:10.1186/s13041-022-00955-2

Tümer, Z., & Moller, L. B. (2010). Menkes disease. European Journal of Human Genetics, 18(5), 511–518. doi:10.1038/ejhg.2009.187

Venturini, G. (1973). Enzymic activities and sodium, potassium and copper concentrations in mouse brain and liver after cuprizone treatment in vivo. Journal of Neurochemistry, 21(5), 1147–1151. doi:10.1111/j.1471-4159.1973.tb07569.x

Walshe, J. M. (1956). Penicillamine, a new oral therapy for Wilson’s disease. The American Journal of Medicine, 21(4), 487–495. doi:10.1016/S0002-9343(56)90066-3

Wetlesen, C. U. (1957). Rapid spectrophotometric determination of copper in iron, steel and ferrous alloys. Analytica Chimica Acta, 16, 268–270. doi:10.1016/S0003-2670(00)89928-6

Yamamoto, N., & Kuwata, K. (2009). DFT Studies on redox properties of copper-chelating cuprizone: Unusually high-valent copper(III) state. Journal of Molecular Structure: THEOCHEM, 895(1-3), 52–56. doi:10.1016/j.theochem.2008.10.018

Yang, L., Tan, D., & Piao, H. (2016). Myelin basic protein citrullination in multiple sclerosis: A potential therapeutic target for the pathology. Neurochemical Research, 41(8), 1845–1856. doi:10.1007/s11064-016-1920-2

You, H., Tsutsui, S., Hameed, S., Kannanayakal, T. J., Chen, L., Xia, P., Engbers, J. D., Lipton, S. A., Stys, P. K., & Zamponi, G. W. (2012). Aβ neurototoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors. Proceedings of the National Academy of Sciences, 109(5), 1737–1742. doi:10.1073/pnas.110789109

Zatta, P., Raso, M., Zambenedetti, P., Wittkowski, W., Messori, L., Piccoli, F., Mauri, P. L., & Beltramini, M. (2005). Copper and zinc dismetabolism in the mouse brain upon chronic cuprizone treatment. Cellular and Molecular Life Sciences, 62(13), 1502–1513. doi:10.1007/s00018-005-5073-8

Zimagb, I., Assinck, P., Sizov, A., Caprariello, A. V., & Plemel, J. R. (2022). Oligodendrocyte death and myelin loss in the cuprizone model: An updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Molecular Neurodegeneration, 17(1), 34. doi:10.1186/s13204-022-00538-8

Zucconi, G. G., Cipriani, S., Scattoni, R., Balgkouranidou, L., Hawkins, D. P., & Ragnarsdottir, K. V. (2007). Copper deficiency elicits glial and neuronal response typical of neurodegenerative disorders. Neuropathology and Applied Neurobiology, 33(1), 212–225. doi:10.1111/j.1365-2990.2006.00793.x