Filamentous fungi represent a rich and diverse source of bioactive compounds derived from secondary metabolism. Indeed, many positive and negative effects that fungi have on human activity are mediated by secondary metabolites such as antibiotics, siderophores, and mycotoxins. However, many secondary metabolites as well as the enzymes involved in their production are yet to be discovered. Both PKSs and NRPSs require activation by enzyme members of the 4'-phosphopantetheinyl transferase (PPTase) family. Here, we report the isolation and characterization of Aspergillus nidulans strains carrying conditional (\(cwfA2\)) and null (\(\Delta cwfA\)) mutant alleles of the \(cwfA\) gene, encoding an essential PPTase. We identify the polyketides shamixanthone, emericellin, and dehydroaustinol as well as the sterols ergosterol, peroxiergosterol, and cerevisterol in extracts from \(A.\) nidulans large-scale cultures. The PPTase CfwA/NpgA was required for the production of these polyketide compounds but dispensable for ergosterol and cerevisterol and for fatty acid biosynthesis. The asexual sporulation defects of \(cwfA, \Delta flug,\) and \(\Delta tmpA\) mutants were not rescued by the \(cwfA\)-dependent compounds identified here. However, a \(cwfA2\) mutation enhanced the sporulation defects of both \(\Delta tmpA\) and \(\Delta flug\) single mutants, suggesting that unidentified \(cwfA\)-dependent PKSs and/or NRPSs are involved in the production of hitherto-unknown compounds required for sporulation. Our results expand the number of known and predicted secondary metabolites requiring CfwA/NpgA for their biosynthesis and, together with the phylogenetic analysis of fungal PPTases, suggest that a single PPTase is responsible for the activation of all PKSs and NRPSs in \(A.\) nidulans.

Shikimate is a precursor of aromatic compounds, while diverse peptides are derived from amino acids (30, 56).

Most polyketide and peptide secondary metabolites are produced by complex enzymes called polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs), respectively (15, 29). Although there are many different types of PKSs and NRPSs, they all require a posttranslational modification to become active and therefore share a common point of regulation. This modification consists of the covalent attachment of the 4'-phosphopantetheine moiety of coenzyme A to a serine conserved in all acyl carrier and peptidyl carrier domains present in PKSs and NRPSs, respectively. This enzymatic activation is carried out by members of the 4'-phosphopantetheinyl transferase (PPTase) family (19, 34, 47, 63).

Three major groups of PPTases have been defined according to their primary sequences and substrate specificities. The first group includes small (120 to 140 amino acids) bacterial AcpS-type PPTases showing narrow protein substrate specificity usually associated with primary metabolism. A second group contains eukaryotic PPTases that are integral domains of type I fatty acid synthases. The third class consists of the Sfp-type PPTases, about twice the molecular mass of AcpS-type enzymes, which show broader substrate preferences and have been associated with secondary metabolism in bacteria (34,
Three PPTases in *Saccharomyces cerevisiae* and *Candida albicans* have been characterized. While one enzyme is part of a cytoplasmic fatty acid synthase, a second one is related to a mitochondrial acyl carrier protein. A third PPTase is essential for a cytoplasmic fatty acid synthase, a second one is related to a cytoplasmic fatty acid synthase, and a third one is essential for activating the enzyme. **PPTase CfwA/NpgA IN SECONDARY METABOLISM**

The fungus *Aspergillus nidulans* has been established as a model system to study different aspects of eukaryotic biology, including development and secondary metabolism (1, 9, 30, 36, 52, 57, 66). *A. nidulans* is closely related to species of economical or pathological importance, e.g., *Aspergillus niger*, *Aspergillus oryzae*, *Aspergillus terreus*, and *Aspergillus fumigatus* (18). In addition, pathways involved in the production of pigments (17, 40), penicillin, and the mycotoxin sterigmatocystin (ST), the immediate precursor of aflatoxins, have been well studied in this fungus (24, 30, 66). Notably, it has been shown that asexual development (conidiation) is linked to secondary metabolism, as FadA, the α-subunit of a heterotrimeric G protein, negatively regulates conidiation and ST biosynthesis (24).

Based on the genome sequence, it has been estimated that *A. nidulans* contains 27 PKSs and 14 NRPSs (18, 30), but the results of null mutants in either gene can be rescued by growing them in the presence of compounds that normally repress this process, and the conidiation defects of null mutants in either gene can be rescued by growing them next to wild-type or other developmental mutants. This has led to the proposal that both genes are required for the production of different extracellular sporulation-inducing compounds (37, 38, 50, 52).

Based on the genome sequence, it has been estimated that *A. nidulans* contains 27 PKSs and 14 NRPSs (18, 30), but the functions and products of most of these enzymes are still unknown. It has been reported that *cfwA* partial-function mutants are impaired in the biosynthesis of the PKS product sterigmatocystin (21), the NRPS products penicillin (31) and siderophores, as well as the amino acid lysine (44). *cfwA* is an allele (31; this work) of the *npgA* gene (23, 32), which has been shown to encode a PPTase (42).

Here, we report the isolation of the conditional *cfwA2* mutant and the generation of complete-lack-of-function (Δ*cfwA*) mutants. We use these mutants, together with a detailed chemical analysis, to demonstrate that the *A. nidulans* PPTase CfwA/NpgA is involved in a wide spectrum of processes, including the production of the metabolites shamixantone and dehydroaustinol, not reported previously for this fungus. Our results demonstrate a novel role of this PPTase in the regulation of asexual reproduction and suggest that all PKSs and NRPSs are activated by a single PPTase in *A. nidulans* and probably also in other fungi. Furthermore, our analysis suggests that a similar mutant approach can be used as a novel and powerful tool to study the roles of secondary metabolism in fungi of medical, agricultural, or biotechnological importance.

MATERIALS AND METHODS

cfwA2 cloning and sequencing and cfwA deletion. Primers *cfwA1* (CTCTCCA CAGCGCTTACCC) and *cfwA2* (TCAATGCAATCAGTTCGC) were used to amplify a 1,146-bp *cfwA/cnf4* PCR fragment using genomic DNA from wild-type FGS26 or *cfwA* CRO1 mutant strains as a template. The PCR products include the entire *cfwA/cnf4* open reading frame and were cloned into plasmid pCR2.1-TOPO (Invitrogen, Carlsbad, CA). Two independent clones from each template were sequenced by automatic fluorescence dideoxy sequencing using an ABI Prism 3100 sequencer from Perkin-Elmer (Wellesley, MA). To delete the *cfwA* gene, a replacement construct was generated by double-gateway PCR (65) using genomic DNA as a template. First, a 1,516-bp 5′ *cfwA* fragment was amplified with primers 1cfwA (GCGGGTTAGCCGAGCATACG) and 2cfwA (ATTTATTTCCGTTATGCAAAACGGCCAGTACCTAAGGA AATGTGAAG) and, second, a 1,703-bp 3′ *cfwA* fragment was amplified with primers 3cfwA (GTGATACATCTGAAGCTGTCGAGCCAAGATAG ACGTGTAAGC) and 4cfwA (AACAAAAAGATCCAAGACC TG). Third, the *A. fumigatus* template was digested with *BamHI* and *KpnI* and ligated into pBluescript SK(-), which was amplified as a 1,943-bp fragment with primers *fub* (CTGGCTGCTTGGATACATCG) and *fub* (CCGGTG CAGAACCCTTACG). Using plasmid pAfrib0 (pSTElk(sp)sp1) as a template, these three PCR fragments were purified, mixed, and subjected to fusion PCR with nested primers 7dwcfA (GTTCACCGCGAAAATACGGCC) and 8dwcfA (CATTGCTTACGCTTACGGG). The final 4,604-bp *cfwA* fragment was cut out of the resulting product and ligated into pBluescript SK(-) to generate a *cfwA* deletion cassette.

Strains, media, and growth conditions. The *A. nidulans* strains used in this work are listed in Table 1. All strains were grown in glucose minimal nitrate medium (25) plus supplements. To prepare siderophore-containing medium, 1 liter of minimal medium was autoclaved. The presence of siderophores was confirmed by the chrome azurol S liquid assay (45). Pure siderophore triacyltetrasaric acid (ECM Microllectons, Tubingen, Germany) was used in some experiments. Massive solid cultures of strains CLS2 (26) and CLS12 (42) were carried out using polyurethane foam (PUF) cubes of 0.5 cm per side, which were prepared and sterilized as reported previously (11). A total of 25 to 50 mL of supplemented liquid medium with 5% glucose was inoculated with 10⁴ spores per mL and used to saturate 1 to 2 g of PUF in 250- to 500-mL flasks. These cultures were incubated for 10 days at 32 to 34°C. Flasks containing the same medium and support but without spores were monitored as contamination controls. Samples from these cultures were examined under a microscope every 24 h to monitor growth, development, and lack of microbial contamination.

Extraction of secondary metabolites. After the indicated incubation times, the cultures (PUF plus mycelia plus fermentation broth) were collected in a single container and inoculated with ethyl acetate for 1 month. After this, the liquid phase was separated from the fungal biomass and PUF by vacuum filtration using Whatman paper (Whatman Inc., NJ). The aqueous and solvent phases were separated by solubility difference, and the solvent was evaporated under reduced pressure. The aqueous phase was reextracted with ethyl acetate three times, and extracts were pooled. The extracts were analyzed by thin-layer chromatography (TLC) on silica gel plates (Merck 60 GF₂₅₄, 0.25-mm thickness) using different mixtures of n-hexane-ethyl acetate.

Isolation and identification of secondary metabolites. The composite extracts of cultures from each strain were subjected to column chromatography using silica gel (Kieselgel 60, particle size of 0.063 to 0.200 mm, 0.040 to 0.063 mm, and 0.2 to 0.5 mm; Merck) as the stationary phase and eluted with n-hexane and n-hexane-ethyl acetate in a polarity gradient. The isolated compounds were purified by column chromatography and recrystallized with organic solvents. From the CLS12 extract, elution with hexane-ethyl acetate (95:5, 8:2, 7:3, and 5:5) yielded compounds 3 (52 mg) and 6 (6 mg). Nuclear magnetic resonance (NMR) spectroscopic data and comparison with authentic samples (58, 59) identified compounds 3, 4, and 5. From the CLS2 extract, elution with hexane-ethyl acetate (8:2 and 5:5) yielded compounds 3 (52 mg) and 6 (6 mg). Nuclear magnetic resonance (NMR) spectroscopic data and comparison with authentic samples (58, 59) identified compounds 3, 4, and 6 as being ergosterol, ergosterol peroxide, and ceresterol, respectively.

Melt-pot analysis was carried out with a Fisher-Johns apparatus, and data were not corrected. 1⁴H and 1³C NMR spectroscopic experiments were recorded using a Bruker DMX-500 spectrometer with deuterated chloroform and tetra-
methylene as an internal reference. The mass spectra were determined with a Jeol-102 spectrometer; the X-ray spectra for shamixanthone and dehydroaustinol were obtained with a Bruker Smart Apex charge-coupled-device diffractometer.

Isolation of shamixanthone (compound 1) from CLS12. Eighteen milligrams of a yellow compound was obtained from the fractions eluted with hexane-ethyl acetate (95:5). TLC plates (hexane-ethyl acetate [9:1]; silica gel [Merck]; Rf of 0.35) were revealed with UV light at 254 nm and iodine steam. 1H NMR (500 MHz, CDCl₃) δ ppm: 7.44 (1H, d, J = 4.0 Hz, H-6); 7.29 (1H, s, H-4); 6.74 (1H, d, J = 4.0 Hz, H-7); 5.41 (1H, t, J = 3.1 and 1.13 Hz, H-20); 5.31 (1H, t, J = 7.38 Hz, H-16); 5.05 (1H, d, J = 3.4 Hz, H-O-Ar); 4.80 (1H, t, J = 1.4 and 7 Hz, H-13a); 4.59 (1H, d, J = 0.7 Hz, H-13b); 4.42 (1H, dd, J = 0.8, 3.3 and 1.3 Hz, H-10a); 4.35 (1H, dd, J = 10.8 and 3.0 Hz, H-10b); 3.50 (2H, t, J = 6.6 and 3.3 Hz, H-15); 2.73 (1H, d, J = 3.3 Hz, H-11); 2.35 (3H, s, H-21); 1.84 (3H, s, H-14); 1.70 (3H, s, H-19); 1.75 (3H, s, H-18); 1.30 (3H, s, H-22); 1.15 (3H, s, H-23); 0.90 (3H, s, H-24); 0.79 (3H, s, H-25). 13C NMR (500 MHz, CDCl₃) δ ppm: 184.5 (C-9); 159.7 (C-8); 153.5 (C-4a); 152.3 (C-5a); 149.5 (C-2); 145.0 (C-12); 142.6 (C-3); 134.0 (C-17); 136.6 (C-6); 133.5 (C-1); 121.7 (C-17); 119.3 (C-4); 118.8 (C-5a); 117.0 (C-1a); 112.3 (C-13); 109.7 (C-7); 108.1 (C-5d); 64.6 (C-10); 63.3 (C-20); 45.0 (C-11); 27.5 (C-15); 25.8 (C-18); 22.6 (C-14); 17.8 (C-19); 17.4 (C-21).

Isolation of emericillin (compound 2) from CLS12. Twenty-six milligrams of a yellow compound was obtained from fractions eluted with hexane-ethyl acetate (95:5). TLC plates (hexane-ethyl acetate [9:1]; silica gel [Merck]; Rf of 0.29) were revealed with UV light at 254 nm and iodine steam. 1H NMR (500 MHz, CDCl₃) δ ppm: 7.47 (1H, s, H-O-Ar); 7.46 (1H, d, J = 8.5 Hz, H-6); 7.34 (1H, s, H-4); 6.75 (1H, d, J = 8.5 Hz, H-7); 5.63 (1H, m, J = 7.3, 4.5 and 1.0 Hz, H-15); 5.31 (1H, m, J = 7.5, 4.5 and 1.5 Hz, H-16); 5.10 (2H, d, J = 8.0 Hz, H-20); 4.48 (1H, t, J = 8.0 Hz, H-O-R); 4.46 (2H, d, J = 7.5 Hz, H-10); 3.51 (2H, d, J = 7.5 Hz, H-15); 2.48 (3H, s, H-21); 1.82 (3H, s, H-14); 1.80 (3H, s, H-13); 1.78 (3H, s, H-19); 1.74 (3H, s, H-18). 13C NMR (500 MHz, CDCl₃) δ ppm: 185.0 (C-9); 159.8 (C-8); 153.8 (C-4); 152.8 (C-2); 152.5 (C-5); 142.5 (C-3); 138.9 (C-12); 136.8 (C-6); 134.1 (C-1); 133.1 (C-17); 121.5 (C-16); 119.3 (C-4); 117.8 (C-17); 109.8 (C-6); 108.7 (C-10); 59.6 (C-20); 27.3 (C-15); 25.7 (C-14); 25.6 (C-19); 17.9 (C-2); 17.7 (C-13); 17.6 (C-21).

Isolation of dehydroaustinol (compound 5) from CLS12. Fifty-two milligrams of a colorless crystalline compound was obtained from the fractions eluted with hexane-ethyl acetate (7:3). TLC plates (hexane-ethyl acetate [7:3]; silica gel [Merck]; Rf of 0.23) were revealed with iodine steam. 1H NMR (500 MHz, CDCl₃) δ ppm: 6.90 (1H, d, J = 2 Hz, H-1); 6.33 (1H, s, H-3a); 5.91 (1H, d, J = 10.2 Hz, H-2); 5.84 (1H, s, H-1a); 5.76 (1H, s, H-1b); 5.67 (1H, s, H-1b); 5.27 (1H, q, J = 6.8 Hz, H-5); 4.37 (1H, d, J = 4.0 Hz, H-11); 2.30 (1H, d, J = 4.0 Hz, −OH); 2.10 (1H, td, J = 4.6, 13 and 27.7 Hz, H-7a); 1.78 (1H, td, J = 4.6, 13 and 27.7 Hz, H-6b); 1.72 (1H, c, H-6a); 1.71 (3H, s, H-7); 1.65 (3H, d, J = 6.8 Hz, H-10'); 1.53 (3H, s, H-14); 1.51 (3H, s, H-15); 1.34 (1H, dt, J = 3 and 13 Hz, H-7b); 1.27 (3H, s, H-12); 1.13 C NMR (500 MHz, CDCl₃) δ ppm: 169.0 (C-4'); 167.2 (C-8'); 163.5 (C-3); 140.9 (C-10); 137.4 (C-2'); 124.3 (C-13); 116.2 (C-2); 114.5 (C-1'); 90.1 (C-9); 86.4 (C-4); 84.9 (C-6); 83.5 (C-3'); 76.1 (C-7'); 75.0 (C-11); 64.0 (C-7'); 50.1 (C-8); 44.3 (C-5); 26.9 (C-6); 26.5 (C-7); 25.7 (C-14); 23.7 (C-15); 19.8 (C-9'); 16.7 (C-10').

Bioassays. Emericillan, shamixanthone, and dehydroaustinol purified from strain CLS12 were tested for their ability to remediate the developmental defects of mutant strains cfw12, nkg1, and tmp6. These compounds, as well as total crude extracts, were dissolved in ethyl acetate, and a volume equivalent to 4 mg was dripped on a sterile filter paper disc. Discs with compounds were placed ~1 cm from the border of colonies pregrown for 48 h. Colonies were observed after 24, 48, and 72 h of incubation with the different compounds.

RESULTS

cfw1, cfw12, and nkg1 are gene alleles encoding an essential PPTase. UV light mutagenesis experiments aimed at isolating developmental mutants allowed us to obtain a temperature-sensitive mutant that was unable to grow at 42°C and that showed developmental defects at lower temperatures. Between 32 and 37°C, this mutant showed a delay in conidiophore development characterized by the proliferation of aerial hyphae and a cotton-like or "fluffy" morphology to finally develop conidiophores with wild-type morphology but lacking the conidiospore pigment. In contrast, a nearly wild-type phenotype was observed at 25°C. Notably, contiguous wild-type or other developmental mutant colonies were able to suppress both the conidiation and pigmentation defects at 37°C, sug-
gesting “cross feeding” of conidiation-inducing and pigment precursor compounds (Fig. 1). Genetic mapping and diploid complementation tests between our mutant and a cfwA1 mutant unable to grow on its own, isolated by John Clutterbuck (University of Glasgow), confirmed cfwA (cross-feedable white) as a gene located on chromosome I closely linked to pyroB. A third white conidiospore mutant allowed the identification and cloning of npgA (null pigmentation) as a gene encoding a putative PPTase needed for conidiospore pigmentation (23, 32). Our diploid complementation tests between cfwA2 and npgA1 mutants indicated that cfwA and npgA corresponded to the same gene. To confirm this, we amplified and sequenced the cfwA/npgA gene from wild-type and cfwA2 strains. Analysis of the cfwA2 sequence showed a single nucleotide change in which the wild-type leucine (L) 217 codon CTC was replaced by the arginine (R) codon CGC. This has been confirmed independently, but it was incorrectly stated that CfwA/NpgA was essential for growth. To test this further, we generated a complete lack-of-function allele by deleting the entire cfwA open reading frame. A cfwA replacement construct, with A. fumigatus riboB as a genetic marker, was generated by double-joint PCR (65) and used to transform an A. nidulans ΔkuA strain in which virtually all DNA integration events occur by homologous recombination (43). Transformed protoplasts were plated onto minimal medium supplemented with lysine and conditioned medium containing siderophores, as we anticipated that CfwA activity could be required for lysine (12, 62) and siderophore (13) biosynthesis. Two Ribo+ transformants were obtained, which grew as visible heterokaryons with green and white sectors. Although white sectors colonized very poorly and only after several days, pure white colonies were isolated from these two transformants by single-spore colony isolation. Deletion of the cfwA gene in transformants TJRΔcfwA1 and TJRΔcfwA2 was confirmed by diagnostic PCR (Fig. 2A and B) and Southern blot analysis (not shown). The same gene disruption strategy using kuA+ strain AN770 yielded additional mutants with similar white, cotton-like appearances that were not further analyzed. As shown in Fig. 2C, deletion of cfwA resulted in an absolute requirement for both lysine and siderophores such as triacetylfusarinine C. Oberegger et al. (44) reported previously that lysine and triacetylfusarinine C supplementation restored the growth of a cfwA2 mutant at the partially restrictive temperature of 37°C. Our results with total-lack-of-function ΔcfwA mutants indicated that CfwA is not involved in additional essential functions (i.e., biosynthesis of essential fatty acids) and that the presence of lysine and siderophores did not remediate the severe sporulation defects observed in these strains. Indeed, ΔcfwA mutants showed a cotton-like “fluffy” morphology and were unable to differentiate any conidiophore structure before 3 to 4 days at 37°C, with few conidiophores bearing white conidiospores being formed between 4 and 6 days. Quantification of conidiospore number per square centimeter shows that a ΔcfwA mutant produced only 0.06% of the spores formed by cfwA+ strain 11035 after 5 days. In summary, these results indicate that the PPTase CfwA/NpgA is not only essential for lysine and siderophore biosynthesis but also needed for asexual development.

CfwA/NpgA is a member of a single-domain large-type PPTase family. A BLAST search analysis of the A. nidulans genome (18) showed that in addition to CfwA/NpgA, this fungus contains four other putative PPTases. Three PPTases are integral domains of the fatty acid synthase α-subunits FasA, StcJ (5), and AN3380.2, whereas the fourth enzyme (AN7043.2) is a small-type PPTase (193 amino acids) similar to Ppt2p from yeast, which is involved in the activation of a mitochondrial fatty acid synthase (53). With sizes between 272 and 359 amino acids, CfwA/NpgA and its orthologues constitute the largest single-domain members of the PPTase superfamily (see Fig. S1 in the supplemental material).

A phylogenetic analysis based on fungal CfwA/NpgA orthologues showed that these PPTases cluster into four major
groups, one from basidiomycetes and three subgroups from ascomycetes (Fig. 3). As the clustering of the different species is coherent with phylogenies based on complete fungal genomes, it reflects the similarity between analyzed PPTases. However, the relationship between the four groups is not consistent with established phylogenies (16), perhaps due to the low overall conservation among PPTases. This analysis also indicated that all fungi with a complete genome sequence available appear to have a single cfwA/npgA orthologue. Furthermore, the leucine replaced by an arginine in A. nidulans CfwA2 is part of a region that is conserved in all large-type PPTases and is present in 14 out of 18 fungal PPTases analyzed, except for the proteins from the ascomycetes Schizosaccharomyces pombe (cysteine) and Kluveromyces lactis (methionine) and the basidiomycetes Ustilago maydis (tyrosine) and Cryptococcus neoformans (valine). This leucine, invariant in all filamentous ascomycetes analyzed (see Fig. S1 in the supplemental material), is next to a positively charged amino acid (lysine or arginine) that also appears to be invariant in all PPTases but whose function is unknown (47).

Secondary metabolites produced during development in solid-phase fermentation. The failure of cfwA2 mutants to produce conidiospore pigments and the mycotoxin sterigmatocystin (21) suggested that CfwA/NpgA PPTase was needed to activate polyketide synthases WA (17, 40) and StcA (6), which are required to produce these conidiation-associated secondary metabolites. Results in Fig. 1 show that mutants lacking WA activity (wA3) or unable to develop conidiophores (brlA1) and to express wA (40) were still capable of suppressing both the conidiation and pigmentation defects of cfwA2 partial-loss-of-function mutants. These results suggested that the PPTase CfwA/NpgA was required for the production of other metabolites, whose production was independent of WA and BrlA activities.

We grew large-scale cultures from cfwA+ (CLS12) and cfwA2 (CLS2) strains to try to identify small-molecular-weight compounds related to the cross-feeding phenomenon observed in cfwA2 mutants. Since the production of conidiophore pigments and ST varies with temperature in cfwA2 mutants and we wanted to avoid the purification of such well-characterized compounds, isogenic strains CLS2 and CLS12 also carried wA3 and ΔstcE null mutations to completely block conidiospore pigment and ST production, respectively (7, 17, 40). Solid-phase fermentation on an inert support (11), rather than growth in liquid medium, was chosen because secondary metabolism and development are generally associated with growth in solid or highly aerated medium. Solid-phase fermentation also facilitated the chemical extraction procedures.

Small pieces of PUF were soaked with liquid minimal glucose medium inoculated with conidiophores from the indicated
strains and incubated at 32 to 34°C for 10 days. Microscopic observation of CLS12 samples taken every 24 h showed growing hyphae after 1 day. First, conidiophores were observed by day 2, with increasing numbers between days 3 and 4. Pink pigments, Hülle cells, and immature sexual fruit bodies (cleistothecia) were observed by day 7. Day 10 samples contained hyphae, conidiophores, conidia, Hülle cells, cleistothecia, the number of cleistothecia and cleistothecial cell wall. A similar pattern of development was observed for CLS12 samples. Aspergillus terreus (A terreus) ATEG_09695.1 were considered to be CfwA/NpgA homologues, respectively. Neurospora crassa (N crassa) EAAA36485* 346 AA.

FIG. 3. Many fungi contain a single orthologous PPTase. Indicated PPTases were aligned with ClustalW. The phylogenetic tree was generated with the distance-based unweighted-pair group method using average linkages using MacVector 7.2. Numbers at the nodes indicate percentages (58). Shamixanthone is a moderately cytotoxic molecule first isolated from Aspergillus variecolor (8) but not reported previously in A. nidulans.

The structure of compound 5 (Fig. 4) was furnished by one-dimensional and two-dimensional NMR measurements (1H, 13C, DEPT, COSY, HSQC, and HMBC) (Bruker DMSX500) and X-ray analysis (Bruker Smart Apex X-Ray Diffractometer). The 1H and 13C NMR spectra established the presence of 28 protons and 25 carbons. The gas chromatography-mass spectrometry spectrum indicated a molecular ion peak at m/z 456 [M]+, suggesting the molecular formula C25H28O8. The 1H NMR spectrum (see Table S2 in the supplemental material) showed six vinylic signals at δ 6.90 (10.2 Hz), 6.33, 5.91 (10.2 Hz), 5.84, 5.76, and 5.67, corresponding to H-1, H-13a, H-2, H-1’a, H-13b, and H-1’b, respectively. Signals corresponded to two methine protons, geminals to one lactonic ring and a hydroxyl group at δ 5.27 (multiple signal) and 4.37 (double signal, 4.0 Hz). The presence of two methylenes on compounds 6 and 7 was evident from four multiple signals at δ 2.1, 1.34, 1.78, and 1.72, corresponding to protons H-7a, H-7b, H-6b, and H-6a, respectively. One signal at δ 2.30 (exchangeable with D2O) corresponded to one hydrogen on oxygen, with this proton coupled to H-11, according to the 1H COSY experiment. Finally, four single signals at δ 1.71, 1.53, 1.51, and 1.27 and one double signal at δ 1.65 (6.8 Hz) corresponded to methyl protons H-9’, H-14, H-15, H-12, and H-10’, respectively. The presence of three lactonic groups (δ 167.2, 163.5, and 160.9), six unsaturated carbons (δ 150.9, 140.9, 135.5, 132.0, 129.1, and 127.3), and two carbonyls (δ 183.5) corresponding to two ketone groups was evident from the 13C NMR spectrum.
137.4, 124.3, 116.2, and 114.5), and one ether group (89.01 and 84.9) was confirmed by 13C NMR data. Therefore, compound 5 showed 1H and 13C NMR data (see Table S2 in the supplemental material) virtually identical to those reported previously for dehydroaustin (20), with minor differences around the hydroxile on carbon 11 (Fig. 4). We confirmed our results by C-H long-range couplings (HMBC) and X-ray crystallography. Dehydroaustinol has not been reported previously for A. nidulans.

Emericellin, shamixanthone, dehydroaustinol, and ergosterol peroxide are not detected in extracts from the cfwA2 mutant. As indicated, only compounds 3 and 6 were obtained from cfwA2 mutant strain CLS2 crude extracts, which were identified as being ergosterol and cerevisterol, respectively. Although the yield of the total extract of strain CLS2 was ~30% lower than that obtained from strain CLS12, the amount of ergosterol was ~48% higher than that in CLS12 extracts (see Table S1 in the supplemental material). We carried out TLC analysis of total ethyl acetate crude extracts from strains CLS2 and CLS12 using compounds purified from strain CLS12 as standards. The results confirmed that emericellin, shamixanthone, dehydroaustinol, and ergosterol peroxide are either absent or below the detection limit in cfwA2 mutant extracts. In contrast, TLC analysis of the apolar extracts from both strains showed similar profiles, which, along with the presence of ergosterol and cerevisterol, suggests that the biosynthesis of small-molecular-weight lipids and sterols is not affected in the cfwA2 mutant. Furthermore, we used gas chromatography-mass spectrometry to analyze fatty acid contents and found similar amounts of palmitic, stearic, oleic, and linoleic acids in both strains (not shown), a result consistent with previous studies from our laboratory (D. Schnabell et al., unpublished data). Based on these data, we conclude that the PPTase CfwA/NpgA is required for the production of emericellin, shamixanthone, dehydroaustinol, and ergosterol peroxide and dispensable for ergosterol, cerevisterol, and fatty acid biosynthesis.

Emericellin, shamixanthone, and dehydroaustinol do not suppress the sporulation or pigmentation defects of cfwA2 and other developmental mutants. As shown in Fig. 1, contiguous wild-type colonies are able to suppress the conidiation and pigmentation defects of cfwA2 mutants. As cfwA2 mutants failed to produce or accumulate emericellin, shamixanthone, and dehydroaustinol, we asked whether these compounds

![FIG. 4. Chemical structures of emericellin (compound 1), shamixanthone (compound 2), and dehydroaustinol (compound 5) purified from A. nidulans developmental cultures. The indicated compounds were purified from ethyl acetate extracts obtained from strain CLS12 incubated for 10 days under conditions of solid substrate fermentation. Chemical structures were determined from spectral data and comparisons with published structures. Spectral analysis consisted of one-dimensional and two-dimensional NMR measurements (1H, 13C, DEPT, COSY, HSQC, and HMBC) (Bruker DMX500) and X-ray analysis (see Table S2 in the supplemental material) (see Materials and Methods for details).](image-url)
could suppress cfwA2 mutant defects. In addition, we tested these compounds on developmental mutants ΔtmpA, ΔfluG, and ΔtmpA (52), as these mutants appear to be affected in the production of different unknown sporulation signals, and their conidiation defects are remedied by contiguous wild-type colonies. We found that none of the purified compounds was able to rescue the pigmentation or conidiation defects of ΔtmpA, ΔfluG, or cfwA2 mutants (Fig. 5B to D), even after extended incubation (not shown). However, the CLS12 (cfwA+) crude extract but not the CLS2 (cfwA2) crude extract was able to induce a slight reduction in the production of aerial hyphae in ΔfluG (Fig. 5C) and cfwA2 (Fig. 5D) mutants as well as the development of cfwA2 white conidiophores and conidia after 72 h (Fig. 5E and F). These results indicate that a cfwA-dependent activity capable of inducing conidiation, but not conidiospore pigmentation, is present in CLS12 crude extracts but was not purified by our experimental procedures.

To further explore the role of the PPTase CfwA in conidiation, we generated cfwA2 ΔtmpA (CJRΔtmpAcfwA2-4) and cfwA2 ΔfluG (CJRΔfluGcfwA2-4) double mutants. The presence of the cfwA2 mutation enhanced the conidiation defects of both ΔtmpA and ΔfluG single mutants at 30°C (Fig. 6A) and 37°C (not shown). On the other hand, it has been shown (37, 38) that ΔfluG inactivation results in the production of a characteristic yellow-orange pigment (Fig. 6B, top panels), which might be a precursor of the FluG sporulation signal. In cfwA2 ΔfluG mutants, such pigment was clearly reduced at 30°C and virtually absent at 37°C (Fig. 6B), indicating that its production depends on CfwA activity. As tmpA and fluG genes have been shown to regulate A. nidulans conidiation through independent pathways (52), our results suggest that both pathways involve the participation of CfwA-dependent NRPSs and/or PKSs.

DISCUSSION

The roles of the PPTase CfwA/NpgA in primary metabolism. After identifying cfwA2 and npgA1 as being allelic mutations, sequence analysis of the corresponding gene, cloned previously by Kim and coworkers (32), indicated to us that cfwA/npgA encoded a PPTase. The cfwA2 thermosensitive phenotype, resulting from an L217R replacement in the protein, indicated that CfwA/NpgA is required for essential functions. By genetic complementation of an S. cerevisiae lys5 mutant, Mootz et al. (42) previously demonstrated that CfwA/NpgA is able to restore lysine biosynthesis and therefore to activate the AAR Lys2 (42). Indeed, lysine supplementation, in the presence of the siderophore triacetylfusarinine C, restored the growth of cfwA2 (44) and ΔcfwA mutant strains. In contrast to some other fungi, NRPS-mediated siderophore biosynthesis is essential in A. nidulans (13). As lysine biosynthesis in fungi occurs through the AAR pathway (62) and a single cfwA/npgA orthologue is found in fungi with a genome sequence available (Fig. 3), cfwA/npgA orthologues should be required for lysine biosynthesis in most if not all fungi. Indeed, a deletion of the cfwA/npgA orthologue in Neurospora crassa results in lysine auxotrophy (J. Ramos-Balderas and J. Aguirre, unpublished data).

PPTase CfwA/NpgA plays an essential role in secondary metabolism. The inability of cfwA2 mutants to produce conidial pigments and the mycotoxin ST (21) first demonstrated the
involvement of CfwA/NpgA in secondary metabolism. The fact that lysine and siderophore supplementation restored the growth of ΔcfwA mutants but not the conidiation and pigmentation defects clearly distinguishes the roles of CfwA/NpgA in primary and secondary metabolism. Here, we have shown that A. nidulans produces emericellin, shamixanthone, dehydroaustinol, and ergosterol peroxide during development in solid-phase medium and that CfwA/NpgA is needed for the production of these compounds. Based on chemical structure and xanthone biosynthesis in A. variecolor (3, 4), the xanthone emericellin can be synthesized from an anthrone precursor through a pathway involving at least one PKS. Shamixanthone may be formed by cyclization of one of the emericellin isoprenylated chains.

The biosynthesis of dehydroaustinol would involve a different mixed polyketide-terpenoid route, as has been demonstrated for the compound ausatin in Aspergillus stuitus, which is derived from the polyketide dimethylorsellinate (49, 51). Therefore, CfwA would be needed for the activation of at least two as-yet-unidentified PKSs involved in the biosynthesis of emericellin (and shamixanthone) and dehydroaustinol.

Ergosterol peroxide was not detected in the cfwA2 extract despite the finding that higher amounts of ergosterol were isolated from this strain (see Table S1 in the supplemental material). Ergosterol peroxide is produced from the reaction of ergosterol with singlet oxygen. The formation of singlet oxygen requires a photosensitizer molecule, visible light, and oxygen (10, 59). This suggests that CfwA activity is needed to produce a natural photosensitizer capable of producing singlet oxygen in A. nidulans. Indeed, some plant-pathogenic fungi use a PKS pathway to produce the photosensitizer cercosporin and form singlet oxygen, which is required for the successful pathogenesis of plants (10, 56). Here, it is interesting that reactive oxygen species have been linked to different developmental processes in A. nidulans and other fungi (2, 36).

In addition, cfwA2 mutants are compromised in penicillin (31) and siderophore (44) biosynthesis, indicating that the NRPSs AvcS and SidC are substrates of the PPTase CfwA/NpgA. The phenotype of cfwA2 and ΔcfwA mutants indicates that no other PPTase can replace CfwA functions. The A. nidulans genome predicts 27 PKSs and 14 NRPSs (18, 30). Our results suggest that the PPTase CfwA/NpgA is needed for the activation of all of these enzymes and that a similar situation occurs in the human pathogen Aspergillus fumigatus and many other economically important fungi such as Aspergillus oryzae, Gibberella zeae, etc. (Fig. 3).

The roles of CfwA/NpgA in asexual sporulation. Two different conidiation signaling pathways, fluG (38) and tmpA (52), have been identified in A. nidulans. As shown in this study, lysine, triacetyl fusarinine C, emericellin, shamixanthone, or dehydroaustinol was not able to suppress the conidiation defects of cfwA, ΔfluG, and ΔtmpA mutants, indicating that other cfwA-dependent compounds are involved in the regulation of conidiation. The crude extract form of cfwA+ CLS12 grown for 10 days contained a conidiation-inducing activity (Fig. 5E and F). The fact that 48 to 72 h was required to observe abundant conidiophores suggests that the responsible molecule(s) was present in low amounts or had to be transformed into the actual sporulation signals.

As shown here, a cfwA2 mutation enhances the conidiation defects of both ΔtmpA and ΔfluG single mutants, and the production of mycelial pigmentation in ΔfluG mutants is cfwA dependent (Fig. 6). These results predict that fluG and tmpA conidiation pathways involve the participation of PKSs and/or NRPSs that are yet to be identified. On the other hand, the fact that ΔcfwA mutants can produce some conidiophores and conidiospores indicates the presence of a cfwA-independent conidiation pathway(s). Although different secondary metabolites have been involved in several aspects of fungal development (61), little is known about their biosynthetic pathways or mechanisms of action. In particular, there are few examples of PKS- or NRPS-derived products involved in the regulation of cell differentiation in eukaryotic cells. In Aspergillus parasiticus, disruption of the PKS-encoding gene fluP (also called pksL2) results in a reduction of radial growth, a cotton-like morphology, and decreased conidiospore and conidiophore development (67). Nevertheless, the A. nidulans genome does not predict a PKS that is clearly homologous to FluP, which belongs to the Penicillium patulum 6-methylsalicylic acid synthase type (33). In the amebozoid Dictyostelium discoideum, a chlorinated polyketide called DIF-1 and other related molecules...
regulate the differentiation of a specific cell type during sporulation (48).

CfwA/NpgA-orthologous PPTases as tools to study secondary metabolism and as possible drug targets. Our results suggest that a conditional-null PPTase mutant approach similar to the one reported here could be used to evaluate the roles of secondary metabolism in the biology of different fungi. On the other hand, the requirement of PPTase activity for lysozyme synthesis is specific to fungi, and different PSSs and NRPss are involved in the production of mycotoxins (54) and virulence factors in plant (56) and animal (35) pathogens. This suggests that CfwA/NpgA PPTase can be considered a potential novel antifungal drug target, as its inhibition would not only block the production of melanin and other pathogenic virulence factors but also interfere with essential amino acid biosynthesis. As fungal CfwA homologues differ significantly from their human, animal, and plant counterparts, it might be possible to design fungus-specific inhibitors.

ACKNOWLEDGMENTS

We are grateful to Rogelio Ortiz, Maura Cárdenas, and Denhi Schnabell for initial characterization of cfwA/2. We acknowledge Dong-Min Han (Wonkwang University) and Kwang-Yeop Jahng (Chonbuk National University) from the Republic of Korea for providing us with npgA mutants and for useful discussions and John Clutterbuck (University of Glasgow) for kindly providing a cfwA1 strain. We also thank Olivia Sánchez for cloning cfwA alleles and technical assistance, Luis Segura for CFS strains, and Atliano Gutierrez-Cereijo (Universidad Autónoma Metropolitana-Iztapalapa) for NMR spectral experiments. The IFC-UNAM molecular biology unit is acknowledged for DNA synthesis and sequencing.

This work was supported by grant 2002-C01-1713 from SAGARPA-CONACYT (México) and a partnership grant from Volkswagen Stiftung (Germany).

REFERENCES

1. Adams, T. H., J. K. Wieser, and J. H. Yu. 1998. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 62:35–54.

2. Aguirre, J., M. Rios-Monberg, D. Hewitt, and W. Hansberg. 2005. Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol. 13:111–118.

3. Ahmed, S. A., E. Bardshiri, C. R. McIntyre, T. J. Simpson, R. N. Moore, L. A. Trimble, J. C. Vederas. 2005. Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc. Natl. Acad. Sci. USA 100:15670–15675.

4. Adams, T. H., J. H. Yu, L. S. Helman, T. E. Prior, J. H. Doonan, J. Yu, K. Vienken, A. Pain, M. Freitag, E. E. Scler, D. B. Archer, M. A. Penvala, B. R. Oakley, M. Momany, T. Tanaka, K. Kumagai, A. Asai, M. Machida, W. C. Nieman, D. W. Denning, M. Caddeo, R. Fischer, B. Miller, D. B. Miller, P. Dyer, M. S. Sachs, S. A. Osman, and B. W. Birren. 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115.

5. Adams, T. H., J. K. Wieser, and J. H. Yu. 1998. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 62:35–54.

6. Aguirre, J., M. Rios-Monberg, D. Hewitt, and W. Hansberg. 2005. Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol. 13:111–118.

7. Ahmed, S. A., E. Bardshiri, C. R. McIntyre, T. J. Simpson, R. N. Moore, L. A. Trimble, J. C. Vederas. 2005. Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc. Natl. Acad. Sci. USA 100:15670–15675.

8. Ahmad, S. A., E. Bardshiri, C. R. McIntyre, and T. J. Simpson. 2005. The eukaryotic alkaloid ergotamine cluster in Claviceps purpurea: extension of the cluster sequence and intra species evolution. Phytochemistry 66:1312–1320.

9. Han, K. H., J. H. Kim, W. S. Kim, and D. M. Han. 2005. The npgA, a temperature-sensitive suppressor of npgB, encodes the eukaryotic translation release factor, eRFI, in Aspergillus nidulans. FEMS Microbiol. Lett. 251:155–160.

10. Hicks, J. K., J. H. Yu, N. P. Keller, and T. H. Adams. 1997. Aspergillus sporulation and mycotoxin production both require inactivation of the FadA G alpha protein-dependent signaling pathway. EMBO J. 16:4916–4923.

11. Hill, T. W., and E. Käfer. 2001. Improved protocols for Aspergillus nidulans minimal medium: trace element and minimal medium stock solution. Fungal Genet. Biol. 38:20–31.

12. Ishida, M., T. Hamasaki, Y. Hatsuda, K. Fukuyma, T. Tsukihara, and Y. Katsube. 1975. Emericellin, a new metabolite from Aspergillus nidulans. Agric. Biol. Chem. 39:291–292.

13. Ishida, M., T. Hamasaki, Y. Hatsuda, K. Fukuyma, T. Tsukihara, and Y. Katsube. 1975. The structure of two new metabolites, eremicellin and emericellin from Aspergillus nidulans. Agric. Biol. Chem. 39:2181–2184.

14. Kawasaki, L., O. Sanchez, K. Shiozaki, and J. Aguirre. 2002. SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol. Microbiol. 45:1153–1163.

15. Keating, T. A., and C. T. Walsh. 1999. Initiation, elongation, and termination strategies in polypeptide and polypeptide antibiotic biosynthesis. Curr. Opin. Chem. Biol. 3:598–608.

16. Keller, N. P., G. Turner, and J. W. Bennett. 2005. Fungal secondary metabolism—from biochemistry to genomics. Nat. Rev. Microbiol. 3:97–947.

17. Keszenman-Pereyra, D., S. Lawrence, M. E. Twieg, J. Price, and G. Turner. 2003. The npgb/npAgA gene encodes a putative 4-phosphopentahydantoin transferase which is essential for penicillin biosynthesis in Aspergillus nidulans. Curr. Genet. 43:186–190.

18. Kim, J. M., D. M. Han, K. S. Chae, and K. Y. Jahng. 2001. Isolation and characterization of the npgA gene involved in pigment formation in Aspergillus nidulans. Fungal Genet. Newsl. 49:Suppl.32.

19. Kloke, K., J. A. L. Gray, C. T. Walsh, and R. G. Walsh. 1996. A new enzyme superfamily—the phosphopentehydantoin transferases. Chem. Biol. 3:923–936.

20. Langfellner, K., M. Streibl, B. Jahn, G. Haase, and A. Brakhage. 2003. The npgA gene in Aspergillus nidulans encodes a putative 4-phosphopentehydantoin transferase which is essential for penicillin biosynthesis in Aspergillus nidulans. Curr. Genet. 43:186–190.

21. Kim, J. M., D. M. Han, K. S. Chae, and K. Y. Jahng. 2001. Isolation and characterization of the npgA gene involved in pigment formation in Aspergillus nidulans. Fungal Genet. Newsl. 49:Suppl.32.

22. Kloke, K., J. A. L. Gray, C. T. Walsh, and R. G. Walsh. 1996. A new enzyme superfamily—the phosphopentehydantoin transferases. Chem. Biol. 3:923–936.

23. Langfellner, K., M. Streibl, B. Jahn, G. Haase, and A. Brakhage. 2003. The npgA gene in Aspergillus nidulans encodes a putative 4-phosphopentehydantoin transferase which is essential for penicillin biosynthesis in Aspergillus nidulans. Curr. Genet. 43:186–190.
Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet. Biol. 38:143–158.

36. Lara-Oritz, T., H. Riveros-Rosas, and J. Aguirre. 2003. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol. Microbiol. 50:1241–1255.

37. Lee, B. N., and T. H. Adams. 1994. The Aspergillus nidulans fluG gene is required for production of an extracellular developmental signal and is related to prokaryotic glutamine synthetase I. Genes Dev. 8:641–651.

38. Lee, B. N., and T. H. Adams. 1996. fluG and fluA function interdependently to initiate conidiphore development in Aspergillus nidulans through hif4A activation. EMBO J. 15:299–309.

39. Maebayashi, Y., E. Okuyama, M. Yamazaki, and Y. Katsube. 1993. Functional characterization of 4'-phosphopantetheinyl transferase genes of bacterial and fungal origin by complementation of Saccharomyces cerevisiae hsp5. FEMS Microbiol. Lett. 213:51–57.

40. Nayak, T., E. Szewczyk, C. E. Oakley, A. Osmani, L. Ukil, S. L. Murray, M. J. Hynes, S. A. Osmani, and B. R. Oakley. 2006. A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172:1557–1566.

41. Payne, S. M. 1994. Detection, isolation, and characterization of siderophores. Methods Enzymol. 235:329–344.

42. Pontecorvo, G., J. A. Roper, L. M. Hemmons, K. D. MacDonald, and A. W. J. Bufton. 1953. The genetics of eukaryotes. Methods Enzymol. 235:329–344.

43. Roberson, D. M., R. Finking, and M. A. Marahiel. 2006. A versatile and efficient molecular evolution of hybrid peptidyl carrier proteins/acyl carrier proteins in nonribosomal peptide synthetase modules by the 4'-phosphopantetheinyl transferases AcpS and Sfp. J. Biol. Chem. 277:17023–17031.

44. Reuter, K., M. R. Mofid, M. A. Marahiel, and R. Ficker. 1999. Crystal structure of the surfactin synthetase-activating enzyme sfp: a prototype of the 4'-phosphopantetheinyl transferase superfamily. EMBO J. 18:6823–6831.

45. Reuter, K., M. R. Mofid, M. A. Marahiel, and R. Ficker. 1999. Crystal structure of the surfactin synthetase-activating enzyme sfp: a prototype of the 4'-phosphopantetheinyl transferase superfamily. EMBO J. 18:6823–6831.

46. Saimoto, T., T. H. Adams. 1995. Isolation and analysis of fluP in Aspergillus nidulans. Genetics 149:1–15.

47. Sano, K., H. Kurihara, and T. H. Adams. 1995. Functional analysis of hybrid peptidyl carrier proteins/acyl carrier proteins in nonribosomal peptide synthetase modules by the 4'-phosphopantetheinyl transferases AcpS and Sfp. J. Biol. Chem. 277:17023–17031.

48. Scannell, K., A. J. Foster, and H. B. Deising. 2002. Selective destruction of microscopic fungi through photo-oxidation of ergosterol. Mycologia 94:563–568.

49. Tuszynski, B. 2005. Gibberellin biosynthesis in fungi: genes, enzymes, evolution, and impact on biotechnology. Appl. Microbiol. Biotechnol. 66:597–611.

50. Ugalde, U. 2006. Autoregulatory signals in mycelial fungi, p. 203–213. In U. Kues and R. Fischer (ed.), The mycota, 2nd ed., vol. I. Growth, differentiation and sexuality. Springer-Verlag, Berlin, Germany.

51. Velasco, A. M., J. I. Leguina, and A. Larceno. 2002. Molecular evolution of the lyse biosynthetic pathways. J. Mol. Evol. 55:445–459.

52. Walsh, C. T., A. M. Gehring, P. H. Weinreb, L. E. Quadri, and R. S. Flugel. 1997. Post-translational modification of polyketide and nonribosomal peptide synthetase modules by the 4'-phosphopantetheinyl transferases AcpS and Sfp. J. Biol. Chem. 277:17023–17031.

53. Wieser, J., and T. H. Adams. 1995. fluG encodes a Myb-like DNA-binding protein that coordinates initiation of Aspergillus nidulans conidiohyphal development. Genes Dev. 9:491–502.

54. Wiersma, R., and T. H. Adams. 1995. fluG encodes a Myb-like DNA-binding protein that coordinates initiation of Aspergillus nidulans conidiohyphal development. Genes Dev. 9:491–502.

55. Yu, J. H., N. Keller. 2005. Regulation of secondary metabolism in filamentous fungi. Annu. Rev. Phytopathol. 43:437–458.

56. Zhou, R., R. Rasooly, and J. E. Linz. 2000. Isolation and analysis of fluP, a gene associated with hyphal growth and sporulation in Aspergillus parasiticus. Mol. Gen. Genet. 264:514–520.