Aplicação do probiótico *Bifidobacterium animalis* subsp. *Lactis* (BB-12) e o prebiótico inulina em um produto cárneo tipo copa suína com alegação funcional

Talita Aparecida Ferreira de Campos
Annecler Rech de Marins
Natallya Marques da Silva
Elder dos Santos Araujo
André Luiz Tomaz de Oliveira

Alinne Karla dos Santos
Iza Catarini dos Santos
Marcos Antônio Matiucci
Raquel Guttierres Gomes
Andresa Carla Feihrmann
RESUMO

A aplicação comercial de micro-organismos probióticos em embutidos fermentados ainda não é comum. **Objetivo:** desenvolver e caracterizar uma copa suína com alegação de propriedade funcional pela adição do probiótico *Bifidobacterium animalis* subsp. *Lactis* (BB-12) com o prebiótico inulina, por meio de análise de viabilidade celular e comportamento dos probióticos em condições gastrointestinais *in vitro* simuladas. **Material e métodos:** foram realizadas as análises de pH, atividade de água, oxidação lipídica e protéica, coliformes totais (35 °C) e termotolerantes (45 °C), *Salmonella* spp, contagem de fungos e leveduras, viabilidade celular da cepa BB-12 e sua sobrevivência sob condições gastrointestinais simuladas *in vitro*. **Resultados:** a adição do probiótico e da inulina promoveu redução do pH nas copas SIMB e PROB em relação ao tratamento controle, e a atividade de água da copa PROB apresentou reduções gradativas. Foi encontrado maior nível de oxidação lipídica no controle, e na oxidação protéica o controle e a PROB apresentaram maior valor. Na viabilidade celular e na simulação gastrointestinal *in vitro* foram observadas contagens acima de 9 UFC log. g⁻¹ de BB-12 tanto na a copa PROB como na copa SIMB. **Conclusão:** pode-se concluir que tanto a copa PROB e SIMB atenderam o requisito para alimentos funcionais onde a quantidade mínima de células viáveis para os probióticos deve estar na faixa de 10⁸ a 10⁹ UFC/g na recomendação diária do produto pronto para o consumo.

Palavras-chave: Bifidobactérias, Viabilidade, Digestão, Produto Cárneo.
INTRODUÇÃO

Os alimentos com alegação de propriedade funcional é um alimento ou ingrediente que, além das funções nutricionais básicas, quando consumido na dieta usual, produz efeitos metabólicos e/ou fisiológicos benéficos à saúde (BRASIL, 2008), os quais podem conter substâncias como as fibras, probióticos (lactobacilos e bifidobactérias), ácidos graxos (linoléico, ômega-3 e 6, e limonóides), compostos fenólicos (resveratrol, isoflavona e zeaxantina) e carotenoides (betacaroteno, licopeno, luteína), tanto na forma natural do alimento como os artificiais, que por sua vez, são fabricados por empresas especializadas e autorizadas (ANGELO, 2006).

Por sua vez os probióticos são micro-organismos vivos que, quando administrados em quantidades adequadas (10^8 a 10^9 UFC/g), conferem benefícios à saúde do indivíduo (BRASIL, 2018). Já os frutooligossacarídeos (FOS) não são metabolizados pelo organismo humano, e quando confere funcionalidade para um alimento são considerados prebióticos, além disso, eles estimulam seletivamente a proliferação ou atividade de populações de bactérias desejáveis no cólon beneficiando a saúde do hospedeiro (CUELLO-GARCIA et al., 2017). E a combinação simultânea de micro-organismos probióticos e ingredientes prebióticos formam os alimentos simbióticos que têm as características funcionais dos dois grupos que, em sinergia, vão beneficiar a saúde do hospedeiro (PÉREZ-BURILLO et al., 2019).

Essa junção de probióticos e prebióticos são utilizados em diversos alimentos lácteos, mas também podem ser inclusos em produtos cárneos fermentados, como a copa suína, que é definida como um produto cárneo industrializado, obtido do corte íntegro da parte da nuca ou sobrepaleta suína, com adição de condimentos e de aditivos, onde o produto é maturado, dessecado, defumado ou não (BRASIL, 2000).

A partir desse contexto, o objetivo deste estudo foi desenvolver e caracterizar um produto cárneo tipo copa suína com alegação de propriedade funcional pela adição do probiótico Bifidobacterium animalis subsp. lactis (BB-12) com o prebiótico inulina, por meio de análise de viabilidade celular e comportamento dos probióticos em condições gastrointestinais in vitro simuladas.

METODOLOGIA

Este estudo foi conduzido em um delineamento inteiramente casualizado, composto por três tratamentos e três repetições. A cepa probiótica Bifidobacterium animalis subsp. lactis (BB-12) e o prebiótico inulina Beneo (Raftiline) HPX® utilizados neste estudo foram doados pelas empresas Chr. Hansen e Clariant S.A (São Paulo) respectivamente.
Para a preparação de cada formulação da copa suína, foi utilizada 100 gramas de carne sobrepaleta suína (desossada e sem pele e gorduras externas), com os condimentos sal comercial (3%), sal de cura (eritrobato, nitrito e nitrato de sódio) (0,25%), alho (0,3%), cebola (0,3%), noz moscada (0,1%), canela (0,03%) e pimenta calabresa (0,2%) todos em pó, onde foram adquiridos no comércio local da cidade de Maringá/PR.

As formulações desenvolvidas receberam as seguintes identificações: C apenas com adição dos condimentos. PROB com os condimentos e o probiótico. SIMB com os condimentos, probiótico e a inulina. A quantidade da cepa BB-12 utilizada foi de 10^8 a 10^9 UFC/g e stavam na sua forma livre, ou seja, sem encapsular, já a inulina foi de 2% com base no peso da carne.

Os condimentos foram dissolvidos em salmoura produzida com 50 mL de água e injetados com auxílio de uma injetora manual nas porções da carne, sendo que após, as mesmas foram envolvidas em papel manteiga e em seguida em filme plástico devidamente identificada, e armazenadas sob refrigeração em câmara de incubação B.O.D. (Tecnal- TE-371) em temperatura a 10 °C durante os 45 dias de análises.

Os experimentos foram análises de pH, atividade de água, oxidação lipídica e proteica, contagem de fungos e levedura, coliformes totais (35 °C) e termotolerantes (45 °C), Salmonella spp, viabilidade celular da cepa BB-12 e sua sobrevivência sob condições gastrointestinais simuladas in vitro.

Os valores pH foram determinados utilizando um pHmetro digital (HANNA™) com sonda de perfuração devidamente calibrado com soluções tampão de pH 4,0 e pH 7,0 mediante leituras diretas na copa. A determinação da atividade de água (aw) foram verificadas utilizando aparelho medidor de atividade de água (4TEV-AQUALAB) por medida direta nas amostras.

A oxidação de lipídios foi realizada utilizando o método de TBARS consiste na análise das substâncias reativas ao ácido 2-tiobarbitúrico (TBA) de acordo com Raharjo et al. (1992). Onde primeiramente, adicionou-se 0,5 mL de BHT 0,15% (di-tercbutil metil fenol) em um tubo contendo 5 gramas de amostra. Em seguida, adicionou-se 4 mL de solução de sulfanilamida 0,5% e 36 mL de TCA 5% (ácido tricloroacético), e mantêu-se em repouso por 10 minutos, com posterior filtração.

Em um tubo de ensaio, colocou-se 2 mL do filtrado e 2 mL de TBA 0,08 M. Os tubos foram mantidos a 80 °C por 40 minutos. Por fim, a leitura foi feita em espectrofotômetro (Agilent UV-8553) a 532 nm. Os resultados foram expressos em miligramas de malonaldeído por quilograma de amostra.

A oxidação proteica foi medida a concentração de grupos carbonila usando 2,4-dinitrofenilhidrazina (DNPH, Sigma – Aldrich, St. Louis, EUA), conforme descrito por Levine et al.
(1994). A absorvância foi lida a 370 nm usando um espectrofotômetro EvolutionTM 300 UV-Vis (Thermo Fisher Scientific, Massachusett, EUA).

A concentração do grupo carbonila foi quantificada usando a lei de Beer-Lambert,

\[A = c \times b \times \varepsilon \]

onde A é a diferença entre a absorbância da amostra e a absorbância de controle, c é a concentração de proteína carbonilada, b é o comprimento do caminho óptico e \(\varepsilon \) é o coeficiente de extinção molar (22.000 mols / cm). Os resultados foram expressos como nmol de grupos carbonil/mg de proteína.

As análises microbiológicas foram coliformes totais e termotolerantes foi realizada conforme a metodologia descrita por Siqueira (1995), Salmonella spp foi utilizado o 3M™ Petrifilm™ Salmonella Express Food Safety oficializados pela AOAC (Association of Official Analytical Chemists) (AOAC, 2005), contagem de bolores e leveduras foi realizada conforme King et al., (1979).

Já a sobrevivência da cepa BB-12 sob simulação gastrointestinal in vitro foi simulada conforme descrito por Koehnlein et al., (2016), com modificações. Utilizou-se 10 g de da amostra foram misturados com 30 mL de solução de saliva artificial (2,38 g de Na\(_2\)HPO\(_4\), 0,19 g de KH\(_2\)PO\(_4\), 8 g de NaCl em 1 L de água destilada). O pH foi ajustado para 6,75, à temperatura de 37 °C e foi adicionada \(\alpha \)-amilase para obter 200 U de atividade enzimática. Esta mistura foi agitada a 150 rpm durante 10 min.

Após este tempo, o pH foi ajustado para 1,2 por a adição de HCl 5 mols/L e 39 mL de fluido gástrico artificial (0,32 g de pepsina em 100 mL de NaCl 0,03 M, pH 1,2) foi adicionado. A mistura foi incubada a 37 °C por 120 min, em um agitador com uma agitação de 150 rpm.

Finalmente, o pH foi ajustado novamente para 6,0 com NaHCO\(_3\) após a adição de 6,5 mL de NaCl (120 mM), 6,5 mL de KCl (5 mM) e 39 mL de fluido intestinal (0,15 g de pan-creatina e 0,9 g de extrato biliar em 100 mL de NaHCO\(_3\) 0,1 M). A mistura foi incubada a 37 °C durante 60 min, a 150 rpm. Resumidamente, esta análise consiste em quatro fases, e no término de cada fase foram feitas análises de viabilidade dos probióticos.

Todos os resultados foram avaliados pela análise de variância (ANOVA) e teste de Tukey, comparando as médias entre as amostras, a um nível de significância de 5% utilizando o software Statistica 13.0 (CANTERI et al., 2001).

RESULTADOS E DISCUSSÃO

Observa-se que os valores de pH das três formulações variaram durante os 45 dias de avaliação, sendo que o controle foi de 5,95 a 5,50, para a formulação probiótica foi de 5,92 a 5,40 e da simbiótica foi de 5,98 a 5,37 apresentando diferença significativa (\(p < 0,05 \)), como mostra a Figura 1.
A partir do quinto dia de fabricação, o pH observado no tratamento controle sofreu uma redução maior de 5,95 para 5,72, porém esses valores sofreram algumas oscilações e um aumento nos dias 25 e 30, enquanto os valores de pH das copas com culturas probióticas mantiveram uma queda acentuada ao longo do processamento.

Essa redução do pH nas copas PROB e SIMB era esperada, uma vez que esses tratamentos continham a cepa probiótica BB-12 que produz ácido láctico, que consequentemente proporcionou estabilidade na redução dos valores de pH das copas.

O uso de 2% de inulina no tratamento SIMB fez com que os valores de pH reduzissem de uma forma contínua durante os 45 dias. Como a inulina é um frutooligossacarídeo (FOS) que são açúcares não convencionais, eles são rapidamente metabolizados pelas bactérias probióticas (RAIZEL, 2011), e consequentemente favorece a proliferação dessa bactéria, as quais produzem mais ácido láctico e assim promovem uma maior redução de forma contínua e gradativa nos valores de pH.

Não há definição de valores de pH mínimo ou máximo permitido para copas suínas (BRASIL, 2000), mas há um consenso para que esse valor, no produto final, seja superior a 5,0 (BIS-SOUZA et al., 2020a; PRADO et al., 2019). Pois com o pH próximo do ponto isoeletrico das proteínas (5,3) promove igualdade entre o número de cargas elétricas positivas e negativas, tornando as proteínas mais insolúveis e reduzindo sua capacidade de retenção de água, favorecendo a secagem de produto cárneo fermentado, conferindo textura firme e fatiabilidade ao produto final além de garantir sua qualidade microbiológica (WÓJCIAK, 2017).

Os valores iniciais de atividade de água de todos os tratamentos foram de 0,940 os quais aumentaram até o dia 20, já no dia 25 decresceu em todas as formulações, e quando os produtos estavam finalizados, os valores encontrados foram de 0,911 no controle, na PROB de 0,902 e na SIMB de 0,906 de acordo com os resultados apresentados na Figura 2.
Esses valores são importantes, pois indicam a quantidade de água disponível para as reações necessárias para o desenvolvimento dos micro-organismos e a produção de toxinas (CRUXEN et al., 2018).

Dessa forma, a redução na atividade de água inibe a multiplicação de micro-organismos deteriorantes e patogênicos como as *Pseudomonas* spp., que é o principal agente de alteração da carne fresca (VEDOVATTO et al., 2019).

De acordo com o regulamento técnico de identidade e qualidade de copas suínas os valores encontrados no presente estudo estão dentro do determinado pela legislação, que deve ser de 0,90 (BRASIL, 2000).

Este resultado condiz com os dados obtidos em pesquisas anteriores como o estudo realizado pelos autores Libera et al. (2015) e Okoń, Stadnik e Dolatowski, (2017) ao analisarem produtos cárneos contendo a cepa *B. animalis* sps. *lactis* BB-12, os quais houve uma redução gradativa da atividade de água, indicando que o processo de secagem ocorreu de forma constante.

Além do impacto da acidificação dos produtos cárneos fermentados, os mesmos podem ainda ser afetados pelo processo de oxidação. Assim a oxidação lipídica é um fator importante tanto na qualidade como na aceitabilidade de produtos cárneos (KIM et al., 2014).

No início do processamento (dia 0), as copas PROB e SIMB que receberam a adição da cultura BB-12 apresentaram valores de TBARS menores do que o controle apesar de não haver diferenças significativas (*p* > 0,05) quando se analisa estatisticamente. Por outro lado, ao analisar os valores individualmente em cada tratamento, os valores de TBARS diferiram significativamente (*p* < 0,05). Como estão apresentados na Figura 3.
Em todos os tratamentos, houve um aumento ($p < 0,05$) nos valores de TBARS a partir do dia 10, no entanto, no controle esses valores permaneceram extremamente elevados até o fim do processamento, mostrando que a oxidação ainda estava ocorrendo nessas amostras, atingindo concentrações de 0,336 mg de malonaldeído/ kg de amostra aos 45 dias.

Essa variação nos teores de TBARS encontrada na amostra controle pode ser atribuída ao maior teor de gordura intramuscular presente na copa, haja vista como já mencionado na metodologia foram retirados apenas a gordura externa das carnes, ou pelo fato de que no controle não houve adição da cultura BB-12.

Resultado semelhante foi observado por Oliveira Gomes et al. (2021), e Xu, Yu e Zeng (2021) onde relataram que a oxidação lipídica aumentou de forma constante durante a maturação ($p < 0,05$), pois nessa fase ocorrem modificações nos lipídios devido a processos químicos podendo ocorrer tanto por autoxidação como por oxidação (Bianchi, 2013).

Já as amostras PROB e SIMB apresentaram os menores valores finais (0,082 mg MDA/kg e 0,085 mg MDA/kg, respectivamente) comparado ao controle, provavelmente devido às propriedades antioxidantes associadas com as espécies da cepa BB-12 e o baixo teor de gordura do grupo FOS a qual a inulina pertence, promoveram assim um efeito protetor em relação à formação de compostos indesejáveis no produto (Araújo, 2021).

Apesar desse aumento da oxidação lipídica nos tratamentos ao longo dos 45 dias, os valores de TBARS de todas as formulações estavam abaixo de 2,0 mg MDA/kg, o que é aceito como o nível de deterioração dos produtos (Bis-Souza et al., 2020a).

A quantidade de carbonilas formadas durante o processo de oxidação protéica foram quantificadas com base nas substâncias reativas ao 2,4-dinitrofenilhidrazina (DNPH), que ao longo do armazenamento revelou um padrão diferente nos produtos.

Nesse sentido, a adição da inulina na copa SIMB apresentou efeito positivo ($p < 0,05$) na oxidação protéica, diminuindo os valores ao longo do processamento, ao contrário do
que aconteceu com o controle e a copa PROB que apesar de apresentar níveis iniciais de oxidação protéica baixa, no final (45 dias) esses níveis aumentaram, como mostra a Figura 4.

Figura 4. Valores médios de oxidação protéica (nmol de proteína carbonilada/mg de proteína copa) presentes das copas suínas controle (C), probiótica (PROB) e simbiótica (SIMB) durante os 45 dias de avaliação.

![Oxidação Protéica](image)

Fonte: elaborada pelos autores (2021).

Ao analisar a copa controle o índice mais elevado de concentração de carbonil foi aos 30 dias (2,176), já na PROB foi aos 45 dias (1,390), sendo que este fato estaria relacionado com a combinação dos grupamentos carbonílicos à outras substâncias presentes na copa, fazendo assim com que o grupo carbonil estivesse livre para se ligar ao DNPH justificando assim esse aumento (SONG *et al.*, 2018).

Comportamento semelhante foi encontrado por Cava, Higuero e Ladero (2021) e Martillanes *et al.* (2021) onde relataram aumentos importantes nos níveis de oxidação de proteínas, segundo os autores a oxidação de lipídios e proteínas segue a mesma tendência uma vez que a oxidação pode ser afetada tanto por ácidos graxos insaturados, pigmentos, metais de transição e outros compostos.

Na amostra SIMB a concentração de carbonil inicial foi de 2,454 nmol de proteína carbonilada/mg de proteína copa, diminuindo com o passar dos dias atingindo concentração de carbonil final de 1,379 nmol de proteína carbonilada/mg de proteína copa, semelhante ao estudo realizado por Amaro-Blanco *et al.* (2018) os quais encontraram altos valores de oxidação de proteínas no dia 0 diminuindo ao longo do processamento (150 dias) em copas feitas com partes do lombo suíno ibérico.

Alguns autores sugerem um limite aceitável de oxidação proteica para produtos cárneos fermentados em torno de 4 nmol de proteína carbonilada/mg de proteína do produto, depois disso já é possível detectar o odor de rancidez (BELLAVER e ZANOTTO, 2004). Sendo assim apesar das amostras controle e PROB apresentarem esse aumento as amostras estão dentro do limite aceitável.
A contagem de coliformes totais nas duas etapas (0 e 45 dias) foram \(< 1,0 \ \log \ \text{UFC/g}\) em todas as amostras, já para coliformes termotolerantes não foram observadas crescimento em nenhuma das amostras.

Os coliformes totais indicam condições higiênicas do processo, sendo que elevada contagem significa contaminação na matéria-prima ou durante seu processamento por práticas de fabricação inadequadas, limpeza e sanitização deficientes tanto nos utensílios e equipamentos.

Já os coliformes termotolerantes são micro-organismos indicadores de contaminação fecal, ou seja, de condições higiênico-sanitárias, visto que a *Escherichia coli*, pertencente a este grupo tem o habitat exclusivo no trato intestinal do homem e de outros animais (SIQUEIRA, 1995).

Para a contagem de fungos e leveduras os resultados mostraram contagens iniciais de \(< 2,0 \ \log \ \text{UFC/g} \) (controle) e para PROB e SIMB \(< 1,0 \ \log \ \text{UFC/g}\), a ausência de *Salmonella* spp. em todas as amostras.

A legislação brasileira não apresenta limites para a contagem desses micro-organismos em produtos cárneos. Entretanto, a presença de algumas espécies de fungos em produtos curados, é extremamente favorável, uma vez que eles contribuem com a proteólise, ajudando na formação de sabor e aroma dos produtos (BERIAIN *et al.*, 2018).

Em copa suína a legislação brasileira estabelece limites para coliformes a 45 ºC tolerância de \(10^3\) (UFC/g), e ausência de *Salmonella* spp. Assim, é possível verificar que as análises microbiológicas de todas as amostras estavam dentro dos limites estabelecidos pela legislação (BRASIL, 2019). Esses resultados podem ser atribuídos a boa qualidade da matéria-prima e as boas práticas de fabricação utilizadas no processo.

Quando se analisa a viabilidade celular da cepa *Bifidobacterium animalis* subsp. *lactis* (BB-12), embora tenha ocorrido diferenças significativas \((p < 0,05)\) na viabilidade celular da BB-12 durante todo o período das análises (45 dias), as diferenças observadas não influenciaram nos resultados. Os quais foram positivos, pois mantiveram sua viabilidade, atendendo aos parâmetros da legislação brasileira, a qual sugere \(10^8\) a \(10^9\) UFC/g na recomendação diária para um produto pronto para o consumo para obtenção dos efeitos fisiológicos relacionados ao consumo de probióticos (BRASIL, 2021).

A Figura 5 apresenta os valores das contagens de células viáveis para a cepa BB-12, nas copas suínas PROB e SIMB, onde os resultados estão na ordem da base \(10^8\) UFC/g.
Figura 5. Resultados da viabilidade (média das contagens em UFC log. g⁻¹) da *Bifidobacterium animalis* subsp. *lactis* (BB-12), em copa suína probiótica (PROB) e simbiótica (SIMB).

O resultado das contagens iniciais de células viáveis de PROB foi de 9,08 UFC log. g⁻¹ e no final foi constatado uma leve queda populacional das colônias do probiótico de 9,10 UFC log. g⁻¹.

Apesar da copa PROB obter contagens de células viáveis menores que na copa SIMB, os resultados foram promissores pois desde o dia inicial até os 45 dias as contagens se mantiverem na base 9 UFC log. g⁻¹ estando de acordo com o recomentado pela legislação brasileira (BRASIL, 2021).

Observando os resultados da copa SIMB, nota-se que no dia 15 a contagem das células viáveis foram >10 UFC/g, sendo mais elevado do que em outros dias analisados, este comportamento é um tanto esperado pois as bifidobactérias, apresentam um alto metabolismo fermentativo de açúcares nos primeiros dias e logo constituem quase a totalidade da microbiota do produto (LEROY, VERLUYTEN e DE VUYST, 2006).

É importante destacar que a inulina utilizada na formulação da copa foi a inulina Beneo (Raftiline) HPX® da Clariant S.A, que pode ser metabolizada facilmente pelo micro-organismo *Bifidobacterium animalis* subsp. *lactis* (BB-12), por se tratar de uma inulina com baixo grau de polimerização (segundo fabricante), uma vez que cepas de *Bifidobacterium* são mais aptas a metabolizar inulina com baixo grau de polimerização (DUYSBURGH *et al.*, 2019).

Assim a copa SIMB com adição da inulina obteve valores mais elevados quando comparados com a copa probiótica, percebe-se que a inulina auxiliou na manutenção da viabilidade da cepa probiótica, pois a inulina tem característica bifidogênico, ou seja, estimula o crescimento das bifidobactérias (HENCK *et al.*, 2019).

Estes resultados encontrados nas copas PROB e SIMB condizem com os dados obtidos em pesquisas anteriores como o estudo realizado por Liu, Bhandari e Zhang (2020) que ao avaliarem a viabilidade da cepa BB-12 encontraram resultados de > 9,77 UFC log.
g⁻¹ que foi significativamente maior do que o nível mínimo recomendado para alimentos funcionais probióticos.

E em concordância com os encontrados pelos autores Sionek, Kołozyn-Krajewska e Pasternok (2014) relataram que a quantidade da cepa BB-12 em salames fermentadas a seco estava no nível de 9,22 UFC log. g⁻¹ após 230 dias de armazenamento refrigerado.

Porém, os resultados de viabilidade do presente estudo foram melhores que os encontrados pelos autores KĘSKA et al. (2020) ao analisarem as alterações físico-químicas e proteolíticas durante o armazenamento refrigerado de copas suínas com cepas probióticas incluindo a BB-12, onde a viabilidade desta cepa foi de 7,12 UFC log. g⁻¹ aos 28 dias de armazenamento.

E em pesquisa realizada por Neffe-Skocińska et al. (2017) ao estudarem o perfil de aminoácidos e características sensoriais de copas suínas produzidas com uma mistura de culturas iniciadoras probióticas, encontraram uma contagem de 7,66 UFC/g para a combinação da cepa probiótica *Lactobacilli rhamnosus* LOCK900 com a BB-12.

Analisando a viabilidade da copa PROB e SIMB, pode-se dizer que foi possível a produção de um produto cárneo fermentado tanto probiótico como simbiótico, pois se mantiveram os níveis de bactérias probióticas exigidos pela legislação (8 a 9 UFC log. g⁻¹), durante os 45 dias de armazenamento a 10 ºC.

Embora a viabilidade celular das culturas de probióticos seja de extrema importância no produto, a sobrevivência do probiótico sob passagem simulada *in vitro* é imprescindível, uma vez que a bactéria deve ser capaz de crescer e colonizar o trato digestivo para conferir benefícios à saúde para o indivíduo (SAAD et al., 2013).

Assim, as copas suínas probiótica e a simbiótica foram submetidas às simulações gastrointestinais *in vitro*, a fim de investigar a sobrevivência da cepa BB-12 em diferentes etapas, desde a boca até o intestino.

Em ambas as formulações estudadas, foram observadas populações na base 9 UFC log. g⁻¹ da BB-12 em todas as fases do teste. A digestão simulada *in vitro* da cepa BB-12 foram avaliadas aos 45 dias, onde os resultados estão apresentados na Figura 6.
Figura 6. Resultados da digestão simuladas *in vitro* (média das contagens em UFC log. g⁻¹) da *Bifidobacterium animalis* subsp. *lactis* (BB-12), em copa suína probiótica (PROB) e simbiótica (SIMB).

![Sobrevivência da BB-12](image)

Fonte: elaborada pelos autores (2021).

A simulação se iniciou no instante da entrada das copas na boca (fase 0) obtendo as primeiras contagens, as quais foram menores na amostra da copa PROB em relação a da amostra da copa SIMB.

Quando os alimentos são mastigados e passam pela faringe (fase boca), as contagens na PROB foram maiores (9,43) de que na SIMB (9,47), não havendo diferença significativa (*p* > 0,05).

Em seguida foram simuladas a chegada ao estômago com agitação de 150 rpm para simular os movimentos peristálticos (que fazem parte da digestão do alimento) onde o estômago produz o suco gástrico, que se mistura ao alimento, formando um bolo alimentar ácido onde a sobrevivência das bactérias no suco gástrico depende da habilidade de tolerar pH baixo (VASILEV, 2017), nesta etapa foi obtida a maior contagem na amostra da copa SIMB.

Por fim foi simulada a chegada ao intestino onde as concentrações de células viáveis foram de 9,63 e 9,65 UFC log. g⁻¹ para as amostras da copa PROB e SIMB, respectivamente, não havendo diferença significativa (*p* > 0,05) nas populações da BB-12, verificando que a cepa da BB-12 possuía capacidade de crescer em solução salina e com baixos valores de pH.

As bifidobactérias são muito utilizadas em alimentos devido à alta capacidade de sobrevivência durante a passagem pelo trato gastrointestinal e adesão às células de absorção que revestem a mucosa intestinal do intestino delgado (TRABELSI, 2019).

Porém em pesquisas realizadas anteriormente como no estudo de Holko *et al*. (2013) em salames de carneiro, as contagens de *Bifidobacterium animalis* CCDM 241a (Laktoflora®) estavam abaixo do limite de detecção (6 UFC log. g⁻¹).

Já em estudo realizado em matrizes lácteas como o estudo realizado por Martins *et al*. (2018), onde analisaram a viabilidade da BB-12 sob condições gastrointestinais simuladas
em queijo de cabra e apesar de constatarem resultados promissores com uma população média de 8 UFC log. g⁻¹, porém foram inferiores ao do presente estudo.

Assim os resultados aqui citados demonstraram o efeito protetor da matriz cárnica, sugerindo que em alimentos com matriz estruturada, como os embutidos, as cepas probióticas, são de certa forma protegidas pela matriz composta de carne e gordura, afetando favorablemente a sobrevivência do probiótico ao longo do processo digestivo (MACEDO, 2008).

Além disso a combinação do probiótico com os FOS podem promover vários efeitos fisiológicos ao indivíduo (BERSANETI, 2019), pois quando os prebióticos chegam ao trato intestinal, eles começam a fermentar, onde produzem ácidos graxos voláteis e as bactérias benéficas no caso, os probióticos, prosperam com esses ácidos graxos voláteis, que, por sua vez, permitem que elas cresçam mais robustas e aumentem seu número (RUBIO, 2014).

■ CONCLUSÃO

A adição do probiótico *Bifidobacterium animalis* subsp. *lactis* (BB-12) livre e do prebiótico inulina nas copas suínas mostraram-se promissores, apresentando boa capacidade fermentativa, sem promover alterações nas características físico-químicas dos produtos. As três formulações das copas suínas atenderam aos padrões microbiológicos de qualidade exigidos pela legislação vigente. Ao adicionar inulina, a mesma exerceu efeitos sinérgicos juntamente com a BB-12, favorecendo a viabilidade e sobrevivência dos probióticos. Por fim, pode-se concluir que tanto a copa PROB e SIMB atenderam o requisito para alimentos funcionais onde a quantidade mínima de células viáveis para os probióticos deve estar na faixa de 10⁸ a 10⁹ UFC/g na recomendação diária do produto pronto para o consumo.

■ REFERÊNCIAS

1. AMARO-BLANCO, G., DELGADO-ADÁMEZ, J., MARTÍN, MJ, & RAMÍREZ, R. Active packaging using an olive leaf extract and high pressure processing for the preservation of sliced dry-cured shoulders from Iberian pigs. *Innovative Food Science & Emerging Technologies*, v. 45, p. 1-9, 2018.

2. ANGELO, P. M; JORGE, N. Compostos fenólicos em alimentos: uma breve revisão. *Revista do Instituto Adolfo Lutz.* São Paulo, SP, v. 66, n. 1, p. 1-9, jul., 2006.

3. AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists (18°ed). Gaithersburg, US: AOAC. 2005.

4. ARAUJO, C. D. L. D., COSTA, G. F. D., OLIVEIRA, F. L. N. D., & AZERÊDO, G. A. Elaboration of chicken sausages with fat reduction and inulin addition. *Brazilian Journal of Food Technology*, v. 24, 2021.
5. BELLAVER, C. E ZANOTTO, D. L. Parâmetros de qualidade em gorduras e subprodutos proteicos de origem animal. In: Conferencia Apinco de Ciencia e Tecnologia Avicolas, Santos, SP. FACTA, v.1, p.79-102, 2004.

6. BERIAIN, M. J., GÓMEZ, I., IBÁÑEZ, F. C., SARRIÉS, M. V., & ORDÓNÉZ, A. I. Improvement of the functional and healthy properties of meat products. In: Food quality: Balancing health and disease. Academic Press, 2018. p. 1-74. 2018.

7. BERSANETI, G. T., GARCIA, S., MALI, S., & CELLIGOI, M. A. P. C. Evaluation of the prebiotic activities of edible starch films with the addition of nystose from Bacillus subtilis natto. Lebensmittel-Wissenschaft & Technologie (LWT), v. 116, p. 108502, 2019.

8. BIANCHI, T. L. C. F. P. de. Comparação de processos proteolíticos e lipolíticos em músculos de presuntos curados de uma população suína selecionada de acordo com critérios tecnológicos. 2013. 71 p. Dissertação (Mestrado em Inovação e Qualidade na Produção Alimentar) - Instituto Politécnico de Castelo Branco, Castelo Branco, 2013.

9. BIS-SOUZA, CV, OZAKI, MM, VIDAL, MAR, PENNA, ALB, & BARRETTO, ACS. Can dietary fiber improve the technological characteristics and sensory acceptance of low-fat Italian type salami? Journal of Food Science and Technology, v. 57, n. 3, pág. 1003-1012, 2020a.

10. BRASIL. Ministério da Agricultura, Pecuária e do Abastecimento. Secretaria de Defesa Agropecuária. Instrução Normativa n° 22, de 31 de julho de 2000. Regulamentos Técnicos de Identidade de Qualidade de Copa. Diário Oficial da União, Brasília, 03 de agosto de 2000. p. 15-28.

11. BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução - RDC Nº 331, de 23 de dezembro de 2019. Dispõe sobre os padrões microbiológicos de alimentos e sua aplicação. Diário Oficial da República Federativa do Brasil. Publicado em: 26/12/2019 l Edição: 249 l Seção: 1 l Página: 96. 2019.

12. BRASIL. AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA (ANVISA). Alimentos com alegações de propriedades funcionais ou de saúde, novos alimentos/ingredientes, substâncias bioativas e probióticos. IX–Lista de alegações de propriedade funcional aprovada. 2008.

13. BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Resolução RDC Nº 241, de 26 de julho de 2018. Secretaria de Defesa Agropecuária. Instrução Normativa no. 22 de 31 de julho de 2000. Dispõe sobre os requisitos para comprovação da segurança e dos benefícios à saúde dos probióticos para uso em alimentos. Diário Oficial da União, Brasília, 27 de julho de 2018. p. 97.

14. BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Guia de Instrução Processual de Petição de Avaliação de Probióticos para Uso em Alimentos Guia nº 21/2021 – versão 2, de 05/05/2021. 2021.

15. CANTERI, M. G., ALTHAUS, R. A., VIRGENS FILHO, J. S., GIGLIOTI, E. A., GODOY, C. V. SASM - Agri: Sistema para análise e separação de médias em experimentos agrícolas pelos métodos Scoft-Knott, Tukey e Duncan. Revista Brasileira de Agrocomputação, V.1, N.2, p.18-24. 2001.

16. CAVA, R.; HIGUERO, N.; LADERO, L. High pressure processing and storage temperature in Listeria monocytogenes, microbial counts and oxidative changes of two traditional dry-cured meat products. Meat Science, v. 171, p. 108273, 2021.
17. CUELLO-GARCIA, C., FIOCCHI, A., PAWANKAR, R., YEPES-NUNEZ, JJ, MORGANO, GP, ZHANG, Y. & BROZEK, JL. Prebiotics for the prevention of allergies: a systematic review and meta-analysis of randomized controlled trials. *Clinical & Experimental Allergy*, v. 47, n. 11, pág. 1468-1477, 2017.

18. CRUXEN, D.S. C. E., BRAUN, C. L. K., FAGUNDES, M. B., GULARTE, M. A., WAGNER, R., DA SILVA, W. P., & FIORENTINI, Á. M. Development of fermented sausage produced with mutton and native starter cultures. *Lebensmittel-Wissenschaft & Technologie (LWT)*, v. 95, p. 23-31, 2018.

19. DE OLIVEIRA GOMES, B., DE MESQUITA OLIVEIRA, C., DE MARINS, A. R., GOMES, R. G., & FEIHRMANN, A. C. Application of microencapsulated probiotic Bifidobacterium animalis ssp. Lactis BB-12 in Italian salami. *Journal of Food Processing and Preservation*, p. e15841, 2021.

20. DUYSBURGH, C., VAN DEN ABBEELE, P., KRISHNAN, K., BAYNE, TF, & MARZORATI, M. A symbiotic concept containing spore-forming Bacillus strains and a prebiotic fiber blend consistently increased metabolic activity through in vitro intestinal microbiome modulation. *International journal of pharmaceutics: X*, v. 1, p. 100021, 2019.

21. HENCK, J. M. M., BIS-SOUZA, C. V., POLLONIO, M. A. R., LORENZO, J. M., & BARRETTO, A. C. S. Alpha-cyclodextrin as a new functional ingredient in low-fat chicken frankfurter. *British poultry science*, v. 60, n. 6, p. 716-723, 2019.

22. HOLKO, I., HRABĚ, J., ŠALAKOVÁ, A., & RADA, V. The replacement of a traditional starter culture in fermented lamb sausages by Lactobacillus acidophilus and Bifidobacterium animalis. *Meat Science*, 94 (3), 275-279. 2013.

23. KĘSKA, P., STADNIK, J., WÓJCIAK, K. M., & NEFFE-SKOCIŃSKA, K. Physico-chemical and proteolytic changes during cold storage of dry-cured pork loins with probiotic strains of LAB. *International Journal of Food Science & Technology*, 55(3), 1069-1079. 2020.

24. KIM, I. S., JIN, S. K., YANG, M. R., AHN, D. U., PARK, J. H., & KANG, S. N. Effect of packaging method and storage time on physicochemical characteristics of dry-cured pork neck products at 10 C. *Asian-Australasian journal of animal sciences*, 27(11), 1623. 2014.

25. LEROY, F., VERLUYTEN, J., & DE VUYST, L. Functional meat starter cultures for improved sausage fermentation. *International journal of food microbiology*, v. 106, n. 3, p. 270-285, 2006.

26. LEVINE, R.L., MOSONI L., BERLETT B.S., STADTMAN, E.R. Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology- Vol 186, p 464-478, 1990.

27. LIBERA, J., KARWOWSKA, M., STASIAK, D. M., & DOLATOWSKI, Z. J. Microbiological and physicochemical properties of dry-cured neck inoculated with probiotic of Bifidobacterium animalis ssp. lactis BB-12. *International Journal of Food Science & Technology*, v. 50, n. 7, p. 1560-1566, 2015.

28. LIU, Z., BHANDARI, B., & ZHANG, M. Incorporation of probiotics (Bifidobacterium animalis subsp. Lactis) into 3D printed mashed potatoes: Effects of variables on the viability. *Food Research International*, v. 128, p. 108795, 2020.

29. MACEDO, R. E. F. D., PFLANZER JR, S. B., TERRA, N. N., & FREITAS, R. J. S. D. Development of sausage fermented by Lactobacillus probiotics: quality characteristics. *Food Science and Technology*, v. 28, p. 509-519, 2008.
30. MARTINS, I. B. A., DELIZA, R., DOS SANTOS, K. M. O., WALTER, E. H. M., MARTINS, J. M., & ROSENTHAL, A. Viability of probiotics in goat cheese during storage and under simulated gastrointestinal conditions. Food and bioprocess technology, v.11(4), pág.853-863. 2018.

31. MARTILLANES, S., ROCHA-PIMENTA, J., RAMÍREZ, R., GARCÍA-PARRA, J., & DELGADO-ADÂMEZ, J. Effect of an active packaging with rice bran extract and high pressure processing on the preservation of sliced cured ham from Iberian pork. Lebensmittel-Wissenschaft & Technologie (LWT), v. 151, p. 112128, 2021.

32. NEFFE-SKOCIŃSKA, K., OKOŃ, A., KOŁOŻYN-KRAJEWSKA, D., & DOLATOWSKI, Z. Amino acid profile and sensory characteristics of dry fermented pork loins produced with a mixture of probiotic starter cultures. Journal of the Science of Food and Agriculture, v. 97, n. 9, p. 2953-2960, 2017.

33. OKOŃ, A., STADNIK, J. & DOLATOWSKI, ZJ. Effect of Lactobacillus acidophilus Bauer and Bifidobacterium animalis ssp. lactis BB12 nas alterações proteolíticas em lombos curados a seco. Food Sci Biotechnol v.26, 633–641. 2017.

34. PÉREZ-BURILLO, S., MEHTA, T., PASTORIZA, S., KRAMER, DL, PALIY, O., & RUFIÁN-HENARES, J. Á. Potential probiotic salami with dietary fiber modulates antioxidant capacity, short-chain fatty acid production and community structure of the gut microbiota. Lebensmittel-Wissenschaft & Technologie (LWT), v. 105, p. 355-362, 2019.

35. PRADO, N., SAMPAYO, M., GONZÁLEZ, P., LOMBÓ, F., & DÍAZ, J. Physicochemical, sensory and microbiological characterization of Asturian Chorizo, a traditional fermented sausage manufactured in Northern Spain. Meat science, v. 156, p. 118-124, 2019.

36. RAHARJO, S, SOFOS JN, SCHMIDT GR. Improved speed, specificity, and limit of determination of an aqueous acid extraction thiobarbituric acid-C18 method for measuring lipid peroxidation in beef. Journal of Agricultural and Food Chemistry, v. 40, n. 11, p. 2182-2185, 1992.

37. RAIZEL, R., SANTINI, E., KOPPER, A. M., & DOS REIS FILHO, A. D. Efeitos do consumo de probióticos, prebióticos e simbióticos para o organismo humano. Revista Ciência & Saúde, v. 4, n. 2, p. 66-74, 2011.

38. RUBIO, R., MARTÍN, B., AYMERICH, T., & GARRIGA, M. The probiotic potential Lactobacillus rhamnosus CTC1679 survives passage through the gastrointestinal tract and its use as a starter culture results in nutritionally enhanced and safe fermented sausages. International Journal of Food Microbiology, v. 186, p. 55-60, 2014.

39. SAAD, N., DELATTRE, C., URDACI, M., SCHMITTER, JM, & BRESSOLLIER, P. An overview of the latest advances in the field of probiotics and prebiotics. Lebensmittel-Wissenschaft & Technologie (LWT) - Food Science and Technology, v.50 (1), pág.1-16. 2013.

40. SIQUEIRA, R.S. Manual de microbiologia de Alimentos. EMBRAPA. Centro Nacional se Pesquisa de Tecnologia Agroindustrial de Alimentos (Rio de Janeiro). Brasília: EMBRAPA. SPI, Rio de Janeiro EMBRAPA_CTTA, 1995.

41. SIONEK, B, KOŁOŻYN-KRAJEWSKA, D. E PASTERNOK, I. Survival of bacteria with probiotic properties in dry fermented sausages during refrigerated storage. Żywność. Nauka. Technologia. Jakość. V.1, pág. 103 - 113. 2014.
42. SOLANKI, Himanshu K.; PAWAR, D. Dawar; DUSHYANT, A. Shah; PRAJAPATI, Vipul D.; JANI, Girish K.; MULLA, Akil M.; THAKAR, Prachi M. Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. *BioMed Research International*, v. 2, p. 1-21. 2013.

43. SONG, M. Y., VAN-BA, H., PARK, W. S., YOO, J. Y., KANG, H. B., KIM, J. H., ... & HAM, J. S. Quality characteristics of functional fermented sausages added with encapsulated probiotic bifidobacterium longum KACC 91563. Korean *J. Food Sci*. V. 38, n. 5, p. 981, 2018.

44. TRABELSI, I., SLIMA, SB, KTARI, N., TRIKI, M., ABDEHEDI, R., ABAZA, W., ... & SALAH, RB. Incorporation of probiotic strain into minced raw beef: Study of textural modification, lipid and protein oxidation and color parameters during refrigerated storage. *Meat Science*, v. 154, p. 29-36, 2019

45. VASILEV, D., ĐORĐEVIĆ, V., KARABASIL, N., DIMITRIJEVIĆ, M., PETROVIĆ, Z., VELEBIT, B., & TEODOROVIĆ, V. Inulin as a prebiotic and fat substitute in meat products. *Teoriāi Prak-tika Pererabotki Māsa*, v. 2, n. 2, pág. 13 de abril de 2017.

46. VEDOVATTO, E., STEFFENS, C., CANSIAN, R. L., BACKES, G. T., & VERLINDO, R. Evaluation of different starters cultures in the obtainment of italian-type sausage. *Ciência Animal Bra-sileira*, v. 20. 2019.

47. WÓJCIAK, KM, LIBERA, J., STASIAK, DM, & KOŁOŻYN ‐ KRAJEWSKA, D. Aspecto tecnológico do uso de Lactobacillus acidophilus Bauer, Bifidobacterium animalis BB‐12 e Lactobacillus rhamnosus LOCK900 em pescço de porco fermentado a seco e linguíça. *Journal of Food Processing and Preservation*, v. 41, n. 3, pág.12965, 2017.

48. Xu, QD, Yu, ZL e Zeng, WC. Structural and functional modifications of myofibrillar proteins by natural phenolic compounds and their application in pork meatballs. *Food Research International*, v.148, pág.110593. 2021.