Minimal length effects on entanglement entropy of spherically symmetric black holes in the brick wall model

Peng Wang, Haitang Yang and Shuxuan Ying

Center for Theoretical Physics, College of Physical Science and Technology, Sichuan University, Chengdu, 610064, People’s Republic of China

E-mail: pengw@scu.edu.cn, hyanga@scu.edu.cn and 2013222020007@stu.scu.edu.cn

Received 21 May 2015
Accepted for publication 23 November 2015
Published 22 December 2015

Abstract
We compute the black hole horizon entanglement entropy for a massless scalar field in the brick wall model by incorporating the minimal length. Taking the minimal length effects on the occupation number \(n(\omega, l) \) and the Hawking temperature into consideration, we obtain the leading ultraviolet (UV) divergent term and the subleading logarithmic term in the entropy. The leading divergent term scales with the horizon area. The subleading logarithmic term is the same as that in the usual brick wall model without the minimal length.

Keywords: minimal length effects, brick wall model, entanglement entropy

1. Introduction

Bekenstein and Hawking showed that the entropy of a black hole is proportional to the area of the horizon [1–3]. Although all the evidence suggests that Bekenstein–Hawking entropy is truly thermodynamic entropy, the statistical origin of black hole entropy has not yet been fully understood. It seems that an unavoidable candidate for the statistical origin is the entropy of the thermal atmosphere of the black hole, which can also be thought of as the entanglement entropy across the horizon [4].

To be generic, we will consider a spherically symmetric background metric of the form

\[
ds^2 = f(r)dt^2 - \frac{dr^2}{f(r)} - r^2(d\theta^2 + \sin^2 \theta d\phi^2),
\]

(1)

where \(f(r) \) has a simple zero at \(r = r_h \) with \(f'(r_h) \) being finite and nonzero. The vanishing of \(f(r) \) at point \(r = r_h \) indicates the presence of an event horizon. Thus, the atmosphere entropy of
the black hole with the metric (1) can be expressed in the form

$$S = \sum_{l=0}^{\infty} (2l + 1) \int dn (\omega, l) s\left(\frac{\omega}{T}\right),$$

(2)

where ω is the Killing energy associated with t, l is the angular momentum, T is the Hawking temperature of the black hole, $n(\omega, l)$ is the number of one-particle states not exceeding ω with a fixed value of angular momentum l, and $s\left(\frac{\omega}{T}\right)$ is the thermal entropy per mode. However, the entropy diverges when we attempt to sum equation (2) over all the modes. There are two kinds of divergences. The first one is due to the infinite volume of the system, which has to do with the contribution from the vacuum surrounding the system at large distances and is of little relevance here. The second one arises from the infinite volume of the deep throat region near the horizon. In order to regulate the two divergences, t’ Hooft [5] proposed the brick wall model for a scalar field ϕ, where two brick wall cutoffs are introduced at some small distance r_ε from the horizon and at a large distance $L \gg r_h$.

$$\phi = 0 \text{ at } r = r_h + r_\varepsilon \text{ and } r = L.$$

(3)

The minimally coupled scalar field satisfies the Klein–Gordon equation

$$\left(\nabla^2 - m^2\right)\phi = 0.$$

(4)

Since WKB approximation is reliable as long as the black hole’s mass $M \gg 1$ (in Planck units), t’ Hooft took the ansatz for ϕ

$$\phi = \exp\left[-\frac{i}{\hbar} \omega t + i \frac{\hbar}{\pi} \int p_r dr\right] Y_{lm}(\theta, \phi),$$

(5)

and solved the Klein-Gordon equation (4) for p_r to the leading order in \hbar. Define the radial wave number $k (r, l, \omega)$ by

$$k (r, l, \omega) = \left| p_r \right|,$$

(6)

as long as $p_r^2 \geq 0$, and $k (r, l, \omega) = 0$ otherwise. With the two Dirichlet boundaries (3), $n (\omega, l)$ can be expressed as

$$n (\omega, l) = \frac{1}{\pi \hbar} \int_{r_h + r_\varepsilon}^{L} k (r, l, \omega) dr.$$

(7)

It would appear that the entanglement entropy is sensitive to the ultraviolet (UV) behavior of quantum fields, where quantum gravity effects become important. Even though there is still no complete and consistent quantum theory of gravity, one could still rely on effective models to study the UV behavior of the entanglement entropy. For example, this issue was studied in [6, 7] in the context of the possible modifications of the standard dispersion relation. On the other hand, various theories of quantum gravity, such as string theory, loop quantum gravity and quantum geometry, predict the existence of a minimal length [8–10]. The generalized uncertainty principle (GUP) [11] is a simple way to realize this minimal length. In [12–15], the authors considered the generalized uncertainty relation

$$\Delta x \Delta p \geq \hbar + \frac{\lambda}{\hbar} (\Delta p)^2,$$

(8)

which gives a minimal length, $2 \sqrt{\lambda}$. As a consequence, the number of quantum states should be changed to
where $p^2 = p_0^2$ Therefore, they had for massless particles

\[n(\omega, l) = \frac{1}{\pi \hbar} \int_{r_+}^{r_-} \frac{k(r, l, \omega)}{(1 + \lambda \omega^2/f)^3} dr, \]

where $k(r, l, \omega)$ is given by equation (6). The all order generalized uncertainty relation was also considered in [16]. It was found there that the artificial cutoff parameter in the brick wall model located just outside the horizon can be avoided if the GUP is considered. Alternatively, the modified Klein–Gordon equation for ϕ was considered in the framework of Horava–Lifshitz gravity and the GUP in [17]. The WKB leading term of p_r for the modified Klein–Gordon equation was obtained and $n(\omega, l)$ was given by equation (7). The entanglement entropy was then calculated and the result is consistent with previous studies.

Furthermore, the GUP should modify the Hawking temperature T in equation (2) as well as $n(\omega, l)$. Indeed, the GUP deformed Hamilton–Jacobi method in curved spacetime has been introduced and the corrected Hawking temperatures have been derived in [18–22]. The GUP corrections to the Hawking temperature were found to depend not only on the black hole’s mass but also on the energy, and the angular momentum of the emitted particles as well. In [22], we derived the deformed Klein–Gordon and Dirac equation incorporating the GUP form proposed in [23, 24]. The GUP-modified Hawking temperatures for scalars and fermions were then obtained and the black hole’s evaporation was also discussed in [22]. Taking GUP corrections to both $n(\omega, l)$ and the Hawking temperature T into consideration, we will calculate the entanglement entropy of a massless scalar field via equation (2) in the brick wall model.

The organization of this paper is as follows. In section 2, we review some results outlined in [22], which are necessary for calculating the entanglement entropy. In section 3, the entanglement entropy of a massless scalar field near the horizon is calculated in the brick wall model. Section 4 is devoted to our discussion and conclusion. In this paper, we take geometricized units $c = G = 1$, where the Planck constant \hbar is square of the Planck mass m_p. For simplicity, we assume that the emitted particles are massless and neutral.

2. Deformed Hamilton–Jacobi method

In [22] and in this paper, we consider an effective model of the GUP in one-dimensional quantum mechanics given by [23, 24]

\[L_f k(p) = \tanh \left(\frac{p}{M_f} \right), \]

\[L_f \omega(E) = \tanh \left(\frac{E}{M_f} \right), \]

where the generators of the translations in space and time are the wave vector k and the frequency ω, L_f is the minimal length, and $L_f M_f = \hbar$. From equation (11), it is noted that although one can increase p arbitrarily, k has an upper bound which is $\frac{\hbar}{L_f}$. The upper bound on k implies that particles could not possess the arbitrarily small Compton wavelength $\lambda = 2\pi/k$.
and that there exists a minimal length $\sim L_p$. The quantization in the position representation $\hat{x} = x$ leads to

$$k = -i \partial_x, \quad \omega = i \partial_t.$$ \hfill (13)

In the $(3+1)$ dimensional flat spacetime, the relations between (p_i, E) and (k_i, ω) can simply be generalized to

$$L_f k_i(p) = \tanh \left(\frac{p_i}{M_f} \right),$$ \hfill (14)

$$L_f \omega(E) = \tanh \left(\frac{E}{M_f} \right),$$ \hfill (15)

where one has for \vec{k} in the spherical coordinates

$$\vec{k} = -i \left(\hat{r} \frac{\partial}{\partial r} + \hat{\theta} \frac{\partial}{r \partial \theta} + \hat{\phi} \frac{\partial}{r \sin \theta \partial \phi} \right).$$ \hfill (16)

Expanding equations (14) and (15) for small arguments to the third order gives the energy and momentum operator in position representation

$$E = \hbar \partial_t \left(1 - \frac{\hbar^2}{2M_f^2} \partial_t^2 \right),$$ \hfill (17)

$$\vec{p} = \frac{\hbar}{i} \left[\hat{r} \left(\partial_r - \frac{\hbar^2}{2M_f^2} \right) + \hat{\theta} \left(\frac{\partial}{r} - \frac{\hbar^2}{2M_f^2} \frac{\partial}{r^3M_f^2} \right) + \hat{\phi} \left(\frac{\partial}{r \sin \theta} - \frac{\hbar^2}{2M_f^2} \frac{\partial}{r^3 \sin^3 \theta M_f^2} \right) \right],$$ \hfill (18)

where we also omit the factor $\frac{1}{3}$. Substituting the above energy and momentum operators into the energy-momentum relation, the deformed Klein–Gordon equation satisfied by the massless scalar field is

$$E^2 \phi = p^2 \phi,$$ \hfill (19)

where $p^2 = \vec{p} \cdot \vec{p}$. Making the ansatz for ϕ

$$\phi = \exp \left(i \frac{r}{\hbar} \right),$$ \hfill (20)

and substituting it into equation (19), one expands equation (19) in powers of \hbar and then finds that the lowest order gives the deformed scalar Hamilton–Jacobi equation in the flat spacetime

$$\left(\partial_t I \right)^2 \left(1 + \frac{2(\partial_t I)^2}{M_f^2} \right) - \left(\partial_r I \right)^2 \left(1 + \frac{2(\partial_r I)^2}{M_f^2} \right) - \frac{(\partial_I)^2}{r^2} \left(1 + \frac{2(\partial_r I)^2}{r^2M_f^2} \right)$$

$$- \frac{(\partial_r I)^2}{r^2 \sin^2 \theta} \left(1 + \frac{2(\partial_r I)^2}{r^2 \sin^2 \theta M_f^2} \right) = 0,$$ \hfill (21)

which is truncated at $O \left(\frac{1}{M_f} \right)$. The Hamilton–Jacobi equation in the metric (1) can be obtained from that in flat spacetime by making the replacements $\partial_t I \rightarrow \sqrt{f(r)} \partial_t I$ and $\partial_r I \rightarrow \frac{\partial I}{\sqrt{f(r)}}$. Therefore, the deformed Hamilton–Jacobi equation in flat spacetime, equation (21), leads to the deformed Hamilton–Jacobi equation in the metric (1), which is to $O \left(\frac{1}{M_f} \right)$.
Taking into account the Killing vectors of the background spacetime, we can employ the following ansatz for the action

\[
I = -\omega t + W(r, \theta) + p_\phi \phi,
\]

where \(\omega\) and \(p_\phi\) are constants and they are the energy and the \(z\)-component of the angular momentum of emitted particles, respectively. Inserting equation (23) into equation (22), we find that the deformed Hamilton–Jacobi equation becomes

\[
\rho_r \left(1 + \frac{2 f(r) M_r^2}{M_f^2} \right) = \frac{1}{f^2(r)} \left[\frac{\omega^2}{f^2(r) M_f^2} - f(r) \left(\rho_f^2 \frac{L^2}{r^2} + \frac{2 \omega^2}{f^2(r) M_f^2} \right) \right],
\]

where we neglect terms higher than \(O(\frac{1}{M_f^2})\). In the above equation, we define \(\rho_r = \partial_r W\), \(p_\theta = \partial_\theta W\), \(L^2 = p_\theta^2 + \frac{\hbar^2}{\sin^2 \theta}\), and \(L^2 = (\ell + 1)\hbar^2\) which is the magnitude of the angular momentum of the particle. Solving equation (24) for \(\rho_r\) to \(O(\frac{1}{M_f^2})\) gives

\[
\rho_r^\pm = \pm \left(\frac{\Omega_1^2}{f(r)} - \frac{\Omega_2^2}{f^2(r) M_f^2} \right),
\]

where \(+/-\) represent the outgoing/ingoing solutions and we define

\[
\Omega = \omega^2 \left(1 + \frac{2 \omega^2}{f^2(r) M_f^2} \right) - f(r) \left(\rho_f^2 \frac{L^2}{r^2} + \frac{2 \omega^2}{f^2(r) M_f^2} \right).
\]

Using the residue theorem for semicircles, we obtain for the imaginary part of \(W_k\) to \(O(\frac{1}{M_f^2})\)

\[
\text{Im} W_k = \pm \frac{\pi \omega}{\Gamma(\nu_h)} \left[1 + \frac{2 (\ell + 1) \hbar^2}{M_f^2 r_h^2} \right].
\]

Taking both the spatial contribution and the temporal contribution into account [25–29], one finds that the tunneling rate of the particle crossing the horizon is

\[
\Gamma \propto \exp \left\{ -\frac{1}{\hbar} \left(\text{Im}(\omega \Delta t) + \text{Im} \int \rho_f \, \text{d} \tau \right) \right\} = \exp \left\{ -\frac{4 \pi \omega}{f^*(\nu_h)} \left[1 + \frac{2 (\ell + 1) \hbar^2}{M_f^2 r_h^2} \right] \right\}.
\]

This is the expression of the Boltzmann factor with an effective temperature to \(O(\frac{1}{M_f^2})\)

\[
T = \frac{T_0}{1 + \Delta},
\]

where
where $T_0 = \frac{M^3}{4\pi^2}$ is the original Hawking temperature and we define

$$\Delta = \frac{(l+1)\hbar^2}{M^2 r_0^2}. \quad (30)$$

3. Entanglement entropy of a black hole

For scalar particles emitted in a wave mode labeled by energy ω and l, we find from equation (28) that [30]

\[
\text{(Probability for a black hole to emit a particle in this mode)}
\]

\[= \exp \left(-\frac{\omega}{T} \right) \times \text{(Probability for a black hole to absorb a particle in the same mode)},
\]

where T is given by equation (29). Neglecting back-reaction, a detailed balance condition requires that the ratio of the probability of having N particles in a particular mode with ω and l to the probability of having $N - 1$ particles in the same mode is $\exp \left(-\frac{\omega}{T} \right)$. One then follows the standard textbook procedure to get the average number $n_{\omega,l}$ in the mode

\[n_{\omega,l} = n \left(\frac{\omega}{T} \right), \quad (31)\]

where we define

\[n(x) = \frac{1}{\exp x - 1}. \quad (32)\]

The von Neumann entropy for the mode is

\[s_{\omega,l} = (n_{\omega,l} + 1) \ln (1 + n_{\omega,l}) - n_{\omega,l} \ln n_{\omega,l}, \quad (33)\]

where $s_{\omega,l}$ is $s \left(\frac{\omega}{T} \right)$ in equation (2). The $s(x)$ is given by

\[s(x) = \frac{\exp x}{\exp x - 1} \ln \left(\frac{\exp x}{\exp x - 1} \right) + \frac{\ln (\exp x - 1)}{\exp x - 1}. \quad (34)\]

Define the radial wave number $k (r, l, \omega)$ by

\[k (r, l, \omega) = \left| p_r \right|, \quad (35)\]

as long as $p_r^2 \geq 0$, and $k (r, l, \omega) = 0$ otherwise. The p_r is given by equation (25). Taking two Dirichlet conditions at $r = r_h + r_ε$ and $r = L$ in the brick wall model into account, we find that the number of one-particle states not exceeding ω with a fixed value of angular momentum l is given by

\[n(\omega, l) = \frac{1}{\pi \hbar} \int_{r_h+ε}^L k (r, l, \omega) dr. \quad (36)\]

Thus, we get for the total entropy of radiation

\[S = \sum_{\omega, l, m} s_{\omega,l} = \int (2l + 1)dl \int d\omega \frac{dn (\omega, l)}{d\omega} s_{\omega,l}, \quad (37)\]

\[= -\frac{1}{\pi \hbar} \int d\omega \left[(l+1)\hbar^2 \right] \int_{r_h+ε}^L \frac{\partial s_{\omega,l}}{\partial \omega} dr k (r, l, \omega). \]

\[= -\frac{1}{\pi \hbar} \int d\omega \left[(l+1)\hbar^2 \right] \int_{r_h+ε}^L dr k (r, l, \omega). \]
Defining \(u = \frac{\omega}{T_0} \) and expanding \(s_{\omega, l} \) to \(O \left(\frac{1}{M_f^2} \right) \),
\[s_{\omega, l} \approx s(u) + s'(u)u\Delta, \]
we find that the entropy to \(O \left(\frac{1}{M_f^2} \right) \) is
\[S \approx -\frac{M_f^2 r_h^3}{\pi h^3} \int du \int_{r_h+\varepsilon}^L dr \int d\Delta \left[s'(u) + (s'(u)u)' \Delta \right] \left(\Omega_f^2 \frac{1}{f(r)} - \Omega_{r_l}^2 \frac{1}{f^2(r)M_f^2} \right), \]
where we use equation (30) for \(\Delta \) and equation (25) for \(k (r, l, \omega) \). Performing \(\Delta \) integral which runs over the region where \(\Omega_f > 0 \) gives
\[S \approx 2\zeta^2 T_0^3 \int s(u) du \int_{r_h+\varepsilon}^L \frac{r^2}{r_h^2} f^2(r) \left[1 + \frac{4T_0^2 u^2}{f(r)M_f^2} - \frac{6T_0^2 u^2}{5f(r)M_f^2} r^2 \right]. \]
where the second term in the bracket comes from the GUP corrections to \(n (\omega, l) \) and the third term from the GUP corrections to the Hawking temperature \(T \). Focusing on the divergent parts near the horizon, we find
\[\int_{r_h+\varepsilon}^L \frac{dr^2}{r_h^2} f^3(r) \sim \frac{1}{4\kappa^2 r_h} - \frac{2}{8\kappa^2 r_h} - \frac{3}{8\kappa^2 r_h} - \frac{3}{8\kappa^2 r_h} - \left(\frac{1}{2\kappa^2 r_h^2} + 3(2\eta^2 - \theta) - \frac{6\eta}{\kappa r_h} \right)^2, \]
where we expand \(f(r) \) and \(\frac{r^2}{r_h^2} \) at \(r = r_h \)
\[f(r) \sim 2\kappa (r - r_h) \left[1 + \eta \kappa (r - r_h) + \theta \kappa^2 (r - r_h)^2 \right]. \]
In equation (40), we neglect finite terms as \(\kappa r_h \to 0 \) and also terms involving \(L \). Note that we define \(\kappa = \frac{f'(r_h)}{2} \) which is the surface gravity for the black hole and hence \(T_0 = \frac{h c}{2\pi} \). Thus, the divergent part of entropy near the horizon is
\[S \approx 2\zeta^2 T_0^3 \int u^2 s(u) du \left\{ \frac{1}{4\kappa r_h} - \left(\frac{1}{\kappa r_h} - \eta \right)^2 \ln \frac{\kappa r_h}{2} \right\} \]
\[+ \frac{T_0^2 u^2}{M_f} \left\{ \frac{14}{20} \frac{1}{\kappa^2 r_h^2} + \frac{8}{20} \frac{\kappa^2 - 21\eta^2}{20\kappa r_h} + \frac{2}{5} \left(\frac{28}{\kappa^2 r_h^2} + 39(2\eta^2 - \theta) - \frac{96\eta}{\kappa r_h} \right) \ln \frac{\kappa r_h}{8} \right\}. \]
Defining the proper distance distance \(\varepsilon \) between the brick wall and the horizon
\[\varepsilon = \int_{r_h}^{r_h+\varepsilon} \frac{dr}{f} \sim \frac{\sqrt{r_h}}{\sqrt{2\kappa}} \left(2 - \frac{\eta r_h}{5} \right), \]
one could express equation (42) in terms of ε

$$S \sim \frac{r_h^2}{8\pi^2 L_f^4} \int u^2 s(u) \, du \left\{ \frac{1}{\varepsilon^2} - 2\kappa^2 \left(\frac{1}{\kappa r_h} - \eta \right) \ln \kappa \varepsilon + \frac{L_f^2 u^2 \kappa^2}{2\pi^2 \varepsilon^2} \right. \times \left[\frac{14}{5\kappa^2 \varepsilon^2} + \frac{2\left(5\eta - \frac{39}{\kappa r_h}\right)}{45} + \frac{2\kappa^2 \varepsilon^2}{5} \left(\frac{28}{\kappa^2 r_h^2} + 39 \left(2\eta^2 - \theta\right) - \frac{96\eta}{\kappa r_h} \right) \ln \kappa \varepsilon \right] \right\},$$

(43)

where we use $L_f = \frac{\hbar}{M}$. A natural choice for ε is the minimal length L_f. If we take $\varepsilon = L_f$, we have for the entanglement entropy near the horizon

$$S \sim \frac{r_h^2}{8\pi^2 L_f^4} \int_0^\infty \left(1 + \frac{14u^2}{10\pi^2} \right) u^2 s(u) \, du$$

$$- \frac{r_h^2}{4\pi^4} \left(1 - \eta \kappa r_h \right) \int u^2 s(u) \, du \ln \kappa L_f + \text{Finite terms as } \varepsilon L_f \to 0$$

$$\sim \frac{17A}{1800\pi L_f^2} \ln \kappa L_f + \text{Finite terms as } \varepsilon L_f \to 0,$$

(44)

where $A = 4\pi r_h^2$ is the horizon area.

4. Discussion and conclusion

In [5, 31], the entanglement entropy of a massless scalar field near the horizon of the metric (1) was calculated in the brick wall model without the GUP. It has been shown the entropy in this case is

$$S \sim \frac{A}{360\pi^2} - \frac{\kappa r_h}{45} \left(1 - \kappa \eta r_h \right) \ln \kappa \varepsilon,$$

(45)

where κ and η are defined in equation (41) and ε is the proper distance between the wall and the horizon. In our paper, we take $\varepsilon = L_f$ which is the minimal length. The numerical factor of the leading term of the entropy in equation (44) has been changed from $\frac{1}{1800}$ to $\frac{1}{1800\pi}$ due to the minimal length effects. The leading terms of equations (44) and (45) are both proportional to the horizon area. The area law in the brick wall model was first obtained in [5] and later was also studied in [32–35]. In [12] where the GUP form (8) was used, the leading term of the entanglement entropy for the spherical metric (1) was calculated up to $O(\lambda)$. The result was

$$S \sim \frac{3}{L_f^2} \frac{A}{4\pi},$$

(46)

where $L_f = \sqrt{\Lambda}$ is the minimal length. In [16] where the all order GUP form

$$\Delta x \Delta p \geq \frac{\hbar}{2} \exp \left[\frac{\lambda}{\hbar^2} (\Delta p)^2 \right],$$

(47)

was considered, the leading term of the all order entanglement entropy for the spherically symmetric metric (1) was given by
where \(L_f = \sqrt{\frac{\hbar}{c^2}} \) and \(\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3} \approx 1.202 \). In both cases, the area law in the brick wall model is preserved after the GUP corrections to \(n(\omega, l) \) are considered. Our result shows that the area law is still valid after the GUP corrections to both \(n(\omega, l) \) and the Hawking temperature \(T \) are included. If we choose the invariant cutoff \(\varepsilon = \frac{m_p}{\sqrt{400\pi}} \) in t’Hooft’s original calculation, then the dominant entropy term becomes the Bekenstein–Hawking entropy, \(S \sim S_{\text{BH}} \equiv \frac{\pi a^2}{\hbar c} \). Similarly, if we have \(L_f = \frac{\sqrt{17}}{450\pi} m_p \approx 0.1m_p \) in our calculation, \(S_{\text{BH}} \) also appears for the leading entropy term. On the other hand, it is normally assumed that the minimal \(L_f \) is of the order of \(m_p \). If \(L_f \sim m_p \) would provide a resolution to the species problem.

The subleading logarithmic part of the entanglement entropy is also calculated in our paper. It turns out that the subleading logarithmic part is universally given by \(-\frac{\pi}{45} \ln \epsilon \) in scenarios both with and without the GUP. For the Schwarzschild metric with \(f(r) = 1 - \frac{2M}{r} \), the subleading logarithmic part becomes \(-\frac{\ln \epsilon}{45} \), which was also obtained in [36] using the replica method. On the other hand, we can estimate the entropy of the black hole using equation (29). In fact, the angular momentum of the particle \(L \sim pr_h \sim \omega r_h \) near the horizon of the black hole. Thus, one can rewrite \(T \)

\[
T \sim \frac{T_0}{1 + \frac{2\omega \delta x}{T}}
\]

where \(T_0 = \frac{\hbar}{8M} \) for the Schwarzschild black hole. As reported in [37], the authors obtained the relation \(\omega \sim \frac{\hbar}{\delta x} \) between the energy of a particle and its position uncertainty in the framework of the GUP. Near the horizon of the Schwarzschild black hole, the position uncertainty of a particle will be in the order of the Schwarzschild radius of the black hole \([38]\) \(\delta x \sim r_h \). Thus, one finds for \(T \)

\[
T \sim \frac{T_0}{1 + \frac{m_p^2}{2M^2 T_f}}
\]

where we use \(\hbar = m_p^2 \). Using the first law of black hole thermodynamics, we find the corrected black hole entropy is

\[
S = \int \frac{dM}{T} \sim \frac{A}{4m_p^2} + \frac{4\pi L_f^2}{m_p^2} \ln \left(\frac{A}{16\pi} \right)
\]

where \(A = 4\pi r_h^2 = 16\pi M^2 \) is the area of the horizon. The logarithmic term in equation (51) is the well-known correction from quantum gravity to the classical Bekenstein–Hawking entropy, which has appeared in different studies of GUP-modified thermodynamics of black holes [39–41]. Comparing equations (44) with (51), we note that there are two discrepancies in the subleading logarithmic term, one of which is the sign and the other, the dependence on the minimal length \(L_f \). These discrepancies would imply that the entanglement entropy could not solely account for the entropy of the black hole.
It has been shown in [12–16] that the artificial cutoff parameter in the brick wall model located just outside the horizon can be avoided if the GUP is considered. However, this is not the case in our paper. Actually, if one attempts to let $r_e = 0$ in equation (42), the entropy diverges and a brick wall is still needed. How can we reconcile the contradiction? One might note that we calculate the entanglement entropy to $O\left(\frac{1}{M_f^2}\right)$. For the typical energy

$$\omega \sim T_0 = \frac{\hbar c}{2\pi},$$

one finds that the $O\left(\frac{1}{M_f^2}\right)$ GUP corrections caused by the minimal length to the entropy

$$\sim \frac{\omega^2}{f(r)M_f^2} \sim \frac{\hbar^2 c^2}{4\pi^2 f(r)M_f^2}.$$

At the wall at $r_e = r_h + 2\kappa L_f^2$, we have

$$\frac{\nu^2}{f(r_M^2)} \sim \frac{1}{16\pi^2 \kappa^2 L_f^4 M_f^2},$$

Thus, our perturbative method is valid outside the wall at $r_e = r_h + 2\kappa L_f^2$. However, the perturbation would break down deep within the wall and one needs to consider higher order contributions. The divergence of the entropy equation (42) as $r_e \to 0$ is more likely due to the breaking down of our perturbative method. In [12–15], it is crucial for $\lambda\omega^2/f$ to be in the denominator of the integrand in equation (10) to get rid of the wall. If one replaces $(1 + \lambda\omega^2/f)^{-3}$ with $1 - 3\lambda\omega^2/f$ in equation (10), the integral diverges as $r \to r_h$. The divergence arises simply because the Taylor expansion of $(1 + \lambda\omega^2/f)^{-3}$ breaks down when $\lambda\omega^2/f > 1$.

In this paper, we calculate the entanglement entropy of a massless scalar field near the horizon of a 4D spherically symmetric black hole in the brick wall model incorporating the minimal length effects. We show that the leading term of the entropy is proportional to the horizon area. If the minimal length $L_f \sim m_p$, the entanglement entropy makes a small contribution to the Bekenstein–Hawking entropy, which might resolve the ‘species problem’. The subleading logarithmic term is also calculated. The result is the same as the one in the usual brick wall model without the minimal length and independent of the minimal length L_f.

Acknowledgments

We would like to acknowledge useful discussions with Y He, Z Sun and H W Wu. This work is supported in part by NSFC (Grant No. 11005016, 11175039 and 11375121) and SYSTF (Grant No. 2012JQ0039).

References

[1] Bekenstein J D 1972 Black holes and the second law Lett. Nuovo. Cim. 4 737
[2] Bekenstein J D 1973 Black holes and entropy Phys. Rev. D 7 2333
[3] Hawking S W 1976 Black Holes and Thermodynamics Phys. Rev. D 13 191
[4] Bombelli L, Koul R K, Lee J and Sorkin R D 1986 A quantum source of entropy for black holes Phys. Rev. D 34 373
[5] ’t Hooft G 1985 On the Quantum Structure of a Black Hole Nucl. Phys. B 256 727
[6] Chang D, Chu C S and Lin F L 2004 TransPlanckian entanglement entropy Phys. Lett. B 583 192
[7] Jacobson T and Parentani R 2007 Black hole entanglement entropy regularized in a freely falling frame Phys. Rev. D 76 024006
[8] Townsend P K 1977 Small scale structure of space-time as the origin of the gravitational constant Phys. Rev. D 15 2795
[9] Amati D, Ciafaloni M and Veneziano G 1989 Can space-time be probed below the string size? Phys. Lett. B 216 41
[10] Komishi K, Paffuti G and Provero P 1990 Minimum physical length and the generalized uncertainty principle in string theory Phys. Lett. B 234 276
[11] Kempf A, Mangano G and Mann R B 1995 Hilbert space representation of the minimal length uncertainty relation Phys. Rev. D 52 1108
[12] Li X 2002 Black hole entropy without brick walls *Phys. Lett. B* **540** 9
[13] Kim W, Kim Y W and Park Y J 2006 Entropy of the Randall-Sundrum brane world with the generalized uncertainty principle *Phys. Rev. D* **74** 104001
[14] Kim W and Oh J J 2008 Determining the minimal length scale of the generalized uncertainty principle from the entropy-area relationship *J. High Energy Phys.* JHEP01(2008)034
[15] Kim W, Kim Y W and Park Y J 2007 Entropy of a charged black hole in two dimensions without cutoff *Phys. Rev. D* **75** 127501
[16] Kim Y W and Park Y J 2007 Entropy of the Schwarzschild black hole to all orders in the Planck length *Phys. Lett. B* **655** 172
[17] Eune M and Kim W 2010 Lifshitz scalar, brick wall method, and GUP in Horava-Lifshitz Gravity *Phys. Rev. D* **82** 124048
[18] Chen D, Wu H and Yang H 2013 Fermion’s tunnelling with effects of quantum gravity *Adv. High Energy Phys.* **2013** 432412
[19] Chen D, Wu H and Yang H 2014 Observing remnants by fermions’ tunneling *J. Cosmol. Astropart. Phys.* JCAP032014036
[20] Chen D Y, Jiang Q Q, Wang P and Yang H 2013 Remnants, fermions tunnelling and effects of quantum gravity *J. High Energy Phys.* JHEP11(2013)176
[21] Chen D and Li Z 2014 Remarks on Remnants by Fermions Tunnelling from Black Strings *Adv. High Energy Phys.* **2014** 620157
[22] Mu B, Wang P and Yang H 2015 Minimal Length Effects on Tunnelling from Spherically Symmetric Black Holes, *Adv. High Energy Phys.* **2015** 898916
[23] Hossenfelder S, Bleicher M, Hofmann S, Ruppert J, Scherer S and Stoecker H 2003 Collider signatures in the Planck regime *Phys. Lett. B* **575** 85
[24] Hassan S F and Sloth M S 2003 TransPlanckian effects in inflationary cosmology and the modified uncertainty principle *Nucl. Phys. B* **674** 434
[25] Akhmedova V, Pilling T, de Gill A and Singleton D 2008 Temporal contribution to gravitational WKB-like calculations *Phys. Lett. B* **666** 269
[26] Akhmedov E T, Pilling T and Singleton D 2008 Subtleties in the quasi-classical calculation of Hawking radiation *Int. J. Mod. Phys. D* **17** 2453
[27] Akhmedova V, Pilling T, de Gill A and Singleton D 2009 Comments on anomaly versus WKB/tunneling methods for calculating Unruh radiation *Phys. Lett. B* **673** 227
[28] Chowdhury B D 2008 Problems with Tunnelling of Thin Shells from Black Holes *Pramana* **70** 593
[29] Chowdhury B D 2008 *Pramana* **70** 3
[30] Hartle J B and Hawking S W 1976 Path Integral Derivation of Black Hole Radiance *Phys. Rev. D* **13** 2188
[31] Solodukhin S N 2011 Entanglement entropy of black holes *Living Rev. Rel.* **14** 8
[32] Mann R B, Tarasov L and Zelnikov A 1992 Brick walls for black holes *Class. Quant. Grav.* **9** 1487
[33] Susskind L and Uglum J 1994 Black hole entropy in canonical quantum gravity and superstring theory *Phys. Rev. D* **50** 2700
[34] Barbon J L F 1994 Horizon divergences of fields and strings in black hole backgrounds *Phys. Rev. D* **50** 2712
[35] Mukohyama S and Israel W 1998 Black holes, brick walls and the Boulware state *Phys. Rev. D* **58** 104005
[36] Solodukhin S N 1995 The Conical singularity and quantum corrections to entropy of black hole *Phys. Rev. D* **51** 609
[37] Amelino-Camelia G, Arzano M, Ling Y and Mandanici G 2006 Black-hole thermodynamics with modified dispersion relations and generalized uncertainty principles *Class. Quant. Grav.* **23** 2585
[38] Bekenstein J D 1973 Black holes and entropy *Phys. Rev. D* **7** 2333
[39] Chen P, Adler R J 2003 Black hole remnants and dark matter *Nucl. Phys. Proc. Suppl.* **124** 103
[40] Xiang L and Wen X Q 2009 Black hole thermodynamics with generalized uncertainty principle *J. High Energy Phys.* JHEP10(2009)046