Recent BES results on charmonium decays

C. Z. Yuan (For the BES Collaboration)
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China

Recent results on charmonium decays at BES/BEPC are reported, including the observation of $\psi' \rightarrow K^0_S K^0_L$, $\psi \rightarrow \text{Vector Tensor}$ for the measurement of the relative phase between the strong and electromagnetic decays of ψ' and a test of the pQCD "12% rule" between ψ' and J/ψ decays, the study of $\psi' \rightarrow \gamma\gamma J/\psi$ for the determination of $\psi' \rightarrow \pi^0 J/\psi$, η/ψ, γ_χ_{c1} and γ_χ_{c2} decay branching fractions; the test of the color-octet mechanism via $X_{c1} \rightarrow p\bar{p}$ and $X_{c2} \rightarrow A\bar{A}$; and a search for the CP violating process $\psi' \rightarrow K^0_S K^0_L$.

1 BES experiment and the data samples

The data samples used for the analyses are taken with the Beijing Spectrometer (BESII) detector at the Beijing Electron-Positron Collider (BEPC) storage ring at a center-of-mass energies corresponding to $M_{\psi'}$ and $M_{J/\psi}$. The data samples contain $(14 \pm 0.6) \times 10^6 \psi'$ events and $(57.7 \pm 2.7) \times 10^6 J/\psi$ events, as determined from inclusive hadronic decays.

2 Observation of $\psi' \rightarrow K^0_S K^0_L$

It has been determined that for many two-body exclusive J/ψ decays the relative phases between the three-gluon and the one-photon annihilation amplitudes are near 90°. For ψ' decays, the available information about the phase is much more limited because there are fewer experimental measurements. The analysis of $\psi' \rightarrow \text{Vector Pseudoscalar (VP)}$ decays shows that the phase could be the same as observed in J/ψ decays, but it could not rule out the possibility that the phase is near 180° as suggested in Ref. due to the big uncertainties in the experimental data. A measurement of the relative phase in $\psi' \rightarrow \text{Pseudoscalar Pseudoscalar (PP)}$ is suggested in Ref. by searching for $\psi' \rightarrow K^0_S K^0_L$.

BESII searches for $\psi' \rightarrow K^0_S K^0_L$ by reconstructing the monochroic K^0_S in the 14 M ψ' data sample. The signal, as shown in Fig. 1, is very significant (about 13σ), and the branching
fraction is measured to be \(B(\psi' \rightarrow K_S^0 K_L^0) = (5.24 \pm 0.47 \pm 0.48) \times 10^{-5} \). This branching fraction, together with branching fractions of \(\psi' \rightarrow \pi^+\pi^- \) and \(\psi' \rightarrow K^+K^- \), are used to extract the relative phase between the three-gluon and the one-photon annihilation amplitudes of the \(\psi' \) decays to pseudoscalar meson pairs. It is found that a relative phase of \((-82 \pm 29)^\circ\) or \((+121 \pm 27)^\circ\) can explain the experimental results.

A similar analysis of the \(J/\psi \) data sample yields an improved measurement of the \(J/\psi \rightarrow K_S^0 K_L^0 \) (see Fig. 1) branching fraction: \(B(J/\psi \rightarrow K_S^0 K_L^0) = (1.82 \pm 0.04 \pm 0.13) \times 10^{-4} \), which is more than 4\(\sigma \) larger than the world average. Comparing with the corresponding branching fraction for \(\psi' \rightarrow K_S^0 K_L^0 \), one gets \(Q_{\psi} = \frac{B(\psi' \rightarrow K_S^0 K_L^0)}{B(J/\psi \rightarrow K_S^0 K_L^0)} = (28.8 \pm 3.7)\% \). This result indicates that \(\psi' \) decays is enhanced by more than 4\(\sigma \) relative to the “12% rule” expected from pQCD, while for almost all other channels where the deviations from the “12% rule” are observed, \(\psi' \) decays are suppressed.

The violation of the “12% rule” in \(K_S^0 K_L^0 \) mode is explained in Ref. in the S- and D-wave mixing model of the \(\psi' \) state. In this scenario, the \(\psi(3770) \), also an S- and D-wave mixed charmonium state will have a decay branching fraction to \(K_L^0 K_L^0 \) between \((0.12 \pm 0.07) \times 10^{-5}\) and \((3.8 \pm 1.1) \times 10^{-5}\). This need to be tested with the large \(\psi(3770) \) data samples at CLEOc and BESIII.

3 Observation of \(\psi' \rightarrow \text{Vector Tensor} \)

Four Vector Tensor (VT) decay channels \(\psi' \rightarrow \omega f_2(1270) \rightarrow \pi^+\pi^-\pi^0, \rho_2(1320) \rightarrow \pi^+\pi^-\pi^0, K^*(892)^0 K^*(1430)^0 + c.c., \phi f_2(1525) \rightarrow K^+K^-K^+K^- \) are investigated to test the pQCD “12% rule”. Previous BESI results on these channels reveal that these VT decay modes are suppressed compared to the perturbative QCD prediction. However, the measurements, using about \(4 \times 10^6 \) \(\psi' \) events, determined only upper limits or branching fractions with large errors. These analyses are updated with \(14 \times 10^6 \) \(\psi' \) events, and signals of all these four channels are observed. The statistical significance for all four channels are larger than 3\(\sigma \); those for \(\omega f_2(1270) \) and \(K^*(892)^0 K^*(1430)^0 + c.c. \) are larger than 5\(\sigma \). Table 1 summarizes the results of the four branching fraction measurements, as well as the corresponding branching fractions of \(J/\psi \) decays, and the ratios of the \(\psi' \) to \(J/\psi \) branching fractions. All four VT decay modes are suppressed by a factor of 3 to 5 compared with the pQCD expectation.

134
Table 1: Branching fractions measured for $\psi' \rightarrow Vector\ Tensor$. Results for corresponding J/ψ branching fractions are also given as well as the ratio $Q_x = \frac{B(\psi' \rightarrow X)}{B(J/\psi \rightarrow X)}$.

X	N_{obs}	$\epsilon(\%)$	$B(\psi' \rightarrow X) \times 10^{-4}$	$B(J/\psi \rightarrow X) \times 10^{-4}$	$Q_x(\%)$
ω_2	62 ± 12	4.25 ± 0.10	2.05 ± 0.41 ± 0.38	4.3 ± 0.6	4.8 ± 1.5
ρ_0	112 ± 31	6.42 ± 0.06	2.55 ± 0.73 ± 0.47	10.9 ± 2.2	2.3 ± 1.1
K^*T_2	93 ± 16	16.2 ± 0.2	1.86 ± 0.32 ± 0.43	6.7 ± 2.6	2.8 ± 1.3
$d'f_2$	19.7 ± 5.6	14.8 ± 0.2	0.44 ± 0.12 ± 0.11	1.23 ± 0.21	3.6 ± 1.5

4 Analysis of $\psi' \rightarrow \gamma\gamma J/\psi$

$\psi' \rightarrow \pi^0 J/\psi$, $\eta J/\psi$ and $\gamma_{\chi_c1,2}$ decay branching ratios are determined by measuring $\gamma\gamma J/\psi$ $J/\psi \rightarrow e^+e^-$ or $\mu^+\mu^-$ final states. The results are shown in Table 2.

Channel	$\gamma\gamma J/\psi$	$\eta J/\psi$		
Final state	$\gamma e^+ e^-$	$\gamma \mu^+ \mu^-$	$\gamma e^+ e^-$	$\gamma \mu^+ \mu^-$
$\BR(\%)$	0.139 ± 0.020 ± 0.012	0.147 ± 0.019 ± 0.013	2.91 ± 0.12 ± 0.21	3.06 ± 0.14 ± 0.25
Combine BR (\%)	1.91 ± 0.14 ± 0.23	2.03 ± 0.15 ± 0.25		

The BES $B(\psi' \rightarrow \pi^0 J/\psi)$ measurement has improved precision by more than a factor of two compared with other experiments, and the BES $\psi' \rightarrow \eta J/\psi$ branching fraction is the most accurate single measurement. The $B(\psi' \rightarrow \pi^0 J/\psi)$ agrees better with the Mark-II result than with the Crystal Ball result, while $B(\psi' \rightarrow \gamma_{\chi_c1,2})$ agrees well with the Crystal Ball results. The measurements are used to test various models in calculating the ψ' decays rates.

5 Test of COM in P-wave charmonium Baryonic decays

Hadronic decay rates of P-wave quarkonium states provide good tests of QCD. The decays $\chi_{cJ} \rightarrow p\bar{p}$ have been calculated using different models, and recently, the decay branching fractions of $\chi_{cJ} \rightarrow baryon$ and anti-baryon pairs were calculated including the contribution of the color-octet fock states. Using the $\chi_{cJ} \rightarrow p\bar{p}$ branching fractions as input to determine the matrix element, the partial widths of $\chi_{cJ} \rightarrow \Lambda\Lambda$ are predicted to be about half of those of $\chi_{cJ} \rightarrow p\bar{p}$, for $J = 1$ and 2. As shown in Table 3, the measurements of $\chi_{cJ} \rightarrow \Lambda\Lambda$ together with the branching fractions of $\chi_{cJ} \rightarrow p\bar{p}$ from the same data sample, indicate that $\chi_{cJ} \rightarrow \Lambda\Lambda$ is enhanced relative to $\chi_{cJ} \rightarrow p\bar{p}$, as compared with the color-octet mechanism calculation.

Table 3: Branching fractions of $\chi_{cJ} \rightarrow \Lambda\Lambda$ and $\chi_{cJ} \rightarrow p\bar{p}$, and $R_\Lambda = \frac{B(\chi_{cJ} \rightarrow \Lambda\Lambda)}{B(\chi_{cJ} \rightarrow p\bar{p})}$.

Final state	$\chicj \rightarrow \Lambda\Lambda (10^{-5})$	$\chi_{cJ} \rightarrow p\bar{p} (10^{-5})$	R_Λ
$\chicj \rightarrow \Lambda\Lambda$	$47^{+14}_{-12} \pm 10$	$26^{+14}_{-6} \pm 6$	$33^{+13}_{-12} \pm 7$
$\chicj \rightarrow p\bar{p}$	$27.1^{+4.3}_{-3.5} \pm 4.7$	$5.7^{+1.5}_{-1.4} \pm 0.9$	$6.5^{+2.1}_{-2.0} \pm 1.0$
R_Λ	1.73 ± 0.63	4.6 ± 2.3	5.1 ± 3.1
Search for ψ' and $J/\psi \rightarrow K_S^0K_S^0$

The CP violating processes $J/\psi \rightarrow K_S^0K_S^0$ and $\psi' \rightarrow K_S^0K_S^0$ are searched for using the J/ψ and ψ' samples. One candidate in each case is observed, in agreement with the expected background level. The upper limits on the branching ratios are determined to be $\mathcal{B}(J/\psi \rightarrow K_S^0K_S^0) < 1.0 \times 10^{-6}$ and $\mathcal{B}(\psi' \rightarrow K_S^0K_S^0) < 4.6 \times 10^{-6}$ at the 95% C.L. The former is much more stringent than the previous Mark-III measurement, and the latter is the first search for this channel in ψ' decays. The current bounds on the production rates are still far beyond the sensitivity needed for testing the EPR paradox, and even farther for CP violation.

Acknowledgments

Thanks my colleagues of BES collaboration who did the good work which are reported here, and thanks Profs. J. Tran Thanh Van and E. Augé for the successful organization of the Recontres.

References

1. J. Z. Bai et al. (BES Collab.), Nucl. Instrum. Methods A 344, 319 (1994).
2. J. Z. Bai et al. (BES Collab.), Nucl. Instrum. Methods A 458, 627 (2001).
3. M. Suzuki, Phys. Rev. D 63, 054021 (2001); J. L. Rosner, ibid. 60, 074029 (1999).
4. J. Jousset et al., Phys. Rev. D 41, 1 (1989); D. Coffman et al., ibid. 38, 2695 (1988); M. Suzuki, ibid. 60, 051501, (1999); L. Köpke and N. Wermes, Phys. Rep. 174, 67 (1989); R. Baldini et al., Phys. Lett. B 444, 111 (1998).
5. P. Wang, C. Z. Yuan and X. H. Mo, Phys. Rev. D 69, 057502 (2004).
6. C. Z. Yuan, P. Wang and X. H. Mo, Phys. Lett. B 567, 73 (2003).
7. J. Z. Bai et al. (BES Collab.), Phys. Rev. Lett. 86, 052001 (2004).
8. J. Z. Bai et al. (BES Collab.), Phys. Rev. D 69, 012003 (2004).
9. K. Hagihara et al. (Particle Data Group), Phys. Rev. D 66, 010001 (2002).
10. J. Z. Bai et al. (BES Collab.), Phys. Rev. D 67, 052002 (2003).
11. P. Wang, X. H. Mo and C. Z. Yuan, hep-ph/0402227.
12. J. Z. Bai et al. (BES Collab.), Phys. Rev. Lett. 81, 5080 (1998) and Phys. Rev. D 67, 052002 (2003).
13. J. Z. Bai et al. (BES Collab.), Phys. Rev. D 69, 072001 (2004).
14. J. Z. Bai et al. (BES Collab.), hep-ex/0403023.
15. T. Himel et al., Phys. Rev. Lett. 44, 920 (1980).
16. M. J. Oreglia et al., Phys. Rev. Lett. 45, 959 (1980); J. Gaiser et al., Phys. Rev. D 34, 711 (1986).
17. G. A. Miller et al., Phys. Rep. 194, 1 (1990); R. casalbuoni et al., Phys. Lett. B 309, 163 (1993); Y. P. Kuang and T. M. Yan, Phys. Rev. D 24, 2874 (1981); Y. P. Kuang et al., ibid. 37, 1210 (1988).
18. M. Anselmino, R. Cancelliere, and F. Murgia, Phys. Rev. D 46, 5049 (1992); M. Anselmino, F. Caruso, and S. Forte, ibid. 44, 1438 (1991); M. Anselmino and F. Murgia, Z. Phys. C 58, 429 (1993).
19. S. M. H. Wong, Eur. Phys. J. C 14, 643 (2000).
20. J. Z. Bai et al. (BES Collab.), Phys. Rev. D 67, 112001 (2003).
21. J. Z. Bai et al. (BES Collab.), hep-ex/0401011.
22. J. Z. Bai et al. (BES Collab.), Phys. Lett. B 589, 7 (2004).
23. R. M. Baltrusaitis et al., Phys. Rev. D 32, 566 (1985).
24. A. Einstein, B. Podolsky and N. Rosen, Phys. Rev. 47, 777 (1935).
25. M. Roos, "Test of Einstein Locality", HU-TFT-80-5 (revised), Nov. 1980.