Draft Genome Sequence of *Hymenobacter* sp. Strain IS2118, Isolated from a Freshwater Lake in Schirmacher Oasis, Antarctica, Reveals Diverse Genes for Adaptation to Cold Ecosystems

Hyunmin Koo,a Travis Ptacek,b Michael Crowley,c Ashit K. Swain,4 John D. Osborne,d Asim K. Bej,a Dale T. Andersen,a

Department of Biology,a Department of Microbiology,b and Hefflin Center for Genomic Sciences,c University of Alabama at Birmingham, Birmingham, Alabama, USA; Geological Survey of India, Antarctic Division, Faridabad, India;4 Carl Sagan Center, SETI Institute, Mountain View, California, USA.

Hymenobacter sp. IS2118, isolated from a freshwater lake in Schirmacher Oasis, Antarctica, produces extracellular polymeric substance (EPS) and manifests tolerance to cold, UV radiation (UVR), and oxidative stress. We report the 5.26-Mb draft genome of strain IS2118, which will help us to understand its adaptation and survival mechanisms in Antarctic extreme ecosystems.

Received 2 July 2014 Accepted 16 July 2014 Published 7 August 2014 Citation Koo H, Ptacek T, Crowley M, Swain AK, Osborne JD, Bej AK, Andersen DT. 2014. Draft genome sequence of *Hymenobacter* sp. strain IS2118, isolated from a freshwater lake in Schirmacher Oasis, Antarctica, reveals diverse genes for adaptation to cold ecosystems. Genome Announc. 2(4):e00739-14. doi:10.1128/genomeA.00739-14.

© 2014 Koo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license. Address correspondence to Hyunmin Koo, khmkhm87@uab.edu.

Hymenobacter sp. IS2118, isolated from a seasonally ice-covered freshwater lake (L43) in Schirmacher Oasis, Antarctica, is a psychrotolerant, Gram-negative, red-pigmented bacterium that thrives in the Antarctic environment, which is extremely cold and dry and has high levels of solar UV radiation (UVR) (1). *Hymenobacter* sp. have been previously reported to manifest various metabolic capabilities pertaining to their resistance to oxidative stress (2), such as production of copious amounts of extracellular polymeric substance (EPS) (3) and synthesis of unique UVR-protective 2′,6′-hydroxy-carotenoid pigments (4), which have potential applications in biotechnology and biomedicine (5, 6).

We describe here a draft genome of *Hymenobacter* IS2118 to elucidate the key metabolic and stress-tolerance genes relating to the survival of these organisms in extreme environments. The genomic DNA from IS2118 cultures was extracted using a MoBio PowerSoil DNA purification kit. The genome was sequenced on an Illumina Miseq instrument (250-bp paired-end reads), producing 5,420,359 reads. The adapter sequences were checked by FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and then trimmed by Trimmomatic (7). The trimmed sequences were *de novo* assembled using ABySS 1.3.6 (8). After iterative testing of k-mer lengths, we selected an assembly (k-mer length, 155) with 199 contigs with sizes ranging from 162 bp to 155,115 bp (total length, 5,262,580 bp). GC content was 60.7%, with a read depth of 553×.

We annotated the assembled genome using Rapid Annotation using Subsystem Technology (RAST) (9). We used RnAmmer (10), tRNAscan-SE (11), and ARAGORN (12) databases and found 57 predicted RNAs, including 1 tRNA operon, 45 tRNAs, 1 transfer-messenger RNA (tmRNA), and 10 miscellaneous RNAs. The RAST result showed 4,821 protein-coding genes (coding sequences [CDSs]), including 1,360 known and 3,461 unknown subsystems.

We also found 63 stress-responsive genes, including 36 in oxidative, 7 in osmotic, 6 in periplasmic stress, 4 in cold shock (3 cspA and 1 cspG), and 10 in detoxification categories. Additionally, we identified 131 genes within the cell wall and capsule category, including 44 associated with EPS, 27 associated with Gram-negative cell wall components, and 60 under no subcategory. Also, we found 54 genes for isoprenoid pigment biosynthesis (11 carotenoids) and 51 genes related to DNA repair (UvrABC system, recA, and uvrD), 18 genes related to multidrug resistance (MDR) efflux pump activities (ABC transporter, multidrug and toxin efflux [MATE] family of MDR, and macrolide-specific macA efflux pump), 10 prophages (3 phage tails, 3 replications, and 4 lysis proteins), 9 restriction-modification systems, 1 YcfH DNase, 3 outer membrane nucleases, 1 secondary metabolite (phenylpropanoid apigenin derivative), and 1 pathogenic island close to the *Listeria* LIPI-1 gene cluster, as well as genes for the persister cell phenotype (*hipA* and *sulA*). Interestingly, the IS2118 genome harbors 3 teichoic and lipoteichoic acid biosynthesis genes, which are characteristically found in Gram-positive bacteria and were previously reported to have cryoprotective roles in subzero temperature environments (13). Additionally, secondary metabolites were found through antiSMASH (14), giving a 7-gene cluster (4 bacteriocin, 2 terpene, and 1 mixed terpene/polyketide synthase). The genome of IS2118 revealed a suite of diverse stress-responsive and pigment-producing genes, along with genes typically found in Gram-positive bacteria, which will enable us to better understand the survival mechanisms of this bacterium in cold ecosystems and its importance in biotechnology and biomedicine.

Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited in DDBJ/ENA/GenBank under the accession no. JNLX00000000. The version described in this paper is the first version, JNLX01000000.

ACKNOWLEDGMENTS

We thank the UAB Hefflin Center for Genomic Sciences for the next-generation sequencing, UAB Cheaha HPC and HTC grid for NGS data analyses, and Katherine D. V. Hughes and Matthew Pace of UAB CAS IT for computer support. We are grateful to J. N. Pritzker and Lisa Lanz of the Tawani Foundation, Marty Kress of VCSI, Inc., and fellow team members
for their support during the expedition. Antarctic field logistics support was provided by the Antarctic Indian Maitri Station and the Antarctic Logistics Centre International (ALCI), Cape Town, South Africa.

The Antarctic expedition was supported by the Tawani Foundation of Chicago, NASA’s Exobiology and Astrobiology Programs, Lorne Trottier of the Trottier Family Foundation, and the Arctic and Antarctic Research Institute, Russian Antarctic Expedition. This research was also supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under award number UL1TR00165.

REFERENCES

1. Mojib N, Huang J, Hoover RB, Pikuta EV, Storrie-Lombardi M, Sattler B, Andersen D, Bej AK. 2009. Diversity of bacterial communities in the lakes of Schirmacher Oasis, Antarctica. Proc. SPIE 7441. http://dx.doi.org/10.1117/12.831289.

2. Klassen JL, Foght JM. 2011. Characterization of Hymenobacter isolates from Victoria Upper Glacier, Antarctica, reveals five new species and substantial nonvertical evolution within this genus. Extremophiles 15:45–57. http://dx.doi.org/10.1007/s00792-010-0336-1.

3. Baker MG, Lalonde SV, Konhauser KO, Foght JM. 2010. Role of extracellular polymeric substances in the surface chemical reactivity of Hymenobacter aerophilus, a psychrotolerant bacterium. Appl. Environ. Microbiol. 76:102–109. http://dx.doi.org/10.1128/AEM.02006-09.

4. Klassen JL, Foght JM. 2008. Differences in carotenoid composition among Hymenobacter and related strains support a tree-like model of carotenoid evolution. Appl. Environ. Microbiol. 74:2016–2022. http://dx.doi.org/10.1128/AEM.02306-07.

5. Jung JH, Yang HY, Jeong S, Joe MH, Cho Y-J, Kim MK, Lim S. 2014. Complete genome sequence of Hymenobacter swuensis, an ionizing-radiation resistant bacterium isolated from mountain soil. J. Biotechnol. 178:65–66. http://dx.doi.org/10.1016/j.jbiotec.2014.03.015.

6. Gabani P, Singh OV. 2013. Radiation-resistant extremophiles and their potential in biotechnology and therapeutics. Appl. Microbiol. Biotechnol. 97:993–1004. http://dx.doi.org/10.1007/s00253-012-4642-7.

7. Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B. 2012. RobiRNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res. 40:W622–W627. http://dx.doi.org/10.1093/nar/gks540.

8. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. 2009. ABYSS: a parallel assembler for short read sequence data. Genome Res. 19:1117–1123. http://dx.doi.org/10.1101/gr.089532.108.

9. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil KL, Paarmann D, Paccanari T, Parrello B, Pusch GD, Reich C, Stevens R, Yassiev O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: Rapid annotations using subsystems technology. BMC Genomics 9:75. http://dx.doi.org/10.1186/1471-2164-9-75.

10. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35:3100–3108. http://dx.doi.org/10.1093/nar/gkm160.

11. Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25:955–964. http://dx.doi.org/10.1093/nar/25.5.0955.

12. Laslett D, Canback B. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32:11–16. http://dx.doi.org/10.1093/nar/gkh152.

13. Rice CV, Harrison W, Kirkpatrick K, Brown ED. 2009. Cryoprotection from bacterial teichoic acid. Proc. SPIE 74410. http://dx.doi.org/10.1117/12.829981.

14. Medema MH, Blin K, Cimermanic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R. 2011. antiSMASH: rapid identification, annotation and analysis of secondary metabolism biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39:W339–W346. http://dx.doi.org/10.1093/nar/gkr466.