COMPARISON OF HINODE/XRT AND RHESSI DETECTION OF HOT PLASMA IN THE NON-FLARING SOLAR CORONA

Fabio Reale1,4, James M. McTiernan2, and Paola Testa3
1 Dipartimento di Scienze Fisiche & Astronomiche, Università di Palermo, Sezione di Astronomia, Piazza del Parlamento 1, 90134 Palermo, Italy
2 Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450, USA
3 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA

Received 2009 July 6; accepted 2009 September 9; published 2009 September 25

Abstract

We compare observations of the non-flaring solar corona made simultaneously with Hinode/XRT and RHESSI. The analyzed corona is dominated by a single active region on 2006 November 12. The comparison is made on emission measures. We derive emission measure distributions versus temperature of the entire active region from multifilter XRT data. We check the compatibility with the total emission measure values estimated from the flux measured with RHESSI if the emission comes from isothermal plasma. We find that RHESSI and XRT data analyses consistently point to the presence of a minor emission measure component peaking at log T ∼ 6.8–6.9. The discrepancy between XRT and RHESSI results is within a factor of a few and indicates an acceptable level of cross-consistency.

Key words: Sun: corona – Sun: X-rays, gamma rays

1. INTRODUCTION

Nanoflares in multistranded loops are among the best candidates to explain the heating of the confined solar corona. The existence of nanoflares is still under debate, and a strong evidence in support of nanoflares would be the detection of ∼10 MK plasma (Cargill 1995) in the quiescent corona. Recent observations suggest that such a hot plasma may indeed be present at low levels in non-flaring active regions (Zhitnik et al. 2006; Urnov et al. 2007; Patsourakos & Klimchuk 2008; McTiernan 2009; Schmelz et al. 2009).

The X-Ray Telescope (XRT; Golub et al. 2007) on board the Hinode mission (Kosugi et al. 2007) is sensitive in the energy band from ∼0.15 to more than 3 keV and can detect emission from plasma with temperatures from ∼1 to several tens of MK. Multifilter, high-sensitivity, and high-resolution observations made with the XRT have shown evidence that hot plasma may be indeed widespread in active regions and provide even more support to the nanoflare scenario (Reale et al. 2009).

Such a hot plasma component appears to be anyhow a minor contribution to the overall budget of the X-ray emitting quiescent corona and therefore the evidence may be easily affected by systematic errors, and will continue to need further support from independent data and analysis. An important testing ground becomes the cross-check with other instruments able to detect such a hot component.

The RHESSI spacecraft can observe solar X-rays and γ-rays in the energy range from 3 keV to approximately 17 MeV and can detect emission from plasmas with temperatures approximately as low as 5 MK and above. It has been designed especially to observe flares and therefore its sensitivity to the quiescent corona is limited both because of the low flux and of the temperatures close to the lower boundary. A recent systematic analysis of RHESSI data has detected the usual presence of high-temperature solar emission (McTiernan 2009).

XRT and RHESSI have overlapping energy bands just in the range of interest and provide an important opportunity to test further the hot tail of the plasma emitting in the soft X-ray band. In the present work, we compare the emission detected with RHESSI and that detected with Hinode/XRT from the Sun on 2006 November 12 and check for compatibility.

2. DATA ANALYSIS

2.1. XRT Data

We consider the same XRT data as in Reale et al. (2009; see also Reale et al. 2007) and take their results as basic for the present work. The field of view (512 × 512 arcsec2) includes an active region (AR10923) observed close to the Sun center on 2006 November 12. In the following, we will assume that the active region is the dominant contributor to the X-ray emission at that time (Figure 1). The filters used were A0 poly (F1), C0 poly (F2), Be_thin (F3), Be_med (F4), and Al_med (F5), with exposure times of 0.26 s, 0.36 s, 1.44 s, 8.19 s, and 16.38 s, respectively. F1 and F2 are sensitive mostly in the 0.2–3 keV energy band, F3 in the 0.6–3 keV band, F4 in the 0.8–3 keV band, and F5 in the 0.8–2 keV band (Golub et al. 2007). The selected data set covers one hour, starting at 13:00 UT, and the time interval between one exposure and the next in the same filter is about five minutes (12 images in each filter). The images were averaged over the whole hour, to improve for signal-to-noise ratio, and co-aligned with a cross-correlation technique.

The analysis in Reale et al. (2009) derived information about the global thermal structure of the active region both spatially resolved and along the line of sight. This is obtained by combining the information coming from the data in all filters. In particular, temperature and emission measure maps, i.e., single values for each pixel, are obtained for a given filter ratio. This is done for several filter ratios. Each filter ratio samples the thermal information in a slightly different way and therefore, in the end, a multiple, although limited, sampling of the emission measure distribution along the line of sight is available for each pixel. The hardest filter ratio F4/F5 gives information on the hot component of the emission and the soft filter ratios (e.g., F5/F1) on the cooler component. Then it has been summed up the emission measures of all pixels falling in the same temperature bins, building an emission measure distribution versus temperature for each considered filter ratio. The next steps were aimed at deriving the underlying “parent” emission measure, structured also along the line of sight, able to yield the observed...
Our analysis here takes the distinct but similar parent emission measures obtained for regions SH and HH as starting points. Our final target is to check the compatibility of the temperature structure obtained from Hinode/XRT data with the one obtained from RHESSI. To accomplish this, we need to determine the emission measure distribution of the entire active region. We have found it very difficult to obtain this goal with the same approach as pursued separately for regions HH and SH, i.e., with a Monte Carlo simulation randomizing a single parent EM(T) distribution. This simply means that the description of the entire active region needs a more complex randomization pattern. We have realized that, for our purposes, it is enough to extrapolate the results obtained for the two subregions. We have then decided to scale independently the two-parent EM(T) distributions, and to find for each of them the best possible match between the related output EM(T) distributions filtered through the filter responses and the ones derived from the observation for the entire active region. The advantage of this approach is also that the difference between the two scaled parent distributions provides an order of the overall error. The scaling has been performed simply with a single multiplication factor on the whole parent EM(T). The goodness of matching has been measured differently for the two-parent EM(T) distributions, due to the qualitative difference between the output EM(T)’s.

More specifically, we have scaled the parent EM(T) of region HH such that the output EM(T) obtained from the hardest filter ratio F4/F5 matches the hot part of the corresponding F4/F5 output EM(T) obtained for the entire active region (see Figure 3(a)). We obtain a factor of 5 with a sensitivity of 0.5. The output EM(T)’s of region HH lack completely the hot component. Then, we have scaled the parent EM(T) of region SH such that the total output EM(T) obtained from one of the soft filter ratios matches the total output EM(T) obtained for the entire active region. With a factor of 6.5 (with a sensitivity of 0.5), the total EM(T)’s differ by less than 5% for both ratios F5/F1 and F4/F1.

We take these two scaled parent EM(T)’s for comparison with results obtained from RHESSI. We point out that ours is not a proper differential emission measure (DEM) reconstruction, rather a forward modeling in which we use simplified EM(T) functions. This is anyway a sensible approach also considering that the temperature resolution of imaging instruments such as XRT is intrinsically limited and not able to constrain the very fine details of the DEM. For the sake of clarity, in the figures we have adopted the convention to mark any XRT-observed EM(T) with a line and any parent EM(T) with a histogram.
uncertain by the relatively flat spectrum in the energy range used in the calculation, and the relatively low signal-to-noise level; the excess count rate in this range is only approximately 50% of the background count rate. Therefore, in order to compare the RHESSI and Hinode/XRT results, we have put the RHESSI results under a different form.

From the flux measured with RHESSI, we have derived the emission measure value as if the emission is entirely from an isothermal plasma volume. We have done this for temperatures $6.1 \leq \log T \leq 7.1$. This is a temperature range that is appropriate for the XRT, but only overlaps partly with the temperature range of RHESSI observations ($\log T \geq 6.8$).

2.3. Comparison RHESSI–XRT

In Figure 3(b), we have compared the RHESSI emission measure values as computed in Section 2.2 with the scaled parent EM(T) distributions obtained from Hinode/XRT as in Section 2.1. The histograms in Figure 3(b) are the parent EM(T) distributions which correspond to the distributions measured with the soft and hard XRT filter ratios in Figure 3(a).

Of course, strictly speaking, in Figure 3(b) the values related to the XRT are not directly comparable with those related to RHESSI. For the XRT we show temperature-resolved emission measure distributions, while for RHESSI we show integrated values, each of which should be compared with the integrated XRT histograms. We think that the comparison cannot be made more detailed than that, because we are not able to resolve the temperature distribution from RHESSI data alone, and we want to maintain the temperature information of the XRT analysis.

Nevertheless, in the logarithmic scale we can afford at least a rough but direct comparison. We see that the emission measure values obtained from RHESSI decrease steeply with temperature. For $\log T \leq 6.8$ they clearly become much higher than the level of emission measure obtained from the XRT, at comparable temperature. This is clearly consistent with the fact that RHESSI is hardly sensitive to plasma below that temperature. On the other hand, the plot shows an overall consistency between the RHESSI values and the hot components derived from the analysis of the XRT data. If we group the entire XRT hot component into a single isothermal component, we would not be too far from the RHESSI values found at $\log T \approx 6.8–6.9$. For instance, for $\log T = 6.8$, RHESSI yields an emission measure $3\pm 2 \times 10^{46}$ cm$^{-3}$ which may be compared to the total emission measure 4×10^{46} cm$^{-3}$ obtained from the XRT for $\log T \geq 6.7$. If any, the XRT hot component appears overestimated with respect to RHESSI result by a factor of a few. A number of factors may help to explain the mismatch. The difference between the XRT parent distributions already shows a range of variation propagated from their derivation. Unknown and systematic calibration errors might easily explain shifts by ≈ 0.1 in $\log T$ and factors of 2–3 in emission measure values. In particular, the calibration of XRT filters is not completely stable yet (Reale et al. 2009), and we are pushing our analysis to the very end of RHESSI sensitivity range, where typically the calibration is less constrained.

3. CONCLUSIONS

In our opinion, Figure 3(b), on the one hand, provides indications about the cross-calibration between the RHESSI and Hinode/XRT and suggests that the two instruments provide overall consistent results, within the limitations of the present analysis. On the other hand, the figure gives a further support...
to the existence of a relatively hot permanent component in the non-flaring solar corona. The details of the plasma thermal distribution are certainly still to be better defined, due to the presence of a number of sources of uncertainties. One major problem arises from the fact that this component results to be intrinsically minor and therefore difficult to detect from the two instruments for different reasons. XRT filters are sensitive to, and therefore dominated by, the cooler and much stronger emission measure component at log $T \sim 6.3–6.4$. For RHESSI, it is instead difficult to detect such a low emission measure component at the lower end of its temperature sensitivity range. Although this work goes in the direction of confirming this finding, further independent evidence is required to put a conclusive word.

We thank H. Hudson for triggering this work, and J. Klimchuk and the anonymous referee for comments and suggestions. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in cooperation with ESA and NSC (Norway). F.R. acknowledges support from Italian Ministero dell’Università e Ricerca and Agenzia Spaziale Italiana (ASI), contracts I/015/07/0 and I/023/09/0. P.T. is supported by NASA contract NNM07AA02C to SAO. J.M. is supported by NASA contract NAS5-98033 and NASA grant NNX08AJ18G.

REFERENCES

Cargill, P. J. 1995, in Infrared Tools for Solar Astrophysics: What’s Next?, ed. J. R. Kuhn & M. J. Penn (Singapore: World Scientific), 17
Golub, L., et al. 2007, Sol. Phys., 243, 63
Kosugi, T., et al. 2007, Sol. Phys., 243, 3
Lin, R. P., et al. 2002, Sol. Phys., 210, 3
McTiernan, J. M. 2009, ApJ, 697, 94
Patsourakos, S., & Klimchuk, J. A. 2009, ApJ, 696, 760
Reale, F., Testa, P., Klimchuk, J. A., & Susanna, P. 2009, ApJ, 698, 756
Reale, F., et al. 2007, Science, 318, 1582
Schmelz, J. T., Saar, S. H., DeLuca, E. E., Golub, L., Kashyap, V. L., Weber, M. A., & Klimchuk, J. A. 2009, ApJ, 693, L131
Smith, D. M., et al. 2002, Sol. Phys., 210, 33
Urnov, A. M., Shestov, S. V., Bogachev, S. A., Goryaev, F. F., Zhitnik, I. A., & Kuzin, S. V. 2007, Astron. Lett., 33, 396
Zhitnik, I. A., Kuzin, S. V., Urnov, A. M., Bogachev, S. A., Goryaev, F. F., & Shestov, S. V. 2006, Solar System Res., 40, 272