Three-dimensional printing in the field of oral and maxillofacial surgery

ABSTRACT
Advanced imaging techniques and modalities coupled with computer-assisted surgical planning and simulation has been in use in the field of medicine. However, it is worth noting that it is now being frequently used for the evaluation and exploration of the craniofacial structures. It had gained ingress in the planning as well as forecasting of the surgical outcomes of oral and maxillofacial surgical interventions. Numerous surgical guides and devices which are tailor-made can be fabricated using three-dimensional (3D) printing technology. The article is intended to put forth an overview of 3D printing technology and its applications in the field of oral and maxillofacial surgery.

Keywords: Orthognathic surgery, reconstructive surgery, three-dimensional printing

INTRODUCTION
It is a well-known fact that a three-dimensional (3D) object can be fabricated in 3D printing by incremental addition of multiple layers of material with the aid of a computer. In the field of medicine, an anatomical area can be fabricated by slicing it into several thin layers and the geometric data are used to build each layer sequentially by the manufacturing equipment. Hence, 3D printing is also popularly recognized as additive manufacturing (AM), rapid prototyping, layered manufacturing, or solid freeform fabrication.1-3

David E. H. Jones in 1974 laid out the concept of 3D printing. However, Charles Hull first engineered 3D printing technology in 1984 and termed it Stereo Lithography.4 3D printers were very expensive and were not readily available. In the 21st century, a significant reduction in the costs of the 3D printers allowed them to be affordable to the general market.5 Following its application in the military, food industry, and arts, it has gained responsiveness in the field of surgery. Brix and Lambrecht (1985) are considered to be the pioneer in the usage of Stereo Lithography in the field of oral and maxillofacial surgery.6 Mankovich et al. employed in craniofacial deformities to simulate the bony anatomy of the cranium using computed tomography (CT).7

ADVANTAGES AND DISADVANTAGES
3D printing noticeably has an edge over conventional subtractive manufacturing techniques. Its superior efficiency, passivity, flexibility, and superior material utilization are its benefits over the other techniques.8 The biggest shortcoming with 3D printing includes its high cost9 [Figure 1].

DS Yashavanth Kumar, Sunil Dutt Christopher1, Harsha Mallegowda2, Viral Dave3, Sunil Kumar Gulia4, Rishabh Bhanot5
Departments of Oral and Maxillofacial Surgery and 1Oral Implantology, CODS, Davangere, Karnataka, 2Department of Oral Pathology, Lenora Institute of Dental Sciences, Rajahmundry, Andhra Pradesh, 3Department of Oral and Maxillofacial Surgery, Jyoti Kendra General Hospital, Ludhiana, Punjab, India

Address for correspondence: Dr. Yashavanth Kumar DS, Department of Oral and Maxillofacial Surgery, CODS, Davangere, Karnataka, India.
E-mail: printingmodel@gmail.com

Received: 06 April 2020, Revised: 16 December 2020, Accepted: 04 January 2021, Published: 20 August 2022

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Yashavanth Kumar DS, Christopher SD, Mallegowda H, Dave V, Gulia SK, Bhanot R. Three-dimensional printing in the field of oral and maxillofacial surgery. Natl J Maxillofac Surg 2022;13:S19-23.
CLINICAL APPLICATIONS

Literature reveals that 3D-printed objects that are used for clinical applications can be grouped into five categories. They can be employed for obtaining anatomic models, surgical guides, occlusal splints, patient-specific implants, facial epithesis [Figure 2].

Considering the fact that 3D printing can discriminate traumatic and pathologic defects more effectively, it can play a pivotal role in the diagnosis and treatment planning of clinical scenarios pertaining to the maxillofacial region. The adjunctive role played by 3D printing facilitates precise decision-making. A huge advantage with 3D printing is its capability to provide spatial relationships to surrounding anatomical structures, particularly when one encounters pathologies in the maxillofacial region.[10] The critical information obtained by 3D printing can minimize operative complications.[11] 3D printing can produce models rapidly with acceptable accuracy and structural details to allow for better outcomes and reduced operating durations.[12]

3D customized reconstruction of orbital wall defects with titanium mesh can be used in patients with orbital wall fractures. In the pre-operative phase, titanium mesh or plate can be adapted precisely on the 3D printed replica which would aid in improving the precision of the procedure as well as shortening the duration of surgical procedure.[13,14] Post-operative enophthalmos or diplopia which is frequently encountered when there is the inaccurate reconstruction of orbital walls can be avoided by using 3D printed titanium mesh which is fabricated using the contralateral orbital anatomy as a guide.

S. No	Advantages
1.	Aids in preoperative counseling with patients
2.	Aid in gaining informed consent
3.	Can reduce duration of the surgical intervention
4.	Aid in obtaining a better morphological outcome in mandibular reconstruction

S. No	Disadvantages
1.	Surgical interventions require larger surgical approaches due to the bulk of the guides
2.	Planning time coupled with the printing time may at times take several weeks
3.	In dealing aggressive tumors, resection margins require reevaluated before using the cutting guides
4.	Expensive

Figure 1: Advantages and disadvantages of three-dimensional printing

Figure 2: Clinical applications of three-dimensional printing
3D printing technology shows some clinically noticeable inaccuracies that need to be eliminated in the diagnosis and treatment planning for orthognathic surgeries.\[^{13}\] 3D models aid in accomplishing preplanned tasks for performing accurate osteotomies and accurate positioning of the malpositioned jaw. Printing of cutting guides for osteotomies and 3D printed patient-specific fixing plates for accurate positioning of jaws, greatly reduce mistakes made due to human error.\[^{14}\] Similarly, literature is replete with articles indicating that better esthetic and functional outcomes can be accomplished with the aid of 3D printing in comparison to the traditional prosthetics. AM is mainly used for hard-tissue reconstruction. However, it is useful in soft-tissue contouring such as auricular reconstruction in patients using the contralateral ear. There are documented scientific papers on the fabrication of prosthetic nose, ears, eyes, and face in the recent past with aid of 3D printing.\[^{17-19}\]

Inferences

Numerous authors have advocated that there is an increase in precision and a reduction of the surgical time even though this parameter has seldom been precisely evaluated or measured. Hanasono and Skoracki indicated that 3D printing can reduce surgery duration up to 1.4 h.\[^{24}\] Taritano et al. demonstrated that the use of 3D printing enabled their them to obtain a better morphological outcome in mandibular reconstruction.\[^{20}\] Seruya et al. concluded that microsurgical craniofacial reconstruction using a computer-assisted fibula flap technique yielded significantly shorter ischemia times compared with conventional techniques.\[^{26}\] The use of 3D printed occlusal splints enables optimal positioning of bone segments, in accordance with pre-operative planning, in orthognathic surgery.\[^{27}\] Several studies that compared preoperative planning on virtual models and the real post-operative X-ray controls revealed that surgical guides permit a gain in precision, whether it is in reconstructive surgery, in orthognathic surgery or in dental implant surgery.\[^{28,29}\]

Literature shows that with 3D printing in addition to generating custom-made scaffolds in the desirable dimensions it is also possible to adjust the properties of these materials with regard to porosity, surface texture, and design. It is possible to add osteoinductive factors, like bone morphogenetic proteins for stimulating osteogenic differentiation to increase the integration of bone tissue into the printed scaffolds for better cell adhesion, proliferation, and vascularization.\[^{30-33}\]

It is also noteworthy that there are definitely some limitations with 3D printing. Surgical interventions may require larger surgical approaches due to the bulk of the guides and this may lead to higher morbidity.\[^{32}\] Planning time coupled with the printing time may at times take several weeks if given to the company and may delay the surgical intervention, which may be detrimental particularly in cancer. In dealing with fast-growing tumors, resection margins should always be re-evaluated before using the cutting guides.\[^{32}\]

In addition to the patients, medical trainees and residents can also benefit from 3D printed models.\[^{33}\] In pre-operative counseling with patients, it is easier for the operator to explain the details pertaining to surgical interventions, and therefore, 3D printed models can aid in gaining informed consent.\[^{33}\] CT/magnetic resonance imaging scans that are generally used to explain the surgical procedure for the patients are usually hard to understand particularly for uneducated patients. Because the specialty of oral and maxillofacial surgery deals with procedures that are life-saving, as well as those that enhance the quality of life by providing better function and esthetics 3D printing can be considered as a viable option.\[^{34}\]
CONCLUSION

The use of 3D printing models in the field of oral and maxillofacial surgery is increasing, as it provides for a much safer, less traumatic, and time-consuming treatment modality. In addition, it increases the standard of care of patients and hence, these techniques should be adapted more and more by clinicians. 3D printed replicas are considered to be more precise and cost-effective and this method may also eliminate the need for animal studies. As the technology develops, there will be an increase in its versatility and ease in its usage. Hence, it is advisable to become familiar with 3D printings. However, the author of the present article advocates that these benefits should however be evaluated more precisely by comparison with more conventional techniques on larger case series. The improved precision does not only come from the printed object itself but also from the pre-operative planning and its execution that is much more demanding than in conventional techniques.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J 2015;219:521-9.
2. Liu Q, Leu MC, Schmitt SM. Rapid prototyping in dentistry: Technology and application. Int J Adv Manuf Technol 2006;29:317-35.
3. Jain R, Supriya, Bindra S, Gupta K. Recent trends of 3-D printing in dentistry – A review. Ann Prosthos Restor Dent 2016;2:101-4.
4. Holzmann P, Breitenecker RJ, Soomro AA, Schwarz EJ. User entrepreneur business models in 3D printing. J Manufacturing Technology Management 2017:28:75-94.
5. Muho AB, Ishengoma FR. 3D printing: Developing countries perspectives. Int J Comp App 2014;104:30.
6. Brix F, Hеббингхаус D, Meyer W. Verfahren und Vorrichtung für den Modellbau im Rahmen der orthopädischen und traumatologischen Operationsplanung. Röntgen Praxis 1985;38:290-2.
7. Mankovich NJ, Cheeseman AM, Stoker NG. The display of three-dimensional anatomy with stereolithographic models. J Digit Imaging 1990;3:200-3.
8. Ying B, Ye N, Jiang Y, Liu Y, Hu J, Zhu S. Correction of facial asymmetry associated with vertical maxillary excess and mandibular prognathism by combined orthognathic surgery and guiding templates and splints fabricated by rapid prototyping technique. Int J Oral Maxillofac Surg 2015;44:1330-6.
9. Prasad S, Kader NA, Sujatha G, Raj T, Patil S. 3D printing in dentistry. J 3D Print Med 2018;2:89-91.
10. Arvier J, Barker T, Yau Y, D’Urso P, Atkinson R, McDermant G. Maxillofacial biomod-elling. Br J Oral and Maxillofac Surg 1994;32:276-83.
11. Gerstle TL, Ibrahim AM, Kim PS, Lee BT, Lin SJ. A plastic surgery application in evolution: Three-dimensional printing. Plast Reconstr Surg 2014;133:446-51.
12. Klein GT, Lu Y, Wang MY. 3D printing and neurosurgery – Ready for prime time? World Neurosurg 2013;80:233-5.
13. Mustafa SF, Evans PL, Bocca A, Patton DW, Sugar AW, Baxter PW. Customized titanium reconstruction of post-traumatic orbital wall defects: A review of 22 cases. Int J Oral Maxillofac Surg 2011;40:1357-62.
14. Kozakiewicz M, Elgalal M, Loba P, Komuński P, Arkuszewski P, Broniareczyk-Loba A, et al. Clinical application of 3D pre-bent titanium implants for orbital floor fractures. J Craniomaxillofac Surg 2009;37:229-34.
15. Metzger MC, Hohlweg-Majert B, Schwarz U, Teschner M, Hammer B, Schmelzeisen R. Manufacturing splints for orthognathic surgery using a three-dimensional printer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;105:c1-7.
16. Gupta H, Bhatia S, Arora G. 3D Printing and its applications in oral and maxillofacial surgery. J Surg Allied Sci 2019;1:48-52.
17. Wu G, Zhou B, Bi Y, Zhao Y, Selective laser sintering technology for customized fabrication of facial prostheses. J Prosthett Dent 2008;100:56-60.
18. Sykes LM, Parrott AM, Owen CP, Snaddon DR. Applications of rapid prototyping technology in maxillofacial prosthetics. Int J Prosthodont 2004;17:454-9.
19. Fantini M, De Crescenzio F, Ciocca L. Design and rapid manufacturing of anatomical prosthesis for facial rehabilitation. Int J Inter Des Manuf 2013;7:51-62.
20. Suomalainen A, Stoor P, Mesimäki K, Kontio RK. Rapid prototyping modelling in oral and maxillofacial surgery: A two year retrospective study. J Clin Exp Dent 2015;7:e605-12.
21. Mehra P, Miner J, D’Innocenzo R, Nadershah M. Use of 3-D stereolithographic models in oral and maxillofacial surgery. J Maxillofac Oral Surg 2011;10:6-13.
22. Fowell C, Edmondson S, Martin T, Praveen P. Rapid prototyping and patient-specific pre-contoured reconstruction plate for comminuted fractures of the mandible. Br J Oral Maxillofac Surg 2015;53:1035-7.
23. Cohen A, Laviv A, Berman P, Nashef R, Abu-Tair J. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108:661-6.
24. Hansono M, Skoracki R. 117B: Improving the speed and accuracy of mandibular reconstruction using preoperative virtual planning and rapid prototype modeling. Plast Reconstr Surg 2010;125:80.
25. Tarstiano A, Ciocca L, Scotti R, Marchetti C. Morphological results of customized microvascular mandibular reconstruction: A comparative study. J Craniomaxillofac Surg 2016;44:697-702.
26. Seruya M, Fisher M, Rodriguez ED. Computer-assisted versus conventional free fibula flap technique for craniofacial reconstruction: An outcomes comparison. Plast Reconstr Surg 2013;132:1219-28.
27. Hammoudeh JA, Howell LK, Boutros S, Scott MA, Urata MM. Current status of surgical planning for orthognathic surgery: Traditional methods versus 3D surgical planning. Plast Reconstr Surg Glob Open 2015;3:e307.
28. Mazzoni S, Bianchi A, Schiariti G, Badiali G, Marchetti C. Computer-aided design and computer-aided manufacturing cutting guides and customized titanium plates are useful in upper maxilla wafferless repositioning. J Oral Maxillofac Surg 2015;73:701-7.
29. Bosc R, Hersant B, Carloni R, Niddam J, Bouhassira J, De Kermadec H, Broniarczyk-Loba A, Carloni R, De Kermadec H, Broniarczyk-Loba A, et al. Mandibular reconstruction after cancer: An in-house approach to manufacturing cutting guides. Int J Oral Maxillofac Surg 2017;46:24-31.
30. Tsai KY, Lin HY, Chen YW, Lin CY, Hsu TT, Kao CT. Laser sintered magnesium-calcium silicate/poly-e-caprolactone scaffold for bone tissue engineering. Materials 2017;10:65.
31. Sándor GK, Numminen J, Wolff J, Thesleff T, Miettinen A, Tuovinen VJ, et al. Adipose stem cells used to reconstruct 13 cases
with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med 2014;3:530-40.

32. Louvrier A, Marty P, Weber E, Euvrard E, Chatelain B, Barrabe A, et al. How useful is 3D printing in maxillo-facial surgery? J Stomatol Oral Maxillofac Surg 2017;118:206-12.

33. Malik HH, Darwood AR, Shaunak S, Kulatilake P, Abdulrahman A, Mulki O, et al. Three-dimensional printing in surgery: A review of current surgical applications. J Surg Res 2015;199:512-22.

34. Vadepally AK, Sinha R, Uppada UK, Rama Krishna Reddy BV, Agarwal A. Oral and maxillofacial surgery: Perception of its scope among the medical fraternity and general public. J Cranio Max Dis 2015;4:21-7.