Conceptual aspects of causal networks in an applied context

Azam Yazdani*

Human Genetics Center, UTHealth School of Public Health, 1200 Pressler Street, Suite E-447, Houston, Texas 77030, USA

Abstract

Making causal inference is conceptually straightforward in the setting of a randomized intervention, such as a clinical trial. However, in observational studies, which represent the majority of most large-scale epidemiologic studies, causal inference is complicated by confounding and lack of clear directionality underlying an observed association. In most large-scale biomedical applications, causal inference is embodied in Directed Acyclic Graphs (DAG), which is an illustration of causal relationships (i.e., arrows) among the variables (i.e., nodes). A key concept for making causal inference in the context of observational studies is the assignment mechanism, whereby some individuals are treated and some are not. This perspective provides a structure for thinking about causal networks in the context of the assignment mechanism (AM). Estimation of effect sizes of the observed directed relationships is presented and discussed.

Introduction

Inferring cause-effect relationships among variables is of primary importance in many sciences and is growing in importance as a result of very large datasets in health, and genomics. There are several statistical frameworks underlying causal inference, such as those of Rubin’s potential outcome framework [1, 2], Pearl’s structural equation modeling framework [3], and Dawid’s regime indicator framework [4], that have been established for making causal inference. These frameworks are hardly known to most biomedical researchers or biostatisticians who could by applying them to address real world problems. Large segments of the statistical community and decision makers find it hard to benefit from causal analyses. The main reason, we believe, is not a philosophical barrier about data analysis establishing causality, but rather lack of familiarity with the vocabulary and methods in the field. Undertaking statistical causal inference requires systematic extensions to the standard language of statistics, and this perspective provides a step toward this end.

Among available statistical causal inference frameworks, Pearl’s causal network, which are compatible with structural equation models (SEM) [3], can be seen as a pragmatic approach to solving real world problems, especially in the age of large data sets. [5] has critiqued Pearl’s framework and suggests that it requires additional explicit, methodological, and philosophical justification. The concept of the assignment mechanism developed by Rubin (2005) describes the circumstances by which some individuals are exposed to a treatment of interest and some are not. In this perspective, we first connect causal networks to the concept of the assignment mechanism (AM). Then, we formalize the causal network parameterization using the AM notation. After discussing the concept and notations of causal networks and the AM, we estimate the direct and total effects.

Overview of the assignment mechanism

The questions that motivate most studies in the health, economics, social, and behavioral sciences are causal relationships and not only associations, such as the efficacy of a given drug in a given population. The classical approach for determining such relationships uses randomized experiments where single or a few variables are intervened on. Such intervention experiments, however, are expensive, unethical, or even infeasible. Hence, it is desirable to infer causal effects from so-called observational data obtained by observing a system without subjecting it to interventions. Then, to estimate the effect of a treatment on a response, we need to know how different values of the treatment are assigned. The circumstances by which some individuals are exposed to a treatment of interest and some are not is called the assignment mechanism (AM).

To achieve causal inference, the important data elements include not only the value of the observations but also the reason why one of the possible exposures or treatments has been realized and not others. The notation $AM(K_x)$ is introduced as the third element (in addition to treatment and response value) and is called the causal element [6]. The practitioners need to understand the underlying mechanisms by which some individuals have a certain exposure level and some do not. The knowledge related to response is represented by K_y and is required to identify the AM. In a randomized clinical trial the AM is straightforward (i.e., the treatment assignment mechanism is unrelated to response) and presumably under the control of the investigators. In an observational study, many factors (covariates) may influence the AM but only some of them are related to response. Variables that influence both the outcome and the AM are termed confounders [7]. The aim of considering the AM is to identify individuals with similar covariate distributions as if there were a randomization. In an epidemiologic study, this is equivalent to matching [8]. In a data analysis setting, this is equivalent to SEM [3], where the AM is understood and modeled.
Formalizing the AM in the context of causal networks compatible with the SEM is more practical in the age of big data. Therefore, in this study, we formalize the AM within the context of statistical causal networks.

Causal networks are illustrations of the AM, the data generating process underlying the study observations, and provide a pragmatic approach to distinguish confounders of the AM from among the covariates, and allows one to analyze observational data as if an intervention was carried out. To the analyst, causal graphs are illustrations of the data generating process [3] (i.e. assignment mechanism [2] that underlie the observations. It is important to understand and take into account that the model in a causal setting is conditioned explicitly or implicitly on illumination of assignment mechanism.

Assume the assignment mechanism over p variables $Y_1, ..., Y_p$ is formalized by a network, here a Directed Acyclic Graph (DAG). The distribution P over these variables is:

$$P(Y_1, ..., Y_p) = \prod_{j=1}^{p} P(Y_j | Y_{pa(j)})$$

where $pa(j)$ denotes the set of predecessors of node j and are directly connected to j in the network, called parents of node j. For $i \in pa(j)$, there is $i \rightarrow j$ in the DAG or $Y_i \rightarrow Y_j$. Note that the formula in (1) represents the Markov properties over these set of variables compatible with the underlying DAG, an illustration of the assignment mechanism that governs over this set of variables. This is a strong assumption in application of DAGs and can be represented in (1) as

$$P(Y_1, ..., Y_p | AM(K_p)) = \prod_{j=1}^{p} P(Y_j | Y_{pa(j)})$$

By conditioning factorized distributions on the causal element $AM(K_p)$, we explicitly represent that the AM is taken into account and the work can, therefore, be considered to be within a causal setting.

Assume the AM over four variables X, Y, Z and H is illustrated in Figure 1. The variable of interest is H, and we are typically investigating the influence of the other variables on H. To factorize the joint distribution over these 4 variables, we first identify potential confounders (Figure 1).

Variables X, Y, Z are all called covariates. However, the effect of X reaches to H only through Z and Y. Therefore, X is not a confounder of the value of H. The set of confounders for variable H is $C(H) = \{Y, Z\}$. The interested reader is referred to the backdoor criterion in [3] for further information. The joint probability over these variables are then factorized as

$$P(H, Y, Z, X | AM(K_p)) = P(H | Y, Z)P(Z | X)P(Y | X)P(X)$$

Without conditioning on the causal element, $AM(K_p)$, such a unique factorization is not possible [9,10].

Formally Representation of Causal Networks

Assume a DAG $D = (v, e)$, where v is a set of nodes with p elements, corresponds a set of p random variables with joint Gaussian distribution and e is a set of edges which connect the nodes and represent the conditional dependencies between two corresponding variables. The existence of a directed edge between two nodes shows the direction of effect (the flow of information) between the correspondent variables. The concept of a DAG $D = (v, e)$ depends on the nodes in v and edges in e and any inference depends on the set (v, e). Assume P is a joint probability distribution over variables $Y_1, ..., Y_p$ corresponding with nodes v in D. If $D = (v, e)$ satisfies the Markov condition, the strong assumption in causal inference by DAGs was that governs over this set of variables. This is a strong assumption in application of DAGs and can be represented in (1) as

$$Y_i \perp \{Y_j; i \notin v \land k \in v \land pa(i) | (Y_{pa(i)}, AM(K_p))$$

where Y_i occurs before Y_j and parental set $pa(i)$ denotes the set of parents of node i relatives to AM formalized by $D = (v, e)$.

In SEM and under the assumption of a Gaussian distribution, we can write

$$Y_i | AM(K_p) = \sum_{j=1}^{l} \lambda_{ij} Y_j + U_i,$$

where $U_i \sim N(0,1)$ and is independent of the Y_js in the right side of the model. $\lambda_{ij} \neq 0$ is equivalent with an edge $j \rightarrow i$ in DAG D which is due to compatibility of SEM and AM formalized as the DAG D. Therefore, the coefficients can be interpreted as statistical causal effects. SEM is a deterministic form of probability models or conditional dependencies, where all uncertainties are confined in the variable U.

Given a causal network structure, the goal in this section is to infer edge weights for the directed arrows in the network (the strength of each causal relationship). We first define direct, indirect, and total effects, and then represent the computation by the backdoor criterion [3]. A direct effect is the effect through an immediate path, with no other intervening variables/mediators. Total effect is defined as an effect with or without intermediation of other variables. In Figure 2, the effect of X on Z through path $X \rightarrow Z$ is the direct effect and through path $Y \rightarrow X \rightarrow Z$ is called the indirect effect. The effect X on Z through these two paths is called the total effect. The effect of Y on Z in Figure 2 is only through the direct path $Y \rightarrow Z$. Therefore, the direct and total effects of Y on Z are the same. To obtain this effect, X, in the back-door path $Y \leftarrow X \rightarrow Z$ is called a confounder. In other words, X confounds the assigning mechanism Y on Z since X influences both Y and Z. Recall that the causal network structure in Figure 2 is an illustration of the assignment mechanism over these three variables and all discussions and equations for the effect measurement is given the assignment mechanism illumination.

![Figure 1. The illustration of the assignment mechanism of variable H formalized as a DAG over four variables.](image-url)
(Figure 2) In this structure, variable X has direct effect and indirect effect on variable Z. The latter is via variable Y. Variable Z does not have any effect on variables X and Y. The effect of Y on Z is confounded by X.

To estimate the direct effect of Y on Z, we need to consider the causal element $AM(K_x)$ embodied in the DAG in Figure 2, which illustrates the assignment mechanism behind the observed variables Y and Z. By taking the causal element into account, we see that variation in X causes variation in both Y and Z. To find the effect of Y (and not X) on Z, we first adjust for the effect of X on Y by

$$Y \mid AM(K_x) = \alpha_{y} + \beta_{y}X + e_{yx},$$

and then find the effect of variations in Y on Z by

$$Z \mid AM(K_x) = \alpha_{z} + \gamma e_{yx} + e_{z}.$$

Equation (4) represents the degree to which variable Y is responsible for the variation in Z, regardless of the values of the variable X. Therefore, the coefficient γ is interpreted as the statistical causal effect of Y on Z. However, in the regression of Z on Y

$$Z = \alpha + \lambda Y + e,$$

the coefficient λ shows only the association between Y and Z, since some of the variations in Z attributed to Y is due to the confounder X.

We can estimate the total effect of X on Z by the coefficient β_{zm} in the following equation:

$$Z \mid AM(K_x) = \alpha_{z} + \beta_{z}X + e_{zx}.$$

We estimate the direct effect of X on Z by:

$$e_{z} \mid AM(K_x) = \alpha + \beta X + e,$$

where e_{z} is the residual variation after removing the effect of Y on Z. The coefficient β is interpreted as the direct effect of X on Z. Interested readers are referred to [11-13] for further discussion about causal effect measurement.

Conclusion

We have provided a short and selective perspective of causal inference, including network analysis, the concept of the assignment mechanism, and effect size estimation. A unique aspect of causal inference compared to traditional applied statistics is captured in the concept of the assignment mechanism. To achieve causal inference, the assignment mechanism must be understood and requires close collaboration between analysts and other biomedical scientists. Taking the AM into account, we are able to identify confounders and measure direct and total causal effects. The assignment mechanism, here formalized in a DAG, can be either known a priori or estimated by an algorithm for directed structures. In this perspective, we assumed that the assignment mechanism is known. In the case of known AM, confounders can be identified from the AM and the measurements remain in a causal setting.

Acknowledgement

This work is supported by a training fellowship from the Keck Center for Interdisciplinary Bioscience Training of the Gulf Coast Consortia (Grant No. RP140113).

References

1. Rubin DB (1974) Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies. *Journal of Educational Psychology* 66: 688-701.
2. Rubin DB (2005) Causal inference Using Potential Outcomes: Design, Modeling, Decisions. *Journal of the American Statistical Association* 100: 322-331.
3. Pearl J (2009) Causality: Models, Reasoning, and Inference. Cambridge University Press, New York.
4. Dawid P (2012) The Decision-Theoretic Approach to Causal Inference (pp. 25-42) John Wiley and Sons, Ltd.
5. Dawid AP (2010) Beware of the DAG!. *NIPS Causality: Objectives and Assessments*: 59-86.
6. Yazdani A and Boerwinkle E (2015) Causal Inference at the Population Level. *International Journal of Research in Medical Sciences* 2: 1136-1176.
7. Yazdani A, Boerwinkle E (2015) Causal Inference in the Age of Decision Medicine. *J Data Mining Genomics Proteomics* 6: [Crossref]
8. Rosebaum P (2009) Design of Observational Studies. *Springer Series in Statistics*.
9. Dawid AP (2007) Fundamentals of statistical causality. Research Report 279, Department of Statistical Science, University College London.
10. Lauritzen SL, Dawid AP, Larsen BN, and Leimer HG (1990) Independence Properties of Directed Markov Fields. *Networks* 20: 491-505.
11. Sobel M (2008) Identification of Causal Parameters in Randomized Studies with Mediating Variables. *Journal of Educational and Behavioral Statistics* 33: 230-231.
12. Pearl J (2010) An introduction to causal inference. *Int J Biostat 6: Article 7.* [Crossref]
13. Pearl J (2011) The Causal Foundations of Structural Equation Modeling. Handbook of Structural Equation Modeling. New York: Guilford Press.