SUPPLEMENTARY MATERIAL

New p-Terphenyl and Benzoquinone Metabolites from the Bioluminescent Mushroom Neonothopanus nambi

Watchara Sangsophaa, Ratsami Lekphroma,*, Florian T. Schevenelsa, Weerasak Saksiriratb, Sureeporn Bua-artc, Kwanjai Kanokmedhakula and Somdej Kanokmedhakula

aNatural Products Research Unit, Department of Chemistry and Centre for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
bAgricultural Biotechnology Research Centre for Sustainable Economy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
cPlant Pathology Research Group, Plant Protection Research and Development Office, Department of Agriculture, Bangkok 10900, Thailand

Abstract: Two new p-terphenyls, neonambiterphenyls A and B (1-2), a new benzoquinone, neonambiquinone A (3), together with six known sesquiterpenes (4-9), were isolated from the bioluminescent mushroom \textit{Neonothopanus nambi} PW3. The isolated compounds were identified by mass, IR and spectroscopic analyses (1D and 2D NMR). Compounds 1-3 and 5-7 showed cytotoxicity against cancer cell lines, KB, NCI-H187 and MCF-7 with IC\textsubscript{50} values ranging from 1.45 to 49.31 µg/mL. In addition, compounds 1 and 5 showed cytotoxicity against Vero cells with IC\textsubscript{50} values of 38.72 and 32.90 µg/mL, respectively.

Key words: Neonothopanus nambi; p-terphenyl; benzoquinone; sesquiterpene; aurisin; cytotoxicity

*Correspondence author

E-mail address: ratsami@kku.ac.th
Contents

Figure S1	Mass spectrum of 1	3
Figure S2	IR spectrum of 1	3
Figure S3	1H NMR (400 MHz, CDCl$_3$ + CD$_3$OD) of 1	4
Figure S4	13C NMR (100 MHz, CDCl$_3$ + CD$_3$OD) of 1	4
Figure S5	1H-1H COSY (CDCl$_3$ + CD$_3$OD) of 1	5
Figure S6	HSQC (CDCl$_3$ + CD$_3$OD) of 1	5
Figure S7	HMBC (CDCl$_3$ + CD$_3$OD) of 1	6
Figure S8	Mass spectrum of 2	6
Figure S9	IR spectrum of 2	7
Figure S10	1H NMR (400 MHz, CDCl$_3$ + CD$_3$OD) of 2	7
Figure S11	13C NMR (100 MHz, CDCl$_3$ + CD$_3$OD) of 2	8
Figure S12	1H-1H COSY (CDCl$_3$ + CD$_3$OD) of 2	8
Figure S13	HSQC (CDCl$_3$ + CD$_3$OD) of 2	9
Figure S14	HMBC (CDCl$_3$ + CD$_3$OD) of 2	9
Figure S15	Mass spectrum of 3	10
Figure S16	IR spectrum of 3	10
Figure S17	1H NMR (400 MHz, CDCl$_3$ + CD$_3$OD) of 3	11
Figure S18	13C NMR (100 MHz, CDCl$_3$ + CD$_3$OD) of 3	11
Figure S19	1H-1H COSY (CDCl$_3$ + CD$_3$OD) of 3	12
Figure S20	HSQC (CDCl$_3$ + CD$_3$OD) of 3	12
Figure S21	HMBC (CDCl$_3$ + CD$_3$OD) of 3	13
Figure S22	Key HMBC and COSY correlations of compounds 1-3	13
Table S1	Antimalarial and Cytotoxicity Activities from *N. Nambi* PW3	14
Table S2	Antibiotic Activities from *N. nambi* PW3	14
Table S3	1H (400 MHz) and 13C NMR (100 MHz) Data of Compounds 1, 2 and 3 (CDCl$_3$+CD$_3$OD)	15
Figure S1 Mass spectrum of 1

#	m/z	I	I %	S/N	FWHM	Res.
1	230.2470	76212	32.2	101.7	0.0502	4590
2	271.1151	19519	8.2	24.9	0.0641	4228
3	274.2718	83065	35.1	108.3	0.0577	4756

Figure S2 IR spectrum of 1
Figure S3 1H NMR (400 MHz, CDCl$_3$ + CD$_3$OD) of 1

Figure S4 13C NMR (100 MHz, CDCl$_3$ + CD$_3$OD) of 1
Figure S5 $^1\text{H}-^1\text{H}$ COSY (CDCl$_3$ + CD$_3$OD) of 1

Figure S6 HSQC (CDCl$_3$ + CD$_3$OD) of 1
Figure S7 HMBC (CDCl$_3$ + CD$_3$OD) of 1

Figure S8 Mass spectrum of 2
Figure S9 IR spectrum of 2

Figure S10 1H NMR (400 MHz, CDCl$_3$ + CD$_3$OD) of 2
Figure S11 13C NMR (100 MHz, CDCl$_3$ + CD$_3$OD) of 2

Figure S12 1H-1H COSY (CDCl$_3$ + CD$_3$OD) of 2
Figure S13 HSQC (CDCl$_3$ + CD$_3$OD) of 2

Figure S14 HMBC (CDCl$_3$ + CD$_3$OD) of 2
Figure S15 Mass spectrum of 3

![Mass spectrum of 3](Image)

Figure S16 IR spectrum of 3

![IR spectrum of 3](Image)
Figure S17 1H NMR (400 MHz, CDCl$_3$ + CD$_3$OD) of 3

Figure S18 13C NMR (100 MHz, CDCl$_3$ + CD$_3$OD) of 3
Figure S19 1H-1H COSY (CDCl$_3$ + CD$_3$OD) of 3

Figure S20 HSQC (CDCl$_3$ + CD$_3$OD) of 3
Figure S21 HMBC (CDCl$_3$ + CD$_3$OD) of 3

Figure S22 Key HMBC and COSY correlations of compounds 1-3
Table S1 Antimalarial and Cytotoxicity Activities from *N. Nambi* PW3

Compound	antimalarial (IC$_{50}$, µg/mL)	cytotoxicity (IC$_{50}$, µg/mL)	KB	NCI-H187	MCF-7	Vero cell
1	inactive	9.12	16.82	11.82	38.72	
2	inactive	40.90	5.60	inactive	inactive	
3	inactive	inactive	44.69	inactive	inactive	
4	inactive	1.45	5.03	18.64	32.90	
5	inactive	inactive	9.40	inactive	inactive	
6	inactive	inactive	49.31	inactive	inactive	
7	inactive	0.002	inactive	inactive	inactive	
9	inactive	ellipticine	1.21	0.935	0.85	
	dihydroartemisinin	1.21	0.935	0.85		
	tamoxifen	1.21	0.935	0.85		
	doxorubicin	1.21	0.935	0.85		

*a*Humanepidermoid carcinoma in the mouth, *b*Human lung cancer cell, *c*Human breast cancer cell. Inactive (>50 µg/mL)

Table S2 Antibiotic Activities from *N. nambi* PW3

Compound	MIC (final concentration = 128 µg/ml)				
	Gram negative	Gram positive			
	Escherichia coli	*Pseudomonas aeruginosa*	*Shigella sonnei*	*Bacillus cereus*	*Staphylococcus aureus*
1	inactive	128	128	64	4
2	inactive	inactive	inactive	64	8
3	inactive	inactive	inactive	64	64
4	inactive	128	inactive	128	inactive
5	inactive	128	inactive	128	inactive
6	inactive	inactive	inactive	128	inactive
Kanamycin	2	2			
Gentamicin	2	2			
Vancomycin	1	1			

Inactive (>128 µg/mL)
Table S3 1H (400 MHz) and 13C NMR (100 MHz) Data of Compounds 1, 2 and 3 (CDCl$_3$+CD$_3$OD)

No.	δH	δC	δH	δC	δH	δC
1	115.1		115.1		119.3	
2	150.5		150.5		7.15 (d, 8.4)	131.6
3	6.99 (s)	98.2	6.98 (s)	98.3	6.83 (d, 7.6)	115.2
4	144.6			144.7		
5	141.1		141.3		6.83 (d, 7.6)	115.2
6	7.42 (s)	107.2	7.44 (s)	107.4	7.15 (d, 8.4)	131.6
1'	114.0			113.9		
2'	148.9			149.1		
3'	125.6			125.4		
4'	132.1			132.1		
5'	6.57 (s)	109.7	6.61 (s)	109.6		
6'	148.8			148.8		
1''	129.0			129.6		
2''	7.23 (d, 8.4)	130.1	6.88 (d, 1.6)	116.0	7.39 (d, 8.4)	131.0
3''	6.79 (d, 8.4)	115.2	144.2	6.83 (d, 7.6)	115.6	
4''	156.0			144.2		159.3
5''	6.79 (d, 8.4)	115.2	6.79 (s)	115.2	6.83 (d, 7.6)	115.6
6''	7.23 (d, 8.4)	130.1	6.78 (d, 1.6)	120.9	7.39 (d, 8.4)	131.0
CH$_3$CO	170.0		170.0		168.7	
CH$_3$CO	2.19 (s)	20.5	2.19 (s)	20.4	2.19 (s)	20.2