Transcriptome-wide N6-methyladenosine profiling of rice callus and leaf reveals the presence of tissue-specific competitors involved in selective mRNA modification

Yuli Li1,2,3, Xiliang Wang1,3, Cuiping Li2, Songnian Hu1, Jun Yu1,*, and Shuhui Song2,*,†

1CAS Key Laboratory of Genome Sciences and Information; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, P.R. China; 2Core Genomic Facility; Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing, P.R. China; 3University of Chinese Academy of Sciences; People’s Republic of China; Beijing, P.R. China

†These authors contributed equally to this work.

Keywords: MeRIP-seq, N6-methyladenosine, rice, RNA epitranscriptomic, RNA m6A modification

Abbreviation: BPTM, bases per 10 millions of reads; RPKM, reads per kilo base per million mapped reads; SMG, selective methylated gene; TSMG, tissue specific methylated gene.

N6-methyladenosine (m6A) is the most prevalent internal modification present in mRNAs of all higher eukaryotes. With the development of MeRIP-seq technique, in-depth identification of mRNAs with m6A modification becomes feasible. Here we present a transcriptome-wide m6A modification profiling effort for rice transcriptomes of differentiated callus and leaf, which yields 8,138 and 14,253 m6A-modified genes, respectively. The m6A peak (m6A-modified nucleotide position on mRNAs) distribution exhibits preference toward both translation termination and initiation sites. The m6A peak enrichment is negatively correlated with gene expression and weakly positively correlated with certain gene features, such as exon length and number. By comparing m6A-modified genes between the 2 samples, we define 1,792 and 6,508 tissue-specific m6A-modified genes (TSMGs) in callus and leaf, respectively. Among which, 626 and 5,509 TSMGs are actively expressed in both tissues but are selectively m6A-modified (SMGs) only in one of the 2 tissues. Further analyses reveal characteristics of SMGs: (1) Most SMGs are differentially expressed between callus and leaf. (2) Two conserved RNA-binding motifs, predicted to be recognized by PUM and RNP4F, are significantly over-represented in SMGs. (3) GO enrichment analysis shows that SMGs in callus mainly participate in transcription regulator/factor activity whereas SMGs in leaf are mainly involved in plastid and thylakoid. Our results suggest the presence of tissue-specific competitors involved in SMGs. These findings provide a resource for plant RNA epitranscriptomic studies and further enlarge our knowledge on the function of RNA m6A modification.

Introduction

RNA methylation, especially N6-methyladenosine (m6A), is a major internal (exclude mRNA capping) modification of eukaryotic mRNAs. N6-methyladenosine was first discovered in bacteria DNA in 1955,1 and DNA methyltransferase took part in restriction-modification system to protect genome DNA from degradation when infected by viruses.2 Since 1958, m6A was discovered in viral RNAs,3 and in various other eukaryotic species including mammals,4 insects,5 and plants, such as maize,6 wheat,7 and oat,8 and Arabidopsis.9 A 3-component complex of RNA:m6A methyltransferase catalyzes m6A modification, and this complex has not been completely discovered except for MT-A70.10 Recently, another 2 proteins (WTAP/FIP37 and KIAA1429) have been confirmed of their functions related to m6A methylation.9,11 The RNA: m6A methyltransferase binds to specific mRNA sequences with a consensus motif RRACH (where R = purine, and H = A, C, or U).12 Induced deficiency or disruption of the methyltransferase is detrimental and leads to apoptosis in human,13 embryonic developmental arrest in Arabidopsis or defect of gametogenesis in yeast and Drosophila.14,15 Similar to DNA and histone methylations, m6A modification is also a dynamic, reversible process. Recent studies have demonstrated that FTO (fat mass and obesity-associated), a major regulator of metabolism and energy utilization,
of the (de-)methyltransferases indicate that m6A is important post-transcriptional modification, playing profound roles in post-transcriptional epigenetic regulations.

Understanding the functional role of RNA m6A modification requires knowledge of its distribution at transcriptional level. MeRIP-seq (methylated RNA immunoprecipitation followed by sequencing) or m6A-seq, which combines mRNA-seq and immunoprecipitation technologies, has emerged as the gold standard for studying transcriptome-wide RNA modification. Two corresponding studies have led to exploration of mammalian m6A profiles and both studies have shown that m6A peaks tend to be enriched in 3’UTRs and near the stop codon. The non-random distribution of m6A modification along mRNAs implicates that it may involve in posttranscriptional transcript processing including splicing, transport, degradation, and translational regulation. Recent studies on mRNA methylation in yeast meiosis also illustrated the regulatory roles m6A. Another study of m6A in mESC showed that m6A methylation accelerated transcript decay and affected stem cell maintenance and differentiation. In all, RNA decorations by m6A have a fundamental role in epigenetic regulation that remains a virgin land.

Many m6A-related studies have been carried out in mammals, stem cells, and yeast, but there are very few studies on m6A profiling in plant transcriptomes. Silin Zhong et al. have reported that Arabidopsis has m6A modification at a level similar to some previous reports for animal cells, and the group has also found that inactivation of MTA genes results in failure of embryo development. But so far, m6A modification in rice has yet to be exploited. In this study, we simultaneously sample seed-induced differentiation callus and leaf tissues and between plants and animals, and investigate tissue-specificity and selectivity of the methylated genes and their functional implications.

Results

Transcriptome-wide detection of m6A modification in rice callus and leaf

Using the Illumina Hiseq-2000, we acquired 23,400,472 and 47,824,653 reads from callus and leaf, respectively. After end-trimming and quality filtering, 45,165,158 high-quality reads (63.4% of the total reads) were mapped to the reference genome of japonica (MSU 7.0). Among the mapped reads, 87.4% were uniquely mapped to genome and 12.6% were mapped to junction sequences (Table 1).

We also sequenced 2 control samples simultaneously in order to improve m6A peak identification; the effort yielded 17,364,975 and 38,827,070 reads for callus and leaf, respectively, and after processing, the information of 20,329 and 17,552 genes were collected (RPKM ≥ 1). The m6A modification sites (actually identified as m6A peaks) were identified based on comparison of reads distribution between the IP and control samples using MeRIP-PF software package. We detected 17,614 and 39,390 m6A enriched peaks (Fisher’s exact test, P ≤ 0.05) in the 2 samples, representing 7,977 (callus) and 12,693 (leaf) expressed genes, with an average of 2.2 and 3.1 peaks per mRNA in callus and leaf samples, respectively. The methylation ratio was defined as percentage, i.e., the number of methylated genes divided by that of the total expressed genes, which are 39.24% and 72.32% in the 2 samples (Table 1).

Distribution of m6A peaks over mRNAs and chromosomes

We investigated the m6A peak distribution according to gene annotations in MSU database, and found that the majority (around 90%) of m6A peaks were within genic regions. Among them, more than 70% genic peaks were localized near CDSs and 3’ untranslated regions (3’UTRs), whereas ~20% were found in intronic regions and 5’ untranslated regions (5’UTRs) (Fig. 1A). Further analysis on relative positions of m6A peaks along mRNAs revealed the summit of m6A peaks were near stop codons or positions close to the beginning of 3’UTRs. We also downloaded the datasets (GSM854223 and GSM854224) published in 2012 and identified m6A peaks using the same pipeline, and found that the m6A distribution along mRNAs in rice was similar to the reported distributions of mammals. More interestingly, there was another minor summit of m6A peaks at positions near the start codon of CDSs both in callus and leaf, which was significantly higher than was found in mouse brain (Fig. 1B) and further confirmed by magnified m6A peak distribution in the regions around CDS start and end (Fig. S1). The specific distribution may be related to different gene organizations between mammals and plants and suggested different m6A regulatory mechanisms in plants and animals.

We also investigated the whole genome density of m6A modification peaks and found a ‘2-terminal hot’ distribution of m6A peaks across chromosomes (Fig. 1C). Specifically, m6A peaks were preferentially distributed at the telomeric ends and became sparsely scattered toward centromeres. High density of m6A modification and expressed genes in telomeric regions were observed from the whole genome distribution, which was opposite from the density distribution of TE genes. Both callus and leaf tissues showed very similar features as described, but obviously, the leaf tissue appeared possessing more peaks than callus. The modification profiles as well as TE density were different among chromosomes. By comparing the characteristics of m6A peak distribution among chromosomes (Fig. S2), we found that chromosomes 11 and 12 had less intense modification in both samples whereas chromosomes 2 and 3 showed higher modification levels in average. This whole genome distribution suggested that m6A modification may be closely related to chromatin state and conformation.

Correlation of m6A modification with gene features and transcription levels

The numbers of m6A modified sites were varied widely among individual genes. There were 49.9% and 25.8% of the methylated
mRNAs containing a single m^6^A peak in callus and leaf, respectively, and the percentages varied, 29.3% and 29.8% of the methylated mRNAs, when 2 m^6^A peaks per mRNAs were looked into. For 3 and 4 m^6^A peaks, the percentages further reduced to 11.2% and 9.6% in callus and 21.9% and 22.5% in leaf, respectively (Fig. 2A). We made 2 observations here. First, some of the peaks are clustered, which is consistent with those reported in human and mouse.13,19 Second, the difference is the ratio of single over multiple peaks or the overall trend of the clustered peaks; fraction of the peaks in different clustering schemes remains similar (20% to 30% in all clustering schemes) in leaf but variable (single peak is much more than 2-peak and 3-peak clusters) in callus. We presumed that this unequal distribution might be associated with gene structure characteristics. The correlation of m^6^A enrichment to some gene-centric length parameters, including CDS, 5’UTR, 3’UTR, intron, gene and mRNA, as well as exon number were computed for each sample. The m^6^A enrichment was slightly and positively correlated with exon number and the length of introns and genes (Fig. 2B). We further correlated modification and expression levels, and Pearson correlation analysis showed that there were negative correlations between the 2 levels (Fig. 2C–D).

Commonly and selectively methylated genes in callus and leaf

Comparing the methylated genes between the 2 samples, we discovered that 6,185 (76% and 43%) genes were methylated both in leaf and callus; 1,792 and 6,508 genes were tissue specific methylated genes (TSGM) in callus and leaf, respectively. Further investigation revealed 626 (35% out of 1,792 callus-specific methylate genes) and 5,509 (84.6% out of 6,508 leaf-specific methylated genes) TSMGs expressed in both leaf and callus, but selectively methylated (SMG) in either callus or leaf. Such as LOC_Os07g12510.1 and LOC_Os09g10760.1 (Fig. 3A), each is a selectively methylated gene in callus or leaf. Obviously, selectively methylated genes (SMG) were only modified in certain tissues. By statistical test analysis, we found 439 (70%) and 3,968 (72%) SMGs in callus and leaf in leaf were significantly differentially expressed between the 2 tissues (P < 0.001, |FC| ≥ 2).

To predict potential functional processes of m^6^A modified genes involved, Gene Ontology enrichment analysis of these commonly and selectively methylated genes were performed by using agriGO.26 We found the commonly methylated genes were mainly involved in RNA binding (GO: 0003723, FDR = 4.30e-16), gene expression (GO: 0010467, FDR = 3.4e-20), and other diverse functional classes (Fig. 3B). The SMGs in callus were mainly involved in transcription factor activity (GO: 0003700, FDR = 1.50e-9), transcription regulator activity (GO: 0030528, FDR = 1.50e-9), nucleic acid binding (GO: 0036767, FDR = 8.00e-4), nitrogen metabolism (GO: 0006807, FDR = 0.004), etc. However, the SMGs in leaf were mainly enriched in intracellular part (GO: 0044424, FDR = 5.00e-2), plastid (GO: 0009536, FDR = 7.10e-33) and thylakoid (GO: 0009579, FDR = 3.80e-06) which are necessary for photosynthesis. Collectively, these data demonstrated that m^6^A-containing RNAs were involved in a variety of biological pathways relevant to tissue development or cellular signaling, and the SMGs were significantly differentially expressed between the 2 tissues and involved in different functional categories.

Conserved RNA-binding motif for RBPs in selectively methylated genes (SMGs)

RNA-binding proteins (RBPs) regulate numerous aspects of co- and post-transcriptional gene expression, including RNA splicing, polyadenylation, capping, modification, export, localization, translation, and turnover.27 It remains unclear whether some RBPs play roles as ‘selectors’ or ‘competitors’ in post-transcriptional m^6^A modification and whether the SMGs are the products of competition between RBPs and m^6^A methyltransferase. We investigated the conserved motifs around the m^6^A peaks for all the SMGs in callus and leaf by combination of de novo motif prediction and comparison to known motifs of RBPs. The conserved motif -UGUAMM (UGUA[AC][AC]), which was similar to PUM-binding motif (P = 3.05e-5, E-value = 7.44e-3), was significantly over-represented (E-value = 8.6e-012) in SMGs of leaf (Table 2). Another conserved motif RAGRAG, which was similar to RNA-binding motifs of RNP4F (P-value = 0.0007) and TRA2 (P-value = 0.001), were found significantly (E-value = 2.8e-075) enriched in SMGs of callus. Since the 2 motifs present within m^6^A peak regions, there may be competition between the RBPs and the RNA m^6^A methyltransferase. We further surveyed the expression of PUM families and found that 6 members of pumilio-family RNA-binding proteins were all down-regulated or nearly non-expressed in leaf tissue when compared to those in callus (Fig. S3). The low expression of PUMs in leaf provides m^6^A methyltransferase access to potential modification sites, while the expressed PUMs may compete with m^6^A RNA methyltransferase in callus, which typically binds to subsets

Table 1. Summary of sequence data and read alignment statistics

Samples ID	Raw reads	Clean reads*	Reads uniquely mapped to genome	Reads uniquely mapped to junction	Total reads uniquely mapped (%)	m^6^A peaks/m^6^A modified genes	Expressed gene #*
m^6^A-IPc (m^6^A-seq)							
Callus	23,400,472	23,284,249	13,424,301	1,766,841	(65.2%)	17,295/7,977	/
Leaf	47,824,563	47,586,747	26,054,416	3,917,600	(63.0%)	37,295/17,552	/
CTc (RNA-seq)							
Callus	17,364,975	17,224,636	9,554,651	1,769,941	(65.8%)	/	
Leaf	38,827,070	38,569,379	20,039,364	3,673,561	(61.5%)	/	

Note: *clean reads indicate reads after filtering adaptors and low quality, and random sampling; ^iGenes with RPKM > 1; ^iiIP, immunoprecipitation; ^iiiCT, Control
of mRNAs that were functionally related. The conserved RNA-binding motif and differentially expression of these RBPs may be responsible for those SMGs.

Discussions

In this study, we generated the first transcriptome-wide RNA m^6^A modification profiles using m^6^A-seq technology. As expected, the modification profiles were different between the 2 tissues. However, similar distribution characteristics along mRNA and chromosome were observed. The modified peaks along mRNAs were mainly distributed around the translation initiation site and translation termination site which presenting a 'bimodal' distribution. The non-random distribution is significantly different from that in mammals, and the distribution characteristic suggested the post-transcriptional RNA m^6^A modification may play regulation roles.
on translation. In addition, high density of m^6^A modification in telomeric regions were observed from the whole genome distribution, which was opposite from the density distribution of TE genes. The negative correlation between m^6^A enrichment and transcript activities further suggests that chromatin conformation may influence m^6^A modification. However, much work is needed to detail the real impact of m^6^A on translation regulation and of chromatin conformation on m^6^A modification.

The temporal methylomes of callus and leaf revealed many commonly methylated genes and quite a few of tissue-specific methylated genes (TSMGs). Some of the TSMGs are due to tissue-specific expression manner. However, a fraction of TSMGs (35% in callus and 84% in leaf) were expressed in both tissues, and we called these genes as selectively methylated genes (SMGs). It is still unknown how tissue-specific and selective m^6^A methylation is achieved. Our hypothesis is that there may be one or more of RNA binding proteins as ‘Selectors’ or ‘Competitors’ to compete genes as SMGs. By predicting the conserved sequence motif in these SMGs, we found 2 conserved motifs that over-represented in callus and leaf SMGs, respectively. When compared to the known RNA-binding motifs, they were significantly similar to RNP4F and PUF binding motifs, respectively. Especially important, the significant difference of the expression of all PUFs members between callus and leaf further supports the idea that they are potential ‘competitors’ for SMGs. It still needs more experimental evidence to prove whether the RNA-binding proteins compete with methyltransferases in vivo.

The dynamic m^6^A modification is achieved by the ‘Writers’ and the ‘Easers’. The ‘Writers’, the methyltransferase complex, include METTL3/14 in mammals\(^1\)\(^0\)\(^2\)\(^8\) or MTA in plants to catalyze the methylation reaction,\(^9\) and other crucial components such as WTAP in human\(^9\)\(^9\) and FIP37 in Arabidopsis,\(^9\) and KIAA1429\(^1\)\(^1\) which enhance methylation activity.\(^3\)\(^0\) Based on published data, a consensus motif sequences ‘RRACH’ is over-represent in m^6^A motif regions. However, in our current data, another different motif sequence (data not shown) is enriched both by MEME and HOMER software. We are uncertain of if the consensus sequence of the methylation in plants were different from mammals, more methylome data of plant were need to confirm this hypothesis. FTO and alkbh5, 2 m^6^A demethyltransferases in mammalian cells, have been reported recently as the ‘Easers’, which de-methylate m^6^A modification in vitro. In this reversible reaction, some m^6^A specific ‘Readers’ are needed to assist recognition of potential m^6^A sites. The YTHDF protein families have been reported to selectively recognize m^6^A and regulate mRNA degradation.\(^3\)\(^1\) Here, based on our observation, we proposed that some RNA-binding
proteins (e.g. PUMs) may act as ‘Competitors’, competing with methyltransferase, and determine to whether to methylate certain mRNA sites in a tissue-specific manner.

In summary, tremendous strides have recently been made toward clarifying key questions related to m6A biology. However, for the first time, we profiled the m6A methylomes in rice callus and leaf, and compared the distribution characteristics between rice and mouse. More importantly, we proposed a ‘Competitor’ concept that is responsible for SMGs. Our epitranscriptomic data provide a foundation for understanding this critical RNA modification on plants and crops.

Materials and Methods

Callus and 6-tillering leaf sample preparation

The mature dehusked caryopses of the rice variety Nipponbare (Oryza sativa L. ssp. Japonica) were used for callus induction experiment. The dehusked caryopses were disinfected in turn by 70% ethanol for 1–2 minutes and NaClO solution with 2.5% available chlorine for 30–45 minutes. In the sterile operation, the caryopses were rinsed with sterile water for 3–5 times, and then cultured on MS basal medium that was supplemented with 2 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D), 30 g/L maltose, 0.3 g/L casein hydrolysate, and 3 g/L agar. After incubation for 2 weeks in dark, the scutella of callus were cut from the caryopses and then subcultured for 2 generations. Half of the compact and vigorous callus particles were collected and stored at −80°C for use, and the other half were transferred to

Figure 3 Examples of selected methylated genes and GO enriched functional classes for SMGs

(A) Two examples of selectively methylated genes (SMGs). The peaks (gray vertical bars) of SMGs in callus (in the left panel; LOC_Os07g12510.1) and leaf (the right panel; LOC_Os09g10760.1) and BPTM (base per 10 millions of reads) values for the 2 genes are shown. (B) GO analysis of commonly methylated genes (CM) and selectively methylated genes in callus (CS) and leaf (LS). Diamonds in different colors represent GO term enrichment values, and gray color means the term is not significantly enriched. *MB, membrane-bound.
Table 2. Predicated conserved RNA-binding motifs in selectively methylated genes (SMGs)

Common methylated genes (peaks)	Selective methylated genes (peaks)	Peaks for motif finding \(^a\)	De-novo conserved motif prediction \(^b\) (by MEME) RAGRAG (E-value: 2.8e-075) (252 sites)	UGUAMM (E-value: 8.6e-012) (580 sites)
6,185 (11,927/19,215)	5,509 (11,820)	1,001	RAGRAG (E-value: 2.8e-075) (252 sites)	UGUAMM (E-value: 8.6e-012) (580 sites)

Note: \(^a\) The m6A modification peaks located in intronic regions are filtered out both in callus and leaf, and we choose top 1,680 peaks in leaf depending on the enrichment values; \(^b\) The predicted conserved motifs are showed in IUPAC type; \(^c\) Motifs in the bottom panel are those we found using MEME, and the top panel (RNCMPT00060 represents PUM; RNCMPT00104 represents RNP4F) are those RBP motifs recorded in cisBP-RNA database (http://cisbp-rna.ccbr.utoronto.ca/).

the regeneration medium [MS basal medium supplemented with 1 mg/L 1-naphthaleneacetic acid (NAA), 3 mg/L 6-benzyl adenine (6-BA), 0.5 mg/L thidiazuron (TDZ), 0.3 g/L casein hydrolysate, 30 g/L maltose] at 30°C under fluorescent illumination of 110–130 mmol/m²/s PAR for shoot regeneration. After 14 days, the differentiated callus with green shoots were collected and stored at −80°C for the following RIP and RNA-seq experiment. Leaf tissue at the stage of 6-tillering were also collected and stored.

RNA preparation

Total RNAs of the differentiated callus and the leaf were extracted by using the RNA-extraction-system with Trizol (Invitrogen). Enrichment of Polyadenylated RNAs (polyA⁺ RNAs) was performed with 2 rounds of Dynabeads mRNA purification kit (Invitrogen). The enriched mRNAs were chemically fragmented into ~100-nucleotide-long fragments by incubating at 94°C for 5 min in fragmentation buffer (Ambion). The fragmentation reaction was stopped with 0.05 M EDTA, followed by standard ethanol precipitation, and the fragmented product was resuspended in H₂O in a concentration of ~1 μg μL⁻¹.

RNA M₆A IP-seq library construction and sequencing

RNA immunoprecipitation (RIP) was performed as described previously. Fragmented RNA was incubated for 2 h at 4°C with 5 mg of affinity purified anti-m₆A polyclonal antibody (Synaptic Systems) in IPP buffer. The mixture was then immunoprecipitated by incubation with protein-A beads (Repligen) at 4°C for an additional 2 h. After extensive washing, bound RNA was eluted from the beads with 0.5 mg ml⁻¹ N₆-methyladenosine (Sigma-Aldrich) in IPP buffer, and precipitated in ethanol. RNA was resuspended in H₂O and used for RNA-seq library generation with mRNA sequencing kit (Illumina). Both the control (or input) sample without immunoprecipitation and the m₆A IP samples were subjected to single-end sequencing on Illumina HiSeq 2000.

Preprocessing sequencing reads

The adaptor sequence (ATCTCGTATGCGGTC) was first removed from the raw reads with an in-house protocol. Low-quality reads were also filtered according to the following 2 criteria: (1) sequenced bases with quality lower than 20 were trimmed from the 3’-end and the reads were discarded if they are shorter than 20bp; and (2) reads having more than 10% bases with low quality scores (<25) were also filtered.

Reads alignment and gene expression analysis of control samples

After preprocessing, high-quality reads were aligned to the rice genome (MSU Rice Genome Annotation Project Release 7) and junction data set constructed by connecting 2.95bp-sequences truncated from the 3’ end and 5’ end of 2 randomly combined exons in one gene. For genes with alternative splicing variants, we collected all exons that belong to different transcripts to construct a junction reference. The alignment was done by using the Burrows-Wheeler Aligner (BWA) at default settings. Only those reads that uniquely mapped to the reference sequences and had a Phred quality score ≥20 were adopted for gene expression quantification and m₆A modification peak identification.

Gene expression levels were measured as numbers of reads per kilo bases of exon model in a gene per million uniquely mapped reads (RPKM) and quantified using wapRNA. Genes with RPKM ≥1 were used for further analysis. Differentially Expressed Genes (DEGs) between callus and leaf were identified with an R package named ‘DEGseq’. Genes with P ≤ 0.001 and normalized change fold ≥2 were regarded as DEGs.

Identification of m₆A modification peaks

m₆A modification peaks were identified by using MeRIP-PF, which is an easy-to-use package and developed in our own lab based on a method published previously. MeRIP-PF first splits genome into end-to-end 25-bp windows and then defines an m₆A peak based on comparison of read counts between MeRIP data and controls within a 25-bp window across the genome. Results were tested with one-tailed Fisher’s exact test and Benjamin–Hochberg method, and both P-value and adjusted P-value (FDR) for each window were calculated (FDR ≤ 0.05). Significantly differential and adjacent (no gaps present) windows are concatenated into peak regions, and only those with appropriate sizes (~200bp) were considered as reliable and real.
Functional enrichment analysis

Gene Ontology enrichment analysis of m6A methylated genes that include common and tissue-specific methylated genes was done by using agriGO bioinformatics database. Singular enrichment analysis (SEA) in agriGO which adopted hypergeometric test and multi-test adjustment method of Yekutieli (FDR under dependency) was used to differentiate significantly enriched GO terms from non-significant ones, and those with FDR ≤ 0.05 were regarded as significantly enriched GO. Another analysis tool cross comparison of SEA (SEACOMPARE) was further used to compare the enrichment and their differences were presented with gradual color changes.

Conserved motif prediction and comparison to known RNA-binding motifs of RBPs

We extracted 101-nt sequence that surrounds the read-covered summit located within the peak regions of SMGs. Peaks in intronic regions were excluded, and the top 1,680 peaks (enrichment values ≥ 16) in leaf were used for further motif prediction. The conserved RNA binding motifs enriched in the sequences were predicted with MEME and HOMER using both the random permutation values and Log10 (RPKM value) were plotted.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

The authors thank Professor Lihuang Zhu for support with the samples, and Dr. Qi Wu for assisting in cultivating callus. We also thank Professor Yungui Yang for support with m6A-IP experiments.

Funding

This work was supported by the National Natural Science Foundation (Grant No. 30900831 and 31271372) and Beijing Nova Program (Grant No. Z121105002512060) to SS.
22. Bodi Z, Zhong SL, Mehra S, Song J, Graham N, Li H, May S, Fray RG. Adenosine methylation in Arabidopsis mRNA is associated with the 3’ end and reduced levels cause developmental defects. Front Plant Sci 2012; 3:48; PMID:22639649

23. Li Y, Song S, Li C, Yu J. MeRIP-PF: an easy-to-use pipeline for high-resolution peak-finding in MeRIP-Seq data. Genomics, Proteomics Bioinformatics 2013; 11:72-5; http://dx.doi.org/10.1016/j.gpb.2013.01.002

24. Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 2013; 6:4; PMID:24280374; http://dx.doi.org/10.1186/1939-8433-6-4

25. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 2002; 296:79-92; PMID:11935017; http://dx.doi.org/10.1126/science.1068037

26. Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 2010; 38:W64-70; PMID:20435677; http://dx.doi.org/10.1093/nar/gkq310

27. Glisovic T, Bachorik JL, Yong J, Dreyfuss G. RNA-binding proteins and post-transcriptional gene regulation. FERS Lett 2008; 582:1977-86; PMID:18342629; http://dx.doi.org/10.1016/j.febslet.2008.03.004

28. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 2014; 10:93-5; PMID:24316715; http://dx.doi.org/10.1038/nchembio.1432

29. Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Le Y, Chen YS, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 2014; 24:177-89; PMID:24407421; http://dx.doi.org/10.1038/cr.2014.3

30. Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet 2014; 15:293-306; PMID:24662220; http://dx.doi.org/10.1038/nrg3724

31. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014; 505:117-20; PMID:24284625; http://dx.doi.org/10.1038/nature12730

32. Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 2009; 25:1754-60; PMID:19451168; http://dx.doi.org/10.1093/bioinformatics/btp524

33. Zhao WM, Liu WF, Tian DM, Tang BX, Wang YQ, Yu C, Li R, Ling Y, Wu J, Song S, Hu S. wapRNA: a web-based application for the processing of RNA sequences. Bioinformatics 2011; 27:3076-7; PMID:21896507; http://dx.doi.org/10.1093/bioinformatics/btr504

34. Wang J, Fung ZX, Wang X, Wang XW, Zhang XG. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 2010; 26:136-8; PMID:19855105; http://dx.doi.org/10.1093/bioinformatics/btp612

35. Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 1995; 57:289-300.

36. Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings International Conference on Intelligent Systems for Molecular Biology ; ISMB International Conference on Intelligent Systems for Molecular Biology 1994; 2:28-36.

37. Heine S, Benner C, Spann N, Bertolino E, Lin YC, Lado P, Cheng XJ, Murre C, Singh H, Glass CK. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010; 38:576-89; PMID:20513432; http://dx.doi.org/10.1016/j.molcel.2010.05.004

38. Ray D, Kazan H, Cook KB, Weirauch MT, Najafabadi HS, Li X, Gueroussov S, Albu M, Zheng H, Yang A, et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature 2013; 499:172-7; PMID:23846655; http://dx.doi.org/10.1038/nature12311

39. Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. Quantifying similarity between motifs. Genome Biol 2007; 8:R24; PMID:17324271; http://dx.doi.org/10.1186/gb-2007-8-2-r24