Bone marrow-derived mesenchymal stem cells (MSCs) stimulate neurite outgrowth from differentiating adult hippocampal progenitor cells

Eun-Ah Ye1,2, Sagar S. Chawla4, Michael Z. Khan4 and Donald S. Sakaguchi1,2*

1Neuroscience Program, Iowa State University, Ames, Iowa, USA.
2Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA.
3Department of Anatomy and Cell Biology, Wayne State University, 9314 Scott Hall, 48201, Detroit, MI, USA.
4Biology Program, Iowa State University, Ames, Iowa, USA.

*Correspondence: dssakagu@iastate.edu

Abstract

Background: Bone marrow-derived mesenchymal stem cells (MSCs) have emerged as beneficial cellular vehicles for nervous system rescue and repair. A better understanding how MSCs are involved in mediating neural repair will facilitate development of novel therapeutic strategies.

Methods: In the present study bone marrow-derived MSCs were isolated and characterized from Brown Norway rats. The capacity of the MSCs to influence the differentiation of adult hippocampal progenitor cells (AHPCs) was investigated using contact and non-contact co-culture configurations.

Results: These MSCs showed a stable and consistent growth rate, retained short population doubling time (PDT) and showed high capacity of cell proliferation. Co-culturing of AHPCs with MSCs did not appear to significantly affect the proliferation of the AHPCs or impact the proportion of neuronal or glial differentiation of the AHPCs. However, both contact co-culture (CCC) and non-contact co-culture (NCCC) significantly promoted neurite outgrowth from neuronal AHPCs.

Conclusions: The ability of MSCs to promote the morphological differentiation of AHPCs may serve as an added benefit when developing cell-based strategies for nervous system rescue and repair.

Keywords: Bone marrow-mesenchymal stem cells, MSC, neural stem cells, neural progenitor cells, neurite outgrowth, regeneration, adult stem cells, neurorepair

Introduction

Mesenchymal stem cells (MSCs) have become an important cell source for treatment of neurodegenerative conditions as well as in nerve repair strategies. Gaining a better understanding of how MSCs mediate neural repair will benefit the development of novel therapeutic strategies [1-4]. Multipotent bone marrow-derived MSCs can be readily isolated due to their characteristic adherence to tissue culture polystyrene surfaces and have the ability to self-renew and can differentiate into various mesodermal lineages such as bone, cartilage, and fat cells [5]. Importantly, bone marrow-MSCs are a potential candidate for autologous transplantation, thus avoiding an immune response in the host. Mesenchymal stem cells also display paracrine activity, secreting bioactive neuroprotective molecules (reviewed in [6]). In addition to bone marrow, MSCs have been isolated from a variety of tissues such as fetal pancreas [7], liver [8], umbilical cord blood [9], scalp tissue [10], fetal thymus [11], adipose tissue [12], vermiform appendix [13], placenta [14], and endometrium [15]. However, MSC isolation from bone marrow is a relatively common procedure and is clinically relevant [16,17].

Bone marrow-MSCs isolated from different rat strains- Fisher, Lewis, Sprague-Dawley and Wistar-have been well characterized [18]. However, MSCs from the bone marrow of Brown Norway rats (Rattus norvegicus), have not been studied systematically. Brown Norway rats are a relatively common animal model...
used for biomedical research [19-24]. They are well-defined genetically, physiologically, and behaviorally [19,25-29]. There are, to our knowledge, no established resources and studies performed on bone marrow-MSCs from Brown Norway rats. Thus, the isolation and systematic examination of MSCs from this strain is required to broaden the availability of cell lines for autologous or syngeneic transplants for further development of experimental strategies for neurorepair.

This study was designed to characterize bone marrow-MSCs isolated from Brown Norway rats and to investigate their potential influence on differentiation of neural stem cells. Three criteria were used to define the MSCs: 1) adherence to tissue culture polystyrene (TCPs), 2) expression of specific surface antigens, and 3) multipotent differentiation potential [30].

The ability of these MSCs to stimulate differentiation and neurite outgrowth was investigated by co-culturing with adult rat hippocampal progenitor cells (AHPCs). These results demonstrated that MSCs isolated from the bone marrow of Brown Norway rats were multipotent and showed consistent cell growth and proliferation through long periods of subculture. In addition, co-cultures of MSCs with the AHPCs demonstrated their capacity to promote neurite outgrowth from neurons differentiating from AHPCs. These results provide additional support for the use of MSCs as a potent resource for the development of cell-based strategies for nervous system rescue and repair.

Materials and methods

Animals

All procedures involving animals were conducted in accordance with the guidelines published in the NIH Guide for the Care and Use of Laboratory Animals and all procedures adhered to the principles presented in the “Guidelines for the Use of Animals in Neuroscience Research” by the Society for Neuroscience. All animal procedures had the approval of the Iowa State University Institutional Animal Care and Use Committee, and were performed in accordance with committee guidelines. Six-week old Brown Norway rats (one male and one female) were obtained from Charles River Labs and used for the isolation of bone marrow. The animals were kept in a constant environment (temperature: 22°C; humidity: 20%; 14/10-hour light-dark cycle) with food and water provided ad libitum until bone marrow isolations. Upon arrival, rats were allowed to adapt to their new environment for seven days before harvesting of bone marrow.

Isolation and culturing of mesenchymal stem cells

The rats were euthanized with isoflurane and then the femora and tibiae were dissected. These bones were placed in ice-cold maintenance media [MM; alpha minimum essential medium (αMEM; Gibco BRL, Gaithersburg, MD) supplemented with 20% fetal bovine serum (Atlanta Biologicals, Lawrenceville, GA), 4 mM L-glutamine (Gibco BRL, Gaithersburg, MD), and 1% antibiotic-antimycotic (Invitrogen, Carlsbad, CA)]. The bone marrow was flushed from the bones using a syringe and 23-gauge needle filled with 3 ml MM onto a 70 µm filter pre-wetted with MM and transferred into a T75 flask with 20 ml MM. The cell suspension was maintained in a culture incubator (37°C, 5% CO₂/95% humidified air atmosphere). 48 hours after harvest, spindle-shaped cells adhered to the flask and media was exchanged with fresh MM after washing with phosphate-buffered saline (PBS; Gibco BRL, Gaithersburg, MD). MSCs isolated from male and female rats were cultured separately as different cell lines. MSCs were fed with MM twice a week. When the MSCs were about 80% confluent, subculturing was performed.

Population doubling time

To evaluate the growth of MSCs, their population doubling time (PDT) was calculated using the formula PDT=2txtNi/No (t: the time required to reach 80% confluency, hr; Ni: the initial number of cells; No: the final number of cells) [31]. MSCs at passages 1, 4, 9, and 15 were investigated. The experiment was repeated three times (N=3).

5-bromo-2-deoxyuridine (BrdU) assay

The proliferation of MSCs was evaluated by BrdU incorporation during several passages at time points corresponding to that of the PDT analysis, (i.e., passages 1, 4, 9, and 15) BrdU is commonly used to detect cell proliferation and is incorporated into the cells in S-phase. MSCs were plated onto 12 mm cleaned glass coverslips at approximately 30% confluency with maintenance media (MM), and the following day BrdU solution was added (5 µM BrdU in MM). After 24 hours, MSCs were fixed in 4% paraformaldehyde in 0.1 M PO4 buffer, pH 7.4. Fixed cells were then rinsed in PBS (137 mM NaCl, 2.68 mM KCl, 8.1 mM Na2HPO4, 1.47 mM KH2PO4, pH 7.4) and incubated in 2 N HCl for 15 min followed by 0.1 M sodium borate solution (pH 8.5) for 5 min. After washing with PBS, MSCs were incubated in blocking solution [5% normal donkey serum, 1% bovine serum albumin (BSA; Sigma), and 0.1% Triton X-100 (Fisher Scientific) in PBS] for 60 minutes. To identify cells that incorporated BrdU, MSCs were incubated in anti-BrdU primary antibody (see Table 1) overnight at 4°C in a humid chamber, washed in PBS, and incubated in Cy3-conjugated secondary antibody for 1.5 hours in the dark. The cells were then rinsed and nuclei stained with 4’,6-diamidino-2-phenylindole, di lactate (DAPI, 1:2,000). Preparations were mounted on glass slides with Vectashield mounting media (Vector laboratories, Burlingame, CA).

Propidium iodide (PI) staining

To investigate the viability of MSCs, PI (Invitrogen, Carlsbad, CA; final concentration 1.5 µM) was added to the culture dishes in the dark for 20 min, at 37°C. Cells were then fixed in 4% paraformaldehyde and stained with DAPI. As a positive control, a group of cells were incubated with 70% ethanol for 2 minutes and incubated with PI in the same conditions.
Table 1. Primary antibodies used in this study.

| Antibody                  | Species | Source               | Dilution |
|---------------------------|---------|----------------------|----------|
| MSC markers               |         |                      |          |
| Fibronectin               | Rabbit  | Millipore            | 1:1,500  |
| Collagen type I           | Rabbit  | Millipore            | 1:500    |
| CD 29 (Integrin beta1)    | Rabbit  | Millipore            | 1:500    |
| CD 51 (Integrin alpha V)  | Rabbit  | Dr. Thomas Joos, NML, University of Tubingen | 1:200    |
| CD90 (Thy-1.1)            | Mouse   | Dr. Alan F. Williams, University of Oxford | 1:200    |
| CD54 (ICAM-1)             | Mouse   | Millipore            | 1:100    |
| CD11b                     | Mouse   | Millipore            | 1:100    |
| CD45                      | Mouse   | Millipore            | 1:100    |
| CD14                      | Mouse   | Millipore            | 1:1,000  |
| CD44 (Hermes-1)           | Rat     | Developmental Studies Hybridoma Bank (DSHB) | 1:200    |
| Mouse IgG                 | Mouse   | Millipore            | 1:100    |
| Rabbit IgG                | Rabbit  | Millipore            | 1:500    |
| Proliferation marker      | BrdU    | Rat                  | 1:100    |
| Neurofilamentin marker    | Nestin  | DSHB                 | 1:200    |
| III β-tubulin (TuJ1)      | Mouse   | R&D systems          | 1:200    |
| MAP2ab                    | Mouse   | Sigma                | 1:200    |
| GFAP                      | Mouse   | Fisher Scientific    | 1:500    |
| RIP                       | Mouse   | DSHB                 | 1:1,000  |

| CD: Cluster of differentiation; MAP2ab: Microtubule associated protein 2ab; GFAP: Glial fibrillary acidic protein; RIP: Receptor interacting protein |

Under this control condition all MSCs were PI-labeled.

**Adipogenesis**

A mesenchymal stem cell Adipogenesis kit (Cat. No. SCR 020; Millipore, Billerica, MA) was used to generate adipocytes from the isolated rat MSCs. The induction protocol as specified in the datasheet was applied. Briefly, MSCs were plated at a density of 60,000 cells per well in a 24-well culture plate. When the cells reached 100% confluency, adipogenesis induction medium was added into the wells. Induction medium was changed every 2–3 days for 14 days. Osteocytes were fixed in iced cold 70% ethanol for 1 hour at room temperature. Alizarin Red Solution was added for 30 minutes in order to stain osteocytes containing calcium deposits. Astrocytes subjected to the same conditions were used as a negative control.

**Co-Culture of MSCs with AHPCs**

Adult hippocampal progenitor cells (AHPCs, provided by F. Gage, Salk Institute, La Jolla, CA) [33] were co-cultured with MSCs. For contact co-cultures (CCC) MSCs were plated onto glass coverslips coated with poly-L-ornithine (100 μg/ml in sterile water) and laminin (10 μg/ml in Earle’s Balanced Salt Solution) (referred to as: poly-L-ornithine/laminin-coated coverslips) at a density of 7,000 cells per well, in 6 well culture plates (4 coverslips/well). After 24 hr, AHPCs were plated onto the monolayers of MSCs at 20,000 cells per well. Co-cultures were maintained in co-culture media, consisting of AHPC differentiation media in a 7:3 mixture with MSC growth media (with 10% FBS). Transwell inserts (0.4 μm semi-porous membrane inserts; Corning, Inc., Corning, NY) were used to establish non-contact co-cultures (NCCC) of MSCs and AHPCs growing together in the absence of physical contact. MSCs were plated onto the insert membrane and the following day, AHPCs were plated onto poly-L-ornithine/laminin-coated coverslips in the lower chamber culture well at 20,000 cells per well. The co-cultures were maintained in co-culture media. As controls, AHPCs and MSCs were plated separately in the same co-culture medium at their respective densities. Cells were maintained at 37°C in a 5% CO₂/95% air atmosphere. Co-culture media was refreshed every 2-3 days. After 7 days the cells were fixed in 4% paraformaldehyde and immunostained as described in the following immunocytochemistry section.

**Immunocytochemistry**

For immunolabeling, cells were fixed in 4% paraformaldehyde for 20 min. Fixed cells were rinsed in PBS and then incubated in blocking solution containing 5% normal donkey serum, 0.4% bovine serum albumin (BSA; Sigma), and 0.2% Triton X-100 (Fisher Scientific), followed by incubation with primary antibodies overnight at 4°C. A panel of cell-type specific antibodies (Table 1) from a Rat Mesenchymal Stem Cell Characterization kit (Cat. No. SCR018; Millipore) was used to characterize MSCs. Primary antibodies and their dilutions are listed in Table 1. After rinsing in PBS, cells were incubated in the secondary antibodies conjugated to Cy3 diluted at 1:500 (Jackson ImmunoResearch, West Grove, PA). Cell nuclei were stained with DAPI, diluted at 1:2,000 in PBS and applied for 30
minutes. Preparations were rinsed and then mounted onto microscope slides using an antifade mounting medium (Gel Mount; Biomed Corp., Foster City, CA). Negative controls were performed in parallel by omission of the primary antibodies. No antibody labeling was observed in the controls.

Quantification of neurite outgrowth
A quantitative analysis of neurite outgrowth from AHPCs was performed by determining the number of neurite branches from cells with neuronal morphologies immunolabeled with the TuJ1 antibody (TuJ1-IR). The extent of neurite arborization was assessed using a Sholl analysis [34,35] plugin to NIH ImageJ [36]. The concentric circles plugin for Sholl analysis creates concentric circles with radii 10, 20, and 30 µm from the center of the cell soma. The number of neurite intersections with each circle was then manually counted. Analysis was performed in masked fashion.

Imaging and statistics
Phase contrast images were taken using a Nikon Diaphot inverted microscope with a CCD camera (Megaplus; Model 1.4; Kodak Corp., San Diego, CA) connected to a frame grabber (Megagrabber; Perceptics, Knoxville, TN, in a Macintosh computer; Apple Computer, Cupertino, CA) using NIH Image 1.58VDM software (Wayne Rasband, National Institutes of Health, Bethesda, MD). Images of MSCs and AHPCs labeled with antibodies were captured using a Nikon Microphot FXA fluorescence microscope equipped with a Retiga 2000R digital camera controlled by QCapture software (QImaging, Surrey, British Columbia, Canada). Figure plates were prepared using Photoshop CS2. Data were reported as means±standard error of the mean (S.E.M.). Statistical analysis was performed using GraphPad PRISM (ver. 3.0). All tests were two-tailed tests and p values less than an alpha of 0.05 were considered significantly different.

Results
Isolation and Characterization of Brown Norway Rat MSCs
Culture of MSCs
Mesenchymal stem cells (MSCs) from male and female Brown Norway rats were isolated from the bone marrow by their characteristic adherence to a plastic culture surface. The adherent MSCs were cultured as a monolayer and passaged when they reached 70~80% confluence. As illustrated in Figure 1, the MSCs showed a typical spindle-shape and fibroblast-like morphology. At early passage, small and slender MSCs were predominantly observed in the population. At later passages, we observed a relatively larger ratio of cells with large and flattened morphology compared to that of early passage cells (Figure 1).

Characterization of MSCs
Characterization of the MSCs was performed using immunocytochemistry with a panel of negative and positive antibody markers for rat MSCs (Table 1). After culturing for 4 or 5 passages, the vast majority of the adherent bone marrow-derived cells were specifically immunoreactive with antibody markers for MSCs (CD29, CD51, CD54, CD90, fibronectin, and collagen type I) (Figures 2A-2F). Furthermore, no MSCs showed specific immunoreactivity for the negative markers (CD11b, CD14, CD44, and CD45; Figures 2G-2J) and antibody controls (mouse IgG).

Figure 1. Phase contrast images of MSCs (male) at initial isolation (Passage 1, P1) and after 10 passages (P10). MSCs isolated from BN-rat bone marrow were cultured as a monolayer on plastic culture plates. Both small, rapidly self-renewing MSCs and larger, more mature MSCs were observed. MSCs had a spindle-shape and fibroblast-like morphology. In later passages, a greater proportion of cells displayed a flattened, fibroblast-like morphology. Scale bar=200 µm.

Figure 2. Characterization of MSCs immunostained with a panel of phenotypic markers. (A-F) Bone marrow-derived cells stained with a panel of MSC specific -positive antibody markers. No specific staining with MSC negative antibodies (CD11b, CD14, CD44 and CD45) was detected. (CD14-present on leukocytes; CD44-present on leukocytes and endothelial cells; CD45-present on monocytes and macrophages). (K and L) No staining was found with mouse- and rabbit-IgG secondary antibodies, negative controls. Scale bar=50 µm (A through L).
and rabbit IgG; Figures 2K-2L). (See also Supplementary Figure 1.
For the characterization of MSCs isolated from a female rat.).
These MSCs were also screened with a panel of antibodies against neural antigens to investigate their potential expression of endogenous neural-lineage markers. About 30% of MSCs were nestin-immunoreactive (Supplementary Figure 2) and no specific staining was found for TuJ1, MAP2ab, or GFAP antibodies (data not shown).

**MSC growth rate and proliferation**

The growth and proliferation (population doubling time (PDT)) of the MSCs were analyzed at passages 1, 4, 9, and 15 (Table 2). MSCs from female rats (♀) showed values of PDT (hr), 23.74 (±7.71), 37.01 (±4.93), 25.76 (±7.07), and 28.73 (±7.74) at P1, 4, 9, and 15, respectively. MSCs isolated from male rats (♂) displayed a similar range of growth rates; 17.68 (±4.14), 29.67 (±2.16), 25.5 (±2.63), and 23.43 (±2.56) at P1, 4, 9, and 15, respectively. There were no significant differences between the different passages/or between MSCs, isolated from male versus female Brown Norway rats. In addition, a BrdU assay was performed to examine the proliferation of MSCs with increasing passage number (Table 3). MSCs were exposed to 5 µM BrdU for 24 hours. More than 80% of MSCs were BrdU-IR at most passages. A significantly lower percentage (54.76%) of BrdU-labeled cells was observed for the MSCs (♂) at P4, although the BrdU percentages were essentially equal between the MSC populations at all other time points.

**Cell viability**

Analysis of cell viability was performed using a propidium iodide (PI) assay. Cells with compromised membrane integrity (e.g., unhealthy or dead cells) are differentiated from healthy and viable cells due to the fluorescence of PI, which binds to DNA in the nucleus of dead cells. MSCs maintained under normal growth conditions were not labeled by the PI (0% PI-labeled, Supplementary Figure 3A, N=3). As a PI reagent control, MSCs were incubated with 70% ethanol, resulting in 100% PI-labeled MSCs (Supplementary Figure 3B; N=3).

**Differentiation of MSCs into mesodermal lineages**

The multipotential nature of the MSCs was investigated by examining their ability to differentiate into adipogenic and osteogenic lineages. MSCs differentiated into adipocytes 21 days after adipogenic induction. Lipid droplets in adipocytes derived from MSCs following induction were stained with Oil Red O solution (Figures 3A and 3B). MSCs subjected to osteogenic induction conditions for 14 days were visualized with Alizarin red solution. Amorphous deposits of calcium were stained red, demonstrating osteogenic differentiation ability of the MSCs (Figures 3C and 3D). For both differentiation paradigms (adipogenic and osteogenic) astrocytes were used as a negative control and were subjected to the induction protocols and resulted in no Oil Red O or Alizarin red staining, respectively (Supplementary Figures 4C and 4F). These results indicate that the MSC populations isolated from Brown Norway rat bone marrow are multipotent MSCs.

**Co-culture of MSCs with AHPCs**

To examine the possibility that MSCs can influence the proliferation and differentiation of adult neural progenitor cells,
we established co-cultures of adult hippocampal progenitor cells (AHPCs) with MSCs. Upon growth factor withdrawal, the AHPCs have the capacity to differentiate into morphologically distinct neuronal cells, oligodendrocytes and astrocytes [32]. To delineate possible contact-mediated and/or soluble inducing activities associated with the MSCs, the AHPCs were differentiated in parallel under different culture conditions: (1) AHPCs cultured alone, (2) AHPCs cultured with MSCs in noncontact co-culture conditions (NCCC), and (3) AHPCs co-cultured in physical contact with the MSCs (contact co-culture condition, CCC). The AHPCs express green fluorescent protein (GFP) which facilitated their identification when co-cultured with the non-GFP-expressing MSCs (Figure 4). After 7 days, cultures were fixed and immunostained to examine cell proliferation in the NCCC condition, there were no significant differences between the culture groups (Table 4). The MSCs only group was not included in the data analysis due to difficulties in imaging of the cells growing on the membrane inserts.

Morphological differences in TuJ1- and RIP-IR AHPCs were noted when comparing AHPCs cultured alone versus the co-culture groups (CCC and NCCC). Co-culture with MSCs stimulated neurite outgrowth of neuronal AHPCs (TuJ1-IR). TuJ1-IR AHPCs, in both NCCC and CCC conditions, showed longer and highly branched neurites when compared to the AHPCs only condition (Figure 5). Quantitative assessment was performed by Sholl analysis as illustrated in Figure 5D. Significant differences in the number of neurite intersections at a radius of 20 µm (AHPCs only vs. NCCC and AHPCs only vs. CCC; p value<0.05) were observed. These results indicate that MSCs and or MSC-derived factors played a significant role in the morphological differentiation of AHPCs by promoting neurite outgrowth during the co-culture conditions. Furthermore, physical contact (CCC) between the MSCs and AHPCs during co-culture resulted in thicker neuronal processes and increased complexity, compared to that of the NCCC. In addition to influencing neurite outgrowth from TuJ1-IR cells, MSC co-cultures also appeared to influence the branching of RIP-IR cells. Both in NCCC and CCC conditions, RIP-IR cells were more highly branched with a larger area of arborization compared to that of the AHPCs only group. In addition, the primary processes of the RIP-IR AHPCs in the CCC group appeared to be thicker, compared to those of the other groups (Indicated with an arrow head; Figure 6). However, a quantitative analysis of the morphology of RIP-IR cells was not possible due to the processes of RIP-IR cells being too close or overlapping to be distinguishable from those of adjacent cells. Taken together, these results indicate that co-cultures of MSCs with the AHPCs promoted the morphological differentiation of neuronal and glial cells differentiating from AHPCs.

**Discussion**

Bone marrow-derived MSCs possess considerable potential towards development of cell-based therapeutics. The present study isolated and characterized bone marrow-derived MSCs isolated from male and female Brown Norway rats (♂ and ♀),

|     | AHPC | NCCC | CCC |
|-----|-----|-----|-----|
| TuJ1 | 21.46 | 23.11 | 19.74 |
| ±8.77 | ±4.47 | ±6.92 |
| RIP  | 59.15 | 29.45 | 54.61 |
| ±13.04 | ±8.10 | ±7.98 |
| BrdU | 36.89 | 29.76 | 38.23 |
| ±10.22 | ±7.65 | ±10.94 |

(Values; Mean±S.E.M.; Sample size, N=3)
Y et al. 2016, Stem Cell Biology and Research
http://www.hoajonline.com/journals/pdf/2054-717X-3-3.pdf
doi: 10.7243/2054-717X-3-3

Ye et al. 2016, Stem Cell Biology and Research
http://www.hoajonline.com/journals/pdf/2054-717X-3-3.pdf
doi: 10.7243/2054-717X-3-3

a commonly used strain for biomedical research [20,23,24,37,38].
MSCs were successfully isolated from the bone marrow and
were cultured for 20 passages displaying stable and con-
sistent growth rates. Immunostaining with a panel of MSC
positive- and negative- antibody markers demonstrated that
the identity of these populations of cells were consistent
with MSCs, lacking hematopoietic cell lineages. The PDTs
for these MSCs was about a day, indicating a relatively rapid cell
proliferation rate. Furthermore, BrdU analysis indicated that
most MSCs maintained a proliferative capacity throughout
the passages examined. When maintained under optimal
growth conditions, cell viability was high, with no PI staining
indicative of cell death. In addition, the multipotential nature
of these MSCs was demonstrated based on their ability for
adipogenesis and osteogenesis. The isolation and characteriza-
tion of these Brown Norway rat MSCs will broaden the avail-
ability of MSC lines for autologous and syngeneic transplant
studies towards development of experimental strategies for
treating neurodegenerative conditions. When co-cultured
with adult hippocampal progenitor cells (AHPCs), the MSCs
provided significant stimulation of neurite outgrowth. The MSC-
associated activity is in part likely mediated via soluble cues.

The Brown Norway rat MSCs isolated and characterized in
this study initially displayed heterogenous morphologies, con-
sisting of spindle-shaped and fibroblast-like cells as reported
previously [39]. The fibroblastic cell morphology became
more prominent over time with continued subculturing. The
morphological characteristics of these MSCs are consistent
with other rodent strains of MSCs [18,31,40].

Cell phenotyping was conducted using a panel of MSC posi-
tive- (fibronectin, collagen type I, CD29, CD54, CD51 and CD90)
and negative- (CD11b, CD14, CD44 and CD45) antibodies for
rat MSCs. In all experiments the MSCs were immunoreactive
for the positive markers and no detectable immunolabeling
for the negative MSC markers was observed, suggesting that
the population lacked hematopoietic lineage cells, consistent
with a highly pure population of MSCs.

The growth and proliferation of MSCs were studied and
compared between cells isolated from male and female donor
rats to examine the possibility of intrastrain sex differences.
With increasing passages, MSCs showed some variability in
population doubling time (18-37 PDT (hours)) though the
average PDTs were not significantly different from early to
late passages. Furthermore, no significant differences of PDTs
were found between male- and female-MSCs. The results of
BrdU assay also suggest that most MSCs were in an actively
replicating state. This property would be a benefit to meet
the needs of generating a large number of cells for scientific
research and preclinical applications. Unexpectedly, a low
percentage of BrdU-IR cells was observed at P4 (χ). Previous
studies reported reduced proliferation and/or growth-arrest in rat MSCs at passage 4 or 5 [41-43]. Population doubling
time at P4 (χ) in the present study, however, was not signif-
cantly different from other passages and only the ratio of
BrdU-IR cells decreased. A possible reason may be that a
larger proportion of MSCs may linger in G2, M, or G0 phases
compared to cells at other passages. The PDT value of these
Brown Norway rat MSCs was relatively short compared to
those of other strains of rat (Fisher, Lewis, Sprague-Dawley,
and Wistar) which showed approximately 2-4 days PDT [18].

However, consistent with our data, Karaoz and colleagues [31]
reported 19-41 hours PDT for Wistar rat MSCs. Nonetheless,
it is clear that growth characteristics of MSCs, in fact, can vary
depending on the species, strains, passages, and the regions
from which cells were isolated [9,40]. It is possible that such
differences may be due to the age of the animals, techniques
used for cell isolation and culture, as well as general health
conditions between individual animals.

The multipotential ability of these MSCs was demonstrated
by their differentiation into adipocytes and osteocytes in vitro.
a growing body of literature indicates that MSCs possess phe-
notypic plasticity and are able to generate myoblasts, tendon/
ligament fibroblasts, adipocytes, osteocytes, and chondrocytes
[5]. Karaoz et al., [31] demonstrated endogenous expression
of osteo-, myo-, and neuro-genic markers, which supports the
plasticity of rat MSCs to differentiate into various cell types.
A small proportion of Brown Norway rat MSCs were immu-
nolabeled with a nestin antibody, a neural stem cell marker.
A complex filamentous network of immunolabeling was
observed in these MSCs, consistent with nestin intermedi-
ate filament labeling. Nevertheless, the ability of MSCs to
transdifferentiate into neural cells remains a complicated and
controversial issue requiring additional studies.

A clearly emerging theme for use of MSCs as cellular ve-
nicles for neural repair is their neurogenic, neuroprotective
and immunomodulatory activities. MSCs have the ability
to synthesize and secrete a variety of biomolecules such as
neurotrophic factors, cytokines, and growth factors [44,45]. A
number of studies have demonstrated that such factors can
enhance neural cell proliferation, differentiation, and survival
[46-52]. Furthermore, MSCs have been shown to secrete neu-ogenic factors including brain-derived neurotrophic factor
(BDNF), glial cell line-derived neurotrophic factor (GDNF),
ciliary neurotrophic factor (CNTF), and neurotrophin-3 (NT-3)
[44,53,54]. The present study investigated the ability of these
MSCs to influence the differentiation of adult rat hippocampal
derived progenitor cells (AHPCs). These multipotent AHPCs
are capable of differentiating into neurons, oligodendrocytes
and astrocytes [55]. Two types of co-cultures were established
to examine cell-cell associated activities, as well as secreted
soluble factors from the MSCs. No significant differences in
the proportion of AHPC differentiation towards a neuronal
(TuJ1-IR) or glial (RIP-IR) cell type were observed in the co-
cultures of MSCs with the AHPCs. However, morphological
differentiation of both neuronal and oligodendrocyte-like
AHPCs was evident. Both co-culture configurations (NCCC and
CCC) resulted in significant increases in neurite outgrowth and
complexity on neuronal AHPCs (TuJ1-IR cells) when compared
to AHPCs differentiating on their own. Neurotrophic factors
such as BDNF induce neurite outgrowth from neuronal cells
and neural progenitors [56,57] and this may in part account for
neurite growth promoting activity observed in the co-cultures
with MSCs. Further studies will be required to examine what
types of receptors for biomolecules are expressed on AHPCs.

Interestingly, when co-cultured in direct contact with the
MSCs (CCC) the AHPCs displayed an even more pronounced
complexity of neurites than that of NCCC. Thus, it is likely that
cell-cell interactions mediated by cell adhesion molecules and/
or extracellular matrix molecules (ECM) also play important
roles in the MSC neurite outgrowth promoting activity [58-61].
In the present study, we showed that the expression of ECM
molecules (fibronectin and collagen type I) and CD29 (integrin
β1) on MSCs. It is well-documented that fibronectin and col-
lagen type I interact with integrin α1β1 and α5β1, respectively
[62]. Moreover, a previous study reported the expression of
integrins (α1, α5, and β1) and ECM molecules (fibronectin and
laminin) on the AHPCs [63]. Thus, it is possible that physical
contact between MSCs and AHPCs would allow cellular interac-
tions mediated through integrin-ECM signaling to stimulate
neurite outgrowth. Interactions between the ECM and integ-
rins activate signaling pathways that modulate the dynamics
of the cytoskeletons [64], and the changes of cytoskeletal
proteins involved in microtubule and actin filaments con-
tribute to the formation and regulation of neurite outgrowth.

MSCs possess considerable therapeutic potential due to a
number of advantages, including relative ease of isolation,
plasticity, proliferative capacity, paracrine activity, various
sources for isolation, and differentiation potential into mul-
tiple lineages. Clinical studies using human bone marrow-
mesenchymal cells as allografts have demonstrated prac-
tical use of MSCs for tissue-repair [17]. MSCs can directly or
indirectly affect the outcome after transplantation in vivo
because of their ability to secrete various factors such as
angiogenic, anti-apoptotic, proliferation-stimulating factors,
and neurotrophic factors [44,45,65]. Such utility for MSCs has
also been suggested by MSC transplantation into the eyes of
experimental glaucoma models followed by subsequent
neuroprotective effects on the retinas [66]. MSCs, furthermore,
can be genetically modified to express bioactive molecules
so they can act as a delivery vehicle for the factors in vivo.
BDNF-secreting MSCs transplanted into neurodegenerative
eyes provided notable preservation of the host retinas mor-
phologically and functionally [67].

Conclusions
This study indicates that MSCs from Brown Norway rats have
the potential to be a cell source for stem cell-based therapies
due to their fast and consistent proliferation, and ability for multipotent differentiation. Furthermore, these MSCs promoted morphological differentiation of neuronal-like as well as oligodendrocyte-like brain stem/progenitor cells and may provide an added benefit for use in developing strategies for nervous system rescue and repair.

List of abbreviations

AHPCs: Adult hippocampal progenitor cells
aMEM: Alpha minimum essential medium
BDNF: Brain-derived neurotrophic factor
BrDU: 5-bromo-2-deoxyuridine
CCC: Contact co-culture
CNTF: Ciliary neurotrophic factor
DAPI: 4′, 6-diamidino-2-phenylindole, dilactate
ECM: Extracellular matrix
GDNF: Glial cell line-derived neurotrophic factor
MM: Maintenance media
MSCs: Mesenchymal stem cells
NCCC: Non-contact co-culture
NT-3: Neurotrophin-3
PBS: Phosphate-buffered saline
PDT: Population doubling time
PI: Propidium iodide
TCPS: Tissue culture polystyrene

Additional files

Supplementary Figure 1
Supplementary Figure 2
Supplementary Figure 3
Supplementary Figure 4

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

| Authors’ contributions                      | EY | SSC | MZK | DSS |
|---------------------------------------------|----|-----|-----|-----|
| Research concept and design                 | ✓  | -   | --  | ✓   |
| Collection and/or assembly of data          | ✓  | ✓   | ✓   | --  |
| Data analysis and interpretation            | ✓  | --  | --  | ✓   |
| Writing the article                         | ✓  | --  | --  | ✓   |
| Critical revision of the article            | ✓  | --  | --  | ✓   |
| Final approval of article                   | ✓  | ✓   | ✓   | ✓   |
| Statistical analysis                        | ✓  | --  | --  | --  |

Acknowledgement

The authors would like to thank Dr. Roxanne Reger at Texas A&M Health Science Center College of Medicine for providing advice and the protocol for rat bone marrow isolation, and Dr. Fred H. Gage at the Salk Institute for the gift of the AHPCs. Iowa State University undergraduates, Amy Harvey and Pat Poston assisted with data collection. Drs. Svitlana Zbarska, Anup Sharma, and Melih Dagdeviren provided comments on the manuscript. None of the authors have any conflict of interest to declare. This work was supported by the National Eye Institute (NIH) #R01E0149294; the Stem Cell Research Fund; and the Genetics, Development and Cell Biology Department.

Publication history

Editors: Kameshwar P Singh, University of Rochester, USA. Andreas K Nüssler, University of Tubingen, Germany. Received: 07-Oct-2016 Final Revised: 11-Nov-2016 Accepted: 25-Nov-2016 Published: 09-Dec-2016

References

1. Arthur A, Zannettino A and Grontos S. The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol. 2009; 218:237-45. | Article | PubMed

2. Joe AW and Gregory-Evans K. Potential applications in treating ocular disease. Curr Eye Res. 2010; 35:941-52. | Article | PubMed

3. Simmons PJ, Przepiorka D, Thomas ED and Torok-Storb B. Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature. 1987; 328:429-32. | Article | PubMed

4. Sueblinwong V and Weiss DJ. Cell therapy approaches for lung diseases: current status. Curr Opin Pharmacol. 2009; 9:268-73. | Article | PubMed

5. Ohishi M and Shipani E. Bone marrow mesenchymal stem cells. J Cell Biochem. 109:277-282. | Article | PubMed

6. Sandquist EI, Uz M, Sharma AD, Patel BB, Mallapragada SK and Sakaguhi DS. Stem cells, bioengineering and 3-D scaffolds for nervous system repair and regeneration. In: Neural Engineering: from Advanced Biomaterials to 3D Fabrication Techniques. Edited by Zhang LG, Kaplan D: Springer. 2016. | Book

7. Hu Y, Liao L, Wang Q, Ma L, Ma G, Jiang X and Zhao RC. Isolation and identification of mesenchymal stem cells from human fetal pancreas. J Clin Lab Med. 2003; 141:342-9. | Article | PubMed

8. Moreno R, Martinez-Gonzalez I, Rosal M, Farwati A, Gratacos E and Aran JM. Characterization of mesenchymal stem cells isolated from the rabbit fetal liver. Stem Cells Dev. 2010; 19:1579-88. | Article | PubMed

9. Koch TG, Heerkens T, Thomsen PD and Betts DH. Isolation of mesenchymal stem cells from equine umbilical cord blood. BMC Biotechnol. 2007; 7:26. | Article | PubMed

10. Shih DT, Lee DC, Chen SC, Tsai RY, Huang CT, Tsai CC, Shen EY and Chiu WT. Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells. 2005; 23:1012-20. | Article | PubMed

11. Rzhainova AA, Gornostaeva SN and Goldstein DV. Isolation and phenotypical characterization of mesenchymal stem cells from human fetal thymus. Bull Exp Biol Med. 2005; 139:134-40. | Article | PubMed

12. Bernacki SH, Wall ME and Loboa EG. Isolation of human mesenchymal stem cells from bone and adipose tissue. Methods Cell Biol. 2008; 86:257-78. | Article | PubMed

13. De Coppi P, Pozzobon M, Piccoli M, Gazzola MV, Boldrin L, Slanzi E, Destro R, Zanesco L, Zanon GF and Gamba P. Isolation of mesenchymal stem cells from human verminiform appendix. J Surg Res. 2006; 135:85-91. | Article | PubMed

14. Miao Z, Jin J, Chen L, Zhu J, Huang W, Zhao J, Qian H and Zhang X. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int. 2006; 30:681-7. | Article | PubMed

15. Gargett CE, Schwab KE, Zillwood RM, Nguyen HP and Wu D. Isolation and culture of epithelial progenitors and mesenchymal stem cells from human endometrium. Biol Reprod. 2009; 80:1136-45. | Article | PubMed

16. Horwitz EM, Prockop DJ, Gordon PL, Koo WW, Fitzpatrick LA, Neel MD, McCarville ME, Orchard PJ, Pyeritz RE and Brenner MK. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood. 2001; 97:1227-31. | Article | PubMed

17. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE and Brenner MK. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med. 1999; 5:309-13. | Article | PubMed

18. Barzilay R, Melamed E and Ofen D. Introducing transcription factors to multipotent mesenchymal stem cells: making transdifferentiation possible. Stem Cells. 2009; 27:2509-15. | Article | PubMed

19. Clark BR and Price EO. Sexual maturation and fecundity of wild and domestic Norway rats (Rattus norvegicus). J Reprod Fertil. 1981; 63:215-20. | Article | PubMed
20. Grozdanic S, Sakaguchi DS, Kwon YH, Kardon RH and Sonea IM. Characterization of the pupil light reflex, electroretinogram and tonometric parameters in healthy rat eyes. Curr Eye Res. 2002; 25:69-78. | Article | PubMed

21. Grozdanic SD, Betts DM, Sakaguchi DS, Kwon YH, Kardon RH and Sonea IM. Temporary elevation of the intraocular pressure by cauterization of vortex and episcleral veins in rats causes functional deficits in the retina and optic nerve. Exp Eye Res. 2003; 77:27-33. | Article | PubMed

22. Grozdanic SD, Kwon YH, Sakaguchi DS, Kardon RH and Sonea IM. Functional evaluation of retina and optic nerve in the rat model of chronic ocular hypertenscion. Exp Eye Res. 2004; 79:75-83. | Article | PubMed

23. Uetrecht J. Role of animal models in the study of drug-induced hypersensitivities reactions. AAPS J. 2006; 7:E914-21. | Article | PubMed | PubMed FullText

24. Yoon YW, Lee DH, Lee BH, Chung K and Chung JM. Different strains and substrains of rats show different levels of neuropathic pain behaviors. Exp Brain Res. 1999; 129:167-71. | PubMed

25. Jacob HJ, Brown DM, Kwon YH, Sakaguchi DS, Kardon RH and Sonea IM. Behavioral differences between outbred Wistar, inbred Fischer 344, brown Norway, and hybrid Fischer 344 x brown Norway rats. Physiol Behav. 1996; 60:97-109. | Article | PubMed

26. Levan G, Spizer I, Spizer C, Klinga K, Hanson C and Islam MQ. The gene map of the Norway rat (Rattus norvegicus) and comparative mapping with mouse and man. Genomics. 1991; 10:699-718. | Article | PubMed

27. van der Staay FJ and Blokland A. Behavioral differences between outbred Wistar, inbred Fischer 344, brown Norway, and hybrid Fischer 344 x brown Norway rats. Physiol Behav. 1996; 60:97-109. | Article | PubMed | PubMed FullText

28. Kitada K, Voigt B, Kondo Y and Serikawa T. An integrated rat genome map based on genetic and cytogenetic data. Exp Anim. 2000; 49:119-26. | Article | PubMed

29. laulderkind SJ, Hayman GT, Wang SJ, Lowry TF, Rojobe C and Petri V, Smith JR, Dwinnell MR, Jacob HJ and Shimoya M. Exploring genetic, genomic, and phenotypic data at the rat genome database. Curr Protoc Bioinformatics. 2012; Chapter 1:Unit 14. | Article | PubMed | PubMed FullText

30. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Martin F, Krause D, Deans R, Keating A, Prockop D and Horwitz E. Mesenchymal stem cells: isolation, purification, and characterization. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8:315-7. | Article | PubMed | PubMed Abstract | PubMed FullText

31. Karazoo E, Aksyov A, Ayhan S, Sariboyaci AE, Kaymaz F and Kasap M. Characterization of mesenchymal stem cells from rat bone marrow: ultrastructural properties, differentiation potential and immunophenotypic markers. Histochem Cell Biol. 2009; 132:533-46. | Article | PubMed

32. Oh J, McCloskey MA, Blong CC, Bendickson L, Nilsen-Hamilton M and Sakaguchi DS. Astrocyte-derived interleukin-6 promotes specific neurogenic differentiation of neural progenitor cells from adult rat hippocampus. J Neurosci Res. 2010; 88:2798-809. | Article | PubMed | PubMed Abstract | PubMed FullText

33. Pain EM, TD, Takahashi J and Gage FH. The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci. 1997; 9:389-404. | Article | PubMed

34. Ensensel JC, Schonberg DL, Alexander JK, McTigue DM and Popovich PG. Combined effects of GDNF, BDNF, and CNTF on motoneuron differentiation in vitro. J Neurosci Res. 1996; 44:133-41. | Article | PubMed

35. Harper MM, Adson LM, Bunge MB, Grozdanic SD and Sakaguchi DS. Brain-derived neurotrophic factor released from engineered mesenchymal stem cells attenuates glutamate- and hydrogen peroxide-mediated death of staurosporine-differentiated RGC-5 cells. Exp Eye Res. 2009; 89:538-48. | Article | PubMed | PubMed Abstract | PubMed FullText

36. Schneider CA, Rasband WS and Eliceiri KW. NIH image to imageJ: 25 years of image analysis. Nat Methods. 2012; 9:671-5. | Article | PubMed

37. Smits BM, Guryev V, Zeegers D, Wedekind D, Hedrich HJ and Cuppen E. Efficient single nucleotide polymorphism discovery in laboratory rat strains using wild rat-derived SNP candidates. BMC Genomics. 2005; 6:170. | Article | PubMed Abstract | PubMed FullText

38. Hall E, Parton R and Wardlaw AC. Differences in coughing and other responses to intrabronchial infection with Bordetella pertussis among strains of rats. Infect Immun. 1997; 65:4711-7. | Article | PubMed Abstract | PubMed FullText

39. Prokop DJ, Sekiya I and Colter DC. Isolation and characterization of rapidly self-renewing stem cells from cultures of human marrow stromal cells. Cytotherapy. 2001; 3:393-6. | Article | PubMed

40. Sung JH, Yang HM, Park JB, Choi GS, Joh JW, Kwon CH, Chun JM, Lee SK and Kim SJ. Isolation and characterization of mouse mesenchymal stem cells. Transplant Proc. 2008; 40:2649-54. | Article | PubMed

41. Zhang FB, Li L, Fang B, Zhu DL, Yang HT and Gao P. Passage-restricted differentiation potential of mesenchymal stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun. 2005; 336:784-92. | Article | PubMed

42. Kochevnikova MN, Mikaelian AS, Palushina OV and Starostin VI. Comparative characterization of mesenchymal bone marrow stromal cells at early and late stages of culturing. Izv Akad Nauk Ser Biol. 2008; 156-62. | Article | PubMed

43. Liu Y, Song J, Liu W, Yan Y, Chen X and Hu C. Growth and differentiation of rat bone marrow stromal cells: does 5-azacytidine trigger their cardiomogenic differentiation? Cardiovasc Res. 2003; 58:460-8. | Article | PubMed

44. Caplan AI and Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006; 98:1076-84. | Article | PubMed

45. Crigler L, Robey RC, Asawachaicharn A, Gaupp D and Phinney DG. Human mesenchymal stem cell subpopulations express a variety of neuroregulatory molecules and promote neuronal cell survival and neurogenesis. Exp Neurol. 2006; 198:54-64. | Article | PubMed

46. Aguayo AJ, Clarke DB, Jelsma TN, Kitterlova P, Friedman HC and Bray GM. Effects of neurotrophins on the survival and regrowth of injured retinal neurons. Ciba Found Symp. 1996; 196:135-44. | Article | PubMed

47. Caffe AR, Soderpalm AK, Holmquist I and van Veen T. A combination of CNTF and BDNF rescues rd photoreceptors but changes rod differentiation in the presence of RPE in retinal explants. Invest Ophthalmol Vis Sci. 2001; 42:275-82. | Article | PubMed

48. Feng L, Wang CY, Jiang H, Oho C, Dugich-Djordjevic M, Mei L and Lu B. Differential signaling of giall cell line-derived neurotrophic factor and brain-derived neurotrophic factor in cultured ventral mesencephalic neurons. Neuroscience. 1999; 93:265-73. | Article | PubMed

49. Heuckeroth RO, Lampe PA, Johnson EM and Milbrandt J. Neurturin and GDNF promote proliferation and survival of enteric neuron and glial progenitors in vitro. Dev Biol. 1998; 200:116-29. | Article | PubMed

50. Pascual A, Hidalgo-Figueira M, Piruat JI, Pintado CO, Gomez-Diaz R and Lopez-Bermejo I. Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat Neurosci. 2008; 11:755-61. | Article | PubMed

51. Schuettau F, Vorwerk C, Naskar R, Orlin A, Quinto K, Zarakowski D, Dejnkea NS, Klein RL, Meyer EM and Bennett J. Adeno-associated viruses containing bFGF or BDNF are neuroprotective against excitotoxicity. Curr Eye Res. 2004; 29:379-86. | Article | PubMed

52. Zurn AD, Winkel L, Menoud A, Djabali K and Aebischer P. Combined effects of GDNF, BDNF, and CNTF on motoneuron differentiation in vitro. J Neurosci Res. 1996; 44:133-41. | Article | PubMed

53. Harper MM, Adamson L, Bunge MB, Grozdanic SD and Sakaguchi DS. Brain-derived neurotrophic factor released from engineered mesenchymal stem cells attenuates glutamate- and hydrogen peroxide-mediated death of staurosporine-differentiated RGC-5 cells. Exp Eye Res. 2009; 89:538-48. | Article | PubMed | PubMed Abstract | PubMed FullText

54. Pan HC, Cheng FC, Chen CJ, Lai SZ, Lee CW, Yang DY, Chang MH and Ho SP. Post-injury regeneration in rat sciatric nerve facilitated by neurotrophic factors secreted by amniotic fluid mesenchymal stem cells. J Clin Neurosci. 2007; 14:1089-98. | Article | PubMed

55. Oh J, Recknor JB, Recknor JC, Mallapragada SK and Sakaguchi DS. Soluble factors from neocortical astrocytes enhance neuronal differentiation of neural progenitor cells from adult rat hippocampus on micropatterned polymer substrates. J Biomed Mater Res A. 2009; 91:575-85. | Article | PubMed Abstract | PubMed FullText
56. Stewart AL, Anderson RB, Kobayashi K and Young HM. Effects of NGF, NT-3 and GDNF family members on neurite outgrowth and migration from pelvic ganglia from embryonic and newborn mice. BMC Dev Biol. 2008; 8:73. | Article | PubMed Abstract | PubMed FullText

57. Labelle C and Leclerc N. Exogenous BDNF, NT-3 and NT-4 differentially regulate neurite outgrowth in cultured hippocampal neurons. Brain Res Dev Brain Res. 2000; 123:1-11. | Article | PubMed

58. Lander AD. Molecules that make axons grow. Mol Neurobiol. 1987; 1:213-245. | Article

59. Hynes RO and Lander AD. Contact and adhesive specificities in the associations, migrations, and targeting of cells and axons. Cell. 1992; 68:303-22. | Article | PubMed

60. Carr N, Perris R, Johansson S and Ebendal T. Differential outgrowth of retinal neurites on purified extracellular matrix molecules. J Neurosci Res. 1988; 19:428-39. | Article | PubMed

61. Bixby JL and Harris WA. Molecular mechanisms of axon growth and guidance. Annu Rev Cell Biol. 1991; 7:117-59. | Article | PubMed

62. Tomaselli KJ. Beta 1-integrin-mediated neuronal responses to extracellular matrix proteins. Ann N Y Acad Sci. 1991; 633:100-4. | Article | PubMed

63. Harper MM, Ye EA, Bliog CC, Jacobson ML and Sakaguchi DS. Integrins contribute to initial morphological development and process outgrowth in rat adult hippocampal progenitor cells. J Mol Neurosci. 2010; 40:269-83. | Article | PubMed

64. Geiger B, Bershadsky A, Pankov R and Yamada KM. Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol. 2001; 2:793-805. | Article | PubMed

65. Schinkothe T, Bloch W and Schmidt A. In vitro secreting profile of human mesenchymal stem cells. Stem Cells Dev. 2008; 17:199-206. | Article | PubMed

66. Johnson EC, Guo Y, Cepurna WO and Morrison JC. Neurotrophin roles in retinal ganglion cell survival: lessons from rat glaucoma models. Exp Eye Res. 2009; 88:808-15. | Article | PubMed Abstract | PubMed FullText

67. Harper MM, Grozdanic SD, Blitz B, Kuehn MH, Zamzow D, Buss JE, Kardon RH and Sakaguchi DS. Transplantation of BDNF-secreting mesenchymal stem cells provides neuroprotection in chronically hypertensive rat eyes. Invest Ophthalmol Vis Sci. 2011; 52:4506-15. | Article | PubMed Abstract | PubMed FullText

Citation:
Ye E-A, Chawla SS, Khan MZ and Sakaguchi DS. Bone marrow-derived mesenchymal stem cells (MSCs) stimulate neurite outgrowth from differentiating adult hippocampal progenitor cells. Stem Cell Biol Res. 2016; 3:3. http://dx.doi.org/10.7243/2054-717X-3-3