LOWER DEFECT GROUPS AND VERTICES OF SIMPLE MODULES

AKIHIKO HIDA AND MASAO KIYOTA

ABSTRACT. We compare lower defect groups associated with \(p \)-regular classes and vertices of simple modules for a block of a finite group algebra. We show that lower defect groups are contained in vertices of simple modules after suitable reordering. Moreover, for a block of principal type, we show that a \(p \)-regular lower defect group which contains a vertex of simple module is a defect group of the block.

1. Introduction

Let \(G \) be a finite group. Let \(\mathcal{O} \) be a complete discrete valuation ring of characteristic 0 such that the residue field \(k = \mathcal{O}/J(\mathcal{O}) \) is an algebraically closed field of characteristic \(p > 0 \). Let \(Z_kG \) be the center of the group algebra \(kG \). We call a primitive idempotent of \(Z_kG \) a block of \(kG \). In this paper, we consider the relation between two important families of \(p \)-subgroups associated with a block \(b \) of \(kG \), lower defect groups of \(b \) and vertices of simple \(kGb \)-modules.

A conjugacy class of \(G \) is called \(p \)-regular if the order of its element is not divisible by \(p \). The \(p \)-regular conjugacy classes of \(G \) are distributed to blocks of \(kG \). Let \(\text{Cl}(G) \) be the set of all \(p \)-regular classes of \(G \) and \(\text{Cl}(G) = \bigcup_b \text{Cl}_b \) a decomposition of \(\text{Cl}(G) \) into blocks of \(kG \). Let \(\text{Cl}_b \) be a defect group of \(C_i \), namely, \(Q_i \) is a Sylow \(p \)-subgroup of \(C_G(x_i) \) where \(x_i \in C_i \). Then \(Q_i \) \((1 \leq i \leq l(b))\) are called lower defect groups of \(b \) associated with \(p \)-regular classes.

Let \(\{ S_i \}_{1 \leq i \leq l(b)} \) be a representatives of complete set of isomorphism classes of simple \(kGb \)-modules. It is known that this set and \(\text{Cl}_b \) have the same cardinality. We want to compare \(Q_i \) and a vertex \(\text{vx}(S_j) \) of \(S_j \). These are both subgroups of some defect group of \(b \). For example, if a defect group \(P \) of \(b \) is abelian, then \(\text{vx}(S_i) = P \) for all \(i \) by the theorem of Knörr [4]. Hence in this case, \(Q_i \leq \text{vx}(S_j) \) holds in general for all \(i \) if we renumber the indices suitably.

Proposition 1.1. Let \(b \) be a block of \(kG \). Let \(\{ S_i \}_{1 \leq i \leq l(b)} \) be a set of representatives of isomorphism classes of simple \(kGb \)-modules. Let \(\{ Q_i \}_{1 \leq i \leq l(b)} \) be the lower defect groups of \(b \) associated with \(p \)-regular classes. Then there exists a permutation \(\sigma \) of \(\{ 1, 2, \ldots, l(b) \} \) such that

\[Q_i \leq \text{vx}(S_{\sigma(i)}) \]
for all i. In particular,

$$\prod_{i=1}^{l(b)} |Q_i| \leq \prod_{i=1}^{l(b)} |\text{vx}(S_i)|.$$

Next we consider when the equality holds in Proposition 1.1. We show that, under some assumption, if the equality holds then $Q_i = \text{vx}(S_{\sigma(i)})$ is a defect group of b. A block b is of principal type if the image of Brauer homomorphism with respect Q is a block of $kC_G(Q)$ for every p-subgroup Q contained in a defect group of b. For a p-subgroup Q of G, we denote by $m_1^b(Q)$ the multiplicity of Q as a lower defect group of b associated with p-regular classes, that is, $m_1^b(Q)$ is a number of i ($1 \leq i \leq l(b)$) such that $Q_i =_G Q$. The following theorem is our main result.

Theorem 1.2. Let b be a block of principal type of kG and P a defect group of b. Let S be a simple kGb-module and R a vertex of S. If $R \leq Q < P$, then $m_1^b(Q) = 0$.

By Proposition 1.1 and Theorem 1.2, we have the following Corollary.

Corollary 1.3. Let $\{x_i\}_{1 \leq i \leq l}$ be a set of representatives of p-regular conjugacy classes of G. Let Q_i be a Sylow p-subgroup of $C_G(x_i)$. Let $\{S_i\}_{1 \leq i \leq l}$ be a set of representatives of isomorphism classes of simple kG-modules. Then

$$\prod_{i=1}^{l} |Q_i| \leq \prod_{i=1}^{l} |\text{vx}(S_i)|$$

and the equality holds if and only if G is p-nilpotent.

We prove these results in section 3. In section 4 we consider blocks of p-solvable groups. We show a result which is slightly weaker than Theorem 1.2 without the assumption that b is of principal type. Finally, in section 5 we add some results on the complexity of modules.

In this paper, all kG-modules are finite generated right modules. For an indecomposable kG-module M, we denote a vertex of M by $\text{vx}(M)$. We refer to [6], [10], [11] and [12] for modular representations of finite groups.

2. **Lower defect groups of a block**

Lower defect groups of a block are defined by Brauer [3] and some related results can be found in [5], [8], [13] or [6, V, Section 10], [12, Chapter 5, Section 11]. In this section we quote some known results used in this paper. We consider lower defect groups associated with p-regular classes only.

Let $G_{p'}$ be the set of all p-regular elements of G. We denote by $kG_{p'}$ the k subspace of kG spanned by $G_{p'}$. If C is a conjugacy class of G, we set $\hat{C} = \sum_{x \in C} x \in kG$. Then $\{\hat{C} \mid C \in \text{Cl}(G)\}$ is a basis of the center ZkG of kG. Let $\text{Cl}(G_{p'})$ be the set of all p-regular conjugacy classes of G. Then $\{\hat{C} \mid C \in \text{Cl}(G_{p'})\}$ is a basis of $ZkG_{p'} = ZkG \cap kG_{p'}$. On the other hand,

$$ZkG_{p'} = \bigoplus_b ZkG_{p'} \cap ZkGb$$

where b ranges over all blocks of kG and there exists a disjoint decomposition

$$\text{Cl}(G_{p'}) = \bigcup_b \text{Cl}_{p'}(b)$$
such that \(\{ \hat{C}b \mid C \in Cl_{p'}(b) \} \) is a basis of \(ZkG_{p'}b \) for any block \(b \).

Let \(Cl_{p'}(b) = \{ C_i \}_{1 \leq i \leq l(b)} \) and \(Q_i \), a defect group of \(C_i \), that is, \(Q_i \) is a Sylow \(p \)-subgroup of \(C_G(x_i) \) where \(x_i \in C_i \). We denote by \(m_i^1(Q) \) the multiplicity of \(Q \) as a lower defect group of \(b \) associated with \(p \)-regular classes, that is, \(m_i^1(Q) \) is a number of \(i \ (1 \leq i \leq l(b)) \) such that \(Q = G Q_i \). Here, for subgroups \(H, K \) of \(G \), we write \(H = G K \) if \(H \) and \(K \) are \(G \)-conjugate.

Let \(M \) be a \(kG \)-module and \(H \subseteq K \) be subgroups of \(G \). Let \(M^H \) be the set of fixed points of \(H \) in \(M \). We denote by \(Tr^K_H \) the trace map from \(M^H \) to \(M^K \) defined by

\[
Tr^K_H(m) = \sum_{g \in H \backslash K} mg.
\]

We set \(M^K = Tr^K_H(M^H) \). The group \(G \) acts on \(kG \) and \(kG_{p'} \) by conjugation and we can define the trace maps

\[
Tr^K_H : (kG)^H \longrightarrow (kG)^K
\]

and

\[
Tr^K_H : (kG_{p'})^H \longrightarrow (kG_{p'})^K.
\]

The proof of the following basic properties of lower defect groups are found in [6, V, Section 10] and [12, Chapter 5, Section 11].

Proposition 2.1. Let \(b \) be a block of \(kG \) and \(P \) a defect group of \(b \). Then the following holds.

1. If \(Q \) is a \(p \)-subgroup of \(G \), then \(m_i^1(Q) = \dim(kG_{p'})^{G}_{Q}/\sum_{R<Q}(kG_{p'})^{G}_{R} \).
2. If \(m_i^1(Q) > 0 \) then \(Q \) is conjugate to a subgroup of \(P \) and \(m_i^1(P) = 1 \).
3. Let \(Cl_{p'}(b) = \{ C_i \}_{1 \leq i \leq l(b)} \) and \(Q_i \), a defect group of \(C_i \). Then \(l(b) = \#(Cl_{p'}(b)) \) is the number of isomorphism classes of simple \(kGb \)-modules and \(\{|Q_i| \mid 1 \leq i \leq l(b)\} \) is the set of elementary divisors of the Cartan matrix of \(kGb \).
4. Let \(m \geq 0 \). Then \(\sum_{Q} m_i^1(Q) \) where \(Q \) ranges over the set of representatives of conjugacy classes of subgroups of \(G \) of order \(p^m \) is the multiplicity of \(p^m \) as an elementary divisor of the Cartan matrix of \(kGb \).

We need the following result in Lemma 3.1.4 and Theorem 3.5.

Proposition 2.2 ([3, Proposition (II) 1.3]). If \(Q \) is a \(p \)-subgroup of \(G \) then

\[
m_i^1(Q) = \dim(kC_G(Q)_{p'})^{N_G(Q)}_{Q} Br_Q(b)
\]

where \(Br_Q : ZkG \longrightarrow ZkN_G(Q) \) is the Brauer homomorphism.

3. PROOF OF MAIN RESULTS

The following Proposition is proved in [2] Theorem 10, Corollary. It is obtained from [3] p.243, Corollaire] or [6, IV, Theorem 2.3] also.

Proposition 3.1. Let \(M \) be an indecomposable \(kG \)-module.

1. If \(\varphi \) be the Brauer character corresponding to \(M \). Let \(x \in G_{p'} \) and \(Q \in \text{Syl}_{p'}(C_G(x)) \). If

\[
\varphi(x) \notin p\mathbb{O}
\]

then \(\text{Res}_Q^G M \) has an indecomposable direct summand \(N \) such that \(\dim N \neq 0 \mod p \).

2. If \(Q \) is a \(p \)-subgroup of \(G \) and \(\text{Res}_Q^G M \) has an indecomposable direct summand \(N \) such that \(\dim N \neq 0 \mod p \), then \(Q \leq_C \text{vx}(M) \).
Proposition 1.1 is immediate from this Proposition.

(Proof of Proposition 1.1)
Let \(\varphi_i \) be the Brauer character of \(S_i \). Let \(\text{Cl}_{p'}(b) = \{ C_i \}_{1 \leq i \leq l(b)} \) be the \(p \)-regular conjugacy classes distributed into \(b \) in the block decomposition of \(\text{Cl}(G_{p'}) \). Fix \(x_i \in C_i \) for each \(i \). We may assume that \(Q_i \) is a Sylow \(p \)-subgroup of \(C_G(x_i) \) where \(x_i \in C_i \). Then the determinant of the matrix \((\varphi_i(x_j))_{1 \leq i, j \leq l(b)} \) is not contained in \(J(O) \) by [12, Chapter 5, Theorem 11.6] and there exists a permutation \(\sigma \) such that

\[
\prod_i \varphi_{\sigma(i)}(x_i) \notin J(O).
\]

Since \(pO \subset J(O) \), the result follows from Proposition 3.4.

Next we prove Theorem 1.2. First we study the case that \(Q \) is a normal subgroup of \(G \).

Lemma 3.2. Let \(G \triangleright H \). Let \(b \) be a block of \(kH \) of defect 0. Let \(T = T(b) \) be the inertial group of \(b \) in \(G \). Assume that \(|T : H| \equiv 0 \mod p \). Then \(b(kH)^T = 0 \).

Proof. By the Mackey decomposition, we have

\[
(kH)^T \subset \sum_{t \in G/T} ((kH)^t)^T = (kH)^T.
\]

Since \(b \) is \(T \)-invariant, we have

\[
b(kH)^T = b \text{Tr}_T(kH) = \text{Tr}_T(bkH) = \text{Tr}_H(\text{Tr}_T(bkH)).
\]

Then

\[
\text{Tr}_H(bkH) = Z(bkH) = kb
\]

since \(b \) is a block of defect 0, and

\[
\text{Tr}_H(\text{Tr}_T(bkH)) = \text{Tr}_H(kb) = 0
\]

since \(|T : H| \equiv 0 \mod p \).

Lemma 3.3. Let \(Q \) be a normal \(p \)-subgroup of \(G \) and \(\overline{G} = G/Q \). Let \(\mu : kG \rightarrow k\overline{G} \) be the surjective algebra homomorphism induced by the natural surjective homomorphism \(G \rightarrow \overline{G} \). Let \(b \) be a block of \(kG \) and \(\overline{b} = \mu(b) \). Then \(\mu \) induces an isomorphism

\[
b \cdot (kC_G(Q))_{p'}^G \cong \overline{b} \cdot (k(QC_G(Q))/Q)_{p'}^G
\]

Proof. The natural surjective homomorphism \(G \rightarrow \overline{G} \) induces a bijection

\[
C_G(Q)_{p'} \rightarrow (QC_G(Q))_{p'} = (QC_G(Q)/Q)_{p'}.
\]

Hence \(\mu \) induces an isomorphism

\[
\mu_0 : kC_G(Q)_{p'} \cong k(QC_G(Q))_{p'}.
\]

On the other hand, since

\[
\mu(b \cdot (kC_G(Q))_{p'}^G) = \overline{b} \cdot (k(QC_G(Q))/Q)_{p'}^G
\]

and

\[
b \cdot (kC_G(Q))_{p'}^G \subset kC_G(Q)_{p'}, \quad \overline{b} \cdot (k(QC_G(Q))/Q)_{p'}^G \subset k(QC_G(Q))_{p'}^G
\]

it follows that the restriction of \(\mu_0 \) induces the desired isomorphism.
Lemma 3.4. Let Q be a normal p-subgroup of G and b a block of kG. Let P be a defect group of b. Assume that $Q < P$ and $C_P(Q) = Z(Q)$. Then $b \cdot (kC_G(Q)_{P'})_Q^G = 0$, in particular, $m^i_P(Q) = 0$.

Proof. Let $H = QC_G(Q)$. The block b is a central idempotent of kH. Let $b = \sum b_i$ be the block decomposition of b in kH. Let $T_i = T(b_i)$ be the inertial group of b_i in G. Then there exists a defect group P_i of b such that $P_i \leq T_i$ and $P_i \cap H$ is a defect group of b_i. Since P_i is conjugate to P in G and $C_P(Q) = Z(Q)$,

$$P_i \cap H = P \cap H = Q$$

and it follows that Q is a defect group of b_i. Let $\mu : kG \rightarrow k(G/Q)$ be the natural surjective algebra homomorphism. Then $\mu(b_i) = \overline{b_i}$ is a block of defect 0 for all i. Since $Q < P$, we have $H \neq HP_i$ and $|T_i : H| \equiv 0 \mod p$. The inertial group of $\overline{b_i}$ in G is $T_i = T_i/Q$ and $|T_i : H| \equiv 0 \mod p$. Hence

$$\overline{b_i}(k\overline{H})_{T_i}^i = 0$$

by Lemma 3.2 and

$$b(k\overline{H})_{T_i}^i = (\sum_i \overline{b_i})(k\overline{H})_{T_i}^i = 0.$$

Then, by Lemma 3.3,

$$b(kC_G(Q)_{P'})_{Q}^G \simeq \overline{b}(k\overline{H})_{T_i}^i \subset \overline{b}(k\overline{H})_{T_i}^i = 0.$$

Moreover, since Q is a normal subgroup of G, $Br_Q(b) = b$ and the result follows from Proposition 2.2. \hfill \Box

In the following, we consider a p-subgroup Q such that $C_P(Q) = Z(Q)$ for any defect group P of b containing Q.

Theorem 3.5. Let b be a block of kG and Q a p-subgroup of G. Assume that Q is a proper subgroup of a defect group of b. If $C_P(Q) = Z(Q)$ for any defect group P of b containing Q, then $m^i_P(Q) = 0$.

Proof. Let $N = N_G(Q)$. Let

$$Br_Q : ZkG \rightarrow ZkN$$

be the Brauer homomorphism and

$$Br_Q(b) = \sum_i b_i$$

a decomposition into block idempotents of kN. Then $b_i^Q = b$ and $Q < D_i$ by Brauer’s First Main Theorem where D_i is a defect group of b_i. There exists a defect group P_i of b such that $D_i \leq P_i$. Then

$$C_{D_i}(Q) \leq C_{P_i}(Q) = Z(Q)$$

by the assumption. Hence

$$b_i \cdot (kC_G(Q)_{P'})_Q^N = 0$$

by Lemma 3.4 and

$$(kC_G(Q)_{P'})_Q^N Br_Q(b) = (kC_G(Q)_{P'})_Q^N (\sum_i b_i) = 0.$$

Hence the result follows by Proposition 2.2. \hfill \Box
Lemma 3.6. Let \(b \) be a block of \(kG \) and \((P, e)\) a maximal \((G, b)\)-Brauer pair. Let \(\mathcal{F} = \mathcal{F}_{(P, e)}(G, b) \) be the fusion system of \(b \) with respect to \((P, e)\). Suppose that \(\mathcal{F} = \mathcal{F}_P(G) \). Let \(Q \) be a proper subgroup of \(P \). If \(Q \) is \(\mathcal{F} \)-centric, then \(m_k^1(Q) = 0 \).

Proof. Let \(P_1 \) be a defect group of \(b \) such that \(Q < P_1 \). Then there exists \(g \in G \) such that \(P^g = P_1 \). Let \(Q_1 = g Q \). Then

\[
\varphi : Q \longrightarrow Q_1(\leq P), \quad \varphi(u) = gu^{-1}
\]

is an isomorphism in \(\mathcal{F} = \mathcal{F}_P(G) \). Hence \(C_P(Q_1) = Z(Q_1) \) since \(Q \) is \(\mathcal{F} \)-centric and it follows that \(C_{P_1}(Q) = Z(Q) \). Hence \(b \) satisfies the assumption of Theorem 3.6.

\[\square\]

Now we prove Theorem 1.2 and Corollary 1.3. A block \(b \) of \(kG \) is of principal type if \(Br_m(b) \) is a block of \(kC_G(Q) \) for every \(p \)-subgroup \(Q \) contained in a defect group of \(b \) (\cite[Definition 6.3.13]{knorr}).

(Proof of Theorem 1.2)

There exists a \((G, b)\)-Brauer pair \((R, f)\) such that \(Z(R) \) is a defect group of the block \(f \) of \(kC_G(R) \) by the theorem of Knörr (\cite[3.6 Corollary]{knorr}, \cite[Corollary 10.3.2]{knorr}). Let \((P, e)\) be a maximal \((G, b)\)-Brauer pair such that \((R, f) \leq (P, e)\). Let \(\mathcal{F} = \mathcal{F}_{(P, e)}(G, b) \) be the fusion system of \(b \) with respect to \((P, e)\). Then \(R \) is an \(\mathcal{F} \)-centric subgroup of \(P \) by \cite[Proposition 8.5.3]{knorr}. Moreover, since \(b \) is a block of principal type, we have \(\mathcal{F} = \mathcal{F}_P(G) \) by \cite[Proposition 8.5.5]{knorr}. Since \(R \leq Q \leq P \), \(Q \) is an \(\mathcal{F} \)-centric subgroup by \cite[Proposition 8.2.4]{knorr}. Hence the results follows from Lemma 3.6.

Remark 3.7. In Theorem 1.2, \(S \) does not necessarily need to be simple. Let \(b \) be a block of \(OG \) with defect group \(P \) and \(S \) an indecomposable \(OGb \)-module. If \(\text{End}_{OGb}(S) \cong O/J(O)^m \) for some \(m > 0 \), then there is a \((G, b)\)-Brauer pair \((R, f)\) such that \(Z(R) \) is a defect group of the block \(f \) of \(kC_G(R) \) as in the proof of Theorem 1.2 by \cite[Corollary 10.3.2]{knorr}. It follows that if \(b \) is of principal type and \(R \leq Q \leq P \), then \(m_k^1(Q) = 0 \).

(Proof of Corollary 1.3)

The inequality holds by Proposition 1.1. If \(G \) is \(p \)-nilpotent, then \(kGb \) has a unique simple module (up to isomorphism) for every block \(b \) of \(kG \). The vertex of the simple \(kGb \)-module is a defect group of \(b \) and that is a \(p \)-regular lower defect group of \(b \). Hence the equality holds. On the other hand, assume that the equality holds. If \(P \) is a defect group of a block \(b \) of \(kG \), then \(m_k^1(P) = 1 \). Hence the principal block \(b_0(kG) \) of \(kG \) has a unique simple module (up to isomorphism) by Proposition 1.1 and Theorem 1.2 since \(b_0(kG) \) is a block of principal type by Brauer’s Third Main Theorem (\cite[Theorem 6.3.14]{knorr}). Hence \(G \) is \(p \)-nilpotent.

4. Blocks of \(p \)-solvable groups

Let \(N \) be a normal subgroup of \(G \). Let \(b \) be a block of \(kG \). Let \(c \) be the block of \(kN \) such that \(bc \neq 0 \) and \(H \) the inertial group of \(c \) in \(G \). Then there exists a block \(d \) of \(kH \) such that \(db = d \) and \(Tr^G_H(d) = b \). The \((kGb, kHd)\)-bimodule \(kkGd = kGd \).
Proof. Let U be a p-subgroup of H. Let
\[U = \{ W \leq H \mid W =_{G} U \} \]
and let $\{ U_{j} \}$ be a set of representatives of H-conjugacy classes of U. Then
\[\sum_{j} m_{1}(U_{j}) = m_{1}(U). \]

Proof. Let $\{ R_{ij} \}_{1 \leq i \leq m, 1 \leq j \leq r(i)}$ be a set of representatives of H-conjugacy classes of subgroups of H of order $|U|$ such that
\[R_{ij} =_{G} R_{i^{'}, j^{'}} \iff i = i^{'} . \]
We may assume $U = R_{11}$ and $\{ U_{j} \} = \{ R_{1j} \}$. We set $R_{i} = R_{i1}$. For each i, \Tr_{H}^{G} induces a k-linear map
\[\Phi_{i} : \bigoplus_{1 \leq j \leq r(i)} \left((kH_{p'})_{R_{ij}}^{H} d / \sum_{R < R_{ij}} (kH_{p'})_{R}^{H} d \right) \longrightarrow (kG_{p'})_{R_{i}}^{G} b / \sum_{R < R_{i}} (kG_{p'})_{R}^{G} b. \]
We claim that Φ_i is an isomorphism. For $t \in G$, if $R_i^t \leq H$ then $R_i^t = H$ R_{ij} for some j. On the other hand, if $R_i^t \cap H < R_i^t$ then
\[
\text{Tr}^G_H((kH_{p'})_{R_i^t \cap H} d) \subset (kG_{p'})_{R_i^t} R_i^t H b = (kG_{p'})_{R_i^t} H b \subset \sum_{R \prec R_i} (kG_{p'})_{R_i} b.
\]
Hence we have
\[
(kG_{p'})_{R_i} b = \sum_{t \in G} \text{Tr}^G_H((kH_{p'})_{R_i^t \cap H} d) \subset \text{Tr}^G_H(\sum_j (kH_{p'})_{R_i^t} R_i^t j H d) + \sum_{R \prec R_i} (kG_{p'})_{R_i} b
\]
by Lemma [4.1] and Φ_i is surjective. Hence
\[
\sum_{1 \leq j \leq r(i)} m^1_d(R_{ij}) \geq m^1_b(R_i)
\]
for each i and
\[
\sum_{i,j} m^1_d(R_{ij}) \geq \sum_i m^1_b(R_i).
\]
But $\sum_{i,j} m^1_d(R_{ij})$ is the multiplicity of $|U|$ as an elementary divisor of the Cartan matrix C_d of kHd and $\sum_i m^1_b(R_i)$ is that of the Cartan matrix C_b of kGb. Since kGb and kHd are Morita equivalent, $C_d = C_b$ and it follows that
\[
\sum_{i,j} m^1_d(R_{ij}) = \sum_i m^1_b(R_i).
\]
Hence
\[
\sum_{1 \leq j \leq r(i)} m^1_d(R_{ij}) = m^1_b(R_i)
\]
and Φ_i is an isomorphism for each i. In particular, for $i = 1$, we have
\[
\sum_j m^1_d(U_j) = m^1_b(U).
\]\[\square\]

The following theorem is the main result of this section. If the block b is of principal type, then this is a consequence of Theorem [1,2].

Theorem 4.3. Let G be a p-solvable group. Let b be a block of kG. Let $Cl_{p'}(b) = \{C_i\}_{1 \leq \ell(b)}$ and Q_i a defect group of C_i. Let $\{S_i\}_{1 \leq \ell(b)}$ be a set of representatives of isomorphism classes of simple kGb-modules. Then there exists a permutation σ of $\{1, \ldots, \ell(b)\}$ such that
\[
Q_i \leq_G \text{vx}(S_{\sigma(i)})
\]
for all i and
\[
Q_i <_G \text{vx}(S_{\sigma(i)})
\]
unless Q_i is a defect group of b.

Proof. Let c be a block of $kO_{p'}(G)$ such that $bc \neq 0$ and H the inertial group of c in G. Then there exists a block d of kH such that $db = d$ and $\text{Tr}^G_H(d) = b$. Moreover (kGb, kHd)-bimodule $bkGd = kGd$ induces a Morita equivalence between kGb and kHd. In particular, $\ell(b) = \ell(d)$. Moreover if P is a defect group of d then P is a defect group of b.

If $G = H$, then the result holds by Proposition [1] and Theorem [1,2] since $b = d$ is a block of principal type by [11, Lemma 10.6.5].
Suppose that $G > H$. Let $\text{Cl}_P(b) = \{C_i\}$ and $\text{Cl}_P(d) = \{\bar{C}_i\}$. Let Q_i (resp. \bar{Q}_i) be a defect group of C_i (resp. \bar{C}_i). If Q is a P-subgroup of P,

$$|\{1 \leq j \leq l(d) \mid \bar{Q}_j \cong_G Q\}| = m^1_b(Q) = |\{1 \leq i \leq l(b) \mid Q_i \cong_G Q\}|$$

by Lemma 4.2. Hence we may assume $Q_i = \bar{Q}_i$ for every $1 \leq i \leq l(b)$. Let $\bar{S}_i = S_i \otimes_{kGb} kGd$ be the simple kHd-module corresponding to S_i. Then $\text{vx}(\bar{S}_i) = G \text{vx}(S_i)$. By induction there exists a permutation σ of $\{1, \ldots, l(d)\}$ such that

$$Q_i \leq_H \text{vx}(\bar{S}_{\sigma(i)})$$

for all i and

$$Q_i <_H \text{vx}(\bar{S}_{\sigma(i)})$$

if $Q_i <_H P$. Since P is a defect group of b, it follows that

$$Q_i \leq_G \text{vx}(S_{\sigma(i)})$$

for all i and

$$Q_i <_G \text{vx}(S_{\sigma(i)})$$

unless Q_i is a defect group of b. \hfill \square

The following corollary is a block version of Corollary 1.3 for p-solvable groups.

Corollary 4.4. Let G be a p-solvable group. Let b be a block of kG. Let $\{S_i\}_{1 \leq i \leq l(b)}$ be a set of representatives of isomorphism classes of simple kGb-modules. Then

$$\det C_b \leq \prod_{i=1}^{l(b)} |\text{vx}(S_i)|$$

where C_b is the Cartan matrix of kGb and the equality holds if and only if $l(b) = 1$.

5. Complexity of modules

Let Q be a p-subgroup of G and M an indecomposable kG-module. Suppose that $\text{Res}_Q^G M$ has a direct summand N such that $\dim N \not\equiv 0 \mod p$. We set $|\text{vx}(M)| = p^{v(M)}$ and $|Q| = p^a$. Then by Proposition 5.1, $Q \leq_G \text{vx}(M)$ and in particular $a \leq v(M)$. If the dimension of a source of M is divisible by p, then proper inequality $a < v(M)$ holds. We consider another information on this inequality related to the complexity of M. For the complexity of a module, we refer to [1] and [2, Section 5].

Let $c(M)$ be the complexity of M and $r(M)$ the p-rank of $\text{vx}(M)$. Since M is a direct summand of $\text{Ind}_{\text{vx}(M)}^G \text{Res}_{\text{vx}(M)}^G M$ and $c(\text{Res}_{\text{vx}(M)}^G M) \leq r(M)$, we have

$$c(M) \leq r(M) \leq v(M).$$

Proposition 5.1. Let Q be a p-subgroup of G and M an indecomposable kG-module. Suppose that $\text{Res}_Q^G M$ has a direct summand N such that $\dim N \not\equiv 0 \mod p$. If $|Q| = p^a$ then

$$a \leq v(M) + c(M) - r(M).$$

Proof. Since N is a direct summand of $\text{Res}_Q^G M$ and $\dim N \not\equiv 0 \mod p$,

$$\text{rank}(Q) = c(N) \leq c(\text{res}_Q^G M) \leq c(M)$$

and

$$\text{rank}(Q) + v(M) - r(M) \leq v(M) + c(M) - r(M)$$
where $\text{rank}(Q)$ is the p-rank of Q. We may assume that $Q \leq \text{vx}(M)$ by Proposition 3.1(2). Let E be an elementary abelian p-subgroup of $\text{vx}(M)$ of maximal rank and F an elementary abelian p-subgroup of Q of maximal rank. The class of elementary abelian p-groups satisfies the condition in Lemma 5.2 below. Hence $|Q|/|F| \leq |\text{vx}(M)|/|E|$ by Lemma 5.2 and we have

$$a \leq \text{rank}(Q) + v(M) - r(M).$$

Lemma 5.2. Let X be a class of finite p-groups which satisfies the following property:

$$P \in X, \ P \triangleright R \Rightarrow R \in X.$$

Let P be a p-group and Q be a subgroup of P. Suppose $E \leq P$, $F \leq Q$ and $E, F \in X$. If $|L| \leq |F|$ for any subgroup $L \leq Q$ such that $L \in X$, then $|Q:F| \leq |P:E|$.

Proof. We proceed by induction on $|P : Q|$. If $P = Q$ then $|E| \leq |F|$ by the assumption. Hence $|Q : F| \leq |P : E|$. Assume that $P > Q$ and let R be a maximal subgroup of P such that $Q \leq R < P$. Then $R \cap E \in X$ since $P \triangleright R$ and $E \triangleright R \cap E$. If $R \geq E$, then $P = RE$ and $P/R = RE/R \cong E/R \cap E$. It follows that $|P|/|E| = |R|/|R \cap E|$ and $|R|/|R \cap E| \geq |Q|/|F|$ by induction. If $R > E$, then $|P|/|E| > |R|/|E|$ and it follows that $|R|/|E| \geq |Q|/|F|$ by induction.

References

[1] J. L. Alperin, L. Evens, Representations, resolutions and Quillen’s dimension theorem, J. Pure Appl. Algebra 22 (1981) 1-9.
[2] D. J. Benson, Representations and cohomology II: Cohomology of groups and modules, Cambridge studies in advanced mathematics 31, Cambridge University Press, 1991.
[3] R. Brauer, Defect groups in the theory of representations of finite groups, Illinois J. Math. 13 (1969) 53-73.
[4] M. Broué, Sur l’induction des modules indécomposables et la projectivité relative, Math. Z. 140 (1976) 227-245.
[5] M. Broué, Brauer coefficients of p-subgroups associated with a p-block of a finite group, J. Algebra 56 (1979) 365-383.
[6] W. Feit, The representation theory of finite groups, North-Holland, 1982.
[7] J. A. Green, On the indecomposable representations of a finite group, Math. Z. 70 (1958/59) 430-445.
[8] K. Iizuka, A note on blocks of characters of a finite group, J. Algebra 20 (1972) 196-201.
[9] R. Knörr, On the vertices of irreducible modules, Ann. of Math. 110 (1979) 487-499.
[10] M. Linckelmann, The block theory of finite group algebras, Vol. 1, London Math. Soc. Student Texts 91, Cambridge University Press, 2018.
[11] M. Linckelmann, The block theory of finite group algebras, Vol. 2, London Math. Soc. Student Texts 92, Cambridge University Press, 2018.
[12] H. Nagao, Y. Tsushima, Representations of finite groups, Academic Press, 1989.
[13] J. B. Olsson, Lower defect groups, Comm. Algebra 8 (1980) 261-288.

AKIHKO HIDA, FACULTY OF EDUCATION, SAITAMA UNIVERSITY, SHIMO-OOKUBO 255, SAKURA-KU, SAITAMA-CITY, SAITAMA, 338-8570, JAPAN
Email address: ahida@mail.saitama-u.ac.jp

MASAO KIYOTA, COLLEGE OF LIBERAL ARTS AND SCIENCES, TOKYO MEDICAL AND DENTAL UNIVERSITY, KONNODAI 2-8-30, ICHIKAWA, CHIBA, 272-0827, JAPAN
Email address: kiyota.las@tmd.ac.jp