Amphibians and Reptiles of the Mediterranean Basin

Kerim Çiçek and Oğzukan Cumhuriyet

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.70357

Abstract

The Mediterranean basin is one of the most geologically, biologically, and culturally complex region and the only case of a large sea surrounded by three continents. The chapter is focused on a diversity of Mediterranean amphibians and reptiles, discussing major threats to the species and its conservation status. There are 117 amphibians, of which 80 (68%) are endemic and 398 reptiles, of which 216 (54%) are endemic distributed throughout the Basin. While the species diversity increases in the north and west for amphibians, the reptile diversity increases from north to south and from west to east direction. Amphibians are almost twice as threatened (29%) as reptiles (14%). Habitat loss and degradation, pollution, invasive/alien species, unsustainable use, and persecution are major threats to the species. The important conservation actions should be directed to sustainable management measures and legal protection of endangered species and their habitats, all for the future of Mediterranean biodiversity.

Keywords: amphibians, conservation, Mediterranean basin, reptiles, threatened species

1. Introduction

The Mediterranean basin is one of the most geologically, biologically, and culturally complex region and the only case of a large sea surrounded by Europe, Asia and Africa. The Basin was shaped by the collision of the northward-moving African-Arabian continental plate with the Eurasian continental plate which occurred on a wide range of scales and time in the course of the past 250 mya [1].

The Basin stretches approx. 3800 km east to west from the tip of Portugal to the shores of Lebanon and 1000 km north to south from Italy to Morocco and Libya (Figure 1) [1, 2]. It covers the area surrounding the Mediterranean Sea, and includes partly or entirely 30 countries which are spread across 3 continents. It also includes 11,879 islands and islets [3].
The Mediterranean region is considered to be 1 of 34 biodiversity hotspots due to its high level of floristic endemism [4] as well as the largest of the world’s 5 Mediterranean-climate regions. The region flora includes more than 25,000 vascular plants while half of them are endemic [1, 2]—in other words, they are found nowhere else in the world.

The geographic structure of the Basin is an important factor in understanding its biodiversity. While coastal areas are extensive due to the presence of numerous archipelagos and islands, much of the area consists of mountainous terrain with many areas above 2000 m elevation and peaks as high as 4500 m [2, 3, 5]. The Mediterranean region consists of various landscapes such as high mountains, rocky shores, impenetrable scrub, semi-arid steppes, coastal wetlands, sandy beaches, and myriad islands of various shapes and sizes [1, 2].

The status and distribution of Mediterranean herptiles has been evaluated by Cox et al. [5] 9 years ago. The purpose of this chapter is to re-evaluate amphibian and reptile diversity and to discuss the major threats and conservation status of Mediterranean herptiles. The Amphibia Web [6] and The Reptile Database [7] were used for determining Mediterranean herptile list. Major threats and conservation status of species for the IUCN Red List of threatened species [8] are also addressed.

2. Amphibian and reptiles diversity

Amphibians (Amphibia) and reptiles (Reptilia) are two fascinating but poorly understood group of vertebrates, distributed around the world. For the time being, there are 7655 amphibian [6] and 10,450 reptilian [7] species recorded. Unfortunately, many amphibian and reptile
species are threatened and declining all-around the world. Habitat loss and degradation, introduced invasive species, environmental pollution, disease and parasitism, unsustainable use, and global climate change are major threats on species [6, 7]. There are 117 amphibian species and 398 reptile species, and most of them are endemic distributed throughout the Basin (Table 1).

Order	Family	No. of species	No. of endemic species
Amphibians			
Caudata (newts and salamanders)	Plethodontidae	8	8 (100%)
Caudata	Proteidae	1	1 (100%)
Caudata	Salamandridae	40	23 (58%)
Total—Newts and salamanders		49	32 (65%)
Anura (frogs and toads)	Alytidae	12	11 (92%)
Anura	Bombinatoridae	3	1 (33%)
Anura	Bufonidae	12	7 (59%)
Anura	Dicroglossidae	1	0 (0%)
Anura	Hylidae	8	5 (63%)
Anura	Pelobatidae	3	2 (50%)
Anura	Pelodytidae	2	2 (100%)
Anura	Ranidae	27	20 (74%)
Total—Frogs and Toads		68	48 (70%)
Total—Amphibians		117	80 (68%)
Reptiles			
Testudines (turtles and tortoises)	Cheloniidae	3	0 (0%)
Testudines	Dermochelyidae	1	0 (0%)
Testudines	Emydidae	3	0 (0%)
Testudines	Geoemydidae	3	2 (66%)
Testudines	Testudinidae	4	3 (75%)
Testudines	Trionychidae	2	0 (0%)
Total—Turtles and Tortoises		16	5 (31%)
Sauria (lizards)	Agamidae	23	10 (43%)
Sauria	Anguidae	5	4 (80%)
Sauria	Blanidae	3	2 (66%)
Sauria	Chamaeleonidae	2	0 (0%)
Sauria	Eublepharidae	1	0 (0%)
Sauria	Gekkonidae	51	26 (51%)
Sauria	Lacertidae	132	86 (65%)
2.1. Amphibian diversity

The amphibian fauna of the Mediterranean basin represents two orders: salamanders (Caudata) and anurans (Anura). A total of 117 amphibian species are found and 80 (68%) of them are endemic in the Basin (Table 2, Figure 1).

A total of 49 salamander species are present in this Region and 65% of them are endemic. The Salamandridae is the most diverse family. A total of 18 species with 7 genera (Calotriton, Chioglossa, Euproctus, Ichthyosaura, Lyciasalamandra, Pleurodeles and Salamandra) are endemic to the Basin (Table 2). The only single member of Proteidae, Proteus anguinus, is present in the Balkan Peninsula and is endemic to the Basin. The other six members of the family are found in eastern North America.

The anurans have 68 species and 70% of them are endemic to the Region. The families Alytidae, Bufonidae and Ranidae consist of 75% of the group. A fascinating species of midwife

Order	Family	No. of species	No. of endemic species
Sauria	Phyllodactylidae	7	3 (42%)
Sauria	Scincidae	36	25 (70%)
Sauria	Varanidae	2	0 (0%)
Total—Lizards		262	160 (60%)
Ophidia (snakes)	Atractaspididae	3	2 (66%)
Ophidia	Boidae	2	0 (0%)
Ophidia	Colubridae	65	27 (42%)
Ophidia	Elapidae	5	0 (0%)
Ophidia	Lamprophiidae	1	0 (0%)
Ophidia	Leptotyphlopidae	3	0 (0%)
Ophidia	Natricidae	3	1 (33%)
Ophidia	Typhlopidae	3	2 (66%)
Ophidia	Viperidae	29	15 (52%)
Total—Snakes		114	47 (41%)
Amphibia (amphibia)	Amphibiaenidae	4	3 (75%)
Amphibia	Trogonophiidae	1	1 (100%)
Total—Amphibia		5	4 (80%)
Crocodylia (crocodi)	Crocodylidae	1	0 (0%)
Total—Crocodylia		1	0 (0%)
Total—Reptiles		398	216 (54%)

Table 1. The amphibian and reptile diversity and endemism of Mediterranean basin.

2.1. Amphibian diversity

The amphibian fauna of the Mediterranean basin represents two orders: salamanders (Caudata) and anurans (Anura). A total of 117 amphibian species are found and 80 (68%) of them are endemic in the Basin (Table 2, Figure 1).

A total of 49 salamander species are present in this Region and 65% of them are endemic. The Salamandridae is the most diverse family. A total of 18 species with 7 genera (Calotriton, Chioglossa, Euproctus, Ichthyosaura, Lyciasalamandra, Pleurodeles and Salamandra) are endemic to the Basin (Table 2). The only single member of Proteidae, Proteus anguinus, is present in the Balkan Peninsula and is endemic to the Basin. The other six members of the family are found in eastern North America.

The anurans have 68 species and 70% of them are endemic to the Region. The families Alytidae, Bufonidae and Ranidae consist of 75% of the group. A fascinating species of midwife
	Number of amphibians	Number of reptiles									
	Urodela	Anura	Total	Endemics	Amphisbaenia	Crocodilia	Testudines	Sauria	Serpentes	Total	Endemics
Albania	5	10	15	5	0	0	6	13	17	36	11
Algeria	9	4	13	12	1	0	4	70	32	107	50
Andorra	2	2	4	3	0	0	0	8	0	8	4
Bosnia and Herzegovina	8	8	16	2	0	0	3	6	8	17	5
Bulgaria	6	12	17	1	0	0	5	11	19	35	7
Canary Islands	0	2	2	2	0	0	0	16	1	17	15
Croatia	7	9	16	3	0	0	6	15	17	38	11
Cyprus	0	3	3	1	0	0	5	12	12	29	7
Egypt	0	8	8	1	0	1	7	65	37	110	23
France	13	26	39	20	0	0	9	19	14	42	22
Greece	7	17	24	8	1	0	9	33	24	67	29
Israel/Palestine	2	8	10	5	1	0	9	43	46	99	29
Italy	15	28	43	27	0	0	9	26	23	58	29
Jordan	1	3	4	2	0	0	7	61	44	112	27
Lebanon	2	4	6	2	2	0	5	26	26	59	19
Libyan Arab Jamahiriya	0	2	2	2	0	0	4	47	25	76	19
Macedonia	4	6	10	1	0	0	5	12	16	33	7
Malta	0	2	2	2	0	0	1	5	4	10	5
Monaco	1	1	2	2	0	0	2	1	0	3	0
Montenegro	4	11	15	3	0	0	4	10	6	20	8
Morocco	2	11	13	12	0	0	4	70	30	108	58
Portugal	7	13	20	14	2	0	7	17	12	38	26
Country	Urodela	Anura	Total	Endemics	Amphisbaenia	Crocodilia	Testudines	Sauria	Serpentes	Total	Endemics
---------------------------------	---------	-------	-------	----------	--------------	------------	------------	--------	-----------	--------	----------
Serbia	7	12	19	1	0	0	4	6	8	18	4
Slovenia	4	12	16	2	0	0	3	4	14	21	5
Spain	8	28	36	23	2	0	6	45	14	67	45
Switzerland	5	12	17	1	0	0	2	6	8	16	4
Syrian Arab Republic	2	3	5	2	2	0	7	46	40	95	22
Tunisia	1	4	5	4	1	0	4	44	24	73	34
Turkey (except for NE Anatolia)	15	13	28	12	3	0	11	56	49	119	39
Western Sahara	0	2	2	1	0	0	4	39	20	63	16

Table 2. The number of amphibians and reptiles in the Mediterranean countries.
toads (*Alytes*) have five species which are found across western Europe, northern Africa and Majorca.

The amphibian diversity is highest in Europe, especially in areas of higher rainfall, notably in northern Italy, France, western and northern Spain, Portugal, Slovenia and Croatia (Figure 1, Table 3) [5]. On the contrary, the diversity is much lower in the eastern and southern parts of the Basin where there are large arid and semiarid habitats. The higher amphibian diversity is observed in European countries of the western Mediterranean, especially in Italy, France and Spain [5]. The amphibian richness increases from south to north and from east to west of the Basin [1]. The reason lies in larger areas of humid habitats in the north and west of the Basin, which are an ideal habitat for amphibians.

Country	EX	CR	EN	VU	NT	LC	DD	NE
Albania	0	0	1	1	0	12	0	1
Algeria	0	0	1	2	2	9	0	0
Andorra	0	0	0	0	1	3	0	0
Bosnia and Herzegovina	0	0	0	1	1	14	0	0
Bulgaria	0	0	0	0	1	16	0	1
Canary Islands	0	0	0	0	0	2	0	0
Croatia	0	0	0	2	1	13	0	0
Cyprus	0	0	0	0	0	3	0	0
Egypt	0	0	0	0	0	8	0	1
France	0	0	1	2	4	32	0	3
Greece	0	1	1	3	0	18	1	0
Israel/Palestine	0	3	0	0	1	5	1	1
Italy	0	0	3	6	4	30	0	5
Jordan	0	0	0	0	0	2	1	2
Lebanon	0	0	0	0	1	4	1	1
Libyan Arab Jamahiriya	0	0	0	0	0	2	0	1
Macedonia	0	0	0	0	0	10	0	1
Malta	0	0	0	0	0	2	0	0
Monaco	0	0	0	0	1	1	0	0
Montenegro	0	0	0	0	0	14	0	2
Morocco	0	0	1	1	3	8	0	1
Portugal	0	0	0	1	5	13	0	2
Serbia	0	0	0	0	0	17	0	3
Slovenia	0	0	0	2	0	14	0	1
2.2. Reptile diversity

The reptiles of the region represent five orders: Crocodylia (crocodilians), Testudines (turtles and tortoises), Amphisbaenia (amphisbaenians), Sauria (lizards) and Ophidia (snakes). The great majority of the species are lizards (262 species, 66%) and snakes (114 species, 29%) (Figure 2, Table 4). About 54% of the reptiles are endemic to the Basin. The most diverse families are Lacertidae (132 species), Gekkonidae (51 species) and Scincidae (36 species) for lizards; and Colubridae (65 species) and Viperidae (29 species) for snakes.

The reptile diversity is the highest in the eastern part of the Basin, particularly in southern Turkey, Lebanon, south-western Syria, Israel/Palestine, Jordan and parts of northern Egypt [5].

Table 3. The conservation status of amphibians in Mediterranean countries.

Country	EX	CR	EN	VU	NT	LC	DD	NE
Spain	0	1	1	3	7	22	0	4
Switzerland	0	0	0	0	17	0	3	
Syrian Arab Republic	0	0	0	1	4	0	2	
Tunisia	0	0	0	1	4	0	0	
Turkey (except for NE Anatolia)	0	2	5	2	2	12	1	5
Western Sahara	0	0	0	0	1	1	0	0

Figure 2. The reptile richness in Mediterranean basin.
Country	EX	CR	EN	VU	NT	LC	DD	NE
Albania	0	0	0	3	3	27	0	4
Algeria	0	1	4	2	11	75	6	9
Andorra	0	0	1	0	1	5	0	1
Bosnia and Herzegovina	0	0	0	1	2	13	0	2
Bulgaria	0	0	0	1	4	28	0	5
Canary Islands	0	3	0	0	0	14	0	1
Croatia	0	0	1	3	4	29	0	2
Cyprus	0	0	3	1	1	22	0	2
Egypt	0	2	2	3	4	80	3	16
France	0	1	1	4	6	26	0	5
Greece	0	0	2	4	8	48	0	8
Israel/Palestine	0	4	5	4	2	76	1	7
Italy	0	1	1	4	6	40	2	5
Jordan	0	1	4	4	1	88	1	13
Lebanon	0	0	4	2	0	42	1	10
Libyan Arab Jamahiriya	0	1	1	2	4	39	1	28
Macedonia	0	0	0	1	3	27	0	3
Malta	0	0	0	1	0	9	0	0
Monaco	0	0	0	0	1	2	0	0
Montenegro	0	0	3	2	13	0	2	
Morocco	0	1	3	4	13	74	4	9
Portugal	0	1	2	3	6	21	0	7
Serbia	0	0	0	1	4	13	0	2
Slovenia	0	0	0	2	2	17	0	1
Spain	0	2	5	2	10	40	0	8
Switzerland	0	0	0	0	1	14	0	1
Syrian Arab Republic	0	0	3	2	3	78	1	11
Tunisia	0	0	1	1	8	75	2	14
Turkey (except for NE Anatolia)	0	1	5	2	5	91	3	38
Western Sahara	0	1	1	3	49	4	4	

Table 4. The conservation status of reptiles in Mediterranean countries.
The species diversity is much higher in North Africa than in western Europe. The reptile diversity of North Africa is the highest in the mountainous area, in semi-arid regions along the northern margins of the Sahara and in the Nile Valley. The Balkans has much higher reptile diversity than elsewhere in Europe. At the other hand, the diversity is very low in northern Europe [5]. In contrast to amphibians, the species diversity of the reptiles increases from north to south and from west to east, along with gradients of the extent to which arid and semi-arid habitats are present [1, 5].

3. Conservation status

3.1. Conservation status of Mediterranean amphibians

About 29% of Mediterranean amphibians are globally threatened, while 5% are critically endangered, 11% endangered and 13% vulnerable (Figures 3–5). Rest of the species are evaluated as near threatened (15%), least concerned (49%), data deficient (<1%) and 7% is not evaluated. The salamanders and newts have higher share of threatened species (20 species, 17%). Among frogs and toads, 13 species (11%) are globally threatened. One of the endangered species is the Hula painted frog, *Latonia nigriventer*, from Israel/Palestine that is listed as extinct up to 2004. The species is restricted to an area under 2 km² due to heavy predation pressure by the waterbird populations [13]. The newts and salamanders have higher number of threatened species than frogs and toads (Table 5) [5].

Figure 3. Summary of conservation status for Mediterranean amphibians (left) and reptiles (right). EX: extinct, EW: extinct in the wild, CR: critically endangered, EN: endangered, VU: vulnerable, NT: near threatened, LC: least concern, DD: data deficient, NE: not evaluated.
3.2. Conservation status of Mediterranean reptiles

About 13% of Mediterranean reptiles are globally threatened (51 species), out of which 3% is critically endangered, 6% endangered and 4% vulnerable. A total of 347 species are assessed

Figure 4. The species richness of endemic amphibians in the Mediterranean basin.

Figure 5. The species richness of threatened amphibians in the Mediterranean basin.

3.2. Conservation status of Mediterranean reptiles

About 13% of Mediterranean reptiles are globally threatened (51 species), out of which 3% is critically endangered, 6% endangered and 4% vulnerable. A total of 347 species are assessed
as near threatened (10%), least concerned (60%), data deficient (4%) and 13% is not evaluated (Figures 3, 6 and 7).

Amphisbaenians and crocodilians are not considered threatened species in the Region. At the other side, the chelonians have six threatened species. Among the lizards, there are
38 species considered threatened. Snakes have only seven threatened species (2%). The endemic lizard genus *Gallotia* occurs only on the Canary Islands and consists of eight species. The genus has evolved there almost 20 mya, ever since the first islands emerged from the sea [11, 12]. They are adapted to eating significant quantities of plants. The overall share of threatened amphibians in the Mediterranean basin is twice higher (29%) than that for reptiles (14%).

4. Major threats

The Mediterranean basin is the second largest biodiversity hotspot in the world. It covers more than 2 million km². The Basin stretches west to east from Portugal to Lebanon and north to south from Italy to Morocco and Libya [2]. The Region is home to approx. 455 million people, from a wide variety of countries and cultures for some 8000 years [2, 10]. The Gross National Income per capita in the Mediterranean EU countries being 10 times that of the north African ones [10]. The poor countries mostly depend on natural resources and this threatens natural resources at high levels. Besides, economic development increases the pressures on natural resources, the conservation challenges and options of the Basin are driven by these economic inequalities [10]. Species provide us with essential services as not only food, fuel, clothes and medicine, but also purification of water and air, prevention of soil erosion, regulation of climate, pollination of crops by insects and much more [10]. Many threats come up thanks to these entries. The human-induced factors threaten the Mediterranean biodiversity and nature more than any other biological ‘hotspot’ [10].
Fifty-three percent of amphibians and 20% of reptiles are suffering from “residential & commercial developments” (Figure 8). Urbanization, industrial areas, tourism and recreation areas negatively affected the herp species. Another important factor is “agriculture and aquaculture” activities and almost half of the species (59% for amphibians and 25% for reptiles) are affected by such activities. Along with the increase of human population, the food needs are also increasing day by day. The expansion of agricultural areas, livestock farming, overgrazing, aquaculture and mariculture activities are causing habitat loss and degradation and intervening in the food webs.

One of the biggest contemporary concerns is the growing need for energy as well as the need for nutrients and technological developments. The most basic resource used to meet the growing energy needs is still natural resource. Among natural resources, fossil fuels and mines are used most commonly. Use of renewable energy sources as alternative energy sources are not reached desired level. The “energy production and mining” activities have low effect on Mediterranean herptiles (6% for amphibians and 5% for reptiles).

Another problem brought by urbanization and population increase is in the construction of roads, especially narrow transport corridors cause wildlife mortality. Besides, these corridors create specific stress to biodiversity by fragmentation of the habitats and lead to other threats including farms, invasive species and poachers. The “transportation and service corridors” activities have low effect on amphibians (9%) and reptiles (6%).

Unsustainable harvesting, hunting and fishing activities are directly or indirectly affecting the amphibians and reptiles. Some species are used in traditional medicine, food and pet trade.
The threats are driven by destroying or declining natural populations [10]. The amphibians (37%) and reptiles (22%) are densely used as “biological resource use” for many purposes. Almost half of salamanders and snakes are suffering from commercial purpose and persecution. The Mediterranean marine turtle species are severely affected by accidental capture in fishing gear, also called as “bycatch” [10].

Besides, “human intrusions and disturbance” have low pressure on amphibians (4%) and reptiles (4%). While “natural system modifications” severely affect the amphibians (32%), it has low pressure on reptiles (9%). The dam construction, for water management or use, and other ecosystem modifications make significant pressure on natural herptile populations. Forest fires are deliberately excluded to open such areas, especially in the Mediterranean region in Turkey, it is observed that these activities have been carried out in the summer. The endemic *Lyciasalamandra* species living in this Region are highly affected by forest fires. In addition to the destruction of the area for the construction of the dams, the alteration of the water flow direction of the rivers disturbs the natural habitat areas, especially amphibians are highly affected due to degradation and reducing habitat quality.

Non-indigenous animal species, pathogens and genes are appearing as major threatening factors to biodiversity being the process that is expected to continue in the future. Mediterranean amphibians (34%) are more affected by “invasive and/or problematic species, pathogens, and genes” than reptiles (4%). The American bullfrog (*Lithobates catesbeianus* or *Rana catesbeiana*) is one of the invasive species in western Europe. Another invasive species, *Trachemys scripta*, is popular in the pet trade and has been introduced into the Mediterranean region by people releasing it to the wild.

The amphibians (59%) are more sensitive to “pollution” than reptiles (4%). Many chemical pollutants are increasing sensitivity to illness and mortality rates and reducing the reproductive success [10]. Domestic/industrial waste carries pollution to the sea and rural areas through rivers and sewage systems, in particular. Pollutants that cause water pollution from agricultural, silvicultural and aquaculture systems containing foodstuffs, toxic chemicals and sediments also pollute natural habitats as well as agricultural areas. Apart from these pollutants, trash and soil pollutants and even atmospheric pollutants are serious threat to species.

Today, global “climate change” emerges as a factor that affects the changing nature of natural habitats. Temperature fluctuations (changing in temperature extremes, increasing average summer temperatures and reducing winter/spring temperatures) cause the alteration of habitats, breeding phenology and host-parasite relationship of herptile species. Mediterranean amphibians (18%) are more affected by global climate change than reptiles (3%).

Mediterranean amphibians and reptiles are affected by these major threats (habitat loss and degradation, invasive alien species, harvesting, pollution natural disasters, disease, human disturbance, vehicle collusion and persecution) (Figures 8 and 9) [5]. While the most common threats for amphibians are habitat loss and degradation, pollution and invasive alien species,
the most common ones for Mediterranean reptiles are habitat loss and degradation, harvesting and persecution [5]. On the other hand, there is no major threat for about 10% amphibians and 21% reptiles in the Mediterranean.

5. Conservation

The major threats to amphibians and reptiles in the Mediterranean are quite different from each other [5]. Therefore, each group needs specific conservation activities. Island species particularly need urgent conservation studies. Although amphibians (especially salamanders) have a high tendency to be threatened, and reptiles much less so, there are many more reptile species on the edge of extinction in the Region than amphibians [5, 9]. Several methods can be applied by scientists in order to protect species. Land/water protection and management, species management, education and raising awareness, and monitoring and research are major actions for Mediterranean herptiles [10, 14].

5.1. Land/water protection and management

The Mediterranean region is densely populated and more than 30% of all international tourists visit its coastal areas [15], thus direct disturbance by humans is an important threat to natural resources [10]. The Region is also considered as the cradle of Europe’s civilization and one of the most important centers of crop plants origin [2]. However, the traditional farming
practices have been abandoned in recent years in favor of intensive and industrial-scale farming methods [2].

The area conservation and management are important for endemic and threatened species with high risk status. “Land/water management” include many different types of actions such as conserving or restoring habitats and controlling invasive/problematic species. The tourism, urbanization, deforestation, intensive farming, overgrazing and fires are causing habitat loss for many threatened species. Therefore, site protection and management has crucial importance for sustainability of the threatened amphibians and reptiles.

5.2. Species protection and management

Improvement and enforcement of legal protection for threatened species and their habitats is the most urgent conservation action to be taken at both regional and national levels [5]. Species Action Plans can be an effective means for determining the specific conservation actions that are needed and for promoting coordinated activities. The primary goal of species conservation is the preservation of viable populations of wild species in their original native range [10]. Another solution could be captive breeding studies for endangered species close to extinction as part of intensive management activities. Besides, measures to be taken in conjunction with legal regulations are essential for the sustainability of protected areas. All countries should have endangered species red list database along with IUCN Red List to determine conservation priorities.

5.3. Education and awareness raising activities

There is no way of protecting a species or effective conservation without support of local people. The education and raising awareness have important role for an effective conservation activity. Collaboration between regional actors such as locals, farmers, landowners, NGOs and policy-makers should enhance conservation efforts to prevent biodiversity loss [10].

An official undergraduate program could enhance the knowledge and skills of students for environmental conservation. Additionally, creating a high school environmental course could be useful in terms of raising awareness. Increasing the exchange of knowledge, skills and knowledge in structured settings outside their undergraduate programs could be an effective way to reach outside of normal learning for practitioners, stakeholders and other interested people.

5.4. Monitoring and researches

Monitoring and inventory surveys on the endangered amphibians and reptiles will be helpful for identifying threats and create key activities for protection of the species. The main topics could be determining population/community trends, habitat quality, modeling climate change impacts and attitudes of local populations.
6. Conclusion

The Mediterranean basin’s biodiversity are facing many pressures and urgent action is required to preserve its future. Fortunately, many stakeholders such as regional and governmental organizations, NGOs, scientists and conservation practitioners are cooperating to preserve Mediterranean natural resources. The key conservation actions should be focused on sustainable management and legal protection of endangered species and their habitats [10]. Besides, it is not possible to deny importance of education, awareness-raising activities and monitoring studies for sustainability of Mediterranean amphibians and reptiles.

Acknowledgements

We thank Dilara Arslan, Çağdaş Yaşar, Sevde Karagöz and Onur Obut for their help to preparing data set and Ahmet Burak Kaya for reviewing English style.

Appendix 1.

Amphibians and reptiles of the Mediterranean basin

Class	Order	Family	Species	IUCN Red List category	Endemic (Yes/No)
Amphibia	Caudata	Plethodontidae	Hydromantes ambrosii	NT	Y
Amphibia	Caudata	Plethodontidae	Hydromantes flavus	VU	Y
Amphibia	Caudata	Plethodontidae	Hydromantes genei	VU	Y
Amphibia	Caudata	Plethodontidae	Hydromantes imperialis	NT	Y
Amphibia	Caudata	Plethodontidae	Hydromantes italicus	NT	Y
Amphibia	Caudata	Plethodontidae	Hydromantes sarrabusensis	VU	Y
Amphibia	Caudata	Plethodontidae	Hydromantes strinatii	NT	Y
Amphibia	Caudata	Plethodontidae	Hydromantes supramontis	EN	Y
Amphibia	Caudata	Proteidae	Proteus anguinus	VU	Y
Amphibia	Caudata	Salamandridae	Calotriton arnoldi	CR	Y
Amphibia	Caudata	Salamandridae	Calotriton asper	NT	Y
Amphibia	Caudata	Salamandridae	Chioglossa lusitanica	VU	Y
Amphibia	Caudata	Salamandridae	Euproctus montanus	LC	Y
Amphibia	Caudata	Salamandridae	Euproctus platycephalus	EN	Y
Class	Order	Family	Species	IUCN Red List category	Endemic (Yes/No)
------------	-------	--------------	---------------------------------------	------------------------	------------------
Amphibia	Caudata	Salamandridae	*Ichthyosaura alpestris*	LC	N
Amphibia	Caudata	Salamandridae	*Lissotriton boscai*	LC	Y
Amphibia	Caudata	Salamandridae	*Lissotriton helveticus*	LC	N
Amphibia	Caudata	Salamandridae	*Lissotriton italicus*	LC	Y
Amphibia	Caudata	Salamandridae	*Lissotriton kosswigi*	NE	N
Amphibia	Caudata	Salamandridae	*Lissotriton vulgaris*	LC	N
Amphibia	Caudata	Salamandridae	*Lyciasalamandra antalyana*	EN	Y
Amphibia	Caudata	Salamandridae	*Lyciasalamandra atifi*	EN	Y
Amphibia	Caudata	Salamandridae	*Lyciasalamandra billae*	CR	Y
Amphibia	Caudata	Salamandridae	*Lyciasalamandra fazilae*	EN	Y
Amphibia	Caudata	Salamandridae	*Lyciasalamandra flavimembris*	EN	Y
Amphibia	Caudata	Salamandridae	*Lyciasalamandra helverseni*	VU	Y
Amphibia	Caudata	Salamandridae	*Lyciasalamandra luschani*	VU	Y
Amphibia	Caudata	Salamandridae	*Neurergus strauchii*	VU	Y
Amphibia	Caudata	Salamandridae	*Ommatotriton vittatus*	LC	Y
Amphibia	Caudata	Salamandridae	*Pleurodeles nebulosus*	VU	Y
Amphibia	Caudata	Salamandridae	*Pleurodeles poireti*	EN	Y
Amphibia	Caudata	Salamandridae	*Pleurodeles waltl*	NT	Y
Amphibia	Caudata	Salamandridae	*Salamandra algira*	VU	Y
Amphibia	Caudata	Salamandridae	*Salamandra atra*	LC	N
Amphibia	Caudata	Salamandridae	*Salamandra corsica*	LC	Y
Amphibia	Caudata	Salamandridae	*Salamandra infraimmaculata*	NT	N
Amphibia	Caudata	Salamandridae	*Salamandra lanzai*	VU	Y
Amphibia	Caudata	Salamandridae	*Salamandra salamandra*	LC	N
Amphibia	Caudata	Salamandridae	*Salamandrina perspicillata*	LC	Y
Class	Order	Family	Species	IUCN Red List category	Endemic (Yes/No)
------------	-----------	--------------	--------------------------	------------------------	------------------
Amphibia	Caudata	Salamandridae	Salamandrina terdigitata	LC	Y
Amphibia	Caudata	Salamandridae	Triturus anatolicus	NE	Y
Amphibia	Caudata	Salamandridae	Triturus carnifex	LC	N
Amphibia	Caudata	Salamandridae	Triturus cristatus	LC	N
Amphibia	Caudata	Salamandridae	Triturus dobroicus	NT	N
Amphibia	Caudata	Salamandridae	Triturus ivanburenschi	NE	Y
Amphibia	Caudata	Salamandridae	Triturus karelinii	LC	N
Amphibia	Caudata	Salamandridae	Triturus macedonicus	NE	Y
Amphibia	Caudata	Salamandridae	Triturus marmoratus	LC	Y
Amphibia	Caudata	Salamandridae	Triturus pygmaeus	NT	Y
Amphibia	Anura	Alytidae	Alytes cisternasii	NT	Y
Amphibia	Anura	Alytidae	Alytes dickhilleni	VU	Y
Amphibia	Anura	Alytidae	Alytes maurus	NT	Y
Amphibia	Anura	Alytidae	Alytes muletensis	VU	Y
Amphibia	Anura	Alytidae	Alytes obstetricans	LC	N
Amphibia	Anura	Alytidae	Discoglossus jeanneae	NT	Y
Amphibia	Anura	Alytidae	Discoglossus galganoi	LC	Y
Amphibia	Anura	Alytidae	Discoglossus montalentii	NT	Y
Amphibia	Anura	Alytidae	Discoglossus pictus	LC	Y
Amphibia	Anura	Alytidae	Discoglossus sardus	LC	Y
Amphibia	Anura	Alytidae	Discoglossus scovazzi	LC	Y
Amphibia	Anura	Alytidae	Latonia nigriventer	CR	Y
Amphibia	Anura	Bombinatoridae	Bombina bombina	LC	N
Amphibia	Anura	Bombinatoridae	Bombina pachypus	EN	Y
Amphibia	Anura	Bombinatoridae	Bombina variegata	LC	N
Amphibia	Anura	Bufonidae	Barbarophryn e brongersmai	NT	Y
Amphibia	Anura	Bufonidae	Bufo bufo	LC	N
Amphibia	Anura	Bufonidae	Bufo spinosus	NE	Y
Amphibia	Anura	Bufonidae	Bufotes balearicus	LC	Y
Amphibia	Anura	Bufonidae	Bufotes boulengeri	LC	Y
Amphibia	Anura	Bufonidae	Bufotes siculus	LC	Y
Amphibia	Anura	Bufonidae	Bufotes variabilis	DD	N
Amphibia	Anura	Bufonidae	Bufotes viridis	LC	N
Class	Order	Family	Species	IUCN Red List category	Endemic (Yes/No)
------------	--------	-------------	------------------------------	------------------------	------------------
Amphibia	Anura	Bufonidae	Epidalea calamita	LC	N
Amphibia	Anura	Bufonidae	Sclerophrys kassasi	LC	Y
Amphibia	Anura	Bufonidae	Sclerophrys mauritanica	LC	Y
Amphibia	Anura	Bufonidae	Sclerophrys regularis	LC	N
Amphibia	Anura	Dicroglossidae	Hoplobatrachus occipitalis	LC	N
Amphibia	Anura	Hylidae	Hyla arborea	LC	N
Amphibia	Anura	Hylidae	Hyla heinzsteinitzi	CR	Y
Amphibia	Anura	Hylidae	Hyla intermedia	LC	Y
Amphibia	Anura	Hylidae	Hyla meridionalis	LC	Y
Amphibia	Anura	Hylidae	Hyla molleri	NE	Y
Amphibia	Anura	Hylidae	Hyla orientalis	NE	N
Amphibia	Anura	Hylidae	Hyla sarda	LC	Y
Amphibia	Anura	Hylidae	Hyla savignyi	LC	N
Amphibia	Anura	Pelobatidae	Pelobates cultripes	NT	Y
Amphibia	Anura	Pelobatidae	Pelobates syriacus	LC	N
Amphibia	Anura	Pelobatidae	Pelobates varallii	EN	Y
Amphibia	Anura	Pelodytidae	Pelodytes ibericus	LC	Y
Amphibia	Anura	Pelodytidae	Pelodytes punctatus	LC	Y
Amphibia	Anura	Ranidae	Pelophylax bedriagae	LC	Y
Amphibia	Anura	Ranidae	Pelophylax bergeri	LC	Y
Amphibia	Anura	Ranidae	Pelophylax caralitanus	NT	Y
Amphibia	Anura	Ranidae	Pelophylax cerigensis	CR	Y
Amphibia	Anura	Ranidae	Pelophylax cretensis	EN	Y
Amphibia	Anura	Ranidae	Pelophylax cypriensis	NE	Y
Amphibia	Anura	Ranidae	Pelophylax epeiroticus	VU	Y
Amphibia	Anura	Ranidae	Pelophylax esculentus	LC	N
Amphibia	Anura	Ranidae	Pelophylax hispanicus	LC	Y
Amphibia	Anura	Ranidae	Pelophylax kartmuelleri	LC	Y
Amphibia	Anura	Ranidae	Pelophylax lessonae	LC	N
Amphibia	Anura	Ranidae	Pelophylax perezi	LC	Y
Amphibia	Anura	Ranidae	Pelophylax ridibundus	LC	N
Amphibia	Anura	Ranidae	Pelophylax saharicus	LC	Y
Amphibia	Anura	Ranidae	Pelophylax shapicerus	EN	Y
Class	Order	Family	Species	IUCN Red List category	Endemic (Yes/No)
------------	------------	----------	--------------------	------------------------	------------------
Amphibia	Anura	Ranidae	*Rana catesbeiana*	LC	N
Amphibia	Anura	Ranidae	*Rana dalmatina*	LC	N
Amphibia	Anura	Ranidae	*Rana graeca*	LC	Y
Amphibia	Anura	Ranidae	*Rana holzii*	CR	Y
Amphibia	Anura	Ranidae	*Rana iberica*	NT	Y
Amphibia	Anura	Ranidae	*Rana italica*	LC	Y
Amphibia	Anura	Ranidae	*Rana lactastei*	VU	Y
Amphibia	Anura	Ranidae	*Rana macrocnemis*	LC	N
Amphibia	Anura	Ranidae	*Rana perezi*	LC	Y
Amphibia	Anura	Ranidae	*Rana pyrenaica*	EN	Y
Amphibia	Anura	Ranidae	*Rana taxaensis*	EN	Y
Amphibia	Anura	Ranidae	*Rana temporaria*	LC	N
Reptilia	Testudines	Cheloniidae	*Caretta caretta*	VU	N
Reptilia	Testudines	Cheloniidae	*Chelonia mydas*	EN	N
Reptilia	Testudines	Cheloniidae	*Eretmochelys imbricata*	CR	N
Reptilia	Testudines	Dermochelyidae	*Dermochelys coriacea*	VU	N
Reptilia	Testudines	Emydidae	*Emys orbicularis*	NT	N
Reptilia	Testudines	Emydidae	*Emys trinacris*	DD	N
Reptilia	Testudines	Emydidae	*Trachemys scripta*	LC	N
Reptilia	Testudines	Geoemydidae	*Mauremys caspica*	LC	N
Reptilia	Testudines	Geoemydidae	*Mauremys leprosa*	LC	Y
Reptilia	Testudines	Geoemydidae	*Mauremys rivulata*	LC	Y
Reptilia	Testudines	Testudinidae	*Testudo graeca*	LC	N
Reptilia	Testudines	Testudinidae	*Testudo hermanni*	NT	Y
Reptilia	Testudines	Testudinidae	*Testudo kleinmanni*	CR	Y
Reptilia	Testudines	Testudinidae	*Testudo marginata*	LC	Y
Reptilia	Testudines	Trionychidae	*Rafetus euphraticus*	EN	N
Reptilia	Testudines	Trionychidae	*Trionyx triangulus*	LC	N
Reptilia	Amphisbaenia	Amphisbaenidae	*Blanus cinereus*	LC	Y
Reptilia	Amphisbaenia	Amphisbaenidae	*B. miettali*	LC	Y
Reptilia	Amphisbaenia	Amphisbaenidae	*B. strauchi*	LC	N
Reptilia	Amphisbaenia	Amphisbaenidae	*B. tingitanus*	LC	Y
Reptilia	Amphisbaenia	Trogonophiidae	*Trogonophis wiegmanni*	LC	Y
Class	Order	Family	Species	IUCN Red List category	Endemic (Yes/No)
-----------	-----------	------------	---------------------------	------------------------	------------------
Reptilia	Sauria	Agamidae	Agama impalearis	LC	Y
Reptilia	Sauria	Agamidae	Agama spinosa	LC	N
Reptilia	Sauria	Agamidae	Phrynocephalus arabicus	LC	Y
Reptilia	Sauria	Agamidae	Phrynocephalus maculatus	LC	N
Reptilia	Sauria	Agamidae	Pseudotrapelus aqabensis	NE	Y
Reptilia	Sauria	Agamidae	Pseudotrapelus sinaitus	LC	N
Reptilia	Sauria	Agamidae	Stellagama stelio	LC	N
Reptilia	Sauria	Agamidae	Trapelus agnetae	LC	N
Reptilia	Sauria	Agamidae	Trapelus boehmei	LC	Y
Reptilia	Sauria	Agamidae	Trapelus lessonae	LC	N
Reptilia	Sauria	Agamidae	Trapelus mutabilis	LC	N
Reptilia	Sauria	Agamidae	Trapelus ruderatus	LC	N
Reptilia	Sauria	Agamidae	Trapelus savignii	VU	Y
Reptilia	Sauria	Agamidae	Trapelus schmizci	DD	N
Reptilia	Sauria	Agamidae	Trapelus tournevillei	LC	Y
Reptilia	Sauria	Agamidae	Uromastyx acanthinura	NT	N
Reptilia	Sauria	Agamidae	Uromastyx aegyptia	NT	N
Reptilia	Sauria	Agamidae	Uromastyx alfredschmidtii	NT	Y
Reptilia	Sauria	Agamidae	Uromastyx dispar	NT	Y
Reptilia	Sauria	Agamidae	Uromastyx geyri	NT	Y
Reptilia	Sauria	Agamidae	Uromastyx nigriventris	NE	Y
Reptilia	Sauria	Agamidae	Uromastyx ocellata	NT	N
Reptilia	Sauria	Agamidae	Uromastyx ornata	NT	N
Reptilia	Sauria	Anguidae	Anguis cephallonica	NT	Y
Reptilia	Sauria	Anguidae	Anguis graeca	NE	Y
Reptilia	Sauria	Anguidae	Anguis veronensis	NE	Y
Reptilia	Sauria	Anguidae	Hyalosaurus koellikeri	LC	Y
Reptilia	Sauria	Anguidae	Pseudopus apodus	LC	N
Reptilia	Sauria	Blanidae	Blanus alexandri	NE	Y
Reptilia	Sauria	Blanidae	Blanus aporus	NE	Y
Reptilia	Sauria	Blanidae	Blanus mariae	NE	Y
Reptilia	Sauria	Chamaeleonidae	Chamaeleo africanus	LC	N
Reptilia	Sauria	Chamaeleonidae	Chamaeleo chamaeleon	LC	N
Class	Order	Family	Species	IUCN Red List category	Endemic (Yes/No)
-----------	---------	----------------	--------------------------------------	------------------------	------------------
Reptilia	Sauria	Eublepharidae	*Eublepharis angramainyu*	LC	N
Reptilia	Sauria	Gekkonidae	*Asaccus elisa*	LC	N
Reptilia	Sauria	Gekkonidae	*Bunopus blanfordii*	NE	Y
Reptilia	Sauria	Gekkonidae	*Bunopus tuberculatus*	LC	N
Reptilia	Sauria	Gekkonidae	*Cyrtopodion scabrum*	LC	N
Reptilia	Sauria	Gekkonidae	*Euleptes europaea*	NT	Y
Reptilia	Sauria	Gekkonidae	*Hemidactylus davudazaqri*	NE	N
Reptilia	Sauria	Gekkonidae	*Hemidactylus flaviviridis*	LC	N
Reptilia	Sauria	Gekkonidae	*Hemidactylus foudaii*	LC	Y
Reptilia	Sauria	Gekkonidae	*Hemidactylus granosus*	NE	N
Reptilia	Sauria	Gekkonidae	*Hemidactylus lavadeserticus*	NE	Y
Reptilia	Sauria	Gekkonidae	*Hemidactylus mindae*	LC	Y
Reptilia	Sauria	Gekkonidae	*Hemidactylus robustus*	LC	N
Reptilia	Sauria	Gekkonidae	*Hemidactylus sinaitus*	LC	N
Reptilia	Sauria	Gekkonidae	*Hemidactylus turcicus*	LC	N
Reptilia	Sauria	Gekkonidae	*Mediodactylus amictopholis*	EN	Y
Reptilia	Sauria	Gekkonidae	*Mediodactylus heterocercus*	LC	N
Reptilia	Sauria	Gekkonidae	*Mediodactylus kotschyi*	LC	N
Reptilia	Sauria	Gekkonidae	*Pristurus flavipunctatus*	LC	N
Reptilia	Sauria	Gekkonidae	*Pristurus rapestris*	LC	N
Reptilia	Sauria	Gekkonidae	*Quedенfeldtia moerens*	LC	Y
Reptilia	Sauria	Gekkonidae	*Quedенfeldtia trachyblepharus*	NT	Y
Reptilia	Sauria	Gekkonidae	*Saurodactylus broseti*	LC	Y
Reptilia	Sauria	Gekkonidae	*Saurodactylus fasciatus*	VU	Y
Reptilia	Sauria	Gekkonidae	*Saurodactylus mauritanicus*	LC	Y
Reptilia	Sauria	Gekkonidae	*Stenodactylus doriae*	LC	N
Reptilia	Sauria	Gekkonidae	*Stenodactylus grandiceps*	LC	N
Reptilia	Sauria	Gekkonidae	*Stenodactylus mauritanicus*	NE	Y
Reptilia	Sauria	Gekkonidae	*Stenodactylus petrii*	LC	N
Reptilia	Sauria	Gekkonidae	*Stenodactylus slevini*	LC	N
Reptilia	Sauria	Gekkonidae	*Stenodactylus stenurus*	NE	Y
Reptilia	Sauria	Gekkonidae	*Stenodactylus sthenodactylus*	LC	N
Reptilia	Sauria	Gekkonidae	*Tarentola angustimentalis*	LC	Y
Class	Order	Family	Species	IUCN Red List category	Endemic (Yes/No)
----------	----------	-------------	---------------------	------------------------	-----------------
Reptilia	Sauria	Gekkonidae	Tarentola annularis	LC	N
Reptilia	Sauria	Gekkonidae	Tarentola bischoffi	NE	Y
Reptilia	Sauria	Gekkonidae	Tarentola boehmei	LC	Y
Reptilia	Sauria	Gekkonidae	Tarentola boettgeri	LC	Y
Reptilia	Sauria	Gekkonidae	Tarentola chazaliae	LC	N
Reptilia	Sauria	Gekkonidae	Tarentola delalandii	LC	Y
Reptilia	Sauria	Gekkonidae	Tarentola deserti	LC	Y
Reptilia	Sauria	Gekkonidae	Tarentola ephippiata	LC	N
Reptilia	Sauria	Gekkonidae	Tarentola fascicularis	NE	Y
Reptilia	Sauria	Gekkonidae	Tarentola gomerensis	LC	Y
Reptilia	Sauria	Gekkonidae	Tarentola mauritanica	LC	Y
Reptilia	Sauria	Gekkonidae	Tarentola mindiae	LC	Y
Reptilia	Sauria	Gekkonidae	Tarentola neglecta	LC	Y
Reptilia	Sauria	Gekkonidae	Tropiocolotes algericus	LC	N
Reptilia	Sauria	Gekkonidae	Tropiocolotes bisharicus	LC	N
Reptilia	Sauria	Gekkonidae	Tropiocolotes nattereri	LC	Y
Reptilia	Sauria	Gekkonidae	Tropiocolotes nubicus	DD	N
Reptilia	Sauria	Gekkonidae	Tropiocolotes steudneri	LC	N
Reptilia	Sauria	Gekkonidae	Tropiocolotes tripolitanus	LC	Y
Reptilia	Sauria	Lacertidae	Acanthodactylus aegyptius	NE	Y
Reptilia	Sauria	Lacertidae	Acanthodactylus blanci	EN	Y
Reptilia	Sauria	Lacertidae	Acanthodactylus boskianus	LC	N
Reptilia	Sauria	Lacertidae	Acanthodactylus busacki	LC	N
Reptilia	Sauria	Lacertidae	Acanthodactylus dumerili	LC	N
Reptilia	Sauria	Lacertidae	Acanthodactylus erythraurus	LC	Y
Reptilia	Sauria	Lacertidae	Acanthodactylus granidis	LC	N
Reptilia	Sauria	Lacertidae	Acanthodactylus hardyi	NE	N
Reptilia	Sauria	Lacertidae	Acanthodactylus harranensis	CR	Y
Reptilia	Sauria	Lacertidae	Acanthodactylus longipes	LC	N
Reptilia	Sauria	Lacertidae	Acanthodactylus maculatus	LC	Y
Reptilia	Sauria	Lacertidae	Acanthodactylus opheodurus	LC	N
Reptilia	Sauria	Lacertidae	Acanthodactylus orientalis	LC	N
Reptilia	Sauria	Lacertidae	Acanthodactylus pardalis	VU	Y
Class	Order	Family	Species	IUCN Red List category	Endemic (Yes/No)
--------	--------	------------	--	------------------------	------------------
Reptilia	Sauria	Lacertidae	Acanthodactylus robustus	LC	N
Reptilia	Sauria	Lacertidae	Acanthodactylus savignyi	NT	Y
Reptilia	Sauria	Lacertidae	Acanthodactylus schmidtii	LC	Y
Reptilia	Sauria	Lacertidae	Acanthodactylus schreiberi	EN	Y
Reptilia	Sauria	Lacertidae	Acanthodactylus scutellatus	LC	N
Reptilia	Sauria	Lacertidae	Acanthodactylus spinicauda	CR	Y
Reptilia	Sauria	Lacertidae	Acanthodactylus taghitensis	DD	Y
Reptilia	Sauria	Lacertidae	Acanthodactylus tilburyi	NE	N
Reptilia	Sauria	Lacertidae	Acanthodactylus tristrani	LC	N
Reptilia	Sauria	Lacertidae	Algyroides fitzingeri	LC	Y
Reptilia	Sauria	Lacertidae	Algyroides marchi	EN	Y
Reptilia	Sauria	Lacertidae	Algyroides moreoticus	NT	Y
Reptilia	Sauria	Lacertidae	Algyroides nigropunctatus	LC	Y
Reptilia	Sauria	Lacertidae	Anatololacerta anatolica	LC	Y
Reptilia	Sauria	Lacertidae	Anatololacerta budaki	NE	Y
Reptilia	Sauria	Lacertidae	Anatololacerta danfordi	LC	Y
Reptilia	Sauria	Lacertidae	Anatololacerta pelagiana	NE	Y
Reptilia	Sauria	Lacertidae	Apathya cappadocica	LC	Y
Reptilia	Sauria	Lacertidae	Archaeolacerta bedriagae	VU	Y
Reptilia	Sauria	Lacertidae	Atlantolacerta andreanskyi	NT	Y
Reptilia	Sauria	Lacertidae	Dalmatolacerta oxycephala	LC	Y
Reptilia	Sauria	Lacertidae	Darevskia pratica	NT	N
Reptilia	Sauria	Lacertidae	Darevskia rudis	LC	N
Reptilia	Sauria	Lacertidae	Darevskia valentini	LC	N
Reptilia	Sauria	Lacertidae	Dinarolacerta mosorensis	VU	Y
Reptilia	Sauria	Lacertidae	Dinarolacerta montenegrina	LC	Y
Reptilia	Sauria	Lacertidae	Gallotia atlantica	LC	Y
Reptilia	Sauria	Lacertidae	Gallotia auaritae	CR	Y
Reptilia	Sauria	Lacertidae	Gallotia bravoana	CR	Y
Reptilia	Sauria	Lacertidae	Gallotia caesaris	LC	Y
Reptilia	Sauria	Lacertidae	Gallotia galloti	LC	Y
Reptilia	Sauria	Lacertidae	Gallotia intermedia	CR	Y
Reptilia	Sauria	Lacertidae	Gallotia simonyi	CR	Y
Class	Order	Family	Species	IUCN Red List category	Endemic (Yes/No)
-------------	-------	------------	-------------------------	------------------------	------------------
Reptilia	Sauria	Lacertidae	Gallotia stehlini	LC	Y
Reptilia	Sauria	Lacertidae	Hellenolacerta graeca	NT	Y
Reptilia	Sauria	Lacertidae	Iberolacerta aranica	CR	Y
Reptilia	Sauria	Lacertidae	Iberolacerta aureloio	EN	Y
Reptilia	Sauria	Lacertidae	Iberolacerta bonnali	NT	Y
Reptilia	Sauria	Lacertidae	Iberolacerta cyreni	EN	Y
Reptilia	Sauria	Lacertidae	Iberolacerta galani	NT	Y
Reptilia	Sauria	Lacertidae	Iberolacerta korvathi	NT	N
Reptilia	Sauria	Lacertidae	Iberolacerta martinezricai	CR	Y
Reptilia	Sauria	Lacertidae	Iberolacerta monticola	VU	Y
Reptilia	Sauria	Lacertidae	Lacerta agilis	LC	N
Reptilia	Sauria	Lacertidae	Lacerta bilineata	LC	N
Reptilia	Sauria	Lacertidae	Lacerta media	LC	N
Reptilia	Sauria	Lacertidae	Lacerta pumphylica	LC	Y
Reptilia	Sauria	Lacertidae	Lacerta schreiberi	NT	Y
Reptilia	Sauria	Lacertidae	Lacerta trilineata	LC	N
Reptilia	Sauria	Lacertidae	Lacerta viridis	LC	N
Reptilia	Sauria	Lacertidae	Latastia longicaudata	LC	N
Reptilia	Sauria	Lacertidae	Mesalina bahaeldini	LC	Y
Reptilia	Sauria	Lacertidae	Mesalina brevirostris	LC	N
Reptilia	Sauria	Lacertidae	Mesalina guttulata	LC	N
Reptilia	Sauria	Lacertidae	Mesalina martini	LC	N
Reptilia	Sauria	Lacertidae	Mesalina olivieri	LC	N
Reptilia	Sauria	Lacertidae	Mesalina pasteuri	DD	N
Reptilia	Sauria	Lacertidae	Mesalina rubropunctata	LC	N
Reptilia	Sauria	Lacertidae	Mesalina simoni	LC	Y
Reptilia	Sauria	Lacertidae	Ophisops elbaensis	DD	N
Reptilia	Sauria	Lacertidae	Ophisops elegans	LC	N
Reptilia	Sauria	Lacertidae	Ophisops occidentalis	LC	Y
Reptilia	Sauria	Lacertidae	Parvilacerta fraasii	EN	Y
Reptilia	Sauria	Lacertidae	Parvilacerta parva	LC	N
Reptilia	Sauria	Lacertidae	Philochortus zolii	EN	N
Reptilia	Sauria	Lacertidae	Phoenicolacerta cyanisparsa	LC	Y
Class	Order	Family	Species	IUCN Red List category	Endemic (Yes/No)
-------	-------	----------	------------------------	------------------------	------------------
Reptilia	Sauria	Lacertidae	*Phoenicolacerta kulzeri*	EN	Y
Reptilia	Sauria	Lacertidae	*Phoenicolacerta laevis*	LC	Y
Reptilia	Sauria	Lacertidae	*Phoenicolacerta troodica*	LC	Y
Reptilia	Sauria	Lacertidae	*Podarcis bocagei*	LC	Y
Reptilia	Sauria	Lacertidae	*Podarcis carbonelli*	EN	Y
Reptilia	Sauria	Lacertidae	*Podarcis cretensis*	EN	Y
Reptilia	Sauria	Lacertidae	*Podarcis erhardii*	LC	Y
Reptilia	Sauria	Lacertidae	*Podarcis filfolensis*	LC	Y
Reptilia	Sauria	Lacertidae	*Podarcis gaigeae*	VU	Y
Reptilia	Sauria	Lacertidae	*Podarcis guadarranensis*	NE	Y
Reptilia	Sauria	Lacertidae	*Podarcis hispanicus*	LC	Y
Reptilia	Sauria	Lacertidae	*Podarcis levendis*	VU	Y
Reptilia	Sauria	Lacertidae	*Podarcis lilfordi*	EN	Y
Reptilia	Sauria	Lacertidae	*Podarcis liolepis*	NE	N
Reptilia	Sauria	Lacertidae	*Podarcis melsellensis*	LC	Y
Reptilia	Sauria	Lacertidae	*Podarcis milensis*	NT	T
Reptilia	Sauria	Lacertidae	*Podarcis muralis*	LC	Y
Reptilia	Sauria	Lacertidae	*Podarcis peloponnesiacus*	LC	Y
Reptilia	Sauria	Lacertidae	*Podarcis pityusensis*	NT	Y
Reptilia	Sauria	Lacertidae	*Podarcis raffonei*	CR	Y
Reptilia	Sauria	Lacertidae	*Podarcis siculus*	LC	Y
Reptilia	Sauria	Lacertidae	*Podarcis tauricus*	LC	Y
Reptilia	Sauria	Lacertidae	*Podarcis tiliguerta*	LC	Y
Reptilia	Sauria	Lacertidae	*Podarcis vaucheri*	LC	Y
Reptilia	Sauria	Lacertidae	*Podarcis virescens*	NE	Y
Reptilia	Sauria	Lacertidae	*Podarcis waglerianus*	LC	Y
Reptilia	Sauria	Lacertidae	*Psammophis algirus*	LC	Y
Reptilia	Sauria	Lacertidae	*Psammophis blanci*	NT	Y
Reptilia	Sauria	Lacertidae	*Psammophis edwardsianus*	NE	N
Reptilia	Sauria	Lacertidae	*Psammophis hispanicus*	LC	Y
Reptilia	Sauria	Lacertidae	*Psammophis microdactylus*	EN	Y
Reptilia	Sauria	Lacertidae	*Psammophis occidentalis*	NE	Y
Reptilia	Sauria	Lacertidae	*Psammophis aegyptius*	LC	N
Class	Order	Family	Species	IUCN Red List category	Endemic (Yes/No)
------------	--------	--------------	--	------------------------	-----------------
Reptilia	Sauria	Lacertidae	*Psammophis biseriatus*	NE	N
Reptilia	Sauria	Lacertidae	*Psammophis rukwae*	LC	N
Reptilia	Sauria	Lacertidae	*Psammophis schokari*	LC	N
Reptilia	Sauria	Lacertidae	*Psammophis sibilans*	LC	N
Reptilia	Sauria	Lacertidae	*Psammophis tanganicus*	NE	N
Reptilia	Sauria	Lacertidae	*Psudelemias macronata*	DD	N
Reptilia	Sauria	Lacertidae	*Scearcis perspicillata*	LC	Y
Reptilia	Sauria	Lacertidae	*Teira dugesi*	LC	Y
Reptilia	Sauria	Lacertidae	*Timon kurdistanicus*	LC	N
Reptilia	Sauria	Lacertidae	*Timon lepidus*	NT	Y
Reptilia	Sauria	Lacertidae	*Timon nezadensis*	NE	Y
Reptilia	Sauria	Lacertidae	*Timon pater*	LC	Y
Reptilia	Sauria	Lacertidae	*Timon princeps*	LC	Y
Reptilia	Sauria	Lacertidae	*Timon tangitanus*	LC	Y
Reptilia	Sauria	Lacertidae	*Zootoca vivipara*	LC	N
Reptilia	Sauria	Lacertidae	*Acanthodactylus ahmaddisii*	EN	N
Reptilia	Sauria	Lacertidae	*Acanthodactylus aureus*	LC	N
Reptilia	Sauria	Lacertidae	*Acanthodactylus bedriagai*	NT	Y
Reptilia	Sauria	Lacertidae	*Acanthodactylus beershebensis*	CR	Y
Reptilia	Sauria	Phyllodactylidae	*Asaccus barani*	NE	Y
Reptilia	Sauria	Phyllodactylidae	*Ptyodactylus ananjevae*	NE	Y
Reptilia	Sauria	Phyllodactylidae	*Ptyodactylus guttatus*	LC	N
Reptilia	Sauria	Phyllodactylidae	*Ptyodactylus hasselquistii*	LC	N
Reptilia	Sauria	Phyllodactylidae	*Ptyodactylus oudrii*	LC	Y
Reptilia	Sauria	Phyllodactylidae	*Ptyodactylus puiseuxi*	LC	N
Reptilia	Sauria	Phyllodactylidae	*Ptyodactylus ragazii*	LC	N
Reptilia	Sauria	Scincidae	*Chalcides bedriagai*	NT	Y
Reptilia	Sauria	Scincidae	*Chalcides boulengeri*	NE	N
Reptilia	Sauria	Scincidae	*Chalcides chalcides*	LC	Y
Reptilia	Sauria	Scincidae	*Chalcides colosii*	LC	Y
Reptilia	Sauria	Scincidae	*Chalcides chalcides*	CR	Y
Reptilia	Sauria	Scincidae	*Chalcides guentheri*	VU	Y
Reptilia	Sauria	Scincidae	*Chalcides lancai*	NT	Y
Class	Order	Family	Species	IUCN Red List category	Endemic (Yes/No)
-------------	-----------	-----------	----------------------	------------------------	------------------
Reptilia	Sauria	Scincidae	Chalcides manueli	VU	Y
Reptilia	Sauria	Scincidae	Chalcides mauritanicus	EN	Y
Reptilia	Sauria	Scincidae	Chalcides mertensi	LC	Y
Reptilia	Sauria	Scincidae	Chalcides minutus	VU	Y
Reptilia	Sauria	Scincidae	Chalcides mionecton	LC	Y
Reptilia	Sauria	Scincidae	Chalcides montanus	NT	Y
Reptilia	Sauria	Scincidae	Chalcides ocellatus	LC	Y
Reptilia	Sauria	Scincidae	Chalcides paralleus	EN	Y
Reptilia	Sauria	Scincidae	Chalcides polyplepis	LC	Y
Reptilia	Sauria	Scincidae	Chalcides pseudostriatus	NT	Y
Reptilia	Sauria	Scincidae	Chalcides sepoide	LC	Y
Reptilia	Sauria	Scincidae	Chalcides sexlineatus	LC	Y
Reptilia	Sauria	Scincidae	Chalcides sphenopsiformis	LC	N
Reptilia	Sauria	Scincidae	Chalcides striatus	LC	Y
Reptilia	Sauria	Scincidae	Chalcides viridanus	LC	Y
Reptilia	Sauria	Scincidae	Eumeces algeriensis	LC	Y
Reptilia	Sauria	Scincidae	Eumeces schneideri	LC	N
Reptilia	Sauria	Scincidae	Eurylepis taeniolata	NE	N
Reptilia	Sauria	Scincidae	Heremites auratus	NE	N
Reptilia	Sauria	Scincidae	Ophiomorus latestii	DD	Y
Reptilia	Sauria	Scincidae	Ophiomorus punctatissimus	LC	Y
Reptilia	Sauria	Scincidae	Scincopus fasciatus	DD	N
Reptilia	Sauria	Scincidae	Scincus albifasciatus	LC	N
Reptilia	Sauria	Scincidae	Scincus scincus	LC	N
Reptilia	Sauria	Scincidae	Trachylepis quinquetaeniata	LC	N
Reptilia	Sauria	Scincidae	Ablepharus budaki	LC	Y
Reptilia	Sauria	Scincidae	Ablepharus chernovi	LC	N
Reptilia	Sauria	Scincidae	Ablepharus kitaibeli	LC	N
Reptilia	Sauria	Scincidae	Ablepharus rueppellii	LC	Y
Reptilia	Sauria	Varanidae	Varanus griseus	LC	N
Reptilia	Sauria	Varanidae	Varanus niloticus	LC	N
Reptilia	Ophidia	Atractaspidae	Atractaspis engaddensis	LC	N
Reptilia	Ophidia	Atractaspidae	Micrelaps muelleri	LC	Y
Class	Order	Family	Species	IUCN Red List category	Endemic (Yes/No)
-----------	-------	------------------	------------------------------	------------------------	------------------
Reptilia	Ophidia	Atractaspididae	Micrelaps tchernovi	NE	Y
Reptilia	Ophidia	Boidae	Eryx colubrinus	NE	N
Reptilia	Ophidia	Boidae	Eryx jaculus	LC	N
Reptilia	Ophidia	Colubridae	Coronella austriaca	LC	N
Reptilia	Ophidia	Colubridae	Coronella girondica	LC	Y
Reptilia	Ophidia	Colubridae	Dasypeltis scabra	LC	N
Reptilia	Ophidia	Colubridae	Dolichophis aspius	LC	N
Reptilia	Ophidia	Colubridae	Dolichophis cypriensis	EN	Y
Reptilia	Ophidia	Colubridae	Dolichophis jugularis	LC	N
Reptilia	Ophidia	Colubridae	Dolichophis schmidtii	LC	N
Reptilia	Ophidia	Colubridae	Eirenis aurolineatus	LC	Y
Reptilia	Ophidia	Colubridae	Eirenis barani	LC	Y
Reptilia	Ophidia	Colubridae	Eirenis collaris	LC	N
Reptilia	Ophidia	Colubridae	Eirenis coronella	LC	N
Reptilia	Ophidia	Colubridae	Eirenis coronelloides	LC	N
Reptilia	Ophidia	Colubridae	Eirenis decemlineatus	LC	Y
Reptilia	Ophidia	Colubridae	Eirenis eiselti	LC	Y
Reptilia	Ophidia	Colubridae	Eirenis hakkariensis	DD	N
Reptilia	Ophidia	Colubridae	Eirenis levantinus	LC	Y
Reptilia	Ophidia	Colubridae	Eirenis lineomaculatus	LC	Y
Reptilia	Ophidia	Colubridae	Eirenis modestus	LC	N
Reptilia	Ophidia	Colubridae	Eirenis occidentalis	NE	Y
Reptilia	Ophidia	Colubridae	Eirenis persicus	LC	N
Reptilia	Ophidia	Colubridae	Eirenis punctatolineatus	LC	N
Reptilia	Ophidia	Colubridae	Eirenis rothii	LC	Y
Reptilia	Ophidia	Colubridae	Eirenis thospitis	DD	Y
Reptilia	Ophidia	Colubridae	Elaphe quatuorlineata	NT	Y
Reptilia	Ophidia	Colubridae	Elaphe sauronates	LC	N
Reptilia	Ophidia	Colubridae	Hemorrhois algirus	LC	Y
Reptilia	Ophidia	Colubridae	Hemorrhois hippocrepis	LC	N
Reptilia	Ophidia	Colubridae	Hemorrhois nummifer	LC	N
Reptilia	Ophidia	Colubridae	Hemorrhois raurgieri	LC	N
Reptilia	Ophidia	Colubridae	Hierophis gemonensis	LC	Y
Class	Order	Family	Species	IUCN Red List category	Endemic (Yes/No)
------------	---------	-------------	----------------------------------	------------------------	------------------
Reptilia	Ophidia	Colubridae	Hierophis viridiflavus	LC	Y
Reptilia	Ophidia	Colubridae	Lycoptodon capense	LC	N
Reptilia	Ophidia	Colubridae	Lytorychnus diadema	LC	N
Reptilia	Ophidia	Colubridae	Macroprotodon abubakeri	DD	Y
Reptilia	Ophidia	Colubridae	Macroprotodon brevis	NT	Y
Reptilia	Ophidia	Colubridae	Macroprotodon cecallatus	LC	Y
Reptilia	Ophidia	Colubridae	Macroprotodon mauritanicus	NE	Y
Reptilia	Ophidia	Colubridae	Malpolon insignitus	NE	N
Reptilia	Ophidia	Colubridae	Malpolon monspessulanus	LC	N
Reptilia	Ophidia	Colubridae	Mehturopis barani	NE	Y
Reptilia	Ophidia	Colubridae	Platyceps collaris	LC	Y
Reptilia	Ophidia	Colubridae	Platyceps elegantissimus	DD	N
Reptilia	Ophidia	Colubridae	Platyceps florulentus	LC	N
Reptilia	Ophidia	Colubridae	Platyceps najadum	LC	N
Reptilia	Ophidia	Colubridae	Platyceps rhodorachis	LC	N
Reptilia	Ophidia	Colubridae	Platyceps rogersi	LC	N
Reptilia	Ophidia	Colubridae	Platyceps safin	DD	Y
Reptilia	Ophidia	Colubridae	Platyceps tessellata	NE	Y
Reptilia	Ophidia	Colubridae	Platyceps ventromaculatus	LC	N
Reptilia	Ophidia	Colubridae	Rhagerhis moilensis	NE	N
Reptilia	Ophidia	Colubridae	Rhynerocalamus melanocephalus	LC	N
Reptilia	Ophidia	Colubridae	Rhynerocalamus satunini	NE	N
Reptilia	Ophidia	Colubridae	Spalerosophis diadema	LC	N
Reptilia	Ophidia	Colubridae	Spalerosophis dolichospilus	DD	Y
Reptilia	Ophidia	Colubridae	Telescopus dhara	LC	N
Reptilia	Ophidia	Colubridae	Telescopus fallax	LC	N
Reptilia	Ophidia	Colubridae	Telescopus hoogstraali	EN	Y
Reptilia	Ophidia	Colubridae	Telescopus nigriceps	LC	N
Reptilia	Ophidia	Colubridae	Telescopus obtusus	NE	N
Reptilia	Ophidia	Colubridae	Telescopus tripolitanus	NE	N
Reptilia	Ophidia	Colubridae	Zamenis hohenackeri	LC	N
Reptilia	Ophidia	Colubridae	Zamenis lineatus	DD	Y
Reptilia	Ophidia	Colubridae	Zamenis longissimus	LC	N
Class	Order	Family	Species	IUCN Red List category	Endemic (Yes/No)
-------------	-----------	-------------	--	------------------------	-----------------
Reptilia	Ophidia	Colubridae	*Zamenis scalaris*	NE	Y
Reptilia	Ophidia	Colubridae	*Zamenis situla*	LC	N
Reptilia	Ophidia	Elapidae	*Naja haje*	LC	N
Reptilia	Ophidia	Elapidae	*Naja nubia*	LC	N
Reptilia	Ophidia	Elapidae	*Naja pallida*	NE	N
Reptilia	Ophidia	Elapidae	*Walterinnesia aegyptia*	LC	N
Reptilia	Ophidia	Elapidae	*Walterinnesia morgani*	NE	N
Reptilia	Ophidia	Lampropfiidae	*Boaedon fuliginosus*	NE	N
Reptilia	Ophidia	Leptotyphlopidae	*Myriopholis algeriensis*	LC	N
Reptilia	Ophidia	Leptotyphlopidae	*Myriopholis cairi*	NE	N
Reptilia	Ophidia	Leptotyphlopidae	*Myriopholis macrorhyncha*	NE	N
Reptilia	Ophidia	Natricidae	*Natrix maura*	LC	Y
Reptilia	Ophidia	Natricidae	*Natrix natrix*	LC	N
Reptilia	Ophidia	Natricidae	*Natrix tessellata*	LC	N
Reptilia	Ophidia	Typhlopidae	*Letheobia episcopus*	DD	Y
Reptilia	Ophidia	Typhlopidae	*Letheobia simontii*	LC	Y
Reptilia	Ophidia	Typhlopidae	*Xerotypholps vermicularis*	NE	N
Reptilia	Ophidia	Viperidae	*Bitis arietans*	LC	N
Reptilia	Ophidia	Viperidae	*Cerastes bohmei*	NE	Y
Reptilia	Ophidia	Viperidae	*Cerastes cerastes*	LC	N
Reptilia	Ophidia	Viperidae	*Cerastes gasperetti*	LC	N
Reptilia	Ophidia	Viperidae	*Cerastes viper*	LC	N
Reptilia	Ophidia	Viperidae	*Daboia deserti*	NT	Y
Reptilia	Ophidia	Viperidae	*Daboia mauritanica*	NT	Y
Reptilia	Ophidia	Viperidae	*Daboia palaestinae*	LC	Y
Reptilia	Ophidia	Viperidae	*Echis coloratus*	LC	N
Reptilia	Ophidia	Viperidae	*Echis leucogaster*	LC	N
Reptilia	Ophidia	Viperidae	*Echis pyramidum*	LC	N
Reptilia	Ophidia	Viperidae	*Macrovipera lebetina*	LC	N
Reptilia	Ophidia	Viperidae	*Macrovipera schweizeri*	EN	Y
Reptilia	Ophidia	Viperidae	*Montiovipera albizona*	EN	Y
Reptilia	Ophidia	Viperidae	*Montiovipera bornmuelleri*	EN	Y
Reptilia	Ophidia	Viperidae	*Montiovipera bulguragamica*	LC	Y
Class	Order	Family	Species	IUCN Red List category	Endemic (Yes/No)
--------	--------	--------	------------------------	------------------------	------------------
Reptilia	Ophidia	Viperidae	Montivipera raddei	NT	N
Reptilia	Ophidia	Viperidae	Montivipera xanthina	LC	Y
Reptilia	Ophidia	Viperidae	Pseudocerastes fieldi	LC	N
Reptilia	Ophidia	Viperidae	Vipera ammodytes	LC	N
Reptilia	Ophidia	Viperidae	Vipera anatolica	EN	Y
Reptilia	Ophidia	Viperidae	Vipera aspis	LC	N
Reptilia	Ophidia	Viperidae	Vipera barani	NT	Y
Reptilia	Ophidia	Viperidae	Vipera berus	LC	N
Reptilia	Ophidia	Viperidae	Vipera latastei	NT	Y
Reptilia	Ophidia	Viperidae	Vipera monticola	NT	Y
Reptilia	Ophidia	Viperidae	Vipera seoanei	LC	Y
Reptilia	Ophidia	Viperidae	Vipera ursinii	VU	N
Reptilia	Ophidia	Viperidae	Vipera walser	NE	Y
Crocodilia	Crocodilia	Crocodylidae	Crocodylus niloticus	LC	N

Author details

Kerim Çiçek* and Oğzukan Cumhuriyet

*Address all correspondence to: kerim.cicek@ege.edu.tr

Zoology Section, Department of Biology, Faculty of Science, Ege University, Izmir, Turkey

References

[1] Blondel J, Aronson J, Bodiou J-Y, Boeuf G. The Mediterranean Region: Biological Diversity in Space and Time. 1st ed. New York: Oxford University Press Inc; 2010. 376 p. DOI: 978-0-19-955798-1

[2] Communities E. Natura 2000 in the Mediterranean Region. 1st ed. Luxembourg: Office for Official Publications of the European Communities; 2009. 12 p. DOI: 10.2779/77695

[3] Arnold C. Mediterranean Islands, 1st ed. London: Survival Books; 2008. 416 p. DOI: 978-0955648915

[4] Mittermeier RA, Turner WR, Larsen FW, Brooks TM, Gascon C. Global biodiversity conservation: The critical role of hotspots. In: Zachos FE, Habel JC, editors. Biodiversity
Hotspots: Distribution and Protection of Conservation Priority Areas. 1st ed. Heidelberg: Springer; 2011. p. 3-22. DOI: 783642209918

[5] Cox N, Chanson J, Stuart S. The Status and Distribution of Reptiles and Amphibians of the Mediterranean Basin, 1st ed. Switzerland and Cambridge: IUCN; 2006. 42 p. DOI: 978-2-8317-0912-3

[6] AmphibiaWeb. AmphibiaWeb [Internet]. 2017 [Updated: 2017]. Available from: http://amphibiaweb.org [Accessed: March 27, 2017]

[7] Uetz P, Freed P, Hošek J. The Reptile Database [Internet]. 2017 [Updated: 2017]. Available from: http://reptile-database.org [Accessed: March 27, 2017]

[8] IUCN. The IUCN Red List of Threatened Species [Internet]. 2017 [Updated: 2017]. Available from: http://www.iucnredlist.org/ [Accessed: March 27, 2017]

[9] Whitfield SM, de Scott Ryan TJ, Buhlmann KA, Tuberville TD, Metts BS, Greene JL, Mills T, Leiden Y, Poppy S. The global decline of reptiles, déjà amphibians. BioScience. 2000;50(8):53-666

[10] Cuttelod A, García N, Abdul Malak D, Temple H, Katariya V. The Mediterranean: A biodiversity hotspot under threat. In: Vié J-C, Hilton-Taylor C, Stuart SN, editors. The 2008 Review of The IUCN Red List of Threatened Species. 1st ed. Switzerland: IUCN Gland; 2008. p. 1. DOI: 978-2-8317-1063-1

[11] Barahona F, Evans SE, Mateo JA, García-Márquez M, López-Jurado LF. Endemism, gigantism and extinction in island lizards: the genus Gallotia on the Canary Islands. Journal of Zoology. 2000;250(3):373-388

[12] Cox SC, Carranza S, Brown RP. Divergence times and colonization of the Canary Islands by Gallotia lizards. Molecular Phylogenetics & Evolution. 2010;56:747-757

[13] IUCN SSC Amphibian Specialist Group. Latonia nigriventer. The IUCN Red List of Threatened Species 2012: e.T6715A13339841 [Internet]. [Updated: 2012] Available from: http://dx.doi.org/10.2305/IUCN.UK.2012-1.RLTS.T6715A13339841.en [Accessed: 08 April 2017]

[14] Salafsky N, Salzer D, Stattersfield AJ, Hilton-Taylor C, Neugarten R, Butchart SHM, Collen B, Cox N, Master LL, O’Connor S, Wilkie D. A standard lexicon for biodiversity conservation: Unified classifications of threats and actions. Conservation Biology. 2007;22:897-911. DOI: 10.1111/j.1523-1739.2008.00937.x

[15] Blue Plan. The Blue Plan’s Sustainable Development Outlook for the Mediterranean. 1st ed. Sophia Antipolis, France: UNEP Blue Plan Activity Centre; 2008. 26 p
