Research Article

Some Similarity and Distance Measures between Complex Interval-Valued q-Rung Orthopair Fuzzy Sets Based on Cosine Function and their Applications

Harish Garg, Zeeshan Ali, Tahir Mahmood, and Sultan Aljahdali

1School of Mathematics, Thapar Institute of Engineering and Technology (Deemed University), Patiala, Punjab, India
2Department of Mathematics and Statistics, International Islamic University Islamabad, Islamabad, Pakistan
3Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Correspondence should be addressed to Harish Garg; harishg58iitr@gmail.com

Received 22 January 2021; Revised 18 March 2021; Accepted 25 March 2021; Published 28 April 2021

The purpose of this paper is to present a new method to solve the decision-making algorithm based on the cosine similarity and distance measures by utilizing the uncertain and vague information. A complex interval-valued q-rung orthopair fuzzy set (CIVQROFS) is a reliable and competent technique for handling the uncertain information with the help of the complex-valued membership grades. To address the degree of discrimination between the pairs of the sets, cosine similarity measures (CSMs) and distance measures (DMs) are an accomplished technique. Driven by these, in this manuscript, we defined some CSMs and DMs for the pairs of CIVQROFSs and investigated their several properties. Choosing that the CSMs do not justify the axiom of the similarity measure (SM), then we investigate a technique to developing other CIVQROFSs-based SMs using the explored CSMs and Euclidean DMs, and it fulfills the axiom of the SMs. In addition, we find the cosine DMs (CDMs) by considering the inter-relationship between the SM and DMs; then, we have modified the procedure for the rank of partiality by similarity to the ideal solution method for the CDMs under investigation, which can deal with the associated decision-making problems not only individually from the argument of the opinion of geometry but also the fact of the opinion of algebra. Finally, we provide a numerical example to demonstrate the practicality and effectiveness of the proposed procedure, which is also in line with existing procedures. Graphical representations of the measures developed are also used in this manuscript.

1. Introduction

Decision-making is one of the most difficult processes in our day-to-day life in which we make decisions at all times. Uncertainty, however, is an unavoidable phenomenon, as a result of which the rating for assessing a given object is not clearly appraisable. There is therefore an excessive need for theory to extract the information more precisely. For example, when the institute decides whether to enroll the tutoring team, the ten-member committee of the authorities has assessed the persons selected, seven of whom have agreed to employ the person, two of whom have expressed disapproval of the job, and the additional one has not given a clear judgment. It is therefore difficult, in such circumstances, to take a decision into account. To characterize the excess of knowledge, Atanassov’s intuitionistic fuzzy set (IFS) [1] was investigated by including the term falsity in the fuzzy set (FS) environment [2] in order to deal with unreliable and problematic information in decision-making issues. The term “Truth” and the term “Falsity” in IFS contains the rule that the sum of the two terms is restarted to $[0, 1]$. The IFS deals with the crisp numbers and fails to deal with the number of the intervals. To address this, Atanassov [3] has developed a theory of interval-assessed IFS containing the degree of truth and falsehood in the form of a subinterval of unit interval. The idea of IFS has received a great deal of attention from separate scholars and has been widely used by many scholars in a diverse environment (for
more details, we refer to [4–7] and their references). Due to some complications, the IFS is unable to manage some of the daily life issues, for example, if a person gives 0.6 for true grade and 0.5 for falsehood, then the sum of the two values is extended from [0, 1], and the IFS is unable to explain these types of information precisely. The theory of Pythagorean FS (PFS) has therefore been investigated by Yager [8], which is a competent and capable technique to handle unreliable and problematic information in decision-making problems. The term “Truth” and the term “Falsity” in PFS contains the rule that the sum of the squares of both terms is restarted to [0, 1]. He theory of interval-valued PFS was developed by Garg [9], which contains the degree of truth and falsehood in the form of a subinterval of the unit interval. Since its existence, many scholars have addressed the problems of the decision-making proves using PFS features [10–14]. However, sometimes, the PFS is unable to manage ratings of the expert during the evaluation process. For example, if a person gives 0.9 for true grade and 0.8 for falsehood, then the sum of the squares of both values is extended from [0, 1], and the PFS is unable to explain these types of information precisely. The q-rung orthopair FS (QROFS) theory has therefore been investigated by Yager [15] as a competent and capable technique for dealing with decision-making issues. In QROFS, the term “Truth” and the term “Falsity” contain the rule that the sum of the q-powers of both terms is restarted to [0, 1]. The theory of interval-valued QROFS was developed by Joshi et al. [16], which includes the degree of truth and falsehood in the form of a subinterval of the unit interval. The idea of QROFS has received a great deal of attention from separate scholars and has been widely used by many scholars in the environment of different fields [17–19].

All of the abovementioned algorithms have been widely used by researchers in the decision-making process, but these approaches are limited in access to manage their variations during the given period of time. For example, data from the “Medical Investigation, Biometric, and Facial Recognition Database” continuously transform at the same time as the period passes. Thus, in order to deal with these types of problems, the range of truth and falsehood degrees is changed from the actual subset to the unit disk of the complex plane by Alkouri and Salleh [20], and thus, the notion of the complex IFS (CIFS) has been established by extending the complex FS (CFS) [21] to decision-making issues. The term “Truth” and the term “Falsity” in the CIFS contain the rule that the sum of the real parts (also for imaginary parts) of both terms is restarted to [0, 1]. The theory of complex interval-valued QROFS was developed by Garg et al. [22] which includes the degree of truth and falsehood in the form of a subinterval of the unit interval. The idea of QROFS has received a great deal of attention from separate scholars and has been widely used by many scholars in the environment of different fields [17–19].

has therefore been investigated by Ullah et al. [27] which is a competent and capable technique for dealing with unreliable and problematic information on decision-making issues. The term of truth and the term of falsity contains in CPFS with a rule, that is, the sum of the squares of the real parts (also for imaginary parts) of both terms is restarted to [0, 1]. The idea of CPFS has received extensive attention from separated scholars, and numerous scholars have widely utilized it in the environment of different areas [28]. Due to some complications, the CPFS is not able to manage some daily life issues, for instance, if a person gives $0.9e^{i\pi/8}$ for truth grade and $0.8e^{i\pi/7}$ for falsity, then the sum of the squares of the real parts (also for imaginary parts) of both values is extended from [0, 1], and the CPFS is not able to explain such types of information accurately. Therefore, the theory of complex QROFS (CQROFS) was investigated by Liu et al. [29, 30] which is a proficient and capable technique to handle unreliable and problematic information in decision-making issues. The term of truth and the term of falsity contain in CQROFS with a rule, that is, the sum of the q-powers of the squares of the real parts (also for imaginary parts) of both terms is restarted to [0, 1]. The theory of complex interval-valued QROFS was developed by Garg et al. [31] which contains the grade of truth and falsity in the form of the subinterval of unit interval. The idea of CQROFS has received extensive attention from separated scholars, and numerous scholars have widely utilized it in the environment of different areas [32–37].

In the event of a conflict, the SM is a competent tool for examining the interrelationships between any number of CQROFSs and a number of scholars who have used it in separate areas [35]. Garg and Rani [38] also explored information measures based on the IFCS. Garg and Rani [39] have developed the theory of a robust correlation coefficient based on the CYPS. However, to date, SMs among CQROFSs have not been investigated. Keeping in mind the advantages of SMs, the CQROFSs theory is a reliable technique for managing awkward and unreliable information on daily issues. The main investigation of this manuscript is summarized as follows:

1. The CSMs and Euclidean DMs (EDMs) by using CQROFSs and their properties are investigated

2. Choosing that the CSMs do not justify the axiom of similarity measure (SM), we investigate a technique to develop other SMs based on CQROFSs using the explored CSMs and EDMs, and it fulfills the axiom of the SMs

3. To find a cosine DMs (CDMs) based on CQROFSs, by considering the inter-relationship among the SM and DMs, we modified the procedure for the rank of partiality by similarity to the ideal solution method to the investigated CDMs, which can be arranged with the associated decision-making troubles not only individually from the argument of the opinion of geometry but also the fact of the opinion of algebra

4. A sensible example to demonstrate the practicality and efficiency of the suggested procedure is
provided, which is also matched with additional existing procedures.

(5) The graphical representations of the developed measures are also utilized in this manuscript.

The purpose of this manuscript is summarized as follows. In Section 2, we briefly recall the concept of CIFSs, CPFSs, and CQROFSs and their fundamental laws. In Section 3, we develop the idea of CSMs and DMs by using CQROFNs. In Section 4, we utilize the TOPSIS method in the environment of the MADM procedure to find the reliability and effectiveness of the investigated measures. In Section 5, we discuss the comparative analysis of the proposed work with some existing approaches. The conclusion of this manuscript is discussed in Section 6.

2. Preliminaries

In this investigation work, we recall the main ideas of CIVIFSs, CIVPFs, and CIVQROFSs and their fundamental laws. In this study, we use the symbol $\bar{\sigma}$ for universal sets and the truth and falsity and degrees are shown by M_{CQ} and N_{CQ}, where $M_{CQ}(\bar{\sigma}) = [M_{CQ}^+(\bar{\sigma}), M_{CQ}^-(\bar{\sigma})]$, $N_{CQ}(\bar{\sigma}) = [N_{CQ}^+(\bar{\sigma}), N_{CQ}^-(\bar{\sigma})]$.

Definition 1 (see [22]). A CIVIFS G_{CQ} is stated by

$$G_{CQ} = \left\{ \left(M_{CQ}(\bar{\sigma}), N_{CQ}(\bar{\sigma}) \right) : \bar{\sigma} \in \mathcal{O} \right\},$$

where

$$M_{CQ}(\bar{\sigma}) = [M_{CQ}^+(\bar{\sigma}), M_{CQ}^-(\bar{\sigma})]e^{2\pi i \left(\frac{1}{2} \left(\frac{1}{2} - M_{CQ}^+(\bar{\sigma}) + N_{CQ}^-(\bar{\sigma}) \right) \right)},$$

$$R_{CQ}(\bar{\sigma}) = \left(M_{CQ}^-(\bar{\sigma}) - M_{CQ}^+(\bar{\sigma}) \right) e^{2\pi i \left(\frac{1}{2} \left(\frac{1}{2} - M_{CQ}^+(\bar{\sigma}) + N_{CQ}^-(\bar{\sigma}) \right) \right)},$$

is the degree of indeterminacy.

Definition 2. A CIVPF G_{CQ} is demonstrated by

$$M_{CQ}(\bar{\sigma}) = [M_{CQ}^+(\bar{\sigma}), M_{CQ}^-(\bar{\sigma})]e^{2\pi i \left(\frac{1}{2} \left(\frac{1}{2} - M_{CQ}^+(\bar{\sigma}) + N_{CQ}^-(\bar{\sigma}) \right) \right)},$$

$$R_{CQ}(\bar{\sigma}) = \left(M_{CQ}^-(\bar{\sigma}) - M_{CQ}^+(\bar{\sigma}) \right) e^{2\pi i \left(\frac{1}{2} \left(\frac{1}{2} - M_{CQ}^+(\bar{\sigma}) + N_{CQ}^-(\bar{\sigma}) \right) \right)},$$

represent the degrees of agreement and disagreement with the conditions that $0 \leq M_{CQ}^2(\bar{\sigma}) + N_{CQ}^2(\bar{\sigma}) \leq 1$ and $0 \leq M_{CQ}^2(\bar{\sigma}) + N_{CQ}^2(\bar{\sigma}) \leq 1$. Moreover, the term

$$J_{CQ}(\bar{\sigma}) = [J_{CQ}^+(\bar{\sigma}), J_{CQ}^-(\bar{\sigma})]e^{2\pi i \left(\frac{1}{2} \left(\frac{1}{2} - J_{CQ}^+(\bar{\sigma}) + J_{CQ}^-(\bar{\sigma}) \right) \right)}$$

is expressed as the degree of indeterminacy.

Definition 3 (see [31]). A CIVQROFS G_{CQ} is described by

$$G_{CQ} = \left\{ \left(M_{CQ}(\bar{\sigma}), N_{CQ}(\bar{\sigma}) \right) : \bar{\sigma} \in \mathcal{O} \right\},$$

where
Mathematical Problems in Engineering

represented by valued q-rung orthopair fuzzy numbers (CIVQROFNs) are expressed as the degree of indeterminacy.

Additionally, by using this CIVQROFN, we define the score and accuracy values such that

To find the relationships between any number two CIVQROFNs,

we use the following rules:

(1) If \(\mathcal{E}_{CQ}(\mathcal{C}_{CQ-1}) > \mathcal{E}_{CQ}(\mathcal{C}_{CQ-2}) \), then \(\mathcal{C}_{CQ-1} > \mathcal{C}_{CQ-2} \).

(2) If \(\mathcal{E}_{CQ}(\mathcal{C}_{CQ-1}) < \mathcal{E}_{CQ}(\mathcal{C}_{CQ-2}) \), then \(\mathcal{C}_{CQ-1} < \mathcal{C}_{CQ-2} \).

(3) If \(\mathcal{E}_{CQ}(\mathcal{C}_{CQ-1}) = \mathcal{E}_{CQ}(\mathcal{C}_{CQ-2}) \), then \(\mathcal{C}_{CQ-1} = \mathcal{C}_{CQ-2} \).

3. Cosine Similarity Measures and Distance Measures between CIVQROFNs

In this section, we investigate some CSMs ("cosine similarity measures") and DMS ("distance measures") between the pairs of the CIVQROFNs. Some cases of the presented works are also discussed.
Definition 4. For any two CIVQROFs,

\[\mathcal{C}_{Q1} = \left(\begin{array}{c} [\mathcal{M}_{\text{ip}1}^{-}(1), \mathcal{M}_{\text{ip}1}^{+}(1)] \mathcal{D} \left(\left[\mathcal{M}_{\text{ip}1}^{-}(1), \mathcal{M}_{\text{ip}1}^{+}(1) \right] \right), \\ [\mathcal{M}_{\text{ip}1}^{-}(1), \mathcal{M}_{\text{ip}1}^{+}(1)] \mathcal{D} \left(\left[\mathcal{M}_{\text{ip}1}^{-}(1), \mathcal{M}_{\text{ip}1}^{+}(1) \right] \right) \end{array} \right), \]

\[\mathcal{C}_{Q2} = \left(\begin{array}{c} [\mathcal{M}_{\text{ip}2}^{-}(1), \mathcal{M}_{\text{ip}2}^{+}(1)] \mathcal{D} \left(\left[\mathcal{M}_{\text{ip}2}^{-}(1), \mathcal{M}_{\text{ip}2}^{+}(1) \right] \right), \\ [\mathcal{M}_{\text{ip}2}^{-}(1), \mathcal{M}_{\text{ip}2}^{+}(1)] \mathcal{D} \left(\left[\mathcal{M}_{\text{ip}2}^{-}(1), \mathcal{M}_{\text{ip}2}^{+}(1) \right] \right) \end{array} \right), \]

are based on a universal set \(\widehat{\sigma} = \{ \widehat{\sigma}_1, \widehat{\sigma}_2, \ldots, \widehat{\sigma}_n \} \); then, the CSM, denoted by \(\text{CSM}_{Q1} (\mathcal{C}_{Q1}, \mathcal{C}_{Q2}) \), is defined by

\[\text{CSM}_{Q1}(\mathcal{C}_{Q1}, \mathcal{C}_{Q2}) = \sum_{i=1}^{n} \mathcal{D} \left(\left[\mathcal{M}_{\text{ip}1}^{-}(1), \mathcal{M}_{\text{ip}1}^{+}(1) \right] \right), \]

Theorem 1. For any two CIVQROFs,

\[\mathcal{C}_{Q1} = \left(\begin{array}{c} [\mathcal{M}_{\text{ip}1}^{-}(1), \mathcal{M}_{\text{ip}1}^{+}(1)] \mathcal{D} \left(\left[\mathcal{M}_{\text{ip}1}^{-}(1), \mathcal{M}_{\text{ip}1}^{+}(1) \right] \right) \end{array} \right), \]

\[\mathcal{C}_{Q2} = \left(\begin{array}{c} [\mathcal{M}_{\text{ip}2}^{-}(1), \mathcal{M}_{\text{ip}2}^{+}(1)] \mathcal{D} \left(\left[\mathcal{M}_{\text{ip}2}^{-}(1), \mathcal{M}_{\text{ip}2}^{+}(1) \right] \right) \end{array} \right), \]

are based on a universal set \(\widehat{\sigma} = \{ \widehat{\sigma}_1, \widehat{\sigma}_2, \ldots, \widehat{\sigma}_n \} \); then, the CSM \(\text{CSM}_{Q2} (\mathcal{C}_{Q1}, \mathcal{C}_{Q2}) \) holds the following conditions:

1. \(0 \leq \text{CSM}_{Q2} (\mathcal{C}_{Q1}, \mathcal{C}_{Q2}) \leq 1 \)
Proof. Based on Definition (10), conditions (1) and (4) are straightforward. Moreover, if we choose the $C_{CQ-1} = C_{CQ-2}$, that is,

\[
\begin{align*}
\mathcal{M}_{\ell_{ip-1}}^- &= \mathcal{M}_{\ell_{ip-2}}^-; \\
\mathcal{M}_{\ell_{ip-1}}^+ &= \mathcal{M}_{\ell_{ip-2}}^+; \\
\mathcal{M}_{\ell_{ip-1}} &= \mathcal{M}_{\ell_{ip-2}}; \\
\mathcal{M}_{\ell_{ip-1}} &= \mathcal{M}_{\ell_{ip-2}}; \\
\mathcal{M}_{\ell_{ip-1}} &= \mathcal{M}_{\ell_{ip-2}}.
\end{align*}
\]

(16)

Then

\[
\text{CSM}_{CQ}(C_{CQ-1}, C_{CQ-2}) = \frac{1}{n}\sum_{i=1}^{n} a \left(\begin{array}{c}
\mathcal{M}_{\ell_{ip-1}}^-(\sigma_i) \mathcal{M}_{\ell_{ip-2}}^-(\sigma_i) + \mathcal{M}_{\ell_{ip-1}}^+(\sigma_i) \mathcal{M}_{\ell_{ip-2}}^+(\sigma_i) + \\
\mathcal{M}_{\ell_{ip-1}}^-(\sigma_i) \mathcal{M}_{\ell_{ip-2}}^+(\sigma_i) + \mathcal{M}_{\ell_{ip-1}}^+(\sigma_i) \mathcal{M}_{\ell_{ip-2}}^-(\sigma_i) + \\
\mathcal{M}_{\ell_{ip-1}}^-(\sigma_i) \mathcal{M}_{\ell_{ip-2}}^-(\sigma_i) + \mathcal{M}_{\ell_{ip-1}}^+(\sigma_i) \mathcal{M}_{\ell_{ip-2}}^+(\sigma_i) + \\
\mathcal{M}_{\ell_{ip-1}}^-(\sigma_i) \mathcal{M}_{\ell_{ip-2}}^+(\sigma_i) + \mathcal{M}_{\ell_{ip-1}}^+(\sigma_i) \mathcal{M}_{\ell_{ip-2}}^-(\sigma_i)
\end{array} \right)
\]

(17)

\[
= \frac{1}{n}\sum_{i=1}^{n} a \left(\begin{array}{c}
\mathcal{M}_{\ell_{ip-1}}^-(\sigma_i) \mathcal{M}_{\ell_{ip-2}}^-(\sigma_i) + \mathcal{M}_{\ell_{ip-1}}^+(\sigma_i) \mathcal{M}_{\ell_{ip-2}}^+(\sigma_i) + \\
\mathcal{M}_{\ell_{ip-1}}^-(\sigma_i) \mathcal{M}_{\ell_{ip-2}}^+(\sigma_i) + \mathcal{M}_{\ell_{ip-1}}^+(\sigma_i) \mathcal{M}_{\ell_{ip-2}}^-(\sigma_i) + \\
\mathcal{M}_{\ell_{ip-1}}^-(\sigma_i) \mathcal{M}_{\ell_{ip-2}}^-(\sigma_i) + \mathcal{M}_{\ell_{ip-1}}^+(\sigma_i) \mathcal{M}_{\ell_{ip-2}}^+(\sigma_i) + \\
\mathcal{M}_{\ell_{ip-1}}^-(\sigma_i) \mathcal{M}_{\ell_{ip-2}}^+(\sigma_i) + \mathcal{M}_{\ell_{ip-1}}^+(\sigma_i) \mathcal{M}_{\ell_{ip-2}}^-(\sigma_i)
\end{array} \right)
\]

(1/2)+(1/2)
Hence, we obtain $\text{CSM}_{\text{CQ}}(\mathbf{C}_{\text{CQ-1}}, \mathbf{C}_{\text{CQ-2}}) = 2$.

By using the weight vector $\Omega_{\text{WV}} = \{\Omega_{\text{WV-1}}, \Omega_{\text{WV-2}}, \ldots, \Omega_{\text{WV-}\bar{n}}\}$ with a rule, that is, $\sum_{i=1}^{\bar{n}} \Omega_{\text{WV}-i} = 1, \Omega_{\text{WV}-i} \in [0, 1]$, then the WCSM ("weighted cosine similarity measure") is defined as follows.

Definition 5. For any two CIVQROFNs,

\[
\begin{align*}
\mathbf{C}_{\text{CQ-1}} &= \left(\begin{bmatrix} \mathbf{M}_{\text{IP}-1}(\overrightarrow{\sigma}_1), \mathbf{M}_{\text{IP}-1}(\overrightarrow{\sigma}_2) \\ \mathbf{M}_{\text{IP}-2}(\overrightarrow{\sigma}_1), \mathbf{M}_{\text{IP}-2}(\overrightarrow{\sigma}_2) \end{bmatrix} + e^{2\pi i} \begin{bmatrix} \mathbf{M}_{\text{IP}-1}(\overrightarrow{\sigma}_1) \mathbf{M}_{\text{IP}-1}^*(\overrightarrow{\sigma}_1) \\ \mathbf{M}_{\text{IP}-2}(\overrightarrow{\sigma}_1) \mathbf{M}_{\text{IP}-2}^*(\overrightarrow{\sigma}_1) \end{bmatrix} \right), \\
\mathbf{C}_{\text{CQ-2}} &= \left(\begin{bmatrix} \mathbf{M}_{\text{IP}-1}(\overrightarrow{\sigma}_2), \mathbf{M}_{\text{IP}-1}(\overrightarrow{\sigma}_1) \\ \mathbf{M}_{\text{IP}-2}(\overrightarrow{\sigma}_2), \mathbf{M}_{\text{IP}-2}(\overrightarrow{\sigma}_1) \end{bmatrix} + e^{2\pi i} \begin{bmatrix} \mathbf{M}_{\text{IP}-1}(\overrightarrow{\sigma}_2) \mathbf{M}_{\text{IP}-1}^*(\overrightarrow{\sigma}_2) \\ \mathbf{M}_{\text{IP}-2}(\overrightarrow{\sigma}_2) \mathbf{M}_{\text{IP}-2}^*(\overrightarrow{\sigma}_2) \end{bmatrix} \right),
\end{align*}
\]

\[i = 1, 2, \ldots, \bar{n}, \]

are based on a universal set $\overrightarrow{\sigma} = \{\overrightarrow{\sigma}_1, \overrightarrow{\sigma}_2, \ldots, \overrightarrow{\sigma}_{\bar{n}}\}$; then, the WCSM$_{\text{CQ}}(\mathbf{C}_{\text{CQ-1}}, \mathbf{C}_{\text{CQ-2}})$ is demonstrated by

\[
\text{WCSM}_{\text{CQ}}(\mathbf{C}_{\text{CQ-1}}, \mathbf{C}_{\text{CQ-2}}) = \sum_{i=1}^{\bar{n}} \Omega_{\text{WV}-i} \left| \begin{bmatrix} \mathbf{M}_{\text{IP}-1}(\overrightarrow{\sigma}_1) + \mathbf{M}_{\text{IP}-1}(\overrightarrow{\sigma}_2) + \mathbf{M}_{\text{IP}-1}(\overrightarrow{\sigma}_1) + \mathbf{M}_{\text{IP}-1}(\overrightarrow{\sigma}_2) + \mathbf{M}_{\text{IP}-1}(\overrightarrow{\sigma}_1) + \mathbf{M}_{\text{IP}-1}(\overrightarrow{\sigma}_2) + \mathbf{M}_{\text{IP}-1}(\overrightarrow{\sigma}_1) + \mathbf{M}_{\text{IP}-1}(\overrightarrow{\sigma}_2) \end{bmatrix} \right|
\]

(19)

For any two CIVQROFNs,

\[
\begin{align*}
\mathbf{C}_{\text{CQ-1}} &= \left(\begin{bmatrix} \mathbf{M}_{\text{IP}-1}(\overrightarrow{\sigma}_1), \mathbf{M}_{\text{IP}-1}(\overrightarrow{\sigma}_2) \\ \mathbf{M}_{\text{IP}-2}(\overrightarrow{\sigma}_1), \mathbf{M}_{\text{IP}-2}(\overrightarrow{\sigma}_2) \end{bmatrix} + e^{2\pi i} \begin{bmatrix} \mathbf{M}_{\text{IP}-1}(\overrightarrow{\sigma}_1) \mathbf{M}_{\text{IP}-1}^*(\overrightarrow{\sigma}_1) \\ \mathbf{M}_{\text{IP}-2}(\overrightarrow{\sigma}_1) \mathbf{M}_{\text{IP}-2}^*(\overrightarrow{\sigma}_1) \end{bmatrix} \right), \\
\mathbf{C}_{\text{CQ-2}} &= \left(\begin{bmatrix} \mathbf{M}_{\text{IP}-1}(\overrightarrow{\sigma}_2), \mathbf{M}_{\text{IP}-1}(\overrightarrow{\sigma}_1) \\ \mathbf{M}_{\text{IP}-2}(\overrightarrow{\sigma}_2), \mathbf{M}_{\text{IP}-2}(\overrightarrow{\sigma}_1) \end{bmatrix} + e^{2\pi i} \begin{bmatrix} \mathbf{M}_{\text{IP}-1}(\overrightarrow{\sigma}_2) \mathbf{M}_{\text{IP}-1}^*(\overrightarrow{\sigma}_2) \\ \mathbf{M}_{\text{IP}-2}(\overrightarrow{\sigma}_2) \mathbf{M}_{\text{IP}-2}^*(\overrightarrow{\sigma}_2) \end{bmatrix} \right),
\end{align*}
\]

(20)

are based on a universal set $\overrightarrow{\sigma}$; if we choose the value of weight vector $\Omega_{\text{WV}} = \{\Omega_{\text{WV-1}}, \Omega_{\text{WV-2}}, \ldots, \Omega_{\text{WV-}\bar{n}}\} = ((1/n), (1/n), \ldots, (1/n))$, then the WCSM$_{\text{CQ}}(\mathbf{C}_{\text{CQ-1}}, \mathbf{C}_{\text{CQ-2}})$ is reduced to CSM$_{\text{CQ}}(\mathbf{C}_{\text{CQ-1}}, \mathbf{C}_{\text{CQ-2}})$.

Lemma 1. For any two fuzzy sets \bar{C}_1 and \bar{C}_2, if a measure $SM_{CQ}(\bar{C}_1, \bar{C}_2)$ holds the following axioms,

\[
\text{EDM}_{CQ}(\bar{C}_1, \bar{C}_2) = \frac{1}{8n} \sum_{\bar{e}\in \bar{E}} \left(\left(\left[M_{e_{p_1}}(\bar{e}_i), M_{e_{p_2}}(\bar{e}_i) \right] + e^{2\pi} \left[M_{e_{p_1}}(\bar{e}_i), M_{e_{p_2}}(\bar{e}_i) \right] \right)^2 \right).
\]

(1) $0 \leq SM_{CQ}(\bar{C}_1, \bar{C}_2) \leq 1$

(2) $SM_{CQ}(\bar{C}_1, \bar{C}_2) = SM_{CQ}(\bar{C}_2, \bar{C}_1)$

(3) $SM_{CQ}(\bar{C}_1, \bar{C}_2) = 1$, if $\bar{C}_1 = \bar{C}_2$

then, we say that $SM_{CQ}(\bar{C}_1, \bar{C}_2)$ is called the similarity measure. On the contrary, a distance measure is a complement to the similarity measure stated as

\[
DM_{CQ}(\bar{C}_1, \bar{C}_2) = 1 - SM_{CQ}(\bar{C}_1, \bar{C}_2).
\]

Moreover, we develop the idea of EDM ("Euclidean distance measure"), which is demonstrated below.

Definition 6. For any two CIVROFNs,
By using the weight vector $\Omega_{WV} = \{\Omega_{WV-1}, \Omega_{WV-2}, \ldots, \Omega_{WV-n}\}$ with a rule, that is, $\sum_{i=1}^{n} \Omega_{WV-i} = 1$, $\Omega_{WV-i} \in [0,1]$, then the WEDM ("weighted Euclidean distance measure") WEDM$_{CQ}(C_{CQ-1}, C_{CQ-2})$ is demonstrated below:

$$\text{WEDM}_{CQ}(C_{CQ-1}, C_{CQ-2}) = \left\{ \begin{array}{l}
\frac{1}{8} \sum_{\vartheta \in \Omega_{WV-i}} \left(\begin{array}{c}
\left[M_{\vartheta_{ip-1}}(\vartheta_i), M_{\vartheta_{ip-2}}(\vartheta_i) \right] + e^{2\pi \left[M_{\vartheta_{ip-1}}(\vartheta_i), M_{\vartheta_{ip-2}}(\vartheta_i) \right]} \right) \\
\left[M_{\vartheta_{ip-1}}(\vartheta_i), M_{\vartheta_{ip-2}}(\vartheta_i) \right] + e^{2\pi \left[M_{\vartheta_{ip-1}}(\vartheta_i), M_{\vartheta_{ip-2}}(\vartheta_i) \right]}
\end{array} \right)^2 + \left[M_{\vartheta_{ip-1}}(\vartheta_i), M_{\vartheta_{ip-2}}(\vartheta_i) \right] + e^{2\pi \left[M_{\vartheta_{ip-1}}(\vartheta_i), M_{\vartheta_{ip-2}}(\vartheta_i) \right]} \right)^2
\end{array} \right) \right\}^{1/2},
$$

(24)

Theorem 3. For any two CIVQROFNs,

$$C_{CQ-1} = \left[M_{\vartheta_{ip-1}}(\vartheta_i), M_{\vartheta_{ip-2}}(\vartheta_i) \right] + e^{2\pi \left[M_{\vartheta_{ip-1}}(\vartheta_i), M_{\vartheta_{ip-2}}(\vartheta_i) \right]} \right),
$$

$$C_{CQ-2} = \left[M_{\vartheta_{ip-1}}(\vartheta_i), M_{\vartheta_{ip-2}}(\vartheta_i) \right] + e^{2\pi \left[M_{\vartheta_{ip-1}}(\vartheta_i), M_{\vartheta_{ip-2}}(\vartheta_i) \right]} \right),
$$

are based on a universal set $\Omega = \{\vartheta_1, \vartheta_2, \ldots, \vartheta_n\}$; then, the WEDM$_{CQ}(C_{CQ-1}, C_{CQ-2})$ holds the following conditions:

1. $0 \leq \text{WEDM}_{CQ}(C_{CQ-1}, C_{CQ-2}) \leq 1$
2. $\text{WEDM}_{CQ}(C_{CQ-1}, C_{CQ-2}) = \text{WEDM}_{CQ}(C_{CQ-2}, C_{CQ-1})$
3. $\text{WEDM}_{CQ}(C_{CQ-1}, C_{CQ-2}) = 0$ if $C_{CQ-1} = C_{CQ-2}$, that is, $M_{\vartheta_{ip-1}} = M_{\vartheta_{ip-2}}$, $M_{\vartheta_{ip-2}}$, and $\vartheta_1 = \vartheta_2 = \ldots = \vartheta_n$.

Proof. Based on Definition (14), we obtain the following.

1. We know that $0 \leq \left[M_{\vartheta_{ip-1}}(\vartheta_i), M_{\vartheta_{ip-2}}(\vartheta_i) \right] \leq 1$.
2. By using Definition (14), we can easily obtain

$$0 \leq \left[M_{\vartheta_{ip-1}}(\vartheta_i), M_{\vartheta_{ip-2}}(\vartheta_i) \right] \leq \left[M_{\vartheta_{ip-1}}(\vartheta_i), M_{\vartheta_{ip-2}}(\vartheta_i) \right] \leq 1.$$

Therefore, $0 \leq \text{WEDM}_{CQ}(C_{CQ-1}, C_{CQ-2}) \leq (1/8)^{1/2}$.

(2) By using Definition (14), we can easily obtain

$$\text{WEDM}_{CQ}(C_{CQ-1}, C_{CQ-2}) = \text{WEDM}_{CQ}(C_{CQ-2}, C_{CQ-1}).$$

(27)
that is, $\mathcal{M}_{CP_{i,i-1}} = \mathcal{M}_{CP_{i,i-1}}^-$, $\mathcal{M}_{CP_{i,i-1}}^-$ = $\mathcal{M}_{CP_{i,i-1}}^+$, $\mathcal{M}_{CP_{i,i-1}}^+$ = $\mathcal{M}_{CP_{i,i-1}}^+$,
$\mathcal{M}_{CP_{i,i-1}}^{-}$ = $\mathcal{M}_{CP_{i,i-1}}^{-}$, $\mathcal{M}_{CP_{i,i-1}}^{+}$ = $\mathcal{M}_{CP_{i,i-1}}^{+}$.

Definition 7. For any two CIVROFNs,

$$
\mathcal{C}_{CQ-1} = \left(\begin{array}{c} \mathcal{M}_{RP_{i-1}}^-(\overrightarrow{S}_i) \mathcal{M}_{RP_{i-1}}^+(\overrightarrow{S}_i) + e^{i2\pi} \left[\mathcal{M}_{RP_{i-1}}^-(\overrightarrow{S}_i) \mathcal{M}_{RP_{i-1}}^+(\overrightarrow{S}_i) \right], \\
\mathcal{M}_{RP_{i-1}}^-(\overrightarrow{S}_i) \mathcal{M}_{RP_{i-1}}^+(\overrightarrow{S}_i) + e^{i2\pi} \left[\mathcal{M}_{RP_{i-1}}^-(\overrightarrow{S}_i) \mathcal{M}_{RP_{i-1}}^+(\overrightarrow{S}_i) \right] \\
\end{array} \right), \quad i = 1, 2, \ldots, n,
$$

are based on a universal set $\overrightarrow{S} = \{\overrightarrow{S}_1, \overrightarrow{S}_2, \ldots, \overrightarrow{S}_n\}$; then,
the NSM ("a new similarity measure")
NSM$_{CQ}$($\mathcal{C}_{CQ-1}, \mathcal{C}_{CQ-2}$) is defined as

$$
\text{NSM}_{CQ}(\mathcal{C}_{CQ-1}, \mathcal{C}_{CQ-2}) = \frac{\text{CSM}_{CQ}(\mathcal{C}_{CQ-1}, \mathcal{C}_{CQ-2}) + 1 - \text{EDM}_{CQ}(\mathcal{C}_{CQ-1}, \mathcal{C}_{CQ-2})}{2},
$$

where

$$
\text{CSM}_{CQ}(\mathcal{C}_{CQ-1}, \mathcal{C}_{CQ-2}) = \frac{1}{n} \sum_{i=1}^{n} \left(\begin{array}{c} \mathcal{M}_{RP_{i-1}}^{2Q-1}(\overrightarrow{S}_i) \mathcal{M}_{RP_{i-1}}^{2Q-2}(\overrightarrow{S}_i) + \mathcal{M}_{RP_{i-1}}^{2Q-2}(\overrightarrow{S}_i) \mathcal{M}_{RP_{i-1}}^{2Q-1}(\overrightarrow{S}_i) \end{array} \right).
$$
By using the weight vector \(\Omega_{WV} = [\Omega_{WV-1}, \Omega_{WV-2}, \ldots, \Omega_{WV-n}] \) with a rule, that is, \(\sum_{i=1}^{n} \Omega_{WV-i} = 1, \Omega_{WV-i} \in [0, 1] \), then the WNSM WNSM\(_{CQ}(\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) \) is demonstrated below.

\[
\text{EDM}_{CQ}(\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) = \left(\frac{1}{8} \sum_{\epsilon_{i} \in \bar{\bar{\mathcal{O}}}} \left(\left(|\mathbf{M}_{\epsilon p-1}^{-R_{Q}}(\sigma_{i}) - \mathbf{M}_{\epsilon p-2}^{-R_{Q}}(\sigma_{i})|^{2} + |\mathbf{M}_{\epsilon p-1}^{+R_{Q}}(\sigma_{i}) - \mathbf{M}_{\epsilon p-2}^{+R_{Q}}(\sigma_{i})|^{2} \right) + \left(|\mathbf{M}_{\epsilon p-1}^{-R_{Q}}(\sigma_{i}) - \mathbf{M}_{\epsilon p-2}^{-R_{Q}}(\sigma_{i})|^{2} + |\mathbf{M}_{\epsilon p-1}^{+R_{Q}}(\sigma_{i}) - \mathbf{M}_{\epsilon p-2}^{+R_{Q}}(\sigma_{i})|^{2} \right) \right) \right)^{(1/2)} \tag{31}
\]

\text{Definition 8. For any two CIVQROFns,}

are based on a universal set \(\bar{\bar{\mathcal{O}}} = \{\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}\} \); then, the WNSM ("weighted new similarity measure") WNSM\(_{CQ}(\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) \) is demonstrated by

\[
\text{NSM}_{CQ}(\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) = \frac{\text{WCSM}_{CQ}(\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) + 1 - \text{WEDM}_{CQ}(\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2})}{2}, \tag{33}
\]

where

\[
\text{WCSM}_{CQ}(\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) = \sum_{i=1}^{n} \Omega_{WV-i} \left(\left(\mathbf{M}_{\epsilon p-1}^{-R_{Q}}(\sigma_{i}) \mathbf{M}_{\epsilon p-2}^{-R_{Q}}(\sigma_{i}) + \mathbf{M}_{\epsilon p-1}^{+R_{Q}}(\sigma_{i}) \mathbf{M}_{\epsilon p-2}^{+R_{Q}}(\sigma_{i}) \right) \right)^{2} \times \left(\left(\mathbf{M}_{\epsilon p-1}^{-R_{Q}}(\sigma_{i}) \mathbf{M}_{\epsilon p-2}^{-R_{Q}}(\sigma_{i}) + \mathbf{M}_{\epsilon p-1}^{+R_{Q}}(\sigma_{i}) \mathbf{M}_{\epsilon p-2}^{+R_{Q}}(\sigma_{i}) \right) \right)^{2}
\]
are based on a universal set \(\widetilde{\mathcal{G}} = \{ \tilde{\sigma}_1, \tilde{\sigma}_2, \ldots, \tilde{\sigma}_n \} \); then, WNSM\(_{CQ}\) \((\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2})\) holds the following conditions:

1. \(0 \leq \text{WNSM}_{CQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) \leq 1 \)
2. \(\text{WNSM}_{CQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) = \text{WNSM}_{CQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) \)
3. \(\text{WNSM}_{CQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) = 1 \) if \(\mathbf{C}_{CQ-1} = \mathbf{C}_{CQ-2} \),

\[
\mathbf{C}_{CQ-1} = \left(\begin{array}{c}
\mathbf{M}_{CQ}^{\sigma_i} - \mathbf{M}_{CQ}^{\sigma_i}
\end{array} \right),
\]

\[
\mathbf{C}_{CQ-2} = \left(\begin{array}{c}
\mathbf{M}_{CQ}^{\sigma_i} - \mathbf{M}_{CQ}^{\sigma_i}
\end{array} \right).
\]

Proof. Based on Definition 8, we obtain the following:

1. By using Theorem 2, we know that \(0 \leq \text{WNSM}_{CQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) \leq 1 \) for the value of the parameter and then \(0 \leq \text{WNSM}_{CQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) \leq 1 \); then, by using Lemma 1, we obtain \(0 \leq (\text{WCSM}_{CQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) + 1 - \text{WEDMCQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2})/2) \leq 1 \) implies that \(0 \leq \text{WNSM}_{CQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) \leq 1 \).

2. By using Definition 6 and with the help of Theorem 2 and Theorem 3, we easily obtain WNSM\(_{CQ}\) \((\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) = \text{WNSM}_{CQ} (\mathbf{C}_{CQ-2}, \mathbf{C}_{CQ-1}) \).

Theorem 4. For any two CIVQROFNs,

1. When \(\mathbf{C}_{CQ-1} = \mathbf{C}_{CQ-2} \), we know that \(\text{WCSM}_{CQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) = 1 \) and \(\text{WEDMCQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) = 0 \) and then \(\text{WNSM}_{CQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) = 1 \).

2. When \(\text{WCSM}_{CQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) = 1 \) and then \(\text{WEDMCQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) = 1 \) and then \(\text{WEDMCQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) = 1 \), such that \(\text{CSM}_{CQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) = 1 - \text{WEDMCQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) = 0 \). Since all CQROFNs \(0 \leq \text{WCSM}_{CQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) \leq 1 \) and \(0 \leq \text{WEDMCQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) \leq 1 \) exists continuously, then \(\text{WCSM}_{CQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) = 1 \) and \(\text{WEDMCQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) = 0 \), by using in Theorem 3; if \(\text{WEDMCQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) = 0 \), then it is obviously \(\mathbf{C}_{CQ-1} = \mathbf{C}_{CQ-2} \). Hence, \(\text{WNSM}_{CQ} (\mathbf{C}_{CQ-1}, \mathbf{C}_{CQ-2}) \) iff \(\mathbf{C}_{CQ-1} = \mathbf{C}_{CQ-2} \), that is, \(\mathbf{M}_{CQ}^{\sigma_i} = \mathbf{M}_{CQ}^{\sigma_i} \).
Definition 9. For any two CIVQROFNs,

\[
\begin{align*}
\mathcal{C}_{\text{CQ-1}} &= \left[\mathcal{C}_{\text{Q-1}, 1}, \mathcal{C}_{\text{Q-1}, 2}, \mathcal{C}_{\text{Q-1}, 3}, \ldots, \mathcal{C}_{\text{Q-1}, n} \right], \\
\mathcal{C}_{\text{CQ-2}} &= \left[\mathcal{C}_{\text{Q-2}, 1}, \mathcal{C}_{\text{Q-2}, 2}, \mathcal{C}_{\text{Q-2}, 3}, \ldots, \mathcal{C}_{\text{Q-2}, n} \right],
\end{align*}
\]

are based on a universal set \(\mathcal{O} = \{ \mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_m \} \); then, the WDM (“weighted distance measure”) WNSM\(_{\text{CQ}}(\mathcal{C}_{\text{CQ-1}}, \mathcal{C}_{\text{CQ-2}}) \) is defined as

\[
WDM_{\text{CQ}}(\mathcal{C}_{\text{CQ-1}}, \mathcal{C}_{\text{CQ-2}}) = 1 - \frac{WNSM_{\text{CQ}}(\mathcal{C}_{\text{CQ-1}}, \mathcal{C}_{\text{CQ-2}})}{2},
\]

where

\[
WNSM_{\text{CQ}}(\mathcal{C}_{\text{CQ-1}}, \mathcal{C}_{\text{CQ-2}}) = \sum_{j=1}^{n} \Omega_{\text{WV-1}},
\]

\[
WEDM_{\text{CQ}}(\mathcal{C}_{\text{CQ-1}}, \mathcal{C}_{\text{CQ-2}}) = \left(\sum_{\mathcal{O}_i \notin \mathcal{O}} \Omega_{\text{WV-1}} \right)^{1/2},
\]

If we choose the value of the weight vector \(\Omega_{\text{WV}} = \{ \Omega_{\text{WV-1}}, \Omega_{\text{WV-2}}, \ldots, \Omega_{\text{WV-n}} \} = \{(1/n), (1/n), \ldots, (1/n)\} \), then WEDM\(_{\text{CQ}}(\mathcal{C}_{\text{CQ-1}}, \mathcal{C}_{\text{CQ-2}}) \) is reduced to DM\(_{\text{CQ}}(\mathcal{C}_{\text{CQ-1}}, \mathcal{C}_{\text{CQ-2}}) \).
Definition 10. For any two CIVQRFNs,

\[
\mathcal{C}_{CQ-1} = \left([\mathbf{m}_{e_p}^r(\sigma_i), \mathbf{m}_{e_p}^l(\sigma_i)] + e^{i2\pi}([\mathbf{m}_{e_{j-2}}^r(\sigma_i), \mathbf{m}_{e_{j-2}}^l(\sigma_i)]) \right),
\]

\[
\mathcal{C}_{CQ-2} = \left([\mathbf{m}_{e_{j-2}}^r(\sigma_i), \mathbf{m}_{e_{j-2}}^l(\sigma_i)] + e^{i2\pi}([\mathbf{m}_{e_{j-2}}^r(\sigma_i), \mathbf{m}_{e_{j-2}}^l(\sigma_i)]) \right),
\]

(39)

are based on a universal set \(\bar{\sigma} = \{\sigma_1, \sigma_2, \ldots, \sigma_n\}; \) then, the weighted DM \(\text{DM}_{CQ}(\mathcal{C}_{CQ-1}, \mathcal{C}_{CQ-2}) \) is demonstrated by

\[
\text{DM}_{CQ}(\mathcal{C}_{CQ-1}, \mathcal{C}_{CQ-2}) = 1 - \text{NSM}_{CQ}(\mathcal{C}_{CQ-1}, \mathcal{C}_{CQ-2}) = \frac{1 - \text{CSM}_{CQ}(\mathcal{C}_{CQ-1}, \mathcal{C}_{CQ-2})}{2} + \text{EDM}_{CQ}(\mathcal{C}_{CQ-1}, \mathcal{C}_{CQ-2}),
\]

(40)

where

\[
\text{CSM}_{CQ}(\mathcal{C}_{CQ-1}, \mathcal{C}_{CQ-2}) = \sum_{i=1}^{n} \left(\left(\mathbf{m}_{e_{j-2}}^r(\sigma_i) \mathbf{m}_{e_{j-2}}^l(\sigma_i) + \mathbf{m}_{e_{j-2}}^r(\sigma_i) \mathbf{m}_{e_{j-2}}^l(\sigma_i) \right) + \mathbf{m}_{e_{j-2}}^r(\sigma_i) \mathbf{m}_{e_{j-2}}^l(\sigma_i) \right),
\]

(41)

\[
\text{EDM}_{CQ}(\mathcal{C}_{CQ-1}, \mathcal{C}_{CQ-2}) = \left(\left(\mathbf{m}_{e_{j-2}}^r(\sigma_i) \mathbf{m}_{e_{j-2}}^l(\sigma_i) \mathbf{m}_{e_{j-2}}^r(\sigma_i) \mathbf{m}_{e_{j-2}}^l(\sigma_i) \right)^{1/2} + \left(\mathbf{m}_{e_{j-2}}^r(\sigma_i) \mathbf{m}_{e_{j-2}}^l(\sigma_i) \mathbf{m}_{e_{j-2}}^r(\sigma_i) \mathbf{m}_{e_{j-2}}^l(\sigma_i) \right)^{1/2} \right)
\]

(1/2)
Theorem 5. For any two CIVQROFNs, \(e_{CQ-1} = \left(\mathbf{M}_{e_{GQ-1}}(\mathbf{C}) \right) + e^{i2\pi} \left(\mathbf{M}_{e_{GQ-1}}(\mathbf{C}) \right) \), \(e_{CQ-2} = \left(\mathbf{M}_{e_{GQ-2}}(\mathbf{C}) \right) + e^{i2\pi} \left(\mathbf{M}_{e_{GQ-2}}(\mathbf{C}) \right) \), and \(e_{CQ-3} = \left(\mathbf{M}_{e_{GQ-3}}(\mathbf{C}) \right) + e^{i2\pi} \left(\mathbf{M}_{e_{GQ-3}}(\mathbf{C}) \right) \), \(i = 1, 2, \ldots, n \).

Proof. Based on Theorem 4, we obtain WDNM\(e_{CQ-1}, e_{CQ-2}, e_{CQ-3} = 1 - \text{WNSM}\{ e_{CQ-1}, e_{CQ-2}, e_{CQ-3} \} \); by using Theorem 4, we easily obtain the proof of Theorem 5.

4. TOPSIS Procedure to MADM with CIVQROFNs Information

In this section, we explore the idea of the TOPSIS technique to MADM with CIVQROFNs. To resolve such types of troubles, we assume the family of alternatives \(\mathbf{G}_{Al} = \{ \mathbf{G}_{Al-1}, \mathbf{G}_{Al-2}, \ldots, \mathbf{G}_{Al-n} \} \), which is evaluated by the decision maker concerning the family of attributes \(\mathbf{P}_{Al} = \{ \mathbf{P}_{Al-1}, \mathbf{P}_{Al-2}, \ldots, \mathbf{P}_{Al-n} \} \). For this, we consider the family of CIVQROFNs which is shown by \(e_{CQ-1} = \left(\mathbf{M}_{e_{GQ-1}}(\mathbf{C}) \right) + e^{i2\pi} \left(\mathbf{M}_{e_{GQ-1}}(\mathbf{C}) \right) \), \(e_{CQ-2} = \left(\mathbf{M}_{e_{GQ-2}}(\mathbf{C}) \right) + e^{i2\pi} \left(\mathbf{M}_{e_{GQ-2}}(\mathbf{C}) \right) \), \(e_{CQ-3} = \left(\mathbf{M}_{e_{GQ-3}}(\mathbf{C}) \right) + e^{i2\pi} \left(\mathbf{M}_{e_{GQ-3}}(\mathbf{C}) \right) \), and \(\mathbf{G}_{Tem} = \left(\mathbf{G}_{Al-1}, \mathbf{G}_{Al-2}, \ldots, \mathbf{G}_{Al-n} \right) \) is expressed as follows:

\[
\mathbf{G}_{DM} = \left(\mathbf{G}_{Al-11}, \mathbf{G}_{Al-12}, \ldots, \mathbf{G}_{Al-1n} \right), \ldots, \left(\mathbf{G}_{Al-i1}, \mathbf{G}_{Al-i2}, \ldots, \mathbf{G}_{Al-in} \right), \ldots, \left(\mathbf{G}_{Al-m1}, \mathbf{G}_{Al-m2}, \ldots, \mathbf{G}_{Al-mn} \right)
\]

where \(\mathbf{G}_{Al-j}, i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, n \) expressed the family of CIVQROFNs. By using the investigated CSMs, the steps of the developed decision-making procedure are as follows:

Step 1: the CIVQROFDM \(\mathbf{G}_{DM} = \left(\mathbf{G}_{Al-1}\right) \) is normalized. If all criteria are benefit kinds, then we cannot do anything, but if in all criteria at least one criterion is cost kind, then we will convert the cost kind criteria into benefits, by using the following formula, such that
For this, we choose four potential companies which monthly income, an enterprise wants to invest money in the procedure in the environment of the MADM technique, we examine the ranking results and find the best one in all alternatives. Moreover, for these alternatives, we choose the family of attributes, whose expressions and shapes are discussed below:

\[\mathbf{P}_{A1-j}^+ = \left[\mathbf{C}_{A1-j}^+, \mathbf{C}_{A2-j}^+, \ldots, \mathbf{C}_{A\bar{n}-j}^+ \right] \]

\[\mathbf{P}_{A1-j}^- = \left[\mathbf{C}_{A1-j}^-, \mathbf{C}_{A2-j}^-, \ldots, \mathbf{C}_{A\bar{n}-j}^- \right] \]

Step 2: moreover, by using all alternatives with the same criteria, the positive ideal solution (PIS) \(\mathbf{E}_{A1}^+ = \left[\mathbf{C}_{A1}^+, \mathbf{C}_{A2}^+, \ldots, \mathbf{C}_{A\bar{n}}^+ \right] \) and negative ideal solution (NIS) \(\mathbf{E}_{A1}^- = \left[\mathbf{C}_{A1}^-, \mathbf{C}_{A2}^-, \ldots, \mathbf{C}_{A\bar{n}}^- \right] \) are examined with the help of score values, which is demonstrated in Definition 3, such that

\[\Psi_{CI-j}^+ = \frac{WDM_{CQ}(\mathbf{C}_{A1-j}^+)}{WDM_{CQ}(\mathbf{C}_{A1-j}^+ + WDM_{CQ}(\mathbf{C}_{A1-j}^-))} \quad j = 1, 2, \ldots, \bar{n}, \]

\[\widetilde{\Psi}_{CI-j} = \frac{WNSM_{CQ}(\mathbf{C}_{A1-j}^+)}{WNSM_{CQ}(\mathbf{C}_{A1-j}^+ + WNSM_{CQ}(\mathbf{C}_{A1-j}^-))} \quad j = 1, 2, \ldots, \bar{n}. \]

If the value of all CIVQROFNs is the same, then we use the accuracy values, which are demonstrated in Definition 3.

Step 3: by using the PIS and NIS combined with the family of alternatives and resolved it with the help of investigated measures such as \(WDM_{CQ}(\mathbf{C}_{A1-j}^+), WNSM_{CQ}(\mathbf{C}_{A1-j}^+), \) and \(WDM_{CQ}(\mathbf{C}_{A1-j}^-), WNSM_{CQ}(\mathbf{C}_{A1-j}^-) \) and by using these investigated measures, we examine the closeness index \(\psi_{C1-j} \), which is demonstrated below

\[\psi_{C1-j} = \begin{cases} \varepsilon_{DMj} = \left(\frac{\mathbf{M}_{A1-j}^+ - \mathbf{M}_{A1-j}^-}{\mathbf{M}_{A1-j}^+ + \mathbf{M}_{A1-j}^-} \right) \quad \text{for cost types,} \\ \varepsilon_{PDMj} = \left(\frac{\mathbf{M}_{A1-j}^+ - \mathbf{M}_{A1-j}^-}{\mathbf{M}_{A1-j}^+ + \mathbf{M}_{A1-j}^-} \right) \quad \text{for benefit types,} \end{cases} \]

Example 1. To develop the application of the investigated procedure in the environment of the MADM technique, we choose the real MADM example from [40]. To increase our monthly income, an enterprise wants to invest money in the market. For this, we choose four potential companies which are denoted by \(\mathbf{C}_{A1}, \mathbf{C}_{A2}, \mathbf{C}_{A3}, \mathbf{C}_{A4} \) expressed by the family of alternatives. Moreover, for these alternatives, we choose the family of attributes, whose expressions and shapes are discussed below:

\[\mathbf{P}_{A1}^+: \text{risk analysis} \]

\[\mathbf{P}_{A2}^+: \text{growth analysis} \]

\[\mathbf{P}_{A3}^+: \text{social impact} \]

\[\mathbf{P}_{A4}^+: \text{environment impact} \]

To resolve the above issues, we considered the weight vector for the attributes is demonstrated by \((0.4, 0.3, 0.2, 0.1)^T \); then, the CIVQROFDM is expressed in the form of Table 1.
Cost kind, then we will convert the cost kind criteria into benefits, and the normalized decision matrix is discussed in the form of Table 2.

Step 2: moreover, by using all alternatives with the same criteria, PIS $E_{Al}^+ = \{E_{Al-1}^+, E_{Al-2}^+, \ldots, E_{Al-n}^+\}$ and NIS $E_{Al}^- = \{E_{Al-1}^-, E_{Al-2}^-, \ldots, E_{Al-n}^-\}$ are examined with the help of score values, which is demonstrated in Definition 3, such that

$$E_{Al-1}^+ = \begin{pmatrix} 0.93, 0.94 & e^{2\pi i (0.83, 0.84)} \\ 0.73, 0.74 & e^{2\pi i (0.63, 0.64)} \\ 0.70, 0.71 & e^{2\pi i (0.80, 0.81)} \\ 0.60, 0.61 & e^{2\pi i (0.90, 0.91)} \end{pmatrix},$$

$$E_{Al-2}^+ = \begin{pmatrix} 0.88, 0.89 & e^{2\pi i (0.92, 0.93)} \\ 0.83, 0.84 & e^{2\pi i (0.73, 0.74)} \\ 0.88, 0.89 & e^{2\pi i (0.73, 0.74)} \\ 0.84, 0.85 & e^{2\pi i (0.64, 0.65)} \end{pmatrix},$$

$$E_{Al-3}^+ = \begin{pmatrix} 0.90, 0.91 & e^{2\pi i (0.80, 0.81)} \\ 0.70, 0.71 & e^{2\pi i (0.60, 0.61)} \\ 0.70, 0.71 & e^{2\pi i (0.70, 0.71)} \\ 0.63, 0.64 & e^{2\pi i (0.93, 0.94)} \end{pmatrix},$$

$$E_{Al-4}^+ = \begin{pmatrix} 0.85, 0.86 & e^{2\pi i (0.89, 0.89)} \\ 0.80, 0.81 & e^{2\pi i (0.70, 0.71)} \\ 0.85, 0.86 & e^{2\pi i (0.70, 0.71)} \\ 0.81, 0.82 & e^{2\pi i (0.61, 0.62)} \end{pmatrix}.$$ (47)

Step 3: by using the PIS and NIS combined with the family of alternatives and resolved it with the help of investigated measures such as WDM$_{CQ}$ (E_{CQ-1}^+, E_{CQ-2}^+), WNSM$_{CQ}$ (E_{CQ-1}^+, E_{CQ-2}^+), and by using the values of the parameter $q_{CQ} = 6$.

$$WDM_{CQ}(C_{CQ-1}, E_{CQ-1}^+) = 0.5875, \quad WDM_{CQ}(C_{CQ-2}, E_{CQ-2}^+) = 0.5872, \quad WDM_{CQ}(C_{CQ-3}, E_{CQ-3}^+) = 0.6495, \quad WDM_{CQ}(C_{CQ-4}, E_{CQ-4}^+) = 0.6042.$$ (48)
Table 2: Normalized decision matrix.

	P_{A_1}	P_{A_2}	P_{A_3}	P_{A_4}
C_{Q1}	$[0.9, 0.91]e^{2\pi i (0.8, 0.81)}$	$[0.91, 0.92]e^{2\pi i (0.81, 0.82)}$	$[0.92, 0.93]e^{2\pi i (0.82, 0.83)}$	$[0.93, 0.94]e^{2\pi i (0.83, 0.84)}$
C_{Q2}	$[0.85, 0.86]e^{2\pi i (0.89, 0.91)}$	$[0.86, 0.87]e^{2\pi i (0.9, 0.91)}$	$[0.87, 0.88]e^{2\pi i (0.91, 0.92)}$	$[0.88, 0.89]e^{2\pi i (0.92, 0.93)}$
C_{Q3}	$[0.7, 0.71]e^{2\pi i (0.9, 0.91)}$	$[0.71, 0.72]e^{2\pi i (0.91, 0.92)}$	$[0.72, 0.73]e^{2\pi i (0.92, 0.93)}$	$[0.73, 0.74]e^{2\pi i (0.93, 0.94)}$
C_{Q4}	$[0.85, 0.86]e^{2\pi i (0.7, 0.71)}$	$[0.86, 0.87]e^{2\pi i (0.71, 0.72)}$	$[0.87, 0.88]e^{2\pi i (0.72, 0.73)}$	$[0.88, 0.89]e^{2\pi i (0.73, 0.74)}$

Then, by using these investigated measures, we examine the closeness index Ψ_{CI-i}, which is demonstrated below:

$$\Psi_{CI-1} = 0.5, \Psi_{CI-2} = 0.4987, \Psi_{CI-3} = 0.5065, \Psi_{CI-4} = 0.5032,$$

$$\Psi_{CI-1} = 0.5, \Psi_{CI-2} = 0.5019, \Psi_{CI-3} = 0.4887, \Psi_{CI-4} = 0.4955.$$ \hfill (49)

The graphical shown of the developed values are demonstrated with the help of Figure 1.

Step 4: by using the value of the closeness index, we examine the ranking results and find the best one in all alternatives Ψ_{CI-i}, such that

$$\Psi_{CI-3} \geq \Psi_{CI-4} \geq \Psi_{CI-1} \geq \Psi_{CI-2},$$

$$\Psi_{CI-2} \geq \Psi_{CI-1} \geq \Psi_{CI-4} \geq \Psi_{CI-3}.$$ \hfill (50)

By using the idea of WDM and WNSM are given different results such that the best alternatives are Ψ_{CI-3} and Ψ_{CI-2}. In Example 1, we considered the CIVQROFNs and resolved them by using investigated measures. Moreover, we choose the complex interval-valued Pythagorean fuzzy information (CIVPFIs) and complex interval-valued intuitionistic fuzzy information (CIVIFIs) and resolve it by using the investigated measures. To discuss the above issues, we illustrate the following examples.

Example 2. To develop the application of the investigated procedure in the environment of the MADM technique, we choose the real MADM example from [40]. Moreover, the needed information is discussed in Example 1. To resolve the above issues, we considered the weight vector for the attributes is demonstrated by $(0.4, 0.3, 0.2, 0.1)^T$; then, the CIVQROFDM is expressed in the form of Table 1. By using the investigated CSMs, the steps of the developed decision-making procedure, then the procedure of the TOPSIS method is discussed in the following ways. The CIVQROFDM $\mathbf{C}_{\text{DM}} = (\mathbf{C}_{AI-i})_{mn \times n} = \begin{bmatrix} [\mathbf{M}_{F_{p,i}}, \mathbf{M}_{F_{p,i}}^+] e^{2\pi i (\mathbf{M}_{F_{p,i}}, \mathbf{M}_{F_{p,i}}^+)} \\ [\mathbf{M}_{F_{p,i}}, \mathbf{M}_{F_{p,i}}^+] e^{2\pi i (\mathbf{M}_{F_{p,i}}, \mathbf{M}_{F_{p,i}}^+)} \end{bmatrix}$ is normalized.

If all criteria are benefit kinds, then we cannot do anything, but if in all criteria at least one criterion is cost kind, then we will convert the cost kind criteria into benefits, and the normalized decision matrix is discussed in the form of Table 3.

Then, by using these investigated measures, we examine the closeness index Ψ_{CI-i}, which is demonstrated below:

$$\Psi_{CI-1} = 0.5010, \Psi_{CI-2} = 0.4996, \Psi_{CI-3} = 0.5053, \Psi_{CI-4} = 0.5047,$$

$$\Psi_{CI-1} = 0.4995, \Psi_{CI-2} = 0.5004, \Psi_{CI-3} = 0.4962, \Psi_{CI-4} = 0.4969.$$ \hfill (51)
The graphical representation of the obtained results is shown in Figure 2.

Step 5: by using the value of the closeness index, we examine the ranking results and find the best one in all alternatives Ψ_{CI-1}, such that

$$\Psi_{CI-3} \geq \Psi_{CI-4} \geq \Psi_{CI-1} \geq \Psi_{CI-2},$$

(52)

By using the idea of WDM and WNSM, given different results, such that the best alternatives are Ψ_{CI-3} and Ψ_{CI-2}, in Example 2, we considered the CIVPFIs and resolved them by using investigated measures. Moreover, we choose the complex interval-valued intuitionistic fuzzy information (CIVIFIs) and resolve it by using the investigated measures. To discuss the above issues, we illustrate the following examples.

Example 3. To develop the application of the investigated procedure in the environment of the MADM technique, we choose the real MADM example from [40]. Moreover, the needed information is discussed in Example 1. To resolve the above issues, we considered the weight vector for the attributes is demonstrated by $(0.4, 0.3, 0.2, 0.1)^T$; then, the CIVQROFD is expressed in the form of Table 1. By using the investigated CSMs, the steps of the developed decision-making procedure, then the procedure of the TOPSIS method is discussed in the following ways. The CIVQROFD $\tilde{Q}_{DM}^{\text{CIVQROFD}} = (\mathbf{A}_{CI-i})_{n \times n} = \begin{bmatrix} [\mathbf{w}_{g_{C_{p-1}}} \mathbf{w}_{g_{C_{p}}} \mathbf{w}_{g_{C_{p}}} \mathbf{w}_{g_{C_{p}}}] e^{2\pi i \left[\begin{bmatrix} \mathbf{w}_{g_{C_{p-1}}} \mathbf{w}_{g_{C_{p}}} \mathbf{w}_{g_{C_{p}}} \mathbf{w}_{g_{C_{p}}} \end{bmatrix} \right]^T} \end{bmatrix}$, is normalized. If all criteria are benefit kinds, then we cannot do anything, but if in all criteria at least one criterion is cost kind, then we will convert the cost kind criteria into benefits, and the normalized decision matrix is discussed in the form of Table 4.

The graphical representation of the developed values are demonstrated in Figure 3.

Then, by using these investigated measures, we examine the closeness index Ψ_{CI-1}, which is demonstrated below:

$$\Psi_{CI-1} = 0.5052, \Psi_{CI-2} = 0.4982, \Psi_{CI-3} = 0.4938, \Psi_{CI-4} = 0.4974, \Psi_{CI-1} = 0.4997, \Psi_{CI-2} = 0.5003, \Psi_{CI-3} = 0.5008, \Psi_{CI-4} = 0.5004.$$

(53)
Closeness index

Table 4: Normalized decision matrix of Example 3.

C_CQ-1	P_A1	P_A2	P_A3	P_A4
0.71e^{2\pi[0.6,0.61]}	0.71e^{2\pi[0.6,0.62]}	0.72e^{2\pi[0.6,0.63]}	0.73e^{2\pi[0.6,0.64]}	
0.11e^{2\pi[0.2,0.21]}	0.12e^{2\pi[0.2,0.23]}	0.13e^{2\pi[0.2,0.24]}	0.14e^{2\pi[0.2,0.25]}	
0.61e^{2\pi[0.8,0.81]}	0.62e^{2\pi[0.8,0.82]}	0.63e^{2\pi[0.8,0.83]}	0.64e^{2\pi[0.8,0.84]}	
0.21e^{2\pi[0.1,0.11]}	0.22e^{2\pi[0.1,0.12]}	0.23e^{2\pi[0.1,0.13]}	0.24e^{2\pi[0.1,0.14]}	
0.51e^{2\pi[0.5,0.51]}	0.52e^{2\pi[0.5,0.52]}	0.53e^{2\pi[0.5,0.53]}	0.54e^{2\pi[0.5,0.54]}	
0.31e^{2\pi[0.3,0.31]}	0.32e^{2\pi[0.3,0.32]}	0.33e^{2\pi[0.3,0.33]}	0.34e^{2\pi[0.3,0.34]}	
0.71e^{2\pi[0.4,0.41]}	0.72e^{2\pi[0.4,0.42]}	0.73e^{2\pi[0.4,0.43]}	0.74e^{2\pi[0.4,0.44]}	
0.21e^{2\pi[0.3,0.31]}	0.22e^{2\pi[0.3,0.32]}	0.23e^{2\pi[0.3,0.33]}	0.24e^{2\pi[0.3,0.34]}	

5. Comparative Analysis

By using some existing measures, we compare the investigated measures with the help of numerical examples, which are discussed in the above section. To improve the quality of the research work and examine the validity and capability of the presented approaches, the information about existing ideas is discussed as follows: Wei and Zhang [41] developed CSMS based on IVIFSs and Kumar et al. [42] explored CSMS for IVIFSs, compared with CSMS for IVQROFSs, compared with the investigated SMs for CIVIFSs, and compared with explored DMs for CIVIFSs. By using the information of Example 2, the comparative analysis of the presented works with some existing ideas is discussed in the form of Tables 5 and 6.

The graphical representation of the developed values in Tables 5 and 6 is demonstrated with the help of Figures 4 and 5 which contains graphical expressions of six different types of measures, and each measure contains four alternatives.

By using the information of Example 3, the comparative analysis of the presented works with some existing ideas is discussed in the form of Tables 7 and 8.

For the existing measures, we choose another set for finding measures such as $C_{CQ} = \{ ([1,1]e^{2\pi[(1,1)]}, [0,0]e^{2\pi((0,0,0,0))}, ([1,1]e^{2\pi[(1,1)]}, [0,0]e^{2\pi((0,0,0,0))}, ([1,1]e^{2\pi[(1,1)]}, [0,0]e^{2\pi((0,0,0,0))})$.
The graphical representation of the information given in Tables 7 and 8 is demonstrated with the help of Figures 6 and 7, respectively.

By using the information of Example 3, the comparative analysis of the presented works with some existing ideas is discussed in the form of Tables 9 and 10.
The graphical representation of the developed values in Tables 9 and 10 is demonstrated with the help of Figures 8 and 9 which contain graphical expressions of six different types of measures, and each measure contains four alternatives. From the above discussion, we obtain that if we choose the CIVQRIFIs, then the existing measures based on CIVIFSs, CIVPFSs, and their special cases are not able to cope with it. However, if we choose the existing types of data,
Table 9: Comparative analysis of the proposed and existing ideas for distance measures.

Methods	Score values/measures’ values	Ranking values
Wei and Zhang [41]	Cannot be able to resolve it	Cannot be able to resolve it
Kumar et al. [42]	Cannot be able to resolve it	Cannot be able to resolve it
For IVQROFSs	Cannot be able to resolve it	Cannot be able to resolve it
For CIVIFSs	$\Psi_{C_{-1}} = 0.5039, \Psi_{C_{-2}} = 0.4979, \Psi_{C_{-3}} = 0.3927, \Psi_{C_{-4}} = 0.4956$	$\Psi_{C_{-1}} \geq \Psi_{C_{-2}} \geq \Psi_{C_{-3}} \geq \Psi_{C_{-4}}$
For CIVIFSs	$\Psi_{C_{-1}} = 0.5116, \Psi_{C_{-2}} = 0.4992, \Psi_{C_{-3}} = 0.5044, \Psi_{C_{-4}} = 0.5026$	$\Psi_{C_{-1}} \geq \Psi_{C_{-3}} \geq \Psi_{C_{-4}} \geq \Psi_{C_{-2}}$
Proposed WDM	$\Psi_{C_{-1}} = 0.5052, \Psi_{C_{-2}} = 0.4982, \Psi_{C_{-3}} = 0.4938, \Psi_{C_{-4}} = 0.4974$	$\Psi_{C_{-1}} \geq \Psi_{C_{-2}} \geq \Psi_{C_{-4}} \geq \Psi_{C_{-3}}$

Table 10: Comparative analysis of the proposed and existing ideas for similarity measures.

Methods	Score values/measures’ values	Ranking values
Wei and Zhang [41]	Cannot be able to resolve it	Cannot be able to resolve it
Kumar et al. [42]	Cannot be able to resolve it	Cannot be able to resolve it
For IVQROFSs	Cannot be able to resolve it	Cannot be able to resolve it
For CIVIFSs	$\Psi_{C_{-1}} = 0.4986, \Psi_{C_{-2}} = 0.4992, \Psi_{C_{-3}} = 0.3999, \Psi_{C_{-4}} = 0.4994$	$\Psi_{C_{-1}} \geq \Psi_{C_{-2}} \geq \Psi_{C_{-3}} \geq \Psi_{C_{-4}}$
For CIVIFSs	$\Psi_{C_{-1}} = 0.4992, \Psi_{C_{-2}} = 0.4998, \Psi_{C_{-3}} = 0.5003, \Psi_{C_{-4}} = 0.4999$	$\Psi_{C_{-1}} \geq \Psi_{C_{-2}} \geq \Psi_{C_{-3}} \geq \Psi_{C_{-4}}$
Proposed WDM	$\Psi_{C_{-1}} = 0.4997, \Psi_{C_{-2}} = 0.5003, \Psi_{C_{-3}} = 0.5008, \Psi_{C_{-4}} = 0.5004$	$\Psi_{C_{-3}} \geq \Psi_{C_{-2}} \geq \Psi_{C_{-1}} \geq \Psi_{C_{-4}}$

6. Conclusion

As a modification of the IVQROFSs, CIVQROFSs is a reliable and competent technique for the realization of incorrect knowledge by the use of complex-valued truth grades with an additional term, referred to as the phase term. CSMs and DMs are accomplished techniques for verifying the degree of discrimination between the two sets. In this manuscript, we choose some CSMs and DMs from CIVQROFSs. CSMs and EDMs are investigated using CIVQROFS and their properties. Choosing that the CSMs do not justify the axiom of SM, then we investigate the technique of developing other CIVQROFS-based SMs using the explored CSMs and EDMs, and it fulfills the axiom of the SMs. In addition, we find CDMs based on CIVQROFSs by considering the inter-relationship between the SM and the DMs, and then, we modified the procedure for the rank of partiality by similarity to the ideal solution method of the CDMs under investigation, which could deal with the associated decision-making problems not only individually from the argument of the opinion of the geometry but also from the fact of the opinion of the algebra. Finally, we provide a sensible example to demonstrate the practicality and effectiveness of the proposed procedure, which is also in line with existing additional procedures. Graphic representations of the measures developed are also used in this manuscript. Future work can focus on extending the proposed approach in a different fuzzy environment to solve the problems related to decision-making, medical diagnosis, pattern recognition, etc. [43–46].

Data Availability

No data were used to support this study.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.
Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors are grateful for the financial help provided by Taif University researchers supporting project no. TURSP-2020/73, Taif University, Taif, Saudi Arabia.

References

[1] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 20, no. 1, pp. 87–96, 1986.
[2] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965.
[3] K. T. Atanassov, “Interval valued intuitionistic fuzzy sets,” in Intuitionistic Fuzzy Sets, pp. 139–177, Physica, Heidelberg, Germany, 1999.
[4] R. Kumari and A. R. Mishra, “Multi-criteria COPRAS method based on parametric measures for intuitionistic fuzzy sets: application of green supplier selection,” Iranian Journal of Science and Technology, Transactions of Electrical Engineering, vol. 44, no. 4, pp. 1645–1662, 2020.
[5] Y. Song, X. Wang, L. Zhou, and L. Lei, “Sensor dynamic reliability evaluation based on evidence theory and intuitionistic fuzzy sets,” Applied Intelligence, vol. 48, no. 11, pp. 3950–3962, 2018.
[6] N. Zulkifi, I. Abdulllah, and H. Garg, “An integrated interval-valued intuitionistic fuzzy vague set and their linguistic variables,” International Journal of Fuzzy Systems, vol. 23, no. 1, pp. 182–193, 2021.
[7] H. Zhang and L. Yu, “MADM method based on cross-entropy and extended TOPSIS with interval-valued intuitionistic fuzzy sets,” Knowledge-Based Systems, vol. 30, pp. 115–120, 2012.
[8] R. R. Yager, “Pythagorean fuzzy subsets,” in Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pp. 57–61, IEEE, Edmonton, Canada, June 2013.
[9] H. Garg, “A novel improved accuracy function for interval valued pythagorean fuzzy sets and its applications in the decision-making process,” International Journal of Intelligent Systems, vol. 32, no. 12, pp. 1247–1260, 2017.
[10] T.-Y. Chen, “New Chebyshev distance measures for Pythagorean fuzzy sets with applications to multiple criteria decision analysis using an extended ELECTRE approach,” Expert Systems with Applications, vol. 147, Article ID 113164, 2020.
[11] F. Liu, J. Wu, L. Mou, and Y. Liu, “Decision support methodology based on covering-based interval-valued pythagorean fuzzy rough set model and its application to hospital open-source EHRs system selection,” Mathematical Problems in Engineering, vol. 2020, Article ID 692832, 2020.
[12] B. Oztaysi, S. Çevik Onar, and C. Kahraman, “Social open innovation platform design for science teaching by using pythagorean fuzzy analytic hierarchy process,” Journal of Intelligent & Fuzzy Systems, vol. 38, no. 1, pp. 809–819, 2020.
[13] H. Garg, “New logarithmic operational laws and their aggregation operators for Pythagorean fuzzy set and their applications,” International Journal of Intelligent Systems, vol. 34, no. 1, pp. 82–106, 2019.
[14] F. K. Gündoğdu and C. Kahraman, “A novel spherical fuzzy QFD method and its application to the linear delta robot technology development,” Engineering Applications of Artificial Intelligence, vol. 87, Article ID 103348, 2020.
[15] R. R. Yager, “Generalized orthopair fuzzy sets,” IEEE Transactions on Fuzzy Systems, vol. 25, no. 5, pp. 1222–1230, 2016.
[16] B. P. Joshi, A. Singh, P. K. Bhatt, and K. S. Vaisla, “Interval valued q-rung orthopair fuzzy sets and their properties,” Journal of Intelligent & Fuzzy Systems, vol. 35, no. 5, pp. 5225–5230, 2018.
[17] P. Liu and P. Wang, “Multiple-attribute decision-making based on Archimedean Bonferroni Operators of q-rung orthopair fuzzy numbers,” IEEE Transactions on Fuzzy Systems, vol. 27, no. 5, pp. 834–848, 2018.
[18] P. Liu, S. M. Chen, and P. Wang, “Multiple-attribute group decision-making based on q-rung orthopair fuzzy power maclaurin symmetric mean operators,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 10, pp. 3741–3756, 2020.
[19] H. Gao, L. Ran, G. Wei, C. Wei, and J. Wu, “VIKOR method for MAGDM based on q-rung interval-valued orthopair fuzzy information and its application to supplier selection of medical consumption products,” International Journal of Environmental Research and Public Health, vol. 17, no. 2, p. 525, 2020.
[20] A. M. D. J. S. Alkouri and A. R. Salleh, “Complex intuitionistic fuzzy sets,” in AIP Conference Proceedings, pp. 464–470, American Institute of Physics, College Park, MD, USA, 2012.
[21] D. Ramot, R. Milo, M. Friedman, and A. Kandel, “Complex fuzzy sets,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 2, pp. 171–186, 2002.
[22] H. Garg and D. Rani, “Complex interval-valued intuitionistic fuzzy sets and their aggregation operators,” Fundamenta Informaticae, vol. 164, no. 1, pp. 61–101, 2019.
[23] R. T. Ngan, L. H. Son, M. Ali, D. E. Tamir, N. D. Rishe, and A. Kandel, “Representing complex intuitionistic fuzzy set by quaternion numbers and applications to decision making,” Applied Soft Computing, vol. 87, Article ID 105961, 2020.
[24] M. Gulzar, M. H. Mateen, D. Alghazzawi, and N. Kausar, “A novel applications of complex intuitionistic fuzzy sets in group theory,” IEEE Access, vol. 8, pp. 196075–196085, 2020.
[25] S. Rajareega, J. Vimala, and D. Preethi, “Complex intuitionistic fuzzy soft lattice ordered group and its weighted distance measures,” Mathematics, vol. 8, no. 5, p. 705, 2020.
[26] D. Zindani, S. R. Maity, and S. Bhowmik, “Complex interval-valued intuitionistic fuzzy TODIM approach and its application to group decision making,” Journal of Ambient Intelligence and Humanized Computing, vol. 24, 2020.
[27] K. Ullah, T. Mahmood, Z. Ali, and N. Jan, “On some distance measures of complex Pythagorean fuzzy sets and their applications in pattern recognition,” Complexity & Intelligent Systems, vol. 6, no. 1, pp. 15–27, 2020.
[28] M. Akram and S. Naz, “A novel decision-making approach under complex Pythagorean fuzzy environment,” Mathematical and Computational Applications, vol. 24, no. 3, p. 73, 2019.
[29] P. Liu, Z. Ali, and T. Mahmood, “A method to multi-attribute group decision-making problem with complex q-rung orthopair linguistic information based on heronian mean operators,” International Journal of Computational Intelligence Systems, vol. 12, no. 2, pp. 1465–1496, 2019.
[30] P. Liu, T. Mahmood, and Z. Ali, “Complex Q-rung orthopair fuzzy aggregation operators and their applications in multi-attribute group decision making,” Information, vol. 11, no. 1, p. 5, 2020.
[31] H. Garg, Z. Ali, and T. Mahmood, "Algorithms for complex interval-valued q-rung orthopair fuzzy sets in decision making based on aggregation operators," AHP, and TOPSIS, Expert Systems, vol. 38, no. 1, Article ID e12609, 2021.

[32] P. Liu, M. Akram, and A. Sattar, "Extensions of prioritized weighted aggregation operators for decision-making under complex q-rung orthopair fuzzy information," Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7469–7493, 2020.

[33] Y. Rong, Y. Liu, and Z. Pei, "Complex q-rung orthopair fuzzy 2-tuple linguistic Maclaurin symmetric mean operators and its application to emergency program selection," International Journal of Intelligent Systems, vol. 35, no. 11, pp. 1749–1790, 2020.

[34] P. Liu, Z. Ali, T. Mahmood, and N. Hassan, "Group decision-making using complex q-rung orthopair fuzzy Bonferroni mean," International Journal of Computational Intelligence Systems, vol. 13, no. 1, pp. 822–851, 2020.

[35] T. Mahmood and Z. Ali, "Entropy measure and TOPSIS method based on correlation coefficient using complex q-rung orthopair fuzzy information and its application to multi-attribute decision making," Soft Computing, vol. 25, pp. 1249–1275, 2020.

[36] P. Liu, Z. Ali, and T. Mahmood, "Generalized complex q-rung orthopair fuzzy Einstein averaging aggregation operators and their application in multi-attribute decision making," Complex & Intelligent Systems, vol. 7, pp. 511–538, 2020.

[37] T. Mahmood and Z. Ali, "Aggregation operators and VIKOR method based on complex q-rung orthopair uncertain linguistic informations and their applications in multi-attribute decision making," Computational and Applied Mathematics, vol. 39, no. 4, pp. 1–44, 2020.

[38] H. Garg and D. Rani, "Some results on information measures for complex intuitionistic fuzzy sets," International Journal of Intelligent Systems, vol. 34, no. 10, pp. 2319–2363, 2019.

[39] H. Garg and D. Rani, "A robust correlation coefficient measure of complex intuitionistic fuzzy sets and their applications in decision-making," Applied Intelligence, vol. 49, no. 2, pp. 496–512, 2019.

[40] D. Liu, X. Chen, and D. Peng, "Some cosine similarity measures and distance measures between q-rung orthopair fuzzy sets," International Journal of Intelligent Systems, vol. 34, no. 7, pp. 1572–1587, 2019.

[41] C. Wei and Y. Zhang, "Entropy measures for interval-valued intuitionistic fuzzy sets and their application in decision-making," Mathematical Problems in Engineering, vol. 2015, Article ID 563745, 2015.

[42] T. Kumar, R. Bajaj, and M. D. Ansari, "On accuracy function and distance measures of interval-valued Pythagorean fuzzy sets with application to decision making," Scientia Iranica, vol. 27, no. 4, pp. 2127–2139, 2020.

[43] P. Talukdar, S. Goala, P. Dutta, and B. Limboo, "Fuzzy multicriteria decision making in medical diagnosis using an advanced distance measure on linguistic Pythagorean fuzzy sets," Annals of Optimization Theory & Practices, vol. 3, no. 4, pp. 113–131, 2020.

[44] P. A. Ejegwa, I. C. Onyeke, and V. Adah, "An algorithm for an improved intuitionistic fuzzy correlation measure with medical diagnostic application," Annals of Optimization Theory & Practices, vol. 3, no. 3, pp. 51–68, 2020.

[45] K. Rahman, A. Sanan, A. Saleem, and Y. K. Muhammad, "Some induced generalized Einstein aggregating operators and their application to group decision-making problem using intuitionistic fuzzy numbers," Annals of Optimization Theory & Practices, vol. 3, no. 3, pp. 15–49, 2020.

[46] H. Garg, "CN-q-ROFS: connection number based q-rung orthopair fuzzy set and their application to decision-making process," International Journal of Intelligent Systems, vol. 21, pp. 1–38, 2021.