CASE REPORT

Philadelphia Chromosome-positive Acute Lymphoblastic Leukemia Incidentally Detected by Fluorodeoxyglucose-positron Emission Tomography/Computed Tomography at a Health Checkup

Hisako Kunieda¹, Ryunosuke Denda¹, Kohei Yamazaki¹, Maki Hirao¹, Yuiko Tsukada¹, Yu Iwabuchi², Eisuke Shiomi³, Shigeru Watanabe⁴, Shinichiro Okamoto¹,⁵ and Takahide Kikuchi¹

Abstract:

We herein report a case of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph-ALL) that was incidentally detected by fluorodeoxyglucose-positron emission tomography (¹⁸F-FDG PET)/computed tomography (CT) at a health checkup. At that time, the findings of a physical examination and blood tests were all normal, except for the diffuse bone marrow uptake (maximum standardized uptake value: 6.3). One month later, when the blood counts remained in the normal ranges, a bone marrow examination confirmed the diagnosis of Ph-ALL. Although a diffuse bone marrow uptake of ¹⁸F-FDG is observed in some benign conditions, physicians should also consider the possibility of hematological malignancies, including acute leukemia, even when that is the only abnormal finding.

Key words: acute lymphoblastic leukemia, bone marrow, ¹⁸F-FDG uptake, PET/CT, health checkup

(Intern Med 61: 2775-2778, 2022)
(DOI: 10.2169/internalmedicine.8900-21)

Introduction

Fluorodeoxyglucose-positron emission tomography (¹⁸F-FDG PET)/computed tomography (CT) has been widely used to detect a variety of hematopoietic malignancies, such as lymphoma. PET/CT is also being increasingly incorporated as part of health checkups in Japan. For the diagnosis of acute leukemia, PET/CT has little value, as the majority of acute leukemia cases are suspected based on abnormal findings of a peripheral blood examination. However, there have been a few reported cases of acute leukemia that was initially detected by PET/CT based on a diffuse bone marrow uptake, and the diagnosis was confirmed by bone marrow aspiration or a biopsy (1-3).

Case Report

A 56-year-old Japanese man with no significant medical history was referred to our hospital for the evaluation of a diffuse ¹⁸F-FDG [maximum standardized uptake (SUVmax): 6.3] uptake of the bone marrow. The uptake was observed in the vertebrae, ilium, and ribs but not in the bone marrow of the appendicular skeleton. The inhomogeneous uptake of ¹⁸F-FDG was also observed in some parts of the axial skeleton (Fig. 1). He had undergone a health checkup annually for the last two years and had never been shown to have any

¹Department of Hematology, Saiseikai Central Hospital, Japan, ²Department of Radiology, Keio University School of Medicine Graduate School of Medicine, Japan, ³Department of Radiology, Saiseikai Central Hospital, Japan, ⁴Department of Health and Productivity Management, Nippon Life Insurance Company, Japan and ⁵Department of Hematology, Keio University School of Medicine Graduate School of Medicine, Japan

Received: October 24, 2021; Accepted: December 17, 2021; Advance Publication by J-STAGE: February 26, 2022
Correspondence to Dr. Hisako Kunieda, hisacoueda37@gmail.com
The findings of PET/CT at the time of health checkup. Maximum intensity projection PET image (a) and PET/CT images (b, c). PET/CT showed the diffuse but focally inhomogeneous uptake of 18F-FDG. The SUV$_{max}$ of right ilium was 6.3.

Figure 1. The findings of PET/CT at the time of health checkup. Maximum intensity projection PET image (a) and PET/CT images (b, c). PET/CT showed the diffuse but focally inhomogeneous uptake of 18F-FDG. The SUV$_{max}$ of right ilium was 6.3.

abnormal findings except for hyperuricemia.

At the time of this health checkup, he was doing well without any symptoms, including a fever, bone pain, and weight loss. He also denied any recent febrile or bleeding episodes. A complete blood count (CBC) showed a white blood cell (WBC) count of 4,010/mm3 with normal differentials, a hemoglobin (Hb) level of 13.8 g/dL, and a platelet count of 204×103/mm3. All of the counts remained within the normal ranges; however, a slight decrease was observed in all counts compared with the counts at the time of the health checkup the previous year (Table). The results of routine blood chemistry evaluations, including the values of lactate dehydrogenase (LDH) and C-reactive protein (CRP), also remained within normal ranges.

One month after the health checkup, he visited our service for a further evaluation. The physical examination at that time did not detect any abnormal findings, including hepatosplenomegaly. The hematological examination revealed a WBC count of 4,800/mm3 with 3% of atypical lymphocytes and no blasts, a Hb level of 14.1 g/dL, and a platelet count of 153×103/mm3 (Table). The results of routine blood chemistry tests were only remarkable for mild elevation of LDH (266 IU/L, normal range: 120-220) and ferritin (332 ng/mL, normal range: 14-303). However, bone marrow aspiration revealed hypercellular marrow with 87% blasts (Fig. 2). The leukemic blasts were negative for myeloperoxidase staining, and flow-cytometric analyses confirmed that the cells were positive for CD10, CD19, CD20, CD34, and cytoplasmic CD79a. Reverse transcription polymerase chain reaction (RT-PCR) detected the presence of a minor $BCR/ABL1$ transcript (coding for a 190-kDa protein). A cytogenetic analysis also showed t(9;22)(q34; q11.2) in 20 out of 20 metaphases.

Based on those findings, he was diagnosed with Philadelphia chromosome positive-acute lymphoblastic leukemia (Ph-ALL).

He was placed on initial induction therapy consisting of dasatinib (140 mg/day) and prednisolone (60 mg/m2). Complete remission (CR) was obtained one month later, and he subsequently underwent allogeneic hematopoietic cell transplantation from his HLA-haploidentical daughter after conditioning with fludarabine (150 mg/m2), cyclophosphamide (29 mg/kg) and total body irradiation (2 Gy). There were no major transplant-associated complications. He remained in complete molecular remission for 200 days after transplantation while taking dasatinib (50 mg every other day).

Discussion

18F-FDG PET/CT has been widely used for the detection/staging and assessment of response to therapies for a variety of lymphomas and other hematological malignancies. However, PET/CT has only been seldomly used for this purpose in acute leukemia, and bone marrow aspiration or a biopsy remains the gold standard for detecting the disease and assessing the response to treatment. In some cases, however, the detection of focal bone-localized relapse by 18F-FDG PET/CT has been reported in acute leukemia even though a bone marrow examination failed to demonstrate leukemic cell growth (4, 5).

There are also some cases in which ALL was detected incidentally by a diffuse increased uptake of 18F-FDG on PET/CT. Those cases presented with a fever of unknown origin (FUO) and/or generalized bone pain with normal blood counts, and a bone marrow examination confirmed the diag-
The findings of bone marrow aspiration. Bone marrow aspiration revealed a hypercellular marrow with 87% blasts (May-Giemsa stain, ×400). The blasts were large and heterogeneous in size with a high nuclear-cytoplasmic ratio. Their nuclei were irregular and contained one or more prominent nucleoli and vacuoles.

Table. Serial Results of CBC and Blood Chemistry (at Health Checkup, at the First Visit to Our Hospital, and at the Time of Health Checkup Last Year).

Timing of test	CBC at health checkup a year before	CBC at health checkup this time	CBC at the time of visiting our hospital
Comple blood count			
White blood cell	5.96	4.01	4.8 \(\times 10^3\)/uL
Neutrophil	58.4	57.4	58 %
Lymphocyte	32.6	35.7	35 %
Monocyte	7.2	4.7	1 %
Eosinophil	1.3	2.0	1 %
Basophil	0.2	0.2	0 %
Metamyelocyte	-	-	1 %
Myelocyte	-	-	1 %
atypical lymphocyt	-	-	3 %
Red blood cell	532	460	484 \(\times 10^9\)/uL
Hemoglobin	15.7	13.8	14.1 g/dL
Hematocrit	47.0	40.8	43.0 %
Platelet	253	204	153 \(\times 10^3\)/uL
Reticulocyte	1.5	2.0	1.7 %
Blood chemistry			
TP	7.5	6.8	7.1 g/dL
Alb	5.1	4.8	5.1 g/dL
Na	142	144	143 mEq/L
K	4.3	4.2	4.6 mEq/L
Cl	103	107	104 mEq/L
Ca	9.5	9.4	10.3 mg/dL
BUN	19.1	9.7	15 mg/dL
Cre	1.00	0.86	0.94 mg/dL
UA	9.0	6.0	8.0 mg/dL
T-Bil	3.8	1.2	1.4 mg/dL
AST	28	18	28 U/L
ALT	30	17	29 U/L
LDH	173	167	266 U/L
ALP	182	46	128 U/L
γ-GTP	28	20	23 U/L
CRP	<0.10	<0.10	<0.3 mg/dL

Alb: albumin, ALP: alkaline phosphatase, ALT: alanine transaminase, AST: aspartate transaminase, BUN: blood urea nitrogen, Ca: calcium, Cl: chloride, Cre: creatinine, CRP: C-reactive protein, γ-GTP: γ-glutamyl transpeptidase, K: potassium, LDH: lactate dehydrogenase, Na: sodium, T-Bil: total bilirubin, TP: total protein

Although the main source of a diffuse \(^{18}\)F-FDG uptake in the bone marrow is the infiltration of malignant cells, it is sometimes observed during the hematopoietic recovery phase after chemotherapy, infection, and the administration of growth factors, such as colony-stimulating growth factor or erythropoietin. If the uptake of \(^{18}\)F-FDG is markedly elevated in the bone marrow, malignant infiltration (MI) is very likely; however, if the uptake at the bone marrow is equivalent or slightly higher than that of the liver, it is difficult to determine whether it is due to malignant infiltration or a benign process. The \(^{18}\)F-FDG uptake in benign diseases and under physiological conditions is low. Inoue et al. reported
that in most cases, the diffuse uptake at the bone marrow was slight and moderate, often presenting as an uptake level corresponding to or slightly higher than that in the liver. In these situations, it is sometimes difficult to determine whether this is due to MI, including acute leukemia, or a benign condition (7). Zhou et al. also found that a comparable proportion of MI patients had a similar SUVmax at the bone marrow to non-MI patients. This is mainly seen in patients with chronic myelogenous leukemia, multiple myeloma, and lymphoplasmacytic lymphoma. Thus, they developed a decision tree combining the SUVmax at the bone marrow with the SUVmax AP/AX (ratio of SUVmax at the bone marrow of the appendicular skeleton to that at the axial skeleton), the presence of a fever, and hepatomegaly and achieved a sensitivity of 81.0%, a specificity of 98.4%, and an accuracy of 94% for the prediction of MI (8). The present case met their criteria for the SUVmax at the bone marrow (6.3), suggesting the usefulness of their approach.

In conclusion, PET/CT is now being increasingly incorporated as part of routine health checkups in Japan. Therefore, we are likely to encounter a diffuse bone marrow uptake of 18F-FDG in this setting. Based on our experience, we strongly recommend that the blood counts and differentials should be closely followed for patients with a diffuse uptake of 18F-FDG in the bone marrow but no abnormalities on a physical examination or blood tests. If any changes in symptoms, physical examination findings, or blood tests are observed during follow-up, it is strongly recommended to perform a bone marrow examination without delay.

The authors state that they have no Conflict of Interest (COI).

References

1. Ennishi D, Maeda Y, Niiya M, Shinagawa K, Tanimoto M. Incidental detection of acute lymphoblastic leukemia on [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol 27: e269-e270, 2009.
2. Arslan F, Yılmaz M, Çakr T, Mert A. Significant contribution of fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) in a case of acute lymphoblastic leukemia presenting with fever on unknown origin. Intern Med 53: 789-791, 2014.
3. Su K, Nakamoto Y, Nakatani K, Kurihara K, Hayakawa N, Togashi K. Diffuse homogeneous bone marrow uptake of FDG in patients with acute lymphoblastic leukemia. Clin Nucl Med 38: e33-e34, 2013.
4. Stölzel F, Röllig C, Radke J, et al. 18F-FDG PET/CT for detection of extramedullary acute myeloid leukemia. Hematologica 96: 1552-1556, 2011.
5. Schollaert P, Loosen C, André M, Chatelain B, Krug B. An atypical relapse of acute myeloid leukemia diagnosed by 18F-FDG PET/CT. Clin Nucl Med 37: 1018-1021, 2012.
6. Arimoto MK, Nakamoto Yuji, Koya Nakanishi, et al. Increased bone marrow uptake of 18F-FDG in leukemia patients: preliminary findings. SpringerPlus 4: 521, 2015.
7. Inoue K, Goto R, Okada K, Kinomura S, Fukuda H. A bone marrow F-18 FDG uptake exceeding the liver uptake may indicate bone marrow hypersensitivity. Ann Nucl Med 23: 643-649, 2009.
8. Zhou M, Chen Y, Liu J, Huang G. A predicting model of bone marrow malignant infiltration in 18F-FDG PET/CT images with increased diffuse bone marrow FDG uptake. J Cancer 9: 1737-1744, 2018.

The Internal Medicine is an Open Access journal distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).