Hydrolytic Enzymes of Rhizospheric Microbes in Crop Protection

Abstract
Hydrolytic enzymes produced by rhizospheric microbes inhibit the growth of phytopathogens through hydrolysis of their cell wall, proteins and DNA. Hydrolytic enzyme producing microbes play more promising and sustainable role in controlling phytopathogens vis-à-vis chemicals fungicides. The huge number of microbes has been found as promising biocontrol agent.

Introduction
Soil borne phytopathogens are responsible for causing major plant diseases, which causes loss in productivity and ultimately affects the economic values. Use of Plant Growth Promoting Rhizobacteria (PGPR) or fungi to control the phytopathogens is an excellent natural bio-control approach; the bio-control may help to control the growth of phytopathogens as well as it will reduce the use of chemical fungicides which are one of the major factors causing soil infertility [1, 2]. The application of hydrolytic enzymes producing rhizospheric microbes is an eco-friendly solution to this issue as they are totally natural and an environmentally friendly. Recent studies on hydrolytic enzymes showed their ability to control plant pathogens [3, 4]. A hydrolytic enzyme like chitinase, glucanase, protease and cellulase are able to degrade the fungal cell-wall and causes the cell lysis of fungal pathogens.

Hydrolytic enzymes of rhizospheric microbes
Bio-control of phyto-pathogens using rhizospheric microbes involves the production of cell wall degrading hydrolytic enzymes [5]. Many rhizobia are capable of synthesizing these extracellular enzymes that hydrolyze the variety of polymeric compounds like chitin, proteins, cellulose, hemicellulose and DNA of phytopathogens. Various microbial strains like S. marcescens, B. subtilis, B. cereus, B. subtillus, B. thuringiensis and many more have a potential to produce hydrolytic enzymes for the biocontrol of phytopathogens like R. solani, F. oxysporum, S. rolfsii, P. ultimum etc. by swelling in the hyphae and at the hyphal tip, hyphal curling or bursting of the hyphal tip [6, 7]. These hydrolytic enzymes affect the structural integrity of the cell wall of the targeted pathogens [8]. Their potential of inhibiting phytopathogens makes them more important in biocontrol process [9].

Hydrolytic enzymes and their mechanism of action
A). Chitinase
Chitinase lyse the fungal cell wall through degradation of chitin polymer present in the cell wall of fungal phytopathogens. The enzyme can either be used directly in the biocontrol on microorganisms, or indirectly by using purified chitinase proteins, or through manipulation of genes coding for chitinase [10]. Degradation of chitin involves splitting of chitin polymer into monomer, random cleavage at internal sites of chitin micro-fibril or progressive release of diacetylchitobiose in a stepwise manner without releasing monosaccharide or oligosaccharides [11, 12].

B). Glucanase
β-1,3-Glucanases are widely spread in bacteria, fungi and higher plants [13]. The enzyme degrades cell wall of fungi, yeasts [14]. It can be classified either as exo or endo-β-1,3-glucanases (β-1,3-glucan:glucanohydrolase). Glucanase causes, degradation of cell wall and further penetration into the host mycelium [15]. These enzymes can hydrolyze the substrate by two possible mechanisms, hydrolysis of the substrate by sequentially cleaving glucose residues from the non-reducing end and cleaving linkages at random sites along the polysaccharide chain, releasing smaller oligosaccharides [16].

C). Protease or proteinase
Proteases play a significant role in the lysis of cell wall of phytopathogenic fungi, because chitin and/or fibrils of β-glucan (major constituents of the cell walls) are embedded into the protein matrix. The protease enzyme breaks down major proteins of phytopathogens into peptide chains and/or their constituent amino acids and thereby destroy their capacity of pathogen’s protein to act on plant cells. Some of the proteases are involved in inactivating extracellular enzymes of phytopathogenic fungi [17].

D). Cellulase
Cellulases hydrolyze the 1,4-β-D-glucosidic linkages in cellulose, and play a significant role in nature by recycling this polysaccharide. Cellulose chains form numerous intra and intermolecular hydrogen bonds, which account for the formation of rigid, insoluble, crystalline microfibrils. For the complete degradation of cellulose involves a complex interaction between different cellulolytic enzymes like cellulose / endoglucanases, exo-cellulobiohydrolase / exo-
glucanases and β-glucosidases act synergistically to convert cellulose into β-glucose [18].

Commercially available bio-fungicides

Protect, Antagon and Procare, Bio Cure are commercially available bio-Fungicides formulated by Trichoderma sp. and P. fluorescens respectively to control fungal disease and Bacigold is formulated by B. subtilis for the biocontrol of bacterial and fungal diseases. Like above FUNGINOL, VENUS, SHARE Astratop, Astraphil, Astraphe, RimZim, Monoclonal, Flick, Target Fungicide Powder, Orgam – F Spectrum, Oligosaccharins, Bio-Cure-F, Shan-101 Bio Fungicide, Super Rakshak Bio Fungicide etc. are the few Commercially available bio-Fungicides.

Conclusion

Use of biocontrol agents (BCAs) producing hydrolytic enzymes is one of the best alternative to chemical fungicides for the control of phytopathogens. The mode of action of hydrolytic enzymes on the cell wall of phytopathogen without affecting the plant tissue make them more safer, sustainable and eco-friendly biocontrol agent vis-a-vis chemical fungicides.

References

1. Sayyed RZ, Gangurde NS, Patel PR, Josha SA, Chincholkar SB (2010) Siderophore production by Alcaligenes faecalis and its application for plant growth promotion by Arachis hypogea. Indian Journal of Biotechnology 9(3): 302-307.
2. Sayyed RZ, Patel PR, Shaikh SS (2015) Plant Growth promotion and root colonization by EPS producing Enterobacter sp. RZSS under heavy metal contaminated soil. Ind J Exp Biol 53(2): 116-123.
3. Shaikh SS, Sayyed RZ (2015) Role of Plant Growth Promoting Rhizobacteria and Their Formulation in Biocontrol of Plant Diseases. In Plant Microbes Symbiosis: Applied Facets. Springer India, pp. 337-351.
4. Shaikh SS, Sayyed RZ, Reddy MS (2016) Plant Growth Promoting Rhizobacteria: A Sustainable Approach to Agro-ecosystem. In: Plant, Soil and Microbes - Interactions and Implications in Crop Science. K R Haleem et al. (Ed.) Springer international publishing AG, Switzerland, pp 181-201.
5. Kobayashi DY, Reedy RM, Bick JA, Oudemans PV (2002) Characterization of chitinase gene from Stenotrophomonas maltophilia strain 3451 and its involvement in biological control. Appl Environ Microbiol 68(3): 1047-1054.
6. Felse A P, Panda T (1999) Production of microbial chitinases. Bioprocess Engineering 23(2): 127-134.
7. Someya N, Katsuoka N, Komagata T, Hirayae K, Hibi T, et al. (2000) Biological control of sclerotic soil borne diseases by Serratia marcescens strain B2. Plant Dis 84: 33-4-340.
8. Budi SW, Van Tuinen D, Arnould C, Dumas-Gaudot E, Gianinazzi-Pearson V, et al. (2000) Hydrolytic enzyme activity of Paeoniacalix sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soilborne pathogenic bacteria. Applied Soil Ecology 15(2): 191-199.
9. Mabood F, Zhou X, Smith DL (2014) Microbial signaling and plant growth promotion. Canadian Journal of Plant Science 94(6): 1051-1063.
10. Kim KJ, Yang YJ, Kim JG (2003) Purification and characterization of Chitinase from Streptomyces sp. M-20. J Biochem Mol Biol 36(2): 105-109.
11. Harman GE, Hayes CK, Lorito M, Broadway RM, Di Pietro A, et al. (1993) Chitinolytic enzymes of Trichoderma harzianum: purification of chitobiosidase and endochitinast. Phytopathol 83: 313-318.
12. Manocha MS, Sahai AS (1993) Mechanisms of recognition in necrotrophic and biotrophic mycoparasites. Canadian Journal of Microbiology 39(1): 269-275.
13. Simmons CR (1994) The physiology and molecular biology of plant 1-3-β-D-glucanase and 1,3;1-4-β-D-glucanase. Crit Rev Plant Sci 13: 325-387.
14. Zhongcun Pang, Kodo Otaka, Yasunori Suzuki, Kyoji Goto, Masatake Ohnishi (2004) Purification and characterization of an endo-1,3-β-glucanase from Arthrobacter sp. J Biol Macromol 4(2): 57-66.
15. Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a ß-1,3-glucanase producing Pseudomonas cepacia. Soil Biol Biochem 25: 1211-1221.
16. Noronha EF, Ulhoa CJ (1996) Purification and characterization of an endo-1,3-β-glucanase from Trichoderma harzianum. Canadian journal of microbiology 42(1): 1039-1044.
17. Elad Y, Kapat A (1999) The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. European Journal of Plant Pathology 105(2): 177-189.
18. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3): 506-577.