XMM-NEWTON OBSERVATIONS OF THE CATACLYSMIC VARIABLE GW LIBRAE

ERIC J. HILTON, PAULA SZKODY, AND ANJUM MUKADAM
Astronomy Department, University of Washington, Box 351580, Seattle, WA 98115, USA; hilton@astro.washington.edu

KOJI MUKAI
NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA

COEL HELLIER AND LIZA VAN ZYL
Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG, UK

AND

LEE HOMER
Liverpool Community College, Liverpool L1 5BG, UK

Received 2007 May 14; accepted 2007 June 20

ABSTRACT

XMM-Newton observations of the accreting, pulsating white dwarf in the quiescent dwarf nova GW Librae were conducted to determine whether the nonradial pulsations present in previous UV and optical data affect the X-ray emission. The nonradial pulsations are evident in the simultaneous Optical Monitor data but are not detected in the X-ray with an upper limit on the pulsation amplitude of 0.092 mag. The best fits to the X-ray spectrum are with a low-temperature diffuse gas model or a multitemperature cooling flow model with a strong O vii line, similar to other short-period dwarf novae, but with a lower temperature range than evident in normal short-period dwarf novae. The lack of pulsations and the spectrum likely indicate that the boundary layer does not extend to the surface of the white dwarf.

Key words: stars: dwarf novae — stars: individual (GW Librae) — X-rays: stars

Online material: color figures

1. INTRODUCTION

GW Librae was the first cataclysmic variable in which the white dwarf was found to exhibit nonradial pulsations (Warner & van Zyl 1998). Since that first discovery, 10 other systems have been identified (see the recent summary in Mukadam et al. 2007), but GW Lib remains the brightest and best-studied of the accreting, pulsating white dwarfs. It has a very short orbital period of 77 minutes (Szkody et al. 2000; Thorstensen et al. 2002) and a very low accretion rate, resulting in a large contribution of the white dwarf to the system light in the optical and UV regions of the spectrum. Parallax and proper-motion measurements by Thorstensen (2003) give a distance of 104 pc. Until recently, only one outburst of GW Lib was known (Maza & Gonzalez 1983), but in 2007 April a second outburst began. Monitoring of the superhumps that developed during the course of the outburst (Kato 2007) revealed a period excess of the superhump period over that of the orbital period of 1.1%. The relation of period excess to mass ratio and orbital period (Patterson 2001) then implies that the secondary in GW Lib has passed the period minimum for close binary evolution and is degenerate.

Photometry over several years has shown the characteristics of the pulsations of GW Lib (van Zyl et al. 2004). There are three primary pulsation periods, although these all show different amplitudes at different times, and some of the periods are not always visible. The most common periods are near 650, 370, and 230 s with typical amplitudes of 0.15, 0.010, and 0.007 mag. Woudt & Warner (2002) also identified a long period of 2.09 hr that was present in 2001 observations but not during 1997–1998. The origin of this period is unknown, but these long periods are present in several short orbital period disk systems.

Analysis of *HST* UV data (Szkody et al. 2002a) showed that the same pulsations were present in the UV as the optical, but the amplitudes were about 6 times larger. An unexpected result from the *HST* study was that the best model fit to the spectrum was with a two-temperature white dwarf, with $T_{\text{eff}} = 13,300$ K for 63% of the white dwarf surface and 17,100 K for the remaining 37%. It was unclear whether the dual temperatures were a result of the boundary layer (where the fast-moving layers of the inner disk meet the slower rotation of the white dwarf) providing accretion heating of the equatorial regions of the white dwarf or were due to the pulsations. Further UV studies of accreting, pulsating white dwarfs (Szkody et al. 2007) have not shown this dual-temperature structure.

While the soft X-ray emission from the stellar photosphere of the single hot white dwarf PG 1159–036 is known to exhibit pulsation modes similar to those of the optical but with 20–30 times the optical amplitudes (Barstow et al. 1986), the interesting question is whether the nonradial pulsations affect the boundary layer where the X-rays are produced in cataclysmic variables. In order for theoretical disk instability models to account for the long interoutburst timescales between dwarf nova outbursts such as in GW Lib, the accretion rate has to be very low, requiring very low viscosity and truncation of the inner accretion disk, possibly by coronal siphons or from a strong magnetic field on the white dwarf (Meyer & Meyer-Hofmeister 1994; Warner et al. 1996). Fitting of spectral energy distributions to models also often invokes a truncation of the inner disk in order to alleviate excess UV flux from the models (Linnell et al. 2007). If the inner disk of GW Lib is truncated, the X-ray emission should not be pulsed. However, *Chandra* data on the dwarf nova U Gem (Szkody et al. 2002b) show that the boundary layer is close to the white dwarf and moving at low velocity. If the boundary layer in GW Lib extends to the white dwarf surface, the X-ray emission may be modulated at the same periods evident in the UV and optical. Thus, the X-ray emission from GW...
Lib could provide some constraints on the location and characteristics of the boundary layer in low accretion rate systems.

Since GW Lib was not detected in the ROSAT All Sky Survey or any previous X-ray observation, we obtained time on XMM-Newton to obtain light curves and spectra to determine whether GW Lib has the normal hard X-ray emission that is generally present in all low mass transfer rate, disk-accreting dwarf novae and whether the X-rays are modulated by the nonradial pulsations evident on its white dwarf.

2. OBSERVATIONS AND DATA REDUCTION

XMM-Newton observations of GW Lib on 2005 August 25–26 provided simultaneous optical imaging from the Optical Monitor (OM; Mason et al. 2001) and X-ray data from the EPIC pn (Strüder et al. 2001) and two MOS detectors (Turner et al. 2001). The pn has roughly twice the effective area of either MOS detector. Because of a low count rate, the Reflection Grating Spectrograph data were not useful. The X-ray observations lasted approximately 20 ks, while the OM consisted of five observations of approximately 4 ks each. The UT times, length of total observations, and average count rates are listed in Table 1.

The data were reduced using SAS (ver. 7.0.0), following the guidelines from the main XMM-Newton Web site (VILSPA) and from the NASA/GSFC XMM-Newton Guest Observer Facility ABC Guide (ver. 2.01). Calibration files are current to 2006 August 15. The SAS tools were used to create new event list files from the observation data files. In order to screen out background flaring events, whole-chip light curves for each detector were created in the 10–18 keV range, and the data were ignored when the count rate was greater than 2.0 counts s\(^{-1}\) from the observation data files. In order to screen out background flaring times when the count rate limits were exceeded, the data were ignored when the count rate was greater than 0.6 counts s\(^{-1}\) for the pn and 0.1 counts s\(^{-1}\) for the MOS detectors. These background flaring times when the count rate limits were exceeded were nearly identical for all detectors. The event list files were also screened with the standard canned expressions. The source aperture was taken to be circular, with a radius of 360 pixels for the pn and 320 pixels for both MOS detectors, in order to maximize the signal-to-noise ratio. For the MOS detectors, the source-free background aperture was taken to be an annulus on the central chip centered on the source, while for the pn the background was taken to be rectangular regions on adjacent chips with similar \(Y\) locations as the target. Energies were restricted to the well-calibrated ranges: 0.2–15 keV for spectral analysis and 0.1–12.5 keV for light-curve analysis. Events were restricted for the pn to singles (pattern = 0) for the spectrum and singles and doubles (pattern \(\leq 4\)) for the light curve. For the MOS detectors, up to quadruples (pattern \(\leq 12\)) were permitted for both the spectrum and the light curve. FTOOLS\(^1\) (Blackburn 1995) software tasks were used to group the spectral bins and associate various files for spectral analysis in XSPEC, to create background-subtracted light curves, and to correct the time stamps to the solar system barycenter.

Data from both MOS detectors and the pn were combined to construct the X-ray light curve, which had an average count rate of 0.042 counts s\(^{-1}\). Only data from when all three detectors were live and free of background flaring events were kept. These are called “good time intervals.” Data were also binned to increase the signal-to-noise ratio of this faint source. The time bin size was chosen to be 150 s to simultaneously optimize signal-to-noise ratio with time resolution. Although the time bins were primarily 150 s, the time bins at the edges of the good time intervals were of different sizes to accommodate all the data. The time bin size is discussed further in § 3.1.2.

For the OM observations, the \(B\) filter was used, and the pipeline light curves were binned at 50 s for the analysis. The average count rate for the OM is 6.2 counts s\(^{-1}\), which is equivalent to a \(B\) magnitude of 17.3.

3. RESULTS

3.1. Light Curves

3.1.1. Optical

The optical light curve of GW Lib, shown in Figure 1, is dominated by the 2.09 hr period that was intermittently present in the data of Woudt & Warner (2002). The discrete Fourier transform (DFT) of the optical data shown in Figure 2 shows this long period, as well as modulations at 671 s with an amplitude of 0.02 mag and at 397 s with an amplitude of 0.021 mag. These modulations are consistent with the previously observed pulsation periods near 650 s (1540 \(\mu\)Hz) and 370 s (2700 \(\mu\)Hz), whose periods and amplitudes are known to vary (van Zyl et al. 2004). Van Zyl et al. also find a pulsation near 230 s (4350 \(\mu\)Hz) that is not seen in the OM data. However, the typical amplitude of this period is below the average noise level of this DFT, so its presence cannot be ruled out.

3.1.2. X-Ray

The DFT of the combined X-ray data showed no significant periodicities. In order to place an upper limit on the magnitude of variability, the following light-curve shuffling technique was applied to empirically determine the noise in the light curve. A light curve consists of a series of fractional intensity values, each with a corresponding time value. Each value of fractional intensity was randomly reassigned to one of the unchanged, existing time values. This random shuffling destroys any coherent frequencies in the light curve but maintains the same time sampling and random white noise as the original light curve. The DFT of the

\(1\) Available at http://heasarc.gsfc.nasa.gov/ftools/.

Instrument	Filter	Duration (s)	UT Start Time	UT Stop Time	Average Count Rate* (counts s\(^{-1}\))
pn..........	Thin1	19936	22:09:28	03:41:44	\((2.32 \pm 0.15) \times 10^{-2}\)
MOS1........	Thin1	21809	21:47:09	03:50:38	\((7.06 \pm 0.72) \times 10^{-3}\)
MOS2........	Thin1	21577	21:47:09	03:46:46	\((8.43 \pm 0.78) \times 10^{-3}\)
OM		19901	21:55:31	03:48:49	\(6.2 \pm 0.6 (B = 17.3)^b\)

* X-ray count rates determined from spectral reductions.

* OM count rate determined from the light curve and converted to standard \(B\) magnitude.
shuffled light curve gives the amplitude of the noise at each frequency up to the Nyquist frequency. The original light curve was randomly shuffled 10 times, and the average noise was computed each time. The noise of the original light curve was taken to be the mean of these 10 values.

As a check on the time bin size, light curves were produced with time bins of primarily 50, 75, 100, 150, and 200 s. In all cases, there were no strong signals present in the light curves, and there were no significant differences in the average noise values. Because the count rate was so low, the time bin size was chosen to maximize the signal-to-noise ratio without destroying the time resolution. Since the shortest period seen in the simultaneous optical observations was 397 s, the 150 s time resolution provides more than two points per cycle, which is sufficient time resolution. The unshuffled DFT is shown in Figure 2. The average noise averaged over 10 random shufflings is 0.092 mag, which is taken to be the upper limit of the X-ray pulsations for GW Lib.

3.2. Spectral Analysis

The extracted background-subtracted spectrum from the pn detector was binned at 10 counts per bin to facilitate the use of χ² statistics to find the best-fit models. The spectrum was restricted to the energy range 0.2−15.0 keV because the calibration of the EPIC detectors at the lowest energies is not certain and the count rate above 15.0 keV is too low to be useful. Although the data reduction allows high-energy photons, there were very few photons detected with energies greater than 3 keV. The spectrum has a strong O viii emission line at ~0.65 keV and an increase in emission at ~1.0 keV that is possibly a Ne-Fe emission complex. Several models were used, starting with the simplest emission mechanisms (bremsstrahlung) and advancing in complexity to more detailed models and variable abundances. All the models used absorption, but since all the models consistently found a low value for the hydrogen column density, it was subsequently fixed at 10²⁰ cm⁻² to reduce the number of parameters. The redshift was fixed at 10⁻⁹ for the mekal and mkcf1ow families of models, and the hydrogen density of the gas was fixed at 0.1 cm⁻³ for the mekal family of models. Parameters of the model and the goodness-of-fit statistics are listed in Table 2.

The simple absorbed bremsstrahlung [wabs(bremss)] model had a reduced χ² = 1.05 but was unable to fit the strong emission lines. Explicitly adding a Gaussian to model the oxygen line decreased the residuals and had a reduced χ² = 0.73 but was unable to fit the lines near 1 keV.

The model of hot diffuse gas with line emissions from several elements [wabs(mekal)] with a solar abundance mixture also could not fit the emission lines (reduced χ² = 0.95). The variable abundance version of this model [wabs(vmekal)] gave a better fit to the both the ~0.65 keV and the ~1.0 keV lines. All combinations of varying the oxygen, neon, and iron abundances were tried. As there were no significant differences in the model fits with different iron and neon abundances, these were finally left fixed at solar abundance. The model with oxygen as a parameter of the fit is shown in Figure 3 and has a reduced χ² = 0.81.

Mukai et al. (2003) and Pandel et al. (2003) found successful fits using a cooling flow model [wabs(mkcf1ow)], so this model was also tried, although it did not fit the oxygen line nor fully fit the lines at ~1.0 keV. Adjusting the oxygen and neon abundances using wabs(vmcf1ow) did give a better fit to the emission lines with significantly higher oxygen abundance (compared to solar) and a slightly increased neon abundance. Since the mkcf1ow model showed that the neon abundance was very uncertain, the cooling flow model was also tried, leaving the neon fixed at solar abundance and allowing only the oxygen to be fit. This model is shown in Figure 4.

There are still residuals in both the vmekal and vmcf1ow model fits (Figs. 3 and 4) near 0.9 keV. A Gaussian was added to the vmekal model at that energy, but there was no significant improvement in the fits. Regardless of the model that was fit to the data, the temperature is generally low (1.5−2.5 keV) compared...
to most dwarf novae (Ramsay et al. 2001; Pandel et al. 2003; Hakala et al. 2004).

4. DISCUSSION
The X-ray flux of GW Lib is much lower than expected for its optical magnitude and physical parameters. The cataclysmic variable WZ Sge has an orbital period and long-term outburst characteristics similar to GW Lib. The absolute visual magnitudes of the two systems are comparable (11.8 for WZ Sge and 11.9 for GW Lib), and the white dwarfs have comparable temperatures. Using the 4.5 keV thermal bremsstrahlung model of WZ Sge (Patterson et al. 1998) as a comparison, and correcting for distance, PIMMS predicts a count rate of about 0.1–0.2 counts s\(^{-1}\) for GW Lib with the EPIC pn detector. The actual average count rate was much lower: 0.02 counts s\(^{-1}\) for the pn and only 0.04 counts s\(^{-1}\) after combining all three X-ray detectors (see Fig. 1). For XMM-Newton observations of other relatively nearby short-period dwarf novae (T Leo, OY Car, VW Hyi, WX Hyi, SU UMa, TY PsA, and YZ Cnc with orbital periods between 85 and 125 minutes and more frequent outbursts than GW Lib and WZ Sge), the pn count rates were between 1 and 7 counts s\(^{-1}\) (Ramsay et al. 2001; Pandel et al. 2003, 2005; Hakala et al. 2004). The 0.2–10 keV fluxes for the best-fit \(v\)mekal (hot diffuse gas) and \(v\)meflow (cooling flow) models for GW Lib shown in Figures 3 and 4 are \(6.82 \times 10^{-14}\) and \(6.90 \times 10^{-14}\) ergs cm\(^{-2}\) s\(^{-1}\), respectively. For a distance of 104 pc (Thorsten 2003), the X-ray luminosity would be \(9 \times 10^{38}\) ergs s\(^{-1}\). This compares to an \(L_X\) value of \(4 \times 10^{30}\), \(8 \times 10^{30}\), and \(1.4 \times 10^{32}\) ergs s\(^{-1}\) for OY Car, VW Hyi, and YZ Cnc, respectively. Assuming that this is the boundary layer luminosity, and using the relation given in Pandel et al. (2003),

\[
L_{\text{bol}} = 5/2kT_{\text{max}}/\mu m_p,
\]

where \(T_{\text{max}}\) is the maximum temperature in the cooling flow model (5 keV), \(\mu = 0.6\), and \(m_p\) is the proton mass, we can estimate that \(M_{\text{bol}} = 7 \times 10^{-14} M_\odot\) yr\(^{-1}\). This value is typically 2 orders of magnitude lower than that for the other dwarf novae (Pandel et al. 2005). This value is also much lower than the time-averaged \(M\) of \(7.3 \times 10^{-11}\) estimated by Townsley et al. (2004) from their model parameters for GW Lib.

All model fits to the spectrum of GW Lib resulted in lower temperatures compared to OY Car, VW Hyi, and YZ Cnc, as well as the other systems. Although the best fit to all systems involves a range of temperatures, the maximum temperature for GW Lib is around 5 keV, while the \(kT_{\text{max}}\) for the short-period objects in Pandel et al. (2005) ranges from 8 to 26 keV. The low temperature is likely not due to an exceptionally low mass for the primary in GW Lib, as the UV fits (Szkody et al. 2002a) and the

TABLE 2

XSPEC Models Used to Fit the X-Ray Spectrum

Model Name	Reduced \(\chi^2\)	\(kT\)	Normalization	Parameters
bremsa\(^a\)	1.05	2.2	\(2.3 \times 10^{-5}\)	...
bremsa \+ Gaussian\(^b\)	0.73	2.11	\(2.1 \times 10^{-5}\)	...
mekal\(^c\)	0.95	1.90	\(6.0 \times 10^{-5}\)	...
vmekal\(^d\)	0.81	2.50	\(2.9 \times 10^{-5}\)	...
mckflow\(^e\)	0.83	0.091–4.70	\(1.6 \times 10^{-16}\)	...
vmeflow\(^f\)	0.70	0.38–5.42	\(1.4 \times 10^{-16}\)	...
vmeflow\(^g\)	0.67	0.38–5.45	\(1.5 \times 10^{-16}\)	...

\(^a\) Thermal bremsstrahlung did not fit the emission lines.
\(^b\) Thermal bremsstrahlung plus Gaussian fit the oxygen line well.
\(^c\) Emission from a hot diffuse gas model shows a bump at 0.6 keV but does not fit the line.
\(^d\) Emission from a hot diffuse gas model with variable abundances, neon fixed at solar.
\(^e\) Cooling flow
\(^f\) Cooling flow with variable abundances.
\(^g\) Cooling flow with variable abundances, neon fixed at solar.
pulsation models (Townsley et al. 2004) indicate a high-mass white dwarf. The low temperature in GW Lib suggests that the accreting gas is low density or only mildly shocked, so the X-ray cooling is very inefficient. It is likely that the shock occurs high above the white dwarf surface, which lowers the shock temperature. The stronger oxygen line in GW Lib compared to these other systems and the lack of FeKα at 6.4 keV are likely artifacts of the low temperature (although we cannot rule out that there is some peculiar atomic physics that is not taken into account in the mekal-type models). It is noteworthy that FeKα is also missing in WZ Sge and its temperature is similar to GW Lib (Patterson et al. 1998), so the lower accretion rates in these systems with rare but tremendous amplitude outbursts (Howell et al. 1995) likely lead to similar weak boundary layers.

The pulsations that are visible in the optical and UV are limited to an X-ray amplitude of <0.09 mag. The low X-ray flux, cool temperatures, and absence of strong X-ray pulsations all imply that the boundary layer in GW Lib does not reach to the white dwarf surface to create a strong shock or to be affected by the surface pulsations.

The lack of X-ray modulation at the 2.09 hr period argues against an origin for this period in the inner disk of a magnetic, precessing white dwarf, as has been suggested for the long periods seen in FS Aur and HS 2331+39 (Tovmassian et al. 2007).

5. CONCLUSIONS

The XMM-Newton observations of GW Lib have shown that the X-ray-emitting region of the accreting, pulsating white dwarf is not strongly affected by the nonradial pulsations evident in the UV and optical. The unusually weak X-ray flux from this system precludes a stringent limit but does rule out pulsation amplitudes of greater than 0.09 mag, specifically at the periods where significant signals are detected simultaneously in the optical band. The low X-ray flux and cool maximum temperature of the X-ray spectrum combined with the lack of X-ray pulsation indicate that the boundary layer is not dense enough to create a strong shock at the white dwarf surface. This has implications for the two-temperature model for the white dwarf that was needed to explain the HST UV spectrum (Szkody et al. 2002a), in that the origin of the hotter temperature component may be related to the pulsations and not to boundary-layer heating.

This work was supported by XMM-Newton grant NNG 05GR47G to the University of Washington and is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).

REFERENCES

Barstow, M. A., Holberg, J. B., Grauer, A. D., & Winget, D. E. 1986, ApJ, 306, L25
Blackburn, J. K. 1995, in ASP Conf. Ser. 77, Astronomical Data Analysis Software and Systems IV, ed. R. A. Shaw, H. E. Payne, & J. J. E. Hayes (San Francisco: ASP), 367
Hakala, P., Ramsay, G., Wheatley, P., Harlaftis, E. T., & Papadimitriou, C. 2004, A&A, 420, 273
Howell, S. B., Szkody, P., & Cannizzo, J. K. 1995, ApJ, 439, 337
Kato, T. 2007, VSNET Alert 9326
Linell, A. P., Hoard, D. W., Szkody, P., Long, K. S., Hubeny, I., Gänsicke, B., & Sion, E. M. 2007, ApJ, 654, 1036
Mason, K. O., et al. 2001, A&A, 365, L36
Maza, J., & Gonzalez, L. E. 1983, IAU Circ., 3854, 2
Meyer, F., & Meyer-Hofmeister, E. 1994, A&A, 288, 175
Mukadam, A., et al. 2001, ApJ, 667, in press
Mukai, K., Kinkhabwala, A., Peterson, J. R., Kahn, S. M., & Paerels, F. 2003, ApJ, 586, L77
Pandel, D., Córdova, F. A., & Howell, S. B. 2003, MNRAS, 346, 1231
Pandel, D., Córdova, F. A., Mason, K. O., & Priedhorsky, W. C. 2005, ApJ, 626, 396
Patterson, J. 2001, PASP, 113, 736
Patterson, J., Richman, H., Kemp, J., & Mukai, K. 1998, PASP, 110, 403
Ramsay, G., et al. 2001, A&A, 365, L294
Strüder, L., et al. 2001, A&A, 365, L18
Szkody, P., Desai, V., & Hoard, D. W. 2000, AJ, 119, 365
Szkody, P., Gänsicke, B. T., Howell, S. B., & Sion, E. M. 2002a, ApJ, 575, L79
Szkody, P., Nishikida, K., Raymond, J. C., Seth, A., Hoard, D. W., Long, K. S., & Sion, E. M. 2002b, ApJ, 574, 942
Szkody, P., et al. 2007, ApJ, 658, 1188
Thorstensen, J. R. 2003, AJ, 126, 3017
Thorstensen, J. R., Patterson, J., Kemp, J., & Vennes, S. 2002, PASP, 114, 1108
Tovmassian, G. H., Zharikov, S. V., & Neustroev, V. V. 2007, ApJ, 655, 466
Townsend, D. M., Arras, P., & Bildsten, L. 2004, ApJ, 608, L105
Turner, M. J. L., et al. 2001, A&A, 365, L27
van Zyl, L., et al. 2004, MNRAS, 350, 307
Warner, B., Livio, M., & Tout, C. A. 1996, MNRAS, 282, 735
Warner, B., & van Zyl, L. 1998, in IAU Symp. 185, New Eyes to See Inside the Sun and Stars, ed. F.-L. Deubner, J. Christensen-Dalsgaard, & D. Kurtz (Dordrecht: Kluwer), 321
Woudt, P. A., & Warner, B. 2002, Ap&SS, 282, 433