DEFORMATIONS OF PSEUDO-LAGRANGIAN SUBMANIFOLDS OF POISSON MANIFOLDS

ZIV RAN

ABSTRACT. We consider Lagrangian-like submanifolds in certain even-dimensional ‘symplectic-like’ Poisson manifolds. We show that these have unobstructed deformations and that the deformations automatically preserve the Lagrangian-like property.

The study of holomorphic Lagrangian submanifolds of holomorphic symplectic manifolds and their deformation theory is well established (see e.g. [4] and references therein). Voisin [11] proved that pairs (X, Y) consisting of a Kählerian symplectic manifold and a Lagrangian submanifold have unobstructed deformations, and under these deformations Y stays Lagrangian. See also [6]. Recently, refining some results of Goto [3] and Hitchin [5], we studied in [8] certain even-dimensional Poisson manifolds called pseudo-symplectic, from the point of view that they are ‘like’ symplectic manifolds. A Poisson structure $\Pi \in H^0(X, \wedge^2 T_X)$ on a complex manifold X of dimension $2n$ is said to be pseudo-symplectic if it is almost everywhere nondegenerate, hence degenerates along an anticanonical divisor $D = \left[\Pi^n \right]$ called the Pfaffian of Π. We introduced a condition on Π called normality, which is related to, and stronger than, normal crossing for D, but weaker than smoothness of D. Roughly speaking, the normality condition means that (X, Π) is locally a product of Poisson manifolds of the form (smooth surface, smooth anticanonical divisor). We showed under this condition that (X, Π) has, in a strong sense, unobstructed deformations.

Here we consider a analogue of Lagrangian submanifolds in the Poisson setting. An n-dimensional submanifold Y in a $2n$-dimensional normal pseudo-symplectic manifold (X, Π) is said to be pseudo-Lagrangian if

(i) Y is transverse to the Pfaffian divisor D;
(ii) for all $y \in Y$, the conormal space \tilde{N}_Y, y is an isotropic subspace for Π.

Note that condition (ii) implies that for all $y \in Y \setminus D$, i.e. all points $y \in Y$ where Π is nondegenerate, $T_{Y,y}$ is a maximal isotropic subspace for the symplectic form $\Phi_y = \Pi_y^{-1}$. Condition (i) implies that the restriction $\tilde{D} = D \cap Y$ is a normal crossing divisor on Y.

Given (X, Π) pseudo-symplectic Poisson and $Y \subset X$ pseudo-Lagrangian, one may consider deformations of the triple (X, Π, Y) with or without the condition that Y stay pseudo-Lagrangian.
In fact, we will prove that these deformation spaces are identical and smooth. Thus, our main purpose is to prove

Theorem. Let Y be a pseudo-Lagrangian submanifold of a normal pseudo-symplectic Kählerian Poisson manifold (X, Π). Then the triple (X, Π, Y) has unobstructed deformations, and under these deformations Y remains pseudo-Lagrangian.

This includes the special case where Y is empty, which is the main result of [8], as well as the special case where Π is symplectic (so D is empty: Voisin’s theorem [11]). In fact, we will prove a more precise result (see Theorem 3 below).

From a different viewpoint, some results on deformations of submanifolds of Poisson manifolds were obtained by Baranovsky, Ginzburg et al. [1].

1. **The normal dg atom**

Let Y be a pseudo-Lagrangian submanifold of a pseudo-symplectic manifold (X, Π). Our purpose in this section is to describe a Lie-theoretic object (a dg Lie atom) which controls deformations of Y in X preserving the pseudo-Lagrangian property. Let N denote the normal bundle of Y and let $N = \bigoplus_{i=1}^{n} \wedge^i N$ be the exterior algebra on N. Our purpose in this section is to prove (compare [1]):

Theorem 1. Notations as above,

(i) N admits the structure of differential graded Lie atom;

(ii) N -deformations coincide with pseudo-Lagrangian deformations of Y in X.

This result is not new. The existence of the differential on N was certainly known to Baranovsky et al. [1], as was, in some form, the relationship of N to pseudo-Lagrangian deformations.

Proof of Theorem. (i) Everything but the ‘differential’ assertion is more or less standard and valid independent of the Poisson structure. Thus, it is discussed at length in [2] and [10] that N has the structure of Lie atom, deduced from viewing it as the mapping cone of the inclusion of Lie algebra sheaves

$$T_{X/Y} \to T_X$$

where $T_{X/Y}$ denotes the sheaf of vector fields on X tangent to Y. This structure induces a graded Lie atom structure on N, deduced from the mapping cone of

$$T_{X/Y}T_X \to T_X$$

where T_X is the Schouten graded Lie algebra and $T_{X/Y}T_X$ the exterior ideal generated by $T_{X/Y}$, which is easily seen to be a graded Lie subalgebra, though not a Lie ideal.

The Poisson structure Π enters into the differential (on T_X, hence on N). To see that the differential of T_X, i.e. $[\cdot, \Pi]$, descends to N, suffices to show that the subalgebra $T_{X/Y}T_X$ is closed under $[\cdot, \Pi]$, and by elementary properties of the Schouten bracket it suffices to prove closedness
of $T_{X/Y}$. Indeed, let v be a local vector field on X tangent to Y (i.e. preserving the ideal sheaf I_Y), and let f_1, f_2 be local functions in I_Y. Then by a standard formula of Lichnerowicz, we have

$$\langle df_1 \land df_2, [v, \Pi]\rangle = \pm v([f_1, f_2]) \pm \langle dv(f_1) \land df_2 - dv(f_2) \land df_1, \Pi\rangle.$$

This vanishes on Y by the Lagrangian condition, which shows that $[v, \Pi] \in T_{X/Y} T_X \subset \wedge^2 T_X$.

Assertion (ii) follows from the stronger result below.

We will denote the differential graded Lie algebra $T_{X/Y} T_X$ seen above by $T_X \{Y\}$. By a Poisson-Lagrange deformation of a triple (X, Π, Y) as above we mean a triple $(\tilde{X}, \tilde{\Pi}, \tilde{Y})$ so that $(\tilde{X}, \tilde{\Pi})$ is a Poisson deformation of (X, Π), (\tilde{X}, \tilde{Y}) is a deformation of (X, Y), and \tilde{Y} is pseudo-Lagrangian (isotropic) with respect to $\tilde{\Pi}$. Dropping the last condition leads to (plain) Poisson deformations of (X, Π, Y).

Theorem 2. The deformation theory of $T_X \{Y\}$ coincides with the Poisson-Lagrange deformation theory of the triple (X, Π, Y).

Proof. What’s being asserted is that given a local artinian algebra R, Poisson-Lagrange deformations of (X, Π, Y) are in bijective correspondence with comultiplicative elements of the Jacobi-Bernoulli cohomology $\mathbb{H}^0(J(T_X \{Y\}, R)$. In proving this, we may assume the corresponding assertions for the dglas $T_{\tilde{X}}$ and $T_{X/Y}$ with R coefficients, as well as for $T_X \{Y\}$ with coefficients in $R_1, \dim_{\mathbb{C}}(R_1) < \dim_{\mathbb{C}}(R)$, to be true.

Thus let $R_1 = R/(\eta)$ where η is in the socle Ann(m_R), and suppose given a deformation diagram

$$
\begin{array}{c}
\tilde{Y} \\
\downarrow
\end{array}
\to (\tilde{X}, \tilde{\Pi})

\begin{array}{c}
\Spec(R) \\
\uparrow
\end{array}
$$

(1)

so that $(\tilde{X}, \tilde{\Pi})$ is a Poisson deformation, $(\tilde{Y} \subset \tilde{X})$ is a flat deformation, and so that the pullback over R_1 is a Poisson-Lagrange deformation. The obstruction to \tilde{Y} being pseudo-Lagrangian over R is the Poisson bracket

$$\{\cdot, \cdot\} : \mathcal{I}_Y \times \mathcal{I}_Y \to \mathcal{O}_Y$$

and by our assumption that everything is ok over R_1 this factors through a pairing

$$\mathcal{I}_Y \times \mathcal{I}_Y \to \mathcal{O}_Y.$$

(2)

Note that this obstruction is of a local nature, so in analyzing it we may choose compatible local coordinates on X and Y and assume that the deformation \tilde{X} is trivial, i.e. $X \times \Spec(R)$, as is \tilde{Y} abstractly. Then the deformation $\tilde{Y} \to \tilde{X}$ corresponds to a map

$$v : \mathcal{I}_Y \to m_R \otimes \mathcal{O}_Y, v \in H^0(N) \otimes m_R$$

$$\mathcal{I}_Y = \{f + v(f) : f \in \mathcal{I}_Y\}.$$

Then in these terms the obstruction (2) is given by

$$(f_1, f_2) \mapsto \{v(f_1), f_2\} - \{v(f_2), f_1\} - v([f_1, f_2]).$$
(by our assumptions this is in \(\eta \mathcal{O}_Y \subset \mathfrak{m}_R \mathcal{O}_Y \)). On the other hand, in terms of the Poisson differential \([\cdot, \Pi]\), this is exactly \(\langle \nu, \Pi, df_1 \wedge df_2 \rangle \), QED.

\(\square \)

2. Unobstructed deformations

We will keep the notations of the previous section. Thus, \((X, \Pi)\) is a pseudo-symplectic Kählerian Poisson manifold with (normal-crossing) Pfaffian divisor \(D\), and \(Y\) is a pseudo-Lagrangian submanifold. We denote by \(\text{Def}_{\text{loc. trivial}}(X, D, Y)\) the space of deformation of the triple \((X, D, Y)\) where \(D\) deforms locally trivially. This space corresponds to the dgla \(T_X(Y)(\log D)\).

Theorem 3. (i) The triple \((X, \Pi, Y)\) has unobstructed deformations and these deformations are Poisson-Lagrange and induce locally trivial deformations on \(D\).

(ii) The deformation space \(\text{Def}_{\text{loc. trivial}}(X, D, Y)\) is unobstructed.

(iii) There is a deformation space of quadruples \((X, \Pi, D, Y)\) that maps smoothly to \(\text{Def}(X, \Pi, Y)\) and to \(\text{Def}_{\text{loc. trivial}}(X, D, Y)\).

As in [8], we deduce

Corollary 4. Given a deformation \((\tilde{X}, \tilde{Y})\) of \((X, Y)\), the Poisson structure \(\Pi\) extends to \((\tilde{X}, \tilde{Y})\) iff \(D\) extends locally trivially to \((\tilde{X}, \tilde{Y})\).

Proof of Theorem. Let \(\tilde{D}\) be the restriction of the Pfaffian divisor \(D\) on \(Y\). By our hypotheses, both \(D\) and \(\tilde{D}\) have normal crossings. Henceforth, we will denote by \(\Omega\) various de Rham complexes in strictly positive degrees (i.e. omitting the zeroth term \(\Omega^0 = O\)). Denote by \(\Omega_X^i(Y)\) the kernel of the pullback map \(\Omega_X^1 \rightarrow \Omega_Y^1\). Then it is not hard to check that \(\Omega_X^i(Y)\) has the structure of a differential graded Lie algebra so that the inclusion into the Lie-Poisson algebra \(\Omega_X^i\) is a Lie subalgebra. This turns the cokernel \(\Omega_Y^i\) into a differential graded Lie atom. Likewise, for the log differentials \(\Omega_X^i(Y)(\log D)\), a subalgebra of \(\Omega_X^i(\log D)\) with cokernel atom \(\Omega_Y^i(\log \tilde{D})\). Now recall the homomorphism \(\wedge^i \Pi^\#\) already used in [8]. It yields a map of short exact sequences

\[
\begin{align*}
0 & \rightarrow \Omega_X^i(Y)(\log D) \rightarrow \Omega_X^i(\log D) \rightarrow \Omega_Y^i(\log D) \rightarrow 0 \\
0 & \rightarrow T_X^i(Y)(\log D) \rightarrow T_X^i(\log D) \rightarrow N \rightarrow 0
\end{align*}
\]

The first two vertical maps are dgla homomorphisms, hence the right vertical arrow is a Lie atom homomorphism. In any event, a local computation in [8] shows that the middle vertical arrow is bijective, and the same computation also shows that the left vertical arrow is bijective.

Now we can argue as in [8]: Deligne’s \(E_1\) degeneration theorem implies \(E_1\)-degeneration for \(\Omega_X^i(\log D)\) and \(\Omega_Y^i(\log \tilde{D})\), hence for \(\Omega_X^i(Y)(\log D)\). Consequently, the bracket pairing induces the trivial pairing on cohomology for the algebra \(T_X^i(Y)(\log D)\), hence this algebra has unobstructed deformations. Then we see as in [8] that the inclusion \(T_X^i(Y)(\log D) \rightarrow T_X^i(Y)\) is a direct summand projection, so that \((X, \Pi, Y)\) has unobstructed Poisson-Lagrange deformations. Finally, the fact that the map induced by the differential \(H^0(N) \rightarrow H^0(\wedge^2 N)\) is trivial shows that Poisson-Lagrange deformations coincide with Poisson deformations.
Finally, assertions (ii) and (iii) follow as in [8] from, respectively, the vanishing of the bracket-induced map on $H(\Omega_X^1(Y)(\log D))$, and from Deligne’s result on E_1 degeneration for $\Omega_X^1(Y)(\log D)$ [2], which implies surjectivity on cohomology of the edge map

$$\Omega_X^1(Y)(\log D) \to \Omega_X^1(Y)(\log D)$$

\[\square \]

Remark 5. Christian Lehn [7] has generalized the Voisin theorem to normal-crossing subvarieties Y. The analogous statement in the Poisson setting is open.

REFERENCES

1. V. Baranovsky, Poisson deformation of coherent sheaves, talk at AMS special session on geometry of algebraic varieties, Riverside, Nov 2, 2013.
2. P. Deligne, Théorie de Hodge III, Publ. Math. IHES 44 (1973), 5–77.
3. R. Goto, Deformations of generalized complex and generalized Kaehler structures, J. Differential Geometry 84 (2010), 525–560.
4. M. W. Gross, D. Huybrechts, and D. Joyce (eds.), Calabi-Yau manifolds and related geometries, Springer, 2003.
5. N. Hitchin, Deformations of holomorphic poisson manifolds, arxiv.org/1105.4775v1.
6. ———, The moduli space of special Lagrangian submanifolds, Ann. Sc. Norm. Sup. Pisa Cl. Sci. 25 (1997), 503–515, revised version: [arxiv.org:9711002v1] [math.dg-ga].
7. Christian Lehn, Deformations of lagrangian subvarieties of holomorphic symplectic manifolds, [arxiv.org:1112.1887v2] [math.AG].
8. Z. Ran, Deformations of holomorphic pseudo-symplectic Poisson manifolds, [arxiv.org/1308.2442]
9. ———, Lie atoms and their deformation theory, Geometric and Functional Analysis 18 (2008), 184–221.
10. ———, Jacobi-Bernoulli cohomology and deformations of schemes and maps, C. Europ. J. Math. 10 (2012), 1541–1591.
11. C. Voisin, Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes, Complex projective geometry, Cambridge university press, 1992, pp. 294–303.