Abstract

Given samples from an unknown distribution p and a description of a distribution q, are p and q close or far? This question of “identity testing” has received significant attention in the case of testing whether p and q are equal or far in total variation distance. However, in recent work [VV11, ADK15, DP17], the following questions have been critical to solving problems at the frontiers of distribution testing:

- **Alternative Distances:** Can we test whether p and q are far in other distances, say Hellinger?
- **Robustness:** Can we test when p and q are close, rather than equal? And if so, close in which distances?

Motivated by these questions, we characterize the complexity of distribution testing under a variety of distances, including total variation, ℓ_2, Hellinger, Kullback-Leibler, and chi-squared. For each pair of distances d_1 and d_2, we study the complexity of testing if p and q are close in d_1 versus far in d_2, with a focus on identifying which problems allow strongly sublinear testers (i.e., those with complexity $O(n^{1-\gamma})$ for some $\gamma > 0$ where n is the size of the support of the distributions p and q). We provide matching upper and lower bounds for each case. We also study these questions in the case where we only have samples from q (equivalence testing), showing qualitative differences from identity testing in terms of when robustness can be achieved. Our algorithms fall into the classical paradigm of chi-squared statistics, but require crucial changes to handle the challenges introduced by each distance we consider. Finally, we survey other recent results in an attempt to serve as a reference for the complexity of various distribution testing problems.

1 Introduction

The arch problem in science is determining whether observations of some phenomenon conform to a conjectured model. Often, phenomena of interest are probabilistic in nature, and so are our models of these phenomena; hence, testing their validity becomes a statistical hypothesis testing problem. In mathematical notation, suppose that we have access to samples from some unknown distribution p over some set Σ of size n. We also have a hypothesis distribution q, and our goal is to distinguish whether $p = q$ or $p \neq q$.

For instance, we may want to test whether the sizes of some population of insects are normally distributed around their mean by sampling insects and measuring their sizes.

Of course, our models are usually imperfect. In our insect example, perhaps our estimation of the mean and variance of the insect sizes is a bit off. Furthermore, the sizes will clearly always be positive numbers. Yet a Normal distribution could still be a good fit. To get a meaningful testing problem some slack may be introduced, turning the problem into that of distinguishing whether $d_1(p, q) \leq \varepsilon_1$ versus $d_2(p, q) \geq \varepsilon_2$, for some distance measures $d_1(\cdot, \cdot)$ and $d_2(\cdot, \cdot)$ between distributions over Σ and some choice of ε_1 and ε_2 which may potentially depend on Σ or even q. Regardless, for the problem to be meaningful, the sets of distributions $C = \{ p \mid d_1(p, q) \leq \varepsilon_1 \}$ and $F = \{ p \mid d_2(p, q) \geq \varepsilon_2 \}$ should be disjoint. In fact, as our goal is...
to distinguish between \(p \in \mathcal{C} \) and \(p \in \mathcal{F} \) from samples, we cannot possibly draw the right conclusion with probability 1 or detect the most minute deviations of \(p \) from \(\mathcal{C} \) or \(\mathcal{F} \). So our guarantee should be probabilistic, and there should be some “gap” between the sets \(\mathcal{C} \) and \(\mathcal{F} \). In sum, the problem is the following:

| \((d_1, d_2) \)-Identity Testing: Given an explicit description of a distribution \(q \) over \(\Sigma \), sample access to a distribution \(p \) over \(\Sigma \), and bounds \(\varepsilon_1 \geq 0 \) and \(\varepsilon_2, \delta > 0 \), distinguish with probability at least \(1 - \delta \) between \(d_1(p, q) \leq \varepsilon_1 \) and \(d_2(p, q) \geq \varepsilon_2 \), whenever \(p \) satisfies one of these two inequalities. |

| \((d_1, d_2) \)-Equivalence (or Closeness) Testing: Given sample access to distributions \(p \) and \(q \) over \(\Sigma \), and bounds \(\varepsilon_1 \geq 0 \), \(\varepsilon_2, \delta > 0 \), distinguish with probability at least \(1 - \delta \) between \(d_1(p, q) \leq \varepsilon_1 \) and \(d_2(p, q) \geq \varepsilon_2 \), whenever \(p, q \) satisfy one of these two inequalities. |

A related problem is when we have sample access to both \(p \) and \(q \). For example, we might be interested in whether two populations of insects have distributions that are close or far. The resulting problem is the following:

| \((d_1, d_2) \)-Identity Testing: Given an explicit description of a distribution \(q \) over \(\Sigma \), sample access to a distribution \(p \) over \(\Sigma \), and bounds \(\varepsilon_1 \geq 0 \), \(\varepsilon_2, \delta > 0 \), distinguish with probability at least \(1 - \delta \) between \(d_1(p, q) \leq \varepsilon_1 \) and \(d_2(p, q) \geq \varepsilon_2 \), whenever \(p \) satisfies one of these two inequalities. |

| \((d_1, d_2) \)-Equivalence (or Closeness) Testing: Given sample access to distributions \(p \) and \(q \) over \(\Sigma \), and bounds \(\varepsilon_1 \geq 0 \), \(\varepsilon_2, \delta > 0 \), distinguish with probability at least \(1 - \delta \) between \(d_1(p, q) \leq \varepsilon_1 \) and \(d_2(p, q) \geq \varepsilon_2 \), whenever \(p, q \) satisfy one of these two inequalities. |

The above questions are of course fundamental, and widely studied since the beginning of statistics. However, most tests only detect certain types of deviations of \(p \) from \(q \), or are designed for distributions in parametric families. Moreover, most of the emphasis has been on the asymptotic sample regime. To address these challenges, there has been a surge of recent interest in information theory, property testing, and sublinear-time algorithms aiming at finite sample and in parametric families. Moreover, most of the emphasis has been on the asymptotic sample regime. To address these challenges, there has been a surge of recent interest in information theory, property testing, and sublinear-time algorithms aiming at finite sample and

\[\ell^2 \text{-divergence, } \chi^2 \text{-divergence, } \ell_2 \text{-distance, } \chi^2 \text{-distance, } \text{Hellinger distance, } \text{Kullback-Leibler divergence, } \chi^2 \text{-divergence} \]

and for combinations of these distances and choice of errors \(\varepsilon_1 \) and \(\varepsilon_2 \) which give rise to meaningful testing problems as discussed above. The sample complexities stated in the tables are for probability 1/3. Throwing in extra factors of \(O(\log 1/\delta) \) boosts the probability of error to \(1 - \delta \), as usual.

Our motivation for this work is primarily the fundamental nature of identity and equivalence testing, as well as of the distances under which we study these problems. It is also the fact that, even though distribution testing is by now a mature subfield of information theory, property testing, and sublinear-time algorithms, several of the testing questions that we consider have had unknown statuses prior to our work. This gap is accentuated by the fact that, as we establish, closely related distances may have radically different behavior. To give a quick example, it is easy to see that \(\chi^2 \)-divergence is the second-order Taylor expansion of KL-divergence. Yet, as we show, the sample complexity for identity testing changes radically when \(d_2 \) is taken to be total variation or Hellinger distance, and \(d_1 \) transitions from \(\chi^2 \) to KL or weaker distances; see Table 1. Prior to this work we knew about a transition somewhere between \(\chi^2 \) divergence and total variation distance, but our work identifies a more refined understanding of the point of transition. Similar

\[\text{These distances are nicely nested, as discussed in Section } 4 \text{ from the weaker } \ell_2 \text{ to the stronger } \chi^2 \text{-divergence.} \]
fragility phenomena are identified by our work for equivalence testing, when we switch from total variation to Hellinger distance, as seen in Tables 2 and 3.

Adding to the fundamental nature of the problems we consider here, we should also emphasize that a clear understanding of the different tradeoffs mapped out by our work is critical at this point for the further development of the distribution testing field, as recent experience has established. Let us provide a couple of recent examples, drawing from our prior work. Acharya, Daskalakis, and Kamath [ADK15] study whether properties of distributions, such as unimodality or log-concavity, can be tested in total variation distance. Namely, given sample access to a distribution p, how many samples are needed to test whether it has some property (modeled by a set P of distributions) or whether it is far from having the property, i.e. \(d_{TV}(p, P) > \varepsilon \), for some error \(\varepsilon \)? Their approach is to first learn a proxy distribution \(\hat{p} \in P \) that satisfies \(d'(p, \hat{p}) \leq \varepsilon' \) for some distance \(d' \), whenever \(p \in P \), then reduce the property testing problem to \((d', \text{dTV}) \)-identity testing of \(p \) to \(\hat{p} \). Interestingly, rather than picking \(d' \) to be total variation distance, they take it to be \(\chi^2 \)-divergence, which leads to optimal testers of sample complexity \(O(\sqrt{n}/\varepsilon^2) \) for several \(P \)'s such as monotone, unimodal, and log-concave distributions over \([n]\). Had they picked \(d' \) to be total variation distance, they would be stuck with a \(\Omega(n/\log n) \) sample complexity in the resulting identity testing problem, as Table 1 illustrates, which would lead to a suboptimal overall tester. The choice of \(\chi^2 \)-divergence in the work of Acharya et al. was somewhat ad hoc. By providing a full mapping of the sample complexity tradeoffs in the use of different distances, we expect to help future work in identifying better where the bottlenecks and opportunities lie.

Another example supporting our expectation can be found in recent work of Daskalakis and Pan [DP17]. They study equivalence testing of Bayesian networks under total variation distance. Bayesian networks are flexible models expressing combinatorial structure in high-dimensional distributions in terms of a DAG specifying their conditional dependence structure. The challenge in testing Bayesnets is that their support scales exponentially in the number of nodes, and hence naive applications of known equivalence tests lead to sample complexities that are exponential in the number of nodes, even when the in-degree \(\delta \) of the underlying DAGs is bounded. To address this challenge, Daskalakis and Pan establish “localization-of-distance” results of the following form, for various choices of distance \(d \): “If two Bayesnets \(P \) and \(Q \) are \(\varepsilon \)-far in total variation distance, then there exists a small set of nodes \(S \) (whose size is \(\delta + 1 \), where \(\delta \) is again the maximum in-degree of the underlying DAG where \(P \) and \(Q \) are defined) such that the marginal distributions of \(P \) and \(Q \) over the nodes of set \(S \) are \(\varepsilon' \)-far under distance \(d \).” When they take \(d \) to be total variation distance, they can show \(\varepsilon' = \Omega(\varepsilon/m) \), where \(m \) is the number of nodes in the underlying DAG (i.e. the dimension). Given this localization of distance, to test whether two Bayesnets \(P \) and \(Q \) satisfy \(P = Q \) vs \(d_{TV}(P, Q) \geq \varepsilon \), it suffices to test, for all relevant marginals \(P_S \) and \(Q_S \) whether \(P_S = Q_S \) vs \(d_{TV}(P_S, Q_S) = \Omega(\varepsilon/m) \). From Table 2 it follows that this requires sample size superlinear in \(m \), which is suboptimal. Interestingly, when they take \(d \) to be the square Hellinger distance, they can establish a localization-of-distance result with \(\varepsilon' = \varepsilon^2/2m \). By Table 2 to test each \(S \) they need sample complexity that is linear in \(m \), leading to an overall dependence of the sample complexity on \(m \) that is \(O(m^2) \) which is optimal up to log factors. Again, switching to a different distance results in near-optimal overall sample complexity, and our table is guidance as to where the bottlenecks and opportunities lie.

Finally, we comment that robust testing (i.e., when \(\varepsilon_1 > 0 \)) is interesting in its own right. Indeed, as mentioned before, in many statistical settings there may be model misspecification. For example, why should one expect to be receiving samples from precisely the uniform distribution? As such, one may desire that a testers accepts all distributions which are close to uniform. Unfortunately, Valiant and Valiant [VV11] ruled out the possibility of a strongly sublinear tester which has total variation tolerance, showing that such a problem requires \(\Theta\left(\frac{n}{\log n}\right) \) samples. However, as shown by Acharya, Daskalakis, and Kamath [ADK15], chi-squared tolerance is possible with only \(O\left(\frac{\sqrt{n}}{\varepsilon^2}\right) \) samples. This raises the following question: Which distances can a tester be tolerant to, while maintaining a strongly sublinear sample complexity? We outline what is possible.

\footnote{The extra log factors are to guarantee that the tests performed on all sets \(S \) of size \(\delta + 1 \) succeed.}
Our results are pictorially presented in Tables 1, 2, and 3. We note that these tables are intended to provide only references to the sample complexity of each testing problem, rather than exhaustively cover all prior work. As such, several references are deferred to Section 1.2. In Tables 1 and 2, each cell contains the only references to the sample complexity (Theorem 9). This is a qualitative difference from identity testing, where chi-squared robustness came at no cost.

1. We give an $O(\sqrt{n}/\varepsilon^2)$ sample algorithm for identity testing whether $d_{\chi^2}(p, q) \leq \varepsilon^2/4$ or $d_{H}(p, q) \geq \varepsilon/\sqrt{2}$ (Theorem 3). This is the first algorithm which achieves the optimal dependence on both n and ε for identity testing with respect to Hellinger distance (even non-robustly). We note that a $O(\sqrt{n}/\varepsilon^4)$ algorithm was known, due to optimal identity testers for total variation distance and the quadratic relationship between total variation and Hellinger distance.

2. In the case of identity testing, a stronger form of tolerance (i.e., KL distance instead of chi-squared) causes the sample complexity to jump to $\Omega(n/\log n)$ (Theorem 8). We find this a bit surprising, as chi-squared distance is the second-order Taylor expansion of KL distance, so one might expect that the testing problems have comparable complexities.

3. In the case of equivalence testing, even chi-squared tolerance comes at the cost of an $\Omega(n/\log n)$ sample complexity (Theorem 9). This is a qualitative difference from identity testing, where chi-squared robustness came at no cost.

4. However, in both identity and equivalence testing, ℓ_2 robustness comes at no additional cost (Theorems 2, 3, 4, and 5). Thus, in many cases, ℓ_2 robustness is the best one can do if one wishes

\[d_{TV}(p, q) \geq \varepsilon \]

\[d_{H}(p, q) \geq \varepsilon/\sqrt{2} \]

\[d_{KL}(p, q) \geq \varepsilon^2 \]

\[d_{\chi^2}(p, q) \geq \varepsilon^2 \]

\[p = q \]

\[d_{TV}(p, q) \leq \varepsilon^2/4 \]

\[d_{KL}(p, q) \leq \varepsilon^2/4 \]

\[d_{H}(p, q) \leq \varepsilon/2\sqrt{2} \]

\[d_{TV}(p, q) \leq \varepsilon/2 \text{ or } \varepsilon^2/4 \]

Table 1: Identity Testing

Table 2: Equivalence Testing
to maintain a strongly sublinear sample complexity. \(\ell_2 \) robustness has been indirectly considered in \cite{BFF01, BFR+13} through their weak robustness for total variation distance and the relationship with \(\ell_2 \) distance, though these results have suboptimal sample complexity. Our equivalence testing results improve upon \cite{CDVV14} and \cite{DK16} by adding \(\ell_2 \) robustness, and in the case of Theorem 5 on Hellinger testing, removing log factors in the sample complexity.

From a technical standpoint, our algorithms are chi-squared statistical tests, and resemble those of \cite{ADK15} and \cite{CDVV14}. However, crucial changes are required to satisfy the more stringent requirements of testing with respect to Hellinger distance. In our identity tester for Hellinger, we deal with this different distance measure by pruning light domain elements of \(q \) less aggressively than \cite{ADK15}, in combination with a preliminary test to reject early if the difference between \(p \) and \(q \) is contained exclusively within the set of light elements – this is a new issue that cannot arise when testing with respect to total variation distance. In our equivalence tester for Hellinger, we follow an approach, similar to \cite{CDVV14} and \cite{DK16}, of analyzing the light and heavy domain elements separately, with the challenge that the algorithm does not know which elements are which. Finally, to achieve \(\ell_2 \) robustness in these cases, we use a “mixing” strategy in which instead of testing based solely on samples from \(p \) and \(q \), we mix in some number (depending on our application) of samples from the uniform distribution. At a high level, the purpose of mixing is to make our distributions well-conditioned, i.e. to ensure that all probability values are sufficiently large. Such a strategy was recently employed by Goldreich in \cite{Gol16} for uniformity testing.

1.1.1 Comments on the \(\Theta(n/\log n) \) Results

Our upper bounds in the bottom-left portion of the table are based off the total variation distance estimation algorithm of Jiao, Han, and Weissman \cite{JHW16}, where an \(\Theta(n/\log n) \) complexity is only derived for \(\varepsilon \geq 1/\text{poly}(n) \). Similarly, in \cite{VV10a}, the lower bounds are only valid for constant \(\varepsilon \). We believe that the precise characterization is a very interesting open problem. In the present work, we focus on the case of constant \(\varepsilon \) for these testing problems.

We wish to draw attention to the bottom row of the table, and note that the two testing problems are \(d_{\text{TV}}(p, q) \leq \varepsilon/2 \) versus \(d_{\text{TV}}(p, q) \geq \varepsilon \), and \(d_{\text{TV}}(p, q) \leq \varepsilon^2/4 \) versus \(d_{H}(p, q) \geq \varepsilon/\sqrt{2} \). This difference in parameterization is required to make the two cases in the testing problem disjoint. With this parameterization, we conjecture that the latter problem has a greater dependence on \(\varepsilon \) as it goes to 0 (namely, \(\varepsilon^{-4} \) versus \(\varepsilon^{-2} \)), so we colour the box a slightly darker shade of orange.

1.2 Related Work

The most classic distribution testing question is uniformity testing, which is identity testing when \(\varepsilon_1 = 0, d_2 \) is total variation distance, and \(q \) is the uniform distribution. This was first studied in theoretical computer science in \cite{GR00}. Paninski gave an optimal algorithm (for when \(\varepsilon_2 \) is not too small) with a complexity of \(O(\sqrt{n}/\varepsilon^2) \) and a matching lower bound \cite{Pan08}. More generally, letting \(q \) be an arbitrary distribution, exact total variation identity testing was studied \cite{BFF01}, and an (instance) optimal algorithm was given by Valiant and Valiant \cite{VV14}, with the same complexity of \(O(\sqrt{n}/\varepsilon^2) \). Optimal algorithms for this problem were rediscovered several times, see i.e. \cite{DKN15, ADK15, DK16, DGPP16}.

Equivalence (or closeness) testing was studied in \cite{BFR+13}, in the same setting (\(\varepsilon_1 = 0, d_2 \) is total variation distance). A lower bound of \(\Omega(n^{2/3}) \) was given by \cite{Val11}. Tight upper and lower bounds were given in \cite{CDVV14}, which shows interesting behavior of the sample complexity as the parameter \(\varepsilon \) goes from large to small. This problem was also studied in the setting where one has unequal sample sizes from the

Identity Testing	Equivalence Testing
\(d(p, q) \leq f_d(n, \varepsilon) \) vs \(d_{\text{TV}}(p, q) \geq \varepsilon \)	\(\Theta(\frac{1}{\varepsilon}) \) [Corollary 2]
\(d_{\text{TV}}(p, q) \leq \frac{\varepsilon}{\sqrt{n}} \) vs \(d_{\text{TV}}(p, q) \geq \varepsilon \)	\(\Theta(\frac{\sqrt{n}}{\varepsilon}) \) [Theorem 2]
\(d_{\text{TV}}(p, q) \leq \frac{\varepsilon}{\sqrt{n}} \) vs \(d_{H}(p, q) \geq \varepsilon \)	\(\Theta(\frac{\sqrt{n}}{\varepsilon}) \) [Theorem 3]

Table 3: \(\ell_2 \) Testing. \(f_d(n, \varepsilon) \) is a quantity such that \(d(p, q) \leq f_d(n, \varepsilon) \) and \(d_{\text{TV}}(p, q) \geq \varepsilon \) are disjoint.
two distributions [BV15, DK16]. When the distance d_1 is Hellinger, the complexity is qualitatively different, as shown by [DK16]. They prove a nearly-optimal upper bound and a tight lower bound for this problem. [Wag15] also considers testing problems with other distances, namely ℓ_p distances.

Robust (or tolerant) identity testing (where $\varepsilon_1 = O(\varepsilon)$ and d_1 is total variation distance) was studied in [VV10a, VV10b, VV11], where $\Theta(n/\log n)$ bounds were proven. Several other related problems (i.e., support size and entropy estimation) share the same sample complexity, and have enjoyed significant study [AOST17, WY16, ADOS17]. The closest related results to our work are those on estimating distances between distributions [JHW16, JVHW17, HJW16].

Chi-squared robustness (when d_1 is chi-squared distance and $\varepsilon_1 = O(\varepsilon^2)$) was introduced and applied by [ADK15] for testing families of distributions, i.e., testing if a distribution is monotone or far from being monotone. It was shown that this robustness comes at no additional cost over vanilla identity testing; that is, the sample complexity is still $O(\sqrt{n}/\varepsilon^2)$. Testing such families of distributions was also studied by [CDGR16].

Testing with respect to Hellinger distance was applied in [DP17] for testing Bayes networks. Since lower bounds of [ADK15] show that distribution testing suffers from the curse of dimensionality, further structural assumptions must be made if one wishes to test multivariate distributions. This “high-dimensional frontier” has also been studied on graphical models by [DDK16] and [CDKS17] (for Ising models and Bayesian networks, respectively).

This is only a fraction of recent results; we direct the reader to [Can15] for an excellent recent survey of distribution testing.

1.3 Organization

The organization of this paper is as follows. In Section 2 we state preliminaries and notation used in this paper. In Sections 3 and 4 we prove upper bounds for identity testing and equivalence testing (respectively) based on chi-squared style statistics. In Section 5, we prove upper bounds for distribution testing based on distance estimation. Finally, in Section 6 we prove testing lower bounds.

2 Preliminaries

In this paper, we will focus on discrete probability distributions over $[n]$. For a distribution p, we will use the notation p_i to denote the mass p places on symbol i. For a set $S \subseteq [n]$ and a distribution p over $[n]$, p_S is the vector p restricted to the coordinates in S. We will call this a restriction of distribution p.

The following probability distances and divergences are of interest to us:

Definition 1. The total variation distance between p and q is defined as

$$d_{TV}(p, q) = \frac{1}{2} \sum_{i \in [n]} |p_i - q_i|.$$

Definition 2. The KL divergence between p and q is defined as

$$d_{KL}(p, q) = \sum_{i \in [n]} p_i \log \left(\frac{p_i}{ q_i} \right).$$

Definition 3. The Hellinger distance between p and q is defined as

$$d_H(p, q) = \frac{1}{\sqrt{2}} \sqrt{\sum_{i \in [n]} (\sqrt{p_i} - \sqrt{q_i})^2}. $$

Definition 4. The chi-squared distance between p and q is defined as

$$d_{\chi^2}(p, q) = \sum_{i \in [n]} \frac{(p_i - q_i)^2}{q_i}. $$
Definition 5. The ℓ_2 distance between p and q is defined as
\[
d_{\ell_2}(p, q) = \sqrt{\sum_{i\in[n]} (p_i - q_i)^2}.
\]

We also define these distances for restrictions of distributions p_S and q_S by replacing the summations over $i \in [n]$ with summations over $i \in S$.

We have the following relationships between these distances. These are well-known for distributions, i.e., see [GS02], but we prove them more generally for restrictions of distributions in Section 4.

Proposition 1. Letting p_S and q_S be restrictions of distributions p and q to $S \subseteq [n]$,
\[
d_H^2(p_S, q_S) \leq d_{TV}(p_S, q_S) \leq \sqrt{2}d_H(p_S, q_S) \leq \sqrt{\sum_{i\in S} (q_i - p_i)} + d_{KL}(p_S, q_S) \leq \sqrt{d_{X^2}(p_S, q_S)}.
\]

We recall that d_{ℓ_2} fits into the picture by its relationship with total variation distance:

Proposition 2. Letting p and q be distributions over $[n]$,
\[
d_{\ell_2}(p, q) \leq 2d_{TV}(p, q) \leq \sqrt{n}d_{\ell_2}(p, q).
\]

We will also need to following bound for Hellinger distance:

Proposition 3. $2d_H^2(p, q) \leq \sum_{i=1}^n \frac{(p_i - q_i)^2}{p_i + q_i} \leq 4d_H^2(p, q)$.

Proof. Expanding the Hellinger-squared distance,
\[
d_H^2(p, q) = \frac{1}{2} \sum_{i=1}^n (\sqrt{p_i} - \sqrt{q_i})^2 = \frac{1}{2} \sum_{i=1}^n (\sqrt{p_i} + \sqrt{q_i})^2.
\]
The fact now follows because $(p_i + q_i) \leq (\sqrt{p_i} + \sqrt{q_i})^2 \leq 2(p_i + q_i)$.

The quantity $\sum_{i=1}^n (p_i - q_i)^2/(p_i + q_i)$ is sometimes called the triangle distance. However, we see here that it is essentially the Hellinger distance (up to constant factors).

Proposition 4. Given a number $\delta \in [0, 1]$ and a discrete distribution $r = (r_1, \ldots, r_n)$, define
\[
r^{+\delta} := (1 - \delta) \cdot r + \delta \cdot (\frac{1}{n}, \ldots, \frac{1}{n}).
\]
Then given two discrete distributions $p = (p_1, \ldots, p_n)$ and $q = (q_1, \ldots, q_n)$,
\[
d_{TV}(p^{+\delta}, q^{+\delta}) = (1 - \delta)d_{TV}(p, q), \quad d_{\ell_2}(p^{+\delta}, q^{+\delta}) = (1 - \delta)d_{\ell_2}(p, q).
\]
In addition, $d_H(p^{+\delta}, q^{+\delta}) \geq d_H(p, q) - 2\sqrt{\delta}$.

Proof. The statements for total variation and ℓ_2 distance are immediate. As for the Hellinger distance, we have by the triangle inequality that
\[
d_H(p, q) \leq d_H(p, p^{+\delta}) + d_H(p^{+\delta}, q^{+\delta}) + d_H(q^{+\delta}, q).
\]
We can bound the first term by
\[
d_H^2(p, p^{+\delta}) \leq d_{TV}(p, p^{+\delta}) = \frac{1}{2} \cdot \|\delta \cdot p - \delta \cdot (\frac{1}{n}, \ldots, \frac{1}{n})\|_1 \leq \delta,
\]
where the last step is by the triangle inequality, and a similar argument bounds the third term by $\sqrt{\delta}$ as well. Thus, $d_H(p^{+\delta}, q^{+\delta}) \geq d_H(p, q) - 2\sqrt{\delta}$.

At times, our algorithms will employ Poisson sampling. Instead of taking m samples from a distribution p, we instead take Poisson(m) samples. As a result, letting N_i be the number of occurrences of symbol i, all N_i will be independent and distributed as Poisson$(m \cdot p_i)$. We note that this method of sampling is for purposes of analysis – concentration bounds imply that Pois$(m) = O(m)$ with high probability, so such an algorithm can be converted to one with a fixed budget of samples at a constant-factor increase in the sample complexity.
3 Upper Bounds for Identity Testing

In this section, we prove the following theorems for identity testing.

Theorem 1. There exists an algorithm for identity testing between p and q distinguishing the cases:
- $d_{\chi^2}(p, q) \leq \varepsilon^2$;
- $d_H(p, q) \geq \varepsilon$.

The algorithm requires $O\left(\frac{n^{1/2}}{\varepsilon^2}\right)$ samples.

Theorem 2. There exists an algorithm for identity testing between p and q distinguishing the cases:
- $d_{\ell_2}(p, q) \leq \frac{\varepsilon^2}{\sqrt{n}}$;
- $d_{TV}(p, q) \geq \varepsilon$.

The algorithm requires $O\left(\frac{n^{1/2}}{\varepsilon^2}\right)$ samples.

Theorem 3. There exists an algorithm for identity testing between p and q distinguishing the cases:
- $d_{\ell_2}(p, q) \leq \frac{\varepsilon^2}{\sqrt{n}}$;
- $d_H(p, q) \geq \varepsilon$.

The algorithm requires $O\left(\frac{n^{1/2}}{\varepsilon^2}\right)$ samples.

We prove Theorem 1 in Section 3.1, and Theorems 2 and 3 in Section 3.2.

3.1 Identity Testing with Hellinger Distance and Chi-squared Robustness

We prove Theorem 1 by analyzing Algorithm 1. We will set $c_1 = \frac{1}{100}$, $c_2 = \frac{6}{25}$, and let C be a sufficiently large constant.

Algorithm 1 Chi-squared-close versus Hellinger-far testing algorithm

1: **Input:** ε: an explicit distribution q; sample access to a distribution p
2: Implicitly define $A \leftarrow \{i : q_i \geq c_1 \varepsilon^2 / n\}$; $\bar{A} \leftarrow [n] \setminus A$
3: Let \hat{p} be the empirical distribution from drawing $m_1 = \Theta(1/\varepsilon^2)$ samples from p
4: if $\hat{p}(\bar{A}) \geq \frac{3}{4} c_2 \varepsilon^2$ then
5: return **Reject**
6: end if
7: Draw a multiset S of Poisson(m_2) samples from p, where $m_2 = C\sqrt{n}/\varepsilon^2$
8: Let N_i be the number of occurrences of the ith domain element in S
9: Let S' be the set of domain elements observed in S
10: $Z \leftarrow \sum_{i \in S' \cap A} \frac{(N_i - m_2 q_i)^2 - N_i}{m_2 q_i} + m_2 (1 - q(S' \cap A))$
11: if $Z \leq \frac{3}{4} m_2 \varepsilon^2$ then
12: return **Accept**
13: else
14: return **Reject**
15: end if

We note that the sample and time complexity are both $O(\sqrt{n}/\varepsilon^2)$. We draw $m_1 + m_2 = \Theta(\sqrt{n}/\varepsilon^2)$ samples total. All steps of the algorithm only involve inspecting domain elements where a sample falls, and it runs linearly in the number of such elements. Indeed, Step 10 of the algorithm is written in an unusual way in order to ensure the running time of the algorithm is linear.
We first analyze the test in Step 4 of the algorithm. Folklore results state that with probability at least 99/100, this preliminary test will reject any p with $p(\bar{A}) \geq c_2 \varepsilon^2$, it will not reject any p with $p(\bar{A}) \leq \frac{c_2}{2} \varepsilon^2$, and behavior for any other p is arbitrary. Condition on the event the test does not reject for the remainder of the proof. Note that since both thresholds here are $\Theta(\varepsilon^2)$, it only requires $m_1 = \Theta(1/\varepsilon^2)$ samples, rather than the “non-extreme” regime, where we would require $\Theta(1/\varepsilon^4)$ samples.

We justify that any p which may be rejected in Step 5 (i.e., any p such that $p(\bar{A}) > \frac{c_2}{2} \varepsilon^2$) has the property that $d_{\chi^2}(p, q) > \varepsilon^2$ (in other words, we do not wrongfully reject any p). Consider a p such that $p(\bar{A}) \geq \frac{c_2}{2} \varepsilon^2$. Note that $d_{\chi^2}(p, q) \geq d_{\chi^2}(p, q, \bar{A})$, which we lower bound as follows:

$$d_{\chi^2}(p, q, \bar{A}) = \sum_{i \in A} \frac{(p_i - q_i)^2}{q_i} \geq \frac{n}{c_1 \varepsilon^2} \sum_{i \in A} (p_i - q_i)^2 \geq \frac{n}{c_1 \varepsilon^2} \cdot \frac{1}{n} \left(\sum_{i \in A} (p_i - q_i) \right)^2 \geq \frac{n}{c_1 \varepsilon^2} \cdot \varepsilon^4 \cdot \frac{(\frac{c_2}{2} - 1)^2}{2} = \frac{(\frac{c_2}{2} - 1)^2}{c_1} \varepsilon^2$$

The first inequality is by the definition of \bar{A}, the second is by Cauchy-Schwarz, and the third is since $p(\bar{A}) \geq \frac{c_2}{2} \varepsilon^2$ and $q(\bar{A}) \leq c_1 \varepsilon^2$. By our setting of c_1 and c_2, this implies that $d_{\chi^2}(p, q) > \varepsilon^2$, and we are not rejecting any p which should be accepted.

For the remainder of the proof, we will implicitly assume that $p(\bar{A}) \leq c_2 \varepsilon^2$.

Let

$$Z' = \sum_{i \in A} \frac{(N_i - m_2 q_i)^2 - N_i}{m_2 q_i}.$$

Note that the statistic Z can be rewritten as follows:

$$Z = \sum_{i \in S' \cap A} \frac{(N_i - m_2 q_i)^2 - N_i}{m_2 q_i} + m_2 (1 - q(S' \cap A))$$

$$= \sum_{i \in S' \cap A} \frac{(N_i - m_2 q_i)^2 - N_i}{m_2 q_i} + \sum_{i \in A \setminus S'} m_2 q_i + m_2 q(\bar{A})$$

$$= \sum_{i \in S' \cap A} \frac{(N_i - m_2 q_i)^2 - N_i}{m_2 q_i} + \sum_{i \in A \setminus S'} \frac{(N_i - m_2 q_i)^2 - N_i}{m_2 q_i} + m_2 q(\bar{A})$$

$$= Z' + m_2 q(\bar{A})$$

We proceed by analyzing Z'. First, note that it has the following expectation and variance:

$$\mathbb{E}[Z'] = m_2 \cdot \sum_{i \in A} \frac{(p_i - q_i)^2}{q_i} = m_2 \cdot d_{\chi^2}(p, q, \bar{A}) \quad (1)$$

$$\text{Var}[Z'] = \sum_{i \in A} \left[2 \frac{p_i^2}{q_i^2} + 4m_2 \cdot \frac{p_i}{q_i} \cdot \frac{(p_i - q_i)^2}{q_i^2} \right] \quad (2)$$

These properties are proven in Section A of [ADK15].

We require the following two lemmas, which state that the mean of the statistic is separated in the two cases, and that the variance is bounded. The proofs largely follow the proofs of two similar lemmas in [ADK15].
Lemma 1. If $d_{\chi^2}(p, q) \leq \varepsilon^2$, then $E[Z'] \leq m_2 \varepsilon^2$. If $d_H(p, q) \geq \varepsilon$, then $E[Z'] \geq (2 - c_1 - c_2)m_2 \varepsilon^2$.

Proof. The former case is immediate from (1).

For the latter case, note that

$$d_H^2(p, q) = d_H^2(p, q_A) + d_H^2(p, q, q_A).$$

We upper bound the latter term as follows:

$$d_H^2(p, q_A) \leq d_{TV}(p, q_A) = \frac{1}{2} \sum_{i \in A} |p_i - q_i| \leq \frac{1}{2} \left(p(\bar{A}) + q(\bar{A}) \right) \leq \left(\frac{c_1 + c_2}{2} \right) \varepsilon^2.$$

The first inequality is from Proposition 1 and the third inequality is from our prior condition that $p(\bar{A}) \leq c_2 \varepsilon^2$. Since $d_H^2(p, q) \geq \varepsilon^2$, this implies $d_H^2(p, q_A) \geq (1 - \frac{c_1 + c_2}{2}) \varepsilon^2$. Proposition 1 further implies that $d_{\chi^2}(p_A, q_A) \geq (2 - c_1 - c_2) \varepsilon^2$. The lemma follows from (1).

Lemma 2. If $d_{\chi^2}(p, q) \leq \varepsilon^2$, then $\text{Var}[Z'] = O(m_2^2 \varepsilon^4)$. If $d_H(p, q) \geq \varepsilon$, then $\text{Var}[Z'] \leq O(E[Z']^2)$. The constant in both expressions can be made arbitrarily small with the choice of the constant C.

Proof. We bound the terms of (2) separately, starting with the first.

$$2 \sum_{i \in A} \frac{p_i^2}{q_i^2} = 2 \sum_{i \in A} \left(\frac{(p_i - q_i)^2}{q_i^2} + \frac{2p_i q_i - q_i^2}{q_i^2} \right)$$

$$= 2 \sum_{i \in A} \left(\frac{(p_i - q_i)^2}{q_i^2} + \frac{2p_i (p_i - q_i) + q_i^2}{q_i^2} \right)$$

$$\leq 2n + 2 \sum_{i \in A} \left(\frac{(p_i - q_i)^2}{q_i^2} + 2 \frac{(p_i - q_i)}{q_i} \right)$$

$$\leq 4n + 4 \sum_{i \in A} \frac{(p_i - q_i)^2}{q_i^2}$$

$$\leq 4n + \frac{4n}{c_1 - \varepsilon^2} \sum_{i \in A} \frac{(p_i - q_i)^2}{q_i}$$

$$= 4n + \frac{4n E[Z']}{c_1 - \varepsilon^2} \right) \leq 4n + \frac{4}{c_1 C \sqrt{n} E[Z']}$$

The second inequality is the AM-GM inequality, the third inequality uses that $q_i \geq \frac{c_1 \varepsilon^2}{n}$ for all $i \in A$, the last equality uses (1), and the final inequality substitutes a value $m_2 \geq C \sqrt{n} \varepsilon$.

10
The second term can be similarly bounded:

\[4m_2 \sum_{i \in A} p_i (p_i - q_i)^2 \leq 4m_2 \left(\sum_{i \in A} \frac{p_i^2}{q_i^2} \right)^{1/2} \left(\sum_{i \in A} \frac{(p_i - q_i)^4}{q_i^4} \right)^{1/2} \]

\[\leq 4m_2 \left(4n + \frac{4}{c_1 C} \sqrt{n} E[Z'] \right)^{1/2} \left(\sum_{i \in A} \frac{(p_i - q_i)^4}{q_i^4} \right)^{1/2} \]

\[\leq 4m_2 \left(2 \sqrt{n} + \frac{2}{\sqrt{c_1 C}} n^{1/4} E[Z']^{1/2} \right) \left(\sum_{i \in A} \frac{(p_i - q_i)^2}{q_i} \right) \]

\[= \left(8 \sqrt{n} + \frac{8}{\sqrt{c_1 C}} n^{1/4} E[Z']^{1/2} \right) E[Z']. \]

The first inequality is Cauchy-Schwarz, the second inequality uses (3), the third inequality uses the monotonicity of the ℓ₂ norms, and the equality uses (1).

Combining the two terms, we get

\[\text{Var}[Z'] \leq 4n + \left(8 + \frac{4}{c_1 C} \right) \sqrt{n} E[Z'] + \frac{8}{\sqrt{c_1 C}} n^{1/4} E[Z']^{3/2}. \]

We now consider the two cases in the statement of our lemma.

- When \(d_{\chi^2}(p, q) \leq \epsilon^2\), we know from Lemma 1 that \(E[Z'] \leq m_2 \epsilon^2\). Combined with a choice of \(m_2 \geq C \sqrt{n} \epsilon^2\) and the above expression for the variance, this gives:

\[\text{Var}[Z'] \leq \frac{4}{C^2} m_2^2 \epsilon^4 + \left(\frac{8}{C} + \frac{4}{c_1 C^2} \right) m_2^2 \epsilon^4 + \frac{8}{C \sqrt{c_1}} m_2^2 \epsilon^4 \]

\[= \left(\frac{8}{C} + \frac{8}{C \sqrt{c_1}} + \frac{4}{C^2} + \frac{4}{c_1 C^2} \right) m_2^2 \epsilon^4 = O(m_2^2 \epsilon^4). \]

- When \(d_H(p, q) \geq \epsilon\), Lemma 2 and \(m_2 \geq C \sqrt{n} \epsilon^2\) give:

\[E[Z'] \geq (2 - c_1 - c_2) m_2 \epsilon^2 \geq C(2 - c_1 - c_2) \sqrt{n}. \]

Similar to before, combining this with our expression for the variance we get:

\[\text{Var}[Z'] \leq \left(\frac{8}{C(2 - c_1 - c_2)} + \frac{8}{C \sqrt{c_1(2 - c_1 - c_2)}} + \frac{4}{C^2 (2 - c_1 - c_2)^2} + \frac{4}{c_1 C(2 - c_1 - c_2)} \right) E[Z']^2 \]

\[= O(E[Z']^2). \]

To conclude the proof, we consider the two cases.

- Suppose \(d_{\chi^2}(p, q) \leq \epsilon^2\). By Lemma 1 and the definition of \(A\), we have that \(E[Z] \leq (1 + c_1) m_2 \epsilon^2\). By Lemma 2 \(\text{Var}[Z] = O(m_2^2 \epsilon^2)\). Therefore, for constant \(C\) sufficiently large, Chebyshev’s inequality implies \(\Pr(Z > \frac{3}{2} m_2 \epsilon^2) \leq 1/10\).

- Suppose \(d_H(p, q) \geq \epsilon\). By Lemma 1 we have that \(E[Z'] \geq (2 - c_1 - c_2) m_2 \epsilon^2\). By Lemma 2 \(\text{Var}[Z'] = O(E[Z']^2)\). Therefore, for constant \(C\) sufficiently large, Chebyshev’s inequality implies \(\Pr(Z' < \frac{3}{2} m_2 \epsilon^2) \leq 1/10\). Since \(Z \geq Z'\), \(\Pr(Z < \frac{3}{2} m_2 \epsilon^2) \leq 1/10\) as well.
3.2 Identity Testing with ℓ_2 Robustness

In this section, we sketch the algorithms required to achieve ℓ_2 robustness for identity testing. Since the algorithms and analysis are very similar to those of Algorithm 1 of [ADK15] and Algorithm 1, the full details are omitted.

First, we prove Theorem 2. The algorithm is Algorithm 1 of [ADK15], but instead of testing on p and q, we instead test on $p^\frac{1}{2}$ and $q^\frac{1}{2}$, as defined in Proposition 4. By this proposition, this operation preserves total variation and ℓ_2 distance, up to a factor of 2, and also makes it so that the minimum probability element of $q^\frac{1}{2}$ is at least $1/2n$. In the case where $d^2_{\ell_2}(p,q) \leq \frac{\varepsilon}{\sqrt{n}}$, we have the following upper bound on $E[Z]$:

$$E[Z] = m \sum_{i \in A} \frac{(p_i - q_i)^2}{q_i} \leq O(m \cdot n \cdot d^2_{\ell_2}(p,q)) \leq O(m^2 \varepsilon^2).$$

This is the same bound as in Lemma 2 of [ADK15]. The rest of the analysis follows identically to that of Algorithm 1 of [ADK15], giving us Theorem 2.

Next, we prove Theorem 3. We observe that Algorithm 1 as stated can be considered as ℓ_2-robust instead of χ^2-robust, if desired. First, we do not wrongfully reject any p (i.e., those with $d^2_{\ell_2}(p,q) \leq \frac{\varepsilon^2}{\sqrt{n}}$) in Step 1. This is because we reject in this step if there is $\geq \Omega(\varepsilon^2)$ total variation distance between p and q (witnessed by the set \tilde{A}), which implies that p and q are far in ℓ_2-distance by Proposition 2. It remains to prove an upper bound on $E[Z]$ in the case where $d^2_{\ell_2}(p,q) \leq \frac{\varepsilon^2}{\sqrt{n}}$.

$$E[Z] = m_2 d_{\chi^2}(p,q) = m_2 \sum_{i \in A} \frac{(p_i - q_i)^2}{q_i} \leq O(m_2 \cdot \left(\frac{n}{\varepsilon^2}\right) \cdot d^2_{\ell_2}(p,q)) \leq O(m^2 \varepsilon^2).$$

We note that this is the same bound as in Lemma 1 with this bound on the mean, the rest of the analysis is identical to that of Theorem 1 giving us Theorem 3.

4 Upper Bounds for Equivalence Testing

In this section, we prove the following theorems for equivalence testing.

Theorem 4. There exists an algorithm for equivalence testing between p and q distinguishing the cases:

- $d_{\ell_2}(p,q) \leq \frac{\varepsilon^2}{2\sqrt{n}}$
- $d_{TV}(p,q) \geq \varepsilon$

The algorithm requires $O\left(\max\left\{\frac{n^{2/3}}{\varepsilon^{1/3}}, \frac{n^{1/2}}{\varepsilon^{1/2}}\right\}\right)$ samples.

Theorem 5. There exists an algorithm for equivalence testing between p and q distinguishing the cases:

- $d_{\ell_2}(p,q) \leq \frac{\varepsilon^2}{32\sqrt{n}}$
- $d_{\chi}(p,q) \geq \varepsilon$

The algorithm requires $O\left(\min\left\{\frac{n^{2/3}}{\varepsilon^{1/3}}, \frac{n^{3/4}}{\varepsilon^{3/4}}\right\}\right)$ samples.

Consider drawing Poisson(m) samples from two unknown distributions $p = (p_1, \ldots, p_n)$ and $q = (q_1, \ldots, q_n)$. Given the resulting histograms X and Y, [CDVV14] define the following statistic:

$$Z = \sum_{i=1}^{n} \frac{(X_i - Y_i)^2 - (X_i - Y_i)}{X_i + Y_i}.$$ (4)

This can be viewed as a modification to the empirical triangle distance applied to X and Y. Both of our equivalence testing upper bounds will be obtained by appropriate thresholding of the statistic Z.

The organization of this section is as follows. In Section 4.1 we prove some basic properties of Z. In Section 4.2 we prove Theorem 4. In Section 4.3 we prove Theorem 5.
4.1 Some facts about \(Z \)

Chan et al. [CDVV14] give the following expressions for the mean and variance of \(Z \).

Proposition 5 ([CDVV14]). Consider the function

\[
 f(x) = \left(1 - \frac{1-e^{-x}}{x} \right).
\]

Then for any subset \(A \subseteq [n] \),

\[
 \mathbb{E}[Z_A] = \sum_{i \in A} \frac{(p_i - q_i)^2}{p_i + q_i} m \cdot f(m(p_i + q_i)).
\]

(5)

As a result, \(Z \) is mean-zero when \(p = q \). Furthermore,

\[
 \text{Var}[Z] \leq 2 \min\{m, n\} + \sum_{i=1}^n 5m \frac{(p_i - q_i)^2}{p_i + q_i}.
\]

Applying Proposition 5 we immediately have the following corollary.

Corollary 1. \(\text{Var}[Z] \leq 2 \min\{m, n\} + 20md_{\ell_2}(p, q)^2 \).

Without the corrective factor of \(f(m(p_i + q_i)) \), Equation 5 would just be \(m \) times the triangle distance between \(p \) and \(q \). Our goal then is to understand the function \(f(x) \) and how it affects this quantity. Aside from the removable discontinuity at \(x = 0 \), \(f(x) \) is a monotonically increasing function, and for \(x > 0 \), it is strictly bounded between 0 and 1. Furthermore, for \(x > 0 \) there are roughly two “regimes” that \(f(x) \) exhibits: when \(x < 1 \), where \(f(x) \) is well-approximated by \(x/2 \), and when \(x \geq 1 \), where \(f(x) \) is “morally the constant one”, slowly increasing from \(e^{-1} \) to 1. In fact, we have the following explicit bound on \(f(x) \).

Fact 1. For all \(x > 0 \), \(f(x) \leq \min\{1, x\} \).

In terms of \(f(m(p_i + q_i)) \), these regimes correspond to whether \(p_i + q_i \) is less than or greater than \(\frac{1}{m} \). Hence, the expression for the mean of \(Z \) (i.e. Equation 5 for \(A = [n] \)) splits in two: those terms for “large” \(p_i + q_i \) look roughly like the triangle distance (times \(m \)), and those terms for “small” \(p_i + q_i \) look roughly like the \(\ell_2^2 \) distance (times \(m^2 \)). This is why we have given ourselves the flexibility to consider subsets \(A \) of the domain.

We will now prove several upper and lower bounds on \(\mathbb{E}[Z_A] \), based in part on whether we will apply them in the large or small \(p_i + q_i \) regime. Let us begin with a pair of upper bounds.

Proposition 6. Suppose for every \(i \in A \), \(p_i + q_i \geq \delta \). Then

\[
 \mathbb{E}[Z_A] \leq \frac{m}{\delta} d_{\ell_2}^2(p_A, q_A).
\]

Proof. Because \(f(x) \leq 1 \) for all \(x > 0 \),

\[
 \mathbb{E}[Z_A] = \sum_{i \in A} \frac{(p_i - q_i)^2}{p_i + q_i} m \cdot f(m(p_i + q_i)) \leq \sum_{i \in A} \frac{(p_i - q_i)^2}{p_i + q_i} m \leq \frac{m}{\delta} \sum_{i \in A} (p_i - q_i)^2 = \frac{m}{\delta} d_{\ell_2}^2(p_A, q_A). \]

Proposition 7. \(\mathbb{E}[Z] \leq m^2 d_{\ell_2}^2(p, q) \).

Proof. Let \(L \) be the set of \(i \) such that \(m(p_i + q_i) \geq 1 \). Then \(\mathbb{E}[Z] = \mathbb{E}[Z_L] + \mathbb{E}[Z_{\overline{L}}] \), and by Proposition 6 \(\mathbb{E}[Z_L] \leq m^2 d_{\ell_2}^2(p_L, q_L) \). On the other hand, by Fact 1, \(f(x) \leq x \), and therefore

\[
 \mathbb{E}[Z_{\overline{L}}] = \sum_{i \in \overline{L}} \frac{(p_i - q_i)^2}{p_i + q_i} m \cdot f(m(p_i + q_i)) \leq \sum_{i \in \overline{L}} (p_i - q_i)^2 m^2 = m^2 d_{\ell_2}^2(p_{\overline{L}}, q_{\overline{L}}).
\]

The proof is completed by noting that \(d_{\ell_2}^2(p_L, q_L) + d_{\ell_2}^2(p_{\overline{L}}, q_{\overline{L}}) = d_{\ell_2}^2(p, q) \).
Now we give a pair of lower bounds.

Proposition 8. Suppose for every \(i \in A \), \(m(p_i + q_i) \geq 1 \). Then

\[
E[Z_A] \geq \frac{2m^2}{3} d_H^2(p_A, q_A).
\]

Proof. Because \(f(x) \) is monotonically increasing and \(f(1) = 1/e \),

\[
E[Z_A] = m \sum_{i \in A} \frac{(p_i - q_i)^2}{p_i + q_i} f(m(p_i + q_i)) \geq m \sum_{i \in A} \frac{(p_i - q_i)^2}{p_i + q_i} f(1) \geq \frac{2m^2}{e} d_H^2(p_A, q_A),
\]

where the first step is by Proposition \(5 \) and the last is by Proposition \(3 \). The result follows from \(e \leq 3 \). \(\square \)

The next proposition is essentially the second half of the proof of Lemma 4 from [CDVV14].

Proposition 9. For any subset \(A \),

\[
E[Z_A] \geq \left(\frac{4m^2}{2|A| + m \cdot (p(A) + q(A))} \right) \cdot d_{TV}^2(p_A, q_A),
\]

where we write \(p(A) = \sum_{i \in A} p(i) \) and likewise for \(q(A) \).

Proof. Consider the function \(g(x) = x f(x)^{-1} \). Then \(g(x) \leq 2 + x \) for nonnegative \(x \). Furthermore,

\[
\frac{(p_i - q_i)}{g(m(p_i + q_i))} = \frac{(p_i - q_i)^2}{m(p_i + q_i)} \left(1 - \frac{1 - e^{-m(p_i + q_i)}}{m(p_i + q_i)} \right),
\]

which, from Proposition \(5 \), is \(\frac{1}{m^2} \cdot E[Z_{\{i\}}] \). As a result,

\[
d_{TV}^2(p, q) A^2 = \frac{1}{4} \left(\sum_{i \in A} |p_i - q_i| \right)^2 = \frac{1}{4} \left(\sum_{i \in A} |p_i - q_i| \cdot \sqrt{g(m(p_i + q_i))} \right)^2 \leq \frac{1}{4} \left(\sum_{i \in A} \frac{(p_i - q_i)^2}{g(m(p_i + q_i))} \right) \cdot \left(\sum_{i \in A} g(m(p_i + q_i)) \right) \leq \frac{1}{4m^2} \cdot E[Z_A] \cdot (2|A| + m \cdot (p(A) + q(A))),
\]

where the first inequality is Cauchy-Schwarz. Rearranging finishes the proof. \(\square \)

4.2 Equivalence Testing with Total Variation Distance

In this section, we prove Theorem \(4 \). We will take the number of samples to be

\[
m = \max \left\{ C \cdot \frac{n^{2/3}}{\varepsilon^{1/3}}, C^{3/2} \cdot \frac{n^{1/2}}{\varepsilon^2} \right\},
\]

where \(C \) is some constant which can be taken to be \(10^{10} \).

Rather than drawing samples from \(p \) or \(q \), our algorithm draws samples from \(p^{+1/2} \) and \(q^{+1/2} \). By Proposition \(4 \) we have the following guarantees in the two cases:

(Case 1): \(d_2(p^{+1/2}, q^{+1/2}) \leq \frac{\varepsilon}{4\sqrt{n}} \)
(Case 2): \(d_{TV}(p^{+1/2}, q^{+1/2}) \geq \frac{\varepsilon}{2} \)

Furthermore, for any \(i \in [n] \), we know the \(i \)-th coordinates of \(p^{+1/2} \) and \(q^{+1/2} \) are both at least \(\frac{1}{2n} \). Henceforth, we will write \(p \) and \(q \) for \(p^{+1/2} \) and \(q^{+1/2} \), respectively.

In Case 1, if we apply Proposition \(9 \) with \(A = [n] \) and \(\delta = \frac{1}{n} \) and Proposition \(7 \)

\[
E[Z] \leq \min\{m^2, mn\} \cdot d_2^2(p, q) \leq \min\{m^2, mn\} \cdot \frac{\varepsilon^2}{16n} \leq \frac{m^2}{4(2m + 2n)} \cdot \varepsilon^2.
\]
On the other hand, in Case 2, applying Proposition 9 with $A = [n]$,

$$E[Z] \geq \frac{4m^2}{2m + 2n} d_{TV}^2(p,q) \geq \frac{m^2}{2m + 2n} \epsilon^2.$$

Our algorithm therefore thresholds Z on the value $\frac{5m^2}{8(2m+2n)} \epsilon^2$, outputting “close” if it’s below this value and “far” otherwise.

The two bounds in (9) meet when $C^3 \epsilon^{-4} = n$, which is exactly when $m = n$. When $m \leq n$, the first bound applies, and when $m > n$ the second bound applies. As a result, we will split our analysis into the two cases.

Lemma 3. The tester succeeds in the $m \leq n$ case of Theorem 4.

Proof. By Corollary 1

$$\text{Var}[Z] \leq 2 \min\{m, n\} + 20m d_H^2(p,q) \leq 22m,$$

where we used the fact that $d_H(p,q) \leq 1$. In Case 1,

$$\Pr \left[Z \geq \frac{5m^2}{8(2m+2n)} \epsilon^2 \right] \leq \frac{\text{Var}[Z]}{\left(\frac{2m}{3m^2} \epsilon^2 \right)^2} = O \left(\frac{m}{m^2 \epsilon^4} \right) = O \left(\frac{n^2}{m^3 \epsilon^4} \right).$$

In Case 2,

$$\Pr \left[Z \leq \frac{5m^2}{8(2m+2n)} \epsilon^2 \right] \leq \frac{64 \text{Var}[Z]}{9E[Z]^2} = O \left(\frac{m}{m^2 \epsilon^4} \right) = O \left(\frac{n^2}{m^3 \epsilon^4} \right).$$

Both of these bounds can be made arbitrarily small constants by setting C sufficiently large.

Lemma 4. The tester succeeds in the $m > n$ case of Theorem 4.

Proof. We first consider Case 1. By Proposition 5

$$\text{Var}[Z] \leq 2 \min\{m, n\} + \sum_{i=1}^n 5m \frac{(p_i - q_i)^2}{p_i q_i} \leq 2n + 5mn d_L^2(p,q) \leq 2n + \frac{5}{16} m \epsilon^2.$$

Then, we have that

$$\Pr \left[Z \geq \frac{5m^2}{8(2m+2n)} \epsilon^2 \right] \leq \frac{\text{Var}[Z]}{\left(\frac{2m^2}{3m^2} \epsilon^2 \right)^2} = O \left(\frac{n}{m^2 \epsilon^4} + \frac{m \epsilon^2}{m^2 \epsilon^4} \right) = O \left(\frac{n}{m^2 \epsilon^4} + \frac{1}{m \epsilon^2} \right).$$

Next, we focus on Case 2. Write L for the set of $i \in [n]$ such that $m(p_i + q_i) \geq 1$. Then $d_H^2(p_T,q_T) \leq \frac{1}{2} \sum_{i \in T}(p_i + q_i) \leq n/2m$. As a result, by Corollary 1

$$\text{Var}[Z] \leq 2 \min\{m, n\} + 20m d_H^2(p,q) \leq 12n + 20m d_L^2(p_L,q_L).$$

By Proposition 8 $E[Z] \geq \frac{2m}{3} d_L^2(p_L,q_L)$. Hence,

$$\Pr \left[Z \leq \frac{5m^2}{8(2m+2n)} \epsilon^2 \right] \leq \frac{64 \text{Var}[Z]}{9E[Z]^2} = O \left(\frac{n}{E[Z]^2} + \frac{m d_L^2(p_L,q_L)}{E[Z]^2} \right)
\leq O \left(\frac{n}{E[Z]^2} + \frac{1}{E[Z]} \right) = O \left(\frac{n}{m^2 \epsilon^4} + \frac{1}{m \epsilon^2} \right).$$

Both of these bounds can be made arbitrarily small constants by setting C sufficiently large.

\[\]
4.3 Equivalence Testing with Hellinger Distance

In this section, we prove Theorem 5. We will take the number of samples to be

\[m = \min \left\{ C \cdot \frac{n^{2/3}}{\varepsilon^{3/7}}, C^{3/4} \cdot \frac{n^{3/4}}{\varepsilon^2} \right\}, \]

where \(C \) is some constant which can be taken to be 10\(^{10}\).

Rather than drawing samples from \(p \) or \(q \), our algorithm draws samples from \(p^+ \) and \(q^+ \) for \(\delta = \varepsilon^2/32 \).

By Proposition 4, we have the following guarantees in the two cases:

\[\Pr[Z] \leq \frac{m^2 \varepsilon^4}{32n} \]

where we used the fact that \(n_m \geq 3 \). Otherwise, our algorithm therefore thresholds \(Z \).

Proof. In Case 1, if we apply Proposition 6 with \(A = [n] \),

\[E[Z] \leq m^2 \cdot d^2_{TV}(p, q) \leq \frac{m^2 \varepsilon^4}{32n}. \]

On the other hand, in Case 2, applying Proposition 9 with \(A = [n] \),

\[E[Z] \geq \frac{4m^2}{2n + 2m} \cdot d_{TV}(p, q)^2 \geq \frac{4m^2}{2n + 2m} \cdot d_H(p, q)^4 \geq \frac{m^2 \varepsilon^4}{16n}. \]

Furthermore, for any \(i \in [n] \), we know the \(i \)-th coordinates of \(p^+ \) and \(q^+ \) are both at least \(\varepsilon^2/32 \cdot n \). Henceforth, we will write \(p \) and \(q \) for \(p^+ \) and \(q^+ \), respectively.

The two bounds meet when \(C^{3/4} \cdot \varepsilon^{-2} = n^{1/4} \), which is exactly when \(m = n \). When \(m \leq n \), the first bound applies, and when \(m > n \) the second bound applies. As a result, we will split our analysis into the two cases.

Lemma 5. The tester succeeds in the \(m \leq n \) case of Theorem 5.

Proof. In Case 1, if we apply Proposition 7

\[\frac{m^2 \varepsilon^4}{128n} \]

Our algorithm therefore thresholds \(Z \) on the value \(\frac{m^2 \varepsilon^4}{128n} \), outputting “close” if it’s below this value and “far” otherwise.

By Corollary 1

\[\Var[Z] \leq 2 \min\{m, n\} + 20md_H(p, q)^2 \leq 22m, \]

where we used the fact that \(d_H(p, q) \leq 1 \). In Case 1,

\[\Pr[Z \geq \frac{m^2 \varepsilon^4}{128n}] = O \left(\frac{m^2 \varepsilon^4}{32n} \right) = O \left(\frac{n^2}{m^3 \varepsilon^8} \right). \]

In Case 2,

\[\Pr[Z \leq \frac{m^2 \varepsilon^4}{128n}] \leq \frac{64 \Var[Z]}{49E[Z]^2} = O \left(\frac{m^2 \varepsilon^4}{32n} \right) = O \left(\frac{n^2}{m^3 \varepsilon^8} \right). \]

Both of these bounds can be made arbitrarily small constants by setting \(C \) sufficiently large.

Lemma 6. The tester succeeds in the \(m > n \) case of Theorem 5.

Proof. In Case 1, if we apply Proposition 8 with \(A = [n] \) and \(\delta = \frac{\varepsilon^2}{16n} \) and Proposition 7

\[E[Z] \leq m^2 \cdot d^2_{TV}(p, q) \leq \min \left\{ m^2, 16 \frac{mn}{\varepsilon^2} \right\} \cdot \frac{m^2 \varepsilon^4}{32n} = \min \left\{ m^2 \cdot \frac{m^2 \varepsilon^4}{32n}, \frac{m^2 \varepsilon^4}{64} \right\}. \]

Case 2 is more complicated. We will need to define the set of “large” coordinates \(L = \{ i : m(p_i + q_i) \geq 1 \} \) and the set of “small” coordinates \(S = [n] \setminus L \). Applying Proposition 9 to \(S \), we have

\[E[Z_S] \geq \frac{4m^2}{3n} \cdot d^2_{TV}(p_S, q_S) \geq \frac{4m^2}{3n} \cdot d^2_{TV}(p_S, q_S). \]
where \(m \cdot (p(S) + q(S)) \leq n \) by the definition of \(S \). If we also apply Proposition 5 to \(L \), we get
\[
\mathbb{E}[Z] = \mathbb{E}[Z_S] + \mathbb{E}[Z_L] \geq \frac{4m^2}{3n} d_{TV}^2(p_S, q_S) + \frac{2m}{3} d_H^2(p_L, q_L) \geq \min \left\{ \frac{m^2}{48n}, \frac{m^2}{12} \right\},
\]
where the last step follows because \(d_H^2(p_S, q_S) + d_H^2(p_L, q_L) = d_H^4(p, q) \) and \(d_{TV}^2(p_S, q_S) \geq d_H^4(p_S, q_S). \) As a result, we threshold \(Z \) on the value
\[
\frac{1}{2} \cdot \min \left\{ \frac{m^2}{48n}, \frac{m^2}{12} \right\},
\]
outputting “close” if it’s below this value and “far” otherwise.

In Case 1, by Proposition 5,
\[
\text{Var}[Z] \leq 2 \min\{m, n\} + \sum_{i=1}^{m} \frac{5m}{p_i + q_i} \leq 2n + \frac{80mn}{\varepsilon^2} \|p - q\|_2^2 \leq 2n + \frac{5}{64} m^2 \varepsilon^2.
\]
Hence, by Chebyshev’s inequality,
\[
\Pr \left[Z \geq \frac{1}{2} \cdot \min \left\{ \frac{m^2}{48n}, \frac{m^2}{12} \right\} \right] \leq \frac{\text{Var}[Z]}{\left(\frac{1}{2} \cdot \min \left\{ \frac{m^2}{48n}, \frac{m^2}{12} \right\} \right)^2}
\leq O \left(\frac{n}{\frac{m^2}{48n}} + \frac{n}{\frac{m^2}{12}} \right) = O \left(\frac{n^2}{m^4 \varepsilon^8} + \frac{n^2}{m^3 \varepsilon^6} + \frac{1}{m \varepsilon^2} \right).
\]
This can be made an arbitrarily small constant by setting \(C \) sufficiently large.

In Case 2, by Corollary 1,
\[
\Pr \left[Z \leq \frac{\mathbb{E}[Z]}{2} \right] \leq \frac{4\text{Var}[Z]}{\mathbb{E}[Z]^2} \leq \frac{8n + 80md_H(p, q)^2}{\mathbb{E}[Z]^2}.
\]
Because \(d_H(p, q)^2 = d_H^2(p_S, q_S) + d_H^2(p_L, q_L) \), either \(d_H^4(p_S, q_S) \) or \(d_H^4(p_L, q_L) \) is at least \(\frac{1}{2} d_H^4(p, q) \). Suppose that \(d_H^4(p_S, q_S) \geq \frac{1}{2} d_H^4(p, q) \). We note that
\[
md_H^4(p_S, q_S) = \frac{m}{2} \sum_{i \in S} (\sqrt{p_i} - \sqrt{q_i})^2 \leq \frac{n}{2},
\]
by the definition of \(S \). Thus,
\[
\frac{8n + 160md_H^4(p_S, q_S)}{(4m^2/3n) d_{TV}^2(p_S, q_S)^2} \leq \frac{88n}{(4m^2/3n) d_{TV}^2(p_S, q_S)^2} = O \left(\frac{n^3}{m^4 d_{TV}^2(p_S, q_S)} \right) \leq O \left(\frac{n^3}{m^4 \varepsilon^8} \right),
\]
where the last step used the fact that \(d_{TV}^2(p_S, q_S) \geq d_H^4(p_S, q_S) \geq \frac{1}{2} d_H^4(p, q) \geq \frac{1}{2} \varepsilon^2 \).

In the case when \(d_H^4(p_L, q_L) \geq \frac{1}{2} d_H^4(p, q) \),
\[
\frac{8n + 160md_H^4(p_L, q_L)}{(2m^2/3n) d_H^4(p_L, q_L)^2} = O \left(\frac{n}{m^2 d_H^2(p_L, q_L)} + \frac{1}{md_H^2(p_L, q_L)} \right) \leq O \left(\frac{n}{m^2 \varepsilon^4} + \frac{1}{m \varepsilon^2} \right).
\]
This can be made an arbitrarily small constant by setting \(C \) sufficiently large.

5 Upper Bounds Based on Estimation

We start by showing a simple meta-algorithm – in short, it says that if a testing problem is well-defined (i.e., has appropriate separation between the cases) and we can estimate one of the distances, it can be converted to a testing algorithm.
Theorem 6. Suppose there exists an $m(n, \varepsilon)$ sample algorithm which, given sample access to distributions p and q over $[n]$, estimates some distance $d(p, q)$ up to an additive ε with probability at least $2/3$. Consider distances $d_X(\cdot, \cdot), d_Y(\cdot, \cdot)$ and $\varepsilon_1, \varepsilon_2 > 0$ such that $d_Y(p, q) \geq \varepsilon_2 \rightarrow d_Y(p, q) > 3\varepsilon_1/2$ and $d_X(p, q) \leq \varepsilon_1 \rightarrow d_Y(p, q) < 2\varepsilon_3/3$, and $d(\cdot, \cdot)$ is either $d_X(\cdot, \cdot)$ or $d_Y(\cdot, \cdot)$.

Then there exists an algorithm for equivalence testing between p and q distinguishing the cases:

- $d_X(p, q) \leq \varepsilon_1$;
- $d_Y(p, q) \geq \varepsilon_2$.

The algorithm requires either $m(n, O(\varepsilon_1))$ or $m(n, O(\varepsilon_2))$ samples, depending on whether $d = d_X$ or d_Y.

Proof. Suppose that $d = d_X$, the other case follows similarly. Using the $m(n, \varepsilon_1/4)$ samples, obtain an estimate \hat{d} of $d_X(p, q)$, accurate up to an additive $\varepsilon_1/4$. If $\hat{d} \leq 5\varepsilon_1/4$, output that $d_X(p, q) \leq \varepsilon_1$, else output that $d_Y(p, q) \geq \varepsilon_2$. Conditioning on the correctness of the estimation algorithm, correctness for the case when $d_X(p, q) \leq \varepsilon_1$ is immediate, and correctness for the case when $d_Y(p, q) \geq \varepsilon_2$ follows from the separation between the cases. □

It is folklore that a distribution over $[n]$ can be ε-learned in ℓ_2-distance with $O(1/\varepsilon^2)$ samples (see, i.e., [Wag15] for a reference). By triangle inequality, this implies that we can estimate the ℓ_2 distance between p and q up to an additive $O(\varepsilon)$ with $O(1/\varepsilon^2)$ samples, leading to the following corollary.

Corollary 2. There exists an algorithm for equivalence testing between p and q distinguishing the cases:

- $d(p, q) \leq f(n, \varepsilon)$;
- $d_{\ell_2}(p, q) \geq \varepsilon$,

where $d(\cdot, \cdot)$ is a distance and $f(n, \varepsilon)$ is such that $d_{\ell_2}(p, q) \geq \varepsilon \rightarrow d(p, q) \geq 3f(n, \varepsilon)/2$ and $d(p, q) \leq f(n, \varepsilon) \rightarrow d_{\ell_2}(p, q) \leq 2\varepsilon/3$. The algorithm requires $O(1/\varepsilon^2)$ samples.

Finally, we note that total variation distance between p and q can be additively estimated up to a constant using $O(n/\log n)$ samples [JHW19], leading to the following corollary:

Corollary 3. For constant $\varepsilon > 0$, there exists an algorithm for equivalence testing between p and q distinguishing the cases:

- $d_{TV}(p, q) \leq \varepsilon^2/4$;
- $d_{TV}(p, q) \geq \varepsilon/\sqrt{2}$.

The algorithm requires $O(n/\log n)$ samples.

6 Lower Bounds

We start with a simple lower bound, showing that identity testing with respect to KL divergence is impossible.

Theorem 7. No finite sample test can perform identity testing between p and q distinguishing the cases:

- $p = q$;
- $d_{KL}(p, q) \geq \varepsilon^2$.

Proof. Simply take $q = (1, 0)$ and let p be either $(1, 0)$ or $(1 - \delta, \delta)$, for $\delta > 0$ tending to zero. Then $p = q$ in the first case and $d_{KL}(p, q) = \infty$ in the second, but distinguishing between these two possibilities for p takes $\Omega(\delta^{-1}) \rightarrow \infty$ samples. □

Next, we prove our lower bound for KL robust identity testing.

Theorem 8. There exist constants $0 < s < c$, such that any algorithm for identity testing between p and q distinguishing the cases:
Proof. Let \(q = (\frac{1}{n}, \ldots, \frac{1}{n}) \) be the uniform distribution. By Theorem 1 of [VV10a], for any \(\delta < \frac{1}{4} \) there exist sets of distributions \(\mathcal{C} \) and \(\mathcal{F} \) (for close and far) such that:

- For every \(p \in \mathcal{C} \), \(R(p, q) = O(\delta |\log \delta|) \).
- For every \(p \in \mathcal{F} \) there exists a distribution \(r \) which is uniform over \(n/2 \) elements such that \(R(p, r) = O(\delta |\log \delta|) \).
- Distinguishing between \(p \in \mathcal{C} \) and \(p \in \mathcal{F} \) requires \(\Omega(\frac{\delta n}{\log(n)}) \) samples.

Here, \(R(\cdot, \cdot) \) denotes the relative earthmover distance (see [VV10a] for the definition). Now, if \(p \in \mathcal{C} \) then

\[
d_{\text{KL}}(p, q) = \sum_{i=1}^{n} p_i \log \left(\frac{p_i}{1/n} \right) = \log(n) - H(p) \leq O(\delta |\log \delta|),
\]

where \(H(p) \) is the Shannon entropy of \(p \), and here we used the fact that \(|H(p) - H(q)| \leq R(p, q)| \), which follows from Fact 5 of [VV10a]. On the other hand, if \(q \in \mathcal{F} \), let \(r \) be the corresponding distribution which is uniform over \(n/2 \) elements. Then

\[
\frac{1}{2} = d_{\text{TV}}(p, q) \leq d_{\text{TV}}(q, p) + d_{\text{TV}}(p, r) \leq d_{\text{TV}}(q, p) + O(\delta |\log \delta|),
\]

where we used the triangle inequality and the fact that \(d_{\text{TV}}(p, r) \leq R(p, r) \) (see [VV10a] page 4). As a result, if we set \(\delta \) to be some small constant, \(s = O(\delta |\log \delta|) \), and \(c = \frac{1}{2} - O(\delta |\log \delta|) \), then this argument shows that distinguish \(d_{\text{KL}}(p, q) \leq s \) versus \(d_{\text{TV}}(p, q) \geq c \) requires \(\Omega(n/\log n) \) samples.

Finally, we conclude with our lower bound for chi-squared robust equivalence testing.

Theorem 9. There exists constant \(\varepsilon > 0 \) such that any algorithm for equivalence testing between \(p \) and \(q \) distinguishing the cases:

- \(d_{\chi^2}(p, q) \leq \varepsilon^2/4 \);
- \(d_{\text{TV}}(p, q) \geq \varepsilon \);

requires \(\Omega(n/\log n) \) samples.

Proof. We reduce the problem of distinguishing \(d_{H}(p, q) \leq \frac{1}{\sqrt{48}} \varepsilon \) from \(d_{\text{TV}}(p, q) \geq 3\varepsilon \) to this. Define the distributions

\[
p' = \frac{2}{3}p + \frac{1}{3}q, \quad q' = \frac{1}{3}p + \frac{2}{3}q.
\]

Then \(m \) samples to \(p' \) and \(q' \) can be simulated by \(m \) samples to \(p \) and \(q \). Furthermore,

\[
d_{H}(p', q') \leq \frac{1}{\sqrt{48}} \varepsilon, \quad d_{\text{TV}}(p', q') = \frac{1}{3} d_{\text{TV}}(p, q) \geq \varepsilon,
\]

where we used the fact that Hellinger distance satisfies the data processing inequality. But then, in the “close” case,

\[
d_{\chi^2}(p', q') = \sum_{i=1}^{n} \frac{(p'_i - q'_i)^2}{q'_i} \leq 3 \sum_{i=1}^{n} \frac{(p'_i - q'_i)^2}{p'_i + q'_i} \leq 12 d_{H}^2(p', q') \leq \frac{1}{4} \varepsilon^2,
\]

where we used the fact that \(p'_i \leq 2q'_i \) and Proposition [3]. Hence, this problem, which requires \(\Omega(n/\log n) \) samples (by the relationship between total variation and Hellinger distance, and the lower bound for testing total variation-close versus -far of [VV10a]), reduces to the problem in the proposition, and so that requires \(\Omega(n/\log n) \) samples as well.

\[\]
References

[ADK15] Jayadev Acharya, Constantinos Daskalakis, and Gautam Kamath. Optimal testing for properties of distributions. In *Advances in Neural Information Processing Systems 28*, NIPS ’15, pages 3577–3598. Curran Associates, Inc., 2015.

[ADOS17] Jayadev Acharya, Hirakendu Das, Alon Orlitsky, and Ananda Theertha Suresh. A unified maximum likelihood approach for estimating symmetric properties of discrete distributions. In *Proceedings of the 34th International Conference on Machine Learning*, ICML ’17. JMLR, Inc., 2017.

[AOST17] Jayadev Acharya, Alon Orlitsky, Ananda Theertha Suresh, and Himanshu Tyagi. Estimating Rényi entropy of discrete distributions. *IEEE Transactions on Information Theory*, 63(1):38–56, 2017.

[BFF+01] Tugkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubinfeld, and Patrick White. Testing random variables for independence and identity. In *Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science*, FOCS ’01, pages 442–451, Washington, DC, USA, 2001. IEEE Computer Society.

[BFR+13] Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White. Testing closeness of discrete distributions. *Journal of the ACM*, 60(1):4:1–4:25, 2013.

[BKR04] Tuğkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinear algorithms for testing monotone and unimodal distributions. In *Proceedings of the 36th Annual ACM Symposium on the Theory of Computing*, STOC ’04, New York, NY, USA, 2004. ACM.

[BV15] Bhaswar Bhattacharya and Gregory Valiant. Testing closeness with unequal sized samples. In *Advances in Neural Information Processing Systems 28*, NIPS ’15, pages 2611–2619. Curran Associates, Inc., 2015.

[Can15] Clément L. Canonne. A survey on distribution testing: Your data is big. but is it blue? *Electronic Colloquium on Computational Complexity (ECCC)*, 22(63), 2015.

[CDGR16] Clément L. Canonne, Ilias Diakonikolas, Themis Gouleakis, and Ronitt Rubinfeld. Testing shape restrictions of discrete distributions. In *Proceedings of the 33rd Symposium on Theoretical Aspects of Computer Science*, STACS ’16, pages 25:1–25:14, 2016.

[CDKS17] Clément L. Canonne, Ilias Diakonikolas, Daniel M. Kane, and Alistair Stewart. Testing Bayesian networks. In *Proceedings of the 30th Annual Conference on Learning Theory*, COLT ’17, pages 370–448, 2017.

[CDVV14] Siu-On Chan, Ilias Diakonikolas, Gregory Valiant, and Paul Valiant. Optimal algorithms for testing closeness of discrete distributions. In *Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms*, SODA ’14, pages 1193–1203, Philadelphia, PA, USA, 2014. SIAM.

[DDK16] Constantinos Daskalakis, Nishanth Dikkala, and Gautam Kamath. Testing Ising models. *arXiv preprint arXiv:1612.03147*, 2016.

[DGPP16] Ilias Diakonikolas, Themis Gouleakis, John Peebles, and Eric Price. Collision-based testers are optimal for uniformity and closeness. *arXiv preprint arXiv:1611.03579*, 2016.

[DK16] Ilias Diakonikolas and Daniel M. Kane. A new approach for testing properties of discrete distributions. In *Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science*, FOCS ’16, pages 685–694, Washington, DC, USA, 2016. IEEE Computer Society.

[DKN15] Ilias Diakonikolas, Daniel M. Kane, and Vladimir Nikishkin. Testing identity of structured distributions. In *Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms*, SODA ’15, pages 1841–1854, Philadelphia, PA, USA, 2015. SIAM.
A Proof of Proposition 1

Recall that we will prove this for restrictions of probability distributions to subsets of the support – in other words, we do not assume \(\sum_{i \in S} p_i = \sum_{i \in S} q_i = 1 \), we only assume that \(\sum_{i \in S} p_i \leq 1 \) and \(\sum_{i \in S} q_i \leq 1 \).
\begin{align*}
d^2_H(p_S, q_S) &\leq d_{TV}(p_S, q_S) : \\
&= \sum_{i \in S} (\sqrt{p_i} - \sqrt{q_i})^2 \\
&\leq \frac{1}{2} \sum_{i \in S} |\sqrt{p_i} - \sqrt{q_i}|(\sqrt{p_i} + \sqrt{q_i}) \\
&= \frac{1}{2} \sum_{i \in S} |p_i - q_i| \\
&= d_{TV}(p_S, q_S).
\end{align*}

\begin{align*}
d_{TV}(p_S, q_S) &\leq \sqrt{2} d_H(p_S, q_S) : \\
&= \frac{1}{4} \left(\sum_{i \in S} |p_i - q_i| \right)^2 \\
&\leq \frac{1}{4} \left(\sum_{i \in S} |\sqrt{p_i} - \sqrt{q_i}|(\sqrt{p_i} + \sqrt{q_i}) \right)^2 \\
&\leq \frac{1}{4} \left(\sum_{i \in S} |\sqrt{p_i} - \sqrt{q_i}| \right)^2 \left(\sum_{i \in S} (\sqrt{p_i} + \sqrt{q_i})^2 \right) \\
&\leq d_H^2(p_S, q_S) \cdot \frac{1}{2} \left(\sum_{i \in S} (\sqrt{p_i} + \sqrt{q_i})^2 \right) \\
&= d_H^2(p_S, q_S) \cdot \left(\sum_{i \in S} p_i + \sum_{i \in S} q_i - d_H^2(p_S, q_S) \right) \\
&\leq d_H^2(p_S, q_S) \cdot (2 - d_H^2(p_S, q_S)) \\
&\leq 2d_H^2(p_S, q_S).
\end{align*}

Taking the square root of both sides gives the result. The second inequality is Cauchy-Schwarz.

\begin{align*}
2d_H^2(p_S, q_S) &\leq \sum_{i \in S} (q_i - p_i) + d_{KL}(p_S, q_S) : \\
&= \sum_{i \in S} (q_i + p_i) - 2 \sum_{i \in S} \sqrt{p_i q_i} \\
&= \sum_{i \in S} (q_i + p_i) - 2 \left(\sum_{j \in S} p_j \sum_{i \in S} \frac{p_i}{p_j} \sqrt{\frac{q_i}{p_i}} \right) \\
&\leq \sum_{i \in S} (q_i + p_i) - 2 \left(\sum_{j \in S} p_j \exp \left(\frac{1}{2} \sum_{i \in S} \frac{p_i}{p_j} \log \frac{q_i}{p_i} \right) \right) \\
&\leq \sum_{i \in S} (q_i + p_i) - 2 \left(\sum_{j \in S} p_j \left(1 + \frac{1}{2} \sum_{i \in S} \frac{p_i}{p_j} \log \frac{q_i}{p_i} \right) \right) \\
&= \sum_{i \in S} (q_i - p_i) - \left(\sum_{i \in S} p_i \log \frac{q_i}{p_i} \right) \\
&= \sum_{i \in S} (q_i - p_i) + d_{KL}(p_S, q_S).
\end{align*}

The first inequality is Jensen’s, and the second is $1 + x \leq \exp(x)$.
\[d_{\text{KL}}(p_S, q_S) \leq \sum_{i \in S} (p_i - q_i) + d_{\chi^2}(p_S, q_S) : \]

\[
\begin{align*}
 d_{\text{KL}}(p_S, q_S) &= \left(\sum_{j \in S} p_j \right) \left(\sum_{i \in S} \frac{p_i}{\sum_{j \in S} p_j} \log \frac{p_i}{q_i} \right) \\
 &\leq \left(\sum_{j \in S} p_j \right) \left(\log \left(\frac{1}{\sum_{j \in S} p_j} \sum_{i \in S} p_i^2 \right) \right) \\
 &= \left(\sum_{j \in S} p_j \right) \left(\log \left(1 + \sum_{j \in S} \frac{1}{p_j} \left(d_{\chi^2}(p_S, q_S) - \sum_{i \in S} q_i \right) \right) \right) \\
 &\leq \left(\sum_{j \in S} p_j \right) \left(1 + \sum_{j \in S} \frac{1}{p_j} \left(d_{\chi^2}(p_S, q_S) - \sum_{i \in S} q_i \right) \right) \\
 &= \sum_{i \in S} (p_i - q_i) + d_{\chi^2}(p_S, q_S).
\end{align*}
\]

The first inequality is Jensen’s, and the second is \(1 + x \leq \exp(x) \).