‘Dorada’ Apricot

J. Egea,1 D. Ruiz, and L. Burgos
Departamento de Mejora Vegetal, Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas, P.O. Box 164, E-30100, Espinardo, Murcia, Spain

Additional index words. fruit breeding, Prunus armeniaca, self-compatibility, fruit quality, canning aptitude

‘Dorada’ is a late ripening apricot cultivar (Prunus armeniaca L.) with high productivity, good fruit quality and an attractive light-orange fruit suitable for the European markets. This cultivar is well adapted to the climatic conditions at the mountains of Spain. ‘Dorada’ is self-compatible and possesses a high degree of autogamy. ‘Dorada’ fruit are free stone with a light orange skin color and a yellow-light orange flesh color that make them very attractive. This cultivar is also characterized by its good aptitude for canning.

Origin

‘Dorada’ resulted from a cross made in 1992 at Murcia (Spain) between the French cultivar, of unknown origin, ‘Bergeron’, and the Spanish cultivar, of unknown origin, ‘Moniquí’ (Fig. 1). This cross was made within the apricot breeding program at CEBAS–CSIC in Murcia (Spain) with the objective of obtaining good fruit quality as well as canning aptitude.

Description

Tree description. ‘Dorada’ was originally selected as a seeding tree on its own roots and then grafted onto apricot seedlings (3 repetitions). Trees of ‘Dorada’ are large and medium vigorous with a moderate spread. It has a moderate density of flowers (22.9 flowers/cm² of shoot) mainly localized on fruiting spurs of two-year-old branches. Flower density was calculated from the number of flowers on productive shoots, which were about 1.2 m long and where basal diameter was measured. Flower density was expressed as flowers/cm² of shoot basal section, average of three repetitions. ‘Dorada’ cultivar showed a very high fruit set (50.5%) (Table 1), this parameter being calculated in the same shoots as flower density by counting the fruit and dividing by the number of flowers. ‘Dorada’ is characterized by large fruit and very high productivity in comparison with traditional Spanish apricot cultivars. Tree architecture greatly facilitates pruning (reduced branching habit).

PPV resistance. Sharka disease caused by the plum pox virus (PPV) is a serious limiting factor for temperate fruit production in those areas that are affected (Köllber, 2001). All apricot cultivars traditionally grown in Europe are susceptible to this disease (Martínez-Gómez et al., 2000). Evaluation of PPV resistance in controlled greenhouse conditions (Martínez-Gómez and Dicenta, 1999) has not been tested in ‘Dorada’ because none of their parents are known as resistant varieties.

Time of bloom. ‘Dorada’ has medium-high chilling requirements for breaking dormancy, about 1,050 ± 70 chill units (Richardson et al., 1974). The growing degree hour (GDH) requirements (Richardson et al., 1975) between the end of the rest period and full bloom were 5000 ± 500. Under our experimental conditions in Murcia (southeast of Spain, 37°N latitude, 1°W longitude, and 450 m altitude) ‘Dorada’ full bloom occurred about 14 Mar. (+4 d as average from 3 years), a medium-late flowering date among traditional Spanish apricot cultivars (Table 1).

Self-compatibility and autogamy. Fruit set percentage averaged 50.5% ± 3% over 3 years. The self-compatibility of this cultivar was

Bergeron
(French cultivar)

Dorada

Moniquí
(Spanish cultivar)

Fig. 1. Pedigree of ‘Dorada’ apricot.

Table 1. Comparative analysis of tree and fruit characteristics of ‘Dorada’, the Spanish cultivar ‘Búlida’, the French cultivar ‘Bergeron’, and the North American cultivar ‘Orange Red’.

Characteristics	‘Dorada’	‘Búlida’	‘Bergeron’	‘Orange Red’
Tree				
Vigour	Vigorous	Very vigorous	Very vigorous	Vigorous
Flower density (flower/cm²)	22.9	42.0	31.1	5.1
Flowering date (full bloom)	14 Mar.	8 Mar.	13 Mar.	15 Mar.
Fruit set (%)	50.5	31.6	39.4	13.6
Yield	Very high	High	High	Medium
Fruit				
Ripening date	22 June	26 May	19 June	28 May
Fruit size (g)	73.1	59.8	70.7	61.0
Attractiveness	8.3	6.7	7.2	9.0
Sugar (*Brix)	13.1	10.62	11.90	14.22
Acidity*	1.24	1.29	1.73	1.23

*Titratable acidity expressed as grams of malic acid per 100 mL.
in peach were screened for polymorphism of ‘Dorada’ apricot DNA. Seven SSR markers were able to distinguish ‘Dorada’ and its progenitors. The DNA fingerprints of ‘Dorada’ and its progenitors ‘Bergeron’ and ‘Moniquí’ are shown in Table 2.

Availability

Virus-free budwood is available from CE-BAS-CSIC (Spain). This cultivar is registered in the European Union Community Plant Variety Office with the registration number 2003/1216. Budwood has been tested and is free of the following viruses: prunus necrotic ring spot virus (PNRSV), apple mosaic virus (ApMV), apple chlorotic leaf spot virus (ACLSV), prune dwarf virus (PDV), and plum pox virus (PPV).

Literature Cited

Aranzana, M.J., J. García-Mas, J. Carbó, and P. Arús. 2002. Development and variability analysis of microsatellite markers in peach. Plant Breed. 121:87–92.

Cipriani, G., G. Lot, H.G. Huang, M.T. Marrazzo, E. Peterlunger, and R. Testolin. 1999. AC/CT and AG/CT microsatellite repeats in peach (Prunus persica (L) Basch): Isolation, characterization and cross-species amplification in Prunus. Theor. Appl. Genet. 99:65–72.

Dirlewanger, E., A. Crosson, P. Tavaud, M.J. Aranzana, C. Poizat, A. Zanetto, P. Arús, and L. Laigret. 2002. Development of microsatellite markers in peach and their use in genetic diversity analysis in peach and sweet cherry. Theor. Appl. Genet. 105:127–138.

Kölber, M. 2001. Workshop on plum pox. Acta Hort. 550:249–255.

Martínez-Gómez, P. and F. Dicenta. 1999. Evaluation of resistance to shaka in the breeding apricot program in CEBA–CSIC in Murcia (Spain). Acta Hort. 488:731–737.

Martínez-Gómez, P., F. Dicenta, and J.M. Audergon. 2000. Behaviour of apricot (Prunus armeniaca L.) cultivars in the presence of shaka (plum pox potyvirus): A review. Agronomie 20:407–422.

Richardson, E.A., S.D. Seeley, and R.D. Walker. 1974. A model estimating the completion of rest for Red Haven and Elberta peach. HortScience 9:331–332.

Richardson, E.A., S.D. Seeley, R.D. Walker, J.L. Anderson, and G.L. Ashcroft. 1975. Pheno-climatography of spring peach bud development. HortScience 10:236–237.

Testolin, R., T. Marranzo, G. Cipriani, R. Quarta, I. Verde, M.T. Dettori, M. Pancaldi, and S. Sansavini. 2000. Microsatellite DNA in peach (Prunus persica (L.) Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520.

Table 2. Molecular characterization of ‘Dorada’ apricot cultivar and its parents ‘Bergeron’ and ‘Moniquí’ using peach simple sequence repeat (SSR) markers.

SSR marker	Reference	‘Dorada’	‘Bergeron’	‘Moniquí’
BPPCT 017	Dirlewanger et al., 2002	203/203	203/203	203/212
CPPCT 022	Aranzana et al., 2002	238/257	238/238	257/257
UDP 96003	Cipriani et al., 1999	93/115	93/115	93/93
UDP 96008	Cipriani et al., 1999	128/128	128/128	128/128
UDP 96019	Cipriani et al., 1999	170/214	170/214	170/170
UDP 98406	Cipriani et al., 1999	95/95	95/95	95/100
UDP 98412	Testolin et al., 2000	96/114	110/114	96/110