ON THE CARLESON DUALITY

TUOMAS HYTÖNEN AND ANDREAS ROSÉN

Abstract. As a tool for solving the Neumann problem for divergence form equations, Kenig and Pipher introduced the space X of functions on the half space, such that the non-tangential maximal function of their L_2-Whitney averages belongs to L_2 on the boundary. In this paper, answering questions which arose from recent studies of boundary value problems by Auscher and the second author, we find the predual of X, and characterize the pointwise multipliers from X to L_2 on the half space as the well-known Carleson-type space of functions introduced by Dahlberg. We also extend these results to L_p generalizations of the space X. Our results elaborate on the well-known duality between Carleson measures and non-tangential maximal functions.

1. Introduction

A fundamental estimate in harmonic analysis is Carleson’s inequality for Carleson measures. See [3, Thm 2] and [11, Thm 1] for the original formulations and applications in the theory of interpolating analytic functions, or for example Stein [11, Sec. II 2.2] and Coifman, Meyer and Stein [5] for more recent accounts in the framework of real-variable harmonic analysis. This inequality states that for a function $f(t, x)$ and a measure $d\mu(t, x)$ in the upper half space $R_1^{1+n} := \{(t, x) ; t > 0, x \in R^n\}$, one has the estimate

$$\int\int_{R_1^{1+n}} |f(t, x)| d\mu(t, x) \lesssim \sup_Q (\mu(\hat{Q})/|Q|) \int_{R^n} N_* f(y) dy,$$

where the supremum is over all cubes Q in R^n and $\hat{Q} := (0, \ell(Q)) \times Q$ is the Carleson box, $\ell(Q)$ being the sidelength of Q. Furthermore N_* denotes the non-tangential maximal function

$$(N_* f)(y) := \sup_{\{(t, x) : |x-y| \leq a\}} |f(t, x)|, \quad y \in R^n,$$

where $a > 0$ is a fixed constant determining the aperture of the cone. The exact value of a is less important, since for any $a_1, a_2 > 0$ the corresponding non-tangential maximal functions N_* are comparable in $L_p(R^n)$ norm for any $1 \leq p \leq \infty$. See Fefferman and Stein [7, Lem. 1].

Carleson’s inequality has numerous applications. Motivating for this paper is its applications to boundary value problems for elliptic partial differential equations. A recent application concerns boundary value problems for divergence form equations $\text{div}_{t,x} A(t, x) \nabla_{t,x} u(t, x) = 0$, with non-smooth coefficients $A \in L_\infty(R_1^{1+n}; C^{(1+n) \times (1+n)})$ with uniformly positive real part. To solve the Neumann problem with $L_2(R^n)$
boundary data, Kenig and Pipher \cite{9} introduced (a space equivalent to) the function space \mathcal{X} consisting of functions $f(t, x)$, thought of as gradients of solutions $u(t, x)$, with $N_*(W_2f) \in L_2(\mathbb{R}^n)$, where
\[
(W_q f)(t, x) := |W(t, x)|^{-1/q} \|f\|_{L_q(W(t, x))}, \quad (t, x) \in \mathbb{R}_{+1+n}^{1+n},
\]
is the L_q Whitney averaged function, with $W(t, x)$ being the Whitney region around (t, x). (Again, the precise value of the fixed constants $c_0 > 1$ and $c_1 > 0$ is less important.) The reason for replacing f by the Whitney average W_2f is that, unlike the potential $u(t, x)$, the gradient $f(t, x) = \nabla_{t, x} u(t, x)$ does not have classical interior pointwise DeGiorgi–Nash–Moser bounds.

In the recent works of one of the authors with P. Auscher \cite{1, 2}, the function space \mathcal{X} above is fundamental. In these papers, new methods are developed to solve the Neumann (as well as the Dirichlet) problems for systems of divergence form equations, which rely on solving certain operator-valued singular integral equations in this functions space \mathcal{X}. Two questions arose, which motivated this paper.

- Which functions $g(t, x)$ are bounded multipliers $\mathcal{X} \rightarrow L_2(\mathbb{R}_{+1+n}^{1+n}; dt dx) : f(t, x) \mapsto g(t, x)f(t, x)$?

It was shown \cite{1, lem. 5.5}, using Carleson’s inequality, that g is a multiplier if the modified Carleson norm
\[
|Q|\left(\int_{Q} W_{\infty} g(t, x)^2 dt dx\right)^{1/2}
\]
is finite. We show in this paper (Theorem 3.1) that this modified Carleson norm in fact is equivalent to the multiplier norm
\[
\|g\|_{\mathcal{X} \rightarrow L_2(\mathbb{R}_{+1+n}^{1+n}; dt dx)} = \sup_{f \neq 0}(\|gf\|_{L_2(\mathbb{R}_{+1+n}^{1+n}; dt dx)}/\|f\|_{\mathcal{X}}).
\]
The modified Carleson norm \cite{1} has been known for some time to be fundamental in the perturbation theory for divergence form equations. It was introduced already by Dahlberg \cite{6}. See also Fefferman, Kenig and Pipher \cite{8} and Kenig and Pipher \cite{9} \cite{10}.

- What is the dual, or predual, space of \mathcal{X}? We show in this paper (Theorem 3.2) that \mathcal{X} is the dual space of the space of functions $g(t, x)$ such that
\[
\int_{\mathbb{R}^n} \left(\sup_{Q \ni x} \int_{Q} W_{2g}(t, x) dt dx\right)^2 dz < \infty.
\]
(We here identify a function $f \in \mathcal{X}$ with the functional $g \mapsto \int \int_{\mathbb{R}_{+1+n}^{1+n}} f g dt dx$.) Theorem 3.2 also shows that the space \mathcal{X} is not reflexive. The interest in understanding duality for the space \mathcal{X} comes from the dual relation between the Dirichlet problem with $L_2(\mathbb{R}^n)$ data and the Dirichlet problem with Sobolev $H^1(\mathbb{R}^n)$ data. See \cite{9} Thm. 5.4 and \cite{2} Thm. 1.4.

Beyond these two results, we prove more general L_p results for the Carleson duality. On one hand, we consider not only $W_{\infty}g$ and W_{2g}, but more general L_q Whitney averages. On the other hand, we measure the non-tangential maximal function and
the Carleson functional in L_p norms. For example, this may have useful applications to boundary value problems with L_p data.

In Section 2, we first prove the corresponding results for a discrete vector-valued model of the Carleson duality. Then in Section 3, we prove equivalence between dyadic and non-dyadic norms, which yields the non-dyadic results.

The spaces we consider here are closely related to the tent spaces introduced by Coifman, Meyer and Stein [5], and in fact reduce to them for certain choices of the parameters. However, as a whole, the scale of spaces that we consider is new. Since the precise connection to tent spaces is somewhat technical, we postpone a more detailed commentary until Remark 3.3 below.

Acknowledgments.

This work was done during a visit by the first author to Linköping university in connection with a workshop on “harmonic analysis and elliptic PDEs”, organised by the second author and funded through the Tage Erlander prize 2009, the Swedish Research Council and Nordforsk. The first author was supported by the Academy of Finland, grants 130166, 133264 and 218148.

2. A discrete vector-valued model

In this section we study a dyadic model of the problem. We use the following notation. Let $\mathcal{D} = \bigcup_{j \in \mathbb{Z}} \mathcal{D}_j$ denote the dyadic cubes in \mathbb{R}^n, where

$$\mathcal{D}_j := \{2^{-j}(0,1)^n + 2^{-j}k : k \in \mathbb{Z}^n\}.$$

Let $W_Q := (\ell(Q)/2, \ell(Q)) \times Q$ denote the dyadic Whitney region, being in one-to-one correspondence with $Q \in \mathcal{D}$. Note that unlike their non-dyadic counterparts $W(t,x)$, the regions W_Q form a disjoint partition of \mathbb{R}^{1+n} (modulo zero-sets). Define the dyadic Hardy–Littlewood maximal function

$$M_Dh(x) := \sup_{Q: x \in Q \in \mathcal{D}} \frac{1}{|Q|} \int_Q h(y)dy, \quad x \in \mathbb{R}^n,$$

for $h \in L^1_{\text{loc}}(\mathbb{R}^n)$. Recall that M_D is bounded on $L_p(\mathbb{R}^n)$, $1 < p \leq \infty$.

Our discrete vector-valued setup is as follows. We assume that to each $Q \in \mathcal{D}$, there are two associated Banach spaces X_Q and Y_Q. For a sequence $f = (f_Q)_{Q \in \mathcal{D}}$, where $f_Q \in X_Q$, we define its non-tangential maximal function

$$(N_{X}f)(x) := \sup_{Q,x \in Q \in \mathcal{D}} \|f_Q\|_{X_Q}, \quad x \in \mathbb{R}^n.$$

For fixed $1 \leq p < \infty$, let \mathcal{X}_p denote the space of all sequences f such that $\|f\|_{\mathcal{X}_p} := \|N_X f\|_{L_p(\mathbb{R}^n)} < \infty$. For a sequence $g = (g_Q)_{Q \in \mathcal{D}}$, where $g_Q \in Y_Q$, we define the Carleson functional

$$(C_{Y}g)(x) := \sup_{Q,x \in Q \in \mathcal{D}} \frac{1}{|Q|} \sum_{R \subset Q, R \in \mathcal{D}} \|g_R\|_{Y_R}, \quad x \in \mathbb{R}^n.$$

For fixed $1 < p' \leq \infty$, let $\mathcal{Y}_{p'}$ denote the space of all sequences g such that $\|g\|_{\mathcal{Y}_{p'}} := \|C_Y g\|_{L_{p'}(\mathbb{R}^n)} < \infty$. Note that the case $p' = 1$ is not interesting, since $g = 0$ necessarily if $\|C_Y g\|_{L_1(\mathbb{R}^n)} < \infty$.

We assume that for each $Q \in \mathcal{D}$ there is a duality $\langle \mathcal{X}_Q, \mathcal{Y}_Q \rangle$ as below, with constants C uniformly bounded with respect to Q.

Definition 2.1. Let \(\mathcal{X} \) and \(\mathcal{Y} \) be two Banach spaces. By a duality \((\mathcal{X}, \mathcal{Y}) \), we mean a bilinear map \(\mathcal{X} \times \mathcal{Y} \ni (f, g) \mapsto \langle f, g \rangle \in \mathbb{R} \) and a constant \(0 < C < \infty \) such that

\[
|\langle f, g \rangle| \leq C \|f\|_\mathcal{X} \|g\|_\mathcal{Y}, \quad f \in \mathcal{X}, \ g \in \mathcal{Y},
\]

\[
\|f\|_\mathcal{X} \leq C \sup_{\|g\|_\mathcal{Y} = 1} \langle f, g \rangle, \quad f \in \mathcal{X},
\]

\[
\|g\|_\mathcal{Y} \leq C \sup_{\|f\|_\mathcal{X} = 1} \langle f, g \rangle, \quad g \in \mathcal{Y}.
\]

We prove the following duality result.

Theorem 2.2. Let \((\mathcal{X}_Q)_{Q \in \mathcal{D}}\) and \((\mathcal{Y}_Q)_{Q \in \mathcal{D}}\) be pairwise dual Banach spaces as above, and let \(1/p + 1/p' = 1, 1 \leq p < \infty\). Then there is a constant \(0 < C < \infty\) such that

\[
\sum_{Q \in \mathcal{D}} \|f_Q \cdot g_Q\| \leq C \|N_{X_Q} f\|_{L_p(\mathbb{R}^n)} \|C_{Y_Q} g\|_{L_{p'}(\mathbb{R}^n)}, \quad f_Q \in \mathcal{X}_Q, \ g_Q \in \mathcal{Y}_Q,
\]

\[
\|N_{X_Q} f\|_{L_p(\mathbb{R}^n)} \leq C \sup_{\|C_{Y_Q} g\|_{L_{p'}(\mathbb{R}^n)} = 1} \sum_{Q \in \mathcal{D}} \langle f_Q, g_Q \rangle, \quad f_Q \in \mathcal{X}_Q,
\]

\[
\|C_{Y_Q} g\|_{L_{p'}(\mathbb{R}^n)} \leq C \sup_{\|N_{X_Q} f\|_{L_p(\mathbb{R}^n)} = 1} \sum_{Q \in \mathcal{D}} \langle f_Q, g_Q \rangle, \quad g_Q \in \mathcal{Y}_Q.
\]

The application we have in mind is the following. For functions \(f(t, x)\) in \(\mathbb{R}_+^{1+n}\), let \(f_Q := f|_{W_Q} \in L_q(W_Q) =: \mathcal{X}_Q\), where the Banach space has norm \(\|f\|_{\mathcal{X}_Q} := |W_Q|^{-1/q} \|f\|_{L_q(W_Q)}\) so that

\[
N_{L_q} f = \sup_{Q \ni x, Q \in \mathcal{D}} |W_Q|^{-1/q} \|f\|_{L_q(W_Q)}.
\]

For functions \(g(t, x)\) in \(\mathbb{R}_+^{1+n}\), let \(g_Q := g|_{W_Q} \in L_q(W_Q) =: \mathcal{Y}_Q\), where the Banach space has norm \(\|g\|_{\mathcal{Y}_Q} := |W_Q|^{1-1/q} \|g\|_{L_q(W_Q)}\) so that

\[
C_{L_q} f = \sup_{Q \ni x, Q \in \mathcal{D}} \frac{1}{|Q|} \sum_{R \subset Q, R \in \mathcal{D}} |W_Q|^{1-1/q} \|g\|_{L_q(W_R)}.
\]

We generalize slightly the Carleson functional and define

\[
C_{L_q}^r f(x) = \sup_{Q, x \in \mathcal{D}} \left(\frac{1}{|Q|} \sum_{R \subset Q, R \in \mathcal{D}} |W_Q| \left(|W_R|^{-1/q} \|g\|_{L_q(W_R)} \right)^r \right)^{1/r},
\]

for \(x \in \mathbb{R}^n\) and \(1 \leq r < \infty\).

Corollary 2.3. Let \(1/p + 1/p' = 1/q + 1/\tilde{q} = 1/r\), with \(r \leq p < \infty, r \leq q \leq \infty\), \(1 \leq r < \infty\). Then there is a constant \(0 < C < \infty\) such that

\[
\|fg\|_{L_r(\mathbb{R}_+^{1+n})} \leq C \|N_{L_q} f\|_{L_p(\mathbb{R}^n)} \|C_{L_q}^r g\|_{L_{p'}(\mathbb{R}^n)},
\]

\[
\|N_{L_q} f\|_{L_p(\mathbb{R}^n)} \leq C \sup_{\|C_{L_q}^r g\|_{L_{p'}(\mathbb{R}^n)} = 1} \|fg\|_{L_r(\mathbb{R}_+^{1+n})},
\]

\[
\|C_{L_q}^r g\|_{L_{p'}(\mathbb{R}^n)} \leq C \sup_{\|N_{L_q} f\|_{L_p(\mathbb{R}^n)} = 1} \|fg\|_{L_r(\mathbb{R}_+^{1+n})}.
\]

Note that the case \(p = q = r = 2\) solves a dyadic version of the multiplier question for the space \(\mathcal{X}\) from the introduction. In this case \(\tilde{p} = \tilde{q} = \infty\). Note also that the case \(p = q = 2, r = 1\), together with Theorem 2.4 below, solves a dyadic version.
of the dual space question for the space \mathcal{X} from the introduction. In this case $\hat{p} = \hat{q} = 2$.

Proof. Replacing $|f|^r$, $|g|^r$ by f, g, we see that it suffices to consider the case $r = 1$. In this case, the result follows from Theorem 2.2. □

Proof of Theorem 2.3. (i) For completeness, we start with the well-known proof of the $\sum_Q \|f_Q, g_Q\|$ estimate. It suffices to estimate $\sum_Q \|f_Q\| \|g_Q\|$. Note that

$$\sum_{R \subseteq Q} \|g_R\| \leq |Q| \inf_{x \in Q} C_{Y} g(x) \leq \int_{Q} C_{Y} g,$$

for any $Q \in \mathcal{D}$. Select, for given $k \in \mathbb{Z}$, the maximal dyadic cubes $\mathcal{D}^k \subset \mathcal{D}$ such that $\|f_Q\| > 2^k$. Then $\bigcup_{Q \in \mathcal{D}} Q = \{x \in \mathbb{R}^n : N_X f(x) > 2^k\}$, and the cubes in \mathcal{D}^k are disjoint. We get

$$\sum \sum_{Q \in \mathcal{D}, k \leq \|f_Q\|} 2^k \|g_Q\| = \sum_{k \in \mathbb{Z}} 2^k \sum_{Q : \|f_Q\| > 2^k} \|g_Q\|$$

and hence

$$\sum \sum_{Q \in \mathcal{D}} \|f_Q\| \|g_Q\| \approx \sum_{Q \in \mathcal{D}, k \leq \|f_Q\|} 2^k \|g_Q\| = \sum_{k \in \mathbb{Z}} 2^k C_{Y} g.$$
and we conclude that
\[\sum_Q \langle f_Q, g_Q \rangle \gtrsim \|C_2g\|_p' \gtrsim \|C_2g\|_p \|N_Xf\|_p. \]

(iii) Next we prove the estimate of \(\|N_Xf\|_p \). Consider first the case \(1 < p < \infty \). Select, for given \(k \in \mathbb{Z} \), the maximal dyadic cubes \(D^k \subset D \) such that \(\|f_Q\| > 2^k \). Then \(\{x \in \mathbb{R}^n : N_Xf(x) > 2^k\} = \bigcup_{Q \in D^k} Q \), and the cubes in \(D^k \) are disjoint. Write \(k_Q := \max_{Q \in D^k} k \leq \log_2 \|f_Q\| \). We obtain
\[\|N_Xf\|_p^p \approx \sum_{k \in \mathbb{Z}} 2^k p \{x : N_Xf(x) > 2^k\} = \sum_{Q \in D} |Q| \sum_{k : Q \in D^k} 2^k p \]
\[\approx \sum_{Q \in D} |Q| 2^k p = \sum_{Q \in D} 2^k |Q| 2^k (p-1) \approx \sum_{Q \in D} \|f_Q\| \left(|Q| \sum_{k : Q \in D^k} 2^k (p-1) \right). \]
Write \(\hat{g}_Q := |Q| \sum_{k \in D^k} 2^k (p-1) \) and construct \(g = (g_Q)_{Q \in D} \), choosing \(g_Q \in Y_Q \) such that \(\|g_Q\| = \hat{g}_Q \) and \(\|f_Q\| \|g_Q\| \approx \langle f_Q, g_Q \rangle \). Then
\[\frac{1}{|Q|} \sum_{R \subset Q} |g_R| \lesssim \sum_{k \in \mathbb{Z}} 2^k (p-1) \frac{1}{|Q|} \sum_{R \subset Q, R \in D^k} |R| \]
\[= \sum_{k \in \mathbb{Z}} 2^k (p-1) \frac{1}{|Q|} \{x : N_Xf(x) > 2^k\} \cap Q \]
\[\approx \frac{1}{|Q|} \int_Q (N_Xf)^{p-1} \leq \inf_Q M_D((N_Xf)^{p-1}), \]
and therefore \(\|C_2g\|_{p'} \lesssim \|(N_Xf)^{p-1}\|_{p'} \approx \|N_Xf\|_p^p \), since \(p'(p-1) = p \). We conclude that
\[\sum_{Q \in D} \langle f_Q, g_Q \rangle \gtrsim \|N_Xf\|_p \gtrsim \|C_2g\|_p \|N_Xf\|_p. \]

(iii') We finally prove the estimate of \(\|N_Xf\|_1 \), i.e. the case \(p = 1 \). Let \(D^0 \) be the \(2^n \) dyadic cubes with side length \(2^k \) and one corner at the origin, where \(M \) is chosen large enough, using the monotone convergence theorem, so that \(\|N_Xf\|_1 \gtrsim \frac{1}{2} \|N_Xf\|_1 \), where \(\hat{f}_Q := f_Q \) if \(Q \subset Q_0 \) for some \(Q_0 \in D^0 \), and \(\hat{f}_Q := 0 \) otherwise. Assuming the estimate proved for \(\hat{f} \), we have
\[\|N_Xf\|_1 \lesssim \sum_Q \langle \hat{f}_Q, g_Q \rangle / \|C_2g\|_\infty, \]
where we may assume \(g_Q = 0 \) unless \(Q \subset Q_0 \) for some \(Q_0 \in D^0 \). This yields
\[\|N_Xf\|_1 \leq 2 \|N_X\hat{f}\|_1 \lesssim \sum_Q \langle \hat{f}_Q, g_Q \rangle / \|C_2g\|_\infty \lesssim \sum_Q \langle f_Q, g_Q \rangle / \|C_2g\|_\infty. \]

Given \(f \) contained by \(D^0 \) as above, we define recursively sets of disjoint dyadic cubes \(D^j \subset D \), \(j = 1, 2, 3, \ldots \), as follows. Having constructed \(D^j \), let \(Q \in D^j \). Define \(D^j_{Q+1} \) to be the set of maximal dyadic cubes \(R \in D \) such that \(R \subset Q \) and \(\|f_R\| > 2 \|f_Q\| \). Then let \(D^j_{Q+1} := \bigcup_{Q \in D^j} D^j_{Q+1} \). Furthermore, let \(D^j := \bigcup_{j} D^j_0 \)
\[E(Q) := Q \setminus \bigcup_{R \in D^j_{Q+1}} R, \quad Q \in D^j. \]
From the above construction, if \(x \in Q_k \subset Q_{k-1} \subset \ldots \subset Q_0 \), where \(Q_j \in \mathcal{D}^j \), then \(\| f_{Q_k} \| > 2^{k-1} \| f_{Q_1} \| \), \(k = 2, 3, \ldots \), where \(\| f_{Q_j} \| > 0 \). Hence, if \(N_x f(x) < \infty \), then there is a minimal \(Q \ni x, Q \in \mathcal{D}^j \). For this \(Q \), we have \(x \in E(Q) \) and \(N_x f(x) \leq 2 \| f_{Q_k} \| \). Thus

\[
N_x f \leq 2 \sum_{Q \in \mathcal{D}^j} \| f_Q \| 1_{E(Q)} \quad \text{a.e.}
\]

so that \(\| N_x f \|_1 \leq 2 \sum_{Q \in \mathcal{D}^j} \| f_Q \| \| Q \| \). Conversely, if \(x \in Q_k \subset Q_{k-1} \subset \ldots \subset Q_0 \), where \(Q_j \in \mathcal{D}^j \), are all the selected dyadic cubes containing \(x \), then \(N_x f(x) \geq \| f_{Q_k} \| \geq 2 \| f_{Q_{k-1}} \| \geq \ldots \geq 2^k \| f_{Q_0} \| \). Thus

\[
\sum_{Q \in \mathcal{D}^j} \| f_Q \| \| Q \| = \int_{\mathbb{R}^n} \sum_{Q \in \mathcal{D}^j, Q \ni x} \| f_Q \| \leq \int N_x f \sum_{j=0}^{\infty} 2^{-j} \leq 2 \| N_x f \|_1.
\]

Now let \(c \in (0, 1) \) be a constant, to be chosen below, and define \(\mathcal{D}^j_1 := \{ Q \in \mathcal{D}^j : |E(Q)| > c|Q| \} \) and \(\mathcal{D}^j_2 := \mathcal{D}^j \setminus \mathcal{D}^j_1 \).

From (2) we have

\[
\| N_x f \|_1 \leq 2 \sum_{Q \in \mathcal{D}^j_1} \| f_Q \| |Q| + 2c \sum_{Q \in \mathcal{D}^j_2} \| f_Q \| |Q| \leq 2 \sum_{Q \in \mathcal{D}^j} \| f_Q \| |Q| + 4c \| N_x f \|_1.
\]

Choose \(c = 1/8 \) to obtain \(\| N_x f \|_1 \leq 4 \sum_{Q \in \mathcal{D}^j_1} \| f_Q \| |Q| \). Construct \(g = (g_Q)_{Q \in \mathcal{D}} \), choosing \(g_Q \in \mathcal{Y}_Q \) such that \(\| g_Q \| = |Q| \) and \(\langle f_Q, g_Q \rangle \approx \| f_Q \| \) if \(Q \in \mathcal{D}^j_1 \), and \(g_Q := 0 \) otherwise. Then \(\| N_x f \|_1 \lesssim \sum_{Q \in \mathcal{D}^j_1} \| f_Q, g_Q \| \). To estimate

\[
\frac{1}{|Q|} \sum_{R \subset Q} |g_R| = \frac{1}{|Q|} \sum_{R \subset Q, R \in \mathcal{D}^j_1} |R|,
\]

note that if \(R \in \mathcal{D}^j_1 \cap \mathcal{D}^j \), then \(\sum_{R' \in \mathcal{D}^{j+1}_R} |R'| \leq 7/8 |R| \). Thus

\[
\frac{1}{|Q|} \sum_{R \subset Q, R \in \mathcal{D}^j_1} |R| \leq \frac{1}{|Q|} \sum_{j=0}^{\infty} (7/8)^j |Q| = 8.
\]

Thus \(\| C \mathcal{Y} g \|_\infty \leq 8 \). This completes the proof of the theorem. \(\square \)

Consider now a duality \(\langle \mathcal{X}, \mathcal{Y} \rangle \) between two Banach spaces \(\mathcal{X} \) and \(\mathcal{Y} \) as in Definition 2.1. We define the linear map \(L : \mathcal{X} \rightarrow \mathcal{Y}^* \) sending \(f \in \mathcal{X} \) to the linear functional

\[
\Lambda_f : \mathcal{Y} \rightarrow \mathbb{R} : g \mapsto \langle f, g \rangle.
\]

The estimate \(|\langle f, g \rangle| \leq C \| f \|_\mathcal{X} \| g \|_\mathcal{Y} \) shows that \(\| L \|_{\mathcal{X} \rightarrow \mathcal{Y}^*} \leq C \), whereas it follows from the estimate \(\| f \|_\mathcal{X} \leq C \sup_{\| g \|_\mathcal{Y} = 1} \langle f, g \rangle \) shows that \(L \) is injective with closed range \(L(\mathcal{X}) \subset \mathcal{Y}^* \). Thus the duality gives a topological, but not in general isometric, identification, through \(L \), of \(\mathcal{X} \) with a closed subspace \(L(\mathcal{X}) \) of \(\mathcal{Y}^* \). The estimate \(\| g \|_\mathcal{Y} \leq C \sup_{\| f \|_\mathcal{X} = 1} \| f \|_\mathcal{X} \| g \|_\mathcal{Y} \) furthermore shows that this subspace is “large” in the sense that its pre-annihilator is

\[
\perp L(\mathcal{X}) := \{ g \in \mathcal{Y} : \Lambda g = 0 \text{ for all } \Lambda \in L(\mathcal{X}) \} = \{0\}.
\]

In general we may have that \(L(\mathcal{X}) \nsubseteq \mathcal{Y}^* \), but if \(\mathcal{Y} \) is reflexive, then necessarily \(L(\mathcal{X}) = \mathcal{Y}^* \). Below we identify \(\mathcal{X} \) and \(L(\mathcal{X}) \), and thus write \(\mathcal{X} = \mathcal{Y}^* \) if \(L(\mathcal{X}) = \mathcal{Y}^* \).
We also note that the above also holds with the roles of \mathcal{X} and \mathcal{Y} interchanged, giving an identification of \mathcal{Y} with a closed subspace of \mathcal{X}^*.

The following result describes when the duality in Theorem 2.2 gives the full dual spaces.

Theorem 2.4. With the above notation, consider the duality $\langle \mathcal{X}^*_p, \mathcal{Y}^*_{p'} \rangle$,

$$f, g \mapsto \sum_{Q \in D} \langle f_Q, g_Q \rangle$$

from Theorem 2.2. We have $\mathcal{Y}^*_{p'} \subseteq \mathcal{X}^*_p$ for any $1 \leq p < \infty$, as well as $\mathcal{X}^*_1 \subseteq \mathcal{Y}^*_\infty$.

If furthermore the duality $\langle \mathcal{X}_Q, \mathcal{Y}_Q \rangle$ is such that $\mathcal{X}_Q = \mathcal{Y}_Q^*$ for all $Q \in D$, and if $1 < p < \infty$, then $\mathcal{X}_p = \mathcal{Y}^*_{p'}$.

Proof. (i) We first prove $X^*_p \subseteq Y^*_p$ for any $1 \leq p < \infty$. Let $Q_1 \supseteq Q_2 \supseteq \ldots$ be dyadic cubes. Define the functionals $\Lambda_j g := \langle f_{Q_j}, g_Q \rangle$ on Y^*_∞, where we have chosen $f_{Q_j} \in X^*_j$, such that $\|f_{Q_j}\| = 1/|Q_j|$. It is clear that $\|\Lambda_j\|_{Y^*_\infty} \approx 1$. Consider the sequence space $\ell_\infty(Z_\infty^*)$ and use Hahn–Banach’s theorem to construct $\lim \in (\ell_\infty(Z_\infty^*))^*$ such that

$$\lim((x_n)_{n=1}^\infty) = \lim_{n \to \infty} x_n$$

for all convergent sequences $(x_n)_{n=1}^\infty$. Set $\Lambda g := \lim((\Lambda_j g)_{j=1}^\infty)$. It is straightforward to verify that $\Lambda \in Y^*_\infty \setminus X^*_1$.

(ii) We next prove $Y^*_p \subseteq X^*_p$ for $1 \leq p < \infty$. Fix some cube $Q_0 \in D$ with $\ell(Q) = 1$. Define functionals

$$\Lambda_j f := \sum_{R: R \subseteq Q_0, \ell(R) = 2^{-j}} \langle f_R, g_R \rangle$$

on X^*_p, where $g_R \in Y^*_R$ is chosen such that $\|g_R\| = |R|$. Then

$$|\Lambda_j f| \lesssim \sum_{R: R \subseteq Q_0, \ell(R) = 2^{-j}} \|f_R\||R| \leq \int_{Q_0} N_X f \leq \|N_X f\|_{p'}.$$

Define $\Lambda f := \lim((\Lambda_j f)_{j=1}^\infty)$. It is straightforward to verify that $\Lambda \in X^*_p \setminus Y^*_p$.

(iii) Finally we assume that $X_Q = Y_Q^*$ and $1 < p < \infty$, and aim to show that $X_p = Y^*_p$. Let $\Lambda \in Y^*_p$, and let $Q \in D$. Pick $f_Q \in X_Q = Y_Q^*$ such that $\langle f_Q, g_Q \rangle = \Lambda((g_Q \delta_{QR})_{R \in D})$ for all $g_Q \in Y_Q$, where $\delta_{QR} = 1$ if $R = Q$ and 0 otherwise. Let $f := (f_Q)_{Q \in D}$. Then

$$(3) \quad \Lambda g = \sum_{Q \in D} \langle f_Q, g_Q \rangle$$

holds whenever $g_Q \neq 0$ only for finitely many Q. From the monotone convergence theorem it follows that $\|N_X f\|_{p'} \lesssim \|\Lambda\|_{Y^*_p}$, so that $f \in X_p$. We now use Lemma 2.5 below to deduce that (3) holds for all $g \in Y^*_p$ by continuity. \hfill \Box

Lemma 2.5. Assume that $1 < p' < \infty$. Then the subspace of finitely non-zero sequences $g = (g_Q)_{Q \in D}$ is dense in Y^*_p.

Proof. (i) Let $g \in Y^*_p$ and let $\epsilon > 0$. Let Q_1, \ldots, Q_{2^n} be the dyadic cubes with one corner at the origin and sidelength 2^M. Choose M large enough so that $\int_{R \setminus Q_0} |C_g|^p' \leq \epsilon'$, where $Q_0 := Q_1 \cup \ldots \cup Q_{2^n}$. Set

$$g_Q^1 := \begin{cases} g_Q, & Q \not\subset Q_0, \\ 0, & Q \subset Q_0. \end{cases}$$
Let Q_j be a sibling to Q_j, $1 \leq j \leq 2^n$. Since $g^1_Q = 0$ for $Q \subset Q_j$, it is clear that
\[\sup_{Q_j} C_{y_R} g \leq \inf_{Q_j} C_{y_R} g. \]
Therefore
\[
\|C_{y_R} g^1\|_{p'} = \int_{\mathbb{R}^n \setminus Q_0} |C_{y_R} g^1|^{p'} + \sum_{j=1}^{2^n} \int_{Q_j} |C_{y_R} g^1|^{p'} \\
\leq \int_{\mathbb{R}^n \setminus Q_0} |C_{y_R} g|^{p'} + \sum_{j=1}^{2^n} \int_{Q_j} |C_{y_R} g|^{p'} \lesssim \epsilon^{p'},
\]
since $C_{y_R} g^1 \leq C_{y_R} g$.

(ii) Next we consider small cubes inside Q_0. Define
\[C_j h(x) := \sup_{Q : x \in Q, \ell(Q) \leq 2^{-j}} \frac{1}{|Q|} \sum_{R \subset Q} \|h_R\|, \quad h \in \mathcal{Y}_{p'}. \]
Then $C_j g(x) \to 0$ as $j \to \infty$ for almost all x, by Lemma 2.6 below. Since $C_j g \leq C_{y_R} g \in L_{p'}(\mathbb{R}^n)$, it follows by dominated convergence that we can choose $j < \infty$ such that $\|C_j g\|_{p'} \leq \epsilon$. Next choose $\delta > 0$ such that $\sum_{R : R \subset Q_0, \ell(R) \leq \delta} \|g_R\| \leq \epsilon 2^{-nj}|Q_0|^{-1/p'}$.

Set
\[g^2_Q := \begin{cases} g_Q, & Q \subset Q_0, \ell(Q) \leq \delta, \\ 0, & \text{otherwise}. \end{cases} \]
We have
\[
C_{y_R} g^2(x) = \max \left(C_j g^2(x), \sup_{Q : x \in Q, \ell(Q) > 2^{-j}} \frac{1}{|Q|} \sum_{R \subset Q} \|g^2_R\| \right) \\
\leq \max \left(C_j g^2(x), \min(2^{nj}, d(x, Q_0)^{-n}) \epsilon 2^{-nj}|Q_0|^{-1/p'} \right) \\
\leq \max \left(C_j g^2(x), \epsilon |Q_0|^{-1/p'} \min(1, d(x, Q_0)^{-n}) \right).
\]
where $d(x, Q_0) := \inf_{y \in Q_0} |x - y|$. This shows that $\|C_{y_R} g^2\|_{p'} \lesssim \epsilon$, since
\[
\| \min(1, d(x, Q_0)^{-n}) \|_{p'} \lesssim |Q_0|^{1/p'}.
\]
It follows that $g - g^1 - g^2$ is finitely non-zero, with $\|g^1 + g^2\|_{p'} \lesssim \epsilon$. \qed

Lemma 2.6. Let $Q_0 \in \mathcal{D}$ and assume that $\sum_{Q \subset Q_0} a_Q < \infty$, where $0 \leq a_Q < \infty$ for $Q \subset Q_0$. Then
\[
\frac{1}{|Q|} \sum_{R \subset Q} a_R \to 0, \quad \text{as } Q \ni x, \ell(Q) \to 0,
\]
for almost all $x \in Q_0$.

Proof. We argue by contradiction. Assume there exists $\delta > 0$ such that
\[
E := \left\{ x \in Q_0 : \limsup_{Q \ni x, \ell(Q) \to 0} \frac{1}{|Q|} \sum_{R \subset Q} a_R > \delta \right\}
\]
has positive measure. Let $A := \sum_{Q \subset Q_0} a_Q < \infty$. Choose $j < \infty$ such that $\sum_{Q \subset Q_0, \ell(Q) > 2^{-j}} a_Q > A - \delta|E|/2$. Select the maximal cubes $Q_k \subset Q_0$, $k = 1, 2, \ldots,$
such that \(\ell(Q_k) \leq 2^{-j} \) and \(\sum_{Q \in Q_k} a_R > \delta |Q_k| \). We have that \(E \subset \bigcup_k Q_k \), where the cubes \(Q_k \) are disjoint. This gives

\[
A = \sum_{Q \subset Q_0} a_Q = \sum_{Q \subset Q_0, \ell(Q) > 2^{-j}} a_Q + \sum_{Q \subset Q_0, \ell(Q) \leq 2^{-j}} a_Q \\
\geq (A - \delta |E|/2) + \sum_k \delta |Q_k| \geq A + \delta |E|/2,
\]

which is a contradiction. The conclusion follows. \(\square \)

3. The non-dyadic results

In this section, we derive the corresponding non-dyadic results on the Carleson duality from the dyadic results in Section 2. We use the following notation. For fixed constants \(c_0 > 1, c_1 > 0, a > 0 \), we use Whitney regions \(W(t, x) \), \(L_q \) Whitney averages \(W_q f \) of functions \(f \in L^\text{loc}_q(\mathbb{R}^{1+n}) \), and non-tangential maximal functions \(N_* f \), as in the introduction. Also define the Carleson functionals

\[C^r g(z) := \sup_{Q \ni z} \left(\frac{1}{|Q|} \int_Q |g(t, x)|^r \, dt \right)^{1/r}, \quad z \in \mathbb{R}^n, \]

for \(1 \leq r < \infty \), and the Hardy–Littlewood maximal function

\[Mh(z) := \sup_{Q \ni z} \frac{1}{|Q|} \int_Q h(y) \, dy, \quad z \in \mathbb{R}^n, \]

for \(h \in L^\text{loc}_1(\mathbb{R}^n) \). Here the suprema are over all (non-dyadic) axis-parallel cubes in \(\mathbb{R}^n \) containing \(z \). We write \(C^1 g = Cg \) when \(r = 1 \).

We aim to prove the following non-dyadic version of Corollary 2.3.

Theorem 3.1. Let \(1/p + 1/p' = 1/q + 1/q' = 1/r \), with \(r \leq p < \infty \), \(r \leq q \leq \infty \), \(1 \leq r < \infty \). Then there is a constant \(0 < C < \infty \) such that

\[
\|fg\|_{L_r(\mathbb{R}^{1+n})} \leq C\|N_*(W_q f)\|_{L_p(\mathbb{R}^n)} \|C^r(W_q g)\|_{L_{p'}(\mathbb{R}^n)}, \\
\|N_*(W_q f)\|_{L_p(\mathbb{R}^n)} \leq C\sup_{\|C^r(W_q g)\|_{L_{p'}(\mathbb{R}^n)} = 1} \|fg\|_{L_r(\mathbb{R}^{1+n})}, \\
\|C^r(W_q g)\|_{L_{p'}(\mathbb{R}^n)} \leq C\sup_{\|N_*(W_q f)\|_{L_p(\mathbb{R}^n)} = 1} \|fg\|_{L_r(\mathbb{R}^{1+n})}.
\]

For \(r = 1 \), this means that there is a duality

\[
f, g \mapsto \int_{\mathbb{R}^{1+n}} fg
\]

between the Banach spaces \(N_{p,q} \) and \(C_{p', q'} \), defined by the norms

\[
\|f\|_{N_{p,q}} := \|N_*(W_q f)\|_{L_p(\mathbb{R}^n)}
\]

and

\[
\|g\|_{C_{p', q'}} := \|C^1(W_q g)\|_{L_{p'}(\mathbb{R}^n)},
\]

with \(1/p + 1/p' = 1, 1/q + 1/q' = 1, 1 \leq p < \infty \) and \(1 \leq q \leq \infty \). We also prove the following non-dyadic version of Theorem 2.4.

Theorem 3.2. With the above notation, consider the duality \(\langle N_{p,q}, C_{p', q'} \rangle \). We have, for \(1 \leq q \leq \infty \), \(C_{p', q'} \subset (N_{p,q})^* \) for any \(1 \leq p < \infty \), as well as \(N_{1,q} \subset (C_{\infty, q'})^* \).

If \(1 < q \leq \infty \) and \(1 < p < \infty \), then \(N_{p,q} = (C_{p', q'})^* \).
Lemma 3.5. Consider two functions $f, g : \mathbb{R}^n \to [0, \infty)$. Assume that there are constants $0 < c_1, c_2 < \infty$ such that $f(z) > \lambda$ implies $g > c_1 \lambda$ on some set $B \subset \mathbb{R}^n$ with $0 < \sup\{|y - z| ; y \in B\}^n \leq c_2 |B|$. Then there is a constant $0 < c_3 < \infty$ such that

$$\|f\|_{L_p(\mathbb{R}^n)} \leq c_3 \|g\|_{L_p(\mathbb{R}^n)}$$

for any $1 \leq p \leq \infty$.

Remark 3.3 (Relation to the Coifman–Meyer–Stein tent spaces). It is immediate that for $\tilde{q} = r$, we have the pointwise equivalence $C^r(W_{\tilde{q}}g) = C^r(W_r g) \approx C^r g$. For $r = 2$, this is the functional denoted simply by C by Coifman, Meyer and Stein [5]. They show [5, Thm 3] that there is further the L^p equivalence

$$\|C^2(g)\|_{L_p(\mathbb{R}^n)} \approx \|A^2(g)\|_{L_p(\mathbb{R}^n)} =: \|g\|_{T_{p,2}}, \quad p \in (2, \infty),$$

where

$$A^2(g) := \left(\int \int_{|y - x| < t} |g(t, y)|^2 \frac{dy \, dt}{t^n} \right)^{1/2}$$

is the area integral and $T_{p,2}$ is the tent space. Observe also that $N_r(W_{\infty}, g)$ is pointwise dominated by the non-tangential maximal function of g with a different aperture, and hence

$$\|N_r(W_{\infty}, g)\|_{L_p(\mathbb{R}^n)} \approx \|N_r g\|_{L_p(\mathbb{R}^n)}.$$

In view of the previous observations, taking $\tilde{q} = r = 2$ (and then $q = \infty$) in Theorem 3.1, it gives the following characterization of pointwise multipliers from the tent space $T_{p,2}$ to $L_2(\mathbb{R}^{1+n})$, where $1/p + 1/	ilde{p} = 1/2$ and $\tilde{p} > 2$:

$$\|fg\|_{L_2(\mathbb{R}_+^{1+n})} \leq C \|N_r f\|_{L_p(\mathbb{R}^n)} \|g\|_{T_{p,2}},$$

$$\|N_r f\|_{L_p(\mathbb{R}^n)} \leq C \sup_{\|g\|_{T_{p,2}} = 1} \|fg\|_{L_2(\mathbb{R}_+^{1+n})},$$

$$\|g\|_{T_{p,2}} \leq C \sup_{\|N_r f\|_{L_p(\mathbb{R}^n)} = 1} \|fg\|_{L_2(\mathbb{R}_+^{1+n})}.$$

On the other hand, Theorem 3.1 does not contain the known duality results for these tent space, since duality in Theorem 3.1 corresponds to $r = 1$, and for this exponent the spaces appearing in the statement are outside the scale of classical tent spaces as introduced by Coifman, Meyer and Stein.

We prove Theorems 3.1 and 3.2 by showing equivalence of the corresponding dyadic and non-dyadic norms. For this, we require the following two lemmata.

Lemma 3.4. Let $0 \leq u \in L^{1,\text{loc}}_1(\mathbb{R}_+^{1+n})$. Assume that $W \subset \bigcup_{j=1}^N W_j \subset \mathbb{R}_+^{1+n}$, where $|W_j| \leq C |W|$ for $j = 1, \ldots, N$. Then for some $1 \leq j \leq N$, we have

$$\frac{1}{|W_j|} \int_{W_j} u \geq \frac{1}{C N} \left(\frac{1}{|W|} \int_W u \right).$$

Proof. The conclusion follows directly from $\int_W u \leq \sum_{j=1}^N \int_{W_j} u \leq N \max_j \int_{W_j} u$. \(\square\)

The following lemma uses the estimation technique from [7, Lem. 1].

Lemma 3.5. Consider two functions $f, g : \mathbb{R}^n \to [0, \infty)$. Assume that there are constants $0 < c_1, c_2 < \infty$ such that $f(z) > \lambda$ implies $g > c_1 \lambda$ on some set $B \subset \mathbb{R}^n$ with $0 < \sup\{|y - z| ; y \in B\}^n \leq c_2 |B|$. Then there is a constant $0 < c_3 < \infty$ such that

$$\|f\|_{L_p(\mathbb{R}^n)} \leq c_3 \|g\|_{L_p(\mathbb{R}^n)},$$

for any $1 \leq p \leq \infty$.

Proof. Let $\lambda > 0$. Let $E_\lambda := \{ y ; \ g(y) > c_1 \lambda \}$ and consider the indicator function 1_{E_λ}. Let $z \in \mathbb{R}^n$ be such that $f(z) > \lambda$. Then, by hypothesis, there exists a set $B \subset E_\lambda$ and the hypothesis implies that

$$M(1_{E_\lambda})(z) \geq |B| / \sup\{|y - z| ; \ y \in B\}^n \geq c_2^{-1} > 0.$$

By the weak L_1 boundedness of M, we have

$$|\{z ; \ f(z) > \lambda\}| \leq |\{z ; \ M(1_{E_\lambda})(z) \geq 1\}| \lesssim \|1_{E_\lambda}\|_1 = |E_\lambda|.$$

This proves the estimate for $p = \infty$. For $1 \leq p < \infty$, we estimate

$$\int_{\mathbb{R}^n} |f(x)|^p dx = \int_0^\infty |\{z ; \ f(z) > \lambda\}| p \lambda^{p-1} d\lambda$$

$$\lesssim \int_0^\infty |\{z ; \ g(z) > c_1 \lambda\}| p \lambda^{p-1} d\lambda \approx \int_{\mathbb{R}^n} |g(x)|^p dx.$$

In order to compare the Banach spaces $\mathcal{N}_{p,q}$ and $\mathcal{C}_{p',q'}$ with their dyadic counterparts, we make the following definitions. With notation as in Section 2, denote by $\mathcal{N}^D_{p,q}$ the space \mathcal{X}_p with $\mathcal{X}_Q = L_q(W_Q)$, so that

$$\|f\|_{\mathcal{N}^D_{p,q}} = \|N_{L_q}(f)\|_{L_p(\mathbb{R}^n)}.$$

Similarly denote by $\mathcal{C}^D_{p',q'}$ the space \mathcal{Y}_p with $\mathcal{Y}_Q = L_q(W_Q)$, so that

$$\|g\|_{\mathcal{C}^D_{p',q'}} = \|C_{L'_q}(g)\|_{L'_p(\mathbb{R}^n)}.$$

In what follows, we shall identify functions $f \in L^{1c}_1(\mathbb{R}^{1+n}_+)$ and sequences $(f_Q)_{Q \in \mathcal{D}}$ where $f_Q \in L_1(W_Q)$ in the natural way, i.e. given f we set $f_Q := f|_{W_Q}$ and given $(f_Q)_{Q \in \mathcal{D}}$ we set $f := f_Q$ on W_Q.

Proposition 3.6. Let $1 \leq p < \infty$ and $1 \leq q \leq \infty$. Under the above identification, the spaces $\mathcal{N}_{p,q}$ and $\mathcal{N}^D_{p,q}$ are equal, with equivalent norms

$$\|N_a(W_q f)\|_{L_p(\mathbb{R}^n)} \approx \|N_{L_q}(f)\|_{L_p(\mathbb{R}^n)}.$$

In particular, up to equivalence of norms, the left hand side is independent of the exact choice of $a \geq 0, c_0 > 1, c_1 > 0$, and the right hand side is independent of the exact choice of dyadic system.

Note that this shows that we here in fact can choose $a = 0$, i.e. the vertical maximal function, for $N_a(W_q f)$. This is because we already have some non-tangential control in $W f$.

Proof. (i) To prove the estimate $\|N_a(W_q f)\|_{L_p(\mathbb{R}^n)} \gtrsim \|N_{L_q}(f)\|_{L_p(\mathbb{R}^n)}$, we use Lemma 3.5 Assume $N_{L_q} f(z) > \lambda$. Then there is a cube $Q \in \mathcal{D}$ such that $z \in Q$ and

$$|W_Q|^{-1/q} \|f\|_{L_q(W_Q)} \geq \lambda.$$

Consider (non-dyadic) cubes $W \subset \mathbb{R}^{1+n}_+$ with $\text{diam}(W) = c_2 \text{dist}(W, \mathbb{R}^n)$. We fix $c_2 > 0$ small enough, depending on c_0, c_1, so that

$$W \subset \bigcap_{(s,y) \in W} W(s,y).$$

It is clear that there is an integer $N < \infty$ such that W_Q is the union of at most N such cubes W, uniformly for all Q. Lemma 3.4 shows that one of these cubes $W,$
say W_0, has $|W_0|^{-1/q} \|f\|_{L_p(W_0)} \gtrsim \lambda$. It follows that $|W(t,x)|^{-1/q} \|f\|_{L_p(W(t,x))} \gtrsim \lambda$ for $(t,x) \in W_0$, and therefore $N_\ast(W_q f) \gtrsim \lambda$ on the projection $B \subset \mathbb{R}^n$ of $W \subset \mathbb{R}^{1+n}$, and the stated estimate follows from Lemma 3.5.

(ii) Conversely, to prove the estimate $\|N_\ast(W_q f)\|_{L_p(\mathbb{R}^n)} \lesssim \|N_{L_p}(f)\|_{L_p(\mathbb{R}^n)}$, we again apply Lemma 3.5. Assume $N_\ast(W_q f)(z) > \lambda$. Then $|W(t,x)|^{-1/q} \|f\|_{L_q(W(t,x))} \gtrsim \lambda$ for some (t,x) such that $|x-z| \leq at$. We see that there is an integer $N < \infty$ such that $W(t,x)$ is contained in the union of at most N dyadic Whitney regions W_Q, with N independent of (t,x). Thus by Lemma 3.4 for some constant $c > 0$, $|W_Q|^{-1/q} \|f\|_{L_q(W_Q)} \gtrsim c\lambda$ for one of these Q. Since $N_{L_q}(f) > c\lambda$ on Q and $\text{dist}(z,Q) \lesssim t \approx \ell(Q)$, Lemma 3.5 completes the proof. \hfill \Box

Proposition 3.7. Let $1 \leq p < \infty$ and $1 \leq q \leq \infty$. Under the above identification, the spaces C_p', q' and C_p^p, q' are equal, with equivalent norms

$$\|C(W_q' g)\|_{L_p(\mathbb{R}^n)} \approx \|C_{L_q} g\|_{L_p(\mathbb{R}^n)}.$$

In particular, up to equivalence of norms, the left hand side is independent of the exact choice of $c_0 > 1, c_1 > 0$, and the right hand side is independent of the exact choice of dyadic system.

Proof. It is straightforward to check that the estimates below go through for $q' = \infty$ by properly interpreting the integrals.

(i) To prove the estimate

$$\|C(W_q' g)\|_{L_p(\mathbb{R}^n)} \gtrsim \|C_{L_q} g\|_{L_p(\mathbb{R}^n)},$$

assume that $C_{L_q} g(z) > \lambda$. Then there is a cube $Q \in \mathcal{D}$ such that $z \in Q$ and

$$\frac{1}{|Q|} \sum_{R \subset Q} |W_R|^{-1/q'} \|g\|_{L_q(W_R)} > \lambda.$$

We claim that there is a constant $c > 0$ such that

$$\frac{1}{|W_R|} \int_{W_R} \left(\frac{1}{|W(t,x)|} \int_{W(t,x)} |g|^{q'} \right)^{\frac{1}{q'}} \geq c \left(\frac{1}{|W_R|} \int_{W_R} |g|^{q'} \right)^{\frac{1}{q'}}.$$

Given this estimate, it follows that

$$c\lambda < \frac{1}{|Q|} \sum_{R \subset Q} \int_{W_R} W_q' g = \frac{1}{|Q|} \int_{\hat{Q}} W_q' g \leq C(W_q' g)(z),$$

and hence $cC_{L_q} g(z) \leq C(W_q' g)(z)$, even pointwise, from which the inequality in $L_p(\mathbb{R}^n)$ follows.

To prove the claimed reverse H"older estimates, consider (non-dyadic) cubes $W \subset \mathbb{R}^{1+n}$ with $\text{diam}(W) = c_2 \text{dist}(W, \mathbb{R}^n)$. We fix $c_2 > 0$ small enough, depending on c_0, c_1, so that

$$W \subset \bigcap_{(s,y) \in W} W(s,y).$$

It is clear that there is an integer $N < \infty$ such that W_R is the union of at most N such cubes W, uniformly for all R. Lemma 3.4 shows that one of these cubes W,
Thus there is $c \geq 1$. Choose $\pi | 3.7$. Note that by replacing

$$\lambda \| C(W_q g) \|_{L^q_q(R^n)} \leq \| C_{L^q_q} g \|_{L^q_q(R^n)},$$

assume that $C(W_q g) (z) > \lambda$. Then there is a cube Q such that $z \in Q$ and

$$\frac{1}{|Q|} \int_Q W_q g > \lambda.$$

There is an integer $N < \infty$ such that $\bigcup_{(t, x) \in \pi} W(t, x) = \bigcup_{j=1}^N \hat{Q}_j =: U$ for some dyadic cubes $Q_j \in D$ with $\ell(Q) \leq \ell(Q_j) \leq N \ell(Q)$, $1 \leq j \leq N$. Note that we can choose N independent of Q. Let $h := \max_{x \in U} 1_U$ and $W_R := \bigcup_{(t, x) \in W_U} W(t, x)$, and note that there are finitely many $S \in D$ such that W_S intersect W_R (all with $\ell(S) \approx \ell(R)$), uniformly in R. Then

$$\lambda |Q| = \int_Q \left(\frac{1}{|W(t, x)|} \int W(t, x) h^q \right)^{1/q} \leq \sum_{R \in D} |W_R|^{-1/q} \left(\int W_R \left(\frac{1}{|W(t, x)|} \int W(t, x) h^q \right)^{1/q} \right) \leq \sum_{R \in D} \sum_{S \in D : W_S \cap W_R \neq \emptyset} |W_S|^{-1/q} \left(\int W_S h^q \right)^{1/q} \leq \sum_{S \in D} |W_S|^{-1/q} \left(\int W_S h^q \right)^{1/q} \inf_{Q_j} C_{L^q_q} g.$$

Thus there is $c > 0$ and $1 \leq j \leq N$ such that $C_{L^q_q} g > c \lambda$ on Q_j. Lemma 3.5 applies since we may assume $\operatorname{dist}(z, Q_j) \lesssim \ell(Q) \leq \ell(Q_j)$.

\textit{Proof of Theorem 3.7.} The result follows from Corollary 2.3 and Propositions 3.6 and 3.7. Note that by replacing $|f|^r$, $|g|^r$ by f, g, it suffices to consider the case $r = 1$.

\textit{Proof of Theorem 3.2.} The result follows from Theorem 2.4 and Propositions 3.6 and 3.7.

\textbf{References}

[1] Auscher, P., and Axelsson, A. Weighted maximal regularity estimates and solvability of non-smooth elliptic systems I. Invent. Math. 184, 1 (2011), 47–115.
[2] Auscher, P., and Rosén, A. Weighted maximal regularity estimates and solvability of non-smooth elliptic systems II. Preprint.

[3] Carleson, L. An interpolation problem for bounded analytic functions. Amer. J. Math. 80 (1958), 921–930.

[4] Carleson, L. Interpolations by bounded analytic functions and the corona problem. Ann. of Math. (2) 76 (1962), 547–559.

[5] Coifman, R. R., Meyer, Y., and Stein, E. M. Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62, 2 (1985), 304–335.

[6] Dahlberg, B. On the absolute continuity of elliptic measures. Amer. J. Math. 108, 5 (1986), 1119–1138.

[7] Fefferman, C., and Stein, E. M. H^p spaces of several variables. Acta Math. 129, 3–4 (1972), 137–193.

[8] Fefferman, R. A., Kenig, C. E., and Pipher, J. The theory of weights and the Dirichlet problem for elliptic equations. Ann. of Math. 134, 1 (1991), 65–124.

[9] Kenig, C., and Pipher, J. The Neumann problem for elliptic equations with nonsmooth coefficients. Invent. Math. 113, 3 (1993), 447–509.

[10] Kenig, C., and Pipher, J. The Neumann problem for elliptic equations with nonsmooth coefficients: part II. Duke Math. J. 81, 1 (1995), 227–250.

[11] Stein, E. M. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, vol. 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993.

Tuomas Hytönen, Institutionen för matematik och statistik, PB 68 (Gustaf Hällströms gata 2b), FI-00014 Helsingfors universitet, Finland
E-mail address: tuomas.hytonen@helsinki.fi

Andreas Rosén, Matematiska institutionen, Linköpings universitet, 581 83 Linköping, Sweden
E-mail address: andreas.rosen@liu.se