Mass of Pseudoscalar Gluonium: A Higher-Loop
QCD Sum-Rule Estimate

D. Asner and R.B. Mann
Department of Physics
University of Waterloo
Waterloo, Ontario, N2L 3G1 Canada

J.L. Murison and T.G. Steele†
Department of Physics
University of Western Ontario
London, Ontario, N6A 3K7 Canada

Abstract: Higher-loop corrections to the pseudoscalar (0^{-+}) gluonium correlation function will be used to obtain the leading gluon condensate contributions to the subtraction-independent QCD sum-rules. The effect of these higher-loop corrections on the sum-rule estimates of the pseudoscalar gluonium mass will be investigated. The final results of this analysis compare favourably with $SU(3)$ lattice simulations.

† Address after July 1, 1992: Dept. of Physics, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 0W0 Canada
The existence of QCD bound states consisting solely of gluons is one of the conceptual predictions of QCD that has not been experimentally verified [1]. Experimental searches for gluonia states are hampered by the possibility of mixing with ordinary quark mesons of the same quantum numbers, so a dynamical signature is necessary to identify the gluonium content of observed mesons [2].

An approach to modelling mesons in QCD which has been successful in many applications is QCD sum-rules [3]. In this approach the condensates of QCD are included in the correlation functions of currents, providing a parameterization of non-perturbative vacuum effects.

Although sum-rules have been useful for quark mesons, it has been difficult to obtain a conclusive analysis of gluonium [4-7]. Part of this difficulty for scalar gluonium can be traced to a reliance on low-energy theorem subtraction constants to introduce the gluon condensate \(\langle \alpha_s G^2 \rangle \) (the most reliably determined gluonic condensate) into the sum-rule analysis. In contrast, sum-rules independent of the low-energy subtraction constants do not contain \(\langle \alpha_s G^2 \rangle \) to lowest order. Thus higher-loop contributions may be significant because they actually provide the leading \(\langle \alpha_s G^2 \rangle \) behaviour in the (subtraction-independent) sum-rules.

In previous work, the effect of these higher-loop corrections [8] was analyzed for scalar \((0^{++})\) gluonium. It was found that higher-loop effects were significant in the subtraction-independent sum-rules, leading to a mass prediction \(m_{0^{++}} = (1.7 \pm 0.2) \text{GeV} \) for pure QCD [9], a result in reasonable agreement with lattice predictions [10].

The purpose of this paper is to investigate higher-loop effects on the sum-rule for pseudoscalar \((0^{-+})\) gluonium in pure QCD. For the pseudoscalar, the \(N_f = 0 \) (pure QCD) limit is likely a better estimate of the gluonium mass when quark effects are included than in the scalar case as will be discussed below. Our sum-rule estimate of the pseudoscalar mass and the \(m_{0^{-+}}/m_{0^{++}} \) mass ratio will be compared with \(SU(3) \) lattice values [10] and with previous sum-rule estimates [6,7].
The correlation function for pseudoscalar gluonium in pure QCD is defined in terms of a renormalization group (RG) invariant current \([11]\).

\[
\Pi(q^2) = i \int d^4x \, e^{iq \cdot x} \langle \Omega | T (j(x) j(0)) | \Omega \rangle
\]

\[
j(x) = \alpha_s G^a_{\mu\nu} \tilde{G}^a_{\mu\nu} \quad \tilde{G}^a_{\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} G^a_{\alpha\beta}
\]

Perturbative contributions to \(\Pi(Q^2 = -q^2)\) are known to two-loops \([12]\), although some effort is required to relate these results to the following expression.

\[
\Pi(Q^2) = -2 \left(\frac{\alpha_s}{\pi} \right)^2 Q^4 \log \frac{Q^2}{\nu^2} \times \left(1 + \frac{\alpha_s}{\pi} \left[1 + \alpha_s \left(\frac{41}{4} - \frac{29}{4} \log \frac{Q^2}{\nu^2} \right) \right] \right)
\]

\[
+ \text{QCD condensate terms}
\]

Divergent constants and polynomials in \(Q^2\) have been ignored since they are zero when the sum-rule is formed.

The dependence on the number of flavours \(N_f\) and colours \(N_c\) has been explicitly given in (2) to illustrate that the flavour dependence is rather weak. In particular, the transition between pure QCD and \(N_f = 3\) is negligible.

\[
\Pi(Q^2) = -2 \left(\frac{\alpha_s}{\pi} \right)^2 Q^4 \log \frac{Q^2}{\nu^2} \left[1 + \alpha_s \left(\frac{29}{4} - \frac{9}{4} \log \frac{Q^2}{\nu^2} \right) \right] \quad N_c = 3 = N_f
\]

\[
\Pi(Q^2) = -2 \left(\frac{\alpha_s}{\pi} \right)^2 Q^4 \log \frac{Q^2}{\nu^2} \left[1 + \alpha_s \left(\frac{31}{12} \log \frac{Q^2}{\nu^2} \right) \right] \quad N_c = 3 \quad N_f = 0
\]

The situation is quite different for scalar gluonium, where apart from a normalization constant \(A\), the perturbative contributions to the correlation function \(\Phi(Q^2)\) are

\[
\Phi(Q^2) = A \left(\frac{\alpha_s}{\pi} \right)^2 Q^4 \log \frac{Q^2}{\nu^2} \left[1 + \alpha_s \left(\frac{51}{4} - \frac{11}{4} \log \frac{Q^2}{\nu^2} \right) \right] \quad N_c = 3 \quad N_f = 0
\]

illustrating a stronger flavour dependence. The weak flavour dependence in the pseudoscalar case, combined with an estimated small mixing \([13]\) with quark mesons, suggest
that the pure QCD prediction of the pseudoscalar mass is a good approximation when quark effects are included.

The gluon condensate $\langle \alpha_s G^2 \rangle$ contributions to the correlation function of the pseudoscalar current have only been calculated to lowest order \[4\]. The general form of the $\langle \alpha_s G^2 \rangle$ portion of $\Pi(Q^2)$ to one-loop, with the dependence on momentum given explicitly, is

$$
\Pi(Q^2) = \frac{\alpha_s}{\pi} \left[b_0 + \frac{\alpha_s}{\pi} \left(b_1 \log \frac{Q^2}{\nu^2} + b'_1 \right) \right] \langle \alpha_s G^2 \rangle + \ldots \tag{5}
$$

$b_0 = -4\pi; \quad b_1, b'_1$ unknown.

The terms proportional to b_0, b'_1 do not contribute to the sum-rule since they are independent of the momentum Q^2. Thus the leading $\langle \alpha_s G^2 \rangle$ contribution to the sum-rule comes from the one-loop logarithmic correction proportional to b_1.

The one-loop calculation was carried out explicitly for scalar gluonium to demonstrate that the operator-product expansion coefficient is infrared finite \[8\]. However, an explicit calculation is not necessary if the constant b_1 is only needed for the purpose of a sum-rule analysis. Since $\Pi(Q^2)$ is constructed from an RG invariant current, the renormalized correlation function satisfies the following RG equation

$$
0 = \left(\nu \frac{\partial}{\partial \nu} + \beta \frac{\partial}{\partial \alpha_s} \right) \Pi(Q^2) + \text{condensate anomalous dimensions} \tag{6}
$$

For the gluon condensate terms, the anomalous dimension of $\langle \alpha_s G^2 \rangle$ is zero to one-loop. Applying (6) to the $\langle \alpha_s G^2 \rangle$ dependence in (5) shows that RG invariance determines b_1.

$$
0 = -2b_1 \left(\frac{\alpha_s}{\pi} \right)^2 \langle \alpha_s G^2 \rangle + b_0 \beta_1 \left(\frac{\alpha_s}{\pi} \right) \langle \alpha_s G^2 \rangle + \text{terms independent of } \langle \alpha_s G^2 \rangle \tag{7}
$$

$$
b_1 = \frac{1}{2} \beta_1 b_0 = -\frac{11}{4} b_0 \quad (N_c = 3, \ N_f = 0)
$$

Contributions to $\Pi(Q^2)$ from dimension six and dimension eight gluonic condensates are also known to lowest order \[4\]. As will be seen below, the one-loop logarithmic correction to $\langle g G^a \rangle = \langle g f_{abc} G^a_{\mu\nu} G^b_{\nu\rho} G^c_{\rho\mu} \rangle$ is the leading contribution in one of the sum-rules and
is thus important. Writing the $\langle gG^3 \rangle$ terms as

$$\Pi(Q^2) = c_0 \left(\frac{\alpha_s}{\pi} \right)^2 \frac{\langle gG^3 \rangle}{Q^2} + c_1 \left(\frac{\alpha_s}{\pi} \right)^3 \log \frac{Q^2}{\nu^2} \frac{\langle gG^3 \rangle}{Q^2}$$

(8)

and applying the RG equation including the $\langle gG^3 \rangle$ anomalous dimension [14],

$$0 = \left(\nu \frac{\partial}{\partial \nu} + \beta \frac{\partial}{\partial \alpha_s} \right) \Pi(Q^2)$$

(9)

leads to the result

$$c_1 = -\frac{29}{4} c_0 \quad (N_c = 3, \, N_f = 0)$$

(10)

Collecting the above results leads to the following expression for $\Pi(Q^2)$, valid to two-loops in perturbative terms, one-loop in $\langle \alpha_s G^2 \rangle$ and $\langle gG^3 \rangle$, and to lowest order in higher dimension condensates.

$$\Pi(Q^2) = Q^4 \log \frac{Q^2}{\nu^2} \left[a_0 + a_1 \log \frac{Q^2}{\nu^2} \right] + \frac{\alpha_s}{\pi} \left(b_0 + b_1 \frac{\alpha_s}{\pi} \right) \langle \alpha_s G^2 \rangle + \left(\frac{\alpha_s}{\pi} \right)^2 b_1 \log \frac{Q^2}{\nu^2} \langle \alpha_s G^2 \rangle + \frac{\alpha_s}{\pi} \left[c_0 + \frac{\alpha_s}{\pi} c_1 \log \frac{Q^2}{\nu^2} \right] \frac{\langle gG^3 \rangle}{Q^2} + \frac{\alpha_s^2 G^4}{Q^4}$$

(11)

with

$$a_0 = -2 \left(\frac{\alpha_s}{\pi} \right)^2 \left[1 + \frac{31}{4} \frac{\alpha_s}{\pi} \right] \quad a_1 = \frac{11}{2} \left(\frac{\alpha_s}{\pi} \right)^3$$

$$b_0 = -4 \pi \quad b_1 = -\frac{11}{4} b_0 = 11 \pi$$

$$c_0 = -8 \pi^2 \quad c_1 = -\frac{29}{4} c_0 = 8 \pi^2 \frac{29}{4}$$

$$d_0 = 8 \pi^2 \frac{\alpha_s}{\pi} \langle \alpha_s^2 G^4 \rangle = \alpha_s^2 \left(\langle (f_{abc} G_{\mu
u}^b)^2 \rangle + 10 \langle (f_{abc} G_{\mu
u}^b G_{\rho\sigma}^c)^2 \rangle \right)$$

The correlation function satisfies a dispersion relation with two subtraction constants, relating the QCD prediction $\Pi(Q^2)$ to the phenomenological quantity $\text{Im} \Pi(t)$:

$$\Pi(Q^2) = \Pi(0) - \Pi'(0) Q^2 + \frac{Q^4}{\pi} \int_0^\infty dt \frac{\text{Im} \Pi(t)}{t^2 (t + Q^2)}.$$

(12)

The subtraction constant $\Pi'(0)$ is the slope of the $U_A(1)$ topological charge, and has been estimated using sum-rule techniques [6]. Families of sum-rules can be constructed from
by Borel-transforming the dispersion relation weighted with (positive) powers of Q^2

\[
\mathcal{R}_k(\tau, s_0) = \frac{1}{\tau} \hat{L} [Q^{2k}\Pi(Q^2)] - \frac{1}{\pi} \int_{s_0}^{\infty} dt \, t^k e^{-t\tau} \text{Im}\Pi_{eqn.11}(t)
\]

\[
\hat{L} \equiv \lim_{N \to \infty} \lim_{Q^2 \to \infty} \left(\frac{-Q^2}{N - 1}! \left(\frac{\partial}{\partial Q^2} \right)^N \right)
\]

The scale $\sqrt{s_0}$ is the continuum threshold representing duality between resonance physics and QCD and \hat{L} is the Borel transform operator. The continuum threshold is constrained by the finite-energy sum-rule [15].

\[
\mathcal{F}_0(s_0) = \frac{1}{\pi} \int_0^{s_0} dt \, \text{Im}\Pi(t)
\]

After some calculation, the sum-rules of interest are obtained from the QCD correlation function $\Pi(Q^2)$ in (11).

\[
\mathcal{R}_0(\tau, s_0) = -\frac{2a_0}{\tau^3} [1 - \rho_2(s_0\tau)]
\]

\[
- \frac{4a_1}{\tau^3} \left[\frac{3}{2} - \gamma_E - \rho_2(s_0\tau) \log s_0 \tau - \frac{3}{2} e^{-s_0 \tau} \left(1 + \frac{1}{3} s_0 \tau \right) - E_1(s_0 \tau) \right] + \frac{b_1}{\tau} \left[1 - e^{-s_0 \tau} \right] \langle \alpha_s G^2 \rangle + c_0 \left(\frac{\alpha_s}{\pi} \right)^2 \langle gG^3 \rangle + d_0 \langle \alpha_s^2 G^4 \rangle
\]

\[
\mathcal{R}_1(\tau, s_0) = -\frac{6a_0}{\tau^4} [1 - \rho_3(s_0\tau)]
\]

\[
- \frac{12a_1}{\tau^4} \left[\frac{11}{6} - \gamma_E - \rho_3(s_0\tau) \log s_0 \tau - \frac{3}{2} e^{-s_0 \tau} \left(1 + \frac{1}{3} s_0 \tau \right) - \frac{1}{3} \rho_2(s_0 \tau) - E_1(s_0 \tau) \right]
\]

\[
- \frac{b_1}{\tau^2} \left(\frac{\alpha_s}{\pi} \right)^2 [1 - \rho_1(s_0\tau)] \langle \alpha_s G^2 \rangle
\]

\[
+ \frac{c_1}{\tau} \left(\frac{\alpha_s}{\pi} \right)^3 [1 - e^{-s_0 \tau}] \langle gG^3 \rangle - d_0 \langle \alpha_s^2 G^4 \rangle
\]
\[F_0(s_0) = \frac{1}{3} a_0 s_0^3 + \frac{2}{9} a_1 s_0^3 - b_1 s_0 \left(\frac{\alpha_s}{\pi} \right)^2 \langle \alpha_s G^2 \rangle + c_0 \langle gG^3 \rangle \quad (16) \]

\[\rho_k(x) \equiv e^{-x} \sum_{j=0}^{k} \frac{x^j}{j!} \quad \gamma_E \equiv \text{Euler's Constant} \approx 0.5772 \]

\[E_1(x) \equiv \int_x^\infty dy \frac{e^{-y}}{y} \quad \text{(Exponential Integral)} \]

Renormalization group improvement of the sum-rules implies that the running coupling constants \(\alpha_s(1/\tau), \alpha_s(s_0) \) respectively appear in (15) and (16). In principle, the condensates other than \(\langle \alpha_s G^2 \rangle \) should also be RG improved (only \(\langle \alpha_s G^2 \rangle \) is an RG invariant to one-loop). These effects can be explicitly considered for \(\langle gG^3 \rangle \), and are found to have a small effect, while for \(\langle \alpha_s^2 G^4 \rangle \) the vacuum saturation hypothesis used to estimate its numerical value [4,16] leads to the (RG invariant) \(\langle \alpha_s G^2 \rangle \) condensate.

As mentioned previously, notice that the leading \(\langle \alpha_s G^2 \rangle \) behaviour in both sum rules, and the leading \(\langle gG^3 \rangle \) correction in the \(R_1 \) sum-rule comes from the one-loop logarithmic terms in \(\Pi(Q^2) \). These contributions have not been considered in previous studies of pseudoscalar gluonium, motivating our analysis of the sum-rule mass estimates.

The sum-rules \(R_k(\tau, s_0) \) relate a QCD prediction to a phenomenological model for \(\text{Im} \Pi(t) \). The simplest model is the narrow-width approximation for the lightest resonance,

\[\text{Im} \Pi(t) = \pi f^2 \delta(t - M^2) \quad (17) \]

where \(M \) is the mass of the \(0^{-+} \) state and \(f \) is its coupling to the pseudoscalar current. This model leads to the following family of sum-rules relating QCD expressions to resonance properties of the state.

\[R_0(\tau, s_0) = f^2 M^4 e^{-M^2 \tau} \]

\[R_1(\tau, s_0) = f^2 M^6 e^{-M^2 \tau} \quad (18) \]

\[F_0(s_0) = f^2 M^4 \]

Taking the ratio of \(R_1/R_0 \) it is easily observed that

\[M^2 = \frac{R_1(\tau, s_0)}{R_0(\tau, s_0)} \quad (19) \]
For small τ (high-energy) the dominance of the lightest resonance in the phenomenological model fails, while for large τ (low-energy) the OPE is no longer a good approximation. Thus at intermediate values of τ there should be a slowly varying region of the ratio (19).

To obtain a QCD prediction of the resonance properties, the conventional (τ stability) procedure [3] is to fix s_0 and then identify the τ stationary point of R_1/R_0 as the (s_0-dependent) value of M^2. This value is then used to extract f^2 by locating the stationary point of $e^{M^2\tau R_0/M^4}$. This procedure then leads to M and f as functions of the continuum threshold s_0. To determine the final QCD prediction, the finite-energy sum-rule (FESR) is used to constrain s_0 by demanding maximum agreement with the lowest FESR [15].

$$f^2(s_0)M^4(s_0) = F_0(s_0)$$

(20)

The outcome of this procedure will obviously depend on the QCD parameters used as input into the sum-rules. In an exhaustive analysis of several channels it has been concluded that an acceptable range of the gluon condensate is $\langle \alpha_s G^2 \rangle = 3(0.05 \pm 0.015)/\pi$ GeV4 [17]. The dilute instanton gas approximation $\langle gG^3 \rangle \approx (0.27$ GeV$^2)\langle \alpha_s G^2 \rangle$ [18] and vacuum saturization $\langle \alpha_s^2 G^4 \rangle = \frac{15}{16}(\langle \alpha_s G^2 \rangle)^2$ [4,16] will be used for the higher-dimension gluonic condensates. These values for the higher-dimension condensates are in agreement with the conclusions for the scalar glueball sum-rule [9]. Finally, $\Lambda_{\overline{\text{MS}}}$ will be allowed to vary over a generous range. To summarize, the following QCD parameter space will be considered.

$$\langle \alpha_s G^2 \rangle = \frac{3}{\pi}(0.050 \pm 0.015) \text{ GeV}^4$$

$$\langle gG^3 \rangle = (0.27 \text{ GeV}^2)\langle \alpha_s G^2 \rangle \quad \langle \alpha_s^2 G^4 \rangle = \frac{15}{16}(\langle \alpha_s G^2 \rangle)^2$$

(21)

$$\bar{\alpha}_s(1/\tau) = -\frac{4\pi}{11 \log \tau \Lambda_{\overline{\text{MS}}}^2} \quad \Lambda_{\overline{\text{MS}}} = (0.15 \pm 0.05)\text{GeV}$$

Two-loop corrections to the running coupling constant will be applied in the (two-loop) perturbative terms.

The results of the previously described algorithm for analyzing the pseudoscalar sum-rule are more conclusive than in the scalar channel. It is possible to find a value of s_0
leading to precise agreement† with the FESR constraint, and also providing wide flat regions in the τ plots. These plots are shown for the optimum s_0 and various choices of parameter space in Figures 1-3, and summarized in Table 1. As is necessary in a sum-rule analysis, the τ stationary points occur at intermediate values, so that convergence of the QCD sum rule (small τ) is balanced against dominance of the lightest resonance (large τ).

Table 1 exhibits the complete range of mass predictions resulting from the QCD parameter space (21). Thus over the range of parameters considered, the τ stability analysis of the sum-rules satisfies the FESR constraint, leading to the predictions $f = (0.30 \pm 0.05)$GeV, $m_{0-+} = (2.3 \pm 0.2)$GeV, with the errors reflecting only the parameter space uncertainties.

Our analysis leads to a heavier 0^{-+} mass prediction than in previous sum rule estimates [6,7], indicating that the higher-loop corrections considered here are indeed important. However, our results are in reasonable agreement with $SU(3)$ lattice simulations which find $m_{0-+} = (6.3\pm0.7)\sqrt{K} \approx (2.8\pm0.3)$GeV [10]. For mass ratios, using the (higher-loop) sum rule estimate for the scalar glueball [9], we find $m_{0-+}/m_{0++} = (1.4 \pm 0.3)$. In good agreement with the $SU(3)$ lattice ratio $m_{0-+}/m_{0++} = (1.8 \pm 0.3)$.

Since our results disagree with the other sum-rule estimates, we feel that it is incumbent upon us to check our calculations using the same corrections as in [6]. A value of the continuum threshold can be found satisfying the sum-rule constraint, and the corresponding plots are shown in Figure 4. As is evident a mass scale of about 1.7GeV results, in agreement with [6]. It can thus be concluded that the neglected contribution of the gluon condensate, providing the leading $\langle \alpha_s G^2 \rangle$ behaviour in the sum-rule, has a significant effect on the sum-rule analysis.

In conclusion, the effect of higher-loop corrections on the sum-rule predictions of the pseudoscalar gluonium mass have been investigated in pure QCD. These higher-loop corrections...
corrections provide the leading \(\alpha s G^2\) behaviour in the (subtraction-independent) sum-rules, and thus their effects are significant. In the sum-rule analysis, a continuum threshold can be found in precise agreement with the lowest FESR, leading to optimum predictions
\[
m_{0-+} = (2.3 \pm 0.2)\text{GeV}
\]
over a wide range of QCD parameter space. These results compare well with lattice values, both for the pseudoscalar mass, and the pseudoscalar-scalar mass ratio.

Acknowledgements
Many thanks to E. Bagan for collaborative work leading to this project. We are grateful for the financial support of the Natural Sciences and Engineering Research Council of Canada.

References

[1] Particle Data Group, Phys. Lett. **239B** (1990).

[2] M.S. Chanowitz, Phys. Lett. **187B** (1987) 409.

[3] M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. **B147** (1979) 385, 448;
 L.J. Reinders, H. Rubenstein, S. Yazaki, Phys. Rep. **C127** (1985) 1.

[4] V.A. Novikov, M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Phys. Lett. **86B** (1979) 347.

[5] M.A. Shifman, Z. Phys. **C9** (1981) 347;
 S. Narison, Phys. Lett. **125B** (1983) 501;
 S. Narison, Z. Phys. **C26** (1984) 209;
 J. Bordes, V. Gimenez, J.A. Peñarrocha, Phys. Lett. **223B** (1989) 251.

[6] K. Senba, M. Tanimoto, Phys. Lett. **105B** (1981) 297.

[7] S. Narison, Phys. Lett. **255B** (1991) 101.

[8] E. Bagan, T.G. Steele, Phys. Lett. **234B** (1990) 135.

[9] E. Bagan, T.G. Steele, Phys. Lett. **243B** (1990) 413.
[10] C. Michael, M. Teper, Phys. Lett. 206B (1988) 299;
 C. Michael, M. Teper, Nucl. Phys. B314 (1989) 347.

[11] D. Espriu, R. Tarrach, Z. Phys. C16 (1982) 77.

[12] A.L. Kataev, N.V. Krasnikov, A.A. Pivovarov, Nucl. Phys. B198 (1982) 508.

[13] S. Narison, N. Pak, N. Paver, Phys. Lett. 147B (1984) 162.

[14] S. Narison, R. Tarrach, Phys. Lett. 125B (1983) 217.

[15] R.A. Bertlmann, G. Launer, E. de Rafael, Nucl. Phys. B250 (1985) 61.

[16] E. Bagan, J.I. Latorre, P. Pascual, R. Tarrach, Nucl. Phys. B254 (1985) 555.

[17] V. Giménez, J. Bordes, J.A. Peñarrocha, Phys. Lett. 223B (1989) 251.

[18] V.A. Novikov, M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B191 (1981) 301.

Figure Captions

Figures 1-3 illustrate the sum-rule estimates of f and M for the optimum values of s_0.

Fig. 1: $\langle \alpha_s G^2 \rangle = 0.033$ GeV4, $\Lambda_{\overline{MS}} = 0.2$ GeV $\sqrt{s_0} = 2.7$ GeV

Fig. 2: $\langle \alpha_s G^2 \rangle = 0.048$ GeV4, $\Lambda_{\overline{MS}} = 0.15$ GeV $\sqrt{s_0} = 2.9$ GeV

Fig. 3: $\langle \alpha_s G^2 \rangle = 0.062$ GeV4, $\Lambda_{\overline{MS}} = 0.1$ GeV $\sqrt{s_0} = 3.1$ GeV

Fig. 4: Illustration of the sum-rule analysis neglecting the higher-loop effects. The parameters are: $\langle \alpha_s G^2 \rangle = 0.04$ GeV4, $\Lambda_{\overline{MS}} = 0.15$ GeV $\sqrt{s_0} = 2.2$ GeV and lead to an agreement with the FESR of $(\mathcal{F}_0 - f^2 M^4)/\mathcal{F}_0 = 1 \times 10^{-2}$.

10