On the Lebesgue measure of the Feigenbaum Julia set

Artem Dudko

IMPAN

Algorithmic Questions in Dynamical Systems
Toulouse

March 27, 2018
The Feigenbaum quadratic polynomial

\[f_{\text{Feig}}(z) = z^2 + c_{\text{Feig}}, \text{ where } c_{\text{Feig}} \approx -1.4011551890 \text{ is the limit of the sequence of real period doubling parameters.} \]
The Feigenbaum quadratic polynomial

\[f_{\text{Feig}}(z) = z^2 + c_{\text{Feig}}, \text{ where } c_{\text{Feig}} \approx -1.4011551890 \text{ is the limit of the sequence of real period doubling parameters.} \]
Julia set of a polynomial f

Filled Julia set $\mathcal{K}(f) = \{ z \in \mathbb{C} : \{ f^n(z) \}_{z \in \mathbb{N}} \text{ is bounded} \}$.

Julia set $\mathcal{J}(f) = \partial \mathcal{K}(f)$.
Julia set of a polynomial f

Filled Julia set $\mathcal{K}(f) = \{z \in \mathbb{C} : \{f^n(z)\}_{z \in \mathbb{N}} \text{ is bounded}\}$. Julia set $\mathcal{J}(f) = \partial \mathcal{K}(f)$.

Figure: The airplane map $p(z) = z^2 + c$, $c \approx -1.755$.
The Feigenbaum Julia set

Figure: The Julia set of f_{Feig}
The Feigenbaum Julia set

Figure: The Julia set of f_{Feig}
The Feigenbaum Julia set

Figure: The Julia set of f_{Feig}
The Feigenbaum Julia set

Figure: The Julia set of f_{Feig}
The Feigenbaum Julia set

Figure: The Julia set of \(f_{\text{Feig}} \)

Theorem (D.-Sutherland)

The Julia set of \(f_{\text{Feig}} \) has Hausdorff dimension less than two (and hence its Lebesgue measure is zero).
Renormalization

A quadratic-like map is a ramified covering \(f : U \to V \) of degree 2, where \(U \subseteq V \) are topological disks in \(\mathbb{C} \).
A quadratic-like map is a ramified covering \(f : U \to V \) of degree 2, where \(U \subset V \) are topological disks in \(\mathbb{C} \).

A quadratic-like map \(f \) is called renormalizable with period \(n \) if there exist domains \(U' \subset U \) for which \(f^n : U' \to V' = f^n(U') \) is a quadratic-like map. The map \(f^n|_{U'} \) is called a pre-renormalization of \(f \); the map \(R_n f := \Lambda \circ f^n|_{U'} \circ \Lambda^{-1} \), where \(\Lambda \) is an appropriate rescaling of \(U' \), is the renormalization of \(f \).
Renormalization

A quadratic-like map is a ramified covering \(f : U \to V \) of degree 2, where \(U \subseteq V \) are topological disks in \(\mathbb{C} \).

A quadratic-like map \(f \) is called renormalizable with period \(n \) if there exist domains \(U' \subseteq U \) for which \(f^n : U' \to V' = f^n(U') \) is a quadratic-like map. The map \(f^n|_{U'} \) is called a pre-renormalization of \(f \); the map \(\mathcal{R}_n f := \Lambda \circ f^n|_{U'} \circ \Lambda^{-1} \), where \(\Lambda \) is an appropriate rescaling of \(U' \), is the renormalization of \(f \).

Figure: The airplane map \(p(z) = z^2 + c, \ c \approx -1.755 \).
A quadratic-like map is a ramified covering \(f : U \to V \) of degree 2, where \(U \subset V \) are topological disks in \(\mathbb{C} \).

A quadratic-like map \(f \) is called renormalizable with period \(n \) if there exist domains \(U' \subset U \) for which \(f^n : U' \to V' = f^n(U') \) is a quadratic-like map. The map \(f^n|_{U'} \) is called a pre-renormalization of \(f \); the map \(R_nf := \Lambda \circ f^n|_{U'} \circ \Lambda^{-1} \), where \(\Lambda \) is an appropriate rescaling of \(U' \), is the renormalization of \(f \).

Figure: The airplane map \(p(z) = z^2 + c, \ c \approx -1.755 \).
Renormalization

A *quadratic-like map* is a ramified covering $f : U \to V$ of degree 2, where $U \subseteq V$ are topological disks in \mathbb{C}.

A quadratic-like map f is called *renormalizable with period n* if there exist domains $U' \subseteq U$ for which $f^n : U' \to V' = f^n(U')$ is a quadratic-like map. The map $f^n|_{U'}$ is called a *pre-renormalization of f*; the map $\mathcal{R}_n f := \Lambda \circ f^n|_{U'} \circ \Lambda^{-1}$, where Λ is an appropriate rescaling of U', is the *renormalization of f*.

Figure: The airplane map $p(z) = z^2 + c$, $c \approx -1.755$.
Renormalization

A quadratic-like map is a ramified covering $f : U \to V$ of degree 2, where $U \subseteq V$ are topological disks in \mathbb{C}.

A quadratic-like map f is called renormalizable with period n if there exist domains $U' \subseteq U$ for which $f^n : U' \to V' = f^n(U')$ is a quadratic-like map. The map $f^n|_{U'}$ is called a pre-renormalization of f; the map $\mathcal{R}_n f := \Lambda \circ f^n|_{U'} \circ \Lambda^{-1}$, where Λ is an appropriate rescaling of U', is the renormalization of f.

Figure: The airplane map $p(z) = z^2 + c$, $c \approx -1.755$.
Renormalization

A quadratic-like map is a ramified covering \(f : U \to V \) of degree 2, where \(U \subseteq V \) are topological disks in \(\mathbb{C} \).

A quadratic-like map \(f \) is called renormalizable with period \(n \) if there exist domains \(U' \subseteq U \) for which \(f^n : U' \to V' = f^n(U') \) is a quadratic-like map. The map \(f^n|_{U'} \) is called a pre-renormalization of \(f \); the map \(\mathcal{R}_n f := \Lambda \circ f^n|_{U'} \circ \Lambda^{-1} \), where \(\Lambda \) is an appropriate rescaling of \(U' \), is the renormalization of \(f \).

Figure: The airplane map \(p(z) = z^2 + c, \ c \approx -1.755 \).
Feigenbaum maps

Lanford: period two renormalization operator has a fixed point F (the Feigenbaum map).
Feigenbaum maps

Lanford: period two renormalization operator has a fixed point F (the Feigenbaum map).

Sullivan: the fixed point is unique in the class of quadratic like maps.
Feigenbaum maps

Lanford: period two renormalization operator has a fixed point F (the Feigenbaum map).

Sullivan: the fixed point is unique in the class of quadratic like maps.

The map f_{Feig} is infinitely renormalizable. The sequence of germs $R^k(f_{Feig})$ converges geometrically fast to F (Lanford, Sullivan, McMullen).
Feigenbaum maps

Lanford: period two renormalization operator has a fixed point F (*the Feigenbaum map*).

Sullivan: the fixed point is unique in the class of quadratic like maps.

The map f_{Feig} is infinitely renormalizable. The sequence of germs $R^k(f_{\text{Feig}})$ converges geometrically fast to F (Lanford, Sullivan, McMullen).

Definition

A *Feigenbaum map* is an infinitely renormalizable quadratic-like map with bounded combinatorics and a priori bounds.
Denote by f_n the n-th prerenormalization of f, by \mathcal{J}_n the Julia set of f_n and by $\mathcal{O}(f)$ the critical orbit of f.
Nice domains

Denote by \(f_n \) the \(n \)-th prerenormalization of \(f \), by \(\mathcal{J}_n \) the Julia set of \(f_n \) and by \(\mathcal{O}(f) \) the critical orbit of \(f \).

Avila and Lyubich constructed domains \(U^n \subset V^n \) (called nice domains) for which

- \(f_n(U^n) = V^n \);
- \(U^n \supset \mathcal{J}_n \cap \mathcal{O}(f) \);
- \(V^{n+1} \subset U^n \);
- \(f^k(\partial V^n) \cap V^n = \emptyset \) for all \(n, k \);
- \(A^n = V^n \setminus U^n \) is “far” from \(\mathcal{O}(f) \);
- \(\text{area}(A^n) \asymp \text{area}(U^n) \asymp \text{diam}(U^n)^2 \asymp \text{diam}(V^n)^2 \).
Escaping and returning set

For each $n \in \mathbb{N}$, let X_n be the set of points in U^0 that land in V^n under some iterate of f, and let Y_n be the set of points in A^n that never return to V^n under iterates of f. Introduce the quantities

$$
\eta_n = \frac{\text{area}(X_n)}{\text{area}(U^0)}, \quad \xi_n = \frac{\text{area}(Y_n)}{\text{area}(A^n)}.
$$
Escaping and returning set

For each \(n \in \mathbb{N} \), let \(X_n \) be the set of points in \(U^0 \) that land in \(V^n \) under some iterate of \(f \), and let \(Y_n \) be the set of points in \(A^n \) that never return to \(V^n \) under iterates of \(f \). Introduce the quantities

\[
\eta_n = \frac{\text{area}(X_n)}{\text{area}(U^0)}, \quad \xi_n = \frac{\text{area}(Y_n)}{\text{area}(A^n)}.
\]

Theorem (Avila-Lyubich)

Let \(f \) be a periodic point of renormalization (\(\mathcal{R}^p f = f \) for some \(p \)). Then exactly one of the following is true:

1. \(\eta_n \) converges to 0 exponentially fast, \(\inf \xi_n > 0 \), and \(\dim H(J f) < 2 \) (Lean case);
2. \(\eta_n \approx \xi_n \approx \frac{1}{n} \) and \(\dim H(J f) = 2 \) with \(\text{area}(J f) = 0 \) (Balanced case);
3. \(\inf \eta_n > 0 \), \(\xi_n \) converges to 0 exponentially fast, and \(\text{area}(J f) > 0 \) (Black Hole case).
Escaping and returning set

For each \(n \in \mathbb{N} \), let \(X_n \) be the set of points in \(U^0 \) that land in \(V^n \) under some iterate of \(f \), and let \(Y_n \) be the set of points in \(A^n \) that never return to \(V^n \) under iterates of \(f \). Introduce the quantities

\[
\eta_n = \frac{\text{area}(X_n)}{\text{area}(U^0)}, \quad \xi_n = \frac{\text{area}(Y_n)}{\text{area}(A^n)}.
\]

Theorem (Avila-Lyubich)

Let \(f \) be a periodic point of renormalization (\(\mathcal{R}^p f = f \) for some \(p \)). Then exactly one of the following is true:

- \(\eta_n \) converges to 0 exponentially fast, \(\inf \xi_n > 0 \), and \(\dim_H(\mathcal{J}_f) < 2 \) (Lean case);
Escaping and returning set

For each $n \in \mathbb{N}$, let X_n be the set of points in U^0 that land in V^n under some iterate of f, and let Y_n be the set of points in A^n that never return to V^n under iterates of f. Introduce the quantities

$$
\eta_n = \frac{\text{area}(X_n)}{\text{area}(U^0)}, \quad \xi_n = \frac{\text{area}(Y_n)}{\text{area}(A^n)}.
$$

Theorem (Avila-Lyubich)

Let f be a periodic point of renormalization ($R^p f = f$ for some p). Then exactly one of the following is true:

1. η_n converges to 0 exponentially fast, $\inf \xi_n > 0$, and $\dim_H(\mathcal{J}_f) < 2$ (Lean case);
2. $\eta_n \asymp \xi_n \asymp \frac{1}{n}$ and $\dim_H(\mathcal{J}_f) = 2$ with $\text{area}(\mathcal{J}_f) = 0$ (Balanced case);
Escaping and returning set

For each $n \in \mathbb{N}$, let X_n be the set of points in U^0 that land in V^n under some iterate of f, and let Y_n be the set of points in A^n that never return to V^n under iterates of f. Introduce the quantities

$$
\eta_n = \frac{\text{area}(X_n)}{\text{area}(U^0)}, \quad \xi_n = \frac{\text{area}(Y_n)}{\text{area}(A^n)}.
$$

Theorem (Avila-Lyubich)

Let f be a periodic point of renormalization ($\mathcal{R}^p f = f$ for some p). Then exactly one of the following is true:

- η_n converges to 0 exponentially fast, $\inf \xi_n > 0$, and $\dim_H(\mathcal{J}_f) < 2$ (Lean case);
- $\eta_n \asymp \xi_n \asymp \frac{1}{n}$ and $\dim_H(\mathcal{J}_f) = 2$ with $\text{area}(\mathcal{J}_f) = 0$ (Balanced case);
- $\inf \eta_n > 0$, ξ_n converges to 0 exponentially fast, and $\text{area}(\mathcal{J}_f) > 0$ (Black Hole case).
An approach to prove $\dim_H(\mathcal{J}_{\text{Feig}}) < 2$.

One can construct a number $C > 0$ (depending on the geometry of A^n and the critical orbit $O(f)$) such that if $\eta_n/\xi_n < C$ for some n then $\dim_H(\mathcal{J}_{\text{Feig}}) < 2$. But ...
An approach to prove $\dim_H(J_{Feig}) < 2$.

One can construct a number $C > 0$ (depending on the geometry of A^n and the critical orbit $O(f)$) such that if $\eta_n/\xi_n < C$ for some n then $\dim_H(J_{Feig}) < 2$. But . . .

it is extremely computationally complex both to construct such C and to compute η_n and ξ_n for large n. So . . .
An approach to prove $\dim_H(J_{\text{Feig}}) < 2$.

One can construct a number $C > 0$ (depending on the geometry of A^n and the critical orbit $O(f)$) such that if $\eta_n/\xi_n < C$ for some n then $\dim_H(J_{\text{Feig}}) < 2$. But . . .

it is extremely computationally complex both to construct such C and to compute η_n and ξ_n for large n. So . . .

need a different approach.
The structure of F.

The Cvitanović-Feigenbaum equation:

$$
\begin{align*}
F(z) &= -\frac{1}{\lambda} F^2(\lambda z), \\
F(0) &= 1, \\
F(z) &= H(z^2),
\end{align*}
$$

with $H^{-1}(z)$ univalent in $\mathbb{C} \setminus ((-\infty, -\frac{1}{\lambda}] \cup [\frac{1}{\lambda^2}, \infty))$, where $\frac{1}{\lambda} = 2.5029\ldots$ is one of the Feigenbaum constants.
The structure of F.

The Cvitanović-Feigenbaum equation:

$$
\begin{cases}
 F(z) &= -\frac{1}{\lambda}F^2(\lambda z), \\
 F(0) &= 1, \\
 F(z) &= H(z^2),
\end{cases}
$$

with $H^{-1}(z)$ univalent in $\mathbb{C} \setminus ((-\infty, -\frac{1}{\lambda}] \cup [\frac{1}{\lambda^2}, \infty))$, where $\frac{1}{\lambda} = 2.5029\ldots$ is one of the Feigenbaum constants.

Proposition (H. Epstein)

The map F has a maximal analytic extension to $\hat{F} : \hat{W} \to \mathbb{C}$, where $\hat{W} \supset \mathbb{R}$ is open, simply connected and dense in \mathbb{C}.
The structure of F.

The Cvitanović-Feigenbaum equation:

\[
\begin{cases}
F(z) = -\frac{1}{\lambda} F^2(\lambda z), \\
F(0) = 1, \\
F(z) = H(z^2),
\end{cases}
\]

with $H^{-1}(z)$ univalent in $\mathbb{C} \setminus ((-\infty, -\frac{1}{\lambda}] \cup [\frac{1}{\lambda^2}, \infty))$, where $\frac{1}{\lambda} = 2.5029\ldots$ is one of the Feigenbaum constants.

Proposition (H. Epstein)

The map F has a maximal analytic extension to $\hat{F} : \hat{W} \to \mathbb{C}$, where $\hat{W} \supset \mathbb{R}$ is open, simply connected and dense in \mathbb{C}.

Theorem (H. Epstein, X. Buff)

All critical points of \hat{F} are simple. The critical values of \hat{F} are contained in real axis. Moreover, \hat{F} is a ramified covering.
Partition of $\hat{\mathcal{W}}$
Central tiles

Denote by P_I, P_{II}, P_{III} and P_{IV} the connected components of $\hat{F}^{-1}(\mathbb{H}_\pm)$ containing 0 on the boundary. Set

$$W = \text{Int}(\overline{P_I \cup P_{II} \cup P_{III} \cup P_{IV}}).$$
Denote by \(P_I, P_{II}, P_{III} \) and \(P_{IV} \) the connected components of \(\hat{F}^{-1}(\mathbb{H}_\pm) \) containing 0 on the boundary. Set

\[
W = \text{Int}(P_I \cup P_{II} \cup P_{III} \cup P_{IV}).
\]

Denote by \(F \) the quadratic like restriction of \(\hat{F} \)

\[
W \to \mathbb{C} \setminus ((-\infty, -\frac{1}{\lambda}] \cup [\frac{1}{\lambda^2}, \infty)).
\]
Denote by P_I, P_{II}, P_{III} and P_{IV} the connected components of $\hat{F}^{-1}(\mathbb{H}_\pm)$ containing 0 on the boundary. Set

$$W = \text{Int}(P_I \cup P_{II} \cup P_{III} \cup P_{IV}).$$

Denote by F the quadratic like restriction of \hat{F}

$$W \rightarrow \mathbb{C} \setminus ((-\infty, -\frac{1}{\lambda}] \cup [\frac{1}{\lambda^2}, \infty)).$$

For $n \in \mathbb{N}$ and any set A let $A^{(n)} = \lambda^n A$ and denote by $F_n = F^{2^n}|_{W^{(n)}}$ the n-th pre-renormalization of F.

The (new) returning sets

\[\tilde{X}_n = \{ z \in W^{(1)} : F^k(z) \in W^{(n)} \text{ for some } k \}, \quad \tilde{\eta}_n = \frac{\text{area}(\tilde{X}_n)}{\text{area}(W^{(1)})}. \]
The (new) returning sets

\[\tilde{X}_n = \{ z \in W^{(1)} : F^k(z) \in W^{(n)} \text{ for some } k \}, \quad \tilde{\eta}_n = \frac{\text{area}(\tilde{X}_n)}{\text{area}(W^{(1)})}. \]
The (new) returning sets

\[\tilde{X}_n = \{ z \in W^{(1)} : F^k(z) \in W^{(n)} \text{ for some } k \}, \]

\[\tilde{\eta}_n = \frac{\text{area}(\tilde{X}_n)}{\text{area}(W^{(1)})}. \]
The (new) returning sets

\[\tilde{X}_n = \{ z \in W^{(1)} : F^k(z) \in W^{(n)} \text{ for some } k \}, \]

\[\tilde{\eta}_n = \frac{\text{area}(\tilde{X}_n)}{\text{area}(W^{(1)})}. \]

Using Avila-Lyubich trichotomy we obtain:

Proposition

\[\dim_H(\mathcal{J}_F) < 2 \text{ if and only if } \tilde{\eta}_n \to 0 \text{ exponentially fast}. \]
The (new) returning sets

\[\tilde{X}_n = \{ z \in W^{(1)} : F^k(z) \in W^{(n)} \text{ for some } k \}, \]

\[\tilde{\eta}_n = \frac{\text{area}(\tilde{X}_n)}{\text{area}(W^{(1)})}. \]

Using Avila-Lyubich trichotomy we obtain:

Proposition

\(\dim_H(\mathcal{J}_F) < 2 \text{ if and only if } \tilde{\eta}_n \to 0 \text{ exponentially fast.} \)

Idea to prove \(\tilde{\eta}_n \to 0 \): construct recursive estimates of the form

\[\tilde{\eta}_{n+m} \leq C_{n,m} \tilde{\eta}_n \tilde{\eta}_m. \]
Copies of central tiles

We will call any connected component of $P_j^{(m)}$, where $k, m \in \mathbb{Z}_+$, J is a quadrant, a *copy of $P_j^{(m)}$ under F^k*.
Copies of central tiles

We will call any connected component of $P_j^{(m)}$, where $k, m \in \mathbb{Z}_+$, J is a quadrant, a copy of $P_j^{(m)}$ under F^k.

![Graph showing copies of central tiles]
We will call any connected component of P_j^m, where $k, m \in \mathbb{Z}_+$, J is a quadrant, a *copy of P_j^m under F^k.*
Copies of central tiles

We will call any connected component of $P_{j}^{(m)}$, where $k, m \in \mathbb{Z}_{+}$, J is a quadrant, a copy of $P_{j}^{(m)}$ under F^{k}.

A copy Q of $P_{j}^{(m)}$ under F^{k} is primitive if $F^{i}(Q) \cap W^{(m)} = \emptyset$ for all $0 \leq i < k$.
Copies of central tiles

We will call any connected component of $P_j^{(m)}$, where $k, m \in \mathbb{Z}_+$, J is a quadrant, a copy of $P_j^{(m)}$ under F^k.

A copy Q of $P_j^{(m)}$ under F^k is primitive if $F^i(Q) \cap W^{(m)} = \emptyset$ for all $0 \leq i < k$.

A copy Q of $P_j^{(m)}$ under F^k is separated if there exists $0 \leq i < k$ with $F^i(Q) \subset W^{(m)}$ and $F^i(Q) \cap J_F^{(n-1)} = \emptyset$ for maximal such i.
Comparing the returning sets

Fix $n, m \in \mathbb{N}$. Let \mathcal{P} and \mathcal{S} be the collection of all primitive and separated copies of $P_j^{(m)}$, where J is any quadrant. Modulo zero measure one has:

$$\tilde{X}_n = \bigcup_{Q \in \mathcal{P}} Q.$$

For a copy Q of P_j under F_k set

$$X_Q = F_k^-(\lambda n - 1) \tilde{X}_{m+1} \cap Q.$$
Comparing the returning sets

Fix $n, m \in \mathbb{N}$. Let \mathcal{P} and \mathcal{S} be the collection of all primitive and separated copies of $P_J^{(m)}$, where J is any quadrant. Modulo zero measure one has:

$$\tilde{X}_n = \bigcup_{Q \in \mathcal{P}} Q.$$

For a copy Q of P under F^k set

$$X_Q = F^{-k}(\lambda^{n-1}\tilde{X}_{m+1}) \cap Q.$$
Comparing the returning sets

Fix $n, m \in \mathbb{N}$. Let \mathcal{P} and \mathcal{S} be the collection of all primitive and separated copies of $P_{j}^{(m)}$, where J is any quadrant. Modulo zero measure one has:

$$\tilde{X}_n = \bigcup_{Q \in \mathcal{P}} Q.$$

For a copy Q of P under F^k set

$$X_Q = F^{-k}(-\lambda^{n-1}\tilde{X}_{m+1}) \cap Q.$$

Modulo zero measure one has

$$\tilde{X}_{n+m} = \bigcup_{Q \in \mathcal{P} \cup \mathcal{S}} X_Q.$$
Proposition

Let T be a primitive or a separated copy of $P_j^{(m)}$ under F^k with $m \geq 2$. Then the inverse branch $\phi : P_j^{(m)} \to T$ of F^k analytically continues to a univalent map on $\text{sign}(P_j^{(m)}) \lambda^m \mathbb{C}_\lambda$ where

$$\mathbb{C}_\lambda = \mathbb{C} \setminus \left((-\infty, -\frac{1}{\lambda}] \cup \left[\frac{F(\lambda)}{\lambda^2}, \infty \right) \right).$$
Proposition

Let T be a primitive or a separated copy of $P_j^{(m)}$ under F^k with $m \geq 2$. Then the inverse branch $\phi : P_j^{(m)} \to T$ of F^k analytically continues to a univalent map on $\operatorname{sign}(P_j^{(m)}) \lambda^m \mathbb{C}_\lambda$ where

$$\mathbb{C}_\lambda = \mathbb{C} \setminus \left((\infty, -\frac{1}{\lambda}] \cup \left[\frac{F(\lambda)}{\lambda^2}, \infty\right)\right).$$
Koebe distortion

We construct numbers $M(A)$ such that

Corollary

Let A, B be two measurable subsets of P_J of positive measure and let T be a primitive or a separated copy of $P_L^{(m)}$ under F^k for some $k \geq 0$ and $m \geq 2$. Then

$$\frac{\text{area}(F^{-k}(B^{(m)}) \cap T)}{\text{area}(F^{-k}(A^{(m)}) \cap T)} \leq M(A)\text{area}(B).$$
Koebe distortion

We construct numbers $M(A)$ such that

Corollary

Let A, B be two measurable subsets of P_J of positive measure and let T be a primitive or a separated copy of $P_L^{(m)}$ under F^k for some $k \geq 0$ and $m \geq 2$. Then

$$\frac{\text{area}(F^{-k}(B^{(m)}) \cap T)}{\text{area}(F^{-k}(A^{(m)}) \cap T)} \leq M(A)\text{area}(B).$$

Notice, $\lambda^{n-1} \tilde{X}_{m+1} \subset W^{(n)}$.
Koebe distortion

We construct numbers $M(A)$ such that

Corollary

Let A, B be two measurable subsets of P_J of positive measure and let T be a primitive or a separated copy of $P_L^{(m)}$ under F^k for some $k \geq 0$ and $m \geq 2$. Then

$$\frac{\text{area}(F^{-k}(B^{(m)}) \cap T)}{\text{area}(F^{-k}(A^{(m)}) \cap T)} \leq M(A)\text{area}(B).$$

Notice, $\lambda^{n-1}\tilde{X}_{m+1} \subset W^{(n)}$. Set

$$\Sigma_{n,m} = P^{(n)}_1 \setminus (\lambda^{n-1}\tilde{X}_{m+1} \cup \bigcup_{Q \in \mathcal{G}} Q),$$

$$M_{n,m} = M(\lambda^{-n}\Sigma_{n,m} \cap P_1).$$
Recursive estimates

Using the identities

\[
\text{area}(\tilde{X}_n) = \sum_{Q \in \mathcal{P}} \text{area}(Q), \\
\text{area}(\tilde{X}_{n+m}) = \sum_{Q \in \mathcal{P} \cup \mathcal{S}} \text{area}(X_Q),
\]

we show:
Recursive estimates

Using the identities

\[
\text{area}(\tilde{X}_n) = \sum_{Q \in \mathcal{P}} \text{area}(Q),
\]

\[
\text{area}(\tilde{X}_{n+m}) = \sum_{Q \in \mathcal{P} \cup \mathcal{S}} \text{area}(X_Q),
\]

we show:

Proposition

For every \(n \geq 2 \) and \(m \geq 1 \), one has

\[
\tilde{\eta}_{n+m} \leq M_{n,m} \text{area}(P_i) \tilde{\eta}_n \tilde{\eta}_{m+1}.
\]
Results of computations

Using rigorous computer estimates we prove:

\[M_6 = \lim_{m \to \infty} M_{6,m} < 9.4, \quad \tilde{\eta}_6 = \frac{\text{area}(\tilde{X}_6 \cap P_{1}^{(1)})}{\text{area}(P_{1}^{(1)})} < \frac{0.09}{\text{area}(P_{1})}. \]

We obtain \(\tilde{\eta}_6 M_6 \text{area}(P_{1}) < 0.846 < 1 \), so \(\mathcal{J}_F \) has Hausdorff dimension less than 2.
Computing the escaping set

Let $V_2 = (-\infty, -\frac{1}{\lambda}] \cup F^{-3}(V) \cup \left[\frac{1}{\lambda^2}, \infty\right)$.
Computing the escaping set

Let $V_2 = (-\infty, -\frac{1}{\lambda}] \cup F^{-3}(V) \cup [\frac{1}{\lambda^2}, \infty)$.

Denote by \tilde{W}_n the closure of the union of copies of P_J under F^{2^n-6} containing zero on the boundary.
Computing the escaping set

Let $V_2 = (-\infty, -\frac{1}{\lambda}] \cup F^{-3}(V) \cup [\frac{1}{\lambda^2}, \infty)$.

Denote by \widetilde{W}_n the closure of the union of copies of P_J under F^{2^n-6} containing zero on the boundary.
Computing the escaping set

Lemma

Let D be a disk in the complement of V_2 and let D_0 be a connected component of $F^{-k}(D)$ for any $k \geq 0$. Then for $n \geq 3$, either $D_0 \cap W^{(n)} = \emptyset$ or $D_0 \subset \tilde{W}^{(n)}$.
Computing the escaping set

Lemma

Let D be a disk in the complement of V_2 and let D_0 be a connected component of $F^{-k}(D)$ for any $k \geq 0$. Then for $n \geq 3$, either $D_0 \cap W^{(n)} = \emptyset$ or $D_0 \subset \tilde{W}^{(n)}$.

Figure: While the preimage labeled D_{16} partially intersects $W^{(3)}$, it lies completely inside $\tilde{W}_3 = W^{(1)}$.
Thank you!