Peroxidase-Like Catalytic Activity of Ag$_3$PO$_4$ Nanocrystals Prepared by a Colloidal Route

Yuanjun Liu1, Guoxing Zhu2,3,*, Jing Yang2, Aihua Yuan1,*, Xiaoping Shen2

1School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China, 2School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China, 3State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, P. R. China

Abstract

Nearly monodispersed Ag$_3$PO$_4$ nanocrystals with size of 10 nm were prepared through a colloidal chemical route. It was proven that the synthesized Ag$_3$PO$_4$ nanoparticles have intrinsic peroxidase-like catalytic activity. They can quickly catalyze oxidation of the peroxidase substrate 3, 3, 5, 5-tetramethylbenzidine (TMB) in the presence of H$_2$O$_2$, producing a blue color. The catalysis reaction follows Michaelis-Menten kinetics. The calculated kinetic parameters indicate a high catalytic activity and the strong affinity of Ag$_3$PO$_4$ nanocrystals to the substrate (TMB). These results suggest the potential applications of Ag$_3$PO$_4$ nanocrystals in fields such as biotechnology, environmental chemistry, and medicine.

Introduction

Owing to its excellent photocatalytic properties and broad range of applications such as in water-splitting, photocatalytic reactions, silver phosphate has got extensive study and has become a well studied material [1]. Especially, partly owing to the highly dispersive Ag-\cdotAg s bands without localized d states [2], Ag$_3$PO$_4$ semiconductor exhibits extremely high photooxidative ability for O$_2$ evolution from water as well as organic dye decomposition under visible light irradiation [3–6]. A much higher quantum efficiency (up to 90%) than the previously reported values at wavelengths longer than 420 nm was also achieved with it [1].

Up to now, various methods have been proposed to further enhance and optimize the photoelectric and photocatalytic properties of Ag$_3$PO$_4$ via microstructure control or forming composites with other components to improve its stability, bandgap structure and surface area [7–12]. Although extensive studies have been made for the photocatalytic applications of various Ag$_3$PO$_4$ micro-/nanoparticles and their composites, the application of Ag$_3$PO$_4$ in biological systems, for example used as biocatalyst, has rarely been studied, while the presence of phosphorus in biological systems is well known.

Recently, it was found that Fe$_3$O$_4$ nanoparticles have intrinsic enzyme-like activity similar to peroxidases found in nature, though Fe$_3$O$_4$ are usually thought to be biological and chemical inert [13]. After that, several kinds of micro/nanoparticles with smaller size or special structure were prepared for developing enzyme mimics, including the ferromagnetic nanoparticles with peroxidase-like activity [14–23], ceria oxide nanoparticles [24–27], and V$_2$O$_5$ nanowires [28], carbon-based nanomaterials [29–36] and so on [37–42]. In contrast to natural enzymes, nanoparticles-based enzyme mimics own prominent advantages. First, they have greater resistance to extremes of pH and temperature, while natural enzymes are usually sensitive to the external conditions and also easily lose their activity. Secondly, nanoparticles-based mimetic enzymes have higher stability, while natural enzymes can be digested by proteases. Thirdly, with the extensive development of nanoscience and nanotechnology in the past three decades, the preparation and surface modification of various nanoobjects can be easily carried out, while the synthesis and purification of natural enzymes are still time-consuming, expensive, and also difficult [14].

Exploitation of new functions of known nanomaterials is one of the most attractive aspects in nanoscience [37]. Inspired by the above pioneering research, we investigated the peroxidase-like activity of Ag$_3$PO$_4$ nanocrystals, considering that some Ag-based metal alloy nanoparticles own intrinsic peroxidase-like activity. Ag$_3$PO$_4$ nanoparticles with smaller size were obtained via a simple colloidal route. It was found that the obtained Ag$_3$PO$_4$ nanoparticles show their ability to catalyze peroxidatic reactions in aqueous media. The kinetic parameters were also tested and compared. The reaction catalyzed by these Ag$_3$PO$_4$ nanoparticles followed a Michaelis-Menten kinetic behavior with an excellent catalytic activity, making it a promising mimic of peroxidase. The new application of Ag$_3$PO$_4$ as peroxidase mimic will add new content to this interesting material.

Results and Discussion

A colloidal route was employed for the preparation of Ag$_3$PO$_4$ nanoparticles because it can produce Ag$_3$PO$_4$ nanoparticles with smaller size [6]. The preparation was carried out at room
Peroxidase-Like Activity of Ag₃PO₄

temperature with H₃PO₄ and AgNO₃ as raw materials, while toluene and oleylamine were used as solvent and surfactant. The crystal phase of the obtained Ag₃PO₄ nanoparticles was first determined by X-ray diffraction (XRD). Fig. 1a shows the corresponding XRD pattern, which can be easily indexed to cubic Ag₃PO₄ with JCPDS No. 06-0505. The relatively strong peaks at 21.3, 30.1, 33.6, 36.9, 53.1, 55.3, and 57.6° corresponds to the (110), (200), (210), (211), (222), (320), and (321) crystal planes of cubic Ag₃PO₄, respectively. No diffraction peak from Ag with zero-valent state is observed in the pattern. This reveals pure Ag₃PO₄ is obtained with this simple route. It should be noted that the XRD pattern shows relatively broad peak, indicating the smaller size of Ag₃PO₄ nanocrystals according to Scherrer formula. Fig. 1b shows a typical transmission electron microscopy (TEM) image of the obtained Ag₃PO₄ nanocrystals, from which spherical particles with small size are observed. The Ag₃PO₄ particles show relatively uniform size. The average diameter is about 10 nm.

Before property investigation, the obtained Ag₃PO₄ nanocrystals were firstly treated through usual ligand exchange route to transfer it to being hydrophilic state. Peroxidase-like activity of the Ag₃PO₄ nanocrystals was evaluated in the catalysis oxidation of TMB (3, 3′, 5, 5′-tetramethylbenzidine sulfate), in the presence of H₂O₂. TMB is colorless and can be oxidized slowly by H₂O₂ (Fig. 2). The often observed oxidation products are two colored products [43]. The first product is a blue charge-transfer complex of diamine, which are formed in rapid equilibrium with the radical cation. Its maximal absorption wavelength locates at ~370 and ~632 nm. Another product is a yellow diimine, which is generated by further oxidation of the diamine with excess H₂O₂ or strong acidic condition. The diimine product is stable in acidic conditions with absorption wavelength locates at 652 nm. The reaction system will turn to be yellow if it was overnight placed, which is due to the formation of diimine. Also, it was found that Ag₃PO₄ nanocrystals or H₂O₂ alone did not produce significant color change (inset of Figure 3). These results confirm that Ag₃PO₄ nanocrystals behave with peroxidase-like activity toward TMB.

As can be seen in Figure 3, our preliminary experiment shows that Ag₃PO₄ nanocrystals can catalyze the oxidation of TMB by H₂O₂ in NaAc buffer producing a blue solution (inset of Figure 3), suggesting the formation of charge-transfer complex of diamine. The typical absorbance peak of this oxidation product of TMB is at 632 nm. The reaction system will turn to be yellow if it was overnight placed, which is due to the formation of diimine. This was found that Ag₃PO₄ nanocrystals or H₂O₂ alone did not produce significant color change (inset of Figure 3). These results confirm that Ag₃PO₄ nanocrystals behave with peroxidase-like activity toward TMB.

To investigate the effect of pH values of buffer solution on catalytic properties, we performed the catalytic experiments in NaAc buffer with different pH values. Relative activity was analyzed based on the absorption at 652 nm. Fig. 4 shows the relative activity of the Ag₃PO₄ nanocrystals with reaction time of 30 min at room temperature. It was found that the catalytic activity of Ag₃PO₄ nanocrystals is significantly affected by pH values. Only very lower catalytic activity was demonstrated when the pH value of buffer exceeds 4.5. We then selected the buffer with pH of 4 for the subsequent study due to the consideration of the possible disability of Ag₃PO₄ nanocrystals in buffer with strong acidity. With the buffer of pH = 4, a contrast measure was conducted in the absence of Ag₃PO₄ nanocrystals, which give very low absorbency at 652 nm.

As shown in Figure 5, the catalytic activity of Ag₃PO₄ nanocrystals is also H₂O₂ concentration dependent. With the increasing of H₂O₂ concentration, the peroxidase-like catalytic activity increases at first. When the concentration of H₂O₂ reaches about 2.2 mmol/L (that is 7.3 times that of TMB), the catalytic activity of the Ag₃PO₄ nanocrystals achieves its highest point. However, further increasing the H₂O₂ concentration causes a lower absorbance at 652 nm, which implies low catalytic activity at higher H₂O₂ concentration. In fact, many nanoparticle-based enzyme mimics show this kind hump-shaped relationship between H₂O₂ concentration and the reaction activity including the highly studied enzyme mimic material Fe₃O₄ [13,44–46]. This phenomenon is also similar to that observed with horseradish peroxidase [13,44]. It is reasonable that the reaction activity increases at first with the increase of H₂O₂ concentration, since more oxidant is involved in the reaction system. With high concentration of H₂O₂ in the reaction system, it is usually proposed that the H₂O₂ molecules would cap on the surface of catalyst, inhibiting the attachment of substance to the surface of catalyst, and so weakening the catalytic activity. Thus, a hump-shaped relationship is obtained. While, this H₂O₂ concentration dependent catalytic activity is different from that of CuO [47]. Au nanoparticles [38], Ag nanoparticles [48]. In those cases, the reaction activity increases monotonously with H₂O₂ concentration till a saturation state is obtained.

For biomolecular enzymes, the catalytic active center is usually the coordination unsaturated metal sites under the capping of protein networks. For nanoparticles, the surface atoms place in similar situation –coordination unsaturation under the capping of surfactant moleculars. Thus, it is possible that they may share some common points in catalytic process, although the catalysis mechanism of inorganic catalysts and enzymes are usually different. At present stage, the Michaelis-Menten model is widely used for the study of nanoparticle-based enzyme mimetics [13,26,49–52]. Therefore, in our study, the Michaelis-Menten
model was also selected to understand the peroxidase-like catalytic activity of the Ag$_3$PO$_4$ nanocrystals.

For further analyzing the catalytic kinetic parameters, the catalytic activity of Ag$_3$PO$_4$ nanocrystals was studied by the Michaelis-Menten model with TMB as substrate. The apparent steady-state kinetic parameters for the reaction were determined at 25°C with pH = 4 buffer. Fig. 6a shows the TMB concentration dependent catalytic activity. The absorbance increases with the increasing of TMB concentration, especially at higher TMB concentration range. Absorbance data were then back-calculated to concentrations by the Beer-Lambert Law using a molar absorption coefficient of 39000 M$^{-1}$ cm$^{-1}$ for TMB-derived oxidation product [53].

Kinetic parameters were then calculated based on the Michaelis–Menten equation, which describes the relationship between the rate of substrate conversion by an enzyme catalyst and the concentration of the substrate. In this equation, V_o is the conversion rate, V_{max} is the maximum conversion rate, [S] is the substrate concentration, and K_m is the Michaelis constant which denotes the affinity of the enzyme. According to (1), a corresponding plot of $1/V_o$ vs. $1/[S]$ is shown in Fig. 6b, which reveals that the reaction catalyzed by Ag$_3$PO$_4$ nanocrystals follows Michaelis-Menten kinetics in a certain range of substrate concentrations.

The corresponding values of K_m and V_{max} calculated from double reciprocal plots with TMB substrate are 0.327 mM and 2.01×10$^{-5}$ mM s$^{-1}$ (Fig. 6b). By comparing the apparent kinetic parameters, the K_m value of Ag$_3$PO$_4$ nanocrystals with TMB substrate is lower than that of reported horserahish peroxidase (HRP, 0.434) tested in buffer solution with pH 3.5 at 40°C [13], suggesting that Ag$_3$PO$_4$ nanocrystals have a higher affinity for TMB than HRP. The V_{max} value is similar to that of typical nanomaterial-based enzyme mimetics, Fe$_3$O$_4$ nanoparticles. The values of K_m and V_{max} calculated with H$_2$O$_2$ substrate are 0.216 mM and 1.27×10$^{-5}$ mM s$^{-1}$ (inset of Fig. 5). The K_m value obtained here with H$_2$O$_2$ substrate is lower than that of Fe$_3$O$_4$ nanoparticles and HRP [13,19] reported under similar test conditions (buffer solution with pH 3.6–4.6, TMB concentration of 0.2–0.8 mM, temperature of 25°C), suggesting that the Ag$_3$PO$_4$ nanocrystals exhibit strong affinity towards TMB and H$_2$O$_2$. The strong affinity would be a reason for the excellent peroxidase-like activity.

Fig. 7 shows the time-dependent catalytic activity of four similar reaction systems with different amounts of Ag$_3$PO$_4$ nanocrystals. The absorbance of the Ag$_3$PO$_4$ catalyzed system is much higher than the one without Ag$_3$PO$_4$ catalyst. Among the three Ag$_3$PO$_4$ nanocrystals, the reaction system with Ag$_3$PO$_4$ nanocrystals shows the highest absorbance and the highest catalytic activity. The absorbance of the reaction system with Ag$_3$PO$_4$ nanocrystals is more than twice that of the reaction system without Ag$_3$PO$_4$ catalyst. This suggests that the Ag$_3$PO$_4$ nanocrystals have a higher catalytic activity than the one without Ag$_3$PO$_4$ catalyst.

Figure 2. The oxidation reaction of TMB.

![Figure 2](https://doi.org/10.1371/journal.pone.0109158.g002)

Figure 3. UV-vis spectrum of the reaction system with H$_2$O$_2$ + Ag$_3$PO$_4$ nanocrystals. The inset shows images of oxidation color reaction of TMB in NaAc buffer with a) H$_2$O$_2$, b) Ag$_3$PO$_4$ nanocrystals and c) H$_2$O$_2$ + Ag$_3$PO$_4$ nanocrystals. Reaction conditions: 0.3 mM of TMB, 2 mg/mL of Ag$_3$PO$_4$ (if with), 3.6 mM of H$_2$O$_2$ (if with) in 5 mL of NaAc buffer with pH 4.0. The reaction proceeded at 25°C with time of 30 min.

![Figure 3](https://doi.org/10.1371/journal.pone.0109158.g003)
catalyzed systems, the more catalyst is involved, the higher absorbency is shown. Control experiment to examine the time-dependent absorption spectrum of Ag₃PO₄ nanocrystals dispersed in buffer solution (pH = 4) at different concentrations (1, 2, 4 mg/mL) gives no obvious change of absorbency with time, indicating that the increasing absorbency in reaction system is related to the oxidation of TMB, but not originated from the increased concentration of Ag₃PO₄ nanocrystals (Fig. 7c). These results show that higher reaction rates are obtained with high concentration of Ag₃PO₄ catalyst. With 4 mg/mL of Ag₃PO₄ nanocrystals,

Figure 4. pH value-dependent peroxidase-like catalytic activity of Ag₃PO₄ nanocrystals. Reaction conditions: 0.3 mM of TMB, 2 mg/mL of Ag₃PO₄, 3.6 mM of H₂O₂ in 5 mL of NaAc buffer with different pH values. The reaction proceeded at 25°C with time of 30 min. doi:10.1371/journal.pone.0109158.g004

Figure 5. H₂O₂ concentration dependent peroxidase-like catalytic activity of Ag₃PO₄ nanocrystals. Reaction conditions: 0.3 mM of TMB, 2 mg/mL of Ag₃PO₄ in 5 mL of NaAc buffer with pH 4.0. The concentration of H₂O₂ varies in the range of 0.36–7.2 mM. The reaction proceeded at 25°C with time of 30 min. doi:10.1371/journal.pone.0109158.g005
tals, it seems that the reaction arrives equilibrium at about 50 minutes. The influence of temperature (10°C, 25°C, 35°C) on the peroxidase-like catalytic activity is also investigated with 20 mg of Ag₃PO₄ nanocrystals. As shown in Fig. 7b, the Ag₃PO₄ nanocrystals show the higher peroxidase-like catalytic activity at temperature of 25°C, although in the initial 15 min, the system has a relatively higher reaction rate at 35°C. The temperature dependent catalytic activity is similar to that of natural enzyme or Fe₃O₄ nanoparticles, which have a preferred temperature.

The use of Ag₃PO₄ nanocrystals as catalysts for electron-transfer reactions has been rarely investigated, and the in-depth catalytic mechanism is also not clear at present stage. It is proposed Ag₃PO₄ nanocrystals plays a role of transferring electrons to hydrogen peroxide, causing them to decompose. It is assumed that the oxygen-oxygen bond of H₂O₂ will rapidly broken by the catalytic action of Ag₃PO₄ nanocrystals to give OH radicals. The OH radicals stabilize at the surface of the Ag₃PO₄ nanocrystals, and react with TMB.

In summary, colloidal Ag₃PO₄ nanocrystals with smaller size were prepared. The peroxides-like catalytic activity of these Ag₃PO₄ nanocrystals were systematically investigated. The results show that they have a higher activity at acid environment. The catalytic activity was also dependent on H₂O₂ concentration, temperature, and cataalsy amount. Kinetic analysis indicates that the catalysis reaction is in accord with typical Michaelis-Menten kinetics. The apparent kinetic parameters suggest the higher affinity of Ag₃PO₄ nanocrystals than that of horseraish peroxidase. Our research gives new content to well-known Ag₃PO₄ material and provides a new nanomaterial-based peroxide enzyme mimetics, which would found applications in medical diagnostics and biochemistry.

Materials and Methods

Synthesis of Ag₃PO₄ nanocrystals: Ag₃PO₄ nanocrystals were synthesized with reported methods with minor adjustments [6]. In brief, 8.5 g of AgNO₃ and 32 mL of oleylamine were dispersed in 150 mL of toluene and stirred for about 2 h at room temperature. After AgNO₃ was fully dissolved, an ethanol solution containing 50 mL of ethanol, 2 mL of H₂O, 2.84 mL of H₃PO₄ was added into the above solution. The solution tuned into yellow colloid quickly. After reaction for 30 mins at room temperature, Ag₃PO₄ nanocrystals were precipitated by adding ethanol, and washed several times with toluene and ethanol. The dark-yellow precipitate was dried in an oven.

Characterization of Ag₃PO₄ nanocrystals: The phase structure of the as-synthesized products were characterized using X-ray diffraction (XRD, Bruker D8 ADVANCE) with Cu-Kα radiation (λ = 1.5406 Å) at a scanning rate of 6° min⁻¹. The morphology and size of the products were examined by a transmission electron microscope (TEM, JEOL JEM-2100) with an accelerating voltage of 200 kV. The Ag₃PO₄ product dispersed in ethanol was dropped onto a holey copper grid covered with an amorphous carbon film for the TEM examination.

Surface modification for Ag₃PO₄ nanocrystals: Before property investigation, the obtained Ag₃PO₄ nanocrystals were firstly treated through usual ligand exchange route [54] to transfer it to being hydrophilic state. Briefly, about 50 mg of Ag₃PO₄ nanocrystals were dispersed into the mixture of hexane (35 mL),
distilled water (15 mL), and ethanol (30 mL) through magnetic stirring. Then, 6-amino caproic acid (0.13 g) and equivalent molar NH$_3$·H$_2$O in 5 mL of distilled water was added into the above system. After that, the mixture was heated to 70 °C and kept at that temperature for 4 h. The nanocrystals were then collected by centrifugation and washed with water. Through this process, the hydrophobic Ag$_3$PO$_4$ nanocrystals were transformed into hydrophilic state, which can be dispersed in water.

 Peroxidase-like catalytic activity of Ag$_3$PO$_4$ nanocrystals: The peroxidase-like activity of freshly treated Ag$_3$PO$_4$ nanocrystals was determined by measuring the formation of a blue charge-transfer complex of diamine from TMB at 652 nm (ε = 99000 M$^{-1}$ cm$^{-1}$). The TMB oxidation activity measurement, unless otherwise specified, was conducted in sodium acetate buffer (pH 4.0) in the presence of Ag$_3$PO$_4$ nanocrystals (2 mg mL$^{-1}$) with 0.3 mM of TMB and 3.6 mM of H$_2$O$_2$. The reaction proceeded at 25°C with time of 30 min.

 pH Measurements: The activity of the Ag$_3$PO$_4$ nanocrystals at different pH values was performed using the same conditions as above, except different buffer compositions (with different pH values) was performed using the same conditions as above, except different buffer compositions (with different concentration ratios of HAc to NaAc) for different pH values were employed. The reaction was carried out with 2 mg mL$^{-1}$ of Ag$_3$PO$_4$ nanocrystals to which TMB (0.3 mM) and H$_2$O$_2$ (3.6 mM) were added. The pH of the different buffers was adjusted by using a pH meter.

 Determination of kinetic parameters: The steady-state kinetics were performed by varying one of the concentrations of Ag$_3$PO$_4$ nanocrystals (0–4 mg mL$^{-1}$), H$_2$O$_2$ (0.35–7 mM), or TMB (0–0.45 mM) at a time. The reaction was carried out in acetate buffer (pH 4.0) for 30 min and monitored by measuring the absorbency at 632 nm. The kinetic curves were adjusted according to the Michaelis-Menten model.

Author Contributions

Conceived and designed the experiments: YJL. Performed the experiments: YJL, GXZ, JY. Analyzed the data: AYH XPS. Contributed reagents/materials/analysis tools: GXZ. Contributed to the writing of the manuscript: YJL.

References

1. Katsumata H, Taniguchi M, Kameosu S, Suzuki T (2013) Photocatalytic Degradation of Biphenyl A by Ag$_3$PO$_4$ under Visible Light. Catal Commun 34: 30–34.

2. Umezawa N, Shuin O, Ye J (2011) Theoretical Study of High Photocatalytic Performance of Ag$_3$PO$_4$. Phys Rev B 83: 035202.

3. Yi Z, Ye J, Kikugawa N, Kako T, Ouyang S, et al. (2010) An Orthophosphate Semiconductor with Photooxidation Properties under Visible-light Irradiation. Nat Mater 9: 559–564.

4. Bi Y, Ouyang S, Umezawa N, Cao J, Ye J (2011) Facet Effect of Single-Crystalline Ag$_3$PO$_4$ Sub-microcrystals on Photocatalytic Properties. J Am Chem Soc 133: 6490–6492.

5. Bi Y, Hu H, Ouyang S, Lu G, Cao J, et al. (2012) Photocatalytic and Photoselective Properties of Cubic Ag$_3$PO$_4$ Sub-microcrystals with Sharp Corners and Edges. Chem Commun 48: 3748–3750.

6. Dinh CT, Nguyen TD, Kleitz F, Do TO (2011) Large-scale Synthesis of Uniform Silver Orthophosphate Colloidal Nanocrystals Exhibiting high Visible Light Photocatalytic Activity. Chem Commun 47: 7797–7799.

7. Liang Q-H, Ma W-J, Shi Y, Li Z, Yang X-M (2012) Hierarchical Ag$_3$PO$_4$ Porous Microspheres with Enhanced Photocatalytic Properties Synthesized with the Assistance of Trisodium Citrate. CrystEngComm 14: 2966–2973.

8. Li G-P, Mao L-Q (2012) Magnetically Separable Fe$_3$O$_4$-Ag$_3$PO$_4$ Sub-microcomposite: Facile Synthesis, High Visible Light-driven Photocatalytic Efficiency, and Good Recyclability. RSC Adv 2: 5610–5611.

9. Liu L, Liu JG, Sun DD (2012) Graphene Oxide Enwrapped Ag$_3$PO$_4$ Composite: Towards a Highly Efficient and Stable Visible-Light-Induced Photocatalyst for Water Purification. Catal Sci & Tech 2: 2525–2532.

10. Zhang Y-C, Wang H, Cao H, Wang L-L, et al. (2012) Carbon Quantum dots/Ag$_3$PO$_4$ Complex Photocatalysts with Enhanced Photocatalytic Activity and Stability under Visible Light. J Mater Chem 22: 10501–10506.

11. Zhang L-L, Zhang H-C, Huang H, Liu Y, Kang Z-H (2012) Ag$_3$PO$_4$/SnO$_2$ Semiconductor Nanocomposites with Enhanced Photocatalytic Activity and Stability. New J Chem 36: 1541–1544.

12. Bi Y-P, Ouyang SX, Cao JY, Ye JH (2011) Facile Synthesis of Rhombic Dodecahedral AgX/Ag$_3$PO$_4$ (X = Cl, Br, I) Heterocrystals with High Visible Light-driven Photocatalytic Activity. J Mater Chem 21: 10071–10075.

13. Heckert EG, Karakoti AS, Seal S (2008) The Role of Cerium Redox State in the SOD Mimetic Activity of Nanoceria. Biomaterials 29: 2705–2709.

14. Asati A, Santra S, Kattinan C, Nath S, Perez JM (2009) Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles. Angew Chem Int Ed 48: 2306–2312.

15. Pirmohamed T, Dowding JM, Singh S, Wasserman B, Wasserman B, et al. (2010) Nanoceria Exhibits Redox State-dependent Catalytic Mimetic Activity. Chem Commun 46: 2736–2738.

16. Andre R, Natalio F, Humanes M, Leppin J, Heinze K, et al. (2011) V$_2$O$_5$ Nanowires with an Intrinsic Peroxidase-Like Activity. Adv Funct Mater 21: 501–509.

17. Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and its Application to Glucose Detection. Adv Mater 22: 2206–2210.

18. Song Y, Wang X, Zhao C, Qu K, Ren J, et al. (2011) Label-Free Colorimetric Detection of Single Nucleotide Polymorphism by Using Single-Walled Carbon Nanotube Intrinsic Peroxidase-Like Activity. J Biomed Nanotechnol 16: 3617–3621.

19. Shi W, Wang Q, Long Y, Cheng Z, Chen S, et al. (2011) Carbon Nanodots as Peroxidase Mimetics and their Applications to Glucose Detection Using Target-directed Functionalized Graphene and its Synergetic Peroxidase-Like Activity and Its Application for Biocatalysis and Biosensing. Chem Eur J 17: 9377–9384.

20. Song Y, Chen Y, Feng L, Qu X (2011) Selective and Quantitative Cancer Cell Detection Using Target-directed Functionalized Graphene and its Synergetic Peroxidase-Like Activity. Chem Commun 47: 4356–4358.

21. Shi W, Wang Q, Long Y, Cheng Z, Chen S, et al. (2011) Carbon Nanodots as Peroxidase Mimetics and their Applications to Glucose Detection. Chem Commun 47: 6695–6697.

22. Wang X, Qu K, Xu B, Ren J, Qu X (2011) Multicolor Luminescent Carbon Nanotube/Magnetic Nanoparticle-based Peroxidase-like Nanocomplex and its Application for Highly Efficient Catalytic Oxidation of Phenols. Nano Res 2: 617–623.

23. He S, Shi W, Zhang X, Li J, Huang Y (2010) B-Cyclodextrins-based Inclusion Complexes of CoFe$_2$O$_4$ Magnetic Nanoparticles as Catalyst for the Laminod
37. He W, Wu X, Liu J, Hu X, Zhang K, et al. (2010) Design of AgM Bimetallic Alloy Nanostructures (M = Au, Pd, Pt) with Tunable Morphology and Peroxidase-like Activity. Chem Mater 22: 2988–2994.
38. Ji Y, Li B, Cao R (2010) Positively-charged Gold Nanoparticles as Peroxidase Mimic and their Application in Hydrogen Peroxide and Glucose Detection. Chem Commun 46: 8017–8019.
39. Fan J, Yin J, Ning B, Wu X, Hu Y, et al. (2011) Direct Evidence for Catalase and Peroxidase Activities of Ferritin–platinum nanoparticles. Biomaterials 32: 1611–1618.
40. He W, Liu Y, Yuan J, Yin J, Wu X, et al. (2011) Au@Pt nanostructures as Oxidase and Peroxidase Mimetics for Use in Immunoassays. Biomaterials 32: 1139–1147.
41. Liu J, Hu X, Hou S, Wen T, Liu W, et al. (2011) Screening of Inhibitors for Oxidase Mimics of Au@Pt Nanorods by Catalytic Oxidation of OPD. Chem Commun 47: 10981–10983.
42. Wang X-X, Wu Q, Shan Z, Huang QM (2011) BSA-stabilized Au Clusters as Peroxidase Mimetics for use in Xanthine Detection. Biosens Bioelectron 26: 3614–3619.
43. Josephy PD, Eling TE, Mason RP (1982) The Horseradish Peroxidase-catalyzed Oxidation of 3,3',5,5'-Tetramethylbenzidine: Free Radical and Charge-transfer Complex Intermediates. J Biol Chem 257: 3669–3675.
44. Tian J-Q, Liu S, Luo YL, Sun X-P (2012) Glucose Oxidation Using Au-containing Bimetallic and Trimetallic Nanoparticles. Catal Sci Technol 2: 432–436.
45. Ma M, Zhang Y, Gu N (2011) Peroxidase-like Catalytic Activity of Cubic Pt Nanocrystals. Colloids and Surfaces A: Physicochem. Eng Aspects 373: 6–10.
46. Dong Y-L, Zhang H-G, Rahman ZU, Su L, Chen XJ, et al. (2012) Graphene oxide–Fe3O4 Magnetic Nanocomposites with Peroxidase-like Activity for Colorimetric Detection of Glucose. Nanoscale 4: 3969–3976.
47. Chen W, Chen J, Feng YB, Hong L, Chen QY, et al. (2012) Peroxidase-like Activity of Water-soluble cupric Oxide Nanoparticles and its Analytical Application for Detection of Hydrogen Peroxide and Glucose. Analyst 137: 1706–1712.
48. Jiang H, Chen Z, Cao H, Huang Y (2012) Peroxidase-like Activity of Chitosan Stabilized Silver Nanoparticles for Visual and Colorimetric Detection of Glucose. Analyst 137: 5560–5564.
49. Liu J-B, Hua X, Hou S, Wen T, Liu W-Q, et al. (2012) Au@Pt Core/shell Nanorods with Peroxidase- and Ascorbate Oxidase-like Activities for Improved Detection of Glucose. Sensors and Actuators B166-167: 708–714.
50. Dutta AK, Maji SK, Srivastava DN, Mondal A, Biswas P, et al. (2012) Synthesis of FeS and FeSe Nanoparticles from a Single Source Precursor: A Study of Their Photocatalytic Activity, Peroxidase-Like Behavior, and Electrochemical Sensing of H2O2. ACS Appl. Mater. Interfaces 4: 1919–1927.
51. Sun X-L, Guo S-J, Chung C-S, Zhu W-L, Sun S-H (2013) A Sensitive H2O2 Assay Based on Dumbbell-like PtPd-Fe3O4 Nanoparticles. Adv Mater 25: 132–136.
52. Wang Q, Liu S-W, Sun H-Y, Lu Q-F (2014) Synthesis and Intrinsic Peroxidase-Like Activity of Snail-Like Cobalt Oxide Architectures. Ind. Eng. Chem. Res. 53: 7917–7922.
53. Karaseva EI, Losev YP, Metelitsa DI (2002) Peroxidase-catalyzed Oxidation of 3,3',5,5'-Tetramethylbenzidine: Free Radical and Charge-transfer Complex Intermediates. J Biol Chem 257: 3669–3675.
54. Tian Q-W, Jiang F-R, Zou R-J, Liu Q, Chen Z-G, et al. (2011) Hydrophilic CuS5 Nanocrystals: A Photothermal Agent with a 25.7% Heat Conversion Efficiency for Photothermal Ablation of Cancer Cells in Vivo. ACS Nano 5: 9761–9771.