MATRICES WITH TOTALLY POSITIVE POWERS AND THEIR GENERALIZATIONS

OLGA Y. KUSHEL

Abstract. In this paper, eventually totally positive matrices (i.e. matrices all whose powers starting at some point are totally positive) are studied. We present a new approach to eventual total positivity which is based on the theory of eventually positive matrices. We mainly focus on the spectral properties of such matrices. We also study eventually J-sign-symmetric matrices and matrices, whose powers are P-matrices.

Mathematics subject classification (2010): Primary 15A48; Secondary 15A18, 15A75.

Keywords and phrases: Eventually positive matrices, eventual properties, total positivity, sign-symmetric matrices, P-matrices.

REFERENCES

[1] T. ANDO, Totally positive matrices, Linear Algebra Appl. 90 (1987), 165–219.
[2] A. BERMAN, M. CATRAL, L. M. DEALBA, A. ELHASHASH, F. J. HALL, L. HOGBEN, I. KIM, D. D. OLESKY, P. TARAZAGA, M. J. TSATSOMEROS AND P. VAN DEN DRIESSCHE, Sign patterns that allow eventual positivity, ELA 19 (2010), 108–120.
[3] A. BERMAN AND R. J. PLEMMONS, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
[4] A. ELHASHASH, Characterizations of matrices enjoying the Perron–Frobenius property and generalizations of M-matrices which may not have nonnegative inverses, Ph.D., Temple University, 2008.
[5] A. ELHASHASH AND D. B. SZYLD, Two characterizations of matrices with the Perron–Frobenius property, Numer. Linear Algebra Appl. 16 (2009), 863–869.
[6] A. ELHASHASH AND D. B. SZYLD, On general matrices having the Perron–Frobenius property, ELA 17 (2008), 389–413.
[7] E. M. ELLISON, L. HOGBEN AND M. J. TSATSOMEROS, Sign patterns that require eventual positivity or require eventual nonnegativity, ELA 19 (2009–2010), 98–107.
[8] SH. FALLAT AND C. R. JOHNSON, Totally nonnegative matrices, Princ. Univ. Press, 2011.
[9] M. FIEDLER AND V. PTÁK, On matrices with non-positive off-diagonal elements and positive principal minors, Czech. Math. J. 22 (87) (1962), 382–400.
[10] S. FRIEDLAND, On an inverse problem for nonnegative and eventually nonnegative matrices, Israel Journal of Mathematics 29 (1978), 43–60.
[11] F. GANTMACHER, The Theory of Matrices, Volume 1, Volume 2, Chelsea. Publ. New York, 1990.
[12] F. R. GANTMACHER AND M. G. KREIN, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, AMS Bookstore, 2002.
[13] I. M. GLAZMAN AND YU. I. LIUBICH, Finite-Dimensional Linear Analysis: A Systematic Presentation in Problem Form, MIT Press, 1974.
[14] C. R. JOHNSON AND P. TARAZAGA, On Matrices with Perron–Frobenius Properties and Some Negative Entries, Positivity 8 (2004), 327–338.
[15] O. Y. KUSHEL, Cone-theoretic generalization of total positivity, Linear Algebra Appl. 436 (2012), 537–560.
[16] D. NOUTSOS, On Perron–Frobenius property of matrices having some negative entries, Linear Algebra Appl. 412 (2006), 132–153.
[17] A. PINKUS, Totally positive matrices, Cambridge University Press, 2010.
[18] P. TARAZAGA, M. RAYDAN AND A. HURMAN, *Perron–Frobenius theorem for matrices with some negative entries*, Linear Algebra Appl. 328 (2001), 57–68.