Data Article

Genotypic variations in 107 poplar clones grown on a short-term waterlogging site: Long-term (1992–2015) data on survival rate, growth performance and branching traits

Ye Tiana,b, Yang Liua,c, Shengzuo Fanga,b,*, Jia Yuea, Xizeng Xua

aCollege of Forestry, Nanjing Forestry University, Nanjing 210037, China
bCo-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
cJiangxi Agricultural University, Nanchang 330045, China

Abstract

The dataset reported data of survival rate, growth performance, branching architecture derived from 107 different poplar clones, including 104 introduced poplar clones (Populus deltoides) and 3 local extended poplar clones, measured within a long-term field experiment in lowland plantations in China. After 24 growing seasons from 1992 to 2015, the survival rate for all the 107 clones, and tree height, diameter at breast-height (1.3 m), and tree volume of each tree were measured and calculated for all the 107 clones, in total of 301 alive trees (one to 9 trees for each clone), in three replicated plots. Subsequently, a total of 17 potential clones were selected by approximately 15% selection intensity, and 17 sample trees (one mean tree for each clone) were harvested for the investigation of the branching number, branching angle and base diameter of first-order branches. For the interpretation of the results of this experiment the readers are referred to Ref. [1]. The data presented in this article will aid selection of superior poplar clones for study and future applications in the similar lowland sites. The data on the survival rate and growth performance of 107 poplar clones can help

Keywords: Eastern cottonwood
Tree height
Tree volume
Branch number
Branching angle
Base diameter of first-order branches
farmers and breeders to designing optimal schemes to increase timber yield and log assortment in poplar plantations. Raw data on tree structure parameters and branching traits can be used to evaluate the different performance of the clones, testing their different spacing and rotation requirement, and also designing innovative plantation schemes.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Specifications Table

Subject	Forestry
Specific subject area	Tree breeding and siliculture
Type of data	Table
How data were acquired	Data were acquired from a long-term field experiment at a lowland site where physical measurements as well as calculation for growth rate, survival rate and branching index were conducted.
Data format	Raw
Parameters for data collection	Survival rate data: Quantity of live trees for each clone.
	Growth performance data: Measurement of total tree height and diameter at breast-height (1.3 m) for each clone. Estimation of tree volume.
	Branching trait data: Measurement of branching number, branching angle and base diameter of first-order branches.
Description of data collection	Survival rate data: Quantity of live trees for each clone were counted after the 24-growing seasons in the field.
	Growth performance data: Measurements of total tree height (H) and diameter at breast-height (1.3 m; D) for each clone were conducted after the 24-growing seasons in the field. Tree volume (V) was derived from the two-entries allometry: $V=0.0000267 \times (H+3) \times D^2$.
	Branching trait data: Branching number, branching angle and base diameter of first-order branches were measured after falling down each sample tree during the 24th growing season, and branch angle was defined as the angle between the main stem and its first-class branch and measured by a digital protractor.
Data source location	Institution: Nanjing Forestry University
	City/Region: Nanjing, Jiangsu Province
	Latitude and longitude (and GPS coordinates, if possible) for collected samples/data: Hanyuan Forestry Farm, Baoying County, Jiangsu Province; 33°08’N, 119°19’E
Data accessibility	1. With the article
Related research article	S. Fang, Y. Liu, J. Yue, Y. Tian, Z. Xu. 2020. Assessments of growth performance, crown structure, stem form and wood property of introduced poplar clones: results from a long-term field experiment at a lowland site. For. Ecol. Manage. DOI: 10.1016/j.foreco.2020.118586

Value of the Data

- Poplar is one of the most widely cultivated timber and ecological tree species in the the world due to its characteristics of wide adaptability to different environmental conditions and silvicultural systems, fast growth rate and high timber yield. These data will aid selection of superior poplar clones for study and future applications in the short-term waterlogging sites.
- These data will benefit breeders, scientist, technical promotion personnel and farmers. Especially, the data on the survival rate and growth performance of 107 poplar clones can help farmers and breeders to designing optimal schemes to increase timber yield and log assortment in poplar plantations. Raw data on tree structure parameters and branching traits can be used to evaluate the different performance of the clones, testing their different spacing
and rotation requirement, and also designing innovative plantation schemes such as mixed (species and clone) or polycyclic poplar plantations.

- These data can also be referenced by scientist to ensure the optimum performance on the short-term waterlogging sites for planting poplars (in terms of growth and survival) during experiments thus guaranteeing the success of their research purposes.
- Although limited short-term comparative studies exist with poplars that examine clonal variation in growth performance, these data from a long-term field experiment can help researchers to clarify some contradiction results obtained from the short-term studies at the similar sites.

1. Data Description

The study was conducted at Hangyun Forestry Farm, Baoying County, China. A total of 107 poplar clones were measured and included in the dataset. Raw data on the survival rate, growth performance and branching trait were measured after 24 growing seasons. Table 1 describes the results on survival rate of 107 poplar clones at the lowland site. Table 2 presents the values of diameter at breast height (DBH), tree height and single tree volume of the 107 clones after 24 growing seasons. Table 3 describes the results on branch number per meter of stem and branching angle of first-order branches for sampled 17 poplar clones at different crown positions. Table 4 presents the results on base diameter of first-order branches of the 17 poplar clones at different crown positions.

2. Experimental Design, Materials and Methods

2.1. Study site, plant material and experiment design

The study site (33°08′N, 119°19′E) is located at Hangyun Forestry Farm, Baoying County, Jiangsu Province, P. R. China [2]. The study site belongs to a warm temperate climate. The average annual precipitation is 964.1 mm. The mean annual temperature is 14.3 °C, and the mean temperature in January and in July are 0.4 °C and 27.6 °C, respectively. In this region, the annual effective accumulated temperature of ≥10 °C is 4569.6 °C. The landform is a shallow plain accumulated by ancient lagoons. The soils at this site were formed on fine sediments of Baoying Lake and have a clay-loam texture. The site has a moderate fertility with organic matter content of about 8.4 g/kg, a total nitrogen content of 0.64 g/kg, available P and K contents of 4.3 and 10.9 mg/kg, and a pH value of 7.8, respectively. The mean annual water table is about 0.8 m, with a short waterlogging period during the summer season.

A total of 107 poplar clones were sampled, including 104 introduced Populus deltoides clones from Mississippi (S; 86 clones), Texas (T; 10 clones) and Louisiana (L; 8 clones), US, and 3 local extended poplar clones. The 104 introduced clones were introduced in the form of cuttings in March, 1990 (the clone codes were shown in Table 1). After two-year propagation by cuttings, the introduction trial was set up in 1992 with 1-year-old seedlings over an area of about 8.0 ha (including protection zones), while planting spacing was 6.0 m × 6.0 m. During the establishment of the trial, three local extended poplar clones, including clone I-69 (P. deltoides Bartr. cv. ‘Lux’, introduced from Italy in 1972), Nanlin-95 and Nanlin-895 (bred by Nanjing Forestry University, hybrids of clone I-69 × clone I-45 (P. × euramericana (Dode) Guinier cv. ‘I-45/51’), were included as control CK clones, which are under considerations for veneer timber production and carbon sequestration at lowland sites in China.

The research was carried out by establishing the poplar clone test trial in a randomized block design with a three split-plot scheme. Each replication (block) included 3–8 seedlings for each poplar clone, and all the 107 poplar clones were arranged randomized. In each block, the outermost two rows of poplar trees were considered bordering area. During the first four years
Table 1
Survival rate of tested poplar clones after 24 growing seasons at the experimental site.

Poplar clone	Planting number	Survival number	Survival rate (%)	Poplar clone	Planting number	Survival number	Survival rate (%)
S3225	3	3	100	S3322	8	5	62.5
S321	3	3	100	S3239	10	6	60.0
S389	3	3	100	S3264	14	8	57.1
S3265	10	9	90.0	S3238	9	5	55.6
L232	6	5	83.3	S372	9	5	55.6
S3109	6	5	83.3	S3234	9	5	55.6
S3240	11	9	81.8	S374	9	5	55.6
S3723	10	8	80.0	T1	9	5	55.6
S3229	10	8	80.0	S3124	9	5	55.6
S3907	9	7	77.8	S3260	9	5	55.6
S3163	9	7	77.8	S363	9	5	55.6
S391	9	7	77.8	T8	11	6	54.5
S3702	9	7	77.8	S3244	6	3	50.0
S3201	9	7	77.8	S3910	6	3	50.0
S31	9	7	77.8	S3107	6	3	50.0
S3114	9	7	77.8	S3301	10	5	50.0
S3032	8	6	75.0	S312	6	3	50.0
Nanlin-95	15	11	73.3	S313	10	5	50.0
l-69	24	17	70.8	S3197	4	2	50.0
S3236	9	6	66.7	S3213	6	3	50.0
S617	3	2	66.7	S3412	13	6	46.2
S3919	9	6	66.7	S329	9	4	44.4
S3624	6	4	66.7	S3148	9	4	44.4
S301	6	4	66.7	S3121	9	4	44.4
S371	9	6	66.7	T15	9	4	44.4
S3016	15	10	66.7	S3814	9	4	44.4
S3226	9	6	66.7	T18	9	4	44.4
L19	6	4	66.7	S366	9	4	44.4
S3127	9	6	66.7	S3804	9	4	44.4
T2	6	4	66.7	S3105	9	4	44.4
S3760	3	2	66.7	S375	7	3	42.9
S3801	6	4	66.7	S3202	12	5	41.7
S3200	9	6	66.7	Nanlin-95	15	6	40.0
S3312	9	6	66.7	T120	8	3	37.5
S3183	8	5	62.5	S3319	9	3	33.3
S3194	9	3	33.3	T13	9	2	22.2
S3830	9	3	33.3	S370	9	2	22.2
S3153	6	2	33.3	S3552	9	2	22.2
S3259	9	3	33.3	S3261	9	2	22.2
S392	9	3	33.3	L28	9	2	22.2
S3631	6	2	33.3	S367	10	2	20.0
S3921	9	3	33.3	L237	6	1	16.7
S3120	9	3	33.3	L241	10	0	0
T20	12	4	33.3	L250	4	0	0
S3101	9	3	33.3	L337	3	0	0
L221	9	3	33.3	S3014	9	0	0
T4	10	3	30.0	S3017	3	0	0
S3531	7	2	28.6	S3137	3	0	0
S332	11	3	27.3	S3221	6	0	0
S315	9	2	22.2	S3241	1	0	0
S3620	9	2	22.2	S3332	6	0	0
S3503	9	2	22.2	S3733	8	0	0
S3700	9	2	22.2	T115	9	0	0
S3415	9	2	22.2				

After planting, all blocks were interplanted with winter wheat (*Triticum aestivum* L.) and about 50 kg/ha/year urea was applied for fertilizing the wheat. No supplementary nutrients and other management practices were adopted intentionally after the fourth year.
Table 2
Diameter at breast height (DBH), tree height and single tree volume of the sampled trees of the tested poplar clones after 24 growing season.

Poplar clone	DBH (cm)	Height (m)	Tree volume (m3)
S3312	53.6	32.6	2.73
	51.8	36.8	2.85
	50.1	34.8	2.53
	49.9	34.0	2.46
S3239	48.5	32.5	2.23
	49.5	32.8	2.34
	47.0	32.0	2.06
	50.7	33.0	2.47
T8	50.8	30.0	2.27
	48.9	32.2	2.25
L28	48.3	32.2	2.19
	45.8	32.6	1.99
Nanlin-895	48.0	32.0	2.15
	48.1	32.0	2.16
	45.1	31.0	1.85
	46.3	34.5	2.15
S3261	43.9	33.5	1.88
	47.5	34.0	2.23
S3101	44.4	33.3	1.91
	46.3	32.2	2.01
S3412	43.0	33.5	1.80
	46.6	33.5	2.12
	42.0	34.0	1.74
	45.6	34.0	2.05
S372	43.8	35.0	1.94
	42.7	34.5	1.83
T20	45.7	31.5	1.92
	44.2	29.3	1.68
	46.8	31.5	2.02
	45.3	30.5	1.84
Nanlin-95	44.1	33.5	1.90
	42.2	34.0	1.76
	44.9	32.5	1.91
S3114	44.1	31.6	1.80
	42.3	34.0	1.77
	43.8	35.5	1.97
S3109	44.2	35.0	1.98
	41.5	32.0	1.61
	43.6	32.0	1.78
S3200	44.1	30.5	1.74
	44.6	31.2	1.82
S3240	41.8	33.4	1.70
	42.3	34.4	1.79
	43.7	32.4	1.81
	41.5	30.5	1.54
S3552	46.1	28.5	1.79
	43.2	29.0	1.60
S370	42.1	29.0	1.51
	43.2	31.5	1.72
S3105	42.8	29.0	1.57
	43.1	30.0	1.64
S389	39.2	34.0	1.52
	41.4	33.5	1.67
T13	42.1	29.3	1.53
	43.1	29.5	1.61
S3804	42.5	28.0	1.50
	42.6	29.5	1.57
	41.0	31.4	1.54
	42.0	30.0	1.55

(continued on next page)
Poplar clone	DBH (cm)	Height (m)	Tree volume (m³)
S3238	43.34	29.9	1.650
	40.00	30.1	1.414
S3213	41.60	34.5	1.733
	40.00	29.0	1.367
	42.40	28.0	1.488
I-69	38.20	31.0	1.325
	39.10	28.5	1.286
	39.80	32.0	1.480
	40.50	25.5	1.248
	41.80	25.5	1.330
	42.20	32.5	1.688
	42.90	28.0	1.523
	38.20	31.0	1.325
	44.20	33.0	1.878
S3265	37.50	31.5	1.295
	39.00	33.0	1.462
	39.30	34.0	1.526
	42.00	31.5	1.625
	42.90	29.3	1.589
S366	36.60	34.0	1.323
	38.00	34.0	1.427
	40.70	33.5	1.614
S3801	40.30	31.7	1.503
	39.00	30.8	1.373
	38.60	33.0	1.432
S3322	36.00	31.0	1.177
	40.00	30.5	1.431
	41.60	33.2	1.675
S375	38.20	34.5	1.461
	37.60	33.0	1.359
	36.30	33.5	1.284
S363	39.80	29.3	1.366
	38.20	31.5	1.344
S3120	35.50	33.2	1.218
	37.50	35.0	1.427
S3760	37.34	31.4	1.281
	38.30	31.6	1.355
S3415	35.40	32.4	1.185
	38.13	34.0	1.436
S31	34.10	31.0	1.056
	39.40	29.2	1.335
	39.50	33.0	1.500
S3197	37.67	29.6	1.235
	38.40	31.2	1.346
S321	35.20	31.2	1.132
	39.20	32.5	1.457
	37.40	30.1	1.237
S3260	37.20	27.5	1.127
	38.20	29.1	1.251
	38.20	28.2	1.216
	40.70	31.0	1.504
S3202	36.40	30.5	1.185
	36.60	30.1	1.185
	37.20	35.0	1.404
	37.50	31.0	1.277
S3229	36.70	28.0	1.115
	37.20	30.2	1.227
	40.50	29.6	1.428
T2	37.78	27.5	1.162
	38.70	25.5	1.140
	41.40	27.5	1.396
Poplar clone	DBH (cm)	Height (m)	Tree volume (m³)
-------------	---------	-----------	-----------------
S3201	37.10	31.8	1.279
	37.50	28.8	1.194
	38.30	25.5	1.116
	39.70	28.8	1.338
	40.20	25.0	1.208
S3183	35.50	34.2	1.252
	36.60	30.5	1.198
S3124	37.60	26.5	1.114
	39.80	24.0	1.142
	41.20	28.2	1.414
T1	37.80	33.8	1.404
	36.00	28.1	1.077
	39.10	28.0	1.265
	38.20	27.8	1.200
	37.00	28.0	1.133
S3531	35.20	32.5	1.174
	37.50	30.2	1.247
L232	34.60	31.8	1.112
	36.30	27.0	1.055
	36.50	29.6	1.160
	39.40	33.0	1.492
S374	37.50	27.2	1.134
	37.00	29.0	1.170
	38.30	30.0	1.292
S3723	35.90	26.5	1.015
	35.80	27.5	1.044
	37.20	30.5	1.238
	37.50	30.0	1.239
	36.30	32.4	1.245
	39.10	29.8	1.339
S3127	35.00	29.3	1.056
	36.00	30.0	1.142
	36.10	35.0	1.322
	37.40	28.6	1.180
	37.50	29.5	1.220
L19	33.40	28.5	0.938
	35.40	30.5	1.121
	40.00	31.4	1.470
T18	36.50	27.2	1.074
	38.30	26.5	1.155
	37.60	29.5	1.227
	36.80	31.5	1.247
S3702	33.20	30.0	0.971
	33.40	30.0	0.983
	36.00	30.5	1.159
	36.10	31.5	1.200
	35.60	34.0	1.252
	36.80	35.0	1.374
S3814	36.80	26.5	1.067
	35.70	29.0	1.089
	41.80	25.0	1.306
S3226	34.00	29.1	0.991
	36.50	30.0	1.174
	36.70	31.4	1.237
	37.70	26.5	1.119
S3921	45.00	32.5	1.919
	44.30	30.5	1.755
	42.90	31.3	1.685
T120	35.13	32.5	1.170
	36.50	26.0	1.032
	37.50	27.2	1.134

(continued on next page)
Table 2 (continued)

Poplar clone	DBH (cm)	Height (m)	Tree volume (m³)
S3016	31.3	33.4	0.952
	34.5	29.0	1.017
	35	29.8	1.073
	35.4	33.0	1.205
	35.7	30.6	1.143
	36.2	31.5	1.207
S371	33.00	29.0	0.930
	35.90	26.5	1.015
	34.30	30.5	1.052
	37.50	33.2	1.359
S3264	33.30	27.5	0.903
	33.40	25.8	0.858
	36.00	31.4	1.190
	37.30	30.6	1.248
	37.40	29.3	1.206
S313	34.80	27.5	0.986
	35.60	30.5	1.134
	36.50	28.4	1.117
T15	32.60	30.2	0.942
	33.31	31.5	1.022
	35.20	31.0	1.125
	36.00	31.5	1.194
S3032	33.4	32.0	1.042
	34.4	25.2	0.891
	34.5	33.0	1.144
	36.8	30.0	1.193
S3700	35.30	28.9	1.061
	34.00	30.8	1.043
S391	34.70	28.2	1.003
	32.20	28.0	0.858
	33.60	28.1	0.937
	35.30	30.1	1.101
	33.90	30.5	1.028
	36.00	32.5	1.228
S3234	35.20	26.8	0.986
	36.20	27.2	1.057
S3503	32.70	30.5	0.956
	34.50	30.5	1.065
S3163	33.00	32.0	1.018
	33.10	30.8	0.989
T4	34.00	26.8	0.920
	35.20	26.5	0.976
	37.12	26.5	1.085
S3121	34.00	29.0	0.988
	34.50	26.2	0.928
S3631	34.00	26.6	0.914
	35.34	27.0	1.000
S301	32.30	29.5	0.905
	37.60	29.5	1.227
	31.40	28.5	0.829
	32.10	27.6	0.842
S3624	32.70	27.0	0.857
	32.90	29.5	0.939
	32.50	30.5	0.945
	34.40	30.0	1.043
S3907	33.00	28.4	0.914
	31.40	28.9	0.840
	33.60	28.5	0.950
	35.10	29.8	1.079
S312	32.60	30.0	0.936
	35.20	25.0	0.926

(continued on next page)
Table 2 (continued)

Poplar clone	DBH (cm)	Height (m)	Tree volume (m³)
S3148	31.70	27.8	0.826
	33.70	26.5	0.895
	33.70	31.5	1.046
S3301	32.40	26.4	0.824
	33.10	27.8	0.901
	33.70	28.0	0.940
S392	32.09	29.5	0.894
	32.60	27.6	0.868
	33.30	28.5	0.933
S3919	31.70	25.5	0.765
	31.40	28.5	0.829
	32.50	26.5	0.832
	30.00	33.0	0.865
	33.10	29.0	0.936
S3620	32.40	26.7	0.832
	32.70	27.0	0.857
S329	30.20	28.8	0.774
	30.90	29.0	0.816
	32.60	25.0	0.795
	32.70	31.5	0.985
S617	33.45	25.4	0.848
	32.10	26.4	0.809
S3259	30.00	25.5	0.685
	32.00	28.0	0.848
	33.30	28.5	0.933
S3153	30.20	28.5	0.767
	31.31	30.1	0.867
S3107	29.30	28.0	0.711
	31.60	25.5	0.760
	32.60	30.5	0.951
S367	30.50	29.5	0.807
	30.34	28.9	0.784
S3830	30.90	26.3	0.748
	30.00	28.5	0.757
	32.14	26.5	0.814
S332	33.70	26.2	0.885
	29.60	26.4	0.688
	30.60	24.5	0.688
S3236	29.10	27.0	0.678
	30.20	25.5	0.694
	30.40	25.0	0.691
	31.80	27.0	0.810
L237	28.40	30.0	0.711
S315	29.35	25.5	0.656
	30.90	26.8	0.760
S3194	30.00	26.0	0.697
	30.10	26.5	0.714
S3319	28.60	27.5	0.666
	29.90	28.0	0.740
S3910	28.20	26.1	0.618
	29.36	26.0	0.667
	28.50	27.0	0.651
S3244	29.30	24.0	0.619
	29.10	24.5	0.622
L221	26.80	23.0	0.499
	27.30	24.3	0.543
S3225	23.10	25.6	0.407
	28.50	26.5	0.640
	24.90	27.5	0.505
Table 3
The branch number per meter of stem and branching angle of first-order branches for the 17 poplar clones at different crown positions.

Poplar clone	Branch number per meter of stem	Branching angle of first-order branches (°)							
	low layer	middle layer	up layer	Low layer	Middle Layer	Up layer			
	mean	range	mean	range	mean	Range	mean	range	
Nanlin-95	0.7	0.7	1.1	33.75	15–60	46.25	25–60	54.17	25–80
Nanlin-895	0.3	0.7	3.0	32.50	25–40	30.00	15–50	70.00	35–90
I-69	0.5	1.2	1.8	33.33	30–35	33.00	20–45	47.73	30–60
L232	1.0	1.5	3.1	55.38	40–65	54.17	35–70	52.65	15–75
S31	1.0	1.3	3.0	28.75	15–55	40.80	24–65	50.76	25–70
S3109	0.5	1.5	4.5	28.75	25–30	34.42	20–50	51.58	30–90
S313	0.3	0.8	4.0	50.00	50.00	39.33	30–58	33.75	15–45
S3200	0.4	1.1	2.6	33.33	25–40	39.44	25–70	45.00	20–45
S3238	0.4	1.1	3.4	40.00	15–60	36.44	20–55	54.71	20–90
S3239	0.8	1.6	5.8	35.83	15–50	40.23	28–55	33.87	20–50
S3240	0.8	1.1	3.8	35.83	10–60	22.78	10–35	48.68	25–85
S3312	1.2	1.7	2.7	44.29	25–60	35.00	30–45	47.19	30–70
S3412	0.4	1.4	3.0	55.00	40–70	45.00	30–75	52.75	35–94
S366	1.1	1.5	2.6	37.22	20–60	40.42	25–70	59.38	40–90
S371	0.7	2.8	4.7	28.75	25–35	46.00	35–62	64.35	42–90
S372	0.6	1.8	1.7	40.00	25–60	52.83	23–83	74.30	35–95
T8	0.7	1.5	3.2	41.43	15–70	65.00	45–80	61.54	30–90
Average	0.7	1.4	3.2	38.48		41.24		53.08	
Table 4
The base diameter of first-order branches of the 17 poplar clones at different crown positions.

Poplar clones	Low layer	Middle layer	Up layer			
	mean	range	mean	range	mean	range
Nanlin-95	77.30	50.9–132.4	56.58	27.7–102.1	32.92	15.5–62.4
Nanlin-895	121.99	54.0–190.0	65.74	41.4–118.2	11.75	7.1–32.2
I-69	64.89	43.0–85.3	87.78	32.4–131.3	49.56	30.0–91.5
L232	48.62	27.9–140.1	57.72	20.6–102.9	24.99	4.4–64.9
S31	54.07	31.2–133.9	52.45	16.7–94.7	28.62	4.0–75.0
S3109	123.77	48.5–200.0	56.47	23.0–112.2	23.14	5.8–54.4
S313	75.38	20.0–120.9	60.15	40.9–78.3	41.39	29.3–51.1
S3200	91.11	45.3–137.5	56.47	44.9–136.6	23.14	18.8–65.2
S3238	47.02	21.5–83.0	57.58	22.4–116.9	20.03	6.4–42.0
S3239	57.51	47.2–78.3	71.09	14.2–190.0	54.77	11.9–155.0
S3240	51.05	32.1–81.8	54.50	7.8–109.1	25.54	4.3–91.2
S3312	105.77	53.6–185.0	87.30	34.6–122.5	32.25	15.0–67.0
S3412	89.14	52.5–114.4	81.42	32.9–151.9	37.14	8.0–94.7
S366	78.18	11.0–146.8	35.89	8.2–143.5	5.49	5.9–61.5
S371	103.46	56.6–180.0	51.21	32.4–84.8	18.10	4.2–48.4
S372	52.36	25.6–93.0	43.15	20.5–75.8	27.85	6.1–61.0
T8	55.41	30.2–79.1	55.27	29.8–138.9	26.64	5.8–62.0
Average	**76.30**	**60.63**	**60.63**	**28.43**		

2.2. Data collection and sampling

After 24 growing seasons from 1992 to 2015, tree survival rate, tree height and diameter at breast-height (1.3 m; DBH) were measured for each clone in 2015. The survival rate of each clone was achieved by counting the surviving individual trees in three replicated blocks and dividing by the planting number. Tree height, DBH and tree volume of each tree were measured and calculated for all the 107 clones, in total of 301 alive trees with 1 to 9 average trees for each clone. Tree height was measured by trigonometric method using a Blume-Leiss hypsometer; DBH was measured at breast-height (1.3 m) using a diameter tape; while tree volume was estimated using a taper function with DBH and tree height, which was described in Section 2.4. In terms of approximately 15% selection intensity, a preliminary selection of potential clones was done base on the survival rate, growth performance and tentative observation of stem form. In line with the result of the preliminary selection, a single tree closest to the means of DBH, tree height and crown features of each selected clone and with good form and vigor was selected for destructive sampling and subsequent sectional measurement. In total, 17 sample trees (one tree for each selected clone) were harvested to further investigate the growth, crown structure, stem form and wood property [1].

2.3. Branching index measurement

Sample trees for 17 selected clones were felled close to ground level in late October 2015. Before felling, the north-direction was marked on the stem, and the crown width was estimated by measuring crown radii at the four cardinal directions. After felling, the crown height for each tree was measured and a layered method [3] was used to separate the crown into three layers at equal crown height for each sampled clone. The three layers were assigned as upper, middle and low layer from the top to the base of the crown. The branching number, branching angle and base diameter of first-order branches were measured for each sample tree, while the branch angle was defined as the angle between the main stem and its first-order branch and measured by a digital protractor.
For each layer, the branching number per meter of stem (branch number/m) was calculated according to the numbers of total branches within the layer divided by the corresponding layer height, while branching angle and base diameter of the first-order branches in the layer were averaged within the crown layer.

2.4. Tree volume calculation

Tree volume over bark from ground to tip (V, m³) for each poplar clone was estimated using a taper function with measured tree height and DBH. The calculation was according to the following equation [4]:

\[V = 0.0000267 \times (H + 3) \times D^2 \]

where H is tree height (m), and D is the DBH (cm).

Ethics Statement

Since this was a tree-experimental investigation, no ethical approval was required.

Declaration of Competing Interest

The authors declare that they have no competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Acknowledgments

This work was funded by The National Key Research and Development Program of China [grant number 2016YFD0600402] and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). The authors would like to thank Professors Shixing Lv and Minren Huang, Drs. Xulan Shang, Wanxia Yang, and many other graduate students from Nanjing Forestry University for their contribution and assistance to the data collection.

References

[1] S. Fang, Y. Liu, J. Yue, Y. Tian, Z. Xu, Assessments of growth performance, crown structure, stem form and wood property of introduced poplar clones: results from a long-term field experiment at a lowland site, For. Ecol. Manage (2020), doi:10.1016/j.foreco.2020.118586.
[2] S. Fang, X. Xu, S. Lu, L. Tang, Growth dynamics and biomass production in short-rotation poplar plantations: 6-year results for three clones at four spacings, Biomass Bioenergy 17 (1999) 415–425.
[3] G.P.S. Dhillon, A. Singh, D.S. Sidhu, H.S. Brar, Variation among poplar clones for growth and crown traits under field conditions at two sites of North-western India, J. For. Res. 24 (1) (2013) 61–67.
[4] L. Gao, R. Zhao, H. Xu, The construction of a stocking volume table for four clones of the Aigeiros poplars, J. Nanjing For. Univ. (Natural Science Edition) 8 (01) (1984) 131–138 in Chinese, doi:10.3969/j.jissn.1000-2006.1984.01.013.