RESEARCH

Patient-reported physical activity questionnaires: A systematic review of content and format

Kate Williams¹, Anja Frei²,³*, Anders Vetsch²,³, Fabienne Dobbels⁴, Milo A Puhan²,⁵ and Katja Rüdell¹

Abstract

Background: Many patients with chronic illness are limited in their physical activities. This systematic review evaluates the content and format of patient-reported outcome (PRO) questionnaires that measure physical activity in elderly and chronically ill populations.

Methods: Questionnaires were identified by a systematic literature search of electronic databases (Medline, Embase, PsychINFO & CINAHL), hand searches (reference sections and PROQOLID database) and expert input. A qualitative analysis was conducted to assess the content and format of the questionnaires and a Venn diagram was produced to illustrate this. Each stage of the review process was conducted by at least two independent reviewers.

Results: 104 questionnaires fulfilled our criteria. From these, 182 physical activity domains and 1965 items were extracted. Initial qualitative analysis of the domains found 11 categories. Further synthesis of the domains found 4 broad categories: ‘physical activity related to general activities and mobility’, ‘physical activity related to activities of daily living’, ‘physical activity related to work, social or leisure time activities’, and ‘(disease-specific) symptoms related to physical activity’. The Venn diagram showed that no questionnaires covered all 4 categories and that the ‘(disease-specific) symptoms related to physical activity’ category was often not combined with the other categories.

Conclusions: A large number of questionnaires with a broad range of physical activity content were identified. Although the content could be broadly organised, there was no consensus on the content and format of physical activity PRO questionnaires in elderly and chronically ill populations. Nevertheless, this systematic review will help investigators to select a physical activity PRO questionnaire that best serves their research question and context.

Keywords: Physical activity, Chronic illness, Patient-reported outcome questionnaires, Systematic review

Background

Many patients with chronic diseases experience physical activity limitations or suffer symptoms during physical activities. This is concerning given the wealth of evidence demonstrating the importance of a physically active lifestyle in the prevention and management of many chronic diseases [1,2]. Physical activity has been defined as ‘any bodily movement produced by the contraction of skeletal muscle that increases energy expenditure above a basal level’ [3]. It is useful as an outcome measurement as it enables researchers to effectively evaluate public health interventions to increase physical activity levels. It is also currently being explored as an endpoint for evaluating the efficacy of pharmaceutical interventions in clinical trials. This could help inform patients about treatment options that may improve their daily life.

When deciding to assess physical activity as an outcome measure, researchers face the challenge of selecting from a myriad of objective and subjective assessments. For subjective assessments, a large number of patient-reported outcome (PRO) questionnaires are available to choose from. PRO questionnaires are self-report measures of a patient’s health status or behaviour that comes directly from the patient without interpretation from anyone else. Such questionnaires have the potential to

© 2012 Williams et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
capture patient-relevant lifestyle physical activities and related limitations that may not be identified by more objective assessments. For this reason, it is important that the content of physical activity PRO questionnaires is relevant to the patient in order to make appropriate, patient-centred treatment choices [4,5]. In addition, the format of the questionnaire should be such that the questions and answer options can be easily interpreted and completed by the patient.

Although there have been several reviews of physical activity PRO questionnaires in recent years (e.g. [6]), the majority of these have focused on the development and validation processes. To our knowledge, no review to date has specifically focused in depth on content and format such as looking at themes and patterns across questionnaires.

This review is part of the European Union funded PROactive project [7] which aims to develop and validate a PRO tool to investigate dimensions of physical activity in chronic obstructive pulmonary disease (COPD) patients. The initial aim of this review was therefore to identify existing physical activity PRO questionnaires which are appropriate for use in a COPD population. Although we were primarily interested in questionnaires developed for COPD patients, we were also interested in learning from questionnaires developed for elderly populations or patients with other chronic diseases that may result in physical activity limitations. The second aim was to systematically evaluate these questionnaires with the aim of establishing if there is a consensus on their optimal content and format (the development and psychometric properties are explored in a separate paper [8]). These results may help researchers to select the most appropriate physical activity PRO questionnaires available to date, and will identify research gaps.

Methods

A study protocol (unregistered) guided the entire review process. We followed standard systematic review methodology as outlined in the handbooks of the Centre for Reviews and Dissemination [9] and the Cochrane Collaboration. The reporting follows the PRISMA statement guidelines for reporting systematic reviews and meta-analyses [10].

Eligibility criteria

Population

As this systematic review is part of the PROactive project [7], we were interested in identifying physical activity PRO questionnaires that are appropriate for use in a COPD population. We therefore supplemented the electronic database search with explicit search terms for COPD patients. However, we were also interested in learning from the content and format of questionnaires developed for other disease populations which may experience similar physical activity limitations to COPD patients. We therefore expanded our search to include PRO questionnaires developed for patients with all chronic illnesses and elderly populations.

Style of questionnaire

We included fully structured questionnaires or scales with standardised questions and answer options which were patient (self) reported. Interviewer administered questionnaires were included only if the information was self-reported. Questionnaires that required a rating by an interviewer were excluded.

Assessment of physical activity

We included questionnaires containing at least one physical activity subscale/domain. We used this benchmark as the number of questionnaires containing only one or two physical activity items was too large to include in this review. The PROactive consortium agreed to use the following definition for physical activity by the U.S. Department of Health and Human Services [3]: ‘any bodily movement produced by the contraction of skeletal muscle that increases energy expenditure above a basal level’. In addition to questionnaires measuring the frequency, intensity and total amount of physical activity, we also considered questionnaires assessing ‘related constructs’ such as symptoms (physical and mental) or limitations associated with physical activity. We only included questionnaires if the items were available from the publication or developers. We did not have any language or publication date restrictions.

Study design

We included cross-sectional and longitudinal studies that described the development or modifications of the original questionnaire and/or the initial validation of the original questionnaire. We excluded studies that were not designed to initially validate a questionnaire, for example, those that reported linguistic validation or used a questionnaire as an outcome measure in a clinical trial or observational study.

Information sources

Electronic database searches

We searched the electronic databases Medline, Embase, PsycINFO and CINAHL on September 18th 2009.

Hand searches

In addition to the electronic database search, we did the following hand searches: we searched for original development studies of questionnaires from articles which were excluded for the reason ‘validation only’ or ‘used as outcome measures’; we scanned the reference lists of the full texts; we searched for ‘physical functioning’ questionnaires in the Patient-Reported Outcome and Quality of Life Questionnaires Database (PROQOLID)
on March 10 2010; and we contacted experts in the field (the PROActive research consortium and associated expert panel) to check that our list was complete.

Search
We searched the electronic databases using the following search terms: (physical activity OR functioning OR function OR motor activity OR activities of daily living OR walking OR activity OR exercise) AND (questionnaire* OR scale OR tool OR diary OR assessment OR self-report OR measure*) AND (valid*) AND (chronic disease OR elderly OR COPD OR chronic lung disease OR chronic obstructive lung disease) NOT (athletic performance OR sports OR children OR adolescent).

Study selection
The study selection process was piloted by at least two independent reviewers at the start of the review. All titles and abstracts were screened and the decision to include or exclude was recorded (0 = exclude, 1 = order for full text assessment, 2 = only validation study of existing questionnaire, 3 = related study (e.g. reviews), do not order but may be useful reference). All articles that were deemed potentially eligible by at least one reviewer proceeded to full text review. The full texts were then scored against the predefined selection criteria and the decision to include or exclude was again recorded. If there was a discrepancy between two reviewers, a third reviewer was consulted. If the article contained insufficient information then we made three attempts to contact the authors and recorded the outcome. In cases where multiple papers were published (e.g. translations, reporting on different outcomes etc.), we treated the multiple reports as a single study but made reference to all publications.

Data extraction process
We created standardised data extraction forms to record the relevant information from the articles. The data extraction forms were piloted twice by four reviewers. The forms and categories were then adapted and refined where necessary. The first reviewers extracted the data and stored it in a MS Word file. The second reviewers then independently extracted the data and compared their results with that of the first reviewers. Discrepancies were resolved by consulting a third independent reviewer.

Data extraction
We extracted data on the questionnaires’ content and format. The format categories were: population (elderly or type of chronic disease), answer options (e.g. 5-point Likert scale, categorical scales), anchors (e.g. 0 = not limited at all to 6 = totally limited), scoring (e.g. total score or average), direction of scale (uni- or bi-directional), recall period (e.g. past 24 hours or past week), administration (self or interviewer administered), quantification (whether questionnaires quantified the amount of physical activity [e.g. number of hours spent] or not), and type of questionnaire (quick overview of the method of assessment [e.g. ability, frequency], the content of assessment [e.g. breathlessness] and the population). The content categories were: a general description of the questionnaire (physical activity only or general questionnaire with physical activity subscales), number of items, number of domains, and labelling of domains.

Content analysis
Content analysis of the domain labels was conducted to synthesise the data. The domains were independently grouped into broad categories by two reviewers and their level of agreement was calculated using Cohen’s Kappa coefficient. Mismatches were then resolved and a third reviewer was consulted where necessary. Once the categorisation of all the domains had been agreed, the frequency of domains per category was calculated. Following the categorisation of domains into broad categories, a second content analysis was conducted to further synthesise the content of the questionnaires. This was again done by two independent reviewers and a third reviewer was consulted where necessary. A Venn diagram was then produced to give a visual representation of the content of the questionnaires. A brief content analysis was also conducted for the populations for which the questionnaires were developed (focusing on COPD and related respiratory diseases) and the answer options used.

Results

Study selection
Figure 1 shows a flow diagram of the study identification process. The electronic database search produced 2542 references. After title and abstract screening, 2268 of these were excluded resulting in 274 for full text assessment. This included 5 Japanese and 1 Chinese article which were provisionally included due to their English abstract but were not included in the current analysis as we were unable to translate them [11-15]. Hand searches of reference sections and of excluded articles revealed an additional 70 questionnaires/development studies for full text assessment. The search of the PROQOLID database produced a further 58 questionnaires, 19 of which were included for full text assessment after title and abstract screening. One additional questionnaire was retrieved from the consultation with experts. Therefore, a total of 364 papers were included for full text assessment.
Following full text assessment, a further 255 articles were excluded resulting in 104 questionnaires from 103 full texts included in the review [16-119] (one article [65] provided information for the development process of two questionnaires). The most frequent reasons for exclusion were: the questionnaire is not self-reported ($n = 71$), the questionnaire does not measure physical activity (defined as above [3]) ($n = 66$), the article was a validation study only (other than the original validation) ($n = 35$) and the article used the questionnaire as an outcome measure only (did not describe the development or initial validation) ($n = 29$). The references of all articles excluded after full text assessment are summarised in Additional file 1.

Content of questionnaires

Additional file 2 summarises the extracted data on the content and format of the reviewed questionnaires.

Fifty nine (56.7%) questionnaires focused on physical activity only. Forty three (41.3%) did not focus on physical activity but contained at least one physical activity subscale. Two (1.9%) questionnaires [78,118] were not described in the publication and the questionnaires were not available from the authors.

A total of 1965 items (a further 5 questionnaires did not report the number of items) relating to physical activity were extracted. The items were not checked for duplicates due to their large number; however, it is unlikely that the items with exactly the same wording would have appeared multiple times. The number of physical activity items per questionnaire ranged from 3 to 123.

After the removal of 56 duplicate domains, a total of 182 physical activity domains (a further 2 articles did not report their domains) were extracted. The number of physical activity domains per questionnaire ranged from 1 to 12. The domains that appeared multiple times
Table 1 Physical activity domains (as described by the authors) that appeared multiple times

Physical activity domain	N	Physical activity domain	N
Activities of daily living/ADL*	10	Falls efficacy	2
Mobility	8	Ambulation	2
Leisure activities	6	Domestic tasks	2
Physical activity(ies)	8	Domestic chores	2
Physical function(ing)	7	Family role	2
Self-care	4	Social functioning	2
Activity	3	Care taking	2
Exercise	3	Work	2
Household activities	3	Disability	2
Instrumental activities of daily living/ IADL**	2		

*ADL = Activities of daily living
**IADL = Instrumental activities of daily living

are shown in Table 1. All other domains appeared only once.

The initial thematic analysis of the 182 physical activity domains found 11 broad categories, plus an additional 'other' category (defined in Table 2). The inter-rater reliability of the initial independent coding of the 182 domains was high with a Cohen’s Kappa of 0.87 (p < 0.001) and 88.5% total accordance. After agreement for mismatches, the number of the domains per content theme were: physical activity related mobility (n = 34), household physical activity (n = 21), generic physical activity (n = 20), social physical activity (n = 18), physical activity relating to self (n = 17), dyspnoea & symptom related physical activity (n = 9), work physical activity (n = 9), exercise physical activity (n = 9), physical activity limitations (n = 8), activities of daily living (ADL) (n = 7) and other (n = 17). The full list of domains and their 11 categories are shown in Additional file 2.

The second content analysis resulted in 4 categories plus an additional 'other' category (defined in Table 3). The Venn diagram in Figure 2 illustrates the distribution of the questionnaires across these 4 categories. This shows that 59 questionnaires contained the domain 'physical activity related to general activities and mobility', 39 the domain 'physical activity related to activities of daily living', 32 the domain 'physical activity related to work, social or leisure time activities', and 18 the domain '(disease-specific) symptoms related to physical activity'. The Venn diagram also shows that none of the questionnaires contained domains from all 4 of the categories. Further, questionnaires containing '(disease-specific) symptoms related to physical activity' domains did not often contain domains from the other 3 categories as well.

Format of questionnaires

The questionnaires were developed for patients with a range of chronic diseases and elderly populations. These populations were grouped into the 5 categories 'Elderly', 'COPD patients', 'Patients with other chronic respiratory diseases', 'Patients with unspecified chronic disease or disability', and 'Patients with other specified chronic diseases' (Table 4).

Table 2 Eleven categories identified from the initial content analysis of the physical activity domains

Category	Definition
Generic physical activity	Domains that relate to physical activity/functioning in general that do not specify a particular type of physical activity.
Activities of daily living (ADL)	Domains referring specifically to activities of daily living or instrumental activities of daily living.
Dyspnoea and symptom related physical activity	Domains that refer to dyspnoea and/or other symptoms which may occur as a result of physical activity.
Exercise physical activity	Domains referring to exercise or other activities that are more vigorous than usual everyday activities.
Physical activity relating to self	Domains referring to a person’s ability to look after themselves. Also includes domains about their belief that they can look after themselves and other self beliefs.
Physical activity related mobility	Domains referring to body movement or a person’s ability to move around both inside and outside their home.
Leisure physical activity	Domains referring to leisure or recreational activities. These are not necessarily activities that are done socially but include activities that can be done alone.
Household physical activity	Includes all domains referring to activities within the home and/or garden.
Social physical activity	Domains referring to social activities including those involving friends, family, community and intimate relationships.
Work physical activity	Domains referring to paid or unpaid work or education.
Physical activity limitations	Domains referring to physical activity limitations or disability (likely to be due to a physical condition such as COPD).
Other	Any other domains which do not fit into the other categories.
Analysis of the 1965 items revealed 12 different types of answer option (Table 5) and 209 different anchors (duplicate anchors removed). The full list can be seen in Additional file 2. Of the 209 different anchors, the most frequent was the categorical yes/no scale which was used for 265 items overall.

Sixty eight (65.4%) questionnaires were scored by calculating the sum of the items to domains scores and total scores, 10 (9.6%) by calculating a mean score of completed items, 5 (4.8%) using Guttman scaling and 6 (5.8%) using another method classified as ‘other’. Fifteen (14.4%) questionnaires did not report the method of scoring used.

Seventy three (70.2%) questionnaires were uni-directional, meaning that the items were phrased in the same direction, either positively or negatively. Three questionnaires (2.9%) were bi-directional, 1 (1%) contained uni-directional and bi-directional items and 27 (26%) did not report the scale direction or direction was not applicable (e.g. categorical scales).

Forty two different recall periods were identified and these were grouped thematically into 10 categories plus a ‘not reported/unclear’ category. Table 6 shows the categories along with the number of questionnaires to which they apply.

Fifty eight (55.8%) questionnaires were self-administered, 25 (24%) were interviewer-administered and 16 (15.4%) were either self- or interviewer-administered. Five (4.8%) questionnaires did not report their administration format.

Nine of the questionnaires quantified the amount of physical activity engaged in (e.g. total time, duration), whereas the other 95 did not. These questionnaires can be seen in row 3 of Table 7.

We identified 8 types of questionnaire based on their method of assessing physical activity (e.g. ability) and

![Figure 2 Venn diagram showing overlapping categories of domains](http://www.hqlo.com/content/10/1/28)
the content of this assessment (e.g. limitations). These types, along with the frequency of questionnaire for each type and the reference numbers of the questionnaires for each type are shown in Table 7.

Discussion

This systematic review found many PRO questionnaires for assessing physical activity. Most questionnaires focused on physical activity alone (see definition [3]) but there were also multiple questionnaires containing physical activity domains or subscales. Most questionnaires were developed for patients with chronic diseases, although the single largest group was elderly. The format of the questionnaires including the answer options, anchors and recall periods varied considerably. The most common answer option was the yes/no scale. Most questionnaires had no recall period, were unidirectional, self-administered and scored by calculating the sum of the domain or total scores.

Multiple domains and items were extracted and although the domains were grouped broadly into 11 categories, the content varied considerably. Further synthesis into 4 categories and the Venn diagram revealed that no questionnaires contained domains from all 4 categories. This was surprising as we expected to see increased overlap due to the large number of domains and the small number of categories. However, we acknowledge that the questionnaires were developed for a range of populations and limitations experienced by some groups may not be universal. The Venn diagram also showed that ‘(disease-specific) symptoms related to physical activity’ were included by the fewest questionnaires and infrequently overlapped with the other categories. This shows that symptoms and limitations related to physical activity are not prominent in the currently available PRO questionnaires. This is concerning as qualitative research has shown that patients with certain chronic conditions (e.g. asthma) consider symptoms in association with physical activity to be very relevant [120]. This inconsistency may be due to inadequate patient input in the development of these questionnaires as was found in the first part of this review [8]. However, we acknowledge that symptoms are not a relevant aspect of all chronic conditions (e.g. hypertension).

Overall the results show that there is no consensus on what should be included in the content and format of physical activity PRO questionnaires. This is in line with previous reviews which have found variation in the number of recall periods used [6] and inconsistencies in the development and validation methods questionnaires [6,8]. The lack of consensus may also arise from the scarcity of conceptual frameworks for physical activity, which was documented recently [121]. This highlights a need for further research into physical activity and its potential use as an outcome measure to evaluate treatment benefit. In addition, the results show that many physical activity questionnaires lack important concepts, particularly those relating to symptoms and limitations.

Table 4: Categorisation of the populations for which the included questionnaires were developed (n = 104)

Population	N	%
Elderly	32	30.8%
Chronic respiratory failure, (unspecified) chronic lung disease, chronic airflow limitation, asthma, (unspecified) pulmonary impairment, patients receiving home mechanical ventilation, and various underlying diseases)	12	11.5%
COPD patients	15	14.4%
Patients with other chronic respiratory diseases	12	11.5%
Patients with unspecified chronic disease or disability	15	14.4%
Patients with other specified chronic diseases	30	28.8%

Table 5: Answer options and the frequency of their occurrence

Answer options	Number of different types
3-point scales	40
5-point Likert scales	40
Categorical scales (defined categories to select e.g. yes/no)	37
4-point scales	36
Frequency/duration (e.g. number of times per week or number of hours spent)	14
7-point Likert type scales	11
Visual analogue scale (VAS)	11
6-point Likert type scales	8
11-point Likert type scales	6
10-point Likert type scales	3
Free report	2
Diary	1
with physical activity. This poses a problem to researchers when deciding which physical activity PRO questionnaire to choose for their purpose as no questionnaire measures all aspects of physical activity. Although this highlights a need for patient input in the development of future physical activity questionnaires, it is also important to acknowledge that physical activity is a multidimensional construct. It is therefore challenging to create a single questionnaire which encompasses all aspects.

Nevertheless, both this review and our previous systematic review [8] provide a broad overview of physical activity questionnaires and can be used to guide researchers in their selection a questionnaire. For example, a questionnaire may be needed to assess physical activity as an outcome in a pulmonary rehabilitation intervention study of COPD patients (example 1). As another example, investigators may need a questionnaire to assess the association between physical activity and mortality in a prospective cohort study of elderly people (example 2). In situations like these, Additional file 2 will be a useful tool for researchers as it summarises the content and format of the large variety of available questionnaires.

To evaluate pulmonary rehabilitation (as in example 1), a suitable questionnaire may be one that was specifically developed for COPD patients (see ‘Population’ in Additional file 2) and that assesses domains that a pulmonary rehabilitation program aims to improve (e.g. the patients’ ability to perform activities of daily living, see ‘Questionnaire type’). Even more specifically, investigators could choose between different types of activities of daily living or household physical activities (see ‘Category’ and ‘Labelling of domains’). Since a study on pulmonary rehabilitation is typically designed to detect a change over time, a unidirectional Likert type scale would be reasonable, encompassing at least 5 points, with corresponding anchors (see ‘Direction of scale’, ‘Answer options’ and ‘Anchors’) resulting in different domain and total scores (see ‘Scoring’). Depending on the number of other assessments they may be using, investigators may also want to consider the time to complete (‘Number of items’) and the recall period (‘Recall period’) in order to minimise information bias. Based on these considerations, the London Chest Activity of Daily Living Scale [49] or the Activity of Daily Living Dyspnoea scale [115] would be reasonable choices.

If physical activity is measured as a determinant of mortality (as in example 2), the amount of physical activity includes all kind of activities

Table 6 Categorisation of recall periods and the frequency of their occurrence

Recall period	N	%
No recall period	31	29.8%
Present/today	6	5.8%
Yesterday/past few days	4	3.8%
Past week	15	14.4%
Past 2 weeks	8	7.7%
Past month	10	9.6%
Past 3 months	1	1%
Past year	1	1%
Multiple different recall periods	5	4.8%
General	1	1%
Not reported/unclear	22	21.2%

Table 7 Frequency of each ‘type’ of questionnaire

Method and content of assessment	Frequency	Reference number(s)
Ability/capacity to perform physical activities*	25	[21,25-30,37,41,42,45,47,48,53,54,70,72,82,86,89,91,97,99,100,113,114]
Frequency/categorised amount of time performing physical activities (no quantification of physical activities)	13	[19,32,40,56,61,67,65]a** [87,93,103,108,109,116]
Quantification of physical activities: Total time/duration/diary	9	[30,36,44,46,74,65]b** [102,110,119]
Degree/level/frequency of limitations/symptoms/difficulty in performing physical activities	35	[20,23,33,38,39,49,50,55,58,60,64,67,69,73,75,77,79-81,84,85,87,90,94-96,99-101,105,107,111,115,117]
Impact of symptoms/disease/functional impairment on physical activities	7	[16,17,22,52,57,66,106]
Self-efficacy/confidence in performing physical activities	7	[18,24,35,80,92,104,112]
Degree of dependence/independence	5	[43,59,63,88,98]
Graduation of needed help/amount of assistance needed in performing physical activities	2	[51,62]

*Physical activity includes all kind of activities

**[65]a = LTPAI, [65]b = PAHWI (see reference) X allocated to more than one questionnaire type

[31,34,71,78,83,118]
activity (‘Quantification’, ‘Questionnaire type’) is likely to be of importance (e.g. [122]) and could be expressed by the frequency and time spent for performing certain activities (‘Category’, ‘Labelling of domains’). A single number representing the amount of physical activity (‘Scoring’) would be attractive from a statistical and interpretative perspective. Also, as the researcher may be assessing other determinants of mortality, the length of the questionnaire should be considered to avoid patient burden (‘Number of items’). An appropriate questionnaire for this example would be the YALE Physical Activity Survey [36].

During the selection process, the measurement properties also need to be considered once potential questionnaires have been identified based on content and format requirements. For an overview of the development and initial validation data of the questionnaires, readers are referred to Additional file 2 in our previous publication [8].

One of the strengths of this review is that we adhered to a rigorous systematic review methodology throughout the process. We used carefully developed inclusion and exclusion criteria and each step was conducted by at least two independent reviewers from at least two independent institutions to ensure that the most appropriate physical activity questionnaires were included. We kept our search strategy deliberately broad to avoid missing any potentially relevant questionnaires, resulting in what is likely to be the most comprehensive systematic review of physical activity questionnaires to date. We did this by using the definition for physical activity as described in the 2008 physical activity guidelines for Americans [3] as a guide. In addition to public database searches we added a thorough hand search of reference sections and the PROQOLID database, resulting in an extensive domain and item pool of physical activity questionnaires.

A challenge of this review was dealing with situations where the decision to include or exclude a questionnaire was unclear. Although we followed carefully defined inclusion and exclusion criteria, some questionnaires assessed specific types of physical activity that were largely unique to the population for which they were developed. In such cases we attempted to make a judgement to include or exclude that was systematically and scientifically defendable. For example, if a questionnaire had been developed for multiple sclerosis patients, we excluded physical activity domains that assessed impaired hand motor activity, but included general domains such as ‘walking ability’ [55] or ‘physical functioning’ [95]. Furthermore, although we did not analyse the content of the individual items, they were all entered into an item pool which can be utilised during the later stages of the PROactive project and will be made available to the public upon the conclusion of the project.

Conclusions

This review found a large number of PRO questionnaires are available for assessing physical activity in elderly and chronically ill populations. From these, 182 different physical activity domains were identified. Although the content could be broadly organised, there was little consensus on the content and format of physical activity PRO questionnaires in these populations. Nevertheless, this systematic review will help investigators to select a physical activity PRO questionnaire that best serves their research question and context.

Acknowledgements

The study was conducted within the PROactive project which is funded by the Innovative Medicines Initiative Joint Undertaking (IMI JU) # 115011. The authors would also like to thank Laura Jacobs for her support in the early stages of the project as well as the PROactive group: Caterina Brindicci and Tim Higenbottam (Chiesi Farmaceutici S.A.), Thierry Trooster and Fabienne Dobbelts (Katholieke Universiteit Leuven), Margaret X. Tabberer (Glaxo Smith Kline), Roberto Rabonovitch and Bill McNee (University of Edinburgh, Old College South Bridge), Ioannis Vogiatzis (Thorax Research Foundation, Athens), Michael Polkey and Nick Hopkinson (Royal Brompton and Harefield NHS Foundation Trust), Judith Garcia-Aymerich (Municipal Institute of Medical Research, Barcelona), Milo Puhan and Anja Frei (Universität of Zürich, Zürich), Thys van der Molen and Corina De Jong (University Medical Center, Groningen), Pim de Boer (Netherlands Asthma Foundation, Leusden), Ian Jarrod (British Lung Foundation, UK), Paul McBride (Choice Healthcare Solution, UK), Nadia Kamel (European Respiratory Society, Lausanne), Katja Rudell and Frederick J. Wilson (Pfizer Ltd), Nathalie Ivanoff (Almirall), Karoly Kulich and Alistair Glendenning (Novartis), Niklas X. Karlsson and Solange Corriol-Rohou (AstraZeneca AB), Enkeleida Nikai (UCB) and Damijen Erzen (Boehringer Ingelheim).

Additional material

| Additional file 1: Reference list of excluded articles after full text assessment | List of all references of articles which were excluded after full text assessment [123-377]. |
| Additional file 2: Data extraction results: content and format of the reviewed questionnaires | Summary of the extracted data on the content and format of the reviewed questionnaires. This covers the population, domains, categories, items, answer options, anchors, scoring, direction of scale, recall period, administration, questionnaire type and quantification. |
Abbreviations
PRO: Patient-reported outcome; ADL: Activities of daily living; IADL: Instrumental activities of daily living.

Author details
1Patient Reported Outcomes Centre of Excellence, Global Market Access, Primary Care Business Unit, Pfizer Ltd, Walton Oaks, Surrey, UK. 2Horton Centre for Patient-oriented Research, University Hospital of Zurich, Zurich, Switzerland. 3Institute of General Practice & Health Services Research, University Hospital of Zurich, Zurich, Switzerland. 4Centre for Health Services & Nursing Research, Katholieke Universiteit Leuven, Leuven, Belgium. 5Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA.

Authors’ contributions
KR and MP led the systematic review. KR, MP, AF, and FD developed the conceptual framework and the study protocol. KR, MP, and AF coordinated the review. KR, MP, AF, and FD conducted the electronic database searches; KW, AV, AF, and KR conducted the additional searches. AF coordinated the references in RefWorks. KW and FD (1st reviewers), AF and AV (2nd reviewers), and KR and MP (3rd reviewer) assessed full texts of the identified studies. KW and AV (1st reviewers) and KR and AF (2nd reviewers) extracted the relevant data. KW conducted the statistical analysis. KW drafted the manuscript. All authors contributed to revising the manuscript and approved the final version.

Authors’ information
KR is an honorary lecturer of health psychology at the University of Kent, UK. Fabienne Dobbels is a post-doctoral researcher funded by the FWO (Scientific Research Foundation Flanders).

Competing interests
Kate Williams was contracted by Pfizer Ltd when this review was conducted and Katja Rüdell is an employee of Pfizer Ltd. The current work is supported by the Scientific Research Foundation Flanders.

Prevalence of Selected Physical Activities and Their Relation with Health in Older People: A Systematic Review

Author details
1Patient Reported Outcomes Centre of Excellence, Global Market Access, Primary Care Business Unit, Pfizer Ltd, Walton Oaks, Surrey, UK. 2Horton Centre for Patient-oriented Research, University Hospital of Zurich, Zurich, Switzerland. 3Institute of General Practice & Health Services Research, University Hospital of Zurich, Zurich, Switzerland. 4Centre for Health Services & Nursing Research, Katholieke Universiteit Leuven, Leuven, Belgium. 5Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA.

Authors’ contributions
KR and MP led the systematic review. KR, MP, AF, and FD developed the conceptual framework and the study protocol. KR, MP, and AF coordinated the review. KR, MP, AF, and FD conducted the electronic database searches; KW, AV, AF, and KR conducted the additional searches. AF coordinated the references in RefWorks. KW and FD (1st reviewers), AF and AV (2nd reviewers), and KR and MP (3rd reviewer) assessed full texts of the identified studies. KW and AV (1st reviewers) and KR and AF (2nd reviewers) extracted the relevant data. KW conducted the statistical analysis. KW drafted the manuscript. All authors contributed to revising the manuscript and approved the final version.

Authors’ information
KR is an honorary lecturer of health psychology at the University of Kent, UK. Fabienne Dobbels is a post-doctoral researcher funded by the FWO (Scientific Research Foundation Flanders).

Competing interests
Kate Williams was contracted by Pfizer Ltd when this review was conducted and Katja Rüdell is an employee of Pfizer Ltd. The current work is supported by the Scientific Research Foundation Flanders.

Prevalence of Selected Physical Activities and Their Relation with Health in Older People: A Systematic Review

Author details
1Patient Reported Outcomes Centre of Excellence, Global Market Access, Primary Care Business Unit, Pfizer Ltd, Walton Oaks, Surrey, UK. 2Horton Centre for Patient-oriented Research, University Hospital of Zurich, Zurich, Switzerland. 3Institute of General Practice & Health Services Research, University Hospital of Zurich, Zurich, Switzerland. 4Centre for Health Services & Nursing Research, Katholieke Universiteit Leuven, Leuven, Belgium. 5Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA.

Authors’ contributions
KR and MP led the systematic review. KR, MP, AF, and FD developed the conceptual framework and the study protocol. KR, MP, and AF coordinated the review. KR, MP, AF, and FD conducted the electronic database searches; KW, AV, AF, and KR conducted the additional searches. AF coordinated the references in RefWorks. KW and FD (1st reviewers), AF and AV (2nd reviewers), and KR and MP (3rd reviewer) assessed full texts of the identified studies. KW and AV (1st reviewers) and KR and AF (2nd reviewers) extracted the relevant data. KW conducted the statistical analysis. KW drafted the manuscript. All authors contributed to revising the manuscript and approved the final version.

Authors’ information
KR is an honorary lecturer of health psychology at the University of Kent, UK. Fabienne Dobbels is a post-doctoral researcher funded by the FWO (Scientific Research Foundation Flanders).

Competing interests
Kate Williams was contracted by Pfizer Ltd when this review was conducted and Katja Rüdell is an employee of Pfizer Ltd. The current work is supported by the Scientific Research Foundation Flanders.
Coronary Heart Disease Risk Factors in Elderly Men: The Zutphen Study, 1985. Am J Epidemiol 1991, 133(1):1076-1092.

31. Chou K, Hong Kong Chinese Everyday Competence Scale: a validation study. Clin Genet 2003, 63(1):43-51.

32. Clark DO, Callahan CM, Counsell SR: The dimensions of health outcomes: the Hong Kong Chinese Everyday Competence Scale: a validation study. Clin Genet 2003, 63(1):43-51.

33. Harwood RH, Rogers A, Dickinson E, Ebrahim S: The development, validity, and reliability of the Exercise Self-Regulatory Efficacy Scale for individuals with chronic obstructive pulmonary disease. Lung Health 2007, 36(3):205-216.

34. DiPietro L, Caspersen CJ, Ostfeld AM, Nadel ER: A survey for assessing physical activity among older adults. Medicine & Science in Sports & Exercise 1993, 25(6):626-642.

35. Dorevitch MI, Cosar RM, Bailey FJ, Bisset T, Lewis SJ, Wise LA, MacLennan WJ: The accuracy of self and informant ratings of physical functional capacity in the elderly. J Clin Epidemiol 1992, 45(7):791-798.

36. Dorevitch K, Thompson DR, Beer SF, Furze G, Miles JNV: Development and validation of a patient-centered health-related quality-of-life measure: the Chronic Heart Failure Assessment Tool. J Cardiopulm Nurs 2008, 23(4):364-370.

37. Eakin EG, Resnikoff PM, Prewitt LM, Ries AL, Kaplan RM: Screening the elderly. A brief instrumental activities of daily living measure. J Am Geriatr Soc 1991, 39(1):36-39.

38. Finch M, Kane RL, Philip J: Developing a new metric for ADLs. J Am Geriatr Soc 1995, 43(8):877-884.

39. Follick MJ, Ahern CK, Laser-Wolston N: Evaluation of a daily activity diary for chronic pain patients. Pain 1989, 41(4):373-382.

40. Friedenreich CM, Courneya KS, Bryant HE: Developing and testing of the modified Lung Handicap Scale, a new outcome measure for chronic disease. Qual Health Care 1994, 3(1):17-26.

41. Helmes E, Hodsmann A, Lazzeri, Al-Badawi A, Critt R, Nicholl P, Drost D, Vanderbilt D, Redmond L: A Questionnaire To Evaluate Disability in Osteoprototic Patients With Vertebral Compression Fractures. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 1995, 50A(2): M91-M98.

42. Hlatky MA, Boineau RE, Higginbotham MB, Lee KL, Mark DB, Calfit RM, Cobb FR, Pryor DB: A brief self-administered questionnaire to determine functional capacity (the Duke Activity Status Index). Am J Cardiol 1989, 64(10):651-654.

43. Hobart JC, Bazi A, Lamping DL, Fitzpatrick R, Thompson AJ: Measuring the impact of MS on walking ability: The 12-item MS Walking Scale (MSWS-12). Neurology 2003, 60(1):31-36.

44. Holbrook M, Skillbeck CE: An activities index for use with stroke patients. Age Ageing 1983, 12(2):166-170.

45. Hyland ME: The living with Asthma Questionnaire. Respir Med 1991, 85(2):13-16.

46. Jacobs JE, Maile AR, Akkermans RP, van Weel C, Grool RP: Assessing the quality of life of adults with chronic respiratory diseases in routine primary care: construction and first validation of the 10-Item Respiratory Illness Questionnaire-monitoring 10 (RIQ-MON10). Qual Life Res 2004, 13(11):1117-1127.

47. Jette AM, Deniston OL: Inter-observer reliability of a functional status assessment instrument. J Chron Dis 1978, 31(9-10):573-580.

48. Jones PW, Quirk FH, Baveystock CM, Littlejohns P: A self-complete measure of health status for chronic airflow limitation. The St. George's Respiratory Questionnaire. Am Rev Respir Dis 1992, 145(6).

49. Kaplan RM, Sieber WJ, Ganiats TG: The quality of well-being scale: comparison of the interviewer-administered version with a self-administered questionnaire. Psychol Health 1997, 12:783-791.

50. Keith RA, Granger CV, Hamilton RB, Storvick FS: The functional independence measure: a new tool for rehabilitation. Adv Clin Rehabil 1987, 16-18.

51. Kempen GJ, Szuurmeijer TP: The development of a hierarchical polychotomous ADL-IALD scale for noninstitutionalized elders. Gerontologist 1990, 30(4):497-502.

52. Kuhl K, Schummann W, Retzlaff W: COPD disability index (CDI) - a new instrument to assess COPD-related disability. COPD-Disability-Index (CDI) - ein neues Verfahren zur Erfassung der COPD-bedingten Beeinträchtigung 2009, 63(3):16.

53. Mannkerkop K, Hennelid C: Leisure Time Physical Activity Instrument and Physical Activity at Home and Work Instrument. Development, face validity, construct validity and test-retest reliability for subjects with fibromyalgia. Disabil Rehabil 2005, 27(12):695-701.

54. Lareau SC, Carrien-Kohmann V, Jensen-Bjerkle S, Roos PJ: Development and testing of the Pulmonary Functional Status and Dyspnea Questionnaire (PFSSQ). Heart Lung 1994, 23(4):242-250.

55. Lareau SC, Meek PM, Roos PJ: Development and testing of the modified version of the Pulmonary Functional Status and Dyspnea Questionnaire (PFSSQ-M). Heart Lung 1998, 27(3):159-168.

56. Lee L, Frierson M, Lambert IR, Lowden RG: Evaluation of Dyspnea During Physical and Speech Activities in Patients With Pulmonary Diseases. Chest 1998, 113(3):625-632.

57. Leidy NK: Psychometric properties of the functional performance inventory in patients with chronic obstructive pulmonary disease. Nurs Res 1990, 39(1):20-28.

58. Lerner D, Amick BC II, Rogers WH, Malpass S, Bunyag K, Cynn D: The Work Limitations Questionnaire. Medical care 2001, 39(1):72-85.

59. Letrait M, Lurie A, Bean K, Merchah M, Venet A, Stroaugh C, Grandory BM, Chavalov J: The Asthma Impact Record (AIR) index: a rating scale to evaluate the quality of life of asthmatic patients in France. Eur Respir J 1996, 9(6):1167-1173.

60. Levin RJ, Thompson DR, Martin CR, Stuckey N, Devlen J, Michaelson S, Maguire P: Validation of the Cardiovascular Limitations and Symptoms Profile (CLASP) in chronic stable angina. J Cardiopulm Rehabil 2002, 22(3):184-191.

61. Linton SJ: Activities of daily living scale for patients with chronic pain. Percept Mot Skills 1990, 71(3 Pt 1):722.

62. Liu B, Woo J, Tang N, Ng K, Ip R, Yu A: The Living with Asthma Questionnaire. Thorax 2000, 55(7):569-574.

63. Liu B, Woo J, Tang N, Ng K, Ip R, Yu A: The Living with Asthma Questionnaire. Thorax 2000, 55(7):569-574.

64. Linton SJ: Activities of daily living scale for patients with chronic pain. Percept Mot Skills 1990, 71(3 Pt 1):722.

65. Liu B, Woo J, Tang N, Ng K, Ip R, Yu A: Assessment of total energy expenditure in a Chinese population by a physical activity questionnaire: examination of validity. Int J Food Sci Nutr 2001, 52(3):269-282.

66. Maille AR, Kanin CM, Zwinderman AH, Willems LNA, Dijkstra JM, Kappene AA: The development of the ‘Quality-of-Life for Respiratory Illness Questionnaire (QOL-RIQ)’: a disease-specific quality-of-life questionnaire for patients with mild to moderate chronic non-specific lung disease. Respir Med 1997, 91(5):297-309.

67. Mathias SD, Buxton JB, George JN, McMillian R, Okano GJ, Nichol JL: A disease-specific measure of health-related quality of life in adults with chronic obstructive pulmonary disease. Lung Health 2007, 36(3):205-216.

68. Mathias SD, Buxton JB, George JN, McMillian R, Okano GJ, Nichol JL: A disease-specific measure of health-related quality of life in adults with chronic obstructive pulmonary disease. Lung Health 2007, 36(3):205-216.
chronic immune thrombocytopenic purpura: psychometric testing in an open-label clinical trial. Clin Ther 2007, 29(5):950-962.
77. Mathurangath PS, George A, Cherian PJ, Mathew R, Sarma PS: Instrumental activities of daily living scale for dementia screening in elderly people. Int Psychogeriatr 2003, 15(3):461-474.
78. Mayer J, Mooney V, Matheson L, Leggott S, Venna J, Baloudas G, DelFilippo G: Reliability and validity of a new computer-administered pictorial activity and task sort. J Occup Rehabil 2005, 15(2):203-213.
79. McNorney CA, Ware JE Jr, Lu JF, Sherbourne CD: The MOS 36-item Short-Form Health Survey (SF-36). III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Medical care 1994, 32(1):49-66.
80. Migliore NH, Whitehons J, Demetrius S, Rey M: A new functional status outcome measure of dyspnea and anxiety for adults with lung disease: the dyspnea management questionnaire. J Cardiopulm Rehabil 2006, 26(6):595-604.
81. Morarity D, Zack M, Kobash P: The Centers for Disease Control and Prevention's Healthy Days Measures - Population tracking of perceived physical and mental health over time. Health Qual Life Outcomes 2003, 1(1):37.
82. Moriimoto M, Takai K, Nakajima K, Kagaava K: Development of the evaluation of obstructive pulmonary disease rating scale: reliability, validity and factorial structure. Nurs Health Sci 2003, 5(2):23-30.
83. Morris WW, Backwaller KC, Cleary TA, Gilmor JS: Issues related to the validation of the Iowa Self-Assessment Inventory. Educ Psychol Meas 1989, 49(4):853-861.
84. Myers J, Do D, Herbert W, Ribisl P, Froelicher VF: Assessment of physical activity behaviors of persons with disabilities and chronic health conditions: the Physical Activity and Disability Survey. J Vasc Med Biol 2000, 49(3):142-152.
85. Nias J, Vaes P, Mcgregor N, Van Hoof E, De Meirleir K: Psychometric properties of the Dutch Chronic Fatigue Syndrome-Activities and Participation Questionnaire (CFS-APQ). Phys Ther 2003, 83(5):444-454.
86. Nouri FM, Lincoln NB: An extended activities of daily living scale for stroke patients. Clin Rehabil 1987, 11(4):301-305.
87. Parkerson GR, Mohnp H, ShaerPM, Wagenster H, Emdahl J, Ndomainp H, James SA, Coper J: The MOS 36-item Short Form Health Survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Medical care 1994, 32(1):49-66.
88. Perlman SL, Briffa TG, Morton AR, Hung J: A specific activity questionnaire to measure the functional capacity of cardiac patients. Am J Cardiol 1996, 77(14):1220-1223.
89. Regenstein JG, Steiner JF, Panzer RJ, Hatt WR: Evaluation of walking impairment by questionnaire in patients with peripheral arterial disease. J Vasc Med Biol 1990, 2:142-152.
90. Rejeski WJ, Ettinger JMH, Schumaker S, James P, Burns R, Elam JT: Assessing performance-related disability in patients with knee osteoarthritis. Osteoarthritis Cartilage 1995, 3(3):157-167.
91. Rennie B, Jenkins LS: Testing the reliability and validity of the Self-Efficacy for Exercise Scale. Nurs Res 2001, 49(3):154-159.
92. Rimler JH, Riley BB, Ruben SS: A new measure for assessing the physical activity behaviors of persons with disabilities and chronic health conditions: the Physical Activity and Disability Survey. Am J Health Promot 2001, 16(1):34-42.
93. Roland M, Morris R: A study of the natural history of back pain. Part I: development of a reliable and sensitive measure of disability in low-back pain. Spine 1983, 8(2):141-144.
94. Rotstein Z, Barak Y, Noy S, Ashchen A: Quality of life in multiple sclerosis: development and validation of the 'RAYS' scale and comparison with the SF-36. Int J Qual Health Care 2000, 12(6):511-517.
95. Schag AC, Heinrich RL, Aadland RL, Ganz PA: Assessing Problems of Cancer Patients: Psychometric Properties of the Cancer Inventory of Problem Situations. Health Psychol 1990, 9(3):83-102.
96. Schultz-Larsen K, Avlund K, Kreiner S: Functional ability of community dwelling elderly. Criterion-related validity of a new measure of functional ability. J Clin Epidemiol 1992, 45(11):1315-1326.
97. Shah S, Vanclay F, Cooper B: Improving the sensitivity of the Barthel Index for stroke rehabilitation. J Clin Epidemiol 1989, 42(8):703-709.
98. Sintonen H: The 15-D Measure of Health Related Quality of Life: Reliability, Validity and Sensitivity of its Health State Descriptive System. 1994.
99. Sintonen H: The 15D instrument of health-related quality of life: properties and applications. Ann Med 2001, 33(5):328-336.
100. So CT, Man DWK: Development and validation of an activities of daily living inventory for the rehabilitation of patients with chronic obstructive pulmonary disease. OTJR: Occupation, Participation & Health 2008, 28(4):149-159.
101. Stel VS, Smit JH, Pluim SM, Visser M, Deeg DJ, Lips P: Comparison of the ASA Physical Activity Questionnaire with a 7-day diary and pedometer. J Clin Epidemiol 2004, 57(3):252-258.
102. Stewart AL, Mills KM, King AC, Haskell WL, Gilliss D, Ritter PL: CHAMPS physical activity questionnaire for older adults: outcomes for interventions. Medicine & Science in Sports & Exercise 2001, 33(7):1126-1141.
103. Tinetti ME, Richman D, Powell L: Falls efficacy as a measure of fear of falling. J Gerontol 1990, 45F(6):P239-P243.
104. Tu SP, McDonell MB, Sperius JA, Steele BG, Fillin SD: A new self-administered questionnaire to compare health-related quality of life in patients with COPD. Ambulatory Care Quality Improvement Project (ACQUIP). Investigators. Chest 1997, 112(2):614-622.
105. Tugwell P, Bombardier C, Buchanan WW, Goldsmith CH, Grace E, Hanna B: The MACATAR Patient Preference Disability Questionnaire-an individualized functional priority approach for assessing improvement in physical disability in clinical trials in rheumatoid arthritis. J Rheumatol 1987, 14(3):446-451.
106. van der Molen T, Willemsen BW, Schokker S, ten Hacken NH, Postema DS, Juniper EF: Development, validity and responsiveness of the Clinical COPD Questionnaire. Health Qual Life Outcomes 2003, 1:13.
107. Verbrant JA: Reliability and validity of the PAD questionnaire: a measure to assess pain-related decline in physical activity. J Rehabil Med 2008, 40(1):9-14.
108. Voonpins LR, Ravelli AC, Dongelgams NC, Deurenborg P, Van Staveren WA: A physical activity questionnaire for the elderly. Medicine & Science in Sports & Exercise 1991, 23(8):974-979.
109. Washburn RA, Smith KW, Jette AM, Janney CA: The Physical Activity Scale for the Elderly (PASE): development and evaluation. J Clin Epidemiol 1993, 46(2):153-162.
110. Weaver TE, Narsavage GL, Gullfoyle MJ: The development and psychometric evaluation of the Pulmonary Functional Status Scale: an instrument to assess functional status in pulmonary disease. J Cardiopulm Rehabil 1998, 18(2):105-111.
111. Wigal JK, Creer TL, Kotles H: The COPD Self-Efficacy Scale. Chest 1991, 109(5):1193-1196.
112. Windisch W, Freidel K, Schuher B, Baumann H, Weibel M, Matthys H, Petermann F: The Severe Respiratory Insufficiency (SRI) Questionnaire: A specific measure of health-related quality of life in patients receiving home mechanical ventilation. J Clin Epidemiol 2003, 56(8):752-759.
113. Yoshihito I, Sannomiya H, Ono M: The Manchester Respiratory Activities of Daily Living questionnaire: development, reliability, validity, and responsiveness to pulmonary rehabilitation. J Am Geriatr Soc 2000, 48(11):196-1500.
114. Yoza Y, Aoyoshi K, Honda S, Tangauchi H, Senju H: Development of an activity of daily living scale for patients with COPD: the Activity of Daily Living Dyspnoea scale. Respir Med 2009, 103(3):429-435.
115. Toppoloski TD, LoGerfo J, Patrick DL, Williams B, Walwick J, Patrick MB: The Rapid Assessment of Physical Activity (RAPA) among older adults. Prev Chronic Dis 2006, 3(4):11.
116. Zaragoza J, Lugli-Rivero Z: Development and Validation of a Quality of Life Questionnaire for Patients with Chronic Respiratory Disease (CV-PERC): Preliminary Results. Construccion y validacion del instrumento Calidad de Vida en Pacientes con Enfermedades Respiratorias Cronicas (CV-PERC) Resultados preliminares 2009, 45(2):81.
117. Zhou YQ, Chen SY, Jiang LD, Guo CY, Shen ZY, Huang PX, Wang JY: Development and evaluation of the quality of life instrument in chronic liver disease patients with minimal hepatic encephalopathy. J Gastroenterol Hepatol 2009, 24(3):408-415.
Using functional status to assess treatment outcomes.

Prediction of the standard MMPI scale scores from 71 items: a mini-mult. J Consult Clin Psychol 1968, 32(3):319-325.

The reliability and validity of a new self-completed questionnaire (QUIK). Nippon Ronen Igakkai Zasshi - Japanese Journal of Geriatrics 1995, 32(2):96-100.

Construct validity of activities of daily living scale: a cue to distinguishing the disabling effects of COPD and congestive heart failure. Chest 2005, 127(3):839-843.

Spinal pain independence measure—a new scale for assessment of primary ADL dysfunction related to LBP. Disabil Rehabil 2001, 23(5):186-191.

The Chronic Pain Coping Inventory: development and preliminary validation. Pain 1999, 60(0):203-216.

The Functional Status Questionnaire: reliability and validity when used in primary care. J Gen Intern Med 1986, 1(3):143-149.

Koi I, Ohi G, Kobayashi Y, Ishizaki T, Hisata M, Kiuchi M: Using functional status to evaluate impact of hearing loss in older people. J Pain 2012, 25(1):85-866.

Katz JN, Wright EA, Baron JA, Losina E: Measuring perceived harmfulness of physical activities in patients with chronic low back pain: the Photograph Series of Daily Activities-short electronic version. J Pain 2007, 8(1):840-849.

Leidy NK: Using functional status to assess treatment outcomes. Chest 1994, 106(5):1645-1646.

Leidy NK: Functional status and the forward progress of menby-go-rounds: toward a coherent analytical framework. Nurs Res 1994, 43(4):196-202.

Leidy NK, Knebel AR: Clinical validation of the functional performance inventory in patients with chronic obstructive pulmonary disease. Respir Care 1999, 44(8):932.

Leidy NK, Schmier JK, Jones NK, Lloyd J, Rochiccio K: Evaluating symptoms in chronic obstructive pulmonary disease: validation of the Breathlessness, Cough and Sputum Scale. Respir Med 2003, 97:90-97.

Lennon S, Johnson L: The modified rivermead mobility index: validity and reliability. Disabil Rehabil 2000, 22(18):833-839.

Lenze EI, Munin MC, Quesar T, et al: The Pittsburgh Rehabilitation Participation Scale: validity and reliability of a clinician-rated measure of participation in acute rehabilitation. Arch Phys Med Rehabil 2004, 85(3):380-384.

Letts L, Scott S, Burtney J, Marshall L, McKeon M: The reliability and validity of the safety assessment of function and the environment for rehabilitation [SAFER tool]. British Journal of Occupational Therapy 1998, 61(3):127-132.

Leung AS, Chan KK, Sykes K, Chan KS: Reliability, validity, and responsiveness of a 2-min walk test to assess exercise capacity of COPD patients. Chest 2006, 130(1):119-125.

Levine S, Gillen M, Weiser P, Feiss G, Goldman M, Herson D: Inspiratory pressure generation: comparison of subjects with COPD and age-matched normals. J Appl Physiol 1988, 65(2):888-893.

Linzer M, Gold DT, Pontinen M, Divine GW, Felder A, Brooks WB: Recurrent syncope as a chronic disease: preliminary validation of a disease-specific measure of functional impairment. J Gen Intern Med 1994, 9(4):181-186.

Litman AJ, White E, Kristal AR, Patterson RE, Satia-Abouta J, Potter JD: Assessment of a one-page questionnaire on long-term recreational physical activity. Epidemiology 2004, 15(1):105-113.

Livingston G, Watkin V, Manela M, Roser R, Katona C: Quality of life in older people. Aging Ment Health 1998, 2(20):20-23.

Ljungquist T, Nguyen T, Jensen L, Harmon-Ringdahl K: Physical performance tests for people with spinal pain-sensitivity to change. Disabil Rehabil 2003, 25(15):855-866.

Lundin-Olsson L, Nyberg L, Gustafson Y: Attention, frailty, and falls: the effect of a manual task on basic mobility. J Am Geriatr Soc 1998, 46(8):758-761.

Macfarlane DI, Chou KL, Cheng YH, Chi I: Validity and normative data for thirty-second chair stand test in elderly community-dwelling Hong Kong Chinese. Am J Hum Biol 2006, 18(3):418-421.

Mackenzie CR, Charlson ME, DiGuisto D, Kelley K: A patient-specific measure of change in maximal function. Arch Intern Med 1986, 146(7):1235-1239.

Maeda A, Yuasa T, Nakamura K, Higuchi S, Motohashi Y: The reliability and validity of a new self-evaluation of life function (self) scale: a short, comprehensive self-report of health for elderly adults. J Gerontol 1984, 39(5):603-612.

Mahurin RK, DeBettignies BH, Pirozzolo FJ: Structured assessment of independent living skills: preliminary report of a performance measure of functional abilities in dementia. J Gerontol 1991, 46(2):P58-P66.

Magnussen LP, Strand EL, Lygren H: Reliability and validity of the back performance scale: observing activity limitation in patients with back pain. Spine 2004, 29(8):903-907.

Mahoney RI, Barthel DW, Shih Surya: Professor Occupational Therapy and Neurology, Visiting Professor Neurorehabilitation, University of Tennessee Health Science Center, 930 Madison, Suite 601, Memphis, TN 38163, 1987, 1:1.
Health psychology: official journal of the Division of Health Psychology, American Psychological Association 1992, 11(6):386-395.

256. Marks GB, Dunn SM, Woolcock AJ: A scale for the measurement of quality of life in adults with asthma. J Clin Epidemiol 1992, 45(5):611-672.

257. Marquis P: Evaluation de l'impact de l'arthropathie obliterante des membres inférieurs sur la qualité de vie. Drugs 1998, 56(9):25-35.

258. Marquis P, Fayol C, McCarthy C, Fiesinger JH: Measurement of quality of life in intermittent claudication. Clinical validation of a questionnaire. Presse Med 1983; 1994, 23(28):1288-1292.

259. Martin LL: Validity and reliability of a quality-of-life instrument: the chronic respiratory disease questionnaire. Clin Nurs Res 1994, 30(2):146-156.

260. Martinez FJ, Raczek AE, Seifer FD, Williams et al: Validity and reliability of the Daily Activities Questionnaire: A functional assessment for people with Alzheimer's disease. Pneumologie (Stuttgart, Germany) 1992, 81(4):35-40.

261. McCabe MA, Johnson AL, Kay DW: The description of activities of daily living in five centres in England and Wales. Medical Research Council Cognitive Function and Ageing Study. Age & Ageing 1998, 27(5):605-613.

262. McGee MA, Granger CV: Cognitive Function and Ageing Study. Age & Ageing 1998, 27(3):120-122.

263. McGee MA, Johnson AL, Kay DW: The description of activities of daily living in five centres in England and Wales. Medical Research Council Cognitive Function and Ageing Study. Age & Ageing 1998, 27(5):605-613.

264. Medinas-Amoros M, Alorda C, Renom F, et al: Quality of life in patients with chronic obstructive pulmonary disease: the predictive validity of the BODE index. Chron Respir Dis 2008, 5(1):11-17.

265. Mendoza HE, Connolly DM, Overend TJ, Petrella RJ: Validity of values for metabolic equivalents of task during submaximal all-extremity exercise and reliability of exercise responses in frail older adults. Phys Ther 2008, 88(6):747-756.

266. Mezzani A, Corra U, Baratto C, Bosimini E, Giannuzzi P: Habitual activities and peak aerobic capacity in patients with asymptomatic and symptomatic left ventricular dysfunction. Chest 2000, 117(5):1291-1299.

267. Metcalf T, Jackson E, Currey S, Delbevis R, Callahan JP: Psychometric properties of the Centers for Disease Control and Prevention Health-Related Quality of Life (CDQ HRQOL) items in adults with arthritis. Health Qual Life Outcomes 2004, 666.

268. Michay L, Itzche R, Triby A, et al: Balance and perceived confidence with performance of instrumental activities of daily living: a pilot study of Tai Chi inspired exercise with elderly retirement-community dwellers. Physiotherapy & Occupational Therapy in Geriatrics 2002, 25(1):75-85.

269. Mjm-de Jong N, Schouten EG, van Staveren WA, Kok FJ: Content validity of a pediatric functional assessment. Clin Nurs Res 2003, 3(2):146-156.

270. Mizutani H, Inoue H, Tani S, et al: The stripper scale: a new method for assessing quality of life in patients with severe COPD. COPD. Journal of Chronic Obstructive Pulmonary Disease 2008, 5(2):85-95.

271. McCabe MA, Granger CV: Content validity of a pediatric functional independence measure. Appl Nurs Research: ANR 2000, 3(3):120-122.

272. Moore R, Berlowitz D, Denehy L, Jackson B, McDonald CF: The Development and Initial Validation of a Self-Scored COPD Population Screen-ee Questionnaire (COPD-PS). COPD: Journal of Chronic Obstructive Pulmonary Disease 2008, 5(2):85-95.

273. Morgan K, Clarke D: Benefit of endurance training in elderly people over a short period is reversible. Eur J Appl Physiol 2000, 81(4):329-336.

274. Motohashi Y, Maeda A, Yuasa T, Higuchi S: Study on objective functional capacity and chronic conditions. The Daily Activities Questionnaire: A functional assessment for people with Alzheimer’s disease. Presse medicale (Paris, France: 1983) 2008, 35(2):161-165.

275. Murray M, Lefort S, Ribeiro Y: The SF-36: reliable and valid for the institutionalized elderly? Aging Ment Health 1998, 2(1):24-27.

276. Nagamatsu T, Oida Y, Kitabatake Y, et al: A 6-year cohort study on relationship between functional fitness and impairment of ADL in community-dwelling older persons. J Epidemiol 2003, 13(3):142-148.

277. Nagakasch M, Tanaka K: Development of a 12-min treadmill walk test at a self-selected pace for the evaluation of cardiorespiratory fitness in adult men. Appl Hum Sci 1998, 17(6):281-288.

278. Nakazato K, Shimokawa Y, Narka C, Honjo Y: Development of behavior rating scale for the elderly. Nippon Ronen Igakkai Zasshi - Japanese Journal of Geriatrics 1991, 28(6):790-800.

279. Nguyen HQ, Steele B, Bennett JO: Use of accelerometers to characterize physical activity patterns with COPD exacerbations. International Journal of COPD 2006, 1(4):455-460.

280. Nielsen WR, Jensen MF, Hill ML: An activity pacing scale for the chronic pain coping inventory: development in a sample of patients with fibromyalgia syndrome. Pain 2001, 89(2-3):111-115.

281. Nieves JW, Zion M, Pahor M, et al: Evaluation of continuous summary physical performance scores (CSPSS) in an elderly cohort. Aging Clin Exp Res 2005, 17(3):193-200.

282. Nikoalas T, Speich-Leibeli N, Bach M, Oster P, Schlierf G: Social aspects in diagnosis and therapy of very elderly patients Initial experiences with a newly-developed questionnaire within the scope of geriatric assessment. Z Gerontol 1994, 27(4):240-245.

283. Nociti G, Mouleic G, Desplan J, Prefaut C, Varray A: Daily functioning of dyspepsia, self-esteem and physical self in patients with moderate COPD before, during and after a first inpatient rehabilitation program. Disabil Rehabil 2007, 29(22):1671-1678.

284. Nieves JW, Zion M, Pahor M, et al: Evaluation of continuous summary physical performance scores (CSPSS) in an elderly cohort. Aging Clin Exp Res 2005, 17(3):193-200.

285. Oida Y, Kitabatake Y, Nishijima Y, et al: Effects of a 5-year exercise-centered health-promoting programme on mortality and ADL impairment in the elderly. Age Ageing 2003, 32(6):585-592.

286. Oikoki J, Toba K, Takahashi T, et al: Simple screening test for risk of falls in the elderly. Genitai Gerontol Int 2006, 6(4):223-227.

287. Oikoki J, Utsumiya S, Takahashi T: Health measurement using the ICF: test-retest reliability of ICF codes and qualifiers in geriatric care. Health Qual Life Outcomes 2005, 3:46.

288. Oliver R, Blathwayt J, Brackley C, Tamaki T: Development of the Safety Assessment of Function and the Environment for Rehabilitation (SAFER) tool. Canadian journal of occupational therapy.Revue canadienne d’ergothérapie 1993, 60(2):78-82.

289. Oliver S, Carpenter K, Demopoulou G: Validity and reliability of the Winchester Disability Rating Scale (Z): A comprehensive screening instrument for the elderly in the community. Gerontol Gerontol Int 2004, 10(4):319-324.

290. Orfila F, Ferrer M, Larraza R, Tebe C, Domingo-Salvany A, Alonso J: Gender differences in health-related quality of life among the elderly: the role of objective functional capacity and chronic conditions. Soc Sci Med 2006, 63(9):2367-2378.

291. Orsini N, Belluco R, Botta M, et al: Profile of physical activity behaviors among Swedish women aged 56-75 years. Scand J Med Sci Sports 2008, 18(1):95-101.

292. Oschutz H, Weisser B, Finck M, hurtmanns J, Schaller HJ: Development of a walking stage test (PWT) for the elderly. Z Gerontol Geriat 2003, 36(2):139-150.

293. Paer GS: Development and testing of an instrument to assess functional status in the elderly UNIVERSITY OF PENNSYLVANIA, 1994.

294. Pan AM, Stiell IG, Clement CM, Acheson J, Aaron SD: Feasibility of a structured 3-minute walk test as a clinical decision tool for patients presenting to the emergency department with acute dyspnoea. Emerg Med Austral 2009, 21(2):139-145.

295. Panagiotakos DB, Polystipioti A, Polychronopoulos E: Prevalence of type 2 diabetes and physical activity status in elderly men and women from Cyprus (The MEDIS Study). Asia Pac J Public Health 2007, 19(3):22-28.
300. Patel SA, Bentez RP, Silvka WA, Scurba FC. Activity monitoring and energy expenditure in COPD patients: a validation study. *COPD: Journal of Chronic Obstructive Pulmonary Disease* 2007, 4(2):107-112.

301. Patel SA, Scurba FC. Emerging concepts in outcome assessment for COPD clinical trials. *Semrin Resp Crit Care Med* 2005, 26(2):253-262.

302. Patrick JM, Johnson TM, Chiofolo RC. Differences in cardiopulmonary exercise test results by American Thoracic Society/ European Respiratory Society-Global Initiative for Chronic Obstructive Lung Disease stage categories and gender. *Chron Young Old* 2005, 43(3):301-310.

303. Pfeiffer E. The Chronic Illness Problem Inventory as a measure of dysfunction in chronic pain patients. *Pain* 1992, 49(1):71-75.

304. Provenier F, Jordaens L. Differences in differences in physical activity questionnaires in elderly women. *Journal of Gerontology Series A: Biological Sciences and Medical Sciences* 2000, 55(7):M378-M383.

305. Qin D, Allore HG, Fries JF, van Dijk EG, van den Bosch M, van Hilten J, et al. Differences in Physical Activity Scale for the Elderly (PASE): according to energy expenditure and effects of asthma on daily living and an investigation of possible influencing factors. *Clin Sci (Lond)* 1990, 79(1):17-21.

306. Polia K, Renuel C. Reliability and validity of the FIM for persons aged years and above from a multilevel continuing care retirement community. *Arch Phys Med Rehabil* 1996, 77(10):1056-1061.

307. Pols MA, Peeters PH, Kemper HC, Collette HJ. Repeatability and relative validity of two physical activity questionnaires in elderly women. *Medicine & Science in Sports & Exercise* 1996, 28B(1):1020-1025.

308. Pols MA, Peeters PH, Ocke MC, et al. Relative validity and repeatability of a new questionnaire on physical activity. *Prev Med* 1997, 26(1):37-43.

309. Provenor V. Development of an ADL oriented assessment-of-mobility scale suitable for use with elderly people with dementia. *Physiotherapy* 1990, 76(8):466-468.

310. Powell LE, Myers AM. The Activities-specific Balance Confidence (ABC) Scale. The journals of gerontology Series A: Biological sciences and medical sciences 1995, 50(1):28-34.

311. Pransky G, Feuerstein M, Himmelstein J, Katz JN, Vickers-Lahti M, Pransky G, Feuerstein M, Himmelstein J, Katz JN, Vickers-Lahti M. Measuring functional outcomes in work-related upper extremity disorders Development and validation of the Upper Extremity Function Scale. *J Occup Environ Med* 1997, 39(12):1195-1202.

312. Proctor KG, Grant PA, Gray H, Newton M, Granat MH. Measuring postural physical activity in people with chronic low back pain. *J Back Musculoskeletal Rehabil* 2008, 21(1):43-50.

313. Pfeiffer E, Johnson TM, Chiofolo RC. Differences in cardiopulmonary exercise test results by American Thoracic Society/ European Respiratory Society-Global Initiative for Chronic Obstructive Lung Disease stage categories and gender. *Chron Young Old* 2005, 43(3):301-310.

314. Patrick JM, Bassey EJ, Irving JM, Blecher A, Fentem PH. Differences in physical activity and effects of asthma on daily living and an investigation of possible influencing factors. *Clin Sci (Lond)* 1990, 79(1):17-21.

315. Provenor V. Development of an ADL oriented assessment-of-mobility scale suitable for use with elderly people with dementia. *Physiotherapy* 1990, 76(8):466-468.

316. Powell LE, Myers AM. The Activities-specific Balance Confidence (ABC) Scale. The journals of gerontology Series A: Biological sciences and medical sciences 1995, 50(1):28-34.

317. Pransky G, Feuerstein M, Himmelstein J, Katz JN, Vickers-Lahti M, Pransky G, Feuerstein M, Himmelstein J, Katz JN, Vickers-Lahti M. Measuring functional outcomes in work-related upper extremity disorders Development and validation of the Upper Extremity Function Scale. *J Occup Environ Med* 1997, 39(12):1195-1202.

318. Proctor KG, Grant PA, Gray H, Newton M, Granat MH. Measuring postural physical activity in people with chronic low back pain. *J Back Musculoskeletal Rehabil* 2008, 21(1):43-50.

319. Sallis JF, Haskell WL, Wood PD, et al. Physical activity assessment methodology in the Five-City Project. *Am J Epidemiol* 1985, 121(1):91-106.

320. Sayers SP, Guralnik JM, Newman AB, Brick JF, Fields RA. Concordance and discordance between two measures of lower extremity function: 400 meter self-paced walk and SPPB. *Aging Clin Exp Res* 2006, 18(2):100-106.

321. Schag CC, Heinrich RL, Ganz PA. Karnofsky performance status revisited: reliability, validity, and guidelines. *Journal of cancer oncology: official journal of the American Society of Clinical Oncology* 1994, 2(3):187-193.

322. Schuilk H. The Diagnosis and Treatment of Chronic Obstructive Pulmonary Disease. *Lung Disease stage categories and gender. *Chron Young Old* 2005, 43(3):301-310.

323. Schenkman M, Cutson TM, Kuchibhatla M, Scott B, Cress ME. Application of the Continuous Scale Physical Functional Performance Test to people with Parkinson disease. *Neurology* 2002, 62(3):130-138.

324. Schenkman M, Cutson TM, Kuchibhatla M, Scott B, Cress ME. Application of the Continuous Scale Physical Functional Performance Test to people with Parkinson disease. *Neurology* 2002, 62(3):130-138.

325. Schuilk H. The Diagnosis and Treatment of Chronic Obstructive Pulmonary Disease. *Lung Disease stage categories and gender. *Chron Young Old* 2005, 43(3):301-310.

326. Schuilk H. The Diagnosis and Treatment of Chronic Obstructive Pulmonary Disease. *Lung Disease stage categories and gender. *Chron Young Old* 2005, 43(3):301-310.

327. Schuilk H. The Diagnosis and Treatment of Chronic Obstructive Pulmonary Disease. *Lung Disease stage categories and gender. *Chron Young Old* 2005, 43(3):301-310.

328. Schuilk H. The Diagnosis and Treatment of Chronic Obstructive Pulmonary Disease. *Lung Disease stage categories and gender. *Chron Young Old* 2005, 43(3):301-310.

329. Schuilk H. The Diagnosis and Treatment of Chronic Obstructive Pulmonary Disease. *Lung Disease stage categories and gender. *Chron Young Old* 2005, 43(3):301-310.

330. Schuilk H. The Diagnosis and Treatment of Chronic Obstructive Pulmonary Disease. *Lung Disease stage categories and gender. *Chron Young Old* 2005, 43(3):301-310.

331. Schuilk H. The Diagnosis and Treatment of Chronic Obstructive Pulmonary Disease. *Lung Disease stage categories and gender. *Chron Young Old* 2005, 43(3):301-310.

332. Schuilk H. The Diagnosis and Treatment of Chronic Obstructive Pulmonary Disease. *Lung Disease stage categories and gender. *Chron Young Old* 2005, 43(3):301-310.

333. Schuilk H. The Diagnosis and Treatment of Chronic Obstructive Pulmonary Disease. *Lung Disease stage categories and gender. *Chron Young Old* 2005, 43(3):301-310.

334. Schuilk H. The Diagnosis and Treatment of Chronic Obstructive Pulmonary Disease. *Lung Disease stage categories and gender. *Chron Young Old* 2005, 43(3):301-310.

335. Schuilk H. The Diagnosis and Treatment of Chronic Obstructive Pulmonary Disease. *Lung Disease stage categories and gender. *Chron Young Old* 2005, 43(3):301-310.

336. Schuilk H. The Diagnosis and Treatment of Chronic Obstructive Pulmonary Disease. *Lung Disease stage categories and gender. *Chron Young Old* 2005, 43(3):301-310.

337. Schuilk H. The Diagnosis and Treatment of Chronic Obstructive Pulmonary Disease. *Lung Disease stage categories and gender. *Chron Young Old* 2005, 43(3):301-310.

338. Schuilk H. The Diagnosis and Treatment of Chronic Obstructive Pulmonary Disease. *Lung Disease stage categories and gender. *Chron Young Old* 2005, 43(3):301-310.

339. Schuilk H. The Diagnosis and Treatment of Chronic Obstructive Pulmonary Disease. *Lung Disease stage categories and gender. *Chron Young Old* 2005, 43(3):301-310.
