Review

Phenolic Composition and Antioxidant Activity of Plants Belonging to the Cephalaria (Caprifoliaceae) Genus

Małgorzata Chrzaszcz ¹, Barbara Krzemińska ¹, Rafał Celiński ² and Katarzyna Szewczyk ¹,*

¹ Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland; malgorzata.chrzaszcz329@gmail.com (M.C.); barbara.krzem@gmail.com (B.K.)
² Department of Cardiology, Independent Public Provincial Specialist Hospital in Chełm, 22-100 Chełm, Poland; rcelinski@top.pl
* Correspondence: k.szewczyk@umlub.pl; Tel.: +48-81448-7064

Abstract: The genus Cephalaria, belonging to the Caprifoliaceae family, is a rich source of interesting secondary metabolites, including mainly saponins which display a variety of biological activities, such as immunomodulatory, antimicrobial and hemolytic effects. Besides these compounds, flavonoids and phenolic acids were identified in Cephalaria species. Cephalaria is employed in traditional medicine e.g., to cure cardiac and lung diseases, rheumatism, and regulate menstruation. In this review we focus on the phenolic compound composition and antioxidative activity of Cephalaria species. The antioxidant effect can be explained by flavonoids present in all parts of these plants. However, future efforts should concentrate more on in vitro and in vivo studies and also on clinical trials in order to confirm the possibility of using these plants as natural antioxidants for the pharmacology, food or cosmetic industries.

Keywords: Cephalaria; Caprifoliaceae; polyphenols; antioxidant activity

1. Introduction

Phenolic compounds are plentiful and ubiquitous secondary metabolites of plants [1] of great interest due to the fact that they are capable of preventing many diseases due to their antioxidant potential [2]. It is worth underlining that a significant enhancement of interest in the antioxidant properties of plants traditionally used in folk medicine has been observed [3], including rare or native wild species on which literature data was lacking [4]. The current focus is toward antioxidants of natural origin, therefore the number of publications on the subject of the favorable effects on health of plant polyphenols has boosted significantly [5]. Perron and Brumaghim have reported that several publications on radical scavenging activity by polyphenols has been released, representing more than 700 papers from 1995 till 2009 alone [6].

Many experiments carried out by various methods have shown that most of the antioxidant potential of plants result from the redox properties of their phenolic constituents [2,3]. Many mechanisms of action of antioxidants have been observed. Phenolic compounds may do the following: inhibit the formation of free radicals, enhance cellular antioxidant defense mechanisms, impair the action of pro-oxidative enzymes, neutralize pro-oxidant ions and boost other antioxidants’ action [7].

Bioactive phenolic compounds come from natural sources and simultaneously they are effective towards scavenging free radicals, which makes them very promising candidates for applications in health care, processed foods, the cosmetic industry and as auxiliary medicine remedies [3]. Thus, in recent years, the importance of the antioxidant activities of phenolic compounds and their potential usage in numerous kinds of industries as natural antioxidant compounds has reached a new level. Polyphenols are present in the human diet and are widely used for medical and cosmetic purposes [8]. The use of natural polyphenols in cosmetics is justified and worthwhile due to their capability to ameliorate cutaneous
issues and applicability for antiaging purposes in cosmetics, as well as for nutraceutical applications. Natural polyphenols possess the potential to prevent premature ageing, decrease the occurrence of skin cancer, attenuate photoaging and protect skin against ultraviolet radiation [9]. Furthermore they have properties of depigmenting, impairing inflammation, healing wounds and mitigating skin irritation [7].

Phenolics have protective roles in many illnesses such as cancer, inflammation, cardiovascular and neurodegenerative diseases, which is recognized to be due to their potent antioxidant capacity. In addition to their antioxidant functions, polyphenols have many other biological activities, such as antihistamine, antiinflammatory, antiaging, antibacterial, antiviral, cardioprotective (increasing capillary resistance), hepatoprotective, anticancer (inducing apoptosis in cancer cells), anti diarrheal, neuroprotective properties (protecting neurological system), limiting weight gain, binding proteins such as caseins, inhibiting enzymes (telomerase α-amylase, pepsin, trypsin, and lipase), modulation of the immune system and promoting wound healing [1,6,10].

Taking the structure into consideration, the vast majority of polyphenols contain a tricyclic flavan ring system. Nevertheless, various structural differences are observed. Thus polyphenols encompass tremendous amounts of miscellaneous compounds, such as phenolic acids, flavonols, flavones, flavanols (catechins, epicatechins), flavanones, anthocyanidins, proanthocyanidins, isoflavones, flavanonols, stilbenes, coumarins, tannins, lignins, lignans, neolignans and antraquinones [6]. Flavonoids are the most plentiful, widely studied and also biologically active phytonutrients.

The qualitative and quantitative phenolic compound composition of plant extracts is determined by different factors, e.g., plant origin and habitat, plant development phase, seasonal variations and weather and climatic conditions. These secondary plant metabolites are produced in plants in response to various stresses, such as wounding, ultraviolet (UV) activity, infections, pollutants or ozone [7].

That having been said, this review was designed to comprehensively elucidate the relationship between the occurrence of phenolic compounds and antioxidant activity in Cephalaria Schrad. ex Roem. et Schult. species. The present study focuses on juxtaposing the species of this genus, in accordance with the obtained data.

The genus Cephalaria was previously placed in the Dipsacaceae Juss. family [11–13]. However, according to two latest versions of the system of the Angiosperm Phylogeny Group [14,15], the Dipsacaceae family belongs to the Caprifoliaceae Juss. s.l. According to new molecular phylogenetic and morphological research, Cephalaria is included in tribe Dipsaceae Rchb. of subfam. Dipsacoideae A. Eaton [13]. The genus encompasses approximately 95 species [16–18] that have been identified especially in the Mediterranean Basin and adjacent western Eurasia which are the major centers of biodiversity at a global level [19–22]. Several species occur also in Asia and eastern and southern Africa [13,23–25]. Plants belonging to the Cephalaria are annual, biennial or perennial herbs with glabrous or hairy stems and very variable leaves (most heterophyllous). Flowers are usually 4-partite, with a four angled, furrowed involucel, crowned with four angular hairy teeth, or with a membranous ± glabrous corona, entire, crenate or with four ± obtuse teeth [26].

Extracts from various species of Cephalaria have been used in traditional medicine for many years due to their antimicrobial, antifungal, cytotoxic, antioxidant, antidiabetic and hypothermic activities [27–31]. These plants are used in folk medicine to cure cardiac and lung diseases, rheumatism, and regulate menstruation [32,33]. Moreover, they are used in veterinary medicine and agriculture, as a wool dye and as an additive to bread [34,35]. Literature studies have shown that the Cephalaria species contain flavonoids [17,36,37], triterpenoid saponins [36,38–40], iridoids [36,37,40], alkaloids [37,41–43], lignans [37,44], fatty acids [45,46], that exhibit antioxidant, antimicrobial, cytotoxic, hemolytic, and immunomodulating activities [3,18,27,31,41,42].
2. Methodology of Evidence Acquisition

For a comprehensive literature overview, published phytochemical and antioxidant activity data were retrieved from the ISI® Web of Science, Scopus®, GoogleScholar®, SciFinder®, and Reaxys® databases. Entries were considered until the end of March 2021. Exact spelling of scientific botanical names, including the abbreviations for botanical authors was brought in line with standard usage as recommended by “The International Plant Names Index” [47] and “The Plant List” [48]. Relevant original articles and books, with an unlimited time range and regardless of language were included in the review. Exclusion criteria were duplicate publications and non-relevant articles.

3. Phenolic Compounds in the Cephalaria Species

The investigations of Cephalaria species have led to the isolation and identification phenolic acids and different types of flavonoids, represented mostly by flavanone, flavonols, flavones, and anthocyanins. Table 1 summarizes such phenolic compounds (including the common/systematic name of constituent, species name and parts of the plant) mentioned in the surveyed literature.

3.1. Flavonoids

Flavonoids belong to a class of low-molecular-weight phenolics that are widely distributed in the plant kingdom. They have different subgroups, which include chalcones, flavones, flavonols, flavanones, flavan-3-ols, isoflavones and anthocyanidins [49]. In plants, flavonoids are responsible e.g., for the colour of flowers, the growth and development of seedlings. They also protect plants from various biotic and abiotic stresses and act as unique UV filters, allopaphic compounds, and phytoalexins [49].

One of the first research on the occurrence of flavonoids in taxa of the Cephalaria genus dates from 1968, when Zemtsova and Bandyukova described the occurrence of quercetin 7-β-D-glucopyranoside (quercimeritrin) (6) in the aerial parts of Cephalaria balkharica E.A.Busch and in the flowers of C. gigantea (Ledeb.) Bobrov. Moreover, luteolin 7- β-D-glucopyranoside (cynaroside) (14) was isolated from the aerial parts of C. balkharica and C. gigantea [50].

Nine years later, the same authors reported that flowers and leaves of C. gigantea, and C. coriaceae (Willd.) Roem. & Schult. ex Steud. contained genkwanin 6-C-β-D-glucopyranoside (swertisin) (23). In this study they also noted the presence of 7-O-methyluteolin 6-C-β-D-glucopyranoside (swertiajaponin, 15) in the flowers and leaves of C. uralensis (Murray) Roem. & Schult. [51]. Furthermore, from the flowers of C. kotschyi Boiss. & Hohen. 6, 14, hyperoside (9) and kaempferol (1) were isolated [52].

From the 10% methanol extract from dried flowers of C. pastricensis Dörfl. & Hayek (from the Serbian-Bosnian border) 14 (15 mg) and luteolin 7-O-arabino(1 → 6)glucoside (17, 20 mg) were isolated [36].

Luteolin (13), quercetin (5), 6, 14, and a new flavonol bioside, namely gigantoside A (quercetin-7-O-[α-L-arabinopyranosyl(1→6)]-β-D-glucopyranoside) (8) were isolated from the flowers of C. gigantea (Republic of Azerbaijan) [53]. These authors found also that the flowers of C. grossheimii Bobrov (a synonym of C. kotschyi) contained 6, 14, apigenin (12), and hyperoside (9) [54]. Moreover, from the inflorescences of C. prosera Fisch. et Avé-Lall. collected in Azerbaijan, Movsumov and co-authors extracted and identified compounds 5, 6, 8, 12, 13, and 14 [55].
Table 1. The overview on the phenolic compounds identified in the *Cephalaria* genus.

Constituent Name	Species	Part of Plant	References
1. Kaempferol	C. kotschyi	aerial parts	Aliev and Movsumov, 1981 [52]
	C. anatolica		
	C. aristata		
	C. aytachii Göktürk & Sümbül		
	C. balansae Raus		
	C. davisiana Göktürk & Sümbül		
	C. elazigensis var. *purpurea*		
	C. elmaliensis Hub.-Mor. & V.A.Matthews		
	C. isaurica V.A.Matthews		
	C. lycica V.A.Matthews		
	C. papilagonica Bobrov		
	C. procera		
	C. scoparia Contandr. & Quézel		
	C. speciosa Boiss. & Kotschy		
	C. stellilpis Boiss.		
	C. sumbuliana Göktürk		
	C. taurica Szabó		
	C. tuteliana Kus & Göktürk		
	C. anatolica		
	C. aristata		
	C. balansae		
	C. davisiana		
	C. elazigensis var. *purpurea*		
	C. elmaliensis		
	C. lycica		
	C. papilagonica		
	C. procera		
	C. speciosa		
	C. stellilpis		
	C. sumbuliana		
	C. taurica		
	C. anatolica		
	C. balansae		
2. Astragalin	*C. paphilagonica*	aerial parts	Sarikahya et al., 2019 [56]
	C. procera		
	C. speciosa		
	C. stellilpis		
	C. sumbuliana		
	C. taurica		
	C. anatolica		
	C. balansae		
	C. davisiana		
	C. elazigensis var. *purpurea*		
	C. elmaliensis		
	C. lycica		
	C. papilagonica		
	C. procera		
	C. speciosa		
	C. stellilpis		
	C. sumbuliana		
	C. taurica		
3. Nicotiflorin	*C. paphilagonica*	aerial parts	Sarikahya et al., 2019 [56]
	C. speciosa		
	C. stellilpis		
	C. taurica		
	C. isaurica		
	C. lycica		
	C. scoparia		
	C. speciosa		
	C. stellilpis		
	C. taurica		
	C. tchibatchewii		
	C. tuteliana		
	C. balkharica		
	C. kotschyi		
4. Tiliroside	*C. elmaliensis*	aerial parts	Sarikahya and Kirmizigül, 2012a [57]
	C. gigantea	flowers	Movsumov et al., 2006 [53]
	C. procera	inflorescences	Movsumov et al., 2013 [55]
	C. anatolica		
	C. aristata		
	C. balansae		
	C. davisiana		
	C. elazigensis var. *purpurea*		
	C. isaurica		
5. Quercetin	*C. lycica*	aerial parts	Sarikahya et al., 2019 [56]
	C. scoparia		
	C. speciosa		
	C. stellilpis		
	C. taurica		
	C. tchibatchewii		
	C. tuteliana		
	C. balkharica		
	C. kotschyi		
6. Quercimeritrin	*C. gigantea*	flowers	Zemtsova and Bandyukova, 1968 [50]
	C. procera	inflorescences	Movsumov et al., 2013 [55]
	C. grosheimii	flowers	Movsumov et al., 2009 [54]
	C. procera		
Table 1. Cont.

Constituent Name	Species	Part of Plant	References
7. Rutin	C. gazipashensis	aerial parts	Sarikahya and Kirmuzgül, 2012 [31]
	C. scoparia	aerial parts	Sarikahya et al., 2015 [58]
	C. anatolica	aerial parts	Sarikahya et al., 2019 [56]
	C. aristata	aerial parts	Sarikahya et al., 2019 [56]
	C. davisiana	aerial parts	Sarikahya et al., 2019 [56]
	C. elmaliensis	flowers	Movsumov et al., 2006 [53]
	C. lycica	flowers	Movsumov et al., 2013 [55]
	C. anatolica	flowers	Movsumov et al., 2016 [54]
	C. aristata	flowers	Movsumov et al., 2019 [32]
	C. aytachii	flowers	Movsumov et al., 2020 [54]
	C. balansae	flowers	Movsumov et al., 2020 [54]
	C. davisiana	flowers	Movsumov et al., 2020 [54]
8. Gigantoside A	C. gigantea	flowers	Movsumov et al., 2006 [53]
	C. prosera	flowers	Movsumov et al., 2013 [55]
	C. kotschyi	flowers	Movsumov et al., 2016 [54]
	C. grossheimii	flowers	Movsumov et al., 2019 [32]
	C. anatolica	flowers	Movsumov et al., 2020 [54]
	C. aytachii	flowers	Movsumov et al., 2020 [54]
	C. balansae	flowers	Movsumov et al., 2020 [54]
	C. davisiana	flowers	Movsumov et al., 2020 [54]
9. Hyperoside	C. elmaliensis	flowers	Sarikahya et al., 2019 [56]
	C. isaurica	flowers	Sarikahya et al., 2019 [56]
	C. lycica	flowers	Sarikahya et al., 2019 [56]
	C. paphlagonica	flowers	Sarikahya et al., 2019 [56]
	C. prosera	flowers	Sarikahya et al., 2019 [56]
	C. scoparia	flowers	Sarikahya et al., 2019 [56]
	C. spectosa	flowers	Sarikahya et al., 2019 [56]
	C. stellipilis	flowers	Sarikahya et al., 2019 [56]
	C. sumbuliana	flowers	Sarikahya et al., 2019 [56]
	C. taurica	flowers	Sarikahya et al., 2019 [56]
	C. tchihatchewii	flowers	Sarikahya et al., 2019 [56]
	C. tuteliana	flowers	Sarikahya et al., 2019 [56]
	C. uralensis	flowers	Sarikahya et al., 2019 [56]
	C. lycica	flowers	Sarikahya et al., 2019 [56]
10. Guiaverin	C. paphlagonica	aerial parts	Sarikahya et al., 2019 [56]
	C. sumbuliana	aerial parts	Sarikahya et al., 2019 [56]
11. Quercitrin	C. gigantea	roots	Tabatadze et al., 2017 [42]
	C. prosera	inflorescences	Tabatadze et al., 2020 [59]
	C. grossheimii	flowers	Movsumov et al., 2013 [55]
	C. anatolica	flowers	Movsumov et al., 2009 [54]
	C. aristata	flowers	Movsumov et al., 2020 [54]
	C. aytachii	flowers	Movsumov et al., 2020 [54]
	C. davisiana	flowers	Movsumov et al., 2020 [54]
12. Apigenin	C. davisiana	aerial parts	Sarikahya et al., 2019 [56]
	C. scoparia	aerial parts	Sarikahya et al., 2019 [56]
	C. tchihatchewii	aerial parts	Sarikahya et al., 2019 [56]
	C. gigantea	aerial parts	Sarikahya et al., 2019 [56]
	C. prosera	aerial parts	Sarikahya et al., 2019 [56]
	C. anatolica	aerial parts	Sarikahya et al., 2019 [56]
	C. aristata	aerial parts	Sarikahya et al., 2019 [56]
	C. aytachii	aerial parts	Sarikahya et al., 2019 [56]
	C. davisiana	aerial parts	Sarikahya et al., 2019 [56]
13. Luteolin	C. elmaliensis	aerial parts	Sarikahya et al., 2019 [56]
	C. lycica	aerial parts	Sarikahya et al., 2019 [56]
	C. scoparia	aerial parts	Sarikahya et al., 2019 [56]
	C. sumbuliana	aerial parts	Sarikahya et al., 2019 [56]
	C. taurica	aerial parts	Sarikahya et al., 2019 [56]
	C. tchihatchewii	aerial parts	Sarikahya et al., 2019 [56]
	C. tuteliana	aerial parts	Sarikahya et al., 2019 [56]
Constituent Name	Species	Part of Plant	References
------------------	---------	---------------	------------
14. Cynaroside	C. balkharica	aerial parts	Zemtsova and Bandyukova, 1968 [50]
	C. gigantea	aerial parts	Zemtsova and Bandyukova, 1968 [50]
	C. kotschyi	flowers	Aliev and Movsumov, 1981 [52]
	C. pastricensis	flowers	Godjevac et al., 2004 [36]
	C. gigantea	flowers	Movsumov et al., 2006 [53]
	C. grossheimii	flowers	Movsumov et al., 2009 [54]
	C. prosera	inflorescences	Movsumov et al., 2013 [55]
	C. elmaleiense	aerial parts	Sarikahya et al., 2012a [57]
	C. anatolica		
	C. aristata		
	C. aytachii		
	C. baalasae		
	C. davisiense		
15. Swertiajaponin	C. elazigensis var. purpurea	aerial parts	Sarikahya et al., 2019 [56]
	C. elmaleiense		
	C. isaurica		
	C. lycica		
	C. paphegonica		
	C. prosera		
	C. scopenisa		
	C. speciosa		
	C. stellipilis		
	C. sumbuliana		
	C. taurica		
	C. tchibatchewi		
	C. tuteliana		
16. Luteolin-7-O-rutinoside	C. uraleense	flowers	Zemtsova and Bandyukova, 1977 [51]
	C. isaurica	aerial parts	Kayce and Kirmizigul, 2010 [37]
	C. elmaleiense	aerial parts	Sarikahya et al., 2015 [58]
	C. scopenisa	aerial parts	Sarikahya et al., 2015 [58]
	C. gigantea	aerial parts	Chrzaszczy et al., 2020 [27]
	C. anatolica		
	C. aristata		
	C. elmaleiense		
	C. isaurica		
	C. lycica		
	C. paphegonica		
17. Luteolin 7-O-arabinof(1→6)glucoside	C. pastricensis	flowers	Godjevac et al., 2004 [36]
	C. davisiense		
	C. scopenisa		
	C. taurica		
	C. tchibatchewi		
	C. tuteliana		
18. Diosmetin	C. pastricensis	flowers	Godjevac et al., 2004 [36]
	C. davisiense		
	C. scopenisa		
	C. taurica		
	C. tchibatchewi		
	C. tuteliana		

Constituent Name	Species	Part of Plant	References
19. Nepetin	C. anatolica	aerial parts	Sarikahya et al., 2019 [56]
	C. aristata	aerial parts	Sarikahya et al., 2019 [56]
	C. aytachii	aerial parts	Sarikahya et al., 2019 [56]
	C. balansae	aerial parts	Sarikahya et al., 2019 [56]
	C. davisiana	aerial parts	Sarikahya et al., 2019 [56]
	C. elazigensis var. purpurea	aerial parts	Sarikahya et al., 2019 [56]
	C. elazigensis	aerial parts	Sarikahya et al., 2019 [56]
	C. isaurica	aerial parts	Kayce and Kırmızıgül, 2010 [37]
	C. uralensis	aerial parts	Chrząszcz et al., 2020 [27]
20. Isoorientin	C. gigantea	aerial parts	Sarikahya et al., 2011 [43]
21. Isovitexin	C. uralensis	aerial parts	Chrząszcz et al., 2020 [27]
22. Isovitexin O-hexoside	C. gigantea	aerial parts	Chrząszcz et al., 2020 [27]
23. Swertisin	C. coriaceae	flowers	Zemtsova and Bandyukova, 1977 [51]
	C. gigantea	leaves	Zemtsova and Bandyukova, 1977 [51]
24. Acacetin	C. taurica	aerial parts	Sarikahya et al., 2019 [56]
	C. anatolica	aerial parts	Sarikahya et al., 2019 [56]
	C. aristata	aerial parts	Sarikahya et al., 2019 [56]
	C. aytachii	aerial parts	Sarikahya et al., 2019 [56]
	C. davisiana	aerial parts	Sarikahya et al., 2019 [56]
	C. isaurica	aerial parts	Sarikahya et al., 2019 [56]
	C. lycica	aerial parts	Sarikahya et al., 2019 [56]
	C. paphlagonica	aerial parts	Sarikahya et al., 2019 [56]
25. Hesperidin	C. scoparia	aerial parts	Sarikahya et al., 2019 [56]
	C. spectosa	aerial parts	Sarikahya et al., 2019 [56]
	C. sumbuliana	aerial parts	Sarikahya et al., 2019 [56]
	C. laurica	aerial parts	Sarikahya et al., 2019 [56]
	C. tchibatchewii	aerial parts	Sarikahya et al., 2019 [56]
26. Genistein	C. davisiana	aerial parts	Sarikahya et al., 2019 [56]
27. Penduletin	C. scoparia	aerial parts	Sarikahya et al., 2019 [56]
	C. taurica	aerial parts	Sarikahya et al., 2019 [56]
	C. anatolica	aerial parts	Sarikahya et al., 2019 [56]
	C. aristata	aerial parts	Sarikahya et al., 2019 [56]
	C. balansae	aerial parts	Sarikahya et al., 2019 [56]
	C. davisiana	aerial parts	Sarikahya et al., 2019 [56]
28. Cyanidin-3-O-glucoside	C. elazigensis var. purpurea	aerial parts	Sarikahya et al., 2019 [56]
	C. elazigensis var. elazigensis	aerial parts	Sarikahya et al., 2019 [56]
Constituent Name	Species	Part of Plant	References
------------------	---------	--------------	------------
29. Pelargonidin chloride	C. aristata, C. davisiana, C. speciosa, C. syriaca, C. ambrosioides	aerial parts	Sarikahya et al., 2019 [56]
30. Chlorogenic acid	C. gigantea, C. uralsensis	aerial parts	Chrząszcz et al., 2020 [27]
31. Cryptochlorogenic acid	C. uralsensis	aerial parts	Chrząszcz et al., 2020 [27]
32. Neochlorogenic acid	C. uralsensis	aerial parts	Chrząszcz et al., 2020 [27]
33. 3,5-O-dicaffeoylquinic acid	C. ambrosioides, C. gigantea, C. uralsensis	roots, aerial parts	Pasi et al., 2002 [60]
34. 4,5-O-dicaffeoylquinic acid	C. gigantea, C. uralsensis	aerial parts, flowers	Chrząszcz et al., 2020 [27]
35. 3,4-di-O-caffeoylquinic acid	C. ambrosioides, C. gigantea, C. uralsensis, C. anatolica, C. aristata, C. aytachii, C. balansae, C. davisianna	aerial parts, flowers	Chrząszcz et al., 2020 [27]
36. Caffeic acid	C. elazigensis var. purpurea, C. elazigensis var. elazigensis, C. eluaniensis, C. isaurica, C. lycias, C. paphlagonica, C. scoparia, C. speciosa, C. stellipilis, C. sumbuliana, C. taurica, C. ichibatchewi, C. tuteliana	aerial parts	Sarikahya et al., 2019 [56]
37. Ferulic acid	C. uralsensis	aerial parts	Chrząszcz et al., 2020 [27]
38. Gallic acid	C. uralsensis	aerial parts	Chrząszcz et al., 2020 [27]
39. p-Hydroxybenzoic acid	C. syriaca	seeds	Ali et al., 2012 [17]
40. trans-4-OH-Cinnamic acid	C. aristata, C. davisianna	aerial parts	Sarikahya et al., 2019 [56]
41. Sinapic acid	C. syriaca	seeds	Ali et al., 2012 [17]
42. Syringic acid	C. syriaca	seeds, shoots	Ali et al., 2012 [17]
43. Vanillic acid	C. syriaca	seeds, shoots	Ali et al., 2012 [17]
Kayne and Kürmizigül [37] isolated two flavone C-glycosides, svertiajaponin (15, 194.0 mg) from *C. isaurica* V.A. Matthews and isoorietin (20, 23.7 mg) from the butanol extract of the aerial parts of *C. stellipilis*. Isoorientin (20) was also isolated from the aerial parts of *C. scoparia* (57.4 mg obtained from 36.0 g of n-BuOH extract) and *C. stellipilis* (23.7 mg obtained from 34.3 g of n-BuOH extract) [43].

A flavone glycoside, rutin (7), was identified in the aerial parts of *C. gazipashensis* Stümbl collected from Antalya Province (Turkey) [31] and in the aerial parts of *C. anatolica* Shkhiyan, C. aristata K. Koch, *C. davisiana*, *C. elmalıensis* Hub.-Mor. & V.A. Matthews, and *C. lycica* [56]. This compound was also isolated from the *C. scoparia* acetone extract (3.1 mg) [58]. From the aerial parts of *C. elmalıensis* cynaroside (14, 2.4 mg) [58] and tiliroside (kaempferol 3-O-β-D-(6′′-O-(E)-p-coumaryl)glucopyranoside, 4) were isolated [57]. Quercitrin was identified in the ethyl acetate and aqueous fractions from the roots of *C. gigantea* [42,59].

Twenty five flavonoids were measured simultaneously in the aerial parts of nineteen *Cephalaria* species [56]. The authors found that the main flavonoids in the studied plants were 5 (0.05–5.47 mg/g), 9 (0.01–7.65 mg/g), 13 (0.01–4.45 mg/g), 14 (0.02–4.91 mg/g), hesperidin (25, 0.11–29.79 mg/g), cyanidin-3-O-glucoside (28, 0.07–20.59 mg/g), and astragalin (kaempferol-3-O-glucoside, 2, 0.16–9.27 mg/g). The other flavonoids identified in this study were 1 (0.01–0.44 mg/g), 7 (0.13–0.60 mg/g), 12 (0.01–1.33 mg/g), nicotiflorin (kaempferol-3-O-rutinoside, 3, 0.19–1.06 mg/g), guaiерin (quercetin-3-O-arabinoside, 10, 0.11–0.72 mg/g), luteolin-7-O-rutinoside (16, 0.03–0.61 mg/g), diosmetin (luteolin 4′-methyl ether, 18, 0.01–0.28 mg/g), nepetin (6-methoxyluteolin, 19, 0.01–1.26 mg/g), acacetin (5,7-dihydroxy-4′-methoxyflavone, 24, 0.02 mg/g), genistein (4′,5,7-trihydroxyisoflavone, 26, 0.18 mg/g), penduletin (4′,5-dihydroxy 3,6,7-trimethoxyflavone, 27, 0.01 mg/g), pelargonidin chloride (29, 0.06–0.65 mg/g). Moreover, the highest flavonoid content was found in the aerial parts of *C. tchihatchewii* Boiss. (from 0.08 to 29.79 mg/g). The extract of *C. davisiana* contained secondly high level of flavonoids (from 0.02 to 14.78 mg/g). Besides that, the most abundant flavonoids—25 (29.79 mg/g) and 28 (20.59 mg/g) were detected in *C. tchihatchewii* among all studied species.

In the latest study from 2020, Chrząszcz et al., reported that the aerial parts of *C. uralensis* contained 9 (0.86 µg/g of dry extract), 20 (41.71–65.18 µg/g of dry extract) and 21 (1.87–4.67 µg/g of dry extract), and the flowers—15 (7.91–40.19 µg/g of dry extract), 20 (48.50–51.72 µg/g of dry extract) and 21 (4.20 µg/g of dry extract). Moreover, in the aerial parts of *C. gigantea* 15 (80.45–115.10 µg/g of dry extract), 20 (79.15–108.42 µg/g of dry extract) and 22 (2.15–2.98 µg/g of dry extract) were identified using LC-DAD-MS/MS method [27].

3.2. Phenolic Acids

Phenolic acids are a large group of phenolic compounds in plants, that include two groups—hydroxybenzoic (C₆-C₁ structures; e.g., gallic, p-hydroxybenzoic, protocatechuic, syringic) and hydroxycinnamic (C₆-C₃ structures; e.g., caffeic, ferulic, sinapic) acid derivatives with various number and position of methoxylation and hydroxylation in aromatic ring. In plants, these compounds exist in their free and bound forms, and more often bound forms occur as their glycosides and esters [59]. Phenolic acids have a crucial for plants growth and reproduction, and they are produced as a response to environmental factors (e.g., light) and to defend injured plants [61]. What is more, they are reported to have a wide spectrum of pharmacological activities including antioxidant [62], antibacterial [63], anti-inflammatory [64], and anticarcinogenic [59] activities.

To date, there are only a few reports regarding the occurrence of phenolic acids of the *Cephalaria* genus. The most frequently identified phenolic acid is caffeic acid (36), which was found in the roots of *C. gigantea* [42,59], aerial parts (0.84–1.27 µg/g of dry extract) and flowers (0.79–0.91 µg/g of dry extract) of *C. uralensis* [18] and in the aerial parts of eighteen species (0.01–4.27 mg/g) collected in the Anatolia area (Turkey) [46].

...
In the aerial parts of C. gigantea chlorogenic acid (30, 101.79–135.83 µg/g of dry extract), cryptochlorogenic acid (31, 16.02–20.80 µg/g of dry extract), neochlorogenic acid (32, 5.13–9.35 µg/g of dry extract), 3,5-O-dicaffeoylquinic acid (33, 73.53–118.90 µg/g of dry extract) and 4,5-O-dicaffeoylquinic acid (34, 11.57–13.43 µg/g of dry extract) were detected [27], and in the roots of this species 30 and 36 was identified [42,59]. Moreover, the authors found that higher concentration of phenolics (phenolic acids and flavonoids) was contained in the ethyl acetate fraction from the roots of C. gigantea than in the aqueous fraction [42,59].

Chrzaszczy et al. [27] identified in the aerial parts and flowers of C. unalensis 30 (114.90–132.18 and 94.90–98.75 µg/g of dry extract, respectively), 31 (1.68–4.01 and 7.45 µg/g of dry extract, respectively), 32 (3.87–8.75 and 3.42–8.54 µg/g of dry extract, respectively), 33 (58.35–70.26 and 41.29–48.30 µg/g of dry extract, respectively), and 34 (8.07–17.81 and 7.18–7.65 µg/g of dry extract, respectively). The TR/g dry extract, respectively. It seems that antioxidant activity of these species resulted from synergistic effect of ALA and phytol. The extracts exhibited a high antioxidative activity for the cupric (II) reducing antioxidant capacity, were 0.334, 0.252, 0.136 and 0.120 mmol TR/g dry extract.

Three hydroxycinnamic esters—30, 3,4-di-O-cafeoylquinic acid (35) and 33—were isolated from the roots of C. ambrosioides collected in Athens (Greece). All these compounds were identified using spectral data [60].

3.3. Antioxidant Activity

Most of the antioxidant potential in plants is caused by the redox properties of phenolic compounds that make it possible for them to act as hydrogen donors, reducing agents, and singlet oxygen quenchers. Their antioxidant activity is a result of different mechanisms such as free radicals scavenging, metal ion chelation, reduction, oxidase inhibition, as cofactors of enzymes catalyzing oxidative reactions, free radical stabilization and radical chain reaction termination [62,65,66].

The antiradical activity of the flavonoids isolated from the flowers of C. pastricensis was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. It was found that cynaroside (14) and luteolin 7-O-arabino(1 → 6)glucoside (17) in different concentrations (5–80 µM) possess significant antiradical activity with EC50 = 41.3 µM and 41.4 µM, respectively [36].

The antioxidant activity of compounds isolated from the aerial parts of C. isaurica, C. paphlagonica, C. scoparia, and C. stellipilis was evaluated using the DPPH radical scavenging and CUPric Ion Reducing Antioxidant Capacity (CUPRAC) methods. The authors found that isoorientin was the most effective antioxidant compound in both the DPPH and CUPRAC (6.683 ± 0.636 mmol TRg⁻¹) assays, with a value comparable to Trolox and ascorbic acid used as the positive controls [43]. Isoorientin is well known antioxidant and its structure-activity relationship is well documented [43,67].

Kirmizigül et al., evaluated n-hexane extracts of C. davisiana, C. elagizensis, C. paphlagonica and C. stellipilis from different regions of Turkey, using the CUPRAC assay, for the cupric (II) reducing antioxidant capacity, were 0.334, 0.252, 0.136 and 0.120 mmol TR/g dry extract, respectively. It seems that antioxidant activity of these species resulted from synergistic effect of ALA and phytol. The extracts exhibited a high antioxidative activity of 0.334–0.120 mmol TR/g dry extract. C. davisiana was the most effective cupric (II) reducer [68].

Sarıkahya and co-authors tested also the hexane extracts of ten Cephalalaria species (C. anatolica, C. arista, C. ayachtii, C. elagizensis var. elagizensis, C. hirsuta Staf, C. laurea, C. tuteliana, C. procrea, C. speciosa, C. tchihatchewii) for their antioxidant capacity using the DPPH radical scavenging and CUPRAC methods. The DPPH tests revealed that hexane extracts of C. tchihatchewii, C. hirsuta, C. anatolica, C. elagizensis var. elagizensis and C. speciosa have significant radical scavenging activity, with the IC50 values of 3.77 ± 0.67, 5.13 ± 1.04, 5.20 ± 0.92, 5.28 ± 0.46 and 6.17 ± 3.13 mg/mL, respectively. The highest
TEAC value (1.005 mmol ± 0.13 TE/g extract) they found for C. aristate and its reducing power was related to phenolic content (2.91 ± 0.15 mg GAE/g extract). The authors concluded that DPPH scavenging potential of Cephalaria extracts may be attributed to their phenolic compounds, that could donate electrons to DPPH. Because in the CUPRAC method, the reactive -OH groups of phenolic antioxidants are oxidized to the corresponding quinones and Cu(II)-bis(neocuproine) is reduced to the chelate, Cu(I)-bis(neocuproine), the correlation between CUPRAC values and phenolic contents of C. tchihatchewii, C. aristata and C. speciosa in this study is consistent with the above phenomenon [45].

Mbhele et al., evaluated various extracts (acetic acid, ethanol, methanol, hydroethanol and water) of the leaves and roots of C. gigantea by means of three different assays, including the DPPH radical test, 2,2′-azinobis[3-ethylbenzthiazoline]-6-sulfonic acid (ABTS**) decolorization test, and the ability to reduce FeCl₃ solution. Water extract from the leaves and roots possessed the lowest IC₅₀ (0.6 and 2.8 μg/mL, respectively) in the DPPH assay. Hydroethanolic extract from the leaves had the lowest IC₅₀ for both ABTS radical scavenging (1.0 μg/mL) and reducing activity (1.7 μg/mL). The water and hydroethanolic extracts of both leaves and roots of C. gigantea contained the highest amounts of phenolics and flavonoids and this suggest that these compounds could be responsible for their strong antioxidant activity [28].

The antioxidant activity of a C. jopponsis aqueous, ethanolic and ethyl acetate extracts were evaluated in vitro (phosphomolybdenum method) [38]. The studied extracts showed antioxidant activity ranging from 20.7 to 41.1 mg of ascorbic acid/g dry extract. Furthermore, Rahimi and co-authors [69] studied the effect of various fertilizers on the antioxidant activity of C. syriaca and they concluded that the antioxidant capacity (DPPH assay) of the studied samples was ranging from 47.10–60.16%.

Kavak and Baştürk [34] analyzed the antioxidant activity of the seeds of C. syriaca collected from different areas in Turkey. They found that studied extracts possessed DPPH inhibition activity ranging from 18.8 to 67.3%. Moreover, the ABTS results (TEAC values) were demonstrated values from 9.8 to 41.8 mmol Trolox eq/g DW.

The antioxidant activity of the oil extracted from the seeds of C. syriaca was evaluated by Atalan et al. [70]. The authors found that in the DPPH• test, plant extracts did not have a high activity. The highest value was observed at 70 μL/mL concentration and it was 9.27 μL/mL while the percent of DPPH inhibition by ascorbic acid (used as a standard substance) was 83.75 μL/mL.

The antioxidant effect of C. gigantea and C. uralensis extracts were evaluated in vitro using DPPH•, ABTS•⁺ and metal chelating assays. The higher DPPH• scavenging activity was found for the aerial parts of C. uralensis (IC₅₀ = 2.86 ± 0.12 mg/mL). The extract from the flowers of C. uralensis demonstrated the highest scavenging free radical effect in the ABTS•⁺ (IC₅₀ = 0.45 ± 0.21 mg/mL). The extracts from the aerial parts of C. uralensis were also the most active ones interfering with the formation of iron and ferrozine complexes, that suggest their high chelating capacity [27]. The main compounds identified in these extracts were chlorogenic acid (30), isoorientin (20) and swertiajaponin (15), the compounds which are well-known natural antioxidants showing strong effects in different tests [71].

3.4. Conclusions and Research Gaps/Future Investigations

This review summarizes the phenolics contain and antioxidant activity of species of the Cephalaria genus. According to literature information, only 29 species of the genus have been studied so far, and the available data are still fragmentary and insufficient. Moreover, the state of knowledge of Cephalaria species contains some gaps, which require more investigation.

So far, in the Cephalaria species, only 43 compounds belonging to the phenolic acids and flavonoids classes have been identified. Kaempferol, luteolin and quercetin and its derivatives have been the major constituents found in the investigated species. What is more, most of phenolic compounds they were detected using old, not very precise
methods. Thus, it would be advisable to reexamine *Cephalaria* species for the presence of these compounds using modern analytical methods.

It seems to be interesting to combine these results with those of a chemotaxonomic study to see if there is any correlation between chemical profile and molecular and/or morphological features.

All the abovementioned findings suggest that an obvious gap in our knowledge about the *Cephalaria* genus also concerns their antioxidant activity. The research carried out so far has shown that these plants have a strong antioxidant potential. Thus, a focused investigation of the other species, and compounds isolated might be helpful to identify possible uses of these plants in the pharmacology, food or cosmetic industries.

Author Contributions: Conceptualization, K.S. and M.C.; writing—original draft preparation, K.S., M.C., B.K., R.C.; writing—review and editing, K.S.; supervision, K.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Ministry of Science and Higher Education in Poland DS45 project of Medical University of Lublin.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: MDPI Research Data Policies.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. *Nutr. Rev.* **1998**, *56*, 317–333. [CrossRef]
2. Heima, K.E.; Tagliaferroa, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. *J. Nutr. Biochem.* **2002**, *13*, 572–584. [CrossRef]
3. Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. *Food Chem.* **2006**, *99*, 191–203. [CrossRef]
4. Perrino, E.V.; Valerio, F.; Gannouchi, A.; Trani, A.; Mezzapesa, G. Ecological and plant community implication on essential oils composition in useful wild official species: A pilot case study in Apulia (Italy). *Plants* **2021**, *10*, 574. [CrossRef]
5. Katalinic, V.; Milos, M.; Kulisic, T.; Jukic, M. Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. *Food Chem.* **2006**, *94*, 550–557. [CrossRef]
6. Perron, N.R.; Brumaghim, J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. *Cell Biochem. Biophys.* **2009**, *53*, 75–100. [CrossRef] [PubMed]
7. Soto, M.L.; Falqué, E.; Domínguez, H. Relevance of natural phenolics from grape and derivative products in the formulation of cosmetics. *Cosmetics* **2015**, *2*, 259–276. [CrossRef]
8. Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. *Front. Nutr.* **2018**, *5*, 87. [CrossRef]
9. De Lima Cherubim, D.J.; Buzanello Martins, C.V.; Oliveira Fariña, L.; da Silva de Lucca, R.A. Polyphenols as natural antioxidants in cosmetics applications. *J. Cosmet. Dermatol.* **2020**, *19*, 33–37. [CrossRef]
10. Munin, A.; Edwards-Lévy, F. Encapsulation of Natural Polyphenolic Compounds; A Review. *Pharmaceutics* **2011**, *3*, 793–829. [CrossRef]
11. Reveal, J.L. An outline of a classification scheme for extant flowering plants. *Phytoneuron* **2012**, *37*, 1–221.
12. Takhtajan, A. *Flowering Plants*, 2nd ed.; Springer: Cham, Switzerland, 2009; pp. 462–463. [CrossRef]
13. Tsimbalyuk, Z.M.; Celenk, S.; Mosyakin, S.L.; Nitsenko, L.M. Pollen morphology of some species of the genus *Cephalaria* Schrad. (Caprifoliaceae) and its significance for taxonomy. *Microsc. Res. Tech.* **2021**, *84*, 682–694. [CrossRef] [PubMed]
14. THE ANGIOSPERM PHYLOGENY GROUP—APG III. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. *Bot. J. Linn. Soc.* **2009**, *161*, 105–121. [CrossRef]
15. THE ANGIOSPERM PHYLOGENY GROUP—APG IV. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. *Bot. J. Linn. Soc.* **2016**, *181*, 1–20. [CrossRef]
16. Çapanlar, S.; Krmzgül, S. Structural elucidations and spectral assignments of two novel triterpene glycosides from *Cephalaria paphalagonica*. *Nat. Prod. Res.* **2010**, *24*, 1337–1346. [CrossRef] [PubMed]
17. Ali, K.A.; Sakri, F.Q.; Li, Q.X. Isolation and purification of allelochemicals from *Cephalaria syriaca* plant. *Int. J. Biosci.* **2012**, *2*, 90–103.
18. Kayco, P.; Sarikaya, N.B.; Pekmez, M.; Arda, N.; Kirmizigül, S. The structure and cytotoxic activity of a new saponin: Cephoside A from *Cephalaria elazigensis* var. *purpurea*. *Turk. J. Chem.* **2017**, *41*, 345–353. [CrossRef]
19. Wagenbommer, R.P.; Medaghi, P.; Turco, A.; Perrino, E.V. IUCN Red List Evaluation of the Orchidaceae endemic to Apulia Region (Italy) and considerations on the application of the IUCN protocol to rare species. *Nat. Conserv. Res.* 2020, 5, 90–101. [CrossRef]

20. Perrino, E.V.; Tomaselli, V.; Costa, R.; Pavone, P. Conservation status of habitats (Directive 92/43 EEC) of coastal and low hill belts in a mediterranean biodiversity hot spot (Gargano—Italy). *Biosystems* 2013, 147, 1006–1028. [CrossRef]

21. Cowling, R.M.; Rundel, P.W.; Lamont, B.B.; Arroyo, M.K.; Arianoutsou, M. Plant diversity in mediterranean climate regions. *Trends Ecol. Evolut.* 1996, 11, 352–360. [CrossRef]

22. Verlaque, R. Étude biosystématique et phytogénétique des Dipsacaceae. II. Caractères généraux des Dipsacaceae. *Revue Cytologie Biologie Végétale Botanique* 1985, 8, 117–168.

23. Backlund, A.; Donoghue, M.J. Morphology and phylogeny of the order Dipsacales. *Phylogeny Dipsacales* 1996, 4, 1–55.

24. Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Valentine, D.H. *Flora Europaea: Plantaginaceae to Compositae (and Rubiaceae)*; Cambridge University Press: Cambridge, UK, 1976; Volume 4, pp. 57–58.

25. Manning, J.C.; Goldblatt, P.; Johns, A. A taxonomic review of *Cephalaria* (Dipsacaceae) in the Cape Floristic Region. *S. Afr. J. Bot.* 2014, 94, 195–203. [CrossRef]

26. The Plants of the World Online. The Royal Botanic Gardens, Kew. Available online: http://www.plantsoftheworldonline.org/taxon/urn:isbn:ipni.org:names:331477-2 (accessed on 10 April 2021).

27. Chrzaszcz, M.; Miazga-Karska, M.; Klimek, K.; Granica, S.; Tch Miazga-Karska, M.; Klimek, K.; Granica, S.; Tch

28. Mustafayeva, K.; Di Giorgio, C.; Elias, R.; Kerimov, Y.; Ollivier, E.; De M

29. Chrz ˛ aszcz, M.; Miazga-Karska, M.; Klimek, K.; Granica, S.; Tch

30. Pasi, S.; Aligiannis, N.; Pratsinis, H.; Skaltsounis, A.L.; Chinou, I.B. Biologically active triterpenoids from *Cephalaria uralensis* (Murray) Roem. & Schult. and *Cephalaria gigantea* (Lede.) Bobrov as potential agents for treatment of acne vulgaris: Chemical characterization and endrobiological evaluation. *Antioxidants* 2020, 9, 796. [CrossRef]

31. Sarıkahya, N.B.; Kırmızıgül, S. Novel biologically active glycosides from the aerial parts of *Cephalaria gazipashensis*. *Turk. J. Chem.* 2012, 36, 323–334. [CrossRef]

32. Başar, Ş.; Karaoglu, M.M.; Boz, H. The effects of *Cephalaria syriaca* flour on the quality of sunn pest (Eurygaster integriceps)-damaged wheat. *J. Food Qual.* 2016, 39, 13–24. [CrossRef]

33. Gunes, F.; Ozhatay, N. An ethnobotanical study from Kars (Eastern) Turkey. *Biol. Divers. Conserv.* 2011, 4, 30–41.

34. Kavak, C.; Ba¸ stürk, A. Antioxidant activity, volatile compounds and fatty acid compositions of *Cephalaria syriaca* and their antiradical activity. *Eur. Chem. Bull.* 2018, 7, 156–161. [CrossRef]

35. Sumner, G.; Sarıkahya, N.B.; Kirmızıgül, S. Phytochemical and biological investigations on *Cephalaria anatolica*. *Rec. Nat. Prod.* 2017, 11, 497–507. [CrossRef]

36. Godjévac, D.; Vajs, V.; Menković, N.; Tešević, V.; Janačković, P.; Milosavljević, S. Flavonoids from flowers of *Cephalaria pastricensis* and their antiradical activity. *J. Serb. Chem. Soc.* 2004, 69, 883–886. [CrossRef]

37. Kayce, P.; Kirmızıgül, S. Chemical constituents of two endemic *Cephalaria* species. *Rec. Nat. Prod.* 2010, 4, 141–148.

38. Azab, A. Total phenolic content, antioxidant capacity and antifungal activity of extracts of *Cephalaria taurica* seed oil. *J. Am. Oil Chem. Soc.* 2010, 87, 323–329. [CrossRef]

39. Kayce, P.; Sarıkahya, N.B.; Kirmızıgül, S. Two novel saponins from *Cephalaria davisiana* (Dipsacaceae). *Phytochem. Lett.* 2014, 10, 324–329. [CrossRef]

40. Ozer, O.; Sarıkahya, N.B.; Nalbantsoy, A.; Kirmızıgül, S. Increased cytotoxic potential of infrequent triterpenoid saponins of *Cephalaria taurica* obtained through alkaline hydrolysis. *Phytochemistry* 2018, 152, 29–35. [CrossRef] [PubMed]

41. Kayce, P.; Kirmızıgül, S. Isolation and identification of a new saponin from *Cephalaria aytachii*. *Nat. Prod. Res.* 2017, 31, 50–57. [CrossRef]

42. Tabatadze, N.; Tabidze, B.; Getia, M.; Mshvidadze, V.; Pichette, A.; Dekanosidze, G.; Kemertelidze, E. HPLC analysis of an anticonvulsant fraction from the roots of *Cephalaria gigantea*. *Bull. Georg. Natl. Acad. Sci.* 2017, 11, 118–122.

43. Sarıkahya, N.B.; Pekmez, M.; Arda, N.; Kayce, P.; Yavaolu, N.Ü.K.; Kirmızıgül, S. Isolation and characterization of biologically active glycosides from endemic *Cephalaria* species in Anatolia. *Phytochem. Lett.* 2011, 4, 415–420. [CrossRef]

44. Yazıcıoğlu, T.; Karama, A.; Gökçen, J. *Cephalaria syriaca* seed oil. *J. Am. Oil Chem. Soc.* 1978, 55, 412–415. [CrossRef] [PubMed]

45. Sarıkahya, N.B.; Ucar, E.O.; Kayce, P.; Suleyman Gokturk, R.; Sumbul, H.; Arda, N.; Kirmızıgül, S. Fatty acid composition and antioxidant potential of ten *Cephalaria* species. *Rec. Nat. Prod.* 2015, 9, 116–123.

46. IPNI. International Plant Names Index. The Royal Botanic Gardens, Kew, Harvard University Herbaria & Libraries and Australian National Botanic Gardens. 2021. Available online: http://www.ipni.org (accessed on 9 October 2020).

47. The Plant List (2013). Version 1.1. Available online: http://www.thelplantlist.org/ (accessed on 8 October 2020).

48. Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. *J. Nutr. Sci.* 2015, 6, e47. [CrossRef] [PubMed]

49. Zemtsova, G.N.; Bandyukova, V.A. Quercimeritin and luteolin 7-glucoside in some species of Dipsacaceae. *Chem. Nat. Compd.* 1968, 4, 211. [CrossRef]

50. Zemtsova, G.N.; Bandyukova, V.A. C-glycosides of species of Dipsacaceae. *Chem. Nat. Compd.* 1977, 13, 589. [CrossRef]
51. Aliev, A.M.; Movsumov, I.S. The chemical composition and pharmacological properties of Dipsacaceae species. *Rastit. Resur.* 1981, 17, 602.

52. Movsumov, I.S.; Garayev, E.A.; Isayev, M.I. Flavonoids from *Cephalaria gigantea* flowers. *Chem. Nat. Compl.* 2006, 42, 677–680. [CrossRef]

53. Movsumov, I.S.; Garayev, E.A.; Isayev, M.I. Flavonoids from *Cephalaria grossheimii*. *Chem. Nat. Compl.* 2009, 45, 422–423. [CrossRef]

54. Movsumov, I.S.; Yusifov, J.Y.; Garayev, E.A. The flavonoids of inflorescences in *Cephalaria procera* growing in Azerbaijan. *Rastit. Resur.* 2013, 49, 103–107.

55. Sarıkahya, N.B.; Goren, A.C.; Kirmizigül, S. Simultaneous determination of several flavonoids and phenolic compounds in nineteen different *Cephalaria* species by HPLC-MS/MS. *J. Pharm. Biomed. Anal.* 2019, 173, 120–125. [CrossRef]

56. Sarıkahya, N.B.; Kirmızigül, S. Antimicrobially active hederagenin glycosides from *Cephalaria dunalensis*. *Planta Med.* 2012, 78, 828–833. [CrossRef]

57. Sarıkahya, N.B.; Kayce, P.; Tabanca, N.; Estep, A.S.; Becnel, J.J.; Khan, I.A.; Kirmizigula, S. Toxicity of *Cephalaria* species and their individual constituents against *Aedes aegypti*. *Nat. Prod. Commun.* 2015, 7, 1195–1198. [CrossRef]

58. Tabatadze, N.; Tsomaia, I.; Chikovani, A.; Gigoshvili, K.; Popovic-Djordjevic, J. The influence of chemical, organic and biological fertilizers on agrobiological and antioxidant properties of Syrian *Cephalaria* species grown in Turkey. *Rec. Nat. Prod.* 2016; pp. 61–104. [CrossRef] [PubMed]

59. Pasi, S.; Alijanius, N.; Skaltsounis, A.L.; Chinou, I.B. A new lignan glycoside and other constituents from *Cephalaria ambrosioides*. *Nat. Prod. Lett.* 2002, 16, 365–370. [CrossRef] [PubMed]

60. Valentine, I.K.; Maria, V.K.; Bruno, B. Phenolic cycle in plants and environment. *J. Mol. Cell. Biol.* 2003, 2, 13–18.

61. Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure–antioxidant activity relationships of flavonoids and phenolic acids. *Free Radic. Biol. Med.* 1996, 20, 933–956. [CrossRef]

62. Sanchez-Maldonado, A.F.; Schieber, A.; Gänzle, M.G. Structure–function relationships of the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. *J. Appl. Microbiol.* 2011, 111, 1176–1184. [CrossRef]

63. Garcia-Lafuente, A.; Moro, C.; Manchón, N.; Gonzalo-Ruiz, A.; Villares, A.; Guillamon, E.; Mateo-Vivaracho, L. In vitro anti-inflammatory activity of phenolic rich extracts from white and red common beans. *Food Chem.* 2014, 161, 216–223. [CrossRef] [PubMed]

64. Szewczyk, K.; Grzywa-Celińska, A. Antioxidant and cytotoxic activities of phenolic acids and their role in the anticancer therapies. In *Phenolic Acids: Food Sources and Health Effects*, 1st ed.; Flores, A., Ed.; Nova Publishers: New York, NY, USA; 2016; pp. 61–104.

65. Cheel, J.; Theoduloz, C.; Rodriguez, J.; Schmeda-Hirschmann, G. Free radical scavengers and antioxidants from lemongrass (*Cymbopogon citratus*) with a focus on damiana—*Turnera diffusa*. *J. Ethnopharmacol.* 2014, 152, 424–443. [CrossRef]

66. Cheel, J.; Theoduloz, C.; Rodriguez, J.; Schmeda-Hirschmann, G. Free radical scavengers and antioxidants from lemongrass (*Cymbopogon citratus* (DC.) Stapf.). *J. Agric. Food Chem.* 2005, 53, 2511–2517. [CrossRef] [PubMed]

67. Kirmizigül, S.; Sarıkahya, N.B.; Şimbiül, H.; Göktürk, R.S.; Yavasoglu, N.Ü.K.; Pekmez, M.; Arda, N. Fatty acid profile and biological data of four endemic *Cephalaria* species growing in Turkey. *Rec. Nat. Prod.* 2012, 6, 151–155. [CrossRef]

68. Rahimi, A.; Moghaddam, S.S.; Ghiasi, M.; Heydarzadeh, S.; Ghazizadeh, K.; Popović-Djordjević, J. The influence of chemical, organic and biological fertilizers on agrobiological and antioxidant properties of Syrian *Cephalaria* (*Cephalaria syriaca* L.). *Agriculture* 2019, 9, 122. [CrossRef]

69. Campos, J.; Schmeda-Hirschmann, G.; Leiva, E.; Guzmán, L.; Orrego, R.; Fernández, P.; González, M.; Radojkovic, C.; Zuñiga, F.A.; Lamperti, L.; et al. Lemon grass (*Cymbopogon citratus* (D.C.) Stapf) polyphenols protect human umbilical vein endothelial cell (HUVECs) from oxidative damage induced by high glucose, hydrogen peroxide and oxidized low-density lipoprotein. *Food Chem.* 2014, 151, 175–181. [CrossRef] [PubMed]