Molecular Identification of Xa4 Resistance Gene to
Xanthomonas oryzae pv. *oryzae* in Cultivated Rice in
Northwest Benin

G. Djedatin a*, C. Nanoukon a, A. Missihoun b, M. Lomou a, P. Sedah a
and C. Agbangla b

a Laboratoire de Biologie Moléculaire et de Bioinformatique Appliquée à la Génomique (BIOGENOM),
ENSBBA de Dassa-Zoumé, Université Nationale des Sciences, Technologies, Ingénierie et
Mathématiques (UNSTIM), Abomey, Benin.

b Département de Génétique et des Biotechnologies, Faculté des Sciences et Techniques (FAST),
Université d’Abomey-Calavi, 01BP 526, Cotonou, Benin.

Authors’ contributions

This work was carried out in collaboration among all authors. Author GD designed the study,
performed analysis, wrote the protocol and wrote the first draft of the manuscript. Authors CN and AM
managed the analyses of the study. Authors ML, PS and CN managed the literature searches, the
laboratory work. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/ARJA/2022/v15i430162

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer
review comments, different versions of the manuscript, comments of the editors, etc are available here:
https://www.sdiarticle5.com/review-history/84750

Received 20 January 2022
Accepted 30 March 2022
Published 19 May 2022

ABSTRACT

Aims: The aim of this study was to identify the cultivated rice varieties that were resistant to
Xanthomonas oryzae pv. *oryzae* (*Xoo*) by molecular screening. *Xanthomonas oryzae* pv. *oryzae*
(*Xoo*) was the causal agent of bacterial blight, in the department of Atacora in Benin.

Place and Duration of Study: Laboratory of Molecular Biology and Bioinformatics Applied to
Genomics, between July 2021 and November 2021.

Methodology: Thirty-two rice accessions were collected in the department of Atacora and the
IRBB4 isogenic line carrying Xa4 resistance gene, as a positive control, were screened using SSR
marker. Genomic DNA was extracted from plants leaves. PCR using a pair of MP12 primers linked
to the Xa4 gene were performed and amplified products were analyzed by electrophoresis in a 2%
agarose gel.
Results: Our results showed that a significant number of rice varieties grown in northern Benin were resistant to Xoo. 62.5% were resistant of which 70% were local varieties. Some of these resistant varieties (35%) were heterozygous (Xa4/Xa4) and others were homozygous (Xa4/Xa4). 10% had specific genotypes other than those expected, which showed the probability of existence new resistance alleles that need to be characterized.

Conclusion: This is the first time that a bacterial blight resistance gene has been identified in Beninese rice cultivation. This result will be very useful to rice breeders for developing elites resistant varieties through markers assisted selection programs.

Keywords: Rice; Bénin Xanthomonas oryzae pv oryzae; bacterial blight; Xa4 resistance gene.

1. INTRODUCTION

Rice is a cereal crop and one of the most important food in the world. With a production of 755,473 million tons and a yield of 4661.8 kg/ha in 2019 [1], rice becomes the staple food of about 60% of the world’s population. According to the most recent FAO forecast, global rice consumption is expected to reach 69 million tons by 2029 [1]. In Africa, because of its significant contribution to food security, as well as for its important source of income for the poorest populations, rice is an essential component of sustainable development [2]. Its total consumption in Africa sub-Saharan should increase from 20 to 48 million tons in 2050 assuming an increase of 1.5% per year [3]. In Benin, statistics revealed that rice production is constantly increasing and increased to 406,000 tons of paddy rice in 2019 [1]. Therefore, it is urgent to ensure food security while satisfying the growing demand for rice by the world’s population (which is constantly increasing to reach 9.7 billion by 2050). Efforts are being made by many governments and agricultural research structures to boost rice production. However, rice production is limited by many biotic and abiotic constraints. One of the major problems remains the impact of pathogens on rice plant. Among the biotic constraints are bacterial diseases such as bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) causing huge crop losses of up to 50% [4-7] and the degree of yield loss was affected by the stage of BB infection [8]. In West Africa, the incidence of the disease ranged from 70-85% with a yield loss of 50-90%, indicating wide spread of bacterial wilt in farmers' fields [6]. In Benin, Xoo was first described in 2013 on wild related species Oryza longistaminata [9]. So far, none study has been done to cheek the incidence of this disease in cultivated rice. Since the use of resistant varieties, carrying resistance genes, is the only highly effective and environmentally friendly way to control this disease [10,11], we have undertaken the identification of rice resistant varieties in Benin.

To date, approximately 45 genes and QTLs conferring resistance to bacterial blight in rice have been identified using various rice sources globally [12,13]. However, only eleven of these R genes, exhibiting multiple mechanisms of R-gene-mediated Xoo resistance, have been cloned and functionally analyzed [14-24]. Xa4, one of the resistance genes with a broad spectrum of action against Xoo, is the most widely exploited in many rice breeding programs and it confers durable resistance in many commercial rice cultivars [25]. Furthermore, Xa4 is associated with shorter stature, a beneficial agronomic trait that helps prevent lodging. The simultaneous improvement of multiple agronomic traits conferred by Xa4 may account for its widespread and lasting utilization in rice breeding programs globally [26]. However, none information is available on these Xoo resistance genes in rice varieties grown in Benin. Therefore, this study aimed to identify the cultivated rice varieties, carrying Xa4 gene that are resistant to Xanthomonas oryzae pv. oryzae (Xoo) by molecular screening in the department of Atacora in Benin. Identification of Xoo resistance genes is a prerequisite for the development of suitable local varieties.

2. MATERIALS AND METHODS

2.1 Plant Material

The biological material consisted of IRBB4, the near isogenic line carrying Xa4 resistance gene used as positive control and 32 samples of paddy rice collected from 7 municipalities in the department of Atacora in Benin (Fig. 1). These samples were listed in the Table 1.

2.2 Methods

2.2.1 Sampling of young rice leaves for genomic DNA extraction

Paddy rice grains from all collected accessions were grown in germination pots under a greenhouse, a controlled environment that
Fig. 1. Distribution area of collected rice samples

Table. List of collected accessions per villages and per municipalities of Atacora

Municipalities	Villages or localities	Accession Codes	Number of samples per municipality
Cobly	Nanagade	Nana29, Nana30, Nana32	3
Touncoutouna	Tchakalakou	Tchaka33, Tchaka34, Tchaka36, Tchaka38, Tchaka39, Tchaka41	6
Natitingou	Koudengou	Koud42, Koud43, Koud44, Koud45, Koud46	5
Boukoumbe	Koumadogou	Koum47, Koum49, Koum50, Koum51, Koum53, Koum54, Koum55	7
Material	Kankini-Seri	Kan58, Kan59, Kan60, Kan61	4
Wassa Pehonco	Koungarou	Koung65, Koung67, Koung68	3
Tangueta	Kochessi	Kotch70, Kotch71, Kotch72, Kotch73	4
promotes growth. Watering was done as needed for 10 to 15 days. The youngest leaves at the seedling stage (21 days) were removed using scissors then they were wrapped in aluminum foil on which the references of the pot (the name and code of the sample and the date of collection) are marked (Fig. 2). These samples were kept cool in a cooler containing ice. Upon arrival at the laboratory, they were kept in a fridge at 4°C [27].

2.2.2 Extraction of total genomic DNA

Total genomic DNA was extracted according to [28] using MATAB (Mixed Alkyl Trimethyl Ammonium Bromide) and which was modified by [29]. 0.2 g of young leaves were weighed and then ground in porcelain mortars with 2 ml of Tris HCl EDTA Sorbitol (TES). Then, the ground material was transferred to a new 2 ml eppendorf tube and then centrifuged at 10,000 rpm for 10 minutes, at 4°C. The supernatant was drained and 750µL of 4% MATAB buffer was added to the pellet. The whole is homogenized and incubated at 65°C for 1h in a water bath (and homogenized after each 10 min) in order to facilitate the lysis of the cell membranes. After this incubation period, the tubes were removed and then left to cool, after which 750 µl of the Chloroform Isoamyl Alcohol (CIA) buffer in the proportions 24:1 were added. After homogenization by inversion for 10 min, centrifugation was performed at 10,000 rpm for 15 min at 4°C. The aqueous solution was carefully removed so that the pellet was not damaged or lost. The pellet was then washed with 70% ethanol followed by centrifugation at 10,000 rpm for 10 min; this is repeated three times successively in order to properly purify the DNA pellet. The tubes were opened and left to dry on blotting paper for the right time (overnight). Finally, a suspension of the dried DNA pellet was made by adding 100 µL of ultrapure sterile water and then the latter is stored at -20°C.

2.2.3 Verification of the quality of total genomic DNA by electrophoresis

This check was made by electrophoresis on a 1% agarose gel (1 g of agarose powder dissolved in 100mL of TBE (diluted 0.5 times, pH 8.5). Indeed, a mixture of 3 µL of extract of Total DNA and 8µL of 2X loading blue was migrated at 100V for 30 min in Tris Bromate EDTA buffer (TBE). After migration, the gel was put in ethidium bromide (0.1% BET) solution for 15 min then rinsed with distilled water for five min. Then, the gel was visualized on a UV trans-illuminator. Finally, dilution of the DNA was carried out and stored at 4°C for subsequent tests of DNA.

2.2.4 PCR amplification

The target sequence of Xa4 resistance gene was amplified using primers selected on the basis of a bibliographic study. Details of primers, sequences (‘sense’ and ‘antisense’), chromosomal location, and references are given in Table 2. IRBB4 control DNA was also amplified using these primers.
Table 2. Sequences of primers used for PCR amplification

Gene	Located on the chromosome	Marker	Marker type	Sequence of primers (5’-3’)	Resistance allele (pb)	Susceptible allele	Reference
Xa4	11	MP12	STS	ATCGATCGATCTTCACGAGG	150	120	[30]

The reaction mixture brought to a volume of 20 μl was used for the PCR amplification. It consists of: 2.5 μl of PCR Buffer; 0.75 μl of dNTP; 0.5 μM of MgCl₂; 2.5 μM of each primer, 0.1 μM of Taq polymerase; 3 μl of 25 ng/μl DNA and 8.15 μl of ultrapure distilled water.

Table 3. Summary table on the state of individuals in relation to the Xa4 gene after electrophoresis

Samples code	Local name	Type of Variety	Xa4 gene
Tchaka 33	Bakilaferma	LV	1
Nana 30	IR841	IV	0
Tchaka 34	Kpantcho téro	LV	1
Koum 47	IR841	IV	1
Koud 44	Timonwonti (Gambiaka rouge)	LV	0
Kan 60	Moï Nihoun	LV	1
Kotch 70	Moï Poga	LV	1
Tchaka 36	Nérica	LV	1
Koum 55	Yamaboba	LV	1
Koum 54	Su Itaré Kpika	LV	Ø
Kotch 71	Moï Touanga	LV	0
Kan 61	Moï Lague	LV	0
Koung 65	Takamorri	LV	1
Koud 46	IR841	IV	0
Koud 43	Pointinini	LV	0
Koung 68	Moï Lopiro	LV	1
Koung 67	Darou Morri	LV	Ø
Tchaka 38	Inaris	LV	1
Koud 42	Nérica L 19	IV	0
Kan 59	Moï Lague	LV	0
Samples code	Local name	Type of Variety	Xa4 gene
--------------	-----------------------------------	-----------------	----------
Koum 53	IR 841	IV	1
Kotch 73	Moï Nihoun	LV	1
Koum 49	Béris 21 (Toukounchèti)	IV	1
Koum 50	Tomonsoti	LV	1
Koum 51	Gambiaka	LV	1
Kotch 72	Unknown	Unknown	1
Nana 29	Common Kounkounga	LV	1
Koud 45	Nérica L20	IV	1
Tchaka 39	Bakikrouma	LV	1
Tchaka 41	IR 841	IV	1
Nana 32	Gambiaka	LV	0
Kan 58	Moï Poua	LV	1
Positive control	IRBB4	IV	1

IV = Improved variety; LV = Local variety; 0 = absence of Xa4; 1 = Presence of Xa4; ☐: no band
The amplification was carried out in a thermocycler according to the following program: pre-denaturation at 94°C for 5 min followed by 35 cycles consisted of a denaturation at 94°C for 1 min; a hybridization at 55°C for 1 min an elongation at 72°C for 2 min and a final extension at 72°C for 5 min and this with 35 cycles.

2.2.5 PCR products revelation

The amplicons and a molecular weight marker of 100 bp were subjected to 2.5 % agarose gel electrophoresis carried out in a solution of TBE (diluted 0.5 times) at 150 V for 45 min. The gel was put in 0.1 % BET for 15 min then rinsed with distilled water for 5 minutes. Then, the gel was visualized on a UV trans-illuminator.

2.2.6 Data analysis

A comparison between the bands of the different amplicons and that of the positive control IRBB4 was made. The data was noted using "1" and "0" which mean respectively presence and absence of the target gene. The Excel 2019 workbook was used to make graphs to better analyze data.

3. RESULTS AND DISCUSSION

The STS marker used in this study was polymorphic (Figs. 3; 4 and 5). Indeed, it is a microsatellite marker, therefore a codominant marker capable of revealing both homozygous and heterozygous individuals [31]. This type of marker has been used for rice genotyping in several studies [32,33,34]. DNA analysis of the near isogenic line IRBB4, the positive control, and the 32 accessions collected from Atacora revealed two types of Xa4 gene alleles. These are respectively the susceptible allele (xa4) to Xoo with 120 bp band and the resistant allele (Xa4) to Xoo with a band of 150 bp (Fig. 3). The same results were obtained by [30,35] who used the same marker MP12 (also called RM 224) to search for the Xa4 gene encoding resistance to bacterial leaf blight caused by Xoo in fifty-one inbred lines, twelve restorer lines, six maintainer lines of rice. This confirmed the effectiveness of the molecular marker used in this study.

According to the Table 3, it appears that twenty out of thirty-two accessions, i.e. 62.5%, present a band of 150 bp as confirmed by the positive control IRBB4. This means that these varieties were resistant to Xoo (Xa4/Xa4 or Xa4/xa4 genotypes since the Xa4 was a dominant gene). On the other hand, ten varieties out of the thirty-two (31.25 %) showed a band of 120 bp, which corresponds to the susceptible allele marking the susceptibility of these varieties to the pathogen (xa4/xa4 genotypes). The local varieties Koum 54 (Su Itaré Kpika) and Koung 67 (Darou Morri) from the villages of Koumadougou and Koungarou respectively did not carry either of the two alleles of the Xa4 gene. Our results were approximately close to those of [36], who, following a similar study using the same pair of primers, reported a polymorphism between the individuals tested. This polymorphism was asserted with reference to the positive control (IRBB4 and IR64) and the negative control (IR24) with DNA fragments of 150 bp and 120 bp respectively. Likewise, results were closed to those of [37] with 51.15% of accessions carrying the resistant allele and 48.75% carrying the susceptible allele of Xa4. It should be noted that of the 20 resistant varieties, 14 (70%) are local and the 6 others are improved.
varieties. This would be explained by the fact that northern Benin has a great diversity of rice with a large number of traditional varieties, which makes this region a better place for an in situ conservation program [38].

The analysis also revealed particular bands in certain varieties (Figs. 4 and 5). It can therefore be seen that the varieties Tchaka 38; Koum 49; Koum 50; Kotch 72 and Kan 58 showed two bands, one of which is greater than 150 bp and very close to 165 bp (Fig. 4). According to the literature, this band of 165 Pb also corresponds to a resistance allele of the Xa4 gene [37]. On this basis, we therefore considered these varieties as homozygotes resistant. So 65% of resistant varieties are homozygous (Xa4/Xa4) and 35% were heterozygous (Xa4/xa4).

Varieties with bands of 120 bp and 165 bp could be considered in our study as heterozygotes resistant to Xoo. Indeed, very recent studies revealed that the 165 bp DNA fragment corresponds to a resistant allele. Varieties carrying this allele showed proven resistance to Xoo after the pathogenicity test [37].

In addition, we identified 2 resistant varieties (Koum 53 and Koud,45, corresponding to the accessions 45 and 60 respectively), presenting a particular genotype due to the presence in the latter of an additional band of 190 bp, close to 200bp (Fig. 5). Similar results were obtained by [37] who reported that out of 14 resistant varieties three varieties namely NWGR2014, Pankhali 203 and Ratna revealed an additional band of 190 bp which was absent both in the control positive (IRBB4) and the negative control (IR24). These results suggested the existence of several alleles of the Xa4 gene. Moreover, these 2 varieties being improved, this third band could correspond to another resistance gene or not which would be introgressed into the plant by the breeders during their varietal improvement.

In total, there is a broad genetic diversity of resistance to bacterial blight in Atacora as summarized in the Table 4.

In view of all these results obtained in this study, the pathogenicity test of Xoo strains from Benin on the resistant accessions identified is necessary to evaluate the expression of this resistance gene in real environment and especially the behavior of heterozygous individuals to analyze their level of resistance to the pathogen. For this achievement, prospecting efforts in the rice-growing areas of Benin must be made to collect infected leaves and identify and characterize Xoo strains. Accessions confirmed to be resistant may be used by breeders in crosses involving accessions carrying other genes of agronomic interest, or directly deployed in specific geographical areas of Benin according to the geographical distribution of the Xoo strains that will be identified. We will also evaluate the contribution of the allele of 190bp in the expression of resistance to Xoo. Thus, by backcross assisted selection, we will generate

Fig. 4. Electrophoresis gel showing individuals having 165bp band
isogenic lines carrying this allele. This material will be screened using Beninese Xoo. Also, the entire genome of these varieties deserves to be sequenced in order to better understand the genetic events that led to an additional band of 190 bp.

4. CONCLUSION

The present study was carried out in Atacora in Northern Benin to search for the Xa4 resistance gene to Xoo. At the end, out of 32 varieties analyzed, 20 carried three different resistance
alleles thus resistant to Xoo. Among the resistant varieties, 14 were local, 6 were improved and 2 presented particular genotypes with three alleles. These results will be very useful to rice breeders to develop elites resistant varieties. In total, there is a broad genetic diversity of resistance to bacterial blight in Atacora. There is therefore a very urgent need to extend the study to whole country for further research of bacterial blight resistance genes in rice in Benin.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the laboratory of molecular biology and bioinformatics applied to genomic (BIOGENOM) of National High School of Biosciences and Applied Biotechnologies (ENSBBA) of Dassa-Zoume in Benin for laboratory facilities. They thank also the “JEAI-GRAB” team which provided the rice accessions.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. FAO; 2020. Available: www.fao.org com. Accessed on 05/12/2021
2. USAID. Global Food Security Response: West Africa Rice Value Chain Analysis; 2009. Available: https://www.fao.org/sustainable-food-value-chain
3. Agrimonde. World agriculture and food in 2050: scenarios and challenges for sustainable development. Briefing note, 2nd ed. INRA/CIRAD 2009 Montpellier: Cirdad. Available: www.cirad.fr/publications-ressources/edition/etudes-et-documents/agrimonde.
4. Adhikari TB, Vera Cruz CM, Zhang Q, Nelson RJ, Skinner DZ, Mew TW, Leach JE. Genetic Diversity of Xanthomonas oryzae pv. oryzae in Asia. Applied and environmental microbiology. 1995;61:6.
5. Djedatin G, Ndjiondjop MN, Mathieu T, Vera Cruz CM, Sanni A, Ghesquiere A, Verdier V. Evaluation of African cultivated rice Oryza glaberrima for resistance to bacterial blight. Plant Disease. 2011;95:441-447
6. Onasanya A, Ekperigin MM, Nwilen FE, Séré Y, Onasanya RO. Two pathotypes of Xanthomonas oryzae pv. oryzae virulence identified in West Africa. Current Research in Bacteriology. 2009;2:22-35.
7. Sere Y, Onasanya A, Verdier V, Akator K, Ouedraogo LS, Segda Z, Mbare MM, Sido AY, Baso A. 2005. Rice bacterial leaf blight in West Africa: Preliminary studies on disease in farmer’s field and screening. Asian Journal of Plant Sciences. 2005:4:577-579.
8. Chukwu SC, Rafii MY, Ramlee SI, Ismail SI, Hasan MM, Oladosu YA, et al. Bacterial leaf blight resistance in rice: A review of conventional breeding to molecular approach. Mol. Biol. Rep. 2019;46:1519–1532.
9. Afolabi O, Amoussa R, Bilé M, Oludare A, Gbogbo V, Poulin L, Koebnik R, Szurek B, Silué D. First report of bacterial leaf blight in Benin; 2015. Available: https://doi.org/10.1094/PDIS-07-15-0821-PDN
10. Pandey MK, Rani NS, Sundaram RM, Laha GS, Madhav MS, Rao KS. Improvement of two traditional basmati rice varieties for bacterial blight resistance and plant stature through morphological and marker-assisted selection. Molecular Breeding. 2013;31:239–246. DOI: 978-3-319-45021-6_20/s11032-012-9779-7
11. Priya LB, Ujjal KN, Sharmistha G, Gayatri G, Shalim U, Omar MA, Arafat AH, Alison ML, Yong-Ming G and Akbar H. Introggression of bacterial blight resistance genes in the rice cultivar ciherang: Response against Xanthomonas oryzae pv. oryzae in the F6 generation. Plants. 2021;10:2048. Available: https://doi.org/10.3390/plants101 02048
12. Neelam K, Mahajan R, Gupta V, Bhatia D, Gill BK, Komal, R. High-resolution genetic mapping of a novel bacterial blight resistance gene xa45(t) identified from Oryza glaberrima and transferred to Oryza sativa. Theor. Appl. Broom. 2020;133:689–705.
13. Djedatin G, Ndjiondjop MN, Sanni A, Lorieux M, Verdier V, Ghesquiere A. Identification of novel major and minor QTLs associated with Xanthomonas oryzae pv. oryzae (African Strains) resistance in Rice (Oryza Sativa L.). Rice. 2016;9:18. Available: https://doi.org/10.1186/s12284-016-0090-9.
14. Song W, Wang G, Chen L, Kim H, Pi L, Holsten T, et al. A Receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science. 1995;270:1804.

15. Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z, Kono I, et al. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc. Natl. Acad. Sci. 1998;95:1663.

16. Iyer AS, McCouch SR. The rice bacterial blight resistance gene xA5 encodes a novel form of disease resistance. Mol. Plant-Microbe Interact. 2004;17:1348–1354.

17. Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, et al. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J. 2004;37:517–527.

18. Gu K, Yang B, Tian D, Wu L, Wang D, Sréekala C, et al. R gene expression induced by a type-III effector triggers disease resistance in rice. Nature. 2005;435:1122–1125.

19. Chu Z, Fu B, Yang H, Xu C, Li Z, Sanchez A, et al. Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theor. Appl. Genet. 2006;112:455–461.

20. Liu Q, Yuan M, Zhou YAN, Li X, Xiao J and Wang S. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ. 2011;34:1958–1969.

21. Tian D, Wang J, Zeng X, Gu K, Qiu C, Yang X, et al. The Rice TAL effector–dependent resistance protein XA10 Triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell. 2014;26:497.

22. Huitin M, Sabot F, Ghesquière A, Koebnik R, Boris S. A knowledge-based molecular screen uncovers a broad spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J. 2015;84:694–703.

23. Wan C, Zhang X, Fan Y, Gao Y, Zhu Q, Zheng C, et al. XA23 is an executor r protein and confers broad-spectrum disease resistance in rice. Mol. Plant. 2015;8:290–302.

24. Hu K, Cao J, Zhang J, Xia F, Ke Y, Zhang H et al. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nat. Plants. 2017;3:17009.

25. Bhupendra SP, Ruchi T, Rallapalli R, Chet R and Subhash N. Molecular marker-based screening for bacterial leaf blight resistance genes in landraces and cultivars of rice in Gujarat. Indian J. Plant Genet. Resour. 2018;31(1):51-56. DOI: 10.5958/0976-1926.2018.00008.6

26. Hu K, Cao J, Zhang J, Xia F, Ke Y, Zhang H, Xie W, Liu H, Cui Y, Cao Y, Sun X, Xiao J, Li X, Zhang Q and Wang S. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nature Plants. 2017;3:17009. DOI: 10.1038/nplants.2017.9 |

27. Kam H, Ndiondjob MN, Laing MD and Ahmadi N. Molecular characterisation and diversity analysis of burkina faso rice landraces using 23microsatellite markers establishment of a core collection. Int. J. Curr. Res. 2017;9(8):5622-56232.

28. Gawel NJ and Jarret RL. A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Molecular Biology Reporter. 1991;9:262–266

29. Adje C, Achigan-Dako E and Agbangla C. Optimizing genomic DNA isolation in Pineapple (Ananas Comosus L.) J. Plant Breed. Genet. 2016;1:11-18.

30. Ma B, Wang W, Zhao B, Zhou Y, Zhu L, and Zhai W. Studies of PCR marker for the rice bacterial blight resistance gene Xa-4. Hereditas. 1999;21(3):9-12.

31. Santoni S, Fauve-Rampant P, Prado E and Prat D. Marqueurs moléculaires pour l’analyse des ressources génétiques et l’amélioration des plantes. Cahiers Agricultures. 2000;9:311-27.

32. Vishnu VN, Raveendran D, Sudhakar D, Rajeswari S, Balaji AP, Govintraj P, Karthika G, Manonmani S, Suji K K and Robin S. Analysis of population structure and genetic diversity in rice germplasm using SSR markers: An initiative towards association mapping of agronomic traits in Oryza sativa. Rice. 2015;8:30.

33. Singh H, Deshmukh RK, Singh A, Singh AK, Gaikwad K, Sharma TR, Mohapatra T, Singh NK. Highly variable SSR markers suitable for rice genotyping using agarose gels. Molecular Breeding. 2010;25:359–364.

34. Kumar R, Singh AK, Kumar A and Radha. Evaluation of genetic diversity in rice using simple sequence repeats (SSR) markers. AJB. 2012;11(84):14956-14995.
35. Wang S, Liu W, Lu D, Lu Z, Wang X, Xue J and He X. Distribution of bacterial blight resistance genes in the main cultivars and application of Xa23 in rice breeding. Frontiers in Plant Science. 2020;11:555228. DOI: 10.3389/fpls.2020.555228

36. Arif M, Jaffar M, Babar M, Sheikh MA, Kousar S, Arif A, Zafar Y. Identification of bacterial blight resistance genes Xa4 in Pakistani rice germplasm using PCR. AJB. 2008;7:541-545.

37. Muhammad S, Tahira B, Hafiz UF, Zulqarnain H, Imad N, Abid M, Muhammad A. Molecular screening of rice (Oryza sativa L.) germplasm for Xa4, xa5 and Xa21 bacterial leaf blight (BLB) resistant genes using linked marker approach AJB. 2016;15(41):2317-2324.

Loko YLE, Ewedje E, Orobiyi A, Djedatin G, Toffa J, Gbemavo CDSJ, Tchakpa C, Gavoedo D, Sedah P, Sabot F. On-farm management of rice diversity, varietal preference criteria, and farmers' perceptions of the African (Oryza glaberrima Steud.) versus Asian rice (Oryza sativa L.) in the Republic of Benin (West Africa): implications for breeding and conservation. Economic Botany. 2021;75(1):1-29.

© 2022 Djedatin et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/84750