SUPPLEMENTARY MATERIAL

Atalantums H-K from the peels of *Atalantia monophylla* and their Cytotoxicity

Aonnicha Sombatsri\(^a\), Yutthapong Thummanant\(^a\), Thurdpong Sribuhom\(^a\), Paweena Wongphakham\(^b\), Thanaset Senawong\(^b\) and Chavi Yenjai\(^a\)*

\(^a\)Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.

\(^b\)Natural Products Research Unit, Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.

* Corresponding author. Tel.+66-4320-2222-41 ext 12243; Fax: +66-4320-2373. E-mail address: chayen@kku.ac.th (C. Yenjai).
ABSTRACT

Four new benzoyletryamines, atalantums H-K (1-4) and seven known compounds were isolated from the peels of *Atalantia monophylla*. All compounds were tested for cytotoxicity against HeLa, HCT116 and MCF-7 cell lines, as well as normal cells (Vero cells). Compound 5 showed cytotoxicity against HeLa, HCT116 and MCF-7 cell lines with IC$_{50}$ values ranging from 16-25 µg/mL but was inactive against Vero cells. Compound 6 also showed interesting results as compound 5 with IC$_{50}$ values ranging from 15-18 µg/mL and an IC$_{50}$ value of 80.20 µg/mL against Vero cells. This means compounds 5 and 6 can be used as lead compounds for anticancer agents.

KEYWORDS *Atalantia monophylla*; atalantum; benzoyletryamine
Contents:

Table S1. 1H NMR spectroscopic data of compounds 1–4 (CDCl$_3$, δ in ppm)

Table S2. 13C NMR spectroscopic data of compounds 1–4 (CDCl$_3$, δ in ppm)

Table S3. Cytotoxicity of isolated compounds (IC$_{50}$, μg/mL)

Figure S1. The HMBC correlations of compound 1.

Figure S2. 1H NMR (400 MHz, CDCl$_3$) spectrum of atalantum H (1)

Figure S3. 13C NMR (100 MHz, CDCl$_3$) spectrum of atalantum H (1)

Figure S4. COSY spectrum of atalantum H (1)

Figure S5. NOESY spectrum of atalantum H (1)

Figure S6. HMBC spectrum of atalantum H (1)

Figure S7. COSY spectrum of atalantum J (3)

Figure S8. NOESY spectrum of atalantum J (3)

Figure S9. 1H NMR (400 MHz, CDCl$_3$) spectrum of atalantum J (3)

Figure S10. 13C NMR (100 MHz, CDCl$_3$) spectrum of atalantum J (3)

Figure S11. COSY spectrum of atalantum J (3)

Figure S12. NOESY spectrum of atalantum J (3)

Figure S13. HMBC spectrum of atalantum J (3)

Figure S14. MS spectrum of atalantum H (1)

Figure S15. MS spectrum of atalantum I (2)

Figure S16. 1H NMR (400 MHz, CDCl$_3$) spectrum of atalantum J (3)

Figure S17. 13C NMR (100 MHz, CDCl$_3$) spectrum of atalantum J (3)

Figure S18. COSY spectrum of atalantum J (3)

Figure S19. NOESY spectrum of atalantum J (3)

Figure S20. HMBC spectrum of atalantum J (3)

Figure S21. MS spectrum of atalantum J (3)

Figure S22. MS spectrum of atalantum J (3)

Figure S23. 1H NMR (400 MHz, CDCl$_3$) spectrum of atalantum K (4)

Figure S24. 13C NMR (100 MHz, CDCl$_3$) spectrum of atalantum K (4)

Figure S25. COSY spectrum of atalantum K (4)
Figure S26. NOESY spectrum of atalantum K (4)
Figure S27. HMQC spectrum of atalantum K (4)
Figure S28. HMBC spectrum of atalantum K (4)
Figure S29. MS spectrum of atalantum K (4)
Table S1. 1H NMR spectroscopic data of compounds 1–4 (CDCl$_3$, δ in ppm)

position	1	2	3	4
1	4.54, d (4.0)	4.57, d (8.0)	4.57, d (8.0)	4.53, d (8.0)
2	5.76, t (8.0)	5.83, t (8.0)	5.83, t (8.0)	5.72, t (4.0)
4	4.27, dd (8.0, 4.0)	5.42, dd (8.0, 4.0)	5.42, dd (8.0, 4.0)	4.89, dd (8.0, 4.0)
5	1.58, m	1.78, m	1.79, m	1.78, m
6	3.64, t (8.0)	3.35 dd (8.0, 4.0)	3.35 dd (8.0, 4.0)	4.12, t (8.0)
8	1.10, s	1.09, s	1.08, s	1.13, s
9	1.09, s	1.07, s	1.07, s	1.12, s
10	1.72, s	1.73, s	1.73, s	1.70, s
2', 6'	6.84, d (8.0)	6.85, d (8.0)	6.84, d (8.0)	6.83, d (8.0)
3', 5'	7.12, d (8.0)	7.13, d (8.0)	7.13, d (8.0)	7.11, d (8.0)
7'	2.84, t (8.0)	2.86, t (8.0)	2.86, t (8.0)	2.83, t (8.0)
8'	3.65, m	3.68, m	3.67, m	3.63, m
2'', 6''	7.66, d (8.0)	7.69, d (8.0)	7.69, d (8.0)	7.68, d (8.0)
3'', 5''	7.38, t (8.0)	7.41, t (8.0)	7.40, t (8.0)	7.37, t (8.0)
4''	7.46, t (8.0)	7.47, t (8.0)	7.48, t (8.0)	7.44, t (8.0)
2'''	-	2.28, t (8.0)	2.28, t (8.0)	2.30, t (8.0)
3'''	-	1.60, m	1.60, m	1.60, m
CH$_2$ (4'''-15''')	-	1.25, m	1.25, m	1.24, m
CH$_3$ (14'''' or 16''''')	-	0.87, t (8.0)	0.87, t (8.0)	0.86, t (8.0)
7-OMe	3.20, s	3.18, s	3.18, s	3.20, s
NH	6.39, br t (8.0)	6.16, br t (8.0)	6.19, br t (8.0)	6.40, br t (8.0)
Table S2. 13C NMR spectroscopic data of compounds 1–4 (CDCl$_3$, δ in ppm)

position	1	2	3	4
1	64.0	64.5	64.5	64.6
2	120.3	124.5	124.5	121.7
3	141.3	137.3	137.3	141.3
4	76.5	77.1	77.1	74.6
5	35.1	34.4	34.4	34.7
6	76.9	74.1	74.1	75.5
7	76.5	77.1	77.1	76.3
8	19.6	20.5	20.5	22.2
9	18.7	19.5	19.5	20.6
10	11.8	12.6	12.6	12.3
7-OMe	48.6	49.3	49.3	49.8
1'	156.8	157.5	157.5	157.5
2', 6'	114.3	115.1, 115.2	115.1, 115.2	115.0
3', 5'	129.2	129.9	129.9	129.8
4'	130.4	131.2	131.2	131.0
7'	34.1	34.9	34.9	35.3
8'	40.6	41.4	41.4	41.4
9'	167.2	167.6	167.6	167.5
1''	133.9	134.8	134.8	134.7
2'', 6''	126.2	126.9	126.9	126.9
3'', 5''	128.0	128.7	128.7	128.6
4''	130.8	131.5	131.5	131.4
1'''	-	172.9	172.9	173.7
2'''	-	34.8	34.8	34.9
3'''	-	25.1	25.1	25.1
4''''-13'''	-	32.1, 29.8-29.3,	32.1, 29.8-29.3,	32.0, 29.7-29.3,
or 4''''-15'''	22.8	22.8	22.8	22.7
14''' or 16'''	-	14.3	14.3	14.2

Table S3. Cytotoxicity of isolated compounds (IC$_{50}$, μg/mL)

compound	Hela cells	HCT116 cells	MCF-7 cells	Vero cells
5	19.09 ± 2.83	16.02 ±0.10	25.89 ± 3.49	> 100
6	15.03 ± 0.46	16.65 ± 3.21	18.33 ± 0.31	80.20 ± 4.35
7	22.44 ± 2.59	19.75 ± 0.44	16.18 ± 1.10	25.20 ± 1.41
10	20.06 ± 2.42	35.74 ± 2.02	24.44 ± 1.12	50.60 ± 2.19
The other	inactive	inactive	inactive	inactive
cisplatin	6.65 ± 0.12	4.93 ± 0.77	10.42 ± 0.85	6.55 ± 0.81
Figure S1. The HMBC correlations of compound 1.

Figure S2. 1H NMR (400 MHz, CDCl$_3$) spectrum of atalantum H (1)
Figure S3. 13C NMR (100 MHz, CDCl$_3$) spectrum of atalantum H (1)

Figure S4. COSY spectrum of atalantum H (1)
Figure S5. NOESY spectrum of atalantum H (1)

Figure S6. HMQC spectrum of atalantum H (1)
Figure S7. HMBC spectrum of atalantum H (1)

Figure S8. MS spectrum of atalantum H (1)
Figure S9. 1H NMR (400 MHz, CDCl$_3$) spectrum of atalantum I (2)

Figure S10. 13C NMR (100 MHz, CDCl$_3$) spectrum of atalantum I (2)
Figure S11. COSY spectrum of atalantum I (2)

Figure S12. NOESY spectrum of atalantum I (2)
Figure S13. HMQC spectrum of atalantum I (2)

Figure S14. HMBC spectrum of atalantum I (2)
Figure S15. MS spectrum of atalantum I (2)

Figure S16. 1H NMR (400 MHz, CDCl$_3$) spectrum of atalantum J (3)
Figure S17. 13C NMR (100 MHz, CDCl$_3$) spectrum of atalantum J (3)

Figure S18. COSY spectrum of atalantum J (3)
Figure S19. NOESY spectrum of atalantum J (3)

Figure S20. HMQC spectrum of atalantum J (3)
Figure S21. HMBC spectrum of atalantum J (3)

Figure S22. MS spectrum of atalantum J (3)
Figure S23. 1H NMR (400 MHz, CDCl$_3$) spectrum of atalantum K (4)
Figure S24. 13C NMR (100 MHz, CDCl$_3$) spectrum of atalantum K (4)

Figure S25. COSY spectrum of atalantum K (4)
Figure S26. NOESY spectrum of atalantum K (4)

Figure S27. HMQC spectrum of atalantum K (4)
Figure S28. HMBC spectrum of atalantum K (4)

Figure S29. MS spectrum of atalantum K (4)