Communication and animal observation in livestock farming – pilot study of a teaching project in veterinary education

Abstract

Objective: Within the scope of a teaching project, students of veterinary medicine are to study animal and environmental observation and how to communicate with the persons responsible for animals on pig farms. They will be prepared to reflect on conversational behavior, identify difficult conversational situations and solve them in a goal-oriented way. In addition to piloting, the aim of the study is to evaluate the teaching project by the students and the teaching staff.

Methodology: Animal observation is trained using a virtual tour of a stock farm based on pictures and videos. The didactic approaches Design Thinking and the creative Walt Disney method are used in order to work on a previously prioritized problem. A typical conflict situation in pig farming is simulated in a role-play. Acquired skills are put into practice during a stock examination on the practice day, where the students communicate their observations. Evaluation is conducted using paper-based questionnaires and feedback interviews.

Results: Evaluations of the students are generally positive. The desire to include communication studies in the curriculum was expressed several times. For the theoretical teaching units, a larger group of participants is needed to achieve higher interaction through diversity. The acquired knowledge is reliably applied and utilized on the practice day.

Conclusion: The theoretical teaching units extensively prepare the students for the practical stock examination and teach basic skills of communication. Some adjustments to the procedure and focus should be made regarding the practical part. Generally, the conveyed information and methods are considered to be important by the students.

Keywords: communication, stock examination of pigs, animal observation, patient-centered training
1. Introduction

Students of veterinary medicine focussing on farm animals are confronted with increasingly difficult working conditions in their future field of activity. Hardly any other economic sector experiences a similar area of conflict between animal protection, environmental protection, consumer protection and the economy as livestock farming in Germany. The present goal of livestock management is to maintain a high state of health and welfare of the animals, especially with regard to preventive consumer protection. Compliance with standards has to be ensured as well as prevention of outbreaks of diseases and early detection of illnesses. The veterinarians’ task is to prevent health problems on farms and to minimize their effects by means of appropriate diagnostics and therapy. With their expertise on diseases, infections, animal welfare and food hygiene, veterinarians can act as a link between contrasting realities of consumers and those working in agriculture. For their role as “mediators between the worlds”, they must be trained accordingly. It is not sufficient to teach only veterinary knowledge during the course of studies; empathy and basic communication skills must also be enhanced. Currently, the curriculum of veterinary medicine in Germany does not include any obligatory courses on communication, although the effectiveness of consultations depends on an appreciative communicative exchange between the person keeping the animals and the veterinarian [6], [16], [18]. Contents are offered in the “hidden curriculum” or in elective courses [17], these being mostly aimed at communication regarding small animal or equine practice. In livestock medicine, there are completely different conflicting goals. A large number of different stakeholders are involved in the area of conflicts on farms (including controlling authorities, slaughterhouses, meat marketing industry, banks, air conditioning, construction and stable technicians, producer groups, end consumers). Another major difference is that observation of a whole herd with a variable number of animals rather than one individual animal has to be taken into account when communicating with the animal keeper. According to research findings, the described course focussing on communication during a stock visit is the first of its kind in Germany for the livestock sector, which must be offered as an educational training.

For practicing veterinarians, the expectations and needs of animal caregivers are not always evident [7]. Furthermore, farmers do not necessarily follow the recommendations of veterinarians [32]. Exchange and communication between all parties is the most important instrument, as decisions have to be made in a context of conflicting objectives [18]. Therefore, from a veterinarian’s point of view, there is a major need to be trained in communication [4], [24]. Even though first “entrustable professional activities” have been defined for the livestock sector [9] and communication has been elaborated, especially in bovine herd management [23], [24], there is still a lack of guidelines and in-house training courses on communicative skills. Overall, compliance of farm personnel is a requirement for maintaining animal health. In addition to knowledge and motivation, empathy for the animals and the “attitude” of the person caring for the animals are success factors [22], [31]. The importance of the attitude and personality of an animal keeper, which both influence the human-animal relationship, has been scientifically proven. The human-animal relationship influences stress levels of the animals [31], [33], frequency and quantity of antibiotic agents administered to the animals [30], compliance with biosafety measures [5] and perception and treatment of individual animals experiencing prolonged pain, suffering and harm [13]. In this newly designed course students perform animal observation together with the farm personnel. They receive an insight into what to pay attention to during communication in order to minimize misunderstandings or conflicts. Experience and information gained during a joint stock assessment can lead to changes in attitudes by making people aware of conditions [31]. The transfer of knowledge about different communication models and strategies, role behavior and discussion structure can sharpen the students’ awareness of conflicts in communicating with animal owners and lead to short-term and sustainable learning success [1], [10]. An innovative approach from industrial research is Design Thinking, which serves the creative development of problem solutions from a users’ point of view [3]. For this purpose, the perspective of future customers is taken, a problem is identified, solutions are examined, a solution is prioritized and implemented. By taking on the role of an animal caretaker on their farms, students can grasp a problem better and develop creative solutions. Another creative method used in the course is the Walt Disney method [8]. In this method, the roles of dreamer, realist and critic are allocated to the students and solutions to a previously defined problem are discussed, moderated by the lecturer. The resulting consensus takes the needs and goals of the different actors into account.

Altogether, the objective of this study is the evaluation of a teaching project including communication training, which was developed specifically for the teaching of communicative skills in the field of animal observation and stock management in livestock medicine. Evaluation is carried out from the perspective of the students as well as the teaching veterinarians. The aim is to further develop and optimize the teaching concept.

2. Project description – Method

2.1. Positioning of the course

The course was held six times during the winter semester 2019/2020 during the ninth semester of the undergraduate course on veterinary studies [34]. It was offered to students specializing in “Pig and Poultry” at the University of Veterinary Medicine Hannover, Foundation, Germany. In groups of three, students go through fortnightly learning
phases at the Clinic for Swine, Small Ruminants and Forensic Medicine, at the Poultry Clinic, the Outpatient Clinic (outpatient treatment of large animals on farms) and the Field Station for Epidemiology (AFE). The AFE, where the new course took place in the second week, is a diagnostic facility based in a region with a high density of pig farms. In this phase of the studies, the theoretically acquired teaching content of the previous years from different disciplines is applied in a practical environment. This requires the analysis of a concrete situation, its evaluation and the first step in the direction of a required action [3].

The course was held alternately by a single lecturer from a group of four veterinarians, all of whom have teaching experience and who are themselves trained in communication strategies and didactic methods within the framework of personnel development. While all four persons were alternately involved in the theoretical part of the course, the practical part was conducted by one of two teachers.

2.2. Theoretical part of the course

The theoretical part of the course is divided into two sections, each with four teaching units. The teaching concepts including time schedule and methods are summarized in table 1 and table 2.

The first part, which is carried out by the AFE, focuses on the perception of animal signals and environment. In an initiating phase, students perform an analysis of the strengths, weaknesses, opportunities and threats (SWOT analysis [15]) of the AFE, based on their experiences and lessons learned during their first week. In doing so, they become familiar with the method which will be used on the farm as well later on. Within three minutes, at least three ideas are written in each of the quadrants (strengths, weaknesses, opportunities and threats) before the piece of paper is passed on to the next person and the process starts again. Ideas collected this way are then discussed and summarized. An introductory presentation is given about areas in farm animal medicine for which the importance of attitude and personality of the animal owner have been scientifically proven. The first work phase includes the approach of Design Thinking. After the method has been presented to the students, they put themselves in the position of the animal caretaker [3]. Based on this approach, the students experience a virtual tour of a stock farm through the eyes of a farmer. Animal signals and environmental factors are observed and prioritized. The group agrees on one resulting problem. A solution which is acceptable to all participants is worked out in accordance with the Walt Disney method [8]. Afterwards, the planned approach for the practical day on the farm is explained, including key questions to the farmer (see table 3) and individual examination protocols. Finally, remaining questions are answered and results are secured.

The second theoretical section is carried out by the Institute of Biometry, Epidemiology and Information Processing (IBEI). During the initiation phase, the students are prepared for the following teaching unit with questions regarding their previous experience and knowledge. In the following role-play, a conflict situation that frequently occurs in veterinary herd management of pig farms is simulated. The communication and emotions that arise while role-playing serve as a basis for following different theoretical approaches. The drama triangle [28], established in transactional analysis and non-violent communication in accordance with Rosenberg [25], serving as a solution strategy, are presented in the first work phase. Subsequently, by classifying a situation from the role-play and formulating a sentence as an exit strategy in accordance with Rosenberg, the theoretically gained knowledge is applied and deepened in practice.

During the second phase of the program, the students first work out needs and tasks of a veterinarian, then the client-contractor model (also known as the principle-agent theory [21]) is explained. In this context, special attention is drawn to different contract models in veterinary medicine, and the special role of the students during the stock examination is elaborated. As the willingness of the farmer to cooperate and change is an essential part of veterinary treatment, the “Rubicon Model of Action Phases” [12] is used to explain how to recognize in which phase of a decision-making process the farmer is. Possible ways of influencing the outcome of the decision-making process are identified.

During the closing phase, the lecturer briefly summarizes the topics covered and clarifies any remaining questions.

2.3. Practical part: Animal observation and communication on the farm

The practical part of the course on a pig farm took place in close cooperation with the veterinarians attending the herd two days after the theoretical part. This follows a fixed schedule (see table 3) so that students can focus on animal observation and communication during the complex stock situation. Six teaching units (4.5 hours) are planned, which vary depending upon the size of the farm and the extent of the problems. While the students look at the environment and animals alone and write down their observations, the teacher conducts an anamnesis interview. In the manner of a “midwife conversation” to survey concerns [27], the most important concern of the farmer is identified by means of open questions and a listening conversation method. This is followed by key questions, which can be meaningful for personality and attitude traits (see table 4). Afterwards, all participants examine the entire animal stock. The students communicate their previously made observations to the farmer in a non-judgmental manner while taking notes on further observations. The focus is on the most urgent problem identified in the anamnesis interview. Animals showing clinical signs related to the identi-
Table 1: Teaching concept for animal observation and preparation for stock examination

Goals:	
The students are:	
1. able to identify a problem on a pig farm and indicate ways to solutions.	
2. able to find out why a farmer is not satisfied with a situation.	
3. instructed for the practical part of the course.	

Content	Method	Time (min)
Initiation phase 1		
Reflection of the first week at the AIE	SWOT analysis of the AIE	45
Discussion of course goals and their classification in a superordinate context	Interview	
	Visualization on flip chart	
Initiation phase 2		
Importance of attitude and personality of farmers for animal welfare, animal health and consumer protection	Speech with a presentation	30

Work phase 1		
Taking the client’s perspective		
What are the aims of the farmer?	Virtual stock examination of all areas using photos and videos	45
Observe animals through the eyes of a farmer—sharpen own perception and empathy.	Collecting observations that are important for the farmer or that require action	
Key question: Which observations are important for the farmer and why?	Sorting and discussing the observations collected on moderation cards, prioritization, deciding on one main problem	
Focus		
What is the quintessence of the collected observations?	Brainstorming for best solutions with the Walt Disney method (role play: dreamer, realist and critic)	
Creativity phase		
Which actions can be derived from the observations (possible solutions to problems)		

| Work phase 2 | |
| Explanation and preparation of the structured stock examination | Explanation of the examination process, presentation of questionnaire with key questions to be asked (presentation), review of the paper-based examination checklists (focused on different stock health problems) | 45 |

| Closing phase | |
| Securing of results | Discussion | 15 |

Table 2: Teaching concept introducing how to communicate with a farmer

Goals:	
The students are able to:	
1. communicate observations without own interpretation.	
2. recognize difficult conversational situations and know strategies for dealing with them	
3. reflect on their own conversational behaviour.	

Content	Method	Time (min)
Initiation phase		
Getting to know the participants and attuning them by querying their previous experiences in communicating with animal owners	Thought-provoking questions about experiences and previous knowledge of the students	15
	Experience reports	
	Visualization on flip chart	

Work phase 1		
Communication training with conversation and discussion in conflict situations and analysis of the conversation	Role-play with breeder, rearer, fattener, veterinarian	100
Basics of transactional analysis with special focus on the drama triangle	Analysis of the conversation with regard to the roles and the respective feelings	
Possibilities of intervention (non-violent communication in accordance with Rosenberg)	Applying non-violent communication in accordance with Rosenberg	

Work phase 2		
Role and mission of a veterinarian (principal-agent theory)	Visualization on flip chart	45
Duties of a veterinarian	Presentation cards	
Rubicon model of action phases	Roundtable discussion	

Closing phase		
Securing of results	Flip-Chart	20
Clarification of open questions	Presentation round	
Outlook on further learning material		

This enables a quantitative and also a qualitative assessment of the problem, which is then discussed with the farmer. As a behavioral test, a Forced Human Approach Test is performed to assess the human-animal relationship [29]. The examiner defines a specific animal and makes contacts with it with increasing intensity. The possible intensity of contact before escape behavior is shown by the animal determines the score on a scale of one to four. Last of all, a SWOT analysis of the visited farm is performed and discussed with all parties involved.
2.4. Follow-up phase, evaluation and outlook

Following the practical part of the course, students have the opportunity to evaluate each part of the course using an anonymous, paper-based questionnaire and to have an open feedback session. For the evaluation, the teaching staff, the teaching material and the motivation of the students, as well as how they have benefitted from the course are assessed using a five-stage Likert style scale [19] (strongly agree, agree, neutral, disagree, strongly disagree). The evaluations are then descriptively analyzed in form of graphs using SAS 9.4 (SAS Institute Inc., Cary, NC, United States).

By the end of the week, students enter the results of answered key questions into a spreadsheet for later analysis and get time to clarify remaining questions. The teachers evaluate the course based on their own experiences and observations during the different units, the
evaluation by the students and the final discussion. All insights gained by evaluation are adopted in future courses. All participating farms will be visited and examined again by different students in the following semester. Until the follow-up visit, the strategic approach as well as the questionnaires are modified according to previously made experiences. The previously defined main problem of the farm is then re-evaluated.

3. Results

3.1. Evaluation by the teachers

3.1.1. Theoretical teaching units

The interactive teaching units are well received by the students who participate with high interest. Presented and developed methods are understood and internalized, which is shown by successful utilization of learned skills during the practical part of the course. The method of SWOT analysis has proven itself in the theoretical and practical part. Through targeted reflection and triggered associations during brainstorming, an analysis of conditions and situations can be quickly carried out, which provides an excellent basis for discussion.

3.1.2. Practical teaching unit

The main problems, which were worked on during the stock examination are summarized in table 5. As practiced theoretically, students are able to take on the perspective of the farmer. Estimations of the livestock’s health score by the students correspond in five of six times to the estimation made by their caregiver.

3.2. Evaluation by the students

Seventeen participating students stated that they had no special previous knowledge of communication strategies. At the same time, there was an awareness of problems in communication, as the students were able to report on numerous individual situations regarding their encounters with veterinarians and animal owners that had been problematic. Twelve of fifteen students rated the theoretical teaching units as significant and useful in terms of content. At least ten of them stated that they had gained knowledge from the various units. This is reflected in the evaluations of the practical day. Sixteen of seventeen students denied that they felt uncomfortable or overwhelmed during the stock examination. Communicating with the farmer was rated as “rather easy” by fourteen of seventeen students. This shows that the students are prepared at an appropriate level for the practical day by the theoretical teaching units. The degree of difficulty was overall rated as “rather low” by the students. The motivation of the students varied initially but it was slightly improved by the course. Overall, the course was very well received and positively evaluated by the students (see figure 1, figure 2 and figure 3). In personal discussions with the students, a wish to include teaching units on communication skills in the curriculum was expressed several times. In addition, the necessity to establish this as an essential part of the veterinary education curriculum for all students was expressed.

3.3. Data evaluation

By using statistical evaluation of examination results after follow-up visits, it can be determined whether the developed and suggested solution proposals were effective after implementation. At best, evaluation results then allow conclusions to be drawn about the effectiveness of the veterinary advice developed and provided by the course.

4. Discussion

4.1. Theory

In order to impart the basics of stock examination to the students, the virtual farm examination has proven itself in the theoretical unit. “Communication in livestock medicine” as a topic was gratefully accepted by students as well as by the veterinarians attending the herds, as they see a great need for it. The student-activating role-play has also proven itself. Through teaching with a focus on theoretical backgrounds, the students gain a deep insight into the respective theory without getting overwhelmed by details at the same time. This teaching approach should be maintained, since frontal teaching is unlikely to achieve the desired learning goals. Especially for the role-play on the topic of communicating with the farmer, each role should be assigned an observing person. Focusing on observation, the additional person perceives verbal and non-verbal communication of their character and describes it in the following discussion. The interactive nature of both theoretical learning units generally requires a larger number of students. For role-plays and SWOT analysis, the number of two to three students is too small. In future courses, the aim is to increase the size of the group to nine students, as the different work phases are enriched by the respective experiences and emotions of several participants.

4.2. Practice

The evaluations of the students suggest that the teacher successfully deals with uncertainties at the farm visit, which enables the students to apply learned strategies in a protected environment and show their learning success (Difficulty of the conversational situation – see figure 3). Following the didactic model of “Constructive Alignment” [2], the learning objectives mentioned above were defined, communicated with the students and teaching methods adapted to them were applied. A systematic learning success control has not yet been developed, but
is to be implemented in future courses. For this purpose, a communication checklist based on the Calgary-Cambridge Guide [1], [18] and the Red Interaction Analysis System [26] will be developed, with special emphasis on items specific to stock examinations. In order to be able to give standardized and individual feedback to each student, checklists will be filled out individually for each of them during the course.

Examination time for perceiving the animals and their environment on their own was always fully utilised by all students and usually had to be ended by the teacher. In order to be able to use the learned methods of animal and environment observation, more examination time for their free observation is to be granted to the students. It is planned to have the structured observation form filled out individually in a second phase. In a third phase, the students answers will be compared, commented on by the teacher, enabling the group to objectify their observations.

With one exception, the students evaluated the animal health on each farm in the same way as the person caring for the animals. In herd 1, the farmer evaluated the animal health a little worse. On this farm, the students positively noticed a good structure and cleanliness of the pens as well as good general condition of the animals. This was rated higher than coughing and sneezing of the animals. The symptomatology of the animals did not lead to a disturbed general condition and was predominantly assessed as a problem of the upper respiratory tract. The animal caregiver, on the other hand, suffered from the fact that antibiotics had to be used more often during the rearing phase, whenever coughing became more frequent. Therefor his primary concern was to reduce the clinical symptoms. This discrepancy clarifies that the situation the students see on the farms is always a snapshot, so expectations for future developments on the farms should not be too high. First and foremost, this is a teaching course. Improvements in stock health is in the hands of the animal caregiver and the stock-attending veterinarian. During the joint stock examination, guiding key questions, which draw attention to the important things, should be preferably asked, e.g., “How is the lying behavior of the animals before they are startled by my appearance”. The teacher’s protocol must also be revised. For example, the answer to the question about sick animals on the farm (see table 4, question 9) cannot be meaningfully evaluated. Sick animals occur in so many places on farms and in so many degrees of severity that the term “sick” itself is interpreted in many ways by different recipients. It seems more reasonable to look at the equipment and

Table 5: Main topics on the examined pig farms

Stock	Number of sows (breeder)	Number of piglets (weaning)	Number of pigs (fattening)	Focussed age group	Focussed disease	Assessment of overall stock health (Likert scale: 1 (very poor) to 5 (very good))	
Farmer	Students						
1	-	3940	600	Rearing	Respiratory disease	3	4
2	-	-	3300	Fattening	Lameness	4	4
3	-	4500	-	Rearing	CNS disorders	4	4
4	-	1200	1440	Rearing	CNS disorders	3	3
5	330	1280	850	Weaning	Diarrhoea	4	4
6	-	-	4500	Fattening	Conjunctivitis	3	3

Figure 1: Evaluation of the course "Animal observation in pig farms" by the students (n=15)
occupancy of the sick pens and to count individual animals that would have to be separated from a veterinary point of view but have not yet been separated. Whether the fact that such animals exist on a farm speaks for a contradiction in self-awareness and awareness of others or for bad animal observation by the caretaker can be determined by further questions in the presence of the animal concerned. Even though popular among the students, the Forced Human Approach Test for assessing the human-animal relationship seems redundant, since a holistic evaluation of the results is not possible. For example, fattening pigs can show a negative human-animal relationship because they are so healthy, people rarely have to enter their pens so they are not used to human contact [20]. This test should therefore only be performed if it makes sense from a professional point of view. For example, testing sows in reproduction, where a good human-animal relationship has proven to have a
positive effect on fertility [14]. The SWOT analysis is well suited for a concluding, reflective discussion on the farm premises with all parties involved. It reduced complexity, which was shown to be especially important for the students after the confusing situation in the stable. A disadvantage is the superficial analysis given by the method, as there is no prioritization of the collected information and further necessary expert knowledge is missing (e.g., from an economic consultancy firm or a stable construction company). In future, the concluding consolidation phase should also include reflection on the conversations on the farm. For this purpose, the teacher must take on the role of an observer, not only of the animals, but also of the involved people. The most common motivation of the farmer to participate in the event is for animal health to be improved by the provision of professional and free advice. The teacher must serve these wishes, which makes the teaching course demanding. Minor restructuring can create room for both, the teaching veterinarian dedicating the time during which the students pursue their animal observation exclusively to the professional questions of the animal caregiver.

All in all, the practical teaching unit is extremely demanding for the teacher, as he or she must simultaneously instruct the students, listen to the farmer and observe the animals. Despite planning, unpredictable situations occur, which the teacher has to be able to react to, spontaneously and flexibly. The time required is very high for every person involved. Close supervision and practical references lead to a high amount of information, which gives all participants the feeling the days were eventful and full. In future, the mentoring ratio could be increased to four or five students in terms of effectiveness, without creating additional burdens for teaching staff. Nevertheless, the aspect of “hands-on training” [11] required in veterinary education, especially by the European Association of Establishments for Veterinary Education of Europe (EAEVE), would be guaranteed. In future, an (economic) benefit gained from the course should be recognizable for the farmer. Whether and how this can be done requires further strategic considerations. After at least half a year had passed since the joint herd examination, a debriefing of the teaching veterinarians with the veterinarians attending the herds took place. In fact, an improvement in the problems, which had been the main focus of the respective course, was observed on all farms. According to the authors, these improvements are not due to seasonal fluctuations or chance. They could be linked by the veterinarians to individual measures, that were initiated after the joint herd examination had been carried out. Whether or not the joint experience on the farm provided the impetus for some of the changes is impossible to answer. However, the overall result is very motivating to continue and to establish the course firmly in the curriculum.

5. Conclusion

The theoretically conveyed content extensively prepares the students for the herd examination. In the practical part, the students communicate their observations of the animals and their environment reliably with the persons responsible for the animals. The aim of their conversation is to identify needs, state of mind and conflicting goals in order to find constructive solutions together. The best-case scenario is initiation of improvement processes on the farm, which can be traced back to the effects of the course (joint, empathic animal observation and communication experience of the farmer). Overall, the course is positively evaluated by students and lecturers and is considered necessary.

Ethics

The project was submitted to the Data Protection Officer of the University of Veterinary Medicine Hannover for examination and approval. The anonymity of the data was guaranteed at all times during the study.

Funding

Project 123 was financed by the Ministry of Science and Culture of Lower Saxony, Germany within the framework of a call for projects: Innovative teaching and learning concepts: Innovation Plus (2019/20).

Profiles

Place of location: University of Veterinary Medicine Hannover, Foundation, Field Station for Epidemiology, Büscheler Straße 9, 49456 Bakum and Institute for Biometry, Epidemiology and Information Processing and Centre for E-Learning, Didactics and Educational Research, Bünteweg 2, 30559 Hannover.

Subject of study/professional category: Veterinary Medicine

Number of students per year or semester: 200

Is a longitudinal communication curriculum implemented? No

In which semesters are communicative and social skills taught? 1, 2, 9 (mandatory), 1-4, 5-8 (optional electives), 1-11 (Skills Lab, E-Learning).

Which teaching formats are used? Mandatory: Lectures, small group exercises incl. conversation simulations with actors and feedback.

Optional: seminars, small group exercises incl. conversation simulations with actors and feedback, e-learning

In which semesters are communicative and social competencies examined (formative or relevant to pass and/or graded)? Formative as feedback interviews Relevant to pass the practical year (9th semester) in the Department of Small Animal Medicine and Surgery.
Which examination formats are used? Feedback interviews, objective structured clinical examination (OSCE)

Who (e.g. clinic, institution) is in charge of development and implementation? Centre for E-Learning, Didactics and Training Research

Current professional roles of the authors

- Sara Trittmacher: Veterinarian, working as Research Associate and Doctoral Candidate at the Field Station for Epidemiology in Bakum, involved in microbiological, molecular biological and serological diagnostics of pig diseases and educating students in practical laboratory activities, project-related development and implementation of the new teaching format.
- Anne Schnepf: Veterinarian, working as Research Assistant and Doctoral Candidate at the Institute of Biometry, Epidemiology and Information Processing, statistical design of experiments and evaluation of data, development and evaluation of personality questionnaires for the veterinary field. Evaluation of studies on the attitude of animal owners, project-related development and implementation of the new teaching format with focus on communication.
- Christin Kleinsorgen: Veterinarian, Research Associate at the E-learning Consulting Department of the Center for E-Learning, Didactics and Educational Research, consulting and training in the use of digital media and the development of teaching and learning programs on the topic of communication and key competencies in veterinary medicine, creating teaching programs, responsible for their integration into the curriculum, courses on the topic of communication.
- Henrik Detlefson: Veterinarian in specialized pig practice, caring for pig farms with different production types and sizes, focusing on veterinary advice, diagnostics and prevention of diseases, therapy, health management from breeding to fattening, supporting the practical training of students at the University of Veterinary Medicine Hannover, Foundation, specializing in "Pig and Poultry".
- Johannes Hessler: Veterinarian in specialized pig practice, caring for pig farms with different production types and sizes, focusing on veterinary advice, diagnostics and prevention of diseases, therapy, health management from breeding to fattening, supporting the practical training of students at the University of Veterinary Medicine Hannover, Foundation, specializing in "Pig and Poultry".
- Amely Campe: Veterinarian, Research Associate at the Institute of Biometry, Epidemiology and Information Processing, Head of the Working Group "Animal Health", working areas are animal welfare, animal diseases and animal behavior, research on factor diseases and epidemiological analysis methods for complex systems, quantitative and qualitative studies in different animal populations, implementation of new teaching formats with focus on communication in the context of Veterinary Public Health.
- Isabel Hennig-Pauka: Veterinarian, Head of the Field Station for Epidemiology in Bakum, theoretical and practical courses in pig medicine focussing on herd diagnostics, infectious diseases, management and prevention strategies, animal observation. Quality management in the accredited diagnostic laboratory of the institute, research projects in the field of diagnostics and infectious medicine.

Competing interests

The authors declare that they have no competing interests.

References

1. Adams CL, Kurtz SM. Building on existing models from human medical education to develop a communication curriculum in veterinary medicine. J Vet Med Educ. 2006;33(1):28-37. DOI: 10.3138/jvme.33.1.28
2. Biggs J. Aligning teaching for constructing learning. High Educ Acad. 2003;1(4).
3. Bloom BS, Engelhart MD, Furst EJ, Hill WH, Krathwohl DR. Taxonomy of educational objectives: The classification of educational goals. Handbook I: Cognitive domain. New York: David McKay Company; 1956.
4. BpT. Mitteilungsblatt des ganzen Nordens. 2020;1.
5. Bucini G, Merrill SC, Clark E, Moenenburg SM, Zia A, Koliba CJ, Wiltshire S, Trinity L, Smith JM. Risk attitudes affect livestock biosecurity decisions with ramifications for disease control in a simulated production system. Front Vet Sci. 2019;6:196. DOI: 10.3389/fvets.2019.00196
6. Butler C, Rolnick S, Stott N. The practitioner, the patient and resistance to change: recent ideas on compliance. CMAJ. 1996;154(9):1357-1362.
7. Derks M, van Woudenbergh B, Boender M, Kremer W, van Werven T, Hogeveen H. Veterinarian awareness of farmer goals and attitudes to herd health management in The Netherlands. Vet J. 2013;198(1):224-228. DOI: 10.1016/j.tvjl.2013.07.018
8. Diets RB, Epstein T, Diets RW. Know-how für Träumer: Strategien der Kreativität, NLP & modelling, Struktur der Innovation. Paderborn: Junfermann; 1994.
9. Duijn CC, Ten Cate O, Kremer WD, Bok HG. The development of entrustable professional activities for competency-based veterinary education in farm animal health. J Vet Med Educ. 2019;46(2):218-224. DOI: 10.3138/jvme.0617-073
10. Engelkirschen S, Ehlers J, Tipold A, Dilly M. Vermittlung kommunikativer Fertigkeiten im Tiermedizinstudium am Beispiel der Anamneseerhebung während des Praktischen Jahres an der Klinik für Kleintiere der Stiftung Tierärztliche Hochschule Hannover. Tierärztliche Umschau. 2016;71:270-276.
11. European System of Evaluation of Veterinary Training (ESEVT), Manual of Standard Operating Procedure. Uppsala: ESEVT; 2016. Zugänglich unter/available from: https://www.eaeve.org/fileadmin/downloads/SOP/ESVET_SOP_May_2016_amended_Annex_B_approved_by_ExCom_on_29_May_2019.pdf
12. Gollwitzer PM. Das Rubikonmodell der Handlungsphasen. Enzyklopädie der Psychologie. Teilband C/I/4: Motivation, Volition und Handlung. Göttingen: Hogrefe; 1995.
13. Große Beilage E. Untersuchungen an verendeten/ getöteten Schweinen in Verarbeitungsbetrieben für tierische Nebenprodukte. Gießen: Deutsche Veterinärmedizinische Gesellschaft (DVG) Service GmbH; 2017.

14. Hemsworth P, Barnett J, Coleman GJ, Hansen C. A study of the relationships between the attitudinal and behavioural profiles of stockpersons and the level of fear of humans and reproductive performance of commercial pigs. Appl Animal Behav Sci. 1989;23(4):301-314. DOI: 10.1016/0168-1591(89)90099-3

15. Hill T, Westbrook R. SWOT analysis: it’s time for a product recall. Long Range Plan. 1997;30(1):46-52. DOI: 10.1016/S0024-6301(96)00095-7

16. Kleen J, Rehage J. Communication skills in veterinary medicine. Tierarzt Praxis. 2008;36(5):293-297. DOI: 10.1055/s-0037-1621647

17. Kleinsorgen C, Ramsott S, Ehlers JP, Gruber C, Dilly M, Engelskirchen S, Bernigau D, Bahramsofani M. Kommunikative Kompetenzen im Studium der Veterinärmedizin in Deutschland - Ansätze für die Entwicklung eines Mustercurriculums. Berl Munch Tierarztl Wochenschr. 2020. DOI: 10.3276/0005-9366-19028

18. Kurtz S. Teaching and learning communication in veterinary medicine. J Vet Med Educ. 2006;33(1):11-19. DOI: 10.3138/jvme.33.1.11

19. Likert R. A technique for the measurement of attitudes. Arch Psychol. 1932;22:55.

20. Mieloch F, Niefeld S, Straßburg C, Krieter J, Grosse Beilage E, Czycholl I. Factors of potential influence on different behavioural tests in fattening pigs. Appl Animal Behav Sci. 2019;222:104900. DOI: 10.1016/j.applanim.2019.104900

21. Müller LR, Kunzmann P, Sudmann J, Schaper E. Der Tierarzt und sein Prinzipal. TiHo Videos, YouTube. 23.05.2018. Zugänglich unter/available from: https://www.youtube.com/watch?v=CkwGrYDPsOl

22. Porcher J, Cousson-Gélie F, Dantzer R. Affective components of the human-animal relationship in animal husbandry: development and validation of a questionnaire. Psychol Report. 2004;95(1):275-290. DOI: 10.2466/pr0.95.1.275-290

23. Ritter C, Adams CL, Kelton DF, Barkema HW. Clinical communication patterns of veterinary practitioners during dairy herd health and production management farm visits. J Dairy Sci. 2018;101(11):10337-10350. DOI: 10.3168/jds.2018-14741

24. Ritter C, Adams CL, Kelton DF, Barkema HW. Factors associated with dairy farmers' satisfaction and adoption of recommendations after veterinary herd health visits. J Dairy Sci. 2019;102(5):4280-4293. DOI: 10.3168/jds.2018-15825

25. Rosenberg MB. Gewaltfreie Kommunikation: Eine Sprache des Lebens. Paderborn: Junfermann Verlag GmbH; 2016.

26. Roter D, Larson S. The Roter interaction analysis system (RIAS): utility and flexibility for analysis of medical interactions. Pat Educ Couns. 2002;46(4):243-251. DOI: 10.1016/S0738-3991(02)00012-5

27. Schulz von Thun F. Praxisberatung in Gruppen: Erlebnisaktivierende Methoden mit 20 Fallbeispielen zum Selbsttraining für Trainerinnen und Trainer, Supervisoren und Coaches. Weinheim u. Basel: Beltz Verlag; 2003.

28. Schulze HS. Transaktionsanalyse als Instrument dienstleistungsorientierter Personalschulung. Dienstleistungsfähigkeit. Wiesbaden: Gabler Verlag; 1991. p.283-307. DOI: 10.1007/978-3-322-83625-0_13

29. Scott K, Laws DM, Courboulay V, Meunier-Salaün M-C, Edwards SA. Comparison of methods to assess fear of humans in sows. Appl Animal Behav Sci. 2009;118(1-2):36-41. DOI: 10.1016/j.applanim.2009.02.004

30. Seiler JC. Epidemiologische Untersuchungen zur Identifizierung von Determinanten des Antibiotikaeinsatzes pro Tier in ausgewählten Schweinebeständen. Hannover: Tierärztliche Hochschule Hannover; 2015.

31. Skipiol A. Die Mensch-Nutztierversuch-Zeit. Dimensionen, Einflussfaktoren und Auswirkungen am Beispiel der Guteinhaltung in Hohenlohe. Südwestdeutscher Verlag für Hochschulschriften; 2010.

32. Sorge U, Kelton D, Lissomore K, Godkin A, Hendrick S, Wells S. Attitudes of Canadian dairy farmers toward a voluntary Johne's disease control program. J Dairy Sci. 2010;93(4):1491-1499. DOI: 10.3168/jds.2009-2447

33. Tuchscherer M, Manteuffel G. Die Wirkung von psychischem Stress auf das Immunsystem. Ein weiterer Grund für tiergerechte Haltung (Übersichtsreferat). Arch Animal Breed. 2000;43(6):547-560. DOI: 10.5194/aaab-43-547-2000

34. Wagels R, Feige K, Tipold A. Einführung und Evaluierung des Kommunikationsprojekts. Tierarztl Praxis. 2008;36(5):293-297. DOI: 10.3138/jvme.33.1.11

Corresponding authors:

Amely Campe
Stiftung Tierärztliche Hochschule Hannover, Institut für Biometrie, Epidemiologie und Informationsverarbeitung, Bünteweg 2, D-30559 Hannover, Germany
amelly.campe@tiho-hannover.de

Isabel Hennig-Pauka
Stiftung Tierärztliche Hochschule Hannover, Außenstelle für Epidemiologie in Bakum, Büscheler Str. 9, D-49456 Bakum, Germany
isabel.hennig-pauka@tiho-hannover.de

Please cite as
Trümmacher S, Schnepf A, Kleinsorgen C, Detlefsen H, Hessler J, Campe A, Hennig-Pauka I. Communication and animal observation in livestock farming – pilot study of a teaching project in veterinary education. GMS J Med Educ. 2021;38(3):Doc61.

DOI: 10.3205/zma001457, URN: urn:nbn:de:0183-zma0014577

This article is freely available from https://www.egms.de/static/de/journals/zma/2021-38/zma001457.shtml

Received: 2020-02-13
Revised: 2020-08-07
Accepted: 2020-09-21
Published: 2021-03-15

Copyright ©2021 Trümmacher et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.

DOI: 10.3205/zma001457, URN: urn:nbn:de:0183-zma0014577

This article is freely available from https://www.egms.de/static/de/journals/zma/2021-38/zma001457.shtml

Received: 2020-02-13
Revised: 2020-08-07
Accepted: 2020-09-21
Published: 2021-03-15

Copyright ©2021 Trümmacher et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Zusammenfassung

Zielsetzung: Im Rahmen eines Lehrprojektes sollen Studierende der Tiermedizin Tier- und Umgebungsbeobachtung und die Kommunikation darüber mit den für die Tiere verantwortlichen Personen auf schweinehaltenden Betrieben lernen. Sie werden darauf vorbereitet, Gesprächsverhalten zu reflektieren, schwierige Gesprächssituationen zu identifizieren und zielführend zu lösen. Neben Pilotierung ist die Evaluation des Lehrprojektes von Seiten der Studierenden sowie des Lehrpersonals Ziel der Untersuchung.

Methodik: Die Tierbeobachtung wird anhand eines virtuellen Bestandsrundganges auf Basis von Bildern und Videos geschult. Dabei werden didaktische Ansätze des Design-Thinking und der kreativen Walt-Disney-Methode genutzt, um eine zuvor priorisierte Problemstellung zu bearbeiten. Im Rollenspiel wird eine in der Schweinehaltung typische Konfliktsituation simuliert. Am Praxistag werden erlernte Fähigkeiten während einer Bestandsuntersuchung umgesetzt, bei der die Studierenden ihre Beobachtungen kommunizieren. Die Evaluation erfolgt mittels papierbasierter Fragebögen sowie Feedbackgesprächen.

Ergebnisse: Die Evaluationen der Studierenden sind positiv. Mehrfach wurde der Wunsch, Kommunikationslehrre in das Curriculum aufzunehmen, geäußert. Für die theoretischen Lehreinheiten ist eine größere Gruppe nötig, um Interaktion durch Diversität zu erreichen. Das Erlernte wird am Praxistag zuverlässig angewandt und umgesetzt.

Schlussfolgerung: Die theoretischen Lehreinheiten bereiten die Studierenden ausführlich auf die Bestandsuntersuchung vor und schulen sie in Grundlagen der Kommunikation. Bei der Durchführung des praktischen Teils bieten sich Anpassungen in Ablauf und Schwerpunktsetzung an. Die Studierenden erachten die vermittelten Informationen und Methoden als wichtig.

Schlüsselwörter: Kommunikation, Bestandsuntersuchung Schwein, Tierbeobachtung, patientenzentrierte Ausbildung

Sara Trittacher\(^1\)
Anne Schnepf\(^2,3\)
Christin Kleinsorgen\(^4\)
Henrik Detlefsen\(^5\)
Johannes Hessler\(^6\)
Amely Campe\(^2,3\)
Isabel Hennig-Pauka\(^1\)

1 Stiftung Tierärztliche Hochschule Hannover, Außenstelle für Epidemiologie in Bakum, Bakum, Deutschland
2 Stiftung Tierärztliche Hochschule Hannover, Institut für Biometrie, Epidemiologie und Informationsverarbeitung, Hannover, Deutschland
3 Stiftung Tierärztliche Hochschule Hannover, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, Hannover, Deutschland
4 Stiftung Tierärztliche Hochschule Hannover, ZELDA - Zentrum für E-Learning, Didaktik und Ausbildungsforschung, Hannover, Deutschland
5 Tierarztpraxis Bethen, Cloppenburg, Deutschland
6 TPL Tierarztpraxis Lastrup-Löningen, Lastrup, Deutschland
1. Einleitung

Studierende der Tiermedizin mit dem Schwerpunkt Nutztiermedizin haben in ihrem zukünftigen Tätigkeitsbereich mit zunehmend schwierigeren Arbeitssituationen konfrontiert. Kaum ein anderer Wirtschaftszweig befindet sich in einem ähnlichen Spannungsfeld zwischen Tierschutz, Umweltschutz, Verbraucherschutz und Ökonomie, wie die Nutztierhaltung in Deutschland. Die Betreuung von Nutztierbeständen hat gegenwärtig das Ziel, einen hohen Gesundheitszustand und das Wohlbefinden der Tiere im Sinne eines vorbeugenden Verbraucherschutzes zu bewahren. Die Einhaltung von Standards ist zu sichern sowie der Ausbruch von Tierseuchen und anderen Erkrankungen zu verhindern und frühzeitig zu detektieren. Die Aufgabe von Tierärztinnen und Tierärzten ist es, Gesundheitsstörungen auf Betrieben vorzubeugen und deren Auswirkungen durch geeignete Diagnostik und Therapie gering zu halten. Mit ihrer Expertise bezüglich Krankheiten, Infektionen, Tierwohl und Lebensmittelhygiene können Tierärztinnen und Tierärzte ein Bindeglied zwischen den gegensätzlichen Lebenswirklichkeiten der Verbraucherinnen und Verbraucher und der in der Landwirtschaft täti gen Personen sein. Für ihre Rolle als „Vermittler zwischen den Welten“ müssen sie entsprechend ausgebildet werden. Dafür ist es nicht ausreichend, während des Studiums lediglich veterinärmedizinisches Fachwissen zu vermitteln, sondern es müssen zusätzlich Einfühlungsvermögen sowie grundlegende kommunikative Fähigkeiten vermittelt werden. Derzeit sieht das Studium der Veterinärmedizin in Deutschland in seinem Curriculum keine expliziten Pflichtlehreveranstaltungen zum Thema Kommunikation vor, obwohl die Wirksamkeit einer Beratung von einem wertschätzenden kommunikativen Austausch zwischen der die Tiere haltenden Person und der Tierärztin oder dem Tierarzt abhält [6], [16], [18]. Inhalte werden im Hidden Curriculum oder in Wahlpflichtveranstaltungen angeboten [17], wo diese vermehrt auf Kommunikation in der Kleintier- oder Pferdepraxis abzielen. In der Nutztiermedizin bestehen gänzlich andere Zielkonflikte und eine größere Anzahl unterschiedlicher Akteure sind auf den Betrieben in das Spannungsfeld involviert (u.a. kontrollierende Behörden, Schlachthöfe, Fleisch-vermark tends Industrie, Banken, Klima-, Bau- und Stalltechniker, Erzeugergemeinschaften, Endverbraucher). Ein weiterer Unterschied ist, dass weniger das Individualtieren oder der Tierarzt selbst, sondern der ganze Bestand mit einer variablen Tieranzahl beobachtet und in der Kommunikation mit den Tierhaltenden berücksichtigt wird. Entsprechend den Ergebnissen einer Recherche ist die beschriebene Veranstaltung für den Nutztierbereich mit dem Fokus auf Kommunikation während eines Bestandsbesuchs die erste ihrer Art in Deutschland, welche als Lehrveranstaltung angeboten werden muss.

Praktizierenden Tierärztinnen und Tierärzten sind die Erwartungen und Bedürfnisse der tierbetreuenden Personen nicht immer klar [7]. Landwirten und Landwirte halten sich ihrerseits nicht unbedingt an die Empfehlungen der Tierärztinnen und Tierärzte [32]. Austausch und Kommunikation aller Akteure ist das wichtigste Instrument, da es darum geht, Entscheidungen im Spannungsfeld von Zielkonflikten zu treffen [18]. Darum wird aus tierärztlicher Sicht ein großer Bedarf darin gesehen, kommunikativ geschult zu sein [4], [24]. Auch wenn erste „anvertraubare professionelle Tätigkeiten“ für den Nutztierbereich definiert [9] und die Kommunikation insbesondere im bovinen Herdenmanagement elaboriert wurden [23], [24], mangelt es weiterhin an Leitfäden und innerbetrieblichen Schulungsangeboten für kommunikative Kompetenzen. Insgesamt ist die Compliance des landwirtschaftlichen Personals eine Voraussetzung für die Aufrechterhaltung der Tiergesundheit. Neben Wissen und Motivation sind auch Empathie für das Tier und die „Einstellung“ der die Tiere betreuenden Personen ein Erfolgsfaktor [22], [31]. Die Bedeutung der Einstellung und der Persönlichkeit der Tierhaltenden, die Einfluss auf die Mensch-Tier-Beziehung haben, sind wissenschaftlich bewiesen. Über die Mensch-Tier-Beziehung werden das Stress-Level der Tiere [31], [33], die Häufigkeit und Menge von eingesetzten antibiotischen Wirkstoffen [30], die Einhaltung von Biosicherheitsmaßnahmen [5] und die Wahrnehmung und Behandlung von Einzelheiten, die länger anhaltenden Schmerzen, Leiden und Schäden [13] beeinflusst.

Die Studierenden sollen in dieser neu konzipierten Lehrveranstaltung Tierbeobachtungen gemeinsam mit dem landwirtschaftlichen Personal durchführen. Hierbei erhalten sie einen Einblick, worauf sie bei der Kommunikation achten können, um Missverständnisse oder Konflikte zu minimieren. Neue Erfahrungen und Informationen während einer gemeinsamen Bestandsuntersuchung können durch Bewusstmachung von Zuständen zur Änderung entstehen. Eine weitere Kreativmethode, die in der Kommunikation mit Tierhaltenden schärfen und bereits kurzerhand und nachhaltig zu einem Lernerfolg führen [1], [10]. Als innovativer Ansatz in der industriellen Forschung wird das Design-Thinking verwendet, welches der kreativen Entwicklung von Problemlösungen aus Sicht der Nutzerinnen und Nutzer dient [3]. Hierzu wird die Perspektive der zukünftigen Kundinnen und Kunden eingenommen, ein Problem ermittelt, Lösungswege beleuchtet, eine Lösung priorisiert und umgesetzt. Indem die Studierenden die Rolle der Tierbetreuenden auf ihren Betrieben einnehmen, kann ein Problem besser erfasst werden und es können kreative Lösungsmöglichkeiten entstehen. Eine weitere Kreativmethode, die in der Lehrveranstaltung zur Anwendung kommt, ist die Walt Disney-Methode [8]. Bei dieser Methode werden die Rollen des Realisten, des Träumers und des Kritikers auf die Studierenden verteilt und dann über Lösungen zu einem vorher definierten Problem – moderiert durch die Lehrperson – diskutiert. Der daraus entstehende Konsens berücksichtigt die Bedürfnisse und Ziele unterschiedlicher Akteure.

Insgesamt ist die Zielsetzung dieser Studie die Evaluation eines Lehrprojektes inklusive Kommunikationstraining,
welches spezifisch für die Vermittlung von kommunikativen Kompetenzen im Bereich der Tierbeobachtung und Bestandsbetreuung in der Nutztiermedizin entwickelt wurde. Die Evaluation erfolgt aus Sicht der Studierenden sowie der Dozierenden mit dem Ziel der Weiterentwicklung und Optimierung des Lehrkonzeptes.

2. Projektbeschreibung – Methode

2.1. Positionierung der Lehrveranstaltung

Die Lehrveranstaltung wurde sechs Mal im Wintersemester 2019/2020 im neunten Fachsemester des Veterinärmedizinstudiums, dem sogenannten „Praktischen Jahr“, durchgeführt [34]. Sie wurde in der Schwerpunkttausbildung „Schwein und Geflügel“ an der Tierärztlichen Hochschule Hannover angeboten. In Dreierruppen durchlaufen Studierende jeweils vierzehntägige Lernphasen in der Klinik für Kleine Klauentiere (Schweine und kleine Wiederkäufer), Geflügelklinik, der ambulatorischen Klinik (Ambulante Behandlungen von Großtieren auf Betrieben) und der Außenstelle für Epidemiologie (AFe). Die AFe, an der die neue Lehrveranstaltung in der zweiten Woche stattfindet, ist eine diagnostische Einrichtung in einer Region mit einer hohen Dichte an schwein- und wiederkäuerhaltenden Betrieben. Grundsätzlich sollen in dieser Phase des Studiums die theoretisch erarbeiteten Lehrinhalte in der Praxis angewendet werden. Dies erfordert die Analyse von konkreten Situationen, ihre Bewertung und den ersten Schritt in die Richtung einer erforderlichen Handlung [3].

Die Lehrveranstaltung wurde wechselnd von einer einzelnen Lehrperson aus einer Gruppe von vier Tierärztinnen und Tierärzten abgehalten, die alle Lehrrfahrung besitzen und sich selbst im Rahmen der Personalentwicklung in Bezug auf Kommunikationsstrategien und didaktische Methoden fortbilden. Während der Einleitungsphase werden die Studierenden anhand von vier Ideen eingetragen, bevor der Zettel an die nächste Person weitergegeben wird und der Prozess erneut beginnt. Die so gesammelten Gedanken werden anschließend besprochen und zusammengefasst. In einem einführenden Referat wird dargestellt, dass es Bereiche in der Nutztiermedizin gibt, für die die Bedeutung der Einstellung und der Persönlichkeit des Tierhaltenden wissenschaftlich bewiesen wurde. Für die nächste Arbeitsphase wird der Ansatz des Design-Thinking vorgestellt, bei dem die Studierenden die Perspektive der tierhaltenden Person einnehmen [3]. Darauf basierend erleben die Studierenden einen virtuellen Bestandsrundgang über die Augen des landwirtschaftlichen Personals. Tiersignale und Umgebungsfaktoren sollen beobachtet und priorisiert werden. Die Gruppe erarbeitet sich auf einen sich daraus ergebenden Problemkreis, für den nach der Walt-Disney-Methode [8] eine Lösung erarbeitet wird, die für alle annehmbar ist. Anschließend werden der Praxistag auf dem Bestand mit den Schlüsselfragen (siehe Tabelle 3) an die Landwirtin bzw. den Landwirt und die einzelnen Untersuchungsprotokolle erläutert. Abschließend werden offene Fragen beantwortet und die Ergebnisse gesichert.

2.2. Der theoretische Teil der Lehrveranstaltung

Der theoretische Teil der Lehrveranstaltung besteht aus zwei Teilen mit je vier Lehrinheiten, deren Lehrkonzepte mit Zeitplan und Methoden in Tabelle 1 und Tabelle 2 zusammengefasst sind.

Im ersten Teil, der von der AFe durchgeführt wird, steht die Wahrnehmung der Tiersignale und -umgebung im Mittelpunkt. In der Einleitungsphase führen die Studierenden eine Analyse der Stärken, Schwächen, Risiken und Chancen (SWOT-Analyse [15]) der AFe, basierend auf ihren Erfahrungen und Erlebnissen der ersten Woche durch. Dabei machen sie sich mit der Methode vertraut, die auch auf dem landwirtschaftlichen Betrieb durchgeführt wird. In der Regel werden in jedes der vier Felder (Stärken, Schwächen, Chancen und Risiken) mindestens drei Ideen eingetragen, bevor der Zettel an die nächste Person weitergegeben wird und der Prozess erneut beginnt. Die so gesammelten Gedanken werden anschließend besprochen und zusammengefasst. In einem einführenden Referat wird dargestellt, dass es Bereiche in der Nutztiermedizin gibt, für die die Bedeutung der Einstellung und der Persönlichkeit des Tierhaltenden wissenschaftlich bewiesen wurde. Für die nächste Arbeitsphase wird der Ansatz des Design-Thinking vorgestellt, bei dem die Studierenden die Perspektive der tierhaltenden Person einnehmen [3]. Darauf basierend erleben die Studierenden einen virtuellen Bestandsrundgang durch die Augen des landwirtschaftlichen Personals. Tiersignale und Umgebungsfaktoren sollen beobachtet und priorisiert werden. Die Gruppe erarbeitet sich auf einen sich daraus ergebenden Problemkreis, für den nach der Walt-Disney-Methode [8] eine Lösung erarbeitet wird, die für alle annehmbar ist. Anschließend werden der Praxistag auf dem Bestand mit den Schlüsselfragen (siehe Tabelle 3) an die Landwirtin bzw. den Landwirt und die einzelnen Untersuchungsprotokolle erläutert. Abschließend werden offene Fragen beantwortet und die Ergebnisse gesichert.

In der ersten Arbeitsphase werden die Studierenden mit Fragen bezüglich ihrer bisherigen Erfahrungen und ihres Vorwissens auf die folgende Lehreinheit eingebracht. Im anschließenden Rollenspiel wird ein in der tierärztlichen Bestandsbetreuung von Schweinebetrieben häufig vorkommende Konfliktsituation simuliert. Die Kommunikation und Gefühle, die in dem Rollenspiel entstehen, dienen als Grundlage für die folgenden unterschiedlichen theoretischen Ansätze.

In der ersten Arbeitsphase werden das in der Transaktionsanalyse anzusiedelnde Dramadreieck [28] sowie, als Lösungsstrategie für dieses, die Gewaltfreie Kommunikation nach Rosenberg [25] vorgestellt. Anschließend wird, durch das Einordnen einer Situation aus dem Rollenspiel und das Formulieren eines Satzes nach Rosenberg [25] erläutert, was sich anhand der Methode verständlich machen lässt. Hierbei wird insbesondere auf verschiedene Vertragsmodelle in der Tiermedizin hingewiesen und die Sonderrolle der Studierenden während des Bestandsbesuches herausgearbeitet. Da die Kooperations- und Änderungsbereitschaft des landwirtschaftlichen Personals einen essentiellen Teil der tierärztlichen Behandlung darstellt, wird den Studierenden mit Hilfe des „Rubikonmodells der Handlungsphasen“ [12] erläutert, woran sie erkennen können, an welchem Punkt sich die Landwirtin oder der Landwirt in der Entscheidung befindet. Eventuelle Möglichkeiten der Einflussnahme auf die Entscheidung werden identifiziert.
Tabelle 1: Lehrkonzept zur Tierbeobachtung und Vorbereitung auf die Bestandsuntersuchung

| Ziele: |
| --- | --- | --- |
| Die Studierenden: |
| 1. können in einem Schweinebetrieb ein Problem identifizieren und Wege zur Lösung aufzeigen. |
| 2. können herausfinden, warum eine Landwirtin/ ein Landwirt mit einer Situation nicht zufrieden ist. |
| 3. sind instruiert für den praktischen Teil der Lehrveranstaltung. |

Inhalt	Methode	Dauer (min)
Einleitungsphase 1		
Reflexion der ersten Woche an der AFE	SWOT-Analyse zur AFE	45
Besprechung der Ziele der Lehrveranstaltung und ihre Einordnung in einen übergeordneten Sinnzusammenhang	Gespräch	
Visualisierung am Flip-Chart		
Einleitungsphase 2		
Bedeutung von Einstellung und Persönlichkeit des Tierhaltenden für Tierwohl, Tiergesundheit und Verbraucherschutz	Referat mit Präsentation	30

| Arbeitsphase 1 |
| Kundenperspektive einnehmen |
| Was will die Landwirtin/ der Landwirt? Tierbeobachtung durch die Augen der Landwirtin/ des Landwirtes- die eigene Wahrnehmung und Empathie schöpfen. Schlüsselfrage: Welche Beobachtungen sind für die Landwirtin/ den Landwirt wichtig und warum? | Virtueller Bestandsbesuch durch alle Produktionsbereiche anhand von Fotos und Videos | 45 |
| Fokussierung |
| Was ist die Quintessenz aus den gesammelten Beobachtungen? | Sammeln von Beobachtungen, die für die Landwirtin/ den Landwirt von Bedeutung sind, bzw. die Handlungen erfordern |
| Kreativitätsphase |
| Welche Handlungen können aus den Beobachtungen abgeleitet werden (mögliche Lösungen für Probleme) | Sortieren und besprechen der auf Moderationskarten gesammelten Beobachtungen, Priorisierung, Festlegung auf eine Beobachtung |
| **Arbeitsphase 2** |
| Erläuterung und Vorbereitung der strukturierten Bestandsuntersuchung | Brainstorming für beste Lösungen mit der Walt-Disney-Methode (Rollenspiel: Trauerm, Realist und Kritiker) |
| **Abschlussphase** |
| Ergebnissicherung | Erklärung des Ablaufes im Bestand, Bestandsfragebogenpräsentation mit zu stellenden Schlüsselfragen, Sichtung der auf unterschiedliche Bestandsprobleme zugeschnittenen Bestandschecklisten in Papierform | 15 |

Tabelle 2: Lehrkonzept zur Einführung in die Kommunikation mit der Landwirtin/ dem Landwirt

| Ziele: |
| --- | --- | --- |
| Die Studierenden: |
| 1. können Beobachtungen ohne eigene Interpretation kommunizieren. |
| 2. können schwierige Gesprächssituationen erkennen und kennen Strategien, um mit diesen umzugehen. |
| 3. können ihr eigenes Gesprächsverhalten reflektieren. |

Inhalt	Methode	Dauer (min)
Einleitungsphase		
Kennenlernen und Einstimmen der Teilnehmenden durch Abfragen ihrer Erfahrungen in der Kommunikation mit Tierhaltenden	Denkanregende Fragen zu Erfahrungen und Vorwissen der Studierenden	15
Kommunikationstraining mit Gesprächsführung und Diskussion in Konfliktsituation und Analyse des Gesprächsverlaufs	Erfahrungsberichte, Visualisierung am Flip-Chart	
Grundlagen der Transaktionsanalyse mit besonderem Fokus auf das Dramenmodeck	Rollenspiel mit Ferkelerzeuger, Aufzüchter, Mäster, Tierärztin/ Tierarzt	
Interventionsmöglichkeiten (Gewaltfreie Kommunikation nach Rosenberg)	Gesprächsverlaufsanalyse hinsichtlich der Rollen und der jeweiligen Gefühle	
Arbeitsphase 2		
Aufgaben einer Tierärztin/ eines Tierarztes	Anwendung der Gewaltfreien Kommunikation nach Rosenberg	
Rubikons Modell der Handlungsphasen	Visualisierung am Flip Chart	45
Rolle und Auftrag der Tierärztin/ des Tierarztes (Prinzip-Agent-Prinzip)	Moderationskarten	
Aufgaben einer Tierärztin/ eines Tierarztes	Diskussionsrunde	
Abschlussphase		
Ergebnissicherung		
Klärung offener Fragen	Flip-Chart	20
Ausblick für Vertiefung des Lernstoffs	Modersparunde	
Während der Abschlussphase werden die behandelten Themen zur Sicherung kurz von der Lehrperson zusammengefasst und offene Fragen geklärt.

2.3. Praxisteil: Tierbeobachtung und Kommunikation auf dem Betrieb

Der praktische Teil der Lehrveranstaltung auf einem schweinehaltenden Betrieb fand in enger Abstimmung mit den bestandsbetreuenden Tierärzten zwei Tage nach der theoretischen Lehrreihe statt. Dieser folgt einem festen Ablaufplan (siehe Tabelle 3), damit sich die Studierenden während der komplexen Bestandssituation auf Tierbeobachtung und Kommunikation fokussieren können. Eingeplant sind sechs Lehreinheiten (4,5 Zeitstunden), die jedoch abhängig von der Größe des Betriebes und dem Ausmaß der Probleme variieren. Während sich die Studierenden alleine die Umgebung und Tiere anschauen und ihre Beobachtungen notieren, führt die Lehrperson ein Anamnesegespräch. Nach Art eines „Hebammengesprächs“ zur Erhebung von Anliegen [27] wird mit offenen Fragen und einer zunehmenden Gesprächsführung das wichtigste Anliegen der Landwirtin oder des Landwirtes ermittelt. Darauf folgen Schlüsselfragen, welche aussagekräftig für Persönlichkeits- und Einstellungsmuster sein können (siehe Tabelle 4). Im Anschluss gehen alle gemeinsam durch den Bestand, wobei die Studierenden ihre Beobachtungen wertfrei kommunizieren und weitere Beobachtungen notieren. Es erfolgt eine Fokussierung auf das im Anamnesegespräch herausgearbeitete drängendste Problem. Die von dem Krankheitsbild betroffenen Tiere werden von den Studierenden gezählt und untersucht. Dies ermöglicht eine quantitative und qualitative Erfassung des Problems, welches mit dem landwirtschaftlichen Personal besprochen wird. Ein Forced Human Approach-Test wird als Verhaltenstests zur Beurteilung der Mensch-Tier-Beziehung durchgeführt [29]. Dabei definiert der Untersuchende ein bestimmtes Tier und nimmt mit steigender Intensität Kontakt auf. Je intensiver der Kontakt möglich ist, bevor Fluchtverhalten eintritt, desto höher ist der Score auf einer Skala von eins bis vier. Zuletzt wird mit allen Beteiligten eine SWOT-Analyse zum Betrieb durchgeführt und besprochen.

2.4. Nachbereitungsphase, Evaluierung und Ausblick

Im Anschluss an den praktischen Teil der Lehrveranstaltung erhalten die Studierenden die Gelegenheit, jeden der drei Lehrveranstaltungssteile anhand eines anonymen, papierbasierten Fragebogens zu evaluieren und ein offenes Feedback-Gespräch zu führen. Für die Evaluation wird das Lehrpersonal, der Lehrstoff, die Motivation der Studierenden, sowie der Nutzen, den sie aus dieser Lehrveranstaltung gezogen haben mittels einer fünfstufigen Skala nach dem Likert-Typ [19] (stimmt genau, stimmt, neutral, stimmt eher nicht, stimmt überhaupt nicht) bewertet. Die Evaluationen werden anschließend deskriptiv in Form von Grafiken mit SAS9.4 (SAS Institute Inc., Cary, NC, United States) ausgewertet. Bis zum Ende der Woche können die Studierenden die Ergebnisse der Schlüsselfragen in eine Datentabelle für spätere Auswertungen eintragen und fachliche Fragen klären. Anhand der eigenen Erlebnisse und Beobachtungen während der unterschiedlichen Teile der Lehrveranstaltung, der Bewertung durch die Studierenden und dem Abschlussgespräch evaluiert die Lehrperson die Lehrveranstaltung ihrerseits. Alle daraus gewonnenen Erkenntnisse werden in zukünftige Lehrveranstaltungen übernommen, da im Folgesemester alle Betriebe erneut mit weite-
Tabelle 4: Schlüsselfragen an die Landwirtin/ den Landwirt während der Bestandsuntersuchung

Nr.	Schlüsselfrage	Antwortmöglichkeit	Aussagekraft der Antwort	Referenz
1	In welcher Altersgruppe und warum muss am meisten antibiотisch behandelt werden?	Auswahltabelle mit Altersgruppen und Erkrankungen	Deckungsgleiche Antworten auf 1. und 2. Antwort deuten auf eine folgenreiche Einschätzung hin, sprechen für eine gute Tiefebeobachtung und gegen eine überdurchschnittliche Angemessenheit, binomial	Seiler 2015
2	Welches ist derzeit das drängendste Gesundheitsproblem?	Auswahltabelle mit Altersgruppen und Erkrankungen	Verlustabschätzung ggf. Aufschluss über die Risikowahrnehmung, ordinal	Weber et al. 2002
3	Wie hoch wird der Verlust durch das Problem eingeschätzt?	Likert-Skala (1-5)	Gewinnabschätzung gibt Aufschluss über die Risikowahrnehmung, ordinal	
4	Wie hoch wird der Gewinn bei Lösung des Problems eingeschätzt?	Freitext	Freitext	
5	Wie habe ich versucht, das Problem bisher zu lösen?	Freitext	Freitext	
6	Welche neuen Strategien sind mir bekannt, um das Problem möglichereweise zu lösen?	Freitext	Freitext	
7	Würden sie diese Strategie ausprobieren wollen?	Likert-Skala (1-5)	Freitext	
8	Wie viel Zeit verbringen sie pro Tag bei den einzelnen Altersgruppen?	Betreuungszeit pro Tier	Motivation, quantitativ, metrisch	
9	Wo sind gerade kranke Tiere auf dem Hof und woran leiden diese?	Auswahltabelle Altersgruppen und Erkrankungen, Abgleich mit den Angaben der Studierenden nach der Bestandsuntersuchung	Tierbeobachtung, binomial	
10	Wann und wie werden sie aktiv, wenn sie ein krankes Tier entdecken?	Likert-Skala 1-5 für vorgegebene Antworten	Reaktionsschwelle, ordinal	
11	Wie bewerten sie den Gesundheitszustand Ihres Tierbestandes?	Likert-Skala 1-5 im Abgleich mit dem Score-Vergabe durch die Studierenden nach der Bestandsuntersuchung	Fremd- und Selbstwahrnehmung, Tierbeobachtung, binomial	
12	Woran messen sie ihren Erfolg?	Freitext	Extrinsiche Motivatoren, qualitativ, nominal	
13	Worauf sind sie besonders stolz?	Freitext	Intrinsische Motivatoren, qualitativ, nominal	

3. Ergebnisse

3.1. Bewertung der Lehrveranstaltung durch die Lehrenden

3.1.1. Theoretische Lehreinheiten

Die interaktiven Lehreinheiten werden gut angenommen und die Studierenden arbeiten interessiert mit. Die vorgestellten und erarbeiteten Methoden werden verstanden und verinnerlicht, was sich durch die erfolgreiche Anwendung der erlernten Fähigkeiten während des praktischen Teils der Lehrveranstaltung zeigt. Grundsätzlich hat sich, sowohl im theoretischen als auch im praktischen Teil, die Methode der SWOT-Analyse bewährt. Durch die gezielte Reflexion und die ausgelösten Assoziationen im Rahmen des Brainstormings lässt sich schnell eine Analyse von Bedingungen und Situationen durchführen, die eine sehr gute Diskussionsgrundlage darstellt.

3.1.2. Praktische Lehreinheit

Die Schwerpunkthemen, die während der Bestandsuntersuchungen bearbeitet wurden, sind in Tabelle 5 zusammengefasst. Die Studierenden sind, wie in der theoretischen Einheit geübt, in der Lage, die Perspektive der tierbetreuenden Person einzunehmen. Die Einschätzung der Bestandsgesundheit durch die Studierenden entspricht in fünf von sechs Bestandsuntersuchungen der der tierbetreuenden Person.

3.2. Bewertung der Lehrveranstaltung durch die Studierenden

Die 17 Studierenden, die an dieser Lehrveranstaltung teilgenommen haben, hatten laut eigenen Angaben keine besonderen Vorkenntnisse in Bezug auf Kommunikationsstrategien. Gleichzeitig bestand das Bewusstsein für Probleme in der Kommunikation, da die Studierenden von zahlreichen individuellen Situationen bei ihren Begegnungen mit Tierärztinnen, Tierärzten und tierhaltenden Personen berichten konnten, die problematisch verlaufen waren. Die theoretischen Lehreinheiten werden durch zwölf von fünfzehn Studierende als inhaltlich bedeutend und nützlich eingeschätzt. Mindestens zehn geben an, in den verschiedenen Einheiten etwas gelernt zu haben. Das spiegelt sich auch in den Evaluationen des Praxista...
Tabelle 5: Schwerpunkthemen auf den untersuchten Betrieben

Bestand	Anzahl Sauen (Ferkel pro Sowine)	Anzahl Ferkel (Aufzucht)	Anzahl Mastschweine (Mast)	Altergruppe im Fokus	Bestands-erkrankungen im Fokus	Einschätzung der Bestandsgesundheit (Likert-Skala: 1 (sehr schlecht) bis 5 (sehr gut))	Landwirt*:* Studierende
1	-	3940	600	Aufzucht	Atemwegserkrankungen	3	4
2	-	4500	500	Mast	Lämmer	4	4
3	-	1200	1440	Aufzucht	ZNS-Störungen	3	3
4	330	1280	850	Saugfkerkel	Diarrhoe	4	4
6	-	4500	Mast	Konjunktivitis		3	3

Abbildung 1: Evaluierung der Lehrveranstaltung „Tierbeobachtung in Schweinehaltenden Betrieben“ durch die Studierenden (n=15)

3.3. Bewertung der erhobenen Daten

Anhand statistischer Befundauswertungen kann nach Folgebefragungen festgestellt werden, ob die erarbeiteten und umgesetzten Lösungsvorschläge wirksam waren. Dies kann im besten Fall einen Rückschluss auf die Wirksamkeit der durch die Lehrveranstaltung erfolgten Bestandsberatung zulassen.

4. Diskussion

4.1. Theorie

Um den Studierenden die Grundlagen der Bestandsuntersuchung zu vermitteln, hat sich in der Theorieeinheit besonders die virtuelle Bestandsbegehung bewährt. Das Thema Kommunikation in der Nutztiermedizin wurde von den Studierenden dankbar angenommen und auch die bestandsbetreuenden Tierärztinnen und Tierärzte sehen darin einen großen Bedarf. Ebenfalls bewährt hat sich das Rollenspiel zur Aktivierung der Studierenden. Durch die fokussierte Vermittlung theorethischer Hintergründe erlangen die Studierenden einen tieferen Einblick in die jeweilige Theorie, werden aber gleichzeitig nicht mit Details überfordert. Diese Form der Lehre sollte weiterhin beibehalten werden, da durch einen Frontalunterricht die gewünschten Lernziele wahrscheinlich nicht erreicht werden können. Insbesondere für das Rollenspiel...
Abbildung 2: Evaluierung der Lehrveranstaltung „Konflikte zwischen Tierarzt/Tierärztin und Tierhalter/Tierhalterin, die in der Kommunikation sichtbar werden“ durch die Studierenden (n=15)

Abbildung 3: Evaluierung der Lehrveranstaltung „Bestandsuntersuchung und Kommunikation“ durch die Studierenden (n=17)

im theoretischen Teil zum Thema Kommunikation mit dem landwirtschaftlichen Personal sollte jeder Rolle eine beobachtende Person zugewiesen werden. Sich auf die Beobachtung konzentrierend, kann der Studierende vor- und nonverbale Kommunikation der Rollenperson wahrnehmen und in der anschließenden Diskussionsrunde beschreiben. Der interaktive Charakter beider theoretischer Lerneinheiten erfordert grundsätzlich eine größere Anzahl an Studierenden. Sowohl für die Rollenspiele als auch für die SWOT-Analyse ist die Anzahl von zwei bis drei Personen zu gering. Bei einer erneuten Durchführung dieser Lehrveranstaltung wird eine Vergrößerung der Gruppe auf neun Personen angestrebt, da die unterschiedlichen Arbeitsphasen durch die jeweiligen Erfahrungen und Emotionen mehrerer Teilnehmender bereichert werden.

4.2. Praxis

Die Evaluationen der Studierenden lassen darauf schließen, dass die Lehrperson die Unwägbarkeiten auf dem Betrieb erfolgreich auffängt, so dass die Studieren-
den das Erlernte in einem geschützten Rahmen anwen-
den und ihre Lernerfolge zeigen können (keine Überfor-
derung mit der Gesprächssituation – siehe Abbildung 3).
Im Sinne des didaktischen Modells des „Constructive
Alignment“ [2] wurden die oben genannten Lernziele
definiert, mit den Studierenden kommuniziert und darauf
abgestimmte Lehrmethoden angewendet. Eine systema-
tische Lernerfolgskontrolle wurde bisher nicht erarbeitet,
soll aber in Zukunft in die Lehrveranstaltung implemen-
tiert werden. Hierfür wird eine Kommunikationscheckliste
Anlehnung an den Calgary-Cambridge Guide [1], [18]
und das Roter interaction analysis system [26] mit beson-
derer Berücksichtigung bestandsuntersuchungsspezifis-
cher Items erarbeitet. Während der Bestandsuntersu-
chung wird diese individuell für jeden Studierenden aus-
geführt, so dass nach Abschluss der Lehrveranstaltung
ein standardisiertes und individuelles Feedback gegeben
werden kann.

Die Untersuchungszeit, die den Studierenden zur Wahr-
nehmung der Tiere und der Tierumgebung frei zur Verfü-
gung stand, wurde von allen Studierenden immer ausge-
schöpft und musste meistens durch die Lehrperson be-
endet werden. Um die in der Theorie erlernten Methoden
der Tier- und Umgebungsbeobachtung selbstständig
umsetzen und anwenden zu können, soll den Studieren-
den mehr Zeit für die freie Beobachtung eingeräumt
werden. Zukünftig ist geplant, in einer zweiten Phase den
strukturierten Beobachtungsbogen individuell ausfüllen
zulassen. Durch den Abgleich der Antworten der Studie-
renden in einem dritten Schritt und die Kommentierung
durch die Lehrperson werden die Beobachtungen objek-
tiviert.

Die Studierenden bewerteten die Tiergesundheit auf den
Betrieben bis auf eine Ausnahme in gleicher Weise wie
die tierbetreuende Person. Im Bestand 1 bewertete die
Landwirtin bzw. der Landwirt die Tiergesundheit
schlechter. In diesem Betrieb war den Studierenden die
gute Buchtenstrukturierung und Sauberkeit, sowie das
gute Allgemeinbefinden der Tiere positiv aufgefallen. Dies
urteilt, als Husten und Niesen der Tiere. Die Symptomatik der Tiere führte nicht zu einem gestörten
Allgemeinbefinden und wurde überwiegend als ein Pro-
blerm der oberen Atemwege eingeschätzt. Die tierbetreu-
ende Person dagegen litt darunter, dass bei verstärktem
Auftreten von Husten in der Aufzuchtphase häufiger der
Satz von Antibiotika notwendig war. Das obste Anlie-
gen war daher eine Minderung der klinischen Symptome.
Diese Diskrepanz macht deutlich, dass es sich bei der
Situation im Bestand wichtig war. Ein Nachteil ist, dass
ich die Methode in ihrer Analyse oberflächlich bleibt, da keine
Priorisierung der gesammelten Informationen erfolgt und
weiteres notwendiges Expertenwissen fehlt (z.B. von einer
ökonomischen Beratung oder einer Stallbaufirma). Zu-
künftig sollte in der Nachbearbeitung auch eine Reflexion
der Gesprächssituationen auf dem Betrieb erfolgen. Dafür
nachseineMensch-Tier-Beziehung positiv auf die Fruchtbarkeit auswirkt [14].

Die SWOT-Analyse eignet sich gut für ein abschließendes
Reflexionsgespräch auf dem Betrieb mit allen Beteiligten.
Durch sie konnte Komplexität reduziert werden, was vor
allermehr für die Studierenden nach der unübersichtlichen
Situation im Bestand wichtig war. Ein Nachteil ist, dass
die Methode ihrer Analyse oberflächlich bleibt, da keine
Priorisierung der gesammelten Informationen erfolgt und
weiteres notwendiges Expertenwissen fehlt (z.B. von einer
ökonomischen Beratung oder einer Stallbaufirma). Zu-
künftig sollte in der Nachbearbeitung auch eine Reflexion
der Gesprächssituationen auf dem Betrieb erfolgen. Dafür
nachseineMensch-Tier-Beziehung positiv auf die Fruchtbarkeit auswirkt [14].

Die Untersuchungszeit, die den Studierenden zur Wahr-
nehmung der Tiere und der Tierumgebung frei zur Verfü-
gung stand, wurde von allen Studierenden immer ausge-
 schöpft und musste meistens durch die Lehrperson be-
endet werden. Um die in der Theorie erlernten Methoden
der Tier- und Umgebungsbeobachtung selbstständig
umsetzen und anwenden zu können, soll den Studieren-
den mehr Zeit für die freie Beobachtung eingeräumt
werden. Zukünftig ist geplant, in einer zweiten Phase den
strukturierten Beobachtungsbogen individuell ausfüllen
zulassen. Durch den Abgleich der Antworten der Studie-
renden in einem dritten Schritt und die Kommentierung
durch die Lehrperson werden die Beobachtungen objek-
tiviert.

Die Studierenden bewerteten die Tiergesundheit auf den
Betrieben bis auf eine Ausnahme in gleicher Weise wie
die tierbetreuende Person. Im Bestand 1 bewertete die
Landwirtin bzw. der Landwirt die Tiergesundheit
schlechter. In diesem Betrieb war den Studierenden die
gute Buchtenstrukturierung und Sauberkeit, sowie das
gute Allgemeinbefinden der Tiere positiv aufgefallen. Dies
ubten, als Husten und Niesen der Tiere. Die Symptomatik der Tiere führte nicht zu einem gestörten
Allgemeinbefinden und wurde überwiegend als ein Pro-
blerm der oberen Atemwege eingeschätzt. Die tierbetreu-
ende Person dagegen litt darunter, dass bei verstärktem
Auftreten von Husten in der Aufzuchtphase häufiger der
Satz von Antibiotika notwendig war. Das obste Anlie-
gen war daher eine Minderung der klinischen Symptome.
Diese Diskrepanz macht deutlich, dass es sich bei der
Situation im Bestand wichtig war. Ein Nachteil ist, dass
ich die Methode in ihrer Analyse oberflächlich bleibt, da keine
Priorisierung der gesammelten Informationen erfolgt und
weiteres notwendiges Expertenwissen fehlt (z.B. von einer
ökonomischen Beratung oder einer Stallbaufirma). Zu-
künftig sollte in der Nachbearbeitung auch eine Reflexion
der Gesprächssituationen auf dem Betrieb erfolgen. Dafür
nachseineMensch-Tier-Beziehung positiv auf die Fruchtbarkeit auswirkt [14].

Die SWOT-Analyse eignet sich gut für ein abschließendes
Reflexionsgespräch auf dem Betrieb mit allen Beteiligten.
Durch sie konnte Komplexität reduziert werden, was vor
allermehr für die Studierenden nach der unübersichtlichen
Situation im Bestand wichtig war. Ein Nachteil ist, dass
die Methode ihrer Analyse oberflächlich bleibt, da keine
Priorisierung der gesammelten Informationen erfolgt und
weiteres notwendiges Expertenwissen fehlt (z.B. von einer
ökonomischen Beratung oder einer Stallbaufirma). Zu-
künftig sollte in der Nachbearbeitung auch eine Reflexion
der Gesprächssituationen auf dem Betrieb erfolgen. Dafür
nachseineMensch-Tier-Beziehung positiv auf die Fruchtbarkeit auswirkt [14].

Die Untersuchungszeit, die den Studierenden zur Wahr-
nehmung der Tiere und der Tierumgebung frei zur Verfü-
gung stand, wurde von allen Studierenden immer ausge-
 schöpft und musste meistens durch die Lehrperson be-
endet werden. Um die in der Theorie erlernten Methoden
der Tier- und Umgebungsbeobachtung selbstständig
umsetzen und anwenden zu können, soll den Studieren-
den mehr Zeit für die freie Beobachtung eingeräumt
werden. Zukünftig ist geplant, in einer zweiten Phase den
strukturierten Beobachtungsbogen individuell ausfüllen
zulassen. Durch den Abgleich der Antworten der Studie-
renden in einem dritten Schritt und die Kommentierung
durch die Lehrperson werden die Beobachtungen objek-
tiviert.

Die Studierenden bewerteten die Tiergesundheit auf den
Betrieben bis auf eine Ausnahme in gleicher Weise wie
die tierbetreuende Person. Im Bestand 1 bewertete die
Landwirtin bzw. der Landwirt die Tiergesundheit
schlechter. In diesem Betrieb war den Studierenden die
gute Buchtenstrukturierung und Sauberkeit, sowie das
gute Allgemeinbefinden der Tiere positiv aufgefallen. Dies
ubten, als Husten und Niesen der Tiere. Die Symptomatik der Tiere führte nicht zu einem gestörten
Allgemeinbefinden und wurde überwiegend als ein Pro-
blerm der oberen Atemwege eingeschätzt. Die tierbetreu-
ende Person dagegen litt darunter, dass bei verstärktem
Auftreten von Husten in der Aufzuchtphase häufiger der
Satz von Antibiotika notwendig war. Das obste Anlie-
gen war daher eine Minderung der klinischen Symptome.
Diese Diskrepanz macht deutlich, dass es sich bei der
Situation im Bestand wichtig war. Ein Nachteil ist, dass
ich die Methode in ihrer Analyse oberflächlich bleibt, da keine
Priorisierung der gesammelten Informationen erfolgt und
weiteres notwendiges Expertenwissen fehlt (z.B. von einer
ökonomischen Beratung oder einer Stallbaufirma). Zu-
künftig sollte in der Nachbearbeitung auch eine Reflexion
der Gesprächssituationen auf dem Betrieb erfolgen. Dafür
nachseineMensch-Tier-Beziehung positiv auf die Fruchtbarkeit auswirkt [14].
Lehrperson spontan und flexibel reagieren können muss. Der Zeitauflauf für alle Beteiligten ist sehr hoch. Der enge Betreuungsschlüssel und die praktischen Beziehungen führen zu einer hohen Informationsdichte, die allen Beteiligten das Gefühl gibt, dass die Tage ereignisreich und ausgefüllt waren. In Zukunft könnte der Betreuungsschlüssel auf vier bis fünf Personen im Sinne der Effektivität erhöht werden, ohne dass zusätzliche Belastungen entstehen. Trotzdem wäre der in der tierärztlichen Ausbildung vor allem von der European Association of Establishments for Veterinary Education of Europe (EAEVE) geforderte Aspekt des „Hands-on-trainings“ [11] garantiert. In Zukunft sollte ein (wirtschaftlicher) Nutzen für den Betrieb durch die Lehrveranstaltung erkennbar werden. Ob und wie dieser erfasst werden kann, bedarf weiterer strategischer Überlegungen.

Nachdem mindestens ein halbes Jahr nach der gemeinsamen Bestandsuntersuchung vergangen war, erfolgte eine Nachbesprechung der Lehrenden mit den bestandsbetreuenden Tierärzten. Tatsächlich hatte sich auf allen Betrieben eine Besserung des in der jeweiligen Lehrveranstaltung in den Hauptfokus genommenen Problems ergeben. Diese Besserungen sind nach Ansicht der Autoren nicht auf jahreszeitlich bedingte Schwankungen oder den Zufall zurückzuführen. Diese Verbesserungen konnten von den Tierärzten mit einzelnen Maßnahmen in Verbindung gebracht werden, die eingeleitet wurden, nachdem die gemeinsame Bestandsuntersuchung erfolgt war. Ob die gemeinsame Erfahrung auf dem Betrieb den Anstoß für manche Veränderungsschritte gegeben hat, ist letztendlich nicht zu beantworten. Das Gesamtergebnis motiviert jedoch sehr, die Lehrveranstaltung in Zukunft fortzusetzen und im Curriculum fest zu etablieren.

5. Schlussfolgerung

Die theoretisch vermittelten Inhalte bereiten die Studierenden umfassend auf die Bestandsuntersuchung vor, denn im praktischen Teil kommunizieren die Studierenden ihre Beobachtungen im Stall sicher mit den für die Tiere verantwortlichen Personen. Ziel dieses Gesprächs ist es, Bedürfnisse, innere Bedingungen und Zielkonflikte zu erkennen, um gemeinsam zu konstruktiven Lösungen zu gelangen. Im besten Fall werden dadurch Verbesserungsprozesse auf dem Betrieb initiiert, die auf den Effekt der Lehrveranstaltung (gemeinsame, empathische Tierbeobachtung und Kommunikationserlebnis der Landwirt, bzw. des Landwirts) zurückgeführt werden können. Insgesamt wird die Lehrveranstaltung von Studierenden und Dozierenden positiv bewertet und als notwendig angesehen.

Ethik

Das Projekt wurde dem Datenschutzbeauftragten der Stiftung Tierärztliche Hochschule Hannover zur Prüfung vorgelegt und genehmigt. Die Anonymität der Daten war zu jedem Zeitpunkt der Studie gewährleistet.

Förderung

Die Finanzierung des Projektes mit der Nummer 123 erfolgte durch das Niedersächsische Ministerium für Wissenschaft und Kultur im Rahmen der Ausschreibung: Innovative Lehr- und Lernkonzepte: Innovation Plus (2019/20).

Steckbrief

Name des Standorts: Stiftung Tierärztliche Hochschule Hannover, Außenstelle für Epidemiologie, Büscheler Straße 9, 49456 Bakum und Institut für Biometrie, Epidemiologie und Informationsverarbeitung und Zentrum für E-Learning, Didaktik und Ausbildungsforschung, Bünteweg 2, 30559 Hannover

Studienfach/Berufsgruppe: Veterinärmedizin

Anzahl der Lernenden pro Jahr bzw. Semester: 200

Ist ein longitudinales Kommunikationscurriculum implementiert? Nein

In welchen Semestern werden kommunikative und soziale Kompetenzen unterrichtet? 1, 2, 9 (obligatorisch), 1-4, 5-8 (optionale Wahlpflichtfächer), 1-11 (Skills Lab, E-Learning)

Welche Unterrichtsformate kommen zum Einsatz?

- Obligatorisch: Vorlesung, Übungen in Form von Kleingruppenarbeit inkl. Gesprächssimulationen mit Schauspielern und Feedback
- Optional: Seminare, Übungen in Form von Kleingruppenarbeit inkl. Gesprächssimulationen mit Schauspielern und Feedback, E-Learning

In welchen Semestern werden kommunikative und soziale Kompetenzen geprüft (formativ oder bestehensrelevant und/oder benotet)? Formativ in Form von Feedbackgesprächen

Bestehensrelevant im 9. Fachsemester im Praktischen Jahr der Klinik für Kleintiere

Welche Prüfungsformate kommen zum Einsatz? Feedbackgespräche, Objektiv strukturierten klinischen Prüfung (OSCE)

Wer (z.B. Klinik, Institution) ist mit der Entwicklung und Umsetzung betraut? Zentrum für E-Learning, Didaktik und Ausbildungsforschung

Aktuelle berufliche Rolle der Autor*innen

- Sara Trittmacher: Tierärztin, tätig als wissenschaftliche Mitarbeiterin und Doktorandin an der Außenstelle für Epidemiologie in Bakum, involviert in mikrobiologische, molekularbiologische und serologische Diagnostik von Schweineerkrankungen und in Einbindung von Studie-
renden im Rahmen ihrer Lehrveranstaltung in praktische Labortätigkeiten, projektbezogene Entwicklung und Durchführung des neuen Lehrformates.

- Anne Schnepf: Tierärztin, tätig als wissenschaftliche Mitarbeiterin und Doktorandin am Institut für Biometrie, Epidemiologie und Informationsverarbeitung, statistische Versuchsplanung und Auswertung von Daten, Entwicklung und Bewertung von Persönlichkeitsfragebögen für den tiermedizinischen Bereich. Auswertung von Studien zur Einstellung von Tierbesitzern, projektbezogene Entwicklung und Durchführung des neuen Lehrformates mit Schwerpunkt Kommunikation.

- Christin Kleinsorgen: Tierärztin, wissenschaftliche Mitarbeiterin am Institut für Biometrie, Epidemiologie und Informationsverarbeitung der Einrichtung, Forschungsprojekte im Bereich der Diagnostik und Infektionsmedizin.

- Amelie Campe: Tierärztin, wissenschaftliche Mitarbeiterin am Institut für Biometrie, Epidemiologie und Informationsverarbeitung der Einrichtung, Forschungsprojekte im Bereich der Diagnostik und Infektionsmedizin.

- Johannes Hessler: Tierarztinspezialisierter Schweinepraxis im Oldenburger Münsterland, Betreuung von Schweinebetrieben unterschiedlicher Produktionsrichtungen und Größe, tierärztliche Beratung, Diagnostik und Prävention von Erkrankungen, Therapie, Gesundheitsmanagement von der Zucht bis zur Mast, Unterstützung der praktischen Ausbildung der Studierenden der Stiftung Tierärztliche Hochschule Hannover in der Schwerpunktausbildung „Schwein und Geflügel“.

- Henrik Detlefsen: Tierarztinspezialisierter Schweinepraxis im Oldenburger Münsterland, Betreuung von Schweinebetrieben unterschiedlicher Produktionsrichtungen und Größe, tierärztliche Beratung, Diagnostik und Prävention von Erkrankungen, Therapie, Gesundheitsmanagement von der Zucht bis zur Mast, Unterstützung der praktischen Ausbildung der Studierenden der Stiftung Tierärztliche Hochschule Hannover in der Schwerpunktausbildung „Schwein und Geflügel“.

- Amely Campe: Tierärztin, wissenschaftliche Mitarbeiterin am Institut für Biometrie, Epidemiologie und Informationsverarbeitung, Leitung der Arbeitsgruppe „Tiergesundheit“ mit den Arbeitsbereichen Tierwohl, Tierseuchen und Tierverhalten, Forschung zu Faktorenanfälligkeit und epidemiologischen Analysemethoden für komplexe Systeme, quantitative und qualitative Studien in verschiedenen Tierpopulationen, Durchführung neuer Lehrformate mit Schwerpunkt Kommunikation im Rahmen von Veterinary Public Health.

- Isabel Hennig-Pauka: Tierärztin, Leiterin der Außenstelle für Epidemiologie in Bakum, theoretische und praktische Lehrveranstaltungen zur Schweinezüchtung mit den Schwerpunkten Bestandsdiagnostik, Infektionenmedizin, Management- und Präventionsstrategien, Tierbeobachtung. Qualitätsmanagement im akkreditierten Diagnostiklabor der Einrichtung, Forschungsprojekte im Bereich der Diagnostik und Infektionsmedizin.

Interessenkonflikt
Die Autor*innen erklären, dass sie keinen Interessenkonflikt im Zusammenhang mit diesem Artikel haben.

Literatur

1. Adams CL, Kurtz SM. Building on existing models from human medical education to develop a communication curriculum in veterinary medicine. J Vet Med Educ. 2006;33(1):28-37. DOI: 10.3138/jvme.33.1.28
2. Biggs J. Aligning teaching for constructing learning. High Educ Acad. 2003(1.4).
3. Bloom BS, Engelhart MD, Furst EJ, Hill WH, Krathwohl DR. Taxonomy of educational objectives: The classification of educational goals. Handbook I: Cognitive domain. New York: David McKay Company; 1956.
4. BpT. Mitteilungsblatt des ganzen Nordens. 2020;1.
5. Butcher, M. Risk attitudes affect livestock biosecurity decisions with ramifications for disease control in a simulated production system. Front Vet Sci. 2019;6:196. DOI: 10.3389/fvets.2019.00196
6. Butler C, Rolnick S, Stott N. The practitioner, the patient and resistance to change: recent ideas on compliance. CMAJ. 1996;154(9):1357-1362.
7. Derks M, van Woudenbergh B, Boender M, Kremer W, van Werven T, Hogeveen H. Veterinarian awareness of farmer goals and attitudes to herd health management in The Netherlands. Vet J. 2013;198(1):224-228. DOI: 10.1016/j.tvjl.2013.07.018
8. Dilts RB, Epstein T, Dilts RW. Know-how für Träumer: Strategien der Kreativität, NLP & modellierung, Struktur der Innovation, Paderborn: Junfermann; 1994.
9. Dujin CC, Ten Cate O, Kremer WD, Bok HG. The development of entrustable professional activities for competency-based veterinary education in farm animal health. J Vet Med Educ. 2019;46(2):218-224. DOI: 10.3138/jvme.0617-073r
10. Engelskirchen S, Ehlers J, Tipold A, Dilly M. Vermittlung kommunikativer Fertigkeiten im Tiermedizinstudium am Beispiel der Anamneseerhebung während des Praktischen Jahres an der Klinik für Kleintiere der Stiftung Tierärztliche Hochschule Hannover. Tierarzt Umschau. 2016;71:270-276.
11. European System of Evaluation of Veterinary Training (ESEVT). Manual of Standard Operating Procedure. Uppsala: ESEVT; 2016. Zugänglich unter/available from: https://www.eaeve.org/fileadmin/downloads/SOP/ESEVT_SOP_May_2016_amended_Annex_8_approved_by_ExCom_on_29_May_2019.pdf
12. Gollwitzer PM. Das Rubikonmodell der Handlungsphasen. Enzyklopädie der Psychologie. Teilband C/IV/4: Motivation, Volition und Handlung. Göttingen: Hogrefe; 1995.
13. Große Beilage E. Untersuchungen an veredelten/ getöteten Schweinen in Verarbeitungsbetrieben für tierische Nebenprodukte, Gießen: Deutsche Veterinärmedizinische Gesellschaft (DVG) Service GmbH; 2017.
14. Hemsworth P, Barnett J, Coleman GJ, Hansen C. A study of the relationships between the attitudinal and behavioural profiles of stockpersons and the level of fear of humans and reproductive performance of commercial pigs. Appl Animal Behav Sci. 1989;23(4):301-314. DOI: 10.1016/0168-1591(89)90099-3
15. Hill T, Westbrook R. SWOT analysis: it’s time for a product recall. Long Range Plan. 1997;30(1):46-52. DOI: 10.1016/S0024-6301(96)00095-7
16. Kleen J, Rehage J. Communication skills in veterinary medicine. Tierarztl Praxis. 2008;36(5):293-297. DOI: 10.1055/s-0037-1621647

17. Kleinsorgen C, Ramsrott S, Ehlers JP, Gruber C, Dilly M, Engelskirchen S, Bernigau D, Bahramsoaltani M. Kommunikative Kompetenzen im Studium der Veterinärmedizin in Deutschland-Ansätze für die Entwicklung eines Mustercurriculums. Berl Munch Tierarztl Wochenschr. 2020. DOI: 10.3276/0005-9366-19028

18. Kurtz S. Teaching and learning communication in veterinary medicine. J Vet Med Educ. 2006;33(1):11-19. DOI: 10.3138/jvme.33.1.11

19. Likert R. A technique for the measurement of attitudes. Arch Psychol. 1932;22:55.

20. Mieloch F, Nietfeld S, Straßburg C, Krieter J, Grosse Beilage E, Czycholl I. Factors of potential influence on different behavioural tests in fattening pigs. Appl Animal Behav Sci. 2019;222:104900. DOI: 10.1016/j.applanim.2019.104900

21. Müller L, Kunzmann P, Sudmann J, Schaper E. Der Tierarzt und sein Prinzipal. TihOvideos, YouTube. 23.05.2018. Zugänglich unter/available from: https://www.youtube.com/watch?v=CkwGrYDPsOI

22. Porcher J, Cousson-Gélie F, Dantzer R. Affective components of the human-animal relationship in animal husbandry: development and validation of a questionnaire. Psychol Report. 2004;95(1):275-290. DOI: 10.2466/pr.95.1.275-290

23. Ritter C, Adams CL, Kelton DF, Barkema HW. Clinical communication patterns of veterinary practitioners during dairy herd health and production management farm visits. J Dairy Sci. 2018;101(11):10337-10350. DOI: 10.3168/jds.2018-14741

24. Ritter C, Adams CL, Kelton DF, Barkema HW. Factors associated with dairy farmers’ satisfaction and preparedness to adopt recommendations after veterinary herd health visits. J Dairy Sci. 2019;102(5):4280-4293. DOI: 10.3168/jds.2018-15825

25. Rosenberg MB. Gewaltfreie Kommunikation: Eine Sprache des Lebens. Paderborn: Junfermann Verlag GmbH; 2016.

26. Roter D, Larson S. The Roter interaction analysis system (RIAS): utility and flexibility for analysis of medical interactions. Pat Educ Couns. 2002;46(4):243-251. DOI: 10.1016/S0778-3991(02)00012-5

27. Schulz von Thun F. Praxisberatung in Gruppen: Erlebnisaktivierende Methoden mit 20 Fallbeispielen zum Selbsttraining für Trainerinnen und Trainer, Supervisoren und Coaches. Weinheim u. Basel: Beltz Verlag; 2003.

28. Schulze HS. Transaktionsanalyse als Instrument dienstleistungsorientierter Personalschulung. Dienstleistungszufriedenheit. Wiesbaden: Gabler Verlag; 1991. p.283-307. DOI: 10.1007/978-3-322-83625-0_13

29. Scott K, Laws DM, Courboulay V, Meunier-Salaün M-C, Edwards SA. Comparison of methods to assess fear of humans in sows. Appl Animal Behav Sci. 2009;118(1-2):36-41. DOI: 10.1016/j.applanim.2009.02.004

30. Seiler JC. Epidemiologische Untersuchungen zur Identifizierung von Determinanten des Antibiotikaenein satzes pro Tier in ausgewählten Schweinebeständen. Hannover: Tierärztliche Hochschule Hannover; 2015.