Research Article

Synthesis and Characterization of New Schiff Bases Derived from N (1)-Substituted Isatin with Dithiooxamide and Their Co(II), Ni(II), Cu(II), Pd(II), and Pt(IV) Complexes

Ahlam J. Abdul-Ghani and Asmaa M. N. Khaleel

Department of Chemistry, College of Science, University of Baghdad, Jaderiya, P.O. Box 47059 Baghdad, Iraq

Correspondence should be addressed to Asmaa M. N. Khaleel, asmaa_mnk@yahoo.com

Received 13 April 2009; Revised 12 July 2009; Accepted 15 July 2009

Recommended by Nick Katsaros

Three new Schiff bases of N-substituted isatin L₁, L₂, and L₃ = Schiff base of N-acetylisatin, N-benzylisatin, and N-benzoylisatin, respectively, and their metal complexes C₁ab = [Co₂(L₁)₂Cl₃]Cl, C₂ = [Ni(L₁)₂Cl₂]0.4BuOH, C₃ = [Cu(L₁)Cl(H₂O)]Cl · 0.5BuOH, C₄ = [Pd(L₁)₂Cl₂]Cl, C₅ = [Pt(L₁)₂Cl₂]Cl₂ · 1.8EtOH·H₂O, C₆a = [Co(L₁)Cl](0.3H₂O·0.1BuOH, C₇ = [Ni(L₁)Cl], C₈ = [Cu(L₁)Cl₂·H₂O, C₉ = [Pd(L₁)₂Cl₂]Cl, C₁₀ = [Pt(L₁)₂Cl₂]Cl₀.2BuOH, C₁₁a = [Co(L₁)Cl]Cl₂·H₂O, C₁₁b = [Co(L₁)Cl]₀.2H₂O, and C₁₂ = [Ni(L₁)₂]Cl₂, C₁₃ = [Ni(L₃)]₂Cl₂ were reported. The complexes were characterized by elemental analyses, metal and chloride content, spectroscopic methods, magnetic moments, conductivity measurements, and thermal studies. Some of these compounds were tested as antibacterial and antifungal agents against Staphylococcus aureus, Proteus vulgaris, Candida albicans, and Aspergillus niger.

Copyright © 2009 A. J. Abdul-Ghani and A. M. N. Khaleel. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Isatin (indole-2,3-dione) and its derivatives have shown a wide scale of biological activities such as antibacterial [1–3], antifungal [1, 3–5], anticonvulsant [2, 6], anti-HIV [7], anticancer [1, 2], antiviral [1], and enzyme inhibitors [2]. The Schiff bases (a) and (b) (Scheme 1) derived from isatin and its derivatives with different amines have been studied [1, 2, 6, 8–13]. The reaction of N-acetyl, N-benzoyl, and N-tosylisatin and their Schiff base derivatives (c) and (d) (Scheme 1) with ethanol, methanol, isopropyl alcohol, allyl alcohol, TsNH₂, pyrrolidine, and water yield products resulting from nucleophilic attack at the C-2 carbonyl that leads to heterocyclic ring cleavage [8, 14]. The present work aims to study the synthesis and antibacterial activity of three new ligands derived from condensation of N-acetyl, N-benzyl, and N-benzyolisatin with the chelating agent dithiooxamide (ethanedithioamide or rubeanic acid) dto and their metal complexes. The Schiff bases of dithiooxamide and their complexes have received most of the attention because of the semiconductive, magnetic, spectroscopic, and thermal properties [15–17] as well as being used as semiconductors antibacterial and antifungal agents [18–20].

2. Experimental/Materials and Methods

All chemicals used were of analytical reagent grade (AR) except dto and ethanol which were purified prior to use [21]. FTIR spectra were recorded on SHIMADZU FTIR-8400S, Fourier Transform, Infrared spectrophotometer. The electronic spectra (λ(200–1100) nm) in different solvents were recorded on Shimadzu (UV-Vis) -160 spectrophotometer. Elemental microanalyses were performed on Euro vector EA 3000 A. The metal contents of the complexes were determined by atomic absorption technique using Varian-AA775, Atomic Absorption Spectrophotometer. Mass spectra were recorded on Shimadzu QP 5050A. ¹H NMR was performed by using Bruker Ultra Sheld 300 MHz NMR spectrophotometer. Thermal analyses (TG and DTG) were carried out by using Shimadzu Thermal Analyzer Type 50 H. Electrical conductivity measurements for complexes
Bioinorganic Chemistry and Applications

3. Synthesis of Ligands

All attempts to prepare 1-(9a-Hydroxy-2,3-dithiooxo-1,2,3,9a-tetrahydro-1,4,9-triaza-fluoren-9-yl)-ethanone (L₁) (Scheme 2) and 9-Benzyl-9a-hydroxy-9,9a-dihiro-1H-1,4,4-triaza-fluorene-2,3-dithione (L₃) (Scheme 2) in solution were unsuccessful; therefore solid reaction was carried out to prepare the two ligands.

3.1. Schiff Base of N-Acetylisatin: 1-(9a-Hydroxy-2,3-dithiooxo-1,2,3,9a-tetrahydro-1,4,9-triaza-fluoren-9-yl)-ethanone (L₁). A powdered mixture of N-acetylisatin (0.3092 g, 1.6 mmol) and \(\text{dto} \) (0.0983 g, 0.8 mmol) in a sealed Carius tube was heated in a stirred oil bath at 160–170 °C for 2 hours. The melt color was changed from orange to dark brown. After cooling to room temperature, the solid product was ground and dissolved in butanol, followed by precipitation with ether. A black precipitate was formed. The product was filtered off and washed several times with ether to remove the unreacted materials giving brown crystals. Yield (0.116 g, 48.76%), m.p (220 °C dec. comp.). \(^1\)H NMR data \(\delta \) (ppm), (CDCl₃): 2.508 (3H, s, CH₃); 3.34 (2H, s, OH and NH thioamide); 7.074–7.853 (4H, m, aromatic protons). MS(EI), m/z(%): 207(21), 161(10), 146(23), 133(9), 92(10), 78(59), 63(84), 44(100). Anal. for C₁₂H₉N₃O₂S₂ Calcd. C, 49.48; H, 3.09; N, 14.43%; Found: C, 50.54; H, 3.22; N, 13.23%.

3.2. Schiff Base of N-Benzylisatin: 9-Benzyl-9a-hydroxy-9,9a-dihiro-1H-1,4,4-triaza-fluorene-2,3-dithione (L₂). A powdered mixture of N-benzylisatin (0.829 g, 3.5 mmol) and \(\text{dto} \) (0.85 g, 7 mmol) was heated in a sealed Carius tube in an oil bath at 140 °C for 10 hours. Colour of melt was changed from orange to dark brown. After cooling to room temperature, a solid mass was formed. The product was ground and purified several times in refluxing ethanol, filtered off, washed with hot ethanol followed by acetone and dried, giving brown dark crystals. Yield (0.2679 g, 22.3%), m.p (>250°C). \(^1\)H NMR data \(\delta \) (ppm), (DMSO): 3.45(2H, s, OH and NH thioamide); 5.1(2H, w, CH₂ benzyl); 6.9–7.2(9H, m, aromatic protons). MS(EI), m/z(%): 156(11), 149(15), 127(13), 105(11), 78(100), 63(100). Anal. for C₁₇H₁₃N₃OS₂ Calcd.: C, 60.17; H, 3.83; N, 12.38%; Found: C, 61.10; H, 3.43; N, 12.98%.

3.3. Schiff Base of N-Benzoylisatin: N-[2-(3-oxo-5,6-dithioxo-3,4,5,6-tetrahydro-pyrazin-2-yl)-phenyl] benzamide (L₃). Equimolar amounts of benzoylisatin (0.2 g, 0.79 mmol) and \(\text{dto} \) (0.0957 g, 0.79 mmol) in butanol (2 cm³) containing 4 drops of piperidine were heated under reflux with stirring for 5 hours during which the colour of solution was changed from orange to brown. The solution was left to stand overnight and then cooled down to 0°C. Cold ether was added until a dark brown precipitate was formed. The product was filtered, washed several times with acetone followed by ether. Yield (0.0857 g, 30.51%), m.p. (250°C dec.). \(^1\)H NMR data (ppm), (DMSO): 4.902–5.101(1H, b, NH thioamide); 7.144–7.860(9H, m, aromatic protons); 10.124(1H, b, NH benzoyl moiety). MS(EI),

(10⁻³ M) in DMF and DMSO at room temperature were carried out by using Hunts Capacitors Trade Mark British made. Magnetic moments (\(\mu_{\text{eff}} \), B.M) for the prepared complexes in the solid state at room temperature were measured by using Bruker Magnet B.M-6. The chloride content for complexes was determined by Mohr’s method. N-acetylisatin, N-benzylisatin, N-benzoylisatin, and PdCl₂(phCN)₂ were prepared by methods reported in literature [6, 22–25].

Scheme 1: Schiff bases of isatin derivatives.

Scheme 2: The structures of the prepared ligands L₁, L₂, and L₃.
4. Preparation of Metal Complexes

(A) A solution mixture of the ligands L I and L II (0.01 mmol) (0.0029, 0.0033 g), respectively, with the metal salts CoCl₂·6H₂O, NiCl₂·6H₂O, and CuCl₂·2H₂O (0.01 mmol) and (0.02 mmol) (0.0058, 0.0067 g) of L II and L I, respectively, with the metal salts PdCl₂·(phCN)₂ and K₂PtCl₆ (0.01 mmol), in DMF (C ₁), butanol (C ₂ and C ₃), or DMSO (C ₄–C10) was heated under reflux for four hours. Precipitation of L I complexes took place within 30 minutes, while those of L II was precipitated at the end of the reflux time. The products were filtered, washed with hot ethanol and acetone, followed by ether and vacuum dried. “C₁” : colour(dark brown). Yield (23.51%). Anal. for \([\text{C}_{17}\text{H}_{13}\text{N}_{3}\text{O}_{2}\text{S}_{2}\text{Co} \times \text{H}_{2}\text{O}] \times \text{Cl}\) Calcd.: C, 57.79; H, 3.11; N, 11.89%; Found: C, 57.39; H, 3.54; N, 11.30%.

(B) To a solution mixture of N-acetyl, N-benzyl, or N-benzyloxylin (0.02 mmol) 0.0037, 0.0047, and 0.005 g, respectively, with dto (0.01 mmol) (0.0012 g), (0.04 mmol) (0.0048 g), and (0.02 mmol) (0.0024 g), respectively, in butanol was added a solution of CoCl₂·6H₂O (0.02 mmol) in butanol. The mixture was heated under reflux. Precipitation took place immediately. Heating was continued for 4 hours to achieve complete precipitation. The product was filtered, washed with hot butanol, followed by ethanol, ether, and vacuum dried. “C₁b” : colour(dark brown). Yield (25.15%). Anal. for \([\text{C}_{17}\text{H}_{11}\text{N}_{3}\text{O}_{2}\text{S}_{2}\text{Co} \times \text{H}_{2}\text{O}] \times \text{Cl}\) Calcd.: C, 57.79; H, 3.11; N, 11.89%; Found: C, 57.39; H, 3.54; N, 11.30%.
5.1. Agar Diffusion Method. In this method the colonies of the selected bacteria, namely, Staphylococcus aureus (G'), Proteus vulgaris (G'), and the fungus Candida albicans were spread on the surface of solidified nutrient agar. Suitably separated 7 mm diameter holes were made in each agar plate. Each hole was injected with 0.1 mL of 150, 350, 650, and 1000 ppm of the studied compound in DMSO. The agar plates were incubated at 37°C for 24 hours. Diameters of growth inhibition zones were measured in mm depending on diameter and clarity.

5.2. Agar Dilution Method. In this method the antifungal activity of 250 ppm of some selected compounds in DMSO was screened against Aspergillus niger. 2.5 cm³ of 2000 ppm of tested solution was added to 20 cm³ of hot agar solution. The homogenized mixture was then poured into petridish and left to solidify. The Aspergillus colony (9 mm diameter) was fixed on the solidified agar, and the medium was incubated at 37°C for 8 days.

6. Results and Discussion

The IR spectra showed that the three ligands exhibited vibrational modes of νC=O of azomethine group [4, 6, 26–28], (νC=N, δNN), (νC=N, νC=S), νC=S, and νC=S of dito moiety [29, 30] (Table 1). Spectra of L I and L II showed vibrational bands related to stretching modes of OH groups [31, 32]. The position of the bands assigned to νNH vibrations of the cyclic rings was dependent on their environment. νNH of L II and L III were observed at lower frequencies compared with that of L I (Table 1) [27, 32]. The latter exhibited bands assigned to νC=O and νC=N of amide and lactam rings [6, 27, 31, 32]. The spectra of L I complexes with Co(II), Cu(II), and Pd(II) ions exhibited shift in νOH and νC=O (azomethine) vibrations. The latter two complexes together with Ni(II) complex showed additional shifts in νNH to lower frequencies while no significant changes were observed on vibrational modes of C=O group which rules out coordination with carbonyl oxygen. Shifts of thioamide bands (III and IV) were observed in the spectra of Cu(II) and Pt(IV) complexes and were attributed to coordination of metal ion with sulfur atom [33]. Metal complexes of L II showed bands assigned to νC=O and νNH2 vibrations (Table 1). This may be attributed to cleavage of thioamide ring on complexation leading reappearance of νC=O and νNH2 of both C-2 and NH2 of isatin and dito moieties, respectively. Shifts in νNH2 (compared with νNH2 of the free dito (3296, 3203 cm⁻¹)) [34] to lower frequencies were observed in all spectra of complexes except that of Ni(II) which was shifted to higher frequency. Bands related to νC=O vibrations in spectra of both Ni(II) and Cu(II) complexes were shifted to higher frequencies while spectra of the other complexes showed shifts to lower frequencies. Additional shifts were observed in the bands assigned to νC=O (azomethine) in all complexes except that of Cu(II). The latter complex exhibited shift of νC=S band to lower frequency which refers to coordination of sulfur to Cu(II) ion [33]. The spectra of L III metal complexes exhibited shifts in vibrational modes of νC=O and band IV of thioamide group as a result of coordination with metal ions [33, 35]. Additional shift in position of bands assigned to νC=N was observed in the spectra of Co(II) and Ni(II) complexes. Shifts in the position of νC=O amide and νC=S of lactam ring were observed in the spectra of the Pd(II) complex as a result of coordination. Bands related to vibrational modes of lattice solvent, coordinated water were observed at 3500-3400 cm⁻¹ [36–38]. Bands appeared at lower frequencies were referred to M–O, M–N, M–S, and M–Cl stretching modes [36–38]. Further data are collected in (Table 1).

The electronic spectra of L I, L II, and L III exhibited high-intensity multiple bands in DMF and DMSO at 36231–20000 cm⁻¹. These bands were assigned to π → π* transition of conjugated system. L III exhibited additional low-intensity band which was assigned to n → π* transition. Changes in positions and profile of bands were observed in the spectra of metal complexes. Bands related to the (CT) transition were observed as a shoulder on the ligand band in the spectra of C1, C3, C6, C7, C9, and C10 complexes (Table 2). The bands observed in the spectra of Co(II) complexes in the visible region were assigned to 4A2 → 2(T1(1)(1)), 4A2 → 4T1(1)(0), and 4A2 → 4T1(1)(1) of Th of (ν1). The magnetic moment values of Co(II) complexes were in the range of (3.959–4.6 BM) (Table 2). This indicates tetrahedral geometry around Co(II) ions [36–39] (Scheme 3). The Ni(II) complex C2 gave a greenish yellow colour in DMF indicating the exchange of weak ligand atoms with solvent molecules [40–43]. The spectrum of this complex showed bands characteristic of octahedral Ni(II) complex [36–38, 40–43] (Table 2), while the other Ni(II) complexes (C7 and C12) showed tetrahedral geometries (Scheme 3).

The electronic spectra and magnetic moments (μeff B.M) (Table 2) of these complexes were consistent with these assignment [36–38, 40–43]. Spectral data (B', Dq/B', 10Dq and β) (Table 2), for the Co(II) and Ni(II) complexes were calculated by applying band energies on Tanaba Saugano diagrams. The energy of ν1 for Co(II) complexes (C1, C6, C11) and Ni(II) complexes (C7, C12) and ν1 for Ni(II) complex C2 were also calculated from the diagrams. The spectrum of the Cu(II) complex C3 exhibited three bands (Table 2) attributed to the spin allowed transitions 2B1g → 2A1g(ν1), 2B1g → 2B2g(ν2) and 2B1g → 2Eg(ν3) of Jahn Teller tetragonally distorted octahedral Cu(II) complexes [34]. The magnetic moment of the complex (2.36 B.M) indicated paramagnetic character with a high spin orbital coupling [40–43]. The spectrum of Cu(II) complex C8 exhibited two bands (Table 2) which were assigned to 2B1g → 2A1g(ν1), and 2B1g → 2B2g(ν2). These bands were attributed to square planar Cu(II) complexes [44] (Scheme 3). Magnetic moment (μeff = 1.84 B.M) of the complex supported such conclusion [36–38, 44]. The spectra of the diamagnetic Pd(II) complexes (C4, C9, and C13) showed two bands assigned to 1A1g → 1A2g(ν1) and 1A1g → 1B1g(ν2) and the additional band 1A1g → 1Eg(ν3) for C4. These bands are attributed to square planar Pd(II) complexes [34–38, 40–43]. The spectra of the diamagnetic Pt(IV) complexes exhibited two bands which were assigned to forbidden transitions
Table 1: FTIR vibrations for the ligands and their metal complexes.

(a)

Symbol	ν_{OH}	$\nu_{\text{N-H}}$	$\nu_{\text{C-O}}$	$\nu_{\text{C-N}}$	Band I $\nu_{\text{C-N} + \delta_{\text{NH}}}$	Band I $\nu_{\text{C-N} + \nu_{\text{C-S}}}$	Band III $\nu_{\text{C-S}}$	Band IV $\nu_{\text{C-S}}$	$\nu_{\text{M-O}}$	$\nu_{\text{M-N}}$	$\nu_{\text{M-Cl}}$
C_1	3400	3298	1710	1650	1540	1465	1170	881	—	—	—
C_1a	3344	3295	1718	1631	1545	1460	1162	877	559	389	277*
C_1b	3350	3295	1718	1631	1545	1460	1165	877	559	389	277*
C_2	3402	3227	1706	1631	1540	1396	1165	880	—	335	320
C_3	3347	3260	1716	1627	1520	1450	1150	880	586	350	331
C_4	3395	3250	1720	1630	1573	1458	1170	889	586	350	331

Lattice butanol, C_2, C_3 = 3500, 3750 cm$^{-1}$; Lattice ethanol, C_5 = 3495 cm$^{-1}$.

ν_{OH}, L_{II} = 3400 cm$^{-1}$; ν_{NH}, L_{II} = 3145 cm$^{-1}$; Lattice butanol, C_{11a} = 3550 cm$^{-1}$; $\nu_{\text{M-S}}$, C_8 = 320 cm$^{-1}$.

(b)

Symbol	ν_{NH_2}	$\nu_{\text{C-O}}$	$\nu_{\text{C-N}}$	$\nu_{\text{C-N} + \delta_{\text{NH}}}$	$\nu_{\text{C-N} + \nu_{\text{C-S}}}$	$\nu_{\text{C-S}}$	$\nu_{\text{C-S}}$	$\nu_{\text{M-O}}$	$\nu_{\text{M-N}}$	$\nu_{\text{M-Cl}}$	
C_1	3400	3295	1715	1666	1510	1483	1134	850	—	340	300

Symbol	ν_{NH}, L_{II}										
C_1	3400	3295	1715	1666	1510	1483	1134	850	—	340	300

(c)

Symbol	$\nu_{\text{N-H}}$, amide	$\nu_{\text{C-O}}$, amide	$\nu_{\text{N-H}}$, lactam	$\nu_{\text{C-O}}$, lactam	$\nu_{\text{C-N}}$	$\nu_{\text{C-N} + \delta_{\text{NH}}}$	$\nu_{\text{C-N} + \nu_{\text{C-S}}}$	$\nu_{\text{C-S}}$				
L_III	3394	1635	3247	1674	1600	1535	1465	1103	880	—	—	—
C_{11a}	3400	1625	3247	1674	1587	1535	1450	1095	830	590	480	320
C_{11b}	3410	1620	3247	1674	1580	1535	1450	1100	840	600	480	300
C_{12}	3456	1625	3250	1670	1589	1535	1450	1100	860	580	450	308
C_{13}	3386	1620	3250	1666	1600	1535	1473	1095	850	617	401	310

Lattice H$_2$O, C_{11a}, C_{11b} = 3500 cm$^{-1}$.
Table 2: Electronic spectra, spectral parameters and magnetic moment with suggested structures of L_I, L_{II}, and L_{III} complexes.

Symbol	Band positions (cm^{-1})	Assignment	Dq/β (β)	B (cm^{-1})	10Dq (cm^{-1})	μ_{eff} (B.M)	Suggested structure	Molar conductivity S·mol^{-1}·cm^2 in DMF and DMSO^+
C_{1a}	ν_1 6388 (cal.)	^4A_2 → ^4T_2						Tetrahedral 32.12^*
Co(II)	ν_2 10752	^4A_2 → ^4T_1(F)	1.3	470.2	6112	4.5		
	ν_3 16930 (avr.)	^4A_2 → ^4T_1(P)	(0.484)					
	ν_4 21008	L → M (C.T)						
C_{1b}	ν_1 6388 (cal.)	^4A_2 → ^4T_2						Tetrahedral 29.7^*
Co(II)	ν_2 10752	^4A_1 → ^4T_1(F)	1.3	470.2	6112	4.61		
	ν_3 16930 (avr.)	^4A_2 → ^4T_1(P)	(0.484)					
	ν_4 21881	L → M (C.T)						
C_{2}	ν_1 12345	^3A_2g → ^3T_2g	2.8	454.2	12717	3.31		Octahedral 46.45
Ni(II)	ν_2 16806	^3A_1g → ^3T_1g(F)	(0.440)					
	ν_3 27035 (cal.)	^3A_1g → ^3T_1g(P)						
C_{3}	ν_1 12150	^2B_1g → ^2A_1g						2.36 Octahedral 68.19
Cu(II)	ν_2 16666	^2B_1g → ^2B_2g						
	ν_3 18761	^2B_1g → ^2Eg						
	ν_4 19646	L → M (C.T)						
C_{4}	ν_1 12048	^1A_1g → ^1A_2g						Diamagnetic Square planar 60.37
Pd(II)	ν_2 16949	^1A_1g → ^1B_1g						
	ν_3 20618	^1A_1g → ^1Eg						
C_{5}	ν_1 17825	^1A_1g → ^3T_1g(H)						Diamagnetic Octahedral 154.13
Pt(IV)	ν_2 22371	^1A_1g → ^3T_2g						
C_{6a}	ν_1 6535 (cal.)	^4A_2 → ^4T_2						Tetrahedral 34.3^*
Co(II)	ν_2 10526	^4A_2 → ^4T_1	1.25	487.3	6091	4.21		
	ν_3 16666	^4A_2 → ^4T_1(P)	(0.501)					
	ν_4 21551	L → M (C.T)						
C_{6b}	ν_1 6389 (cal.)	^4A_2 → ^4T_2						Tetrahedral 30.52^*
Co(II)	ν_2 10504	^4A_2 → ^4T_1(F)	1.25	488.5	6107	4.50		
	ν_3 16612	^4A_2 → ^4T_1(P)	(0.503)					
	ν_4 20876	L → M (C.T)						
C_{7}	ν_1 5473 (cal.)	^3T_1(F) → ^3T_2(F)						Tetrahedral 7.9^*
Ni(II)	ν_2 11074	^3T_1(F) → ^3A_2(F)	0.82	721.5	5768	2.73		
	ν_3 15873	^3T_1(F) → ^3T_1(P)	(0.70)					
	ν_4 18867	L → M (C.T)						
C_{8}	ν_1 13440	^2B_1g → ^2A_1g						Square planar 155.8
Cu(II)	ν_2 19230	^2B_1g → ^2B_2g						
Table 2: Continued.

Symbol	Band positions (cm⁻¹)	Assignment	Dq/Δ (β)	B (cm⁻¹)	10Dq (cm⁻¹)	μeff (B.M)	Suggested structure	Molar conductivity S·mol⁻¹·cm² in DMF and DMSO*
C₉	v₁ 16949	¹A₁g → ¹A₂g						Diamagnetic Square planar 125.4
Pd(II)	v₂ 21367	¹A₁g → ¹B₁g (C.T)						
C₁₀	v₁ 14388	¹A₁g → ³T₁g						Diamagnetic Octahedral 196.6
Pt(IV)	v₂ 20576	¹A₁g → ³T₂g (C.T)						
C₁₁a	v₁ 6410 (cal.)	⁴A₂ → ⁴T₂	1.5		436.8	6552	3.959	Tetrahedral 143.5
Co(II)	v₂ 10000	⁴A₂ → ⁴T₁(F)	(0.449)					
	v₃ 15641 (avr.)	⁴A₂ → ⁴T₁(P)						
C₁₁b	v₁ 6410 (cal.)	⁴A₂ → ⁴T₂	1.5		436.8	6552	3.997	Tetrahedral 150.6
Co(II)	v₂ 10000	⁴A₂ → ⁴T₁(F)	(0.449)					
	v₃ 15641 (avr.)	⁴A₂ → ⁴T₁(P)						
C₁₂	v₁ 4994 (cal.)	³T₁(F) → ³T₂(F)	0.74					
Ni(II)	v₂ 10482	³T₁(F) → ³A₂(F)	(0.653)					
	v₃ 15483 (avr.)	³T₁(F) → ³T₁(P)						
C₁₃	v₁ 12820	¹A₁g → ¹A₂g						Diamagnetic Square planar 148.2
Pd(II)	v₂ 16666	¹A₁g → ¹B₁g						

¹A₁g → ³T₁g and ¹A₁g → ³T₂g showing octahedral geometry around Pt(IV) ion [40–43] (Scheme 3). The molar conductivities (Table 2) showed that electrolytic nature of the Pt(IV) complex (C₉) was 1 : 3, Pt(IV), Cu(II), Pd(II), Co(II) and Ni(II) complexes (C₅, C₆, C₈, C₁₁, C₁₂, and C₁₃) 1 : 2, and Co(II), Cu(II), and Pd(II) complexes (C₁, C₃, C₄, and C₆) 1 : 1, while the Ni(II) complexes (C₂ and C₇) were nonelectrolyte [45]. From these observations, together with the results obtained from other analytical data, the stereochemical structures of the complexes were suggested (Scheme 3).

Thermogravimetric analyses (TG and DTG) have been studied at heating range of 50–800°C for the complexes (C₁, C₃, C₄, and C₇) under nitrogen atmosphere. The following results (Table 3) were explained according to analytical suggestions mentioned in literature [46–48]. (i) Lattice water, free ions, and organic fragments that are not directly coordinated to the metal ions were found to leave the complex at earlier stages compared with coordinated fragments, (ii) The heating range (50–800°C) produced incomplete decomposition of metal complexes, and the final products were dependent on the type of metal ion and on (M-L) affinity [36–38, 46, 49] which reflects the stability of complexes.

7. Biological Screening

The antibacterial activity for precursors, L₁ and L₃, and some of their complexes was evaluated against *Staphylococcus aureus* (G⁺) and *Proteus vulgaris* (G⁻) using the agar diffusion method. Diameter (mm) of growth inhibition zones was measured after incubation for 24 hours at 37°C. The results showed that no antibacterial action was recorded by the studied compounds using concentration of 150, 350, and 650 ppm. Using 1000 ppm (Table 4), L₁ and its complexes were more active against *Staphylococcus aureus*, while L₃ and its complexes (except C₁₃) were more active against *Proteus vulgaris* than the other studied compounds. The antifungal activity was evaluated against *Candida albicans* by the agar diffusion method and *Aspergillus niger* colony (9 mm diameter) by the agar dilution method using concentration of 250 ppm in DMSO. The results showed that L₁ and L₃ were inactive against *Candida albicans*; Co(II) (C₁₁), Ni(II) (C₁₂), and Pd(II) (C₁₃) complexes were more active than the parent ligand (L₃) while those of L₁ were inactive except Cu(II) complex (C₃). L₄, L₅, and C₄ which were inactive against *Candida albicans* showed moderate activity against *Aspergillus niger* which refer to the effective selectivity of specific inhibitor on the microorganisms.
Table 3: Thermal decomposition of C₁, C₃, C₄, and C₇.

(a) C₁

Reaction	Temperature range °C	%Weight loss found (calc.)
[(LI₂)₂Co₂Cl₃]Cl		
M · wt = 841.8		
–2Cl	251–369	41.128 (41.45)
–C₃H₆N₂O₂	370–421	2.798 (2.01)
–OH	465–547	7.932 (8.43)
–(C₇H₃N₄OS₄)₂Co		48.25 (48.08)

(b) C₃

Reaction	Temperature range °C	%Weight loss found (calc.)
[L₁CuCl(H₂O)]Cl.0.5BuOH		
M · wt = 480.5		
–BuOH	356–476	36.592 (36.94)
–Cl	370–421	2.798 (2.01)
–H₂O	465–547	7.932 (8.43)
–CS	477–630	18.008 (17.68)
–(phCHNO)CuCl		45.41 (45.36)

(c) C₄

Reaction	Temperature range °C	%Weight loss found (calc.)
[(LI₂)₂PdCl]Cl		
M · wt = 759		
–2Cl	145–219	14.925 (15.01)
–C₃H₆O	219–351	21.189 (21.34)
–phC₆H₂NO₂	482–568	10.538 (10.01)
–CN	679–735	3.188 (3.42)
–(C₆H₃N₄OS₄)Pd		50.096 (50.197)

(d) C₇

Reaction	Temperature range °C	%Weight loss found (calc.)
[L₁₉NiCl₂]		
M · wt = 468.7		
–CO	50–127	9.183 (9.38)
–NH₂	239–377	19.672 (19.415)
–phCH₂	432–565	34.42 (34.35)
–(C₆N₄S₂)Ni		36.858 (36.84)
Scheme 3: Continued.
8. Conclusions

(1) Condensation reaction of N-acetyl, N-benzyl, and N-benzoyl isatins with \(dtos \) gave Schiff base ligands \(L_1-L_{III} \), as was confirmed by \(^1H \), \(^{13}C \) NMR, and IR spectra.

(2) The formation of the Schiff base ligand \(L_{III} \) took place with ring cleavage at C-2 of the heterocyclic ring of the benzoisatin. Whereas the formation of \(L_1 \) and \(L_{II} \) took place without ring cleavage.

(3) The presence of various donor atoms and the stereochemistry of the studied ligands enhanced different
complexing behaviours and geometries using the studied metal ions.

(4) The results of the physical properties and spectral analyses of cobalt complexes prepared by template reaction demonstrated the recommendation of for synthesis of metal complexes of the studied ligands, due to less time consuming and in general more yield of products.

(5) The study of biological activity of the studied ligands and some of their metal complexes against bacteria and fungi showed selectivity nature of microorganism towards these compounds and indicated the possibility of using some of them as antibacterial and antifungal agents.

References

[1] G. Cerhiaro and A. M. D. Ferreira, “Oxindoles and copper complexes with oxindole-derivatives potential pharmacological agents,” *Journal of the Brazilian Chemical Society*, vol. 17, no. 8, pp. 1473–1485, 2006.

[2] S. N. Pandeya, S. Smitha, M. Jyoti, and S. K. Sridhar, “Biological activities of isatin and its derivatives,” *Acta Pharmaceutica*, vol. 55, pp. 27–46, 2005.

[3] V. K. Sharma, S. Srivastava, and A. Srivastava, “Novel coordination complexes of the trivalent ruthenium, rhodium and iridium with hydrazones derived from isatin hydrazone and various aldehydes with spectral and biological characterization,” *Polish Journal of Chemistry*, vol. 80, pp. 387–396, 2006.

[4] V. K. Sharma, A. Srivastava, and S. Srivastava, “Synthetic, structural and antifungal studies of coordination compounds of Ru(III), Rh(III) and Ir(III) with tetradentate Schiff bases,” *Journal of the Serbian Chemical Society*, vol. 71, no. 8–9, pp. 917–928, 2006.

[5] R. M. Abdel Rahman, Z. El Gendy, and M. B. Mahmoud, “Synthesis of some new 3-substituted 1,2,4-triazino-indole derivatives and related compounds of potential antifungal activity,” *Indian Journal of Chemistry B*, vol. 29, pp. 352–358, 1990.

[6] S. N. Pandeya, A. S. Raja, and J. P. Stables, “Synthesis of isatin semicarbazones as novel anticonvulsants—role of hydrogen bonding,” *Journal of Pharmacy and Pharmaceutical Sciences*, vol. 5, no. 3, pp. 266–271, 2002.

[7] T. R. Bal, B. Anand, P. Yogeeswari, and D. Sriram, “Synthesis and evaluation of anti-HIV activity of isatin β-thiosemicarbazone derivatives,” *Bioorganic and Medicinal Chemistry Letters*, vol. 15, no. 20, pp. 4451–4455, 2005.

[8] J. F. M. da Silva, S. J. Garden, and A. C. Pinto, “The chemistry of isatins: a review from 1975 to 1999,” *Journal of the Brazilian Chemical Society*, vol. 12, no. 3, pp. 273–324, 2001.

[9] E. H. El Ashry, E. Ramadan, H. M. Abdel Hamid, and M. Hagar, “Microwave irradiation for accelerating each step for the synthesis of 1,2,4-triazino[5,6-b]indole-3-thiol and their derivatives from isatin and 5-chloroisatin,” *Synlett*, no. 4, pp. 723–725, 2004.

[10] G. Pelosi, C. Pelizzi, M. B. Ferrari, M.C. Rodriguez-Argüelles, C. Vieito, and J. Sanmartín, “Isatin 3-semicarbazone and 1-methylisatin 3-semicarbazone,” *Acta Crystallographica Section C*, vol. 61, no. 10, pp. 589–592, 2005.

[11] D. Sriram, T. R. Bal, and P. Yogeeswari, “Aminopyrimidino isatin analogues: design of novel non-nucleoside HIV-1 reverse transcriptase inhibitors with broadspectrum chemotherapeutic properties,” *Journal of Pharmacy and Pharmaceutical Sciences*, vol. 8, no. 3, pp. 565–577, 2005.

[12] K. C. Joshi, P. Chand, and A. Dandia, “Studies in spiroheterocycles—part II-reactions of fluorine containing indole-2,3-diones with 1,2-phenyldiamines & 2,3-diaminopyridine in different media,” *Indian Journal of Chemistry B*, vol. 23, pp. 743–745, 1984.

[13] B. S. Joshi, M. A. Likhate, and N. Viswanathan, “Reaction of N-acylisatins with diamines,” *Indian Journal of Chemistry B*, vol. 23, pp. 114–116, 1984.

[14] P. De Mayo and J. J. Ryan, “The constitution of isamic acid,” *Canadian Journal of Chemistry*, vol. 45, no. 15, pp. 2177–2190, 1967.

[15] P. J. Werkman, A. Schasfoort, R. H. Wieringa, and A. J. Schouten, “Langmuir-blot gel films of a polymerisable N,N’-disubstituted dithioxamid coordination compound,” *Thin Solid Films*, vol. 325, pp. 243–250, 1998.

[16] J. Muñoz, M. Gallego, and M. Valcárcel, “Speciation of copper by using a new fullerene derivative as a mixed-mode sorbent,”

Compounds	*Staphylococcus aureus* inhibition diameter (mm) 1000 ppm	*Proteus vulgaris* inhibition diameter (mm) 1000 ppm	*Candida albicans* inhibition diameter (mm) 1000 ppm	*Aspergillus niger* growth diameter (mm) 1000 ppm
DMSO	Zero	Zero	Zero	25
Isatin	3	8	6	
N-acetylisaatin	4	Zero	5	
N-benzyliasaatin	5	5	6	
N-benzoyliasaatin	5	5	Zero	
L₄	8	5	Zero	9
C₂ (Ni(II))	4	8	Zero	9
C₃ (Cu(II))	9	5	5	
C₄ (Pd(II))	18	5	Zero	9
L₃	6	8	Zero	9
C₁₁ (Go(II))	3	10	14	
C₁₂ (Ni(II))	Zero	12	11	
C₁₃(Pd(II))	3	Zero	11	
