2020-03-26

Phenomenology of the new light Higgs bosons in Gildener-Weinberg models

This work was made openly accessible by BU Faculty. Please share how this access benefits you.
Your story matters.

| Version                  | Published version                                                                 |
|--------------------------|-----------------------------------------------------------------------------------|
| Citation (published version): | Kenneth Lane, Eric Pilon. "Phenomenology of the new light Higgs bosons in Gildener-Weinberg models." Physical Review D, Volume 101, Issue 5, https://doi.org/10.1103/physrevd.101.055032 |

https://hdl.handle.net/2144/40954

Boston University
Phenomenology of the new light Higgs bosons in Gildener-Weinberg models

Kenneth Lane$^1$, and Eric Pilon$^2$

1Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
2Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAPTh, F-74000 Annecy, France

(Received 27 September 2019; revised manuscript received 14 January 2020; accepted 25 February 2020; published 26 March 2020)

Gildener-Weinberg (GW) models of electroweak symmetry breaking are especially interesting because the low mass and nearly Standard Model couplings of the 125 GeV Higgs boson $H$ are protected by approximate scale symmetry. Another important but so far underappreciated feature of these models is that a sum rule bounds the masses of the new charged and neutral Higgs bosons appearing in all these models to be below about 500 GeV. Therefore, they are within reach of LHC data currently or soon to be in hand. Also so far unnoticed of these models, certain cubic and quartic Higgs scalar couplings vanish at the classical level. This is due to spontaneous breaking of the scale symmetry. These couplings become nonzero from explicit scale breaking in the Coleman-Weinberg loop expansion of the effective potential. In a two-Higgs doublet GW model, we calculate the most important of these, finding that the experimentally most relevant ones, $\lambda_{HHH}$ and $\lambda_{HHHH}$, imply $\sigma(pp \rightarrow HH) \approx 15–20 \text{ fb}$, its minimum value for $\sqrt{s} = 13–14 \text{ TeV}$ at the LHC. It will require at least the 27 TeV HE-LHC to observe this cross section. We also find $\lambda_{HHHH} \approx 4(\lambda_{HHHH})_{SM} = 0.129$, whose observation in $pp \rightarrow HHH$ requires a 100 TeV collider. Because of the above-mentioned sum rule, these results apply to all GW models. In view of this unpromising forecast, we stress that LHC searches for the new relatively light Higgs bosons of GW models are by far the surest way to test them in this decade.

DOI: 10.1103/PhysRevD.101.055032

I. SYNOPSIS

Section II of this paper reviews the Gildener-Weinberg (GW) mechanism for producing a model of a naturally light and aligned Higgs boson $H$ in multi-Higgs-scalar models of electroweak symmetry breaking [1]. This is done in the context of a two-Higgs doublet model (2HDM) due to Lee and Pilaftsis [2]. The tree-level Higgs potential in GW models is scale invariant, but that symmetry can be spontaneously broken, resulting in $H$ as a massless dilaton with exactly Standard Model (SM) couplings to gauge bosons and fermions. This scale symmetry is explicitly broken in one-loop order of the Coleman-Weinberg effective potential [3], resulting in $M_H^2 > 0$ but only small deviations from its exact SM couplings. An important corollary of the formula for $M_H^2$ is a sum rule for the masses of the additional Higgs scalars, generically $\mathcal{H}$. In any GW model of electroweak breaking in which the only weak bosons are $W^\pm$ and $Z^0$ and the only heavy fermion is the top quark, the sum rule in the first-order loop-perturbation theory is [2,4,5]

$$\left(\sum_{\mathcal{H}} M_{\mathcal{H}}^2\right)^{1/4} = 540 \text{ GeV}. \tag{1}$$

In the GW-2HDM model, the additional Higgs bosons are a charged pair, $H^\pm$, and one $CP$-even and one $CP$-odd scalar, which we call $H_2$ and $A$. This sum rule has profound consequences for the phenomenology of GW models that this paper emphasizes. For example, in a search for these new Higgses, care must be taken in using the sum rule to estimate the light scalar’s mass when the other scalar masses are assumed to exceed 400–500 GeV.

In Sec. III, we discuss features of the cubic and quartic Higgs boson self-couplings peculiar to GW models. As a consequence of unbroken scale invariance in the classical Higgs potential, certain of them vanish. These couplings do become nonzero once the scale symmetry is explicitly broken. We calculate the most important of these, finding that the experimentally most relevant ones, $\lambda_{HHH}$ and $\lambda_{HHHH}$, imply $\sigma(pp \rightarrow HH)$ and $\sigma(pp \rightarrow HHH)$ too small to detect at even the High-Luminosity (HL) LHC [6]. Again, because of the sum rule (1), this conclusion is

$^*$lane@bu.edu
$^\dagger$pilon@lapth.cnrs.fr

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
true in all GW models of electroweak symmetry breaking, regardless of their Higgs sector.

This leads to Sec. IV, where we refocus on direct searches at the LHC for the new light Higgs bosons of GW models. We briefly summarize these Higgses’ main search channels and the status of these searches. Substantial progress is in reach of data in hand or to be collected in the near future. There is nothing exotic about these searches; what is required for discovery or exclusion is greater sensitivity at relatively low masses.

II. THE TWO-HIGGS DOUBLET MODEL

In 1976, Gildener and Weinberg proposed a scheme, based on broken scale symmetry, to generate a light Higgs boson in multiscalar models of electroweak symmetry breaking. In essence, their motivation was to generalize the work of Coleman and Weinberg [3] to completely breaking. In essence, their motivation was to generalize scale symmetry, to generate a light Higgs boson in multiscalar models of electroweak symmetry based on broken scale symmetry, to generate a light Higgs boson in multiscalar models of electroweak symmetry breaking, to generate a light Higgs boson in multiscalar models of electroweak symmetry breaking.

Like the Higgs boson were exactly those of the single Higgs boson of the SM [8]. All the scalars, its couplings to gauge bosons and fermions satisfy certain positivity conditions. Thus, scale symmetry is nontrivial extremum. If it does, it is along a ray in scalar-field space and it is a flat minimum if the quartic couplings satisfy certain positivity conditions. Thus, scale symmetry is spontaneously broken at tree level, and there is a massless (Goldstone) dilaton, \( \phi \), which GW called the “scalon.” Higgs alignment is a simple consequence of the linear combination of fields composing \( H \) having the same form as the Goldstone bosons \( w^\pm \) and \( z \) that become the longitudinal components of the \( W^\pm \) and \( Z \) bosons; see Eqs. (8) below.

Importantly, scale symmetry is explicitly broken by the first-order term \( V_1 \) in the Coleman-Weinberg loop expansion of the effective scalar potential \( V_0 + V_1 \) can have a deeper minimum than the trivial one at zero fields. If it does, it occurs at a specific vacuum expectation value (VEV) \( \langle H \rangle = v \), explicitly breaking scale invariance. Then \( M_\beta \) and all other masses in the theory are proportional to \( v \). The GW scheme is the only one we know in which the entire breaking of scale and electroweak symmetries is caused by the same electroweak operator, namely, \( \langle H \rangle \). Hence, the dilaton decay constant \( f = v \) [9], which we take to be 246 GeV.

In 2012, Lee and Pilafitis (LP) proposed a simple 2HDM model of the GW mechanism employing the Higgs doublets [2]:

\[
\Phi_i = \frac{1}{\sqrt{2}} \left( \begin{array}{c} \phi_i^+ \\ \rho_i + ia_i \end{array} \right), \quad i = 1, 2. \tag{2}
\]

Here, \( \rho_i \) and \( a_i \) are neutral CP-even and -odd fields. Their potential is

\[
V_0(\Phi_1, \Phi_2) = \lambda_1(\Phi_1^+ \Phi_1)^2 + \lambda_2(\Phi_2^+ \Phi_2)^2 + \lambda_3(\Phi_1^+ \Phi_1)(\Phi_2^+ \Phi_2) + \lambda_4(\Phi_1^+ \Phi_2)(\Phi_2^+ \Phi_1) + \frac{1}{2} \lambda_5((\Phi_1^+ \Phi_2)^2 + (\Phi_2^+ \Phi_1)^2). \tag{3}
\]

All five quartic couplings are real so that \( V_0 \) is CP invariant as well. This potential is consistent with a \( Z_2 \) symmetry that prevents tree-level flavor-changing interactions among fermions, \( \psi \), induced by neutral scalar exchange [10]:

\[
\Phi_1 \rightarrow -\Phi_1, \quad \Phi_2 \rightarrow \Phi_2, \quad \psi_L \rightarrow -\psi_L, \quad \psi_{uR} \rightarrow \psi_{uR}, \quad \psi_{dR} \rightarrow \psi_{dR}. \tag{4}
\]

This is the usual type-I 2HDM [11], but with \( \Phi_1 \) and \( \Phi_2 \) interchanged; we refer henceforth to this version of the model as the GW-2HDM. This choice of Higgs couplings differs from LP’s choice of type II [2]. It was made to remain consistent with limits from CMS [12] and ATLAS [13] on charged Higgs decay into \( t\bar{b} \). The limits from these papers are consistent with \( \tan \beta \lesssim 0.5 \) for \( M_{H'} \lesssim 500 \text{ GeV} \). This range of \( \tan \beta \) also suppresses \( gg \rightarrow A(H') \rightarrow bb, t\bar{t} \), where \( A(H') \) is a CP-odd (even) Higgs, relative to a heavy Higgs boson \( H \) with SM couplings. See the discussion and references in Ref. [5].

The potential \( V_0 \) can have a flat minimum along the ray

\[
\Phi_{1\beta} = \frac{1}{\sqrt{2}} \left( \begin{array}{c} 0 \\ \phi c_\beta \end{array} \right), \quad \Phi_{2\beta} = \frac{1}{\sqrt{2}} \left( \begin{array}{c} 0 \\ \phi s_\beta \end{array} \right). \tag{5}
\]

Here \( \phi > 0 \) is any real mass scale, \( c_\beta = \cos \beta \) and \( s_\beta = \sin \beta \). The nontrivial tree-level extremal conditions are (for \( \beta \neq 0, \pi/2 \))

\[
\lambda_1 c_\beta^2 + \frac{1}{2} \lambda_{345} s_\beta^2 = 0, \quad \lambda_2 s_\beta^2 + \frac{1}{2} \lambda_{345} c_\beta^2 = 0. \tag{6}
\]

where \( \lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5 \). Scale symmetry is spontaneously, but not yet explicitly, broken. Note that \( V_{0\beta} = V_0(\Phi_{1\beta}, \Phi_{2\beta}) = 0 \), degenerate with the trivial vacuum. As explained in Sec. III, \( V_{0\beta} = 0 \) is a consequence of the scale-invariance of the classical potential \( V_0 \). The squared “mass” matrices of the CP-odd, charged, and CP-even scalars are given by

\[
M_5^2 = -\lambda_5 \phi^2 \left( \begin{array}{cc} s_\beta^2 & -s_\beta c_\beta \\ -s_\beta c_\beta & c_\beta^2 \end{array} \right). \tag{7}
\]
where the subscript $S = H_0, H^\pm$, and $H_0$. In terms of the quartic couplings in the Higgs potential, they are $\lambda_{H^\pm} = \lambda_5$; $\lambda_{H^\pm} = \frac{1}{2}(\lambda_4 + \lambda_5) = \frac{1}{2}\lambda_{45}$; and $\lambda_{H_0} = \lambda_{345}$. All $\lambda_S$ are negative to ensure non-negative eigenvalues of the matrices. The respective eigenvectors and eigenvalues are

$$
\left(\begin{array}{c}
\frac{\partial}{\partial A^0}
\frac{\partial}{\partial A^+}
\frac{\partial}{\partial H^0}
\frac{\partial}{\partial H^+}
\end{array}\right) =
\left(\begin{array}{c}
c_\beta s_\beta
-s_\beta c_\beta
\end{array}\right)
\begin{pmatrix}
\begin{array}{c}
a_1
a_2
\end{array}\end{pmatrix},
M_0^2 = 0,
M_0^2 = -\lambda_5 \phi^2
$$

(8)

The one-loop effective potential, presented in Ref. [2], is given by

$$
V_1 = \frac{1}{64 \pi^2} \left[ 6 M_W^4 \left( -\frac{5}{6} + \ln \frac{M_W^2}{\Lambda_{\text{GW}}} \right) + 3 M_Z^2 \left( -\frac{5}{6} + \ln \frac{M_Z^2}{\Lambda_{\text{GW}}} \right) + M_H^4 \left( \frac{3}{2} - \ln \frac{M_H^2}{\Lambda_{\text{GW}}} \right) + 2 M_{H^+}^4 \left( \frac{3}{2} - \ln \frac{M_{H^+}^2}{\Lambda_{\text{GW}}} \right) - 12 m_1^4 \right],
$$

(9)

where $\Lambda_{\text{GW}}$ is the GW renormalization scale [related to the Higgs VEV $v$ by Eqs. (40) and (41) in LP]. The background field-dependent masses in $V_1$ are

$$
M_W^2 = \frac{1}{2} g^2 (\Phi_1^0 \Phi_1 + \Phi_2^0 \Phi_2),
M_Z^2 = \frac{1}{2} (g^2 + g')^2 (\Phi_1^0 \Phi_1 + \Phi_2^0 \Phi_2),
M_{H}^2 = -2 \lambda_5 (\Phi_1^0 \Phi_1 + \Phi_2^0 \Phi_2),
M_{H^+}^2 = -2 \lambda_{345} (\Phi_1^0 \Phi_1 + \Phi_2^0 \Phi_2),
m_1^2 = \Gamma_1^2 \Phi_1^0 \Phi_1,
$$

(10)

where $g$, $g'$ are the electroweak $SU(2)$ and $U(1)$ gauge couplings and $\Gamma_1 = \sqrt{2m_i/v} = \sqrt{2m_i/v} \cos \beta$ is the Higgs-Yukawa coupling of the top quark.

The nontrivial extremal conditions for $V_0 + V_1$ are [2]

$$
\frac{\partial (V_0 + V_1)}{\partial \phi_1} \bigg|_0 = \lambda_1 c_\beta^2 + \frac{1}{2} \lambda_{345} s_\beta^2 + \Delta \lambda_1 / 64 \pi^2 = 0,
$$

$$
\frac{\partial (V_0 + V_1)}{\partial \phi_2} \bigg|_0 = \lambda_2 s_\beta^2 + \frac{1}{2} \lambda_{345} c_\beta^2 + \Delta \lambda_2 / 64 \pi^2 = 0,
$$

(11)

where $(\cdot)$ means that the derivatives of $V_0 + V_1$ are evaluated at the vacuum expectation values of the fields, and

$$
\Delta \lambda_1 = \frac{4}{v^4} \left[ 2 M_W^4 \left( 3 \ln \frac{M_W^2}{\Lambda_{\text{GW}}} - 1 \right) + M_Z^4 \left( 3 \ln \frac{M_Z^2}{\Lambda_{\text{GW}}} - 1 \right) + M_{H}^4 \left( \ln \frac{M_H^2}{\Lambda_{\text{GW}}} - 1 \right) + M_{H^+}^4 \left( \ln \frac{M_{H^+}^2}{\Lambda_{\text{GW}}} - 1 \right) - 12 m_1^4 \left( \ln \frac{m_1^2}{\Lambda_{\text{GW}}} - \frac{1}{2} \right) \delta \psi_1 \right] .
$$

(12)

For nontrivial extrema with $\beta \neq 0, \pi/2$, these conditions lead to a deeper minimum than the zeroth-order ones, $(V_0 + V_1)_{\text{min}} < V_0 = V_0(0) + V_1(0) = 0$. This minimum occurs at a particular value of $v$ of the scale $\phi$ which, as we have said, is identified as the electroweak breaking scale, $v = 246$ GeV. The VEVs of $\Phi_1$ and $\Phi_2$ are $v_1 = v \cos \beta$ and $v_2 = v \sin \beta$, with $\tan \beta = v_2 / v_1$ as usual in 2HDM.

The CP-odd and charged Higgs bosons’ masses receive no contribution from $V_1$, and, so, they are given by Eqs. (8) with $\phi = v$. The CP-even masses, however, receive important corrections from $V_1$. The eigenvectors $H_1$ and $H_2$ are

$$
H_1 = c_\beta H - s_\beta H^+, c_\beta \rho_1 + s_\beta \rho_2,
H_2 = s_\beta H - c_\beta H^+, -c_\beta \rho_1 + c_\beta \rho_2,
$$

(13)

where $\beta' = \beta - \delta, c_\beta' = \cos \beta'$, etc. The angle $\delta$ measures the departure of the Higgs boson $H_1$ from perfect alignment, and it should be small. Furthermore, the accuracy of first-order perturbation theory requires $|\delta/\beta| \ll 1$. Both these criteria are met in calculations with a wide range of input parameters; they are illustrated in Fig. 1. From now on we refer interchangeably to the 125 GeV Higgs boson as $H_1$ or $H$, as clarity requires. Its mass is given by [1,2,5]

$$
M_{H_1}^2 \equiv M_H^2 = \frac{1}{8 \pi^2 v^2} \left( 6 M_W^4 + 3 M_Z^4 + M_{H}^4 + M_{H^+}^4 + 2 M_{H^+}^4 - 12 m_1^4 \right),
$$

(14)

In accord with first-order perturbation theory, all the masses on the right side of this formula are obtained from zeroth-order perturbation theory, i.e., from $V_0$ plus gauge and Yukawa interactions, with $\phi = v$. As we see in Fig. 1, the Higgs masses $M_H$ and $M_{H_1}$ derived from Eq. (14) and from diagonalizing the one-loop mass matrix $M_{H_1}$, respectively, are extremely close, as they should be.

This formula can be used in two related ways. First, assuming that there are no other heavy fermions and weak bosons, it implies a sum rule on all the new scalar masses in this GW-2HDM [2,4,5]:

$$
(M_{H_1}^4 + M_H^4 + 2 M_{H^+}^4)^{1/4} = 540 \text{ GeV}.
$$

(15)

The sum rule is illustrated in Fig. 2 for $M_H \cong M_{H_1} = 125$ GeV and $M_{H_1} = M_{S_i}$, where $M_{S_i} = M_A$ or $M_{H^+}$; the
mass of the other neutral scalar, \( S_2 \), is plotted against \( M_{H^+} = M_{S_1} \). The smallness of \( \delta \) in Fig. 1 and the magnitude of Higgs couplings we obtain in Sec. III give us confidence that the one-loop approximation (14) is reliable. Still, we would not be surprised if higher-order corrections change the right side of Eq. (15) by \( O(100 \text{ GeV}) \). The important point is that the sum rule tells us that new Higgs bosons should be found at surprisingly low masses. To repeat, this sum rule holds in any GW model of electroweak breaking in which the only weak bosons are \( W \) and \( Z \) and the only heavy fermion is the top quark. Thus, the larger the Higgs sector, the lighter will be the masses of at least some of the new Higgs bosons expected in a GW model.

Second, as an instructive example in the present model, we assume that \( M_{H^+} = M_A \) and imagine searching for \( H_2 \). The input \( H \cong H_1 \) mass is \( M_{H^+} = 125.0 \text{ GeV} \), the corresponding initial \( M_{H^+} = 353 \text{ GeV} \) and \( \lambda_3 = 2.966 \). \( M_{H^+} \) vanishes at \( \lambda_3 = 2M_{H^+}^2/v^2 = 5.027 \). Right: The angle \( \delta = \beta - \beta' \) measuring the deviation from perfect alignment of \( H_1 \) and the ratio \( \delta/\beta \) for \( \beta = 0.4637 \). The procedure used in creating these figures is spelled out in the Appendix of Ref. [5].

FIG. 1. Left: The CP-even Higgs one-loop mass eigenvalues \( M_{H_1} \) and \( M_{H_2} \), the tree-level mass \( M_{H^+} = \sqrt{-\lambda_{345}v} \) and the one-loop mass \( M_H \) from Eq. (14) as functions of \( \lambda_3 = (2M_{H^+}^2 - M_{H^+}^2)/v^2 \). Here, \( \tan \beta = 0.50 \) and \( M_{H^+} = M_A = 390 \text{ GeV} \) corresponding to \( \lambda_3 = \lambda_5 = -2.513 \). The input \( H \cong H_1 \) mass is \( M_{H^+} = 125.0 \text{ GeV} \), the corresponding initial \( M_{H^+} = 353 \text{ GeV} \) and \( \lambda_3 = 2.966 \). \( M_{H^+} \) vanishes at \( \lambda_3 = 2M_{H^+}^2/v^2 = 5.027 \). Right: The angle \( \delta = \beta - \beta' \) measuring the deviation from perfect alignment of \( H_1 \) and the ratio \( \delta/\beta \) for \( \beta = 0.4637 \). The procedure used in creating these figures is spelled out in the Appendix of Ref. [5].
The conditions for the nontrivial extrema of the scalar as polynomial of degree four: \( \partial \Phi = \Phi_1 c_\beta + \Phi_2 s_\beta \), \( \Phi' = -\Phi_1 s_\beta + \Phi_2 c_\beta \). (16)

On the ray Eq. (5) on which \( V_0 \) has nontrivial extrema, these fields are

\[
\Phi_\beta = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \phi \end{pmatrix}, \quad \Phi'_\beta = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 0 \end{pmatrix},
\]

where \( \phi \in (0, \infty) \) is a constant mass scale. Then, in terms of the tree-level mass-eigenstate scalars, the fields \( \Phi \) and \( \Phi' \) are (after shifting \( H \to H + \phi \))

\[
\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \sqrt{2}w^+ \end{pmatrix}, \quad \Phi' = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ H' + iA \end{pmatrix}.
\]

Rewritten in terms of quartic polynomials in \( \Phi \) and \( \Phi' \), Eq. (3) becomes (with \( \lambda_{1345} = \lambda_1 + \lambda_2 + \lambda_3 \), etc.)

\[
V_0 = [\lambda_1 c_\beta^2 + \lambda_2 s_\beta^2 + \lambda_{1345} s_\beta^2 c_\beta^2] (\Phi^\dagger \Phi)^2 + \left[ (2 \lambda_2 s_\beta^2 + \lambda_{1345} c_\beta^2) - (2 \lambda_1 c_\beta^2 + \lambda_{345} s_\beta^2) \right] s_\beta c_\beta (\Phi^\dagger \Phi) (\Phi'^\dagger \Phi') + \left[ (2 \lambda_1 + \lambda_2 - \lambda_{345}) s_\beta^2 c_\beta^2 + \lambda_3 \right] (\Phi^\dagger \Phi') (\Phi'^\dagger \Phi') + \left[ (2 \lambda_1 + \lambda_2 - \lambda_{345}) s_\beta^2 c_\beta^2 + \lambda_4 \right] (\Phi'^\dagger \Phi') (\Phi'^\dagger \Phi') + \left[ (2 \lambda_2 s_\beta^2 + \lambda_{345} c_\beta^2) - (2 \lambda_1 s_\beta^2 + \lambda_{1345} c_\beta^2) \right] s_\beta c_\beta (\Phi^\dagger \Phi') (\Phi'^\dagger \Phi') + \left[ (2 \lambda_2 s_\beta^2 + \lambda_{1345} c_\beta^2) - (2 \lambda_1 s_\beta^2 + \lambda_{345} c_\beta^2) \right] s_\beta c_\beta (\Phi^\dagger \Phi') (\Phi'^\dagger \Phi') + \left[ (2 \lambda_1 + \lambda_2 - \lambda_{345}) s_\beta^2 c_\beta^2 + \lambda_5 \right] (\Phi^\dagger \Phi') (\Phi'^\dagger \Phi') + \left[ (2 \lambda_1 + \lambda_2 - \lambda_{345}) s_\beta^2 c_\beta^2 + \lambda_6 \right] (\Phi^\dagger \Phi') (\Phi'^\dagger \Phi') + \left[ (2 \lambda_1 s_\beta^2 + \lambda_{1345} c_\beta^2) - (2 \lambda_2 s_\beta^2 + \lambda_{345} c_\beta^2) \right] s_\beta c_\beta (\Phi^\dagger \Phi') (\Phi'^\dagger \Phi') + \left[ (2 \lambda_1 s_\beta^2 + \lambda_{1345} c_\beta^2) - (2 \lambda_2 s_\beta^2 + \lambda_{345} c_\beta^2) \right] s_\beta c_\beta (\Phi^\dagger \Phi') (\Phi'^\dagger \Phi').
\]

By virtue of its scale invariance, \( V_0 \) is a homogeneous polynomial of degree four:

\[
V_0 = \frac{1}{4} \sum_{i=1}^{2} \left[ \Phi_i^\dagger \frac{\partial V_0}{\partial \Phi_i} + \Phi_i \frac{\partial V_0}{\partial \Phi_i^\dagger} \right] = \frac{1}{4} \left[ \Phi^\dagger \frac{\partial V_0}{\partial \Phi} + \Phi \frac{\partial V_0}{\partial \Phi^\dagger} + \Phi' \frac{\partial V_0}{\partial \Phi'} + \Phi'^\dagger \frac{\partial V_0}{\partial \Phi'^\dagger} \right].
\]

Thus, \( V_0 \) vanishes at any extremum, in particular for \( \Phi_\beta = (0, \phi) / \sqrt{2} \) and \( \Phi'_\beta = (0, 0) \), the flat direction associated with spontaneous scale symmetry breaking. We know that the conditions for the nontrivial extrema of \( V_0 \) are those in Eq. (6). It follows that the coefficients of \((\Phi^\dagger \Phi)^2 \) and \((\Phi'^\dagger \Phi') (\Phi^\dagger \Phi' + \Phi'^\dagger \Phi) \) terms in \( V_0 \) vanish. It is easy to see why these coefficients, \( C_1 \) and \( C_2 \), had to vanish. On the ray \( \Phi_\beta, \Phi'_\beta \)

\[2\text{Of course, } C_1 = C_2 = 0 \text{ implies the conditions of Eq. (6).} \]
Using the tree-level extremal conditions, the nonzero coefficients in \( V_0 \) are simplified by using
\[
2(\lambda_1 + \lambda_2 - \lambda_{345}) s^2 c^2 = -\lambda_{345}, \tag{23}
\]
\[
[(2\lambda_1 s^2 \beta + \lambda_{345} s^2 \beta) - (2\lambda_1 s^2 \beta + \lambda_{345} s^2 \beta)] s \beta c \beta = -2\lambda_{345} \cot 2\beta, \tag{24}
\]
\[
\lambda_1 s^4 \beta + \lambda_2 s^4 \beta + \lambda_{345} s^2 \beta c^2 \beta = -2\lambda_{345} \cot 2\beta. \tag{25}
\]
Then,
\[
V_0(\text{cubic}) = -\frac{1}{2} \lambda_{45} (H^2 + A^2 + 2H^+ H^-) + \frac{1}{4} \lambda_{35} (HH' + zA + w^+ H^- + H^+ w^-) + A(HA - zH') + iA(w^+ H^- - H^+ w^-) + \frac{1}{2} \lambda_{34} (HA - zH') - iA(w^+ H^- - H^+ w^-) - \lambda_{345} \cot 2\beta (H^2 + A^2 + 2H^+ H^-).
\]

The quartic terms are
\[
V_0(\text{quartic}) = -\frac{1}{4} \lambda_{45} (H^2 + A^2 + 2w^+ w^-) (|H|^2 + A^2 + 2H^+ H^-) - \frac{1}{4} \lambda_{35} [(HH' + zA + w^+ H^-) (HH' + zA + 2H^+ w^-) + (HA - zH')^2 + 2i(AH - zH')(w^+ H^- - H^+ w^-)] - \frac{1}{4} \lambda_{34} [(HH' + zA + 2H^+ w^-)^2 - (HA - zH')^2 - 2i(AH - zH')(w^+ H^- - H^+ w^-)] - \lambda_{345} \cot 2\beta ((H^2 + A^2 + 2H^+ H^-) [HH' + zA + w^+ H^- + H^+ w^-] - \frac{1}{2} \lambda_{345} \cot 2\beta (H^2 + A^2 + 2H^+ H^-)^2. \tag{28}
\]

Recall from Eq. (7) that \(-\lambda_{345} = M^2_{He}/v^2\), \(-\lambda_{45} = 2M^2_{He}/v^2\) and \(-\lambda_5 = M^2_{4}/v^2\).

We turn to the one-loop corrections, focusing on the triple-scalar couplings involving the 125 GeV Higgs boson, \( H \cong H_1 \), and the quartic coupling \( \lambda_{hH_1H_2} \). For brevity, we include only those cubic couplings of \( H_1 \) with itself and with \( H_2 \). The \( H_1A A \) and \( H_1H_2^+H^- \) couplings are similar to \( H_1^2H_2 \), as may be inferred from the tree-level cubic in Eq. (27) and Table I below. There are two types of one-loop corrections: (i) those to \( V_0 \) obtained by writing the zeroth-order CP-even fields in terms of \( H_1 \) and \( H_2 \), Eqs. (13), and by using the one-loop extremal conditions, Eqs. (11); (ii) those obtained from \( V_1 \) in Eq. (9) by isolating the coefficients of \( H^3, H^2H', \) etc.

\(^{3}\)Of course, the electroweak Goldstone fields \( w^\pm, z \) are absent in the unitary gauge but must be retained in renormalizable gauges.

From this, the masses in Eq. (7) may be read off from the first three terms.

With foreknowledge, we now put \( \phi = v = 246 \text{ GeV} \). Then the nonzero cubic terms in the tree-level potential, written in terms of mass eigenstate scalars of \( V_0 \), are
\[
V_0 = -\lambda_{45} (\Phi^H \Phi^H \Phi) - \lambda_{35} (\Phi^H \Phi^H \Phi) - \lambda_{34} (\Phi^H \Phi^H \Phi) - \lambda_{345} (\Phi^H \Phi^H \Phi) - \lambda_{345} \cot 2\beta (\Phi^H \Phi^H \Phi) - \lambda_{345} \cot 2\beta (\Phi^H \Phi^H \Phi).
\]

(i) With \( \rho_i \) shifted by \( v_i \), the cubic CP-even terms in \( V_0 \) are
\[
V_0(\text{cubic}) = \lambda_1 v_1 \rho^3_1 + \lambda_2 v_2 \rho^3_2 + \frac{1}{2} \lambda_{345} (v_1 \rho_1 \rho_2^2 + v_2 \rho_2 \rho_1^2) - \lambda_{35} (v_1 v_2 \rho^2_1 \rho^2_2) + v_3 \rho_3 (H_1 \rho_1 \rho_2^2 + H_2 \rho_2 \rho_1^2) - \frac{\Delta^2_1}{64\pi^2} s^2_\beta (c_\rho (Hc_\beta - H' s_\beta)^3) - \frac{\Delta^2_2}{64\pi^2} s^2_\beta (c_\rho (Hs_\beta + H' c_\beta)^3). \tag{29}
\]

Our convention for the triple and quartic couplings of \( H_1 \), for example, is that they are the coefficients of \( H_1^3 \) and \( H_1^4 \) in these two types of corrections. Then,
TABLE I. Selected cubic and quartic couplings of the 125 GeV Higgs boson. Input masses are $M_H \approx M_{H_1}$ and $M_{H'} = M_A$, with $M_{H'}$ taken from the sum rule Eq. (15) as explained in the text; $M_{H_1}$ is the corresponding CP-even eigenvalue at one-loop order; tan $\beta = 0.50$, and the misalignment angle $\delta = 0.039, 0.0115, 0.0323$ for $M_{H'} = 200, 400, 410$ GeV. Couplings $\lambda^{(0)}$ and $\lambda^{(1)}$ are contributions from the one-loop improved $V_0$ and full one-loop $V_1$ potentials. Comparisons are made to the Standard Model $[\kappa_1 = \lambda^{(0)}_{H,H_1,H_1}/(\lambda_{HHH})_{SM}]$ and $\kappa_2$, $\mu_1 = \lambda^{(0)}_{H,H_1,H_1}/(\lambda_{HHH})_{SM}$ or to tree-level values $[\lambda^{(0)}_{H,H_1,H_1}/(\lambda_{HHH})_{SM}]$. Masses and cubic couplings are in GeV units.

| $M_H \approx M_{H_1}$ | $M_{H'} = M_A$ | $M_{H'}$ (GeV) | $\lambda^{(0)}$ | $\lambda^{(1)}$ |
|------------------------|---------------|----------------|----------------|----------------|
| 125                    | 200           | 532 (534)      | 51.9           | 1.64           |
| 125                    | 400           | 301 (314)      | 66.6           | 2.10           |
| 125                    | 410           | 115 (214)      | 115            | 3.63           |
| $\lambda^{(0)}_{H,H_1,H_1}$ | $\lambda^{(1)}_{H,H_1,H_1}/\lambda_{HHH}$ | $\lambda^{(0)}_{H,H_1,H_1}/\lambda_{HHH}$ | $\lambda^{(0)}_{H,H_1,H_1}/\lambda_{HHH}$ | $\lambda^{(0)}_{H,H_1,H_1}/\lambda_{HHH}$ |
| 3.84                   | 1151          | 1252           | 1.09           |                |
| 2.62                   | 367           | 510            | 1.39           |                |
| 7.92                   | 54.1          | 349            | 6.46           |                |
| $\mu_1$                | 0.118         | 0.117          | 3.64           |                |
| 0.0139                 | 0.118         | 0.132          | 4.10           |                |
| 0.0634                 | 0.118         | 0.182          | 5.63           |                |

the corrections to the triple-Higgs couplings from $V_0$ are

$$\lambda^{(0)}_{H,H_1,H_1} = -\lambda_{345} v s_2 (c_2 - s_2 \cot 2\beta) - \frac{(\Delta t_1 c_\beta + \Delta t_2 s_\beta^2)}{64 \pi^2} v, \quad (30)$$

$$\lambda^{(0)}_{H,H_1,H_1} = +\lambda_{345} v s_2 (2 c_2^2 - 3 s_2 s_\delta \cot 2\beta - s_2^2) + \frac{3(\Delta t_1 - \Delta t_2) v s_2 c_\beta}{64 \pi^2}, \quad (31)$$

$$\lambda^{(0)}_{H,H_1,H_1} = -\lambda_{345} v c_2 (c_2^2 - 3 c_2 s_2 \cot 2\beta - 2 s_2^2) - \frac{3(\Delta t_1 s_\beta^2 + \Delta t_2 c_\beta^2)}{64 \pi^2} v. \quad (32)$$

(ii) To calculate the contributions to the triple-Higgs couplings from $V_1$, it is appropriate that we use the zeroth-order fields $H$ and $H'$. Then, $\lambda^{(1)}_{H,H_1,H_1} = \frac{1}{6 \partial^3 V_1}{\partial^3 H^2}_1 \right|_0$.

$$\lambda^{(1)}_{H,H_1,H_1} = \frac{1}{2 \partial^2 H \partial H'} \right|_0, \quad (33)$$

$$\lambda^{(1)}_{H,H_1,H_1} = \frac{1}{2 \partial^2 H \partial H'} \right|_0, \quad (34)$$

$$\lambda^{(1)}_{H,H_1,H_1} = \frac{1}{2 \partial^2 H \partial H'} \right|_0, \quad (35)$$

where, again, $\left( \right)$ means that the derivatives are evaluated at the vacuum expectation values of the fields. Write $V_1$ as

$$V_1 = \frac{1}{64 \pi^2} \sum_X \alpha_X M_X^4 \left[ \beta_X + \ln(M_X^2/\Lambda_{GW}^2) \right] \right|_0, \quad (36)$$

where $M_X^2 = g_X^2 (\Phi^X_{1} + \Phi^X_{2})$, except that $m_2^2 = \Gamma^2_0 \Phi^2_1$ with $\Gamma_0 = \sqrt{2 m_1^2 / v \cos \beta}$. This $m_2^2$ affects $\lambda^{(1)}_{H,H_1,H_1}$ and $\lambda^{(1)}_{H,H_1,H_1}$. The constants $\alpha_X, \beta_X$ and $g_X$ can be read off from Eqs. (9) and (10). Then we obtain

$$\lambda^{(1)}_{H,H_1,H_1} = \frac{1}{6 \pi^2} \sum_X \alpha_X \left[ M_X^4 \left( \beta_X + \frac{3}{2} + \frac{\ln(M_X^2/\Lambda_{GW}^2)}{\alpha_X} \right) \right] \right|_0, \quad (37)$$

$$\lambda^{(1)}_{H,H_1,H_1} = \frac{3 v \tan \beta}{16 \pi^2} \left[ M_X^4 \left( \frac{5}{2} + \frac{\ln(M_X^2/\Lambda_{GW}^2)}{\alpha_X} \right) \right] \right|_0, \quad (38)$$

$$\lambda^{(1)}_{H,H_1,H_1} = \frac{3 v \tan \beta}{16 \pi^2} \left[ M_X^4 \left( \frac{5}{2} + \frac{\ln(M_X^2/\Lambda_{GW}^2)}{\alpha_X} \right) \right] \right|_0, \quad (39)$$

The $V_0$ and $V_1$ contributions to the four-Higgs coupling $\lambda^{(1)}_{H,H_1,H_1}$ are

$$\lambda^{(0)}_{H,H_1,H_1} = -\frac{1}{2} \lambda_{345} s_\delta^2 (1 + s_\delta \cot 2\beta)^2 - \frac{3(\Delta t_1 s_\beta^2 + \Delta t_2 c_\beta^2)}{256 \pi^2}, \quad (40)$$

$$\lambda^{(1)}_{H,H_1,H_1} = \frac{1}{6 \pi^2} \sum_X \alpha_X \left[ M_X^4 \left( \beta_X + \frac{25}{6} + \frac{\ln(M_X^2/\Lambda_{GW}^2)}{\alpha_X} \right) \right] \right|_0. \quad (41)$$

In Fig. 4 we plot the allowed range of $\kappa_1 = \lambda^{(0)}_{H,H_1,H_1}/(\lambda_{HHH})_{SM}$ and $\mu_1 = \lambda^{(0)}_{H,H_1,H_1}/(\lambda_{HHH})_{SM}$ for this GW-2HDM [where $(\lambda_{HHH})_{SM} = M_H^2/2v \cong 32$ GeV and $(\lambda_{HHH})_{SM} = M_H^2/8v^2 \cong 0.0323$]. For this, we put
M_{H^+} = M_A$ to eliminate the scalars’ contributions to the $T$ parameter and then enforced the sum rule (15) so that $M_{H^+} = (540 \text{ GeV})^4 - 2M_{H^2}^4 - M_A^4)^{1/4}$. (We also set $\tan \beta = 0.5$, its current experimental upper limit [5].)

There is no discernible effect on the cubic and quartic Higgs couplings for any plausible $\tan \beta > 0$. From this plot, we see that $\kappa_3 \approx 1.6$ and $\mu_3 \approx 3.6$ below $M_{H^+} \approx 370 \text{ GeV}$. In this region, only 2%-10% of these cubic and quartic Higgs couplings comes from $V_0$. Above it, these couplings approximately double as the sum rule forces $M_{H^+}$ rapidly to zero at $M_{H^+} \approx 410 \text{ GeV}$; see Fig. 3. This is an artifact of the end point of the sum rule, with the sudden increase due entirely to the $\Delta t_{1,2}$ terms in Eqs. (30) and (40).

This effect of the sum rule is seen numerically in Table I where we list triple and quartic couplings for three extreme values of $M_{H^+}$ in Fig. 4. The $V_0$ contribution to $\lambda_{H,H,H}$ is small and its $V_1, V_2$ contribution would vanish if not for the fact that $m^2_2 = G^2, \Phi^2_1 \Phi_1$ contains a linear term in $H'$. On the other hand, for almost the entire $M_{H^+}$ range, the contributions to $\lambda_{H,H,H}$, listed in the table are of normal size, $O(\lambda_{H,H,H} = M_{H^+}^2 / \mu^4)$. The interesting question of the effect this large coupling has on the production rate of $pp \to H_2$ is beyond the scope of this paper.

The value of the triple-Higgs coupling $\lambda_{H,H,H}$ in the GW-2HDM is close to its small SM value. As can be seen in Refs. [16–18], $\kappa_3 \approx 1.6$–3.6 corresponds to $\sigma(pp \to H^+ H^-) = 15$–20 fb. This is the absolute minimum value of the di-Higgs production cross section for $\sqrt{s} = 13$–14 TeV at the LHC. Because the sum rule (1) is independent of the number or type of Higgs multiplets in the GW model, this result is true of all of them.

We are aware that there are many theoretical studies of the cubic and even quartic Higgs couplings—in the context of one-doublet models, multidoublet models, models with extra singlet “Higgses,” and so on—many more studies than we can note here. We apologize to their authors for not citing them. At perhaps the simplest level, this is the problem of the shape of the potential of the Higgs boson itself; specifically, what are $\lambda_{HHH}$ and $\lambda_{HHH}$? One recent paper [6] studied a variety of new physics scenarios, their effect on these couplings, and the prospect of distinguishing them at the 14 TeV High Luminosity LHC (HL-LHC), the 27 TeV High Energy LHC (HE-LHC) and the 100 TeV Future Circular Hadron Collider (FCC-hh). These authors considered, inter alia, a Coleman-Weinberg-like potential. Compared to the SM values, they found $\kappa_3 = 5/3$ and $\mu_3 = 11/3$. These are close to our calculated values of $\kappa_3$ and $\mu_3$ in Fig. 4 below $M_{H^+} = M_A \approx 370 \text{ GeV}$. According to the analysis in Ref. [6] of di-Higgs and tri-Higgs observability at the upgraded LHC and the FCC-hh, the HE-LHC is needed to detect and distinguish the triple Higgs coupling of the GW-2HDM and the FCC-hh is needed for the quartic coupling. This is a gloomy prospect.

III. TESTING GILDENER–WEINBERG AT THE LHC

Much more immediately promising avenues of attack on GW models are searches for the new charged and neutral Higgs bosons that lie below 400–500 GeV. In the GW-2HDM, the new scalars are just $H^\pm$, $A$, and $H_2$. Assuming we have that $M_{H^+} = M_A$, the principal search modes are

$$H^\pm \to t b (\bar{t} \bar{t}) \quad \text{and} \quad W^\pm H^2; \quad (42)$$

$$A \to b \bar{b}, \bar{t} \bar{t} \quad \text{and} \quad ZH_2; \quad (43)$$

$$H_2 \to b \bar{b}, \bar{t} \bar{t} \quad \text{and} \quad ZA, W^\pm H^\mp. \quad (44)$$

Their main production cross sections at the 13 TeV LHC were discussed in Ref. [5] and they are displayed in Fig. 5 with the dependence on $\tan^2 \beta$ scaled out. There seem to have been but a few searches for $pp \to H_2$ or $A \to b \bar{b}$, presumably because of the overwhelming continuum $b \bar{b}$ production. One recent search by CMS for a $CP$-even or -odd scalar with $M_{b \bar{b}} = 50$–350 GeV and produced at high $p_T$ is reported in Ref. [19]. No significant excess over SM backgrounds was found. For $M_{H_2,A} = 200$–350 GeV, the 95% C.L. limits are $\sigma(pp \to H_2,A)B(H_2,A \to b \bar{b}) \approx 200–300 \text{ pb}$ which translates into upper limits $\tan \beta \approx 3$–6. It is important to note that the decays $H_2, A \to W^+ W^-, ZZ$ and $H^\pm \to W^\pm Z$ are highly suppressed in GW models by the near alignment of the SM Higgs $H \cong H_1$. Likewise, alignment strongly suppresses

\footnotesize
\begin{align*}
\frac{\lambda_{H,H,H}}{\lambda_{H,H,H}^{\text{SM}}} & \approx 1.6, \\
\frac{\lambda_{H,H,H}}{\lambda_{H,H,H}^{\text{SM}}} & \approx 3.6
\end{align*}

\end{footnotesize}
The cross sections for $\sqrt{s} = 13$ TeV at the LHC for single Higgs production processes in the alignment limit ($\delta \to 0$) of the GW-2HDM with the dependence on $\tan \beta$ scaled out. Both charged Higgs states are included in $pp \to tH^-$. From Ref. [5].

$H_2, A \to ZH$ and $H^\pm \to W^\pm H$. Seeing these decay modes from a new, heavier spinless boson would be significant, if not fatal, blows to GW models.

The following is a summary of the current experimental situation for the new Higgs bosons’ dominant decay modes:

(i) The CMS search at 8 TeV for $H^\pm \to tb$ [12] restricted $\tan \beta \lesssim 0.5$ for our type-I GW-2HDM with $180 \text{ GeV} < M_{H^\pm} < 550 \text{ GeV}$ [5]. Searches at 13 TeV for $H^\pm \to tb$ by ATLAS [13] and CMS [20] extend down to $M_{H^\pm} = 200 \text{ GeV}$ but do not yet have the sensitivity to reach $\sigma(pp \to tH^\pm) = 0.50 \text{ pb} (0.033 \text{ pb})$ expected at 200 GeV (500 GeV) for $\tan \beta = 0.50$ and $B(H^\pm \to tb) = 1$. At $M_{H^\pm} = 400 \text{ GeV}$ in the GW-2HDM, Fig. 3 gives $M_{H_2} = 314 \text{ GeV}$, while at $M_{H^\pm} = 408 \text{ GeV}$, it gives $M_{H_1} = 247 \text{ GeV}$. Between these two mass points, the $H^\pm \to W^\pm H_2$ decay rate increases by a factor of 70, overwhelming the $H^\pm \to tb$ decay rate; see item (iii) below. The two processes $g\tilde{b} \to H^+\tilde{t}$, $H^\pm \to tb$ and $g\tilde{b} \to H^+\tilde{t}$, $H^- \to W^+H_2$, with $H_2 \to b\bar{b}$, have the same final state. Hence, $H^- \to W^+H_2$ may unintentionally be included in a search for $H^\pm \to tb$. Even if that happened, the model expectation $\sigma(g\tilde{b} \to H^+\tilde{t}) = 0.075 \text{ pb}$ for $M_{H^\pm} \simeq 400 \text{ GeV}$ and $\tan \beta = 0.5$ is well below the 95% C.L. limits $\simeq 0.5$ (ATLAS) and 0.7 pb (CMS). There appear to be no dedicated searches released for $H^\pm \to W^\pm H_2 \to \ell^\pm b\bar{b}$ and for $H_2 \to W^\pm H^\pm \to \ell^\pm t\bar{b}$.

(ii) CMS recently reported a search for a CP-even or -odd scalar $\varphi$ with mass in the range 400–700 GeV and decaying to $t\bar{t}$ [21]. Results were presented in terms of allowed and excluded regions of the “coupling strength” $g_\varphi = \lambda_{\varphi t}/(m_t/v)$ and for fixed width-to-mass ratio $\Gamma_\varphi/M_\varphi = 0.5\%$–25\%. In the GW-2HDM, $g_\varphi = \tan \beta$. For the CP-odd case, $\varphi = A$, with $400 \text{ GeV} < M_A < 500 \text{ GeV}$ and all $\Gamma_A/M_A$ considered, the region $\tan \beta < 0.5$ is not excluded. This is possibly due to an excess at 400 GeV that corresponds to a global (local) significance of $1.9(3.5 \pm 0.3)\sigma$ for $\Gamma_A/M_A \simeq 4\%$. Reference [21] also notes that $t\bar{t}$ threshold effects may account for the excess. (iii) Searches for $pp \to A(H_2) \to ZH_2(A) \to \ell^+\ell^- b\bar{b}$ via gluon fusion have been reported by ATLAS [22] and CMS [23]. Two examples of observed 95% upper limits on cross sections and the corresponding GW-2HDM predictions are given in Table II. A word of caution is in order here: These decay rates are dominated by the emission of longitudinally polarized weak bosons and are proportional to $p^3/M_{W,Z}^2$, hence sensitive to the available phase space.

At the LHC there are now 140 fb$^{-1}$ of $pp$ collision data at 13 TeV from run 2 and another 200 fb$^{-1}$ at 14 TeV are expected from run 3 by the time it concludes at the end of 2024. With masses in the range 200–500 GeV, GW Higgs production rates are $\sigma(pp \to H^+ + H^-) = (0.1–1.0) \text{ pb} \times \tan^2 \beta$. $\sigma(pp \to A) = (4.0–20) \text{ pb} \times \tan^2 \beta$. $\sigma(pp \to H_2) = (2.0–7.0) \text{ pb} \times \tan^2 \beta$. Thus, unless $\tan \beta \lesssim 0.2$, there will be anywhere from $10^3$ to several $10^6$ of these GW Higgs bosons produced by the end of run 3. Given the large SM production of $b\bar{b}$, direct detection of $H_2 \to b\bar{b}$ via gluon fusion is the most difficult. There is no doubt that improved sensitivity in the low-mass region of $H^\pm \to tb$ is needed to access the expected cross sections. The decays $A(\to H_2) \to ZH_2(\to \ell^+\ell^- b\bar{b})$, $H^\pm \to W^\pm H_2 \to \ell^\pm b\bar{b} + E_T$ are helped by the narrow $b\bar{b}$ resonance and lepton kinematics. They may be easier than $H^\pm \to tb$, but they cover a smaller portion of $(M_{H^\pm}, M_A, M_H)$ space, the upper and lower ends of the allowed $M_{H^\pm} = M_A$ region.

**ACKNOWLEDGMENTS**

We are grateful for informative conversations with and advice from Tulika Bose, Kevin Black, Gustaaf Brooijmans, Jon Butterworth, Estia Eichten, Howard Georgi, Guoan Hu, Jon Butterworth, Estia Eichten, Howard Georgi, Guoan Hu, ~6The same appears to be true for $\varphi = H_2$ with $\Gamma_{H_2}/M_{H_2} \gtrsim 1\%$.
and Laboratoire d’Annecy-le-Vieux de Physique Théorique and valuable interactions at the PhysTeV meeting at Les Houches.

[1] E. Gildener and S. Weinberg, Symmetry breaking and scalar bosons, Phys. Rev. D 13, 3333 (1976).
[2] J. S. Lee and A. Pilaftsis, Radiative corrections to scalar masses and mixing in a scale invariant two Higgs doublet model, Phys. Rev. D 86, 035004 (2012).
[3] S. R. Coleman and E. J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7, 1888 (1973).
[4] K. Hashino, S. Kanemura, and Y. Orikasa, Discriminative phenomenological features of scale invariant models for electroweak symmetry breaking, Phys. Lett. B 752, 217 (2016).
[5] K. Lane and W. Shepherd, Natural stabilization of the Higgs bosons mass and alignment, Phys. Rev. D 99, 055015 (2019).
[6] P. Agrawal, D. Saha, L.-X. Xu, J.-H. Yu, and C. P. Yuan, Shape of Higgs potential at future colliders, arXiv:1907.02078.
[7] J. F. Gunion and H. E. Haber, The CP conserving two Higgs doublet model: The approach to the decoupling limit, Phys. Rev. D 67, 075019 (2003).
[8] S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19, 1264 (1967).
[9] B. Bellazzini, C. Csaki, J. Hubisz, J. Serra, and J. Terning, A Higgslike dilaton, Eur. Phys. J. C 73, 2333 (2013).
[10] S. L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D 15, 1958 (1977).
[11] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rep. 516, 1 (2012).
[12] V. Khachatryan et al. (CMS Collaboration), Search for a charged Higgs boson in pp collisions at √s = 8 TeV, J. High Energy Phys. 11 (2015) 018.
[13] M. Aaboud et al. (ATLAS Collaboration), Search for charged Higgs bosons decaying into top and bottom quarks at √s = 13 TeV with the ATLAS detector, J. High Energy Phys. 11 (2018) 085.
[14] R. A. Battye, G. D. Brawn, and A. Pilaftsis, Vacuum topology of the two Higgs doublet model, J. High Energy Phys. 08 (2011) 020.
[15] A. Pilaftsis, On the classification of accidental symmetries of the two Higgs doublet model potential, Phys. Lett. B 706, 465 (2012).
[16] A. M. Sirunyan et al. (CMS Collaboration), Combination of Searches for Higgs Boson Pair Production in Proton-Proton Collisions at √s = 13 TeV, Phys. Rev. Lett. 122, 121803 (2019).
[17] G. Aad et al. (ATLAS Collaboration), Combination of searches for Higgs boson pairs in pp collisions at √s = 13 TeV with the ATLAS detector, Phys. Lett. B 800, 135103 (2020).
[18] A. Carvalho, M. Dall’Osso, P. De Castro Manzano, T. Dorigo, F. Goertz, M. Gouzevich, and M. Tosi, Analytical parametrization and shape classification of anomalous HH production in the EFT approach, arXiv:1608.06578.
[19] A. M. Sirunyan et al. (CMS Collaboration), Search for low-mass resonances decaying into bottom quark-antiquark pairs in proton-proton collisions at √s = 13 TeV, Phys. Rev. D 99, 012005 (2019).
[20] A. M. Sirunyan et al. (CMS Collaboration), Search for a charged Higgs boson decaying into top and bottom quarks in proton-proton collisions at √s = 13 TeV in events with electrons or muons, J. High Energy Phys. 01 (2020) 096.
[21] A. M. Sirunyan et al. (CMS Collaboration), Search for heavy Higgs bosons decaying to a top quark pair in proton-proton collisions at √s = 13 TeV, arXiv:1908.01115.
[22] M. Aaboud et al. (ATLAS Collaboration), Search for a heavy Higgs boson decaying into a Z boson and another heavy Higgs boson in the ℓ⁺ℓ⁻bb final state in pp collisions at √s = 13 TeV with the ATLAS detector, Phys. Lett. B 783, 392 (2018).
[23] A. M. Sirunyan et al. (CMS Collaboration), Search for new neutral Higgs bosons through the H → ZA→ ℓ⁺ℓ⁻bb process in pp collisions at √s = 13 TeV, arXiv:1911.03781.