서론
불특정 다수의 민간인을 대상으로 하는 소위 소프트타깃 대상 테러행위는 테러의 동기유형만큼이나 복잡하고 다양한 패턴을 보이고 있다. 이들에 대한 여러 테러행위의 유형 중에서도 테러행위자와 가해자간의 정보 비대칭성 및 테러이용물질의 접근성에 따라 정치사회적인 파급효과를 고려했을 때 독성 및 인화성 가스물질을 이용한 화학테러는 대다수의 선진국, 국지적 분쟁을 겪고 있는 국가 및 지역사회에 대하여 중대한 안보위협이 되고 있다. 화학테러에 대한 대응기관의 대처방안은 크게 예방, 대응, 수습의 3단계로 나누어 볼 수 있고, 이 과정 중에 화학테러의 피해 정도 및 피해 범위에 영향을 미치는 예방 및 대응단계에 해당하는 각 전문대응기관과 요원들의 성공적인 임무수행을 위해서는 화학테러의 잠재적 대상이 되는 시설들에 대한 객관적이고 체계화된 취약성 평가와 등급화가 무엇보다 중요하다. 본 연구에서는 기존의 화학테러관련 취약성 등급분류체계를 비교분석하고 현재 국내 등급분류체계의 개선방향에 대해 살펴보고 실제 국내 다중이용시설 표본에 대한 취약성 평가를 통해서 보다 과학적이고 체계화된 방법론을 제시하였다.

요약
인체 건강에 치명적인 위해를 가할 수 있는 독성 및 인화성 가스를 이용한 화학테러행위는 행위자인 테러범과 그 행위로 인한 피해자 간에 존재하는 현격한 정보의 비대칭성으로 인해 대부분의 선진국, 또는 국지적 분쟁을 겪고 있는 국가 및 지역사회에 대하여 중대한 안보위협이 되고 있다. 화학테러에 대한 대응기관의 대처방안은 크게 예방, 대응, 수습의 3단계로 나누어 볼 수 있고, 이 과정 중에서 화학테러의 피해 정도 및 피해 범위에 영향을 미치는 예방 및 대응단계에 해당하는 각 전문대응기관과 요원들의 성공적인 임무수행을 위해서는 화학테러의 잠재적 대상이 되는 시설들에 대한 객관적이고 체계화된 취약성 평가와 등급화가 무엇보다 중요하다. 본 연구에서는 기존의 화학테러관련 취약성 등급분류체계를 비교분석하고 현재 국내 등급분류체계의 개선방향에 대해 살펴보고 실제 국내 다중이용시설 표본에 대한 취약성 평가를 통해서 보다 과학적이고 체계화된 방법론을 제시하였다.

ABSTRACT
Chemical terrorism using toxic and flammable gases, which could be fatal to the health of the human body, poses a serious threat to the security of most advanced countries, as well as those that are suffering from local disputes, due to the asymmetric information that exists between terrorist actors and victims. The countermeasures against chemical terrorism can be roughly divided into three stages: prevention, response, and probation. The critical factors for each professional response agency, and the personnel that determine the degree and range of chemical terrorism damage, are performing missions successfully in the process of the prevention and the response stage against chemical terrorism. To do this, conducting objective and systematical assessments on facilities that could potentially be the subject of chemical terrorism is more important than anything. In this study, we compared the existing domestic and foreign vulnerable classification systems for chemical terrorism, reviewed the current direction of improvement in domestic classification systems, and suggested more scientific and systematic methodologies through the vulnerability assessment on an actual public facility sample.

Keywords : Public facility, Chemical terrorism, Vulnerability, Assessment, Methodology

1. 서론
봉특성 다수의 민간인을 대상으로 하는 소위, 소프트타깃 대상 테러행위는 테러의 동기유형만큼이나 복잡하고 다양한 패턴을 보이고 있다. 이들에 대한 여러 테러행위의 유형 중에서도 테러행위자와 가해자간의 정보 비대칭성 및 테러이용물질의 접근성 등급분류체계를 고려할 때 독성 및 인화성 가스물질을 이용한 화학테러는 대다수의 선진국, 국지적 분쟁을 겪고 있는 국가 및 지역사회에서 이미 그들의 체계
안보에 중대위협이 되고 있다.

미국과 EU를 중심으로 화학사고 및 테러대응체계에 대한 지속적인 연구와 발전이 있어왔는데, 이들 선진국들에 비해 국내 대응체계는 관련분야의 연구 및 그 연구로부터 수집된 현장 데이터의 부족으로 인해, 화학테러 대응기관 및 소속요원들의 보다 효과적인 현장 임무수행을 위해서는 지금부터라도 관련분야의 연구부터 시작해야 한다. 현재 경찰, 소방, 중앙행정부, 지자체 등이 담당하고 있는 화학테러대응체계는 기관별로 세부업무수행의 차이를 있으나 큰 틀에서는 사고예방, 사고수습의 3단계로 구성되는 공통제가 있다. 화학테러 대응단계 중에서 화학테러의 피해정도 및 피해범위에 가장 큰 영향력을 미치는 단계는 예방과 대응이다. 이들 단계에 해당하는 각 대응기관 및 요원들의 성공적인 업무수행을 위해서는 화학테러의 잠재적 대상이 되는 시설들에 대한 객관적이고 체계화된 취약성의 평가 및 등급화가 무엇보다 중요하다. 여기에서 말하는 "취약성"은 "어떤 시스템이 방호장치가 갖춰진 상태에서 갖는 시스템 고유의 약점 내지 방호장치로 인해 생기는 부가적인 약점(3)"으로 정의하기로 한다.

본 연구에서는 현존하는 국내외의 화학테러관련 취약성 등급분류체계를 비교분석하고 현재 국내 등급분류체계의 개선방향에 대해 살펴보고 등급분류를 위한 보다 과학적이고 체계화된 방법론을 제시하고자 하였다.

2. 본론

2.1 문헌검토

현재 국내에서 화학테러에 대비하에 특화된 취약성 평가 방법 및 취약성 등급분류체계는 존재하지 않는다. 다만, "경찰청 행정 제748호"에서 규정한 "테러취약시설 안전 활동에 관한 규칙(6)"에서는 노동요용시설의 정의 및 테러취약시설의 지정요건(7)에 대한 기준을 제시하고 있으며 그 내용은 Table 1과 같다.

| Table 1. The Regulations on Safe Activities in Facilities Vulnerable to Terrorism (Korean National Police Agency) |
|---------------------------------------------------------|
| **Item** | **The Details** |
| Definition of Public Facilities | Facilities Such as Transportation, Sales, Meeting, Culture, Physical Education That Many Unspecified People Use |
| Classification of Public Facilities | Facilities That May have a Decisive Influence on the People’S Lives, Which Requires a Wide Range of Counter-Terrorism Operations in some Areas in the Event of Destruction or Functional Paralysis by Terrorism |
| Lv. A | Facilities That May have a Serious Influence on the People’S Lives, Which Requires a Short-Term Counter-Terrorism Operations in some Areas in the Event of Destruction or Functional Paralysis by Terrorism |
| Lv. B | Facilities That May Have a Considerable Influence on the People’S Lives, Which Requires a Short-Term Counter-Terrorism Operations in a Limited Area in the Event of Destruction or Functional Paralysis by Terrorism |

한국화재소방학회 논문지, 제34권 제1호, 2020년
서 취약성 평가는 전체 5개의 세부절차 중 3번째에 위치하는데 취약성 평가의 목적은 건물 기능, 시스템 및 사이트 특성을 철저히 분석하여 분석대상 건물이나 시설의 약점과 중복성 부족을 식별하고 보완 방안을 정해서 취약성을 줄이기 위한 것이라고 언급하고 있다. 여기에서 말하는 취약성은 "침입자에 의해 어떤 자산이 위험피해에 노출되기 쉽도록 이용될 수 있는 해당 자산의 약점"이라고 정의되어 있다. Figure 1에 따르면 취약성 평가의 세부절차는 평가수행 준비를 위한 재원의 조직화로부터 시작해 취약성 등급의 결정까지만 4단계로 이루어지며 주목할 만한 점은 현재 국내 테러취약시설 등급 결정 시 활용되고 있는 Table 1에서 제시하고 있는 취약성 평가 모델과는 다르게 평가수행을 위한 평가방법과 더불어 "취약성 평가모델"이라는 개념을 적용하고 있다는 점이며, 이는 관련 분야의 전문가들로부터 이루어진 심의위원회에 의해 실질적인 취약등급 조정과 결정이 이루어지는 국내 등급규정 체계와는 달리, 보다 체계적이고 표준화된 등급설정 방법론 설계에 대한 모델을 제시하고 있는 Table 1에서 제시한 규정과는 다르게 평가수행을 위한 평가방법과 더불어 "취약성 평가모델"이라는 개념을 적용하고 있다는 점이다. 따라서 Table 1에서 제시한 규정과는 다르게 평가수행을 위한 평가방법과 더불어 "취약성 평가모델"이라는 개념을 적용하고 있다는 점이다. 따라서

Table 2. Criteria to Select Primary Threats (Federal Emergency Management Agency)

| Scenario | Access to Agent | Knowledge/Expertise | History of Threats (Building Functions/Tenants) | Asset Visibility/Symbolic | Asset Accessibility | Site Population/Capacity | Collateral Damage/Distance to Building |
|----------|-----------------|---------------------|-------------------------------------------------|---------------------------|---------------------|--------------------------|---------------------------------------|
| 9-10     | Readily Available | Basic Knowledge/Open Source | Local Incident, Occurred Recently, Caused Great Damage; Building Functions and Tenants Were Primary Targets | Existence Widely Known/Ionic | Open Access, Unrestricted Parking | > 5,000 | Within 1,000-foot Radius |
| 6-8      | Easy to Produce | Bachelor’s Degree or Technical School/Open Scientific or Technical Literature | Regional/State Incident, Occurred a Few Years Ago, Caused Substantial Damage; Building Functions And Tenants Were one of the Primary Targets | Existence Locally Known/Landmark | Open Access, Restricted Parking | 1,001-5,000 | Within 1-mile Radius |
| 3-5      | Difficult to Produce or Acquire | Advanced Training/Rare Scientific or Declassified Literature | National Incident, Occurred Some Time in the Past, Caused Important Damage; Building Functions and Tenants Were one of the Primary Targets | Existence Published/Well-Known | Controlled Access, Protected Entry | 251-1,000 | Within 2-mile Radius |
| 1-2      | Very Difficult to Produce or Acquire | Advanced Degree or Training/Classified Information | International Incident, Occurred Many Years Ago, Caused Localized Damage; Building Functions and Tenants Were not the Primary Targets | Existence Not Well-Known/No Symbolic Importance | Remote Location, Secure Perimeter, Armed Guards, Tightly Controlled Access | 1-250 | Within 10-mile Radius |

2.2 취약성평가모델 설계 시 고려사항

취약성 평가 모델은 테러에 대한 분격적인 설계를 하기 위해서 먼저 다중이용시설에서 발생할 수 있는 유해가스를 이용한 테러의 유형 및 실제 사례를 살펴보는 것이 보다 실용적인 방법론 모델을 설계하는데 필수적인 과정이라고 할 수 있다. Table 3은 국내연구진의 다중이용시설 화학테러 발생양상 예측에 관한 것으로 테러시도 방법에 따른 유형별 적용 예측 장소와 사고적인 발생에 영향을 미치는 인자들로 정리되어 있다. 이러한 분류 접근을 통해 보다 국내실정에 맞는 화학테러취약시설등급 설정을 위해 필수적으로 고려해야 하는 테러형태 및 장소의 유형분류기준의 기초로 활용할 수 있다. 본 연구에서는 Table 3에서 제시하고 있는 테러형태의 장소적 유형 중에서 건물의 공기조화시스템을 통한 유해가스 확산이 이루어지는 가상의 상황을 전제로 한 취약성

Fire Sci. Eng., Vol. 34, No. 1, 2020
평가 방법론을 제시하고자 하였다. 공기조화시스템이 화학테러 취약성을 평가할 때 중요한 요소로, 공기조화시스템이 화학테러 취약성 평가등급 설정 시 중요하게 고려되는 이유는 시설의 유형, 위치 등 각 시설의 개별특성과는 무관하게 공통적으로 적용된다는 점과 시설의 규모가 커지고 수용인구 규모가 증가함수록 공기조화설비의 환기량과 적용범위가 비례해 증가하므로 화학테러 발생 시 환기설비의 확산에 미치는 영향력도 비례해 증가하기 때문이다. 상기의 Table 3에서도 볼 수 있듯이 대형건물이나 지하철 역사 및 인접 시설물의 공기조화시스템을 이용한 화학테러 행위는 화학테러의 위험성을 판단하는 화학물질 살포 당시의 대기 노출도, 지속성, 농도 등 테러행위 시도자가 테러행위 효과를 극대화하기 위해 통제 가능한, 사고 원인에 따른 인구밀집도, 시설물의 차폐성 등 여러 조건을 만족하는 환경이 제공되면 더욱 화학테러의 위험성을 증가하게 된다.

국내에서 2006년에 발생하여 65명의 중독 부상자를 발생시킨 종각역 일산화탄소 가스 누출사고로 인한 잠재적 화학테러들에 대한 취약성 평가를 통해 시설의 수준을 등급화하고 그에 따른 체계적 보완책을 강구하는 것이 화학테러로 인한 피해를 최소화할 수 있는 가장 효과적인 방법이라고 할 수 있다. Figure 2와 3에는 2006년 종각역 일산화탄소 가스 누출사고 당시의 동일 사고의 초기현장 보도 자료와 정식사고원인조사 결과를 보여주고 있다. 제시된 자료에서 알 수 있듯이 초기 사고경위에 대한 기술조사가 이전에 발표된 사고원인분석결과를 보면 해당 유해가스의 확산경로 및 누출원인에 대한 분석이 Figure 3의 자료와 비교 시 실제 상황과 상당한 차이가 있는 점. 화학테러의 경우 일반적인 화학사고에 비해 더욱 신속하고 정확한 사고 원인인 "Hot Zone"에 대한 위치 및 범위 파악과 더불어 확산경로에 대한 예측이 피해 정도의 최소화를 결정하는 핵심변수가 된다. 만약 Figure 2와 3에서 제시하고 있는 것과 같이, 사고발생된 신호장치와 관련해 가장 우려되는 점 중 하나는 화학테러사건이 일단 발생한 시점 이후에 이루어지는 사건의 대응과 수습에 있어 현재 수준의 기술력과 대응력에 한계가 있는 것으로 판단되기 때문이고, 테러로 인한 피해를 최소화하는데 꼭 필요한 화학의 확산, 비화학물질의 특성 등 현실적인 한계가 존재한다는 점이다. 이러한 관점에서 화학테러 사례발생 전의 예방단계에서 잠재적 화학테러 대상시설에 대한 취약성 평가를 통해 시설의 수준을 등급화하고 그에 맞는 체계적인 보완책을 강구하는 것이 화학테러로 인한 피해를 최소화할 수 있는 가장 효과적인 방법이라고 할 수 있다. 

### Table 3. Prediction of Chemical Terrorism Incidence in Public Facilities

| Types of Chemical Terrorism | Possible Place Types | Additional Occurrence Factors |
|-----------------------------|----------------------|------------------------------|
| Vehicle Explosion, Injection, Ied Operation | Underground Parking Lot for Large Shopping Mall, Subway Transfer Parking Lot, etc. | Day of Week, Time of Day, Event (Discounts, Performances, Rallies, etc.) |
| Put in Air Intake Outside of the Building | Subway Stations, High-Rise Buildings, Indoor Theaters, Religions, Convention Facilities, etc. | |
| From Inside to Outside of the Building | Open Shopping Mall, City Center Outdoor Theater, etc. | |

한국화재소방학회 논문지, 제34권 제1호, 2020년
다중이용시설 화학테러 취약등급설정 방법론 개선에 대한 연구

Figure 2. The initial press release of Jonggak station carbon monoxide gas leak accident.

Figure 3. The official analysis result of accident cause for the same accident of Figure 2.

Figure 4. Vulnerability assessment procedure.

이에 매우 위험한 상황에 처할 확률이 높음을 수박에 없다고 판단할 수 있다. 이와 유사한 상황이 테러범에 의하여 계원 될 경우를 상정하였을 때, 즉 질식작용제, 신경작용제 또는 무력화작용제와 같은 전형적인 대량살상 무기에 의한 것이면 현상태의 대응 및 수습체계가 2006년 그 당시보다 훨씬 개선되었고 볼 수 있는지 정확하게 판단하고 분석할 필요가 있다. 특히 예방단계에서 필수적으로 수행되어야 하는 표준화된 취약성 평가체계조차 마련되어 있지 않은 국내의 설정을 볼 때 지금부터라도 국내 설정을 반영한 화학테러 잠재적 대상시설에 대한 취약성 등급문류를 위한 국내 고유의 취약성 평가체계가 마련되어야 할 것이다.

2.3 취약성평가모델 설계

Figure 1의 취약성 평가모델을 기반으로 다중이용시설에
대한 화학테러 취약성평가모델을 제시하고자 한다. 전체적인 취약성평가의 수행절차를 Figure 4와 같이 나타내었다.

다음의 Table 4에서는 단계별로 제시된 단계 중 첫 번째 단계인 취약성 평가 팀 조직 및 모듈설정 수행단계에서 이뤄져야 하는 세부사항들을 나타내었다.

CBR 분야의 기술자인 CBR 엔지니어는 외부 및 내부로 배출된 원가를 평가하여 시설 내의 노출 경로, 정도, 양상, 통제 가능성 등을 평가하여 시설 내의 노출 경로, 정도, 양상, 통제 가능성 등을 평가하여 시설 내의 노출 경로, 정도, 양상, 통제 가능성 등을 평가하여 시설 내의 노출 경로, 정도, 양상, 통제 가능성 등을 평가하여 시설 내의 노출 경로, 정도, 양상, 통제 가능성 등을 평가하여 시설 내의 노출 경로, 정도, 양상, 통제 가능성 등을 평가하여 시설 내의 노출 경로, 정도, 양상, 통제 가능성 등을 평가하여 시설 내의 노출 경로, 정도, 양상, 통제 가능성 등을 평가하여 시설 내의 노출 경로, 정도, 양상, 통제 가능성 등을 평가하여 시설 내의 노출 경로, 정도, 양상, 통제 가능성 등을 평가하여 시설 내의 노출 경로, 정도, 양상, 통제 가능성 등을 평가하여 시설 내의 노출 경로, 정도, 양상, 통제 가능성 등을 평가하여 시설 내의 노출 경로, 정도, 양상, 통제 가능성 등을 평가하여 시설 내의 노출 경로, 정도, 양상, 통제 가능성을 판단해야 한다.

현장 취약성 평가가 실시되는 동안 각 단계별로 수행되어야 하는 세부업무를 Table 5에서 제시하고 있다. 각 단계별 제시된 참석자 및 평가대상과 그에 따른 결과물은 평가대상 시설물의 실제 여건에 따라 평가팀장 및 시설물 이해

Table 4. Vulnerability Assessment Team Composition and Module

| Team composition                        | Assessment Module                                                                 |
|-----------------------------------------|-----------------------------------------------------------------------------------|
| 1 CBR Engineer (Team leader)            | • CBR engineer should evaluate the effects of the agents released externally and internally to provide the dispersion, duration, and exposure of the building systems and occupants. |
| 1 Site and Architectural                | • The IT and telecommunications Modeler should evaluate effects on all IT systems assuming intentional misoperation and long-term access denial to critical equipment, data, and on-site administrative capability. |
| 1 Structural and Building Envelope      | • This module will provide detailed approach in relation to facility response, survivability, and recovery information used to develop enhanced and accurate costing of mitigation options. |
| 1 Mechanical and Site Utilities         |                                                                                  |
| 1 Electrical, and Power Systems         |                                                                                  |
| 1 IT and Telecommunications             |                                                                                  |
| 1 Security Systems and Operations       |                                                                                  |

Table 5. Vulnerability Assessment- Field Evaluation.

| No. | Task                        | Participant                        | Evaluation Target And Result                                                                 |
|-----|-----------------------------|------------------------------------|------------------------------------------------------------------------------------------------|
| 1   | Pre-Meeting                 | Assessment Team                    | Personnel Availability / Agenda / Schedules                                                                 |
| 2   | On-site Meeting             | Site or building owner / chief of engineering, IT, and security / Emergency manager / Union or employee representatives / Local law enforcement, fire, and EMS representatives / State or county representative / Local utility telecommunications, and services |
| 3   | Windshield Tour             | All participant 1 and 2            | Introduction meeting with key staff / Review the available information / Review the vulnerability portfolio |
| 4   | Assessment Background       | All participant 1 and 2            | - Step 1 : Threats that are a priority concern for related infrastructure |
|     | Information                 |                                    | - Step 2 : The asset of infrastructure that can be affected by a threat |
| 5   | Review Key Documents        | Assessment team                    | Prior vulnerability assessment data / Emergency response and disaster recovery plans / Security master plan / Security inspection result / HAZMAT plans / Policy and legal requirements / Utility systems / Historical report / Population statistics / etc |
| 6   | Review Emergency Procedures | All participant 1 and 2            | Emergency notification procedures / Evacuation procedures / First responder access and routing / Personal protective equipment(PPE) |
| 7   | Prepare the Assessment      | Assessment team                    | Practice according to Tier 1 / Tier 2 / Tier 3                                                                 |
| 8   | Data Gap analysis           | Assessment team                    | Greatest hazard areas / Possibility of post-recovery of critical facilities / Reliability of quantitative and qualitative of DB |

한국화재소방학회 논문지, 제34권 제1호, 2020년
관계자의 협의 하에 조정될 수 있으며 이때 조정결과에 대한 사유 혹은 근거를 문서화된 기록으로 남겨놓도록 한다.

취약성 평가에서는 반드시 시설관리책임자, 기술/보안/IT 관리자, 조합, 비상대응행정기관, 지자체, 유 Olivetti 및 주요 시설 관리자 등이 함께 참여하여 현장 비밀을 하는 것이 가장 중요한 사항인데, 이는 각 시설과 기기, 건축 구조에 대한 논의를 통하여 사건의 통제와 경로를 다양한 시각에서 파악할 수 있게 되며, 또한 통제 방식을 시나리오별로 검증할 수 있기 때문이다.

취약성 평가를 하려는 대상시설의 현장여건에 따라 취약성 중점관리요소를 선정하여 이를 평가에 반영한다. Table 6은 취약성 중점관리요소 구성항목을 나타내는데, 상기 구성항목들은 앞선 취약성 평가 구성항목과 마찬가지로 해당시설의 현장여건에 따라 구성상의 변경이 있을 수 있으며, 중요한 점은 취약성 평가 시 고려해야 하는 현장여건의 물적, 인적 변동사항과 같은 내재적 원인 이외에도 관리규정 변동사항 혹은 정책과 같은 외부변동 요인 등도 반드시 중점관리 사항에 포함시켜야 하고 이를 위해 조치 내부에서 규정화된 업데이트가 지속적으로 이루어져야 한다는 점이다.

취약성 등급별 보완대책을 구성할 때는 시설유형에 따른 평가요소가 변환되어야 하고 Table 7의 예시와 같이 시설유형 및 시설이해관계자의 요구사항에 따라 보안대책은 상응하여 구성될 수 있다.

취약성 등급별 취약성 요소는 앞서 설명한 현장 평가 및 중점관리요소 및 보완책 적용 이후에 취종적으로 심사 팀에 의해 결정된 중대위험의 수준 및 수량과 태러 공간 이후 수수에 소요되는 시간 그리고 비상사태에서 사용된 시설의 핵심기술시스템용 보조하는 백업 시스템과 보호책의 수준이 포함된다. Table 8에서 제시하듯이 예를 들면, 중위의 위험요소는 5-6가지의 요소를 가지고 있으며, 특히 목재 및 참조에 대한 시간을 1주 이상 1개월 미만으로 설정해야 한다.

Table 6. Vulnerability Key Management Elements and Complement

| Vulnerability Key Management Elements |
|--------------------------------------|
| • Assessment check points |
| • Assessment background information by an assessment team and facility staff |
| • Threats rating |
| • Asset value ranking worksheet |
| • Key documents (plans, procedures, and policies on facility management, etc.) |
| • Emergency procedures |
| • Facility vulnerability assessment checklist |
| • Prioritization of observations in the checklist |

Table 7. Security Measures Examples for Vulnerability Level

| Vulnerability Level | Location Types | Security Measures |
|---------------------|----------------|-------------------|
| I                   | 1,000 < Daily population < 10,000 Subway station, Terminal, Mall, Multi-complex | Entry Control Package with Closed Circuit Television (CCTV) Public Control/Screening Shipping/Receiving Procedures Guard/Patrol Assessment Intrusion Detection with Central Monitoring CCTV Surveillance (Pan-Tilt, Zoom System) Duress Alarm with Central Monitoring |
| II                  | 10,000 < Daily population < 20,000 Subway station, Terminal, Mall, Multi-complex | Guarul Patrol on Site Public Control/Screening Shipping/Receiving Procedures Intrusion Detection with Central Monitoring CCTV Surveillance (Pan-Tilt, Zoom System) Duress Alarm with Central Monitoring |
| III                 | 20,000 < Daily population < 30,000 Subway station, Terminal, Mall, Multi-complex | 24-Hour Guard Patrol Adjacent Parking Control Backup Power System Hardened Parking Barriers |
상위 고려

한국화재소방학회 논문지

Table 8. Vulnerability Rating Table

| Asset Value                                      | Very Low | 1 | No Weakness | Recover Immediately after and attack | Excellent redundancies and physical protection |
|--------------------------------------------------|----------|---|-------------|--------------------------------------|---------------------------------------------|
| Very High                                        | 10       | One or More Major Weaknesses | Recover a very long period of time after the attack (over several month) | Lack of redundancies and physical protection |
| High                                             | 8-9      | One or More Major Weaknesses | Recover a very long period of time after the attack (over several month) | Poor redundancies and physical protection |
| Medium High                                      | 7        | An Important Weakness         | Recover a considerable period of time after attack (over several month) | Inadequate redundancies and physical protection |
| Medium                                           | 5-6      | A Weakness (Weaker Than Medium High) | Recover a considerable period of time after attack (over week or month) | Insufficient redundancies and physical protection |
| Medium Low                                       | 4        | A Weakness (Weaker Than Medium) | Recover a considerable period of time after attack (over week or month) | A fair level of redundancies and physical protection |
| Low                                              | 2-3      | A Minor Weakness              | Recover a short period of time after attack (under week) | A good level of redundancies and physical protection |

정하여 최근 화두로 떠오르는 화학탄력성, 즉 Resilience에 대한 고려가 이루어지고 있으며, 비상황에서 대응책에 대한 맥락 요소를 정성화하여 취약성을 평가할 수 있도록 한다.

시설물의 화학테러 취약성평가과정 중 현장평가에서 즉 각적인 활용이 가능한 가이드의 일부를 Table 9에서 제시하고 있다. 현재 미국 FEMA에서 제공하고 있는 Handbook for Rapid Visual Screening of Buildings to Evaluate Terrorism Risks를 참고하여 만든 Table 9은 화학테러관련 일상안전 관리가 필요한 시설의 안전 및 보안 관리자는 물론 일반 소방, 경찰 및 기타 사법행정기관 실무관계자에게도 유익한 지침이 될 것으로 기대한다. 지침의 내용은 주로 테러범이 다중이용시설에 대한 가스 상의 화학물질을 이용한 테러에도 시, 접근성면에서 유리한 건물 외기호흡구에 대한 취약성 평가에 중점을 두고 현장평가를 진행하는데 참조가 되는 가이드라드를 제시하고 있다. 본 지침은 실무담당자 가 평가를 진행하는 해당 시설물의 화학시험 배치 및 특정에 따라 평가응선을 변경 및 적용하여 설계에 적용할 수 있다. Table 10에서는 미국 법무부에서 제시한 테러방지사례에 대한 테러대비 화학시스템 보안점검 체크리스트를 나타내었다. 체크리스트의 주요항목은 화학시스템의 위치, 훈련과 수, 접근권한 등으로 구성되어 있으며, 이러한 평가 항목들은 앞서 언급한 다중이용시설에 대한 유해가스를 이용한 화학테러의 장제적 측면이 확실한 평가가 되는 것에 대해 취약성 현장평가가 반드시 포함되어야만 한다. Table 2에서 제시한 취약성 평가에 관한 주요항목은 다음과 같다.

2.4 국내 다중이용시설에 대한 화학테러 취약성평가결과

국내다중이용시설의 화학테러 취약성평가를 위해 경찰청 혼합 테러취책자실 안전활동에 관한 규칙 제6조 테러 취책자실의 분류 중 유일한 '소프트 타겟' 다중이용시설 분류 중 지휘관, 관리시설 및 건물관리 시설을 모두 갖추고 있는 'KOEX'에 대한 화학테러 취약성 평가 아젠다를 제시하였다. Table 12에서 제시하였다. 제시한 아젠다를 기반으로 화학테러 취약성 평가를 진행하였다. 본 연구에서 제시된 취약성 평가모델의 아젠다는 화학테러 유형 중 가스상 유해화학물질을 다중이용시설에 살포하는 것에 대한 테러행위에 초점을 맞추고 있기 때문에 화학테러의 시도 시 범인의 사고 현장이 온전 혹은 임계적 대 해화하기 위해 이용한 것으로 예상되는 시설 내 화기구들 이

한국화재소방학회 논문지, 제34권 제1호, 2020년
The likelihood of a CBR contaminant being introduced into a building’s air system is dependent on the accessibility to the building’s external air-intake. Air-intakes are often located at ground level because mechanical rooms and garages are located at or below ground level in buildings. Some air-intakes are located below grade with sidewalk grates over them, and these are generally the most vulnerable if they are in public areas. Sometimes air-intakes at ground level service only the garage and not the critical equipment or occupied spaces. Wall-mounted intakes are usually covered with louvers. These are also vulnerable if they are at a height that can be easily accessed by a person on the sidewalk or street.

The vulnerability of occupants to a CBR contaminant being introduced into a building’s air-intake system depends on many variables such as prevailing winds, distance from the release, height of the building, air-pressure differential between inside and outside, and air-tightness of the facade. Another variable is the location of the air-intake along the height of the building. The screener should determine where air-intakes are located relative to the exterior of the building. Once air-intakes are located, the screener should determine which of the five options indicated best represents the existing condition.

It should be noted that the rapid visual screening procedure for assessment of exterior air-intake conditions is intended as an initial assessment, and is not comprehensive. More detailed investigation of this issue should be performed by a security expert with extensive experience in performing complicated and exhaustive threat assessments of exterior air-intake conditions.

### Table 9. Vulnerability Rating- Onsite Evaluation of Ventilation System

| Primary External Air-Intake Conditions | Attribute Options |
|----------------------------------------|------------------|
| **Options:**                           |                   |
| **a Greater than 10m (above ground level) or roof** - The main air-intakes are located on the roof of a building, above the third floor level |                   |
| **b Greater than 3m but less than or equal to 10m (above ground level)** - The air-intake is covered with a protective louver or grate with a minimum slope of 45 degrees and gas detector |                   |
| **c Between ground level and less than or equal to 3m (above ground level)** - The air-intake is covered with a protective louver or grate with a minimum slope of 45 degrees with a gas detector, and is protected by security fencing maintaining access at least 30 feet away from the air intake louver |                   |
| **d At ground level - the air-intake is in a public area that has surveillance as a means to deter delivery of a CBR contaminant** |                   |
| **e Below grade, or at ground level with unrestricted access** |                   |

**NOTE: THIS BUILDING CHARACTERISTIC IS HEAVILY WEIGHTED IN THE SCORING.**

Air-intake about 3m above ground (Option b)

Air-intake is above ground but less than 3m from ground surface (Option c)
성을 적용하였다.

KOEX에 대한 화학테러 위험수준을 평가한 결과, 평가점 수 총점은 25점을 산정하였으나 등급구간 별 기준에 의해 ‘높은 위험수준’으로 확인되어 폭소화학테러의 발생 가능성은 상존한다고 판단되었다.

Table 10. Vulnerability Assessment Check List for Cbr Terrorism- Ventilation System

| No. | Vulnerability Question | Guidance | Reference |
|-----|------------------------|----------|-----------|
| 1   | - Where are the air intakes and exhaust louveres for the building? (low, high, or midpoint of the building structure) - Are the intakes and exhausts accessible to the public? | Air intakes should be located on the roof or as high as possible. Otherwise secure within CPTED-compliant fencing or enclosure. The fencing or enclosure should have a sloped roof to prevent the throwing of anything into the enclosure near the intakes. | GSA PBS-P100 DoD UFC 4-010-01 CDC/NIOSH, Pub 2002-139 LBNL PUB-51959 |
| 2   | - Is roof access limited to authorized personnel by means of locking mechanisms? - Is access to mechanical areas similarly controlled? | Roofs are like entrances to the building and are like mechanical rooms when HVAC is installed. Adjacent structures or landscaping should not allow access to the roof. | GSA PBS-P100, CDC/NIOSH Pub 2002-139 LBNL Pub 51959 |
| 3   | - Are there multiple air intake location? | Single air intakes may feed several air handling units. Indicate if the air intakes are localized or separated. Installing low-leakage dampers is one way to provide the system separation when necessary. | Physical Security Assessment for the Department of Veterans Affairs Facilities |
| 4   | - By what method are air intakes and exhausts closed when not operational? | Motorized(low-leakage, fast-acting) dampers are the preferred method for closure with fail-safe to the closed position so as to support in-place sheltering. | CDC/NIOSH Pub 2002-139 LBNL Pub 51959 |

Table 11. Vulnerability Assessment- Onsite Evaluation Data Collection Sheet

| ID. | Building Characteristics | Attribute Options | Vulnerability Lv. for CBRN Attack |
|-----|-------------------------|------------------|----------------------------------|
|     |                         | > 10 m | > 3 m, ≤ 10 m | 0 ≤, ≤ 3 m | Ground Lv. | Unrestricted | Explosion | Toxic |
|     | Protective Level of Intake Ventilation System (Building Complex) | 0.25 | 0.46 | 0.53 | 1.74 | 1.90 |
|     |                         | 0.17 | 0.32 | 0.37 | 1.23 | 1.32 |
|     |                         | 0.33 | 1.23 | 1.40 | 1.52 | 1.84 |
|     |                         | 0.17 | 0.32 | 0.32 | 1.21 | 1.72 |
|     |                         | 0.33 | 1.25 | 1.52 | 1.60 | 1.87 |

- Chemical terrorism vulnerability

상성을 적용하였다.

KOEX에 대한 화학테러 위험수준을 평가한 결과, 평가점 수 총점은 25점을 산정하였으나 등급구간 별 기준에 의해 ‘높은 위험수준’으로 확인되어 폭소화학테러의 발생 가능성은 상존한다고 판단되었다. 평가점수는 국내실정을 고려하는 동시에 보다 실용적인 지침이 될 수 있도록 Table 13과 같이, ‘대상의 유용성(활용성), 접근성, 이동성, 시설 내 상용 HAZMAT의 존재여부, 피해 전이성, 인구 수용력’의 총 6개 항목을 선정하였다. 원인이라고 할 수 있는 미국연방 제안 안전성 평가 항목들 중에서 ‘대상물질에 대한 접근성, 과거의 공격사례’ 평가항목은 현재 국내상황에서 데이터베이스가 형성되어 있지 않거나 과거사례가 없음으로 인해 본 연구의 모델 평가항목에서는 제외하였다. 최종적인 취약성 평가를 Table 14에서 제시하였다.

화학테러 취약성평가의 구성항목은 크게 기능상 분류와 기반시설유형으로 구분되어 제시되었다. 두 가지 분류기준 모두 일부 미국 연방재난 안전청의 테러취약성평가 항목을 반영한 동시에 국내 실정을 감안해 제시하였다. 특히 화학테러의 가장 큰 특성인 미지의 원점 및 미지의 물질이 사전대응에 있어 가장 영향력이 큰 제약요소가 될 수 있음을

한국화재소방학회 논문지, 제34권 제1호, 2020년
전체로 하여 구성하였다. 우선 기능상 분류에서는 국내 다중이용시설 관리체계가 시설운영행정과 기술지원 부문이 독립적으로 운영되는 것을 전제로 하여 그 항목을 구분하였다. 기반시설유형에서는 화학테러에 초점을 맞추어 공조시스템에 대한 보안취약성 평가항목을 추가하였다.

상기 Table 13의 화학테러 위험수준평가 결과를 기반으로 KOEX의 화학테러 취약성평가결과는 운영, 기술지원, 창고, 관리, 지역 위치, 유포기기 및 기계분야, 배관시스템 부문에서 가장 높은 수준의 취약성을 보여주고 있다. Table 14에서 보는 바와 같이, 본 결과표는 기존의 국내 테러취약시스템 평가등급보다 시설의 구성요소별 취약성 구체적으로 상세하게 보여주는데 등급정보 표시기능 이상의 실질적인 취약성 개선의 지표를 제시하고 요소별 개선안을 도출하는 근거로 활용될 수 있을 것이다.

3. 결론 및 제언

3.1 결론

본 연구에서는 국내 다중이용시설의 화학테러 취약성 평가등급설정 방법론 개선에 대한 연구. 다중이용시설 화학테러 취약등급설정 방법론 개선에 대한 연구 Fire Sci. Eng., Vol. 34, No. 1, 2020 99 전제로 하여 구성하였다. 우선 기능상 분류에서는 국내 대형 다중이용시설의 관리체계가 시설운영행정과 기술지원 부문이 독립적으로 운영되는 것을 전제로 하여 그 항목을 구성하였다. 기반시설유형에서는 화학테러에 초점을 맞추어 공조시스템에 대한 보안취약성 평가항목을 추가하였다. 상기 Table 13의 화학테러 위험수준평가 결과를 기반으로 KOEX의 화학테러 취약성평가결과는 운영, 기술지원, 창고, 관리, 지역 위치, 유포기기 및 기계분야, 배관시스템 부문에서 가장 높은 수준의 취약성을 보여주고 있다. Table 14에서 보는 바와 같이, 본 결과표는 기존의 국내 테러취약시스템 평가등급보다 시설의 구성요소별 취약성 구체적으로 상세하게 보여주는데 등급정보 표시기능 이상의 실질적인 취약성 개선의 지표를 제시하고 요소별 개선안을 도출하는 근거로 활용될 수 있을 것이다.

| Item | Infrastructure | Assessment Criteria | Assessment Guide |
|------|----------------|---------------------|------------------|
| 1    | Access Security Of Ventilation System | • The location of the air intake and exhaust of the building? (Low, high or middle position) • Are the inlets and outlets accessible to the public? | • The air intake may be on the roof or possible. Otherwise it must be located within a security fence or tent. • Fences or curtains should be inclined to prevent throwing. |
| 2    | Access Security Of Roof And Major Machinery | • Is roof access limited to personnel authorized by locks? • Are access to machinery similarly controlled? | • The roof is the same as the entrance to the building, as is the machine room with heating. • Adjacent structures or landscaping facilities to them shall not allow access to the roof. |
| 3    | Air Intake Arrangement | • Are there multiple air intakes? • The location? | Single air inlet provides air to multiple air conditioners. • If the air intake is independent or separated, installing a low leakage damper allows for system separation if necessary. |
| 4    | Ventilation Opening and Closing Control | • How is intake conducted? • If not, is the air vent closed? | In the case of a single air conditioning system, it is desirable to install a sensor that can detect specific HAZMAT gases in the central duct. |
| 5    | Hazmat Gas Detection | • Is there a sensor that can detect specific HAZMAT gases?? | In case of a single air conditioning system, it is desirable to install a sensor that can detect specific HAZMAT gases in the central duct. |
| 6    | Alarm System | • Does the situation spread immediately in case of HAZMAT gas leakage?? | In case of HAZMAT gas leakage, it is desirable that the evacuation alarm is spread in the facility. |
| 7    | Emergency Communication System | • Is the situation quickly delivered to chemical terrorism agencies such as fire departments and military units in charge of HAZMAT gas leaks? | It is desirable that a hotline be established to notify the government agencies dedicated to responding to chemical terrorism using HAZMAT. |
준화되고 체계적인 취약성 평가 모델을 제시하고자 하였 다. 현행 국내 테러취약시설 지정 및 관리에 관한 법률을 보면 테러 취약시설은 국가 중요시설과 보안시설 등의 개념과 의미 또는 기능상 구분을 하는데 한계가 있어, 화학테러 및 기타 유형의 테러방호에 대한 각 취약시설의 내재적 약점을 파악하고 이를 바탕으로 테러발생 시 피해 최소화 방안을 사전에 강구 하는 것을 국민의 생명과 재산을 지키는데 반드시 선행되어야 할 작업이라고 생각한다.

본론에서 제시된 KOEX의 취약성 평가에서 볼 수 있듯이, 시설의 구성을 요소를 단지 관리 주체의 자원이 아닌 테러범의 관점에서 테러를 위한 가용수단 및 장애물로서 판단하고 관리 할 수 있는 사고전환의 틀을 제공해주고자 취약성 평가 모델 구성요소 도출을 위해 노력하였다. 이를 통해 개념적으로 ‘이 시설은 중요하다’가 아닌 ‘이 부분은 반드시 공격당 한다’에서부터 출발하는 테러취약시설 관리의 페리다일 전환이 있기를 기대한다.

### 3.2 제언

최저, 유해가스 물질별 테러이용 가능성을 판단하기 위한 대상물질의 취득 및 취급요건과 위험성을 기초로 시설취약성 등급설정 시 활용할 수 있는 별도의 DB구축이 필요하다. 구축되는 DB는 보안권한을 부여하여 CBR 테러사고에 투입되는 관계자에 의한 접근이 알 수 있도록 하는데, 정부주간 내 CBR 테러대응 조직 간 구축된 물질 DB의 공유 및 취약시설 등급별 대응 R&R의 기준 정립이 필요하다. 이러한 기준은 시설 내부의 시/공간적 확산 경로에 대한 예상, 사고 원인을 특정하는데 있어서 가장 효율적으로 해당 사건의 경로와 대처 우선순위를 확보하는데 도움이 될 수 있을 것이다.

둘째, 지역별로 분포하는 다중이용시설의 취약등급에 따른 분류를 통해 화학테러 예방, 대응, 수습관리 효율성을 극대화 시키고, 취약성 등급 및 등급별 대책의 최적 적용 및 변동사항 발생 시에는 반드시 사전 현장 시뮬레이션을 통해 신규시설과 변동사항의 현장실무 적용 적합성을 인증하도록 한다. 다중이용시설은 공간적 배치가 내부에서 간

| Criteria | 0 | 1 | 2 | 3 | 4 | 5 | Score |
|----------|---|---|---|---|---|---|-------|
| Accessibility | None | Security Border, Armed Security, Strict Access Control | Fence Installation, Guard Work (Unarmed), Access Control | Access Control Entrance Protection | Access Control Entrance Unprotected | Access Control Parking Restriction | Access No Parking Restrictions |
| Mobility | - | Frequent Movement | - | Rare Movement | - | Permanent Fixation |
| The Presence Of Hazmat | None | Limited Quantity, Secure Area Storage | The Usual Quantity, Strict Quantity Control | Large Capacity, Some Control Measures | Large Capacity, Minimal Control | Large Capacity, Non-Admin Accessibility |
| Potential Damage Transfer | None | Low Risk, Impact On Adjacent Facilities | Medium Risk, Impact On Adjacent Facilities | Medium Risk, Within 1.6 km Radius | High Risk, Within 1.6 km Radius | High Risk, More Than 1.6 km Radius |
| Population Capacity (Persons) | 0 | 1~250 | 251~250 | 501~1,000 | 1,001~5,000 | > 5,000 |

Table 13. Chemical Terrorism Threat Assessment on KOEX

*<Score by grade section>*

0 ~ 5 : Very low level of threat
6 ~ 10 : Low level threat
11 ~ 20 : Moderate threat entity
21 ~ 25 : High level of threat
26 ~ 30 : Very high level of threat

김시국, 홍성철, 주선호. "한국화재소방학회 논문지", 제34권 제1호, 2020년
이 백체를 이용하여 손쉽게 발생하고, 또한 공조설비의 복잡성, 또한 외부 기후에 따른 연동효과 등 가능 변수가 다양하게 혼재되어 있기 때문에 복잡성 변수에 대하여 최대한 관리하는 것이 필요하다. 지금으로 화학테러 취약등급 분류기준을 화학테러 현장업무에 효과적이고 실용적으로 활용할 수 있도록 하는 조치로서 태러취약성 평가 현장 가이드를 제작 및 배포할 수 있다. 상기 Table 10에서 제시한 현장실무자를 위한 데이터수집양식은 현장가이드로써 이미 미국의 대테러기관에서도 활용되고 있는 자료로서 국 내실정을 적극 반영하여 기존의 시설 내 유동인구 및 규모를 주 평가대상으로 삼아 화학테러대비에 한계를 가지고 있는 취약성등급체계의 대안으로써 활용할 수도 있다. 이 룡 위해서는 시설평가 및 화학테러분야의 전문가 및 시설 이해관계자가 기술적, 정책적인 검토와 협의를 통해 국가적 표준차원으로 구축해 나갈 수 있는 상시행약체와 소통체널이 필요하다고 하겠다.

### Table 14. Vulnerability Assessment of Chemical Terrorism on KOEX

| Functional Classification | Vulnerability Level (Chemical Terrorism) | Infrastructure Type | Vulnerability Level (Chemical Terrorism) |
|---------------------------|------------------------------------------|---------------------|------------------------------------------|
| Operation Division        | 10                                       | Local Place         | 10                                       |
| Technical Division        | 10                                       | Building            | 8                                        |
| Warehouse Management      | 10                                       | Space Layout Structure | 8                                      |
| Facility Control          | 4                                        | Hvac System         | 5                                        |
| Catering                  | 2                                        | Utility System      | 10                                       |
| Security                  | 7                                        | Machinery System    | 10                                       |
| Facility Daily Management | 2                                        | Piping And Gas System | 10                                     |
| Emergency Evacuation Plan | 9                                        | Electric System     | 2                                        |
| -                         | -                                        | Evacuation Alarm System | 2                                    |
| -                         | -                                        | Communication       | 2                                        |

| Vulnerability Level       | Assessment Criteria                                                                 |
|---------------------------|--------------------------------------------------------------------------------------|
| Very High                 | One or more major risks<br>It takes considerable time To recover after the terrorist attacks. No emergency backup and protection |
| High                      | One or more major risks<br>It takes considerable time To recover after the terrorist attacks. Poor backup and protection on emergency |
| Medium High               | One major weakness<br>It takes considerable time To recover after the terrorist attacks. Improper backup and protection on emergency |
| Medium                    | One weakness weaker than medium high<br>Shorter recovery time than Medium High Lack of backup and protection on emergency |
| Medium Low                | One weakness weaker than medium<br>Shorter than Medium Recovery time Moderate backup and protection on emergency |
| Low                       | Minor one weakness<br>Shorter recovery time than Medium Low Good level of backup and protection are integrated on emergency |
| Very Low                  | No weakness<br>Immediate recovery of all functions after terrorist attacks Excellent level of backup and protection integrated on emergency |

**후 기**
본 연구는 정부(경찰청, 과학기술정보통신부, 산업통상자원부, 환경부, 소방청)의 재원으로 한국연구재단·국민외래형부에 대응한 기체분자식별·분석기술개발사업의 지원을 받아 수행된 연구임(2017M3D9A1075451).

**References**

1. Y. Yoon, J. H. Eun and S. T. Chung, “Study on Regulatory Measures of Terror Usable Chemicals in Korea”, Crissonomy, Vol. 8, No. 1, pp. 109-126 (2012).
2. T. H. Jung and J. S. Jang, “Development of CBR Virtual Training Simulation Scenario”, National Disaster Management Institute, Republic of Korea (2013).
3. I. Akgun, A. Kandakoglu and A. F. Ozok, “Fuzzy
Integrated Vulnerability Assessment Model for Critical Facilities in Combating the Terrorism”, Expert Systems with Applications, Vol. 37, pp. 3561-3573 (2010).
4. Korean National Police Agency, “The Regulations on Safe Activities in Facilities Vulnerable to Terrorism”, Republic of Korea (2015).
5. Korean National Police Agency, “Classification Criteria of Public facilities”, “The Regulations on Safe Activities in Facilities Vulnerable to Terrorism”, Republic of Korea (2015).
6. M. Kennett, “A How-To Guide to Mitigate Potential Terrorist Attacks Against Buildings”, The Federal Emergency Management Agency (FEMA), USA (2005).
7. E. Hinman, C. Arnold, M. Ettouney, M. Kennett, S. King and T. Ryan, “Handbook for Rapid Visual Screening of Buildings to Evaluate Terrorism Risks”, The Federal Emergency Management Agency (FEMA), USA (2009).
8. Y. Yoon, J. H. Eun and S. T. Chung “Study on Regulatory Measures of Terror Usable Chemicals in Korea - Focus on Examples in USA”, CEM-TP (2012).
9. E. Hinman, C. Arnold, M. Ettouney, M. Kennett, S. King and T. Ryan, “Handbook for Rapid Visual Screening of Buildings to Evaluate Terrorism Risks”, The Federal Emergency Management Agency (FEMA), USA (2009).