Implementation of mass customization for competitive advantage in Indian industries: an empirical investigation

Piu Jain1 · Suresh Garg1 · Gayatri Kansal2

Received: 3 August 2021 / Accepted: 2 May 2022 / Published online: 20 May 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
The enduring fluctuations in market demand, exemplified by exceedingly unpredictable customer requirements, have given rise to mass customization (MC), which is acquiring increasing prominence in production and operations management. Fostering on the foundation laid by erstwhile researcher Hart in Int J Serv Ind Manag 6:36–45 [1], who developed an analytical framework of four pillars of mass customization for organizations, the objective of this research is to obtain additional discernments on the nature of the linkage between the four pillars and MC. The current work is to explain ability of manufacturing organization for MC. Further, the paper proposes the impact of MC on organization performance with a view to develop an assessment and decision-making model to achieve competitiveness. The analysis of 276 valid responses from Indian professional experts was done using structural equation modeling (Amos Graphics). The results showed that process amenability, competitive environment, and organizational readiness all have a major impact on mass customization. The study, on the other hand, did not support customer sensitivity, which could be because mass customization is a new manufacturing paradigm in India.

Keywords Mass customization · Competitive advantage · Manufacturing · Structural equation modeling · Indian Industry

1 Introduction
Economic turmoil, global value chain disruptions, impulses of nationalism, and protectionism have all been exacerbated by the onset of COVID-19, which has heightened the challenges to globalization and the international business arena [2]. To ensure competitiveness, the advancement of a post-COVID-19 business model would necessitate confronting challenges and will necessitate rethinking [3]. Given the circumstances, MC requires adopting methods and developing a manufacturing framework that supports flexibility, quick customer response, cost-competitive products, product design tailored to customers’ needs, and achievement of corporate objectives [4].

Several researchers have characterized mass customization as a production paradigm endowing profound strategic opportunities [5] with the potential of managerial response during a progressively uncertain, competitive, and intricate environment [6], having a competitive positioning strategy in the marketplace [7] during the period exemplified by the introduction of innovative production technologies, increased global competitiveness, reduced product life cycles, and the customer need for more product diversity [8]. Organizations aiming to mass customize, on the other hand, will have hurdles in designing a system capable of acquiring and analyzing a wide range of complex and uncertain data [9]. The ability to manufacture mass customized goods is dependent on the ability of a corporation to use a range of production issues simultaneously, including quality, inventory, process technology, and human skills [5]. For effective application of their MC ability for competitive advantage, organizations must identify and exploit resources and skills effectively and efficiently [10]. This necessitates the development of a manufacturing model to identify the factors a manufacturer needs to consider for the effective implementation of MC in an organization.

*X Piu Jain piujaink@gmail.com
Suresh Garg skgarg63@yahoo.co.in
Gayatri Kansal gayatri@kenstel.com
1 Delhi Technological University, New Delhi, India
2 Department of Mechanical Engineering, School of Engineering and Technology, IGNOU, New Delhi, India
Most of the research to enhance MC ability and improve an organization’s MC capabilities was carried out in the areas of organizational design and manufacturing practices or product and customer aspects like quality management [11], product modularity [12], functional integration [13], information technology [14], work-design practices [15], operations and marketing functions [16], supply chain integration [17], organizational learning and process technology [18], organizational structure [19], CAD/CAE integrated customization product approach [20], product modularity on supply chain quality integration [21] customer integration [22], and degree of consumers involved in the value chain [23]. Some studies identified technology needed like Industry 4.0 [24], RFID-enabled real-time manufacturing execution system [25], additive manufacturing [26], and computer-aided manufacturing planning [27]. None of these preceding research analyzed the role of operational agility required for MC ability. Organizations entailing to implement mass customization to enhance market competitiveness require to improve the operational agility of the MC production model to increase the flexibility, speed, and efficacy of responding to unique client needs [28].

Some research identified the role of enablers in manufacturing [29, 30], but used ISM technology which is solely dependent on the judgment and qualitative inputs of a few experts and was used to build theory, and test theory using structured questionnaires, and in a single analysis, estimates of multiple and linked dependency were needed. Research work conducted was region-specific or product-/sector-specific, or both like Chinese automotive suppliers [31], door sector in Poland [32], pigment company in Taiwan [33], and shoe manufacturing in India [30].

Research revealed that mass customization is an incipient concept in the Indian industry [30]; hence, organizations of Indian origin are apprehensive of their technological potential and are not taking initiative to transform themselves from conventional mass manufacturing companies to mass customization for emerging markets’ needs [34]. There is very little effort done by such industries on implementing mass customization as a manufacturing strategy and developing a roadmap for MC adoption. To comprehend and facilitate their transition to mass customization, it is required to build strategic roadmaps that specify their future directions [35], since it is agreed by many researchers that mass customization is a feasible way to competitive strategy. Based on the above research study, the following gaps were observed:

RQ1: What factors affect the adaptation of mass customization during the transition from mass production to mass customization?

RQ2: What is the impact of these factors on competitive advantage concerning the manufacturing sector of Indian origin?

Manufacturing sectors in India identifying the possibility of moving away from mass manufacturing and toward mass customization require a manufacturing model to enhance competitive advantage and tide over competitors and needed to identify operational agility to enhance MC ability. Based on the above research questions, the following objectives have been defined for the present study:

- To undertake an extensive literature review to develop a framework that will facilitate mass customization implementation.
- To identify factors that influence enterprises in the adaptation and enhancement of mass customization ability, specifically in the Indian economic condition and to statistically validate the framework.
- To identify the theoretical and managerial implications of the research work.

The goal of this research is to empirically resolve gaps in MC theory, with an emphasis on how customer, process, competition, and organizational factors affect mass customization capabilities for competitive advantage in India’s manufacturing industry. The four pillars of mass customization established by Hart (1995) were further investigated using structural equation modeling (SEM), which was utilized to evaluate the data from 276 manufacturing enterprises of Indian origin.

The paper is organized as follows: Sect. 2 represents the theoretical background and hypothesis development. Section 3 highlights the research methodology. Section 4 presents analysis and results. Section 5 articulates the results and discussion. The managerial implication of the study is provided in Sect. 6. Section 7 presents the conclusion. Section 8 conveys the limitation of the study and future research direction.

2 Theoretical background and hypothesis development

The research is based on developing a manufacturing model for mass customization ability, as all operations in the product design, manufacturing, and delivery processes must be better coordinated and integrated [13]. To solve internal and external supply chain quality challenges, managers must use manufacturing and organizational design principles to improve mass customization capabilities [21]. Suppliers and customers’ amalgamation
has a major impact on the agility and flexibility of an organization, which is necessary for MC capabilities [36]. Tookanlou and Wong [37] identified mass customization as a promising technique that has grabbed the interest of practitioners and researchers due to its potential to help firms gain a competitive advantage, generate profits, and minimize waste through on-demand production. The hypotheses offered in this study are based on the four pillars of mass customization proposed by Hart (1995) and further strengthened by investigating the relationship between MC ability for competitive advantage from the extant literature. The constructs, related to measurement items, are presented in Table 1.

2.1 Customer sensitivity

The uniqueness of customers’ demands and consumer sacrifice for unmet needs are the primary drivers of customer customization sensitivity [1]. To create mass customization capability, organizations must improve their operational

Constructs	Measurement items	Factor loads	Cronbach’s alpha (>0.70)	Item R-square	CITC (>0.30)
Customer sensitivity	CS1 Identify opportunities for customization	0.902	0.958	0.814	0.714–0.874
	CS2 Understand the uniqueness of customers’ needs and create value	0.927		0.859	
	CS3 Analyze customers sacrifice for unmet needs	0.845		0.714	
	CS4 Provide ease of customer choice for decision making	0.883		0.780	
	CS5 Create value for the customer	0.926		0.857	
	CS6 Incorporate customer requirement during new design process	0.865		0.748	
Process amenability	PA1 Incorporate modularity in design, for part flexibility	0.825	0.924	0.681	0.635–0.784
	PA2 Develop compatible process technology	0.765		0.585	
	PA3 Develop production and distribution process for timely delivery	0.881		0.776	
	PA4 Develop supplier for co-design	0.872		0.760	
	PA5 Develop marketing competence for product promotion	0.863		0.745	
Competitive environment	CE1 Economic uncertainty	0.771	0.917	0.594	0.562–0.835
	CE2 Market Turbulence	0.758		0.575	
	CE3 Company credibility and position in marketplace	0.851		0.724	
	CE4 Customer loyalty	0.868		0.753	
	CE5 Potential of competitors to react	0.873		0.762	
Organizational readiness	OR1 Cultural change in the organization	0.866	0.954	0.750	0.754–0.867
	OR2 Skill development of employees	0.924		0.854	
	OR3 Employer’s involvement in product and process roadmap	0.869		0.755	
	OR4 Training to marketing team to capture and prioritize requirements	0.914		0.835	
	OR5 Top management support and leadership building	0.918		0.843	
Mass customization ability	MC1 Product can be customized on large scale	0.848	0.908	0.719	0.647–0.782
	MC2 Product variety can be enhanced at same cost and quality	0.833		0.654	
	MC3 Product can be designed based on customers’ requirements	0.862		0.740	
	MC4 Product can be delivered on stipulated time	0.830		0.689	
Competitive advantage	CA1 Market share growth and Reaching financial goals	0.815	0.906	0.664	0.584–0.703
	CA2 Acquiring new customer	0.812		0.659	
	CA3 Increased sales volume/ Return on sales/revenue	0.846		0.716	
	CA4 Increased product variety	0.783		0.613	
	CA5 Reduce waste through on demand production	0.813		0.661	
efficiency, which necessitates the interchange of information between customers, salespeople, and technical personnel [38]. Customers must transform their wants and demands into particular product requirements [22] by customizing, setting, matching, or altering a solution, limiting the solution space to options already represented in the system’s fulfillment, and converting consumer co-design data into customer knowledge for strategic planning and innovation [39, 40]. Customer input to establish features and pricing requirements of personalized products to meet consumers’ particular requirements cheaply and promptly [41], and a study of consumer buying patterns [42] can contribute to success in this field. Quick customer response for the implementation of mass customization is built on a system that connects consumer voice to product design, customer relationship management, regular market surveys, and understanding client grievances for product improvement [38]. Thus, the following hypotheses were proposed:

Hypothesis H1: Customer sensitivity is positively related to MC ability.

2.2 Process amenability

Enablers, marketing and strategy, design, production, and distribution are all part of this diverse region [1]. New technology must be integrated and coordinated with humans and organizations to successfully execute mass customization [43]. Flexible manufacturing techniques are required by MC to help businesses become first to market with unique, custom-made items and [44] to manage the complexity of mass customization [45]. Increasing product variety implies richer information flows, which in turn necessitates increased scheduling and coordination complications inside the organization [13, 46], giving rise to increased information processing needs [13]. Organizations need to establish suitable information infrastructure to expedite regular communication and information with suppliers, customers, and other stakeholders [29, 43, 47]; to keep close communication with its supplier for design consideration [48]; and to determine interface specifications to ensure module combinability [14]. Encompassing suppliers in quality enhancement and new product improvement helps a company to tap into their capabilities and competencies, which can moderate new product development expenses and lead times while also minimizing component mismatches [49, 50]. Collaboration with suppliers for new product development and standards by firms is vital since modules require consistent specification [21]. Modular product design is based on modular components that may be assembled into several end products [51] as well as the reuse of the same modules across several end products [52], resulting in increased product volume and variety [12]. Modularity primarily influences the desirability of products by developing tenuously connected modules that may be procured from vendors [32] and merged according to consumer requirements and manufacturing processes [53]. It is critical to maintain constant, direct contact with customers and involve them in the design process to incorporate values that are important to them into the design [32]. Managers, according to Zhang et al. [41], must communicate with consumers and suppliers at the same time to incorporate MC concepts throughout the design phase. The following hypotheses are based on the previous reasoning.

Hypothesis H2: Process amenability is positively related to MC ability.

2.3 Competitive environment

Competitive environment, economic uncertainty, market turbulence, firm credibility, and position in the marketplace, as well as consumer loyalty, are all elements to consider in the journey to mass customization [1]. Researchers have advocated that enterprises that change from mass production to the novel paradigm of mass customization will acquire a competitive benefit [8] due to the growing awareness of mass customization. Organizations require a greater diversity of supply to meet heterogeneous and changeable consumer demand, which upsurges the ambiguity in forecasting demand for each type of product. This causes scarcities, quality concerns, and extended lead times in supplier parts, which causes manufacturing delays and limits a company’s capacity to mass customize [13]. To successfully adapt to altering market wants, MC capability development necessitates extraordinary levels of process flexibility and agility inside a company [54], as well as excellent internal integration across multiple roles. The conception of mass customization has been in practice to improve an organization’s ability to respond fast to dynamic changes in the global marketplace [27]. This method cannot only improve resilience, preserve operations, and support personnel during economic downturns, but also maintain a competitive advantage and accelerate business growth [34]. The following hypothesis is proposed based on the above research findings:

Hypothesis H3: Competitive environment is positively related to MC ability.

2.4 Organizational readiness

Organizational readiness demands a thorough examination of the organization’s approaches, culture, and resources [55] to determine the extent of similarity between the commercial opportunity offered by mass customization and the organization’s capacity to profit from it [1]. To attain new and innovative forms of competitive advantage, enterprises must integrate, build, and reconfigure available
resources to satisfy the expectations of a continually changing environment [17]. Before transitioning from a conventional mass production setup to a successful MC firm, enterprises must make significant changes to their historical mindset and practices [56], since mass customization involves true change management initiatives in existing enterprises [39]. To resolve the hindrances faced by organizations while implementing mass customization, intensification of the training of designer and personnel reassignment needs to be considered for the implementation of MC ability and enhancing their market competitiveness [28]. Organizational performance necessitates a group of workers with cross-functional skills to foster creativity and innovation throughout the entire value chain to improve MC’s ability to achieve organizational goals [29]. Mass customization is presented as a marketing concept that allows for the acquisition of a large number of customers while providing the opportunity to personalize the product [57]. Hence, organizations require to bring a cultural change, involve their workforce in all phases of MC implementation, upgrade and train employees for MC innovative ideas, train their marketing team to understand the desire of customers, and market requirements that need to be converted into various MC aspects of design. Such organizational readiness brings about operational agility for MC adaptation and implementation. Organizations having unique operational capabilities with collaborative relationships with the suppliers, flexible, innovative, and adaptive work culture have strong MC ability [29]. Tung et al. [58] emphasized that top management’s participation in problem resolution was crucial during crisis and conflict; therefore, all across the execution phase, it was essential to simultaneously enhance production, process, and product on the strategic and tactical level, which might be a challenging assignment for top management [42]. Effective leadership for analyzing future market potential, participation to ensure technical, economic, and personnel support, aid during obstructions, and strategic monitoring of MC projects and appraisal of their progress are the most important criteria for mass customization success [34]. Organizations that are flexible ensure mobility, agility, and adaptability and are more capable to reduce the response time to demand changes [59]. Companies that are self-sufficient, self-organized, linked with intelligent digitalization and forms of communication, and seem to have independent entity management teams utilize additional supplier networks, guarantee better supply chains’ capacity and access to external resources, have a protocol in place and diverse supply alternatives, and facilitate collaboration among supply chains that are more ready for MC implementation. Thus, the following hypotheses are proposed:

Hypothesis H4: Organizational readiness is positively related to MC ability.

2.5 Mass customization ability

MC is becoming a more important strategic goal as competition grows and customers become more assertive [19]. The ability to manage change has the potential to improve operational, market, environmental, and financial performance [57]. When faced with fierce competition, many businesses want to improve their MC skills to outperform their rivals [6]. An organization’s effective application of mass customization gives a competitive edge in the industry [54] and aligns manufacturing with customer needs, satiating client desires [60, 61], which is regarded as a key aspect of any organization’s competitiveness [21, 57, 62]. Manufacturing agility can improve organizational performance by generating operational efficiency and strategic competitive advantages [60]. If each product’s originality or clarity of innovation is maintained, a diverse range of options stimulates customers and opens the door to increased sales, profit margins, and revenues [44, 63]. The following hypothesis is proposed based on the previous arguments:

Hypothesis H5: Mass customization ability is positively related to competitive advantage.

2.6 Research model

Figure 1 illustrates the proposed research model, the hypothesized relationship, and the equivalent which has been previously explained in the hypotheses development section.

3 Research methodology

The main goals of this study are to see how different constructs stated by Hart (1995) affect the ability of an Indian company to mass customize products, which is necessary for competitiveness.

3.1 Design of survey instrument and its reliability

The four pillars of mass customization developed by Hart in 1995 were adopted as the manufacturing model based on the research gap, and a preliminary collection of several factors was generated based on a literature review, experience surveys, in-depth interviews, focus groups, and critical incidents [64]. The next step was to create a questionnaire based on a literature study, with each latent variable analyzed consisting of a set of items to be evaluated. There were three sections to the questionnaire. The first component of the questionnaire covers questions about the respondents’ demographics, the sort of industry
in which they work, and the size of their company in terms of manpower and turnover. The next section contains questions about the respondents’ perceptions of their level of MC skill. The response format was a five-point Likert scale, with values ranging from 1 to 5, with 1 indicating strong disagreement and 5 indicating strong agreement [65, 66].

The questionnaire was subjected to a panel examination to ensure that it was accurate and clear [67]. This panel consisted of ten experts who were specifically briefed about the research concept and its dimensions and was finalized by engaging individually with six experts from manufacturing firms who were managers, vice presidents, general managers, assistant general managers, and other positions; two consultants from the field with extensive experience; and two academic experts (Ph.D. holders from prestigious universities). The expert screening process was developed in such a way that the panel of evaluators could discover items that were too identically worded [68]. The updated pool of topics was validated with a smaller group of respondents after the questionnaire was validated to ensure that all of the items were clear and understandable to the target audience [69]. The next step was scale purification, which involved using a refined and reduced scale for data collection while adhering to a sampling strategy that was adequately justified in the context of the study.

3.2 Target organizations and target respondents

Respondent lists were obtained from reputable sources such as chambers of commerce and industry, trade organizations, and alumni associations. The most important criteria, limits, and obstacles were to identify respondents with prospective expertise to address knowledge in the questionnaire from a variety of fields covered by various domains [70]. The survey was conducted in India’s manufacturing and processing industries. Companies that used or were familiar with such technology were chosen as respondents.

3.3 Collection of data

To obtain responses from potential respondents, the questionnaire was distributed both offline and online. In the case of offline mode, respondents were requested to schedule an appointment ahead of time. A soft copy of the questionnaire was then emailed to them, along with a supplemental background note on mass customization, to help them better comprehend the many aspects. A face-to-face interview was used to obtain responses from the respondents. In the instance of an online survey, participants were asked to make their beneficial inputs available. The questionnaire and background note on MC were emailed to 856 respondents from India’s manufacturing businesses, representing a variety of industries. The filled-in surveys were examined to see if the respondents gave significant inputs once the online and offline responses were received.

3.4 Respondent characteristic

The questionnaire and background note on MC were emailed to 856 respondents from India’s manufacturing businesses, representing a wide range of industries. The filled-in questionnaires were examined after the online and offline responses were collected to assess if the respondents made relevant contributions. Out of the 856 surveys distributed, 286 were completed and returned. In the surveys, missing data and outliers were examined [71]. For 10 surveys, outliers were recorded, generating 276 acceptable responses. The final response rate was 32.24%, which was higher than the minimum of 20% proposed by Malhotra and Grover [72] for guaranteeing the quality of the empirical research.
Sample characteristic of the respondents exhibits that as per job designation, top management constituted 34.6%, middle management 42.9%, administrative staff 8.3%, technical staff 3.9%, academician 10.2%, marketing professionals accounted for 17.3% of the respondents, followed by production 16.9%, procurement 15.4%, logistics 11.4%, R&D 10.2%, and project management 8.3%. In terms of time spent in the company, 5.1% of those polled have worked for their businesses for fewer than 5 years. 4.3% of respondents have worked for the company for 5 to 10 years and 23.2% for 10 to 20 years, and 49.6% have worked for the company for more than 20 years. Respondents had a 3.9% post-doctoral, 18.5% Ph.D., 55.1% postgraduate, and 17.9% graduate, and the rest are diploma holders as their educational backgrounds.

The sample characteristic of the surveyed organization consists of consumer electronics 18.5%, interiors and decors 18.1%, automotive 14.2%, apparel and footwear 9.8%, and food 9.1%, and the rest were variable industries. Concerning the strength of workers, organizations with more than 1000 workers were 32.7%, 1000 to 500 was 25.6%, 200–500 was 18.5%, 100–200 was 11%, and less than 100 was 12.5%. Annual turnover in crores for the company for 5 to 10 years and 23.2% for 10 to 20 years, and 49.6% have worked for the company for more than 20 years. Respondents had a 3.9% post-doctoral, 18.5% Ph.D., 55.1% postgraduate, and 17.9% graduate, and the rest are diploma holders as their educational backgrounds.

The responses were examined for non-response bias, which might reduce response validity (Bailey, 1978). The application of t tests to analyze non-response bias is a common strategy, assuming that late responders (e.g., second-wave replies) can be seen as non-responses of early responders (e.g., the first wave). For this study, 20 survey items were chosen at random for analysis, two groups of 50 surveys were picked at random from the first and last waves of surveys received, and the results of the two groups were compared using t tests [73] with the help of SPSS program. Using t tests, there were no statistically significant differences between the 20 survey questions. Although these findings do not rule out the possibility of non-response bias, they do show that non-response may not be a problem if late responders represent the views of non-respondents. As a result, scale purification and a confirmatory factor were added to the data analysis.

Because the data came from a single survey, there was a risk of common method bias [74], so Harman’s single-factor test was run on the variables using SPSS and exploratory factor analysis (EFA). The findings revealed that a single component was responsible for 48.25% of the total variance, which is less than 50%. The findings indicate that no one or general factor appeared, and it was considered that common technique bias was not a concern.

4 Analysis and results

It is critical to ensure that the given theoretical framework is reliable and valid before testing it ([73, 75]).

4.1 Reliability and validity analysis

Both EFA and CFA are used to test the concept’s reliability and validity. To examine construct reliability, EFA is used to test the scales’ unidimensionality, followed by Cronbach’s alpha and composite reliability (CR) [75]. The correlated item—total-correlation (CITC) was calculated to do the reliability analysis. A CITC value of more than 0.30 is recommended. Table 1 illustrates the CITC. As indicated in Table 1, all six constructions had CITC values greater than 0.30 [76]. As a result, the scales are determined to be internally reliable, and the construct dependability of the measurement model is not impacted.

EFA with principal component analysis and varimax rotation with Kaiser normalization is carried out [41] using SPSS. The Kaiser Meyer-Olkin value of 0.941 is higher than the suggested minimum value of 0.5 [77], indicating that the sample size is sufficient. The Bartlett test of sphericity, which is a measure of the multivariate normality of a set of distributions and evaluated the null hypothesis in SPSS, was used to determine the strength of the link [77]. Table 2 shows how six EFA components affect the loadings of measuring scale variables. It meets the requirement of clarifying the factors and the hypothesized model based on theory because components 1, 2, 4, and 5 correspond to the four pillars of mass customization, namely, customer sensitivity, organizational readiness, competitive environment, and process amenability, and components 3 and 6 correspond to competitive advantage and mass customization ability. The variable loading ranges from 0.689 to 0.886. For each construct, a Cronbach’s alpha value was calculated, which ranged from 0.90 to 0.95 (Table 1), all of which are higher than the recommended threshold value of 0.70 [76].

Figure 2 shows a CFA model with the AMOS 23 program. Each item in the model is associated with a construct, and the covariance between those constructs is computed. The data were examined for skewness, kurtosis, and normality. There was no major violation found. According to the modification indices, no major changes were required for this model. The chi-square statistic to degrees of freedom (CMIN/DF) ratio, adjusted goodness of fit (AGFI), goodness-of-fit index (GFI), root mean
square residual (RMR), normed fit index (NFI), Bentler comparative fit index (CFI), and root mean square error are all indicators of acceptable fit [78] and the adequate fit suggested for models is shown in Table 2. It can be seen from Table 3 that all the measurement models have acceptable fit indices, and consequently signify the unidimensionality of the constructs.

After the factors are extracted using EFA and the quality of fit is confirmed using CFA, validation is done in two steps. Expert opinion is used to assess content validity, and construct validity is divided into two parts: convergent validity and discriminant validity. The values of CR (construct reliability) and AVE (average value efficiency) determine convergent validity (average value). The CR and AVE values should both be more than 0.7 and 0.5, with CR always being bigger than AVE [79]. Discriminant validity is determined using MSV values (mean shared variance) [78]. The AVE value should always exceed the MSV value. Table 4 backs up the

Component	1	2	3	4	5	6
Create value for customer	.880	.156	.140	.113	.218	.084
Understand uniqueness of customers’ needs	.840	.161	.171	.211	.200	.167
Provide ease of customer choice for decision making	.832	.162	.196	.150	.201	.082
Identify opportunities for customization	.832	.128	.160	.208	.216	.110
Incorporate customer requirement during new design process	.818	.092	.150	.164	.268	.043
Analyze customers sacrifice for unmet needs	.794	.185	.167	.220	.164	.087
Skill development of employees	.156	.865	.206	.140	.164	.132
Employees involvement in product and process roadmap	.134	.855	.173	.075	.135	.128
Training to marketing team to capture and prioritize requirements	.213	.851	.200	.134	.129	.123
Cultural change in the organization	.100	.848	.185	.178	.109	.110
Top management support and leadership building	.181	.843	.213	.129	.174	.158
Increased sales volume/ Return on sales/revenue	.189	.164	.822	.119	.094	.152
Market share growth/ Reaching financial goals	.189	.264	.765	.135	.083	.128
Reduce waste through on time production	.139	.183	.758	.154	.188	.217
Acquiring new customer/ Perceived customers value	.180	.138	.753	.177	.217	.190
Increased product variety	.159	.242	.753	.127	.016	.186
Market Turbulence	.178	.084	.129	.834	.202	.169
Economic uncertainty	.211	.065	.135	.792	.195	.166
Potential of competitors to react	.190	.250	.160	.742	.241	.197
Customer loyalty	.301	.214	.178	.679	.203	.218
Company credibility and position in marketplace	.217	.196	.246	.677	.313	.205
Develop marketing competence for product promotion	.250	.152	.168	.279	.765	.158
Develop production and distribution process for timely delivery	.317	.208	.121	.203	.746	.235
Develop supplier for co-design	.268	.173	.145	.295	.735	.206
Incorporate modularity in design, for part flexibility	.332	.149	.060	.267	.715	.217
Develop compatible process technology	.286	.176	.196	.182	.686	.188
Product can be customized on large scale	.096	.183	.174	.245	.165	.817
Product variety can be enhanced at same cost and quality	.078	.168	.192	.236	.224	.786
Product can be designed based on customers’ requirements	.161	.159	.266	.211	.227	.761
Product can be delivered on stipulated time	.158	.157	.398	.154	.249	.684

Extraction Method: Principal Component Analysis
Rotation Method: Varimax with Kaiser Normalization

* Rotation converged in 6 iterations

© Springer
findings, and both convergent and discriminant validities exist.

4.2 Means, standard deviations, and correlations

To acquire a thorough grasp of the data, descriptive statistical analysis was used. As a result, descriptive statistics and bivariate correlation data derived from the Pearson coefficient correlation approaches have been assessed (Table 5). Table 5 reveals that the correlation coefficients for the constructs are greater than 0.40 at the 0.01 level (2-tailed), showing that they are positively and statistically significantly correlated [80]. However, because no relationship is greater than 0.70, multicollinearity is unnecessary [80].

Indicators of model fit	CMIN/DF	AGFI	GFI	RMR	NFI	CFI	RMSEA
Result	1.73	0.83	0.86	0.032	0.91	0.96	0.050
Default value	Less than 2	Greater than 0.8	Greater than 0.8	Less than 0.05	Greater than 0.9	Greater than 0.9	Less than 0.06

Fig. 2 Path diagram showing the regression weights and the correlation between the constructs
4.3 Hypothesis testing

Using AMOS 23, SEM analysis is used to analyze the associations between each pair of postulated components, as shown in Table 6. Figure 3 shows a path diagram created with the AMOS software, which portrays the results of the analysis derived from the SEM. Model fit indices values show good fit (CMIN/DF = 1.83; GFI = 0.85; AGFI = 0.83, NFI = 0.91, CFI = 0.95, RMSEA = 0.05). All these values are satisfactory for the recommended range values.

In terms of the impact of customer sensitivity on MC ability, the SEM results do not support H1, and the path coefficient is $\beta = -0.05$, $t = -0.096$, thus disagreeing with the suggestions of Hart (1995) that the customers’ needs and wants and his sacrifice for unmet needs require to be considered by any organization before shifting from mass production to mass customization. The result is surprising, but it may be because the analysis was carried out in India where mass customization is at its nascent stage, and respondents' ability to analyze the gap between products provided and products desired by the customer gives rise to mass customization ability was crucial. As hypothesized, a significant relationship between process amenability and mass customization ability is observed ($\beta = 0.28$, $t = 4.07$, significant at $p < 0.00$), thus supporting H2. This concurs with the research by Hart (1995) that organizational enablers, marketing competence, supportive production and distribution team, and design aspects can enhance the mass customization ability of a firm. Hypothesis H3 is supported ($\beta = 0.34$, $t = 4.32$, significant at $p < 0.00$), acceding Hart’s research theory that a competitive environment promotes mass customization. Hypothesis H4 showing organizational readiness leads to mass customization ability is supported ($\beta = 0.14$, $t = 3.12$, significant at $p < 0.002$), harmonizing with research by Hart (1995) that organizations need to identify the fit between business opportunity and organizations' ability to capitalize on this opportunity before venturing into mass customization. Finally, H5 is supported ($\beta = 0.69$, $t = 10.23$, significant at $p < 0.000$), emphasizing that MC-capable manufacturing plants may dynamically modify their resource/skill mix to adapt to individual client demands, gaining a competitive advantage [13].

5 Results and discussion

To meet customer demand in a certain period, a manufacturing company must choose the best acceptable product configuration from a wide range of options to achieve effective MC, which in turn relies on the firm’s capacity to effectively grasp client wants and obtain the necessary mix and quantity of components for timely assembly of the needed product configuration. The goal of this study is to categorize, consolidate, and validate important factors that influence the ability of Indian manufacturing companies to integrate mass customization. Hart’s (1995) four pillars of mass customization were used to identify constructs, which are then followed by a systematic literature review to identify measurement items. The study

Table 4 Assessment of Discriminant Validity and Convergent Validity

	CR	AVE	MSV	ASV	Customer Sensitivity	Process Amenability	Competitive Environment	Organizational Readiness	Mass Customization	Competitive Advantage
Customer Sensitivity	0.96	0.80	0.45	0.28	0.89					
Process Amenability	0.92	0.71	0.52	0.37	0.84					
Competitive Environment	0.91	0.66	0.52	0.37	0.59	0.72	0.81			
Organizational Readiness	0.95	0.81	0.27	0.25	0.45	0.50	0.52	0.90		
Mass Customization	0.90	0.71	0.42	0.33	0.65	0.65	0.49	0.84		
Competitive Advantage	0.90	0.66	0.41	0.30	0.45	0.50	0.56	0.55	0.64	0.81

Table 5 Descriptive analysis and correlations

	Mean	SD	Customer Sensitivity	Process Amenability	Competitive Environment	Organizational Readiness	Mass Customization	Competitive Advantage
Customer Sensitivity	3.74	0.96	1					
Process Amenability	3.79	0.88	0.67	1				
Competitive Environment	3.80	0.79	0.59	0.70	1			
Organizational Readiness	3.87	0.89	0.45	0.50	0.52	1		
Mass Customization	3.95	0.75	0.44	0.65	0.65	0.49	1	
Competitive Advantage	3.88	0.72	0.45	0.50	0.56	0.55	0.64	1
used this information to describe the links between mass customization and competitive advantage, as well as give empirical evidence for the proposed research technique.

Due to its cost competitiveness, qualified labor, and favorable government regulations, India has emerged as a worldwide manufacturing hub. Furthermore, the presence of a robust local market is the most important factor promoting sector growth. The country’s consumer trend is allowing domestic players to thrive, while also enticing international players, and the Indian market has a plethora of unexplored potential. Though literature support has been observed globally in the electronic sector [81], in the automotive industry [82], the fashion industry [83, 84], footwear [85], pigment industry [33], door industry [32], and food industry [56], in the Indian business, MC is still an emerging paradigm. Research work identified MC adaptability in the footwear industry [30], pigment industry, furniture, and electrical sector [34] in the Indian context, thus identifying with the view that though there is a lot of literature detailing the approaches and capabilities needed for MC system implementation, research in Indian manufacturing sectors is needed to identify the challenges like new system design.
organizational system transformation, and resource and competency prioritization [86]. Automobile firms of India may expand into MC areas to attract new customers with existing automobiles. They may take use of their strong position in India by following in the footsteps of European and Japanese automakers in providing customized possibilities. Higher prices, sales of add-ons and specific equipment, and a stronger emotional brand loyalty among its customer base could benefit the Indian carmaker [48]. Although such firms have process amenability, organization readiness is essential for MC to be implemented. Another industry with a lot of promise for the MC market is the apparel and footwear business [30]. Because of the presence of a customer-sensitive market, a competitive environment, and organizational readiness owing to a flat organizational structure, MC is viable; nevertheless, process amenability must be strengthened because such companies confront competition both locally and globally.

The disruption caused by COVID-19 on manufacturing has a considerable influence on operational, social, and financial sectors, as well as posing challenges to organizations attempting to accelerate the change of global value distribution models, effectively halting many Indian industries. The manufacturing sector in India is now at a crossroads with unprecedented consequences for manufacturers and supply chains [34]. A new method is required to limit the impact of COVID-19 and rethink risk management and contingency plans. This empirical model of mass customization can provide manufacturers with a solution to the pressing issues that must be addressed to make the business as stable as possible. This strategy will not only improve resilience, protect operations, and support people during the crisis, but it will also help businesses maintain a competitive advantage and accelerate growth after the economy recovers.

6 Managerial implications

The practical goal of the research is to provide strategic instructions to top-level manufacturing executives to encourage mass customization for business excellence. According to the findings of the study, the competitive environment has a significant impact on mass customization, which is consistent with Hart’s (1995) research findings that organizations should shift from mass production to mass customization only when market turbulence occurs, resulting in homogeneous versus heterogeneous customer demand. However, the first-mover advantage can only be guaranteed if there is customer loyalty and a good reputation in the market. Because of the turbulence that has disrupted the mass market, mass customization should be regarded as an organizational approach. Firms should view market volatility as an opportunity rather than a hindrance or a threat to which they should escape [1]. For a diverse country like India, organizations need to consider the diverse and individualized needs of consumers, variable human choices, and inconsistent economic level of customers for identifying what to mass customize. An organization should focus on setting up the product vision for the business unit while maintaining a big picture focus; evaluating competitor offerings technically; and commercially and identifying gaps to deliver according to human needs with close control on time to market.

Once the organization had identified its potential to venture into mass customization, it needs to strengthen the other three pillars simultaneously. Customer sensitivity that identifies the uniqueness of customer needs and sacrifices for unmet needs should be a deciding factor for the type of mass-customized product, which should cogitate the voice of the customer during the new design process. The other pillar, process amenability, needs to empower production, process, distribution, the vendor for co-development, and the marketing team to be “market ready” for mass customization. The fourth pillar requires, firstly, top management involvement (highest factor loading) and employee empowerment to ensure a cultural change, followed by skill development of employees for the successful attainment of mass customization goals.

7 Conclusion

With ever-increasing economic instability, MC’s ability will inevitably become more crucial for businesses of all sizes to survive and prosper. Given this scenario, businesses preparing to transition from mass production to mass customization will require a framework for execution. While previous research in Indian context aimed at building framework for mass customization implementation, the current research further developed the four pillar of mass customization by eminent researcher Hart [1] and empirically tested the framework identifying the relationships among the constructs of mass customization for competitive advantage. The study was conducted drawing on a sample of 276 Indian companies, using SEM approach to test the developed hypotheses. The results showed that process amenability, competitive environment, and organizational readiness all have a major impact on mass customization. The study, on the other hand, did not support customer sensitivity, which could be because mass customization is a new manufacturing paradigm in India. These scales can be used to enhance prior research that, although focusing on MC ability, failed to take into account the effects of these aspects during the implementation stage.

The above study will aid practitioners, particularly in the Indian setting, by offering a guideline. An empirical
examination of these four pillars can provide a clear indication of how enticing it will be for a company to pursue an explicit mass customization strategy. The significance of a company arriving at mass customization is the culmination of a rational organizational evolution and organizations that already operate in an enlightened realm of operations have the option of mass customization. Organizations need to understand that there is no such thing as a one-size-fits-all company idea when it comes to mass customization and mass customization must be tailored to one’s organization’s goals, customers, manufacturing capacity, competitive environment, and new technologies accessible at every level. Customer loyalty, market leadership, productivity, and profitability will all be rewarded in abundance for any organization that is truly prepared for the effort of executing this significant new strategic aim demands.

8 Limitations of the study and future research direction

As with any empirical study, some limitations demanded further investigation. This framework should be tested in another country in the future to ensure that it works in other markets. Second, the research concentrates on the manufacturing sector. A cross-industry comparative study could be done in the future to evaluate the model provided in this study in other industries. In the service sector, the approach can also be put to the test.

Future research could include elements not included in this study, such as financial concerns. This framework is best suited for companies with a solid technical foundation. A comparable framework for MSMEs and start-ups may be investigated for the use of mass customization in a variety of businesses. Furthermore, the aforementioned concept was put to the test for mass customization to gain a competitive advantage. It is possible to test the same model to see if it is profitable for other business prospects.

Although mass customization, which employs modularization to improve product variety while maintaining mass production (MP) efficiency, has been popular in recent years, it does have some drawbacks. To begin with, clients do not fully participate in the design process. Second, designers have predetermined possible combinations. Due to multiple challenges faced, partial mass customization can be considered since the scope of operation and organizational readiness required is simpler. Automobile, furniture, and apparel industry can apply partial customization of standard products at the assembly or delivery stages. Case studies in these manufacturing sectors can be further conducted to the study implementation possibilities of MC in India.

Author contribution All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Data availability Data will be made available as desired by journal.

Declarations

Ethics approval The authors have abided by the ethics policies of the journal.

Consent to participate Author and co-authors consent to participate

Consent for publication Author and co-authors consent for publication

Conflict of interest The authors declare no competing interests.

References

1. Hart CWL (1995) Mass customization: conceptual underpinnings, opportunities and limits. Int J Serv Ind Manag 6:36–45. https://doi.org/10.1108/09564239510084932
2. Alon I, Pilla V, Bretas G (2021) COVID-19 and international business
3. Deshmukh SG, Haleem A (2020) Framework for manufacturing in post-COVID-19 world order: an Indian perspective. Int J Glob Bus Compet 15:49–60. https://doi.org/10.1007/s42943-020-00009-1
4. Vekic A, Boroczi J, Fajzi A (2020) Mass customization strategies in pandemic conditions. 234–240
5. Brown S, Bessant J (2003) The manufacturing strategy-capabilities links in mass customisation and agile manufacturing - an exploratory study. Int J Oper Prod Manag 23:707–730. https://doi.org/10.1108/01442570310481522
6. Liu G, Shah R, Babakus E (2012) When to mass customize: The impact of environmental uncertainty. Decis Sci 43(5):851–887
7. Andújar-Montoya MD, Gilart-Iglesias V, Montoyo A, Marcos-Jorquera D (2015) A construction management framework for mass customisation in traditional construction. Sustain 7:5182–5210. https://doi.org/10.3390/su7055182
8. Kotha S (1996) From mass production to mass customization: the case of the national industrial bicycle company of Japan. Eur Manag J 14:442–450. https://doi.org/10.1016/0263-2373(96)00037-0
9. McCarthy IP (2004) Special issue editorial: the what, why and how of mass customisation. Prod Plan Control 15:347–351. https://doi.org/10.1080/0953728042000238854
10. Deshpande A (2017) Article information: relationships between advanced manufacturing technologies, absorptive performance: an empirical investigation. Asia-Pac J Bus Adm. https://doi.org/10.1108/APJBA-03-2017-0024
11. Kristal MM, Huang X, Schroeder RG (2010) The effect of quality management on mass customization capability. Int J Oper Prod Manag. https://doi.org/10.1108/01443571011075047
12. Ahmad S, Schroeder RG, Mallick DN (2010) The relationship among modularity, functional coordination, and mass customization: implications for competitiveness. Eur J Innov Manag. https://doi.org/10.1108/146010610111013221
13. Liu GJ, Shah R, Schroeder RG (2012) The relationships among functional integration, mass customisation, and firm performance. Int J Prod Res 50:677–690. https://doi.org/10.1080/00207543.2010.537390
14. Peng DX, Liu GJ, Heim GR (2011) Impacts of information technology on mass customization capability of manufacturing plants. Int J Oper Prod Manag. https://doi.org/10.1108/01443571111182173/full/html
15. Liu G, Shah R, Schroeder RG (2006) Linking work design to mass customization: a sociotechnical systems perspective. Decis Sci. https://doi.org/10.1111/j.1540-5414.2006.00137.x
16. Wong H, Eyers D (2011) An analytical framework for evaluating the value of enhanced customisation: an integrated operations-marketing perspective. Int J Prod Res 49:5779–5800. https://doi.org/10.1080/00207543.2010.519738
17. Lai F, Zhang M, Lee DMS, Zhao X (2012) The impact of supply chain integration on mass customization capability: an extended resource-based view. IEEE Trans Eng Manag 59:443–456. https://doi.org/10.1109/TEM.2012.2189009
18. Aihua E, Li X, Lu JN (2016) Effects of organizational learning on process technology and operations performance in mass customizers. Int J Prod Econ 174:68–75. https://doi.org/10.1016/j.ijpe.2016.01.019
19. Huang X, Kristal MM, Schroeder RG (2010) The impact of organizational structure on mass customization capability: a contingency view. Prod Oper Manag 19:515–530. https://doi.org/10.1111/j.1937-5956.2009.01117.x
20. Dash P (2019) Mass customization. Int J Psychosoc Rehabil. https://doi.org/10.3720/ijprv2316/PR109782
21. Zhang M, Guo H, Huo B et al (2019) Linking supply chain quality integration with mass customization and product modularity. Int J Prod Econ. https://doi.org/10.1016/j.ijpe.2017.01.011
22. Piller FT, Moeslein K, Stotko CM (2004) Does mass customization pay? An economic approach to evaluate customer integration. Prod Plan Control 15:435–444. https://doi.org/10.1080/0953728042000238773
23. Wong H, Lesmono D (2013) On the evaluation of product customisation strategies in a vertically differentiated market. Int J Prod Econ 144:105–117. https://doi.org/10.1016/j.ijpe.2013.01.023
24. Wang Y, Ma HS, Yang JH, Wang KS (2017) Industry 4.0: a way from mass customization to mass personalization production. Adv Manuf. https://doi.org/10.1007/s40436-017-0204-7
25. Zhong RY, Dai QY, Qu T et al (2013) RFID-enabled real-time manufacturing execution system for mass-customization production. Robot Comput Integr Manuf. https://doi.org/10.1016/j.rcim.2012.08.001
26. Shukla M, Todorov I, Kapletia D (2018) Application of additive manufacturing for mass customisation: understanding the interaction of critical barriers. Prod Plan Control 29:814–825. https://doi.org/10.1080/09537282.2018.1474395
27. Yao S, Han X, Yang Y et al (2007) Computer-aided manufacturing planning for mass customization: Part 1, framework. Int J Adv Manuf Technol 32:194–204. https://doi.org/10.1007/s00170-005-3027-z
28. An W, Yang W, Guo W, Zhu D (2014) Research on enterprise customization diagnosis for mass customization. Int J Adv Manuf Technol 76:669–674. https://doi.org/10.1007/s00170-014-6315-4
29. Ullah I, Narain R (2018) Analysis of interactions among the enablers of mass customization: an interpretive structural modelling approach. J Model Manag 13:626–645. https://doi.org/10.1108/JMM2-04-2017-0048
30. Purohit JK, Mittal ML, Mittal S, Sharma MK (2016) Interpretable structural modeling-based framework for mass customization enablers: an Indian footwear case. Prod Plan Control 27:774–786. https://doi.org/10.1080/09537287.2016.1166275
31. Liao K, Deng X, Marsillac E (2013) Factors that influence Chinese automotive suppliers’ mass customization capabilities. Int J Prod Econ 146:25–36. https://doi.org/10.1016/j.ijpe.2013.01.014
32. Pedzik M, Bednarz J, Kwidzinski Z et al (2020) The idea of mass customization in the door industry using the example of the company porta KMI Poland. Sustain. https://doi.org/10.3390/su12093788
33. Li DC, Chang FM, Chang SC (2010) The relationship between affecting factors and mass-customisation level: the case of a pigment company in Taiwan. Int J Prod Res 48:5385–5395. https://doi.org/10.1080/00207540903130884
34. Jain P, Garg S, Kansal G (2021) A TISM approach for the analysis of enablers in implementing mass customization in Indian manufacturing units. Prod Plan Control 1–16. https://doi.org/10.1080/09537287.2021.1900616
35. Pirola F, Cimini C, Pinto R (2020) Digital readiness assessment of Italian SMEs: a case-study research. J Manuf Technol Manag 31:1045–1083. https://doi.org/10.1108/JMTM-09-2018-0305
36. Liu GJ, Zhang W, Guo C (2018) Impacts of supply chain planning and integration on mass customization. J Manuf Technol Manag 29:608–628. https://doi.org/10.1108/JMTM-08-2017-0162
37. Tookanlou PB, Wong H (2020) Determining the optimal customization levels, lead times, and inventory positioning in vertical product differentiation. Int J Prod Econ. https://doi.org/10.1016/j.ijpe.2019.08.014
38. Trentin A, Forza C, Perin E (2012) Organisational design strategies for mass customisation: an information-processing view perspective. Int J Prod Res 50:3860–3877. https://doi.org/10.1080/00207543.2011.597790
39. Kotha S, Yoo J, Park M et al (2004) The manufacturing strategy-capabilities links in mass customisation and agile manufacturing - an exploratory study. Int J Prod Econ 15:707–730. https://doi.org/10.1016/j.ijpe.2005.04.001
40. Piller FT (2004) Mass customization: reflections on the state of the concept. Int J Flex Manuf Syst 16(4):313–334. https://doi.org/10.1080/10071007.2004.918214
41. Zhang M, Lettice F, Zhao X (2015) The impact of social capital on mass customisation and product innovation capabilities. Int J Prod Res 53:5251–5264. https://doi.org/10.1080/00207543.2015.1015753
42. Mouritzis D (2016) Challenges and future perspectives for the life cycle of manufacturing networks in the mass customisation era. Logistics Res 9:1–20. https://doi.org/10.1017/s12159-015-0129-0
43. Tang M, Qi Y, Zhang M (2017) Impact of product modularity on mass customisation capability: an exploratory study of contextual factors. Int J Inf Technol Decis Mak 16:939–959. https://doi.org/10.1142/S021962017410012
44. Gunasekaran A, Yusuf YY, Adeleye EO, Papadopoulos T (2018) Agile manufacturing practices: the role of big data and business analytics with multiple case studies. Int J Prod Res 56:385–397. https://doi.org/10.1080/00207543.2017.1395488
45. Dean PR, Tu YL, Xue D (2009) An information system for one-of-a-kind production. Int J Prod Res 47:1071–1087. https://doi.org/10.1080/00207543.2008.1084151
46. Zipkin P (2001) The limits of mass customization. MIT Sloan Manag Rev 42(3):8
47. Forza C, Salvador F (2008) Application support to product variety management. Int J Prod Res. https://doi.org/10.1080/00207540802037508
48. Kortmann S, Gelhard C, Zimmermann C, Piller FT (2014) Linking strategic flexibility and operational efficiency: the mediating role of ambidextrous operational capabilities. J Oper Manag 32:475–490. https://doi.org/10.1016/j.jom.2014.09.007
49. Romano P, Vinelli A (2001) Quality management in a supply chain perspective. Int J Oper Prod Manag 21:446–460. https://doi.org/10.1108/01443570110381363
companies. Prod Plan Control 12:89–105. https://doi.org/10.1080/09537280150204022

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.