The linear $SU(2)_L \times SU(2)_R \sigma$-model occupies a unique place in elementary particle physics and quantum field theory. It has been recently realized that when a chemical potential for hypercharge is added, it becomes a toy model for the description of the dynamics of the kaon condensate in high density QCD. We review recent results in nonperturbative dynamics obtained in the ungauged and gauged versions of this model.

Keywords: Linear σ-model; high density QCD; spontaneous symmetry breaking.

PACS Nos.: 11.15.Ex, 11.30.Qc.

1. Introduction

The linear $SU(2)_L \times SU(2)_R \sigma$-model occupies a unique place in elementary particle physics and quantum field theory. Introduced back in 1960 by Gell-Mann and Levy, the model is at the heart of particle and nuclear dynamics at very different scales. At the scale of order 10 MeV, the model with sigma, pion and nucleon fields is relevant for nuclear structure calculations. Then, at the scale of order 100 MeV, the model with nucleon fields replaced by quark ones, is an effective theory of chiral dynamics of hadrons (for a review, see Ref. [1]). And at the scale of order 100 GeV, the model is nothing else but the Higgs sector of the electroweak theory.

On leave from Bogolyubov Institute for Theoretical Physics, 03143, Kiev, Ukraine.
In this brief review, we will describe new and quite surprising phenomena taking place in the linear $SU(2)_L \times SU(2)_R$ σ-model at finite density or, more precisely, at the finite chemical potential μ for the hypercharge Y. The interest to this model is connected with that it is a toy model for the description of the dynamics of the kaon condensate in the color-flavor locked phase of high density QCD that may exist in cores of compact stars.

We will consider dynamics at finite μ both in the linear σ-model itself and in its gauged version, when the subgroup $SU(2)_L \times U(1)_Y$ is being gauged. The central results are as follows:

1. In the ungauged σ-model, the spontaneous breakdown of $SU(2) \times U(1)_Y$ symmetry, caused by the chemical potential, leads to a lesser number of Nambu-Goldstone bosons than that required by the Goldstone theorem. One of the consequences of this phenomenon is that the system is not a superfluid despite the presence of a condensate.

2. In the gauged version of the model, the spontaneous breakdown of $SU(2) \times U(1)_Y$ symmetry, caused by the chemical potential, is always accompanied by spontaneous breakdown of both rotational symmetry and electromagnetic $U(1)_{em}$.

3. The spectrum of excitations in the gauged model is very rich. In particular, there exist excitation branches that behave as phonon-like quasiparticles for small momenta and as roton-like ones for large momenta. These roton-like excitations are present because of gauge vector fields. This can shed light on microscopic nature of roton-like excitations, which is an old problem in the theory of superfluidity. It also suggests that this model can be relevant for superfluid and superconducting systems.

2. Dynamics with abnormal number of Nambu-Goldstone bosons

Recently a class of relativistic models with a finite density of matter has been revealed in which spontaneous breakdown of continuous symmetries leads to a lesser number of Nambu-Goldstone (NG) bosons than that required by the Goldstone theorem. The simplest representative of this class is the linear $SU(2)_L \times SU(2)_R$ σ-model with the chemical potential for the hypercharge Y,

$$\mathcal{L} = (\partial_{\mu} + i\mu)\Phi^\dagger (\partial_{\mu} - i\mu)\Phi - \partial_{\mu} \partial_\nu \Phi - m^2 \Phi^\dagger \Phi - \lambda (\Phi^\dagger \Phi)^2,$$

where Φ is a complex doublet field. The chemical potential μ is provided by external conditions (to be specific, we take $\mu > 0$). For example, in the case of dense QCD with the kaon condensate, μ is $\mu = m_s^2/2p_F$, where m_s is the current mass of the strange quark and p_F is the quark Fermi momentum. Note that the terms with the chemical potential reduce the initial $SU(2)_L \times SU(2)_R$ symmetry to the $SU(2)_L \times U(1)_Y$ one. This follows from the fact that the hypercharge generator Y is $Y = 2I_R^3$ where I_R^3 is the third component of the right handed isospin generator. Henceforth we will omit the subscripts L and R, allowing various interpretations.
Surprises in nonperturbative dynamics in σ-model at finite density

of the SU(2) [for example, in the dynamics of the kaon condensate, it is just the conventional isospin symmetry SU(2)I and ΦT = (K+, K0)].

The terms containing the chemical potential in Eq. (1) are

\[iµ\Phi^\dagger \partial_0 \Phi - iµ\partial_0 \Phi^\dagger \Phi + µ^2 \Phi^\dagger \Phi.\] (2)

The last term in this expression makes the mass term in Lagrangian density (1) to be \((µ^2 - m^2)\Phi^\dagger \Phi\). Therefore for supercritical values of the chemical potential, \(µ^2 > m^2\), there is an instability resulting in the spontaneous breakdown of \(SU(2) \times U(1)_Y\) down to \(U(1)_{em}\) connected with the electrical charge \(Q_{em} = I^3 + \frac{1}{2}Y\). One may expect that this implies the existence of three NG bosons. The explicit calculation shows that this is not the case. To see this, we represent the field in the following form:

\[Φ = \begin{pmatrix} 0 \\ φ_0 \end{pmatrix} + \frac{1}{\sqrt{2}} \begin{pmatrix} φ_1 + iφ_2 \\ ϕ_1 + iϕ_2 \end{pmatrix}, \text{ with } φ_0^2 = \frac{µ^2 - m^2}{2λ}.\] (3)

By analyzing the quadratic forms for the two pairs of the fields \((φ_1, φ_2)\) and \((ϕ_1, ϕ_2)\), we arrive at the explicit dispersion relations for the charged and neutral degrees of freedom:

\[ω_{1,2} = \sqrt{µ^2 + k^2} ± µ,\] (4)

\[\tilde{ω}_{1,2} = \sqrt{3µ^2 - m^2 + k^2} ± \sqrt{(3µ^2 - m^2)^2 + 4µ^2k^2},\] (5)

respectively. As is easy to check, here there are only two NG bosons with the following dispersion relations,

\[ω_2 \sim \frac{k^2}{2µ}, \text{ for } k \to 0,\] (6)

\[\tilde{ω}_2 \sim \sqrt{\frac{µ^2 - m^2}{3µ^2 - m^2}k}, \text{ for } k \to 0,\] (7)

which carry the quantum numbers of \(K^+\) and \(K^0\) mesons. The third would-be NG boson, with the quantum numbers of \(K^-\), is massive in this model. This happens despite the fact that the potential part of Lagrangian density (1) has three flat directions in the broken phase, as it should. The splitting between \(K^+\) and \(K^-\) occurs because of the seesaw mechanism in the kinetic part of the Lagrangian density (kinetic seesaw mechanism)\(^5\) This mechanism is provided by the first two terms in expression (2) which, because of the imaginary unit in front, mix the real and imaginary parts of the field \(Φ\). Of course this effect is possible only because \(C, CP,\) and \(CPT\) symmetries are explicitly broken in this system at a nonzero \(µ\). The latter point is reflected in the spectrum of \(K\) mesons even for subcritical values of the chemical potential \(µ < m\). In that case, there is a splitting of the energy gaps (“masses”) of \((K^-, K^0)\) and \((K^+, K^0)\) doublets. While the gap of the first doublet is equal to \(m + µ\), the gap of the second one is \(m - µ\).

Another noticeable point is that while the dispersion relation for \(K^0\) is conventional, with the energy \(ω \sim k\) as the momentum \(k\) goes to zero, the dispersion
relation for \(K^+ \) is \(\omega \sim k^2 \) for small \(k \) [see Eqs. (6) and (7)]. This fact is in accordance with the Nielsen-Chadha counting rule, \(N_{G/H} = n_1 + 2n_2 \). Here \(n_1 \) is the number of NG bosons with the linear dispersion law, \(\omega \sim k \), \(n_2 \) is the number of NG bosons with the quadratic dispersion law \(\omega \sim k^2 \), and \(N_{G/H} \) is the number of the generators in the coset space \(G/H \) (here \(G \) is the symmetry group of the action and \(H \) is the symmetry group of the ground state).

The dispersion relation \(\omega \sim k^2 \) also implies that, despite the presence of the condensate, the Landau criterion fails in this model and the system is not a superfluid. Indeed, recall that, according to the Landau criterion, superfluidity takes place for velocities

\[
\frac{\omega}{v} \to c
\]

where \(c \) is the minimum of the ratios \(\omega(k)/v \) taken over all excitation branches and over all values of momentum \(k \). Therefore even the presence of a single branch with \(\omega \sim k^2 \) implies that \(v_c = 0 \).

Does the conventional Anderson-Higgs mechanism survive in the gauged version of this model despite the absence of one out of three NG bosons? This question has motivated the work where the gauged \(\sigma \)-model with the chemical potential for hypercharge was considered. The answer to this question is positive and we will consider it in the following sections.

3. Gauged \(\sigma \)-model

We will consider the dynamics in the gauged version of model, i.e., the model described by the Lagrangian density

\[
\mathcal{L} = -\frac{1}{4} F_{\mu\nu}^a F^{a\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \left(\partial^\mu \Phi - i g A_\mu \right) \left(\partial_\mu \Phi + i g A_\mu \right) - V(\Phi^\dagger \Phi), (8)
\]

where \(V(\Phi^\dagger \Phi) = m^2 \Phi \dagger \Phi + \lambda (\Phi^\dagger \Phi)^2 \) and the covariant derivative \(D^\mu = \partial^\mu - i g A_\mu - (ig/2)B_\mu \). The field \(\Phi \) could be taken in the same form as in Eq. (3) with \(\Phi \) being the expectation value that is determined by minimizing the effective potential. The \(SU(2) \) gauge fields are given by \(A_\mu = A_\mu^a \tau^a/2 \), where \(\tau^a \) are three Pauli matrices, and the field strength \(F_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + g \epsilon^{abc} A_\mu^b A_\nu^c \). The hypercharge of the doublet \(\Phi \) equals +1. This model has the same structure as the electroweak theory without fermions and with the chemical potential for hypercharge \(Y \).

We consider two different cases: the case with \(g' = 0 \), when the hypercharge \(Y \) is connected with the global \(U(1)_Y \) symmetry, and the case with a nonzero \(g' \), when the \(U(1)_Y \) symmetry is gauged. The main characteristics of these dynamics are the following. For \(m^2 > 0 \), the spontaneous breakdown of the \(SU(2) \times U(1)_Y \) symmetry is caused solely by a supercritical chemical potential \(\mu > m^2 \). In this case spontaneous breakdown of the \(SU(2) \times U(1)_Y \) is always accompanied by spontaneous breakdown of both the rotational symmetry \(SO(3) \) [down to \(SO(2) \)] and the electromagnetic \(U(1)_{em} \) connected with the electrical charge. Therefore, in this case the \(SU(2) \times U(1)_Y \times SO(3) \) group is broken spontaneously down to \(SO(2) \). This pattern of spontaneous symmetry breakdown takes place for both \(g' = 0 \) and
$g' \neq 0$, although the spectra of excitations in these two cases are different. Also, the phase transition at the critical point $\mu^2 = m^2$ is a second order one.

The realization of both the NG mechanism and the Anderson-Higgs mechanism is conventional, despite the unconventional realization of the NG mechanism in the original ungauged model \(^1\). For $g' = 0$, there are three NG bosons with the dispersion relation $\omega \sim k$, as should be in the conventional realization of the breakdown $SU(2) \times U(1)_Y \times SO(3) \rightarrow SO(2)$ when $U(1)_Y \times SO(3)$ is a global symmetry. The other excitations are massive (the Anderson-Higgs mechanism). For $g' \neq 0$, there are two NG bosons with $\omega \sim k$, as should be when only $SO(3)$ is a global symmetry (the third NG boson is now “eaten” by a photon-like combination of fields A_3^μ and B_μ that becomes massive). In accordance with the Anderson-Higgs mechanism, the rest of excitations are massive.

Since the residual $SO(2)$ symmetry is low, the spectrum of excitations is very rich. In particular, the dependence of their energies on the longitudinal momentum k_3, directed along the $SO(2)$ symmetry axis, and on the transverse one, $k_\perp = (k_1, k_2)$, is quite different. A noticeable point is that there are two excitation branches, connected with two NG bosons, that behave as phonon-like quasiparticles for small momenta (i.e., their energy $\omega \sim k$) and as roton-like ones for large momenta k_3, i.e., there is a local minimum in $\omega(k_3)$ for a value of k_3 of order m (see the plots of the dispersion relations in Secs. 4 and 6). On the other hand, ω is a monotonically increasing function of the transverse momenta. The existence of the roton-like excitations is caused by the presence of gauge fields [there are no such excitations in ungauged model \(^1\)]. As is well known, excitations with the behavior of such a type are present in superfluid systems and the microscopic origin of these excitations is a long standing problem.\(^8\),\(^9\),\(^10\) The connection of roton excitations with gauge fields in the gauged σ-model is intriguing and could shed light on their microscopic nature. The presence of these excitations also suggests that the present model could be relevant for anisotropic superfluid systems.

In the case of $m^2 < 0$, the spontaneous breakdown of the $SU(2) \times U(1)_Y$ symmetry takes place even without chemical potential. Introducing the chemical potential leads to dynamics similar to that in tumbling gauge theories\(^12\). While in tumbling gauge theories the initial symmetry is breaking down (“tumbling”) in a few stages with increasing the running gauge coupling, in this model two different stages of symmetry breaking are determined by the values of chemical potential. When $0 < \mu^2 < \frac{\lambda}{16\pi^2} |m^2|$, the $SU(2) \times U(1)_Y$ breaks down to $U(1)_{em}$, and the rotational $SO(3)$ is exact. In this case, the conventional Anderson-Higgs mechanism is realized with three gauge bosons being massive and with no NG bosons. The presence of μ leads to splitting of the masses of charged ± 1 gauge bosons. It is interesting that at this stage the phenomenon that we call dynamical transmutation of chemical potential takes place. It is reflected in such a rearrangement of the ground state when μ ceases to play the role of the chemical potential for hypercharge and becomes the chemical potential for electric charge instead.
The second stage happens when μ^2 becomes larger than $\frac{g^2}{16\lambda}|m^2|$. Then one gets the same breaking pattern as that described above for $m^2 > 0$, with $SU(2) \times U(1)_Y \times SO(3) \rightarrow SO(2)$. The spectrum of excitations is also similar to that case. At last, for all those values of the coupling constants λ and g for which the effective potential is bounded from below, the phase transition at the critical point $\mu^2 = \frac{g^2}{16\lambda}|m^2|$ is a second order one.

4. Model with global $U(1)_Y$ symmetry: $m^2 > 0$ case

We begin by making the following general observation. Let us consider a theory with a chemical potential μ connected with a conserved charge Q. Let us introduce the quantity

$$R_{\min} \equiv \min(m^2/Q^2),$$

where on the right hand side we consider the minimum value amongst the ratios m^2/Q^2 for all bosonic particles with $Q \neq 0$ in this same theory but without the chemical potential. Then if $\mu^2 > R_{\min}$, the theory exists only if the spontaneous breakdown of the $U(1)_Q$ symmetry takes place there. Indeed, if the $U(1)_Q$ were exact in such a theory, the partition function, $Z = \text{Tr}[\exp(\mu Q - H)/T]$, would diverge.\footnote{Similarly as it happens in non-relativistic bose gas with a positive chemical potential connected with the number of particles N.\cite{13}} Examples of the restriction $\mu^2 < R_{\min}$ in relativistic theories were considered Refs.\cite{14} and \cite{15}.

In fact, the value $\mu^2 = R_{\min}$ is a critical point separating different phases in the theory. It is important that since in the phase with $\mu^2 > R_{\min}$, the charge Q is not a good quantum number, μ ceases to play the role of a chemical potential determining the density of this charge. This point was emphasized in Ref.\cite{14}. There are a few options in this case. If there remains an exact symmetry connected with a charge $Q' = aQ + X$, where a is a constant and X represents some other generators, the chemical potential will determine the density of the charge Q' (we call this phenomena a dynamical transmutation of the chemical potential). Otherwise, it becomes just a parameter determining the spectrum of excitations and other thermodynamic properties of the system (the situation is similar to that taking place in models when a mass square m^2 becomes negative). We will encounter both these options in model (8).

We begin by considering the case with $g' = 0$ and $m^2 > 0$. When $\mu^2 < m^2$, the $SU(2) \times U(1)_Y \times SO(3)$ symmetry is exact. Of course in this case a confinement dynamics for three $SU(2)$ vector bosons takes place and it is not under our control. However, taking $\mu^2 \sim m^2$ and choosing m to be much larger than the confinement scale $\Lambda_{SU(2)}$, we get controllable dynamics at large momenta k of order m. It includes three massless vector bosons A_μ and two doublets, (K^+, K^0) and (K^-, \bar{K}^0). The spectrum of the doublets is qualitatively the same as that in model (1): the chemical
Surprises in nonperturbative dynamics in σ-model at finite density

potential leads to splitting the masses (energy gaps) of these doublets and, in tree approximation, their masses are $m - \mu$ and $m + \mu$, respectively (see Sec. 2). In order to make the tree approximation to be reliable, one should take λ to be small but much larger than the value of the running coupling $g^4(m)$ related to the scale m [smallness of $g^2(m)$ is guaranteed by the condition $m \gg \Lambda_{SU(2)}$ assumed above]. The condition $g^4(m) \ll \lambda \ll 1$ implies that the contributions both of vector boson and scalar loops are small, i.e., there is no Coleman-Weinberg (CW) mechanism (recall that one should have $\lambda \sim g^4$ for the CW mechanism).

Let us now consider the case with $\mu^2 > m^2 > 0$ in detail. Since m^2 is equal to $R_{min} = m^2 > 0$ we are now interested in. This forces

\begin{align*}
- (D_m - i\mu\delta_{m0}) (D_m - i\mu\delta^{m0}) \Phi - m^2 \Phi - 2\lambda (\Phi^\dagger \Phi) \Phi &= 0, \\
\partial^\mu F^{(a)}_{\mu\nu} + g\epsilon^{abc} A^{(b)}_{\mu} F^{(c)}_{\mu\nu} + ig \left[\Phi^\dagger_1 \frac{\tau^a}{2} \partial_\nu \Phi - \partial_\nu \Phi^\dagger_1 \frac{\tau^a}{2} \Phi \right] \\
&\quad + \frac{g^2}{2} A^{(a)}_0 \Phi^\dagger_1 \Phi + 2g\mu\delta_{\mu0} \Phi^\dagger_1 \frac{\tau^a}{2} \Phi &= 0
\end{align*}

(since now the field B_μ is free and decouples, we ignore it). Henceforth we will use the unitary gauge with $\Phi_T = (0, \varphi_0 + \tilde{\varphi}_1/\sqrt{2})$. It is important that the existence of this gauge is based solely on the presence of $SU(2)$ gauge symmetry, independently of whether the number of NG bosons in ungauged model (1) is conventional or not.

We will be first looking for a homogeneous ground state solution (with φ_0 being constant) that does not break the rotational invariance, i.e., with $A^{(3,\pm)}_0 = 0$ where $A^{(\pm)}_\mu = \frac{1}{\sqrt{2}} (A^{(1)}_\mu \pm iA^{(2)}_\mu)$. In this case the equations of motion become

\begin{align*}
\left(i\partial_0 A^{(+)}_0 + 2\mu A^{(+)}_0 \right) \varphi_0 &= 0, \\
\left[(\mu - \frac{g}{2} A^{(3)}_0)^2 - m^2 - 2\lambda \varphi_0^2 - \frac{ig}{2} \partial_0 A^{(3)}_0 + \frac{g^2}{2} A^{(+)}_0 A^{(-)}_0 \right] \varphi_0 &= 0, \\
g \left(\frac{g}{2} A^{(3)}_0 - \mu \right) \varphi_0^2 &= 0, \\
g^2 \varphi_0^2 A^{(\pm)}_0 &= 0.
\end{align*}

Besides the symmetric solution with $\varphi_0 = 0$, this system of equations allows the following solution:

$$
\varphi_0^2 = -\frac{m^2}{2\lambda}, \quad A^{(3)}_0 = \frac{2\mu}{g}, \quad A^{(\pm)}_0 = 0.
$$

We recall that in the unitary gauge all auxiliary, gauge dependent, degrees of freedom are removed. Therefore in this gauge the ground state expectation values of vector fields are well defined physical quantities.

Solution (16), describing spontaneous $SU(2) \times U(1)_Y$ symmetry breaking, exists only for negative m^2. On the other hand, the symmetric solution with $\varphi_0 = 0$ cannot be stable in the case of $\mu^2 > R_{min} = m^2 > 0$ we are now interested in. This forces
us to look for a ground state solution that breaks the rotational invariance. Let us now consider the effective potential V. It is obtained from Lagrangian density Eq. (8), $V = -\mathcal{L}$, by setting all field derivatives to zero. Then we get

$$V = V_1 + V_2,$$

where

$$V_1 = -\frac{g^2}{2} \left(A_0^{(a)} A_0^{(a)} - A_i^{(a)} A_i^{(a)} \right),$$

$$V_2 = (m^2 - \mu^2) \Phi^\dagger \Phi + \lambda (\Phi^\dagger \Phi)^2 - 2g\mu \Phi^\dagger A_0^{(a)} \frac{\tau^a}{2} \Phi - \frac{g^2}{4} A_\mu^{(a)} A^\mu_{(a)} \Phi^\dagger \Phi.$$

We use the ansatz $\Phi^T = (0, \varphi_0)$ along with

$$A_3^{(\pm)} = (A_3^{(-)})^* = C \neq 0, \quad A_0^{(3)} = D \neq 0, \quad A_1^{(\pm)} = A_0^{(\pm)} = A_1^{(3)} = A_3^{(3)} = 0,$$

that breaks spontaneously both rotational symmetry [down to $SO(2)$] and $SU(2) \times U(1)_Y$ (completely). Substituting this ansatz into potential (17), we arrive at the expression

$$V = -g^2 D^2 |C|^2 - \left(\mu - \frac{gD}{2} \right)^2 \varphi_0^2 + \frac{g^2}{2} |C|^2 \varphi_0^2 + m^2 \varphi_0^2 + \lambda \varphi_0^4.$$

It leads to the following equations of motion:

$$\left(D^2 - \frac{g^2}{2} \right) C = 0,$$

$$\left(2|C|^2 + \frac{g^2}{2} \right) D = \frac{\varphi_0^2}{g} \mu,$$

$$\left(\mu - \frac{gD}{2} \right)^2 - m^2 - 2\lambda \varphi_0^2 - \frac{g^2}{2} |C|^2 \varphi_0 = 0.$$

One can always take both g and the ground state expectation value φ_0 to be positive (recall that we also take $\mu > 0$). Then from the first two equations we obtain

$$D = \frac{\varphi_0}{\sqrt{2}} > 0, \quad 2|C|^2 + \frac{\varphi_0^2}{2} = \frac{\sqrt{2} \mu \varphi_0}{g},$$

while the third equation reduces to

$$\left(\frac{g^2}{4} - 2\lambda \right) \varphi_0^2 - \frac{3g\mu}{2\sqrt{2}} \varphi_0 + \mu^2 - m^2 = 0.$$

Hence for φ_0 we get the following solution:

$$\varphi_0 = \frac{1}{\sqrt{2}(8\lambda - g^2)} \left[\sqrt{(g^2 + 64\lambda)\mu^2 + 8(8\lambda - g^2)(-m^2) - 3g\mu} \right].$$

\[We will get a better insight in the reason why spontaneous rotational invariance breaking is inevitable for $\mu^2 > m^2 > 0$ from considering the dynamics with $m^2 < 0$ in Sec. [.]\]
Surprises in nonperturbative dynamics in σ-model at finite density

It is not difficult to show that for $\mu^2 > m^2 > 0$ both expression (27) for φ_0 and expression (25) for $|C|^2$ are positive and, for $g^2 \leq 8\lambda$, this solution corresponds to the minimum of the potential. The phase transition at the critical value $\mu = m$ is a second order one.

The situation in the region $g^2 > 8\lambda$ is somewhat more complicated. First of all, in that region the potential (21) becomes unbounded from below [one can see this after substituting the expression for $A^{(3)}_0 = D$ from Eq. (25) into the potential]. Still, even in that case there is a local minimum corresponding to solution (27). The phase transition is again a second order one. Henceforth we will consider only the case with $g^2 \leq 8\lambda$ when the potential is bounded from below. Notice that for small $g^2 \equiv g^2(m)$ the inequality $g^2 \leq 8\lambda$ is consistent with the condition $g^4 \ll \lambda$ necessary for the suppression of the contribution of boson loops, as was discussed above.

In order to derive the spectrum of excitations, one has to introduce small fluctuations $a^{(a)}_a$ and $\tilde{\varphi}_1$ about the ground state solution in Eq. (20) [i.e., $A^{(a)}_0 = A^{(a)}_0 + a^{(a)}_a$ and $\Phi^T = (0, \varphi_0 + \tilde{\varphi}_1/\sqrt{2})$] and then make the expansion in Lagrangian density keeping only quadratic fluctuation terms. This analysis of the quadratic form was done by using MATHEMATICA. It leads to the energy gap (“mass”) spectrum of excitations shown in Fig. 1 (both cases with $m^2 > 0$ and $m^2 < 0$, considered below in Sec. 5 are shown there).

Since in the subcritical phase, with $\mu^2 < m^2$, there are 10 physical states (6 states connected with three massless vector bosons and 4 states connected with the doublet Φ), there should be 10 physical states (modes) also in the supercritical phase. Out of the total 10 modes there exist 3 massless (gapless) NG modes, as should be in the conventional realization of the spontaneous breakdown of $SU(2) \times U(1)_Y \times SO(3) \rightarrow$
SO(2), when $U(1)_Y \times SO(3)$ is a global symmetry. The gaps Δ of the excitations are defined as the values of their energies at zero momentum. They are

$$
\begin{align*}
\Delta^2 &= 0, \quad [\times 3], \\
\Delta^2 &= 2\mu\phi, \quad [\times 2], \\
\Delta^2 &= 2\mu\phi + 3\phi^2, \quad [\times 2], \\
\Delta^2 &= 4\mu^2, \quad [\times 1], \\
\Delta^2 &= \delta^2, \quad [\times 1], \\
\Delta^2 &= \delta^2_\perp, \quad [\times 1]
\end{align*}
$$

(28)

with the degeneracy factors specified in square brackets. Here we introduced the following notations:

$$
\phi^2 = g^2\varphi^2_0/2 \quad \text{and} \quad \delta^2_\perp = F_1 \pm \sqrt{F_1^2 - F_2^2},
$$

(29)

with

$$
\begin{align*}
F_1 &= 3\mu^2 - m^2 - \frac{7}{2}\mu\phi + 3\phi^2, \\
F_2 &= 8(3\mu^2 - m^2)\phi^2 - 30\mu\phi^3 + 9\phi^4.
\end{align*}
$$

(30, 31)

The dispersion relations for the NG bosons in the infrared region are

$$
\omega^2 \approx \frac{2\mu - \phi}{2\mu + 3\phi}k^2 + O(k^4_\perp),
$$

(32)

$$
\omega^2 \approx \frac{2\mu - \phi}{2\mu + 3\phi} \left(\frac{\phi}{2\mu}k^2_\perp + k^2_3 \right) + O(k^4_3),
$$

(33)

$$
\omega^2 \approx \frac{(2\mu - \phi)}{\mu} \left[\frac{4(\mu^2 - m^2) - 3\mu\phi}{8(3\mu^2 - m^2) - 30\mu\phi + 9\phi^2} \right]k^2 + O(k^4_3),
$$

(34)

where $\omega \equiv k_0$. The infrared dispersion relations for the other seven excitations are rather complicated and can be found in the original paper. 7

While the analytical dispersion relations in the infrared region are quite useful, we performed also numerical calculations to extract the corresponding dispersion relations outside the infrared region. The results are as follows. In the near-critical region, $\mu \rightarrow m + 0$, the ground state expectation ϕ becomes small. In this case, one gets 8 light modes, see Eq. (28). The results for their dispersion relations are shown in Fig. 2 (the two heavy modes with the gaps of order 2μ are not shown there). The solid and dashed lines represent the energies of the quasiparticle modes as functions of the transverse momentum $k_\perp = (k_1, 0)$ (with $k_3 = 0$) and the longitudinal momentum k_3 (with $k_\perp = 0$), respectively. Bold and thin lines correspond to double degenerate and nondegenerate modes, respectively.

There are the following characteristic features of the spectrum. a) The spectrum with $k_\perp = 0$ (the right panel in Fig. 2) is much more degenerate than that with $k_3 = 0$ (the left panel). This point reflects the fact that the axis of the residual $SO(2)$ symmetry is directed along k_3. Therefore the states with $k_\perp = 0$ and $k_3 \neq 0$ are more symmetric than those with $k_\perp \neq 0$. b) The right panel in Fig. 2 contains two NG branches with local minima at $k_3 \sim m$, i.e., roton-like excitations. Because there
Surprises in nonperturbative dynamics in \(\sigma \)-model at finite density

Fig. 2. The energy \(\omega \) of the 8 light quasiparticle modes as a function of \(k_1 \) (solid lines, left panel) and \(k_3 \) (dashed lines, right panel). The dispersion relations of two heavy modes are outside the plot range. The energy and momenta are measured in units of \(m \). The parameters are \(\mu/m = 1.1 \) and \(\phi/m = 0.1 \).

are no such excitations in ungauged model \(\sigma \), they occur because of the presence of gauge fields. Since roton-like excitations occur in superfluid systems, the present model could be relevant for them. c) The NG and Anderson-Higgs mechanisms are conventional in this system. In particular, the dispersion relations for three NG bosons have the form \(\omega \sim k \) for low momenta.

When the value of the chemical potential increases, the values of masses of all massive quasiparticles become of the same order. Otherwise, the characteristic features of the dispersion relations remain the same.

5. Model with global \(U(1)_Y \) symmetry: \(m^2 < 0 \) case

Let us now turn to the case with negative \(m^2 \). In this case there is the ground state solution \(\Phi^T = (0, \phi_0 + \tilde{\phi}_1/\sqrt{2}) \) describing spontaneous breakdown of \(SU(2) \times U(1)_Y \) down to \(U(1)_{em} \) and preserving the rotational invariance. In order to describe the spectrum of excitations, we make the expansion in Lagrangian density (38) about this solution. Introducing as before small fluctuations \(a^{(a)}_\mu \) [i.e., \(A^{(a)}_\mu = (A^{(a)}_\mu + a^{(a)}_\mu) \) and \(\tilde{\phi}_1 \) [i.e., \(\Phi^T = (0, \phi_0 + \tilde{\phi}_1/\sqrt{2}) \)], and keeping only quadratic fluctuation terms, we obtain

\[
\mathcal{L} \approx \frac{1}{4} f^{(a)}_{\alpha \beta} f^{(a)}_{\beta \gamma} + 2 \mu \left(f^{(2)}_{\alpha \beta} a^{(1)}_{\alpha \beta} - f^{(1)}_{\alpha \beta} a^{(2)}_{\alpha \beta} \right) + 2 \mu^2 \left(a^{(1)}_{\alpha} a^{(1)}_{\alpha} + a^{(2)}_{\alpha} a^{(2)}_{\alpha} \right) + g^2 \frac{\tilde{\phi}_1^2}{4} g^{(a)}_{\mu} g^{(a)}_{\mu}
\]

where \(\omega_+ \) and \(\omega_- \) are the energies of vector bosons with \(Q_{em} = +1 \) and \(Q_{em} = -1 \), respectively. The dispersion relations for the neutral vector boson and neutral scalars

\[
\omega_+^2 = (\sqrt{k^2 + \phi^2} \pm 2\mu)^2,
\]

\[
\omega_-^2 = (\sqrt{k^2 + \phi^2} \mp 2\mu)^2,
\]
are μ independent,

$$\omega_0^2 = k^2 + \phi^2, \quad \omega_\varphi^2 = k^2 + 4\lambda\varphi_0^2.$$

Therefore, the chemical potential leads to splitting the masses of two charged vector bosons. In fact, it is easy to check that the terms with the chemical potential in Lagrangian density look exactly as if the chemical potential $\bar{\mu} = 2\mu$ for the electric charge Q_{em} was introduced. In other words, as a result of spontaneous $U(1)$ symmetry breaking, the dynamical transmutation of the chemical potential occurs: the chemical potential for hypercharge transforms into the chemical potential for electrical charge. Since the hypercharge of vector bosons equals zero and $\tilde{\varphi}_1$ scalar is neutral, this transmutation looks quite dramatic: instead of a nonzero density for scalars, a nonzero density for charged vector bosons is generated. (The factor 2 in $\bar{\mu} = 2\mu$ is of course connected with the factor $1/2$ in $Q_{\text{em}} = I_3 + \frac{1}{2}Y$.)

In this phase, the parameter R_{min} defined in Eq. (9) equals $\phi^2 = \frac{g^2}{4\lambda} |m^2|$, i.e., it coincides with the square of the mass of vector bosons in the theory without chemical potential. Therefore, as the chemical potential $\bar{\mu}^2$ becomes larger than $\phi^2 = R_{\text{min}}$, a new phase transition should happen. And since for $\bar{\mu}^2 = \phi^2$ vector bosons with charge +1 become gapless [see Eq. (37)], one should expect that this phase transition is triggered by generating a condensate of charged vector bosons.

And such a condensate arises indeed. It is not difficult to check that when $\bar{\mu}^2 > \bar{\mu}_{\text{cr}}^2 = \frac{g^2}{4\lambda} |m^2|$, the ground state solution with ansatz occurs. The parameters C, D, and φ_0 are determined from Eqs. (25) and (27), respectively. For $\bar{\mu}^2 > \bar{\mu}_{\text{cr}}^2$, both expression (27) for φ_0 and expression (25) for $|C|^2$ are positive and, for $g^2 \leq 8\lambda$, this solution corresponds to the global minimum of the potential. The phase transition at the critical value $\bar{\mu}^2 = \bar{\mu}_{\text{cr}}^2$ is a second order one. The spectrum of excitations in the supercritical phase with $\bar{\mu}^2 > \bar{\mu}_{\text{cr}}^2$ is similar to the spectrum in the case of positive m^2 and $\mu^2 > m^2$ (see Fig. 1).

Therefore, for $m^2 < 0$ the breakdown of the initial symmetry is realized in two steps, similarly as it takes place in tumbling gauge theories. At the first stage, the initial symmetry $SU(2) \times U(1)_Y \times SO(3)$ breaks down to $U(1)_{\text{em}} \times SO(3)$, and then, at the second stage, the symmetry $U(1)_{\text{em}} \times SO(3)$ breaks further to $SO(2)$. Now we can understand more clearly why in the case of positive m^2 considered above the breakdown of the initial symmetry is realized in one stage. The point is that in that case vector bosons in the theory without chemical potential are massless. Therefore, while for the chemical potential connected with hypercharge $R_{\text{min}} = m^2$ is positive, $R_{\text{min}} = 0$ for the chemical potential connected with electrical charge Q_{em} there. This in turn implies that in that case there is no way for increasing R_{min} through the process of the transmutation of the chemical potential as it happens in the case of negative m^2. Therefore for $m^2 > 0$ the phase in which both the $U(1)_{\text{em}}$ symmetry

\footnote{As was shown above, for $g^2 > 8\lambda$, the potential is unbounded from below, and we will not consider this case.}
and the rotational symmetry are broken occurs at once as μ^2 becomes larger than m^2.

6. Model with gauged $U(1)_Y$ symmetry

Let us now describe the case with $g' \neq 0$. In this case the $U(1)_Y$ symmetry is local and one should introduce a source term $B_0 J_0$ in Lagrangian density \mathcal{L} in order to make the system neutral with respect to hypercharge Y. This is necessary since otherwise in the system with a nonzero chemical potential μ the thermodynamic equilibrium could not be established. The value of the background hypercharge density J_0 (representing very heavy particles) is determined from the condition $\langle B_0 \rangle = 0$.

After that, the analysis follows closely to that of the case with $g' = 0$. Because of the additional vector boson B_μ, there are now 12 quasiparticles in the spectrum. The sample of spontaneous $SU(2) \times U(1)_Y \times SO(3)$ symmetry breaking is the same as for $g' = 0$ both for $m^2 \geq 0$ and $m^2 < 0$, with a tumbling-like scenario for the latter. However, for supercritical values of the chemical potential, there are now only two gapless NG modes (the third one is “eaten” by a photon-like combination of fields A_μ^3 and B_μ that becomes massive). Their dispersion relations in infrared read

$$\omega^2 \simeq \frac{2\mu - \phi_0}{2\mu + 3\phi} k^2 + O(k^4), \quad (40)$$

$$\omega^2 \simeq \frac{2\mu - \phi_0}{2\mu + 3\phi} \left(\frac{\phi_0}{2\mu} k_1^2 + k_3^2 \right) + O(k^4). \quad (41)$$

The rest 10 quasiparticles are gapped. The masses (gaps) of the massive states are

$$\Delta^2 = 2\mu + 3\phi^2, \quad [\times 2], \quad (42)$$

$$\Delta^2 = \mu \phi + \frac{\phi_0^2}{2} - \sqrt{\left(\mu \phi - \frac{\phi_0^2}{2} \right)^2 + \phi^2 \phi_0^2}, \quad [\times 2], \quad (43)$$

$$\Delta^2 = \mu \phi + \frac{\phi_0^2}{2} + \sqrt{\left(\mu \phi - \frac{\phi_0^2}{2} \right)^2 + \phi^2 \phi_0^2}, \quad [\times 2], \quad (44)$$

$$\Delta^2 = 2\mu^2 + \frac{\phi_0^2}{2} - \sqrt{\left(2\mu^2 - \frac{\phi_0^2}{2} \right)^2 + 2\mu \phi \phi_0^2}, \quad [\times 1], \quad (45)$$

$$\Delta^2 = 2\mu^2 + \frac{\phi_0^2}{2} + \sqrt{\left(2\mu^2 - \frac{\phi_0^2}{2} \right)^2 + 2\mu \phi \phi_0^2}, \quad [\times 1], \quad (46)$$

$$\Delta^2 = \delta_+^2, \quad [\times 1], \quad (47)$$

$$\Delta^2 = \delta_-^2, \quad [\times 1], \quad (48)$$

where $\phi_0^2 = (g')^2 \varphi_0^2$ with φ_0^2 given in Eq. (27), and δ_\pm were introduced in Eq. (28). Notice that the double degenerate gap in Eq. (43) goes to zero together with g', i.e.,
Fig. 3. The energy ω of the 10 light quasiparticle modes as a function of k_1 (solid lines, left column) and k_3 (dashed lines, right column). The dispersion relations of two heavy modes are outside the plot ranges. The energy and momenta are measured in units of m. The parameters are $\mu/m = 1.1$, $\phi/m = 0.1$ and $\phi_b/m = 0.1$.

these two degrees of freedom describe the two transverse states of massless vector boson B_μ in this limit.

The dispersion relations for 10 massive particles are quite complicated. Therefore in order to extract the corresponding dispersion relations, numerical calculations were performed. These dispersion relations are shown in Fig. 3. Bold and thin lines correspond to double degenerate and nondegenerate modes, respectively. As one can see, the two branches connected with gapless NG modes contain roton-like excitations at $k_3 \sim m$. Other characteristic features of the spectrum are also similar to those of the spectrum for the case with $g' = 0$ shown in Fig. 2.

7. Summary

The dynamics of the linear σ-model with a finite chemical potential for hypercharge is new, rich and, that is very important, controllable. In the ungauged version of the model, a dynamics with an abnormal number of NG bosons realizes and, despite the presence of a condensate, there is no superfluidity in the system. The richness of the spectrum of excitations in the gauged version of the model is provided by the coexistence of spontaneous breakdown of rotational symmetry and that of the electromagnetic $U(1)_{em}$. It is noticeable that the spectrum contains roton-like excitations. Their connection with gauge fields is intriguing and deserves further study.

The coexistence of spontaneous breakdown of the rotational symmetry with that of the electromagnetic $U(1)_{em}$ is provided by a condensate of vector charged bosons. The possibility of a condensation of vector bosons was considered in the literature in models different from the present one. The advantage of the linear σ-model without fermions is in its simplicity. The model admits a controllable dynamics that puts the creation of a vector condensate on a solid ground and allows to study the spectrum of excitations in detail.

One can expect that the phenomena discussed here should exist in a wide class
Surprises in nonperturbative dynamics in σ-model at finite density

of relativistic models at finite density. In connection with that, it is noticeable that recently a general approach to the description of systems with an abnormal number of NG bosons has been developed by Nambu.21 Also, in a very recent paper,22 the phenomenon with an abnormal number of NG bosons was revealed in the extended Nambu-Jona-Lasinio model with spontaneous breakdown of the color $SU(3)_c$ down to $SU(2)_c$. This model can be relevant for color superconductivity in dense QCD with two light quark flavors.

The linear σ-model continues to teach and surprise us.

Acknowledgments

V.P.G. and V.A.M. are grateful for support from the Natural Sciences and Engineering Research Council of Canada. The work of I.A.S. was supported by Gesellschaft für Schwerionenforschung (GSI) and by Bundesministerium für Bildung und Forschung (BMBF).

Note Added

After this brief review was published in MPLA, an interesting paper23 has appeared in which roton-like excitations are studied in non-commutative dynamics.

References

1. M. Gell-Mann and M. Levy, Nuovo Cim. \textbf{16}, 705 (1960).
2. T. Hatsuda and T. Kunihiro, Phys. Rept. \textbf{247}, 221 (1994).
3. P. F. Bedaque and T. Schäfer, Nucl. Phys. A \textbf{697}, 802 (2002); D. B. Kaplan and S. Reddy, Phys. Rev. D \textbf{65}, 054042 (2002).
4. M. G. Alford, K. Rajagopal and F. Wilczek, Nucl. Phys. B \textbf{537}, 443 (1999).
5. V. A. Miransky and I. A. Shovkovy, Phys. Rev. Lett. \textbf{88}, 111601 (2002).
6. T. Schäfer, D. T. Son, M. A. Stephanov, D. Toublan and J. J. Verbaarschot, Phys. Lett. B \textbf{522}, 67 (2001).
7. V. P. Gusynin, V. A. Miransky and I. A. Shovkovy, Phys. Lett. B \textbf{581}, 82 (2004).
8. L. D. Landau, J. Phys. USSR \textbf{11}, 91 (1947).
9. R. P. Feynman, Phys. Rev. \textbf{94}, 262 (1954).
10. E. M. Lifshitz and L. P. Pitaevskii, \textit{Statistical Physics, Part 2} (Pergamon, New York, 1980); G. E. Volovik, \textit{Exotic Properties of Superfluid 3He} (World Scientific, Singapore, 1992).
11. H. B. Nielsen and S. Chadha, Nucl. Phys. B \textbf{105}, 445 (1976).
12. S. Raby, S. Dimopoulos and L. Susskind, Nucl. Phys. B \textbf{169}, 373 (1980); V. P. Gusynin, V. A. Miransky and Y. A. Sitenko, Phys. Lett. B \textbf{123}, 407 (1983).
13. L. D. Landau and E. M. Lifshitz, \textit{Statistical Physics} (Pergamon, New York, 1980).
14. J. I. Kapusta, Phys. Rev. D \textbf{24}, 426 (1981).
15. H. E. Haber and H. A. Weldon, Phys. Rev. D \textbf{25}, 502 (1982).
16. S. Coleman and E. Weinberg, Phys. Rev. D \textbf{7}, 1888 (1973).
17. A. D. Linde, Phys. Lett. \textbf{86B}, 39 (1979); I. Krive, Sov. Phys. JETP \textbf{56}, 477 (1982) [Zh. Eksp. Teor. Fiz. \textbf{83}, 849 (1982)].
18. E. J. Ferrer, V. de la Incera, and A. E. Shabad, Phys. Lett. B \textbf{185}, 407 (1987); Nucl. Phys. B \textbf{309}, 120 (1988); J. I. Kapusta, Phys. Rev. D \textbf{42}, 919 (1990).
19. J. T. Lenaghan, F. Sannino and K. Splittorff, Phys. Rev. D 65, 054002 (2002).
20. F. Sannino and W. Schäfer, Phys. Lett. B 527, 142 (2002); F. Sannino, Phys. Rev. D 67, 054006 (2003).
21. Y. Nambu, J. Stat. Phys. 115, 7 (2004).
22. D. Blaschke, D. Ebert, K. G. Klimenko, M. K. Volkov and V. L. Yudichev, hep-ph/0403151.
23. P. Castorina, G. Riccobene and D. Zappala, hep-th/0405093.