Status of Fish Assemblages in Four Major Reservoirs of Thailand

AMPHORN SAKSET1,*, SUWIMON SEEHIRUNWONG2, CHATCHAI PREECHA3
1Department of Fisheries, Khon Kaen Inland Fisheries Research and Development Center, Khon Kaen, Thailand
2Department of Fisheries, Inland Fisheries Research and Development Division, Bangkok, Thailand
3Faculty of Interdisciplinary Studies, Khon Kaen University, Nong Khai Campus, Nong Khai, Thailand
*E-mail: phornfresh@hotmail.com| Received: 12/06/2020; Accepted: 21/01/2021

Abstract

Fish assemblage status is essential information for practical fishery resource management in productive water bodies. This study aimed to assess fish assemblages’ status and provide recommendations for practical fishery management in four major reservoirs in Thailand. Night-time samples were collected between January 2015 and December 2019 using gill net with multiple mesh sizes. Results obtained through univariate and multivariate analyses showed that the Pa Sak Jolasid Reservoir had the highest number of fish species (70), while the Rajjaprabha Reservoir had the lowest number (41). Eight species were identified as in danger of extinction and six species as alien. The percentage of the index of relative importance (% IRI) showed that the major species mainly belong to the family Cyprinidae. The forage and carnivorous fish ratio (F/C ratio) showed balanced communities in all reservoirs (4.4–9.2) except the Sirikit Reservoir (1.0). The evenness index (J) (0.53–0.67) and diversity index (H) (1.86–2.38) indicated moderate diversity and distribution in all reservoirs. Catch per unit effort (CPUE) value displayed a medium abundance in the Sirikit and Ubolratana Reservoirs (614.8 and 826.0 g.100 m⁻² of gill net/night, respectively), and a high abundance in the Rajjaprabha and Pa Sak Jolasid Reservoirs (1,087.2 and 1,012.5 g.100 m⁻² of gill net/night, respectively). In the overall assessment of fish assemblage status among the reservoirs, the Pa Sak Jolasid and Rajjaprabha Reservoirs showed the most desirable condition, while the Sirikit Reservoir showed the least desirable condition. These findings suggest the need to implement various practical fishery resource management, such as banning the introduction of invasive exotic species, and establishing conservation measures for species on the list of extinction.

Keywords: species and abundance, diversity indices, major reservoir, fishery management

Introduction

In the past, the Thai Government built large reservoirs for generating electricity or irrigation purpose and flood relief. Regardless of its purpose, the construction facilitates fish production as a source of income for local households and fish consumption as a protein source resulting in a better quality of life. Typically, the fish production in the reservoirs peak after 2-3 years. However, the status of fish abundance in the reservoirs will eventually be affected by various factors such as environmental water quality and nutrients (Phothituk and Sinchaiphanit, 1995).

As a result of reservoir construction, the essential changes in fish habitats from floodplain and river ecosystems to reservoir environments become significant freshwater fish production sources in their own right as cheap protein food (Inghamjitr and Sricharoendham, 2016). There are 25 large reservoirs in Thailand with a surface area of approximately 3,377.76 km² (Department of Fisheries, 2020a), and the production in 2018 was 27,706.79 tonnes with a value of about US$50,492 (Department of Fisheries, 2020b). Nevertheless, various reservoirs have been facing several problems, including deterioration of water quality and destructive fishing practices leading to poor aquatic habitat quality and unsustained fishery resources. Consequently, the reservoir productivity decreased, and some fish species disappeared (Inghamjitr and Sricharoendham, 2016). The fish production in the reservoirs of Thailand has
Species richness and abundance were determined, and the following diversity indices were analysed to assess the diversity levels of fish among four studied reservoirs:

\[d = (S - 1)/\log_e N \]

\[d = \text{Margalef’s species richness index} \]

\[S = \text{the number of species present for a given number of individuals} \]

\[N = \text{the total of individuals} \]

\[J' = H' / \log_e S \]

\[J' = \text{Piou’s evenness index} \]

\[\log_e S = \text{the maximum possible diversity which would be achieved if all species were equally abundant (} = H_{\text{max}}) \]

\[H' = - \sum P_i \log_e (P_i) \]

\[H' = \text{Shannon-Wiener species diversity index} \]

\[P_i = \text{the proportion of the total count arising from the } i^{\text{th}} \text{ species} \]

The % IRI was calculated to determine the most important species among fish species in the catches based on Caddy and Sharp (1986) as below:

\[\% \text{IRI} = (\% N + \% W) \times \% F \]

\[\% \text{IRI} = \text{percentage of the index of relative importance} \]

\[\% N = \text{percentage of number} \]

\[\% W = \text{percentage of weight} \]

\[\% F = \text{percentage of frequency of occurrence} \]

F/C ratio value was evaluated to identify the balanced or unbalanced fish communities in the reservoirs based on Swingle (1950). CPUE value was assessed for levels of abundance based on Swingle (1950). One-way analysis of variance (ANOVA) was performed to determine significant differences in CPUE value among the studied reservoirs. Also, multiple comparisons using LSD test were performed to identify significantly different means among the studied reservoirs.

Multivariate statistical analysis, i.e., hierarchical clustering, was used to classify fish community similarity (Bray-Curtis similarity). An analysis of similarity (ANOSIM) was performed to determine significant differences among groups of similarity. Similarity percentage (SIMPER) was used to test species affecting a group. Also, the ranked species abundance curve was plotted to determine the distribution patterns of the aquatic assemblages. All analysis procedures were done with PRIMER version 6.0 (Primer-E Ltd, Plymouth, U.K.) based on Clarke and Gorley (2006). Moreover, radar charting was applied to assess the overall status of the fish
Fig. 1. Study sites of the assessment on the status of the fish assemblages in four major reservoirs of Thailand consisting of the Sirikit Reservoir, Uttaradit Province (1); the Ubolratana Reservoir, Khon Kaen Province (2); the Rajjaprabha Reservoir, Surat Thani Province (3); and the Pa Sak Jolasid Reservoir, Lop Buri Province (4).

Fish species and abundance

A total of 116 fish species belong to 24 families were recorded during the surveys in four reservoirs. The highest number of species (70) was found in the Pa Sak Jolasid Reservoir, followed by the Ubolratana (65), Sirikit (45), and Rajjaprabha Reservoirs (41) (Supplementary Table 1). The average abundance was 5,768.9 individuals.year⁻¹ reservoir⁻¹. The highest number was 8,513.8 individuals.year⁻¹ from the Pa Sak Jolasid Reservoir, followed by 5,614.3, 4,959.4 and 3,988.2 individuals.year⁻¹ from the Sirikit, Rajjaprabha and Ubolratana Reservoirs, respectively. The average biomass was 141.7 kg.year⁻¹ reservoir⁻¹. The highest biomass was 210.1 kg.year⁻¹ from the Rajjaprabha Reservoir, followed by 186.3, 109.2 and 61.2 kg.year⁻¹ from the Pa Sak Jolasid, Sirikit and Ubolratana Reservoirs, respectively (Supplementary Table 1).

Results

Percentage index of relative importance (IRI)

The percentage index of relative importance for species was also assessed across the four reservoirs. As displayed in Figure 2, all reservoirs host multiple species recording values in excess of 80%: Pa Sak Jolasid (8), Rajjaprabha (6), Sirikit (7), and Ubolratana (7).
Fig. 2. Value of percentage of index of relative importance (% IRI) indicated important fish species in the four major reservoirs of Thailand: the Pa Sak Jolasid Reservoir (a), the Rajjaprabha Reservoir (b), the Sirikit Reservoir (c), and the Ubolratana Reservoir (d) with values in excess of 80% the species for each.

Ratio between forage and carnivorous fish (F/C ratio)

Table 1 presents the result of F/C ratio in the studied reservoirs. The Ubolratana Reservoir had the highest values (9.2), followed by the Rajjaprabha Reservoir (8.6), the Pa Sak Jolasid Reservoir (4.4), and the Sirikit Reservoir (1.0). The ratio implied that there was a balanced community in all reservoirs except the Sirikit Reservoir.

Diversity indices

Table 2 presents the diversity indices in the four studied reservoirs. The average values of d, J' and H' were 2.96–4.82, 0.53–0.67 and 1.86–2.38, respectively. The higher value of d was in the Pa Sak Jolasid Reservoir, and the lower value was in the Rajjaprabha Reservoir. The higher value of J' was in the Rajjaprabha Reservoir, and the lower value was in the Sirikit Reservoir. The higher value of H' was in the Pa Sak Jolasid Reservoir, and the lower value was in the Sirikit Reservoir.

Catch per unit effort (CPUE)

In the present study, CPUE value varied among reservoirs with values of 614.8–1,087.2 g/100 m² of gill net/night. The highest value was in the Rajjaprabha Reservoir, and the lowest was in the Sirikit Reservoir. Also, the result of ANOVA showed the significant difference in CPUE value among the reservoirs ($P < 0.05$) where the values of the Pa Sak Jolasid and Rajjaprabha Reservoirs were higher than the Sirikit and Ubolratana Reservoirs ($P < 0.05$ of LSD test). When considering CPUE according to the gill net mesh sizes, the study found the highest CPUE in 20.0 mm mesh gill nets operated in the Ubolratana Reservoir. Other reservoirs achieved higher CPUE in gill nets of mesh sizes of 30.0 and 40.0 mm (Table 3).

Table 1. Ratio of forage and carnivorous fish (F/C ratio) opened value in the four major reservoirs of Thailand. The value was calculated from the production of forage fish (F) divided by the production of carnivorous fish (C).

Types of fish	Pa Sak Jolasid	Rajjaprabha	Sirikit	Ubolratana	Total
Forage fish (g)	725,942	908,869	163,401	258,415	2,056,627
Carnivorous fish (g)	164,292	105,179	157,641	28,177	455,289
Value of F/C ratio	4.4	8.6	1.0	9.2	4.5
Table 2. Diversity indices show the values in the four major reservoirs of Thailand. The values comprise with species richness index (d), evenness index (J'), and diversity index (H').

Year	Diversity indices	Reservoirs			
	d	Pa Sak Jolasid	Rajjaprabha	Sirikit	Ubolratana
2015	4.92	2.62	ND	4.85	
	0.63	0.69	ND	0.50	
	2.41	2.15	ND	1.88	
2016	4.47	2.85	ND	5.47	
	0.65	0.69	ND	0.66	
	2.35	2.22	ND	2.52	
2017	5.15	2.87	3.71	5.16	
	0.64	0.70	0.54	0.60	
	2.48	2.25	1.89	2.26	
2018	4.49	3.23	3.59	3.91	
	0.58	0.64	0.52	0.53	
	2.16	2.16	1.81	1.86	
2019	5.07	3.24	3.94	4.08	
	0.65	0.61	0.53	0.56	
	2.52	2.06	1.87	2.01	
Average	4.82	2.96	3.75	4.70	
	0.63	0.67	0.53	0.57	
	2.38	2.17	1.86	2.10	

Table 3. Catch per unit effort (CPUE)(g.100 m$^{-2}$ of gill net/night) exposed value in Thailand's four major reservoirs. The value was estimated by multiple mesh sizes of gill net of each reservoir.

Mesh sizes of gill net (mm)	Value of CPUE (g.100 m$^{-2}$ of gill net/night)			
	Pa Sak Jolasid	Rajjaprabha	Sirikit	Ubolratana
20.0	642.8	317.4	1,086.6	2,274.4
30.0	1,235.5	1,223.0	1,378.6	812.0
40.0	1,422.7	2,748.1	623.3	613.3
55.0	1,321.1	1,190.8	383.0	644.4
70.0	856.2	689.3	146.8	351.4
90.0	596.9	354.6	70.7	260.7
Average	1,012.5a	1,087.2a	614.8a	826.0a

Superscript alphabets represent different CPUE values among reservoirs.

Species abundant distribution

The results of the ranked species abundant curves display two patterns (Fig. 3). First, a high cumulative percentage of the dominant species in the Sirikit Reservoir, i.e., *Loides longibarbis* (Fowler, 1934). Second, a low cumulative percentage of the first species in the Ubolratana, Rajjaprabha and Pa Sak Jolasid Reservoirs. These are now dominant species in the communities.

Hierarchical clustering of fish abundance

The clustering analysis grouped abundant fish similarity into three groups cutting off at 50.20 % of similarity with ANOSIM test of $R = 1.0$ and $P = 0.17$; group 1 consisting the Pa Sak Jolasid and Ubolratana Reservoirs, group 2 containing the Rajjaprabha Reservoir, and group 3 covering the Sirikit Reservoir (Fig. 4). At species contributing to 10 % or higher, *Parambassis siamensis* (Fowler, 1937), *Puntioplites proctozysron* (Bleeker, 1865) and *Cyclocheilichthys armatus* (Valenciennes, 1842) indicated similarity within group 1. However, the similarity of species contribution between group 1 and 2 is incomplete because there are less than two samples in a group.
Fig. 3. Curvatures display species abundant distribution of fish assemblages in the reservoirs of Thailand. The curve of the Sirikit Reservoir shows higher cumulative percentage of the first species, which was dominated by certain species. In comparison, the other curves show lower cumulative percentage of the first species.

Group average

![Graph showing species abundance distribution](image)

Fig. 4. Clustering provided abundant fish similarity in the four major reservoirs of Thailand into three groups cut at 50.20 % of similarity with ANOSIM test of $R = 1.0$ and $P = 0.17$. The Pa Sak Jolasid and Ubolratan Reservoirs were classified as group 1, the Rajjaprabha Reservoir as group 2, and the Sirikit Reservoir as group 3.

Overall fish assemblage status

The overall status of fish assemblages among the studied reservoirs with values of d, J', H', F/C ratio and CPUE is shown in Figure 5a. The Pa Sak Jolasid Reservoir had the best status, followed by the Ubolratan, Rajjaprabha, and Sirikit Reservoirs. Comparing values of J', H', F/C ratio, and CPUE with standard values, revealed that the satisfactory status of fish assemblages was in the Pa Sak Jolasid and Rajjaprabha Reservoirs, followed by the Ubolratan Reservoir, while registering and the poorest status in the Sirikit Reservoirs due to its lower F/C ratio value (Fig. 5b).

Discussion

According to the results, the fish species richness found in each reservoir did not differ much compared to previous studies, i.e., 70, 41, 45 and 65 species in the Pa Sak Jolasid, Rajjaprabha, Sirikit and Ubolratan Reservoirs, respectively. There is no apparent relationship between the reservoir extent and species richness as reported by Amarasinghe and Welcomme (2002) possibly due to regular stocking of fish species in Thai reservoirs. However, some variations in species diversity may have resulted from different sampling methods and the study period. The previous study reported 53 and 38 species in the Ubolratan...
and Rajjaprabha Reservoirs, respectively (Dumrongtripob et al., 2009), 44 species in the Sirikit Reservoir (Soe-been and Panboon, 2011), and 48 species in the Pa Sak Jolasid Reservoir (Thanasomwang, 2013). The Ubolratana Reservoir showed the lowest both individuals and biomass in terms of abundance, which implies that this reservoir has a smaller sized fish than other studied reservoirs. In contrast, the Rajjaprabha Reservoir had slightly smaller-sized individuals but with the highest biomass. Also, eight species were found in danger of extinction. Fishery management should facilitate breeding techniques and stock enhancement through fish stocking to increase productivity and maintain biodiversity. Habitat conservation and fishing control should also be strongly considered. In addition, some alien fish species were found. Non-invasive alien fish species have been intentionally restocked to increase fish production (i.e., O. niloticus, C. cirrhosus, and L. rohita). However, invasive alien fish species (i.e., H. plecostomus, C. macrocephalus × C. gariepinus, and H. buttikoferi) perhaps were accidentally released into the waters. The invasive alien species have a serious impact on local biota, causing decline or even extinction of native species, and negatively affecting the ecosystems (Convention on Biological Diversity, 2020). Hence, the spread of invasive exotic species should be controlled.

The percent IRI with values of above 80 % were mainly species from the family Cyprinidae which was the same as the study of Dumrongtripob et al. (2009) in the Pa Sak Jolasid, Rajjaprabha and Ubolratana Reservoirs. Remarkably, L. longibarbis which is carnivorous fish in the Sirikit Reservoir, showed high percentages(41.63 %), unlike in a previous study (Soe-been and Panboon, 2011) which reported that cyprinid species were the main species. The high proportions of cyprinid species distort the balance of the fish assemblages. The low F/C ratio (value 1.0) displayed the unbalanced assemblages in the Sirikit Reservoir, while the other reservoirs displayed balanced assemblages (value 4.4 - 9.2). The disproportionate assemblage in Sirikit Reservoir was due to higher carnivorous fish than forage fish. In a balanced assemblage, the F/C ratio ranged from 1.4 to 10 (Swingle, 1950). The unbalanced fish assemblages cannot sustain productive fisheries (Swingle, 1950). Moreover, when the carnivorous fish is dominant in the water body, the F/C ratio is unbalanced, and as a result, the fish biomass is lower (Sultana, 2012). Also, the carnivorous species should be strictly managed to balance the fish assemblages in the Sirikit Reservoir. However, previous studies of F/C ratio showed balanced assemblages in the Rajjaprabha (2.1) (Dumrongtripob et al., 2009), Ubolratana (2.9) (Nachaipherm and Musikaew, 2006), and Sirikit Reservoirs (1.4) (Panboon and Soe-been, 2011).

When considering the diversity indices in the water bodies, Harper and Hawksworth (1994), and Purvis and Hector (2000) state that there is no single measure or single dimension, e.g., species richness or abundance for assessment of diversity levels. Also, Begon et al. (1990) stated that the J' value ranges between 0.0 and 1.0, with 1.0 representing a situation in which all species are equally abundant. The H' value is generally between 1.5 and 3.5, where a high value indicates healthy species diversity, and the H' value can be applied to assess the environmental conditions. Wilhm and Dorris (1968) proposed a relationship between the H' value and pollution status of water that the H' value of >3 is an indication of clean water. The value 1–3 is moderately polluted water and the value <1 is heavily contaminated water. Moreover, Tudorancea et al. (1979) advised that the H' value of 1–3

Fig. 5. Radar graphs showing overall status of fish assemblages in the four major reservoirs of Thailand. (a) Comparison of species richness index (d), evenness index (J'), diversity index (H'), forage and carnivorous fish ratio (F/C ratio), and catch per unit effort (CPUE) among each reservoir. (b) Comparison of evenness index (J'), diversity index (H'), forage and carnivorous fish ratio (F/C ratio), and catch per unit effort (CPUE) in each reservoir with standard values.
is moderate for aquatic organisms, and the value of >3 is highly suitable. Thus, the diversity and distribution status of the fish assemblages in the four reservoirs was moderate. The water was moderately-polluted, though still acceptable for aquatic organism growth and survival. In addition, the diversity indices in this study did not differ much from previous studies excluding d value of the Sirikit reservoir. The values of d, J' and H’ reported by Dumrongtripob et al. (2009) in the Rajjaprabha Reservoir were 3.10, 0.60 and 3.10, and in the Ubolratan Reservoir were 5.10, 0.60 and 3.00, respectively. Whereas such values in the Pa Sak Jolasid Reservoir as reported by Thanansomwang (2013) were 12.42, 0.57 and 2.22, and in the Sirikit reservoir as reported by Panboon et al. (2015) were 3.02, 0.62 and 1.98, respectively.

The CPUE is an indicator of the relative abundance of fish and other nekton in waters. It described as the number and weight of fish caught during 12 h of fishing. Measuring catches either by number or weight may give very different results (Naesje et al., 2004; Ajith Kumara et al., 2009). However, in this study’s results were presented by weight only because it provides a better indication of the amount of fish protein, and is more important to fishers and fishery managers (Naesje et al., 2004; Preecha et al., 2011). Also, for relative abundance of fish, the criteria of CPUE at four levels for 100 m² of gill net/night was determined as follows: 1) less than 500: low abundance, 2) 500–1,000: moderate abundance, 3) 1,000–2,000: high abundance, and 4) more than 2,000: very high abundance (Sricharoendham et al., 2015). Thus, the CPUE values as shown in Table 3 indicated high fish abundance in the Pa Sak Jolasid and Rajjaprabha Reservoirs, while the Sirikit and Ubolratan Reservoirs showed a moderate abundance of fish. Of note, the present values of CPUE varied positively from those previously reported by Dumrongtripob et al. (2009): for the Rajjaprabha Reservoir (762.0 g.100 m² of gill net/night), the Pa Sak Jolasid Reservoir (836.0 g.100 m² of gill net/night), and the Ubolratan Reservoir (350.0 g.100 m² of gill net/night), as well as reported by Soe-been and Panboon (2011) for the Sirikit Reservoir as 555.58 g.100 m² of gill net/night. Although the Sirikit Reservoir indicated moderate abundance, it showed the lowest CPUE value among four reservoirs. Therefore, it is suggested that effective fishery management needs to implement strict measures to increase fish production in this reservoir. When the gill net’s mesh sizes were taken into consideration, the most abundant species distribution was associated with a maximum weight in the gill nets of 20.0 mm mesh in the Ubolratan Reservoir, indicating that the small fishes are the main structure in this reservoir. In contrast a maximum weight of fish in gill nets of 30.0 and 40.0 mm mesh sizes were found in the the Pa Sak Jolasid, Rajjaprabha Reservoir and Sirikit Reservoirs, implying that the medium fishes are the core component in these reservoirs. The abundance curve resulted in some dominant species at a high cumulative percentage in the Sirikit Reservoirs i.e. L. longibarbis (carnivorous fish). This evidence further indicates that fishery management should consider maintaining balanced assemblage in this reservoir. The cluster analysis grouped the Pa Sak Jolasid and Ubolratan Reservoirs contributing by P. siamensis, P. procoptyzon and C. armatus, similar to abundance.

Finally, overall fish assemblage status was more desirable in the Pa Sak Jolasid and Rajjaprabha Reservoirs, but less desirable status was recorded in the Sirikit Reservoir. Therefore, the Sirikit Reservoir’s fishery needs better attention in fishery management.

The following recommendations support practical fishery resource management for the studied reservoirs. In essence, fishery resource management agencies should:

i) Preserve aquatic biodiversity, especially species at risk of extinction in nature, by applying breeding techniques and stocking programs. Moreover, consideration should be given for fish habitat conservation and fishing control.

ii) Promote utilisation of small-sized fish species that form the main component in the reservoirs, especially in the Ubolratan Reservoir, by adding value in food processing and being used as an animal feed ingredient.

iii) Eradicate or control the invasive exotic species population, which have negative impacts on aquatic ecosystems. This could manifest in several ways: first, the authority agencies could introduce a “bounty” (financial compensation) for every dead invasive alien fish, or preferably, create a regulated market for them; and second, promote people or entrepreneurs to utilise them for animal or human consumption, as well as organic fertiliser. Such measures would encourage people to catch them excessively. Thirdly, and the complementary, measure would be to publicise that unauthorised propagation, holding and releasing of such species is banned by law strictly with subsequent penalties for breaches.

iv) Rebuild the balance between herbivorous fish and carnivorous fish, especially in the Sirikit Reservoir, by promoting predatory fish harvesting and restocking herbivorous fish programs to achieve a balanced assemblage.

v) Prioritise fishery management development in the Sirikit Reservoir to increase productivity and reduce carnivorous fishes’ abundance.

Conclusion

Species richness of the four major reservoirs in Thailand varied positively from those reported in
previous studies. The Pa Sak Jolasid showed the most significant improvement while the Rajjaprabha showed the least, though still a healthy change. Eight endangered species were identified: two for critically endangered, one for endangered, two for vulnerable, and three for near-threatening, which require better conservation measures. Six alien fish species were classified, including three non-invasive, and three invasive species, thus requiring additional fisheries management interventions. The percent IRI showed the important species, mainly under family Cyprinidae, and other small size fishes. The forage and carnivorous fish ratio among studied reservoirs mostly implied balanced communities. The notable exception was seen in the Sirikit Reservoir, showing low value of this ratio (1.0) that require further studies to rebuild a balanced community. The J’ and H’ indicated the status of fish in medium diversity and distribution across all reservoirs, showing still satisfactory ecosystem or environment conditions.

While the catch per unit effort presented a high abundance in the Pa Sak Jolasid and Rajjaprabha Reservoirs, only moderate abundance showed in the Sirikit and Ubolratana Reservoirs. Although the later are still considered acceptable, further research is required to understand the variations for further improvement. According to species abundance there are no dominant species in the assemblages in the studied reservoirs, with exception to the Sirikit Reservoir, where L. longibarbis was found to be dominant.

In conclusion, overall fish assemblage status across the reservoirs exposed the Pa Sak Jolasid and Rajjaprabha Reservoirs as the most desirable condition and the Sirikit Reservoir as the least desirable condition. Immediate implementation for various practical fishery resource management, such as reducing invasive exotic species population size, and establishing conservation measures for species on the extinction list is recommended.

Acknowledgements

The data collection was supported by the directors and staffs of Surat Thani Inland Fisheries Research and Development Center, Phitsanulok Inland Fisheries Research and Development Center, Lop Buri Inland Fisheries Research and Development Center, and Khon Kaen Inland Fisheries Research and Development Center. Also, the Department of Fisheries of Thailand contributed to the project.

References

Ajith Kumara, P.A.D., Amarasinghe, U.S., Schemer, F., Winkler, G., Schabuss, M. 2009. Distribution and abundance of unexploited fish species in three Sri Lankan reservoirs. Asian Fisheries Science 22:867-884. https://doi.org/10.33997/a.f.s.2009.22.3.002

Amarasinghe, U.S., Welcomme, R.L. 2002. An analysis of fish species richness in natural lakes. Environmental Biology of Fishes 65:327-338. https://doi.org/10.1023/A:1020568920327

Begon, M., Harper, J.L., Townsend, C.R., 1989. Ecology: individuals, populations and communities. 2nd Edition, Blackwell Scientific Publications, Oxford, 945 pp.

Caddy, J.F., Sharp, G.D., 1986. An ecological framework for marine fishery investigation, FAO, Rome, 151 pp.

Clarke, K.R., Gorley, R.N., 2006, Primer 6: User manual/tutorial, Primer-E Ltd, Plymouth, 190 pp.

Convention on Biological Diversity. 2020. https://www.cbd.int/unbd/media/factsheets/unbd-factsheet-ias-en.pdf (Accessed 12 January 2021).

Tilquin, C., Lechela, L. 1995. http://www.fao.org/3/ac997e
/AC997E06.htm#ch6 (Accessed 8 December 2020).

Department of Fisheries. 2015. https://www4.fisheries.go.th/local/file_document/2020071412619_1_file.pdf (Accessed 8 December 2020).

Department of Fisheries. 2017. https://www4.fisheries.go.th/local/file_document/2020071412857_1_file.pdf (Accessed 8 December 2020).

Department of Fisheries. 2020a, https://www4.fisheries.go.th/f-center/web2/images/New%20Folder/reservoir%20info.pdf (Accessed 28 October 2020). (in Thai).

Department of Fisheries. 2020b, https://www4.fisheries.go.th/local/file_document/2020071412744_1_file.pdf (Accessed 8 December 2020).

Dumrongtripob, J., Nachaipherm, J., Thonghul, S., Soe-been, S., Sangkhapaitoon, S, 2009, Fish production assessment for fisheries resources management and development in 5 large water bodies. Department of Fisheries, Bangkok, 56 pp. (in Thai with English abstract).

Harper, J.L., Hawksworth, D.L. 1994, Biodiversity: measurement and estimation. Philosophical Transactions of the Royal Society B London (Biological Sciences) 345:5-12. https://doi.org/10.1098/rspb.1994.0081

Ingthamijitr, S., Sricharoendham, B. 2018. http://repository.seafdec.or.th/handle/20.500/12087/711 (Accessed 8 December 2020).

IUCN. 2020. https://www.iucnredlist.org (Accessed 19 March 2020).

Nachaipherm, J., Musiakew, B. 2006. Structure and distribution of fish community in Ubolratana Reservoir. Department of Fisheries, Bangkok, 55 pp. (in Thai with English abstract).

Naesje, T.F., Hay, C.J., Nickanor, N., Koekemoer, J.H., Strand, R., Thorstad, E.B., 2004, Fish populations, gill net catches and gill net selectivity in the Kwando River, Namibia, NIINA Project Report no. 27. Norwegian Institute for Nature Research, Norway. 64 pp.

Panboon, K., Soe-been, S. 2011. Structure and distribution of fish community in the Sirikit Reservoir. Department of Fisheries, Bangkok, 56 pp. (in Thai with English abstract).

Panboon, K., Rattanadaeng, P., Soe-been, S., Musikatham, P., 2015. Diversity and abundance of fish community in Sirikit Reservoir. Department of Fisheries, Bangkok. 75 pp. (in Thai with English abstract).

Phothithuk, K, Sinchaiphant, J. 1995. Dam construction and fisheries resources. Department of Fisheries, Bangkok, 67 pp. (in Thai with English abstract).

Potts, G.W., Reay, P.J. 1987. Biological surveys of coasts and estuaries. Cambridge University Press, Cambridge, pp. 342–373.

Preecha, C., Chaidee, T.T., Jutagate, T. 2011, Estimation of desirable gillnet mesh size for exploited population of a Pangasiid Pangosius bocourti in Thailand's fishing ground of the Mekong mainstem, Asian Fisheries Science 24;304–313, https://doi.org/10.33997/a.f.s.2011.24.3.003
Purvis, A., Hector, A. 2000. Getting the measure of biodiversity, Nature 405:212–219. https://doi.org/10.1038/25012221
Rainboth, W.J. 1996. FAO Species identification field for fishery purposes. fishes of Cambodian Mekong, FAO, Rome, 265 pp.
Smith, H.M. 1945. The freshwater fishes of Siam, or Thailand, Smithsonian Institution, Washington. 622 pp.
Soo-been, S., Panboon, K. 2011. Catch efficiency and selection of gillnet in the Sirikit Reservoir, Department of Fisheries, Bangkok. 99 pp. (in Thai with English abstract).
Sricharoendham, B., Boonthongchuay, J., Poomikong, P. 2015, Spatio–temporal variations in fish community of the Chao Phraya river between 2008 and 2014. Thai Fisheries Gazette 68(3):201-223. (in Thai with English abstract).
Sultana, S. 2012, Production of small and big fishes of selected ponds, University Journal of Zoology, Rajshahi University 31:27-30, https://doi.org/10.3329/ujzru.v31i0.15378
Swingle, H.S. 1950, Relationships and dynamics of balanced and unbalanced fish population. Agricultural Experiment Station of the Alabama Polytechnic Institute, Auburn, Alabama, Bulletin No, 274.
Taki, Y. 1974, Fishes of the Lao Mekong basin, USAID, Washington, 232 pp.
Termvidchakorn, A., Vidthayanon, C., Getpetch, Y., Sorra, P., Paradonpanichakul, P. 2003. Alien aquatic species in Thailand. Department of Fisheries, Bangkok. 74 pp. (in Thai).
Thanasomwang, V. 2013, Status on fishery resources in some large reservoirs and rivers, Department of Fisheries, Bangkok. 49 pp. (in Thai with English abstract).
Tudorancea, C., Roger, H.G., Judith, H. 1979, Structure dynamics and production of benthic in Lake Manitoba, Hydrobiologia 64:59-95, https://doi.org/10.1007/BF00015452
Wilm, J.L., Dorris, T.C. 1968, Biological parameters of water quality criteria, BioScience 18:477–481. https://doi.org/10.2307/1294272
Supplementary Table 1. Species and abundance of fish found in the four major reservoirs of Thailand.

Family/Scientific name	Reservoirs	Status	IUCN red list			
	Pa Sak	Jolasid	Rajjaprabha	Sirikit	Ubolratana	
1. Notopterida						
1. Notopterus notopterus [Pallas, 1769]	+	++	+	+	LC Local	
2. Chitala ornata [Gray, 1831]	+	-	-	+	LC Local	
3. Chitala blanci [D'Aubenton, 1865]	-	+	-	-	NT Local	
4. Chitala lopis [Bleeker, 1851]	-	+	-	-	LC Local	
2. Clupeidae						
5. Clupeichthys aessomensis [Wongratana, 1983]	+++	-	-	++	LC Local	
6. Clupeichthys gonognathus [Bleeker, 1855]	-	-	++	-	LC Local	
3. Cyprinidae						
7. Paralaubuca harmandi [Sauvage, 1883]	+++	-	-	+	LC Local	
8. Parachela siamensis [Günther, 1868]	+	-	-	++	LC Local	
9. Parachela williaminae [Fowler, 1934]	-	-	+	-	LC Local	
10. Parachela maculicuda [Smith, 1934]	++	-	-	-	LC Local	
11. Luciosoma bleekeri [Steindachner, 1878]	-	-	-	+	LC Local	
12. Leptobarbus howeni [Bleeker, 1851]	-	+	-	-	NE Local	
13. Rasbora aurataenia [Tirant, 1985]	++	-	-	-	LC Local	
14. Rasbora dusonensis [Bleeker, 1850]	-	-	-	+	NE Local	
15. Rasbora tornieri [Ahl, 1922]	-	+	-	-	LC Local	
16. Neolioschilus stracheyi [Day, 1871]	-	+	-	-	LC Local	
17. Amblyrhyynchichthys truncatus [Bleeker, 1850]	-	-	++	-	LC Local	
18. Amblyrhyynchichthys microcanthus Ng & Kottelat, 2004	-	-	-	+	LC Local	
19. Cosmochilus harmandi [Sauvage, 1878]	+	+	-	-	LC Local	
20. Cyclocheilichthys apogon [Valenciennes, 1842]	++	+++	++	++	LC Local	
21. Cyclocheilichthys armatus [Valenciennes, 1842]	+++	++	++	+++	LC Local	
22. Cyclocheilichthys enoplos [Bleeker, 1849]	++	-	++	-	LC Local	
23. Cyclocheilichthys heteronema [Bleeker, 1854]	-	++	-	-	LC Local	
24. Mystacoleucus marginatus [Valenciennes, 1842]	+	+++	+++	-	LC Local	
25. Mystacoleucus ectypus [Kottelat, 2000]	-	-	+	+++	LC Local	
26. Puntioplites proctazyrion [Bleeker, 1865]	+++	+++	++	+++	LC Local	
27. Sikukia gudgeri [Smith, 1934]	-	-	++	-	DD Local	
28. Barbonyx altus [Günther, 1868]	+++	+	++	+	LC Local	
29. Barbonyx goniatus [Bleeker, 1849]	++	+	++	++	LC Local	
30. Barbonyx schwennfeldti [Bleeker, 1854]	+	+++	++	+	LC Local	
31. Discherodontus ashmeadi [Fowler, 1937]	-	-	+	-	LC Local	
32. Hampala dispar [Smith, 1934]	+	-	-	+	LC Local	
33. Hampala macrolepidota Kuhl & Van Hasselt, 1823	++	++	++	++	LC Local	
34. Puntius brevis [Bleeker, 1849]	+	++	+	++	LC Local	
35. Syntomus rubripinnis [Valenciennes, 1842]	-	-	+	+	DD Local	
36. Puntinus partipentazona [Fowler, 1934]	-	+	-	+	LC Local	
37. Catlocarpia siamensis [Boulenger, 1898]	-	-	-	+	CR Local	
38. Thynnichthys thynnoides [Bleeker, 1852]	+++	+	-	-	LC Local	
39. Cinthinus microlepis [Sauvage, 1878]	+	-	-	+	VU Local	
40. Cinthinus cinhusos [Bloch, 1795]	+	-	+	-	VU Alien	
41. Cinthinus maltoorei [Valenciennes, 1844]	+	-	-	-	NT Local	
42. Labiobarbus leptocelus [Valenciennes, 1842]	-	-	++	-	LC Local	
43. Labiobarbus siamensis [Sauvage, 1881]	+++	+++	-	+	LC Local	
44. Henicorhynchus siamensis [Sauvage, 1881]	+++	-	+	++	LC Local	
45. Henicorhynchus lobatus Smith, 1945	-	-	-	+	LC Local	
46. Labeo rohita [Hamilton, 1822]	+	-	-	+	LC Alien	
47. Labeo chrysophkeadian [Bleeker, 1849]	+	-	-	+	LC Local	
48. Labocheilus melanothaenia [Fowler, 1935]	-	-	-	+	LC Local	
49. Osteochilus vittatus [Valenciennes, 1842]	+++	-	++	-	LC Local	
50. Osteochilus lini [Fowler, 1935]	-	-	-	-	LC Local	
Family/Scientific name	Reservoirs	Status	Local/ Alien			
------------------------	------------	--------	---------------			
	Pa Sak Jolasid	Rajjaprabha	Sirikit	Ubonratana	IUCN red list	
51. Osteochilus scapularis (Fowler, 1939)	+	-	-	+	LC Local	
52. Osteochilus microcephalus (Valenciennes, 1842)	+	+	-	-	LC Local	
53. Osteochilus waandersii (Bleeker, 1853)	+	+	-	-	LC Local	
54. Crossocirrus cobitis (Bleeker, 1854)	-	-	-	+	NE Local	
55. Crossocirrus oblongus Kuhl & Van Hasselt, 1823	-	-	+	-	LC Local	
56. Crossocirrus atrilimes Kottelat, 2000	-	-	+	-	LC Local	
57. Crossocirrus reticulatus (Fowler, 1934)	-	-	+	-	LC Local	
58. Elophelethynchos frenatus (Fowler, 1934)	-	-	+	-	LC Local	
4. Cobitidae						
59. Syncrossus hynemaphys (Bleeker, 1852)	+	-	-	+	LC Local	
60. Yasuikotakia modesta (Bleeker, 1864)	+	-	+	+	LC Local	
61. Yasuikotakia morteri (Tirant, 1885)	+	-	-	+	LC Local	
62. Acanthopterus dialuzona Van Hasselt, 1823	-	-	+	-	LC Local	
5. Gyrinocheilidae						
63. Gyrinocheilus asymbion (Tirant, 1883)	-	-	-	+	LC Local	
6. Bagridae						
64. Pseudomystus siamensis (Regan, 1913)	+	-	-	-	LC Local	
65. Mystus singaringon (Bleeker, 1846)	+	-	+	+	LC Local	
66. Mystus albolineatus Roberts, 1904	-	-	-	+	LC Local	
67. Mystus multiradiatus Roberts, 1992	+	-	-	+	LC Local	
68. Mystus mysticus Roberts, 1992	+	-	-	+	LC Local	
69. Hemibagrus nemurus (Valenciennes, 1840)	-	+	+	+	DD Local	
70. Hemibagrus filamentus (Fang & Chaux, 1949)	+	+	+	-	LC Local	
7. Siuridae						
71. Kryptopus cheyli Durand, 1940	++	-	-	+	DD Local	
72. Micronema hexapterus (Bleeker, 1851)	-	-	-	-	NE Local	
73. Kryptopus palembangensi (Bleeker, 1852)	+	-	-	-	NE Local	
74. Kryptopus geminus Ng, 2003	++	-	-	-	LC Local	
75. Phalacronatus apogon (Bleeker, 1851)	+	-	-	+	LC Local	
76. Phalacronatus bleekeri (Gunther, 1864)	+	-	-	+	LC Local	
77. Phalacronatus micronema (Bleeker, 1846)	-	-	-	+	LC Local	
78. Ompok bimaculatus (Bloch, 1794)	-	+	-	+	NT Local	
8. Pangasiidae						
79. Pangasianodon gigas Chevey, 1931	+	-	-	-	CR Local	
80. Pangasianodon hypophthalmus (Sauvage, 1878)	++	-	-	+	EN Local	
81. Pangasiomerus larnaudii Bocourt, 1866	+	-	-	-	LC Local	
82. Pangasius macronema Bleeker, 1850	-	-	-	+	LC Local	
83. Pseudolais pleurotaenia (Sauvage, 1878)	++	-	-	-	LC Local	
84. Laides longibarbis (Fowler, 1934)	-	-	-	***	LC Local	
9. Claridae						
85. Clarias gariepinus (Burchell, 1822)	-	-	-	+	LC Local	
86. Clarias macrocephalus Günther, 1864 × Clarias gariepinus (Burchell, 1822)	+	-	-	-	LC Local	
10. Belonidae						
87. Xenentodon concilius (Hamilton, 1822)	+	+	+	+	LC Local	
11. Hemiramphidae						
88. Zenarchcephalus eurypterus (Hamilton, 1822)	+	-	-	-	NE Local	
12. Syngnathidae						
89. Doryichthys boga (Bleeker, 1850)	+	-	-	-	DD Local	
13. Mastacembelidae						
90. Macroglossus siamensis (Günther, 1861)	+	-	-	+	LC Local	
91. Macroglossus taeniagaster (Fowler, 1935)	+	-	-	+	NE Local	
92. Macroglossus circumbica (Hors, 1924)	+	-	-	-	LC Local	
93. Macroglossus semiencelatus Roberts, 1986	+	-	-	+	LC Local	
94. Mastacembelus armatus (Lacepede, 1800)	-	+	-	+	LC Local	
Family/Scientific name	Reservoirs	Status	Remarks			
------------------------	------------	--------	---------			
95. Mastacembelus tinwhini Britz, 2007	-	+	-	-	LC	Local
96. Mastacembelus favus Hora, 1924	+	+	+	+	LC	Local
14. Channidae						
97. Parambassis siamensis (Fowler, 1937)	***	+	***	***	LC	Local
98. Parambassis apogonoides (Bleeker, 1851)	***	-	-	-	LC	Local
99. Parambassis wolffi (Bleeker, 1850)	***	-	-	-	LC	Local
15. Toxotidae						
100. Toxotes chatareus (Hamilton, 1822)	+	-	+	-	LC	Local
16. Nandidae						
101. Pristolepis fasciata (Bleeker, 1851)	+	+++	+	+	LC	Local
17. Cichlidae						
102. Oreochromis niloticus (Linnaeus, 1758)	+	+	+	+	LC	Alien
103. Heterotilapia buttikoferi (Hubrecht, 1881)	-	-	-	-	LC	Alien
18. Eleotridae						
104. Oxyeleotris marmorata (Bleeker, 1852)	+	++	+	+	LC	Local
19. Osphronemidae						
105. Trichodus pectoralis Regan, 1910	-	-	-	+	LC	Local
106. Trichodus trichopterus (Pallas, 1770)	+	-	-	+	LC	Local
107. Trichodus microlepis (Günther, 1861)	+	-	-	-	LC	Local
108. Osphronemus goramy Lacepede, 1801	+	-	-	-	LC	Local
20. Channidae						
109. Channa micropeltes (Cuvier, 1831)	+	+	-	-	LC	Local
110. Channa striato (Bloch, 1793)	-	+	+	+	LC	Local
21. Soleidae						
111. Brachirus panoides (Bleeker, 1851)	-	-	-	+	LC	Local
22. Tetraodontidae						
112. Pao fangi (Pellegrin & Chevey, 1940)	-	+	-	-	NE	Local
113. Pao leiurus (Bleeker, 1850)	-	+	-	+	LC	Local
114. Pao cochichinensis (Steindachner, 1866)	-	-	-	+	LC	Local
23. Loricariidae						
115. Hypostomus piecstormus (Linnaeus, 1758)	+	-	-	-	NE	Alien
24. Colubridae						
116. Enhydris bocourti (Jan, 1965)	+	-	-	-	LC	Local

Total species richness: 116

Average individuals/year:
- **Pa Sak Jolasid**: 8,513.80
- **Rajjaprabha**: 4,959.40
- **Sirikit**: 5,614.30
- **Ubolratana**: 3,988.20

Average biomass (g/year):
- **Pa Sak Jolasid**: 186.3
- **Rajjaprabha**: 210.1
- **Sirikit**: 109.2
- **Ubolratana**: 61.2

Remarks: - = 0 individuals; + = 1-100 individuals; ++ = 101-1,000 individuals; +++ = 1001-10,000 individuals; CR = Critically endangered; DD = Data deficient; EN = Endangered; LC = Least concern; NT = Near threatened; NE = Not evaluated; VU = Vulnerable.