Optimization for the Production of Surfactin with a New Synergistic Antifungal Activity

Xiangyang Liu1,*, Biao Ren1,4,*, Hong Gao1,*, Mei Liu1, Huangqin Dai1, Fuhang Song1, Zhenyan Yu3, Shujin Wang2, Jiangchun Hu2, Chandrakant R. Kokare5, Lixin Zhang1,4

1Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, People’s Republic of China, 2Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, People’s Republic of China, 3Shengli Oilfield Xinhai Xingda Industrial Group Co., Ltd, Shandong, People’s Republic of China, 4Graduate School, Chinese Academy of Sciences (CAS), Beijing, People’s Republic of China, 5Bharati Vidyapeeth University, Erandwane, Pune, India

Abstract

Background: Two of our long term efforts are to discover compounds with synergistic antifungal activity from metabolites of marine derived microbes and to optimize the production of the interesting compounds produced by microorganisms. In this respect, new applications or mechanisms of already known compounds with a high production yield could be continually identified. Surfactin is a well-known lipopeptide biosurfactant with a broad spectrum of antimicrobial and antiviral activity; however, there is less knowledge on surfactin’s antifungal activity. In this study, we investigated the synergistic antifungal activity of C15-surfactin and the optimization of its production by the response surface method.

Methodology/Principal Findings: Using a synergistic antifungal screening model, we found that the combination of C15-surfactin and ketoconazole (KTC) showed synergistic antifungal effect on Candida albicans SC5314 when the concentrations of C15-surfactin and KTC were 6.25 μg/mL and 0.004 μg/mL, respectively. These concentrations were lower than their own efficient antifungal concentrations, which are ≥100 μg/mL and 0.016 μg/mL, respectively. The production of C15-surfactin from Bacillus amyloliquefaciens was optimized by the response surface methodology in shaker flask cultivation. The Plackett-Burman design found sucrose, ammonium nitrate and NaH2PO4·2H2O to have significant effects on C15-surfactin production. The optimum values of the tested variables were 21.17 g/L sucrose, 2.50 g/L ammonium nitrate and 11.56 g/L NaH2PO4·2H2O. A production of 134.2 mg/L, which were in agreement with the prediction, was observed in a verification experiment. In comparison to the production of original level (88.6 mg/L), a 1.52-fold increase had been obtained.

Conclusion/Significance: This work first found that C15-surfactin was an efficient synergistic antifungal agent, and demonstrated that response surface methodology was an effective method to improve the production of C15-surfactin.

Introduction

Bio-surfactants (e.g., glycolipids, phospholipids, lipoproteins or lipopeptides, polymeric compounds, mycolic acids, and lipopolysaccharides) are a heterogeneous group of secondary metabolites with surface active properties, and described to be synthesized by a variety of bacteria [1,2]. Surfactin is an important biosurfactant with superior surface activity and belongs to a group of cyclic lipopeptidapeptides containing beta-hydroxyl fatty acids and D-/L-amino acid residues [3,4]. Surfactins are mainly composed of three components: C13-surfactin, C14-surfactin, and C15-surfactin. Of those C15-surfactin has the highest: (1) surface activity, about 1000 times higher than the traditional chemical surfactant sodium dodecyl sulfate (SDS) [5,6], and (2) hemolytic activity [7,8]. C15-surfactin also has other activities, including anti-tumor, anti-microbial, and anti-mycoplasma functions [9,10,11,12,13]. Its amphiphilic structural characteristics contribute to its unique ability to interact with cell membranes and macromolecules such as enzymes and lipopolysaccharides (LPSs). Specifically, C15-surfactin non-competitively inhibits the activity of the alkaline phosphatase due to the chelating action by the free carboxyl groups of the Asp and Glu residues [14]. The binding of C15-surfactin with LPS inhibits the activity of LPS, which leads to the interruption of the LPS induced pathway [15,16]. These properties demonstrate the commercial importance of C15-surfactin, specifically in the biomedical science and pharmaceutical fields [17,18].

Yet, even with significant investigations on C15-surfactin, commercial production has been impeded by its high production cost due to low product yield. To address this problem, the
discovery of an alternative C_{15}-surfactin producer or improved methods for the efficient production of C_{15}-surfactin is of particular importance. We have constructed a high quality microbial natural product library, from which *Bacillus velezensis* strain H3, *Saccharopolyspora* sp. A9 and *Streptomyces* sp. B3 have been recently identified to be biosurfactant producers [19,20,21]. This microbial natural product library has been a rich source for the discovery of C_{15}-surfactin producing strains.

The goal of the current research is to demonstrate an efficient method for the production of C_{15}-surfactin and the novel synergistic antifungal effects of surfactins with ketoconazole against *Candida albicans*. On the basis of this discovery, the medium composition was optimized to enhance the productivity of C_{15}-surfactin by a novel marine derived *Bacillus amyloliquefaciens* strain MB199. This was achieved by combining the Plackett-Burman design (PBD), the steepest ascent design, and the central composite rotatable design (CCRD) of response surface methodology (RSM). This study will provide promising results for the development of new antifungal drug combination.

Materials and Methods

Synergistic Antifungal Assay

A synergistic antifungal assay was performed with surfactins according to the previously described method [22]. Briefly, *Candida albicans* SC5314 cells (1×10^4) were inoculated in a final volume of 80 μL mixture of RPMI 1640 medium, 8% Alamar blue (BioSource International, Camarillo, CA), and 2 μL drugs in each well of flat bottom, 96-well microtiter plates (VWR, West Chester, PA). *Candida albicans* SC5314 cells was incubated overnight at 35°C, 80% humidity, and 5% CO₂. Surfactins and KTC were prepared as stock solutions in DMSO. Growth of fungus cells were affected in the presence and absence of a sub-clinical concentration of 0.004 mg/mL ketoconazole. To determine the percentage of remaining viable cells, the fluorescence was measured at an excitation wavelength (Ex) of 544 nm and an emission wavelength (Em) of 590 nm using an EnVision 2103 multilabel reader (PerkinElmer, USA).

To determine the Minimum inhibitory concentrations (MICs), concentrations of surfactins were diluted by a serial 2-fold dilution method according to a modified protocol from the Clinical and Laboratory Standards Institute (formerly National Committee for Clinical Laboratory Standards) M-38A and M-27A2 methods. The MIC was defined as a concentration of an antimicrobial that prevented 100% of cell growth during 18-hr incubation at 35°C.

To determine whether drug interaction was synergistic, additive, or antagonistic for the combination of surfactins and KTC, fractional inhibitory concentration index (FICI) was used. FICI = (MICdrug A in combination/MIC drug A alone) + (MIC drug B in combination/MIC drug B alone) [22]. The interaction was defined as synergistic if the FICI was <0.50, additive if the FICI was 0.50 to 4.0, and antagonistic if the FICI was >4.0.

Micro-organisms and Culture Medium

Four microbial strains *Bacillus* sp. MB198, MB245, MB199, and MB200 were isolated from HuangBo Sea, China and shown using mass spectrometry to produce surfactins (data not shown). These strains were screened for the optimum surfactin producer with the fermentation medium as described in the following. The seed culture medium for all *Bacillus* strains was a Luria Bertani (LB) medium consisting of 5 g/L yeast extract,
10 g/L NaCl, 10 g/L tryptone, and a pH of 7.2. The fermentation medium used for shaker flask cultivation contained 20 g/L carbon source, 2.0 g/L nitrogen source, 3.0 g/L K₂HPO₄·3H₂O, 10 g/L NaH₂PO₄·2H₂O, 0.2 g/L MgSO₄·7H₂O, 0.002 g/L MnCl₂·4H₂O, and 0.2 g/L yeast extract. Carbon sources and nitrogen sources were arranged according to the description of the following section. Two milliliters of seed medium was transferred to a 250 mL Erlenmeyer flask containing 50 mL fermentation medium and incubated at 28°C for 48 h on a rotary shaker (200 rpm).

Selection of Optimum Carbon Source and Nitrogen Source

To optimize the carbon source, glucose, sucrose, galactose, maltose, sucrose, glycerol, mannitol, soluble starch, and dextrin were evaluated. To optimize the nitrogen source, ammonium

Run	Variable levels	Yield of C₁₅-surfactin (mg/L)
1	1 1 1 1 1 1 1 1 1 1	12.70 ± 0.88
2	1 1 1 1 1 1 1 1 1 1	53.00 ± 0.29
3	1 1 1 1 1 1 1 1 1 1	15.19 ± 0.72
4	1 1 1 1 1 1 1 1 1 1	3.92 ± 0.42
5	1 1 1 1 1 1 1 1 1 1	14.55 ± 0.90
6	1 1 1 1 1 1 1 1 1 1	12.73 ± 0.99
7	1 1 1 1 1 1 1 1 1 1	38.27 ± 1.45
8	1 1 1 1 1 1 1 1 1 1	51.72 ± 1.69
9	1 1 1 1 1 1 1 1 1 1	17.88 ± 1.01
10	1 1 1 1 1 1 1 1 1 1	23.22 ± 0.99
11	1 1 1 1 1 1 1 1 1 1	47.93 ± 0.80
12	1 1 1 1 1 1 1 1 1 1	49.31 ± 0.18

Table 2. The Plackett-Burman design variables (in coded levels) with C₁₅-surfactin yield as response.

Run	Sucrose (g/L)	NH₄NO₃ (g/L)	NaH₂PO₄·2H₂O (g/L)	Yield of C₁₅-Surfactin (mg/L)
1	1	1	1	118.08 ± 1.23
2	0	20	0	45.56 ± 0.42
3	1	23	1	130.41 ± 12.94
4	0	20	0	100.60 ± 1.26
5	0	20	1.68	128.96 ± 2.38
6	1	23	1	106.70 ± 5.91
7	1	23	1.5	49.84 ± 1.71
8	0	20	1.68	96.07 ± 5.94
9	1	17	0	131.39 ± 0.87
10	1	25	0	98.41 ± 25.73
11	0	20	0	126.27 ± 3.13
12	0	20	0	121.33 ± 1.85
13	1	17	1	102.68 ± 3.83
14	0	20	0	119.36 ± 0.53
15	1	17	1.5	85.18 ± 10.36
16	1	23	1.5	106.23 ± 6.41
17	0	20	0	117.49 ± 7.01
18	1	17	1.5	107.49 ± 4.82
19	0	20	0	115.14 ± 5.95
20	0	20	0	124.47 ± 15.67

Table 3. Design and results of CCD.
nitrate, ammonium sulfate, sodium nitrate, soybean flour, peptone, casein acid hydrolysate, urea, and glutamic sodium were evaluated. C15-surfactin (MW1035, Fig. 1) production was calculated by the method described in the section of “Analytical methods”.

16S rDNA Sequence Analysis

Genomic DNA of Bacillus sp. was extracted using a TIANamp Bacteria DNA Kit (DP302, Tiangen Biotech (Beijing) Co., LTD., Beijing, China). The PCR method was performed according to the methods described previously [21]. Bacillus strains and calculations of sequence similarity were carried out using CLUSTAL X1 [23]. A phylogenetic tree was constructed using the neighbor-joining method and MEGA 4.0 software [24]. The topology of the phylogenetic tree was evaluated by 1000 bootstrap resampling replicates [25].

Experimental Design and Data Analysis

The most significant parameters affecting C15-surfactin production from Bacillus amyloliquefaciens MB199 were determined using the Plackett-Burman Design (PBD), as noted in Table 1 (Yeast extract is a good source of nitrogen and metals, so the low levels of x2, x7 and x8 could be set as 0). The analysis of C15-surfactin production was carried out in twelve experiments, each of which was performed two times (Table 2). Three dummy variables (x3, x6 and x11) were studied in 12 experiments to calculate the standard error. The final result was expressed as the average value of the two repeated experiments. The variables with confidence levels above 95% were considered to have significant effects on C15-surfactin production and were used for further optimization. Using the trends in the data provided by the results of the PBD, the experiments were adapted by increasing or decreasing the concentrations of each variable following the result of PBD [26]. Finally, a central composite rotatable design was produced with the values of each variable noted with the design matrix (Table 3). The low, middle, and high levels of each variable were designated as −1.68, −1, 0, and 1, 1.68, respectively and a response surface was produced.

Statistical Analysis

Design Expert (Version 7.0, Stat-Ease Inc., USA) was used to generate the experimental designs and perform subsequent regression analysis of the experimental data. The quality of the polynomial model equation was judged statistically using analysis of variance (ANOVA) to determine the coefficient of determination, R². The statistical significance was determined using the F-test and significance of the regression coefficients was determined using the t-test.

Extraction of Surfactins

Isolation and extraction of surfactins were performed according to the previously described method [27] with minor modifications. Briefly, after 48 hours of fermentation 35 mL cell broth was subjected to centrifugation at 8000 rpm for 5 min to remove the bacteria cells. The supernatant was then subjected to an acid precipitation with 6 M HCl by adjusting the pH to 2.0 and refrigerated at 4°C for 24 h. The precipitant was collected by centrifugation at 8000 rpm for 5 min followed by 24 h of lyophilization at −50°C. The lyophilized powder was extracted with 2 mL methanol for 4 h. Then the methanol extract was filtered using a 0.45 μm filter.

Table 4. Synergy antifungal screening resulta.

Samples	Anti-fungal MICs (µg/mL)	Synergistic anti-fungal MICs (µg/mL)
Acid Precipitationb	>100	50
Lipopeptide Mixturec	50	25
C14-surfactin	>100	12.5
C15-surfactin	>100	6.25
Cyclosporin A	>64	4

*aThe MIC of KTC is 0.016 µg/mL. The concentration of KTC in synergy antifungal screening experiment is 0.004 µg/mL, at which KTC does not show antifungal activity.
*bAcid precipitation was obtained by centrifugation of cell broth at pH 2.0. It contains C13-surfactin, C14-surfactin, C15-surfactin and other kind of compounds.

Figure 2. Effects of carbon source on the production of C15-surfactin from B. amyloliquefaciens MB199.

doi:10.1371/journal.pone.0034430.g002
Analytical Methods

The methanol extraction of surfactin was analyzed using a HPLC system (Agilent 1100 Series, CA, USA) equipped with an Agilent XDB C18 column (4.6 mm x 15 cm, 5 μm). The mobile phase consisted of 90% methanol and 10% water (0.1% TFA). After loaded with 40 μL filtered methanol extract, and column was eluted at a flow rate of 1 mL/min. The elution was monitored by the UV absorbance at 210 nm. C15-surfactin was identified to be eluted at a retention time of 11.0 min according to LC-MS results.

Results and Discussion

Synergistic Antifungal Activity of Surfactins

During the process of high throughput screening for the novel synergic antifungal compound, C14-surfactin and C15-surfactin were found to be most efficient when compared to the crude extract-acid precipitation (Table 4). It showed that C14-surfactin and C15-surfactin had synergistic antifungal activities with KTC against Candida albicans at 12.5 μg/mL and 6.25 μg/mL, respectively (Table 4). Based on these MIC values, the FICIs of C14-surfactin and C15-surfactin were less than 0.4 and 0.3 (all of them were less than 0.5), respectively, so the combination of surfactins and KTC were synergistic.

KTC is a frequently used antifungal drug (MIC = 0.016 μg/mL), which resulted in two drawbacks. One is the appearance of the resistant fungi. The other is the side-effect on human being produced by KTC at an efficient active concentration. So we design this synergy antifungal model to screen compounds which can synergize KTC with 1/4MIC (a concentration found to be no antifungal activity and also less side-effect on the patient). With this method C15-surfactin was identified to be best synergistic antifungal agent for KTC. This result not only proved the efficiency of our synergy screening model, but also highlights the new application of surfactin as a synergistic antifungal agent of KTC.

Figure 3. Effects of nitrogen source on the production of C15-surfactin from B. amyloliquefaciens MB199 with sucrose as the carbon source.

Figure 4. Neighbour-joining phylogenetic tree of B. amyloliquefaciens MB199 constructed by Mega 4.0. Numbers at nodes indicate levels of bootstrap support (%) based on a neighbour-joining analysis of 1000 resampled datasets; only values >50% are given. NCBI accession numbers are given in parentheses. Bar, 0.005 nucleotide substitutions per site.

Figure 3. Effects of nitrogen source on the production of C15-surfactin from B. amyloliquefaciens MB199 with sucrose as the carbon source.

doi:10.1371/journal.pone.0034430.g003

Figure 4. Neighbour-joining phylogenetic tree of B. amyloliquefaciens MB199 constructed by Mega 4.0. Numbers at nodes indicate levels of bootstrap support (%) based on a neighbour-joining analysis of 1000 resampled datasets; only values >50% are given. NCBI accession numbers are given in parentheses. Bar, 0.005 nucleotide substitutions per site.

doi:10.1371/journal.pone.0034430.g004
It has been reported that surfactin has synergistic activity with iturin on its hemolytic activity [28]. However, there is limited knowledge about the antifungal and synergistic antifungal activities of this compound. The results of our study showed a new effect of surfactin when KTC was incorporated. Surfactin has been known to interact with the cell membrane and disturb the membrane’s stability [29,30,31,32]. Among C13-surfactin, C14-surfactin, and C15-surfactin, C15-surfactin was the most effective compound to interact with membranes because the longer fatty acid chain induces a greater interfacial activity of surfactins with the membrane [29]. This performance was helpful to explain our result that C15-surfactin was more active than C14-surfactin.

Selection of Optimum Carbon Source, Nitrogen Source

The effect of the carbon source on C15-surfactin production of strain MB199 was given in Fig. 2. The optimum carbon source was found to be sucrose, which enabled MB199 to reach a maximum yield of 102.0 mg/L C15-surfactin.

With sucrose as the carbon source, the effect of the nitrogen source on C15-surfactin production for strain MB199 is given in Fig. 3. The maximum yield of surfactin (99.6 mg/L) was produced by the MB199 strain with ammonium nitrate used as the nitrogen source.

Identification of Surfactin Producing Bacillus sp. MB199

The analysis of the 16S rRNA gene sequence (GeneBank accession no. HM212413) revealed that MB199 was similar to B. amyloliquefaciens NCIMB 15535 [33] (similarity, 100%/1472 bps, based on 16S rRNA) (Fig. 4). Through the alignment and cladistic analysis of homologous nucleotide sequences of known Bacillus, phylogenetic relationships could be inferred. The approximate phylogenetic position of the strain is shown in Fig. 4. According to the gene sequence, the strain Bacillus sp. MB199 was identified as a strain of B. amyloliquefaciens, and named B. amyloliquefaciens MB199.

The selection of high amounts of surfactin producing strains is necessary for future mutation or bioengineering studies. Previously, our laboratory has constructed a high quality marine microbial natural product library containing novel microorganisms from marine environments. In this study, B. amyloliquefaciens was discovered to an efficient C15-surfactin producer from four Bacillus species. Actually, a recent report revealed that B. amyloliquefaciens is a producer of both lipopeptide and polyketide antibiotics [33]. These studies proved that B. amyloliquefaciens could be a promising strain used for the C15-surfactin production in the further engineering studies.
Figure 5. Response surface plot for C_{15}-surfactin production by *B. amyloliquefaciens* MB199.
doi:10.1371/journal.pone.0034430.g005

Figure 6. HPLC profile of surfactin produced by *B. amyloliquefaciens* MB199. The elution was monitored at 210 nm at a flow rate of 1 mL/min. The dashed line and the real line represent the HPLC profiles of surfactins produced in optimized and original culture media, respectively.
doi:10.1371/journal.pone.0034430.g006
NaH₂PO₄·2H₂O.

Optimization by Response Surface Methodology

The data shown in Table 3 were analyzed using Design Expert software. The t-test and P-values were used to identify the effect of each factor on C₁₅-surfactin production (Table 6), with a P-value of less than 0.05 indicating significance. Sucrose, NH₄NO₃ and NaH₂PO₄·2H₂O had significant effects on C₁₅-surfactin yield (P<0.05) and were able to explain 96.11% of the model variability. Therefore, the present prediction model reflected a good degree of correlation between the observed and predicted responses, implying the model was reliable for C₁₅-surfactin production in the present study. The adjusted determination coefficient (R² = 86.25%) was also satisfactory to confirm the significance of the model. The model can be shown as following:

\[
Y = 120.62 - 5.54X1 + 12.04X2 + 15.40X3 \\
-16.43X3 + X3 + 6.62X1 * X2 + 5.30 X1 * X3
\]

(1)

Where Y is the predicted C₁₅-surfactin yield, X1 is sucrose, X2 is NH₄NO₃, and X3 is NaH₂PO₄·2H₂O.

Furthermore, the ANOVA analysis for the response surface quadratic model was presented in Table 7, which reported a statistically significant (P<0.05) regression at a 95% confidence level. To check the fitness of the polynomial model, the significant lack-of-fit was also reported in Table 7, which means there is some variation unaccounted for in the predicted model (the selected model does not well describe the data). In this study, P = 0.0886 indicated that the model was statistically insignificant lack of fit, so it was adequate for the prediction of C₁₅-surfactin yield within the range of variables tested. The 3D response surface graphs provide a more complete representation of the effects of variables on the production of C₁₅-surfactin (Fig. 5).

Validation of the Optimized Condition

On the basis of medium optimization, the model predicted the maximum production of surfactin as 132.61 mg/L, in the presence of 21.17 g/L sucrose, 2.50 g/L NH₄NO₃, and 11.56 g/L NaH₂PO₄·2H₂O. To verify the predicted results, a validation experiment was performed in triplicate tests. Under the optimized condition, the observed experimental yield of average C₁₅-surfactin was 134.2 mg/L, which is a 1.52-fold increase as compared to the yield in non-optimized media, suggesting that experimental and predicted values of C₁₅-surfactin yield were in good agreement. This result therefore corroborated the predicted values and the effectiveness of the model, indicating that the optimized medium favors the production of C₁₅-surfactin.

Actually, the pH value of the culture medium also has an effect on surfactin production. Surfactins have emulsification activities, so we use the emulsification index (EU/mL) as a parameter to evaluate the production of surfactins in cell broth. Our previous data showed that the production of surfactin will decrease in a culture medium with a pH less than 5 or larger than 9 [21]. In the present work, a pH of 7.2 was used throughout the optimization experiment. Noteworthy, the data on growth of *Bacillus amyloliquefaciens* was not measured in the present optimization experiment, so there was no information on the “specific productivity” of C₁₅-surfactin by *Bacillus amyloliquefaciens*. However, a recent thesis showed that surfactin productivity was cell growth associated for *Bacillus subtilis* ATCC 21332 [34].

In the literature, a medium containing glucose (10.0 g/L) and ammonium nitrate (4.0 g/L) could lead to the highest quantity of surfactins (439.0 mg/L) by *B. subtilis* ATCC 21332 [35]. However, C₁₅-surfactin was not clearly reported in these experiments due to the different analysis methods. Our present study focused on C₁₅-surfactin production not only due to its effective biological activities, but also because purification of this compound was relatively easy by using HPLC (Fig. 6). In this respect, the present study was useful for the further investigations of the industrial production of C₁₅-surfactin. Additionally, it has been found that surfactin producing *B. subtilis* strain S499 could produce a novel lipopeptide fengycin after the optimization of medium composition for the surfactin production [36]. In order to find out how the culture medium components influence the production of the other homologues of C₁₅-surfactin, the HPLC profile of surfactins of *B. amyloliquefaciens* MB199 was measured. The results showed an increase in the yield of other homologues of C₁₅-surfactin without influencing the diversity of the surfactins produced in the cell broth (Fig. 6).

In conclusion, the present work shows that C₁₅-surfactin as a biomaterial could be utilized as a synergistic antifungal agent with ketoconazole for novel applications in biomedical and pharmaceutical fields. This study also offered a novel marine derived *B. amyloliquefaciens* strain MB199 which could efficiently produce C₁₅-surfactin in shaker flasks. It showed that sucrose as a soluble carbon source and ammonium nitrate as a nitrogen source gave higher C₁₅-surfactin production. The production of C₁₅-surfactin was found to depend greatly on the key media components that were sucrose, ammonium nitrate, and NaH₂PO₄·2H₂O. Using the RSM, it was possible to model individual and interactive effects of media and efficiently enhance the production of C₁₅-surfactin.

Acknowledgments

The authors are very grateful to Arnold I. Demain for critical reading and helpful discussions.

Author Contributions

Conceived and designed the experiments: XL BR HG. Performed the experiments: XL BR HG. Analyzed the data: ML HD FS LZ. Contributed reagents/materials/analysis tools: ML HD FS ZY SW JH CK LZ. Wrote the paper: XL LZ.

References

1. Christofi N, Yoshima JB (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93: 915–929.
2. Kiran GS, Thomas TA, Selvin J (2010) Production of a new glycolipid biosurfactant from marine *Nocardiopsis lucentensis* MS8/4 in solid-state cultivation. Colloids Surf B Biointerfaces 78: 8–16.
3. Haddad SIA, Lu XY, Yang SZ, Mu BZ (2008) Surfactin isoforms from *Bacillus subtilis* HS0121: separation and characterization. Protein Pept Lett 15: 265–269.
4. Tung JS, Gao H, Hong K, Yu Y, Jiang MM, et al. (2007) Complete assignments of ¹H and ¹³C NMR spectral data of nine surfactin isoforms. Magn Reson Chem 45: 792–796.
5. Yoneda T, Tsuchioka T, Ogata E, Fuyuo Y (2001) Surfactin sodium salt: an excellent bio-surfactant for cosmetics. J Cosmet Sci 52: 153–154.
6. Razafindralambo H, Thonart P, Paquot M (2004) Dynamic and equilibrium surface tensions of surfactin aqueous solutions. J Surfactants Deterg 7: 41–46.
7. Deleu M, Boutignon O, Razafindralambo H, Paquot M, Hidalgo C, et al. (2003) Interaction of surfactin with membranes: A computational approach. Langmuir 19: 3377–3383.
8. Kracht M, Rekos H, Ozel M, Kowall M, Pauli G, et al. (1999) Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J Antimicrob 52: 613–619.

Production of Surfactin with Synergistic Activity

PLoS ONE | www.plosone.org 8 May 2012 | Volume 7 | Issue 5 | e34430
9. Cao XH, Liao ZY, Wang CL, Cai P, Yang WY, et al. (2009) Purification and antitumour activity of a lipopeptide biosurfactant produced by Bacillus subtilis TK-1. Biotechnol Appl Biochem 52: 97–106.

10. Cao XH, Liao ZY, Wang CL, Yang WY, Lu MF (2009) Evaluation of a lipopeptide biosurfactant from Bacillus subtilis TK-1 as a potential source of anti-adhesive, antimicrobial and antitumour activities. Braz J Microbiol 40: 573–579.

11. Cao X, Wang AH, Jiao RZ, Wang CL, Mao DZ, et al. (2009) Surfactin induces apoptosis and G2/M arrest in human breast cancer MCF-7 cells through cell cycle factor regulation. Cell Biochem Biophys 55: 163–171.

12. Cao XO, Wang AH, Wang CL, Mao DZ, Lu MF, et al. (2010) Surfactin induces apoptosis in human breast cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway. Chem-Biol Interact 183: 357–362.

13. Kim SY, Kim JY, Kim SH, Bae HJ, Yi H, et al. (2007) Surfactin from Bacillus subtilis displays anti-proliferative effect via apoptosis induction, cell cycle arrest and survival signaling suppression. FEBS Lett 581: 865–871.

14. Bortolato M, Besson F, Roux B (1997) Inhibition of alkaline phosphatase by surfactin, a natural chelating lipopeptide from Bacillus subtilis. Biotechnol Lett 19: 453–455.

15. Hwang YH, Park BK, Lim JH, Kim MS, Park SC, et al. (2007) Lipopolysaccharide-binding and neutralizing activities of surfactin C in experimental models of septic shock. Eur J Pharmacol 556: 166–171.

16. Takahashi T, Ohno O, Ikeda Y, Komma Y, et al. (2006) Inhibition of lipopolysaccharide activity by a bacterial cyclic lipopeptide surfactin. J Antibiot 59: 35–43.

17. Seydlova G, Svobodova J (2008) Review of surfactin chemical properties and the potential biomedical applications. Cent Eur J Med 3: 123–133.

18. Carrillo C, Teruel JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the antibiotic surfactin. Biochim Biophys Acta 1611: 91–97.

19. Chakraborty S, Khopade A, Ren B, Wang J, Liu XY, et al. (2011) Characterization and stability studies on surfactant, detergent and oxidant stable α-amylase from marine halophilic Bacillus halodurans sp. A9. J Mol Catal B: Enzym 68: 52–58.

20. Liu X, Ren B, Chen M, Wang H, Kocare CR, et al. (2010) Production and characterization of a group of biosurfactants from the marine Bacillus teleosporus strain H3. Appl Microbiol Biotechnol 87: 1881–1893.

21. Zhang LX, Yan KZ, Zhang Y, Huang R, Biao J, et al. (2007) High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections. P Natl Acad Sci USA 104: 4606–4611.

22. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1999) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882.

23. Kim J, Roh FJ, Sokal RR (1993) The accuracy of phylogenetic estimation using the Neighbor-Joining method. Evolution 47: 471–486.

24. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–799.

25. Gheshlaghi R, Schrar J, Moe-Young M, Douglas PL (2005) Medium optimization for hen egg white lysozyme production by recombinant Agellus niger using statistical methods. Biotechnol Bioeng 90: 734–760.

26. Liu XY, Yang SZ, Mu BZ (2008) Isolation and characterization of a C12-lipopeptide produced by Bacillus subtilis HSO121. J Pept Sci 14: 864–875.

27. Maget-Dana R, Thimon L, Prepoix F, Peix M (1992) Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74: 1047–1051.

28. Eeman M, Berquand A, Dufrene YF, Paquot M, Dufour S, et al. (2006) Penetration of surfactin into phospholipid monolayers: Nanoscale interfacial organization. Langmuir 22: 11337–11345.

29. Maget-Dana R, Peix M (1995) Interactions of surfactin with membrane models. Biophys J 68: 1937–1943.

30. Grun A, Gomez Fernandez JC, Prepoix F, Ortiz A (1999) A study on the interactions of surfactin with phospholipid vesicles. Biochim Biophys Acta 1418: 307–319.

31. Carrillo C, Ternet JA, Aranda FJ, Ortiz A (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 1611: 91–97.

32. Chen XH, Kouamouti A, Scholz R, Schneider K, Vater J, et al. (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140: 27–37.

33. Keenan B (2011) Bacterial production of antimicrobial biosurfactants by Bacillus subtilis. Masterland: Stellenbosch University. 158 p.

34. Fonseca RR, Silva AJR, De Franca FP, Cardoso VL, Servulo EFC (2007) Production of Surfactin with Synergistic Activity. Appl Biochem Biotechnol 137: 471–480.

35. Jacques P, Hbid C, Destain J, Razafindralambo H, Paquot M, et al. (1999) Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 by Plackett-Burman design. Appl Biochem Biotechnol 77–9: 223–233.