The Minimal Coloring Number Of Any Non-splittable Z-colorable Link Is Four

Meiqiao Zhang, Xian’an Jin, Qingying Deng
School of Mathematical Sciences
Xiamen University
P. R. China
Email:xajin@xmu.edu.cn

Abstract

K. Ichihara and E. Matsudo introduced the notions of Z-colorable links and the minimal coloring number for Z-colorable links, which is one of invariants for links. They proved that the lower bound of minimal coloring number of a non-splittable Z-colorable link is 4. In this paper, we show the minimal coloring number of any non-splittable Z-colorable link is exactly 4.

Keywords: Z-colorable links; minimal coloring number; equivalent local moves.

2000 MSC: 57M27, 57M25

1. Introduction

Imitating Fox-coloring [1] and the minimal coloring number [2] for links with Fox colorings, in order to deal with links of determinant 0, in [3], K. Ichihara and E. Matsudo introduced the notions of Z-coloring and minimal coloring number, denoted by mincol_Z(L), for Z-colorable links, which is one of invariants for links.

Definition 1.1. Let L be a link and D a diagram of L. We consider a map γ : {arcs of D} → Z. If γ satisfies the condition 2γ(a) = γ(b) + γ(c) at each crossing of D with the over arc a and the under arcs b and c, then γ is called a Z-coloring on D. A Z-coloring which assigns the same color to all arcs of the diagram is called the trivial Z-coloring. A link is called Z-colorable if it has a diagram admitting a non-trivial Z-coloring.
Definition 1.2. Let us consider the cardinality of the image of a non-trivial \(\mathbb{Z} \)-coloring on a diagram of a \(\mathbb{Z} \)-colorable link \(L \). We call the minimum of such cardinalities among all non-trivial \(\mathbb{Z} \)-colorings on all diagrams of \(L \) the minimal coloring number of \(L \), and denote it by \(\text{mincol}_\mathbb{Z}(L) \).

Definition 1.3. Let \(L \) be a \(\mathbb{Z} \)-colorable link, and \(\gamma \) a non-trivial \(\mathbb{Z} \)-coloring on a diagram \(D \) of \(L \). Suppose that there exists a positive integer \(d \) such that, at all the crossings in \(D \), the differences between the colors of the over arcs and the under arcs are \(d \) or 0. Then we call \(\gamma \) a simple \(\mathbb{Z} \)-coloring.

Then they proved:

Theorem 1.4. 1. Let \(L \) be a non-splittable \(\mathbb{Z} \)-colorable link. Then \(\text{mincol}_\mathbb{Z}(L) \geq 4 \).
2. Let \(L \) be a non-splittable \(\mathbb{Z} \)-colorable link. If there exists a simple \(\mathbb{Z} \)-coloring on a diagram of \(L \), then \(\text{mincol}_\mathbb{Z}(L) = 4 \).
3. If a non-splittable link \(L \) admits a \(\mathbb{Z} \)-coloring with five colors, then \(\text{mincol}_\mathbb{Z}(L) = 4 \).

In the end of [3], they posed two questions:

Question 1.5.
1. Does \(\text{mincol}_\mathbb{Z}(L) = 4 \) always hold for any non-splittable \(\mathbb{Z} \)-colorable link \(L \)?
2. Does every non-splittable \(\mathbb{Z} \)-colorable link admit a simple \(\mathbb{Z} \)-coloring?

In this paper, we give a positive answer to Question 1.5 (2), and hence a positive answer to Question 1.5 (1) by Theorem 1.4 (2).

2. Main result and its proof

For convenience, we denote the crossing with over arc \(b \) and under arcs \(a, c \) by \(a|b|c \). Let \(d \) be a nonnegative integer, we call a crossing a \(d \)-diff one if the difference between the colors of the over arc and the under arcs is \(d \).

In the figures through the rest of this paper, we don’t distinguish the over arc and under arcs of the uni-colored crossings. Moreover, a uni-colored \(b|b|b \) crossing often represents a finite number, including 0, of \(b|b|b \) crossings.

Definition 2.1. Let \(L \) be a \(\mathbb{Z} \)-colorable link, and \(\gamma \) a non-trivial \(\mathbb{Z} \)-coloring on a diagram \(D \) of \(L \). Two non-0-diff crossings are adjacent if there are only a finite number of 0-diff crossings between them, as shown in the Figure 1.1 (containing 4 cases and 10 subcases altogether).
In this section we shall prove:

Theorem 2.2. Any non-splittable ℤ-colorable link admits a simple ℤ-coloring.

To prove Theorem 2.2, we need two lemmas.

Lemma 2.3. Let \(L \) be a ℤ-colorable link, and \(\gamma \) a ℤ-coloring on a diagram \(D \) of \(L \). If there exists a pair of adjacent \(n \)-diff crossing and \(qn \)-diff crossing (\(q \geq 2, q \in \mathbb{N}^+ \)), then the \(qn \)-diff crossing can be eliminated by equivalent local moves. Moreover, any newly created crossing in the process of elimination is either a 0-diff crossing or an \(n \)-diff crossing.

Proof. We prove it case by case. Take \(m = qn \) in Figure 1.1.

Case 1: See Figure 1.1 (1). In this case we prove Lemma 2.3 by induction on \(q \). When \(q = 2 \), we can eliminate \(b - 2n|b||b|b + 2n \) as shown in Figure 1.1.1, and any newly created crossing in the process of elimination is either a 0-diff crossing or an \(n \)-diff crossing. When \(q = 3 \), we can eliminate \(b - 3n|b||b|b + 3n \) as shown in Figure 1.1.2, and any newly created crossing in the process of elimination is either a 0-diff crossing or an \(n \)-diff crossing. Now we assume that when \(q \leq k - 1, \), the lemma holds, and shall prove when \(q = k \), the lemma also holds. When \(q = k \), we can reduce it to \(q = k - 2 \) as shown in Figure 1.1.3.

Case 2: See Figure 1.1 (2). When \(q = 2 \), we can eliminate \(b - 2n|b||b|b + 2n \) as shown in Figure 1.2.1, and any newly created crossing in the process of elimination is either a 0-diff crossing or an \(n \)-diff crossing. When \(q = k \),
Figure 1.1.1
Figure 1.1.2
Figure 1.1.3: The structure with newly created $b - (k - 2)n | b | b + (k - 2)n$ contained in the dashed box is the Case 1 with $q = k - 2$. We can eliminate it by induction.
$k \geq 3$, we can operate as shown in Figure 1.2.2. Although there is newly created $b-(k-2)n|b|b+(k-2)n$ crossing, we can use the structure contained in the dashed box to eliminate it since it is the Case 1 with $q = k-2$.

![Diagram](image)

Figure 1.2.2

Case 3: See Figure 1.1 (3). When $q = 2$, we can eliminate $b|b+2n|b+4n$ and $b|b-2n|b-4n$ as shown in Figure 1.3.1, and any newly created crossing in the process of elimination is either a 0-diff crossing or an n-diff crossing. When $q = k$, $k \geq 3$, we can operate as shown in Figure 1.3.2. Let $b' = b + kn$, $b'' = b - kn$. Although there is newly created $b + n|b + kn|b + (2k-1)n$ crossing, that is $b' - (k-1)n|b'|b' + (k-1)n$ in the figure (above) and newly created $b - n|b - kn|b - (2k-1)n$, that is $b'' + (k-1)n|b''|b'' - (k-1)n$ in the figure (below), both the structures contained in the dashed boxes are the Case 2 with $q = k-1$. We can eliminate them as done in Case 2.

Case 4: See Figure 1.1 (4). There are 4 subcases.
Figure 1.3.1
Figure 1.3.2
For the first and second subcases, we can eliminate \(b|b + kn|b + 2kn \) and \(b|b - kn|b - 2kn \) as shown in Figure 1.4.1. Let \(b' = b + kn, \ b'' = b - kn \). The newly created \(b - n|b + kn|b + (2k + 1)n \), that is \(b' - (k + 1)n|b'|b' + (k + 1)n \) in the figure (above) and the newly created \(b + n|b - kn|b - (2k + 1)n \), that is \(b'' + (k + 1)n|b''|b'' - (k + 1)n \) in the figure (below), contained in the dashed boxes are the Case 2 with \(q = 2 \). We can eliminate them as done in Case 2, and any newly created crossing in the process of elimination is either a 0-diff crossing or an \(n \)-diff crossing.

For the third and fourth subcases. When \(q = 2 \), we can eliminate \(b|b - 2n|b - 4n \) and \(b|b + 2n|b + 4n \) as shown in Figure 1.4.2, and any newly created crossing in the process of elimination is either a 0-diff crossing or an \(n \)-diff crossing. When \(q = k \), \(k \geq 3 \), we can eliminate \(b|b - kn|b - 2kn \) and \(b|b + kn|b + 2kn \) as shown in Figure 1.4.3. Let \(b' = b - kn, \ b'' = b + kn \). The newly created \(b - n|b - kn|b - (2k - 1)n \), that is \(b' + (k - 1)n|b'|b' - (k - 1)n \) in the figure (above) and newly created \(b + n|b + kn|b + (2k - 1)n \), that is \(b'' - (k - 1)n|b''|b'' + (k - 1)n \) in the figure (below), contained in the dashed boxes are the Case 2 with \(q = k - 1 \). We can eliminate them as done in Case 2, and any newly created crossing in the process of elimination is either a 0-diff crossing or an \(n \)-diff crossing.

\[\square \]

Lemma 2.4. Let \(L \) be a \(\mathbb{Z} \)-colorable link, and \(\gamma \) a \(\mathbb{Z} \)-coloring on a diagram \(D \) of \(L \). If there exists a pair of adjacent \(n \)-diff crossing and \(m \)-diff crossing, we can convert this local structure to a new one by equivalent local moves, containing only 0 or \(d \)-diff crossings, where \(d = \gcd(m, n) \).

Proof. Without loss of generality, we assume \(m > n \). We shall prove Lemma 2.4 by induction on \(n \). If \(n = 1 \), then \(d = 1 \). Applying Lemma 2.3, we can convert the local structure and obtain a new local structure containing only 0 or 1-diff crossings, thus the lemma holds. Next, assuming that when \(n \leq z - 1, \ z \geq 2 \), the lemma holds, we shall prove when \(n = z \), the lemma also holds.

If \(m = qz \ (q \geq 1, q \in \mathbb{N}^+) \), then \(d = z \). Applying Lemma 2.3, we can obtain a new structure, containing only 0 or \(d \)-diff crossings, which means the lemma holds. If \(m = qz + r \ (q \geq 1, 0 < r < z) \), we shall further prove, for each case, we can create a \(r \)-diff crossing which is adjacent to a \(z \)-diff crossing and the difference of any newly created crossing in the operation is \(kd \) for some nonnegative integer \(k \). Note that \(n = z, m = qz + r \) and \(d = \gcd(m, n) = \gcd(n, r) \).
Figure 1.4.1
Figure 1.4.2
For (1) in Figure 1.1 with $n = z$, $m = qz + r$, we can operate as shown in Figure 2.1.

For (2) in Figure 1.1 with $n = z$, $m = qz + r$, we can operate as shown in Figure 2.2.1, 2.2.2.

For (3) in Figure 1.1 with $n = z$, $m = qz + r$, we can operate as shown in Figure 2.3.

For (4) in Figure 1.1 with $n = z$, $m = qz + r$, we can operate as shown in Figure 2.4.1, 2.4.2.

In the figures above, there always exists a r-diff crossing which is adjacent to a z-diff crossing. See dashed boxes. After proving that, we can turn the adjacent z-diff crossing and r-diff crossing to a new local structure, containing only 0 or d-diff crossings (and a d-differ crossing is always created) by hypothesis induction, because $0 < r < z$. Moreover, because the difference of any newly created crossing in the operation of creating a r-diff crossing is kd for some nonnegative integer k, the great common divisor of the d-diff crossing and its adjacent crossings is also d. Applying Lemma 2.3, we can turn these kinds of adjacent crossings to new structures containing only 0 or d-diff crossings, and continuing this process repeatedly, the lemma will hold.

Proof of Theorem 2.2. Let L be a non-splittable \mathbb{Z}-colorable link, and γ a \mathbb{Z}-coloring on a diagram D of L. If this coloring is not simple, then there exists a pair of adjacent m-diff and n-diff crossings, where $m, n \in \mathbb{N}^+$ and $m \neq n$. Applying the Lemma 2.4 to this pair of crossings, we can obtain a new equivalent diagram by converting the local structure containing m-diff crossing, n-diff crossing and 0-diff crossings between them to a new local structure containing only 0 or d-diff crossings, where $d = \gcd(m, n)$. Since L is non-splittable, continue the above process repeatedly, we can obtain a simple coloring.

Acknowledgements

This work is supported by NSFC (No. 11671336) and President’s Funds of Xiamen University (No. 20720160011).

References

[1] R. H. Fox, Metacyclic invariants of knots and links, *Canad. J. Math.* 22 (1970), 193-201.
Figure 2.1
Figure 2.2.1

Figure 2.2.2
Figure 2.3
Figure 2.4.1
Figure 2.4.2
[2] F. Harary, L. H. Kauffman, Knots and graphs, I, Arc graphs and colorings, *Adv. Appl. Math.* 22 (1999), 312-337.

[3] K. Ichihara and E. Matsudo, Minimal coloring number for \mathbb{Z}-colorable links, *Journal of Knot Theory and Its Ramifications*, 26 (2017), 1750018.
