Retraction

Retraction: Thermal characterization of composite material plates ceramic/metal FGM (J. Phys.: Conf. Ser. 1889 042035)

Published 21 June 2022

This article has been retracted by IOP Publishing following an allegation that this article verbatim draws upon an earlier publication [1] by different authors without attribution.

IOP Publishing has investigated in line with the COPE guidelines, and agree the original source has been verbatim translated into English and published by the authors without attribution. Furthermore, the authors have included irrelevant content in the article which is not present in the original source. This is likely an error introduced into the article in the process of translating the original work.

Despite numerous attempts to contact the authors, the journal has not received a response from them to date and would welcome receiving their account of events.

IOP Publishing wishes to credit the anonymous whistle-blower for bringing the issue to our attention.

Due to the lack of response received from the authors, they have neither agreed nor disagreed to this notice.

[1] Bachir Bouderba and Abdelrahmane Bekaddour Benyamina, ‘Analyse statique des plaques en matériaux composites "Cas d'un FGM typique céramique/métal" dans des environnements thermiques’, JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 5 (2018) 33–45.

Since the issuing of this notice, the first and second authors’ institution has confirmed that they are not employed and were never employed at ETH Zurich.

Retraction published: 21 June 2022
Thermal characterization of composite material plates ceramic/metal FGM

Amer Karnoub1,3, Koast Parkizdins1 and I R Antypas2

1 Institute of Polymers, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
2 Don State Technical University. Gagarin square 1, Rostov-on-Don, 344000, Russian Federation
3 E-mail: amerkarnoub@gmail.com

Abstract. The sudden change in material properties across the interface between various materials can cause solid interlayer focuses on that lead to boundary, breaking, and other harm instruments. To address these inadequacies, Functional Graded Materials have been proposed, through which the properties of the materials are reliably unique. The point of this article is to dissect the mechanical warm twisting conduct of thick artistic/metal sheets. This work presents a layout that utilizes the new cross-over shear usefulness. The mathematical outcomes got through the current investigation are introduced and contrasted and those accessible in the writing. It very well may be inferred that this hypothesis is viable and straightforward for static plate investigation in warm conditions.

1. Introduction
The (FGM) idea was first proposed in 1984 by a gathering of materials experts, in Sendai, Japan, for warm hindrances or warmth assurance properties [1]. At first (FGM) was planned as a warm boundary material for application in space and combination reactors. Afterward, female genital mutilation was produced for the military, auto, biomedical and semiconductor businesses and as an overall underlying segment in high warm conditions. (FGM) is a material created in high temperatures for high temperature conditions ready to withstand extraordinary temperatures. Inclination property materials (FGMs) are heterogeneous at a minute scale, in which mechanical properties differ consistently and constantly from surface to surface. This is accomplished by steadily changing the size part of the constituent materials, and these materials are produced using a mix of artistic and metal or from a combination of various materials. The clay material segment gives protection from high temperatures because of its low warm conductivity and shields the metal from oxidation. Then again, the malleable metal segment forestalls pressure break because of high temperature angle in an extremely brief timeframe. Furthermore, a combination of ceramic and metal of continually changing size can be effectively created [2-6] and various diaries managing various parts of (FGM) have been distributed lately [2-14]. In this paper, the shear strain hypothesis of excess exaggerated plates is utilized. The deterministic capacity is utilized as far as the thickness directions of the removal field to ascertain the shear pressure. The innovation of the hypothesis is that it doesn't need a shear revision factor, fulfilling the deficiency of the shear weight on the upper and lower surfaces of the plate. Mathematical
models have been introduced to show the exactness and proficiency of the current hypothesis by contrasting the outcomes acquired and those determined utilizing different speculations.

2. Theoretical formulation

2.1. Geometric configuration and basic assumptions

Consider a rectangular FGM plate of thickness h, of length a in the direction of x, and of width b in the direction of y, as shown in figure 1.

![Figure 1. Axis and geometry system for rectangular FGM plates.](image)

The present refined hypothesis of exaggerated plate shear strain utilized by El Meiche et al. [15] speaks to the exaggerated conveyance of the cross over shear pressure, and fulfills the nullity of these weights on the upper and lower surfaces of the plate without utilizing shear revision factors. The quantity of obscure capacities is just four, while at least five on account of other shear strain speculations (see table 1).

The current hypothesis proposed, depends on the presumption that the pivotal and cross over relocations comprise of a piece of bowing and another of shear so the bowing part doesn't contribute in the shear powers and in like manner, the shear segment doesn't contribute in the bowing minutes.

Model	Theory	Transverse shear function	Unknown functions
CPT	The classical plate theory	$\zeta(z) = 0$	3
FSDPT	The first order shear strain theory (Reissner, [16])	$\zeta(z) = z$	5
PSDPT	the parabolic shear strain theory (Reddy, [17])	$\zeta(z) = z (1 - \frac{4xz}{3h^2})$	5
SSDPT	the trigonometric shear strain theory (Touratier, [18])	$\zeta(z) = \frac{h}{n} \sin \left(\frac{\pi x}{h} \right)$	5
Present	the trigonometric shear strain theory (Touratier, [18])	$\zeta(z) = \frac{h}{n} \sin \left(\frac{\pi x}{h} \right) \cosh \left(\frac{z}{h} \right) - 1$	4

2.2. Kinematics and constitutive and equilibrium equations

By being based on the preceding assumptions, the field of displacement is obtained as follows:

$$U(x, y, z) = u_0(x, y) - z \frac{\partial w_b}{\partial x} - \zeta(z) \frac{\partial w_s}{\partial x}$$
\[V(x, y, z) = v_0(x, y) - \frac{z}{g_{310}/g_{30.2}} \zeta(z) \frac{d\omega_z}{dy} \]

Kinematic relations can be obtained as follows:

\[\begin{pmatrix} y_{yz} \\ y_{xz} \end{pmatrix} = Y_{(z)} \begin{pmatrix} y_{xyz} \\ y_{xzz} \end{pmatrix} \]

With \(Y_{(z)} = 1 - \frac{df(z)}{dz} \)

The material properties \(P \) of the plate in FGM such as the Young E modulus, the Poisson \(\nu \), and the thermal expansion coefficient \(\alpha \) are determined by:

\[P(z) = P_M + (P_C - P_M)(1 - \frac{1}{2} + \frac{z}{L})^p \]

Where: \(P_C \) and \(P_M \) are the corresponding properties of ceramic and metal, respectively, and \(p \) the exponent (index) of the volume fraction which takes values greater than or equal to zero.

The linear constitutive relations are:

\[\begin{pmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{pmatrix} = \begin{pmatrix} Q_{11} & Q_{12} & 0 \\ Q_{12} & Q_{22} & 0 \\ 0 & 0 & Q_{66} \end{pmatrix} \begin{pmatrix} \varepsilon_x - \alpha \Delta T \\ \varepsilon_y - \alpha \Delta T \\ \gamma_{xy} \end{pmatrix} \]

The distribution of the temperature applied across the thickness is supported, it is given as follows:

\[T(x, y, z) = T_1(x, y) + \frac{z}{h} T_2(x, y) + \frac{1}{\pi} \sin\left(\frac{\pi z}{h}\right) T_3(x, y) \]

The equilibrium equations are obtained from the principle of virtual displacements:

\[\begin{align*}
\delta u_0 : & \frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} = 0 \\
\delta v_0 : & \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} = 0
\end{align*} \]

The resultants of the constraints \(N, M, S \) are defined by:

\[(S_{xx}^t, S_{yx}^t) = \int_{-h/2}^{h/2} (\tau_{xz}, \tau_{yz}) Y_{(z)} dz \]

Or as follows:

\[\begin{pmatrix} N \\ M_b \\ M_s \end{pmatrix} = \begin{pmatrix} A & B & B_s \\ B & D & D_s \end{pmatrix} \begin{pmatrix} \xi \\ kb - \frac{kb}{2} \end{pmatrix} \begin{pmatrix} N_t \\ M_{bt} \\ S = A^t \gamma \end{pmatrix} \]

With: \(A_{ij}, B_{ij}, \) etc., are the terms of the stiffness matrix of the plate, defined by:

\[(A_{22}, B_{22}, D_{22}, B_{s22}, D_{s22}, H_{22}) = (A_{11}, B_{11}, D_{11}, B_{s11}, D_{s11}, H_{11}) \]
As_{44} = As_{55} = \int_{-h/2}^{h/2} \frac{E(z)}{Z(1+\nu)} \left[Y_{0}\alpha dz\right] dz \quad (13)

The stress and the resulting moment:

\begin{align*}
N_{x}^{T} = N_{y}^{T}, & \quad M_{x}^{T} = M_{y}^{T}, \quad M_{x}^{T} = M_{y}^{T} \quad (14)
\end{align*}

3. Exact solution for FGM plates

Rectangular boards are for the most part arranged by the sort of media utilized. W. consider here the specific answer for Equation (8) for an essentially sponsored board (FGM). To take care of this issue, Navier expects that the mechanical and warm cross over burdens \(q_{i}\) and \(T_{i}\) are given as a twofold Fourier arrangement as follows:

\begin{align*}
\left\{ q_{i} \right\} &= \left\{ q_{0}, \sin(\lambda x) \sin(\mu y), \sin(\lambda x) \cos(\mu y), \sin(\lambda x) \sin(\mu y) \right\} \quad (15)
\end{align*}

With: \(\lambda = \pi/a, \mu = \pi/b, q_{0}\) and \(t_{i}\) are constant.

Following the procedure of the Navier solution, we assume the following solution:

\begin{align*}
\begin{cases}
U_{mn} = \sum_{m} \cos(\lambda x) \sin(\mu y) \\
V_{mn} = \sum_{m} \sin(\lambda x) \cos(\mu y) \\
W_{b} = \sum_{m} \sin(\lambda x) \sin(\mu y) \\
W_{s} = \sum_{m} \sin(\lambda x) \cos(\mu y)
\end{cases} \quad (16)
\end{align*}

Since: \(U_{mn}, V_{mn}, W_{b},\) and \(W_{s}\) are arbitrary parameters to be determined on condition that the solution of equation (16) satisfies the equilibrium equations (8). We obtain the following operator equation:

\[[\Gamma] \{ \Delta \} = \{ F \} \quad (17) \]

With:

\[\{ \Delta \} = \{ U_{mn}, V_{mn}, W_{b}, W_{s} \}^{T} \quad (18) \]

In which:

\[\Gamma_{11} = - (A_{11}\lambda^{2} + A_{66}\mu^{2}) \]
\[\Gamma_{12} = - \lambda \mu (A_{12} + A_{66}) \]

The components of the generalized force vector are given by:

\[F_{1} = \lambda (A^{T} t_{1} + B^{T} t_{2} + s^{B^{T}} t_{3}) \]
\[F_{2} = \mu (A^{T} t_{1} + B^{T} t_{2} + s^{B^{T}} t_{3}) \quad (20) \]

4. Analytical validation and numerical results

For the FGM plate, the material properties used in this study are:

- Metal (Aluminum):
 \[E_{M} = 70 \ (GPa) ; \ \nu = 0.3 ; \ \alpha_{M} = 23 \times (10^{-6} / \degree C) \quad (21) \]
- Ceramic (Zirconia):
 \[E_{C} = 151 \ (GPa) ; \ \nu = 0.3 ; \ \alpha_{C} = 10 \times (10^{-6} / \degree C) \quad (22) \]

Numerical results are presented in terms of non-dimensional stresses and deflection. The different non-dimensional parameters used are:
The central arrow:

\[\bar{w} = \frac{10}{a \cdot q_0} w \left(\frac{a}{2}, \frac{b}{2} \right) \]

(23)

The axial stress:

\[\delta x = \frac{1}{10 \cdot q_0} \sigma_x \left(\frac{a}{2}, \frac{b}{2}, \frac{h}{2} \right) \]

(24)

The transverse shear stress:

\[\tau_{xz} = \frac{1}{10 \cdot q_0} \tau_{xz} \left(0, \frac{b}{2}, 0 \right) \]

(25)

The thickness coordinate:

\[z^\prime = z / h, D = \frac{\nu^3 E_c}{12 (1-\nu^2)} \]

(26)

The mathematical outcomes are given and depicted in figures 2-10 utilizing the refined segmental shear pressure hypothesis (RHSST), it doesn't need the shear adjustment factor and the quantity of obscure elements of the current hypothesis d The higher request is just four. We note that the shear rectification factor is taken as \(K = 5/6 \) in the main request shear pressure hypothesis (FSDPT).

Figure 2. Variation of the non-dimensional deflection (\(\bar{w} \)) through the thickness of a square FGM plate (p=2) for the different theories and for different slenderness ratios (a/h) with (q0=100, t_i=0).
Figure 3. Variation of the non-dimensional deflection (σ_x) through the thickness of a square FGM plate ($p=2$) for the different theories with ($q_0=100$, $t_i=0$).

The connection between the current hypothesis and the different high request and first request shear strain speculations and traditional hypothesis for plates (PSDPT, SSDPT, FSDPT, CPT) is appeared in figures 2-10. These figures additionally give the impacts of the variety of the estimations of the list of the volume portion p and the dispersion of the warm field in structure (uniform, direct and nonlinear) on the diversion (dimensionless) and the burdens for a rectangular FGM plate. Plainly the diversion diminishes as the angle proportion (a/h) increments.

Figure 4. Variation of the non-dimensional shear stress (τ_{xz}) through the thickness of a square FGM plate ($p=2$) for the different theories with ($q_0=100$, $t_i=0$).
Figures 2-4 show amazing arrangement of the current hypothesis with other high request shear strain speculations for a rectangular FGM plate under mechanical burden.

For figures 9-10, see that the requirements for a full fired plate are not equivalent to for a full metal plate. This is on the grounds that the plate is exposed to a temperature field.

The hub stress (σ_x), is appeared in figures 5 and 9. It tends to be seen that the most extreme compressive anxieties happen at a point close to the upper surface while the greatest ductile burdens are at a point close to the upper surface. base surface of the plate in FGM.

![Figure 5](image_url)

Figure 5. The effect of the heat load on the dimensionless central deflection (w) of a rectangular FGM plate ($p=2$) for the different aspect ratios (a/h) with ($b=2a$, $q_0=100$).

![Figure 6](image_url)

Figure 6. The effect of the heat load on the non-dimensional axial stress (σ_{xx}) of a rectangular FGM plate ($p=2$) for the different aspect ratios (a/h) with ($b=2a$, $q_0=100$).
Figures 6 and 10 illustrate the distributions through the thickness of the shear stress (τ_{xz}) of a square and rectangular FGM plate under thermal loads. The maximum values of (τ_{xz}) occur at ($z\cong1.0$) of the plate in FGM and not at the center of the plate as in the homogeneous case. Deflection, both axial stresses and shear stresses increase with increasing heat load.

Figure 7. The effect of the thermal load on the non-dimensional shear stress (τ_{xz}) of a rectangular FGM plate ($p=2$) for the different aspect ratios (a/h) with ($b=2a, q_0=100$).

Figure 8. The effect of the index of the volume fraction p on the dimensionless central deflection (w) of a rectangular FGM plate for the different slenderness ratios (a/h) with ($t_i=10, b=2a, q_0=100$).
5. Conclusion

In this work, we introduced the mathematical aftereffects of the static examination of composite material plates with explicit properties "Instance of a regular clay/metal FGM" in warm conditions, utilizing the refined hypothesis of exaggerated shear strain (RHSDT). The current hypothesis has solid similitude to old style plate hypothesis in numerous angles, doesn't need a shear rectification factor, and gives an exaggerated portrayal of the shear pressure through the thickness while fulfilling the state of zero shear weight on the free edges. Moreover, the current hypothesis demonstrates astounding concurrence with the traditional hypothesis SSDPT [18,19] and the third request hypothesis PSDPT [17]. Slopes in material properties...
assume a significant part in deciding the reaction of plaques to FGM. All similar examinations have demonstrated that the redirections and stresses got utilizing the present refined hypothesis (with four questions) and other high request shear strain speculations (five questions) are practically indistinguishable. In this manner, it very well may be said that the proposed hypothesis isn't simply exact yet additionally easy to contemplate and examine the thermomechanical twisting reaction of thick plates in FGM. Composite materials with property angles produced using a ceramic/metal blend "can withstand extraordinary temperatures. The combination of clay and metal with persistently shifting volume portion can dispose of interface issues of the materials. thick plates or sandwiches and the pressure circulations are consequently smooth.

References

[1] Swaminathan K and Sangeetha D M 2017 Thermal Analysis of FGM Plates – A Critical Review of Various Modelling Techniques and Solution Methods Composite Structures 160 43-60
[2] Paulino G H, Jin Z-H and Dodds R H 2017 Failure of Functionally Graded Materials Reference Module in Materials Science and Materials Engineering Elsevier 2-13
[3] Osófeso A I, Vo T P, Nguyen T-K and Lee J 2016 Analytical solution for vibration and buckling of functionally graded sandwich beams using various quasi-3D theories Journal of Sandwich Structures and Materials 3-29
[4] Amer Karnoub, Antypas I R, A Dyachenko A G and Savostina T P 2019 Buckling resistance of cylinders made of textile composite material IOP Conference Series: Earth and Environmental Science 403 1-10 https://doi.org/10.1088/1755-1315/403/1/012162
[5] Zhang D-G and Zhou Y-H 2008 A theoretical analysis of FGM thin plates based on physical neutral surface Computational Materials Science 71 6-20
[6] Zenkour A M 2009 The refined sinusoidal theory for FGM plates on elastic foundations International Journal of Mechanical Sciences 869-80
[7] Wattanasakulpong N 2014 Ungbhaorkorn V 2014 Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities Aerospace Science and Technology 111-20
[8] Amer Karnoub, Hajian Huang and Antypas I R 2020 Investigation of the impact behavior for composite materials reinforced by glass fibers Journal of Physics: Conference Series 1515 1-11 https://doi.org/10.1088/1742-6596/1515/4/042081
[9] Yahia S A, Atmane H A, Houari M S A and Tounsi A 2015 Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories Structural Engineering and Mechanics 143-65
[10] Paulino G H, Jin Z H and Dodds R H 2003 Failure of Functionally Graded Materials. Compr. Struct. Integrity. 2 607-44
[11] Amer Karnoub, Hajian Huang and Antypas I R 2020 Investigation of composite materials supported by carbon fiber fabric (TFC) in pre-cracked concrete beams Journal of Physics: Conference Series 1679(4) 042040
[12] Vo T P and Thai H T 2012 Free vibration of axially loaded rectangular composite beams using refined shear deformation theory Composite Structures 3379-87
[13] Amer Karnoub, Hajian Huang and Antypas I R 2020 Mechanical properties of composite material laminates reinforced by woven and non-woven glass fibers E3S Web of Conference 175 12005
[14] Biest O V D and Gasik M 2004 J. Vleugels, Functionally Graded Materials VIII : FGM Trans Tech Publications Ltd. Materials Science Forum (Uetikon-Zuerich) 492-3
[15] Meiche N El, Tounsi A, Ziane N, Mechab I, Adda Bedia E A 2011 A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate Int. J. Mech. Sci. 53(4) 237-47
[16] Bouderba B, Houari M S A and Tounsi A 2013 Thermomechanical bending response of FGM thick plates resting on winkler-pasternak elastic foundations Steel and Composite Structures 85-104
[17] Duc N D and Cong P H 2014 Nonlinear postbuckling of an eccentrically stiffened thin FGM plate resting on elastic foundations in thermal environments Thin-Walled Structures 103-12
[18] Simsek M 2010 Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories Nuclear Engineering and Design 697-705 doi:10.1016/0020-7225(91)90165-Y
[19] Zenkour A M 2009 The refined sinusoidal theory for FGM plates on elastic foundations Int. J. Mech. Sci. 51(11-12) 869-80