Mesoscopic model for the fluctuating hydrodynamics of binary and ternary mixtures

E. Tüzel(a), G. Pan, T. Ihle and D. M. Kroll

Department of Physics, North Dakota State University - P.O. Box 5566, Fargo, ND 58105, USA

received 18 July 2007; accepted in final form 18 September 2007
published online 23 October 2007

PACS 02.70.Ns – Molecular dynamics and particle methods
PACS 47.11.-j – Computational methods in fluid dynamics
PACS 05.40.-a – Fluctuation phenomena, random processes, noise, and Brownian motion

Abstract – A recently introduced particle-based model for fluid dynamics with continuous velocities is generalized to model immiscible binary mixtures. Excluded-volume interactions between the two components are modeled by stochastic multiparticle collisions which depend on the local velocities and densities. Momentum and energy are conserved locally, and entropically driven phase separation occurs for high collision rates. An explicit expression for the equation of state is derived, and the concentration dependence of the bulk free energy is shown to be the same as that of the Widom-Rowlinson model. Analytic results for the phase diagram are in excellent agreement with simulation data. Results for the interfacial tension obtained from the analysis of the capillary wavespectrum of a two-dimensional droplet agree with measurements based on the Laplace’s equation. The introduction of “amphiphilic” dimers makes it possible to model the phase behavior and dynamics of ternary surfactant mixtures.

Copyright © EPLA, 2007

Introduction. – Hydrodynamic interactions and thermal fluctuations play a crucial role in a wide range of phenomena in soft-matter physics and molecular and cellular biology. Because of the complexity of these systems, simulations have played an essential role in much of the research in these areas. In fact, the wide range of length and time scales in these problems places severe requirements on simulation protocol, and has led to the development of several new coarse-grained, mesoscale simulation techniques such as lattice gas automata [1], the lattice Boltzmann method [2–4], dissipative particle dynamics [5,6], smoothed particle hydrodynamics [7], and a newer approach variously called multi-particle collision dynamics or stochastic rotation dynamics (SRD) [8]. The basic motivation of all these approaches is to coarse-grain out irrelevant atomistic details while correctly incorporating the essential physics and conservation laws. In these models, hydrodynamic parameters are characterized by a set of dimensionless—e.g. the Schmidt, Reynolds, or Peclet—numbers, and mapping to real systems is achieved by matching these numbers to those of the problem of interest [9].

SRD has several attractive features which have led to its use in studies ranging from sedimentation in colloidal suspensions [9] to the dynamic behavior of polymers in solution [10,11] and vesicles in flow [12]. It enables simulations in the microcanonical ensemble while fully incorporating both hydrodynamic interactions and thermal fluctuations, and the coupling to colloidal particles, polymers, or other aggregates is easily realized through random collisions with the solvent particles. Finally, the simplicity of the algorithm has made it possible to obtain accurate analytic expressions for the transport coefficients [13–15].

Recently, the multi-particle collisions of the original SRD algorithm have been generalized to model excluded-volume effects, allowing for a more realistic modeling of dense gases and liquids with a nonideal equation of state [16,17]. In this letter we show that a similar approach can be used to model immiscible binary mixtures. There have been previous generalizations of the SRD algorithm to model phase separated binary and ternary mixtures [18–20]. However, the current work goes considerably beyond what was done previously in that we show that the algorithm is thermodynamically consistent and has an interfacial fluctuation dissipation theorem. In addition, the model retains much of the simplicity of the

(a) Present address: Institute for Mathematics and Its Applications, University of Minnesota, Minneapolis, MN, 55455, USA.
original SRD algorithm, allowing for a detailed analysis of the transport coefficients and an explicit calculation of the equation of state and the bulk entropy and free energy densities. Since there is no potential energy, all interactions in the model are entropic, and the resulting bulk free energy density is the same as that of the Widom-Rowlinson model [21]. Theoretical predictions for the phase diagram are shown to be in good agreement with simulation data, and results for the interfacial tension obtained from an analysis of the spectrum of capillary wave fluctuations agree with measurements based on the Laplace equation.

Model. -- In a binary mixture of A and B particles, phase separation can occur when there is an effective repulsion between A-B pairs. In the current model, this is achieved by introducing multi-particle collisions between A and B particles. The fluid is modeled by a large number \(N \) of point-like particles of mass \(m \) which move in continuous space with a continuous distribution of velocities. There are \(N_A \) and \(N_B \) particles of type A and B, respectively. In two dimensions, the system is coarse-grained into \((L/a)^2\) cells of a square lattice of linear dimension \(L \) and lattice constant \(a \). The generalization to three dimensions is straightforward. In the following, lengths are measured in units of \(a \), time in units of the time step \(\tau \), and mass in units of \(m \) —which is set to unity for simplicity.

To define the collisions, we introduce a second grid with sides of length \(2a \) which groups four adjacent cells into one “super-cell”. As discussed in [22], Galilean invariance requires that the collisions occur in a randomly shifted grid. All particles are shifted by the same random vector with components in the interval \([-a,a]\) before the collision step. Particles are then shifted back by the same amount after the collision. To initiate a collision, pairs of cells in every supercell are selected at random. As shown in fig. 1, three different choices are possible: a) horizontal (with \(\sigma_1 = \hat{x} \)), b) vertical (\(\sigma_2 = \hat{y} \)), and c) diagonal collisions (with \(\sigma_3 = (\hat{x} + \hat{y})/\sqrt{2} \) and \(\sigma_4 = (\hat{x} - \hat{y})/\sqrt{2} \)). For each pair of cells, two types of collisions are possible. As illustrated in fig. 1, particles of type A in the first cell can undergo a collision with particles of type B in the second cell; vice versa, particles of type B in the first cell can undergo a collision with particles of type A in the second cell. There are no A-A or B-B collisions, so there is an effective repulsion between A-B pairs.

The rules and probabilities for these collisions are chosen in the same way as in the nonideal single-component fluid described in refs. [16,23]. For example, consider the B particle in the first cell with the B particle in the second. The mean particle velocity of A particles in the first cell is \(\mathbf{u}_A = (1/n_A) \sum_{\nu=1}^{n_A} \mathbf{v}_\nu \), where the sum runs over all A particles, \(n_A \), in the first cell. Similarly, \(\mathbf{u}_B = (1/n_B) \sum_{\nu=1}^{n_B} \mathbf{v}_\nu \) is the mean velocity of B particles in the second cell. The projection of the difference of the mean velocities of the selected cell-pairs on \(\sigma_j \), \(\Delta u_{AB} = \sigma_j \cdot (\mathbf{u}_A - \mathbf{u}_B) \), is then used to determine the probability of collision. If \(\Delta u_{AB} < 0 \), no collision will be performed. For positive \(\Delta u_{AB} \), a collision will occur with an acceptance probability \(p_A(n_A, n_B, \Delta u_{AB}) = \min(1, A n_{AB} \Delta u_{AB} \Theta(\Delta u_{AB})) \), where \(\Theta \) is the unit step function and \(A \) is a parameter which allows us to tune the equation of state. In order to ensure thermodynamic consistency [17], for a given temperature \(T \) and cell particle density, \(A \) needs to be sufficiently small that the acceptance rate is not larger than 10–15\%. When a collision occurs, the parallel component of the mean velocities of colliding particles in the two cells is exchanged, \(u_{AB}^\parallel (t + \tau) - u_{AB}^\parallel = -(v_{i}^\parallel (t) - v_{AB}^\parallel) \), where \(u_{AB}^\parallel = (n_A u_{AA}^\parallel + n_B u_{BB}^\parallel)/(n_A + n_B) \) is the parallel component of the mean velocity of the colliding particles. The perpendicular component remains unchanged. It is easy to verify that these rules conserve momentum and energy in the cell pairs. The collision of B particles in the first cell with A particles in the second is handled in a similar fashion.

Because there are no A-A and B-B collisions, additional SRD collisions at the cell level are incorporated in order to mix particle momenta. The order of A-B and SRD collision is random. If necessary, the viscosity can be tuned by varying the frequency of SRD collisions. Similarly, mixtures in which the viscosities of the two components are not equal can be modeled by introducing different SRD collisions for each component. The results presented in this letter were obtained using a SRD collision angle of 90°.

Transport coefficients. -- The transport coefficients can be determined using the same Green-Kubo formalism as for the original SRD algorithm [13,22,24] and
its extensions [16,17,23]. In particular, the discrete Green-Kubo relation
\[\Lambda_{\alpha\beta}(\hat{k}) = \frac{\tau}{N k_B T} \sum_{n=0}^{\infty} \cdot \cdot \cdot g_{\alpha\beta}(\hat{k}; n\tau), \] (1)
with \(g_{\alpha\beta}(\hat{k}; t) \equiv \langle \hat{k}_\alpha \sigma_{\alpha\lambda}(0) \rangle \langle \hat{k}_\beta \sigma_{\beta\lambda}(t) \rangle \), expresses the matrix of viscous transport coefficients, \(\Lambda_{\alpha\beta}(\hat{k}) \), in terms of a sum of time correlation functions of the reduced fluxes
\[\hat{k}_\lambda \sigma_{\alpha\lambda}(t) \equiv \frac{1}{\tau} \sum_{j=1}^{N} (v_{ja}(t) \hat{k} \cdot \Delta \xi_j(t) + \Delta v_{ja}(t) \hat{k} \cdot \Delta \xi_j(t)), \]
\[[\Delta \xi_j^\alpha(t) - \xi_j^\alpha(t + \tau)/2] - \frac{\tau k_B}{d} \varepsilon_j^{\alpha\beta}(t), \] (2)
where \(\Delta \xi_j(t) = \xi_j(t + \tau) - \xi_j(t) \), \(\Delta v_{ja}(t) = v_{ja}(t + \tau) - v_{ja}(t) \) and \(\Delta \xi_j^\alpha(t) = \xi_j(t + \tau) - \xi_j^\alpha(t + \tau) \). \(\tau \) is the time step in the simulation and the prime on the sum in eq. (1) indicates that the \(n = 0 \) term has the relative weight 1/2. \(\xi_j(t) \) is the cell coordinate of particle \(j \) at time \(t = n\tau \), while \(\xi_j^\alpha \) is its cell coordinate in the (stochastically) shifted frame. \(\xi_j^\alpha(\tau) \) indexes pairs of cells which participate in a collision event at time \(\tau \); the second subscript, \(l \), is the index of the collision vectors \(\sigma_j \) shown in fig. 1. For example, for collisions characterized by \(\sigma_1 \), \(z_{j12}^\alpha \) is 1 if \(\xi_j^\alpha \) in eq. (2) is one of the two cells on the left of a supercell and \(z_{j12}^\alpha \) is 1 if \(\xi_j^\alpha \) is on the right-hand side of a supercell; all other components of \(z_{j12}^\alpha \) are zero. In general [23], the components of \(z_{j1}^\alpha \) are either 0, 1, or 1.

Assuming only cubic symmetry, the most general form of \(\Lambda_{\alpha\beta}(\hat{k}) \) in two dimensions is [13]
\[\Lambda_{\alpha\beta}(\hat{k}) \equiv \nu_1 \delta_{\alpha\beta} + \nu_2 (\delta_{\alpha\beta} - \hat{k}_a \hat{k}_\beta) + \gamma \hat{k}_a \hat{k}_\beta + \epsilon \hat{k}_a \hat{k}_\beta L_{\alpha\beta}, \] (3)
where \(\hat{I} \) is the rank-four unit tensor. \(\nu_2 \) is a new viscous transport coefficient associated with the non-symmetric part of the stress tensor, \(\gamma \) is the bulk viscosity and \(\epsilon \) is a viscosity coefficient which is nonzero only if there is cubic anisotropy. In a simple liquid, \(\epsilon = 0 \) (because of invariance with respect to infinitesimal rotations), \(\nu = \nu_1 \), and \(\nu_2 = 0 \) (because the stress tensor is symmetric in \(\delta_{\alpha\beta} \)).

Since both particle streaming and the collisions contribute to momentum transport, there are two —kinetic and collisional— contributions to the transport coefficients. The kinetic contribution dominates at large mean free paths, \(\lambda \), the collisional for \(\lambda/\alpha \ll 1 \). For the original SRD algorithm, the kinetic contribution is isotropic, so that there is only one viscosity, \(\nu \); the kinetic contribution to the bulk viscosity is also zero, as in a real ideal gas [15]. There is, however, a collisional contribution [13] to \(\nu_2 \).

In refs. [16,23] it was argued (for the nonideal model) that the probabilities of horizontal and vertical (\(w \)) and diagonal (\(w_d \)) collisions should be chosen so that the relaxation rate of the second moments of the velocity distribution function all decay at the same rate. This led to the requirement that \(w = 1/4 \) and \(w_d = 1/2 \). Here we show that the same result follows from the requirement that the kinetic contribution to the viscous stress tensor is symmetric, so that there is only one viscosity, and \(\epsilon = \gamma - w = 0 \). To see this, note first that for \(\alpha = \beta = 1 \) with \(\hat{k} = \hat{y} \) and \(\hat{k} = \hat{x} \), eqs. (1)-(3) give \(\gamma = -\epsilon = -\gamma = (\Delta \xi_j^\alpha(t) - \xi_j^\alpha(t + \tau)/2)/\tau k_B \), \(\Delta v_{ja}(t) \), and \(\Delta \xi_j^\alpha(t) \) in two dimensions; using this result and making the assumption of molecular chaos, the sum in eq. (1) reduces to a geometric series in \(g_{11}(\hat{k}; \tau) \). The calculation of these quantities requires that the contributions from the horizontal, \(g_{11}^H \), vertical, \(g_{11}^V \), and diagonal collisions, \(g_{11}^D \), be calculated individually and then summed in the form
\[g_{11}(\hat{k}; \tau) = w[g_{11}^H(\hat{k}; \tau) + g_{11}^V(\hat{k}; \tau)] + w_d g_{11}^D(\hat{k}; \tau). \] (4)

If \(g_{11}(\hat{y}; \tau) \neq g_{11}(\hat{x}; \tau) \), there is a cubic anisotropy. Ignoring fluctuations in the number of particles per cell, we find that \(g_{11}(\hat{y}; \tau) = g_{11}(\hat{x}; \tau) \) only if \(w = 1/4 \) and \(w_d = 1/2 \). In this case, the only non-zero viscosity is
\[\nu = \lambda_1(\hat{y}; \tau) = \frac{\tau k_B T}{2} \times \left(1 - \frac{1}{16} \left(\frac{2\pi}{k_B T} [M_A M_B (M_A + M_B)]^{-1/2} - 1 \right) \right), \] (5)
where \(M_A \equiv N_A/(L/a)^2 \) and \(M_B \equiv N_B/(L/a)^2 \). In deep quenches, the density of the minority phase is very small, and the nonideal contribution to the viscosity approaches zero, i.e. \(g(\tau) \sim 1 - O(\rho_A) \); in this case, the SRD collisions provide the dominant contribution to the viscosity.

Free energy. — An analytic expression for the equation of state can be derived by calculating the momentum transfer across a fixed surface, in much the same way as was done for the nonideal model in ref. [16]. The resulting expression for the nonideal contribution to pressure is
\[P = \left(w + \frac{w_d}{\sqrt{2}} \right) - \frac{\alpha T k_B T}{\alpha^T} = 1 \] (6)
where \(\rho_A \) and \(\rho_B \) are the densities of A and B and \(\Gamma \equiv \left(w + w_d \sqrt{2} \right) a^3 A/\tau \). In simulations, the total pressure can be measured by taking the ensemble average of the diagonal components of the microscopic stress tensor. In this way, the pressure can be measured locally, at the cell level. In particular, the pressure in a region consisting of \(N_c \) cells is
\[P = \frac{1}{\tau a^2 N_c} \sum_{c=1}^{N_c} \sum_{\alpha \epsilon e} \left[v_{\alpha \epsilon}^2 - \Delta v_{\alpha \epsilon} z_{\alpha \epsilon}^2 / 2 \right], \] (7)
where the second sum runs over the particles in cell \(c \).

The first term in eq. (7) is the ideal gas contribution to the pressure; the second term comes from the momentum
transfer between cells involved in the collision indexed by z^*. The results of measurements of the non-ideal contribution to the pressure obtained using eq. (7) are shown in fig. 2 for $k_BT=0.006$ (\bullet) and $k_BT=0.003$ (\circ). The lines are the theoretical predictions of eq. (6). For small values of ρ, the agreement between theory and simulation is excellent; deviations for larger ρ values are an indication that the model is no longer thermodynamically consistent [17], the phase diagram does not depend on the temperature.

Equation (6) can be used to determine the entropy density, s. The ideal gas contribution to s has the form [25]

$$s_{\text{ideal}} = \rho \varphi(T) - k_B [\rho_A \ln \rho_A + \rho_B \ln \rho_B],$$

where $\rho = \rho_A + \rho_B$. Since $\varphi(T)$ is independent of ρ_A and ρ_B, this term does not play a role in the current discussion. The nonideal contribution to the entropy density, s_n, can be obtained from eq. (6) using the thermodynamic relation [25]

$$P_n/T = s_n - \rho_A \partial s_n/\partial \rho_A - \rho_B \partial s_n/\partial \rho_B.$$

The result is $s_n = -k_BT \rho_A \Gamma \rho_B$, so that the total configurational contribution to the entropy density is

$$s = -k_B [\rho_A \ln \rho_A + \rho_B \ln \rho_B + \Gamma \rho_A \rho_B].$$

Since there is no configurational contribution to the internal energy in this model, the mean-field phase diagram can be determined by maximizing the entropy at fixed density ρ. The resulting demixing phase diagram as a function of $\rho\Gamma$ is shown in fig. 3. The critical point is located at $\rho_{AB} = 0$, $\rho\Gamma = 2$. For $\rho\Gamma < 2$, the order parameter $\rho_{AB} = 0$; for $\rho\Gamma > 2$, there is phase separation into coexisting A- and B-rich phases. Simulation results for ρ_{AB} obtained from density histograms are shown as full circles (\bullet). The dashed line is a plot of the leading singular behavior, $\rho_{AB} = \sqrt{3(\rho\Gamma - 2)}/2$, of the order parameter at the critical point. As can be seen, the agreement between the mean-field predictions and simulation are very good except close to the critical point, where the histogram method of determining the coexisting densities is unreliable and critical fluctuations could influence the shape of the coexistence curve.

Interfacial tension. – A configuration after 50000 time steps following a quench to point $\rho_{AB} = 0$, $\rho\Gamma = 3.62$ of the phase diagram is shown in the inset to fig. 3, and a snapshot of a fluctuating droplet at $\rho_{AB} = -0.6$, $\rho\Gamma = 3.62$ is shown in the inset to fig. 4. The amplitude of the capillary wave fluctuations of a droplet is determined by the interfacial tension, σ. Using the parametrization $r(\phi) = r_0 [1 + \sum_{k=-\infty}^{\infty} u_k \exp(ik\phi)]$ and choosing u_0 to fix the area of the droplet (to model an incompressible fluid), it can be shown that [26]

$$\langle |u_k|^2 \rangle = \frac{2k_BT}{\pi r_0 \sigma} \left(\frac{1}{k^2} \right),$$

Figure 4 contains a plot of $\langle |u_k|^2 \rangle$ as a function of mode number k for $A=0.45$ ($\rho\Gamma = 3.62$) and $A=0.60$.

40010-p4
Mesoscopic model for binary and ternary mixtures

Fig. 4: (Colour on-line) Dimensionless radial fluctuations, \(\langle |u_k|^2 \rangle \), as a function of the mode number \(k \) for \(A = 0.45 \) (●) and \(A = 0.60 \) (○), with \(k_B T = 0.0004 \). The average droplet radii are \(r_0 = 11.95 a \) and \(r_0 = 15.21 a \), respectively. The solid lines are fits to eq. (11). The inset shows a typical droplet configuration for \(A = 0.60 \) and \(k_B T = 0.0004 \). The deviations from scaling for large \(k \) are due to pixelation errors. Parameters: \(L/a = 64 \), \(M_A = 2 \), \(M_B = 8 \), \(a = 1 \) and \(\tau = 1 \).

Fig. 5: (Colour on-line) A snapshot showing a droplet in a mixture with \(N_A = 8192 \), \(N_B = 32768 \) and \(N_d = 1500 \) dimers after \(10^5 \) time steps. The initial configuration is a droplet with a homogeneous distribution of dimers. The dark (blue) and light (white) colored spheres indicate the A and B particles, respectively. For clarity, A particles in the bulk are smaller, and B particles in the bulk are not shown. Parameters: \(L/a = 64 \), \(M_A = 2 \), \(M_B = 8 \), \(A = 1.8 \), \(k_B T = 0.0001 \), \(\tau = 1 \) and \(a = 1 \).

\((\rho\Gamma = 2.72) \). Fits to the data yield \(\sigma a/k_B T \simeq 2.9 \) for \(\rho\Gamma = 3.62 \) and \(\sigma a/k_B T \simeq 1.1 \) for \(\rho\Gamma = 2.72 \). Mechanical equilibrium requires that the pressure difference across the interface of a droplet satisfies the Laplace equation,

\[
\Delta p = p_{in} - p_{out} = \sigma/r_0.
\]

Using eq. (7), we have determined \(\Delta p \) as a function of the droplet radius for \(A = 0.60 \) and \(k_B T = 0.0005 \). The results are plotted in the inset to fig. 2, where it can be seen that the Laplace relation is satisfied for the correct values of the interfacial tension.

The model therefore displays the correct thermodynamic behavior and interfacial fluctuations. It can also be extended to model amphiphilic mixtures by introducing dimers consisting of tethered A and B particles. If the A and B components of the dimers participate in the same collisions as the solvent, they behave like amphiphilic molecules in oil-water mixtures. The resulting model displays a rich phase behavior as a function of \(\rho\Gamma \) and the number of dimers, \(N_d \). We have observed both droplets and micelles, as shown in fig. 5, and a bicontinuous phase, as illustrated in fig. 6. The coarse-grained nature of the algorithm enables the study of large time scales with a feasible computational effort.

Support from the National Science Foundation under grant No. DMR-0513393 and ND EPSCoR through NSF grant EPS-0132289 are gratefully acknowledged. We thank A. J. Wagner for numerous discussions.

REFERENCES

[1] FRISCH U., HASSLACHER B. and POMEAU Y., Phys. Rev. Lett., 56 (1986) 1505.
[2] SUCCI S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, Oxford) 2001.
[3] SWIFT M. R., ORLANDINI E., OSBORN W. R. and YEOMANS J. M., Phys. Rev. E, 54 (1996) 5041.
[4] NEKOVEE M., COVENEY P. V., CHEN H. and BOGHOSIAN B. M., Phys. Rev. E, 62 (2000) 8282.
[5] Hoogerbrugge P. J. and Koelman J. M. V. A., Europhys. Lett., 19 (1992) 155.
[6] Groot R. D. and Warren P. B., J. Chem. Phys., 107 (1997) 4423.
[7] Espanol P. and Revena M., Phys. Rev. E, 67 (2003) 026705.
[8] Malevanets A. and Kapral R., J. Chem. Phys., 110 (1999) 8605; 112 (2000) 7260.
[9] Padding J. T. and Louis A. A., Phys. Rev. Lett., 93 (2004) 220601.
[10] Falck E., Punkkinen O., Vattulainen I. and Ala-Nissila T., Phys. Rev. E, 68 (2003) 050102(R).
[11] Mussawisade K., Ripoll M., Winkler R. G. and Gompper G., J. Chem. Phys., 123 (2005) 144905.
[12] Noguchi H. and Gompper G., Phys. Rev. Lett., 93 (2004) 258102.
[13] Ihle T., Tüzel E. and Kroll D. M., Phys. Rev. E, 70 (2004) 035701(R); 72 (2005) 046707.
[14] Pooley C. M. and Yeomans J. M., J. Phys. Chem. B, 109 (2005) 6505.
[15] Tüzel E., Ihle T. and Kroll D. M., Phys. Rev. E, 74 (2006) 056702.
[16] Ihle T., Tüzel E. and Kroll D. M., Europhys. Lett., 73 (2006) 664.
[17] Tüzel E., Ihle T. and Kroll D. M., Math. Comput. Simulat., 72 (2006) 232.
[18] Hashimoto Y., Chen Y. and Ohashi H., Comput. Phys. Commun., 129 (2000) 56.
[19] Sakai T., Chen Y. and Ohashi H., Phys. Rev. E, 65 (2002) 031503.
[20] Sakai T., Chen Y. and Ohashi H., Comput. Phys. Commun., 129 (2000) 75.
[21] Rowlinson J. S. and Widom B., Molecular Theory of Capillarity (Dover Publications, New York) 2002.
[22] Ihle T. and Kroll D. M., Phys. Rev. E, 63 (2001) 020201(R).
[23] Ihle T. and Tüzel E., to be published in Prog. Comput. Fluid Dyn., cond-mat/0610350.
[24] Ihle T. and Kroll D. M., Phys. Rev. E, 67 (2003) 066705.
[25] Callen H. B., Thermodynamics (Wiley, New York) 1960.
[26] Tüzel E., PhD Thesis, University of Minnesota, Minneapolis, MN, USA (December 2006).