Fertilization Recovery after Defective Sperm Cell Release in Arabidopsis

Ryushiro D. Kasahara,1,2 Daisuke Maruyama,1 Yuki Hamamura,1 Takashi Sakakibara,1 David Twell,3 and Tetsuya Higashiyama1,2,*
1Division of Biological Science, Graduate School of Science
2JST ERATO Higashiyama Live-Holonics Project
Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
3Department of Biology, University of Leicester, Leicester LE17RH, UK

Summary

In animal fertilization, multiple sperms typically arrive at an egg cell to “win the race” for fertilization. However, in flowering plants, only one of many pollen tubes, conveying plant sperm cells, usually arrives at each ovule that harbors an egg cell [1, 2]. Plant fertilization has thus been thought to depend on the fertility of a single pollen tube [1]. Here we report a fertilization recovery phenomenon in flowering plants that actively rescues the failure of fertilization of the first mutant pollen tube by attracting a second, functional pollen tube. Wild-type (WT) ovules of Arabidopsis thaliana frequently (~80%) accepted two pollen tubes when entered by mutant pollen defective in gamete fertility. In typical flowering plants, two synergid cells on the side of the egg cell attract pollen tubes [3–5], one of which degenerates upon pollen tube discharge [3, 6]. By semi-in vitro live-cell imaging [7, 8] we observed that fertilization was rescued when the second synergid cell accepted a WT pollen tube. Our results suggest that flowering plants precisely control the number of pollen tubes that arrive at each ovule and employ a fertilization recovery mechanism to maximize the likelihood of successful seed set.

Results and Discussion

Identification of the g21 Mutant Showing a Higher Rate of Successful Fertilization than Expected

The unique mode of sexual reproduction in angiosperms involves the production of two sperm cells and their delivery by a pollen tube to the female gametophyte (FG; egg producing tissue) within the ovule where double fertilization takes place [1]. Due to the limited number of studies of male-female interactions in vivo and their molecular mechanisms, we performed genetic screening in Arabidopsis thaliana plants for reduced fertility mutants. The screening was carried out in plants harboring the synergid-specific MYB98::GFP [9] marker by observing GFP signal from the synergid cells. As a primary screen, siliques of T-DNA mutagenized plants were opened and visually screened for reduced seed set. The secondary screen involved observation of the GFP signal from synergid cells when the siliques of T1 mutants showing reduced seed set were opened. This effectively allowed us to exclude mutants with genome rearrangements or early female gametophytic lethal mutants showing up to 50% of ovules that fail to show GFP signals from their synergid cells. The g21 mutant was isolated as a candidate gametophytic fertility mutant because it showed reduced seed set and all ovules had a GFP signal. Heterozygous g21 plants had a single sperm-like cell in 49.0% (n = 298) of the pollen population (Figures 1A and 1B). In theory, fully penetrant male gamete defective mutations are expected to show 50% fertility, but the fertility of such mutants has been a controversial issue [10, 11]. Curiously, +/g21 plants showed 64.6% ± 6.8% (mean ± SD; n = 22 pistils) fertility, a higher rate of successful fertilization than expected (50%) (Figures 1C and 1D).

We considered two possibilities for this enhanced-fertility phenotype in the g21 mutant. One, that a proportion (~30%) of g21 pollen tubes would not fail and so be able to fertilize and develop into seed. The other was that due to guidance defects in g21 pollen tubes, wild-type (WT) pollen tubes would preferentially increase the percentage seed set. Based on reciprocal testcross analysis (see Table S1 available online), the g21 allele showed no male transmission and most pollen tubes behaved normally when stained with aniline blue [10, 12] compared with the WT. We concluded that the enhanced fertility phenotype neither resulted from successful fertilization by a proportion of g21 tubes nor pollen tube guidance defects in g21 pollen tubes.

Attraction of Two Pollen Tubes Results in the Enhanced-Fertility Phenotype

Because techniques for the dissection of fragile plant tissues were required for critical whole-pistil observations, we improved methods for dissection and for microscopic observation. Remarkably, we observed that an ovule attracts two pollen tubes with high frequency in +/g21 pistils (Figures 1E and 1F), a phenomenon rarely observed in WT plants. We hypothesized that ovules receiving two pollen tubes would increase fertility in +/g21 mutants. To investigate this hypothesis, we counted the number of ovules that had one or two pollen tubes and scored their fertility when plants of +/g21 were crossed as the male parent to WT plants. We observed that 50.0% ± 4.9% (mean ± SD, n = 12 pistils) of developing seeds (Figure 1E) were fertilized by single pollen tube insertions, which would result from fertilization by pollen carrying the WT allele. Conversely, 18.2% ± 3.8% of developing seeds (Figure 1F) were fertilized ovules that received two pollen tubes, which likely accounts for the seed increase. Interestingly, similarly to the ratio of large seeds with two pollen tubes, 16.6% ± 4.0% were undeveloped seeds penetrated by two pollen tubes (Figures 1G and 1H). Because the +/g21 mutant showed an obvious male-specific phenotype with a single sperm-like cell in pollen and we mapped the responsible gene to chromosome 1, this indicated that the DUO POLLEN3 (DUO3) gene [13]. DNA sequence analysis and a complementation test confirmed g21 as a null allele of DUO3 that was designated duo3-2 (Figure S1). These data suggest that when the first pollen tube carrying duo3-2 fails to fertilize, a second WT pollen tube can surprisingly compensate for fertilization. Moreover, our data indicated that undeveloped seeds penetrated by two pollen tubes arise when first and second pollen tubes each carrying duo3-2 fail to fertilize.

*Correspondence: higashi@bio.nagoya-u.ac.jp
Because a previous report mentioned that the male gamete defective mutant *hapless* 2-1 (*hap2-1*) also had enhanced fertility [11], we carried out a similar analysis for *hap2-1*. We also investigated *duo pollen 1* (*duo1-1*) [14], *duo3-1* [13], and *generative cell specific 1* (*gcs1*) [10] (allelic to *hap2-1*) mutants because they also have defective male gametes leading to failure of fertilization. All mutants showed an increased fertility phenotype similar to *duo3-2* (Figure 1I). Furthermore, the percentage of developing seeds penetrated by two pollen tubes (Figure 1J; dark blue) corresponded to that of undeveloped seeds penetrated by two pollen tubes (Figure 1J; dark orange) as observed in *duo3-2*, indicating that two types of second pollen tube carrying either WT or mutant allele proportionally enter ovules, such that only half of the ovules with two pollen tubes develop into seeds. These data suggested that the enhanced-fertility phenomenon that is common to all three male gamete defective mutants may be explained by the same mechanism—failure of fertilization by a first mutant pollen tube that is rescued by a second WT pollen tube. In angiosperms, a pollen tube delivers nonmotile sperm cells accurately to the FG and completes fertilization. This is called “siphonogamy,” a mechanism that is thought to have evolved from zoosporogamy (fertilization by motile sperm) [15]. Here we define the term “polysiphonogamy” for cases in which an ovule accepts multiple pollen tubes.

Visualization of the Fertilization Recovery Phenomenon by a Semi-In Vitro Assay

To confirm that the fertilization recovery phenomenon is accomplished by polysiphonogamy and to visualize the moment of the recovery event, we crossed pollen from +/-*duo3-2* plants to WT stigmas and observed the destiny of the sperm cells using a semi-in vitro fertilization assay [7, 8, 16]. In WT, the two sperm cells successfully fertilized the egg cell and the central cell (Figures 2A–2F; Movie S1). However in +/-*duo3-2*, the mutated sperm cell was successfully released into the FG but the cell remained arrested near the degenerated synergid cell without fertilization (Figures 2G–2L; Movie S1). Next, we observed that the first pollen tube failed to fertilize, but remarkably, two sperm cells of the second pollen tube were discharged to the FG and their nuclei migrated to the nuclei of the egg cell and the central cell, respectively (Figures 2M–2R; Movie S2). We also confirmed these phenomena in the +/-*gcs1* mutant [10] (Figure S2; Movie S3). In total, we observed six examples in +/-*duo3-2* and +/-*gcs1* mutants, all of which showed that the first mutant pollen tube failed but the WT second pollen tube succeeded in double fertilization. These data indicate that the second pollen tube and the remaining synergid cell allow fertilization even though the first pollen tube fails to fertilize, thereby rescuing the defect in seed set.

Attraction and Insertion of the Second Pollen Tube by the Second Synergid Cell

We made another significant observation; that is, we never observed a third pollen tube entering the micropyle. As shown

Figure 1. Double Pollen Tubes of *g21* and Other Male Gametophytic Mutants Showing a Fertility Enhancing Phenotype

(A–D) DAPI staining [26] for pollen in WT (A) with two sperm cells (SC) and *g21* (B) with one sperm-like cell (SLC). Dissected siliques for self-pollinated WT (C) and +/-*g21* (D). Arrowheads indicate undeveloped seeds. +/-*g21* (D) showed ~70% fertility. (E–H) Confocal laser scanning microscopy images [27, 28] 3 days after self-pollination. Developing seeds (DS) with one (E) or two (F) pollen tube(s) and undeveloped seeds (US) with one (G) or two (H) pollen tube(s) are shown. Percentages indicate the ratio of each type of ovule within a silique.

(I) Percentage fertility 3 days after self-pollination of WT, +/-*duo3-2* (*g21*), +/-*duo1-1*, +/-*duo3-1*, and +/-*hap2-1*. Developing seeds (blue) and undeveloped seeds (orange) are indicated. Male gametophyte (MG) mutants showed 60%–70% fertility similar to each other.

(J) Percentages of developing seeds with one (blue) or two (dark blue) pollen tube(s) and undeveloped seeds with one (orange) or two (dark orange) pollen tube(s) in 3-day-old out-crossed plants (female, +/-; male, +/-*duo3-2*). Percentages of developing seeds in (I) correspond to the sum of developing seeds in (J), suggesting that second pollen tubes increase the fertility in MG mutants. PT1, pollen tube 1; PT2, pollen tube 2. Scale bars in (A) and (B) represent 10 μm, in (C) and (D) represent 500 μm, and in (E–H) represent 20 μm.
in Figures 2M–2R and Movie S2, every time the pollen tube discharges its contents into the FG, the synergid cell degenerates. Loss of both synergid cells would prevent pollen tube attraction [4, 9], possibly due to the loss of attractants [5, 17], explaining why only two, but not three or more pollen tubes, are attracted in male gamete defective mutants. Although female gametophytic mutants defective in pollen tube guidance (myb98) [9] and pollen tube reception (fer/sir and lolelei) [18–20] sometimes attract more than three pollen tubes, the number of pollen tubes appears to be strictly controlled in WT ovules. We conclude that the recovery of fertilization is limited to the second pollen tube, indicating that there is no third chance for fertilization in two-synergid celled plants. In theory, multiple-synergid celled plants as reported in the ig1 mutant of maize [21] may therefore have a greater capacity to attract multiple pollen tubes. In fact, the three-synergid celled female gametophytes present in Amborella trichopoda [22] sometimes attract three pollen tubes [23], suggesting that some plants might have a third chance to compensate for failed fertilization.

Fertilization Recovery by the Second Pollen Tube Is Restricted Only When the First Tube Fails

To confirm that the recovery event takes place only when the first tube fails during fertilization, we double-stained +/-hap2-1 pollen tubes for β-glucuronidase (GUS) activity...
followed by aniline blue staining to trace the behavior of the first and the second pollen tubes (Figures 3A–3D). Because hap2-1 mutant pollen tubes are marked by the pollen tube-specific reporter gene, LAT52:GUS [11, 24], we could trace the destination of hap2-1 mutant pollen tubes in vivo. Moreover, the hap2-1 mutant was generated by an insertion of T-DNA harboring the LAT52:GUS reporter gene, so GUS-positive signals originate from hap2-1 alleles, whereas WT alleles are GUS-negative. We counted the number of the GUS-positive ovules, providing evidence of a burst hap2-1 pollen tube and gamete release into the FG, by crossing +/hap2-1 as a male parent to WT flowers. As shown in Figure 3E, 10 hr after pollination, we observed that 49.4% ± 4.8% (n = 5 pistils) of the ovules accepted a hap2-1 allele, suggesting that hap2-1 and WT pollen tubes were similarly competent to enter each FG and release their contents successfully. It has been suggested by von Besser et al. [11] that hap2-1 sperm cells affect pollen tube guidance [11]. However, judging from duo3-2 (g21) data
(Figure S1) and our hap2-1 data, we conclude that the sperm cells appear to be passive cargo of the pollen tube and do not influence pollen tube guidance.

To explore the temporal sequence of events involved in the rescue of fertilization after failure of the first mutant pollen tube in vivo, we performed a time course experiment by double-staining of pollen tubes. Ovules began to accept pollen tubes from 5 hr after pollination (5 HAP), and at 10 HAP, all ovules accepted at least one pollen tube as reported previously [6]. At 10 HAP, 6.3% ± 2.7% (mean ± SD, n = 5 pistils) of GUS-positive ovules had attracted two pollen tubes (Figure 3E). However, by 20 HAP, 38.5% ± 8.7% (n = 7) of GUS-positive ovules had attracted two tubes (note that the frequency of GUS-positive ovules with a single hap2-1 pollen tube decreased accordingly). In contrast, at 10 HAP, no ovules (n = 5 pistils) accepting a WT allele had attracted two pollen tubes (Figure 3F) and by 20 HAP, only 2.7% ± 2.7% (n = 7) of ovules had attracted two WT tubes, indicating that second pollen tubes were attracted at a much higher frequency by ovules that had first accepted a hap2-1 pollen tube. We conclude that ovules have an unknown system that senses the completion of fertilization and might prevent other pollen tubes from entering the micropyle. However, if the first pollen tube fails to fertilize, ovules do not sense the completion of fertilization, allowing the attraction of a second pollen tube and its entry into the micropyle (Figure 3G).

It has long been suggested that only one pollen tube principally enters and releases sperm cells into an ovule [1, 7]. Although classical studies [1], in at least 13 species, have reported rare cases of two pollen tubes in an embryo sac and Mori et al. showed that an ovule rarely had two sets of sperm cell pairs after pollination with +/gcs1 pollen [10], these have been regarded as anomalous events [1]. We showed that most ovules have one pollen tube at 10 HAP, indicating that until several hr after the arrival of the first pollen tube, the one tube—one ovule system might be maintained by a blocking system to avoid polysiphonogamy [2]. Then, the second pollen tube starts to be attracted again by ovules that failed at fertilization in hap2-1. In this case, the persistent synergid cell, which may begin to degenerate in fertilized ovules [1], continued to attract pollen tubes, resulting in 76.7% ± 2.7% (n = 5) of failed ovules accepting the second pollen tube at 28 HAP. No particular role has been proposed for the persistent synergid cell after the arrival of the first pollen tube [1, 3, 7]. However, we demonstrate that the second synergid cell retains its function and is able to attract and accept a second tube to rescue fertilization. This could be one of the reasons why two synergid cells are present in many higher plants. Further, we observed that it takes 28 hr for all second tubes to complete their entrance into the ovules. This result indicates that some pollen tubes are maintained inside the pistil for an extended time providing an opportunity to compensate for the failure of other pollen tubes.

Conclusions

Overall, we have unveiled a fertilization recovery system that allows plants to restore ovule fertility after initial failure of fertilization within the ovule. Further investigation of this phenomenon could advance the understanding of how natural populations of sympatric species are maintained. For example, heterospecific pollen tubes interfere with the fertilization of ovules by conspecific pollen by various mechanisms [25]. When heterospecific pollen tubes are able to enter the ovules but fail at steps leading to gamete fusion, fertilization recovery by conspecific pollen tubes could diminish the detrimental effect of pollen competition, contributing to the maintenance of reproductively isolated populations of sympatric species.

Supplemental Information

Supplemental information includes two figures, one table, Supplemental Experimental Procedures, and three movies and can be found with this article online at doi:10.1016/j.cub.2012.03.069.

Acknowledgments

We thank G. Drews for critical comments, D. Kurihara for providing RPSSAp::H2B-tdTomato plants, N. Iwata for assistance in preparing plant materials, and T. Endo for providing support in the Endo laboratory confocal microscope facility. D.M. was supported by Global Center of Excellence program (Nagoya University) and grant number 6526 from the Japan Society for the Promotion of Science Fellowships. Y.H. was supported by grant number 9138 from the Japan Society for the Promotion of Science Fellowships. This work was supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (numbers 18075004 and 19370017 to T.H.), the Japan Science and Technology Agency (PRESTO project to T.H.), the Yamada Science Foundation (to T.H.), the Mitsubishi Foundation (to T.H.), and the Biotecnology and Biological Sciences Research Council (to D.T.).

Received: February 24, 2012
Revised: March 27, 2012
Accepted: March 28, 2012
Published online: May 17, 2012

References

1. Maheshwari, P. (1950). An Introduction to the Embryology of Angiosperms (New York: McGraw-Hill).
2. Spielman, M., and Scott, R.J. (2008). Polyspermy barriers in plants: from preventing to promoting fertilization. Sex. Plant Reprod. 21, 53–65.
3. Higashiyama, T., Yabe, S., Sasaki, N., Nishimura, Y., Miyagishima, S., Kuroiwa, H., and Kuroiwa, T. (2001). Pollen tube entry by the synergid cell. Science 293, 1480–1483.
4. Okuda, S., Tsutsui, H., Shina, K., Ito, Y., Kayama, H., Yui, R., Kasahara, R.D., Hamamura, Y., Mizukami, A., Susaki, D., et al. (2009). Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458, 357–361.
5. Sandaklie-Nikolova, L., Palanivelu, R., King, E.I., Copenhaver, G.P., and Drews, G.N. (2007). Synergid cell death in Arabidopsis is triggered following direct interaction with the pollen tube. Plant Physiol. 144, 1753–1762.
6. Palanivelu, R., and Preuss, D. (2006). Distinct short-range ovule signals attract or repel Arabidopsis thaliana pollen tubes in vitro. BMC Plant Biol. 6, 7.
7. Okuda, S., Yabe, S., Sasaki, N., Nishimura, Y., Miyagishima, S., and Drews, G.N. (2009). MYB98 is required for pollen tube guidance and synergid cell differentiation in Arabidopsis. Plant Cell 17, 2981–2992.
8. Mori, T., Kuroiwa, H., Higashiyama, T., and Kuroiwa, T. (2006). GENERATIVE CELL SPECIFIC1 is essential for angiosperm fertilization. Nat. Cell Biol. 8, 64–71.
9. von Besser, K., Frank, A.C., Johnson, M.A., and Preuss, D. (2006). Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. Development 133, 4761–4769.
10. Hough, T., Bernhardt, P., Knox, R.B., and Williams, E.G. (1985). Applications of fluorochromes to pollen biology. I. The DNA probes ethidium bromide and Hoechst 33258 in conjunction with the callose-specific aniline blue fluorochrome. Stain Technol. 60, 155–162.
13. Brownfield, L., Hafidh, S., Durbarr, A., Khatab, H., Sidorova, A., Doerner, P., and Twell, D. (2009). Arabidopsis DUO POLLEN3 is a key regulator of male germline development and embryogenesis. Plant Cell 21, 1940–1956.

14. Rotman, N., Durbarr, A., Wardle, A., Yang, W.C., Chaboud, A., Faure, J.E., Berger, F., and Twell, D. (2005). A novel class of MYB factors controls sperm-cell formation in plants. Curr. Biol. 15, 244–248.

15. Fernando, D.D., Quinn, C.R., Brenner, E.D., and Owens, J.N. (2010). Male gametophyte development and evolution in extant gymnosperms. Int. J. Plant Dev. Biol. 4, 47–63.

16. Berger, F., Hamamura, Y., Ingouff, M., and Higashiyama, T. (2008). Double fertilization - caught in the act. Trends Plant Sci. 13, 437–443.

17. Takeuchi, H., and Higashiyama, T. (2011). Attraction of tip-growing pollen tubes by the female gametophyte. Curr. Opin. Plant Biol. 14, 614–621.

18. Escobar-Restrepo, J.M., Huck, N., Kessler, S., Gagliardini, V., Gheyseleinck, J., Yang, W.C., and Grossniklaus, U. (2007). The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317, 656–660.

19. Rotman, N., Rozier, F., Boavida, L., Dumas, C., Berger, F., and Faure, J.E. (2003). Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr. Biol. 13, 432–436.

20. Capron, A., Gourgues, M., Neiva, L.S., Faure, J.E., Berger, F., Pagnussat, G., Krishnan, A., Alvarez-Meija, C., Vielle-Calzada, J.P., Lee, Y.R., et al. (2008). Maternal control of male-gamete delivery in Arabidopsis involves a putative GPI-anchored protein encoded by the LORELEI gene. Plant Cell 20, 3038–3049.

21. Guo, F., Huang, B.Q., Han, Y., and Zee, S.Y. (2004). Fertilization in maize indeterminate gametophyte1 mutant. Protoplasma 223, 111–120.

22. Friedman, W.E. (2006). Embryological evidence for developmental lability during early angiosperm evolution. Nature 441, 337–340.

23. Williams, J.H. (2009). Amborella trichopoda (Amborellaceae) and the evolutionary developmental origins of the angiosperm progamic phase. Am. J. Bot. 96, 144–165.

24. Johnson, M.A., von Besser, K., Zhou, Q., Smith, E., Aux, G., Patton, D., Levin, J.Z., and Preuss, D. (2004). Arabidopsis hapless mutations define essential gametophytic functions. Genetics 168, 971–982.

25. Morales, C.L., and Traveset, A. (2008). Interspecific Pollen Transfer: Magnitude, Prevalence and Consequences for Plant Fitness. Crit. Rev. Plant Sci. 27, 221–238.

26. Park, S.K., Howden, R., and Twell, D. (1998). The Arabidopsis thaliana gametophytic mutation gemini pollen1 disrupts microspore polarity, division asymmetry and pollen cell fate. Development 125, 3789–3799.

27. Drews, G.N., Lee, D., and Christensen, C.A. (1998). Genetic analysis of female gametophyte development and function. Plant Cell 10, 5–17.

28. Christensen, C.A., Subramanian, S., and Drews, G.N. (1998). Identification of gametophytic mutations affecting female gametophyte development in Arabidopsis. Dev. Biol. 202, 136–151.

29. Fu, Y., Xu, T., Zhu, L., Wen, M., and Yang, Z.A. (2009). A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr. Biol. 19, 1827–1832.

30. Adachi, S., Minamisawa, K., Okushima, Y., Inagaki, S., Yoshiyama, K., Kondou, Y., Kaminuma, E., Kawashima, M., Toyoda, T., Matsui, M., et al. (2011). Programmed induction of endoreduplication by DNA double-strand breaks in Arabidopsis. Proc. Natl. Acad. Sci. USA 108, 10004–10009.