Chromosomal localization of genes conferring desirable agronomic traits from *Agropyron cristatum* chromosome 1P

Cui Li Pan, Qingfeng Li, Yuqing Lu, Jinfeng Zhang, Xinning Yang, Xiuquan Li, Lihui Li*, Weihua Liu*

1 National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China, 2 College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China

*These authors contributed equally to this work.

Abstract

Agropyron cristatum (L.) Gaertn. (2n = 4x = 28, PPPP), a wild relative of common wheat, possesses many potentially valuable genes for wheat breeding. To transfer these genes into wheat, a series of wheat-*A. cristatum* derivatives have been obtained in our laboratory. In this study, a wheat-*A. cristatum* derivative II-3-1 was obtained, which was proven to contain a 1P (1A) disomic substitution and 2P disomic addition line with 40 wheat chromosomes and two pairs of *A. cristatum* chromosomes by genomic in situ hybridization (GISH) and molecular markers analysis. By further backcrossing with the wheat parent Fukuhokomugi (Fukuho) and self-fertilization, three different lines were separated from II-3-1, including wheat-*A. cristatum* 1P disomic addition line II-3-1a, 2P disomic addition line II-3-1b and 1P (1A) disomic substitution line II-3-1c. Because 2P addition line had been reported before, we aimed to investigate 1P disomic addition line II-3-1a and wheat-*A. cristatum* 1P (1A) disomic substitution line II-3-1c. Analysis of different genetic populations demonstrated that 1P chromosome harbored multiple agronomic traits, such as elevated spike length, increased tillering ability, reduced plant height and spikelet density. Besides, bristles on the glume ridges as an important morphological marker was located on 1P chromosome. Therefore, the novel 1P addition and substitution lines will be used as important genetic materials to widen the genetic resources of wheat.

Introduction

Wild relatives of wheat belonging to tertiary gene pools are valuable sources of new genetic variation for wheat improvement [1]. *Agropyron* genus, which mainly includes *A. cristatum* (L.) Gaertn., *A. desertorum* (Fisch.) Schult., *A. fragile* (Roth.) Candargy, *A. michanoi* Roshev. and *A. mongolicum* Keng, is an important genus related to wheat and has three ploidy levels in nature, i.e. diploid (2n = 2x = 14, PP), tetraploid (2n = 4x = 28, PPPP) and hexaploid (2n = 6x = 42, PPPPPP) [2]. *A. cristatum* is the most common species of *Agropyron* genus distributed on...
Desirable agronomic traits from chromosome 1P

Materials and methods

Plant materials

Common wheat cv. Fukuho and *Agropyron cristatum* cv. Z559 were used as recipient parent and control, respectively. II-3-1 was identified from the F3 progenies of Z559 and Fukuho. II-3-1a and II-3-1b were isolated from the BC2F2 derived from the hybridization between II-3-1 and Fukuho. II-3-1 was backcrossed with common wheat Fukuho firstly, followed by the self-pollination for three times. II-3-1c was selected from F4 generation. The genetic populations BC1F2 and BC2F2 were from then backcrossing and self-pollination of II-3-1a and Fukuho. All the materials were developed and provided by the Center of Crop Germplasm Resources Research in the Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.

Cytological analyses of mitosis and meiosis

Chromosome preparations of root tips were made according to the previously described procedure [26]. For the pollen mother cells meiosis studies, the procedures were followed by Jauhar and Peterson [27].
Genome In Situ Hybridization (GISH)

The alien *A. cristatum* chromosomes were detected by GISH using *A. cristatum* cv. Z559 genome DNA as probe and common wheat cv. Fukuho genome DNA as blocker. The total genomic DNA of common wheat Fukuho and *A. cristatum* Z559 were isolated using a modified CTAB method [28]. The GISH procedure was described by Liu et al. [29].

Fluorescence In Situ Hybridization (FISH)

Probe pAs1 from *Aegilops tauschii* Coss. combined with probe pHvG39 from barley could distinguish A, B and D genome of common wheat [30]. *A. cristatum* repeats sequence pAcTRT1 and pAcpCR2 probes presenting different signals on different *A. cristatum* chromosomes could detect which *A. cristatum* chromosomes was included [24]. FISH procedure was described by Luan et al. [15]. All cytological images were observed under an OLYMPUS AX80 (Olympus Corporation, Tokyo, Japan) fluorescence microscope and captured with a CCD camera (Diagnostic Instruments, Inc., Sterling Heights, MI, USA).

Molecular markers analysis

In order to identify alien chromosomes and determine homoeologous relationships between *A. cristatum* and wheat chromosomes in II-3-1, II-3-1a, II-3-1b, and II-3-1c, a total of 92 *A. cristatum* EST-STS markers from *A. cristatum* transcriptome sequences that corresponding to wheat homoeologous group 1 and 2 were used [25]. To detect presence/absence of wheat chromosomes in II-3-1 and II-3-1c, 33 wheat SSR markers located on wheat chromosome 1A, 1B and 1D were screened from the GrainGenes 2.0 website (https://wheat.pw.usda.gov/GG3/). All the information of primers was listed in S1 and S2 Tables. PCR amplification procedure and electrophoresis were described by Luan et al. [15].

Evaluation of agronomic traits

The addition line II-3-1a, substitution line II-3-1c, and their parents II-3-1 and Fukuho were planted at the experimental farm of Xinxiang of Henan province in China in two sowing seasons (2014–2015 and 2015–2016). All the materials were planted in the randomized block arrangement with three repeats with spacing 30 cm apart and rows 2.0 m long with 20 grains per row. Plant height, spike length, spikelets per spike, kernels per middle spikelet, kernels per main spike, fertile tiller numbers, thousand grain weight and bristles on the glume ridges were evaluated. Similarly, two populations developed from continuous backcrosses and selfcrosses of II-3-1a and the recurrent parent Fukuho. These populations were planted in the 2014–2015 and 2015–2016 growing season to evaluate the key agronomic traits. Each individual was identified with the P genome-specific STS markers, and each population was then divided into two groups according to the absence of *A. cristatum* 1P specific markers. All the traits were measured on each plant from the segregating populations and on 20 plants randomly selected from the parents II-3-1, II-3-1a, II-3-1c and Fukuho. The data was analyzed by the Statistical Analysis System version 9.2 (SAS Institute Inc., Cary, NC, USA) adopting Duncan’s multiple range tests analysis of variance at the P = 0.05 significance levels.

Results

Chromosome composition analysis of II-3-1

Chromosome counting and GISH analysis showed that there were 44 chromosomes in the somatic cells of II-3-1, including 40 wheat chromosomes (shown in blue) and 4 *A. cristatum* chromosomes (shown in red) (Fig 1a). Chromosomal configurations at the metaphase I of
pollen mother cells were counted in II-3-1, showing 2n = 22 II, with averages of 0.36 univalents, 2.18 rod bivalents, 19.55 ring bivalents, and 0.06 trivalents (Table 1). The presence of twenty wheat bivalents (shown in blue) and two A. cristatum bivalents (shown in red) suggested that the behaviors of chromosome pairing were regular (Fig 1b). All the results indicated that II-3-1 containing two pairs of A. cristatum chromosomes was cytologically stable.

Fig 1. GISH-FISH patterns of the root cells and pollen mother cells at meiotic metaphase I of II-3-1. (a) GISH analysis of II-3-1 showing red hybridization signals evenly distributed on P chromosomes with A. cristatum genomic DNA as the probe and Fukuho DNA as the blocker. Wheat chromosomes were counterstained with DAPI (blue). (b) Pollen mother cells of II-3-1 at meiotic metaphase I. (c) FISH detection of chromosome 1P and 2P using pAcTRT1 and pAcPCR2 as probes. (d) FISH detection using pAs1 (red) and pHvG38 (green) repetitive DNA as probes showing that 1A chromosomes are missing in II-3-1.

https://doi.org/10.1371/journal.pone.0175265.g001
FISH using pAcTRT1 and pAcpCR2 as probes demonstrated that the two pairs of chromosomes added to II-3-1 were 1P and 2P, respectively (Fig 1c). In order to detect which wheat chromosomes were absent in II-3-1, GISH-FISH and wheat SSR markers were used. GISH-FISH results demonstrated that a pair of *A. cristatum* chromosomes were replaced with a pair of wheat 1A chromosomes (Fig 1d). Thirty-three wheat SSR markers on wheat 1A, 1B and 1D were chose to further confirm detect which wheat chromosomes were absent in II-3-1. The results showed that 6 markers on chromosome 1B and 9 markers on chromosome 1D displayed specific bands in II-3-1 (Fig 2a and 2b), while 18 markers on chromosome 1A displayed no specific bands (Fig 2c). This result was consistent with the result of GISH-FISH identification, both of which indicated that the 1A chromosomes were substituted in II-3-1. In addition, three 1A-specific markers (barc287, cfe267, and cfe77) polymorphism between chromosomes 1P and 1A were screened (Fig 2d), suggesting that the added alien chromosomes and the absent wheat chromosomes belonged to the same homoeologous group. What’s more, fifty-six *A. cristatum* EST-STS markers aligned to wheat homoeologous group 1 and thirty-six aligned to wheat homoeologous group 2 can both amplified specific products in II-3-1 (Fig 2e and 2f). In conclusion, wheat-*A. cristatum* derivative II-3-1 contained a 1P (1A) disomic substitution and 2P disomic addition line.

Production and molecular cytogenetic identification of 1P chromosomal addition line

II-3-1a was obtained from the BC$_2$F$_2$ progenies of II-3-1 and Fukuho (Table 1). They formed 22 bivalents with an average pairing frequency of $2n = 44 = 0.61 + 2.29$ rod II + 19.41 ring II during meiotic metaphase I. GISH results of somatic cells showed that they contained 44 chromosomes including 42 wheat chromosomes and 2 of *A. cristatum* (Fig 3a and 3b). FISH identification with pAcTRT1 and pAcpCR2 as probes showed that the pair of chromosomes added were *A. cristatum* 1P (Fig 3c). Fifty-six *A. cristatum* EST-STS markers of group 1 also gave specific products to II-3-1a (Fig 2e). Those markers specific to 1P could not only be used to trace and identify chromosome 1P but also locate desirable genes.

Production and molecular cytogenetic identification of 1P chromosomal substitution line

II-3-1c was identified from the F$_4$ progenies of II-3-1 (Fig 4a). Chromosome configuration at meiotic MI of PMCs showed 21 bivalents with an average pairing frequency of $2n = 42 = 0.16$

Materials	2n	No. of cells	Univalent	Bivalent	Chromosome configuration	trivalent
II-3-1	44	120	0.36	2.18	Rod: 19.55, Ring: 21.73	0.06
			(0–3)	(1–4)	(18–22)	(21–22)
II-3-1a	44	120	0.60	2.29	Rod: 19.41, Ring: 21.70	
			(0–2)	(0–3)	(19–22)	(21–22)
II-3-1c	42	120	0.16	1.23	Rod: 19.60, Ring: 20.84	0.05
			(0–2)	(1–3)	(19–21)	(20–21)
Fukuho	42	100	0.06	1.95	Rod: 19.32, Ring: 20.97	
			(0–2)	(1–4)	(17–21)	(20–21)

https://doi.org/10.1371/journal.pone.0175265.t001
I + 1.23 rod II + 19.60 II ring + 0.05 trivalents during meiotic metaphase I (Fig 4b) (Table 1).

FISH identification with pAcTRT1 and pAcpCR2 probes demonstrated that the two A. cristatum chromosomes in II-3-1c were a pair of A. cristatum 1P chromosomes (Fig 4c). All the fifty-six EST-STS markers specific to chromosome 1P could be amplified characteristic products in II-3-1c (Fig 2e). GISH-FISH identification indicated that the substituted wheat
chromosomes were a pair of chromosomes 1A (Fig 4d). The molecular cytogenetic identification suggested that II-3-1c was a stable wheat-\textit{A. cristatum} 1P (1A) substitution line.

The analysis of desirable genes for wheat improvement on chromosome 1P

The statistic analysis suggested that 1P addition line II-3-1a differed from Fukuho in plant height (Fig 5a), spike length (Fig 5b), spikelet density, effective tiller numbers and the bristles on the glume ridges (Fig 5c) in the sowing years 2014–2015 and 2015–2016 (Table 2). In order to define the source of these traits, 1P addition line II-3-1a was crossed with common wheat Fukuho to construct BC\textsubscript{1}F\textsubscript{2} and BC\textsubscript{2}F\textsubscript{2} populations. In BC\textsubscript{1}F\textsubscript{2} and BC\textsubscript{2}F\textsubscript{2} populations, the average height of plants with chromosome 1P were 89.55 cm and 75.85 cm, respectively, significantly lower than those without 1P which were 94.41 cm and 80.00 cm, respectively. The average spikelet density of plants carrying chromosome 1P were 15.58 and 16.58, respectively, significantly lower than those lack of chromosome 1P which were 17.20 and 18.37, respectively. The average spike length of plants with chromosome 1P were 11.12 cm and 10.75 cm, respectively, significantly longer than those without chromosome 1P which were 9.85 cm and 9.66 cm, respectively. The average tiller numbers of plants carrying chromosome 1P were

Fig 3. GISH-FISH patterns of the root cells and pollen mother cells at meiotic metaphase I of II-3-1a. (a) GISH analysis of II-3-1a showing red hybridization signals evenly distributed on P chromosomes with \textit{A. cristatum} genomic DNA as the probe and Fukuho DNA as the blocker. Wheat chromosomes were counterstained with DAPI (blue). (b) Pollen mother cells of II-3-1a at meiotic metaphase I. (c) FISH detection of chromosome 1P and 2P using pAcTRT1 and pAcpCR2 as probes.

https://doi.org/10.1371/journal.pone.0175265.g003
23.18 and 18.00, respectively, more than those lack of chromosomes 1P which were 18.28 and 13.73, respectively. The bristles were present on the glume ridges in the plants with chromosome 1P and absent in the plants without 1P chromosomes, confirming that the gene controlling bristles on the glume ridges were located on chromosome 1P. The results above confirmed that the variation of plant height, spike length, spikelet density, tiller numbers and

Fig 4. GISH-FISH patterns of the root cells and pollen mother cells at meiotic metaphase I of II-3-1c. (a) GISH analysis of II-3-1c showing red hybridization signals evenly distributed on P chromosomes with A. cristatum genomic DNA as the probe and Fukuho DNA as the blocker. Wheat chromosomes were counterstained with DAPI (blue). (b) Pollen mother cells of II-3-1c at meiotic metaphase I. (c) FISH detection of chromosome 1P and 2P use pAcTRT1 and pAcpCR2 as probes. (d) FISH using pAs1 (red) and pHvG38 (green) repetitive DNA as probes showing that 1A chromosomes are missing in II-3-1c.

https://doi.org/10.1371/journal.pone.0175265.g004
Table 2. Evaluation of agronomic traits of II-3-1a, II-3-1c, Fukuho and genetic populations derived from II-3-1a and Fukuho.

Year	Materials	PH(cm)	SL(cm)	SNPS	SD	KNMS	GNPS	FTN	TGW(g)	WGB
2015	Fukuho	94.32±4.91a	10.18±1.01b	18.55±1.21a	17.37±2.04a	4.55±0.52a	64.27±7.04a	18.91±5.32b	34.96±2.98a	no
	II-3-1a	88.92±6.10b	11.15±0.73a	18.53±1.16a	15.81±1.20b	4.08±0.51a	60.67±5.07ab	24.58±4.94a	32.72±5.19a	yes
	II-3-1c	83.78±3.38c	9.36±0.63c	17.78±0.83a	18.02±1.66a	4.44±0.53a	58.00±8.11b	25.00±6.44a	23.83±2.10b	yes
	BC1F2	88.65±5.41b	11.14±0.74a	18.40±2.22a	15.58±1.24b	4.20±0.42a	60.20±4.80ab	24.10±3.41a	33.16±4.40a	yes
	BC1F2 +	94.45±4.50a	10.34±0.58b	18.73±1.19a	17.20±1.57a	4.45±0.52a	64.09±5.17a	18.27±3.44b	34.64±4.07a	no
	BC1F2 -	94.45±4.50a	10.34±0.58b	18.73±1.19a	17.20±1.57a	4.45±0.52a	64.09±5.17a	18.27±3.44b	34.64±4.07a	no
2016	Fukuho	81.26±2.69a	9.57±0.59b	18.55±1.05a	18.41±1.54a	4.95±0.39a	69.80±4.53ab	13.75±3.46b	36.77±3.60a	no
	II-3-1a	74.36±4.28b	10.75±0.71a	18.31±1.32a	16.19±1.74b	5.15±0.38a	71.92±5.83a	17.15±3.18a	34.18±2.39a	yes
	II-3-1c	69.74±2.21c	8.49±0.40c	17.07±0.83a	18.97±1.30a	5.07±0.28a	65.14±4.07b	17.21±2.33a	26.38±1.15b	yes
	BC2F2 +	75.85±2.82b	10.75±0.49a	18.82±1.08a	16.58±1.03b	4.91±0.30a	71.91±10.27a	18.00±2.28a	34.95±3.32a	yes
	BC2F2 -	81.33±2.79a	9.66±0.36b	18.73±0.70a	18.37±0.80a	4.93±0.26a	69.73±5.09ab	13.73±2.15b	36.63±5.17a	no

Note: PH, Plant height; SL, Spike length; SNPS, Spikelet number per spike; SD, spikelets density; KNMS, Kernel number in the middle spikelet; GNPS, Grain number per spike; FTN, Fertile tiller number per plant; TGW, Thousand-grain weight; WGB, wheat glume bristles. '+' indicated the progenies contained A. cristatum 1P chromatin; '-' indicated the progenies contained no A. cristatum 1P chromatin. Significant differences in the mean are indicated at the P < 0.05 (lower-case letters) levels, based on Duncan’s multiple range tests.

https://doi.org/10.1371/journal.pone.0175265.t002
bristles on the glume ridges were affected by chromosome 1P. Therefore, wheat-\textit{A. crista\-tum}\ 1P addition line II-3-1a could be a potential breeding material to reduce plant height and spikelet density, and to improve spike length and tillering ability. Additionally, the presence of bristles on the glume ridges was a typical characteristic of chromosome 1P which could be used to identify and trace the plants carrying 1P chromosome in segregating progenies. The wheat-\textit{Agropyron cristatum} 1P addition line II-3-1a and 1P (1A) substitution line II-3-1c could provide novel genetic resources for producing translocation line for wheat improvement.

Discussion

Potential value of production of wheat-\textit{A. crista\-tum} disomic 1P addition line and 1P (1A) substitution line

Hybridization between wheat and its wild related species facilitates the utilization of exogenous desirable genes for wheat improvement. The disomic addition and substitution lines play bridge tools for the transfer of exogenous genes. To date, a large number of wild relatives of wheat have been used to establish disomic addition lines by hybridizing with wheat, such as \textit{Thinopyrum intermedium} [31–33], \textit{Secale cereale} L. [34], \textit{Dasypyrum villosum} [35], and \textit{Hordeum vulgare} [36–37]. Disomic addition lines could be used to locate genes on the alien chromosome and induce translocation line by \textit{Ph1b} gene, gametocidal chromosome or ionizing irradiation. However, alien chromosomes might be lost in the disomic addition line during self-fertilization because of its limited stability. Since alien chromosomes in the substitution lines showed the homoeologous compensation with the substituted wheat chromosomes, so wheat breeders tend to use substitution lines in breeding program. To produce disomic substitution lines, disomic addition lines were always backcrossed by the responding nullisomic of common wheat. For example, wheat-barely 2H addition line was backcrossed by 2D nullisomic of wheat to get 2H-2D substitution line [38]. The monosome substitution line produced by the cross of disomic substitution line with common wheat could generate the translocation line due to misdivision. So the translocation lines were more stable and more useful for investigating homoeologous compensation between the alien segments and the deleted wheat segments, and for breeding new variety. In this study, a wheat-\textit{A. crista\-tum} 1P addition line and a 1P (1A) substitution line was obtained respectively, which not only laid a good foundation for the research of genes on 1P chromosome but also provided materials for the production of translocation lines.

Identification of \textit{A. crista\-tum} 1P chromosomes in addition and substitution lines with molecular markers

Improvement of sequencing technologies and reduction of its cost laid good foundation for developing diverse functional molecular markers [20]. Molecular markers have potential to trace alien genes from wild species, identify homoeologous relationship between alien and wheat chromosomes and provide additional markers for comparative mapping. The transferability of wheat SSR markers was particularly important for genetic analysis, especially for the wheat-related species that had no genomic libraries [39]. Because EST sequences are always present in the expressed regions and conserved in gene transcripts, EST markers have been used to research homoeologous relationships among the species of \textit{Poaceae}. For examples, wheat EST-SSR markers were used to determine the chromosome 5Ns in wheat-\textit{Psathyrostachys huashanica} disomic addition line [40]. Four SSR markers showing length-polymorphisms between chromosomes 6B and 6G were obtained to monitor the 6B and 6G chromosomes in segregating generations involving the 6G (6B) substitution line [41]. In our study, three wheat
SSR markers (cfe267, cfe77, and barc287) that could distinguish wheat chromosome 1A and A. cristatum chromosome 1P were screened. These three polymorphic markers could not only be used to monitor the 1P chromosome in segregating populations but also demonstrate the homoeologous relationship between 1A and 1P.

A. cristatum P-genome-specific markers have also made great progress due to the improvement of sequencing technologies. Wu et al. [23] obtained three SCAR markers using A. cristatum repetitive sequence. Han et al. [24] separated two A. cristatum repetitive sequence which could recognize A. cristatum chromosomes using DOP-PCR, and P-genome-specific STS primers were developed from A. cristatum transcriptome sequences [25]. A. cristatum STS markers were used to determine wheat-A. cristatum 6P addition line and locate genes on different chromosome segments [8, 15–17, 42]. In this study, 56 EST-STS markers specific to chromosome 1P were screened from A. cristatum transcriptome sequences that aligned on wheat homoeologous group 1. Those results demonstrated that the alien chromosomes in II-3-1a and II-3-1c were homoeologous group 1.

Genes on chromosome 1P are potentially valuable in wheat breeding

Wild relatives of wheat are ideal gene pools for disease resistance, yield and quality. Many excellent alien genes have been transferred into wheat and played important roles in wheat improvement. In wheat production, the T1B.1R translocation line showing resistance against rust and powdery mildew, as well as good yielding capacity was efficiently used in wheat breeding programme [43–45]. A. cristatum, one important wild relatives of wheat, has various excellent genes. In this study, we found that multiple genes which controlling spike length, strengthen tillering ability, lower plant height and reduce spikelet density were located on chromosome 1P. The dwarfing genes Rht-B1, Rht-D1 and Rht8 had played great roles in deducing wheat plant height [46, 47]. Our results showed that the plants with chromosome 1P were significantly lower than those without chromosome 1P. It was predicted that chromosome 1P contained a novel dwarf genes which will provide new source for the dwarf gene family. Chromosome 1P also carried a gene (s) controlling the presence of bristles on the glume ridges which could be a typical characteristic to trace and identify 1P chromosomes. The wheat-A. cristatum 1P addition line and 1P (1A) substitution line will provide more useful genes and many great genetic diversity for wheat improvement.

Supporting information

S1 Table. Primer sequences of 56 1P-specific STS markers and 36 2P-specific STS markers. (DOC)

S2 Table. Primer sequences of wheat chromosome 1A, 1B, and 1D-specific SSR and EST markers. (DOC)

Acknowledgments

This work was funded by the National Key Research and Development Program of China (2016YFD0100102 and 2016YFD0100302).

Author Contributions

Conceptualization: LHL WHL.

Data curation: CLP QFL YQL JPZ XMY XQL.
Formal analysis: CLP QFL.

Funding acquisition: LHL YQL WHL.

Investigation: CLP.

Methodology: CLP QFL.

Project administration: LHL YQL WHL.

Resources: LHL WHL.

Software: CLP QFL.

Supervision: LHL WHL.

Validation: LHL WHL CLP.

Visualization: LHL WHL.

Writing – original draft: CLP QFL.

Writing – review & editing: CLP QFL YQL LHL WHL.

References

1. Mullan DJ, Platteter A, Teakle NL, Appels R, Colmer TD, Anderson JM, et al. EST-derived SSR markers from defined regions of the wheat genome to identify *Lophopyrum elongatum* specific loci. *Genome*. 2005; 48(5): 811–822. https://doi.org/10.1139/g05-040 PMID: 16391687

2. Dewey DR. The genomic system of classification as a guide to intergeneric hybridization with the perennial *Triticeae*. Springer US; 1984.

3. Li LH, Dong YC. Hybridization between *Triticum aestivum* L. and *Agropyron michnoi* Roshev. 1991; Theor Appl Genet. 81: 312–316. https://doi.org/10.1007/BF00228669 PMID: 24221258

4. Han HM, Bai L, Su JJ, Zhang JP, Song LQ, Gao AN, et al. Genetic rearrangements of six wheat-*Agropyron cristatum* 6P addition lines revealed by molecular markers. *PloS One*. 2014; 9(3): e91066. https://doi.org/10.1371/journal.pone.0091066 PMID: 24595330

5. Li OF, Lu YQ, Pan CL, Zhang JP, Liu WH, Yang XM, et al. Characterization of a novel wheat-*Agropyron cristatum* 2P disomic addition line with powdery mildew resistance. *Crop sci.* 2016; 56 (5): 2390–2400.

6. Bayat H, Nemati H, Tehranifar A, Gazanchian A. Screening different crested wheatgrass (*Agropyron cristatum* (L.) Gaertner) accessions for drought stress tolerance. *Archives of Agronomy and Soil Science*. 2016; 62(6): 769–780.

7. Wu J, Yang XM, Wang H, Li HJ, Li LH, Li XQ, et al. The introgression of chromosome 6P specifying for increased numbers of florets and kernels from *Agropyron cristatum* into wheat. *Theor Appl Genet*. 2006; 114(1): 13–20. https://doi.org/10.1007/s00122-006-0405-0 PMID: 17031609

8. Zhang J, Zhang JP, Liu WH, Wu XY, Yang XM, Li XQ, et al. An intercalary translocation from *Agropyron cristatum* 6P chromosome into common wheat confers enhanced kernel number per spike. *Planta*. 2016; 244: 853–864. https://doi.org/10.1007/s00425-016-2550-2 PMID: 27246315

9. Chen Q, Jahier J, Cauderon Y. Intergeneric hybrids between *Triticum aestivum* and three crested wheatgrasses: *Agropyron mongolicum*, *A. michnoi*, and *A. desertorum*. *Genome*. 1990; 33(5): 663–667.

10. Limin AE, Fowler DB. An interspecific hybrid and amphiploid produced from *Triticum aestivum* crosses with *Agropyron cristatum* and *Agropyron desertorum*. *Genome*. 1990; 33: 581–584.

11. Ahmad F, Comeau A. A new intergeneric hybrid between *Triticum aestivum* L. and *Agropyron fragile* (Roth) Candargy: variation in A. fragile for suppression of the wheat Ph-locus activity. *Plant Breed.* 1991; 106: 275–283.

12. Li LH, Li XQ, Li P, Dong YC, Zhao GS. Establishment of wheat-*Agropyron cristatum* alien addition lines. I. Cytology of F_{2}, F_{2} BC_{1}, BC_{2}, and BC_{3}F_{1} progenies. *Acta Genetica Sinica*. 1997; 24: 154–159.

13. Li LH, Yang XM, Zhou RH, Li XQ, Dong YC. Establishment of wheat-*Agropyron cristatum* alien addition lines II. Identification of alien chromosomes and analysis of development approaches. *Acta Genetica Sinica*. 1998; 25: 538–544.
14. Li HH, Lv MJ, Song LQ, Zhang JP, Gao AN, Li LH, et al. Production and identification of wheat-*Agropyron cristatum* 2P translocation lines. PloS one. 2016; 11(1): e0145928. https://doi.org/10.1371/journal.pone.0145928 PMID: 26731742

15. Luan Y, Wang XG, Liu WH, Li CY, Zhang JP, Gao AN, et al. Production and identification of wheat-*Agropyron cristatum* 6P translocation lines. Planta. 2010; 232(2): 501–510. https://doi.org/10.1007/s00425-010-1187-9 PMID: 20490543

16. Song LQ, Jiang LL, Han HM, Gao AN, Yang XM, Li LH, et al. Efficient induction of wheat-*Agropyron cristatum* 6P translocation lines and GISH detection. PLoS One. 2013; 8(7): e69501. https://doi.org/10.1371/journal.pone.0069501 PMID: 23874966

17. Ye XL, Lu YQ, Liu WH, Chen GY, Han HM, Zhang JP, et al. The effects of chromosome 6P on fertile tiller number of wheat as revealed in wheat-*Agropyron cristatum* chromosome 5A/6P translocation lines. Theor Appl Genet. 2015; 128(5): 797–811. https://doi.org/10.1007/s00122-015-2466-4 PMID: 25656149

18. Lu MJ, Lu YQ, Li HH, Pan CL, Guo Y, Zhang JP, et al. Transferring desirable genes from *Agropyron cristatum* 7P chromosome into common wheat. PloS one. 2016; 11(7): e0159577. https://doi.org/10.1371/journal.pone.0159577 PMID: 27459347

19. Ananthawat-Jonsson K, Reader SM. Pre-annealing of total genomic DNA probes for simultaneous genomic in situ hybridization. Genome. 1995; 38(4): 814–816. PMID: 7672611

20. Niu ZX, Klindworth DL, Friesen TL, Chao SM, Jin Y, Cai XW, et al. Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics. 2011; 187:1011–1021. https://doi.org/10.1534/genetics.110.123588 PMID: 21242535

21. Sharp PJ, Chao S, Desai S, Gale MD. The isolation, characterization and application in the *Triticaceae* of a set of wheat RFLP probes identifying each homoeologous chromosome arm. Theor Appl Genet. 1989; 78(3): 342–348. https://doi.org/10.1007/BF00265294 PMID: 24227239

22. Li GR, Wang HJ, Lang T, Li JB, La SX, Yang EN, et al. New molecular markers and cytogenetic probes enable chromosome identification of wheat-*Thinopyrum intermedium*. Planta. 2016; 244: 865–876. https://doi.org/10.1007/s00425-016-2554-y PMID: 27290728

23. Wu M, Zhang JP, Wang JC, Yang XM, Gao AN, Zhang XK, et al. Cloning and characterization of repetitive sequences and development of SCAR markers specific for the P genome of *Agropyron cristatum*. Euphytica. 2010; 172(3): 363–372.

24. Han HM, Liu WH, Li YQ, Zhang JP, Yang XM, Li XQ, et al. Isolation and application of P genome-specific DNA sequences of *Agropyron* Gaertn. in *Triticaceae*. Planta. 2016; 245 (2): 425–437. https://doi.org/10.1007/s00425-016-2616-1 PMID: 27832372

25. Zhang JP, Liu WH, Han HM, Bai L, Song LQ, Gao ZH, et al. De novo transcriptome sequencing of *Agropyron cristatum* to identify available gene resources for the enhancement of wheat. Genomics. 2015; 106(2): 129–136. https://doi.org/10.1016/j.jgenet.2015.04.003 PMID: 25889708

26. Cuadraado A, Schwarzacher T, Jouve N. Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides. Theor Appl Genet. 2000; 101(5–6): 711–717.

27. Jauhar PP, Peterson TS. Cytological analyses of hybrids and derivatives of hybrids between durum wheat and *Thinopyrum bessarabicum*, using multicolour fluorescent GISH. Plant breed. 2006; 125(1): 19–26.

28. Dellaporta SL, Wood J, Hicks JB. A plant DNA minipreparation: version II. Plant molecular biology reporter. 1983; 1(4): 19–21.

29. Liu WH, Luan Y, Wang JC, Wang XG, Su JJ, Zhang JP, et al. Production and identification of wheat-*Agropyron cristatum* (1.4P) alien translocation lines. Genome. 2010; 53: 472–481. https://doi.org/10.1139/g10-023 PMID: 20555436

30. Pedersen C, Langridge P. Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome. 1997; 40(5): 589–593. PMID: 18464850

31. Larkin PJ, Banks PM, Lagudah ES, Appels R, Chen X, Xin ZY, et al. Disomic *Thinopyrum intermedium* addition lines in wheat with barley yellow dwarf virus resistance and with rust resistances. Genome. 1995; 38(2): 385–394. PMID: 18470177

32. Lin ZS, Huang DH, Du LP, Ye XG, Xin ZY. Identification of wheat-*Thinopyrum intermedium* 2Ai-2 ditelosomic addition and substitution lines with resistance to barley yellow dwarf virus. Plant breed. 2006; 125(2): 114–119.

33. Wang YH, Wang HG. Molecular cytogenetic characterization of three novel wheat-*Thinopyrum intermedium* addition lines with novel storage protein subunits and resistance to both powdery mildew and stripe rust. Journal of Genetics and Genomics. 2016; 1 (43): 45–48.
34. Schneider A, Rakszegi M, Molnár-Láng M, Szakács É. Production and cytomo molecular identification of new wheat-perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R). Theor Appl Genet. 2016; 129 (5): 1045–1059. https://doi.org/10.1007/s00122-016-2682-6 PMID: 26883040

35. Blanco A, Simeone R, Resta P. The addition of Dasypyrum villosum (L.) Candargy chromosomes to durum wheat (Triticum durum Desf.). Theor Appl Genet. 1987; 74(3): 328–333. https://doi.org/10.1007/BF00274714 PMID: 24241669

36. Islam A, Shepherd KW. Production of disomic wheat-barley chromosome addition lines using Hordeum bulbosum crosses. Genetic Research. 1981; 37(02): 215–219.

37. Taketa S, Takeda K. Production and characterization of a complete set of wheat-wild barley (Hordeum vulgare ssp. spontaneum) chromosome addition lines. Breed sci. 2001; 51(3): 199–206.

38. Liu SH, Chen XH, Li Z, Yan ZL, Cai ZH. Creation and Identification of Wheat-Barley Alien Substitution Line. Acta Botanica Boreali-Occidentalia Sinica. 2008; 28(8): 1554–1558.

39. Dobrovolskaya OB, Sourdille P, Bernard M, Salina EA. Chromosome synteny of the A genome of two evolutionary wheat lines. Russian journal of genetics. 2009; 45(11): 1368–1375.

40. Du WL, Wang J, Lu M, Sun SG, Chen XH, Zhao JX, et al. Molecular cytogenetic identification of a wheat-Paesthyrostachys huashanica Keng 5Ns disomic addition line with stripe rust resistance. Mol breed. 2013; 31(4): 879–888.

41. Uhrin A, Szakács É, Láng L, Bedő Z, Molnár-Láng M. Molecular cytogenetic characterization and SSR marker analysis of a leaf rust resistant wheat line carrying a 6G (6B) substitution from Triticum timopheevii (Zhuk.). Euphytica. 2002; 186(1): 45–55.

42. Song LQ, Lu YQ, Zhang JP, Pan CL, Yang XM, Li XQ, et al. Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background. Theor Appl Genet. 2016; 129(5): 1023–1034. https://doi.org/10.1007/s00122-016-2680-8 PMID: 26920547

43. Villareal RL, Rajaram S, Mujeeb-Kazi A, Toro DE. The effect of chromosome 1B/1R translocation on the yield potential of certain spring wheats (Triticum aestivum L.). Plant Breed. 1991; 106(1): 77–81.

44. Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996; 91(1): 59–87.

45. Ren TH, Yang ZJ, Yan BJ, Zhang HQ, Fu SL, Ren ZL. Development and characterization of a new 1BL:1RS translocation line with resistance to stripe rust and powdery mildew of wheat. Euphytica. 2009; 169(2): 207–213.

46. Sourdille P, Charmet G, Trottet M, Tixier MH, Boue C, Negre S, et al. Linkage between RFLP molecular markers and the dwarfing genes Rht-B1 and Rht-D1 in wheat. Hereditas. 1998; 128(1): 41–46.

47. Korzun V, Röder MS, Ganal MW, Worland AJ, Law CN. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet. 1998; 96(8): 1104–1109.