Coherent keV backscattering from plasma-wave boosted relativistic electron mirrors

F. Y. Li, 1 Z. M. Sheng, 1, 2 M. Chen, 1 H. C. Wu, 3 Y. Liu, 1 J. Meyer-ter-Vehn, 4 W. B. Mori, 5 and J. Zhang 1

1) Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2) SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
3) Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027, China
4) Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany
5) University of California, Los Angeles, California 90095-1547, USA

A new parameter regime of laser wakefield acceleration driven by sub-petawatt femtosecond lasers is proposed, which enables the generation of relativistic electron mirrors further accelerated by the plasma wave. Integrated particle-in-cell simulation including the mirror formation and Thomson scattering demonstrates that efficient coherent backscattering up to keV photon energy can be obtained with moderate driver laser intensities and high density gas targets.

Recently tremendous interest for x-ray generation has been drawn to intense laser-matter interactions. They promise ultrashort ultracompact x-ray sources compared to large conventional facilities such as x-ray free electron lasers (XFEL). Various schemes have so far been developed including high harmonic generation from either gas 22, 23 or solid targets 24 laser-driven Kα source 22, plasma acceleration based betatron radiation 25, etc. Among these schemes, a simple and efficient approach is based on laser-driven relativistic electron mirrors. They may compress femtosecond probe pulses to attosecond and boost photon energy by factors $\Gamma = 4\gamma_x^2$, where $\gamma_x = (1 - v_x^2/c^2)^{-1/2}$ is the relativistic Lorentz factor related to the mirror’s normal velocity v_x. Laser-driven plasma provides a rich source of such mirrors 26 and some involving interaction with solid 27, 28 are dense enough for coherent backscattering.

In underdense plasma, density crests of strongly driven plasma waves (or when close to wave breaking) develop converging spikes and have also been suggested as relativistic flying mirrors 29, 30. This regime is of particular interest for experiments because high repetition rates are possible with gas targets as well as using less challenge conditions compared to the solid schemes which demand extremely high laser contrast. However, there remains a couple of issues when using the flying mirror for coherent backscattering up to keV photon energy. They are mainly due to the limitation for the Doppler factors determined by the phase velocity of the plasma wave (v_p), i.e., $\Gamma \leq 4\gamma_p^2 = 4/(1 - v_p^2/c^2) \approx 4n_c/n_0$; n_0 and n_c are the ambient electron density and the critical density, respectively 25, 31. The existing experiments 22, 23 have suggested limited $\Gamma < 100$ for n_0 at a few 10^{19} cm$^{-3}$. Reducing n_0 can give larger Γ, but also requiring stronger driver to approach the wavebreaking limit 25. Meanwhile, it is preferred to a broad laser focal spot, e.g., $\sigma_0 > \sqrt{\alpha_0\gamma_p}\pi$, is used to drive the wake in the quasi-one-dimensional (quasi-1D) regime 23, 24 so that it can provide a flat mirror plane for collimated backscattering. Here, λ_p is the plasma wavelength and $a_0 = 8.5 \times 10^{-19}\lambda_0[\mu m]\sqrt{I_0[\text{W/cm}^2]}$ is the normalized laser amplitude with λ_0 the laser wavelength and I_0 the peak intensity. Tremendous incident peak power, $P_0 \propto a_0^2\sigma_0^2 \propto n_0^{-4}$, is then required at low n_0 for high Γ factors. More critically, the exact breaking point, crucial for efficient backscattering, is actually hard to achieve in quasi-1D thermal plasma 22. Instead, wave breaking often occurs as the laser pulse evolves significantly (including self-modulation and self-focusing) and drives the wake in the bubble regime 23, 24 with an evidence of generating energetic electron beams 22. As a result, backscattering off such near-spherical bubble shell leads to extremely large radiation divergence.

The aim of this Letter is to report a scenario that can overcome the above shortages and result in coherent Thomson backscattering up to keV photon energy using reasonable driver conditions. The key point is to break the constraint set by the wave’s phase velocity v_p. The way to achieve this is to drive the wake even harder and let the mirror be properly injected into the plasma wave. Consequently, the Doppler factor of the mirror is boosted by wakefield acceleration 25, not limited any more by v_p. As we shall see, the only limitation now turns out to be γ_x rising above some threshold, at which the scattered light degrades into incoherent pulses. With this scenario low density n_0 is not necessarily used for high Γ factors. Instead, high density gas targets can be employed which, as we have argued, will reduce the peak laser power required.

It is clear that synchronous injection of the singular density crest is desired so that the mirror spike can be accelerated as a whole. Normally, quasi-continuous injection is found, which produces femtosecond narrow electron bunches. Such bunches have been used for incoherent backscattering 25, 31. To make the sharp injection possible, two steps are necessary. The first is to drive the wake close to breaking but without injection. Specifically, a density ramp up with proper gradients can be used to suppress electron injection for the first few wave buckets behind the driver 22, 23. It is due to the fact that, along the ramp, the wave can travel at a superluminal phase speed even for high nonlinearity. As a result, the density crests can be stably compressed into spikes without premature injection. The free of injection eventually terminates as the laser pulse propagates through the ramp to a following uniform density where the wave’s phase speed becomes sub-
luminal. This refers to the second step as sharp injection. As the phase speed falls below the light speed abruptly at the density transition region, a major part of the tightly compressed density crest is injected as a whole. Details of the controlled injection are described in a previous publication[29].

This sharp injection actually works over a wide range of plasma densities, and for given density the laser amplitude only has to meet some threshold. Here, in order to drive the boosted mirrors with reasonable laser conditions, we propose using high density gas plasmas (~ 10^{19} \text{cm}^{-3}) so that a laser focal spot of 10 \sim 20 \mu m is sufficient for wake excitation in the quasi-1D regime. Notice that most experiments on wakefield acceleration are currently operated in the bubble regime in low densities (10^{17} \sim 10^{18} \text{cm}^{-3}) for generating GeV beams.[11,12] However, it is the essence of the new parameter regime that allows for the trapping of dense electron sheets and the consequent generation of coherent keV backscattering instead of incoherent sources normally obtained so far.[23,25-27]

Below we demonstrate coherent backscattering off the injected mirror via particle-in-cell (PIC) simulation.[33] At first 1D PIC simulations are used to illustrate the basic features. The interaction geometry is shown in Fig. 1(a). A 12.5-cycle driving laser, polarized along z axis, propagates in the +z direction. Its dimensionless amplitude is a_0 = 6, corresponding to I_0 = 7.7 \times 10^{19} \text{W/cm}^2 for \lambda_0 = 0.8 \mu m. The plasma density is n_0 = 7 \times 10^{19} \text{cm}^{-3} at x \in [45, 75] \mu m with a 45 \mu m long ramping front. The probe pulse, polarized along y axis, propagates in the opposite direction and is appropriately delayed so that it meets the first density spike shortly after the sharp injection, i.e., the moment depicted in Fig. 1(a). The probe pulse with amplitude a_{pr} = 0.1 has the same frequency as the driver (\omega_{pr} = \omega_0 = 2\pi c/\lambda_0) and takes a 12.5-cycle rectangle shape in time domain. In the simulation, 4000 cells per micron are used to resolve the high-frequency backscattering. An isotropic electron temperature is initialized, e.g., 10s eV in the transverse direction and much lower in the longitudinal direction. The low longitudinal temperature is acceptable in experiments as the electrons released from atoms by pre-pulse ionization are first dominant in transverse quiver motion at subpicosecond time scale.

The inset of Fig. 1(a) shows a closer look of the injected density spike. A remarkable feature is the very sharp front edge[34] which, as expanded in phase space x-p_y [see the inset of Fig. 1(b)], shows a monoenergetic peak of p_x \sim 10 or \gamma_x \simeq 10.5. The evolution of this peak \gamma_x around the injection instant is given in Fig. 1(b). It is seen that \gamma_x is boosted by wakefield acceleration after t = 56 \mu m/c. Before that it is kept at about 5.5, in consistent with the estimation from \gamma_p \simeq \sqrt{n_e/n_0} = 5. Fig. 1(c), most importantly, presents the spectrum of the scattered pulse. It exhibits an ultrabroad bandwidth extending up to k_{x}/\kappa_0 \simeq 1000 or 1.5 keV in photon energy, with \kappa_0 = 2\pi/\lambda_0. The corresponding spatial profile (see the inset therein) consists of only 3.5 cycles, rather than 12.5 cycles for the probe pulse. This self-contraction effect[33] is mainly ascribed to high enough \gamma_x, for which the coherent reflection condition[38] (i.e., n_e \gg 10^{13} \gamma_x \text{cm}^{-3}) is no longer satisfied and the backscattered light becomes incoherent and orders of magnitude weaker in the intensity. That means the scattered pulse can adjust itself as a few-cycle attosecond x-ray pulse regardless of the probe pulse length. Here, the coherent backscattering terminates at about t = 58.5 \mu m/c related to \gamma_x \simeq 16 or \Gamma = 1024, which is in fair agreement with the maximal upshifted frequency observed. For comparison the spectrum of reflection from non-breaking density crest is also plotted in Fig. 1(c); only \Gamma \simeq 16 is obtained corresponding to \gamma_x \sim 2.

The maximal amplitude of the scattered pulse [see the inset of Fig. 1(c)] is E_{s,peak}/E_0 = 0.0063 or 25 GV/m, corresponding to a reflectivity of E_{s,peak}/E_{pr} = 6.3%; E_0 = m_e\omega_0c/e is the normalizing field and E_{pr} = a_{pr}E_0.
is the probe pulse field strength. The coherent reflectivity can also be estimated using the basic 1D model. As implied in Fig. 1(a), the mirror spike can be approximated by \(n_s(x) = n_{s0} \exp(x/d) \) for \(x \leq 0 \) (whereas zero for \(x > 0 \)); \(d \) is a characteristic thickness. The backscattering amplitude in the normal direction is then derived as

\[
\eta = \frac{C \pi n_{s0} \gamma_x}{\omega_{pr} \lambda_{s0}} d \frac{\gamma_x^2(1 + \beta_x)}{\gamma},
\]

where \(C = [1 + 16d^2\gamma^2\eta_x^4(1 + \beta_x)^2/\lambda_{pr}^2]^{1/2} \) with \(\lambda_{pr} \) the probe laser wavelength, \(\Omega_{s0} = \sqrt{\epsilon_0 n_{s0} \omega_{pr} m_e} \) is the plasma frequency associated with the maximal mirror density and \(\lambda_{s0} = 2\pi c/\Omega_{s0} \). For the simulated parameters \(n_{s0} \approx 7.8 \times 10^{20} \text{cm}^{-3}, d \approx 0.0025 \lambda_0 \) and \(\gamma_x \approx 14 \), the reflectivity amounts to \(\eta \approx 14.3\% \), nearly twice the value of the above observation.

During interaction with the mirror, the probe pulse front has already somewhat damped after propagation in plasmas [see Fig. 1(a)]; this may explain the slight overestimation provided by the 1D model.

A series of simulations with different probe laser amplitudes (up to \(E_{pr}/E_0 > 1 \)) is also conducted to study nonlinear backscattering off the boosted mirror. Figure 2 presents the maximal scattering fields \(E_{s,\text{peak}} \) and the upshifting factors \(\Gamma_{\text{peak}} \) for the corresponding spectra peak. For high-amplitude probe laser, its nonlinear ponderomotive force damps the mirror energy or the Doppler factor continuously as \(E_{pr}/E_0 \) increases and \(E_{s,\text{peak}} \) also becomes saturated. These nonlinear features have been derived as \(\Gamma_{\text{peak}} \approx 4\gamma_x^2/(1 + E_{pr}^2/E_0^2) \) and \(E_{s,\text{peak}} = E_{\text{sat}}(E_{pr}/E_0)(1 + E_{pr}^2/E_0^2)^{-1/2} \) with \(E_{\text{sat}} \) the saturated amplitude and they show fair agreement with the simulation results.

To further explore the multidimensional effects of the boosted flying mirror concept, high resolution 2D PIC simulations (e.g., with the spatial mesh grid 1800 \times 100 cells per square microns) are conducted. Notice that this resolution, though already high, is still not sufficient to resolve the highest frequency that could be observed in the above 1D simulations which employed even higher resolution. To compensate this incapacity due to limited computational resources, highly nonlinear backscattering at \(E_{pr}/E_0 = 1 \) (the nonlinearity can reduce the effective \(\Gamma \) factors as shown in Fig.

2(b)) is performed. The simulation parameters are similar to that for Fig. 1 except that a focal spot of 17 \(\mu \text{m} \) (about 1.6 times the nonlinear plasma wavelength \(\lambda_{np} \)) is used to drive the wake in the quasi-1D regime. Figure 3(a) shows the scattered pulse within a diameter of 10 \(\mu \text{m} \). The scattered pulse amplitude is \(E_{\text{scat}}/E_0 \approx 0.1 \), corresponding to a peak intensity \(\sim 10^{16} \text{W/cm}^2 \). The paraboloidal shape of the injected sheet arising from nonlinear plasma frequency shift directly maps into the scattered pulse with a small curvature of \(\sim 1/40 \mu \text{m}^{-1} \), as shown in Fig. 3(a). More flat mirror planes for more collimated x-ray radiations can be expected if a super-Gaussian driver is used.

Additional multidimensional effects come from the transverse momentum (e.g., \(p_y \) in the present 2D geometry) of the injected mirror, which holds even for non-breaking density wave crest and grows continuously during wakefield acceleration after injection. As documented in a number of papers, the transverse momenta may make \(\Gamma = 4\gamma_x^2 \) significantly smaller than the full Doppler factor \(4\gamma^2 \) with \(\gamma = \gamma_x[1 + (p_y/m_e c)^2]^{1/2} \). However, the scattered spectrum shown in space \(k_x\gamma_y \) [see Fig. 3(b)] is almost uniform transversely. To account for this feature, we choose a segment of the thin mirror [see the schematic drawing in Fig. 3(c)] and analyze its behavior for backscattering. For coherent backscattering off a relativistic mirror (\(\gamma \gg 1 \)), the scattered pulse is always directed close to the normal direction (ii) of the segment with the angle \(\theta \) relative to the \(+x \) direction. For the present quasi-1D wave \(\theta \) is approximated by \(\tan \theta = -d\lambda_{np}/dy \) with \(\lambda_{np} \) the plasma wavelength at each transverse position \(y \). On the other hand, the segment electrons move at an angle defined as \(\tan \varphi = p_y/p_x \). The momentum along the normal direction is then given by \(p_n = p_x \cos \theta + p_y \sin \theta \). The near uniform spectrum shown above requires

\[
\Gamma_n \cos \theta \geq 4\gamma_x^2,
\]

where \(\Gamma_n = 4/(1 - p_n^2/m_e^2 c^2 \gamma^2) \) is the relativistic Doppler
factor of this segment. With substitution of the above definitions, Eq. (2) can be rewritten as \(|d\lambda_{\text{up}}/dr| \leq 2p_z p_y/(p_x^2 - p_y^2/2 - 1/\varphi^2) \). This inequality sets an upper limit (about several times the angle of \(\varphi \)) for \(\theta \) and can be readily met for the small curvature mirror driven in the quasi-1D regime. This effect can also be simply explained as that the tilt mirror surface deflects the coherent scattering close to the electron momenta direction, so that the full Doppler factors are almost recovered.

The uniform spectrum shows a peak at \(k_z/k_0 \sim 200 \) which follows precisely the nonlinear 1D results of Fig. 2(b). This strongly suggests that the above 1D scaling for higher up-shifting factors (e.g., up to keV level) also applies to high dimensions, though direct verifications with 2D simulations are restricted by higher resolutions available. For the present case, the scattered pulse (0.1 TW peak power and 4 mm center wavelength) is able to deliver over \(10^{10} \) photons in 30 attoseconds. The energy conversion efficiency from the probe laser to the scattered x-ray pulse is about a few \(10^{-4} \). The remarkable feature of the high-flux coherent x-ray sources is that they are provided by a table-top facility typical for laser wakefield acceleration. They may be competitive with the large and expensive x-ray free electron lasers in the peak power and also possess much shorter durations. In addition, the present scenario works in the quasi-1D regime so that it can be scaled to larger driving focal spots delivered by petawatt lasers presently available.

In conclusion, we have proposed a new parameter regime of laser wakefield acceleration for coherent Thomson backscattering. This specific regime allows thin disk-like density laser wakefield acceleration for coherent Thomson backscattering at femtosecond time scales. This specific regime allows thin disk-like density laser wakefield acceleration for coherent Thomson backscattering at femtosecond time scales.

ZMS thanks the OSIRIS Consortium at UCLA and IST for providing access to OSIRIS 2.0 framework. This work was supported in part by the National Basic Research Program of China (Grant No. 2013CBA01504), the National Science Foundation of China (Grants No. 11121504, 11374210, and 11374209), and the MOST international collaboration project (Grant No. 2014DFG02330). Simulations were supported by Shanghai Supercomputer Center and the center for high performance computing at SJTU.

1. B. W. McNeil and N. R. Thompson, Nature Photonics 4, 814 (2010).
2. P. Korkum and F. Krausz, Nature Physics 3, 381 (2007).
3. F. Krausz and M. Ivanov, Reviews of Modern Physics 81, 163 (2009).
4. U. Teubner and P. Gribbon, Reviews of Modern Physics 81, 445 (2009).
5. L. Chen, M. Kando, M. Xu, Y. Li, J. Koga, M. Chen, H. Xu, X. Yuan, Q. Dong, Z. Sheng, et al., Physical review letters 100, 045004 (2008).
6. L. Chen, F. Liu, W. Wang, M. Kando, J. Mao, L. Zhang, J. Ma, Y. Li, S. Bulanov, T. Tajima, et al., Physical review letters 104, 215004 (2010).
7. S. Corde, K. T. Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, and E. Lefebvre, Reviews of Modern Physics 85, 1 (2013).
8. S. V. Bulanov, T. Z. Esirkepov, M. Kando, A. S. Pirozhkov, and N. N. Rosanov, Physics-Uspekhi 56, 429 (2013).
9. T. Z. Esirkepov, S. Bulanov, M. Kando, A. Pirozhkov, and A. Zhidkov, Physical Review Letters 103, 025002 (2009).
10. J. Meyer-ter-Vehn and H. C. Wu, The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 55, 433 (2009).
11. H.-C. Wu, J. Meyer-ter Vehn, J. Fernandez, and B. Hegelich, Physical Review Letters 104, 234801 (2010).
12. D. Kiefer, M. Yeung, T. Dzelzainis, P. Foster, S. Rykovonov, C. L. Lewis, R. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, et al., Nature communications 4, 1763 (2013).
13. C. Decker, W. Mori, K. T. Zheng, and T. Katsouleas, Physics of Plasmas (1994-present) 3, 2047 (1996).
14. S. V. Bulanov, T. Esirkepov, and T. Tajima, Physical Review Letters 91, 085001 (2003).
15. T. Tajima and J. Dawson, Physical Review Letters 43, 267 (1979).
16. M. Kando, Y. Fukuda, A. Pirozhkov, J. Ma, I. Daito, L. M. Chen, T. Z. Esirkepov, K. Ogura, T. Homma, Y. Hayashi, et al., Physical Review Letters 99, 135001 (2007).
17. M. Kando, A. Pirozhkov, K. Kawase, T. Z. Esirkepov, Y. Fukuda, H. Kiriya, M. Okada, I. Daito, T. Kameshima, Y. Hayashi, et al., Physical Review Letters 103, 235003 (2009).
18. A. Pirozhkov, J. Ma, M. Kando, T. Z. Esirkepov, Y. Fukuda, L.-M. Chen, I. Daito, K. Ogura, T. Homma, Y. Hayashi, et al., Physics of Plasmas (1994-present) 14, 123106 (2007).
19. C. Benedetti, C. Schroeder, E. Esarey, F. Rossi, and W. Leemens, Physics of Plasmas (1994-present) 20, 103108 (2013).
20. N. H. Matlis, S. Reed, S. S. Bulanov, V. Chvykov, G. Kalintenchko, T. Matsouka, P. Rousseau, V. Yanovsky, A. Maksimchuk, S. Kalmykov, et al., Nature Physics 2, 749 (2006).
21. F. Y. Li, Z. M. Sheng, M. Chen, L. L. Yu, J. Meyer-ter Vehn, W. B. Mori, and J. Zhang, arXiv preprint arXiv:1401.2799 (2014).
22. A. Solodov, V. Malkin, and N. Fisch, Physics of Plasmas (1994-present) 13, 093102 (2006).
23. F. Y. Li, Z. M. Sheng, M. Chen, L. L. Yu, J. Meyer-ter Vehn, W. B. Mori, and J. Zhang, Applied Physics Letters 104, 013903 (2014).
24. F. Y. Li, Z. M. Sheng, M. Chen, L. L. Yu, J. Meyer-ter Vehn, W. B. Mori, and J. Zhang, Physical Review Letters 100, 135002 (2013).
25. J. Mu, F. Y. Li, M. Zeng, M. Chen, Z.-M. Sheng, and J. Zhang, Applied Physics Letters 103, 261114 (2013).
26. H. T. Kim, K. H. Pae, H. J. Cha, I. J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, and J. Lee, Physical Review Letters 111, 165002 (2013).
27. X. Wang, R. Gzgadz, N. Fazel, Z. Li, S. Yi, X. Zhang, W. Henderson, Y. Y. Chang, R. Korzkewa, H. E. Tsai, et al., Nature Communications 4 (2013).
28. R. Fonseca, L. Silva, F. Tsung, V. Deeyck, W. Lu, C. Ren, W. Mori, S. Deng, S. Lee, T. Katsouleas, et al., Lect. notes comp. sci. 2331, (2002).
29. S. Bulanov, M. Yamagiwa, T. Esirkepov, J. Koga, M. Kando, Y. Ueshima, K. Saito, and D. Wakabayashi, Physics of Plasmas (1994-present) 12, 073103 (2005).
30. H. C. Wu, J. Meyer-ter Vehn, B. Hegelich, and J. Fernandez, Physical Review Special Topics-Accelerators and Beams 14, 070702 (2011).
31. H. C. Wu and J. Meyer-ter-Vehn, The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 55, 443 (2009).