Identification of restriction enzyme in the FSHR gene of Indonesian local cattle

P W Prihandini1*, A Primasari1, M Luthfi1, D Pamungkas1, A P Z N L Sari2, T B Dina3, D Maharani2

1 Beef Cattle Research Station, Indonesian Agency of Agricultural Research and Development, The Ministry of Agriculture, Indonesia
2 Department of Animal Breeding and Reproduction, Faculty of Animal Science, Universitas Gadjah Mada, Indonesia, 55281
3 Animal Husbandry and Animal Health Service of Brebes Regency, Central Java Province, Indonesia

*Corresponding author e-mail: peniprihandini@pertanian.go.id

Abstract. The restriction enzyme is important for genotyping using the PCR-RFLP technique. Therefore, this study aims to identify the restriction enzyme mapping in the partial sequence of the follicle-stimulating hormone receptor (FSHR) gene in Indonesian local cattle. A total of 29 samples sized 306 bp, were aligned with Genbank sequence acc no. NC_032660, resulting three polymorphic sites, namely g.193G>C, g.227T>C, and g.275A>C. Furthermore, the restriction mapping analysis using the NEBcutter program V2.0 showed that no enzyme recognized the SNP g.275A>C, while the SNP g.193G>C and g.227T>C were identified by the AluI and MscI enzymes, respectively. The AluI enzyme cuts at two positions (193 bp and 243 bp) in the G allele sample producing three fragments namely 50 bp, 63 bp, and 193 bp, meanwhile, in the C allele, the AluI cuts only in position 243 bp, hence, the fragment products are 63 bp and 243 bp. In contrast, the MscI enzyme was only recognized in the T allele, producing fragments sized 77 bp and 229 bp but failed to identify the restriction site along with the PCR products in the C allele. Based on the results, the SNPs (g.193G>C and g.227T>C) and restriction enzymes (AluI and MscI) are applicable for genotyping local Indonesian cattle using the PCR-RFLP technique in future studies.

Keywords: FSHR gene, restriction enzyme, Indonesian local cattle

1. Introduction

DNA analysis and several types of identification assays, particularly PCR-based methods have been developed [1]. The combination of PCR and restriction fragment length polymorphism (RFLP) assays has certain advantages such as increasing simplicity, specificity, and sensitivity for genotyping animals compared to other PCR methods [2]. This method is based on enzymes' ability to cleave DNA by recognizing specific sequences and structures. When SNPs are located in an enzyme recognition site and affect its activity, differences between alleles are easily identified [3]. However, since cleavage inhibition due to methylation occurs in plasmids and genomic DNA, the possibility of digested PCR fragments needs to be considered [4].

FSH is a glycoprotein hormone needed for gonadal development and maturation during puberty, as well as gamete production in mammals. The FSHR gene is located in chromosome 11 and consists of...
10 exons and 11 introns, the first 9 exons enclose the extracellular domain while exon 10 enclose the transmembrane domain [5]. Furthermore, the follicle-stimulating hormone receptor (FSHR) gene plays a major role in normal reproductive function and oocyte maturation through its growth-promoting and steroidogenic effects in cattle [6]. The entire coding sequence for the FSHR gene in cattle has been cloned, and several SNPs have been discovered. Moreover, previous studies on the polymorphism of the FSHR gene using the PCR-RFLP method have been reported in dairy cattle in China [6], indigenous Sudanese cattle [7], Holstein cattle [8], Brown Swiss, Nelore, and Indo-Brazilian [5], and Bali cattle [9]. However, the identification of SNPs within the FSHR gene have not been studied in several Indonesian cattle breeds, especially Sragen (Figure 1) and Jabres (Figure 2) cattle. Therefore, this study aims to determine the polymorphic sites and the possible restriction enzyme in the PCR-RFLP method for genotyping the Indonesian cattle based on the FSHR gene.

2. Materials and methods

2.1. Sample collection and DNA amplification

A total of 29 samples consisting of Sragen (n = 10) and Jabres (n = 19) cattle were collected from Sragen and Brebes Regency in Central Java Province. Blood samples were taken from the jugular vein up to three milliliter using venoject and EDTA vacutainer tube. The samples were then transported to the laboratory for DNA extraction, using gSYNC™ Kit (Geneaid, New Taipei City, Taiwan). Furthermore, amplification of the FSHR gene was conducted in a 25 µl volume containing 2 µl genomic DNA, 0.5 µl of forward and reverse primers [5] (Table 1), 9.5 µl ddH₂O, and 12.5 µl of MyTaq HS Red Mix (Bioline, UK). Each amplicon was sequenced using an automated DNA sequencer (Applied Biosystems) at the Universitas Gadjah Mada Central Laboratory (LPPT-UGM).

Primer sequence (5’ - … - 3’)	Target size	Annealing temperature
F : CTGCTCCCTCAAGGTGCCTCTC	306 bp	60 °C
R : AGTTCTTGTCAAATGTCTTAGGGG		
2.2. Sequence analysis
To detect the SNP(s) present, all samples of FSHR sequences were aligned using BioEdit software version 7.0. SNP is defined as a different nucleotide that appears in a sequence alignment. Manual detection of the electropherogram was used to confirm the mutation within the samples.

2.3. Restriction enzyme analysis
For each group, SNP was subjected to restriction enzyme analysis using the NebCutter program. The appearance of a red line under the targeted SNP within the sequence indicates the presence of specific restriction enzymes. Furthermore, restriction sites identified by NebCutter were used to generate RFLP profiles in Microsoft Excel using a simple formula for each marker provided by Castro et al. [10], while gel agarose for RFLP method was simulated using DNASTAR software.

3. Result and discussion
3.1. SNP identification
Polymorphisms of bovine FSHR gene were detected by PCR (Figure 3) and DNA sequencing methods. The electroforeogram showed a clear band for PCR product (306 bp), meanwhile, the sample sequences were aligned with bovine FSHR gene reported in GenBank with acc no. NC_032660. Therefore, three mutations were identified within the samples, namely SNP g.193G>C (AAAAGCTC to AAAACCTC), g.227T>C (GAATGGC to GAACGGC), and g.275A>C (CACCCCTG to CACACTT). All three SNPs were located in intron 1 of the FSHR gene (based on Genbank acc no. NC_032660). The CC genotype in SNP g.193G>C and g.227T>C was absent in the samples (Figure 4 and 5). However, for SNP g.2775A>C, all three genotypes showed a clear peak in electropherogram (Figure 6). Although the SNPs found were non-coding sequences, the majority still affect the phenotype, since the non-coding region RNAs (intron) control transcriptional and post-transcriptional gene expression [11]. Yang et al. [6] also reported two SNPs in the non-coding region (5’UTR) namely SNP -320 A>T (GTCGAGT to GTCGAGT) and -278 G>A (AGGGACA to AGGAACA). Furthermore, the GG genotype in SNP -278 G>A consists of a significantly high number of degenerate embryos (NDE), number of transferable embryos (NTE), and total number of ova (TNO) in Chinese Holstein cattle. Meanwhile, in the Chinese Holstein bulls, the mutation A-234500T of the FSHR gene was reported to be significantly associated with semen volume per ejaculate (VOL) and sperm concentration (SCON) [12]. The FSHR AluI site (g.193G>C) is found in European Type Brown Swiss, Nelore, Indo-Brazilian, and Bos Taurus x Bos indicus crossbred cattle in Mexico [5], Holstein cattle in Turkie [13], and Bali cattle [9].

Figure 3. A 306 bp PCR product of FSHR gene.
3.2. Restriction enzyme analysis

According to the European standards in molecular microbiology [14] and detection of genetically modified organisms [15], it is important to verify the PCR products generated. Reliable methods used to verify PCR products include restriction analysis with at least two restriction endonucleases (REases), as well as probe hybridization, or DNA sequencing [16]. The restriction mapping analysis is used to analyze the possible restriction enzyme in the PCR-RFLP method based on SNP g.193G>C, g.227T>C, and g.275A>C.

Therefore, restriction mapping using the NEBcutter program V2.0 discovered no enzyme which recognized the SNP g.275A>C. The SNP g.193G>C and g.227T>C were identified by the AluI and MscI enzymes, respectively. The AluI enzyme cuts at two positions (193 bp and 243 bp) in the G allele sample thereby producing three fragments namely 50 bp, 63 bp, and 193 bp. However, in the C allele, the AluI cuts only in position 243 bp, hence, the fragment products are 63 bp and 243 bp. Meanwhile, the MscI enzyme was only recognized in the T allele, producing fragments sized 77 bp and 229 bp but failed to find the restriction site along with the PCR products in the C allele. Furthermore, the gel simulation for the RFLP method using AluI and MscI restriction enzyme is shown in Figure 7. The simulation of agarose gel provides images that are comparable to conventional gel electrophoresis, specifically for DNA fragments that are smaller than 50 bp [10], while the AluI enzyme in G allele produce small fragment which is close to each other and appear as one single band. Taheri et al. [14] stated that the selection of restriction enzyme for genome analysis needs to consider the following 1)
fragment size produced after digestion, 2) the presence and frequency of enzyme recognition sites within the target DNA sequence, and 3) methylation sensitivity of enzymes. The AluI endonucleases were used to differentiate the genotype of the FSHR gene in Madrasin [15], Angus, Friesian Holstein (FH), Limousin, Simmental and Brahman [16], and Indigenous Sudanese [7] cattle.

Figure 7. Agarose gel simulation for AluI and MscI restriction enzymes (MW = 100 bp molecular weight).

4. Conclusion
Based on the results, three polymorphic SNPs (g.193G>C, g.227T>C, and g.275A>C) were found in the Sragen and Jabres cattle sequence. The restriction mapping analysis showed that one endonuclease was recognized in SNP g.193G>C (AluI) and g.227T>C (MscI), but no enzyme was found in SNP g.275A>C. Furthermore, AluI and MscI enzymes produced specific RFLP patterns to differentiate each genotype. Therefore, it was concluded that the SNPs (g.193G>C and g.227T>C) and restriction enzymes (AluI and MscI) are applicable for genotyping Indonesian local cattle using the PCR-RFLP technique in future studies.

References
[1] Maede D 2006 A strategy for molecular species detection in meat and meat products by PCR-RFLP and DNA sequencing using mitochondrial and chromosomal genetic sequences *Eur. Food Res. Technol.* **224** 209–17
[2] Bottero M T and Dalmasso A 2011 Animal species identification in food products: Evolution of biomolecular methods *Vet. J.* **190** 34–8
[3] Fathoni A, Sumadi S, Budisatria I G S, Sari A P Z N L and Maharani D 2020 Association between the Melanocortin-4 Receptor (MC4R) gene polymorphisms and growth trait in Sumba Ongole cattle *Iran. J. Appl. Anim. Sci.* **10** 603–9
[4] Minarovi T, Trakovic A, Rafayová A and Lieskovská Z 2010 Animal species identification by PCR – RFLP of Cytochrome b *Anim. Sci. Biotechnol.* **43** 296–9
[5] Hernandez-Cruz B C, Cervantes-Acosta P, Montiel-Palacios F, Canseco-Sedano R and Carrasco-Garcia A 2009 Allelic variants of FSHR gene in cows of different genotypes in Mexico *J. Anim. Vet. Adv.* **8** 2489–94
[6] Yang W C, Li S J, Tang K Q, Hua G H, Zhang C Y, Yu J N, Han L and Yang L G 2010 Polymorphisms in the 5’ upstream region of the FSH receptor gene, and their association with superovulation traits in Chinese Holstein cows Anim. Reprod. Sci. 119 172–7

[7] Omer N N, Gornas N, Rahmatalla S A and Khair M 2016 Genetic characterization of indigenous Sudanese cattle using FSHR and LHR genes Am. Sci. Res. J. Eng. Technol. Sci. 24 1–9

[8] Cory A T, Price C A, Lefebvre R and Palin M F 2013 Identification of single nucleotide polymorphisms in the bovine follicle-stimulating hormone receptor and effects of genotypes on superovulatory response traits Anim. Genet. 44 197–201

[9] Ishak A B L 2012 Identifikasi Keragaman Gen Fsh Sub-Unit Beta Gen Fsh Reseptor Dan Gen Gh Pada Sapi Bali jantan sebagai penanda kualitas sperma (Institut Pertanian Bogor)

[10] Castro B B P, Gennari S M, Lorenzi H and Su C 2020 A simple method to generate PCR-RFLP typing profiles from DNA sequences in Toxoplasma gondii Infect. Genet. Evol. 85 104590

[11] Nakaya H I, Amaral P P, Louro R, Lopes A, Fachel A A, Moreira Y B, Tarik A E-J, da Silva A M, Reis E M and Verjoyski-Almeida S 2007 Genome mapping and expression analyses of human intronic noncoding RNAs reveal tissue-specific patterns and enrichment in genes related to regulation of transcription Genome Biol. 8

[12] Sang L, Du Q Z, Yang W C, Tang K Q, Yu J N, Hua G hua, Zhang X X and Yang L G 2011 Polymorphisms in follicle stimulation hormone receptor, inhibin alpha, inhibin bata A, and prolactin genes, and their association with sperm quality in Chinese Holstein bulls Anim. Reprod. Sci. 126 151–6

[13] Arslan K, Akyüz B, Akçay A, Ilgar E G, Macun H C and Cınar M U 2017 Association of number of artificial inseminations per pregnancy in holstein dairy cows with polymorphism in luteinizing hormone receptor and follicle stimulating hormone receptor genes Slov. Vet. Res. 54 91–8

[14] Taheri A, Robinson S J, Parkin I and Gruber M Y 2012 Revised selection criteria for candidate restriction enzymes in genome walking PLoS One 7

[15] Utomo B, Putranto E D and Fadholly A 2020 Profile of follicle-stimulating hormone and polymorphism of follicle-stimulating hormone receptor in Madrasin cattle with ovarian hypofunction Vet. World 13 879–83

[16] Andreas E, Arifiantini I, Saputra F, Ishak A B L, Imron M and Sumantri C 2014 Effect of FSH β-Sub unit and FSHR genes polymorphisms on superovulatory response traits J. Indones. Trop. Anim. Agric. 39 197–203

Acknowledgments
This study was supported by The Agricultural Research and Development Agency of the Ministry of Agriculture, Animal Husbandry Department of Sragen Regency and Animal Husbandry and Health Service of Brebes Regency.