Supporting Information

Functionalization and Hydrogenation of Carbon Chains Derived from CO

M. Batuecas, R. Y. Kong, A. J. P. White, M. R. Crimmin*
Table of Contents

1 GENERAL EXPERIMENTAL S3

2 EXPERIMENTAL METHODS S4

2.1 – Preparation of Compounds S4

2.2 – Reversible conversion of 3a to 4a S31

2.3 – Direct reaction of 2, H₂ and benzophenone S34

2.4 – Direct reaction of [W(CO₆)], 1 and syngas S35

2.5 – Kinetic experiments S36

2.6 – Monitoring of reaction of 3a with H₂ S38

3 X-RAY DATA S39

4 DENSITY FUNCTIONAL THEORY CALCULATIONS S51

4.1 – Computational methods S51

4.2 – Calculated stationary points S52

4.2.1 – Transformation of 3a to 4a S52

4.2.2 – Calculated mechanism for hydrogenation of 4 S54

4.2.3 – Rotation barriers for Int-1 S66

4.3 – Functional testing on key stationary points S67

5 NMR SPECTRA S68

6 COMPUTATIONAL COORDINATES S82

7 REFERENCES S240
1 GENERAL EXPERIMENTAL

All manipulations were carried out using standard Schlenk-line and glovebox techniques under an inert atmosphere of argon or dinitrogen. A MBraun Labmaster glovebox was employed, operating at <0.1 ppm O\textsubscript{2} and <0.1 ppm H\textsubscript{2}O. A Polar Bear Cub reactor located inside this MBraun Labmaster glovebox was used as the low-temperature reactor. Solvents were dried over activated alumina from a SPS (solvent purification system) based upon the Grubbs design and degassed before use. Glassware was dried for 12 h at 120 °C prior to use. C\textsubscript{6}D\textsubscript{6} was dried over 3 Å molecular sieves and freeze-pump-thaw degassed thrice before use.

NMR Spectra were recorded on Bruker 400 MHz at 25 °C unless otherwise stated and values recorded in ppm. Data were processed in MestReNova software. Where needed, chemical shifts were assigned with the assistance of 2D NMR (HSQC, HMBC, COSY) spectra. 1 and 2 and 3b were synthesized according to literature procedures. IR spectra were recorded on an Agilent Cary630 ATR FTIR spectrometer located inside an MBraun glovebox operating at <0.1 ppm O\textsubscript{2} and <0.1 ppm H\textsubscript{2}O. Chemicals were purchased from Sigma Aldrich, Fluorochem, Alfa Aesar, or VWR and used as received. CO was purchased from BOC Ltd and used as received. Elemental analyses were performed by Elemental Labs (https://www.elementallab.co.uk/).
2 EXPERIMENTAL METHODS

2.1 – Preparation of Compounds

Preparation of 3a

In a glovebox, 2 (15 mg, 0.012 mmol, 1 equiv) and benzophenone (2.6 mg, 0.014 mmol, 1.2 equiv) were dissolved in C$_6$D$_6$ (0.6 mL) and transferred to a J-Young NMR tube. The mixture was heated for 24 h at 100 °C. The reaction was monitored by 1H NMR spectroscopy and was deemed to be complete upon consumption of 2. The formation of both 3a and 4a was observed at this point in an approximate 4:1 ratio, respectively. The J-Young NMR tube was returned to the glovebox, and the headspace of the NMR tube was evacuated. CO gas (~1 atm) was introduced to the NMR tube and the reaction mixture was subsequently heated for a further 1 h at 100 °C. A 1H NMR spectrum was taken at this time point and showed the full conversion of 4a to 3a. The J-Young NMR tube was returned to the glovebox, the reaction mixture was diluted with toluene (~0.5 mL), decanted into a 20 mL scintillation vial, and concentrated in vacuo until approx. 0.5 mL of solution remained. The solution was then filtered into a 4 mL vial, and further concentrated until approximately 0.2 mL of solution remained. n-Pentane (~2.5 mL) was layered on top, the vial was placed in the glovebox freezer (~35 °C), and 3a was allowed to recrystallize as bright orange crystals. The supernatant was decanted, and the resultant crystals were washed with cold n-pentane (3 x 1 mL) before the crystals were dried in vacuo. Yield: 10 mg, 0.0068 mmol, 56%.

1H NMR (400 MHz, C$_6$D$_6$, 298 K) δ 0.60 (d, 3J$_{HH} = 6.8$ Hz, 6H, (C$_3$H$_2$)$_2$CH), 0.74 (d, 3J$_{HH} = 6.8$ Hz, 6H, (C$_3$H$_2$)$_2$CH), 0.93 (d, 3J$_{HH} = 6.8$ Hz, 6H, (C$_3$H$_2$)$_2$CH), 1.02 (d, 3J$_{HH} = 6.8$ Hz, 6H, (C$_3$H$_2$)$_2$CH), 1.05 (d, 3J$_{HH} = 6.8$ Hz, 6H, (C$_3$H$_2$)$_2$CH), 1.23 (d, 3J$_{HH} = 6.7$ Hz, 6H, (C$_3$H$_2$)$_2$CH), 1.27 (s, 6H, ((C$_3$H)$_2$C)$_2$CH), 1.37 (d, 3J$_{HH} = 6.8$ Hz, 6H, (C$_3$H)$_2$CH), 1.44 (s, 6H, ((C$_3$H)$_2$C)$_2$CH), 1.57 (d, 3J$_{HH} = 6.7$ Hz, 6H, (C$_3$H)$_2$CH), 2.54 (hept, 3J$_{HH} = 6.8$ Hz, 2H, (C$_3$)$_2$C$_2$H), 3.02 (hept, 3J$_{HH} = 6.9$ Hz, 2H, (C$_3$)$_2$C$_2$H), 3.23 (hept, 3J$_{HH} = 6.8$ Hz, 2H, (C$_3$)$_2$C$_2$H), 3.58 (hept, 3J$_{HH} = 6.6$ Hz, 2H, (C$_3$)$_2$C$_2$H), 4.86 (s, 1H, ((C$_3$)$_2$C)$_2$H), 4.99 (s, 1H, ((C$_3$)$_2$C)$_2$H), 6.40 – 6.47
(overlapping signals, 4H, Ar-H), 6.51 – 6.59 (overlapping signals, 4H, Ar-H), 6.80 (m, 2H, Ar-H), 6.90 (m, 2H, Ar-H), 6.96 (m, 2H, Ar-H), 7.08 – 7.22 (overlapping signals, 8H, Ar-H).

13C{^1H} NMR (101 MHz, C$_6$D$_6$, 298 K) δ 23.4 (2x (CH$_3$)$_2$CH), 24.0 (2x ((CH$_3$)$_2$C)$_2$CH), 24.1 (2x ((CH$_3$)$_2$C)$_2$CH), 24.2 (2x (CH$_3$)$_2$CH), 24.4 (2x (CH$_3$)$_2$CH), 24.6 (4x (CH$_3$)$_2$CH), 24.9 (2x (CH$_3$)$_2$CH), 27.3 (2x (CH$_3$)$_2$CH), 27.9 (2x (CH$_3$)$_2$CH), 28.4 (2x (CH$_3$)$_2$CH), 28.8 (4x (CH$_3$)$_2$CH), 29.1 (2x (CH$_3$)$_2$CH), 85.4 (Cl), 100.2 ((CH$_3$)$_2$C)$_2$CH), 100.6 ((CH$_3$)$_2$C)$_2$CH), 124.2 (Ar-C), 124.7 (Ar-C), 125.0 (Ar-C), 125.6 (Ar-C), 127.3 (Ar-C), 127.4 (Ar-C), 139.8 (Ar-C), 140.6 (Ar-C), 142.8 (Ar-C), 143.5 (Ar-C), 144.7 (Ar-C), 146.0 (Ar-C), 148.3 (Ar-C), 152.9 (C$^{2/2}$), 155.9 (C$^{2/2}$), 172.7 ((CH$_3$)$_2$C)$_2$CH), 174.5 ((CH$_3$)$_2$C)$_2$CH), 203.2 (W(CO)$_4$), 205.1 (WCO), 315.6 (Cl). Some Ar-C resonances are overlapping and cannot be observed.

IR (ATR), 𝜈$_{CO}$ (cm$^{-1}$): 2050, 1897, 1871.

Anal. Calc. (C$_{79}$H$_{92}$Al$_2$N$_4$O$_9$W): C, 64.14; H, 6.44; N, 3.79. Found: C, 64.63; H, 6.47; N, 3.88.
Preparation of 4a

In a glovebox, 3a (40 mg, 0.027 mmol) was dissolved in toluene (~5 mL) and transferred to a J-Young ampoule with an approximate headspace of 100 mL. The headspace of the ampoule was evacuated and the ampoule was removed from the glovebox. The reaction mixture was heated at 100 °C. After one hour, the ampoule was returned to the glovebox vacuum was applied to the headspace of the ampoule, and the ampoule was returned to heat at 100 °C. This process was repeated 5 times, for a total of 6 hours of heating, and a colour change from the characteristic yellow-orange of 3a to deep red of 4a was observed over the course of the reaction. After 6 hours, the reaction mixture was returned to the glovebox, decanted into a 20 mL scintillation vial, and the mixture was concentrated to a red oil. Pentane (ca. 2 mL) was added to the reaction mixture and the resultant solution was placed in the glovebox freezer to crystallise at –35 °C. 4a crystallised as deep red blocks from this solution. The supernatant was decanted, and the crystals were washed thrice with pentane (3 x 1mL) before the crystals were dried in vacuo. Yield: 26 mg, 0.018 mmol, 66%.

1H NMR (400 MHz, C₆D₆, 298 K) δ 0.41 (d, 3JHH = 6.6 Hz, 6H, (CH₃)₂CH), 0.68 (d, 3JHH = 6.8 Hz, 6H, (CH₃)₂CH), 0.80 (d, 3JHH = 6.8 Hz, 6H, (CH₃)₂CH), 0.95 (d, 3JHH = 6.7 Hz, 6H, (CH₃)₂CH), 1.07 (d, 3JHH = 6.7 Hz, 6H, (CH₃)₂CH), 1.15 (d, 3JHH = 6.7 Hz, 6H, (CH₃)₂CH), 1.32 (s, 6H, ((CH₃)₂C)₂CH), 1.49 (d, 3JHH = 6.6 Hz, 6H, (CH₃)₂CH), 1.66 (s, 6H, ((CH₃)₂C)₂CH), 1.78 (d, 3JHH = 6.7 Hz, 6H, (CH₃)₂CH), 2.62 (hept, 3JHH = 6.8 Hz, 2H, (CH₃)₂CH), 3.11 (hept, 3JHH = 6.7 Hz, 2H, (CH₃)₂CH), 3.24 (hept, 3JHH = 6.7 Hz, 2H, (CH₃)₂CH), 3.40 (hept, 3JHH = 6.6 Hz, 2H, (CH₃)₂CH), 5.11 (s, 1H, ((CH₃)C)₂CH), 5.33 (s, 1H, ((CH₃)C)₂CH), 6.43 (m, 4H, Ar-H), 6.60 (m, 4H, Ar-H), 6.83 (m, 2H, Ar-H), 6.99 (m, 2H, Ar-H), 7.08 (m, 4H, Ar-H), 7.16 – 7.26 (overlapping signals, 6H, Ar-H).
\(^{13}\)C\(^{1}H\) NMR (101 MHz, C\(_6\)D\(_6\), 298 K) \(\delta\) 24.0 (2x (A\(_{3}\)H\(_{2}\))CH), 24.2 (2x (A\(_{3}\)H\(_{2}\))CH), 24.2 (2x (A\(_{3}\)H\(_{2}\))CH), 24.3 (2x ((A\(_{3}\)H\(_{2}\))C\(_{2}\))CH), 24.6 (2x (A\(_{3}\)H\(_{2}\))CH), 24.6 (2x (A\(_{3}\)H\(_{2}\))CH), 24.9 (2x ((A\(_{3}\)H\(_{2}\))C\(_{2}\))CH), 24.9 (2x (A\(_{3}\)H\(_{2}\))CH), 25.1 (2x (A\(_{3}\)H\(_{2}\))CH), 27.8 (2x (A\(_{3}\)H\(_{2}\))CH), 28.2 (2x (CH\(_{3}\))\(_{2}\)A\(_{1}\)), 28.7 (2x (CH\(_{3}\))\(_{2}\)A\(_{1}\)), 29.0 (2x (CH\(_{3}\))\(_{2}\)A\(_{1}\)), 29.3 (2x (CH\(_{3}\))\(_{2}\)A\(_{1}\)), 82.3 (C\(^2\)), 100.7 ((((CH\(_{3}\))\(_{2}\)C\(_{2}\))A\(_{1}\)), 101.0 (((((CH\(_{3}\))\(_{2}\)C\(_{2}\)A\(_{1}\)), 124.0 (ArC), 124.5 (ArC), 125.4 (ArC), 126.0 (ArC), 126.1 (ArC), 127.4 (ArC), 127.6 (ArC), 128.8 (ArC), 139.9 (ArC), 140.0 (ArC), 142.8 (C\(^2/3\)), 143.2 (ArC), 143.4 (ArC), 146.1 (ArC), 146.9 (ArC), 147.5 (ArC), 161.8 (C\(^2/3\)), 174.6 (((((CH\(_{3}\))\(_{2}\)C\(_{2}\)CH), 174.6 (((((CH\(_{3}\))\(_{2}\)C\(_{2}\)CH), 215.5 (2 x W(CO)\(_{4}\)), 218.8 (W(CO)\(_{4}\)), 221.4 (W(CO)\(_{4}\)), 310.6 (C\(^s\)). Some ArC resonances are overlapping and cannot be observed.

IR (ATR), \(\nu_{CO}\) (cm\(^{-1}\)): 1988, 1874, 1862, 1825.

Anal. Calc. (C\(_{78}\)H\(_{92}\)Al\(_{2}\)N\(_{4}\)O\(_{8}\)W): C, 64.55; H, 6.39; N, 3.86. Found: C, 64.61; H, 6.33; N, 3.61.
Preparation of 5a

In a glovebox, 4a (10 mg, 0.007 mmol) was dissolved in C\textsubscript{6}D\textsubscript{6} (0.6 mL) and transferred to a j-Young NMR tube. The headspace of the NMR tube was evacuated, H\textsubscript{2} gas (~1 bar) was introduced into the NMR tube and the reaction mixture was heated for 2 h at 100 °C. After this time, conversion >95 % of 4a to 5a was observed. All attempts to separate 5a from reaction mixture were unsuccessful. Compound 5a was characterized by NMR spectroscopy.

5b can be also obtained in similar yield by reaction of 3a (8 mg, 0.0055 mmol) with H\textsubscript{2}, following the former procedure (see section 2.6 below).

\[^1\text{H NMR} \ (400 \text{ MHz, C}_6\text{D}_6, \text{298 K}) \delta 0.37 \text{ (d, } ^3\text{J}_{HH} = 6.8 \text{ Hz, 6H, (CH}_3)_2\text{CH}), 0.96 \text{ (d, } ^3\text{J}_{HH} = 6.8 \text{ Hz, 12H, (CH}_3)_2\text{CH}) \]

\[1.12 \text{ (d, } ^3\text{J}_{HH} = 6.8 \text{ Hz, 6H, (CH}_3)_2\text{CH}), 1.13 \text{ (d, } ^3\text{J}_{HH} = 6.8 \text{ Hz, 6H, (CH}_3)_2\text{CH}), 1.18 \text{ (d, } ^3\text{J}_{HH} = 6.7 \text{ Hz, 12H, (CH}_3)_2\text{CH}) \]

\[1.42 \text{ (s, 6H, ((CH}_3)_2\text{C})_2\text{CH}), 1.44 \text{ (s, 6H, ((CH}_3)_2\text{C})_2\text{CH}), 1.69 \text{ (d, } ^3\text{J}_{HH} = 6.7 \text{ Hz, 6H, (CH}_3)_2\text{CH}) \]

\[2.84 \text{ (hept, } ^3\text{J}_{HH} = 6.8 \text{ Hz, 2H, (CH}_3)_2\text{C}), 2.96 \text{ (hept, } ^3\text{J}_{HH} = 6.8 \text{ Hz, 2H, (CH}_3)_2\text{C}) \]

\[3.34 \text{ (hept, } ^3\text{J}_{HH} = 6.8 \text{ Hz, 2H, (CH}_3)_2\text{C}), 3.49 \text{ (hept, } ^3\text{J}_{HH} = 6.7 \text{ Hz, 2H, (CH}_3)_2\text{C}) \]

\[4.38 \text{ (s, 2H, CH}_2\text{), 4.84 \text{ (s, 1H, ((CH}_3)_2\text{C})_2\text{CH}), 4.86 \text{ (s, 1H, ((CH}_3)_2\text{C})_2\text{CH})} \]

\[6.72 – 6.84 \text{ (overlapping signals, 8H, Ar-H), 6.94 (m, 2H, Ar-H), 6.98 (m, 2H, Ar-H), 7.03 (m, 2H, Ar-H), 7.11 – 7.21 (overlapping signals, 4H, Ar-H), 7.26 (m, 4H, Ar-H)} \]

\[^13\text{C}[^1\text{H}] \text{ NMR} \ (101 \text{ MHz, C}_6\text{D}_6, \text{298 K}) \delta 23.2 \text{ (2x (CH}_3)_2\text{CH), 23.5 \text{ (2x (CH}_3)_2\text{CH}) \]

\[24.0 \text{ (2x ((CH}_3)_2\text{C})_2\text{CH), 24.1 \text{ (2x ((CH}_3)_2\text{C})_2\text{CH), 24.4 \text{ (2x (CH}_3)_2\text{CH), 24.7 \text{ (2x (CH}_3)_2\text{CH), 24.9 \text{ (2x (CH}_3)_2\text{C})_2\text{CH), 25.0 \text{ (2x (CH}_3)_2\text{C})_2\text{CH, 25.5 \text{ (2x (CH}_3)_2\text{C})_2\text{CH), 26.0 \text{ (2x (CH}_3)_2\text{C})_2\text{CH, 28.0 \text{ (2x (CH}_3)_2\text{C})_2\text{CH, 28.7 \text{ (2x (CH}_3)_2\text{C})_2\text{CH, 28.8 \text{ (2x (CH}_3)_2\text{C})_2\text{CH, 28.9 \text{ (2x (CH}_3)_2\text{C})_2\text{CH, 69.2 (CH}_2\text{), 84.5 (C1), 97.6 ((CH}_3)_2\text{C})_2\text{CH, 97.8 ((CH}_3)_2\text{C})_2\text{CH, 124.2 (Ar-C), 124.4 (Ar-C), 124.6 (Ar-C), 124.8 (Ar-C), 125.2 (Ar-C), 126.9 (Ar-C), 127.3 (Ar-C), 127.5 (Ar-C), 129.4 (Ar-C), 135.9 (C2/3), 138.8 (C2/3), 140.1 (Ar-C), 140.5 (Ar-C), 143.0 (Ar-C), 143.9 (Ar-C), 144.8 (Ar-C), 145.0 (Ar-C), 145.2 (Ar-C))}} \]

S8
(ArC150.1, ArC150.4, ArC171.1, (CH3)2C2CH, 172.2, ((CH3)2C)2CH. Some ArC resonances are overlapping and cannot be observed.

Also observed resonances corresponding to W(CO)6: δ 191.2 (JWC = 126.7 Hz), and (C6D6)W(CO)3: δ 209.3.

Attempts to obtain mass spectra data of 5a by ES and APCI (both +ve and -ve mode) were unsuccessful. Submission of CH3CN/H2O (20:80) solutions of 5a to LC-MS allowed detection of hydrolyzed species: m/z calcd for C16H17O4 [M+H]+ 273.1, found 273.4; calcd for C16H14O3 [M-H2O]+ 254.1, found 254.3.

Preparation of **5a-d2**

In a glovebox, 4a (10 mg, 0.007 mmol) was dissolved in C6D6 (0.6 mL) and transferred to a J-Young NMR tube. The headspace of the NMR tube was evacuated, D2 gas (~1 bar) was introduced into the NMR tube and the reaction mixture was heated for 2 h at 100 °C. After this time, an 1H NMR spectrum was recorded to check that reaction was completed and expected product was formed. Data for 5a-d2 are consistent with those reported for 5a but the resonance at δ = 4.38 ppm corresponding to CH2 fragment was not observed. The J-Young NMR tube was returned to the glovebox, the solvent was removed under reduced pressure and the residue dissolved in C6H6. A 2H NMR spectra was recorded.

2H NMR (61 MHz, C6H6, 298 K) δ 4.21 (bs).

Attempts to obtain mass spectra data of 5a-d2 by ES and APCI (both +ve and -ve mode) were unsuccessful. Submission of CH3CN/H2O (20:80) solutions of 5a-d2 to LC-MS allowed detection of hydrolyzed species: m/z calcd for C16H13D2O4 [M-H]- 273.1, found 273.2; calcd for C16H11D2O3 [M-H2O-H]- 255.1, found 255.1.
Preparation of 5b

In a glovebox, 3b (10 mg, 0.007 mmol) was dissolved in C₆D₆ (0.6 mL) and transferred to a J-Young NMR tube. The headspace of the NMR tube was evacuated, H₂ gas (~1 bar) was introduced into the NMR tube and the reaction mixture was heated for 12 h at 100 °C. After this time, conversion >95 % of 3b to 5b was observed. All attempts to separate 5b from reaction mixture were unsuccessful. Compound 5b was characterized by NMR spectroscopy.

¹H NMR (400 MHz, C₆D₆, 298 K) δ 0.56 (d, 3J_HH = 6.8 Hz, 6H, (CH₂)₂CH), 0.87 (d, 3J_HH = 6.8 Hz, 6H, (CH₂)₂CH), 0.89 (d, 3J_HH = 6.8 Hz, 6H, (CH₂)₂CH), 1.01 (d, 3J_HH = 6.8 Hz, 6H, (CH₂)₂CH), 1.10 (d, 3J_HH = 6.7 Hz, 6H, (CH₂)₂CH), 1.14 (d, 3J_HH = 6.7 Hz, 6H, (CH₂)₂CH), 1.44 (s, 6H, ((CH₂)₂C)₂CH), 1.52 (d, 3J_HH = 6.8 Hz, 6H, (CH₂)₂CH), 1.54 (s, 6H, ((CH₂)₂C)₂CH), 1.71 (d, 3J_HH = 6.7 Hz, 6H, (CH₂)₂CH), 3.13 (hept, 3J_HH = 6.8 Hz, 2H, (CH₃)₂CH), 3.21 (hept, 3J_HH = 6.8 Hz, 2H, (CH₃)₂CH), 3.27 (hept, 3J_HH = 6.8 Hz, 2H, (CH₃)₂CH), 3.32 (hept, 3J_HH = 6.8 Hz, 2H, (CH₃)₂CH), 4.28 (s, 2H, CH₂), 4.85 (s, 1H, ((CH₃)₂C)₂CH), 4.94 (s, 1H, ((CH₃)₂C)₂CH), 6.97-7.28 (overlapping signals, 12H, Ar-CH₃).

¹³C NMR (101 MHz, C₆D₆, 298 K) δ 22.9 (2x ((CH₂)₂C)₂CH), 23.0 (2x ((CH₂)₂C)₂CH), 24.3 (2x (CH₂)₂C)₂CH), 24.6 (2x (CH₂)₂C)₂CH), 24.7 (2x (CH₂)₂C)₂CH), 24.8 (2x (CH₂)₂C)₂CH), 24.9 (2x (CH₂)₂C)₂CH), 24.9 (2x (CH₂)₂C)₂CH), 25.1 (2x (CH₂)₂C)₂CH), 27.8 (2x (CH₂)₂C)₂CH), 28.3 (2x (CH₂)₂C)₂CH), 28.9 (4x (CH₂)₂C)₂CH), 29.6 (2x (CH₂)₂C)₂CH), 67.5 (CH₃), 96.8 ((CH₂)₂C)₂CH), 98.2 ((CH₂)₂C)₂CH), 123.8 (Ar-C), 124.4 (Ar-C), 124.6 (Ar-C), 124.9 (Ar-C), 125.4 (Ar-C), 127.3 (Ar-C), 137.8 (Ar-C), 138.5 (Ar-C), 138.7 (Ar-C), 143.8 (Ar-C), 144.4 (Ar-C), 145.0 (Ar-C), 146.0 (Ar-C), 151.8 (C²), 168.4 (C²), 171.2 ((CH₂)₂C)₂CH), 171.9 ((CH₂)₂C)₂CH). Some Ar-C resonances are overlapping and cannot be observed. The Al-C resonance could not be observed in the ¹³C NMR spectrum due to coupling to the quadrupolar ²⁷Al (I = 5/2) nucleus.
Preparation of 3c

3c was prepared following the reaction sequence shown in Scheme S1. Reaction of 2 at 25 °C gives the kinetic product S1 by C=O insertion into Al–O bond. S1 evolves to the thermodynamic product 3c after heating at 60 °C for 48 h.

Scheme S1: Reaction of 2 with 3-tolualdehyde.

Preparation of S1: 2 was prepared in-situ in an NMR tube from 1 (17.8 mg, 0.04 mmol), [W(CO)₆] (8 mg, 0.023 mmol) and CO gas (~1 bar) following the reported procedure. Once formation of 2 was confirmed by ¹H NMR spectroscopy, the NMR tube was returned to the glovebox, the reaction mixture was cooled to −35 °C using a low temperature reactor and the headspace of the NMR tube was evacuated to remove the remaining CO gas and 3-tolualdehyde (4.8 µL, 0.04 mmol) was added via microsyringe. After 12 h at 25 °C the reaction mixture was returned to the glovebox, diluted with ~0.5 mL of toluene and decanted into a 20 mL scintillation vial. The resultant solution was concentrated *in vacuo* and residue dissolved in THF (~0.2 mL), filtered into a 4 mL vial, and carefully layered with n-pentane (~2 mL). The vial was placed in the glovebox freezer (−35 °C) and S1 crystallised as orange blocks. The supernatant was decanted, and the resultant crystals were washed with cold n-pentane thrice (3 x 0.5mL) before being dried *in vacuo*. Yield: 15.3 mg, 0.011 mmol, 53%.
1H NMR (400 MHz, THF-$_d_8$, 298 K) δ 0.49 (d, 3J$_{HH} = 6.7$ Hz, 3H, (CH$_3$)$_2$CH), 0.51 (d, 3J$_{HH} = 6.7$ Hz, 3H, (CH$_3$)$_2$CH), 0.61 (d, 3J$_{HH} = 6.7$ Hz, 3H, (CH$_3$)$_2$CH), 0.85 (d, 3J$_{HH} = 6.7$ Hz, 3H, (CH$_3$)$_2$CH), 0.86 (d, 3J$_{HH} = 6.7$ Hz, 3H, (CH$_3$)$_2$CH), 0.94 (d, 3J$_{HH} = 6.9$ Hz, 3H, (CH$_3$)$_2$CH), 0.95 (d, 3J$_{HH} = 6.8$ Hz, 3H, (CH$_3$)$_2$CH), 1.07 (d, 3J$_{HH} = 6.9$ Hz, 3H, (CH$_3$)$_2$CH), 1.10 (d, 3J$_{HH} = 6.6$ Hz, 3H, (CH$_3$)$_2$CH), 1.18 (d, 3J$_{HH} = 6.8$ Hz, 3H, (CH$_3$)$_2$CH), 1.25 (d, 3J$_{HH} = 6.7$ Hz, 3H, (CH$_3$)$_2$CH), 1.33 (d, 3J$_{HH} = 6.9$ Hz, 3H, (CH$_3$)$_2$CH), 1.38 (d, 3J$_{HH} = 6.7$ Hz, 3H, (CH$_3$)$_2$CH), 1.43 (d, 3J$_{HH} = 6.8$ Hz, 3H, (CH$_3$)$_2$CH), 1.47 (d, 3J$_{HH} = 6.7$ Hz, 3H, (CH$_3$)$_2$CH), 1.53 (d, 3J$_{HH} = 6.7$ Hz, 3H, (CH$_3$)$_2$CH), 1.65 (s, 3H, (CH$_3$)$_2$CH), 1.82 (s, 3H, (CH$_3$)$_2$CH), 1.84 (s, 3H, (CH$_3$)$_2$CH), 1.96 (s, 3H, (CH$_3$)$_2$CH), 2.09 (s, 3H, CH$_3$-C$_6$H$_4$), 2.60 - 2.80 (hept overlapping, 3H, (CH$_3$)$_2$CH), 2.87 (hept, 3J$_{HH} = 6.8$ Hz, 1H, (CH$_3$)$_2$CH), 3.13 (hept overlapping, 2H, (CH$_3$)$_2$CH), 3.24 (hept overlapping, 2H, (CH$_3$)$_2$CH), 5.40 (s, 1H, (CH$_3$)$_2$CH), 5.43 (s, 1H, HCt), 5.75 (s, 1H, (CH$_3$)$_2$CH), 6.20 (s, 1H, Ar-H), 6.23 (m, 1H, Ar-H), 6.72 - 6.77 (m, 2H, Ar-H), 6.93 - 7.01 (overlapping signals, 2H, Ar-H), 7.03 - 7.12 (overlapping signals, 4H, Ar-H), 7.21 (m, 1H, Ar-H), 7.25 - 7.41 (overlapping signals, 5H, Ar-H).

13C NMR (101 MHz, THF-$_d_8$, 298 K) δ 21.7 (CH$_3$-C$_6$H$_4$), 23.1 ((CH$_3$)$_2$CH), 23.6 ((CH$_3$)$_2$CH), 23.6 ((CH$_3$)$_2$CH), 24.1 (((CH$_3$)$_2$C)$_2$CH), 24.6 - 26.1 (overlapping signals, 3 x ((CH$_3$)$_2$C)$_2$CH and 8 x (CH$_3$)$_2$CH), 26.2 ((CH$_3$)$_2$CH), 26.3 ((CH$_3$)$_2$CH), 26.6 ((CH$_3$)$_2$CH), 26.6 ((CH$_3$)$_2$CH), 27.2 ((CH$_3$)$_2$CH), 28.8 ((CH$_3$)$_2$CH), 29.1 ((CH$_3$)$_2$CH), 29.2 ((CH$_3$)$_2$CH), 29.2 ((CH$_3$)$_2$CH), 29.4 ((CH$_3$)$_2$CH), 29.4 ((CH$_3$)$_2$CH), 29.4 ((CH$_3$)$_2$CH), 29.5 ((CH$_3$)$_2$CH), 100.1 (((CH$_3$)$_2$C)$_2$CH), 101.6 (((CH$_3$)$_2$C)$_2$CH), 103.5 (Ct), 123.9 (Ar-C), 124.7 (Ar-C), 125.3 (Ar-C), 125.4 (Ar-C), 125.5 (Ar-C), 125.7 (Ar-C), 125.8 (Ar-C), 126.2 (Ar-C), 126.7 (Ar-C), 127.1 (Ar-C), 128.1 (Ar-C), 128.2 (Ar-C), 128.6 (Ar-C), 128.7 (Ar-C), 129.3 (Ar-C), 136.4 (Ar-C), 139.1 (Ar-C), 139.9 (Ar-C), 140.8 (Ar-C), 141.1 (Ar-C), 141.8 (Ar-C), 143.3 (Ar-C), 144.2 (Ar-C), 144.5 (Ar-C), 145.2 (Ar-C), 145.4 (Ar-C), 145.6 (Ar-C), 145.7 (Ar-C), 146.6 (Ar-C), 162.1 (Ar-C), 169.7 (Ct), 173.0 (((CH$_3$)$_2$C)$_2$CH), 173.1 (((CH$_3$)$_2$C)$_2$CH), 174.8 (((CH$_3$)$_2$C)$_2$CH), 174.8 (((CH$_3$)$_2$C)$_2$CH), 200.5 (W(CO)$_4$), 206.6 (W(COt)), 300.4 (Ct). The Al-Ct resonance could not be observed in the 13C NMR spectrum due to coupling to the quadrupolar 27Al (I = 5/2) nucleus.

IR (ATR), ν_{CO} (cm$^{-1}$): 2050, 1905, 1871.
Preparation of 3c: In a glovebox, S1 (8 mg, 0.0056 mmol) was dissolved in C₆D₆ (0.6 mL) and transferred to a J-Young NMR tube. The solution was heated for 48 h at 60 °C. The reaction was monitored by ¹H NMR spectroscopy and was deemed to be complete upon consumption of S1. Then the NMR tube was returned to the glovebox, diluted with ~0.5 mL of toluene and decanted into a 20 mL scintillation vial. The resultant solution was concentrated in vacuo and residue was extracted with pentane (3 x 0.5 mL). The resultant yellow solution was concentrated (~0.7 mL) and placed in the glovebox freezer (~35 °C) for 2 days to allow crystallization of 3c as brown blocks. The mother liquor was decanted and the crystals washed with cold n-pentane thrice (3 x 0.5 mL) before being dried in vacuo. Yield: 4.4 mg, 0.0031 mmol, 55%.

¹H NMR (400 MHz, C₆D₆, 298 K) δ 0.43 (d, 3J_HH = 6.8 Hz, 3H, (CH₃)₂CH), 0.43 (d, 3J_HH = 6.7 Hz, 3H, (CH₃)₂CH), 0.68 (d, 3J_HH = 6.7 Hz, 3H, (CH₃)₂CH), 0.76 (d, 3J_HH = 6.7 Hz, 3H, (CH₃)₂CH), 0.96 (d, 3J_HH = 6.9 Hz, 3H, (CH₃)₂CH), 0.97 (d, 3J_HH = 6.7 Hz, 3H, (CH₃)₂CH), 1.07 (d, 3J_HH = 6.8 Hz, 3H, (CH₃)₂CH), 1.08 (d, 3J_HH = 6.9 Hz, 3H, (CH₃)₂CH), 1.09 (d, 3J_HH = 6.7 Hz, 3H, (CH₃)₂CH), 1.13 (d, 3J_HH = 6.7 Hz, 3H, (CH₃)₂CH), 1.31 (s, 3H, (CH₃)₂C₂CH), 1.32 (d, 3J_HH = 6.8 Hz, 3H, (CH₃)₂CH), 1.33 (d, 3J_HH = 6.7 Hz, 3H, (CH₃)₂CH), 1.33 (d, 3J_HH = 6.8 Hz, 3H, (CH₃)₂CH), 1.44 (s, 3H, (CH₃)₂C₂CH), 1.40 (s, 3H, (CH₃)₂C₂CH), 1.38 (s, 3H, (CH₃)₂C₂CH), 1.55 (d, 3J_HH = 6.8 Hz, 3H, (CH₃)₂CH), 1.56 (d, 3J_HH = 6.7 Hz, 3H, (CH₃)₂CH), 1.65 (d, 3J_HH = 6.8 Hz, 3H, (CH₃)₂CH), 2.05 (s, 3H, CH₃C₆H₄), 2.40 (hept, 3J_HH = 6.7 Hz, 1H, (CH₃)₂CH), 2.99 - 3.11 (hept overlapping, 2H, (CH₃)₂CH), 3.11 - 3.25 (hept overlapping, 3H, (CH₃)₂CH), 3.49 (hept, 3J_HH = 6.7 Hz, 1H, (CH₃)₂CH), 3.74 (hept, 3J_HH = 6.7 Hz, 1H, (CH₃)₂CH), 4.81 (s, 1H, (CH₃)C₂CH), 4.95 (s, 1H, (CH₃)C₂CH), 5.14 (s, 1H, C₄H), 6.46 (d, 3J_HH = 7.5, 1H, Ar-H), 6.71 (t, 3J_HH = 7.5 Hz, 1H, Ar-H), 6.78 - 6.86 (overlapping signals, 3H, Ar-H), 6.96 - 7.00 (m, 1H, Ar-H), 7.03 - 7.12 (overlapping signals, 6H, Ar-H), 7.17 - 7.30 (overlapping signals, 4H, Ar-H).

¹³C{¹H} NMR (101 MHz, C₆D₆, 298 K) δ 21.3 (CH₃C₆H₄), 23.5 ((CH₃)₂C₂CH), 23.8 ((CH₃)₂C₂CH), 23.9 ((CH₃)₂CH), 23.9 ((CH₃)₂CH), 24.3 (2x (CH₃)₂CH), 24.5 (2x (CH₃)₂CH), 24.6 (2x (CH₃)₂CH), 24.7 (2x (CH₃)₂CH), 25.4 (2x (CH₃)₂CH), 25.9 (2x (CH₃)₂CH), 26.0 (2x (CH₃)₂CH), 27.7 ((CH₃)₂CH), 27.8 ((CH₃)₂CH), 28.0 ((CH₃)₂CH), 28.1 ((CH₃)₂CH), 28.7 ((CH₃)₂CH), 28.8 ((CH₃)₂CH), 28.8 ((CH₃)₂CH), 28.9 ((CH₃)₂CH), 80.3 (C₄H), 99.7 ((CH₃)C₂CH), 99.8 ((CH₃)C₂CH), 124.2 (Ar-C), 124.7 (Ar-C), 124.8 (Ar-C),
124.9 (Ar C), 125.1 (Ar C), 125.4 (Ar C), 125.5 (Ar C), 136.2 (Ar C), 138.1 (Ar C), 138.6 (Ar C), 140.4 (Ar C), 140.6 (Ar C), 142.8 (Ar C), 143.4 (Ar C), 143.8 (Ar C), 143.9 (Ar C), 144.3 (Ar C), 144.4 (Ar C), 146.0 (Ar C), 146.2 (Ar C), 151.2 (C²), 154.6 (C²), 173.8 \((\text{CH}_3)_2\text{C}_2\text{CH}\), 173.3 \((\text{CH}_3)_2\text{C}_2\text{CH}\), 172.6 \((\text{CH}_3)_2\text{C}_2\text{CH}\), 172.5 \((\text{CH}_3)_2\text{C}_2\text{CH}\), 202.1 (W(CO)₄), 211.7 (W(CO)), 314.1 (C¹). Some Ar C resonances are overlapping and cannot be observed.

IR (ATR), νCO (cm⁻¹): 2052, 1927, 1901, 1867.

Anal. Calc. (C₇₄H₉₀Al₂N₄O₉W): C, 62.71; H, 6.40; N, 3.95. Found: C, 60.64; H, 6.29; N, 4.28. The low C content, but accurate H and N content likely reflect limitations of the technique (e.g. incomplete C combustion).
Preparation of 5c

In a glovebox, 3c (5 mg, 0.0036 mmol) was dissolved in C₆D₆ (0.6 mL) and transferred to a J-Young NMR tube containing a capillary with 1,3,5-trimethoxybenzene as external standard. The headspace of the NMR tube was evacuated, H₂ gas (~1 bar) was introduced into the NMR tube and the reaction mixture was heated for 48 h at 100 °C. After this time, 3c was not observed by ¹H NMR spectroscopy in the reaction mixture. NMR yield: 60 %.

Compound 5c was characterized by NMR spectroscopy.

¹H NMR (400 MHz, C₆D₆, 298 K) δ 0.57 (d, 3JHH = 6.7 Hz, 3H, (CH₃)₂CH), 0.87 (d, 3JHH = 6.8 Hz, 3H, (CH₃)₂CH), 0.93 (d, 3JHH = 6.7 Hz, 3H, (CH₃)₂CH), 0.97 (d, 3JHH = 6.8 Hz, 3H, (CH₃)₂CH), 0.99 (d, 3JHH = 6.6 Hz, 3H, (CH₃)₂CH), 1.05 (d, 3JHH = 6.8 Hz, 3H, (CH₃)₂CH), 1.07 (d, 3JHH = 6.7 Hz, 3H, (CH₃)₂CH), 1.09 (d, 3JHH = 6.9 Hz, 3H, (CH₃)₂CH), 1.10 (d, 3JHH = 6.7 Hz, 3H, (CH₃)₂CH), 1.13 (d, 3JHH = 6.8 Hz, 3H, (CH₃)₂CH), 1.16 (d, 3JHH = 6.8 Hz, 6H, (CH₃)₂CH), 1.22 (d, 3JHH = 6.9 Hz, 3H, (CH₃)₂CH), 1.34 (d, 3JHH = 6.7 Hz, 3H, (CH₃)₂CH), 1.42 (s, 3H, (CH₃)₂C₂CH), 1.44 (s, 3H, (CH₃)₂C₂CH), 1.45 (s, 3H, (CH₃)₂C₂CH), 1.48 (s, 3H, (CH₃)₂C₂CH), 1.50 (d, 3JHH = 6.7 Hz, 3H, (CH₃)₂CH), 1.51 (d, 3JHH = 6.7 Hz, 3H, (CH₃)₂CH), 2.14 (s, 3H, CH₃C₆H₄), 2.78 (hept, 3JHH = 6.8 Hz, 1H, (CH₃)₂CH), 3.01 (hept, 3JHH = 6.9 Hz, 1H, (CH₃)₂CH), 3.21 – 3.37 (hept overlapping, 4H, (CH₃)₂CH), 3.42 (hept, 3JHH = 6.9 Hz, 1H, (CH₃)₂CH), 3.53 (hept, 3JHH = 6.8 Hz, 1H, (CH₃)₂CH), 4.42 (AB spin system, Δν = 83.2 Hz, JAB = 13.8 Hz, 2H, CH₂), 4.83 (s, 1H, (CH₃)₂CH), 4.88 (s, 1H, (CH₃)₂CH), 5.01 (s, 1H, CH₃), 6.46 (m, 1H, Ar-H), 6.70 (s, 1H, Ar-H), 6.78 (m, 1H, Ar-H), 6.83 – 6.89 (overlapping signals, 2H, Ar-H), 6.94 (m, 1H, Ar-H), 7.04 – 7.09 (overlapping signals, 2H, Ar-H), 7.13 – 7.23 (overlapping signals, 6H, Ar-H), 7.32 (m, 2H, Ar-H).

¹³C NMR (101 MHz, C₆D₆, 298 K) δ 22.2 (CH₃C₆H₄), 23.3 ((CH₃)₂C₂CH), 23.5 ((CH₃)₂C₂CH), 23.5 ((CH₃)₂C₂CH), 23.6 ((CH₃)₂C₂CH), 24.4 ((CH₃)₂CH), 24.5 ((CH₃)₂CH), 24.5 ((CH₃)₂CH), 24.5 ((CH₃)₂CH), 24.6 ((CH₃)₂CH), 24.7 ((CH₃)₂CH), 24.7
([CH₃]₂CH), 24.7 ([CH₃]₂CH), 24.8 ([CH₃]₂CH), 24.8 ([CH₃]₂CH), 24.8 ([CH₃]₂CH), 24.9 ([CH₃]₂CH), 25.0 ([CH₃]₂CH), 25.3 ([CH₃]₂CH), 25.4 ([CH₃]₂CH), 25.6 ([CH₃]₂CH), 28.1 ([CH₃]₂CH₂), 28.2 ([CH₃]₂CH₂), 28.3 ([CH₃]₂CH₂), 28.6 ([CH₃]₂CH₂), 28.7 ([CH₃]₂CH₂), 28.7 ([CH₃]₂CH₂), 28.8 ([CH₃]₂CH₂), 29.0 ([CH₃]₂CH₂), 68.6 (CH₂), 79.8 (C⁴H), 97.6 ([CH₃]₂CH₂), 97.9 ([CH₃]₂CH₂), 123.6 (ArC), 123.7 (ArC), 123.9 (ArC), 124.2 (ArC), 124.4 (ArC), 124.5 (ArC), 124.7 (ArC), 124.8 (ArC), 124.9 (ArC), 125.4 (ArC), 125.9 (ArC), 126.1 (ArC), 127.4 (ArC), 129.1 (ArC), 129.7 (ArC), 135.7 (C⁴), 136.0 (C³), 136.8 (ArC), 139.4 (ArC), 139.6 (ArC), 139.7 (ArC), 140.3 (ArC), 141.3 (ArC), 142.8 (ArC), 144.0 (ArC), 144.2 (ArC), 144.3 (ArC), 144.5 (ArC), 144.7 (ArC), 144.8 (ArC), 145.2 (ArC), 148.0 (ArC), 171.3 ([CH₃]₂CH₂), 171.4 ([CH₃]₂CH₂), 171.5 ([CH₃]₂CH₂), 171.6 ([CH₃]₂CH₂).
Preparation of 3d

2 was prepared in-situ in an NMR tube from 1 (8.9 mg, 0.02 mmol), [W(CO)₆] (4 mg, 0.011 mmol) and CO gas (~1 bar) following the reported procedure. Once formation of 2 was confirmed by ¹H NMR spectroscopy, the NMR tube was returned to the glovebox, the reaction mixture was cooled to ~35 °C using a low temperature reactor and the headspace of the NMR tube was evacuated to remove the remaining CO gas and 2-butanone (1.8 μL, 0.02 mmol) was added via microsyringe. After 24 h at 25 °C reaction mixture was returned to the glovebox, diluted with ~0.5 mL of toluene and decanted into a 20 mL scintillation vial. The resultant solution was concentrated in vacuo to ~0.2 mL, filtered into a 4 mL vial, and carefully layered with n-pentane (~2 mL). The vial was placed in the glovebox freezer (~35 °C) and 3d crystallised as yellow blocks. The supernatant was decanted, and the resultant crystals were washed with cold n-pentane thrice (3 x 0.5mL) before being dried briefly in vacuo (~2 min). Yield: 7.0 mg, 0.0051 mmol, 51%.

¹H NMR (400 MHz, CDCl₃, 298 K) δ -0.03 (t, 3JHH = 7.3 Hz, 3H, CH₂CH₂), 0.49 (s, 3H, CH₂C₆H₅), 0.68 (d, 3JHH = 6.7 Hz, 3H, (CH₃)₂CH), 0.77 (d, 3JHH = 6.8 Hz, 3H, (CH₃)₂CH), 0.81 (d, 3JHH = 6.8 Hz, 3H, (CH₃)₂CH), 0.90 (m, 2H, CH₂CH₃), 1.03 (d, 3JHH = 6.8 Hz, 3H, (CH₃)₂CH), 1.06 (d, 3JHH = 6.8 Hz, 3H, (CH₃)₂CH), 1.13 (d, 3JHH = 6.7 Hz, 3H, (CH₃)₂CH), 1.16 (d, 3JHH = 6.8 Hz, 3H, (CH₃)₂CH), 1.19 (d, 3JHH = 6.9 Hz, 6H, (CH₃)₂CH), 1.25 (overlapping signals, 3H, (CH₃)₂CH), 1.27 (d, 3JHH = 6.6 Hz, 3H, (CH₃)₂CH), 1.34 (overlapping signals, 3H, (CH₃)₂CH), 1.35 (s, 3H, ((CH₃)₂C)₂CH), 1.35 (d, 3JHH = 6.8 Hz, 3H, (CH₃)₂CH), 1.38 (s, 3H, ((CH₃)₂C)₂CH), 1.41 (d, 3JHH = 6.8 Hz, 3H, (CH₃)₂CH), 1.48 (s, 3H, ((CH₃)₂C)₂CH), 1.50 (s, 3H, ((CH₃)₂C)₂CH), 1.64 (d, 3JHH = 6.8 Hz, 3H, (CH₃)₂CH), 1.77 (d, 3JHH = 6.8 Hz, 3H, (CH₃)₂CH), 2.86 (hept, 3JHH = 6.8 Hz, 1H, (CH₃)₂CH), 3.01 - 3.20 (hept overlapping, 5H, (CH₃)₂CH), 3.62 (hept, 3JHH = 6.6 Hz, 1H, (CH₃)₂CH), 3.73 (hept, 3JHH = 6.7 Hz, 1H, (CH₃)₂CH), 4.77 (s, 1H, ((CH₃)C)₂CH), 4.98 (s, 1H, ((CH₃)C)₂CH), 6.88 (m, 1H, Ar-H), 6.99 (m, 4H, Ar-H), 7.07 (m, 2H, Ar-H), 7.10 - 7.20 (overlapping signals, 5H, Ar-H).
13C{1H} NMR (101 MHz, CD$_6$, 298 K) δ 7.5 (CH$_2$CH$_3$), 23.1 ((CH$_3$)$_2$CH), 23.3 ((CH$_3$)$_2$CH), 23.4 ((CH$_3$)$_2$CH), 23.6 (((CH$_3$)$_2$C)$_2$CH), 23.8 (((CH$_3$)$_2$C)$_2$CH), 24.1 ((CH$_3$)$_2$CH), 24.1 ((CH$_3$)$_2$CH), 24.2 ((CH$_3$)$_2$CH), 24.4 ((CH$_3$)$_2$CH), 24.5 (CH$_3$)$_2$CH), 24.6 (((CH$_3$)$_2$C)$_2$CH), 24.6 (((CH$_3$)$_2$C)$_2$CH), 24.7 (CH$_3$)$_2$CH), 24.9 (CH$_3$)$_2$CH), 25.0 (CH$_3$)$_2$CH), 25.3 (CH$_3$)$_2$CH), 25.3 (CH$_3$)$_2$CH), 26.8 (CH$_3$)$_2$CH), 27.7 (CH$_3$)$_2$CH), 27.9 ((CH$_3$)$_2$CH), 28.3 ((CH$_3$)$_2$CH), 28.4 ((CH$_3$)$_2$CH), 28.7 ((CH$_3$)$_2$CH), 28.7 ((CH$_3$)$_2$CH), 28.7 (CH$_3$C'), 28.9 ((CH$_3$)$_2$CH), 29.0 ((CH$_3$)$_2$CH), 29.1 ((CH$_3$)$_2$CH), 29.5 ((CH$_3$)$_2$CH), 35.4 (CH$_2$CH$_3$), 78.4 (C'), 99.8 (((CH$_3$)$_2$C)$_2$CH), 99.9 (((CH$_3$)$_2$C)$_2$CH), 123.6 (Ar C), 123.9 (Ar C), 124.0 (Ar C), 124.1 (Ar C), 124.6 (Ar C), 124.8 (Ar C), 125.4 (Ar C), 125.9 (Ar C), 127.2 (Ar C), 127.5 (Ar C), 139.0 (Ar C), 139.3 (Ar C), 140.3 (Ar C), 140.4 (Ar C), 142.1 (Ar C), 142.6 (Ar C), 143.8 (Ar C), 144.9 (Ar C), 144.8 (Ar C), 145.4 (Ar C), 146.3 (Ar C), 146.4 (Ar C), 154.9 (C'), 157.2 (C'), 172.1 (((CH$_3$)$_2$C)$_2$CH), 172.3 (((CH$_3$)$_2$C)$_2$CH), 173.8 (((CH$_3$)$_2$C)$_2$CH), 174.3 (((CH$_3$)$_2$C)$_2$CH), 203.6 (W(CO)$_4$), 205.2 (W(CO)), 311.3 (C'). Some ArC resonances are overlapping and cannot be observed.

IR (ATR), ν_{CO} (cm$^{-1}$): 2043, 1923, 1893, 1871.

Anal. Calc. (C$_{71}$H$_{92}$Al$_{2}$N$_{4}$O$_{9}$W): C, 61.65; H, 6.70; N, 4.05. Found: C, 61.79; H, 6.65; N, 4.49.
In a glovebox, 3d (5 mg, 0.0036 mmol) was dissolved in C₆D₆ (0.6 mL) and transferred to a J-Young NMR tube containing a capillary with 1,3,5-trimethoxybenzene as external standard. The headspace of the NMR tube was evacuated, H₂ gas (~1 bar) was introduced into the NMR tube and the reaction mixture was heated for 4 h at 100 °C. After this time, 3d was not observed by ¹H NMR spectroscopy in the reaction mixture. NMR yield: 87%. Compound 5d was characterized by NMR spectroscopy.

¹H NMR (400 MHz, C₆D₆, 298 K) δ -0.37 (t, 3JHH = 7.2 Hz, 3H, CH₂CH₃), 0.56 (s, 3H, CH₃C¹), 0.76 (d, 3JHH = 6.7 Hz, 3H, (CH₃)₂CH), 0.81 (m, 1H, CH₂CH₃), 0.98 (d, 3JHH = 6.8 Hz, 3H, (CH₃)₂CH), 1.03 (d, 3JHH = 6.8 Hz, 6H, (CH₃)₂CH), 1.14 (d, 3JHH = 6.8 Hz, 6H, (CH₃)₂CH), 1.17 (d, 3JHH = 6.8 Hz, 6H, (CH₃)₂CH), 1.21 (d, 3JHH = 6.9 Hz, 3H, (CH₃)₂CH), 1.30 (d, 3JHH = 6.7 Hz, 3H, (CH₃)₂CH), 1.46 (d, 3JHH = 6.7 Hz, 6H, (CH₃)₂CH), 1.52 (d, 3JHH = 6.7 Hz, 3H, (CH₃)₂CH), 1.64 (s, 6H, ((CH₃)₂C)₂CH), 1.59 (d, 3JHH = 6.6 Hz, 3H, (CH₃)₂CH), 2.98 (hept, 3JHH = 6.9 Hz, 2H, (CH₃)₂CH), 3.08 (hept, 3JHH = 6.7 Hz, 2H, (CH₃)₂CH), 3.24 – 3.58 (hept overlapping, 4H, (CH₃)₂CH), 4.67 (s, 2H, CH₂), 4.90 (s, 1H, ((CH₃)₂C)₂CH), 4.93 (s, 1H, ((CH₃)₂C)₂CH), 6.94 (m, 1H, Ar-H), 7.02 (m, 2H, Ar-H), 7.10 – 7.20 (overlapping signals, 9H, Ar-H).

¹³C NMR (101 MHz, C₆D₆, 298 K) δ 6.9 (CH₂CH₃), 22.7 ((CH₃)₂CH), 23.4 ((CH₃)₂CH), 23.4 ((CH₃)₂CH), 23.5 (((CH₃)₂C)₂CH), 23.5 (((CH₃)₂C)₂CH), 23.8 (((CH₃)₂C)₂CH), 23.9 (((CH₃)₂C)₂CH), 24.0 (((CH₃)₂C)₂CH), 24.1 (((CH₃)₂C)₂CH), 24.4 (((CH₃)₂C)₂CH), 24.5 (((CH₃)₂C)₂CH), 24.5 (((CH₃)₂C)₂CH), 24.7 ((CH₃)₂CH), 24.8 ((CH₃)₂CH), 24.8 ((CH₃)₂CH), 24.9 ((CH₃)₂CH), 25.3 ((CH₃)₂CH), 25.5 ((CH₃)₂CH), 26.2 ((CH₃)₂CH), 26.7 ((CH₃)₂CH), 27.9 ((CH₃)₂CH), 28.0 ((CH₃)₂CH), 28.2 ((CH₃)₂CH), 28.5 ((CH₃)₂CH), 28.7 ((CH₃)₂CH), 28.8 ((CH₃)₂CH), 28.8 ((CH₃)₂CH), 30.3 (CH₃C¹), 35.1 (CH₂CH₃), 69.1 (CH₂), 78.4 (C¹), 97.3 (((CH₃)₂C)₂CH), 97.8 (((CH₃)₂C)₂CH), 123.6 (Ar-C), 123.7 (Ar-C), 124.0 (Ar-C), 124.1 (Ar-C), 124.2 (Ar-C), 124.5 (Ar-C), 124.8 (Ar-C), 125.5 (Ar-C), 125.9 (Ar-C), 135.3 (C²), 138.3 (C²), 19.
140.0 (Ar \mathbf{C}), 140.5 (Ar \mathbf{C}), 140.6 (Ar \mathbf{C}), 141.1 (Ar \mathbf{C}), 142.8 (Ar \mathbf{C}), 143.3 (Ar \mathbf{C}), 143.4 (Ar \mathbf{C}), 144.1 (Ar \mathbf{C}), 144.2 (Ar \mathbf{C}), 144.5 (Ar \mathbf{C}), 144.9 (Ar \mathbf{C}), 145.4 (Ar \mathbf{C}), 171.0 ({$(\text{CH}_3)_2\mathbf{C}$}2CH), 171.3 ({$(\text{CH}_3)_2\mathbf{C}$}2CH), 171.7 ({$(\text{CH}_3)_2\mathbf{C}$}2CH), 172.2 ({$(\text{CH}_3)_2\mathbf{C}$}2CH). Some Ar \mathbf{C} resonances are overlapping and cannot be observed.
Preparation of 3e

2 was prepared in-situ in an NMR tube from 1 (8.9 mg, 0.02 mmol), [W(CO)₆] (4 mg, 0.011 mmol) and CO gas (~1 bar) following the reported procedure. Once formation of 2 was confirmed by ¹H NMR spectroscopy, the NMR tube was returned to the glovebox, reaction mixture was cooled to ~35 °C using a low temperature reactor and the headspace of the NMR tube was evacuated to remove the remaining CO gas. 2,6-Dimethylphenyl isocyanide (1.3 mg, 0.01 mmol) was dissolved in 0.3 mL of C₆D₆ and added to the reaction mixture. After 24 h at 60 °C reaction mixture was returned to the glovebox, diluted with ~0.5 mL of toluene and decanted into a 20 mL scintillation vial. The resultant solution was concentrated in vacuo and the residue dissolved in ~0.2 mL of THF. A dark purple solid precipitated after addition of n-pentane (~0.5 mL) to the solution. The supernatant was decanted, and the solid washed with n-pentane thrice (3 x 0.5mL) before being dried in vacuo. Yield: 8.5 mg, 0.006 mmol, 60%.

¹H NMR (400 MHz, THF-d₈, 298 K) δ 0.14 (d, ³JHH = 6.7 Hz, 6H, (CH₃)₂CH), 0.60 (s, 6H, Xyl-CH₃), 0.74 (d, ³JHH = 6.7 Hz, 6H, (CH₃)₂CH), 0.87 (d, ³JHH = 6.7 Hz, 6H, (CH₃)₂CH), 0.92 (d, ³JHH = 6.8 Hz, 6H, (CH₃)₂CH), 1.00 (d, ³JHH = 6.6 Hz, 6H, (CH₃)₂CH), 1.18 (d, ³JHH = 6.7 Hz, 6H, (CH₃)₂CH), 1.26 (d, ³JHH = 6.7 Hz, 6H, (CH₃)₂CH), 1.54 (d, ³JHH = 6.9 Hz, 6H, (CH₃)₂CH), 1.64 (s, 6H, ((CH₃)₂C)₂CH), 1.84 (s, 6H, ((CH₃)₂C)₂CH), 2.37 (hept, ³JHH = 6.9 Hz, 2H, (CH₃)₂C), 2.98 (hept, ³JHH = 6.8 Hz, 2H, (CH₃)₂C), 3.25 (hept, ³JHH = 6.7 Hz, 2H, (CH₃)₂C), 3.33 (hept, ³JHH = 6.9 Hz, 2H, (CH₃)₂C), 5.48 (s, 1H, ((CH₃)C)₂CH), 5.66 (s, 1H, ((CH₃)C)₂CH), 6.41 (m, 3H, Ar-H), 6.96 (m, 2H, Ar-H), 7.02 – 7.10 (overlapping signals, 4H, Ar-H), 7.15 (m, 3H, Ar-H), 7.24 (m, 3H, Ar-H).
13C NMR (101 MHz, THF, 298 K) δ 17.1 (Xyl-CH$_3$), 24.2 (2x (CH$_3$)$_2$CH), 24.5 (2x ((CH$_3$)$_2$C)$_2$CH) 24.5 (2x ((CH$_3$)$_2$C)$_2$CH), 26.3 (2x (CH$_3$)$_2$CH), 26.4 (2x (CH$_3$)$_2$CH), 28.1 (2x (CH$_3$)$_2$CH), 28.6 (2x (CH$_3$)$_2$CH), 29.3 (2x (CH$_3$)$_2$CH), 29.4 (2x (CH$_3$)$_2$CH), 30.0 (2x (CH$_3$)$_2$CH), 100.5 ([(CH$_3$)$_2$C]$_2$CH), 102.2 ([(CH$_3$)$_2$C]$_2$CH), 121.9 (ArC), 124.0 (ArC), 124.9 (ArC), 125.3 (ArC), 125.5 (ArC), 125.8 (ArC), 128.2 (ArC), 128.6 (ArC), 129.0 (ArC), 139.3 (ArC), 140.8 (ArC), 144.2 (ArC), 145.0 (ArC), 145.0 (ArC), 145.8 (C$^{2/3}$), 146.5 (ArC), 156.5 (ArC), 161.2 (C$^{2/3}$), 173.8 ([(CH$_3$)$_2$C]$_2$CH), 175.0 ([(CH$_3$)$_2$C]$_2$CH), 202.5 (W(CO)$_4$), 206.5 (W(CO)$_4$), 329.2 (Ci). Some ArC resonances are overlapping and cannot be observed. The Al–C4 resonance could not be observed in the 13C NMR spectrum due to coupling to the quadrupolar 27Al (I = 5/2) nucleus.

IR (ATR), ν$_{CO}$ (cm$^{-1}$): 2051, 1907, 1879.

Anal. Calc. (C$_{75}$H$_{91}$Al$_2$N$_5$O$_8$W): C, 63.07; H, 6.42; N, 4.90. Found: C, 51.79; H, 4.95; N, 4.50.1

1 Accurate CHN analysis could not be obtained likely due to the air-sensitive nature of the compound.
Preparation of S2

In a glovebox, 3f (24 mg, 0.019 mmol) and 2,6-dimethylphenyl isocyanide (7 mg, 0.053 mmol) were dissolved in C₆D₆ (0.600 mL) and transferred to a J-Young NMR tube. The mixture was heated at 100°C for 6 h. At 2 hr intervals, the headspace of the NMR tube was removed under vacuum and refreshed with dinitrogen. The J-Young NMR tube was returned to the glovebox, diluted with toluene (~0.5 mL), decanted into a 20 mL scintillation vial, and concentrated in vacuo until approx 0.3 mL of solution remains. The solution was then filtered into 10 mL of n-pentane. S2 directly crystallises from this mixture as dark purple-black needles. The vial was placed in the freezer at –35°C for 18 h. The supernatant was decanted, and the resultant crystals were washed with cold n-pentane thrice (3x 1mL) before the crystals were dried briefly in vacuo (~2 minutes).

Yield: 14 mg, 0.0091 mmol, 48%.

¹H NMR (400 MHz, C₆D₆, 298 K) δ 0.46 (d, ³J_HH = 6.7 Hz, 6H, (CH₃)₂CH), 0.87 (d overlapping, ³J_HH= 6.7 Hz, 12H, 2x CH(₃)₂CH), 0.92 (d, ³J_HH = 6.8 Hz, 6H, (CH₃)₂CH), 0.95 (d, ³J_HH = 6.8 Hz, 6H, (CH₃)₂CH), 1.03 (s, 6H, 2x Xyl-CH₃), 1.37 (s, 6H, {(CH₃)₂C}₂CH), 1.40 (d, ³J_HH = 6.8 Hz, 6H, (CH₃)₂CH), 1.44 (d, ³J_HH = 6.5 Hz, 6H, (CH₃)₂CH), 1.49 (s, 6H, {(CH₃)₂C}₂CH), 1.78 (d, ³J_HH = 6.8 Hz, 6H, (CH₃)₂CH), 2.51 (hept, ³J_HH = 6.7 Hz, 2H, 2x (CH₃)₂CH), 2.53 (s, 6H, 2x Xyl-CH₃), 3.06 (hept, ³J_HH = 6.8 Hz, 2H, 2x (CH₃)₂CH), 3.18 (hept, ³J_HH = 6.6 Hz, 2H, 2x (CH₃)₂CH), 4.95 (s, 1H, {(CH₃)₃C}₂CH), 5.21 (s, 1H, {(CH₃)C}₂CH), 6.67 – 7.23 (m, overlapping signals, 24H, Ar-H).

¹³C NMR (101 MHz, C₆D₆, 298 K) δ 17.0 (2x Xyl-CH₃), 19.1 (2x Xyl-CH₃), 23.9 ({{CH₃}₂C}₂CH), 24.0 ({{CH₃}₂C}₂CH), 24.1 ({{CH₃}₂C}₂CH), 24.8 (2x (CH₃)₂CH), 25.3 ({{CH₃}₂C}₂CH), 25.3 ({{CH₃}₂C}₂CH), 25.5 ({{CH₃}₂C}₂CH), 26.0 ({{CH₃}₂C}₂CH), 27.7 ({{CH₃}₂C}₂CH), 28.5 (2x (CH₃)₂CH), 28.7 (4x (CH₃)₂CH), 29.4 (2x (CH₃)₂CH), 99.3 ({{CH₃}₂C}₂CH), 102.0...
((CH$_3)_2C)_2CH, 121.5 (ArC), 123.7 (ArC), 124.2 (2x ArC), 124.7 (2x ArC), 125.1 (2x ArC), 125.1 (2x ArC), 126.8 (ArC), 127.6 (ArC), 129.9 (ArC), 135.0 (ArC), 138.7 (ArC), 140.6 (ArC), 143.6 (ArC), 144.4 (ArC), 144.4 (ArC), 146.5 (ArC), 156.5 ($C^{2/3}$), 160.9 ($C^{2/3}$), 173.1 ((CH$_3)_2C)_2CH), 173.3 ((CH$_3)_2C)_2CH), 205.8 (W(CO)$_2$), 211.4 (W(CO)$_2$), 319.4 (C^I).

Some ArC resonances are overlapping and cannot be observed. The Al–C resonance could not be observed due to quadrupolar broadening to the 27Al ($I = 5/2$) nucleus.

IR (ATR), νCO (cm$^{-1}$): 1976, 1911, 1889, 1859.

Anal. Calc. (C$_{83}$H$_{100}$Al$_2$N$_6$O$_7$: C, 65.09; H, 6.58; N, 5.49. Found: C, 65.22; H, 6.73; N, 5.44.
Preparation of **S3**

In a glovebox, 3e (5 mg, 0.0035 mmol) was dissolved in C₆D₆ (0.6 mL) and transferred to a J-Young NMR tube containing a capillary with 1,3,5-trimethoxybenzene as external standard. The headspace of the NMR tube was evacuated, H₂ gas (~1 bar) was introduced into the NMR tube and the reaction mixture was heated for 16 h at 100 °C. After this time, reaction mixture contained 3e, S3 and 5e in 7, 60 and 20 % NMR yield, respectively. Compound S3 was characterized by NMR spectroscopy from the mixture.

1H NMR (400 MHz, C₆D₆, 298 K) δ 0.71 (d, 3J_HH = 6.8 Hz, 3H, (CH₃)₂CH), 0.88 (d, 3J_HH = 6.7 Hz, 6H, (CH₃)₂CH), 0.96 (d, 3J_HH = 6.6 Hz, 6H, (CH₃)₂CH), 1.12 (d, 3J_HH = 6.6 Hz, 6H, (CH₃)₂CH), 1.21 (d, 3J_HH = 6.7 Hz, 6H, (CH₃)₂CH), 1.39 (s, 6H, ((CH₃)₂C)₂CH), 1.51 (s, 6H, ((CH₃)₂C)₂CH), 1.53 (d, 3J_HH = 6.7 Hz, 6H, (CH₃)₂CH), 1.56 (d, 3J_HH = 6.7 Hz, 6H, (CH₃)₂CH), 1.61 (d, 3J_HH = 6.7 Hz, 6H, (CH₃)₂CH), 1.86 (s, 6H, Xyl-CH₃), 2.04 (m, 3H, (CH₃)₂CH), 2.54 (hept, 3J_HH = 6.6 Hz, 2H, (CH₃)₂CH), 3.19 (hept, 3J_HH = 6.7 Hz, 2H, (CH₃)₂CH), 3.58 (hept, 3J_HH = 6.7 Hz, 2H, (CH₃)₂CH), 3.63 (hept, 3J_HH = 6.8 Hz, 2H, (CH₃)₂CH), 4.86 (s, 2H, CH₂), 4.90 (s, 1H, ((CH₃)C)₂CH), 4.99 (s, 1H, ((CH₃)C)₂CH), 6.44-7.34 (overlapping signals, 15H, Ar-H).

13C NMR (101 MHz, C₆D₆, 298 K) δ 68.7 (CH₂), 97.2 ((CH₃)₂C)₂CH), 98.6 ((CH₃)₂C)₂CH), 146.3 (C³), 156.2 (C²), 171.2 ((CH₃)₂C)₂CH), 171.8 ((CH₃)₂C)₂CH). Resonances corresponding to Xyl-CH₃, (CH₃)₂CH, ((CH₃)C)₂CH, (CH₃)₂CH and Ar-C are overlapping and cannot be assigned. The Al-C⁴ resonance could not be observed in the 13C NMR spectrum due to coupling to the quadrupolar 27Al (I = 5/2) nucleus.

S25
Preparation of 5e

In a glovebox, 3e (5 mg, 0.0035 mmol) was dissolved in C₆D₆ (0.6 mL) and transferred to a J-Young NMR tube containing a capillary with 1,3,5-trimethoxybenzene as external standard. The headspace of the NMR tube was evacuated, H₂ gas (~1 bar) was introduced into the NMR tube and the reaction mixture was heated for 4 days at 100 °C. After this time, no signals corresponding to 3e or S2 were observed by NMR spectroscopy from the mixture. NMR yield: 85%. Compound 5e was characterized by NMR spectroscopy.

¹H NMR (400 MHz, C₆D₆, 298 K) δ 0.62 (d, ¹³JHH = 6.6 Hz, 3H, (CH₃)₂CH)), 1.02 (d, ¹³JHH = 6.9 Hz, 6H, (CH₃)₂CH)), 1.04 (d, ¹³JHH = 6.8 Hz, 6H, (CH₃)₂CH)), 1.07 (d, ¹³JHH = 6.8 Hz, 6H, (CH₃)₂CH)), 1.11 (d, ¹³JHH = 6.7 Hz, 6H, (CH₃)₂CH)), 1.20 (d, ¹³JHH = 6.9 Hz, 6H, (CH₃)₂CH)), 1.30 (d, ¹³JHH = 6.8 Hz, 6H, (CH₃)₂CH)), 1.36 (d, ¹³JHH = 6.7 Hz, 6H, (CH₃)₂CH)), 1.47 (s, 6H, {(CH₃)₂C}₂CH), 1.48 (s, 6H, {(CH₃)₂C}₂CH), 1.86 (s, 6H, Xyl-CH₂), 2.09 (m, 3H, (CH₃)₂CH), 3.06 (hept, ¹³JHH = 6.8 Hz, 2H, (CH₃)₂CH), 3.08 (hept, ¹³JHH = 6.8 Hz, 2H, (CH₃)₂CH), 3.31 (hept, ¹³JHH = 6.9 Hz, 2H, (CH₃)₂CH), 3.68 (hept, ¹³JHH = 6.8 Hz, 2H, (CH₃)₂CH)), 4.90 (s, 1H, {(CH₃)C}₂CH), 4.94 (s, 1H, {(CH₃)C}₂CH), 5.61 (s, 1H, NH), 6.47 (s, 1H, C-H), 6.50 (m, 2H, Ar-H), 6.68 (m, 1H, Ar-H), 6.79 (m, 1H, Ar-H), 6.98 (m, 2H, Ar-H), 7.12 – 7.22 (overlapping signals, 9H, Ar-H).

¹³C NMR (101 MHz, C₆D₆, 298 K) δ 18.3 (Xyl-CH₃), 19.8 (2x (CH₃)₂CH), 23.3 (2x {(CH₃)₂C}₂CH), 23.6 (2x{(CH₃)C}₂CH), 24.1 (2x (CH₃)₂CH), 24.4 (2x (CH₃)₂CH), 24.7 (2x (CH₃)₂CH), 24.9 (2x (CH₃)₂CH), 25.2 (2x (CH₃)₂CH), 25.3 (2x (CH₃)₂CH), 25.7 (2x (CH₃)₂CH), 28.3 (2x (CH₃)₂CH), 28.6 (2x (CH₃)₂CH), 28.6 (2x (CH₃)₂CH), 28.7 (2x (CH₃)₂CH), 98.6 (2{(CH₃)C}₂CH), 99.1 (2{(CH₃)C}₂CH), 119.3 (Ar-C), 124.2 (Ar-C), 124.3 (Ar-C), 124.4 (Ar-C), 125.1 (Ar-C), 127.1 (Ar-C), 127.4 (Ar-C), 128.6 (C′H), 129.2 (Ar-C), 135.3 (Ar-C), 138.6 (C′), 139.5 (Ar-C), 140.4 (Ar-C), 143.2 (Ar-C), 144.7 (Ar-C), 145.1 (Ar-C), 145.5 (Ar-C), 146.3 (Ar-C), 151.2 (C′), 171.0 (2{(CH₃)C}₂CH), 171.8 (2{(CH₃)C}₂CH). Some Ar-C resonances are overlapping and cannot be observed. The Al–C resonance could not be
observed in the 13C NMR spectrum due to coupling to the quadrupolar 27Al (I = 5/2) nucleus.

NH group was confirmed by 15N-1H HSQC experiment. 15N NMR (41 MHz, 298 K) δ 79.5.
Preparation of 5f

In a glovebox, 2 (10 mg, 0.008 mmol) was dissolved in C₆D₆ (0.6 mL) and transferred to a J-Young NMR tube. The headspace of the NMR tube was evacuated, H₂ gas (~1 bar) was introduced into the NMR tube and the reaction mixture was heated for 72 h at 100 °C. After this time, conversion >95% of 2 to 5f was observed. All attempts to separate 5f from reaction mixture were unsuccessful. Compound 5f was characterized by NMR spectroscopy.

¹H NMR (400 MHz, C₆D₆, 298 K) δ 1.00 (d, ³Jₘₘₘ = 6.8 Hz, 6H, (C₆Ha)₂CH), 1.07 (d, ³Jₘₘₘ = 6.8 Hz, 6H, (C₆Hb)₂CH), 1.08 (d, ³Jₘₘₘ = 6.8 Hz, 6H, (C₆Hc)₂CH), 1.11 (d, ³Jₘₘₘ = 6.8 Hz, 6H, (C₆Hd)₂CH), 1.13 (d, ³Jₘₘₘ = 6.8 Hz, 6H, (C₆He)₂CH), 1.15 (d, ³Jₘₘₘ = 6.8 Hz, 6H, (C₆Hf)₂CH), 1.30 (d, ³Jₘₘₘ = 6.8 Hz, 6H, (C₆Hg)₂CH), 1.36 (d, ³Jₘₘₘ = 6.7 Hz, 6H, (C₆Hh)₂CH), 1.48 (s, 6H, ((C₆H)₂C)₂CH), 1.50 (s, 6H, ((C₆H)₂C)₂CH), 2.98 (hept, ³Jₘₘₘ = 6.8 Hz, 2H, (CH₃)₂CH), 2.98 (hept, ³Jₘₘₘ = 6.8 Hz, 2H, (CH₃)₂CH), 3.32 (hept, ³Jₘₘₘ = 6.8 Hz, 2H, (CH₃)₂CH), 3.67 (hept, ³Jₘₘₘ = 6.8 Hz, 2H, (CH₃)₂CH), 4.69 (s, 2H, CH₂), 4.90 (s, 1H, ((CH₃)C)₂CH), 4.94 (s, 1H, ((CH₃)C)₂CH), 6.93 (m, 2H, Ar-H), 7.05 (m, 2H, Ar-H), 7.09 (m, 2H, Ar-H), 7.11 (m, 2H, Ar-H), 7.16 (m, 1H, Ar-H), 7.19 (m, 1H, Ar-H), 7.21 (m, 1H, Ar-H), 7.23 (m, 1H, Ar-H).

¹³C NMR (101 MHz, C₆D₆, 298 K) δ 23.3 (2x ((CH₃)₂C)₂CH), 23.4 (2x ((CH₃)₂C)₂CH), 24.6 (4x (CH₃)₂C), 24.7 (4x (CH₃)₂C), 24.9 (2x (CH₃)₂C), 25.0 (2x (CH₃)₂C), 25.2 (2x (CH₃)₂C), 25.6 (2x (CH₃)₂C), 28.2 (4x (CH₃)₂C), 28.6 (2x (CH₃)₂C), 29.1 (2x (CH₃)₂C), 67.5 (CH₃), 97.7 (((CH₃)₂C)₂CH), 97.9 (((CH₃)₂C)₂CH), 124.1 (Ar-C), 124.1 (Ar-C), 124.8 (Ar-C), 124.9 (Ar-C), 126.9 (Ar-C), 127.4 (Ar-C), 139.3 (Ar-C), 140.2 (Ar-C), 143.2 (Ar-C), 143.4 (Ar-C), 144.9 (Ar-C), 145.1 (Ar-C), 155.9 (C²), 171.0 (((CH₃)₂C)₂CH), 171.1 (((CH₃)₂C)₂CH). Some Ar-C resonances are overlapping and cannot be observed. The Al–C₃ resonance could not be observed in the ¹³C NMR spectrum due to coupling to the quadrupolar ²⁷Al (I = 5/2) nucleus.
Preparation of 13C$_3$-5f

$[^{13}\text{C}]$ labelled 13C$_3$-3f was prepared according to literature procedure. In a glovebox, 13C$_3$-3f (18 mg) was dissolved in C$_6$D$_6$ (0.6 mL) and transferred to an NMR tube with a capillary of pyridine in C$_6$D$_6$ as an internal standard. The headspace of the NMR tube was evacuated in vacuo, and the NMR tube was removed from the glovebox. An atmosphere of H$_2$ (~ 1 atm) was introduced to the NMR tube. The NMR tube was heated at 100°C for 6 days. The reaction was monitored using 1H NMR spectroscopy and deemed completed upon the total consumption of 13C$_3$-3f and formation of 13C$_3$-5f. Yield 39% (relative to internal pyridine standard).

1H NMR (400 MHz, C$_6$D$_6$, 298 K) δ 1.00 (d, 3J$_{HH} = 6.8$ Hz, 6H, (CH$_3$)$_2$CH), 1.07 (d, 3J$_{HH} = 6.8$ Hz, 6H, (CH$_3$)$_2$CH), 1.08 (d, 3J$_{HH} = 6.8$ Hz, 6H, (CH$_3$)$_2$CH), 1.10 (d, 3J$_{HH} = 6.8$ Hz, 6H, (CH$_3$)$_2$CH), 1.13 (d, 3J$_{HH} = 6.8$ Hz, 6H, (CH$_3$)$_2$CH), 1.15 (d, 3J$_{HH} = 6.8$ Hz, 6H, (CH$_3$)$_2$CH), 1.30 (d, 3J$_{HH} = 6.8$ Hz, 6H, (CH$_3$)$_2$CH), 1.48 (s, 6H, (CH$_3$)$_2$C)$_2$CH), 1.50 (s, 6H, ((CH$_3$)$_2$C)$_2$CH), 2.98 (hept, 3J$_{HH} = 6.8$ Hz, 2H, (CH$_3$)$_2$CH), 3.22 (hept, 3J$_{HH} = 6.8$ Hz, 2H, (CH$_3$)$_2$CH), 3.67 (hept, 3J$_{HH} = 6.8$ Hz, 2H, (CH$_3$)$_2$CH), 4.70 (ddd, 1J$_{HC} = 140.7$ Hz, 2J$_{HC} = 6.6$ Hz, 3J$_{HC} 3.2$ Hz, 2H, (CH$_3$)$_2$C), 4.90 (s, 1H, ((CH$_3$)$_2$C)$_2$CH), 6.93 (m, 2H, Ar-H), 7.05 (m, 2H, Ar-H), 7.09 (m, 2H, Ar-H), 7.11 (m, 2H, Ar-H), 7.16 (m, 1H, Ar-H), 7.19 (m, 1H, Ar-H), 7.21 (m, 1H, Ar-H), 7.23 (m, 1H, Ar-H).

13C NMR (101 MHz, C$_6$D$_6$, 298 K) δ 23.3 (2x ((CH$_3$)$_2$C)$_2$CH), 23.4 (2x ((CH$_3$)$_2$C)$_2$CH), 24.6 (4x (CH$_3$)$_2$CH), 24.7 (4x (CH$_3$)$_2$CH), 24.9 (2x (CH$_3$)$_2$CH), 25.0 (2x (CH$_3$)$_2$CH), 25.2 (2x (CH$_3$)$_2$CH), 25.6 (2x (CH$_3$)$_2$CH), 26.2 (4x (CH$_3$)$_2$CH), 28.6 (2x (CH$_3$)$_2$CH), 29.1 (2x (CH$_3$)$_2$CH), 67.48 (d, 1J$_{CC} = 48.6$ Hz, 13CH$_2$), 97.7 (((CH$_3$)$_2$C)$_2$CH), 97.9 (((CH$_3$)$_2$C)$_2$CH), 124.1 (Ar-C), 124.1 (Ar-C), 124.8 (Ar-C), 124.9 (Ar-C), 126.9 (Ar-C), 127.4 (Ar-C), 139.3 (Ar-C), 140.2 (Ar-C), 143.2 (Ar-C), 143.4 (Ar-C), 144.9 (Ar-C), 145.1 (Ar-C), 146.9 (d, 1J$_{CC} = 51.6$ Hz, 13C$_2$), 155.9 (dd, 1J$_{CC} = 53.1$, 48.7 Hz, 13C$_2$), 171.0 (((CH$_3$)$_2$C)$_2$CH), 171.1 (((CH$_3$)$_2$C)$_2$CH).
A proton coupled 13C spectrum was also recorded (Figure S2) and key 13C-labelled resonances were identified:

13C NMR (101 MHz, C$_6$D$_6$, 298 K) δ 67.48 (td, $^1J_{CH} = 140.5$, $^1J_{CC} = 48.7$ Hz, 13C1H$_2$), 146.9 (d, $^1J_{CC} = 52.4$ Hz, 13C3), 155.9 (ddt, $^1J_{CC} = 53.1$, 48.6 Hz, $^2J_{CH} = 6.6$ Hz, 13C2).

Figure S1: 13C{H} spectrum of 5f-13C with key 13C resonances of the carbon chain expanded. [W(13CO)$_6$] and [W(C$_6$D$_6$)(13CO)$_3$] are also observed in the spectrum.

Figure S2: 13C proton-coupled spectrum of 5f-13C with key 13C resonances of the carbon chain expanded. [W(13CO)$_6$] and [W(C$_6$D$_6$)(13CO)$_3$] are also observed in the spectrum.
2.2 – Reversible conversion of 3a to 4a

In a glovebox, 2 (15 mg, 0.012 mmol) and benzophenone (2.6 mg, 0.014 mmol) were dissolved in C₆D₆ (0.6 mL) and transferred to a J-Young NMR tube containing a capillary with ferrocene dissolved in C₆D₆ as external standard. The mixture was heated for 24 h at 100 °C. The reaction mixture was monitored by ¹H NMR spectroscopy and was deemed to be complete upon consumption of 2. After this time, a ¹H NMR spectrum was recorded to determine the initial ratio between 3a and 4a (4:1). 81 % NMR yield.

Conversion to 3a: The reaction mixture was frozen by placing it into a liquid-nitrogen bath (~196 °C), the headspace of the NMR tube was evacuated, and CO gas (~1 bar) was introduced into the NMR tube at 25 °C, the mixture was heated for 12h at 100 °C and a second ¹H NMR spectrum was recorded showing only resonances corresponding to 3a.

Conversion back to a mixture of 3a/4a: The reaction mixture was frozen again at ~196 °C, and CO removed under reduced pressure. The NMR tube was heated under static vacuum for 12h at 100 °C and a ¹H NMR spectrum was recorded showing the presence of 3a and 4a in a ratio ca. 1:1. This mixture was converted to 3a again by introducing CO gas (~1 bar) at 25 °C into the NMR tube and heating for 12h at 100 °C. A Final ¹H NMR spectrum was recorder and signals corresponding to 4a were not detected in the reaction mixture.

²The ratio of the formation of 3a to 4a under these reaction conditions is dependent on the concentration of the solution. The conversion of 3a to 4a involves the release of one CO molecule. The released CO molecule equilibrates between the headspace of the NMR tube (ca. 2mL) and solution. Hence, a more dilute sample will result in a larger relative proportion of 4a in solution, whereas a more concentrated solution would result in a smaller relative proportion of 4a in solution.
Conditions

Time	Description	Ratio 3a:4a
t = 0	Initial reaction mixture	4:1
t = 1	100 °C for 12h under CO	99:1
t = 2	100 °C for 12h under vacuum	1:1
t = 3	100 °C for 12h under CO	99:1

Table S1: Ratio between 3a and 4a calculated by integration of 1H NMR signals against an external standard of ferrocene.

Figure S3: 1H NMR experiments showing the reversible interconversion of 3 and 4. Descriptions of conditions at each time detailed in Table S1.
Figure S4: Detail of 1H NMR experiments showing the reversible interconversion of $3a$ and $4a$. Descriptions of conditions at each time detailed in Table S1.
2.3 – Direct reaction of 2, H₂ and benzophenone

2 was prepared in-situ in an NMR tube from 1 (8.9 mg, 0.02 mmol), [W(CO)₆] (4 mg, 0.011 mmol) and CO gas (~1 bar) following the reported procedure. Once formation of 2 was confirmed by ¹H NMR spectroscopy, the NMR tube was returned to the glovebox, the reaction mixture was cooled to −35 °C using a low temperature reactor and the headspace of the NMR tube was evacuated to remove the remaining CO gas. A capillary containing a solution of 1,3,5-trimethoxybenzene in C₆D₆ as external standard and a solution of Ph₂CO (1.82 mg, 0.01 mmol) in C₆D₆ (0.3 mL) were added to the NMR tube and the mixture cooled to −35 °C. The headspace of the NMR tube was evacuated, the NMR tube was removed from the glovebox and H₂ gas (~1 bar) was introduced into the headspace of the NMR. The resultant mixture was heated at 100 °C and conversion to 5a was complete after 24 h, as monitored by ¹H NMR spectroscopy. NMR yield: 42%.
2.4 – Direct reaction of \([\text{W(CO}_6])\), \(\mathbf{1}\) and syngas \((1:1 \text{ H}_2: \text{ CO})\)

In a glovebox, an NMR tube was charged with a suspension of \(\mathbf{1}\) (8.9 mg, 0.02 mmol) in \(\text{C}_6\text{D}_6\) (0.3 mL) was cooled to \(-35^\circ\text{C}\) using a low temperature reactor. \([\text{W(CO}_6])\) (4 mg, 0.011 mmol) was added slowly as a slurry in \(\text{C}_6\text{D}_6\) (0.3 mL) via Pasteur pipette. Care was taken to ensure that the reaction mixture remains frozen and a capillary containing a solution of 1,3,5-trimethoxybenzene in \(\text{C}_6\text{D}_6\) as external standard was introduced. The headspace of the NMR tube was evacuated, and the NMR tube was removed from the glovebox quickly and placed into a liquid-nitrogen bath \((-196^\circ\text{C})\). The tube was removed from the liquid nitrogen bath, and syngas (1:1 mixture of \(\text{H}_2/\text{CO}\), \(\sim\)1 bar) was introduced at room temperature into the headspace of the NMR tube while the mixture was still frozen. Upon addition of syngas, the mixture was allowed to thaw, and during this process the tube was shaken vigorously to ensure incorporation of gas into solution. A \(^1\text{H}\) NMR spectrum was taken at this point to show formation of \(\mathbf{2}\). Reaction mixture was heated at 100 \(^\circ\text{C}\) and monitored by \(^1\text{H}\) NMR spectroscopy until conversion to \(\mathbf{5b}\) was completed after 10 days. NMR yield: 50\%.\(^3\)

During the progress of the reaction only signals corresponding to \(\mathbf{2}, \mathbf{3b}\) and \(\mathbf{5b}\) were observed. \(\mathbf{5f}\) was not detected at any time.

\(^3\) Calculated against 1,3,5-trimethoxybenzene external standard in relation to initial concentration of \(\mathbf{2}\).
2.5 – Kinetic experiments

In a glovebox, 4a (8 mg, 0.0055 mmol) and ferrocene (0.2 mg, 0.0011 mmol) as internal
standard were placed in a vial and dissolved in 1.2 mL of C₆D₆. Then, a portion 0.55 mL
was transferred to a J-Young NMR tube. The headspace of the NMR tube was evacuated
and H₂ (or D₂) gas (~1 bar) was introduced. The tube was transferred to an NMR
spectrometer preheated at 80 °C and allowed to warm to 100 °C. The reaction mixture
was monitored as a function of time over 8000 sec (133 min) with data points acquired
every 68 sec. The concentration of 5a was constant after 6000 sec (100 min) in both
cases.

A plot of Ln[4a] (determined from initial concentration and integration against internal
standard) vs time for both reactions using H₂ or D₂ gave a linear fit with high R-factor
(Figure S5) indicating the reaction is first order in [4a]. Standard errors were calculated
by use of the regression analysis calculation in Microsoft Excel software. The rate
constant for the H₂ reaction was found to be $k_{obs}(H_2) = 6.28 \times 10^{-4} (\pm 6 \times 10^{-6}) \text{ s}^{-1}$ and
$k_{obs}(D_2) = 6.16 \times 10^{-4} (\pm 6 \times 10^{-6}) \text{ s}^{-1}$ for D₂. This gave a $k_{obs}(H_2) / k_{obs}(D_2)$ of 1.02 (±0.01)
for the reaction.
Figure S5: Ln[4a] versus time plot for reaction of 4a with H₂ (a) and D₂ (b).
2.6 – Monitoring of reaction of 3a with H₂

In a glovebox, 3a (8 mg, 0.0055 mmol) and ferrocene (0.4 mg, 0.0021 mmol) as internal standard were placed in a vial and dissolved in 1.2 mL of C₆D₆. Then, a portion 0.45 mL was transferred to a J-Young NMR tube. The headspace of the NMR tube was evacuated and H₂ (or D₂) gas (~1 bar) was introduced. The tube was transferred to an NMR spectrometer preheated at 100 °C. The reaction mixture was monitored as a function of time over 8400 sec (140 min) with data points acquired every 68 sec. First spectrum was taken after 300 sec (5 min) and signals corresponding to 4a and 5a were detected. Complex 3a was consumed after 5000 sec (83 min) and concentration of 5a was constant after 8000 sec (133 min).

Figure S6: Plot of variation of concentration with time of compounds 3a, 4a and 5a for hydrogenation of 3a.
3 X-RAY DATA

The X-ray structure of 3a

Figure S7: The X-ray structure of 3a. All hydrogen atoms are omitted for clarity.

3a was found to crystallise in the P-1 space group with an included toluene and pentane molecule in the asymmetric unit.

The isopropyl group C33>C35 was found to be disordered over two sites in a ca. 58:42 ratio for the major and minor components respectively. The thermal parameters of both orientations were restrained to be similar, and only the non-hydrogen atoms of the major component were refined anisotropically (those in the minor component were refined isotropically).

The included toluene molecule (C81>C87) was found to be disordered. No convincing model of a second orientation of a toluene molecule could be found and the residual electron density most resembled a pentane molecule. As a result, the toluene molecule was modelled as the major component of the disordered fragment with ca. 74% occupancy, while the pentane molecule (C91>C95) was modelled as the minor component of the disordered fragment with ca. 26% occupancy. The geometries of both major and minor components were optimized, their thermal parameters restrained to be similar and only the non-hydrogen atoms of the major component were refined anisotropically (those in the minor component were refined isotropically).
Crystal Data for C₈₅.H₁₀₁.Al₂N₄O₉W, M=1566.31, triclinic, space group P-1 (no. 2), \(a = 13.1875(3)\ \text{Å},\ b = 16.3826(5)\ \text{Å},\ c = 18.6982(5)\ \text{Å},\ \alpha = 99.300(2)^\circ,\ \beta = 99.5985(19)^\circ,\ \gamma = 92.952(2)^\circ,\ V = 3917.95(17)\ \text{Å}^3,\ Z = 2,\ \rho_{\text{calc}} \text{g/cm}^3 = 1.328,\ \mu(\text{MoK} \alpha) = 1.556\ \text{mm}^{-1},\ T = 173.05(10),\ \text{yellow needles, } F^2\ \text{refinement},^{5,6} R_1(\text{obs}) = 0.0429,\ wR_2(\text{all}) = 0.1025,\ 15462\ \text{independent observed reflections } (R_{\text{int}} = 0.0286),\ 12739\ \text{independent measured reflections } ([|F_o| > 4\sigma(|F_o|),\ 2\theta_{\text{full}} = 56.498],\ 981\ \text{parameters. CCDC 2130349.}
The X-ray structure of 4a

4a was found to crystallise in the P2₁/n space group with two included hexane molecules with respective occupancies of 0.25 and 0.5 for a total of 0.75 molecules in the asymmetric unit, for a total of 3 within the unit cell.

A significant amount of electron density (ca 4 e⁻) was observed approximately 1 Å from W1. This unresolved electron density was assigned to be a minor component of co-crystallised material. Accordingly, the tungsten centre was split over these two sites resulting in a ca 96:4 occupancy for the major and minor components respectively. The major component corresponds to the structure of 4a, while the minor component appears to be trace amounts of 3a, based on inspection of the W1’–C1–C2 angle and W1’–O2 distance. No other electron density associated with 3a was observed in the Fourier difference map. This is not unexpected for two reasons: i) it is apparent from the geometry of the C1–W1 and C1–W1’ orientations that it is likely that the ligands at the tungsten centres (both CO and the C1 to C4 carbon chain) overlap to a significant degree ii) the comparatively small percentage of the minor component (4%) preclude observation of the C and O carbonyl atoms bound to the W1’ centre.

The isopropyl group C32>C34 was found to be disordered over two sites in a ca. 54:46 ratio for the major and minor components respectively. The thermal parameters of both
orientation were restrained to be similar, and only the non-hydrogen atoms of the major component were refined anisotropically (those in the minor component were refined isotropically).

The arene ring C38>C43 was found to be disordered over two sites in a ca. 62:38 for the major and minor components respectively. The geometries of both were optimised using AFIX 66, the thermal parameters were restrained to be similar, and only the non-hydrogen atoms of the major component were refined anisotropically (those in the minor component were refined isotropically).

The isopropyl group C44>C46 was found to be disordered over two sites in a ca. 58:42 ratio for the major and minor components respectively. Their geometries were optimized, the thermal parameters were restrained to be similar, and only the non-hydrogen atoms of the major component were refined anisotropically (those in the minor component were refined isotropically).

The hexane molecule C79>C85 was found to be a 0.5 occupancy molecule by inspection of the thermal ellipsoids.

The hexane molecule C86>C92 was found to be disordered about a special position. The molecule was modelled in the Part -1. The occupancy of the molecule was set at 0.25 by inspection of the thermal ellipsoids.

Crystal Data for C_{83.25}H_{104}Al_{2}N_{4}O_{8}W, M =1526.51, monoclinic, space group P2_1/n (no. 14), a = 13.5044(3) Å, b = 42.6353(10) Å, c = 14.7867(5) Å, β = 103.943(3)°, V = 8262.8(4) Å³, Z = 4, \(\rho_{\text{calc}} \) = 1.227, \(\mu(\text{CuK}\alpha) \) = 3.215 mm\(^{-1}\), \(T = 173.00(10) \), red needles, \(F^2 \) refinement, \(R_1(\text{obs}) = 0.0513, wR_2(\text{all}) = 0.1423, 15844 \) independent observed reflections \((R_{\text{int}} = 0.0440) \), 12208 independent measured reflections \([|F_o| > 4\sigma(|F_o|), 2\theta_{\text{full}} = 147.192] \), 989 parameters. CCDC 2130349.
The X-ray structure of S1

Figure S9: The X-ray structure of S1. All hydrogen atoms are omitted for clarity.

Difference electron density maps for the structure of S1 suggested the presence of a second orientation of the whole molecule (of ca. 13% occupancy) overlaying the main occupancy orientation in a manner corresponding to a ca. 180° rotation about an axis passing through the middle of the complex (along the b axis direction, approximately coincident with the C66–C62 bond). Unsurprisingly, the only atom of this second orientation that could be reliably located was the minor occupancy tungsten atom, W1', which was refined anisotropically. The C64-bound m-tolyl group and the O80-based included tetrahydrofuran solvent molecule were both found to be disordered. For the former, two orientations were identified of ca. 67 and 33% occupancy, whilst for the latter three orientations were identified of ca. 52, 30 and 18% occupancy. The geometries of each set of orientations were optimised, the thermal parameters of adjacent atoms were restrained to be similar, and only the non-hydrogen atoms of the major occupancy orientations were refined anisotropically (those of the minor occupancy orientations were refined isotropically).

Crystal data for S1: C_{74}H_{90}Al_{2}N_{4}O_{9}W·C_{4}H_{8}O, M = 1489.41, monoclinic, P2_{1}/c (no. 14), a = 14.9640(6), b = 21.4758(5), c = 24.2362(8) Å, \(\beta = 107.909(4)^\circ \), \(V = 7411.2(4) \text{ Å}^3 \), Z =
$D_c = 1.335 \text{ g cm}^{-3}$, $\mu(\text{Cu-K}\alpha) = 3.592 \text{ mm}^{-1}$, $T = 173 \text{ K}$, orange tablets, Agilent Xcalibur PX Ultra A diffractometer; 14495 independent measured reflections ($R_{int} = 0.0404$), F^2 refinement,5 6 $R_1(\text{obs}) = 0.0647$, $wR_2(\text{all}) = 0.1700$, 11508 independent observed absorption-corrected reflections [$|F_o| > 4\sigma(|F_o|)$], completeness to $\theta_{\text{full}}(67.7^\circ) = 99.8\%$, 935 parameters. CCDC 2129492.
The X-ray structure of 3c

The W1-based W(CO)$_5$ unit in the structure of 5c was found to be disordered. Two orientations were identified of ca. 70 and 30% occupancy, their geometries were optimised, and the thermal parameters of adjacent atoms were restrained to be similar. All of the atoms of the major occupancy orientation, and the tungsten centre of the minor occupancy orientation, were refined anisotropically (the oxygen and carbon atoms of the minor occupancy orientation were refined isotropically).

The included solvent was found to be highly disordered, and the best approach to handling this diffuse electron density was found to be the SQUEEZE routine of PLATON. This suggested a total of 231 electrons per unit cell, equivalent to 28.9 electrons per asymmetric unit. Before the use of SQUEEZE the solvent most resembled pentane (C$_5$H$_{12}$, 42 electrons), and 0.75 pentane molecules corresponds to 31.5 electrons, so this was used as the solvent present. As a result, the atom list for the asymmetric unit is low by 0.75(C$_5$H$_{12}$) = C$_3$.75H$_9$ (and that for the unit cell low by C$_{30}$H$_{72}$) compared to what is actually presumed to be present.
Crystal data for 3c: C74H90Al2N4O9W·0.75(C5H12), M = 1471.41, monoclinic, I2/a (no. 15), a = 30.6403(15), b = 21.7168(5), c = 23.4001(12) Å, β = 98.775(6)°, V = 15388.4(12) Å³, Z = 8, Dc = 1.270 g cm⁻³, μ(Cu-Kα) = 3.443 mm⁻¹, T = 173 K, orange plates, Agilent Xcalibur PX Ultra A diffractometer; 14796 independent measured reflections (Rint = 0.0484), F² refinement,⁵,⁶ R₁(obs) = 0.0503, wR2(all) = 0.1461, 8502 independent observed absorption-corrected reflections [|Fo| > 4σ(|Fo|), completeness to θ full(67.7°) = 98.9%], 882 parameters. CCDC 2129490.
The crystal of 3d that was studied was found to be a two component twin in a ca. 56:44 ratio, with the two lattices related by the approximate twin law [1.00 0.00 0.00 0.00 –1.00 0.00 –0.09 0.00 –1.00]. The C65-based C(Et)(Me) unit was found to be disordered. Two orientations were identified of ca. 56 and 44% occupancy, their geometries were optimised, the thermal parameters of adjacent atoms were restrained to be similar, and only the non-hydrogen atoms of the major occupancy orientation were refined anisotropically (those of the minor occupancy orientation were refined isotropically). The included solvent was found to be highly disordered, and the best approach to handling this diffuse electron density was found to be the SQUEEZE routine of PLATON. This suggested a total of 159 electrons per unit cell, equivalent to 39.8 electrons per asymmetric unit. Before the use of SQUEEZE the solvent most resembled pentane (C\textsubscript{5}H\textsubscript{12}, 42 electrons), and one pentane molecule corresponds to 42 electrons, so this was used as the solvent present. As a result, the atom list for the asymmetric unit is low by C\textsubscript{5}H\textsubscript{12} (and that for the unit cell low by C\textsubscript{20}H\textsubscript{48}) compared to what is actually presumed to be present.

Figure S11: The X-ray structure of 3d. All hydrogen atoms are omitted for clarity.
Crystal data for S11: C_{70}H_{90}Al_{2}N_{4}O_{9}W·C_{5}H_{12}, M = 1441.41, monoclinic, P2_1/n (no. 14), a = 20.4694(5), b = 17.5544(4), c = 20.6800(4) Å, β = 92.606(2)°, V = 7423.2(3) Å³, Z = 4, D_c = 1.290 g cm⁻³, μ(Cu-Kα) = 3.555 mm⁻¹, T = 173 K, yellow blocks, Agilent Xcalibur PX Ultra A diffractometer; 20698 independent measured reflections (R_{int} = 0.0772), F² refinement, R₁(obs) = 0.0593, wR₂(all) = 0.1749, 15250 independent observed absorption-corrected reflections [||F_o|| > 4σ(|F_o|), completeness to θ_{full}(67.7°) = 98.3%], 813 parameters. CCDC 2129491.
The X-ray structure of S2

Figure S12: The X-ray structure of S2. All hydrogen atoms are omitted for clarity.

S2 was found to crystallise in the P-1 space group with one included pentane molecule and half of a toluene molecule for a total of two pentane molecules and one toluene molecule within the unit cell.

The included toluene molecule (C84>C90) was found to be disordered across two positions. Inspections of the thermal parameters of the ellipsoids suggest that the molecule has a total of one half occupancy across the two orientations. Their geometries were optimized, the thermal parameters were restrained to be similar, and only the non-hydrogen atoms of the major component were refined isotropically.

The included solvent was found to be highly disordered, and the best approach to handling this diffuse electron density was found to be the SQUEEZE routine of PLATON. This suggested a total of 144 electrons per unit cell, equivalent to 72 electrons per asymmetric unit. Before the use of SQUEEZE the solvent most resembled two pentane molecules (C5H12, 84 electrons), and two pentane molecule corresponds to 84 electrons, so this was used as the solvent present. As a result, the atom list for the asymmetric unit is low by C10H24 (and that for the unit cell low by C20H48) compared to what is actually presumed to be present.
Crystal Data for C_{86.5}H_{104}Al_{2}N_{6}O_{7}W, M = 1577.56, triclinic, space group P-1 (no. 2), a = 13.3538(2) Å, b = 13.8568(4) Å, c = 26.7693(6) Å, α = 75.930(2)°, β = 77.1228(16)°, γ = 83.7504(18)°, V = 4676.11(19) Å³, Z = 2, ρ_{calc}/cm³ = 1.120, μ(Mo Kα) = 1.303 mm⁻¹, T = 172.95(10), violet blocks, F² refinement, R₁(obs) = 0.0435, wR₂(all) = 0.1110, 18515 independent observed reflections (R_{int} = 0.0261), 15316 independent measured reflections [||Fₒ|| > 4σ(|Fₒ|), 2θ_{full} = 56.594], 987 parameters. CCDC 2130351.
4 DENSITY FUNCTIONAL THEORY CALCULATIONS

4.1 – Computational methods

DFT calculations were performed using Gaussian 09 (Revision D.01) using an ultrafine integration grid (int=ultrafine). Geometry optimisations and frequency calculations were performed using the ωB97X functional with SDDAll (W, Al) and 6-31G** (C, H, N, O) basis set. Frequency analyses for all stationary points were performed using the enhanced criteria to confirm the nature of the structures as either minima (no imaginary frequency) or transition states (only one imaginary frequency). The electronic energies of the optimised geometries were calculated using the ωB97XD functional with def2tzvp (W, Al) and 6-311+G** (C, H, N, O) basis sets with solvent corrections (PCM, benzene, ϵ = 2.2706). The Gibbs free energy correction from the frequency calculation was added to this electronic energy to generate Gibbs free energy values for the calculated stationary points.

Intrinsic reaction coordinate (IRC) calculations were used to connect transition states and minima located on the potential energy surface allowing a full energy profile (calculated at 298.15 K, 1 atm) of the reaction to be constructed. Natural Bond Orbital analysis was carried out using NBO 6.0 with the ωB97x functional.

Functional testing was performed with the B3LYP, and B3PW91 in addition to the M06L and ωB97X functionals with SDDAll (W, Al) and 6-31G** (C, H, N, O) basis set. The electronic energies of the optimised geometries were calculated using the corresponding functional with the same basis set with solvent corrections (PCM, benzene, ϵ = 2.2706) and an empirical dispersion correction (Grimme, D3: B3LYP, B3PW91, M06L; Grimme D2: ωB97X).
4.2 – Calculated stationary points

4.2.1 – Transformation of 3a to 4a (Interchange mechanism).

Calculated stationary points for transformation of 3a to 4a.

Figure S13: Calculated pathway for transformation of 3a to 4a. All energies in kcal mol$^{-1}$.

[Diagram showing the calculated pathway for transformation of 3a to 4a with energy levels and structures of 3a, TS-3a_4a, and 4a.]
	3a	TS-3a_4a	4a
WBI			
W-C1	0.51	0.56	0.61
W-C5	0.78	0.14	-
W-O2	0.003	0.05	0.17
NPA			
W	-0.86	-0.51	-0.43
C1	0.31	0.28	0.26
O2	-1.00	-1.00	-0.96
Bond distance (Å)			
W-C1	2.270	2.197	2.167
W-C5	2.067	2.876	-
W-O2	3.463	2.903	2.423

Table S2: Selected calculated NBO data of **3a**, **TS-3a_4a**, and **4a**.
4.2.2 - Calculated mechanism for hydrogenation of 4a.
Figure S14: Calculated pathway for hydrogenation of 4a. All energies in kcal mol$^{-1}$.
Table S3: Selected calculated NBO data of calculated mechanisms for hydrogenation of 4a.

To find the most plausible mechanism, a range of different pathways were investigated. All alternative pathways found for hydrogenation of 4a are shown below.
Alternative calculated mechanism (a) for hydrogenation of 4a: CO dissociation prior to oxidative addition.
Figure S15: Calculated alternative pathway (α) for hydrogenation of 4a. All energies in kcal mol$^{-1}$.

TS-5a \hspace{1.5cm} Int-6a \hspace{1.5cm} TS-6a

Int-7a
Gibbs Energies

Alternative calculated mechanism (b) for hydrogenation of 4a: concerted CO dissociation migration.
Figure S16: Calculated alternative pathway (b) for hydrogenation of 4a. All energies in kcal mol\(^{-1}\).
Alternative calculated mechanism (C) for hydrogenation of 4a, without CO dissociation.
Figure S17: Calculated alternative pathway (c) for hydrogenation of 4a. All energies in kcal mol$^{-1}$.
Figure S18: Comparison of key steps of alternative calculated mechanisms (a), (b) and (c) for hydrogenation of 4a with most plausible mechanism. All energies in kcal mol⁻¹.
4.2.3 – Rotation barriers for Int-1

Figure S19: Calculated mechanism for isomerization of Int-1. All energies in kcal mol\(^{-1}\).
4.3 - Functional testing on key stationary points

To investigate the hydrogenation reaction of 4a, functional testing was performed on key stationary points within the calculated pathways. A simplified version of 4a (4a') was used for these calculations.

![Image of chemical structure]

	TS-2	TS-6	TS-9	TS-2a	TS-3b	Int-7c	TS-7c
ωB97xD	20.0	31.1	35.7	42.5	42.0	1.7	33.2
M06l	21.9	37.0	40.5	40.5	48.2	0.1	26.8
b3pw91	21.1	36.8	38.7	46.9	49.4	-0.1	29.5
b3lyp	21.8	38.8	41.3	46.3	49.7	1.0	-

Table S4: All Gibbs free energies provided in kcal mol⁻¹. Gibbs free energies relative to 4a'. TS-7c with b3lyp functional could not be found.
5 NMR SPECTRA
6 COMPUTATIONAL COORDINATES

```
01_3.log

SCF (wB97x) = -4032.58831321
E(SCF)+ZPE(0 K)= -4031.018350
H(298 K)= -4030.919353
G(298 K)= -4031.150263

Lowest Frequency = 16.5812 cm⁻¹

| Element | X          | Y          | Z          |
|---------|------------|------------|------------|
| O       | -1.556713  | 9.158067   | 8.336676   |
| C       | 0.959097   | 12.379280  | 16.703011  |
| H       | 1.782203   | 12.802040  | 16.132301  |
| C       | -1.972912  | 7.194946   | 16.383895  |
| C       | -0.833237  | 10.492665  | 13.048799  |
| C       | 0.549892   | 13.519368  | 8.782457   |
| H       | -0.193985  | 14.148869  | 9.280781   |
| C       | 0.398325   | 11.164660  | 16.298400  |
| C       | -1.446745  | 15.185060  | 15.088301  |
| C       | 2.070464   | 6.932152   | 12.713412  |
| C       | 1.019166   | 16.520312  | 10.070254  |
| H       | 1.991819   | 16.083527  | 9.844201   |
| H       | 1.150432   | 17.563117  | 10.369195  |
| H       | 0.414165   | 16.513037  | 9.157610   |
| C       | -3.333982  | 7.550253   | 16.384923  |
| C       | 2.390260   | 10.515954  | 14.811820  |
| C       | -2.605109  | 14.595318  | 15.614304  |
| C       | 1.757404   | 13.360322  | 9.699511   |
| C       | 0.101986   | 11.097048  | 13.866921  |
| C       | -2.905253  | 14.811165  | 16.961577  |
| H       | -3.797137  | 14.354986  | 17.383989  |
| C       | 2.863981   | 12.645350  | 9.232623   |
| H       | 2.821374   | 12.191209  | 8.245386   |
| C       | 0.235392   | 5.446731   | 12.978611  |
| C       | 1.836926   | 13.923259  | 10.986275  |
| C       | -2.492079  | 17.125012  | 13.415898  |
| H       | -3.428280  | 16.586241  | 13.595009  |
| H       | -2.668795  | 17.909895  | 12.679543  |
| H       | -2.205119  | 17.583500  | 14.365010  |
```

C 0.286576 15.775079 11.156900 C 4.299881 10.354170 13.326771
C 4.641934 10.378592 15.775079 H 4.686670 10.299790 12.312500
H 5.305457 10.345999 16.564992 C 3.623642 7.654787 11.025350
C 3.266879 10.469020 15.899210 H 3.816279 8.076100 10.041194
H 2.868077 10.491215 16.909998 C -4.202893 7.513341 15.136981
C -0.587478 15.956031 15.899324 H -3.664048 6.983071 14.347531
H 0.221394 7.697111 10.973426 C 0.707273 16.574816 15.381413
C -0.877697 4.936391 13.651864 H 0.880569 16.205727 14.365193
H -1.180380 3.931265 13.387194 C 4.080542 13.104049 11.253795
C 0.941875 4.511641 12.029617 H 4.986066 13.000554 11.843215
H 1.067128 4.981227 11.051280 C 4.159658 13.965348 14.057484
H 0.378791 3.585310 11.912293 H 3.973314 12.904258 14.241536
H 1.944430 4.272140 12.395601 H 4.112943 14.493385 15.015647
C 2.946410 5.939839 14.926354 H 5.182680 14.078000 13.680407
H 1.871739 5.838841 15.110953 C 0.271224 6.866718 17.589366
C -1.205177 7.243251 17.566838 H 0.696236 7.153650 16.624509
C 0.870695 10.415066 15.034474 C -1.530718 5.510371 14.751894
C 2.926105 10.461422 13.525386 C -4.722570 11.075704 12.043906
H 2.269107 10.502763 12.660670 C -3.532764 13.725266 14.784314
C -0.130539 12.178686 8.508053 H -3.208006 13.766198 13.737698
H 0.546033 11.485118 7.996482 C 0.939261 14.191908 7.457970
H -1.010804 12.321933 7.872649 H 1.480003 15.131408 7.608767
H -0.458465 11.714686 9.441290 H 0.042630 14.401926 6.865590
C 3.004658 13.823185 11.770647 H 1.580844 13.536439 6.858968
C 0.484748 13.038865 17.831095 C -0.829392 16.440320 11.708093
H 0.936726 13.979836 18.134501 H -1.143663 17.343649 11.198597
C 2.300491 7.490807 11.445246 C -0.947448 16.168393 17.229308
C -1.445920 16.157008 12.921894 H -0.309679 16.780669 17.863281
C 3.144037 6.559864 13.548699 C -0.661919 10.643562 17.037509
C -1.143060 11.304892 18.165569 H -1.112574 9.706658 16.732078
H -1.967826 10.868108 18.724119 C -3.909152 7.971350 17.586518
H 1.572515 18.518506 14.939224 C -4.822679 9.018715 11.427789
H 0.431855 18.538937 16.293952 N 1.059412 14.562446 11.492453
C 1.185815 7.909965 10.498182 N -1.143756 6.926363 15.302180
C 1.246957 7.145570 9.167575 C -2.428903 7.391095 11.776038
H 2.155132 7.397736 8.608075 N -0.850312 15.210368 13.539313
H 0.387289 7.413634 8.545675 N 0.894965 7.023788 13.307268
H 1.239950 6.059719 9.307835 C -2.465845 9.597258 9.758380
C 1.245728 9.417054 10.226364 O -5.800031 8.396408 11.352789
H 1.802751 16.489028 17.273533 O -4.531236 12.385322 9.907334
H 2.832555 16.575064 15.844395 C -4.033759 11.560309 10.572124
H 2.009537 15.056607 16.252166 O -2.590586 6.431424 11.184370
H 2.250574 9.733748 9.921868 O -4.262150 11.680823 14.198172
H 0.959584 9.996922 11.109219 C -1.398448 11.327086 12.231854
H 0.558133 9.675982 9.421139 O -2.155936 9.371095 8.666692
 C -1.760677 7.219767 16.580505
02_TS3_4.log C -0.639315 10.695290 13.296094 C -1.922615 15.061644 14.507944
SCF (wB97x) = -4032.5474530 C 2.185360 7.468472 12.832243
E(SCF)+ZPE(0 K)= -4030.976674 C 2.015033 16.529205 10.348944
H(298 K)= -4030.878673 H 2.942101 15.979782 10.181174
G(298 K)= -4031.108696 H 2.245879 17.562681 10.611136
Lowest Frequency = -138.1393cm-1 H 1.464507 16.531122 9.403309
 C -3.098282 7.661013 16.622637
 C -3.255544 14.982931 14.049115
 C 1.067078 13.616268 9.219151
 C 0.284638 11.316158 14.099729
 C -4.262459 14.987716 15.018652
W -3.156274 10.168494 11.603204 H -5.300368 14.933632 14.711952
Al -0.041476 13.695456 12.750103 C 1.755776 12.940504 8.208556
Al -0.132574 8.234071 14.365771 H 1.273520 12.792995 7.245318
O -1.114901 9.424642 13.527938 C 0.518429 5.763793 13.091513
O -1.126302 12.570885 11.914719 O 0.280190 5.763793 13.091513
O 0.990846 9.246946 15.218046 O 0.280190 5.763793 13.091513
O 0.655984 12.582964 13.928417

Atom	X	Y	Z
H	4.937981	15.108312	11.598219
H	3.446645	15.533948	12.449742
H	4.757740	14.757637	13.330947
C	-0.090451	10.903866	16.547583
C	-1.396751	11.365069	16.383631
C	0.330276	10.540053	17.831845
C	-2.267516	11.450659	17.470888
H	-1.763264	11.660481	15.405009
C	1.346436	10.178121	17.971653
C	-1.840677	11.079318	18.739034
C	-3.277549	11.820436	17.309532
C	-0.186200	10.340605	19.906395
C	-2.518402	11.137967	19.586667
C	2.280606	11.192889	15.625584
C	3.376670	10.512007	15.097736
C	2.509564	12.341532	16.381386
C	4.673774	10.942751	15.361335
C	3.208984	9.625920	14.495260
C	3.803855	12.788987	16.627879
C	1.666487	12.875370	16.803904
C	4.895079	12.082490	16.128850
C	5.512907	10.382741	14.953337
C	3.958908	13.682440	17.228510
C	5.908129	12.417038	16.338567

G(298 K) = -3917.838153

Lowest Frequency = 17.4664 cm

H(298 K)= -3917.613759

03_4.log

SCF (wB97x) = -3919.27240046

E(SCF)+ZPE(0 K)= -3917.709899

H(298 K)= -3917.613759

H 3.104422
H 7.665334
H 8.407030
H 9.272682
H 10.186706
Atom	X	Y	Z
H	12.86553	10.488980	9.209906
H	13.852087	9.014993	9.360170
C	9.697850	-1.086120	5.098132
C	13.428026	4.116604	3.202411
C	11.329095	9.743189	9.36
H	11.243380	10.735835	7.777225
C	12.014771	3.645758	3.585467
C	13.654072	0.630013	6.089287
C	10.525012	-1.389176	6.808355
H	12.808421	3.213673	8.268388
C	11.045091	3.799587	2.3924846
C	12.124429	8.833294	8.067629
C	14.224476	-0.363151	3.793194
H	13.190444	-0.92950	3.560146
C	8.477775	-1.952209	4.912691
H	7.604803	-1.383528	5.253294
C	8.549241	-2.857170	5.517077
H	8.315431	-2.223844	3.868606
C	10.759658	9.552221	6.097884
C	14.600490	0.352136	5.081117
C	8.067099	0.572201	2.722595
C	9.990004	2.799825	0.458252
H	9.835540	1.927928	-0.172579
C	7.694070	6.373845	4.265913
H	7.384971	6.176312	3.232094
H	6.866839	6.099297	4.927021

S89
	C	H	H	H	H	C	H				
C	10.136124	10.752278	5.433168	C	15.795885	4.061234	3.709810				
H	10.702081	11.039961	4.542205	H	16.599105	3.780080	4.386869				
H	10.105691	11.598340	6.120330	C	10.394929	5.292955	10.370023				
H	9.119829	10.521490	5.101481	H	10.292469	4.875962	9.367084				
C	13.526578	5.659648	10.709822	H	9.384797	5.484973	10.747177				
H	13.175460	5.320609	11.681034	H	10.857124	4.538373	11.018565				
C	16.317207	1.395797	6.444092	C	15.926131	0.731531	5.289427				
H	17.355317	1.688173	6.582418	H	16.666449	0.520360	4.524175				
C	11.137892	-1.692423	2.122315	C	13.506000	1.308925	9.748158				
H	11.608654	-1.344804	3.046410	H	14.362545	1.911085	10.072716				
C	9.534532	5.090692	1.022967	H	13.800696	0.255228	9.807342				
H	9.026768	6.029124	0.821889	H	12.691436	1.478672	10.458159				
C	8.070380	7.848267	4.452819	C	15.046522	4.986500	1.623346				
H	8.398466	7.977415	5.490451	H	15.257744	5.445965	0.660771				
C	14.839806	5.420336	10.338596	C	14.297437	-1.884099	3.985257				
H	15.513842	4.906857	11.019463	H	15.303344	-2.182280	4.303072				
C	9.229869	8.217436	3.539663	H	14.071907	-2.410242	3.051026				
C	11.217922	6.586503	10.358874	H	13.586028	-2.232756	4.742389				
H	10.725075	7.276002	9.664989	C	15.371850	1.688168	7.412615				
C	9.324611	3.991902	0.194860	H	15.666837	2.225227	8.311186				
H	8.646592	4.067106	-0.651434	C	7.398435	2.926027	3.234089				
C	13.523257	10.382173	3.265195	H	8.414580	3.313220	3.115334				
H	13.627751	10.461354	2.177581	H	6.859321	3.575533	3.927502				
H	14.508238	10.570181	3.706039	H	6.900845	2.995410	2.259780				
H	12.849094	11.180510	3.594340	C	15.070352	0.083753	2.597259				
C	5.992338	1.014284	4.099011	H	15.085258	1.175601	2.514460				
H	5.321494	1.087699	3.235242	H	14.653177	-0.324327	1.672078				
H	5.577218	1.642014	4.894051	H	16.103709	-0.274556	2.667189				
H	5.978225	-0.023552	4.447417	C	12.115359	-1.431817	0.970551				
C	13.015967	8.995883	3.681054	H	11.724500	-1.800340	0.016401				
H	12.994302	8.976911	4.776179	H	13.064378	-1.947865	1.149383				
Element	X	Y	Z	Element	X	Y	Z	Element	X	Y	Z
---------	-------	-------	-------	---------	-------	-------	-------	---------	-------	-------	-------
H	12.32	-0.36	0.85	C	14.96	6.92	6.82	H	14.16	6.74	6.09
C	13.98	7.89	3.22	C	13.98	7.89	3.22	H	13.66	6.92	3.58
H	13.66	6.92	3.58	H	14.99	8.09	3.60	O	9.78	4.31	6.71
H	14.99	8.09	3.60	N	10.04	-0.25	4.11	O	5.72	4.13	6.01
C	6.78	1.97	8.61	N	10.8	8.21	5.43	C	9.41	2.49	9.29

SCF (wB97x) = -3920.42475443
E(SCF)+ZPE(0 K) = -3918.848881
H(298 K) = -3918.751104
G(298 K) = -3918.978608

Lowest Frequency = -216.1987 cm⁻¹
H	16.412227	5.426731	8.591331
C	14.493180	3.712765	3.991193
H	14.303961	3.221250	4.943497
C	9.297876	-1.079082	0.558734
H	9.740743	-1.652352	-0.252686
C	7.481429	1.260033	3.704094
H	8.094355	-1.652352	-0.252686
C	13.243463	6.641403	8.543285
C	10.095664	10.576578	5.439729
H	10.623090	10.865644	4.526076
C	10.081893	11.425669	6.123683
H	9.069736	10.33238	5.150012
C	13.739942	5.597186	10.650898
H	13.437596	5.300899	11.651812
C	16.270907	1.384348	6.589887
H	17.290984	1.705026	6.786786
C	11.307346	-1.706012	1.926328
H	11.728871	-1.444520	2.901716
C	9.489810	4.965140	1.048868
H	8.960914	5.897089	0.874211
C	8.055225	7.704710	4.440620
H	8.385629	7.807143	5.485035
C	15.016958	5.295007	10.207031
H	15.711709	4.770806	10.858339
C	9.218303	8.073192	3.532841
C	11.456164	6.609550	10.416937
H	10.959534	7.330413	9.759497
C	9.302828	3.885246	0.190961
H	8.621598	3.968421	-0.652031
C	13.483464	10.255237	3.307126
H	13.567367	10.382168	2.222183
SCF (wB97x) = -3920.43862282			
E(SCF)+ZPE(0 K)= -3918.861300			
H(298 K)= -3918.763625			
G(298 K)= -3918.992330			
Lowest Frequency = 13.8683 cm⁻¹			
C 2.722520 -3.127023 -1.942035 C -0.630970 5.281709 3.991623			
C -1.012589 5.414265 -0.341693 H -0.018102 5.873250 4.668480			
C 3.694573 -4.163850 0.062199 C -0.197684 -0.099821 3.657174			
C -0.693047 0.545398 4.787471 H -0.677286 -1.006667 3.306598			
H -1.555273 0.127047 5.301429 C -3.389414 -2.779408 4.204076			
C 4.763233 -0.334689 -0.097699 H -4.436749 -2.488099 4.213578			
H 5.124301 -0.368936 -1.122082 C 5.131092 -3.350892 -1.708192			
C 4.164390 -2.470280 -3.396225 C 3.876201 5.376901 -0.313824			
C -3.674156 -3.253089 1.751912 H 4.824883 5.500498 -0.848589			
H -3.130311 -3.791438 0.971012 H 3.960150 5.898580 0.645576			
C 1.056399 5.803049 2.200973 H 3.094404 5.874475 -0.896797			
H 1.255289 5.489419 1.170702 C 0.973386 -5.392536 4.472289			
C 4.605575 2.510877 -1.964090 H 0.527300 -5.685132 5.430285			
H 5.503478 2.421216 -1.360982 H 2.039511 -5.647406 4.505167			
C 4.595583 3.274662 0.864892 H 0.513148 -5.998585 3.684237			
H 4.429543 2.202842 1.002619 C 1.596354 -3.066254 5.226000			
H 4.510950 3.763666 1.841080 H 1.419999 -1.995231 5.083184			
H 5.625372 3.425191 0.520900 H 2.665316 -3.256931 5.089107			
C 0.790183 -3.890638 4.218738 H 1.352602 -3.325495 6.262760			
H 1.206486 -3.662164 3.235082 C -1.929122 -6.155512 2.157661			
C -0.976816 -5.258796 1.404600 H -1.796804 -6.059374 3.237823			
H -2.651311 1.417652 -3.593367 H -1.780849 -7.196687 1.869341			
C -3.120218 2.923257 1.369369 H -2.963389 -5.878985 1.932561			
H -2.760612 3.009734 0.337471 C -1.316042 -3.099889 5.368858			
C 1.471836 3.565504 -5.785631 H -0.745644 -3.051609 6.291472			
H 1.966770 4.525631 -5.611175 C -1.789636 4.682553 4.467296			
H 0.573103 3.745420 -6.384629 H -2.081019 4.806711 5.507151			
H 2.150471 2.951974 -6.388436 C 3.577553 3.885446 -0.099284			
C -0.374483 5.727964 -1.537872 H 2.598319 3.803015 0.387657			
H -0.687832 6.638302 -2.035211 C 4.967249 -3.938190 -0.465147			
---	---	---	---
H	5.841943	-4.232689	0.109605
C	-4.580078	3.391413	1.381974
H	-5.035193	3.259301	2.370056
H	-5.161072	2.801741	0.666087
H	-4.673002	4.449832	1.113394
C	5.657355	-0.379138	0.967095
H	6.726964	-0.443712	0.783388
C	-0.085750	1.706717	5.249667
H	-0.467412	2.215118	6.131537
C	4.574858	1.938695	-3.229992
H	5.446762	1.412102	-3.609859
C	-3.026993	1.449047	1.770937
H	-2.001552	1.070771	1.694999
H	-3.669169	0.848349	1.125036
H	-3.349982	1.302627	2.809147
C	2.249023	5.358181	3.055220
C	4.000976	-3.822184	2.525064
H	5.027992	-3.475463	2.360885
H	3.958018	-4.299118	3.511786
H	3.349488	-2.943102	2.528525
C	-3.922917	-1.839827	1.224877
H	-4.412722	-1.220477	1.985393
H	-4.571058	-1.864926	0.342871
C	-5.006628	-3.977262	1.983979
H	-4.871117	-4.962503	2.443970
H	-5.525742	-4.113505	1.029940
H	-5.671235	-3.399565	2.635719
C	-2.655314	-2.732055	5.378573
H	-3.124784	-2.408443	6.304224
C	4.395912	-6.108088	1.544035
Atom	X	Y	Z
------	----	----	----
W	-2.630041	-0.439863	-2.708578
Al	0.097100	2.861611	-0.454304
Al	0.230665	-2.753226	0.799462
O	-0.629960	-1.578302	-0.164051
O	-1.034649	1.777946	-1.279732
O	1.137599	-1.708908	1.849988
O	0.923978	1.653482	0.497533
C	-4.123290	-1.113587	-3.925967
N	1.138730	3.859077	-1.703161
C	-0.825139	-4.003899	1.785579
C	-4.111788	0.305000	-1.470139
N	-0.699429	4.322896	0.416209
N	1.239640	-4.051141	-0.174556
C	-2.485153	-2.324011	-1.884696
O	-4.952709	-1.504094	-4.629942
O	-4.952718	0.754403	-0.819595
O	-2.479672	2.369262	-4.234525
O	-2.425512	-3.417409	-1.515870
C	1.469207	1.600004	3.413466
H	2.297922	2.031864	2.857747
C	-1.488277	-3.577762	2.998638
C	-0.365008	-0.241220	-0.231483
C	1.126780	2.837851	-4.521024
H	0.319161	3.384944	-4.023078
C	0.910335	0.392780	2.984650
C	-1.034566	4.399297	1.822917
C	2.552123	-3.738676	-0.697592
C	1.456167	5.840098	-3.157657
H	2.444455	5.433728	-3.371714
H	1.552487	6.882064	-2.843294
H	0.866996	5.827060	-4.080370
Atom	X	Y	Z
------	--------	--------	--------
C	1.379551	-0.334600	1.706813
C	3.388459	-0.249386	0.144884
H	2.701954	-0.236155	-0.700512
C	0.564883	1.467734	-4.900694
H	1.319836	0.858729	-5.410805
H	-0.290243	1.581567	-5.573877
H	0.224495	0.921985	-4.017973
C	0.982402	2.244179	4.545759
H	1.433525	3.178822	4.869359
C	2.672766	-3.105582	1.950540
C	-1.023886	5.398720	-0.334568
C	3.820761	-4.123896	0.048294
C	-0.657146	0.513179	4.832130
H	-1.492547	0.072920	5.371660
C	4.758280	-0.318984	-0.092458
H	5.117887	-0.361939	-1.116887
C	3.960207	-2.908421	-2.454351
H	4.089057	-2.433988	-3.421646
C	-3.687480	-3.276070	1.698883
H	-3.122244	-3.805293	0.926109
C	1.082522	5.831862	2.175382
H	1.277354	5.490855	1.153259
C	4.598955	2.520685	-1.956245
H	5.491865	2.440626	-1.344622
C	4.561626	3.292613	0.867303
H	4.391901	2.222475	1.013010
H	4.472848	3.790280	1.838583
H	5.593857	3.437298	0.528607
C	0.735287	-3.908942	4.236075
H	1.168600	-3.652011	3.266422
H -1.836776 -6.070735 3.223601 H -4.476026 -1.259452 1.911610
H -1.777334 -7.217777 1.864561 H -4.569548 -1.909354 0.263836
H -2.974196 -5.912229 1.889429 H -3.010128 -1.368935 0.906432
C -1.390765 -3.116559 5.357548 C -5.013462 -4.018790 1.909966
H -0.836615 -3.068408 6.290087 H -4.871837 -5.003047 2.369737
C -1.731613 4.749706 4.495781 H -5.518420 -4.159743 0.948964
H -2.011192 4.892657 5.536176 H -5.693502 -3.451145 2.554689
C 3.551209 3.896878 -0.109019 C -2.729496 -2.745395 5.342747
H 2.569174 3.822482 0.373469 H -3.214252 -2.419922 6.259835
C 4.944596 -3.883088 -0.493237 C 4.432274 -6.048373 1.531303
H 5.829647 -4.164107 0.072344 H 4.217508 -6.760270 0.727013
C -4.552739 3.392119 1.480784 H 4.238249 -6.547696 2.486669
H -4.994504 3.281525 2.477433 H 5.503324 -5.821488 1.494004
H -5.148578 2.795042 0.783835 C 0.964400 7.361000 2.135109
H -4.643219 4.445822 1.194016 H 0.170009 7.691283 1.458369
C 5.654567 -0.336469 0.971517 H 1.903374 7.806206 1.787775
H 6.724697 -0.388249 0.786727 H 0.748628 7.766616 3.130086
C -0.083273 1.703811 5.260734 C 1.450352 -2.653031 -2.746369
H -0.464292 2.214187 6.141760 C 0.712115 -3.809391 -3.437573
C 4.585833 1.946818 -3.221293 H 1.387515 -4.365496 -4.099914
H 5.465515 1.426857 -3.592174 H -0.104797 -3.406427 -4.046199
C -2.998596 1.453506 1.900747 H 0.265073 -4.507147 -2.725896
H -1.976322 1.069466 1.814611 C 1.791501 -1.594428 -3.795409
H -3.655841 0.831966 1.290206 H 2.152796 5.726305 4.080461
H -3.299098 1.338879 2.949291 H 3.200463 5.877698 2.670238
C 2.278955 5.413601 3.038092 H 2.412602 4.327390 3.025358
C 3.974408 -3.775064 2.515626 H 2.407799 -2.007877 -4.603341
H 4.992705 -3.401354 2.355999 H 2.320129 -0.734286 -3.366132
H 3.939720 -4.255258 3.501495 H 0.866683 -1.232182 -4.248907
H 3.299703 -2.913704 2.518558 H -1.963363 -1.151754 -4.172406
C -3.949723 -1.867178 1.165834 C -1.190798 0.478160 -1.213220
07_Int2.log

SCF (wB97x) = -3920.42725268

E(SCF)+ZPE (0 K) = -3918.851732

H(298 K) = -3918.754359

G(298 K) = -3918.981534

Lowest Frequency = 15.5464 cm⁻¹

Atom	x	y	z
H	-0.987138	-0.719304	-3.237180
C	9.024347	1.644422	0.502138
O	-0.636672	-1.585939	-0.141005
O	1.145028	-1.716367	1.857910
O	0.924347	1.644422	0.502138
W	-2.606099	-0.455622	-2.711494
Al	0.094743	2.852065	-0.448272
Al	0.238114	-2.762373	0.808637
O	-1.049046	1.766886	-1.259893
O	1.145028	-1.716367	1.857910
O	0.924347	1.644422	0.502138
C	-0.182628	3.590815	2.993921
C	0.914342	0.384516	2.995210
C	-2.850183	5.817503	-4.080390
C	1.134215	2.836709	-4.541228
C	0.317745	3.371448	-4.043806
C	0.914342	0.384516	2.995210
C	-2.850183	5.817503	-4.080390
W	-2.606099	-0.455622	-2.711494
Al	0.094743	2.852065	-0.448272
Al	0.238114	-2.762373	0.808637
O	-1.049046	1.766886	-1.259893
O	1.145028	-1.716367	1.857910
O	0.924347	1.644422	0.502138
C	-0.182628	3.590815	2.993921
C	0.914342	0.384516	2.995210
C	-2.850183	5.817503	-4.080390
C	1.134215	2.836709	-4.541228
C	0.317745	3.371448	-4.043806
C	0.914342	0.384516	2.995210
C	-2.850183	5.817503	-4.080390
C	1.134215	2.836709	-4.541228
C	0.317745	3.371448	-4.043806
C	0.914342	0.384516	2.995210
C	-2.850183	5.817503	-4.080390
H 0.751651 -2.203344 -2.030032 C 1.101314 5.827810 2.166891			
C -0.269872 -5.861911 0.336922 H 1.293756 5.473505 1.148953			
H -0.515467 -6.888420 0.095303 C 4.592448 2.510896 -1.958551			
C 1.638433 -6.283799 -1.165256 H 5.483763 2.431451 -1.344621			
H 2.091406 -5.804112 -2.032975 C 4.554755 3.287807 0.861653			
H 0.999805 -7.105104 -1.495379 H 4.386203 2.217980 1.010399			
H 2.449435 -6.707259 -0.562956 H 4.466663 3.788002 1.831611			
C 3.590200 -4.776341 1.434557 H 5.586474 3.432593 0.521552			
H 2.547792 -5.067070 1.608313 C 0.723007 -3.928250 4.243733			
C -0.752151 -3.545190 4.194240 H 1.163334 -3.661936 3.279604			
C 1.383248 -0.341316 1.716509 C -0.978086 -5.286198 1.395807			
C 3.389549 -0.254871 0.152006 C -2.519314 1.318125 -3.719140			
H 2.702158 -0.246773 -0.692775 C -3.090260 2.918141 1.496740			
C 0.585243 1.470603 -4.954074 H -2.754347 2.969499 0.454503			
H 1.351239 0.873940 -5.462430 C 1.540508 3.621533 -5.798992			
H -0.257866 1.593584 -5.640653 H 2.017346 4.578626 -5.568839			
H 0.230221 0.905243 -4.090207 H 0.659730 3.815654 -6.419901			
C 3.472224 3.171500 -1.458800 H 2.246617 3.042506 -6.404431			
C 0.978194 2.241911 4.549404 C -0.417143 5.683252 -1.540319			
H 1.422151 3.182012 4.867013 H -0.746971 6.584365 -2.043824			
C 2.685415 -3.104976 -1.939722 C -0.554668 5.356648 3.995931			
C -1.026850 5.386292 -0.326626 H 0.067222 5.971310 4.643049			
C 3.691235 -4.124146 0.060166 C -0.149850 -0.149450 3.719962			
C -0.643000 0.496158 4.851557 H -0.596190 -1.083513 3.399613			
H -1.470932 0.049718 5.397556 C -3.453947 -2.802864 4.139372			
C 4.759241 -0.321230 -0.086713 H -4.499904 -2.506318 4.125135			
H 5.117652 -0.366737 -1.111406 C 5.098646 -3.297691 -1.727156			
C 3.973383 -2.907994 -2.442218 H 6.090038 -3.131091 -2.141365			
H 4.102363 -2.432910 -3.409257 C 3.846293 5.376194 -0.349708			
C -3.680320 -3.275930 1.678245 H 4.795392 5.488017 -0.886141			
H -3.108069 -3.798788 0.906051 H 3.932333 5.912140 0.601429			
X	Y	Z	
-----	-----	-----	
3.066976	5.868082	-0.940985	
0.907363	-5.437965	4.445331	
0.438384	-5.768003	5.379986	
1.974165	-5.686562	4.497292	
0.473931	-6.017748	3.623629	
1.506196	-3.145331	5.300744	
1.336415	-2.068623	5.199204	
2.577614	-3.333183	5.178171	
1.239802	-3.446774	6.320568	
-1.943917	-6.186793	2.126715	
-1.844758	-6.085583	3.209858	
-1.779362	-7.227961	1.847159	
-2.973023	-5.919797	1.868736	
-1.409725	-3.136265	5.354662	
-0.862092	-3.091763	6.291237	
-1.699442	4.765133	4.511966	
-1.972005	4.917672	5.553102	
3.542841	3.888449	-0.115392	
2.561579	3.814959	0.368712	
4.955656	-3.883000	-0.479853	
5.840168	-4.163806	0.086689	
-4.544731	3.403334	1.532258	
-4.978729	3.294992	2.532539	
-5.150090	2.811549	0.839453	
-4.630451	4.457953	1.247447	
5.656832	-0.332830	0.976270	
6.726852	-0.382461	0.790287	
-0.078348	1.693999	5.272326	
-0.459151	2.203956	6.153691	
4.583577	1.938653	-3.224204	
5.464477	1.419459	-3.593233	

S103
Element	X	Y	Z
H	0.286254	-4.509916	-2.730870
C	1.801487	-1.583208	-3.776824
H	2.176394	5.750117	4.070762
H	3.220745	5.876941	2.656158
H	2.430640	4.334144	3.037487
H	2.418403	-1.98866	-4.588384
H	2.328579	-0.724884	-3.341576
H	0.872846	-1.221496	-4.222881
H	-2.237117	-1.165822	-4.281670
C	-1.197815	0.468535	-1.189785
H	-0.906053	-0.610502	-3.089562

08_TS3.log

SCF (wB97x) = -3920.42621948
E(SCF)+ZPE(0 K)= -3918.851855
H(298 K)= -3918.754855
G(298 K)= -3918.981719
Lowest Frequency = -412.5183 cm⁻¹

W -3.027619 10.295764 10.638424
 10.638424
Al -0.354780 13.576224 12.868813
 12.868813
Al -0.218190 7.969574 14.143455
 14.143455
O -1.094594 9.144432 13.190277
 13.190277
O -1.491919 12.498205 12.048753
 12.048753
O 0.674409 9.017098 15.200524
 15.200524
O 0.471690 12.379089 13.830747
 13.830747
C -4.565016 9.482145 9.524172
 9.524172
N 0.685722 14.572917 11.612936
 11.612936
N -1.272687 6.713078 15.119095
 15.119095

C -4.511619 11.095227 11.814476
N -1.153169 15.043751 13.731562
N 0.785704 6.679101 13.153409
C -2.828829 8.402501 11.445440
O -5.383250 8.989621 8.880327
O -5.339569 11.602779 12.425168
O -2.974835 13.066696 9.042515
O -2.772277 7.301987 11.789851
C 0.983877 12.328839 16.761610
H 1.816490 12.760523 16.211786
H -1.935187 7.138183 16.332044
C -0.823939 10.478694 13.120221
C 0.691860 13.581985 8.777654
H -0.114083 14.134789 9.272117
C 0.430145 11.120454 16.329845
C -1.490427 15.124913 15.137462
C 2.088614 7.002897 12.612839
C 1.016649 16.558865 10.167698
C 2.003284 16.148034 9.954657
C 1.118777 17.597633 10.490852
C 0.431131 16.557346 9.242670
C -3.329275 7.501957 16.299999
C 2.423913 10.524023 14.810439
C -2.651897 14.514598 15.633525
C 1.856337 13.427214 9.750249
C 0.125358 11.081904 13.908685
C -2.976102 14.701073 16.979564
H -3.870369 14.228137 17.377992
C 2.998951 12.753064 9.308010
H 3.003086 12.321921 8.309807
C 0.378499 5.413023 13.005013

S104
Element	X	Y	Z	Element	X	Y	Z
C	1.874108	13.962692	11.052135	C	2.184834	7.643759	11.361972
C	-2.538316	17.069226	13.469593	C	-1.474147	16.119177	12.979230
H	-3.472898	16.518783	13.619195	C	3.231054	6.621651	13.339425
H	-2.707875	17.865874	12.744307	C	-1.153513	11.242652	18.163389
H	-2.275181	17.512195	14.432771	H	-1.993145	10.802703	18.696607
C	0.278304	15.776695	11.223577	C	4.304503	10.397113	13.286559
C	4.695421	10.443648	15.657122	H	4.672114	10.346677	12.265346
H	5.377266	10.431356	16.503980	C	3.462546	7.858502	10.840982
C	3.322722	10.502129	15.879725	H	3.571134	8.341545	9.875265
H	2.944010	10.518085	16.892188	C	-4.128583	7.459782	15.028116
C	-0.655888	15.893042	15.976446	H	-3.562098	6.933676	14.253684
H	0.233034	8.502731	11.304942	C	0.634934	16.544269	15.490105
C	-0.723057	4.865685	13.672569	H	0.832395	16.193134	14.472007
H	-0.965381	3.837507	13.434969	C	4.134305	13.204109	11.374618
C	1.174380	4.450340	12.155320	H	5.022665	13.114418	11.991447
H	1.621541	4.930953	11.285121	C	4.104968	14.000779	14.190363
H	0.535478	3.627844	11.828639	H	3.934626	12.932076	14.343603
H	1.989461	4.027961	12.752999	H	4.017754	14.504955	15.158419
C	3.155921	5.959095	14.710436	H	5.136710	14.142888	13.848877
H	2.121027	5.646840	14.891802	C	0.287153	6.796981	17.568424
C	-1.187036	7.183523	17.526848	H	0.715766	7.025739	16.589729
C	0.911143	10.393883	15.056796	C	-1.427685	5.441057	14.733981
C	2.932910	10.470482	13.512261	C	-2.999325	12.072796	9.629749
H	2.252993	10.480048	12.661654	C	-3.562977	13.659036	14.770775
C	0.111821	12.229908	8.361639	H	-3.215244	13.714276	13.732678
H	0.863238	11.615265	7.852876	C	1.120569	14.358997	7.522554
H	-0.728770	12.373249	7.675566	H	1.614634	15.306278	7.756944
H	-0.255392	11.671809	9.224777	H	0.247647	14.571196	6.896383
C	3.021310	13.880374	11.869649	H	1.818810	13.766720	6.920845
C	0.487026	12.974517	17.88713	C	-0.853544	16.418204	11.771424
H	0.934452	13.910392	18.213998	H	-1.174877	17.322729	11.268494

S105
H 3.833363 3.995736 13.996398 W -2.544035 -0.427044 -2.719357
H 3.853970 4.194160 15.758028 Al 0.100981 2.853003 -0.492125
H 5.100081 4.956073 14.768849 Al 0.263724 -2.744250 0.790970
C 0.524112 18.073497 15.435232 O -0.585570 -1.581388 -0.207161
H -0.264387 18.401070 14.750304 O -0.986175 1.795264 -1.375334
H 1.467316 18.511325 15.089902 O 1.106244 -1.689619 1.876453
H 0.303788 18.489015 16.425150 O 0.923622 1.676596 0.495168
C 0.945949 8.081609 10.585034 C -4.162782 -1.285074 -3.661603
C 0.232209 6.919482 9.878274 N 1.171895 3.867578 -1.719515
H 0.916230 6.395986 9.198420 N -0.795685 -4.003960 1.756808
H -0.601321 7.313380 9.286378 C -3.944775 0.448354 -1.532338
H -0.186863 6.194606 10.580105 N -0.690721 4.329973 0.370676
C 1.245547 9.170370 9.554771 N 1.269031 -4.034924 -0.202680
H 1.698380 16.454047 17.399959 C -2.343801 -2.313260 -1.886958
H 2.751376 16.581891 15.991434 O -5.027156 -1.812974 -4.206330
H 1.952208 15.041101 16.362146 O -4.760476 0.995203 -0.924319
H 1.860334 8.790660 8.729070 O -2.617712 2.309171 -4.381093
H 1.760361 10.032979 9.996194 O -2.312807 -3.412918 -1.540897
H 0.302880 9.517838 9.126377 C 1.402124 1.628733 3.425798
H -2.468198 9.638336 9.085516 C 2.234714 2.061120 2.876710
C -1.651251 11.195678 12.121984 C -1.454305 -3.580015 2.972385
H -1.271360 10.418704 10.593196 C -0.328302 -0.242429 -0.252048
 C 1.166456 2.878886 -4.548422

09_Int3.log

SCF (wB97x) = -3920.43031309
E(SCF)+ZPE(0 K)= -3918.852999
H(298 K)= -3918.755817
G(298 K)= -3918.983359
Lowest Frequency = 13.6270 cm⁻¹

 H 0.375793 3.454704 -4.056340
 C 0.854148 0.417189 2.995631
 C -1.024374 4.419530 1.776429
 C 2.562232 -3.700326 -0.760089
 C 1.523315 5.852403 -3.161859
 H 2.503984 5.429116 -3.378329
 H 1.641757 6.885735 -2.826499
 H 0.939033 5.872166 -4.087521

S107
C	-2.809741	-3.208078	2.943293	C	1.346224	-0.310969	1.728841
C	2.863904	-0.187214	1.504311	C	3.391129	-0.249209	0.213749
C	-2.185871	3.816559	2.280228	H	2.721796	-0.238923	-0.644999
C	2.329527	2.706578	-3.577158	C	0.552505	1.537115	-4.947405
C	0.581425	0.368992	0.564154	H	1.286201	0.895729	-5.448581
C	-2.509286	4.017784	3.624459	C	2.863904	-0.187214	1.504311
H	-3.404120	3.550397	4.028130	C	3.987151	3.148023	-1.458456
C	3.458827	1.576907	-5.013335	C	0.899122	2.276989	4.548542
C	0.867479	-5.303250	-0.347273	H	1.341645	3.216133	4.871217
C	2.353847	3.245904	-2.277010	C	2.634821	-3.054538	-2.009824
C	-2.066093	6.362168	0.104647	C	-1.000746	5.409608	-0.379830
H	-3.001260	5.812955	0.255072	C	3.718723	-4.073386	-0.051839
H	-2.233593	7.156100	-0.624268	C	-0.736790	0.540937	4.822805
H	-1.804466	6.809610	1.066243	H	-1.577092	0.100389	5.354615
C	0.771437	5.070242	-2.114532	C	4.765423	-0.329326	0.006939
C	5.124290	-0.268809	2.381964	H	5.146567	-0.385788	-1.009035
H	5.794502	-0.276941	3.238154	C	3.902258	-2.815616	-2.544918
C	3.748765	-0.205333	2.585524	H	3.991331	-2.324975	-3.509019
H	3.357148	-0.180660	3.598893	C	-3.645421	-3.241491	1.671166
C	-0.186519	5.191848	2.608722	H	-3.081593	-3.770917	0.897152
H	0.655888	-2.270045	-2.040753	C	1.109913	5.828266	2.117863
C	-0.233027	-5.853873	0.319589	H	1.309247	5.459620	1.106446
H	-0.469137	-6.884258	0.084992	C	4.600896	2.451576	-1.949873
C	1.669158	-6.265545	-1.192354	H	5.486897	2.349678	-1.331457
H	2.118126	-5.786610	-2.062541	C	4.583116	3.269933	0.862345
H	1.034399	-7.091443	-1.518550	H	4.400726	2.204811	1.025012
H	2.483483	-6.683453	-0.590234	H	4.502194	3.782919	1.826337
C	3.667704	-4.747471	1.314349	H	5.616145	3.397707	0.518683
H	2.643266	-5.092160	1.496027	C	0.764909	-3.944203	4.211946
C	-0.705376	-3.544740	4.166362	H	1.183275	-3.790257	3.214248

S108
10_TS4.log

SCF (wB97x) = -3920.41101624

E(SCF)+ZPE(0 K) = -3918.833187

H(298 K) = -3918.736730

G(298 K) = -3918.961495

Lowest Frequency = -37.4264 cm⁻¹
C	1.034403	5.718536	2.222350
H	1.260781	5.424763	1.191989
C	4.619156	2.357419	-1.921340
H	5.507215	2.228916	-1.310556
C	4.646250	3.183227	0.893393
H	4.466934	2.116592	1.046998
H	4.570913	3.685875	1.863741
C	0.861477	-3.906898	4.256212
H	1.230143	-3.874526	3.227761
C	-0.958916	-5.251021	1.482025
C	-3.446758	1.477494	-2.321406
C	-3.199859	3.034453	1.126947
H	-2.789144	3.163902	0.120482
C	1.622909	3.546429	-5.789703
H	2.205816	4.457124	-5.618991
H	0.754821	3.803970	-6.405828
H	2.246723	2.861439	-6.374422
C	-0.242333	5.763639	-1.566962
H	-0.508435	6.693586	-2.055733
C	-0.723887	5.173753	3.943289
H	-0.118057	5.719103	4.664054
C	-0.322934	-0.032535	3.625510
H	-0.828783	-0.905491	3.226551
C	-3.295466	-2.716884	4.308919
H	-4.336142	-2.403752	4.339621
C	4.962969	-3.226913	-1.961171
H	5.926041	-3.029902	-2.425614
C	3.940838	5.285799	-0.278346
H	4.891243	5.407134	-0.810997
H	4.028652	5.797583	0.686501
C -3.196974 1.535576 1.435379 H 0.224458 -4.598734 -2.810152
H -2.182903 1.120643 1.415804 C 1.488982 -1.511479 -3.736829
H -3.797413 0.993633 0.697200 H 2.047224 5.505182 4.150385
H -3.613275 1.339759 2.431652 H 3.134525 5.712993 2.775514
C 2.198637 5.242130 3.097280 H 2.318899 4.157088 3.032209
C 4.041036 -3.813039 2.344226 H 2.082898 -1.820682 -4.605890
H 5.037714 -3.393794 2.164540 H 1.988703 -0.656208 -3.266387
H 4.050993 -4.310256 3.322170 H 0.521391 -1.169725 -4.115847
H 3.333633 -2.978572 2.381904 H -2.578992 0.605717 -3.926196
C -3.831197 -1.730673 1.345040 C -1.120660 0.445898 -1.299359
H -4.304639 -1.110595 2.115048 H -0.797260 0.081239 -2.353268
H -4.481073 -1.719783 0.461934
H -2.877766 -1.266212 1.073520 11_Int4.log
C -4.977330 -3.843618 2.090485
H -4.866105 -4.843792 2.523807 SCF (wB97x) = -3920.41607082
H -5.517692 -3.939630 1.143246 E(SCF)+ZPE(0 K) = -3918.838555
H -5.611112 -3.260668 2.767418 H(298 K) = -3918.741140
H -2.538593 -2.690094 5.470614 G(298 K) = -3918.969300
H -2.984590 -2.361349 6.405892 Lowest Frequency = 13.8025 cm^-1
C 4.580158 -6.040085 1.292896
H 4.376133 -6.740381 0.475377 W -2.704692 -0.306880 -2.666657
H 4.441573 -6.572491 2.239703 Al 0.028502 2.876996 -0.495828
H 5.636852 -5.758514 1.231000 Al 0.264580 -2.720905 0.742433
C 0.939387 7.249796 2.254615 O -0.470179 1.598669 -0.382732
H 0.171336 7.626264 1.571680 O -1.148109 1.838236 -1.266746
H 1.895310 7.696839 1.959619 O 1.070125 1.661000 1.840046
H 0.697817 7.608126 3.261909 O 0.898730 1.696594 0.444558
C 1.266426 -2.662200 -2.755790 C -1.862962 1.660904 -3.954253
C 0.594197 -3.829727 -3.493435 N 1.105240 3.857025 -1.752396
H 1.288670 -4.298378 -4.201348 N -0.795152 3.916288 1.808609
H -0.266249 -3.462717 -4.065641 C -4.656362 0.774281 -3.014487
N -0.715878 4.390732 0.350104 C -2.029029 6.462629 0.091605
N 1.221743 -4.063326 -0.216915 H -2.992350 5.951714 0.195775
C -2.814341 -1.984316 -1.523722 H -2.141181 7.287267 -0.613357
O -1.417909 -2.371536 -4.742297 H -1.776198 6.863901 1.075342
O -5.770613 -1.020026 -3.179298 C 0.743394 5.072340 -2.148659
O -4.189642 2.443188 -1.830459 C 5.113518 -0.394675 2.337931
O -2.949614 -3.043926 -1.077921 H 5.776871 -0.444575 3.190872
C 1.463496 1.613141 3.402396 C 3.739915 -0.286490 2.534044
H 2.338152 2.006048 2.889869 H 3.342159 -0.269605 3.545358
C -1.348466 -3.498229 3.084567 C -0.222247 5.165757 2.622446
C -0.300899 -0.243887 -0.349361 H 0.647204 -3.117723 -2.447857
C 1.047931 2.852300 -4.572130 C -0.415120 -5.760812 0.297240
H 0.286283 3.462519 -4.076387 H -0.748477 -6.758200 0.040305
C 0.855557 0.451024 2.923939 C 1.355756 -6.233931 -1.368376
C -1.075789 4.461493 1.749343 H 1.427537 -5.779150 -2.35934
C 2.551524 -3.819425 -0.738557 H 0.789117 -7.162488 -1.442481
C 1.510028 5.821514 -3.210399 H 2.376661 -6.465596 -1.052078
H 2.478205 5.370093 -3.426395 C 3.514604 -4.832279 1.428981
H 1.657675 6.855631 -2.89706 H 2.448416 -4.933038 1.657915
H 0.922209 5.844702 -4.133809 C -0.513480 -3.492559 4.221191
C -2.697399 -3.109792 3.179260 C 1.342119 -0.293583 1.663670
C 2.863070 -0.212924 1.447580 C 3.398079 -0.267850 0.160523
C -2.276582 3.895351 2.203253 H 2.738292 -0.206861 -0.701639
C 2.216909 2.655299 -3.611924 C 0.378290 1.529650 -4.947580
C 0.582237 0.378076 0.490610 H 1.076901 0.862193 -5.465551
C -2.608799 4.037285 3.551764 H -0.478426 1.704732 -5.606815
H -3.531162 3.594712 3.920082 H 0.005258 1.014761 -4.061519
C 3.328394 1.934958 -4.059425 C 3.418987 3.090724 -1.509233
H 3.307090 1.494272 -5.053624 C 0.970140 2.259776 4.531395
C 0.698050 -5.282035 -0.401441 H 1.463473 3.157330 4.896246
C 2.266514 3.203292 -2.315850 C 2.738231 -3.252958 -2.011699
C -4.657513 3.647360 1.362060
H -5.108313 3.407652 2.331680
H -5.264665 3.170723 0.585998
H -4.722827 4.732607 1.225084
C 5.634992 -0.457493 1.048173
H 6.706843 -0.553981 0.893595
C -0.153439 1.769017 5.189644
H 0.538564 2.280019 6.068603
C 4.454332 1.780193 -3.266890
H 5.306174 1.213019 -3.633897
C 3.141258 1.642809 1.537176
H 2.121990 1.256146 1.427077
H 3.785550 1.099333 0.837822
H 3.469323 1.411989 2.558231
C 2.270835 5.336340 3.015374
H 4.200168 -3.751758 2.299952
H 1.727941 -4.729376 1.126991
H 3.855550 1.099333 0.837822
H 3.469323 1.411989 2.558231
C 2.270835 5.336340 3.015374
C 4.140353 -3.940139 2.505065
H 4.072611 -4.422848 3.486707
H 3.633805 -2.971261 2.551769
H 3.785550 -1.576584 1.550450
H 4.195417 -0.978893 2.373684
H 4.467857 -1.485958 0.696218
H -2.826416 -1.139301 1.257900
C -4.989810 -3.681622 2.226586
H -4.902691 -4.699917 2.621761
C -5.554076 -3.727541 1.289553
H -5.588083 -3.102601 2.938708
H -2.398238 -2.746675 5.558039
C -2.806476 -2.458941 6.523573
H 3.680682 -6.899702 0.715037
H 3.518571 -6.899702 0.715037

SCF (wB97x) = -3920.40701687
E(SCF)+ZPE(0 K)= -3918.828892
H(298 K)= -3918.732057
G(298 K)= -3918.957865
Lowest Frequency = -131.3931 cm^-1

W -3.040508 10.548415
 10.536381
Atomic Symbol	Atomic Coordinates						
C	2.919222 10.442963 13.592426						
H	2.246518 10.460785 12.737676						
C	-0.174617 12.277274 8.318346						
H	0.503489 11.633080 12.737676						
C	-1.070287 12.453092 7.712668						
H	-0.477827 11.73691 9.215606						
C	2.932895 13.783266 11.708844						
H	0.489187 13.058167 17.867263						
C	2.370816 7.602070 11.550349						
C	-1.515741 16.076464 12.971670						
C	3.287018 6.562956 13.579496						
C	-1.077342 11.285114 18.279223						
H	1.871995 10.835050 18.870847						
C	4.293082 10.355682 13.387445						
C	4.676850 10.296672 12.372248						
C	3.676639 7.774791 11.087841						
C	3.844035 8.248903 10.125088						
C	-4.10682 7.574653 14.796867						
C	-3.525168 7.059043 14.053085						
C	0.776781 16.527309 15.288553						
H	0.920175 16.087223 14.296856						
C	3.998512 13.060873 11.175253						
H	4.903203 12.935931 11.761633						
C	4.130321 13.928418 13.976716						
C	3.934081 12.874244 14.184525						
H	4.112181 14.473404 14.926080						
C	5.145914 14.022119 13.574568						
C	0.068990 6.775333 17.630978						
C	0.574703 7.043394 16.699340						
C	-1.482950 5.460473 14.684959						
Element	X	Y	Z				
---------	----	----	-----				
W	-2.799129	0.811671	-2.381167				
Al	0.070359	2.738958	-0.511636				
Al	0.124121	-2.829146	2.738958				
O	-0.723236	-1.701820	-0.216856				
O	-1.162822	1.719525	-1.292638				
O	0.958228	-1.766899	1.935128				
O	0.931578	1.525876	0.371717				
C	-4.549843	0.506568	-3.398124				
N	1.170326	3.638595	-1.820359				
N	-0.864153	-4.122706	1.868971				
C	-2.443155	-1.127038	-2.894768				
N	-0.692282	4.265243	0.281322				
N	1.170347	-4.139873	-0.104802				
C	-2.105307	1.682254	-4.102844				
O	-5.547400	1.682254	-4.102844				
O	-2.225378	-2.217126	-3.199621				
O	-4.861797	0.355339	-0.007244				
O	-1.916885	2.271842	-5.076934				
C	1.059915	1.684044	3.305807				
H	1.783217	2.175836	2.660238				
C	-1.506481	-3.722726	3.102071				
C	-0.338757	-0.386861	-0.287029				
	2.68418	-5.991011	0.466773	H	1.327162	5.459193	0.912017
-----	---------	-----------	----------	----	---------	----------	----------
	-0.466777	-7.036271	0.265332	C	4.622991	2.252579	-1.764345
	1.664866	-6.392716	-1.004116	H	5.461188	2.189972	-1.078279
	2.156112	-5.929050	-1.858959	C	4.401641	3.211948	0.990547
	1.049165	-7.227118	-1.345991	H	4.160422	2.169197	1.211715
	2.446841	-6.799133	-0.353182	H	4.275748	3.795939	1.907708
	3.619075	-4.713679	1.412483	H	5.461146	3.274072	0.717486
	2.607549	-5.080494	1.622503	C	0.753315	-3.984632	4.291516
	-0.738110	-3.663265	4.282411	H	1.155216	-3.686071	3.320277
	1.209328	-0.387015	1.794660	C	-0.975908	-5.411995	1.522002
	3.355401	-0.387987	0.420518	C	-3.982881	0.452899	-0.748502
	2.744060	-0.462285	-0.477101	H	-3.036123	2.908256	1.573242
	0.914629	1.206774	-5.159711	H	-2.707578	2.804785	0.532115
	1.739638	0.567027	-5.490262	H	1.988261	3.342175	-5.856435
	0.238153	1.350394	-6.006656	H	2.467261	4.280720	-5.566557
	0.365758	0.672701	-4.382383	H	1.186874	3.568801	-6.57725
	3.486227	2.965393	-1.391259	H	2.738485	2.743586	-6.385023
	0.528913	2.362432	4.397050	C	-0.406017	5.458162	-1.802816
	0.826250	3.390757	4.588333	H	-0.742710	6.309652	-2.382913
	2.476858	-3.175881	-1.950914	C	-0.589682	5.761104	3.690282
	-1.031042	5.256868	-0.576663	H	0.016744	6.469437	4.249973
	3.624499	-4.070869	0.030558	C	-0.241309	-0.247889	3.875817
	-0.766679	0.425940	4.977184	H	-0.549677	-1.264125	3.667520
	-1.480718	-0.085281	5.619481	H	-3.470322	-3.024340	4.299262
	4.742412	-0.425352	0.310437	H	-4.526808	-2.769792	4.315144
	5.193412	-0.533579	-0.672447	C	4.899752	-3.167067	-1.820963
	3.724585	-2.878628	-2.502931	H	5.861130	-2.930771	-2.270690
	3.779745	-2.415542	-3.483577	C	3.887946	5.223448	-0.438839
	-3.721555	-3.514927	1.835272	H	4.874061	5.244112	-0.916632
	-3.179926	-4.124034	1.105127	H	3.939962	5.838317	0.465089
	1.101025	5.968890	1.853555	H	3.174573	5.694255	-1.123840
SCF (wB97x) = -3920.40740769
E(SCF)+ZPE(0 K)= -3918.828994
H(298 K)= -3918.731882
G(298 K)= -3918.959846
Lowest Frequency = -101.9528 cm⁻¹

14_TS6.log

123
	C	H	C	H
1	-0.333144	-5.013434	-0.198745	3.317090
2	-0.679978	-5.176184	-1.194314	2.745148
3	-3.389771	-4.727871	-2.886955	4.432822
4	-4.432234	-5.617347	-2.578325	-0.339699
5	4.909609	6.702839	-3.079635	0.365973
6	5.853539	-0.479348	-2.809590	1.771751
7	3.847237	-0.930688	5.142331	2.317994
8	4.821508	4.543921	5.759315	-0.305874
9	3.912629	5.398968	0.403955	-0.327092
10	3.111563	-2.935420	5.603888	1.555667
11	0.958783	-1.908199	-5.502049	1.199261
12	0.540606	-3.609550	-5.661622	0.866376
13	2.023254	-3.154689	-5.761719	1.509912
14	0.468365	2.253071	-6.200787	5.528123
15	1.609628	4.034413	-3.101440	-3.695737
16	1.456846	4.988734	-2.060581	-3.187974
17	2.673795	4.092374	-3.334744	-4.191623
18	1.361467	3.253664	-3.199926	-2.930155
19	-1.875832	-3.849281	-6.289440	-1.917369
20	-1.712678	-4.356321	-6.215340	-1.291159
21	-1.756845	-4.474501	-7.328278	-1.946447
22	-2.910313	-2.895379	-5.985992	-1.447220
23	-1.334658	-4.983529	-3.255212	-4.038383
24	-0.775022	-4.870999	-3.229048	-5.032278
25	-1.793549	-5.490039	5.109141	-4.152439
26	-2.092631	-5.648140	5.364992	-3.458242
27	3.480624	-2.668857	3.692972	-0.143730
28	2.481854	-3.145953	3.695527	-0.306381
29	4.901433	4.756338	-3.694809	-0.650532
30	5.843326	4.613088	-3.894383	-0.145765
31	-4.590646	4.657714	3.398470	-6.414786

S125
Atom	X	Y	Z
H	5.786966	-5.508866	1.334713
C	1.025599	7.399964	1.725700
H	0.263082	7.670620	0.988136
H	1.987765	7.779885	1.364251
H	0.789106	7.920489	2.660738
C	1.180128	-2.896325	-2.711882
C	0.691542	-4.141836	-3.465782
H	1.465411	-4.516253	-4.147414
H	-0.192650	-3.892148	-4.061916
H	0.405098	-4.952008	-2.790604
C	1.273507	-1.724942	-3.687119
H	2.117561	5.977176	3.872626
H	3.203775	5.900431	2.485592
H	2.338058	4.444153	3.014185
H	1.714835	-0.837545	-3.218917
H	0.268069	-1.467847	-4.035600
H	-3.904652	1.948692	-2.408570
C	-0.740121	0.347619	1.469942
H	0.018339	0.412277	-2.263595

15_Int6.log

SCF (wB97x) = -3807.12573523
E(SCF)+ZPE(0 K) = -3805.554191
H(298 K) = -3805.459324
G(298 K) = -3805.682702
Lowest Frequency = 14.4480 cm⁻¹

W -2.727916 0.564764 -2.222279
Al 0.086041 2.619361 -0.566979

H 0.274660 -2.957732 0.793824
O -0.543375 -1.852752 -0.298444
C -1.055585 1.557245 -1.440484
H 1.022091 -1.876153 1.923150
H 0.949553 1.440287 0.365106
C -4.561929 0.399558 -1.490633
N 1.105479 3.580858 -1.876452
N -0.806460 -4.221224 1.727893
C -3.089387 -1.346945 -2.741196
N -0.748111 4.115355 0.210100
C 1.325564 -4.263530 -0.150316
C -3.223355 0.873838 -4.096684
O -5.603838 0.334209 -0.984084
H -3.289479 -2.442809 -3.046067
O -3.432985 1.096367 -5.217367
C 1.230051 1.493470 3.396442
H 2.086501 1.912027 2.874037
C -1.540445 -3.757255 2.882730
O -0.201794 -0.528566 -0.345942
C 1.014356 2.508663 -4.678439
H 0.263252 3.142123 -4.195612
C 0.713586 0.262553 2.982919
C -1.108838 4.248114 1.605247
C 2.597671 -3.892211 -0.731117
C 1.454939 5.506071 -3.393614
H 2.421984 5.054254 -3.614466
H 1.603930 6.544263 -3.086005
H 0.855579 5.518245 -4.309578
C -2.881451 -3.359240 2.739917
C 2.809956 -0.376933 1.639885
C -2.289992 3.672450 2.097001

S126
C 2.171095 2.293022 -3.703408 C 0.301826 1.215975 -5.087913
C 0.604008 0.114593 0.528810 H 0.989900 0.515530 -5.574709
C -2.637900 3.912010 3.427867 H -0.504022 1.441034 -5.794783
H -3.546470 3.467184 3.826129 H -0.145246 0.708683 -4.231021
C 3.254659 1.510557 -4.114771 C 3.403356 2.793525 -1.627899
H 3.214266 1.020251 -5.085052 C 0.670938 2.174922 4.472244
C 0.970067 -5.548432 -0.256325 H 1.092828 3.127279 4.783701
C 2.251632 2.902226 -2.435637 C 2.626585 -3.267995 -1.993404
C -2.127945 6.131671 -0.132213 C -1.058118 5.166732 -0.580970
H -3.061855 5.585822 0.037872 C 3.777469 -4.204047 -0.030292
H -2.297885 6.896918 -0.890477 C -0.964458 0.435429 4.725496
H -1.867300 6.615771 0.811934 H -1.826112 0.006388 5.232209
C 0.707691 4.768813 -2.311276 C 4.799947 -0.559969 0.264560
C 5.017991 -0.369385 2.648840 H 5.240706 -0.659928 -0.723858
H 5.636475 -0.319035 3.541778 C 3.875602 -2.960963 -2.538523
C 3.631497 -0.324189 2.769014 H 3.930546 -2.478861 -3.510055
H 3.183260 -0.251031 3.756137 C -3.625053 -3.452717 1.414170
C -0.278178 5.033694 2.429501 H -3.010187 -4.030137 0.716146
H 0.578974 -2.672779 -2.054226 C 1.028790 5.647368 1.937117
C -0.132668 -6.111189 0.398551 H 1.221426 5.275210 0.925415
H -0.324646 -7.158620 0.202050 C 4.455217 2.006330 -2.091197
C 1.824577 -6.514658 -1.044619 H 5.345053 1.890666 -1.480553
H 2.276817 -6.056124 -1.924054 C 4.532518 3.017862 0.669699
H 1.228118 -7.376282 -1.350018 H 4.307332 1.978791 0.919591
H 2.639665 -6.877602 -0.408360 H 4.497508 3.607211 1.592115
C 3.762556 -4.874295 1.339220 H 5.560953 3.072677 0.293899
H 2.779768 -5.334819 1.488979 C 0.563596 -4.153839 4.310142
C -0.880877 -3.702441 4.125981 H 1.015316 -4.262419 3.319005
C 1.277712 -0.494542 1.768832 C -0.907640 -5.511545 1.395296
C 3.414751 -0.497439 0.387274 C -3.182988 2.799945 1.232537
H 2.795942 -0.540441 -0.507065 H -2.857062 2.901028 0.191022
S128
C -1.587413 15.092120 14.969055 H 1.770783 4.822869 11.402694
C 2.117854 6.979429 12.589900 H 0.696303 3.516051 11.959687
C 1.139485 16.350065 10.050504 H 2.126232 3.961395 12.899271
H 2.115570 15.900915 9.867628 C 3.347342 5.995638 14.624606
H 1.273375 17.359236 10.361266 H 2.352898 5.584594 14.832213
H 0.575892 16.357996 9.112031 C -1.027407 7.053647 17.605751
C -3.149905 7.426918 16.431471
C 2.386533 10.489221 15.094521
C 2.117854 14.269186 16.431471
C 1.139485 16.350065 10.050504
H 2.115570 15.900915 9.867628
H 1.273375 17.359236 10.361266
H 0.575892 16.357996 9.112031
C -2.796303 14.520623 15.394681 H 2.427451 10.286666 12.950225
C 1.875548 13.144318 9.754341 C 0.073237 12.082819 8.273097
C 0.205361 10.964328 13.929041
C -3.149905 7.426918 16.431471
C 2.386533 10.489221 15.094521
C 1.139485 16.350065 10.050504
H 2.115570 15.900915 9.867628
H 1.273375 17.359236 10.361266
H 0.575892 16.357996 9.112031
C 0.353872 15.611834 13.095358 H 0.509004 13.958001 18.206758
C 1.900405 13.746972 11.027489 C 2.112760 7.611285 11.330072
C -2.520752 17.002118 13.212428 C -1.448459 16.026960 12.791950
C 0.353872 15.611834 13.095358
C 1.900405 13.746972 11.027489 C 2.112760 7.611285 11.330072
C 3.347342 5.995638 14.624606
H 2.352898 5.584594 14.832213
H 0.575892 16.357996 9.112031
C -1.027407 7.053647 17.605751
C 0.781765 11.386431 7.810759
C -3.149905 7.426918 16.431471
C 2.386533 10.489221 15.094521
C 1.139485 16.350065 10.050504
H 2.115570 15.900915 9.867628
H 1.273375 17.359236 10.361266
H 0.575892 16.357996 9.112031
H -2.352428 10.772856 18.564652
C -4.410878 10.286011 13.772877
C 4.568417 10.513927 16.158746 H 4.876363 10.168229 12.797607
C 5.164012 10.577827 17.066215 C 3.346810 7.941793 10.764925
C 3.179062 10.559774 16.243138 H 3.376681 8.433409 9.797451
C 2.706092 10.646810 17.217455 C -3.986320 7.477617 15.162163
C -0.787403 15.854186 15.843455 H -3.452169 6.938543 14.372651
C 0.067472 8.219980 11.307434 C 0.535387 16.480883 15.413182
C -0.596233 4.766718 13.778751 H 0.766860 16.128788 14.402333
C -0.811345 3.726372 13.568964 C 4.093304 12.861027 11.454975
C 1.315876 4.357090 12.276684 H 4.959375 12.748552 12.099197
Element	X-Coordinate	Y-Coordinate	Z-Coordinate
C	4.072995	13.872467	14.210701
H	3.854348	12.828436	14.444659
H	3.998208	14.453723	14.444659
C	0.448389	6.676544	17.624436
C	0.470237	4.943374	17.644826
H	0.820591	6.717766	16.597177
H	-1.308162	5.351049	14.82965
C	-3.671118	13.701411	14.461013
H	-3.294145	13.836771	13.440689
H	1.324571	14.093968	7.490655
H	1.996792	13.434054	6.931229
C	0.783182	16.286603	11.598834
H	1.071761	17.184463	11.064866
C	-0.873901	10.553995	17.027139
H	-1.262878	9.596605	16.700682
C	-3.723915	7.812722	17.644826
H	-4.766199	8.121195	17.665726
C	4.540299	7.651855	11.413505
H	5.488326	7.915821	10.950788
C	3.434672	15.904066	12.883594
H	4.406454	15.976284	12.381751
H	3.492629	16.480725	13.813722
H	2.688740	16.382759	12.241910
C	0.650890	5.244377	18.134492
H	0.269076	5.132730	19.156184
H	1.716928	4.989100	18.143210
H	0.137998	4.511687	17.501239
C	1.280309	7.674734	18.434976
H	1.110118	8.693318	18.074282
H	2.346035	7.447386	18.330166
H	1.041383	7.635846	19.503738
C	-2.249493	4.454435	15.596210
H	-2.030371	4.479259	16.666982
H	-2.176516	3.426422	15.239982
C	-3.282306	4.795466	15.476136
H	-1.080462	7.431593	19.719245
C	4.520835	7.027354	12.650757
C	5.458054	6.813225	13.158275
H	-5.134336	14.158403	14.470090
C	-5.617665	13.946128	15.430135
H	-5.696648	13.630447	13.692906
C	-5.226997	15.233638	14.281168
H	5.191720	10.375113	14.921747
C	6.276293	10.335173	14.854723
H	-0.991498	12.446829	18.517621
C	-1.464612	12.972321	19.343630
H	4.062596	12.202748	10.230946
H	4.900737	11.580263	9.927832
H	-3.568666	12.212228	14.799304
C	-2.536141	11.845555	14.729356
H	-4.187793	11.623356	14.113857
H	-3.911505	12.018278	15.822327
H	1.687413	16.043708	16.324836

S131
C 3.657758 7.014869 15.726048 H 1.553826 8.701296 8.679086
H 4.621484 7.504705 15.546002 H 1.432957 9.909844 9.972571
H 3.706723 6.515170 16.701466 H -0.030418 9.293126 9.175873
H 2.892080 7.795610 15.771921 H -3.173649 12.188387 9.444658
C -4.134937 8.928962 14.699251 C -1.017553 11.033201 11.786128
H -4.586159 9.540036 15.490024 H -0.179592 11.087139 11.079014
H -4.775169 8.983775 13.813988
H -3.160086 9.357183 14.442254 17_Int7.log
C -5.360714 6.819391 15.329296
H -5.286000 5.799742 15.724093 SCF (wB97x) = -3807.12157481
H -5.871973 6.775635 14.362540 E(SCF)+ZPE(0 K)= -3805.549824
H -6.001896 7.390499 16.009604 H(298 K)= -3805.454893
C -2.989560 7.801390 18.821518 G(298 K)= -3805.679146
H -3.455940 8.092631 19.759348
C -4.341186 4.828435 14.672919
H -4.184618 4.118564 13.853132 Lowest Frequency = 9.6642 cm^{-1}
H -4.235748 4.286350 15.618546
H -5.377528 5.178177 14.614000 W -2.706295 0.584289 -2.332136
H -4.508288 18.011834 15.358368 Al 0.057403 2.600777 -0.546923
H -0.310301 18.353134 14.649393 Al 0.311997 -2.979453 0.769089
C -0.030418 9.293126 9.175873
H -1.553826 8.701296 8.679086
C -1.017553 11.033201 11.786128
C -2.989560 7.801390 18.821518
C -4.341186 4.828435 14.672919
C -4.184618 4.118564 13.853132
C -4.235748 4.286350 15.618546
C -5.377528 5.178177 14.614000
Atoms	X	Y	Z				
C	-3.874595	12.421171	9.635983	H	2.810752	11.924280	8.326836
N	0.626011	14.411340	11.547925	C	0.642105	5.311519	13.095031
N	-1.151640	6.609185	15.084323	C	1.789526	13.759246	10.988553
C	-4.824965	11.621434	11.779668	C	-2.578368	16.966480	13.349456
N	-1.189197	14.952989	13.675701	H	-3.509613	16.424613	13.544807
N	0.992715	6.594931	13.220591	H	-2.763541	17.727087	12.590088
C	-3.765804	9.450689	10.832075	O	-4.287203	13.099254	8.792300
O	-1.151640	6.609185	15.084323	C	-4.824965	11.621434	11.779668
N	0.626011	14.411340	11.547925	O	-1.189197	14.952989	13.675701
N	-1.151640	6.609185	15.084323	H	-2.578368	16.966480	13.349456
O	-4.287203	13.099254	8.792300	C	-1.151640	6.609185	15.084323
C	0.785663	12.322584	16.815843	C	0.785663	12.322584	16.815843
H	-0.190442	13.969485	9.209259	O	-1.151640	6.609185	15.084323
C	0.534434	10.312276	13.031639	H	0.221855	8.158781	11.325081
C	0.585102	13.366373	8.725168	C	0.585102	13.366373	8.725168
H	-0.190442	13.969485	9.209259	C	0.534434	10.312276	13.031639
C	0.306480	11.079623	16.393047	C	0.306480	11.079623	16.393047
C	-1.536052	15.088178	15.074144	H	1.980294	4.823790	11.446072
C	2.262553	6.985307	12.648044	H	0.922266	3.496150	11.985336
C	0.950492	16.352032	10.042470	H	2.314366	3.986233	12.959782
H	1.925517	15.918321	9.821126	C	3.436831	6.006864	14.714389
H	1.080731	17.392019	10.352072	H	2.454459	5.545590	14.865754
H	0.351046	16.354965	9.126490	C	-1.203629	7.049320	17.497555
C	-3.214312	7.449191	16.143691	C	0.900862	10.346996	15.179036
C	2.433126	10.489428	15.074735	C	3.057870	10.377297	13.830959
C	-2.720395	14.524394	15.571846	H	2.452664	10.321359	12.928068
C	1.732856	13.162104	9.713341	C	-0.083099	12.063802	8.273253
C	0.240456	10.955941	13.932954	H	0.634101	11.394131	7.785262
C	-3.054597	14.759133	16.907044	H	-0.876467	12.285527	7.551003
H	-3.963904	14.321483	17.311040	H	-0.538042	11.521636	9.103875
C	2.834356	12.404671	9.302514	C	2.940833	13.668901	11.799956
C	0.201219	12.982320	17.891492	H	-1.236003	17.147331	11.134728
H	0.594174	13.944419	18.210430	C	-1.089946	16.102564	17.210297
C	2.285767	7.620308	11.391142	H	-0.465705	16.720772	17.852163
C	-1.518699	15.997599	12.884212	C	-0.794737	10.535072	17.052749
C	3.444583	6.687336	13.350385	H	-1.187852	9.578853	16.727485
C	-1.386771	11.196694	18.125624	C	-3.871374	7.883048	17.297239
H	-2.238911	10.740749	18.624858	H	-4.904312	8.215495	17.227192
C	4.44519	10.339608	13.728095	C	4.708828	7.666941	11.530741
H	4.902210	10.246093	12.746156	H	5.667416	7.932613	11.091387
C	3.531053	7.954547	10.853739	C	3.363106	15.932955	12.783936
H	3.580079	8.446383	9.886618	H	4.313023	16.013013	12.242958
C	-3.962226	7.446701	14.817310	H	3.452652	16.514398	13.708406
H	-3.350862	6.922238	14.075502	H	2.586916	16.401092	12.170880
C	0.610205	16.476241	15.392349	C	0.339272	5.216887	18.282020
H	0.801548	16.090321	14.385711	H	-0.108394	5.209951	19.282729
C	4.009635	12.903782	11.338185	H	1.386572	4.909711	18.379906
H	4.897541	12.800648	11.953713	H	-0.175698	4.460916	17.679032
C	4.073080	13.913494	14.093877	C	1.076259	7.626463	18.443581
H	3.872897	12.869000	14.342167	H	1.023193	8.613213	17.975937
H	4.028198	14.499407	15.017832	H	2.125605	7.313808	18.468779
H	5.098496	13.993269	13.714295	H	0.734081	7.710237	19.481219
C	0.248620	6.611682	17.649225	C	-2.247624	4.430923	15.424600
H	0.692335	6.550893	16.650550	H	-2.134620	4.488205	16.510104
C	-1.255492	5.325744	14.724103	H	-2.125054	3.395574	15.105147
C	-3.637563	13.677908	14.706346	H	-3.268845	4.749666	15.194424
H	-3.330077	13.800561	13.660687	C	-1.913265	7.465997	18.624255
C	1.082625	14.116906	7.477616	H	-1.418146	7.475102	19.591877
H	1.636219	15.026877	7.723147	C	-2.260466	15.555527	17.717694
H	0.237651	14.389540	6.836246	H	-2.549795	15.745375	18.748202
H	1.749954	13.478333	6.888275	C	3.050775	14.462124	13.098896
C	-0.911496	16.256993	11.660696	H	2.079391	14.422530	13.604539
	X	Y	Z		X	Y	Z
---	------------	------------	------------	---	------------	------------	------------
C	4.661660	7.044485	12.769209	C	4.481924	4.889697	14.818850
H	5.587790	6.834660	13.297950	H	4.408427	4.178030	13.988799
C	-5.105290	14.110432	14.805433	H	4.346467	4.337853	15.754815
H	-5.517560	13.911890	15.800903	H	5.501894	5.288905	14.824446
H	-5.708195	13.552317	14.082558	C	0.526628	18.004631	15.289244
H	-5.228570	15.180434	14.602912	H	-0.257220	18.323413	14.594580
C	5.237475	10.424656	14.869497	H	1.476913	18.414906	14.929709
H	6.321719	10.404869	14.789867	H	0.314461	18.455347	16.265479
C	-0.887902	12.421641	18.553044	C	1.006410	7.896274	10.608328
H	-1.345241	12.942185	19.390972	C	0.527201	6.661264	9.831155
C	3.951214	12.255929	10.109758	H	1.315681	6.285414	9.167204
H	4.789402	11.650456	9.774154	H	-0.338267	6.923809	9.213477
C	-3.483883	12.196466	15.061416	H	0.216098	5.847940	10.491825
H	-2.458954	11.840169	14.904752	C	1.138880	9.074201	9.642647
H	-4.156610	11.592521	14.446083	H	1.677517	16.431412	17.301745
H	-3.731663	12.016988	16.114752	H	2.727707	16.481935	15.884474
C	1.793217	16.064226	16.275861	H	1.895733	14.975241	16.316013
C	3.630435	7.037309	15.832414	H	1.763247	8.828179	8.773950
H	4.575259	7.578089	15.704990	H	1.568290	9.958708	10.127201
H	3.651492	6.537616	16.808918	H	0.146550	9.338753	9.264659
H	2.822899	7.776233	15.836490	H	-2.940279	10.584052	9.459174
C	-4.158430	8.877584	14.311377	C	-1.002630	11.035063	11.805325
H	-4.714983	9.472476	15.044779	H	-0.186660	11.139305	11.078591
H	-4.725317	8.876245	13.374115				
H	-3.192948	9.359743	14.126385				
C	-5.312315	6.724683	14.912190				
H	-5.216837	5.717386	15.332599	SCF (wB97x)= -3807.12288674			
H	-5.760226	6.638753	13.917098	E(SCF)+ZPE(0 K)= -3805.551694			
H	-6.018453	7.277374	15.541610	H(298 K)= -3805.456588			
C	-3.233671	7.885454	18.529476	G(298 K)= -3805.680960			
H	-3.765929	8.214553	19.418491	Lowest Frequency = 12.1798cm⁻¹			
Element	X	Y	Z				
---------	----------	----------	----------				
C	1.282686	-0.527795	1.729663				
C	3.410977	-0.463673	0.335713				
H	2.786695	-0.501275	-0.555070				
C	0.298955	1.264065	-5.061046				
H	0.994115	0.574383	-5.552863				
H	-0.516952	1.472114	-5.761656				
C	3.382123	2.858672	-1.610099				
C	0.638580	2.094790	4.472046				
H	1.044170	3.050677	4.794893				
C	2.699806	-3.225008	-2.048522				
C	-1.144310	5.117312	-0.549271				
C	3.857348	-4.171939	-0.095327				
C	-0.962618	0.321766	4.708433				
H	-1.813445	-0.130591	5.213201				
C	4.796281	-0.501572	0.204490				
H	5.233061	-0.577250	-0.787820				
C	3.946013	-2.894383	-2.586096				
H	3.997149	-2.398366	-3.550788				
C	-3.546998	-3.582704	1.374658				
H	-2.926844	-4.146518	0.670248				
C	0.939265	5.603999	1.970994				
H	1.141359	5.238818	0.958576				
C	4.449753	2.101407	-2.086911				
H	5.342201	1.994099	-1.478571				
C	4.503562	3.065503	0.692395				
H	4.297761	2.018118	0.923789				
H	4.456056	3.637977	1.624815				
H	5.531284	3.146227	0.319359				
C	0.670377	-4.226750	4.240702				
H	1.118747	-4.313445	3.245936				

SCF (wB97x) = -3807.10643037

E(SCF)+ZPE(0 K)= -3805.535542

H(298 K)= -3805.441188

G(298 K)= -3805.662782

Lowest Frequency = -784.5541 cm⁻¹

Atom	X	Y	Z
W	-3.342363	11.527312	11.376098
Al	-0.325078	13.473484	12.812351
O	-0.952506	8.993456	13.104683
O	-1.372440	12.386472	11.864163
O	0.661971	8.957955	15.276232
O	0.487122	12.305706	13.805639
C	-3.264622	11.166452	9.484196
N	0.742923	14.493261	11.597302
N	-1.135789	6.605384	15.140902
C	-4.548247	13.109839	10.963481
N	-1.217221	14.941092	13.589274
N	0.921187	6.594560	13.174649
C	-4.952731	10.380578	11.453956
O	-3.184906	10.939593	8.338245
O	-5.228617	14.009443	10.696603
O	-5.879991	9.680880	11.523148
C	0.808759	12.272459	16.845109
H	1.686816	12.701581	16.369483
C	-1.791756	7.024712	16.359990
C	-0.654793	10.325459	13.073928

Atom	X	Y	Z						
C	0.730071	13.470359	8.796648						
H	-0.011968	14.128695	9.257857						
C	0.295043	11.065495	16.366514						
C	-1.633045	15.023238	14.973203						
C	2.184744	6.977771	12.582025						
C	1.134363	16.447021	10.127864						
H	2.114032	16.008679	9.937575						
H	1.258786	17.482829	10.453791						
H	0.570946	16.463662	9.189227						
C	-3.147235	7.395267	16.331588						
C	2.410063	10.490948	15.005221						
C	-2.847206	14.450258	15.384934						
C	1.877528	13.262046	9.781625						
C	0.176482	10.972604	13.922571						
C	-3.243249	14.613206	16.712112						
H	-4.177071	14.170839	17.048577						
C	2.982467	12.505378	9.379723						
H	2.971793	12.033481	8.399675						
C	0.559097	5.312966	13.058739						
C	1.916439	13.840835	11.063971						
C	-2.588571	16.966680	13.256346						
H	-3.535267	16.420047	13.328698						
H	-2.705509	17.775908	12.534707						
H	-2.391330	17.392877	14.242642						
C	0.352256	15.686231	11.168851						
C	4.622540	10.474478	16.003934						
H	5.245330	10.502967	16.894773						
C	3.236835	10.516913	16.131879						
H	2.793496	10.561582	17.122852						
C	-0.828607	15.755435	15.867049						
H	0.134156	8.167857	11.294694						
---	---	---	---	---	---	---	---	---	---
H	0.216938	5.162990	19.161595	H	-3.983027	11.606716	13.758194		
H	1.684271	4.998690	18.180482	H	-3.744328	11.782048	15.490121		
H	0.117180	4.513867	17.515596	C	1.644027	15.979112	16.360876		
C	1.250202	7.688201	18.419510	C	3.673536	6.995057	15.734860		
H	1.090196	8.702311	18.042149	H	4.639764	7.487036	15.574770		
H	2.316899	7.455265	18.337662	H	3.703527	6.493430	16.710115		
H	0.991730	7.664975	19.484146	H	2.905890	7.774686	15.765999		
C	-2.199842	4.419253	15.534782	C	-4.153764	8.838418	14.553132		
H	-2.009816	4.463290	16.610348	H	-4.661186	9.445641	15.312968		
H	-2.099015	3.388078	15.195008	H	-4.760879	8.853377	13.643082		
H	-3.235129	4.738984	15.382113	H	-3.187038	9.298025	14.323719		
C	-1.695013	7.447006	18.724518	C	-5.323947	7.817631	15.723367		
H	-1.139938	7.473749	19.658269	H	-5.226142	5.697228	15.623325		
C	-2.475888	15.352933	17.600826	H	-5.823383	6.635629	14.240222		
H	-2.808812	15.487618	18.626758	H	-5.987908	7.271548	15.875823		
C	3.117705	14.488734	13.223653	C	-3.033018	7.816731	18.716798		
H	2.133642	14.421668	13.703060	H	-3.518925	8.123774	19.639849		
C	4.586796	7.018118	12.668554	C	4.387729	4.816832	14.683964		
H	5.518260	6.797032	13.183460	H	4.248871	4.110175	13.858240		
C	-5.208581	13.942480	14.557498	H	4.269222	4.269587	15.624987		
H	-5.602248	13.544976	15.499447	H	5.422985	5.172349	14.644515		
H	-5.754535	13.455839	13.742387	C	0.378185	17.933336	15.404900		
H	-5.430996	15.014324	14.523691	H	-0.383333	18.267523	14.693069		
C	5.207929	10.380429	14.744150	H	1.334002	18.374834	15.101652		
H	6.289779	10.340347	14.642964	H	0.118548	18.338334	16.389683		
C	-0.911633	12.381488	18.535526	C	0.909076	7.912905	10.564192		
H	-1.373745	12.891126	19.377440	C	0.417703	6.688152	9.778296		
C	4.088072	12.351683	10.202257	H	1.198844	6.317727	9.103026		
H	4.933382	11.753480	9.871240	H	-0.452700	6.959173	9.171685		
C	-3.416838	12.174324	14.520179	H	0.112376	5.868600	10.433940		
H	-2.350731	11.939491	14.437273	C	1.039215	9.100712	9.609927		
21_Int9.log

SCF (wB97x) = -3807.15629040
E(SCF)+ZPE(0 K) = -3805.578986
H(298 K) = -3805.484189
G(298 K) = -3805.709313
Lowest Frequency = 12.2468 cm⁻¹
S148

22_Int1a.log

SCF (wB97x) = -3920.43645857
E(SCF)+ZPE(0 K)= -3918.858565
H(298 K)= -3918.760955
G(298 K)= -3918.987935

Lowest Frequency = 16.6896 cm⁻¹
C	0.602295	0.446232	0.488790	H	1.005894	0.891140	-5.380228
C	-2.416954	4.101763	3.574948	H	-0.546639	1.736907	-5.438010
H	-3.304830	3.633463	3.992498	H	0.063376	1.116352	-3.894995
C	3.378540	2.045575	-4.154254	C	3.522420	3.197792	-1.603025
H	3.333560	1.597363	-5.144087	C	0.995695	2.372582	4.465279
C	0.816739	-5.221494	-0.328716	H	1.448842	3.311812	4.772462
C	2.354688	3.304916	-2.385050	C	2.800127	-3.062470	-1.860051
C	-2.004955	6.456052	0.053524	H	-0.952099	5.497874	-0.445932
H	-2.937541	5.910582	0.230650	C	3.684833	-4.108356	0.175770
H	-2.186195	7.244695	-0.677827	C	-0.629750	0.635855	4.796588
H	-1.720722	6.910752	1.005214	H	-1.452028	0.195066	5.355699
C	0.800113	5.150105	-2.197790	C	4.773714	-0.291989	-0.099744
C	5.153084	-0.243265	2.272383	H	5.145745	-0.353729	-1.118908
H	5.830477	-0.263909	3.122628	C	4.111213	-2.923853	-2.319772
C	3.780576	-0.160539	2.488347	H	4.290942	-2.461877	-3.285929
H	3.397233	-0.132715	3.504882	C	-3.727502	3.172699	1.693058
C	-0.107660	5.275948	2.525919	H	-3.167922	3.693031	0.911245
H	0.826033	-2.261100	-2.043044	C	1.184560	5.907943	2.016608
C	-0.319502	-5.737805	0.304845	H	1.363803	5.549171	0.997610
H	-0.583993	-6.757671	0.054723	C	4.598210	2.485157	-2.129736
C	1.612306	-6.208600	1.150669	H	5.504278	2.375005	1.542318
H	2.138821	-5.738337	-1.980938	C	4.669127	3.309036	0.689051
H	0.951073	-6.988605	-1.533139	H	4.476015	2.247301	0.861122
H	2.363645	-6.687606	-0.513763	H	4.621800	3.827030	1.652735
C	3.513100	-4.732066	1.555113	H	5.694050	3.420072	0.316677
H	2.449441	-4.942569	1.714556	C	0.708311	-3.791254	4.217975
C	-0.767431	-3.411939	4.172510	H	1.148960	-3.508118	3.258841
C	1.370900	-0.237597	1.653795	C	-1.021923	-5.157816	1.366803
C	3.402637	-0.196009	0.119917	C	-4.186373	0.388152	-1.365607
H	2.725015	-0.180405	-0.731770	C	-3.028129	3.020664	1.391083
C	0.357261	1.586893	-4.836738	H	-2.689690	3.055193	0.348435
H -4.901206 -4.903847 2.374210
H -5.555118 -4.067980 0.952136
H -5.730392 -3.355765 2.556397
C -2.756266 -2.637198 5.328417
H -3.239391 -2.313198 6.246881
C 4.271192 -6.057508 1.701065
H 4.017334 -6.769436 0.908539
H 4.030944 -6.522898 2.663227
H 5.355786 -5.905646 1.673368
C 1.095544 7.438359 1.955725
H 0.303411 7.774800 1.279338
H 2.040669 7.860398 1.596366
H 0.894362 7.861869 2.946272
C 1.636608 -2.572953 -2.713224
C 1.082115 -3.686647 -3.613976
H 1.881560 -4.126677 -4.223216
H 0.324216 -3.281906 -4.291061
C 0.610963 -4.484903 -3.033603
C 2.014312 -1.358702 -3.564886
H 2.274912 5.810962 3.911048
H 3.308261 5.919070 2.485906
H 2.495255 4.390518 2.876054
H 2.705369 -1.624756 -4.374196
H 2.480734 -0.563211 -2.971693
H 1.118061 -0.954268 -4.035091
H -2.376482 1.587392 -3.160796
H -2.958955 1.396616 -3.667312

E(SCF)+ZPE(0 K)= -3918.804960
H(298 K)= -3918.706203
G(298 K)= -3918.939043

Lowest Frequency = -51.1712 cm⁻¹

23_TS1a.log
SCF (wB97x) = -3920.37906419
24_Int2a.log

SCF (wB97x) = -3807.09878597
E(SCF)+ZPE(0 K)= -3805.530035
H(298 K)= -3805.434833
G(298 K)= -3805.657867
Lowest Frequency = 14.8746 cm⁻¹
Atom	X	Y	Z								
C	-0.262481	-0.203215	C	5.317247	-3.380512	-1.240339					
H	-0.288243	-1.228307	H	6.356426	-3.202706	-1.505935					
C	-3.154159	-2.169234	C	3.892064	5.364782	-0.774622					
H	-2.803712	-3.166065	H	4.815645	5.460035	-1.357023					
C	-3.055707	1.092379	H	4.014603	5.943635	0.147783					
H	-3.585021	0.399026	H	3.082693	5.824432	-1.351141					
C	5.861160	1.959903	C	0.514800	-5.387161	4.274191					
H	5.524096	0.925833	H	-0.090266	-5.820837	5.079498					
C	2.411482	-2.297354	H	1.564468	-5.632991	4.474633					
H	2.392012	-1.762262	H	0.238878	-5.877118	3.335512					
C	3.35827	0.485435	C	0.943522	-3.218878	5.462109					
H	2.279836	0.712202	H	0.790060	-2.135088	5.468794					
C	3.896022	1.425729	H	2.022030	-3.405735	5.476652					
H	3.443519	0.068788	H	0.529812	-3.637549	6.387321					
C	-3.864362	4.215706	C	-2.159882	-6.075629	1.828929					
H	-3.481671	3.362181	H	-2.101374	-6.016628	2.918512					
C	-5.222064	1.178134	H	-2.053340	-7.116060	1.520532					
C	3.081322	1.447890	H	-3.156689	-5.730135	1.540945					
H	3.090835	0.400941	C	-1.919878	-3.037005	5.051658					
C	3.056264	-5.927629	H	-1.501270	-3.003509	6.052820					
H	4.034749	-5.879009	C	-1.479597	4.925827	4.398796					
H	3.168931	-6.460624	H	-1.717064	5.100561	5.444993					
H	2.401859	-6.531239	C	3.612456	3.888200	-0.457918					
C	-0.366349	5.660493	H	2.660716	3.835538	0.084938					
H	6.550122	-2.259276	C	4.993214	-3.837202	0.029729					
C	5.471276	3.842784	H	5.785088	-4.018265	0.753165					
H	6.071779	4.463642	C	-4.442547	3.626963	1.490457					
C	-0.157307	3.612126	H	-4.864542	3.570570	2.500011					
H	-1.100464	3.300080	H	-5.089325	3.040536	0.828817					
C	-2.643652	3.575840	H	-4.492239	4.672657	1.168418					
H	-2.311751	3.423412	C	5.699669	-0.279048	0.859348					
Atom	X	Y	Z	Atom	X	Y	Z				
------	----	----	----	------	----	----	----				
C	-0.051862	1.704588	5.143536	C	1.900820	-3.136816	-2.905893				
H	-0.440595	2.220137	6.018198	C	2.226694	-3.826961	-4.236348				
C	4.429102	1.735449	-3.506636	H	3.080720	-3.356211	-4.736685				
H	5.284373	1.200148	-3.911624	H	1.366714	-3.751360	-4.909032				
C	-2.971387	1.630298	1.936980	H	2.466947	-4.888121	-4.105955				
H	-1.973360	1.191099	1.829742	C	1.672086	-1.642390	-3.134926				
H	-3.677536	1.020945	1.366451	H	2.442806	5.680330	3.807597				
H	-3.244230	1.562105	2.996611	H	3.426145	5.782892	2.345683				
C	2.499670	5.368687	2.758657	H	2.571609	4.276617	2.734293				
C	3.809991	-3.711019	2.896056	H	2.598534	-1.133981	-3.433893				
H	4.880256	-3.482361	2.834202	H	1.285822	-1.153835	-2.233867				
H	3.623436	-4.174651	3.872782	H	0.928034	-1.504647	-3.922035				
H	3.257290	-2.769508	2.841187	H	-3.856136	1.031179	-0.959633				
C	-3.743001	-1.610782	0.597213	H	-4.493301	0.823507	-1.422508				
H	-4.436681	-1.025989	1.211328	H	-4.160280	-1.625579	-0.429784	25_TS2a.log			
H	-2.759550	-1.136485	0.623702	C	-5.033046	-3.719072	1.038010	SCF (wB97x) =	-3807.08533154		
H	-5.021214	-4.740374	1.432904	E(SCF)+ZPE(0 K)=	-3805.520150						
H	-5.386847	-3.758939	0.002535	H(298 K)=	-3805.425099						
H	-5.772773	-3.153488	1.615206	G(298 K)=	-3805.648286						
C	-3.233505	-2.629194	4.851954	Lowest Frequency = -605.4264 cm^-1							
H	-3.832370	-2.294225	5.694985	C	4.012302	-6.039418	1.941363	W	-3.120938	-0.227646	-1.999638
H	3.688996	-6.736224	1.160418	Al	0.177172	2.949814	-0.511099				
H	3.736657	-6.470002	2.910616	Al	0.355705	-2.658139	0.707993				
H	5.105746	-5.979153	1.902277	O	-0.498018	-1.496953	-0.280642				
C	1.248517	7.394638	1.943228	O	-1.035639	1.892672	-1.231530				
H	0.435222	7.776153	1.317869	O	1.260380	-1.624086	1.765386				
H	2.188260	7.794068	1.546114	O	1.013659	1.748153	0.445534				
Atomic Symbol	x-coordinate	y-coordinate	z-coordinate								
----------------	---------------	---------------	---------------								
C	-4.609149	-1.276809	-2.893865								
N	1.175560	3.851192	-1.848811								
N	-0.821284	-3.870573	1.601702								
C	-1.859516	-1.646792	-2.822425								
N	-0.514453	4.476919	0.339504								
N	1.395723	-4.005187	-0.155313								
C	-2.963916	0.931548	-3.547597								
O	-5.466077	-1.861079	-3.41894								
O	-1.200549	-2.445716	-3.335298								
C	-1.253005	0.610801	-1.073213								
O	-2.899810	1.681034	-4.442776								
C	1.577983	1.693976	3.417840								
H	-2.899810	1.681034	-4.442776								
O	-2.899810	1.681034	-4.442776								
C	-0.795386	4.256932	3.658988								
H	2.775280	-3.743712	0.506497								
C	1.418488	5.693006	-3.484140								
C	2.402185	5.277934	-3.704557								
H	1.506484	6.767849	-3.311497								
C	0.780057	5.548824	-4.362203								
C	-2.941240	-2.989828	2.496091								
C	3.016287	-0.105745	1.370479								
C	-1.953534	4.033698	2.305760								
C	2.160741	2.507857	-3.675345								
C	0.698326	0.448454	0.503905								
C	-2.219800	4.256932	3.658988								
H	-3.112668	3.820405	4.100143								

S158
C 3.527954 3.184613 -1.742539 C -0.288686 5.753869 -1.696890
C 1.084309 2.342500 4.451740 H -0.616094 6.643152 -2.222095
H 1.513404 3.294106 4.755409 C -0.227709 5.571756 3.883932
C 3.107420 -3.295366 -1.795088 H 0.437558 6.169780 4.503346
C -0.834940 5.534960 -0.434816 C -0.008914 -0.074271 3.649337
C 3.765975 -3.995375 0.462532 H -0.441529 -1.017339 3.336877
C -0.509123 0.574378 4.776169 C -3.691869 -2.564379 3.594477
H -1.331078 0.122052 5.327081 H -4.714189 -2.226893 3.442302
C 4.885894 -0.163046 -0.170110 C 5.443825 -3.305420 -1.145063
H 5.246136 -0.179585 -1.195228 H 6.487581 -3.130076 -1.393527
C 4.454831 -3.079117 2.090592 C 3.963105 5.457724 -0.775061
H 4.730432 -2.730759 3.083473 H 4.880299 5.556342 -1.366954
C -3.562455 -2.933459 1.106987 H 4.092068 6.038593 0.145240
H -2.898731 -3.443844 0.402068 H 3.145492 5.912355 -1.343706
C 1.386263 5.955269 1.995944 C 0.587573 -5.321798 4.286037
H 1.504438 5.623502 0.959126 H -0.023955 -5.757222 5.085460
C 4.606189 2.497334 -2.295986 H 1.634975 -5.573116 4.491483
H 5.556724 2.482548 -1.771934 H 0.314845 -5.805777 3.343186
C 4.776589 3.435933 0.480856 C 1.017778 -3.160527 5.487175
H 4.615435 2.379782 0.712879 H 0.865750 -2.076562 5.498942
H 4.766523 3.998845 1.419592 H 2.095822 -3.349055 5.506189
H 5.779446 3.547567 0.052932 H 0.599241 -3.583372 6.408211
C 0.410261 -3.798104 4.234637 C -2.084268 -5.978433 1.819088
H 0.984599 -3.412414 3.385375 H -2.027709 -5.932373 2.909447
C -1.014239 -5.126017 1.181729 H -1.985980 -7.016094 1.498892
C -2.916547 3.181334 1.497391 H -3.077086 -5.619972 1.533515
H -2.591246 3.167406 0.451376 C -1.842292 -2.978042 5.070790
C 1.096953 3.115330 -5.885501 H -1.426671 -2.956885 6.073457
H 1.579593 4.096892 -5.847091 C -1.378882 5.031830 4.441568
H 0.139090 3.220594 -6.404805 H -1.614392 5.209233 5.487839
H 1.731510 2.463097 -6.495972 C 3.693772 3.980602 -0.452283
H 2.748382 3.925808 0.101430 H -3.756351 -2.241884 5.717372
C 5.097070 -3.759285 0.119727 C 4.079097 -5.959858 2.012688
H 5.876203 -3.759285 0.119727 H 3.761842 -6.654759 1.227578
C -4.346705 3.733632 1.518620 H 3.789394 -6.389522 2.978188
H -4.779198 3.692348 2.524883 H 5.173226 -5.905244 1.987062
H -4.982157 3.137878 0.855269 C 1.356725 7.488991 1.987887
H -4.389980 4.775289 1.181950 H 0.540089 7.878405 1.371797
C 5.782762 -0.189819 0.892793 H 2.295350 7.885384 1.584976
H 6.853441 -0.225154 0.707086 H 1.232472 7.888203 3.000852
C 0.036559 1.786665 5.181931 C 2.058851 -3.055786 -2.869156
H -0.352151 2.301457 6.056996 C 2.406461 -3.754411 -4.189926
C 4.480774 1.815278 -3.500689 H 3.273962 -3.292003 -4.674243
H 5.332666 1.280415 -3.913380 H 1.562507 -3.676489 -4.882578
C -2.894311 1.737281 2.005474 H 2.636593 -4.816424 -4.049824
H -1.892758 1.297931 1.933228 C 1.846305 -1.560280 -3.108550
H -3.578759 1.130608 1.408844 H 2.551271 5.756290 3.835484
H -3.199135 1.681259 3.057513 H 3.527319 5.862732 2.368532
C 2.600770 5.451086 2.784259 H 2.666398 4.358710 2.752924
C 3.877864 -3.630651 2.965450 H 2.785329 -1.057902 -3.375436
H 4.949396 -3.405506 2.914612 H 1.432869 -1.068258 -2.221451
H 3.680525 -4.094854 3.939545 H 1.133553 -1.416203 -3.923319
H 3.328793 -2.687160 2.906521 H -3.696992 1.062787 -0.939499
C -3.658723 -1.475074 0.655891 H -4.687728 0.527121 -1.815119
H -4.328224 -0.902260 1.305504
H -4.117159 -1.447047 -0.352829
H -2.675039 -1.002005 0.667173
C -4.941696 -3.595357 1.035234 SCF (wB97x) = -3807.0866073
H -4.929489 -4.629807 1.406331 E(SCF)+ZPE(0 K)= -3805.521044
H -5.293794 -3.616139 -0.001535 H(298 K)= -3805.425397
H -5.683679 -3.048224 1.623029 G(298 K)= -3805.651192
C -3.155077 -2.567214 4.872334 Lowest Frequency = 9.8690 cm⁻¹

26_Int3a.log

SCF (wB97x) = -3807.0866073
E(SCF)+ZPE(0 K) = -3805.521044
H(298 K) = -3805.425397
G(298 K) = -3805.651192

Lowest Frequency = 9.8690 cm⁻¹
W -3.177443 -0.342618 -2.068942
Al 0.086668 2.867319 -0.566479
Al 0.257470 -2.742049 0.678514
O -0.601430 -1.582910 -0.311606
O -1.114735 1.800930 -1.303798
C -4.516189 -1.760442 -2.571791
N -0.902987 -3.967801 1.574597
C 1.878397 -1.653968 -2.981396
N 0.595769 4.404931 0.273330
C 1.325863 -0.228189 -0.304898
H 2.369674 5.173361 -3.737316
H 1.508927 6.679407 -3.330358

H 0.760148 5.494798 -4.403949
C -3.012440 -3.132021 2.534298
C 2.894081 -0.177944 1.414458
C -2.052330 4.005551 2.235539
C 2.078965 2.416592 -3.725480
C 0.593072 0.366733 0.478119
C -2.320481 4.246058 3.585411
C 3.180986 1.717552 -4.226369
C 3.088329 1.195729 -5.176019
C 0.836063 -5.300586 -0.449418
C 2.228573 3.074839 -2.491661
C -1.876270 6.498826 0.009624
C -2.827411 6.013388 0.235999
C 2.037494 7.276117 -0.737225
C -1.526449 6.960858 0.936800
C 0.717446 4.954744 -2.342298
C 5.144076 -0.252111 2.316764
C 5.804448 -0.265192 3.180387
C 3.766024 -0.196379 2.505312
C 3.361978 -0.181172 3.514082
C 0.028715 5.278626 2.475606
H 0.989723 -3.420044 -2.546708
H -0.347869 -5.798772 0.103402
H 0.636552 -6.798347 -0.195118
C 1.630607 -6.242559 -1.318011
C 1.767186 -5.816548 -2.315622
H 1.122788 -7.202972 -1.409797
C 2.629186 -6.405485 -0.902630
C 3.379365 -4.682981 1.760383
H 2.293978 -4.792642 1.855265
Atoms	X	Y	Z			
C	-1.084913	-3.557466	3.995592			
H	0.929202	-3.553635	3.327751			
C	1.378507	-0.325980	1.625374			
C	-1.101906	-5.213299	1.128215			
C	3.435696	-0.216911	0.129239			
C	-3.027510	3.170336	1.425374			
C	2.781188	-0.195804	-0.739244			
C	-2.696382	3.143180	0.381421			
C	0.163876	1.073610	-4.695377			
C	1.052176	3.056042	-5.943304			
H	0.836316	0.391246	-5.226922			
H	1.563657	4.022610	-5.898222			
C	-0.770027	1.142920	-5.259850			
H	0.103245	3.191116	-6.472230			
C	-0.069818	0.637947	-3.719310			
C	1.671943	2.385909	-6.549329			
C	3.445594	3.058549	-1.779482			
C	-0.337230	5.682915	-1.757739			
C	0.832670	2.253581	4.431264			
H	-0.646559	6.578528	-2.283131			
C	1.232624	3.215476	4.741822			
H	-0.296247	5.512422	3.811343			
C	3.008272	-3.345095	-1.842597			
C	0.380197	6.098563	4.429991			
C	-0.897338	5.467975	-0.500804			
C	-0.182994	-0.192740	3.613096			
C	3.684389	-4.092995	0.389200			
C	-0.583310	-1.149024	3.297572			
C	-0.721883	0.445621	4.727878			
C	-3.752685	-2.761648	3.659195			
C	-1.541543	-0.027169	5.264559			
C	-4.782387	-2.435511	3.535108			
C	4.812338	-0.285627	-0.062115			
C	5.353196	-3.395229	-1.224523			
C	5.205822	-0.327623	-1.074180			
C	6.396465	-3.232096	-1.483313			
C	4.355446	-3.131486	-2.150163			
C	3.882312	5.330565	-0.808243			
C	4.623140	-2.763831	-3.138353			
C	4.794497	5.430818	-1.407545			
C	-3.644690	-3.003805	1.156334			
C	4.020085	5.907198	0.113467			
C	-2.997221	-3.492431	0.421233			
C	3.060276	5.788985	-1.366916			
C	1.336877	5.838932	1.926546			
C	0.569866	-5.461405	4.247894			
C	1.457601	5.480341	0.899001			
H	-0.016085	-5.896487	5.066344			
C	4.514396	2.353745	-2.329602			
H	1.624344	-5.704947	4.424527			
H	5.461267	2.319422	-1.799948			
H	0.272253	-5.951777	3.315518			
C	4.704454	3.311491	0.440920			
C	1.002560	-3.282801	5.425732			
H	4.548300	2.255638	0.675901			
H	0.833355	-2.201076	5.428101			
H	4.695618	3.875822	1.378878			
H	2.083292	-3.454955	5.426240			
H	5.705023	3.426910	0.008401			
H	0.608263	-3.700640	6.359496			
C	0.378221	-3.940016	4.191628			
C	-2.165604	-6.079046	1.757933			
Element	X	Y	Z	X	Y	Z
---------	---	---	---	---	---	---
C	0.951268	2.904291	-4.643423			
H	0.229036	3.565384	-4.154534			
C	0.750318	0.525675	2.880699			
W	-3.000644	0.016318	-2.500690			
Al	0.048613	2.995790	-0.656748			
Al	0.051084	-2.604164	0.700234			
O	-0.796648	-1.431578	-0.285588			
O	-1.016812	1.899224	-1.563199			
O	0.990478	-1.567398	1.727395			
C	-4.996512	0.160668	-2.864952			
N	1.103192	3.990948	-1.881127			
N	-1.057891	-3.844456	1.639850			
C	-3.452919	-1.880953	-2.308300			
N	-0.750442	4.463282	0.204727			
N	1.108808	-3.911943	-0.211984			
C	-1.873894	-0.833489	-3.951125			
O	-6.132025	0.285908	-3.029363			
O	-3.694383	-3.009614	-2.147493			
C	-1.241189	0.618673	-1.350272			
O	-1.278493	-1.338262	-4.810437			
C	1.272311	1.754233	3.294559			
H	2.083334	2.205910	2.728735			
C	-1.777779	-3.434400	2.827740			
C	-0.465325	-0.105318	-0.359286			

27_TS3a.log

SCF (wB97x) = -3807.09097171

E(SCF)+ZPE(0 K)= -3805.524482

H(298 K)= -3805.429845

G(298 K)= -3805.652176

Lowest Frequency = -10.8288 cm⁻¹
	C	H	C	H	C	H
	-0.484634	-5.679266	0.178862	1.260916	5.550120	0.956461
H	-0.741372	-6.697182	-0.087147	4.509910	2.547067	-2.198485
C	1.508966	-6.153586	-1.187569	5.415394	2.443383	-1.608920
H	2.114642	-5.684822	-1.962213	4.581115	3.366337	0.612232
H	0.857310	-6.904999	-1.638335	4.425657	2.295548	0.762393
H	2.189122	-6.669874	-0.501188	4.515671	3.861427	1.586885
C	3.310399	-4.638261	1.589037	5.601046	3.522025	0.241715
H	2.241674	-4.845558	1.715218	0.388125	-3.773993	4.163920
C	-1.087225	-3.401142	4.058728	0.879937	-3.429350	3.249660
C	1.241647	-0.193568	1.608596	-1.220025	-5.107073	1.221804
C	3.284131	-0.148126	0.094966	-3.142873	3.033358	1.258752
H	2.613616	-0.153777	-0.762562	-2.723513	2.964295	0.248334
C	0.251676	1.557774	-4.829786	1.304922	3.500891	-6.013615
H	0.896984	0.846719	-5.356756	1.874819	4.432661	-5.934658
H	-0.665019	1.679429	-5.416721	0.392470	3.701252	-6.584486
H	-0.025446	1.123968	-3.866511	1.908572	2.800860	-6.601217
C	3.428020	3.254217	-1.676669	-0.375417	5.880061	-1.715345
C	0.774888	2.389864	4.426521	-0.665780	6.804552	-2.199028
H	1.196347	3.342356	4.737514	-0.641180	5.498971	3.771600
C	2.700924	-3.020898	-1.872252	-0.021684	6.109231	4.425369
C	-1.025036	5.566715	-0.522800	-0.294976	-0.033436	3.612917
C	3.525557	-4.025833	0.210716	-0.716117	-0.981536	3.300877
C	-0.801011	0.604817	4.743082	-3.797313	-2.708599	3.912752
H	-1.615777	0.139563	5.293306	-4.847469	-2.432226	3.862496
C	4.657134	-0.232274	-0.113693	5.083142	-3.301750	-1.496799
H	5.037132	-0.302967	-1.129220	6.106196	-3.187068	-1.846496
C	4.024742	-2.889506	-2.295410	3.816124	5.460693	-0.540370
H	4.233761	-2.447335	-3.264910	4.710086	5.597074	-1.159827
C	-3.921575	-3.103147	1.435988	3.996017	5.957198	0.419166
H	-3.322891	-3.595390	0.662780	2.983131	5.977548	-1.026798
C	1.056279	5.923516	1.965162	0.576743	-5.293501	4.267383
H 2.108302 5.859361 3.883799 O -4.624467 -3.196121 -1.657973
H 3.168816 5.942826 2.477178 O -1.294558 -3.080762 -4.160235
H 2.349498 4.421249 2.877502 C -1.175824 0.674767 -1.420949
H 2.688481 -1.623778 -4.396429 O -3.116223 0.551902 -4.775753
H 2.368760 -0.527614 -3.040170 C 1.214497 1.776144 3.381345
H 1.066897 -0.988209 -4.155580 H 2.076581 2.194622 2.868759
H 3.680575 0.746937 -0.991246 C -1.783000 -3.369361 2.864566
H 2.368760 -0.527614 -3.040170 C -0.392825 0.006343 -0.374635
H 1.066897 -0.988209 -4.155580 C 0.909777 2.802864 -4.615355

28_Int4a.log

SCF (wB97x) = -3807.10497111
E(SCF)+ZPE(0 K)= -3805.537283
H(298 K)= -3805.442107
G(298 K)= -3805.665410
Lowest Frequency = 15.3774 cm⁻¹
X	Y	Z	X	Y	Z	
-1.724144	7.095580	0.828671	H	-1.855528	0.276059	5.188263
0.764216	5.179329	-2.335313	C	4.667205	-0.254466	0.081179
4.931117	-0.244095	2.469441	C	5.087172	-0.309216	-0.919650
5.565696	-0.289592	3.351094	C	4.093317	-2.939451	-2.264643
3.551403	-0.132695	2.619844	H	4.349269	-2.543626	-3.244851
3.119270	-0.104500	3.616737	C	-0.401287	-2.863406	1.655809
-0.249185	5.370568	2.407371	H	-3.432292	-3.174123	0.780838
0.726517	-3.107310	-2.602427	C	1.083926	5.949470	1.943002
-0.660067	-5.518871	0.050301	H	1.265371	5.611858	0.917188
-0.989250	-6.500148	-0.266525	C	4.459650	2.403606	-2.162924
1.199799	-5.963896	-1.521044	H	5.367910	2.301259	-1.577234
1.147474	-5.537443	-2.527734	C	4.565332	3.345549	0.617541
0.719639	-6.942603	-1.532861	H	4.361456	2.294018	0.833752
2.257806	-6.084487	-1.276711	H	4.531644	3.901454	1.560346
3.152640	-4.621281	1.593311	H	5.588501	3.429640	0.233039
2.071981	-4.598167	1.762150	C	0.454837	-3.773029	4.072275
-1.024324	-3.411912	4.055170	H	0.889670	-3.437567	3.128028
1.186803	-0.132916	1.661839	C	-1.339512	-4.970576	1.150029
3.289723	-0.129357	0.233892	C	-3.281371	3.365736	1.114072
2.661118	-0.078693	-0.652593	H	-2.894692	3.396316	0.089152
0.183840	1.475950	-4.848191	C	1.302017	3.424060	-5.964399
0.829363	0.764277	-5.376098	H	1.867790	4.354042	-5.849756
-0.711403	1.634779	-5.457649	H	0.405243	3.636167	-6.555817
-0.135596	1.022474	-3.906511	H	1.921222	2.733470	-6.547473
3.404015	3.164828	-1.664526	C	-0.326149	5.904697	-1.810315
0.677618	2.425731	4.487204	H	-0.583820	6.819732	-2.330521
1.121402	3.356648	4.831446	C	-0.640856	5.558266	3.732145
2.746626	-3.110839	-1.935726	H	0.006808	6.115572	4.405797
-0.986337	5.655563	-0.611882	C	-0.449691	0.058995	3.583090
3.439371	-3.981614	0.242584	H	-0.892514	-0.867587	3.235966
-0.991811	0.709284	4.689107	C	-3.736611	-2.743970	4.132104
H 2.037260 7.870163 1.590476 O 0.910618 1.774731 0.408050
H 0.874071 7.887525 2.925896 C -3.660369 -2.519379 -1.819819
C 1.698563 -2.779878 -2.980538 N 1.225721 3.862109 -1.897667
C 1.958456 -3.508627 -4.306331 N -1.012423 -3.842966 1.607344
H 2.838513 -3.101737 -4.817433 C -1.529977 -2.415435 -3.406152
H 1.096951 -3.386170 -4.163365 N -0.640013 4.447227 0.144158
H 2.131232 -4.580680 -4.163365 N 1.160242 -3.953995 -0.284917
C 1.617409 -1.273193 -3.227667 C -2.725626 -0.153545 -3.818671
H 2.137673 5.753810 3.850281 O -4.491981 -3.305126 -1.643196
H 3.196730 5.841708 2.441369 O -1.181828 -3.222709 -4.165904
H 2.301495 4.348196 2.783856 C -1.050862 0.557581 -1.431349
H 2.586908 -0.872188 -3.548456 O -2.980839 0.403473 -4.807136
H 1.305563 -0.729601 -2.329646 C 1.343723 1.661227 3.377460
H 0.884479 -1.062091 -4.009989 H 2.206085 2.078128 2.864035
H -3.014569 -0.030389 -0.655890 C -1.657397 -3.479121 2.860836
H -4.027246 -0.361504 -2.379959 C -0.274359 -0.107683 -0.375575
 C 1.032518 2.693589 -4.621450
 H 0.315241 3.359701 -4.132197
 C 0.788762 0.464923 2.918315
SCF (wB97x) = -3807.10495920 C -1.002096 4.549762 1.541482
E(SCF)+ZPE(0 K)= -3805.537544 C 2.542605 -3.733425 -0.673725
H(298 K)= -3805.443132 C 1.652088 5.750900 -3.440187
G(298 K)= -3805.664150 H 2.614813 5.278433 -3.635294
Lowest Frequency = -54.0836cm^-1
 H 1.808668 6.800496 -3.179869
 H 1.060141 5.724347 -4.361053
W -2.286599 -1.028446 -2.109292 C -3.018952 -3.122573 2.888383
Al 0.123060 2.925307 -0.657358 C 2.836019 -0.183014 1.495145
Al 0.134523 -2.644276 0.647611 C -2.211932 4.015319 2.007852
O -0.646109 -1.455768 -0.431409 C 2.248656 2.539424 -3.713833
O -0.952620 1.858086 -1.584827 C 0.605935 0.463140 0.486131
O 0.986524 -1.610726 1.733530 C -2.544268 4.201887 3.351807
X	Y	Z	X	Y	Z		
H	2.045682	2.626817	-6.552795	C	3.660234	3.821741	-0.356957
C	-0.209495	5.789855	-1.814452	H	2.691043	3.786366	0.155011
H	-0.467835	6.704998	-2.334153	C	4.887846	-3.919241	-0.146073
C	-0.523544	5.438426	3.726801	H	5.679209	-4.202600	0.543542
H	0.124032	5.995747	4.400512	C	-4.568438	3.860893	1.090668
C	-0.324355	-0.051965	3.580011	H	-5.047874	3.790330	2.073473
H	-0.770134	-0.977028	3.232596	H	-5.201614	3.327951	0.374345
C	-3.608582	-2.836129	4.122833	H	-4.551302	4.919055	0.807312
H	-4.659927	-2.560097	4.150951	C	5.615889	-0.426520	1.183827
C	5.219908	-3.397355	-1.387273	H	6.692063	-0.522388	1.063291
H	6.262862	-3.267281	-1.665127	C	-0.297372	1.783498	5.143772
C	3.994286	5.293884	-0.641065	H	-0.715786	2.297539	6.005557
H	4.936217	5.369615	-1.196432	C	4.486126	1.653790	-3.397606
H	4.110514	5.851086	0.295305	H	5.318792	1.059150	-3.765269
H	3.216426	5.791018	-1.228574	C	-3.228798	1.777244	1.534180
C	0.759996	-5.405690	4.183344	H	-2.238619	1.306486	1.507634
H	0.272251	-5.787318	5.088118	H	-3.882612	1.218432	0.859385
H	1.823196	-5.666211	4.239911	H	-3.612692	1.678708	2.557095
H	0.335583	-5.932803	3.321180	C	2.360926	5.326779	2.799781
C	1.350096	-3.158098	5.175634	C	3.939654	-3.966412	2.725952
H	1.149513	-2.081923	5.147017	H	5.026546	-3.917543	2.598274
H	2.424622	-3.306456	5.037587	H	3.746426	-4.463130	3.683220
H	1.098802	-3.533274	6.174247	H	3.562002	-2.940612	2.777587
C	-2.204683	-5.993879	1.835017	C	-4.216128	-1.493032	1.449327
H	-2.075549	-5.968631	2.919640	H	-4.800218	-1.114132	2.296874
H	-2.085937	-7.018766	1.482798	H	-4.795087	-1.338749	0.533736
H	-3.226740	-5.670977	1.621886	H	-3.304670	-0.897766	1.364581
C	-1.539588	-3.229255	5.257090	C	-5.180081	-3.790920	1.703422
H	-0.971193	-3.258633	6.181148	H	-5.013896	-4.841916	1.960919
C	-1.719924	4.919457	4.203721	H	-5.676538	-3.759356	0.728933
H	-2.005266	5.070409	5.241697	H	-5.873061	-3.380623	2.446495
C -2.885960 -2.896064 5.301076
H -3.365222 -2.678034 6.252006
C 3.698887 -6.210911 1.593693
H 3.192115 -6.785034 1.242766

Lowest Frequency = 10.5650 cm⁻¹

30_Int5a.log

SCF (wB97x) = -3807.12256177

E(SCF)+ZPE(0 K)= -3805.551733

H(298 K)= -3805.456924

G(298 K)= -3805.680272

S173
X	Y	Z	X	Y	Z
C -4.400994	-1.416520	0.923180	H -3.751946	-1.219381	-2.273954
H -5.031370	-0.863059	1.629078	31_TS5a.log		
H -4.957632	-1.531673	-0.013309			
H -3.516529	-0.809464	0.716420			
C -5.259663	-3.615762	1.768460			
H -5.027047	-4.571767	2.246706			
H -5.786024	-3.820946	0.830256			
H -5.953219	-3.079892	2.426004			
C -3.015806	-1.860092	5.038470			
H -3.487030	-1.397832	5.902087			
C 3.049724	-6.449619	1.716073			
H 2.406173	-6.843380	0.923004			
H 2.735886	-6.911159	2.659232			
H 4.076846	-6.770613	1.507125			
C 1.100260	7.003512	2.717078			
H 0.292187	7.655162	2.367528			
H 2.049489	7.436052	2.382035			
H 1.095227	7.027738	3.812396			
C 2.015125	-2.740570	-2.74507			
C 2.351852	-3.416107	-4.080902			
C 3.311985	-3.062678	-4.473253			
H 1.580138	-3.187175	-4.820322			
H 2.419555	-4.505056	-3.979760			
C 2.025980	-1.216584	-2.898387			
H 2.056692	4.590935	3.790989			
H 3.066791	5.127235	2.436764			
H 2.033768	3.681064	2.277548			
H 3.037673	-0.843745	-3.102418			
H 1.663599	-0.717433	-1.993750			
H 1.382103	-0.917324	-3.730590			
H -2.350371	0.433116	-0.861388			

SCF (wB97x) = -3807.11819660
E(SCF)+ZPE(0 K)= -3805.547622
H(298 K)= -3805.452996
G(298 K)= -3805.676342
Lowest Frequency = -84.3405 cm⁻¹
C	1.448268	0.904874	5.357941	C	-2.652996	-1.508515	5.085382	
H	0.991783	0.458156	6.239005	H	-3.571894	-0.945908	5.230780	
C	4.439268	-0.201110	-1.111324	C	4.577381	-3.590310	-1.917964	
H	4.491210	-0.136847	-2.195118	H	5.545656	-3.553206	-2.410322	
C	3.436518	-3.182266	-2.589822	C	4.080716	5.391716	-0.189620	
H	3.514930	-0.136847	-2.195118	H	4.870652	5.720719	-0.875785	
C	-3.321539	-1.707479	2.676364	H	4.405813	5.631165	0.828573	
H	-2.986800	-2.249900	1.784203	H	3.184051	5.982921	-0.385560	
C	-1.521975	3.988560	2.837679	C	0.961608	-5.135668	4.520820	
H	-0.641872	4.397192	2.329372	H	0.522663	-5.487984	5.461795	
C	4.590954	2.843911	-2.515034	H	1.951273	-5.597012	4.419914	
H	5.581329	2.722421	-2.087433	H	0.344345	-5.503753	3.695815	
C	5.039040	3.157896	0.329588	C	2.135371	-3.174462	5.554442	
H	4.975571	2.072799	0.227652	H	2.225159	-2.084604	5.605674	
H	5.074631	3.396643	1.398181	H	3.113434	-3.578177	5.276642	
H	5.990301	3.492499	-0.102003	H	1.904070	-3.554416	6.556212	
C	1.088284	-3.606138	4.523004	C	-2.355477	-5.126639	2.888312	
H	1.470854	-3.291837	3.544838	H	-2.027167	-5.133212	3.930738	
C	-1.331231	-4.467106	2.000928	H	-2.545296	-6.149917	2.563450	
C	-3.300572	4.218439	-1.990280	H	-3.295464	-4.568355	2.849771	
H	-2.283508	4.589163	-2.157736	C	-0.612226	-2.407945	5.967749	
C	0.780616	4.050284	-5.615768	H	0.060633	-2.541037	6.808898	
H	1.264673	5.020677	-5.460967	C	-4.872973	3.069701	1.283005	
H	-0.216615	4.228346	-6.031448	H	-5.831939	2.678358	1.612998	
H	1.361112	3.511871	-6.373354	C	3.848963	3.876916	-0.314355	
C	0.180139	6.272808	-0.970274	H	2.954000	3.617180	0.265448	
H	0.227477	7.348461	-1.087267	C	4.475944	-4.047558	-0.612439	
C	-3.854758	3.286213	2.199903	H	5.370695	-4.374214	-0.087567	
H	-4.022308	3.065814	3.252056	C	-4.275905	5.338157	-2.382557	
C	1.331206	0.259343	4.128632	H	-5.315869	5.007755	-2.282423	
H	0.790705	-0.676985	4.057967	H	-4.120098	5.626983	-3.427413	
SCF (wB97x) = -3807.11491573
E(SCF)+ZPE(0 K)= -3805.544175
H(298 K)= -3805.449491
G(298 K)= -3805.672724

Lowest Frequency = -818.5346cm⁻¹

33_TS6a.log
O 1.609850 -1.468480 1.927213 C -4.454442 3.160884 -0.029116
O 1.067836 1.945687 0.710396 H -5.254474 2.988230 -0.745216
C -3.943653 -1.208303 -0.966702 C 3.240851 2.287157 -4.316181
N 1.443961 4.011976 -1.541292 H 3.044434 1.906258 -5.315873
N -0.601551 -3.483927 2.359674 C 0.346378 -5.095332 0.016521
C -2.316826 -3.282767 -1.597772 C 2.484130 3.361203 -2.306801
N -0.916144 4.310571 0.009892 C -1.672130 6.616651 0.359335
N 1.056660 -3.960170 0.075419 H -2.646373 6.511187 -0.125968
C -2.341352 -1.117537 -3.270038 H -1.310601 7.634047 0.205762
O -5.068818 -1.143742 -0.658192 H -1.830309 6.447541 1.428195
O -2.538800 -4.399598 -1.815661 C 1.318625 5.338922 -1.653239
C -1.221292 0.746983 -0.589151 C 5.674456 -0.755915 0.991973
O -2.435383 -0.998144 -4.424426 H 6.562963 -0.95146 1.571458
C 2.796120 1.816984 3.108925 C 4.473999 -0.503111 1.644631
H 3.255837 2.246208 2.224157 H 4.426955 -0.551317 2.729738
C -0.961910 -2.926652 3.647635 C -2.413601 3.598407 1.837217
C -0.164312 0.017764 0.223782 H 0.272271 -3.282726 -2.175350
C 0.826628 3.001560 -4.248213 C -0.724180 -5.382396 0.872544
H 0.160985 3.530757 -3.556631 H -1.251598 -6.308157 0.682287
C 2.102425 0.609386 3.003711 C 0.708978 -6.143587 -1.002002
C -2.218221 3.886153 0.476126 H 0.508792 -5.761246 -2.008031
C 2.321303 -3.897816 -0.632155 H 0.120827 -7.048897 -0.852051
C 2.169312 6.095499 -2.645206 H 1.772864 -6.390161 -0.954372
H 3.184038 5.704875 -2.719770 C 3.441504 -4.858911 1.478233
H 2.205092 7.155284 -2.387522 H 2.404729 -4.837477 1.830624
H 1.708771 6.002706 -3.635267 C -0.077860 -3.116238 4.732381
C -2.160792 -2.208786 3.796088 C 1.967562 -0.125118 1.659060
C 3.315632 -0.196730 0.922504 C 3.395045 -0.128827 -0.466323
C -3.246239 3.699445 -0.473137 H 2.514488 0.134135 -1.046556
C 2.199802 2.881804 -3.596327 C 0.205311 1.624130 -4.507636
C 0.893155 0.596448 0.821218 H 0.832668 1.025988 -5.179846
H -0.779096 1.732678 -4.976692 H -0.113367 3.963395 -5.952207
H 0.067417 1.087113 -3.566048 H 1.478494 3.288364 -6.313211
C 3.764967 3.234782 -1.724836 C 0.384041 6.097817 -0.936136
C 2.912914 2.463519 4.334952 H 0.437793 7.172102 -1.062533
H 3.463837 3.398927 4.398369 C -3.648451 3.078426 2.231287
C 2.386636 -3.462279 -1.967396 H -3.814780 2.844814 3.280679
C -0.694384 5.610244 -0.188958 C 1.516311 0.074804 4.148688
C 3.480016 -4.301580 0.060476 H 0.963823 -0.854526 4.074264
C 1.634054 0.717722 5.379148 C -2.489548 -1.731664 5.068280
H 1.165710 0.276518 6.256666 H -3.414009 -1.174952 5.201192
C 4.595344 -0.391890 -1.124906 C 4.789437 -3.798772 -1.915702
H 4.629233 -0.338051 -2.209911 H 5.753313 -3.754990 -2.416153
C 3.637289 -3.421329 -2.586936 C 4.283798 5.206859 -0.170877
H 3.703578 -3.085583 -3.619344 H 5.068818 5.533373 -0.863756
C -3.084947 -1.873440 2.633343 H 4.617740 5.446378 0.844374
H -2.716843 -2.379609 1.733572 H 3.386901 5.800020 -0.360178
C -1.336174 3.833876 2.885177 C 1.160495 -5.332138 4.555879
H -0.459315 4.255385 2.381608 H 0.715847 -5.685730 5.493692
C 4.771961 2.662121 -2.499991 H 2.154804 -5.785599 4.465062
H 5.768539 2.549869 -2.084521 H 0.553699 -5.707135 3.726247
C 5.241176 2.970200 0.341392 C 2.308010 -3.358014 5.595178
H 5.174887 1.885580 0.236319 H 2.388021 -2.267283 5.643727
H 5.285031 3.205933 1.410327 H 3.292192 -3.754634 5.328154
H 6.189783 3.304268 -0.096200 H 2.070097 -3.736536 6.595914
C 1.274746 -3.801653 4.555043 C -2.146198 -5.322584 2.901871
H 1.665397 -3.488625 3.579616 H -1.811977 -5.347388 3.942327
C -1.113727 -4.672811 2.017026 H -2.356373 -6.338312 2.566308
C -3.117329 4.098601 -1.941437 H -3.075178 -4.746281 2.876852
H -2.119442 4.523582 -2.097587 C -0.459791 -2.627959 5.981844
C 0.893569 3.812852 -5.549361 H 0.197864 -2.765279 6.834469
H 1.353067 4.796268 -5.402629 C -4.656395 2.842804 1.308052

S184
	SCF (wB97x)	E(SCF)+ZPE(0 K)	H(298 K)
H	-5.604110	2.418332	1.628670
C	4.047827	3.692535	-0.292429
H	3.157706	3.435919	0.296538
C	4.705390	-4.235903	-0.601943
H	5.609047	-4.539871	-0.078571
C	-4.146277	5.182008	-2.299397
H	-5.167588	4.790853	-2.234767
H	-3.989848	5.528430	-3.326397
H	-4.085398	6.051961	-1.636630
C	5.737354	-0.709152	-0.399796
H	6.673166	-0.916206	-0.913262
C	2.337772	1.913195	5.479070
H	2.437570	2.415136	6.438257
C	4.516984	2.194276	-3.784861
H	5.318318	1.745262	4.366624
C	-3.257370	2.905898	-2.895898
H	-2.442939	2.194228	-2.738891
C	-3.219705	3.252578	-3.935486
H	-4.213289	2.388183	-2.754740
C	-0.898959	2.521967	3.541396
C	4.272413	-4.009491	2.444270
H	5.316614	-3.938619	2.119322
H	4.265447	-4.459340	3.443962
H	3.871132	-2.993757	2.512514
C	-3.047579	-0.363396	2.369003
H	-3.433705	0.189802	3.233652
H	-3.669244	-0.103708	1.505891
H	-2.027278	-0.011260	2.183949
C	-4.534617	-2.320452	2.861027
H	-4.615761	-3.388171	3.090190
H	-5.124879	-2.119638	1.960993

34_Int7a.log

SCF (wB97x) = -3807.16079222
E(SCF)+ZPE(0 K) = -3805.584590
H(298 K) = -3805.489473
$G(298 \text{ K}) = -3805.714945$

Lowest Frequency = 10.9045 cm$^{-1}$

W -2.548716 -1.643002 -1.143121
Al 0.166326 3.117680 -0.717862
Al 0.250274 -2.372623 0.999552
O -0.724780 -1.197602 0.032143
O -0.706753 1.961047 -1.683261
O 1.378100 -1.322684 1.752440
O 0.934345 2.063353 -0.469795
C 4.372459 -0.994748 -1.206930
N 1.359429 4.259541 -1.634547
N -0.799763 -3.338750 2.234002
C -3.307629 -3.323634 -0.590336
N -1.074678 4.446455 -0.175161
N 0.811536 -3.805407 -0.088724
C -2.822234 -2.219133 -2.967007
O -5.457771 -0.555621 -1.189672
O -3.804168 -4.324664 -0.229970
C -1.248887 0.863438 -1.029793
O -2.915087 -2.578384 -4.078428
C 2.545216 1.963167 2.940358
H 3.026532 2.381622 2.062881
C -1.096745 -2.769694 3.533465
C -0.323124 0.144209 -0.066975
C 0.900466 3.346414 -4.407098
H 0.194383 3.848457 -3.735933
C 1.839620 0.763050 2.826969
C -2.366576 3.956006 0.257994
C 2.028183 -3.702429 -0.868729
C 2.075407 6.394651 -2.640306

H 3.104180 6.035473 -2.666088
H 2.064130 7.447341 -2.353230
H 1.675485 6.316598 -3.657588
C -2.258407 -2.004726 3.729140
C 3.096313 -0.041561 0.770887
C -3.333062 3.653367 -0.726614
C 2.240955 3.225850 -3.691664
C 0.695274 0.729669 0.593882
C -4.545436 3.105825 -0.304667
H -5.301270 2.847982 -1.041630
C 3.324856 2.671552 -0.437857
H 3.185999 2.329614 -5.401852
C 0.133475 -4.964736 -0.104997
C 2.449863 3.655859 -2.370426
C -1.896242 6.724822 0.23925
H 2.922460 6.415383 0.026516
H -1.734961 7.731774 -0.152766
H -1.783832 6.748258 1.323796
C 1.194721 5.586249 -1.718565
C 5.462314 -0.562043 0.893940
C 6.338418 0.796435 1.493897
C 4.240220 -0.340857 1.517899
H 4.165846 -0.408400 2.600412
C -2.615592 3.742842 1.623377
H -0.129883 -3.062706 -2.253480
C -0.895203 -5.270411 0.788384
H -1.416654 -6.203795 0.619562
C 0.498263 -6.015156 -1.120278
C 0.308023 5.638011 -2.129554
H -0.089453 -6.920415 0.968213
H 1.561982 -6.262064 -1.064822
	x	y	z		x	y	z
H	-2.193692	1.127916	-0.513886	C	-1.513102	-3.577665	2.952474
H	-1.504480	0.134499	-1.849092	C	-0.332149	-0.191589	-0.210671
				C	1.028093	2.951755	-4.527650
35_TS3b.log				H	0.298382	3.584036	-4.012988
				C	0.878163	0.402042	3.018410
SCF (wB97x) =	-3920.3843637			C	-1.020549	4.410296	1.797833
E(SCF)+ZPE(0 K)=	-3918.811062			C	2.592873	-3.680683	-0.669704
H(298 K)=	-3918.713210			C	1.507306	5.899825	-3.148711
G(298 K)=	-3918.942783			H	2.480612	5.467866	-3.380736
Lowest Frequency =	-137.5456cm^-1			H	1.638849	6.932493	-2.816428
				H	0.910156	5.922602	-4.066168
W	-2.538352	-0.672833	-2.430873	C	-2.870914	-3.214679	2.929145
Al	0.115820	2.893129	-0.482948	C	2.893399	-0.174861	1.514963
Al	0.223798	-2.701599	0.779600	C	-2.202011	3.827921	2.278888
O	-0.670572	-1.519577	-0.161988	C	2.232061	2.753349	-3.612766
O	-0.974797	1.797080	-1.362966	C	0.608742	0.402442	0.592696
O	1.127812	-1.675054	1.842581	C	-2.516175	3.987694	3.630660
O	0.933524	1.701367	0.508905	H	-3.425774	3.535847	4.018816
C	-4.257209	-1.773584	-2.364297	C	3.338556	2.049871	-4.096778
N	1.155362	3.910591	-1.713582	H	3.296134	1.620699	-5.095102
N	-0.845889	-3.966032	1.727513	C	0.830307	-5.236797	-0.392663
C	-3.738368	0.742255	-1.676739	C	2.311543	3.277310	-2.309350
N	-0.687147	4.352811	0.389699	C	-2.039369	6.405796	0.174376
N	1.253480	-3.981749	-0.204377	H	-2.987435	5.869202	0.285092
C	-2.004299	-3.479172	-1.866395	H	-2.180161	7.233042	-0.522258
O	-5.200891	-2.439949	-2.323836	H	-1.784770	6.805826	1.158352
O	-4.423112	1.623095	-1.349067	C	0.764139	5.123951	-2.090570
O	-3.068429	0.980604	-5.013444	C	5.155193	-0.292444	2.380683
O	-2.120307	-4.523495	-2.303600	H	5.829309	-0.320179	3.233270
C	1.432013	1.597112	3.482943	C	3.781402	-0.215189	2.592263
H	2.275797	2.033481	2.954541	H	3.394141	-0.200829	3.607531
C -0.160528 5.132946 2.650999
H 0.805355 -2.198288 -2.028841
C -0.298618 -5.779729 0.235642
H -0.554346 -6.795878 -0.037524
C 1.628132 -6.197924 -1.242073
H 2.155835 -5.702975 -2.057028
H 0.967667 -6.966616 -1.648203
H 2.377983 -6.695244 -0.617508
C 3.533548 -4.775268 1.465637
H 2.475061 -5.011497 1.624108
C 0.772968 -3.575519 4.153654
C 1.377361 -0.296949 1.739731
C 3.413449 -0.226140 0.221072
H 2.740738 -0.201268 0.634544
C 0.316343 1.636009 -4.843370
H 0.977242 0.951089 -5.387322
H -0.565558 1.818941 -5.465359
H -0.022132 1.136852 -3.932162
C 3.478142 3.158146 -1.525943
C 0.922731 2.212040 4.616632
C 1.370948 3.147238 4.967565
C 2.774635 -3.017985 -1.898008
C -0.986878 5.453054 -0.335123
C 3.687168 -4.111754 0.102387
C -0.732613 0.493316 4.828757
H -1.582127 0.046819 5.340465
C 4.785310 -0.317795 0.006332
C 5.161369 -0.366539 -1.011959
C 4.080473 -2.853939 -2.364098
C 4.247099 -2.361234 -3.317200
C -3.693800 -3.155034 1.650118

H -3.118836 -3.620636 0.841837
C 1.141022 5.766660 2.169192
C 1.328406 5.425593 1.145694
C 4.553916 2.451933 -2.061055
H 5.459474 2.332674 -1.474535
C 4.640531 3.258404 0.761271
H 4.465680 2.192577 0.925131
H 4.593088 3.766350 1.730313
H 5.660242 3.389580 0.380973
C 0.705542 -3.944554 4.192531
C 1.142788 -3.654791 3.233791
C -1.007392 -5.227096 1.306624
C -2.895722 0.368421 -4.00832
C -3.143586 3.039205 1.386903
H -2.804229 3.132643 0.349192
C 1.433932 3.655379 -5.831200
C 1.989728 4.581566 -5.653216
H 0.543046 3.895258 -6.420878
H 2.066232 3.005923 -6.446368
C -0.354951 5.774776 -1.531312
C -0.659921 6.695884 -2.013876
C -0.535322 5.292837 3.984230
C 0.102745 5.867173 4.652525
C -0.216123 -0.133115 3.697342
C -0.666498 -1.053814 3.344315
C -3.479587 -2.854142 4.134033
C -4.526660 -2.561499 4.132054
C 5.171786 -3.298008 -1.629867
C 6.179568 -3.158590 -2.013230
C 3.900206 5.355185 -0.403532
C 4.833752 5.472932 -0.965529

S190
Atoms	X	Y	Z	Atoms	X	Y	Z
C	-0.95792	5.860030	-0.961796	C	1.597698	-2.509802	1.789429
C	1.710537	3.695545	1.441781	H	5.398537	-5.916182	1.549998
C	4.481510	1.887071	-3.329212	C	1.740975	7.302897	2.133015
C	-0.432696	4.639770	1.232190	H	0.267402	7.645770	1.455220
C	5.662867	-0.349524	1.085682	H	2.001955	7.725766	1.789429
H	6.734968	-0.418717	0.919323	H	0.842842	7.704315	3.128920
C	-0.161560	1.671609	5.295304	C	1.597698	-2.509802	-2.720700
H	-0.560193	2.165290	6.178052	C	1.005824	-3.596034	-3.629212
C	4.481510	1.887071	-3.329212	H	1.764025	-3.973236	-4.326669
H	5.327374	1.330183	-3.724474	H	1.597698	7.302897	2.133015
C	3.105792	5.860030	-0.961796	C	-3.103760	1.554447	1.755788
C	0.902468	-5.456235	4.365463	H	-2.095475	1.136217	1.654428
H	0.433402	-5.807992	5.292068	H	-3.778414	0.992563	1.105780
H	1.970741	-5.698708	4.415890	H	-3.415792	1.397682	2.795767
H	0.474950	-6.023052	3.531274	C	2.331429	5.322775	3.026866
C	1.478178	-3.171399	5.264924	C	3.961321	-3.805123	2.573103
H	1.291220	-2.095685	5.183773	H	4.997699	-3.478965	2.427024
H	2.552177	-3.339921	5.139960	H	3.895522	-4.292808	3.553320
H	1.216239	-3.496076	6.278591	H	3.328511	-2.912359	2.578816
C	-1.980980	-6.138053	2.013258	C	-3.925552	-1.694298	1.260921
H	-1.836458	-6.107888	3.096033	H	-4.426815	-1.153248	2.072102
H	-1.865183	-7.164720	1.664754	H	-4.553887	-1.624633	0.367122
H	-3.008587	-5.818606	1.817401	H	-2.975275	-1.197583	1.045277
C	-1.433047	-3.223995	5.331214	C	-5.032733	-3.894405	1.765621
H	-0.884473	-3.215534	6.268116	H	-4.914816	-4.923760	2.121435
C	-1.704191	4.727040	4.475620	H	-5.524648	-3.924282	0.788000
H	-1.977681	4.858957	5.519391	H	-5.712878	-3.384701	2.456723
C	3.599440	3.865335	-0.179653	C	-2.775230	-2.866284	5.327288
H	2.633895	3.787892	0.334913	H	-3.268860	-2.592415	6.256284
C	4.972924	-3.900992	-0.398267	C	4.317168	-6.089631	1.572709
H	5.831249	-4.220790	0.187646	H	4.077209	-6.782848	0.759476
C	-4.582542	3.565445	1.441781	H	4.086447	-6.587249	2.520873
H	-5.033629	3.399206	2.426668	H	5.398537	-5.916182	1.549998
H	-5.190975	3.042606	0.698234	C	1.053446	7.298098	2.133015
H	-4.633696	4.639770	1.232190	H	0.267402	7.645770	1.455220
C	5.662867	-0.349524	1.085682	H	2.001955	7.725766	1.789429
H	6.734968	-0.418717	0.919323	H	0.842842	7.704315	3.128920
C	-0.161560	1.671609	5.295304	C	1.597698	-2.509802	-2.720700
H	-0.560193	2.165290	6.178052	C	1.005824	-3.596034	-3.629212
C	4.481510	1.887071	-3.329212	H	1.764025	-3.973236	-4.326669
	X	Y	Z		X	Y	Z
----	---------	---------	---------	----	---------	---------	---------
H	0.178953	-3.176503	-4.212943	C	-3.745299	0.131206	-1.895460
H	0.610712	-4.444773	-3.063986	N	-0.704340	4.536190	0.328666
C	1.954782	-1.288595	-3.568126	N	1.162963	-3.858103	-0.310115
H	2.220635	5.643040	4.068785	O	-4.124905	-3.387566	-1.388177
H	3.260893	5.763475	2.649729	O	-4.692757	0.795852	-1.810503
H	2.440073	4.233966	3.017186	O	-2.715932	-0.588082	-5.115835
H	2.632639	-1.544372	-4.392013	C	1.372702	1.698498	3.527901
H	2.425273	-0.493949	-2.976913	H	2.228870	2.125500	3.012606
H	1.039913	-0.887198	-4.007557	C	-1.496395	-3.434804	2.948518
H	-2.637519	-1.873839	-3.744986	C	-0.260164	-0.009064	-0.257047
C	-1.132948	0.507625	-1.210074	C	0.983279	3.068695	-4.523600
H	-0.891795	-0.698690	-3.083505	H	0.307468	3.767651	-4.023229
H	0.807131	0.516503	3.045816				
				36_int3b.log			
C	-1.090351	4.574986	1.720014				
C	2.501590	-3.598727	-0.807244				
SCF (wB97x) =	-3807.12471457	C	1.619866	5.991945	-3.161804		
E(SCF)+ZPE(0 K)=	-3805.554668	H	2.572486	5.510269	-3.382755		
H(298 K)=	-3805.459840	H	1.802447	7.017044	-2.829788		
G(298 K)=	-3805.683054	H	1.035151	6.045293	-4.086080		
Lowest Frequency = 15.2223 cm^-1		C	-2.841797	-3.034903	3.030396		
				2.838839	-0.109252	1.587693	
W	-2.133753	-1.015678	-2.063008	C	-2.303192	4.006949	2.135440
Al	0.053937	3.023729	-0.513619	C	2.167676	2.794946	-3.599703
Al	0.180028	-2.568940	0.702993	C	0.605775	0.557593	0.605266
O	-0.628697	-1.362738	-0.348585	C	-2.656589	4.113711	3.482213
O	-1.051791	2.008075	-1.420428	H	-3.588758	3.669448	3.823106
O	0.994300	-1.534871	1.813445	C	3.229524	2.016746	-4.068828
O	0.900098	1.884060	0.529114	H	3.165715	1.577136	-5.061849
C	-3.404344	-2.515488	-1.635457	C	0.660965	-5.078839	-0.530681
N	1.158433	4.031724	-1.718162	C	2.277521	3.335512	-2.304645
N	-0.917842	-3.792400	1.665880	C	-1.966912	6.642211	0.105162
Element	X	Y	Z				
---------	-----------	-----------	-----------				
H	-2.939732	6.145111	0.183671				
H	-2.054146	7.484423	-0.582439				
H	-1.723816	7.017431	1.101614				
C	0.827622	5.256618	-2.108169				
C	5.074875	-0.288318	2.509588				
H	5.727418	-0.319329	3.378690				
C	3.699505	-0.159481	2.686749				
H	3.291088	-0.106626	3.692192				
C	0.242063	5.242962	2.626494				
C	5.074875	-0.288318	2.509588				
H	5.727418	-0.319329	3.378690				
C	3.699505	-0.159481	2.686749				
H	3.291088	-0.106626	3.692192				
C	0.242063	5.242962	2.626494				
H	0.615571	-2.489028	-2.282614				
C	-0.492488	-5.573635	0.094183				
H	-0.805227	-6.565681	-0.206845				
C	1.396049	-6.065781	-1.405347				
H	1.988668	-5.586976	-2.183364				
H	0.684695	-6.758057	-1.859950				
H	2.081167	-6.651796	-0.782770				
C	3.465145	-4.711017	1.309290				
H	2.401217	-4.882497	1.508699				
C	-0.687638	-3.505046	4.102113				
C	1.311968	-0.163092	1.763413				
C	3.388923	-0.207416	0.308441				
H	2.737647	-0.165567	-0.561919				
C	0.156981	1.816085	-4.822605				
H	0.763142	1.044743	-5.310369				
H	-0.674431	2.061274	-5.491801				
H	-0.267625	1.404534	-3.904250				
C	3.433052	3.159434	-1.515278				
C	0.857703	2.321944	4.659251				
H	1.314672	3.239386	5.021911				
C	2.679854	-2.970179	-2.053776				
C	-0.941028	5.652161	-0.389412				
C -0.303460 -0.008294 3.706250 H -5.134237 3.602838 2.180634							
H -0.761700 -0.919363 3.339015 H -5.260492 3.317919 0.440596							
C -3.369025 -2.720524 4.285165 H -4.705595 4.890379 1.046735							
H -4.406475 -2.403804 4.358134 C 5.611077 -0.392814 1.229288							
C 5.078316 -3.243940 -1.801761 H 6.683915 -0.501919 1.091202							
H 6.083709 -3.113628 -2.194274 C -0.243219 1.783495 5.319204							
C 3.931298 5.354068 -0.404105 H -0.646803 2.276177 6.200370							
H 4.871517 5.442636 -0.960721 H 4.058076 5.870592 0.554038							
C 3.155968 5.883409 -0.965490 C 0.955719 -5.418624 4.192716							
H 0.544678 -5.769327 5.146748 H -3.820002 1.252258 0.710368							
H 2.018261 -5.688744 4.163988 H -3.556745 1.549820 2.443681							
H 0.453099 -5.964572 3.386109 C 2.253030 5.347988 3.040810							
C 1.624643 -3.147029 5.079968 C 4.005215 -3.793816 2.411591							
H 1.444473 -2.069028 5.012424 H 5.051387 -3.527392 2.222782							
H 2.687984 -3.326494 4.898229 H 3.957816 -4.297922 3.383860							
H 1.413376 -3.472785 6.104727 H 3.432060 -2.863120 2.468193							
C -2.126836 -5.929070 1.916739 C -3.921480 -1.399623 1.497380							
H -1.926432 -5.954859 2.990980 H -4.381228 -0.881584 2.347245							
H -2.075473 -6.942473 1.517993 H -4.568737 -1.259716 0.624953							
H -3.146515 -5.555663 1.787074 H -2.961903 -0.917347 1.286830							
C -1.267814 -3.198593 5.333633 C -5.094671 -3.572529 1.966165							
H -0.663876 -3.249492 6.233888 H -5.001721 -4.612756 2.296871							
C -1.849198 4.789586 4.384254 H -5.619728 -3.565794 1.005924							
H -2.148957 4.877288 5.425481 H -5.727060 -3.051745 2.693760							
C 3.582521 3.875581 -0.175663 C -2.597108 -2.810979 5.431758							
H 2.615987 3.828581 0.339560 H -3.026019 -2.573638 6.401966							
C 4.884384 -3.840784 -0.565581 C 4.166216 -6.074940 1.353881							
H 5.745319 -4.167781 0.012636 H 3.836293 -6.735083 0.544827							
C -4.606020 3.808288 1.213976 H 3.956758 -6.574770 2.305923							
---	---	---	---	---	---	---	---
H	5.253472	-5.969610	1.270832	Al	0.286360	-2.449422	0.716561
C	1.031429	7.405210	2.267755	O	-0.431380	-1.348223	-0.490909
H	0.258360	7.817160	1.611600	O	-1.283481	1.945107	-1.545486
H	1.992267	7.831186	1.958146	O	1.207002	-1.354604	1.654772
H	0.824703	7.749878	3.287455	O	0.725918	2.039894	0.375921
C	1.510276	-2.513970	-2.910296	C	-4.040367	-0.990549	-1.477786
C	1.222951	-3.486861	-4.060954	N	0.837402	4.252428	-1.693216
H	2.086389	-3.568053	-4.732454	N	-0.902339	-3.355417	1.876916
H	0.365406	-3.129135	-4.640550	C	-2.966741	-0.856717	-3.695573
H	0.976035	-4.490132	-3.701634	N	-1.338080	4.453014	0.106785
C	1.716317	-1.105925	-3.468794	N	0.990680	-3.958218	-0.183459
H	2.137108	5.601328	4.100837	O	-5.160434	-0.859605	-1.198725
H	3.195079	5.793050	2.700554	O	-3.421838	-0.601817	-4.732131
H	2.338018	4.260769	2.958485	O	-1.770618	-4.159729	-3.252818
H	2.562696	-1.057151	-4.163981	C	2.766267	1.223911	3.316712
H	1.893010	-0.366207	-2.678833	H	3.680831	1.295851	2.735469
H	0.822911	-0.802804	-4.021350	C	-1.285209	-2.776981	3.150696
H	-1.654642	-2.548623	-2.871901	C	-0.240487	0.039570	-0.396147
C	-1.042843	0.650841	-1.33481	C	0.964978	3.192156	-4.437500
H	-0.594555	0.181967	-2.350142	H	0.128818	3.718263	-3.965564
C				C	1.624746	0.660863	2.751227

37_Int4b.log

SCF (wB97x) = -3807.12427409

E(SCF)+ZPE(0 K)= -3805.553869

H(298 K)= -3805.458925

G(298 K)= -3805.682933

Lowest Frequency = 10.5486 cm⁻¹

W -2.148387 -1.266250 -1.935629

Al -0.269313 3.072330 -0.671370
C 0.620645 0.678530 0.418480 H 1.364676 1.132156 -5.013242
C -4.011341 3.156971 2.353776 H -0.351468 1.588888 -5.104846
H -5.012075 2.734501 2.294247 H 0.406228 1.301766 -3.531771
C 3.452106 3.012702 -4.049903 C 3.249062 3.907472 -1.397553
H 3.540212 2.651752 -5.071602 C 2.758793 1.670377 4.639405
C 0.203867 -5.033908 -0.347479 H 3.665371 2.090781 5.067978
C 2.108760 3.809404 -2.222679 C 2.622883 -3.421068 -1.977861
C -2.390992 6.666500 0.231481 C -1.428991 5.687071 -0.388157
H -3.408608 6.269681 0.228421 C 3.359204 -4.559075 0.061537
H -2.376223 7.615551 -0.305153 C 0.448084 1.037569 4.838677
H -2.121837 6.848104 1.276592 H -0.465516 0.951093 5.422253
C 0.477635 5.509241 -1.992286 C 4.606275 0.249685 -1.037687
C 5.174757 -1.210698 0.783878 H 4.853660 0.733338 -1.978532
H 5.875534 -1.883078 1.273521 C 3.943648 -3.439316 -2.431479
C 3.930899 -0.978753 1.351504 H 4.173691 -3.006040 -3.402067
H 3.650794 -1.467661 2.281661 C -3.390699 -1.743780 2.095763
C -1.470167 4.318204 2.545144 H -3.039134 -2.295762 1.217417
H 0.590521 -2.954888 -2.371262 C -0.165922 5.095858 2.686613
C -0.961952 -5.256990 0.397054 H 0.104014 5.490039 1.700379
H -1.515246 -6.155813 0.153942 C 4.485728 3.586983 -1.956796
C 0.545984 -6.066839 -1.391152 H 5.382104 3.658583 -1.348218
H 1.621027 -6.165152 -1.546172 C 4.279705 3.796230 0.933236
H 0.093797 -5.745651 -2.337610 H 4.424199 2.722724 0.776381
H 0.124111 -7.038675 -1.129725 H 4.035510 3.955108 1.989199
C 3.087986 -5.208942 1.411902 H 5.230265 4.306754 0.736389
H 2.100169 -4.883390 1.752229 C 0.945477 -3.592717 4.123751
C -0.410453 -2.915101 4.246937 H 1.255305 -3.522385 3.078020
C 1.605374 -0.026842 1.374713 C -1.407589 -4.539470 1.521388
C 3.358444 0.492114 -0.457192 C -1.894095 -3.105774 -2.791255
H 2.664651 1.168877 -0.948230 C -4.161983 3.600316 -0.130699
C 0.572086 1.715306 -4.529178 H -3.535914 4.081689 -0.889340

S196
H -4.987120 -3.164449 2.611971 SCF (wB97x) = -3807.11986928
H -5.428816 -1.944301 1.401514 E(SCF)+ZPE(0 K)= -3805.550274
H -5.314780 -1.500877 3.107843 H(298 K)= -3805.456023
C -2.031438 -1.768052 5.639243 G(298 K)= -3805.676912
H -2.329839 -1.389818 6.613754 Lowest Frequency = -32.7788cm-1
C 3.049689 -6.738563 1.294271
H 2.274555 -7.073235 0.597424 W -2.016952 -1.208970 -1.965722
H 2.842996 -7.192969 2.269786 Al -0.084294 3.057458 -0.579580
H 4.011016 -7.125529 0.936831 Al 0.414386 -2.489228 0.750941
C -0.342731 6.297643 3.624790 O -0.345111 -1.371255 -0.420749
H -1.173174 6.943531 3.318511 O -1.098441 1.955485 -1.481624
H 0.570659 6.902076 3.638768 O 1.357156 -1.407681 1.686401
H -0.539220 5.973376 4.652596 O 0.890057 1.996027 0.449332
C 1.546786 -2.863282 -2.891943 C -3.603996 -0.367145 -2.786040
C 1.450997 -3.668453 -4.194347 N 1.025913 4.240694 -1.585614
H 2.355901 -3.546733 -4.800695 N -0.728010 -3.422400 1.946830
H 0.599030 -3.325276 -4.790911 C -1.817984 -1.830343 -3.842930
H 1.320383 -4.738299 -4.003430 N -1.137449 4.425224 0.232171
C 1.761796 -1.379727 -3.197246 N 1.127492 -3.996628 -0.141889
H 0.803956 3.821678 4.160630 O -4.546420 0.144683 -3.223999
H 1.920355 4.798159 3.196172 O -1.707059 -2.143001 -4.957194
H 1.139463 3.363088 2.489458 O -2.811514 -4.283516 -1.611184
H 2.728825 -1.205241 -3.684224 C 2.893876 1.111649 3.419521
H 1.735002 -0.774606 -2.285234 H 3.827362 1.161488 2.867087
H 0.977474 -1.022690 -3.873190 C -1.125489 -2.814120 3.202036
H -2.871749 -2.606295 -1.087022 C -0.126568 0.015047 -0.319561
C -1.188091 0.582478 -1.410094 C 1.124932 3.167924 -4.326736
H -0.757911 0.122648 -2.428054 H 0.286350 3.672622 -3.835946
C 1.749991 0.600173 2.810417
38_TS4b.log C -1.866042 4.074151 1.429672
C 2.464126 -3.990639 -0.703526
Atom	X-coordinate	Y-coordinate	Z-coordinate
C	1.497118	6.321670	-2.825705
H	2.551472	6.318104	-2.537382
H	1.139072	7.351150	-2.855835
H	1.440529	5.901626	-3.833846
C	-2.364774	-2.162590	3.309695
C	3.135026	-0.154303	0.774951
C	-3.157823	3.526268	1.333592
H	1.139972	7.351150	-2.537382
H	1.139072	7.351150	-2.855835
H	1.440529	5.901626	-3.833846
C	-2.364774	-2.162590	3.309695
C	3.135026	-0.154303	0.774951
C	-3.157823	3.526268	1.333592
H	1.139972	7.351150	-2.537382
H	1.139072	7.351150	-2.855835
H	1.440529	5.901626	-3.833846
Atom	x	y	z
------	------------	------------	------------
H	5.323818	-5.032105	2.241265
H	4.068571	-5.029152	3.476771
H	4.370350	-3.564426	2.520088
C	-3.288860	-0.457585	1.749294
H	-3.624801	0.159770	2.590867
H	-3.954718	-0.280559	0.901972
H	-2.288831	-0.110693	1.461819
C	-4.770497	-3.451527	2.732580
H	-5.314526	-2.336106	1.466827
H	-5.219454	-1.794088	3.145386
C	-1.901935	-1.745809	5.653863
H	-2.210328	-1.342239	6.615059
C	3.254309	-6.660967	1.402270
H	2.454555	-7.033193	0.754612
H	3.092581	-7.076160	2.403443
H	4.204890	-7.053111	1.022288
C	-0.109132	6.241748	3.759288
H	-0.951256	6.882317	3.474528
H	0.797574	6.856223	3.768509
H	-0.286929	5.900922	4.785138
C	1.603397	-2.958511	-2.894662
C	1.504905	-3.770998	-4.193324
H	2.392652	-3.626260	-4.819759
H	0.631275	-3.452072	-4.715952
H	1.413795	-4.844591	-3.997625
C	1.804039	-1.474889	-3.213815
H	1.076002	3.778019	4.246832
H	2.165094	4.772655	3.269439
H	1.383362	3.335213	2.566653
H	2.772643	-1.299004	-3.697148

SCF (wB97x) = -3807.12739478
E(SCF)+ZPE(0 K)= -3805.556455
H(298 K)= -3805.462006
G(298 K)= -3805.682981
Lowest Frequency = 15.3537cm⁻¹
H 3.251769 2.202437 2.129293 H 4.219886 -0.608734 2.459945
C -1.168246 -2.755543 3.092506 C -2.448527 4.153535 2.587600
C -0.119706 0.089285 -0.283665 H 0.516193 -3.402963 -2.565243
C 0.094298 2.906509 -3.951142 C -0.844671 -5.180686 0.312197
H -0.545588 2.763149 -3.074904 H -1.397848 -6.075146 0.054128
C 1.929783 0.645781 2.794848 C 0.822614 -6.115926 -1.265497
C -2.530455 4.156329 1.185120 H 1.887952 -6.325686 -1.145138
C 2.461907 -3.876056 -0.825326 H 0.661799 -5.827831 -2.309078
C 1.531163 6.270227 -2.554971 H 0.250639 -7.023084 -1.068026
H 2.592778 6.167327 -2.324159 C 3.446630 -4.448731 1.475809
H 1.269747 7.329119 -2.553761 H 2.663221 -3.793818 1.875494
H 1.392194 5.872521 -3.562795 C -0.519951 -3.297111 4.220964
C -2.100563 -1.711281 3.230656 C 1.786746 -0.029417 1.420921
C 3.138676 -0.076055 0.677534 C 3.240594 0.104598 -0.699999
C -3.731745 3.841658 0.517883 H 2.373360 0.424860 -1.271628
C 1.537926 3.020289 -3.459022 C -0.121032 1.686154 -4.855640
C 0.725316 0.699148 0.570043 H 0.304661 1.834763 -5.855275
C -4.842005 3.504392 1.293769 H -1.194198 1.507697 -4.982162
H -5.778463 3.260499 0.798246 H 0.322383 0.780939 -4.427940
C 2.586918 2.561601 -4.261496 C 3.186603 3.555086 -1.701995
H 2.367780 2.145445 -5.240502 C 2.922906 2.310388 4.248695
C 0.377295 -4.999182 -0.355686 H 3.573674 3.172598 4.375453
C 1.866976 3.568606 -2.204091 C 2.612385 -3.569707 -2.189525
C -2.082511 6.841702 0.733539 C -1.204208 5.803681 0.080590
H -3.140060 6.581183 0.656439 C 3.585682 -4.137721 -0.010812
H -1.918676 7.823197 0.287674 C 1.451537 0.649100 5.170269
H -1.847894 6.898964 1.801886 H 0.936776 0.199925 6.016656
C 0.676005 5.515405 -1.562481 C 4.449746 -0.112451 -1.362678
C 5.495173 -0.652351 0.731719 H 4.496924 0.028942 -2.439534
H 6.375507 -0.940836 1.301898 C 3.900786 -3.562042 -2.730397
C 4.284997 -0.459761 1.384924 H 4.029574 -3.326535 -3.784059
C -2.764420 -1.028957 2.047747 H 4.314886 5.936921 -0.702272
H -2.291425 -1.398233 1.133933 H 3.973186 5.647057 1.006234
C -1.174471 4.516107 3.347373 H 2.643444 5.977346 -0.094242
H -0.463681 4.937796 2.615004 C 0.261376 -5.618570 4.896149
C 4.192777 3.09706 -2.554631 H 0.169673 -5.426299 5.970879
H 5.221209 3.08142 -2.208621 H 1.058068 -6.358138 4.759306
C 4.815892 3.312848 0.243189 H -0.677182 -6.070681 4.558883
H 4.845702 2.233517 0.070195 C 1.911354 -3.731265 4.616547
H 4.917043 3.488789 1.319639 H 2.187320 -2.849465 4.027234
H 5.694733 3.764495 -0.232542 H 2.718089 -4.469314 4.546117
C 0.589753 -4.335401 4.123779 H 1.836102 -3.424040 5.665574
H 0.721544 -4.608676 3.071334 C -2.531779 -5.001659 2.128845
C -1.357589 -4.428238 1.381188 H -2.202350 -5.424324 3.083507
C -3.113034 -2.636929 -1.081530 H -3.009953 -5.787512 1.543443
C -3.887343 3.898151 -0.997521 H -3.264258 -4.223579 2.354039
H -2.896447 4.023497 -1.441984 C -0.864458 -2.815318 5.484355
C -0.398268 4.167686 -4.675436 H -0.372664 -3.228346 6.362206
H -0.509703 5.018991 -3.997867 C -4.775390 3.478650 2.679813
H -1.380926 3.980247 -5.121085 H -5.652897 3.211652 3.263087
H 0.287344 4.452003 -5.483340 C 3.514981 3.953011 -0.258359
C -0.250355 6.271039 -0.831369 H 2.696370 3.556475 0.356442
H -0.245408 7.338440 -1.011620 C 4.847419 -4.124796 -0.603647
C -3.586592 3.802147 3.316481 H 5.725141 -4.324559 0.002046
H -3.537437 3.786536 4.402709 C -4.751920 5.094805 -1.418639
C 1.275942 0.102686 3.900596 H -5.755627 5.027947 -0.983166
H 0.643274 -0.768801 3.768501 H -4.861727 5.116696 -2.508128
C -2.409877 -1.262856 4.517066 H -4.316172 6.050850 -1.108771
H -3.132077 -0.458464 4.632436 C 5.580747 -0.487775 -0.650889
C 5.009594 -3.845459 -1.953644 H 6.524151 -0.653413 -1.165060
H 6.003674 -3.838084 -2.393093 C 2.287311 1.745510 5.352514
C 3.605413 5.467232 -0.009610 H 2.439871 2.162008 6.345263
C 3.902779 2.631210 -3.829949 H 2.271852 -3.850774 -5.037269
H 4.706185 2.286846 -4.476553 H 0.509257 -3.941603 -4.930457
C -4.464209 2.595375 -1.557986 C 1.516744 -5.169034 -4.140774
H -3.859096 1.741511 -1.243643 H -1.229752 2.747727 4.606135
H -5.499765 2.437211 -1.234141 H 0.356519 3.532999 4.523135
C -0.529896 3.267018 3.940323 C -4.465459 2.622712 -2.652884
H -3.859096 1.741511 -1.243643 H -1.229752 2.747727 4.606135
H -4.464209 2.595375 -1.557986 C 1.487496 -1.746837 -3.499952
H -4.465459 2.622712 -2.652884 H -1.229752 2.747727 4.606135
C 4.720752 -4.146324 2.269475 H 5.518213 -4.864798 2.047075
H 4.516795 -4.214293 3.341811 H 5.091134 -3.139320 2.056747
H 5.499765 -2.559654 0.490223 H -3.859096 1.741511 -1.243643
C 5.518213 -4.864798 2.047075 H 1.394723 -1.107131 -2.617396
H 4.516795 -4.214293 3.341811 H 0.666003 -1.512888 -4.187199
H 5.091134 -3.139320 2.056747 H -3.540065 -0.606232 -1.116010
C -2.559654 0.490223 2.092434 C -1.154152 0.676883 -1.174898
H -3.162898 0.955952 2.879930 H -0.760420 0.370636 -2.270624
H -2.860183 0.936630 1.137946 H -1.511032 0.745760 2.275414
C -4.259232 -1.357991 1.960196
H -4.441315 -2.432119 1.853877 SCF (wB97x) = -3807.11624730
H -4.698882 -0.858471 1.089543 E(SCF)+ZPE(0 K) = -3805.546171
H -4.788084 -1.008223 2.854648 H(298 K) = -3805.451992
C -1.810666 -1.812234 5.639463 G(298 K) = -3805.673573
H -2.068849 -1.451148 6.631613 Lowest Frequency = -760.0027 cm^-1
C 3.024142 -5.905917 1.712589
H 2.040058 -6.130176 1.290198 W -1.963720 -1.149892 -1.907339
H 2.977464 -6.120993 2.786797 Al -0.262266 3.113590 -0.268200
H 3.752504 -6.592731 1.265434 Al 0.517728 -2.406342 0.731752
C -1.421160 5.576199 4.415799 O -0.083027 -1.297450 -0.524369
H -1.934260 6.459505 4.019138 O -1.316561 1.975516 -1.099200
H -0.468863 5.899891 4.848339 O 1.472530 -1.362448 1.706725
H -2.032368 5.180484 5.234210 O 0.760365 2.056247 0.713261
C 1.450349 -3.230127 -3.110256 C -3.401515 -0.442420 -3.035503
C 1.437128 -4.101988 -4.373527 N 0.827221 4.181661 -1.397232

40_TS5b.log
Atom	X (Å)	Y (Å)	Z (Å)
C	-1.228983	5.779164	0.080405
C	3.644893	-4.158413	0.082027
C	1.501383	0.682109	5.204688
H	0.988099	0.238241	6.054530
C	4.531644	-1.003900	-1.299163
H	4.592265	0.049754	-2.374140
C	4.014841	-3.575978	-2.627355
H	4.163874	-3.340021	-3.678254
C	-2.657737	-0.949136	2.152365
H	-2.229713	-1.330591	1.221247
C	-1.092705	4.610663	3.355790
H	-0.412200	5.023104	2.602127
C	4.212083	3.111936	-2.506502
H	5.237985	3.103639	-2.153203
C	4.826214	3.361776	0.286470
H	4.876476	2.281498	0.122296
C	4.923835	3.548807	1.361288
H	5.696361	3.825952	-0.192876
C	0.581267	-4.436569	4.107373
H	0.758475	-4.620425	3.042741
C	-1.353753	-4.377259	1.357788
C	-3.181748	-2.427494	-1.021596
C	-3.907376	3.771103	-0.874551
H	-2.927626	3.844580	-1.353386
C	-0.357472	4.133075	-4.693168
H	-0.486655	4.993655	-4.030677
H	-1.330146	3.932698	-5.154413
H	0.341546	4.409539	-5.492120
C	-0.292027	6.246221	-0.848843
H	-0.308772	7.310091	-1.048066
C	-3.476022	3.811558	3.430136

S206
41_Int6c.log

SCF (wB97x) = -3920.44183652
E(SCF)+ZPE(0 K)= -3918.858996
H(298 K)= -3918.762952
G(298 K)= -3918.986663

Lowest Frequency = 12.9693 cm^{-1}
Al 0.249653 2.531917 -0.790796 C 2.409834 -0.082033 2.271724
Al 0.380580 -3.020532 0.673997 C -1.607784 4.358267 1.950693
O -0.527070 -1.913454 -0.356449 C 1.415757 1.845690 -4.404257
O -1.053534 1.517892 -1.462127 C 0.552219 0.076425 0.512442
O 1.050613 -1.936273 1.844605 C -1.787434 4.789393 3.265271
O 0.925869 1.397590 0.349819 H -2.782658 4.773315 3.699660
C -5.015017 0.214443 -1.310372 C 2.282514 1.279043 -5.340995
N 1.178373 3.187562 -2.349998 H 1.885093 0.912799 -6.283222
N -0.583030 -4.547262 1.349772 C 1.710421 -5.369719 -0.375106
C -3.039777 -1.174075 -2.487014 C 1.982336 2.347734 -3.214122
N -0.117034 4.227500 -0.011011 C -0.415288 6.689541 -0.074820
N 1.783576 -4.062091 -0.136016 H 0.444787 7.045612 0.502491
C -3.297675 1.454081 -3.435834 H -1.256575 6.616391 0.614052
O -6.128844 0.007223 -1.098217 H -0.637721 7.430636 -0.844241
O -3.026950 -2.177578 -3.056706 C 1.082288 4.462693 -2.747379
O -3.101589 0.011994 1.583416 C 4.062372 0.406156 3.983657
O -3.534392 1.972819 -4.439775 H 4.295777 0.590392 5.029541
C -0.143834 1.264312 3.328234 C 2.745827 0.152453 3.606766
H 0.510103 2.014214 2.892149 H 1.972417 0.133116 4.368073
C -1.516980 -4.411120 2.448994 C 0.798709 4.805443 2.189228
C -0.228040 -0.572030 -0.387093 H 1.057609 -2.591466 -2.065142
C -0.081819 1.926038 -4.710544 C 0.618425 -6.160821 0.005798
H -0.605491 2.029061 -3.753893 H 0.654147 -7.202219 -0.288651
C -0.042644 -0.070909 2.924127 C 2.872166 -6.111698 -0.993320
C -0.310471 4.425501 1.412583 H 3.464921 -5.492954 -1.666340
C 3.033896 -3.402663 -0.427794 H 2.508837 -6.990459 -1.530306
C 1.837305 4.971191 -3.958571 H 3.532862 -6.460894 -0.192045
H 1.383084 5.896447 -4.316978 C 4.002523 -4.257534 1.799891
H 1.892089 4.258198 -4.777819 H 3.062471 -4.822034 1.801508
H 2.865867 5.195478 -3.656671 C -1.003401 -4.383625 3.763275
C -2.897704 -4.347415 2.195411 C 0.990864 -0.524713 1.871028
C 3.433390 -0.086335 1.322540 C -2.988678 0.211684 0.460932
H 3.197406 -0.300342 0.280672 C -2.784735 3.840416 1.133778
C -0.599531 0.648951 -5.387339 H -2.395559 3.075401 0.450987
H -0.161487 0.505897 -6.381076 C -0.461083 3.132166 -5.584245
H -1.681344 0.717407 -5.523814 H -0.322877 4.085963 -5.069371
H -0.391943 -0.245064 -4.793357 H -1.517935 3.064893 -5.860323
C 3.344714 2.174551 -2.903647 H 0.131295 3.149983 -6.507435
C -1.046961 1.636068 4.320083 C 0.386694 5.448713 -2.036724
H -1.083144 2.671532 4.640608 H 0.356614 6.430858 -2.491044
C 3.146159 -2.700036 -1.640904 C 0.571559 5.179966 3.515424
C -0.070897 5.367413 -0.721647 H 1.412020 5.475127 4.138522
C 4.098980 -3.492950 0.484592 C -0.886339 -1.001559 3.522397
C -1.806360 -0.630475 4.499576 H -0.817202 -2.037761 3.228909
H -2.450181 -1.390047 4.936920 C -3.762086 -4.231226 3.286545
C 4.751859 0.151091 1.699159 H -4.832769 -4.164705 3.112995
H 5.537437 0.114303 0.950144 C 5.428608 -2.149531 -1.034257
C 4.361440 -2.071903 -1.922074 H 6.369084 -1.657619 -1.272448
H 4.477679 -1.511159 -2.845354 C 4.212522 4.136105 -1.500796
C -3.475368 -4.404241 0.786946 H 4.874111 4.440282 -2.321262
H -2.709428 -4.811755 0.118999 H 4.719123 4.377940 -0.559296
C 2.221105 4.816320 1.639154 H 3.304547 4.742792 -1.543388
H 2.164386 4.757015 0.546731 C 1.033567 -5.866736 4.083249
C 4.158948 1.576276 -3.868515 H 0.515596 -6.455670 4.849821
H 5.217228 1.439865 -3.669484 H 2.102472 -5.862872 4.327951
C 5.218752 1.879921 -1.210444 H 0.919814 -6.378902 3.122514
H 5.094689 0.794672 -1.292713 C 0.888893 -3.687943 5.326477
H 5.497851 2.112441 -0.178974 H 0.466583 -2.678379 5.347890
H 6.052837 2.185244 -1.853439 H 1.978754 -3.597476 5.375991
C 0.497576 -4.429110 4.044378 H 0.565042 -4.222219 6.227522
H 1.001122 -3.902793 3.227825 C -1.266399 -6.923691 1.399959
C -0.390932 -5.797713 0.898128 H -1.265056 -6.963466 2.492256
42_TS6c.log

SCF (wB97x) = -3920.43353165
E(SCF)+ZPE(0 K) = -3918.851255
H(298 K) = -3918.755751
G(298 K) = -3918.977239
Lowest Frequency = 136.3632 cm⁻¹

W -2.859735 1.273942 -1.496360
Al -0.010165 2.638407 -0.675774
Al 0.328458 -2.907637 2.638407
O -0.621161 -1.879490 -0.125554
O -0.689176 1.331323 -1.766471
O 0.877741 -1.777099 2.118609
O 0.503479 1.550733 0.613920
C -4.780232 1.728825 1.496360
N 0.985805 3.405246 -2.166980
N -0.598824 -4.434696 1.598326
C -3.592054 -0.505140 -2.152247
N -0.377603 4.324311 0.204387
N 1.751421 -3.895540 0.103340
C -3.128475 1.933613 -3.441589
O -5.843661 2.025207 -0.677605
O -4.006415 -1.488982 -2.595214
O -2.980059 0.668237 1.647067
O -3.407623 2.362492 -4.472367
C -0.371862 1.387419 3.608008
H 0.311313 2.139075 3.222183
C -1.520385 -4.295879 2.704950
C -0.371577 -0.533822 -0.184829
C -0.006016 2.259700 -4.767213
H -0.610200 2.731336 -3.986402
C -0.287886 0.067166 3.154406
C -0.480550 4.522510 1.643081
C 2.963460 -3.186829 -0.237015
C 1.463128 5.277921 -3.756061
H 0.711712 5.780822 -4.370941
H 2.010585 4.566416 -4.368472
H 2.164240 6.044425 -3.411369
C -2.891212 4.102726 2.464222
C 2.172817 0.118610 2.502149
C -1.741436 4.533593 2.275356
C 1.423264 2.125446 -4.251538
C 0.300779 0.197385 0.742293
C -1.803794 4.965743 3.600088
H -2.767931 5.005431 4.098394
C 2.356256 1.513917 -5.091906
H 2.032951 1.153873 -6.065595
C 1.704352 -5.206160 -0.131734
C 1.869559 2.615890 -3.005976
C -0.735102 6.790122 0.172893
H 0.169405 7.203383 0.631322
H -1.482465 6.701861 0.958166
C 2.963460 -3.186829 4.214003
H 4.056765 0.794410 5.260933
C 2.510946 0.342584 3.839302
C 1.741074 0.321003 4.600383
C 0.689447 4.862653 2.346338
C 0.901848 -2.491931 -1.825843

S211
Element	X	Y	Z
C	0.629688	-6.020801	0.254455
H	0.681176	-7.059454	-0.047650
C	2.877572	-5.916891	-0.763911
H	3.429901	-5.287071	-1.461113
H	2.537662	-6.818702	-1.277073
C	3.571446	-6.223937	0.026975
H	4.049427	-4.015763	1.943109
H	3.161953	-4.659149	1.949334
H	-1.005377	1.005377	-4.365973
C	3.192384	0.143035	1.549077
H	2.958758	0.064620	0.504871
H	0.024666	0.311150	-5.754796
H	-1.590225	0.987743	-5.538789
H	-0.729904	0.297390	-4.151554
C	3.207476	2.442662	-2.596132
C	-1.302924	1.742896	4.579238
H	-1.326905	2.766235	4.938963
C	3.000608	2.464909	-1.445212
C	-0.393535	5.473332	-0.492051
C	4.063733	3.232724	0.636120
C	-2.131800	-0.506415	4.628036
C	-2.812776	-1.263600	5.008535
C	4.508483	0.397638	1.925188
H	5.292779	0.382830	1.174856
C	4.168801	-1.763201	-1.751680
H	4.222480	-1.181351	-2.667494
C	-3.467282	-3.975097	1.061909
H	-2.687182	-4.252478	0.344528
C	2.075104	4.866143	1.712309

S212
C 1.782390 -1.257891 -3.318589 N 2.117166 -4.206477 0.049810
H 3.078108 3.894277 3.390379 C -3.335945 2.384116 -3.556543
H 3.949863 3.772976 1.856745 O -5.686717 3.052147 -0.873681
H 2.513968 2.771628 2.141296 O -4.715075 -0.941280 -2.763047
H 2.605305 -1.253048 -4.041546 O -3.700766 0.333473 1.241383
H 1.828028 -0.323379 -2.748959 O -3.602102 2.863888 -4.573453
H 0.854436 -1.259275 -3.897907 C -0.317820 1.090465 3.455267
H -2.599219 3.056098 -1.278068 H 0.413532 1.841523 3.167560
C -0.960316 0.034111 -1.427349 C -1.418125 -4.589101 2.309472
H -0.880275 -0.646807 -2.275775 C -0.171011 -0.942352 -0.474162
 C -0.340084 1.829873 -4.889290
43_Int7c.log
 H -0.883235 2.309699 -4.072625
 C -0.274587 -0.191428 2.898338
SCF (wB97x) = -3920.45365571 C -0.153552 4.277577 1.581889
E(SCF)+ZPE(0 K)= -3918.870696 C 3.288381 -3.447311 -0.322761
H(298 K)= -3918.773909 C 1.223712 4.900291 -4.040828
G(298 K)= -3919.000625 H 0.443414 5.472677 -4.550452
Lowest Frequency = 8.8956cm^{-1} H 1.618237 4.150340 -4.721234
 H 2.031304 5.597519 -3.797661
W -3.080447 1.537199 -1.703129 C -2.705519 -4.319584 1.813422
Al -0.305630 2.413266 -0.918316 C 2.217855 -0.076800 2.271649
Al 0.629474 -3.253043 0.774978 C -1.389246 4.283460 2.265417
O -0.241708 -2.301561 -0.402525 C 1.119255 1.710029 -4.469986
O -0.805951 0.837236 -1.954270 C 0.344639 -0.079065 0.518901
O 0.980065 -2.014810 1.934938 C -1.389533 4.645366 3.612424
O 0.376984 1.209525 0.366199 H -2.332638 4.680365 4.150061
C -4.725883 2.478735 -1.201630 C 2.003710 1.084912 -5.351710
N 0.801309 3.053750 -2.402305 H 1.620963 0.689423 -6.289760
N -0.318471 -4.773485 1.387498 C 2.141955 -5.530261 -0.121693
C -4.124244 -0.023670 -2.356841 C 1.634130 2.244788 -3.269274
N -0.128998 4.092842 0.145495 C -0.312934 6.576544 0.115400
Atom	X Position	Y Position	Z Position
H	0.680493	6.969313	0.355715
C	4.382192	-3.394152	0.559758
H	-0.88873	6.540842	1.038350
C	-2.226021	-0.787158	4.209067
H	-0.785882	7.276089	-0.577037
C	-2.973587	-1.528461	4.475693
C	0.654178	4.338075	-2.753310
C	4.540918	0.250908	1.670313
C	3.870275	0.457646	3.965579
H	5.315012	0.258452	0.910029
H	4.110457	0.641112	5.009714
H	2.561389	0.152809	3.606272
C	4.452557	-1.489014	-2.836254
H	1.801746	0.086348	4.377982
C	-3.013513	-4.211557	0.325907
C	1.045525	4.589878	2.247208
H	-2.091876	-4.410842	-0.230438
H	1.216383	-3.026007	-1.977528
C	2.392686	4.641135	1.540771
C	1.095422	-6.376918	0.266210
H	2.217197	4.501838	0.469544
H	1.217418	-7.428456	0.038297
C	3.839758	1.467142	-3.861597
C	3.368278	-6.203606	-0.689748
H	4.897612	1.366347	-3.640203
H	3.880603	-5.589923	-1.430913
C	4.886026	1.982115	-1.242691
H	3.098877	-7.163228	-1.134647
H	4.077690	-6.397516	0.123046
H	5.161072	2.293189	-0.230986
C	4.388244	-4.122922	1.899303
H	5.718485	2.251730	-1.903196
H	3.578319	-4.860495	1.890459
C	0.234573	-4.926908	4.255979
C	-1.158805	-4.672195	3.691538
H	0.909356	-5.146469	3.420643
C	0.826223	-0.616978	1.901030
C	-0.027523	-6.028489	1.020793
C	3.227491	-0.036920	1.308322
H	-3.170114	0.749277	0.180797
H	2.999888	-0.256184	0.264414
C	-2.706131	3.955057	1.568510
C	-0.970106	0.452082	-5.129394
H	-2.490421	3.193099	0.816713
H	-0.514695	-0.046678	-5.993082
C	-0.522379	2.684878	-6.151687
H	-2.040513	0.556085	-5.334920
H	-0.116894	3.693081	-6.037368
H	-0.852271	-0.200103	-4.261897
C	-1.588731	2.778021	-6.381070
C	3.000424	2.106305	-2.945127
C	-0.030904	2.222627	-7.015817
C	-1.270975	1.403447	4.419336
C	0.040470	5.298882	-1.944383
H	-1.260925	2.390148	4.869662
H	-0.057674	6.284643	-2.384633
C	3.293916	-2.780665	-1.563683
C	0.995654	4.892031	3.610824
C	-0.160087	5.227518	-0.556912
H	1.918379	5.122015	4.138819
Atom	X	Y	Z
------	-----	-----	-----
C	-1.250964	-1.113325	3.271262
H	-1.245096	-2.106959	2.843968
C	-3.738265	-4.138970	2.736629
H	-4.740544	-3.922651	2.374922
C	5.513671	-1.958191	-1.032813
H	6.386255	-1.371187	-1.310336
C	3.864773	4.190483	-1.773577
H	5.513671	1.958191	1.032813
C	-0.257644	-6.139233	5.195327
H	-0.345719	-5.962515	6.092360
H	1.282084	-6.342983	5.524013
C	-0.127451	-7.042720	4.709812
C	0.775333	-3.678621	4.966373
H	0.841481	-2.832415	4.276100
H	1.775948	-3.875245	5.368403
H	0.125965	-3.391446	5.801561
C	-0.923455	-7.154296	1.470472
H	-0.892530	-7.254181	2.559786
H	-0.611636	-8.097680	1.021505
H	-1.964084	-6.953876	1.202717
C	-2.225788	-4.488794	4.570728
H	-2.048367	-4.542583	5.642333
C	-0.211793	4.941776	4.287912
H	-0.239034	5.209898	5.341151
C	3.590577	2.682587	-1.660164
H	2.858677	2.529775	-0.854970
C	5.490947	-2.638566	0.176917
H	6.347217	-2.573117	0.843437
C	-3.305222	5.155770	0.820627

S216
SCF (wB97x) = -3920.40750919
E(SCF)+ZPE(0 K)= -3918.827153
H(298 K)= -3918.730653
G(298 K)= -3918.956048
Lowest Frequency = -623.5359 cm⁻¹

44_TS7c.log
C	-1.570643	3.963644	2.119084
H	3.111474	-0.111605	0.227457
C	1.372341	1.807320	-4.581221
C	0.487976	-0.028690	0.587882
H	-0.069579	-0.109111	-5.946950
C	-1.598665	4.359722	3.457351
H	-1.681397	0.550754	-5.645648
C	-2.538527	4.299953	4.001654
H	-0.702594	-0.047635	-4.291590
C	2.295331	1.186627	-5.427501
C	1.952668	0.799515	-6.383926
H	-0.028690	0.587882	-0.124802
C	1.863767	-5.474598	-0.124802
C	1.835276	2.320953	-3.351161
C	-0.926663	6.329225	0.000716
H	-0.339350	6.609871	0.878246
H	-1.941618	6.117895	0.346275
H	-0.958784	7.171367	-0.691095
C	0.788770	4.376480	-2.787142
C	4.186378	0.312696	3.920596
H	4.254758	-3.483417	0.505226
H	4.481497	0.412884	4.961985
C	2.857796	0.052266	3.605385
H	-2.818513	-1.247070	4.550128
C	0.790502	-6.264231	0.312209
C	0.836115	-7.316578	0.060590
C	3.016598	-6.210789	-0.763620
C	3.535228	-5.610854	-1.511780
H	2.140042	-0.069092	4.409855
C	0.825759	4.473395	2.077918
H	-2.317960	-3.977615	0.120267
H	1.017965	-2.815205	-1.875034
C	0.790502	-6.264231	0.312209
C	0.836115	-7.316578	0.060590
C	3.016598	-6.210789	-0.763620
H	2.140042	-0.069092	4.409855
C	0.825759	4.473395	2.077918
H	-2.317960	-3.977615	0.120267
H	1.017965	-2.815205	-1.875034
C	0.790502	-6.264231	0.312209
C	0.836115	-7.316578	0.060590
C	3.016598	-6.210789	-0.763620
H	2.140042	-0.069092	4.409855
C	0.825759	4.473395	2.077918
H	-2.317960	-3.977615	0.120267
H	1.017965	-2.815205	-1.875034
C	0.790502	-6.264231	0.312209
C	0.836115	-7.316578	0.060590
C	3.016598	-6.210789	-0.763620
H	2.140042	-0.069092	4.409855
C	0.825759	4.473395	2.077918
H	-2.317960	-3.977615	0.120267
H	1.017965	-2.815205	-1.875034
C	0.790502	-6.264231	0.312209
C	0.836115	-7.316578	0.060590
C	3.016598	-6.210789	-0.763620
H	2.140042	-0.069092	4.409855
C	0.825759	4.473395	2.077918
H	-2.317960	-3.977615	0.120267
H	1.017965	-2.815205	-1.875034
C	0.790502	-6.264231	0.312209
C	0.836115	-7.316578	0.060590
C	3.016598	-6.210789	-0.763620
C -2.844099 3.424366 1.490912 H -2.217685 -6.691219 1.499817
H -2.625653 3.201874 0.448920 C -2.050442 -4.311680 4.905744
C -0.196350 2.628721 -6.413874 H -1.778755 -4.400539 5.954991
H 0.307627 3.599012 -6.420345 C -0.459979 4.815011 4.104036
H -1.254772 2.790469 -6.641821 H -0.508944 5.132577 5.142949
H 0.232271 2.037473 -7.231095 C 3.735020 2.752695 -1.669879
C 0.075151 5.284725 -1.998089 H 2.994946 2.566698 -0.879273
H -0.066035 6.271047 -2.421155 C 5.387153 -2.773132 0.104334
C 0.749324 4.837638 3.422943 H 6.266635 -2.769392 0.743384
H 1.649356 5.168532 3.936579 C -4.006563 4.422367 1.522666
C -1.095686 -0.902533 3.323918 H -4.307095 4.657006 2.550529
H -1.222206 -1.842789 2.803511 H -4.875143 3.992246 1.012358
C -3.702439 -3.847025 3.226210 H -3.761366 5.363908 1.020739
H -4.722641 -3.579426 2.961298 C 5.134137 0.42085 2.908435
C 5.403782 -2.058469 -1.084723 H 6.176986 0.614370 3.147745
H 6.295783 -1.509006 -1.377244 C -1.831822 0.606314 5.050537
C 3.974882 4.267877 -1.762096 H -2.512611 0.857474 5.860157
H 4.615573 4.498418 -2.621539 C 3.628722 1.055792 -5.081458
H 4.487915 4.620175 -0.860135 H 4.328623 0.576280 -5.761057
H 3.050920 4.844126 -1.856032 C -3.259168 2.100681 2.142540
C 0.438996 -6.044354 5.262007 H -2.454259 1.360767 2.093440
H -0.089301 -5.888085 6.208891 H -4.131652 1.689263 1.622832
H 1.483722 -6.268153 5.501947 H -3.523070 2.239479 3.197357
H 0.005777 -6.929134 4.782599 C 3.236112 3.716878 2.069876
C 0.973399 -3.583304 5.056262 C 4.148434 -3.274140 3.011817
H 0.984307 -2.719639 4.384432 H 4.973913 -2.552898 3.020294
H 2.004803 -3.798190 5.358390 H 4.171586 -3.828684 3.957768
H 0.405916 -3.315833 5.955147 H 3.212998 -2.709835 2.958223
C -1.169778 -6.957944 1.658297 C -3.654661 -2.371950 0.537188
H -1.039473 -7.093485 2.736511 H -4.549680 -2.143966 1.127904
H -0.958273 -7.903131 1.157499 H -3.905434 -2.219051 -0.517682

S219
H -2.874808 -1.652778 0.803324 45_Int8c.log
C -4.282183 -4.805223 0.341131
H -3.963251 -5.847132 0.455804 SCF (wB97x) = -3920.48900748
H -4.546590 -4.648919 -0.709741 E(SCF)+ZPE(0 K)= -3918.902422
H -5.192861 -4.669424 0.935316 H(298 K)= -3918.805591
C -3.358898 -3.998695 4.561801 G(298 K)= -3919.033640
H -4.107796 -3.857822 5.337026 Lowest Frequency = 16.6080cm⁻¹
C 5.524520 -5.118050 1.971260
H 5.664796 -5.778686 1.108343 W -3.147444 1.474940 -2.192203
H 5.446011 -5.739601 2.869253 Al 0.083538 2.235007 -0.719923
H 6.431496 -4.512790 2.074931 Al 0.639149 -3.181551 0.949190
C 2.638974 6.031455 1.255643 O -0.227406 -2.176365 -0.195660
H 1.941833 6.633783 0.663520 O -1.144601 1.062903 -1.365896
H 3.618985 6.084715 0.769016 O 1.198286 -2.030393 2.108348
H 2.731906 6.496764 2.243539 O 0.949194 1.230700 0.423454
C 1.923300 -2.779910 -2.489687 C -4.986374 1.562335 -1.518077
C 1.934025 -4.037262 -3.372029 N 0.916772 2.955731 -2.307778
H 2.872589 -4.107727 -3.948011 N -0.461866 -4.583634 1.594548
H 1.111133 -3.996281 -4.093605 C -3.830900 1.853228 -3.981045
H 1.812678 -4.955944 -2.791986 N -0.435540 3.858908 0.069325
C 1.822500 -1.542242 -3.378537 N 1.994666 -4.289775 0.178853
H 3.436932 4.070483 3.087558 C -3.159079 3.500990 -1.984652
H 4.182422 3.761827 1.517074 O -6.049474 1.610700 -1.044799
H 2.928852 2.668196 2.126520 O -4.158652 2.069507 -5.080316
H 2.607516 -1.519208 -4.142226 O -3.879648 -1.536430 -3.000231
H 1.884917 -0.610224 -2.806229 O -3.358350 4.642440 -1.952433
H 0.866049 -1.548831 -3.910061 C 0.359538 1.182118 3.696016
H -2.217427 0.608117 -0.482122 H 1.150018 1.845984 3.359226
C -0.840066 -0.259316 -1.456683 C -1.446515 -4.312075 2.618934
H -1.279940 -1.026689 -2.095657 C 0.029970 -0.837517 -0.239285
C -0.237425 1.641721 -4.721270
Atom	X	Y	Z	Atom	X	Y	Z
C	0.218271	-0.084898	3.123702	C	2.967625	-6.421772	-0.594056
C	-0.529139	4.057533	1.504039	H	3.560518	-5.869643	-1.323664
C	3.256529	-3.679608	-0.176754	H	2.576330	-7.330809	-1.054517
C	1.303475	4.812257	-3.929881	H	3.639751	-6.719198	0.219069
H	0.585880	5.463467	-4.433967	C	4.257660	-4.477613	2.054091
H	1.685914	4.080715	-4.637153	H	3.324921	-5.052827	2.079899
H	2.142616	5.438505	-3.608499	C	-1.098295	-4.554532	3.962619
C	-2.707605	-3.798613	2.270395	C	1.187873	-0.615665	2.044674
C	2.643432	-0.206119	2.338490	C	3.585849	-0.152045	1.311444
C	-1.753971	3.880204	2.170060	H	3.264779	-0.287156	0.279282
C	1.245556	1.609128	-4.358479	C	-0.297867	-0.146128	-5.980806
C	0.705934	-0.103118	0.667643	H	-1.848470	0.300308	-5.267246
C	-1.848051	4.308133	3.493250	H	-0.608399	-0.477124	-4.270394
H	-2.792471	4.203640	4.020242	C	3.145948	2.079000	-2.866740
H	1.753918	0.601927	-6.185811	C	-0.465315	1.584772	4.742237
C	1.840190	-5.600131	-0.017036	H	-0.299727	2.552149	5.203543
C	1.774760	2.174611	-3.178935	C	3.356304	-3.003782	-1.409516
C	-1.241435	6.189591	-0.044286	C	-0.587699	4.979920	-0.662609
H	-0.636450	6.591638	0.773498	C	4.341311	-3.760059	0.713135
H	-2.213463	5.916462	0.376270	C	-1.674202	-0.480028	4.597145
H	-1.388555	6.965565	-0.795631	H	-2.467336	-1.145487	4.928332
C	0.662913	4.211268	-2.696668	C	4.936088	0.042933	1.595061
C	4.437950	0.140452	3.940086	H	5.657793	0.055596	0.783609
H	4.758687	0.246286	4.973502	C	4.574244	-2.397215	-1.724937
C	3.094014	-0.077059	3.656287	H	4.679554	-1.861577	-2.664070
H	2.386866	-0.154158	4.475901	C	-3.087522	-3.432671	0.843147
C	0.608189	4.549334	2.169048	H	-2.239230	-3.656562	0.190520
H	1.267171	-2.873931	-1.816621	C	1.966748	4.682635	1.489219
C	0.684757	-6.305860	0.351201	H	1.845396	4.426757	0.431983
H -3.733467 1.206364 1.226594 H 3.105664 3.847899 3.159006
H -3.037162 1.505962 2.835982 H 3.962150 3.824692 1.611777
C 2.979341 3.693000 2.080993 C 2.664344 2.657312 1.914861
C 4.201830 3.205064 2.835982 H 3.066569 -1.864940 -4.074594
H 5.084541 -2.816784 3.200230 H 2.412823 -0.823629 -2.803027
H 4.169180 -3.988642 4.168918 H 1.325867 -1.689647 -3.909131
H 3.317387 -2.829414 3.120681 H -1.242929 -0.937975 -1.906089
C -3.350932 -1.925199 0.734566 C -0.508176 -0.233729 -1.514165
H -4.208241 -1.623015 1.348111 H 0.292167 -0.127672 -2.262368
H -3.574055 -1.657618 -0.302890
H -2.480191 -1.345463 1.056685 46_TS10.log
C -4.296076 -4.232721 0.343744
H -4.115942 -5.312910 0.384691 SCF (wB97x) = -3920.43472476
H -4.518665 -3.966998 -0.694989 E(SCF)+ZPE(0 K) = -3918.858733
H -5.191442 -4.021833 0.939384 H(298 K)= -3918.761006
C -3.322850 -3.847158 4.618024 G(298 K)= -3918.990921
H -4.060382 -3.674805 5.397834 Lowest Frequency = -221.7659 cm⁻¹
C 5.414072 -5.465953 2.250841
H 5.508895 -6.162928 1.410669 W -2.454790 -0.738715 -2.730029
H 5.258664 -6.049859 3.164001 Al -0.162384 2.934898 -0.489548
H 6.372146 -4.945857 2.357597 Al 0.451631 -2.605100 0.917278
C 2.498153 6.119816 1.543334 O -0.185247 -1.567967 -0.327136
H 1.786205 6.830111 1.108638 O -1.089451 1.711958 -1.370011
H 3.436351 6.198070 0.982824 O 1.337813 -1.468839 1.869834
H 2.701688 6.436579 2.572125 O 0.757228 1.841782 0.542608
C 2.192560 -2.964390 -2.395445 C -3.531495 -1.563993 -4.226067
C 2.099364 -4.252918 -3.226621 N 0.914113 4.122708 -1.506069
H 3.048443 -4.455179 -3.737765 N -0.670238 -3.489954 2.174137
H 1.321260 -4.149658 -3.990447 C -4.066867 -0.910995 -1.572969
H 1.842825 -5.125080 -2.620228 N -1.298758 4.261129 0.265036
C 2.258562 -1.765976 -3.340477 N 1.189829 -4.174046 0.142454
C 0.691000 1.080079 4.910883 H -0.295676 0.220457 3.213288
H -0.211724 1.063022 5.517272 C -2.647567 -1.554659 4.684672
C 4.670372 0.272076 -0.976786 H -3.595128 -1.025287 4.753257
H 4.921985 0.857374 -1.856538 C 5.110122 -4.373495 -1.446871
C 4.093332 -3.800651 -2.192955 H 6.116386 -4.440591 -1.852435
H 4.308459 -3.418766 -3.188334 C 2.992679 5.857236 0.512912
C -3.179491 -1.935151 2.259782 H 3.864697 6.382232 0.104981
H -2.795057 -2.535542 1.427412 H 2.913659 6.115983 1.575248
C 0.047664 4.914408 2.734146 H 2.097157 6.241688 0.014193
H 0.409178 5.025415 1.706261 C 1.132422 -4.957556 4.951212
C 4.612971 3.733231 -1.631616 H 0.795577 -4.976655 5.994374
H 5.477514 3.872239 -0.989997 H 2.122187 -5.427140 4.909538
C 4.284134 3.830349 1.245334 H 0.445744 -5.577335 4.363158
H 4.492287 2.771891 1.059173 C 2.271908 -2.701532 5.130216
H 3.996231 3.938366 2.296058 H 2.276258 -1.667592 4.769289
H 5.210347 4.398069 1.097155 H 3.255931 -3.140765 4.932769
C 1.187434 -3.519042 4.422086 H 2.137668 -2.689445 6.217812
H 1.471889 -3.558127 3.367893 C -2.168428 -5.319997 2.857133
C -1.131522 -4.720322 1.942181 H -1.857958 -5.242149 3.902671
C -3.059851 1.141800 -3.299991 H -2.341885 -6.367795 2.610007
C -4.147824 3.437855 0.236392 H -3.112480 -4.774850 2.764266
H -3.568367 3.888244 -0.576453 C -0.593466 -2.269332 5.693859
C 1.407374 3.625671 -5.628913 H 0.065658 -2.297435 6.557116
H 1.638584 4.695902 -5.602576 C -3.092676 3.079981 3.884125
H 0.487878 3.492983 -6.207526 H -3.525349 2.721338 4.814544
H 2.212776 3.128247 -6.179857 C 3.152451 4.339639 0.347067
C -0.671765 5.943397 -1.331949 H 2.237307 3.854843 0.706029
H -0.918204 6.929264 -1.706094 C 4.834556 -4.862826 -0.177143
C -1.831293 3.663139 3.884497 H 5.633753 -5.314703 0.405667
H -1.290953 3.777933 4.820994 C -5.407332 4.289267 0.451907
C 0.640143 0.614458 3.604565 H -6.073997 3.824924 1.186838

S225
H -5.965355 4.379901 -0.485873 C -0.226231 6.327170 3.271488
H -5.171606 5.296311 0.811681 H -0.987559 6.850511 2.683378
C 5.556537 -0.677562 -0.486375 H 0.690179 6.927554 3.249375
H 6.510746 -0.844297 -0.979769 H -0.577375 6.285370 4.308856
C 1.896266 1.536682 5.445736 C 1.705666 -3.138342 -2.600718
H 1.943155 1.885928 6.474389 C 1.531273 -3.967043 -3.880076
C 4.802925 3.331998 -2.948375 H 2.418366 -3.904964 -4.521364
H 5.809358 3.181078 -0.485873 H 0.676068 -3.596094 -4.456538
C -4.529268 2.033350 -0.223302 H 1.356294 -5.025317 -3.660803
H -3.636257 1.438414 -0.426779 C 2.002777 -1.677085 -2.945616
H -5.118362 2.080474 -1.145417 H 0.892317 4.120774 4.587351
H -5.128026 1.511015 0.531099 H 2.066768 4.860742 3.500287
C 1.160752 4.243541 3.533388 H 1.398511 3.256596 3.129725
C 4.359684 -4.860517 2.770303 H 2.977216 -1.567492 -3.437021
H 5.351313 -5.267675 2.544339 H 2.007218 -1.053501 -2.047444
H 4.097479 -5.194040 3.780360 H 1.240008 -1.290558 -3.627951
H 4.437943 -3.768596 2.782458 H -0.905434 -0.313239 -3.830777
C -3.113154 -0.464428 1.838241 C -1.101804 0.391663 -1.290556
H -3.450179 0.190131 2.650774 H -1.021239 -1.101539 -3.982711
H -3.755690 -0.295043 0.974358 H -2.093107 -0.166455 1.571386 47_int1prima.log
C -4.637166 -2.343598 2.502037 H -4.729258 -3.380871 2.842103 SCF (wB97x)= -3920.43497524
H -5.207204 -2.234450 1.573940 E(SCF)+ZPE(0 K)= -3918.858619
H -5.110313 -1.706810 3.258248 H(298 K)= -3918.760312
C -1.823480 -1.632653 5.796105 G(298 K)= -3918.991716
H -2.129194 -1.183213 6.737745 Lowest Frequency = 14.0235 cm^-1
C 3.240272 -6.870408 1.756407 H 2.433230 -7.239889 1.116266 W -2.463967 -0.716267 -2.765334
H 3.064246 -7.250697 2.768933 H -0.168323 2.952876 -0.529373
H 4.181441 -7.298883 1.392342 Al 0.441541 -2.586134 0.880587
Element	X	Y	Z	Element	X	Y	Z
O	-0.194085	-1.548515	-0.363771	C	2.383441	3.322376	-3.351134
O	-1.092128	1.730613	-1.413221	C	0.666843	0.520214	0.477867
O	1.324137	-1.449680	1.836218	C	-3.806645	3.002702	2.678742
O	0.750353	1.860700	0.504669	H	-4.813449	2.591399	2.700657
C	-3.490006	-1.566966	-4.283104	C	3.680617	3.094663	-3.817391
N	0.905324	4.139916	-1.548506	H	3.826870	2.748125	-4.837254
N	-0.680744	-3.475897	2.133950	C	0.432269	-5.263576	0.026659
C	-4.092748	-0.896539	-1.632485	C	2.222214	3.772352	-2.09701
N	-1.302779	4.278406	0.228080	C	-2.510911	6.433926	0.219244
N	1.182778	-4.151756	0.102401	H	-3.412217	6.335967	-0.396447
C	-1.942273	-2.577931	-2.073408	H	-2.163908	7.466060	0.142953
O	-4.076049	-2.043632	-5.164836	H	-2.786838	6.217941	1.251566
O	-5.065777	-1.052172	-1.012429	C	0.480422	5.374042	-1.877442
O	-3.480321	2.209861	-3.605965	C	5.201040	-1.402091	0.626050
O	-1.744329	-3.660763	-1.718181	H	5.881297	-2.150726	1.024989
C	2.963134	1.088724	3.311161	C	3.968460	-1.200807	1.230634
H	3.873742	1.069292	2.719758	H	3.677156	-1.783647	2.100037
C	-1.074215	-2.809198	3.356717	C	-1.244073	4.134875	2.662500
C	-0.181382	-0.185465	-0.354342	H	0.762509	-3.122711	-2.095688
C	1.203943	3.053144	-4.274730	C	-0.688512	-5.495990	0.828964
H	0.305894	3.494815	-3.829699	H	-1.212960	-6.429020	0.664214
C	1.772593	0.609943	2.771459	C	0.775311	-6.330374	-0.982832
C	-1.967226	3.946163	1.469274	H	1.850546	-6.480650	-1.088689
C	2.519058	-4.189885	-0.451836	H	0.388134	-6.002922	-1.955065
C	1.298847	6.221839	-2.820601	H	0.298518	-7.278044	-0.728179
H	2.335034	6.296220	-2.479988	C	3.292874	-5.316501	1.729773
H	0.875774	7.223845	-2.894731	H	2.317925	-4.951813	2.067254
H	1.321552	5.776912	-3.818695	C	-0.197628	-2.836986	4.459053
C	-2.302783	-2.133606	3.424394	C	1.694092	-0.154036	1.435560
C	3.062283	-0.257943	0.730845	C	3.431723	0.489870	-0.384591
C	-3.277928	3.441823	1.462658	H	2.757796	1.236752	-0.793597
Atoms	Coordinates						
-------	-------------						
C 0.964011 1.544008 -4.378892	H -3.575471 3.894769 -0.603324						
H 1.838189 1.038335 -4.806385	C 1.382213 3.656325 -5.673383						
H 0.101268 1.341280 -5.023323	H 1.626408 4.723501 -5.641215						
H 0.768595 1.105278 -3.395931	H 0.459533 3.538114 -6.250085						
C 3.325807 3.941800 -1.167736	H 2.180028 3.152910 -6.229915						
C 3.010236 1.557958 4.626389	C -0.677115 5.962542 -1.367512						
H 3.953836 1.911210 5.035237	H -0.923097 6.949280 -1.739700						
C 2.786546 -3.690974 -1.737290	C -1.815403 3.677548 3.849631						
C -1.461716 5.488410 -0.307627	H -1.269834 3.792198 4.783114						
C 3.545225 -4.758321 0.333886	C 0.617623 0.640541 3.562921						
C 0.661760 1.105942 4.869566	H -0.317848 0.252606 3.164581						
H -0.245507 1.094469 5.469302	C -2.671042 -1.544145 4.636987						
C 4.665322 0.278460 -1.004142	H -3.621209 -1.019127 4.702814						
H 4.918876 0.858016 -1.887131	C 5.108724 -4.347917 -1.473100						
C 4.095138 -3.772165 2.221162	H 6.116254 -4.415137 -1.875471						
H 4.314415 -3.388472 3.219252	C 3.001478 5.864964 0.457524						
C -3.200660 -1.940079 2.213958	H 3.874237 6.384798 0.044601						
H -2.815122 -2.546465 1.386489	H 2.928804 6.125831 1.519786						
C 0.053994 4.934774 2.690130	H 2.105572 6.253220 -0.037468						
H 0.411311 5.044764 1.660640	C 1.117443 -4.933167 4.918698						
C 4.600673 3.725218 -1.690059	H 0.777281 -4.950602 5.960809						
H 5.468946 3.857904 -1.052133	H 2.108103 -5.401169 4.881213						
C 4.284986 3.832892 1.188675	H 0.433646 -5.555341 4.329818						
H 4.486081 2.772575 1.005466	C 2.252680 -2.675039 5.096488						
H 4.002035 3.946358 2.240193	H 2.255723 -1.641455 4.734549						
H 5.213957 4.394588 1.034835	H 3.238082 -3.112465 4.901808						
C 1.171637 -3.495626 4.386742	H 2.115966 -2.662167 6.183769						
H 1.459261 -3.536369 3.333457	C -2.174196 -5.311320 2.812906						
C -1.137944 -4.707344 1.900441	H -1.868545 -5.228370 3.859427						
C -3.091295 1.161865 -3.316965	H -2.339805 -6.360919 2.568031						
C -4.151665 3.449085 0.214523	H -3.121559 -4.772864 2.714433						
$\text{SCF (wB97x) } = -3920.42527802$

$E(\text{SCF})+\text{ZPE (0 K)} = -3918.847533$

$H(298 \text{ K}) = -3918.750599$

$G(298 \text{ K}) = -3918.977922$

Lowest Frequency $= -23.9830 \text{ cm}^{-1}$

W -2.489624 -0.569049 -2.935212

Al -0.134956 2.879970 -0.541731

Al 0.452137 -2.684240 0.725842

O -0.244667 -1.636765 -0.491696

O -1.102713 1.707940 -1.438082

O 1.356938 -1.573544 1.688067

O 0.772470 1.746693 0.438448

C -3.570671 -1.186637 -4.524187

N 0.922460 4.024725 -1.621310

N -0.703387 -3.590459 1.960226

C -3.326257 -1.947787 -1.766337

N -1.173812 4.226813 0.313412

N 1.292930 -4.245605 0.033611

C -1.229589 -2.080427 -3.488280

C 1.189478 2.645160 -4.258467

H 0.260253 2.896480 -3.733333

H 1.782332 0.482131 2.653778

C -1.717476 3.961946 1.631591

H 2.682646 -4.314705 -0.376140

C 1.215181 6.065059 -2.984027

H 2.244331 6.236912 -2.655228

H 0.725537 7.027610 -3.132834

H 1.273274 5.543593 -3.941951

C -2.454701 -2.331707 3.172239

C 3.073481 -0.327318 0.592635

C -3.026151 3.473549 1.784161

C 2.366849 3.146353 -3.433289

C 0.667500 0.410340 0.378080

C -3.440673 3.108085 3.067398

C -4.443902 2.711770 3.205880

C 3.653380 3.021008 -3.966450

C 3.774142 2.625813 -4.972082

C 0.551035 -5.362228 -0.095689

C 2.232925 3.676375 -2.139631

C -2.334212 6.409425 0.327713

C -3.288386 6.311937 -0.202195

C -1.973358 7.429332 0.182868

C -2.520370 6.236444 1.387850

C 0.463749 5.241577 -1.966887

C 5.238992 -1.411684 0.434564

C 5.932148 -2.168408 0.792318

C 3.994244 -1.282845 1.035905

C 3.708852 -1.930780 1.859463

C -0.889280 4.206114 2.743907

H 1.088919 -3.560381 -2.323864

H -0.624827 -5.590753 0.620452

H -1.134382 -6.526259 0.424952
	X	Y	Z		X	Y	Z
H	1.928065	-5.401785	4.852764	H	-5.016220	1.603834	1.314301
H	0.325930	-5.541711	4.115537	C	1.580173	4.274071	3.349118
C	2.055870	-2.687991	5.138227	C	4.225705	-4.847714	2.995087
H	2.078188	-1.637111	4.831295	H	5.216638	-5.296625	2.868810
H	3.057766	-3.106336	4.998861	H	3.873981	-5.128934	3.992766
H	1.837308	-2.733596	6.211316	H	4.343453	-3.759283	2.969902
C	-2.179400	-5.476015	2.552538	C	-3.433948	-0.881794	1.412038
H	-2.029664	-5.247853	3.610099	H	-3.759916	-0.180370	2.189066
H	-2.174359	-6.557309	2.409847	H	-4.140980	-0.824279	0.580414
H	-3.167406	-5.096474	2.272923	H	-2.454864	-0.550788	1.047724
C	-0.812508	-2.205061	5.427710	C	-4.785622	-2.811732	2.269204
H	-0.176121	-2.143208	6.305260	H	-4.781466	-3.783126	2.775444
C	-2.608897	3.262988	4.166283	H	-5.346697	-2.913052	1.334941
H	-2.950659	2.967306	5.154781	H	-5.332400	-2.111486	2.911096
C	3.246379	4.381329	0.112955	C	-2.077487	-1.635162	5.464750
H	2.342599	3.908400	0.514484	H	-2.429633	-1.142541	6.367735
C	4.955342	-4.950243	0.131698	C	3.127313	-6.863806	1.973347
H	5.686369	-5.376031	0.814287	H	2.348754	-7.235848	1.300336
C	-5.203741	4.385469	0.927293	H	2.875498	-7.195869	2.986939
H	-5.802741	4.027684	1.772133	H	4.075253	-7.334915	1.687996
H	-5.863866	4.441549	0.055486	C	0.250923	6.402806	3.121665
H	-4.866980	5.397657	1.171496	H	-0.545157	6.928370	2.583402
C	5.582682	-0.595246	-0.640536	H	1.179387	6.969756	2.989545
H	6.549332	-0.705817	-1.125556	H	-0.003106	6.415920	4.187672
C	1.842364	1.424635	5.297379	C	2.102607	-3.416198	-2.707133
H	1.869128	1.773406	6.327014	C	2.235839	-4.219611	-4.007979
C	4.772282	3.395036	-3.241339	H	3.188058	-4.014047	-4.510120
H	5.762612	3.313391	-3.681687	H	1.428898	-3.952008	-4.694632
C	-4.571848	2.019609	0.403796	H	2.187735	-5.299083	-3.826040
H	-3.774654	1.348547	0.073694	C	2.275997	-1.920762	-2.980028
H	-5.341924	2.034539	-0.370693	H	1.391749	4.187269	4.423737
Atom	X	Y	Z	Atom	X	Y	Z
------	-------	-------	-------	------	-------	-------	-------
C	-3.30	3.30	3.30	H	-1.93	3.02	3.02
O	-0.12	-0.12	-0.12	H	-1.29	-0.03	-0.03
H	-0.21	-0.01	-0.01	C	3.06	0.31	0.81
O	-1.05	1.70	0.44	C	1.31	0.31	0.44
O	1.28	-1.45	1.90	C	0.78	0.84	0.50
C	-3.76	-1.55	-0.48	N	0.96	4.12	1.55
N	-0.73	3.44	2.22	C	1.89	-2.60	1.71
N	1.13	4.26	0.17	N	1.11	0.93	0.19
C	-1.11	-0.92	-4.27	N	1.39	6.20	2.82
C	2.49	4.86	3.22	O	-4.52	-1.97	-4.81
H	1.75	3.27	2.95	O	-1.61	-3.71	-1.88
H	3.31	-1.68	-3.27	O	-4.91	-1.19	-0.74
H	2.03	-1.02	-2.09	O	-0.43	-1.12	5.20
H	1.61	-1.62	-3.79	C	2.98	1.11	3.32
H	-1.93	1.02	-3.93	C	3.88	1.07	2.71
C	-1.13	0.39	-1.40	C	-1.08	-2.78	3.45
H	2.04	-1.33	-2.09				

49_TS12.log

SCF (wB97x)	-3920.43311639		
E(SCF)+ZPE(0 K)	-3918.856982		
H(298 K)	-3918.759214		
G(298 K)	-3918.989230		
Lowest Frequency	-122.9899cm^-1		
Element	X-Coordinate	Y-Coordinate	Z-Coordinate
---------	--------------	--------------	--------------
C	-2.617215	-1.476110	4.776893
H	-3.547832	-0.919673	4.861141
C	5.050751	-4.555346	-1.359839
H	6.055779	-4.672241	-1.757249
C	3.002571	5.862033	0.477113
H	3.867865	6.393198	-0.062892
C	5.050751	-4.555346	-1.359839
H	6.055779	-4.672241	-1.757249
C	1.081680	-4.943680	5.105884
H	0.803377	-4.872992	6.163907
H	2.051925	-5.450148	5.047514
C	0.342290	-5.579754	4.605559
C	2.277325	-2.706220	5.064968
H	2.299231	-1.712961	4.604725
H	3.243541	-3.191972	4.890398
H	2.168767	-2.583894	6.148402
C	-2.271591	-5.239940	2.892902
H	-1.932279	-5.211594	3.932388
H	-2.497218	-6.270325	2.616661
H	-3.191955	-4.650557	2.843268
C	-0.577135	-2.261888	5.755595
H	0.090092	-2.322806	6.611294
C	-3.123978	3.167611	3.800193
H	-3.571796	2.835540	4.733268
C	3.182401	4.344477	0.328665
H	2.271150	3.851170	0.687217
C	4.733268	-0.503461	-0.103439
H	5.498065	-5.562513	0.478507
C	-5.397806	4.312055	0.320810
H	-6.073512	3.857043	1.053058
H	-5.944571	4.389590	-0.624939
S236

50_Int1aprima.log

SCF (wB97x) = -3920.43645857
E(SCF)+ZPE(0 K) = -3918.858565
H(298 K) = -3918.760955
G(298 K) = -3918.987935
Lowest Frequency = 16.6896 cm⁻¹
atom	x	y	z	atom	x	y	z
C	1.437397	3.584158	-5.91428	C	1.437397	3.584158	-5.91428
H	1.978237	4.525013	-5.771327	H	1.978237	4.525013	-5.771327
H	0.537299	3.790651	-6.502917	H	0.537299	3.790651	-6.502917
H	2.074994	2.925830	-6.514032	C	-0.326748	5.800679	-1.651689
C	-0.637668	6.712163	-2.148840	H	1.978237	4.525013	-5.771327
C	-0.473453	5.476947	3.855912	C	-0.152799	-0.018522	3.662917
H	0.157138	6.090624	4.495684	C	-0.152799	-0.018522	3.662917
C	3.473290	-2.690034	4.141666	C	0.157138	6.090624	4.495684
H	3.972821	5.402502	-0.515995	C	5.192401	-3.355885	-1.564139
H	4.911660	5.494475	-1.073940	C	-0.604195	-0.954209	3.354747
H	4.090896	5.939049	0.431481	C	3.972821	5.402502	-0.515995
H	3.189883	5.908078	-1.090337	C	4.911660	5.494475	-1.073940
C	0.891621	-5.303804	4.399769	C	4.090896	5.939049	0.431481
C	1.485725	-3.022380	5.289912	C	3.189883	5.908078	-1.090337
C	4.911660	5.494475	-1.073940	C	0.891621	-5.303804	4.399769
H	1.437397	3.584158	-5.91428	C	1.485725	-3.022380	5.289912
H	1.957585	-5.555560	4.454866	H	1.310042	-1.944926	5.206188
H	0.461594	-5.871924	3.568020	C	1.310042	-1.944926	5.206188
C	3.645887	3.922208	-0.267279	C	0.461594	-5.871924	3.568020
H	2.674720	3.870687	0.240098	C	4.976949	-3.922002	-0.317919
C	-0.326748	5.800679	-1.651689	H	2.674720	3.870687	0.240098
H	-0.637668	6.712163	-2.148840	C	-0.473453	5.476947	3.855912
C	-0.473453	5.476947	3.855912	H	-0.637668	6.712163	-2.148840
C	0.157138	6.090624	4.495684	C	-0.473453	5.476947	3.855912
H	0.326748	5.800679	-1.651689	C	0.157138	6.090624	4.495684
H	0.637668	6.712163	-2.148840	C	-0.473453	5.476947	3.855912
H	0.157138	6.090624	4.495684	C	0.157138	6.090624	4.495684
H	-0.637668	6.712163	-2.148840	C	-0.473453	5.476947	3.855912
H	-0.637668	6.712163	-2.148840	C	-0.473453	5.476947	3.855912
H	0.157138	6.090624	4.495684	C	0.157138	6.090624	4.495684
H	0.157138	6.090624	4.495684	C	0.157138	6.090624	4.495684
H	-0.637668	6.712163	-2.148840	C	-0.473453	5.476947	3.855912

S238
Element	X	Y	Z	Element	X	Y	Z
C	-5.048995	-3.921748	1.911638	C	1.082115	-3.686647	-3.613976
H	-4.901206	-4.903847	2.374210	H	1.881560	-4.126677	-4.223216
H	-5.555118	-4.067980	0.952136	H	0.324216	-3.281906	-4.291061
H	-5.730392	-3.355765	2.556397	H	0.610963	-4.484903	-3.033603
C	-2.756266	-2.637198	5.328417	C	2.014312	-1.358702	-3.564886
H	-3.239391	-2.313198	6.246881	H	2.274912	5.810962	3.911048
C	4.271192	-6.057508	1.701065	H	3.308261	5.919070	2.485906
H	4.017334	-6.769436	0.908539	H	2.495255	4.390518	2.876054
H	4.030944	-6.522898	2.663227	H	2.705369	-1.624756	-4.374196
H	5.355786	-5.905646	1.673368	H	2.480734	-0.563211	-2.971693
C	1.095544	7.438359	1.955725	H	1.118061	-0.954268	-4.035091
H	0.303411	7.774800	1.279338	H	-2.376482	1.587392	-3.160796
H	2.040669	7.860398	1.596366	H	-2.958955	1.396616	-3.667312
H	0.894362	7.861869	2.946272	C	1.636608	-2.572953	-2.713224
7 REFERENCES

(1) Cui, C.; Roesky, H. W.; Schmidt, H.-G.; Noltemeyer, M.; Hao, H.; Cimpoesu, F. Synthesis and Structure of a Monomeric Aluminum(I) Compound [{HC(CMeNAr)2}Al] (Ar=2,6-Pr₂C₆H₃): A Stable Aluminum Analogue of a Carbene. Angew. Chem. Int. Ed. 2000, 39 (23), 4274–4276.

(2) Kong, R. Y.; Crimmin, M. R. Carbon Chain Growth by Sequential Reactions of CO and CO₂ with [W(CO)₆] and an Aluminum(I) Reductant. J. Am. Chem. Soc. 2018, 140 (42), 13614–13617.

(3) Walz, F.; Moos, E.; Garnier, D.; Köppe, R.; Anson, C. E.; Breher, F. A Redox-Switchable Germylene and Its Ligating Properties in Selected Transition Metal Complexes. Chem. - A Eur. J. 2017, 23 (5), 1173–1186.

(4) Szymańska-Buzar, T.; Kern, K. Photosubstitution of Carbon Monoxide in W(CO)₆ by Alkyne: NMR Detection of Thermally Unstable Alkyne Tungsten(0) Carbonyl Complexes. J. Organomet. Chem. 2001, 622 (1–2), 74–83.

(5) SHELXTL v5.1, Bruker AXS, Madison, WI, 1998.

(6) G.M. Sheldrick. SHELX-2013. Acta Cryst. 2015, C71, 3–8.

(7) A.L. Spek (2003, 2009) PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands. See Also A.L. Spek, Acta. Cryst., 2015, C71, 9-18.

(8) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenb, D. J. Gaussian, Inc., Wallingford, CT 2009. 2009.

(9) Chai, J. Da; Head-Gordon, M. Systematic Optimization of Long-Range Corrected Hybrid Density Functionals. J. Chem. Phys. 2008, 128 (8).

(10) Hratchian, H. P.; Schlegel, H. B. Theory and Applications of Computational Chemistry; Dykstra, C. E., Frenking, G., Kim, K. S., Scuseria, G. E., E., Ed.; Elsevier: Amsterdam, 2005.

(11) Gleadening, E. D.; Bakenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Landis, C. R.; Weinhold, F. Theoretical Chemistry Institute. University of Wisconsin: Madison 2013.

(12) Stephen, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation of Vibrational Absorption. J. Phys. Chem. 1994, 98 (45), 11623–11627.

(13) Frost, A. A.; Musulin, B. Density-Functional Thermochemistry. III. The Role of Exact Exchange. Hydrocarb. J. Chem. Phys. 1953, 21 (October 1992), 5648.

(14) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Function. Theor. Chem. Acc. 2008, 120 (1–3), 215–241.

(15) Zhao, Y.; Truhlar, D. G. A New Local Density Functional for Main-Group Thermochemistry, Transition Metal Bonding, Thermochemical Kinetics, and Noncovalent Interactions. J. Chem. Phys. 2006, 125 (19).