Differential Regulation of Mouse B Cell Development by Transforming Growth Factor β1

DENISE A. KAMINSKI*, JOHN J. LETTERIO* and PETER D. BURROWS*†

*Department of Microbiology, 578 Wallace Tumor Institute, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; †Laboratory of Cell Regulation and Carcinogenesis, The National Cancer Institute, 41 Library Drive, Bethesda, MD 20892, USA

(Revised 4 January 2003)

Transforming growth factor β (TGFβ) can inhibit the in vitro proliferation, survival and differentiation of B cell progenitors, mature B lymphocytes and plasma cells. Here we demonstrate unexpected, age-dependent reductions in the bone marrow (BM) B cell progenitors and immature B cells in TGFβ1−/− mice. To evaluate TGFβ responsiveness during normal B lineage development, cells were cultured in interleukin 7 (IL7) ± TGFβ. Picomolar doses of TGFβ1 reduced pro-B cell recoveries at every timepoint. By contrast, the pre-B cells were initially reduced in number, but subsequently increased compared to IL7 alone, resulting in a 4-fold increase in the growth rate for the pre-B cell population. Analysis of purified BM sub-populations indicated that pro-B cells and the earliest BP1+ pre-B cells were sensitive to the inhibitory effects of TGFβ1. However, the large BP1+ pre-B cells, although initially reduced, were increased in number at days 5 and 7 of culture. These results indicate that TGFβ1 is important for normal B cell development in vivo, and that B cell progenitors are differentially affected by the cytokine according to their stage of differentiation.

Keywords: B cell progenitor; Bone marrow; IL7; Pre-B cell; Pro-B cell; TGFβ

Abbreviations: BM, bone marrow; HC, antibody heavy chain; BCP, B cell progenitor; TGFβ, transforming growth factor β; IL7, interleukin 7; LM, littermate

INTRODUCTION

Transforming growth factor β (TGFβ) is distinguished among cytokines in its involvement in multiple biological processes, eliciting unique responses according to context (Massague et al., 1992; Rifkin et al., 1993; McCartney-Francis and Wahl, 1994; Bottinger et al., 1997). Its overlapping functions include regulation of embryogenesis (Dickson et al., 1995; Kaartinen et al., 1995; Bonyadi et al., 1997; Sanford et al., 1997), cell cycle and viability (Ravitz and Wenner, 1997; Hocevar and Howe, 1998) and cellular adhesion (Roberts et al., 1992; Wahl, 1994; Kim and Yamada, 1997; Letterio and Roberts, 1998). The interplay of these TGFβ-regulated processes controls the development and function of the immune system (Yaswen et al., 1996; Letterio and Roberts, 1998; Larsson et al., 2001).

Limitations to studying TGFβ effects in vivo are imposed by its importance during embryogenesis. Gene-targeting of each isoform (TGFβ1, 2 or 3) as well as each of the two receptor subunits (TβRI and TβRII) results in lethality at or prior to birth (Dickson et al., 1995; Kaartinen et al., 1995; Martin et al., 1995; Bonyadi et al., 1997; Sanford et al., 1997). The earliest lethality is seen in TβRI−/−, TβRII−/− (Larsson et al., 2001), and in ~50% of TGFβ1−/− embryos (Shull et al., 1992; Kulkarni et al., 1993), which expire at ~10.5 days post-coitus, due to aberrantly developed yolk sac vasculature and anemia. The embryonic anemia in vivo is likely a secondary result of inadequate vascularization, since endothelia from the TGFβ1 mutant embryos fail to differentiate in culture (Martin et al., 1995), whereas in vitro development of yolk sac-derived TβRI−/− hematopoietic progenitors into various blood cell lineages is similar to controls (Larsson et al., 2001).

The importance of TGFβ in immune regulation is underscored by the phenotype of TGFβ1−/− mice, which have multiple abnormalities, including systemic inflammation to which they succumb by 3–5 weeks after birth.
Once a hematopoietic progenitor enters the B lineage pathway, it progresses through a number of developmental stages defined by expression of cell surface differentiation antigens (Hardy et al., 1991; Rolink et al., 1999), cell cycle status (Osmond, 1991; Itoh et al., 1996), antibody variable region gene rearrangements (Hardy et al., 1991; Hardy, 1992; Li et al., 1993; Papavasiliou et al., 1997; Rolink et al., 1999), responsiveness to and requirements for interleukin 7 (IL7) receptor signaling (Peschon et al., 1994; Candeias et al., 1997; Marshall et al., 1998) and interaction with the bone marrow (BM) stroma (King et al., 1988; Gimble et al., 1989; Dittel et al., 1993; Dittel and LeBien, 1995; Borghesi et al., 1997). The IL7 receptor is indispensable for mouse B cell development during the V-to-DJ heavy chain (HC) variable region gene rearrangement process (Corcoran et al., 1998). Acquisition of μHC and formation of the pre-B cell receptor are associated with a decreased IL7 dose-response threshold (Marshall et al., 1998). The resulting increases in IL7 sensitivity may be responsible for the large size and mitotic status of early/intermediate pre-B cells. Late pre-B cells exit the cell cycle and undergo light chain V-J rearrangement in preparation for full antibody assembly and surface expression on the more differentiated B cell (Meffre et al., 2000; Melchers et al., 2000).

The effects of exogenous TGFβ have been examined in cultured B lineage cells representative of almost every developmental stage, and are usually inhibitory. Early studies showed that TGFβ inhibits the proliferative response of BM B cell progenitors (BCP) to IL7, and that it can inhibit κLC acquisition in a differentiating B lineage cell line (Lee et al., 1987; Kincade et al., 1989). Similar observations have been made for κ light chains in human fetal BM cultures (Rehmann and LeBien, 1994). However, these studies did not distinguish the effects of TGFβ on pro-B versus pre-B cells within one system. Induction of the transcriptional regulator Id3 by TGFβ, together with inhibition of cell cycling and Rag1 mRNA expression has also been demonstrated (Kee et al., 2001). TGFβ effects at later mature B and plasma cells stages are almost exclusively negative with the exception of inducing IgA isotype switching (Kim and Kagnoff, 1990; Lehman et al., 1990; Shockett and Stavnezer, 1991). These studies indicate that TGFβ can inhibit the in vitro survival, proliferation and differentiation of antibody-producing B cells at all stages of development.

An inhibitory role for TGFβ in the immune system is supported by the phenotype of juvenile TGFβ1−/− mice (Christ et al., 1994). Infiltrates of plasma cells are found in secondary lymphoid organs and also in non-lymphoid tissues where they accompany inflammatory infiltrates of other hematopoietic cells (Christ et al., 1994; Kulkarni et al., 1995; van Ginkel et al., 1999). The mice also have increased levels of anti-nuclear and anti-collagen serum antibodies (Dang et al., 1995; Yaswen et al., 1996) and hyperproliferation in the splenic B cell follicles (Christ et al., 1994).

These observations, together with the described inhibitory effects of TGFβ on in vitro B cell development, predicted the expansion of B cell progenitors in the absence of TGFβ in vivo. We found instead an age-related deficiency in B cell development in TGFβ1−/− mice. The complication of the co-existing inflammatory disease in these mice lead us to re-examine the in vitro effects of TGFβ1 on defined sub-populations of normal BM B lineage cells. The results of this combined approach indicate that deficiencies in the earliest B cell progenitors in the TGFβ1−/− mice are likely to be due to secondary effects of the phenotype, since pro-B cell growth is inhibited by TGFβ1 in vitro. By contrast, TGFβ1 increases the recovery of the large pre-B cells. Collectively, these observations demonstrate that TGFβ1 is required for normal B cell development in vivo, and indicate differential sensitivity of B cell progenitors to TGFβ according to their stage of differentiation.

MATERIALS AND METHODS

Flow Cytometry

TGFβ1−/− mice were derived from TGFβ1+/− crosses as described (Kulkarni et al., 1993). Erythrocyte-depleted BM cells were recovered from TGFβ1−/− mice and aged-matched TGFβ1+/− littermate controls on a mixed C57BL/6 × SVI/J129 background. All incubations for flow cytometry were on ice for 15 min, followed by washing with 1% FBS in PBS. Aliquots of 10⁶ cells from each mouse were stained with combinations of fluorochrome-conjugated antibodies specific for CD43 (S7), CD4 (30H12) and B220 (RA3-6B2) from BD Pharmingen (San Diego, CA), IgD (SBA-1) and goat anti-mouse IgM from Southern Biotechnology Associates (Birmingham, AL). Stained cells were analyzed using a Becton-Dickinson FACSCalibur flow cytometer (San Diego, CA). Values from TGFβ1+/− and TGFβ1−/− mice were compared using a Student’s t-Test.

Cell Culture

Erythrocyte-depleted BM from 4- to 5-week-old female C57BL/6 mice was purified by centrifugation over a Lymphocyte M gradient (Cedar Lane, Hornby, Ont., Canada). B220+ cells were isolated by positive selection with magnetic beads (Miltenyi, Auburn, CA); sorting
efficiency was assessed by flow cytometry to be 85 ± 8%.

FACS®-sorted cells were purified with a MoFlo flow

cytometer (Cytomation, Fort Collins, CO) using anti-

CD19 (clone 6D5 from Southern Biotechnology Associ-

ates, Birmingham, AL), anti-BP1 and anti-lgM (as above).

5 × 10⁶ sorted cells/ml were plated in complete IMDM

(5% FCS, 5 × 10⁻³ M 2ME, 1% each l-glutamine,

penicillin/streptomycin, non-essential amino acids) and

treated with 10 ng/ml recombinant mouse IL7 (PeproTech,

Rocky Hill, NJ) ± recombinant human TGFβ1 (R and D

Systems, Minneapolis, MN). Two doses of 0.04 ng/ml

(1.6 pM) or 1 ng/ml (40 pM) were compared in all of the

experiments shown here because dose-response exper-

iments showed distinct read-outs at these two concen-

trations. Harvested cells were counted by Trypan Blue

exclusion and surface-stained for B220 (as above) and

sIgM [goat anti-mouse IgMcy5 from Jackson Laboratories

(Bar Harbor, ME) or MB86 Alexa647 from John Kearney

(Birmingham, AL)], or control antibodies. These cells

were fixed in 1% paraformaldehyde, permeablized with

tween 20 and stained intracellularly with a goat anti-

mouse μ antibody. For some experiments, the CytoFix/

Cytoperm kit from Pharmingen was used according to

the manufacturer’s instructions. The pre-B cell growth

rate was calculated as (pre-B cell number recovered

on day 7 - pre-B cell number recovered on day 3)/4

days = cells/day.

RESULTS

Age-dependent BM B Lineage Cell Reductions in

TGFβ1⁻/⁻ Mice

Flow cytometry was used to examine the proportions

(Fig. 1A,B) and absolute numbers (Fig. 1C) of B220⁺ B

lineage cells in the BM of neonatal (1.5-week-old) and

juvenile (3.5-week-old) TGFβ1⁻/⁻ mice. The 1.5-week-

old TGFβ1⁻/⁻ mice were comparable to the TGFβ1⁺/+ literator

te (LM) controls at the early, sIgM⁻ and later, sIgM⁺ stages. By contrast, 3.5-week-old mice showed a

significant 2.6-fold reduction in the percentage of

B220⁺sIgM⁻ cells, corresponding to a significant 4.6-

fold reduction in absolute cell number. Absolute numbers

and percentages of B220⁺sIgM⁺ B cells were also

reduced, although not consistently.

The cell surface marker system described by Hardy et al. (1991) was used to further define the B lineage developmental stages affected by the TGFβ1 deficiency, and the results were calculated both as a percentage of total BM (Fig. 2A,B) and as absolute cell numbers (Fig. 2C). In TGFβ1⁻/⁻ mice examined at 3.5

weeks of age, the percentage of cells in Fraction B

(B220⁺CD43⁺HSA⁺BP1⁻), including pro- and pre-B

cells (Wasserman et al., 1997), was not significantly

changed, although the absolute numbers of these cells were

2.6-fold reduced. The percentage and absolute number of

pre-B cells in Fraction C (B220⁺CD43⁺HSA⁺BP1⁻)

FIGURE 1 B cell development in TGFβ1⁻/⁻ mice. BM from

TGFβ1⁻/⁻ mice and age-matched TGFβ1⁺/+ (LM) controls was

prepared for flow cytometry as indicated in “Methods” section.

(A) Profiles of gated lymphocytes showing expression of B220 and

sIgM. Values indicated are the per cent of total BM. (B) Percentage of
total BM for individual mice. *p = 0.0001 for the B220⁺sIgM⁻ BCP

between TGFβ1⁻/⁻ and LM controls. (C) Absolute numbers of cells for

the populations shown in A and B. **p = 0.008.
FIGURE 2 B cell progenitor deficiencies in juvenile TGFβ1−/− BM. BM lymphocytes from 3.5-week-old TGFβ1−/− mice and LM controls were prepared for flow cytometry as in Fig. 1 using the indicated markers. (A) Representative flow cytometry profiles gated on the B220+CD43+ or B220+CD43− lymphocyte populations as indicated. Values indicated are the per cent of total BM. (B) Percentage of total BM for individual mice.

* p ≤ 0.001 between TGFβ1−/− and LM controls. (C) Absolute numbers of B lineage cells for mice represented in A and B. ** p ≤ 0.02 between TGFβ1−/− and LM controls.
were significantly reduced by 3.0- and 5.0-fold, respectively. The late pre-B cells in Fraction D (B220⁺CD43⁻IgM⁺IgD⁻) were proportionally reduced by 4.6-fold and in absolute cell number by 8.2-fold. The subsequent immature B cells, Fraction E (B220⁺CD43⁻IgM⁺IgD⁺) were proportionally reduced by 5.7-fold and in absolute number by 9.2-fold. Mature B cells (B220⁺CD43⁺IgM⁺IgD⁺), Fraction F) in the BM were variably increased or decreased in proportion and in absolute number (Fig. 2C) as was observed in the periphery (not shown and Christ et al., 1995). It should be noted that Fraction A (B220⁺CD43⁺HSA⁺BP1⁺) is not consistently affected in the TGFβ1⁻/⁻ mice (Fig. 2A and not shown); however, not all the cells in this population are progenitors of the B lineage (Tudor et al., 2000).

In vitro, the reductions seen in Fraction B were statistically significant when calculated as absolute numbers of cells recovered (2.6-fold), but not as a percentage of total BM cells. This might suggest that Fraction B itself is unchanged, and that the smaller size of the TGFβ1⁻/⁻ mice (Shull et al., 1992; Boivin et al., 1995; Kulkarni et al., 1995), and therefore smaller bone cavity, is the cause of this reduction in cell number. However, normalizing the cell number to body weight of each mouse still results in a significant reduction in Fraction B, although the degree of reduction is less, at 1.8-fold (+/+, 1.46 × 10⁵ ± 4.98 × 10⁴ cells/g; −/−, 8.08 × 10⁵ ± 2.27 × 10⁵ cells/g, p = 0.048). The reduction in Fraction C, however, is significant regardless of how the data are calculated: as a proportion of total BM (3.0-fold), as an absolute cell number (5.0-fold), and also as a normalized cell number [3.6-fold (+/+, 2.90 × 10⁴ ± 632 cells/g; −/−, 810 ± 463 cells/g, p = 0.00091)].

A summary of a more extensive analysis of mice at different ages is shown in Table I as the frequency of TGFβ1⁻/⁻ mice with reductions of ≥2-fold in the absolute numbers of BM B lineage cells. These mice are not included in Fig. 2 because a different number of bones per mouse were used for the analysis. Although there is some variability, these results confirm the age-dependent decrease in BCP in the TGFβ1⁻/⁻ mice. The frequencies of mature B cells are reduced in slightly more than half of the mice, which may be due to variable experiences of these recirculating cells in the periphery. Phenotypic variability in TGFβ1⁻/⁻ mice has been noted in other contexts, for example, inflammation in organs other than heart and lung (Shull et al., 1992; Kulkarni and Karlsson, 1993; Boivin et al., 1995; Kulkarni et al., 1995).

Activated T cells are responsible for much of the characteristic inflammatory phenotype of the TGFβ1⁻/⁻ mouse (Diebold et al., 1995; Kobayashi et al., 1999). To ask whether the BCP reductions in the TGFβ1⁻/⁻ mice were associated with an altered BM microenvironment, Thy1.2 and Mac1 were used as markers for BM T and myeloid cells, respectively. Although the Thy1.2⁺ population was proportionally increased in all 3.5-week-old mice examined (Fig. 3A), this did not correlate with increased cell numbers in most mice (Fig. 3B). The proportions of Mac1⁺ cells were increased in half of the mice examined (Fig. 3C); however, once again, this generally did not correspond to an increase in the absolute numbers of myeloid lineage cells (Fig. 3D). One explanation for the observed discrepancy between the percentages and absolute cell numbers may again be the smaller size of the TGFβ1⁻/⁻ mice (Shull et al., 1992; Boivin et al., 1995; Kulkarni et al., 1995). However, when the data were normalized to body weight, a similar pattern was observed for Thy1.2 (+/+, 1.8 × 10⁴ ± 1.1 × 10⁴ cells/g; −/−, 4.4 × 10⁴ ± 2.6 × 10⁴ cells/g), and for Mac1 (+/+, 7.5 × 10⁴ ± 1.1 × 10⁵ cells/g; −/−, 11.1 × 10⁴ ± 4.8 × 10⁴ cells/g). These findings show that there is an altered cellular composition of the BM in the TGFβ1⁻/⁻ mice, including changes in the proportions of

TABLE I Frequency of BM B lineage compartment reductions in TGFβ1⁻/⁻ mice

Age	sIgM⁺	sIgM⁻	B	C	D	E	F
1–2 weeks	1/7	1/7	0/4	0/4	1/7	1/7	3/7
>2 weeks	10/14	3/14	7/11	10/13	11/12	9/12	7/12

* Number of TGFβ1⁻/⁻ mice with reductions in absolute cell numbers of ≥2-fold compared to LM controls per number of TGFβ1⁻/⁻ mice examined.
† According to (Hardy et al., 1991; Li et al., 1993; Li et al., 1996).
myeloid and T lineage cells. However, the absolute numbers of these cells are not consistently increased in all of the mice that had an equally severe reduction in BCP. Therefore, a global disruption of the BM microenvironment seems unlikely, although our analysis does not exclude possible inhibitory effects of inflammatory/myelopoietic foci on the B lineage cells in TGFβ1−/− BM.

Exogenous TGFβ1 Effects upon Normal Pro- and Pre-B Cells In Vitro

The complex pathology of the TGFβ1−/− mice and the lack of correlation between the frequency of Thy1.2+ and Mac1+ BM cells and the BCP deficiency lead us to re-examine the effects of TGFβ1 on B cell development in vitro. We asked whether TGFβ1 might be beneficial for B cell development as suggested by the phenotype of the TGFβ1−/− mice. B220+ BM B lineage cells from normal (C57BL/6) mice were treated with TGFβ1 in the presence of IL7, a cytokine that stimulates BCP proliferation prior to the late-pre-B cell stage (Hardy et al., 1991; Marshall et al., 1998). Stromal cells were not included in our system due to their ability to produce and respond to TGFβ (Dittel et al., 1993; Dittel and LeBien, 1995; Robledo et al., 1998; Olsen et al., 2001).

Intracellular (i.e.) μHC expression in B220+IgM− BCP was used to identify pre-B cells recovered from cultures of IL7-stimulated B220+ BM cells (Fig. 4A). At day 3 in the control sample of IL7 alone (first column), there was a predominance of pre-B cells; however, the pro-B cell-enriched population (i.e. μHC− BCP) predominated by day 7. It should be noted that a majority of the pre-B cells in the starting population are late pre-B cells, which do not proliferate in response to IL7 (Hardy et al., 1991; Marshall et al., 1998). During the course of a week-long culture, these cells should either expire or mature to become IgM+ B cells and thus be excluded from the analysis. Meanwhile, IL7-responsive pro-B cells accumulate and predominate in the cultures by day 7.

Addition at day 0 of either 0.04 or 1 ng/ml TGFβ1 to the IL7 cultures resulted in little change at day 3 in the percentage of pre-B cells compared to IL7 alone (Fig. 4A). However, both treatments resulted in a consistent reduction in the total viable cell numbers recovered (not shown) corresponding to a 2-fold reduction in both pro- and pre-B cell numbers at day 3 of culture [Fig. 4B (Bottom) and C, respectively].

At the later timepoints of 5 and 7 days, TGFβ1 treatment resulted in a small increase in the proportion of pre-B cells in comparison to IL7 alone (Fig. 4A). This was partially due to reductions in pro-B cell numbers in the presence of TGFβ1 (Fig. 4B). In contrast to reductions in pre-B cell numbers seen at day 3 of culture, treatment with 0.04 ng/ml TGFβ1 resulted in a modest increase in the numbers of pre-B cells recovered at 5 and 7 days. By contrast, treatment with 1 ng/ml TGFβ1 showed minor pre-B cell reductions at later timepoints (Fig. 4C).

The initial reductions in pre-B cells indicate that some cells are likely to be sensitive to the inhibitory effects of TGFβ1. However, the remaining pre-B cell population either has, or acquires a very high proliferative capacity, indicated by a significant 4-fold increase in the rate of growth between 3 and 7 days (Fig. 4D).

To identify the populations responsible for these distinct outcomes, we initiated similar experiments using sort-purified BM. The BP1 cell surface marker was used to subdivide normal BM into two sub-populations of CD19+IgM− BCP: (1) BP1− cells, ~60% of which are Ic μHC+, and (2) large BP1+ cells, ~90–99% Ic μHC+ (not shown). Between days 3 and 7 in culture with IL7 alone, the number of BP1− derived-pro- and pre-B cells increased (Fig. 5A,B, respectively); in each case and at all time points, 0.04 and 1 ng/ml exogenous TGFβ1 resulted in reduced cell recovery. TGFβ1-mediated reductions in pro-B cell recoveries were also confirmed using CD19+Rag1−/− BM as a source of pro-B cells (not shown).

In contrast to the cell growth observed with IL7 alone in cultures of BP1− BCP, the large BP1+ pre-B cells decreased in number between days 3 and 7 (Fig. 5C). In this context, treatment with either dose of TGFβ1 resulted in an initial decrease in pre-B cell recoveries, but subsequently, low-dose TGFβ1 treatment resulted in a net increase at days 5 and 7 of culture (2.1 ± 0.7 and 3.0 ± 0.6-fold increase, respectively over IL7 alone; n = 3 experiments).

Figure 5D summarizes the effects of low-dose TGFβ1 treatment where the diameter of each circle relative to the control (1.0) represents the average fold change in cell number. As seen on day 3, each stage analyzed contains cells that are sensitive to the inhibitory effects of TGFβ1. TGFβ1-mediated reductions continue over time for BP1− BCP-derived pro- and pre-B cells, whereas the BP1+ fraction contains cells that are positively affected by exogenous TGFβ1 treatment at a low-dose (0.04 ng/ml). At a later timepoint in the culture, IgM+ B cells accumulate as well (Fig. 5D and data not shown).

DISCUSSION

We have demonstrated an age-dependent reduction in BM B lineage cells in TGFβ1−/− mice. The deficiency is apparent as early as Hardy’s Fraction B, containing pro-B cells and extends through the immature B cell stage. The mice also have variable increases in the proportions and numbers of BM Thy1.2+ and Mac1+ cells, but these do not consistently correlate with the reduction in B lineage cells. Subsequent studies of the in vitro effects of exogenous TGFβ1 on BM B lineage cells from normal mice showed reductions in pro-B cell recoveries as early as day 3 and continuing through day 7 of incubation at pg/ml doses of TGFβ1. Although the same cultures showed an initial decrease in pre-B cell numbers, this was followed by increases at days 5 and 7 translating into a 4-fold increase in the rate of growth for the pre-B cell.
population. By sort-purification of the starting BCP subpopulations, the large BP1+ pre-B cell fraction was identified as containing the cells that are increased in response to TGFβ1.

Reductions in BM-BCP in TGFβ1−/− mice were unanticipated because TGFβ had been previously shown to have inhibitory effects upon the B lineage in vitro (Lee et al., 1987; Kincade et al., 1989; Lee et al., 1989; Rehmann and LeBien, 1994; Kee et al., 2001). The reductions in vivo may thus be due to an unrecognized necessity for a TGFβ receptor signal directly upon B lineage cells. Alternatively, effects secondary to the TGFβ1 deficiency, e.g. soluble factors produced by infiltrating inflammatory cells, circulating prostaglandins or sex hormones (Kincade et al., 1989; Wang et al., 1995; Kincade et al., 2000), which could be directly regulated by TGFβ1 or induced in response to inflammatory stress may be responsible. Alterations in cellular adhesion may also contribute to dysregulated B lymphopoiesis in the BM (Dittel et al., 1993; Dittel and LeBien, 1995).

B cell development is apparently normal in very young (1.5 week) TGFβ1−/− mice and deteriorates thereafter.

FIGURE 4 Differential effects of TGFβ1 on pro- versus pre-B cells. B220+ BM cells from 4-week-old C57BL/6 mice were treated with IL7 ± the indicated concentrations of TGFβ1. (A) Flow cytometry histograms of i.c.µHC staining within the B220+ sIgM– BCP gate of cells recovered at the indicated times. Values are the percent i.c.µHC+ within the total viable sample (± standard deviations from 3 experiments). (B) Absolute numbers of pro-B-enriched (B220+sIgM+ i.c.µHC+) cells recovered over time from one representative experiment of three. (C) Absolute numbers of pre-B (B220+ sIgM+ i.c.µHC+) cells over time from the experiment shown in B. (D) Pre-B cell growth is indicated as the average number of cells generated per day. This was calculated as the number of cells at day 7 of culture minus the cell number at day 3 divided by 4 days. The mean ± sample standard deviations from 3 experiments are shown. *p = 0.0015 versus 0 ng/ml TGFβ1.
This age dependency may be due to maternal TGFβ1, acquired in utero or during nursing, compensating early in life for the lack of de novo production (Letterio et al., 1994) and delaying the onset of defects in B lymphopoiesis. Alternatively, BCP derived from older mice may have a differential sensitivity to TGFβ1 in comparison to those generated earlier in life, as differences have been observed for BCP at different stages of ontogeny (Kearney et al., 1997; Hardy et al., 2000; Igarashi et al., 2001).

In either case, the mature B cells found in the BM and periphery of 3- to 5-week old TGFβ1−/− mice are likely generated at an earlier age when B cell development is unaffected by the TGFβ1 mutation. Thy1.2+ BM cells were examined in TGFβ1−/− mice because activated T cells have been shown to be responsible for the systemic inflammation that these mice acquire (Kulkarni and Karlsson, 1993; Diebold et al., 1995; Kulkarni et al., 1995; Borkowski et al., 1996; Letterio et al., 1996; McCartney-Francis et al., 1997; Nakabayashi et al., 1997; Kobayashi et al., 1999; McLennan et al., 2000). Mac1+ myeloid lineage BM cells were also examined because enhanced myelopoiesis,
an apparent consequence of TGFβ1 deficiency (Boivin et al., 1995; Letterio et al., 1996), correlates with suppressed B lymphopoiesis (Buske et al., 2001; Fraker and King, 2001). Macrophages are a component of the cellular infiltrate seen in other tissues, such as the heart, in these mice (Boivin et al., 1995; Kulkarni et al., 1995; Letterio et al., 1996), and their activation products, including interleukin 1 and the interferons, have been shown to be inhibitory for BCP (Dorskind, 1988; Wang et al., 2001). The analysis of T and myeloid cells in individual TGFβ1−/− mice indicates variable alterations in the cellular composition of the BM; however, there was no consistent correlation with BCP reductions. Moreover, when TGFβ1−/− mice are rendered deficient in CD8+ T cells, by backcrossing to a β2-microglobulin (MHC Class I) deficient genetic background, which prevents the T cell-mediated inflammatory disease, total B220+ BM B lineage cells are still reduced (Kobayashi et al., 1999). This deficiency in B lineage cells, as in our studies, is specific to the BM, and is not observed in the spleen. We have attempted to address the role of the T cell-mediated inflammatory response in the BCP deficiency by breeding TGFβ1−/− and TCRα−/− mice. However, no doubly homozygous mutant offspring were obtained.

Another approach has been to examine B cell development in a model where only B lineage cells are unresponsive to TGFβ. In mice conditionally gene-targeted for the TβRII subunit of the TGFβ receptor specifically in B cells, the early B lineage cells in the BM were reportedly unchanged in comparison to the controls (Cazac and Roës, 2000). However, the CD19cre deletion system used in these studies is less efficient in late pre-B cells (75–80%) than in splenic B cells (90–95%) (Rickert et al., 1997). It is thus unclear whether and at what efficiency TβRII deletion occurs at earlier stages of B cell development, since TGFβ responsiveness was not examined in the BM B lineage cells of these mice. However, in the periphery, where B lineage cells had defective TGFβ receptor signaling, populations of mature B lymphocytes were increased, as were serum levels of anti-nuclear antibodies indicating a direct inhibitory role for TGFβ on B lineage cells at later stages (Cazac and Roës, 2000).

If BCP deficiencies in TGFβ1−/− mice are due to a requirement for a direct TGFβ receptor signal on these cells, we reasoned that using a defined culture system with rIL7 and purified BM B lineage cells from normal mice, we could identify sub-populations that benefit from exposure to exogenous TGFβ1. In IL7-containing cultures, pro-B cell recoveries were consistently decreased by low-dose TGFβ1 treatment. An often-overlooked population of i.e. μHC+ pre-B cells, included in Hardy’s Fraction B, is also reduced by TGFβ1 in culture. By contrast, the numbers of pre-B cells derived from large BP1+ BCP were increased. Notably, the more severe in vitro BCP reductions in TGFβ1−/− mice begin in Fraction C, which corresponds to the large BP1+ pre-B cells in our cultures.

The effects of TGFβ on cell cycle and apoptosis may provide an alternative explanation for our in vitro data. Pro-B cells proliferating in response to IL-7 eventually mature into i.e. μHC+ pre-B cells and then exit cell cycle. At low doses, TGFβ may inhibit proliferation of the pro-B cells, which then may complete IgH chain gene rearrangement and express μHC. This outcome would result in the observed decrease in pro-B cells and increase in pre-B cells. Higher doses of TGFβ may induce pro-B cell apoptosis, thus accounting for the decrease in both pro- and pre-B cells. However, this interpretation does not account for the net increase in pre-B cells with low dose TGF-β in cultures initiated with large BP1+ cells, 90–99% of which already express μHC.

In conclusion, TGFβ1 influences B cell development in multiple ways including directly inhibiting pro-B cell/early pre-B cell populations. The BP1+ pre-B cells are unique among B lineage cells in their positive response to exogenous TGFβ1. It is currently unclear why the large pre-B cells respond to TGFβ in this way. It has been suggested that the stability of the preBCR, which varies depending upon the μHC variable region, may regulate cellular viability and proliferation (Melchers et al., 2000). A pre-B cell with a well-fitting preBCR would receive proliferative/viability signals via the receptor itself, and consequently the cell could be changed in other ways to give it the greatest advantage over cells with a poorly fitting preBCR. Differential responsiveness to TGFβ may be one such phenotypic change and would be advantageous for expanding the numbers of these positively selected pre-B cells.

Acknowledgements

We thank Max D. Cooper, John F. Kearney, Flavius Martin and Robert P. Stephan for discussion and assistance, Larry Gartland for cell sorting, Jeff Nyswaner for animal care, and Ann Brookshire for editorial assistance. Supported by National Institutes of Health Grants AI48098 and HD36312; D.A. Kaminski was supported by T32AI07051-26.

References

Boivin, G.P., O’Toole, B.A., Orsumby, I.E., Diebold, R.J., Eis, M.J., Doetschman, T. and Kier, A.B. (1995) “Onset and progression of pathological lesions in transforming growth factor-β 1-deficient mice”, American Journal of Pathology 146, 276–288.

Bonijadi, M., Rusholme, S.A., Cousins, F.M., Su, H.C., Biron, C.A., Farrall, M. and Akhurst, R.J. (1997) “Mapping of a major genetic modifier of embryonic lethality in TGF β 1 knockout mice”, Nature Genetics 15, 207–211.

Borghei, L.A., Smithson, G. and Kincade, P.W. (1997) “Stromal cell modulation of negative regulatory signals that influence apoptosis and proliferation of B lineage lymphocytes”, The Journal of Immunology 159, 4171–4179.

Borkowski, T.A., Letterio, J.J., Farr, A.G. and Udey, M.C. (1996) “A role for endogenous transforming growth factor β1 in Langerhans cell biology: the skin of transforming growth factor β1 null mice is devoid of epithelial Langerhans cells”, Journal of Experimental Medicine 184, 2417–2422.
Bottinger, E.P., Letterio, J.J. and Roberts, A.B. (1997) “Biology of TGF-β in knockout and transgenic mouse models”, *Kidney International* 51, 1355–1360.

Buske, C., Feuring-Buske, M., Antontchik, J., Rosten, P., Hogge, D.E., Eaves, C.J. and Humphries, R.K. (2001) “Overexpression of HOXA10 perturbs human lymphomyelopoiesis in vitro and in vivo”, *Blood* 97, 2266–2292.

Candelas, S., Muegge, K. and Durum, S.K. (1997) “IL-7 receptor and transcript levels”, *Blood* 74, 303–311.

Cazac, B.B. and Rois, J. (2000) “TGF-β receptor controls B cell responsiveness and induction of Igα in vivo”, *Immunity* 13, 443–451.

Christ, M., McCartney-Francis, N.L., Kulkarni, A.B. and Ward, J.M. (1994) “Immune dysregulation in TGF-β-deficient mice”, *Journal of Immunology* 153, 1936–1946.

Corcoran, A., Koons, D. and Venkitaraman, A.R. (1998) “Impaired immunoglobulin gene rearrangement in mice lacking the IL-7 receptor”, *Nature* 391, 904–907.

Dang, H., Geiser, A.G., Letterio, J.J., Nakabayashi, T., Kong, L., Ponsand, G. and Talal, N. (1995) “TGF-β1 evokes epithelial-like neutrophil and T lymphocytes responses”, *Nature* 377, 74–78.

Dittel, B.N. and LeBien, T.W. (1995) “Reduced expression of vascular cell adhesion molecule-1 (VCAM-1)”, *Journal of Immunology* 155, 3205–3212.

Diebold, R.J., Eis, M.J., Yin, M., Ormsby, I., Gress, R.E., Duroux, R.J., Saltie, J.E. and Doetcheum, T. (1995) “Early-onset multifocal inflammation in the transforming growth factor β1-null mouse is lymphocyte-mediated”, *Proceedings of the National Academy of Sciences of the United States of America* 92, 12125–12129.

Dickson, M.C., Martin, J.S., Coussens, E.M., Kulkarni, A.B., Karlsson, S. and Akhurst, R.I. (1995) “Defective haematopoiesis and vasculogenesis in transforming growth factor-β1 knockout mice”, *Development* 121, 1845–1854.

Dittel, B.N. and LeBien, T.W. (1995) “Reduced expression of vascular cell adhesion molecule-1 on bone marrow stromal cells isolated from marrow transplant recipients correlates with a reduced capacity to support human B lymphopoiesis in vitro”, *Blood* 86, 2833–2841.

Dittel, B.N., McCarthy, J.B., Wayner, E.A. and LeBien, T.W. (1993) “Regulation of human B-cell precursor adhesion to bone marrow stromal cells by cytokines that exert opposing effects on the expression of vascular adhesion molecule-1 (VCAM-1)”, *Blood* 81, 2272–2282.

Dorskind, K. (1988) “IL-1 inhibits B cell differentiation in long term bone marrow cultures”, *Journal of Experimental Medicine* 162, 531–538.

Fraker, P.J. and Le, E. (2001) “A distinct role for apoptosis in the changes in lymphopoiesis and myelopoiesis created by deficiencies in zinc”, *FASEB Journal* 15, 2572–2578.

Gimble, J.M., Portugalli, C., Henley, A., Dorheim, M.A., Silver, J., Nam, A., Takeichi, M., Goridis, C. and Kincade, P.W. (1989) “Characterization of murine bone marrow and spleen-derived stromal cells: analysis of leukocyte marker and growth factor mRNA expression in murine bone marrow stromal cells”, *Journal of Immunology* 143, 511–518.

van Ginkel, F.W., Wahl, S.W., Kearney, J.F., Kweon, M.N., Fujishita, K., Burrows, P.D., Kyono, H. and McGhee, M.R. (1999) “Partial IgA deficiency with increased Th2-type cytokines in TGF-β1 knockout mice”, *The Journal of Immunology* 163, 1951–1957.

Hardy, R.R. (1992) “Variable gene usage, physiology and development of Ly-1+ (CD5+) B cells”, *Current Opinion in Immunology* 4, 181–185.

Hardy, R.R., Carmack, C.E., Shinton, S.A., Kemp, J.D. and Hayakawa, K. (1989) “Reduction and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow”, *Journal of Experimental Medicine* 173, 1213–1225.

Hardy, R.R., Wasserman R., Li, Y.S., Shinton, S.A., Hayakawa, K. (2000) “Lack of IL-7 receptor expression on bone marrow B cells” indicates differences between fetal liver and bone marrow”, “Current Topics in Microbiology and Immunology 252, 25–30.

Hoeprich, P.A., Koons, D., Gress, R.E., LeBien, T.W. and Venkitaraman, A.R. (1998) “Mechanisms of TGF-β-induced cell cycle arrest”, *Mineral and Electrolyte Metabolism* 24, 131–135.

Igarashi, H., Kouro, T., Yokota, T., Comp, P.C. and Kincade, P.W. (2001) “Age and stage dependence of estrogen receptor expression by lymphocyte precursors”, *Proceedings of the National Academy of Sciences of the United States of America* 98, 15131.

Itoh, N., Yasunaga, M., Hirashima, M., Yoshida, O. and Nishikawa, S.I. (1996) “Role of IL-7 and KL in activating molecules controlling the G0/G1 transition of B precursor cells”, *International Immunology* 8, 317–323.

Kaartinen, V., Voncken, J.W., Shuler, C., Warburton, D., Bu, D., Heisterkamp, N. and Groffen, J. (1995) “Abnormal lung development and cleft palate in mice lacking TGF-β3 indicates defects of epithelial-mesenchymal interaction”, *Nature Genetics* 11, 415–421.

Kearney, J.F., Won, W.J., Benedict, C., Moratz, C., Zimmer, P., Oliver, A., Martin, F. and Shu, F. (1997) “B cell development in mice”, *International Reviews of Immunology* 15, 207–241.

Kee, B.L., Rivera, R.R. and Murer, C. (2001) “β1 inhibits B lymphocyte progenitor growth and survival in response to TGFβ3”, *Nature Immunology* 2, 242–247.

Kim, P.H. and Ragnoff, M.F. (1990) “Transforming growth factor β1 increases IgA isotype switching at the clonal level”, *Journal of Immunology* 145, 3773–3778.

Kim, L.T. and Yamada, K.M. (1997) “The regulation of expression of integin receptors”, *Proceedings of the Society for Experimental Biology and Medicine* 214, 123–131.

Kincade, P.W., Lee, G., Pietrangelo, C.E., Hayashi, S. and Gimble, J.M. (1989) “Cells and molecules that regulate B lymphopoiesis in bone marrow”, *Annual Review of Immunology* 7, 111–143.

Kincade, P.W., Medina, K.L., Payne, K.J., Rossi, M.L., Tudor, K.S., Yamashita, Y. and Kouro, T. (2000) “Early B-lymphocyte precursors and their regulation by sex steroids”, *Immunological Reviews* 175, 128–137.

King, A.G., Wierda, D. and Landreth, K.S. (1988) “Bone marrow stromal cell regulation of B-lymphopoiesis. I. The role of macrophages, IL-1, and IL-4 in pre-B cell maturation”, *Journal of Immunology* 141, 2016–2026.

Kobayashi, S., Yoshida, K., Ward, J.M., Letterio, J.J., Longenecker, G., Yaswen, L., Mittelman, B., Mozes, E., Roberts, A.B., Karlsson, S. and Kulkarni, A.B. (1999) “β2-microglobulin-deficient background ameliorates lethal phenotype of the TGF-β1 null mouse”, *Journal of Immunology* 163, 4013–4019.

Kulkarni, A.B. and Karlsson, S. (1993) “Transforming growth factor-β1 knockout mice. A mutation in one cytokine gene causes a dramatic inflammatory disease”, *American Journal of Pathology* 143, 3–9.

Kulkarni, A.B., Huh, C.G., Becker, D., Geiser, A., Lyght, M., Flanders, K.C., Roberts, A.B., Sporn, M.B., Ward, J.M. and Karlsson, S. (1993) “Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death”, *Proceedings of the National Academy of Sciences of the United States of America* 90, 770–774.

Kulkarni, A.B., Ward, J.M., Yaswen, L., Mackall, C.L., Baur, S.R., Huh, C.G., Gress, R.E. and Karlsson, S. (1995) “Transforming growth factor β1 null mice. An animal model for inflammatory disorders”, *American Journal of Pathology* 146, 264–275.

Kashyap, A., Wang, Y.S., Hayakawa, K. and Hardy, R.R. (1993) “The regulated expression of β2-microglobulin-deficient background by TGF-β1 null mouse”, *Journal of Immunology* 153, 3205–3212.

Kawasaki, M., Kimura, T., Gikosho, S., Takahashi, M., Furukawa, T., Hayakawa, K., Tsuchi, K., Mita, Y., Kato, Y., Takeuchi, O., Yoshida, O., Nishikawa, S.I. and Hayakawa, K. (2001) “B cell development in mice”, *International Reviews of Immunology* 15, 207–241.

Li, Y.S., Wasserman, R., Hayakawa, K. and Hardy, R.R. (1996) “Identification of the earliest B lineage stage in mouse bone marrow”, *Immunity* 5, 527–535.
Marshall, L.J., Fleming, H.E., Wu, G.E. and Paige, C.I. (1998) “Modulation of the IL-7 dose-response threshold during pro B cell differentiation is dependent on pro B cell receptor expression”, *The Journal of Immunology* 161, 6038–6045.

Martin, J.S., Dickson, M.C., Cousins, F.M., Kulkarni, A.B., Karlsson, S. and Akhurst, R.J. (1995) “Analysis of homozygous TGF-β1 null mouse embryos demonstrates defects in yolk sac vasculogenesis and hematopoiesis”, *Annals of the New York Academy of Sciences* 752, 300–308.

Massague, J., Cheifetz, S., Laiho, M., Ralph, D.A., Weiss, F.M. and Zentella, A. (1992) “Transforming growth factor-β”, *Cancer Surveys* 12, 81–103.

McCartney-Francis, N.L. and Wahl, S.M. (1994) “Transforming growth factor-β: a matter of life and death”, *Journal of Leukocyte Biology* 55, 401–409.

McCartney-Francis, N.L., Mizel, D.E., Frazier-Jessen, M., Kulkarni, A.B., McCarthy, J.B. and Wahl, S.M. (1997) “Lacrima gland inflammation is responsible for ocular pathology in TGF-β1 null mice”, *American Journal of Pathology* 151, 1281–1288.

McLennan, I.S., Poupart, Y. and Koishi, K. (2000) “Development of skeletal muscles in transforming growth factor-β1 (TGF-β1) null mutant mice”, *Developmental Dynamics* 217, 250–256.

Meffre, E., Casellas, R. and Nussenzweig, M.C. (2000) “Antibody regulation of B cell development”, *Nature Immunology* 1, 379–385.

Melchers, F., ten Boekel, E., Kong, X.C., Yamagami, T., Onishi, K., Shimizu, T., Rolink, A.G. and Andersson, J. (2000) “Repertoire selection by pre-B-cell receptors and B-cell receptors, and genetic control of B-cell development from immature to mature B cells”, *Immunological Reviews* 175, 33–46.

Nakabayashi, T., Letterio, J.J., Geisen, A.G., Kong, O., Ogawa, N., Zhao, W., Kisko, T., Fernandes, G., Dang, H. and Talal, N. (1997) “Up-regulation of cytokine mRNA, adhesion molecule proteins, and MHC class II proteins in salivary glands of TGF-β1 knockout mice: MIC class II is a factor in the pathogenesis of TGF-β1 knockout mice”, *Journal of Immunology* 158, 5527–5535.

Olsen, N.J., Gu, X. and Kovacs, W.J. (2001) “Bone marrow stromal cells mediate androgenic suppression of B lymphocyte development”, *Journal of Clinical Investigation* 108, 1697–1704.

Osmond, D.G. (1991) “Proliferation kinetics and the lifespan of B cells in central and peripheral lymphoid organs”, *Current Opinion in Immunology* 3, 179–185.

Papavasilou, F., Jankovic, M., Gong, S. and Nussenzweig, M.C. (1997) “Control of immunoglobulin gene rearrangements in developing B cells”, *Current Opinion in Immunology* 9, 233–239.

Peschon, J.J., Morrissey, P.J., Grabstein, K.H., Ramsdell, F.J., Maraskovsky, E., Gliniak, B.C., Park, L.S., Ziegler, S.F., Williams, D.E., Ware, C.B., et al., (1994) “Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice”, *Journal of Experimental Medicine* 180, 1955–1960.

Ravitz, M.J. and Werner, C.E. (1997) “Cyclin-dependent kinase regulation during G1 phase and cell cycle regulation by TGF-β1”, *Advances in Cancer Research* 71, 165–207.

Rehmann, J.A. and LeBien, T.W. (1994) “Transforming growth factor-β regulates normal human pre-B cell differentiation”, *International Immunology* 6, 315–322.

Rickert, R.C., Roes, J. and Rajewsky, K. (1997) “B lymphocyte-specific, CRE-mediated mutagenesis in mice”, *Nucleic Acids Research* 25, 1317–1318.

Rifkin, D.B., Kojima, S., Abe, M. and Harpel, J.G. (1993) “TGF-β: structure, function, and formation”, *Thrombosis and Haemostasis* 70, 177–179.

Roberts, A.B., McCune, B.K. and Sporn, M.B. (1992) “TGF-β regulation of extracellular matrix”, *Kidney International* 41, 557–559.

Robledo, M.M., Sanz-Rodriguez, F., Hidalgo, A. and Teixido, J. (1998) “Differential use of very late antigen-4 and -5 integrins by hematopoietic precursors and myeloma cells to adhere to transforming growth factor-β1-treated bone marrow stroma”, *Journal of Biological Chemistry* 273, 12056–12060.

Rolinik, A.G., ten Boekel, E., Yamagami, T., Ceredig, R., Andersson, J. and Melchers, F. (1999) “B cell development in the mouse from early progenitors to mature B cells”, *Immunology Letters* 68, 89–93.

Sanford, L.P., Ormsby, L., Gittenbergedregoot, A.C., Sariola, H., Friedman, R., Boivin, G.P., Cardell, E.L. and Doetschman, T. (1997) “TGF-β2 knockout mice have multiple developmental defects that are non-overlapping with other TGF-β knockout phenotypes”, *Development* 124, 2659–2670.

Shockett, P. and Stavnezer, J. (1991) “Effect of cytokines on switching to Igα and alpha gemline transcripts in the B lymphoma I.29 mu. Transforming growth factor-β1 gene results in multifocal inflammatory disease”, *Nature* 359, 693–699.

Shull, M.M., Ormsby, I., Kier, A.B., Pawlowski, S., Diebold, R.J., Yin, M. and Allen, R. (1992) “Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease”, *Nature* 359, 693–699.

Tudor, K.S., Payne, K.J., Yamashita, Y. and Kincade, P.W. (2000) “Functional assessment of precursors from murine bone marrow suggests a sequence of early B lineage differentiation events”, *Immunity* 12, 335–345.

Wahl, S.M. (1994) “Transforming growth factor β: the good, the bad, and the ugly”, *Journal of Experimental Medicine* 180, 1587–1590.

Wang, J., Lin, Q., Langston, H. and Cooper, M.D. (1995) “Resident bone marrow macrophages produce type 1 interferons that can selectively inhibit interleukin-7-driven growth of B lineage cells”, *Immunity* 3, 475–484.

Wasserman, R., Li, Y.S. and Hardy, R.R. (1997) “Down-regulation of terminal deoxynucleotidyl transferase by Ig heavy chain in B lineage cells”, *Journal of Immunology* 158, 1133–1138.

Yaswen, L., Kulkarni, A.B., Fredrickson, T., Mittleman, B., Schiffman, R., Payne, S., Longenecker, G., Mozes, E. and Karlsson, S. (1996) “Autoimmune manifestations in the transforming growth factor-β1 knockout mouse”, *Blood* 87, 1439–1445.