WHAT IS THE ECONOMIC IMPACT OF DIFFERENT TYPES OF EMS RESPONSE?

J Turner*, H Bell-Gorrod, S Dixon. SHARR, University of Sheffield, Sheffield, UK

Aim Modern EMS provides a range of response options including management by:
1. telephone,
2. management and discharge or
3. referral at scene or transport to hospital.

We used linked data of ambulance records, hospital records and national mortality statistics for all calls to one ambulance service in England in a 6 month period to assess the costs associated with each response option.

Method We calculated costs for each type of EMS response using the linked data and NHS Reference Costs. We then used two risk adjusted indicators measuring:
1. rates of telephone or at scene management attending ED or admitted to hospital within 3 days and
2. rates of patients taken to hospital and discharged from ED without treatment to identify matched cases of correct and incorrect response decisions to compare costs of each decision type.

Results 1 87 387 cases were included with 5.6% managed by telephone (mean cost £125), 28% discharged at scene (mean cost £415) and 66.4% transported to hospital (mean cost £1745). Mean cost of an incorrect transport decision was £415) and 66.4% transported to hospital (mean cost £1745). Mean cost of an incorrect transport decision was an additional £313 and an incorrect non-transport decision £237 per case.

Conclusion The main reason for differences in response types is impatient costs for admitted patients. Improvement in decision making about whether or not to take people to hospital could potentially result in substantial savings in urgent care system costs.

Conflict of interest None

Funding NHS England.

DEVELOPMENT OF RISK ADJUSTED INDICATORS OF EMS PERFORMANCE AND QUALITY (PHOEBE PROGRAMME)

1 J Turner*, 1 R Jacques, 1 J Coster, 1 J Nicholl, 1 A Crum, 4 N Sivardera. 1SHARR, University of Sheffield, Sheffield, UK; 2CAHRU, University of Lincoln, Lincoln, UK

Aim Measurement of EMS performance and quality has been confined to response times or a small number of acute conditions and do not account for patient or system factors that may affect outcome. We developed a small set of consensus derived risk adjusted indicators to potentially measure EMS performance reflect and assessed what risk factors need to be included.

Method We developed 5 indicators:
1. mean change in pain score,
2. % accuracy of identification of 16 emergency conditions,
3. % inappropriate decisions to leave patients at scene,
4. % patients transported to ED not needing hospital facilities,
5. % survival to admission and 7 days for 16 emergency conditions.

We also created a linked dataset of ambulance, hospital and mortality data. For each indicator we used a 3 step process to build multivariable statistical models using a range of variables including age, gender, condition, environment (deprivation), health area and treating hospital.

Results 1 87 387 cases were available. One indicator (mean change in pain score) did not require risk adjustment. For all other indicators age, condition (or call reason) and deprivation were included in the final model. Gender was also included in indicators 2, 3 and 4 and hospital had an effect in indicators 4 and 5.

Conclusion We have created a set of indicators to reflect care for a broad range of EMS callers and care provided. Overall, a range of factors influence outcome and risk adjusted indicators are needed to provide fair and accurate assessments of performance.

Conflict of interest None

Funding NIHR Programme Grants for Applied Research.