Introduction

The inner ear is derived from a simple patch of otic placode adjacent to the hind brain. After formation of the otic cup and vesicle, otic neuroblasts delaminate from the otic epithelium around E9.0 by initiating neurogenic gene-mediated programs, such as neurogenin1. These neural precursors generate otic neurons, which are also known as cochleovestibular ganglion (CVG) cells [1]. After CVG complexes are separated into the spiral and vestibular ganglion, developing spiral ganglion neurons (SGNs) promote neuronal outgrowth between E12.5 and E15.5, and regulate peripheral axon guidance to synapse with their target hair cells [2,3]. This process of auditory neurogenesis depends on well-organized complex signaling networks comprised of trophic factors such as phosphatidylinositol 3 kinase (PI3K)/Akt and insulin-like growth factor I (IGF-I), as well as morphogens, including the Wnt family, cell adhesion molecules and transcriptional regulators [4–8]. Several studies of knockout mice and in vitro cultures have provided evidence of their important roles in neural survival, neurite outgrowth and nerve innervations to target hair cells of the inner ear [6,9,10]. However, spatiotemporal gene expression and the complex molecular networks in neuronal development in the inner ear are not yet fully understood.

Phosphatase and tensin homolog (PTEN), a lipid phosphatase, is negatively regulated by PI3K signaling and contributes to cellular processes including proliferation, differentiation and migration [11–14]. Many studies have investigated the function of Pten loss in mice, which causes profound alterations in the regulation of cellular maintenance in a cell-type specific manner in various organs [15–17]. Recently, we characterized the phenotype of inner-ear-specific Pten conditional knockout (cKO) mice, which demonstrated abnormal phenotypes (e.g., ectopic hair cells in the cochlear sensory epithelium and neuronal defects) [15]. In particular, mouse inner ear lacking Pten had neuronal deficits such as disorganized nerve fibers with apoptosis of spiral ganglion. Thus, Pten is believed to be one of the functional regulators that maintain differentiation of SGNs during inner ear development.

Understanding of the signaling networks during inner ear development may provide molecular information regarding the pathways underlying the maintenance of sensory cells and neurons to prevent hearing impairment. Microarray analysis may provide information that allows prediction of novel signaling networks by analyzing the spatiotemporal pattern of gene expression during inner ear neurogenesis [18–20]. Thus, analysis of changes in gene expression profiles and signaling networks obtained from Pten mutants may identify potential novel targets and regulatory mechanisms associated with neuronal maintenance during inner ear development.
tissue dissection and RNA extraction

The generation and characterization of inner ear-specific \textit{Pten} cKO (\textit{Pten}^{loxP/loxP}; \textit{Pten}^{Cre+}) and wild-type (\textit{Pten}^{+/+} or \textit{Pten}^{+/loxP}) mice was described previously [15]. \textit{Pten} cKO and littermate wild-type mice were used on E14.5 (60 embryos from each group). The entire inner ear tissues including the cochlea and vestibule, as well as the surrounding otic capsule, were micro-dissected in sterile, chilled phosphate-buffered saline (PBS) under a stereomicroscope (Olympus SZ61, Olympus Corporation, Tokyo, Japan). Three independent pools of inner ear tissues from each group were homogenized with a tissue grinder (Kimble Chase, Vineland, NJ, USA). Total RNA from three independent pools of inner ears was extracted with TRIzol following the manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA). To eliminate DNA contamination, total RNA was treated with DNase I (Roche Applied Science, Mannheim, Germany) before use in the microarray analysis or real-time polymerase chain reaction (RT-PCR). The concentration and purity of extracted total RNA were measured using both the spectrophotometric method at 260 and 280 nm, and RNA electrophoresis.

Microarray data analysis

Gene expression profiles were generated using the Illumina MouseRef-8 version 2.0 Expression BeadChip Illumina, Inc., San Diego, CA, USA. Three biological replicates (three chips for wild-type samples and three chips for \textit{Pten} cKO samples) were performed for microarray hybridization experiments. Biotinylated cRNA was prepared from 550 ng total RNA using the Illumina TotalPrep RNA Amplification kit (Ambion, Austin, TX, USA). Following fragmentation, 750 ng of cRNA was hybridized to the Illumina MouseRef-8 version 2.0 Expression Beadchip according to the manufacturer’s instructions. Array chips were scanned using the Illumina Bead Array Reader Conofocal scanner. Microarray data were analyzed using Illumina GenomeStudio Gene expression Module (version 1.5.4) and deposited in NCBI Gene Expression Omnibus Database (GEO, http://www.ncbi.nlm.nih.gov/geo/; #GSE49562) in agreement with the MIAME requirements. The significance analysis microarrays (SAM) software was used with the false-discovery rate (FDR) set at 0 or 0.05. SAM (FDR = 0) allowed the identification of genes whose expression varied significantly between the wild-type and \textit{Pten} cKO groups [21]. Hierarchical clustering was carried out using the R software [22]. Ingenuity Pathway Analysis (IPA; Ingenuity Systems, http://www.ingenuity.com) tools were used to analyze possible functional relationships between selected differentially expressed genes (DEGs).

Quantitative reverse-transcription PCR

Quantitative real-time PCR (qRT-PCR) was performed to validate the microarray data. Each pooled RNA sample was converted to cDNA using random hexanucleotide primers with a High Capacity cDNA Reverse Transcription kit according to the manufacturer’s instructions (Applied Biosystems, Carlsbad, CA, USA). The list of PCR primer sequences for selected genes is provided in Table S1. 18S rRNA was used as an endogenous control for normalization. The PCR reaction was performed in quadruplicate using SYBR Green PCR Master Mix and an ABI 7500 machine with the version 2.0.6 software under the following conditions (Applied Biosystems): denaturation at 95°C for 10 min followed by 40 cycles of amplification (95°C for 15 sec, 60°C for 1 min). The relative expression level of each target gene in an experimental sample compared with the wild-type sample was analyzed using SDS Relative Quantification (RQ) Manager software as described by the manufacturer (Applied Biosystems). RQ levels were calculated using the comparative C_T (2^{ΔΔC_T}) method [23]. Relationships between the microarray data and qRT-PCR were analyzed using Pearson’s correlation coefficient (\(r\)) from GraphPad Prism (GraphPad Software, http://www.graphpad.com).

In Situ hybridization

For E14.5 embryos, pregnant mice were sacrificed by decapitation and fixed in 4% paraformaldehyde in PBS overnight at 4°C, dehydrated in 30% sucrose in PBS overnight at 4°C, placed in embedding medium (Tissue Tek OCT compound; Torrance, CA, USA), and stored at −80°C until use. Tissues were sectioned at 10-μm thickness for in situ hybridization, which was performed as described previously, with minor modifications [24]. At least three embryos were tested for each selected gene at E14.5. Sense RNA probes were also included as controls, which showed no signal in the inner ear. All primers for RNA probes for otoancorin (\textit{Otoa}), β-tectorin (\textit{Tectb}), parvalbumin (\textit{Pvalb}), \textit{Spp1}, and \textit{Rgs4} are listed in Table S1.

Results and Discussion

Identification of genes differentially expressed between wild-type and \textit{Pten} cKO mice at E14.5

Recently, we reported that \textit{Pten} cKO mice showed severe abnormalities in neuronal maintenance with increased production of hair cells during inner ear development [15]. To identify the changes caused by \textit{Pten} deficiency-induced regulation of genes in the developing inner ear, we analyzed DEGs within inner ears at E14.5. Using SAM analysis, we identified a total of 46 transcripts with an FDR = 0 that significantly distinguished the wild-type and \textit{Pten} cKO groups. Among the transcripts, 45 genes were upregulated and one was downregulated in \textit{Pten} cKO mice, and are listed in Table 1. While the patterns of gene expression between \textit{Pten} cKO and wild-type samples were highly similar according to pair-wise comparisons with correlation coefficients (data not shown), 46 DEGs were significantly selected, and their segregation was clearly shown by clustering analysis of a heat map (Fig. 1).

Validation of the microarray by quantitative RT-PCR

Among the DEGs, 16 candidate genes were selected to validate by qRT-PCR; the DEGs were chosen for either their fold changes (>1.5) and/or potential roles associated with inner ear development (Table 2). These genes included \textit{Tectb}, \textit{Otoa}, and \textit{Esrrb}, the mutations of which are associated with hearing loss [25–30]. In addition, peptide YY (\textit{Ppy}) and integrin beta 6 (\textit{Itgb6}) were
Table 1. Differentially expressed genes in wild-type and Pten cKO mice at E14.5.

Target ID	Gene symbol	Definition	Fold change
ILMN_2443330	Ttr	transthyretin	3.94
ILMN_2754364	Ltf	lactotransferrin	2.28
ILMN_2710905	S100a8	S100 calcium binding protein A8 (calgranulin A)	2.00
ILMN_1260585	Stfa2	stefin A2	1.89
ILMN_1259546	Pyy	peptide YY	1.87
ILMN_2803674	S100a9	S100 calcium binding protein A9 (calgranulin B)	1.85
ILMN_2690603	Spp1	secreted phosphoprotein 1	1.83
ILMN_2634484	Tectb	tectorin beta	1.71
ILMN_2988931	Stfa1	stefin A1	1.70
ILMN_2735754	Otoa	otocancorin	1.67
ILMN_2596522	Mt1	metallothionein 1	1.67
ILMN_2712075	Lcn2	lipocalin 2	1.65
ILMN_2805372	Itgb6	integrin beta 6	1.64
ILMN_2648669	Gpmb	glycoprotein (transmembrane) mmb	1.64
ILMN_1251894	Dct	dopachrome tautomerase	1.57
ILMN_1244081	Rgs4	regulator of G-protein signaling 4	1.56
ILMN_1228497	Esrb	estrogen related receptor, beta	1.56
ILMN_1244169	Sftpd	surfactant associated protein D	1.52
ILMN_2933022	Plekhb1	plekstrin homology domain containing, family B	1.52
ILMN_1226157	Pik3r3	phosphatidylinositol 3 kinase, regulatory subunit	1.52
ILMN_1244829	Hap1	huntingtin-associated protein 1	1.51
ILMN_2955694	Spag1	sperm associated antigen 1	1.49
ILMN_2995688	EG433016	predicted gene, EG433016	1.46
ILMN_1213954	Sgk1	serum/glucocorticoid regulated kinase 1	1.45
ILMN_2769777	Msc	musculin	1.45
ILMN_2629112	Ash3l	N-acylphosphogine amidohydrolase 3-like	1.44
ILMN_1258853	Lgsf1	immunoglobulin superfamily, member 1, transcript variant	1.42
ILMN_2768972	Fam107a	family with sequence similarity 107, member A	1.41
ILMN_2826110	Cat	catalase	1.41
ILMN_2625893	Ces3	carboxylesterase 3	1.40
ILMN_2766004	Camp	cathelicidin antimicrobial peptide	1.40
ILMN_1229131	Wfdc3	WAP four-disulfide core domain 3	1.40
ILMN_2718589	Fcna	ficolin A	1.40
ILMN_1220193	Slc26a4	solute carrier family 26, member 4	1.39
ILMN_2941888	Gna4l4	gene model 414	1.39
ILMN_2668093	Rec8	REC8 homolog (yeast)	1.38
ILMN_1254295	Sox21	SRY-box containing gene 21	1.38
ILMN_3091003	Ms4a7	membrane-spanning 4-domains, subfamily A, member7, transcript variant	1.37
ILMN_2667829	Pkqc	protein kinase C, theta	1.37
ILMN_2776034	Gal	galanin	1.37
ILMN_2651582	9630031F12Rik	RIKEN cDNA 9630031F12 gene	1.35
ILMN_1229763	Dmkn	dermokine, transcript variant 2	1.34
ILMN_1236758	Wfdc2	WAP four-disulfide core domain 2	1.33
ILMN_2715840	C1qc	complement component 1, q subcomponent, C chain	1.32
ILMN_2593774	1190002H23Rik	RIKEN cDNA 1190002H23 gene	1.31
ILMN_1218223	Pvalb	parvalbumin	1.62

doi:10.1371/journal.pone.0097544.t001
Figure 1. Microarray analysis identifies novel Pten targets. Heat maps for relative gene expression of interest (FDR = 0) obtained from three microarrays comparing Pten cKO to wild-type embryos. Green and red indicate decreased and increased expression, respectively, in Pten cKO mice. doi:10.1371/journal.pone.0097544.g001
Table 2. Genes selected for validation of microarray data by qRT-PCR.

Gene	Accession #	Microarray	qRT-PCR
Ttr	NM_013697.3	3.94	15.53
Ltf	NM_008522.3	2.28	5.40
S100a8	NM_013650.2	2.00	6.21
Pyy	NM_145435.1	1.87	4.52
S100a9	NM_009114.1	1.85	7.09
Spp1	NM_009263.1	1.83	3.62
Tectb	NM_009348.3	1.71	6.64
Otoa	NM_139310.1	1.67	3.02
Mt1	NM_013602.2	1.67	4.73
Itgb6	NM_021359.2	1.64	6.42
Dct	NM_010024.2	1.57	3.99
Bsg4	NM_009062.3	1.56	3.24
Esrb	NM_011934.3	1.56	4.43
Pik3r3	NM_181585.5	1.52	3.58
Hap1	NM_010404.2	1.51	2.58
Pvalb	NM_1218223	−1.62	0.40

doi:10.1371/journal.pone.0097544.t002

identified; these have not been previously reported in the mammalian inner ear. For all analyzed upregulated genes in Pen cKO compared to wild-type mice, the average fold change from the qRT-PCR results showed a significant correlation of gene expression changes, as revealed by the microarray data (Pearson’s correlation coefficient, $r = 0.876$). This result indicates that changes in the expression of selected DEGs were validated by qRT-PCR while confirming the gene expression results obtained by microarray analysis.

In situ expression patterns for selected candidates

To confirm the changes in expression of DEGs in the inner ear, we performed in situ hybridization for the selected DEGs, i.e., Otoa, Tectb, Pvalb, Spp1, and Rgs4 (Figs. S1A–D). Higher expression of Otoa and Tectb was observed in the cochlea of Pen cKO mice than in the cochlea of wild-type mice (Fig. S1A–D). Many studies have reported that mutations in Otoa and Tectb cause hearing loss [25,26,28–30]. Inner ear-specific Otoa is reportedly expressed on the surface of the spiral limbus and greater epithelial ridge in the cochlea. Mutant mice lacking Otoa showed that otoancorin is required for the attachment of the tectorial membrane (TM) to the surface of the spiral limbus [28,29]. The TM is composed of collagen proteins, and other non-collagen proteins such as α-tectorin and β-tectorin, and all essential for auditory function. Tectb-null mutant mice develop deafness as well as mutation of Tecta [30,31]. Further functional characterization is needed to determine whether a Pen deficiency-induced upregulated pattern of Otoa and Tectb expression leads to abnormal function of the TM.

In particular, changed expression levels of several genes were detected in the Pen-deficient SGNs; i.e., Pvalb, Spp1, and Rgs4. We found that the levels of Pvalb, a neuronal marker [32], were downregulated (Fig. S1E, F). Reduced levels of Pvalb expression may be explained by the loss of Pvalb-expressing neurons in Pen-deficient mice. We observed increased levels of Spp1 (also known as osteopontin, Opa) and Rgs4 expression in Pen-deficient SGNs compared to the wild-type (Fig. 2). In the cochlea and vestibular dark cells, Spp1 may be responsible for regulation of ions in the inner ear fluid. The role of Spp1 in SGNs may be associated with regulation of nitric oxide production, which is considered to be associated with auditory neurotransmission in adenosine triphosphate (ATP)-induced Ca2+ signaling [33,34]. Functionally, several lines of evidence have shown that Spp1 may play a role in neurodegeneration [35,36]. Upregulation of Spp1 was detected in lesions or within the cerebral or spinal fluid in patients with neurodegenerative conditions such as Alzheimer’s and Parkinson’s diseases. Spp1-knockout mice showed reduced neurodegeneration induced by MPTP [37]. Following crush injury to the optic nerve, strongly expressed Spp1 by macrophages may have inhibitory effects on axon growth [38]. Therefore, inhibition of axon outgrowth described in Pen cKO mice (i.e., shortened length of spiral ganglion toward the modiolus) may be at least partly explained by the dysregulation of Spp1 expression in SGNs.

Inhibitory regulators of G protein signaling 4 (RGS4), a schizophrenia susceptibility gene, is one of the RGS that includes the Gαi/o and Gαq families and is required for modulation of neurotransmission in the nervous system [39,40]. In mice, the expression of Rgs4 is observed in peripheral and central neuronal precursors [41,42]. In the chicken spinal cord, Rgs4 has been suggested to play a role in neuronal differentiation in cooperation with paired-like homeodomain protein PHOX2b and the basic helix-loop-helix protein MASH1 [41]. Thus, our data suggest that the increased expression of Rgs4 in the Pen-deficient SGNs compared to wild-type mice may play a role in neurogenesis.

Network analysis

To examine signaling networks during neuronal maintenance in the Pen-deficient inner ear, networks were subjected to IPA analysis with 82 DEGs (FDR <0.05) (Fig. 3). IPA analysis identified significant biological functions, including auditory disease, cell death and survival, and cellular movement (data not shown). Auditory diseases included Otoa, Tectb, estrogen-related
levels of Spp1 directly induces migration of human lung cancer cells (A549 cells) through activation of Rgs4 [48,49]. Although approximately 50% of neuroblasts after focal cerebral ischemia [46]. Furthermore, produced by macrophages and microglia induces lateral migration of SPP1 have been implicated in cellular migration; i.e., SPP1 are required to elucidate the mechanism by which altered expression induces disturbance of neuronal migration through Akt signaling in SGNs. Consistent with the microarray results, expression of the Rgs4-Akt signaling pathway in the developing SGNs is not fully understood, we suggest that Rgs4-Akt-mediated signaling networks may be associated with neuronal defects in the Pten-deficient SGNs (e.g., abnormal path-finding of neurites and irregularly gathered radial bundles).

Finally, IPA analysis revealed two core gene (Spp1; red line and Rgs4; blue line)-mediated networks in SGNs of the Pten-deficient inner ear (Fig. 3). These networks were also associated with the axonal guidance signaling pathway, which includes several mediators, such as G protein, frizzled homolog 6 (Drosophila Fzd6), protein kinase C (Pkc), Akt, PI3K, Erk1/2, Fak, and Pck theta (Pckq). Therefore, we suggest that partially modulated functions of the axonal guidance signaling pathway are involved in axonal development in Pten cKO mice [50–53].

Conclusions

In this study, we investigated profiles of significantly differentially expressed transcripts and their respective networks associated with Pten deficiency in the developing inner ear at E14.5. We suggest the presence of core signaling networks mediated by upregulated expression of Spp1 and Rgs4, which also include several key factors associated with apoptosis, cellular movement, and axon guidance. This may be explained in terms of phenotypic defects implicated in neuronal differentiation of Pten-deficient SGNs during inner ear development (e.g., neuronal apoptosis,
shortened axon length, abnormal cell movement, and irregular neurite path-finding of SGNs). Our gene expression profiles will facilitate understanding of the neuronal maintenance in developing spiral ganglion. However, the functional roles of these candidates should be examined in future studies.

Supporting Information

Figure S1 Expression patterns of Otoa, Tectb, and Pvalb during inner ear development at E14.5. Expression levels of Otoa (A, B), Tectb (C, D), and Pvalb (E, F) were determined by in situ hybridization at E14.5. Otoa transcripts were identified on the surface of the spiral limbus and greater epithelial ridge in the cochlea (A, B). Expression domains of Tectb were observed in the sensory epithelium of the cochlea (C, D). The neuronal marker Pvalb was expressed in SGNs (E, F). Consistent with the microarray data, the expression levels of Otoa (B) and Tectb (D) were higher, and that of Pvalb (F) was lower, in Pten cKO mice than in wild-type mice. Scale bars: 100 μm.

Acknowledgments

This research was assisted in part by the Korean BioInformation Center (KOBIC) research support program.

Author Contributions

Conceived and designed the experiments: HJK SKK. Performed the experiments: HJK JR HMW. Analyzed the data: HJK SSC MKS TP SKK. Contributed reagents/materials/analysis tools: MKS SCK MHP. Wrote the paper: HJK SKK.
References

1. Coate TM, Kelley MW (2013) Making connections in the inner ear: Recent insights into the development of spiral ganglion neurons and their connectivity with sensory hair cells. Xenopus Cell Dev Biol 26: 460–469.

2. Bell D, Streit A, Gorospe I, Varela-Nieto I, Alcasin B, et al. (2008) Spatial and temporal segregation of auditory and vestibular neurons in the otic placode. Dev Biol 322: 109–120.

3. Appler JM, Goodrich LV (2011) Connecting the ear to the brain: Molecular mechanisms of auditory circuit assembly. Prog Neurobiol 93: 468–508.

4. Sanchez-Calderon H, Milo M, Leon Y, Varela-Nieto I, Sanchez-Calderon H (2012) AKT signaling mediates IGF-I survival actions on otic neural progenitors. PLoS One 7: e60750.

5. Camarero G, Villar MA, Contreras J, Fernandez-Moreno C, Pichel JG, et al. (2002) Cochlear abnormalities in insulin-like growth factor-1 mouse mutants. Hear Res 176: 2–11.

6. Charron F, Tesnier-Lavigne M (2007) The Hedgehog, TGF-beta/BMP and Wnt families of morphogens in axon guidance. Adv Exp Med Biol 621: 116–133.

7. Salinas PC (2012) Wnt signaling in the vertebrate central nervous system: axon guidance to synaptic function. Cold Spring Harb Perspect Biol 4.

8. Yang T, Kesige J, Jahan I, Pan N, Fritsch B (2011) The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hear Res 278: 21–33.

9. Appler JM, Lu CC, Drueckesond NR, Yu WM, Koundakjian EJ, et al. (2013) Genomic analysis of the function of the transcription factor gata3 in spiral cochlear neurons. PLoS One 8: e55609.

10. Kim HJ, Woo HM, Ryu J, Bok J, Kim JW, et al. (2013) Conditional deletion of PTEN in the inner ear reveals its role in neurodegeneration. PLoS One 8: e535–541.

11. Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, et al. (1998) The lipid kinase PTEN is critical for a tumor suppressor function. Proc Natl Acad Sci U S A 95: 13513–13518.

12. Cavet LC, Neel BG (1999) New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A 96: 4240–4245.

13. Groszer M, Erickson R, Scripture-Adams DD, Lesche R, Trumpp A, et al. (1998) The lipid phosphatase activity of PTEN is critical for its tumor suppressor function. Proc Natl Acad Sci U S A 95: 13513–13518.

14. Davis RL, Lopez CA, Moskowitz PJ (1995) Essential for motility and axonogenesis mediated by Akt signaling. Cell Mol Life Sci 52: 1955–1968.

15. Ding J, Guzman JN, Tkatch T, Chen S, Goldberg JA, et al. (2006) Regulation of early spine formation by the GSK-3beta antagonist lithium. Cell 125: 891–903.

16. Appler JM, Lu CC, Drueckesond NR, Yu WM, Koundakjian EJ, et al. (2013) PTEN in neural precursor cell regulation of migration, apoptosis and proliferation. Mol Cell Neurosci 50: 21–29.

17. Iczkiewicz J, Jackson MJ, Smith LA, Rose S, Jenuwein P (2006) Osteopontin gene in vivo. Science 314: 2196–2199.

18. Haims MD, Sidierowski DP, Harden TK (2004) Application of RGS box proteins to evaluate G-protein selectivity in receptor-promoted signaling. Methods Enzymol 389: 71–88.

19. Sanchez-Calderon H, Rodriguez-de la Rosa L, Milo M, Pichel JG, Alcasin B, et al. (1998) PTEN is essential for cell migration but not for fate determination and tumorigenesis in the cerebellum. Development 125: 3313–3322.

20. Koschwank H, Schoenije-Rivolta D, Kocbek A, Van Doornink M, Johnson C, et al. (2009) Genomic analysis of the function of the transcription factor gata3 during development of the mammalian inner ear. PLoS One 5: e1144.

21. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116–5121.

22. Dudot S, Gentleman RC, Quackenbush J (2005) Open source software for the analysis of microarray data. Biotechniques Suppl. 43–51.

23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.

24. Cover G, Choo D, Ryan A, Johnson R, Wu DK (1998) Development of the mouse inner ear and origin of its sensory organs. J Neurosci 18: 3327–3335.

25. Richardson GP, de Monvel JB, Petit C (2011) How the genetics of deafness illuminates auditory physiology. Annu Rev Physiol 73: 311–334.

26. Klie S, Chiu I, Zhao S, Xiao X, Shi S, et al. (2012) Novel OTOA mutations cause autosomal recessive non-syndromic hearing impairment in Pakistani families. Clin Genet.

27. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116–5121.

28. Zwaenepoel I, Mustapha M, Leibovici M, Verpy E, Goodyear R, et al. (2002) Expression of otoconin in the endolymph of the inner ear. Hear Res 278: 21–33.

29. Lu CC, Appler JM, Drueckesond NR, Yu WM, Koundakjian EJ, et al. (2013) Genomic analysis of the function of the transcription factor gata3 in spiral cochlear neurons. PLoS One 8: e55609.

30. Ghaffari R, Aramony AJ, Richardson GP, Freeman DM (2010) Tectal membrane travelling waves underlie abnormal hearing in Tectb mutant mice. Nat Commun 1: 96.

31. Russell JJ, Legan PK, Lukashkina VA, Lukashkin AN, Goodyear RJ, et al. (2007) Sharpened cochlear tuning in a mouse with a genetically modified tectal membrane. Nat Neurosci 10: 215–223.

32. Huang EJ, Liu W, Fritsch B, Bianchi LM, Reichardt LF, et al. (2001) Ben3a is a transcriptional regulator of soma size, target field innervation and axon pathfinding of inner ear sensory neurons. Development 128: 2421–2432.

33. Sakagami M (2000) Role of otoquinostin in the rodent inner ear as revealed by in situ hybridization. Med Electron Microsc 33: 3–10.

34. Davis RL, Lopez CA, Moskowitz PJ (1995) Expression of otoquinostin in the inner ear. Ann N Y Acad Sci 769: 279–295.

35. Comi C, Careccio M, Chiocchetti A, Nicola S, Galimberti D, et al. (2010) Otoquinostin is increased in the cerebrospinal fluid of patients with Alzheimer’s disease and its levels correlate with cognitive decline. J Alzheimers Dis 19: 1143–1148.

36. Ikizkiewicz J, Jackson MJ, Smith LA, Rose S, Jenuwein P (2006) Otoquinostin expression in substantia nigra in MPTP-treated primates and in Parkinson’s disease. Cell Neurosci 20: 21–29.

37. Maetzler W, Berg D, Schalambri BR, Mena S, Schott K, et al. (2007) Otoquinostin is elevated in Parkinson’s disease and its absence leads to reduced neurodegeneration in the MPTP model. Neurobiol Dis 25: 473–482.

38. Kurz P, Zlicker P, Soll G, Hartung HP, Jander S (2005) Otoquinostin, a macrophage-derived matricellular glycoprotein, inhibits axon outgrowth. Faseb J 19: 390–400.

39. Comi C, Careccio M, Chiocchetti A, Nicola S, Galimberti D, et al. (2010) Otoquinostin is increased in the cerebrospinal fluid of patients with Alzheimer’s disease and its levels correlate with cognitive decline. J Alzheimers Dis 19: 1143–1148.

40. Salinas PC (2012) Wnt signaling in the vertebrate central nervous system: axon guidance to synaptic function. Cold Spring Harb Perspect Biol 4.

41. Ding J, Guzman JN, Tkatch T, Chen S, Goldberg JA, et al. (2006) Regulation of early spine formation by the GSK-3beta antagonist lithium. Cell 125: 891–903.

42. Appler JM, Lu CC, Drueckesond NR, Yu WM, Koundakjian EJ, et al. (2013) Genomic analysis of the function of the transcription factor gata3 in spiral cochlear neurons. PLoS One 8: e55609.

43. Zwaenepoel I, Mustapha M, Leibovici M, Verpy E, Goodyear R, et al. (2002) Expression of otoconin in the endolymph of the inner ear. Hear Res 278: 21–33.

44. Davis RL, Lopez CA, Moskowitz PJ (1995) Essential for motility and axonogenesis mediated by Akt signaling. Cell Mol Life Sci 52: 1955–1968.

45. Ding J, Guzman JN, Tkatch T, Chen S, Goldberg JA, et al. (2006) Regulation of early spine formation by the GSK-3beta antagonist lithium. Cell 125: 891–903.

46. Appler JM, Lu CC, Drueckesond NR, Yu WM, Koundakjian EJ, et al. (2013) Genomic analysis of the function of the transcription factor gata3 in spiral cochlear neurons. PLoS One 8: e55609.