Octamer-binding proteins from B or HeLa cells stimulate transcription of the immunoglobulin heavy-chain promoter in vitro

Jonathan H. LeBowitz, 1,2 Tsuyoshi Kobayashi, 1,2,4 Louis Staudt, 2,3,5 David Baltimore, 2,3 and Phillip A. Sharp 1,2

1Center for Cancer Research, and 3Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA; 4Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 USA

The B-cell-type specificity of the immunoglobulin (Ig) heavy-chain and light-chain promoters is mediated by an octanucleotide (OCTA) element, ATGCAAAT, that is also a functional component of other RNA polymerase II promoters, such as snRNA and histone H2B promoters. Two nuclear proteins that bind specifically and with high affinity to the OCTA element have been identified. NF-A1 is present in a variety of cell types, whereas the presence of NF-A2 is essentially confined to B cells, leading to the hypothesis that NF-A2 activates cell-type-specific transcription of the Ig promoter and NF-A1 mediates the other responses of the OCTA element.

Extracts of the B-cell line, BJA-B, contain high levels of NF-A2 and specifically transcribe Ig promoters. In contrast, extracts from HeLa cells transcribed the Ig promoter poorly. Surprisingly, addition of either affinity-enriched NF-A2 or NF-A1 to either a HeLa extract or a partially purified reaction system specifically stimulates the Ig promoter. This suggests that the constitutive OCTA-binding factor NF-A1 can activate transcription of the Ig promoter and that B-cell-specific transcription of this promoter, at least in vitro, is partially due to a quantitative difference in the amount of OCTA-binding protein. Because NF-A1 can stimulate Ig transcription, the inability of this factor to activate in vivo the Ig promoter to the same degree as the snRNA promoters probably reflects a difference in the context of the OCTA element in these two types of promoters.

[Key Words: Cell-type specificity; octanucleotide element; transcription; NF-A1; NF-A2]

Received June 6, 1988; revised version accepted August 23, 1988.

Cell-type-specific regulation of transcription is mediated through the interaction of sequence-specific DNA binding proteins with cis-acting elements associated with genes (McKnight and Tjian 1986; Sassone-Corsi and Borrelli 1986; Maniatis et al. 1987; Guarente 1988; Peterson and Calame 1987). In contrast, only a single cell-type-specific transcriptional element, the octanucleotide [OCTA] element [ATGCAAAT = OCTA], has been identified in the Ig promoter [Faulkner and Zachau 1984; Parslow et al. 1984; Grosschedl and Baltimore 1985; Mason et al. 1985]. This element is found 20–30 nucleotides upstream of the TATA box in the heavy-chain promoter and in an inverted orientation in the k-chain promoter. It is also a functional component of the heavy-chain enhancer. In each of these contexts, the OCTA element has been shown to direct cell-type-specific transcription of the cis-linked gene [Bergmann et al. 1984; Faulkner and Zachau 1984; Foster et al. 1985; Gopal et al. 1985; Picard and Schaffner 1985; Mizushima-Sugano and Roeder 1986; Dreyfus et al. 1987; Lenardo et al. 1987; Wirth et al. 1987]. However, the OCTA element has also been identified as a functional element in a number of genes that are transcribed in all cell types. The human histone H2B gene contains the OCTA element 10 bp upstream of the TATA box [Sivc and Roeder 1986]. In this context, the OCTA element stimulates transcription of the H2B gene.
promoter, whereas OTF-1 can activate transcription of for the cell-type-specific transcription from Ig pro-

vitrO, purified OTF-2 can activate transcription of an Ig

dependence genes transcribed in all cell types. In fact, in

LeBowitz

DNase I footprinting and methylation interference

moters, whereas NF-A1 activates the class of OCTA-de-

ghiable DNA binding characteristics, as exhibited by

grating DNA-protein complex-containing factor NF-A1

is also identifiable by its faster-migrating complex forma-

ed by OCTA element has revealed two major protein-DNA

complexes whose quantities vary in different cell types

Landolfi et al. 1986; Staudt et al. 1986). The slower-mi-

nucleotides of product RNAs that were accurately initi-

products of the transcription reactions were analyzed by

MLP. These inserts were complementary to 89 and 220

nucleotides of product RNAs that were accurately initi-

Hybridization to bacteriophage M13 single-stranded re-

hybridization to bacteriophage M13 single-stranded re-

products of the transcription reactions were analyzed by

Northern analyses using a binding site probe containing

Protein complexes of either the Ig promoter or the adenovirus

MLP. These inserts were complementary to 89 and 220

nucleotides of product RNAs that were accurately initi-

Nuclear proteins that interact specifically with the

OCTA element have been identified in both lymphoid

and nonlymphoid cell lines and tissues. Gel electropho-

resis assays using a binding site probe containing the

OCTA element have revealed two major protein—DNA

complexes whose quantities vary in different cell types

Landolfi et al. 1986; Staudt et al. 1986). The slower-mi-

grating DNA—protein complex-containing factor NF-A1

detectable in extracts of both lymphoid and nonlym-

phoid cells. The faster-migrating complex formed by

NF-A2 has been detected only in extracts from B-cell

lines. These two DNA-binding proteins exhibit indistin-

guishable DNA binding characteristics, as evidenced by

DNase I footprinting and methylation interference

assays [Staudt et al. 1986]. Both OCTA-binding proteins

have been purified recently; NF-A1 [OTF-1] has a mol-

ecular weight of ~90,000, whereas NF-A2 [OTF-2] has a

molecular weight of ~61,000 [Fletcher et al. 1987;

Scheidereit et al. 1987; Sturm et al. 1987; Wang et al.

1987; O’Neil and Kelly 1988]. Furthermore, Northern

analysis with a partial cDNA, which probably encodes

the NF-A2 protein [Staudt et al. 1988], indicates that the

NF-A2 and NF-A1 proteins are encoded by distinct

genes. The cDNA segment only hybridizes to poly[A]+

RNA from B cells.

The existence of the two distinct OCTA-binding pro-

teins has led to the hypothesis that NF-A2 is responsible

for the cell-type-specific transcription from Ig pro-
moters, whereas NF-A1 activates the class of OCTA-de-

pendent genes transcribed in all cell types. In fact, in

vitro, purified OTF-2 can activate transcription of an Ig

promoter, whereas OTF-1 can activate transcription of

the histone H2B promoter [Fletcher et al. 1987; Schei-
dereit et al. 1987]. However, these studies do not address

whether the general factor NF-A1 [OTF-1] is capable of

activating transcription from an Ig promoter. This ex-

periment is critical for determining whether the cell-

type specificity of OCTA-dependent transcription solely

reflects the specificity of the OCTA-binding proteins.

We have established an in vitro transcription system

that reproduces the biological cell-type specificity of

the Ig heavy-chain promoter using nuclear extracts

from a human B-cell line (BJA-B) and HeLa cells. We

show that both the lymphoid-specific OCTA-binding

protein NF-A2 and the constitutive OCTA-binding pro-

tein NF-A1 are capable of activating transcription from

the Ig heavy-chain promoter.

Results

Nuclear extracts prepared from either BJA-B cells or

from HeLa cells were tested for their ability to initiate

transcription accurately from plasmids containing deriv-

atives of an Ig heavy-chain promoter. Three 5’ deletion

mutants of the Ig heavy-chain promoter—μΔ80 and

μΔ69, which retained the OCTA element, and μA48, in

which the OCTA element has been deleted [Fig. 1]—

were used as the initial test templates in transcription

reactions. A plasmid, pFLBH, containing the adenovirus

major late promoter (MLP) was included as an internal

control in all transcription experiments. Specific

products of the transcription reactions were analyzed by

hybridization to bacteriophage M13 single-stranded re-

combine containing inserts that spanned the initiation

sites of either the Ig promoter or the adenovirus

MLP. These inserts were complementary to 89 and 220

nucleotides of product RNAs that were accurately initi-

ated at the Ig and MLP promoters, respectively (See Ma-

terials and methods).

As expected, pUCμΔ80 and pUCμΔ69 were both tran-

scribed in BJA-B extracts at significantly higher levels

(10- to 20-fold) than in HeLa extracts [Fig. 2, lanes 5, 7,

13, 15]. Transcription from pUCμΔ48 was virtually un-

detectable in either extract [Fig. 2, lanes 6 and 14]. A

small but reproducible difference was often detected in

the levels of transcription supported by HeLa extracts in

reactions containing pUCμΔ80 and pUCμΔ69, as com-

pared with that containing the OCTA-deleted plasmid

pUCμΔ48 [data not shown]. This suggested that the

HeLa nuclear extract was utilizing the OCTA element

in transcription of the Ig promoter. Identical results

were obtained whether linear or supercoiled templates

were used and whether the μ promoters resided in a pUC

or pBR backbone [data not shown]. These results are

consistent with the previous experiments showing that

cell-type-specific transcription in vitro from Ig prom-

oters requires the presence of the OCTA element [Mi-

zushima-Sugano and Roeder 1986; Scheidereit et al.

1987].

To extend these observations, a series of plasmids was

constructed in which synthetic oligonucleotides con-

taining either the OCTA element or single-base varia-

tions of it were inserted into pUC48 just 5’ to the dele-

tion end point (see Fig. 1 for resulting constructs and

Materials and methods for details of construction).
Plasmids pUCwt3Δ48 and pUCwt5Δ48, which contain the wild-type OCTA sequence, were both efficiently transcribed in BJA-B nuclear extracts, whereas these plasmids were inactive when assayed in HeLa nuclear extracts [Fig. 2, lanes 1–2, 9–10]. Transcription from the two point mutant constructs, pUC-7/8Δ48 and pUC-11/12Δ48, was not observed in either BJA-B or HeLa nuclear extracts (Fig. 2, lanes 3–4, 11–12). These results confirm that B-cell-specific transcription from the Ig heavy-chain promoter is dependent upon the OCTA element. Interestingly, the wild-type OCTA–oligonucleotide constructs were transcribed about one-third as efficiently as pUCμΔ80 and pUCμΔ69 [Fig. 2, lanes 1–2, 5, 7]. This might be due to the absence of important flanking sequences in the oligonucleotide–plasmid constructs [Ballard and Bothwell 1986; Eaton and Calame 1987] or, alternatively, to the difference in position of the OCTA element in these promoters. The OCTA element is 12 nucleotides farther upstream of the TATA box in the oligonucleotide–plasmid constructs than in the Ig-promoter constructs.

Extract mixing experiments using BJA-B and HeLa extracts were done to determine whether there was a dominant repressor in the latter extracts that interfered with transcription from the Ig promoter. Transcription from pBRμΔ69 and pBRμΔ48 templates was compared in the mixed extracts with levels of transcription produced by either extract alone (data not shown). It was apparent that the HeLa extract did not repress the transcriptional activity of the BJA-B extract. This suggests that a transcriptional activator is present in the B-cell extract that specifically stimulates the Ig promoter.

The likely candidate for the positive activator in BJA-B nuclear extract was NF-A2, the B-cell-specific OCTA-binding protein. However, HeLa extracts contained NF-A1, a factor that also interacts with high affinity with the OCTA element. To determine the contributions of these OCTA-binding proteins, it was necessary to remove them specifically from both nuclear extracts and assay whether the ability to stimulate Ig transcription was a property that resided in the depleted extracts or whether this activity was associated with one or both of the OCTA-binding proteins. Both BJA-B and HeLa extracts were depleted of OCTA-binding proteins by passing them over a DNA affinity column containing covalently attached oligonucleotide segments.
encompassing the OCTA-binding site. Flowthrough fractions, designated `depleted extract,' ΔH or ΔB, were depleted of 80–90% of NF-A1 and NF-A2 DNA-binding activity [data not shown]. NF-A1 and NF-A2 were subsequently eluted from the affinity column with high salt concentrations [see Materials and methods for details]. Recoveries of the OCTA-binding activities through this step typically ranged between 40% and 80%.

Other DNA-binding proteins, in addition to those specific for the OCTA sequence, were retained selectively on the affinity column during the two-step fractionation. Fractions from the affinity column were also assayed for the DNA-binding activity of MLTF [major late transcription factor, USF], a protein that binds specifically to sequences in the adenovirus MLP [Carthew et al. 1985; Sawadogo and Roeder 1985]. Under the chromatography conditions, which included 50 μg/ml of poly(dIdC·dIdC), ~70% of the MLTF binding activity flowed through and was present in the depleted extract when the BJA-B extract was passed over the affinity column. Furthermore, although these depleted extracts were able to transcribe the adenovirus MLP at levels virtually indistinguishable from those of the complete extracts, neither could transcribe the Ig promoter plasmid (pBRμΔ69) at significant levels [see Fig. 4, lanes 1, 11, 13, and 23]. This strongly suggests that the chromatography was specific for the OCTA-binding protein.

Fractions containing affinity-enriched OCTA-binding protein were prepared from HeLa and BJA-B extracts that contained approximately equivalent DNA-binding units per volume [Fig. 3]. The DNA-binding assays were done essentially under transcription conditions to facilitate direct comparison of binding and transcription activities [see Materials and methods for details]. BJA-B extracts typically contain ~3–10 times more total OCTA-binding activity than HeLa extracts. The fraction from BJA-B contained NF-A2 activity almost exclusively, whereas the equivalent HeLa fraction contained NF-A1-binding activity only [see Fig. 3 and Materials and methods]. These fractions were assayed for their ability to complement the depleted BJA-B and HeLa extracts for transcription of the Ig promoter pBRμΔ69. Representative results are presented in Figure 4. When increasing amounts of either OCTA-binding protein fraction were added to the BJA-B depleted extract [lanes 13–23], levels of transcription from the Ig promoter increased linearly. Similar results were obtained when these protein fractions were added to a HeLa-depleted extract [lanes 1–11]. As a control for the effect of any general transcription factors that might have been selected fortuitously in the OCTA-binding protein fractions, the Ig transcriptional signal was normalized against the signal from the adenovirus MLP [Fig. 5A, B]. This revealed that the transcriptional activities of both affinity-enriched OCTA-binding proteins were related linearly to the total DNA-binding activity. Addition of the OCTA-binding protein from B cells [NF-A2] to either depleted extract was approximately twofold more effective in stimulating transcription than the analogous protein NF-A1 from HeLa cells. Neither of the two OCTA-binding protein fractions was capable of stimulating transcription from the plasmid pBRμΔ48 or from the OCTA-oligonucleotide mutant constructs described above [data not shown]. Thus, we conclude that both OCTA-binding proteins NF-A1 and NF-A2 are capable of stimulating transcription from the Ig promoter when added to extracts of either B or non-B cells.

The transcriptional activity of affinity-enriched OCTA-binding protein was also tested in a reconstituted transcription reaction containing partially purified general transcription factors and purified RNA polymerase II [see Materials and methods]. These fractions, prepared...
from HeLa cells, did not contain appreciable levels of NF-A1 activity and did not transcribe the Ig promoter. When increasing amounts of either NF-A1- or NF-A2-containing fractions were added to the reconstituted system, transcription from the Ig promoter was stimulated linearly. The normalized data indicate that the two OCTA-binding proteins have almost identical ratios of transcription stimulatory/DNA binding activities (Fig. 5C).

The HeLa OCTA-binding protein fraction clearly stimulates transcription from the Ig promoter when added to either a reconstituted system or to a depleted HeLa extract. This suggests that Ig transcription in vitro does not require a B-cell-specific factor and that the inefficient transcription of the Ig promoter in complete HeLa extracts reflects a low level of OCTA-dependent stimulatory activity. To test this possibility, OCTA-binding protein fractions were added directly to complete HeLa nuclear extracts (Fig. 5D). Once again, both OCTA-binding protein fractions were capable of stimulating transcription from the Ig promoter. However, when the endogenous levels of NF-A1 in the HeLa extract are taken into account, the equivalent of 55 OCTA-binding protein (OBP) units, the NF-A2 fraction appears to be approximately fourfold more potent in transcriptional activation than the NF-A1 fraction.

Discussion

The paradox that the same octanucleotide sequence, OCTA, directs B-cell-specific transcription of Ig promoters and cell-type constitutive transcription of other promoters has become more defined with the recent recognition that a gene expressed in a B-cell-specific fashion encodes a protein that binds to this sequence (Staudt et al. 1988). This gene probably encodes the previously identified B-cell-specific factor NF-A2, and this factor is most likely responsible for the high levels of OCTA-dependent transcription in B cells. OCTA-dependent transcription of genes in non-B cells, such as the histone H2B and snRNA genes, is probably mediated by the constitutive factor NF-A1, i.e., a protein expressed in all cell types. The paradox can then be restated. Why does the NF-A1 factor not stimulate transcription of the...

Figure 3. Gel mobility shift assays of OBP fractions affinity-purified from BJ-18 and HeLa nuclear extracts. Reactions were assembled and carried out as described in Materials and methods. The DNA probe used was prepared from plasmid pUCwt3 and contains the wild-type OCTA element embedded in the pUC polylinker (see Materials and methods). [Lanes 1–3] 1.0, 0.5, and 0.25 µl, respectively, of the OBP fraction from the BJ-18 (OBP(B)); [lanes 4–6] 1.0, 0.5, and 0.25 µl of the OBP fraction from HeLa extracts (OBP(H)); [lanes 7–9] 0.5, 0.25, and 0.125 µl each of OBP(H) and depleted HeLa extract (ΔH); [lanes 10–12] 0.5, 0.25, and 0.125 µl each of OBP(B) and depleted HeLa extract (ΔH); [lanes 13–15] 0.5, 0.25, and 0.125 µl of OBP(H) and depleted BJ-18 extract (ΔB); [lanes 16–18] 0.5, 0.25, and 0.125 µl each of OBP(B) and depleted BJ-18 extract (ΔB); [lane 19] no addition. Arrows indicate the position of complexes representing NF-A1, NF-A2, and free probe. The band running just below that designated NF-A2 represents binding of a nonspecific DNA binding protein to the probe since it is not competed by excess unlabeled OCTA probe (data not shown).
Ig promoter in non-B cells, and how does NF-A2 specifically stimulate Ig transcription in B cells?

Part of the answer to the above paradox is probably quantitative. The constitutive factor NF-A1 probably does weakly stimulate transcription of the Ig promoter in non-B cells. Low levels of OCTA-dependent transcription of Ig-like promoters have been observed following transfection of NIH-3T3 cells [Dreyfus et al. 1987; Wirth et al. 1987]. A correspondingly low level of OCTA-dependent transcription was observed in this in vitro analysis of the activity of the Ig promoter in HeLa nuclear extracts and has been described in other studies [Sen and Baltimore 1987]. More importantly, addition of higher concentrations of the affinity-enriched NF-A1 factor to a HeLa nuclear extract proportionally stimulated OCTA-dependent Ig transcription. Thus, the constitutive factor NF-A1 can promote transcription by binding to the OCTA sequence in the Ig promoter.

Several observations suggest possible explanations for the high activity of the Ig promoter in B cells. First, many B cells contain high levels of the OCTA-binding promoter NF-A2, which promotes Ig transcription efficiently. In some B-cell lines such as BJAB, the level of detectable NF-A2-binding activity is 5–10 times greater than that of NF-A1 in HeLa cells. The relationship between the amount of NF-A2 activity and the level of Ig promoter activity in a given cell line has not been explored systematically in vivo. However, it is clear from in vitro studies that addition of affinity-enriched NF-A2 to depleted extracts stimulates Ig promoter transcription linearly. It is interesting in this regard that Sen and Baltimore (1987) failed to observe higher levels of OCTA-dependent transcription of the \(\kappa \) promoter in extracts of B lymphoma cell lines than in extracts of HeLa cells. This is probably explained by the fact that both of the Epstein-Barr-transformed cell lines used in this previous study contained low levels of the B-cell-specific factor NF-A2. In addition to the quantitative difference as an explanation, the NF-A2 factor may be particularly efficient in stimulating the Ig promoter. The activity of the NF-A2 was twofold higher than that of the constitutive factor NF-A1 when compared at equivalent levels of occupancy of the Ig promoter. This small difference in activity in vitro of NF-A1 and NF-A2 when bound to the Ig promoter may reflect a more dramatic difference in vivo.

As mentioned before, snRNA promoters and other promoters are transcribed in an OCTA-dependent fashion in non-B cells [Mattaj et al. 1985; Dahlberg and Lund 1987; Parslow et al. 1987; La Bella et al. 1988]. In contrast, the Ig promoter is transcribed very poorly in non-B cells, as compared with the genes for snRNAs. Thus, in non-B cells, the degree of stimulation of transcription by OCTA recognition in the Ig and snRNA promoters is very different. Although we have no direct evidence, we suggest that the contexts of the OCTA-
Figure 5. (A) Quantitation of transcription levels in depleted HeLa extracts. Levels of correctly initiated products from the Ig and MLP depicted in Fig. 4 were quantitated by densitometry. Transcription from the Ig promoter was normalized to the level of transcription from the adenovirus MLP for each data point. This normalized transcription activity (Ig/MLP) was plotted against the units of OCTA-binding protein activity added to each reaction. OBP[H] and OBP[B] represent OCTA-binding protein fractions affinity-enriched for HeLa or BJ-A-B extracts, respectively. (B) Quantitation of transcription levels in depleted BJ-A-B extracts. Levels of correctly initiated products from the Ig and MLPs depicted in Fig. 4 were quantitated by densitometry. Transcription from the Ig promoter was normalized to the level of transcription from the adenovirus MLP and plotted as described in A. (C) Reconstituted transcription reactions with added OCTA-binding protein fractions. Reconstituted transcriptions were assembled as described in Materials and methods. The templates used in these reactions were pBR$_{A69}$ and pFLBH. Reactions received 2, 5, and 10 μl, respectively, of OCTA-binding protein affinity-enriched from BJ-A-B extracts, OBP[B], or 2, 5, and 10 μl, respectively, of OCTA-binding protein affinity-enriched from HeLa extracts, OBP[H]. Levels of correctly initiated products from the Ig and MLPs were quantitated by densitometry. Transcription from the Ig promoter was normalized to the level of transcription from the adenovirus MLP and plotted as described in A. (D) Transcription reactions with HeLa extract and added OCTA-binding protein fractions. Transcription reactions were carried out as described in Materials and methods. Each reaction contained 5 μl of HeLa nuclear extract. The templates used in these reactions were pBR$_{A69}$ and pFLBH. Reactions received 2, 5, and 10 μl, respectively, of OCTA-binding protein affinity-enriched from BJ-A-B extracts, OBP[B], or 2, 5, and 10 μl, respectively, of OCTA-binding protein affinity-enriched from HeLa extracts, OBP[H]. Levels of correctly initiated products from the Ig and MLPs were quantitated by densitometry. Transcription from the Ig promoter was normalized to the level of transcription from the adenovirus MLP and plotted as described for A.
binding site in these promoters may explain the difference. The critical change in context is probably not variations in distance between the OCTA-binding site and the site of initiation. It more likely reflects interaction of NF-A1 with other DNA-binding factors in the vicinity of OCTA site. For example, the H2B and snRNA promoters contain binding sites for other known factors such as SP1 and CAATT adjacent to the OCTA element (Sive et al. 1986; Ares et al. 1987). These factors may facilitate the binding and activity of the NF-A1 factor and thus generate the high levels of OCTA-dependence typical of snRNA promoters. In contrast, recent studies make it clear that a B-cell-specific promoter primarily may not stimulate the Ig promoter efficiently in vivo because of the absence of interactions with other cellular factors.

In a more elaborate model, the lack of activity of Ig promoter constructs in nonlymphoid cells in vivo could be due to the existence of regulatory proteins that interact with and modulate the transcriptional activity of NF-A1 dependent upon the context of the bound factor. NF-A1 appears to be involved in a number of unusual transcriptional programs. Aside from being a pol II transcription factor, NF-A1 may also participate in transcription of pol III promoters such as those for 7SK and 5S snRNA (for reviews, see Folk 1988; Sollner-Webb 1988), and it also appears to participate in the cell-cycle regulation of histone H2B transcription (La Bella et al. 1988). Furthermore, NF-A1 may participate as a DNA replication factor in the replication of the adenovirus genome (Pruijn et al. 1986; Rosenfeld et al. 1987). A pleiotropic effector such as NF-A1 surely must interact with other proteins that modulate its many activities. One of these proteins might be capable of specifically inhibiting the activity of NF-A1 when bound in the context on Ig promoters. Such an inhibitor may have been titrated out in the in vitro experiments reported here or have been inactivated during extract preparation and fractionation. There is ample precedent for transcription factor-specific inhibitors, including the well-characterized Gal80 suppression of Gal14 activity in yeast (Johnston et al. 1987; Ma and Ptashne 1987).

Materials and methods

Buffers

Buffer D contained 20 mM HEPES-KOH (pH 7.9), 20% glycerol, 100 mM KCl, 0.2 mM EDTA, 0.5 mM PMSF, 0.5 mM DTT, and 0.01% NP-40. horse serum. Batches of 8 liters of HeLa cells were grown in suspension in spinner flasks and harvested at a cell density of ~2–3 × 10^6/ml. Nuclear extracts from harvested cells were prepared as described (Dignam et al. 1983). Protein concentrations of extracts were determined by the method of M.M. Bradford (1976).

Plasmids and constructions

pUC18wt5 and pUC18wt3 contain the synthetic oligonucleotide 5'-GATCATTGGCATGATC-3' ligated in either orientation into the BamHI site in the polylinker site of pUC18 as described (Wirth et al. 1987). The orientation shown above is that for pUC18wt5. pUC18-7/8 and pUC18-11/12 contain, respectively, the synthetic oligonucleotide 5'-GATCATTGGCATGATC-3' cloned into the BamHI site of pUC18 (Wirth et al. 1987). pUC18μΔ80, pUC18μΔ69, and pUC19μΔ48 contain 5' deletions of a murine immunoglobulin V14 promoter fragment derived from the V17.25 heavy-chain gene (Grosschedl and Baltimore 1985) cloned into the Smal and SalI sites of pUC18. The promoter fragments extend from -80, -69, and -48, respectively, relative to the cap site to a SalI site at +57. (These plasmids were the kind gift of Thomas Wirth.) pBR3μΔ80, pBR3μΔ69, and pBR3μΔ48 were constructed by ligating [T4 DNA ligase, Boehringer–Mannheim Biochemicals] the EcoRI-HindIII fragments of the analogous pUC constructs into EcoRI- and HindIII-cut pBR322. The plasmids pUCwt3Δ48, pUCwt5Δ48, pUC-7/8Δ48, and pUC-11/12Δ48 were constructed by sequentially cutting pUCΔ48 with KpnI, removing the resultant 3' overhang with T4 DNA polymerase [Boehringer–Mannheim Biochemicals], digesting with HindIII, and isolating the resultant KpnI–HindIII fragment. This fragment, which contained the μ promoter sequences, was then ligated into the series of pUC oligo plasmids that had been first cut with XbaI and after the XbaI 5' overhangs were filled in with Klenow, then cut with HindIII. Plasmid pFLBH, which contains sequences derived from the adenovirus MLP has been described (Samuels et al. 1984).

M13 probes

M13mp1Δ48 and M13mp18Δ48 were constructed by ligating the EcoRI–HindIII fragment of pUC18μΔ48 into EcoRI- and HindIII-cut M13mp11 and M13mp18 RF DNAs, respectively. M13mp1Δ48 contains the strand complementary to the μ promoter RNA. M13XH11 [a kind gift of Richard Carthew] contains sequences derived from plasmid pFLBH and is complementary to MLP RNA (Samuels et al. 1984). Growth and isolation of single-stranded M13 phage DNA was accomplished as described [Lebowitz and McMacken 1986].

DNA binding reactions

DNA binding assays were performed by gel electrophoresis (Fried and Crothers 1981; Garner and Revzin 1981). Radiolabeled probe for DNA binding reactions was prepared by digesting 20–30 μg of plasmid pUCwt3 with EcoRI and HindIII. The single-stranded tails were filled in using Klengow fragment in the presence of 100–200 μCi of α-32PdATP. Radiolabeled probe fragment was subsequently isolated after electrophoresis in a 5% acrylamide gel by eluting from a crushed gel slice. The eluted probe fragment was then purified by chromatography on an Elutip column [Schleicher and Schuell].

Binding reactions [15 μl] contained ~10 fmol of radiolabeled probe, 12 mM HEPES-KOH (pH 7.9), 12% glycerol, 4 mM
MgCl₂, 60 mM KCl, 1 mM EDTA, 1 mM DTT, 3 μg poly[dI·dC·dI·dC] [Pharmacia], 3 μg bovine serum albumin (nuclease free, Boehringer–Mannheim Biochemicals), and protein fractions, as indicated. After 20 min of incubation at room temperature, nucleoprotein complexes were resolved from free probe by electrophoresis on 4% acrylamide gels in a running buffer consisting of 25 mM Tris-HCl, 190 mM glycine, and 1 mM EDTA (pH 8.3). Gels were quantitated by densitometry using an Ultrascan XL laser densitometer (LKB). One unit of binding activity represents 0.25 fmole bound probe under the reaction conditions stated.

Transcription reactions

Transcription reactions [25 μl] contained 19 μg/ml supercoiled test DNA template, 1.9 μg/ml pFLB, 12 mM HEFES–KOH (pH 7.9), 12% glycerol, 3.6% polyvinyl alcohol, 4 mM MgCl₂, 1 mM DTT, 1 mM EDTA, 60 mM KCl, 460 μM ATP, 60 μM CTP, 60 μM GTP, 10 μM UTP, 10 μC [α-32P]UTP, 4 mM creatine phosphate, and ~200–400 μg nuclear extract protein. Reactions were incubated for 60 min at 30°C and were terminated by placing them on ice, followed immediately by the addition of 200 μl of stop solution (7 M urea, 100 mM LiCl, 0.5% SDS, 10 mM EDTA, 250 μl/ml tRNA, 10 mM Tris-HCl at pH 7.9). Nuclear acids were purified from these reactions, as described (Manley et al. 1983). RNA analysis was carried out by a hybridization selection procedure in which RNAs were hybridized to M13 phage single-stranded DNA recombinants that contained inserts complementary to and spanning the expected start sites of transcription. This was done essentially as described (Hansen and Sharp 1983), except that hybrids were digested routinely with 10 units of RNase T1 [Calbiochem] for 30 min at 30°C. RNase T1 was removed by a subsequent incubation with 40 μg of proteinase K at 30°C for 30 min. RNA molecules were resolved by electrophoresis on 0.4-mm, 6% acrylamide, 7 M urea gels with a running buffer of Tris-borate, EDTA (Maxam and Gilbert 1980). Transcription reactions were quantitated by densitometry using an Ultrascan XL laser densitometer (LKB). Reconstituted transcription reactions were carried out in a final volume of 25 μl. Reaction conditions were identical to those described above, except for the addition of 25 units of RNase III. General transcription factors were supplied as second-column fractions derived from HeLa whole-cell extracts. RNA polymerase II was prepared from calf thymus. These fractions were prepared and used as described (Samuels et al. 1982). Reconstituted reactions were incubated at 30°C for 90 min and processed as described above.

Depletion of OCTA-binding proteins from nuclear extracts and preparation of NF-A1 and NF-A2 fractions

An OCTA–oligonucleotide affinity column matrix was constructed by coupling a multimerized, synthetic oligonucleotide derived from the murine Ig mopC41 x gene promoter to cyanoargent bromide activated Sepharose–CL4B [Pharmacia] as described (Kadonaga and Tjian 1986). The oligonucleotide sequence was

\[5' \text{GATCTAACCGGCTTATTGGTATACCCCAGTATCGGTTGATTTTTAAACGTATGGGAGTGACGTAGCCTAG3'}\]

Nuclear extracts derived from BJAB cells were made to 50 μg/ml poly[dI·dC·dI·dC] and then passed over the OCTA–oligonucleotide affinity resin equilibrated with buffer D. Approximately 40–60 mg of protein was loaded per milliliter of column volume. The flowthrough fraction was collected and constituted the OCTA-depleted extract (ΔB). After a wash with 2 column volumes of buffer D, the OCTA-binding protein fraction was eluted with 2 column volumes of buffer D containing 1 M KCl. This fraction was then dialyzed against buffer D before assay in transcription reactions. HeLa-depleted fractions from HeLa nuclear extracts were prepared in an identical fashion. However, OCTA-binding fractions from HeLa nuclear extracts were prepared by loading significantly higher amounts of protein onto the affinity column, between 200 and 350 mg/ml column volume.

Binding units for OBPH[H] and OBPH[B] were calculated from titrations in the presence of ΔBJA-B and ΔHeLa extracts. After subtracting out the residual OBP activities due to the Δ extracts, the unit activities are as follows: OBPH[H] = 25 U/μl NF-A1; OBPH[B] = 22 U/μl NF-A2 plus 2 U/μl NF-A1. The OBPH[B] units used for comparing transcriptional activities are that of NF-A2 alone: 22 U/μl.

Acknowledgments

We wish to thank T. Kristic, R. Clerc, and H. Singh for comments on this manuscript; those mentioned above and S. Burtonowski, R. Carthew, and L. Chodosh for helpful discussions; P. Auger and U. Ryder for help with the cell culture; T. Wirth for the gift of Ig promoter deletion plasmids, and M. Siafaca for preparing the manuscript. J.H.L. acknowledges postdoctoral support from the Helen Hay Whitney Foundation, and L.S. from the Jane Coffin Childs Memorial Fund for Medical Research. This work was supported by National Science Foundation grant CDR-8500003, U.S. Public Health Service grant PO1-CA42063, partially from the National Cancer Institute Cancer Center core grant P30-CA14051, and from Ajinomoto General Support for the Center for Cancer Research, Ajinomoto Co., Inc., to P.A.S. and an American Cancer Society grant [IM-3555] to D.B.

References

Ares, M., Jr., J. Chung, L. Giglio, and A.M. Weiner. 1987. Distinct functional factors with Sp1 and NF-A specificities bind to adjacent functional elements of the human U2 snRNA gene enhancer. Genes Dev. 1: 808–817.

Augereau, P. and P. Chambon. 1986. The mouse immunoglobulin heavy-chain enhancer: Effect on transcription in vitro and binding of proteins present in HeLa and lymphoid B cell extracts. EMBO J. 5: 1791–1797.

Ballard, D.W. and A. Bothwell. 1986. Mutational analysis of the immunoglobulin heavy-chain promoter region. Proc. Natl. Acad. Sci. 83: 9626–9630.

Banerji, J., L. Olson, and W. Schaffner. 1983. A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy-chain genes. Cell 33: 729–739.

Bark, C., P. Weller, J. Zabeilski, L. Janson, and U. Petterson. 1987. A distant enhancer element is required for transcription of a U6 RNA gene. Nature 328: 356–362.

Bergman, Y., D. Rice, R. Grosschedl, and D. Baltimore. 1984. A distant enhancer element is required for transcription of the human U2 snRNA genes. Nature 308: 362–364.

Bohmann, D., W. Keller, T. Dale, H.R. Scholer, G. Tebb, and I.W. Mattaj. 1987. A transcription factor which binds to the enhancers of SV40, immunoglobulin heavy-chain and U2 snRNA genes. Nature 325: 268–272.

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248–254.
LeBowitz et al.

Carbon, P., S. Murgo, J.P. Ebel, A. Krol, G. Tebb, and I. Mattaj. 1987. A common octamer motif binding protein is involved in the transcription of U6 snRNA by RNA polymerase III and U2 snRNA polymerase II. *Cell* 51: 71–79.

Carthew, R.W., L.A. Chodosh, and P.A. Sharp. 1985. An RNA polymerase II transcription factor binds to an upstream element in the adenovirus major late promoter. *Cell* 43: 439–448.

Church, G.M., A. Ephrussi, W. Gilbert, and S. Tonegawa. 1985. Cell-type-specific contacts to immunoglobulin enhancers in nuclei. *Nature* 318: 798–801.

Dahlberg, J. and E. Lund. 1987. snRNA genes and their transcription. In *Structure and function of major and minor snRNPs* (ed. M. Birnstiel). Springer-Verlag, Heidelberg.

Das, G., D. Henning, D. Wright, and R. Reddy. 1988. Upstream regulatory elements are necessary and sufficient for the transcription of a U6 RNA gene by RNA polymerase III. *EMBO J.* 7: 503–512.

Dignam, J.D., R.M. Lebovitz, and R.G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. *Nucleic Acids Res.* 11: 1475–1489.

Dreyfus, M., N. Doyen, and F. Rougeon. 1987. The conserved decanucleotide from the immunoglobulin heavy-chain promoter induces a very high transcriptional activity in B-cell when introduced into an heterologous promoter. *EMBO J.* 6: 1685–1690.

Eaton, S. and K. Calame. 1987. Multiple DNA sequence elements are necessary for the function of an immunoglobulin heavy-chain promoter. *Proc. Natl. Acad. Sci.* 84: 7634–7638.

Ephrussi, A., G.M. Church, S. Tonegawa, and W. Gilbert. 1985. B lineage-specific interactions of an immunoglobulin enhancer with cellular factors in vivo. *Science* 227: 134–140.

Faeth, M. and H.Z. Zachau. 1984. Correct transcription of an immunoglobulin λ gene requires an upstream fragment containing conserved sequence elements. *Nature* 310: 71–74.

Fletcher, C., N. Heintz, and R.G. Roeder. 1987. Purification and characterization of OTF-1, a transcription factor regulating cell cycle expression of a human histone H2b gene. *Cell* 51: 773–781.

Folk, W.R. 1988. Changing directions in pol III transcription. *Cell* 51: 773–781.

Foster, J., J. Stafford, and C. Queen. 1985. An immunoglobulin promoter displays cell-type specificity independently of the enhancer. *Nature* 315: 423–425.

Fried, M. and D.M. Crothers. 1981. Equilibrium and kinetics of the lac repressor-operator interactions by polyacrylamide gel electrophoresis. *Nucleic Acids Res.* 9: 6505–6525.

Garner, M.M. and A. Revzin. 1981. A gel electrophoresis method for quantifying binding of proteins to specific DNA regions: Applications to components of the *Escherichia coli* lactose operon regulatory system. *Nucleic Acids Res.* 9: 3047–3060.

Gerster, T., P. Matthias, M. Thali, J. Jiricny, and W. Schaffner. 1987. Cell type-specificity elements of the immunoglobulin heavy-chain gene enhancer. *EMBO J.* 6: 1323–1330.

Gillies, S.D., S.L. Morrison, V.T. Oi, and S. Tonegawa. 1983. A tissue-specific transcriptional enhancer element is located in the major intron of a rearranged immunoglobulin heavy-chain gene. *Cell* 33: 717–728.

Gopal, T.V., J. Shimada, A.W. Baur, and A.W. Nienhuis. 1985. Contribution of promoter to tissue-specific expression of the mouse immunoglobulin κ gene. *Science* 229: 1102–1104.

Grosschedl, R. and D. Baltimore. 1985. Cell type specificity of immunoglobulin gene expression is regulated by at least three DNA sequence elements. *Cell* 41: 885–897.

Guarente, L. 1988. UASs and enhancers: Common mechanism of transcriptional activation in yeast and mammals. *Cell* 52: 303–305.

Hansen, U. and P.A. Sharp. 1983. Sequences controlling in vitro transcription of SV40 promoters. *EMBO J.* 2: 2293–2303.

Janson, L., C. Bark, and U. Pettersson. 1987. Identification of proteins interacting with the enhancer of human U2 small nuclear RNA genes. *Nucleic Acids Res.* 15: 4979–5016.

Johnston, S.A., J.M. Salmon, Jr., and S.S. Dincher. 1987. Interactions of positive and negative regulatory proteins in the galactose regulon of yeast. *Cell* 50: 143–146.

Jones, N.C., P.W.J. Rigby, and B. Ziff. 1988. Trans-acting protein factors and the regulation of eukaryotic transcription: Lessons from studies on DNA tumor viruses. *Genes Dev.* 2: 267–281.

Kadonaga, J.T. and R. Tjian. 1986. Affinity purification of sequence-specific DNA binding proteins. *Proc. Natl. Acad. Sci.* 83: 5889–5893.

Klein, G., T. Lindahl, M. Jondal, W. Leibold, J. Menezes, K. Nilsson, and C. Sundstrom. 1974. Continuous lymphoid cell lines with characteristics of B cells (bone-marrow-derived), lacking the Epstein-Barr virus genome and derived from three human lymphomas. *Proc. Natl. Acad. Sci.* 71: 3283–3286.

Kristie, T.M. and B. Roizman. 1987. Host cell proteins bind to the cis-acting site for virion-mediated induction of herpes simplex virus 1 genes. *Proc. Natl. Acad. Sci.* 84: 71–75.

Krol, A., P. Carbon, J.P. Ebel, and B. Appel. 1987. *Xenopus tropicalis* U6 snRNA genes transcribed by RNA polymerase III contain the promoter elements used by pol II dependent U snRNA genes. *Nucleic Acids Res.* 15: 2463–2478.

La Bella, F., H.L. Sive, R.G. Roeder, and N. Heintz. 1988. Cell-cycle regulation of a human histone H2b gene is mediated by the H2b subtype-specific consensus element. *Genes Dev.* 2: 32–39.

Landolfi, N.F., J.D. Capra, and P.W. Tucker. 1986. Interaction of cell type-specific nuclear proteins with immunoglobulin VH promoter region sequences. *Nature* 323: 548–551.

LeBowitz, J.H. and R. McMacken. 1984. The bacteriophage λ O and P protein initiators promote the replication of single-stranded DNA. *Nucleic Acids Res.* 12: 3069–3088.

Lenardo, M., J.W. Pierce, and D. Baltimore. 1987. Protein binding sites in Ig gene enhancers determine transcriptional activity and inducibility. *Science* 236: 1573–1577.

Ma, J. and M. Ptashne. 1987. The carboxy-terminal 30 amino acids of Gal4 are recognized by Gal80. *Cell* 51: 137–142.

Mangin, M., M. Ares, Jr., and A.M. Weiner. 1987. Regulation of inducible and tissue-specific gene expression. *Science* 236: 1237–1245.

Manley, J.L., A. Fire, M. Samuels, and P.A. Sharp. 1983. In vitro transcriptions: Whole cell extract. *Methods Enzymol.* 101: 568–581.

Mason, J.O., G.T. Williams, and M.S. Neuberger. 1985. Transcriptional cell-type specificity is conferred by an immunoglobulin VH gene promoter that includes a functional consensus sequence. *Cell* 41: 479–487.

Mattaj, I.W., S. Lienhard, J. Jiricny, and E.M. de Robertis. 1985. An enhancer-like sequence within the Xenopus U2 gene promoter facilitates the formation of stable transcription complexes. *Nature* 316: 163–167.

Maxam, A.M. and W. Gilbert. 1980. Sequencing end-labeled
DNA with base-specific chemical cleavages. *Methods Enzymol.* 65: 499–580.

McKnight, J.L.C., T.M. Kristie, and B. Roizman. 1987. Binding of the virion protein mediating a gene induction in herpes simplex virus 1-infected cells to its cis site requires cellular proteins. *Proc. Natl. Acad. Sci.* 84: 7061–7065.

McKnight, S. and R. Tjian. 1986. Transcriptional selectivity of viral genes in mammalian cells. *Cell* 46: 795–805.

Mizushima-Sugano, J. and R.G. Roeder. 1986. Cell-type-specific transcription of an immunoglobulin κ light-chain in vitro. *Proc. Natl. Acad. Sci.* 83: 8511–8515.

Murphy, J.T., J.M. Skuzeski, E. Lund, T.H. Steinberg, R.R. Burgess, and J.E. Dahlberg. 1987. Functional elements of the U1 snRNA promoter. Identification of 5 separate regions required for efficient transcription and template competition. *J. Biol. Chem.* 262: 1795–1803.

Murphy, S., C.D. Liegro, and M. Melli. 1987. The in vitro transcription of the 7SK RNA gene by RNA polymerase III is dependent only on the presence of an upstream promoter. *Cell* 51: 81–87.

O’Hare, P. and C.R. Goding. 1988. Herpes simplex virus regulatory elements and the immunoglobulin octamer domain bind a common factor and are both targets for virion transcription. *Cell* 52: 435–445.

O’Neill, E.A. and T.J. Kelly. 1988. Purification and characterization of nuclear factor III (origin initiation factor C). Sequence-specific DNA binding protein required for efficient initiation of adenovirus DNA replication. *J. Biol. Chem.* 263: 934–937.

Parslow, T.G., D.L. Blair, W.J. Murphy, and D.K. Granner. 1984. Structure of the 5′ ends of immunoglobulin genes: A novel conserved sequence. *Proc. Natl. Acad. Sci.* 81: 2650–2654.

Parlow, T.G., S.D. Jones, B. Bond, and K.R. Yamamoto. 1987. The immunoglobulin octanucleotide: Independent activity and selective interaction with enhancers. *Science* 235: 1498–1501.

Peterson, C.L. and K.L. Calame. 1987. Complex protein binding within the mouse immunoglobulin heavy-chain enhancer. *Mol. Cell. Biol.* 7: 4194–4203.

Picard, D. and W. Schaffner. 1985. Cell-type preference of the immunoglobulin κ and λ gene promoters. *EMBO J.* 4: 2831–2838.

Pruijn, G.J.M., W. van Driel, and P.C. van der Vliet. 1986. Nuclear factor III, a novel sequence specific DNA binding protein from HeLa cells stimulating adenovirus DNA replication. *Nature* 322: 656–659.

Roebuck, K.A., R.J. Walker, and W.E. Stumph. 1987. Multiple functional motifs in the chicken U2 RNA gene enhancer. *Mol. Cell. Biol.* 7: 4185–4193.

Robertson, P.J., E.A. O’Neill, R.J. Wides, and T.J. Kelly. 1987. Sequence specific interactions between cellular DNA-binding proteins and the adenovirus origin of DNA replication. *Mol. Cell. Biol.* 7: 875–886.

Samuels, M., A. Fire, and P.A. Sharp. 1982. Separation and characterization of factors mediating accurate transcription by RNA polymerase II. *J. Biol. Chem.* 257: 14419–14427.

——. 1984. Dinucleotide priming of transcription mediated by RNA polymerase II. *J. Biol. Chem.* 259: 2517–2525.

Sassone-Corsi, P. and E. Borelli. 1986. Transcriptional regulation by trans-acting factors. *Trends Genet.* 2: 215–219.

Sawadogo, M. and R.G. Roeder. 1985. Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. *Cell* 43: 165–175.

Scheidereit, C., A. Heguy, and R.G. Roeder. 1987. Identification and purification of a human lymphoid specific octamer-binding protein (OTF-2) that activates transcription of an immunoglobulin promoter in vitro. *Cell* 51: 783–793.

Schlokat, U., D. Bohmann, H. Scholer, and P. Gruss. 1986. Nuclear factors binding specific sequences within the immunoglobulin enhancer interact differentially with other enhancer elements. *EMBO J.* 5: 3251–3258.

Scholer, H.R. and P. Gruss. 1985. Cell type-specific transcriptional enhancement in vitro requires the presence of trans-acting factors. *EMBO J.* 4: 3005–3013.

Sen, R. and D. Baltimore. 1986. Multiple factors interact with the immunoglobulin enhancer sequences. *Cell* 46: 705–716.

——. 1987. In vitro transcription of immunoglobulin genes in a B-cell extract: Effects of enhancer and promoter sequences. *Mol. Cell. Biol.* 7: 1989–1994.

Singh, H., R. Sen, D. Baltimore, and P.A. Sharp. 1986. A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. *Nature* 319: 154–158.

Sive, H.L. and R.G. Roeder. 1986. The interaction of a common factor with conserved promoter and enhancer sequences in histone H2b, immunoglobulin and U2 small nuclear (sn) RNA genes. *Proc. Natl. Acad. Sci.* 83: 6852–6856.

Sive, H.L., N. Heinitz, and R.G. Roeder. 1986. Multiple sequence elements are required for maximal in vitro transcription of a human histone H2b gene. *Mol. Cell. Biol.* 6: 3329–3340.

Sollner-Webb, B. 1988. Surprises in polymerase III transcription. *Cell* 52: 153–154.

Staudt, L.M., R.G. Clerc, H. Singh, J.H. LeBowitz, P.A. Sharp, and D. Baltimore. 1988. Molecular cloning of a lymphoid-specific cDNA encoding a protein that binds to the regulatory octamer DNA motif. *Science* 241: 577–580.

Staudt, L.M., H. Singh, R. Sen, T. Wirth, P.A. Sharp, and D. Baltimore. 1986. A lymphoid-specific protein binding to the octamer motif of immunoglobulin genes. *Nature* 323: 640–643.

Sturm, R., T. Baumruher, R. Franz, Jr., and W. Herr. 1987. A 100-kD HeLa cell octamer binding protein (OBP100) interacts differently with two separate octamer-related sequences within the SV40 enhancer. *Genes Dev.* 1: 1147–1160.

Wang, J., K. Nishiyama, K. Araki, D. Kitamura, and T. Watanabe. 1987. Purification of an octamer sequence (ATGCCAAAT)-binding protein from human B-cells. *Nucleic Acids Res.* 15: 10105–10116.

Wasfy, C. and B. Wasfy. 1986. The immunoglobulin heavy-chain B-lymphocyte enhancer stimulates transcription in non-lymphoid cells. *EMBO J.* 5: 553–560.

Weinberger, J., D. Baltimore, and P.A. Sharp. 1986. Distinct factors bind to apparently homologous sequences in the immunoglobulin heavy-chain enhancer. *Nature* 322: 846–848.

Weinberger, J., P.S. Jat, and P.A. Sharp. 1988. Localization of a repressive sequence contributing to B-cell specificity in the immunoglobulin heavy-chain enhancer. *Mol. Cell. Biol.* 8: 988–992.

Wirth, T., L. Staudt, and D. Baltimore. 1987. An octamer oligonucleotide upstream of a TATA box is sufficient for lymphoid-specific promoter activity. *Nature* 329: 174–177.
Octamer-binding proteins from B or HeLa cells stimulate transcription of the immunoglobulin heavy-chain promoter in vitro.

J H LeBowitz, T Kobayashi, L Staudt, et al.

Genes Dev. 1988, 2:
Access the most recent version at doi:10.1101/gad.2.10.1227

References
This article cites 81 articles, 30 of which can be accessed free at: http://genesdev.cshlp.org/content/2/10/1227.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.