CASE REPORT

Valproate induced hyperammonemic encephalopathy treated by haemodialysis

Vinay Singh Chauhan, Siddarth Dixit¹, Sunil Goyal, Sudip Azad

Department of Psychiatry, Base Hospital Delhi Cantonment, Delhi Cantonment, New Delhi,
¹Department of Psychiatry, Command Hospital, Pune, Maharashtra, India

Address for correspondence:
Dr. Vinay Singh Chauhan,
Base Hospital Delhi Cantonment,
Delhi Cantonment - 110 010,
New Delhi, India.
E-mail: vinaychauhan2@gmail.com

ABSTRACT

Valproate (VPA)-induced hyperammonemic encephalopathy is an unusual, but serious, adverse effect of divalproex sodium (DVPX) treatment and if untreated can lead to raised intracranial pressure, seizures, coma, and eventually death. It can, however, be reversed if an early diagnosis is made. It is therefore extremely important to recognize it and discontinue DVPX treatment. Our patient developed sudden deterioration of sensorium, drowsiness, lethargy, and later severe comatose state after few days of starting DVPX with high levels of serum ammonia despite therapeutic levels of VPA and normal liver function test. He responded to hemodialysis, cerebral decongestants, and other intensive supportive measures.

KEYWORDS: Divalproex sodium, encephalopathy, hyperammonemia

Divalproex sodium (DVPX) is a stable coordination compound comprising sodium valproate (VPA) and valproic acid in a 1:1 molar relationship and formed during the partial neutralization of valproic acid with 0.5 equivalent of sodium hydroxide. DVPX is an antiepileptic drug that is approved for the treatment of several types of seizures. It is also an effective treatment option for bipolar affective disorder, schizoaffective disorder, neuropathic pain, and for the prophylaxis and treatment of migraine headaches. Valproate-induced hyperammonemic encephalopathy (VHE)/delirium with normal liver function tests (LFTs) is a relatively uncommon adverse effect. It may be mistaken for psychosis or worsening of mania leading to wrong diagnosis and improper management. It may be confused with delirious mania and may result in further increased dose of DVPX. Serum ammonia levels should be monitored in all patients developing altered mental status after receiving VPA therapy.

CASE REPORT

A 25-year-old male was referred for psychiatric evaluation with a 1-week history of abnormal behavior in the form of hyperactivity, restlessness, speaking excessively in domineering manner, and displaying disruptive tendencies. History revealed that he had two manic episodes in the past 2 years which were managed with tablet olanzapine (15 mg/day in divided doses) and tablet DVPX (1000 mg/day in divided doses). He had a history of noncompliance with maintenance medication for the past 5 months. There were no developmental issues. Physical examination was within normal limits, and there was no focal neurological deficit. Psychiatric evaluation and ward observation revealed persistent elevated mood, disinhibition, pressure of speech, increased psychomotor activity, inflated self-esteem, impaired judgment, insight with reduced need for sleep, increased energy, and appetite.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Chauhan VS, Dixit S, Goyal S, Azad S. Valproate induced hyperammonemic encephalopathy treated by haemodialysis. Ind Psychiatry J 2017;26:99-102.
in the absence of delusions or perceptual disturbances in a setting of clear sensorium. Young’s Mania Rating Scale score was 47 (cutoff of 20 for hypomania and 25 for mania). Relevant investigations at the time of admission including complete blood count, LFT, renal function test, blood sugar, thyroid profile, electrocardiogram, serum electrolytes, and computed tomography (CT) scan brain were within normal limits. Urine for drug screen for Cannabis, opioids, cocaine, amphetamines, benzodiazepines, and barbiturates was negative. He was diagnosed as a case of bipolar affective disorder, current episode manic without psychotic symptoms (International Classification of Diseases, 10th Edition [ICD 10] – F31.1) as per the diagnostic criteria of ICD-10, and started on injection haloperidol (5 mg) + injection phenergan (25 mg) intramuscular SOS, tablet DVPX (1500 mg/day in divided doses), tablet risperidone (4 mg/day in divided doses), and tablet clonazepam (4 mg/day in divided doses). The patient continued to be irritable, hyperactive, overtalkative, displaying disruptive behavior over the next 1 week despite ensuring regular compliance to psychotropics. On day 10 of the hospitalization, he was noted to be drowsy but able to carry out his routine activities; hence, all his medications were withheld. On day 11 of hospitalization, drowsiness further worsened Glasgow coma scale (GCS 12/15) score, and he had irrelevant speech and disorientation. Clinical examination revealed the following: temperature - 98.6°F, pulse - 74/min, regular blood pressure (BP) - 120/70 mmHg, pupils - normal in size and normally reacting to light, no rigidity, and plantars were flexor. All medications were withdrawn. Relevant urgent investigations revealed - creatine phosphokinase - 113.5 IU/L (0–170 IU/L), normal LFT, and repeat CT scan brain. He was shifted to intensive care unit (ICU). By evening, his drowsiness further worsened (GCS-E1V1M3), temperature - 98.6°F, Pulse rate (80–90/min), and BP (systolic 110–120 mmHg and diastolic 70–84 mmHg). His urgent serum ammonia level was 396 μmol/L (normal - 11–32 μmol/L), serum VPA level was 67 (50–100 μg/ml), and other findings were pH – 7.53, PO₂ – 86, Na⁺ – 139 meq/L, and K⁺ – 3.6 meq/L. He was diagnosed as a case of nonhepatic hyperammonemic encephalopathy caused by VPA. He was promptly managed with hemodialysis, injection mannitol 100 mg intravenous (IV) 8 hourly, and ICU supportive care. On day 12, he was conscious but drowsy and partially oriented, tablet L-carnitine 1000 mg for every 12 h was also added while being continued on hemodialysis and injection mannitol. On day 14, he was conscious, obeying commands, but restless. His repeat serum ammonia levels showed a declining trend (44 μmol/L) and his hemodialysis was discontinued. His restlessness was subsequently managed with tablet lorazepam. He was started on tablet oxcarbazepine as a mood stabilizer, which was well tolerated and later discharged on maintenance oxcarbazepine (900 mg/day in divided doses).

DISCUSSION

Ammonia is a normal constituent of all body fluids. At physiologic pH, it exists mainly as ammonium ion. Reference serum levels are <35 μmol/L. Excess ammonia is excreted as urea, which is synthesized in the liver through the urea cycle. Various causes of hyperammonemia include congenital deficiencies of urea cycle enzymes, hepatic encephalopathies, renal or hepatic failure, congenital lactic acidosis, organic acidemias, drug induced (VPA, 5-fluorouracil, and salicylates), and Reye's syndrome. Although VHE is rare, VPA frequently causes a rise in serum ammonia levels, usually resulting in asymptomatic hyperammonemia. Murphy and Marquardt studied the frequency of hyperammonemia in asymptomatic patients receiving valproic acid; plasma ammonia concentrations were measured in 55 patients receiving this drug and in 12 patients receiving other anticonvulsants. Twenty-nine of the 55 patients receiving valproic acid and none of the control patients had plasma ammonia levels above the normal range. Hyperammonemia can have varied presentation from 4 days to 4 years after valproic acid therapy initiation. The mechanism of valproic acid and its derivatives causing hyperammonemia is multifactorial. VHE pathogenesis is related to urea cycle defect mostly in the form of carbamoyl phosphate synthetase-1 inhibition leading to decreased utilization of ammonia followed by a hyperammonemic state. VPA also reduces the hepatic synthesis of carnitine and increases its renal excretion, thereby precipitating hyperammonemia. Hyperammonemic encephalopathy can lead to edema of astrocytes through glutamate uptake inhibition, which may lead to cerebral edema and neuronal injury. There is apparently no link between the development of VHE and serum levels and doses of valproic acid. A relationship between daily doses of VPA and the appearance and severity of VHE has not been found. Serum VPA levels are within normal range in most VHE cases.

The Naranjo Adverse Drug Reaction Probability Scale of this case scored 9 (definite adverse drug reaction). Risk factors for the development of hyperammonemia are high initial dose (probably slightly higher in our case), long-term VPA therapy, concomitant medicines such as antipsychotics (as in our case) or anticonvulsants (topiramate, phenobarbitone, phenytoin, and carbamazepine) added to VPA, urea cycle disorders, low plasma carnitine levels, rich protein diet, and fasting. Some of the unusual features of the present case are sudden deterioration to severe comatose state (GCS-5/15), absence of seizures, DVPX...
Table 1: Comparison of the present case series with similar reports in literature

Patient details	Patient details	Disease for which VPA initiated	Age and sex	Total VPA dose (mg/day)	Duration of VPA use	Concomitant drugs	Serum ammonia levels (µmol/L)	Rechallenge	Management	Naranjo’s casualty assessment		
Present case report	Case VHE	BPAD	25, male	1500	1 year with default. VPA started for mania	Risperidone Clonazepam	396	46	Not done	VPA stopped	Hemodialysis Carnitine	9 definite
Muraleedharan et al.	Case 1 VHD	BPAD	46, male	1000	Several years with default VPA started for mania	Lorazepam	81	46	Not done	VPA stopped	Not available	5 probable
	Case 2 VHD	BPAD	53, male	1000	1 month							
	Case 3 VHD	BPAD	36, female	600	3 years							
Pradeep	Case 1 VHD	BPAD	53, male	1000	Dose increased 2 days before VHD	NIL	95	25	Done	VPA stopped	Not available	
	Case 2 VHD	BPAD	60, male	1000	1 month							
	Case 3 VHD	SEIZURE	20, male	750	7 days	Topiramate Quetiapine	232	56	Not done	VPA stopped	Carnitine	Not available
Wadzinski	Case 1 VHE	PTSD	51, female	1000	7 days	Topiramate Quetiapine	98	30	Not done	VPA stopped	Not available	
	Case 2 VHE	BPAD	29, female	1500	5 months	Fluvoxamine	182	41	Not done	VPA stopped		
	Case 1 VHD	Mania	31, male	1000	Escalated to 1500	Topiramate olanzapine	98	30	Not done	VPA stopped		9 definite

First - Ammonia level checked first after suspecting hyperammonemia; Second - 2 or 3 days after stopping VPA. VHD – Valproate-induced hyperammonemic delirium; VHE – Valproate-induced hyperammonemic encephalopathy; BPAD – Bipolar affective disorder; PTSD – Posttraumatic stress disorder; OCD – Obsessive-compulsive disorder; VPA – Valproate
with no concurrent anticonvulsants, absence of medical comorbidity, and life-threatening condition requiring hemodialysis, cerebral decongestants, and L-carnitine. Our patient did not have seizures as documented in other case reports of VHE[22-25] in which there was rapid neurological deterioration which responded to hemodialysis [Table 1].

Principles of management include correction of the biochemical abnormalities; ensuring adequate nutritional intake and compounds that increase the removal of nitrogen waste. Treatment involves withdrawal of VPA, cessation of protein and/or nitrogen intake, hemodialysis, and supportive care with parenteral intake of calories. Complete recovery generally occurs over a period of 24 h to a few days. L-carnitine supplementation has been shown to improve the symptoms of VPA-related toxicities. L-carnitine has also been shown to be effective in reducing ammonia levels and in improving the symptoms of hyperammonemia. It is generally safe and may be given orally or IV at a dose of 50–100 mg/kg/day.[19] There are currently no specific recommendations for screening people for asymptomatic hyperammonemia. This case report purports to caution the psychiatrist that there should be a high index of suspicion for VPA-induced hyperammonemia in case a patient shows deterioration in clinical recovery or develops deliriumencephalopathy while on treatment with VPA as hyperammonemia is a potentially reversible condition.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Cincárová L, Zdráhal Z, Fajkus J. New perspectives of valproic acid in clinical practice. Expert Opin Investig Drugs 2013;22:1535-47.
2. Olsen KB, Taubøll E, Gjerstad L. Valproate is an effective, well-tolerated drug for treatment of status epilepticus/serial attacks in adults. Acta Neurol Scand Suppl 2007;187:51-4.
3. Stoner SC, Dahmen MM. Extended-release divalproex in bipolar and other psychiatric disorders: A comprehensive review. Neuropsychiatr Dis Treat 2007;3:839-46.
4. DelBello MP, Lopez-Larson MP, Getz GE, Strakowski SM. Treatment of schizoaffective disorder with divalproex sodium. Schizophr Res 2000;46:77-9.
5. Gill D, Derry S, Wiffen PJ, Moore RA. Valproic acid and sodium valproate for neuropathic pain and fibromyalgia in adults. Cochrane Database Syst Rev 2011;10:CD009183.
6. Linde M, Mulleners WM, Chronicle EP, McCrory DC. Valproate (valproic acid or sodium valproate or a combination of the two) for the prophylaxis of episodic migraine in adults. Cochrane Database Syst Rev 2013;6:CD010611.
7. Dixit S, Namdeo M, Azad S. Valproate induced delirium due to hyperammonemia in a case of acute mania: A diagnostic dilemma. J Clin Diagn Res 2015;9:VD01-2.
8. Muralleedharan A, Palappallil DS, Gangadhar R, Das S. Valproate induced hyperammonemic delirium. J Clin Diagn Res 2015;9:FR01-3.
9. World Health Organization. The ICD 10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines. Geneva: World Health Organization; 1992. p. 96.
10. Burtis CA, Ashwood ER, Bruns DE. Textbook of Clinical Chemistry and Molecular Diagnostics. 5th ed. Philadelphia, PA: WB Saunders; 2011.
11. Bhagavan NV, Chung-Eun H. Essentials of Medical Biochemistry: With Clinical Cases. 2nd ed. Cambridge, Massachusetts, United States: Elsevier Science & Technology Books; 2015. p. 238.
12. Wadzinski J, Franks R, Roane D, Bayard M. Valproate-associated hyperammonemic encephalopathy. J Am Board Fam Med 2007;20:499-502.
13. Pradeep RJ. Valproate monotherapy induced-delirium due to hyperammonemia: A report of three adult cases with different types of presentation. Indian J Psychiatry 2008;50:121-3.
14. LoVecchio F, Shrik J, Samaddar R. L-carnitine was safely administered in the setting of valproate toxicity. Am J Emerg Med 2005;23:321-2.
15. LoVecchio F, Shrik J, Samaddar R. L-carnitine was safely administered in the setting of valproate toxicity. Am J Emerg Med 2005;23:321-2.
16. Lheureux PE, Hantson P. Carnitine in the treatment of valproic acid-induced toxicity. Clin Toxicol (Philad) 2009;47:101-11.
17. Chopra A, Kolla BP, Mansukhani MP, Netzel P, Frye MA. Valproate-induced hyperammonemic encephalopathy: An update on risk factors, clinical correlates and management. Gen Hosp Psychiatry 2012;34:290-8.
18. Naranjo CA, Busto U, Sellers EM, Sandor P, Ruiz I, Roberts EA, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther 1981;30:239-45.
19. Sunkavalli KK, Iqbal FM, Singh B, Koneru J. Valproate-induced hyperammonemic encephalopathy: A case report and brief review of the literature. Am J Ther 2013;20:569-71.
20. Rigamonti A, Lauria G, Grimo G, Bianchi G, Salmaggi A. Valproate induced hyperammonemic encephalopathy successfully treated with levocarnitine. J Clin Neurosci 2014;21:690-1.
21. Tsai MF, Chen CY. Valproate-induced hyperammonemic encephalopathy treated by hemodialysis. Ren Fail 2008;30:822-4.
22. Nasa P, Sehrawat D, Kansal S, Chawla R. Effectiveness of hemodialysis in a case of severe valproate overdose. Indian J Crit Care Med 2011;15:120-2.