Application of georadiological subsurface sensing for hydrogeological monitoring

To cite this article: D V Limanskiy and M A Vasilyeva 2018 J. Phys.: Conf. Ser. 1118 012023

View the article online for updates and enhancements.

You may also like

- Theoretical principles of petroleum hydrogeology of the West Siberian megabasin (WSMB)
 V Matusevich, V Pópop, L Kovyatkina et al.

- Hydraulic conductivity estimation by using groundwater modelling system program for upper zone of Iraqi aquifers
 T S Khayyun and H H Mahdi

- Structure of the hydrogeological field of the Krasnoleninsky arch
 R N Abdrashitova and Yu I Salnikova
Application of georadiological subsurface sensing for hydrogeological monitoring

D V Limanskiy¹, M A Vasilyeva²

¹ St. Petersburg State Public Institution «Directorate of transport construction», 8, Neyslotsky lane, St. Petersburg, 194044, Russia
² St. Petersburg Mining University, 2, 21-line, St. Petersburg, 199106, Russia

E-mail: saturn.sun@mail.ru

Abstract. This article presents the results of the application of the georadar area near-surface sounding and the possibility of using a georadar for hydrogeological monitoring in the zone of negative influence of the liquidated coal mines.

1. Introduction
Flooding of large volumes of water in goaf abandoned mines accompanied by change in the stress state of the rock mass, the activation of displays of seismic rock pressure. Seismic observations conducted in various coal regions of the country note the activation of seismic phenomena, periodically record technogenic earthquakes up to 3-4 points on the Richter scale. Continued, and in some cases intensified, there are processes of subsidence of the earth's surface with the formation of deflections, dips, funnels, cracks. The consequence of this is the flooding of underworked areas, where industrial buildings and structures, residential settlements, valuable agricultural lands and forest tracts are located. To prevent these phenomena, a timely forecast of the possibility of flooding of territories is important [1, 2]. To determine the level of groundwater and man-caused waters, it is proposed to use a set of equipment for georadar location near-surface sounding [3-5].

2. Materials and methods
For georadar surveys, the most commonly used method is called vertical time in seismic surveys. In this case, the georadar moves along the profile with a constant separation between the receiving and transmitting antennas, and at each point of the profile a signal consisting of a probe pulse and secondary waves is recorded (see Fig. 1). Any subsurface inhomogeneities associated with changes in the ground will give a response in the wave structure of the received signal.

Figure 1. A schematic diagram of the georadar movement along the selected route
3. The study of the propagation of electromagnetic waves

The most important parameters characterizing the possibility of using the georadiolocation method in various environments are the specific attenuation and propagation velocity of electromagnetic waves in the environment, which are determined by its electrical properties. Specific attenuation determines the depth of sounding. The value of the propagation velocity of radio waves is necessary for recalculating the time delay of the reflected pulse in the distance parameter to the reflecting boundary (Fig. 2).

Figure 2. A scheme of propagation of radio waves in different layers of soil.

The main parameters that are necessary to ensure the correct technology of surveying and interpretation of georadiolocation data:

- the dielectric constant: \(\varepsilon = \varepsilon' - j\varepsilon'' \);
- conduction: \(\sigma = \omega \varepsilon'' \varepsilon_0 \);
- dielectric loss tangent: \(\tan \delta = \varepsilon'/\varepsilon'' = \sigma/\omega \varepsilon'' \varepsilon_0 \);
- light speed in vacuum \(c \);
- dielectric permeability in vacuum: \(\varepsilon_0 \);
- magnetic permeability in vacuum: \(\mu_0 \);

For most rocks:
- phase velocity: \(V_p = c/R_{\varepsilon}/\sqrt{\varepsilon} \);
- the degree of attenuation of the wave at a distance \(z \) in dB (decibels): \(L = 20 \log_{10}[E_0/E_z] = 8.68\alpha z \), where \(\alpha = \omega/c/\ln\sqrt{\varepsilon} \);
- specific attenuation: \(\Gamma = 8.68\alpha = 54.6/\alpha/\ln\sqrt{\varepsilon} \).

Approximate values of the electrical characteristics of some soils and rocks at a field frequency of 100 MHz used to operate in the study area are given in Tables 1 and 2.
Table 1. Dielectric values of materials in the frequency range recommended for measurements

Material	Dielectric constant	Conduction	Specific attenuation	Phase velocity
Air	1	0	0	300
Fresh water	81	10⁻³	0.18	33
Sea water	81	4	330	15
Sandy soil is dry	2.6	1.4×10⁻⁴	0.14	190
Sandy soil moist	25	6.9×10⁻³	2.3	60
Dry loam	2.5	1.1×10⁻⁴	0.11	190
Wet loam	19	2.1×10⁻²	7.9	69
Clay soil is dry	2.4	2.7×10⁻⁴	0.28	190
Clay soil moist	15	5×10⁻²	20	74
Basalt wet	8	10⁻²	5.6	110
Granite wet	7	10⁻¹	0.62	110
Clay slate moist	7	10⁻¹	45	83
Sandstone wet	6	4×10⁻²	24	110
Limestone moist	8	2.5×10⁻²	14	110
Iron	1	10⁶	1.7×10⁻⁷	-

As the moisture content of the soil increases, the specific dielectric constant also increases. The electrical conductivity of the soil increases.

Table 2. Dependence of the basic electromagnetic parameters of soils on humidity

Material	Dielectric constant	Conduction
Road construction	5…10	0,0002…0,00002
Rock	4…10	0,01…0,0000
Clay	4…16	0,05…0,0002
Loam	2,5…19	0,021…0,00011
Sand	3…25	0,007…0,00002
Peat wet	50…78	0,002…0,001
Moraine	9…25	0,01…0,0001
II	9…23	0,001…0,0001
Metal	1…2	10000000
Ice	3…4	0,001
Water	80…81	0,002…0,001
Air	1	0
Road construction	5…10	0,0002…0,00002
Rock	4…10	0,01…0,0000

The minimum values of the dielectric constant refer to dry the material, the maximum - to water-saturated.

The difference in the phase velocity for different frequencies determines the variance. The probe pulse in a dispersion medium changes its shape due to phase distortion of the shape.
4. Results
The method of georadar location near-surface sounding has been tested with the purpose of remote
determination of the following parameters: groundwater level (hydrogeological monitoring), depth
parameters of the source of ignition of coal dumps (monitoring of land resources), failure-dangerous
zones around the old abandoned mine workings (geodynamic monitoring).

Allocation of the groundwater level (GWL) using the georadiolocation method is much easier if the
study area or in the immediate vicinity are located in some ponds (ponds, rivers, lakes, etc.), i.e., it is
possible to trace the groundwater level directly from the water's edge on the work site, especially for the
laying of at least one profile. If necessary, it is possible to conduct regular observations on fluctuations
of the GWL, which can be of great importance in engineering geological and geocological studies [6 -
8].

The scheme of the profiles examined by the georadar in the immediate vicinity of the hydro-
observation well is shown in Fig. 3.

Interpreted results of georadar surveying in the determination of GWL are shown in Fig. 4.
Figure 4. Interpretation of georadar survey data: a) the waveform of the reflected signal and the radarogram with the deposited groundwater level on track 1; b) a radarogram with a well-traced reflection from the wet boundary before processing

5. Conclusion
As can be seen, the value of the ground water level correlates well with the appearance of the "tail" on the wave form, that is, the departure of the signal from the centerline on the waveform chart. Emerging intermediate layers introduce additional losses; nevertheless, GWL is fixed quite confidently, especially in a uniform palette [9, 10].

Based on the data obtained, it can be concluded that the method is valid for the constant monitoring of the dynamics of groundwater, especially in the area of the liquidated mines.

The main advantage of this method in hydrogeological monitoring is remote sensing of the groundwater level without the need to drill expensive observation wells. This method makes the process of hydromonitoring much more cost-effective.

References
[1] Zaidenvarg V E, Navitniy A M, Semikobyyl Ya G, 2002 Scientific foundations of the complex ecological area of the closed mines (Moscow: Rosinformugol) 226
[2] Krasavin A P, Navitniy A M, Kaplunov Yu V 2010 Environmental monitoring in the liquidation of mines and sections (OJSC "MNIIECOTEK") 315
[3] Saraev A, Simakov A, Shlykov A, Tezkan B, 2017 Journal of applied geophysics 146 228-237
[4] Ikeda K, Steiner M, Thompson G 2017 Weather and forecasting 32(3) 949-967
[5] Rutishauser A, Grima C, Sharp M, Blankenship D D, 2016 Geophysical research letters 43(2) 12502-12510
[6] Limanskiiy A V, Vasilyeva M A 2016 Ecological Engineering 91 41-43
[7] Zibrov G V, Zakuisilov V P, Buryak Z A 2017 Research journal of pharmaceutical biological and chemical sciences 8(2) 2439–2443
[8] Slukovskii Z I 2015 Russian meteorology and hydrology 40(6) 420–426
[9] Tskhai A, Shirokova S, Konev D, Koshelev K, Tskhai T 1995 Modelling and management of sustainable basin-scale water resource systems 231 263–270
[10] Kelly J T, Gontz A M 2018 International journal of applied earth observation and geoinformation 65 92–104