The flexibility of proanthocyanidin biosynthesis in plants

Nan Lu,1 Ji Hyung Jun,1,† Chenggang Liu1 and Richard A. Dixon1,*

1 BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton TX 76203, USA

*Author for correspondence: Richard.Dixon@unt.edu
†Present address: Children’s Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA

Dear Editor,

Proanthocyanidins (PAs) are natural oligomers or polymers of flavan 3-ols that accumulate in plants. Increasing evidence suggests benefits of PAs in agriculture, environmental sustainability, and human health (Mueller-Harvey et al., 2019; Rauf et al., 2019; Roldan et al., 2022). Our understanding of PA biosynthesis was until recently based on the model dicot species Arabidopsis (Arabidopsis thaliana), utilizing the large pool of T-DNA insertional mutants. Through forward genetic screening, a set of A. thaliana transparent testa (tt) mutants with impaired PA deposition in the seed coat has been identified and a PA biosynthesis pathway proposed based on characterized enzymes (Lepiniec et al., 2006). Subsequently, further progress has been made studying PA biosynthesis in the model legume Medicago truncatula, and other crops such as grapevine (Vitis vinifera). As expected, many genes involved in PA biosynthesis in A. thaliana are functionally conserved across species. However, it is now becoming apparent that the PA-specific branch of flavonoid biosynthesis is unusually flexible, and that different species have adopted different solutions to the problem of “managing” the trafficking and chemical condensation of precursors that act as PA starter and extension units.

Conserved proteins involved in PA biosynthesis include the transcription factors TRANSPARENT TESTA 2 (AtTT2, with ortholog MYEOLOBLASTOSIS FAMILY 14 (MtMYB14) in M. truncatula), AtMYB5/MtMYB5, AtTT8/MtTT8, TRANSPARENT TESTA GLABROUS 1 (AtTTG1, with ortholog WD40-DOMAIN PROTEIN (MtWD40-1) in M. truncatula), and AtMYB2/MtMYB2; the transporter AtTT12, with ortholog MULTIDRUG AND TOXIC COMPOUND EXTRUSION FAMILY 1 (MtMATE1) in M. truncatula; and anthocyanidin reductase (ANR; Figure 1, A and B). ANR catalyzes the reaction that generates flavan 3-ols (e.g. epicatechin), the building blocks of PAs (Xie et al., 2003). Surprisingly, however, it now appears that the biosynthetic routes to epicatechin starter and extension units are different (Jun et al., 2018, 2021), and an additional function of ANR in generating the epicatechin-based PA extension unit 2,3-cis-leucocyanidin was recently demonstrated (Jun et al., 2021; Figure 1, A and B). The carbocation intermediates derived from leucocyanidins are highly reactive, and the reaction to generate PA dimers from 2,3-cis-leucocyanidin and epicatechin occurs spontaneously in vitro. PA polymerization may be modulated by the chemical sequestration or physical separation of stable starter and reactive extension units until they reach their site for nonenzymatic polymerization (the vacuole or vesicles in route to the vacuole), thereby avoiding accumulation in the cytosol of potentially self-toxic monomers. The need to physically protect or separate PA starter and/or extension units may account for the difficulty in reconciling the functions of nonconserved genes implicated in PA biosynthesis between species.

Several PA-related gene functions and mutant phenotypes differ between A. thaliana, M. truncatula, and other species. For example, M. truncatula leucoanthocyanidin dioxygenase (Iodox; Jun et al., 2018) and leucoanthocyanidin reductase (lar; Liu et al., 2016) mutants show strongly reduced PA levels.
but wild-type anthocyanin levels, but there are no apparent LDOX or LAR homologs in *A. thaliana* (Figure 1, A and B). The *A. thaliana* tt19 mutant, caused by loss of function of a glutathione S-transferase (AtGSTF12, TT19), shows reduced soluble PAs and increased insoluble PAs in young seeds (Kitamura et al., 2004, 2010), strongly resembling the lar mutant in *M. truncatula* (Liu et al., 2016). However, tt19 also exhibits a strong loss-of-anthocyanin phenotype, indicating that although its exact function remains unclear, TT19 participates in both PA and anthocyanin pathways in *A. thaliana*. The involvement of TT19 and its homologous genes in PA and anthocyanin biosynthesis in other species has been extensively studied. However, with only few exceptions (e.g. Wang et al., 2012), TT19 homologs from multiple species, including *M. truncatula* (see Wang et al., 2022 and references therein), are associated with anthocyanin biosynthesis but fail to complement the reduced PA phenotype of the tt19 mutant background. Additionally, an anthocyanin-related GST, BRONZE 2 (BZ2), was identified in maize (*Zea mays*), a species that does not appear to produce PAs. Why
TT19-like genes are required for PA polymerization in some but not all species remains unresolved.

In *M. truncatula*, LAR has been proposed to modulate the degree of PA polymerization by balancing epicatechin (starter unit) and epicatechin–cysteine (extension unit) levels (Liu et al., 2016). It was hypothesized that TT19 might modulate PA polymerization in *A. thaliana* by transiently binding to either starter or extension units until they mix (Dixon and Sarnala, 2020). To test this hypothesis, we analyzed PA profiles in Arabidopsis *tt19-8* and Col-0 (wild-type) young seeds using liquid chromatography–mass spectrometry (Figure 2). In the soluble PA fraction, the levels of free PA starter units (epicatechin) were much lower in *tt19-8* than in Col-0, but levels of the free potential extension unit 4β-(S-cysteinyl)-epicatechin were similar or even higher. These data indicate that TT19 is necessary for maintenance of PA starter units, but likely not the more reactive extension units.

URIDINE DIPHOSPHATE GLYCOSYL TRANSFERASE 72L1 (UGT72L1) is a glucosyltransferase from *M. truncatula* that forms epicatechin-3′-O-glucoside (Pang et al., 2008), the substrate for the vacuolar transporter MtMATE1 (the homolog of TT12; Zhao and Dixon, 2009; Figure 1B). However, no UGT responsible for epicatechin hexoside formation in *A. thaliana* has been unequivocally identified. UGTs are involved in detoxification processes, and it is therefore reasonable to suppose that UGT72L1 facilitates transfer of PA starter units to vacuoles. However, to date, there are no genetic data implicating UGTs in PA biosynthesis. Furthermore, it is possible that epicatechin is not the in vivo substrate for the formation of epicatechin-3′-O-glucoside; by analogy, it was recently suggested that 5,7,3′,4′-tetrahydroxy-flav-2-en-3-ol 3′-O-glucoside (2F3G), rather than cyanidin itself, is the immediate precursor of cyanidin 3-O-glucoside (Yoshida et al., 2020), and flav-en-ol intermediates have also been implicated in epicatechin biosynthesis (Jun et al., 2018, 2021).

Currently, the preferred strategy for engineering PAs in plants is through overexpression of transcription factors (TFs), which has proven effective in some species (Roldan et al., 2022). However, ectopic TF expression can affect off-target genes that are not directly linked to flavonoid biosynthesis, potentially leading to pleiotropic effects on plant development (Liu et al., 2014; James et al., 2017; Lu et al., 2021). Furthermore, several crop species, such as maize, lack an endogenous traditional PA pathway. Therefore, an alternative strategy is to use synthetic biology to build the PA pathway in desired tissues, which requires identification of the minimal gene set for PA production in a particular species. This is made more difficult by the apparent lack of enzymatic control of the final polymerization step, species differences in PA precursor trafficking and sequestration, and the lack of a clear understanding of the cell biology of these processes.

![Figure 2](image-url) Analysis of PA starter and extension units in wild-type Col-0 and *tt19-8* seeds. Detection of epicatechin (epi; starter unit, left) and 4β-(S-cysteinyl)-epicatechin levels (epi-cys; extension unit, right) by accurate mass liquid chromatography–mass spectrometry according to Lu et al. (2021) and Jun et al. (2021). Top panels show authentic standards. Inset shows epicatechin scan in *tt19-8* at increased resolution (×10^3). SD, standards; cps, counts per second.
In conclusion, current data suggest that different species have evolved different routes for PA biosynthesis. In the models in Figure 1, plants may utilize either a GST or LAR to modulate the polymerization process. Strategies for engineering PAs and tailoring PA compositions in forage and row crops will benefit from a better understanding of the ways in which different plant species handle the trafficking and polymerization of reactive PA pathway intermediates.

Funding

Work in the authors’ laboratory was supported by grants to RAD from Forage Genetics International and GrasslaNZ Technology Limited.

Conflict of interest statement. None declared.

References

Dixon RA, Sarnala S (2020) Proanthocyanidin biosynthesis-a matter of protection. Plant Physiol 184: 579–591

James AM, Ma D, Mellway R, Gesell A, Yoshida K, Walker V, Tran L, Stewart D, Reichelt M, Suvanto J, et al. (2017). Poplar MYB115 and MYB134 transcription factors regulate proanthocyanidin synthesis and structure. Plant Physiol 174: 154–171

Jun JH, Xiao X, Rao X, Dixon RA (2018) Proanthocyanidin subunit composition determined by functionally diverged dioxygenases. Nat Plants 4: 1034–1043

Jun JH, Lu N, Docampo-Palacios M, Wang X, Dixon RA (2021) Dual activity of anthocyanidin reductase supports the dominant plant proanthocyanidin extension unit pathway. Sci Adv 7: eabc4682

Kitamura S, Shikazono N, Tanaka A (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J 37: 104–114

Kitamura S, Matsuda F, Tohge T, Yonekura-Sakakibara K, Yamazaki M, Saito K, Narumi I (2010) Metabolic profiling and cytological analysis of proanthocyanidins in immature seeds of Arabidopsis thaliana flavonoid accumulation mutants. Plant J 62: 549–559

Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourech L, Nesi N, Caboche M (2006) Genes and biochemistry of seed flavonoids. Annu Rev Plant Biol 57: 405–430

Liu C, Jun JH, Dixon RA (2014) MYB5 and MYB14 play pivotal roles in seed coat polymer biosynthesis in Medicago truncatula. Plant Physiol 165: 1424–1439

Liu C, Wang X, Shulaev V, Dixon RA (2016) A role for leucoanthocyanidin reductase in the extension of proanthocyanidins. Nat Plants 2: 16182

Lu N, Rao X, Li Y, Jun JH, Dixon RA (2021) Dissecting the transcriptional regulation of proanthocyanidin and anthocyanin biosynthesis in soybean (Glycine max). Plant Biotechnol J 19: 1429–1442

Mueller-Harvey I, Bee G, Dohme-Meier F, Hoste H, Karonen M, Kölliker R, Lüscher A, Niderkorn V, Pellikaan W, Salminen JP, et al. (2019) Benefits of condensed tannins in forages fed to ruminants: Importance of structure, concentration and diet. Crop Sci 59: 1–25

Pang Y, Peel GJ, Sharma SB, Tang Y, Dixon RA (2008) A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proc Natl Acad Sci USA 105: 14210–14215

Rauf A, Imran M, Abu-Itneid T, Iahtisham-Ul-Haq, Patel S, Pan X, Naz S, Sanches Silva A, Saeed F, Rasul Suleria HA (2019) Proanthocyanidins: a comprehensive review. Biomed Pharmacother 116: 108999

Roldan MB, Cousins G, Muetzel S, Zeller WE, Fraser K, Salminen JP, Blanc A, Kaur R, Richardson K, Maher D, et al. (2022) Condensed tannins in white clover (Trifolium repens) foliar tissues expressing the transcription factor TaMYB14-1 bind to forage protein and reduce ammonia and methane emissions in vitro. Front Plant Sci 12: 777354

Wang R, Lu N, Liu C, Wu Q, Mao Y, Yang Y, Zheng X, He L, Zhao B, Zhang F, et al. (2022). MtGSTF7, activated by the MYB transcription factor LAP1, specifically participates in anthocyanin accumulation in Medicago truncatula. J Exp Bot. doi: 10.1093/jxb/erc112

Wang Y, Tang Y, Zhang M, Cai F, Qin J, Wang Q, Liu C, Wang G, Xu L, Yang L, et al. (2012) Molecular cloning and functional characterization of a glutathione S-transferase involved in both anthocyanin and proanthocyanidin accumulation in Camelina sativa (Brassicaceae). Genet Mol Res 11: 4711–4719

Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA (2003). Role of anthocyanidin reductase, encoded by BANYULS, in plant flavonoid biosynthesis. Science 299: 396–399

Yoshida K, Teppabut Y, Sawaguchi R, Nakane Y, Hayashi E, Oyama K, Nishizaki Y, Goda Y, Kondo T (2020) 5,7,3’4’-Tetrahydroxyflav-2-en-3-ol 3-O-glucoside, a new biosynthetic precursor of cyanidin 3-O-glucoside in the seed coat of black soybean, Glycine max. Sci Rep 10: 17184

Zhao J, Dixon RA (2009) MATE transporters facilitate vacuolar uptake of epicatechin 3’-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell 21: 2323–2340