Hemodilution is Associated with Underestimation of Serum Creatinine in Cardiac Surgery Patients: A retrospective analysis

Jifu Jin
Zhongshan Hospital, Fudan University

Jiarui Xu
Zhongshan Hospital, Fudan University

Sujuan Xu
Zhongshan Hospital, Fudan University

Jiachang Hu
Zhongshan Hospital, Fudan University

Wuhua Jiang
Zhongshan Hospital, Fudan University

Bo Shen
Zhongshan Hospital, Fudan University

Chunsheng Wang
Zhongshan Hospital, Fudan University

Jie Teng
Zhongshan Hospital, Fudan University

Xiaoqiang Ding (dingxiaoqiang2018@163.com)
Zhongshan Hospital https://orcid.org/0000-0002-0169-2729

Research article

Keywords: Acute kidney injury, Fluid balance, Cardiac surgery, Diagnosis, Prognosis

DOI: https://doi.org/10.21203/rs.3.rs-27199/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Fluid overload is related to the development and prognosis of cardiac surgery-associated acute kidney injury (CSA-AKI). The study is to investigate the influence of serum creatinine (SCr) corrected by fluid balance on the prognosis of patients with cardiac surgery.

Methods: A retrospective study was conducted in 1334 patients who underwent elective cardiac surgery from January 1 to December 31, 2015. Kidney Disease: Improving Global Outcomes (KDIGO) criteria for AKI were applied to identify CSA-AKI. SCr was measured every 24 hours during ICU period and was accordingly adjusted for cumulative fluid balance. Changes in SCr, defined as \(\Delta \text{Crea} \), were determined by difference between before and after adjustment for cumulative fluid balance. All patients were then divided into three groups: underestimation group (\(\Delta \text{Crea} \geq P_{75} \)), normal group (\(P_{25} < \Delta \text{Crea} < P_{75} \)) and overestimation group (\(\Delta \text{Crea} \leq P_{25} \)).

Results: The incidence of AKI increased from 29.5% to 31.8% after adjustment for fluid balance. Patients in underestimation group showed prolonged length of ICU stay compared with normal group and overestimation group (3.2[1.0-3.0] vs 2.1[1.0-3.0] d, \(P < 0.001 \); 3.2[1.0-3.0] vs 2.3[1.0-3.0] d, \(P < 0.001 \)). Length of hospital stay and mechanical ventilation dependent days in underestimation group were significantly longer than normal group (\(P < 0.001 \)). Multivariate analysis showed age, baseline SCr and left ventricular ejection fraction were independently associated with underestimation of creatinine.

Conclusions: Cumulative fluid balance after cardiac surgery disturbs accurate measurement of serum creatinine. Patients with underestimation of SCr were associated with poor prognosis.

Background

Acute renal failure (ARF) develops in 17% to 30% of patients after cardiac surgery and is associated with an excessive mortality rate up to 60%-80% [1-4]. Unfortunately, ARF is not recognized as a definition for the disease ranging from quantitative and qualitative alterations [5]. Meanwhile, subsequent studies confirmed that small changes in serum creatinine were associated with an increased mortality [6]. The new term acute kidney injury (AKI) reflecting the complex continuum of renal dysfunction was gradually accepted. As the first-line treatment of critically ill patients, fluid resuscitation may cause positive fluid balance during treatment, which frequently results in a relative increase in body weight of 10%-15% in a short time [7,8]. However, recent studies have illustrated that positive fluid balance was associated with worse outcome in critically ill patients with AKI [9-12]. Stein A et al. found both fluid overload and changes in serum creatinine were related to the adverse outcomes, including death, infection, bleeding, arrhythmia and pulmonary edema [13]. Furthermore, positive fluid balance was associated with recognition, staging and outcome of AKI in patients with acute respiratory distress syndrome or undergoing cardiac surgery [14-17]. Macedo et al. found that fluid accumulation may induce underestimation of the severity of AKI and increase the time to identify a 50% relative increase in serum creatinine [18]. Based on these results, the aim of our study is to investigate the influence of discrepancy of serum creatinine on the prognosis of
patients with cardiac surgery, and moreover, to explore underlying risk factors for underestimation of serum creatinine.

Methods

1. Patients

Patients who underwent cardiac surgery between January 1 and December 31, 2015 at the Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University were consecutively included in our study. Inclusion criteria were adult patients (< 75 years) who received elective cardiac surgery with or without cardiopulmonary bypass (CPB), including coronary artery bypass graft (CABG) and valvular surgery. Exclusion criteria were patients who had preexisting renal dysfunction requiring renal replacement therapy or had a baseline creatinine ≥ 4 mg/dl; patients who died within 24 hours after surgery as well as patients who received cardiac transplant or aortic aneurysm surgery. The Institutional Ethics Committee of the Zhongshan Hospital (B2018-175) granted permission for data collection and informed consent was waived due to the retrospective design of the study.

2. Data collection

Acute Physiology and Chronic Health Evaluation II (APACHE II) score was used to assess severity of illness at intensive care unit (ICU) admission [19]. Intraoperative parameters, such as CPB and cross-clamp duration, types of surgery and ultrafiltration during extracorporeal circulation were recorded as well. Fluid input and output were obtained at least 24 hours since ICU admission or until discharge from the ICU, whichever occurred first. Insensitive loss of fluid was not taken into account in our study.

3. Definitions

Kidney Disease: Improving Global Outcomes (KDIGO) definition was utilized to identify cardiac surgery-associated acute kidney injury (CSA-AKI) [20]. The dilutional effect of fluid overload on the diagnosis and staging of CSA-AKI was assessed.

Cumulative fluid balance was calculated based on total fluid input and output in every 24 hours. Patients’ admission weights were utilized to estimate baseline total body water (TBW).\[\text{TBW} = 60\% \text{ of baseline weight in kilogram at admission}\] [18].

Baseline serum creatinine was obtained immediately prior to surgery. Maximum serum creatinine was the highest value within 48 hours after cardiac surgery. During the postoperative ICU period, serum creatinine was measured at least once every 24 hours. The adjusted serum creatinine was calculated with the formula used in the previous studies [14, 18, 21]. Adjusted creatinine = serum creatinine × \[1 + (\text{cumulative fluid balance in L/admission weight in kg} \times 0.6)\].\[\Delta \text{Crea} = \text{adjusted serum creatinine - baseline serum creatinine}\]
Given that the normal distribution of ΔCrea (Figure 1), patients were divided into three groups: underestimation group (ΔCrea $\geq P_{75}$), normal group ($P_{25} < \Delta$Crea $< P_{75}$) and overestimation group (ΔCrea $\leq P_{25}$). P_{25} and P_{75} are used to indicate the 25th and the 75th percentile value of ΔCrea, respectively. The primary outcome is in-hospital mortality rate and its relationship to the ΔCrea. The secondary outcome is length of ICU stay, total length of hospital stay as well as mechanical ventilation dependent days across these groups.

5. Statistical analysis

Continuous variables were expressed as means (standard deviations) or medians (interquartile range, IQR). Comparisons across three groups were made using analysis of variance (ANOVA) for normally distributed variables and Kruskal-Wallis test for non-normally distributed variables. Categorical variables were expressed as counts with proportions and were compared using chi-square test or Fisher's exact test where appropriate. Differences in recognition of AKI before and after adjustment for cumulative fluid balance were evaluated with McNemar's test. Consistency of AKI diagnosis and staging was assessed in Cohen's weighted kappa coefficient. Univariate analysis was performed regarding underestimation of serum creatinine as an outcome variable. Risk factors of significance in univariate analysis were further included in multivariate analysis to confirm independent risk factors for underestimation of serum creatinine. A two-sided p value of < 0.05 was considered to be statistically significant. All analyses were performed using SPSS 11.0 software (ver. 18.0, SPSS Inc., US).

Results

1. Basic characteristics

A total of 1334 patients (776 men) with a mean age of 56 years were investigated. Among these patients, 20.8% (278/1334) cases received off-pump CABG whereas 79.2% (1056/1334) cases received on-pump cardiac surgery including valvular surgery and CABG plus valvular surgery. All patients were divided into three groups based on ΔCrea level (Table 1). More patients had diabetes mellitus, hypertension, previous contrast exposure, surgery without CPB in underestimation group. Accordingly, patients in underestimation group received more crystalloid and colloid fluids during perioperative period. Man sex, weight, and history of chronic kidney disease, acute coronary syndrome as well as stroke were similar across ΔCrea groups. Differences were noted across groups with respect to the age, left ventricular ejection fraction, baseline creatinine, APACHE II score, CPB and cross-clamp duration.

2. Incidence of CSA-AKI before and after adjustment

The incidence of AKI based on the KDIGO criteria was 29.5% (with 24.4%, 3.0% and 2.1% in AKI stage 1-3, respectively). The in-hospital mortality rate was 1.05% (14/1334) and incidence of requirement for continuous renal replacement therapy (CRRT) during 48 hours after ICU admission was 0.37% (5/1334). After adjustment for cumulative fluid balance, the incidence of AKI elevated to 31.8% (increased from 24.4 to 26.5% in stage 1, decreased from 3.0 to 2.8% in stage 2 and increased from 2.1 to 2.5% in stage 3.
respectively). AKI stage only increased by one stage in three groups after adjustment for cumulative fluid balance. An increase was found in only 3.7% of those originally in stage 0, 0.4% in those originally in stage 1 and 0.5% in those originally in stage 2. The percentage of agreement for AKI diagnosis was 94.9% with a kappa of 0.86 (95% confidence interval [CI], 0.83-0.89), whereas percentage of agreement for AKI staging was 93.8% with a kappa of 0.86 (95% CI, 0.83-0.89) after adjustment for cumulative fluid balance (Table 2).

3. Changes in serum creatinine (ΔCrea) and outcomes

Patients in underestimation group showed prolonged length of ICU stay compared to the normal group and overestimation group (3.2 [1.0-3.0] vs 2.1 [1.0-3.0] d, \(P < 0.001 \); 3.2 [1.0-3.0] vs 2.3 [1.0-3.0] d, \(P < 0.001 \), respectively). Both length of hospital stays and ventilation dependent days in underestimation group were significantly higher than normal group (13.8 [10.0-15.0] vs 12.6 [10.0-14.0] d, \(P < 0.05 \); 1.7 [1.0-1.5] vs 1.2 [0.5-1.5] d, \(P < 0.001 \), respectively) (Table 3). There were no statistical differences in the in-hospital mortality rate and the incidence of CRRT across these groups.

4. Risk factors associated with underestimation of serum creatinine

Multivariate analysis indicated that factors independently associated with underestimation of serum creatinine due to the cumulative fluid balance were older age \((P = 0.035) \), higher baseline serum creatinine \((P < 0.001) \), lower left ventricular ejection fraction \((P = 0.001) \), and extent of cumulative fluid balance \((P < 0.001) \) during ICU stay after cardiac surgery (Table 4).

Discussion

In this retrospective cohort study, we found that after adjusting serum creatinine for the cumulative fluid balance, more patients met KDIGO criteria for CSA-AKI. Patients with underestimation of serum creatinine had worse outcomes in terms of length of ICU stay, total length of hospital stay and mechanical ventilation dependent days, but not in the incidence of CRRT and in-hospital mortality rate.

Since minimal increase of serum creatinine was associated with adverse outcomes in patients within the ICU setting, precise recognition and accurate assessment of AKI may contribute to the prevention and early intervention of reversible risk factors [22-24]. Serum creatinine may normally be influenced by several factors, including renal creatinine clearance or creatinine formation or both [25]. Importantly, serum creatinine level can also be affected by dilution effect of fluid resuscitation, which is frequently occurs in critically ill patients [6, 26]. Our results indicate that cumulative fluid balance in patients with cardiac surgery somewhat underestimates the diagnosis and staging of AKI, which is in accordance with previous studies [14, 18].

Post hoc analysis of Fluids and Catheters Treatment study illustrated that the incidence of AKI with acute respiratory distress syndrome was greater in those managed with liberal fluid protocol than conservative fluid protocol after adjustment for fluid balance [14]. Moreover, mortality rate of these patients was
similar to patients diagnosed with AKI before and after adjustment for fluid balance. Macedo et al. conducted analysis in patients underwent nephrology consultation for AKI in ICU, which showed dilution effect of fluid overload on serum creatinine may delay diagnosis time for AKI [18]. Study focusing on cardiac surgery patients also demonstrated that patients with AKI only after adjustment for fluid balance had intermediate outcomes between non-AKI and classical AKI patients [15]. Our study demonstrated that patients with underestimation of serum creatinine had prolonged mechanical ventilation dependent days, longer length of ICU and hospital stay.

Multivariate analysis of our study also found out that after adjustment for relevant risk factors such as patients with older age, lower left ventricular ejection fraction, higher baseline serum creatinine and severe extent of cumulative fluid balance after cardiac surgery were independently associated with underestimation of serum creatinine. Thus, to improve underestimation of serum creatinine along with subsequent predictive ability of poor prognosis, risk factors including age, baseline cardiac function as well as baseline kidney function should be taken into account before fluid administration in patients undergoing cardiac surgery. Nevertheless, there are several limitations in our study. First, as a single center study, regardless of the large cohort of our cardiac surgery patients, inherent bias of study design still remains to be concerned. Second, the cause of fluid administration was not easily distinguished from our database. Excess fluid administration may be in an effort to manage low cardiac output, and fluid accumulation may be secondary to inflammatory response. Last, insensitive fluid loss during study period was not taken into account, which may influence the accurate measurement of fluid balance, especially with patients that were intubated during ICU period.

Regardless of these limitations, our study highlights dilution effect of cumulative fluid balance on serum creatinine and further illustrates associated outcomes in cardiac surgery patients, which may benefit physicians to recognize mild AKI via adjustment for cumulative fluid balance. Strikingly, our study identified for the first time that the risk factors including age, baseline cardiac function, and preoperative kidney function were independently associated with the underestimation of serum creatinine, which could contribute to screening patients at high risk for misinterpretation of postoperative serum creatinine. However, much more advanced studies should be designed to clarify the underlying association between concealed mild AKI and actual changes of renal function, such as using the combination of serum creatinine and kidney injury biomarkers to timely detect deterioration of kidney function after cardiac surgery [27, 28].

Conclusions

Cumulative fluid overload in patients after cardiac surgery is very common and leads to underestimation of postoperative AKI. Patients with underestimation of postoperative serum creatinine are associated with a substantial detrimental prognosis.

Abbreviations
Declarations

Ethics approval and consent to participate

The study was approved by the Institutional Ethics Committee of Zhongshan Hospital, Fudan University, Shanghai, China (B2018-175). The need for informed consents were waived by the Institutional Ethics Committee because this was a retrospective analysis of data collected prospectively with no breach of privacy or anonymity.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interest

The authors declare that they have no competing interests.

Funding

This study was supported by the research grants from the Science and Technology Commission of Shanghai Municipality (14DZ2260200), Shanghai Clinical Medical Center for Kidney Disease Project support by Shanghai Municipal Health Commission (2017ZZ01015), Shanghai Municipal Hospital Frontier Technology Project supported by Shanghai ShenKang Hospital Development Center (SHDC12018127), and the Xiamen Science and Technology Plan in 2018 (3502Z20184009). No financial support was provided from industrial companies.

Authors’ contributions

JJ, JX, SX, and JH were responsible for the study design, data acquisition and analysis. JJ, JX, JH, and WJ drafted the first manuscript. BS, CW, JT, and XD conducted a critical revision of manuscript. All authors read and approved the final manuscript.
Acknowledgements

Not applicable.

References

1. Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J. Independent association between acute renal failure and mortality following cardiac surgery. Am J Med. 1998;104:343-8.

2. Hashemzadeh K, Hashemzadeh S, Dehdilani M. Risk factors and outcomes of acute renal failure after open cardiac surgery. Asian Cardiovasc Thorac Ann. 2012;20:275-80.

3. Druml W. Acute renal failure is not a “cute” renal failure! Intensive Care Med. 2004;30:1886-90.

4. Thakar CV, Arrigain S, Worley S, Yared JP, Paganini EP. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol. 2005;16:162-8.

5. Mehta RL. From acute renal failure to acute kidney injury: emerging concepts. Crit Care Med. 2008;36(5):1641-2.

6. Lassnigg A, Schmidlin D, Mouhieddine M, Bachmann LM, Druml W, Bauer P, et al. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol. 2004;15:1597-605.

7. Perko MJ, Jarnvig IL, Højgaard-Rasmussen N, Eliaisen K, Arendrup H. Electric impedance for evaluation of body fluid balance in cardiac surgical patients. J Cardiothorac Vasc Anesth. 2001;15:44-8.

8. Bouchard J, Weidemann C, Mehta RL. Renal replacement therapy in acute kidney injury: intermittent versus continuous? How much is enough? Adv Chronic Kidney Dis. 2008;15:235-47.

9. Grams ME, Estrella MM, Coresh J, Brower RG, Liu KD. Fluid balance, diuretic use, and mortality in acute kidney injury. Clin J Am Soc Nephrol. 2011;6:966-73.

10. Goldstein SL, Somers MJ, Baum MA, Symons JW, Brophy PD, Blowery D, et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int. 2005;67:653-8.

11. Foland JA, Fortenberry JD, Warshaw BL, Pettignano R, Merritt RK, Heard ML, et al. Fluid overload before continuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit Care Med. 2004;32:1771-6.

12. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354:2564-75.

13. Stein A, de Souza LV, Belettini CR, Menegazzo WR, Viegas JR, Costa Pereira EM, et al. Fluid overload and changes in serum creatinine after cardiac surgery: predictors of mortality and longer intensive care stay. A prospective cohort study. Crit Care. 2012;16(3):R99.
14. Liu KD, Thompson BT, Ancukiewicz M, Steingrub JS, Douglas IS, Matthay MA, et al. Acute kidney injury in patients with acute lung injury: impact of fluid accumulation on classification of acute kidney injury and associated outcomes. Crit Care Med. 2011;39:2665-71.

15. Moore E, Tobin A, Reid D, Santamaria J, Paul E, Bellomo R. The impact of fluid balance on the detection, classification and outcome of acute kidney injury after cardiac surgery. J Cardiothorac Vasc Anesth. 2015;29:1229-35.

16. Basu RK, Andrews A, Krawczeski C, Manning P, Wheeler DS, Goldstein SL. Acute kidney injury based on corrected serum creatinine is associated with increased morbidity in children following the arterial switch operation. Pediatr Crit Care Med. 2013;14(5):e218-24.

17. Jin J, Chang SC, Xu S, Xu J, Jiang W, Shen B, et al. Early postoperative serum creatinine adjusted for fluid balance precisely predicts subsequent acute kidney injury after cardiac surgery. J Cardiothorac Vasc Anesth. 2019;33(10):2695-702.

18. Macedo E, Bouchard J, Soroko SH, Chertow GM, Himmelfarb J, Ikizler TA, et al. Fluid accumulation, recognition and staging of acute kidney injury in critically-ill patients. Crit Care. 2010;14:R82.

19. Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, et al. The APACHE III prognostic system: risk prediction of hospital mortality for critically III hospitalized adults. Chest. 1991;100:1619-36.

20. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120:c179-84.

21. Moran SM, Myers BD. Course of acute renal failure studied by a model of creatinine kinetics. Kidney Int. 1985;27:928-37.

22. Kellum JA, Levin N, Bouman C, Lameire N. Developing a consensus classification system for acute renal failure. Curr Opin Crit Care. 2002;8:509-14.

23. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16:3365-70.

24. Vaara ST, Pettilä V, Kaukonen KM, Bendel S, Korhonen AM, Bellomo R, et al. The attributable mortality of acute kidney injury: a sequentially matched analysis. Crit Care Med. 2014;42:878-85.

25. Singri N, Ahya SN, Levin ML. Acute renal failure. JAMA. 2003;289:747-51.

26. Lassnigg A, Schmid ER, Hiesmayr M, Falk C, Druml W, Bauer P, et al. Impact of minimal increases in serum creatinine on outcome in patients after cardiothoracic surgery: do we have to revise current definitions of acute renal failure? Crit Care Med. 2008;36:1129-37.

27. Devarajan P. Neutrophil gelatinase-associated lipocalin (NGAL): A new marker of kidney disease. Scand J Clin Lab Invest Suppl. 2008;241:89-94.

28. Han WK, Baillie V, Abichandani R, Thadhani R, Bonventre JV. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 2002;62:237-44.

Tables
Table 1 Basic characteristics of the patients according to the differences between adjusted and unadjusted postoperative serum creatinine

	Underestimation (n=353)	Normal (n=641)	Overestimation (n=340)	P value
Demographic data				
Male [n (%)]	228 (64.6)	338 (52.7)	210 (61.8)	0.687
Age (years)	61 ± 11	56 ± 12	52 ± 13	<0.001
BMI (kg/m²)	23.2 ± 3.0	23.3 ± 3.3	22.9 ± 3.4	0.314
Comorbid conditions [n (%)]				
Hypertension	163 (46.2)	218 (34.0)	97 (28.5)	<0.001
DM	73 (20.7)	66 (10.3)	20 (5.9)	<0.001
CKD	6 (1.7)	4 (0.6)	4 (1.2)	0.272
Cancer	3 (0.8)	10 (1.6)	7 (2.1)	0.418
ACS	8 (2.3)	13 (2.0)	1 (0.3)	0.073
Stroke	8 (2.3)	19 (3.0)	6 (1.8)	0.494
Atrial fibrillation	12 (3.4)	25 (3.9)	13 (3.8)	0.921
Contrast exposure [n (%)]				
NYHA III-IV	211 (59.8)	470 (73.3)	266 (78.2)	<0.001
LVEF (%)	59.7 ± 9.6	61.9 ± 8.6	60.6 ± 9.3	0.006
Preoperative SCr (µmol/L)	87.4 ± 31.8	76.7 ± 17.1	81.9 ± 24.1	<0.001
APACHE II at ICU admission	13.1 ± 3.4	12.0 ± 3.5	12.7 ± 3.9	<0.001
Type of surgery [n (%)]				
Off-pump	154 (43.6)	119 (18.6)	5 (1.8)	<0.001
CABG	154 (43.6)	119 (18.6)	5 (1.8)	<0.001
On-pump	199 (56.4)	522 (81.4)	335 (98.5)	<0.001
Valvular surgery	174 (49.3)	424 (66.1)	274 (80.6)	<0.001
CABG + valvular surgery	25 (7.1)	98 (15.3)	61 (17.9)	<0.001
On pump-surgery variables				
CPB time (min)	105.3 ± 45.2	91.2 ± 32.3	104.4 ± 72.2	<0.001
Cross-clamp (min)	63.9 ± 28.6	56.1 ± 30.6	60.1 ± 26.8	0.006
Ultrafiltration (ml)	1311 ± 1417	1727 ± 1036	1891 ± 1268	<0.001

The data in the table are expressed as mean ± standard deviation or number (%). P value is for the comparison among groups.

Table 2 Diagnosis and staging of AKI before and after adjustment for fluid balance in patients after cardiac surgery
Unadjusted AKI stage	Adjusted AKI stage	Total, N (%)
0	890 (66.7)	940 (70.5)
1	19 (1.4)	326 (24.4)
2	0 (0)	40 (3.0)
3	0 (0)	28 (2.1)
Total, N (%)	909 (68.1)	1334

Kappa = 0.86 (95% CI 0.83-0.89) and percentage agreement = 94.9% for AKI diagnosis
Kappa = 0.86 (95% CI 0.83-0.89) and percentage agreement = 93.8% for AKI staging

Table 3 Outcomes of the patients according to the difference between adjusted and unadjusted postoperative serum creatinine

Outcome variables	Underestimation n=353	Normal n=641	Overestimation n=340	P value
Ventilation dependent days (days)	1.7 [1.0-1.5]	1.2 [0.5-1.5]	1.0 [0.5-1.5]	<0.001
ICU stay (days)	3.2 [1.0-3.0]	2.1 [1.0-3.0]	2.0 [1.0-3.0]	<0.001
Hospital stay (days)	13.8 [10-15]	12.0 [10-14]	12.0 [10-14]	0.012
CRRT [n (%)]	0 (0.0)	2 (0.3)	3 (0.9)	0.591
In-hospital mortality [n (%)]	4 (1.1)	5 (0.8)	5 (1.5)	0.154

The data in the table are expressed as median ± interquartile range or number (%). P value is for the comparison among groups.

Table 4 Univariate and multivariate analysis with underestimation of serum creatinine as the outcome variable
Variable	Univariate Analysis	Multivariate Analysis		
	HR (95% CI)	\(P \) Value	HR (95% CI)	\(P \) Value
Sex, Male	1.44 (1.12-1.85)	0.004		
BMI (per 1 kg/m\(^2\) increase)	1.01 (0.96-1.06)	0.723		
Age (per 1 unit increase)	1.05 (1.04-1.60)	<0.001	1.05 (1.01-1.10)	0.035
Hypertension (present)	1.81 (1.41-2.33)	<0.001		
Diabetes (present)	2.71 (1.93-3.81)	<0.001		
CKD (present)	2.10 (0.72-6.10)	0.172		
NYHA III-IV (present)	2.02 (1.56-2.61)	<0.001		
Preoperative SCr (per 1 μmol/L increase)	1.01 (1.01-1.02)	<0.001	1.05 (1.03-1.08)	0.000
LVEF (per 1 unit decrease)	1.02 (1.01-1.04)	0.010	1.10 (1.04-1.17)	0.001
Off-pump surgery (present)	5.35 (4.03-7.09)	<0.001		
CPB (per 1 min increase)	1.00 (1.00-1.01)	0.061		
Aortic cross-clamp (per 1 min increase)	1.01 (1.00-1.01)	0.014		
Oliguria (present)	1.87 (0.66-5.29)	0.239		
Cumulative fluid balance (per 1 L increase)	1.00 (1.00-1.01)	<0.001	1.007 (1.005-1.009)	0.000