Research Article

Film and TV Animation Production Based on Artificial Intelligence AlphaGd

Yunpeng Li

School of Theater Film and Television, Communication University of China, Beijing 100024, China

Correspondence should be addressed to Yunpeng Li; 20130634@stu.nun.edu.cn

Received 10 October 2021; Revised 14 November 2021; Accepted 24 November 2021; Published 18 December 2021

Academic Editor: Sang-Bing Tsai

Copyright © 2021 Yunpeng Li. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The dual attributes of artificial intelligence AlphaGd production, combined with modern social culture, industrial economy, and other factors, show rich connotation and extension in the development process of film and television animation production from the perspective of artificial intelligence AlphaGd. This paper first discusses and analyzes the practical significance and points out that AI AlphaGd has powerful functions, can greatly improve the sense of animation, and can effectively promote the technological innovation of animation production, then introduces the role modeling ideas of AI AlphaGd, and describes the modeling steps. Finally, the application of AI AlphaGd works produced after the use of artificial intelligence AlphaGd is more lifelike and specific in both the embodiment of the character image and the basic picture effect, which can make the audience have a more comfortable and perfect viewing experience. After summarizing, this paper puts forward the shortcomings of perspective artificial intelligence AlphaGd. Artificial intelligence may be useful in key decision-making processes, but it may negate the need for humans to be involved in these discussions. In view of these shortcomings, further research and discussion are made to accumulate new experience for product development and production from the perspective of artificial intelligence AlphaGd.

1. Introduction

1.1. Background and Significance. Nowadays, science and technology are becoming more and more developed, and robots are gradually entering various fields of society, such as life, education, safety, food, medicine, and industrial automation. With the progress of the times, in addition to the emphasis on basic cultural education, more attention is paid to aesthetic education, so that people’s cultural and aesthetic quality has a qualitative leap. Contemporary aesthetic culture is inseparable from traditional culture, consumption culture, political culture, and religious culture. The film and television industry has a comprehensive aesthetic characteristic, which contains a variety of cultural fields.

The pursuit of aesthetic culture is no longer limited, prompting the film and television industry to constantly innovate to meet the public taste. At the same time, it is committed to the investment of large scenes, large productions, and high special effects [1, 2]. Current high effect films include Avatar, The Avengers, and Black Widow. The products of film and television require the expression of art as well as the presentation of science and technology. Among them, the most outstanding performance is the large-scale special effect film with the most modernity, which is not only reflected in the production level of the film but also in the broadcast level of the cinema. For example, the so-called 5D box motion sense cinema is based on the three-dimensional cinema. Increased environmental effects such as lightning, rain, snow, smoke, bubbles, water droplets, and spray in nature can give viewers six sensory stimulations.

1.2. Development Status of Film and Television Animation at Home and Abroad. In television, animation production appears, but there is no system. It is mainly to publicize in the university campus, set up competitions, encourage students to participate in the competition, and then publicize [3, 4]. However, this has not led to the emergence of relevant current professionals [5, 6]. Most of the people are only proficient in three-dimensional CG animation.
Although the production method of film and television animation is similar to that of traditional film and television animation, there are some differences between them. Animation is an organic combination of animation design and comic design and is the deepening and extension of film and television animation. It is required to master the principles and performance skills of comic design based on the theoretical basis of animation design, understand the development direction of the film and media field, and master certain theoretical knowledge and professional skills. The obvious problem is that the production personnel are not familiar with the lens scheduling and the performance of actors. But there are also many excellent film and television animation works [7]. Domestic scholars have also published three-dimensional plastic arts. Starting from the macro concept of plastic arts, they contrast and contact the digital plastic arts and traditional plastic arts, focusing on the research of artistic thinking and traditional inheritance [8, 9]. It is not uncommon for foreign countries to use film and television animation to help shoot films [10]. Especially in Hollywood, the famous film and television industry base, the research on film and television animation technology can be said to be very perfect [11, 12]. Most of the theories and technologies related to film and television animation in China are derived from Hollywood’s production experience [13, 14]. Nowadays, Hollywood can easily make an excellent commercial film with its accumulated practical technology. In the paper “drawing board” published by Professor of Massachusetts Institute of technology, computer art was explored, which laid an important foundation for art. The appearance of this paper provides a theoretical basis for the combination of animation and computer, which is closely connected with animation production, and laid a foundation for the development of the entire animation field. Later, a history of computer animation described the development of computer graphics in detail. This paper analyzes the basis of computer graphics, fractal, computer animation, three-dimensional computer graphics hardware system, etc. [15]. Computer animation algorithm and technology describe the efficient solutions related to computer animation algorithm and the corresponding data structure and algorithm [16]. From the perspectives of mass culture, artistic language characteristics, creative methods, and production processes, this paper analyzes and summarizes the core issues of artistic modeling in American film and television animation production [17, 18].

1.3. Related Work. Andrew discussed “point, line, and face” [19]. The components of point, line, and face are used in graphic design. A large number of practical cases are used to analyze the application of elements “point, line, and face” in film and television animation. Reasonable use of elements can make the shooting form richer and the visual effect fuller. So far, many animation works have used point, line, and surface elements. For example, the character depiction in Popeye’s hand uses lines very smoothly. 3D animation production has slowly entered the people’s world, and more and more scholars have studied it [20]. The industry development of 3D animation needs to be more in depth, which can also be researched and developed jointly with related products [21]. For the unique charm of animation, they proposed a real-time collaborative development system for 3D animation production [22]. The real-time collaborative development system has the following: (1) Hard real-time response. RTOS based on priority preemption implements priority scheduling according to the real-time needs of tasks. Tasks with strict timing constraints can be executed first, improving the application’s response to time-critical events. (2) Maximize system performance. For large and complex embedded applications, using an event-driven RTOS to replace the polling-based hyperloop structure can generate a more efficient design, smaller storage footprint, and more processor time for applications. (3) Reduce complexity. RTOS allows applications to be divided into small autonomous tasks. The task executes in its own context and does not rely on other tasks or schedules.

Intelligent human-computer cooperation, most of Jiang’s research focuses on clearly [23].

1.4. Innovation of This Paper. AlphaGd successfully developed a film and television animation production short film using artificial intelligence AlphaGd. Using the technology of artificial intelligence AlphaGd to complete an animation short film, the creation of film and television animation has been further explored. The creation of this short film combines artificial intelligence AlphaGd technology with animation production for the first time, creating a precedent for the entire animation field and providing a reference for subsequent animation production.

2. Animation Production

2.1. Basics of Animation Production

2.1.1. Film and Television Animation Production Modeling and Motion Technology. Use special software to collect surface information of three-dimensional objects in three-dimensional space. The 3D model can be displayed in the form of a two-dimensional image through the equipment. 3D model can be created automatically or manually, or 3D scanning technology can be used to collect digital information of the solid model.

The three-dimensional model is not only a working model but also a performance model. (1) It is mainly used in engineering and medical simulation and is usually constructed by constructing solid geometry. (2) The shell model defines the surface and boundary of the object instead of the real volume (similar to the spatial volume enclosure made of infinite thin paper). Difference between the two lies in the change of creation and editing methods, as well as the user requirements and conventions in different fields. It is the same in visual expression function. The three-dimensional model is more visually stimulated, and the degree of shock is much higher than that of other pictures. With the three-dimensional data of the object, arbitrary views can be generated, and the correct projection relationship between the views can be maintained, which brings convenience to
the production of engineering drawings. In addition, it can also generate perspective diagrams and axial diagrams, which is impossible in a two-dimensional system; the data structure of the construction model is simple, which saves computer resources; the learning is simple, which is a natural extension of manual drawing. The traditional animation production process can be divided into four stages. Each stage is divided into several steps according to the actual situation, as shown in Figure 1.

Common model creation methods are as follows:

1. Polygon modeling: a method of representing or approximating the surface of an object with polygons. Points (called vertices) are in three-dimensional space. Polygon modeling has the advantages of intuitive and easy operation, with the fastest display speed, which can display very detailed scenes at 60 frames per second or higher frame rate, and the polygon model can be viewed from any angle. However, polygons cannot accurately represent the surface, so a large number of polygons must be used to approximate the smooth surface, which will consume a lot of system resources and need to be optimized according to the actual situation. OpenGL and Direct3D are the two main methods to display the 3D polygon model. To display the model on the computer screen outside the modeling environment, the model must be stored and loaded in a special file format. Polygon modeling is the most flexible way to create models.

2. Surface modeling: it is a modeling method that the surface is composed of curves and reconstructed into a three-dimensional model. The curve is specially used to make curved objects under the influence of weight control points. To some extent, this modeling method complements the defect of polygon modeling and can create complex surface modeling geometry. Surface modeling is the most accurate and data-based modeling method, which plays a leading role in the field of industry and product design.

3. Digital sculpting: it includes three types: vertex sculpting (usually generated by subdivision surface of polygon control mesh) is to store the new position of the vertex by using image mapping to store the adjusted position, which is widely used at present. Block stacking has the ability similar to displacement. Digital sculpture is the most close to the traditional sculpture production principle and operation feel. After the emergence of this technology, it is rapidly popular and popularized, which is mostly used in the field of digital entertainment and art creation.

4. 3D scanning: the process of analyzing real-world objects or environments and collecting their shapes and possible appearance data. The spatial and color information of the collected data scanned by the 3D scanner is composed of point clouds of geometric samples on the scanned solid surface. In general, multiple scans are needed from different directions to obtain all-round information of the target for calibration and then merge to create a complete 3D model.

As a state-of-the-art digital measurement method, 3D laser scanning not only collects real coordinate data on-site with high accuracy but also serves as an ideal source of measurement data for later planning, mapping, data archiving, deformation detection, and other tasks. The daily maintenance and inspection of urban roads and overpasses are important tasks in relation to traffic safety. The natural environment, traffic congestion, and occasional accidents can all have an impact on road bridges. Using 3D laser scanning technology, even minor deformations can be monitored accurately and quickly.

The whole system of animation production includes hardware and software parts. By hardware system, we mean the physical equipment that makes up a computer, i.e., the physical components with computing, control, storage, input, and output functions made up of mechanical, optical, electrical, and magnetic devices; the unified software is used for the internal management, maintenance, control, and operation of the computer as well as the translation, loading, editing, control, and operation of computer programs. The framework of the virtual animation development environment is shown in Figure 2.

Because the supporting environment of the hardware system is a laboratory PC, the computer used in this research is a 64-bit operating system, the CPU frequency is above 3.5 GHz, and the hard disk is 1 TB. Of course, a higher hardware configuration can achieve a smoother lighting feel. The relevant parameters of the hardware system studied in this paper are shown in Table 1.

2.1.2. Building an Ontology Model. Before modeling, the objective world needs to be classified and described. For example, there are scene descriptions and character descriptions in the animation model. Assume that a scene contains 6 elements and is defined as

\[O = [C, R, H^r, \text{Rel}, A^o, A_{\text{intr}}]. \]

(1)

In formula (1), \(C \) represents various types of elements in the virtual environment; \(R \) represents the relationship operator between the elements; \(H^r \) represents the conceptual level between the elements and also represents a certain clustering relationship between the elements; \(\text{Rel} \) means nonclustering relationship; \(A^o \) is the ontology prototype of existence; \(A_{\text{intr}} \) is the intrinsic relationship of element existence.

\[
C_1, C_2, \ldots, C_n \in C,
\]

(2)

\[
\begin{align*}
\text{attribute}_o \text{f}(C_1, C_2), \\
\text{compose}_o \text{f}(C_1, C_2), \\
\text{effect}_o \text{f}(C_1, C_2).
\end{align*}
\]

(3)

Formula (3) represents the combination relationship, subordination relationship, and minor action relationship of \(C_1 \) and \(C_2 \), respectively.
2.1.3. Sensitivity Index. When the animation is uploaded to the PC hardware system in the form of pictures, the strobe frames of each video show a queueing phenomenon with the Poisson distribution. At the operating end of the AlphaGd system, the ontology element features and operating behaviors are used as sensitivity indexes to highlight the differences in ontology features and improve effectiveness.

For the sensitivity index, the features in equation (3) can be used as elements and defined as

$$S_{\text{time}} = \{\text{attribute_of}(C_1, C_2), \text{compose_of}(C_1, C_2), \text{effect_of}(C_1, C_2)\}.$$

(4)
2.2. Artificial Intelligence

2.2.1. Artificial Intelligence Is to Simulate Human

(1) Weak artificial intelligence can be said to imitate human behavior, but since machines are machines after all, they lack human ideology and logical thinking.

(2) Strong artificial intelligence: behavior that imitates humans. It can be designed to allow the machine to have human thoughts and feelings.

2.3. Artificial Intelligence Applications. Performing detailed analysis on some specific targets (multitarget objects can be used for film and television animation analysis; this example takes Jean-Agen as an example), for some movie animation targets, it is necessary to perform feature vector matching, classification and recognition of character objects, and calibration of related scenes.

Movie animation video is very troublesome to find because of its insufficient capacity, so the target recognition accuracy of the convolutional neural network is needed to solve it.

3. Animation Design from the Perspective of AlphaGd

3.1. Experimental Algorithm Steps. To obtain the highest effect result, the steps to apply it to film and television animation are as follows:

\[X(n) = (x_1(n), x_2(n), \ldots, x_k(n)), \]
\[D(n) = (d_1(n), d_2(n), \ldots, d_q(n)), \]
\[f_{in}(n) = \sum_{i=1}^{n} (p_i, w_i + b_i), \]
\[f_{out}(n) = \max(0, f_{in}(n)), \]
\[e = \frac{1}{2} \sum_{q=1}^{n} (d_q(k) - f_{out}(n))^2. \]

3.2. Experimental Film and Television Animation Production Process

3.2.1. Modeling. As shown in Figures 3 and 4, modeling mainly includes the establishment of animation scene, animation modeling, and the production of animation props. Modeling is the basis of animation production. Models in movies and TV are made up of points, lines distance between lines must be equal, and the lines must be parallel. In addition, the scale of the model should be in line with the reality. The model of human or animal must conform to the physiological structure of human or animal, the proportion of head, upper body, and lower body must be accurate, the position, size, and proportion of eyes, nose, ears, and mouth must conform to the physiological characteristics of human or animal, even some exaggerated shapes can be adjusted on the standard model, and the required effect can be achieved by adjusting points, lines, and faces. When the model is completed, the next work is to assign materials.

3.2.2. Material. In the computer world, materials are an important means of reflecting the real world. The model in the computer model is just a prototype without color. According to the plot of the animation and the material type of the model, it is necessary to observe the color, gloss, reflection, refraction, smoothness, smoothness, and other characteristics of similar materials in the surrounding environment with analytical eyes and convert them into digital mode.

3.2.3. Map Production. Texture design is the most complicated process in the whole animation production process. The material specifies which substance the model belongs to, and some specific features are completed through texture production, for example, the pattern on the clothes, some scratches on the surface of the object, etc. At this time, the original coordinates of the object need to be derived from it, then drawn in the drawing software, and then given to the object. When making a map, the surface features and details of the design object in as much detail as possible are described.

3.2.4. Animation. After completing the previous work, it is necessary to perform the animation. In making animation in China, you can use many elements to make changes, including changes in model position, changes in model actions, changes in lighting, and changes in scenes. When adjusting the animation, the speed of the animation object should also be represented by the speed of the animation. It is shorter to complete the changes in the animation than in the real world. This is a feature of animation speed processing.

4. Analysis of Film and Television Animation Production

4.1. Convolutional Neural Network Training Analysis. We know that an experiment needs to use different combinations to compare and repeat the experiment. The same is true here. We use multiple sets of combinations. The accuracy results are shown in Table 2 and Figure 5.

By repeating the experiment, it can be concluded that the convolutional neural network performs best in terms of time and accuracy. Next, the parameters of the neural network are set, as shown in Table 3 and Figure 6.

According to the data trend of the picture, it can be seen that after the model parameters are determined, the accuracy of the test set has not changed much, basically remaining at about 57%. Therefore, we can conclude that as the number of iterations continues to increase, the accuracy rate is also increasing.
Figure 3: Creation of animation scene.

Figure 4: Animation modeling.

Table 2: Hyperparameter combinations and corresponding accuracy of some convolutional neural networks.

Batch size	Number of iterations	Convolutional layers	Learning rate	Dropout	Accuracy (%)
200	200	3	0.001	0.75	25.55
100	200	3	0.0008	0.75	14.28
200	200	3	0.0008	0.2	3
200	200	7	0.001	0.75	31.22
100	200	7	0.0008	0.75	44.98
200	200	7	0.0008	0.2	6.55
200	200	11	0.001	0.75	44.55
100	200	11	0.0008	0.75	53.22
200	200	11	0.0008	0.2	14.99

Figure 5: Convolutional neural network hyperparameter corresponding accuracy.
4.2. Skin Weight. Weight: it is a relative concept. It is for an indicator. The weight of an indicator refers to the relative importance ratio of the indicator in the overall evaluation.

After the skeletal skin is finished, the driving range of the skin is not the most ideal or the most reasonable, so in this case, it needs to make further adjustments manually. In this case, further adjustment needs to be made manually. Such adjustments are often referred to as brush weights in animation work, as shown in Figure 7.

As shown in the figure, the red circle represents the brush, the white area represents the skin controlled by the selected bone, and the white depth is the degree of control. The right attribute bar can select the weight brush size and bone.

4.3. Modeling Animation Characters. After clearly positioning the film and television animation characters, you need to choose the corresponding AlphaGd modeling method and model the characters according to the characters. First, use AlphaGd to build a new blank box, then use Spheer to build an overall model of the character, and segment and scale the model. It is necessary to reduce the control of the number of model faces during design, which helps the model’s face shape change. Then, by adding a series of operations such as straight lines, part extrusion, and chamfering, a rough model is made, and the model is modified and observed from all angles, so that the designed model can better reflect the three-dimensional characteristics of an arm model as an example and use the “Extrude” command to pull the arm from the side of the chest to the slightly higher shoulder section above the waist 12, as shown in Figure 8.

In the final modeling phase, the color adjustment and layered rendering of the character are mainly completed. At this time, the specific social and environmental background of the character must be taken into account so that the character can better integrate into the script and not be too pretentious. Of course, color matching can be modified by color correction. According to the needs of the character, layered rendering can be divided into two types. One is coarse layering, which is mainly used for rendering backgrounds and props, which is suitable for long clips; the other is fine layering, which is mainly used for lights, shadows, colors, etc. Rendering, this method is suitable for the fine production of advertisements, movies, cartoons, and so on. Layered rendering can adjust the sense of harmony and color of the picture and enhance the expressive power of the entire picture. To sum up, this technology is more realistic and specific in both the embodiment of the character image and the basic picture effect, which can make the audience have a more comfortable and perfect viewing experience.

5. Conclusions
On the one hand, it can save production time and improve the quality of animation production. On the other hand, it
can also realize the pursuit of authenticity in animation production and make the audience have a sense of immersive experience and improve the quality of animation production. Therefore, based on the experience of other countries, the AI AlphaGd technology should be applied reasonably. Similarly, film and television animation as an open and efficient means of animation creation can also expand the combination of animation art and other art forms, creating more possibilities.

This article first analyzes the practical significance, points out that the powerful function of artificial intelligence AlphaGd can greatly improve the image sense of animation and effectively promote the innovation of animation production technology, and then introduces the role of artificial intelligence AlphaGd. The modeling method is explained, and the modeling steps are explained. Finally, the application of artificial intelligence ARMAGD was introduced in detail, laying a solid foundation for the continuous improvement of the level of in the future. The film and television animation works produced after the use of artificial intelligence AlphaGd are more realistic and concrete in both the reflection of the character image and the basic picture effects, which can make the audience to have a more comfortable and perfect viewing experience. AlphaGd has promoted the progress and development of the entire and also dominated basic development trends of the entire industry in the future.

Data Availability

This article does not cover data research. No data were used to support this study.

Conflicts of Interest

The author declares that there are no conflicts of interest.

References

[1] A. Ramamurthy, L. Davis, and F. Herbert, "Achieving color match between scanner, monitor, and film: a color management implementation for feature animation," *Smpте Journal*, vol. 108, no. 6, pp. 363–373, 2015.
[2] W. E. Garity, "The multiplane camera crane for animation photography," *Journal of the Society of Motion Picture Engineers*, vol. 31, no. 2, pp. 144–156, 2015.
[3] A. Boukhayma and E. Boyer, "Surface motion capture animation synthesis," *IEEE Transactions on Visualization and Computer Graphics*, vol. 25, no. 6, pp. 2270–2283, 2018.
[4] Y. Zhou, Z. Xu, C. Landreth, E. Kalogerakis, S. Maji, and K. Singh, "VisemeNet: audio-driven animator-centric speech animation," *ACM Transactions on Graphics*, vol. 37, no. 4, pp. 1–10, 2018.
[5] H. Chacón, “Latin American identity in online cultural production by claire taylor and thea pitman,” *Revista de Estudios Hispanicos*, vol. 49, no. 1, pp. 217–220, 2015.
[6] K. M. Bass, I. Hu Dahl, and S. Panahandeh, "Designing the game: how a project-based media production program approaches STEAM career readiness for underrepresented young adults," *Journal of Science Education and Technology*, vol. 25, no. 6, pp. 1–16, 2016.
[7] N. Q. Nathaniels, “Making the invisible visible: animations for smallholder farmers,” *OutlooksinPestManagement*, vol. 27, no. 4, pp. 186–189, 2016.
[8] O. González-Rojas, D. Correal, and M. Camargo, "ICT capabilities for supporting collaborative work on business processes within the digital content industry," *Computers in Industry*, vol. 80, pp. 16–29, 2016.
[9] B. Oszvari, G. Bonuccelli, R. Sanchez-Alvarez, R. Foster, F. Sotgia, and M. P. Lisanti, "Targeting flavin-containing enzymes eliminates cancer stem cells (CSCs), by inhibiting mitochondrial respiration: vitamin B2 (riboflavin) in cancer therapy," *Aging*, vol. 9, no. 12, pp. 2610–2628, 2017.
[10] M. K. Tamaira, V. Hereniko, T. Qoloavaki, J. U. Hopkins, and C. E. Steiner, “Moana by jared bush,” *The Contemporary Pacific*, vol. 30, no. 1, pp. 216–234, 2018.
[11] F. Chen, L. Wang, H. Chen, and G. Peng, “Investigations on Mandarin aspiratory animations using an airflow model,” *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, vol. 25, no. 12, pp. 2399–2409, 2017.
[12] S. Yeom and Y.-H. Woo, “Person-specific face detection in a scene with optimum composite filtering and colour-shape information,” *International Journal of Advanced Robotic Systems*, vol. 10, no. 1, 2013.
[13] X. Lu and J. Fei, “Velocity tracking control of wheeled mobile robots by iterative learning control,” *International Journal of Advanced Robotic Systems*, vol. 13, no. 3, 2016.
[14] C. Cath, S. Wachter, and B. Mittelstadt, “Artificial intelligence and the “good society”: the US, EU, and UK approach,” *Science and Engineering Ethics*, vol. 24, no. 7625, pp. 1–24, 2017.
[15] T. Hirasawa, K. Aoyama, and T. Tanimoto, “Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images,” *Gastric Cancer Official journal of the International Gastric Cancer Association & the Japanese Gastric Cancer Association*, vol. 21, no. Suppl 1, pp. 1–8, 2018.
[16] H. Citakoglu, “Comparison of artificial intelligence techniques via empirical equations for prediction of solar radiation,” *Computers and Electronics in Agriculture*, vol. 118, pp. 28–37, 2015.
[17] H. Ashrafian, “AlOnAI: a humanitarian law of artificial intelligence and robotics,” *Science and Engineering Ethics*, vol. 21, no. 1, pp. 29–40, 2015.
[18] L. Roger, “Software engineering, artificial intelligence, networking and parallel/distributed computing,” *Local Government Studies*, vol. 209, no. 5, p. C1, 2016.
[19] D. A. Hashimoto, G. Rosman, D. L. Rus, and O. R. Meireles, “Artificial intelligence in surgery: promises and perils,” *Annals of Surgery*, vol. 268, no. 1, pp. 70–76, 2018.
[20] G. Cao, Z. Lu, and X. Wen, “AIF: an artificial intelligence technology, and then introduces therole of artificial intelligence AlphaGd. The modeling method is explained, and the modeling steps are explained. Finally, the application of artificial intelligence ARMAGD was introduced in detail, laying a solid foundation for the continuous improvement of the level of in the future. The film and television animation works produced after the use of artificial intelligence AlphaGd are more realistic and concrete in both the reflection of the character image and the basic picture effects, which can make the audience to have a more comfortable and perfect viewing experience. AlphaGd has promoted the progress and development of the entire and also dominated basic development trends of the entire industry in the future.

Data Availability

This article does not cover data research. No data were used to support this study.

Conflicts of Interest

The author declares that there are no conflicts of interest.