Prior to the introduction of *Haemophilus influenzae* type b (Hib) conjugate vaccines, invasive Hib disease affected almost exclusively children. According to some recent studies, in the postvaccine era, adults, the elderly, and immunocompromised persons can be affected more often than children. As the production of type-specific anti-capsular polysaccharide antibodies is the major defense mechanism against Hib, individuals with defects in humoral immune responses have high susceptibility to infections caused by Hib. We hypothesized that nonvaccinated adults with chronic conditions causing immunosuppression may lack protective antibody to Hib. We assessed serum anti-Hib IgG levels and bactericidal activity in 59 patients with chronic renal failure, 30 patients with type 2 diabetes mellitus, 28 patients with chronic obstructive pulmonary disease (COPD), and 20 patients with multiple myeloma compared to 32 healthy controls of similar age. Considering antibody at >0.15 μg/ml as the protective correlate in unvaccinated individuals, we detected subprotective Hib antibody levels in 29% of chronic renal failure, 20% of diabetes, 14% of COPD, and 55% of myeloma patients compared to 3% of healthy controls. Additionally, 70% of myeloma and 58% of chronic renal failure patients did not have detectable serum bactericidal activity against Hib. Among individuals with severe diseases causing secondary immunodeficiency, patients with multiple myeloma and chronic renal failure are at an increased risk of invasive Hib disease. Considering that Hib continues to circulate in the population, this study provides a rationale for the immunization of some adult patients with secondary immunodeficiency with the pediatric Hib vaccine to achieve protective immunity.

Haemophilus influenzae is a common Gram-negative human-restricted bacterial pathogen that frequently colonizes the nasopharynx in healthy individuals and can cause local infections, such as otitis media, sinusitis, pneumonia, or exacerbations of chronic obstructive pulmonary disease (COPD). When the bacteria breach the epithelial barriers, they are able to cause invasive disease, including meningitis, sepsis, and epiglottitis (27, 28). Most invasive infections are caused by encapsulated strains, in particular *H. influenzae* type b (Hib), characterized by a polyribosylribitol phosphate (PRP) capsule, which is an important virulence factor. In immune individuals, circulating anti-PRP antibodies effectively protect against the disease by activating the classical complement pathway, as well as opsonizing bacteria for phagocytosis (41).

Prior to the introduction of vaccination against Hib, the pathogen was the major cause of bacterial meningitis in children (43). A dramatic decrease in the incidence of invasive Hib disease has rapidly followed the introduction of Hib protein-conjugated vaccines in Western countries since the beginning of the 1990s (48). In Canada, a conjugate Hib vaccine first became available in 1988 for children over 18 months of age; the routine vaccination of infants beginning at 2 months of age with the current vaccine (PRP conjugated to tetanus toxoid) started in 1992 (1). In the post-Hib vaccine era, invasive Hib disease affects adults, especially the elderly and immunocompromised individuals, more often than children (12, 35, 39, 44). As adults born before the 1990s have not been vaccinated, their natural immunity may be insufficient to prevent invasive disease if they have an immune defect. In addition, low Hib circulation rates due to the vaccine’s “herd effect” may account for reduced maintenance of natural anti-Hib immunity in nonvaccinated populations (14). Severe cases of invasive Hib disease affecting adults have been reported (6, 40). As Hib continues to circulate in countries with high pediatric Hib vaccine coverage (31), the public health guidelines recommend adult vaccination for some high-risk groups (anatomical or functional asplenia, congenital antibody, or complement deficiency) (34).

In modern Western society, the number of adults with secondary immunodeficiency states resulting from aging, severe chronic diseases, or an immunosuppressive therapy is increasing. Such individuals are not routinely immunized against Hib, and it is unclear whether they may be at risk of developing invasive Hib disease if exposed to the pathogen. To address this question, we studied a group of patients with common clinical conditions known to lead to immunosuppression. Because circulating antibodies to Hib capsular polysaccharide are the major defense mechanism against invasive Hib disease, we studied the antibody levels and functional activity as indicators of protection.

MATERIALS AND METHODS

Patient population. We recruited 59 patients with chronic renal failure, 30 patients with type 2 diabetes mellitus, 28 patients with COPD, 20 patients with multiple myeloma, and 32 age-matched healthy controls. All patients with chronic renal failure were undergoing hemodialysis at the Renal Services, Thunder Bay Regional Health Sciences Centre (TBRHSC), Thunder Bay, Ontario, Canada. The COPD patients were recruited at a...
time when they did not have disease exacerbation and were undergoing the outpatient respiratory rehabilitation program at St. Joseph’s Care Group (Thunder Bay, Ontario, Canada). Patients with diabetes and multiple myeloma were attending the outpatient clinics in Thunder Bay and Sault Ste. Marie, Ontario, Canada (Algoma District Cancer Program), respectively. All patients undergoing hemodialysis at the Renal Services or attending the involved physicians’ offices at the time of the study (May to August 2009) were invited to participate, and those who were able to give informed consent, were included. Most of the multiple myeloma patients were on intermittent chemotherapy (pulsed therapy given every 3 weeks), and COPD patients received inhaled corticosteroids, but not oral corticosteroids; the remaining patients did not receive immunosuppressive therapies at the time of the study. None of the study participants had been immunized against Hib. Clinical data for all the patients were analyzed with respect to duration of disease, comorbidities, and history of infections. The demographic characteristics of the studied groups are shown in Table 1. No statistically significant differences in age between any patient group and controls were present. Serum samples were obtained from the participants under informed consent and stored at −80°C prior to use. This study was approved by the research ethics boards of all involved institutions.

Anti-Hib ELISA. Serum anti-PRP IgG antibody concentrations were determined by using a VacciZyme Human Anti Haemophilus influenzae type b enzyme-linked immunosorbent assay (ELISA) kit (The Binding Site, Birmingham, United Kingdom) according to the manufacturer’s protocol. Briefly, serum samples diluted 1:100 were added in duplicate to microwells precoated with PRP conjugated to human serum albumin. The reaction was developed using peroxidase-conjugated anti-human IgG secondary antibody; the bound IgG was detected using a colorimetric substrate read at 450 nm with an automated microplate reader (BioTek Powerwave XS; VT). Concentrations of anti-PRP IgG antibody were determined using standard calibrators supplied with the kit and expressed in μg/ml. The lower and upper limits of detection were 0.11 and 9 μg/ml, respectively. For statistical analysis, antibody concentrations below the lower limit of quantitation were assigned half the lower limit of detection, i.e., 0.055 μg/ml. Samples with higher than 9-μg/ml antibody levels were further diluted and rerun to obtain accurate results. Following dilution, the upper limit of detection was 90 μg/ml.

Serum bactericidal assay. For the serum bactericidal assay (SBA), we used a Hib strain isolated from the cerebrospinal fluid of an infant with meningitis, kindly provided by R. S. W. Tsang. Bacteria were grown on brain heart infusion agar supplemented with 10 μg/ml hemin chloride (factor X) and 1 μg/ml NAD (factor V) in a humidified incubator at 37°C and 5% CO₂ overnight. The SBA was essentially performed as previously described (10, 37). Briefly, Hib was cultured, harvested, and diluted to a concentration of approximately 10⁶ CFU/ml in SBA buffer, which consisted of Hank’s buffered salt solution supplemented with 10 μg/ml factor X and 1 μg/ml factor V. Serum samples were incubated in a water bath at 56°C for 30 min to inactivate complement and serially diluted 2-fold 11 times beginning at a ratio of 1:8. Ten microliters of each serum dilution was mixed with 20 μl of bacterial suspension and incubated for 10 min at 37°C and 5% CO₂. Next, 10 μl of baby rabbit complement (Pel-Freeze, AR) and 40 μl of SBA buffer were added to the mixture and incubated for 1 h at 37°C and 5% CO₂. The viable bacteria were determined by drop plating following overnight incubation at 37°C and 5% CO₂. The SBA titer was defined as the reciprocal of the highest dilution able to kill >50% of bacteria compared to a negative serum control, which contained SBA buffer in place of serum. Titters below the lower detection limit of 8 were reported as 4 for statistical analysis. As a positive control, we used anti-Hib reference serum 96/536 (National Institute for Biological Standards and Control, Potters Bar, United Kingdom). For quality control purposes, a postimmunization serum from the same healthy adult control was included in each experiment and consistently yielded an SBA titer of 1:024 ± 1 dilution.

Statistical analysis. Statistical analysis was performed using GraphPad Prism 5 (GraphPad Software Inc., San Diego, CA). The sample size was calculated based on 20% difference in means and 30% coefficient of variation (two-sided alternatives) with 80% statistical power and 5% significance (49). Geometric mean antibody concentrations (GMC), SBA geometric mean titers (GMT), and 95% confidence intervals (CI) were calculated for each group. Serum antibody levels and SBA results were compared between patients and controls using the Mann-Whitney rank sum test and Student’s t test as appropriate. Analysis of variables was performed using Pearson’s χ² test. Associations were assessed by linear regression analysis or Spearman’s correlation. P values of < 0.05 were considered significant.

RESULTS

To assess naturally acquired immunity against Hib, we studied IgG anti-PRP antibody levels in sera of unvaccinated adult individuals. Among healthy controls, 97% had anti-PRP IgG levels of >0.15 μg/ml, which has been considered an immunological correlate of natural protection against invasive Hib disease in unvaccinated individuals (3, 19, 33), in comparison to 71% of chronic renal failure, 80% of diabetes, 86% of COPD, and 45% of myeloma patients (Table 2). The relative risk of having anti-PRP IgG antibody levels below 0.15 μg/ml was significantly higher in all the patient groups than in healthy controls, with the exception of COPD (P = 0.059) (risk ratio ranging from 6.4 in diabetes to 17.6 in myeloma patients) (Table 3).

Among all patients, the multiple myeloma group had the lowest GMC of IgG antibody, i.e., 0.22 μg/ml (95% CI, 0.09 to 0.45), which was significantly lower than in healthy controls (1.50 μg/ml; 95% CI, 1.06 to 2.13; P < 0.0001), followed by chronic renal failure patients (0.56 μg/ml; 95% CI, 0.34 to 0.90; P = 0.02). In one myeloma and two chronic renal failure patients, high anti-PRP antibody levels were detected (>10 μg/ml), potentially reflecting a recent exposure to the pathogen (Fig. 1a). In patients with diabetes mellitus and COPD, the antibody levels did not significantly differ from those of controls, i.e., 0.93 μg/ml (95% CI, 0.50 to 1.75, P = 0.4) and 1.12 μg/ml (95% CI, 0.56 to 2.23; P = 0.5), respectively (Table 2 and Fig. 1a).

A decline in antibody levels against bacterial polysaccharide antigens may occur with aging. However, we observed a significant negative correlation of antibody level with age in ≥60-year-old controls (r = −0.45; P = 0.03), but not in patients (r = 0.023; P = 0.42) (Fig. 2), suggesting that a lack of naturally acquired antibody in severely ill individuals is attributable to their general immunosuppression, rather than to advanced age. No differences in antibody levels between males and females in any group were detected (data not shown). Further analysis indicated that IgG anti-PRP antibody levels did not depend on the length of dialysis

TABLE 1 Demographic characteristics of studied groups

Group	n	Mean (median) ± SD	Range	No. (%) ≥60 yr	No. (%) female
Chronic renal failure	59	62.6 (63) ± 13.5	29–91	23 (38)	24 (41)
Diabetes mellitus	30	60.5 (61) ± 11.2	33–80	18 (60)	16 (53)
COPD	28	69.8 (72) ± 8.8	45–81	19 (68)	25 (89)
Multiple myeloma	20	68.7 (70) ± 10.1	43–84	9 (45)	16 (80)
Controls	32	63 (61) ± 8.2	53–80	19 (59)	19 (59)

a No statistically significant difference between any patient group and controls; P < 0.05 between chronic renal failure and COPD and between diabetes and COPD patients. SD, standard deviation.
TABLE 2 Serum antibody levels and bactericidal activity against Hib in patients with secondary immunodeficiency states and healthy controls

Parameter	Chronic renal failure	Diabetes mellitus	COPD	Multiple myeloma	Controls
Anti-PRP IgG					
GMC (μg/ml) (95% CI)	0.56^a (0.34–0.90)	0.93 (0.50–1.75)	1.12 (0.56–2.23)	0.22^b (0.09–0.54)	1.50 (1.06–2.13)
No. (%) >0.15 μg/ml	42 (71)	24 (80)	24 (86)	9 (45)	31 (97)
No. (%) ≥1.0 μg/ml	26 (44)	16 (53)	13 (46)	3 (15)	26 (81)
No. (%) ≥5.0 μg/ml	6 (10)	7 (23)	7 (25)	2 (10)	1 (3)
SBA					
GMT (95% CI)	20.72^c (12.22–35.14)	55.72 (25.34–122.5)	36.22 (15.89–82.61)	12.55^d (5.2–30.33)	36.44 (16.31–81.44)
No. (%) ≥MDA^a	25 (42)	20 (67)	16 (57)	6 (30)	18 (56)

^a MDA, minimum detectable activity.

^b P < 0.05 compared with control group (see precise P values in the text).

^c P < 0.01 compared with control group (see precise P values in the text).

or comorbidities (in chronic renal failure) or the number and severity of infectious episodes (in all patient cohorts) (data not shown).

Antibodies detected by ELISA may have different functional capabilities due to their specific chemical and genetic characteristics. To assess the functional activity of the anti-PRP antibody, we employed a serum bactericidal assay, which measures the killing of bacteria by anti-Hib specific antibody mediated by the complement activation (37). Among healthy controls, 56% of serum samples were able to kill >50% of Hib bacteria in the presence of baby rabbit complement in contrast to only 30% of sera from myeloma patients (P = 0.032 (Table 2). The relative risk of the lack of bactericidal antibody against Hib in myeloma patients was 17.6 (P < 0.0001) (Table 3). The SBA GMT was significantly lower in myeloma patients than in the controls, i.e., 12.55 (95% CI, 5.2 to 30.33) versus 36.44 (95% CI, 16.31 to 81.44), respectively (P = 0.048). Also, patients with chronic renal failure had lower SBA GMT than controls, i.e., 20.72 (95% CI, 12.22 to 35.14; P = 0.029).

However, no statistically significant differences in SBA GMT were found among the diabetes mellitus, COPD, and control groups (Table 2 and Fig. 1b). No correlation was detected between the SBA titers and IgG anti-PRP antibody concentrations measured by ELISA for healthy controls (r = −0.3; P = 0.05) or patients (r = 0.05; P = 0.56) (Fig. 3). Because aging is associated with decreased functional antibody activity (13), we compared SBA titers in older and younger individuals. No significant differences in SBA GMT between individuals <60 and ≥60 years of age among healthy controls or patient groups were detected (data not shown).

Hence, the results of our study demonstrated that among individuals with severe chronic conditions causing secondary immunodeficiency, patients with multiple myeloma and chronic renal failure show both decreased IgG anti-PRP antibody levels and a defect in antibody functional capabilities; however, no association of antibody deficiency with age was found.

DISCUSSION

In 97% of healthy unvaccinated adults, circulating IgG antibodies against Hib capsular polysaccharide were above the level ensuring long-term protection against invasive Hib disease, i.e., 0.15 μg/ml (3); in 56% of them, functionally active serum antibodies were detectable. Moreover, 81% of healthy individuals had antibody levels of ≥1 μg/ml, a correlate of protection in the vaccinated population (19). These data suggest that the general adult popu-

![FIG 1](http://cvi.asm.org)
lation is well protected against invasive Hib disease, which is indeed extremely rare in healthy adults (46). Because none of the subjects had been vaccinated against Hib, natural anti-Hib antibodies may have been induced by exposure to some common environmental bacteria that carry antigens cross-reacting with PRP, such as *Escherichia coli* K100 (15).

In compliance with earlier studies, we considered serum IgG anti-PRP levels the major indicator of protection against Hib invasive disease (19). However, multiple factors may contribute to clinical protection against this infection, i.e., antibody affinity/avidity, IgG subclass distribution, GM allotype, or idiotype. A specific idiotype (HibId-1, a marker of the V_H/H9260 II-A2 chain) has been identified as the prevalent idiotype in the postvaccination adult anti-PRP antibody repertoire (22). According to our previous studies, unvaccinated adults may lack this idiotype despite high levels of natural anti-PRP, potentially induced by some cross-reactive antigens (47). In the present study, we did not see a correlation between anti-PRP IgG levels and serum bactericidal activity. A similar discordance between anti-capsular IgG levels and their functional activity had previously been documented in response to vaccination against Hib and *Neisseria meningitidis* serogroup C (2, 24). These studies identified antibody avidity as an important source of variability in their functional activity (2). As results obtained from ELISA may be relatively independent of antibody avidity (2), this may explain the lack of correlation between IgG antibody levels and SBA. In the case of natural antibody in unvaccinated individuals induced by cross-reactive antigens, the discordance between antibody levels and their functional activity may depend on the use of different V genes rendering varying avidity. Discordance between IgG anti-PRP and SBA was also observed in unvaccinated Alaskan adults and healthy elderly individuals (11, 21).

In contrast to healthy individuals, a proportion of our patients (ranging between 14% in COPD and 55% in myeloma) lacked protective anti-Hib antibody levels. Secondary immunodeficiency could be due to multiple reasons, e.g., profound metabolic disturbances and malnutrition due to uremia, as well as the immunosuppressive effect of hemodialysis in chronic renal failure (9, 18), impaired respiratory function, chronic inflammation, and therapy with corticosteroids in COPD (8, 42) or metabolic disorders and associated obesity in type 2 diabetes mellitus (16). The lowest anti-Hib immunity was detected in myeloma patients, likely caused by a decreased synthesis of normal immunoglobulins due to both malignant transformation of plasma cells and the immunosuppressive effect of chemotherapy (30). Multiple myeloma patients have a recognized high susceptibility to bacterial infections with common pathogens, such as *Streptococcus pneumoniae* and *H. influenzae* (30). However, an earlier study found that among 46 patients with multiple myeloma, prevaccination anti-PRP levels were comparable to that of the healthy United Kingdom adult population (36). A recent paper reported that 80% of multiple myeloma patients had anti-Hib IgG levels of >0.15 μg/ml (17). In contrast, in our study, only 45% of myeloma patients had antibody levels above this cutoff. Such discrepancies may be due to different patient populations, progression/length of disease, or ELISA technique variability. Despite the fact that vaccination of multiple myeloma patients against Hib remains controversial (30), our findings suggest that the majority of such patients lack protective immunity against Hib and should be vaccinated. Chronic renal failure patients also have significantly decreased IgG anti-PRP levels, as well as functional antibody activity, and hence may have high susceptibility to Hib infection. Cases of peritonitis caused by Hib in chronic renal failure patients undergoing peritoneal dialysis have been reported (7, 29). However, to the best
of our knowledge, no specific defects in the immunological defense against Hib have been previously identified in adults with chronic renal failure.

Humoral immune defects represent an important component of immunosenescence (5). Mechanisms behind B-cell defects in the elderly include reduced antibody diversity, defects in isotype switching, and somatic mutation resulting in low-affinity antibody production, as well as deficiency in IgM memory B cells (32, 30). However, our data suggest that severe chronic diseases have a larger negative impact on natural immunity to Hib than aging, as we found an age-associated decline in anti-PRP levels in older healthy adults, but not in patients. This implies that general immunosuppression may play a greater role than senescence in the observed lack of protective anti-Hib antibody levels. However, the correlate of protection against invasive Hib disease in older adults is unknown. Several studies indicate that antibody against bacterial capsular polysaccharides present in the elderly may lack functional activity (21, 32). On the other hand, the existence of B memory cells, a result of previous exposure to Hib or cross-reactive bacteria, may contribute to protection against invasive disease in older individuals.

Although the antibody levels required to prevent nasopharyngeal carriage have not been accurately determined, it has been suggested that they may be as high as 5 to 10 μg/ml (20, 38). Considering that only 3% of healthy controls in our study had ≥5 μg/ml of IgG anti-PRP, most of them are potential carriers. Although only a small fraction will be susceptible to developing Hib invasive disease, such individuals may nevertheless transfer the pathogen supporting Hib circulation within the population. According to recent studies, invasive Hib disease still exists in countries with high pediatric anti-Hib vaccination coverage, and the disease affects adults more often than children (4, 23, 39, 44).

This study has several limitations. The multiple myeloma group was smaller than an estimated sample size because a limited number of patients were available at the time of our study. Also, the small sample size could potentially influence the analysis of the effects of age and sex. In general, the interpretation of immunological data with regard to clinical protection against Hib disease is complex. The analysis of humoral immunity does not account for the small sample size could potentially influence the analysis of the presence of immunological memory against Hib that can develop following natural exposure to whole bacteria expressing protein antigens along with PRP. Under these circumstances, the anti-polysaccharide immune response can acquire T-cell-dependent properties that may potentially contribute to long-lived populations of memory B cells capable of developing a secondary immune response following repeated exposure to the pathogen. However, despite these limitations, our findings point to the lack of immunological protection in a substantial proportion of adults with severe chronic conditions causing secondary immunodeficiency, particularly in multiple myeloma and chronic renal failure patients.

Conclusion. Our study has demonstrated that in the era of universal pediatric immunization against Hib, healthy adult individuals typically have protective immunity against invasive Hib disease, but over 90% of them have the potential for pathogen carriage. In contrast, we have found a lack of protective immunity against Hib in adults suffering from multiple myeloma and chronic renal failure. Such individuals may be at risk of developing invasive Hib disease if exposed to the pathogen.

Considering that Hib continues to circulate in Western countries despite the high vaccine coverage of infants and that individuals born before the beginning of the 1990s have not been immunized, adult patients with multiple myeloma and chronic renal failure can benefit from immunization with a Hib conjugate vaccine. Previous studies have established that immunization of adults, including immunodeficient individuals, with pediatric Hib vaccines is safe and highly effective (21, 25, 26). Although it is critically important to maintain herd immunity via adequate and universal pediatric immunization, our findings, along with recent data on emerging invasive Hib disease in unimmunized adults, provide a rationale for extended indications for immunization of vulnerable groups of adults against Hib (39, 45).

ACKNOWLEDGMENTS

We acknowledge the personnel at TBRHSC, St. Joseph’s Care Group, Sault Area Hospital, and physicians’ offices for help with patient recruitment and obtaining blood samples. We are especially indebted to Donna Newhouse, Kylie Williams, Joanne Robin, Margaret Zuefle, Shelley Presto, Shirley Johnson, Carrie Seguin, Kanita Johnson, and Phyllis Betello. We acknowledge all patients and healthy individuals who kindly donated their blood for the study. We are thankful to R. S. W. Tsang for generously providing us with an H. influenzae strain, S. Steiner for her most helpful advice regarding the serum bactericidal assay, and M. Akkoyunlu for kindly donating the reference serum.

The study was supported by the Northern Ontario School of Medicine (NOSM) Faculty Association Research Development Fund, FedNor Youth Internship Program, and a NOSM Dean’s Summer Medical Student Research Award.

REFERENCES

1. Adam HJ, et al. 2010. Changing epidemiology of invasive Haemophilus influenzae in Ontario, Canada: evidence for herd effects and strain replacement due to Hib vaccination. Vaccine 28:4073–4078.
2. Amir J, Liang X, Granoff DM. 1990. Variability in the functional activity of vaccine-induced antibody to Haemophilus influenzae type b. Pediatr. Res. 27:358–364.
3. Anderson P. 1984. The protective level of serum antibodies to the capsular polysaccharide of Haemophilus influenzae type b. J. Infect. Dis. 149: 1034–1035.
4. Bender JM, et al. 2010. Invasive Haemophilus influenzae disease in Utah children: an 11-year population-based study in the era of conjugate vaccine. Clin. Infect. Dis. 50:e41–e46.
5. Castle SC. 2000. Clinical relevance of age-related immune dysfunction. Clin. Infect. Dis. 31:578–585.
6. Chalmers C. 2010. Necrotising fasciitis complicating Haemophilus influenzae type b epiglottitis in an adult. J. Laryngol Otol. 124:807–809.
7. Chew CG, Clarkson AR, Faull RJ. 1997. Relapsing CAPD peritonitis with rapid peritonal sclerosis due to Haemophilus influenzae. Nephrol. Dial. Transplant. 12:821–822.
8. Cutoolo M, et al. 2008. Use of glucocorticoids and risk of infections. Autoimmun. Rev. 8:153–155.
9. Dalrymple LS, Go AS. 2008. Epidemiology of acute infections among patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 3:1487–1493.
10. Denoel PA, et al. 2007. Quality of the Haemophilus influenzae type b (Hib) antibody response induced by diphtheria-tetanus-acellular pertussis/Hib combination vaccines. Clin. Vaccine Immunol. 14:1362–1369.
11. Dentinger CM, et al. 2006. Immunogenicity and reactogenicity to Haemophilus influenzae type b (Hib) conjugate vaccine among rural Alaska adults. Hum. Vaccin. 2:24–28.
12. Dworkin MS, Park L, Borchardt SM. 2007. The changing epidemiology of invasive Haemophilus influenzae disease, especially in persons ≥ or < 65 years old. Clin. Infect. Dis. 44:810–816.
13. Frasca D, Riley RL, Blomberg BB. 2005. Humoral immune response and B-cell functions including immunoglobulin class switch are downregulated in aged mice and humans. Semin. Immunol. 17:378–384.
14. Hallander HO, Lepp T, Ljungman M, Nettlerd E, Andersson M. 2010. Do we need a booster of Hib vaccine after primary vaccination? A study on
anti-Hib seroprevalence in Sweden 5 and 15 years after the introduction of universal Hib vaccination related to notifications of invasive disease. APMIS 118:878–887.

15. Insel RA, and Anderson PW, Jr. 1982. Cross-reactivity with Escherichia coli K100 in the human serum antcapsular antibody response to Haemophilus influenzae type B. J. Immunol. 128:1267–1270.

16. Joshi N, Caputo GM, Weitekamp MR, Karchmer AW. 1999. Infections in patients with diabetes mellitus. N. Engl. J. Med. 341:1906–1912.

17. Karlsson J, et al. 2011. Comparative study of immune status to infectious agents in elderly patients with multiple myeloma, Waldenstrom’s macroglobulinemia, and monoclonal gammapathy of undetermined significance. Clin. Vaccine Immunol. 18:969–977.

18. Kato S, et al. 2008. Aspects of immune dysfunction in end-stage renal disease. Clin. J. Am. Soc. Nephrol. 3:1526–1533.

19. Kayhty H, Peltola H, Karanko V, Makela PH. 1983. The protective level of serum antibodies to the capsular polysaccharide of Haemophilus influenzae type b. J. Infect. Dis. 147:1100.

20. Leino T, Auranen K, Makela PH, Kayhty H, Takala AK. 2000. Dynamics of natural immunity caused by subclinical infections, case study on Haemophilus influenzae type b (Hib). Epidemiol. Infect. 125:383–391.

21. Lottenbach KR, et al. 2004. Safety and immunogenicity of Haemophilus influenzae type B polysaccharide or conjugate vaccines in an elderly adult population. J. Am. Geriatr. Soc. 52:1883–1887.

22. Lucas AH, et al. 1991. An idiotypic marker associated with a germ-line encoded kappa light chain variable region that predominates the vaccine-induced human antibody response to the Haemophilus influenzae b polysaccharide. J. Clin. Invest. 88:1811–1818.

23. MacNeil JR, et al. 2011. Current epidemiology and trends in invasive Haemophilus influenzae disease—United States, 1989–2008. Clin. Infect. Dis. 53:1230–1236.

24. Maslanka SE, et al. 1998. Age-dependent Neisseria meningitidis serogroup C class-specific antibody concentrations and bactericidal titers in sera from young children from Montana immunized with a licensed polysaccharide vaccine. Infect. Immun. 66:2453–2459.

25. Meerveld-Eggink A, de Weerdt O, van Velzen-Blad H, Biesma DH, Rijkers GT. 2011. Response to conjugate pneumococcal and Haemophilus influenzae type b vaccines in asplenic patients. Vaccine 29:675–680.

26. Meerveld-Eggink A, et al. 2009. Antibody response to polysaccharide conjugate vaccines after nonmyeloblastic allogeneic stem cell transplantation. Biol. Blood Marrow Transplant. 15:1523–1530.

27. Moxon ER. 1986. The carrier state: Haemophilus influenzae. J. Antimicrob. Chemother. 18(Suppl A):17–24.

28. Murphy TF. 2005. Haemophilus infections, p 2661–2669. In Mandell GL, Douglas RG, Bennett JE, Doolin R (ed), Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, 6th ed, vol 2. Elsevier, New York, NY.

29. Neuhaus TJ, Iselin H, Nadal D. 1996. Haemophilus influenzae: cause of peritonitis in peritoneal dialysis. Nephrol. Dial. Transplant. 11:199–200.

30. Nucci M, Anaisse E. 2009. Infections in patients with multiple myeloma in the era of high-dose therapy and novel agents. Clin. Infect. Dis. 49:1211–1225.

31. Oh SY, et al. 2008. School-aged children: a reservoir for continued circulation of Haemophilus influenzae type b in the United Kingdom. J. Infect. Dis. 197:1275–1281.

32. Park S, Nahm MH. 2011. Older adults have a low capacity to opsonize pneumococci due to low IgM antibody response to pneumococcal vaccinations. Infect. Immun. 79:314–320.

33. Peltola H, Kayhty H, Virtanen M, Makela PH. 1984. Prevention of Hemophilus influenzae type b bacteremic infections with the capsular polysaccharide vaccine. N. Engl. J. Med. 310:1561–1566.

34. Public Health Agency of Canada. 2006. Canadian Immunization Guide, 7th ed. Public Health Agency of Canada, Ottawa, Canada.

35. Resman F, et al. 2011. Invasive disease caused by Haemophilus influenzae in Sweden 1997–2009; evidence of increasing incidence and clinical burden of non-type b strains. Clin. Microbiol. Infect. 17:1638–1645.

36. Robertson JD, et al. 2000. Immunogenicity of vaccination against influenza, Streptococcus pneumoniae and Haemophilus influenzae type b in patients with multiple myeloma. Br. J. Cancer 82:1261–1265.

37. Romero-Steiner S, et al. 2001. Functional antibody activity elicited by fractional doses of Haemophilus influenzae type b conjugate vaccine (polyribosylribitol phosphate-tetanus toxoid conjugate). J. Clin. Diag. Lab. Immunol. 8:1115–1119.

38. Romero-Steiner S, et al. 2004. Measurement of serum bactericidal activity specific for Haemophilus influenzae type b by using a chromogenic and fluorescent metabolic indicator. Clin. Diag. Lab. Immunol. 11:89–93.

39. Rubach MP, et al. 2011. Increasing incidence of invasive Haemophilus influenzae disease in adults, Utah, U. S. A. Emerg. Infect. Dis. 17:1645–1650.

40. Saito T, et al. 2009. Necrotizing fasciitis caused by Haemophilus influenzae type b in an elderly patient. J. Clin. Microbiol. 47:852–854.

41. Schreiber JR, Barrus V, Cates KL, Siber GR. 1986. Functional characterization of human IgG, IgM, and IgA antibody directed to the capsule of Haemophilus influenzae type b. J. Infect. Dis. 156:16–16.

42. Sethi S. 2010. Infection as a comorbidity of COPD. Eur. Respir. J. 35:1209–1215.

43. Shapiro ED, Ward JL. 1991. The epidemiology and prevention of disease caused by Haemophilus influenzae type b. Epidemiol. Rev. 13:113–142.

44. Shuel M, Hoang L, Law DK, Tsang R. 2011. Invasive Haemophilus influenzae in British Columbia: non-Hib and non-typeable strains causing disease in children and adults. Int. J. Infect. Dis. 15:e167–e173.

45. Shuel M, et al. 2010. Characterization of nontypeable Haemophilus influenzae collected from respiratory infections and invasive disease cases in Manitoba, Canada. FEMS Immunol. Med. Microbiol. 58:277–284.

46. Takala AK, Eskola J, van Alphen L. 1990. Spectrum of invasive Haemophilus influenzae type b disease in adults. Arch. Intern. Med. 150:2573–2576.

47. Ulanova M, Hahn-Zoric M, Lau YL, Lucas A, Hanson LA. 1996. Expression of Haemophilus influenzae type b idiotype 1 on naturally acquired antibodies. Clin. Exp. Immunol. 105:422–428.

48. Ulanova M, Tsang RS. 2009. Invasive Haemophilus influenzae disease: changing epidemiology and host-parasite interactions in the 21st century. Infect. Genet. Evol. 9:594–605.

49. van Belle G. 2008. Statistical rules of thumb, 2nd ed. John Wiley & Sons Inc, Hoboken, NJ.

50. Weinberger B, Herndler-Brandstetter D, Schwaninger A, Weiskopf D, Grubeck-Loebenstein B. 2008. Biology of immune responses to vaccines in elderly persons. Clin. Infect. Dis. 46:1078–1084.