Dynamic Chromatic Number of Regular Graphs

Meysam Alishahi
Department of Mathematics
Shahrood University of Technology, Shahrood, Iran
meysam.alishahi@shahroodut.ac.ir

Abstract
A dynamic coloring of a graph G is a proper coloring such that for every vertex $v \in V(G)$ of degree at least 2, the neighbors of v receive at least 2 colors. It was conjectured [B. Montgomery. Dynamic coloring of graphs. PhD thesis, West Virginia University, 2001.] that if G is a k-regular graph, then $\chi_2(G) - \chi(G) \leq 2$. In this paper, we prove that if G is a k-regular graph with $\chi(G) \geq 4$, then $\chi_2(G) \leq \chi(G) + \alpha(G^2)$. It confirms the conjecture for all regular graph G with diameter at most 2 and $\chi(G) \geq 4$. In fact, we show that for any k-regular graph G, $\chi_2(G) - \chi(G) \leq 6 \ln k + 2$. Also, we show that for any n there exists a regular graph G whose chromatic number is n and $\chi_2(G) - \chi(G) \geq 1$. This result gives a negative answer to a conjecture of [A. Ahadi, S. Akbari, A. Dehghan, and M. Ghanbari. On the difference between chromatic number and dynamic chromatic number of graphs. Discrete Math., In press].

Key words: Dynamic chromatic number, 2-colorability of hypergraphs.

Subject classification: 05C.

1 Introduction

Let H be a hypergraph. The vertex set and the hyperedge set of H are mentioned as $V(H)$ and $E(H)$, respectively. The maximum degree and the minimum degree of H are denoted by $\Delta(H)$ and $\delta(H)$, respectively. For an integer $l \geq 1$, denote by $[l]$, the set $\{1, 2, \ldots, l\}$. A proper l-coloring of a hypergraph H is a function $c : V(H) \rightarrow [l]$ in which there is no monochromatic hyperedge in H. We say a hypergraph H is t-colorable if there is a proper t-coloring of it. For a hypergraph H, the smallest integer l so that H is l-colorable is called the chromatic number of H and denoted by $\chi(H)$. Note that a graph G is a hypergraph such that the cardinality of each $e \in E(G)$ is 2.

A proper vertex l-coloring of a graph G is called a dynamic l-coloring [14] if for every vertex u of degree at least 2, there are at least two different colors appearing in the neighborhood of v. The smallest integer l so that there is a dynamic l-coloring of G is called the dynamic chromatic number of G and denoted by $\chi_2(G)$. Obviously, $\chi(G) \leq \chi_2(G)$. Some properties of dynamic coloring were studied in [3, 6, 10, 11, 14, 13]. It was proved in [11] that for a connected graph G if $\Delta \leq 3$, then $\chi_2(G) \leq 4$ unless $G = C_5$, in which case $\chi_2(C_5) = 5$ and if $\Delta \geq 4$, then $\chi_2(G) \leq \Delta + 1$. It was shown in [14] that the difference between chromatic number and dynamic chromatic number can be arbitrarily large. However, it was conjectured that for regular graphs the difference is at most 2.

Conjecture 1. [14] For any regular graph G, $\chi_2(G) - \chi(G) \leq 2$
Also, it was proved in [14] that if G is a bipartite k-regular graph, $k \geq 3$ and $n < 2^k$, then $\chi_2(G) \leq 4$. This result was extended to all regular bipartite graphs in [6].

In a graph G, a set $T \subseteq V(G)$ is called a \emph{total dominating set} if G if for every vertex $v \in V(G)$, there is at least one vertex $u \in T$ adjacent to v. The set $T \subseteq V(G)$ is called a \emph{double total dominating set} if T and its complement $V(G) \setminus T$ are both total dominating [6]. Also, by $I(G)$ and $IM(G)$ we refer to the set of independent and maximal independent sets in G, respectively.

2 results

The 2-colorability of hypergraphs has been studied in the literature and has lots of applications in the other area of combinatorics.

Theorem 1. [12] Let H be a hypergraph in which every hyperedge contains at least k points and meets at most d other hyperedges. If $e(d + 2) \leq 2^k$, then H is 2-colorable.

Assume that G is a graph. Let $T \subseteq V(G)$ and define a hypergraph $H_G(T)$ whose vertex set is $\bigcup_{v \in T} N(v)$ and its hyperedge set is defined as follows

$$E(H_G(T)) \overset{\text{def}}{=} \{N(v)|v \in T\}.$$

Clearly, for any $f \in E(H_G(T))$, $\delta(G) \leq |f| \leq \Delta(G)$ and $\Delta(H_G(T)) \leq \Delta(G)$. Therefore f meets at most $\Delta(G)(\Delta(G) - 1)$ other hyperedges.

It was shown by Thomassen [15] that for any k-uniform and k-regular hypergraph H, if $k \geq 4$, then H is 2-colorable. This result can be easily extended to all k-uniform hypergraphs with the maximum degree at most k [6], i.e., any k-uniform hypergraph H with $k \geq 4$ and the maximum degree at most k, is 2-colorable. By considering Theorem [1] if $e(\Delta^2(G) - \Delta(G) + 2) \leq 2^k(G)$ (in the k-regular case, $k \geq 4$), then $H_G(T)$ is 2-colorable.

Next lemma is proved in [4] and extended to circular coloring in [5].

Lemma 1. [4] Let G be a connected graph, and let c be a $\chi(G)$-coloring of G. Moreover, assume that H is a nonempty subgraph of G. Then there exits a $\chi(G)$-coloring f of G such that:

a) if $v \in V(H)$, then $f(v) = c(v)$ and

b) for every vertex $v \in V(G) \setminus V(H)$ there is a path $v_0v_1\ldots v_m$ such that $v_0 = v$, v_m is in H, and $f(v_{i+1}) - f(v_i) = 1 \pmod{\chi(G)}$ for $i = 0, 1, \ldots, m - 1$.

Assume that G is a given graph. The graph G^2 is a graph with the vertex set $V(G)$ and two different vertices u and v are adjacent in G^2 if $d_G(u, v) \leq 2$, i.e., there is a walk with length at most two between u and v in G.

The connection between the independence number and the dynamic chromatic number of graphs has been studied in [1]. The first part of the next theorem improves a similar result in [1] and in the second part of it we present an upper bound for the dynamic chromatic number of graph G in terms of chromatic number of G and the independence number of G^2.
Theorem 2.

1) For any graph G with $\chi(G) \geq 4$, $\chi_2(G) \leq \chi(G) + \alpha(G)$.

2) If G is a k-regular graph with $\chi(G) \geq 4$, then $\chi_2(G) \leq \chi(G) + \alpha(G^2)$.

Proof. Let uv be an edge of G. Assume that c is a $\chi(G)$-coloring of G such that $c(u) = 1$ and $c(v) = 3$. Let H be the subgraph induced on the edge uv and f be a coloring as in Lemma 1. According to Lemma 1, $f(u) = 1$ and $f(v) = 3$. We call a vertex $v \in V(G)$, a bad vertex if $\deg(v) \geq 2$ and all vertices in $N(v)$ have the same color in f. Let S be the set of all bad vertices. We claim that S is an independent set in G. Suppose therefore (reductio ad absurdum) that this is not the case. We consider four different cases.

1. $\{u, v\} \subseteq S$. Since u and v are both bad vertices and $uv \in E(G)$, all the vertices in $N(u)$ have the color 3 and all the vertices in $N(v)$ have the color 1. Note that $\chi(G) \geq 4$. Therefore the coloring f does not satisfy Lemma 1 and it is a contradiction.

2. There exists a vertex $x \neq v$ such that $\{u, x\} \subseteq S$ and $ux \in E(G)$. Since $v \in N(u)$ and $u \in N(x)$ and both u and x are bad, all the vertices in $N(u)$ and $N(x)$ have the colors 3 and 1 in the coloring f, respectively. According to Lemma 1 there is a path $v_0v_1 \ldots v_m$ in G such that $v_0 = x$, $v_m \in V(H)$, and $f(v_{i+1}) = f(v_i) = 1$ (mod $\chi(G)$) for $i = 0, 1, \ldots, m - 1$. But, this is not possible, because all the neighbors of x have the color 1 and x has the color 3.

3. There exists a vertex $y \neq u$ such that $\{v, y\} \subseteq S$ and $vy \in E(G)$. This case is the same as the previous case.

4. There are two vertices x and y in $S \setminus \{u, v\}$ such that $xy \in E(G)$. Note that according to Lemma 1 there should be at least two vertices $z \in N(x)$ and $z' \in N(y)$ such that $f(z) = f(x) + 1$ and $f(z') = f(y) + 1$ (mod χ). Since x and y are both bad vertices, all the vertices in $N(x)$ have the color $f(y)$ and all the vertices in $N(y)$ have the color $f(x)$. Therefore $f(z) = f(y)$ and $f(z') = f(x)$ (mod $\chi(G)$), but this is not possible because $\chi(G) \geq 4$.

Now, we know S is an independent set in G and so $|S| \leq \alpha(G)$. For any vertex $w \in S$, choose a vertex $x(w) \in N(w)$ and put all these vertices in S'. Assume that $S' = \{x_1, x_2, \ldots, x_1\}$. Consider a coloring f' such that f and f' are the same on $V(G) \setminus S'$ and for any $x_i \in S'$, x_i is colored with $\chi(G) + i$. One can easily check that f' is a dynamic coloring of G used at most $\chi(G) + \alpha(G)$ colors.

To prove the second part, assume that G is a k-regular graph with $\chi(G) \geq 4$. Consider the coloring f and the set S as in the previous part. Assume that $G^2[S]$, i.e., the induced subgraph of G^2 on the vertices in S, has the components $G^2_1, G^2_2, \ldots, G^2_n$. Note that two different vertices $x, y \in S$ are adjacent in G^2 if and only if $N_G(x) \cap N_G(y) \neq \emptyset$ (since S is an independent set, $xy \notin E(G)$). Therefore for any $1 \leq i \leq n$, all the vertices in

$$N_i = \bigcup_{x \in V(G^2_i)} N_G(x)$$
have the same color in the coloring f. For any $1 \leq i \leq n$, let H_i be a hypergraph with the vertex set N_i and with the hyperedge set

$$E(H_i) = \{N(x) \mid x \in V(G^2_i)\}.$$

It is clear that H_i is a k-uniform hypergraph with $\Delta(H_i) \leq k$. Since $\chi(G) \geq 4$, we have $k \geq 4$ or $G = K_4$. If $G = K_4$, then $\chi_2(G) = 4 \leq \chi(G) + \alpha(G^2)$ and there is nothing to prove. Now, we can assume that $k \geq 4$. According to the discussion after Theorem 1, H_i is 2-colorable. For any $1 \leq i \leq n$, let (X_1^i, X_2^i) be a 2-coloring of H_i. Define f'' to be a coloring of G such that f'' and f are the same on $V(G) \setminus \bigcup X_1^i$ and for each $1 \leq i \leq n$, f'' has the constant value $i + \chi(G)$ on the vertices of X_1^i. It is easy to see that f'' is a $(\chi(G) + n)$-dynamic coloring of G. Obviously, $n \leq \alpha(G^2)$ and the proof is completed.

In the proof of the second part of Theorem 2, we need the 2-colorability of all H_i’s and if some assumptions cause this property, then the remain of proof still works. Consequently, in view of the discussion after Theorem 1, we have the next corollary.

Corollary 1. Let G be a graph such that $\chi(G) \geq 4$ and $e(\Delta(G) - \Delta(G) + 1) \leq 2^\delta(G)$. Then $\chi_2(G) \leq \chi(G) + \alpha(G^2)$.

Remark. Note that in the proof of Theorem 2, it is shown that for any k-regular graph G with $\chi(G) \geq 4$, $\chi_2(G) \leq \chi(G) + \max_{I \in \mathcal{I}(G)} \text{com}(G^2[I])$ where $G^2[I]$ is the number of connected components of $G^2[S]$ and S is an independent set given in the proof of Theorem 2. Therefore for any graph G with $\chi(G) \geq 4$ and $e(\Delta(G) - \Delta(G) + 1) \leq 2^\delta(G)$ (in k-regular case $k \geq 4$),

$$\chi_2(G) \leq \chi(G) + \max_{I \in \mathcal{I}(G)} \text{com}(G^2[I]).$$

It is shown in [2] that if G is a strongly regular graph except C_5 and $K_{m,m}$, then $\chi_2(G) - \chi(G) \leq 1$. Note that for a graph G with diameter 2, the graph G^2 is a complete graph and $\alpha(G^2) = 1$. Therefore the second part of Theorem 2 extends this result to a larger family of regular graphs. In fact, every strongly regular graph has diameter at most 2, but according to the second part of Theorem 2, if G is a k-regular graph with diameter 2 and $\chi(G) \geq 4$, then $\chi_2(G) = \chi(G) + \alpha(G^2) = 1$. Moreover, by the previous corollary, if G is a graph with diameter 2, $\chi(G) \geq 4$ and $e(\Delta(G) - \Delta(G) + 1) \leq 2^\delta(G)$, then $\chi_2(G) - \chi(G) \leq 1$. We restate this result in the next corollary.

Corollary 2. Let G be a graph with diameter 2, $\chi(G) \geq 4$ and $e(\Delta(G) - \Delta(G) + 1) \leq 2^\delta(G)$ (in k-regular case $k \geq 4$). Then $\chi_2(G) - \chi(G) \leq 1$.

The proof of the second part of Theorem 2 strongly depended on the assumption that $\chi(G) \geq 4$. In fact the only bipartite regular graphs with diameter 2 are complete regular bipartite graphs whose chromatic number and dynamic chromatic number are 2 and 4, respectively. But $K_{m,m}^2$ is a complete graph and so $\chi(K_{m,m}) + \alpha(K_{m,m}) = 3 \leq \chi_2(K_{m,m})$. For the case of $\chi(G) = 3$, if we set $G = C_5$, then $C_5^2 = K_5$ and $\chi_2(C_5) = 5 > \chi(C_5) + \alpha(C_5^2)$.

4
Note that in the proof of Theorem 2 we assumed that \(\chi(G) \geq 4 \) because we want to use Lemma 1 to obtain a coloring \(f \) such that all the bad vertices related to \(f \) form an independent set in \(G \). However, if one finds a \(t \)-coloring \(f \) of \(G \) such that the set of bad vertices related to \(f \), \(S \), is an independent set in \(G \), then \(\chi_2(G) \leq t + \alpha(G) \) and if \(G \) is a \(k \)-regular graph with \(k \geq 4 \), then \(\chi_2(G) \leq t + \text{com}(G^2[S]) \).

Now, let \(G \) be a graph such that \(e(\Delta^2(G) - \Delta(G) + 1) \leq 2^{\delta(G)} \) (in \(k \)-regular case, \(k \geq 4 \)) and let \(I \) be an arbitrary maximal independent set in \(G \). Consider an optimum \(t \)-coloring \(c \) of \(G \) such that \(I \) is a color class in this coloring \((t \) is the least possible number). Define \(H \) to be a hypergraph with vertex set \(I \) and the hyperedge set \(E(H) = \{ N(v) | v \in V(G) \& N(v) \subseteq I \} \). Since \(e(\Delta^2(G) - \Delta(G) + 1) \leq 2^{\delta(G)} \) (in \(k \)-regular case, \(k \geq 4 \)), \(H \) is 2-colorable. Let \((X, Y) \) be a 2-coloring of \(H \). Recolor the vertices in \(Y \) with a new color \(t + 1 \) to obtain a \((t + 1) \)-coloring \(f \) of \(G \). It is readily seen that \(S \), the set of the bad vertices related to \(f \), is a subset of \(I \) and therefore it is an independent set. By the same argument as in the proof of the second part of Theorem 2 one can show that \(\chi_2(G) \leq t + 1 + \text{com}(G^2[S]) \). Now, note that \(t \leq \chi(G) + 1 \) and so \(\chi_2(G) \leq t + 1 + \text{com}(G^2[S]) \leq \chi(G) + 2 + \max \text{com}(G^2[P]) \).

Let \(IM(G) \) be the set of all maximal independent sets in \(G \). Since \(I \) is an arbitrary maximal independent set in \(G \),

\[
\chi_2(G) \leq \chi(G) + \min_{I \in IM(G)} \max_{P \subseteq I} \text{com}(G^2[P]) + 2.
\]

In Theorem 2 we have the assumption \(\chi(G) \geq 4 \) and for a graph \(G \) with \(\chi(G) < 4 \), we can not use this theorem. In view of the above discussion, if we consider \(c \) as a \(\chi(G) \)-coloring of \(G \) such that the color class \(V_1 \) (all the vertices with color 1) is a maximal independent set in \(G(t = \chi(G)) \), then \(\chi_2(G) \leq \chi(G) + \alpha(G) + 1 \) and also, we have the next corollary.

Corollary 3. Let \(G \) be a graph such that \(e(\Delta^2(G) - \Delta(G) + 1) \leq 2^{\delta(G)} \) (in \(k \)-regular case, \(k \geq 4 \)). Then \(\chi_2(G) \leq \chi(G) + \alpha(G^2) + 1 \).

Erdős and Lovász 8 proved a very powerful lemma, known as the Lovász Local Lemma.

The Lovász Local Lemma. Let \(A_1, A_2, \ldots, A_n \) be evens in an arbitrary probability space. Suppose that each event \(A_i \) is mutually independent of a set of all \(A_j \) but at most \(d \) of the other events and \(\text{Pr}(A_i) \leq p \) for all \(1 \leq i \leq n \). If \(ep(d + 1) \leq 1 \) then \(\text{Pr}(\bigcap_{i=1}^{n} A_i) > 0 \).

It was proved in 6 that for any \(k \)-regular graph \(G \), the difference between dynamic chromatic number and chromatic number of \(G \) is at most \(14.06 \ln k + 1 \). In the next theorem we shall improve this result.

Theorem 3. For any \(k \)-regular graph \(G \), \(\chi_2(G) - \chi(G) \leq 6 \ln k + 2 \).

Proof. It is proved in 6, that for any regular graph \(G \), \(\chi_2(G) \leq 2\chi(G) \). Therefore for any \(k \)-regular graph \(G \) with \(k \leq 3 \), \(\chi_2(G) \leq 6 \leq 6 \ln k + 2 \). Now, we can assume that \(k \geq 4 \). Let \(V(G) = \{ v_1, v_2, \ldots, v_n \} \). For any permutation (total ordering) \(\sigma \in S_{V(G)} \), set

\[
I_\sigma = \{ v \in V(G) | v \prec_\sigma u \text{ for all } u \in N(v) \}.
\]
It is readily seen that I_u is an independent set of G. Assume that $U \subseteq V(G)$ consists of all vertices that are not lied in any triangle. Now, choose l permutations $\sigma_1, \ldots, \sigma_l$, randomly and independently. For any $u \in U$, let A_u be the event that there are not a vertex $v \in N(u)$ and σ_i such that the vertex v precedes all of its neighbors in the permutation σ_i, i.e., $N(u) \bigcap \bigcup_{i=1}^{l} I_{\sigma_i} = \emptyset$. Since u dose not appear in any triangle, one can easily see that $\Pr(A_u) = (1 - \frac{1}{k})^{kl} \leq e^{-l}$. Note that A_u is mutually independent of all events A_v for which $d(u, v) > 3$. Consequently, A_u is mutually independent of all but at most $k^3 - k^2 + k + 1$ events. In view of Lovász Local Lemma, if $e(k^3 - k^2 + k + 2)e^{-l} \leq 1$, then none of the events A_u happens with positive probability. In other words, for $l = \lceil 3 \ln k + 1 \rceil$, there are permutations $\sigma_1, \ldots, \sigma_l$ such that A_u does not happen for any $u \in U$. It means that for any vertex $u \in U$, there is an i $(1 \leq i \leq l)$ such that $N(u) \cap I_{\sigma_i} \neq \emptyset$. Note that if we set $T = \bigcup_{i=1}^{l} I_{\sigma_i}$, then $G[T]$, the induced subgraph on T, has the chromatic number at most l. Assume that c_1 is a proper $\chi(G[T])$-coloring of $G[T]$. Now, let H be a hypergraph with the vertex set T and the hyperedge defined as follows

$$E(H) = \{N(v) \mid v \in V(G), N(v) \subseteq T\}.$$

One can check that H is 2-colorable. If H is an empty hypergraph, there is noting to prove. Otherwise, since H is a k-uniform hypergraph with maximum degree at most k $(k \geq 4)$, H is 2-colorable. Assume that c_2 is a 2-coloring of H. It is obvious that $c = (c_1, c_2)$ is a 2l-coloring of $G[T]$. Now, consider a $(\chi(G) + 2l)$-coloring f for G such that the restriction of f on T is the same as c. One can check that f is a dynamic coloring of G. \hfill \blacksquare

It is proved in [6] that for any $c > 6$, there is a threshold $n(c)$ such that if G is a k-regular graph with $k \geq n(c)$ then, G has a total dominating set inducing a graph with maximum degree at most $2c \log k$ (for instance if we set $c = 7.03$ then $n(c) \leq 139$). Note that in the proof of previous theorem, it is proved that any triangle free k-regular graph G has a total dominating set T such that the induced subgraph $G[T]$ has the chromatic number at most $\lceil 3 \ln k + 1 \rceil$.

In the rest of the paper by $G \times H$ and $G \square H$, we refer to the Categorical product and Cartesian product of graphs G and H, respectively. It is well-known that if G is a graph with $\chi(G) > n$, then $G \times K_n$ is a uniquely n-colorable graph, see [9].

It was conjectured in [1] that for any regular graph G with $\chi(G) \geq 4$, the chromatic number and the dynamic chromatic number are the same. Here, we present a counterexample for this conjecture.

Proposition 1 For any integer $n > 1$, there are regular graphs with chromatic number n whose dynamic chromatic number is more than n.

Proof. Assume that G_1 is a d-regular graph with $\chi(G_1) > n$ and $m = |V(G_1)|$. Set $G_2 = G_1 \square C_{(n-1)(d+2)+1}$ and $G' = G_2 \times K_n$. Note that G' is a uniquely n-colorable graph with regularity $(n - 1)(d + 2)$. Consider the n-coloring (V_1, V_2, \ldots, V_n) for
where for \(1 \leq i \leq n\), \(V_i = \{(g, i) \mid g \in V(G_2)\}\). It is obvious that \(|V_i| = m((n-1)(d + 2) + 1)\) is divisible by \((n-1)(d + 2) + 1\). Now, for each \(1 \leq i \leq n\), consider \((S_1^i, S_2^i, \ldots, S_m^i)\) as a partition of \(V_i\) such that \(|S_j^i| = (n-1)(d+2) + 1\). Now, for any \(1 \leq i \leq n\) and \(1 \leq j \leq m\), add a new vertex \(s_{ij}\) and join this vertex to all the vertices in \(S_j^i\) to construct the graph \(G\). Note that \(G\) is an \(((n-1)(d+2)+1)\)-regular graph with \(\chi(G) = n\). Now, we claim that \(\chi_2(G) > n\). To see this, assume that \(c\) is an \(n\)-dynamic coloring of \(G\). Since \(G'\) is uniquely \(n\)-colorable, the restriction of \(c\) to \(V(G)\) is \((V_1, V_2, \ldots, V_n)\). In the other words, all the vertices in \(V_1\) have the same color in \(c\). But, all the neighbors of \(s_1^1\) are in \(V_1\) and this means that \(c\) is not a dynamic coloring. \(\blacksquare\)

However, it can be interesting to find some regular graph \(G\) with \(\chi(G) \geq 4\) and \(\chi_2(G) - \chi(G) \geq 2\).

Also, as a generalization of Conjecture \(\[\square\]\) it was conjectured \(\[\square\]\) that for any graph \(G\), \(\chi_2(G) - \chi(G) \leq \left\lceil \frac{\Delta(G)}{\delta(G)} \right\rceil + 1\). Here, we give a negative answer to this conjecture. To see this, assume that \(G_1\) is a graph with \(\chi(G_1) \geq 3\) and \(n\) vertices such that \(n > 3\Delta(G_1) + 5\). For any 2-subset \(\{u, v\} \subseteq V(G_1)\), add a new vertex \(x_{uv}\) and join this vertex to the vertices \(u\) and \(v\). Let \(G\) be the resulting graph form \(G_1\) by using this construction. Note that \(\chi_2(G) \geq n\), \(\Delta(G) = \Delta(G_1) + n - 1\), \(\delta(G) = 2\) and \(\chi(G) = \chi(G_1)\). Therefore if the conjecture was true, then we would have

\[
n - \Delta(G_1) - 1 \leq n - \chi(G_1) \leq \chi_2(G) - \chi(G) \leq \left\lceil \frac{\Delta(G_1) + n - 1}{2} \right\rceil + 1.
\]

Note that it is not possible because \(n > 3\Delta(G_1) + 5\), and consequently, \(n - \Delta(G_1) - 1 > \left\lceil \frac{\Delta(G_1) + n - 1}{2} \right\rceil + 1\).

Acknowledgment
The author wishes to express his deep gratitude to Hossein Hajiabolhassan for drawing the author’s attention to two counterexamples (Proposition \(\[\square\]\) and the example after that).

References

[1] A. Ahadi, S. Akbari, A. Dehghan, and M. Ghanbari. On the difference between chromatic number and dynamic chromatic number of graphs. \textit{Discrete Math.}, In press.

[2] S. Akbari, M. Ghanbari, and S. Jahanbekam. On the dynamic coloring of strongly regular graphs. \textit{Ars Combin.}, to appear.

[3] S. Akbari, M. Ghanbari, and S. Jahanbekam. On the list dynamic coloring of graphs. \textit{Discrete Appl. Math.}, 157(14):3005–3007, 2009.

[4] S. Akbari, V. Liaghat, and A. Nikzad. Colorful paths in vertex coloring of graphs. \textit{Electron. J. Combin.}, 18(1):Research Paper 17, 2011.

[5] M. Alishahi, A. Taherkhani, and C. Thomassen. Rainbow paths with prescribed ends. \textit{Electronic Journal of Combinatorics}, 18(1), 2011.
[6] Meysam Alishahi. On the dynamic coloring of graphs. *Discrete Appl. Math.*, 159(2-3):152–156, 2011.

[7] Noga Alon and Joel H. Spencer. *The probabilistic method*. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc., Hoboken, NJ, third edition, 2008.

[8] P. Erdős and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. In A. Hajnal, R. Rado, and V. T. Sós, editors, *Infinite and finite sets*, volume 10 of CMSJB, pages 609–627, Keszthely, 1973, 1975. North-Holland.

[9] C.D. Godsil and G. Royle. *Algebraic graph theory*. Graduate texts in mathematics. Springer, 2001.

[10] Hong-Jian Lai, Jianliang Lin, Bruce Montgomery, Taozhi Shui, and Suohai Fan. Conditional colorings of graphs. *Discrete Math.*, 306(16):1997–2004, 2006.

[11] Hong-Jian Lai, Bruce Montgomery, and Hoifung Poon. Upper bounds of dynamic chromatic number. *Ars Combin.*, 68:193–201, 2003.

[12] Colin McDiarmid. Hypergraph colouring and the lovász local lemma. *Discrete Math.*, 167/168:481–486, 1997.

[13] Xianyong Meng, Lianying Miao, Bentang Su, and Rensuo Li. The dynamic coloring numbers of pseudo-Halin graphs. *Ars Combin.*, 79:3–9, 2006.

[14] B. Montgomery. *Dynamic coloring of graphs*. PhD thesis, West Virginia University, 2001.

[15] Carsten Thomassen. The even cycle problem for directed graphs. *J. Amer. Math. Soc.*, 5(2):217–229, 1992.