Dissecting the molecular evolution of fluoroquinolone-resistant *Shigella sonnei*

Hao Chung The, Christine Boinett, Duy Pham Thanh, Claire Jenkins, Francois-Xavier Weill, Benjamin P. Howden, Mary Valcanis, Niall De Lappe, Martin Cormican, Sonam Wangchuk, Ladaporn Bodhidatta, Carl J. Mason, To Nguyen Thi Nguyen, Tuyen Ha Thanh, Vinh Phat Voong, Vu Thuy Duong, Phu Huong Lan Nguyen, Paul Turner, Ryan Wick, Pieter-Jan Ceyssens, Guy Thwaites, Kathryn E. Holt, Nicholas R. Thomson, Maia A. Rabaa, Stephen Baker

Shigella sonnei increasingly dominates the international epidemiological landscape of shigellosis. Treatment options for *S. sonnei* are dwindling due to resistance to several key antimicrobials, including the fluoroquinolones. Here we analyse nearly 400 *S. sonnei* whole genome sequences from both endemic and non-endemic regions to delineate the evolutionary history of the recently emergent fluoroquinolone-resistant *S. sonnei*. We reaffirm that extant resistant organisms belong to a single clonal expansion event. Our results indicate that sequential accumulation of defining mutations (**gyrA**-S83L, **parC**-S80I, and **gyrA**-D87G) led to the emergence of the fluoroquinolone-resistant *S. sonnei* population around 2007 in South Asia. This clone was then transmitted globally, resulting in establishments in Southeast Asia and Europe. Mutation analysis suggests that the clone became dominant through enhanced adaptation to oxidative stress. Experimental evolution reveals that under fluoroquinolone exposure in vitro, resistant *S. sonnei* develops further intolerance to the antimicrobial while the susceptible counterpart fails to attain complete resistance.
Shigella is ranked among the leading causes of diarrhoeal disease in children under five years of age, and causes \(~160,000\) deaths per year across all age groups globally. The **Shigella** genus is comprised of four serogroups (S. dysenteriae, S. boydii, S. flexneri and S. sonnei); however, the majority of **Shigella** infections are associated with organisms belonging to S. flexneri and S. sonnei. S. flexneri has traditionally been associated with disease in developing countries, while S. sonnei has been associated with more developed settings. This trend, however, is changing, with S. sonnei prevailing in modernising countries, particularly in Asia.

The principal virulence determinant of **Shigella** is the type III secretion system encoded by a large virulence plasmid, which enables the pathogen to invade the colonic mucosa and kill resident macrophages, triggering inflammatory responses and causing damage to the intestinal epithelium. It is this damage that causes the distinctive symptom of bloody/mucoid diarrhoea in shigellosis. Although the majority of **Shigella** infections are self-limiting, shigellosis can be severe if left unattended. Routine treatment relies on antimicrobials to accelerate recovery, prevent complications, and reduce onward transmission. Current World Health Organization (WHO) guidelines recommend the use of ciprofloxacin, a fluoroquinolone (FQ), for the treatment of shigellosis. Fluoroquinolones are a safe, well tolerated, highly effective antimicrobial class with broad-spectrum activity and are highly efficacious for treating **Shigella**-associated diarrhoea. However, the widespread use of fluoroquinolones has led to increasing resistance in many **Shigella** species, raising questions about their utility. Indeed, FQ-resistant (FQR) **Shigella** have been placed on the global priority list for pathogens requiring urgent antimicrobial development. The U.S. Centers for Disease Control and Prevention (CDC) now recommend that fluoroquinolones should not be prescribed for infections caused by **Shigella** with a minimum inhibitory concentration (MIC) of \(>0.12 \mu\text{g/mL}\) against ciprofloxacin (https://emergency.cdc.gov/han/han00401.asp). This threshold is considerably lower than the currently defined \(1 \mu\text{g/mL}\) breakpoint for ciprofloxacin resistance defined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) (http://www.eucast.org/clinical_breakpoints/).

We recently demonstrated that the extant FQR S. sonnei population, now reported worldwide, likely emerged from a single common ancestor in South Asia, the descendants of which moved across Asia prior to intercontinental dissemination. Despite the significance of these findings, our inferences were derived from limited sampling, consisting of genome sequences generated from 70 FQR S. sonnei isolates. Here, we include >300 globally sourced FQR S. sonnei to understand the life history of this looming public health threat, particularly within the phylogenetic context provided by contemporary South Asian isolates. This extensive collection (~400 organisms over a timespan of 20 years) allows us to delineate how this FQR S. sonnei clone evolved both within and outside of South Asia, thus revealing in detail its evolutionary history, global epidemiology, pan-genome repertoire, and adaptive signatures. Additionally, we further evaluate the evolutionary trajectories of FQR and FQ-Susceptible (FQS) S. sonnei under experimental conditions, showing that the two variants exhibit differing patterns of mutation accumulation.

Results

The clonal expansion of FQR S. sonnei. Our previous analysis of 70 representative FQR S. sonnei suggested that they emerged as a single clone (nested within CenAsiaIII) in South Asia and subsequently radiated internationally. Here, we utilised a collection of 411 internationally isolated S. sonnei, including 265 contemporary isolates for the purpose of this study (Table 1). Hypothesising that South Asia was the most likely origin of FQR S. sonnei, isolates were preferentially selected from collaborating institutes if they originated from this region or showed reduced susceptibility to ciprofloxacin (intermediate to full resistance). This approach resulted in the over-representation of South Asian S. sonnei (306/411; from India, Bhutan, Nepal, Bangladesh, Pakistan, and Sri Lanka), spanning a period of 16 years (1999–2014). Within this collection, 76% (313/411) of the isolates exhibited phenotypic resistance to ciprofloxacin (defined as FQR) and were isolated as early as 2008. These emphases allowed us to reconstruct the evolutionary history of FQR S. sonnei with fine granularity. Preliminary phylogenetic reconstruction showed that 11 isolates clustered outside the CenAsiaIII clade, and these were removed from further phylogenetic analyses; five of these exhibited reduced susceptibility to ciprofloxacin (MIC ranges 0.094–0.125 \(\mu\text{g/mL}\)).

Maximum likelihood (ML) phylogenetic reconstruction of 395 CenAsiaIII S. sonnei verified that almost all FQR organisms (98.7% (307/311) belonged to a single clone, with FQR conferred by the classical sequential mutations in the quinolone resistance determining region (QRDR): gyrA-S83L, parC-S80I and gyrA-D87G (Fig. 1). These data confirmed that the current global burden of FQR S. sonnei was strongly associated with a single clonal expansion event. We observed a single FQR isolate (Sb_sonnei_1446) that was a sister taxon to the major FQR clone, sharing with it the gyrA-S83L and parC-S80I mutations, but harbouring a distinct gyrA codon 87 mutation (gyrA-D87N). This observation highlights the presence of other non-sampled FQR S. sonnei isolates with differing secondary gyrA mutations, although these appeared to be present at lower frequencies. In addition, QRDR single mutants, each carrying a mutation in either gyrA codon 83 or 87, appear to have arisen on at least six independent occasions, leading to an initial reduced susceptibility to FQ (i.e. incomplete resistance). Plasmid-mediated quinolone resistance (PMQR) genes were uncommon, with gyrSL found in two S. sonnei (already harbouring the aforementioned triple mutation) and no organisms possessing aac(6\'_)-lb-cr, qepA, or oxaAB.

Bayesian hierarchical clustering using core SNPs segregated the CenAsiaIII clade into two distinct subpopulations, which we refer to herein as Pop1 (mainly FQs; \(n = 83\)) and Pop2 (mainly FQR; \(n = 312\)) (Supplementary Fig. 1). To reconstruct the evolutionary history of the CenAsiaIII clade, we selected 72 isolates from each of these two subpopulations and subjected them to Bayesian phylogenetic analysis using BEAST. The mean nucleotide substitution rate for the entire CenAsiaIII clade was estimated to be \(7.34 \times 10^{-7}\) substitutions per site per year [95% highest posterior density (HPD): \(6.77 \times 10^{-7}\) to \(7.91 \times 10^{-7}\)], and we infer that this clade likely emerged in the late 1980s (95% HPD: 1986–1990) (Fig. 2). This timeline is in accordance with previous estimates from an analysis of the global evolutionary history of S. sonnei. The tree topology shows that Pop2 emerged from within Pop1 (Fig. 2), and allowed us to estimate the timing of stepwise QRDR mutation accumulation leading to the formation of the major FQR clone.

Within Pop1, two lineage-defining gyrA mutations likely arose independently within the mid-1990s, forming two major subclades with quinolone (i.e. nalidixic acid) resistance: gyrA-S83L in ~1995 (95% HPD: 1994.6–1997) and gyrA-D87Y in ~1996 (95% HPD: 1995.4–1998) (Fig. 2). The gyrA-S83L lineage later gave rise to Pop2 and its dominant FQR subclade, following the acquisition of parC-S80I between 2001 (95% HPD: 2000.5–2002.6) and 2005 (95% HPD: 2003.9–2006.4), and then gyrA-D87G around 2007 (95% HPD: 2006.5–2007.6) (Fig. 2). Bayesian phylogenetic analysis of the Pop2 subclade yielded similar estimates in terms of the timeline of emergence of the
Country	Number of sequences	In CenAsia III clade	CIP resistant isolates	Study or Institute of origin	Patient group	Region of recent travel history (N)	Sequencing platform	CIP susceptibility test
Bhutan	74	71	71	Diarrhoeal disease surveillance in JDWNRH, Thimphu, Bhutan (AFRIMS)	Hospitalised children <5 years old	NA	Illumina HiSeq 2000	Disk diffusion/E-test
Vietnam	24	22	22	Diarrhoeal disease surveillance in HCMC, Vietnam	Hospitalised children <5 years old	NA	Illumina MiSeq	Disk diffusion
Thailand	8	8	1	Cross-sectional study of S. sonnei diversity in Southeast Asia (AFRIMS)	Hospitalised children <5 years old	NA	Illumina HiSeq 2000	Disk diffusion
Cambodia	1	1	1	Cross-sectional study of S. sonnei diversity in Southeast Asia (AFRIMS)	Hospitalised children <5 years old	NA	Illumina HiSeq 2000	Disk diffusion
Ireland	20	20	16	National Salmonella, Shigella and L. monocytogenes Reference Laboratory, Galway, Ireland	Primarily patients with recent travel history	South Asia (9), Africa (1), Europe (1), No travel (5), Unknown (4)	Illumina HiSeq 2000	Broth microdilution
Australia	85	77	46	Microbiological Diagnostic Unit Public Health Laboratory, Melbourne, Australia	Primarily patients with recent travel history	Africa (2), America (1), Southeast Asia (12), Middle East (2), Oceania (1), South Asia (60), Unknown (4)	Illumina NextSeq	Agar dilution
France	97	95	72	French National Reference Centre for E. coli, Shigella, and Salmonella, Paris, France	Primarily patients with recent travel history	Africa (4) America (1) Southeast Asia (4) South Asia (88)	Illumina HiSeq 2000	Disk diffusion
England	91	90	82	Gastrointestinal Bacteria Reference Unit, Public Health England, London, UK	Primarily patients with recent travel history	Africa (3), East Asia (1), Europe (13), Middle East (1), South Asia (73)	Illumina HiSeq 2000	Disk diffusion
Global references	14	11	0	NA	NA	NA	Illumina HiSeq 2000	NA

CIP ciprofloxacin, JDWNRH Jigme Dorji Wangchuk National Reference Hospital, AFRIMS Armed Forces Research Institute of Medical Sciences, HCMC Ho Chi Minh City.
Asia, providing further evidence that the clade has been
being transmitted from this region to Africa, the major FQR clone. We separately conducted a BEAST analysis of
only this clone to examine its demographic history, inferring that
its population expanded rapidly after emergence in 2007, peaked
around 2008, and maintained a relatively constant size thereafter
(Supplementary Fig. 2).

Geographical dissemination of FQR S. sonnei from South Asia.
It is apparent in the ML phylogeny of all CenAsiaIII isolates that
South Asian isolates are diverse and deep branching across the
tree, consistent with an origin in this region (Fig. 1). To test this
quantitatively, we generated 1000 geographically down-sampled
phylogenies (from the aforementioned ML phylogeny) to reduce
sampling location bias (with equal representation of South Asia,
Southeast Asia, and Europe on an average of 7.65 (IQR:
3.47–3.8), 3.47 (IQR: 2–4) independent events per
df: 10). These results provide strong evidence that our conclu-
sions concerning the South Asian origin of the clade result from
inherent phylogeographic signal in the data, rather than over-
representation of South Asian isolates in this collection.

Two distinct regional diversification events from South Asia
are evident within the FQR clade, with one being introduced into
Southeast Asia (Vietnam, Thailand, and Cambodia; light yellow
box in Fig. 2) by 2010 (95% HPD: 2010–2011.7), and another
instigating sustained transmission within Europe (Ireland, Italy,
Germany, and Spain; light orange box in Fig. 2) by 2010 (95% HPD:
2009–2010.2). Notably, despite a dense sampling strategy,
there was no immediate outgroup for the Southeast Asia subclone
(Fig. 2). Detailed examination identified 18 chromosomally
dispersed mutations specific to this subclone, confirming its
divergence from the trunk of the phylogeny. We speculate that
this long branch may be the result of a recent population
bottleneck or intermediate unsampled isolates that were vital to
transition from South Asia to Southeast Asia. Within this
subclone was a number of organisms isolated from Australian
and European patients (12 occasions), thus highlighting the association between international travel and secondary introductions to shigellosis non-endemic populations. The second subclone, comprised mainly of organisms from Europe, shared its most closely related outgroups with sequences from South Asia, again suggesting likely introduction from this region (Figs. 1 and 2).

Multi-drug resistance in FQr *S. sonnei*. Aside from FQ resistance, it was important to characterise the entire antimicrobial resistance gene (ARG) content of organisms within the CenAsiaIII population. Genes encoding resistance to previous first-line antimicrobials for treating shigellosis were commonplace within the clade, as observed previously. These included the small spA plasmid, conferring resistance to streptomycin (*strAB*), tetracycline (*tetRA*), and sulphonamide (*sul2*), and a class II integron conferring resistance to trimethoprim (*dfrA1*). Other notable ARGs included those belonging to the extended spectrum beta-lactamase (ESBL) *blaCTX-M* family; these were particularly enriched in the Southeast Asia subclone (Fig. 1), but only sporadically detected among the South Asia isolates. Three *blaCTX-M* variants were carried on different plasmid structures; these were acquired independently in Southeast Asia, specifically Vietnam (Fig. 1, Supplementary Fig. 1). While *blaCTX-M-55* mainly co-existed with an IncB-O plasmid (recombinant of pEB1 and pHUSEC41-1) in five Vietnamese isolates, the *blaCTX-M-15* variant was co-transferred with the IncI1 plasmid pKHSB1 and clonally maintained in six additional Vietnamese isolates. Notably, pKHSB1 and its *blaCTX-M-15* have been the adaptive signature of the indigenous Global III-clade *S. sonnei* population in Ho Chi Minh City since 2006.

This observation highlights the
promiscuity of this specific plasmid background among different S. sonnei lineages circulating in the same location. We addi-
tionally recorded four independent instances of mphA (confer-
ing azithromycin resistance) acquisition within this Vietnamese
expansion, two of which were co-transferred with blacTX-M genes
(Fig. 1), and have characterised the genetic details of these pan-
resistant S. sonnei elsewhere. Significantly, this combination of
mutations and ARG renders these organisms resistant to all
current first-line antimicrobials used for dysentery treatment (FQ, 3rd
generation cephalosporins, and macrolides).

We catalogued the presence of major plasmids in all
CenAsiaIII S. sonnei and found that IncB-O and IncI1 plasmids
were the most common (Fig. 1). Detailed manual plasmid
comparisons revealed that all IncB-O plasmids were closely
related to pHUSEC41-1 or recombinant variants (nucleotide
identity >98%, coverage >80%). These plasmids exhibited
associations with specific geographical locations (Supplementary
Data 2). Specifically, pHUSEC41-1 was found to circulate
primarily in Europe, while the pHUSEC41-1-pEB1 and
pHUSEC41-1-pFORC11.2 recombinants were found in Vietnam
and Bhutan, respectively (Fig. 1, Supplementary Fig. 1). Notably,
plasmids of the pHUSEC41-1 family were favourably maintained
in the FQr S. sonnei following local introductions, despite
geographical discrepancy. The IncI1 plasmids, present in 42 S.
sonnei isolates, displayed greater diversity than the IncB-O
plasmids with respect to their origins. These IncI1 plasmid
structures were similar to IncI1 plasmid structures found in
GenBank for Salmonella spp. (n = 14 plasmids), E. coli (n = 13),
S. sonnei (n = 11), and K. pneumoniae (n = 3) (Supplementary
Data 2). Most notably, two Vietnamese subpopulations separately
harboured pKHSB1 (S. sonnei) and pSWeltevreden2 (originally
described in Salmonella Weltevreden) (Fig. 1, Supplementary
Data 2). These data demonstrate that once FQr S. sonnei enters
a new location, it has access to a wide gene pool shared among
the indigenous Enterobacteriaceae. In addition, we previously
reported that CenAsiaIII S. sonnei harbours a novel recombinant
colicin plasmid (pSSE3). Through genomic comparison and
Bayesian phylogenetic inference, we confirmed that this plasmid
has been stably maintained in this clade since its introduction
around the year 1995, concurrent with the first gyrA S83L
mutation (Supplementary Fig. 1). Plasmid pSSE3 likely grants
CenAsiaIII S. sonnei a competitive advantage over other Shigella
and E. coli through colicin-mediated killing activity. Furthermore,
various clusters of different colicin families (colE2, colE4,
colE5, colE8, colta, collb, colfs, colK, and colD) have been
sporadically acquired across the phylogeny, with colta and collb
integrated into the co-transferred IncI1 plasmid backbones on at
least 13 occasions (Supplementary Fig. 1). These data show that
maintenance and enrichment of colicin clusters may also facilitate
S. sonnei in forming a successful clonal expansion.

Reductive evolution in CenAsiaIII S. sonnei. Reductive evolu-
tion has played an important role in shaping the long-term
evolution of Shigella. However, this phenomenon has not been
sufficiently studied in a rapidly emerging population. Under-
standing gene loss and pseudogenization may provide insight into
the evolutionary trajectory of this CenAsiaIII clade. We selected
one isolate (2012–02037; highlighted in Fig. 1) for long-read
Nanopore sequencing and complete genome assembly to aid in
the detection of pseudogenes arising from IS disruptions (See
Methods). Our analyses identified a total of 27 pseudogenization
events stably inherited across the phylogeny (9 IS disruptions
and 18 by other mechanisms; Supplementary Table 1). Specifically,
the S. sonnei population had accumulated 14 pseudogenes prior to the formation of CenAsiaIII. Since the emergence of CenAsiaIII in the late 1980s, 13 additional lineage-defining pseudogenizations have arisen (Fig. 2). All of these mutations were located in genes encoding transporters (araH, arabinose; ycbO, aliphatic sulfonate; and other substrate nonspecific transporters yjeR, phoE, and yddA) and oxidation-reduction processes (ydhV, ybeQ, mdaA, and ybdR). Additionally, we identified an inactivation in nfsA, which has been described to confer resistance to nitrofurans16. Additional observed mutations potentially disrupt nfsA function in S. sonnei, including one occurring prior to the formation of the FQr sequence (5′-CTAG-3′) prior to the divergence of CenAsiaII19. This IS element, in combination with an IS630 present downstream of fliY, may act as an excision hotspot, leading to the deletion of the entire operon. Pan-genome analysis demonstrated that deletion of this region has occurred on multiple occasions, including one occurring prior to the formation of the FQR population (Pop2) in 2005. The flC gene encodes flagellin, a highly immunogenic protein and the monomer for flagellum assembly, while flA encodes for the flagellum-specific sigma factor (Esc28). Though S. sonnei is conventionally non-motile, flagellum production has been observed, albeit at a low magnitude compared to other Enterobacteriaceae20. The removal of the entire flIC operon leads to irreversible loss of the whole flagellar assembly. This observation further explains the subsequent inactivation of the redundant flagellar synthesis master regulator, flhC, in a Bhutanese S. sonnei subclone (Fig. 2). Furthermore, the loss of flA in E. coli led to better survival during stress via increased energy conservation and physical membrane stabilisation, which resulted from the loss of the motor proteins and the flagellum apparatus21. A previous study also found that non-flagellated P. putida possesses greater endurance under oxidative stress due to the release of more energy and NADPH, which is otherwise coupled to the flagellar machinery22.

Mutation analysis of CenAsiaIII S. sonnei. Recurrent mutations in the same gene in differing organisms serve as a hallmark of convergent evolution, which may highlight a common adaptive strategy to a specific selective pressure23. We aimed to detect potential signals of convergent evolution by examining the incidence of both pseudogenization and missense mutations occurring within the evolutionary history of CenAsiaIII. Our analysis revealed that rpoS is the most frequent target for inactivation (46 occasions) and missense mutations (23 occasions). However, such mutations in rpoS may also be laboratory artefacts due to long-term storage24. Other genes that showed evidence of convergent pseudogenization included pepT (14 occasions), ynfK (8 occasions), and puuD (7 occasions) (Supplementary Table 2). Notably, pepT encodes a tripeptidase, which is critical for the degradation of glutathione, a principal buffer for oxidative stress25. Consequently, the inactivation of this gene increases cellular glutathione concentration, potentially granting these organisms a higher redox capability. Similarly, puuD encodes an intermediate enzyme responsible for the conversion of putrescine into GABA. Inactivation of puuD, combined with the pre-existing puuE pseudogene, can preferentially reroute putrescine to the production of spermidine, which scavenges free radicals and heightens resistance to oxidative stress26. Alternatively, ynfK encodes a putative dethiobiotin synthetase, catalysing the penultimate step in biotin biosynthesis. We did not, however, observe inactivating mutations in its parologue biaD, implying that biotin biosynthesis is more likely to be downregulated rather than inactivated. In E. coli/Shigella, biotin acts as the key co-factor for the acyl-CoA carboxylases (ACCs) to convert acetyl-CoA into fatty acid. Upon host cell invasion, Shigella imports fatty acids from the host cytosol. Therefore, depletion in biotin may direct Shigella’s acetyl-CoA pool away from fatty acid production and conserve it for energy generation via the conversion of acetyl-CoA into acetate27. These examples show that though the aforementioned mutations are not fixed in the population, their multiple independent occurrences may provide a transient fitness advantage, thus enhancing the progression of infection within a human host.

Selection analysis identified genes with a high density of non-synonymous mutations, which is a measure of possible positive selection. Among the 3637 S. sonnei homologues examined, 14 genes were predicted to have undergone positive selection (adjusted dN/dS ranging from 1.8 to 3.6) (Table 2). Six of these candidate genes were antimicrobial targets (gyrA and parC) or

| Table 2 Genes predicted to be under selection in the CenAsiaIII Shigella sonnei population |
|--------------------------------|----------------|----------------|----------------|----------------|
Gene	No. of SNPs	No. of SNPs	Adjusted dN/dS	GO process
mreA	10	0	Inf	Dynamic cytoskeleton protein; Regulation of cell shape
gyrA	8	0	Inf	DNA gyrase subunit A; Response to antibiotic
putA	8	1	3.557	Proline dehydrogenase; Response to oxidative stress
sigA	7	0	Inf	Serine protease; NA
ygiU	6	0	Inf	Serine/threonine symporter; Amino acid transport
ylbE	5	0	Inf	Hypothetical protein; NA
ynhK	5	0	Inf	Dethiobiotin synthetase; Biotin biosynthesis
ubiH	5	0	Inf	2-octaprenyl-6-methoxyphenylhydroxylase; Ubiquinone biosynthesis; response to oxidative stress
parC	5	0	Inf	DNA topoisomerase IV subunit A; Response to antibiotic
yshG	5	1	2.22	Membrane; NA
yoeO	5	1	2.223	Putative transport protein MFSD; Transmembrane transport
SSON1290	4	1	1.778	Hypothetical protein; NA
ydbK	4	1	1.778	Pyruvate flavodoxin oxidoreductase; Response to oxidative stress
hyB	4	1	1.778	Hydrogenase 4, component B; Oxidation-reduction

1Non-synonymous single-nucleotide polymorphisms
2Synonymous single-nucleotide polymorphisms
3Gene ontology biological process, as defined in EcolCyc for Escherichia col K-12 MG1655
4Major facilitator superfamily
mediators of cellular oxidation-reduction processes (putA, ubiH, ydbK, and hyf/B). Several of these genes (mreB, gyrA, ubiH, and hyf) were previously identified as undergoing diversifying selection in the resident Vietnamese S. sonnei Global III population, confirming that adaptation to oxidative stress is a common adaptive strategy for this pathogen. Notably, ynfK, which was found to be regularly inactivated, may also be under selection, demonstrating that partial cessation of biotin biosynthesis is favoured by S. sonnei.

Experimental evolution reveals differential mutational profiles between FQr and FQs S. sonnei. Our recent diarrhoeal surveillance study performed in HCMC, Vietnam during 2014–2016 found that CenAsiaIII FQr S. sonnei has gradually replaced the resident FQs Vietnamese S. sonnei population. We conducted an in vitro evolution experiment aiming to identify differing mutational profiles in these two distinct lineages upon exposure to (fluoro)quinolones. A summary of the mutations arising during this experiment are described in Table 3. For the ciprofloxacin-susceptible strain cipS-VN (gyrA-S83L; Global III), exposure to either nalidixic acid or ciprofloxacin for ~450 generations increased the MIC of both nalidixic acid (>256 μg/mL) and ciprofloxacin. The endpoint MICs for ciprofloxacin varied between experimental conditions and replicates, but did not reach the defined breakpoint for resistance (1 μg/mL) (Table 3). Exposure to nalidixic acid in cipS-VN consistently led to disruptive mutations in the transcriptional repressor, emrR. Such mutations are known to result in overexpression of the EmrAB pump, also heightening resistance to nalidixic acid.

Other explanatory mutations included a SNP in parE and a disruptive mutation in acrR. Mutations in parE were commonly identified when cipS-VN organisms were exposed to ciprofloxacin, either as a non-synonymous SNP or a deletion stably inherited in both replicate populations. In addition, exposure to ciprofloxacin, but not nalidixic acid, triggered a stable and specific genomic deletion (treF-yhjA-yhi-hde-slp-iucABCD-iutA). This region spans genes encoding cytochrome C peroxidase (yhjA), acid stress resistance (yhi and hde loci), and aerobactin biosynthesis (iuc biosynthesis locus and iutA receptor). This region in S. sonnei is flanked by an IS4 transposase, which may explain the mechanism of genomic deletion. It has been recently proposed that bactericidal antimicrobials, including fluoroquinolones, can induce cell death via the production of reactive oxygen species (ROS). The common penultimate step in this process is the stimulation of the Fenton reaction, which recruits hydrogen peroxide and ferrous ions to produce highly cytotoxic hydroxyl radicals. Consequently, high concentrations of intracellular iron facilitate rapid FQ-mediated killing. Our data suggest that the cipS-VN S. sonnei circumvents this by lowering intracellular iron via the obliteration of the aerobactin siderophore. Additionally, mutations targeting cysE were consistently observed across all culture conditions for cipS-VN, but not for cipR-VN. cysE encodes a serine acetyltransferase, catalysing the conversion of L-serine to the O-acetyl-L-serine (OAS) quorum sensing signal.

Experimental replicates (CIP-A and CIP-B) showed mutations in acrR. Mutants exhibit an improved capacity for in vitro biofilm formation through the suppression of OAS production. Additionally, minimal medium, as implemented here, is known to induce biofilm formation in E. coli. Therefore, consistent cysE mutations may be a general response to selective growth in minimal medium.

Exposure of cipR-VN (gyrA-S83L, parC-S80I, and gyrA-D87G; CenAsiaIII) to nalidixic acid similarly led to enrichment of emrR mutants, which in one case was associated with an elevated MIC to ciprofloxacin from 8 to 12 μg/mL. Long-term exposure to ciprofloxacin doubled the MIC to ≥16 μg/mL, and both experimental replicates (CIP-A and CIP-B) showed mutations in rob. The rob gene encodes the transcription activator Rob, a

Table 3 Results of antimicrobial susceptibility and mutation analysis of experimental evolution in Shigella sonnei

Condition	MIC-CIP (μg/mL)	MIC-NAL (μg/mL)	Resistance mutations	Other mutations	Genomic deletion
cipS-VN: D0	0.25	64 (sat)			
cipS-VN: M9-A	0.19	64 (sat)			
cipS-VN: M9-B	0.25	64 (sat)			
cipS-VN: NAL-A	0.5	>256	emrR (fs); parE (P571S)		
cipS-VN: NAL-B	0.38	>256	acrR (fs); emrR (fs)		
cipS-VN: CIP-A	0.38	>256	parE (S458L)		
cipS-VN: CIP-B	0.75	>256	parE (2 a.a insertion)		
cipR-VN: D0	8	>256			
cipR-VN: M9-A	8	NA			
cipR-VN: M9-B	6	NA			
cipR-VN: NAL-A	12	NA	emrR (fs)		
cipR-VN: NAL-B	8	NA	emrR (I27 deletion)		
cipR-VN: CIP-A	16 (sat)	NA	rob (G245R)		
cipR-VN: CIP-B	16 (sat)	NA	rob (Q194K)		

fs frameshift mutation

*In all conditions, selected strains were cultured in minimal M9 medium supplemented with glucose and niacin (25 μg/mL) with the addition of: (1) M9-A/B: no antimicrobials, (2) NAL-A/B: the same concentration of nalidixic acid (256 μg/mL). (3) CIP-A/B: ciprofloxacin in concentrations of half the corresponding MIC of the respective strain (0.125 μg/mL for cipS-VN and 4 μg/mL for cipR-VN). cipS-VN indicates the use of a ciprofloxacin-sensitive S. sonnei (gyrA-S83L; Global III) strain and cipR-VN indicates the use of a ciprofloxacin-resistant S. sonnei (gyrA-S83L, gyrA-D87G and parC-S80I; CenAsiaIII) strain. (sat): satellite colonies grown inside the zone of inhibition.

D0: initial condition on day 0.

**Mutations in bold indicate those that appear to be fixed in the examined population.

Excluding synonymous mutations, and mutations found in intergenic regions and repetitive genetic elements.
protein composed of two functional domains. The N-terminal domain shares substantial amino acid homology to SoxS (responsive to oxidative stress) and MarA (responsive to antimicrobials), indicating that the Rob region overlaps with those defined for these two common regulators \(^{33}\). It has been proposed that the C-terminal domain represses the activity of Rob by sequestration, impeding its access to the transcriptional machinery \(^{34}\). In our experiment, both missense mutations observed in rob fell into its C-terminal coding region, potentially changing its conformation and releasing more active Rob. Overexpression of Rob is associated with resistance to multiple antimicrobials, including quinolones \(^{33}\), owing to its increased activation of multi-drug efflux pumps (directly or indirectly via marRAB) and decreased expression of the outer membrane porin, ompF \(^{36,37}\). Our examination on the mutational profiles of 395 CenAsiaIII S. sonnei revealed that there was only one non-synonymous mutation in emrR and no mutation in rob. In the absence of antimicrobials, cipR-VN maintained fixed mutations in rpoS, both of which fell into the defined DNA binding residues of sigma F (Es0)’s domains 4.1 (R277L) and 4.2 (R301H) \(^{38}\). This region mediates Es0 binding to the –35 promoter region of regulated genes. However, most promoters recognised by Es0 show poor conservation in the –35 element, and mutagenesis of Es0 domain 4 shows an insubstantial effect on promoter binding strength and specificity \(^{39,40}\).

Discussion

The large and diverse collection utilised in this study enhanced our capacity to investigate the origins and international dissemination of FQR S. sonnei. We confirmed that global FQR S. sonnei are clonal and likely emerged in South Asia around early 2007. This finding is in agreement with a wealth of epidemiological data citing the rise of FQ-resistant S. sonnei since 2007 \(^{39}\). It is notable that the second and third mutations (parC-S80I, gyrA-D87G) were acquired rapidly in the last two decades, coinciding with a sharp increase in the use of FQ during this period, when these drugs became routinely prescribed for shigellosis \(^{41,42}\). We provide evidence of FQR S. sonnei’s sustained circulation in Southeast Asia and Europe, but the extent of its propagation is likely to be underestimated in regions with limited representation in our analysis, such as East Asia, Africa, and the Americas. Indeed, the same clone was confirmed to have caused a recent (2015) outbreak in California \(^{42}\). Furthermore, FQR S. sonnei harbouring identical QRDR mutations are prevalent among the community of men who have sex with men (MSM) in Taiwan \(^{43}\). These outbreaks suggest that the organism is spreading rapidly worldwide and poses a significant threat to public health. Transmission within the MSM network should be closely monitored, especially in the wake of increased shigellosis incidence and antimicrobial resistance within this high-risk group \(^{44-46}\). Although we report here that the major resistance clone has accumulated triple QRDR mutations, we could not exclude the existence of other resistance mechanisms. A year-long surveillance study of S. sonnei in England and Wales identified seven FQR organisms with the combinatorial mutations gyrA-S83L, parC-S80I, and gyrA-D87N, which are identical to a single resistant isolate in our collection \(^{47}\). Resistance due to a synergy of the PMQR gene qnrB and gyrA mutations has also been noted in India \(^{48}\). The frequent gains of resistance determinants to other first-line treatments, ESBL and mphA, further exacerbate the problem. This issue is emphasised in Southeast Asia, where the gene pool of the local Enterobacteriaceae is likely to be vast and serves as a substantial reservoir of resistance genes. We surmise that the propagation of acquired resistance elements is likely to be underrepresented in Europe and South Asia, as these organisms were not sourced during active surveillance. Indeed, FQR S. sonnei circulating among the MSM community in England and Australia have recently acquired the epidemic mphA-carrying plasmid pKSR100, demonstrating that differing antimicrobial exposures and transmission dynamics in different patient groups may select for distinguished AMR patterns in this novel pathogen variant \(^{46,49}\).

Our genomic examination highlighted the prevalence of reductive evolution mechanisms in CenAsiaIII S. sonnei, which arose over a thirty-year timeframe. Although it is not possible to fully catalogue pseudogenes generated via IS element disruptions, we observed some noticeable evolutionary trends. These included the disruption of several metabolic functions, specifically the fermentative processes of alternate carbon sources, as well as the cessation of cellular appendages such as flagella and pili. Furthermore, our analysis pointed to selection for better adaptation under oxidative stress. This is supported by the finding that most of the genes identified to be subject to convergent evolution and potential selection are linked to oxidation-reduction processes. We speculate that the high pressure of oxidative stress may originate from varied sources but is most likely due to the oxidative environment within the macrophage or exposure to antimicrobials such as fluoroquinolones. Improved survival during stress could benefit FQR S. sonnei clones in their expansion into different geographical destinations. However, this interpretation may be subject to scrutiny given that dN/dS selection analyses are not particularly well-suited for investigating rapidly evolving intraspecific bacterial populations \(^{50}\). Specifically, the nucleotide differences observed within a population do not represent fixed divergences but rather transient polymorphisms, which are not necessarily purged from the population due to the short evolutionary timeframe considered in this study.

Exposure to a quinolone antimicrobial resulted in disruption of the efflux pump repressor, EmrR, for both FQR and FQ-sensitive S. sonnei despite having different genetic backgrounds. In addition, we showed that mutations in the Rob transcriptional activator result in resistance to FQ at very high MIC. It is surprising that, despite its harbouring of a gyrA mutation, continuous exposure of this FQ-susceptible S. sonnei to ciprofloxacin failed to generate specific resistance mutations in gyrA and parC. Previous in vitro studies have also reported that in E. coli with single gyrA mutation background, mutations linked to drug efflux but not specific QRDR targets are preferentially selected \(^{51}\). This finding also corroborates the observation that indigenous Vietnamese S. sonnei did not accumulate triple mutations to achieve FQ resistance, even though fluoroquinolones are commonly used in this setting. FQ resistance attributed to QRDR mutations has been shown to not be associated with detrimental fitness cost in Enterobacteriaceae in vitro, even in the absence of FQ \(^{52,53}\). Here we predict that, in the absence of quinolone pressure, FQR S. sonnei showed mutational bias toward alternation of rpoS-induced stress response. Since the experimental evolution component only included two replicates per strain-condition combination, a larger study may be performed to confirm whether rpoS mutations are truly compensatory for the resistance genotype.

Though we elucidated the evolution and spread of this emerging FQR S. sonnei population, the long-term clinical and public health significance of this clone remains unclear. Our recent observations in Vietnam demonstrated that disease severity and recovery in S. sonnei-infected children were independent of the organism’s ciprofloxacin susceptibility profile \(^{54}\). Additionally, evolutionary trajectories and development of resistance to other antimicrobials in already FQR isolates in different ecological niches require further investigation. Future research should be focused on the collateral issues associated with FQ and to explore how FQR affects other patient cohorts, including the malnourished, the elderly, and the immunocompromised.
Methods
Organic collection and whole-genome sequencing. This investigation centring on the international dissemination of FQ S. sonnei was performed by combining WGS data from our previous investigations with an additional 265 isolates sequenced for this study.10,11 This resulted in a collection of 411 S. sonnei isolates (Bhutan, n = 71; Vietnam, n = 24; Thailand, n = 8; Cambodia, n = 1; Ireland, n = 20; Australia, n = 85; France, n = 97; England, n = 91; global references, n = 14). Table 1 provides an overview of the organism identifiers and metadata are detailed in Supplementary Data 1. The isolates from shigellosis endemic countries (Bhutan, Vietnam, Thailand, Cambodia) are mostly FQr and sourced from multiple diarrhoea surveillance studies in the respective countries. Institutional review board (IRB) approval and informed consent for these studies have been previously reported.10 Isolates and reads were filtered using SAMtools and bcftools, removing those matching any of the following criteria: consensus

Short read mapping and phylogenetic reconstruction. All reads were mapped to the S. sonnei Ss046 reference sequence (accession number: NC_007384) using SMALT (version 0.7.4). High-quality SNPs were called and sourced from multiple diarrhoea surveillance studies in the respective countries. Institutional review board (IRB) approval and informed consent for these studies have been previously reported.10 Isolates and reads were filtered using SAMtools and bcftools, removing those matching any of the following criteria: consensus

Hierarchical Bayesian clustering for population structure. Phylogeny-independent hierarchical Bayesian clustering (hierBAPS) was applied to the above alignment to assess population structure within the 395 CenAsiaIII isolates.26,58 This was performed in ten independent analyses, with three layers of sub-clustering and the maximum number of clusters ranging from 10 to 40. These analyses identified two populations of identical membership in 8/10 instances, with all FQ S. sonnei belonging to a single population (named Pop2); all FQs belong to Pop1.

Baysian phylogenetic inference. Aiming to examine the temporal structure of the CenAsiaIII clade, we subsampled to include 144 sequences (72 from each of the three most closely related sequences as outgroups to the CenAsiaIII clade, were removed to create a final set of 395 sequences belonging to this clade and utilised in downstream analyses. Regions attributed to recombination were detected using Gubbins.55,56 These recombinogenic elements were removed, alongside previously determined breakpoints, as detailed in Table 1. The breakpoint for ciprofloxacin resistance was inferred following guidelines from the European Committee on Antimicrobial Susceptibility Testing (http://www.eucast.org/clinical_breakpoints/). Specifically, MIC to ciprofloxacin $>$ 1 mg/L is classified as being resistant. For all S. sonnei isolates, genomic DNA was extracted using commonly used protocols targeted to WGS on various Illumina platforms to produce paired-end short-read sequences (Table 1). These sequence data were then consolidated for analysis and interpretation.

Phylogeographical analysis of CenAsiaIII S. sonnei. The reference-based maximum likelihood phylogeny of 395 CenAsiaIII S. sonnei served as an input for reconstructing the ancestral geographical states of each isolate, as adopted from a recently described approach.19 We treated geographical source (sub-continental level) of the organisms as discrete characters. Due to biased sampling toward South Asia, we subsampled the phylogeny to include equal numbers of isolates from each characteristic, i.e. (geographical region; n = 13 from South Asia, Africa, Europe, and combined Southeast Asia/East Asia), generating 1000 subsampled trees. Regions with fewer than 13 isolates (i.e. Middle East and America) were excluded. We utilised stochastic mapping to quantify transition events between geographical character states29 as well as the total number of transitions within each character state. Bootstrapping of each tree was performed, separately for each subsampled tree.35 Stochastic mapping, implemented using the function make.simmap in the R package phytools v0.6.0, was performed under an asymmetric model of character change (ARD) with the rate matrix sampled from the posterior probability distribution using MCMC (Q = mmcm) for 100 simulations.58 To ensure that resultant phylogeographical signal was not an artefact due to oversampling in South Asia, we permuted (without replacement) the tip-locations of the original maximum likelihood phylogeny, generating ten independent randomisation sets. We repeated stochastic mapping for each randomisation as detailed above, using only 500 subsampled trees from each randomisation to reduce computational expense. Results from the ‘true’ and ‘randomisation’ runs were compared by analysis of variance (ANOVA) with post-hoc Tukey test.

Detection of pseudogenes and gene loss. Pseudogenes can be formed by numerous mechanisms in Shigella, including gene deletion, gene disruption by insertion sequences (IS) or small indels, and substituting positions leading to stop codons or loss of start codons. We selected an FQ CenAsiaIII isolate for long-read Nanopore sequencing (sample 2012–020307) to produce a high-quality complete reference for identification of potential pseudogenes. We compared the entire genome sequence of 2012–02037 to Ss046 reference using AToC to identify regions pertaining to genomic deletions or disrupted by IS elements, but discounting such disruptions were stably inherited throughout the phylogeny (Supplementary Table 1). To detect pseudogenes formed by substitutions and small indels, we extracted 393 CenAsiaIII variant calling format (vcf) files (two could not be retrieved) generated by mapping the reads to reference Ss046. Mutations were annotated with SnpEff v4.1b using the Ss046 reference, and were retained if they passed the quality filtering step and were classified by SnpEff v4.1b as (i) indels within genes, (ii) loss of a start codon, or (iii) gain of a stop codon.27 Identified mutations within IS and repetitive elements were considered unreliable and removed from further analyses.

To detect pseudogenes formed by substitutions and small indels, we extracted 393 CenAsiaIII variant calling format (vcf) files (two could not be retrieved) generated by mapping the reads to reference Ss046. Mutations were annotated with SnpEff v4.1b using the Ss046 reference, and were retained if they passed the quality filtering step and were classified by SnpEff v4.1b as (i) indels within genes, (ii) loss of a start codon, or (iii) gain of a stop codon.27 Identified mutations within IS and repetitive elements were considered unreliable and removed from further analyses.
dN/dS analysis on substitutions in CenAasiI. S. sonnei. For the 395 CenAasiI sequences, substitutions across the reference Ss046 were summarised and annotated using SnPEff v4.1b. Point mutations present within the mobile repetitive or recombination elements (as defined in the phylegenetic reconstruction section) were excluded, resulting in a set of 4230 mutations available for examination. Due to the limited temporal sampling period, we assessed the dN/dS ratio (non-synonymous to synonymous substitution rate) to detect potential signals of selection. To avoid the added complexity from recombination, a previously recommended approach29,30, in brief, a phylegenetic tree was constructed using these 4230 SNPs in RAxML v8.1.3, and PAML was used for ancestral state reconstruction of all SNPs.31 Mutations were classified as intergenic, synonymous, or non-synonymous based on comparison of each SNP to its annotation and the reconstructed ancestral state. The dN/dS rate was adjusted for transition/transversion rate and codon frequencies under the NY98 model.32 Genes were determined to be under positive selection if their adjusted dN/dS ratio was >1.5 or if they possessed no synonymous and at least five non-synonymous mutations (Table 2, Supplementary Table 3).

Experimental evolution. To examine how continuous exposure to FQ may impact the evolution of S. sonnei, we selected a representative isolate from each of the FQr (CenAasiI) and the FQs (GlobalIII) clades. Both isolates, cipR-VN (gyrA-S83L, parC-S80L, and gyrA-D87G) and cipS-VN (gyrA-S83L), were isolated in 2015 as part of a hospital-based diarrheal surveillance study conducted in Ho Chi Minh City, Vietnam.43,44 Isolates were selected based on sequencing quality and the absence of plasmids encoding resistance to 3rd generation cephalosporins and macrolides (to discount potential interactions). The M9c medium was supplemented with $0.5\mu g/mL$ of nalidixic acid, and (iii) M9 (glucose $0.5\mu g/mL$) supplemented with half the appropriate MIC of ciprofloxacin ($1\mu g/mL$). Cultures were incubated at $37^\circ C$. The Genome Analysis Toolkit (GATK) were then performed independently for cipR-VN and cipS-VN, using existing projects/Dissecting_the_molecular_evolution_of_fluoroquinolone_resistant_Shiella_sonnei_65840).

Code availability Relevant source data and custom R codes used for stochastic mapping and dN/dS selection analysis described in the Methods section are deposited in Figshare (https://figshare.com/projects/Dissecting_the_molecular_evolution_of_fluoroquinolone_resistant_Shiella_sonnei_65840/).
26. Barbagallo, M. et al. A new piece of the shigella pathogenicity puzzle: Spermicide accumulation by silencing of the spoQ gene. PLoS One 6, e27226 (2011).
27. Kentner, D. et al. Shigella reroutes host cell central metabolism to obtain high-flux nutrient supply for vigorous intracellular growth. Proc. Natl Acad. Sci. USA 111, 9929–9934 (2014).
28. Duong, V. T. et al. No clinical benefit of empirical antimicrobial therapy for pediatric Shigella in a high-useage, high resistance setting. Clin. Infect. Dis. 66, 504–511 (2018).
29. Lomovskaya, O., Lewis, K. & Matin, A. EmR is a negative regulator of the Escherichia coli multidrug resistance pump EmRA. J. Bacteriol. 177, 2328–2334 (1995).
30. Van Acker, H. & Coenye, T. The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends Microb. 25, 456–466 (2017).
31. Sturgill, G., Toutain, C. M., Komperda, J., Toole, G. A. & Rather, P. N. Role of CysE in production of an extracellular signaling molecule in providencia stuartii and Escherichia coli: loss of cysE enhances biofilm formation in Escherichia coli. J. Bacteriol. 186, 7610–7617 (2004).
32. Naves, P. et al. Measurement of biofilm formation by clinical isolates of Escherichia coli is method-dependent. J. Appl. Microbiol. 105, 585–590 (2008).
33. Chubiz, L. M., Glekas, G. D. & Rao, C. V. Transcriptional cross talk within the Mar-oxS-regulon. Trends Microb. 21, 104–110 (2013).
34. Bennik, M. H. J., Pomposiello, P. J., Thorne, D. F. & Demple, B. Defining a rob regulon in Escherichia coli by using transposon mutagenesis. J. Bacteriol. 182, 3794–3801 (2000).
35. Ariza, R. R., Li, Z., Ringstad, N. & Demple, B. Activation of multiple antibiotic resistance and binding of stress-inducible promoters by Escherichia coli Rob: mediating ‘sequestration-dispersal’ as a novel off-on switch for regulating rob activity as a transcription activator and preventing degradation of rob by lon protease. J. Mol. Biol. 388, 415–430 (2009).
36. Kemp, W. V., Oethinger, M., Jellen-Ritter, A. S. & Levy, S. B. Non-target gene mutations in the development of quinolone resistance in Escherichia coli. Antimicrob. Agents Chemother. 22, 383–386 (1982).
37. Laxminarayan, R. & Chaudhury, R. R. Antibiotic resistance in India: drivers and implications. J. Appl. Microbiol. 113, 473–483 (2012).
38. Checroun, C., Bordes, P., Leroy, O., Kolb, A. & Gutierrez, C. Interactions between the 2.4 and 4.2 regions of the 16S rRNA in Escherichia coli. J. Bacteriol. 76, 1655–1661 (1953).
39. Chiou, C.-S. et al. The worldwide spread of ciprofloxacin-resistant Shigella. Antimicrob. Agents Chemother. 44, 3895–3901 (2000).
40. Landini, P., Egli, T., Wolf, J. & Jacour, S. SigmaS, a major player in the response to environmental stresses in Escherichia coli: role, regulation and mechanisms of promoter recognition. Environ. Microbiol. Rep. 6, 1–3 (2014).
41. Lapierre, M., Blin, C., Lambert, A., Achaz, G. & Rocha, E. P. C. The impact of selection, gene conversion, and biased sampling on the assessment of microevolutionary databases. Mol. Biol. Evol. 33, 1711–1725 (2016).
42. Minin, V. N., Bloomquist, E. W. & Suchard, M. A. M. Smooth skyline: a Bayesian coalescent-based inference of population dynamics. Mol. Biol. Evol. 25, 1459–1471 (2008).
43. Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).
44. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
45. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
46. Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).
47. Zankari, E. et al. Identifying antimicrobial resistance genes in large genomes. Nat. Genet. 46, 585–591 (2014).
48. Lieberman, T. D. et al. Parallel bacterial evolution within multiple lineages of empirical antimicrobial therapy for diarrheal disease. Clin. Infect. Dis. 59, 1280–1287 (2014).
49. Kern, W. V., Oethinger, M., Jellen-Ritter, A. S. & Levy, S. B. Non-target gene mutations in the development of quinolone resistance in Escherichia coli. Antimicrob. Agents Chemother. 44, 814–820 (2000).
50. Kryazhimskiy, S. & Plotkin, J. B. The population genetics of dN/dS. PLoS Genet. 4, e1000304 (2008).
51. Kryazhimskiy, S. & Plotkin, J. B. The population genetics of dN/dS. PLoS Genet. 6, e1000541 (2009).
83. Long, H. et al. Antibiotic treatment enhances the genome-wide mutation rate of target cells. Proc. Natl Acad. Sci. USA 113, E2498–E2505 (2016).
84. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. bioRxiv. Preprint at https://arxiv.org/abs/1303.3997 (2013).
85. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
86. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

Acknowledgements
H.C.T. received a DPhil scholarship from the Tropical Network Fund, Nuffield Department of Medicine, University of Oxford. S.B. is a Sir Henry Dale Fellow, jointly funded by the Wellcome Trust and the Royal Society (100087/Z/12/Z). We thank I. Carle, M. Lejay-Collin, and C. Ruckly from the Institut Pasteur for their excellent technical assistance. F.X. W is funded by the Institut Pasteur, Santé Publique France, and by the French Government “Investissement d’Avenir” program (Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence, grant no. ANR-10-LABX-62-IBEID).

Author contributions
H.C.T. and D.P.T. contributed to data analysis and interpretation of the results under the scientific guidance of M.A.R. and S.B.; H.C.T. and C.B. designed and performed the experimental evolution work. H.C.T. drafted and edited the paper, with D.P.T., M.A.R., and S.B. revising and structuring the paper. C.J., F.X.W., B.P.H., M.V., N.D.L., M.C., S.W., L.B., C.J.M., T.N.T.N., T.H.T., P.V.V., D.V.T., N.P.H.L., P.T., and P.J.C. contributed to sample collection, storage and DNA sequencing. R.W. and K.E.H. performed the long-read sequencing and assembly of FQR S. sonnei, using the Oxford Nanopore platform. N.R.T. provided access to sequencing facilities. G.T., K.E.H., and N.R.T. contributed to the editing of the paper. All authors read and approved the final draft.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-019-12823-0.

Correspondence and requests for materials should be addressed to M.A.R.

Peer review information Nature Communications thanks Thandavarayan Ramamurthy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019