Degradation of Elevated Concentrations of Phenol Using Two-Stage Immobilized Cell Reactor with *Bacillus subtilis* and *Acinetobacter lwoffii*

Bahobail AS*

Department of Biology, Faculty of Science, Taif University, Kingdom of Saudi Arabia

Abstract

Two vertical rotating immobilized cell reactors (VRICRs), one with the *Bacillus subtilis*, BDCC-TUSA-3 for bisurfactant (surfactin) production and the other with *Acinetobacter lwoffii*, accession number KM985371 for phenol biodegradation were constructed, with polyurethane foams as the attachment support. They were separately optimized for surfactin production and degradation of phenol respectively. Then, the two reactors were combined to form a two-stage VRICR where an appropriate fraction of *Bacillus* sp. reactor effluent, containing surfactin (0.20 g.l\(^{-1}\); 0.25 g.l\(^{-1}\) or 0.30 g.l\(^{-1}\)), was mixed with the influent fed into *A. lwoffii* reactor, containing various concentrations of phenol (1500 mg.l\(^{-1}\), 1870 mg.l\(^{-1}\) and 2250 mg.l\(^{-1}\)). The VRICR was operated continuously over more than two weeks. Cell growth, cell viability, degradation efficiency of phenol and specific degradation rate (SDR) were followed over periods of operation. The best results were obtained when a steady state was reached with 45.6 g.l\(^{-1}\), 98%, 100% and 810 mg phenol. g immobilized cells\(^{-1}\).h\(^{-1}\) for cell growth, cell viability, degradation efficiency and SDR respectively. Additionally, surfactin was produced from reactor 1 at high concentration (0.05 g.l\(^{-1}\)) with a volumetric reactor productivity of 757.5 mg surfactin.l\(^{-1}\).h\(^{-1}\) which represents an extra added-value product that could markedly decrease operating costs. The efficient process for phenol degradation, with no secondary by-products, coupled with potential applicability of simultaneously produced surfactin that could be utilized in many industrial applications, makes the two-stage VRICR a potential candidate for a clean, cost-effective and environmentally sustainable process.

Keywords: Phenol; Biodegradation; *A. lwoffii*; *B. subtilis*; Surfactin; Immobilized cells; Two-stage bioreactor

Introduction

Phenol is toxic by ingestion, contact or inhalation and harmful to aquatic organisms [1] and has been included in the list of priority pollutants by the U.S. Environmental Protection Agency [2]. Phenol is used extensively in many industrial activities. This makes it a major environmental pollutant in many wastewater facilities, such as oil refineries, coking plants, pharmaceuticals, and plastic industries [3]. Therefore, these wastewater streams require proper treatment before being discharged. Compared to the currently used physio-chemical processes to remove phenol from wastewaters, the bioremediation using living microorganisms exhibits many advantages [4]. Bioremediation processes are simple, cost-effective, and environmentally friendly process with no hazardous intermediates being synthesized [5]. However, bioremediation processes have been limited by phenol inhibition to microbial cells. Many attempts have been used to overcome such limitations. These include the two-phase partitioning bioreactor (TPPB) [6], fluidized bed reactor (FBR) [7] and most importantly immobilized cell reactors (ICR) [5]. However, in all these studies, low phenol concentrations were tested with low biodegradation rates and productivities that do not satisfy industrial and environmental requirements. In previous investigation, a vertical rotating immobilized cell reactor (VRICR) was designed and built [8] and used for successful execution of a number of biotechnological processes with remarkably high reaction rates and volumetric productivities [9]. On the other hand, efficiency of phenol degradation could be further enhanced in presence of biosurfactants. Biosurfactants have excellent ability to emulsify hydrophobic compounds such as phenol [10] and work as mediators which increase their mass transfer rate into the aqueous phase and make them more bioavailable to microorganisms [11].

The objective of the present study was to investigate the capabilities of locally isolated *A. lwoffii* accession number KM985371 for phenol degradation using free-suspended cells. A two-stage VRICR was also built and tested to carryout continuous degradation of elevated concentrations of phenol in presence of the biosurfactant surfactin.

Materials and Methods

Microorganisms

The phenol-degrading *A. lwoffii* accession number KM985371 and the surfactin producing *B. subtilis* strain BDCC-TUSA-3 [12] were used.

Chemicals and culture media

All chemicals used were analytical reagents. The minimal salt media (MSM) was used in present study. It contained KH\(_2\)PO\(_4\) 0.5 g, K\(_2\)HPO\(_4\) 0.5 g, CaCl\(_2\) 0.1 g, NaCl 0.2 g, MgSO\(_4\)\(_7\)H\(_2\)O 0.5 g, MnSO\(_4\)\(_7\)H\(_2\)O 0.01 g, FeSO\(_4\)\(_7\)H\(_2\)O 0.01 g, NH\(_4\)NO\(_3\) 1.0 g per liter. Deionized, distilled water was used for the experiments. The activated sludge samples were collected in a biological treatment system, Jeddah refinery, KSA.

Bioreactor

The VRICR comprises a double walled vessel, with a rotating shaft, driven by a motor extends into the vessel and is journalized in bearings fitted with suitable seals [8]. Two stacks of Immobilized Biomass Units

*Corresponding author: Bahobail AS, Department of Biology, Faculty of Science, Taif University, Kingdom of Saudi Arabia. Tel: +966 12-727-2020; Fax: +966 12-725-6300; E-mail: abahobail2016@yahoo.com

Received September 01, 2016; Accepted December 24, 2016; Published December 30, 2016

Citation: Bahobail AS (2016) Degradation of Elevated Concentrations of Phenol Using Two-Stage Immobilized Cell Reactor with *Bacillus subtilis* and *Acinetobacter lwoffii*. J Pet Environ Biotechnol 7: 313. doi: 10.4172/2157-7463.1000313

Copyright: © 2016 Bahobail AS. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
centrifuged in a micro centrifuge (HERMLE Z 233 M-2, Germany) at 10000 rpm for 10 min. Residual phenol was estimated in the supernatant by the method of Yang and Humphrey [14] based on rapid condensation with 4-amino-antipyrene followed by oxidation with alkaline potassium ferricsyanide giving a red color measured by UV spectrophotometery. The obtained OD values were then converted to phenol concentration using a phenol calibration curve. The oxygen transfer rate (OTR) was determined by direct measurement method described by Hirose [15]. The oxygen content in inlet and outlet gas streams was measured using oxygen analyzers. Then, the exact OTR was directly obtained by multiplying the difference in oxygen content by aeration rate, taking into consideration the gas low. Surfactin in reactor effluent after cell separation was estimated as described by Cooper [16].

Results and Discussion

Phenol degradation by free cells of A. lwoffii in batch culture

Growth pattern and phenol biodegradation by free cells of A. lwoffii: Figure 1 shows the growth pattern and phenol degradation by the A. lwoffii cells grown in batch culture. As evidenced, MSM with 1000 ppm of phenol supported bacterial growth and multiplication with almost no lag phase. Maximum concentrations 1.15 g l⁻¹ was achieved for cell growth with almost complete phenol biodegradation. Moreover, both pattern of cell growth and phenol degradation confirmed a typical behavior for a growth-associated process. The specific growth rate of the bacterium was calculated based on the plot of log (cell DW at mid-exponential phase) versus time as described in the Materials and

Surfactin (g.l⁻¹)	Cell growth (g.l⁻¹)	Viability (%)	Phenol biodegradation (%)	Growth rate (h⁻¹)	SBR (mg phenol. g⁻¹ cell dry weight. h⁻¹)
0	1.05	92	74.6	0.19	64.5
0.05	1.61	94	76	0.22	82.3
0.1	1.96	94	93.1	0.26	90.1
0.2	2.25	98	99.1	0.35	105.9
0.4	1.27	90	91.8	0.29	68.65
0.8	0.84	88	89	0.24	49.66

*Batch cultivation was conducted with initial phenol and cell concentrations of 800 and 40 mg /cell Dw.l⁻¹ respectively.

Table 1: Effect of surfactin concentration on biodegradation of phenol in batch culture by free-suspended cells of A. lwoffii.
methods’ section [13]. The bacterium exhibited a specific growth rate of 0.31 h⁻¹ which compared favorably with 0.29 h⁻¹ obtained by Khaleefat [17]. Similarly, a growth associated processes were reported for phenol degradation by Erwengell americana [17] and by Ralstonia eutropha [18].

Effect of surfactin on cell growth and degradation rate of phenol by A. lwoffii: Table 1 shows cell growth and phenol degradation by A. lwoffii in presence of various concentrations of surfactin. Generally, both cell growth and phenol degradation was greatly improved in presence of surfactin. The best performance was achieved with 0.20 g.l⁻¹ of surfactin with 2.25 g.l⁻¹ and 98% for cell growth and cell viability, respectively. The highest degradation rate of 105.9 mg phenol. g immobilized cells⁻¹.h⁻¹ was also related to the highest growth rate of 0.35 h⁻¹ at the same concentration of surfactin. Biosurfactants at proper concentration are known for their ability to enhance solubilization and emulcification of petroleum pollutants and subsequent increase in their bioavailability [19]. In view of the high water solubility of phenol, biosurfactants may enhance phenol degradation by other mechanisms. Biosurfactants could have stimulative effects on cell growth [20], reduction of phenol toxicity [21] and increased enzyme production by microorganisms through improvement of permeability of cell membrane and subsequent enzyme release and enhancement of enzyme stability [22,23].

Higher surfactin concentrations decreased markedly both cell growth and phenol degradation. Similar results were obtained by Whang et al. [24].

Degradation of phenol by immobilized cell systems

Immobilization of A. lwoffii cells into polyurethane foams: In order to enhance attachment of A. lwoffii cells into polyurethane foams, the VRICR was constructed as described in the Materials and Methods section and inoculated with A. lwoffii. It was firstly fed with MSM containing 50 g.l⁻¹ of Maldex-15 as the carbon source at a high feed rate of 1800 mℓ.h⁻¹ to maximize cell growth into polyurethane foams and remove the non-attached cells as well. The bioreactor was rotated at 0, 10, 15, 20 and 25 rpm. Aeration rate was manipulated to insure OTR of 90.0 mM O₂.l⁻¹.h⁻¹ [9]. Samples were taken at regular intervals and analyzed for free and immobilized cells and residual carbon source. The results are shown in Table 2. It is clear that rotation speed had a pronounced effect on biomass concentration in polyurethane foams. Cultivation without rotation resulted in a steady increase in immobilized cells; 68.1 g. l⁻¹ were found after 5 days. However, incomplete utilization of carbon source was observed, most probably due to cell over-growth into polyurethane foams and limitation in mass transfer for both oxygen and nutrients. The mass ratio of free to immobilized cells (Mf/i) was only 0.66%, which reflects an extremely slow growth rate of immobilized biomass similar to those obtained previously with the bacterium B. subtilis [9]. With the highest rotation speed (25 rpm), cell leakage from polyurethane foams into surrounding medium was probably higher than cell growth in polyurethane foams. The concentration of immobilized cells decreased dramatically after reaching a maximum value to attain only 16.8 g. l⁻¹ at the end of attachment period (Table 2). The highest Mf/i value of 31.1% was reached and a steady state was never reached. Glucose utilization was only 86.4%.

Steady state with complete utilization of Maldex-15 was achieved only at rotation speed of 15 rpm. Immobilized cell concentration of 42.5 g.l⁻¹ was maintained. Under such conditions, growth of immobilized A. lwoffii cells was apparently balanced by cell leakage into surrounding medium with Mf/i of 4.10%. In an earlier publication, a similar growth pattern was observed with the bacterium B. subtilis [9] but with much lower immobilized cell concentrations of 27.0 g.l⁻¹. Thus, A. lwoffii appears to attach more successfully to polyurethane foams.

Adaptation of immobilized cells of A. lwoffii to phenol: The VRICR of A. lwoffii, described above, after reaching a steady state with 42.5 g.l⁻¹ and 96.4% for cell growth and cell viability respectively, was fed with MSM supplemented with various concentrations of both Maldex-15 and phenol as carbon sources. This was performed by step-wise and simultaneous increases from 0.00 to 1000 for phenol and decreases from 50.0 to 0.00 g.l⁻¹ for Maldex-15 concentrations in reactor influent. Samples from reactor effluent were collected and analyzed for residual carbon sources and cell growth. Changes in carbon source concentrations were executed after reaching a steady state of the previous combination. Figure 2 shows the results. After 14 days (approximate 460 generations), VRICR was operating under steady state conditions with phenol concentration of 1000 mg.l⁻¹, as the only carbon source in reactor influent with almost complete phenol degradation. During this period, immobilized cell concentration remained almost constant (44 g.l⁻¹) with cell viability of more than 96%. On the contrary, a gradual increase in SDR was noticed as concentration of phenol increased and reached its maximum value of 550 mg phenol. g immobilized cells⁻¹.h⁻¹ (Figure 2). This is in concordance with other researchers [25] who reported an enhancement in phenol degradation rate of Pseudomonas fluorescense KNU417 at higher concentrations. Elias et al., [26] further demonstrated that the preliminary acclimation of bacterial cells to the pollutant is a suitable strategy to shorten the start-up period of biofilters and ensure longer successful operation.

Continuous degradation of elevated concentrations of phenol by a two-stage VRICR of A. lwoffii and B. subtilis: Firstly, a VRICT of B. subtilis (bioreactor 1) was constructed and operated continuously over 10 days as described in an earlier publication [9] (Table 3). After reaching a steady state with immobilized cell concentration of 30.45 g.l⁻¹ and surfactin content of 5.05 g.l⁻¹, it was connected to bioreactor 2 containing 43.6 g.l⁻¹ of phenol-adapted immobilized cells of A. lwoffii to form a two-stage VRICR. In order to supply bioreactor 2 with surfactin at the required concentration, an appropriate fraction from bioreactor 1 effluent containing surfactin was combined with MSM containing different concentrations of phenol before it was fed into bioreactor 2 at constant feed rate of 1800 mℓ.h⁻¹. Three feeding scenarios
to bioreactor 2 were tested. Firstly, and in order to supply bioreactor 2 with surfactin at the optimum concentration (0.20 g.l\(^{-1}\)), as determined above, 71.29 ml from bioreactor 1 effluent containing 0.36 g.l\(^{-1}\) surfactin was combined with 1728.71 ml of MSM supplemented with phenol and pumped to bioreactor 2. Secondly, 89.11 ml from bioreactor 1 effluent containing 0.45 g.l\(^{-1}\) surfactin was combined with 1710.89 ml of MSM supplemented with phenol and pumped to bioreactor 2. Thirdly, 106.93 ml from bioreactor 1 effluent containing 0.54 g.l\(^{-1}\) surfactin was combined with 1693.07 ml of MSM supplemented with phenol and pumped to bioreactor 2. Biodegradation of three different phenol concentrations; 1500, 1870 and 2250 mg.l\(^{-1}\) were tested. Phenol concentration increased in feed line to bioreactor 2 when steady state, with complete degradation, was reached with the previous one. Performance of the two-stage bioreactor was monitored by checking cell viability into polyurethane foams within the bioreactor). Complete rich medium with 50 g.l\(^{-1}\) Maldex-15 was pumped at dilution rate of 0.15 h\(^{-1}\). *Continuous operation was conducted after the first week (period of cell attachment into polyurethane foams within the bioreactor). Complete rich medium with 50 g.l\(^{-1}\) Maldex-15 was pumped at dilution rate of 0.15 h\(^{-1}\).*

Table 3: Steady state optimum parameters for continuous surfactin production by immobilized cells of Bacillus subtilis.

Parameters	Steady state
Surfactin (g.l\(^{-1}\))	5.05
Productivity (mg surfactin.m\(^{-3}\).h\(^{-1}\))	757.5
Immobilized cells (g.l\(^{-1}\))	30.45
Cell viability (%)	90.5
Free Cells (g.l\(^{-1}\))	6.76
MfI (%)	22.16

With the highest surfactin concentration (0.3 g.l\(^{-1}\)), a steady state conditions was reached but with lower degradation efficiencies (88.5%), lower cell concentration and cell viability of 39.8 g.l\(^{-1}\) and 93.2% respectively (Figure 3). Whang et al. [24] reported that application of biosurfactants at high concentrations inhibited microbial growth of Acinetobacter sp. strain PD12 and thus decrease the degradation efficiency of phenol by both free and immobilized cells. Since the concentration of immobilized cells and cell viability decrease a possible toxicity issues seemed more plausible.

Conclusion

The two stage VRICR constituted by A. lwoffii and B. subtilis operating in presence of various concentrations of biosurfactant, surfactin, was able to efficiently degrade elevated concentrations of phenol, as the only source of carbon and energy. As phenol concentration was increased in reactor influent, higher concentrations of surfactin had to be introduced in order to maintain complete phenol degradation. Surfactin concentration of 0.25 g.l\(^{-1}\) of was found to be the most convenient for immobilized biomass to support complete phenol degradation. Up to 2250 g.l\(^{-1}\) of phenol in reactor influent were completely degraded with the highest SDR of 0.96 g phenol.g immobilized cells.h\(^{-1}\) which is almost 15 fold increases compared to...
batch culture using free-suspended cells of *A. lwofii*. This indicates that phenol degradation must have benefited by both presence of surfactin and the increase in immobilized biomass. An extra bioreactor effluent stream with 5.05 g.l\(^{-1}\) of surfactin produced from Maldex-15, a cheap by-product from corn industry, represents additional benefits that could justify a cost-effect process for bioremediation of industrial wastewater with elevated phenol concentrations.

Acknowledgement
The authors are grateful to Department of Academic Affairs, Taif University, Kingdom of Saudi Arabia, for the financial support for this work.

References

1. Prpich GP, Daugulis AJ (2005) Enhanced biodegradation of phenol by a microbial consortium in a solid-liquid two phase partitioning bioreactor. Biodegradation 16: 329-339.
2. Environmental Protection Agency (EPA) (1977) Sampling and analysis procedure for screening of industrial effluents for priority pollutants; EPA: Cincinnati, OH, USA.
3. Arutchelvan V, Kanakasabai V, Nagarajan S, Muralikrishnan V (2005) Isolation and identification of novel high strength phenol degrading bacterial strains from phenol-formaldehyde resin manufacturing industrial wastewater. J Hazard Mater 127: 238–243.
4. Jiang L, Ruan Q, Li R, Li T (2013) Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. BS8Y. J. Basic Microbiol. 53: 224–230.
5. Luckarift HR, Sizemore SR, Farrington KE, Fulmer PA, Biffinger JC, et al. (2011) Biodegradation of medium chain hydrocarbons by Acinetobacter venetianus ZAW immobilized to hair-based adsorbent mats. Biotechnol Progr 27: 1580–1587.
6. Guieysse B, Cirne MD, Mattiasson B (2001) Microbial degradation of phenanthrene and pyrene in a two-liquid phase-partitioning bioreactor. Appl Microbiol Biotechnol 56: 796–802.
7. Carbajo J, Boltes K, Leton P (2010) Treatment of phenol in an anaerobic fluidized bed reactor (AFBR): continuous and batch regime. Biodegradation 21: 603-613.
8. Amin GA, Doelle HW (1989) Vertical rotating immobilized cell reactor of the bacterium Z. mobilis for stable long-term continuous ethanol production. Biotech Techniques 3: 95-100.
9. Amin GA, Bazaid S, Abd-El-Halim M (2013) Two-stage immobilized cell bioreactor with *Bacillus subtilis* and *Rhodococcus erythropolis* for simultaneous production of biosurfactant and biodesulfurization of model oil. Petroleum Science and technology 31: 2250–2257.
10. Lai CC, Huang YC, Wei YH, Chang JS (2009) Biosurfactant-enhanced removal of total petroleum hydrocarbons from contaminated soil. J Hazard Mater 167: 609–614.
11. Zheng C, Li Z, Su J, Zhang R, Liu C, Zhao M, et al. (2012) Characterization and emulsifying property of a novel bioemulsifier by Aeribacillus pallidus YM-1. J Appl Microbiol 113: 44-51.
12. Amin GA, Bazaid SA, Abd Elrahim M, Dlaeddeen WS (2010) A potent biosurfactant producing bacterial strain for application in enhanced oil recovery processes. J. Pet Environ Biotechnol 1: 104-18.
13. Pirt JS (1975) Principles of microbe and cell cultivation. Blackwell Scientific Publications, Oxford, UK.
14. Yang R, Humphrey A (1975) Dynamics, and steady state studies of phenol degradation in pure and mixed cultures. Biotechnol Bioeng 17: 1211-1235.
15. Hirose Y (1972) Oxygen transfer. In K. Yamada (ed), The microbial production of amino acids. Wiley p203-226.
16. Cooper DG, MacDonald CR, Duff SJ, Kosaric N (1981) Enhanced production of surfactin from *Bacillus subtilis* by continuous product removal and metal cation additions. Appl Environ Microbiol 42: 408–412.
17. Khleifat KM (2006) Biodegradation of phenol by *Ewingella americana*: Effect of carbon starvation and some growth conditions. Process Biochem 41: 2010-2016.
18. Leonard D, Lindy ND (1999) Growth of *Ralstonia eutropha* on inhibitory concentrations of phenol: Diminished growth can be attributed to hydrophobic perturbation of phenol hydroxylase activity. Enzyme Microb Technol 25: 271-277.
19. Ławniczak L, Marecik R, Chrzanski L (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97: 2327–2339.
20. Liu ZF, Zeng GM, Wang J, Zhong H, Ding Y, et al. (2010) Effects of monorhamnolipid and Tween 80 on the degradation of phenol by Candida tropicalis. Process Biochem 45: 805–809.

21. Chrzanowski T, Owsianiak M, Szulc A, Marecik R, Piotrowska-Cyplik A, et al. (2011) Interactions between rhamnolipid biosurfactants and toxic chlorinated phenols enhance biodegradation of a model hydrocarbon-rich effluent. Int Biodeter Biodegr 65: 605–611.

22. Ahuja SK, Ferreira GM, Moreira AR (2004) Production of an endoglucanase by the shipworm bacterium Teredinobacter turnirae. J Ind Microbiol Biotechnol 31: 41–47.

23. Helle SS, Duff SJB, Cooper DG (1993) Effect of surfactants on cellulose hydrolysis. Biotechnol Bioeng 42: 611–617.

24. Whang LM, Liu PWG, Ma CC, Cheng SS (2008) Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151: 155–163.

25. Kwon KH, Yeom SH (2009) Optimal microbial adaptation routes for the rapid degradation of high concentration of phenol. Bioproc. Biosyst. Eng. 32: 435-442.

26. Elias A, Barona A, Gallastegui G, Rojo N, Gurtubay L (2010) Preliminary acclimation strategies for successful start-up conventional biofilters. J Air Waste Manage Assoc 60: 959-967.

27. Rocha LL, Cordeiro RD, Cavalcante RM, Nascimento RFD, Martins SCS, et al. (2007) Isolation and characterization of phenol degrading yeasts from an oil refinery wastewater in Brazil. Mycopathol 164: 183-188.