Mutations in the voltage-gated sodium channel gene of anophelines and their association with resistance to pyrethroids – a review

Ana Paula B Silva¹, Joselita Maria M Santos¹ and Ademir J Martins²,³*

Abstract

Constant and extensive use of chemical insecticides has created a selection pressure and favored resistance development in many insect species worldwide. One of the most important pyrethroid resistance mechanisms is classified as target site insensitivity, due to conformational changes in the target site that impair a proper binding of the insecticide molecule. The voltage-gated sodium channel (Na_V) is the target of pyrethroids and DDT insecticides, used to control insects of medical, agricultural and veterinary importance, such as anophelines. It has been reported that the presence of a few non-silent point mutations in the Na_V gene are associated with pyrethroid resistance, termed as ’kdr’ (knockdown resistance) for preventing the knockdown effect of these insecticides. The presence of these mutations, as well as their effects, has been thoroughly studied in Anopheles mosquitoes. So far, kdr mutations have already been detected in at least 13 species (Anopheles gambiae, $\text{Anopheles arabiensis}$, $\text{Anopheles sinensis}$, $\text{Anopheles stephensi}$, $\text{Anopheles subpictus}$, $\text{Anopheles sacharovi}$, $\text{Anopheles culicifacies}$, $\text{Anopheles sundicus}$, $\text{Anopheles aconitus}$, Anopheles vagus, $\text{Anopheles paraliae}$, $\text{Anopheles peditaeniatus}$ and $\text{Anopheles albimanus}$) from populations of African, Asian and, more recently, American continents. Seven mutational variants (L1014F, L1014S, L1014C, L1014W, N1013S, N1575Y and V1010L) were described, with the highest prevalence of L1014F, which occurs at the 1014 site in Na_V IIS6 domain. The increase of frequency and distribution of kdr mutations clearly shows the importance of this mechanism in the process of pyrethroid resistance. In this sense, several species-specific and highly sensitive methods have been designed in order to genotype individual mosquitoes for kdr in large scale, which may serve as important tolls for monitoring the dynamics of pyrethroid resistance in natural populations. We also briefly discuss investigations concerning the course of Plasmodium infection in kdr individuals. Considering the limitation of insecticides available for employment in public health campaigns and the absence of a vaccine able to brake the life cycle of the malaria parasites, the use of pyrethroids is likely to remain as the main strategy against mosquitoes by either indoor residual spraying (IR) and insecticide treated nets (ITN). Therefore, monitoring insecticide resistance programs is a crucial need in malaria endemic countries.

Keywords: Anopheles, Sodium channel, Malaria, Pyrethroids, Resistance, kdr

Introduction

The global situation of malaria and its vectors

Malaria is one of the most serious and complex health problems faced by humanity. Besides that, it has become a threat for social and economical development in tropical and subtropical regions, specially given the decrease in work capacity of the affected victims [1]. According to the World Health Organization (WHO), approximately 207 million cases of malaria were reported in 2012, with an estimate of 627,000 deaths, with the highest incidence rates observed in Africa (80%), Asia (15%) and the Americas (14%) [2]. Among the factors contributing to this scenario, it is possible to highlight the absence of an effective antimalarial vaccine, the distribution of drug-resistant Plasmodium, the development of insecticide resistance in vector mosquitoes, as well as ecological, socio-economic
and medical-sanitary factors [3,4]. Mosquito resistance to at least one insecticide used for malaria control has been identified in 64 countries [5]. Malaria vectors are part of the Anopheles genus, including nearly 484 species, distributed in seven subgenera [6], 70 of which showing vectorial competence for human malaria [7], with 41 of them being considered as dominant vector species [8] (Table 1).

Use of insecticides against malaria vectors

The strategic tools to fight malaria are oriented towards two principal directions: (i) prevention, by means of controlling vector mosquitoes; and (ii) case management, through malaria diagnosis and treatment with effective medicines, being the former considered as the most effective [12]. The techniques for controlling vector mosquitoes are didactically classified as: mechanical (elimination of breeding sites), biological (use of predators or parasitoids) or chemical (application of synthetic insecticides) [13,14]. The development of chemical insecticides that remain active for long periods of time was one of the most relevant breakthroughs of the 20th century [15] and nowadays they still play an important role in the control of disease vectors and plagues in agriculture.

There are four main groups of neurotoxic insecticides permitted to be used for public health purposes, classified according to their chemical nature and mode of action: organochlorines, organophosphates, carbamates and pyrethroids. The first insecticide used against anophelines was the DDT, an organochlorine firstly used in Naples in 1944 against a typhus epidemic [15]. In 1995, WHO proposed the global eradication of malaria based on the spraying of DDT inside the houses. Highly efficient and inexpensive, it was able to decimate populations of vectors on a global scale. However, the development of environmental and sanitary problems, coupled with the emergence of resistance, resulted in the prohibition of the product in many countries [16]. In spite of that, after the “Stockholm Convention on Persistent Organic Pollutants” in 2007, DDT was reestablished in restricted areas with high malaria transmission, such as in African locations [17].

The organophosphates (malathion, temephos, fenitrothion etc.) were developed in the 1940s and have been used ever since as insecticides, herbicides and plant growth regulators. Despite being biodegradable and non-cumulative, they have disadvantages, like chemical instability and high toxicity for vertebrates [18]. The carbamates, also referred to as methylcarbamates for deriving from the methylcarbamic acid [19], are compounds used as insecticides, nematicides and acaricides. They have low environmental persistence and are less toxic to living organisms than organochlorines. Due to their wide use in agriculture, they were incriminated as food, water and air contaminant agents, with adverse effects in humans and other animals [20]. Around 1970, synthetic pyrethroids were released as a class of insecticides considered more efficient and less toxic. These insecticides raised the attention for presenting higher lethal capacity against insects, requiring only small doses of the product for satisfactory effects [21]. Consequently, pyrethroids virtually substituted/supplemented the use of other classes in many pest control areas, representing nearly 23% of the chemical insecticides market, more than one fourth of the world market [22].

Pyrethroids are synthetic analogues of the chrysanthemic acid (pyrethrins I) and pyrethric acid (pyrethrins II) ester insecticides, naturally found in leaves of Chrysanthemum cinerarfolis. They are chemically distinguished as type I, compounds that lack an alpha-cyano group, like permethrin, and type II, with an alpha-cyano group, like delta-methrin [23]. They are biodegradable, non-cumulative insecticides that rarely cause acute intoxication in birds and mammals [24]. Currently, malaria control basically depends upon this insecticide class, which has been widely employed in indoor residual spraying (IRS) and also to control agricultural pests worldwide. Besides, pyrethroid is the only class approved by the World Health Organization Pesticide Scheme (WHOPES) for mosquito net impregnation (Insecticide Treated Net – ITN; Long Lasting Insecticide Treated Net - LLIN) [1,25,26].

IRS is a method in which residual insecticides are applied on the surface of walls and ceilings of houses [27]. Based on this strategy it is expected that the mosquitoes, after feeding on blood, rest on these surfaces and remain long enough to absorb a lethal dose of the insecticide. ITN is a mosquito net that repels, incapacitates or kills mosquitoes that come into contact with the insecticide impregnated in the net material, being both a chemical and a physical barrier against insects.

Continent	Anopheline species
Africa	Anopheles arabiensis, Anopheles funestus, Anopheles gambiae, Anopheles melas, Anopheles merus, Anopheles moucheti e Anopheles nili
Asia	Anopheles barbirostris, Anopheles lesteri, Anopheles sinensis, Anopheles acoutus, Anopheles annularis, Anopheles balabacensis, Anopheles culicifacies, Anopheles dirus, Anopheles farauti, Anopheles flavirustris, Anopheles fluviatilis, Anopheles kolensis, Anopheles kuczynskyi, Anopheles maculatus, Anopheles mininus, Anopheles punctulatus, Anopheles stephensi, Anopheles subpictus e Anopheles sundaeicus
Americas	Anopheles freeborni, Anopheles pseudopunctipennis, Anopheles quadrimaculatus, Anopheles albimanus, Anopheles albimanus, Anopheles aquasalis, Anopheles darlingi, Anopheles marajoare e Anopheles nuneztovari

Compiled from Sinka et al. [9-11].
There are two ITN categories: conventional nets and LLIN [27,28]. The initial success of insecticide based strategies caused the optimistic sensation that the elimination of malaria as a public health concern would be possible through the elimination of its vectors. However, these strategies are threatened today, due to the emergence of vector populations resistant to insecticides. Since new classes of alternative, equally interesting insecticides are not yet available on the market, the selection for resistance tends to continue increasing, unless effective management strategies are implemented [29].

Review

Mode of action of pyrethroids

Pyrethroids, such as DDT and its analogues, belong to a group of neurotoxins that share a similar mode of action. They all target NaV, which is present in cells of the central and peripheral nervous systems (neurons, myocytes, endocrine cells and ovaries), changing the kinetics of propagation of nerve impulses [22]. Structurally, NaV is an integral transmembrane protein, composed of four homologous domains (I-IV), each of them composed of six helices (S1-S6) connected by loops. The segments S5, S6 and the S5-S6 P-loops form a central aqueous pore, and the S1-S4 helices of each domain unite to form four independent voltage-sensitive domains [30,31]. The A. gambiae NaV alpha subunit gene comprises an ORF (Open Reading Frame) with 6,417 nucleotides that encodes 2,139 amino acids, resulting in a protein with a molecular mass of 240 kDa. This gene, located at the para (paralysis) loco of the X chromosome, is composed of 35 exons, including two duplicated exons, and 32 introns, which transcribes for different messenger RNAs (mRNA) through alternate splicing [31]. The effects of pyrethroids are stereospecific and two different NaV binding sites were identified. The first was proposed by O’Reilly et al. [32], in which IIS5 and IIS6 helices would play an important role in the interaction with the insecticide molecule and the additional link in the IIS4-S5 linker would explain the higher potency of pyrethroids compared with DDT. The second was suggested by Du et al. [33], where the binding site would be a type of “pocket” formed by the IS4-S5 linker and the helices IS5 and IIS6. For both models, the selective effect of the insecticide would be explained by the non-conservation of the amino acids of these regions between arthropods and other animals.

Pyrethroid resistance mechanisms

Insecticide resistance can be defined as the ability of individuals of a species to withstand doses of toxic substances, that would be lethal for most individuals of a population [34]. It is, therefore, a milestone in the change of the genetic composition of a given population, in response to the selection pressure. This is a typical case of Natural Selection, which consists in the increase of the relative frequencies of some “pre-adapted” individuals present in a population, resulting from the constant application of the same chemical product [35]. Intensive and extensive use of chemical insecticides has selected populations resistant to these compounds [36]. The resistance phenomenon has been observed in more than 500 insect species around the world, among which more than 50 are anophelines [37]. According to WHO [5], resistance to at least one insecticide had been identified in 64 malaria-endemic countries. Resistance to pyrethroids seems to be the most widespread. Two main mechanisms are incriminated as responsible for the pyrethroid resistance: metabolic resistance and target-site insensitivity [38,39].

Metabolic resistance occurs when high activity of one or more enzymes results in a sufficient portion of insecticide being sequestered or detoxified before reaching its target and promoting the desired effect [38]. It occurs due to the increase in the number of available molecules (genetic amplification or hyperactivation of the gene expression) or through mutations in the coding gene portion of the enzyme, producing the more efficient metabolism of the insecticide [37,40,41]. This mechanism is highly complex, although recent advances have been characterizing the main enzyme genes responsible for the detoxification, paving the way for the development of molecular markers for the resistance [42]. Three main enzyme superfamilies are involved in the detoxification process: Esterases, Mixed Function Oxidases (MFO, or simply P450) and Glutathione S-Transferases (GST) [37]. Colorimetric biochemical trials are widely employed to detect changes in the activity of detoxification enzymes. In this test, the enzymatic activity of a natural population is compared with the control lineages ones, using specific substrates for each enzymatic family [43].

On a transcriptional level, more recently microarray assays have gained prominence in the investigation of metabolic resistance. In this technique, the detoxification chips (or detox chips) compare the expression of virtually all genes of the families related to the metabolism of insecticides (GSTs, MFOs, Esterases), between resistant and susceptible mosquitoes. In addition to these main families, the expression of other genes are evaluated, such as some related to redox metabolism, involved in the protection against free radicals [44]. The analysis of the gene expression through detox chip in A. gambiae showed high activity of GST genes (GSTE2), P450 (CYP6Z1 and CYP325) and peroxidases in DDT resistant mosquitoes [44]. Genes with anti-oxidizing function (Superoxide dismutase, GST, Peroxidase and P450) were differently expressed in deltamethrin-resistant populations of A. arabiensis in Cameroon [45]. High expression of CYP6P3, a gene of the P450
family, was observed in permethrin-resistant populations of *A. gambiae* [46]. Differential expression was also observed in *A. funestus*, whose P450 genes (*CYP6P9, CYP6M7*) and *COI* (from the redox system) were more expressive in resistant individuals [47].

Resistance based on target-site insensitivity occurs when there is an alteration in the molecules that directly interact with the insecticide, making it less toxic or inefficient [42,43,48]. Since insecticide targets are structural molecules of the nervous system, highly conserved throughout evolution, few alterations are permissive without the loss of their physiological functions. Thus, it is common that the mutations selected for resistance occur at homologous sites among different insect species [49]. Target-site insensitivity is the most understood mechanism, and in many cases is the characteristic attributed to the higher portion of the genetic variation related to resistance [50]. In this sense, molecular diagnoses for detection target-site mutations are possible to identify and map the distribution of *Anopheles* in many malaria control programs [51].

Kdr mutations as a resistance mechanism

Many studies showed that resistance to the knockdown effect of several insect species is associated with point mutations in the *NaV* gene. By definition, the knockdown effect is the loss of coordination and paralysis caused by the insecticide, which are often accompanied by spasms and tremors [22]. This resistance mechanism was first observed in the housefly *Musca domestica* [52], where later it was suggested that the substitution of one amino acid leucine by phenylalanine in the hydrophobic segment IIIS6 (L1014F) resulted in a moderate increase of DDT resistance, termed as the *kdr* mutation (knockdown resistance). In *Anopheles* the homologous L1014F *kdr* mutation was first identified in lineages of *A. gambiae* resistant to pyrethrroids [53] and since then it has also been detected in a series of other anophelines [54-59]. Still in the 1014 site, another substitution, leucine by serine (L1014S), was identified in *A. gambiae*, also associated with the *kdr* phenotype [60]. The mutations L1014F and L1014S were first observed in populations of West and East Africa, respectively. Therefore, the former is sometimes referred to as *kdr-w* (*kdr-west*), and the latter, as *kdr-e* (*kdr-east*) [61]. In any case, it is noticeable that the distribution of these mutations is strongly related to sibling species of the *Anopheles gambiae* complex [62].

In Asian *A. sinensis* populations, in addition to the L1014F/S substitutions, the mutations L1014C and L1014W were reported, changing the amino acid leucine to cysteine and to tryptophan, respectively. Additionally, in the site immediately before the one of the classical *kdr* mutation, an N1013S substitution occurs, changing the amino acid asparagine to serine [63,64]. In *A. culicifacies* populations, also in addition to the L1014F/S substitutions, a new mutation in the site 1010 was described, substituting valine by leucine (V1010L) [65].

Another mutation in the *NaV* of *Musca domestica*, which substitutes methionine by threonine in 918 position, corresponding to the loop between IIIS4-SS segments, synergic to the classical L1014F mutation, was associated with high levels of DDT and pyrethroid resistance, thus being referred to as *super kdr* [66]. An analogous situation was observed in other insect species, such as in the horn fly *Haematobia irritans* [67], green peach aphid *Myzus persicae* [68,69], onion thrips *Thrips tabaci* [70] and in the moth *Tuta absoluta* [71]. However, there are still no records of homologous substitutions in anophelines.

Based on the current molecular techniques, it was possible to identify and map the distribution of *kdr* mutations among a wide range of *Anopheles* species around the world. Since it was first described in 1998 [53], the identification of changes in the *NaV* gene in the *Anopheles* genus has been widely monitored, in a way that we were able to recorded about 98 references published until the end of 2013 (Table 2).

So far, *NaV* mutations were described in at least 13 different anophelines. *A. gambiae* was the most studied (62 records), showing three mutational variants (L1014F, L1014S and N1575Y), detected in 19 out of 54 countries in Africa (Figure 1). Following, the African *A. arabiensis* presented 17 records, showing two variants (L1014F and L1014S) detected in seven countries. *A. sinensis* was the third one, with six records. Surprisingly, it showed the highest number of *kdr* variants (L1014F, L1014S, L1014C, L1014W and N1013S), distributed in five Asian countries, mostly detected in China. According to Kang et al. [142], this fact is related to the high population size and to the wide geographical distribution of the species, which tends to increase the genetic variability.

Among other species, *A. stephensi* showed three records of two variants (L1014F and L1014S), detected in Dubai and India. *A. subpictus* (L1014F), *A. culicifacies* (L1014F, L1014S and V1010L) and *A. vagus* (L1014F) showed two records; while *A. sacharovi* (L1014F/L1014S), *A. sundicus* (L1014F), *A. aconitus* (L1014F), *A. paralae* (L1014S) and *A. pediteniantius* (L1014F/L1014S) had just one record. The presence of *kdr* mutations in the Americas was observed only in *A. albimanus*, for the variants L1014F and L1014C in populations from Mexico, Nicaragua and Costa Rica (Table 2).

A survey on the geographical distribution of *kdr* mutations in African populations of *A. gambiae*, conducted by Pinto et al. [61], detected the presence of the variant L1014F in west countries (*kdr-w*), from Nigeria to Senegal, the presence of L1014S (*kdr-e*) in the East (Kenya), and both mutations occurring in the Midwest, comprising
Table 2 Anopheline species with kdr mutations detected

Species	Locality	Type of mutation	References
Anopheles gambiae			
Ghana		L1014F/N1575Y/L1014S	[62,72-77]
Nigeria		L1014F/L1014S	[56,62,78-80]
Burkina Faso		L1014F/N1575Y/L1014S	[53,57,62,72,77,81-87]
Cameroon		L1014F/N1575Y/L1014S	[54,62,77,88-96]
Ivory Coast		L1014F/L1014S	[53,55,62,83,97-99]
Kenya		L1014S	[60,100-106]
Angola		L1014F/L1014S	[62,107]
Benin		L1014F/N1575Y/L1014S	[62,77,108-113]
Mali		L1014F/L1014S	[114,115]
Chad		L1014F	[116]
Congo		L1014F/L1014S	[117,118]
Equatorial Guinea		L1014F/L1014S	[54,119]
Gabon		L1014F/L1014S	[62,120,121]
Senegal		L1014F/L1014S	[62,122]
Uganda		L1014F/L1014S	[123-126]
Tanzania		L1014S	[127]
Burundi		L1014S	[128]
Liberia		L1014F	[129]
Niger		L1014F	[130]
Anopheles arabiensis			
Sudan		L1014F/L1014S	[131-134]
Burkina Faso		L1014F/L1014S	[57,82,84,86,135,136]
Ethiopia		L1014F	[58,137]
Kenya		L1014S	[102,104]
Benin		L1014S	[112]
Tanzania		L1014F	[138]
Uganda		L1014S	[125]
Anopheles sinensis			
China		L1014F/L1014S/L1014C/L1014W/N1013S	[64,139-141]
Korea		L1014F/L1014C	[142]
Laos		L1014S	[143]
Cambodia		L1014S	[143]
Vietnam		L1014S	[143]
Anopheles stephensi			
Dubai		L1014F	[144]
India		L1014F/L1014S	[145,146]
Anopheles subpictus			
Sri Lanka		L1014F	[147]
Indonesia		L1014F	[148]
Anopheles albimanus			
Mexico		L1014F	[149]
Nicaragua		L1014C	[149]
Costa Rica		L1014C	[149]
Angola, Gabon, Equatorial Guinea and Cameroon. This same distribution pattern was reported one year later by Santolamazza et al. [62]. The occurrence of both mutations is currently found, sympatrically, in several African countries. Exceptions were Niger, Ethiopia, Chad and Liberia, which reported the presence of L1014F only, and Burundi and Kenya with L1014S only (Figure 1).

It is noteworthy that the *A. gambiae* complex is composed of seven sibling species: *A. gambiae* s.s., *A. arabiensis*, *A. melas*, *A. merus*, *Anopheles quadriannulatus* species A, *A. quadriannulatus* species B and *Anopheles bwambae*. They are morphologically indistinguishable, however, they can be classified according to fixed and polymorphic chromosomal inversions [152]. The classical molecular forms are Savannah, Mopti, Bamako, Forest and Bissau, according to paracentric inversions of the second chromosome of *A. gambiae* s.s. [153]. The mutation L1014F was firstly described in the Savannah form of *A. gambiae* populations, also known as S form, and until mid-1999 this mutation had not occurred in sympatry with the Mopti form (M form) [154]. However, later studies identified its presence also in the M form, possibly resulting from genetic introgression from the S form [81,155]. Introgression was also suggested by Tripet et al. [114] when the *kdr* allele was detected in the Bamako form. On the other hand, a new independent mutational event could explain the emergence of the *kdr* mutation in *A. arabiensis* [135].

Despite 15 years of research, some doubts still arise with respect to the *kdr* mutations, especially if they are indeed correlated with the resistant phenotype. One of the techniques adopted to test this association is the employment of bioassays with insecticides (WHO cones, bottle test, ITN, LLIN) followed by the genotyping of *kdr* mutation between dead and surviving mosquitoes after the test. In other words, it is aimed to test whether the mutation frequency is higher among resistant than the susceptible individuals. In our survey, out of the 98 studies here considered, 63 (64.3%), conducted bioassay followed by genotyping, correlating the mutation with insecticide resistance. Among them six detected the involvement of more than one mechanism of resistance (target site and metabolic alterations) [78,82,88,100,139,140] and two only suggested their occurrence [123,129]. On the other hand, six studies (9.5%) did not associate the occurrence of NaV mutations with knockdown resistance [58,107,119,131,136,143]. In these cases, the lack of a “mutation versus resistance” association was suggested due to low sample size [107], mutation similarly distributed between dead and surviving individuals in the insecticide bioassay [58,131,136,143] or mutation among susceptible individuals [119]. Nevertheless, in this last example the authors recognized that the bioassays were performed outside the WHO recommended standards. Lastly, in 28 studies (28.6%) only the genotyping of field

Table 2 Anopheline species with *kdr* mutations detected (Continued)

Anopheles sacharovi	Turkey	L1014F/L1014S	[150]
Anopheles culicifacies	India	L1014F/L1014S/V1010L	[65,151]
Anopheles sundaicus	Indonesia	L1014F	[148]
Anopheles aconitus	Indonésia	L1014F	[148]
Anopheles vagus	Indonesia	L1014F	[148]
Laos	L1014S	[143]	
Cambodia	L1014S	[143]	
Vietnam	L1014S	[143]	
Anopheles paralae	Laos	L1014S	[143]
Cambodia	L1014S	[143]	
Vietnam	L1014S	[143]	
Anopheles peditaeniatus	Laos	L1014F/L1014S	[143]
Cambodia	L1014F/L1014S	[143]	
Vietnam	L1014F/L1014S	[143]	
samples was performed, considering the presence of the mutation as enough evidence for resistance.

Association between ITN and kdr mutation

The use of ITNs/LLINs treated with pyrethroids is an important tool to reduce morbidity and mortality caused by malaria [26]. According to a survey performed by Lengeler et al. [156], the implementation of this strategy in Sub-Saharan Africa, between 1986 and 2003, was able to reduce morbidity by 50% and the infant mortality by 17%. In Kenya, for instance, the employment of ITNs was able to prevent infant mortality in an area with high malaria transmission [25]. However, the maintenance of this efficiency is still a controversial issue nowadays, given the occurrence of highly resistant anopheline populations. There are several records indicating good results of pyrethroid treated materials where kdr mutation had been identified, such as in Nigeria [157], where the LLINs were efficient at killing or reducing the blood feeding of A. gambiae, Mali [115], Benin [108,158] and Uganda [124].

On the other hand, a reduction in the susceptibility of A. gambiae populations subjected to ITNs was observed in Uganda [159]. Besides that, increases in kdr frequency were evidenced for this same species after the distribution of LLINs in Kenya [101], Niger [130], Senegal [122] and Benin [160].

The most recent update of WHOPES continues indicating only pyrethroids (deltamethrin, alphacypermethrin, permethrin and a combination of deltamethrin or permethrin and piperonyl butoxide – PBO) for LLINs [161]. However, given the possibility of loss of effectiveness caused by resistance, the development of mosquito nets impregnated with other classes of insecticides is a promising alternative. A study conducted with mosquito nets impregnated with chlorpyrifos-methyl (organophosphate) and lambdacyhalothrin (pyrethroid), showed that, alone or combined, they were efficient at killing or reducing blood feeding of A. gambiae from the Ivory Coast, even in areas with high kdr and ace-1R mutation frequencies. This ace-1R mutant allele belongs to the acetylcholinesterase gene, conferring resistance to organophosphates [162].

Association between Plasmodium infection and insecticide resistance

Regardless of the extensive literature concerning kdr mutations and their association with resistance to insecticides, few reports have presented their impact on malaria transmission dynamics, i.e., on the ability of mosquitoes to transmit malaria. Infection rate and oocyst burden are two of the five factors that determine the vectorial capacity of mosquitoes [163]. The response to Plasmodium exposure in vectors is modulated by the mosquito’s innate immune system. In A. gambiae, for example, changes in its global gene expression patterns are expressed upon Plasmodium infection [164]. Exposure to pyrethroids, in turn, induces metabolic changes that alters the immune response [165] and may therefore affect the outcome of Plasmodium infection.

An insecticide susceptible strain of A. funestus showed greater ability to become infected with Plasmodium berghei than its resistant counterpart [166]. In A. gambiae, infection with this same parasite increased the expression level of CYP6M2, a gene related with metabolic resistance [164]. In relation to the possible impacts of kdr mutation on vector competence, few records are available and are sometimes conflicting. For instance, neither positive or negative correlation was found between the occurrence of kdr and ace-1R alleles with infection of Plasmodium falciparum in A. gambiae natural populations from Benin [109].

Other studies, however, showed that the presence of both resistant alleles could be associated with increased prevalence of Plasmodium infection in an A. gambiae resistant strain. Additionally, individuals carrying the kdr mutation had increased prevalence of sporozoites, which is likely to
Method	Equipment required	Mutation	References
Allele-Specific Polymerase Chain Reaction (AS-PCR)	PCR thermocycler, electrophoresis and imaging equipments	L1014F/S/C	[53,60]
Heated Oligonucleotide Ligation Assay (HOLA)	PCR thermocycler, ELISA plate reader	L1014F/S	[168]
Sequence-Specific Oligonucleotide Probe – Enzyme-Linked ImmunoSorbent Assay (SSOP-ELISA)	PCR thermocycler, shaking incubator and ELISA plate reader	L1014F/S	[138]
PCR Sequence Specific Oligonucleotide Probe Assay (PCR-Dot Blot)	PCR thermocycler, shaking incubator and nylon membrane	L1014F/S	[169]
Fluorescence Resonance Energy Transfer (FRET)/Melt Curve Analysis (MCA)	Real-Time PCR thermocycler	L1014F/S	[125]
PCR Elongation with Fluorescence	PCR thermocycler and electrophoresis equipments	L1014F/S	[170]
High Resolution Melt (HRM)	Real-Time PCR thermocycler	L1014F/S	[171]
Allele-Specific Loop-Mediated Isothermal Amplification (AS-LAMP)	Turbidimeter and water bath	L1014F	[172]
Polymerase Chain Reaction-Restriction Fragment Length Polymorphism assay (PCR-RFLP)	PCR thermocycler	L1014F/C	[141]
Primer Introduced Restriction Analysis-PCR assay (PIRA-PCR)	PCR thermocycler, electrophoresis and imaging equipments	L1014F/S	[173]
Multiplex Primer Introduced Restriction Analysis-PCR assay (mPIRA-PCR)	PCR thermocycler and electrophoresis equipments	L1014F/S	[174]
Amplification Refractory Mutation System (ARMS)	PCR thermocycler, electrophoresis and imaging equipments	L1014F	[151]
impact on parasite transmission [167]. Given the dissemination of kdr mutation in natural populations, similar studies should be conducted in order to better understand the impact of insecticide resistance on vector competence.

Molecular tools for KDR mutation diagnosis

The resistance phenomenon can be studied on many levels, from biological assays in order to evaluate the susceptibility/resistance status to biochemical and molecular characterizations able to infer the mechanisms and effective genes selected for resistance. Currently, the development of tools for genetic screening of natural populations on a large scale, are aimed to predict the predisposition of those populations to develop insecticide resistance.

Thus, the identification of genetic markers associated with resistance were included in the priorities of the WHO Global Plan for Insecticide Resistance Management (GPIRM) [5]. In this sense, the identification of kdr genetic markers truly associated with pyrethroid resistance, as well as the improvement of existing diagnostic assays are constantly in the course of studies in this field. DNA based genotyping techniques have as main advantages the high sensitivity and the capacity to distinguish between homo and heterozygous individuals [37]. The principal methods employed in the detection of kdr mutations are listed in Table 3, with emphasis on the equipment required for each technique.

Strategies for managing resistance

The evolution of insecticide resistance has become a great threat to chemical products-based malaria control programs due to the strong selection pressure placed on resistance genes [5]. Therefore, strategies for managing resistance to minimize operational obstacles to the use of a given product have gained prominence on the world stage. The resistance management strategies are divided into three groups: management by moderation, management by saturation and management by multiple attack [175].

Management by moderation aims to reduce the selection pressure to conserve susceptible individuals of a given population, by the use of lower dosages of insecticides, higher treatment thresholds, chemicals with shorter residual activity and maintaining unsprayed areas as refuges for susceptible individuals [176]. Even though, peculiarities have to be considered. For instance, a study evaluating the effects of sublethal doses of permethrin in an A. stephensi strain showed that lower concentrations were more efficient in increasing the mortality rates [177]. Concerning refuges, it is important to maintain susceptible alleles in a population, mainly in the case of resistant alleles, which carry a fitness cost. However, resistant alleles can also invade untreated areas. This was the case observed in a survey conducted in populations of A. gambiae from Burundi, where high frequencies of kdr allele were detected in unsprayed areas, due to migration [128].

Management by saturation involves methods that overcome resistance mechanisms present in the insect, by the use of high rates of insecticides, that should kill even resistant individuals, or by the use of chemical synergists [21]. For example, the evaluation of the dosage-dependent effect of permethrin-treated nets in experimental hut trials from Benin showed that nets treated with higher permethrin concentrations provided better blood feeding prevention against pyrethroid-resistant A. gambiae [158]. Similar efficiency against pyrethroid-resistant A. gambiae populations were observed in a net impregnated with deltamethrin-pyreperonil butoxide combination [157,178].

Finally, the management by multiple attacks involves either mixtures or rotations of insecticides to avoid resistance. This method is based on the concept that insects resistant to one insecticide will be killed by the other component of the mixture and that few insects will be resistant to the entire mixture [176]. A combination of IRS with chlorfenapyr and LLIN impregnated with deltamethrin, in an experimental hut trial from Benin, was effective to provide additional level of transmission control and personal protection against pyrethroid-resistant A. gambiae [108]. Similar results were obtained by the use of mosquito nets impregnated with chlorpyrifos-methyl and lambdacyclo-thrin against A. gambiae from Ivory Coast [162].

Conclusions

After 15 years of intense research, kdr mutations were recorded in 13 anopheline species, in natural populations from three continents, revealing the preponderance of this phenomenon in the process of resistance to pyrethroid insecticides, either alone or combined with other mechanisms (e.g., metabolic resistance). These alterations emerged in different species as well as within populations of the same species, and are spreading quickly, given the strong selection pressure exerted by the pyrethroids. Although compounds with new modes of action, such as neonicotinoids and pyrroles, have been introduced in public health, they are still not indicated for IRS and ITN, for instance. The availability of a new generation of environmentally friendly compounds may take as long as the implementation of advanced strategies, likewise, the use of genetically modified mosquitoes. Therefore, the use of pyrethroids has to be severely monitored in order to try to maximize their effectiveness.

Abbreviations

Nax: Voltage-gated sodium channel; DOT: Dichlorodiphenyldichloroethane; Kdr: Knockdown resistance; WHO: World Health Organization; IRS: Indoor residual spraying; WHOPES: World Health Organization pesticide scheme; ITN: Insecticide treated net; LLIN: Long lasting insecticide treated net; MFO: Mixed function oxidases; GST: Glutathione S-Transferases; PBO: Piperonil-butoxide.
Competing interests
The authors declare that they have no competing interests.

Authors' contributions
Study design (APBS, JMMS and AJM), data compilation from literature (APBS and AJM), writing and revision (APBS, JMMS and AJM). All authors read and approved the final version of the manuscript.

Acknowledgements
We are grateful to Juracy de Freitas Maia and staff at the Malaria and Dengue Group of the INPA, for their technical help, to Carlos Eduardo Freitas Lemos, for drawing the maps, to CNPq/CT-AMAZONIA, GCB/CAPEX, FAPEAM/Rede Malaria and CT-PETRO for the financial support.

Author details
1Laboratório de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, Petrópolis, CEP 69067-375 Manaus, Amazonas, Brazil. 2Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil. 3Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.

Received: 3 April 2014 Accepted: 1 September 2014

References
1. WHO: The World Health Report. 2006 [http://www.who.int/whr/2006/en/]
2. WHO: Malariasis. 2013 [http://www.who.int/malaria/publications/world_malaria_report_2013/en/]
3. Tadei WP, Thatcher BD, Santos JMM, Scarpassa VM, Rodrigues IB, Rafael MS: Ecologic observations on anopheline vectors of malaria in the Brazilian Amazon. Am J Trop Med Hyg 1998, 59(2):325–335.
4. WHO: Malaria Report: Global Malaria Programme. Geneva: World Health Organization; 2011.
5. WHO: Global Plan for Insecticide Resistance Management in Malaria Vectors (GPIRM). Geneva: World Health Organization; 2012.
6. Harbach RE: The classification of genus Anopheles (Diptera: Culicidae): a working hypothesis of phylogenetic relationships. B Entomol Res 2004, 95:537–553.
7. Service MW, Townson H: The Anopheles Vector. In Essential Malarialogy. 4th edition. Edited by Gilles HM, Warrell DA. London: Arnold; 2002:59–84.
8. Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chenarevilymphap T, Coetzee M, Mboyo CM, Hemingway J, Patil AP, Temperley WH, Getting PW, Kabaria CW, Burkit TR, Harbach RE, Hay SI: A global map of dominant malaria vectors. Parasit Vectors 2012, 5:59.
9. Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mboyo CM, Hemingway J, Patil AP, Temperley WH, Getting PW, Kabaria CW, Okala RM, Boekel TV, Godfrey HJC, Harbach RE, Hay SI: The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis. Parasit Vectors 2010, 3:117.
10. Sinka ME, Bangs MJ, Manguin S, Chenarevilymphap T, Patil AP, Temperley WH, Getting PW, Byazur RF, Kabaria CW, Harbach RE, Hay SI: The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasit Vectors 2011, 4:89.
11. Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Getting PW, Boekel TV, Kabaria CW, Harbach RE, Hay SI: The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis. Parasit Vectors 2010, 3:72.
12. WHO: Global Malaria Control and Elimination: Report of a Technical Review. Geneva: World Health Organization; 2009.
13. Consoli RAGB, Lourenço-de-Oliveira R: Principais Mosquitos de Importância Sanitária no Brasil. Rio de Janeiro: FioCruz; 1994.
14. WHO: World Health Report; 2001, 7:327–335.
15. Mellanby K: The DDT Story. United Kingdom: British Crop Protection Council; 1992.
16. Govere JM, Durrheim DN, Kunene S: Malaria trends in South Africa and Swaziland and the introduction of synthetic pyrethroids to replace DDT for malaria control. S Afr J Sci 2002, 98(1–2):19–21.
17. WHO: The Use of DDT in Malaria Vector Control. Geneva: World Health Organization; 2007.
18. Morales-Rojas H, Moss RA: Phosphorolytic reactivity of o-iodosylcarboxylates and related nucleophiles. Chem Rev 2002, 102(7):2497–2522.
19. Fukushima T: Mechanism of action of organophosphorus and carbamate insecticides. Environ Health Perspect 1990, 87:245–254.
20. Gupta RC: Carbophuron toxicity. J Toxical Environ Health 1994, 43(4):383–418.
21. Orito M: Modo de Ação dos Inseticidas e Resistência a Inseticidas. In Bases e Técnicas de Manejo de Insetos. Edited by Guedes JC, Costa ID, Castiglioni E. Santa Maria: Universidade Federal de Santa Maria; 2000:248.
22. Schérez JJ III, Peterson RD: Pyrethrins and Pyrethroid Insecticides. In Green Trends in Insect Control. Edited by López O, Fernández-Bolaños JG. Cambridge: Royal Society of Chemistry; 2011:94–131.
23. Davies TGE, Field LM, Lushenwood PN, Williamson MS: DDT, pyrethrins, pyrethroids and insect sodium channels. Life Sci 2007, 39(3):151–162.
24. Paichick S: The Biology of Disease Vectors. Colorado: University Press of Colorado; 1996.
25. Phillips-Howard PA, Nahlen BL, Colackz VM, Hightower AW, Kulie FO, Ali JA, Gimign AJ, Arudo J, Juliffe AL, Ochanda A, Kachur SP, Schoute E, Rosen DH, Sexton JD, Olao AJ, Hawley WA: Efficacy of permethrin-treated bed nets in the prevention of mortality in young children in an area of high perennial malaria transmission in western Kenya. Am J Trop Med Hyg 2003, 68:223–229.
26. WHO: Insecticide-Treated Mosquito Nets: a WHO Position Statement. Geneva: World Health Organization; 2007.
27. WHO: Guidelines for Testing Mosquito Adulticides for Indoor Residual Spraying and Treatment of Mosquito Nets. Geneva: World Health Organization; 2008.
28. Hill J, Lines J, Rowland M: Insecticide-treated nets. Adv Parasitol 2006, 61:171–128.
29. Jones CM, Haji KA, Kabuto BO, Bagi J, Micha J, Devine GJ, Daley M, Kabula B, Ali AS, Majeambera S, Ranson H: The dynamics of pyrethroid resistance in Anopheles arabiensis from Zanzibar and an assessment of the underlying genetic basis. Parasit Vectors 2013, 6:434.
30. Catterall WA, Chandy KG, Clapham DE, Gutman GA, Hofmann F, Harmar AJ, Abemethy DR, Spedding M: International Union of Pharmacology: Approaches to the nomenclature of voltage-gated ion channels. Pharmacol Rev 2006, 58(4):573–574.
31. Davies TGE, Field LM, Lushenwood PN, Williamson MS: A comparative study of voltage-gated sodium channels in the Insecta: implications for pyrethroid resistance in Anopheles and other Neopteran species. Insect Mol Biol 2007, 16(3):361–375.
32. O'Reilly AO, Khambay BPS, Williamson MS, Field LA, Wallace BA, Davies TGE: Modelling insecticide-binding sites in the voltage-gated sodium channel. Biochem J 2006, 396:255–263.
33. Du Y, Nomura Y, Satar G, Hu Z, Nauen R, He SY, Zhorov BS, Dong K: Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel. Parasit Vectors 2013, 6(110):29:11785–11790.
34. Subramanyam BH, Hagstrum DW: Resistance Measure and Management. In Integrated Management of Insects in Stored Products. Edited by Subramaniam BH, Hagstrum DW, New York: Marcel Dekker Inc; 1996.
35. Crow JF: Genetics of insecticide resistance to chemicals. Pharmacol Rev 1967, 19:227–246.
36. Kong IP: Genetics of insecticide resistance to chemicals. Annu Rev Entomol 1957, 29:227–246.
37. Hemingway J: Insecticidal resistance in insect vectors of human disease. Annu Rev Entomol 2000, 45:371–391.
38. Ranson H, N'Guessan R, Lines J, Molioux N, Nkuni Z, Corbel V: Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol 2011, 27(2):91–98.
39. Martins AJ, Valle D: The pyrethroid knockdown resistance. In: Insecticides - Basic and Other Applications. Edited by Soloneski S, Rijeka LM: In Tech; 2012:17–38.
40. Hemingway J: The molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem Mol Biol 2000, 30:1009–1015.
41. Karkajh SJ: Insecticide resistance. In: Insecticides - Advances in Integrated Pest Management. Edited by Perveen F: In Tech; 2012:469–478.
42. Hemingway J, Hawkes NJ, McCollar L, Ranson H: The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 2004, 34:653–665.
90. Etang J, Fondjo E, Chandre F, Morlais I, Brengues C, Nwane P, Chouaibou M, Ndjemai HNM, Patchoké S, Atanga J, Etang J, Simard F, Bilong CFB, Reimer Edi CVA, Koudou BG, Jones CM, Weetman D, Ranson H: Resistance to pyrethroid and DDT insecticides in Anopheles gambiae s.l. populations from Burma and the western Nigerian coast. *Malar J* 2011, 10:343.

91. Le Poul A, Thiemann T, Dolo G, Traoré S, Lanzaro G: The spread of the pyrethroid resistance gene kdr in Anopheles gambiae s.l. in West Africa. *Malar J* 2006, 5:250.

92. Ochomo EO, Bayoh NM, Walker ED, Ombok MO, Ouma C: The efficacy of long-lasting nets with declining physical integrity may be compromised in areas with high levels of pyrethroid resistance. *Malar J* 2013, 12:268.

93. Awolola AO, Idowu ET, Oyebola MK, Adeogun AO, Olojede JB, Otubanjo OA, Adukwei ML: The efficacy of long-lasting nets for improved control of pyrethroid-resistant Anopheles gambiae in Lagos, Nigeria. *Malar J* 2011, 10:261.

94. Ochomo EO, Bayoh NW, Walker ED, Abongo BO, Ombok MO, Ouma C, Githeko AK, Vulule J, Yang G, Gimnig JE: Spatial and temporal variation in the kdr allele L1014S in Anopheles gambiae s.s. and phenotypic variability in susceptibility to insecticides in Western Kenya. *Malar J* 2011, 10:10.

95. Upham H, Ranson H, Walker ED, Bayoh NM, N'Guessan R, Boko P, Odjo A, Vigninou E, Asidi A, Akogbéto M, Rowland M: Impact of repeated insecticide spraying (IRS) and insecticide treated nets (ITNs) interventions on *Plasmodium falciparum* sporozoite rates in urban settings in southern Cameroon. *PLoS ONE* 2012, 7(3):e31319.

96. Ochomo EO, Bayoh NW, Walker ED, Abongo BO, Ombok MO, Ouma C, Githeko AK, Vulule J, Yang G, Gimnig JE: The efficacy of long-lasting nets with declining physical integrity may be compromised in areas with high levels of pyrethroid resistance. *Malar J* 2013, 12:268.

97. Awolola AO, Idowu ET, Oyebola MK, Adeogun AO, Olojede JB, Otubanjo OA, Adukwei ML: The efficacy of long-lasting nets for improved control of pyrethroid-resistant Anopheles gambiae in Lagos, Nigeria. *Malar J* 2011, 10:261.

98. Ochomo EO, Bayoh NW, Walker ED, Abongo BO, Ombok MO, Ouma C, Githeko AK, Vulule J, Yang G, Gimnig JE: The efficacy of long-lasting nets with declining physical integrity may be compromised in areas with high levels of pyrethroid resistance. *Malar J* 2013, 12:268.

99. Koffi AA, Alou LPA, Adja MA, ChandraF, Pienieter C: Insecticidresistance status of Anopheles gambiae s.s. population from M'Bé: a WHOPES-labelled experimental hut station, 10 years after the political crisis in Côte d’Ivoire. *Malar J* 2013, 12:151.

100. Koffi AA, Alou LPA, Kabran JP, NGuessan R, Penneiter C: Re-visiting insecticide resistance status in Anopheles gambiae from Côte d’Ivoire: a nation-wide informative survey. *PLoS ONE* 2013, 8(3):e63837.

101. Stump AO, Atieli FK, Vulule JM, Besansky NJ: Dynamics of the pyrethroid knockdown resistance allele in western Kenyan populations of Anopheles gambiae in response to insecticide treated bed nets trials. *Am J Trop Med Health* 2004, 70(6):591–596.

102. Chen H, Githiko AK, Githure JI, Mwangi T, Githure JG, Njagi J, Mwangi SM: Multiple insecticide resistance in Anopheles gambiae s.s. in western Kenya. *Malar J* 2011, 10:261.

103. Awolola AO, Idowu ET, Oyebola MK, Adeogun AO, Olojede JB, Otubanjo OA, Adukwei ML: The efficacy of long-lasting nets for improved control of pyrethroid-resistant Anopheles gambiae in Lagos, Nigeria. *Malar J* 2011, 10:261.

104. Ochomo EO, Bayoh NW, Walker ED, Abongo BO, Ombok MO, Ouma C, Githeko AK, Vulule J, Yang G, Gimnig JE: The efficacy of long-lasting nets with declining physical integrity may be compromised in areas with high levels of pyrethroid resistance. *Malar J* 2013, 12:268.

105. Mathias DK, Ochomo E, Atieli F, Ombok M, Bayoh MN, Oleng G, Mubia D, Kamau L, Vulule JM, Hamel MJ, Hawley WA, Walker ED, Gimnig JE: Insecticide resistance status in northern Kenya: distribution of *Plasmodium falciparum* sporozoite rates. *Malar J* 2011, 10:10.

106. Ochomo EO, Bayoh NW, Walker ED, Abongo BO, Ombok MO, Ouma C, Githeko AK, Vulule J, Yang G, Gimnig JE: The efficacy of long-lasting nets with declining physical integrity may be compromised in areas with high levels of pyrethroid resistance. *Malar J* 2013, 12:268.

107. Upham H, Ranson H, Walker ED, Bayoh NM, N’Guessan R, Boko P, Odjo A, Vigninou E, Asidi A, Akogbéto M, Rowland M: Impact of repeated insecticide spraying (IRS) and insecticide treated nets (ITNs) interventions on *Plasmodium falciparum* sporozoite rates in urban settings in southern Cameroon. *PLoS ONE* 2012, 7(3):e31319.

108. Awolola AO, Idowu ET, Oyebola MK, Adeogun AO, Olojede JB, Otubanjo OA, Adukwei ML: The efficacy of long-lasting nets for improved control of pyrethroid-resistant Anopheles gambiae in Lagos, Nigeria. *Malar J* 2011, 10:261.

109. Ossè R, Gnanguenon V, Sèzonlin M, Asidi A, Djouaka RF, Braïma J, Akogbéto MC: Development of vegetable farming: a cause of the emergence of insecticide resistance in populations of Anopheles gambiae in urban areas of Benin. *PLoS ONE* 2011, 6(9):e24323.

110. Yadouleton AWM, Asidi A, Djouaka RF, Braïma J, Akogbéto MC: Development of vegetable farming: a cause of the emergence of insecticide resistance in populations of Anopheles gambiae in urban areas of Benin. *PLoS ONE* 2011, 6(9):e24323.
of knockdown resistance to pyrethroid (kdr) in Mali, West Africa, and evidence of its emergence in the Bamako form of Anopheles gambiae s.s. Am J Trop Med 2007, 76(1):81–87.

115. Fryxell RTT, Seifert SN, Lee Y, Sacko A, Lanzaro G, Cornel A: The knockdown resistance mutation and knockdown time in Anopheles gambiae collected from Mali evaluated through a bottle bioassay and a novel insecticide-resistant net bioassay. J Am Mosquit Control 2012, 28(1):119–122.

116. Hinzoumbé CK, Péka M, Nwane P, Gouni ID, Etang J, Eboho AS, Simard F: Insecticide resistance in Anopheles gambiae from south-western Chad, Central Africa. Malar J 2008, 7:192.

117. Koekemoer LL, Spillings BL, Christian RN, Lo TCM, Kaiser ML, Norton RA, Trape JF, Hamblin MJ: Occurrence of the leucine-to-phenylalanine knockdown resistance (kdr) mutation in Anopheles gambiae populations in Tanzania, detected by a field validated high-throughput SSOP-ELISA method. Malar J 2006, 5:26.

118. Kulkarni MA, Rowland M, Alifrangis M, Mosha FW, Matowo J, Malima R, Peter J, Kweca E, Lyimo M, Magasa S, Salanti A, Rau M, Drakeley C: First evidence of the leucine-to-phenylalanine knockdown resistance (kdr) mutation in Anopheles gambiae populations in Tanzania, detected by a validated high-throughput SSOP-ELISA method. Malar J 2006, 5:26.

119. Kulkarni MA, Rowland M, Alifrangis M, Mosha FW, Matowo J, Malima R, Peter J, Kweca E, Lyimo M, Magasa S, Salanti A, Rau M, Drakeley C: First evidence of the leucine-to-phenylalanine knockdown resistance (kdr) mutation in Anopheles gambiae populations in Tanzania, detected by a validated high-throughput SSOP-ELISA method. Malar J 2006, 5:26.

120. Pinto J, Lynd A, Elisa N, Donnelly MJ, Costa C, Gentile C, Caccione A, Rosário VE: Co-occurrence of East and West African kdr mutations suggest high levels of resistance to pyrethroid insecticides in Anopheles gambiae from Liberiville, Gabon. Med Vet Entomol 2006, 20(27–32).

121. Popoff N, Verhaeghen K, Bortel WV, Roelants P, Backeljau T, Coosemans M: Molecular evidence for historical presence of knock-down resistance in Anopheles gambiae from Pointre Noire, Equatorial Guinea. Am J Trop Med Hyg 2010, 82(4):566–573.

122. Okia M, Ndyomugenyi R, Kirunda J, Byaruhanga A, Adilabu S, Lwamafa DK, Kironde F: Bioefficacy of long-lasting insecticidal nets pyrethroid-resistant populations of Anopheles gambiae s.s. from different malaria transmission zones in Uganda. Parasit Vectors 2013, 6:130.

123. Verhaeghen K, Bortel WV, Roelants P, Backeljau T, Coosemans M: Detection of the East and West African kdr mutation in Anopheles gambiae and Anopheles arabiensis from Uganda using a new assay based on FRET/ Melt Curve analysis. Malar J 2005, 4:56.

124. Ramanul H, Usangi L, Bass E, Okedi LM, Dorey NL, Müller P: Insecticide resistance and its association with target-site mutations in natural populations of Anopheles gambiae from eastern Uganda. Trans Roy Soc Trop Med Hyg 2009, 103(1121–1126).

125. Protopopoff N, Matowo J, Malima R, Kavushe R, Kaaya R, Wright A, West PA, Kleinschmidt I, Kosina W, Mosha FW, Rowland M: High level of resistance in the mosquito Anopheles gambiae to pyrethroid insecticides and reduced susceptibility to bendiocarb in north-western Tanzania. Malar J 2013, 12:149.

126. Protopopoff N, Verhaeghen K, Bortel WV, Roelants P, Marcotty T, Baza D, D'Alessandro U, Coosemans M: A significant increase in kdr in Anopheles gambiae is associated with an intensive vector control intervention in Burundi highlands. Trop Med Int Health 2008, 13(12):1479–1487.

127. Temu EA, Maxwell C, Murunyeke G, Howard APV, Munga S, Aworir SW, Pouparin R, Jones AJ, Allan R, Kleinschmidt I, Ranson H: Pyrethroid resistance in Anopheles gambiae in Bomi County, Liberia, compromises malaria vector control. PLoS ONE 2012, 7(1):e29242.

128. Czeh C, Labbo R, Arskjöld, D, Duchemin JB: Evidence of increasing Leu-Phe knockdown resistance mutation in Anopheles gambiae from Nigeria following a nationwide long-lasting insecticide-treated nets implementation. Malar J 2008, 7:189.

129. Matambo TS, Abdalla H, Brooke BD, Koekemoer LL, Mnaza A, Hunt RH, Coetzee M: Insecticide resistance in the malarial mosquito Anopheles arabiensis and association with the kdr mutation. Med Vet Entomol 2007, 21:97–102.

130. Himeidan YE, Chen H, Chandre F, Donnelly MJ, Yan G: Permethrin and DDT resistance in the malaria vector Anopheles arabiensis from Eastern Sudan. Am J Trop Med Hyg 2007, 77(6):1066–1068.

131. Himeidan YE, Hamid MMA, Jones CM, Ranson H: Extensive permethrin and DDT resistance in Anopheles arabiensis from eastern and central Sudan. Parasit Vectors 2011, 4:185.

132. Abuelmaali SA, Elagip AH, Basheer MA, Frah EA, Ahmed ETA, Elhaj HFA, Seaidhamed OME, Weetman D, Hamid MMA: Impacts of agricultural practices on insecticide resistance in the malaria vector Anopheles arabiensis in Khartoum State, Sudan. PLoS ONE 2013, 8(11):e80549.

133. Diabate A, Balder T, Chandre E, Dabiré K, Simard F, Guedaojo JB, Guglet P, Hougard JM: First report of a kdr mutation in Anopheles arabiensis from Burkina Faso, West Africa. J Am Mosquit Contr 2004, 20:195–196.

134. Jones CM, Toé HK, Sanou S, Namcoutoungou M, Hughes A, Diabate A, Dabiré F, Simard F, Ranson H: Additional selection for insecticide resistance in urban malaria vectors: DDT resistance in Anopheles arabiensis from Bobo-Dioulasso, Burkina Faso. PLoS ONE 2012, 7(9):e45995.

135. Yewhalaw D, Bortel WV, Denix L, Coosemans M, Duchateau L, Spybeybroeck N: First evidence of high knockdown resistance frequency in Anopheles arabiensis (Diptera: Culicidae) from Ethiopia. Am J Trop Med Hyg 2010, 83(1):122–125.
cDNA sequencing of the voltage-gated sodium channel gene. J Med Entomol 2002, 39(6):870–874.

151. Singh OP, Bal P, Hemingway J, Subbarao SK, Dash AP, Adak T: PCR-based methods for the detection of L1014 kdr mutation in Anopheles culicifacies sensu lato. Malar J 2009, 8:154.

152. Slotman MA, Della Torre A, Calzetta M, Powell JR: Differential introgression of chromosomal regions between Anopheles gambiae and An. arabiensis. Am J Trop Med Hyg 2005, 73(2):326–335.

153. Coluzzi M, Sabatini A, Petrocca V, Di Deco MA: Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. T Roy Soc Trop Med Hyg 1979, 73:483–497.

154. Chandre F, Brengues C, Dosou-Yovo I, Ma GS, Dabiré A, Carnevale P, Gullet P: Current distribution of a pyrethroid resistance gene (kdr) in Anopheles gambiae complex from West Africa and further evidence for reproductive isolation of the Mopti form. Parassitologia 1999, 41:319–322.

155. Weill M, Chandre F, Brengues C, Manguin S, Akogbeto M, Pautier N, Gullet P, Raymond M: The kdr mutation occurs in the Mopti form of Anopheles gambiae s.s. through introgression. Insect Mol Biol 2000, 9(5):451–455.

156. Lengeler C: Insecticide-treated bed nets and curtains for preventing malaria. Cochrane DP: Syst Rev 2004, 2(2):CD00363.

157. Adeogun AO, Ojegude JB, Odsula AQ, Awolola TS: Village-scale evaluation of PermaNet 3.0: an enhanced efficacy combination long-lasting insecticidal net against resistant population of Anopheles gambiae s.s. Malaria Chem Control 2012, 1:1–9.

158. Corbel V, Chandre F, Brengues C, Akogbeto M, Lardeux F, Hougard JM: Gillepsie-based effects of permethrin-treated nets on the behaviour of Anopheles gambiae and the selection of pyrethroid resistance. Malar J 2004, 2:22.

159. John R, Ehrmann T, Andrew A: Reduced susceptibility to pyrethroid insecticide treated nets by the malaria vector Anopheles gambiae s.l. in western Uganda. Malar J 2008, 7:92.

160. Aïzoun N, Aikpon R, Akogbeto M: WHOPES: The new high-performance PCR diagnostic for Anopheles gambiae and Culex quinquefasciatus mosquitoes following a nationwide distribution of LLINs by the Beninese National Malaria Control Programme. Asia Pac J Trop Biomed 2014, 4(3):239–243.

161. WHOPES: WHO recommended long-lasting insecticidal nets. [http://www.who.int/whopes/Long_lasting_insecticidal_nets_Oct_Feb_2014.pdf?ua=1]

162. Asidi AN, N’Guessan R, Koffi AA, Curtis CF, Hougard JM, Chandre F: Marked biological differences between insecticide resistant and susceptible strains of Anopheles gambiae s.s. in southern Benin. Malar J 2010, 9:379.

163. Vézilier J, Nicot A, Gandon S, Rivero A: Insecticide resistance and malaria transmission: infection rate and oocyst burden in Plasmodium berghei. BMC Gen 2010, 11:312.

164. James RR, Xu J: Mechanisms by which pesticides affect insect immunity. J Invert Path 2012, 109(2):175–182.

165. Lo TM, Coetzee M: Marked biological differences between insecticide resistant and susceptible strains of Anopheles funestus infected with the murine parasite Plasmodium berghei. Parasit Vectors 2013, 6:184.

166. Gheorgiu GP, Aikpon R, Akogbeto M, Pigeon O, Rowland M: An experimental hut evaluation of PermaNet 3.0, a deltamethrin-pyreonyl butoxide combination net, against pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes in southern Benin. J Roy Soc Trop Med Hyg 2010, 104:758–765.