Comparative analysis of 3L-NPC converter output voltage with selective harmonic elimination PWM

V R Gasiyarov, A A Radionov and A S Maklakov
South Ural State University, 76, Lenin Avenue, Chelyabinsk 454080, Russia

E-mail: alexandr.maklakov.ru@ieee.org

Abstract. The main purpose of this article is to show the importance of a comparative analysis of a three-level neutral point clamped (3L-NPC) output voltage with selective harmonic elimination PWM (SHEPWM). As compared to other PWM technique, the SHEPWM method has a lower dynamic power loss and a better THD at the same switching frequency. The objective of this analysis is to provide a modelling results of THD and a voltage/current spectrum of the output voltage with a various SHEPWM implementation for the 3L-NPC converter. A mathematical model for this research was developed in Matlab/Simulink. A practical use of the comparative analysis results can be applied to power electronic systems of high power wind generators.

1. Introduction
An improvement and a development of new pulse width modulation (PWM) algorithms are the priority research for power conversion by power semiconductor converters. The common topologies of the power converters are applied into energy and industrial applications, such as high voltage dc transmission (HVDC) and flexible ac transmission system (FACTS), renewable energy sources (RES) and electric drives. The utilising of the identical topologies leads to a non-effective use of PWM methods, as this depends on load or grid connection performances, especially at different electromagnetic compatibility requirements [1]. There are several variants for implementation of one PWM method, and at the selection of an optimal PWM method, it is possible to achieve the current/voltage THD, which will correspond to the THD reference requirements [2].

Neutral-point clamped (NPC) converter is an essential part of high-power energy applications. The specific purpose of NPC is to solve the problems of the voltage limit capability of semiconductor devices, and they are attractive for high-power energy control due to their superior performance in power semiconductor technology [3]. High quality of the current and voltage waveforms both at the input and output terminals of the converter are needed to be improved as much as possible, and this requirement is affected by the topology we used, the control algorithm and the actual application [4]. NPC converters are the most established and commercialized topology. New means of boosting the three level NPC converter energy efficiency are required to develop and study applied power circuits, modulation algorithms and control systems [5-7]. Figure 1 shows a typical power circuit of high-power drive system based on the NPC converters.

Currently there are a lot of scientific research focuses on selective harmonic elimination (SHE) and space vector pulse width modulation (SVPWM) for 3L-NPC converters. The article [8] describes hybrid PWM based on sinusoidal (SPWM) and SHEPWM, which provides comparative analysis and algorithm of a smooth transition between them for power quality improving. The article [9] presents a
performance of hybrid PWM with a transition between SV and SHEPWM, which allows to make the power losses less.

Figure 1. Typical industrial circuits are based on 3L-NPC converters.

2. Problem definition
The amount of dynamic losses, which depend on the sample frequency of switching, is the main indicator reducing the efficiency of the power converters. Reduction in the number of switching of the converter allows increasing power, reliability and efficiency, but it can provide a significant effect on the quality of the converted current and voltage. Using one method of modulation over the full frequency range and the output voltage and current magnitudes has not able to achieve the maximum efficiency of the converter and maintain the required power quality. The comparative analysis of converter output voltage with selective harmonic elimination PWM is needed to solve this task. It can assess voltage/current THD and spectrum for several SHE patterns and provide the information about an optimal pattern.

The objective of this analysis is to provide a modelling results of THD and a voltage/current spectrum of the output voltage with a various SHEPWM implementation for the 3L-NPC converter.

3. Mathematical description of 3L-NPC converter
The NPC has already applied in many conventional high-power ac motor drives, and a back-to-back topology for NPC makes it successfully used in regenerative applications, like the grid interfacing of renewable energy sources. In addition, the topology can be extended to any level by adding more diodes and capacitors, but the main problem of the topology is how the neutral point voltage balanced or maintained on the DC-link, that is, to keep DC-side voltage stable [10,11].

A mathematical model of three level NPC (Figure 2) was developed via discrete switching functions $S_{abc/lcrv}$ of power modules for grid side:

$$
\gamma_{abc} = \begin{cases}
1, \ (S_{abc1} \ and \ S_{abc2}) = 1 \ and \ (S_{abc3} \ and \ S_{abc4}) = 0 \\
0, \ (S_{abc2} \ and \ S_{abc3}) = 1 \ and \ (S_{abc1} \ or \ S_{abc4}) = 0 \\
-1, (S_{abc3} \ and \ S_{abc4}) = 1 \ and \ (S_{abc1} \ and \ S_{abc2}) = 0
\end{cases}
$$

These switching states $\gamma_{abc/lcrv}$ create the discrete logic functions F.

Using the functions \(F \) and Kirchhoff’s laws, an equation system describing the electromagnetic processes of 3L-NPC was written as:

\[
\begin{align*}
\begin{bmatrix}
F_{abc1} = \gamma_{abc} \cdot (\gamma_{abc} + 1) \\
F_{abc2} = \gamma_{abc} \cdot (\gamma_{abc} - 1)
\end{bmatrix},
\end{align*}
\]

(2)

where \(i_a, i_b \) and \(i_c \) are 3L-NPC converter phase currents.

4. Description of SHE pulse-with modulation

The selective harmonic elimination PWM has able to eliminate the defined harmonics from 3L-NPC converter output phase voltage. And the total amount of eliminated harmonics is limited the switching frequency of the power modules as

\[
k = \frac{f_{ov,\text{max}}}{2 \cdot f_1} - 1 = N - 1
\]

(4)

where \(f_{ov,\text{max}} \) is the max. switching frequency; \(N \) – is amount of the power module switching in per quarter of the voltage time period, \(k \) – is amount of the eliminated harmonics.

A typical phase voltage of SHE this a quarter-wave symmetry [12], as shown in Figure 3.
The switching angles and the spectrum of the 3L-NPC converter output voltage with the SHE by means of a system of nonlinear equations [13]

\[
\begin{align*}
\sum_{k=1}^{N} (-1)^{k} \cdot \cos(n \cdot \alpha_k) &= \frac{\pi}{4} \cdot \frac{2}{U_{dc}} \cdot U_n \\
\sum_{k=1}^{N} (-1)^{k} \cdot \cos(n \cdot \alpha_k) &= 0, n = 5, 7, 11, ...
\end{align*}
\]

where the pick voltage \(U_n \) is calculated [14, 15] by

\[
U_n = \frac{4}{\pi} \int_{0}^{\pi} u(o\tau) \cdot \sin(n \cdot o\tau) d(o\tau) = \frac{4}{\pi} \cdot \frac{U_{dc}}{2} \cdot \sum_{k=1}^{N} (-1)^{k} \cdot \cos(n \cdot \alpha_k)
\]

where \(u(o\tau) = \sum_{n=1,3,5,...}^{\infty} \frac{2 \cdot U_{dc}}{\pi \cdot n} \left[\sum_{k=1}^{N} (-1)^{k+1} \cdot \cos(n \cdot \alpha_k) \right] \cdot \sin(o\tau \cdot n) \), in which \(\alpha_k \) – a switching angle at elimination of \(k \) harmonics [16].

5. Modelling results

Using the mathematical descriptions of the three-level converter and the SHE modulation algorithm, a research model was developed in the Matlab/Simulink. For the comparative analysis, presented in Table 1 four patterns of the SHE implementation were calculated. The results of calculation of the switching angles from the modulation factor are shown in Figure 4. The dependences of the THD voltage and current of the converter for the SHE patterns are shown in Figure 5.

The simulation results determined the non-linear dependence of voltage and current THD on the modulation factor for different patterns of SHEPWM. The analysis of the obtained results in Figure 5 shows that the voltage THD depends strongly on a converter modulation factor. At the maximum values of the modulation factor, the voltage THD becomes equal, therefore, it will be optimal using of the SHE pattern with a low switching. However, a comparative analysis of the current THD provides better results at the SHE pattern with a high switching.

SHE	\(k \)	Patterns
SHE1	6	5, 7, 11, 13, 17 and 19
SHE2	8	5, 7, 11, 13, 17, 19, 23 and 25
SHE3	10	5, 7, 11, 13, 17, 19, 23, 25, 29 and 31
SHE4	12	5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35 and 37
Figure 4. Switching angles for SHE₁(a), SHE₂(b), SHE₃(c), SHE₄(d).

Figure 5. Comparative analysis of voltage(a) and current(b) THDs.

6. Conclusion
In this paper the comparative analysis of 3L-NPC converter output voltage with selective harmonic elimination PWM has been considered. Mathematical description and of 3L-NPC converter and selective harmonics elimination method were provided. The calculation results of voltage and current THDs at the four patterns of the SHE implementations were obtained. The results show a possibility of using a low switching SHE pattern at a high modulation factor for a voltage THD.
References

[1] Kouro S, Rodriguez J, Wu B, Bernet S and Perez M 2012 Powering the Future of Industry: High-Power Adjustable Speed Drive Topologies *IEEE Industry Applications Magazine* **18** (4) pp 26–39

[2] Abu-Rub H, Bayhan S, Moinoddin S, Malinowski M, Guzinski J 2016 Medium-Voltage Drives: Challenges and existing technology *IEEE Power Electronics Magazine* **3** (2) pp 29–41

[3] Rodriguez J, Lai J-S and Peng F Z 2002 Multilevel inverters: A survey of topologies, controls, and applications *IEEE Trans. Ind. Electron* **49** (4) pp 724–738

[4] Nabae A, Takahashi I, Akagi H A 1981 Neutralpoint clamped PWM inverter *IEEE Transactions on Power Electronics* **1A-17** (5) pp 518–523

[5] Remus Teodorescu, Marco Liserre, Pedro Rodriguez 2011 *Grid converters for photovoltaic and wind power systems* (UK: John Wiley & Sons, Ltd.)

[6] Martin Gendrin, Jean-Yves Gauthier, Xuefang Lin-Shi 2016 A Predictive Hybrid Pulse-Width-Modulation Technique for Active-Front-End Rectifiers *IEEE Transactions on Power Electronics* **32** (7) pp 5487–5496

[7] Jayanta Biswas, Meenu D Nair, Vivek Gopinath, Mukti Barai 2016 An Optimized Hybrid SVPWM Strategy Based on Multiple Division of Active Vector Time (MDAVT) *IEEE Transactions on Power Electronics* **32** (6) pp 4607–4618

[8] Wang Y, Wen X, Guo X et al 2011 The smooth transition research of different PWM modulations for vector control of induction motor in medium voltage high power in *Proc. IEEE Elect. Mach. and Syst. conf.* pp 1–5

[9] Zhang Y, Zhao Z, and Zhu J A 2011 Hybrid PWM applied to high-power three-level inverter-fed induction-motor drives *IEEE Trans. Ind. Electron* **58** (8) pp 3409–3420

[10] Konstantinou G, Agelidis V G 2014 On re-examining symmetry of two-level selective harmonic elimination PWM: Novel formulations, solutions and performance evaluation *Electric Power Systems Research* **108** pp 185–197

[11] Zaragoza J, Pou J, Ceballos S, Robles E, Ibaez P and Villate J L 2009 A comprehensive study of a hybrid modulation technique for the neutralpoint-clamped converter *IEEE Trans. Ind. Electron* **56** (2) pp 294–304

[12] Hramshin T R, Krubtsov D S and Kornilov G P 2013 Evaluation of methods PWM voltage active rectifiers rolling mills *Russian Internet Journal of Industrial Engineering* **2** pp 48–52

[13] Grahame Holmes D, Lipo Thomas A 2003 Pulse Width Modulation for Power Converters: Principles and Practice p 744

[14] Jingling Cheng, Dongdong Chen, Yaowei Hu, Guoizhu Chen 2017 An improved SHE algorithm and filter design method for high power grid-connected converter under unbalanced and harmonic distorted grid 2017 *IEEE 26th International Symposium on Industrial Electronics (ISIE)* pp 594–599

[15] Cungang Hu, Grahame Holmes, Weixiang Shen, Xinghuo Yu, Qujing Wang, Fanglin Luo 2017 Neutral-point potential balancing control strategy of three-level active NPC inverter based on SHEPWM *IET Power Electronics* **10** (14) pp 1943–1950

[16] Andrey A. Radionov, Vadim R. Gasiyarov, Alexander S. Maklakov 2016 Hybrid PWM on the basis of SVPWM and SHEPWM for VSI as part of 3L-BtB-NPC converter *IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society* pp 1232–1236

Acknowledgments

South Ural State University acknowledges financial support from Ministry of Education and Science of the Russian Federation (grant No 13.9656.2017/8.9).