Therapeutic plasma exchange in patients with hyperlipidemic pancreatitis

Jui-Hao Chen, Jiann-Horng Yeh, Hsin-Wen Lai, Chao-Sheng Liao

Abstract

AIM: To clarify the effectiveness of plasma exchange by comparing the mortality and morbidity before and after the intervention of plasma exchange.

METHODS: Plasma exchange has been available as an optional therapy for hyperlipidemic pancreatitis since August 1999 in our hospital. The patients were assorted into 2 groups (group I: before August 1999 and group II: after August 1999). Group I consisted of 34 patients (before the availability of plasma exchange). Group II consisted of 60 patients (after the availability of plasma exchange). Twenty patients in group II received plasma exchange after giving their consent. The mortality and morbidity were compared between group I and group II. Furthermore, the patients with severe hyperlipidemic pancreatitis (Ranson’s score ≥ 3) were analyzed separately. The mortality and morbidity were also compared between those receiving plasma exchange (group A) and those who did not receive plasma exchange (group B).

RESULTS: There was no statistical difference in the mortality, systemic and local complications between group I and group II. When the patients with severe hyperlipidemic pancreatitis were analyzed separately, there was no statistical difference between group A and group B.

CONCLUSION: Plasma exchange can not ameliorate the overall mortality or morbidity of hyperlipidemic pancreatitis. The time of plasma exchange might be the critical point. If patients with hyperlipidemic pancreatitis can receive plasma exchange as soon as possible, better result may be predicted. Further study with more cases is needed to clarify the role of plasma exchange in the treatment of hyperlipidemic pancreatitis.

Chen JH, Yeh JH, Lai HW, Liao CS. Therapeutic plasma exchange in patients with hyperlipidemic pancreatitis. World J Gastroenterol 2004; 10(15): 2272-2274. http://www.wjgnet.com/1007-9327/10/2272.asp

INTRODUCTION

Hypertriglyceridemia (HTG) is a rare cause of pancreatitis. Hyperlipidemic pancreatitis (HLP) secondary to HTG presents typically as an episode of acute pancreatitis or recurrent acute pancreatitis or rarely as chronic pancreatitis [1]. The typical clinical profile of HLP is a patient with preexisting lipid abnormality along with the presence of secondary factors (such as poorly controlled diabetes mellitus, alcohol abuse, pregnancy, or a medication) that can induce HTG [2]. It is generally accepted that a TG level more than 1 000 mg/dL is needed to precipitate an episode of acute pancreatitis [2]. It is postulated that hydrolysis of TG by pancreatic lipase into free fatty acid is toxic to pancreatic endothelium and acinar cells [3]. In an animal study, hyperlipidemia could intensify the course of acute edematous pancreatitis and necrotizing pancreatitis [3].

Plasmapheresis has been claimed to reduce triglyceride level rapidly in HLP [4-11] and is believed to halt the progression of HLP [8-10]. Actually, experiences of plasmapheresis in HLP are limited and only sporadic cases were reported [12-15]. There was no control study in the past concerning whether plasmapheresis could improve the mortality or morbidity of HLP. Our aim was to analyze the benefits of plasma exchange by comparing the mortality and morbidity of HLP patients with those without receiving such an intervention.

MATERIALS AND METHODS

Patient characteristics

From September 1992 to June 2003, a total of 862 patients with acute pancreatitis were reviewed and 94 patients were consistent with hyperlipidemic pancreatitis (HLP). As plasma exchange has been available as an optional therapy of HLP since August 1999 in our hospital, the patients were assorted into 2 groups (group I: before August 1999 and group II: after August 1999). Group I consisted of 34 patients (before the availability of plasmapheresis) and group II consisted of 60 patients (after the availability of plasmapheresis). Twenty of 60 patients in group II received plasma exchange after giving their consent. The Ranson’s score was used for assessment of the severity of pancreatitis. Half of the patients receiving plasma exchange were severe cases (Ranson’s score ≥ 3). The anatomical change of acute pancreatitis was assessed according to the Balthazar’s grading. The enrolled criteria of plasma exchange in HLP were as followings: (1) overt symptoms of acute pancreatitis, (2) pancreatitis proved by CT, ultrasound or elevation of pancreatic enzymes, (3) triglyceride (TG) > 1000 mg/dL and lactescent serum, (4) exclusion of other causative conditions, such as gall stone, trauma or neoplasm, (5) patient’s agreement. The mortality and morbidity between group I and group II were compared.

Furthermore, the patients with severe HLP (Ranson’s score ≥ 3) were analyzed separately. We divided the patients with severe HLP (a total of 29 patients) into 2 groups. Group A received plasma exchange, while group B did not receive the intervention. The mortality and morbidity between group A and group B were also compared.

The secondary factors inducing HTG in our patients included diabetes mellitus (46 patients), alcoholic consumption (32 patients) and oral contraceptive (one patient). The median time for starting plasma exchange was 3 d after symptom onset (range, 2-6 d).
Apheresis
Plasma exchange was carried out using membrane filtration in a
KM 8800 membrane plasmapheresis monitor (Kuraray, Osaka,
Japan) with a Plasmacure plasma separator (Kuraray, Osaka,
Japan) to separate plasma from blood. One calculated plasma
volume was processed during each session of plasma exchange.
One course of plasma exchange treatment consisted of one or
two daily sessions based on the doctor’s decision, single
session in 13 patients and two sessions in 7. Heparin was used
as the anticoagulant. Either a double lumen catheter in a central
vein (fifteen patients) or a dialysis catheter in an antecubital
vein (five patients) was used for vascular access. Replacement
fluid was given with fresh frozen plasma (FFP) in 8 patients and
isovolumetric 5% albumin solution in 12 patients.

Statistical analysis
t-test and chi-square test were used for statistical analysis.
P < 0.05 was considered statistically significant.

RESULTS
The demographic characteristics of all the patients are
summarized in Table 1. The mean age and sex distribution were
similar in both groups. The initial mean TG level was around
1 900 in both groups. The severity of pancreatitis was predicted
by the Ranson’s criteria. Severe pancreatitis (Ranson’s score ≥ 3)
was 20.6% in group I and 36.7% in group II (P = 0.105). The
anatomical change of pancreatitis was assessed according to the
Balthazar’s grading system and 54.2% of group I and 41.3%
of group II were belonged to Balthazar grade D or E (P = 0.305).
The mortality rate, systemic and local complications of both
groups are demonstrated in the Table 2. The systemic complication
was defined by the Atlanta definition [12]: (1) pulmonary
insufficiency, PaO2 < 8 kPa, (2) renal insufficiency, Cr > 2 mg/dL,
(3) shock, SBP < 12 kPa, (4) UGI bleeding >500 mL/24 h. The
local complications included abscess and pseudocyst formation.
There was no significant difference between group I and group
II in mortality and complications. Further comparison of individual
items of systemic and local complications between the two groups
revealed no statistical differences (Tables 3, 4).

Table 1	Demographic characteristics		
	Group I (n=34)	Group II (n=60)	_P_ value
Age (yr)	40.8±6.8	42.3±8.9	0.394
Initial TG	1 922±287	1 913±612	0.966
DM (%)	38(12/34)	55(33/60)	0.118
Alcohol (%)	44(15/34)	28.3(17/60)	0.121
Ranson >3(%)	20.6(7/34)	36.7(22/60)	0.105
Balthazar D, E (%)	54.2(13/24)	41.3(19/46)	0.305

When severe hyperlipidemic pancreatitis (Ranson’s score ≥ 3)
was analyzed separately (Table 5), the mortality rate, systemic
and local complications of group A (with plasmapheresis) and
group B (without plasmapheresis) were not statistically different
(P = 0.369, 0.153, 0.454, respectively).
The mean serum concentration of TG and lipase fell significantly after plasma exchange. The serum TG level declined
from 2 019±780 mg/dL to 691±331 mg/dL (65.8% reduction) and the serum lipase level declined from 4 007±355 U/L to 447±35 U/L
(88.8% reduction).

Table 3	Comparison of systemic complications between patients before and after the availability of plasma exchange		
	Group I (n=34)	Group II (n=60)	_P_ value
ARF (%)	17.6(6/34)	10(6/60)	0.286
UGI bleeding (%)	0(0/34)	8.3(5/60)	0.084
Shock (%)	8.8(3/34)	10(6/60)	0.852
ARDS (%)	11.8(4/34)	10(6/60)	0.790

ARF: A cute renal failure; ARDS: A cute respiratory distress syndrome.

Table 4	Comparison of local complications between patients before and after availability of plasma exchange		
	Group I (n=34)	Group II (n=60)	_P_ value
Abscess (%)	17.6(6/34)	10(6/60)	0.286
Pseudocyst (%)	0(0/34)	8.3(5/60)	0.084

Table 5	Comparison of patients with severe hyperlipidemic pancreatitis receiving plasma exchange and not receiving plasma exchange		
	Group A: PE(+) (n=10)	Group B: PE(-) (n=19)	_P_ value
Mortality (%)	30(3)	15.8(3)	0.369
Systemic complications (%)	70(7)	42.1(8)	0.153
Local complications (%)	10(1)	21.1(4)	0.454

PE (+): With plasma exchange; PE (-): Without plasma exchange.

DISCUSSION
The association between hyperlipidemia and acute pancreatitis
was first described by Speck in 1865 [1]. Studies on patients
with familial HTG and their longterm follow-up have shown that
extreme elevation of TG occurred during episode of acute
pancreatitis [3]. It has been generally believed that a TG level of
more than 1 000 mg/dL was needed to precipitate an acute
pancreatitis [2]. The hypothesis of hyperlipidemic pancreatitis is
that pancreatic damage was resulted from toxic injury to the
capillary endothelium and the damage of pancreatic acinar cells
was caused by free fatty acids liberated by pancreatic lipase [3].
Conservative treatment (fasting, lipid lowering drugs, insulin
or fluid restoration) might decrease TG level slowly in a time
span of days to weeks [14]. In contrast, plasmapheresis might
remove excessive lipid from serum in about 2 h [4-10]. Sporadic
reports about plasmapheresis used in hyperlipidemic pancratitis
were seen in the past [15-30]. They all concluded that plasmapheresis
was helpful for treating or preventing acute hyperlipidemic
pancreatitis. However, no control study to assess the value of
plasmapheresis in the treatment of hyperlipidemic pancreatitis is
available.

Different methods have been used in plasmapheresis. Plasma
exchange is superior to double filtration in the removal of
excessive TG because the membrane of plasma separator was
usually blocked by the larger particles of chylomicron [31]. We
used plasma exchange with replacement of albumin or fresh
frozen plasma (FFP) in the treatment of HLP in this study. FFP
could supply lipoprotein lipase and apolipoprotein from the
healthy donor [32]. Lipoprotein lipase and apolipoprotein were
essential for the catabolism of TG [33].

In our study, plasma exchange could remove TG effectively
from turbid plasma in a short time (about 2 h). TG declined from 2019±780 mg/dL to 691±331 mg/dL (65.8% reduction). It was also postulated that plasmapheresis could remove circulating activated enzymes and inflammatory mediators\(^{15}\), but its beneficial effects in pancreatitis has not been proved\(^ {10}\). The serum lipase level declined from 4007±355 U/L to 447±35 U/L (88.8% reduction) after plasmapheresis in our patients.

Despite the marked reduction in TG and lipase after plasma exchange, we could not achieve statistically significant improvement in the mortality and morbidity after the intervention of plasma exchange. The mortality was 5.9% before the intervention (group I) and 6.7% after the intervention (group II). The rate of systemic complications (acute renal failure, UGI bleeding, shock, or pulmonary insufficiency) was 17.6% in group I and 18.3% in group II. The rate of local complications (abscess or pseudocyst) was 11.8% in group I and 6.7% in group II. While individual items of complications were considered, there were still no statistical differences between the two groups.

When the patients with severe HLP (Ranson’s score ≥ 3) were analyzed separately, the mortality rate was 30% in group A (with plasma exchange) and 15.8% in group B (without plasma exchange). The mortality in severe HLP was not decreased by plasma exchange. The rate of systemic complication was 70% in group A and 42.1% in group B (\(P=0.153\)). The rate of local complication was 10% in group A and 21.1% in group B (\(P=0.454\)). Again, plasma exchange was not able to alter the complication rate significantly.

Why could plasma exchange not improve the mortality and morbidity in HLP? We proposed that the time of plasmapheresis might be the critical point. If patients with HLP could receive plasma exchange as soon as possible, better result might be expected\(^ {9}\).

In conclusion, plasma exchange fails to improve the overall mortality and morbidity of HLP in our study. Further study with more cases is needed to clarify the role of plasmapheresis in the treatment of HLP.

REFERENCES

1. Yadav D, Pitchumoni CS. Issues in hyperlipidemic pancreatitis. J Clin Gastroenterol 2003; 36: 54-62
2. Toskes PP. Hyperlipidemic pancreatitis. Gastroenterol Clin North Am 1990; 19: 783-791
3. Hofbauer B, Friess H, Weber A, Baczako K, Kisleng P, Schilling M, Uhl W, Dervenis C, Buchler MW. Hyperlipaemia intensifies the course of acute oedematous and acute necrotising pancreatitis in the rat. Gut 1996; 38: 753-758
4. Yeh JH, Chen JH, Chiu HC. Plasmapheresis for hyperlipidemic pancreatitis. J Clin Apheresis 2003; 18: 181-185
5. Funuya T, Komatsu M, Takahashi K, Hashimoto N, Hashizume T, Wajima N, Kubota M, Itoh S, Soeno T, Suzuki K, Enzan K, Matsuo S. Plasma exchange for hypertriglycerideic acute necrotizing pancreatitis: report of two cases. Ther Apher 2002; 6: 454-458
6. Yeh JH, Lee MF, Chiu HC. Plasmapheresis for severe lipedemia: comparison of serum-lipid clearance rates for the plasma-exchange and double-filtration variants. J Clin Apheresis 2003; 18: 32-36
7. Piilot A, Nadler F, Cavallero E, Coquard JL, Jacotot B. Prevention of recurrent acute pancreatitis in patients with severe hypertriglycerideicemia: value of regular plasmapheresis. Pancreas 1996; 13: 96-99
8. Valbonesi M, Occhini D, Frisoni R, Malfanti L, Capra C, Gualandi F. Cyclosporin-induced hypertriglyceridaemia with prompt response to plasma exchange therapy. J Clin Apheresis 1993; 6: 158-160
9. Lennertz A, Parhofer KG, Samtleben W, Bosch T. Therapeutic plasma exchange in patients with chylomicronemia syndrome complicated by acute pancreatitis. Ther Apher 1999; 3: 227-233
10. Saravanan P, Blumenthal S, Anderson C, Stein R, Berkelhammer C. Plasma exchange for dramatic gestational hyperlipidemic pancreatitis. J Clin Gastroenterol 1996; 22: 295-298
11. Bildirici I, Esinler I, Deren O, Durukan T, Kabay B, Onderoglu L. Hyperlipidemic pancreatitis during pregnancy. Acta Obstet Scand 2002; 81: 468-470
12. Bradley EL. A clinically based classification system for acute pancreatitis. Arch Surg 1993; 128: 586-590
13. Athyros VG, Giouleme OI, Nikolaidis NL, Vasiliadis TV, Bouloukos V, Kontopoulos AG, Eugenidis NP. Long-term follow-up of patients with acute hypertriglyceridemia-induced pancreatitis. J Clin Gastroenterol 2002; 34: 472-475
14. Fortson MR, Freedman SN, Webster PD 3rd. Clinical assessment of hyperlipidemic pancreatitis. Am J Gastroenterol 1995; 90: 2134-2139
15. Heinisch A, Balie C, Kadow R. Plasmapheresis in severe acute pancreatitis-a new therapeutic option? Gastroenterology 1995; 108: 359

Edited by Wang XL. Proofread by Chen WW and Xu FM