量子色力学的理論における相構造の研究

工学系研究科 12634019 牧山 隆洋

平成 28 年 3 月 7 日
概要
初期宇宙の高温度や中性子星内部の高密度では物質は日常の生活のそれとは全く違っている。このような特別な状況の物質を理解するためには微視的視点が必要である。

原子核は陽子と中性子の束縛状態である。陽子や中性子はクォーク3つから構成されており、クォークは物質の最小単位、素粒子であると考えられている。クォークには、自然界の4つの相互作用の全てが働く。そのうち強い相互作用の力は量子色力学 (Quantum Chromodynamics, QCD)と呼ばれる力であり、クォークの間にグルオンが飛ぶことで力を伝達され、クォークとグルオンの基本的理論として記述される。QCD 真空はその非摂動論的特性とカラーの閉じ込めや色の対称性の発現破れといった興味のある特性のために非自明である。カラーの閉じ込めとはクォークやグルオンなどの色荷質が低エネルギーのQCD スペクトルでは明確に現れにくい現象であり、ここではカラーがない陽子や中性子やバイオン等の粒子が出てくる。カイラル対称性の発現破れはカイラル対称性QCD 真空で自発的に発現する現象である。これは質量の起源であり、例えば、中性子の質量の90%以上がこのメカニズムによっておる。

強い相互作用は高エネルギーで弱くなり、QCD 物質の高密度 T か高バリオン化学ポテンシャル μB で相転移を持つと考えられている。T − μB 平面での QCD の図は QCD 相転移と呼ばれ、QCD のラグランジアンはよく知られているもの、QCD の非摂動論的特性のために相転移の大部分は未だよくわかっていない。そこで QCD 相転移の解明は原子核理学では重要なテーマであり、素粒子物理や凝縮系物理の分野とも関連している。

QCD の第一原理計算の格子 QCD(Lattice Quantum Chromodynamics, LQCD) シミュレーションは符号問題のために有限温度 T と有限バリオン化学ポテンシャル μB で破統するので、高密度の QCD 力学についての我々はほとんど理解できていないといってよい。

LQCD シミュレーションのアプローチを補完するものとして有効モデルが考えられる。実際に高密度の QCD 相転移は主に有効モデルから理解されてきた。有効モデルには近似による不確かなところもあるが、有限バリオン化学ポテンシャル μB を含む大きな範囲をカバーすることができる。その中でも Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) モデルはカイラル対称性とカラーの閉じ込めを同時に扱うことができるように考えられているが、LQCD データを定量的に再現できるかどうかはまだ定かではない。

この論文の目的は 2 つに分けられる。一つは、PNJL モデルで数のアイソスペクト化学ポテンシャルを導入することによって Z3 対称性を保ち、より理想的状況のもとで QCD 物質の基本的な特性の一つである、閉じ込
1. Quark-gluon thermodynamics with the \mathbb{Z}_N symmetry
Hiroaki Kouno, Yuji Sakai, Takahiro Makiyama, Kouhei Tokunaga, Takahiro Sasaki, Masanobu Yahiro, Journal of Physics G:Nuclear Particle Physics 39 (2012) 085010-1 085010-21 引用文献[151]

2. Differences and similarities between fundamental and adjoint matters in $SU(N)$ gauge theories
Hiroaki Kouno, Tatsuhiro Misumi, Kouji Kashiwa, Takahiro Makiyama, Takahiro Sasaki and Masanobu Yahiro, Physical Review D88 (2013) 016002-1 016002-14 引用文献[155]

3. Confinement and \mathbb{Z}_3 symmetry in three-flavor QCD
Hiroaki Kouno, Takahiro Makiyama, Takahiro Sasaki, Yuji Sakai and Masanobu Yahiro, Journal of Physics G: Nuclear Particle Physics 40 (2013) 095003-1 095003-19 引用文献[156]

4. Phase structure of two-color QCD at real and imaginary chemical potentials: Lattice simulations and model analyses
Takahiro Makiyama, Yuji Sakai, Takuya Saito, Masahiro Ishii, Junichi Takahashi, Kouji Kashiwa, Hiroaki Kouno, Atsushi Nakamura, and Masanobu Yahiro Phys. Rev. D 93, 014505 (2016) - Published 14 January 2016 引用文献[171]
目次

1 導入 6

2 量子色力学 8
 2.1 閉じ込めと Z₃ 対称性について 9
 2.2 カイラル対称性の自発的破れ 11
 2.3 有限温度・有限密度の QCD 12

3 格子計算 15

4 PNJL モデル 17
 4.1 3 カラー 2 フレーバー PNJL モデル 18
 4.2 3 カラー 2+1 フレーバーの PNJL モデル 20
 4.3 2 カラー 2 フレーバーの PNJL モデル 21

5 3 フレーバー QCD の Z₃ 対称性と閉じ込め 23
 5.1 導入 ... 24
 5.2 PNJL モデルについて .. 27
 5.3 数値結果 .. 31
 5.3.1 μ = 0 のとき ... 31
 5.3.2 θ = 2π/3 のケース ... 34
 5.3.3 θ - T 平面の相図 ... 34
 5.3.4 θ = 0 と有限の θ における感受率 36
 5.3.5 まとめ ... 37

6 2 カラー QCD の解析 49
 6.1 導入 ... 49
 6.2 格子計算 .. 52
 6.2.1 格子作用 .. 52
 6.2.2 シミュレーションに対するパラメータセッティング 53
 6.2.3 計算される物理量 .. 54
 6.2.4 PNJL モデル ... 55
 6.3 物理量の解析接続 .. 57
 6.3.1 解析接続 .. 57
 6.3.2 β = 0.75(> Tₖ₀) .. 59
 6.3.3 β = 0.70(< Tₖ₀) .. 59
 6.3.4 β = 0.60, 0.65 < Tₖ₀ 59
 6.3.5 擬臨界線 ... 60
 6.4 クォーク数密度 ... 60
6.5 カイラル凝縮 63
6.6 ポリヤコフループ 64
6.7 相関 .. 65
6.8 PNJL と LQC_{2D} の結果の比較 66
 6.8.1 パラメータフィッティング 66
 6.8.2 クォーク数密度に対する PNJL と LQC_{2D} の比較 78
 6.8.3 カイラル凝縮 83
 6.8.4 ポリヤコフループ 83
 6.8.5 擬臨界線 85
 6.8.6 PNJL モデルのパラメータの決定における誤差と不
 確定さ 85
6.9 まとめ ... 88

7 全体のまとめ 94

A 解析接続に対するフィッティング関数の係数 110

5
1 導入

図 1: $\mu_B - T$ 平面の QCD 相図。

初めに研究の背景について述べる。章 2.3 で詳しく述べるが、図 1 は QCD 相図の模式図である。横軸はバリオン化学ポテンシャル μ_B で、縦軸は温度 T である。低温・低密度領域はハドロン相であると考えられている。低温・高密度領域はカラー超伝導相と考えられている。高温の高密度領域はクォーク・グルオンプラズマ (Quark-gluon Plasma, QGP) 相と考えられている。'Compact Star' という領域があるが、中性子星の内部を知るためには有限密度の QCD の解析が必要である。しかししながら、符号問題と呼ばれる大きな問題があるため、第一原理計算である LQCD は解くことが非常に困難になっている。一方で虚数 μ_B 領域や 2 カラー QCD には符号問題がないため格子計算が可能である。符号問題を解決するために様々な方法が提案されてきた。例えば、二重性効法 [1] やテーラー展開法 [2, 3]、虚数 μ_B から実数 μ_B 領域への解析接続法 [4]-[10]、複素ランジェルパン法 [11]-[13]、そして Lefschetz thimble 理論 [14, 15] である。

我々のアプローチは QCD から導かれる現象論モデル (PNJL モデル) による解析である。PNJL モデルと PNJL 的モデル [16]-[49] はカイラル対称性の自発的破れだけでなくクォークの閉じ込めを説明するように作られている。PNJL モデルは RW 周期性を示すので [28, 43],[50]-[53]、虚数 μ_B 領域では PNJL モデルはよく LQCD データを再現する [1],[4]-[7],[54]-[58]
このモデルはまた虚数アイソスピン化学ポテンシャル領域において LQCD データをよく再現する [34, 55, 56]。

この博士論文は 7 章で構成されている。第 2 章ではまず理論の母体である量子色力学 (QCD) についての一般的説明、また重要な概念である、閉
じ込めに関する \(\mathbb{Z}_3 \) 対称性やカイラル対称性の自発的破れの説明をしている。また、有限温度・有限密度の QCD について説明している。

第 3 章では QCD の第一原理計算である格子 QCD について説明をして、その問題点である符号問題について述べている。さらに、符号問題を避けることができる、虚数 \(\mu \) 領域や 2 カラー QCD の説明を述べている。

符号問題に対して我々は、QCD から導かれる現象論モデルを用いたが、第 4 章では本研究で用いた現象論モデルである PNJL モデルについて説明をしている。PNJL モデルと PNJL 的モデルはカイラル対称性の自発的破れと同じようにクオークの開じ込めを説明するように作られている。

第 5 章では「3 プレーヤー QCD の \(\mathbb{Z}_3 \) 対称性と閉じ込め」のタイトルでこれまでの研究を述べている。この研究では、虚数アイソスピン化学ポテンシャルを導入することによって \(\mathbb{Z}_3 \) 対称性を保ち、より理想的な状況のもとで QCD 物質の基本的な特性の一つである閉じ込めについての研究を述べている。

第 6 章では「2 カラー QCD の解析」というタイトルで 2 カラー QCD の研究について述べている。最近 2 カラー QCD の格子計算の結果がそろってきたが、2 カラー QCD には符号問題がなく、虚数と実数 \(\mu \) 領域の両方で格子計算が可能であるので、2 カラー QCD でも現象論モデルのパラメータを決めることができる。その上さらに 2 カラー QCD では虚数 \(\mu \) 領域の格子計算の結果から実数 \(\mu \) 領域の格子計算を再現する、現象論モデルによる解析接続法の有効性についても調べることができる。そこで岩崎ゲージ作用とウィルソンフェルミオン作用を用いた 2 カラーの LQCD シミュレーションを解析することにより、実数と虚数 \(\mu \) 領域の両方で 2 カラー QCD の相構造についての研究を述べている。さらにまた PNJL モデルを用いて結果を解析することにより、有効モデルの有効性を調べるための研究について述べている。

第 7 章では、全体の研究についてまとめている。最後付録の A では、解析接続法のパラメータをまとめている。
2 量子色力学

量子色力学（Quantum Chromodynamics）はクォークとグルオンの間の働く強い相互作用を記述する力学である。QCD は基本的には 6 フレーバーフェルミオン場を伴った SU(3) ゲージ理論である。古典的な QCD はユークリッド空間で以下のように記述される [59]。

\[\mathcal{L}_{\text{QCD}} = \bar{q}(\gamma_\mu D_\mu + \hat{m}_0)q + \frac{1}{4} F_{\mu\nu} F^{\mu\nu}. \]

ここで \(D_\mu = \partial_\mu + i A_\mu \) は共変微分で、\(F_{\mu\nu} \) はゲージ場の強さである。

\[F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + \frac{i}{g} [A_\mu, A_\nu]. \]

ここで \(g \) は無次元の結合定数である。\(q \) はクォーク場で、\(A_\mu \) はグルオン場を表す。

\[A_\mu(x) = \sum_{a=1}^{8} A_\mu^a(x) \frac{\lambda^a}{2} \]

群論によると SU(3) 群の生成子は 8 個あり、これらをゲルマン行列 \(\lambda^a \) で表す。

SU(3) ゲージ変換

\[q(x) \rightarrow q'(x) = V(x)q(x), \]
\[A_\mu(x) \rightarrow A'_\mu(x) = V(x)(A_\mu(x) + i \partial_\mu)V^{-1}(x), \]

のもとでラグラジアンは不変である。ここで \(V(x) \) は SU(3) 群に属する行列であり、以下で与えられる。

\[V(x) = \exp \left\{ i \sum_{a=1}^{8} \theta^a(x) \frac{\lambda^a}{2} \right\} \]

\(\theta^a \) は \(x^\mu \) に依存する変換の位相パラメータである。

6 フレーバーのクォーク場は \(q =^f(u, d, s, c, b, t) \) と表され、それらの質量は \(\hat{m}_0 = \text{diag}(m_u, m_d, m_s, m_c, m_b, m_t) \) と表される [60]。

我々に興味があるのは \(\Lambda_{\text{QCD}} \approx 200 \text{MeV} \) 当たりのエネルギースケールの物理なので、重いフレーバー (c, b, t) は無視できる。以下ではアイソスピン対称性の u, d に重い s クォークを足した系を 2+1 フレーバー、そして 2 つの軽いフレーバーだけの系を 2 フレーバーと呼ぶ。
表 1: QCD におけるカレントクォーク質量のまとめ [60]。u-、d- と s- クォークの質量は $\mu_{ren} \approx 2$ GeV における $\overline{\text{MS}}$ のような質量依存の subtraction 法のカレントクォーク質量の見積値である。ここで MS とは Minimal Subtraction 法のことである。また、c-、b- と t-クォークの質量は $\overline{\text{MS}}$ 法の running 質量である。

m_u	m_d	m_s	m_c	m_b	m_t
2.3 MeV	4.8 MeV	95 MeV	1.275 GeV	4.18 GeV	160 GeV

2.1 閉じ込めと Z_3 対称性について

QCD において、パイオンや陽子や中性子などのカラーを持たない粒子を見ることはできても、色電荷を持ったクォークやグルオンをみることはできない。この現象をカラーの閉じ込めと言う。

有限温度 T における閉じ込めと非閉じ込め相転移を表すために、純ヤンミルズ（Yang-Mills、YM）極限の秩序変数を導入する。有限温度 T における YM 作用は以下のよう表され、

$$ S_{YM} = \int_0^\beta d\tau \int d^3x \frac{1}{4} F_{\mu\nu} F_{\mu\nu} $$

ここで $\beta = 1/T$ で $A_\mu(\tau, \vec{x})$ は次の周期的境界条件を満たす。

$$ A_\mu(0, \vec{x}) = A_\mu(\beta, \vec{x}). \quad (2.8) $$

この境界条件は虚時間方向をコンパクト化し、熱力学において重要な役割を果たす。

$SU(3)$ ゲージ場は時間方向がコンパクト化された時空間で定義され、配位空間は位相幾何類に分類される。この位相的に非自明な構造は閉じ込めと関連しており、以下のように明らかにされる。YM 作用が周期的ゲージ変換で定義により不変である。加えて、以下非周期的なゲージ変換を考えることができて、

$$ A_\mu \rightarrow A'_\mu(x) = V(x)(A_\mu(x) + i\partial_\mu)V^\dagger(x), \quad (2.9) $$

ここで、

$$ V(\tau + \beta, \vec{x}) = z_n V(\tau, \vec{x}), \quad (2.10) $$

$$ V(\tau, \vec{x}) \in SU(3), \quad (2.11) $$

$$ z_n \in Z_3 \subset SU(3). \quad (2.12) $$
Z_3 は $SU(3)$ の中心群を表す。これは $SU(3)$ の離散的成分群でその要素は $SU(3)$ のどのような要素とも交換する。z_n の具体的な形は

$$z_n = \exp \left[\frac{2\pi i}{3} n \right] \quad (2.13)$$

ここで、$n = 0, 1, 2$ である。式 (2.9) の変換を Z_3 変換と呼ぶ。Z_3 はゲージ変換の一部なので、YM グラフジアン密度の変換の対称性の一つである。その上で、YM 分配関数はゲージ場の周期的境界条件 (2.8) を満たすので、Z_3 変換で不変である。これは Z_3 対称性と呼ばれている。熱力学的な YM 理論はこのような周期的ゲージ対称性と Z_3 対称性を持つ。

高温では Z_3 が自発的に破れることが知られている [61]。秩序変数はポリヤコフループで、

$$\Phi = \frac{1}{3} \text{tr}_c (L) \quad (2.14)$$

ここで

$$L = \exp \left[i \mathcal{P} \int_0^{1/T} A_4 d\tau \right]. \quad (2.15)$$

である。これは虚時間方向のウィルソン線である。Φ は Z_3 変換のもとで以下のように変換されて、

$$\Phi \rightarrow z_n \Phi. \quad (2.16)$$

無限に重いクォークが系に置かれたときに、Φ は分配関数として解釈することができる。ここでヘルムホルツの自由エネルギー、

$$F = -T \log Z \quad Z = e^{-\beta F} \quad (2.17)$$

を用いて、

$$\Phi = e^{-\beta F_Q}. \quad (2.18)$$

となる。ここで、F_Q は重いクォークの自由エネルギーである。もし F_Q が無限大ならば、どんなクォーク、色荷も置くことができない。これは系が閉じ込めることを意味している。純 YM 理論で、閉じ込め・非閉じ込めの相転移は Z_3 対称性によってこのように理解され、秩序変数はポリヤコフループ Φ である。クォークは Z_3 対称性を厳密に破っているので、Z_3 対称性は動力学的クォークの現実的な QCD で厳密ではない。閉じ込めの厳密な秩序変数はまだ見つかっていないが、Φ は一般に近似的な秩序変数として用いられている。
2.2 カイラル対称性の自発的破れ

カイラル対称性の自発的破れとは、カイラル極限 (chiral limit, \(m_q \to 0 \)) で QCD のラグラジアン (2.1) がもともと持っていたカイラル対称性 \(SU(N_f)_L \times SU(N_f)_R \) が真空で \(SU(N_f)_V \) に自発的に破れる現象である [62, 63, 64]。その結果、\((N_f^2 - 1) \) 個の南部-Goldstone ボソノ (Nambu-Goldstone Boson, NG boson) があらわれて、クォークは質量を獲得する。実際は \(m_q \neq 0 \) なので、カイラル対称性は最初から近似的に破れている。

\[SU(N_f)_L \times SU(N_f)_R \] カイラル変換とは、フェルミオンの左巻き成分 \(\psi_{L,f} \equiv \frac{1-i}{\sqrt{2}} \psi_f \) と右巻き成分 \(\psi_{R,f} \equiv \frac{1+i}{\sqrt{2}} \psi_f \) に対して独立な \(SU(N_f) \) 変換、

\[
\psi_{L,f} \to \psi'_{L,f} = U(\theta_L)_{f'f} \psi_{L,f'} \quad , \quad U(\theta_L)_{f'f} = \exp(i\theta_L^a T^a) \in SU(N_f)_L
\tag{2.19}
\]

\[
\psi_{R,f} \to \psi'_{R,f} = U(\theta_R)_{f'f} \psi_{R,f'} \quad , \quad U(\theta_R)_{f'f} = \exp(i\theta_R^a T^a) \in SU(N_f)_R
\tag{2.20}
\]

を行うことである。\(\theta_L^a \) と \(\theta_R^a \) は独立な変換のパラメータである。カイラル変換は大域的な連続変換で、このカイラル変換は以下のようにベクトル変換と軸性変換に組み直すことができる。

ベクトル変換：\(\psi_f \to \psi' = U(\theta_V)_{f'f} \psi_f \),

\[U(\theta_V)_{f'f} = \exp(i\theta_V^a T^a) \in SU(N_f) \]

軸性変換：\(\psi_f \to \psi' = U(\theta_A)_{f'f} \psi_f \),

\[U(\theta_A)_{f'f} = \exp(i\gamma_5 \theta_A^a T^a) \tag{2.21} \]

ベクトル変換は左巻き成分と右巻き成分を同じパラメータ \((\theta_L = \theta_R = \theta_V) \) で変換させた変換、軸性変換は左巻き成分と右巻き成分を逆符号のパラメータ \((\theta_L = -\theta_R = -\theta_A) \) で変換させた変換に対応する。理論が \(SU(N_f)_L \times SU(N_f)_R \) カイラル対称性を持つとは、ラグラジアンが (2.19), (2.20) のカイラル変換で不変であるということである。

QCD のラグラジアン (2.1) はカイラル極限でカイラル対称性を持つ。現実の世界では、クォークは質量零ではなくカレントクォーク質量を持つので、カイラル対称性は QCD の厳密な対称性ではない。しかしながら、\(u, d \) クォークのカレントクォーク質量は数 MeV で QCD スケール \(\Lambda_{QCD} \) に比べて小さいので、\(u, d \) 部に関してカイラル対称性は近似的対称性とみなせる。したがってカイラル対称性が状態のレベルで保たれていれば、現実の \(u, d \) 部の軽いハドロンのスペクトルにもその対称性があらわれて
いるはずであるが、実験によれば、状態のレベルでカイラル対称性は破られており、これをカイラル対称性の自発的破れと言う。現在では、QCDのカイラル対称性は $SU(N_f)_L \times SU(N_f)_R$ から $SU(N_f)_V$ に破れと考えられている。カイラル対称性の自発的破れの秩序変数はカイラル凝縮（chiral condensate, $\langle \bar{q}q \rangle$）である。

2.3 有限温度・有限密度の QCD

QCD は漸近的自由な理論、すなわちエネルギーが大きくなるにつれ、結合が弱くなる。この変化が低エネルギースケールと高エネルギースケールの間で QCD 真空を変える [65]。漸近的自由ではなくいわゆるハーゲドールン極限温度に動機づけられてだが [66, 67]、初めカピポとパリジによって 1975 年に [68]、このような相転移は温度 T とバリオン数密度 n_B の関数として推測された。

図 2 は $\mu_B - T$ 相図における QCD 相図を示している。ここで、μ_B はバリオン数化学ポテンシャルである。QCD は確定された理論であるので、QCD 相図は QCD の分配関数から解析的にあるいは数値的に求められるべきである。しかしながら、符号問題と呼ばれる問題のために格子 QCD (LQCD) 計算を有限密度に応用することが困難である。$T = \mu_B = 0$ では QCD 真空の特徴は実験的に研究されている。カイラル対称性が自発的に破れているところで、クーロンやグルオンはハドロンに閉じ込められている。バリオンは最も軽いハドロンで NG ボソン (Nambu-Goldstone boson) としてよく理解されているので、QCD 物質はバイオンを力学的自由度とするカイラル摂動論で表される。

高温では相互作用が強く、非閉じ込めでカイラル対称性は再現しているので、クーロンやグルオンは自由粒子のようになる。これをクーロン・グルオン・プラズマ相 (QGP) 相と言う。高密度では、クーロンはクーロン間相互作用の anti-triplet チャネルを通してクーロン対を形成すると考えられる。このクーロン間相互作用は $T = \mu_B = 0$ でバリオンをつくり、高いバリオン化学ポテンシャル n_B でさえも作動していると考えられる。後者はカイラー超伝導相と呼ばれている [69, 70]。

格子 QCD は有限の μ_B では符号問題があるが、QCD 物質を理解するうえでは強力な方法である。$\mu_B = 0$ では QCD 相構造が最近ではより理解されている。2つの大きなグループ、Hot QCD とヘッパータール-ブダペストのチームは実際のクーロン質量に近い改良されたスタッグドフェルミオンの 2+1 フレーバーの LQCD シミュレーションを行った。LQCD シミュレーションはハドロン相から QGP 相になる相転移はクロスオーバーであることを示した [71]。擬臨界温度 (T_c) は 155 [MeV] で、秩序変数の密度依存性と状態方程式 (Equation of state, EoS) は定量的に与えられて
図 2: $\mu_B - T$ 平面の QCD 相図。

いる [72]-[77]。チャームクォークは、T_c 以下ではその効果は無視されてきたが [78, 79]、最近では計算が行われている。このように現実的な QCD 物質の EoS は $\mu_B = 0$ では LQCD シミュレーションによって得られる。T_c 以下では EoS はハドロンレゾナンスガスモデル (Hadron Resonance Gas model, HRG) によってよく理解される [72]-[77]。一方で、T_c のすぐ上では、相互作用がまだ大きく、EoS が択動論的 QCD で予想されるとはまだ言い難い。この振る舞いは強く結合法 QGP (strong QGP, sQGP) と呼ばれている。sQGP は初め重イオン衝突型加速器 RHIC の実験によって発見された [80]。[81, 82] にそのレヴューが掲載されている。択動論は T_c のすぐ上では有効でないが [83]、$T \gtrsim 2T_c$ での QCD 物質の振る舞いは、最低次のツリーレベルから数えて 3 番目に低い次元までを考慮した狭帯ループの択動論で理解されている [84]。

$T = 0$ で μ_B が有限の μ_B 軸では、格子計算が難しくために QCD 相構造はまだ未解明である。一般的な原子核の密度の状態方程式は原子核実験によって研究されている。原子核物質の飽和状態の特性は、同種物質による不安定性から引き起こされる液体ガスの一次の相転移が存在することを示唆している [85]-[87]。高密度の QCD 物質は中性子星 (Neutron...
Stars, NSs) 内部に実現すると期待されるが、中性子星の質量、半径、冷却曲線に関する観測からは高密度の QCD 物質に関する間接的な情報が得られるにすぎない。このように中性子星内部では、カラー超伝導相や非閉じ込めへの相転移が起きているのか定かではない。
3. 格子計算

LQCD シミュレーションは QCD の第一原理計算として最も広く用いられている。LQCD は、フェルミオン場が各格子点上に定義されて、ゲージ場が局所的ゲージ不変性を保つように各格子の辺上でにある、量子場の理論 [88] の正則化の方法である。LQCD では経路積分はモンテカルロ法 (MC 法) によって評価される。現段階では LQCD シミュレーションは非摂動論的な枠組みの中で QCD を確立する唯一の方法である。実際に LQCD シミュレーションはハドロン質量や崩壊定数 [89] や核力の定性的な挙動 [90] に関する現実的な実験値をよく再現する。

しかしながら、有限のクォーク化学ポテンシャル (μ_q) では、LQCD シミュレーションにはいわゆる符号問題がある。QCD の分配関数は以下のように与えられる。

\[
Z(\mu_q) = \int DAD\bar{q}Dq \exp \left[-(S_q + S_g)\right], \quad (3.1)
\]

\[
S_q \equiv \int d\tau \int d^3\bar{x}\left(\gamma_\mu D_\mu + \bar{m}_0 - \gamma_4\mu_q\right)q, \quad (3.2)
\]

\[
S_g \equiv \int d\tau \int d^3\bar{x}\frac{1}{4} F_{\mu\nu}^a F_{\mu\nu}^a. \quad (3.3)
\]

ここで D はディラック演算子で D ≡ γ_µ(∂_µ - iA_µ) である。経路積分はモンテカルロ法で評価される。実際的にはクォーク場の積分の後で、グルオン場の配位に対するインポータンスサンプリング法が用いられる。クォーク場を積分した形は以下のようになる。

\[
Z(\mu_q) = \int DA \det M(\mu_q) \exp[-S_g], \quad (3.4)
\]

\[
M(\mu_q) \equiv \gamma_\mu D_\mu + \bar{m}_0 - \gamma_4\mu_q. \quad (3.5)
\]

\(M(\mu_q)\) はフェルミオン行列式と呼ばれ、インポータンスサンプリング法を用いるためには実数でなければならないう。\(\mu_q = 0\) では \(M(\mu_q = 0)\) が実数であることは容易に示される。有限の \(\mu_q\) では行列式は一般には実数ではなく、以下の関係を満たしている。

\[
(detM(\mu_q))^* = detM(-\mu_q^*). \quad (3.6)
\]

このように有限 \(\mu_q\) ではインポータンスサンプリング法は破綻する。これが符号問題である。

いくつかのパラメータを変えることで LQCD シミュレーションは符号問題を避けることができる。式 (3.6) は純虚数化学ポテンシャルに対してはフェルミオン行列式が実数であることを示している [4, 5, 54]。
一方２カラー QCD にも符号問題がない。２カラー QCD は疑似現実性を持つ [91]。なぜなら、

\[Dt_2 C\gamma_5 = t_2 C\gamma_5 D^\dagger, \quad (3.7) \]

が満たされる。ここで \(t_i \) はカラー空間のパウリ行列であり、\(C = \gamma_2\gamma_4 \) はディラックの荷電共役変換行列である。このためフェルミオン行列は次の関係を満たす。

\[
\begin{align*}
\det[M(\mu)] &= \det[(t_2 C\gamma_5)^{-1} M(\mu)(t_2 C\gamma_5)] \\
&= (\det[M(\mu^*)])^*
\end{align*}
\quad (3.8)
\]

これは \(\mu \) が実数であるとき、\(\det[M(\mu)] \) が実数であることを意味している。こういうわけで２カラーの QCD には虚数と実数 \(\mu \) 領域の両方で符号問題がない。
4 PNJL モデル

Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) モデルは低エネルギー QCD の最も効果的な有効モデルの一つである [92]-[131]。PNJL モデルでは Nambu-Jona-Lasinio (NJL) 型のモデル [62, 132] においてクォーク場がゲージ場 [96] と結合している (NJL モデルに関しては [133]-[135] を参照)。PNJL モデルではカイラル対称性と閉じ込めを同時に解析することができる。ここではモデルの基本的な特徴についてふれる。

N_f フレーバーの PNJL のラグランジアンは以下のように与えられている。

$$L_{PNJL} = \bar{q}(\gamma_{\nu}D_{\nu} + \tilde{m}_0 - \gamma_4 \tilde{\mu})q - G_1 \sum_{a=0}^{[\bar{q}T_a q]^2 + (\bar{q}\gamma_5 T_a q)^2}]$$

ここで、T_a は $SU(N_f)$ の生成子で、$D_{\nu} = \partial_{\nu} - i\tilde{\sigma}_{\mu a}A^a_{\mu}T_a$ である。N_f フレーバーのクォーク場 q は質量 $\tilde{m}_0 \equiv \text{diag}(m_u, m_d, ...)$ を持つ。また、$	ilde{\mu} \equiv \text{diag}(\mu_u, \mu_d, ...)$ はフレーバー空間のクォーク化学ポテンシャル行列を示している。G_1 は $SU_v(N_f) \otimes SU(A)(N_f) \otimes U_v(1) \otimes U_A(1)$ 対称クォーク相互作用の結合定数を表している。G_2 は $U_A(1)$ 対称性を厳密に破る Kobayashi-Maskawa-'tHooft (KMT) 行列相互作用の結合定数を表しているが、ここで行列式はフレーバー空間におけるものである [136]-[139]。

PNJL モデルで A_4 は一つの背景場である。ポリヤコフループ Φ とその複素共役 Φ^* はユークリッド時空で以下のように定義されて、

$$\Phi = \frac{1}{3}\text{tr}_c(L), \quad \Phi^* = \frac{1}{3}\text{tr}_c(\bar{L}),$$

ここで、$L \equiv \exp(iA_4/T)$ で、ポリヤコフゲージにおいては $A_4/T = \text{diag}(\phi_r, \phi_b, \phi_b)$ となる。ただし、λ_d はトレース 0 なので、$\phi_r + \phi_b + \phi_b = 0$ を満たす。このことから、

$$\Phi = \frac{1}{3}(e^{i\phi_r} + e^{i\phi_b} + e^{i\phi_b})$$

$$\Phi^* = \frac{1}{3}(e^{-i\phi_r} + e^{-i\phi_b} + e^{-i\phi_b})$$

となる。$U(\Phi[A], \Phi^*[A], T)$ はポリヤコフループのポテンシャルである。ここでは、参照 [22] のポリヤコフループポテンシャルを用いて、

$$U = T^4 \left[- \frac{a(T)}{2} \Phi^* \Phi + b(T) \ln(1 - 6\Phi^* + 4(\Phi^3 + \Phi^*^3) - 3(\Phi^*^2)) \right]$$

(4.4)
表 2: 参照 [22] で定義されたポリヤコフポテンシャル部のパラメータセット。パラメータの次元はすべて無次元である。

a₀	a₁	a₂	b₃
3.51	-2.47	15.2	-1.75

とする。ここで、

\[a(T) = a_0 + a_1 \left(\frac{T_0}{T} \right) + a_2 \left(\frac{T_0}{T} \right)^2, \quad b(T) = b_3 \left(\frac{T_0}{T} \right)^3. \] \((4.5) \)

したがって、\((a_0, a_1, a_2, b_3, T_0)\) の 5 つのパラメータがあり、純ゲージ理論の有限温度 \(T\) で LQCD データを再現するように決められる。\(U\) は大きな温度 \(T\) でステファン・ボルツマン (SB) 極限に達するように作られていて、

\[\lim_{T \to \infty} U = -\frac{14\pi^2}{90} T^4 \] \((4.6) \)

となる。これから \(a_0 = 3.51\) が導かれる。LQCD 結果は、純ゲージ理論において \(T = T_0\) で一次転移が起こっていることを示している。これから別の制限が導かれて、

\[b_3 = -0.108(a_0 + a_1 + a_2). \] \((4.7) \)

\(T_0\) 以外のパラメータは表 2 にまとめられている。LQCD データから求められたもととの \(T_0\) の値は 270 [MeV] だが、この \(T_0\) の値を使った PNJL モデルでは零化学ポテンシャルにおける非閉じ込め相転移の臨界温度 \(T_c\) が LQCD で予想される \(T_c \approx 173 \pm 8 [\text{MeV}]\) ([140]-[143]) よりも大きな値になってしまい、そのためしばしば \(T_0\) を再スケールすることにより、\(T_c = 174 [\text{MeV}]\) を再現することが示されている [117]。

4.1 3 カラー 2 フレーバー PNJL モデル

3 カラー 2 フレーバーの PNJL モデルのラグラジアンはユークリッド時空で以下のように与えられる。

\[\mathcal{L} = \bar{q}(\gamma _\nu D_\nu + \bar{m}_0 - \gamma _4 \mu)q - G_1 \sum_{a=0}^3 [(\bar{q}_a q_a)^2 + (\bar{q}_a \gamma_5 q_a)^2] - G_2 \left[\det \bar{q}_i (1 + \gamma_5) q_j + \det \bar{q}_j (1 - \gamma_5) q_i \right] + \mathcal{U}(T, \Phi, \Phi^*) \] \((4.8) \)

2 フレーバーのクォーク場 \(q = (q_u, q_d)\) は質量 \(m_0 = \text{diag}(m_u, m_d)\) を持つ。クォーク数化学ポテンシャル行列 \(\mu\) は \(\mu = \text{diag}(\mu_u, \mu_d)\) で定義されて、\(\tau_0\)
\[
\vec{r} = (r_1, r_2, r_3) \text{ はそれぞれフレーバー空間では } 2 \times 2 \text{ の行列とパウリ行列である。ここでは } G_1 = G_2 \equiv G/2 \text{ とする。これによってラグランジアン（4.8）は簡単な形になる。}
\[
\mathcal{L} = \bar{q} (\gamma \nu D_\nu + \bar{m}_0 - \gamma_4 \mu) q - G[(\bar{q}q)^2 + (\bar{q}i \gamma_5 \vec{\tau}q)^2] + \mathcal{U}(T, \Phi, \Phi^*) .
\]
\]

となる。

平均場近似を行って、クォーク場で経路積分をとると、単位体積当たりの熱力学ポテンシャルを得て、

\[
\frac{\Omega}{V} = G \sigma^2 + U - 2N_c \sum_{f=u,d} \int_\Lambda \frac{d^3 \vec{p}}{(2\pi)^3} E_f - \frac{2N_c}{\beta} \sum_{f=u,d} \int_\Lambda \frac{d^3 \vec{p}}{(2\pi)^3} \left\{ \ln \left[1 + 3 \Phi e^{-\beta (E_f - \mu_f)} + 3 \Phi^* e^{-2\beta (E_f - \mu_f)} + e^{-3\beta (E_f - \mu_f)} \right] + \ln \left[1 + 3 \Phi^* e^{-\beta (E_f + \mu_f)} + 3 \Phi e^{-2\beta (E_f + \mu_f)} + e^{-3\beta (E_f + \mu_f)} \right] \right\}
\]

ここで、\(E_f = \sqrt{\vec{p}^2 + M_f^2} \), \(M_f = m_0 - 2G\sigma \), \(\sigma \equiv \langle \bar{q}q \rangle \) である。このモデルはくりこみ可能ではなく、\(\Omega \) の積分が発散するので、3 次元の運動量カットオフを導入し、式 (4.10) の \(\int_\Lambda \) を以下のように規格化する。

\[
\int_\Lambda \frac{d^3 \vec{p}}{(2\pi)^3} \to \frac{1}{2\pi^2} \int_0^\Lambda dpp^2 .
\]

簡単に、\(u \) クォークと \(d \) クォークに対して、\(m_\ell \equiv m_u = m_d \) とセットすることで、アイソスピン対称性を仮定する。このモデルではこのような

\(m_\ell \)	\(\Lambda (\text{MeV}) \)	\(G (\text{GeV}^{-2}) \)
5.5	631.5	5.498

表 3: 2 フレーバーの NJL モデルのパラメータセットのまとめ [144]。

に 3 つのパラメータ \(m_0 \), \(\Lambda \) と \(G \) がある。代表的なパラメータのセットは表 3 にまとめられている。\(m_0 = 5.5 \text{ [MeV]} \) と仮定すると、パイオンの崩壊定数 \(f_\pi = 93 \text{ [MeV]} \) とパイオン質量の \(m_\pi = 138 \text{ [MeV]} \) から \(\Lambda \) と \(G \) を決めることができる。

古典的変数 \(X = \Phi, \Phi^* \) と \(\sigma \) は定常条件から求められて、

\[
\frac{\partial \Omega}{\partial X} = 0 .
\]

定常条件の解は必ずしも \(\Omega \) の大域の最小値を与えるわけではない。局所的最小値や最大値を与えるかもしれない。そこで式 (4.8) に \(X(T, \mu_u, \mu_d) \) の解を入れたときに、解が大域の最小値をとるか確かめる。
4.2 3カラー 2+1 フレーバーの PNJL モデル

3カラー3フレーバーのPNJLモデルはユークリッド時空で以下のように与えられて、

\[
\mathcal{L} = \bar{q}(\gamma_{\nu}D_{\nu} + m_{0} - \gamma_4\mu)q - G_{S}\sum_{a=0}^{8}[(\bar{q}\lambda_{a}q)^2 + (\bar{q}i\gamma_5\lambda_{a}q)^2]
\]

\[+G_{D}\left[\text{det}\bar{q}_i(1 - \gamma_5)q_j + \text{det}\bar{q}_i(1 + \gamma_5)q_j\right] + \mathcal{U}(\Phi[A], \Phi^*[A], T) \quad (4.13)
\]

3フレーバーのクォーク場は \(q = (q_u, q_{d}, q_{s}) \) で質量 \(m_0 = \text{diag}(m_u, m_d, m_s) \) と化学ポテンシャル行列 \(\mu = \text{diag}(\mu_u, \mu_d, \mu_s) \) で定義される。パラメータの \(G_{S} \) と \(G_{D} \) はそれぞれスカラー型4点相互作用とKMT行列相互作用を示している。\(\lambda_{a} \) はゲルマン行列である。

平均場近似を行うと、平均場のラグランジアンが得られて、

\[
\mathcal{L}_{MP} = \bar{q}(\gamma_{\nu}D_{\nu} + M_{f} - \gamma_4\mu)q + U_{M} + \mathcal{U}(\Phi[A], \Phi^*[A], T), \quad (4.14)
\]

ここで

\[
M_u = m_u - 4G_{S}\sigma_u + 2G_D\sigma_d\sigma_s, \quad (4.15)
\]

\[
M_d = m_d - 4G_{S}\sigma_d + 2G_D\sigma_s\sigma_u, \quad (4.16)
\]

\[
M_s = m_s - 4G_{S}\sigma_s + 2G_D\sigma_u\sigma_d \quad (4.17)
\]

\(m_{u}(\text{MeV}) \)	\(m_{s}(\text{MeV}) \)	\(\Lambda(\text{MeV}) \)	\(G_{S}\Lambda^{2} \)	\(G_{D}\Lambda^{5} \)
5.5	140.7	602.3	1.835	12.36

表4: 2+1フレーバーのNJLモデルのパラメータセットのまとめ [145]。

ここで、\(\sigma_f \equiv \langle \bar{q}fq_f \rangle \) で

\[
U_{M} = 2G_{S}(\sigma_{u}^2 + \sigma_{d}^2 + \sigma_{s}^2) - 4G_{D}\sigma_u\sigma_d\sigma_s. \quad (4.18)
\]

クォーク場に関して経路積分を行い、単位体積当たりの熱力学波テンシャルを得ることができる。

\[
\frac{\Omega}{V} = U_{M} + \mathcal{U}(\Phi, \Phi^*, T) - 2\sum_{j=u, d, s}\int \frac{d^{3}p}{(2\pi)^{3}} [N_{c}E_{f}
\]

\[+\frac{1}{\beta}\ln[1 + 3\Phi e^{-\beta(E_{f} - \mu_{f})} + 3\Phi^{*}e^{-2\beta(E_{f} - \mu_{f})} + e^{-3\beta(E_{f} - \mu_{f})}]
\]

\[+\frac{1}{\beta}\ln[1 + 3\Phi^{*}e^{-\beta(E_{f} + \mu_{f})} + 3\Phi e^{-2\beta(E_{f} + \mu_{f})} + e^{-3\beta(E_{f} + \mu_{f})}] \]

\[= (4.19)\]
ここで \(E_f = \sqrt{p^2 + M_f^2} \) である。前節同様に運動量積分に対する 3 次元のカットオフが導入されている。u-d 部に対するアイソスピン対称性を \(m_l \equiv m_u = m_d \) とした。この 3 フレーバーの PNJL モデルは 5 つのパラメータ、\(G_S, G_D, m_l, m_s \) と \(\Lambda \) を持つ。代表的なパラメータは表 4 にまとめられている。これらのパラメータは真空のパイオン崩壊定数や \(\pi, K, \eta' \) メゾン質量の実験値を再現するように決定されている。

4.3 2 カラー 2 フレーバーの PNJL モデル

次に、\(N_c = N_f = 2 \) の場合を考える。QCD は \(m_0 = \mu = 0 \) の極限において Pauli-Gürsey 対称性を持つ [146, 147] が、2 カラー QCD ではカイラル対称性の役割を Pauli-Gürsey 対称性がする。PNJL のラグラジアンはこの対称性を持つように決まって [148, 149]、

\[
\mathcal{L} = \bar{q}(i\gamma^\mu D_\mu - m_0)q + G\left[2\bar{q}q + (q^T \gamma_5 \tau q)^2 + |q^T Ci\gamma_5 \tau_2 t_2 q|^2\right] - G_v(\bar{q}\gamma^\mu q)^2 - \mathcal{U}(\Phi) \tag{4.20}
\]

ここで \(q \) は 2 フレーバーのクォーク場であり、\(m_0 \) はカレントクォーク質量で、\(t_i \) と \(\tau_j \) はそれぞれカラーとフレーバー空間におけるパウリ行列である。ポテンシャル \(\mathcal{U} \) はポリヤコフループ \(\Phi \) の関数である。2 カラーではダイクォーク凝縮が比較的低密度でも表されるので、その効果もラグラジアンの中に含めている。また、ベクター型の相互作用も含めておく。

平均場近似を行うことで、熱力学ポテンシャルが得られて [148]、

\[
\Omega = -2N_f \int \frac{d^3p}{(2\pi)^3} \sum_{\pm}[E_p^+ + E_p^- + T(\ln f^- + \ln f^+)] + U + \mathcal{U}(\Phi) \tag{4.21}
\]

ここで

\[
f^\pm = 1 + 2e^{-\beta E_p^\pm} + e^{-2\beta E_p^\pm} \tag{4.22}
\]

\[
U = G(\sigma^2 + \Delta^2) - G_v n_q^2 \tag{4.23}
\]

である。また、\(\sigma \equiv <\bar{q}q> \) はカイラル凝縮、\(\Delta \equiv |<q^T Ci\gamma_5 \tau_2 t_2 q>| \) はダイクォーク凝縮で、\(n_q \equiv <\bar{q}^1 q> \) はクォーク数密度である。\(E_p^\pm \) は以下のように定義されて、

\[
E_p^\pm = \text{sgn}(E_p \pm \mu)\sqrt{(E_p \pm \mu)^2 + \Delta^2} \tag{4.24}
\]

21
であり、\(E_p \equiv \sqrt{p^2 + M^2} \), \(M \equiv m - 2G\sigma, \mu = -2Gn_q, \Delta = -2G\tilde{\Delta} \)で \(\text{sgn}(E_p \pm \mu) \) は符号関数である。\(m_0 = \mu = 0 \) のとき \(\Omega \) は Pauli-Gürsey 対称性の結果として \(\sigma - \Delta \) 平面内の回転に対して不変になる。

ポリヤコフゲージでは、ポリヤコフループ \(\Phi \) は実数 \(\phi \) に対して以下のように与えられて、

\[
\Phi = \frac{1}{2}(e^{i\phi} + e^{-i\phi}) = \cos(\phi)
\] （4.25）

参照 [148] に従えば、ポリヤコフループの有効ポテンシャルの形は、

\[
\frac{U(\Phi)}{T} = -b \left[24e^{-a/T} \Phi^2 + \ln(1 - \Phi^2) \right]
\] （4.26）

と考えることができる。ここで、\(a = 858.1 \text{ [MeV]} \) と \(b^{-1/3} = 210.5 \text{ [MeV]} \)である。このポテンシャルは純ゲージ極限では 2 次の非閉じ込め相転移を引き起こす。

このモデルはくりこみ可能でなく \(\Omega \) の積分が発散するので、3 次元の運動量カットオフを導入することで、規格化する。

\[
\int \frac{d^3p}{(2\pi)^3} \rightarrow \frac{1}{2\pi^2} \int_0^\Lambda dp^2.
\] （4.27）

\(m_x(\text{MeV}) \)	\(f_x(\text{Mev}) \)	\(M_0(\text{MeV}) \)
140	75.4	305

\(G(\text{GeV}^{-2}) \)	\(\Lambda(\text{MeV}) \)	\(m_0(\text{MeV}) \)
7.23	657	5.4

表 5: NJL 部のパラメタのセット。\(M_0 \) は真空での有効クォーク質量 [149]。

PNJL モデルの NJL 部には 4 つのパラメータ、\(M_0, \Lambda, G, m_0 \) がある。\(\Lambda \) と \(G \) は参照 [148, 149] と同じ値をとる。\(m_0 \) は LQCD 計算の真空での パイオニ質量の値を再現するようにする。\(G \) の値は LQCD 計算のクォーク数密度を再現するために選ぶ、\(G/G \) = 0.4 である [149]。表 5 は代表的なパラメータセットをまとめたものである。平均量 \(X = \sigma, \Delta, n_q, \Phi \) は以下の定常条件から求められる。

\[
\frac{\partial \Omega}{\partial X} = 0.
\] （4.28）

22
5 3フレーバーQCDの\mathbb{Z}_3対称性と閉じ込め

3フレーバーのQCDの\mathbb{Z}_3対称性と閉じ込めの関係について虚数アイソスピン化学ポテンシャル$(\mu_u, \mu_d, \mu_s) = (i\theta T, -i\theta T)$を用いたPNJLモデルによって研究した。ここで$T$は温度で、$\theta$は実数のパラメータである。縮退した3フレーバーに対して、$\theta = 2\pi/3$において系は\mathbb{Z}_3対称性を持つため、Φはここでは低温で値が0になる。2+1フレーバーの系に対して、対称性はどのθに対しても保存されないが、$\theta = \theta_{\text{conf}} < 2\pi/3$の低温では$\Phi$は0になる。系が明確な$\mathbb{Z}_3$対称性を持っていなくとも、$\Phi = 0$で定義された閉じ込め相が実現される。$\theta - T$平面では閉じ込め転移の臨界温度(critical endpoint, CEP)がある。零化学ポテンシャルの非閉じ込めのクロスオーバーは$\theta = \theta_{\text{conf}}$での一次の非閉じ込め転移の名残である。さらにクォーク数感受率の非対角化成分χ_{us}と非閉じ込め相転移の間の関係を研究した。LQCDシミュレーションはどのθに対しても符号問題がないために、本研究の結果はLQCDシミュレーションによって直接的に調べることができるが、最近そういった研究がなされ、以下のように現実論モデルの予想の多くが定性的に正しいことがわかった [150]。
5.1 導入

LQCD シミュレーションによって低温では QCD は閉じ込め相かカイラル対称性が破れている相で、高温では非閉じ込め相かカイラル対称性が回復している相である。カイラル対称性の回復が比較的よく理解されているにもかかわらず、閉じ込め・非閉じ込め相転移は十分に理解されていない。理解されていない主な原因として、非閉じ込めに対する明確な対称性が存在せず、そのため秩序変数が定かではないからである。カレントクォーク質量が無限の極限では、Z_{N_c} 対称性が明らかにそこにあるのでポリヤコフループは非閉じ込めに対する明確な秩序変数である。ここで N_c はカラーの数である。一方、カイラル凝縮はカレントクォーク質量が零の極限においてはカイラル対称性回復に対する明確な秩序変数である。現実には、u と d クォークは小さいカレントクォーク質量 $m_l \equiv m_u = m_d$ で、カイラル凝縮はカイラル対称性の回復に対して、よい秩序変数であると考えられているが、ポリヤコフループ Φ は非閉じ込め相転移に対してよい秩序変数であるという確証はない。

この問題に取り組むために、Z_{N_c} 変換のもとで不变なゲージ理論、すなわちフレーバー依存のフェルミオン境界条件をもつ縮退した N_c フレーバーフェルミオンのゲージ理論を考える [151, 152, 155, 156]。Z_{N_c} 対称のゲージ理論は以下のように考えられる。N_c カラーの QCD から始める。ユークリッド時空で分配関数 Z は、

$$ Z = \int Dq D\bar{q} DA \exp[-S_0]. \quad (5.1) $$

である。ここで、作用は、

$$ S_0 = \int d^4x \left[\sum_f \bar{q}_f \gamma_\mu D_\mu q_f + \frac{1}{4g^2} F_{\mu\nu}^a F^{a\mu\nu} \right]. \quad (5.2) $$

であり、ここで q_f はフレーバー f のクォーク場で、m_f はカレントクォーク質量で、$D_\mu = \partial_\mu - iA_\mu$ はゲージ場 A_μ の共変微分で、g はゲージ結合定数で、$SU(N_c)$ の生成子 T^a に対するゲージの強さは $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu - i[A_\mu, A_\nu] = F_{\mu\nu}^a T^a$ である。クォークに対する時間の境界条件は、

$$ q_f(x, \beta = 1/T) = -q_f(x, 0). \quad (5.3) $$

Z_{N_c} 変換によって境界条件が以下のようなになる。

$$ q_f(x, \beta) = -\exp(i2\pi k/N_c) q_f(x, 0) \quad (5.4) $$

また Z_{N_c} 変換によって [51, 52, 153, 154]、

$$ q \rightarrow Uq, \quad A_\nu \rightarrow U A_\nu U^{-1} - i(\partial_\nu U)U^{-1}, \quad (5.5) $$
U(x, \tau) は、整数 k に対して

\[U(x, \beta) = \exp(-2i\pi k/N_c)U(x, 0) \]

という性質を持った \(SU(N_c) \) の要素である。一方で、\(Z_{N_c} \) 対称性が \(SU(N_c) \) ゲージ対称性の中心群であるので、作用 \(S_0 \) は式 (5.2) の形にもとる。[50]。\(Z_{N_c} \) 対称性はこのように QCD のフェルミオン境界条件を通して破れる。

いま \(N \equiv N_f = N_c \) の \(N \) に縮退したフレーバークォークの \(SU(N) \) ゲージ理論を考えて、1から \(N \) までの整数によってラベルされたフレーバー \(f \) に対して、以下のフレーバー依存のねじれた境界条件（twist boundary conditions, TBC）を要請する:

\[q_f(x, \beta) = -\exp(-i\theta_f)q_f(x, 0) \]

\[= -\exp(-i(\theta_1 + 2\pi (f - 1)/N_c))q_f(x, 0) \quad (5.6) \]

ここで、\(\theta_1 \) は \(0 \leq \theta_1 < 2\pi \) を満たす任意の実数である。TBC がついた作用 \(S_0 \) は \(Z_{N_c} \) 総合のもので変化しない。事実、\(Z_{N_c} \) 総合は \(f \) を \(f - k \) に変え、\(S_0 \) は \(f - k \) を \(f \) と再ラベルすると変化しない。[151, 152, 155, 156]。

ユークリッド時間を \(\tau \) として、フェルミオン場 \(q_f \) が次のように置き換わるとき,

\[q_f \rightarrow \exp(-i\theta_f T \tau)q_f \quad (5.7) \]

作用は以下のように変化する [52],

\[S(\theta_f) = \int d^4x \left\{ \sum_f q_f(\gamma_{\nu}D_{\nu} - \mu_f\gamma_4 + m_f)q_f + \frac{1}{4g^2}F_{\mu\nu}^2 \right\} \quad (5.8) \]

ここで TBC は標準のもの（5.3）に戻り、\(\mu_f = iT \theta_f \) は実数クォーク数化学ポテンシャルである、TBC の条件が付いた \(S_0 \) はこのようにして標準の（5.3）の条件が付いた作用 \(S(\theta_f) \) と同じになる。

\(T = 0 \) の極限では \(Z_{N_c} \) 対称のゲージ理論は標準の境界条件（5.3）がついた QCD に等しい。\(T = 0 \) で \(\Phi = 0 \) に注意すると、\(Z_{N_c} \) 対称のゲージ理論では \(Z_{N_c} \) 対称はある温度 \(T_c \) まで保存され、\(T_c \) のうえでは自発的に破れると予想できる。この風発の考えは TBC の条件をつけた PNJL モデルによって確かめられている [151, 152, 155, 156]。\(Z_{N_c} \) 対称のゲージ理論では \(\Phi = 0 \) のクォーク相と有限クォーク数密度が低温から大きなクォーク数で実クォーク化学ポテンシャル \(\mu \) で現れる [152]。\(Z_{N_c} \) 対称はこのようにクォーク相があらわれることに対して本質的である。

現実の QCD ではしかしながらクォークの光子クォーク、クォークのカレントクォーク質量である \(m_1 \) よりも重いカレントクォーク質量 \(m_n \) を持つ。

のこととは TBC 条件がついているとしても現実の QCD は \(\mathbb{Z}_N \) 対称にはならないことを意味している。しかしながら現実の 2+1 フレーバーの QCD は縮退した 3 フレーバーの QCD からそれほど離れていないので、TBC やそれを少し拡張したものは閉じ込め・非閉じ込めを理解するうえで重要である。TBC の拡張として \(\theta \) 変数の TBC を考えることができて、

\[
(\theta_u, \theta_d, \theta_s) = (\theta, -\theta, 0),
\]

ここで \(\theta \) は 0 から \(\pi \) に変化する。この極限条件は図 3 に描いてある。

図 3: \(\theta \) 変数の TBC: 複素平面の単位円における \(e^{i\theta_f} (f = u, d, s) \) の位置。

\(\theta \) 変数の TBC の系は虚数アイソスピン化学ポテンシャルの系と等価で、

\[
(\mu_u, \mu_d, \mu_s) = (i \theta T, -i \theta T, 0),
\]

ここで \(\mu_f \equiv \mu_u - \mu_d = 2i \theta T \) は虚数アイソスピン化学ポテンシャルを示している。\(\theta \) 変数の TBC は \(\theta = 0 \) のときに、そして TBC (5.6) で \(\theta = 2\pi/3 \) のとき、標準の境界条件 (5.3) を満たす。低温に対しては、\(\Phi \) はどの \(\theta \) に対しても実数であり、荷電共役 (C) 対称性が自発的に破れないので、\(\theta \) が 0 から増えるにしたがって、\(\Phi \) は正から負の値になる。このことはある \(\theta \) の値 \(\theta_{\text{conf}} \) で \(\Phi \) が 0 になることを意味している。そこで静的クォークの自由エネルギー \(-T \ln[\Phi] \) は発散する。このようにして系が厳密に \(\mathbb{Z}_N \) 対称性を持たないといえども閉じ込めが現れる。このような意味で 2+1 フレーバーの虚数アイソスピン化学ポテンシャル (5.10) の QCD は解析するべき重要な系である。

零化学ポテンシャルと実数化学ポテンシャルに対して次のような重要な疑問がある。重イオン衝突における QCD 相転移のよい指標は何であろう

26
うか？10年ほど前、保存荷量の相互関係やゆらぎ（または感受率）がよいシグナルであると提案された [157]-[162]。もしカイラー転移の臨界温度 (CEP) [158] が存在するなら、パリオン数感受率は CEP で発散するので良いシグナルだろう [157, 161, 162]。最近では保存荷量の3つのモーメントが CEP のよい指標になると指摘されている [159]。その上さらに、クォーク-ハドロン相の2つの相の置換が提案されている [163]。ここではクォーク数感受率の非対角化成分 χ_{us} が閉じ込め-非閉じ込め転移のよい指標になるだろう。異なるフレーバー間の相関は非閉じ込めでは相互作用が弱いために消えるが、異なった種類のクォークが閉じ込められているハドロン相では有限になるからである。非対角化成分は最近 LQCD シミュレーション [164, 165] と、PNJL で研究されている [166, 167]。

この研究では縮退した 3 フレーバーと 2+1 フレーバーの両方のケースに対して、数数アイソスピン化学ポテンシャル (5.10) における QCD の解析を PNJL モデルによって行う。縮退した 3 フレーバーに対して、数数アイソスピン化学ポテンシャル (5.10) は $\theta = 2\pi/3$ で Z_3 被対称になり、このために、Φ はここで 0 になる。2+1 フレーバークォークに対しては、θ は $\theta = \theta_{\text{conf}} < 2\pi/3$ で消える。ここで θ_{conf} は T の関数である。$\theta - T$ 平面では、縮退した 3 フレーバーと 2+1 フレーバーの両方に対して、$\Phi = 0$ のラインがある。ライン上では、熱力学ポテンシャル Ω は両方のケースの間に同じ性質を持つ。2+1 フレーバーの現実の QCD では、非閉じ込め相は $\theta = 0$ でクロスオーバーであることが知られている [168]。非閉じ込めのクロスオーバーは $\theta = \theta_{\text{conf}}$ における 1 次の非閉じ込め転移の名残である。この θ 依存性は $\theta - T$ 平面に非閉じ込めの CEP があることを示唆している。

非閉じ込め転移と $\theta = 0$ と有限 θ でのクォーク数感受率 χ_{us} の非対角化成分の間の相互関係についても調べる。非閉じ込め転移の臨界温度は普通ポリヤコフルーポの感受率のピーク位置から定義される。臨界温度において χ_{us} はピークを持たないが、$|d\chi_{us}/dT|$ の絶対値はピークを持つ。この振る舞いは $\theta = 0$ においてよりも CEP においてはっきりしている。こうして、$\theta - T$ 平面では、$|d\chi_{us}/dT|$ のピーク位置から定義される転移線はポリヤコフルーポの感受率のピーク位置の転移線とほぼ合致する。

5.2 PNJL モデルについて

PNJL モデルと PNJL 的モデル [16]-[49] はカイラー対称性の自発的破れと同じようにクォークの閉じ込めを説明するように作られている。PNJL モデルは RW 周期性を示すので [16, 28, 43, 50, 52, 53], 視数 μ 領域では PNJL モデルは LQCD データを再現する [1]-[58]。このモデルはまた虚数アイソスピン化学ポテンシャル領域においてよく再現する [34, 55, 56]。
3 フレーバーの PNJL のラグランジェはユークリッド時空で次のように与えられ

\[\mathcal{L} = q(\gamma_\nu D_\nu + \bar{m} - \mu \gamma_4)q - G_S \sum_{\alpha=0}^8 [(\bar{q}_\alpha q_\alpha)^2 + (\bar{q}_\alpha \gamma_5 q_\alpha)^2] \\
+ G_D [\det \bar{q}_i (1 + \gamma_5) q_j + \text{h.c.}] + \mathcal{U}(\Phi[A], \Phi^*[A], T), \quad (5.11) \]

ここで \(D_\nu = \partial_\nu - i\delta_\nu A_4, \lambda_\alpha \) はゲルマン行列で、\(\bar{m} = \text{diag}(m_u, m_d, m_s) \)は質量行列を表し、\(\mu = \text{diag}(\mu_u, \mu_d, \mu_s) \)は化学ポテンシャル行列を表している。\(G_S \) と \(G_D \) はスカラーフェルミ粒子相互作用と KMT 相互作用の結合定数をそれぞれ表している [137, 138]。KMT 相互作用は明確に \(U_A(1) \) 対称性を破る。

[22] に従うと、ポリャコフポテンシャルは以下のように表されて、

\[\mathcal{U} = T^4 \left[- \frac{a(T)}{2} \Phi \Phi^* + b(T) \ln(1 - 6 \Phi \Phi^* + 4(\Phi^3 + \Phi^{*3}) - 3(\Phi^{*3})^2) \right], \]

\[a(T) = a_0 + a_1 \left(\frac{T_0}{T} \right) + a_2 \left(\frac{T_0}{T} \right)^2, \quad b(T) = b_3 \left(\frac{T_0}{T} \right)^3. \]

(5.12)

(5.13)

純ゲージ理論で、ポリャコフポテンシャルを \(T = T_0 \) における 1 次の非関連相転移が生じる [140, 141]。\(T_0 \) のもとととの値である 270[MeV] は純ゲージの QCD データから求められたが、この \(T_0 \) の値を使った PNJL モデルでは零化学ポテンシャルにおける非関連相転移の準安定相 \(T_c \) が LQCD で予想される \(T_c \approx 160 \) [MeV] ([72]-[74]) よりも大きな値になってしまう。そのためしばしば \(T_0 \) を 195 [MeV] に再スケールすることにより、\(T_c = 160 \) [MeV] を再現するようにしている [121]。

平均場近似を行うことにより単位体積当たりの熱力学ポテンシャルが得られて [110],

\[\Omega = -2 \sum_{f=u,d,s} \int \frac{d^3 p}{(2\pi)^3} \left[3E_f + \frac{1}{\beta}(\ln \mathcal{F}_f + \ln \mathcal{F}_f) \right] + U_M(\sigma_f) + \mathcal{U}(\Phi, T), \]

(5.14)

ここで

\[\mathcal{F}_f = 1 + 3\Phi e^{-\beta E_f^+} + 3\Phi^* e^{-\beta E_f^+} + e^{-3\beta E_f^+}, \]

\[\mathcal{F}_f = 1 + 3\Phi e^{-\beta E_f^+} + 3\Phi^* e^{-\beta E_f^+} + e^{-3\beta E_f^+} \]

(5.15)

(5.16)
また、\(\sigma_f = \langle \bar{q}qq \rangle \), \(E_f^\pm = E_f \pm \mu_f \) で、\(E_f = \sqrt{\mathbf{p}^2 + M_f^2} \) である。\(F_f(F_f) \) の項はクォーク（反クォーク）のループからきている。虚数化学ポテンシャルでは、\(\Omega \) は実数なので、\(\Phi^* = \Phi \) の共役である。虚数アイソスピン化学ポテンシャルに対しては、\(\Omega = \Phi \leftrightarrow \Phi^* \) の \(\mathcal{C} \) 変換のもとで \(\Omega \) は不変である。なぜなら、

\[
\Omega(\theta) \overset{\mathcal{C}}{\longrightarrow} \Omega(-\theta) \overset{u \leftrightarrow d}{\longrightarrow} \Omega(\theta),
\]

ここで 2 回目の変換は \(u \) と \(d \) のラベルの入れ替えである。真空項では運動量積分に対して 3 次元のカットオフがとりいれている [110]。動的クォークの質量 \(M_f \) とメンソのポテンシャル \(U_M \) は以下のように定義され、

\[
M_f = m_f - 4G_S \sigma_f + 2G_D \sigma_f \sigma_f',
\]

\[
U_M = \sum_{f=u,d,s} 2G_S \sigma_f^2 - 4G_D \sigma_u \sigma_d \sigma_s,
\]

ここで \(f \neq f', f \neq f'' \) そして \(f' \neq f'' \) である。

Set	\(m_l \) (MeV)	\(m_s \) (MeV)	\(\Lambda \) (MeV)	\(G_S \Lambda^2 \)	\(G_D \Lambda^5 \)
R	5.5	140.7	602.3	1.835	12.36
S	5.5	5.5	602.3	1.835	12.36
H	5.5	600.0	602.3	1.835	12.36

表 6: NJL 部のパラメータセットのまとめ。

PNJL モデルの NJL 部は 6 つのパラメータ \((G_S, G_D, m_u, m_d, m_s, \Lambda) \) を持つ。代表的なパラメータのセットは [145] を参照してもらいたい。例えば \(m_l = m_u = m_d = 5.5 \) MeV と \(m_s = 140.7 \) MeV などである。通常パラメータの値は真空で \(\eta' \) や \(\pi \) メソの質量や \(\pi \) メソの崩壊定数の実験値で決められている。ここでは、このパラメータのセットを ‘セッ ト R’ (realistic parameter set) と呼ぶことにする。理論的な興味からストレンジクォークの質量のみを 5.5 MeV から 600 MeV に変化させる。

\(m_s = 5.5 \) MeV のパラメータセットを‘セット S’ (symmetric parameter set) と呼び、\(m_s = 600 \) MeV のパラメータセットを‘セット H’ (Heavy strange quark parameter set) と呼ぶことにする。これらのパラメータは表 6 にまとめている。

熱力学ポテンシャル \(\Omega = \sigma_u, \sigma_d, \sigma_s, \Phi \) の関数である。変数空間において \(\Omega \) の大域的最小値の位置から平均場近似の値を与える。\(\sigma_u = \sigma_d = \mathcal{C} \)
対称性が自発的に破れる RW 相以外で保存されるので [53]、秩序数数として \(\sigma \equiv (\sigma_u + \sigma_d + \sigma_s)/3 \) と \(\sigma' = \sigma_u - (\sigma_u + \sigma_d)/2 = \sigma_u - \sigma_d \) を用いて、
\(\Phi \) と \(\Phi^* \) の代わりに、
\(\Phi_R = (\Phi + \Phi^*)/2 \) と \(\Phi_I = (\Phi - \Phi^*)/(2i) \) を導入する。
秩序数数の \(\Phi_I \) は \(C \) について奇な量で、\(\sigma, \sigma' \) と \(\Phi \) は \(C \) について偶な量である。

秩序数数の感受率は以下のように計算される [26]。

\[
\chi_{\varphi_i \varphi_j} = (C^{-1})_{\varphi_i \varphi_j},
\tag{5.20}
\]

曲率の行列 \(C \) は以下のように定義される。

\[
C_{\varphi_i \varphi_j} = \frac{\partial^2 \Omega(T, \mu, \varphi)}{\partial \varphi_i \partial \varphi_j}
\tag{5.21}
\]

ここで \(\varphi_1 = \sigma, \varphi_2 = \sigma', \varphi_3 = \Phi_R, \varphi_4 = \Phi_I \) である。以下では、紛らわしくないときは \(\mu_u, \mu_d, \mu_s \) のセットを \(\mu \) で表し、\(\sigma, \sigma', \Phi_R, \Phi_I \) のセットを \(\varphi \) によって表す。ポリクロプルの感受率、\(\chi_{\Phi_R \Phi_R} \) と \(\chi_{\Phi_I \Phi_I} \) は RW 相以外の仮数アイソピン化学ポテンシャルに対して実数である。

クォーク数密度の感受率は以下のように定義されて、

\[
\chi_{f f'} = -\frac{D^2 \Omega(T, \mu, \varphi(T, \mu))}{D \mu_f D \mu'_{f'}}
\tag{5.22}
\]

ここで、\(f, f' = u, d, s \) であり微分、\(\frac{D}{D \mu_f} \) は他の外部変数 \(T \) や \(\mu_f (\neq \mu_f) \)
を固定したときの \(\mu_{f'} \) に対する偏微分である。また \(T \) に対する感受率の微分を以下のように定義する。

\[
\chi_{f f', T} = -\frac{D \chi_{f f'}(T, \mu, \varphi(T, \mu))}{D T}
\tag{5.23}
\]

任意の整数 \(k \) に対して、\(\mathbb{Z}_3 \) 変換を用いると、

\[
\Phi \rightarrow e^{-i2\pi k/3}\Phi, \quad \Phi^* \rightarrow e^{i2\pi k/3}\Phi^*
\tag{5.24}
\]

\(\Omega \) は RW 周期性を持つと理解することができる [28, 43, 48, 53, 50]。

\[
\Omega(\theta_u, \theta_d, \theta_s) = \Omega(\theta_u + 2k\pi/3, \theta_d + 2k\pi/3, \theta_s + 2k\pi/3).
\tag{5.25}
\]

外部変数 \(\theta_f \) が \(\mathbb{Z}_3 \) 変換によって変わるので、RW 周期性は系が対称であることを意味しない。例外は \(\theta = 2\pi/3 \) で縮退した 3 フレーバーの系である。
実際に、\(\mathbb{Z}_3 \) 変換によって \(\theta_f \) は変わるが、変化した \(\theta_f \) はフレーバーのラベルを入れ替えることで、章 5.1 で述べたように変換してもとに戻る。低温 \(T \) で現れる閉じ込め相では、\(\mathbb{Z}_3 \) 対称性の結果として熱力学ポテンシャルが (5.14) で \(\Phi = 0 \) とすることで得られる。結果として得られる熱力学ポ
テンシャルは3つのクォークの構造 \(e^{-3E_f/T} \) のみを含む。フレーバー対称性は閉じ込めで保たれるが、非閉じ込め相では破れる [151, 152]。

最後に低温 \(T \) において、\(\Phi \) の \(\theta \) 依存性について考察する。(5.14) では \(\Omega \) はポリヨコフループポテンシャル \(\mathcal{U} \) と対数の項 \(F \equiv -T \sum_f (\ln F_f + \ln F_f) \)を通じてのみ \(\Phi \) に依存している。低温 \(T \) では \(T \ll M_f \) かつ \(\Phi \ll 1 \) をよく満たす。ここから \(F \) は以下のように近似されて、

\[
F \approx -6T\Phi N
\]

ここで

\[
N = \sum_f e^{-\beta E_f},
\]

であり、\(C \) 対称性が保存されるので \(\Phi \) と \(N \) は全ての \(\theta \) に対して実数である。低温 \(T \) に対しては、ポリヨコフループポotenシャル \(\mathcal{U} \) は \(\Phi = 0 \) で大域的最小値をとる。\(N \) が正（負）のとき、対数の項は最小の点を正（負）の \(\Phi \) に移す。\(\theta \) が 0 から 2\(\pi /3 \) に変化したとき、\(N \) は符号をプラスからマイナスに変化させる。結果として、\(\Phi = 0 \) の閉じ込め相が \(\theta \) のある値 \(\theta_{\text{conf}} \)で現れる。\(N = 0 \) から、

\[
\theta_{\text{conf}} \approx \arccos(-\frac{1}{2} e^{3(M_l-M_s)}),
\]

で、こうして縮退した 3 フレーバー \((M_l = M_s) \) に対して \(\theta_{\text{conf}} = 2\pi /3 \)、2 フレーバー \((M_s = \infty) \) に対して \(\theta_{\text{conf}} = \pi /2 \) である。これは \(\theta_{\text{conf}} \) が 2+1フレーバーに対しては 2\(\pi /3 \) と \(\pi /2 \) の間にあることを示す。こうして \(Z_3 \)対称性が保存されなくとも完全な閉じ込めが現れる。熱力学ポテンシャル (5.14) は縮退した 3 フレーバーと 2+1 フレーバー両方に対して 3 つのクォークの構造の \(e^{-3E_f/T} \) を持つ。両者の違いは \(\theta_{\text{conf}} \) の値だけである。

5.3 数値結果

5.3.1 \(\mu = 0 \) のとき

セット R で PNJL モデルの計算を通じて \(\mu = 0 \) の熱力学を解析する。図 4 の (a) では \(\sigma \) と \(\Phi \) の \(T \) 依存性がプロットされている。\(T \) が大きくなると、\(\Phi \) が連続的に大きくなる一方で \(\sigma \) はなくらかに減少する。カイラル対称性の回復と非閉じ込め転移はこのように両方ともクロスオーバーである。パネル (b) は感受率 \(\chi_{\sigma\sigma} \), \(\chi_{\Phi R\Phi R} \) 及び \(\chi_{\Phi f\Phi f} \) の \(T \) 依存性に対応している。ここで、カイラル（非閉じ込め）転移の擬臨界温度 \(T_c(T_d) \) は \(\chi_{\sigma\sigma} (\chi_{\Phi R\Phi R}) \) が最大になるときの温度によって定義されて、現在の計算で
は \(T_c = 202[\text{MeV}] \) で \(T_d = 161[\text{MeV}] \) である。また、\(\Phi = \Phi^* \) であるから \(\Phi_1 \) が 0 である。これは \(\Phi_1 \) 自身は非閉じ込め転移のよい秩序変数ではないことを意味している。\(\chi_{\Phi_1\Phi_1} \) のピーク位置は \(\chi_{\Phi_R\Phi_R} \) のピーク位置と一致しないが、\(\chi_{\Phi_1\Phi_1} \) が \(\chi_{\Phi_R\Phi_R} \) がピークを持つ \(T = T_d \) で急に変化することに注意しよう。
図 4: μ_f = 0 における (a) カイラル凝縮 σ とポリャコフループ Φ の温度依存性と (b) それらの感受率 χ_σσ, χ_ΦΦ_R, χ_Φ_1Φ_1 の温度依存性。χ_Φ_RΦ_R と χ_Φ_1Φ_1 はそれぞれ 10 と 100 をかけている。カイラル凝縮の感受率は赤色の破線、ポリャコフループの実数部の感受率は緑色の縦線、ポリャコフループの虚数部の感受率は青色の実線で表している。
5.3.2 $\theta = 2\pi/3$ のケース

次に $\theta = 2\pi/3$ のときセット R とセット S で PNJL モデルを通して熱力学を考察する。まずセット R から始める。図 5 の (a) では σ と $|\Phi|$ は T の関数として描かれている。ポリヤコフループ Φ は C 対称性が保存されている低温 T では実数であるが、C 対称性が自発的に破れる高温 T では複素数になる。高温 T 領域は RW 相と呼ばれる。RW 相については章 5.3.3 で詳しく述べる。T が大きくなると、Φ はわずかに増加し、$T = T_D = 188[MeV]$ で非連続になる。これは非閉じ込めの転移が一次であることを示唆している。このように虚数アイソスピン化学ポテンシャルは非閉じ込め転移を強くする。同じ性質は $N_f = 2$ のときに見られる [34]。

RW 相では u と d のアイソスピン対称性は C 対称性の自発的破れのために破れる [53]。図 6 の (a) はセット R での $\theta = 2\pi/3$ における σ_f の T 依存性を示している。アイソスピン対称性の破れの結果として、片方は軽くなる一方で他方の軽いクーケックが重くなる。

図 5(b) で図 5(a) と同じであるが、セット S で PNJL モデルによる計算をしている。秩序変数 σ や Φ は図 5(a) に似た T 依存性を持っている。しかしながら、Z_3 対称性が明確に保持されるので、$T_D = 194[MeV]$ の下では Φ は 0 である。T_D の上で Z_3 対称性は自発的に破られる。この場合閉じ込め・非閉じ込め転移は Z_3 対称性によって左右される。図 6(b) は図 6(a) と同じ図であるが、セット S で PNJL モデルの計算をしている。(b) では 3 つのクーケックのうち 1 つは軽くなる一方で、2 つはいつも縮退して、$T > T_D$ で重くなる。TBC によって破られたフレーバー対称性は T_D の下の、閉じ込め相では回復している。

5.3.3 $\theta - T$ 平面の相図

図 4 と図 5 を比べるととき、$\theta - T$ 平面には非閉じ込め転移の CEP が存在すると予想できる。事実、転移がクロスオーバーから次転移に変わるために CEP は $\theta = \theta_{CEP} = 0.62 \times 2\pi/3 = 0.41 \pi$ で現れる。図 7 は $\theta = \theta_{CEP}$ での感受率 $\chi_{\Phi R} \Phi_R$、$\chi_{\Phi I} \Phi_I$ と $\chi_{\sigma \sigma}$ の T 依存性を示している。感受率 $\chi_{\Phi R} \Phi_R$ は $T = T_{CEP} = 175[MeV]$ で発散する。これは非閉じ込めの相転移が CEP では 2 次転移であることを意味している。Φ_R と σ は C について偶で、互いに関係がある。事実 $\chi_{\sigma \sigma}$ は、高温 T で別のピークの他に CEP で発散のピークを持つ。一方、Φ_I は C について奇な量で、CEP で発散せずに急に減少する。

章 5.2 で述べたように、T が小さいときに縮退した 3 フレーバーに対して $\theta_{conf} = 2\pi/3$ のときと、そして 2+1 フレーバーに対して $2\pi/3$ より小さい θ_{conf} のときに Φ は 0 になる。図 8 は低温 T での Φ の θ 依存
性を示している。パラメータセット R.S.H の PNJL モデルで計算している。
セット S \((m_s = 5.5[\text{MeV}] \) に対しては、\(\theta_{\text{conf}} = 2\pi/3 \) で、セット R \((m_s = 140.7[\text{MeV}] \) に対しては、\(\theta_{\text{conf}} \approx 0.85 \times 2\pi/3 = 0.56\pi \) で、セット H \((m_s = 600[\text{MeV}] \) に対しては、\(\theta_{\text{conf}} \approx 0.75 \times 2\pi/3 = \pi/2 \) である。

セット H は 2 フレーバーのケースに対応している [34]。厳密にいえば、2+1 フレーバーに対して、\(\theta_{\text{conf}} \) は T に依存しているが、縮退後の 3 フレーバーに対しては (5.27) で示したように依存していない。

図 9 は \(\theta = 2\pi/3 \) における \(\Phi \) の位相 \(\phi \) の T 依存性を示している。位相 \(\phi \) は C について奇数で、そのため C 対称性の秩序変数である。セット R の (a) では、低温で \(\phi \) は \(\pi \) であり、高温ではおおよそ ±2\pi/3 にとんでいる。

これは \(\Phi \) が小さい温度では実数で、高温では C 対称性が破れていていることを意味している。セット S でも同じような結果が見られる。ただし、ここで小さい温度 \(T \) では \(\Phi \) は 0 で、そのためここでは \(\phi \) は定義されない。高温 \(T \) では \(\phi \) は 0 か ±2\pi/3 である。

\(\theta = 2\pi/3 \) での T 依存性は、\(\Phi \) の複素平面で T の増加に対する \(\Phi \) の変化として図 10 に模式的に示されている。セット R のパネル (a) では C 対称性の自発的破れとしての RW 相転移が \(\Phi \) のある値 (\(< 0 \)) からの 2 つの矢印で示されている。転移は実 \(\Phi \) の軸について C 対称性のため鏡像対称的である。セット S のパネル (b) では \(\mathbb{Z}_3 \) 対称性の自発的破れとしての非閉じ込め相転移が 3 つの矢印で示されている。転移は \(\mathbb{Z}_3 \) 対称的であり、1 より小さい正の \(\Phi' \) に対して、\(\Phi = 0 \) から \(\Phi = \Phi' \), \(\Phi' e^{\pm 2\pi i/3} \) へのとびが起る。

図 11 は高温 T での \(\phi \) の \(\theta \) 依存性を示している。\(\theta \) 依存性は \(\theta = \pi \) のラインに対して対称的であるので、\(0 < \theta < \pi \) の範囲のみを考察している。

セット R のパネル (a) では \(\phi \) は 0 \(\leq \theta < 0.91 \times 2\pi/3 = 0.61\pi \) で 0 だが、\(\theta > 0.61\pi \) で 2 つの解 \(\phi \approx 2\pi/3 \) に分かれられる。\(\theta > 0.61\pi \) のとき系は RW 相で、ここで 1 つの解は他方の解の C 変換の像である。セット S のパネル (b) も似たような結果であり、\(\theta > 2\pi/3 \) のとき \(\phi \approx 2\pi/3 \) となり、\(0 \leq \theta < 2\pi/3 \) で \(\phi \) は 0 である。

RW 相は初め \(\theta_q = T \) 平面で見つかった [1]–[58],[169]。ここで \(\theta_q \) は、クォーク化学ポテンシャル \(\mu_q \) で \(\mu_q = i T \theta_q \) と定義された無次元の虚数クォーク数化学ポテンシャルである。クォーク数密度は T がある温度 \(T_{\text{RW}} \) より高いとき \(\theta_q = \pi/3 \) mod 2\pi/3 で非連続的である。この一次相転移は RW 相転移と呼ばれている。RW 相転移においては C 対称性をもつ自発的に破れる [53]。それで C 対称性の自発的な破れによって RW 相転移を定義できる。

\(\theta = T \) 平面では RW 相転移は \(\theta = 0 \), \(\theta_0 \leq \theta \leq \pi \) と \(T > T_{\text{RW}} \) の平面として現れる。ここで \(\theta_0 \) は \(\theta \) の臨界値でセット R で T に依存しているが、セット S では依存していない。例えば、セット R では \(T = 250[\text{MeV}] \)
で $\theta_0 = 0.93 \times 2\pi/3$ で、セット S では $T > T_{RW}$ で $2\pi/3$ である。

図 12 は $\theta - T$ 平面の相図を表している。3 つのパネルはそれぞれセット R, S と H に対応している。セット R のパネル (a) では、先に述べたように、$\theta_{CEP} = 0.41\pi$ に非閉じ込めの CEP があり、$T_{CEP} = 175$[MeV] である。一方、カイラル転移はクロスオーバーである。パネル (b) とパネル (c) に示されているように、セット S と H の相図はセット R とほぼ同じ構造を持っている。m_s が重くなったとき、一点鏡線 (RW 相の左の境界) と二点鏡線 (Φ = 0 のライン) は左に移動する。二点鏡線の移動は $\theta = 0$ において、m_s が大きくなったことで閉じ込めが強くなったことを示唆している。全てのケースでカイラル対称性の回復は大きな θ で弱くなっているので、カイラル転移のラインはそこでは示されていない。

図 12 で $|\Phi|$ は θ と T の関数として描かれている。大きな θ に対して、$|\Phi|$ は T が大きくなるにつれて、突然のとびを持つ。このとびは非閉じ込め転移が一次転移であることを意味している。θ が大きくなるにつれて、非閉じ込めの秩序変数はクロスオーバーに変わる。$\theta = 0$ の非閉じ込め転移のクロスオーバーはこのように大きな θ での一次の非閉じ込め転移の名残である。図 13 は、$\theta - T$ 平面上での Φ の変化を立体的表している。

5.3.4 $\theta = 0$ と有限の θ における感受率

図 14 の (a) は $\theta = 0$ でのクォーク数密度感受率の非対称成分 χ_{us} と、$\theta = 0$ でのその感受率の T 微分 $\chi_{us,T}$ の T 依存性を表している。興味のある性質として、χ_{us} は $T_D = 161$ MeV 近傍で突然変化し、結果として、$|\chi_{us,T}|$ がピークを持つ。図 14 の (a) の χ_{us} と図 4(b) の $\chi_{\Phi,\Phi}$ と比べると、2 つの量はお互いに強い相互関係があることが分かる。

χ_{us} と $\chi_{\Phi,\Phi}$ の相互関係は以下のように理解することができる。停留条件は、

$$\frac{\partial}{\partial \varphi_i} \Omega(T, \mu, \varphi) = 0$$

(5.29)

そしてその微分は

$$\frac{D}{D\mu_f} \left[\frac{\partial}{\partial \varphi_i} \Omega(T, \mu, \varphi(T, \mu)) \right] = 0.$$

(5.30)

これから $\chi_{ff'}$ と $\chi_{\varphi_i,\varphi_j}$ の間の関係が導かれる。

$$\chi_{ff'} = -\frac{D^2 \Omega}{D\mu_f D\mu_f}$$

$$= -\frac{\partial^2 \Omega(T, \mu, \varphi)}{\partial \mu_f \partial \mu_f} + \frac{\partial^2 \Omega(T, \mu, \varphi)}{\partial \mu_f \partial \mu_{\varphi_i}} \chi_{\varphi_i,\varphi_j} \frac{\partial^2 \Omega(T, \mu, \varphi)}{\partial \mu_f \partial \mu_{\varphi_j}}.$$

(5.31)
後で都合がよいように、$\partial X = \partial / \partial X$と定義しておく。$\chi_{us}$に対して、$\Omega$は
各fに対してμ_fについて奇数な量なので、二次の微分の$\partial_{\mu_a} \partial_{\mu_s} \Omega$は$\mu_f = 0$
で消える。このため$\partial_{\mu_u} \partial_{\mu_s} \Omega$は$\mu_f$について偶数な量である。

同様に、μ_fについて偶数な量である$\partial_{\mu_u} \partial_{\mu_s} \Omega, \partial_{\mu_f} \partial_{\mu_s} \Omega$そして$\partial_{\mu_f} \partial_{\mu_{\phi_3}} \Omega$
は$\mu_f = 0$で消えるが、μ_fについて奇数な量の$\partial_{\mu_f} \partial_{\mu_{\phi_3}} \Omega$は消えない。これ
らの性質から以下のことが導かれる。

$$\chi_{us} = \frac{\partial^2 \Omega(T, \mu, \varphi)}{\partial \mu_a \partial \Phi_1} \chi \Phi_1 \Phi_1 - \frac{\partial^2 \Omega(T, \mu, \varphi)}{\partial \mu_s \partial \Phi_1}. \quad (5.32)$$

こうしてχ_{us}は$\chi_{\Phi_3 \Phi_3}$と関係しているが$\chi_{\Phi_3 \Phi_1}$とは関係していない。
図 14(a)ではPNJL の結果を LQCD で計算された χ_{us}のT依存性 [164, 165]と比較している。χ_{us}の大きさについて前者は低く見積もって入るもの、定性的傾向はよく再現している。この低い見積もりは現在のモデル
が明確にパリオンの自由度を扱っていないことからくるものかもしれない。

同じような振る舞いは図 14(b)においても CEP で見られる。C 対称性が
保存しているので、関係式 (5.32) は有限のTまで及ぶ。このため$|\chi_{us}|$
は$T = T_{\text{CEP}}$で急激に減少し、結果として、$\chi_{us, T}$はここでピークを持つ。
ピークは$\theta = 0$でもより$\theta = \theta_{\text{CEP}}$でのほうがはっきり見える。

5.3.5 まとめ

有限虚数アイソスピン変数ボテンシャル $(\mu_u, \mu_d, \mu_s) = (i\theta T, -i\theta T, 0)$で、
3 フレーバーの QCD において閉じ込めたZ_3 対称性的間の関係を PNJL
モデルを用いて研究した。縮退した 3 フレーバーと 2+1 フレーバーの両
方を取り扱った。前者のケースでは、系は$\theta = 2\pi/3$でZ_3 対称性を持つ。
対称性は低温 Tで自発的に破れないので、ポリマ対数 フェ はここで
0 である。後者では、Z_{3} 対称性はどのθでも明確に破れているが、$2\pi/3$
より小さな値の$\theta = \theta_{\text{conf}}$のとき$\Phi = 0$である。このようにして系が$Z_3$
対称性を明確に保持していなくても$\Phi = 0$で定義された閉じ込め相が実現
される。閉じ込め相では、静的クォークの自由エネルギー $-T \ln \Phi$ が発
散する。これは、明確にZ_3 対称性が保存されていても、Φ を用いた
閉じ込めを考えることができ、それを閉じ込め・非閉じ込め相転移の秩序
変数としてみなすことができるということを意味している。

相図は $\theta = T$ 平面で決めることができる。θ のある有限値 θ_{CEP} では非
閉じ込め相転移の CEP がある。実数クォーク数変数ボテンシャルにカイ
ラル転移の CEP があるのと同様に対照的になっている。他の現象である点
として、縮退した 3 フレーバーと 2+1 フレーバーの両方のケースで$\Phi = 0$
のラインがある。そのライン上では、閉じ込め相が実現されて、熱力学ボ
テンシャルは、赤、緑、青が統計的に同じ状態にある、3 つのクォークの
構造のみを持つ。系が \mathbb{Z}_3 対称性を持つ持たないにかかわらずこの性質は保たれる。

$\theta - T$ 平面では、閉じ込め転移は、$\Phi = 0$ のラインでは一次転移で、
$\theta = 0$ の軸でクロスオーバーである。これは $\theta = 0$ の非閉じ込めのクロスオーバーは $\Phi = 0$ のラインにおいての一次の非閉じ込めの転移の名残であることを意味している。$\Phi = 0$ のラインは m_s が増えるにつれ、小さな θ に変化する。これは閉じ込めの性質は 2 フレーバーのケースが 2+1 フレーバーのケースよりも強いことを意味している。この主張は LQCD の結果とも一致することが合っている [72, 73, 121]。クォーク数密度の非対角化成分 χ_{us} は、$\chi_{\Phi_{\pi} \Phi_t}$ ではなくて、$\chi_{\Phi_{\pi} \Phi_t}$ と相互関係がある。$|\chi_{us}| = \chi_{\Phi_{\pi} \Phi_t}$ で定義された擬臨界温度近傍でピークを持たず、そこで急激に変化する。この性質の結果として、その微分 $\chi_{us,T}$ はそこでピークを持つ。ピークは $\theta = 0$ よりも有限の θ でのほうがはっきりしている。

現在の結果は PNJL モデルによるものだが、数アイソスピン化学ポテンシャルでのシミュレーションには符号問題がないので、LQCD シミュレーションから直接的に確かめることができる。ごく最近、そのような LQCD シミュレーションが実行され、現象論モデルによる予想が少なくとも定性的に正しいことが示された [170]。
図 5: $\theta = 2\pi/3$ におけるカイラル凝縮 σ とポリヤクループの絶対値 $|\Phi|$ の温度依存性。セット R の PNJL モデルによる計算 (a) とセット S の PNJL モデルによる計算 (b)。カイラル凝縮 σ は $T = 0$ の値 σ_0 で規格化されている。
図 6: $\theta = 2\pi/3$ におけるカイラル凝縮 σ_f の温度依存性。セット R の PNJL モデルによる計算 (a) とセット S の PNJL モデルによる計算 (b)。(a) では実線が s クォークを、破線と鎖線が軽いクォークを表している。(b) では実線と鎖線が互いにあっている。
図 7: $\theta = \theta_{\text{CEP}}$ における $\chi_{\sigma}, \chi_{\Phi_R^{\prime}}$ と $\chi_{\Phi_1 \Psi_1}$ の温度依存性。セット R の PNJL モデルで計算をしている。χ_{σ} には -1 をかけて、$\chi_{\Phi_R^{\prime}}$ は 10 をかけて、$\chi_{\Phi_1 \Psi_1}$ は 100 で割っている。カイラル凝縮の感受率は赤色の破線、ポリャロフルービュの実数部の感受率は青色の実線、ポリャロフルービュの虚数部の感受率は緑色の線で表している。
図 8: $T = 150[\text{MeV}]$ における Φ の θ 依存性。パラメータセット R（緑色の実線）、S（青色の錐線）、H（赤色の破線）で PNJL モデルで計算している。
図 9: $T = 150$[MeV] における Φ の θ 依存性。パラメータセット R(a), S(b) で PNJL モデルで計算している。
図 10: セット R (a) とセット S (b) での θ = 2π/3 における Φ の代表的な変化。平面は Φ の複素平面である。破線上ではポリヤコフループポテンシャルは発散するため、ポリヤコフループ Φ の値は破線の外に出ることは許されない。
図 11: $T = 250$ MeV における Φ の位相 ϕ の θ 依存性。パラメータセット R(a), S(b) で PNJL モデルで計算している。
図 12: $\theta - T$ 平面の相図。セット S (a)、セット R (b)、セット H (c) に対して PNJL モデルの計算が行われている。実線（青色）、点線（青色）、破線（赤色）はそれぞれ一次の非閉じ込め相転移、非閉じ込めのクロスオーバー、カイラル転移のクロスオーバーを表している。RW 相の下限の境界は実線、二点鎖線（緑色）は RW 相の左の境界である。二点鎖線（緑色）は $\Phi = 0$ のラインである。RW 領域では Φ は複素数である。

46
図 13: θ と T の関数としての Φ の絶対値。セット R での PNJL モデルを用いて計算している。
図 14: クォーク数感受率 χ_{us}（実線）とその T 微分（破線）の T 依存性。（a）は $\theta = 0$ のときで、(b) は $\theta = \theta_{\text{CEP}}$ のとき。セット R で PNJL モデルの計算をし、結果の χ_{us} には 20 をかけている。パネル (a) で点と誤差棒で示されている、対応する赤色の LQCD 結果 [165] は規格化していない。
6 2カラー QCD の解析

LQC2D シミュレーションの結果を解析することにより、実数と虚数 \(\mu \) 領域の両方で 2カラー QCD の相構造について研究をする [171]。LQC2D シミュレーションでは \(8^3 \times 4 \) の格子サイズで、clover-improved 2 フレーバーワイルソンフェルミオン相互作用と renormalization-group-improved 岩崎ゲージ作用が用いられている。数値シミュレーション自体は共同研究者である理研の徳江二氏が行ったものであるが、得られた原データを著者が整理し解析した。著者はまた、Polyakov-loop extended Nambu–Jona-Lasinio (PNJL) モデルによる結果の解析と有効モデルの有効性について調べた。PNJL モデルは相転移と閉じ込め相ではいくらか正確さが低くなるものの非閉じ込め相ではよいモデルである。この問題はモデルにバリオンの自由度を入れることで改善された。また、LQC2D データのクォーク数密度を再現するためにはベクター型 4 点相互作用の結合定数が必要であったことが分かった。

6.1 導入

QCD 相関の性質の研究は宇宙物理や天文学と同じように原子核と素粒子物理学でも最も重要なテーマの一つである。しかしながら、フェルミオン行列が複素数であるために第一原理計算である、格子 QCD(LQCD) シミュレーションは高いバリオン化学ポテンシャルで非常に難しい。クォーク場を積分した後、有限温度 \(T \) とクォーク数化学ポテンシャル \(\mu \) として QCD の分配関数 \(Z \) は以下のように表されて、

\[
Z = \int DU \det[M(\mu)] e^{-S_G},
\]

(6.1)

ここで \(U_\mu \ (\mu = 1, 2, 3, 4) \) と \(S_G \) はそれぞれリンク変数と純ゲージ作用であり、\(M(\mu) \) は連続極限で以下のように書かれて、

\[
M(\mu) = \gamma_\mu D_\mu + m_0 - \mu \gamma_4
\]

(6.2)

ここで \(D_\mu \) は共変微分であり、\(m \) はクォーク質量である。後に都合がよいように、\(\mu \) を複素数の変数としておく。以下のことを証明するのは容易である。

\[
\{\det[M(\mu)]\}^* = \det[M(-\mu^*)].
\]

(6.3)

こうして、\(\mu \) が実数で有限であるとき \(\det[M(\mu)] \) は一般的には実数でなく、モンテカルロシミュレーションでインポータンスサンプリング法は有効でない。これがよく知られた符号問題である。この問題を解決するため
に様々な解決法が提案されてきた。例えば、再重み法 [1]やテーラー展開法 [2, 3]、虚数μから実数μ領域への解析接続法 [4]-[10]、複素ランジェルマン法 [11]-[13]、そしてLefschetz thimble理論 [14, 15]である。

一方で、2カラーQCD(QC2D)では、符号問題がないので [172]-[174]、格子シミュレーションは実数と有限クォーク数化学ポテンシャルで可能である。実事以下同関係が得られて:

$$\det[M(\mu)] = \det[(t_2 C \gamma_5)^{-1} M(\mu)(t_2 C \gamma_5)]$$

$$= (\det[M(\mu^*)]^*)$$ \hfill (6.4)

ここでt_2と$C = \gamma_2 \gamma_4$はそれぞれカラー空間の2次のパウリ行列と荷電共役行列である。μが実数のとき、明らかに$\det[M(\mu)]$は実数である。最近、Handsなどが2フレーバーのウィルソンフェルミオンを用いた広義実数μ領域でQC2Dの相構造を解析している [184, 185]。QC2Dはまた符号問題を解決するために提案された方法の有効性を確かめるのに用いることができる。事実、Ceaらは [187, 189]、スタガードフェルミオンを用いたQC2Dにおいて虚数μから実数μへの解析接続の有効性を確かめた。

μ_1とθを実数変数として、式 (6.3) から、μが純虚数なら、$\mu = i\mu_1 = i\theta T$のとき$\det[M(\mu)]$が実数であるのでLQC2Dシミュレーションは実行可能である。実数μでの物理量は解析接続によって虚数μの物理量から求められる。解析接続では、QCDがRoberge-Weiss(RW)周期性とRW転移 [50]の2つの特徴を持つ虚数μ領域の相図の構造に注意しなければならない。QCDの大分配関数はθにおいて$2\pi/N_c$の周期性を持つ。

$$Z(\theta) = Z(\theta + 2\pi k/N_c)$$ \hfill (6.5)

ここで、N_cはカラーの数で$k = 1, ..., N_c$の整数である。この周期性はRobergeとWeissによって発見され、RW周期性と呼ばれている。RobergeとWeissはまた$T \geq T_{RW}$と$\theta = (2k + 1)\pi/N_c$で1次相転移が起こることを示した。この転移はRW転移と呼ばれ、T_{RW}は$\mu = 0$の非閉じ込め転移の擬臨界温度T_0よりもわずかに大きい。これらの特徴は純ゲージ理論のZ_{N_c}対称性的名残であり、いわゆるRW周期性と呼ばれている。この相転移線とそのZ_{N_c}のイメージは図15で実験でプロットされる、一方で閉じ込め非閉じ込めのクロスオーバーは線で示されている。(T, θ) = (T_{RW}, \pi/N_c)に位置している点はRWエンドポイントと呼ばれる。臨界温度T_{RW}は$\mu = 0$における非閉じ込めのクロスオーバーの擬臨界温度T_cよりも大きい [71]。T_{RW}は後に示すように1.12$T_c \sim 1.14T_c$の間に位置している。RW転移の秩序変数はポリヤコフループやクォーク数密度などのcについて奇数量である [53]。ここでcは荷電共役を示している。

RW相転移とRW周期性の存在はLQC2Dシミュレーションによって
数値的に確立していて [4, 5, 6, 8, 9]、このメカニズムは拡張された Z_N 対称性の新しい概念と有効モデルによってよく理解されている [28, 49, 53], [187, 189]。の名残である。これらの特性は LQC2D シミュレーションによって確かめられている [4]-[10],[186, 189]。

図 15: 虚数 μ 領域における QCD 相図。実線と破線はそれぞれ RW 相転移と非閉じ込めのクロスオーバーを示している。$N_c = 2$ の場合。

RW 周期性は、Z_N 対称性の存在を意味しているわけではない。したがって、一般的には Z_N 対称性に対する秩序変数、例えばポリヤコフループ Φ が閉じ込め相で 0 になる直感的な理由はない。事実、$N_c = 3$ の場合、ポリヤコフループは閉じ込め相でさえも、T が有限のときいつも有限である。しかしながら、$N_c = 2$ の場合は特別である [187]。この場合、作用と境界条件は、普通の Z_2 変換と荷電共役 C [149] を結合法した CZ_2 変換に対して $\mu_1/T = (2k + 1)\pi/2$ で不変である。この対称性のためにポリヤコフループは、低温度、$\mu_1/T = (2k + 1)\pi/2$ で 0 になる。これらの特徴に注意を払い、Cea ら [187, 189] は QC2D の場合の解析接続の有効性について解析をして、解析関数の係数が虚数 μ の LQC2D のデータから決められたとき、実数 μ の LQC2D データは、適切な解析的関数によってよく記述されることを示した。

虚数 μ における LQC2D の結果はまた、Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model [16]-[22] などの有効モデルのパラメータを決めるのにも有効である。ここでこのような方法を虚数 μ マッティングアプローチと呼ぶことにする [29]。PNJL モデルが RW 周期性や RW 転移をもつことから PNJL モデルが虚数 μ の LQC2D データを、すくなくとも
定性的にはよく記述するのは知られている [28, 53]。中性子星の物理に対して重要であると期待されるベクター型4点クォーク相互作用 [26, 27] の \(G_\nu \) の強さは虚数 \(\mu \) の LQC2D データも用いることで決められると提唱されている [116](中性子星と \(G_\nu \) の関係に対しては、例えば参考文献 [124] 等を参照)。参考文献 [28] と [42] では、\(G_\nu \) はそのような方法で決められる。そのような有効モデルのパラメータの決定の有効性は QC2D で確かめることができる。

本論文では、clover-improved 2 フレーバーウィルソンフェルミオン相互作用 [177] と renormalization-group-improved 岩崎ゲージ作用 [175, 176] の格子シミュレーションを用いて虚数と実数 \(\mu \) における QC2D の相構造について研究し、また有効モデルの有効性を確かめるために LQC2D の結果と PNJL モデルと比較した。最初に虚数 \(\mu \) の LQC2D データから決められた解析関数の係数と実数 \(\mu \) で計算された LQC2D データを比較することによる虚数 \(\mu \) から実数 \(\mu \) の解析接続を確かめた。このような試みは参考文献 [186, 189] でスタッガードフェルミオンで試みられている。本研究では clover-improved 2 フレーバーウィルソンフェルミオンを用いて、非閉じ込め相ではべき級数により、閉じ込め相ではフーリエ級数を解析関数に用いることにより試みられている。

我々は次に PNJL モデルを LQC2D データを比較することにより PNJL モデルの有効性を確かめた。PNJL モデルは非閉じ込め相ではよくモデルであるが、閉じ込め相ではやや正確さが低くなる。この問題はモデルにパラメータの自由度をを導入することによって改善する。また、LQC2D データのクォーク数密度を再現するためにはベクター型 4 点相互作用の結合定数が必要であることが分かった。

この章は以下のように構成されている。章 6.2 では格子作用と我々の LQC2D シミュレーションで使ったパラメータを述べている。ここで計算される物理量の定義も示されている。章 6.2.4 では PNJL モデルが単にまとめられている。章 6.3.1 では LQC2D の数値計算結果と虚数 \(\mu \) から実数 \(\mu \) への物理量の解析接続を示している。LQC2D 結果と PNJL モデルの結果の比較は章 6.8 に述べられている。章 6.9 でまとめが述べられている。

6.2 格子計算

6.2.1 格子作用

我々は以下のように定義された renormalization-group-improved 岩崎ゲージ作用 \(S_G \) [175, 176] と、clover-improved 2 フレーバーウィルソン
フェルミオン相互作用 \(S_Q \) [177] を用いた。

\[
S = S_G + S_Q, \quad (6.6)
\]

\[
S_G = -\beta \sum_x \left(c_0 \sum_{\mu < \nu; \mu, \nu = 1}^4 W_{x, \mu \nu}^1(x) + c_1 \sum_{\mu \neq \nu; \mu, \nu = 1}^4 W_{x, \mu \nu}^2(x) \right), \quad (6.7)
\]

\[
S_Q = \sum_{f = u, d, x, y} \sum_{f, g} \psi^*_{f} M_{x,y} \psi^*_{g}, \quad (6.8)
\]

ここで、\(q \) はクォーク場、\(\beta = 4/g^2 \)、\(c_1 = -0.331 \)、\(c_0 = 1 - 8c_1 \) で、

\[
M_{x,y} = \delta_{xy} - \kappa \sum_{i=1}^3 \{(1 - \gamma_i)U_{x,i} \delta_{x+i,y} + (1 + \gamma_i)U^\dagger_{y,i} \delta_{x,y+i}\} - \kappa \{ e^\mu (1 - \gamma_4)U_{x,4} \delta_{x+4,y} + e^{-\mu} (1 + \gamma_4)U^\dagger_{y,4} \delta_{x,y+4}\} - \delta_{xy} c_{SW} \kappa \sum_{\mu < \nu} \sigma_{\mu \nu} F_{\mu \nu}. \quad (6.9)
\]

ここで、\(\kappa \) はホッピングパラメータで、\(F_{\mu \nu} \) はあるきの強さで、\(f_{\mu \nu} \) を

標準の clover-shaped のゲージリングの結合としたときの格子のゲージ場

\(F_{\mu \nu} = (f_{\mu \nu} - f^\dagger_{\mu \nu})/(8i) \) である。

clover 項の係数 \(c_{SW} \) は 1 ループ摂動論で計算されたプランケット \(P = 1 - 0.3154 \beta^{-1} \) のときに [178]、摂動的平均値の改良された値の \(c_{SW} = P^{-3/4} \) [179] で得られた結果から決められている。

6.2.2 シミュレーションに対するパラメータセッティング

時間と空間の格子サイズをそれぞれ \(N_t \) と \(N_s \) と表す。ハイブリッドモンテカルロアルゴリズムが完全の 2 フレーバーの動力学的クォークを用いた 2 カラー QCD 空間を一般化するために用いられている。シミュレーションは \(N_s^3 \times N_t = 8^3 \times 4 \) で行われている。動力学的分子のステップサイズは \(\delta_T = 0.02 \) でステップ数は \(N_r = 50 \) である。採択率は 0.95 よりも大きな。全てのパラメータセットに対する 10000 のトラジェクトリーより

作成し、熱化過程として最初の 5000 の軌道を取り除く。\(T/T_c \) に対応しているパラメータ \(\kappa \) と \(\beta \) の比は、\(T = 0 \) における擬スカラー (PS) 中間子質量 \(m_{ps} \) のベクトー中間子質量 \(m_{\tau} \) に対する比が不変である line of constant physics を探すことで決められた；表 7 を参照。

53
表 7: LQC2D シミュレーションのパラメータのまとめ。T_{pc} は $\mu = 0$ における極限の温度。ここで格子間隔 a はおよそ $1.38 \sim 1.96$ GeV^{-1} であり、$T = 0$ かつ $\mu = 0$ では $m_p/m_e = 0.8$ である。

6.2.3 計算される物理量

ここで LQC2D シミュレーションで計算される物理量はポリヤコフループ (Φ)、クォーク数密度 (n_q)、カイアル冷転 (σ) である。

クォーク数密度 κ は以下のように計算される。

$$ n = \frac{T}{V} \frac{\partial}{\partial \mu} \log Z. \quad (6.10) $$

ここで V は空間の体積で、カイアル冷転 σ は以下のように $\langle \bar{q}q \rangle$ の期待値として計算されて、

$$ \sigma = \langle \bar{q}q \rangle. \quad (6.11) $$

ここで q はクォーク場であり、$\langle O \rangle$ は物理量 O の平均値である。カイアル冷転は繰り返しさきが必要である。その上さらに、カイアル対称性はウィルソンフェルミオンで破られているので、カイアル冷転自身の絶対値を扱うことは難しい。そこで以下の変数を、μ を変数として用いる。

$$ \delta \sigma(T, \mu) = \sigma(T, \mu) - \sigma(T, 0) \quad (6.12) $$

ポリヤコフループは以下のように定義されている。

$$ L(x) = \prod_{t=1}^{N_t} U_4(x, t) \quad (6.13) $$
ここで、リンク変数は $U_\mu \in SU(2)$ である。純ゲージ極限では、L の平均値 Φ は一つのウォークの自由エネルギー F_Q と以下のような関係がある。

$$\Phi = \langle L \rangle = e^{-F_Q/T} \quad (6.14)$$

したがって、F_Q はウォーク質量が無限に大きくなったときの閉じ込め非閉じ込め相転移の秩序変数である。実際、F_Q が有限（無限）であれば、Φ は有限値（無限）である。閉じ込め非閉じ込め相転移と関係ある対称性は以下の変換のもとで不変な \mathbb{Z}_2 対称性である。

$$U_4(n, \tau) \rightarrow z_2(\tau) U_4(n, \tau). \quad (6.15)$$

ここで z_2 は時間座標 τ のみに依存する \mathbb{Z}_2 群の要素である。ポリヤコフループ L が変化しない一方で、純ゲージ作用はこの変換で不変である。このため $\Phi = \langle L \rangle$ は閉じ込め非閉じ込め相転移の秩序変数となる。力学的クォークの効果は \mathbb{Z}_2 対称性を明らかに破り、Φ は厳密な閉じ込め非閉じ込め相転移の秩序変数ではない。前章で述べたように、しかしながら、$\theta = (2k + 1)\pi/2$ (k は整数) では \mathbb{Z}_2 変換と荷電共役変換の組合せした \mathbb{Z}_2 変換のもとで対称性がある [149]。このため Φ はその組合せした対称性の秩序変数となる。

6.2.4 PNJL モデル

2 カラー QCD は $m_0 = \mu = 0$ の極限で Pauli-Gürsey 対称性を持つ [146, 147]。QCD の PNJL のラグラジアンは、その対称性を持つように考えられ、以下のように与えられる [149, 148]。

$$\mathcal{L} = \bar{q}(i\gamma^\mu D_\mu - m_0)q + G([\bar{q}q]^2 + (\bar{q}\gamma_5\tilde{r}q)^2 + |q^T C \gamma_5 \tau_2 q|^2] + G_8([\bar{q}q]^2 + (\bar{q}\gamma_5\tilde{r}q)^2) + G_v(\bar{q}\gamma^\nu q)^2 - U(\Phi), \quad (6.16)$$

ここで $q, m, t_i, \tau_i, G, G_8, G_v$ はそれぞれ 2 フレーバーのクォーク場、カラーとクォーク系のパウリ行列、スカラー型 4 点相互作用の結合定数、スカラー型 8 点相互作用の結合定数、ベクター型 4 点相互作用の結合定数を表している。ポテンシャル U はポリヤコフループ Φ の関数である。平均場近似を行うことで、熱力学ポテンシャルが得られて [148],

$$\Omega = -2N_f \int \frac{d^3p}{(2\pi)^3} \sum_\pm [E^+_p + E^-_p + T(\ln f^- + \ln f^+)] + U + U(\Phi) \quad (6.17)$$
となる。ここで

\[
f^{\pm} = 1 + 2 \Phi e^{-\beta E_p^+} + e^{-2\beta E_p^+} \tag{6.18}
\]

\[
U = G(\sigma^2 + \tilde{\Delta}^2) + 3G_8(\sigma^2 + \tilde{\Delta}^2)
- G_v n_q^2 \tag{6.19}
\]

ここで、\(\tilde{\Delta} \equiv |q^T C \gamma_5 \tau_3 t_2 q| \) はダイクローン凝縮である。\(E_p^\pm \) は以下のように定義されて、

\[
E_p^{\pm} = \text{sgn}(E_p \pm \bar{\mu}) \sqrt{(E_p \pm \bar{\mu})^2 + \Delta^2}, \tag{6.20}
\]

ここで \(E_p = \sqrt{p^2 + M^2}, M \equiv m - 2G\sigma - 4G_8\sigma(\sigma^2 + \tilde{\Delta}^2), \bar{\mu} = \mu - 2G_v n_q, \Delta = -2G\tilde{\Delta} \) であり、\(\text{sgn}(E_p \pm \bar{\mu}) \) は符号関数である。\(m_0 = \mu = 0, \) Pauli-Gürsey 対称性の結果、\(\Omega \) は \(\sigma - \tilde{\Delta} \) 平面の回転で不変である。通常、\(G \) と \(G_8 \) は定数と考えられる。しかしながら、それらは \(\Phi \) に依存するべきである [119]。ここで \(\Phi \) に依存する \(G \) と \(G_8 \) の形を以下のように定義して、

\[
G \equiv G_0(1 - \alpha \Phi^2), \quad G_8 \equiv G_{8,0} \tag{6.21}
\]

ここで \(G_0, G_{8,0} \) と \(\alpha \) は定数のパラメータである。ポリアコフゲージでは、ポリアコフループ \(\Phi \) は以下のように与えられる。

\[
\Phi = \frac{1}{2}(e^{i\phi} + e^{-i\phi}) = \cos(\phi) \tag{6.22}
\]

ここで \(\phi \) は実数である。参照 [148] に従えば、ポリアコフループの有効ポテンシャルの形は、

\[
U(\Phi) = -b\left[24e^{-\Phi/T} \Phi^2 + \ln(1 - \Phi^2)\right] \tag{6.23}
\]

と考えることができる。次章で述べるように、LQC2D データの \(\beta = 0.75 \) における \(n_q \) と \(\mu = 0 \) で凝縮状態温度 \(T_0 = 146\text{[MeV]} \) を再現するようにこれらのパラメータを決めた。

このモデルはもろく可能でなく \(\Omega \) の初めの 2 項が発散するので、3 次元の運動量カットオフを導入することで、規格化する。

\[
\int \frac{d^3p}{(2\pi)^3} \rightarrow \frac{1}{2\pi^2} \int_0^\Lambda dp p^2. \tag{6.24}
\]

平均場 \(X = \sigma, \Delta, n_q, \Phi \) は定常条件から決められる。

\[
\frac{\partial \Omega}{\partial X} = 0. \tag{6.25}
\]
本章で扱う温度と密度では \(\Delta \) は常に 0 であることを確認した。

PNJL モデルの NJL 部には 6 つのパラメータ、\(G, G_{8,0}, G_v, \Lambda, m_0, \alpha \) がある。\(m_0, G, G_{8,0} \) および \(\Lambda \) は LQC2D 計算の真空でのバイオン質量の値を再現するように選ぶ。また、\(G_v \) と \(\alpha \) は LQC2D 計算のクォーク数密度を再現するように選ぶ。表 6.3 を参照。表 5 は本論文で扱うパラメータセットをまとめたものである。

\(m_s \)[MeV]	\(M_0 \)[MeV]	\(G \)[GeV^{-2}]	\(G_{8,0} \)[GeV^{-8}]
616	354	4.6	60
\(G_v / G \)	\(\Lambda \)[MeV]	\(m_0 \)[MeV]	\(\alpha \)
0.15	700	110	0.2

表 8: NJL 部分のパラメータのセット。\(M_0 \) は真空における有効クォーク質量。

6.3 物理量の解析接続

6.3.1 解析接続

ここでは、LQC2D セットの結果を示し、虚数 \(\mu \) 領域から実数 \(\mu \) 領域への物理量の解析接続を行い、その有効性を調べる。

図 16 は \(i \pi / 2 \) から 1.2 の範囲の \(\hat{\mu} \equiv \mu / T \) のいくつかの値におけるポリャコフ型 \(\Phi \) の \(T \) 依存性である。\(\hat{\mu}^2 = - (\pi / 2)^2 \) 以外では、\(T \) が増加するに従って、滑らかに \(\Phi \) が増加する。この \(\Phi \) の振る舞いは閉じ込め相から非閉じ込め相へのクロスオーバーの転移であり、3 カラー QCD でみられる性質と同様である [71]。それぞれの \(\hat{\mu}^2 \) に対して、擬臨界温度 \(T_c(\hat{\mu}^2) \) (または \(\beta_c(\hat{\mu}^2) \)) は \(\Phi \) の感受率が最大になるところの温度で定義している。LQC2D 計算結果から \(\hat{\mu} = 0 \) では \(T_c(0) \equiv T_{c0} = 146 \text{MeV} \) である。

\(\hat{\mu}^2 = - (\pi / 2)^2 = - (\pi / 2)^2 \) の場合、\(T = 1.12 T_{c0} \) 以下では \(\Phi \) はほぼ零であるが、\(T = 1.14 T_{c0} \) では急に増加している。\(\Phi \) のこの振る舞いは 2 次相転移を示している。\(\hat{\mu} = i \theta = i \pi / 2 \) では大きなゲージ変換と荷電共役の破れが結合した \(\mathcal{CZ}_2 \) 変換のもとでの対称性があり、カイラル対称性の自発的破れの秩序変数としての \(\Phi \) は \(T_{RW} \) 以下では 0 であるが、\(T_{RW} \) より上では有効値である。このようにして \(T_{RW} \) はおよそ 1.12 ～ 1.14 \(T_{c0} \) であると見積もられる。

図 17 は \(\hat{\mu}^2 - \beta \) 平面における擬臨界線を \(\beta_c(\hat{\mu}^2) \) を示している。\(\beta_c(\hat{\mu}^2) \) は \(\hat{\mu}^2 \) が大きくなるにつれて減少する。

\(\hat{\mu}^2 = (i \pi / 2)^2 \) における \(T_c(\hat{\mu}^2) \) の値は \(\beta_c((i \pi / 2)^2) \) が 1.16 \(T_{c0} \) で、\(T_{RW} \) と
図 16: LQC2D シミュレーションの結果の各 $\tilde{\mu}^2$ に対する Φ の T 依存性。ここで T_{c0} は $\tilde{\mu} = 0$ における凝固線温度である。上方の 3 種の点は実数 μ 領域の LQC2D シミュレーションの結果を、下方の 3 種の点は虚数 μ 領域の結果である。

見積もられる値よりもわずかに大きい。この矛盾は以下のように説明される。我々の計算では、ポリモルフ相の感受率の β 依存性は固定した $\tilde{\mu}^2$ に対してすべて 0.01 間隔で計算され、データをガウス関数でフィットし、$\beta_c(\tilde{\mu}^2)$ の値はガウス関数が最大になるところで決まる値である。ガウスフィッティングはしかしながら、特異点近傍 RW エンドポイントでは有効ではない。我々は T_{RW} を $1.12 \sim 114T_{c0}$ と見積もっている。

$\beta = 0.75, 0.70, 0.65$ と 0.60 はそれぞれ温度 $T/T_{c0} = 1.18, 1.06, 0.96, 0.88$ に対応する。各 β の場合に対して、虚数 μ から実数 μ への解析接続を試みる。$\beta = 0.60$ で、系は閉じ込め相（C 相）である一方で、$\beta = 0.75$ で、系は非閉じ込め相（D 相）である。$\beta = 0.70$ (0.65) では、系は $\tilde{\mu}^2 < -1.15$ (1.35) で C 相で、$\tilde{\mu}^2 > -1.15$ (1.35) では D 相である。このようにして各温度に対しても、以下に述べるような異なった解析的関数を用いる [187, 188, 189]。
6.3.2 $\beta = 0.75(> T_c)$

この温度では、RW 相転移の存在のために、物理量は周期的関数によって記述することができない。そのため我々は、μ に対して奇数の Φ と σ に対しては、以下の形のべきの関数を用いる。ここで、A, B, C は展開係数である。

$$A + B\mu^2,$$

または

$$A + B\mu^2 + C\mu^4, \quad (6.26)$$

同様に、μ に奇数である n_q に対しては、我々は以下のようなべき関数を用いる。

$$A\mu + B\mu^3,$$

または

$$A\mu + B\mu^3 + C\mu^5. \quad (6.29)$$

6.3.3 $\beta = 0.70(< T_c)$

この温度では、系は $\mu^2 > -1.15$ のときに D 相である。$\beta = 0.75$ の場合と同じような関数を用いるが、関数の係数を決めるための $-1.15 < \mu^2 \leq 0$ の領域のデータのみを用いる。Φ と σ に対しては、扱ったデータの数が少ないため、2 次関数の式 (6.26) のみを用いる。

6.3.4 $\beta = 0.60, 0.65 < T_c$

この温度では、虚数 μ 領域と $\mu = 0$ で系は C 相である。このため物理量は連続的周期関数でよく記述されることが期待される。ポリヤコフ関数 $\Phi(\theta)$ は θ に周期関数で $\theta = \text{Im}(\hat{\mu})$ の周期 2π を持つので、以下のようなフーリエ和を用いる。Φ に対しては、

$$A \cos(\theta), \quad (6.30)$$

または

$$A \cos(\theta) + B \cos(3\theta), \quad (6.31)$$
任意の θ' に対して、$\Phi(\frac{\pi}{2} + \theta') = -\Phi(\frac{\pi}{2} - \theta')$ なので、$\cos(2\theta)$ と $\cos(4\theta)$ の項は定数項と同じ理由で除外されていることに注意。カイラル凝縮 $\sigma(\theta)$ は周期 π の θ に偶な関数である。そこで、σ に対してフーリエ級数を使って、

$$A + B \cos(2\theta),$$

式 (6.32)

または、

$$A + B \cos(2\theta) + C \cos(4\theta),$$

式 (6.33)

クォーク数密度 $n_q(\theta)$ は周期 π の θ に奇な関数である。n_q に対してそこでフーリエ級数を用いて、

$$A \sin(2\theta),$$

式 (6.34)

または

$$A \sin(2\theta) + B \sin(4\theta),$$

式 (6.35)

$\beta = 0.65$ の場合、$\mu^2 > 1.35$ のときに、系は D 相であることに注意。そこで虚数 $\tilde{\mu}$ と $\tilde{\mu} = 0$ の LQC2D データから決められるフーリエ級数のパラメータは D 相でうまくいかないようである。

6.3.5 擬臨界線

擬臨界線 $\beta_c(\tilde{\mu})$ は $\tilde{\mu}$ に偶な関数である。このため、(6.26) と (6.27) と同様の関数を用いる。

6.4 クォーク数密度

初めにクォーク数密度の解析接続を行う。図 18-21 は各温度に対するクォーク数密度の μ^2 依存性を示している。解析接続には虚数 $\tilde{\mu}$ と $\tilde{\mu} = 0$ の LQC2D データからくる誤差があり、解析接続の上限と下限の範囲を同じ線種の対で描いている。$(n_q/T)^2$ は $\tilde{\mu} = 0$ で滑らかである。これは後に示す $\delta\sigma$ や Φ 対しても正しい。これは虚数 $\tilde{\mu}$ から実数 μ への解析接続が可能であることを保証する。

図 18 は $\beta = 0.75(T/T_c0 = 1.18)$ における n_q の $\tilde{\mu}^2$ 依存性を示しており、系は D 相であるので、べき関数を用いる。虚数 μ 領域での LQC2D データを用いて決めた係数は付録中的表 9(a) に自由度で割った χ 自乗値をともにまとめられている。$\tilde{\mu}^2$ までのべき級数は、$0 \leq \tilde{\mu}^2 \leq (1.2)^2$ の大きな範囲でよく LQC2D データを再現する。解析接続は 1 次の RW 転移が存
図 17: $\langle \mu/T \rangle^2 - \beta$ 平面での閉じ込め非閉じ込め相転移。

在する、$\hat{\mu}^2 = -(\pi/2)$ の $T > T_{ RW}$ で LQC2D データとずれていることに注意。

図 19 は $\beta = 0.70 (T/T_c = 1.06)$ における n_q の $\hat{\mu}^2$ 依存性を示しており、$\hat{\mu}^2 < -1.15$ で系は C 相であり、その他の領域は D 相である。このため、解析関数の係数を決めるために、$\hat{\mu}^2 = -1.15 \sim 0$ の領域では 7 つのデータのみを使う。関数の係数と自由度で割った χ 自乗値は付録中の表 9(b) にまとめられている。計算された、実数 $\hat{\mu}$ の LQC2D データは $0 \leq \hat{\mu}^2 \leq (1.2)^2$ の広い範囲で、$\hat{\mu}^3$ までのべき級数の上限と下限の範囲にある。

図 20 は $\beta = 0.65 (T/T_c = 0.96)$ における n_q の $\hat{\mu}^2$ 依存性で、$\hat{\mu}^2 < 1.35$ で系は C 相で、他の領域で D 相である。このためフーリエ級数を用いる。関数の係数と自由度で割った χ 自乗値は付録中の表 9(c) にまとめられている。解析関数は $\hat{\mu}^2 \geq (0.4)^2$ の実数 $\hat{\mu}$ で LQC2D データを再現するのに
失敗している。μ^2 が大きく、この解析的関数のずれは、系が D 相であるフーリエ相がほぼ有効でないという事実に起因しているかもしれません。

図 21 は $\beta = 0.60 (T/T_c = 0.88)$ における n_q の μ^2 依存性で、系は C 相である。このためフーリエ級数を用いる。関数の係数と自由度を記した χ 自乗値は付録中の表 9(d) にまとめられている。LQCD データは 2 次の関数の上限と下限の範囲にある。$\sin(2\theta) / \sin(4\theta)$ までの項を入ったフーリエ級数は、実数 μ の $0 \leq \mu^2 \leq 0.8 (0 \leq \mu^2 \leq (1.2)^2)$ の広い範囲の LQC2D とつじつまがあっている。4 つの $T/T_c = 0.88$ の場合を比較すると、系が全ての μ で D 相である高温 $T/T_c = 0.88$ の $-(\pi/2)^2 \sim (1.2)^2$ と全ての μ で系が C 相である低 $T/T_c = 0.88$ の $-(\pi/2)^2 \sim (1.2)^2$ で、解析的関数はつじつまが合っている。

$T/T_c = 1.18$ の近傍では、特に系は、μ^2 の値が $-(\pi/2)^2$ から 0 に正に変化するにつれて、C 相から D 相に変化する。簡単な解析関数は複雑な変化の特性とはうまくいかない。このため解析接続は非閉じ込めのクロスオーバー近傍を除いて理屈に合っている。

図 18: (a) $\beta = 0.75 (T/T_c = 1.18)$ における n_q の μ^2 依存性。図にあるように誤差棒付きの点は LQC2D データを、また実線、破線はそれぞれフィット関数とその延長線を表している。
図 19: (b) $\beta = 0.70 (T/T_c = 1.06)$ における n_q の $\tilde{\mu}^2$ 依存性。図にあるように誤差棒付きの点は LQCD データを、また実線、破線はそれぞれフィット関数とその延長線を表している。

6.5 カイラル凝縮

図 22-25 は $\delta \sigma$ のいくつかの T における $\delta \sigma$ の $\tilde{\mu}^2$ 依存性を示している。前と同様に、解析接続の上限と下限の範囲を同じ線種の対で描いている。虚数 $\tilde{\mu}$ の LQCD データから選んだパラメータについては、付録の中にある表 9 を参照してもらいたい。以下に示すように $\delta \sigma$ に対して、C 相がコサイン関数であることを除けば、章 6.4 の n_q に対する議論と同様である。

図 22 は $\beta = 0.75 (T/T_{c0} = 1.18)$ における $\delta \sigma$ の $\tilde{\mu}^2$ 依存性を示しており、系は D 相である。$\tilde{\mu}^2$ までのべき級数が $0 \leq \tilde{\mu}^2 \leq (1.2)^2$ の広範囲で LQCD データをよく再現している。図 23 は $\beta = 0.70 (T/T_{c0} = 1.06)$ における $\delta \sigma$ の $\tilde{\mu}^2$ 依存性で、$\tilde{\mu}^2 < -1.15$ で系は C 相であり、その他の領域は D 相である。このため、解析関数の係数を決めるために、$\tilde{\mu}^2 = -1.15 \sim 0$ の領域では 3 つのデータのみを使う。用いるデータ数が少ないために、2 次のべき級数のみを用いる。$0 \leq \tilde{\mu}^2 \leq (1.2)^2$ の広い範囲で、解析関数は実数 $\tilde{\mu}$ で計算された LQCD 結果と矛盾ない結果である。
図 20: (c) $\beta = 0.65(T/T_{c0} = 0.96)$ における n_q の μ^2 依存性。図にあるように誤差棒付きの点は LQC2D データを、また実線、破線はそれぞれフィット関数とその延長線を表している。

図 24 は $\beta = 0.65(T/T_{c0} = 0.96)$ における $\delta \sigma$ の μ^2 依存性で、$\mu^2 < 1.35$ で系は C 相で、他の領域で D 相である。そこでフーリエ級数を用いる。解析関数は $\mu^2 \geq (0.4)^2$ の実数 μ で LQC2D データと矛盾している。n_q の場合に述べたように、この μ^2 が大きなところでは系は C 相であり、もはやフーリエ級数がフィッティング関数として適切でないことを意味しているかもしれない。図 25 は $\beta = 0.60(T/T_{c0} = 0.88)$ における $\delta \sigma$ の μ^2 依存性で、系は C 相である。このためフーリエ級数を用いる。解析関数は実数 μ の $0 \leq \mu^2 < 0.8$ で LQC2D データとつじつまが合っている。

6.6 ポリヤコフループ

図 26-29 はいくつかの温度におけるポリヤコフループの μ^2 依存性を示している。再びだが、解析法をの上限と下限の範囲と同じ線種の対で描いている。実数 μ の LQC2D から求めたパラメータについては、付録の中にある表 9 を参照してもらうたい。Φ に関しては章 6.5 の $\delta \sigma$ に対する議論
図 21: (d) $\beta = 0.60 (T/T_c = 0.88)$ における n_q の μ^2 依存性。図にあるように誤差棒付きの点は LQCD データを、実線、破線はそれぞれフィット関数とその延長線を表している。

と同じである。

6.7 相図

図 30 は $\mu^2 - \beta$ 平面の非閉じ込めの図を示している。非閉じ込めの温度は $\beta_c(\mu)$ は $\mu = 0$ でおよそ 0.67 である。実数 μ の LQCD から求めたパラメータについては、付録 A にある表 10 を参照してもらいたい。μ^2 までのべき級数は、$\mu^2 > 0.8$ はしが出るが、$0 < \mu^2 < 0.8$ で LQCD データをよく再現する。μ^4 までのべき級数は、誤差の上限と下限の違いがあるものの $\mu^2 > 0.8$ できえ LQCD データとしつつが合う。このようにして相転移線がワリに合っている $0 < \mu^2 < 0.8$ の範囲の解析接続を考えるべきである。
図 22: (a) \(\beta = 0.75(T/T_0 = 1.18) \)における \(\delta \sigma \) の \(\hat{\mu}^2 \) 依存性。図にあるような誤差棒付きの点は LQC3D データを、また実線、破線はそれぞれフィット関数とその延長線を表している。

6.8 PNJL と LQC3D の結果の比較

6.8.1 パラメータフィッティング

この章では、有効モデルの有効性を調べるために、LQC3D データと PNJL モデルから得られたデータの比較をする。この目的のために、まず PNJL モデルのパラメータを決定する。章 6.2.4 で述べたように、\(G_v \) 以外は、PNJL モデルの NJL 部のパラメータは真空の特性を再現することを決める。他のパラメータ \(a, b, \alpha \) と \(G_v \) は以下のように決める。

図 31 は、\(-(\pi/2)^2 \sim (1.2)^2 \) のいくつかの \(\hat{\mu}^2 \) の値におけるステファン・ボルツマン極限のクォーク数 \(n_{SB} \) で割ったクォーク数 \(n_q \) の \(T \) 依存性である。LQC3D 結果には有限体積と空間による格子の効果を含んでいる。\(n_{SB} \) で割ることによって LQC3D シミュレーションの有限体積効果が相当程度取り除かれることが期待される。\(\hat{\mu} \) の全ての場合において、\(n_q/n_{SB} \) の比は \(n_q/n_{SB} \) は \(T \) が増加するにつれて増加する。

いま今回の解析で最も高温の \(\beta = 0.75(T/T_0 = 1.18) \) の \(n_q \) からパラメータ \(a, b, \alpha \) と \(G_v \) を決める。このパラメータの決め方の方法の一つ目
図 23: (b)\(\beta = 0.70(T/T_0 = 1.06) \) における \(\delta \sigma \) の \(\mu^2 \) 依存性。図にあるように誤差棒付きの点は LQC2D データを、また実線、破線はそれぞれフィット関数とその延長線を表している。

の理由は PNJL モデルがクォーク力学に対して基礎的なモデルであり、低温よりも高温でうまく合うからである。もう一つの理由は、\(n_q \) は繰りこみが必要がないということと、\(G_{\nu} \) の値に敏感であるからである。

同様に図 32 の結果で \(\mu = 0 \) における臨界温度 \(T_{c0} = 146[\text{MeV}] \) を再現するパラメータ \(a, b, \alpha \) と \(G_{\nu} \) を決めた。得られたパラメータは章 6.2.4 の表 8 にまとめられている。虚数 \(\mu \) で LQC2D データを再現するためにベクター相互作用が必要であることは興味深い。事実、\(G_{\nu} = 0.15G_0 \)（実線）のモデルの結果は \(G_{\nu} = 0 \) （点線）のモデルの結果よりよい。これは 3 カラーの現実的な QCD の場合のベクター相互作用の決定に同様な方法が有効であることを保証している [42, 116, 117]。

図 33 は 3 つの \(\mu^2 = -(\pi/2)^2 \)、0、1.44 の値における \(\Phi \) の \(T \) 依存性を示している。\(\Phi \) には繰りこみが必要で、\(\mu = 0 \) の \(T = T_{c0} \) の LQC2D データを再現するように PNJL モデルの結果に 0.304 をかける。繰りこみをした
図 24: (c) $\beta = 0.65 (T/T_c) = 0.96$ における $\delta \sigma$ の μ^2 依存性。図にあるように誤差棒付きの点は LQC$_2$D データを、また実線、破線はそれぞれフィット関数とその延長線を表している。

PNJL モデルの結果（実線）は、$T > T_{RW} \approx 1.16T_c$ かつ $\mu^2 = -(\pi/2)^2$ における 1 次の RW 相転移を除いて、定性的に LQC$_2$D データを再現する。PNJL モデルで $T_{RW} = 178$ MeV だが、LQC$_2$D の $T_{RW} = 163 \sim 166$ MeV である。現在のモデルでは、数値的に T_c を再現して、同時に T_{RW} を再現することはとても難しい。ポリヤコフポテンシャル $\mathcal{U}(\Phi)$ を修正することが必要かもしれない。
図 25: (d) \(\beta = 0.60 (T/T_{c0} = 0.88) \) における \(\delta \sigma \) の \(\mu^2 \) 依存性。図にあるように誤差棒付きの点は LQC\(_2\)D データを、また実線、破線はそれぞれフィット関数とその延長線を表している。
図26: (a) $\beta = 0.75(T/T_c = 1.18)$ における Φ の μ^2 依存性。図にあるように誤差棒付きの点は LQCD2D データを、また実線、破線はそれぞれフィット関数とその延長線を表している。
図 27: (b) $\beta = 0.70(T/T_{c0} = 1.06)$ における Φ の μ^2 依存性。図にあるように誤差棒付きの点は LQCD2D データを、また実線、破線はそれぞれフィッ特関数とその延長線を表している。
図 28: (c) $\beta = 0.65 (T / T_c = 0.96)$ における Φ の μ^2 依存性。図にあるように誤差棒付きの点は LQCD_2 データを、また実線、破線はそれぞれフィット関数とその延長線を表している。
図 29: (d) $\beta = 0.60(T/T_c = 0.88)$ における Φ の μ^2 依存性。図にあるように誤差棒付きの点は LQCD データを、また実線、破線はそれぞれフィット関数とその延長線を表している。
図 30: μ^2-β 平面での非閉じ込め擬臨界温度線。図にあるように誤差棒付きの点は LQCD データを、また実線、破線はそれぞれフィット関数とその延長線を表している。解析的関数の上限と下限の範囲も同じ図に示してある。パデー級数に関してのみ、平均値もともに示している。
図31: 各 μ^2 の値に対する n_q / n_{SB} の T 依存性。下から $\mu^2 = -(\pi/2)^2, \mu^2 = -1.58, \mu^2 = -0.394, \mu^2 = 0.16, \mu^2 = 0.64, \mu^2 = 1.44$ である。上方の3種の点は実数 μ 領域のLQC2Dシミュレーションを、下方の3種の点は虚数 μ 領域の結果を表している。
図 32: 虚数 \(\mu \) 領域の \(\beta = 0.75 \) におけるクォーク数密度の \(\mu^2 \) 依存性。誤差棒付きの点は LQC\(_2 \)D データの結果で、実線（点線）は \(G_v/G_0 = 0.15(0) \) の PNJL モデルの結果である。
図 33: Φ の T 依存性。点は LQC_{2D} データで、線は PNJL モデルの結果である。下から、$\hat{\mu}^2 = -(\pi/2)^2$, $\hat{\mu}^2 = 0$, $\hat{\mu}^2 = 1.44$. PNJL モデルの結果は 0.304 をかけて規格化している。
6.8.2 クォーク数密度に対する PNJL と LQC2D の比較

次にクォーク数密度のμ²依存性を調べよう。図 34 は β = 0.75(T/Tc,0 = 1.18) におけるクォーク数密度のμ²依存性を示している。前節で述べたように、PNJL モデルのパラメータを決めるために虚数 μ の β = 0.75 のデータを用いた。決まったパラメータセットは実数 μ でさえも LQC2D データをよく再現している。これは PNJL モデルが高温で有効であることを保証している。また、Gv = 0 の PNJL モデルは実数 μ で LQC2D 結果を再現するのに失敗している一方で、虚数 μ の LQC2D データを用いて決めた Gv を入れた PNJL は LQC2D データをよく再現する。このように虚数 μ 領域でのマッチングアプローチはうまくいくようである。

図 35 は、β = 0.70(T/Tc,0 = 1.06) である以外は、図 34 と同じ図である。垂直の薄い点線の左側（右側）は C(D) 相である。C 相では、PNJL の結果は LQC2D データをかなり小さく見積もっている。この結果を改善するために PNJL の結果に、パイオン（擬スカラー中間子）の物理自由度の自由“バリオン”ガスの効果を加える。QC2D ではバリオンは2つのクォークから構成されるポソノであることに注意。参照の [174] によると、パイオンと同じような自由度を持つスカラーのバリオンはほとんどパイオンと同じ質量を持つ。このためバリオン質量 m_B = m_p = 616 MeV を使う。この修正によって C 相では有効モデルの結果が LQC2D データにより近づくが、D 相では修正した値は LQC2D データよりも大きくなる。このことは D 相でバリオンは消えるべきであることを示唆している。この方法では、n_q に寄与するバリオンは以下のように得られて、

$$n_{q,B} = 2g \int \frac{d^3p}{(2\pi)^3} \left[\frac{1}{e^{\beta(E_B-2\mu)}-1} - \frac{1}{e^{\beta(E_B+2\mu)}-1} \right].$$

ここで E_B = \sqrt{p^2 + m_B^2} で g = 3 は自由度で、g の前の係数の 2 はバリオンが 2 つのクォークから構成されていることに起因している。この修正は特に C 相での LQC2D の結果を改善するが、D 相はしない。このことは少なくとも部分的にバリオンが D 相で消えることを意味している。

図 36 は、β = 0.65(T/Tc,0 = 0.96) である以外は、図 34 と同じ図である。薄い点線の左側の系は C 相であり、右側は D 相である。C 相では PNJL の結果は LQC2D データの結果よりも小さい。PNJL+バリオンのモデルは D 相では LQC2D データよりも大きくなるものの、C 相ではよく LQC2D データを再現している。再び、バリオンは D 相で消えていると考えられる。

より詳しくいいえば PNJL+バリオンのモデルはまた LQC2D データを薄い点線近くの C 相で大きく見積もっている。この事実は大きな密度領域
ではバリオンの間に反発する力があり、現実的な原子核物質のように数密度を抑制していることを示唆しているかもしれない。

図 37 は、\(\beta = 0.60(T/T_c = 0.88) \) である以外は、図 34 と同じ図である。この温度では寄は C 相であり、PNJL の結果は LQC2D の結果よりもずっと小さい。PNJL+バリオンモデルは LQC2D の結果をよく再現する。このように C 相ではいつも、バリオンの効果は \(n_q \) に対して重要な寄与を持っていると結論することができる。

図 34: \(\beta = 0.75(T/T_c = 1.18) \) における \(\Phi \) の \(\mu^2 \) 依存性。誤差棒付きの点が LQC2D データの結果で、実線が \(G_v/G = 0.15(0) \) を用いた PNJL モデルの結果である。\(\mu = 0 \) で \(n_q/n_{SB} \) は \(\lim_{\mu \to 0} n_q/n_{SB} \) と定義されることに注意。
図 35: $\beta = 0.70 (T/T_{cb} = 1.06)$ における Φ の μ^2 依存性。誤差棒付きの点が LQCD データの結果で、実線 (破線) が PNJL モデル (PNJL + バリオンモデル) の結果である。薄い点線の左側で系は C 相で、右側で D 相である。
図 36: $\beta = 0.65(T/T_{c0} = 0.96)$ における Φ の μ^2 依存性。縦の定義は図 35 の脚注を参照。
図 37: $\beta = 0.60(T/T_{\text{c0}} = 0.88)$ における Φ の μ^2 依存性。誤差棒付きの点が LQC2D データの結果で、実験（破線）が PNJL モデル（PNJL + バリオンモデル）の結果である。
6.8.3 カイラル凝縮

6.8 で述べたように、カイラル凝縮の PNJL の結果と LQC2D の結果を比較するためには繰りこみが必要である。ここで \(\beta = 0.75(T/T_{c0} = 1.18) \)
の \(\mu^2 = -(\pi/2)^2 \) における LQC2D 結果を再現するよう PNJL の結果に 1.92 をかけて繰りこみをする。PNJL モデルは低温よりも高温でより自然と期待されるクォークのモデルなので、この繰りこみを選んだのは自然である。

図 38 は、\(\beta = 0.75(T/T_{c0} = 1.18) \) における \(\delta \sigma \) の \(\mu^2 \) 依存性である。この温度では、系は D 相である。PNJL の結果は LQC2D の結果を実数 \(\mu \) さえもよく再現することがわかる。

図 39 と図 40 は \(\beta = 0.70(T/T_{c0} = 1.16) \) と \(\beta = 0.65(T/T_{c0} = 0.96) \)
における \(\delta \sigma \) の \(\mu^2 \) 依存性である。垂直の薄い点線の左側で、系は C 相であるが、右側では D 相である。PNJL モデル（実線）は D 相で LQC2D データとつじつまが合っているが、C 相ではあてていない。この C 相での不一致を改善するために再び PNJL モデルにバリオンの効果を入れる:

\[
\sigma_B = \frac{\partial m_B}{\partial m} \int \frac{d^3 p}{(2\pi)^3} \frac{m_B}{E_B} \left[\frac{1}{e^{\beta(E_B-2\mu)}-1} \right] + \frac{1}{e^{\beta(E_B+2\mu)}-1}, \quad (6.37)
\]

ここでナイーブな連続的クォークモデルはこの値をあたえるので以下のよう仮定する。

\[
\frac{\partial m_B}{\partial m} = 2, \quad (6.38)
\]

図 39 と図 40 で示したように PNJL+バリオンモデル（破線）は C 相で PNJL モデル（実線）よりもよく LQC2D データを再現しているが、D 相ではそうではない。これはバリオンの効果が C 相でのみ重要であることを意味している。

図 41 は \(\beta = 0.60(T/T_{c0} = 0.88) \) における \(\delta \sigma \) の \(\mu^2 \) 依存性である。この温度では系は C 相である。全ての \(\mu^2 \) の領域で PNJL+バリオンモデル（破線）は PNJL モデル（実線）よりも LQC2D の結果をよく再現する。式 (6.12) に定義された \(\delta \sigma \) がいつも 0 であることに注意。こうしてバリオンの効果は \(n_q/n_{SB} \) だけではなくて \(\delta \sigma \) に対しても C 相で重要であることがわかる。

6.8.4 ポリヤコフループ

図 42 は \(\beta = 0.75 \) における \(\Phi \) の \(\mu^2 \) 依存性を示している。章 6.8.1 で述べたように PNJL の結果に 0.304 をかけて繰りこみをしている。この温度
図 38: $\beta = 0.75(T/T_c = 1.18)$ における $\delta \sigma$ の μ^2 依存性。誤差棒付きの点が LQC2D データの結果で、実線が PNJL モデルの結果である。$\beta = 0.75$ の $(\mu/T)^2 = -1/(\pi/2)^2$ の LQC2D の結果に合わせるように PNJL の結果の値を 1.92 倍し、規格化している。

では系は D 相である。PNJL モデルは RW 転移近傍以外はよく LQC2D データを再現しているのが分かる。上で述べたようにこのモデルでは RW 温度を再現するのは難しく、今後の課題である。

図 43 と図 44 はそれぞれ $\beta = 0.70, 0.65$ における Φ の μ^2 依存性である。PNJL の結果は Z_2 対称性が Φ を 0 にしている $\mu^2 = -1/(\pi/2)^2$ を除く C 相で LQC2D 結果といくらかずれている。

図 45 は $\beta = 0.60$ における Φ の μ^2 依存性を示しており、この温度で系は C 相である。PNJL の結果は Z_2 対称性が Φ を 0 にしている $\mu^2 = -1/(\pi/2)^2$ を除く全ての領域で LQC2D 結果といくらかずれている。

すべての Φ の解析に対して、PNJL モデルは RW 点近傍や低温の振る舞いを再現できないということができる。この問題を解決するためには $U(\Phi)$ をよく修正することが必要かもしれない。
図 39: $\beta = 0.70(T/T_c = 1.06)$ における $\delta \sigma$ の μ^2 依存性。誤差棒付きの点が LQCT データの結果で、実線が PNJL モデルの結果である。$\beta = 0.75$ の $(\mu/T)^2 = -(\pi/2)^2$ の LQCT の結果に合わせるように PNJL の結果の値を 1.92 倍し、規格化している。薄い垂直の点線の左側では、系は C 相で、右側で D 相である。

6.8.5 擬臨界線

図 46 は $\mu^2 - T$ 平面における擬臨界線に関する LQCD データと PNJL モデルの結果の比較を示している。PNJL モデルの結果は $\mu^2 = -2 \sim 1$ では LQCD の結果をよく再現するが、RW 点線近傍や $\mu^2 \approx (1.2)^2$ の μ^2 の値が大きいところではいくらかずれている。モデルを修正して、RW 転移線の近傍で LQCD の結果を再現できるときに、μ^2 の大きなところかどうかかわらず、PNJL モデルが LQCD の結果を再現できるかどうかは興味のある問題である。

6.8.6 PNJL モデルのパラメータの決定における誤差と不確定さ

この章では PNJL モデルのパラメータの決定における誤差と不確定さを議論する。まず始めに G_ν の値を変えるときの効果を見積もる。PNJL モデルのパラメータを決める過程はとても複雑であるので、パラメータを
図 40: $\beta = 0.65(T/T_{c0} = 0.96)$ における $\delta \sigma$ の μ^2 依存性。

決める最後の段階についての議論に集中する。G_v の値以外は PNJL モデルの NJL 部のパラメータはすでに真空特性を再現するために決められていて、かつ $T_{c_{PNJL}}(0) = T_{c_{LQCD}}(0) = 146$MeV の条件によって未定の 4 つのパラメータのうち一つは除かれる。我々は残りの 3 つのパラメータを選びながら、虚数化学ポテンシャルの $\beta = 0.75$ の LQCD データのクォーク数密度に合わせなくてはならない。このようにしてフィッティングの自由度（d.o.f.）は $N_{data} - 3$ で与えられる。ここで N_{data} は LQCD のデータ数である。このパラメータの決定に対する χ^2/d.o.f. の値は表 11 に書いてある。同じ表で他の物理量に対する χ^2/d.o.f. の値が書いてある。表から低温度で χ^2/N_{data} の値はとても大きくなる。PNJL モデルは $\beta \neq 0.75$ のときの LQCD 結果をうまく再現できない。表 12 では $\beta \neq 0.75$ のときに PNJL+バリオンモデルにおける、クォーク数密度とカイラル凝縮に対する χ^2/N_{data} の値が示されている。D 相では大きくなる一方で、C 相では χ^2/N_{data} の値が小さくなるのがわかる。これは、クォーク数密度とカイラル凝縮に対して C 相ではバリオンの寄与が必要で、D 相では消える必要があるという、我々の結果を証明する。

χ^2 の値は PNJL モデル計算自身の正確さに依存しているかもしれない。表 11-表 14 で isigma は PNJL モデル計算の精度を示している。式 4.28 を満たす σ の解を探すにあたって、我々は σ を $\Delta \sigma = 0.012\sigma_0$/isigma の精
図 41: \(\beta = 0.60(T/T_c = 0.88) \) における \(\delta \sigma \) の \(\hat{\mu} \) 依存性。

度で探した。ここで \(\sigma_0 \) は真空のカイラル凝縮の值である。isigma=10 と isigma=50 を比較すると、\(\chi^2 \) の値は PNJL モデルの不確定性に大きく依存していないことがわかる。

章 6.8.2 で図 34 は \(\beta = 0.75 \) で、\(G_v/G_0 = 0, 0.5, 0.15 \) の PNJL モデルで得られたクォーク数密度の結果を示している。LQCD の物理量に対する、\(G_v/G_0 = 0, 0.5 \) での \(\chi^2 \) の値は表 13 と表 14 にそれぞれある。\(G_v/G_0 = 0.15 \) の PNJL モデルの場合に対して、\(\chi^2/d.o.f. \) と \(\chi^2/N_{\text{data}} \) がとても大きいことがわかる。一方で、\(G_v/G_0 = 0.1 \sim 0.4 \) までの PNJL 計算は \(G_v/G_0 = 0.15 \) の結果と比べてさほど大きくない。このようにして大体 \(G_v/G_0 \) は 0.1～0.4 ぐらいがよいことがわかる。

次に \(\beta = 0.75 \) の代わりに、低温度 (\(\beta = 0.60 \) での虚数化学ポテンシャルにおけるクォーク数密度を再現する PNJL パラメータを決めよう。図 47 の左側は、物理量に対して探した最善のフィットの結果である。新しいパラメータセットでは、\(G_v = 0 \) 以外はこれまでのパラメータセットと同様である。図から、\(G_v = 0 \) でさえも PNJL モデルが LQCD 結果を、虚数化学ポテンシャル、実数化学ポテンシャル（図の右側）の両方で小さく見積もっていることが明らかである。

虚数化学ポテンシャルにおけるクォーク数密度の \(\chi^2/d.o.f. \) の値と、実数化学ポテンシャル領域のクォーク数密度の \(\chi^2/N_{\text{data}} \) の値はそれぞれ 1973
図 42: $\beta = 0.75(T/T_c = 1.18)$ における Φ の μ^2 依存性。誤差棒付きの点が LQC2D データの結果で、実線が PNJL モデルの結果である。PNJL の結果は 0.304 をかけた規格化している。

と 4982 である。これらの値は表 11 の値よりも大きい。ここから我々のパラメータの決め方がよく dukimasa ことがわかる。

PNJL モデルは定性的にのみポリアロフ フルム Φ の μ 依存性を再現する。例えば、図 42 で PNJL 結果は $\mu/T > 0.5$ で Φ を小さく見積もり、実数学ポテンシャル領域の $\mu/T = 0$ などでは大きく見積もっている。現時点のモデルではポリアロフの μ 依存性をもっとよく再現することは難しい。さらに有効モデルのパラメータの μ 依存性は、ポリアロフ の μ 依存性を説明するかもしれないが、熱力学的に矛盾をきたし、クォーク数密度などの他の物理量を再現できなくなる。現時点では、熱力学的に矛盾なく、ポリアロフの μ 依存性を再現するのは今後の課題である。

6.9 まとめ

まとめで、renormalization-group-improved Iwasaki ゲージ作用 [175, 176] と clover-improved two-flavor Wilson フェルミオン作用 [177] を用いて実数と虚数 μ の両方で格子計算をして QC2D の相構造を研究した。ポ
図 43: $\beta = 0.70(T/T_c = 1.06)$ における Φ の μ^2 依存性。誤差棒付きの点が LQC$_2$D データの結果で、実線が PNJL モデルの結果である。PNJL の結果は 0.304 をかけて規格化している。

リヤコブループ、カイラル凝縮、クォーク数密度は $0.86 \leq T/T_c \leq 1.18$ かつ $-(\pi/2)^2 \leq \mu^2 \leq (1.2)^2$ で計算された。これらの量は期待通り $\mu^2 = 0$ でないのがわかる。これは虚数 μ から実数 μ への解析接続が可能であることを保証している。

解析接続ついては [187, 189] で、スタッガードフェルミオンでテストされている。本論文では、非閉じ込め相で μ のべき級数で、閉じ込め相ではフーリエ級数を仮定して 2 フレーバーのウィルソンフェルミオンで同じような解析をした。ここで虚数 μ で級数の係数を決めた。非閉じ込め相に対する T/T_c のクォーク数密度に対しては、$0 \leq \mu^2 \leq (1.2)^2$ の広い範囲で μ^3 までの多項式級数が LQC$_2$D データをよく再現する。閉じ込めに対する $T/T_c = 0.88$ では低次のフーリエ級数の $\sin(2\theta)$ が $0 \leq \mu \leq 0.8$ の範囲で LQC$_2$D データをよく再現する。非閉じ込め相の近くの $T/T_c = 0.96$ では $0 \leq \mu < 0.4$ でよい。解析接続はこのように非閉じ込め相と閉じ込め相でよいが、$T/T_c = 1$ 近くの、T が固定されたとき、$-(\pi/2)^2 \leq \mu^2 \leq (1.2)^2$ の範囲のどこかで μ^2 が大きくなるにつれて非閉じ込め転移が起こる転移の領域では正確でなくなる。これはポリリアコブループとカイラル凝縮に対して正しい。
図 44: $\beta = 0.65 (T/T_c = 0.96)$ における Φ の μ^2 依存性。誤差棒付きの点が LQC2D データの結果で、実線が PNJL モデルの結果である。PNJL の結果は 0.304 をかけて規格化している。

$T/T_c = 1.18$ の虚数 μ のクォーク数密度でフィットして決められたモデルパラメータの PNJL モデル結果を LQC2D の結果と比較することにより PNJL モデルの有効性を調べた。非閉じ込めのクロスオーバーの転移に対してもモデルの結果は LQC2D の結果と合う。もっと詳しくいえば、RW 近傍と $(\bar{\mu})^2 \approx (1.2)^2$ の μ^2 が大きなところでは完全になっているとは言えない。PNJL モデルが RW 近傍の LQC2D を再現できるときに μ^2 が大きなところを再現できるかは興味がある。可能な修正の候補としてはポリヤコフループポテンシャル $U(\Phi)$ のよりよい修正である。

$T/T_c = 1.18$ の非閉じ込め相では、PNJL モデルは、虚数と実数 μ のクォーク数密度、カイラル凝縮とポリヤコフループの LQC2D をよく再現する。特に実数 μ での一致は PNJL モデルが非閉じ込め領域で信頼性があることを意味している。$T/T_c \approx 1$ の転移領域では、PNJL と LQC2D との再現性はあまりよくない。クォーク数密度やカイラル凝縮に対しては、しかしながら、μ^2 が小さな領域で見られる閉じ込め領域のいずれは PNJL モデルにバリオンの自由度を導入することで減らすことができる。

μ^2 が大きな領域で現れる非閉じ込め領域では、反対に、バリオンの効果を考慮するとモデルは LQC2D のデータを大きく見積もありすぎてしまう。
図 45: β = 0.75(Tc/Tc0 = 0.88) における C の μ2 依存性。誤差棒付きの点が LQC2D データの結果で、実線が PNJL モデルの結果である。PNJL の結果は 0.304 をかけて規格化している。

これは非閉じ込め領域ではバリオンは少なくとも部分的に消えることを意味している。T/Tc0 = 0.88 の開じ込め相でもバリオンの自由度は重要である。ポリヤコフループに対しては、開じ込め相での PNJL モデルと LQC2D の結果のずれはバリオンの寄与では解明することができない。もちろんこれは、ポリヤコフループポテンシャルが現モデルではバリオンの効果で変化しないことによる。この線に沿った PNJL モデルの修正は興味がある。

現在の解析はまたクォーク数密度について LQC2D を説明するためにはベクター型 4 点相互作用が必要であることを示している。この事実は現実の 3 カラーの場合でもベクター型相互作用は虚数 μ の LQC2D データから求められることを示唆している。我々が扱った LQC2D データはかなり制限されていたが、本結果は虚数 μ のマッチングアプローチが有限密度の QCD の熱力学のアプローチとして期待が持てることを意味している。

本論文ではクォークが 0 である μ 領域のみを考えた。クォークのある領域の有効モデルの定量的チェックもまた興味がある。
図 46: 擬臨界線に関する PNJL の結果と LQC₂D の結果の比較。誤差棒付きの点は LQC₂D データを示して、実線が PNJI モデルの結果を示している。
図 47: ベクター相互作用を入れないときの、$\beta = 0.60(T/T_{c0} = 0.96)$ の
n_q/n_{SB} の μ^2 依存性

\[T = T_{c0} = 0.96 \]

$LQCD$ $PNJL$
7 全体のまとめ

ハドロン物理において、QCD 相関の研究は重要かつ興味のあるテーマである。この研究は現代物理で最も興味が持たれるものの 1 つである。中性子内部の構造等を知る上で必要である。これらを知るには QCD の解析が重要であるが、よく知られているように、QCD の第一原理計算である LQCD には符号問題があるので、計算が非常に困難になっている。そこでわれわれは現象論モデルである PNJL モデルをもって解析を進めていく。このモデルはカイラル対称性についても閉じ込め・非閉じ込めについても議論できる。

この博士論文では理論の母体である QCD の説明から始めて、格子計算について、PNJL モデルについて説明をした。そして以下に示すように、2 つの研究について述べた。

(1): 3 フレーバー QCD の \(\mathbb{Z}_3 \) 対称性と閉じ込め
(2): 2 カラー QCD の解析

まず、(1) では有限虚数アイソシンズ化学ポテンシャル \((\mu_u, \mu_d, \mu_s) = (i\theta T, -i\theta T, 0)\) で、3 フレーバーの QCD において閉じ込めと \(\mathbb{Z}_3 \) 対称性の関の関係を PNJL モデルを用いて研究した。縮退した 3 フレーバーと 2+1 フレーバーの両方を取り扱った。前者のケースでは、系は \(\theta = 2\pi/3 \) で \(\mathbb{Z}_3 \) 対称性を持つ。対称性は低温 \(T \) で自発的に破れないので、ポリヤコフループ \(\Phi \) はここで 0 である。後者では、\(\mathbb{Z}_3 \) 対称性はどの \(\theta \) も明確に破れていているが、\(2\pi/3 \) より小さい値の \(\theta = \theta_{\text{conf}} \) のとき \(\Phi = 0 \) である。このようにして系が \(\mathbb{Z}_3 \) 対称性を明確に持っていないても \(\Phi = 0 \) で定義された閉じ込め相が企望される。閉じ込め相では、静的クォークの自由エネルギー \(-T \ln[\Phi] \) が発散する。これは、明確に \(\mathbb{Z}_3 \) 対称性が保存されていても、\(\Phi \) を用いた閉じ込めを考えることができ、それを閉じ込め・非閉じ込め相転移の秩序変数としてみなすことができるのに対し重要な意味をもつ。

相関は \(\theta = T \) 平面で決まることができる。\(\theta \) のある有限値 \(\theta_{\text{CEP}} \) では非閉じ込め相転移の CEP がある。実数クォーク数化学ポテンシャルにカイラル転移の CEP があるのだろうか。対称的になったり、興味ある点として、縮退した 3 フレーバーと 2+1 フレーバーの両方のケースで \(\Phi = 0 \) のラインがある。そのライン上では、閉じ込め相が実現されて、熱力学ポテンシャルは、赤、緑、青が統計的に同じ状態にある、3 つのクォークの構造のみを持つ。系が \(\mathbb{Z}_3 \) 対称性を持つ持たないにかかわらずこの性質は保たれる。

\(\theta - T \) 平面では、閉じ込め転移は、\(\Phi = 0 \) のラインでは一次転移で、\(\theta = 0 \) の軸でクロスオーバーである。これは \(\theta = 0 \) の非閉じ込めのクロスオーバーは \(\Phi = 0 \) のラインにおいて一次の非閉じ込めの転移の名残であることを意味している。\(\Phi = 0 \) のラインは \(m_s \) が増えるにつれ、小さい \(\theta \) に変化
する。これは閉じ込めの性質は2フレーバーのケースが2+1フレーバーのケースよりも強いことを意味している。この主張はLQCDの結果とつじつまが合うだろう [72, 73, 121]。クォーク数密度の非対角化成分χusは、0と元のθでχψ̅φ̅ではなくて、χψφと相互関係がある。こうして|χus|はχψφで定義された拡大温度近傍でピークを持たず、そこで急激に変化する。この性質の結果として、その微分χus,tはそこでピークを持つ。ピークはμ = 0よりも有限のθでのほうがはっきりしている。

現在の結果はPNJLモデルによるものだが、虚数アイソスペック化学ポテンシャルでのシミュレーションには符号問題がないので、LQCDシミュレーションから直接的に確かめることができる。

一方、(2)では、虚数と実数μにおけるQC2Dの相構造を岩崎ゲージ作用とウィルソンフェルミオン作用 [177]の格子計算から研究し、LQC2D結果とPNJLモデルで有効モデルの有効性を比較した。

まずPNJLモデルを用いてLQC2Dデータを解析した。PNJLはクォーク・グルオンの力学で、高温・高密度でよいモデルであるため、本研究で扱ったLQC2Dデータの内で最も高温・高密度のβ = 0.75のクォーク数密度の結果にフィットして、パラメータを決めて、実数μ領域を再現した。その高温β = 0.75では、LQC2Dデータをよく再現していること、温度が小さくなるほど実数μ領域の大きさはずれが大きくなっていくことを確認したが、これはPNJLモデルが高温でうまくいくモデルであることとつじつまが合っている。さらにバリオンの効果をPNJLモデルに入れることで結果を改善することができた。一方、簡単な関数によるフィットよりLQC2Dデータを解析した。高次関数は少なくともμ² < 1でよく記述するが、その他の領域のフィッティング誤差を取り除くためにはより多くのLQC2Dが必要である。
謝辞

指導教員の河野宏明先生には大変お世話になりました。また、副指導教員の米山博志先生にはハワイでの国際発表を初め、発表練習に付き合っていただき、その都度適切かつ有用なコメントを頂きました。また副指導教員である橘基先生にも発表を聞いていただき、その都度適切なコメントを頂きました。

また、共同研究者である理研の塚祐二氏にはお忙しい中、本当に多くの時間を労力を割いていただき、深く感謝しています。同様に、広島大学の中村純先生にも研究の助言を頂きお世話になりました。また、東京大学の佐々木政広氏、九州大学の高橋純一氏にも発表会や論文作成等では大変お世話になりました。さらに、九州大学の八尋正信先生や京都大学の柏浩司氏には発表に対する有用なコメントや励ましの言葉を頂き感謝しています。

論文中の数値計算に当たっては大阪大学のRCNPのスーパーコンピュータを使わせていただきました。

最後に家族を初め、大学院時代を通じて講師の仕事を任せていただいた専門学校と塾の方々、いつも励ましの言葉を下さった教会の方々、様々なイベントに参加させてくださった所属する熱気球クラブの方々、いつも楽しくしていったフランスの友人Philippe Grossに感謝します。
Z. Fodor and S. D. Katz, Phy. Lett. B 534 87 (2002).

C. R. Allton, S. Ejiri, S. J. Hands, O. Kaczmarek, F. Karsch, E. Laermann, Ch. Schmidt, and L. Scorzato, Phys. Rev. D 66, 074507 (2002).

S. Ejiri et al., Phys. Rev. D 82, 014508 (2010).

P. de Forcrand and O. Philipsen, Nucl. Phys. B 642 290 (2002).

P. de Forcrand and O. Philipsen, Nucl. Phys. B 673 170 (2003).

M. D’Elia, and M. P. Lombardo, Phys. Rev. D 67 014505 (2003).

L. K. Wu, X.Q. Luo, and H. S. Chen, Phys. Rev. D 76 034505 (2007).

M. D’Elia, and F. Sanfilippo, Phys. Rev. D 80 111501 (2009).

P. de. Forcrand and O. Philipsen, Phys. Rev. Lett. 105, 152001 (2011).

K. Nagata, A. Nakamura, Y. Nakagawa, S. Motoki, T. Saito, and M. Hamada, arXiv:0911.4164[hep-lat] (2009).

K. Nagata, and A. Nakamura, Phys. Rev. D 83 114507 (2011).

J. Takahashi, K. Nagata, T. Saito, A. Nakamura, T. Sasaki, H. Kouno, and M. Yahiro, Phys. Tev. D 88, 114504 (2013).

G. Aarts, Phys. Rev. Lett. 102, 131601 (2009).

G. Aarts, L. Bongiovanni, E. Seiler, D. Sexty, and I.-O. Stamatescu, Eur. Phys. J. A 49, 89 (2013).

D. Sexty, Phys. Lett. B 729, 108 (2014).

M. Cristoforetti, F. Di Renzo, and L. Scorzato, Phys. Rev. D 86, 074506 (2012).

H. Fujii, D. Honda, M. Kato, Y. Kikukawa, S. Komatsu and T. Sano, JHEP 1310, 147 (2013).

P. N. Meisinger, and M. C. Ogilvie, Phys. Lett. B 379 163 (1996).
[17] A. Dmitru and R. D. Pisarski, Phys. Rev. D 66 096003 (2002).

[18] K. Fukushima, Phys. Lett. B 591 277 (2004).

[19] S. K. Ghosh, T. K. Mukherjee, M. G. Mustafa, and R. Ray, Phys. Rev. D 73, 114007 (2006).

[20] C. Ratti, M. A. Thaler, and W. Weise, Phys. Rev. D 73 014019 (2006).
Ratti C Rößner S, Thaler M A and Weise W 2007 Eur. Phys. J. C 49 213

[21] E. Megias, E. Ruiz Arriola, and L. L. Salcedo, Phys. Rev. D 74 065005 (2006).

[22] S. Rößner, C. Ratti, and W. Weise, Phys. Rev. D 75 034007 (2007).

[23] B. -J. Schaefer, J. M. Pawlowski, and J. Wambach, Phys. Rev. D 76 074023 (2007).

[24] H. Abuki, R. Anglani, R. Gatto, G. Nardulli, and M. Ruggieri, Phys. Rev. D 78 034034 (2008).

[25] K. Fukushima, Phys. Rev. D 77 114028 (2008).

[26] K. Kashiwa, H. Kouno, M. Matsuzaki, and M. Yahiroy, Phys. Lett. B 662 26 (2008).

[27] J. Sugano, J. Takahashi, M. Ishii, H. Kouno and M. Yahiroy, Phys. D 90, 037901 (2014).

[28] Y. Sakai, K. Kashiwa, H. Kouno, and M. Yahiroy, Phys. Rev. D 77 051901 (2008).
Y. Sakai, K. Kashiwa, H. Kouno, and M. Yahiroy, Phys. Rev. D 78 036001 (2008).
Y. Sakai, K. Kashiwa, H. Kouno, M. Matsuzaki, and M. Yahiroy, Phys. Rev. D 78 076007 (2008).

[29] K Kahiwa, M. Matsuzaki, H. Kouno, Y. Sakai and M. Yahiroy 2009 Phys. Rev. D 79 076008
Kahiwa K, Kouno H and Yahiroy M 2009 Phys. Rev. D 80 117901

98
[30] L. MacLerran, K. Redlich, and C. Sasaki, Nucl. Phys. A 824 86 (2009).

[31] Y. Sakai, K. Kahiswa, H. Kouno, M. Matsuzaki, and M. Yahiro, Phys. Rev. D 79 096001 (2009).

[32] Kashiwa K, Yahiro M, Kouno H, Matsuzaki M and Sakai Y 2009 J. Phys. G: Nucl. Part. Phys. 36 105001 K. Morita, V. Skokov, B. Friman, and K. Redlich, Phys. Rev. D 84 076009 (2011).

Kouno H, Kashiwa K, Sasaki T, Sakai Y and Yahiro M 2012 Phys. Rev. D 85 016001

[33] T. Hell, S. Rößner, M. Cristoforetti, and W. Weise, Phys. Rev. D 81 074034 (2011).

Hell T, Kishikawa K and Weise W 2011 Phys. Rev. D 83 114008

[34] Y. Sakai, H. Kouno, and M. Yahiro, Phys. Rev. G: Nucl. Part. Phys. 37 105007 (2010).

[35] Y. Matsumoto, K. Kashiwa, H. Kouno, K. Oda, and M. Yahiro, Phys. Lett. B 694 367 (2011).

[36] T. Sasaki, Y. Sakai, H. Kouno, and M. Yahiro, Phys. Rev. D 82 116004(2010).

[37] Y. Sakai, T. Sasaki, H. Kouno, and M. Yahiro, Phys. Rev. D 82 096007 (2010).

[38] Y. Sakai, T. Sasaki, H. Kouno, and M. Yahiro, Phys. Rev. D 82 076003 (2010).

[39] R. Gatto and M. Ruggieri, Phys. Rev. D 83 034016 (2011).

[40] O. Lourenço, M. Dutra, A. Delfino, and M. Malheiro, Phys. Rev. D 84 125034

[41] O. Lourenço, M. Dutra, T. Federico, A. Delfino, and M. Malheiro, Phys. Rev. D 85 097504 (2012).

[42] K. Kashiwa, T. Hell, and W. Weise, Phys. Rev. D 84 056010 (2011).
[43] K. Morita, V. Skokov, B. Friman, and K. Redlich, Phys. Rev. D 84 076009 (2011).
 K. Morita, V. Skokov, B. Friman, and K. Redlich, Phys. Rev. D 84 074020 (2011).

[44] T. Sasaki, Y. Sakai, H. Kouno, and M. Yahiro, Phys. Rev. D 84 091901(R) (2011).

[45] Y. Sakai, H. Kouno, T. Sasaki, and M. Yahiro, Phys. Lett. B 705 349 (2011).

[46] T. Sasaki, J. Takahashi, Y. Sakai, H. Kouno, and M. Yahiro, Phys. Rev. D 85 056009(2012).

[47] F. Buisseret and G. Lacroix, Phys. Rev. D 85 016009 (2012).

[48] Y. Sakai, Dumm D. gomez, and N. N. Scoccola, Phys. Lett. B 707 76 (2012).

[49] Y. Sakai, T. Sasaki, H. Kouno, and M. Yahiro, J. Phys. G: Nucl. Part. Phys. 39 035004 (2012).

[50] A. Roberge and N. Weiss, Nucl. Phys. B 98 195 (1986).

[51] Polyakov A M 1978 Phys. Lett. B 72 477.

[52] O. Philipsen, arXiv:1009.4089[hep-lat] (2010).

[53] H. Kouno, Y. Sakai, K. Kashiwa, and M. Yahiro, J. Phys. G: Nucl. Part. Phys. 36 115010 (2009).

[54] Chen H S and Luo X Q 2005 Phys. Rev. D 72 034504.
 Chen H S and Luo X Q 2007 arXiv:hep-lat/0702025.

[55] M. D’Elia, and F. Sanfilippo, Phys. Rev. D 80 014502 (2009).

[56] P. Cea, L. Cosmai, M. D’Elia, C. Manneschi, and A. Papa, Phys. Rev. D 80 034501 (2009).

[57] P. de Forcrand and O. Philipsen, arXiv:1004.3144[hep-lat] (2010).

[58] T. Takaishi, P. de Forcrand, and A. Nakamura, arXiv:1002.0890[hep-lat] (2010).
[59] K. Yagi, T. Hatsuda and Y. Miake, Quantum-Gluon Plasma (Cambridge, 2010).

[60] J. Beringer, et al (Particle Data Group), Phys. Rev. D 86, 010001 (2012).

[61] B. Svetitsky and Y. Yaffe, Nucl. Phys. B 210, 423 (1983).

[62] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).

[63] J. Goldstone, Nuovo Cim. 19, 154 (1961).

[64] J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127, 965 (1962).

[65] J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, 1353 (1975).

[66] R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1965).

[67] R. Hagedorn and J. Ranft, Nuovo Cimento Suppl. 6, 169 (1968).

[68] N. Cabibbo and G. Parisi, Phys. Lett. B 58, 67 (1975).

[69] R. Rapp, T. Schöfer, E. V. Shuryak, and M. Velkovsky, Phys. Rev. Lett. 81, 53 (1998).

[70] M. G. Alford, K. Rajagopal, and F. Wilczek, Phys. Lett. B 442, 247 (1998).

[71] Y. Aoki, G. Endrödi, Z. Fodor, S. D. Katz and K. K. Szabó, Nature 443, 675 (2006).

[72] A. Bazavov et al, Phys. Rev. D 85 054503 (2012).

[73] S. Borsányi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Kreig, C. Ratti, and K. Szabo, arXiv:1005.3508 [hep-lat] (2010).

[74] K. Kanaya, arXiv: 1012.4235 [hep-ph] (2010).

[75] T. Sasaki, Y. Sakai, H. Kouno, and M. Yahiro, Phys. Rev. D 84 091901(R) (2011).

[76] S. Borsáyi, G. Endrödi, Z. Fodor, A. Jakovác, S. D. Katz, S. Kreig, C. Ratti, and K. K. Szabó, JHEP 1011, 077 (2010).
References:

[77] Borsáïyi S, Z. Fodor, C.Hoelbling, S. D. Katz, S. Kreig, C. Ratti, and K.K. Szabó, J.High Energy Phys. 09(2010)073.

[78] S. Borsáïyi, G. Endrödi, Z. Fodor, S. D. Katz, S. Kreig, C. Ratti, C. Schroeder and K.K. Szabó, J.High Energy Phys. 092010073.

[79] A. Bazavov, C. Bernard, C. DeTar, J. Foley, S. Gottelieb, U. M. Heller, J. E. Hetrick, J. Laiho, L. Levkova, J. Osborn, R. Sugar, D. Toussaint, R.S. Van de Water, R. Zhou, Proc. Sci. LATTICE2013,154(2013)

[80] Quark-Gluon Plasma. New Discoveries at RHIC: Case for the Strongly Interacting Quark-Gluon Plasma Nucl.Phys. A 750(2005).

[81] E.Shuryak, Prog. Part. Nucl. Phys. 62, 48(2009)

[82] E.Shuryak, Nucl. Phys. B (Proc. Suppl.) 195, 111(2009)

[83] O. Akerlund and P. de Forcrand, arXiv:1312.1243[hep-lat](2013)

[84] Jens O. Anderson, Lars E. Lagangera, Michael Strickland, and Nans Suc, Phys. Lett. B 696, 486(2011).

[85] P. J. Siemens, Nature 305, 410(1983)

[86] G. F. Bertsch and P. J. Siemens, Phys. Lett. B 126, 9(1983)

[87] P. Chomaz, arXiv:0410024 [nucl-ex] (2004)

[88] K. G. Wilson, Phys. Rev. D 8, 2445(1974).

[89] A. Bazavov, et al., Rev. Mod. Phys. 82, 1349(2010)

[90] T. Inoue, N. Ishii, A. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, K. Murano, H. Nemura, and K. Sasaki Prog. Theor. Phys. 124, 591(2010).

[91] J. B. Kogut, M. A. Stephanov, D. Toublan, J. J. M. Verbaarschot, and A. Zhitnitsky, Nucl.Phys. B582,477 (2000), hep-lat/0001171.

[92] A. Bhattacharyya, Deb P, S. K. Ghosh, and R. Ray, Phys. Rev. D 82 014021 (2010).

[93] A. Bhattacharyya, Deb P, A. Lahiri, and R. Ray, Phys. Rev. D 83 014011 (2011).

[94] N. Bratovic, T.Hatsuda, and W. Weise, Phys Lett. B 719, 131 (2013).
[95] G. A. Contrera, A. G. Grunfeld, and D. Blachke, arXiv:1207.4890 [hep-ph] (2012).

[96] K. Fukushima, Phys. Lett. B 591 277 (2004).

[97] K. Fukushima, Phys. Rev. D 77 114028 (2008).

[98] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys. Rev. D 78, 074033 (2008).

[99] K. Fukushima, Phys. Rev. D 78 114019(2008).

[100] K. Fukushima, M. Ruggieri, and R. Gatto, Phys. Rev. D 78, 074033 (2008).

[101] K. Fukushima and K. Kashiwa, Phys. Lett. B 723, 360 (2013). arXiv:1206.0685 [hep-ph] (2012).

[102] R. Gatto, and M. Ruggieri, Phys. Rev. D 83, 034016 (2011).

[103] T. Kähärä and K. Tuominen, Phys. Rev. D 80, 114022 (2009).

[104] K. Kashiwa, M. Yahiro, H. Kouno, M. Matsuzaki, and Y. Sakai, J. Phys. G: Nucl. Part Phys. 36, 105001 (2009).

[105] K. Kashiwa, R. D. Pisarski, and V. V. Skokov, Phys. Rev. D 85, 114029 (2012).

[106] K. Kashiwa, H. Kouno, and M. Yahiro, Phys. Rev. D 80, 117901 (2009).

[107] K. Kashiwa, R. D. Pisarski, Phys. Rev D 87, 096009 (2013).

[108] H. Kouno, Y. Sakai, K. Kashiwa, and M. Yahiro, Phys. Rev. D 83 076009 (2011).

[109] O. Lourenço, M. Dutra, T. Federico, A. Delfino, and M. Malheiro, Phys. Rev. D 85 097504 (2012).

[110] Y. Matsumoto, K. Kashiwa, H. Kouno, K. Oda, and M. Yahiro, Phys. Lett. B 694 367 (2011).

[111] E. Megias, E. Ruiz Arriola, and L. L. Salcedo, Phys. Rev. D 74 065005 (2006).
[112] C. Ratti, M. A. Thaler, and W. Weise, Phys. Rev. D 73 014019 (2006).

[113] M. C. Ruivo, M. Santos, P. Costa and C. A. de Sousa, Phys. Rev. D 85, 036001 (2012).

[114] M. C. Ruivo, P. Costa and C. A. de Sousa, Phys. Rev. D 86, 116007 (2012).

[115] Y. Sakai, K. Kashiwa, H. Kouno, and M. Yahiro, Phys. Rev. D 78 036001 (2008).

[116] Y. Sakai, K. Kashiwa, H. Kouno, M. Matsuzaki, and M. Yahiro, Phys. Rev. D 78 076007 (2008).

[117] Y. Sakai, K. Kashiwa, H. Kouno, M. Matsuzaki, and M. Yahiro, Phys. Rev. D 79 096001 (2009).

[118] Y. Sakai, T. Sasaki, H. Kouno, and M. Yahiro, Phys. Rev. D 82 096007 (2010).

[119] Y. Sakai, T. Sasaki, H. Kouno, and M. Yahiro, Phys. Rev. D 82 076003 (2010).

[120] Y. Sakai, H. Kouno, T. Sasaki, and M. Yahiro, Phys. Lett. B 705 349 (2011).

[121] T. Sasaki, Y. Sakai, H. Kouno, and M. Yahiro, Phys. Rev. D 84 091901(R) (2011).

[122] T. Sasaki, J. Takahashi, Y. Sakai, H. Kouno, and M. Yahiro, Phys. Rev. D 85 056009(2012).

[123] T. Sasaki, H. Kouno, and M. Yahiro, Phys. Rev. D 87, 056003 (2013).

[124] T. Sasaki, N. Yasutake, M. Kohno, H. Kouno, and M. Yahiro, arXiv:hep-ph/1307.0681.

[125] T. Sasaki, Y. Sakai, H. Kouno, and M. Yahiro, Phys. Rev. D 82 116004(2010).
[126] T. Sasaki, J. Takahashi, Y. Sakai, H. Kouno, and M. Yahiro, Proc. Sci. LATTICE2012 (2012) 076.

[127] B. -J. Schaefer, J. M. Pawlowski, and J. Wambach, Phys. Rev. D 76 074023 (2007).

[128] G. Y. Shao, M. Di. Toro, V. Greco, M. Colonna, S. Plumari, B. Liu, and Y. X. Liu, Phys. Rev. D 84, 034028 (2011).

[129] G. Y. Shao, M. Colonna, M. Di. Toro, Y. X. Liu, and B. Liu, Phys. Rev. D 87, 096012 (2013).

[130] K. Yamazaki and T. Matsui Nucl. Phys. A 913, 19 (2013)

[131] K. Yamazaki and T. Matsui Nucl. Phys. A 922, 237 (2014)

[132] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 124, 246 (1961).

[133] M. Buballa, Phys. Rept. 407, 205 (2005).

[134] T. Hatsuda and T. Kunihiro, Phys. Rept. 247, 221 (1994).

[135] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).

[136] ’tHoot G 1976 Phys. Rev. D 14 3432; 18 2199(E) (1978).

[137] ’tHoot G 1976 Phys. Rev. Lett. 37 8

[138] M. Kobayashi and T. Maskwa, Prog. Theor. Phys. 44 1422 (1970).

[139] M. Kobayashi, H. Koundo, and T. Maskwa, Prog. Theor. Phys. 45 1955 (1971).

[140] O. Kaczmarek, F. Karsch, P. Petreczky, and F. Zantow, Phys. Lett. B 543 41 (2002).

[141] G. Boyd, J. Engels, F. Karsch, E. Laermann, C. Legeland, M. Lütgemeier, and B. Petersson, Nucl. Phys. B 469 419 (1996).

[142] F. Karsch, and E. Laermann, Phys. Rev. D 50, 6954 (1994).

[143] F. Karsch, E. Laermann, and A. Peikert, Nucl Phys. B 605, 579 (2001).
[144] K. Kahsiwa, H. Kouno, T. Sakaguchi, M. Matsuzaki, and M. Yahiro, Phys. Lett. B 647, 446 (2007).

[145] P. Reberg, S. P. Kleveney, and J. Hüner, Phys. Rev. C 53 410 (1996).

[146] W. Pauli, Nuovo Cimento 6, 205 (1957).

[147] W. Pauli, ibid 7, 411 (1958).

[148] T. Brauner, K. Fukushima, and Y. Hidaka, Phys. Rev. D 80, 074035 (2009), 0907.4905.

[149] K. Kashiwa, T. Sasaki, H. Kouno, M. Yahiro, Phys.Rev.D87, 016015 (2013).

[150] T. Iritani, E. Itou, and T. Misumi, arXiv:1508.07132, to appear in JHEP

[151] H. Kouno, Y. Sakai, T. Makiyama, K. Tokunaga, T. Sasaki, and M. Yahiro, J. Phys. G: Nucl. Part. Phys. 39 085010 (2012).

[152] Y. Sakai, H. Kouno, T. Sasaki, and M. Yahiro, Phys. Lett. B 718 130 (2012).

[153] L. Susskind, Phys. Rev. D 20 2610 (1979).

[154] L. D. Maclerran and B. Svetitsky, Phys. Lett. B 98 195 (1981).

[155] H. Kouno, T. Misumi, K. Kashiwa, T. Makiyama, T. Sasaki, and M. Yahiro, Phys. Rev. D88 (2013) 016002-1 01600214

[156] H. Kouno, T. Makiyama, T. Sasaki, Y. Sakai, and M. Yahiro, J. Phys. G: Nucl Phys. 40 (2013) 095003-1 095003-19

[157] M. Stephanov, K. Rajagopal, and E. Shuryak, Phys. Rev. Lett. bf 81 (4816).

[158] A. Barducci, R. Casalbuoni, S. De Curtis, R. Gatto, and G. Pettini, Phys. Lett. B 231 463.
A. Barducci, R. Casalbuoni, G. Pettini, R. Gatto Phys. Rev. D 49 426 (1994).
[159] M. Asakawa, S. Ejiri, and M. Kitazawa, Phys. Rev. Lett. 103 262301 (2009).

[160] S. Jeon and V. Koch, Phys. Rev. Lett. 85 2076.

[161] Y. Hatta, T. Ikeda, Phys. Rev. D 67 014028.

[162] H. Fujii, Phys. Rev. D 67 094018.

[163] V. Koch, A. Majumber, and J. Randrup, Phys. Rev. Lett 95 182301 (2005).

[164] A. Bazavov et al, Phys. Rev. D 86 034509 (2012).

[165] S. Borsáyi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti, and K. Szabó, J. High Energy Phys. JHEP01(2012) 138.

[166] M. Cristoforetti, T. Hell, B. Klein, and W. Weise, arXiv:1002.2336[hep-ph] (2010).

[167] C. Ratti, R. Belleied, M. Cristoforetti, and M. Barbaro, arXiv:1109.6243[hep-ph] (2010).

[168] Y. Aoki, G. Endrödi, Z. Fodor, S. D. Katsz, and K. K. Szabó, Nature 443 675 (2006).

[169] G. Aarts, S. P. Kumar, and J. Rafferty, J. High Energy Phys. JHEP07 (2010) 56
J. Rafferty, J. High Energy Phys. JHEP09 (2011) 087.

[170] T. Misumi, T. Iritani, and E. Itou, ”Finite-temperature phase transition of $N_f = 3$ QCD with exact center symmetry”, presented at the 33rd International Symposium on Lattice Field Theory, Lattice2015, 14-18 July 2015, Kobe International Conference Center, Kobe, JAPAN, arXiv:1510.07227.

[171] T. Makiyama, Y. Sakai, T. Saito, M. Ishii, J. Takahashi, K. Kashiwa, H. Kouno, A. Nakamura, and M. Yahirol. ”Phase structure of two color QCD at real and imaginary chemical potential; lattice simulations and effective model analyses”.

[172] A. Nakamura, Phys. Lett. 149B, 391 (1984.)

[173] J. B. Kogut, D. K. Sinclair, S. J. Hands, and S. E. Morrison, Phys.Rev.D 64, 0194505(2001).
[174] S. Muroya, A. Nakamura and C. Nonaka, Phys. Lett. B 551, 305 (2003).
[175] Y. Iwasaki, Nucl. Phys. B258, 141 (1985).
[176] Y. Itoh, Y. Iwasaki and T. Yohi e, Phys. Letts 147B, 141(1984).
[177] B. Sheikholeslami and R. Wohlert, Nucl. Phys. B259, 572 (1985).
[178] Y. Iwasaki, UTHEP-118 (1983) arXiv: 1111.7054.
[179] G. P. Lepage and P. B. Mackenzie, Phys. Rev. D48, 2250 (1993).
[180] A. Ali Khan et al. (CP-PACS Collaboration), Phys. Rev. D 63, 034502 (2000).
[181] A. Ali Khan et al. (CP-PACS Collaboration), Phys. Rev. D 64, 074510 (2001).
[182] Y. Maezawa et al. (WHOT-QCD Collaboration), Phys. Rev. D 75, 074501 (2007).
[183] S. Hands, S. Kim, and J-I. Skullerud arXiv:hep-lat/0604004v2 (2006).
[184] S. Hands, S. Cotter, P. Giudice, J. Skullerud, arXiv:1210.6559.
[185] S. Cotter, J. Skullerud, P. Giudice, S. Hands, S. Kim, and D. Mehta, PoS 091 (Lattice 2012), arXiv:1210.6757; S. Cotter, P. Giudice, S. Hands, J. Skullerud, Phys.Rev.D 87, 034507(2013).
[186] P. Cea, L. Cosmai, M. D’Elia and A. Papa, in two-color QCD,” JHEP 0702, 066 (2007) [hep-lat/0612018].
[187] P. Cea, L. Cosmai, M. D’Elia, and A. Papa, arXiv:hep-lat/0612018v2 14 Feb (2007)
[188] M. P. Lombardo, Series representation: Pade approximants and critical behavior in QCD at nonzero T and mu, Pos LAT2005(2006) 168, [hep-lat/0509181].
[189] P. Cea, L. Cosmai, M. D’Elia and A. Papa, Phys. Rev. D 77, 051501(R) (2008).
[190] N. Strodthoff, B-J. Schaefer, and L. v. Smekal, Phys. Rev. D 85, 074007 (2012) (arXiv:1112.5401).
[191] N. Strodthoff, L. v. Smekal, Phys. Lett. **B731**, 350-357 (2014) (arXiv:1306.2897)
A 解析接続に対するフィッティング関数の係数

ここで虚数 μ の LQC2D データから求められた解析関数のパラメータを χ^2/d.o.f. とともに書いておく。

observable function	$\beta = 0.75$	$\beta = 0.70$	$\beta = 0.65$	$\beta = 0.60$
$\text{Im}(n)$	χ^2/d.o.f.	χ^2/d.o.f.	χ^2/d.o.f.	χ^2/d.o.f.
Eq.(6.28)	2.914	1.077	23.80	1.189
Eq.(6.29)	2.566	1.016	4.075	0.877
Eq.(6.30)	13.25	0.018	9.292	3.285
Eq.(6.31)	4.534	5.590	0.442	3.826

表 9: (a) $\beta = 0.75$, (b) $\beta = 0.70$, (c) $\beta = 0.65$, そして (d) $\beta = 0.60$ における、クォーク数密度、カイラル凝縮とポリヤコループに対する解析関数のパラメータと χ^2/d.o.f.。係数は虚数 μ の LQC2D データから求められている。フィッティング範囲は (b) については $\mu^2 = -1.15 \sim 0$ で、他のすべての場合で $\mu^2 = (\pi/2)^2 \sim 0$.}

110
function & A & B & C & χ^2/d.o.f. \\
Eq.(6.26) & 0.66802(204) & -0.02868(167) & 0.109 \\
Eq.(6.26) & 0.66871(257) & -0.02637(557) & 0.00113(260) & 0.089

表 10: 相転移線に関する解析関数の係数と χ^2/d.o.f.。虚数 μ の LQC2D データから求められている。フィッティング範囲はすべての場合で、$\mu^2 = -(\pi/2)^2 \approx 0$。
表 11: 物理量に対する χ^2/N。ここで N は、$\beta = 0.75$ の Im(n_q) に対しては、d.o.f. の数であり、他の物理量に対してはデータの数である。PNJL モデル計算には $G_v = 0.15G_0$ が用いられている。略字の IM, RE, C と D はそれぞれ虚数化学ポテンシャル領域、実数化学ポテンシャル領域、閉じ込め相 ($\mu = 0$ を含む)、非閉じ込め相を表している。isigma は PNJL の精度を示している。論文を参照。
β	n_q	$\delta \sigma$
0.70 (C)	47.60	3.875
0.70 (D)	53.77	12.63
0.65 (C)	264.5	50.32
0.65 (D)	493.2	113.1
0.60 (C)	329.0	64.03
0.60 (D)	513.4	116.5

表 12: 物理量に対する χ^2/N_{data}。ここで N_{data} はデータの数で、計算には PNJL+パリオソモデルが用いられている。略字 IM, RE, C については表 11 を参照。
\(\beta \)	\(n_q \)	\(\delta \sigma \)	\(\Phi \)
0.75 (IM)	41.08	0.4004	174.8
0.75 (RE)	260.4	0.2879	163.9
0.70 (C)	109.1	23.58	84.15
0.70 (D)	173.3	7.970	463.2
0.65 (C)	1496	1015	719.6
0.65 (D)	1630	14640	78.22
0.60 (C)	2559	3802	4615

\(\text{signmass}=\frac{\chi^2}{N} \)

\(\beta \)	\(n_q \)	\(\delta \sigma \)	\(\Phi \)
0.75 (IM)	40.89	0.4565	172.7
0.75 (RE)	263.6	0.4106	167.6
0.70 (C)	116.0	23.66	94.95
0.70 (D)	174.3	8.606	494.0
0.65 (C)	1385	996.5	641.4
0.65 (D)	1481	12870	108.9
0.60 (C)	2444	7555	4540

表 13: 物理量に対する \(\chi^2/N \)。ここで \(N \) は、\(\beta = 0.75 \) の \(\text{Im}(n_q) \) に対しては、d.o.f. の数であり、他の物理量に対してはデータの数である。PNJL モデル計算には \(G_v = 0 \) が用いられている。略字の IM, RE, C と D については表 11 を参照。
β	n_q	$\delta\sigma$	Φ
0.75 (IM)	41.23	3.482	214.3
0.75 (RE)	773.2	10.13	179.7
0.70 (C)	103.4	22.46	59.81
0.70 (D)	646.5	2.130	457.9
0.65 (C)	1660	798.2	734.7
0.65 (D)	3315	11220	1.746
0.60 (C)	2598	3421	4752

isigma=10
β	n_q	$\delta\sigma$	Φ
0.75 (IM)	40.03	2.892	214.0
0.75 (RE)	773.2	12.76	181.5
0.70 (C)	77.67	18.43	49.1
0.70 (D)	653.1	2.639	490.5
0.65 (C)	1693	536.3	679.1
0.65 (D)	2994	10032	21.13
0.60 (C)	2472	6428	4691

表14: 物理量に対する χ^2/N. ここで N は、$\beta = 0.75$ の $\text{Im}(n_q)$ に対しては、d.o.f. の数であり、他の物理量に対してはデータの数である。PNJLモデル計算には $G_v = 0.5G_0$ が用いられている。略字の IM, RE, C と D については表11を参照。