27 December 2021

Early Permian palaeotemperature values proposed for continental red-bed deposits of the Tambach formation at the Bromacker section

F. Scholze, **A. Pint**

Friedrich Schiller University Jena, Jena, 07749 Germany

E-mail: *frank.scholze@uni-jena.de, **anna.pint@uni-jena.de*

Received June 24, 2021

ORIGINAL ARTICLE

Full text PDF

DOI: 10.26907/2542-064X.2021.3.338-350

Abstract

A variety of formulas can be found in the literature to convert geochemical data into absolute palaeotemperatures. In the present study, we test a formula for calculating the Early Permian (Artinskian) palaeotemperatures based on major element values from continental red-bed deposits of the Tambach Sandstone Member (Tambach Formation, Rotliegend Group) in Germany. The geochemical data used herein were extracted from a previous study on the Bromacker section. Applying the literature-based dataset constitutes the first approach aimed to a better understanding of certain local palaeoclimate aspects (i.e., mean annual temperature) and can be easily expanded to wider stratigraphic and palaeogeographic ranges through future studies.

Keywords: Permian, Artinskian, Rotliegend, climate, temperature, red beds, Bromacker, Thuringian Forest

Acknowledgements. The Bromacker Project is a cooperation of the Museum für Naturkunde Berlin, the Stiftung Schloss Friedenstein Gotha, the Geopark Thüringen Inselsberg–Drei Gleichen, and the Friedrich-Schiller Universität Jena. Our studies are funded by the Federal Ministry of Education and Research, Germany (BMBF, grant ‘Bromacker Project’).

We are very thankful to Thomas Martens for guiding the joint field trips to the important outcrop sections around Tambach-Dietharz. Many thanks to Joerg W. Schneider, Sebastian Voigt, and Birgit Galtzsch for providing data on the tetrapod trace fossil that is shown in Fig. 3, *b*. Joerg W. Schneider is kindly acknowledged for his review that improved this publication.
Fig. 1. Present day outcrop situation of the Tambach Sandstone Member (middle part of the Tambach Formation, Rotliegend Group; Artinskian, Early Permian) in a quarry section at the Bromacker locality (Thuringia, Central Germany).

Fig. 2. Geographic position of the study area [28]. a – Map of Germany presenting Thuringia and the Tambach-Dietharz Basin in the Thuringian Forest Mountains. b – Geologic map of the Tambach-Dietharz Basin presenting the lithostratigraphic subdivision of the Tambach Formation into three units: the Bielstein Conglomerate Member (roTc1), the Tambach Sandstone Member (roTs), and the Finsterbergen Conglomerate Member (roTc2).

Fig. 3. Sedimentary structures and tetrapod trace fossils observed frequently in the Bromacker section (Tambach Sandstone Member; Artinskian, Early Permian): a – Horizontal mudstone drapes in the sandstone bed; a 30-cm long hammer for scale; b – tetrapod trace fossil identified as Ichthiotherium sphaerodactylum (Pabst, 1895); c – bottom view on the bedding plane showing desiccation cracks; 5-cm lens cap for scale; d – intraformational clay-/siltstone rip-up clasts in a sandstone bedding plane.

Fig. 4. Examples of the core boxes from the Bromacker FB2/2004 drill core section with fine-grained siliciclastics from the Tambach Sandstone Member (depths 4–5 m, 22–24 m; scale bar in the centre is 1 m in length).

Fig. 5. Sedimentary structures observed on lose blocks in the present day Bromacker section (Tambach Sandstone Member; Artinskian, Early Permian): a – scour marks on the bottom side of a sandstone bed; a 30-cm long hammer for scale; b – ripples on a fine-grained sandstone surface; c – numerous sub-centimeter small load casts on the bottom side of a fine-grained sandstone block, separated secondarily by desiccation cracks; d – raindrop marks of various diameters.

References

1. Martens T. Ursaurierlagerstätte Bromacker. In: Klassische Fundstellen der Paläontologie. Bd. IV. Korb, Goldschneck Verlag, 1971, S. 51–61. (In German)
2. Martens T. Scientific Importance of the Fossiliferous Bromacker Member (Germany, Tambach Formation, Lower Permian) – Vertebrate Fossils. Göttingen, Cuviller, 2018. 54 p.
3. Berman D.S., Henrici A.C., Sumida S.S., Martens T. Redescription of Seymouria sanju nensis (Seymouriamorpha) from the Lower Permian of Germany based on complete, mature specimens with a discussion of paleoecology of the Bromacker locality assemblage. J. Verteb. Paleontol., 2000, vol. 20, no. 2, pp. 253–268. doi: 10.1080/02724634(2000)20(0253:ROSSSF)2.0.CO;2.
4. Berman D.S., Reisz R.R., Martens T., Henrici A.C. A new species of Dimetrodon (Synapsida: Sphenacodontidae) from the Lower Permian of Germany records first occurrence of genus outside of North America. Can. J. Earth Sci., 2001, vol. 38, no. 5, pp. 803–812. doi: 10.1139/e00-106.
5. Berman D.S., Henrici A.C., Kissel R.A., Sumida S.S., Martens T. A new diadectid (Diadectomorpha), Orobates pabsti, from the Early Permian of Central Germany. Bull. Carnegie Mus. Nat. Hist., 2004, vol. 35, pp. 1–36. doi: 10.2992/0145-9058(2004)35[1:ANDDOP]2.0.CO;2.
6. Pabst W. Über im Besitz des Herzoglichen Museums in Gotha befindliche Thierfährten aus dem Rothliegenden von Friedrichroda, Tambach und Kabarz in Thüringen. Z. Dtsch. Geol. Ges., 1895, Bd. 47, H. 3, S. 570–576. (In German)
7. Voigt S., Haubold H. Analyse zur Variabilität der Tetrapodenfährte Ichthiotherium cottae aus dem Tambacher Sandstein (Rotliegend, Unter-Perm, Thüringen). Hallesches Jahrb. Geowiss., B, 2000, Bd. 22, S. 17–58. (In German)
8. Voigt S. Zur Geschichte der Tetrapodenfährtenfunde in den Sandsteinbrüchen bei Tambach-Dietharz (1887–1908). Abh. Ber. Mus. Nat. Gotha, 2002, Bd. 22, S. 47–58. (In German)
9. Voigt S., Berman D.S., Henrici A.C. First well-established track-trackmaker association of paleozoic tetrapods based on Ichthiotherium trackways and diadectid skeletons from the Lower Permian of Germany. J. Vertebr. Paleontol., 2007, vol. 27, no. 3, pp. 553–570. doi: 10.1671/0272-4634(2007)27[553:FWTAOP]2.0.CO;2.
10. Barthel M., Rößler R. Calamiten aus dem Oberrotliegenden des Thüringer Waldes. – Was ist „Walchia imbricata“? Veroeff. Naturhist. Mus. Schlesungen, 1994, Bd. 9, S. 69–80. (In German)
11. Müller A.H. Über ein neues Ichnogenus (Tambia n.g.) und andere Problematika aus dem Rotliegenden (Unterperm) von Thüringen. Monatsber. Dtsch. Akad. Wiss. Berlin, 1969, Bd. 11, no. 11/12, S. 922–931. (In German)
12. Martens T., Schneider J., Walter H. Zur Paläontologie und Genese fossilführender Rotsedimente – Der Tambacher Sandstein, Oberrotliegendes, Thuringer Wald. Freiberg. Forschungsh. C, 1981, Bd. 363, S. 75–100. (In German)
13. Martens T. Zur Taxonomie und Biostratigraphie der Conchostraca (Phyllopoda, Crustacea) des Jungpaläozikums der DDR, Teil I. Freiberg. Forschungsh. C, 1983, Bd. 382, S. 7–105. (In German)
40. Voigt S. Erstnachweis von fossilen Hydromedusen aus dem Tambacher Sandstein (Rotliegend, Unteres Perm, Thüringen). Freiberg. Forschungsh. C, 2002, Bd. 497, S. 45–57. (In German)
41. Martens T. First burrow casts of tetrapod origin from the Lower Permian (Tambach Formation) in Germany. N. M. Mus. Nat. Hist. Sci. Bull., 2005, no. 30, p. 207.
42. Shi G.R., Waterhouse J.B. Late Palaeozoic global changes affecting high-latitude environments and biotas: An introduction. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2010, vol. 298, nos. 1–2, pp. 1–16. doi: 10.1016/j.palaeo.2010.07.021.
43. Cao Y., Song H., Algeo T.J., Chu D., Du Y., Tian L., Wang Y., Tong J. Intensified chemical weathering during the Permian-Triassic transition recorded in terrestrial and marine successions. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2019, vol. 519, pp. 166–177. doi: 10.1016/j.palaeo.2018.06.012.
44. Schneider J.W., Körner F., Roscher M., Kroner U. Permian climate development in the northern peri-Tethys area – the Lodève basin, French Massif Central, compared in a European and global context. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2006, vol. 240, nos. 1–2, pp. 161–183. doi: 10.1016/j.palaeo.2005.12.016.
45. Mouraviev F.A., Arefiev M.P., Silantiev V.V., Eskin A.A., Kropotova T.V. Paleosols and host rocks from the Middle-Upper Permian reference section of the Kazan Volga region, Russia: A case study. Palaeoworld, 2020, vol. 29, no. 2, pp. 405–425. doi: 10.1016/j.palwor.2019.05.004.

The content is available under the license Creative Commons Attribution 4.0 License.

Keywords: Scholze, Uchenye Zapiski