PTPN2 Gene Variants Are Associated with Susceptibility to Both Crohn’s Disease and Ulcerative Colitis Supporting a Common Genetic Disease Background

Jürgen Glas1,2,3,*, Johanna Wagner1,2,*, Julia Seiderer1, Torsten Olszak1,4, Martin Wetzke1,2,5, Florian Beigel1, Cornelia Tillack1, Johannes Stallhofer1, Matthias Friedrich1,2, Christian Steib1, Burkhard Göke1, Thomas Ochsenkühn1, Nazanin Karbalai6, Julia Diegelmann1,2, Darina Czamara6, Stephan Brand1,2

1 Department of Medicine II – Grosshadern, Ludwig-Maximilians-University, Munich, Germany, 2 Department of Preventive Dentistry and Periodontology, Ludwig-Maximilians-University, Munich, Germany, 3 Department of Human Genetics, Rheinisch-Westfälische Technische Hochschule (RWTH), Aachen, Germany, 4 Gastrointestinal Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America, 5 Department of Pediatrics, Hannover Medical School, Germany, 6 Max-Planck-Institute of Psychiatry, Munich, Germany

Abstract

Background: Genome-wide association studies identified PTPN2 (protein tyrosine phosphatase, non-receptor type 2) as susceptibility gene for inflammatory bowel diseases (IBD). However, the exact role of PTPN2 in Crohn’s disease (CD) and ulcerative colitis (UC) and its phenotypic effect are unclear. We therefore performed a detailed genotype-phenotype and epistasis analysis of PTPN2 gene variants.

Methodology/Principal Findings: Genomic DNA from 2131 individuals of Caucasian origin (905 patients with CD, 318 patients with UC, and 908 healthy, unrelated controls) was analyzed for two SNPs in the PTPN2 region (rs2542151, rs7234029) for which associations with IBD were found in previous studies in other cohorts. Our analysis revealed a significant association of PTPN2 SNP rs2542151 with both susceptibility to CD (p = 1.95 × 10⁻⁷; OR 1.49 [1.34–1.79]) and UC (p = 3.87 × 10⁻²; OR 1.31 [1.02–1.68]). Moreover, PTPN2 SNP rs7234029 demonstrated a significant association with susceptibility to CD (p = 1.30 × 10⁻³; OR 1.35 [1.13–1.62]) and a trend towards association with UC (p = 7.53 × 10⁻²; OR 1.26 [0.98–1.62]). Genotype-phenotype analysis revealed an association of PTPN2 SNP rs7234029 with a strictureing disease phenotype (B2) in CD patients (p = 6.62 × 10⁻⁵). Epistasis analysis showed weak epistasis between the ATG16L1 SNP rs2241879 and PTPN2 SNP rs2542151 (p = 0.024) in CD and between ATG16L1 SNP rs4663396 and PTPN2 SNP rs7234029 (p = 4.68 × 10⁻³) in UC. There was no evidence of epistasis between PTPN2 and NOD2 and PTPN2 and IL23R. In silico analysis revealed that the SNP rs7234029 modulates potentially the binding sites of several transcription factors involved in inflammation including GATA-3, NF-kB, C/EBP, and E4BP4.

Conclusions/Significance: Our data confirm the association of PTPN2 variants with susceptibility to both CD and UC, suggesting a common disease pathomechanism for these diseases. Given recent evidence that PTPN2 regulates autophagosome formation in intestinal epithelial cells, the potential link between PTPN2 and ATG16L1 should be further investigated.

Citation: Glas J, Wagner J, Seiderer J, Olszak T, Wetzke M, et al. (2012) PTPN2 Gene Variants Are Associated with Susceptibility to Both Crohn’s Disease and Ulcerative Colitis Supporting a Common Genetic Disease Background. PLoS ONE 7(3): e33682. doi:10.1371/journal.pone.0033682

Introduction

Inflammatory bowel diseases (IBD), encompassing Crohn’s disease (CD) and ulcerative colitis (UC), are characterized by chronic intestinal inflammation caused by a dysregulated interaction with bacterial antigens, resulting in an exaggerated immune response in a genetically predisposed host [1,2]. Genome-wide association studies (GWAS) have substantially improved our understanding of the molecular pathways leading to CD or UC and have so far identified almost 100 distinct genetic loci that confer
IBD susceptibility including novel pathways involved in autophagy, innate immune response and proinflammatory IL-23/Th17 cell activation [3,4,5,6,7,8,9]. However, for many of the gene regions identified by GWAS, there is still lack of functional data and limited evidence for their roles in the innate immune response and proinflammatory IL-23/Th17 cell axis [18,19,20,21], while a GWAS meta-analyses in UC patients showed also an association with UC [22]. Interestingly, an analysis in a Dutch-Belgian cohort [23] revealed that the PTPN2 SNP rs2542151 was only moderately CD-associated in a CD subcohort of smokers (p = 0.04), but not in the entire cohort or in the non-smoking CD cohort, implicating additional modifying factors requiring further functional analysis and replication studies.

Given the overall lack of detailed phenotype analyses of PTPN2 in IBD, we initiated an extensive genotype-phenotype analysis in a large German cohort of IBD patients including 905 patients with CD, 318 patients with UC, and 908 healthy, unrelated controls which were genotyped for the two SNPs rs2542151 and rs7234029 in the PTPN2 region. Based on a pathway analysis of gene relationships across implicated loci (GRAIL) of a recent GWAS meta-analysis in CD demonstrating a potential interaction between the PTPN2-related gene PTPN22 and NOD2 [19], we also performed analysis for gene-gene interaction between PTPN2 and NOD2 regarding CD susceptibility. Moreover, considering that PTPN2 gene variants are - similar to IL23R gene variants - implicated in IBD susceptibility and beta-cell responses to viral RNA and apoptosis [15,16,17]. Recent GWAS identified PTPN2 as susceptibility gene for CD [18,19,20,21], while a GWAS meta-analyses in UC patients showed also an association with UC [22]. Interestingly, an analysis in a Dutch-Belgian cohort [23] revealed that the PTPN2 SNP rs2542151 was only moderately CD-associated in a CD subcohort of smokers (p = 0.04), but not in the entire cohort or in the non-smoking CD cohort, implicating additional modifying factors requiring further functional analysis and replication studies.

Given the overall lack of detailed phenotype analyses of PTPN2 in IBD, we initiated an extensive genotype-phenotype analysis in a large German cohort of IBD patients including 905 patients with CD, 318 patients with UC, and 908 healthy, unrelated controls which were genotyped for the two SNPs rs2542151 and rs7234029 in the PTPN2 region. Based on a pathway analysis of gene relationships across implicated loci (GRAIL) of a recent GWAS meta-analysis in CD demonstrating a potential interaction between the PTPN2-related gene PTPN22 and NOD2 [19], we also performed analysis for gene-gene interaction between PTPN2 and NOD2 regarding CD susceptibility. Moreover, considering that PTPN2 gene variants are - similar to IL23R gene variants - implicated in IBD susceptibility and beta-cell responses to viral RNA and apoptosis [15,16,17]. Recent GWAS identified PTPN2 as susceptibility gene for CD [18,19,20,21], while a GWAS meta-analyses in UC patients showed also an association with UC [22]. Interestingly, an analysis in a Dutch-Belgian cohort [23] revealed that the PTPN2 SNP rs2542151 was only moderately CD-associated in a CD subcohort of smokers (p = 0.04), but not in the entire cohort or in the non-smoking CD cohort, implicating additional modifying factors requiring further functional analysis and replication studies.

Given the overall lack of detailed phenotype analyses of PTPN2 in IBD, we initiated an extensive genotype-phenotype analysis in a large German cohort of IBD patients including 905 patients with CD, 318 patients with UC, and 908 healthy, unrelated controls which were genotyped for the two SNPs rs2542151 and rs7234029 in the PTPN2 region. Based on a pathway analysis of gene relationships across implicated loci (GRAIL) of a recent GWAS meta-analysis in CD demonstrating a potential interaction between the PTPN2-related gene PTPN22 and NOD2 [19], we also performed analysis for gene-gene interaction between PTPN2 and NOD2 regarding CD susceptibility. Moreover, considering that PTPN2 gene variants are - similar to IL23R gene variants - implicated in IBD susceptibility and beta-cell responses to viral RNA and apoptosis [15,16,17]. Recent GWAS identified PTPN2 as susceptibility gene for CD [18,19,20,21], while a GWAS meta-analyses in UC patients showed also an association with UC [22]. Interestingly, an analysis in a Dutch-Belgian cohort [23] revealed that the PTPN2 SNP rs2542151 was only moderately CD-associated in a CD subcohort of smokers (p = 0.04), but not in the entire cohort or in the non-smoking CD cohort, implicating additional modifying factors requiring further functional analysis and replication studies.

Given the overall lack of detailed phenotype analyses of PTPN2 in IBD, we initiated an extensive genotype-phenotype analysis in a large German cohort of IBD patients including 905 patients with CD, 318 patients with UC, and 908 healthy, unrelated controls which were genotyped for the two SNPs rs2542151 and rs7234029 in the PTPN2 region. Based on a pathway analysis of gene relationships across implicated loci (GRAIL) of a recent GWAS meta-analysis in CD demonstrating a potential interaction between the PTPN2-related gene PTPN22 and NOD2 [19], we also performed analysis for gene-gene interaction between PTPN2 and NOD2 regarding CD susceptibility. Moreover, considering that PTPN2 gene variants are - similar to IL23R gene variants - implicated in IBD susceptibility and beta-cell responses to viral RNA and apoptosis [15,16,17]. Recent GWAS identified PTPN2 as susceptibility gene for CD [18,19,20,21], while a GWAS meta-analyses in UC patients showed also an association with UC [22]. Interestingly, an analysis in a Dutch-Belgian cohort [23] revealed that the PTPN2 SNP rs2542151 was only moderately CD-associated in a CD subcohort of smokers (p = 0.04), but not in the entire cohort or in the non-smoking CD cohort, implicating additional modifying factors requiring further functional analysis and replication studies.

Given the overall lack of detailed phenotype analyses of PTPN2 in IBD, we initiated an extensive genotype-phenotype analysis in a large German cohort of IBD patients including 905 patients with CD, 318 patients with UC, and 908 healthy, unrelated controls which were genotyped for the two SNPs rs2542151 and rs7234029 in the PTPN2 region. Based on a pathway analysis of gene relationships across implicated loci (GRAIL) of a recent GWAS meta-analysis in CD demonstrating a potential interaction between the PTPN2-related gene PTPN22 and NOD2 [19], we also performed analysis for gene-gene interaction between PTPN2 and NOD2 regarding CD susceptibility. Moreover, considering that PTPN2 gene variants are - similar to IL23R gene variants - implicated in IBD susceptibility and beta-cell responses to viral RNA and apoptosis [15,16,17]. Recent GWAS identified PTPN2 as susceptibility gene for CD [18,19,20,21], while a GWAS meta-analyses in UC patients showed also an association with UC [22]. Interestingly, an analysis in a Dutch-Belgian cohort [23] revealed that the PTPN2 SNP rs2542151 was only moderately CD-associated in a CD subcohort of smokers (p = 0.04), but not in the entire cohort or in the non-smoking CD cohort, implicating additional modifying factors requiring further functional analysis and replication studies.

Given the overall lack of detailed phenotype analyses of PTPN2 in IBD, we initiated an extensive genotype-phenotype analysis in a large German cohort of IBD patients including 905 patients with CD, 318 patients with UC, and 908 healthy, unrelated controls which were genotyped for the two SNPs rs2542151 and rs7234029 in the PTPN2 region. Based on a pathway analysis of gene relationships across implicated loci (GRAIL) of a recent GWAS meta-analysis in CD demonstrating a potential interaction between the PTPN2-related gene PTPN22 and NOD2 [19], we also performed analysis for gene-gene interaction between PTPN2 and NOD2 regarding CD susceptibility. Moreover, considering that PTPN2 gene variants are - similar to IL23R gene variants - implicated in IBD susceptibility and beta-cell responses to viral RNA and apoptosis [15,16,17]. Recent GWAS identified PTPN2 as susceptibility gene for CD [18,19,20,21], while a GWAS meta-analyses in UC patients showed also an association with UC [22]. Interestingly, an analysis in a Dutch-Belgian cohort [23] revealed that the PTPN2 SNP rs2542151 was only moderately CD-associated in a CD subcohort of smokers (p = 0.04), but not in the entire cohort or in the non-smoking CD cohort, implicating additional modifying factors requiring further functional analysis and replication studies.
associated with a number of autoimmune diseases such as juvenile idiopathic arthritis [24] or type 1 diabetes [17], we also analysed for epistasis between \PTPN2 and \IL23R. In addition, a very recent study suggests that \PTPN2 regulates autophagosome formation in intestinal epithelial cells [25]. We therefore analyzed also for potential epistasis with the CD susceptibility gene \ATG16L1.

Methods

Ethics statement

Before participating in the study, all patients gave written, informed consent. In case of minors, patients’ parents gave written consent. The Ethics committee of the Medical Faculty of Ludwig-Maximilians-University Munich approved this study. The study protocol was in accordance with the ethical principles for medical research involving human subjects of the Helsinki Declaration.

Study population and genotype-phenotype analysis

Overall, 2131 individuals of Caucasian origin including 905 CD patients, 318 UC patients, and 908 healthy, unrelated controls were included in the study population. Patients with indeterminate colitis were excluded from the study. For phenotype analysis, the demographic and clinical data (behaviour and location of IBD, disease-related complications, surgical history or immunosuppressive therapy) of the patients were recorded by patient chart analysis and a detailed questionnaire including an interview at time of enrolment. The demographic characteristics of the IBD study population were collected blind to the results of the genotype

Table 5. Genotype-phenotype associations of the \PTPN2 SNP rs2542151 in CD patients.
PTPN2 SNP rs2542151
Age at diagnosis (yr) (n=817)
Age at diagnosis (n=817)
(n=168)
17–40 years (A2)
(n=551)
(n=98)
Location (n=770)
(n=97)
(n=550)
Behaviour (n=747)
(n=172)
(n=187)
Use of immunosuppressive agents
(n=585)
Surgery because of CD
(n=813)
Fistulas
(n=627)
Stenosis
(n=829)

PG: p-value for association comparing carriers of the G-allele to individuals homozygous for T. Association results for age at diagnosis are based on median split. Uncorrected p-values < 0.05 are depicted in bold. None of the p-values remained significant after Bonferroni correction for multiple testing (number of hypothesis tested: n=15, resulting in a significance threshold of p<3.33x10⁻⁵).

doi:10.1371/journal.pone.0033682.t005
Table 6. Genotype-phenotype associations of the PTPN2 rs7234029 in CD patients.

PTPN2 SNP rs7234029	AA (n=612)	AG (n=253)	GG (n=329)	PG	OR_G (95% CI)
Age at diagnosis (yr) (n = 811)					
Mean ± SD	25.80 ± 12.36	26.77 ± 12.40	25.73 ± 12.52	0.197	0.82
Range	1–71	6–78	12–64	[0.61–1.11]	
Age at diagnosis (n = 811)					
<= 16 years (A1) (n = 168)	124 (22.5%)	36 (15.3%)	8 (30.8%)	4.25 × 10^{-2}	0.67 [0.46–0.99] (A1 vs. A2)
17–40 years (A2) (n = 546)	357 (64.9%)	173 (73.6%)	16 (61.5%)	0.271	1.30 [0.81–2.09] (A2 vs. A3)
>40 years (A3) (n = 97)	69 (12.5%)	26 (11.1%)	2 (7.7%)	0.637	0.87 [0.50–1.53] (A1 vs. A3)
Location (n = 764)					
Term. ileum (L1) (n = 113)	76 (14.8%)	29 (12.6%)	8 (38.1%)	0.978	0.99 [0.65–1.52]
Colon (L2) (n = 96)	64 (12.5%)	30 (13.0%)	2 (9.5%)	0.915	1.03 [0.65–1.61]
Ileocolon (L3) (n = 545)	364 (71.0%)	170 (73.9%)	11 (52.4%)	0.740	1.06 [0.76–1.48]
Upper GI (L4) (n = 10)	9 (1.8%)	1 (0.4%)	0 (0%)	0.157	0.22 [0.03–1.78]
Behaviour (n = 686)					
Non-stricturing –Non-penetrating (B1) (n = 170)	116 (25.4%)	49 (23.0%)	8 (42.1%)	0.682	0.93 [0.64–1.34]
Stricturing (B2) (n = 187)	110 (24.1%)	72 (33.8%)	5 (26.3%)	6.62 × 10^{-3}	1.61 [1.14–2.27]
Penetrating (B3) (n = 329)	231 (50.5%)	92 (43.2%)	8 (30.8%)	0.271	0.62 [0.43–0.89]
Use of immuno-suppressive agents (n = 580)					
no: 67 (17.2%)	33 (18.8%)	5 (33.3%)	0.433	0.84 [0.54–1.30]	
yes: 322 (82.8%)	143 (81.3%)	10 (66.7%)	0.56	0.76 [0.56–1.04]	
Surgery because of CD (n = 807)					
no: 260 (47.6%)	111 (47.2%)	16 (61.5%)	0.782	0.96 [0.71–1.29]	
yes: 286 (52.4%)	124 (52.8%)	10 (38.5%)	0.35	0.82 [0.61–1.09]	
Fistulas (n = 821)					
no: 281 (50.4%)	128 (54.2%)	18 (66.7%)	0.168	0.81 [0.61–1.09]	
yes: 277 (49.6%)	108 (45.8%)	9 (33.3%)	0.35	0.82 [0.61–1.09]	
Stenosis (n = 823)					
no: 239 (42.8%)	82 (34.3%)	16 (61.5%)	0.111	1.28	
yes: 319 (57.2%)	157 (65.7%)	10 (38.5%)	0.35	0.82 [0.61–1.09]	

PG: p-value for association comparing carriers of the G-allele to individuals homozygous for A. Association results for age at diagnosis are based on median split. Uncorrected p-values < 0.05 are depicted in bold. None of the p-values remained significant after Bonferroni correction for multiple testing (number of hypothesis tested: n = 15, resulting in a significance threshold of p < 3.33 × 10^{-3}).

doi:10.1371/journal.pone.0033682.t006

analyses (Table 1). The diagnosis of CD or UC was determined according to established guidelines based on endoscopic, radiological, and histopathological criteria [26]. In CD patients, the Montreal classification based on the age at diagnosis (A), location (L), and behaviour (B) of disease [27] was used for assessment. In patients with UC, anatomic location was also based on the Montreal classification using the criteria ulcerative proctitis (E1), left-sided UC (distal UC; E2), and extensive UC (pancolitis; E3).

DNA extraction and genotyping of the PTPN2 variants

From all study participants, blood samples were taken and genomic DNA was isolated from peripheral blood leukocytes using the DNA blood mini kit from Qiagen (Hilden, Germany) according to the manufacturer’s guidelines. The two PTPN2 SNPs rs2542151 and rs7234029 were genotyped by PCR and melting curve analysis using a pair of fluorescence resonance energy transfer (FRET) probes in a LightCycler® 480 Instrument (Roche Diagnostics, Mannheim, Germany) as described in detail in previous studies [28,29,30, 31,32,33]. The PTPN2 SNP rs2542151 was selected from the GWAS by Parkes et al. [18] and the Wellcome Trust Case Control Consortium (WTCCC) [20], while the rs7234029 was chosen from the study of Thompson et al. [24]. All sequences of primers and FRET probes and primer annealing temperatures used for genotyping and for sequence analysis are given in tables S1 and S2.

Genotyping of NOD2, IL23R and ATG16L1 variants

Genotyping data of the three main CD-associated NOD2 variants p.Arg702Trp (rs2066844), p.Gly908Arg (rs2066845), and p.Leu1007fsX1008 (rs2066841) were used as well as genotyping data of 10 IL23R SNPs (rs1004819, rs7517047, rs10498629, rs2201841, rs11465804, rs11209032, rs1495965) were available from previous studies [28,34,35,36]. Nine ATG16L1 variants (rs13412102, rs12471449, rs6431660, rs1441090, rs2209472, rs2241080 [p.Thr300Ala], rs2241087, rs3792106, rs4663396) have also been genotyped in a previous study [29]. For all genotyping protocols, primer and probe sequences are available on request.

In silico analysis of transcription factor binding sites

We performed an in silico analysis for potential changes in transcription factor binding sites caused by the PTPN2 SNPs rs2542151 and rs7234029 using the online tool TFSEARCH (http://www.cbrc.jp/research/db/TFSEARCH.html). This tool is based on the TRANSFAC database which was developed at GBF Braunschweig, Germany [37]. We used a threshold score for binding sites of 75.0 (score = 100.0 * (‘weighted sum’ - min)/(max - min); max. score = 100).

In silico analysis of transcription factor binding sites

We performed an in silico analysis for potential changes in transcription factor binding sites caused by the PTPN2 SNPs rs2542151 and rs7234029 using the online tool TFSEARCH (http://www.cbrc.jp/research/db/TFSEARCH.html). This tool is based on the TRANSFAC database which was developed at GBF Braunschweig, Germany [37]. We used a threshold score for binding sites of 75.0 (score = 100.0 * (‘weighted sum’ - min)/(max - min); max. score = 100). For both PTPN2 SNPs, major and minor alleles including the flanking sequences 10 bp upstream and downstream were investigated for potential changes of binding sites of human transcription factors.
Table 7. Genotype-phenotype associations of the PTPN2 SNP rs2542151 in UC patients.

PTPN2 SNP rs2542151	TT (n = 220)	TG (n = 80)	GG (n = 12)	P0	OR0 [95% CI]
Gender (n = 318)					
Male	125 (55.3%)	36 (45.0%)	5 (41.7%)	8.03 × 10^-2	1.54 [0.95–2.51]
Female	101 (44.7%)	44 (55.0%)	7 (58.3%)		
Age at diagnosis (yrs) (n = 302)					
Mean ± SD	29.45 ± 14.60	27.95 ± 14.13	25.08 ± 15.54	0.253	1.34 [0.81–2.21]
Range	2–81	4–73	9–68		
Age at diagnosis (n = 302)					
<= 16 years (A1) (n = 58)	41 (19.1%)	16 (21.3%)	2 (16.7%)	0.926	0.97 [0.51–1.83] (A1 vs. A2)
17–40 years (A2) (n = 183)	126 (58.6%)	49 (65.3%)	8 (66.7%)	9.95 × 10^-2	1.81 [0.89–3.67] (A2 vs. A3)
>40 years (A3) (n = 60)	48 (22.3%)	10 (13.3%)	2 (16.7%)	0.189	1.76 [0.76–4.07] (A1 vs. A3)
BMI (kg/m^2) (n = 209)					
Mean ± SD	23.92 ± 4.74	23.87 ± 3.83	23.67 ± 4.71	0.995	1.00 [0.55–1.82]
Range	15–54	16–36	15–30		
Location (n = 200)					
Proctitis (E1) (n = 24)	15 (12.0%)	7 (10.6%)	2 (22.2%)	0.329	1.55 [0.64–3.70]
Left-sided UC (E2) (n = 96)	73 (58.4%)	20 (30.3%)	3 (33.3%)	0.184	0.68 [0.38–1.20]
Extensive UC (E3) (n = 80)	37 (29.6%)	39 (59.1%)	4 (44.4%)	0.473	1.22 [0.83–1.80]
Extra-intestinal manifestations (n = 191)					
no	87 (64.4%)	33 (68.8%)	5 (62.5%)	0.652	0.86 [0.44–1.66]
yes	48 (35.6%)	15 (31.3%)	3 (37.5%)		
Use of immuno-suppressive agents (n = 268)					
no	50 (26.0%)	14 (20.9%)	2 (22.2%)	0.394	1.32 [0.70–2.50]
yes	142 (74.0%)	53 (79.1%)	7 (77.8%)		
Abscesses (n = 240)					
no	160 (69.4%)	61 (93.8%)	7 (77.8%)	0.151	2.35 [0.73–7.56]
yes	6 (3.6%)	4 (6.2%)		2 (22.2%)	

PG: p-value for association comparing carriers of the G-allele to individuals homozygous for A. Association results for age at diagnosis and BMI are based on median split. None of the p-values remained significant after Bonferroni correction for multiple testing (number of hypothesis tested: n = 12, resulting in a significance threshold of p < 4.167 × 10^-3).

doi:10.1371/journal.pone.0033682.t007

Statistical analyses

For data evaluation, we used the SPSS 13.0 software (SPSS Inc., Chicago, IL, U.S.A.) and R-2.13.1. (http://cran.r-project.org). Each genetic marker was tested for Hardy-Weinberg equilibrium in the control population. Fisher’s exact test was used for comparison between categorical variables. All tests were two-tailed, considering p-values < 0.05 as significant. Odds ratios were calculated for the minor allele at each SNP. Bonferroni correction was applied by calculating the threshold for statistically significant p-values as follows: p = 0.05/n, in which n gives the number of hypotheses tested. The number of tests applied (n) and the threshold for statistically significant p-values are given in the legends for all tables in which Bonferroni correction was applied. Epistasis between different SNPs was tested using the –epistasis option in PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/). Haplotype based association analysis was done with PLINK using the –hap-logistic option. The two significant SNPs (rs2542151 and rs7234029) of the single-marker association study were taken into a logistic regression model for haplotype specific associations. Genotype-phenotype associations were assessed using logistic regression analysis in R.

Results

PTPN2 gene variants are associated with the susceptibility to both CD and UC.

In all three subgroups (CD, UC, and controls), the allele frequencies of the PTPN2 SNPs (rs2542151 and rs7234029) were in accordance with the predicted Hardy-Weinberg equilibrium (Table 2). Our analysis revealed a significant association of the PTPN2 SNP rs2542151 with both susceptibility to CD (p = 1.95 × 10^-3; OR 1.49 [1.34–1.79]) and UC (p = 3.87 × 10^-3; OR 1.35 [1.10–1.68]). Moreover, the PTPN2 SNP rs7234029 demonstrated a significant association with susceptibility to CD (p = 1.30 × 10^-1; OR 1.35 [1.13–1.62]) and a trend towards association with UC (p = 7.33 × 10^-3; OR 1.26 [0.98–1.62]), suggesting PTPN2 as a common susceptibility gene for both CD and UC in the German population.

Haplotype analysis

Next, we analyzed haplotypes formed by the PTPN2 SNPs rs2542151 and rs7234029 using a logistic regression model for haplotype-specific associations. The results in Table 3 indicate the strongest association with CD for the TA haplotype with p = 2.37 × 10^-3. There were similar results for UC with a p-value of p = 1.52 × 10^-2 for the TA haplotype (Table 4).

Genotype-phenotype analysis

Genotype-phenotype analysis (Tables 5, 6, 7, 8) revealed an association of PTPN2 SNP rs7234029 with a structuring disease phenotype (B2) in CD patients (p = 6.62 × 10^-3; Table 6). In addition, there were weak associations of the same SNP with an early onset [A1] of CD (p = 4.25 × 10^-2; Table 6). Similarly, PTPN2 SNP rs7234029 modulates disease onset of UC (for A2: p = 3.47 × 10^-2; for A3: p = 2.51 × 10^-2; Table 8). In addition, we found an association of this SNP with the risk for abscess...
formation \(p = 3.94 \times 10^{-5} \) in UC (Table 8). However, none of these associations remained significant after Bonferroni correction.

Analysis for epistasis between PTPN2 and the main CD susceptibility genes NOD2, IL23R and ATG16L1

In addition, we analyzed for potential epistasis between PTPN2 and the three main CD susceptibility genes NOD2, IL23R and ATG16L1, given recent evidence for a potential functional interaction between these genes. For example, GRAIL analysis identified a link between the PTPN2-related gene PTPN22 and NOD2 [19]. In addition, PTPN2 regulates autophagosome formation in human intestinal epithelial cells, suggesting a potential link to ATG16L1 [25]. Epistasis analysis demonstrated weak epistasis between the ATG16L1 SNP rs2241879 and PTPN2 SNP rs2542151 \(p = 0.024 \) in the CD cohort (Table 9) and between ATG16L1 SNP rs663396 and PTPN2 SNP rs7234029 \(p = 4.68 \times 10^{-5} \) in the UC cohort (Table 10). However, significance of these associations was lost after correcting for multiple testing (Bonferroni correction). In addition, there was no evidence for epistasis between PTPN2 and CD-associated variants in the NOD2 and IL23R genes.

In silico analysis of PTPN2 SNPs identifies differences in potential transcription factor binding sites caused by SNP rs7234029

Finally, we investigated if the two PTPN2 SNPs (including the surrounding sequences as detailed in the Methods section) result in changes of transcription factor binding sites. This **in silico** analysis demonstrated for SNP rs7234029 differences between major and minor allele regarding the binding probability of several transcription factors including GATA-1, GATA-2, GATA-3, HSF2, NF-kB, C/EBP, E4BP4, SREBP, and HLF. While the transcription factors GATA-1, GATA-2, GATA-3 and HSF2 were predicted to bind with very high probability to the sequence comprising the major A allele, predicted binding to the minor G allele was substantially lower (Table 11). In contrast, the binding score for the transcription factors NF-κB, C/EBP, E4BP4, SREBP, and HLF were higher for the minor G allele. The details of this analysis are shown in table 11. In contrast, no major changes regarding transcription factor binding sites were found for SNP rs2542151 which is located approximately 5.5 kb downstream of PTPN2 (data not shown).

Discussion

Our detailed analysis of a large IBD cohort demonstrates that PTPN2 is a common susceptibility gene for both CD and UC, adding PTPN2 to the growing list of common susceptibility genes of CD and UC. So far, 99 IBD susceptibility genes have been identified \(n = 71 \) in CD and \(n = 47 \) in UC [19,22]. At least 28 susceptibility loci, including PTPN2, are shared between CD and UC [19,22]. Our results confirm previous studies in which PTPN2 has been shown to be associated with CD [18,19,20,21]. A very recent meta-analysis of UC susceptibility genes by Anderson et al.
PTPN2 variants in Inflammatory Bowel Disease

Table 9. Analysis for epistasis between PTPN2 SNPs and gene markers located in NOD2, IL23R and ATG16L1 in the CD-case control population.

Epistasis between	PTPN2 SNP rs2542151	PTPN2 SNP rs7234029
NOD2 SNPs		
rs2066844 (p.Arg702Trp)	0.607	0.498
rs2066845 (p.Gly908Arg)	0.219	0.916
rs2066847(p.Leu1007fsX1008)	0.208	0.276
IL23R SNPs		
rs1004819	0.356	0.244
rs7517847	0.723	0.916
rs10489629	0.395	0.642
rs2201841	0.303	0.414
rs11465804	0.485	0.887
rs11209026 (p.Arg381Gln)	0.943	0.754
rs1343151	0.277	0.978
rs10889677	0.508	0.417
rs11209032	0.213	0.290
rs1495965	9.86 x 10^{-2}	0.258
ATG16L1 SNPs		
rs13412102	0.620	0.358
rs12471449	0.419	0.383
rs6431660	5.73 x 10^{-2}	0.394
rs1441090	0.389	0.437
rs2289472	0.102	0.404
rs2241880 (p.Thr300Ala)	8.07 x 10^{-2}	0.570
rs2241879	2.37 x 10^{-2}	0.382
rs3792106	0.303	0.930
rs4663396	9.76 x 10^{-2}	0.109

Uncorrected p-values<0.05 are depicted in bold. None of the p-values remained significant after Bonferroni correction for multiple testing (number of hypothesis tested: n = 44, resulting in a significance threshold of p<1.136 x 10^{-5}).

doi:10.1371/journal.pone.0033682.t009

Table 10. Epistasis between PTPN2 SNPs and gene markers located in NOD2, IL23R and ATG16L1 in the UC-case control population.

Epistasis between	PTPN2 SNP rs2542151	PTPN2 SNP rs7234029
NOD2 SNPs		
rs2066844 (p.Arg702Trp)	0.611	0.219
rs2066845 (p.Gly908Arg)	0.385	0.555
rs2066847(p.Leu1007fsX1008)	0.137	0.522
IL23R SNPs		
rs1004819	0.869	0.425
rs7517847	0.561	0.972
rs10489629	0.177	0.844
rs2201841	0.711	0.421
rs11465804	0.465	0.265
rs11209026 (p.Arg381Gln)	0.471	0.831
rs1343151	0.525	0.331
rs10889677	0.889	0.303
rs11209032	0.649	0.330
rs1495965	0.847	0.740
ATG16L1 SNPs		
rs13412102	0.553	0.749
rs12471449	0.762	8.21 x 10^{-2}
rs6431660	0.298	0.104
rs1441090	0.455	0.544
rs2289472	0.392	0.100
rs2241880 (p.Thr300Ala)	0.536	0.615
rs2241879	0.345	0.423
rs3792106	0.787	0.714
rs4663396	0.217	4.68 x 10^{-3}

Uncorrected p-values<0.05 are depicted in bold. None of the p-values remained significant after Bonferroni correction for multiple testing (number of hypothesis tested: n = 44, resulting in a significance threshold of p<1.136 x 10^{-5}).

doi:10.1371/journal.pone.0033682.t010

reported also an association of PTPN2 (rs1893217) with UC [22], suggesting that PTPN2 is a susceptibility gene for both UC and CD which is in complete agreement with the results of our study. The PTPN2 variant rs1893217, which has been shown to be associated with IBD in several studies [19,22], is in complete linkage disequilibrium with the PTPN2 SNP rs2542151, which was investigated in our study. In a smaller analysis from New Zealand, an association of PTPN2 with CD but not of PTPN2 could be shown [38]. Studies in an Italian cohort [39] and in a Dutch-Belgian cohort [40] also reported PTPN2 to be a susceptibility gene for CD.

In addition, we performed a detailed genotype-phenotype analysis. Genotype-phenotype analysis revealed an association of PTPN2 SNP rs7234029 with a strangulating disease phenotype in CD patients. In addition, we found evidence for weak associations of rs7234029 and rs2542151 with the age of IBD onset. However, after Bonferroni correction, most of these associations lost significance arguing against a strong disease-modifying role for PTPN2 such as shown for NOD2. Considering that PTPN2 predisposes to both CD and UC, someone may hypothesize that it would be associated with a predominant colonic disease location; however, we were unable to show such an association in our detailed genotype-phenotype analysis.

Moreover, we performed epistasis analysis investigating potential gene-gene interactions between PTPN2 and the three main CD susceptibility genes NOD2, IL23R and ATG16L1. A recent GWAS meta-analysis demonstrated for these three genes the strongest association of all 71 identified CD risk genes with CD susceptibility [19]. However, there was no epistasis between PTPN2 and IL23R, although both genes predispose to autoimmune diseases. For example, associations of IL23R could be shown for CD and UC [3,19], psoriasis [41] and ankylosing spondylitis [42]. PTPN2 is associated with juvenile idiopathic arthritis [24], rheumatoid arthritis, celiac disease [19,43], type 1 diabetes [20,44] and Graves’ disease [44], providing an explanation for the increased incidence of several of these diseases in IBD patients.

In contrast, epistasis analysis demonstrated evidence for weak epistasis between the ATG16L1 SNP rs2241879 and PTPN2 SNP rs2542151 (p = 0.024) in the CD cohort and between ATG16L1 SNP rs4663396 and PTPN2 SNP rs7234029 (p = 4.68 x 10^{-3}) in the UC cohort, which, however, was lost after Bonferroni correction. Previous studies, including work from our own group...
[29], indicate that autophagy genes such as ATG16L1 and IRGM play an important role in CD susceptibility and not UC susceptibility. Given the epistasis between the ATG16L1 SNP rs4663396 and the PTPN2 SNP rs7234029 in the UC cohort, our study suggests that autophagy genes may have – in combination with “true” UC susceptibility genes such as PTPN2 - also a role in UC susceptibility. However, the rather weak epistasis between these two genes needs further confirmation in large replication studies.

The potential epistasis between PTPN2 and ATG16L1 would be highly interesting, given very recent evidence that PTPN2 regulates autophagosome formation in human intestinal epithelial cells [25]. Scharl et al. showed that knockdown of PTPN2 causes impaired autophagosome formation and dysfunctional autophagy [25]. This resulted in increased levels of intracellular Listeria monocytogenes and enhanced apoptosis of intestinal epithelial cells in response to TNF-α and IFN-γ [25]. Similar results were found in primary colonic lamina propria fibroblasts isolated from CD patients who were carriers of the CD-associated PTPN2 SNP rs2542151 [25] which was the most strongly CD-associated SNP in our study. In the study by Scharl et al., presence of the CD-associated ATG16L1 SNP rs2241800 prevented the TNF-α/IFN-γ-mediated increase in PTPN2 protein expression which resulted in impaired autophagosome formation [25]. Interestingly, intestinal biopsies from CD patients with either CD-associated ATG16L1 or PTPN2 SNPs showed aberrant expression patterns of LC3B, a marker for autophagic membranes [25]. Scharl et al. therefore hypothesized that the combined dysfunction of the CD susceptibility genes PTPN2 and ATG16L1 may contribute to the pathogenesis of CD [25]. Our results demonstrating epistasis between CD-associated PTPN2 and ATG16L1 gene variants support this hypothesis. In addition, it has been shown that PTPN2 regulates muramyl dipeptide (MDP)-induced autophagosome formation [45]. These experiments also demonstrated that the CD-associated PTPN2 variant rs1893217 impairs autophagy [45]. Given the physical interaction of ATG16L1 and the MDP receptor NOD2 during autophagy [46], CD-associated PTPN2 variants may increase the CD risk by interfering with ATG16L1-/NOD2-mediated autophagy. In addition, GRAIL analysis identified a link between the PTPN2-related gene PTPN22 and NOD2 [19]. However, we were unable to demonstrate epistasis between PTPN2 and the three main CD-associated NOD2 variants p.Arg702Trp (rs2066844), p.Gly908Arg (rs2066845), and p.Leu1007X11008 (rs2066847) on a genetic level. Additional studies suggest that PTPN2 plays an overall protective role in the intestine, particularly by limiting IFN-γ-induced signaling and consequent barrier defects [47] as well as by modulating TNF-α responses [48].

To further elucidate the potential functional consequences by which PTPN2 SNPs modulate IBD susceptibility, we performed an in silico analysis regarding potential changes in binding sites for transcription factors. This analysis revealed that the SNP rs7234029 modulates potentially the binding sites of several transcription factors including GATA-3, NF-kB, C/EBP, and E4BP4 which were all shown to be involved in inflammatory processes. GATA-3 is a major transcription factor involved in differentiation of Th2 cells [49] which play a fundamental role in the pathogenesis of UC. NF-kB up-regulates the gene expression of many proinflammatory cytokines including IL-12 [50]. Together with NF-kB, C/EBP is activated by signaling via pattern recognition receptors (PRRs) which respond to pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs). Both transcription factors play therefore a pivotal role in inflammatory disorders. E4BP4 is essential for the development of natural killer (NK) cells and CD8+ conventional dendritic cells; it plays also a role in macrophage activation, polarisation of CD4+ T cell responses and B cell class switching to IgE [51]. Interestingly, E4BP4 may also modulate IL-12 expression [52] which plays a key role in the pathogenesis of CD. The predicted binding of the transcription factors NF-kB, C/EBP and E4BP4 was stronger to the CD-associated minor allele of SNP rs7234029 than to the protective major allele, suggesting that the increased CD risk may be partially modulated via the stronger activation of these proinflammatory transcription factors.

In summary, we confirm PTPN2 as common susceptibility gene for CD and UC. Genotype-phenotype analysis could not identify a clear phenotype associated with these variants. A potential association of PTPN2 SNP rs7234029 with a stricture disease phenotype in CD patients (p = 6.62 × 10^{-7}) needs further confirmation in larger cohorts or meta-analyses which are currently organized by the subphenotyping committee of the International

Transcription factor	Binding score major allele (A)	Binding score minor allele (G)	Consensus sequence	Position relative to SNP
GATA-X	95.2	80.1	NGATAAGMNMYN	–2 to +8
GATA-1	94.8	80.2	NNCWGATARNINNIN	–2 to +7
GATA-2	85.8	65.8	NNINGATRNNIN	–4 to +5
GATA-3	83.4	64.1	NNGATARNG	–3 to +5
HSF2	75.0	62.2	NGAANWTCXK	–3 to +6
NF-kB	68.5	79.4	GGGAMMYYCC	–1 to +8
C/EBP	69.5	78.5	NGWNKNGYAAAKNSAYA	–8 to +9
E4BP4	65.7	76.0	NRTTAYGAAYN	–6 to +5
SREBP	67.2	75.0	NATCAGTTGAY	–6 to +4
HLF	66.9	75.0	RTTACTYATT	–5 to +4

The potential transcription factor binding sites were analyzed in silico with the program TFSEARCH (http://www.cbrc.jp/research/db/TFSEARCH.html). Only binding sites with binding score differing more than 5 points between the two alleles are presented. Scores differing more than 10 points are depicted in bold. The binding score threshold for each allele was set to 75.0.

Nucleotide codes: K = G or T, M = A or C, R = A or G, S = C or G, W = A or T, N = A, G, C or T.

doi:10.1371/journal.pone.0033682.t011

Table 11. Potential transcription factor binding sites in the genomic region harboring the PTPN2 SNP rs7234029.
IBD Genetics Consortium. Our in silico analysis predicted that the increased CD risk mediated by rs7234029 may be related to a stronger activation of proinflammatory transcription factors such as NF-κB, C/EBP and EBP4. This study revealed a potential interaction between PTPN2 and ATG16L1 regarding susceptibility of Crohn's disease. However, given the weak interaction, this has to be further investigated. Interestingly, this finding supports the results of a very recent functional study demonstrating a major role for PTPN2 in the autophagosome formation in human intestinal epithelial cells [25]. This suggests that different IBD-related pathways may converge in common functional “end-points” such as autophagy resulting in increased IBD susceptibility in affected people.

Supporting Information

Table S1 Primer sequences (F: forward primer, R: reverse Primer), FRET probe sequences, and primer annealing temperatures used for genotyping of PTPN2 variants.

References

1. Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 447: 427–434.
2. Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347: 417–429.
3. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, et al. (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314: 1461–1463.
4. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, et al. (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39: 207–211.
5. Liouboulle G, Louis E, Hansou S, Sandor C, Farin F, et al. (2007) Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p15.1 and modulates expression of PTGER4. PLoS Genet 3: e50.
6. Mossey DC, Parke M (2007) Genome-wide association scanning highlights two autoantigens, ATG16L1 and IRGM, as being significantly associated with Crohn's disease. Autopsy 3: 649–651.
7. Prescott NJ, Fisher SA, Franke A, Hampe J, O'Nion CM, et al. (2007) A nonsynonymous SNP in ATG16L1 predisposes to ileal Crohn's disease and is independent of CARD15 and IBD5. Gastroenterology 132: 1665–1671.
8. Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, et al. (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39: 596–604.
9. Wang K, Zhang H, Kugathasan S, Annese V, Bradfield JP, et al. (2007) Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn disease. Am J Hum Genet 80: 399–405.
10. Simoncic PD, Nadeau-CJ, Tremblay ML (2006) PTIP1B and TCPTP, novel roles in immune-cell signaling. Can J Physiol Pharmacol 84: 667–675.
11. Galic S, Klingler-Hoffmann M, Fodero-Tavoletti MT, Puryer MA, Meng TC, et al. (2003) Regulation of insulin receptor signaling by the protein tyrosine phosphatase TCPTP. Mol Cell Biol 23: 2096–2108.
12. ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, et al. (2008) Identification of a nuclear Stat 1 protein tyrosine phosphatase. Mol Cell Biol 22: 5662–5666.
13. Tugoum T, Bennett AM, Ravichandran KS, Touka NK (1998) Epidermal growth factor receptor and the adaptor protein p52Shc are specific substrates of T-cell protein tyrosine phosphatase. Mol Cell Biol 18: 1622–1634.
14. Walchli S, Curchod ML, Gobert RP, Arkinstall S, Hooft van Huijsduijnen R (2000) Identification of tyrosine phosphatases that dephosphorylate the insulin receptor. Br J Pharmacol 129: 9972–9976.
15. Colli ML, Moore F, Gurzuv EN, Oris F, Eztirik DL (2010) MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic beta-cell responses to the viral by-product double stranded RNA. Hum Mol Genet 19: 135–146.
16. Moore F, Colli ML, Snoo M, Esteve M, Cardozo AK, et al. (2009) PTPN2, a candidate gene for type 1 diabetes, modulates interferon-γ-induced pancreatic beta-cell apoptosis. Diabetes 58: 1285–1291.
17. Smyth DJ, Hulovat Y, Walker NM, Cooper JD, Downes K, et al. (2008) Shared and distinct roles in immune-cell signaling. Can J Physiol Pharmacol 84: 667–675.
18. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, et al. (2008) Genomewide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 40: 953–962.
19. Anderson CA, Boucher G, Lees CW, Franke A, D'Amato M, et al. (2011) Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 43: 246–252.
20. van der Heide F, Nolte IM, Kleibeuker JH, Wijmenga C, Dijkstra G, et al. (2010) Differences in genetic background between active smokers, passive smokers, and non-smokers with Crohn's disease. Am J Gastroenterol 105: 1165–1172.
21. Thompson SD, Sudman M, Ramos PS, Marion MC, Ryan M, et al. (2010) The susceptibility loci juvenile idiopathic arthritis shares with other autoimmune diseases extend to PTIP1B, COG6, and ANGPT1. Arthritis Rheum 62: 3265–3276.
22. Scharl M, Wojtal KA, Becker HM, Fischbach A, Frei P, et al. (2011) Protein tyrosine phosphatase nonreceptor type 2 regulates autophagosome formation in human intestinal cells. Inflamm Bowel Dis 17: 1002/ibd/21891. [Epub ahead of print].
23. Lemnard-Jones JE (1989) Classification of inflammatory bowel disease. Scand J Gastroenterol Suppl 170: 2–6; discussion 16–19.
24. Silverberg MS, Satzangi J, Ahmad T, Arnott ID, Bernstein CN, et al. (2005) Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: Report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol 19 Suppl A: 5–36.
25. Glass J, Seidler J, Wetzke M, Konrad A, Toorik HP, et al. (2007) rs1004819 is the main disease-associated IL23R variant in German Crohn's disease patients: combined analysis of IL23R, CARD15, and OCTN1/2 variants. PLoS ONE 2: e119.
26. Glass J, Konrad A, Schmehel S, Dambacher J, Seidler J, et al. (2008) The ATG16L1 gene variants rs2241879 and rs2241880 (T300A) are strongly associated with susceptibility to Crohn's disease in the German population. Am J Gastroenterol 103: 692–691.
27. Glas J, Stallhofer J, Ripeke S, Wetzke M, Pfennig S, et al. (2009) Novel genetic risk markers for ulcerative colitis in the IL2/IL21 region are in epistasis with IL23R and suggest a common genetic background for ulcerative colitis and celiac disease. Am J Gastroenterol 104: 1737–1744.
28. Glas J, Seidler J, Bayre C, Wetzke M, Fries C, et al. (2011) The role of osteopontin (OPN/SPPI) haplotypes in the susceptibility to Crohn's disease. PLoS One 6: e29399.
29. Glass J, Seidler J, Fries C, Tillack C, Pfennig S, et al. (2011) CEACAM6 gene variants in inflammatory bowel disease. PLoS One 6: e19319.
30. Toorik HP, Glas J, Endres I, Torenchi L, Teshome MY, et al. (2009) Epistasis between Toll-like receptor-9 polymorphisms and variants in NOD2 and IL23R modulates susceptibility to Crohn's disease. Am J Gastroenterol 104: 1723–1733.
31. Seidler J, Brand S, Herrmann KA, Schnitzer F, Hatz R, et al. (2006) Predictive value of the CARD15 variant 1007fs for the diagnosis of intestinal stenoses and the need for surgery in Crohn's disease: clinical practice results of a prospective study. Inflamm Bowel Dis 12: 1144–1121.
32. Schnitzler F, Brand S, Hufthauer K, et al. (2006) Eight novel CARD15 variants detected by DNA sequence analysis of the CARD15 gene in 111 patients with inflammatory bowel disease. Immunogenetics 58: 99–106.
33. Glas J, Seidler J, Tillack C, Pfennig S, Beigel F, et al. (2010) The NOD2 single nucleotide polymorphisms rs2060043 and rs2067566 are novel and common Crohn's disease susceptibility gene variants. PLoS One 5: e14466.
37. Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, et al. (1998) Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res 26: 362–367.
38. Morgan AR, Han DY, Huebner C, Lam WJ, Fraser AG, et al. (2010) PTPN2 but not PTPN22 is associated with Crohn’s disease in a New Zealand population. Tissue Antigens 76: 119–125.
39. Latiano A, Palmieri O, Latiano T, Corritore G, Bossa F, et al. (2011) Investigation of multiple susceptibility loci for inflammatory bowel disease in an Italian cohort of patients. PLoS One 6: e22980.
40. Weersma RK, Stolker RS, Cleynen I, Wolkamp SC, Henckaerts I, et al. (2009) Confirmation of multiple Crohn’s disease susceptibility loci in a large Dutch-Belgian cohort. Am J Gastroenterol 104: 630-638.
41. Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, et al. (2007) A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet 80: 273–290.
42. Lears CW, Barrett JC, Parkes M, Satsangi J (2011) New IBD genetics: common pathways with other diseases. Gut 60: 1739–1753.
43. Festen EA, Goyette P, Green T, Boucher G, Beauchamp C, et al. (2011) A meta-analysis of genome-wide association scan identifies IL18RAP, PTPN2, TAGAP, and PUS10 as shared risk loci for Crohn’s disease and celiac disease. PLoS Genet 7: e1001303.
44. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, et al. (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39: 837–864.
45. Scharl M, Mewiny J, Fischbeck A, Lescht K, Eloranta JJ, et al. (2011) Crohn’s disease-associated polymorphism within the PTPN2 gene affects muramyl-dipeptide-induced cytokine secretion and autophagy. Inflamm Bowel Dis 17:1002-1013. [Epub ahead of print].
46. Travassos LH, Carneiro LA, Ramjee M, Hussey S, Kim YG, et al. (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11: 55–62.
47. Scharl M, Paul G, Weber A, Jung BC, Docherty MJ, et al. (2009) Protection of epithelial barrier function by the Crohn’s disease associated gene protein tyrosine phosphatase N2. Gastroenterology 137: 2030–2040.
48. Scharl M, McCole DF, Weber A, Vavricka SR, Frei P, et al. (2011) Protein tyrosine phosphatase N2 regulates TNFalpha-induced signalling and cytokine secretion in human intestinal epithelial cells. Gut 60: 189–197.
49. Zheng W, Flavell RA (1997) The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89: 587–596.
50. Murphy TL, Cleveland MG, Kalesza P, Magurn J, Murphy KM (1995) Regulation of interleukin 12 p40 expression through an NF-kappa B half-site. Mol Cell Biol 15: 5258–5267.
51. Male V, Nisoli I, Gascoyne DM, Brady HJ (2012) E4BP4: an unexpected player in the immune response. Trends Immunol 33: 90–102.
52. Kobayashi T, Matsuoka K, Sheikh SZ, Elloumi HZ, Kamada N, et al. (2011) NFIL3 is a regulator of IL-12 p40 in macrophages and mucosal immunity. J Immunol 186: 4649–4655.