We present partial evaluation by specialization-safe normalization, a novel partial evaluation technique that is Jones-optimal, that can be self-applied to achieve the Futamura projections and that can be type-checked to ensure it always generates code with the correct type. Jones-optimality is the gold-standard for nontrivial partial evaluation and guarantees that a specialist can remove an entire layer of interpretation. We achieve Jones-optimality by using a novel affine-variable static analysis that directs specialization-safe normalization to always decrease a program’s runtime.

We demonstrate the robustness of our approach by showing Jones-optimality in a variety of settings. We have formally proved that our partial evaluator is Jones-optimal for call-by-value reduction, and we have experimentally shown that it is Jones-optimal for call-by-value, normal-order, and memoized normal-order. Each of our experiments tests Jones-optimality with three different self-interpreters.

We implemented our partial evaluator in F_{μ}^{ω}, a recent language for typed self-applicable meta-programming. It is the first Jones-optimal and self-applicable partial evaluator whose type guarantees that it always generates type-correct code.

CCS Concepts: • Software and its engineering → Source code generation; Translator writing systems and compiler generators; Interpreters;

Additional Key Words and Phrases: Partial Evaluation, Jones-Optimality, Futamura Projections, Meta-Programming, Lambda Calculus.

ACM Reference Format:
Matt Brown and Jens Palsberg. 2018. Jones-Optimal Partial Evaluation by Specialization-Safe Normalization. Proc. ACM Program. Lang. 2, POPL, Article 14 (January 2018), 28 pages. https://doi.org/10.1145/3158102

1 INTRODUCTION

A partial evaluator implements Kleene's s-m-n theorem. Given a program and specific values for some of its inputs, a partial evaluator generates a version of the program specialized to those inputs. When given the remaining inputs, the specialized program computes the same result as the original when given all the inputs at once. The goal of partial evaluation is to do some of the computation ahead of time, so that the specialized program runs faster than the original. Researchers have developed partial evaluators for Scheme [Bondorf and Danvy 1991], C [Andersen 1992], and many others. Researchers have also shown how to self-apply partial evaluators and generate the Futamura projections [Jones et al. 1985], which can be used to compile programs and generate compilers and compiler-generators. Finally, researchers have developed Jones-optimal partial evaluators, that is, they can specialize away the overhead of an interpreter.
What is the type of a partial evaluator? In 1993, Jones, Gomard, and Sestoft [Jones et al. 1993, Section 16.2] suggested the following polymorphic type:

\[\forall A : \ast . \forall B : \ast . \text{Exp} (A \rightarrow B) \rightarrow A \rightarrow \text{Exp} B \]

Here, Exp (A \rightarrow B) is the type of a representation of a program with type A \rightarrow B. This technique is called typed representation. Implementing a partial evaluator that operates on typed representations guarantees that it always generates well-typed code of the correct type. Jones, Gomard, and Sestoft showed that the above type supports self-application and the Futamura projections. However, the challenge to define a partial evaluator with that type has remained open. Carette, Kiselyov, and Shan [Carette et al. 2009] implemented a partial evaluator with the closely related type that provides the same guarantee:

\[\forall A : \ast . \forall B : \ast . \text{Exp} (A \rightarrow B) \rightarrow \text{Exp} A \rightarrow \text{Exp} B \]

Their partial evaluator cannot be self-applied and comes with no claim about Jones optimality. In this paper we present a partial evaluator with the latter type, the first self-applicable partial evaluator that operates on typed representations, supports the Futamura projections, and is Jones optimal.

Our starting point is Mogensen’s partial evaluator [Mogensen 1995] for the untyped lambda-calculus. He used reduction to \(\beta\)-normal form as the basis for his partial evaluator, a technique we call specialization by normalization. A key to supporting the Futamura projections using specialization by normalization is that the partial evaluator itself must have a \(\beta\)-normal form. Mogensen showed this is possible by using Church-encoding to represent \(\lambda\)-terms.

Our first step is to observe that Mogensen’s partial evaluator is not Jones optimal for reduction strategies with sharing – where the work of reducing a value bound to a variable is done at most once, either up front or on demand, regardless of how many times that variable is referenced. Such reduction strategies (e.g. call-by-value, call-by-need/lazy) are more commonly used in practice than those without sharing (e.g. call-by-name), because sharing provides significantly better performance. The problem with Mogensen’s partial evaluator is that \(\beta\)-normalization is too aggressive for strategies with sharing; it duplicates work that could have been shared, resulting in specialized programs that are slower than the original. Our solution is to define a subset of \(\beta\)-reduction that is specialization-safe – that doesn’t duplicate work and never causes a slowdown. Specialization-safe reduction relies on a novel affine-variable analysis that is used to identify the \(\beta\)-redexes in that safe subset.

Our partial evaluator modifies Mogensen’s specialization by normalization technique to use specialization-safe reduction. Like Mogensen’s partial evaluator, ours has a \(\beta\)-normal form, so it supports the Futamura projections. However, ours never causes a slowdown and is Jones optimal.

Jones optimality is defined in terms of a fixed self-interpreter and a fixed reduction strategy. Given the variety of reduction strategies used in practice, and the many ways to write a self-interpreter, there are many different instances of Jones optimality to consider. Our partial evaluator is the first to be Jones optimal for three different self-interpreters combined with three different reduction strategies. Each self-interpreter operates on a different style of representation, and has a different amount of interpretational overhead. The representation techniques we consider are tagless-final higher-order abstract syntax (HOAS), Mogensen-Scott HOAS, and a tagless-final representation with deBruijn indices.

We apply our techniques to untyped \(\lambda\)-calculus and to a typed \(\lambda\)-calculus \(F^\omega_\mu_i\omega^i\) that supports self-applicable meta-programming. For untyped \(\lambda\)-calculus, we prove that partial evaluation by specialization-safe normalization is Jones optimal for each self-interpreter under call-by-value reduction. For \(F^\omega_\mu_i\omega^i\), we experimentally verify Jones optimality for each interpreter and each of call-by-value, normal-order, and memoized normal-order reduction, as indicated by the Xs in Table 1.
Table 1. Experimental (X) and formal (√) verification of Jones optimality of our $F^{\mu_i}_\omega$ partial evaluator.

Reduction	Tagless-final HOAS	Mogensen-Scott HOAS	Tagless-final deBruijn
Call-by-value	X	X	X
Normal order	X	X	X
Memoized normal order	X	X	X

The √ indicates that we have also formally proved Jones optimality for the tagless-final HOAS interpreter and call-by-value reduction.

An appendix containing proofs of the theorems stated in this paper is available from our website [Brown and Palsberg 2018]. We also provide our software artifact that includes implementations of $F^{\mu_i}_\omega$ and its self-interpreters and partial evaluator, as well as instructions for reproducing our experimental results.

Rest of the paper. In Section 2, we review Mogensen’s partial evaluator for untyped λ-calculus and demonstrate that it is not Jones optimal. In Section 3, we introduce our key notion of a specialization-safe reduction relation. In Section 4, we present a specialization-safe reduction that operates on untyped λ-terms with affine variable annotations. In Section 5, we discuss partial evaluation by specialization-safe normalization, and prove it Jones optimal for three self-interpreters. In Section 6, we present our typed self-applicable partial evaluator for $F^{\mu_i}_\omega$ and the typed Futamura projections. In Section 7, we discuss our experimental results, and in Section 8 we discuss related work.

2 PARTIAL EVALUATION AND JONES OPTIMALITY

A partial evaluator is a meta-program that specializes another program to some of its inputs. When given the remaining inputs, the specialized program will compute the same result as running the original program on all the inputs. Kleene’s s-m-n theorem established that such a specialization process is possible, and since then partial evaluation has been established as a practical technique for program optimization and automatic program generation.

We will define partial evaluation as the specialization of a two-input function to its first input (corresponding to the s-1-1 instance of s-m-n).

Definition 2.1 (Partial Evaluation). mix is a partial evaluator if for every program p and input x, there exists a specialized program p_x such that:

1. If $\text{mix} \ p \ x$ has a β-normal form, that normal form is $\overline{p_x}$
2. $\forall y. \ p_x \ y \equiv_{\beta} p \ x \ y$

The notation \overline{p} denotes the representation of p according to some fixed representation scheme. The first condition indicates that the partial evaluator may not be total: specialization may not terminate. When it does terminate, however, it outputs the representation of a specialized program p_x. The second condition is the correctness condition for the specialized program p_x: it must have the same behavior as $p \ x$ on all inputs y. The definition naturally extends to other numbers of inputs. The inputs to which the program is specialized are often called “static” and the remaining inputs “dynamic”. The static inputs are given as representations because they may become part of the output program representation. This is necessary for a λ-calculus without constants [Launchbury 1991].

Futamura projections. A partial evaluator is self-applicable if it can specialize itself. A classical application of a self-applicable partial evaluator is to generate the Futamura projections, which
use specialization to compile programs and generates compilers and compiler-generators [Futamura 1999]. The four Futamura projections are shown in Figure 1. For each projection we list a correctness specification implied by the correctness of mix. The first Futamura projection compiles programs from a source language S to a target language T by specializing an S-interpreter programmed in T. Given any input to the program, the target program gives the same result as interpreting the source program. The second projection generates a compiler from S-programs to T-programs by specializing the partial evaluator mix to the interpreter. Given any program, the compiler gives the same result as the first projection. The third projection generates a compiler-generator by specializing mix to itself. Given any interpreter, the compiler-generator gives the same result as the second projection. Futamura only discussed these three Futamura projections. Subsequently Glück [Glück 2009] showed that there are more. In particular, the fourth projection demonstrates that the compiler-generator cogen can generate itself when applied to mix. This is sometimes called the “mixpoint”.

The twice-overlined terms in the Futamura projections are representations of representations. These double-representations arise because mix requires its static input to be represented, as we mentioned above.

Jones-optimality. Jones-optimality is the gold-standard for showing a partial evaluator can perform a significant amount of specialization. The definition of Jones-optimality specializes a self-interpreter as a benchmark for partial evaluation.

Definition 2.2. A term u is a self-interpreter for a representation scheme \(\overline{\cdot} \) if for any term p, we have \(u \overline{p} \equiv_\beta p \).

A partial evaluator is Jones-optimal if it can specialize away all the computational overhead caused by self-interpretation. More precisely, specializing a self-interpreter to a program should generate a program that is no slower than the original program – on any input.

The canonical definition of Jones optimality is from Jones, Gomard and Sestoft [Jones et al. 1993, pg. 139]. We restate it for our context of \(\lambda \)-calculus and using our notation:

Definition 2.3 (Jones-optimality). A partial evaluator mix is Jones-optimal with respect to time and a self-interpreter u if, for any terms \(p : A \rightarrow B \) and \(d : A \), \(time(p' \overline{d}) \leq time(p \overline{d}) \), where \(mix \overline{u} \overline{p} \equiv_\beta p' \).

Jones optimality is defined in terms of a particular fixed time function and self-interpreter u. Since different notions of time may be most appropriate for different settings, and because there are different ways of implementing a self-interpreter (and different ways of representing programs) for
a single language, we can consider multiple notions of Jones optimality. We will always explicitly state which \textit{time} function and self-interpreter is under consideration. In this section, we focus on steps of call-by-value (CBV) reduction to a value as our notion of \textit{time}. Call-by-value reduction is defined in Figure 3.

\begin{align*}
(\lambda x.e)v & \rightarrow e[x:=v] \\
e_1 \rightarrow e_1' & \quad e_1 e_2 \rightarrow e_1' e_2 \\
(\lambda x.e)e_1 & \rightarrow (\lambda x.e)e_1'
\end{align*}

Fig. 3. Call-by-value reduction.

\begin{align*}
x & \triangleright x \\
e & \triangleright q \\
\lambda x.e & \triangleright \text{abs} (\lambda x.q) \\
e_1 \triangleright q_1 & \quad e_2 \triangleright q_2 \\
e_1 e_2 & \triangleright \text{app} q_1 q_2 \\
e_1 e_2 & \rightarrow e_1 e_2' \\
\overline{e} = \lambda e. \ e (\lambda x.x) (\lambda x.x)
\end{align*}

Fig. 4. Mogensen’s Church-encoded representation and self-interpreter for untyped \(\lambda\)-calculus.

\begin{quote}
\textit{Definition 2.4.} \(time_{cbv}(e) = n\) if and only if \(e \rightarrow^n v\) for some value \(v\).
\end{quote}

Mogensen [Mogensen 1995] implemented a self-applicable partial evaluator for untyped \(\lambda\)-calculus by reducing terms to \(\beta\)-normal form, a technique we call “specialization by normalization”. With this approach, specializing a program \(f\) to an input \(x\) returns \(NF_\beta(f \ x)\), the \(\beta\)-normal form of \(f \ x\). One problem with specialization by normalization is that not all terms have a normal form, which leads to non-termination of the partial evaluator: if \(f \ x\) has no normal form, then specializing \(f\) to \(x\) will not terminate. In particular, if the self-interpreter \(u\) and the partial evaluator \(\text{mix}\) are not strongly normalizing terms, then the Futamura projections will not terminate. Mogensen solved this problem by using a representation based on Church-encoding, for which a strongly normalizing self-interpreter and normalizer can be defined. The partial evaluator is self-applicable and the Futamura projections terminate.

Mogensen’s Church-encoding representation and self-interpreter are shown in Figure 4. A representation is built in two steps: first, the pre-quoter \(\triangleright\) applies designated variables \(\text{abs}\) and \(\text{app}\) throughout the term, at each \(\lambda\)-abstraction and application respectively. We assume \(\text{abs}\) and \(\text{app}\) do not occur in the term, which can be ensured by renaming variables. The quoter \(\overline{_}\) simply abstracts over \(\text{abs}\) and \(\text{app}\) in the pre-quoted term. This formulation of Church encoding produces representations in \(\beta\)-normal form. It is possible to define quotation as a single function (without a pre-quoter), but the representations produced would not be \(\beta\)-normal.

Mogensen’s self-interpreter \(u\) is instantiates both \(\text{abs}\) and \(\text{app}\) to identity functions, resulting in a term that is \(\beta\)-equivalent to \(e\). The self-interpreter \(u\) is \(\beta\)-normal. While Mogensen’s normalizer is significantly more complex than his self-interpreter, it is also strongly normalizing.
\[
\begin{align*}
n_i &= \lambda s. \lambda z. s^i z \\
succ &= \lambda n. \lambda s. \lambda z. s (n s z) \\
\text{plus} &= \lambda n. \lambda m. n \text{succ} m \\
\text{times} &= \lambda n. \lambda m. (\text{plus} m) n_0 \\
\text{square} &= \lambda n. \text{times} n n \\
f &= \lambda x. \lambda y. \text{times} x (\text{square} y) \\
g &= f n_2
\end{align*}
\]

Fig. 5. An implementation of \(g(x) = 2x^2 \) on Church numerals

To summarize, Mogensen made three key insights: 1) a self-evaluator that evaluates to normal form can be used as the basis for a partial evaluator (specialization by normalization), 2) specialization by normalization supports the Futamura projections if the self-interpreter and partial evaluator themselves are strongly normalizing, and 3) a representation based on Church-encoding supports a strongly normalizing self-interpreter and specialization by normalization partial evaluator.

Specialization by normalization is not optimal for \(\text{time}_{cbv} \). For example, consider the \(\lambda \)-term \(g \) in Figure 5 that computes the polynomial \(g(x) = 2x^2 \) on Church numerals. The specialization of \(u \) to \(g \) yields a term \(u_6 \) that is slower than \(g \) on some inputs. For example, \(u_6 \ n_3 \) evaluates in 89 steps, while \(g \ n_3 \) evaluates in 82 steps. The problem is not limited to compilation; specialization in general can cause slowdown. The specialization of the \(\lambda \)-term \(f \) in Figure 5 to the church numeral \(n_2 \) evaluates in more steps than \(f \ n_2 \).

The reason for this slowdown is that \(\beta \)-normalization contracts some \(\beta \)-redexes that cause duplicated work in the residual code – in particular, redexes of the form \((\lambda x. e_1)e_2\) where \(e_2 \) is not a value. Reducing such a redex can introduce multiple new copies of \(e_2 \) into the term, each of which may need to be evaluated separately. For example, consider the specialization of \(f \) to \(n_2 \), which reduces in one step to \(\lambda y. \text{times} n_2 (\text{square} y) \), and then in a few more steps to \(\lambda y. \text{plus} (\text{square} y) (\text{plus} (\text{square} y) n_0) \). The specializer will continue reducing, but we can see the problem already at this point: we now have two copies of \(\text{square} y \) instead of one. We can’t compute either copy at specialization-time, because we don’t know the value of \(y \) until run-time. When we run the specialized program with the input \(n_2 \) for \(y \), will have to evaluate \(\text{square} n_2 \) twice.

Returning to our first example, specializing \(u \) to \(g \), we see that since \(u g \equiv g = f \ n_2 \), the \(\beta \)-normal form of \(u g \) is the same as the \(\beta \)-normal form of \(f \ n_2 \). The result is the same as for the specialization of \(f \) to \(n_2 \), and we get a slowdown for the same reason.

3 SPECIALIZATION SAFETY

In this section, we consider how Mogensen’s specialization-by-normalization approach can be modified so that it can support the Futamura projections and also be Jones optimal. Jones optimality has two requirements: first, the partial evaluator must be strong enough to specialize away the work of a self-interpreter; second, it must not duplicate work or otherwise cause a slowdown.

Our goal is to identify a reduction relation that can be used used as the basis for a Jones-optimal specialization-by-normalization partial evaluator. Our main requirements are as follows: first, the reduction relation should be specialization-safe, meaning it never causes a slowdown at run-time;
and second, it should be strong enough to remove all the work of a self-interpreter. We now formally state these two requirements.

Definition 3.1. A reduction relation \leadsto is specialization-safe for time if $e_1 \leadsto^* e_2$ implies $time(e_2 x) \leq time(e_1 x)$ for all x.

Definition 3.2. For a given self-interpreter u for a representation function $\hat{\cdot}$, a reduction relation \leadsto is u-strong if $u \hat{p} \leadsto^* p$ for all p.

We also require that the reduction relation be confluent and have unique normal forms, so that we can implement a specialization-by-normalization partial evaluator for it. Finally, in order to support the Futamura projections, we need the implementation of the partial evaluator itself to have a normal form.

Theorem 3.3. If \leadsto is confluent, specialization-safe for time, and u-strong, then for any terms p and d, $time(p' d) \leq time(p d)$, where $p' = NF_{\leadsto}(u \hat{p})$.

Proof. From that \leadsto is confluent and u-strong, we have $p' = NF_{\leadsto}(u \hat{p}) = NF(p)$, so $p \leadsto^* p'$. From that \leadsto is specialization-safe for time, we have $time(p' d) \leq time(p d)$. \square

In the remainder of this section, we examine a variety of β-redexes and determine if they can be included in a specialization-safe reduction relation. In the next section we introduce affine variable annotations that help identify those specialization-safe β-redexes and define a specialization-safe subset of β-reduction that operates on annotated terms.

Intuitively, whether a redex $(\lambda x. e) a$ is specialization-safe depends upon two things: the potential cost of evaluating a at run-time, and the number of times the value of a might be needed.

Consider for example the term $\lambda f. (\lambda x. f x x) n_2$, which contains a single redex $(\lambda x. f x x)$ n_2. Since there are two occurrences of x, the value of n_2 will be needed twice. However, n_2 is itself a value, so the cost of evaluating it is 0. Therefore, this redex is specialization-safe – contracting does not duplicate any work.

Consider instead the term $\lambda f. (\lambda x. f x x) (\text{square } n_2)$, which contains the redex $(\lambda x. f x x)$ (square n_2). This time, the argument (square n_2) is not a value, so contracting this redex would duplicate work: in the reduct $f (\text{square } n_2)$ (square n_2), we have to evaluate (square n_2) twice. However, (square n_2) can be reduced to a value at specialization time, so we can reduce the redex $(\lambda x. f x x)$ (square n_2) to a specialization-safe redex and then contract it.

Next, consider the term $\lambda f. (\lambda x. \times x x) (\times n_2)$ and its redex $(\lambda x. \times x x) (\times n_2)$. This time, specialization cannot reduce the argument $\times n_2$ to a value, because f is unknown. If we leave the redex uncontracted, then $\times n_2$ will be evaluated once at run-time, and the redex will be contracted afterwards. If we contract the redex, the resulting term $\times (\times n_2) (\times n_2)$ duplicates $\times n_2$ so it will need to be evaluated twice at run-time, potentially causing a slowdown. Therefore, this redex is not specialization-safe.

Next, consider $\lambda f. (\lambda y. \text{square } y) (\times n_2)$, which is α-equivalent to the previous example, and its redex $(\lambda y. \text{square } y) (\times n_2)$. As before, specialization cannot reduce $\times n_2$ to a value. But in this case the value of y is needed only once, so this redex is specialization-safe and can be contracted to square $(\times n_2)$ without risking a slowdown. The resulting term $\lambda f. \text{square } (\times n_2) = \lambda f. (\lambda x. \times x x) (\times n_2)$ recovers the previous example.

Next, consider the term $(\lambda y. \text{square } y) = \lambda y. (\lambda x. \times x x) y$ and its redex $(\lambda x. \times x x) y$. Here, the argument y is a variable and so not a value, and neither can specialization reduce it to a value. However, since call-by-value always reduces arguments to values before β-contracting, we
(values) \(v := \lambda x. e \mid \lambda x^o. e \)
(terms) \(e := x \mid x^o \mid e1 \mid e2 \mid \lambda x. e \mid \lambda x^o. e \)

Fig. 6. Untyped \(\lambda \)-calculus with affine-variable annotations

\[
\begin{align*}
\text{CBV-1} &: (\lambda x.e)v \rightarrow e[x:=v] \\
\text{CBV-2} &: e1 \rightarrow e1' \\
&: e1 e2 \rightarrow e1' e2 \\
\text{CBV-3} &: e1 \rightarrow e1' \\
&: (\lambda x.e)e1 \rightarrow (\lambda x.e)e1'
\end{align*}
\]

Fig. 7. Call-by-value reduction on untyped \(\lambda \)-terms with affine variable annotations.

know that at run-time, \(y \) will be substituted with a value. Therefore this redex is also specialization-safe, and \((\lambda y. \text{square } y)\) can be reduced to \((\lambda y. \text{times } y y) \equiv_a \text{square}\). This example shows that \(\eta \)-contraction is specialization-safe.

Finally, consider \(\lambda f. \lambda g. g \ (\text{times } (f \ n^2)) \), and its redex \(\text{times } (f \ n^2) = (\lambda n. \lambda m. n \ (\text{plus } m) n_0) \ (f \ n^2) \). Since \((f \ n^2)\) cannot be reduced to a value at specialization time, it will have a nonzero cost at run-time. However, since \(n \) occurs only once in the definition of \(\text{times} \), it is tempting to conclude that this redex is specialization-safe. This conclusion is wrong. Since \(n \) occurs under the \(\lambda \)-abstraction \(\lambda m. n \ (\text{plus } m) n_0 \), the value of \(n \) will be needed every time that abstraction is applied. Since \(g \) is unknown, we cannot predict how many times the \(\lambda \)-abstraction will be applied and \(n \) will be needed. If we contract the redex, then we have to recompute \(f \ n^2 \) every time \(g \) is applied. This could cause a lot of duplicated work.

4 AFFINE VARIABLES AND SPECIALIZATION-SAFE REDUCTION

The examples in the previous section demonstrate that full \(\beta \)-reduction is not specialization-safe: some \(\beta \)-contractions at specialization-time can cause a slowdown at run-time. In this section, we define specialization-safe reduction, a subset of full \(\beta \)-reduction that is indeed specialization-safe: Theorem 4.5 states that no sequence of specialization-safe reductions can result in a term that evaluates in more call-by-value steps than the original.

We achieve specialization safety by only contracting \(\beta \)-redexes that cannot cause a slowdown. We use affine-variable annotations to indicate which variables are guaranteed to be referenced at most once at run-time. Affine variables are similar to linear variables, except that linear variables are guaranteed to be referenced exactly once.

Figure 6 defines the untyped \(\lambda \)-calculus (ULC) with affine variables. Affine variables are annotated like \(x^o \), while unlimited variables are unannotated. The values are \(\lambda \)-abstractions as usual, and they may abstract over affine or unlimited variables. Throughout this section, all \(\lambda \)-terms can have annotations.

Figure 7 defines call-by-value reduction on annotated \(\lambda \)-terms. Call-by-value reduction ignores annotations – the rules CBV-1 and CBV-3 are identical except for the annotations, as are CBV-4 and CBV-5. We overload the arrow \(\rightarrow \) that denotes call-by-value reduction for unannotated terms. We will make clear which kind of term is under consideration at all times. We define \(\text{time}_{cbv} \) for annotated terms similarly to the definition for unannotated terms.

Definition 4.1. For an annotated term \(e \), \(\text{time}_{cbv}(e) = n \) if and only if \(e \rightarrow^n v \) for some value \(v \).
(unlimited contexts) \(\Gamma = \langle \rangle \mid \Gamma, x \)

(affine contexts) \(\Sigma = \langle \rangle \mid x^o \)

\[\begin{align*}
\frac{x \in \Gamma}{\Gamma; \Sigma \vdash x} & \\
\frac{\Gamma; \Sigma_1 \vdash e_1 \quad \Gamma; \Sigma_2 \vdash e_2}{\Gamma; \Sigma \vdash e_1 \cup e_2} & \\
\langle \rangle \cup x = x & \\
x \cup \langle \rangle = x & \\
\langle \rangle \cup \langle \rangle = \langle \rangle & \\
\end{align*}\]

\(\Gamma; \Sigma \vdash e_1 \quad \Gamma; \Sigma \vdash \lambda x.e\)

\(\Gamma; \Sigma \vdash e_1 \quad \Gamma; \Sigma \vdash \lambda \langle \rangle.x^o.e\)

Fig. 8. Well-formedness rules for affine-variable annotations.

\[\begin{align*}
\text{SSR-1} & : (\lambda x.e)v \rightarrow_s e[x:=v] \\
\text{SSR-2} & : \begin{array}{l}
e_1 \rightarrow_s e_1' \\
e_1 e_2 \rightarrow_s e_1' e_2 \\
e_1 \rightarrow_s e_1' \\
e e_1 \rightarrow_s e e_1' \\
\end{array} \\
\text{SSR-3} & : (\lambda x^o.e)e' \rightarrow_s e[x^o:=e'] \\
\text{SSR-4} & : (\lambda x^o.e)e' \rightarrow_s e[x^o:=e'] \\
\text{SSR-5} & : (\lambda x.e)y \rightarrow_s e[x:=y] \\
\text{SSR-6} & : e \rightarrow_s e' \\
\text{SSR-7} & : (\lambda x.e) \rightarrow_s (\lambda x.e') \\
\end{align*}\]

Fig. 9. Specialization-Safe Reduction

Figure 8 defines a simple set of rules for checking affine-variable annotations. We track variables in two contexts: a context \(\Gamma \) that contains unlimited variables, and a context \(\Sigma \) that contains affine variables. \(\Sigma \) is allowed to contain at most one variable at a time. The rule for unlimited variables checks for the variable in the unlimited context, and the one for affine variables checks the affine context. For an application \(e_1 e_2 \), we check \(e_1 \) and \(e_2 \) using the same unlimited context, but disjoint affine contexts. This ensures that only one of \(e_1 \) or \(e_2 \) may reference the current affine variable. We always check the body of an unlimited \(\lambda \)-abstraction using an empty affine context. We check the body of an affine \(\lambda \)-abstraction \((\lambda x^o.e)\) using the affine context containing only \(x^o \). This means that affine variables may never occur under a nested \(\lambda \) abstraction.

Figure 9 defines specialization-safe reduction on annotated terms. The rule SSR-1 is ordinary call-by-value \(\beta \)-reduction. The rules SSR-2 and SSR-3 allow a step to occur in either sub-term of an application, like in full \(\beta \)-reduction. Call-by-value reduction would restrict SSR-3 to when \(e \) is a value. The rule SSR-4 is the key rule enabled by the affine-variable annotations. It allows a \(\beta \)-reduction when the argument is not a value, as long as the \(\lambda \)-abstraction binds an affine variable. The rule SSR-5 allows a \(\beta \)-reduction when the argument is an unlimited variable, as long as the \(\lambda \)-abstraction is also unlimited. Note that we do not allow \(\beta \)-reduction when the argument is an affine variable and the \(\lambda \)-abstraction is unlimited, because that could duplicate the affine variable. If the \(\lambda \)-abstraction is affine, SSR-4 applies for any argument. The last two rules, SSR-6 and SSR-7, allow reduction under \(\lambda \)-abstractions.

We now apply specialization-safe reduction to the examples from the previous section. First was the term \(\lambda f.(\lambda x.f x x) n_2 \). The variable \(x \) cannot be annotated as affine, because it occurs twice. Neither can \(f \) be annotated, because it occurs under the abstraction over \(x \). However, since \(n_2 \) is a value, SSR-1 applies, so this is a redex for specialization-safe reduction.
The next example was $\lambda f. (\lambda x. f \times x) \ (\text{square} \ n_2)$. Again, x and f are not affine, but square n_2 can be reduced to a value, after which SSR-1 will apply.

The next example was $\lambda f. (\lambda x. \times x \ x) \ (f \ n_2)$, which has the β-redex $(\lambda x. \times x \ x) \ (f \ n_2)$. Again x is not affine and $(f \ n_2)$ is not a value, so this is not a specialization-safe redex. Also, since $(f \ n_2)$ is not reducible to a value, the β-redex can’t be reduced to a specialization-safe redex.

The next example was $\lambda f. (\lambda y. \text{square} \ y) \ (f \ n_2)$, which can be annotated $\lambda f^\circ. (\lambda y^\circ. \text{square} \ y^\circ) \ (f^\circ \ n_2)$. Now consider the β-redex $(\lambda y^\circ. \text{square} \ y^\circ) \ (f^\circ \ n_2)$. The argument $(f^\circ \ n_2)$ is not a value and can’t be reduced to one. However, since y° is affine, this is still a specialization-safe redex, reducible using rule SSR-4.

Next consider $\lambda y. (\lambda x. \times x \ x) \ y$. The variable y is affine, so we can annotate the term $\lambda y^\circ. (\lambda x. \times x) \ y^\circ$. In this case, specialization-safe reduction does not allow the β-redex $(\lambda x. \times x \ x) \ y^\circ$ to be reduced, because the reduct $\times y^\circ y^\circ$ would not be well-formed. We could instead leave y unannotated, and the term is still well-formed. Then $(\lambda x. \times x \ x) \ y$ can be reduced by rule SSR-5 because y is unlimited, and the reduct $(\lambda y. \times y \ y)$ is well-formed. This demonstrates two important points: a term can have multiple annotations, and different annotations can lead to different specialization-safe reduction behavior. Our partial evaluator always inserts the maximum number of annotations allowed by the rules, as described in the next section.

The last example was $\lambda f. \lambda g. g \ (\times (f \ n_2)))$, and its redex $\times (f \ n_2) = (\lambda n. \times n \ (\text{plus} \ m)) \ n_0) \ (f \ n_2)$. The variable n cannot be annotated as affine because it occurs on the λ-abstraction for m. Also, the argument $(f \ n_2)$ is not a value, so this is not reducible by specialization-safe reduction.

The following theorem states that well-formedness is preserved by specialization-safe reduction.

Theorem 4.2. If $\Gamma; \Sigma \vdash e$ and $e \rightarrow_s e'$, then $\Gamma; \Sigma \vdash e'$.

A term e is in specialization-safe normal form (or is specialization-safe-normal) if there is no e' such that $e \rightarrow_s e'$. All β-normal forms are also specialization-safe-normal, but a specialization-safe normal form may contain β-redexes (specifically, specialization-unsafe redexes). Specialization-safe reduction is confluent, and so has unique normal forms. Our proof of confluence is based on Nipkow’s lecture notes on λ-calculus [Nipkow 2012]. We define $\text{NF}_s(e) = e'$ if and only if $e \rightarrow_s^* e'$ and e' is specialization-safe-normal.

Theorem 4.3. Specialization-safe reduction is confluent.

Corollary 4.4. Specialization-safe normal forms are unique.

The following theorem states that specialization-safe reduction cannot cause a slowdown: no sequence of specialization-safe reductions can result in a term that evaluates in more more call-by-value steps than the original.

Theorem 4.5. If $\langle \rangle; \langle \rangle \vdash e$ and $e \rightarrow_s^* e'$ and $e \rightarrow^1 v$, then there exists an $i' \leq i$ and a value v' such that $e' \rightarrow^{i'} v'$, and $v \rightarrow_{s}^{i} v'$.

Theorem 4.5 is illustrated in Figure 10. The solid arrows correspond to the premises of the theorem, and the dashed arrows correspond the conclusion. After specialization-safe reduction, we may end up with a value v' that is different than what we’d get with call-by-value reduction alone. This is possible because specialization-safe reduction allows reduction under λ-abstractions. The two values are equivalent and converge with some additional specialization-safe reduction.

Specialization-safety follows from Theorem 4.5:

Corollary 4.6 (Specialization-safety). If $\langle \rangle; \langle \rangle \vdash p$ and $e \rightarrow_s^* e'$, then for all x, $\text{time}_{cbv}(e \ x) = i$ implies $\text{time}_{cbv}(e' \ x) \leq i$.
Fig. 10. Illustration of Theorem 4.5.

Fig. 11. Specialization-safe reduction for unannotated terms.

Proof. time_{cbv}(e x) = i implies that e x \rightarrow^i v for some v. Since e \rightarrow^*_s e', we have e x \rightarrow^*_s e' x. By Theorem 4.5, there exists an i' \leq i and a value v' such that e' x \rightarrow^i' v' and v \rightarrow^*_s v'. Therefore, time_{cbv}(e' x) = i' \leq i = time_{cbv}(e x). □

5 PARTIAL EVALUATION BY SPECIALIZATION-SAFE NORMALIZATION

The specification for a partial evaluator based on specialization-safe normalization is as follows:

\[
\text{mix} \equiv \beta \text{erase}(\text{NF}_s(\text{annotate}(p d)))
\]

It operates on unannotated terms, but first annotates them with the maximum number of affine annotations allowed by the rules. There is a unique maximally annotated term for each unannotated term, and the annotation process is straightforward. A bound variable can be annotated as affine if 1) the number of occurrences is at most one, and 2) the number of occurrences inside inner lambda abstractions is zero. After reducing to specialization-safe normal form it erases the annotations. Since annotate, NF_s, and erase are all well-defined functions, there is a unique specialized program for each program and static input.

For unannotated terms e_1 and e_2, we write e_1 \Rightarrow_s e_2 to mean the maximally annotated version of e_1 reduces in some number of steps to an annotated version of e_2. This is depicted in Figure 11.

Since call-by-value reduction on annotated terms ignores affine-variable annotations, an annotated term evaluates in the same amount of time as the corresponding unannotated term:

Lemma 5.1. For any annotated term e, time_{cbv}(e) = time_{cbv}(\text{erase}(e)).

Proof. Straightforward. □

The following Lemma combines Corollary 4.6 and Lemma 5.1 to bridge the gap between unannotated and annotated \(\lambda\)-terms.

Lemma 5.2. For any self-interpret er \(u\) for a representation function \(\hat{\cdot}\), and for any term \(p\), if \(u \hat{p} \Rightarrow_s p\), then \(\text{mix}\) is Jones-optimal for \(u\) and time_{cbv}.
\[
\begin{align*}
\hat{x} &= \lambda \text{var.} \lambda \text{abs.} \lambda \text{app.} \text{var} \ x \\
\hat{e} &= q \\
\lambda x. \hat{e} &= \lambda \text{var.} \lambda \text{abs.} \lambda \text{app.} (\lambda x. q) \\
\hat{e}_1 &= q_1 \\
\hat{e}_2 &= q_2 \\
\hat{e}_1 \hat{e}_2 &= \lambda \text{var.} \lambda \text{abs.} \lambda \text{app.} q_1 q_2 \\
\text{fix}_f &= (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y)) \\
\text{fix} &= \lambda f. \text{fix}_f \\
\text{msint} &= \text{fix} (\lambda u. \lambda e. e (\lambda x. x) (\lambda f. \lambda x. u (f ((\lambda y. x)x))) (\lambda f. \lambda x. u f (u x)))
\end{align*}
\]

Fig. 12. Mogensen-Scott encoding and self-interpreter.

We prove that a partial evaluator based on specialization-safe normalization is strong enough to specialize away the work of three different self-interpreters. Therefore it is also Jones-optimal for each interpreter and \textit{time}_{cbv}. The first self-interpreter is the one by Mogensen shown in Figure 4. It operates on the same Church-encoded representation \(\tau\) that \text{mix} does. The second uses Mogensen-Scott encoding, another encoding of \(\lambda\)-terms by Mogensen [Mogensen 1992] that is based on Scott’s encoding of natural numbers. The third is a tagless-final encoding that uses \(\text{deBruijn}\) indices to represent variables, based on Kiselyov’s representation of STLC in Haskell [Kiselyov 2012]. Whenever \text{mix} specializes a self-interpreter other than Mogensen’s, we have two representations involved: \text{mix} itself always operates on representations produced by \(\tau\).

The following two theorems prove that a partial evaluator based on specialization-safe normalization is Jones-optimal for Mogensen’s Church-encoding self-interpreter (Figure 4) and \textit{time}_{cbv}.

\textbf{Lemma 5.3.} For any closed term \(e\), \(u \hat{e} \Rightarrow^* s e\).

\textbf{Theorem 5.4.} \text{mix} is Jones optimal for \textit{time}_{cbv} and Mogensen’s self-interpreter.

\textbf{Proof.} Follows from Lemma 5.2 and Lemma 5.3. \(\square\)

\textbf{Mogensen-Scott encoding.} Quotation for a Mogensen-Scott-encoded representation is defined in Figure 12. It’s a higher-order abstract syntax (HOAS) representation like Mogensen’s Church-encoded representation. The key difference between the two representations is that while Church-encoding defines a fold over the syntax of the term, Mogensen-Scott-encoding defines pattern matching on the term. The two representations are isomorphic, but each encoding technique is well-suited to particular applications. Church-encoding is good for folds, while Mogensen-Scott is preferable for operations that aren’t easily programmed as folds. Programming a fold like our self-interpreter takes a bit more work on a Mogensen-Scott representation. In particular, we have to use a fixpoint combinator to traverse the term. Still, this extra work can be done using only specialization-safe reduction, so our partial evaluator is Jones-optimal for the Mogensen-Scott interpreter as well.

\textbf{Lemma 5.5.} For any term \(e\), \(\text{msint} \hat{e} \Rightarrow^*_s e\).

\textbf{Theorem 5.6.} \text{mix} is Jones-optimal for \textit{time}_{cbv} and \text{msint}.

\textbf{Proof.} Follows from Lemma 5.2 and Lemma 5.5. \(\square\)
deBruijn indices. Figure 13 shows a tagless-final representation that uses deBruijn indices to represent variables, unlike the two previous HOAS representations. It’s based on Kiselyov’s representation of simply-typed λ-calculus in Haskell [Kiselyov 2012], which uses nested pairs to represent environments, and composed projection functions to represent deBruijn indices. For example, the deBruijn index 0 is represented as the \(\text{fst} \), index 1 is represented as \(\lambda p. \text{fst}(\text{snd} p) \), and so on. The quoter uses a function \(\Gamma \vdash x \Rightarrow e \) to construct the projection function for variables. The self-interpreter for this representation is quite different than the ones for either the tagless-final or the Mogensen-Scott HOAS, but our partial evaluator is Jones optimal for it as well.

Lemma 5.7. For any closed term \(e \), \(\text{dbint} \hat{e} \Rightarrow_s e \).

Theorem 5.8. \(\text{mix} \) is Jones-optimal for time \(_{cbv} \) and \(\text{dbint} \).

Proof. Follows from Lemma 5.2 and Lemma 5.7.

Discussion. We now demonstrate why each of the three specialization-safe \(\beta \)-reductions — rules SSR-1, SSR-4, and SSR-5 — are needed to achieve Jones-optimality for our three self-interpreters.

First, consider how the Church-encoding interpreter (Figure 4) operates on the representation of \(\langle \lambda a. a a \rangle \). We show the affine variable annotations for clarity.

\[
\begin{align*}
\text{u} (\lambda a. a a) & = (\lambda e^o. e^o (\lambda x^o.x^o) (\lambda x^o.x^o)) (\lambda \text{abs}. \lambda \text{app}. \text{abs} (\lambda a. \text{app} a a)) \\
& \Rightarrow_s (\lambda \text{abs}. \lambda \text{app}. \text{abs} (\lambda a. \text{app} a a)) (\lambda x^o.x^o) (\lambda x^o.x^o) \\
& \Rightarrow^2_s (\lambda a. (\lambda x^o.x^o) a a) \\
& \Rightarrow^2_s (\lambda a. a a)
\end{align*}
\]

The first step is derived by SSR-4, since \(e \) is affine. The next two steps are derived by by SSR-1 because abs and app are not affine and their parameters are values. The last two steps are derived by by SSR-4 because the two \(x \)s are affine.

To demonstrate the need for SSR-5, consider how the Mogensen-Scott interpreter (Figure 12) operates on the representation of \(\langle \lambda a. a a \rangle \):
\[
\text{\textbf{msint} } (\lambda a. \ a \ a) \\
\rightarrow_s \ \lambda x. \ \text{\textbf{msint}} \ ((\lambda a. \ \hat{a} \ a) \ x) \\
\rightarrow_s \ \lambda x. \ \text{\textbf{msint}} \ (\hat{x} \ x) \\
\rightarrow_s \ \lambda x. \ \hat{x} \ x
\]

The first sequence of steps does not need SSR-5. The term \((\lambda y. \ x) x\) ensures that \(x\) is unlimited, and reduces \(x\) in the next step, which is derived by SSR-4 because \(y\) is affine. The next step is not reducible by SSR-1 because \(x\) is a variable (and variables are not values), and is also not reducible by SSR-4 because \(a\) is not affine. However, it is reducible by SSR-5 because we forced \(x\) to be unlimited. This step allows the interpreter to proceed and eventually return the original term (up to renaming).

6 TYPED SELF-APPLICABLE PARTIAL EVALUATION FOR \(F_{\text{\mu i}}\)

We implement a typed version of our partial evaluator for \(F_{\text{\mu i}}\), a Turing-complete typed \(\lambda\)-calculus with support for typed self-representation. The language is defined in Figure 14. It extends System \(F_{\omega}\) with iso-recursive types and intensional type functions, which together are useful for typed meta-programming. It is type-safe and type checking is decidable. For more details, we refer the interested reader to Brown and Palsberg [Brown and Palsberg 2017].

Our self-representation type \(\text{\textbf{Exp}}\) is defined in Figure 15. It is a tagless-final style representation – intuitively, a typed version of Mogensen’s Church-encoded representation. It is also Parametric Higher-Order Abstract Syntax (PHOAS) [Chlipala 2008; Washburn and Weirich 2003]. In particular, the type \(\text{\textbf{PExp}}\) is parametric in \(V\), which determines the type of free variables in a representation. Intuitively, \(\text{\textbf{PExp}}\) can be understood as the type of representations that may contain free variables. The type \(\text{\textbf{Exp}}\) quantifies over \(V\), which ensures that the representation is closed. The self-representation of \(F_{\text{\mu i}}\) presented by Brown and Palsberg was a typed Mogensen-Scott representation – intuitively, a Generalized Algebraic Data Type (GADT) encoded using \(\lambda\)-terms. We instead use the tagless-final style because it supports a normalizing self-interpreter and a normalizing self-applicable partial evaluator, allowing us to generate the Futamura projections.

Quotation for our \(F_{\text{\mu i}}\) representation is defined in Figure 16. The quotation function \(\overline{\cdot}\) is defined only on closed terms, and depends on a pre-quotation function \(\text{\textbf{rhd}}\) from type derivations to terms. In the judgment \(\Gamma \vdash e : T \vdash q\), the input is the type derivation \(\Gamma \vdash e : T\), and the output is a term \(q\). We call \(q\) the pre-representation of \(e\). In addition to the cases for variables, \(\lambda\)-abstractions and applications, we have cases for type abstraction and application and the folding and unfolding of iso-recursive types. The case of type abstractions and type applications use the \(\text{\textbf{IsAll}} T\) proof terms, which prove that the type \(T\) is a quantified type. They also use utility functions \(\text{\textbf{stripAll}} k\), \(\text{\textbf{underAll}} X,K,T\), and \(\text{\textbf{inst}} X,K,T,S\), which are useful to meta-programs for operating on type abstractions and applications. These \(\text{\textbf{IsAll}}\) proofs and utility functions are part of Brown and Palsberg’s extensional representation of polymorphism.

We prove two theorems about our representation: first, every closed and well-typed term has a representation that is closed and well-typed, and the type of a term determines the type of its representation. Ill-typed terms cannot be represented. Second, representations are \(\beta\)-normal forms.

Theorem 6.1. If \(\langle \rangle \vdash e : T\), then \(\langle \rangle \vdash \overline{e} : \text{\textbf{Exp}} T\).

Theorem 6.2. If \(\langle \rangle \vdash e : T\), then \(\overline{e}\) is \(\beta\)-normal.
The self-interpreter unquote for the tagless-final HOAS representation is shown in Figure 17. We prove that our partial evaluator is Jones-optimal for unquote and a time(–) function based on call-by-value type-erasures semantics.

Definition 6.1 (Type erasure). The type erasure of an $F_{\omega_0}^{\mu\iota}$ term e is defined recursively as follows:

\[(x : T) \in \Gamma \quad \Rightarrow \quad \Gamma \vdash x : T \]

\[\Gamma \vdash (\lambda x : T. e) : T_1 \to T_2 \quad \Rightarrow \quad \Gamma \vdash (\lambda x : T. e) \to e : T_2 \]

\[\Gamma \vdash e_1 : T_2 \to T \quad \Rightarrow \quad \Gamma \vdash e_1, e_2 : T \]

\[\Gamma \vdash e_1 = e_2 : T \]

\[\Gamma \vdash e : \mu F T e : F (\mu F) T \]

\[\Gamma \vdash e : T_1, T_2 \quad \Rightarrow \quad \Gamma \vdash e : T_2 \]

\[(\lambda x : T. e) \to e[x := e_1] \]

\[(\lambda x : T. e) \to e[x := T] \]

\[\text{fold } F T e \to \text{fold } F T e \]

\[\text{unfold } F T e \to \text{unfold } F T e \]

\[e_1, e_2 \to e_2 \]

\[e_1, e_2 \to e_1 \]

\[e_1 \to e_2 \]

\[e_1 \to e_2 \]

\[(\lambda x : T. e_1) \to (\lambda x : T. e_2) \]

\[(\lambda x : T. e_1) \to (\lambda x : T. e_2) \]

\[\text{fold } F T e_1 \to \text{fold } F T e_2 \]

\[\text{unfold } F T e_1 \to \text{unfold } F T e_2 \]

\[e \to e_1 \]

\[e \to e_2 \]

\[(\lambda x : T. e_1) \to (\lambda x : T. e_2) \]

\[(\lambda x : T. e_1) \to (\lambda x : T. e_2) \]

\[\text{fold } F T e_1 \to \text{fold } F T e_2 \]

\[\text{unfold } F T e_1 \to \text{unfold } F T e_2 \]
1. \(te(x) = x \)
2. \(te(\lambda x : T. e) = \lambda x. te(e) \)
3. \(te(e_1 e_2) = te(e_1) te(e_2) \)
4. \(te(\Lambda X : K. e) = te(e) \)
5. \(te(e T) = te(e) \)
6. \(te(\text{fold } T_1 T_2 e) = te(e) \)
7. \(te(\text{unfold } T_1 T_2 e) = te(e) \)

Definition 6.2. \(time_{\text{cbv}} e = n \) if and only if \(te(e) \rightarrow^n v \).

Lemma 6.3. If \(\langle \rangle \vdash e : T \), then \(te(\text{unquote } \bar{e}) \implies_s te(e) \).

Theorem 6.4. \(\text{mix} \) is Jones-optimal for \(time_{\text{cbv}} e \) and \(\text{unquote/\tau} \).

6.1 Implementation of \(\text{mix} \)

Our partial evaluator \(\text{mix} \) is implemented in two steps: first, we analyze the program and input for affine variable annotations, then we reduce the annotated term to specialization-safe normal form. Each of these steps is programmed by folds over the representation. To infer affine variable annotations, we do a fold that returns for each subterm 1) a tree data structure that indicates the annotation of each bound variable in the subterm, 2) how many times each free variable occurs, and 3) which free variables occur under a \(\lambda \)-abstraction. Items 2 and 3 are used to determine the annotation of each variable at its binding \(\lambda \)-abstraction. A second fold uses the annotation tree to annotate the term. A third and final fold reduces the annotated term to specialization-safe normal form. This step is based on modification of a Mogensen’s partial evaluator that reduces to \(\beta \)-normal form [Mogensen 1995], which was also used as the basis for a partial evaluator by Carette et al. [Carette et al. 2009]. Our modifications check whether each \(\beta \)-redex is specialization-safe by
inspecting the affine variable annotation of the λ-abstraction and the form of the argument. If it’s a value or an unlimited variable, the β-redex is specialization-safe. If it’s an application or an affine variable, the β-redex is not specialization-safe and is residualized.

Figure 18 shows some highlights of our Jones-optimal partial evaluator. At its core is the function ssnorm, which reduces annotated representations of terms to (unannotated) representations of their specialization-safe normal form. The function sem is a fold that converts an $\text{Exp} \ A$ to a semantic object of type $\text{Sem} \ V \ A$, and reify extracts a representation of the evaluated term from the semantic object. The semantic object is a pair containing the specialization-safe normal form of the term and a helper function. sem traverses the term and creates a semantic object for each subterm. When a subterm occurs in head position of a specialization-safe redex, its helper function is used to compute the reduct.

At the bottom of the figure is mix itself. It first builds e, a representation of the program applied to the input. Then it uses forceExp to check that the input x is available, in which case forceExp returns e to be annotated and normalized. This check is an important optimization for self-application, specifically when specializing mix to a single input. It prevents a blow up in the output code size caused by many copies of the traversal functions from annotate and sem being residualized throughout f.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 14. Publication date: January 2018.
The type \(\text{Sem} \) of semantic objects is shown in Figure 19. It is an iso-recursive intensional type function, combining two features of \(\text{F}^\mu_i \): iso-recursive types and intensional type functions. The type \(\text{Sem} \ V \ A \) is equivalent to \((\text{SemF} \ V) \ A \) and isomorphic (via (un)folding the recursion) to \(\text{SemF} \ (\text{Sem} \ V) \ A \).

There are two variants of semantic object: neutral objects that do not form redexes (specialization-safe or otherwise) when in head-position, and non-neutral objects that do. Neutral objects contain a boolean and a representation. The representation is used to \textit{reify} the semantic object. The boolean is \texttt{true} if that representation is of a term that type-erases to an unlimited variable. If so, then any redex in which this term is in argument position is specialization-safe.

Non-neutral objects form redexes when in head-position. Their first two components are similar to those of neutral objects. The boolean is \texttt{true} if the representation erases to a \(\lambda \)-abstraction. The third component is used to compute the reduct of redexes with this object in head-position. These have types of the form \(\text{SemF}_1 \ (\text{Sem} \ V) \ A \). \text{SemF}_1 \) is an intensional type function that depends on the structure of \(A \):

\[
\text{SemF}_1 \ (\text{Sem} \ V) \ (A \to B) \equiv \text{Pair} \ (\text{Sem} \ V \ A \to \text{Sem} \ V \ B)
\]
\[
\text{SemF}_1 \ (\text{Sem} \ V) \ (\forall X : K. T) \equiv \forall X : K. \ \text{Sem} \ V \ T
\]
\[
\text{SemF}_1 \ (\text{Sem} \ V) \ (F \ A) \equiv \text{Sem} \ V \ (F \ (F) \ A)
\]

A non-neutral semantic object of arrow type is a \(\lambda \)-abstraction. For these, the third component is a pair of boolean and function from semantic objects to semantic objects. The boolean indicates whether the \(\lambda \)-abstraction is affine. When this semantic object is in head position of a redex, the function is applied to the semantic object of the argument to compute the semantic object of the reduct.

If a non-neutral semantic object has a quantified type, then it is a \(\Lambda \)-abstraction. For these, the third component is a polymorphic semantic object. If a non-neutral semantic object has a recursive type, it is for a \texttt{fold} term \texttt{fold} \(F \ A \ e \), and the third component is the semantic object of the unfolded term \(e \).
annotate : (VV:* → *. ∀A : *. Exp A → ExpAnn Bool A)
sem : (VV:* → *. ∀A : *. ExpAnn Bool A → Sem V A)
reify : (VV:* → *. ∀A : *. Sem V A → PExp V A)
forceExp : (VT:* . Exp T → (VA:* . A → A))

decl ssnorm : (VA : *. ExpAnn Bool A → Exp A) =
 ΛA:* . λe : Exp A. ΛV:* → *. reify V A (sem V A e);

decl mix : (VA : *. ∀B : *. Exp (A → B) → Exp A → Exp B)
 = ΛA : *. ΛB:* . λf:Exp (A → B). λx:Exp A.
 let e : Exp B = (ΛV:* → *. app V A B (f V) (x V)) in
 ssnorm B (annotate B (forceExp A x (Exp B) e));

Fig. 18. Highlights of our Jones-optimal partial evaluator mix

decl SemF1 : (* → *) → * → * =
 λSem : * → *. λA:* .
 Typecase
 (λA1:* . λA2:* . Pair Bool (Sem A1 → Sem A2))
 Id Sem
 (λF : (* → *) → * → *. λB : * .
 Sem (F (μ F) B))
 A

;

decl SemF : (* → *) → (* → *) → * → * =
 λV : * → *. λSem : * → *. λA : * .
 Triple Bool (PExp V A) (Maybe (SemF1 Sem A))

;

decl Sem : (* → *) → * → * = λV : * → *. μ (SemF V)

Fig. 19. Internal types of our Jones-optimal partial evaluator.

Figure 20 shows the function semApp, the part of sem that constructs semantic objects for applications. Given semantic objects for a function f and an argument x, semApp first unpacks f and binds the names fValueOrUnlimited, rep_f, and msem to its components. fValueOrUnlimited is not used, rep_f is the representation of the specialization-safe normal form of f, and msem indicates whether f is neutral or non-neutral. If f is neutral, then the application is not a redex and is residualized. Otherwise, the application is a β-redex. To check if it’s specialization-safe, we test whether f’s bound variable is affine, or x is either a value or an unlimited variable. If either case is true, the β-redex is specialization-safe and we reduce. Otherwise, we residualize. Whenever we residualize, we use semNe to construct a semantic object for the (neutral) residual term. The argument false to semNe indicates that result is not a value or an unlimited variable.

6.2 Type-checking the Futamura Projections

Figure 21 shows typed versions of the Futamura projections in the concrete syntax of F_{β}^{mu}. Quotations are denoted using square brackets [−] rather than overlines, and so double-quotations
\begin{align*}
\text{decl } \text{semApp} : (\forall V : \ast \to \ast. \text{Sem } V (B \to A) \to \text{Sem } V B \to \text{Sem } V A) = \\
\Lambda V : \ast \to \ast. \Lambda A : \ast. \Lambda B : \ast. \lambda f : \text{Sem } V (B \to A). \lambda x : \text{Sem } V B.
\end{align*}

\[
\text{unfold \ (SemF } V \) (B \to A) f \\
\quad (\text{Sem } V A) \\
\quad (\lambda f : \text{ValueOrUnlimited } : \text{Bool}. \lambda rep_f : \text{PExp } V (B \to A)). \\
\quad \lambda mSEM : \text{Maybe } (\text{Pair } \text{Bool } (\text{Sem } V B \to \text{Sem } V A)). \\
\quad mSEM (\text{Sem } V A) \\
\quad \quad \text{-- neutral} \\
\quad \quad (\text{semNe } V A \ \text{false } (\text{app } V B A \ \text{rep}_f (\text{reify } V B x))) \\
\quad \quad \text{-- not neutral} \\
\quad \quad (\lambda p : \text{Pair } \text{Bool } (\text{Sem } V B \to \text{Sem } V A). \\
\quad \quad \quad \text{let affine } : \text{Bool } = \text{fst } \text{Bool } (\text{Sem } V B \to \text{Sem } V A) \ \text{p in} \\
\quad \quad \quad \text{let sem}_f : \text{Sem } V B \to \text{Sem } V A = \text{snd } \text{Bool } (\text{Sem } V B \to \text{Sem } V A) \ \text{p in} \\
\quad \quad \quad \text{or affine } (\text{ISValueOrUnlimited } V B x) \\
\quad \quad \quad \text{\text{(Sem } V A) \\
\quad \quad \quad \quad \text{-- redex is specialization-safe: reduce} \\
\quad \quad \quad \quad (\text{sem}_f x) \\
\quad \quad \quad \quad \text{-- redex is not safe: residualize} \\
\quad \quad \quad \quad (\text{semNe } V A \ \text{false } (\text{app } V B A \ \text{rep}_f (\text{reify } V B x)))))
\]

Fig. 20. A key function from \text{sem}.

are denoted using nested square brackets [[-]] rather than stacked overlines \(\overline{-}\). The first projection compiles the factorial function \text{fact} by specializing the self-interpreter \text{unquote} to it. The second projection generates a compiler by specializing \text{mix} to \text{unquote}. The third projection generates a compiler-generator by specializing \text{mix} to itself. The fourth projection generates the self-generating compiler-generator. It is also obtained by specializing \text{mix} to itself, but at different types.

This is the first time the Futamura projections have been type-checked for a partial evaluator that operates on typed representations. One consequence of this is that we can clearly see what the types of generated programs are. In particular, the type of each generated program is determined by the type of its representation.

The compiled factorial function \text{fact_compiled} has the expected type \text{Nat} \to \text{Nat}. The generated compiler compile has the polymorphic type \(\forall A : \ast. \text{Exp } (\text{Exp } A) \to \text{Exp } A\). It compiles programs by mapping double representations to representations (like the First futamura projection does). The generated compiler generator cogen has the polymorphic type

\[
\forall A : \ast. \forall B : \ast. \text{Exp } (\text{Exp } (A \to B)) \to \text{Exp } (\text{Exp } A \to \text{Exp } B).
\]

If we instantiate \text{A} to \text{Exp C} and \text{B} to \text{C}, we can derive the type:

\[
\forall C : \ast. \text{Exp } (\text{Exp } (\text{Exp } C \to C)) \to \text{Exp } (\text{Exp } (\text{Exp } C) \to \text{Exp } C).
\]

Then we can apply cogen to the (double) representation of a self-interpreter like \text{unquote} and generate a compiler. The self-generating compiler generator \text{selfgen} has the polymorphic type:

\[
\forall A : \ast. \forall B : \ast. \\
\quad \text{Exp } (\text{Exp } (\text{Exp } (A \to B) \to \text{Exp } A \to \text{Exp } B)) \to \\
\quad \text{Exp } (\text{Exp } (\text{Exp } (A \to B)) \to \text{Exp } (\text{Exp } A \to \text{Exp } B))
\]

We can apply \text{selfgen} to the (double) representation of \text{mix}, and generate \text{cogen} again.
\textbf{7 EXPERIMENTAL RESULTS}

We implemented F_{ω}^{μ} in Haskell, including a parser, a type checker, a β-equivalence checker, and three different \textit{time} measures. We tested that our partial evaluator type checks and the Futamura projections type check with the types given in Figure 21. We used our β-equivalence checker to verify that the Futamura projections meet their specification. In addition to formally proving that our partial evaluator is Jones-optimal for call-by-value reduction, our experiments demonstrate Jones-optimality for call-by-value, normal-order, and memoized normal-order reduction. We also demonstrate that specialization by β-normalization is Jones-optimal for normal-order reduction, but not for call-by-value or memoized normal-order.

\textit{Reduction strategies.} We measure call-by-value steps to a value, and normal-order and memoized normal-order steps to a β-normal form. Normal-order reduction is related to call-by-name reduction, but evaluates to a β-normal form instead of a value. Counting call-by-name reduction steps to a value is not a useful measure, because many of our benchmark programs reduce to a value in only a few steps of call-by-name reduction, obscuring the effect of specialization on the

\begin{verbatim}
dcl fact_compiled : Exp (Nat \to Nat) = mix (Exp (Nat \to Nat)) (Nat \to Nat) [unquote (Nat \to Nat)]

[\[fact\]]

dcl compile : \forall A:. Exp (Exp (Exp A) \to Exp A) = \Lambda A:. mix (Exp (Exp A \to A)) (Exp (Exp A) \to Exp A)
[mix (Exp A) A]
[[unquote A]]

dcl cogen : (\forall A:. \forall B:. Exp (Exp (Exp (A \to B)) \to Exp (Exp A \to Exp B))) = \Lambda A:. \Lambda B:. mix (Exp (Exp (Exp (A \to B)) \to Exp A \to Exp B))
[[mix A B]]

dcl selfgen : (\forall A:. \forall B:. Exp (Exp (Exp (Exp (A \to B)) \to Exp A \to Exp B)) \to
Exp (Exp (Exp (A \to B)) \to Exp A \to Exp B))) = \Lambda A:. \Lambda B:. mix (Exp (Exp (Exp (A \to B)) \to Exp A \to Exp B))
[[mix (Exp (A \to B)) (Exp A \to Exp B)]]

Fig. 21. The four typed Futamura projections
\end{verbatim}
Table 2. Average interpretational overhead of our self-interpreters

Interpreter	Time	Slowdown	Overhead
Tagless-final PHOAS	Call-by-value	10.0	900%
	Normal order	10.9	990%
	Memoized normal order	9.9	890%
Mogensen-Scott PHOAS	Call-by-value	105.3	10430%
	Normal order	136.5	13550%
	Memoized normal order	68.8	6780%
Tagless-final deBruijn	Call-by-value	24.4	2340%
	Normal order	118.3	11730%
	Memoized normal order	24.8	2380%

run time. Memoized normal-order reduction is similarly related to call-by-need (lazy) reduction. It reduces a β-redex without first reducing its parameter; parameters are only reduced if and when they need to be. When a parameter is reduced to a value, the value is saved in case it is needed again later. We do not memoize the β-normal form of parameters, so as we normalize a term, the work to normalize each parameter’s value could be repeated.

Definition 7.1. $\text{time}_{\text{no}}^e(e) = n$ if $te(e)$ normalizes in n steps of normal-order reduction.

Definition 7.2. $\text{time}_{\text{mno}}^e(e) = n$ if $te(e)$ normalizes in n steps of memoized normal-order reduction.

Self-interpreters. We experiment with three typed self-interpreters for $\text{F}_{\mu\omega}$ – essentially typed versions of the untyped λ-calculus self-interpreters in Figures 4, 12, and 13. Each of these interpreters has a different amount of interpretational overhead, which also depends on which time function is used. We measured the mean interpretational slowdown and overhead for the cube, factorial, and Ackermann functions on a range inputs. The tagless-final PHOAS interpreter is the most efficient, with an interpretational overhead of around 900% – corresponding to a 10X slowdown – for each evaluation strategy. The Mogensen-Scott PHOAS interpreter is the least efficient, with an overhead of from 6780% for memoized normal order and 13550% for normal order. The tagless-final deBruijn interpreter is in between, with an overhead of from 2340% for call-by-value and 11730% for normal order.

Jones-optimality. Our partial evaluator is Jones-optimal for all 9 combinations of our three self-interpreters and three evaluation strategies. Table 3 gives a summary of our Jones optimality tests for our three $\text{F}_{\mu\omega}$ self-interpreters and three evaluation strategies. Each row aggregates the result of a set of benchmarks comparing the time cost of each subject program with the specialization of the self-interpreter to that program. Again, we use the cube, factorial, and Ackermann functions for our subject programs, and we test with a range of inputs for each. A speedup of 1.00 indicates that the subject program runs in exactly the same amount of time as the specialization. This usually happens when the two programs are exactly the same; when specialization removes all the interpretational overhead and does nothing else, recovering the original program. A speedup greater than 1 indicates that the specialized program is faster than the original, and a speedup less than 1 indicates a slowdown. The table demonstrates that our partial evaluator is Jones-optimal for each combination: in each case, the minimum speedup is 1. It also shows that we can sometimes achieve speedups beyond removing interpretational overhead – up to approximately 1.5X for our benchmarks.
Table 3. Summary of Jones Optimality Tests

Interpreter	Time	Min Speedup	Mean Speedup	Max Speedup
Tagless-final PHOAS	Call-by-value	1.00	1.06	1.36
	Normal order	1.00	1.14	1.41
	Memoized normal order	1.00	1.06	1.33
Mogensen-Scott PHOAS	Call-by-value	1.00	1.14	1.50
	Normal order	1.00	1.34	1.54
	Memoized normal order	1.00	1.12	1.46
Tagless-final deBruijn	Call-by-value	1.00	1.16	1.50
	Normal order	1.00	1.35	1.54
	Memoized normal order	1.00	1.44	1.46

Table 4. Demonstration of Non-Optimality of Specialization by β-Normalization

Interpreter	Time	Min Speedup	Mean Speedup	Max Speedup
Tagless-final PHOAS	Call-by-value	0.03	0.74	1.89
	Normal order	1.00	1.55	1.92
	Memoized normal order	0.11	0.80	1.80
Mogensen-Scott PHOAS	Call-by-value	0.03	0.74	1.89
	Normal order	1.00	1.55	1.92
	Memoized normal order	0.11	0.80	1.80
Tagless-final deBruijn	Call-by-value	0.06	0.83	1.89
	Normal order	1.00	1.53	1.92
	Memoized normal order	0.17	0.89	1.80

Table 5. Summary of Second Futamura Projection Tests

Interpreter	Reduction	Min Speedup	Mean Speedup	Max Speedup
Tagless-final PHOAS	Call-by-value	1.27	1.29	1.29
	Normal order	1.35	1.37	1.39
	Memoized normal order	1.26	1.27	1.27
Mogensen-Scott PHOAS	Call-by-value	1.07	1.08	1.09
	Normal order	1.29	1.30	1.30
	Memoized normal order	1.10	1.12	1.12
Tagless-final deBruijn	Call-by-value	1.32	1.33	1.34
	Normal order	1.38	1.39	1.39
	Memoized normal order	1.27	1.27	1.28

As a point of contrast, Table 4 shows the results of the same Jones-optimality tests for a specialization by normalization partial evaluator for \mathcal{F}^μ_0. The table demonstrates that specialization by β-normalization is only Jones optimal for normal order reduction, in which the value of a variable is always recomputed for each reference. Therefore, all β-reductions are specialization-safe for normal order reduction. Specialization by β-normalization can cause significant slowdowns for call-by-value or memoized normal order reduction – the 0.03X speedup for call-by-value corresponds to a 33X slowdown – the original program runs 33X faster than the specialized one.

Futamura Projections. The Jones optimality benchmarks in Table 3 show the speedups obtained by the first Futamura projection. We also measure the speedups produced by the second Futamura
projection, which are listed in Table 5. For each self-interpreter and each time function, we use the second Futamura projection to generate a compiler, and compare its running time with that of the first Futamura projection. We compile each of the cube, factorial, and Ackermann functions.

We measure the speedup obtained by the third Futamura projection by comparing the time to generate compilers using cogen versus the second Futamura projection. For each evaluation strategy, we generate compilers using each of our self-interpreters. The results are summarized in Table 6.

We measure the speedup obtained by the fourth Futamura projection by comparing the time to generate a compiler generator using selfgen versus the third Futamura projection. The speedups are shown in Table 7.

8 RELATED WORK

The following table compares our work with five classical papers in the three main dimensions that we consider. After the table, we give a discussion of a variety of related work.

Original mix [Jones et al. 1985]	Typed representation	Futamura projections	Jones optimality
Lambda-mix [Gomard and Jones 1991]	✓	✓	✓
Similix [Bondorf and Danvy 1991]	✓	✓	✓
Schism [Consel 1993]	✓	✓	✓
TDPE [Danvy 1996]	✓	✓	✓
This paper	✓	✓	✓

Typed representation. We were inspired by the considerable body of work on typed self-representation and self-interpretation. The classical approach to meta-programming in a statically-typed language is to use a single universal type for all program representations. This incurs a tagging overhead and allows type errors in generated code. On the other hand, typed representation can eliminate tags and ensure that only well-typed programs can be represented. Further, it can provide strong correctness properties for meta-programs just by type checking them. For example, the type of our partial evaluator ensures that it always generates well-typed code of the correct type. At the core of this line of work is the challenge to define a typed self-representation. In their seminal paper, Pfenning and Lee [1991] showed how to represent System F in Fω, and how to represent Fω in Fω+ω, but fell short of a self-representation. Rendel et al. [2009] and Jay and Palsberg [2011] presented the first typed self-representations, for two calculi with undecidable type
checking. Brown and Palsberg [2015, 2016] defined typed self-representations for two calculi with
decidable type checking, the latter of which is also strongly normalizing.

Most closely related to this work is our previous work [Brown and Palsberg 2017] that defined
typed self-representations and three typed self-evaluators. Each of those self-evaluators imple-
ments a particular evaluation strategy for the calculus itself. The key insight in that paper was
a way to encode type equality proofs for a GADT-style self-representation. In this paper, we use
the same language and some of the representation techniques first presented there, but we use a
tagless-final self-representation instead of the GADT-style encoding, which is important for en-
abling our partial evaluator to generate the Futamura projections.

Futamura Projections. A variety of partial evaluators for untyped languages have enabled the
three classical Futamura projections including the original mix [Jones et al. 1983], Lambda-mix
[Gomard and Jones 1991], Schism [Consel 1993], and Similix [Bondorf and Danvy 1991]. Glück
[1999, 2009] popularized the fourth Futamura projection and showed how to achieve it. Launch-
bury [1991] described a partial evaluator for LML, which operates on a universally typed represen-
tation and supports the first and second Futamura projections. Danvy [1996] presented type-
directed partial evaluation for a simply-typed language and showed how it enables the first and
second Futamura projections.

Carette et al. [2009] implemented a typed partial evaluator that operated on a typed tagless-
final representation. Their object language was the simply-typed λ-calculus extended with inte-
gers, booleans, and a fixpoint operator, and their meta-languages was MetaOCaml. Their partial
evaluator could not generate the Futamura projections and was not Jones-optimal.

Our partial evaluator is the first that operates on a typed representation and can be self-applied.
Typed representation ensures that the partial evaluator always generates well-typed code of the
correct type. This is a strong correctness properties guaranteed just by type checking.

Jones Optimality. Similix [Bondorf and Danvy 1991] achieved Jones optimality for an untyped
language. Makholm [2000] discussed the challenges for Jones optimality for simply-typed lan-
guages when the partial evaluator relies on a universal type for all program representations. Later,
Taha et al. [2001], and also Danvy and López [2003], achieved Jones optimality for simply-typed
languages. Gluck [2002, 2008] discussed the effect of semantics-preserving program transforma-
tions ahead of partial evaluation. He showed that such transformations can enable a Jones optimal
offline partial evaluator to achieve the effect of an online partial evaluator.

Some papers [Barker et al. 2007; Feigin and Mycroft 2008; Gade and Gluck 2006; Makholm 2000]
work with first-order languages and define Jones optimality via the time-based comparison that
we state in Definition 2.2. Other papers [Danvy and López 2003; Skalberg 1999; Taha et al. 2001]
work with higher-order functional languages and define Jones Optimality by checking that the spe-
cialization of the self-interpreter to a program produces the program itself (up to α-equivalence).
This rules out the possibility that specialization could cause a slowdown, but also rules out the
possibility of a speedup.

Our proof of Jones optimality is similar in spirit to previous proofs [Gade and Gluck 2006; Gom-
ard and Jones 1991]. In particular, we make similar assumptions in choosing steps of call-by-value
reduction as a measure of time – that all reductions have an equal cost, and that other factors
such as program size do not affect running time. The key to our proof of Jones optimality is the
specialization-safety of specialization-safe reduction. We prove this by reorderig a sequence of
specialization-safe steps followed by call-by-value steps to align with a sequence of only call-by-
value steps. This reordering can only add steps, and the pure call-by-value sequence establishes
a maximum number of steps. This technique is inspired by a proof by Alex Simpson about linear
λ-calculus [Simpson 2005].
Terminating Partial Evaluation. Asai et al. [2014] proved various correctness properties of a partial evaluator, including termination. The partial evaluator is implemented in a language that is more expressive that the language being partially evaluated, so self-application is impossible. Our work differs in that we do achieve self-application while we use experiments to demonstrate termination for important cases.

Other Related Work. Bondorf and Dussart [1994], Birkedal and Welinder [1994], and Thiemann [1996] have shown how to write strikingly simple compiler generators by hand for untyped or simply-typed languages. This is a major alternative to the use of a partial evaluator to produce a compiler generator via the third Futamura projection. However, the task to write a polymorphically-typed compiler generator by hand is significantly harder. It is an open question whether one can write a polymorphically-typed compiler generator by hand that is simpler than the one we have generated automatically.

Researchers have developed techniques for proving the semantic correctness of partial evaluation, including the recent paper by Hirota and Asai [2014]. Shali and Cook [2011] described a simply-typed partial evaluator for Java, which enables the first Futamura projection. Brady and Hammond [2010] described a partial evaluator for a dependently typed language that enables the first Futamura projection. It is an open question whether those approaches can be extended to enable the other Futamura projections.

Feigin and Mycroft [2008] showed that a version of Jones optimality coincides with a known criterion for efficient virtualization. Barker, Leuschel, and Varea showed how to build a Jones optimal partial evaluator for an untyped logic programming language [Barker et al. 2007].

9 CONCLUSION

In this work we presented the first self-applicable partial evaluator that operates on typed representations, generates the Futamura projections, and is Jones optimal. Operating on typed representations avoids tagging overhead and guarantees that it produces type-correct code. We use a novel approach to a partial-evaluator that focuses on specialization-safe β-reduction that is guaranteed never to cause a slowdown at runtime. We prove that our partial evaluator is Jones optimal for one self-interpreter and a measure of running time that counts steps of call-by-value reduction. Our experiments demonstrate that it is also Jones optimal for two other self-interpreters and time measures based on normal-order and memoized normal-order reduction.

Our results open new challenges for future work, including extending specialization-safe reduction to higher-level languages with efficient base types and user-defined types, and going beyond β-reduction to include more complex specialization-safe transformations. Another direction is to explore a complex affine variable analysis, which might lead to a better partial evaluator. Our affine analysis is sufficient to achieve Jones optimality and also simple enough to enable the Futamura projections. In particular, it can be implemented without a fixpoint combinator, which helps make our partial evaluator strongly-normalizing so the Futamura projections terminate.

One limitation of our partial evaluator is that specialization doesn’t always terminate. Also, that our partial evaluator is Jones-optimal does not imply that its speedups are maximal. We leave for future work the challenge to implement a typed self-applicable and Jones-optimal partial evaluator that terminates on all inputs, and the question of identifying more powerful specialization-safe reduction relations that can be used to define a typed self-applicable and Jones-optimal partial evaluator with greater speedups.
ACKNOWLEDGMENTS

We thank Nada Amin, Jacques Carette, William Cook, Olivier Danvy, Danko Ilik, Neil Jones, Oleg Kiselyov, Philip Wadler, and the POPL reviewers for helpful discussions and suggestions. This material is based upon work supported by the National Science Foundation under Grant Number 1219240.

REFERENCES

Lars Ole Andersen. Self-applicable C program specialization. In Proceedings of PEPM ’92, Workshop on Partial Evaluation and Semantics-Based Program Manipulation, pages 54–61, June 1992. (Technical Report YALEU/DCS/RR-909, Yale University).

Kenichi Asai, Luminous Fennell, Peter Thiemann, and Yang Zhang. A type theoretic specification of partial evaluation. In PPDP’14 Proceedings of the 16th International Symposium on Principles and Practice of Declarative Programming, pages 57–68, 2014.

Steve Barker, Michael Leuschel, and Mauricio Varea. Efficient and flexible access control via Jones-optimal logic program specialisation. Higher-Order and Symbolic Computation, pages 3–35, 2007.

Lars Birkedal and Morten Welinder. Hand-writing program generator generators. In Programming Language Implementation and Logic Programming, pages 198–214, 1994.

Anders Bondorf and Olivier Danvy. Automatic autoprojection of recursive equations with global variables and abstract data types. Science of Computer Programming, 16:151–195, 1991.

Anders Bondorf and Dirk Dussart. Improving CPS-based partial evaluation: Writing cogen by hand. In Proceedings of ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation, pages 1–10, 1994.

Edwin C. Brady and Kevin Hammond. Scrapping your inefficient engine: Using partial evaluation to improve domain-specific language implementation. In Proceedings of ICFP ’10, ACM SIGPLAN International Conference on Functional Programming, 2010.

Matt Brown and Jens Palsberg. Self-Representation in Girard’s System U. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’15, pages 471–484, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3000-9. doi: 10.1145/2676726.2676988. URL http://doi.acm.org/10.1145/2676726.2676988.

Matt Brown and Jens Palsberg. Breaking through the normalization barrier: A self-interpreter for f-omega. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, pages 5–17, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3549-2. doi: 10.1145/2837614.2837623. URL http://doi.acm.org/10.1145/2837614.2837623.

Matt Brown and Jens Palsberg. Typed self-evaluation via intensional type functions. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, pages 415–428, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4660-3. doi: 10.1145/3009837.3009853. URL http://doi.acm.org/10.1145/3009837.3009853.

Matt Brown and Jens Palsberg. Webpage accompanying this paper. The webpage accompanying this paper is available at http://compilers.cs.ucla.edu/popl18/. The full paper with the appendix is available there, as is the source code for our implementation of System F\(_{\omega}\)\(^{\mu}\) and its self-interpreters and partial evaluator, 2018.

Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally tagless, partially evaluated: Tagless staged interpreters for simpler typed languages. Journal of Functional Programming, 19(5):509–543, 2009.

Adam Chlipala. Parametric higher-order abstract syntax for mechanized semantics. In Proceedings of the 13th ACM SIGPLAN International Conference on Functional Programming, ICFP ’08, pages 143–156, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-919-7. doi: 10.1145/1411204.1411226. URL http://doi.acm.org/10.1145/1411204.1411226.

Charles Consel. A tour of Schism: A partial evaluation system for higher-order applicative languages. In Proceedings of PEPM ’93, Second ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation, pages 145–154, 1993.

Olivier Danvy. Type-directed partial evaluation. In Proceedings of POPL’96, 23rd Annual SIGPLAN–SIGACT Symposium on Principles of Programming Languages, pages 242–257, 1996.

Olivier Danvy and Pablo E. Martínez López. Tagging, encoding, and Jones optimality. In Proceedings of ESOP’03, European Symposium on Programming, pages 335–347. Springer-Verlag (LNCS), 2003.

Boris Feigin and Alan Mycroft. Jones optimality and hardware virtualization: a report on work in progress. In PEP, pages 169–175, 2008.

Yoshihiko Futamura. Evaluation of computation process—an approach to a compiler-compiler. Higher-Order and Symbolic Computation, 12:381–391, 1999. First published in 1971 in System.Computers.Controls, Volume 2, Number 5, pages 45–50.
Johan Gade and Robert Glück. On Jones-optimal specializers: A case study using unmix. In *Proceedings of APLAS ’06, Asian Symposium on Programming Languages and Systems*, pages 406–422. Springer-Verlag (LNCS 4279), 2006.

Robert Glück. Is there a fourth Futamura projection? In *Proceedings of PEPM ’99, Workshop on Partial Evaluation and Semantics-Based Program Manipulation*, pages 51–60, 1999.

Robert Glück. Jones optimality, binding-time improvements, and the strength of program specializers. In *ASIA-PEPM*, pages 9–19, 2002.

Robert Glück. An investigation of Jones optimality and bti-universal specializers. *Higher-Order and Symbolic Computation*, 21(3):283–309, 2008.

Robert Glück. An experiment with the fourth Futamura projection. In *Ershov Memorial Conference*, pages 135–150, 2009.

Robert Glück. Is there a fourth futamura projection? In *Proceedings of the 2009 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation*, PEPM ’09, pages 51–60, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-327-3. doi: 10.1145/1480945.1480954. URL http://doi.acm.org/10.1145/1480945.1480954.

Carsten K. Gomard and Neil D. Jones. A partial evaluator for the untyped lambda-calculus. *Journal of Functional Programming*, 1(1):21–69, 1991.

Noriko Hirota and Kenichi Asai. Formalizing a correctness property of a type-directed partial evaluator. In *PLPV ’14 Proceedings of the ACM SIGPLAN 2014 Workshop on Programming Languages meets Program Verification*, pages 41–46, 2014.

Barry Jay and Jens Palsberg. Typed self-interpretaion by pattern matching. In *Proceedings of ICFP ’11, ACM SIGPLAN International Conference on Functional Programming*, pages 247–258, Tokyo, September 2011.

Neil D. Jones, Peter Sestoft, and Harald Søndergaard. An experiment in partial evaluation: The generation of a compiler generator. In J.-P. Jouannaud, editor, *Proceedings of Rewriting Techniques and Applications*, pages 225–282. Springer-Verlag (LNCS 202), 1985.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. *Partial Evaluation and Automatic Program Generation*. Prentice-Hall International, 1993.

Oleg Kiselyov. Typed Tagless Final Interpreters, pages 130–174. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-32202-0. doi: 10.1007/978-3-642-32202-0_3. URL http://dx.doi.org/10.1007/978-3-642-32202-0_3.

John Launchbury. A strongly-typed self-applicable partial evaluator. In *Proceedings of FP’91, Sixth ACM Conference on Functional Programming Languages and Computer Architecture*, pages 145–164, 1991.

Henning Makholm. On Jones-optimal specialization for strongly typed languages. In *SAIG*, pages 129–148, 2000.

Torben Å. Mogensen. Efficient self-interpretaions in lambda calculus. *Journal of Functional Programming*, 2(3):345–363, 1992. See also DIKU Report D–128, Sep 2, 1994.

Torben Å. Mogensen. Self-applicable online partial evaluation of the pure lambda calculus. In *Proceedings of the 1995 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manipulation*, PEPM ’95, pages 39–44, New York, NY, USA, 1995. ACM. ISBN 0-89791-720-0. doi: 10.1145/215465.215469. URL http://doi.acm.org/10.1145/215465.215469.

Tobias Nipkow. Lambda calculus. https://www21.in.tum.de/teaching/logik/SS13/lambda-en.pdf, (accessed July 7, 2017), August 2, 2012.

Frank Pfenning and Peter Lee. Metacircularity in the polymorphic λ-calculus. *Theoretical Computer Science*, 89(1):137–159, 1991.

Tillmann Rendel, Klaus Ostermann, and Christian Hofer. Typed self-representation. In *Proceedings of PLDI ’09, ACM SIGPLAN Conference on Programming Language Design and Implementation*, pages 293–303, June 2009.

Amin Shali and William Cook. Hybrid partial evaluation. In *Proceedings of OOPSLA’11, ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications*, pages 375–390, 2011.

Alex Simpson. Reduction in a linear lambda-calculus with applications to operational semantics. In *Proceedings of the 16th International Conference on Term Rewriting and Applications, RTA’05*, pages 219–234, Berlin, Heidelberg, 2005. Springer-Verlag. ISBN 3-540-25596-6, 978-3-540-25596-3. doi: 10.1007/978-3-540-32033-3_17. URL http://dx.doi.org/10.1007/978-3-540-32033-3_17.

Sebastian Skalberg. Mechanical proof of the optimality of a partial evaluator. M.S. Thesis; DIKU, University of Copenhagen, 1999.

Walid Taha, Henning Makholm, and John Hughes. Tag elimination and Jones-optimality. In *Proceedings of PADO’01, Programs as Data Objects, Second Symposium*, pages 257–275, 2001.

Peter Thiemann. Cogen in six lines. In *Proceedings of ICFP ’96, ACM International Conference on Functional Programming*, pages 180–189, 1996.

Geoffrey Washburn and Stephanie Weirich. Boxes go bananas: Encoding higher-order abstract syntax with parametric polymorphism. In *Proceedings of the Eighth ACM SIGPLAN International Conference on Functional Programming*, ICFP ’03, pages 249–262, New York, NY, USA, 2003. ACM. ISBN 1-58113-756-7. doi: 10.1145/944705.944728. URL http://doi.acm.org/10.1145/944705.944728.