ZZ Polynomials for Isomers of (5,6)-Fullerenes C_n with $n = 20–50$

Henryk A. Witek 1,2,* and Jin-Su Kang 3

1 Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300092, Taiwan
2 Center for Emergent Functional Matter Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 300092, Taiwan
3 Institute of Business and Management, National Chiao Tung University, 118, Sec. 1, Chung-Hsiao W. Rd., Taipei City 100-44, Taiwan; jinsu.kang@g2.nctu.edu.tw
* Correspondence: hwitek@mail.nctu.edu.tw

Received: 31 July 2020; Accepted: 2 September 2020; Published: 9 September 2020

Abstract: A compilation of ZZ polynomials (aka Zhang–Zhang polynomials or Clar covering polynomials) for all isomers of small (5,6)-fullerenes C_n with $n = 20–50$ is presented. The ZZ polynomials concisely summarize the most important topological invariants of the fullerene isomers: the number of Kekulé structures K, the Clar number Cl, the first Herndon number h_1, the total number of Clar covers C, and the number of Clar structures. The presented results should be useful as benchmark data for designing algorithms and computer programs aiming at topological analysis of fullerenes and at generation of resonance structures for valence-bond quantum-chemical calculations.

Keywords: fullerene isomers; ZZ polynomials; Clar covers; Clar covering polynomials; Kekulé counts and Clar numbers of fullerenes

1. Introduction

A (5,6)-fullerene is a polyhedral carbon cage with n carbon atoms arranged in 12 pentagonal and $\frac{2n}{3} - 10$ hexagonal faces [1]. The smallest (5,6)-fullerene consists of 20 carbon atoms and contains only pentagonal faces. The next smallest (5,6)-fullerenes are C_{24} and C_{26}, both possessing only a single isomer of point group symmetry D_{6d} and D_{3d}, respectively. All higher (5,6)-fullerenes C_n with $n \leq 28$ possess multiple isomers of various symmetry. The problem of generating all these isomers was solved first by introducing the ring spiral algorithm [2,3], valid for all the isomers of the (5,6)-fullerenes C_n up to at least $n = 200$ [4], and later by the top-down approach of Brinkmann and Dress [5,6], valid in general cases. An invaluable compendium of useful information about all the isomers of (5,6)-fullerenes C_n with $n = 20–50$ and so-called isolated pentagon rule (IPR) isomers of C_n with $n = 60–100$ was compiled by Fowler and Manolopoulos in a form of a fullerene atlas [3], where the definition of each isomer is given as a sequence of 12 numbers denoting the positions of pentagons in the ring spiral. We follow the isomer labeling convention introduced by Fowler and Manolopoulos [3] also in the current work. Molecular structures in a XYZ format of all the isomers appearing in the Fowler and Manolopoulos atlas can be downloaded from “Fullerene Structure Library” [7]. (The reader should be warned that, for some mysterious reasons, geometries for the following pairs of isomers: (170,196) of C_{48} and (44,178), (157,211), (27,59), and (115,170) of C_{50} are switched in this library.) The remaining isomers can be conveniently generated using Fullerene, a program for the topological analysis of fullerenes written by Schwerdtfeger, Wirz, and Avery [8]. A compendium of various physical and chemical properties for (5,6)-fullerene isomers of C_n with $n = 20–42$ were compiled previously by Malolepsza and collaborators [9,10], but this effort was discontinued once it was realized that for
larger fullerene cages the differences between the studied properties are going to be minuscule, as they correlate mainly with local curvature of the fullerene cage rather than with the global topology of the carbon–carbon adjacency graph [11]. A wide-scope review summarizing many aspects of fullerene topology relevant in the context of the current report was given recently by Schwerdtfeger, Wirz, and Avery [12].

Various topological invariants of fullerene graphs received considerable attention in the literature [13–54]. Most studies focused on the determination of the Clar number of fullerenes and on the computation of their number of Kekulé structures. Clearly, such a scope was motivated by practical considerations. Soon after the experimental discovery of C\(_{60}\), it was hypothesized [55] that the pronounced stability of the \(I_h\) isomer of C\(_{60}\) could be explained by a very large number of Kekulé structures that can be constructed for that isomer. This hypothesis was soon disproved, when Austin and collaborators discovered [1] that there exist 20 isomers of C\(_{60}\) surpassing the count of 12,500 Kekulé structures for icosahedral C\(_{60}\) (it might be relevant to mention here that only 158 of these Kekulé structures are symmetry distinct, i.e., not related by any \(I_h\) point group symmetry operation [18]) and demonstrated the lack of obvious correlation between the raw Kekulé number \(K\) and other, quantum-chemical descriptors of its pronounced stability. We mention in passing that the isomer of C\(_{60}\) with maximal \(K\) has 16,501 Kekulé structures, which is considerably larger (by some 30%) than for the \(I_h\) isomer. Interestingly, a recent accurate study of the thermodynamic stability for the isomers of C\(_{60}\) shows that the vast majority of the isomers with \(K > 12,500\) belong to the most thermodynamically unstable isomers of C\(_{60}\) [48]. Only relatively recently was it understood that the correct perspective comes not only from looking at the number of Kekulé structures, but also at their Clar numbers, i.e., the maximal number of aromatic Clar sextets [56] that can be accommodated by the fullerene graph. Zhang and collaborators demonstrated [57] that the icosahedral C\(_{60}\) indeed has the highest Kekulé count among the isomers of C\(_{60}\) with the largest Clar number, \(Cl = 8\). There exists 18 of such isomers and the second highest Kekulé count among them is 11,259, about 10% lower than for the \(I_h\) isomer. One should not, however, overemphasize this results, as most likely the pronounced stability of the icosahedral C\(_{60}\) has not only thermodynamic but also kinetic provenance [58].

It would be also interesting to correlate topological indices of fullerene isomers with their thermodynamic stabilities for fullerenes other than C\(_{60}\). The main problem for such a manifesto is the lack of data allowing for such comparisons. The main motivation for the current study is filling this gap by compiling a collection of topological indices for all the isomers of small (5,6)-fullerenes with \(n \leq 50\). The current work can be considered as an extention of the tabulation of matching polynomials given by Balasubramanian [14]. We would be happy to extend this compilation also to larger fullerenes (particularly to the isomers of C\(_{60}\), which occupy a pronounced position in practical considerations), but the spatial extent of such a tabulation would exceed any sensible length advisable for a scientific paper. The topological indices are given in the form of ZZ polynomials. This choice is rather clear, as ZZ polynomials are probably the most concise and robust form of presenting such invariants available in the literature, containing information about the number of Kekulé structures \(K\), the Clar number \(Cl\), the first Herndon number \(h_1\), the total number of Clar covers \(C\), and the number of Clar structures for each of the isomers, in addition to the number of Clar covers of each order. Detailed information about ZZ polynomials, their structure, and their way of determination are given in the next section.

2. ZZ Polynomials

ZZ polynomials (aka Zhang–Zhang polynomials or Clar covering polynomials) were introduced to the field of chemical graph theory about 25 years ago by two Chinese mathematicians, Fuji Zhang, and Heping Zhang [59–62]. Formally speaking, a ZZ polynomial \(ZZ(B, x)\) of some benzenoid structure \(B\) is a generating function for the sequence of the numbers of Clar covers of \(B\) of each order. Since this definition is not widely known among chemists, let us introduce here the concept of a ZZ polynomial on a simple example of benzo[e]pyrene. Figure 1 shows (in black) the molecular
structure of benzo[e]pyrene together with the entire collection of Clar covers (in gray) that can be constructed for this molecule. A Clar cover is a generalized resonance structure, in which the tetravalent character of each carbon atom has been satisfied by distributing a certain number (say m) of double bonds and a certain number (say k) of aromatic Clar sextets. Since each double bond involves two carbon atoms and each aromatic sextets involves six carbon atoms, and since each carbon atom can be involved in only one of those structures, we have a natural connection between the number n of carbon atoms in B and the non-negative integers m and k, given by $2m + 6k = n$. This condition shows that $0 \leq k \leq \left\lfloor \frac{n}{6} \right\rfloor$ and that $m = \frac{n}{2} - 3k$. It often happens in benzenoid hydrocarbons that the natural upper bound for k given by $\left\lfloor \frac{n}{6} \right\rfloor$ is not achieved, as it is not possible to arrange the double bonds in a way that is compatible with $\left\lfloor \frac{n}{6} \right\rfloor$ aromatic sextets. Benzo[e]pyrene consists of $n = 20$ carbon atoms and the number of aromatic sextets that can be accommodated in this molecule is $0 \leq k \leq 3$. All of these possibilities are realized. Figure 1 shows that there exists exactly one Clar cover (usually referred to as the Clar structure or Clar formula) of benzo[e]pyrene with $k = 3$ aromatic sextets (depicted in a blue frame in Figure 1). Therefore, the Clar number Cl of this molecule is 3. Similarly, we can construct seven distinct Clar covers of order 2 (in the green frame in Figure 1), each of them comprising two aromatic sextets and four double bonds. The corresponding numbers of distinct Clar covers of order 1 and 0 are 16 and 11, respectively. Clearly, the Clar covers of order 0 (in the orange frame in Figure 1) are simply the Kekulé structures of benzo[e]pyrene. Denoting by c_i the number of Clar covers of order i, we obtain the following sequence of numbers of Clar covers $[c_0, c_1, c_2, c_3] = [11, 16, 7, 1]$ for benzo[e]pyrene, which most conveniently can be given in a form of generating function, referred to as the ZZ polynomial of benzo[e]pyrene

$$ZZ(benzo[e]pyrene, x) = \sum_{i=0}^{Cl} c_i x^i = 11 + 16x + 7x^2 + x^3$$

Figure 1. 35 Clar covers can be constructed in total for benzo[e]pyrene: 11 of order 0 (orange), 16 of order 1 (purple), 7 of order 2, and 1 of order 3 (blue). These numbers can be conveniently represented in the form of a combinatorial polynomial usually referred to as a ZZ polynomial, $ZZ(benzo[e]pyrene, x)$.

The most attractive feature of ZZ polynomials is the robustness with which they can be determined. Computing a single coefficient in the ZZ polynomial or determination of the Clar number of a given benzenoid is a computationally complex problem. However, determination of the entire ZZ polynomial
is much simpler owing to the convenient recursive properties it obeys. Zhang and Zhang in the original paper [59] derived a number of decompositions (see Theorems 3–6 of [59]) allowing for computing the ZZ polynomial of a given benzenoid B as a weighted sum of its substructures. Building on this principle, it is possible to design a recursive algorithm, which performs such a decomposition multiple number of times and computes the final ZZ polynomials from the ZZ polynomials of the nodes of the recursive decomposition tree. Such an algorithm was first proposed by Gutman and collaborators [64] and the details and an actual robust implementation were provided by our group [65,66]. The original program, written in Fortran90, was soon accompanied by a graphical engine ZZDecomposer [67–69] allowing for visualizing in real time the recursive decomposition pathways and allowing for discovering closed-form ZZ polynomial formulas for the whole families of isostructural benzenoids [70]. At the moment, such closed-form ZZ polynomial formulas are known for almost all of the families of basic benzenoids [64,71–82] with the exception of hexagonal graphene flakes and oblate rectangles, which are the objects of current intensive research activity [83–85]. Another interesting property of ZZ polynomials is their equivalence to cube polynomials [42,86,87] and certain tiling polynomials [88].

The concept of a ZZ polynomial almost immediately can be generalized from benzenoid hydrocarbons to fullerenes. The only limitation to be imposed on the algorithm constructing the Clar covers of fullerenes is that the aromatic sextet—obviously—cannot be placed in any of the fullerene’s pentagons; the remaining rules for determination of ZZ polynomial coefficients are exactly the same as for benzenoid hydrocarbons. The results reported in the next section are computed using a stand-alone Fortran90 code [67] with executables included in every distribution of ZZDecomposer [68,69]. The source code of the program can be obtained from the authors upon request. Few of the computed ZZ polynomials have been verified by pencil-and-paper calculations to make sure that no programming errors are present in the used subroutines.

3. List of ZZ Polynomials for Fullerene Isomers

The computed ZZ polynomials for all the isomers of (5,6)-fullerenes C_{20}–C_{50} are presented in Table 1. For each of the isomers, in addition to its point group symmetry designation, we give its two distinct definitions. The first definition is given in the form of an isomer number identical to the designation presented in “An atlas of fullerenes” compiled by Fowler and Manolopoulos [3]. This reference also gives the ring spiral pentagon sequence for each isomer, which can be used to generate its geometry in the XYZ format with the Fulleren program [8]. The isomer number can be also used to extract the XYZ geometry of the isomer from the “Fullerene Structure Library” [7]. The second definition is given in the form of a Schlegel diagram, obtained by taking the optimized geometry of each isomer, projecting it in the surface of a unit sphere and subsequently projecting the thus produced points of the sphere to a 2D plane by a stereographic projection. The geometrical structures of all the fullerene isomers have been optimized using density-functional tight-binding code, like in our previous publications [9–11,89] on this topic.

It is interesting to note that all the ZZ polynomials presented here are distinct from each other. This is in clear contrast to single topological indices (e.g., the Clar number Cl or Kekulé count K) of these isomers, which often have the same value for different isomers.

Let us explain on the example of the isomer 22 of C_{50}—denoted further for convenience as C_{50} : 22—how various topological invariants of the isomers can be extracted from its ZZ polynomial. According to Table 1, the ZZ polynomial of C_{50} : 22 is given by the following expression:

$$ZZ(C_{50} : 22, x) = 2541 + 4820x + 3478x^2 + 1222x^3 + 216x^4 + 16x^5$$ (2)

The following topological invariants can be readily extracted from this expression:

- Kekulé count K is equal to the coefficient of \(x^0\), so here we have \(K = 2541\). Note that one can alternatively evaluate the ZZ polynomial at \(x = 0\) to obtain the same value.
- Clar number Cl is equal to the degree of the ZZ polynomial, so here we have \(Cl = 5\).
• The total number C of Clar covers is equal to the sum of all the coefficients in the ZZ polynomial. C is most conveniently computed by evaluating the ZZ polynomial at $x = 1$. For $C_{50} \colon 22$, we have $C = ZZ(C_{50} \colon 22, 1) = 12293$.
• The number of Clar formulas, i.e., the number of Clar covers with the maximal number of aromatic sextets, is equal to the coefficient of x^{Cl}, which for $C_{50} \colon 22$ is equal to 16.
• The first Herndon number is equal to the coefficient of x^1, which for $C_{50} \colon 22$ is equal to 4820.

Table 1. Compilation of ZZ polynomials for all the isomers of small (5,6)-fullerenes C_n with $n = 20–50$. The columns specify: the fullerene type, the isomer number (following the convention introduced in [3]), point group symmetry, Schlegel diagram, The Kekulé count K, the ZZ polynomial, and the total number C of Clar covers of a given isomer.

Fullerene Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial	
C_{20} 1	I_h	36		
C_{24} 1	D_{6d}	$54 + 8x + 2x^2$		
C_{26} 1	D_{3h}	$63 + 12x$		
C_{28} 1	D_{2}	$90 + 36x + 6x^2$		
C_{28} 2	T_d	$75 + 24x$		
C_{30} 1	D_{5h}	$151 + 90x$		
C_{30} 2	C_{2v}	$117 + 58x + 8x^2$		
C_{30} 3	C_{2v}	$107 + 52x + 6x^2$		
C_{32} 1	C_{2}	$168 + 110x + 19x^2$		
C_{32} 2	D_{2}	$184 + 132x + 28x^2$		
C_{32} 3	D_{3d}	$180 + 132x + 30x^2$		
C_{32} 4	C_{2}	$151 + 98x + 19x^2$		
C_{32} 5	D_{3h}	$150 + 108x + 30x^2$		
C_{32} 6	D_{3}	$144 + 84x + 15x^2$		
C_{34} 1	C_{2}	$212 + 154x + 28x^2 + x^3$		
C_{34} 2	C_{s}	$219 + 160x + 24x^2$		
C_{34} 3	C_{s}	$196 + 142x + 31x^2$		
C_{34} 4	C_{2}	$229 + 188x + 48x^2 + 4x^3$		
C_{34} 5	C_{2}	$204 + 146x + 28x^2$		
Fullerene Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial	
------------------	----------	------------------	--------------	
C\textsubscript{34} 6	C\textsubscript{3v}	![Schlegel Diagram](image)	195 + 141x + 27x\(^2\)	
C\textsubscript{36} 1	C\textsubscript{2}	![Schlegel Diagram](image)	275 + 228x + 52x\(^2\) + 4x\(^3\)	
C\textsubscript{36} 2	D\textsubscript{2}	![Schlegel Diagram](image)	319 + 300x + 76x\(^2\)	
C\textsubscript{36} 3	C\textsubscript{1}	![Schlegel Diagram](image)	290 + 262x + 68x\(^2\) + 3x\(^3\)	
C\textsubscript{36} 4	C\textsubscript{s}	![Schlegel Diagram](image)	299 + 279x + 70x\(^2\)	
C\textsubscript{36} 5	D\textsubscript{2}	![Schlegel Diagram](image)	270 + 248x + 88x\(^2\) + 12x\(^3\) + x\(^4\)	
C\textsubscript{36} 6	D\textsubscript{2d}	![Schlegel Diagram](image)	283 + 280x + 120x\(^2\) + 24x\(^3\) + 2x\(^4\)	
C\textsubscript{36} 7	C\textsubscript{1}	![Schlegel Diagram](image)	283 + 251x + 70x\(^2\) + 6x\(^3\)	
C\textsubscript{36} 8	C\textsubscript{s}	![Schlegel Diagram](image)	299 + 271x + 73x\(^2\) + 4x\(^3\)	
C\textsubscript{36} 9	C\textsubscript{2v}	![Schlegel Diagram](image)	312 + 276x + 78x\(^2\) + 8x\(^3\)	
C\textsubscript{36} 10	C\textsubscript{2}	![Schlegel Diagram](image)	266 + 220x + 48x\(^2\)	
C\textsubscript{36} 11	C\textsubscript{2}	![Schlegel Diagram](image)	268 + 218x + 48x\(^2\)	
C\textsubscript{36} 12	C\textsubscript{2}	![Schlegel Diagram](image)	289 + 238x + 52x\(^2\)	
C\textsubscript{36} 13	D\textsubscript{3h}	![Schlegel Diagram](image)	364 + 364x + 104x\(^2\) + 8x\(^3\)	
C\textsubscript{36} 14	D\textsubscript{2d}	![Schlegel Diagram](image)	288 + 232x + 56x\(^2\)	
C\textsubscript{36} 15	D\textsubscript{6h}	![Schlegel Diagram](image)	272 + 184x + 22x\(^2\)	
C\textsubscript{38} 1	C\textsubscript{2}	![Schlegel Diagram](image)	353 + 321x + 72x\(^2\) + 5x\(^3\)	
C\textsubscript{38} 2	D\textsubscript{3h}	![Schlegel Diagram](image)	456 + 522x + 168x\(^2\) + 9x\(^3\)	
C\textsubscript{38} 3	C\textsubscript{1}	![Schlegel Diagram](image)	353 + 336x + 92x\(^2\) + 3x\(^3\)	
C\textsubscript{38} 4	C\textsubscript{1}	![Schlegel Diagram](image)	402 + 427x + 139x\(^2\) + 15x\(^3\)	
C\textsubscript{38} 5	C\textsubscript{1}	![Schlegel Diagram](image)	375 + 382x + 129x\(^2\) + 14x\(^3\)	
C\textsubscript{38} 6	C\textsubscript{2}	![Schlegel Diagram](image)	385 + 406x + 143x\(^2\) + 16x\(^3\)	
C\textsubscript{38} 7	C\textsubscript{1}	![Schlegel Diagram](image)	367 + 360x + 107x\(^2\) + 7x\(^3\)	
Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
-----------	--------	----------	------------------	--------------
C\textsubscript{38}	8	C\textsubscript{1}		409 + 407x + 118x^2 + 9x^3
C\textsubscript{38}	9	D\textsubscript{3}		468 + 522x + 168x^2 + 15x^3
C\textsubscript{38}	10	C\textsubscript{2}		355 + 342x + 109x^2 + 12x^3
C\textsubscript{38}	11	C\textsubscript{1}		360 + 332x + 82x^2 + 2x^3
C\textsubscript{38}	12	C\textsubscript{2v}		360 + 350x + 102x^2 + 6x^3
C\textsubscript{38}	13	C\textsubscript{2}		386 + 380x + 124x^2 + 14x^3
C\textsubscript{38}	14	C\textsubscript{1}		377 + 346x + 95x^2 + 6x^3
C\textsubscript{38}	15	C\textsubscript{2v}		365 + 316x + 60x^2
C\textsubscript{38}	16	C\textsubscript{3v}		378 + 324x + 72x^2
C\textsubscript{38}	17	C\textsubscript{2}		382 + 357x + 119x^2 + 16x^3
C\textsubscript{40}	1	D\textsubscript{5d}		701 + 860x + 250x^2
C\textsubscript{40}	2	C\textsubscript{2}		493 + 546x + 206x^2 + 42x^3 + 3x^4
C\textsubscript{40}	3	D\textsubscript{2}		596 + 708x + 231x^2 + 12x^3 + x^4
C\textsubscript{40}	4	C\textsubscript{1}		508 + 614x + 273x^2 + 49x^3 + 3x^4
C\textsubscript{40}	5	C\textsubscript{s}		536 + 713x + 389x^2 + 96x^3 + 8x^4
C\textsubscript{40}	6	C\textsubscript{1}		498 + 550x + 175x^2 + 16x^3
C\textsubscript{40}	7	C\textsubscript{s}		528 + 621x + 222x^2 + 20x^3
C\textsubscript{40}	8	C\textsubscript{2v}		565 + 654x + 186x^2
C\textsubscript{40}	9	C\textsubscript{2}		535 + 672x + 316x^2 + 62x^3 + 4x^4
C\textsubscript{40}	10	C\textsubscript{1}		476 + 526x + 185x^2 + 17x^3
C\textsubscript{40}	11	C\textsubscript{2}		533 + 656x + 286x^2 + 48x^3 + 3x^4
C\textsubscript{40}	12	C\textsubscript{1}		512 + 598x + 238x^2 + 36x^3 + 2x^4
C\textsubscript{40}	13	C\textsubscript{s}		489 + 543x + 184x^2 + 16x^3
Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
-----------	--------	----------	------------------	--------------
C_{40}	14	C_{s}	![Image](image1.png)	507 + 553x + 187x^2 + 18x^3
C_{40}	15	C_{2}	![Image](image2.png)	542 + 598x + 196x^2 + 14x^3
C_{40}	16	C_{2}	![Image](image3.png)	582 + 700x + 281x^2 + 42x^3 + x^4
C_{40}	17	C_{1}	![Image](image4.png)	540 + 601x + 200x^2 + 19x^3
C_{40}	18	C_{2}	![Image](image5.png)	560 + 642x + 222x^2 + 24x^3 + x^4
C_{40}	19	C_{2}	![Image](image6.png)	524 + 568x + 180x^2 + 12x^3
C_{40}	20	C_{3v}	![Image](image7.png)	432 + 396x + 81x^2
C_{40}	21	C_{2}	![Image](image8.png)	454 + 478x + 154x^2 + 12x^3
C_{40}	22	C_{1}	![Image](image9.png)	474 + 506x + 166x^2 + 15x^3
C_{40}	23	C_{2}	![Image](image10.png)	487 + 536x + 194x^2 + 22x^3 + 1x^4
C_{40}	24	C_{s}	![Image](image11.png)	480 + 505x + 175x^2 + 20x^3
C_{40}	25	C_{2}	![Image](image12.png)	500 + 544x + 188x^2 + 18x^3
C_{40}	26	C_{1}	![Image](image13.png)	497 + 523x + 183x^2 + 22x^3
C_{40}	27	C_{2}	![Image](image14.png)	496 + 534x + 182x^2 + 20x^3
C_{40}	28	C_{s}	![Image](image15.png)	541 + 630x + 270x^2 + 54x^3 + 5x^4
C_{40}	29	C_{2}	![Image](image16.png)	494 + 510x + 169x^2 + 18x^3 + x^4
C_{40}	30	C_{3}	![Image](image17.png)	483 + 486x + 135x^2 + 6x^3
C_{40}	31	C_{s}	![Image](image18.png)	520 + 566x + 226x^2 + 45x^3 + 5x^4
C_{40}	32	D_{2}	![Image](image19.png)	502 + 552x + 164x^2 + 4x^3
C_{40}	33	D_{2h}	![Image](image20.png)	541 + 608x + 210x^2 + 24x^3 + x^4
C_{40}	34	C_{1}	![Image](image21.png)	494 + 510x + 163x^2 + 15x^3
C_{40}	35	C_{2}	![Image](image22.png)	493 + 500x + 157x^2 + 12x^3
C_{40}	36	C_{2}	![Image](image23.png)	473 + 454x + 135x^2 + 12x^3
Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
-----------	--------	----------	------------------	--------------------
C_{40}	37	C_{2v}	![Diagram](image)	513 + 564x + 252x^2 + 62x^3 + 7x^4
C_{40}	38	D_2	![Diagram](image)	518 + 600x + 314x^2 + 96x^3 + 14x^4
C_{40}	39	D_{5d}	![Diagram](image)	562 + 710x + 425x^2 + 150x^3 + 25x^4
C_{40}	40	T_d	![Diagram](image)	576 + 636x + 234x^2 + 36x^3 + 3x^4
C_{42}	1	C_2	![Diagram](image)	659 + 786x + 283x^2 + 37x^3
C_{42}	2	C_1	![Diagram](image)	696 + 902x + 388x^2 + 61x^3 + 2x^4
C_{42}	3	C_1	![Diagram](image)	724 + 955x + 416x^2 + 72x^3 + 5x^4
C_{42}	4	C_1	![Diagram](image)	675 + 841x + 317x^2 + 35x^3
C_{42}	5	C_2	![Diagram](image)	786 + 1075x + 466x^2 + 70x^3 + x^4
C_{42}	6	C_{2v}	![Diagram](image)	641 + 788x + 332x^2 + 60x^3 + 4x^4
C_{42}	7	C_2	![Diagram](image)	685 + 887x + 387x^2 + 56x^3
C_{42}	8	C_1	![Diagram](image)	655 + 810x + 324x^2 + 41x^3 + x^4
C_{42}	9	C_1	![Diagram](image)	707 + 945x + 446x^2 + 81x^3 + 3x^4
C_{42}	10	C_1	![Diagram](image)	668 + 853x + 374x^2 + 64x^3 + 5x^4
C_{42}	11	C_s	![Diagram](image)	749 + 1015x + 482x^2 + 96x^3 + 8x^4
C_{42}	12	C_s	![Diagram](image)	682 + 885x + 419x^2 + 88x^3 + 8x^4
C_{42}	13	C_{2v}	![Diagram](image)	744 + 1072x + 602x^2 + 170x^3 + 21x^4
C_{42}	14	C_1	![Diagram](image)	721 + 907x + 386x^2 + 58x^3
C_{42}	15	C_1	![Diagram](image)	711 + 879x + 339x^2 + 39x^3
C_{42}	16	C_{2v}	![Diagram](image)	812 + 1094x + 504x^2 + 104x^3 + 9x^4
C_{42}	17	C_1	![Diagram](image)	700 + 847x + 304x^2 + 30x^3
C_{42}	18	C_1	![Diagram](image)	696 + 834x + 287x^2 + 25x^3
C_{42}	19	C_s	![Diagram](image)	698 + 859x + 353x^2 + 46x^3
Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
-----------	--------	----------	------------------	--------------
C_{42}	20	C_1	![graph](image)	$692 + 828x + 306x^2 + 32x^3$
C_{42}	21	C_{2v}	![graph](image)	$660 + 782x + 318x^2 + 48x^3$
C_{42}	22	C_s	![graph](image)	$622 + 718x + 238x^2 + 16x^3$
C_{42}	23	C_2	![graph](image)	$629 + 736x + 266x^2 + 25x^3$
C_{42}	24	C_1	![graph](image)	$657 + 806x + 336x^2 + 49x^3$
C_{42}	25	C_1	![graph](image)	$621 + 716x + 266x^2 + 32x^3$
C_{42}	26	C_1	![graph](image)	$631 + 754x + 280x^2 + 30x^3$
C_{42}	27	C_2	![graph](image)	$598 + 702x + 256x^2 + 27x^3$
C_{42}	28	C_2	![graph](image)	$678 + 834x + 327x^2 + 39x^3$
C_{42}	29	C_1	![graph](image)	$639 + 725x + 242x^2 + 18x^3$
C_{42}	30	C_1	![graph](image)	$657 + 764x + 269x^2 + 25x^3$
C_{42}	31	C_2	![graph](image)	$672 + 827x + 340x^2 + 49x^3$
C_{42}	32	C_1	![graph](image)	$644 + 749x + 293x^2 + 39x^3$
C_{42}	33	C_1	![graph](image)	$642 + 766x + 340x^2 + 66x^3 + 4x^4$
C_{42}	34	C_1	![graph](image)	$658 + 763x + 280x^2 + 31x^3$
C_{42}	35	C_s	![graph](image)	$655 + 770x + 320x^2 + 48x^3$
C_{42}	36	C_1	![graph](image)	$632 + 717x + 273x^2 + 39x^3 + 2x^4$
C_{42}	37	C_1	![graph](image)	$681 + 814x + 324x^2 + 46x^3 + 2x^4$
C_{42}	38	C_2	![graph](image)	$697 + 838x + 332x^2 + 50x^3 + 3x^4$
C_{42}	39	C_1	![graph](image)	$672 + 800x + 335x^2 + 53x^3 + x^4$
C_{42}	40	C_2	![graph](image)	$668 + 775x + 298x^2 + 39x^3 + x^4$
C_{42}	41	C_2	![graph](image)	$662 + 776x + 301x^2 + 37x^3$
C_{42}	42	C_s	![graph](image)	$681 + 832x + 400x^2 + 96x^3 + 10x^4$
Table 1. Cont.

Fullerene Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
C_{42} 43	C_2	![Diagram](image)	$671 + 835x + 429x^2 + 120x^3 + 18x^4 + x^5$
C_{42} 44	C_1	![Diagram](image)	$642 + 747x + 322x^2 + 63x^3 + 5x^4$
C_{42} 45	D_3	![Diagram](image)	$680 + 893x + 522x^2 + 164x^3 + 24x^4 + x^5$
C_{44} 1	C_2	![Diagram](image)	$892 + 1206x + 563x^2 + 124x^3 + 9x^4$
C_{44} 2	D_2	![Diagram](image)	$1091 + 1552x + 694x^2 + 116x^3 + 12x^4$
C_{44} 3	D_{3d}	![Diagram](image)	$1170 + 1758x + 831x^2 + 132x^3 + 9x^4$
C_{44} 4	C_2	![Diagram](image)	$1080 + 1714x + 977x^2 + 212x^3 + 13x^4$
C_{44} 5	C_2	![Diagram](image)	$1108 + 1846x + 1177x^2 + 216x^3 + 27x^4$
C_{44} 6	C_2	![Diagram](image)	$1073 + 1698x + 975x^2 + 220x^3 + 14x^4$
C_{44} 7	C_1	![Diagram](image)	$1036 + 1587x + 854x^2 + 180x^3 + 12x^4$
C_{44} 8	C_1	![Diagram](image)	$920 + 1262x + 535x^2 + 63x^3$
C_{44} 9	C_1	![Diagram](image)	$959 + 1373x + 657x^2 + 123x^3 + 8x^4$
C_{44} 10	C_1	![Diagram](image)	$1007 + 1493x + 761x^2 + 157x^3 + 11x^4$
C_{44} 11	C_5	![Diagram](image)	$924 + 1286x + 601x^2 + 111x^3 + 6x^4$
C_{44} 12	C_2	![Diagram](image)	$911 + 1340x + 731x^2 + 174x^3 + 16x^4$
C_{44} 13	C_{2v}	![Diagram](image)	$928 + 1352x + 686x^2 + 136x^3 + 10x^4$
C_{44} 14	C_2	![Diagram](image)	$940 + 1354x + 693x^2 + 148x^3 + 14x^4$
C_{44} 15	C_1	![Diagram](image)	$932 + 1358x + 726x^2 + 167x^3 + 14x^4$
C_{44} 16	C_1	![Diagram](image)	$962 + 1423x + 774x^2 + 176x^3 + 14x^4$
C_{44} 17	C_1	![Diagram](image)	$1052 + 1578x + 815x^2 + 163x^3 + 10x^4$
C_{44} 18	C_1	![Diagram](image)	$930 + 1315x + 665x^2 + 138x^3 + 9x^4$
C_{44} 19	C_1	![Diagram](image)	$950 + 1397x + 746x^2 + 172x^3 + 14x^4$
C_{44} 20	C_2	![Diagram](image)	$965 + 1420x + 738x^2 + 154x^3 + 11x^4$
Fullerene Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
------------------	----------	------------------	--------------
C_{44} 21	C_1	![Diagram]	869 + 1194x + 556x^2 + 96x^3 + 4x^4
C_{44} 22	C_1	![Diagram]	984 + 1364x + 647x^2 + 130x^3 + 10x^4
C_{44} 23	C_1	![Diagram]	962 + 1340x + 627x^2 + 111x^3 + 5x^4
C_{44} 24	D_2	![Diagram]	1156 + 1732x + 884x^2 + 184x^3 + 17x^4
C_{44} 25	C_1	![Diagram]	1000 + 1420x + 712x^2 + 144x^3 + 8x^4
C_{44} 26	C_1	![Diagram]	940 + 1279x + 569x^2 + 86x^3 + 2x^4
C_{44} 27	C_1	![Diagram]	939 + 1265x + 556x^2 + 83x^3 + 2x^4
C_{44} 28	C_s	![Diagram]	907 + 1185x + 510x^2 + 76x^3
C_{44} 29	C_1	![Diagram]	938 + 1282x + 624x^2 + 130x^3 + 10x^4
C_{44} 30	C_1	![Diagram]	968 + 1419x + 821x^2 + 231x^3 + 26x^4
C_{44} 31	C_1	![Diagram]	994 + 1436x + 748x^2 + 165x^3 + 13x^4
C_{44} 32	C_2	![Diagram]	994 + 1506x + 938x^2 + 292x^3 + 39x^4
C_{44} 33	C_s	![Diagram]	893 + 1152x + 472x^2 + 64x^3
C_{44} 34	C_2	![Diagram]	961 + 1344x + 639x^2 + 114x^3 + 7x^4
C_{44} 35	D_3	![Diagram]	1125 + 1746x + 939x^2 + 186x^3 + 9x^4
C_{44} 36	C_2	![Diagram]	872 + 1072x + 384x^2 + 36x^3
C_{44} 37	D_{3h}	![Diagram]	780 + 978x + 417x^2 + 66x^3 + 3x^4
C_{44} 38	D_{3d}	![Diagram]	765 + 888x + 267x^2 + x^3
C_{44} 39	C_{2v}	![Diagram]	872 + 1210x + 625x^2 + 138x^3 + 11x^4
C_{44} 40	C_1	![Diagram]	877 + 1174x + 547x^2 + 106x^3 + 8x^4
C_{44} 41	C_1	![Diagram]	860 + 1109x + 454x^2 + 58x^3 + x^4
C_{44} 42	C_1	![Diagram]	847 + 1058x + 406x^2 + 41x^3
C_{44} 43	C_1	![Diagram]	869 + 1150x + 481x^2 + 63x^3 + x^4
Table 1. Cont.

Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
C_{44}	44	C_2	![Image](image)	826 + 1054x + 405x^2 + 42x^3 + x^4
C_{44}	45	C_2	![Image](image)	814 + 1036x + 395x^2 + 42x^3 + x^4
C_{44}	46	C_2	![Image](image)	929 + 1270x + 560x^2 + 76x^3 + x^4
C_{44}	47	C_1	![Image](image)	892 + 1180x + 521x^2 + 79x^3
C_{44}	48	C_1	![Image](image)	917 + 1259x + 592x^2 + 110x^3 + 7x^4
C_{44}	49	C_2	![Image](image)	900 + 1212x + 560x^2 + 104x^3 + 7x^4
C_{44}	50	C_1	![Image](image)	880 + 1124x + 464x^2 + 65x^3 + 3x^4
C_{44}	51	C_1	![Image](image)	898 + 1242x + 671x^2 + 171x^3 + 17x^4
C_{44}	52	C_1	![Image](image)	914 + 1330x + 814x^2 + 259x^3 + 36x^4
C_{44}	53	C_1	![Image](image)	936 + 1254x + 566x^2 + 103x^3 + 7x^4
C_{44}	54	C_s	![Image](image)	929 + 1369x + 849x^2 + 274x^3 + 38x^4
C_{44}	55	C_{2v}	![Image](image)	920 + 1308x + 750x^2 + 212x^3 + 27x^4
C_{44}	56	C_1	![Image](image)	882 + 1195x + 604x^2 + 137x^3 + 12x^4
C_{44}	57	C_1	![Image](image)	881 + 1175x + 580x^2 + 122x^3 + 8x^4
C_{44}	58	C_1	![Image](image)	861 + 1084x + 401x^2 + 37x^3
C_{44}	59	C_1	![Image](image)	858 + 1165x + 605x^2 + 152x^3 + 16x^4
C_{44}	60	C_1	![Image](image)	912 + 1229x + 582x^2 + 114x^3 + 8x^4
C_{44}	61	C_2	![Image](image)	862 + 1118x + 496x^2 + 84x^3 + 5x^4
C_{44}	62	C_1	![Image](image)	839 + 1061x + 413x^2 + 47x^3
C_{44}	63	C_1	![Image](image)	881 + 1155x + 501x^2 + 81x^3 + 4x^4
C_{44}	64	C_1	![Image](image)	873 + 1105x + 432x^2 + 48x^3
C_{44}	65	C_1	![Image](image)	885 + 1153x + 487x^2 + 67x^3 + 2x^4
C_{44}	66	C_2	![Image](image)	894 + 1182x + 514x^2 + 78x^3 + 4x^4
Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
-----------	--------	----------	------------------	--------------
C_{44}	67	C_1	![Diagram](image)	$830 + 1037x + 427x^2 + 57x^3$
C_{44}	68	C_2	![Diagram](image)	$874 + 1160x + 552x^2 + 112x^3 + 8x^4$
C_{44}	69	C_1	![Diagram](image)	$896 + 1240x + 679x^2 + 180x^3 + 20x^4$
C_{44}	70	C_s	![Diagram](image)	$846 + 1061x + 426x^2 + 52x^3$
C_{44}	71	C_s	![Diagram](image)	$898 + 1198x + 592x^2 + 127x^3 + 10x^4$
C_{44}	72	D_{3h}	![Diagram](image)	$960 + 1362x + 774x^2 + 216x^3 + 27x^4$
C_{44}	73	T	![Diagram](image)	$864 + 1104x + 432x^2 + 48x^3$
C_{44}	74	C_2	![Diagram](image)	$882 + 1158x + 514x^2 + 86x^3 + 4x^4$
C_{44}	75	D_2	![Diagram](image)	$924 + 1376x + 896x^2 + 304x^3 + 44x^4$
C_{44}	76	C_2	![Diagram](image)	$891 + 1214x + 660x^2 + 174x^3 + 20x^4$
C_{44}	77	C_1	![Diagram](image)	$840 + 1090x + 519x^2 + 101x^3 + 5x^4$
C_{44}	78	C_1	![Diagram](image)	$856 + 1101x + 487x^2 + 74x^3$
C_{44}	79	C_2	![Diagram](image)	$850 + 1110x + 532x^2 + 108x^3 + 8x^4$
C_{44}	80	D_3	![Diagram](image)	$846 + 1092x + 510x^2 + 90x^3 + 3x^4$
C_{44}	81	C_2	![Diagram](image)	$870 + 1132x + 542x^2 + 110x^3 + 8x^4$
C_{44}	82	S_4	![Diagram](image)	$804 + 960x + 354x^2 + 36x^3 + x^4$
C_{44}	83	D_2	![Diagram](image)	$824 + 984x + 373x^2 + 36x^3 + x^4$
C_{44}	84	C_s	![Diagram](image)	$854 + 1057x + 432x^2 + 56x^3$
C_{44}	85	D_2	![Diagram](image)	$925 + 1252x + 650x^2 + 156x^3 + 16x^4$
C_{44}	86	D_{3d}	![Diagram](image)	$900 + 1152x + 534x^2 + 108x^3 + 9x^4$
C_{44}	87	C_2	![Diagram](image)	$864 + 1102x + 462x^2 + 60x^3$
C_{44}	88	C_1	![Diagram](image)	$828 + 1042x + 444x^2 + 64x^3$
C_{44}	89	D_2	![Diagram](image)	$868 + 1236x + 752x^2 + 236x^3 + 32x^4$
Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
-----------	--------	----------	------------------	-----------------------------
C_{46}	1	C_{2}	![Schlegel Diagram for C_{46} Isomer 1](image1)	$1172 + 1693x + 836x^2 + 196x^3 + 21x^4 + x^5$
C_{46}	2	C_{s}	![Schlegel Diagram for C_{46} Isomer 2](image2)	$1385 + 2173x + 1157x^2 + 236x^3 + 14x^4$
C_{46}	3	C_{1}	![Schlegel Diagram for C_{46} Isomer 3](image3)	$1291 + 1992x + 1025x^2 + 185x^3 + 5x^4$
C_{46}	4	C_{1}	![Schlegel Diagram for C_{46} Isomer 4](image4)	$1246 + 1873x + 925x^2 + 164x^3 + 7x^4$
C_{46}	5	C_{1}	![Schlegel Diagram for C_{46} Isomer 5](image5)	$1380 + 2213x + 1225x^2 + 269x^3 + 18x^4$
C_{46}	6	C_{1}	![Schlegel Diagram for C_{46} Isomer 6](image6)	$1274 + 1984x + 1068x^2 + 230x^3 + 18x^4$
C_{46}	7	C_{s}	![Schlegel Diagram for C_{46} Isomer 7](image7)	$1494 + 2459x + 1375x^2 + 302x^3 + 24x^4$
C_{46}	8	C_{s}	![Schlegel Diagram for C_{46} Isomer 8](image8)	$1373 + 2185x + 1210x^2 + 278x^3 + 24x^4$
C_{46}	9	C_{2}	![Schlegel Diagram for C_{46} Isomer 9](image9)	$1322 + 2045x + 1085x^2 + 263x^3 + 32x^4 + x^5$
C_{46}	10	C_{s}	![Schlegel Diagram for C_{46} Isomer 10](image10)	$1434 + 2483x + 1684x^2 + 582x^3 + 93x^4 + 4x^5$
C_{46}	11	C_{s}	![Schlegel Diagram for C_{46} Isomer 11](image11)	$1119 + 1664x + 894x^2 + 198x^3 + 16x^4$
C_{46}	12	C_{2}	![Schlegel Diagram for C_{46} Isomer 12](image12)	$1393 + 2377x + 1559x^2 + 484x^3 + 70x^4 + 4x^5$
C_{46}	13	C_{s}	![Schlegel Diagram for C_{46} Isomer 13](image13)	$1266 + 1995x + 1141x^2 + 260x^3 + 16x^4$
C_{46}	14	C_{1}	![Schlegel Diagram for C_{46} Isomer 14](image14)	$1305 + 2020x + 1078x^2 + 217x^3 + 11x^4$
C_{46}	15	C_{1}	![Schlegel Diagram for C_{46} Isomer 15](image15)	$1231 + 1861x + 975x^2 + 201x^3 + 14x^4$
C_{46}	16	C_{1}	![Schlegel Diagram for C_{46} Isomer 16](image16)	$1375 + 2184x + 1222x^2 + 293x^3 + 31x^4 + x^5$
C_{46}	17	C_{1}	![Schlegel Diagram for C_{46} Isomer 17](image17)	$1254 + 1889x + 995x^2 + 212x^3 + 16x^4$
C_{46}	18	C_{1}	![Schlegel Diagram for C_{46} Isomer 18](image18)	$1322 + 2106x + 1198x^2 + 295x^3 + 29x^4$
C_{46}	19	C_{1}	![Schlegel Diagram for C_{46} Isomer 19](image19)	$1212 + 1856x + 1003x^2 + 221x^3 + 16x^4$
C_{46}	20	C_{2}	![Schlegel Diagram for C_{46} Isomer 20](image20)	$1232 + 1928x + 1078x^2 + 262x^3 + 30x^4 + 2x^5$
C_{46}	21	C_{1}	![Schlegel Diagram for C_{46} Isomer 21](image21)	$1164 + 1709x + 837x^2 + 153x^3 + 10x^4$
C_{46}	22	C_{2}	![Schlegel Diagram for C_{46} Isomer 22](image22)	$1489 + 2381x + 1292x^2 + 258x^3 + 12x^4$
C_{46}	23	C_{1}	![Schlegel Diagram for C_{46} Isomer 23](image23)	$1333 + 1991x + 983x^2 + 189x^3 + 15x^4$
Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
-----------	--------	----------	------------------	--------------
C_{46}	24	C_1	![image]	1265 + 1890x + 960x^2 + 185x^3 + 8x^4
C_{46}	25	C_1	![image]	1387 + 2152x + 1179x^2 + 275x^3 + 25x^4
C_{46}	26	C_1	![image]	1356 + 2078x + 1108x^2 + 245x^3 + 20x^4
C_{46}	27	C_1	![image]	1242 + 1852x + 1001x^2 + 227x^3 + 18x^4
C_{46}	28	C_5	![image]	1329 + 2108x + 1277x^2 + 362x^3 + 46x^4 + 2x^5
C_{46}	29	C_1	![image]	1272 + 1926x + 1059x^2 + 242x^3 + 18x^4
C_{46}	30	C_1	![image]	1291 + 1983x + 1143x^2 + 303x^3 + 34x^4 + x^5
C_{46}	31	C_1	![image]	1322 + 1991x + 1003x^2 + 174x^3 + 5x^4
C_{46}	32	C_2	![image]	1338 + 2182x + 1395x^2 + 426x^3 + 57x^4 + 2x^5
C_{46}	33	C_5	![image]	1377 + 2168x + 1171x^2 + 258x^3 + 19x^4
C_{46}	34	C_1	![image]	1270 + 1941x + 1044x^2 + 227x^3 + 14x^4
C_{46}	35	C_1	![image]	1261 + 1877x + 964x^2 + 189x^3 + 9x^4
C_{46}	36	C_1	![image]	1281 + 1990x + 1181x^2 + 348x^3 + 52x^4 + 3x^5
C_{46}	37	C_1	![image]	1218 + 1741x + 810x^2 + 131x^3 + 5x^4
C_{46}	38	C_5	![image]	1216 + 1798x + 880x^2 + 154x^3 + 5x^4
C_{46}	39	C_{2v}	![image]	1346 + 2068x + 1103x^2 + 252x^3 + 25x^4
C_{46}	40	C_5	![image]	1249 + 1856x + 1012x^2 + 273x^3 + 35x^4
C_{46}	41	C_5	![image]	1273 + 1968x + 1179x^2 + 370x^3 + 60x^4 + 3x^5
C_{46}	42	C_{2v}	![image]	1260 + 1902x + 1033x^2 + 276x^3 + 39x^4 + 2x^5
C_{46}	43	C_2	![image]	1137 + 1594x + 718x^2 + 101x^3
C_{46}	44	C_1	![image]	1191 + 1699x + 779x^2 + 113x^3
C_{46}	45	C_1	![image]	1176 + 1712x + 867x^2 + 185x^3 + 19x^4 + x^5
C_{46}	46	C_1	![image]	1181 + 1709x + 861x^2 + 171x^3 + 9x^4
Table 1. Cont.

Fullerene Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
C_{46} 47	C_2	![Schlegel Diagram](image1.png)	1143 + 1644x + 775x^2 + 128x^3 + 5x^4
C_{46} 48	C_1	![Schlegel Diagram](image2.png)	1199 + 1774x + 892x^2 + 174x^3 + 11x^4
C_{46} 49	C_2	![Schlegel Diagram](image3.png)	1105 + 1546x + 679x^2 + 98x^3 + 5x^4
C_{46} 50	C_1	![Schlegel Diagram](image4.png)	1171 + 1675x + 814x^2 + 165x^3 + 17x^4 + x^5
C_{46} 51	C_1	![Schlegel Diagram](image5.png)	1107 + 1502x + 626x^2 + 77x^3 + x^4
C_{46} 52	C_1	![Schlegel Diagram](image6.png)	1164 + 1640x + 721x^2 + 95x^3
C_{46} 53	C_2	![Schlegel Diagram](image7.png)	1304 + 1998x + 1030x^2 + 192x^3 + 7x^4
C_{46} 54	C_2	![Schlegel Diagram](image8.png)	1239 + 1832x + 915x^2 + 162x^3 + x^4
C_{46} 55	C_1	![Schlegel Diagram](image9.png)	1225 + 1794x + 911x^2 + 186x^3 + 12x^4
C_{46} 56	C_1	![Schlegel Diagram](image10.png)	1194 + 1734x + 857x^2 + 164x^3 + 10x^4
C_{46} 57	C_s	![Schlegel Diagram](image11.png)	1204 + 1752x + 927x^2 + 206x^3 + 16x^4
C_{46} 58	C_1	![Schlegel Diagram](image12.png)	1229 + 1827x + 1005x^2 + 236x^3 + 20x^4
C_{46} 59	C_1	![Schlegel Diagram](image13.png)	1224 + 1880x + 1150x^2 + 353x^3 + 55x^4 + 3x^5
C_{46} 60	C_1	![Schlegel Diagram](image14.png)	1192 + 1809x + 1071x^2 + 295x^3 + 32x^4
C_{46} 61	C_1	![Schlegel Diagram](image15.png)	1151 + 1641x + 839x^2 + 177x^3 + 13x^4
C_{46} 62	C_1	![Schlegel Diagram](image16.png)	1179 + 1658x + 778x^2 + 123x^3 + 3x^4
C_{46} 63	C_1	![Schlegel Diagram](image17.png)	1158 + 1655x + 842x^2 + 171x^3 + 11x^4
C_{46} 64	C_1	![Schlegel Diagram](image18.png)	1190 + 1705x + 833x^2 + 146x^3 + 5x^4
C_{46} 65	C_s	![Schlegel Diagram](image19.png)	1175 + 1738x + 913x^2 + 182x^3 + 6x^4
C_{46} 66	C_2	![Schlegel Diagram](image20.png)	1179 + 1762x + 971x^2 + 234x^3 + 22x^4 + x^5
C_{46} 67	C_1	![Schlegel Diagram](image21.png)	1193 + 1872x + 1198x^2 + 396x^3 + 65x^4 + 4x^5
C_{46} 68	C_1	![Schlegel Diagram](image22.png)	1171 + 1712x + 894x^2 + 189x^3 + 11x^4
C_{46} 69	C_1	![Schlegel Diagram](image23.png)	1193 + 1757x + 945x^2 + 206x^3 + 11x^4
Table 1. Cont.

Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
C_{46}	70	C_{1}		1131 + 1602x + 805x^2 + 167x^3 + 13x^4
C_{46}	71	C_{1}		1133 + 1528x + 644x^2 + 81x^3
C_{46}	72	C_{1}		1162 + 1622x + 742x^2 + 112x^3
C_{46}	73	C_{1}		1166 + 1611x + 711x^2 + 102x^3
C_{46}	74	C_{1}		1159 + 1671x + 883x^2 + 226x^3 + 31x^4 + 2x^5
C_{46}	75	C_{1}		1159 + 1645x + 822x^2 + 181x^3 + 18x^4
C_{46}	76	C_{1}		1213 + 1768x + 885x^2 + 173x^3 + 10x^4
C_{46}	77	C_{2}		1240 + 1848x + 916x^2 + 158x^3 + 5x^4
C_{46}	78	C_{1}		1197 + 1695x + 806x^2 + 134x^3 + 2x^4
C_{46}	79	C_{1}		1140 + 1579x + 732x^2 + 128x^3 + 7x^4
C_{46}	80	C_{1}		1168 + 1618x + 708x^2 + 97x^3
C_{46}	81	C_{1}		1140 + 1596x + 758x^2 + 128x^3 + 3x^4
C_{46}	82	C_{1}		1132 + 1604x + 768x^2 + 139x^3 + 8x^4
C_{46}	83	C_{2}		1204 + 1738x + 858x^2 + 161x^3 + 8x^4
C_{46}	84	C_{2}		1211 + 1713x + 789x^2 + 125x^3 + 4x^4
C_{46}	85	C_{1}		1164 + 1701x + 920x^2 + 212x^3 + 15x^4
C_{46}	86	C_{1}		1195 + 1825x + 1090x^2 + 311x^3 + 40x^4 + 2x^5
C_{46}	87	C_{1}		1177 + 1750x + 987x^2 + 265x^3 + 35x^4 + 2x^5
C_{46}	88	C_{1}		1192 + 1769x + 993x^2 + 250x^3 + 24x^4
C_{46}	89	C_{2}		1239 + 1797x + 880x^2 + 155x^3 + 6x^4
C_{46}	90	C_{1}		1133 + 1604x + 804x^2 + 159x^3 + 8x^4
C_{46}	91	C_{2v}		1281 + 1908x + 1012x^2 + 242x^3 + 28x^4 + 2x^5
C_{46}	92	C_{2v}		1245 + 1920x + 1138x^2 + 318x^3 + 40x^4 + 2x^5
Fullerene Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial	
-----------------	----------	------------------	--------------	
C\textsubscript{46} 93	C\textsubscript{1}	![Diagram](image1)	1146 + 1633x + 790x^2 + 136x^3 + 2x^4	
C\textsubscript{46} 94	C\textsubscript{3}	![Diagram](image2)	1140 + 1683x + 903x^2 + 201x^3 + 12x^4	
C\textsubscript{46} 95	C\textsubscript{2}	![Diagram](image3)	1172 + 1664x + 748x^2 + 104x^3	
C\textsubscript{46} 96	C\textsubscript{2}	![Diagram](image4)	1162 + 1609x + 692x^2 + 87x^3	
C\textsubscript{46} 97	C\textsubscript{2}	![Diagram](image5)	1224 + 1773x + 889x^2 + 179x^3 + 12x^4	
C\textsubscript{46} 98	C\textsubscript{1}	![Diagram](image6)	1152 + 1639x + 834x^2 + 166x^3 + 8x^4	
C\textsubscript{46} 99	C\textsubscript{s}	![Diagram](image7)	1183 + 1782x + 1046x^2 + 285x^3 + 30x^4	
C\textsubscript{46} 100	C\textsubscript{1}	![Diagram](image8)	1182 + 1763x + 1001x^2 + 255x^3 + 24x^4	
C\textsubscript{46} 101	C\textsubscript{1}	![Diagram](image9)	1168 + 1710x + 931x^2 + 217x^3 + 17x^4	
C\textsubscript{46} 102	C\textsubscript{1}	![Diagram](image10)	1208 + 1869x + 1195x^2 + 404x^3 + 73x^4 + 5x^5	
C\textsubscript{46} 103	C\textsubscript{1}	![Diagram](image11)	1154 + 1728x + 1021x^2 + 284x^3 + 32x^4	
C\textsubscript{46} 104	C\textsubscript{2}	![Diagram](image12)	1112 + 1537x + 726x^2 + 115x^3	
C\textsubscript{46} 105	C\textsubscript{1}	![Diagram](image13)	1130 + 1602x + 826x^2 + 182x^3 + 16x^4	
C\textsubscript{46} 106	C\textsubscript{s}	![Diagram](image14)	1168 + 1696x + 895x^2 + 198x^3 + 12x^4	
C\textsubscript{46} 107	C\textsubscript{s}	![Diagram](image15)	1225 + 2011x + 1448x^2 + 571x^3 + 118x^4 + 10x^5	
C\textsubscript{46} 108	C\textsubscript{s}	![Diagram](image16)	1218 + 2011x + 1460x^2 + 582x^3 + 122x^4 + 10x^5	
C\textsubscript{46} 109	C\textsubscript{2}	![Diagram](image17)	1222 + 1992x + 1394x^2 + 526x^3 + 104x^4 + 8x^5	
C\textsubscript{46} 110	C\textsubscript{1}	![Diagram](image18)	1113 + 1597x + 840x^2 + 191x^3 + 16x^4	
C\textsubscript{46} 111	C\textsubscript{1}	![Diagram](image19)	1137 + 1623x + 861x^2 + 202x^3 + 20x^4	
C\textsubscript{46} 112	C\textsubscript{2}	![Diagram](image20)	1070 + 1398x + 590x^2 + 74x^3	
C\textsubscript{46} 113	C\textsubscript{2}	![Diagram](image21)	1158 + 1690x + 969x^2 + 279x^3 + 44x^4 + 3x^5	
C\textsubscript{46} 114	C\textsubscript{1}	![Diagram](image22)	1106 + 1595x + 856x^2 + 205x^3 + 19x^4	
C\textsubscript{46} 115	C\textsubscript{3}	![Diagram](image23)	1032 + 1356x + 567x^2 + 75x^3	
Table 1. Cont.

Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
C46	116	C2	![Image](image1.png)	1106 + 1591x + 832x^2 + 173x^3 + 8x^4
C48	1	C2	![Image](image2.png)	1532 + 2348x + 1228x^2 + 286x^3 + 24x^4
C48	2	D2	![Image](image3.png)	2024 + 3428x + 1974x^2 + 484x^3 + 57x^4
C48	3	C1	![Image](image4.png)	1937 + 3482x + 2246x^2 + 590x^3 + 51x^4
C48	4	C5	![Image](image5.png)	1935 + 3482x + 2236x^2 + 580x^3 + 48x^4
C48	5	C2	![Image](image6.png)	1912 + 3426x + 2177x^2 + 558x^3 + 47x^4
C48	6	C1	![Image](image7.png)	1736 + 2927x + 1731x^2 + 428x^3 + 43x^4
C48	7	C1	![Image](image8.png)	1763 + 3033x + 1883x^2 + 506x^3 + 53x^4 + x^5
C48	8	C1	![Image](image9.png)	1835 + 3116x + 1813x^2 + 402x^3 + 27x^4
C48	9	C1	![Image](image10.png)	2083 + 3711x + 2258x^2 + 527x^3 + 36x^4
C48	10	C1	![Image](image11.png)	1818 + 3032x + 1750x^2 + 405x^3 + 30x^4
C48	11	C1	![Image](image12.png)	1826 + 3171x + 2003x^2 + 554x^3 + 57x^4 + x^5
C48	12	C1	![Image](image13.png)	1832 + 3227x + 2087x^2 + 611x^3 + 83x^4 + 5x^5
C48	13	C1	![Image](image14.png)	1616 + 2613x + 1461x^2 + 326x^3 + 21x^4
C48	14	C2	![Image](image15.png)	1678 + 2670x + 1401x^2 + 300x^3 + 28x^4
C48	15	D2h	![Image](image16.png)	1709 + 3276x + 2670x^2 + 1156x^3 + 280x^4 + 36x^5 + 2x^6
C48	16	D2	![Image](image17.png)	1610 + 2820x + 1967x^2 + 692x^3 + 140x^4 + 16x^5 + x^6
C48	17	C2v	![Image](image18.png)	1807 + 3342x + 2428x^2 + 828x^3 + 130x^4 + 8x^5
C48	18	C1	![Image](image19.png)	1645 + 2708x + 1584x^2 + 374x^3 + 29x^4
C48	19	C1	![Image](image20.png)	1722 + 2862x + 1701x^2 + 423x^3 + 37x^4
C48	20	C1	![Image](image21.png)	1744 + 2927x + 1757x^2 + 438x^3 + 38x^4
C48	21	C1	![Image](image22.png)	1904 + 3412x + 2323x^2 + 753x^3 + 119x^4 + 8x^5
C48	22	C1	![Image](image23.png)	1750 + 2904x + 1725x^2 + 430x^3 + 39x^4
Fullerene Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial	
------------------	----------	------------------	--------------	
C_{48}	23	C_1	$1655 + 2748x + 1636x^2 + 436x^3 + 55x^4 + 3x^5$	
C_{48}	24	C_2	$1882 + 3570x + 2754x^2 + 1104x^3 + 236x^4 + 22x^5$	
C_{48}	25	C_1	$1831 + 3184x + 2026x^2 + 568x^3 + 66x^4 + 2x^5$	
C_{48}	26	C_1	$1562 + 2470x + 1312x^2 + 265x^3 + 17x^4$	
C_{48}	27	C_2	$1754 + 3060x + 2028x^2 + 644x^3 + 102x^4 + 6x^5$	
C_{48}	28	C_1	$1758 + 2894x + 1653x^2 + 375x^3 + 27x^4$	
C_{48}	29	C_1	$1636 + 2622x + 1445x^2 + 311x^3 + 21x^4$	
C_{48}	30	C_1	$1695 + 2805x + 1619x^2 + 377x^3 + 30x^4$	
C_{48}	31	C_s	$1776 + 3096x + 2008x^2 + 612x^3 + 91x^4 + 6x^5$	
C_{48}	32	C_2	$2074 + 3596x + 2186x^2 + 554x^3 + 48x^4$	
C_{48}	33	C_1	$1867 + 3072x + 1748x^2 + 402x^3 + 30x^4$	
C_{48}	34	C_1	$1863 + 3090x + 1764x^2 + 398x^3 + 28x^4$	
C_{48}	35	C_1	$1784 + 2899x + 1607x^2 + 347x^3 + 26x^4$	
C_{48}	36	C_1	$1755 + 2839x + 1587x^2 + 369x^3 + 34x^4$	
C_{48}	37	C_2	$1853 + 3132x + 1897x^2 + 476x^3 + 38x^4$	
C_{48}	38	C_1	$1794 + 3101x + 2039x^2 + 594x^3 + 64x^4$	
C_{48}	39	C_s	$1808 + 2974x + 1725x^2 + 384x^3 + 20x^4$	
C_{48}	40	C_2	$1952 + 3374x + 2124x^2 + 570x^3 + 52x^4$	
C_{48}	41	D_{2h}	$1865 + 3368x + 2394x^2 + 772x^3 + 94x^4$	
C_{48}	42	C_1	$1810 + 3156x + 2129x^2 + 664x^3 + 80x^4$	
C_{48}	43	C_2	$1922 + 3434x + 2331x^2 + 710x^3 + 82x^4$	
C_{48}	44	C_1	$1796 + 3032x + 1910x^2 + 533x^3 + 53x^4$	
C_{48}	45	C_2	$1861 + 3260x + 2194x^2 + 678x^3 + 85x^4$	
Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
-----------	--------	----------	-----------------	--------------
C_{48}	46	C_2	![Image]	$1720 + 2852x + 1746x^2 + 462x^3 + 46x^4$
C_{48}	47	C_1	![Image]	$1830 + 3107x + 1945x^2 + 530x^3 + 55x^4 + x^5$
C_{48}	48	C_1	![Image]	$1661 + 2636x + 1457x^2 + 308x^3 + 17x^4$
C_{48}	49	C_1	![Image]	$1723 + 2784x + 1531x^2 + 325x^3 + 21x^4$
C_{48}	50	C_1	![Image]	$1730 + 2783x + 1554x^2 + 338x^3 + 19x^4$
C_{48}	51	C_1	![Image]	$1776 + 3044x + 2035x^2 + 689x^3 + 120x^4 + 8x^5$
C_{48}	52	C_1	![Image]	$1719 + 2786x + 1585x^2 + 363x^3 + 25x^4$
C_{48}	53	C_1	![Image]	$1638 + 2578x + 1435x^2 + 331x^3 + 27x^4$
C_{48}	54	C_1	![Image]	$1744 + 2989x + 1916x^2 + 550x^3 + 65x^4 + 2x^5$
C_{48}	55	C_1	![Image]	$1748 + 3046x + 2017x^2 + 604x^3 + 68x^4$
C_{48}	56	C_{2v}	![Image]	$1824 + 3252x + 2209x^2 + 680x^3 + 75x^4$
C_{48}	57	C_1	![Image]	$1821 + 3063x + 1764x^2 + 387x^3 + 24x^4$
C_{48}	58	C_2	![Image]	$1755 + 2948x + 1872x^2 + 564x^3 + 86x^4 + 6x^5$
C_{48}	59	C_2	![Image]	$1651 + 2640x + 1442x^2 + 298x^3 + 18x^4$
C_{48}	60	C_1	![Image]	$1772 + 2991x + 1932x^2 + 608x^3 + 96x^4 + 6x^5$
C_{48}	61	C_2	![Image]	$1609 + 2428x + 1208x^2 + 240x^3 + 25x^4$
C_{48}	62	C_s	![Image]	$1739 + 2864x + 1697x^2 + 426x^3 + 36x^4$
C_{48}	63	C_2	![Image]	$1718 + 2788x + 1665x^2 + 460x^3 + 58x^4 + 2x^5$
C_{48}	64	C_2	![Image]	$1556 + 2408x + 1280x^2 + 266x^3 + 19x^4$
C_{48}	65	C_1	![Image]	$1621 + 2600x + 1497x^2 + 361x^3 + 29x^4$
C_{48}	66	C_1	![Image]	$1581 + 2474x + 1322x^2 + 270x^3 + 15x^4$
C_{48}	67	C_1	![Image]	$1605 + 2475x + 1286x^2 + 250x^3 + 14x^4$
C_{48}	68	C_2	![Image]	$1561 + 2470x + 1358x^2 + 294x^3 + 20x^4$
Table 1. Cont.

Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
C_{48}	69	C_{1}	![C_{1} Schlegel Diagram](image)	1640 + 2636x + 1453x^2 + 320x^3 + 24x^4
C_{48}	70	C_{2}	![C_{2} Schlegel Diagram](image)	1486 + 2246x + 1083x^2 + 164x^3 + 4x^4
C_{48}	71	C_{1}	![C_{1} Schlegel Diagram](image)	1521 + 2259x + 1104x^2 + 197x^3 + 11x^4
C_{48}	72	C_{1}	![C_{1} Schlegel Diagram](image)	1526 + 2245x + 1058x^2 + 161x^3 + x^4
C_{48}	73	C_{1}	![C_{1} Schlegel Diagram](image)	1537 + 2352x + 1270x^2 + 288x^3 + 24x^4
C_{48}	74	C_{s}	![C_{s} Schlegel Diagram](image)	1590 + 2482x + 1348x^2 + 298x^3 + 21x^4
C_{48}	75	C_{s}	![C_{s} Schlegel Diagram](image)	1507 + 2261x + 1157x^2 + 236x^3 + 16x^4
C_{48}	76	C_{2}	![C_{2} Schlegel Diagram](image)	1785 + 2952x + 1693x^2 + 396x^3 + 34x^4
C_{48}	77	C_{1}	![C_{1} Schlegel Diagram](image)	1699 + 2673x + 1421x^2 + 287x^3 + 16x^4
C_{48}	78	C_{2}	![C_{2} Schlegel Diagram](image)	1733 + 2838x + 1677x^2 + 440x^3 + 52x^4 + 2x^5
C_{48}	79	C_{1}	![C_{1} Schlegel Diagram](image)	1696 + 2766x + 1613x^2 + 410x^3 + 46x^4 + 2x^5
C_{48}	80	C_{2h}	![C_{2h} Schlegel Diagram](image)	1732 + 2936x + 1898x^2 + 560x^3 + 66x^4
C_{48}	81	C_{2}	![C_{2} Schlegel Diagram](image)	1736 + 2888x + 1797x^2 + 492x^3 + 50x^4
C_{48}	82	C_{2}	![C_{2} Schlegel Diagram](image)	1724 + 2896x + 1868x^2 + 546x^3 + 61x^4
C_{48}	83	C_{2}	![C_{2} Schlegel Diagram](image)	1717 + 3012x + 2157x^2 + 758x^3 + 114x^4 + 2x^5
C_{48}	84	C_{2}	![C_{2} Schlegel Diagram](image)	1609 + 2558x + 1442x^2 + 318x^3 + 20x^4
C_{48}	85	C_{1}	![C_{1} Schlegel Diagram](image)	1634 + 2629x + 1574x^2 + 413x^3 + 42x^4
C_{48}	86	C_{1}	![C_{1} Schlegel Diagram](image)	1567 + 2483x + 1465x^2 + 384x^3 + 42x^4 + x^5
C_{48}	87	C_{1}	![C_{1} Schlegel Diagram](image)	1658 + 2712x + 1674x^2 + 463x^3 + 49x^4
C_{48}	88	C_{1}	![C_{1} Schlegel Diagram](image)	1566 + 2479x + 1455x^2 + 377x^3 + 38x^4
C_{48}	89	C_{s}	![C_{s} Schlegel Diagram](image)	1593 + 2527x + 1419x^2 + 325x^3 + 25x^4
C_{48}	90	C_{1}	![C_{1} Schlegel Diagram](image)	1576 + 2437x + 1307x^2 + 254x^3 + 5x^4
C_{48}	91	C_{1}	![C_{1} Schlegel Diagram](image)	1653 + 2858x + 2028x^2 + 722x^3 + 117x^4 + 5x^5
Table 1. Cont.

Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
C₄₈	92	C₁	![Diagram](image1)	1671 + 2855x + 1911x² + 601x³ + 74x⁴
C₄₈	93	C₁	![Diagram](image2)	1544 + 2450x + 1454x² + 377x³ + 37x⁴ + x⁵
C₄₈	94	C₁	![Diagram](image3)	1616 + 2650x + 1624x² + 446x³ + 47x⁴
C₄₈	95	C₂	![Diagram](image4)	1669 + 2848x + 1876x² + 574x³ + 70x⁴
C₄₈	96	C₅	![Diagram](image5)	1616 + 2588x + 1451x² + 312x³ + 18x⁴
C₄₈	97	C₂	![Diagram](image6)	1662 + 2786x + 1742x² + 484x³ + 52x⁴
C₄₈	98	C₁	![Diagram](image7)	1617 + 2528x + 1324x² + 248x³ + 10x⁴
C₄₈	99	C₁	![Diagram](image8)	1586 + 2481x + 1381x² + 318x³ + 25x⁴
C₄₈	100	C₁	![Diagram](image9)	1614 + 2547x + 1417x² + 328x³ + 27x⁴
C₄₈	101	C₁	![Diagram](image10)	1574 + 2423x + 1284x² + 273x³ + 21x⁴
C₄₈	102	C₁	![Diagram](image11)	1550 + 2417x + 1371x² + 342x³ + 40x⁴ + 2x⁵
C₄₈	103	C₁	![Diagram](image12)	1622 + 2599x + 1502x² + 358x³ + 27x⁴
C₄₈	104	C₁	![Diagram](image13)	1548 + 2467x + 1467x² + 386x³ + 38x⁴
C₄₈	105	C₁	![Diagram](image14)	1550 + 2450x + 1375x² + 322x³ + 28x⁴
C₄₈	106	C₁	![Diagram](image15)	1586 + 2616x + 1694x² + 530x³ + 75x⁴ + 3x⁵
C₄₈	107	C₂	![Diagram](image16)	1572 + 2352x + 1131x² + 194x³ + 12x⁴
C₄₈	108	C₁	![Diagram](image17)	1665 + 2791x + 1867x² + 654x³ + 121x⁴ + 8x⁵
C₄₈	109	C₁	![Diagram](image18)	1753 + 2875x + 1676x² + 413x³ + 40x⁴ + x⁵
C₄₈	110	C₁	![Diagram](image19)	1617 + 2613x + 1612x² + 495x³ + 78x⁴ + 5x⁵
C₄₈	111	C₁	![Diagram](image20)	1648 + 2762x + 1831x² + 626x³ + 113x⁴ + 8x⁵
C₄₈	112	C₁	![Diagram](image21)	1586 + 2450x + 1278x² + 258x³ + 16x⁴
C₄₈	113	C₁	![Diagram](image22)	1652 + 2669x + 1580x² + 424x³ + 47x⁴
C₄₈	114	C₁	![Diagram](image23)	1605 + 2455x + 1262x² + 248x³ + 14x⁴
Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
-----------	--------	----------	------------------	--------------
C_{48}	115	C_2	![Diagram](image)	$1648 + 2612x + 1462x^2 + 348x^3 + 38x^4 + 2x^5$
C_{48}	116	C_1	![Diagram](image)	$1574 + 2420x + 1299x^2 + 285x^3 + 23x^4 + x^5$
C_{48}	117	C_1	![Diagram](image)	$1552 + 2412x + 1342x^2 + 314x^3 + 24x^4$
C_{48}	118	C_1	![Diagram](image)	$1563 + 2456x + 1430x^2 + 380x^3 + 42x^4 + x^5$
C_{48}	119	C_1	![Diagram](image)	$1535 + 2354x + 1255x^2 + 276x^3 + 23x^4$
C_{48}	120	C_1	![Diagram](image)	$1637 + 2577x + 1417x^2 + 322x^3 + 26x^4$
C_{48}	121	C_1	![Diagram](image)	$1634 + 2710x + 1771x^2 + 582x^3 + 93x^4 + 5x^5$
C_{48}	122	C_2	![Diagram](image)	$1654 + 2656x + 1512x^2 + 356x^3 + 29x^4$
C_{48}	123	C_1	![Diagram](image)	$1670 + 2690x + 1539x^2 + 382x^3 + 39x^4 + x^5$
C_{48}	124	C_1	![Diagram](image)	$1492 + 2257x + 1178x^2 + 252x^3 + 24x^4 + x^5$
C_{48}	125	C_2	![Diagram](image)	$1536 + 2394x + 1288x^2 + 278x^3 + 22x^4$
C_{48}	126	C_1	![Diagram](image)	$1611 + 2571x + 1414x^2 + 299x^3 + 18x^4$
C_{48}	127	C_1	![Diagram](image)	$1544 + 2482x + 1499x^2 + 416x^3 + 46x^4$
C_{48}	128	C_1	![Diagram](image)	$1584 + 2525x + 1452x^2 + 359x^3 + 33x^4$
C_{48}	129	C_1	![Diagram](image)	$1446 + 2138x + 1049x^2 + 185x^3 + 7x^4$
C_{48}	130	C_1	![Diagram](image)	$1648 + 2666x + 1588x^2 + 407x^3 + 38x^4$
C_{48}	131	C_1	![Diagram](image)	$1594 + 2553x + 1520x^2 + 389x^3 + 35x^4$
C_{48}	132	C_1	![Diagram](image)	$1572 + 2338x + 1118x^2 + 166x^3 + 2x^4$
C_{48}	133	C_1	![Diagram](image)	$1674 + 2817x + 1849x^2 + 574x^3 + 73x^4$
C_{48}	134	C_2	![Diagram](image)	$1672 + 2698x + 1561x^2 + 374x^3 + 31x^4$
C_{48}	135	C_1	![Diagram](image)	$1616 + 2668x + 1689x^2 + 490x^3 + 55x^4$
C_{48}	136	C_s	![Diagram](image)	$1678 + 2731x + 1596x^2 + 387x^3 + 31x^4$
Table 1. Cont.

Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
C₄₈ 137	C₂	1637 + 2646x + 1571x² + 400x³ + 36x⁴		
C₄₈ 138	C_{2v}	1702 + 2936x + 2005x² + 650x³ + 85x⁴		
C₄₈ 139	C₁	1578 + 2550x + 1575x² + 439x³ + 46x⁴		
C₄₈ 140	C₁	1600 + 2605x + 1598x² + 445x³ + 53x⁴ + 2x⁵		
C₄₈ 141	C_s	1565 + 2542x + 1608x² + 492x³ + 70x⁴ + 3x⁵		
C₄₈ 142	C_s	1570 + 2358x + 1158x² + 200x³ + 5x⁴		
C₄₈ 143	C₁	1812 + 3164x + 2170x² + 716x³ + 101x⁴ + 2x⁵		
C₄₈ 144	D₂	1892 + 3172x + 1873x² + 448x³ + 35x⁴		
C₄₈ 145	C₁	1544 + 2407x + 1310x² + 271x³ + 13x⁴		
C₄₈ 146	C₁	1631 + 2657x + 1574x² + 400x³ + 37x⁴		
C₄₈ 147	C₁	1521 + 2221x + 1016x² + 146x³		
C₄₈ 148	C_s	1626 + 2701x + 1673x² + 463x³ + 51x⁴		
C₄₈ 149	C₁	1598 + 2680x + 1755x² + 544x³ + 68x⁴		
C₄₈ 150	C₁	1606 + 2710x + 1792x² + 564x³ + 72x⁴		
C₄₈ 151	C₁	1482 + 2208x + 1091x² + 183x³ + 2x⁴		
C₄₈ 152	C₂	1609 + 2672x + 1703x² + 510x³ + 64x⁴		
C₄₈ 153	C₂	1660 + 2754x + 1680x² + 448x³ + 44x⁴		
C₄₈ 154	C₁	1579 + 2397x + 1219x² + 246x³ + 17x⁴		
C₄₈ 155	C₁	1554 + 2351x + 1188x² + 233x³ + 15x⁴		
C₄₈ 156	C₁	1541 + 2422x + 1354x² + 304x³ + 19x⁴		
C₄₈ 157	C₂	1685 + 2660x + 1487x² + 356x³ + 33x⁴		
C₄₈ 158	C₂	1502 + 2332x + 1341x² + 320x³ + 21x⁴		
C₄₈ 159	C₁	1562 + 2478x + 1481x² + 405x³ + 52x⁴ + 3x⁵		
C₄₈ 160	C₂	1702 + 3102x + 2477x² + 1068x³ + 239x⁴ + 22x⁵		
Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
-----------	--------	----------	------------------	--------------
C_{48}	161	C_2	![Diagram](image)	$1722 + 3140x + 2491x^2 + 1082x^3 + 255x^4 + 26x^5$
C_{48}	162	C_1	![Diagram](image)	$1562 + 2559x + 1674x^2 + 532x^3 + 78x^4 + 4x^5$
C_{48}	163	C_2	![Diagram](image)	$1654 + 2868x + 2067x^2 + 770x^3 + 147x^4 + 12x^5$
C_{48}	164	C_1	![Diagram](image)	$1606 + 2555x + 1492x^2 + 375x^3 + 36x^4 + x^5$
C_{48}	165	C_1	![Diagram](image)	$1516 + 2406x + 1421x^2 + 360x^3 + 30x^4$
C_{48}	166	C_2	![Diagram](image)	$1583 + 2670x + 1859x^2 + 714x^3 + 165x^4 + 20x^5 + x^6$
C_{48}	167	C_1	![Diagram](image)	$1495 + 2374x + 1431x^2 + 400x^3 + 49x^4 + 2x^5$
C_{48}	168	C_s	![Diagram](image)	$1568 + 2584x + 1738x^2 + 623x^3 + 125x^4 + 10x^5$
C_{48}	169	D_2	![Diagram](image)	$1532 + 2384x + 1403x^2 + 384x^3 + 49x^4$
C_{48}	170	C_2	![Diagram](image)	$1576 + 2662x + 1915x^2 + 786x^3 + 196x^4 + 24x^5 + x^6$
C_{48}	171	C_2	![Diagram](image)	$1513 + 2440x + 1517x^2 + 424x^3 + 44x^4$
C_{48}	172	C_1	![Diagram](image)	$1544 + 2392x + 1351x^2 + 317x^3 + 23x^4$
C_{48}	173	C_1	![Diagram](image)	$1611 + 2700x + 1843x^2 + 645x^3 + 115x^4 + 8x^5$
C_{48}	174	C_1	![Diagram](image)	$1526 + 2284x + 1167x^2 + 220x^3 + 11x^4$
C_{48}	175	C_2	![Diagram](image)	$1590 + 2582x + 1655x^2 + 528x^3 + 87x^4 + 6x^5$
C_{48}	176	C_1	![Diagram](image)	$1520 + 2366x + 1370x^2 + 344x^3 + 31x^4$
C_{48}	177	C_2	![Diagram](image)	$1584 + 2518x + 1497x^2 + 400x^3 + 46x^4$
C_{48}	178	C_1	![Diagram](image)	$1494 + 2239x + 1160x^2 + 226x^3 + 13x^4$
C_{48}	179	C_1	![Diagram](image)	$1477 + 2175x + 1088x^2 + 195x^3 + 8x^4$
C_{48}	180	C_2	![Diagram](image)	$1581 + 2586x + 1687x^2 + 550x^3 + 91x^4 + 6x^5$
C_{48}	181	C_1	![Diagram](image)	$1556 + 2365x + 1257x^2 + 253x^3 + 13x^4$
C_{48}	182	C_1	![Diagram](image)	$1596 + 2498x + 1419x^2 + 336x^3 + 30x^4 + x^5$
C_{48}	183	C_2	![Diagram](image)	$1508 + 2350x + 1345x^2 + 330x^3 + 29x^4$
C_{48}	184	C_s	![Diagram](image)	$1559 + 2427x + 1364x^2 + 308x^3 + 20x^4$
Table 1. Cont.

Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
C₄₈	185	C₂	![C₄₈_C2_Schlegel](image1)	1502 + 2380x + 1424x² + 384x³ + 40x⁴
C₄₈	186	D₆d	![C₄₈_D6d_Schlegel](image2)	1666 + 2992x + 2424x² + 1184x³ + 365x⁴ + 60x⁵ + 4x⁶
C₄₈	187	C₅	![C₄₈_C5_Schlegel](image3)	1497 + 2399x + 1467x² + 431x³ + 63x⁴ + 4x⁵
C₄₈	188	D₃	![C₄₈_D3_Schlegel](image4)	1575 + 2710x + 1914x² + 724x³ + 157x⁴ + 18x⁵ + x⁶
C₄₈	189	D₆d	![C₄₈_D6d_Schlegel](image5)	1782 + 2672x + 1268x² + 216x³ + 12x⁴
C₄₈	190	C₂	![C₄₈_C2_Schlegel](image6)	1644 + 2548x + 1369x² + 292x³ + 24x⁴
C₄₈	191	C₂	![C₄₈_C2_Schlegel](image7)	1621 + 2638x + 1653x² + 484x³ + 65x⁴ + 2x⁵
C₄₈	192	C₂	![C₄₈_C2_Schlegel](image8)	1510 + 2356x + 1380x² + 352x³ + 31x⁴
C₄₈	193	C₁	![C₄₈_C1_Schlegel](image9)	1532 + 2410x + 1427x² + 376x³ + 39x⁴
C₄₈	194	C₂	![C₄₈_C2_Schlegel](image10)	1466 + 2192x + 1157x² + 234x³ + 9x⁴
C₄₈	195	C₁	![C₄₈_C1_Schlegel](image11)	1460 + 2216x + 1180x² + 239x³ + 8x⁴
C₄₈	196	C₁	![C₄₈_C1_Schlegel](image12)	1560 + 2636x + 1781x² + 578x³ + 77x⁴
C₄₈	197	C₅	![C₄₈_C5_Schlegel](image13)	1585 + 2711x + 1908x² + 685x³ + 117x⁴ + 6x⁵
C₄₈	198	D₂	![C₄₈_D2_Schlegel](image14)	1576 + 2536x + 1563x² + 444x³ + 53x⁴
C₄₈	199	C₂	![C₄₈_C2_Schlegel](image15)	1568 + 2660x + 1802x² + 588x³ + 79x⁴
C₅₀	1	D₅₆h	![C₅₀_D5h_Schlegel](image16)	3376 + 6310x + 3785x² + 730x³
C₅₀	2	C₂	![C₅₀_C2_Schlegel](image17)	2105 + 3618x + 2292x² + 732x³ + 119x⁴ + 8x⁵
C₅₀	3	D₅₆h	![C₅₀_D5h_Schlegel](image18)	3276 + 6624x + 4932x² + 1734x³ + 303x⁴ + 18x⁵
C₅₀	4	C₅	![C₅₀_C5_Schlegel](image19)	2293 + 4192x + 2788x² + 771x³ + 73x⁴
C₅₀	5	C₅	![C₅₀_C5_Schlegel](image20)	2263 + 4039x + 2551x² + 638x³ + 50x⁴
C₅₀	6	C₂	![C₅₀_C2_Schlegel](image21)	2342 + 4116x + 2358x² + 429x³
C₅₀	7	C₁	![C₅₀_C1_Schlegel](image22)	2579 + 5123x + 3904x² + 1399x³ + 223x⁴ + 12x⁵
C₅₀	8	C₅	![C₅₀_C5_Schlegel](image23)	2330 + 4211x + 2698x² + 697x³ + 59x⁴
C₅₀	9	C₁	![C₅₀_C1_Schlegel](image24)	2468 + 4452x + 2801x² + 720x³ + 70x⁴ + 2x⁵
Fullerene Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial	
------------------	----------	-----------------	---------------	
C$_{50}$	10	C$_1$	2432 + 4332x + 2650x2 + 636x3 + 49x4	
C$_{50}$	11	C$_1$	2663 + 5030x + 3395x2 + 988x3 + 117x4 + 3x5	
C$_{50}$	12	C$_1$	2403 + 4233x + 2563x2 + 608x3 + 44x4	
C$_{50}$	13	C$_{2v}$	2719 + 5606x + 4601x2 + 1896x3 + 359x4 + 22x5	
C$_{50}$	14	C$_1$	2515 + 4751x + 3320x2 + 1068x3 + 154x4 + 7x5	
C$_{50}$	15	C$_1$	2293 + 4116x + 2647x2 + 734x3 + 80x4 + 2x5	
C$_{50}$	16	C$_1$	2320 + 4262x + 2922x2 + 969x3 + 160x4 + 11x5	
C$_{50}$	17	C$_1$	2152 + 3689x + 2176x2 + 530x3 + 52x4	
C$_{50}$	18	C$_2$	2340 + 4308x + 2924x2 + 878x3 + 114x4 + 5x5	
C$_{50}$	19	C$_1$	2201 + 3825x + 2376x2 + 624x3 + 64x4 + 2x5	
C$_{50}$	20	C$_1$	2326 + 4180x + 2738x2 + 776x3 + 85x4 + 3x5	
C$_{50}$	21	C$_1$	2316 + 4144x + 2697x2 + 780x3 + 102x4 + 5x5	
C$_{50}$	22	C$_1$	2541 + 4820x + 3478x2 + 1222x3 + 216x4 + 16x5	
C$_{50}$	23	C$_1$	2348 + 4306x + 2998x2 + 993x3 + 159x4 + 10x5	
C$_{50}$	24	C$_2$	2431 + 4644x + 3365x2 + 1142x3 + 172x4 + 8x5	
C$_{50}$	25	C$_1$	2335 + 4348x + 3073x2 + 1034x3 + 166x4 + 10x5	
C$_{50}$	26	C$_1$	2488 + 4689x + 3338x2 + 1138x3 + 189x4 + 12x5	
C$_{50}$	27	C$_2$	2278 + 4137x + 2767x2 + 870x3 + 141x4 + 10x5	
C$_{50}$	28	C$_1$	2162 + 3789x + 2384x2 + 656x3 + 77x4 + 2x5	
C$_{50}$	29	C$_1$	2258 + 4014x + 2665x2 + 826x3 + 119x4 + 6x5	
C$_{50}$	30	C$_1$	2252 + 3956x + 2551x2 + 761x3 + 109x4 + 6x5	
C$_{50}$	31	C$_1$	2206 + 3752x + 2252x2 + 567x3 + 60x4 + 3x5	
C$_{50}$	32	C$_s$	2243 + 3835x + 2234x2 + 490x3 + 28x4	
C$_{50}$	33	C$_s$	2277 + 3895x + 2334x2 + 568x3 + 47x4	
Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
-----------	--------	----------	------------------	-------------------------
C_{50}	34	C_1		2468 + 4323x + 2617x^2 + 643x^3 + 56x^4 + x^5
C_{50}	35	C_1		2478 + 4335x + 2617x^2 + 621x^3 + 44x^4
C_{50}	36	C_1		2387 + 4239x + 2685x^2 + 712x^3 + 69x^4 + x^5
C_{50}	37	C_1		2571 + 4598x + 2958x^2 + 832x^3 + 94x^4 + 2x^5
C_{50}	38	C_1		2565 + 4790x + 3337x^2 + 1062x^3 + 148x^4 + 6x^5
C_{50}	39	C_1		2355 + 4124x + 2608x^2 + 683x^3 + 59x^4
C_{50}	40	C_1		2306 + 4144x + 2796x^2 + 827x^3 + 89x^4
C_{50}	41	C_1		2383 + 4281x + 2841x^2 + 863x^3 + 114x^4 + 3x^5
C_{50}	42	C_5		2304 + 4058x + 2626x^2 + 728x^3 + 70x^4
C_{50}	43	C_{2v}		2436 + 4474x + 3058x^2 + 902x^3 + 96x^4 + 2x^5
C_{50}	44	C_1		2374 + 4188x + 2708x^2 + 755x^3 + 75x^4
C_{50}	45	C_1		2592 + 4824x + 3335x^2 + 1049x^3 + 142x^4 + 6x^5
C_{50}	46	C_1		2374 + 4337x + 3039x^2 + 1003x^3 + 154x^4 + 8x^5
C_{50}	47	C_1		2326 + 4117x + 2676x^2 + 753x^3 + 79x^4
C_{50}	48	C_1		2253 + 3799x + 2163x^2 + 457x^3 + 22x^4
C_{50}	49	C_1		2174 + 3619x + 2107x^2 + 504x^3 + 44x^4
C_{50}	50	C_1		2306 + 4133x + 2834x^2 + 958x^3 + 167x^4 + 12x^5
C_{50}	51	C_1		2402 + 4345x + 2912x^2 + 879x^3 + 112x^4 + 5x^5
C_{50}	52	C_1		2444 + 4609x + 3494x^2 + 1383x^3 + 287x^4 + 23x^5
C_{50}	53	C_1		2364 + 4355x + 3100x^2 + 1059x^3 + 172x^4 + 10x^5
C_{50}	54	C_1		2264 + 3964x + 2515x^2 + 671x^3 + 60x^4
C_{50}	55	C_1		2498 + 4952x + 4040x^2 + 1696x^3 + 359x^4 + 29x^5
C_{50}	56	C_1		2308 + 4050x + 2491x^2 + 642x^3 + 65x^4 + 2x^5
C_{50}	57	C_1		2500 + 4587x + 3095x^2 + 912x^3 + 107x^4 + 4x^5
Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
-----------	--------	----------	------------------	--------------
C_{50}	58	C_1		$2556 + 4922 x + 3751 x^2 + 1425 x^3 + 269 x^4 + 18 x^5$
C_{50}	59	C_1		$2412 + 4516 x + 3244 x^2 + 1113 x^3 + 181 x^4 + 10 x^5$
C_{50}	60	C_1		$2320 + 4104 x + 2573 x^2 + 645 x^3 + 54 x^4 + x^5$
C_{50}	61	C_2		$2630 + 5113 x + 3759 x^2 + 1252 x^3 + 170 x^4 + 6 x^5$
C_{50}	62	C_1		$2344 + 4181 x + 2730 x^2 + 783 x^3 + 91 x^4 + 3 x^5$
C_{50}	63	C_1		$2268 + 4012 x + 2675 x^2 + 829 x^3 + 119 x^4 + 6 x^5$
C_{50}	64	C_2		$2157 + 3610 x + 2141 x^2 + 531 x^3 + 57 x^4 + 3 x^5$
C_{50}	65	C_1		$2314 + 4006 x + 2426 x^2 + 598 x^3 + 50 x^4$
C_{50}	66	C_1		$2439 + 4464 x + 3072 x^2 + 966 x^3 + 130 x^4 + 5 x^5$
C_{50}	67	C_2		$2959 + 5671 x + 3988 x^2 + 1281 x^3 + 187 x^4 + 8 x^5$
C_{50}	68	C_1		$2282 + 4014 x + 2623 x^2 + 826 x^3 + 132 x^4 + 7 x^5$
C_{50}	69	C_5		$2496 + 4519 x + 3030 x^2 + 917 x^3 + 108 x^4$
C_{50}	70	C_1		$2332 + 4137 x + 2704 x^2 + 804 x^3 + 102 x^4 + 3 x^5$
C_{50}	71	C_1		$2332 + 4083 x + 2469 x^2 + 590 x^3 + 46 x^4 + x^5$
C_{50}	72	C_5		$2352 + 4216 x + 2805 x^2 + 826 x^3 + 90 x^4$
C_{50}	73	C_1		$2383 + 4293 x + 2909 x^2 + 943 x^3 + 147 x^4 + 8 x^5$
C_{50}	74	C_2		$2088 + 3582 x + 2257 x^2 + 640 x^3 + 81 x^4 + 5 x^5$
C_{50}	75	C_1		$2204 + 3755 x + 2242 x^2 + 545 x^3 + 45 x^4$
C_{50}	76	C_1		$2196 + 3735 x + 2220 x^2 + 525 x^3 + 38 x^4$
C_{50}	77	C_1		$2182 + 3676 x + 2192 x^2 + 548 x^3 + 49 x^4$
C_{50}	78	C_2		$2120 + 3632 x + 2201 x^2 + 564 x^3 + 57 x^4 + x^5$
C_{50}	79	C_1		$2250 + 3908 x + 2365 x^2 + 587 x^3 + 54 x^4 + x^5$
C_{50}	80	C_2		$1983 + 3241 x + 1767 x^2 + 351 x^3 + 16 x^4$
C_{50}	81	C_1		$2043 + 3329 x + 1860 x^2 + 421 x^3 + 39 x^4 + 2 x^5$
Table 1. Cont.

Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
C_{50}	82	C_1	![Diagram](image)	$2069 + 3457x + 2120x^2 + 594x^3 + 76x^4 + 4x^5$
C_{50}	83	C_1	![Diagram](image)	$2090 + 3508x + 2171x^2 + 631x^3 + 92x^4 + 6x^5$
C_{50}	84	C_1	![Diagram](image)	$2093 + 3408x + 1874x^2 + 393x^3 + 23x^4$
C_{50}	85	C_1	![Diagram](image)	$2124 + 3601x + 2236x^2 + 621x^3 + 70x^4$
C_{50}	86	C_s	![Diagram](image)	$2214 + 3761x + 2183x^2 + 474x^3 + 23x^4$
C_{50}	87	C_1	![Diagram](image)	$2089 + 3527x + 2174x^2 + 607x^3 + 81x^4 + 5x^5$
C_{50}	88	C_s	![Diagram](image)	$2120 + 3607x + 2281x^2 + 669x^3 + 83x^4$
C_{50}	89	C_1	![Diagram](image)	$2067 + 3410x + 1934x^2 + 432x^3 + 31x^4$
C_{50}	90	C_1	![Diagram](image)	$2052 + 3274x + 1700x^2 + 309x^3 + 14x^4$
C_{50}	91	C_s	![Diagram](image)	$2106 + 3499x + 2071x^2 + 523x^3 + 49x^4$
C_{50}	92	C_s	![Diagram](image)	$2240 + 3773x + 2141x^2 + 446x^3 + 21x^4$
C_{50}	93	C_2	![Diagram](image)	$2450 + 4370x + 2767x^2 + 732x^3 + 69x^4 + x^5$
C_{50}	94	C_1	![Diagram](image)	$2262 + 3844x + 2249x^2 + 523x^3 + 40x^4$
C_{50}	95	C_2	![Diagram](image)	$2264 + 3806x + 2145x^2 + 443x^3 + 21x^4$
C_{50}	96	C_1	![Diagram](image)	$2299 + 3902x + 2337x^2 + 586x^3 + 52x^4$
C_{50}	97	C_1	![Diagram](image)	$2215 + 3793x + 2354x^2 + 607x^3 + 53x^4$
C_{50}	98	C_1	![Diagram](image)	$2206 + 3826x + 2464x^2 + 677x^3 + 62x^4$
C_{50}	99	C_1	![Diagram](image)	$2231 + 3775x + 2286x^2 + 555x^3 + 40x^4$
C_{50}	100	C_s	![Diagram](image)	$2208 + 3848x + 2523x^2 + 726x^3 + 73x^4$
C_{50}	101	C_1	![Diagram](image)	$2101 + 3573x + 2254x^2 + 617x^3 + 61x^4$
C_{50}	102	C_1	![Diagram](image)	$2104 + 3514x + 2097x^2 + 512x^3 + 42x^4$
C_{50}	103	C_1	![Diagram](image)	$2110 + 3521x + 2061x^2 + 480x^3 + 30x^4$
C_{50}	104	C_1	![Diagram](image)	$2116 + 3710x + 2523x^2 + 800x^3 + 103x^4 + 2x^5$
C_{50}	105	C_1	![Diagram](image)	$2163 + 3883x + 2771x^2 + 985x^3 + 172x^4 + 11x^5$
Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
-----------	--------	----------	------------------	--------------
C_{50}	106	C_1	![Diagram](#)	2268 + 4043x + 2705x^2 + 822x^3 + 110x^4 + 6x^5
C_{50}	107	C_1	![Diagram](#)	2250 + 4144x + 3083x^2 + 1169x^3 + 226x^4 + 18x^5
C_{50}	108	C_2	![Diagram](#)	2168 + 3905x + 2759x^2 + 956x^3 + 164x^4 + 11x^5
C_{50}	109	C_1	![Diagram](#)	2142 + 3643x + 2243x^2 + 585x^3 + 53x^4
C_{50}	110	C_1	![Diagram](#)	2305 + 4211x + 2991x^2 + 1039x^3 + 181x^4 + 12x^5
C_{50}	111	C_1	![Diagram](#)	2277 + 4183x + 3038x^2 + 1094x^3 + 197x^4 + 14x^5
C_{50}	112	C_1	![Diagram](#)	2149 + 3619x + 2142x^2 + 503x^3 + 37x^4
C_{50}	113	C_1	![Diagram](#)	2281 + 3947x + 2427x^2 + 608x^3 + 53x^4 + 2x^5
C_{50}	114	C_1	![Diagram](#)	2235 + 3945x + 2637x^2 + 803x^3 + 101x^4 + 2x^5
C_{50}	115	C_1	![Diagram](#)	2167 + 3802x + 2471x^2 + 693x^3 + 69x^4
C_{50}	116	C_2	![Diagram](#)	2211 + 3961x + 2676x^2 + 817x^3 + 108x^4 + 5x^5
C_{50}	117	C_1	![Diagram](#)	2129 + 3674x + 2353x^2 + 661x^3 + 68x^4
C_{50}	118	C_1	![Diagram](#)	2161 + 3634x + 2153x^2 + 505x^3 + 36x^4
C_{50}	119	C_1	![Diagram](#)	2156 + 3633x + 2202x^2 + 549x^3 + 45x^4
C_{50}	120	C_1	![Diagram](#)	2136 + 3661x + 2346x^2 + 670x^3 + 78x^4 + 2x^5
C_{50}	121	C_1	![Diagram](#)	2148 + 3856x + 2778x^2 + 1008x^3 + 184x^4 + 13x^5
C_{50}	122	C_1	![Diagram](#)	2119 + 3712x + 2549x^2 + 879x^3 + 161x^4 + 13x^5
C_{50}	123	C_1	![Diagram](#)	2055 + 3458x + 2149x^2 + 579x^3 + 60x^4 + 2x^5
C_{50}	124	C_1	![Diagram](#)	2166 + 3645x + 2149x^2 + 501x^3 + 32x^4
C_{50}	125	C_{2v}	![Diagram](#)	2491 + 4304x + 2508x^2 + 564x^3 + 40x^4
C_{50}	126	C_1	![Diagram](#)	2141 + 3517x + 1995x^2 + 451x^3 + 33x^4
C_{50}	127	C_1	![Diagram](#)	2132 + 3546x + 2134x^2 + 574x^3 + 70x^4 + 3x^5
C_{50}	128	C_1	![Diagram](#)	2108 + 3496x + 2076x^2 + 547x^3 + 69x^4 + 3x^5
C_{50}	129	C_1	![Diagram](#)	2200 + 3658x + 2104x^2 + 488x^3 + 38x^4
Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
-----------	--------	----------	------------------	-------------------------------------
C_{50}	130	C_1		2143 + 3600x + 2175x^2 + 575x^3 + 61x^4
C_{50}	131	C_1		2226 + 3693x + 2021x^2 + 375x^3 + 8x^4
C_{50}	132	C_1		2242 + 3905x + 2518x^2 + 752x^3 + 104x^4 + 5x^5
C_{50}	133	C_1		2142 + 3619x + 2214x^2 + 578x^3 + 54x^4
C_{50}	134	C_1		2261 + 3828x + 2254x^2 + 538x^3 + 44x^4
C_{50}	135	C_1		2135 + 3707x + 2481x^2 + 815x^3 + 135x^4 + 9x^5
C_{50}	136	C_1		2171 + 3643x + 2161x^2 + 547x^3 + 58x^4 + 2x^5
C_{50}	137	C_1		2141 + 3679x + 2372x^2 + 714x^3 + 96x^4 + 4x^5
C_{50}	138	C_2		2281 + 4019x + 2593x^2 + 764x^3 + 107x^4 + 6x^5
C_{50}	139	C_1		2144 + 3672x + 2338x^2 + 682x^3 + 91x^4 + 4x^5
C_{50}	140	C_1		2172 + 3694x + 2310x^2 + 650x^3 + 80x^4 + 3x^5
C_{50}	141	C_1		2154 + 3673x + 2306x^2 + 648x^3 + 79x^4 + 3x^5
C_{50}	142	C_1		2229 + 3844x + 2433x^2 + 688x^3 + 84x^4 + 3x^5
C_{50}	143	C_1		2103 + 3508x + 2050x^2 + 470x^3 + 32x^4
C_{50}	144	C_1		2025 + 3310x + 1911x^2 + 445x^3 + 32x^4
C_{50}	145	C_1		2054 + 3424x + 2058x^2 + 536x^3 + 59x^4 + 2x^5
C_{50}	146	C_1		2078 + 3434x + 1984x^2 + 446x^3 + 25x^4
C_{50}	147	C_1		2051 + 3425x + 2060x^2 + 527x^3 + 50x^4
C_{50}	148	C_1		2107 + 3455x + 1905x^2 + 386x^3 + 20x^4
C_{50}	149	C_1		2107 + 3571x + 2118x^2 + 497x^3 + 33x^4
C_{50}	150	C_1		2013 + 3352x + 2013x^2 + 516x^3 + 49x^4 + x^5
C_{50}	151	C_1		2177 + 3764x + 2315x^2 + 597x^3 + 61x^4 + 3x^5
C_{50}	152	C_1		2070 + 3505x + 2143x^2 + 577x^3 + 69x^4 + 3x^5
C_{50}	153	C_1		2102 + 3832x + 2844x^2 + 1113x^3 + 233x^4 + 20x^5
Table 1. Cont.

Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
C\textsubscript{50}	154	C\textsubscript{1}		2121 + 3726x + 2481x^2 + 790x^3 + 124x^4 + 8x^5
C\textsubscript{50}	155	C\textsubscript{1}		1998 + 3325x + 1963x^2 + 490x^3 + 45x^4
C\textsubscript{50}	156	C\textsubscript{2}		2153 + 3817x + 2490x^2 + 747x^3 + 105x^4 + 5x^5
C\textsubscript{50}	157	C\textsubscript{3r}		2160 + 3678x + 2040x^2 + 354x^3
C\textsubscript{50}	158	C\textsubscript{s}		2153 + 3881x + 2724x^2 + 966x^3 + 180x^4 + 14x^5
C\textsubscript{50}	159	C\textsubscript{1}		2093 + 3367x + 1778x^2 + 330x^3 + 11x^4
C\textsubscript{50}	160	C\textsubscript{1}		2164 + 3550x + 1919x^2 + 367x^3 + 13x^4
C\textsubscript{50}	161	C\textsubscript{1}		2157 + 3628x + 2145x^2 + 545x^3 + 62x^4 + 4x^5
C\textsubscript{50}	162	C\textsubscript{s}		2166 + 3689x + 2250x^2 + 614x^3 + 83x^4 + 6x^5
C\textsubscript{50}	163	C\textsubscript{1}		2304 + 4148x + 2869x^2 + 962x^3 + 163x^4 + 11x^5
C\textsubscript{50}	164	C\textsubscript{1}		2192 + 3869x + 2618x^2 + 844x^3 + 131x^4 + 7x^5
C\textsubscript{50}	165	C\textsubscript{1}		2188 + 3703x + 2225x^2 + 538x^3 + 39x^4
C\textsubscript{50}	166	C\textsubscript{1}		2241 + 4003x + 2778x^2 + 935x^3 + 152x^4 + 8x^5
C\textsubscript{50}	167	C\textsubscript{2}		2334 + 4150x + 2718x^2 + 790x^3 + 102x^4 + 6x^5
C\textsubscript{50}	168	C\textsubscript{s}		2300 + 3906x + 2342x^2 + 553x^3 + 35x^4
C\textsubscript{50}	169	C\textsubscript{1}		2112 + 3539x + 2144x^2 + 542x^3 + 46x^4
C\textsubscript{50}	170	C\textsubscript{1}		2106 + 3603x + 2316x^2 + 666x^3 + 73x^4
C\textsubscript{50}	171	C\textsubscript{1}		2198 + 3763x + 2314x^2 + 576x^3 + 43x^4
C\textsubscript{50}	172	C\textsubscript{1}		2247 + 4072x + 2912x^2 + 1023x^3 + 176x^4 + 12x^5
C\textsubscript{50}	173	C\textsubscript{1}		2233 + 4009x + 2798x^2 + 933x^3 + 145x^4 + 8x^5
C\textsubscript{50}	174	C\textsubscript{1}		2120 + 3623x + 2299x^2 + 633x^3 + 64x^4
C\textsubscript{50}	175	C\textsubscript{2}		2300 + 4003x + 2534x^2 + 688x^3 + 72x^4 + 2x^5
C\textsubscript{50}	176	C\textsubscript{1}		2247 + 3850x + 2315x^2 + 557x^3 + 44x^4
C\textsubscript{50}	177	C\textsubscript{1}		2259 + 4145x + 3005x^2 + 1079x^3 + 197x^4 + 17x^5
Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
-----------	--------	----------	------------------	--------------
C\textsubscript{50}	178	C\textsubscript{1}		2255 + 3990x + 2596x2 + 731x3 + 78x4 + 2x5
C\textsubscript{50}	179	C\textsubscript{2v}		2289 + 4196x + 2965x2 + 974x3 + 141x4 + 8x5
C\textsubscript{50}	180	C\textsubscript{2}		2401 + 4228x + 2734x2 + 779x3 + 92x4 + 3x5
C\textsubscript{50}	181	D\textsubscript{3}		2178 + 3672x + 2124x2 + 438x3 + 12x4
C\textsubscript{50}	182	C\textsubscript{1}		2165 + 3771x + 2460x2 + 726x3 + 92x4 + 4x5
C\textsubscript{50}	183	C\textsubscript{1}		2052 + 3429x + 2067x2 + 524x3 + 45x4
C\textsubscript{50}	184	C\textsubscript{1}		2194 + 4006x + 2903x2 + 1055x3 + 192x4 + 14x5
C\textsubscript{50}	185	C\textsubscript{5}		2163 + 3638x + 2072x2 + 428x3 + 18x4
C\textsubscript{50}	186	C\textsubscript{1}		2240 + 4037x + 2771x2 + 894x3 + 133x4 + 7x5
C\textsubscript{50}	187	C\textsubscript{1}		2108 + 3594x + 2232x2 + 598x3 + 63x4 + 2x5
C\textsubscript{50}	188	C\textsubscript{1}		2226 + 4051x + 2896x2 + 1018x3 + 176x4 + 12x5
C\textsubscript{50}	189	C\textsubscript{1}		2210 + 4039x + 2923x2 + 1051x3 + 187x4 + 13x5
C\textsubscript{50}	190	C\textsubscript{1}		2173 + 3723x + 2293x2 + 600x3 + 62x4 + 2x5
C\textsubscript{50}	191	C\textsubscript{1}		2156 + 3887x + 2783x2 + 1015x3 + 194x4 + 15x5
C\textsubscript{50}	192	C\textsubscript{1}		2115 + 3579x + 2158x2 + 541x3 + 48x4
C\textsubscript{50}	193	C\textsubscript{1}		2109 + 3570x + 2216x2 + 639x3 + 88x4 + 5x5
C\textsubscript{50}	194	C\textsubscript{1}		2145 + 3586x + 2135x2 + 563x3 + 68x4 + 4x5
C\textsubscript{50}	195	C\textsubscript{1}		2224 + 4032x + 2835x2 + 980x3 + 169x4 + 12x5
C\textsubscript{50}	196	C\textsubscript{1}		2048 + 3381x + 1953x2 + 465x3 + 40x4
C\textsubscript{50}	197	C\textsubscript{1}		2149 + 3672x + 2265x2 + 591x3 + 53x4
C\textsubscript{50}	198	C\textsubscript{1}		2126 + 3659x + 2322x2 + 644x3 + 65x4
C\textsubscript{50}	199	C\textsubscript{1}		2196 + 4006x + 2886x2 + 1020x3 + 171x4 + 10x5
C\textsubscript{50}	200	C\textsubscript{1}		2101 + 3642x + 2349x2 + 665x3 + 69x4
C\textsubscript{50}	201	C\textsubscript{1}		2098 + 3653x + 2394x2 + 701x3 + 76x4
Table 1. Cont.

Fullerene Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
C_{50} 202	C_1	![Symmetry Diagram](image)	$2174 + 3999x + 2942x^2 + 1060x^3 + 174x^4 + 8x^5$
C_{50} 203	C_2	![Symmetry Diagram](image)	$2254 + 4109x + 2867x^2 + 936x^3 + 135x^4 + 6x^5$
C_{50} 204	C_1	![Symmetry Diagram](image)	$2149 + 3705x + 2332x^2 + 636x^3 + 65x^4$
C_{50} 205	C_2	![Symmetry Diagram](image)	$2281 + 4078x + 2679x^2 + 775x^3 + 96x^4 + 5x^5$
C_{50} 206	C_s	![Symmetry Diagram](image)	$2172 + 3636x + 2140x^2 + 543x^3 + 56x^4$
C_{50} 207	C_s	![Symmetry Diagram](image)	$2274 + 4169x + 2954x^2 + 1001x^3 + 161x^4 + 10x^5$
C_{50} 208	C_3	![Symmetry Diagram](image)	$2130 + 3729x + 2445x^2 + 741x^3 + 105x^4 + 6x^5$
C_{50} 209	C_1	![Symmetry Diagram](image)	$2108 + 3506x + 2070x^2 + 520x^3 + 48x^4 + x^5$
C_{50} 210	C_2	![Symmetry Diagram](image)	$2314 + 3873x + 2254x^2 + 536x^3 + 45x^4$
C_{50} 211	C_1	![Symmetry Diagram](image)	$2250 + 3901x + 2519x^2 + 729x^3 + 85x^4$
C_{50} 212	C_1	![Symmetry Diagram](image)	$2212 + 4013x + 2939x^2 + 1086x^3 + 204x^4 + 15x^5$
C_{50} 213	C_1	![Symmetry Diagram](image)	$2233 + 4036x + 2954x^2 + 1104x^3 + 210x^4 + 15x^5$
C_{50} 214	C_2	![Symmetry Diagram](image)	$2330 + 4316x + 3208x^2 + 1202x^3 + 232x^4 + 20x^5$
C_{50} 215	C_1	![Symmetry Diagram](image)	$2170 + 3896x + 2797x^2 + 995x^3 + 175x^4 + 12x^5$
C_{50} 216	C_1	![Symmetry Diagram](image)	$2134 + 3761x + 2613x^2 + 868x^3 + 129x^4 + 6x^5$
C_{50} 217	C_1	![Symmetry Diagram](image)	$2103 + 3530x + 2153x^2 + 550x^3 + 47x^4$
C_{50} 218	C_1	![Symmetry Diagram](image)	$2134 + 3728x + 2538x^2 + 870x^3 + 164x^4 + 13x^5$
C_{50} 219	C_1	![Symmetry Diagram](image)	$2057 + 3478x + 2202x^2 + 604x^3 + 59x^4 + x^5$
C_{50} 220	C_1	![Symmetry Diagram](image)	$2068 + 3529x + 2291x^2 + 691x^3 + 97x^4 + 5x^5$
C_{50} 221	C_1	![Symmetry Diagram](image)	$2096 + 3777x + 2719x^2 + 947x^3 + 146x^4 + 6x^5$
C_{50} 222	C_1	![Symmetry Diagram](image)	$2118 + 3889x + 2926x^2 + 1126x^3 + 217x^4 + 16x^5$
C_{50} 223	C_1	![Symmetry Diagram](image)	$2103 + 3540x + 2203x^2 + 605x^3 + 67x^4$
C_{50} 224	C_1	![Symmetry Diagram](image)	$2014 + 3329x + 2033x^2 + 532x^3 + 49x^4$
C_{50} 225	C_1	![Symmetry Diagram](image)	$2090 + 3696x + 2629x^2 + 919x^3 + 149x^4 + 7x^5$
Table 1. Cont.

Fullerene	Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial
C_{50}	226	C_2	![Image]	2242 + 4268x + 3519x^2 + 1643x^3 + 447x^4 + 55x^5
C_{50}	227	C_1	![Image]	2031 + 3240x + 1770x^2 + 357x^3 + 17x^4
C_{50}	228	C_1	![Image]	2084 + 3584x + 2360x^2 + 711x^3 + 92x^4 + 4x^5
C_{50}	229	C_2	![Image]	2067 + 3562x + 2387x^2 + 736x^3 + 90x^4 + x^5
C_{50}	230	C_1	![Image]	2124 + 3549x + 2139x^2 + 556x^3 + 60x^4 + 2x^5
C_{50}	231	C_1	![Image]	2122 + 3682x + 2434x^2 + 761x^3 + 116x^4 + 6x^5
C_{50}	232	C_1	![Image]	2088 + 3622x + 2433x^2 + 783x^3 + 120x^4 + 6x^5
C_{50}	233	C_1	![Image]	2030 + 3414x + 2125x^2 + 573x^3 + 55x^4
C_{50}	234	C_2	![Image]	2167 + 3756x + 2506x^2 + 808x^3 + 130x^4 + 8x^5
C_{50}	235	C_1	![Image]	2138 + 3632x + 2276x^2 + 631x^3 + 73x^4 + 2x^5
C_{50}	236	C_1	![Image]	2056 + 3536x + 2343x^2 + 725x^3 + 100x^4 + 5x^5
C_{50}	237	C_1	![Image]	2126 + 3840x + 2769x^2 + 996x^3 + 177x^4 + 12x^5
C_{50}	238	C_2	![Image]	2140 + 3904x + 2963x^2 + 1227x^3 + 291x^4 + 30x^5
C_{50}	239	C_1	![Image]	2022 + 3396x + 2105x^2 + 564x^3 + 55x^4
C_{50}	240	C_1	![Image]	2112 + 3760x + 2576x^2 + 825x^3 + 115x^4 + 5x^5
C_{50}	241	C_1	![Image]	2076 + 3641x + 2460x^2 + 787x^3 + 114x^4 + 5x^5
C_{50}	242	C_{2v}	![Image]	2128 + 3460x + 1894x^2 + 346x^3
C_{50}	243	C_1	![Image]	2018 + 3305x + 1915x^2 + 452x^3 + 36x^4
C_{50}	244	C_1	![Image]	2097 + 3515x + 2142x^2 + 572x^3 + 63x^4
C_{50}	245	C_1	![Image]	1973 + 3179x + 1782x^2 + 388x^3 + 24x^4
C_{50}	246	C_1	![Image]	2060 + 3587x + 2411x^2 + 743x^3 + 87x^4
C_{50}	247	C_s	![Image]	2005 + 3352x + 2081x^2 + 565x^3 + 60x^4 + 2x^5
C_{50}	248	C_1	![Image]	2070 + 3635x + 2493x^2 + 788x^3 + 96x^4
C_{50}	249	C_1	![Image]	2013 + 3381x + 2126x^2 + 591x^3 + 59x^4
Fullerene Isomer	Symmetry	Schlegel Diagram	ZZ Polynomial	
------------------	----------	------------------	--------------	
C_{50}	250	C_2	$2005 + 3201x + 1716x^2 + 309x^3$	
C_{50}	251	C_1	$2020 + 3376x + 2025x^2 + 495x^3 + 36x^4$	
C_{50}	252	C_1	$2084 + 3577x + 2291x^2 + 651x^3 + 73x^4 + 2x^5$	
C_{50}	253	C_s	$2160 + 3738x + 2395x^2 + 670x^3 + 70x^4$	
C_{50}	254	C_2	$1982 + 3000x + 1441x^2 + 224x^3$	
C_{50}	255	C_2	$2059 + 3334x + 1939x^2 + 505x^3 + 53x^4$	
C_{50}	256	C_{2v}	$2183 + 3756x + 2518x^2 + 900x^3 + 183x^4 + 17x^5$	
C_{50}	257	C_2	$2039 + 3139x + 1540x^2 + 245x^3$	
C_{50}	258	C_3	$1890 + 2823x + 1296x^2 + 168x^3$	
C_{50}	259	C_1	$2030 + 3380x + 2056x^2 + 546x^3 + 54x^4$	
C_{50}	260	C_2	$2191 + 4162x + 3335x^2 + 1379x^3 + 279x^4 + 20x^5$	
C_{50}	261	C_2	$2245 + 4210x + 3307x^2 + 1420x^3 + 347x^4 + 39x^5$	
C_{50}	262	C_s	$2297 + 4591x + 4043x^2 + 1977x^3 + 536x^4 + 65x^5$	
C_{50}	263	C_2	$2124 + 3944x + 2971x^2 + 1069x^3 + 154x^4$	
C_{50}	264	C_s	$2100 + 3863x + 2874x^2 + 1028x^3 + 152x^4 + 2x^5$	
C_{50}	265	C_2	$2006 + 3390x + 2141x^2 + 590x^3 + 57x^4$	
C_{50}	266	C_s	$2134 + 3986x + 3057x^2 + 1150x^3 + 190x^4 + 6x^5$	
C_{50}	267	C_s	$2085 + 3767x + 2735x^2 + 989x^3 + 172x^4 + 10x^5$	
C_{50}	268	C_1	$2136 + 3876x + 2848x^2 + 1063x^3 + 198x^4 + 14x^5$	
C_{50}	269	C_2	$2099 + 3594x + 2279x^2 + 631x^3 + 66x^4 + x^5$	
C_{50}	270	D_3	$2136 + 3978x + 3021x^2 + 1101x^3 + 162x^4$	
C_{50}	271	D_{5h}	$2343 + 4920x + 4625x^2 + 2380x^3 + 665x^4 + 81x^5$	
4. Discussion

Our main motivation here is to provide the chemical graph theory community with a compilation of reference data for graph-theoretical invariants of all isomers of small fullerenes C\textsubscript{20}–C\textsubscript{50}. However, having access to such a collection of data, we cannot resist—stimulated by a request of an anonymous referee—to show the correlations between the computed invariants and energetic stability of each isomer in spirit of numerous publications devoted to this topic [1,13,16,52,59,90–97]. To this end, we have optimized the geometry of each fullerene isomer using a density-functional tight-binding (DFTB) method [98] following the methodology of our previous papers [9–11]. To facilitate the comparisons between different fullerenes, each of the optimized energies is divided by the number of carbon atoms in this structure, obtaining a descriptor of thermodynamic stability of each isomer in a form of energy per carbon atom. The structure with the lowest energy corresponds to the most stable isomer of a given fullerene. The comparison between the energies (per atom) of each isomer and their Kekulé count \(K \) and Clar count \(C \) are given in Figures 2 and 3, respectively. Briefly summarizing these results, one can say that in general \(K \) and \(C \) are very loosely correlated with the computed energies. The isomers with the highest values of \(K \) for each fullerene usually correspond to thermodynamically unstable structures characterized often by the highest energies. Organic chemists often relate the stability of a given species to the number of resonance structures that can be drawn for it; structures with more resonance forms are thought to be more stable than those with less resonance forms. Apparently, this logic cannot be extended to the fullerene isomers, in agreement with previous observations made for C\textsubscript{60} [1,48], as mentioned in Section 1. (Our results can be compared also with previous study of Manoharan and collaborators [99].) The most stable structure of a given isomer corresponds usually to an intermediate value of \(K \). Similar observations can be made for the correlation between the computed energies of each isomer and their Clar count \(C \). The main difference between the plots shown in Figures 2 and 3 concerns the vertical distribution of the circles; for \(K \), they are negatively correlated with energies (i.e., a higher value of \(K \) corresponds to a higher, less-stable energy), while, for \(C \), there seem to be no particular correlation of such a type.

We have mentioned previously in Section 1 that Zhang and collaborators demonstrated [57] that the most stable, icosahedral isomer of C\textsubscript{60} maximizes the Kekulé count among the isomers of C\textsubscript{60} with the largest Clar number, \(Cl = 8 \). It is indeed an interesting observation worth testing also for other fullerenes. Here, in Figure 4, we have performed an analogous analysis for two smaller fullerenes, C\textsubscript{36} and C\textsubscript{50}. Their DFTB energies per atom (multiplied by \(−1 \) and expressed in atomic units) are plotted as vertical bars with the position of each bar determined by the Clar number \(Cl \) and Kekulé count of a given isomer. To facilitate the comparisons, the three most stable isomers of each fullerene are designated with numbers 1⃝, 2⃝, and 3⃝. The most important observation concerning the presented data are that the performed analysis for C\textsubscript{36} and C\textsubscript{50} does not support the conclusion drawn by Zhang and collaborators [57] for C\textsubscript{60}. The two most stable isomers of C\textsubscript{36} have the smallest Clar number (equal to 2) among all the isomers of C\textsubscript{36} and their Kekulé counts have intermediate values. The next most stable isomer has intermediate Clar number (equal to 3) and not the maximal Kekulé count among isomers with this Clar number. The isomer maximizing the Kekulé count among the isomers of C\textsubscript{36} with the largest Clar number, \(Cl = 4 \), has intermediate stability according to DFTB. For C\textsubscript{50}, the most stable isomer indeed has the highest Clar number (equal to 5) among the isomers of C\textsubscript{50}, but its Kekulé count has rather an intermediate value. The next two most stable isomers of C\textsubscript{50} with Clar numbers of 4 and 5, respectively, are characterized even by a smaller Kekulé count. The isomer maximizing the Kekulé count among the isomers of C\textsubscript{50} with the largest Clar number, \(Cl = 5 \), actually belongs to the most unstable isomers of C\textsubscript{50}. All these data suggest that the correlation between stability and the maximal Kekulé count among isomers with the highest Clar number observed for C\textsubscript{60} by Zhang and collaborators has been rather accidental and cannot be immediately generalized to other fullerenes, but a definitive conclusion of that kind would require repeating the performed here analysis with more accurate quantum chemical technique than the inherently approximate DFTB method used here.
Figure 2. A comparison between the optimized DFTB energy per carbon atom (in atomic units, vertical axes) and the Kekulé count K (horizontal axes) represented in a form of scattered plot. Each blue circle represents a single isomer. Similarly to C_{60} [1,48], the isomers with high values of K are usually corresponding to the most unstable forms of a given fullerene. The most stable isomer is usually characterized by an intermediate value of K.
Figure 3. A comparison between the optimized DFTB energy per carbon atom (in atomic units, vertical axes) and the Clar count C (horizontal axes) represented in a form of scattered plot. Each green circle represents a single isomer. The most stable isomer is usually characterized by an intermediate value of C.
Figure 4. Energy per atom (negative, in atomic units) for all the isomers of C_{36} and C_{50} plotted as a function of Clar number Cl and Kekulé number K. The three most stable isomers of each fullerene are denoted with encircled symbols 1, 2, and 3. For a detailed discussion, see text.

5. Conclusions

We have presented a short introduction to the theory of ZZ polynomials (aka Zhang–Zhang polynomials or Clar covering polynomials) accompanied by a compilation of ZZ polynomials for all the isomers of small (5,6)-fullerenes C_{20}–C_{50}. The ZZ polynomials concisely summarize the most important topological invariants of the fullerene isomers: the number of Kekulé structures K, the Clar number Cl, the first Herndon number h_1, the total number of Clar covers C, and the number of Clar structures. The results are presented in a form of an extended table, where every isomer is identified by giving a reference number corresponding to the fullerene atlas [3] and by its Schlegel diagram. We believe that the presented results should be useful as benchmark data for designing algorithms and computer programs aiming at topological analysis of fullerenes and upon the generation of resonance structures for valence-bond quantum-chemical calculations.
Author Contributions: H.A.W.: Concept of the paper, computation of ZZ polynomials, writing manuscript; J.-S.K.: Analysis of data, comparisons of topological and quantum physical descriptors of isomers, preparing plots, cowriting manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by Ministry of Science and Technology of Taiwan (Grant No. MOST108-2113-M-009-010-MY3) and the Center for Emergent Functional Matter Science of National Chiao Tung University from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE), Taiwan.

Acknowledgments: The authors would like to thank Y.-L. Zhong for the help in the initial stages of work on this paper. We thank Rafał Podeszwa for discovering the labeling inconsistencies in Yoshida’s “Fullerene Structure Library” [7].

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Austin, S.J.; Fowler, P.W.; Hansen, P.; Manolopoulos, D.E.; Zheng, M. Fullerene isomers of C_{60}. Kekulé counts versus stability. Chem. Phys. Lett. 1994, 228, 478–484. [CrossRef]

2. Manolopoulos, D.E.; May, J.C.; Down, S.E. Theoretical studies of the fullerenes: C_{34} to C_{70}. Chem. Phys. Lett. 1991, 181, 105–111. [CrossRef]

3. Fowler, P.W.; Manolopoulos, D.E. An Atlas of Fullerenes; Dover: Mineola, NY, USA, 2006.

4. Manolopoulos, D.E.; Fowler, P.W. A fullerene without a spiral. Chem. Phys. Lett. 1993, 204, 1–7. [CrossRef]

5. Brinkmann, G.; Dress, A.W. A Constructive Enumeration of Fullerenes. J. Algorithms 1997, 23, 345–358. [CrossRef]

6. Brinkmann, G.; Dress, A.W. PentHex Puzzles: A Reliable and Efficient Top-Down Approach to Fullerene-Structure Enumeration. Adv. Appl. Math. 1998, 21, 473–480. [CrossRef]

7. Fullerene Structure Library by Mitsuho Yoshida Is Available Now as a FullereneLib.zip. Available online: http://www.jcrystal.com/steffenweber/gallery/Fullerenes/Fullerenes.html (accessed on 30 July 2020).

8. Schwerdtfeger, P.; Wirz, L.; Avery, J. Fullerene—A Software Package for Constructing and Analyzing Structures of Regular Fullerenes; Version 4.4. J. Comput. Chem. 2013, 34, 1508–1526. [CrossRef]

9. Malolepsza, E.; Witek, H.A.; Irle, S. Comparison of Geometric, Electronic, and Vibrational Properties for Isomers of small fullerenes C_{20}–C_{36}. J. Phys. Chem. A 2007, 111, 6649–6657. [CrossRef]

10. Malolepsza, E.; Lee, Y.P.; Witek, H.A.; Irle, S.; Lin, C.F.; Hsieh, H.M. Comparison of geometric, electronic, and vibrational properties for all pentagon/hexagon-bearing isomers of fullerenes C_{38}, C_{40}, and C_{42}. Int. J. Quantum Chem. 2009, 109, 1999–2011. [CrossRef]

11. Witek, H.A.; Irle, S. Diversity in electronic structure and vibrational properties of fullerene isomers correlates with cage curvature. Carbon 2016, 100, 484–491. [CrossRef]

12. Schwerdtfeger, P.; Wirz, L.; Avery, J. The topology of fullerenes. WIREs Comput. Mol. Sci. 2015, 5, 96–145. [CrossRef]

13. Aihara, J.I. Topological resonance energies of fullerenes and their molecular ions. J. Mol. Struct. 1994, 311, 1–8.

14. Balasubramanian, K. Exhaustive Generation and Analytical Expressions of Matching Polynomials of Fullerenes C_{20}–C_{50}. J. Chem. Inf. Comput. Sci. 1994, 34, 421–427. [CrossRef]

15. Balaban, A.T.; Liu, X.; Klein, D.J.; Babics, D.; Schmalz, T.G.; Seitz, W.A.; Randić, M. Graph Invariants for Fullerenes. J. Chem. Inf. Comput. Sci. 1995, 35, 396–404. [CrossRef]

16. Rogers, K.M.; Fowler, P.W. Leapfrog fullerenes, Hückel bond order and Kekulé structures. J. Chem. Soc. Perkin Trans. 2001, 2, 18–22. [CrossRef]

17. Cvetković, D.; Stevanović, D. Spectral moments of fullerene graphs. MATCH Commun. Math. Comput. Chem. 2004, 50, 62–72.

18. Vukičević, D.; Koto, H.W.; Randić, M. Atlas of Kekulé valence structures of buckminsterfullerene. Croat. Chem. Acta 2005, 78, 223–234.

19. Graver, J.E. The independence numbers of fullerenes and benzenoids. Eur. J. Combin. 2006, 27, 850–863. [CrossRef]
20. Diudea, M.V.; Vukičević, D. Kekulé Structure Count in Corazulenic Fullerenes. J. Nanosci. Nanotech. 2007, 7, 1321–1328. [CrossRef]
21. Graver, J.E. Kekulé structures and the face independence number of a fullerene. European J. Combin. 2007, 28, 1115–1130. [CrossRef]
22. Marušič, D. Hamilton cycles and paths in fullerenes. J. Chem. Inf. Model. 2007, 47, 732–736. [CrossRef]
23. Došlić, T. Fulleren graphs with exponentially many perfect matchings. J. Math. Chem. 2007, 41, 183–192. [CrossRef]
24. Randić, M.; Kroto, H.W.; Vukičević, D. Numerical Kekulé structures of fullerenes and partitioning of π-electrons to pentagonal and hexagonal rings. J. Chem. Inf. Model. 2007, 47, 897–904. [CrossRef] [PubMed]
25. Kutnar, K.; Marušič, D. On cyclic edge-connectivity of fullerenes. Discrete Appl. Math. 2008, 156, 1661–1669. [CrossRef]
26. Došlić, T. Leapfrog fullerenes have many perfect matchings. J. Math. Chem. 2008, 44, 1–4. [CrossRef]
27. Réti, T.; László, I. On the Combinatorial Characterization of Fullerene Graphs. Acta Polytech. Hung. 2009, 6, 85–93.
28. Došlić, T. Finding more matchings in leapfrog fullerenes. J. Math. Chem. 2009, 45, 1130–1136. [CrossRef]
29. Ye, D.; Zhang, H. Extremal fullerene graphs with the maximum Clar number. Discrete Appl. Math. 2009, 157, 3152–3173. [CrossRef]
30. Kardoš, F.; Král, D.; Miškufa, J.; Sereni, J.S. Fullerene graphs have exponentially many perfect matchings. J. Math. Chem. 2009, 46, 443–447. [CrossRef]
31. Zhang, H.; Ye, D.; Shiu, W.C. Forcing matching numbers of fullerene graphs. Discrete Appl. Math. 2010, 158, 573–582. [CrossRef]
32. Klein, D.J.; Balaban, A.T. Clarology for conjugated carbon nano-structures: molecules, polymers, graphene, defected graphene, fractal benzenoids, fullerenes, nano-tubes, nano-cones, nano-tori, etc. Open Org. Chem. J. 2011, 5, 27–61. [CrossRef]
33. Yang, R.; Zhang, H. Hexagonal resonance of (3,6)-fullerenes. J. Math. Chem. 2012, 50, 261–273. [CrossRef]
34. Andova, V.; Došlić, T.; Krnc, M.; Lužar, B.; Škrekovski, R. On the diameter and some related invariants of fullerene graphs. MATCH Commun. Math. Comput. Chem. 2012, 68, 109–130.
35. Graver, J.E.; Hartung, E.J.; Souid, A.Y. Clar and Fries numbers for benzenoids. J. Math. Chem. 2013, 51, 1981–1989. [CrossRef]
36. Hartung, E. Fullerenes with complete Clar structure. Discrete Appl. Math. 2013, 161, 2952–2957. [CrossRef]
37. Andova, V; Kardoš, F; Škrekovski, R. Fulleren Graphs and Some Relevant Graph Invariants. In Topics in Chemical Graph Theory; Gutman, I., Ed.; Mathematical Chemistry Monographs, University of Kragujevac and Faculty of Science Kragujevac: Kragujevac, Serbia, 2014; pp. 39–54.
38. Carr, J.A.; Wang, X.; Ye, D. Packing resonant hexagons in fullerenes. Discret. Optim. 2014, 13, 49–54. [CrossRef]
39. Gao, Y.; Zhang, H. The Clar number of fullerenes on surfaces. MATCH Commun. Math. Comput. Chem. 2014, 72, 411–426.
40. Gao, Y.; Zhang, H. Clar Structure and Fries Set of Fullerenes and (4,6)-Fullerenes on Surfaces. J. Appl. Math. 2014, 2014, 196792. [CrossRef]
41. Yang, Q.; Zhang, H.; Lin, Y. On the anti-forcing number of fullerene graphs. MATCH Commun. Math. Comput. Chem. 2015, 74, 673–692.
42. Berlic, M.; Tratnik, N.; Žigert Pleteršek, P. Equivalence of Zhang–Zhang polynomial and cube polynomial for spherical benzenoid systems. MATCH Commun. Math. Comput. Chem. 2015, 73, 443–456.
43. Salami, M.; Ahmadi, M.B. A mathematical programming model for computing the Fries number of a fullerene. Appl. Math. Model. 2015, 39, 5473–5479. [CrossRef]
44. Tratnik, N.; Žigert Pleteršek, P. Resonance graphs of fullerenes. Ars Math. Contemp. 2016, 11, 425–435. [CrossRef]
45. Ahmadi, M.B.; Farhadi, E.; Khorasani, V.A. On computing the Clar number of a fullerene using optimization techniques. MATCH Commun. Math. Comput. Chem. 2016, 75, 695–701.
46. Gao, Y.; Li, Q.; Zhang, H. Fullerenes with the maximum Clar number. Discrete Appl. Math. 2016, 202, 58–69. [CrossRef]
47. Došlic, T.; Tratnik, N.; Ye, D.; Žigert Pleteršek, P. On 2-cores of resonance graphs of fullerenes. *MATCH Commun. Math. Comput. Chem.*, 2017, 77, 729–736.

48. Sure, R.; Hansen, A.; Schwertfeger, P.; Grimme, S. Comprehensive theoretical study of all 1812 C_{60} isomers. *Phys. Chem. Chem. Phys.*, 2017, 19, 14296–14305. [CrossRef]

49. Zhao, L.; Zhang, H. On Resonance of (4,5,6)-Fullerene Graphs. *MATCH Commun. Math. Comput. Chem.*, 2018, 80, 227–244.

50. Bérczi-Kovács, E.R.; Bernáth, A. The complexity of the Clar number problem and an exact algorithm. *J. Math. Chem.*, 2018, 56, 597–605. [CrossRef]

51. Shi, L.; Zhang, H. Counting Clar structures of (4,6)-fullerenes. *Appl. Math. Comput.*, 2019, 346, 559–574.

52. Ahmadi, M.B.; Farhadi, E.; Ghavanloo, M. On the Stability of Fullerenes. *Iranian J. Math. Chem.*, 2019, 10, 57–69.

53. Ghorbani, M.; Dehmer, M.; Zangi, S. On Certain Aspects of Graph Entropies of Fullerenes. *MATCH Commun. Math. Comput. Chem.*, 2019, 81, 163–174.

54. Balasubramanian, K. Topological Peripheral Shapes and Distance-Based Characterization of Fullerenes C_{20}–C_{720}: Existence of Isoperipheral Fullerenes. *Polycyclic Aromat. Compd.*, 2020. [CrossRef]

55. Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C_{60}: Buckminsterfullerene. *Nature*, 1985, 318, 162–163. [CrossRef]

56. Clar, E. *The Aromatic Sextet*; Wiley: New York, NY, USA, 1972.

57. Zhang, H.; Ye, D.; Liu, Y. A combination of Clar number and Kekulé count as an indicator of relative stability of fullerene isomers of C_{60}. *J. Math. Chem.*, 2010, 48, 733–740. [CrossRef]

58. Fedorov, A.S.; Fedorov, D.A.; Kozubov, A.A.; Avramov, P.V.; Nishimura, Y.; Irle, S.; Witek, H.A. Relative isomer abundance of fullerenes and carbon nanotubes correlates with kinetic stability. *Phys. Rev. Lett.*, 2011, 107, 175506; Erratum in 2012, 108, 249902. [CrossRef] [PubMed]

59. Zhang, F.; Zhang, H.; Liu, Y. The Clar covering polynomial of hexagonal systems. II. An application to resonance energy of condensed aromatic hydrocarbons. *Chin. J. Chem.*, 1996, 14, 321–325. [CrossRef]

60. Zhang, H.; Zhang, F. The Clar covering polynomial of hexagonal systems I. *Discret. Appl. Math.*, 1996, 69, 147–167. [CrossRef]

61. Zhang, H. The Clar covering polynomial of hexagonal systems with an application to chromatic polynomials. *Discret. Math.*, 1997, 172, 163–173. [CrossRef]

62. Herndon, W.C. Thermochemical parameters for benzenoid hydrocarbons. *Thermochim. Acta*, 1974, 8, 225–237. [CrossRef]

63. Gutman, I.; Furtula, B.; Balaban, A.T. Algorithm for simultaneous calculations of Kekulé and Clar structure counts, and Clar number of benzenoid molecules. *Polycyclic Aromat. Compd.*, 2006, 26, 17–35. [CrossRef]

64. Chou, C.P.; Witek, H.A. Determination of Zhang-Zhang Polynomials for Various Classes of Benzenoid Structures. *MATCH Commun. Math. Comput. Chem.*, 2014, 71, 741–764.

65. Chou, C.P.; Witek, H.A. ZZDecomposer: A Graphical Toolkit for Analyzing the Zhang-Zhang Polynomials of Benzenoid Structures. *MATCH Commun. Math. Comput. Chem.*, 2014, 71, 31–64. [CrossRef]

66. Chou, C.P.; Witek, H.A. ZZDecomposer. 2017. Available online: https://bitbucket.org/solccp/zzdecomposer_binary/downloads/ (accessed on 30 July 2020).

67. Chen, H.; Chou, C.P.; Witek, H.A. ZZDecomposer. 2019. Available online: https://bitbucket.org/peggydbcl2127/zzdecomposer_hsi/downloads/ (accessed on 30 July 2020).

68. Chou, C.P.; Witek, H.A. Determination of Zhang-Zhang Polynomials for Various Classes of Benzenoid Systems: Non-Heuristic Approach. *MATCH Commun. Math. Comput. Chem.*, 2014, 72, 75–104.

69. Gutman, I.; Borovičanin, B. Zhang-Zhang polynomial of multiple linear hexagonal chains. *Z. Naturforsch.*, A 2006, 61, 73–77. [CrossRef]

70. Guo, Q.; Deng, H.; Chen, D. Zhang-Zhang polynomials of cyclo-polyphenacenes. *J. Math. Chem.*, 2009, 46, 347–362. [CrossRef]

71. Chou, C.P.; Witek, H.A. Comment on ‘Zhang–Zhang polynomials of cyclo polyphenacenes’ by Q. Guo, H. Deng, and D. Chen. *J. Math. Chem.*, 2012, 50, 1031–1033. [CrossRef]
74. Chen, D.; Deng, H.; Guo, Q. Zhang-Zhang polynomials of a class of pericondensed benzenoid graphs. MATCH Commun. Math. Comput. Chem. 2010, 63, 401–410.
75. Chou, C.P.; Witek, H.A. Closed-Form Formulas for the Zhang-Zhang Polynomials of Benzenoid Structures: Chevrons and Generalized Chevrons. MATCH Commun. Math. Comput. Chem. 2014, 72, 105–124.
76. Chou, C.P.; Witek, H.A. Two Examples for the Application of the ZZDecomposer: Zigzag-Edge Coronoids and Fenestrenes. MATCH Commun. Math. Comput. Chem. 2015, 73, 421–426.
77. Witek, H.A.; Moś, G.; Chou, C.P. Zhang-Zhang Polynomials of Regular 3- and 4-tier Benzenoid Strips. MATCH Commun. Math. Comput. Chem. 2015, 73, 427–442.
78. Chou, C.P.; Kang, J.S.; Witek, H.A. Closed-form formulas for the Zhang–Zhang polynomials of benzenoid structures: Prolate rectangles and their generalizations. Discr. Appl. Math. 2016, 198, 101–108. [CrossRef]
79. Witek, H.A.; Langner, J.; Moś, G.; Chou, C.P. Zhang-ZZ Polynomials of Regular 5-tier Benzenoid Strips. MATCH Commun. Math. Comput. Chem. 2017, 78, 487–504.
80. Langner, J.; Witek, H.A. Connectivity Graphs for Single Zigzag Chains and their Application for Computing ZZ Polynomials. Croat. Chem. Acta 2017, 90, 391–400. [CrossRef]
81. Langner, J.; Witek, H.A. Algorithm for generating generalized resonance structures of single zigzag chains based on interface theory. J. Math. Chem. 2018, 56, 1393–1406. [CrossRef]
82. Langner, J.; Witek, H.A.; Moś, G. Zhang-Zhang Polynomials of Multiple Zigzag Chains. MATCH Commun. Math. Comput. Chem. 2018, 80, 245–265.
83. Langner, J.; Witek, H.A. Interface Theory of Benzenoids. MATCH Commun. Math. Comput. Chem. 2020, 84, 143–176.
84. Langner, J.; Witek, H.A. Interface Theory of Benzenoids: Basic applications. MATCH Commun. Math. Comput. Chem. 2020, 84, 177–215.
85. He, B.H.; Witek, H.A. Clar theory for hexagonal benzenoids with corner defects. MATCH Commun. Math. Comput. Chem. 2021, 85, in press.
86. Zhang, H.; Shiu, W.C.; Sun, P.K. A relation between Clar covering polynomial and cube polynomial. MATCH Commun. Math. Comput. Chem. 2013, 70, 477–492.
87. Žigert Pleteršek, P. Equivalence of the Generalized Zhang-Zhang Polynomial and the Generalized Cube Polynomial. MATCH Commun. Math. Comput. Chem. 2018, 80, 215–226.
88. Langner, J.; Witek, H.A. Equivalence between Clar Covering Polynomials of Single Zigzag Chains and Tiling Polynomials of 2 \times n Rectangles. Discr. Appl. Math. 2018, 243, 297–303. [CrossRef]
89. Witek, H.A.; Irle, S.; Zheng, G.; de Jong, W.A.; Morokuma, K. Modeling carbon nanostructures with the self-consistent charge density-functional tight-binding method: Vibrational spectra and electronic structure of C_{28}, C_{40}, and C_{70}. J. Chem. Phys. 2006, 125, 214706. [CrossRef] [PubMed]
90. Babić, D.; Ori, O. Matching polynomial and topological resonance energy of C_{70}. Chem. Phys. Lett. 1995, 234, 240–244. [CrossRef]
91. Mishra, R.K.; Patra, S.M. Numerical Determination of the Kekulé Structure Count of Some Symmetrical Polycyclic Aromatic Hydrocarbons and Their Relationship with \pi-Electronic Energy (A Computational Approach). J. Chem. Inf. Comput. Sci. 1998, 38, 113–124. [CrossRef]
92. Zhang, C.; Cao, Z.; Lin, C.; Zheng, Q. Qualitatively graph-theoretical study on stability and formation of fullerences and nanotubes. Sci. China Ser. B-Chem. 2003, 46, 513–520. [CrossRef]
93. Gutman, I.; Gojak, S.; Furtula, B. Clar theory and resonance energy. Chem. Phys. Lett. 2005, 413, 396–399. [CrossRef]
94. Gutman, I. Topology and stability of conjugated hydrocarbons. The dependence of total electron energy on molecular topology. J. Serb. Chem. Soc. 2005, 70, 441–456. [CrossRef]
95. Gutman, I.; Gojak, S.; Furtula, B.; Radenković, S.; Vodopivec, A. Relating Total \pi-Electron Energy and Resonance Energy of Benzenoid Molecules with Kekulé- and Clar-Structure-Based Parameters. Monatsh. Chem. 2006, 137, 1127–1138. [CrossRef]
96. Gutman, I.; Radenković, S. A simple formula for calculating resonance energy of benzenoid hydrocarbons. Bull. Chem. Technol. Macedonia 2006, 25, 17–21.
97. Yeh, C.N.; Chai, J.D. Role of Kekulé and Non-Kekulé Structures in the Radical Character of Alternant Polycyclic Aromatic Hydrocarbons: A TAO-DFT Study. Sci. Rep. 2016, 6, 30562. [CrossRef] [PubMed]
98. Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. *Phys. Rev. B* 1998, *58*, 7260–7268. [CrossRef]

99. Manoharan, M.; Balakrishnarajan, M.M.; Venuvanalingam, P.; Balasubramanian, K. Topological resonance energy predictions of the stability of fullerene clusters. *Chem. Phys. Lett.* 1994, *222*, 95–100. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).