Clinical neurophysiology and cerebrospinal liquor analysis to detect Guillain-Barré syndrome and polyneuritis cranialis in COVID-19 patients: A case series

Paolo Manganotti MD, PhD | Giulia Bellavita MD | Laura D'Acunto MD | Valentina Tommasini MD | Martina Fabris MD | Arianna Sartori MD | Lucia Bonzi MD | Alex Buoite Stella PhD | Valentina Pesavento MD

1Clinical Unit of Neurology, Department of Medicine, Surgery, and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy
2Laboratory of Malattie Autoimmuni, SOC Istituto di Patologia Clinica, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
3Rehabilitation Unit, Department of Medicine, Surgery, and Health Sciences, Maggiore City Hospital, Trieste, Italy

Correspondence
Paolo Manganotti, MD, PhD, Full Professor of Neurology, Director of Clinical Unit of Neurology and Stroke Unit, Clinical Unit of Neurology, Department of Medicine, Surgery, and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Strada di Fiume, 447, 34149, Trieste, Italy.
Email: pmanganotti@units.it

Abstract
We report a case series of five patients affected by SARS-CoV-2 who developed neurological symptoms, mainly expressing as polyradiculoneuritis and cranial polyneuritis in the 2 months of COVID-19 pandemic in a city in the northeast of Italy. A diagnosis of Guillain-Barré syndrome was made on the basis of clinical presentation, cerebrospinal fluid analysis, and electroneurography. In four of them, the therapeutic approach included the administration of intravenous immunoglobulin (0.4 g/kg for 5 days), which resulted in the improvement of neurological symptoms. Clinical neurophysiology revealed the presence of conduction block, absence of F waves, and in two cases a significant decrease in amplitude of compound motor action potential (cMAP). Four patients presented a mild facial nerve involvement limited to the muscles of the lower face, with sparing of the forehead muscles associated to ageusia. In one patient, taste assessment showed right-sided ageusia of the tongue, ipsilateral to the mild facial palsy. In three patients we observed albuminocytological dissociation in the cerebrospinal fluid, and notably, we found an increase of inflammatory mediators such as the interleukin-8. Peripheral nervous system involvement after infection with COVID-19 is possible and may include several signs that may be successfully treated with immunoglobulin therapy.

Keywords
COVID-19, cranial polyneuritis, immunoglobulin, interleukins, polyradiculonevritis

1 INTRODUCTION

Since December 2019, the novel coronavirus (SARS-CoV-2) has rapidly spread worldwide, causing an increased number of hospitalization and intensive care admissions, due to severe respiratory distress. Even though respiratory symptoms play a critical role in the clinical picture, in the last few weeks a variety of systemic manifestations has been increasingly described, including neurological symptoms. Neurological complications reported so far in patients affected by new coronavirus infectious disease (COVID-19) suggest a possible neurotropism of the virus and its potential ability to induce auto-immunity reactions. Several neurological complications have been described, including cerebrovascular accidents, polyradiculoneuritis (Guillain-Barré syndrome), and other inflammatory diseases. Among the peripheral nervous system manifestations, the most frequently observed are hyposmia, hypogeusia, and Guillain-Barré syndrome (GBS). GBS is a heterogeneous condition with several variant forms: the most common presentation is the...
progressively ascending tetraparesis (acute inflammatory demyelinating polyneuropathy), but other localized clinical variants are also recognized. Miller-Fisher syndrome (MFS), a regional variant characterized by the triad of ophthalmoplegia, ataxia, and areflexia, has also been linked to COVID-19.3 According to a new classification, autoimmune neuropathies can also include forms with central nervous system involvement (Bickerstaff brainstem encephalitis).5 About 60% of the above-mentioned autoimmune syndromes can be infection-related by humoral and cellular cross-reactivity,6,7 most frequently gastrointestinal (Campylobacter jejuni) or respiratory tract infections, including flu syndrome and pneumonia.8,9 Clinical neurophysiology represents a fundamental tool for the diagnosis of acute inflammatory neuropathies. Neurophysiological investigations, however, require close contact with the patient and may result in an increased risk of infection, therefore, only partial data have been collected so far in COVID-19 patients.

Here we report a case series of five patients affected by COVID-19 who developed a spectrum of autoimmune polyneuropathies during hospitalization. We describe their clinical features, laboratory testing as well as treatment response. Particular attention has been paid to neurophysiological findings and cerebrospinal fluid analysis.

2 | MATERIALS AND METHODS

This case series described five patients admitted to the hospital affected by bilateral pneumonia due to SARS-CoV-2 infection from March to April 2020. Symptoms on admission were fever and cough, and in four out of five patients significant impairment of taste and smell was also reported (Table 1). Due to respiratory failure patients were admitted in the COVID-19 protected areas of the University Hospital of Trieste. COVID-19 diagnosis was then confirmed by means of nasopharyngeal swab. COVID-19 management included a variety of treatments, including antiviral drugs (Lopinavir/Ritonavir, Darunavir), hydroxychloroquine, antibiotic therapy, and oxygen support (Table 1). Two patients received Tocilizumab, a monoclonal antibody targeting the interleukin (IL)-6 receptor. Two out of the five patients remained in COVID-dedicated internal medicine units, whereas three of them required mechanical ventilation in the intensive care unit (ICU) for a prolonged time (from 11 to 20 days).

Patients developed progressive weakness of the upper and lower limbs, in a distoproximal fashion; the latency between the onset of the respiratory symptoms and neurological involvement ranged from 14 to 30 days. However, the longest latency (30 days) has been observed in a patient who came under prolonged sedation in ICU, therefore it is likely that symptoms appeared earlier in the course of the disease, but were not assessable at that time.

All the patients received neurological examination at symptoms development, routine blood chemistry analyses, and a panel of antiganglioside antibodies, including anti-GM1, -GM2, -GM3, -GD1a, -GD1b, -GT1b, and -GQ1b, were performed according to standard procedures. Cerebrospinal fluid (CSF) was collected and processed for standard analyses including pressure, cell count, proteins, and glucose. CSF culture and polymerase chain reaction (PCR) for possible organisms, such as bacteria, Mycobacterium tuberculosis, fungi, Herpes viruses, Enteroviruses, Japanese B virus, and Dengue viruses, were performed, including analysis for SARS-CoV-2.

2.1 | Clinical neurophysiology

Motor and sensory nerve conduction studies were performed in the upper and lower limbs following standard international guidelines. The neurophysiological evaluation included electroneurography (ENG) and electromyography (EMG) that were performed in the COVID-dedicated area for all the patients. F waves were recorded from lower and upper limbs. Facial nerve conduction velocity was studied by using as recording points the Orbicularis Oris and the Orbicularis oculi muscles and using as stimulation point the tragus on both sides. A blink reflex testing was also carried out to the patient with suspect MFS. Needle EMG was performed in four patients. The physician and the technician wore personal protective equipment including appropriate masks, face shields, gowns, and gloves following the guidelines American Association of Clinical Neurophysiology website has guidance (https://www.acns.org/practice/covid-19-resources).

3 | RESULTS

Neurological examination revealed a flaccid paresis in four patients, with variable lower or upper limb predominance; interestingly, in these patients, we observed a unilateral mild facial nerve involvement limited to the muscles of the lower face, with sparing of the forehead muscles. Two patients also reported paresthesia, described as tingling or a sense of "tight bandage" located at the lower extremities. Deep tendon reflexes were diffusely absent. The fifth patient developed a slightly different clinical picture, characterized by bilateral ophthalmoplegia, hypoesthesia in the territory of maxillary and mandibular trigeminal branches, mild right lower facial nerve palsy, and limb ataxia. Generalized areflexia was also present. All patients have been complaining of taste and smell impairment since the beginning of the respiratory symptoms. In the latter patient described we performed a taste assessment which showed right-sided ageusia of the tongue, ipsilateral to the mild facial palsy (Figure 1).

In all patients the results of routine blood chemistry tests, human immunodeficiency virus, Hepatitis B Virus, Hepatitis C Virus, as well as a panel of serological tests for autoimmune disorders were unremarkable. A panel of antiganglioside antibodies, including anti-GM1, -GM2, -GM3, -GD1a, -GD1b, -GT1b, and -GQ1b, was negative. In four out of five patients. CSF analysis revealed clear
Patient	1	2	3	4	5
Age	72 y	72 y	49 y	94 y	76 y
Sex	Male	Male	Female	Male	Male
Early symptoms of COVID-19	Fever, dyspnea, hyposmia, and ageusia	Fever, cough, dyspnea, hyposmia, and ageusia	Fever, cough, dyspnea, hyposmia, and ageusia	Fever, cough, gastrointestinal symptoms,	Fever, cough, dysuria, hyposmia, and ageusia
Need for mechanical ventilation	Yes	Yes	No	No	Yes
Latency of neurological symptoms	18 d	30 db	14 d	33 d	22 d
Neurological signs and symptoms	Flaccid tetraparesis, with proximal upper limb predominance	Flaccid tetraparesis with lower limbs predominance	Ophthalmoplegia with diplopia in the vertical and lateral gaze, limb ataxia	Lower limbs weakness	Proximal weakness of lower and upper limb, with upper limb predominance
Deep tendon reflexes	Diffusely absent	Diffusely absent	Diffusely absent	Diffusely weak	Diffusely absent
Sensory disturbances	Tingling of distal lower extremities	Sense of having a tight bandage on legs and feet	Right-sided hypoesthesia of the face	Unassessable due to agitation status	None
Cranial nerve involvement	Mild right-sided lower face facial weakness, with sparing of the forehead muscles	None	Bilateral ophthalmoplegia; hyposmia in the territory of maxillary and mandibular trigeminal branches; mild right-sided lower facial deficit	None	Mild left-sided lower facial deficit; reported mild transient diplopia fully recovered at the time of evaluation
CSF findings	Protein level 52 mg/dL; 1 cell/mm3	Normal protein level (40 mg/dL); 1 cell/mm3	Protein level 72 mg/dL; 5 cell/mm3	Not performed	Protein level 53 mg/dL; 2 cell/mm3
PCR for SARS-CoV-2	Negative	Negative	PCR for SARS-CoV-2: negative	PCR for SARS-CoV-2: negative	PCR for SARS-CoV-2: negative
Antiganglioside antibodies	Negative	Negative	Not performed	Negative	Negative
Serum interleukin level	IL-1\(\beta\): 0.2 pg/mL ↑ IL-6: 113.0 pg/mL ↑↑ IL-8: 20.0 pg/mL ↑ TNF-\(\alpha\): 160 pg/mL ↑	IL-1\(\beta\): 0.5 pg/mL ↑ IL-6: 9.8 pg/mL ↑ IL-8: 55.0 pg/mL ↑ TNF-\(\alpha\): 16.0 pg/mL ↑	Not performed	Not performed	IL-1\(\beta\): 0.2 pg/mL ↑ IL-6: 32.7 pg/mL ↑↑ IL-8: 17.8 pg/mL ↑ TNF-\(\alpha\): 11.1 pg/mL
CSF interleukin level	IL-1\(\beta\): 0.12 pg/mL IL-6: 9.6 pg/mL	IL-1\(\beta\): 0.1 pg/mL IL-6: 1.4 pg/mL	Not performed	Not performed	IL-1\(\beta\): 0.52 pg/mL IL-6: 5.9 pg/mL
Patient	1	2	3	4	5
---------	---	---	---	---	---
IL-8:	22.7 pg/mL	IL-8: 24.6 pg/mL	IL-8: 42.6 pg/mL		
TNF-α:	0.3 pg/mL	TNF-α: 0.7 pg/mL			
IL-2R:	24.6 pg/mL				
INF-γ:	0.63 pg/mL				
IL-10:	0.55 pg/mL				
IP-10:	60.8 pg/mL				
IL-6:	6.7-16.2 pg/mL				
TNF-α:	7.8-12.2 pg/mL				
IL-10:	1.8-3.8 pg/mL				
IL-2R:	440.0-1435.0 pg/mL				
INF-γ:	<0.001 pg/mL				
IL-10:	<0.001 pg/mL				
IP-10:	<0.001 pg/mL				

IL-8 CSF-serum ratio | 1.1 | 1.74 | Not performed | Not performed | 2.39 |

Brain MRI | Not performed | Normal findings | Normal findings | Not performed | Not performed |

Treatment of the neurological syndrome | IVIG cycle (0.4 g/kg for 5 d) | IVIG cycle (0.4 g/kg for 5 d) | IVIG cycle (0.4 g/kg for 5 d) | Methylprednisolone 60 mg for 5 d | IVIG cycle (0.4 g/kg for 5 d) |

Other therapies | COVID-19 management included administration of hydroxychloroquine, oseltamivir, darunavir, methylprednisolone, and tocilizumab | COVID-19 management included administration of hydroxychloroquine, lopinavir-ritonavir, methylprednisolone | COVID-19 management included administration of hydroxychloroquine, lopinavir-ritonavir, methylprednisolone | COVID-19 management included administration of methylprednisolone | COVID-19 management included administration of hydroxychloroquine, oseltamivir, darunavir, methylprednisolone, Tocilizumab, meropenem, linezolid, clarithromycin, doxycycline and fluconazole |

Outcome | Improvement of tetraparesis | Improvement of weakness | Progressive improvement | Stationary | Progressive improvement |

Abbreviations: CDF, cerebrospinal fluid; IL, interleukin; PCR, polymerase chain reaction; TNF, tumor necrosis factor.

^aDays between early respiratory symptoms and neurological syndrome onset.

^bIt is possible that symptoms appeared earlier in the course of disease but were not evident as the patient was intubated and sedated.

^cLaboratory reference values for serum interleukins—IL-β: <0.001 pg/mL; IL-6: 0.8-6.4 pg/mL; IL-8: 6.7-16.2 pg/mL; TNF-α: 7.8-12.2 pg/mL; IL-2R: 440.0-1435.0 pg/mL; IL-10: 1.8-3.8 pg/mL; IP-10: 37.2-222.0 pg/mL; INF-γ: <0.99 pg/mL.

^dReference values for CDF interleukins were assumed equal to serum values, as standardized cut-off values are not yet recognized.
CSF, normal pressure, and no blood cells (Table 1). The CSF/serum glucose ratio was normal in all patients. In three of them, CSF revealed a mild albumin-cytologic dissociation (ranging from 52 to 72 mg/dL of proteins; normal protein level <45 mg/dL). CSF culture and PCR for possible organisms yielded negative results. PCR for SARS-CoV-2 was also carried out and resulted in negative in all the patients tested. A remarkable increase of ILs (mainly IL-8) was found in three patients suggesting an active inflammatory process inside the cerebrospinal fluid (Table 1).

3.1 | Clinical neurophysiology

Three patients showed the presence of conduction block mainly in lower limbs, two of them mainly in the upper limbs (Table 2). All the patients showed either an increase in latency of F wave or the dispersion and the decrease in amplitude of F wave. In two of them, we noted the presence of denervation signs related to the marked decrease amplitude of peroneal and tibial nerve suggesting axonal damage. In particular, the patients had a decrease in amplitude of the facial nerve conduction recorded from orbicularis oris and stimulated from the tragus site ipsilateral to the facial weakness. Notably, the nerve conduction recorded from orbicularis oculi was normal. The blink reflex was performed in one patient and was normal.

Based on the clinical presentation, neurophysiological and CSF findings, intravenous immunoglobulins (IVIG) therapy was initiated in four patients at a dose of 0.4 g/kg for 5 days. The neurological symptoms improved and partially resolved after the initiation of IVIG treatment in four of the patients. No side effects were reported after the use of IVIG therapy.

4 | DISCUSSION

The clinical presentation, the neurophysiology findings, and CSF analysis showing albumin-cytological dissociation suggested a diagnosis of GBS in these patients during and after COVID-19 infection. The neurophysiology examination, although complicated by the protective equipment and protocols to reduce the risk of infection, was extremely useful to detect subclinical findings, better defining the diagnosis and encouraging the start of the appropriate therapy with IVIG, as previously suggested. In fact, during COVID-19 infection the weakness of the upper and lower limbs could be underestimated and misdiagnosed, especially in the first phase of the disease, when the emergency and the high risk of infection in COVID-19 dedicated areas are the overriding concern. In our experience, ENG was mandatory for the correct diagnosis despite being complicated to perform in COVID-19 areas, to respect the protocols of security and protection. In two of our patients, the ENG has documented the presence of conduction block and increase in latency and dispersion of F waves typical of GBS, while in the other two cases a significant decrease in amplitude in distal and proximal compound muscle action potential as previously reported in axon motor acute neuropathy. In contrast, the ENG in the fifth patient was able to clearly detect the facial involvement.

In this study, we observed an increase in serum ILs, particularly IL-6 and IL-8 in three patients; these findings are consistent with the current evidence that the overproduction of inflammatory cytokines may lead to severe forms of COVID-19, increased risk of multiorgan failure, and eventually death. Indeed, in three of our patients, mechanical ventilation was required due to the acute respiratory distress syndrome, while two received Tocilizumab to block the inflammatory cascade. As such, the autoimmune polyneuropathies
TABLE 2 Neurophysiological study of patients

Patients	Nerve	Stimulation point	Record point	Distal latency, ms	Amplitude, mV	Velocity, m/s	F wave minimal latency, ms		
1	Motor NCS	Median (L)	Elbow	Wrist	13.70	4.10	45.0	26.6	
		Median (R)	Elbow	Wrist	8.80	5.30	67.0	31.3	
		Ulnar (L)	Elbow	Wrist	6.56	3.60	...	34.4	
		Ulnar (R)	Elbow	Wrist	7.38	4.20	67.0	29.5	
		Tibial (L)	Ankle	Adb hal	6.17	2.30	...	67.0	
		Peroneal (L)	Ankle	EDB	4.42	1.80	...	62.0	
		Head of fibula	Ankle	...	4.60	1.10	34.4	73.0	
		Peroneal (R)	Ankle	EDB	5.21	1.05	
		Head of fibula	Ankle	...	16.10	0.13	34.0	...	
		Antidromic sensory NCS	Median (R)	Wrist	2nd Digit	3.80	8.50
		Ulnar (R)	Wrist	5th Digit	3.70	7.20	
		Sural (L-R)	Lateral malleolus	Calf	
2	Motor NCS	Median (L)	Wrist	APB	3.74	1.31	...	39.0	
		Elbow	...	8.20	0.69	23.7	
		Median (R)	Wrist	APB	5.37	2.00	...	29.0	
		Elbow	...	11.30	0.88	23.7	
		Ulnar (L)	Wrist	ADM	5.85	1.93	...	34.0	
		Elbow	...	11.30	1.62	49.5	
		Peroneal (L)	Ankle	EDB	6.69	0.18	...	Absent	
		Head of fibula	...	8.54	0.13	10.8	
		Peroneal (R)	Ankle	Adb hal	25.90	0.60	...	Absent	
		Knee	...	24.10	0.54	
		Head of fibula	Ankle	...	27.10	0.06	
		Antidromic sensory NCS	Median (L)	Wrist	2nd Digit	3.79	15.40
		Ulnar (R)	Wrist	2nd Digit	4.18	4.80	
		Sural (L)	Wrist	5th Digit	3.36	13.10	
		Sural (R)	Lateral malleolus	Calf	7.65	15.00	24.8
3	Motor NCS	Median (R)	2nd Digit	...	4.51	9.10	54.0	25.5	
		Ulnar (R)	5th Digit	...	4.32	8.20	55.1	27.4	
		Peroneal R	...	4.70	9.50	50.2	40.3	...	
		Facial (L)	Postauricular	Orbicular oris	3.88	1.60	
		Facial (R)	Postauricular	Orbicular oris	4.85	0.50	
		Facial (R)	Postauricular	Orbicular oculi	3.25	1.60	
		Antidromic sensory NCS	Median (R)	...	3.50	11.30	
		Ulnar (R)	...	3.80	12.00	
		Sural (R)	...	6.30	20.00	
4	Motor NCS	Peroneal (L)	Ankle	Abd hal	23.60	1.50	...	Absent	
		Peroneal (R)	Ankle	EDB	7.90	0.10	...	Absent	
		Ankle	EDB	15.70	0.16	...	Absent	...	
		Head of fibula	Ankle	...	17.50	0.75	...	4.50	...

(Continues)
observed in our patients may be considered as part of a systemic overactive inflammatory response, namely "cytokine storm." Moreover, in two out of three patients tested, IL-8 resulted markedly increased also in CSF, with a CSF/serum ratio more than 1, suggesting the presence of an acute inflammatory process specifically targeting the nervous system. Previous studies showed that the CSF/serum IL-8 ratio was increased in GBS as compared to chronic neuropathies such as the chronic inflammatory demyelinating polyneuropathy, thus it has been proposed as a possible biomarker of acute immune reaction against the nervous system.12,13

Neurological complications are common following respiratory infections,8 therefore, a cross-reactivity for SARS-CoV-2 was also speculated and reported.3,14 This note is in agreement with other studies reporting GBS and cranial polyneuritis during the SARS-CoV-2 pandemic as neurological clinical complications of COVID-19. We did not find the presence of any antiganglioside antibody as anti-GM1, -GM2, -GM3, -GD1a, -GD1b, -GT1b, and -GQ1b. The GQ1b and other glycoproteins are located at the paranodal sites of the peripheral nerves, la-afferent neurons of the spinal dorsal horn cells, proximal segments of the cranial nerves controlling oculomotor, muscle spindle afferents, cerebellar vermis, and hypothalamic nuclei, usually explaining the symptoms of the disease.5,15 However, in some cases of MFS (10%-15%) and MFS/GBS overlap syndrome (22%) negative results for anti-GQ1b tests have been reported.16,17

Despite the exact mechanisms linking SARS-CoV-2 infection to neurological symptoms need further investigation, it is not possible to exclude a direct penetration of the virus in the peripheral and central nervous system.18,19 In our patients, an autoimmune mechanism may be speculated, for the typical features of clinical neurophysiology, the albuminocytologic dissociation in CSF, and mainly for the significant response to immunoglobulins. A peculiar note is the rapid onset of neurological symptoms of neuropathy in these cases after the onset of COVID infection, indicative of a rapid and dramatic inflammatory reactivity not common in the typical GBS.5

The timing of neurological signs in one of our patients seemed too rapid to imply a typical heterologous immune reaction to a first viral exposure and it could rather resemble a form of acute parainfectious paralysis that has already been associated with some viruses, such as ZIKV.20,21 This paralysis usually develops from 5 to 10 days after infection and has higher morbidity, more frequently with cranial neuropathies and concurrent immune-mediated disorders such as thrombocytopenic purpura7; antiglycolipids antibodies typically involved in cross-reactive mechanisms are not common.9,21 The hypothesis of neurological manifestations of COVID-19 is supported by the evidence of neurotropic and neuroinvasive characteristics of coronaviruses in humans19; moreover, other strains of human coronaviruses have already been involved with peripheral nervous system manifestations3,14 and with pediatric cases of GBS.22

A novelty of this study is represented by the subclinical involvement of facial nerve detected by ENG in patients associated with ageusia. Facial nerve involvement is intriguing and should be considered as the real novelty of this study since its implication aligns with other

TABLE 2 (Continued)

Patients	Nerve	Stimulation point	Record point	Distal latency, ms	Amplitude, mV	Velocity, m/s	F wave minimal latency, ms
Facial (R)	Postauricular	Orbicular oris	5.73	1.10	⋯⋯	⋯⋯	⋯⋯
Facial (L)	Postauricular	Orbicular oris	4.50	1.99	⋯⋯	⋯⋯	⋯⋯
Antidromic sensory NCS							
Not tested							

5	Motor NCS						
Median (R)	Wrist	APB	Not detectable	⋯⋯	⋯⋯	⋯⋯	
Ulnar (R)	Wrist	ADM	Not detectable	⋯⋯	⋯⋯	⋯⋯	
Tibial (L)	Ankle	Head of fibula	EDB	3.00	0.76	⋯⋯	47.6
Tibial (R)	Ankle	Knee	9.13	0.74	45.7	⋯⋯	⋯⋯
Peroneal (L)	Ankle	Head of fibula	EDB	11.50	0.79	46.4	⋯⋯
Peroneal (R)	Ankle	Knee	3.32	1.07	⋯⋯	49.9	⋯⋯
Facial (R)	Postauricular	Orbicular oris	2.10	3.40	⋯⋯	⋯⋯	⋯⋯
Facial (L)	Postauricular	Orbicular oris	2.70	1.10	⋯⋯	⋯⋯	⋯⋯
Antidromic sensory NCS							
Not tested							

Note: "⋯⋯" = not measured.

Abbreviations: Abd Hal, abductor hallucis; ADM, abductor digiti minimi; APB, abductor pollicis brevis; EDB, extensor digitorum brevis; L, left side of the body; NCS, nerve conduction study; R, right side of the body.
cranial nerves involvement in these forms of GBS. Detecting facial nerve impairment with the ENG underlines the importance of clinical neurophysiology as a precious tool to detect mild demyelinating nerve damage; it also helps us investigate the mechanism behind ageusia, as direct involvement of facial nerve and not only as central dysfunction. In particular, the patient presenting a unilateral involvement with ageusia affecting the same side confirms this hypothesis, already described in some other cases.2,23 Finally, IVIG therapy was found to be effective and safe to treat the reported peripheral neurological symptoms, with a good recovery in most of the patients. Most patients with COVID-19 and lower /upper limbs related weakness are still not recognized or are not investigated by ENG and do not receive any specific treatment, therefore increasing the risk of permanent damage. In conclusion, this study describes the clinical and neurophysiological characteristics of GBS polyneuropathy in patients affected by COVID-19, and the clinical responses to IVIG therapy, encouraging the use of clinical neurophysiology to better detect abnormalities, define the diagnosis, and promote the use of specific therapies, such as IVIG, to treat these important neurological symptoms.

ACKNOWLEDGMENTS
We thank all the staff of the COVID-19 dedicated area and the neurophysiology technicians.

CONFLICT OF INTERESTS
The authors declare that there are no conflict of interests.

AUTHOR CONTRIBUTION
PM contributed to conceptualization, study design, data collection, wrote the draft and approved the final version of the manuscript. GB contributed to study design, data collection, manuscript draft, and approved the final version of the manuscript. LD contributed to study design, data collection, reviewed the manuscript, and approved the final version. VT contributed to data collection and reviewed the manuscript, and approved the final version. MF contributed to data collection and reviewed the manuscript, and approved the final version. AS and LB contributed to data collection and reviewed the manuscript, and approved the final version. AB contributed to data analysis, wrote the draft, and approved the final version of the manuscript. VP contributed to conceptualization, study design, data collection, reviewed, and approved the final version of the manuscript.

ORCID
Paolo Manganotti https://orcid.org/0000-0001-5305-6268
Alex Buoite Stella https://orcid.org/0000-0002-4871-7022

REFERENCES
1. Ahmad I, Rathore FA. Neurological manifestations and complications of COVID-19: A literature review. J Clin Neurosci. 2020;77:8-12. https://doi.org/10.1016/j.jocn.2020.05.017
2. Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020;382:2268-2270. https://doi.org/10.1056/NEJMc2008597
3. Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol. 2020;19:383-384. https://doi.org/10.1016/S1474-4422(20)30109-5
4. Manganotti P, Pesavento V, Stella AB, et al. Miller Fisher syndrome diagnosis and treatment in a patient with SARS-CoV-2 [published online ahead of print June 11, 2020]. J Neurolvirol. 2020;1:2. https://doi.org/10.1007/s13365-020-00585-9
5. Wakerley BR, Uncini A, Yuki N. Guillain-Barré and Miller-Fisher syndromes—new diagnostic classification. Nat Rev Neurol. 2014;10(9):537-544. https://doi.org/10.1038/nrneurol.2014.138
6. Lehmann HC, Hartung H-P, Kieseier BC, Hughes RAC. Guillain-Barré syndrome after exposure to influenza virus. Lancet Infect Dis. 2010;10(9):643-651. https://doi.org/10.1016/S1473-3099(10)70140-7
7. Pusch E, Renz H, Skevaki C. Respiratory virus-induced heterologous immunity: part of the problem or part of the solution? Allergo J Int. 2018;27(3):79-96. https://doi.org/10.1007/s40629-018-0056-0
8. Sellers SA, Hagan RS, Hayden FG, Fischer WA 2nd. The hidden burden of influenza: a review of the extra-pulmonary complications of influenza infection. Influenza Other Respi Viruses. 2017;11(5):372-393. https://doi.org/10.1111/irv.12470
9. Kim JE, Heo JH, Kim HO, et al. Neurological complications during treatment of Middle East respiratory syndrome. J Clin Neurol. 2017;13(3):227-233. https://doi.org/10.3988/jcn.2017.13.3.227
10. Kassardjian CD, Desai U, Narayanaswami P. Practical guidance for managing EMG requests and testing during the COVID-19 pandemic. Muscle Nerve. 2020;62:30-33. https://doi.org/10.1002/mus.26891
11. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020;8:46. https://doi.org/10.1016/S2213-2600(20)30116-2
12. Sainaghi PP, Collimedaglia L, Alciato F, et al. The expression pattern of inflammatory mediators in cerebrospinal fluid differentiates Guillain-Barré syndrome from chronic inflammatory demyelinating polyneuropathy. Cytokine. 2010;51(2):138-143. https://doi.org/10.1016/j.cyto.2010.05.005
13. Breville G, Lascano AM, Roux-Lombard P, Lalive PH. IL-8 as a potential biomarker in Guillain-Barré Syndrome. Eur Cytokine Netw. 2019;30(4):130-134. https://doi.org/10.1684/ecn.2019.0436
14. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China [published online ahead of print April 10, 2020]. JAMA Neurol. 2020;77(6):1-9. https://doi.org/10.1001/jamaneurol.2020.1127, https://doi.org/10.1001/jamaneurol.2020.22.20026500
15. Kaido K, Kanzaki M, Morita D, et al. Anti-ganglioside complex antibodies in Miller-Fisher syndrome. J Neurol Neurosurg Psychiatry. 2006;77(9):1043-1046. https://doi.org/10.1136/jnnp.2006.078940
16. Sekiguchi Y, Mori M, Misawa S, et al. How often and when Fisher syndrome is overlapped by Guillain-Barré syndrome or Bickerstaff brainstem encephalitis? Eur J Neurol. 2016;23(6):1058-1063. https://doi.org/10.1111/ej.12983
17. Wattanaakit P, Sathirapanya P. Anti-ganglioside antibody-negative Miller Fisher and AMSAN variant Guillain-Barré Overlap Syndrome. Case Rep Neurol. 2020;12(1):92-96. https://doi.org/10.1159/000506191
18. Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun. 2020;87:18-22. https://doi.org/10.1016/j.bbi.2020.03.031
19. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020;8:46. https://doi.org/10.1016/S2213-2600(20)30116-2
20. Moss D, Ko Al, Baud D. Zika virus infection—after the pandemic. N Engl J Med. 2019;381(15):1444-1457. https://doi.org/10.1056/NEJMra1808246
21. Uncini A, Shahrizaila N, Kuwabara S. Zika virus infection and Guillain-Barré syndrome: a review focused on clinical and electrophysiological...
subtypes. J Neurol Neurosurg Psychiatry. 2017;88(3):266-271. https://doi.org/10.1136/jnnp-2016-314310

22. Sharma K, Tengsupakul S, Sanchez O, Phaltas R, Maertens P. Guillain-Barré syndrome with unilateral peripheral facial and bulbar palsy in a child: a case report. SAGE Open Med Case Rep. 2019;7:2050313X19838750. https://doi.org/10.1177/2050313X19838750

23. Polo A, Manganotti P, Zanette G, De Grandis D. Polyneuritis cranialis: clinical and electrophysiological findings. J Neurol Neurosurg Psychiatry. 1992;55(5):398-400. https://doi.org/10.1136/jnnp.55.5.398

How to cite this article: Manganotti P, Bellavita G, D’Acunto L, et al. Clinical neurophysiology and cerebrospinal liquor analysis to detect Guillain-Barré syndrome and polyneuritis cranialis in COVID-19 patients: A case series. J Med Virol. 2021;93:766–774. https://doi.org/10.1002/jmv.26289