Common Denominators in the Immunobiology of IgG4 Autoimmune Diseases: What Do Glomerulonephritis, Pemphigus Vulgaris, Myasthenia Gravis, Thrombotic Thrombocytopenic Purpura and Autoimmune Encephalitis Have in Common?

Inga Koneczny1*, Vuslat Yilmaz2†, Konstantinos Lazaridis3†, John Tzartos4,5, Tobias L. Lenz6, Socrates Tzartos4,7, Erdem Tüzün2 and Frank Leypoldt8

1 Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria, 2 Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey, 3 Department of Immunology, Laboratory of Immunology, Hellenic Pasteur Institute, Athens, Greece, 4 Tzartos NeuroDiagnostics, Athens, Greece, 5 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece, 6 Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany, 7 Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece, 8 Neuroimmunology, Institute of Clinical Chemistry and Department of Neurology, Medical Faculty, Christian-Albrechts-University Kiel, Kiel, Germany

IgG4 autoimmune diseases (IgG4-AID) are an emerging group of autoimmune diseases that are caused by pathogenic autoantibodies of the IgG4 subclass. It has only recently been appreciated, that members of this group share relevant immunobiological and therapeutic aspects even though different antigens, tissues and organs are affected: glomerulonephritis (kidney), pemphigus vulgaris (skin), thrombotic thrombocytopenic purpura (hematologic system) muscle-specific kinase (MuSK) in myasthenia gravis (peripheral nervous system) and autoimmune encephalitis (central nervous system) to give some examples. In all these diseases, patients’ IgG4 subclass autoantibodies block protein-protein interactions instead of causing complement mediated tissue injury, patients respond favorably to rituximab and share a genetic predisposition: at least five HLA class II genes have been reported in individual studies to be associated with several different IgG4-AID. This suggests a role for the HLA class II region and specifically the DRβ1 chain for aberrant priming of autoreactive T-cells toward a chronic immune response skewed toward the production of IgG4 subclass autoantibodies. The aim of this review is to provide an update on findings arguing for a common pathogenic mechanism in IgG4-AID in general and to provide hypotheses about the role of distinct HLA haplotypes, T-cells and cytokines in IgG4-AID.

Keywords: IgG4 autoimmune disease, MHC, autoimmunity, HLA-DRB1, HLA-DQB1, etiology, HLA class II
INTRODUCTION TO IGG4-AID

IgG4 autoimmune diseases (IgG4-AID) are a group of autoimmune diseases that are mediated by antigen-specific autoantibodies of the IgG4 subclass (1, 2). The best known IgG4 autoimmune diseases include pemphigus (3), MuSK myasthenia gravis (4), thrombotic-thrombocytopenic purpura (5), Goodpasture syndrome (6) and membranous nephropathy (7, 8). IgG4 is the least common subclass of IgG, it is immunologically inert as it does not activate complement or engage activating Fc receptors, which is also why therapeutic monoclonal antibodies are frequently modeled on the IgG4 subclass (9, 10). Since IgG4 is also produced in response to strong or chronic stimulation with antigen to down-regulate an overshooting immune response, it is often considered a protective antibody subclass, competing with other antibody classes and subclasses, e.g. IgG1 or IgE, for binding of antigen [reviewed here (9, 11, 12)]. Therefore, IgG4 is not considered as a pathogenic player in autoimmunity, and is an unlikely antibody to cause harm. Yet in recent years, more and more diseases were found to be primarily associated with IgG4 subclass autoantibodies targeting different autoantigens (2, 13). IgG4 autoimmune diseases were first appreciated as a group in 2015 (13). The number of suspected IgG4-AID is constantly growing and to date, 29 candidate antigens are known [Figure 1, (14)]. Most antigens are located in the central and peripheral nervous system, but there are also antigens in the skin and mucosa, kidneys and in the hematological system (Figure 1). The group of IgG4-AID is defined by several characteristics beyond mere antibody isotype predominance: 1) the IgG4 autoantibodies target transmembrane/extracellular or soluble antigens, 2) are directly pathogenic, meaning that they exert their effect without complement- or cell-dependent cytotoxicity by blocking of binding sites for direct interaction partners, ligands or substrates, 3) all IgG4-AID have a low prevalence affecting less than 5 per 10,000, and 4) mostly respond favorable to treatment.

![Proposed IgG4 autoantibody targets. ADAMTS13, disintegrin and metalloproteinase with thrombospondin motifs 13; ANCA, antineutrophil cytoplasmic antibodies; AR, Aldose reductase; BP180; BP230, bullous pemphigoid antigen 180/230; CNTN1, contactin 1; Caspr1/2, contactin associated protein1/2; Dsg1/3, desmoglein 1/3; DPPX, dipeptidyl-peptidase-like protein 6; GPIHB1, glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1; IFN I, type I interferon, IgLON5, IgLON family member 5; IL-17A/17F/22, interleukin-17A/17F/22; Lam332, Laminin 332; LG1, leucine-rich, glioma inactivated 1; MuSK, muscle-specific kinase; NF140/155/186; Neurofascin 140/155/186; PLA2R, phospholipase A2 receptor; SOD2, manganese superoxide dismutase; THSD7A, thrombospondin type-1 domain-containing 7A.](#)
with the B-cell depleting agent rituximab, an observation that has been puzzling because long-lived antibody producing plasma cells do not carry CD20 and are therefore not depleted. Another more recent observation points into the same direction of IgG4-AID sharing common immunobiological mechanisms: Most of them are associated with similar variants of the HLA class II region (Table 1). In this review, we summarize the information available for the group of IgG4-AID and hypothesize on common immunopathogenesis.

KNOWN IGG4 AUTOANTIBODY-ASSOCIATED DISEASE: A COLORFUL BOUQUET

There are many distinct forms of IgG4-AID with a wide variety of symptoms, caused by IgG4 autoantibodies that may target one of four main organs: 1) the skin and mucosa, 2) the peripheral and central nervous system, 3) the kidneys and 4) the hematological system (Figure 1). The pathogenic mechanism of these antibodies is

Disease/antigen	Affected organ	Reported HLA association	DQB1*05	DRB1*04	DRB1*11	DRB1*14	DRB1*15	Protective alleles/No association	References
Class I IgG4 autoimmune diseases	MuSK-MG/MuSK	PNS	DQB1*05, DRB1*14, DRB1*16, DQB1*03, DQB1*0502, DQB1*0301/0313, DQA1*0101	✓✓✓	✓✓✓✓	✓✓✓✓	✓✓✓✓	✓✓✓✓	(15–23)
Pemphigus foliaceus, fogo selvagem (and p. vulgaris of mucocutaneous type)/Desmoglein 1	Skin/mucosa	PF: HLA-DRB1*04, HLA-DRB1*14, DRB1*1404	✓✓✓✓	✓✓✓✓	✓✓✓✓	✓✓✓✓	✓✓✓✓	(24–30)	
Pemphigus vulgaris/Desmoglein 3	Skin/mucosa	HLA-DRB1*0402, HLA-DRB1*1101/1404, HLA-DRB1*1402/1406 or *0102	✓✓✓✓	✓✓✓✓	✓✓✓✓	✓✓✓✓	✓✓✓✓	(27–29, 31–32)	
Class II IgG4 autoimmune diseases	Enteral Encephalitis	CNS	HLA-DRB1*0701 and linked alleles	✓✓✓✓	✓✓✓✓	✓✓✓✓	✓✓✓✓	✓✓✓✓	(39–42)
Morvan’s syndrome/LGI1	Kidneys	HLA-DRB1*1001 and linked alleles	✓✓✓✓	✓✓✓✓	✓✓✓✓	✓✓✓✓	✓✓✓✓	(37–39)	
Membranous nephropathy/PLA2R	Kidneys	HLA-DRB1*1501, DRB3*0202	✓✓✓✓	✓✓✓✓	✓✓✓✓	✓✓✓✓	✓✓✓✓	(43–44)	
CNS and PNS disorders/CASPR2	CNS/PNS	HLA-DRB1*1101 (Linkage: HLA-DRB1*1101-DQA1*0501-DQB1*0301)	✓✓✓✓	✓✓✓✓	✓✓✓✓	✓✓✓✓	✓✓✓✓	(39)	
Membranous nephropathy/THSD7A	Kidneys	N/A							
GPIHBP1 autoantibody syndrome/GPIHBP1	Blood/hematological system	N/A							
based on an IgG4-mediated blocking of protein-protein and/or cell-cell interaction. The detailed description of all IgG4-AID and their disease mechanisms would far exceed the scope of this review and was therefore published separately (14), but we would like to briefly summarize the key mechanisms of a few example diseases.

Probably the most commonly known IgG4-AID targets skin and mucous membranes: pemphigus vulgaris. This disease is hallmarked by acantholysis and blister formation caused by the loss of keratinocyte adherence. The targets of IgG4 autoantibodies are the desmogleins (Dsg1 or 3) located at the desmosomes. Desmogleins interact closely with each other to maintain the adherence of the cells, and thereby the tissue architecture of skin and mucosa. The binding of IgG4 to desmoglein 1 or 3 leads to a loss of interaction between desmogleins, which causes the disruption of the cell adhesion and in consequence to the formation of blisters (57–59).

Some IgG4-AID cause central and/or peripheral nervous system dysfunction, depending on the target antigen localization. Antibodies targeting the CNS synaptic scaffolding protein LGI1 disrupt synaptic signaling by blocking the trans-synaptic clustering of receptors and channels mediated by this antigen. This leads to amnesia, epileptic seizures and psychiatric symptoms (60–62).

In the peripheral nervous system, IgG4 autoantibodies may, for example, recognize the protein neurofascin 155 (NF155). NF155 is important for attaching the myelin sheath lamellae to the axon at the paranodes adjacent to the nodes of Ranvier. This leads to disruption of action potentials (conduction slowing and block) and consecutively to chronic neuropathies [chronic inflammatory demyelinating polyneuropathy; CIDP (63–67)].

In IgG4-AID, which target synaptic antigens localized in the peripheral and central nervous system, e.g. CASPR2, combinations of central nervous system dysfunction (limbic encephalitis) and peripheral nervous system dysfunction (neuromyotonia, pain) may occur (68–70).

The signal for muscle contraction is transmitted by the release of the neurotransmitter acetylcholine from the motoneuron to the

Table 1 (Continued)

Disease/antigen	Affected organ	Reported HLA association	DQB1*05	DRB1*04	DRB1*11	DRB1*14	DRB1*15	Protective alleles/No association	References	
CIDP/CASPR1	PNS	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Mucous membrane pemphigoid/Laminin 332	Skin/mucosa	Unclear/N/A	N/A							
Class III IgG4 autoimmune diseases										
Goodpasture syndrome/Type IV collagen	Kidneys	HLA-DRB1*15:01 (DRB1*0404)	✓	✓	N/A				(6, 45–48)	
IgLGON5	CNS	HLA-DRB1*10:01, HLA-DQB1*05:01	✓						(49)	
Parsonoma/IgLON5	Skin/mucosa	DRB1*0301, DRB1*04, DRB1*11, DQB1*0501 and DRB1*1001, DQA1*055, HLA-DRB1*0401, HLA-DR1, HLA-DR4, HLA-DRB1*0901-HLA DQB1*0303, HLA-DR9, HLA-DR13, HLA-DRB1*1202, HLA-DRB1*15, HLA-DRB1*0405	✓	✓	✓				(50–53)	
Granulomatosis with Polyangitis/ANCA	Blood/ hematomal system	DRB1*03:01, DRB1*04:01, DQA1*03:01, DQA1*05:01, DQB1*02:01, DQB1*03:02	✓						(54–56)	
Autoimmune polyendocrine syndrome type 1 (APECED)/IFN γ, IL-17A, IL-17F and IL-22	Blood/ hemotological system	Subtypes: Addison’s disease: HLA-DRB1*03, Alopecia: HLA-DRB1*04- DQB1*0302	✓						(54–56)	
CIPD/Neurofascin 140/186	PNS	N/A								
Anti-laminin γ1/Anti-P200 pemphigoid/ P200 (laminin γ1)	Skin/mucosa	N/A								
DPPX encephalitis/ DPPX	CNS	N/A								
Membranous nephropathy/ renolase, SOD2, AR/	Kidneys	N/A								

Notably the study populations are from various different geographic locations and contain participants of diverse ethnicities, which may influence HLA associations. CIDP, chronic inflammatory demyelinating polyneuropathy; N/A, data not available; CNS, central nervous system; PNS, peripheral nervous system.

TABLE 1 | Continued
muscle, where it is bound by acetylcholine receptors (AChR). Muscle-specific kinase (MuSK) is a key regulator of the neuromuscular junction that is part of a signal transduction pathway required for dense clustering of acetylcholine receptors (AChR) at the neuromuscular junction. IgG4 autoantibodies against MuSK block its interaction with another protein in the signal transduction pathway, leading to reduced densities of AChR (71, 72). As a consequence, there is less efficient neuromuscular transmission. This means that not every signal from the motor neuron to move the muscle leads to a muscle contraction, which translates into a severe, fatigable weakness of skeletal muscles.

Autoantibodies against kidney antigens PLA2R and THSD7A are found in patients with membranous nephropathy, where the pathogenic mechanisms are still unclear, PLA2R and THSD7A are expressed in cells of the glomerulus (podocytes) inside of renal corpuscles. The glomerulus filters the blood, so the adhesion between the cells is important for the function of the glomerulus, but we know very little about the role of PLA2R and THSD7A and what the autoantibodies exactly do. THSD7A-IgG4 was hypothesized to block protein-protein interactions of THSD7 and cell-cell interactions, therefore affecting the glomerular filtration and causing proteinuria (73–75). Potentially affected binding partners of PLA2R are collagen IV (76), which is important for cell adhesion, or the At2-complex (14, 77), which is important to maintain cell architecture and affect podocyte function. Perhaps a blocking of PLA2R interaction with these binding partners affects cell adhesion and/or cell architecture. Interestingly it is also thought that a specific subtype of complement activation, via mannose-binding lectins may occur (78–80).

Thrombotic thrombocytopenic purpura (TTP) is another well-known disease that is mediated by IgG4. Patients with TTP have IgG4 autoantibodies against a protease located in the blood, ADAMTS13. The normal function of ADAMTS13 is to cleave and inactivate the multimeric forms of the von Willebrand factor (VWF), which is a protein that is (in its multimeric form) required for blood clotting, e.g. following injury. Blocking of ADAMTS13 function by IgG4 leads to accumulation of multimeric VWF, which then binds to platelets. This leads to the formation of microthrombi that may block capillaries and therefore cause vascular occlusion. This is especially severe if the thrombi occur in brain, kidneys or lungs (17, 81, 82). A different antigen in the hematological system is GPIHBP1, which is a protein expressed in capillary endothelial cells and which have the main function to transport lipoprotein lipase (LPL) into the blood. LPL breaks down lipids, so when it is not transported into the blood because IgG4 binding to its transporter GPIHBP1, the patients will suffer from hypertriglyceridemia (83, 84).

ROLE OF HLA CLASS II POLYMORPHISM IN IGG4-AID: EMERGING GENETIC PREDISPOSITION

In the search for common immunopathogenesis, we wanted to investigate mutations or variants of genes that may contribute to a genetic predisposition for the development of IgG4-AID. We therefore investigated whether there are candidate genes that have been identified in genome wide association studies (GWAS) of individual IgG4-AID. Data on pemphigus vulgaris, pemphigus foliaceus, membranous glomerulonephritis and eosinophilic granulomatosis with polyangiitis were identified in the NHGRI-EBI catalog of human genome-wide association studies (85). The most frequently reported associations were with variants in the HLA class II region: HLA-DQA1, HLA-DQB1, HLA-DRB1 (Figure 2, Supplementary Table 1).

Most autoimmune diseases are known to have a genetic association with the HLA class II region, and it is thought that the presence of specific HLA alleles may cause a genetic predisposition to develop specific autoimmune diseases or groups of autoimmune diseases (86–88). Therefore, we also looked at reports of associations with HLA class II genes, as it may be possible that there are one or more HLA alleles that may be specifically associated with one or more IgG4-AIDs. Interestingly, we observed that many studies reported a genetic association of individual IgG4-AID with HLA-class II variation: HLA*DRB1*14, 04,15 or 11, and/or HLA-DQB1*05 (Table 1).

For example, the HLA-DRB1*14 supertype was found associated with MuSK MG, pemphigus and thrombotic thrombocytopenic purpura, HLA-DQB1*05 in IgIOn5 parasomnia, thrombotic thrombocytopenic purpura and MuSK MG (15, 16, 18, 19, 89), HLA-DRB1*15 is associated with NFI55 antibody positive CIDP, pemphigus and PLA2R antibody positive MN [in a Chinese population, up to 99% of patients with PLA2R antibodies carried either DRB1*15:01 or DRB3*02:02, and individuals with these alleles have a 99-fold increased risk of PLA2R-associated MN (43)]. Alleles of the DRB1 and DQB1 genes were associated with most IgG4 autoimmune diseases, suggesting that the HLA class II genes play a role not only in typical autoimmune diseases, but also in the induction of an IgG4 specific autoimmune response. The next question is, whether there is a specific allele associated with a class switch toward IgG4. Looking at IgG4-related diseases in comparison, also the HLA-DRB1 locus was found to be associated in two out of six studies (90), in one of these studies HLA-DRB1*15 was associated with increased IgG4 levels (91). Whether specific alleles are truly associated with an increased predisposition to induce a class switch toward IgG4 and to develop IgG4-AID cannot yet be concluded, but a systematic review and meta-analysis are currently being conducted in our research groups to address this possibility.

A POTENTIAL EXPLANATION FOR THE GRADIENT: ASSOCIATION OF PREVALENCE AND GENETIC BACKGROUND IN EUROPE

If specific HLA class II alleles would contribute to a genetic predisposition for IgG4-AID, it may be possible that geographical differences in HLA class II genotype may correlate with an increased disease prevalence. Interestingly,
both in MuSK-MG (92) and in pemphigus vulgaris (93), a north-south gradient can be observed in Europe, with higher prevalence in southern countries such as Italy and fewer cases in northern countries such as Finland or Norway. Potential reasons may be environmental or genetic factors. If there were also geographical differences in HLA class II genotype frequencies, it would underline the relevance of the HLA class II alleles on disease susceptibility. To test this hypothesis, we have plotted the frequency of the HLA-DQB1*05:02 allele as well as of HLA-DRB1*04 and *014 {data obtained from the Allele Frequency Net Database [AFND, (94)], Table 2} against latitude in European countries (Figure 3). There is a trend toward increased frequency of HLA-DQB1*05:02 in countries with lower latitude, such as Italy, which also show increased frequency of MuSK MG (92) and pemphigus (93), while there is a reduced frequency for HLA-DRB1*04 and no apparent change in HLA-DRB1*14 in countries with low latitudes.

IMMUNOGENIC PEPTIDES AND HOW TO PRESENT THEM: ARE THERE DISTINCT SHARED SEQUENCES IN ANTIGEN PEPTIDES AND HLA CLASS II PEPTIDE BINDING GROOVES?

Next we wanted to investigate whether there is any evidence that may support a functional role of HLA class II molecules for disease susceptibility. One possibility is that distinct HLA class II alleles may play a role in inducing a distinct IgG4 specific T-cell response by the presentation of specific immunogenic peptides (that perhaps are best presented by peptide-binding grooves that have a distinct sequence). This would mean that the HLA haplotype may play a role in the susceptibility to develop IgG4-AIDs via specific sequences in the peptide binding groove and/or specific sequences in the presented peptide or in the T-cell receptor (TCR). There is some evidence for this hypothesis.

HLA Class II Alleles in IgG4-AID

We investigated if there is evidence for any interesting structural characteristics of the peptide-binding groove of IgG4-AID associated HLA class II molecules. Two risk alleles for membranous nephropathy with PLA2R antibodies were identified in a Han Chinese population in DRB1*15:01 and DRB1*03:01 (43), either of which were found in 73.6% of the patient cohort (compared to 33% in the healthy control population), and that contained specific amino acid variants in the peptide-binding groove of the HLA class II molecules which is responsible for antigen presentation to the T-cell receptor (43, 44). Specifically important were arginine at position 13 (arginine13) in HLA-DRB1*15:01 and alanine at position 71 (alanine71) in DRB1*03:01 for interactions with T cell epitopes of PLA2R. The role of arginine13 in HLA-DRB1*15:01 is also mentioned as relevant in another IgG4-AID, IgG4 autoantibodies against the α3(IV)NC1 in Goodpasture disease also have a strong association with HLA-DRB1*15:01, and that arginine13 and proline71 of the DRB1*15:01 encoded DRβ1 chain

![Figure 2](image-url)
were associated with disease susceptibility. Furthermore, isoleucine137, tryptophan140, glycine142, phenylalanine143 and phenylalanine145 were presented in peptide-binding pockets 1, 4, 6, 7, and 9, and specifically arginine13 in pocket 4 interacts with tryptophan140 of the peptide and forms a hydrogen bond (45).

Different alleles, HLA-DRB1*04:04, 14:02 and 14:06 all share a sequence in the hypervariable region in residues 67 to 74 (LLEQRRAA) and these alleles were reported to be linked to fogo selvagem, an endemic form of pemphigus vulgaris (24). HLA-DRB1*04 is also associated with other IgG4-AID (Table 1).

In pemphigus, the carrier frequency of the HLA-DRB1*04 allele is very high, for example it is found in 60% of patients from Brazil and in 71% of Dutch patients, with similar and lower allele frequencies in the healthy population in both countries [Brazil: 39%, Netherlands: 38%, (96)]. Analysis of polymorphic residues that form the binding pockets of the DRβ1 chain of HLA-DRB1*04 and *14 alleles in pemphigus vulgaris show that they contain similar sequences, as well as in HLA-DRB1*04, *14 and *01 in pemphigus foliaceus. Of note are structural similarities between DRB1*04:04 and 01:02 that lead to similar binding pockets and may bind similar peptides [Table 3, (25)]. These may present the same peptide from Dsg1, while in pemphigus vulgaris, two distinct types of peptide may be presented by DRB1*04:02 or DRB1*14/04:06. Furthermore, DRB1*14/04:06 may be able to present both Dsg1 and Dsg3 peptides, which may be the reason for antibodies against both antigens in pemphigus.

TABLE 2 | Frequency of the HLA-DQB1*05:02 allele in European countries sorted by latitude. Source: The Allele Frequency Net Database [AFND (94)].

Country/Region (defined by AFND)	% of population carrying allele	Allele frequency	Cohort size	Geographical location
Ireland Northern pop 2	0.8	0.004	122	54_32_N_5_56_W
Ireland South	1.6	0.008	250	53_20_N_6_15_W
Netherlands UMCU	1.8	0.0078	64	52_5_N_5_10_E
Netherlands	5.5	0.047	447	52_0_N_7_0_E
England pop 3	4.1	0.02	61	51_30_N_0_6_w
England pop 6	1.7	0.008	177	51_30_N_0_7_w
Germany Elsen	5.2	0.026	174	51_27_N_7_0_E
Czech Republic pop 3	7.2	0.036	180	50_7_N_14_24_E
Belgium	6.1	0.03	99	50_50_N_4_21_E
Belgium pop 2	4.5	0.022	715	50_50_N_4_21_E
Czech Republic pop 2	5.1	0.03	99	50_5_N_14_28_E
Czech Republic Romani	17.6	0.3	34	50_5_N_14_28_E
Germany pop 3	3.6	0.11	111	50_48_N_8_46_E
Austria	6.6	0.03	200	48_13_N_16_21_E
France West	3.3	0.03	100	48_0_N_2_0_W
Slovenia pop 2	8.8	0.03	140	46_3_N_14_30_E
France Southeast	7.7	0.039	130	46_0_N_5_0_E
Italy Bergamo	11.9	0.059	101	45_42_N_9_40_E
Italy North pop 3	13.4	0.068	97	43_0_N_12_0_E
Italy Rome	7.7	0.04	100	41_54_N_12_27_E
Spain (Catalunya, Navarra, Extremadura, Aaragón, Cantabria,	4.5	0.0228	4,335	41_22_N_2_11_E
Italy Sardinia pop2	20.6	0.106	1,129	39_14_N_9_3_E
Portugal Azores Terceira Island	1.8	0.0088	130	38_43_N_27_13_W
Greece	31.3	0.198	48	37_58_N_23_43_E
Greece pop 8	31.3	0.1747	83	37_58_N_23_43_E
Greece pop2	32.6	0.179	120	37_58_N_23_43_E
Greece pop3	30.1	0.179	246	37_58_N_23_43_E
Spain Malaga	3.8	0.04	160	36_43_N_4_25_W
Spain Malaga Romani	10	0.04	80	36_43_N_4_25_W

FIGURE 3 | Allele frequency of the HLA-DQB1*05:02 allele in Europe [Source: The Allele Frequency Net Database (AFND)].
vulgaris with muco-cutaneous clinical phenotype (25). Overall it is likely that HLA-DR is important in antigen presentation in pemphigus. HLA-DRB1*04:02 is relevant for the selection of specific self-peptides in pemphigus vulgaris (97), autoreactive T-cells proliferated in response to antigen presented by HLA-DR in Fogo selvagem and this response could be blocked by anti–HLA-DR antibodies, but not by anti–HLA-DQ or anti–HLA-DP antibodies (98).

The Role of Peptides Bound to the HLA Class II

If indeed individual HLA class II associations predispose to disease development, could this be mediated by certain immunogenic peptides of the target antigen? Therefore we were interested in the sequences of the IgG4 antigen peptides that are presented by HLA class II molecules and recognized by the T-cell receptor. Several studies investigated T-cell peptides and their (potential) interaction with the binding pockets of the HLA class II, other studies provide at least a list of predicted peptides (Table 4). In Goodpasture disease, two overlapping peptides of α3(IV) NC2 that may bind HLA-DRB1*15:01 were investigated: DIPPCPHGWISLWKG and HGWISLWKGFSFIMF, with glycine142 identified as relevant for binding present in both peptides (45, 99). Several Dsg3 peptides binding to HLA-DRB1*04:02 (one of the alleles associated with pemphigus vulgaris) were identified (101–103) and several were validated by in vitro tests with patient derived peripheral blood mononuclear cells [PBMCs, (100)]. T-cell responses were elicited by several peptides (Table 4), with one peptide, Dsg3190–204 inducing reactivity in all samples and also led to secretion of high levels of IL-4 and IL-10 (100), which are cytokines for IgG4 class switch.

In studies on thrombotic thrombocytopenic purpura (TTP), several T-cell peptides were identified in ADAMTS13 (Table 4), with the ADAMTS13 1239–1253 peptide (GDMLLWGWLR1WKRM) as the single immunodominant CD4 + T-cell epitope that was bound both by HLA-DRB1*15:01 and DRB1*11:01 in ELISA and also by T-cells from a strain of mice expressing human HLA-DRB1*01:01 (104). A recent study looking into peptides presented on HLA-DR and HLA-DQ (105) identified 12 peptides presented by DR and 8 by DQ. The study identified an overlap and also differences in the repertoire of ADAMTS13 peptides that are presented on HLA-DQ and HLA-DR. Most DR peptides derived from the CUB-domain of ADAMTS13. DQ-presented peptides mostly derived from the cysteine-rich, TSP2, and TSP2-linker 1 of ADAMTS13, which demonstrates that haplotypes have distinct peptide repertoires. Nevertheless there are also peptides which could be presented by both DR and DQ (Table 4). Furthermore, polymorphisms in the antigen may play a role in disease susceptibility. In pemphigus foliaceus a coding synonymous T/C single nucleotide polymorphism (SNP) at position 809 in the DSG1 gene was found in French patients (108). This mutation is silent, but the SNP was hypothesized to have a role in alternative splicing (109). In a different study, alternative splicing of DSG1 led to a 101-bp insertion at the 3’ end of DSG1-intron 6 and introducing a stop codon in the nucleotide sequence, thus coding for a truncated isoform of Dsg1 containing a peptide that was presented by DRB1*01:02 and activated autoreactive T-cells (110).

Is There Evidence for Selective T-Cell Receptor VDJ Usage?

Peptides presented in the HLA class II molecules are recognized by the T-cell receptor (TCR). Therefore we also wanted to study whether the structure of the TCR may play a role for the recognition of IgG4 antigens, and therefore investigated the literature for evidence of specific TCR VDJ usage (which directly would influence structure of the TCR) in MuSK MG and pemphigus foliaceus. There was no evidence for a preference for a specific Vβ gene in pemphigus foliaceus (111), but in pemphigus vulgaris, different Vβ genes were used, with cells reacting to peptide Dsg3(AA145–192/VKILDI NDNPPVSQ IFMGIEENS ASNSLMNL ATDAEPNHL NS), (AA240–303, A DKDEGGLSTQ CECNIKV KDV NDNFPMFRDS QYSARIEENI LSSELLR FVQ TDLDDEYTDN WLA) or (AA570–614, D SQNNRCEMPR SLTLEVQCCD NRGICGTSYP TTSPGTRYGR PHSG) being linked to Vβ3, 7 or 17 genes, respectively, and Dsg3(AA145–192) and (AA240–303) were also linked to Vtx22 or 10, respectively (112). In a study with 13 MuSK MG patients, MuSK responsive T-cells from HLA-DQB1*05+ MuSK-MG patients had a restricted set of TCR VJ rearrangements. Two common motifs in TRBV29 were identified as GXGQET and TEHQET, these were shared in 4 patients (113). There is not enough data available to make any assumptions yet, and overall there is a need for more studies investigating the TCR-peptide–HLA class II interaction in the different IgG4-AID.

TABLE 3 | Similarities between the two IgG4-AID-associated HLA variants DRB1*0404 and DRB1*0102 in the protein sequence of the two HLA variants (a) and in the amino acid motifs of the peptides bound by these two HLA variants (b).

DRB1*	P1	P4	P6	P7	P9
0404	V	HOBAY	V	DYYLB	EY Dy
0102	V	FIGARY	L	ECYLR	WSDY
DRB1*					
0404	VLMIF	ALIV/DEFY/no KR	STNGR	ADHLMNPST	ALV/QGSTK
0102	VLMIF	ALIV/MNGY/no HKR	AGSTP		ALV/INFY

Table adapted from (25). Negative charged amino acid (D, E) are in bold, positively charged amino acids (R) are underlined. P1–P9: binding pockets.
HYPOTHETICAL ETIOLOGY AND MECHANISMS IN IGG4-AUTOANTIBODY ASSOCIATED DISEASES: A UNIFYING THEORY?

The HLA class II gene region is linked to immunopathogenesis of autoimmune diseases (88, 114, 115) and we are specifically interested whether a subset of HLA alleles may be specifically linked with IgG4-autoimmunity. The presentation of autoantigens to developing T-cells relies strongly on the highly polymorphic β chain of HLA-DR (Box 1). Perhaps the structure of the peptides presented by HLA-DR β variants contribute to the generation of IgG4 autoantibodies later on by aberrantly priming T-cells, by the type of peptide that is presented, by the conformation of the peptide in the peptide-binding groove or by altered interaction with the T-cell receptor or CD4. In line with this theory is the observation of one study that risk alleles HLA-DRB1*15:01 and HLA-DRB3*02:02 for PLA2R-IgG4 associated MN (DRB1*15:01 also being associated with further IgG4 AID such as Goodpasture disease or TTP, Table 1) contain specific amino acid variants in the peptide-binding groove of the DR β chain responsible for antigen presentation to the TCR (43).

The HLA is responsible for the fate of T-cells, e.g. conventional pro-inflammatory T cells (Tconvs) or regulatory T cells (Tregs). A recent study with humanized mice investigated the T-cell response to self-antigen presented by HLA-DR molecules with different β chain alleles, HLA-DR1 or HLA-DR15 in mice (116). The two HLA class II molecules presented distinct peptide repertoires and the presentation via HLA-DR15 was associated with the generation of Tconv, while presentation via HLA-DR1 instead led to the development of Tregs that expressed tolerogenic cytokines such as IL-10 and TGF-β (116). Similar conclusions were drawn from a different study where

HLA allele	Peptide	Comment	Antigen	Reference
DRB1*15:01	HGWISLWKGFSFIMF	Tryptophan_146 forms hydrogen bond with arginine_13 in pocket 4, glycine_142 relevant for binding	α3/WNC2	(45)
DRB1*15:01	DIPPCPWHISLWKG	Cysteine_132, tryptophan_136, lysine_141, and glycine_142 are relevant for binding	α3/WNC2	(99)
DRB1*04:02	LNSKAFKIVS QEPA	Dsg3_120-128, elicited immune response in PBMC of all patients in study, IL-4 and IL-10 secretion	Dsg3	(100)
DRB1*04:02	TFPMLLSTRNTGEVR	Elicited immune response in PBMCs of a subset of patients	Dsg3	(100)
DRB1*04:02	CECINKVADVNDNP		Dsg3	(100)
DRB1*04:02	QSGTMRTHSTGOTN		Dsg3	(100)
DRB1*04:02	VKILDI NDNPFVPSQQ IFMGEIEENS ASNSLVMILN ATDADEPNHL NS	Induced proliferation of T cells from PV patients	Dsg3	(101)
DRB1*04:02	A HDKDGEGLSTQ CEYKIVKOD NDNPFFMRDS QYSAREIERI LSSELLRFQV TDLDEEYDNLWA		Dsg3	(101)
DRB1*04:02	DSQNNRREMPR SLTLVEQCCD NRIGGTSYPTSPGTRYGR PHSG		Dsg3	(101)
DRB1*11:01	GIAFRPAKFTPVQGI	Predicted peptide	Dsg3	(102)
DRB1*11:01	GDMILLYRLTVRKM	Core motif presented by DRB1*11 and DRB1*15, recognized by patient CD4+ T cells	ADAMTS13	(104, 105, 106)
DRB1*11/15	FINVAPHR	Core motif recognized by CD4+ T-cells	ADAMTS13	(105, 107)
HLA-DRB1*11/15/16	ASYLIRD	Predicted peptides presented by HLA-DR	ADAMTS13	(105)
HLA-DRB1*03	IHALATNMG	Predicted peptides presented by HLA-DR	ADAMTS13	(105)
HLA-DRB1*04:02	LIIFDTHSLR	Predicted peptides presented by HLA-DR	ADAMTS13	(105)
HLA-DRB1*04:02	LKTLP-PARC	Predicted peptide presented by both HLA-DR and -DQ	ADAMTS13	(105)
HLA-DRB1*07:01	YRFRNKKMK	Predicted core motifs for DRB1*07:01	CASPR2	(39)
HLA-DRB1*15:01	YITLEKKAKLV	Predicted core motifs for DRB1*15:01	CASPR2	(39)
HLA-DRB1*15:01	YFCKMSRLLNT			
HLA-DRB1*15:01	FKTLTPWGV			
HLA-DRB1*15:01	FLCGRSLRVNGV			
HLA-DRB1*15:01	FLKLDHYPS			
HLA-DRB1*15:01	FNQAPLKAAKL			
HLA-DRB1*15:01	LIRYMRFHKG			
HLA-DRB1*07:01	FLTPFSLQOLL	Predicted core motifs for DRB1*07:01	LGI1	(39)
HLA-DRB1*07:01	FLQGKSXHLASL			
HLA-DRB1*07:01	FWADSSKA			
HLA-DRB1*07:01	FYSHOSLHA			
HLA-DRB1*07:01	YQWNAKATOL			
HLA-DRB1*07:01	FTHVSINXK			
HLA-DRB1*07:01	FLFAFSGKGN			

TABLE 4 | An (incomplete) list of predicted and validated peptides of IgG4 autoantigens presented in the MHC II in the context of IgG4-AID identified from published literature.
mouse MHC II alleles (H2-Aj and H2-Ab) influenced the T-cell repertoire, including Tregs and Tconv (117). This links the polymorphism in the HLA-DR molecules to the fate of T-cells and differentiation to Tregs and production of IgG4 polymorphism in the HLA-DR molecules to the fate of T-cells and differentiation to Tregs and production of IgG4. This suggests that in IgG4-AID, a normally protective tolerance mechanism is at work, and the pathogenic effects of blocking IgG4 may just be an unlucky side effect (Figure 5).

Box 1 | HLA- class II molecules.

HLA class II molecules are located at the cell surface of professional antigen-presenting cells and epithelial cells in the thymus, and present peptides from extracellular proteins to CD4+ T helper cells or developing T-cells, which then in turn may activate B-cells and stimulate the production of autoantibodies. There are three main HLA II molecules, HLA-DR, HLA-DQ and HLA-DP. HLA-DR consists of an α- and a β1-chain. The chains consist of two domains, the α1 and α2 domain forming a groove that presents the peptide. The α chain is encoded by a single gene (DRA1), but the β1-chain can be coded by four different genes (DRB1, 3, 4, or 5). HLA molecules are highly variable, and HLA-DRB1 is one of the most polymorphic genes with at least 1883 different alleles reported in 2015 (88). Each individual inherits two alleles of DRB1, and additionally variants from DRB3, 4, 5, depending on the parental haplotypes (i.e. whether these genes are present on the parental haplotypes or not). DRB1 is present on all HLA haplotypes, but DRB3, 4, 5 genes are not. HLA-DRB1 is a gene that codes for the β1-chain of the DR isotype of the HLA class II molecule (Figure 4), and the first field of digits (marked by the semeicon) after the gene name indicate the allele group (alleles with similar sequence and properties), while the second field of digits indicates specific alleles encoding distinct molecule variants. Due to the high variability in the sequence, especially in the peptide binding groove, HLA molecules derived from different alleles generally display distinct peptide repertoires. Therefore, two individuals with different HLA alleles would display different peptides, even from the same protein. HLA-DR also plays a role in central tolerance mechanisms as it has been linked to presentation of autoantigens to developing T-cells in the thymus and is associated with a range of autoimmune diseases, e.g. rheumatoid arthritis, diabetes mellitus type I, multiple sclerosis or systemic lupus erythematosus, suggesting an aberrant presentation of self-peptide to autoreactive T-cells in the thymus (65). This may lead to inefficient negative selection of autoreactive T-cells or aberrant education of regulatory T-cells, therefore disrupting central and peripheral tolerance mechanisms and predisposing to autoimmunity. HLA-DRB1 is also associated with HLA-DQB1 due to a strong linkage disequilibrium. An excellent review on HLA-DRB1 and autoimmunity can be found here (88).

Potential Factors Influencing IgG4 Antibody Production

IgG4 subclass autoantibodies are the main cause of IgG4-AID and directly pathogenic. Therefore we were interested whether there is evidence for a mechanism linking specific HLA class II alleles to Tregs to IL-10 and finally to IgG4 autoantibodies. There are contradictory observations. Supporting evidence: 1) MuSK MG patients with the HLA-DRB1*14 type had elevated antibody titers and higher levels of IL-17A and IL-10 than MuSK MG patients with different haplotype (124). The higher IgG4 titers of MuSK autoantibodies in patients carrying HLA-DRB1*14 than those in the other patients suggest a role for HLA in the production of the antibodies. The differences in IL-10 and IL-17A support the role of DRB1 in the etiopathogenesis of this autoimmune response (124).

2) In addition, active immunization of mice with MuSK antigen leads to production of MuSK antibodies predominantly of the IgG1 subclass (which is the mouse equivalent to human IgG4), IL-4 (which induces IgG1- production in mice) and IL-10 (125). 3) Also IL-4 and IL-10 levels were increased in an adoptive transfer model of pemphigus vulgaris (126), and 4) IL-10 levels are elevated in serum of pemphigus patients (127, 128), serum of MuSK-MG patients (129) and serum of patients with thrombotic thrombocytopenic purpura (130), but in the latter study the IgG subclass levels were not entirely clear, with some patients also demonstrating high levels of complement fixing antibodies and complement C3a and C5a,
suggesting that IgG4 was not the predominant subclass. More evidence for a role of IL-10 comes from an association between genetic variants/haplotypes of IL-10 and the occurrence of pemphigus vulgaris in patients from Argentina and Slovakia (131, 132).

What is not in line with the hypothesis that the DR haplotype directly leads to increased IgG4 antibody levels is that one study of TTP showed increased ADAMTS13 antibody levels in patients with the protective DR7-DQ2 and DR13-DQ6 haplotypes, though the relevance is not clear (133). Furthermore, there is
In recent years, we could observe a growing number of rare, severe autoimmune diseases mediated by pathogenic IgG4 autoantibodies, as 1) total Treg numbers were not increased in MuSK MG (134), even decreased in pemphigus vulgaris [while Th17 T-cells were increased (135)] and 2) IL-10+ antigen-specific Tregs are only found in 17% of patients with pemphigus vulgaris, but in 80% of healthy controls, which suggests (at least in pemphigus) a protective role of Tregs and IL-10 (136). 2) B-cells from MuSK patients did not produce increased levels of IL-10 in culture (129, 137). 3) Further studies suggest a protective role of IL-10 in pemphigus, as IL-10+ antigen-specific Tregs were more susceptible to disease and IL-10 protected mice from blister formation (138), and decreased IL-10 production was associated with pemphigus vulgaris in a subgroup of patients (131). 4) Also numbers of IL-10 producing Bregs (B10 cells) were reduced in MuSK MG patients (139), as well as pemphigus patients in one study (140), but increased in pemphigus patients in another study (141). 5) Interestingly, increased levels of IL-10 producing Bregs was associated with favorable response after B-cell depletion therapy with Rituximab in pemphigus (142), which may indicate a protective role for IL-10 and Bregs, but this could also have been an unrelated side-effect of Rituximab-induced increase in cytokines that stimulate IL-10 production (143, 144).

Taken together, there may not be a simple correlation between Tregs, Bregs, IL-10 and IgG4 autoantibodies, since IL-10 does have multiple function in immune regulation, and may have both anti- and pro-inflammatory effects (145), also in the context of IgG4-autoimmunity (146). Perhaps not increased systemic levels of IL-10, but local expression of IL-10 is important, as seen in studies on rheumatoid arthritis, where local administration of IL-10 to sites of inflammation was protective (147), but systemic application was not (148). More studies are required, and ideally also a systematic review and meta-analysis of cytokine levels in IgG4 autoimmune diseases and/or disease models.

CONCLUSION

In recent years, we could observe a growing number of rare, severe autoimmune diseases mediated by pathogenic autoantibodies of the IgG4 subclass. While these diseases were previously considered to be unrelated, as they may target different organs, there is (at least circumstantial) evidence that ties them together and suggests that similar immune mechanisms may be at work. These potential mechanisms need to be addressed in large comparative studies, and, once identified, may form the basis for new treatment approaches. These may provide a rationale for repurposing already existing drugs and treatment strategies used in well-known diseases such as MuSK MG or pemphigus for treatment of the very rare and the less-well studied forms of IgG4 autoimmune diseases. Newly identified shared immune mechanisms may also provide new druggable targets and ideas for novel treatments.

AUTHOR CONTRIBUTIONS

IK conceived the idea, wrote the first draft of the manuscript, and provided the figures. VY, JT, KL, ST, ET, and TL contributed text. IK, FL, TL, and ET revised the final manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

IK was funded by a Hertha Firnberg Fellowship by the Austrian Science Fund, Austria, project number: T996-B30. TL was supported by the German Research Foundation (DFG, grant LE 2593/3-1). FL is supported by German Ministry of Education and Research (01GM1908A) and E-Rare Joint Transnational research support (ERA-Net, LE3064/2-1).

ACKNOWLEDGMENTS

The figures were created by Biorender software.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2020.605214/full#supplementary-material
10. van der Neut Kofschoten M, Schuurman J, Losen M, Bleeker WK, Martinez-Martinez P, Vermeulen E, et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science (2007) 317(5844):1544–7. doi: 10.1126/science.1146603

11. Ligham LC, Rispen T. The Immunobiology of Immunoglobulin G4. Somin l=Liver Dis (2016) 36(3):200–15. doi: 10.5555/10036-1584322

12. Koneczny I. A New Classification System for IgG4 Autoantibodies. Front Immunol (2018) 9:97. doi: 10.3389/fimmu.2018.00097

13. Huijbers MG, Querol LA, Niks EH, Plomp JJ, van der Maarel SM, Graus F, et al. Strong association of MuSK antibody-positive myasthenia gravis and HLA-DR14-DQ5. Neurology (2019) 197(2):214–21. doi: 10.1212/01.wnl.0000580735

14. Bartoccioni E, Scuderi F, Augugliaro A, Chiatamone Ranieri S, Sauchelli D, Ehsan S, Amirzargar A, Yekaninejad MS, Mahmoudi M, Mehravar S, Koneczny I. A New Classi...

15. Alahgholi-Hajibehzad M, Yilmaz V, Gulsen-Parman Y, Aysal F, O...

16. Koneczny I. Update on IgG4-mediated autoimmune diseases: New insights and new family members. Autoimmun Rev (2020) 19(10):102646. doi: 10.1016/j.jaut.2020.102646

17. Ehsan S, Amirzargar A, Yekaninejad MS, Mahmoudi M, Mehravar S, Moradi B, et al. (DRB1, DQA1, DQB1) alleles and haplotypes with myasthenia gravis and its subgroups in the Iranian population. J Neuro Sci (2015) 359(1-2):335–42. doi: 10.1016/j.jneurosci.2015.11.021

18. 23. Lombardi ML, Mercuro O, Ruocco V, Lo Schiavo A, Lombari V, Guerrera V, et al. Common human leukocyte antigen alleles in pemphigus vulgaris and pemphigus foliaceus Italian patients. J Invest Dermatol (1999) 113(1):107–10. doi: 10.1046/j.1523-1747.1999.006263.x

19. Brochado MJ, Nascimento DF, Campelo W, Dehaide NH, Donadi EA, Roselino AM, and al. II associations in pemphigus foliaceus and pemphigus vulgaris patients from a prevalent Southeastern Brazilian region. J Autoimmun (2016) 72:19–24. doi: 10.1016/j.jaut.2016.04.007

20. Pollmann R, Schmidt T, Eming R, Hertl M. Pemphigus: a Comprehensive Review on Pathogenesis, Clinical Presentation and Novel Therapeutic Approaches. Clin Rev Allergy Immunol (2018) 54(1):1–25. doi: 10.1007/s12016-017-8662-z

21. Li S, Zhang Q, Wang P, Li J, Ni, J, Wu J, et al. Association between HLA-DQB1 polymorphisms and pemphigus vulgaris: A meta-analysis. Immunol Invest (2017) 47(1):101–12. doi: 10.1080/08820393.2017.1356522

22. Dere G, Yavuz IH, Oraydin Yavuz G, Bayram Y, Gunes Bigili S, Ozturk M. Assessment of HLA-A, HLA-DR, and HLA-DQ alleles in patients with pemphigus vulgaris from eastern of Turkey. J Cosmet Dermatol (2020) 19(9):2432–37. doi: 10.1111/jocd.13298

23. Lombardi AM, Pulini S, Passeri C, Iuliano O, Salutari P, Businaro A, et al. Familial acquired thrombotic thrombocytopenic purpura: immunogenetic link with HLA-DRB1*11 and DQB1*03 antigens. Br J Haematol (2018) 183(2):317–9. doi: 10.1111/bjh.14973

24. Kopco P, Busson M, Veyradier A, Wynckel A, Poullin P, Azoulay E, et al. HLA-DRB1*11: a strong risk factor for acquired severe ADAMTS13 deficiency-related idiopathic thrombotic thrombocytopenic purpura in Caucasians. J Thromb Haemost (2010) 8(4):856–9. doi: 10.1111/j.1538-7836.2010.03772.x

25. Sinkovits G, Szilagyi A, Farkas P, Inotai D, Szilvasi A, Tordai A, et al. The role of human leukocyte antigen DRB1-DQB1 haplotypes in the susceptibility to acquired idiopathic thrombotic thrombocytopenic purpura. Hum Immunol (2017) 78(2):80–7. doi: 10.1016/j.humimm.2016.11.005

26. John ML, Hitzler W, Scharrer I. The role of human leukocyte antigens as predisposing and/or protective factors in patients with idiopathic thrombotic thrombocytopenic purpura. Ann Hematol (2012) 91(4):507–10. doi: 10.1007/s00277-011-1384-z

27. Martinez-Martinez L, Illexa MC, Boera-Carnicero G, Cortese A, Devaux J, Siles A, et al. Anti-NF155 chronic inflammatory demyelinating polyradiculoneuropathy strongly associates with HLA-DRB5. J Neuroinflamm (2017) 14(1):224. doi: 10.1186/s12974-017-0996-1

28. Binks S, Varley J, Lee W, Makuch M, Elliott K, Gelfand JM, et al. Distinct HLA associations of LG11 and CASPR2-antibody diseases. Brain (2018) 141(8):2263–71. doi: 10.1093/brain/awy109

29. Mueller SH, Farber A, Pruss H, Melzer N, Golombek KS, Kumpfel T, et al. Genetic predisposition in anti-LGI1 and anti-NMDA receptor encephalitis. Ann Neurol (2018) 83(4):863–9. doi: 10.1002/ana.25219

30. van Selderen A, Roedel DL, Stoop IA, Verdiijk RM, Haasoom GW, Thijs RD, et al. Anti-LGI1 encephalitis is strongly associated with HLA-DR7 and HLA-DRB4. Ann Neurol (2017) 81(2):193–8. doi: 10.1002/ana.24858

31. Kim TJ, Lee ST, Moon J, Sunwoo JS, Byun JI, Lim JA, et al. Anti-LGI1 encephalitis is associated with unique HLA subtypes. Ann Neurol (2017) 81(2):183–92. doi: 10.1002/ana.24860

32. Le WB, Shi JS, Zhang T, Liu L, Qin HZ, Liang S, et al. HLA-DRB1*15:01 and HLA-DRB3*02:02 in PLA2R-Related Membranous Nephropathy. J Am Soc Nephrol (2017) 28(5):1642–50. doi: 10.1681/ASN.2016060644

33. Cui Z, Xie LJ, Chen FJ, Pei ZY, Zhang LJ, Qu Z, et al. MHC Class II Risk Alleles and Amino Acid Residues in Idiopathic Membranous Nephropathy. J Am Soc Nephrol (2017) 28(5):1642–50. doi: 10.1681/ASN.2016020114

34. Xie LJ, Cui Z, Chen FJ, Pei ZY, Hu SY, Gu QH, et al. The susceptible HLA class II alleles and their presenting epitope(s) in Goodpasture’s disease. Immunity (2017) 151(4):395–404. doi: 10.101111/imm.12736

35. Phelps RG, Rees AJ. The HLA complex in Goodpasture’s disease: a model for analyzing susceptibility to autoimmunity. Kidney Int (1999) 56(5):1638–33. doi: 10.1046/j.1523-1755.1999.00207.x

36. Roy R, Cui Z, Zhao M, Zhao MF. The role of HLA-DRB1 alleles on susceptibility of Chinese patients with anti-GBM disease. Clin Immunol (2009) 133(2):245–50. doi: 10.1016/j.clim.2009.07.005

37. Kitagawa W, Imai H, Komatsu A, Maki N, Nakui H, Hiki Y, et al. The HLA-DRB1*1501 allele is prevalent among Japanese patients with anti-
glomerular basement membrane antibody-mediated disease. *Nephrol Dial Transplant* (2008) 23(10):3126–9. doi: 10.1093/ndt/gfn179

49. Gaig C, Graus F, Compta Y, Hög C, Bataller L, Bruggemann N, et al. Clinical manifestations of the anti-IgLON5 disease. *Neurology* (2017) 88(18):1736–43. doi: 10.1212/WNL.0000000000003887

50. Fang H, Shen S, Zheng X, Deng E, Zhang J, Shao S, et al. Association of HLA class I and class II alleles with bullous pemphigoid in Chinese Hans. *J Dermatol Sci* (2018) 89(3):258–62. doi: 10.1016/j.jdermsci.2017.11.014

51. Setterfield J, Theron J, Vaughan RW, Welsh K, Mallon E, Wojnarowska F, et al. Mucous membrane pemphigoid: HLA-DQB1*0301 is associated with all clinical sites of involvement and may be linked to autocrine membrane IgG production. *Br J Dermatol* (2001) 145(3):406–14. doi: 10.1046/j.1365-2133.2001.02480.x

52. Zakka LR, Reche P, Ahmed AR. Role of MHC Class II genes in the pathogenesis of pemphigoid. *Autoimmun Rev* (2011) 11(1):40–7. doi: 10.1016/j.autrev.2011.07.002

53. Oyama N, Setterfield JF, Powell AM, Sakuma-Oyama Y, Albert S, Bholag BS, et al. Bullous pemphigoid antigen II (BP180) and its soluble extracellular domains are major autoantigens in mucous membrane pemphigoid: the pathogenic relevance to HLA class II alleles and disease severity. *Br J Dermatol* (2006) 154(1):90–8. doi: 10.1111/j.1365-2133.2005.06998.x

54. Watts RA, MacGregor AJ, Mackie SL. HLA allele variation as a potential clin. *Int J Rheum Dis* (2009) 12(4):236–43. doi: 10.1111/j.1609-6314.2008.00398.x

55. Wu Z, Wu Q, Xu J, Chen S, Sun F, Li P, et al. HLA-DPB1 variant rs3117242 is associated with anti-neutrophil cytoplasmic antibody-associated vasculitides in a Han Chinese population. *Int J Rheum Dis* (2017) 20(8):1009–15. doi: 10.1111/1756-881X.12561

56. Alberici F, Martorana D, Bonatti F, Gioffredi A, Lyons PA, Vaglio A. Predominant IgG4 subclass in autoantibodies of pemphigus vulgaris and its soluble extracellular domains are major autoantigens in mucous membrane pemphigoid: the pathogenic relevance to HLA class II alleles and disease severity. *Clin Exp Rheumatol* (2014) 32(Suppl 82):S90–7.

57. Futei Y, Amagai M, Ishii K, Kuroda-Kinoshita K, Ohya K, Nishikawa T. Membrane Dynamics of Fully Differentiated Podocytes. *J Am Soc Nephrol* (2017) 28(12):3809–17. doi: 10.1681/ASN.2017120107

58. Watts RA, MacGregor AJ, Mackie SL. HLA allele variation as a potential explanation for the geographical distribution of granulomatosis with polyangiitis. *Rheumatol (Oxford)* (2015) 54(2):359–62. doi: 10.1093/rheumatology/keu321

59. Wüthrich B, Hoene A, Wolf G, Haverich A, Haverich P. PLA2R binds to the annexin A2-S100A10 complex in human podocytes. *J Autoimmun* (2014) 49:15–20. doi: 10.1016/j.jaut.2014.01.004

60. Wu Z, Wu Q, Xu J, Chen S, Sun F, Li P, et al. HLA-DPB1 variant rs3117242 is associated with anti-neutrophil cytoplasmic antibody-associated vasculitides in a Han Chinese population. *Int J Rheum Dis* (2017) 20(8):1009–15. doi: 10.1111/1756-881X.12561

61. Rock B, Martins CR, Theofilopoulos AN, Balderas RS, Anhalt GJ, Labib RS, et al. MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and LRP4. *Proc Natl Acad Sci USA* (2013) 110(8):2708–8. doi: 10.1073/pnas.1313944110

62. Alberici F, Martorana D, Bonatti F, Gioffredi A, Lyons PA, Vaglio A. Genetics of ANCA-associated vasculitides: HLA and beyond. *Clin Exp Rheumatol* (2014) 32(Suppl 82):S90–7.

63. Futei Y, Amagai M, Ishii K, Kuroda-Kinoshita K, Ohya K, Nishikawa T. Predominant IgG4 subclass in autoantibodies of pemphigus vulgaris and follicul. *J Dermatol Sci* (2001) 26(1):55–61. doi: 10.1016/S0923-1811(00)00358-4

64. Alberici F, Martorana D, Bonatti F, Gioffredi A, Lyons PA, Vaglio A. Genetics of ANCA-associated vasculitides: HLA and beyond. *Clin Exp Rheumatol* (2014) 32(Suppl 82):S90–7.

65. Watts RA, MacGregor AJ, Mackie SL. HLA allele variation as a potential explanation for the geographical distribution of granulomatosis with polyangiitis. *Rheumatol (Oxford)* (2015) 54(2):359–62. doi: 10.1093/rheumatology/keu321

66. Kadoya M, Kaida K, Koike H, Takazaki H, Ogata H, Moriguchi K, et al. IgG4-associated membranous nephropathy. *J Nephrol Dial Transplant* (2012) 79(23):2241–8. doi: 10.1212/WNL.0b013e31827688ad

67. Labasque M, Hivert B, Noguere C, Onugoren MD, Grunwald T, Holkamp M, et al. Anti-contactin-associated protein-2 encephalitis: relevance of antibody titres, presentation and outcome. *Eur J Neurol* (2017) 24(1):175–86. doi: 10.1111/ene.13108

68. Devaux JJ, Miura Y, Fukami Y, Inoue T, Manso C, Belghazi M, et al. Phospholipase A2 receptor-related membranous nephropathy. *N Engl J Med* (1998) 339(22):1585–94. doi: 10.1056/NEJM199811263392203

69. Devaux JJ, Miura Y, Fukami Y, Inoue T, Manso C, Belghazi M, et al. Phospholipase A2 receptor-related membranous nephropathy. *N Engl J Med* (1998) 339(22):1585–94. doi: 10.1056/NEJM199811263392203
69. doi: 10.1073/pnas.2003170117
70. Ooi JD, Petersen J, Tan YH, Huynh M, Willett ZJ, Ramaratnam SH, et al. MHC-II alleles shape the CDR3 repertoires of human naive T cells. *Immunome Res* (2015) 11(4):13659
71. Miyairi H, Tokunaga K. Associations of human leucocyte antigens with autoimmune diseases: challenges in identifying the mechanism. *J Hum Genet* (2015) 60(11):697–702. doi: 10.1038/jhg.2015.100
72. Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. *Nat Rev Immunol* (2018) 18(5):325–39. doi: 10.1038/s41577-017-143
73. Owi JD, Petersen J, Tan YH, Huyrnh M, Willett ZJ, Ramaratnam SH, et al. Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells. *Nature* (2017) 547(7653):243–7. doi: 10.1038/nature22329
74. Logunova NN, Kriukova VV, Shelyakin PV, Egorov ES, Pereverzeva A, Bozhanov NG, et al. MHC-II alleles shape the CD3R3 repertoires of conventional and regulatory naive CD4+ T cells. *Proc Natl Acad Sci USA* (2020) 117(24):13659–69. doi: 10.1073/pnas.2003170117
75. Jeannin P, Lecoanet S, Delneste Y, Gauchat JF, Bonnefoy JY. IgE versus IgG4 production can be differentially regulated by IL-10. *J Immunol* (1998) 160(7):3555–61.
76. Meiler F, Zumkehr J, Klunker S, Ruckert B, Akdis CA, Akdis M. In vivo switch to IL-10-secreting T regulatory cells in high dose allergen exposure. *J Exp Med* (2008) 205(12):2887–98. doi: 10.1084/jem.20080193
120. Meiler F, Klunker S, Zimmermann M, Akdis CA, Akdis M. Distinct regulation of IgG4, IgG1 and IgE by T regulatory cells and toll-like receptors. *Allergy* (2008) 63(1):1455–63. doi: 10.1111/j.1398-9995.2008.01774.x
121. Aversa G, Punnonen J, Cocks BG, de Waal Malefyt R, Vega FJr., Zurawski G, et al. An interleukin 4 (IL-4) mutant protein inhibits both IL-4 or IL-13-induced human immunoglobulin G4 (IgG4) and IgE synthesis and B cell proliferation: support for a common component shared by IL-4 and IL-13 receptors. *J Exp Med* (1993) 178(6):2213–8. doi: 10.1084/jem.178.6.2213
122. Huynh M, Eggenhuizen PJ, Olson GL, Rao NB, Self CR, Sun Y, et al. HLA-DR15-specific inhibition attenuates autoactivity to the Goodpasture antigen. *Autoimmun* (2019) 103:102276. doi: 10.1016/j.jaut.2019.05.004
123. Nouri-Aria KT, Wachholz PA, Francis JN, Jacobson MR, Walker SM, Wilcock LK, et al. Grass pollen immunotherapy induces mucosal and peripheral IL-10 responses and blocking IgG activity. *J Immunol* (2004) 172(5):3522–9. doi: 10.4049/jimmunol.172.5.3522
124. Cebi M, Durmus H, Yilmaz V, Yentur SP, Aysal F, O, et al. Relation of HLA-DRB1 to IgG4 autoantibody and cytokine production in muscle-specific tyrosine kinase myasthenia gravis (MuSK-MG). *Clin Exp Immunol* (2019) 197(2):214–21. doi: 10.1111/cei.13302
125. Ulusoy C, Kim E, Tuzun E, Huda R, Yilmaz V, Poulas K, et al. Preferential production of IgG1, IL-4 and IL-10 in MuSK-immunized mice. *Clin Immunol* (2014) 151(2):155–65. doi: 10.1016/j.clim.2014.02.012
126. Takahashi H, Amagai M, Nishikawa T, Fujii Y, Kawakami Y, Kuwana M, et al. Novel system evaluating in vivo pathogenicity of desmoglein 3-reactive T cell clones using murine pemphigus vulgaris. *J Immunol* (2008) 181(2):1526–35. doi: 10.4049/jimmunol.181.2.1526
127. Bhil KC, Rojas AI, Khan IU, Ahmed AR. Presence of interleukin 10 in the serum and blister fluid of patients with pemphigus vulgaris and pemphigoid. *Cytokine* (2000) 12(7):1076–83. doi: 10.1006/cyto.1999.0642
128. Satyam A, Khandpur S, Sharma VK, Sharma A. Involvement of T(H1)/T(H2) cytokines in the pathogenesis of autoimmune skin disease-Pemphigus vulgaris. *Immunol Invest* (2009) 38(6):498–509. doi: 10.1080/08824010902943097
129. Yilmaz V, Oflazer P, Aysal F, Durmus H, Poulas K, Yentur SP, et al. Differential Cytokine Changes in Patients with Myasthenia Gravis with Antibodies against AChR and MuSK. *PLoS One* (2015) 10(4):e0123546. doi: 10.1371/journal.pone.0123546
130. Westwood JP, Langley K, Heelas J, Machin SJ, Scully M. Complement and cytokine response in acute Thrombotic Thrombocytopenic Purpura. *Br J Haematol* (2014) 164(6):858–66. doi: 10.1111/bjh.12707
131. Eberhard Y, Burgos E, Gagliardi J, Vullo CM, Borosky A, Pesoa S, et al. Cytokine polyclonality in patients with pemphigus. *Arch Dermatol Res* (2005) 297(6):309–13. doi: 10.1007/s00403-004-0528-6
132. Iavar J, Chimurova N, Par nicka Z, Ferencik S, Grosse-Wilde H, Buc M, et al. TFN-alpha and IL-10 gene polymorphisms show a weak association with pemphigus in the Slovak population. *J Eur Acad Dermatol Venereol: JEADV* (2010) 24(1):65–8. doi: 10.1111/j.1468-3033.2009.03260.x
133. Sinkovits G, Szilagyi A, Farkas P, Inotai D, Szilvasi A, Tordai A, et al. Concentration of IgE, IgG4 and IgA by T regulatory cells and toll-like receptors. *Cytokine* (2014) 73(2):335–41. doi: 10.1016/j.cyto.2014.11.002
134. Yi JS, Guidon AC, Sparks S, Calbo LF, Soo RE, Massey JM, et al. Interleukin-10 paradox: A potent immunoregulatory cytokine that has been difficult to harness for immunotherapy. *Cytokine* (2015) 74(1):27–34. doi: 10.1016/j.cyto.2014.10.031
135. Cho MJ, Ellebrecht CT, Payne AS. The dual nature of interleukin-10 in myasthenia gravis. *Cytokine* (2015) 73(2):335–41. doi: 10.1016/j.cyto.2014.11.002
136. Schwager K, Kaspar M, Bootz F, Marcelongo R, Paresce E, Neri D, et al. Preclinical characterization of DEKAVIL (F8-IL10), a novel clinical-stage immunocytokine which inhibits the progression of collagen-induced arthritis. *Arthritis Res Ther* (2009) 11(S):R142. doi: 10.1186/ar2814
137. van Roon J, Wijngaarden S, Lafeber FP, Damen C, van de Winkel J, Bijlsma JW. Interleukin 10 treatment of patients with rheumatoid arthritis enhances Fc gamma receptor expression on monocytes and responsiveness to immune complex stimulation. *J Rheumatol* (2003) 30(4):648–51.

Conflict of Interest: JT and ST have shares in the research and diagnostic laboratory Tzartos NeuroDiagnostics, Athens. FL discloses having received speaker honoraria from Grifols, Teva, Biogen, Bayer, Roche, Novartis, Fresenius, travel funding from Merck, Grifols, and Bayer and serving on advisory boards for Roche, Biogen, and Alexion.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Koneczny, Yilmaz, Lazaridis, Tzartos, Lenz, Tzartos, Tüzün and Leydold. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.