Evolução da prevalência de infecção por COVID-19 no Rio Grande do Sul: inquéritos sorológicos seriados

Trends in the prevalence of COVID-19 infection in Rio Grande do Sul, Brazil: repeated serological surveys

Pedro C Hallal¹, Bernardo L Horta¹, Aluísio J D Barros¹, Odir A Dellagostin⁴, Fernando P Hartwig¹, Lúcia C Pellanda², Claudio Jose Struchiner³, Marcelo N Burattini⁴, Mariângela F Silveira¹, Ana M B Menezes¹, Fernando C Barros¹, Cesar G Victora¹

¹Universidade Federal de Pelotas; ²Fundação Universidade Federal de Ciências de Saúde de Porto Alegre; ³Fundação Getúlio Vargas e Universidade do Estado do Rio de Janeiro;
⁴Universidade de São Paulo e Universidade Federal de São Paulo

Correspondência: Pedro C Hallal, Universidade Federal de Pelotas, prchallal@gmail.com
Resumo

A COVID-19 é uma doença produzida pelo vírus SARS-CoV-2. Esse vírus se espalhou rapidamente pelo mundo, o que levou a Organização Mundial da Saúde a classificar a COVID-19 como uma emergência de saúde internacional e, posteriormente, declará-la uma pandemia. O número de casos confirmados, no dia 11 de abril de 2020, já passa de 1.700.000, porém esses dados não refletem a real prevalência de COVID-19 na população, visto que, em muitos países, os testes são quase que exclusivamente realizados em pessoas com sintomas, especialmente os mais graves. Para definir políticas de enfrentamento, é essencial dispor de dados sobre a prevalência real de infecção na população. Os objetivos principais desse estudo são avaliar a proporção de indivíduos já infectados pelo SARS-CoV-2 no Rio Grande do Sul, analisar a velocidade de expansão da infecção e estimar o percentual de infectados com e sem sintomas. Serão realizados quatro inquéritos sorológicos repetidos a cada 15 dias, com amostragem probabilística de nove cidades sentinela, em todas as sub-regiões do Estado. Os testes serão realizados em 4.500 indivíduos em cada inquérito, totalizando 18.000 entrevistas. As entrevistas e testes ocorrerão no âmbito domiciliar. Serão utilizados testes rápidos para detecção de anticorpos, validados previamente ao início da coleta de dados.

Palavras-chave: infecção, COVID-19, prevalência, inquérito populacional, Brasil
Abstract

COVID-19 is a disease produced by the virus SARS-CoV-2. This virus has spread quickly throughout the world, leading the World Health Organization to first classify COVID-19 as an international health emergency and, subsequently declaring it pandemic. The number of confirmed cases, as April 11, surpassed 1,700,000, but this figure does not reflect the real prevalence of COVID-19 in the population, as in many countries tests are almost exclusively performed in people with symptoms, particularly severe cases. In order to properly assess the magnitude of the problem and to contribute to the design of evidence-based policies for fighting COVID-19, one must accurately estimate the prevalence of infection in the population. The present study is aimed at estimating the prevalence of infected individuals in the state of Rio Grande do Sul, Brazil, to document how fast the infection is spreading, and to estimate the proportion of infected people who present or presented symptoms, as well as the proportion of asymptomatic infections. Four repeated serological surveys will be conducted in probability samples in nine sentinel cities every two weeks, representing all regions of the State. Tests will be performed in 4,500 participants in each survey, totaling 18,000 interviews. Interviews and tests will be conducted at the participants’ household. A rapid test for the detection of antibodies will be used; the test was validated prior to the beginning of the fieldwork.

Keywords: COVID-19, infection, prevalence, population-based study, Brazil
Introdução

O SARS-CoV-2 faz parte de uma ampla família de vírus que pode causar enfermidade em humanos e animais. Desde a detecção do primeiro caso na China, no final de 2019, o vírus tem se espalhado rapidamente no mundo. No dia 30 de janeiro, a Organização Mundial de Saúde (OMS) classificou a doença produzida pelo vírus, COVID-19, como uma emergência de saúde internacional. No dia 11 de março, a OMS declarou haver uma pandemia de COVID-19, com aproximadamente 118.000 casos em 114 países e territórios. Em 11 de abril, o número de casos confirmados já passava de 1.700.000 em praticamente todos os países e territórios, havendo ainda a confirmação de mais de 103.000 mortes.

No entanto, é necessário considerar que as estatísticas oficiais disponíveis sobre a evolução do vírus são suscetíveis a uma série de limitações, particularmente a ausência de informação sobre a prevalência de infecção pelo vírus na população. Por exemplo, no relatório situacional da OMS de 10 de abril de 2020, havia a confirmação de 143.626 pessoas com testes positivos para COVID-19 na Itália, um país com 60,5 milhões de habitantes. Dividindo-se o número de infectados oficiais pelo tamanho da população, a prevalência de infecção pelo SARS-CoV-2 seria de 0,24%. Contudo, a testagem para o SARS-CoV-2 não é feita aleatoriamente na população italiana, sendo que as pessoas com sintomas têm muito maior probabilidade de realizarem o teste do que aquelas sem sintomas. Na pequena cidade de Vo, no norte da Itália, todos os 3.300 habitantes foram testados, sendo que 3% tiveram resultado positivo para a infecção, em sua maioria assintomáticos.

Na Islândia, que estimulou a testagem da população independentemente da ocorrência de sintomas, 3.787 pessoas haviam sido testadas até 18 de março, sendo que 218 (5,8%) tiveram resultado positivo. Mesmo essa estimativa deve ser interpretada com
cautela, tendo em vista o conhecido fenômeno do viés de diagnóstico, que faz com que pessoas com sintomas possam ter optado por fazer o teste com maior frequência do que pessoas sem sintomas. Ao analisar-se especificamente os 1.800 testes realizados com voluntários assintomáticos, apenas 19 (1,1%) apresentaram resultado positivo. A prevalência também depende do estágio da epidemia e tende a aumentar com o tempo. Um inquérito recente mostrou prevalência de 14% na cidade alemã de Gangelt, a qual foi considerada um foco da doença devido a festividades de Carnaval, enquanto que na Coréia do Sul mais de meio milhão de pessoas foram testadas em serviços de saúde, mostrando uma positividade de 2,1%.

Em Epidemiologia, identificar a magnitude do problema de saúde na população inteira, e não em subgrupos específicos de pessoas com suspeita da doença, é o primeiro passo para o desenvolvimento de estratégias efetivas de saúde pública baseadas em evidências. Estimar o percentual de infectados na população em geral é especialmente relevante no caso da COVID-19 pelo fato de que se estima que mais de 60% das pessoas infectadas pelo SARS-CoV-2 apresentem sintomas leves ou até nenhum sintoma, mas podem transmitir a doença. Além disso, dentro do quadro atual de políticas bastante restritivas quanto ao contato social, conhecer a prevalência de infecção na população, e, em consequência, o número de suscetíveis, será essencial para planejar a volta gradativa às atividades normais da população.

Objetivos

Os objetivos do projeto são: (1) Estimar o percentual da população do Rio Grande do Sul que apresenta anticorpos contra o SARS-CoV-2; (2) Determinar o percentual de indivíduos com teste positivo que apresentam ou apresentaram infecções assintomáticas ou subclínicas; (3) Avaliar os sintomas mais comumente relatados pelos indivíduos com
anticorpos; (4) Analisar a evolução da prevalência através de quatro inquéritos quinzenais; (5) Permitir cálculos precisos da letalidade da doença, através das estimativas confiáveis do percentual de infectados; (6) Estimar recursos hospitalares de baixa, média e alta complexidade necessários para o enfrentamento da pandemia, por modelagem matemática a partir das estimativas de prevalência obtidas; (7) Permitir o eventual desenho de estratégias de abrandamento das medidas de isolamento social, com base nas estimativas obtidas.

População e Amostragem

Serão realizados inquéritos sorológicos repetidos de base populacional em nove municípios sentinela, com delineamento baseado em recomendações da OMS. Esta seleção de municípios sentinela se justifica pela exiguidade de tempo e disponibilidade limitada de testes. Oito municípios são sede das sub-regiões intermediárias do Rio Grande do Sul conforme o Instituto Brasileiro de Geografia e Estatística (IBGE), e o nono é o maior município da região metropolitana de Porto Alegre, depois da capital. Os oito municípios sede de sub-regiões são: Porto Alegre, Pelotas, Santa Maria, Uruguaiana, Ijuí, Passo Fundo, Caxias do Sul e Santa Cruz do Sul. Dada a importância da região metropolitana de Porto Alegre, a cidade de Canoas será incluída na amostra por ser a terceira mais populosa do Estado, após Porto Alegre e Caxias do Sul. Em cada inquérito, serão realizadas 500 entrevistas em cada estrato, totalizando 4.500 entrevistas por inquérito e 18.000 entrevistas no total do estudo.

Os quatro inquéritos serão realizados, com base no cronograma demonstrado na Figura 1. A coleta de dados durará de dois a três dias em cada rodada. O processo amostral consiste de amostra probabilística com múltiplos estágios. Em cada município sentinela, 50 setores censitários serão selecionados com probabilidade proporcional ao tamanho
respeitando a ordem de numeração de setores do IBGE, a qual inicia na área central da cidade e avança em direção à periferia, passando depois aos distritos. Mapas dos setores censitários, atualizados em 2019 pelo IBGE e incluindo todos os endereços em cada setor, serão utilizados para realizar uma seleção aleatória simples de 10 domicílios em cada setor, previamente ao início do trabalho de campo. Em caso de recusa do domicílio como um todo, outros domicílios, já previamente listados, serão inseridos na amostra.

Em cada domicílio amostrado, todos os moradores serão enumerados pelo entrevistador, que anotará sexo e idade de cada, e um deles será sorteado de forma aleatória simples. Se o morador sorteado estiver ausente por ocasião da visita, o entrevistador retornará ao domicílio no final da coleta de dados naquele setor para uma segunda tentativa. Se o morador ainda estiver ausente, outro residente será selecionado aleatoriamente. O mesmo procedimento será realizado em caso de recusa por parte do morador sorteado. Todas as informações sobre ausência, substituição e recusa de moradores ou do domicílio como um todo serão registrados para calcular a taxa de não resposta. A cada novo inquérito, a amostragem incluirá os mesmos setores censitários, mas domicílios diferentes daqueles incluídos nos inquéritos anteriores.

A tabela 1 mostra, levando em conta uma amostra de 4.500 pessoas nas 9 cidades, a precisão das estimativas para distintos níveis de prevalência de infecção no estado como um todo, e dentro de cada município.

Testagem e questionário

A detecção da COVID-19 será feita utilizando-se o WONDFO SARS-CoV-2 Antibody Test. O teste é baseado no princípio do imunoensaio de fluxo lateral para a detecção de anticorpos IgG/IgM contra SARS-CoV-2 no sangue total, soro e plasma humanos. O estudo de validação apresentado pelo fabricante incluiu 596 participantes, e
identificou uma sensibilidade de 86,4% e especificidade de 99,6%12. A equipe da pesquisa está realizando estudo de validação na população gaúcha, com pessoas que já haviam realizado o teste de PCR. Embora a coleta de dados ainda esteja em andamento, os resultados preliminares sugerem uma sensibilidade acima de 70% e uma especificidade acima de 95%. O teste mede a presença de anticorpos contra o SARS-CoV-2, sem discriminar o tipo de imunoglobulina. Estes anticorpos podem não ser detectáveis, especialmente nos primeiros dias após o contágio. Portanto, o teste tem pouco valor diagnóstico para casos agudos e poderá fornecer resultados falso-negativos no início da infecção.

Os entrevistadores serão treinados na execução do exame que será realizado com amostra de sangue obtida através de punção digital. Além da testagem para COVID-19, serão coletadas as seguintes informações sobre os participantes: sexo, idade, escolaridade do respondente, escolaridade da pessoa com maior grau de instrução no domicílio, cor da pele autorreferida, sintomas potencialmente relacionados à COVID-19 (tosse, febre, palpitações, dor de garganta, dificuldade para respirar, alterações no paladar e olfato, vômito e diarreia) nos 15 dias anteriores à entrevista, diagnóstico médico prévio de doenças relacionadas ao prognóstico da COVID-19 (hipertensão arterial, diabetes, asma, câncer, doença renal, doenças cardíacas), utilização de serviços de saúde nas duas semanas anteriores à entrevista e adoção total, moderada, leve ou não adoção das medidas de distanciamento social.

Análise de dados

Resultados de prevalência serão estratificados por sexo, idade, cor da pele, escolaridade do indivíduo, maior escolaridade entre os moradores do domicílio, número de moradores e número de idosos no domicílio. Serão analisados os sintomas mais
apresentados por indivíduos positivos e negativos, assim como a prevalência de positivos entre indivíduos que apresentaram cada tipo de sintoma. Também será calculada a proporção de infecções assintomáticas. Os resultados do estudo serão comparados com dados sobre casos notificados, hospitalizações e óbitos nos nove municípios, a fim de estimar letalidade e subnotificação. O banco anonimizado será disponibilizado para pesquisadores externos ao estudo após o processo de limpeza de dados, análises de consistência, e análise inicial de resultados.

Aspectos Éticos

Todos os indivíduos selecionados para a amostra dos inquéritos sorológicos serão informados sobre os objetivos do estudo, riscos e vantagens. O material e informações só serão coletados após assinatura do termo de consentimento livre e informado. Os casos positivos serão notificados para o serviço municipal de saúde para providências necessárias. As medidas de segurança biológica cabíveis serão tomadas, de forma a garantir a saúde dos trabalhadores de campo atuando na coleta dos dados e do material.

O estudo envolve risco mínimo para a saúde dos participantes, pois envolve apenas a aplicação de um questionário curto e o exame sorológico. Se houver qualquer desconforto, o participante poderá deixar de participar a qualquer momento. Os benefícios do projeto serão diretos e indiretos. Com relação aos benefícios diretos, com base nos resultados do exame, aqueles indivíduos que forem positivos poderão receber o manejo adequado para a doença. Os resultados do estudo irão servir para fornecer dados mais precisos sobre a COVID-19, traçar estratégias para o combate da pandemia e basear ações e programas de prevenção.

O protocolo foi aprovado pela Comissão Nacional de Ética em Pesquisa (CONEP), sob o número 30415520.2.0000.5313.
Financiamento

Os testes rápidos utilizados na pesquisa foram disponibilizados pelo Ministério da Saúde do Brasil à Secretária de Saúde do Estado do Rio Grande do Sul, que os repassou à equipe de pesquisa. O financiamento para a contratação da empresa responsável pela coleta de dados foi obtido junto à Unimed Porto Alegre, ao Instituto Cultural Floresta e ao Instituto Serrapilheira. Esta proposta de pesquisa foi elaborada por pesquisadores de instituições universitárias, sob liderança da Universidade Federal de Pelotas, em parceria com o Governo do Estado do Rio Grande do Sul, por meio do Comitê de Análise de Dados, instituído a partir do Decreto Nº 55.129, de 19 de março de 2020.

Agradecimentos

Os pesquisadores agradecem a colaboração das pessoas envolvidas nas diferentes equipes vinculadas ao estudo, e em especial às Secretarias de Segurança Pública e de Saúde do Estado do Rio Grande do Sul e dos nove municípios incluídos na amostra.

Alan J A McBride (Universidade Federal de Pelotas)
Aldemir Kerschner (Secretaria de Planejamento, Orçamento e Gestão do RS)
Alexandre V Schwarzbold (Universidade Federal de Santa Maria)
Alice Zelmanowicz ((Universidade Federal de Ciências da Saúde de Porto Alegre)
Andréia Rosane de Moura Valim (Universidade de Santa Cruz do Sul)
Arita Bergmann (Secretaria Estadual de Saúde do RS)
Carla Russo (Instituto Serrapilheira)
Carlos Henrique Francois (Universidade Regional do Noroeste do Estado do RS)
Cassiana Borges Soares (Secretaria Estadual de Saúde)
Cézane Priscila Reuter (Universidade de Santa Cruz do Sul)
Cimar Azeredo Pereira (Instituto Brasileiro de Geografia e Estatística)
Cláudio Gastal (Secretaria Estadual de Governança e Gestão Estratégica do RS)
Cláudio Goldztein (Instituto Cultural Floresta)
Débora C P Pellegrini (Universidade Federal do Pampa)
Dinara Jaqueline Moura (Universidade Federal de Ciências da Saúde de Porto Alegre)
Eduardo Luís Teixeira Baptista (Instituto Brasileiro de Geografia e Estatística)
Eduardo Luiz Gonçalves Rios Neto (Instituto Brasileiro de Geografia e Estatística)
Eduardo Silva (Secretaria Estadual de Saúde do RS)
Eliana Wendland (Universidade Federal de Ciências da Saúde de Porto Alegre)
Elis Radman (Instituto de Pesquisa de Opinião)
Evelise Moraes Berlezi (Universidade Regional do Noroeste do Estado do RS)
Fabrício R Conceição (Universidade Federal de Pelotas)
Gabriel D Victora (Rockefeller University, EUA)
Gerson Silva (Unimed Porto Alegre)
Jane Dagmar Pollo Renner (Universidade de Santa Cruz do Sul)
Jenifer Harter (Universidade Federal do Pampa)
Jeovany Martínez Mesa (IMED)
Kauê Collares (Universidade de Passo Fundo)
Leany Lemos (Secretaria de Planejamento, Orçamento e Gestão do RS)
Lessandra Michelin (Universidade de Caxias do Sul)
Lia Gonçalves Possuelo (Universidade de Santa Cruz do Sul)
Ligia Beatriz Bento Franz (Universidade Regional do Noroeste do Estado do RS)
Liliana Portal Weber (Universidade de Caxias do Sul)
Luciano Nunes Duro (Universidade de Santa Cruz do Sul)
Luís Lamb (Secretaria de Inovação, Ciência e Tecnologia do RS)
Marcelo Carneiro (Universidade de Santa Cruz do Sul)
Marcelo Gonçalves (Universidade Federal do Rio Grande do Sul)
Maria Leticia Rodrigues Ikeda (UNISINOS)
Mariana Turkenicz (Unimed Porto Alegre)
Mariane da Silva Dias (Universidade Federal de Pelotas)
Marília Arndt Mesenburg (Universidade Federal de Ciências da Saúde de Porto Alegre)
Marina Mantesso (Universidade de Caxias do Sul)
Marinel Mór Dall’Agnol (Universidade Federal de Santa Maria)
Matias Nunes Frizzo (Universidade Regional do Noroeste do Estado do RS)
Nadege Jacques (Universidade Federal de Pelotas)
Nêmora Tregnago Barcellos (UNISINOS)
Pedro T Zuanazzi (Secretaria de Planejamento, Orçamento e Gestão do RS)
Priscila Weber (Universidade Federal de Pelotas)
Raquel Bierhals (Universidade Federal de Pelotas)
Raquel Bittencourt (Secretaria Municipal de Saúde de Uruguaiana)
Ricardo Fiegenbaun (Universidade Federal de Pelotas)
Rosângela da Costa Lima (Universidade Federal de Santa Maria)
Sandra Elisa Haas (Universidade Federal do Pampa)
Shana Ginar da Silva (Universidade Federal da Fronteira Sul)
Silvia Pinto (Centro de Pesquisas Epidemiológicas da Universidade Federal de Pelotas)
Tiago V Collares (Universidade Federal de Pelotas)
Thiago Gomes Heck (Universidade Regional do Noroeste do Estado do RS)
Thiago Machado Ardenghi (Universidade Federal de Santa Maria)
Vinicius F Campos (Universidade Federal de Pelotas)
Wolney Cogoy de Menezes (Instituto Brasileiro de Geografia e Estatística)

Referências

1. https://www.who.int/emergencies/diseases/novel-coronavirus-2019
2. www.ourworldindata.org/coronavirus
3. www.who.int/docs/default-source/coronaviruse/situation-reports/20200410-sitrep-81-covid-19.pdf?sfvrsn=ca96eb84_2
4. www.rfi.fr/en/europe/20200316-the-hard-lessons-of-italy-s-devastating-coronavirus-outbreak
5. Gudbjartsson DF et al. Early Spread of SARS-Cov-2 in the Icelandic Population. https://www.medrxiv.org/content/10.1101/2020.03.26.20044446v2
6. https://www.land.nrw/sites/default/files/asset/document/zwischenergebnis_covid19_case_study_gangelt_0.pdf
7. http://ncov.mohw.go.kr/en
8. www.catalogofbiases.org/biases/diagnostic-suspicion-bias/
9. Victora CG. What’s the denominator? Lancet 1993; 342(8863): 97-9.
10. www.nature.com/articles/d41586-020-00822-x
11. www.who.int/publications-detail/population-based-age-stratified-seroepidemiological-investigation-protocol-for-covid-19-virus-infection
Clinical General Report. SARS-CoV-2 Antibody Test (Lateral Flow Method).

Guangzhou Wondfo Biotech Co., Ltd. No. 8 Lizhishan Road, Science City, Luogang District, 510663, Guangzhou, P.R. China: www.wondfo.com.cn
Figura 1. Cronograma da coleta de dados. Estudos sorológicos de base populacional sobre a prevalência de COVID-19 no Rio Grande do Sul.
Figura 2. Mapa do Estado, com as cidades incluídas nos estudos sorológicos de base populacional sobre a prevalência de COVID-19 no Rio Grande do Sul.
Tabela 1. Parâmetros e estimativas utilizadas para o cálculo de tamanho de amostra.

Estudos sorológicos de base populacional sobre a prevalência de COVID-19 no Rio Grande do Sul.

Inquérito	% estimado de infecção	N	Precisão total (pp)	Precisão em cada estrato (pp)
1	3%	4.500	0,50	1,50
2	5%	4.500	0,60	1,70
3	10%	4.500	1,00	2,50
4	20%	4.500	1,20	3,50

pp: pontos percentuais