Undergraduate medical students’ readiness for online learning at a South African university: Implications for decentralised training

A M Ingratta,1 MB BCh; S E Mabizela,2 MA (Psych); A Z George,2 PhD; I. Green-Thompson,3 MB BCh, PhD

1 Department of Internal Medicine, Helen Joseph Hospital, Johannesburg, South Africa
2 Centre for Health Science Education, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
3 Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa

Corresponding author: A Z George (ann.george@wits.ac.za)

The global shift towards decentralised training – that is, expanding the platforms available for the clinical training of undergraduate medical students beyond central tertiary academic complexes to community-based settings – aims to produce more health professionals who better meet the needs of the societies they serve.

The benefits of online learning have located ICTs in the mainstream of medical curricula, allowing for online learning to enhance medical education assumes a certain level of institutional readiness in human and infrastructural resources that are not always present in low- and middle-income countries.

However, ‘the potential of online learning to enhance medical education assumes a certain level of institutional readiness in human and infrastructural resources that are not always present in low- and middle-income countries’.

Digital divides related to socioeconomic conditions, such as differential access to ICT and variable proficiency, present a particular challenge in low-income and resource-constrained settings. Variables such as student and staff access to ICT, access to broadband internet, and a lack of ICT skills and confidence due to variations in the intensity and nature of internet usage may impact the success of online learning.

The benefits of online learning include reducing the costs associated with delivering educational content, facilitating the scalability of educational interventions and improving the availability of and access to educational content.

The United Nations and the World Health Organization have acknowledged the value of online learning as a useful tool to address global health education needs, especially in developing countries. However, the potential of online learning to enhance medical education assumes a certain level of institutional readiness in human and infrastructural resources that are not always present in low- and middle-income countries.

The maldistribution of healthcare practitioners has been referred to as ‘a particularly critical issue’.

A model of decentralised training for the SA context developed at a workshop held in 2015 involving the country’s nine medical schools identified the availability of information and communications technology (ICT) as one of five critical factors for successful decentralised training.

The benefits of online learning have located ICTs in the mainstream of medical curricula, where it is at least as effective as traditional lecture-based learning in terms of knowledge and skills gained. The benefits of online learning include reducing the costs associated with delivering educational content, facilitating the scalability of educational interventions and improving the availability of and access to educational content.

The survey response rate was 48.5% (448/924). No significant differences in device usage and attitudes towards online learning were observed across the 3 years of study. Most respondents (99%) owned internet-capable devices, and >90% wanted some degree of online learning. The perceived barriers included poor internet connectivity on university campuses and the high cost of data in SA.

The majority of respondents owned internet-capable devices and requested more online learning, but the socioeconomic disparities in the country raise concerns about students’ readiness. Wider online learning requires policy decisions to ensure not only access to devices and data but also the implementation of online learning in ways that avoid further disadvantaging already disadvantaged students. Institutional barriers must be addressed before an expanded online learning environment can be considered.

Afr J Health Professions Educ 2022;14(2):66-71. https://doi.org/10.7196/AJHPE.2022.v14i2.1433
persistent inequalities in primary and secondary education, even more than 25 years into the new democratic dispensation that replaced the Apartheid regime, contribute to racial inequalities in access and success at tertiary institutions.¹⁴,¹⁶ The digital divide that exists in SA has been referred to as ‘digital apartheid’¹⁷ because of its demarcation along racial lines. Given this context, the expanded usage of online learning in higher education should not contribute to further inequalities in student success.

The medical school at the University of the Witwatersrand (Wits University), established in 1919, accounts for 13% of the annual national first-year intake to the nine medical schools.¹⁵ Students are admitted via two routes to the 6-year undergraduate Bachelor of Medicine and Bachelor of Surgery (MB BCh) at Wits University. Students enter the first year of study (MBBCh 1) while graduates enter the third year of study. Students start their clinical training in MBBCh 4, progressing to clinical clerkships at distributed training platforms by the final year of study. Wits University partners with several government departments to train students at decentralised facilities. The decentralised facilities range from primary healthcare centres and community health centres in the city of Johannesburg to hospitals in the urban and peri-urban areas of Gauteng Province (a central province in SA), to more remote district and regional hospitals in the mostly rural areas of North West Province (~70 km from the university) and Mpumalanga Province (~400 km from the university). Wits University introduced rurality as a selection criterion for admission to the medical degree in 2015, as part of the government initiative to address unequal access to higher education. The present study was conducted in 2017 towards a Master of Medicine degree. It aimed to determine students’ device ownership and usage of these devices, and attitudes towards online learning in the medical degree at Wits University. The study represents the most recent comprehensive survey of medical students’ readiness for online learning at this institution.

Given the move towards more decentralised training at SA medical schools,²¹ the potential role for online learning to facilitate this training, and the digital divide that exists in the country, a better understanding of context-specific students’ needs will allow resources to be directed appropriately and strategically. Student access to and engagement with online learning have become relevant during the recent rapid shift to online learning during the 2020 COVID-19 pandemic, both in central and distributed learning sites. The findings presented here could be of interest to medical schools in SA and other low- and middle-income countries that intend to implement or increase the usage of online learning.

Methods
A descriptive, cross-sectional, online and paper-based survey was distributed to a convenience sample of first-year (n=255), third-year (n=350) and final-year (n=319) medical students. These years of study were selected as they represent critical transition points in the curriculum – an entry year for school leavers (first year), a year in which the pedagogy changes from lectures to case-based learning (third year) and a year consisting of clinical clerkships (final year). The estimated sample size for the study, treating this as an online survey only, was 272/924 students, or a response rate of 29.4%. This sample size was estimated using a confidence interval of 95% with a 5% margin of error.

The questionnaire was adapted from two published surveys.²⁴,²⁹ The survey was generated using REDCap (Research Electronic Data Capture; Vanderbilt University, USA). A pilot study conducted with 19 student volunteers from the MBBCh 5 group led to the questionnaire being edited for clarity. The final survey included both open- and closed-ended questions about respondents’ demographic data, ownership of devices, device usage to support learning, including access to and reliability of internet connection, and readiness and willingness regarding online learning.

The survey was administered between September and November 2017. Links to an informational video detailing the upcoming study were circulated by class representatives to three cohorts via class Facebook and WhatsApp groups for 1 month before the roll-out of the survey. The final survey was distributed via student email addresses, the university learning management system and advertisement posters with quick response (QR) codes. Paper-based versions of the survey were circulated in lectures for each of the cohort years. A detailed information sheet provided with both the online and paper-based versions requested that students agree to participate in the survey before commencing.

Data from the paper-based surveys were manually entered into REDCap. There were no duplicate online entries. The data in REDCap were exported to Excel (Microsoft Corp., USA) for cleaning. Incomplete entries were removed. Quantitative data were analysed using SPSS version 25 (IBM Corp., USA). Frequency tables were used to analyse demographic data. Kruskal Wallis one-way analysis of variance (ANOVA) tests were used to understand the mean difference in different items by the year of study (YOS). All tests were conducted at a significance level of p=0.05. The open-ended responses were analysed using conventional content analysis.

The Human Research Ethics Committee of the Faculty of Health Sciences at Wits University approved the study (ref. no. M170340).

Results
The overall response rate was 48% (448/924). Of the 924 students surveyed, 56% of all first-year (142/255), 41% of all third-year (143/350) and 41% of all sixth-year (132/319) students participated in the survey. The overall completion rate for the survey was 81% (364/448): MBBCh 1 – 88.7%, 126/142; MBBCh 3 – 88.1%, 126/143; and MBBCh 6 – 84.8%, 112/132. The sample demographics for gender and age reflected those of the target population, with nearly half (45.2%) of the black students in the target population participated in the survey, compared with nearly half (45.2%) of the white students.

Table 2 shows the number of devices by YOS. Only three first-year students did not own a device. Most respondents (99.2%; 361/364) owned one device, with 92.8% (335/361) owning two or more devices. Smartphones were the most common device (97.3%; 354/364), followed by laptops (94.2%; 343/364), tablet computers (51.6%; 188/364), desktop computers (31%; 113/364) and standard mobile phones (15.1%; 55/364). There were no statistically significant differences by YOS for ownership or access to a smartphone, laptop or desktop:

- smartphone: MBBCh1 mean rank = 181.70, MBBCh 3 mean rank = 183.16, MBBCh 6 mean rank = 182.66, H (corrected for ties)=0.156, df=2, n=364, p=0.527.
- laptop: MBBCh 1 mean rank = 180.19, MBBCh 3 mean rank = 184.15, MBBCh 6 mean rank = 183.24, H (corrected for ties)=0.596, df=2, n=364, p=0.742.
- desktop computer: MBBCh 1 mean rank = 181.26, MBBCh 3 mean rank = 188.60, MBBCh 6 mean rank = 177.04, H (corrected for ties)=1.117, df=2, n=364, p=0.527.

Research
Most respondents (89%) used their devices where they lived, with laptops the most frequently used device (Fig. 1). Students made infrequent usage of the university computers available in teaching hospitals, campus libraries and instructional spaces, with most students accessing them weekly (36%); 131/364) or monthly (30%; 108/364). Only 11% (40/364) accessed the university computers daily, while another 11% (40/364) used them annually. Most respondents (82%) used their own data to connect to the internet, as opposed to the university WiFi networks (62%) and free WiFi networks (21%). Free WiFi networks include free WiFi in coffee shops. There was no statistically significant difference by YOS in the frequency of data usage: MBBC 1 mean rank = 183.53, MBBC3 mean rank = 175.04, MBBC6 mean rank = 189.74, H (corrected for ties)=2.551, df=2, n=364, p=0.279. Nor was there a significant difference in use of university WiFi: MBBC 1 mean rank = 178.54, MBBC3 mean rank = 182.79, MBBC6 mean rank = 186.63, H (corrected for ties)=0.473, df=2, n=364, p=0.789.

Feeling that ‘online learning benefits learning’ was respondents’ primary reason for wanting online learning (Fig. 3), while connectivity issues were the major reason they were not in favour of online learning. The major reason for preferring face-to-face learning was the opportunity for interpersonal interaction, while the major reason against face-to-face learning was the opportunity for face-to-face interaction.

Table 1. Sample and population demographics

Characteristic	MBBC 1, n (%)	MBBC 3, n (%)	MBBC 6, n (%)	Total respondents, n (%)	Total cohort, n (%)
	(n=126)	(n=126)	(n=112)	(N=364)	(N=924)†
Gender					
Male	54 (38.3)	47 (33.3)	40 (28.4)	141 (38.7)	378 (40.9)
Female	71 (32.1)	79 (35.8)	71 (32.1)	221 (60.7)	546 (59.1)
Other	1 (50.0)	0 (50.0)	1 (50.0)	2 (0.5)	0 (0.0)
Age, years					
<21	53 (36.8)	48 (33.3)	43 (29.9)	144 (39.5)	419 (45.3)
21-24	59 (36.0)	57 (34.8)	48 (29.3)	164 (45.1)	399 (43.2)
25-29	13 (27.1)	19 (39.6)	16 (33.3)	48 (13.2)	84 (9.1)
>29	1 (12.5)	2 (25.0)	5 (62.5)	8 (2.2)	22 (2.4)
Race*					
Black	62 (47.6)	34 (26.2)	34 (26.2)	130 (35.7)	383 (41.5)
White	31 (22.6)	58 (42.4)	48 (35.0)	137 (37.6)	303 (32.8)
Asian/Indian	22 (33.8)	22 (33.8)	21 (32.4)	65 (17.9)	190 (20.5)
Coloured	5 (25.0)	9 (45.0)	6 (30.0)	20 (5.5)	48 (5.2)
Other	6 (50.0)	3 (25.0)	3 (25.0)	12 (3.3)	0 (0.0)

*Race as classified by Statistics South Africa.
†Based on admission data.

Table 2. Device ownership (N=364)

Number of devices	MBBC 1, n (%)	MBBC 3, n (%)	MBBC 6, n (%)	Total, n (%)
	n (%)	n (%)	n (%)	n (%)
0	3 (2.4)	0 (0)	0 (0)	3 (0.8)
1	9 (7.1)	9 (7.1)	8 (7.1)	26 (7.1)
2	56 (44.4)	55 (43.7)	36 (32.1)	147 (40.4)
3	37 (29.4)	47 (37.3)	54 (48.2)	138 (37.9)
4	12 (9.5)	6 (4.8)	10 (8.9)	28 (7.7)
≥5	9 (7.1)	9 (7.1)	4 (3.6)	22 (6.0)
learning was the difficulties experienced with travelling to the university for these sessions. Fig. 4 shows the types of technologies that students would like their teachers to use more, and less, for teaching and learning. Videos or multimedia resources (96%) were the technologies that respondents wanted their teachers to use more. Social media was the least preferred teaching tool.

Discussion

Respondents’ patterns of device ownership and usage showed no significant differences across the 3 years of study. Most of the respondents owned devices, were positively disposed towards technology usage, requested that their teachers use more online learning and were willing to use their own devices in teaching and learning spaces. Poor and unreliable connectivity in university spaces meant that students used their devices on campuses infrequently and relied on data they had purchased, mainly where they lived. Given that smartphones were ubiquitous, the potential for more online learning, especially mobile learning, makes this a feasible option for teaching across both centralised and remote training platforms. The findings, however, raise vital questions about student, staff and institutional readiness for the broader implementation of online learning.

Respondents’ patterns of device ownership and usage are similar to those reported in other studies. Nearly all respondents had access to a device, with smartphones being the most common device, followed by laptops. These findings are similar to the 2017 EDUCAUSE Centre for Analysis and Research (ECAR) survey,[21] which found that laptops are critical to the academic success of undergraduate students in the USA. The prevalence of smartphones is unsurprising, given that people in the age group 18 - 34 years are more likely to own a smartphone than older people, in both developed and developing countries.[22] The value placed on mobile devices for learning by the respondents is in keeping with studies on medical students

Table 3. Preferred teaching approach (N=364)

Approach, n (%)	MBBCh 1, n (%) (n=126)	MBBCh 3, n (%) (n=126)	MBBCh 6, n (%) (n=112)	Total, n (%)
No online components	5 (3.96)	10 (7.9)	8 (7.1)	23 (6.3)
Some online components	86 (68.3)	75 (59.5)	66 (58.9)	227 (62.4)
Mostly but not completely online	28 (22.2)	31 (24.6)	27 (24.1)	86 (23.6)
Completely online	5 (4.0)	3 (2.4)	7 (6.3)	15 (4.1)
No preference	2 (1.6)	7 (5.6)	4 (3.6)	13 (3.6)
Research

globally. Kalisa and Picard suggest an increasing trend in mobile learning in higher education in Africa. The increased growth in access to mobile devices projected in SA has implications for the mobile learning required for decentralised training platforms. The relatively low cost, internet capability and multifunctionality of these mobile devices promote their popularity and ownership among students, and create opportunities for more personalised learning.

Although there was an overall positive disposition to online learning, at least 20% of the respondents felt underprepared, on entry to university, to use the university’s learning management system, standard Microsoft Office applications and internet browsing. Given the survey response rate of 48%, this finding suggests a strong need for additional training to promote equitable access for all students, especially with the preferential selection for students from rural areas. Respondents’ preference for a combination of online and face-to-face teaching is similar to other studies’ findings that medical students still attribute greater value to face-to-face learning, and regard online learning instead as a useful supplement to, but not a replacement for, face-to-face teaching. A blended learning approach could be more appropriate in the SA context; Bagarukayo and Kalema found that SA student populations within and between institutions had variable baseline ICT skill sets and learning preferences, which a blended approach could mitigate.

The primary barrier to online learning identified by the respondents was the poor quality of the university WiFi network and its variability across different teaching and learning spaces. An unreliable network forces students to purchase mobile data, potentially compromising those from lower socioeconomic backgrounds. Data costs in SA are as much as 134% more expensive compared with other BRICS nations, making it more difficult for students to purchase data.

The recent COVID-19 pandemic focused attention on several of the issues highlighted by our findings, as higher education institutions globally had to consider student access to devices and WiFi, and technological proficiency, in the move to emergency remote teaching. Like universities globally, Wits University was forced to move its teaching and learning programme online. While the findings from our 2017 study suggest that students were ready and willing to undertake extended online learning across the 3 transition years sampled, many students at our institution were not ready to learn remotely during the pandemic. The university had to urgently procure laptops and negotiate data packages for students, resulting in delays in the academic programme. Barteit et al. attribute the failure of online

Fig. 3. Reasons for respondents’ preference for online and face-to-face learning modalities. (LMS = learning management system.)

Fig. 4. Preferences for types of online learning. (Percentages <100 are accounted for by the ‘I don’t know’ category not included in the figure. The negative percentages account for the ‘never’ category.)
learning to substantially improve medical education and, ultimately, healthcare provision, in low- and middle-income countries to the lack of a comprehensive system-wide approach that goes beyond providing online learning as a technology. Online learning should be integrated into local educational contexts and aligned with national strategies. The need to avoid further disadvantaging already disadvantaged students by the indiscriminate and underusing use of online learning in medical education requires policy decisions that will ensure access to ICT devices and data and the successful implementation of online learning to promote student engagement.

The survey response rate of 48% is higher than the typical low rate of 21 - 30% for online surveys.[39] The higher rate could be attributed to using a combination of online and paper-based surveys. The under-representation of black students and the over-representation of white students raises the possibility of non-response bias. Given that demography is often a proxy for economic status in SA,[40,41] the overall results and the results within each cohort year might be different if the respondents' racial demographics were more reflective of the population. A further limitation of this study is that it relied on self-reported data.

Ongoing studies such as this one are essential for determining student readiness for online learning, especially when the student demographics at medical schools are likely to change, with preferential selection for students from rural areas. In addition to issues around access to technology and connectivity, students from rural areas are more likely to have low entry-level skills when entering higher education.[33,35] which, based on the vast socioeconomic discrepancies that persist in the country,[46] may extend to the ICT skills and proficiency required for online learning. A systematic and inclusive framework of implementation and evaluation is required for successful online learning.

Conclusion

The majority of respondents owned internet-capable devices and requested more online learning; but the socioeconomic differences in the country raise concerns about students’ access to devices and readiness to use them. The institutional barriers must be addressed before an expanded online learning environment can be considered.

The datasets generated and analysed during this study are available in the University of the Witwatersrand repository, Wiredspace, at http://doi.org/10.17605/OSEFI0/8N3Y3. Any request for de-identified sample data will be considered by the data access committee on a case-by-case basis.

Declaration.
The research for this study was done in partial fulfilment of the requirements for AMI’s MMed degree at the University of the Witwatersrand. Acknowledgements.

The medical students who took part in the pilot, advertising campaigns and survey completion; Irma Mare for her assistance with REDCap.

Author contributions.
All authors made substantial contributions to the design, data collection, analysis, drafting and final approval of the manuscript. All authors were involved with revising the manuscript for critically important intellectual content. All authors read and approved the final manuscript. The primary investigator (AMI) has agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Funding.
This work is based on the research supported in part by the National Research Foundation of SA (NRF) for the grant, unique grant no. 107106. The grant holder acknowledges that opinions, findings and conclusions or recommendations reported in this article are those of the author(s), and that the NRF accepts no liability whatsoever in this regard.

Conflicts of interest.
None.

1. World Health Organization. Transforming and scaling up health professionals’ education and training. World Health Organization guidelines 2013. Geneva: WHO, 2013.
2. Say K, Chou D, Simma B, et al. ‘Yielding’ results: Driving change through a rural medical education innovation. Rural Remote Remote Health 2014;14(2):1-9.
3. Wilson N, Cooper I, De Vos I, Redd S, Feil T, Mann R. A critical review of interventions to reduce the inequitable distribution of healthcare professionals to rural and remote areas. Rural Remote Remote Health 2009;9(2):1060-1073.
4. South African Association of Health Educators. Consensus Statement: Decentralised Training in the Health Professions. Vol. 71. Pretoria: SAHAHE, 2017.
5. Bartlett S, John A, Banda SS, et al. E-learning for medical education in sub-Saharan Africa and low-resource settings. Viewpoint. J Med Internet Res 2019;21(2):e14094. https://doi.org/10.2196/14094
6. Valmohammadi J. Rural health professions education in South Africa. S Afr Med J 2018;108(7):1-2.
7. De Vilhers ML, Blitz J, Cooper I, et al. Decentralised training for medical students: Towards a South African consensus. Afr J Prim Heal Care Fam Med 2017;9(1):1-6. https://doi.org/10.4102/phcfm.v9i1.1449
8. Elenney R, Mantes K. E-learning in medical education part 1: Learning, teaching and assessment. Med Teach 2008;30(6):451-473. https://doi.org/10.1080/01421590802108331
9. Ali-shamsi H, George A. Predicting validity of the McAT for undergraduate health professional education: A systematic review informing a rational methodology of health workforce development. London: World Health Organization, 2015.
10. Shrestha S, Zamar L. Using technology to improve health care education: Barriers to access for refugee background students in low-resource settings. Greece. London: World Health Organization, 2016;8(3):308-312. https://doi.org/10.1093/annfammed/fov039
11. Masse E, Masse J. Using e-learning to improve knowledge of cardiology among general practitioners: A qualitative study. Can J Cardiol 2015;31(3):262-269. https://doi.org/10.1016/j.cjca.2014.10.001
12. Choudhury D. Mobile learning: A review of student experience in telemedicine. J Telemed Telecare 2006;12:129-133. https://doi.org/10.1258/135763306778212807
13. Bagarukayo E, Kalema B. Evaluation of elearning usage in South African universities: A critical review. Int J Educ Dev 2017;16(1):1-18. https://doi.org/10.1016/j.ijedudev.2016.02.004
14. De Villiers MR, Blitz J, Couper I, et al. Decentralised training for medical students: Towards a South African consensus. Afr J Prim Heal Care Fam Med 2017;9(1):1-6. https://doi.org/10.4102/phcfm.v9i1.1449
15. Rens J, Czarniecki L. Debunking the ‘digital native’. Beyond digital apartheid, towards digital democracy. J Comput Assist Learn 2010;26(5):357-369. doi:10.1111/j.1540-1672.2010.00895.x
16. De Villiers MR, Blitz J, Couper I, et al. Decentralised training for medical students: Towards a South African consensus. Afr J Prim Heal Care Fam Med 2017;9(1):1-6. https://doi.org/10.4102/phcfm.v9i1.1449
17. Foschtur D. Smartphone ownership and internet usage continues to climb in emerging economies. Washington: Pew Research Centre, 2016.
18. Van der Merwe L, van Zyl G, St Clair Gibson A, et al. South African medical schools: Current state of selection criteria and medical students’ demographic profile. SA Med J 2016;106(1):78-81. https://doi.org/10.7196/SAMJ.2016.v106i1.5933
19. Prince R. Predicting success in higher education: The value of criterion and norm-referenced assessments. Pr Res High Educ 2016;8(1):22-28.
20. Iyer P, Aziz K, Ojcius D. Impact of COVID-19 on dental education in the United States. J Dent Educ 2020;84(6):718-722. https://doi.org/10.20853/29-1-462
21. Statistics South Africa. Mid-year population estimates, 2018. Pretoria: Stats SA, 2018.
22. Bagarukayo E, Kalema B. Evaluation of elearning usage in South African universities: A critical review. Int J Educ Dev 2017;16(1):1-18. https://doi.org/10.1016/j.ijedudev.2016.02.004
23. Brown C, Czerniewicz L. Debunking the ‘digital native’: Beyond digital apartheid, towards digital democracy. J Comput Assist Learn 2010;26(5):357-369. doi:10.1111/j.1540-1672.2010.00895.x
24. Prince R. Predicting success in higher education: The value of criterion and norm-referenced assessments. Pr Res High Educ 2016;8(1):22-28.