Implications of the dimuon CP asymmetry in $B_{d,s}$ decays

Zoltan Ligeti,1 Michele Papucci,2 Gilad Perez,3 and Jure Zupan4,5,6

1Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720
2Institute for Advanced Study, Princeton, NJ 08540
3Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel
4Faculty of Mathematics and Physics, University of Ljubljana Jadranska 19, 1000 Ljubljana, Slovenia
5Josef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
6SISSA, Via Bonomea 265, I 34136 Trieste, Italy

The DØ Collaboration reported a 3.2σ deviation from the standard model prediction in the like-sign dimuon asymmetry. Assuming that new physics contributes only to $B_{d,s}$ mixing, we show that the data can be analyzed without using the theoretical calculation of $\Delta\Gamma_s$, allowing for robust interpretations. We find that this framework gives a good fit to all measurements, including the recent CDF $S_{\psi\phi}$ result. The data allow universal new physics with similar contributions relative to the SM in the B_d and B_s systems, but favors a larger deviation in B_s than in B_d mixing. The general minimal flavor violation framework with flavor diagonal CP violating phases can account for the former and remarkably even for the latter case. This observation makes it simpler to speculate about which extensions with general flavor structure may also fit the data.

In the last decade an immense amount of measurements determined that the standard model (SM) is responsible for the dominant part of flavor and CP violation in meson decays. However, in some processes, mainly related to B_s decays, possible new physics (NP) contributions are still poorly constrained, and motivated NP scenarios predict sizeable deviations from the SM. Recently the DØ Collaboration reported a measurement of the like-sign dimuon charge asymmetry in semileptonic b decay with improved precision [1],

$$a_{bSL}^b \equiv \frac{N_{b^+}^+-N_{b^-}^-}{N_{b^+}^++N_{b^-}^-} = -(9.57 \pm 2.51 \pm 1.46) \times 10^{-3},$$

(1)

where N_{b^+} is the number of $b\bar{b} \to \mu^+\mu^+X$ events (and similarly for N_{b^-}). This result is 3.2σ from the quoted SM prediction, $\langle a_{bSL}^b \rangle_{SM} = (-2.3^{+0.5}_{-0.6}) \times 10^{-4}$ [2]. At the Tevatron both B_d^0 and B_s^0 are produced, and hence a_{bSL}^b is a linear combination of the two asymmetries [1],

$$a_{bSL}^b = (0.506 \pm 0.043) a_{bSL}^d + (0.494 \pm 0.043) a_{bSL}^s,$$

(2)

The above result should be interpreted in conjunction with three other measurements: (i) the B_d semileptonic asymmetry, measured by the B factories, $a_{bSL}^d = -(4.7 \pm 4.6) \times 10^{-3}$ [3]; (ii) the flavor specific asymmetry measured from time dependence of $B_d^0 \to \mu^+D^-s^{-}X$ decay and its CP conjugate, $a_{bSL}^s = -(1.7 \pm 9.1 \pm 1.5) \times 10^{-3}$ [3]; and (iii) the measurements of $\Delta\Gamma_s$ and $S_{\psi\phi}$ (the CP asymmetry in the CP-even part of the $\psi\phi$ final state in B_s decay) [4][5]. Here $\Gamma_s = \Gamma_L - \Gamma_H$, is the width difference of the heavy and light B_s mass eigenstates. If CP violation is negligible in the relevant tree-level decays, then $a_{bSL}^b = a_{bSL}^d$. The SM predictions for the asymmetries a_{bSL}^d and a_{bSL}^s are negligibly small, beyond the reach of the Tevatron experiments [9][11]. If the evidence for the sizable dimuon charge asymmetry in Eq. (1) is confirmed, it would unequivocally point to CP violation beyond the SM.

The present experimental uncertainties of a_{bSL}^d and a_{bSL}^s separately are larger than that of their combination, a_{bSL}^b. Thus, from Eq. (1) alone it is not clear if the tension with the SM is in the B_d or in the B_s system. Bounds from other observables imply (see below) that new physics contributions in B_d mixing with a generic weak phase cannot exceed roughly 20% of the SM, while in B_s mixing much larger NP contributions are still allowed.

We focus on interpreting the data assuming that the above measurements are associated with new CP violating physics which contributes to $B_{d,s}$ mixing, while its contribution to CP violation in tree-level decay amplitudes is negligible. Under this assumption the DØ result in Eq. (1) is correlated with the Tevatron measurements of $S_{\psi\phi}$ [12] (and $\Delta\Gamma_s$). These measurements provide non-trivial tests of our hypothesis (see [13] for relaxing these assumptions). Neglecting the small SM contribution to $S_{\psi\phi}$, the following relation holds between experimentally measurable quantities [14],

$$a_{bSL}^b = -\frac{|\Delta\Gamma_s|}{\Delta m_s} S_{\psi\phi} \sqrt{1 - S_{\psi\phi}^2},$$

(3)

where $\Delta m_s \equiv m_H - m_L$. Using the new measurement in Eq. (1) together with Eq. (2), the above relation implies

$$|\Delta\Gamma_s| \approx -\Delta m_s (2.0 a_{bSL}^s - 1.0 a_{bSL}^d) \sqrt{1 - S_{\psi\phi}^2} / S_{\psi\phi}.$$

(4)

For simplicity we do not display the $O(10\%)$ uncertainties of the two numerical factors. The CDF and DØ time-dependent $B_s \to \psi\phi$ analyses provide a measurement of $\Delta\Gamma_s$ vs. $S_{\psi\phi}$. Hence all quantities in Eq. (4) are constrained, and our analysis can be performed without the theoretical prediction of $\Delta\Gamma_s$ [15], using its determination from data instead.

Using the measured values of Δm_s and $a_{bSL}^{b,d}$, we find

$$|\Delta\Gamma_s| \sim [(0.28 \pm 0.15) \text{ps}^{-1}] \sqrt{1 - S_{\psi\phi}^2} / S_{\psi\phi}.$$

(5)
We denote by \(\Delta \Gamma_s \) the data on \(\Delta \Gamma_s \) around \(\Delta \Gamma_s \), and \(S_{\psi \phi} \). This consistency is a nontrivial test of the assumption that NP contributes only to neutral meson mixing.

New physics in the mixing amplitudes of the \(B_{d,s} \) mesons can in general be described by four real parameters, two for each neutral meson system,

\[
M_{d,s}^2 = (M_{12}^{d,s})_{SM} (1 + h_{d,s} e^{2i \sigma_{d,s}}). \tag{6}
\]

We denote by \(M_{12}^{d,s} \) the dispersive (absorptive) part of the \(B_{d,s}^0 - B_{d,s}^- \) mixing amplitude and SM superscripts denote the SM values (for quantities not explicitly defined here, see Ref. [16]). This modifies the SM predictions for some observables used to constrain \(h_q \) and \(\sigma_q \) as

\[
\Delta m_q = \Delta m_q^{SM} |1 + h_q e^{2i \sigma_q}|, \\
\Delta \Gamma_s = \Delta \Gamma_s^{SM} \cos \arg \left(1 + h_q e^{2i \sigma_q}\right), \\
A_{SL}^q = \text{Im} \left\{ \Gamma_{12}^q \equiv M_{12}^{d,s} (1 + h_q e^{2i \sigma_q}) \right\}, \\
S_{\psi K} = \sin \left[2 \beta + \arg \left(1 + h_q e^{2i \sigma_q}\right)\right], \\
S_{\psi \phi} = \sin \left[2 \beta - \arg \left(1 + h_q e^{2i \sigma_q}\right)\right]. \tag{7}
\]

Here \(\beta = \arg[-(V_{ts} V_{tb}^*)/(V_{ts} V_{tb}^*)] \approx (1.04 \pm 0.05)^\circ \) is an angle of a squashed unitarity triangle.

As already discussed, the new DO measurement directly correlates the possible NP contributions in the \(B_d \) and \(B_s \) systems [see Eq. (2)]. In order to quantitatively assess our NP hypothesis we perform a global fit using the CKMfitter package [17] to determine simultaneously the NP parameters \(h_{d,s} \) and \(\sigma_{d,s} \), as well as the \(\rho \) and \(\eta \) parameters of the CKM matrix.

The results presented here use the post-Beauty2009 CKMfitter input values [17], except for the lattice input parameters where we use [18], and the most recent experimental data. For \(S_{\psi \phi} \) vs. \(\Delta \Gamma_s \), we use the 2.8 fb\(^{-1} \) 2d likelihood of DO [5] and the 5.2 fb\(^{-1} \) 1d likelihood of the recent CDF measurement [8] (the 2d likelihood is not available); these fits are done without assumptions on the strong phases. As already mentioned, neither the CDF nor the DO result gives a significant tension in the fit, so we expect that a real 2d Tevatron combination of the ICHEP 2010 results [8, 19] will not alter our results significantly. For the results presented here, we marginalize over \(\Gamma_{12}^s \) in the range \(0 - 0.3 \) ps\(^{-1} \), finding that the data prefer values for \(\Delta \Gamma_s \) about 2.5 times larger than the prediction [2]. If we use the theory prediction, our conclusions about NP do not change substantially, but the goodness of fit is reduced significantly.

Figure 1 shows the results of the global fit projected onto the \(h_d - h_s \) plane with 1\(\sigma \) (solid), 2\(\sigma \) (dashed), and 3\(\sigma \) (dotted) contours. We find that the data show evidence for disagreement with the SM or, differently stated, the no NP hypothesis \(h_s = h_d = 0 \) is disfavored at the 3.3\(\sigma \) level. Figure 2 shows the \(h_s - \sigma_s \) and \(h_d - \sigma_d \) fits. The two best fit regions are for \(h_s \sim 0.5 \) and \(h_s \sim 1.8 \) with sizable NP phases, \(\sigma_s \sim 120^\circ \) and \(\sigma_s \sim 100^\circ \) respectively. Here the point \(h_s = 0 \) is disfavored at only 2.6\(\sigma \), since \(h_s \) and \(h_d \) are correlated. In the \(h_d - \sigma_d \) case the data is consistent with no new physics contributions in \(B_d - B_d \) mixing \((h_d = 0) \) below the 2\(\sigma \) level.

To interpret the pattern of the current experimental data in terms of NP models, one should investigate if NP models that respect the SM approximate \(SU(2)_c \) symmetry are favored (in the SM this is due to the smallness of the masses in the first two generations and the smallness of the mixing with the third generation quarks), or if a hierarchy, such as \(h_d \ll h_s \), is required. In Fig. 1 we show the \(h_d = h_s \) line, which makes it evident that while \(h_d = h_s \) is not disfavored, most of the favored parameter space has \(h_s > h_d \). Actually, a non-negligible fraction of the allowed parameter space corresponds to \(h_s \gg h_d \), as indicated by the \(h_s = 5h_d \) line on Fig. 1.

A particularly interesting NP scenario is to assume \(SU(2)_c \) universality \((q = s, d) \), defined as

\[
h_b \equiv h_d = h_s, \quad \sigma_b \equiv \sigma_d = \sigma_s. \tag{8}
\]

The relevant \(h_b - \sigma_b \) plane is shown in Fig. 3. The best fit region, near \(h_b \sim 0.25 \) and \(\sigma_b \sim 120^\circ \), is obtained as a compromise between the Babar and Belle bounds in the \(B_d \) system and the tensions in the Tevatron \(B_d \) data with the SM predictions. This compromise mostly arises from the different magnitudes of \(h_{d,s} \); while the best fit \(h_d \) value is a few times smaller than the best fit \(h_s \) value, the best fit values of the phases \(\sigma_{d,s} \) are remarkably close
to each other, as can be seen in Fig. 2. Note that while the SM limit, $h_b = 0$, is obtained at less than 3σ CL, the goodness of the fit is significantly degraded compared with the non-universal case.

We now move to interpreting the above results, assuming that the dimuon asymmetry is indeed providing evidence for deviation from the SM. Interestingly, without restricting our discussion to a specific model, we can still make the following general statements:

(i) The present data support the hypothesis that new sources of CP violation are present and that they contribute mainly to $\Delta F = 2$ processes via the mixing amplitude. As is well known, these processes are highly suppressed in the SM.

(ii) The SM extensions with $SU(2)_q$ universality, where the new contributions to B_d and B_s transition are similar in size (relative to the SM), can accommodate the data but are not the most preferred scenarios experimentally. Universality is expected in a large class of well motivated models with approximate $SU(2)_q$ invariance, for instance when flavor transitions are mediated by the third generation sector [20]. The case where the NP contributions are $SU(2)_q$ universal (see Eq. (8) and Fig. 3) is also quite generically obtained in the minimal flavor violation (MFV) framework [21] where new diagonal CP violating phases are present [22, 23]. In an effective theory approach such a contribution may arise from the four-quark operators $O_{bf}^1 = \bar{b}^\alpha_L \gamma_\mu q^\alpha_L \bar{b}^\beta_L \gamma_\mu q^\beta_L$, $O_{bf}^2 = \bar{b}^\alpha_L q^\alpha_L \bar{b}^\beta_L q^\beta_L$, $O_{bf}^3 = \bar{b}^\alpha_R q^\alpha_L \bar{b}^\beta_R q^\beta_L$, suppressed by scales $\Lambda_{MFV;1,2,3}$, respectively. We find that the data require

$$\Lambda_{MFV;1,2,3} > \{8.8, 13 y_b, 6.8 y_b\} \sqrt{0.2/h_b} \text{ TeV}. \quad (9)$$

If the central value of the measurement in Eq. (1) is confirmed, this inequality would become an equality. Note that the dependence on the bottom Yukawa, y_b, is not shown for $\Lambda_{MFV;1}$, since sizable CP violation in this case requires resummation of large effective bottom Yukawa coupling [23, 24]. In general the presence of flavor diagonal phases could contribute to the neutron electric dipole moment [25]. However, this effect arises from a different class of operators and requires a separate investigation.

Another interesting aspect of these flavor diagonal phases is that there are examples where these can contribute to the generation of matter-antimatter asymmetry, another
issue which deserves further investigation.

(iii) While case (ii) is not excluded by the data, Fig. 1 shows that most of the allowed parameter space prefers $h_s > h_d$. This raises the following question: What kind of new physics can generate a large breaking of the approximate $SU(2)_L$ symmetry without being excluded by CP violation in the K or D systems? Remarkably, even this case can be accounted for by the general MFV (GMFV) framework [23]. Consider models where operators with O_4-type chiral and color structure (defined in [24]) are the dominant ones. This may be possible because their contributions are RGE enhanced. An example of such an operator is (similar O_5-type operators are typically suppressed compared to the O_4-type ones)

$$O^{NL}_{4} = \frac{c}{\Lambda_{MFV}^4} \left[Q_3 (A^u_{n} A^u_{n} Y_d)_{3d_4} \right] \left[d_3 (Y_d^t A^u_{n} A^u_{n})_{3d_4} Q_1 \right].$$

Here $A_{u,d} \equiv Y_{u,d} Y_{u,d}^t$ and n, m, l, p are integer powers and c is an $O(1)$ complex number. We focus on the nonlinear MFV regime, where the contributions of higher powers of the Yukawa couplings are equally important, so a resummation of the third generation eigenvalues is required (both for the up and down Yukawas), due to large logarithms or large anomalous dimensions. In Eq. (10) we adopt a linear formulation where the resummation of the third generation is not manifest; see [23, 24] for a more rigorous treatment. Such operators can carry a new CP violating phase and may contribute dominantly to $\beta \to \gamma$ and not to $b \to d$ transition, because of the chiral suppression induced by Y_d. We find that the data requires

$$\lambda_{MFV,4} \gtrsim 13 \, y_b \sqrt{m_s \frac{0.5}{m_b}} \, \text{TeV} \approx 2 \, y_b \sqrt{0.5 \frac{h_s}{h_b}} \, \text{TeV}. \quad (11)$$

Thus, remarkably, $h_s \gg h_d$ can arise in MFV models with flavor diagonal CP violating phases, where large chirality flippings sources exist at the TeV scale. Such models have not been studied in great detail, but possible interesting examples are supersymmetric extensions of the SM at large tan β [27] or warped extra dimension models with MFV structure in the bulk [25]. We finally note that the operator O^{NL}_{4} predicts contributions to the B_d system suppressed by $m_d/m_s \sim 5\%$, which may be accessible in the near future and provide a direct test for the above scenario.

(iv) The fact that the data can be accounted for within the MFV framework makes it clear that it can be accommodated in models with even more general flavor structure [29, 30]. Several conditions need to be met, though. For instance, the operators $O_{2,3,4}$ require large chirality violating sources in addition to the CP violating phases, which are generically strongly constrained by neutron electric dipole moment and $b \to s \gamma$. Contributions to the O_1 operator from $SU(2)_L$ invariant new physics, on the other hand, are constrained by CP violation in D mixing. They may also induce observable $\Delta t = 1$ and $\Delta t = 2$ top flavor violation at the LHC [31, 32].

Acknowledgments: During the completion of this work, Ref. [33] appeared with partial overlaps with our ideas. We thank Ben Grinstein, Yonit Hochberg, Jernej Kamenik, Heiko Lacker and Yossi Nir for useful discussions. ZL thanks the Aspen Center for Physics for hospitality while this work was completed. The work of ZL was supported in part by the U.S. Department of Energy under contract DE-AC02-05CH11231. The work of MP was supported by the NSF under the grant PHY 0907744. GP is the Shlomo and Michla Tomarini career development chair, and is supported by the Israel Science Foundation (grant #1087/09), EU-FP7 Marie Curie, IRG fellowship and the Peter & Patricia Gruber Award. JZ is supported by the EU Marie Curie IEF Grant. no. PIEF-GA-2009-252847 and by the Slovenian Research Agency.
[18] J. Laiho, E. Lunghi and R. S. Van de Water, Phys. Rev. D 81, 034503 (2010) [arXiv:0910.2928]; see also http://www.latticeaverages.org

[19] DØCollaboration, DØNote 6098-CONF, July 22, 2010, http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/B/B60/B60.pdf

[20] K. Agashe, M. Papucci, G. Perez and D. Pirjol, hep-ph/0509117.

[21] L. J. Hall and L. Randall, Phys. Rev. Lett. 65, 2939 (1990); R. S. Chivukula and H. Georgi, Phys. Lett. B 188, 99 (1987); A. Ali and D. London, Eur. Phys. J. C 9, 687 (1999) [hep-ph/9903535]; A. J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Phys. Lett. B 500, 161 (2001) [hep-ph/0007085]; G. D’Ambrosio, G. F. Giudice, G. Isidori and A. Strumia, Nucl. Phys. B 645, 155 (2002) [hep-ph/0207036].

[22] G. Colangelo, E. Nikolidakis and C. Smith, Eur. Phys. J. C 59, 75 (2009) [arXiv:0807.0801]; J. R. Ellis, J. S. Lee and A. Pilaftsis, Phys. Rev. D 76, 115011 (2007) [arXiv:0708.2079].

[23] A. L. Kagan, G. Perez, T. Volansky and J. Zupan, Phys. Rev. D 80, 076002 (2009) [arXiv:0903.1794].

[24] For a detailed discussion see: O. Gedalia and G. Perez, arXiv:1005.3106.

[25] L. Mercolli and C. Smith, Nucl. Phys. B 817, 1 (2009) [arXiv:0902.1949]; P. Paradisi and D. M. Straub, Phys. Lett. B 684, 147 (2010) [arXiv:0906.4551].

[26] M. Bona et al. [UTfit Collaboration], JHEP 0803, 049 (2008) [arXiv:0707.0636 [hep-ph]].

[27] C. Bobeth, T. Ewerth, F. Kruger and J. Urban, Phys. Rev. D 66 (2002) 074021 [hep-ph/0204225]; A. J. Buras, P. H. Chankowski, J. Rosiek and L. Slawianowska, Nucl. Phys. B 659 (2003) 3 [hep-ph/0210145]; M. S. Carena, D. Garcia, U. Nierste and C. E. M. Wagner, Phys. Lett. B 499 (2001) 141 [hep-ph/0010003]; G. Degrassi, P. Gambino and G. Giudice, JHEP 0012, 009 (2000) [hep-ph/0009337].

[28] R. Rattazzi and A. Zaffaroni, JHEP 0104, 021 (2001) [hep-th/0012248]; C. Csaki, G. Perez, Z. Surujon and A. Weiler, arXiv:0907.0474; A. L. Fitzpatrick, L. Randall and G. Perez, Phys. Rev. Lett. 100, 171604 (2008) [arXiv:0710.1869].

[29] L. Randall and S. f. Su, Nucl. Phys. B 540, 37 (1999) [hep-ph/9807377].

[30] B. A. Dobrescu, P. J. Fox and A. Martin, Phys. Rev. Lett. 105, 041801 (2010) [arXiv:1005.4238].

[31] P. J. Fox, Z. Ligeti, M. Papucci, G. Perez and M. D. Schwartz, Phys. Rev. D 78, 054008 (2008) [arXiv:0704.1482].

[32] O. Gedalia, L. Mannelli and G. Perez, arXiv:1003.3869; arXiv:1002.0778.

[33] A. J. Buras, M. V. Carlucci, S. Gori and G. Isidori, arXiv:1005.5310.