THE DIHEDRAL GROUP D_5 AS GROUP OF SYMPLECTIC AUTOMORPHISMS ON K3 SURFACES

ALICE GARBAGNATI

Abstract. We prove that if a K3 surface X admits $\mathbb{Z}/5\mathbb{Z}$ as group of symplectic automorphisms, then it actually admits D_5 as group of symplectic automorphisms. The orthogonal complement to the D_5-invariants in the second cohomology group of X is a rank 16 lattice, L. It is known that L does not depend on X: we prove that it is isometric to a lattice recently described by R. L. Griess Jr. and C. H. Lam. We also give an elementary construction of L.

1. Introduction

A finite group of symplectic automorphisms on a K3 surface X has the property that the desingularization of the quotient of X by this group is again a K3 surface. In [Nik1] the finite abelian groups of symplectic automorphisms on a K3 surface are classified. The main result of Nikulin in [Nik1] is that the isometries induced by finite abelian groups of symplectic automorphisms on the second cohomology group of a K3 surface are essentially unique. The uniqueness of the isometries induced by G on $H^2(X, \mathbb{Z})$ implies that the lattice $\Omega_G := (H^2(X, \mathbb{Z})^G)^\perp$ does not depend on X. Thanks to this result it is possible to associate the lattice Ω_G to each finite abelian group G of symplectic automorphisms on a K3 surface. From this one obtains information on the coarse moduli space of K3 surfaces admitting G as group of symplectic automorphisms (cf. [Nik1], [GS1], [GS2]). In [GS1] and [GS2] the lattices Ω_G are computed for each finite abelian group G of symplectic automorphisms on a K3 surface.

In [Mu] and [X] the finite (not necessary abelian) groups of symplectic automorphisms on a K3 surface are classified. Under some conditions (cf. Section 2) Nikulin's result, on the uniqueness of the isometries induced by finite groups of symplectic automorphisms on the second cohomology group of the K3 surfaces, can be extended to finite (not necessary abelian) groups (cf. [W]). As a consequence one can attach the lattice $\Omega_G := (H^2(X, \mathbb{Z})^G)^\perp$, which depends only on G, also to some finite non abelian groups G of symplectic automorphisms on a K3 surface X.

Let us consider a pair of finite groups (G, H) such that G acts symplectically on a K3 surface and H is a subgroup of G. It is evident that the K3 surfaces admitting G as group of symplectic automorphisms, admits also H as group of symplectic automorphisms. It is more surprising that for certain pairs of groups (G, H) also

2000 Mathematics Subject Classification. Primary 14J28, 14J50.

Key words and phrases. K3 surfaces, symplectic automorphisms, dihedral groups, lattices.

I would like to thank Bert van Geemen, who helps and encourages me during the preparation of this paper and Alessandra Sarti for several interesting discussions. I also thank the referee for very useful comments.
the viceversa holds indeed for certain pair \((G, H)\) the condition “a K3 surface \(X\) admits \(G\) as group of symplectic automorphism” is equivalent to the condition “\(X\) admits \(H\) as group of symplectic automorphisms”. For these pairs the lattices \(\Omega_G\) and \(\Omega_H\) coincide. The aim of this paper is to describe this situation and to give explicitly one pair \((G, H)\). We observe that in order to find \((G, H)\) with the described property, one has to consider non abelian groups acting symplectically on K3 surfaces, indeed the lattices \(\Omega_K\) associated to abelian groups \(K\) are completely described in [GS1], [GS2] and one can check that \(\Omega_G\) and \(\Omega_H\) never coincide if both \(G\) and \(H\) are abelian and \(G \neq H\).

In the Section 2 we describe some known results on symplectic automorphisms over kählerian K3 surfaces and we prove our main results (Proposition 2.14 and Corollary 2.15). In the Proposition 2.14 we give sufficient conditions on \(G\) and \(H\) to prove that a K3 surface admits \(G\) as group of symplectic automorphisms if and only if it admits \(H\) as group of symplectic automorphisms. Applying this proposition we prove (Corollary 2.15) that a K3 surface admits \(Z/5\) as group of symplectic automorphisms if and only if it admits \(D_5\) (the dihedral group of order 10) as group of symplectic automorphisms. In particular we prove that \(\Omega_{Z/5} \simeq \Omega_{D_5}\)

In [GS1] the isometry induced on \(\Omega_{Z/5}\) by a symplectic automorphism of order 5, is described. Since we prove that \(\Omega_{Z/5} \simeq \Omega_{D_5}\), there is also an involution acting on this lattice. In order to describe both the isometry of order 5 and the involution generating \(D_5\) on \(\Omega_{D_5}\), in the Section 3 we give a different description of this lattice: it is an overlattice of \(A_4(-2)^{\oplus 4}\) (the isometry of order 5 is induced by the natural one on \(A_4\)). In the proof of the Corollary 3.5 also the action of the involution is described. Moreover we show that the lattice \(\Omega_{Z/5}\) (computed in [GS1]) is isometric to a lattice describe by Griess and Lam in [GL].

In the Section 4 we consider algebraic K3 surfaces and in particular 3-dimensional families of K3 surfaces admitting a symplectic automorphisms of order 5, \(\sigma_5\), and a polarization, invariant under \(\sigma_5\). It follows from the results of the Section 2 that the K3 surfaces in these families admit also an involution \(\iota\), generating together with \(\sigma_5\) the dihedral group \(D_5\). For each of these families we exhibit the automorphism \(\sigma_5\) and we find the automorphism \(\iota\).

2. SYMPLECTIC AUTOMORPHISMS ON K3 SURFACES.

Definition 2.1. Let \(X\) be a smooth compact complex surface. The surface \(X\) is a K3 surface if the canonical bundle of \(X\) is trivial and the irregularity of \(X\), \(q(X) := h^{1,0}(X)\), is 0.

The second cohomology group of a K3 surface, equipped with the cup product, is isometric to a lattice, which is the unique, up to isometries, even unimodular lattice with signature \((3,19)\). This lattice will be denoted by \(\Lambda_{K3}\) and is isometric to \(U \oplus U \oplus U \oplus E_8(-1) \oplus E_8(-1)\), where \(U\) is the unimodular lattice with bilinear form

\[
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\]

and \(E_8(-1)\) is the lattice obtained multiplying by -1 the lattice associated to the Dynking diagram \(E_8\).

The Néron Severi group of a K3 surface \(X\), \(NS(X)\), coincide with its Picard group. The transcendental lattice of \(X\), \(T_X\), is the orthogonal to \(NS(X)\) in \(H^2(X, \mathbb{Z})\).
Definition 2.2. An isometry α of $H^2(X, \mathbb{Z})$ is an effective isometry if it preserves the Kähler cone of X. An isometry α of $H^2(X, \mathbb{Z})$ is an Hodge isometry if its \(\mathbb{C}\)-linear extension to $H^2(X, \mathbb{C})$ preserves the Hodge decomposition of $H^2(X, \mathbb{C})$.

Theorem 2.3. (BR) Let X be a K3 surface and g be an automorphism of X, then g^* is an effective Hodge isometry of $H^2(X, \mathbb{Z})$. Viceversa, let f be an effective Hodge isometry of $H^2(X, \mathbb{Z})$, then f is induced by an automorphism of X.

Definition 2.4. An automorphism σ on a K3 surface X is symplectic if σ^* acts as the identity on $H^{2,0}(X)$, that is $\sigma^*(\omega_X) = \omega_X$, where ω_X is a nowhere vanishing holomorphic two form on X.

Equivalently σ is symplectic if the isometry induced by σ^* on the transcendental lattice is the identity.

Remark 2.5. Let σ be an automorphism of finite order on a K3 surface. The desingularization of X/σ is a K3 surface if and only if σ is symplectic.

In [Nik1] the finite abelian groups acting symplectically on a kählerian K3 surface are analyzed. Now it is known that every K3 surface is a Kähler variety, [S], so there are no restrictions on the K3 surfaces analyzed in [Nik1].

From now on we always assume that G is a finite group of symplectic automorphisms on the K3 surface X.

Definition 2.6. Let the K3 surface Y be the minimal desingularization of the quotient X/G. Let M_j be the curves arising form the desingularization of the singularities of X/G.

The singularities of the quotient X/G are computed by Nikulin ([Nik1] Sections 6) if G is an abelian group, and by Xiao ([X Table 2]) for all the other finite groups. If either $G = Q_8$ (binary dihedral group of order 8) or $G = T_{24}$ (binary tetrahedral group of order 24), then there are two possible configurations for the singularities of X/G, and hence for the exceptional curve M_j on Y.

For all the other groups the number and the type of the singularities of X/G are determined by G.

Definition 2.7. Let us assume that $G \neq Q_8$, $G \neq T_{24}$. The minimal primitive sublattice of $NS(Y)$ containing the curves M_j does not depend on X (cf. [Nik1], [X]). It will be denoted by M_G.

The lattice M_G is computed by Nikulin ([Nik1] Section 7) for each abelian group G, and by Xiao ([X Table 2]) for the all the other gorups G.

Remark 2.8. For $G = \mathbb{Z}/2\mathbb{Z}$, the lattice $M_{\mathbb{Z}/2\mathbb{Z}}$ (called Nikulin lattice) is an even overattice of index 2 of $A_1(-1)^{\oplus 8}$. Its discriminant group is $(\mathbb{Z}/2\mathbb{Z})^6$ (cf. [Nik1]) and its discriminant form is the same as $U(2)^{\oplus 3}$ (cf. [MQ]).

Definition 2.9. ([Nik1] Definition 4.6) We say that G has a unique action on Λ_{K3} if, given two embeddings $i : G \rightarrow Aut(X)$, $i' : G \rightarrow Aut(X')$ such that G is a group of symplectic automorphisms on the K3 surfaces X and X', there exists an isometry $\phi : H^2(X, \mathbb{Z}) \rightarrow H^2(X', \mathbb{Z})$ such that $i'(g)^* = \phi \circ i(g) \circ \phi^{-1}$ for all $g \in G$.

Theorem 2.10. ([Nik1] Theorem 4.7, [W] Corollary 3.0.1) Let G be a finite group acting symplectically on a K3 surface, $G \neq Q_8$, $G \neq T_{24}$. If M_G admits a unique primitive embedding in Λ_{K3}, then G has a unique action on Λ_{K3}.
Definition 2.11. Under the assumptions of the Theorem 2.10 the lattice $(\Lambda^G_{\mathbb{K}_3})^\perp$ is uniquely determined by G, up to isometry. It will be called Ω_G.

Remark 2.12. By [Nik1] (8.12), it follows that rank$(\Omega_G)=$rank(M_G).

Theorem 2.13. ([Nik1 Theorem 4.15]) Let G be a finite group acting symplectically on a K3 surface, such that G has a unique action on $\Lambda_{\mathbb{K}_3}$. A K3 surface X admits G as group of symplectic automorphisms if and only if the lattice Ω_G is primitively embedded in $\text{NS}(X)$.

Nikulin proved that for each abelian group acting symplectically on a K3 surface, the hypothesis of the Theorem 2.10 (and hence the ones of the Theorem 2.13) are satisfied.

Proposition 2.14. Let G be a finite group acting symplectically on a K3 surface and let H be a subgroup of G. Let us assume that both G and H are neither Q_8 or T_{24}. We assume that both M_H and M_G admit a unique primitive embedding in $\Lambda_{\mathbb{K}_3}$ and rank$(M_G) =$rank(M_H). Then $\Omega_H \cong \Omega_G$ and so a K3 surface X admits G as group of symplectic automorphisms if and only if X admits H as group of symplectic automorphisms.

Proof. Since H is a subgroup of G, Ω_H is a sublattice of Ω_G. Moreover rank$(\Omega_G) =$rank(Ω_H), by the Remark 2.12 and the condition on the rank of the lattices M_G and M_H. This implies that $\Omega_H \hookrightarrow \Omega_G$ with a finite index. Let X be a K3 admitting G as group of symplectic automorphisms. Then both Ω_G and $\Omega_H(\hookrightarrow \Omega_G)$ are primitively embedded in $\text{NS}(X)$, hence the index of the inclusion $\Omega_H \hookrightarrow \Omega_G$ is 1, i.e. $\Omega_G \cong \Omega_H$.

The K3 surface X admits G as group of symplectic automorphisms if and only if Ω_G is primitively embedded in $\text{NS}(X)$. By the isometry $\Omega_H \cong \Omega_G$ this condition is equivalent to require that Ω_H is primitively embedded in $\text{NS}(X)$, which holds if and only if X admits H as group of symplectic automorphisms.

Corollary 2.15. A K3 surface admits $\mathbb{Z}/5\mathbb{Z}$ as group of symplectic automorphisms if and only if it admits D_5 as group of symplectic automorphisms.

Proof. The lattice $M_\mathbb{Z}/5\mathbb{Z}$ is computed in [Nik1], where it is proved that it admits a unique primitive embedding in $\Lambda_{\mathbb{K}_3}$ and that its rank is 16. The lattice M_{D_5} is described in [X] as an overlattice of index 2 of the lattice $A_4(-1)^{\oplus 2} \oplus A_1(-1)^{\oplus 8}$. In particular rank$(M_{D_5}) = 16$ and $M_{D_5} \cong A_4(-1)^{\oplus 2} \oplus M_{2/2\mathbb{Z}}$, where $M_{2/2\mathbb{Z}}$ is the Nikulin lattice (see Remark 2.13). Thus the discriminant group of M_{D_5} is $(\mathbb{Z}/5\mathbb{Z})^2 \oplus (\mathbb{Z}/2\mathbb{Z})^6$. By [Nik2 Theorem 1.14.4], M_{D_5} admits a unique primitive embedding in $\Lambda_{\mathbb{K}_3}$. The corollary immediately follows from the Proposition 2.14.

Remark 2.16. We proved that if a K3 surface admits a symplectic automorphism of order five σ_5, hence it admits also a symplectic involution generating D_5 together with σ_5. This result can not be improved, i.e. it is not true that if a K3 surface X admits $D_5 = \langle \sigma_5, i \rangle$ as group of symplectic automorphisms, then it admits also a symplectic automorphism α such that $J := \langle \alpha, \sigma_5, i \rangle \supseteq D_5$ is a finite group. By contradiction assuming there exists such an α, then $D_5 \subseteq J$ and $\Omega_{D_5} \cong \Omega_J$. In particular rank$\Omega_J =$rank$\Omega_{D_5} = 16$, but there are no finite groups J of symplectic automorphisms on a K3 surface such that $D_5 \subseteq J$ and rank$M_J(=\text{rank}\Omega_J) = 16$ (cf. [X Table 2]).
3. Construction of $\Omega_{Z/52} \cong \Omega_{D_5}$

The aim of this section is to construct the lattice $\Omega_{Z/52}$ as overlattice of $A_4(-2)^{\oplus 4}$ and to describe the action of D_5 on this lattice. The automorphism of order five on $\Omega_{Z/52}$ will be induced by the automorphism of order five on each copy of $A_4(-2)$.

We will add some rational linear combinations of the elements of $A_4(-2)^{\oplus 4}$ to obtain an even overlattice of $A_4(-2)^{\oplus 4}$. The main point is that we would like to extend the automorphism of $A_4(-2)^{\oplus 4}$ to the lattice $\Omega_{Z/52}$, so if we add an element to $A_4(-2)^{\oplus 4}$ we have to add all elements in its orbit.

We recall that the standard basis of A_4 is expressed in terms of the standard basis $\{\varepsilon_i\}$ of \mathbb{R}^5 in the following way: $\alpha_i = \varepsilon_i - \varepsilon_{i+1}$, hence $\alpha_5 = -\alpha_1 - \alpha_2 - \alpha_3 - \alpha_4$. The cyclic permutation of the basis vectors of \mathbb{R}^5 induces the automorphism γ on A_4 ($\gamma(\alpha_i) = \alpha_{i+1}$).

Proposition 3.1. Let us consider the lattice $A_4(-2)^{\oplus 4}$ and the automorphism $g := (\gamma, \gamma, \gamma, \gamma)$ (acting as γ on each copy of $A_4(-2)$). Let $a_{j,i}$, $j, i = 1, 2, 3, 4$ be the element α_i in the j-copy of $A_4(-2)$. Let

$$
\mu := \frac{1}{2}(a_{1,1} + a_{2,1} + a_{3,1} + a_{4,1}), \quad \nu := \frac{1}{2}(a_{2,1} + a_{3,3} + a_{4,4} + a_{4,1} + a_{4,3} + a_{4,4}).
$$

Then:

- The lattice

$$
L := A_4(-2)^{\oplus 4} + \langle g^i(\mu), g^i(\nu) \rangle_{i=0,1,2,3},
$$

is generated by $A_4(-2)^{\oplus 4}$ and the 8 vectors $g^i(\mu)$, $g^i(\nu)$, for $i = 0, 1, 2, 3$, is an even overlattice of $A_4(-2)^{\oplus 4}$ of rank 16.

- The index of $A_4(-2)^{\oplus 4}$ in L is 2^8.

- There are no vectors of length -2 in L.

Proof. Since μ has an integer intersection with the basis $\{a_{i,j}\}$ of $A_4(-2)^{\oplus 4}$ and has self intersection -4, we can add the element μ to the lattice $A_4(-2)^{\oplus 4}$ obtaining an even overlattice. All the elements $g^i(\mu)$ in the orbit of μ have an integer intersection with this basis of $A_4(-2)^{\oplus 4}$ and $g^i(\mu)g^j(\mu) \in \mathbb{Z}$ for all $i, j = 0, 1, 2, 3$. Thus we can add the four vectors μ, $g(\mu)$, $g^2(\mu)$, $g^3(\mu)$ to the lattice $A_4(-2)^{\oplus 4}$.

It is easy to show that the vectors $g^i(\nu)$, $i = 0, 1, 2, 3$ have an integer intersection pairing with all the vectors in $A_4(-2)^{\oplus 4}$, and that $g^i(\nu)g^j(\nu) \in \mathbb{Z}$, $g^i(\nu)^2 \in 2\mathbb{Z}$ (indeed these are properties of all the vectors of type $v_{i,j,k,h,l,m} = \frac{1}{2}(0, \varepsilon_i - \varepsilon_{i+1}, \varepsilon_j - \varepsilon_{j+2}, \varepsilon_k - \varepsilon_h + \varepsilon_l - \varepsilon_m)$, $k < h < l < m$ and $\nu = v_{1,3,1,2,3,5}$).

Moreover $g^i(\nu)g^j(\mu) \in \mathbb{Z}$, $i, j \in \{0, 1, 2, 3\}$ (indeed this is a property of the vectors of type $v_{i,j,k,h,l,m}$ such that $\{i, i+1\} \cap \{j, j+2\} = \emptyset$ and $\{k, h, l, m\} = \{i, i+1, j, j+2\}$). Thus adding the vectors in the orbit of ν and of μ to $A_4(-2)^{\oplus 4}$ we construct an even overlattice L of $A_4(-2)^{\oplus 4}$. By the computation of the discriminant of this lattice, it follows that $A_4(-2)^{\oplus 4}$ has index 2^8 in L (indeed to construct L we add to $A_4(-2)^{\oplus 4}$ exactly eight vectors of type $\frac{1}{2}v$, $v \in A_4(-2)^{\oplus 4}$ and they are independent over \mathbb{Z}).

Now we prove that there are no vectors with length -2 in L. Let $y = \sum_{i=0}^{3} b_i g^i(\mu) +$
\[\sum_{i=0}^{3} c_i g^i(\nu), \quad b_i, c_i \in \mathbb{Z}. \] In \(A_4(-2)^{\oplus 4} \otimes \mathbb{Q} \) we have:

\[
y := \frac{1}{2} \left(\sum_{i=0}^{3} b_i \alpha_{i+1} \right) \sum_{i=0}^{3} b_i \alpha_{i+1} + \sum_{i=0}^{3} c_i \alpha_{i+1},
\sum_{i=0}^{3} b_i \alpha_{i+1} + (c_1 + c_3) \alpha_1 + (c_1 - c_2 + c_3) \alpha_2 + (c_0 - c_1 - c_2) \alpha_3 + (c_0 - c_2) \alpha_4,
\sum_{i=0}^{3} b_i \alpha_{i+1} + (c_0 - c_1 + c_3) \alpha_1 + (c_2 + c_3) \alpha_2 + (c_0 - c_1) \alpha_3 + (c_0 - c_2 + c_3) \alpha_4 \right).
\]

If we require that at least two components of \(y \) are equal to zero, we obtain that \(b_i = c_i = 0 \) for all \(i \). So if \(y \neq 0 \), then \(y \) has at most one component equal to zero. Each vector \(w \) in \(L \) is of the form \(y + z \) with \(y \) as above, \(b_i, c_i \in \{0, 1\} \), and \(z \in A_4(-2)^{\oplus 4} \), moreover such \(y \) and \(z \) are uniquely determined by \(w \).

If \(y = (0, 0, 0, 0) \), \(w \in A_4(-2)^{\oplus 4} \) and hence \(w^2 \leq -4 \).

If \(y \neq (0, 0, 0, 0) \), then \(w = \frac{1}{2}(w_1, w_2, w_3, w_4) \) with \(w_i \in A_4(-2) \) and at most one of \(w_i = 0 \). Since \(w_i^2 \leq -4 \) and \(w_i \cdot w_j = 0 \) if \(i \neq j \), we get \(w^2 \leq \frac{3}{4}(-4) \). Hence there are no vectors of length \(-2\) in \(L \).

Proposition 3.2. The lattice \(L \) is isometric to the lattice \(\Omega_{\mathbb{Z}/5\mathbb{Z}} = \Omega_{D_5} \).

Proof. By uniqueness of \(\Omega_{\mathbb{Z}/5\mathbb{Z}} \), to prove the proposition it suffices to show that there exists a K3 surface \(S \) such that \(G = \mathbb{Z}/5\mathbb{Z} \) is a group of symplectic automorphisms on \(S \) and \((H^2(S, \mathbb{Z})^G)^\perp \simeq L \).

By construction \(L \) admits an automorphism of order 5, \(g \), acting trivially on the discriminant group. Moreover \(L \) is negative definite and its discriminant group is \((\mathbb{Z}/5\mathbb{Z})^4 \). Hence it admits a primitive embedding in \(\Lambda_{K3} \) (Nik2 Theorem 1.14.4).

Since \(g \) acts trivially on the discriminant group, \(G := (g) \) extends to a group of isometries on \(\Lambda_{K3} \) which acts as the identity on \(L_{\perp}^{\perp} \).

Let \(S \) be a K3 surface such that \(L \subset NS(S) \) (such a K3 surface exists by the surjectivity of the period map). By the Proposition 3.1 \(L \) does not contain elements of length \(-2\). This is enough to prove that the isometries of \(G \) defined above (if necessary composed with a reflection in the Weil group) are effective isometries for \(S \) (the proof of this fact is essentially given in [Nik1, Theorem 4.3], see also [GS1, Step 4, proof of Proposition 5.2]). By construction, these are Hodge isometries (cf. [Nik1, Theorem 4.3]), so they are induced by automorphisms on \(S \) (by the Torelli theorem, cf. [BR]). Since these automorphisms act as the identity on \(T_S \subset L_{\perp}^{\perp} \), they are symplectic. By construction of the isometries of \(G, L \simeq (H^2(S, \mathbb{Z})^G)^\perp \), and so \(L \simeq \Omega_{\mathbb{Z}/5\mathbb{Z}} \).

Since \(\Omega_{D_5} \simeq L \), on \(L \) acts the dihedral group and in particular an involution. This implies that the lattice \(\Omega_{\mathbb{Z}/2\mathbb{Z}} \simeq E_8(-2) \) (cf. [Ma]) is a primitively embedded in \(L \) and there exists an involution on \(L \) acting as \(-1\) on this lattice and as the identity on its orthogonal. In the following remark we give an embedding of \(E_8(-2) \) in \(L \) and in the proof of the Corollary 3.3 we describe the involution associated to this embedding.

Remark 3.3. The vectors

\[
e_1 := \mu, \quad e_2 := g^2(\mu) + g^3(\mu), \quad e_3 := \nu, \quad e_4 := \mu + g^2(\mu) + g^3(\mu) - g^2(\nu) - g^3(\nu)
\]

\[
e_5 := a_{1,1}, \quad e_6 := a_{1,3} + a_{1,4}, \quad e_7 := a_{2,1}, \quad e_8 := a_{2,3} + a_{2,4}
\]

generate a copy of \(E_8(-2) \) embedded in \(L \). Indeed the lattice generated by \(e_i \) is such that multiplying its bilinear form by \(\frac{1}{2} \) one obtains a negative definite even unimodular lattice of rank 8, i.e. a copy of \(E_8(-1) \).
Remark 3.4. Let \(f_{i+8} = g(e_i), \) \(i = 1, \ldots, 8 \) where \(\{e_i\}_{i=1,\ldots,8} \) is the basis of \(E_8(-2) \) defined in the Remark 3.3. Since \(g \) is an isometry of the lattice it is clear that \(f_i, \) \(i = 9, \ldots, 16 \) generate a copy of \(E_8(-2) \) embedded in \(L. \) A direct computation shows that the classes \(e_i, f_{i+8} \) \(i = 1, \ldots, 8 \) generates a lattice of rank 16 and discriminant \(5^4 \) embedded in \(L \) and so they are a \(\mathbb{Z} \)-basis for \(L. \)

The paper \([GL]\) classifies positive definite lattices which have dihedral groups \(\mathcal{D}_n \) (for \(n = 2, 3, 4, 5, 6 \)) in the group of isometries and which have the properties:

- the lattices are rootless (i.e. there are no elements of length 2),
- they are the sum of two copies of \(E_8(2), \)
- there are two involutions in \(\mathcal{D}_n \) acting as minus the identity on each copy of \(E_8(2). \)

In \([GL]\) Section 7 it is proved that there is a unique lattice with all these properties and admitting \(\mathcal{D}_5 \) in the group of isometries, called \(\text{DIH}_{10}(16). \)

Corollary 3.5. The lattice \(\text{DIH}_{10}(16) \) described in \([GL]\) is isometric to the lattice \(L(-1) \cong \Omega_{D_8}(-1). \)

Proof. The even lattice \(L \) has no vectors of length \(-2\) (Proposition 3.1).

On \(L \) there is an isometry of order 5, \(g \) (Proposition 3.1).

Let us define a map \(h \) on the lattice \(L \) which acts as \(-1\) on the copy of \(E_8(-2) \) generated by \(e_i, i = 1, \ldots, 8 \) (cf. Remark 3.3) and as the identity on the orthogonal complement. Since \(h \) acts trivially on the discriminant group of \(E_8(-2) \cong \langle e_i \rangle_{i=1,\ldots,8}, h \) is an isometry of \(L \) and in particular an involution. One can directly check that its action on the basis of \(A_4(-2)^{\otimes 4} \) is \(h(a_{i,1}) = -a_{i,1}, h(a_{i,2}) = -a_{i,5}, h(a_{i,3}) = -a_{i,4}, h(a_{i,4}) = -a_{i,3}, i = 1, 2, 3, 4. \) This action extends to a \(\mathbb{Z} \)-basis of \(L. \)

The group \(\langle g, h \rangle \) is \(\mathcal{D}_5. \) The involutions \(h \) and \(g^2 \circ h \) are two involutions generating the group \(\mathcal{D}_5. \) By construction \(h \) and \(g^2 \circ h \) act as minus the identity respectively on the lattice \(E_8(-2) \cong \langle e_i \rangle_{i=1,\ldots,8} \) and on the lattice generated by \(E_8(-2) \cong \langle f_i \rangle_{i=9,\ldots,16} \). These two copies of \(E_8(-2) \) generate \(L \) (by Remark 3.4). So \(L(-1) \) satisfies the conditions which define \(\text{DIH}_{10}(16) \) and hence \(\text{DIH}_{10}(16) \cong L(-1) \cong \Omega_{D_8}(-1). \)

4. **Examples: algebraic K3 surfaces with a polarization of a low degree.**

Here we give some very explicit examples of families of K3 surfaces admitting \(\mathbb{Z}/5\mathbb{Z}, \) and hence \(\mathcal{D}_5, \) as group of symplectic automorphisms. In particular in this section we consider algebraic K3 surfaces.

We recall that a polarization \(L, \) with \(L^2 = 2d, \) on a K3 surface \(X \) defines a map \(\phi_L : X \to \mathbb{P}^{d+1}. \) In this section we consider K3 surfaces with a polarization \(L \) such that \(\phi_L(X) \) is a complete intersection in a certain projective space and K3 surfaces with a polarization of degree 2, which exhibits the K3 surfaces as double covers of the plane.

Let \(X \) be a general member of a family of K3 surfaces admitting an automorphism of order 5, \(\sigma_5, \) and a polarization, \(L, \) invariant under \(\sigma_5. \) In \([GS1]\) Proposition 5.1] the possible Néron–Severi groups of \(X \) are computed. In particular if \(L^2 = 2d < 10, \) one obtains that \(NS(X) \cong \mathbb{Z}L \oplus \mathbb{Z}/5\mathbb{Z} =: L_{2d}. \) This lattice admits a unique primitive embedding in \(\Lambda_{K3}. \) The family of K3 surfaces with a polarization \(L, \) of degree \(L^2 < 10, \) invariant under a symplectic automorphism of order 5, is then
the family of the \mathcal{L}_{2d}-polarized K3 surfaces. In particular for each $d < 5$, we find a 3-dimensional family of K3 with such a polarization L and hence we have the following possibilities:

- $φ_L : X \xrightarrow{2:1} \mathbb{P}^2$, so X is a double cover of \mathbb{P}^2 branched along a plane sextic curve: in this case $NS(X) \simeq \mathcal{L}_2$;
- $φ_L(X)$ is a quartic in \mathbb{P}^3: in this case $NS(X) \simeq \mathcal{L}_4$;
- $φ_L(X)$ is the complete intersection of a quadric and a cubic in \mathbb{P}^4: in this case $NS(X) \simeq \mathcal{L}_6$;
- $φ_L(X)$ is the complete intersection of three quadrics in \mathbb{P}^5: in this case $NS(X) \simeq \mathcal{L}_8$.

Now we construct a general member of each of these families and show that it also admits a symplectic involution $ι$ generating, together with $σ_5$, the group D_5. Since the automorphisms $ι$ and $σ_5$ leave invariant the polarization, both these automorphisms can be extended to automorphisms of the ambient projective space.

We will denote by $ω$ a primitive 5-th root of unity.

4.1. $L^2 = 4$. This polarization gives a map to \mathbb{P}^3 where the K3 surfaces are realized as quartic surfaces. Let us consider the automorphism

$$σ_{p1} : (x_0 : x_1 : x_2 : x_3) \rightarrow (x_0 : ω^3x_1 : ωx_2 : ω^2x_3).$$

The quartic surfaces in \mathbb{P}^3 defined as

$$(4.1) \quad V(ax_0^3x_2 + bx_0^2x_2^2 + cx_0x_2^3 + dx_0x_1x_2x_3 + ex_1^3x_3 + fx_1^2x_2^2 + gx_2x_3^2),$$

are invariant for $σ_{p1}$. Hence the restriction of $σ_{p1}$ to K3 surfaces with equations (4.1) is an automorphism $σ_5$ of the surfaces. To show that this automorphism is symplectic it suffices to apply $σ_5$ to the following holomorphic two form in local coordinates $x = x_1/x_0, y = x_2/x_0, z = x_3/x_0$:

$$\left(\frac{∂f}{∂z}\right)^{-1} dx \wedge dy,$$

where f denotes the equation of the quartic in the local coordinate x, y, z.

The equation (4.1) depends on 7 parameters. The automorphisms of \mathbb{P}^3 commuting with $σ_{p1}$ are $\text{diag}(α, β, γ, δ)$ (which is a four dimensional group), hence this family of $σ_{p1}$-invariant quartics has

$$(7 - 1) - (4 - 1) = 3$$

moduli. So the family of K3 surfaces given by the equation (4.1) is the family of K3 surfaces admitting an automorphisms of order 5 leaving invariant a polarization of degree 4.

Up to a projectivity, commuting with $σ_{p1}$, the equation (4.1) becomes

$$(4.2) \quad a'x_0^2x_2 + b'x_0x_1^2 + c'x_0x_2^3 + d'x_0x_1x_2x_3 + a'x_1^3x_3 + c'x_1^2x_2 + g'x_2^2x_3^2 = 0.$$

Let us define an involution of \mathbb{P}^3:

$$τ_{p1} : (x_0 : x_1 : x_2 : x_3) \rightarrow (x_1 : x_0 : x_3 : x_2).$$

The equation (4.2) is invariant under $τ_{p1}$, hence $τ_{p1}$ induces an automorphism of the quartic surfaces with equation (4.2), we call this automorphism $ι$. The fixed point set of $τ_{p1}$ in \mathbb{P}^3 is the union of the lines:

$$l_1 = \left\{\begin{array}{l}
 x_0 = x_1 \\
 x_2 = x_3
\end{array}\right., \quad l_2 = \left\{\begin{array}{l}
 x_0 = -x_1 \\
 x_2 = -x_3
\end{array}\right..$$
Hence \(\iota \) fixes eight points on the quartics \([1, 2]\): the intersection of the quartics with \(l_1 \) and \(l_2 \). This is enough to show that \(\iota \) is a symplectic involution, indeed the involutions which are not symplectic either are fixed point free or fix some curves \([2] \text{ Theorem } 1\). Hence the quartics given in \((4.2)\) (and hence, up to a projectivity, in \((4.1)\)) admit both the automorphisms \(\sigma_5 \) and \(\iota \). It is easy to check that \(\langle \sigma_5^3, \iota^3 \rangle = D_5 \), and hence \(\langle \sigma_5, \iota \rangle = D_5 \). So the family of smooth quartic surfaces in \(\mathbb{P}^3 \) admitting the symplectic automorphism \(\sigma_5 \) admits also a symplectic involution \(\iota \) and in fact the group \(D_5 = \langle \sigma_5, \iota \rangle \).

4.2. \(L^2 = 6 \). This polarization gives a map to \(\mathbb{P}^4 \) where the K3 surfaces are realized as complete intersections of a cubic and a quadric.

Let us consider the automorphism

\[
\sigma_{p^4} : (x_0 : x_1 : x_2 : x_3 : x_4) \mapsto (x_0 : \omega x_1 : \omega^2 x_2 : \omega^3 x_3 : \omega^4 x_4).
\]

Let:

\[
\begin{align*}
Q &:= V(ax_0^2 + bx_1x_4 + cx_2x_3); \\
C &:= V(dx_0^2 + ex_0x_1x_4 + fx_0x_2x_3 + gx_0^2x_3 + hx_2x_4^2 + lx_1x_2^2 + mx_2^2x_4),
\end{align*}
\]

then \(Q \) and \(C \) are \(\sigma_{p^4} \)-invariant hypersurfaces in \(\mathbb{P}^4 \). We observe that the complete intersection of these two hypersurfaces is generically smooth and thus it is a K3 surface.

The complete intersection of \(Q \) and \(C \) is also the complete intersection of \(Q \) and \(C + \lambda x_0Q \). Hence there is a 1-dimensional family of invariant cubics giving the same complete intersection: the cubics giving different complete intersections depend on \(7 - 1 = 6 \) parameters. The automorphisms of \(\mathbb{P}^4 \) which commute with \(\sigma_{p^4} \) are of the form \(\text{diag}(\alpha, \beta, \gamma, \delta, \varepsilon) \). So the family of complete intersections of a cubic and a quadric invariant under the automorphism \(\sigma_{p^4} \) has \((3 - 1) + (6 - 1) - (5 - 1) = 3 \) moduli.

Let \(X \) be the complete intersection of \(Q \) and \(C \). The automorphism \(\sigma_{p^4} \) induces a symplectic automorphism on \(X \) (this can be shown as in case \(L^2 = 4 \) considering the two holomorphic form, in local coordinates \(x, y, z, t \), \((dx \wedge dy)/(Q_2C_1 - C_1Q_2) \) where \(F_2 \) is the partial derivative of \(F \) w.r.t. \(x \)).

Up to the action of the projectivities commuting with \(\sigma_{p^4} \), we can assume that \(g = h \) and \(l = m \) in the equation of \(C \), in \((4.3)\). Hence the involution

\[
\tau_{p^4} : (x_0 : x_1 : x_2 : x_3 : x_4) \mapsto (x_0 : x_4 : x_3 : x_2 : x_1)
\]

fixes \(Q \) and \(C \). So its restriction to \(X \) is an involution, \(\iota \), of \(X \). Moreover \(\iota \) has eight fixed points (six on the plane \(x_1 = x_4, x_2 = x_3 \) and two on the line \(x_0 = 0, x_1 + x_4 = 0, x_2 + x_3 = 0 \)). Thus \(\sigma_5 \) and \(\iota \) are symplectic automorphisms of the K3 surface \(X \) and they generate the group \(D_5 \).

4.3. \(L^2 = 8 \). This polarization gives a map to \(\mathbb{P}^5 \) where the K3 surfaces are realized as complete intersections three quadrics.

Let us consider the map

\[
\sigma_{p^5} : (x_0 : x_1 : x_2 : x_3 : x_4 : x_5) \mapsto (x_0 : x_1 : \omega x_2 : \omega^2 x_3 : \omega^3 x_4 : \omega^4 x_5)
\]

and the complete intersection of the quadrics

\[
\begin{align*}
Q_1' &:= V(ax_0^2 + bx_0x_1 + cx_2^2 + dx_2x_5 + ex_3x_4), \\
Q_2' &:= V(fx_1x_2 + gx_3x_5 + hx_4^2), \\
Q_3' &:= V(lx_1x_5 + mx_2x_4 + nx_3^2).
\end{align*}
\]
The group of automorphisms of \(\mathbb{P}^5 \) commuting with \(\sigma_{P^5} \) is \((GL(2) \times GL(1)^3)/GL(1)\) which has dimension 7 = 8 - 1. So these complete intersections in \(\mathbb{P}^5 \) have \((5 - 1) + (4 - 1) + (4 - 1) - (8 - 1) = 3\) moduli. Up to automorphisms of \(\mathbb{P}^5 \) commuting with \(\sigma_{P^5} \) we can assume that the quadrics have the following equation:

\[
\begin{align*}
Q_1 &:= V(x_0^3 + bx_0x_1 + x_1^2 + dx_2x_5 + ex_3x_4), \\
Q_2 &:= V(x_0x_2 + x_3x_5 + x_3^2), \\
Q_3 &:= V(x_1x_5 + x_2x_4 + x_5^2),
\end{align*}
\]

and in fact they depend on 3 parameters.

The complete intersection \(X \) of the quadrics \(Q_1, Q_2, Q_3 \) is smooth for a generic choice of the parameters \(b, d, e \) (one can check it directly putting \(e = b = 0, d = 1 \)). Moreover \(X \) is invariant under the automorphism \(\sigma_{P^5} \), so \(\sigma_{P^5} \) induces an automorphism \(\sigma_5 \) on \(X \) and \(\sigma_5 \) is symplectic (this can be shown as in the case \(L^2 = 6 \)).

The involution

\[
\iota_{P^5} : (x_0 : x_1 : x_2 : x_3 : x_4 : x_5) \rightarrow (x_0 : x_1 : x_5 : x_4 : x_3 : x_2)
\]

fixes the quadric \(Q_1 \) and switches the quadrics \(Q_2 \) and \(Q_3 \). So its restriction to the K3 surface \(X \) is an involution, \(\iota \), of the surface \(X \). Moreover \(\iota \) has eight fixed points, on the space \(x_2 = x_5, x_3 = x_4 \). Thus \(\sigma_5 \) and \(\iota \) are symplectic automorphisms of the K3 surface \(X \) and they generate the group \(\mathcal{D}_5 \).

4.4. \(L^2 = 2 \). This polarization gives a \(2 : 1 \) map to \(\mathbb{P}^2 \) and the K3 surfaces are realized as double cover of \(\mathbb{P}^2 \) branched along a sextic plane curve.

The map

\[
\sigma_{P^2} : (x_0 : x_1 : x_2) \rightarrow (x_0 : \omega x_1 : \omega^4 x_2)
\]

is an automorphism of \(\mathbb{P}^2 \). Up to projectivity of \(\mathbb{P}^2 \) commuting with \(\sigma_{P^2} \), the invariant sextic for \(\sigma_{P^2} \) are

\[
C_6 := V(u_0^6 + x_0x_1^5 + x_0x_2^5 + ax_3^4x_1^2x_2^2 + bx_0^3x_1^3x_3^3 + cx_1^3x_2^3)
\]

Let \(X \) be the double cover of \(\mathbb{P}^2 \) branched along \(C_6 \), i.e. \(X \) is \(V(u^2 - (x_0^6 + x_0x_1^5 + x_0x_2^5 + ax_3^4x_1^2x_2^2 + bx_0^3x_1^3x_3^3 + cx_1^3x_2^3)) \) in the weighted projective space \(\mathbb{P}^W(3, 1, 1, 1) \).

The automorphism \(\sigma_{P^2} \) lifts to a symplectic automorphism \(\sigma_5 : (u : x_0 : x_1 : x_2) \rightarrow (u : x_0 : \omega x_1 : \omega^4 x_2) \) of \(X \). So we constructed the 3-dimensional family of K3 surfaces which are double covers of \(\mathbb{P}^2 \) and have a symplectic automorphism of order 5 which leaves invarinat the polarization.

The involution

\[
\alpha_{P^2} : (x_0 : x_1 : x_2) \rightarrow (x_0 : x_2 : x_1)
\]

leaves the curve \(C_6 \) invariant, so it lifts to an involution \(\alpha_X : (u : x_0 : x_1 : x_2) \rightarrow (u : x_0 : x_2 : x_1) \) of the surface \(X \). The involution \(\alpha_X \) fixes a curve (the pull back of the line \(x_1 = x_2 \) in \(\mathbb{P}^2 \)), so it is not symplectic. Let \(i : (u : x_0 : x_1 : x_2) \rightarrow (-u : x_0 : x_1 : x_2) \) be the covering involution on \(X \). It is a non symplectic involution (indeed the quotient \(X/\iota \) is rational) and it commutes both with \(\alpha_X \) and \(\sigma_5 \). The involution \(\iota = \alpha_X \circ i \) is a symplectic involution on \(X \) (because it is the composition of two commuting non symplectic involutions). Moreover one has \(\iota \circ \sigma_5 = \sigma_5^{-1} \circ \iota \), and hence \(\mathcal{D}_5 = (\sigma_5, \iota) \) acts symplectically on \(X \).
References

BR. D.Jr. Burns, M. Rapoport On Torelli problems for Kählerian K3 surfaces, Ann. Sci. Ec. Norm. Super. IV 8 (1975): 235–273.

GL. R. L. Griess Jr., C. H. Lam, EE_8-lattices and dihedral groups, preprint, arXiv:0806.2753.

GS1. A. Garbagnati, A. Sarti, Symplectic automorphisms of prime order on K3 surfaces, J. Algebra 318 (2007): 323–350.

GS2. A. Garbagnati, A. Sarti, Elliptic fibrations and symplectic automorphisms on K3 surfaces, Comm. Algebra 37 (2009): 3601–3631.

Mo. D.R. Morrison, On K3 surfaces with large Picard number, Invent. Math. 75 (1986): 105–121.

Mu. S. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math. 94 (1988): 183–221.

Nikl. V.V. Nikulin, Finite groups of automorphisms of Kählerian K3 surfaces, (Russian) Trudy Moskov. Mat. Obshch. 38 (1979): 75–137. English translation: Trans. Moscow Math. Soc. 38 (1980): 71–135.

Nik2. V. V. Nikulin, Integral symmetric bilinear forms and some applications, Izv. Math. Nauk SSSR 43 (1979): 111–177, Math. USSR Izvestija (1980): 103–167.

S. Y. T. Siu, Every K3 surface is Kähler, Invent. Math. 73 (1983): 139–150.

W. U. Whitcher, Symplectic automorphisms and the Picard group of a K3 surface, to appear in Comm. in Algebra, now available on arXiv:0902.0601.

X. G. Xiao, Galois cover between K3 surfaces, Ann. Inst. Fourier 46 (1996): 73–88.

Z. D.-Q. Zhang, Quotients of K3 surfaces modulo involutions, Japan. J. Math. (N.S.) 24 (1998): 335–366.

Dipartimento di Matematica, Università di Milano, via Saldini 50, I-20133 Milano, Italia

E-mail address: alice.garbagnati@unimi.it