Study on Medication Rules of Modern Chinese Herbal Medicine in the Treatment of Non-small Cell Lung Cancer Based on Data Mining

Li-Ting Liu1, Cui-Yun Zhao2, Tong Wu3, Zi-Yang Yu4, Yuan Sun5, Jie Li6
1Department of Traditional Chinese Internal Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, 2Respiratory Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China

Abstract

Objective: Based on data mining technology, we attempted to explore the medication rules of modern traditional Chinese medicine (TCM) compounds in non-small cell lung cancer (NSCLC) treatment, to provide a reference for clinical drug use. Methods: From 2010 to 2017, TCM compounds used for NSCLC treatment were collected from the Beijing 301 Hospital. The modern TCM compounds utilized in the treatment of NSCLC were established in the prescription database. Excel, SPSS 22, and SPSS Modeler14.2 software were utilized for the frequency analysis, factor analysis, cluster analysis, and association analysis. Then, the quantitative and qualitative analyses of the regularity of TCM compound medicaments were performed, and the possible mechanism was discussed. Results: The treatment of NSCLC using Chinese herbal compounds involved 231 prescriptions, 389 types of Chinese herbs, and 135 types of high-frequency Chinese herbs. Of these, Fritillaria cirrhosa, stir-baked fried Scutellariae, raw Os Draconis, Poria cocos (Schw.) Wolf, and Scutellaria barbata were the top five frequently prescribed Chinese herbs. Among the 39 types of drugs, heat-clearing and detoxifying drugs and qi-tonifying drugs were the leading. Cold, warm, flat, slightly cold, sweet, bitter, and pungent of four properties and five tastes and the meridians of lung, spleen, and stomach were most commonly selected. Factor analysis extracted 12 common factors, and the cumulative contribution rate was 65.595%, which mainly contained tonifying qi and blood; tonifying yin, clearing away heat, and eliminating stagnation; tonifying the spleen, regulating qi, and eliminating phlegm. Forty drug groups were obtained by cluster analysis; a total of 63 association rules were obtained by association analysis. The pairs of Poria cocos → dried tangerine peel and fried Atractylodes macrocephala → dried tangerine peel were commonly used in NSCLC, while the three most frequent herb groups were raw Astragalus → fried A. macrocephala and Poria cocos; raw medicated leaven → fried A. macrocephala and Poria cocos; and dried tangerine peel → fried A. macrocephala and Poria cocos. Conclusion: Lung cancer is mainly caused by qi stagnation, phlegm obstruction, phlegm, and blood stasis. Based on the principle of strengthening the body and dispelling pathogens, clinical treatment of NSCLC involves clearing heat and detoxifying, tonifying the spleen, regulating qi, eliminating phlegm to dispel pathogens, and tonifying qi and blood to strengthen the body.

Keywords: Data mining, modern Chinese medicine compounds, non-small cell lung cancer

INTRODUCTION

Lung cancer is a malignant tumor that occurs in the bronchial mucosa, glands, and alveolar epithelium. Studies have demonstrated that lung cancer has the highest incidence and mortality rate in China. Furthermore, non-small cell lung cancer (NSCLC) accounts for 75%–80% of all lung cancers, which is a serious threat to human health. Early symptoms of lung cancer are mainly cough or dry cough, which are extremely common for patients to notice. Hence, lung cancer is usually discovered in the middle and later stages when the possibility of surgery, radiotherapy, or chemotherapy is no longer available. A large number of clinical studies have shown that Chinese medicine has the potential to improve the therapeutic effects of traditional therapy. Therefore, modern Chinese herbal medicine (MCHM) is an important area of research and development.

Data mining, modern Chinese medicine compounds, non-small cell lung cancer

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. For reprints contact: reprints@medknow.com

© 2020 World Journal of Traditional Chinese Medicine | Published by Wolters Kluwer | Medknow

Received: 22-07-2019, Accepted: 09-10-2019, Published: 20-02-2020

How to cite this article: Liu LT, Zhao CY, Wu T, Yu ZY, Sun Y, Li J. Study on medication rules of modern Chinese herbal medicine in the treatment of non-small cell lung cancer based on data mining. World J Tradit Chin Med 2020;6:83-96.
medicine has unique advantages in inhibiting malignant tumor growth, regulating immunity, increasing the efficiency, and reducing side effects of radiotherapy or chemotherapy.

In ancient books of traditional Chinese medicine (TCM), there is no mention of “lung cancer,” but similar records of lung cancer symptoms have been documented. For example, “Suwen Qibinglun” (one ancient book of Chinese medicine) said, “the disease is called Xiji, which has the symptoms of fullness under the ribs and adverse rising of qi, etc.” “Shengji Zonglu” (another ancient book) recorded, “pulmonary retention, also called Xiben, expresses cough and hemoptysis.” The pathogenesis of lung cancer is extremely complicated, in which the deficiency of healthy qi is considered primary while the spread of pathogen toxins to the whole body is considered secondary.

In this article, we attempted to analyze the data of Chinese medicine compounds utilized for NSCLC treatment (in the chemotherapy stage) from the Beijing 301 Hospital, during 2010–2017. We performed frequency analysis, association rule analysis, and factor analysis, to calculate the frequency of TCM and its four natures, five flavors, meridian tropism, and efficacy variables. We assessed drug groups for treating lung cancer, analyzed the combination rules of various Chinese medicines in compounds quantitatively and qualitatively, analyzed the law of drug utilization, and discussed various consensus and rules for the use of TCM in NSCLC treatment.

All these outcomes could provide objective data for the clinical treatment of NSCLC, improving the efficacy of TCM in the treatment of lung cancer and providing reference for future clinical treatment and novel drug research and development.

SEARCH METHODS

Prescription source

From 2010 to 2017, TCM compounds used for NSCLC treatment (with chemotherapy treatment) were collected from the Beijing 301 Hospital, obtained from the National Scientific Data Sharing Platform for Population and Health.

CHINESE MEDICINE COMPOUND SCREENING AND ENTRY

Inclusion criteria

All TCM compounds for NSCLC treatment were included.

Data specification

We referred to the “Twelfth Five-Year Plan” textbook of “Chinese Pharmacy” and the 2015 edition of the “Chinese Pharmacopoeia” of the National Higher Hospital of TCM and regulated the names of TCMs, such as Epimedium and Xianlingpi, termed Epimedium in this research. Furthermore, efficacy was classified. For example, Codonopsis pilosula, processed licorice, and fried Atractylodes macrocephala were classified as qi-tonifying drugs. Cooked rehmannia, peony, and Angelica were classified as blood-tonifying drugs.

Data processing and analysis

The TCM compounds utilized for the treatment of NSCLC were established in the prescription database using the Excel software. Excel (Microsoft Corporation, Redmond, Washington, USA) was used for frequency analysis, SPSS 22.0 (SPSS 21 Inc., Chicago, IL, USA) was used for factor and cluster analysis, and the SPSS Modeler14.2 (Inc., Chicago, IL, USA) software for employed for association rule analysis.

RESULTS AND ANALYSIS

Based on the search and screening, 231 Chinese medicinal compounds were finally determined, and the Chinese herbal compounds were sorted to establish a database of Chinese herbal medicines for treating NSCLC as shown in Table 1.

Analysis of absolute frequency and percentage frequency

Analysis of absolute frequency and percentage frequency of high-frequency traditional Chinese medicine

The database listed a total of 389 types of Chinese herbal medicines. The Chinese herbal medicines whose frequency was below the average absolute frequency were excluded. A total of 135 types of Chinese herbal medicines remained, and the absolute frequency and percentage frequency analysis results are shown in Table 2, with the arrangement of the Chinese herbal medicines in order of absolute frequency from high to low.

Efficacy analysis of high-frequency traditional Chinese medicine

Table 3 and Figure 1 present the heat-clearing and toxin-resolving drugs, especially Hedyotis diffusa and Cremastra appendiculata (D.Don) Makino, which are most commonly used in modern Chinese medicine for NSCLC treatment, with a percentage frequency of 7.98%. The second was the qi-tonifying drugs (7.75%), demonstrating no significant difference compared to the first. The percentage frequency of each of the top five categories of TCM was over 5.5%. Furthermore, the heat-clearing, toxin-resolving, and qi-tonifying drugs were at the forefront of these data mining results, indicating the importance to strengthen the body and dispel pathogens during NSCLC treatment.

Analysis of meridian tropism of high-frequency traditional Chinese medicine

The meridian tropism of high-frequency Chinese medicine was 12. Arranged in the order of frequency from high to low, the frequency analysis results are shown in Table 4 and Figure 2. The top six meridian tropisms were as follows: lung meridian (39.36%), spleen meridian (39.48%), liver meridian (55.80%), stomach meridian (34.46%), heart meridian (34.15%), and kidney meridian (29.35%), while each absolute frequency was over 1200. Furthermore, in lung cancer treatment, replenishing the spleen and stomach and regulating the heart, liver, and kidney were crucial.

Analysis of the four natures of high-frequency traditional Chinese medicine

Based on the analysis results in Table 5 and Figure 3, the first
In Table 6 and Figure 4, in high-frequency Chinese medicines, the top three of the five flavors presented were sweet (66.26%), bitter (48.88%), and pungent (42.06%), with each absolute frequency exceeding 2400. Chinese medicines with the three flavors, i.e., sweet, bitter, and pungent were more commonly used for the treatment of NSCLC.

Factor analysis

In Table 7, factor analysis was performed on every single Chinese medicine with an absolute frequency of over 41, and the results are presented in Table 7 and Figure 5. The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy was 0.850, which was over 0.5 ($P < 0.05$). Hence, factor analysis could be applied. In Table 8, twelve common factors were finally extracted based on a featured root greater than one, and the cumulative contribution rate was 65.59%. In Table 9, according to the principle that the load factor was greater than 0.5, ten groups of several drug-combination factors affecting NSCLC treatment were finally extracted. The extraction results and the specific treatment methods reflected by each group of drugs are shown in Table 10.

Cluster analysis

The cluster analysis was performed on Chinese medicines with a frequency of 20 times or greater. The results of the analysis and the results of the combined extraction are shown in Table 11 and Figure 6.

Analysis results of association rules

According to the association rules, the parameter support degree was over ten, and the confidence level was over 50 (the support degree reflected the frequency of the drug groups; the confidence level reflected the reliability degree and
Serial	Chinese medicine	Absolute frequency (%)	Serial	Chinese medicine	Absolute frequency (%)	Serial	Chinese medicine	Absolute frequency (%)
1	Fritillaria cirrhosa	126	46	Raw glycyrrhiza	42	91	Dendrobium	25
2	Fried Scutelariae	115	47	Processed spinosas Ziziphi semen	42	92	Pinelliae rhizoma	25
3	Raw Os Draconis	113	48	Codonopsis pilosula	40	93	Root of balloon flower	25
4	Poria cocos (Schw.) wolf	109	49	Pinelliae rhizome	40	94	Golden lotus flower	25
5	Hedypotes diffoha	107	50	Rhizoma imperatae	39	95	Scorched area seed	25
6	Raw Scutellariae	96	51	Pearl powder	38	96	Herba patriciae	25
7	Processed Astragalus membranaceus	95	52	Schisandra	38	97	Bolbestema panulicatum	24
8	Raw Cyperus rotundus L	93	53	Raw farfarea flos	38	98	Ligustrum lucidum	24
9	Raw gypsy	93	54	Cistanche desertica	37	99	Oroxylum indicum	24
10	Cremastra appendiculata (D.Don) Makino	91	55	Nelumbinis plumula	37	100	Dried ginger	24
11	Raw lotus roots	89	56	Arisaema cum Bile	37	101	Wax gourd peel	24
12	Processed Astraglyodes macrocephala	81	57	Rhizoma dioecrea septemloba	37	102	Processed cocis semen	24
13	Glehnia littoralis	78	58	Rhizoma phragmitis	36	103	Spinosae Ziziphi semen	23
14	Raw malt	75	59	Concha margaritfera	35	104	Polygoni orientalis fructus	23
15	Juncus effusus	73	60	Lophatherum gracile	35	105	Raw crataegus pinnaÆﬁda bunge	23
16	Raw Gardenia jasminoides	72	61	Mulberry leaves	34	106	Ligusticum chuanxiong hort	23
17	Raw Sanguisorba officinalis L	71	62	Spathum	34	107	Lithospermum	22
18	Mustard seed	71	63	Toosendan fructus	34	108	Processed tronycis carapax	22
19	Asari radix et rhizoma	65	64	Endothelium comenum gigeriage galli	33	109	Raw Loquat leaves	22
20	Inula japonica Thunb.	62	65	Bupleuri radix	33	110	Orange	22
21	Stephanies tetrandrae radix	62	66	Aurantii fructus	32	111	Angelica	22
22	Asparagus	60	67	Angelica	32	112	Cibotium barometz	22
23	Processed radix polygoni multiflori	59	68	Armeniaceae semen	31	113	Radix paconiac rubra	22
24	Fritillaria thunbergii miq	59	69	Gastrodiae rhizome	31	114	Lily	22
25	Processed loquat leaves	58	70	Coked crataegi fructus	31	115	Polysyagma temenosia	21
26	Raw Scutellariae	58	71	Trichosanthes periacanthum	31	116	Rehmanniae radix	21
27	Borax	58	71	Raw oyster	30	117	Polygonum bistorta L	21
28	Processed licorice	56	72	Pinelliae Rhizoma	30	118	Seman Platycladi	21
29	Poria cocos	56	73	Paris polyphlla smith	30	119	Radix stemonae	21
30	Epimedium	55	74	Raw Atractylyodes	29	120	Hottingia cordata thunb	20
31	Taxillus chinensis (DC.) danser	53	75	Poria cutis	29	121	Peach kernel	20
32	Tangerine peel	53	76	Raw medicated leaven	28	122	Radix adenophorae	20
33	Crocus sativus L	52	78	Raw peony	28	123	Windproof	20

Contd...
the prediction intensity of the association rule of the drug groups). Using a priori for correlation analysis, the degree of association among TCM compounds was evaluated in the sNSCLC treatment, and the results are presented in Table 12. There were 63 association rules for the drug groups. Among these, there were 36 association rules for the 36 drug pairs and 27 association rules for the 27 drug groups of the three Chinese medicines. As shown in Table 12, the two TCM association rules, two drug pairs, *Poria cocos* (Schw.) Wolf → tangerine peel and processed *Atractylodes* → tangerine peel, ranked first with 73.20% support. In addition, in the three TCM association rules, the three-drug groups, which were raw *Scutellariae* → processed *Atractylodes* and *Poria cocos*, raw-mediated leaven → processed *Atractylodes* and *Poria cocos*, tangerine peel → processed *Atractylodes* and *Poria cocos*, ranked first with 58.82% support.

Discussion

Lung cancer is a common malignant tumor that has a high disease incidence in clinics. In TCM, it is termed “Fei Ji” and “Xi Ben.”
Table 3: Efficacy analysis of high-frequency traditional Chinese medicine

Efficacy	Absolute frequency (%)	Chinese medicine
Heat-clearing and toxin-resolving drugs	440 (7.98)	Hedysos diffusa, Cremastra appendiculata (D.Don) Makino, Solanum niguelm, Scutellaria barbata, Hypericum erectum, Golden lotus flower, Herba patriniae, Oxoxyl indicum, Polygonum bistorta L, Houttuynia cordata, thubn
Qi-tonifying drugs	427 (7.75)	Processed Astragalus memeranaceus, Fried Atractylodes, Raw Scutellariae, Processed licorice, Raw licorice, Codonopsis pilosula, Atractylodes, Pseudostellaria heterophylla
Yin-nourishing drugs	336 (6.09)	Glehnia littoralis, Asparagus, Ophiopogon japonica, Dendrobium, Ligustrum lucidum, processed Trionycis carapax, Lily, Radix adenophore, Polygonati rhizome
Drugs of clearing away heat to resolve phlegm	310 (5.62)	Fritillaria cirrhosa, Fritillaria thunbergii, miq, the root of balloon flower, Bolbostemma panicul, atum, Semen benincasae, Arceae concha
Heat-purging-fire drugs	303 (5.5)	Raw gypsum, Raw gardenia jasminoides, Prunella vulgaris L, Rhizoma phragmitis, Lophatherum gracile, Fried cassia tora
Rectifying-Qi drugs	285 (5.17)	Raw Cyperus rotundus L, Tangerine peel, Toosendan fructus, Aurantii fructus, Processed Cyperus rotundus, L, Fructus aurantii immatatus
Heart-nourishing, spirit-quieting drugs	253 (4.59)	Processed spinoaee Ziziphi semen, Spinoaee Ziziphi semen, Pogylba tenuifolia, Semon platycladi, Poria cocos (Schw.) wolf, Nelumbinis placumula
Phlegm cough and asthma drugs	244 (4.43)	Processed loquat leaves, Processed radix stemonae, Raw farfarae flos, Armeniaceae semen, Perilla frutescens seed, Raw loquat leaves radix stemonae
Heat-clearing, damp-drying drugs	238 (4.32)	Fried Scutellariae, Coptidis rhizome
Digestant drugs	217 (3.94)	Raw malt, endothelium cornuei gigeriagle galli, Coked crataegi fructus, Raw massa medic, Fermentata, Processed crataegus pinnatiida Bunge, Raw crataegus pinnatiida bunge
Drugs for inducing diuresis to alleviate edema	182 (3.3)	Poria cocos, Raw coicis semen, Poria cocos, Waxgourd peel, Processed coicis semen
Drugs of warming and resolving cold-phlegm	157 (2.85)	Inula japonica thumb, Pinelliae rhizome
Drugs for inducing diuresis for treating stranguria	155 (2.81)	Juncus effuses, Talc, Rhizoma Dioscoreae sepholemoe
Dispersing wind-heat drugs	142 (2.58)	Chrysanthemum, Mulberry leaves, Bupleuri radix, Vinegar-processed bupleuri radix
Blood-activating menstruation-regulating drugs	142 (2.58)	Salvia miltiorrhiza Bge, Polygoni orientalis fructus, Peach kernel, Salvia chinensis herba, Cactus sativus L
Blood-enriching drugs	141 (2.56)	Processed radix polygini multiflora, Raw angelia, Raw peony, Angelica
Drugs for cooling blood to arrest bleeding	136 (2.47)	Raw sanguisorba officinalis L, Rhizoma imperatae, Platycladus orientalis leaf
Yang-nourishing drugs	122 (2.21)	Epimedium, Cistanche deserticola, Paris polyphyllum smith
Heavy settling spirit-quieting drugs	113 (2.05)	Raw Os Draconis
Heat-clearing blood-cooling drugs	112 (2.03)	Scrophularia ningpoensis hemsl, Lithospermum, Radix paoniac rubra, Rehmnniae radix
Dispersing wind-cold drugs	104 (1.89)	Asari radix et rhizome, Windproof, Cinnamomi ramulus
Astringing blood-stanching drugs	89 (1.61)	Raw lotus roots
Drugs of relieving rheumatism and qi strengthening muscles and bones	75 (1.36)	Taxillus chinensis (DC.) danser, Cibotium barometz
Anthelmintic drugs	74 (1.34)	Raw areca catechu L, Scorched areca seed
Qi-disinhibiting phlegm-sweeping drugs	71 (1.29)	Mustard seed
Drugs for blood circulation and painkiller	69 (1.25)	Turmeric, Ligusticum, Chuanxiong Hort
Wind-extinguishing tetany-checking drugs	69 (1.25)	Pearl powder, Gastrodiae rhizome
Damp dispersing drugs	65 (1.18)	Magnolia officinalis, Amomum villosum Lour, Alpinia katsumadai Hayata
Smoothing liver yang medicine drugs	65 (1.18)	Conhea margaritifera, Raw oyster
Drugs of securing essence, reducing urination and checking discharge	64 (1.16)	Fructus corni, Rosae laevigatae fructus
Wind-damp-dispelling heat-clearing drugs	62 (1.12)	Stephanie tetrandrae radix
Removing necrotic tissue and promoting tissue regeneration drugs	58 (1.05)	Borax
Lung-intestine astringent drugs	38 (0.69)	Schisandra
Drugs of breaking blood stasis to resolve lunapm	34 (0.62)	Sputum
Drugs of clearing away heat to resolve phlegm	31 (0.56)	Trichosanthes pericarpium
Stasis-transforming blood-stanching drugs	28 (0.51)	Radix notoginseng
Interior-warming drugs	24 (0.44)	Dried ginger
Drugs for detoxicating insecticide and anti-itch	19 (0.34)	Cnidium monnieri (L) cuss
Moist precipitating drugs	19 (0.34)	Cannabis fructus
Table 4: Analysis of meridian tropism of high-frequency traditional Chinese medicine

Meridian tropism	Absolute frequency (%)
Lung meridian	3216 (58.33)
Spleen meridian	2189 (39.71)
Liver meridian	2170 (39.36)
Stomach meridian	1982 (35.95)
Heart meridian	1593 (28.9)
Kidney meridian	1282 (23.25)
Large intestine meridian	808 (14.66)
Gallbladder meridian	511 (9.27)
Small intestine meridian	471 (8.54)
Bladder meridian	289 (5.24)
Triple Energizer meridian	191 (3.46)
Pericardium meridian	94 (1.71)

Table 5: Frequency analysis of the four natures of high-frequency traditional Chinese medicine

Four natures	Absolute frequency (%)
Cold	1232 (22.35)
Warm	1186 (21.51)
Gentle	1186 (21.51)
Slight cold	1016 (18.43)
Slight warm	395 (7.16)
Cool	330 (5.99)
Great cold	120 (2.18)
Hot	46 (0.83)

Table 6: Analysis of five flavors of high frequency traditional Chinese medicine

Five flavors	Absolute frequency (%)
Sweet	3085 (55.95864)
Bitter	2314 (41.97352)
Pungent	1552 (28.15164)
Salty	464 (8.416470)
Slight bitter	443 (8.035552)
Astringency	443 (8.035552)
Mild-natured	420 (7.618357)
Sour	341 (6.18538)
Slight pungent	128 (2.321785)
Slight sweet	119 (2.158534)

Table 7: Kaiser-Meyer-Olkin and Bartlett’s test

Statistical terms	Value
KMO measure of sampling adequacy	0.850
Bartlett’s test of sphericity	
Approximately χ^2	5473.291
df	1081
Significant	0.000

Significant is the P value of Bartlett’s spherical test ($P<0.05$ has statistical significance). KMO: Kaiser-Meyer-Olkin
According to Za Bing Yuan Liu Xi Zhu (an ancient book of TCM), “pathogen was accumulated in the chest, and the airway was blocked, so the qi was not allowed to pass.” The pathogen could include phlegm, blood stasis, or indigestion induced by overeating, all of which could fight with the healthy qi. After the pathogen is successful, it accumulates and palpable blockages are formed. Strong evil qi will damage healthy qi, and finally cause organ dysfunction, poor qi-lood circulation and even tangible blockages.

Table 8: Total variance explained

Component	Initial eigenvalues	Extraction sums of squared loadings	Rotation sums of squared loadings						
	Total	Percentage of variance	Cumulative (%)	Total	Percentage of variance	Cumulative (%)	Total	Percentage of variance	Cumulative (%)
1	10.407	22.142	22.142	10.407	22.142	22.142	6.324	13.455	13.455
2	5.207	11.078	33.220	5.207	11.078	33.220	3.663	7.794	21.249
3	2.485	5.287	38.507	2.485	5.287	38.507	3.582	7.622	28.872
4	1.929	4.105	42.612	1.929	4.105	42.612	2.738	5.825	34.696
5	1.697	3.611	46.223	1.697	3.611	46.223	2.632	5.600	40.296
6	1.572	3.345	49.568	1.572	3.345	49.568	2.139	4.551	44.847
7	1.466	3.119	52.687	1.466	3.119	52.687	1.765	3.756	52.961
8	1.381	2.937	55.625	1.381	2.937	55.625	1.563	3.325	56.285
9	1.338	2.846	58.471	1.338	2.846	58.471	1.563	3.325	56.285
10	1.266	2.694	61.165	1.266	2.694	61.165	1.520	3.234	59.519
11	1.080	2.297	63.462	1.080	2.297	63.462	1.487	3.164	62.683
12	1.003	2.133	65.595	1.003	2.133	65.595	1.369	2.912	65.595
Table 9: Component score coefficient matrix

Component	1	2	3	4	5	6	7	8	9	10	11	12
Processed radix polygoni multiflori	0.180	0.147	0.315	0.324	0.324	0.315	0.147	0.315	0.324	0.324	0.315	0.147
Processed loquat leaves	0.114	0.130	0.231	0.701	0.009	0.114	0.154	0.081	0.154	0.081	0.154	0.081
Processed astragalus memeraneaceus	0.032	0.105	0.278	0.278	0.278	0.105	0.105	0.278	0.278	0.278	0.105	0.105
Processed licorice	0.768	0.768	0.768	0.768	0.768	0.768	0.768	0.768	0.768	0.768	0.768	0.768
Processed radix stemonae	0.020	0.063	0.209	0.193	0.046	0.203	0.140	0.062	0.203	0.140	0.062	0.203
Fritillaria thunbergii miq	0.603	0.023	0.070	0.110	0.014	0.140	0.211	0.101	0.140	0.211	0.101	0.140
Crocus sativus L.	0.039	0.053	0.152	0.079	0.091	0.217	0.074	0.000	0.217	0.074	0.000	0.217
Scrophularia ningpoensis hemsl	0.558	0.086	0.020	0.111	0.030	0.143	0.175	0.303	0.316	0.226	0.099	0.117
Turmeric	0.098	0.047	0.065	0.396	0.396	0.396	0.396	0.396	0.396	0.396	0.396	0.396
Inula britanica L.	0.128	0.230	0.139	0.163	0.147	0.147	0.147	0.163	0.147	0.147	0.163	0.147
Epimedium	0.095	0.001	0.142	0.056	0.295	0.021	0.000	0.000	0.000	0.000	0.000	0.000
Prunella vulgaris L.	0.149	0.054	0.011	0.664	0.035	0.208	0.107	0.102	0.077	0.314	0.247	0.056
Asari radix et rhizoma	0.103	0.086	0.051	0.080	0.017	0.076	0.010	0.118	0.022	0.213	0.077	0.130
Asparagus	0.041	0.170	0.287	0.278	0.278	0.154	0.363	0.231	0.136	0.127	0.018	0.049
Raw gardenia jasminoides	0.158	0.137	0.185	0.022	0.117	0.063	0.171	0.014	0.105	0.036	0.686	0.017
Raw coicus semen	0.635	0.106	0.077	0.158	0.079	0.108	0.020	0.012	0.049	0.236	0.160	0.050
Raw Cyperus rotundus L.	0.131	0.253	0.848	0.049	0.171	0.077	0.026	0.075	0.176	0.087	0.089	0.005
Gypsum	0.146	0.224	0.861	0.121	0.147	0.097	0.009	0.030	0.116	0.070	0.105	0.011
Raw lotus roots	0.224	0.232	0.860	0.052	0.187	0.091	0.018	0.039	0.114	0.098	0.074	0.011
Raw malt	0.145	0.194	0.020	0.194	0.214	0.100	0.062	0.192	0.089	0.036	0.016	0.618
Raw Os Draconis	0.106	0.230	0.143	0.278	0.388	0.038	0.007	0.149	0.016	0.155	0.080	0.005
Fried Scutellariae	0.241	0.190	0.010	0.660	0.123	0.026	0.117	0.014	0.105	0.036	0.686	0.017
Raw Scutellariae	0.106	0.190	0.010	0.660	0.123	0.026	0.117	0.014	0.105	0.036	0.686	0.017
Radix glycyrrhizae	0.462	0.218	0.008	0.238	0.127	0.129	0.132	0.050	0.291	0.371	0.000	0.005
Raw sanguisorba officinalis L.	0.293	0.230	0.413	0.278	0.388	0.038	0.007	0.149	0.016	0.155	0.080	0.005
Raw arnea catechu L.	0.134	0.396	0.156	0.391	0.291	0.105	0.131	0.015	0.105	0.031	0.049	0.005
Fructus corni	0.142	0.383	0.233	0.137	0.097	0.048	0.183	0.033	0.507	0.183	0.273	0.039
borax	0.263	0.201	0.262	0.401	0.460	0.156	0.045	0.097	0.088	0.021	0.166	0.004
Cremasto appendiculata (D.Don)	0.114	0.093	0.130	0.005	0.204	0.796	0.024	0.018	0.057	0.024	0.011	0.164

block. When the physical blocks appear in the lungs, lung cancer is present. The program formulated by the National Administration of TCM\cite{11} in 2011 classified lung cancer into five types, including qi-stagnation and blood-stasis syndrome, phlegm-heat obstruction of the lung syndrome, lung-spleen qi deficiency syndrome, lung yin deficiency syndrome, and qi-yin deficiency syndrome. Currently, the treatment principle is generally based on replenishing the deficiency of the healthy qi and clearing of the residual pathogen.

World J Tradit Chin Med | Volume 6 | Issue 1 | January-March 2020
and poison. In other words, this implies strengthening the healthy qi, dispelling the pathogen, consolidating the body resistance, and cleaning the source of disease.

We retrieved 231 formulas of Chinese medicine in the database and combined the results of the above data analysis to present the following outcomes:
Serial number	Drug pair	Support (%)	Confidence (%)	Serial number	Drug pair	Support (%)	Confidence (%)
1	Poria cocos→Tangerine peel	73.20	78.57	33	Processed Atractylodes→pinelliae rhizoma	53.59	84.15
2	Processed Atractylodes→Tangerine peel	73.20	75.00	34	Tangerine peel→opiophygon japonicus	51.63	72.15
3	Tangerine peel→Raw Scutellariae	69.28	72.64	35	Poria cocos→opiophygon japonicus	51.63	70.89
4	Processed Atractylodes→Raw Scutellariae	69.28	71.70	36	Raw Scutellariae→opiophygon japonicus	51.63	82.28
5	Poria cocos→Raw Scutellariae	69.28	70.75	37	Raw Scutellariae→processed Atractylodes, poria cocus	58.82	71.11
6	Raw Scutellariae→Poria cocus	69.28	70.75	38	Raw medicated leaven→processed Atractylodes, poria cocus	58.82	70.00
7	Processed Atractylodes→Poria cocus	69.28	84.91	39	Tangerine peel→processed Atractylodes, poria cocus	58.82	84.44
8	Tangerine peel→Poria cocus	69.28	83.02	40	Raw crataegus pinnatifida bunge→raw malt, raw massa medicata fermentata	57.52	98.88
9	Poria cocos→Processed Atractylodes	68.63	85.71	41	Processed Atractylodes→pora cocus, tangerine peel	57.52	86.36
10	Tangerine peel→Processed Atractylodes	68.63	80.00	42	Poria cocus→raw malt, raw medicated leaven	57.52	79.55
11	Raw Scutellariae→Processed Atractylodes	68.63	72.38	43	Processed Atractylodes→raw malt, raw medicated leaven	57.52	77.27
12	Raw massa medicata Fermentata→Raw malt	58.17	98.88	44	Tangerine peel→raw malt, raw medicated leaven	57.52	77.27
13	RawMalt→Raw medicated leaven	58.17	98.88	45	Pinelliae rhizoma→pora cocus, tangerine peel	57.52	76.14
14	Raw crataegus pinnatifida bunge→Raw malt	58.17	97.75	46	Raw Scutellariae→raw malt, raw massa medicata fermentata	57.52	72.73
15	Raw crataegus pinnatifida bunge→Raw medicated leaven	58.17	97.75	47	Raw crataegus pinnatifida bunge→pora cocus tangerine peel	57.52	71.59
16	Poria cocus→Raw medicated leaven	58.17	79.78	48	Raw medicated leaven→pora cocus, tangerine peel	57.52	71.59
17	Poria cocus→raw malt	58.17	78.65	49	Raw malt→pora cocus, tangerine peel	57.52	70.45
18	Tangerine peel→raw malt	58.17	77.53	50	Poria cocus→raw crataegus pinnatifida bunge, raw malt	56.86	80.46
19	Processed Atractylodes→raw medicated leaven	58.17	77.53	51	Poria cocus→raw crataegus pinnatifida bunge, raw medicated leaven	56.86	80.46
20	Tangerine peel→raw medicated leaven	58.17	77.53	52	Processed Atractylodes→raw crataegus pinnatifida bunge, raw malt	56.86	78.16
21	Processed Atractylodes→raw malt	58.17	76.40	53	Tangerine peel→raw crataegus pinnatifida bunge, raw malt	56.86	78.16
22	Raw Scutellariae→raw malt	58.17	73.03	54	Processed Atractylodes→Raw crataegus pinnatifida bunge, Raw medicated leaven	56.86	78.16
23	Raw Scutellariae→raw medicated leaven	58.17	73.03	55	Tangerine peel→raw crataegus pinnatifida bunge, raw medicated leaven	56.86	78.16
24	Raw malt→raw crataegus pinnatifida bunge	57.52	98.88	56	Raw Scutellariae→raw crataegus pinnatifida bunge, raw malt	56.86	72.41
25	Raw massa medicata Fermentata→raw crataegus pinnatifida bunge	57.52	98.88	57	Raw Scutellariae→raw crataegus pinnatifida bunge, raw medicated leaven	56.86	72.41
26	Tangerine peel→raw crataegus pinnatifida bunge	57.52	78.41	58	Raw massa medicata fermentata→raw crataegus pinnatifida bunge, raw malt	56.86	100.00
27	Processed Atractylodes→raw crataegus pinnatifida bunge	57.52	77.27	59	Raw malt→raw crataegus pinnatifida bunge, raw medicated leaven	56.86	100.00
28	Raw Scutellariae→raw crataegus pinnatifida bunge	57.52	71.59	60	Pinelliae rhizoma→processed Atractylodes, tangerine peel	54.90	75.00
29	Poria cocus→raw crataegus pinnatifida bunge	57.51	80.68	61	Poria cocus→processed Atractylodes, tangerine peel	54.90	90.48
30	Raw Scutellariae→pinelliae rhizoma	53.59	71.95	62	Poria cocus→Raw Scutellariae, tangerine peel	50.33	77.92
31	Tangerine peel→pinelliae rhizoma	53.59	91.46	63	Processed Atractylodes→Raw Scutellariae, Tangerine peel	50.33	74.03
32	Poria cocus→pinelliae rhizoma	53.59	86.59				
Treatment

Yizhong Biduo (another ancient book of Chinese medicine), written by Zhongzi Li, has presented that “at the beginning of the disease, the healthy qi is still strong, while the evil qi is still shallow. As the disease progresses, the evil qi is stronger, while the healthy qi is weaker. When the disease is long lasting, the evil qi invades, while the healthy qi disappears.” Influenced by these thoughts, modern doctors[12-15] believe “the theory of pathogenic toxin invading the lung,” “the theory of phlegm-damp gathering inside,” and “the theory of healthy qi deficiency.” Hence, we believe that in the early stage of NSCLC treatment, the treatment mainly focuses on attacking the pathogenic factors, strengthening and attacking equally in the mid-term, and mainly strengthening the healthy qi in the later-term. Lung cancer[16,17] is a kind of disease, which is deficiency in nature and excess in superficiality. Deficiency of healthy qi and serious cancer toxin will further damage the healthy qi. Hence, it is difficult to inhibit the progress of lung cancer by strengthening the healthy qi only.

Simultaneously, along with modern means of treatment (such as radiotherapy and chemotherapy), pathogen-attacking TCM can be used to enhance the efficacy and eliminate residual cancer cells. Zhongying Zhou,[18] a TCM master, put forward the “cancer toxin” theory, which indicated that “eliminating the pathogen precedes the strengthening the healthy qi.” Furthermore, he proposed that in the late stage of lung cancer, the deep spreading of the toxin, such as lung cancer–brain metastasis and lung cancer–liver metastasis, occurred due to the exuberant phlegm-heat and toxin. Cancer toxins such as heat-toxin and phlegm-toxin[19] are the direct causes of lung cancer, so eliminating the pathogen mainly relied on heat-cleaning and toxin-resolving.

In NSCLC treatment, the Beijing 301 Hospital has used a higher proportion of pathogen-attacking drugs, including heat-cleaning and toxin-resolving drugs, and drugs clearing away heat and resolving phlegm, with heat-cleaning and toxin-resolving drugs (7.98%) ranking first. In addition, the frequency of use of health-supporting drugs, such as qi-tonifying drugs and yin-nourishing drugs, was also high, with qi-tonifying drugs (7.75%) ranking second. The treatment method for NSCLC was based on clearing heat and relieving toxicity, tonifying qi, nourishing yin, clearing heat and removing phlegm, and clearing heat and purging fire. Based on research and analysis, it was observed that the NSCLC patients undergoing chemotherapy were prescribed the TCM treatment of clearing heat and relieving toxicity to eliminate the pathogen, tonifying qi and yin to strengthen healthy qi, and reflecting the principle of pathogen-eliminating and healthy qi-strengthening in a balanced manner. Ancient and modern doctors have had similar opinions: In lung cancer, due to qi stagnation, phlegm gathering and blood stasis are bound to each other to form the tumor block. The cancer toxin is the key to the disease progression; when blocked, the disease is developing abnormally, and pathological products, such as phlegm and heat toxin, consume qi and yin. Therefore, treatment is based on resisting cancer and relieving toxicity. Concurrently, supporting health is crucial to treat the primary disease, thus supporting and strengthening health throughout treatment. An NSCLC patient in the chemotherapy stage is still considered the early stage when the healthy qi is not deficient, and the evil qi is just beginning to take over. In addition, the cancer toxin is an important factor in the occurrence and development of lung cancer. Therefore, the main treatment is heat clearing and toxin resolving to attack the pathogen, due to healthy qi deficiency. Furthermore, it is also vital to tonify qi and yin to strengthen health. However, as the data were derived from NSCLC patients undergoing chemotherapy, bias of data results cannot be ruled out.

High-frequency Chinese medicines

The results demonstrated that five kinds of Chinese medicine, including Fritillaria cirrhosa (54.55%), processed-fried Scutellariae (49.78%), raw Os Draconis (48.92%), Poria cocos (46.32%), were the commonly used compounds in the treatment of NSCLC. Combined with the cluster analysis results on drug combination extraction, F. cirrhosa, processed fried Scutellariae, and H. diffusa often appeared in combination. As mentioned above, the main pathogenic factors of lung cancer were heat and phlegm toxin. Chinese medicine of heat-clearing and toxin-resolving drugs, such as H. diffusa (46.32%), C. appendiculata (D.Don) Makino (39.39%); qi-tonifying drugs, such as processed Astragalus membranaceus (41.13%) and processed Atractylodes (35.06%); and yin-tonifying drugs, such as Glehnia littoralis (33.77%) and Asparagus (25.97%), were most commonly used.

Modern clinical studies have indicated that the antitumor mechanisms of H. diffusa[20] included immune regulation, inhibition of tumor cell proliferation, inhibition of telomerase activity. C. appendiculata (D.Don) Makino has been commonly used as an anticancer agent in TCM.[21] containing a variety of alkaloids, that could inhibit the mitosis and proliferation of cancer cells and exhibit nonselective medium-intensity cytotoxic activity against cells, such as lung cancer cells and liver cancer cells. Astragalus radix[22,23] promotes tumor cell apoptosis, inhibits tumor proliferation, migration, and enhances immune functions. Atractylenolide[24] down-regulates the levels of factors associated with cancer-related cell differentiation. G. littoralis[25,26] inhibits tumor cell migration and invasion and enhances T-cells, B-cells, white blood cells, lymphocytes, etc., thereby promoting immune function. Drugs clearing away heat to resolve phlegm, such as F. cirrhosa D.Don[27,28] can inhibit the efflux activity of P-gp, thereby reversing the multidrug resistance observed in tumor cells.

Combined with modern research on high-frequency Chinese medicine, the antitumor effect of TCM is mainly mediated through the following mechanisms:[20] (1) Activation of an immune response. For example, regulating receptor signals such as lymphocytes to improve immunity, such as H. diffusa, A. radix, and G. littoralis; (2) Regulation of inflammatory...
factors and other mechanisms to improve the tumor microenvironment, such as *H. diffusa*, *A. radix*, *F. cirrhosa*, and *Scutellariae*; (3) Regulation of tumor cell proliferation, migration, differentiation, and apoptosis by regulating metabolic pathways such as tumor-suppressor factors, including *H. diffusa*, dogtooth violet, and *A. radix*.

Drug pairs and drug groups

Forty common drug groups were extracted using cluster analysis. Association analysis demonstrated that the drug pairs, *Poria cocos* → tangerine peel and processed *Atractylodes* → tangerine peel, were most commonly used. In addition, the drug groups, raw *Scutellariae* → processed *Atractylodes* and *Poria cocos*, raw Massa Medicata Fermentata → processed *Atractylodes* and *Poria cocos*, tangerine peel → processed *Atractylodes* and *Poria cocos*, were most commonly used. Data analysis suggested that the four herbs, *Poria cocos*, *Atractylodes*, *A. radix*, and tangerine peel, often appeared in pairs or in groups of three, and each of the four herbs could strengthen the spleen.

The spleen is the foundation of acquired constitution, the source of qi and blood production. Furthermore, the spleen earth promotes the lung gold; hence, whether the lung qi is complete or not depends on whether the spleen function of transportation and transformation of water, grain, and refined essence are normal. As stated by Shiduo Chen in “Shishi Milu Zhengyifa” (another book of Chinese medicine), “it was very difficult to treat the lung by the routine treatment. It should be transferred to treat the spleen, replenishing the spleen qi, then the earth promotes the gold.” Therefore, in the case of lung disease, it is especially necessary to invigorate the spleen and stomach.

Poria cocos promotes urination and invigorates the spleen, also calming the mind; *A. radix* replenishes the lung qi and spleen qi and promotes urination; *Atractylodes* invigorates the spleen and tonifies qi, dries dampness, and promotes urination; tangerine peel replenishes qi, invigorates the spleen, dries dampness, and resolves phlegm. The combination is selected based on the clinical type of the patient syndrome, invigorating the spleen and tonifying qi, to ensure that the spleen qi is smooth and the water, grain, and refined essence can be normally transported to the whole body.

Meridian tropism

The meridian tropism of TCM was mainly based on the lung, spleen, stomach, heart, liver, and kidney meridians. Danxi Zhu believed that “the qi and blood were uncoordinated, and diseases did not occur. Once stagnation occurred, various diseases generated; hence, the illness was mostly induced by stagnation.” Clearly, qi and blood stagnation are keys to all diseases.

Based on the occurrence and development of lung cancer, the disease pathogenesis is mostly based on the disorder of Zang-Fu qi and stagnation. Then, qi which cannot disperse the body fluid causes phlegm condensation, and qi stagnation and blood stasis lead to cancer. Lungs govern qi and control the dispersing and sending downward of qi. When healthy qi is deficient, the lungs are dysfunctional. Spleens and stomachs digest the food. Furthermore, they can also transport and transform water, grain, and refined essence. However, transportation relies on the lungs dispersing and sending downward to spread to the whole body. When the lung function is lost, the transportation of body fluid is abnormal, and the retention of water damp produces phlegm. The spleen is a source of phlegm, while the lung is a phlegm vessel. With phlegm in the lungs and disordered function, lung qi is obstructed and stagnated. Spleen insufficiency is primary, nature is deficient and the superficiality is excessive.

Therefore, in the clinic, *H. diffusa* and *C. appendiculata* (D.Don) Makino are used to clear heat, relieve toxicity, and attack pathogens, combined with *Astragali radix*, *Atractylodes*, and other qi-supplementing and spleen-strengthening drugs. If the spleen qi can be transported and can transform normally, there is no phlegm produced. Furthermore, when it takes a prolonged long time, it damages the collaterals, leading to collateral stasis, when the phlegm and blood stasis bind together called “Feiji.” Livers smoothen the qi. Emotional disorders can cause liver qi stagnation and loss of function, inducing abnormal body fluid transportation. Furthermore, the body fluid can condense into phlegm. Stagnation of liver qi can change into fire, and stagnated fire consuming the body fluid can refine fluid into phlegm. Liver wood can restrain spleen earth, causing spleen dysfunction in transportation and transformation, which permits the development of turbid phlegm, which may condense into the tumor mass.

Four natures and five flavors

The statistics demonstrated that cold, warm, flat, and slight cold were the main four natures, while sweet, bitter, and pungent were the main five flavors. TCM treatment is regulating the function of the entrails and qi movement (upward, downward, inward, and outward movement). The lungs govern qi and breathing. Furthermore, it has functions of dispersing and sending downward qi, which are interdependent and mutually constrained to maintain the physiological functions of the lungs. Pungency medicines can be used to disperse dysfunctions of lung qi, and bitterness can be used to lower adverse rising. The spleen and stomach remain in the middle energizer, demonstrating the energy of upward and downward qi movement. In addition, the spleen sends the clear upward and the stomach sends digested foods downward. Treatment of spleen deficiency is mainly based on sweet and warm drugs, and treatment of stomach fire uses bitterness to adapt to stomach descent. The liver and kidney are in the lower energizer, and the liver blood, kidney essence, and the ministerial fire are contained within. Liver and kidney diseases are mainly caused by the deficiency of yin blood and kidney essence, which can be combined with liver yang or ministerial rising fire. Sweet medicines tonify the liver blood or kidney essence, salty medicines tonify the kidney, acid medicines tonify the liver, and bitter medicines purge fire. Wu observed that Chinese medicines of the lung meridian are mainly cold and have clinical effects such
as relieving asthma, dispelling phlegm, and relieving cough. Moreover, the pharmacological effects also include dispelling phlegm, relieving asthma, and antitumor effects.

This study demonstrated that in the treatment of lung cancer, doctors commonly prescribed bitter and cold medicines. Furthermore, doctors used their efficacy of clearing heat and dampness and resolving phlegm for anticancer, antipyretic, and antiviral applications in the clinic. While bitter and cold medicines are mainly heat clearing and toxin resolving, clearing away heat could resolve phlegm. Chinese medicines of sweet flavor and cold nature can tonify yin and clear heat, which were mainly tonifying-yin medicines. Chinese medicines of sweet in flavor and warm in nature, can tonify yang qi, and relieve spasms. This kind of medicines is mainly tonifying qi medicines. Pungency medicine herbs can disperse and move, which move qi and activate blood. This kind of medicines is mainly qi-regulating medicines.

Conclusion

This study refined the academic opinions of the 301 hospitals in Beijing for the treatment of NSCLC through data analysis, and it was in line with the ancient and modern doctor’s cognition and clinical application of the etiology, pathogenesis, treatment, and medication of the disease, so it can provide clinical reference for clinical treatment of NSCLC. However, because of the restrained data sources from only one hospital, the study lacked the generalization. Furthermore, as the data were derived from NSCLC patients during chemotherapy, data bias cannot be ruled out. Further research needs to sum up the regular pattern of the TCM treatment by utilizing multicenter and large samples.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Wang SH, Wang J. Interpretation of updated NCCN guidelines for non-small cell lung cancer (version 3.2018). West China Med J 2018;04:388-92.
2. Zhan QC, Zhang ZH, Chen J. Systematic interpretation to the 2017 ASCO guideline on stage? NSCLC. Chin J Front Med Sci 2017;09:20-7.
3. Cheng YT, Tian CW, Ren T, Ren T, Zhang TJ, Feng X. Research progress on clinical application and action mechanism of Chinese material medical in treatment of NSCLC. Drug Eval Res 2016;02:293-9.
4. Wang CC, Liu HX, Zhuang J, Liu RJ, Ci XH, Sun CG. Efficacy and safety of traditional Chinese medicine combined with concurrent chemoradiation treatment in treatment of advanced NSCLC: A meta-analysis. Chin Gen Pract 2015;12:1406-14.
5. Feng QZ, Zhang QJ, Wang L. Effect of traditional Chinese medicine combined with chemotherapy on immunity in patients with advanced NSCLC. China Cancer 2014;05:417-20.
6. Zhang LM, Qiu J, Yu Xi Zheng’s treatment of old Chinese medicine for lung cancer. Res Integr Tradit Chin West Med 2011;3:19, 30.
7. Bu AX, Zhang GR, Wang LG. A study on application of data analysis technology in lung cancer medical records by TCM master. Clin J Chin Med 2016;8:1-3.
8. Wang LX, Li M, Wu WB. Research on medication rules of formulas and herbs for treatment of lung cancer based on data analysis. J Math Med 2018;10:1423-6.
9. Zhang NJ, Li Q, Gao T. Cluster analysis of Chinese medicine for treating lung cancer based on data analysis. Chin Med Clin J 2018;03:48-50.
10. Liu HT, Feng JY, Luo B, Yi XZ, Qian FF, Tian JH. Based on data analysis Jianghui Tian chief physician traditional Chinese medicine comprehensive treatment of lung cancer. Tradit Chin Med Res 2018;10:45-9.
11. Department of Medical Administration, State Administration of Traditional Chinese Medicine. 22 Professional Chinese Medicine Treatment Programs for 95 Diseases; 2010. p. 313-4.
12. He XH, Zhao Y, Cai XP, Professor Xiaoping Cai’s experience in treating lung cancer. Asia Pac Tradit Med 2017;13:80-1.
13. ZHL, Li ZG, Dong CW. Progress on lung cancer with syndrome differentiation in traditional Chinese medicine. J Pract Tradit Chin Intern Med 2017;31:91-3.
14. Bai W, Han YB, Zhu DM, Jiang YM, Ling JH. Analysis of TCM drug use in treatment of lung cancer. China J Chin Med 2017;32:335-8.
15. Ma C, Xu L. Research progress of traditional Chinese medicine for treatment of lung cancer. Chin Arch Tradit Chin Med 2017;35:1100-3.
16. Su JS, Wang ZP, Li F, Jiang YX, Li XX. Review on the treatment of lung cancer by attacking pathogen Chinese patent medicine combining with chemotherapy. Public Sci 2018;20:74-6.
17. Zhang XL, Ma YF, Chen S, Hu Lin, Xiao X, Xiao R. Effect of compound Kushen injection on serum peristin protein in patients with non-small cell lung cancer before and after chemotherapy. Tianjin Pharm 2018;30:38-40.
18. Wang SS. Professor Zhongying Zhou’s clinical experience in the treatment of lung cancer from phlegm and heat and the anti-tumor experiment of Yifei Jiedu decoction. Najiing J Chin Med 2017.
19. Yang XZ, Zhang YY, Long SQ, Zhou YZ, Li JH, Wu WY. The gefitinib-sensitivity enhancing effects of FZKA decoction on H1650 and A549 cells via MET/PI3K. Guangdong Med J 2018;39:3002-9.
20. Shi MY, Lu XL, Xiong SH, Shi YR, Zhang MJ, Xu HB. Advances in anti-tumor pharmacology research of Scutellaria. World Chin Med 2016;11:741-3.
21. Wu Y, Mo SR, Zhang X. Effect of Astragalus injection on proliferation of lung cancer A549 cells. J Med Mod Health 2018;34:713-5.
22. Deng XX, Li QS, Chen Z, Chen JY, Wang Y, Lin SQ, et al. Advances in anti-tumor mechanisms of Radix astragals. Tradit Chin Drug Res Clin Pharmacol 2016;27:307-13.
23. Chen H, Zhu CL, Jia YJ. Professor Yingjie Jia’s experience in treating jaundice with malignant tumors. Shaxian JTradit Chin Med 2015;36:718-9.
24. Wang H, Yang N, Tan J, Lin HQ, Jiang QH, Li PY, et al. Advances in research on chemical composition pharmacological action and clinical application of Atractyloides. Gansu Med J 2018;37:23-6.
25. Peng DX. Effect of Shashen decoction on the synergistic effect of chemotherapy in non-small cell lung cancer. Strait Pharm J 2018;30:21-2.
26. Yang ZG, Liang X, Zhao YQ. Effect of shashen maidaong decoction combined with chemotherapy on immune function and inflammatory reaction of patients with lung cancer of qi and yin deficiency. Chin J Exp Tradit Med Formula 2017;23:158-63.
27. Liu F. Experimental study on the treatment of lung cancer by Fritillaria fractus based on TCM syndrome theory. Chengdu J Tradit Chin Med 2012.
28. Liu WJ, Zhou FS, Li DH. Studies on p-glycoprotein inhibitor of multi-drugs resistant tumor in Fritillaria fructus. Chin J Surg Integr Tradit West Med 2015;21:379-82.
29. Zhang BY, Zheng YF, Pang XC, Zheng XJ, Wang J, Ding H, et al. Network pharmacology-based study of the active constituents of Chinese medicinal formula for anti-tumor mechanism. World Chin Med 2018;13:1997-2009.
30. Wu BC, Xu JX, Wang XS. Analysis of the treatment of lung cancer from Danxi Zhu’s academic thoughts of “pi, blood, sputum and stasis. Jiangsu J Tradit West Med 2015;21:379-82.
31. Feng WZ, Li GX, Zhang L, Gao L, Liu DQ, Li T, et al. The clinical application of five flavors theory of traditional Chinese medicine. Guangming J Chin Med 2016;31:2783-5.
32. Wu ZY. Preliminary analysis on distribution pattern of nature-flavor, clinical effects and pharmacological action of lung tropism herbs. Doctor 2018;3:53-4.