FLIPDIAL: A Generative Model for Two-Way Visual Dialogue

Daniela Massiceti
University of Oxford, UK
daniela@robots.ox.ac.uk

N. Siddharth
University of Oxford, UK
nsid@robots.ox.ac.uk

Puneet K. Dokania
University of Oxford, UK
puneet@robots.ox.ac.uk

Philip H.S. Torr
University of Oxford, UK
phst@robots.ox.ac.uk

Figure 1: Diverse answers generated by FLIPDIAL in the one-way visual dialogue (1VD) task. For a given time step (row), each column shows a generated answer to the current question. Answers are obtained by decoding a latent z_i sampled from the conditional prior – with conditions being the image, caption and dialogue history up until that time step.

Abstract

We present FLIPDIAL, a generative model for Visual Dialogue that simultaneously plays the role of both participants in a visually-grounded dialogue. Given context in the form of an image and an associated caption summarising the contents of the image, FLIPDIAL learns both to answer questions and put forward questions, capable of generating entire sequences of dialogue (question-answer pairs) which are diverse and relevant to the image. To do this, FLIPDIAL relies on a simple but surprisingly powerful idea: it uses convolutional neural networks (CNNs) to encode entire dialogues directly, implicitly capturing dialogue context, and conditional VAEs to learn the generative model. FLIPDIAL outperforms the state-of-the-art model in the sequential answering task (1VD) on the VisDial dataset by 5 points in Mean Rank using the generated answers. We are the first to extend this paradigm to full two-way visual dialogue (2VD), where our model is capable of generating both questions and answers in sequence based on a visual input, for which we propose a set of novel evaluation measures and metrics.

1. Introduction

A fundamental characteristic of a good human-computer interaction (HCl) system is its ability to effectively acquire and disseminate knowledge about the tasks and environments in which it is involved. A particular subclass of such systems, natural-language-driven conversational agents such as Alexa and Siri, have seen great success in a number of well-defined language-driven tasks. Even such widely adopted systems suffer, however, when exposed to less circumscribed, more free-form situations. Ultimately, an implicit requirement for the wide-scale success of such systems is the effective understanding of the environments and goals of the user – an exceedingly difficult problem in the general case as it involves getting to grips with a variety of sub-problems (semantics, grounding, long-range dependencies) each of which are extremely difficult problems in themselves. One avenue to ameliorate such issues is the incorporation of visual context to help explicitly ground the language used – providing a domain in which knowledge can be anchored and extracted from. Conversely, this also provides a way in which language can be used to characterise visual information in richer terms,
for example with sentences describing salient features in the image (referred to as “captioning”) [13, 15].

In recent years, there has been considerable interest in visually-guided language generation in the form of visual question-answering (VQA) [1] and subsequently visual dialogue [6], both involving the task of answering questions in the context of an image. In the particular case of visual dialogue, along with the image, previously seen questions and answers (i.e. the dialogue history) are also accepted, and a relevant answer at the current time produced. We refer to this one-sided or answer-only form of visual dialogue as one-way visual dialogue (1VD). Inspired by these models and aiming to extend their capabilities, we establish the task of two-way visual dialogue (2VD) whereby an agent must be capable of acting as both the questioner and the answerer.

Our motivation for this is simple – AI agents need to be able to both ask questions and answer them, often interchangeably, rather do either one exclusively. For example, a vision-based home-assistant (e.g. Amazon’s Alexa) may need to ask questions based on her visual input (“There is no toilet paper left. Would you like me to order more?”) but may also need to answer questions asked by humans (“Did you order the two-ply toilet paper?”). The same question-answer capability is true for other applications. For example, with aids for the visually-impaired, a user may need the aBot given the image. While this sets up the interesting dialogue, we reserve a thorough comparison to Das et.al. [7] present a Reinforcement Learning based model to do 1VD, where they instantiate two separate agents, one each for questioning and answering. Crucially, the two agents are given different information – with one (QBot) given the caption, and the other (ABot) given the image. While this sets up the interesting task of performing image retrieval from natural-language descriptions, it is also fundamentally different from having a single agent perform both roles. Jain et.al. [12] explore a complementary task to VQA [1] where the goal is instead to generate a (diverse) set of relevant questions given an image. In their case, however, there is no dependence on a history of questions and answers. Finally, we note that Zhao et.al. [27] employ a similar model structure to ours, using a CVAE to model dialogue, but condition their model on discourse-based constraints for a purely linguistic (rather than visuo-linguistic) dataset. The tasks we target, our architectural differences (CNNs), and the dataset and metrics we employ are distinct.

Our primary contributions in this work are therefore:

- A fully-generative, convolutional framework for visual dialogue that outperforms state-of-the-art models on sequential question answering (1VD) using the generated answers, and establishes a baseline in the challenging two-way visual dialogue task (2VD).
- Evaluation using the predicted (not ground-truth) dialogue – essential for real-world conversational agents.
- Novel evaluation metrics for generative models of two-way visual dialogue to quantify answer-generation quality, question relevance, and the models’ generative capacity.

2. Preliminaries

Here we present a brief treatment of the preliminaries for deep generative models – a conglomerate of deep neural networks and generative models. In particular, we discuss the variational auto-encoder (VAE) [17] which given a dataset \mathcal{X} with elements $x \in \mathcal{X}$, simultaneously learns i) a variational approximation $q_\phi(z | x)$ to the unknown posterior distribution $p_\theta(z | x)$ for latent variable z, and ii) a generative model $p_\theta(x, z)$ over data and latent variables. These are both highly attractive prospects as the ability to approximate the posterior distribution helps amortise inference for any given data point x over the entire dataset \mathcal{X}, and learning a generative model helps effectively capture the underlying abstractions in the data. Learning in this model is achieved through a unified objective, involving the marginal likelihood (or evidence) of the data, namely:

$$
\log p_\theta(x) = \mathbb{D}_{KL}(q_\phi(z | x) \parallel p_\theta(z | x)) + \mathbb{E}_{q_\phi(z|x)}[\log p_\theta(x, z) - \log q_\phi(z | x)] \\
\geq \mathbb{E}_{q_\phi(z|x)}[\log p_\theta(x|z)] - \mathbb{D}_{KL}(q_\phi(z|x) \parallel p_\theta(z))
$$

The unknown true posterior $p_\theta(z | x)$ in the first Kullback-Leibler (KL) divergence is intractable to compute making the objective difficult to optimise directly. Rather a lower-bound

\[1\] Following the literature, the terms recognition model or inference network may also be used to refer to the posterior variational approximation.
of the marginal log-likelihood \(\log p_0(x) \), referred to as the evidence lower bound (ELBO), is maximised instead.

By introducing a condition variable \(y \), we capture a conditional posterior approximation \(q_\phi(z \mid x, y) \) and a conditional generative model \(p_\theta(x \mid z, y) \), thus deriving the CVAE [24]. Similar to Eq. (1), the conditional ELBO is:

\[
\log p_\theta(x \mid y) \geq E_{q_\phi(z \mid x, y)}[\log p_\theta(x \mid z, y)] - D_{KL}(q_\phi(z \mid x, y) \parallel p_\theta(z \mid y)) \tag{2}
\]

where the first term is referred to as the reconstruction or negative cross entropy (CE) term, and the second, the regularisation or KL divergence term. Here too, similar to the VAE, \(q_\phi(z \mid x, y) \) and \(p_\theta(z \mid y) \) are typically taken to be isotropic multivariate Gaussian distributions, whose parameters \((\mu_\phi, \sigma^2_\phi) \) and \((\mu_\theta, \sigma^2_\theta) \) are provided by deep neural networks (DNNs) with parameters \(\phi \) and \(\theta \), respectively. The generative model likelihood \(p_\theta(x \mid z, y) \), whose form varies depending on the data type – Gaussian or Laplace for images and Categorical for language models – is also parametrised similarly. In this work, we employ the CVAE model for the task of eliciting dialogue given contextual information from vision (images) and language (captions).

3. Generative Models for Visual Dialogue

In applying deep generative models to visual dialogue, we begin by characterising a preliminary step toward it, VQA. In VQA, the goal is to answer a single question in the context of a visual cue, typically an image. The primary goal for such a model is to ensure that the elicited answer conforms to a stronger notion of relevance than simply answering the given question – it must also relate to the visual cue provided. This notion can be extended to one-way visual dialogue (1VD) which we define as the task of answering a sequence of questions contextualised by an image (and a short caption describing its contents), similar to [6]. Being able to exclusively answer questions, however, is not fully encompassing of true conversational agents. We therefore extend 1VD to the more general and realistic task of two-way visual dialogue (2VD). Here the model must elicit not just answers given questions, but questions given answers as well – generating both components of a dialogue, contextualised by the given image and caption. Generative 1VD and 2VD models introduce stochasticity in the latent representations.

As such, we begin by characterising our generative approach to 2VD using a CVAE. For a given image \(i \) and associated caption \(c \), we define a dialogue as a sequence of question-answer pairs \(d_{1:T} = \langle (q_t, a_t) \rangle_{t=1}^T \), simply denoted \(d \) when sequence indexing is unnecessary. Additionally, we denote a dialogue context \(h \). When indexed by step as \(h_t \), it captures the dialogue subsequence \(d_{1:t} \).

With this formalisation, we characterise a generative model for 2VD under latent variable \(z \) as \(p_\theta(d, z \mid i, c, h) = p_\theta(d \mid z, i, c, h) p_\theta(z \mid i, c, h) \), with the corresponding recognition model defined as \(q_\phi(z \mid d, i, c, h) \). Note that with relation to Eq. (2), data \(x \) is dialogue \(d \) and the condition variable is \(y = \{i, c, h\} \), giving:

\[
\log p_\theta(d \mid i, c, h) \\
\geq E_{q_\phi(z \mid d, i, c, h)}[\log p_\theta(d \mid z, i, c, h)] - D_{KL}(q_\phi(z \mid d, i, c, h) \parallel p_\theta(z \mid i, c, h)), \tag{3}
\]

with the graphical model structures shown in Fig. 2.

![Figure 2: Left: Conditional recognition model and Right: conditional generative model for 2VD.](image)

The formulation in Eq. (3) is general enough to be applied to single question-answering (VQA) all the way to full two-way dialogue generation (2VD). Taking a step back from generative 2VD, we can re-frame the formulation for generative 1VD (i.e. sequential answer generation) by considering the generated component to be the answer to a particular question at step \(t \), given context from the image, caption and the sequence of previous question-answers. Simply put, this corresponds to the data \(x \) being the answer \(a_t \), conditioned on the image, its caption, the dialogue history to \(t-1 \), and the current question, or \(y = \{i, c, h_{t-1}, q_t\} \). For simplicity, we denote a compound context as \(h_t = \{h_{t-1}, q_t\} \) and reformulate Eq. (3) for 1VD as:

\[
\log p_\theta(d \mid i, c, h) = \sum_{t=1}^T \log p_\theta(a_t \mid i, c, h_t), \\
\log p_\theta(a_t \mid i, c, h_t) \\
\geq E_{q_\phi(z \mid a_t, i, c, h_t)}[\log p_\theta(a_t \mid z, i, c, h_t)] - D_{KL}(q_\phi(z \mid a_t, i, c, h_t) \parallel p_\theta(z \mid i, c, h_t)), \tag{4}
\]

with the graphical model structures shown in Fig. 3.

![Figure 3: Left: Conditional recognition model and Right: conditional generative model for 1VD.](image)

Our baseline [6] for the 1VD model can also be represented in our formulation by taking the variational posterior and generative prior to be conditional Dirac-Delta distributions. That is, \(q_\phi(z \mid a_t, i, c, h_t^+) = \delta(z \mid i, c, h_t^+) \). This transforms the objective from Eq. (4)
by a) replacing the expectation of the log-likelihood over the recognition model by an evaluation of the log-likelihood for a single encoding (one that satisfies the Dirac-Delta), and b) ignoring the D_{KL} regulariser, which is trivially 0. This computes the marginal likelihood directly as just the model likelihood $\log p_\theta(a_t \mid z, i, c, h_t^*)$, where $z \sim \delta(z \mid i, c, h_t^*)$.

Note that while such models can “generate” answers to questions by sampling from the likelihood function, we typically don’t call them generative since they effectively make the encoding of the data and conditions fully deterministic. We explore and demonstrate the benefit of a fully generative treatment of $1VD$ in §4.3. It also follows trivially that the basic VQA model (for single question-answering) itself can be obtained from this 1VD model by simply assuming there is no dialogue history (i.e. step length $T = 1$).

3.1. “Colouring” Visual Dialogue with Convolutions

FLIPDIAL’S convolutional formulation allows us to implicitly capture the sequential nature of sentences and sequences of sentences. Here we introduce how we encode questions, answers, and whole dialogues with CNNs.

We begin by noting the prevalence of recurrent approaches (e.g. LSTM [10], GRU [5]) in modelling both visual dialogue and general dialogue to date [6, 7, 8, 12, 27]. Typically recurrence is employed at two levels – at the lower level to sequentially generate the words of a sentence (a question or answer in the case of dialogue), and at a higher level to sequence these sentences together into a dialogue.

Recently however, there has been considerable interest in convolutional models of language [3, 11, 14, 21], which have shown to perform at least as well as recurrent models, if not better, on a number of different tasks. They are also computationally more efficient, and typically suffer less from issues relating to exploding or vanishing gradients for which recurrent networks are known [19].

In modelling sentences with convolutions, the tokens (words) of the sentence are transformed into a stack of fixed-dimensional embeddings (e.g. using word2vec [18] or Glove [20], or those learned for a specific task). For a given sentence, say question q_t, this results in an embedding $q_t \in \mathbb{R}^{E \times L}$ for embedding size E and sentence length L, where L can be bounded by the maximum sentence length in the corpus, with padding tokens employed where required. This two-dimensional stack is essentially a single-channel ‘image’ on which convolutions can be applied in the standard manner in order to encode the entire sentence. Note this similarly applies to the answer a_t and caption c, producing embedded a_t and c, respectively.

We then extend this idea of viewing sentences as ‘images’ to whole dialogues, producing a multi-channel language embedding. Here, the sequence of sentences itself can be seen as a stack of (a stack of) word embeddings $d \in \mathbb{R}^{E \times L \times 2T}$, where now the number of channels accounts for the number of questions and answers in the dialogue. We refer to this process as “colouring” dialogue, by analogy to the most common meaning given to image channels – colour.

Our primary motivation for adopting a convolutional approach here is to explore its efficacy in extending from simpler language tasks [11, 14] to full visual dialogue. We hence instantiate the following models for 1VD and 2VD:

Answer [1VD]: We employ the CVAE formulation from Eq. (4) and Fig. 3 to iteratively generate answers, conditioned on the image, caption and current dialogue history.

Block [1VD, 2VD]: Using the CVAE formulation from Eq. (3) and Fig. 2 we generate entire blocks of dialogue directly (i.e. $h = \emptyset$ since dialogue context is implicit rather than explicit). We allow the convolutional model to implicitly supply the context instead. We consider this 2VD, although this block architecture can also generate iteratively, and can be evaluated on 1VD (see §4.2).

Block Auto-Regressive [1VD, 2VD]: We introduce an auto-regressive component to our generative model in the same sense as recent auto-regressive generative models for images [9, 25]. We augment the Block model by feeding its output through an auto-regressive (AR) module which explicitly enforces sequentiality in the generation of the dialogue blocks. This effectively factorises the likelihood in Eq. (3) as $p_\theta(d \mid z, i, c, h) = p_\theta(d_1 \mid z, i, c, h) \prod_{n=2}^N p_\theta(d^n \mid d^{1:n-1})$ where N is the number of AR layers, and d_1 is the (intermediate) output from the standard Block model. Note, again $h = \emptyset$, and d^n refers to an entire dialogue at the n-th AR layer (rather than the t-th dialogue exchange as is denoted by d_t).

4. Experiments

We present an extensive quantitative and qualitative analysis of our models’ performance in both 1VD, which requires answering a sequence of image-contextualised questions, and full 2VD, where both questions and answers must be generated given a specific visual context. Our proposed generative models are denoted as follows:

- **A** – answer architecture for 1VD
- **B** – block dialogue architecture for 1VD & 2VD
- **B_{AR}** – auto-regressive extension of B for 1VD & 2VD

A is a generative convolutional extension of our baseline [6] and is used to validate our methods against a standard benchmark in the 1VD task. **B** and **B_{AR},** like **A,** are generative, but are extensions capable of doing full dialogue generation, a much more difficult task. Importantly, **B** and **B_{AR}** are flexible in that despite being trained to generate a block of questions and answers ($h = \emptyset$), they can be evaluated iteratively for both 1VD and 2VD (see §4.2). We summarise the data and condition variables for all models in Tab. 1. To evaluate performance on both tasks, we propose novel evaluation metrics which augment those of our baseline [6]. To the best of our knowledge, we are the first to report models
Table 1: Data (x) and condition (y) variables for models A and B/B_{AR} for 1VD and 2VD. Models B/B_{AR} can be evaluated as a block or iteratively (see §4.2), accepting ground-truth (q/a) or predicted (\hat{q}/\hat{a}) dialogue history (see Tab. 2).

Task	Model	Train	Evaluate	Eval method	
1VD	A	a_t	i, c, h^i_t	d	iterative
	B/B_{AR}	d	i, c	$d-q_a$	iterative
2VD	B/B_{AR}	d	i, c	$d-q_a$	block iterative

that can generate both questions and answers given an image and caption, a necessary step toward a truly conversational agent. Our key results are:

- We set state-of-the-art results in the 1VD task on the VisDial dataset, improving the mean rank of the generated answers by 5.66 (Tab. 3, S_{n2}) compared to Das et al. [6].
- Our block models are able to generate both questions and answers, a more difficult but more realistic task (2VD).
- Since our models are generative, we are able to show highly diverse and plausible question and answer generations based on the provided visual context.

Datasets: We use the VisDial [6] dataset (v0.9) which contains Microsoft COCO images each paired with a caption and a dialogue of 10 question-answer pairs. The train/test split is 82, 783/40, 504 images, respectively.

Baseline: Das et al. [6]’s best model, MN−QIH−G, is a recurrent encoder-decoder architecture which encodes the image i, the current question q_t, and the attention-weighted ground truth dialogue history $d_{1:t-1}$. The output conditional likelihood distribution is then used to (token-wise) predict an answer. Our A model is a generative and convolutional extension, evaluated using existing ranking-based metrics [6] on the generated and candidate answers. We also (iteratively) evaluate our B/B_{AR} for 1VD as detailed in §4.2 (see Tab. 3).

4.1. Network architectures and training

Following the CVAE formulation (§3) and its convolutional interpretation (§3.1), all our models (A, B and B_{AR}) have three core components: an encoder network, a prior network and a decoder network. Fig. 4 (top) shows the encoder and prior networks, and Fig. 4 (middle, bottom) show the standard and auto-regressive decoder networks.

Prior network The prior neural network, parametrised by θ, takes as input the image i, the caption c and the dialogue context. Referring to Table 1, for model A, recall $y = \{i, c, h^i_t\}$ where the context h^i_t is the dialogue history up to $t-1$ and the current question q_t. For models B/B_{AR}, $y = \{i, c\}$ (note $h = \emptyset$). To obtain the image representation, we pass i through VGG-16 [23] and extract the penultimate (4096-d) feature vector. We pass caption c through a pre-trained word2vec [18] module (we do not learn these word embeddings). If $h \neq \emptyset$, we pass the one-hot encoding of

Figure 4: Convolutional (top) conditional encoder and prior architecture, (middle) conditional decoder, and (bottom) auto-regressive conditional decoder architectures, applying to both one- and two-way visual dialogue (1VD and 2VD).

each word through a learnable word embedding module and stack these embeddings as described in §3.1. We encode these condition variables convolutionally to obtain y, and pass this through a convolutional block to obtain μ_q and $\log \sigma^2_q$, the parameters of the conditional prior $p(y | \sigma^2_q)$.

Encoder network The encoder network, parametrised by ϕ, takes x and the encoded condition y (obtained from the prior network) as input. For model A, $x = a_t$, while for $B/B_{AR}, x = d = ((q_t, a_t))_{t=1}^T$. In all models, x is transformed through a word-embedding module into a single-channel answer ‘image’ for A, or a multi-channel image of alternating questions and answers for B/B_{AR}. The embedded output is then combined with y to obtain μ_q and $\log \sigma^2_q$, the parameters of the conditional latent posterior $q_\phi(z | x; y)$.

Decoder network The decoder network takes as input a latent z and the encoded condition y. The sample is transpose-convolved, combined with y and further transformed to obtain an intermediate output volume of dimension $E \times L \times M$, where E is the word embedding dimension, L is the maximum sentence length and M is the number of dialogue entries in x ($M = 1$ for A, $M = 2T$ for B variants). Following this, A and B employ a standard linear layer, projecting the E dimension to the vocabulary size V (Fig. 4 (middle)), whereas B_{AR} employs an autoregressive module followed by this standard linear layer (Fig. 4 (bottom)). At train time, the V-dimensional output is softmaxed and the CE term of the ELBO computed. At test time, the
Table 2: Iterative evaluation of $\mathbf{B/BA}_R$ for 1VD and 2VD. Under each condition, the input dialogue block is filled with ground-truth or predicted history (q/a or \hat{q}/\hat{a}, respectively), while future entries are filled with the PAD token.

	1VD	2VD	
d-q_a	$\langle t \rangle$	(q, a)	(\hat{q}, \hat{a})
d-q_a	$\langle t \rangle$	(q, PAD)	(\hat{q}, PAD)
d-q_a	$> t$	(PAD, PAD)	(PAD, PAD)

Table 3: 1VD evaluation of \mathbf{A} and $\mathbf{B/BA}_R$ on VisDial (v0.9) test set. Results show ranking of answer candidates based on the score functions S_M and S_{w_2v}.

Score function	Method	MR	MRR	R@1	R@5	R@10	
S_M	RL-QA/fAct [7]	21.13	0.4370	53.67	60.48		
	MN-QIR-G [6]	17.06	0.5259	42.29	62.85	68.88	
	A (LW)	23.87	0.4220	50.48	53.78	57.52	
	A (ELBO)	20.38	0.4549	34.08	56.18	61.11	
	MN-QIR-G [6]	31.31	0.2215	16.01	22.42	34.76	
	A (RECON)	15.36	0.4952	41.77	54.67	66.90	
	A (GEN)	25.65	0.3227	25.88	33.43	47.75	
S_{w_2v}	d-q_a	\mathbf{B}	28.45	0.2927	23.50	29.11	42.29
	\mathbf{B}_{AR}	25.87	0.3553	29.40	36.79	51.19	
	\mathbf{B}_{AR}	0.3227	25.88	33.43	47.75		
	d-q_a	\mathbf{B}_{AR}	30.57	0.2188	16.06	20.88	35.37
	\mathbf{B}_{AR}	29.10	0.2864	22.52	29.01	48.43	

4.3. Evaluation and Analysis

We evaluate our \mathbf{A}, \mathbf{B}, and $\mathbf{B/BA}_R$ models on the 1VD and 2VD tasks. Under 1VD, we predict an answer with each time step, given an image, caption and the current dialogue history (§4.3.1 and Tab. 3), while under 2VD, we predict both questions and answers (§4.3.2 and Tab. 4). All three models are able to perform the first task, while only \mathbf{B} and $\mathbf{B/BA}_R$ are capable of the second task.

4.3.1 One-Way Visual Dialogue (1VD) task

We evaluate the performance of \mathbf{A} and $\mathbf{B/BA}_R$ on 1VD using the candidate ranking metric of [6] as well as an extension of this which assesses the generated answer quality (Tab. 3). Fig. 1 and Fig. 5 show our qualitative results for 1VD.

Candidate ranking by model log-likelihood [S_M]

The VisDial dataset [6] provides a set of 100 candidate answers $\{a_t\}_{t=1}^{100}$ for each question-answer pair at time t per image. The set includes the ground-truth answer a_t as well as similar, popular, and random answers. Das et al. [6] rank these candidates using the log-likelihood value of each under
isn’t sunny? I can’t tell about it in this image.
Do you know what she look like?
How old is the model?
What color is her hair?
Is it raining?
What color is the shirt?
Is it nice outside?
When was the meeting?
Is it rainy now?
What color is her pants?
Is it new?

Question	Ground-truth answer	A	B	C
How old is the girl?	Young	Yes	Yes	Yes
What is her skin type?	Pale	Yes	Yes	Yes
Is it sunny?	No	Yes	Yes	Yes
What color is her hair?	Brown	Yes	Yes	Yes
Is the girl smiling?	Yes	Yes	Yes	Yes
In what city is the girl?	New York	Yes	Yes	Yes
Is it day or night?	Daytime	Yes	Yes	Yes
What color are her eyes?	Blue	Yes	Yes	Yes
Is it rainy?	No	Yes	Yes	Yes
What color is her shirt?	White	Yes	Yes	Yes
Is it new?	Yes	Yes	Yes	Yes
What color is her hair?	Blonde	Yes	Yes	Yes
Is it new?	Yes	Yes	Yes	Yes

Figure 5: Example generated answers from A’s conditional prior – conditioned on an image, caption, question and dialogue history. See supplement for further examples.

their model (conditioned on the image, caption and dialogue history, including the current question), and then observe the position of the ground-truth answer (closer to 1 is better). This position is averaged over the dataset to obtain the Mean Rank (MR). In addition, we obtain the Mean Reciprocal Rank (MRR; 1/MR) and recall rates at k = {1, 5, 10} are computed.

To compare against their baseline, we rank the 100 candidate answers by estimates of their marginal likelihood from A. This can be done with i) the conditional ELBO (Eq. (4)), and by ii) likelihood weighting (LW) in the conditional generative model \(p_0(a_i \mid i, c, h^i_t) = \int p_0(a_i, z \mid i, c, h^i_t)dz = \int p_0(z \mid i, c, h^i_t)p_0(a \mid z, i, c, h^i_t)dz \). Ranking by both these approaches is shown in the S3M section of Tab. 3, indicating that we are comparable to the state of the art in discriminative models of sequential VQA [6, 7].

Candidate ranking by word2vec cosine distance \([S_{w2v}]\)
The evaluation protocol of [6] scores and ranks a given set of candidate answers, without being a function of the actual answer predicted by the model, \(\hat{a}_t \). This results in the rank of the ground-truth answer candidate reflecting its score under the model relative to the rest of the candidates’ scores, rather than capturing the quality of the answer output by the model, which is left unobserved. To remedy this, we instead score each candidate by the cosine distance between the word2vec embedding of the predicted answer \(\hat{a}_t \) and that candidate’s word2vec embedding. We take the embedding of a sentence to be the average embedding over word tokens following Arora et al. [2]. In addition to accounting for the predicted answer, this method also allows semantic similarities to be captured such that if the predicted answer is similar (in meaning and/or words generated) to the ground-truth candidate answer, then the cosine distance will be small, and hence the ground-truth candidate’s rank closer to 1.

We report these numbers for A, iteratively-evaluated \(B/BAR \), and also our baseline model \(MN-QIH-G [6] \), which we re-evaluate using the word2vec cosine distance ranking (see \(S_{w2v} \) in Tab. 3). In the case of A (GEN), we evaluate answer generations from A whereby we condition on \(i, c \) and \(h^i_t \) via the prior network, sample \(z \sim N(z; \mu_p, \sigma_p^2) \) and generate an answer via the decoder network. Here we show an improvement of 5.66 points in MR over the baseline. On the other hand, A (RECON) evaluates answer reconstructions in which \(z \) is sampled from \(N(z; \mu_q, \sigma_q^2) \) (where ground-truth answer \(a_t \) is provided). We include A (RECON) merely as an “oracle” autoencoder, observing its good ranking performance, but do not explicitly compare against it.

We also note that the ranking scores of the block models are worse (by 3–4 MR points) than those of A. This is expected since A is explicitly trained for 1VD which is not the case for B/BAR. Despite this, the performance gap between A (GEN) and B/BAR (with \(d=qa \)) is not large, bolstering our iterative evaluation method for the block architectures. Note finally that the B/BAR models perform better under \(d=qa \) than under \(d=q\hat{a} \) (by 2–3 MR points). This is also expected as answering is easier with access to the ground-truth dialogue history rather than when only the previously predicted answers (and ground-truth questions) are provided.

4.3.2 Two-way Visual Dialogue (2VD) task
Our flexible CVAE formulation for visual dialogue allows us to move from 1VD to the generation of both questions and answers (2VD). Despite this being inherently more challenging, B/BAR are able to generate diverse sets of questions and answers contextualised by the given image and caption. Fig. 6 shows snippets of our two-way dialogue generations.

In evaluating our models for 2VD, the candidate ranking protocol of [6] which relies on a given question to rank the answer candidates, is no longer usable when the questions themselves are being generated. This is the case for B/BAR block evaluation, which has no access to the ground-truth dialogue history, and the \(d=q\hat{a} \) iterative evaluation, when the full predicted history of questions and answers is provided (Tab. 2). We therefore look directly to the CE and KL terms of the ELBO as well as propose two new metrics, \(sim_{c,q} \) and \(sim_{c,s} \), to compare our methods in the 2VD task:

- **Question relevance** (\(sim_{c,q} \)). We expect a generated question to query an aspect of the image, and we use the presence of semantically similar words in both the question and image caption as a proxy of this. We compute the cosine distance between the (average) word2vec embedding of each predicted question \(q_t \) and that of the caption
for the harder task (without dialogue context). We also observe that dispersion increases with number of AR layers, suggesting AR improves the diversity of the model outputs, and avoids simply recovering data observed at train time.

While the proposed metrics provide a novel means to evaluate dialogue in a generative framework, like all language-based metrics, they are not complete. The question-relevance metric, sim_{q}, can stagnate, and neither metric precludes redundant or nonsensical questions. We intend for these metrics to augment the bank of metrics available to evaluate dialogue and language models. Further evaluation, including i) using auxiliary tasks, as in the image-retrieval task of [7], to drive and evaluate the dialogues, and ii) turning to human evaluators to rate the generated dialogues, can be instructive in painting a more complete picture of our models.

5. Conclusion

In this work we propose FLIPDIAL, a generative convolutional model for visual dialogue which is able to generate answers (1VD) as well as generate both questions and answers (2VD) based on a visual context. In the 1VD task, we set new state-of-the-art results with the answers generated by our model, and in the 2VD task, we are the first to establish a baseline, proposing two novel metrics to assess the quality of the generated dialogues. In addition, we propose and evaluate our models under a much more realistic setting for both visual dialogue tasks in which the predicted rather than ground-truth dialogue history is provided at test time. This challenging setting is more akin to real-world situations in which dialogue agents must be able to evolve with their predicted exchanges. We emphasize that research focus must be directed here in the future. Finally, under all cases, the sets of questions and answers generated by our models are qualitatively good: diverse and plausible given the visual context. Looking forward, we are interested in exploring additional methods for enforcing diversity in the generated questions and answers, as well as extending this work to explore recursive models of reasoning for visual dialogue.

Acknowledgements

This work was supported by the EPSRC, ERC grant ERC-2012-AdG 321162-HELIOS, EPSRC grant Seebibyte EP/M013774/1, EPSRC/MURI grant EP/N019474/1 and the Skye Foundation.
References

[1] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh. VQA: Visual Question Answering. In ICCV, 2015. 2
[2] S. Arora, Y. Liang, and T. Ma. A simple but tough-to-beat baseline for sentence embeddings. In ICLR, 2017. 7
[3] S. Bai, J. Kolter, and V. Koltun. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. CoRR, abs/1803.01271, 2018. 4
[4] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Jozefowicz, and S. Bengio. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349, 2015. 6
[5] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014. 4
[6] A. Das, S. Kottur, K. Gupta, A. Singh, D. Yadav, J. M. Moura, D. Parikh, and D. Batra. Visual Dialog. In CVPR, 2017. 2, 3, 4, 5, 6, 7, 10, 12
[7] A. Das, S. Kottur, J. M. Moura, S. Lee, and D. Batra. Learning cooperative visual dialog agents with deep reinforcement learning. arXiv preprint arXiv:1703.06585, 2017. 2, 4, 6, 7, 8
[8] A. Das, S. Kottur, J. M. Moura, S. Lee, and D. Batra. Learning cooperative visual dialog agents with deep reinforcement learning. In ICCV, 2017. 4
[9] I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taiga, F. Visin, D. Vazquez, and A. Courville. Pixelvae: A latent variable model for natural images. arXiv preprint arXiv:1611.05013, 2016. 4, 6, 12
[10] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, Nov. 1997. 4
[11] B. Hu, Z. Lu, H. Li, and Q. Chen. Convolutional neural network architectures for matching natural language sentences. In NIPS, pages 2042–2050, 2014. 2, 4
[12] U. Jain, Z. Zhang, and A. Schwing. Creativity: Generating diverse questions using variational autoencoders. arXiv preprint arXiv:1704.03493, 2017. 2, 4
[13] J. Johnson, A. Karpathy, and L. Fei-Fei. Densecap: Fully convolutional localization networks for dense captioning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016. 2
[14] N. Kalchbrenner, E. Grefenstette, P. Blunsom, D. Kartsaklis, N. Kalchbrenner, M. Sadırzadeh, N. Kalchbrenner, P. Blunsom, N. Kalchbrenner, and P. Blunsom. A convolutional neural network for modelling sentences. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pages 212–217. Association for Computational Linguistics, 2014. 2, 4
[15] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3128–3137, 2015. 2
[16] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR), 2014. 6
[17] D. P. Kingma and M. Welling. Auto-encoding Variational Bayes. In Proceedings of the 2nd International Conference on Learning Representations (ICLR), 2014. 2, 11
[18] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, pages 3111–3119, 2013. 4, 5, 10
[19] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. In International Conference on Machine Learning, pages 1310–1318, 2013. 4
[20] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In EMNLP, pages 1532–1543, 2014. 4
[21] N.-Q. Pham, G. Kruszewski, and G. Boleda. Convolutional neural network language models. In EMNLP, pages 1153–1162, 2016. 2, 4
[22] PyTorch, 2017. 6
[23] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR, abs/1409.1556, 2014. 5, 10
[24] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep conditional generative models. In NIPS, pages 3483–3491, 2015. 2, 3
[25] A. van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves, et al. Conditional image generation with pixelcnn decoders. In Advances in Neural Information Processing Systems, pages 4790–4798, 2016. 4
[26] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural networks. In NIPS, 2016. 6, 12
[27] T. Zhao, R. Zhao, and M. Eskenazi. Learning discourse-level diversity for neural dialog models using conditional variational autoencoders. arXiv preprint arXiv:1703.10960, 2017. 2, 4
A. Glossary

block dialogue/architecture Models B/B_{AR} are built and trained for the task of two-way visual dialogue (2VD) with data $x = d$ and condition variable $y = \{i, c\}$. Since d refers to the whole dialogue sequence/block $\langle (q_i, a_i) \rangle^T_{i=1}$ we refer to B/B_{AR} as block architectures.

generation This represents the scenario when only the condition variable y is available at test time. In this case, the decoder network receives a sample $z \sim p_\theta(z \mid y)$, a multivariate Gaussian parametrised by μ_p and exponentiated $\log \sigma_p^2$ learned using the prior network. We call the decoded output d a generation.

reconstruction Differing from a generation, both y and d are available. The decoder network receives a sample $z \sim q_\phi(z \mid d, y)$, a multivariate Gaussian parametrised by μ_q and exponentiated $\log \sigma_q^2$ learned using the encoder network. We call the decoded output d a reconstruction. The reconstruction pipeline is used during training when the input d and the condition variable y are available. Note, this pipeline is also used when B/B_{AR} are evaluated iteratively (see §4.2).

B. Extended Quantitative Results on 1VD task

Tab. 3 in the main paper evaluates A and B/B_{AR} in the task of one-way visual dialogue (1VD). Here we shed light on these numbers and the metrics used to obtain them. We also present a more extensive quantitative analysis of B/B_{AR} in the 1VD task (see Tab. 5).

Evaluating B/B_{AR} on 1VD We extend Tab. 3 with Tab. 5, which further compares B/B_{AR} under the iterative evaluation settings of $d-qa$ and $d-qa$, using the CE and KL terms of the ELBO and our two new metrics, $\text{sim}_{c,q}$ and sim_{c}. We observe that B/B_{AR} ($d-qa$) shows superior performance of around 7-10 points in MR over B/B_{AR} ($d-qa$), and also improves in MRR and recall rates. This is expected since the ground-truth rather than predicted answers are included in the dialogue history (along with the ground-truth questions). The metrics $\text{sim}_{c,a,p,q}$ and sim_{c}, on the other hand, show very little performance difference across the two evaluation settings. We also note that ranking performance is worse when both image i and caption c are excluded from condition variable. This does not, however, correlate with the CE and KL terms of the loss which are lower for a condition-less setting. We attribute this to the model being transformed from a CVAE to a VAE, hence lifting the burden of capturing the conditional posterior distribution (i.e. the KL is now between an unconditional $q_\phi(z \mid x)$ and $\mathcal{N}(0, 1)$). Interestingly, however, excluding either the image or the caption achieves similar performance to when both are included, indicating that the caption acts as a good textual proxy of the image (a reassurance of our $\text{sim}_{c,q}$ metric).

C. Extended Quantitative Results on 2VD task

Extending Tab. 4 in the main paper, Tab. 6 here shows results for B/B_{AR} trained with permutations of the image i and caption c (denoted by $+$ if included in the condition, and $-$ otherwise). We note the decrease in CE and KL as conditions (i, c) are excluded from the model. This is expected since the task of dialogue generation is made simpler without the constrains of an explicit visual/textual condition.

D. Network architectures and training

The following section provides detailed descriptions of the architectures of our models A, B and B_{AR}. The descriptions are dense but thorough. We also include further details of our training procedure. Where not explicitly noted, each convolutional layer is proceeded by a batch normalisation layer (with momentum = 0.001 and learnable parameters) and a ReLU activation.

Prior network The prior neural network, parametrised by θ, takes as input the image i, the caption c and the dialogue context. For the model A, this context is h_t^i, containing the dialogue history up to $t-1$ and the current question q_t. For models B/B_{AR}, the dialogue context is the null set ($h = \emptyset$). To obtain the image representation, we scale and centre-cropped each image to $3 \times 224 \times 224$ and feed it through VGG-16 [23]. The output of the penultimate layer is extracted and ℓ_2-normalised (as in [6]) to obtain a 4096-dimensional image feature vector. For the caption, we pass c through a pre-trained word2vec [18] model (we do not learn these word embeddings) to obtain $\hat{c} \in \mathbb{R}^{300 \times L}$ where L is the maximum sentence length ($L = 64$). For the dialogue context (relevant only in the case of A) we pass the one-hot encoding of each word through a learnable word embedding module. We stack these embeddings as described in §3.1 of the main paper to obtain $h_t^c \in \mathbb{R}^{E \times L \times K}$, where E is the word embedding dimension ($E = 256$), L is the maximum sentence length ($L = 64$) and K is the number of dialogue entries at time t. We encode these inputs convolutionally to obtain y (the encoded condition) as follows: \hat{c} is passed through a convolutional block (output size $64 \times 8 \times 8$) and concatenated with the image feature vector (reshaped to $64 \times 8 \times 8$). The concatenated output is passed through a convolutional block to obtain the jointly encoded image-caption (output size $64 \times 8 \times 8$). If $h_0 \neq \emptyset$, then the context is passed through a convolutional block (output size $64 \times 8 \times 8$) and is concatenated with the encoded image-caption and passed through yet another convolutional block to get the encoded image-caption-context (output size $64 \times 8 \times 8$). We call this the encoded condition y. The encoded condition y is then passed through a further convolutional block (output size $256 \times 4 \times 4$) followed by two final convolutional layers (in parallel) to obtain μ_p and $\log \sigma_p^2$, respectively, the parameters of the conditional prior $p_\theta(z \mid y)$. At this stage, μ_p and
log σ^2_q are both of size $512 \times 1 \times 1$ (the latent dimensionality). At test time, a sample is obtained via $z \sim \mathcal{N}(z; \mu_p, \sigma^2_q)$ and is passed to the decoder in order to generate a sample a_t (for A) or d (for B/B_{AR}).

Encoder network The encoder network, parametrised by ϕ, takes x as input along with the encoded condition, y, obtained from the prior network. For model A, $x = a_t$ and $y = \{i, c, h^c_t\}$. For models B/B_{AR}, $x = d = \{(q_t, a_t)\}_{t=1}^T$ and $y = \{i, c\}$. In all models, x is passed through a learnable word embedding module, and the word embeddings stacked (see §3.1 in the main paper) to obtain $\hat{x} \in \mathbb{R}^{E \times L \times M}$, where $E = 256$, $L = 64$ and M is the number of entries in x (for A, $M = 1$ and for B/B_{AR}, $M = 2T$). In this way, we transform x into a single-channel answer ‘image’ in the case of A, and a multi-channel image of alternating questions and answers in the case of B/B_{AR}.

\hat{x} is then passed through a convolutional block (output size $64 \times 8 \times 8$), the output of which is concatenated with y and forwarded through another convolutional block (output size $256 \times 4 \times 4$). This output is forwarded through two final convolutional layers (in parallel) to obtain μ_q and $\log \sigma^2_q$, the parameters of the conditional latent posterior $q_\phi(z \mid x, y)$. Here μ_q and $\log \sigma^2_q$ are both of size $512 \times 1 \times 1$.

At train time, the KL divergence term of the ELBO is computed using $\{\mu_p, \sigma_p\}$ (from the encoder network) and $\{\mu_q, \sigma_q\}$ (from the prior network).

Decoder network The decoder network (for simplicity, the parameters of the prior and decoder network are subsumed into θ) takes as input a latent z and the encoded condition y. During training, z is sampled from a Gaussian parametrised by the μ_q and exponentiated $\log \sigma^2_q$ outputs of the encoder network. This distribution is $q_\phi(z \mid x, y)$. At test time, z is sampled from a Gaussian parametrised by the μ_p and exponentiated $\log \sigma^2_p$ outputs of the prior network. This distribution is $p_\theta(z \mid y)$. At both train and test time, we employ the commonly-used ‘re-parametrisation trick’ [17] to compute the latent sample as $z = \mu + \sigma \epsilon$ where $\epsilon \sim \mathcal{N}(0, 1)$ and μ and σ correspond to those derived from the encoder or prior network as described above.

The sample z is then transformed through a transpose-convolutional block (output size $64 \times 8 \times 8$), concatenated with y and forwarded through a convolutional block (output size $64 \times 8 \times 8$). This output is forwarded through a second transpose-convolutional block, producing an intermediate output volume of dimension $M \times E \times L$ which we permute to match the size of \hat{x}. As before, $E = 256$, $L = 64$ and $M = 1$ (for A) or $M = 2T$ (for B/B_{AR}).

Following this, our models diverge in architecture: A and B employ a standard linear layer which projects the E dimension of the intermediate output to the vocabulary size V. The B_{AR} model instead employs an autoregressive module (detailed below) followed by this standard linear layer. At train time, the V-dimensional network output is softmax and used in the computation of the CE term of the ELBO. At test time, the argmax of the (softmax-ed) output is taken to be the index of the word token predicted. We share the weight matrices of the decoder’s final linear

Method	i	c	CE	KLD	MR	MRR	R@1	R@5	R@10	sim$_{cap,q}$	sim$_{\sim}$	
A	+	+	d qa	18.87	4.36	28.45	0.2927	23.50	29.11	42.29	0.4374	2.68
B	+	+	d qa	25.10	4.02	30.57	0.2188	16.06	20.88	35.37	0.4118	2.42
	-	+	d qa	16.80	3.13	27.76	0.3243	26.59	33.21	47.65	0.4491	4.48
	+	-	d qa	21.02	4.71	29.82	0.2144	15.25	21.07	34.96	0.4551	5.44
	-	-	d qa	19.35	13.34	29.00	0.3026	24.36	30.70	47.62	0.4638	6.17
B_{AR}^8	+	+	d qa	15.11	2.53	25.87	0.3553	29.40	36.79	51.19	0.4703	4.30
	-	+	d qa	25.70	2.21	29.10	0.2864	22.52	29.01	48.43	0.3885	3.47
	-	-	d qa	16.19	2.80	26.04	0.3566	29.62	36.75	50.62	0.4626	4.17
B_{AR}^{10}	+	+	d qa	20.39	2.89	28.99	0.3024	24.33	30.74	47.17	0.4461	8.16
	-	+	d qa	20.92	2.84	28.79	0.3045	24.46	30.99	48.10	0.4442	0.18
	-	-	d qa	16.04	1.89	26.30	0.3422	28.00	35.34	50.54	0.4708	4.84
	+	+	d qa	24.77	1.81	29.15	0.2869	22.68	28.97	46.98	0.4058	2.85
	-	+	d qa	19.97	2.58	26.84	0.3212	25.90	32.92	47.68	0.4424	5.95
	-	-	d qa	20.39	2.79	27.27	0.3157	25.45	32.26	47.87	0.4707	13.22
	-	-	d qa	19.17	0.00	29.00	0.3026	24.36	30.70	47.62	0.4614	0.00
Table 6: 2VD evaluation on VisDialog (v0.9) test set for B/B_{AR} models. Note that d left blank indicates the block evaluation method, when a whole dialogue is generated given only an image and its caption, while d−q̂a indicates the iterative evaluation method when previously generated questions and answers are included in the dialogue history (see Section 4.2). The + and − indicate models trained with and without respective conditions, image i and caption c.

Method	i	c	d	CE	KLD	sim_{c,q}	sim_{c}\|
B	+	+	0	31.18	4.34	0.4931	14.20
	+	−	0	29.09	3.26	0.4889	11.23
	−	+	0	28.60	4.26	0.4634	15.56
	−	−	0	19.92	6.42	0.4590	6.34
B_{AR}8	+	+	0	28.81	2.54	0.4878	31.50
	+	−	0	30.59	2.72	0.4889	43.17
	−	+	0	26.15	2.77	0.3758	3.57
	−	−	0	21.41	2.68	0.4602	24.75
B_{AR}10	+	+	0	28.49	1.89	0.4927	44.34
	+	−	0	30.83	2.53	0.4951	38.60
	−	+	0	28.32	2.44	0.4334	6.73
	−	−	0	19.60	0.00	0.4585	0.00

layer and the encoder and prior’s learnable word embedding module (which are the same size by virtue of our network architecture) with the motivation that language encoders and decoders should share common word representations.

Autoregressive block The autoregressive (AR) block (AR-N in Fig. 4 - bottom) in B_{AR’s decoder is inspired by PixelCNN [26] which sequentially predicts the pixels in an image along the two spatial dimensions. In the same fashion, we use an autoregressive approach to sequentially predict the next sentence (question or answer) in a dialogue. Since our framework is convolutional with sentences viewable as ‘images’, our approach can similarly be adapted from that of [26, 9]. We first reshape the intermediate output of the decoder to $E \times L \times M$ (essentially ‘unravelling’ the dialogue sequentially into a stack of its word embeddings). We then apply a size-preserving masked convolution to the reshaped output (followed by a learnable batch normalisation and a ReLU activation). We call this triplet an AR layer. The masked convolution of the AR layer ensures that future rows (i.e. future E-dimensional word embedding) are hidden in the prediction of the current row/word embedding. We apply N AR layers in this way with each layer taking in the output of the previous AR layer. Following the AR-N block, a linear layer projects the final output’s E dimension to the vocabulary size V. We report numbers for $N = \{8, 10\}$. We base our implementation of the AR block on a publicly-available implementation of PixelCNN.

E. Dialogue preprocessing

The word vocabulary is constructed from the VisDialog v0.9 [6] training dialogues (not including the candidate answers). The dialogues are preprocessed as follows: apostrophes are removed, numbers are converted to their worded equivalents, and all exchanges are made lower-case and either padded or truncated to a maximum sequence length ($L = 64$). The vocabulary is also filtered such that words with a frequency of <5 are removed and replaced with the UNK token. After pre-processing and filtering, the vocabulary size is $V = 9710$.

F. Extended Qualitative Results

We present additional qualitative results for the A model in Figs. 7 and 8 (1VD task) and for the B_{AR}10 model (under the block evaluation setting) in Figs. 9 and 10 (2VD task). Note that for both, different colours indicate generations (\hat{a}_t for A and d for B/B_{AR}) from different samples of z. In Figs. 9 and 10, whole generated dialogue blocks are shown with coloured sections indicating subsets exhibiting coherent question-answering and white sections indicating subsets that are not entirely coherent.
Figure 7: Examples of diverse answer generations from the A model for the 1VD task.
A man casually throws a frisbee into the air

A man casually throws a frisbee into the air

Small children in red and blue uniforms, kicking a red soccer ball

A polar bear swimming in water near a rock wall

Figure 8: Examples of diverse answer generations from the A model for the 1VD task – continued.
Figure 9: Diverse two-way dialogue generations from the BAR10 model (block evaluation) for the 2VD task.
Question	Answer	Question	Answer	Question	Answer
Is the picture in color?	Yes	How many people are there?	Two	What color is the man’s hat?	White
Is the photo in?	Yes	What are they?	I	What is the man man?	I
What color is the frisbee?	White	Can you see the frisbee?	Yes	How old is the man?	I
Can there?	No	What color of the frisbee?	Blue	Can you see any ball?	Yes
Is the grass visible?	Yes	Is there people?	Yes	Is there any other people?	No
Is the sunny?	Yes	Is it sunny?	Yes	Does the man have a hat?	No
Is it sunny?	Yes	What color is the十分重要?	I	Is the man wearing a hat?	No
Is there other people?	No	Is there sunny?	Yes	Does he man have a hat?	No
What color is the frisbee?	White	How many people are there?	I	Are there see any other people?	No
Is the man green?	Yes	Is they having fun?	Yes	Can you see any sky?	No
Is it big?	Yes	Are there only one?	Yes	What kind of dog is it?	It looks like a mutt
How is of the is?	I	What kind of dog is it?	It is	Does he have a collar?	Yes
Can you see the breed?	No	Does it look like be?	It, it	Can you see what breed?	No
Are there any people?	No	Is there any people in the boat?	No	Is it people boat the the boat?	No
Is the dog on?	No	What time of day is it?	It is	Is there oars?	No
Can you tell the breed of it?	No	What color is the boat?	White	How the boat the?	No
What is the color?	It is	How it is like is?	I is	Is it sunny?	Yes
Any there see the driver?	No	Is it a or or?	It is	How many barges?	No
Is it a Harley?	Yes	What is of day is?	It is	Any people?	No
Any other?	No	What color is the boat?	It		
What color is the man?	White	Is this a color photo?	Yes		
What color is his hair?	Black	What color is the tennis?	It		
How old is he?	Thiry	Are there any other people in the?	No		
Is he have other?	Yes	Can you see any tennis?	No		
Is it sunny?	Yes	Can you see any people in the?	No		
Can you see any?	Yes	what time of day is it?	It		
Is it court?	Yes	Is the appear like be lo?	It		
Is it sunny?	Yes	Are there any other in the the?	No		
Is it sunny?	Yes	Can you see the time?	No		
Can you see sky?	No	Can you see the season?	No		
Is it sunny?	Yes	Is it a?	Yes		
Can you see sky?	No	What is the color?	Is		

Figure 10: Diverse two-way dialogue generations from the BAR_{10} model (block evaluations) for the 2VD task – continued