Application of the electrooptical method for the analysis of surface nanoroughness of raceways of instrument bearings

A D Abramov¹, D S Goryainov¹, R G Grishin¹ and N V Nosov¹

¹Samara State Technical University, Pervomajskaya str., 18, Samara, Russia, 443100
e-mail: nosov@samgtu.ru

Abstract. The control of the microrelief of surfaces of small-size details is a relevant objective for the mechanical engineering. We consider the issue of control by reference surface fragment with the radius of curvature comparable to the size of the fragment. We offer an optical method that uses the binary images of the target and the reference surfaces to control the nanoroughness of raceways of instrument bearings. A quasi-optimal correlation algorithm is used to compare two surface images. The value of the autocorrelation function allows to evaluate whether the roughness of the ring raceway of the instrument bearing corresponds to the norm. The results of the tests of the developed method showed its statistical stability. This allows us to use the method in serial production conditions. The results of nanoroughness analysis of surface with the roughness up to 0.02 microns after grinding with abrasive circles are provided.

1. Introduction
The surface quality of raceways of instrument bearings determines their service properties. The durability and reliability of the bearings is determined by the height, shape and location of nanoroughness on the raceways [1]. However, the existing nanoroughness control methods used in optics and microelectronics [2-8] cannot be used in serial production of surfaces with high curvature.

There exist the methods of rough surface parametrization [9] and the devices for the control of bore surface defects [10]. However, the parametrization of a bore surface requires the diffused lighting of nanoroughness, which is difficult to provide for the rings of instrument bearings. The device [10] is effective for the control of the surface of a bore with the diameter of at least 30 mm. So, it is impossible to control the bore surface of instrument bearings with an average diameter of less than 30 mm.

2. Description of methods
Machine vision methods based on noncontact digital image processing [16-19] are the most acceptable methods for the submicron roughness control [11-15]. Such control methods have the following disadvantages:
- the presence of microrelief shading zones with the size and shape depending on the spatial orientation of the light source [9, 20-22];
- the use of coherent light sources leads to the interference and diffraction of incident light rays and the rays reflected from the target surface [23-28].

Both of these circumstances distort the real picture of the target surface microroughness [9-12].

The manufacturing practice has shown: the biggest height of microroughness on the surface of raceways of instrument bearings is 0.02 μm (Rmax). We assumed that the smallest area of the base of a microroughness should not exceed 0.02 μm². For this reason, the resolution of the image of a microroughness should be at least 0.14 μm/pixel.

We offer an electrooptic system (IMS) [29, 30] which provides for the roughness control with nanometric resolution. The IMS includes an optical system, a video camera, a computer, and a custom algorithm for the processing of the target surface image [31]. Fig. 1 shows the structure of the information and measurement system.

![Image](image.png)

Figure 1. The structure of IMS for the evaluation of microrelief parameters.

The IMS consists of a target surface fragment (TSF), a reference light source (RLS), a video camera (VC), and a digital signal processing unit (DSPU). RLS and VC are the electrooptic measuring transducer (MT). RLS and TSF form the channel of primary optical relief conversion system. A transformed TSF is fed to the input of electrooptic MT. The transformation of the TSF consists in splitting the fragment of the target surface into r types of elementary non-intersecting surface elements with different nanorelief. A certain parameter is assigned to each element. The weighted average parameter of all surface elements was calculated to parametrize the entire TSF:

$$P_{\mu} = \sum_{i=1}^{r} \alpha_{pi} \cdot P_{\mu i},$$

where $P_{\mu i}$ is the i^{th} component of the input value of the transformed nanorelief parameter, e.g., Ra; α_{pi} is the weighting factor corresponding to the share of TSF elements with nanorelief of the i^{th} standard level (with the total number of standard levels estimated at r). The set of values $\{i = 1, \ldots, r \}$ is determined by the particular TSF machining.

The RLS output is the luminous power of the reference light F_r reflected from each i^{th} TSF element. Thus, each i^{th} surface element forms the i^{th} output of the primary optical relief conversion system (the luminous power of the reflected light flux $F_{o(i)}$), which is later transformed into the electric signal U_{ei} with a CCD matrix.

We presented the nominal transformation function of the i^{th} component of the input value P_{μ}, corresponding to the i^{th} subset of equally machined TSF elements in the following way:

$$U_{ei} = K_{fe} \cdot F_{o(i)} = (K_{fe} \cdot F_{nr}) \cdot (F_{o(i)/F_{nr}}) = (K_{fe} \cdot F_{nr}) \cdot Y_{o(i)} =$$

$$= (K_{fe} \cdot F_{nr}) \cdot f(P_{\mu}) \leq P_{\mu_{min}} \leq P_{\mu} \leq P_{\mu_{max}}$$

where K_{fe} is the coefficient of physical transformation of power of light flux $F_{o(i)}$ into the electric signal U_{ei} (the value of K_{fe} is constant for the considered ranges of P_{μ} and F_{nr}); F_{nr} is the nominal value of F_r; $F_{o(i)}$ is the nominal value of the luminous power of the reflected light flux $F_{o(i)}$ from any element of the i^{th} subset of TSF elements; $P_{\mu_{min}}$ and $P_{\mu_{max}}$ are the boundaries of the used range of P_{μ}; $f(P_{\mu})$ is the functional dependence of the nominal values of the standardized output of optical relief conversion system $Y_{o(i)}$ on the i^{th} component of the measured value P_{μ}. In other words, $Y_{o(i)}$ characterizes the reflective power of the i^{th} component of TSF on exposure to the light flux with the power F_{nr}.

We approximated the function $f(P_{\mu})$ with the m^{th} degree polynomial:

$$f_{ap} (P_{\mu}) = \sum_{p=0}^{m} a_p \cdot P_{\mu}^p,$$

$$= \sum_{p=0}^{m} a_p \cdot P_{\mu}^p.$$
where a_p is the polynomial approximation coefficient.

In the paper [31] we considered a monochrome raster image of a rough surface fragment. The number of brightness gradations per image pixel was 256.

The nominal luminous power of the reference light amounted to $F_{nr}=600 \times 10^{-3}$ lm, the powers $F_{r \min}, F_{r \max}$ amounted to 200×10^{-3} lm and 1000×10^{-3} lm. The said range of F_r corresponds to the factory conditions.

We believe that the reasons for changing the luminous power are as follows:
- variations in supply voltage of light sources;
- changes in the atmospheric transparency at the workplace;
- stray lighting of the target surface from the external light sources, etc.

In the paper [31] we have determined that the interference effects have a multiplicative nature. Then we denote the deviation of the reference luminous flux from its nominal values by $\Delta F: \Delta F = F_r - F_{nr}$, and we denote by $f_{inf} (\Delta F)$ the multiplicative function of the influence of deviations like ΔF on the results of measuring transformations Y_{oi}.

We considered the function of F_{oi} transformation into the electric signal $U_{ei} (i = 1, \ldots, r)$ in the following way:

$$
U_{ei} = (K_{fe} * F_{nr}) * (F_{oi}/F_{nr}) = (K_{fe} * F_{nr}) * Y_{oi} =
(K_{fe} * F_{nr}) * f_{inf} (\Delta F) * f (P_{\mu})
$$

were approximated the function of interference effects with the n^{th} degree polynomial with the accuracy sufficient for the manufacturing practice:

$$
 f_{inf} (\Delta F) = 1 + \sum_{k=1}^{n} b_k * (\Delta F)^k,
$$

where b_k is the coefficient at the power of $(\Delta F)^k$ defined according to the experimental data. We shall note that this function takes the value of 1 at the nominal value of the reference light F_{nr}.

The multiplicative character of the function $f_{inf} (\Delta F)$ determined the choice of ratiometric method of compensating the error of roughness control [32]. The use of ratiometrics involves the use of an additional light source. This is unacceptable when controlling the surface roughness of raceways of instrument bearings.

We offer a method of correction of the error caused by the instability of the reference luminous flux. In this case, the optical correction scheme uses one light source.

The method proposed by us is based on the observing a one-to-one correspondence between the set of quantities $(Y_{ei} (X_{\mu}), i = 1, \ldots, r)$, and two functionals $G_x (Y_{ei} (X_{\mu}), i = 1, \ldots, r)$. Here $x = 1, 2$ is a set of values.

In our opinion, the effect of the factors distorting the measurement results (influence function, interference) on the measured values has a multiplicative nature. For this reason, we considered the products of the type $q_x (X_{\mu}) = f_{inf} (\eta_x)$, where $q_x (X_{\mu})$ is the functional relationship that corresponds to the inequation $q_x (X_{\mu}) = q_0 * q_2 (X_{\mu})$; $q_0 = \text{const}$.

In the quotient

$$
G_1 (Y_{ei} (X_{\mu}), i = 1, \ldots, r)/G_2 (Y_{ei} (X_{\mu}), i = 1, \ldots, r)
$$

similar multiplicative components $f_{inf} (\eta_x)$ in numerator and denominator are canceled. Thus, the realization of the quotient (1) does not lead to the hardware growth in IMS, as the same set of values Y_{ei} will be used in the formation of each functional $G_x (x = 1, 2)$.

We applied the theory of optimal linear filtering of signals of the known format to implement the proposed method of error correction [33]. Besides, we used the methods of digital image processing [34, 35]. The method is based on the detection of the known nanoroughness of the target surface. For this purpose we compared the image of the target surface with the images of the reference surface with the nanoroughness parameters defined in accordance with the national standard GOST 2789-73 and the international standard DIN EN ISO 4287-2010. The result of the comparison is the probability that the target and the reference surfaces match. The choice of the threshold for the probability that the images match determines the permissible level of interference and noise in the target image (influence function $f_{inf} (\Delta F)$). However, the threshold probability does not define the nature of the difference
between the two images. In such cases, correlation analysis is used to identify the linear dependence of the characteristics of the target and the reference roughness. We believe that when the dimensions of the target surface image are small, it is advisable to use the Spearman correlation [36]. We used a high-resolution video camera in IMS. For this reason, the raster image of the target surface fragment had a large number of lines and columns. This allowed us to use the Kendall correlation coefficient [34] as a criterion for comparing the surface with the unknown type of nanomicroroughness and the reference surface with nanoroughness [31]:

\[
 r_{xy}(k_1, k_2) = \frac{\Sigma_{n_1=0}^{N_1-1} \Sigma_{n_2=0}^{N_2-1} [u(n_1, n_2) - m_u] \cdot [x(n_1-k_1, n_2-k_2) - m_x] \cdot f_{inf}(\Delta F)}{\sigma_x \cdot f_{inf}(\Delta F) \cdot \sigma_y \cdot f_{inf}(\Delta F)}
\]

(2)

A monochrome image of the target surface is stored in DSPU memory. Here \(u(n_1, n_2) \) is the image of the reference surface fragment embedded in the reference surface (in the search zone \(x(n_1, n_2) \)); \(\sigma_1 \) and \(\sigma_2 \) are the mean square deviations of the values \(u(n_1, n_2) \) and \(x(n_1, n_2) \) from their mathematical expectations \(m_u \) and \(m_x \).

\[
\sigma_1 = [\Sigma_{n_1=0}^{N_1-1} \Sigma_{n_2=0}^{N_2-1} (u(n_1, n_2) - m_u)^2 / M]^{1/2} \quad \text{and} \quad \sigma_2 = [\Sigma_{n_1=0}^{N_1-1} \Sigma_{n_2=0}^{N_2-1} (x(n_1, n_2) - m_x)^2 / M]^{1/2}.
\]

Here \(M = N_1 \times N_2 - 1 \) is the number of sampling points in the compared images.

As can be seen from the above expression for \(r_{xy}(k_1, k_2) \), its structure corresponds to the structure of the expression (1). And the influence function \(f_{inf}(\Delta F) \) present in the numerator and denominator is canceled. Thus, the autocorrelation function used can be considered a particular case of the ratio (1), and we can claim that it has the desired compensation property without the need to involve the additional equipment.

To calculate the bivariate autocorrelation function according to the formula (2) for the image with the dimension \(K_1 \times K_2 \) pixels [29-31], we selected a strip with the width of \(N_2 \) pixels from the first line. In the middle of this strip we defined a comparator with the dimension of \(N_1 \times N_2 \) pixels (window), which was saved in DSPU. Then we moved the comparator window from the 1st column to the position where the last column of the window coincided with that of the strip. The movement was performed with the step of 1 pixel. Upon each alignment of the comparator \(u(n_1, n_2) \) and the actual fragment of the grayscale image \(x(n_1, n_2) \), a correlation coefficient was calculated according to the formula (2).

The fragments compared \(x(n_1, n_2) \) and \(u(n_1, n_2) \) belong to the same surface image. For this reason, we considered that \(r_{xy}(k_1, k_2) \) is the correlation coefficient. The window with the dimension of \(N_1 \times N_2 \) performed a scanning motion along all the strips of the image. The shift from line to line had the step of 1 pixel. A new comparator was defined in the center of each strip (with the dimension of \(N_1 \times N_2 \)). The values \(r_{xy}(k_1, k_2) \) determined were saved in DSPU. As a result, a matrix of autocorrelation coefficients was formed with the dimension \(M_1 \times M_2 \). The paper [31] proved the following: the values of autocorrelation function \(r_{xy}(k_1, k_2) \) for nanoroughness of various surfaces are substantially different from each other (the comparator window changed from 16×16 to 8×8 pixels). However, the excess of \(\Delta U_{AV} \) between the studied nanorelief parameters remained almost unchanged.

The roughness parameter of the image surface was taken as a standard roughness parameter \(Ra_n \), which is different from the height of the surface contour roughness. Thus, based on calculating \(U_{AV} \) for the target surface, its size can be defined by making an analytical dependence \(Ra_n = f(U_{AV}) \) for comparators with the known nanorelief.

The disadvantage of the proposed method of nanoroughness control based on the calculation of the correlation coefficient takes a lot of computer time. So, for example, when using a personal computer with an Intel(R) Core(TM)2CPU 4300@1.80GHz processor, the time spent on this calculation is 160000 ms for a comparator with the dimension of 64×64 pixels. This excludes the use of this method for the operational control of the surface nanoroughness under the production conditions.

To eliminate this disadvantage, we used quasi-optimal algorithms to calculate the criterial functions [37–45] which include the two-dimensional autocorrelation function discussed above. In the works cited, it is noted that the existing quasi-optimal correlation algorithms had been developed heuristically. This complicates the optimal choice of the algorithm. In our opinion, the algorithm for solving the problem should include the following steps:
1) selection of the type of image preprocessing;
2) determination of the criterial function;
3) determination of the method for calculating the extremum of the criterial function.
In this article we will not consider the third stage. This will be the subject of our future research.
The list of the requirements for the criterial functions is considered in [39, 40].
The analysis performed in [40, 41] allowed us to distinguish five groups of criterial functions with
similar properties: correlation, spectral, difference, paired and rank.
The proposed method of applying a quasi-optimal correlation algorithm was used to determine the
nanoroughness of a raceway of the inner ring of instrument bearing No. 2000083 made of steel ShKh-
15 HRC 62-65.
The scheme of grinding the track surface is shown in Fig. 3
The grinding mode for the raceway of the inner ring of instrument bearing on the grinding machine
Bryant 1-M was as follows:
spindle rotational speed – $n_w = 1750 \ldots 1850$ rpm;
efficiency output – $\eta = 0.8$;
grinding wheel size – $D_w = 355$ mm, $H_w = 16$ mm;
abrasive disk used for rough finishing – 24AM40CT1K;
wheel dressing: cross feed $S_{\text{cross}} = 0.015$ mm/motor motion, length feed $S_{\text{length}} = 0.02$ rpm, feed per
minute $S_{\text{min}} = S_{\text{length}} \times n_o = 0.02 \times 1850 = 37$ mm/min, dresser diamond $\alpha = 90^\circ$, dressing time $\tau = 15$ sec.
The studied bearing ring has the outer circle radius of 2.5 mm and the raceway cross-section radius
of 0.3 mm. The area of the target surface had the size of 1.2-1 mm, which corresponded to the image
dimension of 720x576 pixels.
When the direction of the illuminating light flux is perpendicular to the direction of the raceway in
the focal plane of the optical system, we observed a very strong bright spot at small angles of
incidence of the light flux ($\alpha = 0^\circ \ldots 15^\circ$) or the appearance of a shadow from the ring edge at large
angles of incidence ($\alpha > 15^\circ$). We explain these phenomena by the curvature of the test surface. We
have found that in order to reduce these phenomena, the illuminating light flux should be directed
along the raceway and at a large angle $\alpha = 700$. The images of the surfaces of reference samples
with a dimension of 720x576 pixels shown in Fig. 2 were obtained with such an orientation of the
light flux.

![Figure 2](image_url)

Figure 2. Images of the reference surfaces made of steel ShKh – 15 with the image dimension of
720x576 pixels.

The rough surface parameters of the roughness comparators were determined using a SJ-201P
profilograph-profilometer.
We are not aware of the choice methodology [39, 40] for the type of pre-processing of the
roughness image and the type of the criterial function. For this reason, we selected the quasi-optimal
correlation algorithms on the basis of the experimental data.
Roughness control under the mass production conditions consists in determining whether the
surface fits the standard or not. Intermediate results (the need for various improvements) are not
relevant. In this regard, we believe that binary images should be used to control the nanoroughness. In
this case, paired criterial functions are used with the number of quantization levels equal to two.
There exist a lot of paired criterial functions [41, 42]. In this regard, there are ample opportunities
to create correlation-extreme algorithms. We have chosen an algorithm developed using the paired
criterial function in the following form:
\[
R(\Delta) = \frac{1}{N} \sum_{i=0}^{n-1} F_i(\Delta),
\]

where \(N \) is the number of elements compared between the comparator and the target image.

The initial grayscale image was binarized as follows:

- the original image of the target surface was divided into separate square fragments (windows), and the average level of video signal brightness \(B_T(x,y) \) was calculated for each window. This average level was the binary transformation threshold for the brightness of pixels in this window [45]. In the selected window, each pixel was converted;
- the movement of the window on the converted image is carried out with the step determined by the window size. As a result of the comparison of each element of the array \(B_i(x,y) \) with the threshold value \(B_A(x,y) \), a new value was assigned to it according to the rule:

 \[
 \text{if } B_i(x,y) \geq B_A(x,y) \Rightarrow B_i(x,y) = 0\text{FFH} \\
 \text{if } B_i(x,y) < B_A(x,y) \Rightarrow B_i(x,y) = 0\text{FH}.
 \]

Fig. 3 shows the binary images of nanoroughness comparators obtained using an adaptive binary transformation window with the dimension of 8 × 8 pixels.

![Binary images of nanoroughness comparators](image)

Figure 3. The binary images of nanoroughness comparators.

Earlier we have described the method of the comparator determination and the procedure of its scanning by the actual binary image to obtain a matrix of autocorrelation coefficients.

When using a quasi-optimal correlation algorithm, we counted the number of pixels that matched \(S_{xy} \) in the actual fragment of the binary image \(B_A \) and in the comparator \(B_C \). We calculated the ratio between the number of matched pixels and the total number of pixels in the image. The normalized sum thus obtained meets all the requirements of the stochastic connection provided in [40], in particular, \(0 \leq r_{xy}(k_1,k_2) \leq 1 \). This allowed us to consider the normalized sum of the matched pixels as the value of the correlation coefficient \(r_{xy}(k_1,k_2) \). This method compensates for errors and noises resulting from the effect of the influence function \(f_{\text{inf}}(\Delta F,\Delta \alpha) \). This is due to the fact that at the point of coincidence of the values of the comparator pixels \(B_C \) and the pixels of the selected fragment of the actual binary image \(B_A \) it will be multiplied by zero, that is,

\[
\Delta B = B_A \times f_{\text{inf}}(\Delta F,\Delta \alpha) - B_C \times f_{\text{inf}}(\Delta F,\Delta \alpha) = f_{\text{inf}}(\Delta F,\Delta \alpha) \times (B_A - B_C) = f_{\text{inf}}(\Delta F,\Delta \alpha) \times 0 \text{ at } B_A = B_C.
\]

In addition, only at this point the above sum \(S_{xy} = S_{xy} + 1 \), that is, the measure of correlation of the comparator and the actual image fragment in accordance with the algorithm of paired criterial functions, grows.

For the nanorelief of the surfaces analyzed using IMS, we studied the influence of the surface nanoroughness of the comparators on the average amplitude of the variable component of the autocorrelation function \(R_{a,v} = f(U_{AV}) \). The results of the studies are shown in the table 1.

Table 1. Dependence of the average amplitude of the autocorrelation function variation \(U_{AV} \) on the surface roughness at the surface image format of 720x576 pixels.

Surface nanoroughness of the comparators	\(Ra_v =0.084 \mu m \)	\(Ra_v =0.048 \mu m \)	\(Ra_v =0.025 \mu m \)
\(U_{AV} = 12.2 \)	\(\sigma = 1.3 \)	\(U_{AV} = 9.9 \)	\(\sigma = 0.8 \)
\(\sigma = 7.86 \)	\(\sigma = 0.1 \)	\(\sigma = 0.8 \)	\(\sigma = 0.1 \)
For each comparator, 30 images were processed from different parts of the surface analyzed, that is, \(n = 30 \) and the standard deviation of the evaluation was determined by the formula [46]:

\[
\sigma_t = \frac{\sigma}{\sqrt{n}}
\]

In this case, the format of the comparator and the dimension of the binary conversion window for the studies performed was 8x8 pixels.

Therefore, if we set the recognition probability of the analyzed surface nanoroughness to \(P = 0.99 \) and \(t_\beta = 2.576 \), for the surface comparators with \(Ra_n = 0.084 \mu m \) we get \(\sigma_t = 0.24 \mu m \), for the surface comparators with \(Ra_n = 0.048 \mu m \) we get \(\sigma_t = 0.15 \mu m \), and for the surface comparators with \(Ra_n = 0.025 \mu m \) we get \(\sigma_t = 0.018 \mu m \). Using the expression for the confidence interval [24]

\[
I_\beta = (U_{AV} - t_\beta \times \sigma_t; U_{AV} + t_\beta \times \sigma_t),
\]

we get the following confidence intervals:

\[
Ra_n = 0.084 \mu m - I_\beta = 0.6 RU, \quad 11.6 RU \leq U_{AV} \leq 12.8 RU;
Ra_n = 0.048 \mu m - I_\beta = 0.4 RU, \quad 9.5 RU \leq U_{AV} \leq 10.3 RU;
Ra_n = 0.025 \mu m - I_\beta = 0.05 RU, \quad 7.81 RU \leq U_{AV} \leq 7.91 RU.
\]

As can be seen from the above data, the confidence intervals for \(U_{AV} \) increase with the growth of nanoroughness, but do not overlap, and the relationship \(I_\beta = f(U_{CP}) \) is non-linear. Using the least squares method, an analytical expression was obtained for this confidence interval in the following format:

\[
I_\beta = (0.09 \times U_{AV}^3 - 4.2 \times U_{AV}^2 + 68.5 \times U_{AV} - 314.9) \times 10^{-2}RU.
\]

(3)

The autocorrelation surface and the graph of the autocorrelation function for nanoroughness are shown in Fig. 4. The data presented show a more homogeneous nature of the autocorrelation surface. Based on the graph of the correlation coefficient, the average amplitude of the variable component of the autocorrelation function for this case was \(U_{AV} = 8.24 RU \).

![Figure 4. The image of the autocorrelation surface and the graph of the autocorrelation function for the intact part of the instrument bearing raceway surface.](image)

Processing of the experimental data allowed us to get the regresional dependence \(Ra_n = f(U_{AV}) \) in the format:

\[
Ra_n = 0.0013 \times U_{AV} - 0.078 \mu m
\]

(4)

The use of the dependencies (3) and (4) gave the following results for the nanoroughness of the raceway surface: \(I_\beta = 0.15 RU, \quad Ra_{min} = 0.027 \mu m, \quad Ra_{max} = 0.031 \mu m \). The values obtained for \(Ra_n \) fully meet the specified technical conditions.

3. Conclusion

Thus, the use of the developed IMS and the surface microgeometry evaluation method based on the analysis of autocorrelation functions revealed the drawbacks of the grinding process of the inner ring runways of the instrument bearing No. 2000083 used in the production conditions. On the basis of the information received, the process of grinding the raceways in water coolant was developed and implemented, which allowed to reduce drastically the reject rate in this technological operation.

We plan to increase the capabilities of the proposed control method and the accuracy of roughness class assessment using a special structured-light system [21-22, 47-49] based on LED [50-53].
also advisable to use the proposed nanoroughness control method at the stage of studying the shape of the manufactured optical micro- and nanostructures [54-61], in particular, when designing the elements of computer optics [62-64] and the components of diffractive nanophotonics [65-70].

In conclusion of this work, we shall also note that we have patented the developed electrooptic complex and the method for determining the roughness of the target surface [71].

4. References

[1] Mitriaev K F, Abulkhanov S R 1985 Regulation of the surface layer characteristics by diamond smoothing in small-diameter holes Interuniversity Digest of scientific papers 53-58

[2] Borodin S A, Volkov A V and Kazanskii N L 2009 Device for analyzing nanoroughness and contamination on a substrate from the dynamic state of a liquid drop deposited on its surface Journal of Optical Technology 76(7) 408-412 DOI: 10.1364/JOT.76.000408

[3] Kazanskiy N L, Popov S B 2010 Machine vision system for singularity detection in monitoring the long process Optical Memory and Neural Networks 19(1) 23-30 DOI: 10.3103/ S1060992X10010042

[4] Kazanskiy N L, Kolpakov V A 2017 Optical materials: Microstructuring surfaces with off-electrode plasma (CRC Press) DOI: 10.1201/b21918

[5] Poleshchuk A G, Korolkov V P, Nasyrov R K, Khomutov V N and Konchenko A S 2016 Methods for on-line testing of characteristics of diffractive and conformal optical elements during the manufacturing process Computer Optics 40(6) 818-829 DOI: 10.18287/2412-6179-2016-40-6-818-829

[6] Kazanskiy N L 2012 Research & education center of diffractive optics Proc. SPIE 8410 84100R DOI: 10.1117/12.923233

[7] Zimichev E A, Kazanskiy N L and Serafimovich P G 2014 Spectral-spatial classification with k-means++ particlational clustering Computer Optics 38(2) 281-286

[8] Podlipnov V V, Ivliev N A, Khonina S N, Nesterenko D V, Vasilev V S and Achimova E A 2018 Investigation of photoinduced formation of microstructures on the surface of carbaseole-containing azopolymer depending on the power density of incident beams Computer Optics 42(5) 779-785 DOI: 10.18287/2412-6179-2018-42-5-779-785

[9] Abul’khanov S R, Kazanskiy N L 2018 Information pattern in imaging of a rough surface IOP Conference Series: Materials Science and Engineering 302 012068 DOI: 10.1088/1757-899X/302/1/012068

[10] Abulhanov S R, Popov S B, Ivliev N A and Podlipnov V V 2017 Device for control of apertures surface of pipes of oil assortment Procedia Engineering 176 645-652 DOI: 10.1016/ j.proeng.2017.02.308

[11] Yakovlev A V 2003 Development of surface roughness parameters evaluated on a plane based on the image Methods and devices of data transmission and processing. Interuniversity collection of scientific works (St. Petersburg: Gidrometeoizdat) 3 203-207

[12] Milovzorov A N, Yakovlev A V 2001 Computer aided surface roughness control Problems of data transmission and processing in networks and telecommunication systems: Materials of the 10th International Science and Technology Conference (Ryazan: Ryazan State Radiotechnical Academy) 155-158

[13] Kazanskiy N L, Popov S B 2012 Distributed storage and parallel processing for large-size optical images Proc. SPIE 8410 84100I DOI: 10.1117/12.928441

[14] Nikonorov A V, Petrov M V, Bibikov S A, Kutikova V V, Morozov A A and Kazanskiy N L 2017 Image restoration in diffractive optical systems using deep learning and deconvolution Computer Optics 41(6) 875-887 DOI: 10.18287/2412-6179-2017-41-6-875-887

[15] Mendeleev V Y, Skovorodko S N 1994 Roughness control device Patent of the RF 2011163, RU, G 01 B 11/30

[16] Azarov A V, Gorbachyov Y A and Solovyeva N M 2006 The method of non-contact photometric roughness measurement of samples SU, patent, No. 1839881, class G 01B11/30

[17] Kazanskiy N L, Popov S B 2012 The distributed vision system of the registration of the railway train Computer Optics 36(3) 419-428
[18] Kazanskiy N L, Popov S B 2015 Integrated design technology for computer vision systems in railway transportation *Pattern Recognition and Image Analysis* **25**(2) 215-219 DOI: 10.1134/S1054661815020133

[19] Nikonorov A V, Petrov M V, Bibikov S A, Yakimov P Y, Kutikova V V, Yuzifovich Y V, Morozov A A, Skidanov R V and Kazanskiy N L 2018 Toward Ultralightweight Remote Sensing With Harmonic Lenses and Convolutional Neural Networks *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* **11**(9) 3338-3348 DOI: 10.1109/JSTARS.2018.2856538

[20] Doskolovich L L, Kazanskiy N L, Kharitonov S I, Perlo P and Bernard S 2005 Designing reflectors to generate a line-shaped directivity diagram *Journal of Modern Optics* **52**(11) 1529-1536 DOI: 10.1080/09500340500058082

[21] Popov S B 2014 The intellectual lighting for optical information-measuring systems *Proc. SPIE* **9533** 95330P DOI: 10.1117/12.2181168

[22] Popov S B 2013 The use of structured lighting in computer vision systems *Computer Optics* **37**(2) 233-238

[23] Kazanskiy N L, Soifer V A 1994 Diffraction investigation of geometric-optical focusators into segment *Optik* **96**(4) 158-162

[24] Kazanskiy N L, Kharitonov S I and Soifer V A 1996 Application of a pseudogeometrical optical approach for calculation of the field formed by a focusator *Optics & Laser Technology* **28**(4) 297-300 DOI: 10.1016/0303-3992(95)00103-4

[25] Golovashkin D L, Kazanskiy N L 2011 Solving diffractive optics problem using graphics processing units *Optical Memory and Neural Networks (Information Optics)* **20**(2) 85-89 DOI: 10.3103/S1060992X11020019

[26] Khonina S N, Kazanskiy N L and Volotovsky S G 2011 Influence of vortex transmission phase function on intensity distribution in the focal area of high-aperture focusing system *Optical Memory and Neural Networks (Information Optics)* **20**(1) 23-42 DOI: 10.3103/S1060992X11010024

[27] Kazanskiy N L, Kharitonov S I, Kozlova I N and Moiseev M A 2018 The connection between the phase problem in optics, focusing of radiation, and the Monge–Kantorovich problem *Computer Optics* **42**(4) 574-587 DOI: 10.18287/2412-6179-2018-42-4-574-587

[28] Kazanskiy N L 2018 Modeling diffractive optics elements and devices *Proc. SPIE* **10774** 1077400 DOI: 10.1117/12.2319264

[29] Abramov A D, Nosov N V 2005 Electrooptical method of surface roughness analysis of details *Actual problems of modern science: Proceedings of the 1st International Forum of the 6th International Conference* (Samara: Publishing House of the Samara State Technical University) 40-43

[30] Abramov A D, Nosov N V and Khaustov V I 2009 Analysis of surface roughness of crowned rollers based on the analysis of their autocorrelation functions *Vestnik of the Samara State Aerospace University. Series “Aviation and rocket-space engineering”* **3**(19) 45-53

[31] Abramov A D, Nikonov A I 2010 The method of compensation of complementary error of measurement of microrelief parameters based on the use of electrooptic complex *Tools and systems. Management, Control, Diagnostics* **8** 34-42

[32] Evtikheev N N, Kupershmidt Y A, Papulovsky V F and Skugorov V N 1990 *Measurement of electric and non-electric quantities*. *Learning guide for high schools* (Moscow: “Energatomizdat”) p 352

[33] Solonina A I, Ulakhovich D A 2003 Fundamentals of digital signal processing (St. Petersburg: BHV) p 594

[34] Pratt W 1982 *Digital image processing* (Moscow: Mir) 2 p 790

[35] Dudgeon D, Mersereau R 1988 *Multidimensional Digital Signal Processing* (Moscow: Mir) p 488

[36] Abul’hanov S R, Skuratov D L and Khaimovich A I 2017 Correlation image analysis of surface roughness *Key Engineering Materials* **746** 296-304 DOI: 10.4028/www.scientific.net/KEM.746.296
[37] Krasovsky A A, Belogradov I N and Chigin G P 1979 *Theory of correlation-extreme navigation systems* (Moscow: Nauka) p 447

[38] Beloglazov I N, Tarasenko V P 1979 *Correlation-extreme systems* (Moscow: Sovradio) p 400

[39] Bochkarev A M 1981 Correlation-extreme navigation systems *Foreign Radioelectronics* 9 28-53

[40] Baklitsky V K 2009 *Correlation-extreme navigation and guidance systems* (Tver: TO Knozhny klub) p 360

[41] Fu K S 1976 *Digital Pattern Recognition* (Berlin, New-York: Springer Verlag)

[42] Eliseeva I I, Rukavishnikov V O 1977 *Grouping, correlation, recognition of patterns* (Moscow: Statistics) p 257

[43] Kazanskiy N L, Protsenko V I and Serafimovich P G 2014 Comparison of system performance for streaming data analysis in image processing tasks by sliding window *Computer Optics* 804-810

[44] Kazanskiy N L, Protsenko V I and Serafimovich P G 2017 Performance analysis of real-time face detection system based on stream data mining frameworks *Procedia Engineering* 168 1-8 DOI: 10.1016/j.proeng.2017.09.602

[45] Erosh I L, Sergeev M B and Soloyov N V 2005 *Image processing and recognition in preventive security systems* (St. Petersburg: Publishing house of St. Petersburg State University of Aerospace Instrumentation) p 154

[46] Ventsel E S 1998 *Theory of probabilities. Learning guide for high schools* (Moscow: Vysshaya shkola) p 576

[47] Doskolovich L L, Kazanskiy N L, Kharitonov S I and Soifer V A 1996 A method of designing diffractive optical elements focusing into plane areas *Journal of Modern Optics* 43(7) 1423-1433 DOI: 10.1080/09500349608232815

[48] Doskolovich L L, Kazanskiy N L, Soifer V A, Kharitonov S I and Perlo P 2004 A DOE to form a line-shaped directivity diagram *Journal of Modern Optics* 51(13) 1999-2005 DOI: 10.1080/09500340408232507

[49] Kazanskiy N, Skidanov R 2012 Binary beam splitter *Applied Optics* 51(14) 2672-2677 DOI: 10.1364/AO.51.002672

[50] Aslanov E R, Doskolovich L L, Moiseev M A, Bezus E A and Kazanskiy N L 2013 Design of an optical element forming an axial line segment for efficient LED lighting systems *Optics Express* 21(23) 28651-28656 DOI: 10.1364/OE.21.028651

[51] Doskolovich L L, Bezu A E, Moiseev M A, Bykov D A and Kazanskiy N L 2016 Analytical source-target mapping method for the design of freeform mirrors generating prescribed 2D intensity distributions *Optics Express* 24(10) 10962-10971 DOI: 10.1364/OE.24.010962

[52] Kazanskiy N L, Khonina S N 2017 Nonparaxial Effects in Lensacon Optical Systems *Optoelectronics, Instrumentation and Data Processing* 53(5) 484-493 DOI: 10.3103/S8756699017050089

[53] Bykov D A, Doskolovich L L, Mingazov A A, Bezus E A and Kazanskiy N L 2018 Linear assignment problem in the design of freeform refractive optical elements generating prescribed irradiance distributions *Optics Express* 26(21) 27812-27825 DOI: 10.1364/OE.26.027812

[54] Kazanskii N L, Kolpakov V A and Kolpakov A I 2004 Anisotropic etching of SiO2 in high-voltage gas-discharge plasmas *Russian Microelectronics* 33(3) 169-182 DOI: 10.1023/B:RUMI.0000026175.29416.eb

[55] Abulkhanov S R, Kazanskii N L, Doskolovich L L and Kazakova O Y 2011 Manufacture of diffractive optical elements by cutting on numerically controlled machine tools *Russian Engineering Research* 31(12) 1268-1272 DOI: 10.3103/S1068798X11120033

[56] Bezus E A, Doskolovich L L and Kazanskiy N L 2011 Interference pattern formation in evanescent electromagnetic waves using waveguide diffraction gratings *Quantum Electronics* 41(8) 759-764 DOI: 10.1070/QE2011v041n08ABEH014500

[57] Kazanskiy N L, Murzin S P, Osetrov Ye L and Tregub V I 2011 Synthesis of nanoporous structures in metallic materials under laser action *Optics and Lasers in Engineering* 49(11) 1264-1267 DOI: 10.1016/j.optlaseng.2011.07.001
[58] Kazanskiy N L, Kolpakov V A and Podlipnov V V 2014 Gas discharge devices generating the directed fluxes of off-electrode plasma Vacuum 101 291-297 DOI: 10.1016/j.vacuum.2013.09.014
[59] Kazanskiy N L, Moiseev O Yu and Poletayev S D 2016 Microprofile formation by thermal oxidation of molybdenum films Technical Physics Letters 42(2) 164-166 DOI: 10.1134/S1063785016020085
[60] Kazanskiy N L, Stepanenko I S, Khaimovich A I, Kravchenko S V, Byzov E V and Moiseev M A 2016 Injectional multilens molding parameters optimization Computer Optics 40(2) 203-214 DOI: 10.18287/2412-6179-2016-40-2-203-214
[61] Kazanskiy N L, Skidanov R V 2019 Technological line for creation and research of diffractive optical elements Proc. SPIE 11146 111460W DOI: 10.1117/12.2527274
[62] Kazanskiy N L, Uspleniev G V and Volkov A V 2000 Fabricating and testing diffractive optical elements focusing into a ring and into a twin-spot Proc. SPIE 4316 193-199 DOI: 10.1117/12.407678
[63] Doskolovich L L, Kazanskiy N L, Khonina S N, Skidanov R V, Heikkila N, Siitonen S and Turunen J 2007 Design and investigation of color separation diffraction gratings Applied Optics 46(15) 2825-2830 DOI: 10.1364/AO.46.002825
[64] Tukmakov K N, Komlenok M S, Pavelyev V S, Kononenko T V and Konov V I 2018 A continuous-profile diffractive focuser for terahertz radiation fabricated by laser ablation of silicon Computer Optics 42(6) 941-946 DOI: 10.18287/2412-6179-2018-42-6-941-946
[65] Bezus E A, Doskolovich L L, Kazanskiy N L and Soifer V A 2011 Scattering in elements of plasmon optics suppressed by two-layer dielectric structures Technical Physics Letters 37(12) 1091-1095 DOI: 10.1134/S1063785011120030
[66] Kazanskiy N L, Serafimovich P G 2014 Coupled-resonator optical waveguides for temporal integration of optical signals Optics Express 22(11) 14004-14013 DOI:10.1364/OE.22.014004
[67] Egorov A V, Kazanskiy N L and Serafimovich P G 2015 Using coupled photonic crystal cavities for increasing of sensor sensitivity Computer Optics 39(2) 158-162 DOI: 10.18287/0134-2452-2015-39-2-158-162
[68] Degtyarev S, Savelyev D, Khonina S and Kazanskiy N 2019 Metasurfaces with continuous ridges for inverse energy flux generation Optics Express 27(11) 15129-15135 DOI: 10.1364/OE.27.015129
[69] Soifer V A, Kotlyar V V and Doskolovich L L 2009 Diffractive optical elements in nanophotonics devices Computer Optics 33(4) 352-368
[70] Soifer V A 2014 Diffractive nanophotonics and advanced information technologies Herald of the Russian Academy of Sciences 84(1) 9-18 DOI:10.1134/S1019331614010067
[71] Abramov A D, Nikonov A I and Nosov N V 2011 Method of surface roughness control Patent of the Russian Federation N. 2413179