Impact of planting dates on *Thrips tabaci* Lindeman infestation and yield in onion (*Allium cepa L.*) in central India

P K Dwivedi, R A Tripathi, S P Mishra, Shikha Tripathi, Mukul Kumar, Manjul Pandey

ABSTRACT

The aim of the present research work was to investigate the impact of planting dates on thrips populations in onions was monitored throughout two growing seasons and field experiments were carried out for two years (2013-14 to 2014-15), to determine the Impact of planting dates on *Thrips tabaci* Lindeman infestation and yield in onion (*Allium cepa L.*), in central part of India. Plant samples were collected to assess Impact of planting dates on thrips and their abundance. Results showed that the significantly lowest population of onion thrips was recorded on 1st November transplanted onion crop (12.97 thrips/plant), while significantly highest population of onion thrips was recorded on 15th January transplanted onion crop (34.25 thrips/plant). Significantly higher yield was recorded in 1st January transplanted crop (275.83 q/ha), while significantly lowest yield was recorded in 1st November transplanted crop (236.30 q/ha).

Keywords: Abundance, Impact, Incidence, Infestation, Onion, Planting Date, Population, Seasonal Dynamics, *Thrips Tabaci*, Yield.

INTRODUCTION

Onion (*Allium cepa Linnaeus*), is one of the important vegetable crops of family Alliaceae, originated from Central Asia [1]. It is very important in cookery; hence Germans called it as the “Queen of Kitchen”. India is the second largest producer of onion in the world next only to China. In India, onion is cultivated over an area of (1285.00), thousand ha with a production of (23,262.31), thousand tones. The productivity of onion in India is very low i.e., (18.10 tones/ha), as compared to China having (22.05 tones/ha), and Korea having (57.03 tones/ha) [2]. In Uttar Pradesh onion occupies (26.85), thousand ha area with a production of (459.64), thousand tones and productivity is about (16.37 tones/ha), while in Madhya Pradesh onion occupies (150.87), thousand ha area with a production of (3701.01), thousand tones and productivity is about (24.53 tones/ha). The per capita availability of onion is highest in Netherlands (32.99 kg/year), while in India it is (4.51 kg/year), which is quite low [3]. Onion is an export-oriented crop earning valuable foreign exchange for the country. India is traditional exporter of onion, which alone accounts for more than (70%), of exports amongst fresh vegetables. Recently during (2017-18), India has exported it amounting (2135421.57 metric ton), which valued for Rs.438436.00 lakh [4].

Onion thrips, *Thrips tabaci* (Thysanoptera: Thripidae), is a key insect pest in most onion production regions of the world [5]. Out of the 5,000 or so species of thrips recorded so far, only few hundred species are known to attack the cultivated plants [5], Torres et al. [6], revealed that *T. tabaci* accounted for over (90%), of the total thrips species collected in garlic, onions and leeks. It is a regular and potential pest of onion and causes as high as 90 per cent of yield loss [7,8]. In case of heavy infestation and severe sucking, the leaves become twisted and whitish sti

Thrips infest onion crop throughout the crop seasons. However, there was significant variation in thrips numbers between the crop seasons [11]. In (UP), its population is found maximum in November and February. To reduce the risk of pesticide application and resulting yield losses of onion crop, there is a need of resistant cultivars derived from the genetic sources [12]. The use of onion cultivars resistant to *T. tabaci* would reduce the use of insecticide, to avoid environmental hazards and to minimize the evolution of resistance to insecticides [13].

Correspondence:
Dr. Pradip Kumar Dwivedi
Scientist, Plant Protection, Krishi Vigyan Kendra, Raisen-464551, M.P, India
Email: dwivedi_pradip@rediffmail.com
Researchers currently identified thrips resistant cultivars/ genotype that guard against the negative impacts of thrips infestation [15]. The crop loss up to 50 per cent has been estimated in onion due to attack of T. tabaci [16]. This pest causes greatest damage during dry seasons when it destroyed 75 per cent of the onion crop [17]. Keeping the year-round planting on onion in central India in view, an experiment was conducted to identify the most appropriate date for transplanting onion to minimize thrips infestation.

MATERIALS AND METHODS

To study the Impact of planting dates on Thrips tabaci Lindeman infestation and yield in onion (Allium cepa L.), in central part of India, experiment was carried out at the experimental farm of the Department of Vegetable Science, Chandra Shekhar Azad University of Agriculture and Technology, Kallangur, Kanpur (U.P.), during the Rabi, (2013-14), and (2014-15), All the glassware used in this study was obtained from Broil, India and Scott Duran, Germany, Plastic ware, including Eppendorf tubes, micropipette-tips, PCR tubes, etc., was procured from Tarpons, India and Imperial Bio-Medics, India.

Impact of planting dates on Thrips tabaci

Raising of nursery of Agri found Light Red variety of onion and its transplanting

The seeds of Agri found Light Red (ALR), variety of onion were sown in nursery beds started from dated 15th September, 2013 to 01st December, 2013 at 15 days interval for six different planting dates as proposed (1st November, 15th November, 1st December, 15th December, 1st January and 15th January), for the year (2013-14), and similarly for the year (2014-15).

The population dynamics of onion thrips was recorded on the fields as transplanted on above mentioned six dates in Randomized Block Design with three replication and plant spacing 15 cm row to row and 10 cm plant to plant at research Centre, Kallangur, Kanpur. Except of plant protection measures all other agronomical practices were adopted to raise good and healthy crop. The incidence and damage of onion thrips were noted/ collected on experimental trial in order to identify the species. The thrips population was recorded at weekly interval from the inner most leaves of five randomly selected plants of each replication by using 10 x lens. This population was correlated with the meteorological parameters.

RESULTS AND DISCUSSION

Impact of different dates of planting of onion on the incidence of onion thrips, T. tabaci

To find out the most appropriate date of transplanting for the avoidance of major incidence of onion thrips, six different dates of transplanting were evaluated. First date of transplanting was first November during both the years and subsequent dates of transplanting’s were at 15 days intervals. The dates of transplanting were compared on the basis of average thrips population per plant as well as average yield in q/ha.

Impact of different planting dates of onion on the incidence of onion thrips, T. tabaci and yield of onion bulbs during rabi season (2013-14)

The data presented (Table 1), revealed that the thrips population was significantly varied in all the dates of transplanting. The significantly mean lowest population of onion thrips (12.89 thrips/plant), was recorded on 1st November transplanted onion crop, while significantly highest population (34.17 thrips/plant), of onion thrips was recorded on 15th January transplanted onion crop. The data clearly showed that when the dates of transplanting are delayed, the incidence of thrips was also simultaneously increased. The 1st November, date of planting significantly showed the least population of thrips/plant (12.89), Next dates 15th November, 1st December and 15th December were at par in respect of thrips population per plant (18.59, 21.04 and 23.01). The 1st January and 15th January, the dates of transplanting showed the higher thrips population per plant (28.18 and 34.17, respectively).

The yield data recorded on different dates of transplanting (Table 1), differed significantly with each other. Significantly higher yield (275.46 q/ha), was recorded in 1st January transplanted crop while significantly lowest yield (235.62 q/ha), was recorded in 1st November transplanted crop. The yield data (Table 1), showed that the dates of transplanting were delayed then subsequently onion yield was increased. The November transplanting yielded 235.62 and 239.00 q/ha, December transplanting yielded 254.46 and 261.74 q/ha. January transplanting yielded 275.46 and 267.40 q/ha. But the in case of onion thrips the higher population was recorded in late transplanted crop (January), as compared to early (November), transplanted crop.

Impact of different planting dates of onion on the incidence of onion thrips, T. tabaci during rabi season (2014-15)

The data (Table 1), revealed that the thrips population varied significantly in all the date of transplanting’s. The significantly average lowest population of onion thrips (13.05 thrips/plant), was recorded on 1st November transplanted onion crop while significantly highest population (34.32 thrips/plant), of onion thrips was recorded on 15th January transplanted onion crop. The data (Table 1) clearly showed that when the dates of transplanting are delayed, the incidence of thrips was simultaneously increased. The subsequently lower population of onion thrips was recorded in November transplanted crop (13.05 and 18.82 thrips/plant), followed by December transplanted crop (21.26 and 23.31 thrips/plant), and significantly higher population (28.52 and 34.32 thrips/plant), was recorded in January transplanted crop.

The yield data recorded from different dates of transplanting’s differed significantly. Significantly higher yield (276.20 q/ha), was recorded in 1st January transplanted crop while significantly lowest yield (236.98 q/ha), was recorded in 1st November transplanted crop. The yield data showed that when the dates of transplanting’s were delayed then the yield was also subsequently increased. The yield of November transplanted (236.98 and 240.59 q/ha), and December (256.11 and 262.91 q/ha), transplanted crop was low as compared to January transplanted crop (276.20 and 270.15 q/ha), but in case of onion thrips the higher population was recorded in late transplanted crop (January), as compare to early (November), transplanted crop.

Impact of different planting dates of onion on the incidence of onion thrips, T. tabaci (Average of 2013-14 and 2014-15)

The average of data of two years (Table 1), revealed that the thrips population was varied significantly in all the dates of transplanting. The significantly average lowest population of onion thrips (12.97 thrips/plant), was recorded on 1st November transplanted onion crop while significantly highest population (34.25 thrips/plant), of onion thrips was recorded on 15th January transplanted crop. The data (Table 1), clearly showed that when the dates of transplanting are advanced, then the incidence of thrips was simultaneously increased. The subsequently lower population of onion thrips was recorded in November transplanted crop (12.97 and 18.71thrips/plant), followed by December transplanted crop (21.15 and 23.16thrips/plant), and significantly higher population (28.35 and 34.25thrips/plant), was recorded in January transplanted crop.

The yield data recorded from different dates of transplanting’s differed significantly with each other. Significantly higher yield (275.83 q/ha), was recorded in 1st January transplanted crop while significantly lowest yield (236.30 q/ha), was recorded in 1st November transplanted crop. The yield data showed that when the transplanting’s dates were advanced then the yield was subsequently increased. The yield of November transplanted (236.30 and 239.79 q/ha), and December transplanted (255.29 and 262.33 q/ha), was low as
compared to January transplanted crop (275.83 and 268.78 q/ha), but in case of onion thrips, the higher population (28.35 and 34.25 thrips/plant), was recorded in late transplanted crop (January), as compared to early (November), transplanted crop (12.97 and 18.71 thrips/plant).

Impact of different planting dates of onion on the incidence of onion thrips

To find out the most appropriate date of transplanting for the avoidance of major incidence of onion thrips, six different dates of transplanting were evaluated. First date of transplanting was first November during both the years and subsequent dates of transplanting were at 15 days intervals. The dates of transplanting were compared on the basis of average thrips population per plant as well as average yield in quintal per hectare.

The data (Table 1), revealed that the thrips population varied significantly in all the dates of transplanting. The significantly average lowest population of onion thrips (12.97 thrips/plant), was recorded on 1st November transplanted onion crop, while significantly highest population (34.25 thrips/plant), of onion thrips was recorded on 15th January transplanted onion crop. The data clearly showed that when the dates of transplanting were advanced, the incidence of thrips was simultaneously increased. The subsequently lower population of onion thrips was recorded in 1st and 15th November transplanted crops (12.97 and 18.71 thrips/plant, respectively), followed by 1st and 15th December transplanted crop (21.15 and 23.16 thrips/plant, respectively), and significantly higher population in 1st and 15th January (28.35 and 34.25 thrips/plant, respectively), was recorded. Present findings are more or less supported by the findings of Hamady and Salem (1994), who reported that the onion plants, transplanted early on 14th January harboured the highest population of thrips in Egypt [18]. Relatively low population of thrips was recorded on onion plants which were transplanted on 6th and 28th February. The highest population was recorded on the crop which transplanted on 11th April. They further noticed significantly positive correlation with temperature while its correlation with relative humidity was found negative. Several other workers also have reported that the early planting of the onion crop is avoided from the severe attack of thrips [19-24]. In the present findings the peak period of attack of thrips was observed in the month of March during both the years. Merene (2015), has also reported that the peak of this pest in March (159.0 thrips/plant) [25].

The yield data recorded from different dates of transplanting differed significantly to each other. Significantly higher yield (275.83 q/ha), was recorded in 1st January transplanted crop, while significantly lowest yield (226.30 q/ha), was recorded in 1st November transplanted crop. The yield data showed that when the dates of transplanting were advanced, then the yield was also subsequently increased. The yield of November (236.30 and 239.79 q/ha), and December (255.29 and 262.33 q/ha), transplanted crop was low as compared to January transplanted crop (275.83 and 268.78 q/ha), but in case of onion thrips, the higher population was recorded in late transplanted crop (January), as compared to early November transplanted crop. Tripathy et al. [26] have recorded the higher population of thrips (52.89 thrips/plant), in 15th January planting and its higher bulb yield (214.00 q/ha).

To find out the most appropriate date of transplanting for the avoidance of major incidence of onion thrips, six different dates of transplanting were evaluated. The significantly lowest population of onion thrips was recorded on 1st November transplanted onion crop (12.97 thrips/plant), while significantly highest population of onion thrips was recorded on 15th January transplanted onion crop (34.25 thrips/plant). From these results it was concluded that on the advancement of the dates of transplanting simultaneously increased the incidence of thrips per plant.

Significantly higher yield was recorded in 1st January transplanted crop (275.83 q/ha), while significantly lowest yield was recorded in 1st November transplanted crop (236.30 q/ha). The yield data showed that, when the dates of transplanting are forwarded, the yield was also subsequently increased. For both the years (2013-14 and 2014-15), the yield of November transplanted crop (236.30 and 239.79 q/ha), and December transplanted crop (255.29 and 262.33 q/ha), was low as compared to January (275.83 and 268.78 q/ha), transplanted crop but in case of onion thrips the higher population was recorded in late January transplanted crop (34.25 thrips/plant), as compared to early (November), transplanted crop (12.97 thrips/plant).

Table 1: Effect of different dates of transplanting on the incidence of onion thrips, Thrips tabaci and yield of onion bulbs during rabi season, (2013-14) and (2014-15)

Sl. No	Different dates of planting	2013-14	2014-15	Average of 2013-14 and 2014-15			
	Mean population of thrips/ plant	Mean Yield (q/ha)	Mean population of thrips/plant	Mean Yield (q/ha)	Thrips population/plant	Yield (q/ha)	
1	01 November	12.89 (3.65)*	235.62	13.05 (3.67)*	236.98	12.97 (3.67)*	236.30
2	15 November	18.59 (4.37)	239.00	18.82 (4.39)	240.59	18.71 (4.38)	239.79
3	01 December	21.04 (4.64)	254.46	21.26 (4.66)	256.11	21.15 (4.65)	255.29
4	15 December	23.01 (4.85)	261.74	23.31 (4.88)	262.91	23.16 (4.86)	262.33
5	01 January	28.18 (5.35)	275.46	28.52 (5.38)	276.20	28.35 (5.37)	275.83
6	15 January	34.17 (5.88)	267.40	34.32 (5.90)	270.15	34.25 (5.89)	268.78
	SEm ±	0.17	14.32	0.11	9.01	0.10	10.01
	CD (P= 0.05)	0.54	45.14	0.35	28.41	0.30	31.55
	CV (%)	6.16	9.71	4.00	6.07	3.45	6.76

* Transformed values under parentheses are √ x
Where x= mean value of thrips population

The Journal of Phytopharmacology
CONCLUSION

However, on 01 January transplanted crop, the thrips population per plant was higher but the yield was found highest (275.83 q/ha), Thus, the date of 1st January for transplanting of onion crop may be recommended. Though the thrips population was higher, which may be in non-feeding stage.

Acknowledgements

The authors are grateful to Project Co-Ordinator, AINRPOG (ICAR), and Department of Vegetable Science, Chandra Shekhar Azad University of Agriculture and Technology, Kallangur, Kanpur (U.P.), for supporting and providing the necessary facilities to conduct the experiments.

Conflict of Interest

None declared.

Financial Support

None declared.

REFERENCES

1. Brewer JL. Onion and other vegetable alliins. Cab. International Cambridge. 1994:93-11.
2. Anonymous. 2017-18. National Horticultural Research and Development Foundation (NHRDF) database http://www.nhrdf.org.in.
3. Singh K. Current status of onion and garlic research in India and future prospects. 2001.
4. Muvea AM, Meyhofer R, Subramanian S, Poehling HM, Ekesi S, Maniania NK. Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci. PLoS one. 2014;9(9):e108242.
5. Zür Strassen R. Catalogue of the known species of South African Thysanoptera. J Entomol Soc. Sthrn Afr. 1960;23:321-67.
6. Torres-Vila LM, Lacasa A, Brelza P; Meco R. Population dynamics of Thrips tabaci Lind (Thysanoptera: Thripidae) on liliaceous vegetables in Castilla-La Mancha. Bol Sanid Veg Plagas. 1994;20:661-77.
7. Gupta RP, Srivastava VK, Bhardwaj BS, Pandey UB. Chemical control of Thrips tabaci L. infesting onion crop. Journal of Entomological Research. 1984;8(2):196-8.
8. Dharmasena CM. Present status of managing chilli leaf curl complex in the North Central Province of Sri Lanka. Tropi. Agril. Res. Extn. 1998;1:154-8.
9. Sudharmak N, Nair GM. Assessment of Loss caused by Polyphagotarsonemus latus Banks on Chilli. ENTOMON-TRIVANDRUM. 1999;24:97-100.
10. Whitfield AE, Ullman DE, German TL. Tospovirus-thrips interactions. Annu. Rev. Phytopathol. 2005;43:459-89.
11. Pourian HR, Mirab-balou M, Alizadeh M, Orosz S. Study on biology of onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae) on cucumber (var. Sultan) in laboratory conditions. Journal of Plant Protection Research. 2009;49(4):390-94.
12. Alston DG, Drost D. Onion thrips (Thrips tabaci). UTAH Pests Fact Sheet. 2008.
13. Sepahvand N, Jaliayni N, Abbasi Far AR, Tajik A; Yusefi M, Khahbazi M, et al. Evaluation of Resistance and Susceptible Iranian Onion Cultivars and Landraces to Thrips in Karaj and Arak. Agriculture Research Educational Organization 2009, 38.
14. Diaz-Montano J, Fuchs M, Nault BA, Shelton AM. Resistance to onion thrips (Thysanoptera: Thripidae) in onion cultivars does not prevent infection by Iris yellow spot virus following vector-mediated transmission. Florida Entomologist. 2012;156-61.
15. Haider K, Ghalam A, Asifa H, Ghayour A, Amjad A. Losses in onion (Allium cepa) due to onion thrips (Thrips tabaci) (Thysanoptera: Thripidae) and effect of weather factors on population dynamics of thrips. World Appl. Sci. J. 2014;32:2250-8.
16. Mote U N. Control of onion thrips (Thrips tabaci Lind.). Pesticides. 1976;10: 42-43.
17. Rahman KA, Batra AL. The onion thrips (Thrips tabaci Lind.: Thripidae: Terebrantia: Thysanoptera). Indian J. Agric. Sci. 1945;14:308-10.
18. Hamdy MK, Salem M. The effect of plantation dates of onion, temperature and relative humidity on the population density of the onion thrips, Thrips tabaci Lind. in Egypt. Annals of Agricultural Science, Ain-Shamd Univ.(Egypt). 1994;39(1):417-24.
19. Khisa JS. Cultural and insecticidal control of Thrips tabaci on onions in the Sudan. Annals of Applied Biology. 1977;86(2):219-28.
20. Gonçalves PA. Seasonal fluctuation of thrips, Thrips tabaci Lind., on onion in Ituporanga, Santa Catarina. Anais da Sociedade Entomológica do Brasil. 1997;26(2):365-9.
21. Srinivas PS, Lawande KE. Impact of planting dates on Thrips tabaci Lindeman infestation and yield loss in onion (Allium cepa L.). J Pest Manag Hort Ecosyst. 2004;10(1):11-8.
22. Pandey AK, Ahmed SB. Effect of late planting of onion on the incidence of Thrips tabaci Lindeman. Journal of Entomology. 2007;32(3):197-202.
23. Ibrahem ND, Adestiyun AA. Effects of staggered planting dates on the control of Thrips tabaci Lindeman and yield of onion in Nigeria. African Journal of Agricultural Research. 2009 Jan 31;4(1):033-9.
24. Tripathy P, Priyadarsini A, Das SK, Sahoo BB, Rath LK, Dash DK. Population dynamics and seasonal incidence of onion thrips Thrips tabaci and purple blotch Alternaria porri under odisha condition. Indian Journal of Plant Protection. 2012;40(4):344-6.
25. Merene Y. Population dynamics and damages of onion thrips (Thripstabaci)(Thysanoptera: Thripidae) on onion in Northeastern Ethiopia. Journal of Entomology and Nematology. 2015 Jan 30;7(1):1-4.
26. Tripathy P, Sahoo BB, Patel D. Impact of planting dates on population dynamics and seasonal incidence of onion thrips and purple blotch. New Agriculturist. 2016;27(1):145-50.

HOW TO CITE THIS ARTICLE

Dwivedi PK, Tripathi RA, Mishra SP, Tripathi S, Kumar M, Pandey M. Impact of planting dates on Thrips tabaci Lindeman infestation and yield in onion (Allium cepa L.) in central India. J Phytopharmacol 2022; 1(1):97-100. doi: 10.31254/phyto.2022.11208

Creative Commons (CC) License-

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY 4.0) license. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. (http://creativecommons.org/licenses/by/4.0/).