Evaluation of Bioactive Compounds on Different Extracts of Linum Usitatissimum and Its Antimicrobial Properties against Selected Oral Pathogens

Ummu A. Fadzir
Department of Biotechnology, Kulliyyah of Science, International Islamic University, 25200 Kuantan, Pahang, Malaysia

Khairani I. Mokhtar
Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

Basma E. Mustafa
Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

Deny S. Darnis
Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia, deny@iium.edu.my

Follow this and additional works at: https://scholarhub.ui.ac.id/mjhr

Recommended Citation
Fadzir UA, Mokhtar KI, Mustafa BE, Darnis DS. Evaluation of Bioactive Compounds on Different Extracts of Linum Usitatissimum and Its Antimicrobial Properties against Selected Oral Pathogens. Makara J Health Res. 2018;22.
Evaluation of Bioactive Compounds in Different Extracts of *Linum usitatissimum* and their Antibacterial Properties

Ummu A Fadzir¹, Khairani I Mokhtar², Basma E Mustafa², Deny S Darnis³*

1. Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.
2. Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.
3. Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.

*E-mail: deny@iium.edu.my

Abstract

Background: Antibacterial agents from natural sources have been suggested as alternatives for treating infectious diseases due to their low side effects. Flaxseed (*Linum usitatissimum*) exhibits some antibacterial properties, but its effects against oral pathogens are poorly understood. This study investigated flaxseed extracts’ antibacterial effects against such pathogens.

Methods: Non-polar and polar extracts of flaxseed, with *n*-hexane, dichloromethane (DCM) and methanol (MeOH), were prepared by sequential Soxhlet extraction. All extracts were qualitatively screened through gas chromatography–mass spectrometry to detect bioactive compounds. Antibacterial activities of flaxseed extracts with different volumes per disc (Oxoid, Badhoevedorp, Netherlands) (5, 7, 10, 12 and 15 µL/disc) were evaluated against four different oral pathogens: *Streptococcus pyogenes*, *Streptococcus mutans*, *Lactobacillus casei* and *Enterococcus faecalis*, using the disc diffusion method. Flaxseed extracts’ inhibitory activities against the tested oral pathogens were examined by measuring the inhibition zone diameter.

Results: Polar extract (methanolic extract) demonstrated significant antibacterial activity (*p*<0.01) against all tested oral pathogens, with inhibition zones comparable to those for penicillin. In contrast, *n*-hexane and DCM extracts demonstrated variable antibacterial activities.

Conclusions: This study suggests that *Linum usitatissimum* methanolic extract exhibited the best inhibitory activity on all tested strains compared to the other extracts.

Keywords: antibacterial agents, methanolic extract, *Linum usitatissimum*

Introduction

Despite being largely preventable, oral diseases remain a major public health issue worldwide. A global review of oral health, published by the World Health Organization (WHO), indicated oral health is still a global problem, even though some countries have achieved great improvements.¹ In fact, dental caries and periodontal disease are the most common infectious diseases afflicting humans and are linked to various kinds of Gram-negative and Gram-positive bacteria. The wide-spread and rapid emergence of multiple drug-resistant bacteria has prompted scientists across the world to develop novel antimicrobial agents. Healthcare systems in the 21st century face a major challenge in dealing with the resistance of these bacteria. Although traditional healers have used plants to cure and prevent infectious diseases since ancient times, modern scientists are now attempting to duplicate their successes through clinical-based research, including in the pursuit of medications against multiple drug-resistant bacteria. Studies on traditional medicinal products have revealed the critical roles played by plants that are rich in various metabolites such as alkaloids, flavonoids, tannins and terpenoids, for which empirical evidence of their antimicrobial properties has been reported.² ³ In this study, we focused on assessing flaxseed extracts’ antimicrobial activities on four selected oral pathogens: *S. pyogenes*, *S. mutans*, *L. casei* and *E. faecalis*.

Flaxseed or linseed with the scientific name *L. usitatissimum*, is a valuable herb belonging to the Linaceae family.⁴ The terms ‘flaxseed’ and ‘linseed’ are commonly used to refer to flax, but have slightly different meanings. The former refers to flax when consumed as food by humans, whereas the latter is associated with flax used for animals feeding and industrial purposes.⁵ ⁶ Flaxseed is believed to have originated in Egypt, and it has been cultivated worldwide for its oil and fibre for many years.⁷

In recent years, many researchers have paid special attention to flaxseed since studies have shown its
pronounced benefits on health, including via anticancer and antibacterial effects. Studies also showed that flax lignans, flaxseed oil and fibres help treat many diseases such as atherosclerosis, cardiovascular disease, arthritis, cancer, diabetes, osteoporosis and autoimmune and neurological disorders. Previous studies revealed that its nutritious components include fibre, α-linolenic acid (ALA, omega-3 fatty acid), lignans, proteins as well as fixed oil. A previous study also revealed that flaxseeds consist of 35%–45% oil, 20%–25% protein and a small portion of cyanogenic glycosides, with linoleic and linolenic acids being the main components of the oil. The aim of this study is to investigate flaxseed extracts’ antibacterial effects against oral pathogens.

Methods

Plant material and extract preparation. *Linum usitatissimum* seeds were collected from the University of Philadelphia in Jordan. Dried flaxseeds (100 g) were ground, using a blender, and extracted using a Soxhlet extractor with solvents of increasing polarity, beginning with *n*-hexane, followed by dichloromethane and finally methanol. The powdered plant samples were extracted successively with *n*-hexane, dichloromethane, and methanol. Each extraction was carried out continuously for 8–10 hours. The extracts produced with different organic solvents were evaporated using a rotary evaporator to remove the remaining organic solvents, leaving a small yield of extracted plant material in the glass-bottomed flask. Then, the extract was further dried in a fume hood until a constant mass was obtained.

Fatty acids into fatty acid methyl esters (FAME). FAME analysis by gas chromatography–mass spectrometry (GC-MS) – Here, 14% methanolic boron trifluoride (BF₃/MeOH) was used to derivatize fatty acids into fatty acid methyl esters (FAME). FAME preparation was performed in line with MPOB Test Methods p3.4: 2004. GC-MS analyses of *L. usitatissimum* FAME were performed using a GC Clarus™ SQ 8 Perkin Elmer system. The gas chromatograph was connected to a mass spectrometer (GC-MS) under the following conditions: Column Elite-5MS fused silica capillary column (30 mm length × 0.25 mm inner diameter × 0.25 μm film thickness, composed of 100% dimethylpolysiloxane), operating in electron impact mode (ionizing energy) at 70 eV. Helium (99.9%) was used as carrier gas at a constant flow rate of 1 mL/min and an injection volume of 2 μL was employed (split ratio of 10:1). The injector temperature was 250 °C and the ion-source temperature was 280 °C. The oven temperature was programmed to start at 70 °C (isothermal for 6 min) with an increase of 6 °C/min to 280 °C. Mass spectra were taken at 70 eV, with a scan interval of 0.5 s and fragments from 45 to 450 Da. The total GC running time was 60 min.

Bacterial strains. The microorganisms used in this study included *S. mutans* (ATCC 25175), *S. pyogenes* (ATCC 19615), *L. casei* (ATCC 4646), and *Enterococcus faecalis* (ATCC 29212) as oral pathogens. All bacterial strains were incubated overnight in Mueller Hinton Broth (MHB) (Oxoid) under aerobic conditions at 37 °C to be used as an inoculum. The suspensions’ turbidity was adjusted to 1.5–3 × 10⁸ cells/ml, which corresponds to an absorbance of 0.08–0.10 at a wavelength of 625 nm.

Agar disc diffusion. The antibacterial tests were performed using the disc diffusion method. Agar plates were prepared using sterile Mueller Hinton agar (Oxoid). The bacterial inoculum was evenly spread onto the surface of the agar plates using a sterile cotton swab. Crude extracts of *L. usitatissimum* (with *n*-hexane, dichloromethane and methanol) were pipetted at different volumes (5, 7, 10, 12 and 15 μL) onto sterile blank discs of 6 mm in diameter (Oxoid, Badhoevedorp, Netherlands), which were allowed to dry before being impregnated onto agar plates inoculated with bacteria. Since the unit of volume per disc was used for evaluation, an appropriate blank disc must be able to take the maximum amount of tested volume. Standard antibiotics, namely, ampicillin and penicillin at 10 mg/mL, were used as positive controls, while broth was used as a negative control for all tested bacteria. Diffusion of the extracts and antibiotics was allowed at room temperature, using a blower in a biosafety cabinet until full drying had occurred. The agar plates were then incubated at 37 °C for 6–18 h. The presence of a clear zone (inhibition zone) around the discs on the plates was observed, and the average diameter of these zones was measured to assess antibacterial activity. The presence of an inhibition zone denoted that inhibitory activities had taken place. All tests were performed in triplicate and the results are presented as mean ± SE.

Results

L. usitatissimum’s potential to be used to cure infectious diseases prompted us to specifically study its antibacterial activity against oral pathogens. The four oral pathogens selected for use in this study were *S. mutans*, *E. faecalis*, *S. pyogenes* and *L. casei*. The extracts’ chemical compositions were investigated using gas chromatography–mass spectrometry (GC-MS) analyses in order to understand the nature of the bioactive principles and their mechanisms of action. The in vitro antibacterial activity of *L. usitatissimum* were quantitatively measured by determining the inhibition zones’ diameter. The inhibition zones produced by the test organisms indicated their susceptibility to the flaxseed extracts. The inhibitory results of antibacterial activity are shown in Table 1.
The elution order for \(n \)-hexane analysis was as follows: palmitic acid, linoleic acid, linolenic acid and stearic acid. The elution order for methanolic extract analysis: myristic acid, palmitic acid, linoleic acid, linolenic acid and stearic acid. The results of the quantitative determination of the levels of these compounds are shown in Tables 2–4.

GC-MS analysis of the \(n \)-hexane extract showed the presence of five main compounds, as presented in Table 2. The fatty acid present at the highest rate was linolenic acid (76.79%), followed by linoleic acid (12.79%), palmitic acid (6.3%) and stearic acid (2.1%). This is in accordance with a previous study. On the other hand, GC-MS analysis of dichloromethane extract led to identifying various classes of compound. Specifically, the nine most prevalent components were hexadecanoic acid (4.04%), oleic acid (11.46%), oleic acid, 3-hydroxypropyl ester (5.19%), 9-octadecanoic acid (Z)-2,3-dihydroxypropyl ester (12.22%), 4-hexyl-1-(7-methoxybenzoylheptyl) bicyclo[4,4,0] deca-2,5,7-triene (17.21%), trimethylsilyl derivative of 2-monoolein (11.16%), 3,4-diphenyl-6-methyl-7,8-(1,4-dimethoxybenzo)-9-oxatricyclo[4.2.1.0(2,5)] non-3-ene (3.33%), 9,19-cyclolanost-24-en-3-ol, acetate, (3β) (34.67%) and 9,19-cycloergost-24(28)-en-3-ol,4,14-dimethyl-acetate (3β,4α,5α) (0.71%) (Table 3). Besides that, five phytocompounds were characterized and identified in methanolic extract. The bioactive compounds, with their retention time (RT) and percentage of relative composition, are presented in Table 4. Specifically, Table 4 shows five phytochemical compounds identified in methanolic extract; linolenic acid was the most abundant at 53.01%, followed by palmitic acid (17.10%), linoleic acid (16.44%), stearic acid (3.74%), and finally myristic acid (0.71%). For the antibacterial assessment, the results regarding the inhibitory zones for \(S \) \textit{mutans}, \(E \) \textit{faecalis}, \(S \) \textit{pyogenes} and \(L \) \textit{casei} are presented in Table 1. The studies were performed in triplicate, and the results are expressed as mean ± SE. From this study, \(n \)-hexane and dichloromethane extracts demonstrated poor \textit{in vitro} antimicrobial profiles against \(S \) \textit{mutans}, \(E \) \textit{faecalis}, \(S \) \textit{pyogenes} and \(L \) \textit{casei}. On the other hand, methanolic extract showed potent activity against all four of these species. None of the strains demonstrated resistance to this extract, and the inhibitory zone significantly increased in a dose dependent manner (Figure 1). The inhibition zone diameter for all tested bacteria treated with methanolic extract differed significantly at \(p < 0.01 \). However, the test extract showed better antimicrobial activity against \(S \) \textit{pyogenes} at all concentrations, followed by those against \(L \) \textit{casei}, \(E \) \textit{faecalis}, and finally \(S \) \textit{mutans}. Finally, \(n \)-hexane and dichloromethane extract showed no inhibition zone for all bacteria, except for \(S \) \textit{pyogenes} with a weak inhibition zone. For \(n \)-hexane extract, the inhibition zone was 6.7±0.67 mm (mean ± SE) for concentrations of 5 and 7 µL/disc and 7.0±1 mm for concentrations of 10, 12 and 15 µL/disc, while for dichloromethane extract, the values were 6.7±0.67 mm for concentrations of 5 and 7 µL/disc, 7±1 mm for a concentration of 10 µL/disc, 8±1 mm for a concentration of 12 µL/disc and 9±1 mm for a concentration of 15 µL/disc.

Table 1. Antibacterial activities of \(L \). \textit{usitatissimum} against oral microorganisms controlled with zones of inhibition in millimeters using disc diffusion method (mean ± SE)

Variable	Plant extract (µL/disc)	Negative control	Positive control				
	5	7	10	12	15		
\(S \). \textit{mutans}							
\(n \)-Hexane	-	NI	NI	NI	NI	NI	NI
Dichloromethane	-	NI	NI	NI	NI	NI	NI
Methanol	** 9.67 ± 0.33	13.67 ± 0.88	15.33 ± 0.33	17.33 ± 0.67	19.33 ± 0.67	NI	29.67 ± 0.33
\(E \). \textit{faecalis}							
\(n \)-Hexane	-	NI	NI	NI	NI	NI	NI
Dichloromethane	-	NI	NI	NI	NI	NI	NI
Methanol	** 10.33 ± 1.33	12.00 ± 1.53	14.33 ± 0.67	16.33 ± 0.88	20.67 ± 1.45	NI	29.00 ± 0.58
\(S \). \textit{pyogenes}							
\(n \)-Hexane	-	6.7 ± 0.67	6.7 ± 0.67	7.0 ± 1	7.0 ± 1	7.0 ± 1	7.0 ± 1
Dichloromethane	-	6.7 ± 0.67	6.7 ± 0.67	7.0 ± 1	8.0 ± 1	9.0 ± 1	9.0 ± 1
Methanol	** 20.00 ± 1	22.30 ± 1.45	23.00 ± 1.15	25.00 ± 1.15	27.30 ± 1.45	NI	30.00 ± 0.58
\(L \). \textit{casei}							
\(n \)-Hexane	-	NI	NI	NI	NI	NI	NI
Dichloromethane	-	NI	NI	NI	NI	NI	NI
Methanol	** 10.67 ± 0.33	14.00 ± 0.00	16.33 ± 0.88	20.00 ± 0.00	22.33 ± 1.45	NI	26.00 ± 0.58

**: Significant; -: Not significant; NI: no inhibition (6.00 ± 0.00); \(p < 0.01 \)
Table 2. Phytochemical compounds identified in n-hexane extract of *L. usitatissimum*

Retention time	Name of the compound	Class of fatty acid	Molecular formula	Exact mass (g/mol)	Peak area (%)	Biological activity
38.92	Palmitic acid	Saturated fatty acid	C_{16}H_{32}O_2	270.25588	6.3	Antibacterial
42.82	Linoleic acid	Unsaturated fatty acid	C_{18}H_{34}O_2	294.25588	12.79	Antibacterial
42.97	Linolenic acid	Unsaturated fatty acid	C_{19}H_{32}O_2	292.24023	76.79	Antimalaria, antibacterial
43.60	Stearic acid	Saturated fatty acid	C_{18}H_{34}O_2	298.28718	2.1	Antibacterial and antifungal

Table 3. Phytochemical compounds identified in dichloromethane extract of *L. usitatissimum*

Retention time	Name of the compound	Class of fatty acid	Molecular formula	Exact mass (g/mol)	Peak area (%)	Biological activity
35.49	Hexadecanoic acid	Saturated fatty acid	C_{16}H_{32}O_2	256.24023	4.04	Antimicrobial, anti-inflammatory, antioxidant and hepatoprotective
39.39	Oleic acid	Unsaturated fatty acid	C_{18}H_{34}O_2	282.25588	11.46	Antibacterial and antifungal
44.95	Oleic acid, 3-hydroxypropyl ester	Fatty acid	C_{21}H_{40}O_2	340.297745	5.19	Antimicrobial and antioxidant
45.60	9-Octadecenoic acid (Z)-2,3 Dihydroxypropyl ester	Fatty acid	C_{21}H_{40}O_3	356.29266	12.22	Antimicrobial, anti-inflammatory, antioxidant and hepatoprotective
49.19	4-Hexyl-1-(7-methoxycarbonylheptyl) bicyclo [4,4,0] deca-2,5,7-triene	Carboxylic acid derivative	C_{28}H_{54}O_2	372.30283	17.21	Not identified
49.52	Trimethylsilyl derivative of 2-monoolein	Lipid	C_{27}H_{56}O_4Si	500.371714	11.16	Antioxidant and anti-atherosclerotic
53.87	3,4-diphenyl-6-methyl-7,8 -(1,4 dimethoxybenzo)-9-oxatricyclo [4.2.1.0(2,5)] non-3-ene	Ether derivative	C_{27}H_{36}O_3	396.172544	3.33	Not identified

Table 4: Phytochemical compounds identified in methanolic extract of *L. usitatissimum* (GC-MS)

Retention time	Name of the compound	Class of fatty acid	Molecular formula	Exact mass (g/mol)	Peak area (%)	Biological activity
33.79	Myristic acid	Unsaturated fatty acid	C_{16}H_{32}O_2	242.22458	0.71	Antibacterial
38.92	Palmitic acid	Saturated fatty acid	C_{16}H_{32}O_2	270.25588	17.10	Antibacterial
42.80	Linoleic acid	Unsaturated fatty acid	C_{18}H_{34}O_2	294.25588	16.44	Antibacterial
42.92	Linolenic acid	Unsaturated fatty acid	C_{19}H_{32}O_2	292.24023	53.01	Antimalaria, antibacterial
43.60	Stearic acid	Saturated fatty acid	C_{18}H_{34}O_2	298.28718	3.74	Antibacterial and antifungal
Phytochemicals are biologically active and naturally occurring chemicals produced by plants. Studies of flaxseed composition have been conducted widely, and all of its identified bioactive compounds exhibit various therapeutic potentials, including as antimicrobial agents. Flaxseed has nutritional and health benefits since it is rich in omega-3-fatty acids, which are extremely important for human health, as well as phenolic compounds, for which many health benefits have been suggested. Overall, the present study revealed the presence of several types of fatty acid in the flaxseed extracts. Their concentrations, measured in n-hexane and methanolic extracts, are generally consistent with those reported in previous studies. One previous study reported α-linolenic acid (39.9%–60.42%), linoleic acid (12.25%–17.44%), palmitic acid (4.9%–8%), oleic acid (13.44%–19.39%), and stearic acid (2.24%–4.59%). However, slight concentration differences might be due to several factors. For example, the fatty acid composition of flaxseed oil could be influenced by environmental factors, such as planting area, climate, storage and transportation, as well as the extraction time, solvents used, and sample preparation. Moreover, differences might also emerge due to the methods for measuring flaxseed oil components. The significance results of all tested bacteria treated with methanolic extract could indicate that the methanolic extract of L. usitatissimum had broad-spectrum antimicrobial effects against oral pathogenic bacteria, which could be the basis for the folkloric use of the plant. These results are comparable to those in a previous study which reported that the methanolic extract of flaxseed exhibited excellent antiviral activities. Another previous study also reported flaxseed’s methanolic extract was able to inhibit the growth of the Gram-negative bacterium P. aeruginosa.

However, for n-hexane and dichloromethane extracts, the results do not parallel those of the GC-MS analysis of n-hexane extract, which demonstrated fatty acids (palmitic, stearic, 9-octadecenoic, linoleic and linolenic) that are suggested to have antibacterial activity by acting as anionic surfactants and possessing antibacterial and antifungal properties at low pH. However, the poor in vitro antibacterial profile of n-hexane extract is supported by a previous study that revealed the n-hexane extract of flaxseed was ineffective against P. aeruginosa. In addition, a previous study also revealed that n-hexane extract did not achieve any reduction in the growth of Escherichia coli, Bacillus cereus, Candida albicans or Klebsiella pneumonia.

In conclusion, as oral infection remains a burden to healthcare systems worldwide, alternatives for preventing biofilm-induced caries and periodontitis in order to improve quality of life are crucial. The present work emphasizes the role of a natural product, flaxseed, in inhibiting bacterial infections. GC-MS screening demonstrated the presence of various bioactive compounds in flaxseed that possess antibacterial properties. The study also showed that L. usitatissimum’s methanolic extract has broad-spectrum antimicrobial effects against oral pathogens.

Figure 1. Antibacterial activities of L. usitatissimum methanolic extract on S. pyogenes, E. faecalis, S. mutans and L. casei. Data are presented as means ± SE.
extract demonstrated better antibacterial activities against S mutans, S pyogenes, E faecalis, and L casei, compared to n-hexane and dichloromethane extracts. However, advanced studies are required to fully validate the antimicrobial efficacy of L. usitatissimum extract.

Funding

This paper was realized with the support of a grant from the Fundamental Research Grant Scheme (FRGS15-252-0493), Malaysian Ministry of Higher Education.

Conflict of Interest Statement

The authors declare no conflicts of interest associated with the work described in this manuscript.

References

1. Petersen P. The World Oral Health Report 2003: continuous improvement of oral health in the 21st century - the approach of the WHO Global Oral Health Programme. *Community Dent Oral Epidemiol.* 2003;1:3-24.

2. Savoia D. Plant-derived antimicrobial compounds: alternatives to antibiotics. *Future Microbiol.* 2012; 7:979-90.

3. Cowan MM. Plant products as antimicrobial agents. *Clin Microbiol Rev.* 1999;12:564-82.

4. Hashempur MH, Homayouni K, Ashraf A, Salehi A, Taghizadeh M, Heydari M. Effect of *Linum usitatissimum* L. (linseed) oil on mild and moderate carpal tunnel syndrome: a randomized, double-blind, placebo-controlled clinical trial. *DARU J Pharm Sci.* 2014;22:43.

5. Morris DH. Linseed in the ruminant diet, adding linseed to feed enhances the fat profile of milk. *Flax Council of Canada.* 2008;465-167.

6. Goyal A, Sharma V, Upadhyay N, Gill S, Sihag M. Flax and flaxseed oil: an ancient medicine & modern functional food. *Linum usitatissimum L.* 2014;51:1633-53.

7. Kainthwa G, Majumdar DK. Effect of *L. usitatissimum* (flaxseed/linseed) fixed oil against distinct phases of inflammation. *ISRN Inflamm.* 2013:2013.

8. Adolphe JL, Whiting SJ, Juurlink BHJ, Thorpe LU, Alcorn J. Health effects with consumption of the flax lignan secoisolariciretin diglucoside. *Br J Nutr.* 2010;103:929-38.

9. Chauhan R, Chester K, Khan Y, Tamboli ET, Ahmad S. Characterization of *Linum usitatissimum* L. oil obtained from different extraction technique and in vitro antioxidant potential of supercritical fluid extract. *J Pharm Bioall Sci.* 2015;7:284.

10. Coşkuner Y, Karababa E. Some physical properties of flaxseed (*Linum usitatissimum* L.). *J Food Eng.* 2007;78:1067-73.

11. Al-Bayati FA. Antibacterial activity of *Linum usitatissimum* L. seeds and active Compound detection. *Rafidain J Sci.* 2007:18:27-36.

12. Kuntom A, Siew WL, Tan YA, Idris NA, Yusof M, Tang TS, Ibrahim NA. MPOB Test Methods: A compendium of test on palm oil products, palm kernel products, fatty acids, food related products and others. *Malaysian Palm Oil Board.* 2005;297-300.

13. Leite VMF, Pinheiro JB, Písani MX, Watanabe E, Souza RDF, Paranhos HDFO, Lovato-Silva CH. In vitro antimicrobial activity of an experimental dentifrice based on Ricinus communis. *Braz Dent J.* 2014;25:191-6.

14. Draganescu D, Ibanescu C, Tambia BI, Andritoiu CV, Dodi G, Popa MI. Flaxseed lignin wound healing formulation: Characterization and in vivo therapeutic evaluation. *Int J Biol Macromol.* 2015;72:614-23.

15. Zheng CJ, Yoo JS, Lee TG, Cho HY, Kim YH, Kim WG. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. *FEBS Letters.* 2005;579:5157-62.

16. Dilika F, BRENNER PD, MEYER JMJ. Antibacterial activity of linoleic and oleic acids isolated from *Helichrysum pedunculatum*: a plant used during circumcision rites. *Fitoerapia.* 2000;7:450-2.

17. Melari A, Campbell W, Etusim P, Smith P. In vitro and in vivo antimarial activity of linolenic and linoleic acids and their methyl esters. *Adv Stud Biol.* 2012;4:333-49.

18. Dhouioui M, Bouliba A, Jemli M, SCHIETS F, Casabianca H, Zina MS. Fatty acids composition and antibacterial activity of aristolochia longa L. and Bryantia dioica Jacq. growing wild in Tunisia. *J Oleo Sci.* 2016;65:655-61.

19. Agoramoorthy G, Chandrasekaran M, Venkatesalu V, Hsu MJ. Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. *Braz J Microbiol.* 2007;38:739-42.

20. Omoruyi BE, Afolian AJ, Bradley G. Chemical composition profiling and antifungal activity of the essential oil and plant extracts of *Mesembryanthemum edule* (L.) bolus leaves. *Afr J Tradit Complement Altern Med.* 2014;11:19-30.

21. Kumar PP, Kumaravel S, Lalitha C. Screening of antioxidant activity, total phenolics and GC-MS study of *Vitex negundo* L. 2014;7:191-5.

22. Sharma K, Pasricha V, Satpathy G, Gupta RK. Evaluation of phytochemical and antioxidant activity of raw *Pyrus communis* (!), an underexploited fruit. *J Pharmacogn Phytochem.* 2015;3.

23. Wang X, Liang L, Yu Z, Rui L, Jin Q, Wang X. Scalable synthesis of highly pure 2-monomolein by enzymatic ethanolysis. *Eur J Lipid Sci Technol.* 2014;116:627-34.

24. McGaw LJ, Jager AK, Van Staden J, Houghton PJ. Antibacterial effects of fatty acids and related compounds from plants. *SAfr J Bot.* 2002;68:417-23.

25. Hall C, Fulbek MC, Xu Y. Flaxseed. *Adv Food Nutr Res.* 2006;51:1-97.

26. Nykter M, Kymäläinen HR, GATES F, SJÖBERG AM. Quality characteristics of edible linseed oil. *Agric Food Sci.* 2006;15:402-13.

27. Borchardt JR, Wyse DL, Sheaffer CC, Kauppi KL, Fulcher RG, Ehlike NJ, et al. Antioxidant and antimicrobial activity of seed from plants of the Mississippi river basin. *J Med Plant Res.* 2008;2:81-93.

28. Barbary OM, El-Sohaimy SA, El-Saadani MA, ZEITOUN AMA. Antioxidant, antimicrobial and anti-HCV activities of lignan extracted from flaxseed. *Res J Agric Biol Sci.* 2010;6:247-56.

29. Guilloux K, GuiIlard I, Courtois I, Courtois B, Petit E. Production of arabinobioxylan-oligosaccharides from flaxseed (*Linum usitatissimum*). *J Agr Food Chem.* 2009;57:11308-13.
30. Karimi E, Jaafar HZ, Ghasemzadeh A, Ebrahimi M. Fatty acid composition, antioxidant and antibacterial properties of the microwave aqueous extract of three varieties of Labisia pumila Benth. *Biol Res.* 2015;48:9.

31. Hayes ML, Berkovitz BKB. The reduction of fissure caries in Wistar rats by a soluble salt of nonanoic acid. *Arch Oral Biol.* 1979;24:663-6.

32. Bakht J, Ali H, Khan MA, Khan A, Saeed M, Shafi M, et al. Antimicrobial activities of different solvents extracted samples of *Linum usitatissimum* by disc diffusion method. *Afr J Biotechnol.* 2011;10:19825-35.