Quantum Brownian Motion Revisited: Caldeira-Leggett Model with Inhomogeneous Damping and Diffusion

Pietro Massignan,1 Aniello Lampo,1 Jan Wehr,2 and Maciej Lewenstein1,3,∗

1ICFO – Institut de Ciències Fotòniques, Av. C.F. Gauss, 3, E-08860 Castelldefels, Spain
2Department of Mathematics, University of Arizona, Tucson, AZ 85721-0089, USA
3ICREA – Institució Catalana de Recerca i Estudis Avançats, Lluis Companys 23, E-08010 Barcelona, Spain

(Dated: October 31, 2014)

We analyze the microscopic model of quantum Brownian motion, describing a Brownian particle interacting with a bosonic bath through a coupling which is linear in the creation and annihilation operators of the bath, but may be a nonlinear function of the position of the particle. Physically, this corresponds to a configuration in which damping and diffusion are spatially inhomogeneous. We derive systematically the quantum master equation for the Brownian particle in the Born-Markov approximation and we discuss the appearance of novel terms, for various polynomials forms of the coupling. We discuss the cases of linear and quadratic coupling in great detail and we derive, using Wigner function techniques, the stationary solutions of the master equation for a Brownian particle in a harmonic trapping potential. We predict quite generally Gaussian stationary states, and we compute the aspect ratio and the spread of the distributions. In particular, we find that these solutions may be squeezed (super-localized) with respect to the position of the Brownian particle. We analyze various restrictions to the validity of our theory posed by non-Markovian effects and by the Heisenberg principle. We further study the dynamical stability of the system, by applying a Gaussian approximation to the time dependent Wigner function, and we compute the decoherence rates of coherent quantum superpositions in position space. Finally, we propose a possible experimental realization of the physics discussed here, by considering an impurity particle embedded in a degenerate quantum gas.

I. INTRODUCTION

The theory of quantum Brownian motion (QBM) has been a subject of studies for decades and belongs nowadays to a standard textbook material [1–5]. Nevertheless, there are some aspects of QBM that have not been, in our opinion, explored completely in the literature, and that is what motivates our paper.

First, one should note that the vast majority of the work on QBM is devoted to microscopic models in which the coupling of the Brownian particle to the bosonic bath is linear in both in bath creation and annihilation operators, and in position (or momentum) of the particle. The case when such coupling is non-linear in either the bath or the system operators has been hardly studied – unique exceptions to our knowledge provide the old works of Landauer [6], who studied nonlinearity in bath operators, and Hu, Paz and Zhang [7], Bruń [8], and Banerjee and Ghosh [9], who considered both cases. Physically, the case of a coupling which deviates from linearity in the system coordinates corresponds to a situation, in which damping and diffusion are spatially inhomogeneous. Obviously, such nonlinearity might have both classical and quantum consequences, and as such deserves careful analysis.

Second, this type of inhomogeneity has been recently intensively studied in the context of classical Brownian motion (CBM) and other classical diffusive systems. In particular, explicit formulae were derived for noise-induced drifts in the small-mass (Smoluchowski-Kramers [10, 11]) and other limits [12–14]. Noise-induced drifts have been shown to appear in a general class of diffusive systems, including systems with time delay and systems driven by colored noise. Applications include Brownian motion in diffusion gradient [15, 16], noisy electrical circuits [17] and thermophoresis [18]. In the first two cases the theoretical predictions have been demonstrated to be in an excellent agreement with the experiment. Diffusion in inhomogeneous and disordered media is presently one of the fastest developing subjects in the theory of random walks and CBM [19–22], and finds vast applications in various areas of science. There is a considerable interest in the studies of various forms of anomalous diffusion and non-ergodicity [22–25], based either on the theory of heavy-tailed continuous-time random walk (CTRW) [26, 27] or on models characterized by a diffusivity (i.e., a diffusion coefficient) that is inhomogeneous in time [28, 29] or space [12, 30, 31]. Particularly impressive is the recent progress in single particle imaging, for instance in biophotonics (cf. [32–38] and references therein), where the single particle trajectories of, say, a receptor on a cell membrane can be traced. It is presently investigated how random walk and CBM models with inhomogeneous diffusion may be employed in the description of such phenomena [39, 40].

The examples mentioned above are strictly classical, but the recent unprecedented progress in control, detection and manipulation of ultracold atoms and ions [41] are giving us the possibility to perform similar kind of experiments (e.g., single particle tracking to monitor...
the real time dynamics of given atoms) in the quantum regime [12]. Note that such experiments were unthinkable, say, 20 years ago (see the corresponding paragraphs about difficulties to observe QBM in Ref. [1]). Note also that such experiments will naturally involve spatial inhomogeneities, due to the necessary presence of trapping potentials and eventual stray fields. This is in fact the third motivation of this paper: to formulate and study theory of QBM at low temperatures, and in the presence of spatially inhomogeneous damping and diffusion.

An immediate application of our theory concerns dilute impurities embedded in an ultracold degenerate quantum gas. Such problem has been intensively studied in the recent years in the context of polaron physics in strongly-interacting Fermi gases [45–48] and Bose gases [49–58]. Obviously, there is a vast amount of literature on the polaron problem, or more generally on electron-phonon interactions, in solid state systems (cf. [59, 60]). The theory of polarons has been also a subject of intensive studies in mathematical physics [61–64]. In analogy to the studies of classical stochastic processes [12, 13, 65–69], the present work opens also the possibility of employing ultracold atoms to study the quantum Smoluchowski-Kramers limit of a very light Brownian particle, or correspondingly an over-damped Brownian motion.

Since the present paper revisits some of the handbook material, part of the presentation reproduces known and well established results. We include it here in order to make our further arguments and derivations self-contained. We start in Section II by presenting the microscopic model of QBM, known as Caldeira-Leggett model [70, 71], and we derive the Markovian quantum master equation (QME), following up to a certain point the standard treatment [1]. In its most common form, this equation is derived in the limit when the characteristic energy of the system (i.e. the Brownian particle) $\hbar \Omega$ is much smaller than the cutoff energy $\hbar \Lambda$, and the latter is much smaller than the thermal energy $k_B T$ of the bath – in the following, we will refer to this regime as the Caldeira-Leggett limit. In Sections III and IV we discuss then with care the approach introduced by Breuer and Petruccione, and by Schlosshauer [2, 3], which is needed when $k_B T$ becomes comparable to $\hbar \Omega$. This situation can be still described by a time independent QME for long times, and by a time dependent (Redfield [72]) QME to account for short time effects – as pointed out by Schlosshauer in the case of linear coupling, and by Hu, Paz and Zhang [7] in the case of nonlinear couplings. The resulting equation is systematic in the sense of Born expansion, and it takes a certain part of non-Markovian effects into account. Section III deals with the case of linear coupling, i.e. spatially homogeneous damping and diffusion; although this case has been widely elaborated previously, we discuss carefully the non-standard modifications of the generalised master equation appearing in the uncommon limit $\hbar \Lambda \gg \hbar \Omega \sim k_B T$. In Section IV we present our results concerning quadratic coupling, i.e. quadratic dependence of the damping and diffusion coefficients on the position of the Brownian particle, and extract the corresponding position-space decoherence time. The stationary solutions of the QMEs and their properties for linear and quadratic coupling are discussed in Section V. We predict quite generally Gaussian stationary states which are asymmetric in the position and momentum variables, and that may be classified in terms of an effective cooling or heating, depending on whether the associated distribution is more or less spread out than the one of its quantum thermal Gibbs-Boltzmann counterpart. The aspect ratio of the distribution can be so extreme, that the system may even become squeezed (super-localized) with respect to the position of the Brownian particle. The squeezing effect can be understood in terms of renormalization, or Lamb-shift, of the system frequency $\hbar \Omega$ due to virtual excitations by the non-resonant bath modes. We analyze various restrictions on the validity of our theory imposed by Heisenberg principle and non-Markovian effects, and we stress the role and possibility of observation of quantum effects. In Section VI we discuss the near-equilibrium dynamics of the system by computing moments of the time dependent Wigner function. We conclude and present the outlook Section VII, where we comment on the experimental realization of the models described by our theory. There, we also comment on challenges of investigating the so-called Smoluchowski-Kramers limit using a quantum analog of classical homogenization theory (cf. [13]). A number of more intricate issues are addressed in the Appendices. In Appendix A we discuss the most general QME for the case of generical polynomials coupling, and Appendices B and C deal with a rather technical point, the detailed calculation of the coefficients appearing in the generic QME. In Appendix D we analyse a (somehow oversimplified) high-temperature limit of the QME, which includes however the leading quantum corrections. Appendix F discusses challenges related to application of our theory to the problem of an impurity in an ultracold quantum gas.

It is important to stress to which extent our paper go beyond the results of the previously published work [7–9]. In particular, the in-depth study of Hu, Paz and Zhang contains the derivations of Redfield and time dependent master equation for the case of general system–bath coupling: linear or nonlinear in bath and system operators. These approaches, similarly to ours, are based on a systematic perturbation theory to order λ^2. In our paper we consider the case where the coupling is linear in bath operators and polynomial in the system position x, but in contrast to the earlier works we provide: i) a careful analysis of the parameter dependences of coefficients entering into the time independent master equation, obtained as a long time limit of the Redfield equation, and the various limits of the resulting equation; ii) a derivation and a detailed discussion of the properties of the stationary solutions, analyzing in particular their dynamical stability, classifying solutions in terms of an effective cooling or heating, and highlighting the presence of quantum squeezed regimes; iii) a discussion of QBM in...
the context of physics of ultracold degenerate gases; in particular, the present paper provides a solid theoretical basis for further studies of quantum Brownian motion of an impurity atoms inside a Bose Einstein condensate.

II. CALDEIRA-LEGGETT MODEL AND QUANTUM MASTER EQUATION

A. Caldeira-Leggett model

The Caldeira-Leggett model (CLM) is one of many models describing a (Brownian) particle interacting with a bosonic bath (for the models discussing interaction of an atom, or ensemble of atoms, with a minimally coupled photon bath, see for instance [73, 74]). Despite its simplicity, the CLM gained popularity in condensed matter physics due to its very general nature, and its ability to describe quantum dissipation in the Ohmic, super- and sub-Ohmic limits. The model is defined by the Hamiltonian

$$\hat{H} = \hat{H}_S + \hat{H}_B + \hat{H}_I,$$

where the system, bath and interaction Hamiltonians are respectively

$$\hat{H}_S = \hat{H}_{\text{sys}} + \hat{V}_c(x) = \frac{\hat{p}^2}{2m} + V(x) + \hat{V}_c(x),$$

$$\hat{H}_B = \sum_k \left(\frac{\hat{p}_k^2}{2m_k} + m_k \omega_k^2 \hat{x}_k^2 / 2 \right) - E_0 = \sum_k \hbar \omega_k \hat{g}_k \hat{g}_k^\dagger,$$

$$\hat{H}_I = -\hat{f}(x) \hat{B} = -\sum_k \kappa_k \hat{x}_k \hat{f}(x).$$

In the above expressions p is the particle momentum, m its mass, $V(x)$ the trapping potential, and the so called counter-term

$$\hat{V}_c(x) = \sum_k \frac{\kappa_k^2}{2m_k \omega_k^2} \hat{f}(x)^2,$$

will be needed in the following to remove unphysical divergent renormalizations of the trapping potential arising from the coupling to the bath. The bath bosons have masses m_k and frequencies ω_k, and their momenta and position are denoted by \hat{p}_k and \hat{x}_k, respectively. Alternatively, we describe them with the help of annihilation and creation operators, \hat{g}_k and \hat{g}_k^\dagger. From the bath Hamiltonian, we have removed the constant zero-point energy E_0. The parameters describing the coupling of the bath modes to the system are denoted by κ_k. We consider here the case of a very general position-dependent coupling, described by a function $f(x)$ of the particle position x. To keep notation as close as possible to the usual case of linear coupling, we take $f(x)$ to have dimension of length, i.e. we write it as $f(x) = a \tilde{f}(x/a)$, with $\tilde{f}(x)$ being dimensionless, and a denoting a typical length scale on which f varies. We will restrict our discussion in the following to the one dimensional (1D) case, but generalizations to 2D or 3D are straightforward.

Since in order to derive the QME we are going to use systematic Born-Markov approximation, it is useful to identify orders of magnitude of various terms with respect to the coupling. To this aim we rewrite the Hamiltonian as

$$\hat{H} = H_0 + H_1 + H_2,$$

where $H_0 = \hat{H}_{\text{sys}} + \hat{H}_B$, $H_1 = \hat{H}_I$, and $H_2 = \hat{V}_c(x)$. The Hamiltonian of the system+bath ensemble may be written as

$$\hat{H} = \hat{H}_{\text{sys}} + \hat{V}_c(x) + \sum_k \hbar \omega_k \hat{g}_k \hat{g}_k^\dagger + \kappa_k \sqrt{\frac{\hbar \omega_k}{2}} \left(\hat{g}_k + \hat{g}_k^\dagger \right) \hat{f}(x)$$

(7)

The next steps consist in going to the interaction picture with respect to \hat{H}_I, writing the Liouville-von Neumann equation for the total density matrix $\rho(t)$ of the system and bath

$$\dot{\rho}(t) = -\frac{i}{\hbar} \left[\hat{H}_I(t), \rho \right],$$

where $\hat{H}_I(t)$ is the interaction Hamiltonian in the interaction picture. We solve the above equation formally

$$\rho(t) = \rho(0) - \frac{i}{\hbar} \int_0^t ds \left[\hat{H}_I(s), \rho(s) \right],$$

and insert the solution into (8). Taking trace over the bath and assuming\(^1\) that $\text{tr}_B[\hat{H}_I(t), \rho(0)] = 0$ we obtain

$$\dot{\rho}_S(t) = -\frac{1}{\hbar^2} \int_0^t ds \text{Tr}_B \left[\left[\hat{H}_I(t), \rho(s) \right], \rho(s) \right].$$

(10)

B. Born-Markov approximation

We assume also that initially the system and the bath were uncorrelated, i.e. the initial density matrix was a simple tensor product, $\rho_S(t) \otimes \rho_B(0)$. The first approximation that we apply is the Born approximation: in a weak coupling regime, we expect that the influence of the system on the bath is negligible, and the state of the total system remains approximately uncorrelated for all times,

$$\rho(t) \simeq \rho_S(t) \otimes \rho_B(0).$$

(11)

\(^1\) This assumption is typically verified as a consequence of the symmetries; the initial state $\rho(0)$ is often taken to be an even function of the bath modes’ position and momentum operators, while the interaction Hamiltonian is an odd function. In any case, this condition may always be satisfied by suitably redefining the Hamiltonian.
Under this standard approximation (cf. [2]) we obtain first
\[\dot{\rho}_S(t) = -\frac{i}{\hbar} [H_S, \rho_S] - \frac{1}{\hbar^2} \int_0^t ds \text{Tr}_B [H_I(t), [H_I(s), \rho_S(s) \otimes \rho_B(0)]] \]
(12)

The next steps require more specific assumptions about the initial state of the bath, and an explicit form of the bath parameters \(\kappa_s, m_k, \) and \(\omega_k \). We will assume a thermal state of the bath, described by the density matrix
\[\rho_B(0) = \frac{\exp(-H_B/k_B T)}{\text{Tr}_B[\exp(-H_B/k_B T)]}. \]
(13)

We will also introduce the spectral density, which contains all the relevant properties of the bath; it determines the analytical form of the coefficients of the QME, and therefore characterizes the main dissipation and decoherence processes occurring in the central system. The spectral density may be generally defined as
\[J(\omega) = \sum_k \frac{\kappa_k^2}{2m_k \omega_k} \delta(\omega - \omega_k). \]
(14)

As we will see in the following, see Eq. (24), the spectral density will be more specifically defined to be proportional to a damping constant \(\gamma \), and will necessarily contain a UV momentum cut-off \(\Lambda \). As such, when taking the trace over the bath degrees of freedom, the bath correlation functions arising in Eq. (12) will decay on a much slower time scale, set by \(1/\gamma \). In the Markov approximation we may thus safely shift \(\rho_S(s) \) to \(\rho_S(t) \) in Eq. (12). Note that even if the system exhibits at long times algebraic decay of the form \(C/t^\nu \) with some exponent \(\nu \) of order 1, the shift from \(s \) to \(t \) for \(|t - s| < T_B \) causes relative error of order \(\nu T_B/t \), which is negligible at long times.

In this way we derive the, so-called, Redfield equation [72, 75] for the reduced density matrix of the systems. Going back to the Schrödinger picture, the latter reads
\[\dot{\rho}_S(t) = -\frac{i}{\hbar} [H_S, \rho_S] - \frac{1}{\hbar^2} \int_0^t d\tau \text{Tr}_B [H_I(0), [H_I(-\tau), \rho_S(t) \otimes \rho_B(0)]] \].
(15)

Note that the Redfield equation describes, not only the long time behavior, but also short time non-Markovian effects. This is discussed in detail for the case of linear couplings in [3], and for the general nonlinear couplings in [7]. The final step of the Markov approximation consists in extending the \(\tau \) integration to infinity, obtaining in this way a QME which is local in time,
\[\dot{\rho}_S(t) = -\frac{i}{\hbar} [H_S, \rho_S] - \frac{1}{\hbar^2} \int_0^\infty d\tau \text{Tr}_B [H_I(0), [H_I(-\tau), \rho_S(t) \otimes \rho_B(0)]] \].

C. Standard QME

Following the notation of Ref. [3], we can express the environment self-correlation function as \(C(\tau) = \langle B(0)B(-\tau) \rangle_B = \nu(\tau) - i\eta(\tau) \), with the noise kernel
\[\nu(\tau) = \int_0^\infty d\omega J(\omega) \coth \left(\frac{\hbar \omega}{2k_B T} \right) \cos(\omega \tau) \]
(16)
and the dissipation kernel
\[\eta(\tau) = \int_0^\infty d\omega J(\omega) \sin(\omega \tau). \]
(17)

The master equation for the system density matrix \(\rho(t) \) (we will skip in the following the subscript \(S \)) takes then the form
\[\dot{\rho}(t) = -\frac{i}{\hbar} [H_S, \rho(t)] - \frac{1}{\hbar^2} \int_0^\infty d\tau \left(\nu(\tau)[f(x(0)), [f(x(-\tau)), \rho(t)]] - i\eta(\tau)[f(x(0)), \{f(x(-\tau)), \rho(t)\}] \right) \]
(18)

In the case, when the coupling is linear in the position of the particle and the environment is Ohmic, Caldeira and Leggett in [70, 71] showed that the reduced density matrix \(\rho \) of a harmonic oscillator of mass \(m \) and frequency \(\Omega \), obeys in the high temperature limit \(k_B T/\hbar \gg \Lambda \gg \Omega \) the following master equation (CLME):
\[\dot{\rho} = -\frac{i}{\hbar} [H_{\text{sys}}, \rho] - \frac{\gamma m}{2\hbar} [f(x), \{f(x), \rho\}] - \frac{m \gamma k_B T}{\hbar^2} [f(x), [f(x), \rho]]. \]
(19)

Here \(\gamma = \eta/m \) is the characteristic damping rate of the oscillator, and \(\eta \) is the friction coefficient. Similarly, as shown first in Ref. [7], in the case of non-linear coupling \(f(x) \) to the Ohmic environment and \(T \to \infty \), the evolution of the system is described by a generalization of the Caldeira-Leggett Master Equation, which may be written as
\[\dot{\rho} = -\frac{i}{\hbar} [H_{\text{sys}}, \rho] - \frac{\gamma m}{2\hbar} [f(x), \{f(x), \rho\}] - \frac{m \gamma k_B T}{\hbar^2} [f(x), [f(x), \rho]]. \]
(20)

We have introduced/defined here the “dot” operator
\[\dot{f}(x) = -\frac{i}{\hbar} [f(x), H_{\text{sys}}] = \frac{p f'(x) + f(x) p}{2m}. \]
(21)
Our aim in the following is to derive the generalizations of Eqs. (19) and (20) to the situation in which \(k_B T \approx h \Omega \), and the largest energy scale in the problem is the cutoff energy \(h \Lambda \). For the linear case the resulting master equation was derived in certain limits in Refs. [2, 3]; the non-linear case, to our knowledge, has been only discussed in Refs. [7–9]; however, explicit analytic expressions for the coefficients entering the master equation have generally not been discussed there.

III. MARKOVIAN QME WITH LINEAR COUPLING

In this work we will focus on the simplest case of a perfectly harmonic potential \(V(x) = m\Omega^2 x^2/2 \), where \(\Omega \) denotes the oscillator frequency, and \(m\Omega^2 \) is the corresponding spring constant. In general a system might undergo itself non-linear dynamics due to the presence of anharmonicities in the potential, but we will leave the studies of the more general situations to further publications.

In the interaction picture, the position operator obeys

\[
\dot{x}(t) = -i \left[H_S + C_x x^2, \rho(t) \right] - \frac{D_x}{h} [x, [x, \rho(t)]] - \frac{D_P}{h} [x, [x, \rho(t)]], \tag{22}
\]

where the frequency renormalization of the harmonic potential, the momentum damping coefficient, the normal diffusion coefficient, and the anomalous diffusion coefficient are respectively proportional to

\[
C_x = -\int_0^\infty d\tau \eta(\tau) \cos(\Omega \tau) \tag{23}
\]

\[
C_P = -\int_0^\infty d\tau \eta(\tau) \sin(\Omega \tau) \tag{24}
\]

\[
D_x = -\int_0^\infty d\tau \nu(\tau) \cos(\Omega \tau) \tag{25}
\]

\[
D_P = -\int_0^\infty d\tau \nu(\tau) \sin(\Omega \tau) \tag{26}
\]

For definiteness, in this paper we focus on the case where the spectral density is Ohmic (i.e., it is linear in \(\omega \)) and has a Lorentz-Drude (LD) cutoff,

\[
J(\omega) = \frac{m \gamma}{\pi} \omega^2 - \frac{\Lambda^2}{\omega^2 + \Lambda^2}. \tag{27}
\]

We have checked that the specific choice of cutoff function yields minor quantitative changes to the QME coefficients, but as physically expected it does not alter their asymptotic behavior. Exploiting the Matsubara representation

\[
\coth \left(\frac{\hbar \omega}{2k_B T} \right) = \frac{2k_B T}{\hbar \omega} \sum_{n=-\infty}^{\infty} \frac{1}{1 + (\nu_n/\omega)^2} \tag{28}
\]

with bosonic frequencies \(\nu_n = 2\pi n k_B T/\hbar \), the noise and dissipation kernels may be evaluated analytically with the help of the Cauchy’s residue theorem,

\[
\nu(\tau) = \frac{m k_B T \gamma \Lambda^2}{h} \sum_{n=-\infty}^{\infty} \frac{A e^{-|\nu_n|^2/2}}{\Lambda^2 - \nu_n^2}, \tag{29}
\]

\[
\eta(\tau) = \frac{m \gamma \Lambda^2}{2} \frac{\text{sign}(\tau) e^{-|\nu_n|^2}}{\Lambda}, \tag{30}
\]

and the coefficients can be evaluated as follows:

\[
C_x(\Omega) = -\frac{m \gamma}{2\pi} \int_{-\infty}^{\infty} d\omega \mathcal{P} \left(\frac{1}{\omega + \Omega} \right) \frac{\omega (\Lambda^2 - \Lambda^2)}{\omega^2 + \Lambda^2} \tag{31}
\]

\[
C_P(\Omega) = \frac{m \gamma \Omega^2}{2(\Omega^2 + \Lambda^2)} \tag{32}
\]

\[
D_x(\Omega) = \frac{m \gamma \Omega^2}{2(\Omega^2 + \Lambda^2)} \coth \left(\frac{\hbar \Omega}{2k_B T} \right) \tag{33}
\]

In the first equation above we have used the identity

\[
2 \int_{-\infty}^{\infty} d\tau \sin(\omega \tau) = \int_{-\infty}^{\infty} d\tau \text{sign}(\tau) e^{i \omega \tau} = 2 \mathcal{P} \left(\frac{\hbar \omega}{2k_B T} \right), \tag{34}
\]

where \(\mathcal{P} \) denotes the principal value of the integral. The derivation of the anomalous diffusion coefficient \(D_P \) is more involved. One has

\[
D_P(\Omega) = -\int_{-\infty}^{\infty} d\omega \mathcal{P} \left(\frac{m \gamma \Omega^2}{\omega + \Omega} \frac{\omega}{\omega^2 + \Lambda^2} \coth \left(\frac{\hbar \Omega}{2k_B T} \right) \right) \tag{35}
\]

To perform the principal part integration with the standard trick \(\int d\omega \mathcal{P} \left(\frac{f(\omega)}{\omega} \right) = \int d\omega \left[\frac{f(\omega) - f(0)}{\omega} \right] \) we need the numerator to be a polynomial in \(\omega \). Inserting the Matsubara representation of the coth in (29), one finds

\[
\pi (\Omega^2 + \Lambda^2) D_P(\Omega) = \frac{\pi}{h} \sum_{n=-\infty}^{\infty} \frac{k_B T}{\Omega^2 + \nu_n^2} \frac{(\Omega^2 - \Lambda^2)}{\Lambda + |\nu_n|} \tag{36}
\]

\[
= \frac{\pi k_B T}{h \Lambda} \coth \left(\frac{\hbar \Lambda}{2\pi k_B T} \right) - \text{Re} \left[\text{Di} \Gamma \left(\frac{i \hbar \Omega}{2\pi k_B T} \right) \right]. \tag{37}
\]

The function \(\text{Di} \Gamma(z) \equiv \Gamma'(z)/\Gamma(z) \) is the logarithmic derivative of the Gamma (or Digamma) function, and it is plotted in Fig. 1 for both real and imaginary arguments.

The \(C_x \) term provides a term which strongly renormalizes the harmonic potential frequency. The role of the counterterm \(V_c \) introduced in the Hamiltonian is exactly to remove this spurious contribution, and from Eq. (22) we see explicitly that a perfect cancellation is obtained by choosing \(V_c(x) = -C_x x^2 \). Regarding the other coefficients, as we will see in the following, \(C_P \) provides momentum damping, \(D_x \) yields normal momentum diffusion, and \(D_P \) contributes to anomalous diffusion. The \(D_x \) term may also be seen as the one responsible for decoherence in the position basis [3, 76, 77]. There, the density matrix may be represented as \(\rho(x, x', t) = \langle x | \rho(t) | x' \rangle \), and
one finds $\partial_t \rho(x, x', t) = -D_x(x - x')^2 \rho(x, x', t)/h + \ldots$, so that the off-diagonal components of ρ decohere at a rate directly proportional to the square of the distance between them, $\gamma_{x,x}^{(1)} = D_x(x - x')^2/h$.

A. Caldeira-Leggett limit (linear case)

In the high-temperature and large cutoff limits $k_BT/h \gg \Lambda \gg \Omega$, we may use the series expansions $\text{DiF}(x) = -x^{-1} - \tilde{\gamma} + \pi^2 x/6 + O(x^2)$ and $\text{Re}[\text{DiF}(ix)] = -\tilde{\gamma} + O(x^2)$ (with $\tilde{\gamma}$ the Euler gamma, and real x) to find

$$\frac{D_p}{\hbar m \Omega} = -\frac{k_BT \gamma}{\hbar^2 \Lambda} + O\left(\frac{\Lambda}{T}\right),$$

(30)

this leading contribution coming from the zero Matsubara frequency term. Apart from a factor $1/2$, due to a different definition of the damping constant γ, this expression agrees with Eq. (3.409) of Ref. [2], and with Eq. (5.54) of Ref. [3] (mind however that the latter one has a minor typo, i.e., this coefficient appears with the wrong sign). Inserting in the ME, Eq. (22), at high-T one finds

$$\dot{\rho}(t) = -\frac{i}{\hbar} [H_{\text{sys}}, \rho(t)] - \frac{i \gamma}{2\hbar} [x, [x, \rho(t)]] - \frac{m\gamma k_BT}{\hbar^2} [x, [x, \rho(t)]] + \frac{\gamma k_BT}{\hbar^2 \Lambda} [x, [p, \rho(t)]].$$

(31)

Since p is of order $m\Omega x$ in a harmonic potential, the last term may be neglected as it scales as Ω/Λ, and in this way we recover the usual Caldeira-Leggett ME, Eq. (19). As such, in the following we will refer to the regime where $k_BT/h \gg \Lambda \gg \Omega$ as the Caldeira-Leggett limit. Note that in the case of a harmonic potential trapping the Brownian particle, or more generally upon neglecting quantum effects for the general non-harmonic potential, the corresponding time dependent equation for the Wigner function in this regime has a particularly simple interpretation (cf. Ref. [1]): it is a Fokker–Plank equation for the probability distribution in the phase space of a classical Brownian particle undergoing damped motion with a damping constant γ under the influence of a Langevin stochastic noise–force $F(t)$. The noise is Gaussian and white, but it fulfills the fluctuation–dissipation relation, i.e., the average of the noise correlation satisfies $\langle F(t + \tau) F(t) \rangle = 2\gamma k_BT$. This relation assures that the stable stationary state of the dynamics is the classical Gibbs-Boltzmann state. In terms of the coefficients entering the master equation the fluctuation–dissipation relation implies that $D_x/C_p = 2k_BT/h\Omega$.

B. Large cutoff limit (linear case)

We want to look at the interesting limit $\Lambda \gg \Omega, k_BT/h$, with $\Omega \sim k_BT/h$; in this case we find

$$\dot{\rho}(t) = -\frac{i}{\hbar} [H_{\text{sys}}, \rho(t)] - \frac{i \gamma}{2\hbar} [x, [x, \rho(t)]] - \frac{m\gamma \Omega}{2\hbar} \coth\left(\frac{\hbar \Omega}{2k_BT}\right) [x, [x, \rho(t)]] - \frac{D_p}{\hbar m \Omega} [x, [p, \rho(t)]].$$

(32)

For large x we have $\text{DiF}(x) \sim \log(x) - 1/(2x) + O(x^{-2})$ and $\text{Re}[\text{DiF}(ix)] \sim \log(x) + 1/12x^2 + O(x^{-3})$, and the anomalous diffusion coefficient is proportional to $D_p \sim \frac{m\gamma \Omega}{\pi} \log\left(\frac{h\Omega}{2\pi k_BT}\right)$. In this limit, we have moreover $D_x/C_p = \coth(h\Omega/2k_BT)$. Equation (32), with the anomalous diffusion coefficient given in Eq. (29), constitutes the main results of this section. As we will argue...
in Section VII and Appendix F, in any practical physical application of the present theory the cutoff energy $\hbar \Lambda$ has a very concrete physical meaning: in a trap the bath frequencies are evidently bound by the trap depth, in an optical lattice by the lowest band’s width, and so on.

C. Ultra-low temperature limit (linear case)

To conclude the analysis of the linear case, we consider the limit $\Lambda \gg \Omega \gg k_BT/\hbar$. Since both DiF functions in Eq. (29) diverge logarithmically, the temperature drops completely out of the QME, which reads now

$$\dot{\rho}(t) = -\frac{i}{\hbar}[H_{\text{sys}}, \rho(t)] - \frac{i\gamma}{2\hbar} [x, [p, \rho(t)]] - \frac{m\gamma \Omega}{2\hbar} [x, [x, \rho(t)]] - \frac{\gamma}{\hbar \pi} \log \left(\frac{\Lambda}{\Omega} \right) [x, [p, \rho(t)]]. \quad (33)$$

IV. MARKOVIAN QME WITH QUADRATIC COUPLING

Let us now turn to the main subject of this paper: the Markovian QME with non-linear coupling in the particle position. We discuss in detail here the case of quadratic coupling, $f(x) = x^2/a$, and leave the presentation of the more involved results for a completely general coupling to the Appendix A.

The Heisenberg equation for $x^2(\tau)$ yields

$$x^2(-\tau) = \left(x \cos(\Omega \tau) - \frac{p}{m\Omega} \sin(\Omega \tau) \right)^2$$

$$= x^2 \cos^2(\Omega \tau) - \frac{p^2}{m^2 \Omega^2} \sin^2(\Omega \tau) + \frac{p^2}{m^2 \Omega^2} \sin^2(\Omega \tau) \quad (34)$$

so that (using the linearity of commutators and anti-commutators) one finds

$$\dot{\rho}(t) = -\frac{i}{\hbar}[H_{\text{sys}}, \rho(t)] - \frac{iC_{xx}}{\hbar \Omega^2} [x^2, [x^2, \rho(t)]] - \frac{iC_{xp}}{\hbar \Omega^2} \left[x^2, \left\{ \frac{x, p}{m\Omega}, \rho(t) \right\} \right] - \frac{iC_{pp}}{\hbar \Omega^2} \left[x^2, \left\{ \frac{p^2}{m^2 \Omega^2}, \rho(t) \right\} \right]$$

$$- \frac{D_{xx}}{\hbar \Omega^2} [x^2, [x^2, \rho(t)]] - \frac{D_{xp}}{\hbar \Omega^2} \left[x^2, \left\{ \frac{x, p}{m\Omega}, \rho(t) \right\} \right] - \frac{D_{pp}}{\hbar \Omega^2} \left[x^2, \left\{ \frac{p^2}{m^2 \Omega^2}, \rho(t) \right\} \right], \quad (35)$$

with the coefficients $C_{..}$ given by

$$C_{xx} = -\int_0^\infty d\tau \eta(\tau) \cos^2(\Omega \tau)$$

$$C_{xp} = \int_0^\infty d\tau \eta(\tau) \sin(\Omega \tau) \cos(\Omega \tau)$$

$$C_{pp} = -\int_0^\infty d\tau \eta(\tau) \sin^2(\Omega \tau)$$

and the $D_{..}$ by

$$D_{xx} = \int_0^\infty d\tau \nu(\tau) \cos^2(\Omega \tau)$$

$$D_{xp} = -\int_0^\infty d\tau \nu(\tau) \sin(\Omega \tau) \cos(\Omega \tau)$$

$$D_{pp} = \int_0^\infty d\tau \nu(\tau) \sin^2(\Omega \tau)$$

Using $\sin(x) \cos(x) = \sin(2x)/2$ and introducing the shorthand notation

$$c(\Lambda) = \Lambda^2/(4\Omega^2 + \Lambda^2) \quad (36)$$

for the cutoff function evaluated at frequency 2Ω, we may exploit the results for C_p and D_p in the linear case to find

$$C_p = \frac{1}{2} \int_0^\infty d\tau \eta(\tau) \sin(2\Omega \tau) = \frac{C_p(2\Omega)}{2} = \frac{m\gamma \Omega}{2} c(\Lambda)$$

$$D_p = \frac{D_p(2\Omega)}{2} = \frac{m\gamma \Omega}{\pi} c(\Lambda) \left(\frac{\pi k_B T}{\hbar \Lambda} + \text{DiF} \left(\frac{\hbar\Lambda/2}{\pi k_B T} \right) \right)$$

$$- \text{Re} \left[\text{DiF} \left(\frac{i\hbar \Omega}{\pi k_B T} \right) \right]$$

Similarly, using $\cos^2(x) = [1 + \cos(2x)]/2$, $I_\nu \equiv \int_0^\infty d\tau \nu(\tau) = mk_B T \gamma/\hbar$, and D_z for the linear case, one finds

$$D_{zx} = \frac{I_\nu + D_z(2\Omega)}{2} = \frac{m\gamma \Omega}{2} \left[\frac{k_B T}{\hbar \Omega} + c(\Lambda) \text{coth} \left(\frac{\hbar \Omega}{k_B T} \right) \right]$$

$$D_{pz} = I_\nu - D_{xz} = \frac{m\gamma \Omega}{2} \left[\frac{k_B T}{\hbar \Omega} - c(\Lambda) \text{coth} \left(\frac{\hbar \Omega}{k_B T} \right) \right]$$

Finally, using $I_\eta \equiv \int_0^\infty d\tau \eta(\tau) = m\gamma \Lambda/2$, and the
derivation for C_x in the linear case, we also find

$$C_{xx} = -\frac{I_0}{2} + \frac{C_x(2\Omega)}{2} = -\frac{m\gamma\Lambda(2\Omega^2 + \Lambda^2)}{2(4\Omega^2 + \Lambda^2)}$$

$$C_{pp} = -I_0 - C_{xx} = -\frac{m\gamma\Omega^2}{\Lambda} c(\Lambda)$$

In analogy with the linear case, the coefficient C_{xx} diverges with the cutoff Λ, but this poses no problems as $[x^2, \{x^2, \rho\}] = [x^4, \rho]$, so this term may always be canceled exactly by an appropriate counter-term $V_c(x) = -C_{xx}x^4/a^2$, representing this time a Lamb-shift of the coefficient of the quartic term in the confinement. All other coefficients remain bounded in the limit of $h\Lambda/k_B T \to \infty$, exception made for D_{xp} which exhibits a mild logarithmic divergence, in complete analogy with D_p in the linear case. The generalized QME (35), together with the explicit forms of its coefficients, represent a central result of this paper. Here below, we analyze the behavior of the various coefficients in three different limits.

A. Caldeira-Leggett limit (quadratic case)

In the usual high-temperature limit $k_B T/h \gg \Lambda \gg \Omega$, we have

$$D_{xx} \approx m\gamma k_B T/h$$

$$D_{xp} \approx -m\gamma(k_B T/h)(\Omega/\Lambda) \to 0$$

$$D_{pp} \approx -m\gamma h\Omega^2/(6k_B T) \to 0,$$

(37)

and therefore we obtain

$$\dot{\rho}(t) = -\frac{i}{\hbar}[H_{\text{sys}}, \rho(t)] - \frac{m\gamma}{2h} \left\{ \frac{x^2}{a}, \rho(t) \right\} - \frac{m\gamma k_B T}{h^2} \left\{ \frac{x^2}{a}, \frac{x^2}{a}, \rho(t) \right\},$$

which agrees with the generalized CLME discussed in the introduction, Eq. (20). In this high-temperature limit, it is easy to identify C_{xp} as being proportional to the momentum damping coefficient, and D_{xx} to the normal momentum diffusion coefficient. In analogy with the linear case, this latter term may also be seen as the one responsible for decoherence in the position basis. The off-diagonal components of ρ are in this way found to decohere at a rate $\gamma_{x\rho}^{(2)} = D_{xx}(x^2 - x'^2)^2/4a^4$. [Note on $\gamma_{x\rho}^{(2)} = 0$?]. This is an important result, providing a typical timescale for decoherence of states entangled in position space in presence of a bath coupling of the form $f(x) \propto x^2$. In App. A we will provide a general formula which yields the position-space decoherence rate $\gamma_{x,x}^{(n)}$, associated to a coupling with an arbitrary power of the system’s coordinate, $f(x) \propto x^n$. Remarkably, and at odds with what found in Ref. [7], we find that superposition states which are symmetric around the origin (e.g., sharply localized around both $+x_0$ and $-x_0$) will be protected by decoherence in presence of couplings containing only even powers of n.

Note also that in this limit we recover again the classical Gibbs-Boltzmann stationary states, and the dynamics satisfies the fluctuation-dissipation relation. Namely, in the case of an harmonic potential, or more generally upon neglecting quantum effects induced by an anharmonic potential, the time dependent equation for the Wigner function has the interpretation of a Fokker-Plank equation for the probability distribution in the phase space of a classical Brownian particle undergoing damped motion with an x-dependent damping $\gamma(x/a)^2$ under the influence of a multiplicative Langevin stochastic noise-force $F(t)(x(t)/a)$. The noise is Gaussian and white, and it fulfills the fluctuation-dissipation relation, i.e. the average of the noise correlation yields $\langle F(t)(x(t)/a)F(t)(x(t)) \rangle = 2\gamma k_B T(x^2)$. This relation assures that the stable stationary state of the dynamics is the classical Gibbs-Boltzmann state. In terms of the coefficients entering the master equation the fluctuation-dissipation relation implies that $D_{xx}/C_{xx} = 2k_B T/h\Omega$.

B. Large cutoff limit (quadratic case)

Taking the more interesting limit $h\Lambda \gg h\Omega, k_B T$ limit simply amounts to setting $c(\Lambda) = 1$ in the expression for the various coefficients. In this regime, our QME exhibits several differences in comparison to Eq. (20): i) the coefficient C_{pp} (a term contributing to a Lamb-shift of the trap frequency Ω) is suppressed as Ω/Λ; ii) the normal momentum diffusion (or position-basis decoherence) coefficient D_{xx}, which is analogous to the D_{x} of the linear case, develops a non-trivial quantum dependence of the trap frequency Ω; iii) the coefficient D_{xp} (which contributes to both the Lamb-shift and the anomalous diffusion) becomes log-divergent in Λ, analogously to D_{p} found in the linear case; iv) there appears a new coefficient, D_{pp}, which depends on $h\Omega/k_B T$, and vanishes for $k_B T \gg h\Omega$.

We note here that, in this limit, the coefficients of the QME satisfy the generalized fluctuation-dissipation relations $(D_{xx} + D_{pp})/C_{xp} = 2k_B T/h\Omega$, and $(D_{xx} - D_{pp})/C_{xx} = 2\coth(h\Omega/k_B T)$. Finally, we note that the usual high temperature limit, à la Caldeira-Leggett, $k_B T \gg h\Lambda \gg h\Omega$, should be taken with precaution in the case of non-linear coupling. Indeed, as we will see in the following (cf. Fig. 5), for strong damping the system in a purely harmonic trap may become dynamically unstable at sufficiently large temperatures.
C. Ultra-low temperature limit (quadratic case)

The QME for $k_B T / \hbar \ll \Omega \ll \Lambda$ reads:

$$
\dot{\rho}(t) = -i \frac{\hbar}{\hbar} [H_{\text{sys}}, \rho(t)] - \frac{i m \gamma}{2 \hbar} \left[\frac{x^2}{a}, \frac{\{x, p\}}{ma}, \rho(t) \right] - \frac{m \gamma \Omega}{2 \hbar} \left[\frac{x^2}{a}, \frac{\{x, p\}}{ma}, \rho(t) \right] - \frac{m \gamma}{\hbar^2} \log \left(\frac{\Lambda}{2 \Omega} \right) \left[\frac{x^2}{a}, \frac{\{x, p\}}{ma}, \rho(t) \right].
$$

As expected the temperature drops out of the equation, and the D_{xp} term is log-divergent in the cutoff Λ.

V. WIGNER FUNCTION APPROACH AND STATIONARY SOLUTIONS

The Quantum Master Equation for the density matrix ρ can be particularly well analyzed in terms of the Wigner function W. To this aim it is useful to introduce the operators $x_\pm = x \pm \frac{i \hbar}{2} \frac{\partial}{\partial p}$ and $p_\pm = p \pm \frac{i \hbar}{2} \frac{\partial}{\partial x}$, which satisfy the commutation rules

$$
[x_+, x_-] = [p_+, p_-] = 0 \\
[x_+, p_-] = -[x_-, p_+] = i \hbar.
$$

The formal substitutions (see Eqs. (4.5.11) of [1]) are of great use in the following:

$$
\dot{x} \rightarrow x_+ W, \quad \dot{p} \rightarrow p_- W \\
\rho \dot{x} \rightarrow x_+ W, \quad \rho \dot{p} \rightarrow p_- W.
$$

We note here that, while in the previous Sections x and p stood for the usual non-commuting operators, from now on the same symbols will be used to represent the commuting variables of the Wigner function $W(x, p)$.

A. Linear case

Let us first analyze the case of linear coupling. When $f(x) = x$, the QME for general Ω, Λ and T in terms of the Wigner function reads

$$
W = \left[m \Omega^2 \frac{\partial}{\partial p} - \frac{\partial}{\partial x} \right] x - \frac{2 C_p}{m \Omega} \frac{\partial}{\partial p} + h D_x \frac{\partial^2}{\partial p^2} - \frac{h D_p}{m \Omega} \frac{\partial}{\partial x} \frac{\partial}{\partial p} W.
$$

The stationary solution to this equation may found by inserting a generic quadratic ansatz

$$
W_{\text{st}} \propto \exp \left[- \left(\sigma_p \frac{p^2}{2m} + \sigma_x \frac{m \Omega^2 x^2}{2} \right) / (k_B T) \right]
$$

yielding an effective temperature

$$
\hat{T} = \frac{h \Omega}{2 k_B} \cosh \left(\frac{h \Omega}{2 k_B} \right).
$$

Figure 3. Effective temperatures as obtained through the complete quantum treatment, Eq. (44) (blue), and by means of an oversimplified approximation discussed in App. D, Eq. (D5) (red). The green line is the high-T result, $\hat{T} = T$.

with real parameters σ_p and σ_x, and equating independently the coefficients of x^2 and p^2 to zero in the resulting equation.

In the oversimplified high-T limit $k_B T \gg \hbar \Lambda \gg \hbar \Omega$, à la Caldeira-Leggett, one would set $D_x = m \gamma k_B T / \hbar$ and $D_p = 0$, and find in this way $\sigma_p = \sigma_x = 1$, and $\hat{T} = T$. By retaining instead the complete expression of all terms in the equation (and, in particular, a non-zero D_p), we find that the stationary Wigner function is obtained by choosing $\sigma_p = 1$ and

$$
\sigma_x = \frac{1}{1 - 2 D_p / (m \Omega^2 \coth[h \Omega / 2 k_B T])},
$$

$$
\hat{T} = \frac{h \Omega}{2 k_B} \coth \left(\frac{h \Omega}{2 k_B T} \right).
$$

yielding an effective temperature

This results is shown in Fig. 3. A number of interesting conclusions may now be drawn.

First of all, a careful treatment of the equation at low-T yields an effective temperature which saturates to the zero-point motion energy. When $\sigma_p = \sigma_x = 1$, the Gaussian stationary solution with an effective temperature T as given by the quantum result (44) corresponds to the exact quantum thermal Gibbs-Boltzmann density matrix of an harmonic oscillator (the system) at the temperature T. In this case, the contours of the stationary distributions are circles of radius $\sqrt{2 k_B \hat{T} / \hbar \Omega}$ for arbitrary T (i.e., of radius 1 at $T = 0$).

More generally, in units of the normalized standard
... where the inequality is violated. In Fig. 4 we illustrate the asymptotic approximation to the boundary of unit aspect ratio, $T = \alpha(1) \Lambda$. The black, dot-dashed line is the line separating “heating” region from the “cooling” region ($\delta_x/\delta_p > 1$). In the red region, the gas displays deviations $\delta_x = 2 \sqrt{\frac{m \Omega^2 \langle x^2 \rangle_{st}}{2 \hbar \omega}} = \sqrt{\frac{2 k_B T}{\hbar \Omega \sigma_x}}$, \(\delta_p = 2 \sqrt{\frac{\langle p^2 \rangle_{st}}{2 m \hbar \Omega}} = \sqrt{\frac{2 k_B T}{\hbar \Omega \sigma_p}}$, \(\delta_x \delta_p > 1\), \(\delta_x \delta_p \geq 1\), (46)

i.e., that the contour of the distribution encircles an area not smaller than \(\pi\). An important effect of \(D_p\) is that it allows for a contraction of the distribution in \(x\) vs. \(p\). The Heisenberg uncertainty principle then puts an important constraint on our theory, forcing us to exclude the region where the inequality is violated. In Fig. 4 we illustrate this region of validity, as obtained by inserting Eq. (43) in Eq. (46): for any \(\Lambda > \Omega\), we find that there exists a critical temperature below which the Heisenberg uncertainty principle is violated. Similar squeezing effects have been discussed [78] in the literature in the context of the so-called Ullersma model [79–82]. At \(T = 0\), the Heisenberg principle requires \(\Lambda < \Omega\).

Interestingly, in the linear case there are no log-corrections to \(\hat{T}\) coming from the log-divergent term \(D_p\). \(D_p\) grows with the cutoff, and at very large values \(\sigma_x\) diverges (i.e., \(\delta_x^2\) approaches zero) and becomes negative, yielding a non-normalizable solution. However, this bound always lies beyond the one set by the Heisenberg principle, which requires \(\delta_x \delta_p \geq 1\).

We may say that the quantum particle immersed in the bath experiences an effective “heating” if the phase-space area encircled by the normalized standard deviations is larger than the one a quantum Gibbs-Boltzmann (GB) distribution would occupy at the same temperature. Since \(\langle \hat{E}_p \rangle_{GB} \langle \hat{E}_\Omega \rangle_{GB} = (k_B \hat{T}/2)^2\), the system is effectively heated if \(\delta_x \delta_p > \coth\left(\frac{\hbar \Omega}{2 k_B \hat{T}}\right)\), or equivalently \(\sigma_x \sigma_p < 1\). Since \(\sigma_p = 1\) in the linear case, this amounts to requiring \(D_p < 0\), which remarkably does not depend on \(\gamma\). Asymptotically, we have \(T > \alpha(1) \Lambda + O(\Omega/T)\), with \(\alpha(1) \approx 0.24\) solution of the implicit equation \(\pi \alpha(1) + \text{Di}\Gamma(1/2 \pi \alpha(1)) + \tilde{\gamma} = 0\). (48)

Finally, we consider the aspect ratio of the phase-space contour described by the standard deviations. Since \(\sigma_p\) always equals unity in the linear case, it is easy to see that we have a quenched aspect ratio in \(x\), relative to \(p\) (i.e., \(\delta_x/\delta_p < 1\)) in the “cooling” region, and the opposite situation \(\delta_x/\delta_p > 1\) in the “heating” region. In fact the line separating “heating” region from the “cooling” region corresponds to the regime where \(D_p = 0\). In this case the Wigner function is exactly given by a Gaussian with effective temperature \(\hat{T}\), and circular shape of the distribution \(\delta_p = \delta_x\); it corresponds precisely to the quantum thermal Gibbs-Boltzmann density matrix.

B. Quadratic case

We turn now to the most interesting case, the quadratic case with \(f(x) = x^2/\alpha\). We consider the complete equation, obtained using the results in Sec. (IV B), and as usual we reabsorb the (linearly divergent in \(\Lambda\)) contribution coming from the \(C_{xx}\) term in the Hamiltonian \(H_{ssq}\), by requiring \(V_c(x) = -C_{xx} f(x)^2\). The equation of motion for the Wigner function of a harmonically confined particle reads then...
\[\dot{W} = -\frac{i}{\hbar} \left[\frac{p^2 - p_+^2}{2m} + V(x_+) - V(x_-) \right] W - (x_+^2 - x_-^2) \left[\frac{iC_{xp}(x_+ + p_-)}{h\Omega a^2} + \frac{iC_{pp}(p_-^2 + p_+^2)}{h^2\Omega a^2} \right] \]

\[+ \frac{D_{xx}(x_+^2 - x_-^2)}{h^2a^2} + \frac{D_{xp}(x_+ + p_-) - (x_- + p_+)}{h\Omega a^2} \]

\[+ \frac{D_{pp}(p_-^2 + p_+^2)}{m^2\Omega a^2} \]

(49)

Interestingly, the Gaussian ansatz (42) would provide a stationary solution to the above equation if we neglected the terms proportional to \(C_{pp} \) and \(D_{xp} \). Remembering that \(D_{xx} - D_{pp} = 2C_{xp} \coth (\hbar\Omega/k_BT) \), the stationary solution is found when \(\sigma_p = \sigma_x = 1 \) and

\[k_B T \cdot (C_{sp} = D_{sp} = 0) = \frac{h\Omega}{2} \coth \left(\frac{h\Omega}{2k_BT} \right), \]

which coincides with the result found above for the linear case, Eq. (44). Unfortunately however \(D_{xp} \) is generally not negligible, as for example it diverges logarithmically with the cut-off \(\Lambda \). In order to incorporate the neglected terms, one may try to generalize the ansatz by including in the exponent terms proportional to higher polynomials in \(x^2 \) and \(p^2 \) (i.e., terms such as \(x^4 \), \(x^2 p^2 \), or \(p^4 \)), but no closed solution can be be found in this way, as moments of a given order always couple with higher ones.

The contributions higher than quadratic can, however, be reasonably taken into account by means of the so-called self-consistent Gaussian (or pairing) approximation [83, 84]. The \(D_{xx} \) term is proportional to

\[\frac{\partial^2 \bar{\rho}x - \partial_p \partial_x x^2 + \partial_p x \simeq \partial^2 \bar{\rho}(xp)_s - \partial_p \partial_x (x^2)_s + \partial_p x}{\sigma_p \partial_x} = -\partial_p \partial_x \frac{k_BT}{\sigma_p m\Omega^2} + \partial_p x. \]

(51)

As a general rule, averages of odd functions or partial derivatives vanish when performed with respect to the Gaussian distribution (42). Similarly, the \(C_{pp} \) term contributes

\[4\partial_p \partial_x^2 \bar{\rho}x - \partial_p \partial_x x^2 + 2\partial_p \partial_x \partial_x \simeq \frac{4mk_BT}{\sigma_p} \partial_p x + 2\partial_p \partial_x \partial_x, \]

as (mixed) derivatives of order higher than two vanish in this approximation. In this way, we get the two equations

\[\delta^2_p = \frac{\delta^2}{\xi} + \Gamma_{c_{pp}} \left(\frac{\delta^2 p^2}{2} - 1 \right) \]

(53)

\[\delta^2_{xx} = \frac{\delta^2_{xx} - \delta^2_{pp}}{C_{xp}} - 1. \]

(54)

To simplify notation, we have introduced the normalized damping \(\Gamma \equiv 2k_BT/(m\Omega a^2) \), the adimensional variables \(c_{xp} = 2C_{xp}/(m\gamma^2) \) (and similarly for \(c_{pp}, d_{xp}, \ldots \)), and the quantity \(\zeta = \xi/(1 + 2\Gamma_{c_{xp}}) \).

The two coupled equations (53) and (54) may be combined to obtain a single quadratic equation determining, e.g., \(\delta^2_{xx} \), from which we may then extract \(\delta^2_p \). The quadratic equation has two solutions, and the correct one may be selected by looking at its behaviour in the regime \(\Omega \sim k_BT/k_B \Lambda \). The (-) solution unphysically tends towards zero there. On the other hand, the (+) solution correctly yields \(\delta^2_p \sim 2k_BT/k_B^2 \Omega \), i.e., an effective temperature \(\tilde{T} \sim T \). At odds with the linear case, however, \(\tilde{T} \) strongly deviates from \(T \) when \(T \sim O(\Lambda/k_B) \).

A detailed phase diagram for the present case of quadratic coupling is presented in Fig. 5. The Heisenberg principle requires \(\delta_x \delta_p \geq 1 \), a condition which gives rise to a minimal acceptable temperature which grows as \(T_{\text{min}} \sim \log(\Lambda) \) for large \(\Lambda/\Omega \), in close analogy to the linear case. The Heisenberg bound is shown in Fig. 5a, together with the region where the gas experiences an effective heating, or cooling, with respect to its Gibbs-Boltzmann counterpart.

The corresponding degree of deformation of the phase-space distribution, as measured by the logarithm of the aspect ratio \(\log(\delta^2_p/\delta^2_x) \) is shown in Fig. 5b. At small temperatures, we observe the emergence of a region (below the magenta, dot-dashed lines) where \(\delta^2 < 1 \), i.e., of genuine quantum squeezing. Notice that, for damping \(\Gamma \geq 0.1 \), at large temperatures the aspect ratio of the distribution displays a very sharp increase: beyond a certain point, the solution of Eqs. (53) and (54) yields a value for the fluctuations \(\delta^2_p \) which diverges and turns negative, a clearly unphysical feature signaling the breakdown of the Gaussian Ansatz in that region.

It may be noticed by comparing Figs. 5a and 5b that, as in the linear case, the Gibbs-Boltzmann boundary coincides with the one of unit aspect ratio, a condition which again is independent of \(\Gamma \). This may be explicitly checked by employing the trial GB solution \(\delta^2_x = \delta^2_p = \coth(h\Omega/2k_BT) \), which is an identical solu-
Figure 5. Phase diagram of our equation for a quadratic coupling, under the self-consistent Gaussian approximation. From left to right, plots are for $\Gamma = 0.1, 0.5, 1$. Top (a): the gas experiences an effective “cooling” in the blue regions, and an effective “heating” in the red regions. Center (b): density plot of the logarithm of the aspect ratio $\log(\delta_2^x/\delta_2^p)$. Bottom (c): maximum of the real part of the eigenvalues of the matrix of coefficients of the linear system defined in Eq. (64). In the green regions, one of the validity conditions is violated, i.e., either the Heisenberg principle is not satisfied, or one of the eigenvalues of the stability equations becomes positive, or fluctuations δ_2^x and δ_2^p are complex numbers. The black dashed lines are the boundaries of unity aspect ratio, where $\delta_2^x = \delta_2^p$. In this way, we see we have “cooling” for $\delta_2^x/\delta_2^p < 1$, and “heating” for $\delta_2^x/\delta_2^p > 1$. We have quantum squeezing with $\delta_2^x < 1$ below the magenta dot-dashed lines, while δ_2^p is never smaller than 1 in the allowed region.
tion of Eq. (54) for every \{\Lambda, \Omega, T\}, and a solution of Eq. (53) for every \Gamma provided that \(T = \alpha(2)\Lambda + O(\Omega/T)\), with \(\alpha(2) \approx 0.189\) satisfying the implicit equation

\[
\pi\alpha(2) + 2[\cal D\Gamma'(1/2\pi\alpha(2) + \tilde{\gamma})] = 0. \tag{55}
\]

At odds with the linear case seen above, the equations for a quadratic coupling determine the two ratios \(\delta^2_x \propto \tilde{T}/\sigma_x\) and \(\delta^2_p \propto \tilde{T}/\sigma_p\), but do not provide an explicit expression for \(\tilde{T}, \sigma_x\) and \(\sigma_p\) separately, leaving therefore open various possible applications of this theory.

As an example, we may fix \(\tilde{T}\) in accordance to the standard formula for the quantum mechanical harmonic oscillator, Eq. (44), and then interpret \(\sigma_p\) and \(\sigma_x\) as quantum corrections to the inverse mass \(1/m\) and the spring constant \(m\Omega^2\). Such "renormalization" should be used if we considered the starting model as a fundamental quantum field theoretic construct.

Alternatively, one may set, say, \(\sigma_p = 1\), and consider quantum modification of the effective temperature, and the spring constant. From Eq. (53) one finds in this way

\[
k_B\tilde{T} = \frac{\hbar\Omega}{2} \frac{\delta^2_x/\zeta - \Gamma_{pp}}{1 - \Gamma_{pp}\delta^2_x/2}. \tag{56}
\]

VI. NEAR-EQUILIBRIUM DYNAMICS IN SELF-CONSISTENT GAUSSIAN APPROXIMATION

In the last Section before Conclusions, we investigate the near-equilibrium dynamics and stability of stationary solutions found in the previous Section. We use the self-consistent Gaussian approximation, which actually is exact in the case of linear coupling provided the initial state was Gaussian.

A. Linear case

It is elementary to derive the equations for the first and second moments of the Wigner distribution – these moments characterize the Gaussian state fully, and in the linear case form two closed systems of linear equations:

\[
\begin{align*}
\langle \dot{x} \rangle &= \langle p \rangle /m, \\
\langle \dot{p} \rangle &= -m\Omega^2 \langle x \rangle - \frac{2C_p}{m\Omega} \langle p \rangle,
\end{align*} \tag{57}
\]

and

\[
\begin{align*}
\langle \dot{x}^2 \rangle &= 2\langle xp \rangle /m, \\
\langle \dot{xp} \rangle &= \frac{\langle p^2 \rangle}{m} - m\Omega^2 \langle x^2 \rangle - \frac{2C_p}{m\Omega} \langle xp \rangle - \frac{\hbar D_p}{m\Omega}, \\
\langle \dot{p}^2 \rangle &= -2m\Omega^2 \langle x^2 \rangle - \frac{4C_p}{m\Omega} \langle p^2 \rangle + 2\hbar D_p.
\end{align*} \tag{58}
\]

Clearly, the solutions tend to their stable stationary values, \(\langle x \rangle_{st} = \langle p \rangle_{st} = \langle xp \rangle_{st} = 0, \langle p^2 \rangle_{st} = h\hbar m\Omega D_x/2C_p\), and \((m^2\Omega^2)\langle x^2 \rangle_{st} = h(m\Omega D_x/2C_p - D_p/\Omega)\). The only constraint is imposed by the Heisenberg principle

\[
\frac{m\Omega^2 \langle x^2 \rangle \langle p^2 \rangle}{2} \geq \left(\frac{\hbar}{4}\right)^2. \tag{59}
\]

The equations for \(\langle x^2 \rangle_{st}\) and \(\langle p^2 \rangle_{st}\) and the resulting Heisenberg bound coincides with the one found for \(\sigma_x, \sigma_p\), and \(\delta_x\delta_p\) in Sec. VI A, a fact which should not surprise, as we have seen that a Gaussian Ansatz was providing an exact solution of the problem.

B. Quadratic case

In this case, the Gaussian Ansatz provides only an approximate solution. Again, the first and second moments of the Wigner distribution characterize the Gaussian state fully, but this time they couple to higher moments for which the Wick (Gaussian) de-correlation techniques have to be used. We obtain for the first moments

\[
\begin{align*}
\langle \dot{x} \rangle &= \langle p \rangle /m, \\
\langle \dot{p} \rangle &= -m\Omega^2 \langle x \rangle - \frac{8C_{xp}}{m\Omega a^2} \langle x^2 \rangle - \frac{4C_{pp}}{m\Omega^2 a^2} \langle x^2 \rangle - \frac{4\hbar D_{xp}}{m\Omega} \langle x \rangle - \frac{\hbar D_{pp}}{m\Omega} \langle p \rangle.
\end{align*} \tag{60}
\]

The Wick’s theorem allows to replace \(\langle x^2 \rangle \langle p \rangle = \langle x \rangle^2 \langle p \rangle + 2\langle \Delta_x \Delta_p \rangle \langle x \rangle + \langle \Delta_x^2 \rangle \langle p \rangle\), and similarly for \(\langle xp \rangle\), where we represent the Gaussian random variables \(x = \langle x \rangle + \Delta_x, p = \langle p \rangle + \Delta_p\). We obtain thus

\[
\begin{align*}
\langle \dot{x} \rangle &= -m\Omega^2 \langle x \rangle - \frac{8C_{xp}}{m\Omega a^2} \langle x^2 \rangle + 2\langle \Delta_x \Delta_p \rangle \langle x \rangle + \langle \Delta_x^2 \rangle \langle p \rangle - \frac{4C_{pp}}{m\Omega^2 a^2} \langle x^2 \rangle - 2\langle \Delta_x \Delta_p \rangle \langle x^2 \rangle - \frac{4\hbar D_{xp}}{m\Omega} \langle x \rangle - \frac{4\hbar D_{pp}}{m\Omega} \langle p \rangle.
\end{align*} \tag{61}
\]

These equations have a stable stationary solution \(\langle x \rangle_{st} = \langle p \rangle_{st} = 0\), provided that they describe a damped harmonic oscillator. If such a solution exists, in its vicinity we may identify \(\langle \Delta_x^2 \rangle_{st} = \langle x^2 \rangle_{st} = \delta^2_x h/(2m\Omega)\) and \(\langle \Delta_p^2 \rangle_{st} = \langle p^2 \rangle_{st} = h m\Omega D_x/2\) (since by hypothesis the first moments are zero), and we may neglect the quadratic terms \(\langle x^2 \rangle\) and \(\langle p^2 \rangle\) and the crossed fluctuation term \(\langle \Delta_x \Delta_p \rangle\), to obtain the two simultaneous conditions

\[
1 + \Gamma_{xp} + \Gamma_{pp}\delta^2_x /2 \geq 0, \quad \Gamma_{xp}\delta x \geq \delta^2_p \geq 0. \tag{62}
\]
These, in turn, depend self-consistently on the equations for the second moments,
\[\langle x^2 \rangle = \frac{2}{m} \langle xp \rangle, \tag{63} \]
\[\langle xp \rangle = \frac{\langle p^2 \rangle}{m} - m\Omega^2 \langle x^2 \rangle - \frac{8}{m\Omega^2 a^2} \left[C_{xp} \langle x^2 p \rangle + hD_{xp} \langle x^3 \rangle \right] \]
\[- \frac{1}{m^2\Omega^2 a^2} \left[C_{pp} \left(4 \langle x^2 p^2 \rangle - 2h^2 \right) + 8hD_{pp} \langle xp \rangle \right], \]
\[\langle p^2 \rangle = -2m\Omega^2 \langle xp \rangle - \frac{4C_{xp}}{m\Omega^2 a^2} \left(\langle x^2 p^2 \rangle + h^2 \right) \]
\[- \frac{8C_{pp}}{m\Omega^2 a^2} \langle x^3 \rangle + \frac{8hD_{xx}}{a^2} \langle x^2 \rangle - \frac{8hD_{pp}}{m^2\Omega^2 a^2} \langle p^2 \rangle. \]

From the first equation, we see that if a stable stationary solution exits then \(\langle xp \rangle_{st} = 0 \). The quartic terms may be decomposed as above, using the Wick’s method, and in this way one may compute the stationary solution. A straightforward calculation then shows that in the stationary state \(\langle x^2 \rangle_{st} + \Delta x^2, \langle p^2 \rangle_{st} + \Delta p^2, \langle xp \rangle = \Delta xp \), and perform linear stability analysis in \(\Delta \)'s,
\[\partial_t (\Delta x^2) = \frac{2}{m} \Delta xp, \tag{64} \]
\[\partial_t (\Delta xp) = \frac{\Delta x^2}{m} - m\Omega^2 \Delta x^2 - \frac{2C_{xp} \langle x^2 \rangle_{st} \Delta xp + 8hD_{xp} \Delta x^2}{m\Omega^2 a^2} \]
\[- \frac{4C_{pp} \langle x^2 \rangle_{st} \Delta p^2 + \langle p^2 \rangle_{st} \Delta x^2 + 8hD_{pp} \Delta xp}{m^2\Omega^2 a^2}, \]
\[\partial_t (\Delta p^2) = -2m\Omega^2 \Delta xp - \frac{16C_{xp}}{m\Omega^2 a^2} \langle p^2 \rangle_{st} \Delta x^2 + \langle x^2 \rangle_{st} \Delta p^2 \]
\[- \frac{24C_{pp}}{m^2\Omega^2 a^2} \langle x^3 \rangle_{st} \Delta x^2 + \frac{8hD_{xx}}{a^2} \Delta x^2 - \frac{8hD_{pp}}{m^2\Omega^2 a^2} \Delta p^2. \]

The stability requires that the real parts of all eigenvalues of the matrix governing the above linear evolution have to be negative, i.e., have to describe damping. Numerical analysis of the eigenvalues of this matrix is presented in Fig. 5c. The plot indicates that all eigenvalues are negative in most of the region of existence of the physically sound Gaussian stationary solution, but at the same time that the region of validity rapidly shrinks with increasing damping \(\Gamma \). To resume, regions colored in green are not accessible by the system because either the normalized standard deviations \(\delta_x^2 \) and \(\delta_p^2 \) have an unphysical imaginary part, or they do not satisfy the Heisenberg bound \(\delta_x^2 \delta_p^2 \geq 1 \), or the equations for the first moments do not describe a damped harmonic oscillator (i.e., inequalities in (62) are not satisfied), or at least one of the eigenvalues of the linear stability matrix of the second moments (64) becomes positive.

Note that besides the stability question, Eqs. (63) and (64) incorporate quantum dynamical effects: they describe dynamics clearly different from their high \(T \) classical analogues, due to the quantum form/origin of the diffusion coefficients \(D_{xx}, D_{xp} \) and \(D_{pp} \).

Finally, let us comment about the large prohibited region we find in the quadratic case at large \(T \). This region is generally dynamically unstable, and arises because of the diverging fluctuations in \(x \) caused by a large Lambshift of the effective trap frequency, which turns the attractive harmonic potential into an effectively repulsive one. It is reasonable to expect that this region would become allowed if we added a quartic term to the confinement, on top of the usual quadratic one. Indeed, Hu, Paz and Zhang considered only this case, for non-linear couplings [7]. However, traps for ultracold atoms are generally to a very high approximation purely quadratic in the region where the atoms are confined, so that the presence of a quartic component may be unjustified in a real experiment.

VII. CONCLUSIONS

We have presented in this paper a careful discussion of quantum Brownian motion in the case when the reservoir exhibits an energy cutoff \(\hbar A \) much larger than other energy scales. We considered a Brownian particle in a harmonic trap, and derived and discussed validity of QME in this limit for the case of linear and various forms of nonlinear couplings to the bath. We have pointed out that stationary distributions exhibit elliptical deformations, and in the case of non-linear coupling even genuine quantum squeezing along \(x \).

An ideal application of this theory would be the study of the properties of impurity atoms embedded into a Bose-Einstein condensate or an ultracold Fermi gas. A possible detection of predicted effects would require to: i) embed a dilute and weakly-interacting gas of impurities in a degenerate ultracold gas; ii) monitor the stationary distribution of impurities; iii) eventually, monitor their approach toward equilibrium. The application of our theory to such situations may be implemented along the lines sketched in Appendix F.

Another interesting question concerns the Smoluchowski-Kramers limit [10, 11], which can be considered as a regime of under-damped quantum Brownian motion, or the case where the mass \(m \) of the Brownian particle tends to zero. This limit is already highly non-trivial at the classical level, in the presence of the inhomogeneous damping and diffusion, and it requires a careful application of homogenization theory (cf. [12, 13, 85, 86]). Of course, the theoretical approach here is based on the separation of time scales, and has been in other contexts studied in the theory of classical and quantum stochastic process [83, 84]. In particular, the theory of adiabatic elimination has been developed to include the short time non-Markovian “initial slip” effects and the effective long time dynamics of the systems and the bath (“adiabatic drag”) (cf. [87–89] and references therein).

The Smoluchowski-Kramers (SK) limit was also intensively studied in the contexts of Caldeira-Leggett model
and quantum Brownian motion (cf. [90, 91] and references therein). The problem with this limit is that it corresponds to strong damping, and evidently cannot be described using weak coupling approach that is normally used to derive the QME from the microscopic model in the Born-Markov approximation. We envisage here two possible and legitimate lines of investigation.

One can forget about the microscopic derivation, and take the Markovian QME as a starting point. The SK limit corresponds then to setting the spring constant \(m \Omega^2 \) and friction \(\eta \) to constants, and letting the mass \(m \to 0 \), so that \(\gamma \to \infty \) as \(1/m \) and \(\Omega \to \infty \) as \(1/\sqrt{m} \). The aim is to eliminate the fast variable (the momentum) and to obtain the resulting equation for the position of the Brownian particle; again, the Wigner function formalism is particularly suited for such a task.

More ambitious and physically more sound is the approach in which the microscopic model is treated seriously, and appropriate scalings are introduced at the microscopic level. One can then start, for instance, from the formally exact path integral expression for the reduced dynamics, as pursued by Ankerhold and collaborators [90, 91]. The other possibility is to use a restricted version of the weak coupling assumption, only demanding that the systems does not influence the bath, and use Eq. (12) combined with Laplace transform techniques and Zwanzig’s approach [92].

To our knowledge, neither of the two above proposed research tasks has been so far realized for the case of inhomogeneous damping and diffusion.

Last, but not least we must bear in mind that the (in)famous sign problem in the Monte Carlo studies of many-fermion systems, these solutions still may serve very well as generators of averages and moments, as long as the negative part of the density matrix is relatively small with respect to the positive part (in any “reasonable” matrix norm). If this is not the case, or just for formal reasons, one may add artificially “minimal” terms that assure the Lindblad form of the master equation [2, 3, 93, 94]. It would eventually be very interesting to generalize these methods to the QMEs describing inhomogeneous damping and diffusion, and to see how these terms affect the stationary solutions and dynamics discussed in this paper.

ACKNOWLEDGMENTS

Insightful discussion with Alessio Celi, Eugene Demler, María García Parajo, Crispin Gardiner, John Lapeyre, Carlo Manzo, Piotr Szańkowski, Marek Trippenbach and Giovanni Volpe are gratefully acknowledged. This research has been supported through ERC Advanced Grant OSYRIS (led by M.L.), EU IP SIQS, EU STREP EQuAM, John Templeton Foundation, and Spanish Ministry Project FQUS. P.M. acknowledges funding from a Spanish Ministry “Ramón y Cajal” fellowship.

Appendix A: Markovian QME for generic coupling

We consider here an interaction term with a completely general coupling in the position of the particle:

\[
H_{int} = \sum_k \hbar \omega_k \frac{\hbar \omega_k}{2} f(x) \left(g_k^+ + g_k \right). \tag{A1}
\]

If \(f \in C^\infty(I) \) and thus may be expanded in Taylor series, the master equation can be written in the form:

\[
\dot{\rho} = -i[H_S, \rho] - \sum_{j,n=0}^{\infty} \sum_{k=0}^{\infty} \tilde{f}^{(j)}(\xi) \tilde{f}^{(n)}(\xi) \left[x^{j+n-k} \frac{i\hbar}{\hbar} \sigma(x^{n-k} p^k, \rho) + \frac{D_{n,k}}{\hbar} \sigma(x^{n-k} p^k, \rho) \right], \tag{A2}
\]

where \(\sigma(x^m p^n) \) is the sum of the \(\frac{(m+n)!}{m!n!} \) distinguishable permutations of the \(m + k \) operators of the polynomial \(x^m p^n \) [e.g., \(\sigma(x^2 p) = x^2 p + x p x + px^2 \)]. In analogy with the preceding sections, we have introduced here:

\[
C_{n,k}(\Omega) = (-1)^{k+1} \int_0^\infty d\tau \eta(\tau) \cos^{n-k}(\xi) \sin^{k}(\xi) \tag{A3}
\]

\[
D_{n,k}(\Omega) = (-1)^k \int_0^\infty d\tau \nu(\tau) \cos^{n-k}(\xi) \sin^{k}(\xi)
\]

where \(\xi = \Omega \tau \). These integrals may be calculated by Laplace transformation, as detailed in Appendix B. Alternatively, we will outline in Appendix C a simpler method which employs standard trigonometric identities to straightforwardly reduce every \(C_{n,k} \) to a linear combination of \(C_{2} \) and \(C_{2} \) (the ones computed in the linear case), and similarly every \(D_{n,k} \) in terms of \(D_{2} \) and \(D_{2} \). As an example, since \(\cos^{k}(\xi) \sin^{k}(\xi) = [2 \sin(2\xi) + \sin(4\xi)]/8 \), it is obvious that \(D_{4,1}(\Omega) = [2D_{2}(2\Omega) + D_{2}(4\Omega)]/8 \).

In complete analogy with the linear and quadratic cases, for a power law coupling with \(f(x) = a(x/a)^n \) the coefficient \(D_{n,0} \) determines the decoherence in the position basis, which for a quantum superposition of two states centered respectively at \(x \) and \(x' \) happens with a characteristic rate \(\gamma_{x,x'} = D_{n,0}(x^n - x'^n)^2/\hbar a^{2n-2} \). As
a consequence, for an even more general coupling containing various powers of \((x/a)\), the total decay rate in position space reads

\[
\gamma_{x,x'} = \sum_{j,n=0}^{\infty} \frac{\tilde{f}(j) \tilde{f}(n) D_{n,0}(x^n - x'^n)^2}{\hbar j! n! b^{j+n-2}}. \tag{A4}
\]

In contrast with Ref. [7], we find here that quantum superpositions which are sharply localized at positions symmetric with respect to the origin (e.g., in the vicinity of, say, \(x_0\) and \(-x_0\)) will be characterized by a vanishing decoherence rate (i.e., a diverging lifetime) in presence of couplings which contain only even powers of \(n\).

a. Large cut-off limit (general case)

In the limit \(\Lambda \gg T, \Omega\), we find:

- \(C_{n,k} \propto \Lambda^{1-k}\) such that at every order \(n\) the only divergent term is linear, and it is the one which may be re-absorbed in the Hamiltonian; indeed, \(C_{n,0}\) is the coefficient in front of the term \(i[x^n, \{x^n, \rho\}] = i[x^{2n}, \rho]\), so that the divergent term is cancelled by taking \(H_{\text{sys}} = H_S - C_{n,0} f(x)^2\). Moreover, for every \(n\) we have \(C_{n,1} = m\gamma \Omega / 2\).

- between the coefficients \(D_{n,k}\), only the term with \(k = 1\) diverges, logarithmically as \(D_{n,1} \sim \frac{m\gamma \Omega}{\pi} \log \left(\frac{\hbar k_B T}{2\pi m \gamma} \right) + \ldots\). All terms with \(k \neq 1\) are instead finite.

b. High-temperature limit (general case)

In the high-temperature limit \(k_B T \gg \Lambda \gg \Omega\), the coefficients \(C\) are as in the large-cutoff limit, as they do not depend on \(T\). In the set of \(D\) coefficients, only \(D_{n,0} \sim m\gamma k_B T / \hbar\) remains finite, while all others go to zero. Using the identity \(\sigma(x^{n-1}p) = n\{x^{n-1}, \rho\} / 2\), it is easy to show that the master equation (A2) reduces to (20) at high temperatures. In this classical limit, we see that in presence of a non-linear coupling the coefficients of the QME satisfy a generalized fluctuation-dissipation theorem, since for any \(n\) we have \(D_{n,0}/C_{n,1} \approx 2k_B T / \hbar\Omega\).

Appendix B: Laplace transforms

Here we show how to compute the coefficients of the QME with a generic coupling by direct Laplace trans-
where \(\mathcal{F}(x) \) is the “floor” function (giving the greatest integer less than or equal to \(x \)), and \(c_0 \) and \(\{\alpha_k\} \) are constants which may be determined using the power reduction trigonometric formulas \([95]\). As an example, we find
\[
\sin^2(x) \cos^3(x) = \frac{3\cos(x) + \cos(3x)}{4} - \frac{10\cos(x) + 5\cos(3x) + \cos(5x)}{16}
\]
This formula reduces high powers of the trigonometric quantity to a sum of cosine-functions of multiples of its argument, thereby reconducing the desired integrals to known ones.

Similarly, whenever \(q \) is even (or zero), we have
\[
\sin^q(x) \cos^p(x) = \sin^p(x) \left[1 - \cos^2(x)\right]^{q/2} = c_0 + \sum_{k=0}^{\infty} \alpha_k \sin[(n-2k)x].
\]
In the case where both \(p \) and \(q \) are odd integers, we may write
\[
\sin^p(x) \cos^q(x) = \sin(x) \cos(x) \left[1 - \cos^2(x)\right]^{q-1} \cos^q(x)
\]
and the resulting integrals may be computed using the simple identity, valid for \(n > 0 \),
\[
\sin(2x) \cos(2nx) = \frac{\sin[(2n+2)x] - \sin[(2n-2)x]}{2}
\]
Appendix D: High-\(T \) limit with leading quantum corrections

Let us now apply the Wigner function formalism to the generalized ME, Eq. (20) valid in the oversimplified high-\(T \) limit, and obtain\(^3\)
\[
W = -\frac{i}{\hbar} \left[\frac{p^2 - p_x^2}{2m} + V(x_+) - V(x_-) \right] W
- \frac{i\gamma}{4\hbar} \left[f(x_+) - f(x_-) \right] \left[\{p_-, f(x_+)\} + \{p_+, f(x_-)\} \right] W
- \frac{\gamma mkT}{\hbar^2} \left[f^2(x_+) + f^2(x_-) - 2f(x_+)f(x_-) \right] W
\]
In the case, when the potential \(V(x) \) is non-harmonic and/or \(f(x) \) is not a linear or quadratic function of \(x \), to proceed further we perform a Taylor expansion in \(\hbar \), and keep the leading terms only. In other words we attempt to include the leading quantum corrections. One finds then
\[
W = \left[-\frac{p_x}{m} \partial_x + \partial_p V'(x) - \frac{\hbar^2}{24} \partial_p^3 V''''(x) + \ldots \right] W
+ \gamma \left[\partial_p p[f'(x)]^2 + \frac{\hbar^2 \partial_p^2}{8} \left(2\partial_x f(x) f''(x) \right) \right. \\
- \left. 2[f''(x)]^2 - \frac{4}{3} \partial_p p [f'(x)] f'''(x) + \ldots \right] W
+ m\gamma k_B T \left[\partial_p^2 [f'(x)]^2 - \frac{\hbar^2}{12} \partial_p^4 f'(x) f''''(x) + \ldots \right] W
\]
The above equation is the main result of this subsection – it combines the (oversimplified) high-\(T \) limit with the leading quantum corrections. To zeroth order in \(\hbar \), the ME for the Wigner matrix reads
\[
W = \left[-\frac{p_x}{m} \partial_x + V'(x) \partial_p + \gamma [f'(x)]^2 \partial_p \partial_p + m\gamma k_B T [f'(x)]^2 \partial_p^2 \right] W
\]

1. **Quadratic case – high-\(T \) solution**

As an example we consider the simplest non-linear coupling to the bath, a quadratic one, which we write in the form \(f(x) = x^2/\alpha \). We also take the potential to be quadratic, \(V(x) = m\Omega^2 x^2/2 \). Since \(f''''(x) = 0 \), from Eq. (D2) truncated to \(O(\hbar^4) \) we have
\[
W = \left[-\frac{p_x}{m} \partial_x + m\Omega^2 x \partial_p + \frac{4\gamma \alpha x^2}{a^2} \left(\partial_p p + m k_B T \partial_p^2 + \frac{\hbar^2}{4a^2} \partial_p^4 \partial_p^2 \right) \right] W
\]
A stationary solution of this equation is in the form of Eq. (42) with \(\sigma_p = \sigma_x = 1 \) and
\[
\tilde{T} = T \left[1 + \frac{1}{\sqrt{1 - \left(\frac{\hbar \Omega}{k_B T} \right)^2}} \right].
\]
Only the + solution is physically acceptable, as can be seen by looking at large temperature \(k_B T \gg \hbar \Omega \), where the + solution becomes
\[
\tilde{T} = T \left[1 - \left(\frac{\hbar \Omega}{2k_B T} \right)^2 \right]
\]
This result is plotted as a red curve in Fig. 3, and may be interpreted as an effective cooling, since \(\tilde{T} < T \), or
as a breakdown of the dissipation-fluctuation relation, or as quantum localization in phase space. However, as we have seen, this result is incorrect. Obviously, it cannot be correct when $k_B T \approx \hbar \Omega$, but it loses the validity already at larger temperatures, when $k_B T \lesssim \hbar \Lambda$, since then neither D_{xp} nor D_{pp} terms can be neglected. Looking from another angle, this result contains a quantum correction of order $\hbar \Omega / k_B T$, which is simply non-systematic, and moreover it depends on the order of limits: high temperature $T \to \infty$, and stationarity, long time limit $t \to \infty$.

Appendix E: Asymptotic values of the QME coefficients for the linear and quadratic cases

We provide here below a recapitulative table showing the asymptotic values of the coefficients of the QME for an Ohmic spectral with a Lorentz-Drude cutoff, in presence of linear and quadratic couplings, and in various interesting limits. For simplicity of notation, we give here the values of the dimensionless quantities $c_{\ldots} \equiv 2C_{\ldots} / (m \Omega)$ (and similarly for d_{\ldots}). In the central column, $\hbar \Omega$ and $k_B T$ are assumed to be of the same order of magnitude, and both much smaller than $\hbar \Lambda$.

The coefficients for a linear coupling read:

$k_B T \gg \Lambda \gg \Omega$	$\Lambda \gg \Omega \gg k_B T$	
c_x	$-\Lambda / \Omega$	$-\Lambda / \Omega$
c_y	1	1
d_x	$-2k_B T / \hbar \Lambda$	$\coth \left(\frac{\hbar \Omega}{2k_B T} \right)$
d_y	$-2k_B T / \hbar \Lambda$	$\frac{\pi}{2} \log \left(\frac{\hbar \Lambda}{2\pi k_B T} \right)$

The coefficients for a quadratic coupling instead read:

$k_B T \gg \Lambda \gg \Omega$	$\Lambda \gg \Omega \gg k_B T$	
c_{xx}	$-\Lambda / \Omega$	$-\Lambda / \Omega$
c_{yy}	1	1
c_{xy}	$-2\Omega / \Lambda$	$-2\Omega / \Lambda$
d_{xx}	$\frac{2k_B T}{\hbar \Lambda}$	$\frac{k_B T}{\hbar \Lambda} + \coth \left(\frac{\hbar \Omega}{2k_B T} \right)$
d_{yy}	$-\frac{2k_B T}{\hbar \Lambda}$	$\frac{\pi}{2} \log \left(\frac{\hbar \Lambda}{2\pi k_B T} \right)$
d_{xy}	$-\frac{2k_B T}{\hbar \Lambda}$	$\frac{\hbar \Lambda}{2\pi k_B T}$

Appendix F: Harmonically trapped particle inside a Bose-Einstein condensate

The problem of dilute impurities in an ultracold gas can be studied from various points of view: as a polaron problem in a Fermi (cf. [43–48]) or Bose (cf. [49–58]) gas, or as problem of orthogonality catastrophe in a Fermi gas (cf. [96, 97]), or with established techniques for studying polarons in condensed matter systems [59]. We propose yet another point of view. We consider a condensate of $N \gg 1$ identical bosonic atoms of mass M inside an harmonic trap of frequency ω, interacting with scattering length a_s. Denoting by $\psi^\dagger (r)$ and $\hat{\psi}(r)$ atomic creation and annihilation operators, the Hamiltonian of the Bose-Einstein condensate (BEC) is given by

$$H_{\text{BEC}} = \int d^3 r \, \psi^\dagger (r) \left(\frac{\hbar^2 \nabla^2}{2M} + \frac{M a_s^2 r^2}{2} + \frac{4\pi \hbar^2 a_s}{M} \hat{\psi}(r) \hat{\psi}(r) \right) \psi(r). \quad (F1)$$

We consider a single impurity trapped inside the BEC. The impurity is described as an harmonic oscillator of mass m and frequency Ω, interacting with the BEC atoms through a short-range (contact) potential characterized by a scattering length a_s. Its mean-field Hamiltonian is

$$H_{\text{imp}} = -\frac{\hbar^2 \nabla^2}{2m} + \frac{m \Omega^2 r^2}{2} + \frac{2\pi \hbar^2 a_s}{\mu} n(r), \quad (F2)$$

where $\mu = mM / (m + M)$ is the reduced mass, and $n(r) = \hat{\psi}^\dagger (r) \hat{\psi}(r)$ is the BEC density. We follow the Bogolyubov-de Gennes (BdG) formalism [98], and write $\psi(r) = \sqrt{N} \varphi (r) + \hat{\psi}(r)$ with φ real, $\int d^3 r \varphi^2 (r) = 1$, and

$$\hat{\psi}^\dagger (r) = \sum_k \hat{g}_k u_k (r) + \hat{g}^\dagger_\omega v_{\omega} (r)$$

$$\hat{\delta} \hat{\psi}^\dagger (r) = \sum_k \hat{g}_k u_k^* (r) + \hat{g}_\omega v_{\omega} (r),$$

where \hat{g}_k^\dagger and \hat{g}_k are the Bogolyubov quasi-particles’ creation and annihilation operators, while $v^*_{\omega} (r)$ and $u_k (r)$ are the corresponding mode functions. We approximate

$$\hat{\psi}^\dagger (r) \hat{\psi} (r) \approx N \varphi^2 (r) + \sqrt{N} \varphi (r) \left[\hat{\delta} \hat{\psi} (r) + \hat{\delta} \hat{\psi}^\dagger (r) \right] = n(r) + \sqrt{n(r)} \sum_k \hat{g}_k f_k (r) + \hat{g}_k^* f_k^\dagger (r) \quad (F3)$$

with $f_k (r) = u_k (r) + v_{\omega} (r)$. As the phases of u and v are arbitrary, we may choose them real, such that $f_k (r) = f_k^* (r)$. The BdG Hamiltonian for the impurity + BEC becomes then

$$H_{\text{BdG}} = -\frac{\hbar^2 \nabla^2}{2m} + \frac{m \Omega^2 r^2}{2} + \sum_k \hbar \omega_k \hat{g}_k^\dagger \hat{g}_k$$

$$+ \frac{2\pi \hbar^2 a_s}{\mu} \left[n(r) + \sqrt{n(r)} \sum_k f_k (r) (\hat{g}_k + \hat{g}_k^\dagger) \right]. \quad (F4)$$

There are several important differences between the BdG model (F4) and the Caldeira-Leggett model:

- In the CLM the interaction Hamiltonian has a simple separable form, $H_I = -\tilde{B} f (\tilde{x})$, where \tilde{B} and $\tilde{f} (\tilde{x})$ are bath and system operators, respectively. This is not the case in the BdG model: different Bogolyubov modes couple differently to the system via different mode functions.
• The spectral density for a BEC is not necessarily Ohmic. It depends on the dimension, and the dispersion relation of the Bogolyubov modes, ω_k; this relation generally interpolates between a low-energy phonon-like ($\omega_k \propto |k|$) and a high-energy free-particle-like ($\omega_k \propto k^2$) behaviors (cf. [98]), and it may even exhibit a roton minimum at intermediate energies (cf. [99]).

• In any practical physical application of the present theory the cutoff energy $\hbar \Lambda$ has a very concrete physical sense: in a trap the bath frequencies are evidently bound by the trap depth, in an optical lattice by the lowest band’s width, and so on. Even more seriously: in any tight trap the high energy excitation modes will be concentrated at the semiclassical edges, as determined by the trap potential at a given energy; their overlap with the condensate, which has a size limited, say, by the Thomas–Fermi radius, will then be very small, and will decrease rapidly with the energy of excitations.

Radically different is the case of a Fermi bath. In this case there is no condensate, so the density fluctuations are from the very beginning quadratic functions of the fermionic creation and annihilation operators. Still, a theory similar to the one presented here may be used in situations where bosonization theory works [100, 101], i.e., typically in specific 1D systems. There are rare examples of Fermi surfaces for which bosonization, or in this case better to say Luttinger–Tomonaga theory, works [102]. If we cannot use bosonization theory, the Fermi bath has to be treated according to its fermionic identity. These problems lead, however, far beyond the scope of the present paper.

[1] C. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, Springer Series in Synergetics (Springer, Berlin, 2004).
[2] H. Breuer and F. Petruccione, The Theory of Open Quantum Systems (OUP, Oxford, 2007).
[3] M. Schlosshauer, Decoherence and the Quantum-To-Classical Transition, The Frontiers Collection (Springer, 2007).
[4] W. v. Wackenfels, A Measure Theoretical Approach to Quantum Stochastic Processes, Lecture Notes in Physics (Springer, Heidelberg, 2014).
[5] U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 2008).
[6] R. Landauer, Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction, I.B.M. J. Res. Develop. 149, 223 (1957).
[7] B. L. Hu, J. P. Paz, and Y. Zhang, Quantum Brownian motion in a general environment. II. Nonlinear coupling and perturbative approach, Phys. Rev. D 47, 1576 (1993).
[8] T. A. Brun, Quasiclassical equations of motion for nonlinear Brownian systems, Phys. Rev. D 47, 3383 (1993).
[9] S. Banerjee and R. Ghosh, General quantum Brownian motion with initially correlated and nonlinearly coupled environment, Phys. Rev. E 67, 056120 (2003).
[10] M. V. Smoluchowski, Drei Vorträge über Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen, Zeitschrift für Physik 17, 557 (1916).
[11] H. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7, 284 (1940).
[12] S. Hottovy, G. Volpe, and J. Wehr, Noise-induced drift in stochastic differential equations with arbitrary friction and diffusion in the Smoluchowski-Kramers limit, J. Stat. Phys. 146, 762 (2012).
[13] S. Hottovy, G. Volpe, and J. Wehr, The Smoluchowski-Kramers limit of stochastic differential equations with arbitrary state-dependent friction, Preprint (Comm. Math. Phys, in press) , arXiv:1404.2330 (2014).
[14] A. McDaniel, O. Duman, G. Volpe, and J. Wehr, An SDE approximation for stochastic differential delay equations with colored state-dependent noise, (2014), arXiv:1406.7287.
[15] G. Volpe, L. Helden, T. Brettschneider, J. Wehr, and C. Bechinger, Influence of Noise on Force Measurements, Phys. Rev. Lett. 104, 170602 (2010).
[16] T. Brettschneider, G. Volpe, L. Helden, J. Wehr, and C. Bechinger, Force measurement in the presence of Brownian noise: Equilibrium-distribution method versus drift method, Phys. Rev. E 83, 041113 (2011).
[17] G. Pesce, A. McDaniel, S. Hottovy, G. Volpe, and J. Wehr, Dynamical Effects of Multiplicative Feedback on a Noisy System, Preprint , arXiv:1206.6271 (2012).
[18] S. Hottovy, G. Volpe, and J. Wehr, Thermophoresis of Brownian particles driven by coloured noise, EPL 99, 60002 (2012).
[19] J. W. Haus and K. Kehr, Diffusion in regular and disordered lattices, Phys. Rep. 150, 263 (1987).
[20] S. Havlin and D. Ben-Avraham, Diffusion in disordered media, Advances in Physics 36, 695 (1987).
[21] J.-F. Bouchaud and A. Georges, Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications, Physics Reports 195, 127 (1990).
[22] J. Klafter and I. M. Sokolov, First Steps in Random Walks (Oxford University Press, Oxford, 2011).
[23] R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, Journal of Physics A: Mathematical and General 37, R161 (2004).
[24] F. Höfling and T. Franosch, Anomalous transport in the crowded world of biological cells, Reports on Progress in Physics 76, 046002 (2013).
[25] R. Metzler, J.-H. Jeon, A. G. Cherstvy, and E. Barkai, Anomalous diffusion models and their properties: nonstationarity, non-ergodicity, and ageing at the centenary of single particle tracking, Phys. Chem. Chem. Phys. 16, 24128 (2014).
[61] E. H. Lieb and K. Yamazaki, *Ground-State Energy and Effective Mass of the Polaron*, Phys. Rev. **111**, 728 (1958).

[62] E. H. Lieb and L. E. Thomas, *Exact ground state energy of the strong-coupling polaron*, Comm. Math. Phys. **183**, 511 (1997).

[63] R. L. Frank, E. H. Lieb, R. Seiringer, and L. E. Thomas, *Bipolaron and N-polaron binding energies*, Phys. Rev. Lett. **104**, 210402 (2010).

[64] I. Anapolitanos and B. Landon, *The Ground State Energy of the Multi-Polaron in the Strong Coupling Limit*, Lett. Math. Phys. **103**, 1347 (2013).

[65] J. M. Sancho, M. S. Miguel, and D. Dürr, *Adiabatic elimination for systems of Brownian particles with non-constant damping coefficients*, J. Stat. Phys. **28**, 291 (1982).

[66] M. Freidlin, *Some remarks on the Smoluchowski-Kramers approximation*, J. Stat. Phys. **117**, 314 (2004).

[67] S. Cerrai and M. Freidlin, *Small mass asymptotics for a charged particle in a magnetic field and long-time influence of small perturbations*, J. Stat. Phys. **144**, 101 (2011).

[68] M. Freidlin and W. Hu, *Smoluchowski-Kramers approximation in the case of variable friction*, J. Math. Sci. **179**, 184 (2011).

[69] J. Shi, T. Chen, R. Yuan, B. Yuan, and P. Ao, *Relation of a new interpretation of stochastic differential equations to Itô process*, J. Stat. Phys. **148**, 579 (2012).

[70] A. Caldeira and A. Leggett, *Path integral approach to quantum Brownian motion*, Physica A: Statistical Mechanics and its Applications **121**, 587 (1983).

[71] A. Caldeira and A. Leggett, *Quantum tunnelling in a dissipative system*, Annals of Physics **149**, 374 (1983).

[72] A. G. Redfield, *On the Theory of Relaxation Processes*, IBM Journal of Research and Development **1**, 19 (1957).

[73] K. Rzążewski and W. Żakowicz, *Initial value problem and causality of radiating oscillator*, J. Phys. A **9**, 1159 (1976).

[74] M. Lewenstein and K. Rzążewski, *Collective radiation and the near zone field*, J. Phys. A **13**, 743 (1980).

[75] K. Blum, *Density Matrix Theory and Applications* (Plenum Press, New York, London, 1981).

[76] W. H. Zurek, *Decoherence, einselection, and the quantum origins of the classical*, Rev. Mod. Phys. **75**, 715 (2003).

[77] M. Schlosshauer, *Decoherence, the measurement problem, and interpretations of quantum mechanics*, Rev. Mod. Phys. **76**, 1267 (2005).

[78] F. Haake and R. Reibold, *Strong damping and low-temperature anomalies for the harmonic oscillator*, Phys. Rev. A **29**, 3208 (1984).

[79] P. Ullersma, *An exactly soluble model for Brownian motion: I. Derivation of the Langevin equation*, Physica **32**, 27 (1966).

[80] P. Ullersma, *An exactly soluble model for Brownian motion: II. Derivation of the Fokker-Planck equation and the master equation*, Physica **32**, 56 (1966).

[81] P. Ullersma, *An exactly soluble model for Brownian motion: III. Motion of a heavy mass in a linear chain*, Physica **32**, 74 (1966).

[82] P. Ullersma, *An exactly soluble model for Brownian motion: IV. Susceptibility and Nagaïst's theorem*, Physica **32**, 90 (1966).

[83] C. Gardiner, *Stochastic Methods: A Handbook for the Natural and Social Sciences*, Springer Series in Synergetics, Vol. 13 (Springer, Heidelberg, 2009).

[84] H. Risken, *The Fokker-Planck Equation: Methods of Solution and Applications*, Springer Series in Synergetics, Vol. 18 (Springer, Heidelberg, 2012).

[85] G. Papanicolaou, *Modern modeling of continuum phenomena (Ninth Summer Sem. Appl. Math., Rensselaer Polytech. Inst., Troy, N.Y., 1975)*, Lect. in Appl. Math., Vol. 16 (Amer. Math. Soc., 1977) pp. 109–147.

[86] G. Pavliotis and A. Stuart, *Multiscale methods*, Texts in Applied Mathematics, Vol. 53 (Springer, New York, 2008).

[87] F. Haake, *Systematic adiabatic elimination for stochastic processes*, Zeitschrift für Physik B Condensed Matter **48**, 31 (1982).

[88] F. Haake and M. Lewenstein, *Adiabatic drag and initial slip in random processes*, Phys. Rev. A **28**, 3606 (1983).

[89] F. Haake, M. Lewenstein, and R. Reibold, *Adiabatic drag and initial slip for random processes with slow and fast variables*, edited by L. Accardi and W. von Waldenfels, Lecture Note in Mathematics: Quantum Probability and Applications II (Springer, Heidelberg, 1985).

[90] S. A. Maier and J. Ankerhold, *Quantum Smoluchowski equation: A systematic study*, Phys. Rev. E **81**, 021107 (2010).

[91] J. Ankerhold, P. Pechukas, and H. Grabert, *Strong Friction Limit in Quantum Mechanics: The Quantum Smoluchowski Equation*, Phys. Rev. Lett. **87**, 086802 (2001); J. Ankerhold and H. Grabert, *Erratum: Strong Friction Limit in Quantum Mechanics: The Quantum Smoluchowski Equation [Phys. Rev. Lett. 87, 086802 (2001)]*, Phys. Rev. Lett. **101**, 119903 (2008).

[92] R. Zwanzig, *Memory Effects in Irreversible Thermodynamics*, Phys. Rev. **124**, 983 (1961).

[93] S. Gao, *Dissipative Quantum Dynamics with a Lindblad Functional*, Phys. Rev. Lett. **79**, 3101 (1997).

[94] L. Diósi, *On High-Temperature Markovian Equation for Quantum Brownian Motion*, EPL (Europhysics Letters) **22**, 1 (1993).

[95] I. S. Gradshteyn and I. M. Ryzhik, *Table of Integrals, Series, and Products*, sixth ed. (Academic Press, San Diego, 2000).

[96] M. Knap, A. Shashi, Y. Nishida, A. Imambekov, D. A. Abanin, and E. Demler, *Time dependent impurity in ultracold fermions: orthogonality catastrophe and beyond*, Phys. Rev. X **2**, 041020 (2012).

[97] H. Kim and D. A. Huse, *Superdiffusive nonequilibrium motion of an impurity in a Fermi sea*, Phys. Rev. A **85**, 043603 (2012).

[98] L. Pitaevskii and S. Stringari, *Bose-Einstein Condensation* (Oxford University Press, Oxford, 2003).

[99] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, *The physics of dipolar bosonic quantum gases*, Reports on Progress in Physics **72**, 126401 (2009).

[100] T. Giamarchi, *Quantum Physics in One Dimension* (Oxford University Press, Oxford, 2004).

[101] A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, *Bosonization and Strongly Correlated Systems* (Cambridge University Press, Cambridge, 2004).

[102] G. D. Mahan, *Many-Particle Physics* (Plenum Press, New York, 1993).