Neuropathological and Biomarker Findings in Parkinson’s Disease and Alzheimer’s Disease: From Protein Aggregates to Synaptic Dysfunction

Yaroslau Comptaa,b,* and Tamas Reveszc,d,*

a Parkinson’s disease & Movement Disorders Unit, Neurology Service, Hospital Clinic / IDIBAPS / CIBERNED, Barcelona, Catalonia, Spain
b Institut de Neurociències, Maestu’s excellence center, University of Barcelona, Barcelona, Catalonia, Spain
c Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, UK
d Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK
e Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, UK

Accepted 9 November 2020

Abstract.

There is mounting evidence that Parkinson’s disease (PD) and Alzheimer’s disease (AD) share neuropathological hallmarks, while similar types of biomarkers are being applied to both. In this review we aimed to explore similarities and differences between PD and AD at both the neuropathology and the biomarker levels, specifically focusing on protein aggregates and synaptic dysfunction. Thus, amyloid-\(\beta\) peptide (A\(\beta\)) and tau lesions of the Alzheimer-type are common in PD and \(\alpha\)-synuclein Lewy-type aggregates are frequent findings in AD. Modern neuropathological techniques adding to routine immunohistochemistry might take further our knowledge of these diseases beyond protein aggregates and down to their presynaptic and postsynaptic terminals, with potential mechanistic and even future therapeutic implications. Translation of neuropathological discoveries to the clinic remains challenging. Cerebrospinal fluid (CSF) and positron emission tomography (PET) markers of A\(\beta\) and tau have been shown to be reliable for AD diagnosis. Conversely, CSF markers of \(\alpha\)-synuclein have not been that consistent. In terms of PET markers, there is no PET probe available for \(\alpha\)-synuclein yet, while the AD PET markers range from consistent evidence of their specificity (amyloid imaging) to greater uncertainty of their reliability due to off-target binding (tau imaging). CSF synaptic markers are attractive, still needing more evidence, which currently suggests those might be non-specific markers of disease progression. It can be summarized that there is neuropathological evidence that protein aggregates of AD and PD are present both at the soma and the synapse. Thus, a number of CSF and PET biomarkers beyond \(\alpha\)-synuclein, tau and A\(\beta\) might capture these different faces of protein-related neurodegeneration. It remains to be seen what the longitudinal outcomes and the potential value as surrogate markers of these biomarkers are.

Keywords: \(\alpha\)-Synuclein, alzheimer’s disease, amyloid-\(\beta\), biomarkers, cerebrospinal fluid, lewy-type pathology, molecular imaging, Parkinson’s disease, synaptic dysfunction, tau
INTRODUCTION

Partly derived from the fact that dementia is very common in Parkinson’s disease (PD) [1], there is mounting neuropathological evidence that PD and Alzheimer’s disease (AD) share several common features [2, 3]. Traditional post-mortem neuropathological studies are nowadays supplemented by biomarker studies purportedly reflecting the underlying pathology in vivo, ranging from biochemical studies in cerebrospinal fluid (CSF) to molecular imaging of proteins deposition such as amyloid-β (Aβ) or tau. Both types of studies have favoured in recent years the notion that neurofibrillary tangle-type lesions composed of hyperphosphorylated tau and, particularly, Aβ-containing aggregates are common in PD and associated with presence and risk of, as well as timing to, dementia [2, 3]. All this has supposed a paradigm shift of sorts, departing from the general conception at the end of the 20th and early 21st century that cortical Lewy pathology alone accounted for dementia in PD, to conceiving that both Lewy and Alzheimer pathologies are relevant in PD-dementia. Additionally, there is also consistent data as to the concomitant presence of α-synuclein containing Lewy-type aggregates in a significant proportion of both sporadic and familial AD, particularly in the amygdala [4, 5].

However, it remains unknown what is the exact mechanistic role of co-existing Lewy and Alzheimer pathologies observed in post-mortem studies, with common criticism being that these most often reflect findings in end-stage cases (unless the autopsies are performed in patients dying prematurely of an unrelated illness) and that these may not necessarily reflect what originally drove the symptoms (in this case more importantly, but not exclusively, dementia).

As for in vivo biomarker studies-derived evidence of coexistence of both Lewy and Alzheimer pathologies observed in post-mortem studies, with common criticism being that these most often reflect findings in end-stage cases (unless the autopsies are performed in patients dying prematurely of an unrelated illness) and that these may not necessarily reflect what originally drove the symptoms (in this case more importantly, but not exclusively, dementia).

pathology and synaptic dysfunction related to PD and AD-related disease proteins (α-synuclein, Aβ and tau), in order to put these in perspective and suggest future directions.

NEUROPATHOLOGICAL EVIDENCE OF ASSOCIATION OF ALZHEIMER’S DISEASE-TYPE PATHOLOGY WITH LEWY PATHOLOGY IN PARKINSON’S DISEASE

In the pre-α-synuclein era when assessment of cortical Lewy bodies was possible, but more difficult and less reliable, some studies found Alzheimer-type lesions as a correlate of dementia in PD [9–12]. With the discovery of α-synuclein as a key component of Lewy bodies, Lewy neurites and other lesion types [13] the subsequent introduction of α-synuclein immunohistochemistry, the tide turned, and several studies favoured cortical Lewy pathology as the main (and almost sole) neuropathological correlate of cognitive dysfunction in PD. However, in the last decade, a number of clinicopathological studies consistently showed that Alzheimer co-pathology is significantly associated with cognitive dysfunction in PD, both in terms of increased risk and shorter time interval from disease onset to the development of dementia. All these studies have been extensively reviewed [2, 3] and are summarized in Table 1 [9–32]. In short, large studies have identified that, besides cortical Lewy-type pathology, Aβ plaque pathology is a determinant of cognitive impairment in PD as Aβ deposition has been shown to be associated with the risk and timing of developing dementia [22, 28, 29] and with disease duration [30]. Others have identified tau pathology as the determinant of progression to dementia [32]. These discrepancies as to the predominating role of Aβ or tau most probably owe to methodological differences (for instance, including all Aβ plaque forms, such as diffuse and mature plaques [25, 27], vs. only accounting neuritic plaques as Aβ pathology [31]).

NEUROPATHOLOGICAL EVIDENCE OF CO-EXISTING LEWY-TYPE LESIONS IN ALZHEIMER’S DISEASE

Similar to co-existing AD-type pathology in PD, Lewy-type pathology has also been widely studied in AD. Interestingly, the relationship between Lewy pathology and AD attracted the interest of investigators before the actual finding of specific Lewy...
Table 1
Summary of relevant neuropathological evidence of Alzheimer-type co-pathology in Parkinson’s disease ranging from few pre-α-synuclein era examples to more recent clinicopathological studies

Reference	Year	Sample	Main outcomes	Main findings	Comments
Hakim & Mathieson [9]	1979	34 PD	Dementia cases	19 PDD cases (56%)	Pre-α-synuclein era study (ubiquitin-immune-staining)
			Plaques & tangles	33 PD cases with plaques & tangles	
Boller et al. [10]	1980	36 PD	Dementia cases	9 cases with severe dementia (31%)	Retrospective
		cases	Plaques & tangles	7 cases with mild dementia (24%)	
		(29	Plaques & tangles	Plaques & tangles in 15/36 (42%):	
		with adequate		→ 9/9 (100%) with severe dementia	
		clinical data)		→ 3/7 (43%) with mild dementia	
				→ 3/13 (23%) with no dementia	
				AD changes = 6-fold in PD (33%) relative to controls	
				(5.1%) AD changes = shorter survival than no AD changes	
Jendroska et al. [11]	1996	50 PD	Dementia cases	14 patients with dementia unrelated to Aβ	
		cases	Plaques & tangles	5 of 17 controls with widespread cortical Aβ were not demented	Definition of dementia?
			Vascular damage	5 = not explained by histological changes	
			Hydrocephalus	4 = vascular damage	
				3 = numerous cortical Lewy bodies	
Mattila et al. [12]	1998	44 PD	At least 1 cortical Lewy body in 93%	40% of cases with Alzheimer-changes	Retrospective
		cases	Reisberg’s global deterioration scale (GDS) Lewy &	Total cortical Lewy bodies + temporal neurofibrillary	
			Alzheimer-changes in the substantia nigra, amygdala, hippocampus and cortex	tangles associated with cognitive impairment	
Mattila et al. [14]	2000	45 PD	Amygdala, hippocampus + 6 cortical gyri	At least 1 cortical Lewy body in 95%	
		cases	Lewy body and Alzheimer type changes	40% of cases with Alzheimer-changes	
Hurtig et al. [15]	2000	20 PDND	α-synuclein, ubiquitin and thioflavine S stainings	Frontal Lewy bodies = significant predictor of cognitive impairment	
		cases		Cerebral α-synuclein + cortical Lewy bodies = highly sensitive (91%) and specific (90%) neuropathologic markers of dementia in PD	α- synuclein immunostaining
				Slightly more sensitive than ubiquitin + cortical Lewy bodies	
				Better indicators of dementia than angles, plaques, or dystrophic neurites.	
Reference	Year	Sample	Main outcomes	Main findings	Comments
--------------------	------	----------------	---	---	-------------------------------
Apaydin et al. [16]	2002	9 PDND, 12 PDD	Hematoxylin-eosin, Bielschowsky and thioflavin S stains+α-synuclein and tau immunostainings	12 PDD → diffuse or transitional Lewy bodies Mean cortical & limbic Lewy body counts 10-fold greater in PDD > PDND Cortical Lewy body counts significantly correlated to plaques & tangles	
Colosimo et al. [17]	2005	38 PD (21 = cognitive impairment)	α-synuclein and tau immunostainings	Of the 17 patients without cognitive impairment, 9 had transitional and 8 had neocortical Lewy bodies	
Kovari et al. [18]	2003	22 PD	Clinical dementia rating scale (CDR)+quantification of Lewy bodies, tangles and plaques in areas 9, 21, 24, 40 and entorhinal cx	CDR correlated with entorhinal and area 24 Lewy scores Entorhinal Lewy & plaque densities explained 36.2% and 19.3% of CDR variability, respectively	Retrospective α-synuclein immunostaining
Braak et al. [19]	2005	88 PD	MMSE, Braak stages for α-synuclein and tau pathologies	MMSE scores correlated with α-synuclein neuropathologic stages Higher neurofibrillary pathology stages and Aβ deposition in cognitively impaired cases	Prospective α-synuclein immunostaining
Pletnikova et al. [20]	2005	21 PD+DLB	α-synuclein and Aβ immunohistochemistry and immunoblots	Few or no cortical Lewy bodies in brains without Aβ The opposite in brains with Aβ (specifically in the cingulate cortex)	
Aarsland et al. [21]	2005	22 PD	Aβ CERAD classification and Braak stages for α-synuclein and tau	18 developed PDD → none met AD neuropathological definition Cortical Lewy bodies were the main substrate of cognitive impairment	
Ballard et al. [22]	2006	28 PDD+29 DLB	MMSE & UPDRS	Longer time from parkinsonism to dementia was associated with less severe cortical α-synuclein pathology and CERAD Aβ scores, but not Braak staging	
Haliday et al. [23]	2008	29 PDND+52 PDD+6 DLB	MMSE & UPDRS	Cases with shorter survivals had more Lewy and plaque pathology	
Sabbagh et al. [24]	2009	28 PDD+AD+23 PDD-AD	MMSE & UPDRS	PDD+AD subjects were older at onset and death, and progressed faster to dementia, about one half of cases met AD neuropathological criteria	
Jellinger & Attems [25]	2008	54 PDND+44 PDD+20 DLB	α-synuclein, tau & Aβ immunohistochemistry	Braak stages for α-synuclein & tau as well as cortical Aβ plaque load, and generalized cerebral amyloid angiopathy or CAA) were significantly higher/more severe in DLB and PDD than in PD	
Reference	Year	Sample	Main outcomes	Main findings	Comments
----------------------------	------	--------	--	---	----------
Lashley et al. [26]	2008	40 PD	Semiquantitative Aβ plaques & CAA scores	Aβ load correlated with cortical Lewy burden	● Retrospective
		20 controls	Morphometric approach for Lewy pathology	This correlation was more marked in cases with moderate to high Aβ load	
Kalaitzakis et al. [27]	2009	14 PDND	α-synuclein, tau, and Aβ deposition in the caudate, putamen, and accumbens	α-synuclein and tau deposition were rare in the striatum in both groups	● α-synuclein immunostaining
		16 PDD		Aβ burden was greater in the striatum of PDD than in PDND	
Compta et al. [28]	2011	27 PDND	Braak stages for α-synuclein and tau	Cortical Aβ+cortical Lew scores+Braak tau stages in combination predicted better dementia than each separately	
		29 PDD	Semiquantitative Aβ plaques & CAA scores	Cortical Aβ scores & Braak tau stages, but not Lewy body scores or Braak α-synuclein stages, significantly correlated with MMSE scores	
			Lewy densities and semiquantitative scores	High cortical Aβ score and older age at onset were associated with a shorter time-to-dementia period.	
Irwin et al. [29]	2012	48 PDND	Semiquantitative scores for neurofibrillary tangles, Aβ plaques & Lewy bodies/neurites	Cortical Lewy scores+APOE4 were the stronger correlates of dementia PDD+AD cases were older, had more Lewy pathology and CAA	
		92 PDD		Patients with synucleinopathy+Aβ had significantly shorter survival	
Kotzbauer et al. [30]	2012	32 PDD	α-synuclein, tau & Aβ immunohistochemistry		
Sierra et al. [31]	2016	10 PD	Semiquantitative scores for α-synuclein, Aβ and neurofibrillary tangles in the midbrain (substantia nigra & tectum)+cerebellum (for Aβ)	α-synuclein midbrain scores rose from controls to AD and then LBD irrespective of dementia Aβ and tau more prominent in the tectum increasing from controls to LBD (mostly dementia cases) then peaking in AD Cerebellar Aβ scores were marginal in the LBD-spectrum (as opposed to AD) only showing a trend towards greater involvement in dementia cases Greater Alzheimer pathology (chiefly of neurofibrillary type) implied higher α-synuclein scores and shorter time-to-dementia	
		10 PDD			
		10 DB			
		10 AD			
		10 controls			
Irwin et al. [32]	2017	213 LBD	Semiquantitative scores for neurofibrillary tangles, Aβ plaques & Lewy bodies/neurites		

Aβ, amyloid-β; AD, Alzheimer’s disease; DLB, dementia with Lewy bodies; LBD, Lewy body disorder; PD, Parkinson’s disease; PDD, Parkinson’s disease dementia; PDND, Parkinson’s disease non-demented.
pathology in AD, since research on the so-called non-amyloid component of plaques (NACP) [33] started long before the identification of alpha-synuclein as the main constituent of Lewy bodies [13]. Subsequently, several studies have consistently shown that both in sporadic and in genetically determined AD (such as in PSEN1 familial AD and in Down’s syndrome) Lewy pathology is common, particularly in the amygdala, but also in the olfactory bulb, as summarized in Table 2 [34–38].

SUMMARY OF CO-PATHOLOGY IN PARKINSON’S DISEASE AND ALZHEIMER’S DISEASE

The concurrence of Alzheimer and Lewy pathologies in structures such as the amygdala and the olfactory bulb, which are commonly affected in both conditions (i.e., PD and AD) is scientifically intriguing, and, as the aforementioned co-existence of Alzheimer and Lewy pathologies, is in keeping with the experimental evidence supportive of pathological synergism. Thus, these proteins have been shown being capable of cross seeding and promoting each other’s aggregation [39], most probably not in all instances, but specifically when some protein strains are present [40]. While these experimental works are not free of criticism (mostly regarding as to what extent they can translate to what actually happens in humans and in disease), they provide a basis for further studies to understand how these proteins form disease-associated aggregates and, ultimately test specific anti-protein-aggregation agents. Discussion of such experimental studies is beyond the scope of this review and we refer to reviews published elsewhere [3].

NEUROPATHOLOGICAL EVIDENCE OF SYNAPTIC DYSFUNCTION IN PD AND AD

Synaptic dysfunction is a relatively new player in the field, since it is not as easily assessable as protein aggregation, for which immunohistochemistry provides a robust tool, albeit not devoid of limitations. Lewy body disorders can be considered as a clinicopathological spectrum encompassing PD, PD-dementia (PDD) and dementia with Lewy bodies (DLB), rather than a group of truly distinct conditions. Across this spectrum, the use of non-conventional light microscopy techniques, has allowed for sensitive and selective detection of presynaptic α-synuclein aggregates and visualization and semi-quantitation of post-synaptic dendritic spines. For instance, in a study applying the paraffin-embedded tissue (PET) blot and the protein aggregate filtration (PAF) assay, Kramer and Schulz-Schaeffer observed with the PET blot a large amount of very small α-synuclein aggregates, which, using the PAF assay, were most frequently found in presynaptic terminals. This finding was mirrored by an almost complete loss of postsynaptic dendritic spines, in sharp contrast to the relatively small amount of cortical Lewy bodies, particularly compared to the severity of cognitive impairment seen in PDD and DLB [41]. Accordingly, these authors proposed presynaptic α-synuclein aggregates and the loss of dendritic spines as critical events for neurodegeneration in Lewy-related disorders [41, 42].

Also focusing on samples of DLB cases, Colom-Cadena and co-workers applied a microscopy technique called array tomography (which combines ultrathin tissue sections with immunofluorescence to visualize and quantify small structures such as the synapses) to assess presynaptic phosphorylated α-synuclein in the cingulate cortex and striatum from 5 DLB cases and compared them to 5 AD and 5 control cases. Hence, the authors found that 19% to 25% of phosphorylated α-synuclein aggregates were in presynaptic terminals with synaptic terminals colocalizing with these small aggregates being larger than terminals without such aggregates. There was also a gradient in the presence of phosphorylated synaptic α-synuclein aggregates, with their greater presence presynaptically suggesting a primary role for the presynaptic compartment [43].

Other authors have aimed at assessing other synaptic alterations such as suboptimal energy metabolism, and oxidative and endoplasmic reticulum stress damage in preclinical PD by means of studying incidental Lewy bodies [44]. Finally, it remains a matter of debate to what extent levodopa influences synaptic dysfunction in PD, as for decades many have made observations supportive of the notion that levodopa is harmful [45], whereas others have not [46].

Synaptic dysfunction is also considered in the pathophysiology of AD. In this vein, loss of dendritic spines has been correlated with loss of synaptic function [47–49]. Intriguingly, Aβ, both in its insoluble (fibrils and plaques) and its soluble (oligomers) forms, either extra or intracellularly, has been suggested to precede and lead to dysfunction of dendritic spines in experimental and pathological studies by a number of mechanisms ranging from reduced
Table 2
Summary of relevant neuropathological evidence of Lewy-type co-pathology in Alzheimer’s disease

Reference	Year	Sample	Main outcomes	Main findings	Comments
Leverenz et al. [34]	1986	40 sporadic AD	Neuronal loss, Lewy bodies, or neurofibrillary tangles in the substantia nigra	18 patients had > 1 of these changes 13 of them had featured rigidity +/- tremor 9 had had a second diagnosis of PD 11 (85%) had PD pathologic changes	Pre-α-synuclein studies
Ditter et al. [35]	1987	20 sporadic AD	Lewy body formation, neuronal loss, and gliosis of pigmented nuclei Controlled for use of neuroleptic medication	11 cases (55%) showed PD changes No significant difference in age or symptom duration in AD+PD vs. AD-PD History of rigidity in 80% of AD+PD but only 14% of AD-PD	Tremor not observed in either AD+PD or AD-PD in at least in 22% of the entire cohort there were α-synuclein-immunoreactive Lewy bodies. In 12 of the 19 fAD cases (63%), in which the amygdala was investigated, Lewy bodies were found in this structure First study investigating using α-synuclein immunohistochemistry in a large cohort of fAD
Lippa et al. [4]	1998	74 cases of familial AD	Immunohistochemistry with antibodies to α/β/γ-synuclein	In at least in 22% of the entire cohort there were α-synuclein-immunoreactive Lewy bodies. In 12 of the 19 fAD cases (63%), in which the amygdala was investigated, Lewy bodies were found in this structure	First study using α-synuclein immunohistochemistry in Down’s syndrome cases with Alzheimer pathology
Lippa et al. [36]	1999	20 Down’s syndrome	Immunohistochemistry with antibodies to α/β/γ-synuclein	Many α-synuclein+Lewy bodies and neurites in 50% of amygdala samples with Alzheimer pathology No positivity for β or γ synuclein	First study using α-synuclein immunohistochemistry in Down’s syndrome cases with Alzheimer pathology
Hamilton et al. [4]	2000	145 sporadic AD	Immunohistochemistry with antibodies to α-synuclein	Lewy bodies found in 88/145 (60.7%) of CERAD cases and 56.8% of 95 cases with Braak stage 5-6) The amygdala was severely involved in all cases Absent to mild Lewy pathology in the substantia nigra 13 of 27 cases (48.2%) had α-synuclein+structures including Lewy bodies Frequency and density of plaques and tangles did not differ between+and – cases α-synuclein+structures most frequent in the amygdala α-synuclein+structures different from Lewy bodies more frequent in the hippocampus Lewy-related structures even in AD cases with widespread and numerous tangles	First large study using α-synuclein immunohistochemistry in late onset sporadic AD cases
Arai et al. [5]	2001	27 sporadic AD	Relationship between Alzheimer pathology and α-synuclein aggregation	13 of 27 cases (48.2%) had α-synuclein+structures including Lewy bodies No direct correlation between Alzheimer and Lewy lesions, but Lewy pathology present even in cases and locations with more severe tau degeneration (hippocampus)	No direct correlation between Alzheimer and Lewy lesions, but Lewy pathology present even in cases and locations with more severe tau degeneration (hippocampus)
Fujishiro et al. [37]	2008	41 AD with amygdala Lewy bodies (AD-ALB) 21 AD without ALB	α-synuclein pathology in the olfactory bulb in AD with and without ALB	α-synuclein pathology detected in the olfactory bulb in 38/41 AD+ALB (93%) and 4 of 21 AD-ALB (19%) Double immunolabeling revealed co-localization of tau and α-synuclein in neurons and neurites of the olfactory bulb	Co-localization of tau and α-synuclein in the olfactory bulb
Savica et al. [38]	2019	32 DLB/AD, 54 ADLB, 70 AD, 41 PDD/AD cases	AD subjects with LTS pathology had higher UPDRS II and III total scores as well as generally higher individual scores compared to AD alone Depression scales and Trail-making Test A correlated significantly with LTS	Prospective design AD, Alzheimer’s disease; AD-ALB, Alzheimer’s disease with amygdala Lewy bodies; ADLB, AD cases with LTS, but not meeting the criteria of DLB; DLB, dementia with Lewy bodies; fAD, familial Alzheimer’s disease; LTS, Lewy-type synucleinopathy; PD, Parkinson’s disease; PDD, Parkinson’s disease dementia.	
spine formation, stability and plasticity (inhibited long-term potentiation and enhanced long-term depression), to abnormalities in synaptic scaffold proteins and impaired organelle transport [50–56].

Tau hyperphosphorylation and microglia activation, which according to the amyloid cascade hypothesis are events secondary to Aβ pathology, appear to contribute to spine failure in AD as well [57]. Recently the postsynaptic protein neurogranin has been found to be reduced in brain tissue in AD [58].

Therefore, synaptic dysfunction in PD, DLB and AD, appears to be an attractive target both for improving knowledge of disease mechanism and developing new therapies, since preserved synaptic spines have been in turn linked to resilience against neurodegeneration [59]. Should the synaptic failure hypothesis hold true, it would theoretically be possible to revert it. However, unlike Aβ and tau pathologies, its assessment neuropathologically is not straightforward, since this requires the aforementioned sophisticated methodologies, whereas in terms of biomarkers (see next sections) it faces the controversy of whether it is already reflected by available biomarkers (such as Aβ, tau and α-synuclein) due to their close correlation, or it needs from more specific markers (as proper synaptic proteins). Thus, synaptic dysfunction to date remains investigational and awaits further studies, both neuropathologically and with biomarkers, particularly in terms of the similarities that synaptic dysfunction might have between PD and AD.

BIOMARKER EVIDENCE OF UNDERLYING PROTEINOPATHY AND SYNAPTIC DYSFUNCTION IN PD

One of the main aims of research in biomarkers in neurodegenerative disorders such as PD and AD is that they can make it possible to obtain information about the underlying neuropathology *in vivo* early in the disease process as opposed to traditional post-mortem neuropathological assessments, which most often provides information about end stage disease. There are several different types and sources of biomarkers for both PD and AD, but those that most directly reflect (or at least aim at reflecting) underlying pathology are CSF and positron emission tomography (PET) biomarkers.

In PD the obvious choice as either CSF or PET marker is α-synuclein. Over the last decade the number of studies on the levels of different α-synuclein species in CSF (mostly total and oligomeric) has rapidly increased, albeit with remarkable inconsistencies, most likely related to several pre-analytic and analytic factors. However, overall the trend is that CSF total α-synuclein levels are lowered in PD and other synucleinopathies vs. controls and other neurodegenerative conditions [60, 61], with the opposite occurring with CSF levels of oligomeric α-synuclein [62]. This notwithstanding, the interpretation of CSF markers appears to be more difficult in terms of PD-related cognitive impairment. Thus, few studies have found that CSF levels of oligomeric α-synuclein also tend to increase in PDD and DLB [63, 64] (that is, consistent with its trend as a diagnostic marker), but CSF total α-synuclein has shown conflicting results, with a number of cross-sectional and longitudinal studies having even suggested that high (instead of low) CSF total α-synuclein might be a correlate of cognitive impairment [64–66]. All these findings have led to speculations that low CSF total α-synuclein might be a diagnostic marker in the setting of either sequestration of α-synuclein within the intraneuronal aggregates, or a compensatory reuptake of the protein to maintain the synaptic homeostasis. Conversely, as disease progresses and there is greater neuronal damage and cell death, the levels would increase due to the leakage of the proteins from the intracellular space to the CSF. How this would relate to the CSF levels of the AD-related proteins (tau and Aβ) in PD is not straightforward. CSF total α-synuclein has been reported to correlate positively with both CSF Aβ and CSF tau levels [63, 66], but low CSF Aβ has been consistently associated with poor cognitive outcome [67–69], whereas CSF tau has been reported to be either normal or low [63] in early disease stages, but increased in a proportion of late stage PDD cases [70, 71]. Therefore, in PD low CSF Aβ levels, as in AD, might reflect sequestration of Aβ in extracellular parenchymal Aβ deposits (senile plaques), while CSF total α-synuclein would range from being low to increase paralleling what happens with CSF tau and reflecting increasing neuronal loss.

Alternatively, all these trends and correlations might be unrelated to aggregation and deposition of these proteins and their trafficking from the intra or extracellular space to CSF, and rather reflect other processes, as for instance synaptic dysfunction, as previously mentioned. Yet, this view would be challenged by PET marker studies, which are available and reasonably reliable for Aβ [72] and tau [73], but not yet for α-synuclein. Hence, to date published
data of studies on Aβ imaging in PD and DLB have ranged from negligible uptake in PD and moderately increased binding in DLB [74, 75] to more consistently showing a correlation of Aβ imaging and CSF Aβ levels longitudinally with cognitive outcome in PD [76, 77]. More recently, similar data emerged for tau in PD and DLB in two independent studies, albeit the tau PET uptake correlated with amyloid imaging only in one of the studies and not in the other [78, 79]. Therefore, if molecular imaging of Aβ and tau is showing anatomically that there are Aβ and tau lesions in the brains of PD and DLB patients and PET and CSF findings are significantly correlated, it is reasonable to presume that CSF and PET Aβ and tau markers are reflecting, at least partly, the underlying pathology. Few reports of autopsy findings in patients, having previously undergone CSF or PET studies, would also support this notion [68, 80, 81], but caution is still needed with tau imaging, as a recent autopsy report has shown the presence of off-target binding (neuromelanin, choroid plexus, haemorrhages) for the tau PET tracer 18F-AV-1451 [82].

In summary, to date the published CSF and PET studies are overall in keeping with the aforementioned neuropathological studies in that a remarkable proportion of PD patients have conjoint Lewy and Alzheimer pathologies, and that these clinically correlate with cognitive impairment. This leaves open the question for specific markers of synaptic dysfunction in PD. In this area, the evidence is very limited, with the available information to date coming from proteomic approaches and hypothesis-driven studies [83–86]. Hence, in a CSF proteomic study synaptic markers, among other proteins, were detected to differ between different forms of atypical parkinsonism, PD and controls [83] and a subsequent meta-analysis of 27 proteomic studies, which found a total of 500 differentially expressed proteins, concluded that presynaptic proteins involved in vesicle membrane fusion such as SNAP25 could potentially be used as biomarkers for PD [84]. In this vein, a post-mortem study has found associations of cognitive decline in DLB and AD with Rab3 in the inferior parietal lobe and SNAP25 in the prefrontal cortex, respectively [85]. The same research group recently published a study of these proteins in CSF and found increased CSF levels of SNAP25 and neurogranin in relation to cognitive and motor symptom severity [86].

A summary of published sensitivities and specificities of α-synuclein markers is provided in Supplementary Table 1.

BIOMARKER EVIDENCE OF UNDERLYING PROTEINOPATHY AND SYNAPTIC DYSFUNCTION IN AD

In AD as in PD the accumulated evidence of biomarkers of α-synuclein pathology is indeed restricted to CSF studies, since, as already discussed there is not as yet any validated PET probe specific for α-synuclein. Studies available to date have also displayed discrepancies regarding CSF total α-synuclein. Thus, some studies have found no differences in CSF total α-synuclein between synucleinopathies (PD and DLB) and AD [87–89], whereas others have shown an association between low CSF total α-synuclein levels in AD and scores of a global cognition test such as the mini mental state examination test, suggesting that it constituted a general marker of synapse loss [8]. Yet, several published reports have pointed towards increased levels of CSF total α-synuclein in AD [90–93], linking it to aggressive neurodegeneration in this condition, in a similar way to high levels of CSF tau and 14-3-3 proteins in the setting of aggressive neuronal death as seen in Creutzfeldt-Jakob disease or AD itself.

Regarding CSF indicators of synaptic dysfunction in AD, besides the already discussed possibility that it can be captured by proteins that accumulate in PD and AD, synaptic proteins partly overlapping with those above referenced to PD have been assessed in AD as well, in fact before and more extensively than in PD. Hence, there are several studies which reported increased CSF levels of neurogranin [94–96], synaptotagmin [97], and contactin [98] in AD both in its clinically manifest phase and its prodromal stage as reflected by mild cognitive impairment with biological evidence of underlying AD (that is, CSF tau and Aβ abnormalities), suggesting these might be independent and complementary biomarkers of AD [99–101]. Accordingly, a recent meta-analysis supports including neurogranin to the panel of AD biomarkers [102]. Nevertheless, there are outstanding issues regarding specificity, since as happens with proteins such as tau, increased CSF levels neurogranin might merely reflect neuronal damage in aggressive conditions such as Creutzfeldt-Jakob disease [103].

As for synaptic CSF markers in PD, recently CSF levels of neurogranin have been assessed in parkinsonian disorders, with the finding that these were reduced in PD, PDD, MSA and PSP relative to AD and controls, not correlating with motor or cognitive measures, though [104]. By contrast, in another study...
increased neurogranin CSF levels mirrored reduced CSF Aβ in PD and in this case a significant correlation with cognition (as measured by MMSE) was reported [105]. Hence more studies are needed to elucidate the actual associations of these synaptic markers in degenerative parkinsonian disorders.

Currently these markers are being explored not only in CSF, but also in blood exosomes, which would provide a more accessible source relative to CSF [106].

An overview of published sensivities and specificities of τ and Aβ markers is summarized in Supplementary Table 1.

OTHER BIOMARKERS IN AD AND PD RESEARCH

Although it is not in the scope of this review, the increasing interest in neurofilaments and markers of neuroinflammation as biomarkers in both AD and PD, needs also to be mentioned. Neurofilament has been identified as a marker of disease progression or prognostic marker in several neurological conditions from multiple sclerosis [107] to amyotrophic lateral sclerosis [108] and, importantly also in both AD [109] and PD [110]. A major breakthrough in the research of this biomarker has been the demonstration that its levels in plasma significantly correlate with those in the CSF [111], making it a much more accessible biomarker. As for markers of neuroinflammation, there is research of both neuronal-specific (YKL-40 [112]) and non-specific markers (cytokines [113]) as diagnostic and progression biomarkers in AD and PD.

CONCLUSIONS

There is compelling evidence that PD and AD share neuropathological hallmarks in that Aβ and tau lesions of the Alzheimer-type are common in PD and, vice versa, α-synuclein Lewy-type aggregates are frequent findings in AD. Modern non-conventional techniques overcoming limitations of routine immunohistochemical techniques are promising as to take further our knowledge of the impact of these disease-associated proteinaceous aggregates beyond the neurons’ soma, down to their presynaptic and postsynaptic terminals, with potential mechanistic and even future therapeutic implications.

An even greater challenge is translating this knowledge to the clinic. CSF and PET markers of Aβ and τ work reasonably well in the AD field, but their counterparts in PD are far from being equally reliable, with new promising approaches being those of aggregometric techniques such as real time quaking induced conversion (RT-QuIC) [114]. In terms of PET markers, beside the fact that there is no PET probe available for α-synuclein yet, the AD PET markers range from consistent evidence of their specificity (amyloid imaging) to greater uncertainty of their reliability due to off-target binding (tau imaging). CSF synaptic markers are attractive, but evidence is still scarce and most probably these will be non-specific markers of disease progression. For all of these CSF and PET markers, one should remember that ‘markers are not always makers’, and therefore caution is needed when interpreting associations as causative.

In summary and coming back to the question raised in the title of this review (what are the relevant similarities between PD and AD? the protein aggregates? synaptic dysfunction? or both?), from a neuropathological point of view protein aggregates are there both at the soma and the synapse. Thus, a number of CSF and PET biomarkers might capture these different faces of protein-related neurodegeneration. More specifically, CSF α-synuclein, tau and Aβ levels might reflect beside underlying protein aggregates also the soluble fractions of these proteins at the synapse level (Table 3).

Table 3

Neuropathology	Biomarker finding
Loss of pre and/or postsynaptic integrity, including dendritic spines	CSF levels of specific synaptic proteins (SNAP25, synaptotagmin, neurogranin)
Small protein aggregates with non-conventional approaches as PET blot, PAF assay or array tomography	CSF levels of α-synuclein or Aβ or phosphorylated tau
Larger protein aggregates by traditional immunohistochemistry Neuromelanin and other potential off-target binding structures to be considered	PET imaging of Aβ
PET imaging of tau (PET imaging of α-synuclein when it becomes available?)	

Aβ, amyloid-β; CSF, cerebrospinal fluid; PAF assay, protein aggregate filtration assay; PET blot, paraffin-embedded tissue blot; PET imaging, positron emission tomography imaging.
ACKNOWLEDGMENTS

YC institution receives support from the CERCA Programme of the Generalitat de Catalunya (Barcelona, Catalonia). TR is supported by a research grant from the Karin & Sten Mortstedt CBD Solutions (grant code: 512385). This research was partly supported by the National Institute for Health Research (NIHR) Queen Square Biomedical Research Unit in Dementia based at University College London Hospitals (UCLH), University College London (UCL). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

CONFLICT OF INTEREST

The authors have no conflict of interest to report.

SUPPLEMENTARY MATERIAL

The supplementary material is available in the electronic version of this article: https://dx.doi.org/10.3233/JPD-202323.

REFERENCES

[1] Aarsland D, Andersen K, Larsen JP, Lolk A, Kragh-Sorensen P (2003) Prevalence and characteristics of dementia in Parkinson disease: An 8-year prospective study. Arch Neurol 60, 387-392.
[2] Irwin DJ, Lee VM, Trojanowski JQ (2013) Parkinson’s disease dementia: Convergence of a-synuclein, tau and amyloid-β pathologies. Nat Rev Neurosci 14, 626-636.
[3] Compta Y, Parkkinen L, Kempster P, Selikhova M, Lashley T, Holton JL, Lees AJ, Revesz T (2014) The significance of a-synuclein, amyloid-β and tau pathologies in Parkinson’s disease progression and related dementia. Neurodegener Dis 13, 154-156.
[4] Lippa CF, Fujiwara H, Mann DM, Giasson B, Baba M, Schmidt ML, Lee LE, O’Connell B, Pollen DA, St-George-Hyslop P, Ghetti B, Nochlin D, Bird TD, Cairns NJ, Lee VM, Iwatsubo T, Trojanowski JQ (1998) Lewy Bodies contain altered alpha-synuclein in brains of many familial Alzheimer’s disease patients with mutations in presenilin and amyloid precursor protein genes. Am J Pathol 153, 1365-1370.
[5] Hamilton RL (2000) Lewy bodies in Alzheimer’s disease: A neuropathological review of 145 cases using alpha-synuclein immunohistochemistry. Brain Pathol 10, 378-384.
[6] Otto M, Wiltfang J, Tumani H, Zerr I, Lantsch M, Knobbe J, Weber T, Kretzschmar HA, Poser S (1997) Elevated levels of tau-protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Neurosci Lett 225, 210-212.
[7] Zahs KR, Ashe KH (2013) β-Amyloid oligomers in aging and Alzheimer’s disease. Front Aging Neurosci 5, 28.
[8] Ohrfelt A, Grognet P, Andreassen N, Wallin A, Vanmechelen E, Blennow K, Zetterberg H (2009) Cerebrospinal fluid alpha-synuclein in neurodegenerative disorders—a marker of synapse loss? Neurosci Lett 450, 332-335.
[9] Hakim AM, Mathieson G (1979) Dementia in Parkinson’s disease: A neuropathological study. Neurology 29, 1209-1214.
[10] Boller F, Mitzutani T, Roessman U, Gambetti P (1980) Parkinson disease, dementia and Alzheimer disease: Clinico-pathological correlations. Ann Neurol 7, 329-335.
[11] Jendroska K, Lees AJ, Poewe W, Daniel SE (1996) Amyloid beta-peptide and the dementia of Parkinson’s disease. Mov Disord 11, 647-53.
[12] Mattila PM, Röyttä M, Torikka H, Dickson DW, Rinne JO (1998) Cortical Lewy bodies and Alzheimer-type changes in patients with Parkinson’s disease. Acta Neuropathol 95, 576-582.
[13] Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci U S A 95, 6469-6473.
[14] Mattila PM, Rinne JO, Helenius H, Dickson DW, Röyttä M (2000) Alpha-synuclein-immunoreactive cortical Lewy bodies are associated with cognitive impairment in Parkinson’s disease. Acta Neuropathol 100, 285-290.
[15] Hurtig HI, Trojanowski JQ, Galvin J, Ewbank T, Schmidt ML, Lee VM, Clark CM, Gasser G, Stern MB, Gollomp SM, Arnold SE (2000) Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease. Neurology 54, 1916-1921.
[16] Apaydin H, Ahlskog JE, Parisi JE, Boeve BF, Dickson DW (2002) Parkinson disease neuropathology: Later developing dementia and loss of the levodopa response. Arch Neurol 59, 102-112.
[17] Colosimo C, Hughes AJ, Kilford L, Lees AJ (2003) Amyloid body cortical involvement may not always predict dementia in Parkinson’s disease. J Neurol Neurosurg Psychiatry 74, 852-856.
[18] Kivari E, Gold G, Herrmann FR, Canuto A, Hof PR, Bouras C, Giannakopoulos P (2003) Lewy body densities in the entorhinal and anterior cingulate cortex predict cognitive deficits in Parkinson’s disease. Neurology 61, 83-88.
[19] Aarsland D, Perry R, Brown A, Larsen JP, Ballard C (2005) Neuropathology of dementia in Parkinson’s disease: A prospective, community-based study. Ann Neurol 58, 773-776.
[20] Brauk H, Rub U, Jansen Steur ENH, Del Tredici K, de Vos RAI (2005) Cognitive status correlates with neuropathologic stage in Parkinson disease. Neurology 64, 1404-1410.
[21] Pletnikova O, West N, Lee MK, Rudow GL, Skolasky RL, Dawson TM, Marsh L, Troncoso JC (2005) Abeta deposition is associated with enhanced cortical alpha-synuclein lesions in Lewy body diseases. Neurobiol Aging 26, 1183-1192.
[22] Ballard C, Zibreva I, Perry R, Larsen JP, O’Brien J, McKeith I, Perry E, Aarsland D (2006) Differences in neuropathologic characteristics across the Lewy body dementia spectrum. Neurology 67, 1931-1934.
[23] Halliday G, Hely M, Reid W, Morris J (2008) The progression of pathology in longitudinally followed patients with Parkinson’s disease. Acta Neuropathol 115, 409-415.
[24] Sabbagh MN, Adler CH, Lahti TJ, Connor DJ, Vedders L, Peterson LK, Caveness JN, Shill HA, Sue LJ, Ziabreva I, Perry E, Ballard CG, Aarsland D, Walker DG, Beach TG (2009) Parkinson disease with dementia: Comparing patients with and without Alzheimer pathology. Alzheimer Dis Assoc Disord 23, 295-297.

[25] Jellinger KA, Attems J (2008) Prevalence and impact of vascular and Alzheimer pathologies in Lewy body disease. Acta Neuropathol 115, 427-436.

[26] Lashley T, Holton JL, Gray E, Kirkham K, O’Sullivan SS, Hilbig A, Wood NW, Lees AJ, Revesz T (2008) Cortical alpha-synuclein load is associated with amyloid-beta plaque burden in a subset of Parkinson’s disease patients. Acta Neuropathol 115, 417-425.

[27] Kalaitzakis ME, Graeber MB, Gentleman SM, Pearce RK (2008) Strialta beta-amyloid deposition in Parkinson disease with dementia. J Neuropathol Exp Neurol 67, 155-161.

[28] Compta Y, Parkkinen L, O’Sullivan SS, Vanroocke J, Holton JL, Collins C, Lashley T, Kallis C, Williams DR, de Silva R, Lees AJ, Revesz T (2011) Lewy- and Alzheimer-type pathologies in Parkinson’s disease: What is more important? Brain 134, 1493-1505.

[29] Irwin DJ, White MT, Toledo JB, Xie SX, Robinson JL, Van Deering V, Lee VM, Leverenz JT, Montine TJ, Duda JE, Hurtig HI, Trojanowski JQ (2012) Neuropathologic substrates of Parkinson disease dementia. Ann Neurol 72, 587-598.

[30] Kotzbauer PT, Cairns NJ, Campbell MC, Willis AW, Racette BA, Tabbal SD, Perlmuter JS (2012) Pathologic accumulation of α-synuclein and Aβ in Parkinson disease patients with dementia. Arch Neurol 69, 1326-1331.

[31] Sierra M, Gelpi E, Martí MJ, Compta Y (2016) Lewy- and Alzheimer-type pathologies in midbrain and cerebellum across the Lewy body disorders spectrum. Neuropathol Appl Neurobiol 42, 451-462.

[32] Irwin DJ, Grossman M, Weintraub D, Hurtig HI, Duda JE, Xie SX, Lee EB, Van Deering VM, Lopac O, Kolfer JK, Nelson PT, Jicha GA, Woltjer R, Quinn JF, Kaye J, Leverenz JB, Tsuang D, Longfellow K, Yerout D, Kukull W, Keene CD, Montine TJ, Zabetian CP, Trojanowski JQ (2017) Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: A retrospective analysis. Lancet Neurol 16, 55-65.

[33] Iwai A (2000) Properties of NACP/alpha-synuclein and its role in Alzheimer’s disease. Biochim Biophys Acta 1502, 95-109.

[34] Leverenz J, Sumi SM (1986) Parkinson’s disease in patients with Alzheimer’s disease. Arch Neurol 43, 662-664.

[35] Ditter SM, Mirra SS (1987) Neuropathologic and clinical features of Parkinson’s disease in Alzheimer’s disease patients. Neurology 37, 754-760.

[36] Lippa CF, Schmidt ML, Lee VM, Trojanowski JQ (1999) Antibodies to alpha-synuclein detect Lewy bodies in many Down’s syndrome brains with Alzheimer’s disease. Ann Neurol 45, 353-357.

[37] Fujishiro H, Tsuibo Y, Lin WE, Uchikado H, Dickson DW (2008) Co-localization of tau and alpha-synuclein in the olfactory bulb in Alzheimer’s disease with amygdala Lewy bodies. Acta Neuropathol 116, 17-24.

[38] Savica R, Beach TG, Hentz JG, Sabbagh MN, Serrano GE, Sue LI, Dugger BN, Shill HA, Driver-Dunckley E, Caviness JN, Mehta SH, Jacobson SA, Belden CM, Davis KJ, Zamrini E, Shpercher DR, Adler CH (2019) Lewy body pathologies in Alzheimer’s disease: A clinicopathological prospective study. Acta Neurol Scand 139, 76-81.

[39] Clinton LK, Bhutan-Jones M, Mycek K, Trojanowski JQ, LaFerla FM (2010) Synergistic interactions between Abeta, tau, and alpha-synuclein: Acceleration of neurodegeneration and cognitive decline. J Neurosci 30, 7281-7289.

[40] Guo JL, Covell DJ, Daniels JP, Iba M, Stieber A, Zhang B, Riddle DM, Kwong LK, Xu Y, Trojanowski JQ, Lee VM (2013) Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154, 103-117.

[41] Kramer ML, Schulz-Schaeffer WJ (2007) Presynaptic alpha-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies. J Neurosci 27, 1405-1410.

[42] Schulz-Schaeffer WJ (2010) The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathol 120, 131-143.

[43] Colom-Cadena M, Pegueroles J, Herrmann AG, Henstridge CM, Muñoz L, Querol-Vilaseca M, Martín-Paniello CS, Luque-Cabezas J, Clarimon J, Belbin O, Núñez-Llaves R, Blesa R, Smith C, McKenzie CA, Frosch MP, Roe A, Fortea J, Andilla J, Loza-Alvarez P, Gelpi E, Hyman BT, Spires-Jones TL, Lleo A (2017) Synaptic phosphorylation α-synuclein in dementia with Lewy bodies. Brain 140, 3204-3214.

[44] Ferrer I, Martinez A, Blanco R, Dallø E, Carmona M (2011) Neuropathology of sporadic Parkinson disease before the appearance of parkinsonism: Preclinical Parkinson disease. J Neural Transm (Vienna) 118, 821-839.

[45] Nishijima H, Ueno T, Funamizu Y, Ueno S, Tomiyama M (2018) Levodopa treatment and dendritic spine pathology. Mov Disord 33, 877-888.

[46] Parkkinen L, O’Sullivan SS, Kuoppamäki M, Collins C, Kallis C, Holton JL, Williams DR, Revesz T, Lees AJ (2011) Does levodopa accelerate the pathologic process in Parkinson disease brain? Neurology 77, 1420-1426.

[47] Knafo S, Alonso-Nancelares L, Gonzalez-Soriano J, Merino-Serras P, Fernaud-Espinoza I, Ferrer I, DeFelipe J (2009) Widespread changes in dendritic spines in a model of Alzheimer’s disease. Cereb Cortex 19, 586-592.

[48] Cochran JN, Hall AM, Roberson ED (2014) The dendritic hypothesis for Alzheimer’s disease pathophysiology. Brain Res Bull 103, 18-28.

[49] Dorostkar MM, Zou C, Blazquez-Llorca L, Herms J (2015) Analyzing dendritic spine pathology in Alzheimer’s disease: Problems and opportunities. Acta Neuropathol 130, 1-19.

[50] Spires-Jones TL, Meyer-Luehmann M, Osetek JD, Jones PB, Stern EA, Bacsik BJ, Hyman BT (2007) Impaired spine stability underlies plaque-related spine loss in an Alzheimer’s disease mouse model. Am J Pathol 171, 1304-1311.

[51] Viola KL, Velasco PT, Klein WL (2008) Why Alzheimer’s disease is a disease of memory: The attack on synapses by Abeta oligomers (ADDLs). J Nutr Health Aging 12, 51S-7S.

[52] Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14, 837-842.

[53] Pham E, Crews L, Ubbi K, Hansen L, Adame A, Cartier A, Salmon D, Galasko D, Michael S, Savas JN, Yates
[54] Bittner T, Burgold S, Dorostkar MM, Fuhrmann M, Wegener-Braun BM, Schmidt B, Kretzschmar H, Herms J (2012) Amyloid plaque formation precedes dendritic spine loss. *Acta Neuropathologica* **124**, 797-807.

[55] Zou C, Montagna E, Shi Y, Peters F, Blazquez-Llorca L, Shi S, Fisler S, Dorostkar MM, Herms J (2015) Intraneuronal APP and extracellular Aβ independently cause dendritic spine pathology in transgenic mouse models of Alzheimer's disease. *Acta Neuropathologica* **129**, 909-920.

[56] Umeda T, Ramsay EM, Yamashita M, Nakajima K, Mori H, Silverman MA, Tomiyama T (2015) Intracellular amyloid β oligomers impair organelle transport and induce dendritic spine loss in primary neurons. *Acta Neuropathologica** Commun** 3, 51.

[57] Miller EC, Teravskiis PI, Dummer BW, Zhao X, Huganir RL, Liao D (2014) Tau phosphorylation and tau mislocalization mediate soluble Aβ oligomer-induced AMPA glutamate receptor signaling deficits. *Eur J Neurosci*** **39**, 1214-1224.

[58] Kvartsberg H, Lashley T, Murray CE, Brinkmalm G, Minthon L, Nägga K, Londos E, Varghese S, Majbour N, Umeda T, Ramser EM, Yamashita M, Nakajima K, Mori H, Silverman MA, Tomiyama T (2015) Intracellular amyloid β oligomers impair organelle transport and induce dendritic spine loss in primary neurons. *Acta Neuropathologica** Commun** 3, 51.

[59] Boros BD, Greathouse KM, Gentry EG, Curtis KA, Bichali EL, Gearing M, Herskowitz JH (2017) Dendritic spine loss provides cognitive resilience against Alzheimer’s disease. *Ann Neurol* **82**, 602-614.

[60] Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, Sixel-Döring F, Trenkwalder C, Schlossmacher MG (2011) Amyloid and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: A cohort study. *Lancet Neurol* **10**, 230-240.

[61] Kang JH, Irwin DJ, Chen-Plotkin AS, Siderowf A, Caspell C, Coffey CS, Waligorska T, Taylor P, Pan S, Frasier M, Marek K, Kieburz K, Jennings D, Simunzi T, Tanner CM, Singleton A, Toga AW, Chowdhury S, Mollenhauer B, Trojanowski JQ, Shaw LM; Parkinson’s Progress Markers Initiative (2013) Association of cerebrospinal fluid β-amyloid 1-42, T-tau, P-tau181, and α-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. *JAMA Neurol* **70**, 1277-1287.

[62] Tokuda T, Qureshi MM, Ardhant MT, Varghese S, Shehab SA, Kasi T, Ishigami N, Tamaoka A, Nakagawa M, El-Agnaf OM (2010) Detection of elevated levels of α-synuclein oligomers in CSF from patients with Parkinson disease. *Neurology** 75**, 1766-1772.

[63] Hansson O, Hall S, Ohrfelt A, Zetterberg H, Blennow K, Minthon L, Nagga K, Londos E, Varghese S, Majbour NK, Al-Hayani A, El-Agnaf OM (2014) Levels of cerebrospinal fluid α-synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease. *Alzheimers Res Ther** 6**, 25.

[64] Compta Y, Valente T, Saura J, Segura B, Irazo A, Serradell M, Junqué C, Tolosa E, Valdeoliva F, Muñoz E, Santamaría J, Cámara A, Fernández M, Fortea J, Buongiorno M, Molinuevo JL, Bargallo N, Marti MJ (2015) Correlates of cerebrospinal fluid levels of oligomeric- and total-α-synuclein in premotor, motor and dementia stages of Parkinson’s disease. *J Neurol** 262**, 294-306.

[65] Stewart T, Liu C, Ginghina C, Caim KC, Auinger P, Cholerton B, Shi M, Zhang J; Parkinson Study Group DATATOP Investigators (2014) Cerebrospinal fluid α-synuclein predicts cognitive decline in Parkinson disease progression in the DATATOP cohort. *Am J Pathol** 184**, 966-975.

[66] Hall S, Surova Y, Ohrfelt A, Zetterberg H, Lindqvist D, Hansson O (2015) CSF biomarkers and clinical progression of Parkinson disease. *Neurology** 84**, 57-63.

[67] Siderowf A, Xie SX, Hurtig H, Weintraub D, Juda J, Chen-Plotkin A, Shaw LM, Van Deelen V, Trojanowski JQ, Clark C (2010) CSF amyloid beta 1-42 predicts cognitive decline in Parkinson disease. *Neurology** 75**, 1055-1061.

[68] Compta Y, Pereira JB, Rios J, Ibarretxe Bilbao N, Junqué C, Bargallo N, Cámara A, Buongiorno M, Fernández M, Font-Sunyer C, Marti MJ (2013) Combined dementia-risk biomarkers in Parkinson’s disease: A prospective longitudinal study. *Parkinsonism Relat Disord** 19**, 717-724.

[69] Alves G, Lange J, Blennow K, Zetterberg H, Andreasen U, Forland MG, Tynes OB, Larsen JP, PedersenKF (2014) CSF Aβ42 predicts early-onset dementia in Parkinson disease. *Neurology** 82**, 1784-1790.

[70] Compta Y, Marti MJ, Ibarretxe Bilbao N, Junqué C, Valdeoliva F, Muñoz E, Ezquerra M, Rios J, Tolosa E (2009) Cerebrospinal tau, phospho-tau, and beta-amyloid and neuropsychological functions in Parkinson’s disease. *Mov Disord** 24**, 2203-2210.

[71] Montine TJ, Shi M, Quinn JF, Peskind ER, Craft S, Ginghina C, Chung KA, Kim H, Galasko DR, Jankovic J, Zabetian CP, Leverenz JB, Zhang J (2010) CSF Aβ(42) and τ in Parkinson’s disease with cognitive impairment. *Mov Disord** 25**, 2682-2685.

[72] Mathis CA, Lopresti BJ, Ikonomovic MD, Klunk WE (2017) Small-molecule PET tracers for imaging proteinopathies. *Semin Nucl Med** 47**, 553-575.

[73] Sander K, Lashley T, Gami P, Gendron T, Lythgoe MF, Rohrer JD, Schott JM, Revesz T, Fox NC, Årstad E (2016) Characterization of tau positron emission tomography tracer [18F]AV-1451 binding to postmortem tissue in Alzheimer’s disease, primary tauopathies, and other dementias. *Alzheimers Dement** 12**, 1116-1124.

[74] Edison P, Rowe CC, Rinne JO, Ng S, Ahmed I, Kempainen N, Villemagne VL, O’Keeffe G, Nägren K, Chaudhury KR, Masters CL, Brooks DJ (2008) Amyloid load in Parkinson’s disease dementia and Lewy body dementia measured with [11C]PIB positron emission tomography. *J Neurol Neurosurg Psychiatry** 79**, 1331-1338.

[75] Gomperts SN, Locascio JJ, Rentz D, Santarlasci A, Masters CL, Brooks DJ (2008) Amyloid is linked to cognitive decline in patients with Parkinson disease without dementia. *Neurology** 80**, 85-91.

[76] Buongiorno M, Antonelli F, Compta Y, Fernandez Y, Pavia J, Lomeña F, Rios J, Ramírez I, García JR, Soler M, Cámara A, Fernández M, Basora M, Salazar F, Sanchez- Etayo G, Valdeoliva F, Barrio JR, Martí MJ (2017) Cross-sectional and longitudinal cognitive correlates of...
FDDNP PET and CSF amyloid-β and tau in Parkinson’s disease. *J Alzheimers Dis* **55**, 1261-1272.

[78] Gomperts SN, Locascio JJ, Makarets SJ, Schulz A, Caso C, Vasdev N, Sperling R, Growdon JH, Dickerson BC, Johnson K (2016) Tau positron emission tomographic imaging in the Lewy body disease. *JAMA Neurol* **73**, 1334-1341.

[79] Kantarcı K, Lowe VJ, Boeve BF, Suenjem ML, Tosakulwong N, Lessig NC, Spychalla AJ, Gunter JL, Fields JA, Graff-Radford F, Ferman TJ, Jones DT, Murray ME, Knopman DS, Jack CR Jr, Petersen RC (2017) AV-1451 tau and β-amyloid positron emission tomography imaging in dementia with Lewy bodies. *Ann Neurol* **81**, 58-67.

[80] Compta Y, Ibarretxe-Bilbao N, Pereira JB, Junqué C, Bargallo N, Tolosa E, Valdecorriola F, Muñoz E, Camara A, Buongiorno M, Martí MJ (2012) Grey matter volume correlates of cerebrospinal markers of Alzheimer-pathology in Parkinson’s disease and related dementia. *Parkinsonism Relat Disord** **18**, 941-947.

[81] Burack MA, Hartlein J, Flores HP, Taylor-Reinwald L, Perlmuter JS, Cairns NJ (2010) *In vivo* amyloid imaging in autopsy-confirmed Parkinson disease with dementia. *Neurology* **74**, 77-84.

[82] Marquié M, Verver EE, Meltzer AC, Kim SJW, Agüero C, Burack MA, Hartlein J, Flores HP, Taylor-Reinwald L, Kantarci K, Lowe VJ, Boeve BF, Senjem ML, Tosakulwong N, Graff-Radford F, Ferman TJ, Jones DT, Murray ME, Knopman DS, Jack CR Jr, Petersen RC (2015) AV-1451 tau and β-amyloid positron emission tomography imaging in dementia with Lewy bodies. *Ann Neurol* **81**, 58-67.

[83] Halbeugaeb S, Ockl P, Wirth K, Steinacker P, Otto M (2016) Protein biomarkers in Parkinson’s disease: Focus on cerebrospinal fluid markers and synaptic proteins. *Mov Disord* **31**, 848-860.

[84] Magdalíenou NK, Noyce AJ, Pinto R, Lindstrom E, Holmén-Larsson J, Holta M, Blennow K, Morris HR, Skillbäck T, Warner TT, Lees AJ, Pike I, Ward M, Zetterberg H, Göjom J (2017) Identification of candidate cerebrospinal fluid biomarkers in Parkinsonism using quantitative proteomics. *Parkinsonism Relat Disord** **37**, 65-71.

[85] Bereczki E, Francis PT, Howlett D, Pereira JB, Höglund K, Bogstedt A, Cedeño-Minguez A, Baek JH, Hortobágyi T, Attens J, Ballard C, Aarsland D (2016) Synaptic proteins predict cognitive decline in Alzheimer’s disease and Lewy body dementia. *Alzheimers Dement* **12**, 1149-1158.

[86] Bereczki E, Bogstedt A, Höglund K, Tsitsi P, Brown D, Ballard C, Svenningsson P, Aarsland D (2017) Synaptic proteins in CSF relate to Parkinson’s disease stage markers. *NPJ Parkinsons Dis** **3**, 7.

[87] Noguchi-Shinohara M, Tokuda T, Yoshita M, Kasai T, Ono K, Nakagawa M, El-Agnaf OM, Yamada M (2009) CSF alpha-synuclein levels in dementia with Lewy bodies and Alzheimer’s disease. *Brain Res** **1251**, 1-6.

[88] Reesink FE, Lemstra AW, van Dijk KD, Berendse HW, van de Berg WD, Klein M, Blankenstein MA, Scheltens P, Verbeek MM, van der Flier WM (2010) CSF α-synuclein does not discriminate dementia with Lewy bodies from Alzheimer’s disease. *J Alzheimers Dis** **22**, 87-95.

[89] Berge G, Sando SB, Albrektsen G, Lauridsen C, Møller I, Grøntvedt GR, Brätten G, White LR (2016) Alpha-synuclein measured in cerebrospinal fluid from patients with Alzheimer’s disease, mild cognitive impairment, or healthy controls: A two year follow-up study. *BMC Neurol** **16**, 180.

[90] Korff A, Liu C, Ginghina C, Shi M, Zhang J; Alzheimer’s Disease Neuroimaging Initiative (2013) α-Synuclein in cerebrospinal fluid of Alzheimer’s disease and mild cognitive impairment. *J Alzheimers Dis** **36**, 679-688.

[91] Toledo JB, Korff A, Shaw LM, Trojanowski JQ, Zhang J (2013) CSF α-synuclein improves diagnostic and prognostic performance of CSF tau and Aβ in Alzheimer’s disease. *Acta Neuropathol** **126**, 683-697.

[92] Slaets S, Vanmechelen E, Le Bastard N, Decraemer H, Vandijk M, Martin JJ, De Deyn PP, Engelborghs S (2014) Increased CSF α-synuclein levels in Alzheimer’s disease: Correlation with tau levels. *Alzheimers Dement** **10**, S290-S298.

[93] Ockl P, Metzger F, Nagl M, von Arnim CA, Halbeubaeh S, Steinacker P, Ludolph AC, Otto M (2016) Alpha-, beta-, and gamma-synuclein quantification in cerebrospinal fluid by multiple reaction monitoring reveals increased concentrations in Alzheimer’s and Creutzfeldt-Jakob disease but no alteration in synucleinopathies. *Mol Cell Proteomics** **15**, 3126-3138.

[94] Kvartsgberg H, Duits FH, Ingelsson M, Andreassen N, Øhrfelt A, Andersson K, Brinkmalm G, Lannfelt L, Minthorn L, Hansson O, Andreasson U, Teninisse CE, Scheltens P, Van der Flier WM, Zetterberg H, Portelius E, Blennow K (2016) Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer’s disease. *Alzheimers Dement** **11**, 1180-1190.

[95] Hellwig K, Kvartsgberg H, Portelius E, Andreasson U, Oberstein TJ, Lewczuk P, Blennow K, Kornhuber J, Maler JM, Zetterberg H, Spitzer P (2015) Neurogranin and YKL-40: Independent markers of synaptic degeneration and neuroinflammation in Alzheimer’s disease. *Alzheimers Res Ther** **7**, 74.

[96] Casalta KB, Elahi FM, Bettscher BE, Neuhaus J, Bendlin BB, Asthana S, Johnson SC, Yaffe K, Carlsson C, Blennow K, Zetterberg H, Kramer JH (2017) Neurogranin, a synaptic protein, is associated with memory independent Alzheimer biomarkers. *Neurology* **89**, 1782-1788.

[97] Øhrfelt A, Brinkmalm A, Dumurgier J, Brinkmalm G, Bouaziz-Amar E, Hugon J, Paquet C, Blennow K (2016) The pre-synaptic vesicle protein synaptotagmin is a novel biomarker for Alzheimer’s disease. *Alzheimers Res Ther** **8**, 41.

[98] Chatterjee M, Del Campo M, Morrema THJ, de Waal M, van der Flier WM, Hoozemanns J, Teninisse CE (2018) Contactin-2, a synaptic and axonal protein, is reduced in cerebrospinal fluid and brain tissue in Alzheimer’s disease. *Alzheimers Res Ther** **10**, 52.

[99] Headley A, De Leon-Benedetti A, Dong C, Levin B, Loewenstein D, Camargo C, Rundek T, Zetterberg H, Blennow K, Wright CB, Sun X; Alzheimer’s Disease Neuroimaging Initiative (2018) Neurogranin as a predictor of memory and executive function decline in MCI patients. *Neurology* **90**, e887-e895.

[100] Kirsbom BE, Nordengen K, Selnes P, Waterloo K, Paquet C, Blennow K, Bouaziz-Amar E, Hugon J, Zetterberg H, Bouazi-Zamars E, Hugon J, Portelius E, Zetterberg H, Spitzer P (2015) Neurogranin and YKL-40: Independent markers of synaptic degeneration and neuroinflammation in Alzheimer’s disease. *Alzheimers Res Ther** **7**, 74.

[101] Milla-Alomá M, Salva G, Gisbert JD, Villosa-Vila A, Sánchez-Benavides G, Arenaza-Urquijo EM, Crous-Bou M, González-de-Echavarrí JM, Minguillon C, Fauria K, Simon M,
Kollmorgen G, Zetterberg H, Blennow K, Suárez-Calvet M, Molinuevo JL; ALFA study (2020) Amyloid beta, tau, synaptic, neurodegeneration, and glial biomarkers in the preclinical stage of the Alzheimer’s continuum. *Alzheimers Dement* **16**, 1358-1371.

Mavroudis IA, Petridis F, Chatzikonstantinou S, Kazis D (2020) A meta-analysis on CSF neurogranin levels for the diagnosis of Alzheimer’s disease and mild cognitive impairment. *Aging Clin Exp Res* **32**, 1639-1646.

Blennow K, Diaz-Lucena D, Zetterberg H, Villar-Pique A, Karch A, Vidal E, Hermann P, Schmitz M, Ferrer Abizanda I, Zerr I, Llorens F (2019) CSF neurogranin as a neuronal damage marker in CJD: A comparative study with AD. *J Neurol Neurosurg Psychiatry* **90**, 846-853.

Hall S, Janelidze S, Zetterberg H, Brix B, Mattsson N, Surova Y, Blennow K, Hansson O (2020) Cerebrospinal fluid levels of neurogranin in Parkinsonian disorders. *Mov Disord* **35**, 513-518.

Sancesario GM, Di Lazzaro G, Alwardat M, Biticchi B, Basile V, Salimei C, Colona VL, Sinibaldi Salimei P, Bernardini S, Mercuri NB, Pisani A, Schirinzi T (2020) Amyloid-β/42/neurogranin ratio as a potential index for cognitive impairment in Parkinson’s disease. *J Alzheimers Dis* **76**, 1171-1178.

Liu W, Lin H, He X, Chen L, Dai Y, Jia W, Xue X, Tao J, Chen L (2020) Neurogranin as a cognitive biomarker in cerebrospinal fluid and blood exosomes for Alzheimer’s disease and mild cognitive impairment. *Transl Psychiatry* **10**, 125.

Häring DA, Kropshefer H, Kappos L, Cohen JA, Shah A, Meintert R, Leppert D, Tomic D, Kuhle J (2020) Long-term prognostic value of longitudinal measurements of blood neurofilament levels. *Neurol Neuroimmunol Neuroinflamm* **7**, e856.

Zucchi E, Bonetto V, Sorarù G, Martinelli I, Parchi P, Liguori R, Mandrioli J (2020) Neurofilaments in motor neuron disorders: Towards promising diagnostic and prognostic biomarkers. *Mol Neurodegener* **15**, 58.