溶接継手を球状黒鉛鍛鉄継手で置換することによる
疲労強度の強化

日高 哲郎*・野田 尚昭・佐野 義一・甲斐 信博・藤本 宏義

Synopsis : In this study fatigue experiments are conducted for ductile cast iron (DCI) to compare with the fatigue strength of cruciform welded joints.

Key words: fatigue strength; ductile cast iron; welded joint; stress concentration; notch insensitivity; residual stress.

1. 緒言

溶接構造物は溶接部の急熱・急冷による残留応力や形状・材質の不連続性による応力集中、溶接欠陥等の影響により、疲労破壊の起点となる場合があり、特に橋梁をはじめとする土木分野を中心に有用な材料の選定や対策方法が求められている。

これに対し、球状黒鉛鍛鉄は鋼材に匹敵する強度・韌性を有する材料であるが、鍛造による一体成形が可能で自由形状成形性に富む特徴を有する。そのため、急速な断面変化を避け、形状要素を起因とする応力集中を低減できる。また、砂型鍛造では焼丸することにより、熱影響による残留応力も比較的少なく、溶接構造物に対して疲労強度を向上し得る可能性がある。近年では球状黒鉛鍛鉄の疲労強度優位性に着目し、溶接構造物を鍛鉄にて一体化した製品の開発も行われている。しかし、球状黒鉛鍛鉄は一般的の鋼と比較して疲労強度が低い、シャープな衝撃値が小さい、さらに鍛造欠陥が発生するなどの理由から構造部材として敬遠される傾向にある。また、溶接継手と球状黒鉛鍛鉄継手の疲労強度を直接比較した実験データは見当たらない。これらが原因で球状黒鉛鍛鉄は疲労耐久部材としてほとんど活用されていない現状にある。以上の背景をふまえ、本研究では、溶接継手を球状黒鉛鍛鉄継手にて一体化した場合の疲労強度を実験的に検証することにより、その要因について比較考察する。

2. 荷重非伝達型十字溶接継手の疲労強度特性

溶接継手の疲労強度はその継手形状や溶接部の仕上げ状態に依存することから、継手形状や仕上げ状態ごとに実験的に求められた強度等級と呼ばれる設計基準強度が定められている。今回はその中から溶接継手の実験データが豊富で、かつ鍛鉄部材としても補強リブ等で頻繁に活用される形状に近い荷重非伝達型十字溶接継手（Fig.1参照、以下、鋼溶接継手または単に溶接継手、Welded jointと記す）を比較対象とする。

Stress concentration factor $K_t=3.47$

Fig.1. Dimension of welded joint ($t_r=20$).

2018年11月26日受理 2019年2月15日受理 2019年3月14日J-STAGE早期公開 (Received on Nov. 26, 2018; Accepted on Feb. 15, 2019; J-STAGE Advance published on Mar. 14, 2019)。

1) 日立水道機器（株）R&D総合センター（Research and Development Center, HINODE, Ltd., Iwakuni Harakoga Miyaki-cho Miyaki-gun Saga 849-0101）
2) 九州工業大学大学院工学研究院機械システム工学研究科（Dept. of Mechanical and Control Engineering, Kyusyu Institute of Technology）

* Corresponding author: E-mail: t-hidaka@hinodesuido.co.jp

DOI: https://doi.org/10.2355/tetsutohagane.TETSU-2018-158
Fig.2にSM50B材の溶接継手とその母材である平滑材（以下、鋼平滑材、Steel plate before weldedまたは単にBefore weldedと記す）の疲労試験結果を示す。これは、溶接継手の設計基準にも多数引用されている、科学技術庁金属材料科学技术研究所の疲れデータシートから引用したデータである。溶接継手の試験体形状をFig.1に、鋼平滑材の試験体形状をFig.2に示す。ここで、溶接継手の溶接止端部半径ρ＝0.485mm（Fig.1参照）は、29本の試験片の平均値であり、グラウンド処理の有無は不明である。Fig.3は溶接継手のマクロ組織写真、Table 1は鋼平滑材の化学成分、Table 2は鋼平滑材の機械的性質を示す。Fig.2の疲労試験結果についてまとめるものである。Table 2より、溶接継手の疲労強度σ_{max}、80MPa、鋼平滑材の疲労強度$\sigma_{\text{max}}^{\text{steel}}$、240MPaの30%と著しく小さく、鋼材そのもの疲労強度特性を十分に発揮できていない。また、板厚（Main plate thickness）t_1の増加によって疲労強度は低下するが、板幅（Plate width）wやリブ厚（Rib plate thickness）t_2が疲労強度に及ぼす影響は小さいことが知られている。

溶接により疲労強度が低下する要因は、溶接止端部の形状的な応力集中や、溶接部に発生する残留応力が与えられる
（2）。形状的な応力集中係数Kは後に示す解析結果から$K_r=3.47$と大きいため、低減化に溶接止端部の仕上げを行うなど様々な手法があるものの、実際にはコスト面の兼ね合いから、溶接のまま使用されることが多い。残留応力はTable 2にまとめた溶接継手の実測値は不明であるが、一例では母材の引張強度が500MPa相当の鋼板を用いて製作した十字継手の溶接止端部近傍、母材の降伏強度に近い300～400MPaの引張残留応力が発生しており、疲労強度低下の要因となっていることが報告されている

3. 球状黒鉛鉄継手の疲労試験条件

ここでは、溶接継手形状を球状黒鉛鉄で一体化した試験片（以下、鉄鉄接続、DCI jointと記す）の寸法と疲労試験条件について述べる。

3.1 球状黒鉛鉄鋼継手疲労試験片

Fig.4に試験片寸法を示す。主板厚は寸法効果の影響を考慮し、Fig.1に示した溶接継手の$t_1=20$mmとした。板幅、リブ厚、リブ高さは疲労強度への影響が小さいため、試験機の荷重容量や製作上の便宜上、図に示す寸法とした。主板とリブの交差部は溶接継手の脚長$s=10$mm（Fig.1参照）より小さく、かつ鈍造欠陥を考慮し実験的に$p=6$mm（Fig.4参照）にて滑らかに繋いだ。つかみ部は補強のため主板厚に対して9mm増し厚とした。鉄物の製作上必要とする抜け勾配は、主板厚方向に1°として設定した。この抜け勾配による主板の板幅の変化は0.5mm以下である。なお、球状黒鉛鉄鉄の平滑材（以降、鉄鉄平滑材またはDCI plateと表記する）の疲労試験には、便宜上鋼

Table 1. Chemical composition of steel plate before welded (wt%).

	C	Si	Mn	P	S	Ce*
	0.166	0.33	1.45	0.021	0.011	0.42

*Carbon equivalent $Ce_{eq}=C+\frac{\text{Mn}}{6}+\frac{\text{Si}}{24}+\frac{\text{Ni}}{40}+\frac{\text{Cr}}{5}+\frac{\text{Mo}}{4}+\frac{\text{V}}{14}$

Table 2. Mechanical and fatigue properties of steel plate before welded and welded joint.

JIS Z 2201 (1968), No.1A type tensile test specimen	Steel plate before welded	Welded joint
397	534	154
31	240	225～250
10mm	80	

*Maximum hardness of heat affected zone
鉄と鋼 Tetsu-to-Hagané | Advance Publication by J-STAGE

4. 疲労試験結果

4・1 球状黒鉛鉄鉄継手の疲労試験結果

Fig.7に鉄鉄平滑材と鉄鉄継手のS-N曲線を示す。図中に
は次節の考察のため、Fig.2に示した溶接継手や鋼平滑材
のS-N曲線も示している。Table 5に鉄鉄継手の破壊位置、
破断面に確認された破壊起点を示す。表中の試験片No.は
Fig.7中の番号と対応している。No.7*はNo.7の破断面観察
のため、最大荷負応力を300 MPaに増大して再度疲労試験
を行い破断させた試験結果である。ここで、Fig.7中に示す
No.7*の試験データはS-N曲線上から大きく離れていな

| Table 3. Chemical composition of DCI joint (wt%). |
C	Si	Mn	P	S	Cu	Mg	Ceq*
3.67	2.45	0.41	0.024	0.004	0.31	0.042	3.84

*C:Carbon equivalent Ceq=C+Mn/6+C/24+Ni/40+Cr/5+Mo/4+V/14

| Table 4. Mechanical properties of DCI joint. |
| JIS Z 2241(2017), No.14B type tensile test specimen |
0.2% Proof stress (MPa)	Tensile strength (MPa)	Elongation (%)	Brinell hardness (HB)
340	560	15.8	191

Fig.4 Dimension of DCI joint.

Fig.5 Dimension and machining location of tensile test specimen.

Fig.6 Microstructure of DCI joint (Etched by nital). (Online version in color.)
これは最大負荷応力が十分に大きく、コーティング効果がほぼないためと考えられる。よってNo.7*も有効なデータであると判断し、同図に示している。

Fig.7より、鉄鉄接合の疲労強度はσ_{max}^{(e)} = 220 MPaが得られており、鉄鉄接合材の疲労強度σ_{max}^{(e)} = 240 MPaに対して90%程度であった。

Table 5より、破断位置はNo.5を除きリブ接合部もしくはつかみ部近傍R部の応力集中箇所であった。また、破面の結晶組織には比較的小さな介在物欠陥が確認され、破面の様相からこれらの表層欠陥が破壊の起点であることがわかる。なお、これらの欠陥はマッピング分析により砂かみや、粒状化物等のドロスと呼ばれる欠陥と判断される。欠陥サイズは球体に換算すると直径1〜2 mm程度であった。No.5は内部の空洞状の大きな欠陥を起点に破壊している。これは試験時の凝固収縮によりしばしば発生する引き裂欠陥と考えられる。この試験体の破断位置は応力集中部から少し離れた平行部であった。これは、他の試験片と異なり、応力集中や表面欠陥よりも内部欠陥の影響を強く受けたためと想定できる。このような比較的大きな欠陥については、試作段階で試作場合等を修正し、許容できる欠陥サイズに

No.	σ_{max}	N_f	Broken position	Fracture origin
1	350 MPa	1.72×10^4	50mm	Dross inclusions
2	320 MPa	5.77×10^4	10mm	Sand inclusions
3	280 MPa	2.52×10^5	50µm	Sand inclusions
4	260 MPa	4.14×10^5	50µm	Sand inclusions
5	240 MPa	1.99×10^5	50µm	Internal shrinkage cavity
6	240 MPa	9.05×10^5	50µm	Sand inclusions
7	220 MPa	1.00×10^7	50µm	Sand inclusions
7*	300 MPa	2.28×10^7	50µm	Sand inclusions

This defect can be removed real product.
4.2 球状黒鉛鋳鉄縫手と溶接縫手の疲労強度比較

Fig.7より、σ_{w}^{\text{STEL}} = 80 \text{ MPa} であるのに対し、σ_{w}^{\text{DCI}} = 220 \text{ MPa} が得られており、鉄鉄縫手の疲労強度は溶接縫手に対し2.75倍の優位性が確認された。また、σ_{w}^{\text{DCI}}/σ_{w}^{\text{STEL}} = 90\% に対し、σ_{w}^{\text{STEL}}/σ_{w}^{\text{DCI}} = 30\% であり、平滑材に対する低下率は著しく小さい。

一方、鉄鉄縫手のS-N曲線の傾きは溶接縫手に対して小さく、切欠き効果が小さいと考えられる。これらの要因はリフ交差部近傍の応力集中や切欠き感受性、残留応力の違いが影響していると考えられる。詳細は次章にて考察する。

5. 球状黒鉛鋳鉄縫手の疲労強度
溶接縫手より優れる要因分析

ここでは、引張強度が同等である溶接縫手と鉄鉄縫手の疲労強度が異なる要因について考察する。

5.1 平滑材の疲労強度

切欠き材である溶接縫手と鉄鉄縫手を比較する上で基本となるそれぞれの平滑材の疲労強度や表面状態について改めて整理しておく。

Table 6にそれぞれの平滑材の疲労強度と表面状態を示す。疲労強度はそれぞれ240 \text{ MPa} で同じである。表面状態は鋼平滑材は黒皮、鉄鉄平滑材は鉄皮であるが、鉄鉄平滑材については砂型鋳造後に通常実施する砂落としのためのスチールショットブラストを施している。なお、溶接縫手、鉄鉄縫手においても表面状態はそれぞれの平滑材と同様である。次節以降、これらを前提に考察を行う。

表6. 鋼板の疲労限界と表面条件

Specimen type	Fatigue limit Δσ (MPa)	Surface condition
Steel plate before welded	240	Mill scale
DCI plate	240	Cast skin and shot blast

Fig. 7. S-N diagram showing fatigue properties of DCI specimen and steel specimen.
コンター図で示す。図中に示す応力集中係数 \(K \) はリブ交差部近傍（フィレット部）の最大応力 \(\sigma_{\text{max}} \) を公称応力 \(\sigma_0 \) にて除して得る。ここで、フィレットの応力集中問題では最大応力 \(\sigma_{\text{max}} \) が生じる位置と公称応力 \(\sigma_0 \) が生じる位置は異なる（Fig.10 参照）。前者で、ここでは一般的に強度設計に用いる応力集中係数の定義を用いている24-30。

これより、鍛鉄維手の \(K \) は1.68であり、溶接維手の \(K \) は3.47と比較して小さい。これは鍛鉄維手のリブ交差部がR形状によって滑らかに形成されており、切欠き半径 \(\rho \) が大きいためである。このように、鍛鉄維手は溶接維手に比べて応力集中係数が小さく、疲労強度が向上する要因の一つと考えられる。なお、鍛鉄はこのR形状を設計次第でさらに大きくすることが可能であり、型による形状変形のため、溶接ビードと比較して製作上のパラツキも少なくすることができる。よって、さらに応力集中係数を低減することも可能である。

5.3 切欠き感受性の違い

Fig.7に示したように、\(\sigma_{\text{max}}^{(0)} \) = 240 MPa, \(\sigma_{\text{max}}^{(1)} \) = 220 MPaであり、今回の疲労試験において、鍛鉄は切欠きの影響をほとんど受けていない。これは鍛鉄が切欠きに対して鈍感であることが要因と考えられる。Fig.11は応力勾配 \(\chi \) と切欠き深さの弾性最大応力 \(\sigma_{\text{max}} \) の関係を示したもので、種々の切欠き半径 \(\rho \) に対する鉄系材料の切欠き鈍感性を表している31,32。FCD550（引張強度 \(\sigma_b = 550 \) MPa相当の球状黒鉛鉄）の曲線はデータが見あたりないので、S10C（\(\sigma_b = 372 \) MPa）とS30C（\(\sigma_b = 537 \) MPa）の引張強度と\(\sigma_{\text{max}}/\sigma_0 \) の比を用いてFCD700（\(\sigma_b = 730 \) MPa）の曲線から予測したものである。これより、球状黒鉛鉄鉄であるFCD550やFCD700は軟鋼のS10CやS30Cと比較すると、応力勾配 \(\chi \) が同じであれば疲労破壊する最大応力 \(\sigma_{\text{max}} \) が大きく、切欠きに対しても非常に鈍感であることがわかる。

ここで、\(\sigma_{\text{max}}/\sigma_0 = K, \sigma_0/\sigma_b = \sigma \) で表され、\(K \) は応力集中係数、\(\sigma \) は切欠き材の疲労強度、\(\sigma_b \) は平滑材の疲労強度である。図中の破線は応力勾配 \(\chi \) に関わらず \(\sigma_{\text{max}}/\sigma_b = 1 \)、切欠き係数 \(K = \sigma_{\text{max}}/\sigma_b \) であるから、\(K = K \) の関係にあり、疲労強度に対する切欠き感受性が非常に敏感であることを意味している。このことは、ばね鋼（spring steel）33がこれに近いことからも理解できる。逆に \(\chi \) が大きい範囲となる鈍い切欠きが生じると、応力集中係数の影響が顕著になることを示している。

![Fig. 8. FEM model and boundary conditions. (Online version in color.)](image1)

(a) The maximum principal stress distribution of welded joint (t1=20)

(b) The maximum principal stress distribution of DCI joint (t1=24)

Fig. 9. Results of stress simulation by 2D FEM. (Online version in color.)

![Fig. 10. Stress concentration factor of a stepped flat bar with shoulder fillets.](image2)
欠きでも \(\sigma_{\text{center}} / \sigma_{\text{w}} = K / K_f \) が大きい材料は切欠きに対して鈍感であるといえる。なお、鉄鋼材料の切欠き感受性は、化学組成や基底組織が著しく異なる場合を除き、引張強度との相関が強いことが知られている23)。

以上をふまえ、溶接接合体について、母材であるSM50Bと引張強度が近いS30Cを参考にすると、Fig.11より \(\chi = 2 / \rho \approx 2.0485 \) であるから、\(K, \sigma_{\text{center}} / \sigma_{\text{w}} = 1.19 \) である。前節の解析結果より、\(K = 3.47 \) であるから、\(\sigma_{\text{center}} / \sigma_{\text{w}} = 0.34 \) となり、この溶接接合体の疲労強度は平滑材に対して34%の疲労強度を有すると考えられる。よって、鈍平材の疲労強度は240 MPaより、溶接材の疲労強度は82 MPaと予測できる。

一方、鉄鉄接続体 \(\chi = 2 / \rho = 2 / 6 (\approx 0.33) \) であるから、Fig.11のFCD550を参考にすると \(K, \sigma_{\text{center}} / \sigma_{\text{w}} = 1.13 \) である。\(K = 1.68 \) であるから、\(\sigma_{\text{center}} / \sigma_{\text{w}} = 0.67 \) となり、鉄鉄平材の疲労強度240 MPaより鉄鉄接続体の疲労強度は161 MPaと予測でき、溶接接合体の2倍程度となる。

以上のことを考慮して、状態鉄鉄接続体は軟鋼と比較して切欠きに対して鈍感であり、今回比較した試験片形状を予測される \(\alpha_{\text{w}} \) についても溶接接合体よりも鉄鉄接続体の方が2倍ほど大きいことから、疲労強度が大きく向上したことが考えられる。

5.4 残留応力の違い

Table 7に溶接接合体と鉄鉄接続体の残留応力測定値と測定箇所を示す。測定箇所は溶接接合体、鉄鉄接続体ともに縦返し荷重作用時に最大応力が発生するリブ交差部近傍である。

溶接接合体の測定値は、他の文献でほぼ同形状で、機械的性質も同等であるSM490Bの溶接接合体の測定結果24)を引用しており、Table 7にあるA～Dの4点の平均値として示した。

鉄鉄接続体は疲労試験を行った試験片と同様に鉄鉄したものを3本選定し、1点ずつ測定した平均値である。測定にはX線残留応力測定装置を用い、Table 8に示す測定条件とした。なお、溶接接合体、鉄鉄接続体ともに疲労試験実施前に残留応力測定している。

これらの結果から、溶接接合体は100 MPaの残留応力が発生していることがわかる。溶接残留応力は200～300 MPaと大きな場合もあるが、今回の測定値はそれに比べると小さい。これは、測定箇点が溶接止部から3 mm離れていていることが原因と考えられ、溶接止部はさらに大きな残留応力が発生していると推察される。一方、鉄鉄接続体は300 MPa以上の大きな圧縮残留応力が発生している。これは試験片の製作過程で施したスチールシェットブラスト処理の影響と考えられる。過去の研究においても、同処理によりほぼ同等の圧縮残留応力が確認されている33,34)。

ここで、これらの残留応力が疲労強度に及ぼす影響を考慮。残留応力は、縦返し応力が作用すると減衰する場合がある25,35)。鉄鉄接続体は大きな残留応力でなければ初期の残留応力で考えることが通例である22)。今回は溶接接合体に発生している残留応力が100 MPaと比較的小さいことから、溶接接合体についてはTable 7に示した疲労試験前の残

Table 7. Residual stress and measuring point of welded joint and DCI joint.

Specimen type	Residual stress \(\sigma_{\text{w}} \) (MPa)	Measuring point
Welded joint	100	3
DCI joint	-305	13.9

Table 8. Residual stress measurement condition of DCI joint.

X-ray	CrKα
Diffraction	Fe (211)
Filter	V
Stress constant (MPa/deg.)	-323
Tube voltage (kV)	30
Tube current (mA)	10
Collimator (mm)	2
Incident angle \(\phi \) (deg.)	0
Measuring method	Half height breadth

Fig.11. Notch insensitivity (Relationship between the stress gradient and the maximum elastic stress at a notch root).
残留応力を用いることとする。一方、鋼で市販のショットプラスを施した際の残留応力分布は、表層近傍が最大で、深さに応じて低下する。また、応力振幅や応力比の影響により異なるが、およそ 500～1000 μm の深さでは残留応力の影響はほとんどなくなるという報告がある。今回は破壊起点となった幅でサイズが 1000 μm 以上で、残留応力の影響を受けない幅を深さになる場合が想定されるため、Table 7 に示した 305 MPa のおおむね半分である 150 MPa の残留応力が作用していることをとする。

両振り疲労強度 σy を式 (1) のように引張強度 σs の 0.48 倍と見積もると、溶接継手と鋼鉄継手の疲労限度線図は Fig.12 のようになる。図中の σs は σy を基準とした片振り疲労強度であり、式 (2) で表される。σs は σy を基準として残留応力 σn が平均応力を作用した場合の疲労限度である、式 (3) で表される。これらより、残存応力による疲労強度の増減率は σs/σy で表すことができ、これを式 (4) のようにと定義する。Fig.12 より、溶接継手は残留応力によって疲労強度が 0.72 倍 (C = 0.72) になる一方、鋼鉄継手は 1.40 倍 (C = 1.40) になることがわかる。以上のことから、残留応力の観点からも鋼鉄継手は溶接継手に対し疲労強度が向上すると考えられる。

\[
\sigma_s = 0.48 \sigma_y
\]

\[
\sigma_y = \frac{\sigma_s}{(1+\sigma_n/\sigma_y)}
\]

\[
\sigma_s = \left(1-(\sigma_1+\sigma_n)/\sigma_y \right)
\]

\[
C_t = \frac{\sigma_s}{\sigma_y}
\]

σn：両振り疲労強度 (MPa)
σs：引張強度 (MPa)
σn：残留応力 (MPa)
σs：残留応力がない場合の疲労強度 (MPa)
σs：残留応力がある場合の疲労強度 (MPa)
Ct：残留応力による疲労強度の増減率

5.5 各種要因が疲労強度に及ぼす影響

Fig.13 は本章のまとめとして、疲労強度に影響を及ぼす各種要因の効果を模式的に表したものである。溶接継手、鋼鉄継手ともに平滑材の疲労強度を基準として模式的に示している。要因とその効果は、本章で考察した①応力集中係数 (Kt, effect)，②切欠き鉄線性 (χ effect)，③残留応力 (σn, effect) である。溶接継手は① Kt, effect により鋼鉄で疲労強度が著しく低下する (240 MPa ⇒ 69 MPa)。② χ effect によりやや疲労強度は向上するものの (69 MPa ⇒ 82 MPa)，その効果は小さく、③σn, effect によりさらに疲労強度が低下すると考えられる (82 MPa ⇒ 59 MPa)。この結果、溶接継手の疲労強度は 59 MPa と予測でき、平滑材の疲労強度 240 MPa の 25％程度まで著しく低下する。

一方、鉄鉄継手は① Kt, effect により疲労強度が低下するが、その効果は小さく (240 MPa ⇒ 143 MPa)。② χ effect の効果はあっても (143 MPa ⇒ 161 MPa)、鉄鉄継手の疲労強度は 161 MPa と予測でき、鉄鉄平滑材のおよそ 67％を確保している。ここで、鉄鉄継手は③ σn, effect の影響を同様に受ける鉄鉄平滑材が基準であるため、その効果は図中には表記していない。以上のことから、鉄鉄継手の疲労強度は予測値においても溶接継手の 2.7 倍程度あり、疲労強度の優位性があることは明らかである。また、鉄鉄継手の切欠き係数 Kt, effect = σn, effect/σt, effect は溶接継手の切欠き係数 Kt, effect = σn, effect/σt, effect は溶接継手の 2.7 倍程度あり、疲労強度の優位性があることは明らかである。また、鉄鉄継手の切欠き係数 Kt, effect = σn, effect/σt, effect は溶接継手の 2.7 倍程度あり、疲労強度の優位性があることは明らかである。また、鉄鉄継手の切欠き係数 Kt, effect = σn, effect/σt, effect は溶接継手の 2.7 倍程度あり、疲労強度の優位性があることは明らかである。また、鉄鉄継手の切欠き係数 Kt, effect = σn, effect/σt, effect は溶接継手の 2.7 倍程度あり、疲労強度の優位性があることは明らかである。また、鉄鉄継手の切欠き係数 Kt, effect = σn, effect/σt, effect は溶接継手の 2.7 倍程度あり、疲労強度の優位性があることは明らかである。また、鉄鉄継手の切欠き係数 Kt, effect = σn, effect/σt, effect は溶接継手の 2.7 倍程度あり、疲労強度の優位性があることは明らかである。また、鉄鉄継手の切欠き係数 Kt, effect = σn, effect/σt, effect は溶接継手の 2.7 倍程度あり、疲労強度の優位性があることは明らかである。また、鉄鉄継手の切欠き係数 Kt, effect = σn, effect/σt, effect は溶接継手の 2.7 倍程度あり、疲労強度の優位性があることは明らかである。また、鉄鉄継手の切欠き係数 Kt, effect = σn, effect/σt, effect は溶接継手の 2.7 倍程度あり、疲労強度の優位性があることは明らかである。また、鉄鉄継手の切欠き係数 Kt, effect = σn, effect/σt, effect は溶接継手の 2.7 倍程度あり、疲労強度の優位性があることは明ら
σ_{w0}^{STEEL}/σ_{w1}^{STEEL} のおよそ 1/3 であり、切り欠き感受性も鈍感であることがわかる。なお、これらの予測値は Fig.7 に示した実験値に対し 25% 程度の違いで一致する。

6. 結言

主板厚と引張強度と平滑材の疲労強度を同様である溶接継手と球状黒鉱溶接継手の疲労強度を比較した結果、以下に結論を得た。

(1) 鈑鉄継手の疲労強度は \(\sigma_{w0}^{DCL} = 220 \) MPa であり、溶接継手の疲労強度 \(\sigma_{w1}^{STEEL} = 80 \) MPa と比較して 2.7 倍ほど大きいことを実験的に明らかにした。

(2) 疲労強度に影響を及ぼす要因を考察し、その効果を定量的に検討した。それらの結果を用いて算出した疲労強度の予測値は、鈑鉄継手が \(\sigma_{w0}^{DCL} = 161 \) MPa、溶接継手が \(\sigma_{w1}^{STEEL} = 59 \) MPa であった。これより、予測値においても鈑鉄継手の疲労強度は溶接継手に対し 2.7 倍ほど大きい結果となった。

(3) 上記 (1), (2) の要因として、鈑鉄継手は溶接継手と比較して応力集中係数が小さく、切り欠きに対して鈍感である。表面にショットブラストの圧縮残留応力があることがあげられる。

7. 今後の展開

鈑鉄継手は欠陥が破壊起点となっているが、この影響の詳細については今後考察していない。また、鈑鉄の表面粗さはかなり大きく、この影響についても検討する必要がある。

以上のことから、今後は鈑鉄継手の最大欠陥サイズや表面粗さの影響を考慮した上で疲労強度の下限値を予測し、溶接継手の疲労強度と比較する。

謝辞

本研究は平成 29 年度基礎研究等助成金事業（佐賀県技術振興等助成金産学官連携技術革新支援事業）の援助を得て実施された。ここに深く感謝の意を表する。

文献

1) C. Miki, H. Suganuma, M. Tomizawa and F. Machida: Proc. Jpn. Soc. Civ. Eng., 780 (2005), 57 (in Japanese).
2) S. Ono, Y. Hirabayashi, T. Shimozato, N. Inaba, M. Murano and T. Miki: Proc. Jpn. Soc. Civ. Eng. A, 65 (2009), 335 (in Japanese).
3) J. M. Borrajo, R. A. Martínez, R. E. Boeri and J. A. Sikora: ISIJ Int., 42 (2002), 257.
4) R. Ivanova, W. Shu and S. Malinov: ISIJ Int., 44 (2004), 896.
5) B. Bosnjak, B. Radulovic, K. P. Tonev and V. Asanovic: ISIJ Int., 40 (2000), 1246.
6) M. Takanawaza, Y. Tomota and Y. Kobayashi: ISIJ Int., 38 (1998), 106.
7) M. D. Echeverria, O. J. Moncada and J. A. Sikora: ISIJ Int., 41 (2001), 25.
8) H. Tobinaga, M. Murayama, E. Saeki, T. Tamakoshi, E. Yamaguchi and C. Miki: Kou kouzou ronbunshu, 24 (17), 95_13 (in Japanese).
9) M. Yano: J. Jpn. Foundrymen’s Soc., 77 (2005), 641 (in Japanese).
10) I. Oviali, V. Kilicli and M. Erdogan: ISIJ Int., 53 (2013), 375.
11) H. Shirasawa: ISIJ Int., 34 (1994), 285.
12) P. J. J. Ratto, A. F. Ansaldi, V. F. Fierro, F. R. Agüera, H. N. A. Villar and J. A. Sikora: ISIJ Int., 41 (2001), 372.
13) A. Basso, M. Caldera, G. Rivera and J. Sikora: ISIJ Int., 52 (2012), 1130.
14) Z. Liu, G. Zhou, Y. Qiu and G. Wang: ISIJ Int., 50 (2010), 531.
15) K. Tsubakino and H. Tsukikado: ISIJ Int., 41 (2010), 498.
16) 鍛造物の疲労設計指針・解説委員会, 日本鋼構造協会編, 技報堂, 東京, (2012), 33.
17) 金属材料技術研究所疲労データシート, No.13, 科学技術庁金属材料技術研究所, 東京, (1979), 1.
18) M. Kamakura, M. Nihei, E. Sasaki, M. Kanao and M. Inagaki: J. Jpn.
Weld. Soc., 48 (1979), 1060 (in Japanese).
19) M.Ohata: J. Jpn. Weld. Soc., 77 (2008), 50 (in Japanese).
20) C.M.Sonsino: Int. J. Fatigue, 31 (2009), 88.
21) E.Harati, L.Karlsson, L-E.Svensson and K.Dalaei: Int. J. Fatigue, 77 (2015), 160.
22) K.Matsuoka, I.Takahashi, T.Yoshii and E.Fujii: Q. J. Jpn. Weld. Soc., 9 (1991), 36 (in Japanese).
23) T.Shiota, M.Hatate and K.Takemoto: J. JFS., 69 (1997), 904 (in Japanese).
24) S.Boonmee, M.K.Moran and D.M.Stefanescu: American Foundry Society, Schaumburg, IL USA, (2011), 11.
25) 兼田彰宏，山本雄二：基礎機械設計工学，理工学社，東京， (1995), 18.
26) R.E.Peterson: Stress Concentration factor, John Wiley & Sons, New York, (1974), 96.
27) N.A.Noda, T.Saeki and H.Nishitani: Trans. Jpn. Soc. Mech. Eng. A, 55 (1989), 69 (in Japanese).
28) N.A.Noda, Y.Takase and K.Monda: Int. J. Fatigue, 19 (1997), 75.
29) N.A.Noda and Y.Takase: Fatigue Fract. Eng. Mater. Struct., 26 (2003), 245.
30) N.A.Noda and Y.Takase: J. Test. Eval., 32 (2004), 217.
31) H.Nishitani, H.Noguchi, H.Uchihori and H.Nakae: Trans. Jpn. Soc. Mech. Eng. A, 54 (1988), 1293 (in Japanese).
32) H.Nishitani, S.Uchiyama, H.Nakae and H.Noguchi: Trans. Jpn. Soc. Mech. Eng. A, 58 (1992), 2280 (in Japanese).
33) 村上敏宜：金属疲労 微小欠陥と介在物の影響，養賢堂，東京， (2014), 27.
34) 物質・材料研究機構 疲労データシート，No.91，物質・材料研究機構，東京， (2003), 4.
35) S.Aoyama, M.Ito and S.Asami: J. Soc. Mater. Sci., Jpn., 27 (1978), 895 (in Japanese).
36) J.Yamabe, M.Kobayashi and N.Nakajima: Trans. Jpn. Soc. Mech. Eng. A, 71 (2005), 1690 (in Japanese).
37) K.Asami and Y.Kitsunai: J. Soc. Mater. Sci., Jpn., 35 (1986), 550 (in Japanese).