Areas of Metabolomic Exploration for Helminth Infections

Jeffrey D. Whitman,* Judy A. Sakanari, and Makedonka Mitreva

ABSTRACT: Helminths represent a diverse category of parasitic organisms that can thrive within a host for years, if not decades, in the absence of treatment. As such, they must establish mechanisms to subsist off their hosts, evade the immune system, and develop a niche among the other cohabiting microbial communities. The complex interplay of biologically small molecules (collectively known as the metabolome) derived from, utilized by, or in response to the presence of helminths within a host is an emerging field of study. In this Perspective, we briefly summarize the current existing literature, categorize key host–pathogen–microbiome interfaces that could be studied in the context of the metabolome, and provide background on mass spectrometry-based metabolomic methodology. Overall, we hope to provide a comprehensive guide for utilizing metabolomics in the context of helminthic disease.

KEYWORDS: metabolomics, parasites, helminths, microbiome, immunology, mass spectrometry

Helminths infect over 2 billion people worldwide, that is, over 25% of the world’s population may have one or more worm infections caused by parasitic roundworms (nematodes) and/or flatworms (cestodes and trematodes). The most prevalent infections are caused by the soil-transmitted helminths (STHs), Ascaris and Trichuris, and hookworms, which are among the roughly 20 neglected tropical diseases designated by the WHO. These species alone infect over a billion people worldwide and account for an estimated 1.9 million disability-adjusted life years (DALYs) due to anemia, malnutrition, and cognitive deficits associated with moderate- to high-burden infections.

To date, there are no vaccines to treat any human helminth infection, and there are only a few anthelmintic drugs that are safe and effective. With the lack of therapeutics and the rising concern over the development of drug resistance, there is a critical need to identify new therapeutic candidates. The counterparts to applying appropriate therapy are an accurate diagnosis and tests-of-cure. Microscopic exam and serology are the gold standard for diagnosing helminth infections, and new PCR-based molecular diagnostics are available; therefore, identification of new biomarkers and the testing of methodologies are key in exploring more sensitive, specific, and dynamic diagnostics.

Historically, the biological and molecular complexities of parasitic helminths have impeded the research on therapeutics and diagnostics, but these have been partly overcome by the wide use of systems biology “omics”. These approaches reveal information on the genome, transcriptome, and proteome of the biological agent and are revolutionizing parasitology. For example, the combination of genomics, transcriptomics, and proteomics data has provided essential molecular information about a specific tissue of interest (the nematode intestine), and advanced bioinformatic approaches provide the means to predict intestinal cell functional categories of seminal importance to parasite survival. Such predictions can now be experimentally tested and validated. Other examples include interfacing helminth omics with chemogenomics that have proven to identify and prioritize drugs and drug targets much more successfully compared to high-throughput screening. Moreover, such predictive models have been experimentally validated as the identified drugs have been shown to have broad potential (made possible due to the application of evolutionary genomics principles), and a subsequent rational drug design strategy has capitalized on parasite-specific molecular features, which result in improved potency and selectivity for the parasite versus the host.

For helminth parasitologists, a growing field of investigation is metabolomics, which evaluates the downstream exogenous and endogenous small molecules in a biological system. This field has shown major growth due to major advancements in liquid chromatography combined with tandem mass spectrometry (LC-MS/MS). A multiomics approach can deepen our
Table 1. Summary of Select Investigations Highlighting the Metabolomics of Parasitic Helminths Using Mass Spectrometry

helminth	samples	findings	reference
Toxocara canis (dog roundworm)	infected dog serum for host metabolites	metabolic profiles of sera 24 h, 10 days, and 36 days postinfection showed alterations of bile acid, steroid hormone, and unsaturated fatty acid synthesis pathways from dog host	Zheng et al.
Ascariasis lumbricoides (human roundworm)	eggs, including larval stages from stool samples from infected individuals, Brazil for biomarkers of infection	metabolites for worm eggs: hexadecanal, 21-methyl-8Z-pentatriacontene, and 3,7,11,15-tetramethyltriacontane; for first-stage worm larvae: 2-deoxyecdysone 22-phosphate, cholesterol ester, sphingomyelin, and cardiolipin; for third-stage worm larvae: dimethylheptatriacontane	Melo et al.
Nippostrongylus brasiliensis and Trichurus muris (nematodes)	excretory—secretory products (ESPs) from worms	identified polar and nonpolar small molecules from worm ESPs with as many as 17 metabolites known to exhibit various pharmacological activities	Wangchuk et al.
Ancylostoma caninum (dog hookworm)	somatic worm extracts and excretory—secretory products from worm	low molecular weight metabolites from worm products suppressed inflammation in a murine model of colitis and reduced cytokine secretion by human peripheral blood mononuclear cells	Gyawali et al.
Ancylostoma caninum (dog hookworm)	viable and nonviable A. caninum eggs	prostaglandins, myristic acid, and lauric acid were found in viable but not nonviable ova isolated from dog feces; metabolites may be useful in a rapid diagnostic screening test for the presence of viable hookworm ova	Garcia et al.
Onchocerca volvulus (filariform nematode)	urine samples from onchocerciasis positive and negative individuals	N-acetylfusphenolamine-O-β-glucuronide (NATOG) was identified as a biomarker using LC-MS on patient urine samples; NATOG-based lateral-flow immunos assay for onchocerciasis identified 85% of the 27 patient urine samples	Wangchuk et al.
Schistosoma mansoni (blood fluke)	soluble egg antigen (SEA) from schistosomes for immunomodulation	SEAs from worms bind to Dectin-1 and Dectin-2 on dendritic cells, resulting in the synthesis of eicosanoid prostaglandin E2 and the expression of OX40 ligand, enabling them to promote the Th2 response; SEA contains analytes including docosahexaenoic acid, linoleic acid, arachidonic acid, PGE2, and PGD2	Gaisser et al.
Schistosoma mansoni (blood fluke)	S. mansoni cercariae, worms, eggs, SEA products for immunomodulation	identified ~350 lipid species and characterized the lipid profiles of different parasite life history stages; detected several immunomodulatory oxylipids in the different life cycle stages; prostaglandins highly enriched in egg preparations; resolvins were specifically detected in cercariae in infection-only and advanced cases; low levels of host sex steroids, high levels of several bennzenoids, catechols, and lipids (including ganglioside, phosphatidylcholine, and phosphatidylethanolamine)	Adebayo et al.
Schistosoma haematobium (blood fluke)	urine and plasma of urogenital schistosomiasis and associated bladder pathologies, Nigeria for biomarkers of pathogenesis	estrogen-like metabolites in urogenital schistosomiasis cases but not in healthy humans; metabolites included catechol estrogen quinones (CEQ) and CEQ-DNA adducts; novel metabolites derived from 8-mono-7,8-dihydro-2′-deoxyguanosine (8-oxoG) were found in urine from urogenital schistosomiasis cases	Gouveia et al.
Schistosoma japonicum (blood fluke)	male and female adult worms from SCID and BALB/c mice for metabolism of the host/pathogen relationship	more differential metabolites in female worms than male worms between SCID and BALB/c mice; male worms included bile acid biosynthesis, tumour and hypotaurine metabolism, sphingolipid metabolism, retinol metabolism, purine metabolism; enriched metabolite sets of differential metabolites in female worms included retinol metabolism, alpha linolenic acid and linoleic acid metabolism, purine, sphingolipid, and glutamate metabolism	Lui et al.
Opisthorchis felineus (liver fluke)	hamster sera, urine, bile, adult worms and eggs for biomarkers of liver disease	numerous oxysterols and related DNA adducts detected in the liver fluke eggs and in bile from infected hamsters	Gouveia et al.
Dipylidium caninum (dog and cat tape worm)	excretory—secretory products (ESPs) from ex vivo worms	49 metabolites identified from ESPs collected from worms ex vivo; 12 of which have known pharmacological properties, e.g., anti-inflammatory agents; top 10 polar metabolites were succinic acid (major component), lactic acid, myo-inositol, cysteic acid, tyrosine, malic acid, talose, glucose, glycerol, and phenylalanine	Wangchuk et al.
understanding of the parasites at a systems biology level, which is essential for making progress toward applications to prevent and treat infections by helminths.12

Metabolomics is used to profile the small molecule metabolic products of a biological specimen at a specific condition and point in time, thereby providing a snapshot of its physiological state. Profiling metabolic substrates and products and relating them to metabolic pathways can aid in defining key “chokepoints” critical to the parasite and/or host. A “chokepoint reaction” is defined as a reaction that necessitates a unique substrate or produces a unique product for a biological function.5,13 If the chokepoint enzyme (of either host or parasite origin) can be inhibited, the entire metabolic pathway can be blocked, leading to downstream parasite dysfunction. Pan-Nematoda conserved metabolic chokepoint enzymes have been identified using omics-driven approaches, and a targeted repurposing approach has identified new small molecules with broad spectrum anthelmintic activity.5,11

Taylor et al.13 used an innovative approach to generate a compartmentalized metabolic and constraint-based model of the parasitic nematode Brugia malayi. This model, which divided the metabolic network into three compartments, the cytosol and mitochondria of B. malayi and the Wolbachia endosymbiont, predicted a set of 102 reactions essential to the survival of the worm, including switching between aerobic and anaerobic pathways and a novel pathway that relies on the catabolism of glutamate to aspartate to produce energy. The identification of chokepoints in conjunction with a systems biology approach can lead to a greater understanding of the metabolic pathways essential for parasite survival, as will the compartmentalized approach to study helminths and their endosymbionts that enables investigators to predict essential energy and metabolic growth pathways and identify potential therapeutic targets to treat helmintic infections.

APPROACHES AND LIMITATIONS OF MASS SPECTROMETRY-BASED METABOLICS

The direct study of biologically small molecules can be carried out by nuclear magnetic resonance (NMR) or mass spectrometry (MS). A recent publication has provided an excellent review of NMR methodology and applications to helminth metabolomics research.14 In this Perspective, we highlight recent work on the metabolomics of parasitic helminths using mass spectrometry (MS) and discuss the possibilities of what the future might hold for parasitic helminth metabolomics. Table 1 summarizes a select number of studies using MS to profile the metabolites of dogs infected with Toxocara canis, the life cycle stages of the soil-transmitted nematode Ascaris lumbricoides, and the excretory–secretory products from Nippostrongylus brasiliensis, Trichuris muris, Ancylostoma caninum, schistosomes, and the dog/cat tapeworm to identify biomarkers in urine from individuals infected with Onchocerca volvulus and biomarkers of liver disease caused by Opisthorchis felineus are also included. Comprehensive reviews on parasite metabolomics have been published by Preidis and Hotez;12 Zheng et al.,15 Melo et al.,16 Wangchuk et al.17

KEY AREAS OF METABOLUMIC EXPLORATION IN HELMINTH INFECTIONS

While it is easiest to think about the influence of the helminth metabolome as a direct connection between pathogen and host phenotype, the modulators are a much more complicated and interconnected system. With the explosion of microbiome and immunology-related research, major findings have begun to intertwine these interactions between many organ systems and disease states. One key facet of these interactions has been the study of metabolic products and their origins and influence on each system. While the gut microbiota has shown major metabolomic influence,29 studies including the evaluation of helminth metabolic interactions have been lacking. Therefore, we present an outline of key areas of interaction that can be used for hypothesis generation to evaluate the metabolome’s role during helmint infections.

Helmints and the Immune System. The immune system has long been studied in the context of parasitic helminths, particularly the induction of type 2 (Th2) and regulatory T-cell (Treg) responses.30,31 Helminth modulation of the immune system generally induces an anti-inflammatory or immune tolerance response. These changes have mainly been studied in the context of helminth excreted/secreted/cell surface proteins, leaving significant areas of investigation to explore regarding small molecule production. One central recurring finding that has been explored in the context of both helminths and the microbiome is the effect of short chain fatty acids (SCFAs) on the induction of Treg immune suppression responses.32,53

Giera et al.33 used lipidomics to characterize the lipid profiles of different life history stages of Schistosoma mansoni and found several immunomodulatory oxylipids; specifically, prostaglandins were highly enriched in egg preparations and resolvins were specifically detected in cercariae. Lipidomic analyses of soluble egg antigens (SEAs) of S. mansoni also revealed that SEAs bind to the pattern-recognition receptors Dectin-1 and Dectin-2 on dendritic cells, resulting in the synthesis of eicosanoid prostaglandin E2 and the expression of the OX40 ligand, enabling them to promote a Th2 response.22 Though these studies may not be broadly applicable to all helmint interactions with the immune system, they demonstrate distinct immunomodulatory components of some helmint-derived small molecules, which suggest further evaluation is needed at this host–pathogen interface.

Helmints and the Host Microbiota. The dysbiosis of the gut microbiome is generally thought of in the context of infections related to pathogenic bacteria or viruses; however, helminths can also inhabit this community as pathogens. When discussing this interface, one must explore the interactions between both helminths and microbial communities as well as the microbial communities and host health. A number of studies in animal models and humans have shown various chronic helmint infections can change microbiome populations and relate to disease states.34–36 For example, human studies have shown an increased diversity of the gut microbiome and identified conserved bacterial taxa positively and negatively associated with soil-transmitted helmints (STHs) in different endemic countries, suggesting changes associated with infection regardless of baseline variation of the microbiomes in different countries.37 Furthermore, the gut microbiota responds to anthelmintic treatment; however, after deworming, the microbiome assembles in a state that does not resemble an uninfected state.38 These cross-kingdom interactions in the human gut ecosystem in individuals infected with STH species have been studied at the taxonomic, genetic, and functional levels, opening the door for undertaking key mechanistic studies in the future. There is a need for a better
understanding of the microbiome changes following albendazole treatment since a study with samples from Kenya had shown that albendazole treatment alters the microbiome structure, especially in individuals infected with *Necator americanus*, but a study in Indonesia showed that albendazole does not affect the microbiome composition. Of importance is to note that changes in the microbiome are likely dependent on the methodologies used (e.g., depth of coverage generated by next generation sequencing platforms), burden of infection (e.g., low vs moderate to heavy worm infections), and the type/tropism of infection.

These population changes have been studied in the context of direct or indirect (i.e., helminth-produced antibacterial molecules) changes in the mechanical barriers of the GI epithelium and immune regulation. In terms of the direct influence of the metabolome, the microbiome has been extensively studied in the context of small molecule regulators with significant findings in relation to host pathologies and are beyond the scope of this Perspective. In a recent study of human volunteers infected with *Strongyloides stercoralis*, the authors report that, in addition to the observed increased alpha diversity and decreased beta diversity of the fecal profiles of infected vs noninfected individuals, there was an increased abundance of specific metabolites in the infected individuals (specific amino acids) and SCFAs in the noninfected individuals. Suffice it to say, there is a wealth of emerging evidence on the sources and effects of the metabolite interplay between host, microbes, and macrobes that could be due to shifts in metabolite consumption/production or altered gastrointestinal absorption.

Microbiomes of Helminths. The complex interactions of microbiota with host organisms also applies to helminths themselves. This is well-known in the filarial nematodes (*Onchocerca volvulus*, *Wuchereria bancrofti*, and *Brugia malayi*) and their endosymbiotic bacterium *Wolbachia*. This bacterium is necessary for the reproduction and survival of these organisms, largely due to the production of essential nutrients for the helminths including heme, riboflavin, and flavin adenine dinucleotide (FAD). Other helminth endosymbionts (e.g., *Neorickettsia*) and models of microbiome acquisitions are emerging with great potential to discover necessary or novel metabolites as a source of novel biology in this system. As with any endosymbiotic relationship, challenges remain separating the symbiont from its host but new technologies such as single cell analyses can be applied to omic investigations with bacteria and their helminth hosts.

Helminth/Host Metabolites as Biomarkers of Infection. As one may imagine, the diversity of parasitic helminths and their life cycles greatly complicates the ability to study and discuss metabolism in a cohesive manner. Classical biochemical pathways have been established for a number of helminths, though the subject has not been revisited in recent literature, to our knowledge. An emerging area of study in microbial communities within animals is the production of xenometabolites or small molecule products either synthesized *de novo* or derived from host metabolites. Though this is not a new subject, given the knowledge of the gut microbiome’s role in bilirubin derivation/excretion and vitamin K production,
advances in small molecule mass spectrometry have opened up the ability to discover and characterize novel molecules. Untargeted metabolomics utilizes a newer generation of quadrupole high-resolution mass spectrometers (QHRMS), which combine front-end tandem mass spectrometry and back-end high-resolution time-of-flight or orbitrap technologies to obtain mass resolutions below 1 × 10^{-4} daltons. This allows for data acquisition techniques that can parse analytes using the quadrupole mass filters and then trigger fragmentation into product ions and collect high-resolution spectra. The fingerprint of an analyte’s product ion spectra can give specific structural information about the compound and greatly increase confidence in the metabolite identification. While QHRMS methods greatly increase the number of analytes that can potentially be surveyed, the results may be skewed by the fact that not all analytes will be equally detectable nor quantifiable by one general mass spectrometry method. When one both designs a study and compares evidence, understanding the utility and limitations of both targeted and untargeted metabolomics approaches is essential.

When Should Investigators Use Targeted versus Untargeted Mass Spectrometry? In general, these experiments can be broken into hypothesis testing and hypothesis generating. For targeted metabolomics, one would want to evaluate the key intermediates of a metabolic pathway(s) that are known to be dysregulated in an experimental system, such as SCFA production from an in vivo infection model. Fluxomics, as a subset of targeted metabolomics, is useful when dynamic information about metabolites within a pathway is needed. An example of this could be exploration on the utilization of a class of metabolites or metabolic pathways (e.g., glycolysis/gluconeogenesis, fatty acid oxidation, purine metabolism, etc.) under various infection or treatment conditions. Untargeted metabolomics is useful when a researcher can modulate a system and wants to broadly explore the metabolic changes, e.g., exploring changes in profiles following anthelmintic therapy.

Harmonizing Helminth Metabolomics Methodologies. The field of metabolomics is currently adapting to the constant evolution of instrumentation and informatics. As such, the harmonization of methods and materials to ensure accurate and reproducible findings has been a moving target for the entirety of the field. Therefore, it is incumbent upon the investigators to clearly publish detailed methods for their metabolomics experiments and promote protocol sharing and communication whenever possible. Below, we will detail areas of variance in metabolomics studies to propose a framework for key areas of methodologic harmonization going forward.

Preanalytical variables can be a major point of discordance between metabolomics studies. Because metabolites do not represent one distinct class of biological macromolecules (such as nucleic acids or polypeptides), there can be many sources of variability and interference. These can include the type of...
specimen collection devices, metabolite extraction protocols, and lipid depletion strategies to name a few. Overall, how the sample is handled and prepared may lead to a differential representation of individual metabolites or metabolite classes entering the mass spectrometer for analysis.

Understanding natural variabilities of specimen types is also important for appropriate metabolomics study design. For example, the metabolic variability of stool specimens is expected to be much higher than that of peripheral blood considering the gut contents will include all variations in diet, where the serum reflects only a physiologically balanced net absorption/excretion of gut products. Delineations must even be accounted for between seemingly equivalent specimens, such as serum and plasma, considering the higher content of protein from clotting factors can affect extraction efficiency.

Analytically, one must take into consideration both the chromatography and modality of mass spectrometry when analyzing study design. Both gas chromatography (GC) and liquid chromatography (LC) are established for the upfront separation of analytes and as a parameter of data analysis. Advances in ultra high-performance liquid chromatography (UHPLC) and column chemistry have brought LC-MS to the forefront of metabolomic methods. However, GC is still predominantly used for the analysis of volatiles (alcohols, esters, ketones, etc.) and SCFAs. Even within LC, it is not uncommon that two UHPLC methods, such as reverse phase and hydrophilic interaction (HILIC), will be run on each sample to achieve appropriate separation for polar, semipolar, and nonpolar metabolites. Even then, the exact choice of column chemistry can affect confidence in compound detection.55

When confronting the variability of the mass spectrometry component, the most important factor in study design is the source of library spectra for metabolite identification. Differences in mass spectrometry source and compound-dependent parameters of a method can create different product ion spectra, which can confound identification and quantification. Ideally, one’s metabolomics experiments should be analyzed with the same method parameters in the same mass spectrometry facility when at all possible.

Postanalytical Variables. Postanalytical variables in metabolomics mostly relate to data analysis, which encompasses confidence in metabolite identification (for untargeted data) and statistical analysis approaches for large metabolite data sets. Each metabolite identification by LC-MS has three major components: (1) LC retention time (RT), (2) mass accuracy to the theoretical chemical formula, and (3) product ion spectra library match. Metabolomics standards initiatives (MSIs) have sought to grade confidence in metabolite identification by assigning confidence levels utilizing these components.56,57 The decision to align with MSI confidence level criteria or to define a different system is largely up to the researcher but should be clearly outlined within the methodology of a subsequent publication. The ability to get to high confidence identifications relies greatly on the quality and source of product ion spectral libraries, which are produced by curating method-specific product ion spectra of authentic standards or in silico prediction. Online spectral libraries58 provide an attractive resource for searching the largest number of metabolites possible; however, the quality of the spectral data can vary greatly depending on the analyte standard used to generate the library entry and the MS method parameters (as noted above). When possible, using an in-house spectral library, where all standards were run on the same instrument parameters as the specimens, will provide the highest confidence in accurate metabolite identification.

The statistical approach of data analysis becomes a second source of postanalytical variance; however, this is not specific to metabolomic studies and therefore beyond the scope of this article. It will suffice to say that the most common forms of metabolomic data analysis include volcano plots, hierarchical clustering, and multivariate component analyses, of which the specifics of the data set and experimental questions are key for choosing the appropriate statistical approach. While many of these approaches can be performed using general statistical software, resources such as MetaboAnalyst provide robust data analysis tools appropriate for metabolomics data with curated tutorials and guidance.59

HARMONIZATION OF METABOLOMIC METHODOLOGY AND FUTURE DIRECTIONS FOR STUDYING PARASITIC HELMINTHS

Given the diversity of parasitic helminths, it is essential for the field to harmonize metabolomic experimentation to increase confidence in the reproducibility of the findings and in undertaking comparative metabolomic studies. One key bottom-up approach would be the utilization of helminth-specific protocols for sample collection, preparation, and metabolite extraction. Metabolomics data repositories, such as Metabolomics Workbench60 (https://www.metabolomicsworkbench.org), provide the capacity for standardized formatting and open access for these protocols. As the field evolves, a more centralized parasitic helminth database for combining metabolomic, proteomic, and transcriptomic/genomic data would be an ideal source for the community.

Another direction for increasing harmonization would be specialized metabolomics centers for parasitic diseases. Metabolomics-driven science is often broadly generalized to any type of sample sets, yet aspects of study design and biological interpretation may be key to understanding the unique and divergent biology of helminths under the dynamic conditions of host–parasite interactions. The development of a center combining primary metabolomics methodologists and infectious diseases experts will be essential for producing high quality studies that innovate the field.

CONCLUSIONS

Metabolomics can be studied in the context of helminth infections in a number of ways including in vitro parasite culture, in vivo animal models, or clinical studies in humans. The results and conclusions derived from this research must encompass the interconnected systems of helminth infections, human immunology, and microbiome dysbiosis (of both the worm and host). Major areas of focus for studying metabolomics in helminth infections include understanding and characterizing helminth-derived small molecule and metabolic interactions in the context of pathogenesis, drug design, and biomarker discovery. Lastly, for this research to provide meaningful and reproducible metabolomic findings, researchers must take it upon themselves to be versed in the strengths and limitations of the methodology and advocate best practices of this mass spectrometry-driven science.
AUTHOR INFORMATION

Corresponding Author
Jeffrey D. Whitman — Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California 94110, United States; orcid.org/0000-0002-3502-5799; Email: Jeffrey.Whitman@ucsf.edu

Authors
Judy A. Sakanari — Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, United States; orcid.org/0000-0003-3895-2982

Makedonka Mitreva — Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63130, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acsinfecdis.0c00658

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The participation of J.D.W. was supported by a grant from the National Heart, Lung, and Blood Institute at the National Institutes of Health under award number K38HL154203. J.A.S. was supported by the Bill and Melinda Gates Foundation under award number OPP1017584. M.M. was supported by the National Institute of General Medical Sciences Grant R01GM097435. The funding sources had no role in the study preparation of the manuscript, or the decision to submit for publication. This publication’s contents are solely the responsibility of the authors and do not necessarily represent the official views of their sponsors.

REFERENCES

(1) Hotez, P. J. (2018) Human Parasitology and Parasitic Diseases: Heading Towards 2050. Adv. Parasitol. 100, 29–38.
(2) King, C. H. (2019) Chapter Two: Helminthiasis Epidemiology and Control: Scoring Successes and Meeting the Remaining Challenges. In Advances in Parasitology (Keiser, J., Ed.) Vol. 103, pp 11–30, Academic Press, DOI: 10.1016/bs.apar.2018.08.001.
(3) International Helminth Genomes Consortium (2019) Comparative genomics of the major parasitic worms. Nat. Genet. 51 (1), 163–174.
(4) Disease and Injury Incidence and Prevalence Collaborators (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392 (10159), 1789–1858.
(5) WHO (accessed 2020-03-21) Neglected tropical diseases: Summary, https://www.who.int/neglected_diseases/diseases/en/.
(6) Freeman, M. C., Akogun, O., Belizario, V., Jr., Brooker, S. J., Gyorkos, T. W., Imtiaz, R., Krolowiecki, A., Lee, S., Matendechero, S. H., Pullan, R. L., and Utzinger, J. (2019) Challenges and opportunities for control and elimination of soil-transmitted helminth infection beyond 2020. PLoS Negl. Trop. Dis. 13, e0007201.
(7) Grant, J. R., Pilote, N., and Williams, S. A. (2019) A Case for Using Genomics and a Bioinformatics Pipeline to Develop Sensitive and Species-Specific PCR-Based Diagnostics for Soil-Transmitted Helminths. Front. Genet. 10, 883.
(8) Jasmer, D. P., Rosa, B. A., Tyagi, R., and Mitreva, M. (2019) Omics Driven Understanding of the Intestines of Parasitic Nematodes. Front. Genet. 10, 652.
(9) Taylor, C. M., Martin, J., Rao, R. U., Powell, K., Abubucker, S., and Mitreva, M. (2013) Using existing drugs as leads for broad spectrum anthelmintics targeting protein kinases. PLoS Pathog. 9 (2), e1003149.
(10) Wang, Q., Heizer, E., Rosa, B. A., Wildman, S. A., Janetka, J. W., and Mitreva, M. (2016) Characterization of parasite-specific indels and their proposed relevance for selective anthelmintic drug targeting. Infect. Genet. Evol. 39, 201–211.
(11) Tyagi, R., Maddirala, A. R., Elawal, M., Fischer, C., Bulman, C. A., Rosa, B. A., Gao, X., Chugani, R., Zhou, M., Helder, J., Brindley, P. J., Tseng, C. C., Greig, I. R., Sakaran, J., Wildman, S. A., Aroian, R., Janetka, J. W., and Mitreva, M. (2018) Small Molecule Inhibitors of Metabolic Enzymes Repurposed as a New Class of Anthelmintics. ACS Infect. Dis. 4 (7), 1130–1145.
(12) Preidis, G. A., and Hotzel, P. J. (2015) The newest "omics"—metagenomics and metabolomics—enter the battle against the neglected tropical diseases. PLoS Neglected Trop. Dis. 9 (2), e0003382.
(13) Taylor, C. M., Wang, Q., Rosa, B. A., Huang, S. C., Powell, K., Schell, T., Pearce, E. J., Abubucker, S., and Mitreva, M. (2013) Discovery of anthelmintic drug targets and drugs using checkpoints in nematode metabolic pathways. PLoS Pathog. 9 (8), e1003505.
(14) Kokova, D., and Mayboroda, O. A. (2019) Twenty Years on: Metabolomics in Helminth Research. Trends Parasitol. 35 (4), 282–288.
(15) Zheng, W. B., Zou, Y., Elsheikha, H. M., Liu, G. H., Hu, M. H., Wang, S. L., and Zhu, X. Q. (2019) Serum metabolomic alterations in Beagle dogs experimentally infected with Toxocara canis. Parasites Vectors 12 (1), 447.
(16) Melo, C. F., Esteves, C. Z., de Oliveira, R. N., Guerreiro, T. M., de Oliveira, D. N., Lima, E. O., Mine, J. C., Allegritti, S. M., and Catharino, R. R. (2016) Early developmental stages of Ascaris lumbricoides featured by high-resolution mass spectrometry. Parasitol. Res. 115 (11), 4107–4114.
(17) Wangchuk, P., Kouromenos, K., Eichenberger, R. M., Pearson, M., Susiano, A., Wishart, D. S., McConville, M. J., and Loukas, A. (2019) Metabolomic profiling of the excretory-secretory products of hookworm and whipworm. Metabolomics 15 (7), 101.
(18) Wangchuk, P., Shepherd, C., Constantinou, C., Ryan, R. Y. M., Kouromenos, K. A., Becker, L. J., Jones, L., Buitrago, G., Giacomini, P., Wilson, D., Daly, N., McConville, M. J., Miles, J. J., and Loukas, A. (2019) Hookworm-Derived Metabolites Suppress Pathology in a Mouse Model of Colitis and Inhibit Secretion of Key Inflammatory Cytokines in Primary Human Leukocytes. Infect. Immun. 87 (4), e00851-18.
(19) Gyawali, P., Beale, D. J., Ahmed, W., Karpe, A. V., Magalhaes, R. J., Morrison, P. D., and Palombo, E. A. (2016) Determination of Ancylostoma caninum ova viability using metabolic profiling. Parasitol. Res. 115 (9), 3485–92.
(20) Globisch, D., Moreno, A. Y., Hixon, M. S., Nunes, A. A., Denery, J. R., Specht, S., Hoerauf, A., and Janda, K. D. (2013) Onchocerca volvulus-neurotransmitter tyramine is a biomarker for river blindness. Proc. Natl. Acad. Sci. U. S. A. 110 (11), 4218–23.
(21) Sharey, R. J., Globisch, D., Eubanks, L. M., Hixon, M. S., and Janda, K. D. (2018) Noninvasive Urine Biomarker Lateral Flow Immunoassay for Monitoring Active Onchocerciasis. ACS Infect. Dis. 4 (10), 1423–1431.
(22) Kaisar, M. M. M., Ritter, M., Del Fresno, C., Jonasdottir, H. S., van der Ham, A. J., Pelgrom, L. R., Schramm, G., Layland, L. E., Sancho, D., Prazeres da Costa, C., Giera, M., Yazdanbakhsh, M., and Everts, B. (2018) Dectin-1/2-induced autocrine PGE2 signaling licenses dendritic cells to prime Th2 responses. PLoS Biol. 16 (4), e2005504.
(23) Giera, M., Kaisar, M. M. M., Derks, R. J. E., Steenvoorde, E., Kruize, Y. C. M., Holke, C. H., Yazdanbakhsh, M., and Everts, B. (2018) The Schistosoma mansoni lipidome: Leads for immunomodulation. Anal. Chim. Acta 1037, 107–118.
(24) Adebayo, A. S., Mundhe, S. D., Awobode, H. O., Ounie, O. S., Agunu, A. M., Isokpehi, R. D., Shouche, Y. S., Santhakumar, B., and Anumudu, C. I. (2018) Metabolite profiling for biomarkers in...
Nil
(58) Metabolomics Society (accessed 2020-12-05) Databases, http://metabolomicsociety.org/resources/metabolomics-databases.

(59) Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., Wishart, D. S., and Xia, J. (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. *Nucleic Acids Res.* 46 (W1), W486–W494.

(60) Sud, M., Fahy, E., Cotter, D., Azam, K., Vadivelu, I., Burant, C., Edison, A., Fiehn, O., Higashi, R., Nair, K. S., Sumner, S., and Subramaniam, S. (2016) Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. *Nucleic Acids Res.* 44 (D1), D463–70.