Identification of somatic proteins in *Haemonchus contortus* infective larvae (L₃) and adults

M. ZARAGOZA-VERA¹, R. GONZÁLEZ-GARDUÑO², L. BRITO-ARGÁEZ⁴, A. J. AGUILAR-CABALLERO¹, C. V. ZARAGOZA-VERA¹, G. ARJONA-JIMÉNEZ³⁴, V. M. LOYOLA-VARGAS²⁴, V. AGUILAR-HERNÁNDEZ⁵*, O. M. TORRES-CHABLE³*,

¹Facultad de Medicina Veterinaria y Zootecnia, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Km. 15.5, Carretera Mérida-Xmatkuil, Apdo. postal 4-116, 97100 Mérida, Yucatán, México; ²Unidad Regional Universitaria Sursureste, Universidad Autónoma Chapingo, km 7.5 Carretera Teapa-Vicente Guerrero, Teapa, Tabasco, México; ³Laboratorio de Enfermedades Tropicales y Transmitidas por Vectores, División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México, ZC 86040, *E-mail: oswaldo.torres@ujat.mx; ⁴Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, México; ⁵Catedrático CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, México, *E-mail: victor.aguilar@cicy.mx

Article info
Received December 1, 2021
Accepted May 5, 2022

Summary
Haemonchus contortus is considered the most pathogenic nematode in sheep production systems based on grazing. Comparing infective larvae (L₃) with adult parasites can lead to the identification of proteins that play an important role in parasite-host interactions. In this study, we report a list of *H. contortus* somatic proteins and made a comparative analysis of somatic proteins of L₃ and adult worms. L₃ and adult parasites were subjected to protein extraction and subsequently to peptide fractionation. Peptides were analysed by mass spectrometry and LC-MS/MS data analysis. Data analysis and search on SEQUEST and MASCOT against *H. contortus* from the WormBase ParaSite database resulted in the identification of 775 unique peptide sequences corresponding to 227 proteins at 1 % FDR. From these, 18 proteins were specific to L₃ and 63 to adult parasites. The gene ontology (GO) enrichment analysis of the proteins specific to L₃ and adult worms to gain insight into cellular components, molecular functions and biological processes that affect the parasite-host interaction showed some differences between the two parasite stages. The list of proteins found provides a database to identify target proteins that could be useful as biomarkers of the infection or in the generation of anthelmintic drugs that inhibit proteins essential for the establishment of the infection and the survival of adult parasites. They can also serve as new candidates for vaccine research.
Keywords: Gastrointestinal parasites; biomarkers; ewes; tropical production

Introduction
Gastrointestinal (GI) parasites are one of the main causes of diseases, death and economic loss in small ruminant production. *Haemonchus contortus* has been considered the most pathogenic nematode in production systems based on grazing (Bordoloi et al., 2012; Arsenopoulos et al., 2021). Since anthelmintic resistance has been described in several species of parasites (Pandey and Sivaraj, 1994; De Albuquerque et al., 2017), new strategies to control the infections and their adverse effects have been developed. Among these, the selection of animals with resistance to GI parasites has been in the spotlight (Palomo-Couoh et al., 2017; Aguerrre et al., 2018; Estrada-Reyes et al., 2019; Zaragoza-Vera et al., 2019). Thus, the study of protein molecules (involved mainly in secretion-excretion) focused on the parasite-host interactions and the identification of targets to
elaborate new drugs or vaccines (Gadahi et al., 2016; Wang et al., 2019a). Some studies concerning the genome, transcriptome and secretome of *H. contortus* have been conducted (Yatsuda et al., 2003; Laing et al., 2013; Gadahi et al., 2016; Lu et al., 2020). The somatic proteins of *H. contortus* were recently reported in a study (Wang et al., 2019b), while, their biological implications and particular functions have been scarcely discussed. In this line, comparing infective larvae (L₃) with adult parasites can lead to the identification of proteins that play an important role in diverse parasite-host interactions, such as the biological mechanisms involved in the establishment of the infection and the survival of the parasite, evasion of the immune response, immunogenic protein recognition by the host, metabolic functions, and other interactions that could improve the understanding of this parasitic infection.

Proteomics studies have contributed to elucidate the role of somatic proteins in the modulation of cellular immune response against *H. contortus* (Laing et al., 2013; Gadahi et al., 2016; Naqvi et al., 2020; Tian et al., 2020). Somatic proteins such as HC23 and their recombinant version (rHC23), rHcp26/23 and recombinant galectin (rHco-gal-m and rHco-gal-f) have been used for inducing partial protection against of *H. contortus* infection (Yanming et al., 2007; García-Coiradas et al., 2010; González-Sánchez et al., 2018).

In the same way, a potential use of *H. contortus* somatic proteins could be to generate immunodiagnostic antigens to identify early and late *H. contortus* infections in sheep, similar to the reported in goats (Naqvi et al., 2020), or as an alternative method to identify specific antibodies of resistant sheep that contribute with the traditional method of faecal egg count (FEC) to identify resistant animals (Palomo-Couoh et al., 2016; Palomo-Couoh et al., 2017; Cruz-Tamayo et al., 2020).

In this study, we report a list of somatic proteins of *H. contortus* and a comparative analysis between somatic proteins from L₃ and adult parasites recovered from an infected lamb.

Materials and Methods

*Experimental infection with *H. contortus***

The infective larvae of *H. contortus* were initially obtained from a laboratory strain donated by the National Center of Disciplinary Investigation in Veterinary Parasitology (CENID-PANVET). This strain was used to infect a male Pelibuey lamb, raised free of GI parasites.

The infection was carried out when the lamb reached 2.5 months of age (11.1 kg live weight, LW). The infection was performed using an oral dose of 400 L₃/kg LW. L₃ were obtained from coprocultures made of faeces of the infected lamb and weekly collected starting at 21 days after infection, according to the Corticelli and Lai technique (1963).

On day 35 post-infection, faeces were collected to calculate FEC. Subsequently, the lamb was sacrificed following the official national standards (Norma Oficial Mexicana NOM-033-ZOO-1995) to collect adult parasites directly from the abomasum during the necropsy. Parasites were washed with phosphate buffer solution (PBS, 0.01 M, pH 7.4) to eliminate cellular detritus. Afterwards, parasites were frozen at -20 °C until use.

Parasitological evaluation of the experimentally infected lamb

Faecal samples were taken directly from the rectum of the lamb and collected in polyethylene bags. The faecal samples were processed by modifying the McMaster technique to determine FEC. The number of eggs per gram of faeces (EPG) was adjusted with a correction factor of 50 (Cringoli et al., 2004). Moreover, coprocultures were performed according to Corticelli and Lai (1963) to obtain *H. contortus* L₃ from the infected lamb. The infective larvae genus was determined according to Van Wyk and Mayhew (2013).

Protein extraction

The L₃ and adult parasites were pulverised to a fine powder with the mortar and pestle technique at liquid nitrogen temperature. Pulverised samples were resuspended in 500 µl of protein extraction buffer (500 mM Tri-HCl, pH 7.5, 100 mM KCl, 100 mM sucrose, 50 mM EDTA, 50 mM DTT, 1 mM PMSF and 1X complete Roche protease inhibitor cocktail). Proteins were recovered from the clarified homogenate by precipitation using a solution of TCA/acetone at 20 % cold at a volume proportion of 1:1 followed by two washes with 80 % acetone solution (Niu et al., 2018). Protein pellets were air-dried for 3 min and kept at -20 °C. Then, they were resuspended in 300 µl of 50 mM ammonium bicarbonate solution. Subsequently, the protein concentration was determined by the Peterson method using 10 µl of the extract and bovine serum albumin protein as reference (Peterson, 1977).

In-solution digestion and peptide fractionation

The protein content of 100 µg was reduced with 15 mM DTT for 1 h at 25 °C followed by alkylation with 30 mM iodoacetamide diithiothreitol for 1 h at 25 °C in darkness. Subsequently, protein samples were quenched with 30 mM DTT for 10 min at 25 °C in darkness. Trypsin Gold (Promega™, Madison, Wisconsin, USA) and stored at -70 °C. Mass of 30 mg sorbent HyperSep™ SCX cartridge (Thermo Fisher Scientific Inc, Waltham, Massachusetts, USA) was added at a ratio of 1:30 trypsin/protein (w/w). Afterwards, protein digestion was carried out for 16 h at 37 °C, and more trypsin was added at a ratio of 1:30 trypsin/protein (w/w). The samples were left to incubate for 4 h at 37 °C. Digestion was quenched by making samples with 1 % formic acid that were dried using a SpeedVac Concentrations (Thermo Fisher Scientific Inc, Waltham, Massachusetts, USA) and stored at -70 °C until fractionation of peptides using Strong Cation Exchange (SCX) chromatography. Peptides were resuspended in equilibration buffer consisting of 5 mM KH₂PO₄ (pH 3)/25% acetonitrile (ACN) for SCX fractionation using a 50 mg sorbent HyperSep™ SCX cartridge (Thermo Fisher Scientific Inc, Waltham, Massachusetts, USA). The SCX cartridge was conditioned with 2 ml milli-Q water, washed with 1 ml of 10 mM KH₂PO₄ (pH 3)/25% ACN and subsequently washed twice with 2 ml of milli-Q water. The cartridge was placed in equilibration buffer before sample loading. After three washes with 1 ml
of equilibration buffer, peptides were eluted in a stepwise gradient of increasing salt concentrations (75, 250 and 500 mM KCl) in equilibration buffer. Eluted peptide fractions were then dried in SpeedVac Vacuum Concentrations (Thermo Fisher Scientific Inc, Waltham, Massachusetts, USA). The resulting peptides were re-suspended in 1 ml of 0.1 % formic acid for desalting using 25 mg HyperSep C18 cartridges (Thermo Fisher Scientific Inc, Waltham, Massachusetts, USA). Eluted peptides were then desalted using Zip-Tip pipette tips (Millipore, Billerica, Massachusetts, USA). Desalted peptides were vacuum-dried and re-suspended in 0.1 % formic acid for liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis.

Mass spectrometry and LC-MS/MS data analysis
The desalted peptide samples were analysed in an LC-MS/MS system consisting of EASY-nLC 1000 nano-HPLC (Thermo Fisher Scientific Inc, Waltham, Massachusetts, USA) coupled to an LTQ-Orbitrap Elite mass spectrometer (Thermo Fisher Scientific Inc, Waltham, Massachusetts, USA). Chromatographic separation was performed using a reversed-phase Acclaim PepMap-100 trap column (20 x 0.075 mm i.d., 3 µm particle size, 100 Å pore size; Thermo Fisher Scientific Inc, Waltham, Massachusetts, USA) coupled to an EASY-Spray C18 analytical column (150 x 0.075 mm i.d., 2 µm particle size, 100 Å pore size; Thermo Fisher Scientific Inc, Waltham, Massachusetts, USA) at 40 °C with a flow of 300 nl min⁻¹, from 5 % to 40 % ACN in 0.1 % formic acid, in a 60 min gradient. The mass spectrometer in data-dependent acquisition mode and the Orbitrap™ analyser (Thermo Fisher Scientific Inc, Waltham, Massachusetts, USA) were used. Full scan MS spectra were acquired with a resolution of R = 12,000 followed by MS/MS acquisition with a resolution of R = 15,000. The 15 most intense precursor ions from the full scan were fragmented using higher-energy C-trap dissociation. Fragmented masses were excluded for 90 s. Three independent biological replicates were performed. Carbamidomethylation was used as fixed modification.

The mass spectrometry data files were processed using the Proteome Discoverer 2.2 software (Thermo Fisher Scientific Inc, Waltham, Massachusetts, USA), and protein identification was performed with the MASCOT search engine (Matrix Science™) and the SEQUEST™ software (Eng et al., 1994). A total of 24,642 amino acid sequences were retrieved from the WormBase ParaSite database (Laing et al., 2013) and used for spectra matching. The database search allowed static carbamidomethylated cysteine residues (+57.02 Da), dynamic oxidised methionine residues (+15.99 Da), up to two missed trypsin cleavages, a tolerance of 10 ppm for precursor ions and 0.6 Da for fragmented ions. The masses of both precursor and fragmented ions treated as monoisotopic and multiple charges were considered. The data were filtered using an estimation of 1 % false discovery rate (FDR) according to a previous study (Rohrbough et al., 2006). The determination of protein abundance was evaluated by spectral counts (Arike & Peil, 2014).

Ethical Approval and/or Informed Consent
This study was approved by the Ethical Committee of University State of Yucatan, Mexico (Approval ID: CB-CCBA-D-2019-004). The animal used in this study, biological samples and residues were treated and handled in accordance with federal regulations in Mexico (NOM-046-zoo-1995, NOM-087-ECOLSSA1-2002) and following the recommendations emitted by Ethical Committee.

Results
The lamb infected with *H. contortus* (L₃) presented an FEC of 7, 850 EPG at 35 days after inoculation. The necropsy revealed 634 adult specimens of *H. contortus* that were directly collected from the abomasum of the infected lamb and used for total protein extraction.

A comparative analysis between L₃ and adult worms was performed after protein identification. L₃ showed a protein profile different from the adult parasites. Data analysis and search on SEQUEST and MASCOT against *H. contortus* from the WormBase ParaSite database resulted in the identification of 775 unique peptide sequences corresponding to 227 proteins at 1 % FDR (Supplementary Table S1). From these, 18 proteins were specific to L₃ and 63 to adult parasites.

We performed gene ontology (GO) enrichment analysis of the proteins specific to L₃ and adult worms to gain insight into cellular components, molecular functions and biological processes that affect the parasite-host interaction. In the L₃ stage, the GO category of cellular components included the following: transcription complex, intracellular and extracellular region, intracellular organelle and non-membrane bound organelle (Fig. 1). The molecular functions category included binding (e.g., heterocyclic binding, organic cyclic compound binding, carbohydrate derivative binding) and catalytic activity (hydrolase, transferase and catalytic activity acting on a protein). The biological functions category included metabolic processes (primary and organic and nitrogen compound metabolic process) and protein folding.

In the adult worm stage, the GO category of cellular components included intracellular organelle, non-membrane bound organelle, the endomembrane system, the nuclear outer membrane-endo-plasmic reticulum membrane network, and protein complexes such as myosin complex, catalytic complex and proteasome core complex (Fig. 1). As for the molecular functions category, it included catalytic activity (transferase, hydrolase, lyase, oxidoreductase, and catalytic activity that acts on protein), binding (ion, organic cyclic, heterocyclic compound binding, carbohydrate derivative and drug binding), and structural constituents of the cytoskeleton and ribosome. The biological processes category included active metabolic processes linking organic substances, primary metabolic processes, nitrogen metabolic processes, oxidoreduction processes, and cellular processes such as microtubule-based processes and regulation of cellular processes. The comparison between the
GO categories of adult worms and L3 suggests that the adult stage implicates an array of enzymatic activities, structural changes and degradation of proteins.

To identify significant differences in protein abundance between L3 and adult parasites, the altered proteins were defined with spectral counts that were normalised across L3 and adult parasites by calculating Z-score values for each protein and with a significance level of \(p < 0.001 \). As result, 52 from the 219 proteins showed different abundance between L3 and adult parasites (Fig. 2). Proteins accumulated in adults include vitellogenin (CDJ88321.1), proteases (AAC03561.1, CDJ97529.1, CDJ87267.1 and AAV68383.1), ubiquitination component (CDJ87593.1), heat shock proteins such as HSP20 (CDJ94402.1), HSP70 (AEO14648.1 and CDJ90614.1) and HSP90 (ACU00668.1), key metabolic proteins such as phosphoenolpyruvate carboxykinase (CDJ86804.1), isocitrate lyase, phosphoril mutase and malate synthase (CDJ95172.1), 6-phosphogluconate dehydrogenase (CDJ88445.1), glutamate dehydrogenase (ACT34055.1), acetyl-CoA hydrolase transferase (CDJ95142.1), thioredoxin, and structural proteins such as actin (CDJ93106.1) and myosin (CDJ95284.1). Collectively, the above-identified proteins suggest that scavenging of reactive oxygen species (ROS), protein folding and degradation, and metabolic changes are implicated in the parasite-host interaction.

Discussion

The immune response against GI parasites is considered the main factor associated with the resistance level of the sheep (Aguerre et al., 2018; Estrada-Reyes et al., 2019). This response is toward different parasite proteins, either secretory-excretory products or structural compounds (Gadahi et al., 2016; Sakthivel et al., 2018; Lu et al., 2020). The secretory-excretory products have been widely studied due to functions such as tissue penetration and their capability to degrade host proteins (Cox et al., 1990; Yatsuda et al., 2003; Wang et al., 2019a). Moreover, some secretory-excretory products also establish the infection because they regulate the
Fig. 2. Heat map of spectral counts for 52 differential accumulated proteins. Sequest and mascot searches with a 1% protein FRD and P-value of 0.001 for Z-score are reported.

Immune response of the host, facilitating the immune evasion of the parasite that induces chronicity related to a T cell-mediated hyporesponsiveness (Lu et al., 2020). Somatic proteins also play an important role in the immune response against GI nematodes due to which some of them have been evaluated as vaccine candidates (Sakthivel et al., 2018; Wang et al., 2019b). Thus, a study reported that proteins such as rHcp26/23 have a protective effect only with challenges against low and moderate parasite burden (García-Coiradas et al., 2010).

The immunization of lambs using the recombinant protein rHc23 produced low of egg excretion and low parasites burden (González-Sánchez et al., 2019). However, highest protection of lambs was achieved using aluminum hydroxide as adjuvant and 200 μg/dose rHc23 reaching a reduction of over 70% of the abomasal parasitic burden (González-Sánchez et al., 2019). The recombinant protein rHc23 (23 kDa) was patented for induce more than 85% of immunity in lambs (Alunda et al., 2014). However, the efficacy of the immunization in lambs seems to depend of the parasite burden used as challenge or by the use of adjuvants (Fawzi et al., 2014; González-Sánchez et al., 2018, 2019). In other study, recombinant HcGAPDH protein expressed on probiotic Bacillus subtilis spores protected sheep from Haemonchus contortus infection by inducing both humoral and cellular responses which reduced the eggs excretion in feces by 84.1% and adult worms by 71.5% (Yang et al., 2020). Other somatic protein of H. contortus used as vaccine antigen is actin although the parasite burdens were reduced only 34% in vaccinated animals (Yan et al., 2014). The HcGAPDH and actin were found in protein extracts from L3 and adult parasites in present study.

On the other hand, it is known that gut antigens of H. contortus (H-gal-GP) inoculated in lambs induce an immune response mediated by CD4 and T lymphocytes, reducing the FEC in the infected
animals (Karanu et al., 1997). The main components of H-gal-GP are metalloproteases and pepsinogen-like aspartyl proteinases that H. contortus use to digest the ingested blood (Scarff et al., 2020). H-gal-GP and gut-derived antigens H11 (aminopeptidases) were antigens with good vaccination response against H. contortus and therefore, they were used in the commercial Barbervax™ vaccine (Nisbet et al., 2016). Despite its effectiveness, the vaccine has disadvantages such as the lack of the global availability of the product; repeated vaccination is required to stimulate high amount of antigen-specific circulating antibody levels and special management of peri-parturient ewes and young lambs are limiting of the vaccine (Nisbet et al., 2016; Bassetto et al., 2018; Kebeta et al., 2021). A vaccine targeting multiple stages of H. contortus (L₃, surface antigens and gut antigens of L₄ and adult stages) has been proposed (Nisbet et al., 2016) and likely, the integration with recombinant proteins such as 15- and 24-kDa ES proteins, galec- tins, Hc 23, enolase and cysteine could improve the protective immu- nity inclusive in young lambs, peri-parturient ewes or in animals with infections with high parasite burdens.

Somatic proteins of H. contortus have also been used as somatic antigens for immunodiagnosis of the infection (Javare, 2017). The recombinant H. contortus adhesion-regulating molecule protein (rHCADRM) was evaluated as potential antigen for diagnosis of early infection in goats. The results showed that rHCADRM can be recognized in the serum as early as 14 post-infection days and antibodies were maintained for over 89 days. The ELISA test developed using this recombinant protein obtained a sensi- tive (90.6 %) and specific (93.75 %), no showing cross-reaction with other common parasites, which places it as an important antigen for diagnosis of H. contortus infection in goats. Similarly, recombinant cold shock domain containing protein (rHc-CS) was evaluated by immunoblotting and ELISA assays during early and late infections of H. contortus in goats. Results showing specific antibodies from 14 days to 103 post-infection days and specificity and sensibility values of 100 % in both techniques (Naqvi et al., 2020b). However, the use of these recombinants proteins should be validated in sheep.

In our study, a long list of proteins and their differences between the L₄ and adult stages are presented. We focused our attention on L₄ and adult parasites that live in mammalian hosts. Both the L₄ and adult stages utilise catabolic proteins especially in degradation of haemoglobin, meaning that several of these proteins should be present in these parasitic stages (Wang et al., 2019b). In the present study, peptidase S28, putative zinc metallopeptidase pre- cursor, peptidase C1A, peptidase M13 and proteinase inhibitor I25 were present only in the adult stage, whereas proteinase inhibi- tor I33, aminopeptidase, ubiquitin conjugation factor E4, gelso- lin, calpain clp-1, peptidase M16 and peptidase M12A were present only in the L₄ stage. These findings show that the catabolism of proteins is carried out using different enzymes according to the developmental stage.

Differences in proteins involved in the metabolism of carbo-hydrates and lipids were found in L₄ and adult parasites, in line with the report by Wang et al. (2019b). In the present study, en- zymes involved in the catalysis of ATP, such as adenyl-sulfate kinase, ATP-sulfurylase domain-containing protein, Fructose-1 domain-containing protein and ATP synthase subunit delta, were not found in the L₄ stage. However, it is known that L₄ stage syn- thetizes glycogen from lipids and them are able to degrade carbo-hydrates via Krebs cycle (Harder, 2016). Therefore, many of the enzymes involved in glycolysis are not present in this stage, as shown in this study.

Controversial findings were observed in the case of enzymes in- volved in lipid metabolism. Acetyl-CoA hydrolase, acyl-CoA-bind- ing protein and crotonase domain-containing protein were found only in L₄. Similar results were previously found in the L₄ stage of H. contortus (Wang et al., 2019b). Therefore, the assumption of Wang et al. (2018), arguing that H. contortus alters its lipidome by adapting metabolism to take advantage of the fatty acids in the blood of the host, seems to be true. Additionally, the protein dhs-3 involved in several lipid functions, such as storage and transpor- tation, metabolic regulation and serving as a source of membrane lipid precursors through cellular organelles named “lipid droplets” (organelles constituted by a neutral lipid core covered by a mon- layer of phospholipids and proteins), were exclusively found in L₄, suggesting that lipid metabolism has different routes in L₄ and adult parasites (Xie et al., 2019). Similarly, thiolase, an enzyme catalysing acetyl-CoA, was present only in the larval stage, in agreement with the peaks of the transcriptional levels of its en- coding gene Hc-daf-22 in H. contortus L₃ and L₄, suggesting an important role in these larval stages (Guo et al., 2016).

Other proteins found exclusively in L₄ in this study were vinculin, alpha-catenin, calsequestrin, proteinase inhibitor I33, macrophage migration inhibitory factor, catalase, galec- tin and calponin. These proteins seem to have an important role in the structure and mo-tility of the parasite. Vinculin and alpha-catenin form a complex of proteins named cadherins that contribute to cellular adhesion and contractibility, both proteins are important in the motility of the parasite (Dufour et al., 2013). The presence of calsequestrin and calponin, involved in Ca²⁺ regulation and highly related to myosin and actin in the tissue contraction (El-Mezgueldi, 1996; Wang & Michalak, 2020), reinforces this assumption.

The regulation of the initial immune response in the host seems to be directed by L₄ and L₃ stages of H. contortus and several struc- tural proteins are involved in this process. Proteinase inhibitor I33 inhibits trypsin and anti-coagulation of blood, favouring in this way the feeding and the survival of L₄ (Yi et al., 2010). The macrophage migration inhibitory factor is a cytokine that regulates the inflam- matory response (Lang et al., 2018). Similarly, galecin modulates host-pathogen interactions (Sakhivel et al., 2018). Its functions involve modulating the production of Th2 and Th9 cells, IL-4, IL-9, blood mononuclear cell proliferation, nitric oxide and cell migration in the host (Naqvi et al., 2020).

Catalase is an enzyme with antioxidant effects, used by H. con-
As a defence against hydrogen peroxide and other oxygen reactive species produced by phagocytes (e.g., macrophages, eosinophils and neutrophils) of the host (Kotze, 2003). Notably, in our study, catalase was only present in L₃ but not in the adult stage. Although catalase effects were previously studied in the larval and adult stages of *Haemonchus contortus* (Kotze & McClure, 2001; Kotze, 2003), this effect was indirectly measured by monitoring the disappearance of hydrogen peroxide after the addition of glucose oxidase in cultures of *L₃* and adult *H. contortus*. Therefore, in these studies, the presence of catalase in both parasitic stages was assumed but not directly determined.

In general, our findings show that protein abundance was high in adult parasites. However, most proteins identified in both stages involved the categories of catalytic activity, binding, metabolic and cellular processes.

Some proteins found in the present study were not found in previous reports of the *H. contortus* proteome (C05D9.9, isoform b, T10G3.3, C29F5.1, dhs-3, DUF148 domain-containing protein, Y48B6A.5 and p15). Moreover, the functions of the unnamed protein products such as VDO47405.1, CDJ93528.1 and H. contortus proteome (C05D9.9, isoform b) were elucidated in future research to contribute to identifying them.

In the present study, specific proteins of the L₃ and adult stages were identified and compared with the purpose of understanding the biological processes involved in the establishment of infection and the role of somatic proteins in the survival of the parasite. The list of proteins provides a database that can be used to identify target proteins that may serve as biomarkers of the infection, to generate anthelmintic drugs that inhibit proteins essential for the establishment of the infection and the survival of adult parasites, or to introduce new candidates for vaccine research. Future studies should be performed to discover the functions of unknown proteins of *H. contortus* until today, as well as to unravel the recognition and specific role of somatic proteins in the immunological responses generated in the infected sheep.

Conflict of Interest

The authors declare no conflicts of interest.

Acknowledgements

The authors thank the staff of Laboratorio de Enfermedades Tropicales y Transmitadas por Vectores DACUA-UJAT, for their support in field and laboratory work.

References

Aguerre, S., Jacquet, P., Brodier, H., Bournazel, J.P., Grisez, C., Prevot, F., Michot, L., Fidelle, F., Astruc, J.M., Moreno, C.R. (2018): Resistance to gastrointestinal nematodes in dairy sheep: Genetic variability and relevance of artificial infection of nucleus *tortus* as a defence against hydrogen peroxide and other oxygen reactive species produced by phagocytes (e.g., macrophages, eosinophils and neutrophils) of the host (Kotze, 2003).

Alunda, R.J.M., Cuquerella, A.M., Mohamed, F.E. (2014): Protein recombinante de *Haemonchus contortus* y su aplicación para la producción de una vacuna frente a la hemoncosis [Recombinant protein of *Haemonchus contortus* and use thereof for the production of a vaccine against haemonchosis]. Oficina Española Depar- tementos y Marcas N° 201200865 (In Spanish)

Arke, L., Pel, L. (2014): Spectral counting label-free proteomics. In: Martins-de-Souza, D. (Ed) Shotgun Proteomics. Methods in Molecular Biology (Methods and Protocols). Volume 1156. Humana Press, New York, NY, pp. 213 – 222. DOI:10.1007/978-1-4939-0685-7_14

Arsenopoulos, K.V., Fthenakis, G.C., Katsarou, E.I., Papadopoulos, E. (2021): Haemonchosis: A challenging parasitic infection of sheep and goats. Animals, 11(2): 363. DOI: 10.3390/ani11020363

Bassetto, C.C., Almeida, F.A., Newlands, G.F.J., Smith, W.D., Castilhos, A.M., Fernandes, S., Siqueira, E.R., Amarante, A.F.T. (2018): Trials with the *Haemonchus* vaccine, Barverbax®, in ewes and lambs in a tropical environment: Nutrient supplementation improves protection in periparturient ewes. Vet Parasitol, 264: 52 – 57. DOI: 10.1016/j.vetpar.2018.11.006

Bordoloi, G., Jas, R., Ghosh, J.D. (2012): Changes in the haematobiochemical pattern due to experimentally induced haemonchosis in Sahabadi sheep. J Parasit Dis, 36: 101 – 105. DOI: 10.1007/s12639-011-0079-7

Corticelli, B., Lai, M. (1963): Studies on the technique of culture of infective larvae of gastrointestinal strongyles of cattle. *Acta Med Vet (Napoli)*, 9: 347 – 357

Cox, G.N., Pratt, D., Hageman, R., Boisvénue, R.J. (1990): Molecular cloning and primary sequence of a cysteine protease expressed by *Haemonchus contortus* adult worms * Mol Biochem Parasitol*, 41: 25 – 34. DOI: 10.1016/0166-6851(90)90093-2

Cringoli, G., Rinaldi, L., Veneziano, V., Capelli, G., Scala, A. (2004): The influence of flotation solution, sample dilution and the choice of McMaster slide area (volume) on the reliability of the McMaster technique in estimating the faecal egg counts of gastrointestinal strongyles and *Dicrocoelium dendriticum* in sheep. *Vet Parasitol*, 123: 121 – 131. DOI: 10.1016/j.vetpar.2004.05.021

Cruz-Tamayo, A., Garduño, R., Torres-Hernández, G., Becerril Pérez, C.M., Hernández-Mendo, O., Ramírez-Bribiesca, J.E., López-Arellano, M., Vargas-Magána, J., Ojeda-Robertos, N. (2020): Comparison of two phenotypical methods to segregate resistant and susceptible lambs to parasitic nematodes *Austral J Vet Sci*, 52 (1): 9 – 18. DOI: 10.4067/S0719-8132202000100103

De Albuquerque, A.C.A., Bassetto, C.C., De Almeida, F.A. Amarante, A.F.T. (2017): Development of *Haemonchus contortus* resistance in sheep under suppressive or targeted selective treatment with monepantel. *Vet Parasitol*, 246: 112 – 117. DOI: 10.1016/j.vetpar.2017.09.010

DuFour, S., Mege, R.M., Thiery, J.P. (2013): α-catenin, vinculin, and F-actin in strengthening E-cadherin cell-cell adhesions and...
mechanosensing. Cell Adh Migr, 7 (4): 345 – 350. DOI: 10.4161/cam.25139

EL-MEZQUELDI, M. (1996): Calponin. Int J Biochem Cell Biol, 28: 1185 – 1189. DOI: 10.1016/S1357-2725(96)00085-4

ENG, J.K., MCCORMACK, A.L., YATES, J.R. (1994): An approach to correlate tandem mass spectral data of peptides with protein amino acid sequences in a protein database. J Am Soc Mass Spectrom, 5: 976 – 989. DOI: 10.1016/1044-0305(94)80162-9

ESTRADA-REYES, Z.M., TSUKAHARA, Y., AMADEU, R.R., GOETSCH, A.L., GIPSON, T.A., SAHU, T., PUCHALA, R., WANG, Z., HART, S.P., MATEESCU, R.G. (2019): Signatures of selection for resistance to Haemonchus contortus in sheep and goats. BMC Genomics, 20: 735. DOI: 10.1186/s12864-019-6150-y

GADAH, J.A., WANG, S., BO, G., EHSAN, M., YAN, R., SONG, X., XI, L., LI, X. (2016): Proteomic analysis of the excretory and secretory proteins of Haemonchus contortus (HcESP) binding to goat PBMCs in vivo revealed stage-specific binding profiles. PLoS One, 11: e0159796 – e0159796. DOI: 10.1371/journal.pone.0159796

GARCIA-CORRADAS, L., ANGULO-CUBILLEN, F., VALLADARES, B., MARTINEZ, E., DE LA FUENTE, C., ALUNDA, J.M., CUQUERELLA, M. (2010): Immunization against lamb haemonchosis with a recombinant somatic antigen of Haemonchus contortus (Hcp26/23). Vet Med Int, Article ID 852146, 8 pages. DOI: 10.4061/2010/852146

GONZALEZ-SANCHEZ, M.E., CUQUERELLA, M., ALUNDA, J.M. (2018): Vaccination of lambs against Haemonchus contortus with the recombinant Hc23. Effect of adjuvant and antigen dose. PLoS ONE, 13(3): e0193118. DOI: 10.1371/journal.pone.0193118

GONZALEZ-SANCHEZ, M.E., NDOMBASI-BOKUY, M., CUQUERELLA, M., ALUNDA, J.M. (2019): Immunization with recombinant Hc23 partially protects lambs against tickle infections by Haemonchus contortus. BMC Vet Res, 15(1): 333. DOI: 10.1186/s12917-019-2084-5

GUO, X., ZHANG, H., ZHENG, X., ZHOU, Q., YANG, Y., CHEN, X., DU, A. (2016): Structural and functional characterization of a novel gene, Hc-daf-22, from the strongyloid nematode Haemonchus contortus. Parasit Vectors, 9: 422. DOI: 10.1186/s13071-016-1704-1

HARDER, A. (2016): The Biochemistry of Haemonchus contortus and other parasitic nematodes. Adv Parasitol, 93: 69 – 94. DOI: 10.1016/bs.apar.2016.02.010

JAVARE, G.A.K. (2017): Immunodiagnosis of Haemonchus contortus infection in sheep by counter immuno-electrophoresis using somatic antigen. J Parasit Dis, 41(2): 352 – 355. DOI: 10.1007/s12639-016-0801-6

KARANU, F., McGUIRE, T., DAVIS, W.C., BESSER, T., JASMER, D. (1997): CD4+ T lymphocytes contribute to protective immunity induced in sheep and goats by Haemonchus contortus gut antigens. Parasite Immunol, 19: 435 – 445. DOI: 10.1046/j.1365-3024.1997.d01-149.x

KEBETA, M.M., HINE, B.C., WALDKEN-BROWN, S.W., KAHN, L.P., DOYLE, E.K. (2021): Protective efficacy of Barbervax® in Merino weaner sheep trickle infected with five doses of Haemonchus contortus infective larvae. Vet Parasitol, 292: 109386. DOI: 10.1016/j.vetpar.2021.109386

KOTZE, A. (2003): Catalase induction protects Haemonchus contortus against hydrogen peroxide in vitro. Int J Parasitol, 33: 393 – 400. DOI: 10.1016/s0020-7519(03)00012-2

KOTZE, A.C., MCLURE, S.J. (2001): Haemonchus contortus utilizes catalase in defence against exogenous hydrogen peroxide in vitro. Int J Parasitol, 31: 1563 – 1571. DOI: 10.1016/S0020-7519(01)00303-4

LANG, R., KIKUCHI, T., MARTINELLI, A., TSAI, I.J., BEECH, R.N., REDMAN, E., HOLROYD, N., BARTLEY, D.J., BEASLEY, H., BRITTON, C., CURRAN, D., DEVANEY, E., GILBERT, A., HUNT, M., JACKSON, F., JOHNSTON, S.L., KRYUKOV, I., LI, K., MORRISON, A.A., REID, A.J., SARGISON, N., SANDERS, G.I., WASKMUTH, J.D., WOLSTENHOLME, A., BERRIMAN, M., GILLEARD, J.S., COTTON, J.A. (2013): The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol, 14: R88. DOI: 10.1186/gb-2013-14-8-r88

LANG, T., LEE, J.W., ELGASS, K., PINAR, A.A., TATE, M.D., AITKEN, E.H., FAN, H., CREED, S.J., DEEN, N.S., TRAORE, D.A.K., MUELLER, I., STANISIC, D., BAIWOG, F.S., SKENE, C., WILCE, M.C.J., MANSELL, A., MORAND, E.F., HARRIS, J. (2018): Macrophage migration inhibitory factor is required for NLRP3 inflammasome activation. Nat Commun, 9: 2223. DOI: 10.1038/s41467-018-04581-2

LIU, M., TIAN, X., YANG, Z., WANG, W., TIAN, A.-L., LI, C., YAN, R., XI, L., SONG, X., LI, X. (2020): Proteomic analysis revealed T cell hyporesponsiveness induced by Haemonchus contortus excretory and secretory proteins. Vet Res, 51: 65. DOI: 10.1186/s13567-020-00790-0

NAOVI, M.A., AIMULAJIANG, K., MEMON, M.A., HASAN, M.W., NAOVI, S.Z., LAKHO, S.A., CHU, W., XI, L., SONG, X., LI, X., AND YAN, R. (2020b): Recombinant cold shock domain containing protein is a potential antigen to detect specific antibody during early and late infections of Haemonchus contortus in goat. BMC Vet Res, 16(1): 36. DOI: 10.1186/s12917-020-2261-6

NAOVI, M.A., MEMON, M.A., JAMI, T., NAOVI, S.Z., AIMULAJIANG, K., GADAH, J.A., XI, L., SONG, X., LI, X., YAN, R. (2020): Galectin domain containing protein from Haemonchus contortus modulates the immune functions of goat PBMCs and regulates CD4+ T-Helper cells in vitro. Biomolecules, 10: 116. DOI: 10.3390/biom1001116

NISBET, A.J., MEEUSEN, E.N., GONZALEZ, J.F., PEDRAFITA, D.M. (2016): Chapter Eight - Immunity to Haemonchus contortus and vaccine development. In: GASSER, R.B., VON SAMSON-HIMMELSTJERNA, G. (Eds) Haemonchus contortus and Haemonchosis – Past, Present and Future Trends, (Academic Press). Adv Parasitol, 93: 353 – 396. DOI: 10.1016/bs.apar.2016.02.011

NIU, L., ZHANG, H., WU, Z., WANG, Y., LIU, H., WU, X., WANG, W. (2018): Modified TCA/acetone precipitation of plant proteins for proteomic analysis. PLoS One, 13: e0202238 – e0202238. DOI: 10.1371/journal.pone.0202238

PALOMO-COUICH, J.G., AGULAR-CABALLERO, A.J., TORMES-ACOSTA, J.F.J., GONZALEZ-GARDUNO, R. (2017): Comparing the phenotypic susceptibility of Pelibuey and Katahdin female lambs against natural gastrointestinal nematode infections under hot humid tropical conditions. Parasitol Res, 116: 1627 – 1636. DOI: 10.1007/
Supplementary Table S1. The full list of somatic proteins found in L3 and adults of *Haemonchus contortus* is available online at https://doi.org/10.2478/helm-2022-0017.