CIRCLE-VALUED MORSE THEORY FOR FRAME SPUN KNOTS AND SURFACE-LINKS

HISAAKI ENDO AND ANDREI PAJITNOV

ABSTRACT. Let $N^k \subset S^{k+2}$ be a closed oriented submanifold, denote its complement by $C(N) = S^{k+2} \setminus N$. Denote by $\xi \in H^1(C(N))$ the class dual to N. The Morse-Novikov number of $C(N)$ is by definition the minimal possible number of critical points of a regular Morse map $C(N) \to S^1$ belonging to ξ. In the first part of this paper we study the case when N is the twist frame spun knot associated to an m-knot K. We obtain a formula which relates the Morse-Novikov numbers of N and K and generalizes the classical results of D. Roseman and E.C. Zeeman about fibrations of spun knots. In the second part we apply the obtained results to the computation of Morse-Novikov numbers of surface-links in 4-sphere.

CONTENTS

1. Introduction 1
2. Twist frame spun knots 3
3. Rotation 5
4. Surface-links 9
5. Acknowledgements 12
References 12

1. Introduction

1.1. Overview of the article. Let $N^k \subset S^{k+2}$ be a closed oriented submanifold, let $C(N) = S^{k+2} \setminus N$ be its complement. The orientation of N determines a cohomology class $\xi \in H^1(C(N)) \cong [C(N), S^1]$. We say that N is fibred if there is a Morse map $f : C(N) \to S^1$ homotopic to ξ which is regular nearby N (see Def [1.1]) and has no critical points. In general a Morse map $C(N) \to S^1$ has some critical points, the minimal number of these critical points will be called the Morse-Novikov number of N and denoted $\text{MN}(C(N))$.

In the first part of this paper we study this invariant in relation with constructions of spinning. The classical Artin’s spinning construction [2] associates to each knot $K \subset S^3$ a 2-knot $S(K) \subset S^4$. A twisted version of this construction is due to E.C. Zeeman [14]. In [12] D. Roseman introduced a frame spinning construction, and G. Friedman [4] gave a twisted version of generalized Roseman’s construction to include twisting.

The input data for twist frame spinning construction is:

(TFS1) A closed manifold $M^k \subset S^{m+k}$ with trivial (and framed) normal bundle.

2010 Mathematics Subject Classification. 57Q45, 57R35, 57R70, 57R45.
Key words and phrases. surface-link, Morse-Novikov number, twist framed spun knots.
An m-knot $K^m \subset S^{m+2}$.

A smooth map $\lambda : M \to S^1$.

To these data one associates an n-knot $\sigma(M, K, \lambda)$, where $n = k + m$ (see Section 2). We prove in Section 2 the following formula:

$$\mathcal{MN}(C(\sigma(M, K, \lambda))) \leq \mathcal{MN}(C(K)) \cdot \mathcal{MN}(M, [\lambda])$$

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(1)
Definition 1.2. The minimal number \(m(f) \) where \(f : C(N) \to S^1 \) is a regular Morse map is called the Morse-Novikov number of \(N \) and denoted by \(\mathcal{MN}(C(N)) \).

To obtain lower bounds for numbers \(m_p(f) \) one uses the Novikov homology. Let \(L = \mathbb{Z}[t, t^{-1}] \); denote by \(\hat{L} = \mathbb{Z}((t)) \) and \(\hat{L}_\mathbb{Q} = \mathbb{Q}((t)) \) the rings of all series in one variable \(t \) with integer (respectively rational) coefficients and finite negative part. Recall that \(\hat{L} \) is a PID, and \(\hat{L}_\mathbb{Q} \) is a field. Consider the infinite cyclic covering \(\hat{C}(N) \to C(N) \); the Novikov homology of \(C(N) \) is defined as follows:

\[
\hat{H}_*(C(N)) = H_*(\hat{C}(N)) \otimes \hat{L}.
\]

The rank and torsion number of the \(\hat{L} \)-module \(\hat{H}_*(C(N)) \) will be denoted by \(\hat{b}_k(C(N)) \), respectively \(\hat{q}_k(C(N)) \). For any regular Morse function \(f \) there is a Novikov complex \(\mathcal{N}_*(f, v) \) over \(\hat{L} \) generated in degree \(k \) by critical points of \(f \) of index \(k \) and such that \(H_*(\mathcal{N}_*(f, v)) \approx \hat{H}_*(C(N)) \). Therefore we have the Novikov inequalities

\[
\sum_k \left(\hat{b}_k(C(N)) + \hat{q}_k(C(N)) + \hat{q}_{k-1}(C(N)) \right) \leq \mathcal{MN}(C(N)).
\]

These inequalities, which are far from being exact in general, are however very useful in particular in the case of surface-links (see Section 4).

2. Twist frame spun knots

We start with a recollection of the twist frame spinning construction following \([12], [5], [4]\). See the input data (TFS1) – (TFS3) for this construction on the page 1. Let \(a \in K \). Removing a small open disk \(D(a) \) from \(S^{m+2} \) we obtain an embedded (knotted) disk \(K_0 \) in the disk \(D^{m+2} \approx S^{m+2} \setminus D(a) \). We identify \(D^{m+2} \) with the standard Euclidean disk of radius 1 and center 0 in \(\mathbb{R}^{m+2} \). We have the usual diffeomorphism

\[
\chi : S^{m+1} \times [0, 1[\to D^{m+2} \setminus \{0\}, \quad (x, t) \to tx.
\]

We can assume that \(K_0 \cap \partial D^{m+2} \) is the standard sphere \(S^{m-1} \) in \(\partial D^{m+2} = S^{m+1} \). Moreover, we can assume that the intersection of \(K_0 \) with a neighbourhood of \(\partial D^{m+2} \) is also standard, that is,

\[
K_0 \cap \chi(S^{m+1} \times [1 - \epsilon, 1]) = \chi(S^{m-1} \times [1 - \epsilon, 1]).
\]

We have a framing of \(M \) in \(S^n \); combining this with the standard framing of \(S^n \) in \(S^{n+2} \) we obtain a diffeomorphism

\[
\Phi : N(M, S^{n+2}) \to M \times D^m \times D^2
\]

where \(N(M, S^{n+2}) \) is a regular neighbourhood of \(M \) in \(S^{n+2} \). We can assume that the restriction of \(\Phi \) to \(N(M, S^n) \) gives a diffeomorphism

\[
\Phi : N(M, S^n) \to M \times D^m \times \{0\},
\]

induced by the given framing of \(M \). The Euclidean disc \(D^{m+2} \) is a subset of \(D^m \times D^2 \), so that \(K_0 \subset D^m \times D^2 \).

For \(\theta \in S^1 \) denote by \(R_\theta \) the rotation of \(D^2 \) around its center. The disc \(D^{m+2} \subset D^m \times D^2 \) is invariant with respect to this rotation as well as the intersection
of K_0 with a small neighbourhood of ∂D^{m+2}. We have $\Phi(S^n \cap N(M, S^{n+2})) = M \times D^m \times \{0\}$. Let

$$Z = \{(x, y, z) \mid (y, z) \in R_{\lambda(x)}(K_0)\}.$$

This is an m-dimensional submanifold of $M \times D^m \times D^2$. We define $\sigma(M, K, \lambda)$ as follows

$$\sigma(M, K, \lambda) = \left(S^{n+2} \setminus N(M, S^{n+2})\right) \cup \Phi^{-1}(Z).$$

This is the image of an embedded n-sphere, knotted in general.

Examples and particular cases.

1) Let $\dim M = 0$, so that M is a finite set; denote by p its cardinality. Then the n-knot $\sigma(M, K, \lambda)$ is equivalent to the connected sum of p copies of K.

2) If M is the equatorial circle of the sphere S^2, which is in turn considered as an equatorial sphere of S^4, and $\lambda(x) = 1$, we obtain the classical Artin’s construction. If $\lambda : S^1 \to S^1$ is a map of degree d, we obtain the Zeeman’s twist-spinning construction [13].

3) If $\lambda(x) = 1$ for all $x \in M$ we obtain the Roseman’s construction of spinning around the manifold M [12]. In this case we will denote $\sigma(M, K, \lambda)$ by $\sigma(M, K)$.

Theorem 2.1.

$$\mathcal{MN}(\sigma(M, K, \lambda)) \leq \mathcal{MN}(K) \cdot \mathcal{MN}(M, [\lambda]).$$

(where $[\lambda] \in H^1(M, \mathbb{Z}) \approx [M, S^1]$ is the homotopy class of λ).

Proof. We will be using the terminology from the above construction of $\sigma(M, K, \lambda)$. We have the standard fibration

$$\psi_0 : S^{n+2} \setminus S^n \to S^1$$

obtained from the canonical framing of S^n in S^{n+2}. Observe that the map $\alpha = \psi_0 \circ \Phi^{-1}$ is defined by the following formula

$$\alpha(x, y, z) = \frac{z}{|z|}.$$

Let $f : S^{m+2}, K \to S^1$ be a Morse map. The restriction of f to the subset D^{m+2}, K_0 will be denoted by the same letter f. We can assume that the function f equals α in a neighbourhood of $\partial D^{m+2} = S^{m+1}$. In particular in a neighbourhood of ∂D^{m+2} we have

$$f(R_0(p)) = f(p) + \theta, \quad \text{for } p \in S^{m+1} \setminus K_0.$$

Define a function g on $M \times D^{m+2} \setminus Z$ by the following formula:

$$g(x, \xi) = f(R_{-\lambda(x)}(\xi)) + \lambda(x),$$

(where $x \in M$, $\xi \in D^{m+2}$). Define a function ψ on the complement $S^{n+2} \setminus \sigma$ by the following formula:

1) If $p \notin N(M, S^{n+2})$, then $\psi(p) = \psi_0(p)$.

2) If $p \in N(M, S^{n+2})$, then $\psi(p) = g(\Phi^{-1}(p))$.

We will now prove that if λ is a Morse map (this can be achieved by a small perturbation of λ), then ψ is also a Morse map, and the number $m(\psi)$ of its critical points satisfy

$$m(\psi) = m(\lambda) \cdot m(f).$$
All the critical points of ψ are in $N(M, S^{n+2})$. In this domain the function ψ is diffeomorphic to g, and the count of critical points of g is easily achieved with the help of the next lemma.

Lemma 2.2. Let $g_1 : N_1 \to S^1$, $g_2 : N_2 \to S^1$ be Morse functions on manifolds N_1, N_2. Let $F : N_1 \times N_2 \to N_2$ be a map, such that for each $a \in N_2$ the map $x \mapsto F(a, x)$ is a diffeomorphism $N_2 \to N_2$. Define a function $g : N_1 \times N_2 \to S^1$ by the following formula:

$$g(x_1, x_2) = g_1(x_1) + g_2(F(x_1, x_2)).$$

Then g is a Morse function, $\text{Crit}(g) = \text{Crit}(g_1) \times \text{Crit}(g_2)$ and for every $a_1 \in \text{Crit}(g_1)$, $a_2 \in \text{Crit}(g_2)$ we have $\text{ind}(a_1, a_2) = \text{ind}(a_1) + \text{ind}(a_2)$.

Proof. Define a function g_0 on $N_1 \times N_2$ by the following formula

$$g_0(x_1, x_2) = g_1(x_1) + g_2(x_2).$$

The conclusions of our Lemma hold obviously if we replace g by g_0 in the statement of the Lemma. Observe now that the function g is diffeomorphic to g_0 via the diffeomorphism

$$(x_1, x_2) \mapsto (x_1, F(x_1, x_2)).$$

The lemma follows. \hfill \Box

Corollary 2.3. Let $K \subset S^3$ be a classical knot, denote by $S(K)$ the spun knot of K. Then

$$\mathcal{MN}(S(K)) \leq 2\mathcal{MN}(K)$$

Proof. In this case $M = S^1$ and $|\lambda| = 0$. We have $\mathcal{MN}(S^1, 0) = 2$ and the result follows. \hfill \Box

The classical theorems concerning fibrations of spun knots follow from Theorem 2.1.

Corollary 2.4. (D. Roseman [12]) If K is fibred, then $\mathcal{MN}(\sigma(M, K))$ is fibred.

Proof. Since $\mathcal{MN}(K) = 0$, Theorem 2.1 implies $\mathcal{MN}(\sigma(M, K)) = 0$. \hfill \Box

Corollary 2.5. (E.C. Zeeman [13]) The d-twist spun knot of any classical knot K is fibred for $d \geq 1$.

Proof. Consider a great circle Σ in S^2. The d-twist spun knot of K is by definition the $n + 1$-knot $\sigma(\Sigma, K, \lambda)$ in S^3 where $\Sigma \to \Sigma$ is a map of degree d. The assertion follows, since $\mathcal{MN}(S^1, \lambda) = 0$. \hfill \Box

Remark 2.6. The Zeeman’s theorem above generalizes immediately to the following statement: If $\mathcal{MN}(M, \lambda) = 0$, then the knot $\sigma(M, K, \lambda)$ is fibred for any knot K.

3. Rotation

Let Σ be an equatorial sphere of S^{n+1}. We can view the sphere S^{n+1} as the union of two discs $D_+ \cup D_-$ intersecting by Σ. Consider S^{n+2} as the equatorial sphere of S^{n+2}. The sphere S^{n+2} can be considered as the result of rotation of the disc D_+ around its boundary Σ. We have the (linear orthogonal) action of S^1 on S^{n+2}, such that Σ is the fixed point set of the action, and the action is free on the rest of the sphere S^{n+2}. Let K^{n-1} be an $(n-1)$-knot in S^{n+1}. We can assume
that $K^{n-1} \subset \text{Int } D_+$. Rotation of K^{n-1} around Σ gives a submanifold $R(K)$ of codimension 2 in S^{n+2}. The manifold $R(K)$ is diffeomorphic to $S^1 \times K$. We call this construction rotation. When $\dim K = 1$, the manifold $R(K)$ is sometimes called the spun torus of K.

In this section we relate the Morse-Novikov numbers of $R(K)$ with those of K. The main aim of this section is to prove the following theorem.

Theorem 3.1.

$$\mathcal{M}\mathcal{N}(R(K)) \leq 2\mathcal{M}\mathcal{N}(K) + 2.$$

To prove the theorem we associate to each given regular Morse function $\phi : S^{n+1} \setminus K^{n-1} \to S^1$ a regular Morse function $R(\phi) : S^{n+2} \setminus R(K^{n-1}) \to S^1$ such that $m(R(\phi)) = 2m(\phi) + 2$.

We begin by an outline of this construction for the simplest case when $n = 1$ and K consists of two points in S^2 (Subsection 3.1). In Subsection 3.2 we give a detailed proof of the assertion of the theorem in full generality.

3.1. Rotation of S^0.

Let $K^0 = \{a, b\} \subset S^2$. The manifold $S^2 \setminus \{a, b\}$ is fibered over S^1, and the structure of the level lines of this fibration is shown on the figure 1 (left).

Let D_- be a small 2-disc around any regular point a of f. Denote by D_+ the complement $S^3 \setminus \text{Int } D_-$, so that $S^3 = D_+ \cup D_-$ and the discs D_+ intersect by their common boundary Σ. Removing D_- we obtain a map $f : D_+ \setminus \{a, b\} \to S^1$; the structure of its level lines is shown on the figure 1 (middle).

The restriction $f \mid \Sigma$ has two non-degenerate critical points: N and S. The vector v in the figure depicts the gradient of the map f. Applying the rotation construction to K_0 we obtain a trivial 2-component link $R(K^0)$ in S^3. Let $F_0 : S^3 \setminus R(K_0) \to S^1$ be the unique S^1-invariant function such that $F_0 \mid D_+ = f$. This function is continuous, but not smooth, since its level surfaces have conical singularities in the points of Σ. To repair this, we will modify the function f in a neighbourhood of Σ so that the level lines of the modified function $g : D_+ \setminus \{a, b\} \to S^1$ are as depicted on the figure 1 (right).

Each non-singular level line intersecting Σ is orthogonal to Σ at the intersection point. Let $G_0 : S^3 \setminus R(K_0) \to S^1$ be the unique S^1-invariant function such that $G_0 \mid D_+ = g$. Then G_0 is a C^∞ function having two critical points N and S. Observe that the descending disc of the critical point S of the function $G_0 \mid \Sigma$ is
in Σ, therefore the descending discs of G_0 will have the same dimension 1, and $\text{ind}_{G_0} S = 1$. The same reasoning holds for the ascending disc of the critical points N, therefore $\text{ind}_{G_0} N = 2$.

3.2. The general case.

Let Σ be the unit sphere in \mathbb{R}^{n+2}, that is,

$$\Sigma = \{(x_0, \ldots, x_{n+1}) \mid x_0^2 + \ldots + x_{n+1}^2 = 1\}.$$

Denote by Σ' its intersection with the hyperplane $x_{n+1} = 0$. Let $a = (0, \ldots, 0, 1)$; for each point $z \in \Sigma'$ denote by $C(z)$ the great circle through $a, -a, z$, and by $C'(z)$ the closed semicircle containing these three points. The projection p onto the $(n+1)$-th coordinate gives the bijection of $C'(z)$ onto the closed interval $[-1, 1]$; this bijection is a diffeomorphism when restricted to $C'(z) \setminus\{a, -a\}$. Let $\beta : [-1, 1] \to [-1, 1]$ be a diffeomorphism such that $\beta(x) = x$ for x in a neighbourhood of ± 1. Then there is a unique diffeomorphism $\bar{\beta}$ of Σ onto itself such that for every z the curve $C'(z)$ is $\bar{\beta}$-invariant and $p(\bar{\beta}(v)) = \bar{\beta}(p(v))$ for every v. The diffeomorphism $\bar{\beta}$ will be called the sliding, associated to β. Observe that every sliding is isotopic to the identity map.

Let $D_\rho \subset \Sigma$ be the geodesic disc of radius ρ centered in $-a$. Let $D_- = D_{\pi/2} = \{(x_0, \ldots, x_{n+1}) \mid x_{n+1} \leq 0\}$, $D_+ = \{(x_0, \ldots, x_{n+1}) \mid x_{n+1} \geq 0\}$. Put $\Sigma_\rho = \partial D_\rho$. Let $N(\Sigma_\rho, \epsilon)$ denote the geodesic tubular neighbourhood of Σ_ρ. For a given ρ and $\epsilon > 0$ sufficiently small there is a sliding σ sending D_ρ to D_- and sending each normal geodesic segment of length 2ϵ in $N(\Sigma_\rho, \epsilon)$ isometrically to the corresponding normal geodesic segment in $N(\Sigma, \epsilon)$. We have therefore a commutative diagram

$$N(\Sigma_\rho, \epsilon) \xrightarrow{\sigma} N(\Sigma, \epsilon)$$

$$\Phi \downarrow \quad \quad \downarrow \Psi$$

$$\Sigma_\rho \times [-\epsilon, \epsilon] \xrightarrow{\bar{\sigma}} \Sigma \times [-\epsilon, \epsilon]$$

where the vertical arrows are diffeomorphisms and $\bar{\sigma}(x, \tau) = (\sigma(x), \tau)$.

Let K be an $(n-1)$-knot in S^{n+1} and $\phi : S^{n+1} \setminus K \to S^1$ a Morse map. We can assume that

1) $K \subset \text{Int } D_+$,

2) $-a \notin \text{Crit } f$,

3) the submanifold $\phi^{-1}(\phi(-a))$ is tangent to the hyperplane defined by the equation $x_n = 0$.

The restriction $\bar{\phi} = \phi \mid \partial D_\rho$ can be considered as a real-valued Morse map. Choosing ρ sufficiently small we can assume that ϕ on Σ_ρ is a Morse map having one maximum and one minimum. Denote the function $\phi \circ \Phi$ by $h : \Sigma_\rho \times [-\epsilon, \epsilon] \to \mathbb{R}$. For ρ sufficiently small, this function has the following property:

$$\text{If } \frac{\partial h}{\partial t}(x, t) = 0, \text{ then } \frac{\partial h}{\partial x}(x, t) \equiv 0, \text{ where } x \in \Sigma_\rho, \ t \in [-\epsilon, \epsilon].$$

Consider the restriction of ϕ to the subset $S^{n+1} \setminus (K \cup D_\rho)$. Composing ϕ with σ^{-1} we obtain a function

$$\phi_0 : D_+ \setminus \sigma(K) \to S^1.$$
This is a Morse map which extends to a geodesic tubular neighbourhood of $\Sigma = \partial D^+$, and can be considered as a real-valued Morse function in this neighbourhood. The restriction $\phi_0 \mid \Sigma$ has two critical points of indices n and 0. Denote these critical points by N and S, so that $\text{ind} \phi_0 N = n$, $\text{ind} \phi_0 S = 0$. The function $h_0 = \phi_0 \circ \Psi$ has the following property:

\begin{equation}
\label{eq:7}
\text{If } \frac{\partial h_0}{\partial t}(x, t) = 0, \text{ then } \frac{\partial h_0}{\partial x}(x, t) \neq 0, \text{ where } x \in \Sigma, \ t \in (-\epsilon, \epsilon].
\end{equation}

Now we will modify the function ϕ_0 nearby Σ. Let $\lambda : [-\epsilon, \epsilon] \to \mathbb{R}$ be a C^∞ function such that $\lambda(t) = |t|$ for t in a neighbourhood of $[-\epsilon, \epsilon]$ and $\lambda(t) = t^2$ for $|t| \leq \epsilon/2$. Define a function h_1 by the following formula:

$$h_1(x, t) = h_0(x, \lambda(t)),$$

and define a function

$$\phi_1 : D_+ \setminus \sigma(K) \to S^1$$

as follows:

1) if $v \notin N(\Sigma, \epsilon)$, put $\phi_1(v) = \phi_0(v)$.
2) if $v \in N(\Sigma, \epsilon)$, $v = \Psi(x, t)$ with $x \in \Sigma$, $t \in (-\epsilon, \epsilon]$, put $\phi_1(v) = h_1(x, t)$.

Proposition 3.2. The function ϕ_1 has two critical points in $N(\Sigma, \epsilon)$, namely N and S. Their indices are equal, respectively, to n and 1.

Proof. The partial derivatives of h_1 are equal to $\frac{\partial h_0}{\partial x}(x, \lambda(t))(x, t)$ and $\frac{\partial h_0}{\partial t}(x, \lambda(t)) \cdot \lambda'(t)$. For $t = 0$ the second derivative equals 0, and $\frac{\partial h_0}{\partial x}(x, \lambda(t))(x, 0)$ vanishes in N and S. If $t \neq 0$, then $\lambda'(t) \neq 0$. and for (x, t) to be a critical point of ϕ_1 it is necessary that $\frac{\partial h_0}{\partial x}(x, \lambda(t))(x, t)$ vanish, which implies that $\frac{\partial h_0}{\partial t}(x, \lambda(t))(x, t) \neq 0$ (see the property (7)).

Now we are ready to construct a Morse function on the complement to $R(K)$. Observe that the knot K is equivalent to the knot $\sigma(K)$. By a certain abuse of notation we will replace $\sigma(K)$ by K, so in particular, $K \subset \text{Int} D_+$. Add one more coordinate x_{n+2} and consider the sphere

$$\Sigma = \{(x_0, \ldots, x_{n+2}) \mid x_0^2 + \cdots + x_{n+2}^2 = 1\}.$$

We have $D_+ \subset S^{n+2}$. The knot $R(K)$ is defined by the following formula:

$$R(K) = \{(x_0, \ldots, x_{n+2}) \mid (x_0, \ldots, x_n, \sqrt{x_{n+1}^2 + x_{n+2}^2}) \subset K\}.$$

The circle S^1 acts on S^{n+2} by rotations in the two last coordinates. Define the Morse function ϕ_2 on the complement to $R(K)$ by the two following properties:

1) $\phi_2 \mid D_+ \setminus K = \phi_1$.
2) ϕ_2 is S^1-invariant.

The second property implies that

$$\phi_2(x_0, \ldots, x_{n+2}) = \phi_1\left(x_0, \ldots, x_n, \sqrt{x_{n+1}^2 + x_{n+2}^2}\right).$$

Observe that the property 2) of the function ϕ_1 guarantees that ϕ_2 is C^∞ on the subset $S^{n+2} \setminus R(K)$.

Proposition 3.3.

1) $\text{Crit}(\phi_2) = S^1 \cdot \text{Crit}(\phi_1) \cup \{N, S\}$.
2) The critical points \(N \) and \(S \) are non-degenerate, and

\[
\text{ind}_{\phi_2} N = \text{ind}_{\phi_1} N = n, \quad \text{ind}_{\phi_2} S = \text{ind}_{\phi_1} S + 1 = 2.
\]

Proof. The point 1) is easy to deduce from the definition of \(\phi_2 \). As for the indices of the critical points observe that the descending disc of the critical point \(N \) in \(N(\Sigma, \epsilon) \) belongs to the sphere \(\Sigma \) which is fixed by the action of \(S^1 \). Thus the index of \(N \) does not change when we replace \(\phi_1 \) by \(\phi_2 \). A similar argument applies to the ascending disc of \(S \), and this implies the rest of the proposition.

Each critical point of \(\phi_1 \) gives rise to a circle of critical points of \(\phi_2 \). Using the same method, as in the previous work of the authors, we have perturb the function \(\phi_2 \) in a neighbourhood of each of these critical circles, and obtain finally a regular Morse function \(R(\phi) \) on the complement to \(R(K) \) such that

\[
\#\text{Crit}(R(\phi)) = 2\#\text{Crit}(\phi_2) + 2.
\]

This completes the proof of Theorem 3.1.

\[\square \]

3.3. 4-thread spinning. In this subsection we give a brief description of one more construction of surface-links. Let \(L \subset S^3 \) be a classical link and \(\phi : S^3 \setminus L \to S^1 \) a Morse map. Let \(p, q \in L \) and let \(\gamma : [0, 1] \to S^3 \) be a \(C^\infty \) curve joining \(p \) and \(q \) and belonging entirely to one of the regular level surfaces \(\phi^{-1}(\lambda) \) of the map \(\phi \). We assume moreover that \(\text{Im} \gamma \cap L = \{p, q\} \), and that \(\gamma'(0) \) and \(\gamma'(1) \) are not tangent to \(L \). Let \(D \) be a small neighbourhood of \(\text{Im} \gamma \) diffeomorphic to a 3-disc. Denote by \(\Sigma \) its boundary. We can assume that \(L \cap \Sigma \) consists of four points and that \(L \) is orthogonal to \(\Sigma \) at each of these points. Denote by \(S^2_0 \) the 2-sphere with 4 points removed. Recall that there is a standard Morse function \(\phi_0 \) on \(S^2_0 \) having 2 critical points of indices 1. We can assume that the restriction of \(\phi \) to \(\Sigma \setminus L \) is diffeomorphic to \(\phi_0 \).

Remove the interior of \(D \) from \(S^3 \) and rotate the remaining manifold \(S^3 \setminus \text{Int} D \) around \(\Sigma \). We obtain the sphere \(S^4 \); the subset which is spun by \(L \setminus \text{Int} D \) during the rotation is an embedded 2-surface in \(S^4 \).

We call this construction 4-thread spinning to distinguish it from the usual spinning, and denote the resulting surface-link by \(S'(L) \). If \(p \) and \(q \) are on different connected components of \(L \), then the number of connected components of \(S'(L) \) is the same as for \(L \). If \(p \) and \(q \) are in different connected components of \(L \), then the number of connected components of \(S'(L) \) equals that of \(L \) increased by 1. Applying the same method as in the Subsection 3.2 we can construct a Morse function \(\bar{\phi} \) on \(S^4 \setminus S'(L) \to S^1 \) such that \(m(\bar{\phi}) = m(\phi) + 2 \).

Corollary 3.4.

\[
\mathcal{MN}(S'(L)) \leq 2\mathcal{MN}(L) + 2.
\]

\[\square \]

4. Surface-links

In this section we develop circle-valued Morse theory for surface-links.

4.1. Motion pictures and saddle numbers. Let \(F \) be a surface-link, that is, a closed oriented 2-dimensional \(C^\infty \) submanifold of \(S^4 \). We can assume \(F \subset \mathbb{R}^4 \).

Choose a projection \(p \) of \(\mathbb{R}^4 \) onto a line. Assume that the critical points of the function \(p|F \) are non-degenerate. Denote by \(\text{sd}(F) \) the minimal number of saddle points of \(p|F \) over all the projections \(p \).
Definition 4.1. A saddle number $sd(F)$ is the minimum of numbers $sd(F')$ where F' ranges over all surface-links ambiantly isotopic to F.

The invariant $sd(F)$ is closely related to the *ch-index* of F, introduced and studied by K. Yoshikawa in [13]. In particular, we have $sd(F) \leq \text{ch}(F)$. In order to relate the number $sd(F)$ to $M\mathcal{N}(K)$ we will reformulate the definition of the saddle number.

Let $F \subset S^4$ be a surface-link. The equatorial 3-sphere S^3 of the standard Euclidean sphere S^4 divides S^4 into two parts:

$$S^4 = D^4_+ \cup D^4_-, \text{ with } D^4_+ \cap D^4_- = \Sigma^3.$$

We assume that F is included in $\text{Int}(D^4)$ and F does not include the centre of D^4. Perturbing the embedding $F \subset D^4$ if necessary, we can assume that the restriction $\rho = r|_F$ of the radius function $r : D^4 \to [0,1]$ is a Morse function. The family $\{(r^{-1}(t), \rho^{-1}(t))\}_{t \in [0,1]}$ of possibly singular links can be drawn as a *motion picture* (see [8], Chapter 8). Each singularity of a link in the family corresponds to a critical point of ρ. A critical point of ρ of index 0 (1, 2, respectively) is called a *minimal point* (saddle point, maximal point, respectively) of ρ, which is represented by a *minimal band* (saddle band, maximal band, respectively) in (a modification of) the motion picture.

It is clear that the minimal number of the saddle points for all such Morse functions ρ is equal to $sd(F)$.

Theorem 4.2. $M\mathcal{N}(F) \leq 2sd(F) + \chi(F) - 2$.

Proof. Since ρ is a Morse function, the manifold $D^4 \setminus \text{Int} N(F)$ admits a handle decomposition with one 0-handle and $m_i(\rho)$ ($i + 1$)-handles for $i \in \{0,1,2\}$ (see [7], and also [6], Proposition 6.2.1).

The exterior $E(F) = S^4 \setminus \text{Int} N(F)$ of F is obtained by attaching a 4-handle $D^4_+ \setminus \text{Int} N(F)$ to $D^4 \setminus \text{Int} N(F)$. Since $D^4 \setminus \text{Int} N(F)$ is connected, there is a 3-handle in $D^4 \setminus \text{Int} N(F)$ which connects $\partial N(F)$ with ∂D^4_+. Thus the 3-handle cancels the 4-handle D^4_+ (see [9], Section 5). Turning the handlebody upside down, we obtain a dual decomposition of $E(F)$ and a corresponding Morse function $f : E(F) \to \mathbb{R}$ which is constant on $\partial E(F)$ and the following Morse numbers: $m_1(f) = m_2(\rho) - 1$, $m_2(f) = m_1(\rho)$, $m_3(f) = m_0(\rho)$, $m_4(f) = 1$.

Using the argument from work of the second author [10], p. 629, we can deform the real-valued Morse function f to a circle-valued regular function $\phi : E(F) \to S^1$, such that $m_k(f) = m_k(\phi)$ for every k. Consider the function $-\phi$, which has one critical point of index 0. Applying the cancellation of this local minimum, we obtain a Morse function $\psi : E(F) \to S^1$ belonging to the class $-\xi$, and such that $m_0(\psi) = 0$, $m_1(\psi) = m_3(f) - 1$, $m_2(\psi) = m_2(f)$, $m_3(\psi) = m_1(f)$, $m_4(\psi) = 0$. Put $g = -\psi$. Then we have

$$m_0(g) = m_4(g) = 0, \text{ } m_1(g) = m_2(\rho) - 1, \text{ } m_2(g) = m_1(\rho), \text{ } m_3(g) = m_0(\rho) - 1.$$

Observe that $m_0(\rho) - m_1(\rho) + m_2(\rho) = \chi(S^2) = 2$, therefore the total number of critical points of g equals $2m_1(\rho)$. Choosing the function ρ with $m_1(\rho) = sd(F)$ we accomplish the proof. \hfill \square

Corollary 4.3. Let $K \subset S^4$ be a 2-knot. Then $M\mathcal{N}(C_K) \leq 2sd(K)$.

\hfill \square
Proposition 4.4. \textit{Let }$F \subset S^4$\textit{ be the trivial }k\textit{-component surface-link. Then }
\[\mathcal{MN}(F) = 4k - 2 - \chi(F). \]

\textit{Proof}. It is not difficult to show that $\hat{b}_1(C(F)) \geq k - 1$, $\hat{b}_3(C(F)) \geq k - 1$. Therefore for every regular Morse map $f : C(F) \to S^1$ we have $m_1(f) + m_3(f) \geq 2(k - 1)$. Assuming $m_0(f) = m_4(f) = 0$ we have $m_1(f) - m_2(f) + m_3(f) = 2 - \chi(F)$, and $\mathcal{MN}(C(F)) \geq 4k - 2 - \chi(F)$; this lower bound coincides with the upper bound derived from Theorem 4.2. \hfill \square

4.2. Spin knots. Let K be a classical knot in S^3 denote by $S(K)$ the corresponding spun knot.

Proposition 4.5. \textit{If }K\textit{ is a non-fibered knot of tunnel number }1\textit{, then }$\mathcal{MN}(S^4 \setminus S(K)) = 4$.

\textit{Proof}. Recall that $\mathcal{MN}(S^4 \setminus S(K)) \leq 2\mathcal{MN}(K)$ (Corollary 2.3). In the paper [10] of the second author it is shown that $\mathcal{MN}(K) \leq 2t(K)$, hence $\mathcal{MN}(S(K)) \leq 4$ by Corollary 2.3. Put $G = \pi_1(S^3 \setminus K)$, then $\pi_1(S^4 \setminus S(K))$; let $H = [G, G]$. Let $f : S^4 \setminus S(K) \to S^1$ be a regular Morse map without minima and maxima. If $m_1(f) = 0$, then a standard Morse-theoretic argument applied to the infinite cyclic cover of $S^4 \setminus S(K)$ implies that H is finitely generated, which is impossible, since K is not fibered. Therefore $m_1(f) \geq 1$, and similarly, $m_3(f) \geq 1$, hence $m_2(f) \geq 2$ and the proposition is proved. \hfill \square

4.3. Surface-links of Yoshikawa’s table. Yoshikawa [13] suggested a method for enumerating surface-links. To each surface-link F he associated a natural number $ch(F)$. His methods allowed him to make a list of all (weakly prime) surface-links F with $ch(F) \leq 10$. It is clear from the definition of the invariant $ch(F)$ that we have $sd(F) \leq ch(F)$. In the rest of this section we assume that the reader is familiar with Yoshikawa’s work, and with his terminology. There are 6 two-knots in Yoshikawa’s table, namely

\[0_1, 8_1, 9_1, 10_1, 10_2, 10_3. \]

The trivial 2-knot 0_1 is obviously fibered. The knots 8_1 and 10_1 are spun knots of the trefoil knot and respectively of the figure 8 knot, thus both 8_1 and 10_1 are fibered by [11].

The case of 9_1 is more complicated. The saddle number of this 2-knot is 2. Therefore $\mathcal{MN}(9_1) \leq 4$. Using the presentation of the fundamental group of the complement to 9_1 (see [13]) and Poincaré duality properties it is easy to compute the Novikov numbers of 9_1. Namely we have $q_1 = 1$, $q_2 = q_3 = 0$. Therefore

\[2 \leq \mathcal{MN}(9_1) \leq 4. \]

The 2-knot 10_2 is the 2-twist-spun knot of the trefoil knot, hence fibered by Zeeman’s theorem [14]. Similarly, 10_3 is fibered, being the 3-twist spin of the trefoil knot.

The surface-link $6_1^{0,1}$ is the result of spinning of the Hopf link which is fibered (see the left of Figure 2) therefore $\mathcal{MN}(6_1^{0,1}) = 0$.

The surface-link $8_1^{1,1}$ is the spin torus of the Hopf link. Applying Theorem 3.1 we get the upper bound $\mathcal{MN}(8_1^{1,1}) \leq 2$. Computing the Euler charactaristic implis the inverse inequality, so $\mathcal{MN}(8_1^{1,1}) = 2$. 
The same argument applies to the surface-link $10_1^{1,1}$, which is the spun torus of the trefoil knot, see the figure 2 (middle), so that $\mathcal{MN}(10_1^{1,1}) = 2$.

The surface-link $10_1^{0,1}$ is the result of spinning of the link 4_1^2 which is fibred, therefore $\mathcal{MN}(10_1^{0,1}) = 0$.

The case of the surface-link $F = 10_1^{0,0,1}$ is more complicated. This surface-link is the result of 4-threaded spinning of the connected sum L of two copies of the Hopf link, see Figure 2 (right) and applying Corollary 3.4 we deduce $\mathcal{MN}(F) \leq 2$. The computation of Euler characteristic gives the lower bound 2 for the Morse-Novikov number, thus $\mathcal{MN}(10_1^{0,0,1}) = 2$.

5. ACKNOWLEDGEMENTS

This work was accomplished when the second author was visiting the Tokyo Institute of Technology in 2016 with the support of the JSPS fellowship. The first author was partially supported by JSPS KAKENHI Grant Numbers 25400082, 16K05142. The second author thanks the Tokyo Institute of Technology for support and warm hospitality.

REFERENCES

[1] J.J. Andrews, D. W. Sumners, On higher-dimensional fibered knots, Trans. Amer. Math. Soc., 153 (1971), 415-426.
[2] E. Artin, Zur Isotopie zweidimensionalen Flächen im \mathbb{R}^4, Abh. Math. Sem. Univ. Hamburg 4 (1926), 174–177.
[3] D.B.A. Epstein, Linking spheres, Proc. Cambridge Phil. Soc. 56 (1960), 215–219.
[4] G. Friedman, Alexander polynomials of non-locally-flat knots, Indiana Univ. Math. J. 52 (2003), 14791578.
[5] G. Friedman, Knot Spinning, Handbook of Knot Theory, Elsevier, 2005, ch.4.
[6] R. E. Gompf and A. I. Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics 20. American Mathematical Society, 1999.
[7] C. McA Gordon, Homology of groups of surfaces in the 4-sphere, Math. Proc. Camb. Phil. Soc. 89, 113 – 117.
[8] S. Kamada, Braid and knot theory in dimension four, Math. Surveys Monogr. 95, Amer. Math. Soc., Providence, R.I., 2002.
[9] J. Milnor, Lectures on h-cobordism theorem, Notes by L. Siebenmann and J. Sondow, Princeton Univ. Press, Princeton, New Jersey, 1965.
[10] A. Pajitnov, On the tunnel number and the Morse-Novikov number of knots, Algebraic & Geometric Topology 10 (2010) 627635.
[11] A. Pajitnov, *Circle-Valued Morse Theory* (de Gruyter Studies in Mathematics 32).
[12] D. Roseman, *Spinning knots about submanifolds: spinning knots about projections of knots*, Topology and Appl. 31 (1989), 225–241.
[13] K. Yoshikawa, *An enumeration of surfaces in four-space*, Osaka J. Math. 31 (1994), 497–522.
[14] E. C. Zeeman, *Twisting spun knots* Trans. Amer. Math. Soc. 115 (1965), 471–495.

DEPARTMENT OF MATHEMATICS
TOKYO INSTITUTE OF TECHNOLOGY
2-12-1 OOKAYAMA, MEGURO-KU
TOKYO 152-8551 JAPAN

E-mail address: endo@math.titech.ac.jp

LABORATOIRE MATHÉMATIQUES JEAN LERAY
UMR 6629, FACULTÉ DES SCIENCES, 2, RUE DE LA HOUSSINIÈRE, 44072, NANTES, CEDEX

E-mail address: andrei.pajitnov@univ-nantes.fr