Integrin PS3-mediated phagocytosis of apoptotic cells and bacteria in Drosophila

著者	野中 さおり
著者別表示	
学位授与番号	
学位名	博士（医学）
学位授与年月日	

doi: 10.1074/jbc.M113.451427
Integrin αPS3/βν-Mediated Phagocytosis of Apoptotic Cells and Bacteria in Drosophila*

Saori Nonaka,‡ Kaz Nagaosa,¶ Toshinobu Mori,§ Akiko Shiratsuchi,¶ and Yoshinobu Nakanishi‡ §

From the ‡Graduate School of Medical Sciences and the ¶School of Pharmacy, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan

Running title: Integrin αPS3/βν-Mediated Phagocytosis in Drosophila

Background: Drosophila integrin βν plays a role in the phagocytosis of apoptotic cells and bacteria, but its partner α-subunit remains to be identified.

Results: Of 5 α-subunits, αPS3 was physically and functionally associated with βν.

Conclusion: αPS3/βν serves as a receptor for phagocytosis in Drosophila.

Significance: The heterodimeric structure of Drosophila integrin has been genetically and biochemically solved.

SUMMARY

Integrins exert a variety of cellular functions as heterodimers of two transmembrane subunits named α and β. Integrin βν, a β-subunit of Drosophila integrin, is involved in the phagocytosis of apoptotic cells and bacteria. We here searched for a α-subunit that forms a complex and cooperates with βν. Examinations of RNAi-treated animals suggested that αPS3, but not any of four other α-subunits, is required for the effective phagocytosis of apoptotic cells in Drosophila embryos. The mutation of αPS3-encoding scb, deficiency, insertion of P-element, or alteration of nucleotide sequences, brought about a reduction in the level of phagocytosis. The defect in phagocytosis by deficiency was reverted by the forced expression of scb. Furthermore, flies in which the expression of both αPS3 and βν was inhibited by RNAi showed a level of phagocytosis almost equal to that observed in flies with RNAi for either subunit alone. A loss of αPS3 also decreased the activity of larval hemocytes in the phagocytosis of Staphylococcus aureus. Finally, a co-immunoprecipitation analysis using a Drosophila cell line treated with a chemical cross-linker suggested a physical association between αPS3 and βν. These results collectively indicated that integrin αPS3/βν serves as a receptor in the phagocytosis of apoptotic cells and bacteria by Drosophila phagocytes.

Phagocytosis plays an important role in the maintenance of homeostasis by eliminating materials foreign to host organisms (1, 2). Typical targets for phagocytic cells are invading microorganisms and altered own cells that have become unnecessary for or harmful to the host (1, 2). The elimination of pathogenic microorganisms helps host organisms avoid infectious diseases, and that of apoptotic cells is prerequisite to the morphogenesis in early development and the maintenance of tissue homeostasis (3, 4).

Most altered own cells are induced to undergo apoptosis and express substances, often called eat-me signals, at their surface, which are recognized by engulfment receptors of phagocytic cells (5–8). There are two partly overlapping signaling pathways for the induction of phagocytosis in Caenorhabditis elegans (9–12), namely, CED-6/CED-10 and CED-2/CED-5/CED-12/CED-10, which are most likely activated by the engulfment receptors CED-1 (13) and INA-1 (14), respectively. CED-1 is a single-path membrane protein containing atypical EGF-like repeats in its extracellular region (13), and INA-1 is a α-subunit of C. elegans integrins (14). CED-1 (15), integrins (16), and molecules that constitute the two signaling pathways (12, 17) seem to be evolutionally conserved among species including humans. This suggests the phylogenetic conservation of the mode of apoptotic cell clearance although the conservation of eat-me signals is yet to be determined.

Integrins are phylogenetically conserved transmembrane receptors consisting of heterodimers of two subunits called α and β (18, 19). Eighteen α-subunits and 8 β-subunits exist in mammals and form heterodimers giving rise to 24 different integrins (18, 19). Integrins play important roles in a variety of biological phenomena by mediating cell-cell adhesion. In addition, integrins connect the extracellular matrix with the cytoskeleton and activate intracellular signaling pathways (18–20). Integrins are capable of inducing phagocytosis probably due to their ability to remodel the cytoskeleton, and targets for integrin-mediated phagocytosis include apoptotic cells and microorganisms (21, 22). This
mechanism of action is sometimes exploited by microorganisms to gain entry into host cells (22). We recently identified integrin βν, a β-subunit of Drosophila integrins, as a receptor involved in the phagocytosis of apoptotic cells in Drosophila embryos (23). This subunit also induces the phagocytosis of Staphylococcus aureus by Drosophila hemocytes, recognizing peptidoglycan of this bacterium (24). There are five α-subunits, αPS1, 2, 3, 4 and 5, and two β-subunits, βPS and βν, for Drosophila integrins (16, 25). The present study was carried out aiming at the identification of a α-subunit that cooperates with βν in the phagocytosis of apoptotic cells and bacteria.

EXPERIMENTAL PROCEDURES

Fly Stocks, Bacterial Strains, and Cell Culture—The following lines of Drosophila were used: w1118, Oregon R (Kyorin-Fly, Kyorin University Tokyo, Japan), betalnt-nu1 (26), UAS-betalnt-nu-IR (National Institute of Genetics, Shizuoka, Japan), UAS-mew-IR (National Institute of Genetics), UAS-if-IR (National Institute of Genetics), UAS-scb-IR (National Institute of Genetics), UAS-alphaPS4-IR (National Institute of Genetics), UAS-alphaPS5-IR (National Institute of Genetics), Dff(2R)Exel7135 (Bloomington Drosophila Stock Center, Indiana University, Bloomington, IN), scb0288 (Bloomington Drosophila Stock Center), scb2 (27) (Drosophila Genetic Resource Center, Kyoto, Japan), da-Gal4 (a gift from S. Hayashi), srpHemoGAL4 UAS-srcEGFP (28), 201Y-GAL4 UAS-GFP.S65T(T2) (a gift from T. Awasaki), and pxn-GAL4 8.1 (a gift from M. J. Galko). To establish a fly line for the expression of αPS3 isoforms A and B in a scb mutant, cDNA coding for αPS3A or αPS3B was prepared from RNA of w1118 inserted into the vector pUAST (29), and used to generate a transgenic fly line with the background of w1118. The resulting fly lines carrying the transgenes on the 3rd chromosome were intercrossed with the fly line Dff(2R)Exel7135 and used for the mating with da-Gal4. Other fly lines used in this study were generated through the mating of existing flies, and some lines were used after changing balancers. Genotypes of the fly lines analyzed are shown in the corresponding figure legends. The wild-type S. aureus strain RN4220 was cultured at 30 °C with Luria-Bertani medium. Bacteria were harvested at full growth, washed with PBS, and used in an assay for phagocytosis. The cell line l(2)mbn, established from larval hemocytes, was maintained at 25 °C with Schneider’s Drosophila medium (Invitrogen), as described previously (30).

Antibodies—The anti-integrin αPS3 antibody was raised by immunizing rats with an extracellular region of integrin αPS3, corresponding to the amino acid positions 235–284 with the amino terminus numbered 1, that had been expressed in E. coli as a protein fused to GST and purified to homogeneity. Generation and use of the anti-integrin βν (23), anti-Croquemort (30), and anti-Ced-6 (31) rat antibodies were reported previously. The anti-αPS3 (32) and anti-βν (33) rabbit antibodies were provided by S. Hayashi and R. O. Hynes, respectively. Antigen specificity of the anti-αPS3 rabbit antibody (supplemental Fig. S1) and the anti-αPS3 rat antibody (supplemental Fig. S2) was confirmed in Western blotting.

Chemical Cross-linking and Co-immunoprecipitation—To examine the physical association of αPS3 and βν, l(2)mbn cells were transfected with cDNA coding for the isoform B of αPS3 and βν by lipofection (Cellfectin II; Invitrogen). The cells (5–7 × 103) were then incubated with Sulfo-NHS-SS-Diazirine (Thermo Fisher Scientific Inc., Rockford, IL) (3 mM), an amine- and photo-reactive chemical cross-linker containing a disulfide bond for cleavage, for 10 min at room temperature, supplemented with Tris-HCl (pH 8.0) at 0.17 M, and centrifuged. The resulting cell pellets were washed 3 times with PBS, re-suspended with PBS, and exposed to UV using a fluorescent lamp for 15 min at 4 °C. The cells were collected by centrifugation, lysed with a buffer consisting of 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% (v/v) Triton-X 100, and protease inhibitors (Nakalai Tesque, Kyoto, Japan), and immunoprecipitated with the rat antibody (anti-αPS3 or anti-βν). The precipitates were separated on a 6% SDS-polyacrylamide gel and subjected to Western blotting with the rabbit antibody (anti-αPS3 or anti-βν). The membrane containing the transferred proteins was first reacted with either the anti-αPS3 or anti-βν antibody followed by signal detection, washed with an alkaline solution to remove the bound antibody, and then re-probed with the other antibody.

Other Methods—The level of phagocytosis of apoptotic cells was cytochemically determined with dispersed embryonic cells, as described in our previous paper (23). The ratio of Croquemort-expressing hemocytes containing TUNEL-stained apoptotic cells was determined and exhibited as “phagocytosing hemocytes.” An assay for the phagocytosis of S. aureus in vitro was carried out using hemocytes prepared from wandering larvae as phagocytes and the S. aureus
strain RN4220 surface-labeled with FITC as targets, as described previously (34). The ratio of hemocytes containing target bacteria and the number of bacteria contained in 100 hemocytes were determined and exhibited as “phagocytosing hemocytes” and “engulfed bacteria,” respectively. Western blotting of lysates of cultured cells (30) and flies (23) was done essentially as described previously, except that: cultured cells were lysed by detergent without sonication as shown above; membranes containing separated proteins were incubated with antibodies in either a buffer consisting of 20 mM Tris-HCl (pH 7.5), 0.15 M NaCl, 0.1% (v/v) Tween-20 and 5% (w/v) dry skim milk or MaxiBlot Solution (Medical & Biological Laboratories, Nagoya, Japan); and signals were visualized by a colorimetric reaction using Western Lightning (Perkin Elmer) or ECL Select Western Blotting Detection Reagent (GE Healthcare). Immunocytochemistry of dispersed embryonic cells was conducted as described before (23).

Data Processing and Statistical Analysis—Results from quantitative analyses are expressed as the mean ± S. D. of the data from at least three independent experiments, unless otherwise stated in the text. Other data are representative of at least three independent experiments that yielded similar results. Statistical analyses were performed using the two-tailed Student’s t test, and p values of less than 0.05 were considered significant and are indicated in the figures.

RESULTS

Identification of αPS3 as Integrin Subunit Involved in Phagocytosis of Apoptotic Cells—There are five α-subunits, namely, αPS1, 2, 3, 4 and 5, for Drosophila integrins (16). To determine which α-subunit is involved in the phagocytosis of apoptotic cells in Drosophila, we conducted RNAi-mediated knockdown of genes coding for the five α-subunits. Dispersed cells of embryos at stage 16, in which RNA with inverted repeats corresponding to mRNA of the target genes was specifically expressed in hemocytes, were analyzed to determine the level of phagocytosis. We found that RNAi of the αPS3-encoding scb and the αPS4-encoding alphaPS4, but not genes coding for the other three α-subunits, brought about a reduction of phagocytosis by embryonic hemocytes (Fig. 1A). We next examined the effect of the knockdown of these two α-subunit-encoding genes in cells other than hemocytes. For this purpose, we induced RNAi in γ neurons of the mushroom body and determined the level of phagocytosis by embryonic hemocytes. The results showed that RNAi of alphaPS4 in neurons was also inhibitory to phagocytosis while this was not the case for scb (Fig. 1B), suggesting that inhibition of phagocytosis with RNAi of alphaPS4 in either hemocytes or neurons is due to an artifact or a secondary effect of a loss of αPS4 in those cell types. In contrast, αPS3 seemed to be directly involved in the phagocytic action of hemocytes. We thus decided to further investigate the role of αPS3 in the phagocytosis of apoptotic cells.

We next examined the effect of mutations in scb on apoptotic cell clearance. Lysates were prepared from embryos of fly lines having a deletion of a chromosomal region including scb (Df(2R)Exel7135), an insertion of P-element within scb (scb01288), or an alteration of nucleotide sequences within a coding region of αPS3 (scb1), which was caused by treatment with ethylmethanesulfonate, and analyzed by Western blotting for the level of αPS3 using the anti-αPS3 rabbit antibody. The lysates of flies with the deficiency or P-element insertion showed a reduced level of αPS3 while αPS3 with altered amino acid sequences seemed to be produced much more than the canonical protein (Fig. 1C, left panel and supplemental Fig. S3). When embryos of these mutant flies were analyzed, they all showed a reduction in the level of phagocytosis compared to those of Oregon R, a wild-type fly line (Fig. 1C, right panel). There are two subtypes for αPS3, called isoforms A and B, which differ in the N-terminal 63 amino-acid residues of 1,115 residues in total (35, 36). They are derived from two different mRNA transcribed with two distinct start sites on the same scb gene (36). These two isoforms cannot be distinguished from each other in SDS-PAGE and are recognized by the anti-αPS3 antibodies used in this study. To determine which of the two isoforms is required for phagocytosis, we forcedly expressed each protein in the scb mutant with deficiency. We found that the expression of either isoform sufficiently restored phagocytosis in embryos of the mutant fly line (Fig. 1D). These results also confirmed that αPS4 is not involved in the phagocytosis of apoptotic cells by hemocytes because the chromosomal region lost in this mutant line, Df(2R)Exel7135, includes alphaPS4 as well. The results described above collectively indicated that αPS3 is required for hemocytes to achieve effective phagocytosis of apoptotic cells, and suggested that the αPS3 isoforms A and B produced by two different transcripts from the same gene are redundant for this function of hemocytes.

We next determined the expression pattern of αPS3 during the development of Drosophila.
Lysates of wild-type flies at various developmental stages were prepared and analyzed by Western blotting using the anti-αPS3 rabbit antibody and the anti-βν rat antibody. We found that the level of αPS3 varied depending on developmental stage, being highest in pupae and lowest in larvae (Fig. 2A, top panel), whereas βν was most abundant in embryos and least abundant in pupae (Fig. 2A, bottom panel), as reported previously (23). The surface expression of αPS3 was then examined with embryonic hemocytes. Dispersed cells of embryos were subjected to immunocytochemistry under conditions without membrane permeabilization using the anti-αPS3 rat antibody, and cells containing GFP, indicative of hemocytes, were analyzed for the signal derived from αPS3. Punctate signals were detected in GFP-positive cells while no such signals were seen with control antibody (Fig. 2B). The pattern of distribution of αPS3 was quite similar to that of βν (23). These results indicated that αPS3 as well as βν is present at the surface of embryonic hemocytes.

Functional Association of αPS3 and βν in Phagocytosis of Apoptotic Cells and Bacteria—We next examined the functional interaction between αPS3 and βν in the phagocytosis of apoptotic cells. The level of phagocytosis with flies that had been subjected to RNAi of both scb and betaInt-nu, which codes for βν, was determined and compared with that in flies subjected to RNAi of either one of the two genes. We found that phagocytosis of apoptotic cells occurred almost equally in embryos of the three fly lines analyzed (Fig. 3A), suggesting that αPS3 and βν function in the same pathway for the induction of phagocytosis.

We previously reported that βν is involved in the phagocytosis of S. aureus by hemocytes (24). We therefore examined the participation of αPS3 in the βν-mediated phagocytosis of this bacterium. Flies were subjected to RNAi of scb, and hemocytes prepared from third-instar larvae were tested for phagocytic activity in an assay in vitro. The data indicated that a loss of αPS3 brought about a reduction of phagocytosis (Fig. 3B). We next examined the relationship between αPS3 and βν in the phagocytosis of S. aureus, as done for the phagocytosis of apoptotic cells. We found that hemocytes prepared from flies, which had been subjected to RNAi of both scb and betaInt-nu, possessed an activity almost equal to that of hemocytes with knockdown of either subunit alone (Fig. 3C). These results indicated that αPS3 is also required for hemocytes to effectively engulf S. aureus, and suggested cooperation between αPS3 and βν.

Physical Association of αPS3 and βν—We next tried to observe a physical association between αPS3 and βν in l(2)mbn cells, a cell line established from larval hemocytes. The cells were treated with a membrane-impermeable cross-linker to covalently combine substances existing at the cell surface in close proximity to each other. Whole-cell lysates were prepared, treated with a buffer for SDS-PAGE in the presence and absence of 2-mercaptoethanol, and analyzed by Western blotting. The treatment with the cross-linker did not affect the migration of αPS3 when the lysates were separated after incubation with 2-mercaptoethanol (Fig. 4A, left panel). However, the same lysates showed a smear-like additional signal with a slower migration when incubated in the absence of 2-mercaptoethanol (Fig. 4A, left panel). This was almost the same for βν except that incubation with 2-mercaptoethanol seemed to cause a reduction of migration (Fig. 4A, middle panel), suggesting the presence of an intramolecular disulfide bond. In contrast, no additional signal was observed after cross-linking for Ced-6, a signaling molecule located inside cells, examined as a negative control (Fig. 4A, right panel). These results suggested the occurrence of a structural change for αPS3 and βν, but not for Ced-6, after the treatment of cells with the cross-linker. Next, l(2)mbn cells were transfected with plasmid vectors for the overexpression of both αPS3 and βν, treated with the cross-linker, and lysed. The lysates were then immunoprecipitated with the anti-αPS3 rat antibody or control rat serum, and the resulting precipitates were separated by SDS-PAGE after incubation with a buffer containing 2-mercaptoethanol followed by Western blotting with the anti-αPS3 and anti-βν rabbit antibodies. We found signals corresponding to αPS3 and βν in the immunoprecipitates obtained with the anti-αPS3 antibody but not with the control serum (Fig. 4B, left two panels). Similar results were observed in the reverse experiment, that is, immunoprecipitation with the anti-βν antibody and Western blotting with the anti-αPS3 antibody (Fig. 4B, right two panels). When immunoprecipitates with the anti-αPS3 antibody were analyzed for the presence of βν in Western blotting without treatment for reduction, the signal observed in the experiment with reduction disappeared, and instead signals of different migration that resembled the pattern without immunoprecipitation (see Fig. 4A, middle panel) became detectable (Fig. 4C). These results indicated that βν and αPS3 were co-immunoprecipitated depending on the treatment of cells with the cross-linker. The above results collectively suggested that αPS3 and βν are
physically associated with each other at the surface of l(2)mbn cells.

Taken together, it is most likely that the two integrin subunits αPS3 and βν form a complex to serve as a receptor for the phagocytosis of apoptotic cells and bacteria by Drosophila hemocytes.

DISCUSSION

In the present study, we adopted both genetic and biochemical approaches aiming at the identification of a α-subunit that cooperates with the β-subunit βν in the phagocytosis by Drosophila hemocytes. We successfully identified αPS3 as a partner of βν and showed that αPS3/βν serves as an engulfment receptor responsible for the phagocytic elimination of apoptotic cells and S. aureus in Drosophila. Cooperation between αPS3 and βν was previously suggested for midgut migration in embryos (26) as well as for synaptic morphogenesis at neuromuscular junctions in third instar larvae (37). This indicates that integrin αPS3/βν plays roles in various biological events in Drosophila.

There are two isoforms for αPS3, namely, αPS3A and αPS3B, which are produced through alternative transcription initiation on the same gene (35, 36). The expression of the two αPS3 mRNA is seemingly under both spatial and temporal control: αPS3A mRNA is predominantly present in the head while αPS3B mRNA is in both head and body tissues (36); and αPS3A mRNA is abundant in embryos, pupae, and adults while αPS3B mRNA is effectively produced in larvae, pupae, and adults (35). Such a spatiotemporal control of scb expression makes us assume that the two isoforms function differently, but no evidence for this has been provided so far. Our data indicated that αPS3A and αPS3B are equivalent in hemocytes to rescue a defect of phagocytosis caused by a mutation in scb, but the predominant expression of αPS3A mRNA at the embryonic stage suggests that this isoform of αPS3 plays the role of a partner for βν to serve as a receptor for the phagocytosis of apoptotic cells in embryonic hemocytes. On the other hand, αPS3B/βν is likely responsible for the phagocytosis of S. aureus by larval hemocytes.

In C. elegans, a α-subunit named INA-1 is required for the phagocytosis of apoptotic cells by embryonic epithelial cells (14). There exists only one β-subunit, PAT-3, for C. elegans integrins. INA-1 appears to form a complex with PAT-3 in embryos (38), and functional cooperation between these two integrin subunits has been suggested (14). It is thus likely that INA-1/PAT-3 plays a role as an engulfment receptor to remove apoptotic cells during embryogenesis. More recently, the other α-subunit of C. elegans integrins, PAT-2, was shown to be responsible for the phagocytic removal of apoptotic cells by muscle cells in embryos (39). PAT-2 too likely forms a heterodimer with PAT-3 to act as a receptor for phagocytosis.

It is most probable that CED-1 (and its orthologue) and integrins are the receptors that govern two partly overlapping signaling pathways for the induction of phagocytosis of apoptotic cells in C. elegans and Drosophila although a redundancy of receptors for each pathway cannot be excluded. CED-1 (40, 41) and Draper (42, 43), a Drosophila counterpart of CED-1, appear to bind proteins in the recognition of apoptotic cells by phagocytes. Draper also recognizes lipoteichoic acid, a cell wall component, as a ligand in the phagocytosis of S. aureus by hemocytes (34), suggesting a multiplicity of ligands for this receptor. In contrast, ligands for integrins in the recognition of apoptotic cells by phagocytes of C. elegans and Drosophila are yet to be identified. In mammals, integrins ανβ3 and ανβ5 are known to act as engulfment receptors in apoptotic cell clearance (21). Both integrins recognize the amino acid sequence Arg-Gly-Asp or the RGD motif, most probably owing to the action of αν. In fact, integrins ανβ3 and ανβ5 use a RGD motif-containing protein called milk fat globule EGF-factor 8 as a ligand, which at the same time binds phosphatidylserine to connect apoptotic cells and phagocytic cells (44). The alignment of amino acid sequences, however, reveals that αPS3 of Drosophila is not similar to human αν (16), and that Drosophila βν does not resemble human β3 or β5 (16). This suggests that the Drosophila integrin αPS3/βν does not require the RGD motif for the recognition of ligand molecules. In fact, we found that βν binds peptidoglycan in the phagocytosis of S. aureus (24). Similarly, C. elegans INA-1 does not share much structural similarity with RGD motif-binding human integrins. In addition, there found no appreciable similarity in the primary structure between αPS3 and INA-1 / PAT-2, and βν and PAT-3. A molecular basis for the recognition of apoptotic cells by αPS3/βν, INA-1/PAT-3, and PAT-2/PAT-3 remains to be clarified. Despite an evolutionarily conserved role of integrins as an engulfment receptor in the elimination of cells unnecessary for host organisms, their manner of action appears to differ between vertebrates and invertebrates.

Acknowledgements—We are grateful to Nicholas Brown, Nobert Perrimon, Takeshi Awasaki,
REFERENCES

1. Aderem, A., and Underhill, D. M. (1999) Mechanism of phagocytosis in macrophages. *Annu. Rev. Immunol.* 17, 593–623.
2. Stuart, L. M., and Ezekowitz, R. A. B. (2005) Phagocytosis: elegant complexity. *Immunity* 22, 539–550.
3. Liao, D. J. (2005) The scavenger cell hypothesis of apoptosis. Apoptosis redefined as a process by which a cell in living tissue is destroyed by phagocytosis. *Med. Hypotheses* 65, 23–28.
4. Nakanishi, Y., Nagaosa, K., and Shiratsuchi, A. (2011) Phagocytic removal of cells that have become unwanted. Implications for animal development and tissue homeostasis. *Dev. Growth Differ.* 53, 149–160.
5. Savill, J., and Fadok, V. (2000) Corpse clearance defines the meaning of cell death. *Nature* 407, 784–788.
6. Lauber, K., Blumenthal, S. G., Waibel, M., and Wesselborg, S. (2004) Clearance of apoptotic cells. Getting rid of the corpses. *Mol. Cell* 14, 277–287.
7. Ravichandran, K. S., and Lorenz, U. (2007) Engulfment of apoptotic cells: signals for a good meal. *Nat. Rev. Immunol.* 7, 964–974.
8. Ravichandran, K. S. (2011) Beginning of a good apoptotic meal. The find-me and eat-me signaling pathways. *Immunity* 35, 445–455.
9. Reddien, P. W., and Horvitz, H. R. (2004) The engulfment process of programmed cell death in *Caenorhabditis elegans*. *Annu. Rev. Cell Dev. Biol.* 20, 193–221.
10. Kinchen, J. M., and Hengartner, M. O. (2004) Tales of cannibalism, suicide, and murder. Programmed cell death in *C. elegans*. *Curr. Top. Dev. Biol.* 65, 1–45.
11. Mangahas, P. M., and Zhou, Z. (2005) Clearance of apoptotic cells in *Caenorhabditis elegans*. *Semin. Cell Dev. Biol.* 16, 295–306.
12. Lettre, G., and Hengartner, M. O. (2006) Developmental apoptosis in *C. elegans*: a complex CEDnario. *Nat. Rev. Mol. Cell Biol.* 7, 97–108.
13. Zhou, Z., Hartwig, E., and Horvitz, H. R. (2001) CED-1 is a transmembrane receptor that mediates cell corpse engulfment in *C. elegans*. *Cell* 104, 43–56.
14. Hsu, T.-Y., and Wu, Y.-C. (2010) Engulfment of apoptotic cells in *C. elegans* is mediated by integrin α/SRC signaling. *Curr. Biol.* 20, 477–486.
15. Callebaut, I., Mignotte, V., Souchet, M., and Mormon, J.-P. (2003) EMI domains are widespread and reveal the probable orthologs of the *Caenorhabditis elegans* CED-1 protein. *Biochem. Biophys. Res. Commun.* 300, 619–623.
16. Brown, N. H. (2000) Cell-cell adhesion via the ECM: integrin genetics in fly and worm. *Matrix Biol.* 19, 191–201.
17. Kinchen, J. M., and Ravichandran, K. S. (2007) Journey to the grave: signaling events regulating removal of apoptotic cells. *J. Cell Sci.* 120, 2143–2149.
18. Hynes, R. O. (2002) Integrons: bidirectional, allosteric signaling machines. *Cell* 110, 673–687.
19. Margadant, C., Monsuur, H. N., Norman, J. C., and Sonnenberg, A. (2011) Mechanisms of integrin activation and trafficking. *Curr. Opin. Cell Biol.* 23, 607–614.
20. Giancotti, F. G., and Ruoslahti, E. (1999) Integrin signaling. *Science* 285, 1028–1032.
21. Wu, Y., Tibrewal, N., and Birge, R. B. (2006) Phosphatidylinerine recognition by phagocytes: a view to a kill. *Trends Cell Biol.* 16, 189–197.
22. Dupuy, A. G., and Caron, E. (2008) Integrin-dependent phagocytosis - spreading from microadhesion to new concepts. *J. Cell Sci.* 121, 1773–1783.
23. Nagaosa, K., Okada, R., Nonaka, S., Takeuchi, K., Fujita, Y., Miyasaka, T., Manaka, J., Ando, I., and Nakanishi, Y. (2011) Integrin βv-mediated phagocytosis of apoptotic cells in Drosophila embryos. *J. Biol. Chem.* 286, 25770–25777.
24. Shiratsuchi, A., Mori, T., Sakurai, K., Nagaosa, K., Sekimizu, K., Lee, B. L., and Nakanishi, Y. (2012) Independent recognition of *Staphylococcus aureus* by two receptors for phagocytosis in *Drosophila*. *J. Biol. Chem.* 287, 21663–21672.
25. Brown, N. H., Gregory, S. L., and Martin-Bermudo, M. D. (2000) Integrins as mediators of
morphogenesis in Drosophila. Dev. Biol. 223, 1–16
26. Devenport, D., and Brown, N. H. (2004) Morphogenesis in the absence of integrins: mutation of both Drosophila β subunits prevents midgut migration. Development 131, 5405–5415
27. Lindsley, D. L., and Zimm, G. G. (1992) The Genome of Drosophila melanogaster, Academic Press Inc., San Diego, CA
28. Brückner, K., Kockel, L., Duchek, P., Luque, C. M., Rørth, P., and Perrimon, N. (2004) The PDGF/VEGF receptor controls blood cell survival in Drosophila. Dev. Cell 7, 73–84
29. Brand, A. H., and Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415
30. Manaka, J., Kuraishi, T., Shiratsuchi, A., Nakai, Y., Higashida, H., Henson, P., and Nakanishi, Y. (2004) Draper-mediated and phosphatidylserine-independent phagocytosis of apoptotic cells by Drosophila hemocytes/macrophages. J. Biol. Chem. 279, 48466–48476
31. Awasaki, T., Tatsumi, R., Takahashi, K., Arai, K., Nakanishi, Y., Ueda, R., and Ito, K. (2006) Essential role of the apoptotic cell engulfment genes draper and ced-6 in programmed axon pruning during Drosophila metamorphosis. Neuron 50, 855–867
32. Wada, A., Kato, K., Uwo, M. F., Yonemura, S., and Hayashi, S. (2007) Specialized extracellular cells connect embryonic and extraembryonic epidermis in response to Dpp during dorsal closure in Drosophila. Dev. Biol. 301, 340–349
33. Yee, G. H., and Hynes, R. O. (1993) A novel, tissue-specific integrin subunit, βν, expressed in the midgut of Drosophila melanogaster. Development 118, 845–858
34. Hashimoto, Y., Tabuchi, Y., Sakurai, K., Kutsuna, M., Kurokawa, K., Awasaki, T., Sekimizu, K., Nakanishi, Y., and Shiratsuchi, A. (2009) Identification of lipoteichoic acid as a ligand for Draper in the phagocytosis of Staphylococcus aureus by Drosophila hemocytes. J. Immunol. 183, 7451–7460
35. Stark, K. A., Yee, G. H., Roote, C. E., Williams, E. L., Zusman, S., and Hynes, R. O. (1997) A novel α integrin subunit associates with βPS and functions in tissue morphogenesis and movement during Drosophila development. Development 124, 4583–4594
36. Grotewiel, M. S., Beck, C. D. O., Wu, K. H., Zhu, X.-R., and Davis, R. L. (1998) Integrin-mediated short-term memory in Drosophila. Nature 391, 455–460
37. Tsai, P.-I., Kao, H.-H., Grabbe, C., Lee, Y.-T., Ghose, A., Lai, T.-T., Peng, K.-P., Van Vactor, D., Palmer, R. H., Chen, R.-H., Yeh, S.-R., and Chien, C.-T. (2008) Fak56 functions downstream of integrin αPS3betanu and suppresses MAPK activation in neuromuscular junction growth. Neural. Dev. 3, 26. doi:10.1186/1749-8104-3-26
38. Baum, P. D., and Garriga, G. (1997) Neuronal migrations and axon fasciculation are disrupted in ina-1 integrin mutants. Neuron 19, 51–62
39. Hsieh, H.-H., Hsu, T.-Y., Jiang, H.-S., and Wu, Y.-C. (2012) Integrin α PAT-2/CDC42 signaling is required for muscle-mediated clearance of apoptotic cells in Caenorhabditis elegans. PLoS Genet. 8, e1002663. doi:10.1371/journal.pgen.1002663
40. Wang, X., Li, W., Zhao, D., Liu, B., Shi, Y., Chen, B., Yang, H., Guo, P., Geng, X., Shang, Z., Peden, E., Kage-Nakadai, E., Mitani, S., and Xue, D. (2010) Caenorhabditis elegans transhyretin-like protein TTR-52 mediates recognition of apoptotic cells by the CED-1 phagocyte receptor. Nat. Cell Biol. 12, 655–664
41. Kang, Y., Zhao, D., Liang, H., Liu, B., Zhang, Y., Liu, Q., Wang, X., and Liu, Y. (2012) Structural study of TTR-52 reveals the mechanism by which a bridging molecule mediates apoptotic cell engulfment. Genes Dev. 26, 1339–1350
42. Kuraishi, T., Nakagawa, Y., Nagaosa, K., Hashimoto, Y., Ishimoto, T., Moki, T., Fujita, Y., Nakayama, H., Dohmae, N., Shiratsuchi, A., Yamamoto, N., Ueda, K., Yamaguchi, M., Awasaki, T., and Nakanishi, Y. (2009) Pretaporter, a Drosophila protein serving as a ligand for Draper in the phagocytosis of apoptotic cells. EMBO J. 28, 3868–3878
43. Okada, R., Nagaosa, K., Kuraishi, T., Nakayama, H., Yamamoto, N., Nakagawa, Y., Dohmae, N., Shiratsuchi, A., and Nakanishi, Y. (2012) Apoptosis-dependent externalization and involvement in apoptotic cell clearance of DmCaBP1, an endoplasmic reticulum protein of Drosophila. J. Biol. Chem. 287, 3138–3146
44. Hanayama, R., Tanaka, M., Miwa, K., Shinohara, A., Iwamatsu, A., and Nagata, S. (2002) Identification of a factor that links apoptotic cells to phagocytes. Nature 417, 182–187
45. Franc, N. C., Dimarcq, J.-L., Lagueux, M., Hoffmann, J., and Ezekowitz, R. A. B. (1996) Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 4, 431–443
FOOTNOTES

*This work was supported by Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science (grant numbers 22370049 to Y.N.; 23570160 to A.S.), a grant from Astellas Foundation for Research on Metabolic Disorders (to A.S.), and a grant from Danone Foundation (to A.S.).

1To whom correspondence may be addressed: Shizenken, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan. Tel.: 81-76-234-4482; Fax: 81-76-264-6223; E-mail: knagaosa@p.kanazawa-u.ac.jp.

2To whom correspondence may be addressed: Shizenken, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan. Tel.: 81-76-234-4481; Fax: 81-76-234-4480; E-mail: nakanaka@p.kanazawa-u.ac.jp.

FIGURE LEGENDS

FIGURE 1. Identification of αPS3-endocing scb required for phagocytosis of apoptotic cells in Drosophila embryos. Dispersed cells of embryos of various fly lines were analyzed for the level of phagocytosis of apoptotic cells by hemocytes. A, embryos of flies that had been subjected to hemocyte-specific RNAi, using a GAL4 driver with the promoter of srp, of genes coding for five α-subunits, mew (αPS1), if (αPS2), scb (αPS3), alphaPS4 (αPS4), and alphaPS5 (αPS5), were analyzed. B, embryos of flies that had been subjected to RNAi of scb and alphaPS4 specifically in mushroom body γ neurons (using the enhancer-trap line 201Y-GAL4) or hemocytes were analyzed. n.s., not significant. C, embryos of flies having a deletion of a chromosomal region including scb (Df(2R)Exel7135), an insertion of P-element within scb (scb01288), and an alteration of amino acid sequences of αPS3 (scb+αPS3) were analyzed for the level of phagocytosis (right) as well as for the level of αPS3 and Croquemort (left), an engulfment receptor of hemocytes (45, 46) analyzed as a positive control. In the left panel, lysates of embryos were separated on a SDS-polyacrylamide gel (0.15 mg of protein on a 5.5% gel) for the analysis of αPS3, and 0.02 mg of protein on a 10% gel for Croquemort) followed by Western blotting using the anti-αPS3 rabbit antibody or anti-Croquemort rat antibody. Portions of the data containing signals corresponding to αPS3 and Croquemort are exhibited (full-length blots are shown as supplemental Fig. S2). D, embryos of Df(2R)Exel7135 flies that forcedly express the isoform A (scbA) or B (scbB) of αPS3 in whole bodies (using a GAL4 driver with da promoter) were analyzed. Genotypes of the fly lines analyzed are: srcHemoGAL4 UAS-srcEGFP/+ (UAS-IR – in A), srcHemoGAL4 UAS-srcEGFP/UAS-mew-IR (UAS-IR mew in A), srcHemoGAL4 UAS-srcEGFP/UAS-if-IR+ (UAS-IR if in A), srcHemoGAL4 UAS-srcEGFP/UAS-srb-IR (UAS-IR scb in A), srcHemoGAL4 UAS-srcEGFP/UAS-srb-IR (UAS-IR scb with GAL4 src in B), srcHemoGAL4 UAS-srcEGFP/UAS-if-IR/+ (UAS-IR scb with GAL4 src in B), srcHemoGAL4 UAS-srcEGFP/UAS-srb-IR (UAS-IR scb with GAL4 src in B), srcHemoGAL4 UAS-srcEGFP/UAS-srb-IR (UAS-IR scb with GAL4 src in B), srcHemoGAL4 UAS-srcEGFP/UAS-srb-IR (UAS-IR scb with GAL4 src in B), srcHemoGAL4 UAS-srcEGFP/UAS-srb-IR (UAS-IR scb with GAL4 src in B), srcHemoGAL4 UAS-srcEGFP/UAS-srb-IR (UAS-IR scb with GAL4 src in B), srcHemoGAL4 UAS-srcEGFP/UAS-srb-IR (UAS-IR scb with GAL4 src in B), srcHemoGAL4 UAS-srcEGFP/UAS-srb-IR (UAS-IR scb with GAL4 src in B), srcHemoGAL4 UAS-srcEGFP/UAS-srb-IR (UAS-IR scb with GAL4 src in B), srcHemoGAL4 UAS-srcEGFP/UAS-srb-IR (UAS-IR scb with GAL4 src in B).

FIGURE 2. Expression profile of αPS3. A, lysates (0.1–0.14 mg of protein) of scb+ flies at the indicated developmental stages were analyzed by Western blotting using the anti-αPS3 rabbit antibody or the anti-βv rat antibody. The arrowheads indicate the positions of αPS3 and βv. The positions of markers with molecular masses in kDa are shown on the left. B, dispersed cells of stage-16 embryos of srcHemoGAL4 UAS-srcEGFP flies were immunochemicaly analyzed under membrane-unpermeabilized conditions for the presence of αPS3 using the anti-αPS3 rat antibody. As a negative control, the cells were similarly analyzed with an antibody that recognizes an intracellular region of βv (control antibody). Phase contrast and fluorescence views as well as overlays of the same microscopic fields that contain GFP-expressing hemocytes are shown as vertically aligned panels. The arrowheads denote positive signals. Scale bar, 10 μm.
FIGURE 3. Functional interaction of αPS3 with βν in phagocytosis of apoptotic cells and bacteria.
A, embryos of flies that had been subjected to hemocyte-specific RNAi, using a GAL4 driver with srp promoter, of genes coding for αPS3 (scb), βν (betaInt-nu), or both αPS3 and βν were analyzed for the level of phagocytosis of apoptotic cells.
B, hemocytes prepared from 3rd-instar larvae of flies that had been subjected to hemocyte-specific RNAi, using a GAL4 driver with pxn promoter, of the gene coding for αPS3 were used in an assay for phagocytosis in vitro with FITC-labeled S. aureus as targets.
C, the phagocytosis of S. aureus was analyzed as in B using flies that had been subjected to hemocyte-specific RNAi (with pxn-GAL4 driver) of genes coding for αPS3, βν, or both αPS3 and βν.
n.s., not significant.
Genotypes of the fly lines analyzed are: srpHemoGAL4 UAS-srcEGFP/+ (UAS-IR −), srpHemoGAL4 UAS-srcEGFP/UAS-scb-IR (UAS-IR scb), srpHemoGAL4 UAS-srcEGFP/+; UAS-betaInt-nu-IR/+ (UAS-IR betaInt-nu), and srpHemoGAL4 UAS-srcEGFP/UAS-scb-IR; UAS-betaInt-nu-IR/+ (UAS-IR betaInt-nu scb).

FIGURE 4. Physical association between αPS3 and βν.
A, l(2)mbn cells were transfected with cDNA coding for αPS3B (for the analysis of αPS3) or left untransfected (for the analysis of βν and Ced-6).
The cells were reacted or not reacted with a membrane unpermeable, SH reagent-cleaved chemical cross-linker (CL), and whole-cell lysates were prepared.
The lysates (0.08 mg of protein) were treated with a buffer containing or not containing 2-mercaptoethanol (2-ME), separated by SDS-PAGE (5.5% gel for the analysis of αPS3, 6% gel for βν, and 10% gel for Ced-6), and subjected to Western blotting with the anti-αPS3, anti-βν, and anti-Ced-6 rat antibodies.
The closed arrowheads indicate the positions of canonical proteins, the arrows show the positions of αPS3 and βν that were retarded on the gel after cross-linking, and the open arrowhead points to βν that migrated differently without 2-mercaptoethanol treatment.
The positions of markers with molecular masses in kDa are shown on the left.
B, l(2)mbn cells were transfected with cDNA coding for αPS3B and βν, reacted with the cross-linker, and lysed.
Whole-cell lysates (2~2.4 mg of protein) were immunoprecipitated (IP) with the anti-αPS3 rat antibody (left two panels), the anti-βν rat antibody (right panel), or control normal rat serum, and the precipitated materials were treated with 2-mercaptoethanol, separated on a 6% SDS-polyacrylamide gel, and analyzed by Western blotting (WB) using the anti-αPS3 and anti-βν rabbit antibodies.
The arrowheads point to the positive signals.
C, immunoprecipitates of l(2)mbn cell lysates with the anti-αPS3 rat antibody were prepared as in B and analyzed by Western blotting using the anti-βν rabbit antibody with and without 2-mercaptoethanol treatment.
The symbols are the same as those used in A (middle panel).
Fig. 2

A

- **anti-αPS3**
 - Embryo
 - Larva
 - Pupa
 - Adult

- **anti-βv**
 - Embryo
 - Larva
 - Pupa
 - Adult

B

- Control antibody
- Anti-αPS3

- Fluorescence
- Phase contrast
- Merge
Fig. 3

A

Ratio of phagocytosing hemocyte (%)

UAS-IR

\[\text{scb} \]

\[\text{betaInt-\textit{nu}} \]

\[\text{betaInt-\textit{nu}} \]

\[\text{scb} \]

\[p = 0.0063 \]

\[p = 0.010 \]

\[p = 0.022 \]

\[\text{n.s.} \]

\[\text{n.s.} \]

B

Ratio of phagocytosing hemocyte (%)

\[p = 0.021 \]

\[p = 0.040 \]

\[p = 0.037 \]

\[\text{GAL4} \]

\[\text{UAS-IR} \]

\[- \]

\[+ \]

\[- \]

\[+ \]

\[\text{scb} \]

\[\text{betaInt-\textit{nu}} \]

\[\text{betaInt-\textit{nu}} \]

\[\text{scb} \]

\[p = 0.00046 \]

\[p = 0.0094 \]

\[p = 0.0043 \]

C

Ratio of phagocytosing hemocyte (%)

\[p = 0.0050 \]

\[\text{n.s.} \]

\[\text{n.s.} \]

\[\text{UAS-IR} \]

\[- \]

\[\text{scb} \]

\[\text{betaInt-\textit{nu}} \]

\[\text{betaInt-\textit{nu}} \]

\[\text{scb} \]

\[p = 0.049 \]

\[\text{n.s.} \]

\[\text{n.s.} \]
Fig. 4

A

CL	2-ME	anti-αPS3	anti-βv	anti-Ced-6
-	-	-	-	-
-	+	+		
-	-	-	-	-
-	+	+		

(kDa)

158 97

B

IP	normal anti-serum αPS3	normal anti-serum αPS3	normal anti-serum βv	normal anti-serum βv	normal anti-serum αPS3
IP	anti-αPS3	anti-βv	anti-βv	anti-αPS3	
WB	(kDa) 158	158	158	158	
	97	97	97	97	

C

IP	anti-αPS3	anti-βv
WB	2-ME	+
		-

(kDa)

158 97