Blood gene expression risk profiles and interstitial lung abnormalities: COPDGene and ECLIPSE cohort studies

Matthew Moll1,2,3†, Brian D. Hobbs1,2,3†, Aravind Menon2,3, Auyon J. Ghosh1,2,3, Rachel K. Putman2,3, Takuya Hino3,4, Akinori Hata3,4, Edwin K. Silverman1,2,3, John Quackenbush1,5, Peter J. Castaldi1,3,6, Craig P. Hersh1,2,3, Michael J. McGeachie1, Don D. Sin7, Ruth Tal-Singer8, Mizuki Nishino3,4, Hiroto Hatabu3,4, Gary M. Hunninghake2,3† and Michael H. Cho1,2,3*†

Abstract

Background: Interstitial lung abnormalities (ILA) are radiologic findings that may progress to idiopathic pulmonary fibrosis (IPF). Blood gene expression profiles can predict IPF mortality, but whether these same genes associate with ILA and ILA outcomes is unknown. This study evaluated if a previously described blood gene expression profile associated with IPF mortality is associated with ILA and all-cause mortality.

Methods: In COPDGene and ECLIPSE study participants with visual scoring of ILA and gene expression data, we evaluated the association of a previously described IPF mortality score with ILA and mortality. We also trained a new ILA score, derived using genes from the IPF score, in a subset of COPDGene. We tested the association with ILA and mortality on the remainder of COPDGene and ECLIPSE.

Results: In 1469 COPDGene (training n = 734; testing n = 735) and 571 ECLIPSE participants, the IPF score was not associated with ILA or mortality. However, an ILA score derived from IPF score genes was associated with ILA (meta-analysis of test datasets OR 1.4 [95% CI: 1.2–1.6]) and mortality (HR 1.25 [95% CI: 1.12–1.41]). Six of the 11 genes in the ILA score had discordant directions of effects compared to the IPF score. The ILA score partially mediated the effects of age on mortality (11.8% proportion mediated).

Conclusions: An ILA gene expression score, derived from IPF mortality-associated genes, identified genes with concordant and discordant effects on IPF mortality and ILA. These results suggest shared, and unique biologic processes, amongst those with ILA, IPF, aging, and death.

Introduction

Interstitial lung abnormalities (ILA) are specific radiologic findings detected on computed tomography (CT) scans \cite{1–3} and, in some instances, may represent, or progress to, pulmonary fibrosis \cite{4, 5}. Both ILA and idiopathic pulmonary fibrosis (IPF) are associated with pulmonary symptoms \cite{2, 6}, diminished lung function \cite{1, 2, 4, 5, 7, 8}, and mortality \cite{9}. Despite these clinical similarities, genetic analyses reveal that these entities have both overlapping and distinct genetic risk alleles \cite{10, 11}.

1Matthew Moll and Brian D. Hobbs are equal contributions and co-first authors.
2Gary M. Hunninghake and Michael H. Cho jointly supervised this work and are co-senior authors.
3Correspondence: remhc@channing.harvard.edu
4Channing Division for Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA

Full list of author information is available at the end of the article

© The Author(s) 2022. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Taken together, the clinical and genetic evidence suggests that ILA and IPF possess both shared and unique pathobiology.

The risk of IPF and IPF mortality are not due to genetic variants alone [12]. Gene expression data can reflect the combination of both genetic variation and environmental factors that contribute to IPF pathogenesis (e.g. cigarette smoking) [13]. Herazo-Maya et al. [14] used blood microarray data to develop a 52-gene IPF risk score that predicted mortality in multiple IPF cohorts [15]. Whether this IPF mortality risk score, or the specific genes in this risk score, are associated with ILA or ILA mortality in current and former smokers is not known. A peripheral blood signature that predicted ILA and mortality in ILA could be important for identifying early disease and those at risk for worse outcomes. In addition, shared gene expression features of IPF progression and ILA risk would highlight important biologic processes associated with the spectrum of interstitial lung disease from precursor lesions to irreversible fibrosis to death.

Therefore, we hypothesized that the IPF risk score would be associated with ILA and ILA-associated mortality, and that this risk would be driven by a subset of the genes in the IPF mortality risk score; this subset of genes may also lend insight into the biologic mechanisms relating ILA to fibrosis and death. Briefly, the original IPF risk score applied the scoring algorithm of molecular subphenotypes (SAMS) to 52 genes expressed in peripheral blood mononuclear cells to predict transplant-free survival [14]. The SAMS method classifies participants into high- or low-risk groups based on the proportion of genes expected to have increased or decreased expression levels. This score suggested several immune alterations that may be contributing to poor IPF outcomes, including CD4+ T cells with CD28 downregulation and T cell exhaustion, activation of mast cells and fibroblasts. This score was able to improve survival prediction when added to clinical factors in six independent cohorts [14, 15].

Methods
Study populations
All study participants provided written informed consent. Each study center obtained institutional review board approval.

COPDGene
We included participants from the Genetic Epidemiology of COPD (COPDGene) study [16] who had a 5-year follow up visit with blood RNA-seq data and computed tomography (CT) scans that were assessed for the presence ILA [9]. Details of the COPDGene study have been previously described [16]. Briefly, COPDGene is a prospective cohort study of non-Hispanic white (NHW) and African American (AA) smokers (≥ 10 pack-years of smoking), aged 45–80 years at study initiation, with and without COPD. The study was originally conceived of as a case–control study and has been extended into a longitudinal study with 5- and 10-year follow up visits. Whole blood samples, as well as anthropometric, spirometry, and CT imaging data were collected at each visit.

ECLIPSE
We included Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) study [17] participants with microarray gene expression data and chest CT scans that were assessed for the presence of ILA [9]. ECLIPSE participants were smokers (≥ 10 pack-years of smoking) aged 45–75 years at study enrollment. Baseline questionnaire, spirometry, CT imaging and blood samples were collected. In ECLIPSE, COPD participants, but not controls, were followed longitudinally for 3 years.

ILA phenotyping
In both COPDGene and ECLIPSE, thoracic CT scans were assessed for ILA using a sequential method by three readers as previously described [10, 11]. The definition of ILA included in this manuscript conforms to the updated definition utilized by the Fleischner society [3, 18–20].

Preparation of gene expression data
RNA sequencing
COPDGene whole blood RNA-seq data was available at the 5-year follow up visit, and data generation was previously described [13]. Briefly, PAXgene Blood RNA tubes were used to collect whole blood samples, and the Qiagen PreAnalytiX PAXgene Blood miRNA Kit (Qiagen, Valencia, CA) was used to extract total RNA. Samples with concentrations > 25 ug/µL and RNA integrity number (RIN) > 6 were eligible for sequencing. TruSeq Stranded Total RNA with Ribo-Zero Globin kit (Illumina, Inc., San Diego, CA) were used for globin-reduction and cDNA library preparation. The Illumina HiSeq 2500 sequencer was used to generate 75 bp reads with a mean of 20 million reads per sample. Skewer [21] was used to trim TruSeq adapter sequences. Additional quality control was performed using FASTQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and RNA-SeQC [22]. Reads were aligned to the human GRCh38 reference genome using STAR 2.5 [23]. Count data were adjusted for library depth and batch effects were removed using the limma removeBatchEffects function [24].
Microarray gene expression data

ECLIPSE whole blood microarray data were available at the initial enrollment visit. Details regarding microarray data collection and processing were previously published [25]. Total RNA was extracted using PAXgene Blood miRNA kits and hybridized to the Affymetrix Human Gene 1.1 ST array. Quality control metrics were implemented using the Bioconductor oligo [26] and RMA Express [27] packages. The Factor Analysis for Robust Microarray Summarization [28] package was utilized for background correction and normalization. Batch effects were removed using the limma removeBatchEffects function [24]. As some gene transcripts were represented by multiple probes, we chose the probe with the greatest interquartile range, as previously described [14, 15].

We then took additional steps to facilitate comparability across RNA-seq and microarray data technologies: (1) we limited transcripts to those present in both data sets based on HGNC symbols; (2) we scaled and centered all gene expression data to have a mean of zero and a standard deviation of 1.

Statistical analyses

Overview of study design

COPDGene was used as a discovery and testing cohort, and ECLIPSE was used for independent replication (Fig. 1). In COPDGene, risk score training was performed in half the participants with the other half of the participants used for risk score testing. We assessed the association of three transcriptome-based risk scores (see **Predictors**) with outcomes (see **Outcomes**) in the COPDGene testing sample. We attempted to replicate the risk score associations in ECLIPSE.

Predictors

We calculated the Herazo-Mayo et al. [14, 15] IPF prognosis signature using transcriptomic data from COPDGene and ECLIPSE and applied this risk signature to the prediction of ILA and mortality in these cohorts. Two transcripts were not available in our cohorts (C2ORF27A and SNHG1), resulting in 50 genes available for testing. Briefly, calculating this risk score involves calculating the proportion of up- and down-regulated genes, summing the normalized expression values, calculating the product between the summed normalized expression values and proportion of decreased and increased genes, and comparing the up- and down- scores to the median for the population. If both the up- and down- scores are higher than the median of the population in which the score is being calculated, then the person is considered to be at high IPF mortality risk (1 = high IPF mortality risk, 0 = low IPF mortality risk).

Fig. 1 Schematic of study design. ILA = interstitial lung abnormalities. IPF = idiopathic pulmonary fibrosis. LASSO = least absolute shrinkage and selection operator.
To test the performance of these same genes using an alternative method, we developed a risk score optimized to the outcome of ILA by taking the following steps:

1. We used the 50 available transcripts as inputs to construct a penalized regression (Least Absolute Shrinkage and Selection Operator (LASSO)) model in the COPDGene training set optimized to the outcome of ILA. LASSO regression coefficients toward zero to provide feature selection and minimizes collinearity amongst predictors. We tuned models within the COPDGene training set using fivefold cross-validation, optimizing the area-under-the-receiver-operating-curve (AUC) on the left-out fold.

2. We used this penalized regression model (weights of gene transcripts) to calculate the log odds for ILA for each individual in the COPDGene testing sample and ECLIPSE.

3. We scaled and centered the risk scores within the COPDGene testing and ECLIPSE datasets separately.

Thus, we evaluated two main predictors in this study: (1) the original IPF mortality risk score, and (2) a re-weighted risk score optimized to ILA as an outcome (hereafter, “ILA score [IPF transcripts]”). Results were presented as 1 standard deviation increases in risk scores. Each risk score was tested in the COPDGene testing set and the ECLIPSE replication cohort. We additionally compared the direction of effects of genes in these scores. We range-standardized both risk scores and plotted histograms of predicted probabilities for each respective outcome in the COPDGene testing set.

As an additional analysis, we created an ILA-optimized risk score using genome-wide transcripts (hereafter, “ILA score [all transcripts]”). Prior to training the ILA score [all transcripts], we limited our analyses to highly expressed transcripts (> 1 count per million in 99% of samples), resulting in 9100 transcripts. These 9100 transcripts were used as inputs into LASSO regression. The model was tuned within the COPDGene training set using tenfold cross-validation, minimizing misclassification error on the left-out fold. We then calculated and standardized the risk scores above as for the ILA score [IPF transcripts]. We examined the correlation between the ILA score [all transcripts] and IPF score genes using Pearson correlation coefficients and considered those with Bonferroni-adjusted p-values to be significant. We tested the association of each risk score with outcomes in the COPDGene testing set and ECLIPSE.

We also performed differential gene expression analyses for ILA in the COPDGene training set using limma

[24]; for this analysis, RNA-seq data were processed and normalized as described above except that we included transcripts with more than 1 count per million in half the samples. We considered a false discovery rate (FDR)-adjusted p-value level of 0.05 to be significant.

Outcomes
We examined two primary outcomes available in both cohorts: (1) prevalent ILA (at the time of blood sample collection), and (2) time-to-death. With respect to time-to-death, COPDGene participants were followed for up to 5 years after collection of RNA-seq data, and ECLIPSE participants for up to 8 years.

Models and model specifications
We used logistic regression to test the association of each of the 50 transcripts with ILA and compared the direction of effect for ILA to the transcript direction (up or down) in the IPF mortality score. We also compared the association of the 50 individual transcripts with all-cause mortality and compared the effect direction to both the effect for ILA association and direction in the original IPF mortality score. We assessed the association of each risk score (IPF score, ILA score [IPF transcripts], ILA score [all transcripts]) with ILA and time-to-death. Logistic regression was used to assess associations with ILA. We used Cox regression [29] to test associations with time-to-death (survival R package [30]). Models were adjusted for age, sex, race, body-mass index, pack-years of cigarette smoking, and current smoking status (at the time of blood sample collection). For time-to-death analyses, we also performed stratified analyses in ILA and non-ILA participants. For ILA, the Bonferroni-adjusted threshold was 0.05/3 risk scores/2 cohorts = 0.0083. For time-to-death analyses, the Bonferroni-adjusted threshold was 0.05/3 risk scores/2 cohorts/3 strata = 0.0028. Proportional hazards assumptions were evaluated with Schoenfeld residual plots and tests. To evaluate predictive performance, we performed AUC analyses using the pROC R package and c-indices [31] for survival models using the rms R package. As a sensitivity analysis, we further adjusted models for white blood cell differential counts to assess whether white cell counts attenuated the observed signals. To combine the signals between the two testing cohorts (COPDGene testing, and ECLIPSE), we performed fixed-effects inverse variance-weighted meta-analyses using the meta R package [32].

Mediation analyses
We noted that the associations of the ILA score [IPF transcripts] with time-to-death were substantially attenuated when age was added to models. Therefore, we performed causal mediation analyses to determine
whether the effects of age on mortality were mediated through this score. We used the medflex R package [33] to perform natural effects causal mediation analyses [34, 35] in the COPDGene testing set. We considered age as the exposure, and death (binary) as the outcome in logistic regression analyses. We considered the ILA score [IPF transcripts] as the mediator, and a p-value for the natural indirect effects less than 0.05 was considered significant. We also tested the association of the ILA score [IPF transcripts] with age using a Pearson correlation coefficient.

Characterization of IPF and ILA score genes
To gain biologic insight into the relationship between genes that comprised the risk scores, we examined Pearson correlation coefficients between each of the 50 transcripts and constructed a heatmap of correlation coefficients. The observed correlation structure allowed us to use the sigora R package [36] to perform pathway enrichment analyses for the 50 gene transcripts. We also evaluated how changing the number of genes in the ILA score [IPF transcripts] affected predictive performance (Additional file 1: Methods).

All analyses were performed in R version 4.0.3 (www.r-project.org). Normality for continuous variables was assessed by visual inspection of histograms. Results were reported as mean ± standard deviation or median [interquartile range], as appropriate. Continuous variables were compared with Student t-tests or Wilcoxon tests, and categorical variables were compared with analysis of variance (ANOVA) or Kruskal–Wallis tests, as appropriate. A p-value less than 0.05 was considered nominally significant, and p-values below Bonferroni-adjusted thresholds were considered significant.

Results
Characteristics of study participants
Figure 1 is a schematic of the study design. We included 1,469 COPDGene participants from the 5-year follow up visit with RNA-seq and visual scoring of ILA phenotype data, and 571 ECLIPSE participants with microarray and ILA phenotype data. Table 1 shows demographic characteristics and outcomes in the COPDGene training set (n = 734), COPDGene testing set (n = 735), and ECLIPSE (n = 571). Characteristics were similar across COPDGene training and testing sets. Compared to COPDGene, ECLIPSE participants were more likely to be male, were all European ancestry, had more pack-years of smoking, were less likely to be current smokers, were less likely to have ILA, and had a higher proportion of deaths.

Development of risk scores
Fifty out of the 52 genes from Herazo-Maya et al. [14, 15] were available in both cohorts (C2ORF27A and SNHG1 were missing). First, using these 50 genes, we calculated the IPF score in COPDGene and ECLIPSE participants. We noted that when testing the associations of individual transcripts with ILA or death, 23 genes had a discordant direction of effect for ILA and 3 genes (HLA-DP1, HLA-DP2, LPAR6) had a discordant direction of effect for all-cause mortality compared to the directions of effects reported for the IPF score (Additional file 1: Table S1). Second, we used the 50 available genes to construct a LASSO penalized regression model in the COPDGene training set, which was optimized to the outcome of ILA (ILA score [IPF transcripts]). Additional file 1: Table S2 shows the ILA score [IPF transcripts] gene transcripts, beta coefficients and comparisons of directions of effects to the IPF risk score. Only three transcripts (LBH, GBP4, BTN3A1) were significantly associated with ILA, all of which were included in the ILA score [IPF transcripts].

Table 1: Characteristics of study participants

Characteristics	COPDGene training sample	COPDGene testing sample	ECLIPSE	p	
n	734	735	571		
Age in years (mean (SD))	65.08 (8.53)	64.91 (8.60)	64.04 (6.10)	0.054	
Sex (No. (% female))	341 (46.5)	371 (50.5)	195 (34.2)		<0.001
Race (No. ((%) African American)	178 (24.3)	171 (23.3)	0 (0.0)		<0.001
Pack-years of smoking (mean (SD))	43.71 (23.86)	42.38 (21.85)	47.27 (26.45)	0.002	
Current smoking status (No. (%))	253 (34.5)	250 (34.1)	129 (22.6)		<0.001
Outcomes					
ILA (No. (%)) *	122 (16.6)	126 (17.1)	37 (6.5)	<0.001	
Dead (No. (%))	84 (11.4)	73 (9.9)	107 (30.7)	<0.001	
Days followed (median [IQR])	1881.00 [1603.75, 2104.00]	1916.50 [1631.50, 2140.75]	2848.00 [1425.00, 2926.00]	<0.001	

ILA = interstitial lung abnormalities. *ILA prevalence in the overall population was 5.7% (586/10,364) in COPDGene and 1.3% (37/2,746) in ECLIPSE.
The ILA score [IPF transcripts] included 11 transcripts (BTN3A1, CPED1, CXCR6, GBP4, GPR174, IL7R, LBH, LPAR6, LRRC39, NAP1L2, PLBD1), six of which had a discordant direction of effect with the IPF score (BTN3A1, CPED1, GBP4, GPR174, LPAR6, NAP1L2). The distribution of the ILA score [IPF transcripts] in both cohorts is shown in Additional file 1: Figure S1. We then plotted range-standardized predicted probabilities in the COPDGene testing set and observed overlapping but distinct distributions between the two risk scores (Additional file 1: Figure S2). We additionally used genome-wide transcripts to train a risk score to ILA (ILA score [all transcripts]); this score included 25 transcripts (Additional file 1: Table S3), none of which overlapped with the 50 genes in the IPF score. To examine correlation structure between the ILA score [all transcripts] and IPF score genes, we calculated correlation coefficients for 1200 unique combinations of risk score genes and observed that 547 transcripts were significantly correlated (Additional file 1: Figure S3). We then tested these risk scores (IPF score, ILA score [IPF transcripts], ILA score [all transcripts]) for association with ILA and time-to-death in the COPDGene testing set and ECLIPSE.

Association of risk scores with ILA

The IPF score was not associated with ILA in the COPDGene testing set or ECLIPSE (Table 2). The univariable associations of the ILA score [IPF transcripts] with ILA in both cohorts is shown in Fig. 2A. In multivariable models (Table 2), the ILA score [IPF transcripts] was associated with ILA in the COPDGene testing set and ECLIPSE (meta-analysis OR 1.4 [95% CI: 1.2–1.6], \(p = 6.8e-5 \)). The multivariable model including clinical factors and the IPF score had AUCs of 0.64 in both the COPDGene testing set and ECLIPSE. The multivariable model including clinical factors and the ILA score [IPF transcripts] had AUCs of 0.65 in the COPDGene testing set and 0.68 in ECLIPSE, respectively. As a sensitivity analysis, we further adjusted models for white blood cell

![Fig. 2](image-url) Violin and box plots showing the unadjusted association of the ILA score [IPF transcripts] with ILA (A) and death (B) in the COPDGene test set (n = 735) and ECLIPSE (n = 571)

Score	COPDGene	ECLIPSE	Combined (Meta-analyses)							
	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted	Adjusted	Unadjusted			
	OR (95% CI)	\(p \)								
IPF score	1.8 (1.1–2.8)	0.018	1.7 (1.1–2.8)	0.023	0.64 (0.22–1.9)	0.41	0.63 (0.22–1.8)	0.4	1.5 (0.95—2.3)	0.083
ILA score [IPF transcripts]	1.4 (1.2–1.7)	6.70E-05	1.3 (1.1–1.6)	0.0019	1.5 (1.2–2)	0.001	1.4 (1.1–1.9)	0.011	1.4 (1.2—1.6)	6.80E-05

Logistic regression models were adjusted for age, sex, race, body-mass index, pack-years of smoking, and current smoking status. Inverse variance fixed-effects meta-analyses of the adjusted estimates were performed.

ILA interstitial lung abnormalities, IPF idiopathic pulmonary fibrosis.
counts, and observed similar results (Additional file 1: Table S4).

Association of risk scores with time-to-death
The IPF risk score was not associated with mortality in the COPDGene testing set or ECLIPSE (Table 3). The univariable associations of the ILA score [IPF transcripts] with death in both cohorts is shown in Fig. 2B. In multivariable analyses (Table 3), the ILA score [IPF transcripts] is associated with time-to-death in all participants, but not the ILA participants. Multivariable models with clinical risk factors and the IPF or ILA [IPF transcripts] scores performed similarly in terms of c-indices (Table 3). Meta-analyses demonstrate a significant association of the ILA score [IPF transcripts] with time-to-death (Fig. 3) in all (meta-analysis HR 1.25 [95% CI: 1.12–1.41], p = 1.25e-4) and non-ILA (meta-analysis HR 1.33 [95% CI: 1.17–1.52], p = 2.17e-5) participants. As a sensitivity analysis, we further adjusted models for white blood cell counts and observed similar results (Additional file 1: Table S5). In causal mediation analyses, we observed that the ILA score [IPF transcripts] mediated the effects of age on mortality (natural indirect effect p = 0.003; proportion mediated = 11.8% [95% CI: 4.04%–22.6%]). We also observed that the ILA score [IPF transcripts] was associated with age in both the COPDGene training and testing sets (Additional file 1: Figure S4).

We examined the ILA score [all transcripts] for association with ILA and all-cause mortality. We found that this new score was associated with ILA and all-cause mortality in the COPDGene testing set, but only with all-cause mortality in ECLIPSE (Additional file 1: Table S6).

In differential gene expression analyses in the COPDGene training set, no transcripts were associated with ILA at an FDR of 0.05.

Characterization of the gene signature
Having demonstrated that the genes in the IPF mortality score can be re-weighted to create an ILA score, and that this ILA score [IPF transcripts] consistently associates with ILA and time-to-death in two cohorts, we sought to understand how biological processes annotated to the IPF mortality genes relate to our outcomes. We observed that these 50 genes are highly correlated with each other.

Table 3 Association of the IPF and ILA [IPF transcripts] scores with time-to-death in the COPDGene test set (n = 735) and ECLIPSE (n = 571)

Score	Cohort	Stratum	Unadjusted HR (95% CI)	p	Adjusted HR (95% CI)	p	c-index
IPF score	COPDGene test set	All	1.3 (0.71–2.3)	0.41	1.3 (0.7–2.3)	0.44	0.63
		ILA	1.3 (0.47–3.8)	0.6	1.2 (0.44–3.6)	0.68	0.66
		non-ILA	1.2 (0.57–2.4)	0.67	1.2 (0.58–2.4)	0.63	0.61
	ECLIPSE	All	1.3 (0.77–2.1)	0.36	1.2 (0.75–2)	0.4	0.56
		ILA	2.2 (0.49–10)	0.3	2.6 (0.54–13)	0.23	0.54
		non-ILA	1.2 (0.72–2.1)	0.47	1.2 (0.7–2)	0.54	0.56
ILA score [IPF transcripts]	COPDGene test set	All	1.4 (1.2–1.7)	3.60E-05	1.3 (1.1–1.6)	0.0012	0.64
		ILA	1 (0.64–1.6)	0.99	0.9 (0.53–1.5)	0.69	0.66
		non-ILA	1.6 (1.3–2)	2.50E-06	1.6 (1.3–2)	4.00E-05	0.62
	ECLIPSE	All	1.3 (1.1–1.4)	0.003	1.2 (1.1–1.4)	0.023	0.6
		ILA	1.2 (0.78–1.7)	0.47	1.1 (0.67–1.7)	0.82	0.52
		non-ILA	1.3 (1.1–1.5)	0.006	1.2 (1.1–1.4)	0.027	0.59

Multivariable Cox regression models were adjusted for age, sex, race, body-mass index, pack-years of smoking, and current smoking status. ILA = interstitial lung abnormalities. C-indices for multivariable models including clinical variables and corresponding risk score are shown in the right-hand column.
and may represent coordinated biological processes. A heatmap of Pearson correlation coefficients is shown in Additional file 1: Figure S5. In pathway enrichment analyses, the 50 IPF score genes were associated with three pathways: Butyrophilin family interactions, P2Y receptors, and immunoregulatory interactions between lymphoid and non-lymphoid cells (Additional file 1: Table S7). The effects of varying levels of genes in the ILA score [IPF transcripts] on predictive performance for ILA are shown in Additional file 1: Results; Additional file 1: Table S8; Additional file 1: Figure S6).

Discussion

While there has been extensive research into gene expression changes associated with IPF [37–40], no studies, to our knowledge, have examined gene expression profiles in ILA. ILA may progress to pulmonary fibrosis in certain instances [4, 5], and IPF and ILA have demonstrated overlapping yet distinct genetic underpinnings [10]. In this study of over 2000 individuals with blood gene expression and ILA phenotype data, we examined the association of a blood IPF gene expression mortality score with ILA and all-cause mortality. We found that a previously described IPF score was not associated with ILA or mortality. By applying penalized regression to the IPF gene transcripts, we developed an 11-transcript ILA score. Six of these genes had discordant directions of effects compared to the IPF score, which may implicate important mechanisms regulating whether an individual develops ILA versus progressing to pulmonary fibrosis. While there may be some shared pathogenic mechanisms between ILA and IPF, the amount of discordance we observed further suggests that some of those with ILA (among populations of smokers) are likely distinct from IPF. Two ILA scores, derived from IPF score or genome-wide transcripts, were associated with all-cause mortality in both cohorts, suggesting that the transcripts relevant to ILA risk may represent general risk factors for mortality. We identified a peripheral blood signature of ILA, demonstrated overlapping and distinct gene transcripts between ILA and IPF, and lend insight into how gene expression profiles and biological pathways associated with IPF prognosis relate to ILA and all-cause mortality.

Our analyses may lend insight into biological processes relevant to ILA. We developed our risk score using LASSO, a method that reduces collinearity amongst features and optimizes prediction accuracy, but which does not necessarily choose the most biologically relevant features; thus, biological interpretation must be performed with caution. Despite this caveat, many of the genes identified as being predictive of ILA have been implicated in IPF pathogenesis, and the correlation structure amongst IPF risk score genes allowed us to perform pathway enrichment analyses and link the predictive transcripts to specific biological processes.

Five genes demonstrated concordant directions of effects between the ILA [IPF transcripts] and IPF scores (CXCR6, IL7R, LBH, LRRC39, PLBD1), suggesting these genes may represent important biologic processes in promoting the progression of pulmonary fibrosis. IL7R had the largest absolute effect size in the ILA score [IPF transcripts] and was inversely associated with ILA. Our results are consistent with in vitro and in vivo molecular evidence demonstrating that IL-7 inhibits fibroblast TGF-β production in pulmonary fibrosis [41]. CXCR6 is a chemokine receptor that attracts T cells to the lungs [42] and can promote the epithelial-mesenchymal transition in cell lines [43], an event that may be important to the progression of pulmonary fibrosis. LBH is a transcription factor involved in Wnt signaling and is highly expressed in sub-populations of matrix fibroblasts from mouse lung [44]. Thus, there is already evidence that IL7R, LBH, and CXCR6 are important for understanding processes that promote pulmonary fibrosis, and LRRC39 and PLBD1 are additional targets for future studies.

The transcripts with discordant directions of effects compared to the IPF score (BTN3A1, GBP4, CPED1, GPR174, LPAR6, NAP1L2) support the notion that ILA may represent a collection of disorders, some of which are distinct from IPF. This observation is consistent with genetic analyses of IPF and ILA. A genome-wide association study (GWAS) of ILA identified four genome-wide significant variants (in FCF1P3, IPO11, HTR1E, MUC5B); while the MUC5B rs35705950 promoter polymorphism is well known in IPF, the other three loci were not associated with IPF. Similarly, out of 12 previously reported IPF GWAS variants, only four other variants were significantly associated with ILA (DPP9, DSP, FAM13A, IVD), though most of the others were consistent in effect direction. Whether the genetic variants uniquely associated with ILA indirectly regulate the discordant genes identified in the current study is unclear and requires further investigation.

The transcripts with discordant directions of effects between the ILA [IPF transcripts] and IPF scores allude to divergent biologic processes that could play a role in determining whether a person develops ILA or progresses to irreversible fibrosis. BTN3A1 is part of the Butyrophilin immunoglobulin superfamily. Butyrophilins may play a role in facilitating interactions between adaptive and innate immune cells [45]. GBP4 is a guanylate binding protein that facilitates second messenger signaling for interferons, and has been observed to increase in response to cytokine stimulation in IPF lungs [46]. Genetic variation in GPR174 is associated with susceptibility to autoimmune disease,
and GPR174-deficient mice were resistant to lipopolysaccharide-induced cytokine storm [47]. NAP1L2 promotes histone acetylation during neuronal differentiation [48] and other members of the same protein family have demonstrated increased expression in lung fibroblasts from IPF patients [49]. To determine whether peripheral blood cells might be explaining a substantial portion of our associations, we adjusted models for measured white cell counts and observed similar results. These results suggest that peripheral blood cell counts do not explain our observed associations. Taken together, these data suggest that immune responses to environmental/infectious insults, genetic variation, and epigenetic modifications may be important to understanding the distinct pathogenic mechanisms present in ILA that may lead to IPF.

We observed that the ILA score [IPF transcripts] was associated with all-cause mortality, but that this association was driven by non-ILA participants, albeit with small sample sizes for ILA. In single gene association analyses for the 50 IPF score genes, nearly half of all transcripts had discordant effect directions for ILA association compared to associations with all-cause mortality in comparison to gene weights in the IPF score. Conversely, the 50 IPF gene effect directions in association with all-cause mortality (in all study participants) were highly concordant with the directions of weights in the IPF score with only three genes having discordant effect directions. Further, an ILA score trained using genome-wide transcripts in the COPDGene training data was not associated with ILA in both the COPDGene testing set and ECLIPSE but was associated with all-cause mortality in both cohorts. These data suggest that transcripts associated with ILA risk may also be risk factors for all-cause mortality. When training a gene expression model to ILA, we identified a gene set associated with all-cause mortality; however, an ILA score derived from the limited set of IPF score genes is associated with ILA and mortality. These observations suggest that the IPF score represents a mixture of transcripts relevant to all-cause mortality and the ILA-IPF axis. LPAR6 was the only non-ILA transcript with concordant directions of effects when tested for association with ILA and all-cause mortality and had discordant directions of effects compared to the IPF score. LPAR6 is a lysophosphatidic acid (LPA) receptor. LPA has been shown to signal through its G-protein-coupled receptors to induce pro-inflammatory signals from stressed epithelial cells and activate TGF signaling [50]. Thus, LPAR6 could represent a shared mechanism between ILA and all-cause mortality or it could be on the causal pathway between ILA and death.

As aging is a major driver of mortality, we sought to determine whether the effects of the ILA score [IPF transcripts] on mortality represent an aging effect. In causal mediation analyses, we found that about 12% of the effect of age on mortality was mediated through the ILA score [IPF transcripts]. Thus, the 11 genes in the ILA score [IPF transcripts] might be important for overall mortality and partially represent aging effects on mortality. We must interpret our mediation results with caution as the ILA score [IPF transcripts] was associated with age, which makes it unclear whether the observed gene expression changes lead to aging or vice versa; this issue alludes to an assumption of causal mediation analyses that there are no intertwined causal pathways (i.e. "identifiability condition"). Determining which gene expression changes are caused by versus causative of aging requires further investigation. Further, the majority of aging effects are not captured by the ILA score [IPF transcripts], which highlights the need for further research into the shared and divergent biological processes related to ILA, aging, and mortality.

Strengths of this study include replication in two well-characterized cohorts of smokers, cross-technology replication (both RNA-seq and microarray), and the application of causal inference analyses to examine the relationship between IPF and ILA transcriptomic risk with aging and risk of death. Despite the statistical significance of the odds ratio of 1.4 and AUC of 0.65–0.68, the clinical impact is likely low. Even large odds ratios can have poor discriminative performance. Quantifying the clinical impact of risk scores in disease screening, diagnosis, and prevention is a complex issue [51, 52]. Understanding the implications for using our score as a clinical prediction tool was outside the scope of this study. We were not able to assess the association of the ILA risk scores with the development or progression of ILA due to data availability. Our primary analysis was of genes identified in a study of IPF, which allowed an assessment of the contrasts between IPF mortality and ILA risk in a well-validated set of genes. Notably, attempting to use a larger set of genes in the blood transcriptome, including other transcripts that may be more predictive of ILA risk, was not superior. The reasons that the ILA score [all transcripts] performed worse than the ILA score [IPF transcripts] are likely similar to the reasons we did not observe genes differentially expressed with ILA; the reason for the lack of differential gene expression for ILA is multifactorial and is attributable to a combination of limited statistical power, phenotypic heterogeneity of ILA in smokers, and poor reflection of ILA disease processes in peripheral blood gene expression. While our study is consistent with a limited signal for ILA in peripheral blood gene expression, we acknowledge that a wider
range of machine learning and prediction methodologies could improve predictive performance of the risk score. The correlation between the ILA score [all transcripts] and IPF score genes suggests an apparent lack of specificity of the prediction genes and reinforces the need to approach biological interpretations with caution. We were not able to assess the impact of technical factors (e.g. globin-versus poly-A-reduced RNA-seq, harmonizing gene expression platforms) on risk score construction and performance; improved risk scores and biological insights might be attainable by standardizing data collection and processing methods across cohorts. Other approaches using blood gene expression and additional -Oms data (such as methylation, proteomic, microbiome) may allow us to delve deeper into the mechanisms underlying our observed associations, as well as longitudinal studies of ILA and IPF.

In conclusion, a peripheral blood gene signature associated with IPF mortality was not associated with ILA or mortality in two well-characterized cohorts of smokers. An ILA gene expression score, derived from the genes in the IPF score, was reproducibly associated with ILA and all-cause mortality in current and former smokers. Separately, an ILA score derived from genome-wide transcripts was associated with all-cause mortality, but not ILA in validation studies. Approximately half of the genes in the ILA score [IPF transcripts] were of opposite direction in the IPF score, and genes associated with ILA may also be risk factors for mortality and partially represent aging effects on mortality. Genes identified in this study may be important candidates to further examine in the pathogenesis and progression of ILA to IPF and in mortality.

COPDGene. Investigators – Core Units
Administrative Center: James D. Crapo, MD (PI); Edwin K. Silverman, MD, PhD (PI); Barry J. Make, MD; Elizabeth A. Regan, MD, PhD.
Genetic Analysis Center: Terri Beaty, PhD; Ferdouse Begum, PhD; Peter J. Castaldi, MD, MSc; Michael Cho, MD; Dawn L. DeMeo, MD, MPH; Adel R. Boueiz, MD; Marilyn G. Foreman, MD, MS; Eitan Halper-Stromberg; Lystra P. Hayden, MD, MMSc; Craig P. Hersh, MD, MPH; Jacqueline Hetmanski, MS, MPH; Brian D. Hobbs, MD; John E. Hokanson, MPH, PhD; Nan Laird, PhD; Christopher Lange, PhD; Sharon M. Lutz, PhD; Merry-Lynn McDonald, PhD; Margaret M. Parker, PhD; Dmitry Prokopenko, Ph.D; Dandi Qiao, PhD; Elizabeth A. Regan, MD, PhD; Phuwanat Sakornsakolpat, MD; Edwin K. Silverman, MD, PhD; Emily S. Wan, MD; Sungho Won, PhD.
Imaging Center: Juan Pablo Centeno; Jean-Paul Charbonnier, PhD; Harvey O. Coxson, PhD; Craig J. Galban, PhD; MeiLan K. Han, MD, MS; Eric A. Hoffman, Stephen Humphries, PhD; Francine L. Jacobson, MD, MPH; Philip F. Judy, PhD; Ella A. Kazerouni, MD; Alex Kluber; David A. Lynch, MB; Pietro Nardelli, PhD; John D. Newell, Jr., MD; Aleena Notary; Andrea Oh, MD; Elizabeth A. Regan, MD, PhD; James C. Ross, PhD; Raul San Jose Estepar, PhD; Joyce Schroeder, MD; Jered Sieren; Berend C. Stoel, PhD; Juerg Tschirren, PhD; Edwin Van Beek, MD, PhD; Bram van Ginneken, PhD; Eva van Rikxoort, PhD; Gonzalez Vegas Sanchez-Ferrero, PhD; Lucas Veitel; George R. Washko, MD; Carla G. Wilson, MS; PFT QA Center, Salt Lake City, UT: Robert Jensen, PhD.
Data Coordinating Center and Biostatistics, National Jewish Health, Denver, CO: Douglas Everett, PhD; Jim Crooks, PhD; Katherine Pratte, PhD; Matt Strand, PhD; Carla G. Wilson, MS.
Epidemiology Core, University of Colorado Anschutz Medical Campus, Aurora, CO: John E. Hokanson, MPH, PhD; Gregory Kinney, MPH, PhD; Sharon M. Lutz, PhD; Kendra A. Young, PhD.
Mortality Adjudication Core: Surya P. Bhatt, MD; Jessica Bon, MD; Alejandro A. Diaz, MD, MPH; MeiLan K. Han, MD, MS; Barry Make, MD; Susan Murray, ScD; Elizabeth Regan, MD; Xavier Soler, MD; Carla G. Wilson, MS.
Biomarker Core: Russell P. Bowler, MD, PhD; Katerina Kechris, PhD; Farnoush Banaei-Kashani, Ph.D COPDGene Investigators – Clinical Centers.
Ann Arbor VA: Jeffrey L. Curtis, MD; Perry G. Pernican, MD.
Baylor College of Medicine, Houston, TX: Nicola Hanaia, MD, MS; Mustafa Atik, MD; Aladin Boriek, PhD; Kalpatha Guntupalli, MD; Elizabeth Guy, MD; Amit Parulekar, MD.
Brigham and Women’s Hospital, Boston, MA: Dawn L. DeMeo, MD, MPH; Alejandro A. Diaz, MD, MPH; Lystra P. Hayden, MD; Brian D. Hobbs, MD; Craig Hersh, MD, MPH; Francine L. Jacobson, MD, MPH; George Washko, MD.
Columbia University, New York, NY: R. Graham Barr, MD, DrPH; John Austin, MD; Belinda D’Souza, MD; Byron Thomashow, MD.
Duke University Medical Center, Durham, NC: Neil MacIntyre, Jr., MD; H. Page McAdams, MD; Lacey Washington, MD.
Grady Memorial Hospital, Atlanta, GA: Eric Flenaugh, MD; Silanath Terpenning, MD.
HealthPartners Research Institute, Minneapolis, MN: Charlene McEvoy, MD, MPH; Joseph Tashjian, MD.
Johns Hopkins University, Baltimore, MD: Robert Wise, MD; Robert Brown, MD; Nadia N. Hansel, MD,
MPH; Karen Horton, MD; Allison Lambert, MD, MHS; Nirupama Putcha, MD, MHS.

Lundquist Institute for Biomedical Innovation.
Harbor UCLA Medical Center, Torrance, CA: Richard Casaburi, PhD, MD; Alessandra Adami, PhD; Matthew Budoff, MD; Hans Fischer, MD; Janos Porszasz, MD, PhD; Harry Rossiter, PhD; William Stringer, MD.

Michael E. DeBakey VAMC, Houston, TX: Amir Sharakfkhaneh, MD, PhD; Charlie Lan, DO.

Minneapolis VA: Christine Wendt, MD; Brian Bell, MD; Ken M. Kunisaki, MD, MS.

National Jewish Health, Denver, CO: Russell Bowler, MD, PhD; David A. Lynch, MB.

Reliant Medical Group, Worcester, MA: Richard Rosiello, MD; David Pace, MD.

Temple University, Philadelphia, PA: Gerard Criner, MD; David Ciccolone, MD; Francis Cordova, MD; Chandra Dass, MD; Gilbert D’Alonzo, DO; Parag Desai, MD; Michael Jacobs, PharmD; Steven Kelsen, MD, PhD; Victor Kim, MD; A. James Mamary, MD; Nathaniel Marchetti, DO; Aditi Satt, MD; Kartik Shenoy, MD; Robert M. Steiner, MD; Alex Swift, MD; Irene Swift, MD; Maria Elena Vega-Sanchez, MD.

University of Alabama, Birmingham, AL: Mark Dransfield, MD; William Bailey, MD; Surya P. Bhatt, MD; Anand Iyer, MD; Hrudaya Nath, MD; J. Michael Wells, MD.

University of California, San Diego, CA: Douglas Conrad, MD; Xavier Soler, MD, PhD; Andrew Yen, MD.

University of Iowa, Iowa City, IA: Alejandro P. Cornelias, MD; Karin F. Hoth, PhD; John Newell, Jr., MD; Brad Thompson, MD.

University of Michigan, Ann Arbor, MI: Mei Lan K. Han, MD MS; Ella Kazerooni, MD MS; Wassim Labaki, MD MS; Craig Galban, PhD; Dharshan Vummidi, MD.

University of Minnesota, Minneapolis, MN: Joanne Billings, MD; Abbie Begnud, MD; Tadashi Allen, MD.

University of Pittsburgh, Pittsburgh, PA: Frank Sciurba, MD; Jessica Bon, MD; Divay Chandra, MD, MSc; Joel Weissfeld, MD, MPH.

University of Texas Health, San Antonio, San Antonio, TX: Antonio Anzueto, MD; Sandra Adams, MD; Diego Maselli-Caceres, MD; Mario E. Ruiz, MD; Harjinder Singh.

Additional file 1. Supplementary appendix.
17. Vestbo J, Anderson W, Coxson HO, et al. Evaluation of COPD Longitudi-

16. Regan EA, Hokanson JE, Murphy JR, et al. Genetic Epidemiology of COPD

15. Herazo-Mayo JD, Sun J, Molyneaux PL, et al. Validation of a 52-gene risk

14. Putman RK, Gudmundsson G, Axelsson GT, et al. Imaging Patterns Are

13. Hatabu H, Hunninghake GM, Richeldi L, et al. Interstitial lung abnor-

12. Tsushima K, Sone S, Yoshikawa S, Yokoyama T, Suzuki T, Kubo K. The

11. Washko GR, Hunninghake GM, Fernandez IE, et al. Lung volumes and

10. Hobbs BD, Putman RK, Araki T, et al. Overlap of genetic risk between

9. Lederer DJ, Enright PL, Kawut SM, et al. Cigarette smoking is associ‑

8. Tsushima K, Sone S, Yoshikawa S, Yokoyama T, Suzuki T, Kubo K. The

7. Lederer DJ, Enright PL, Kawut SM, et al. Cigarette smoking is associ‑

6. Doyle TJ, Washko GR, Fernandez IE, et al. Interstitial lung abnor‑

5. Department of Biostatistics, Harvard T.H. Chan School of Public Health,

4. Putman RK, Gudmundsson G, Axelsson GT, et al. Imaging Patterns Are

3. Harvard Medical School, Boston, MA 02115, USA. 4 Department of Radiology, Center for Pulmo‑

2. Doyle TJ, Washko GR, Fernandez IE, et al. Interstitial lung abnor‑

1. Washko GR, Hunninghake GM, Fernandez IE, et al. Lung volumes and

References

1. Washko GR, Hunninghake GM, Fernandez IE, et al. Lung volumes and

2. Putman RK, Gudmundsson G, Axelsson GT, et al. Imaging Patterns Are

3. Hatabu H, Hunninghake GM, Richeldi L, et al. Interstitial lung abnor‑

4. Putman RK, Gudmundsson G, Axelsson GT, et al. Imaging Patterns Are

5. Department of Biostatistics, Harvard T.H. Chan School of Public Health,

6. Doyle TJ, Washko GR, Fernandez IE, et al. Interstitial lung abnor‑

7. Lederer DJ, Enright PL, Kawut SM, et al. Cigarette smoking is associ‑

8. Tsushima K, Sone S, Yoshikawa S, Yokoyama T, Suzuki T, Kubo K. The

9. Lederer DJ, Enright PL, Kawut SM, et al. Cigarette smoking is associ‑

10. Hobbs BD, Putman RK, Araki T, et al. Overlap of genetic risk between

11. Washko GR, Hunninghake GM, Fernandez IE, et al. Lung volumes and

12. Tsushima K, Sone S, Yoshikawa S, Yokoyama T, Suzuki T, Kubo K. The

13. Hatabu H, Hunninghake GM, Richeldi L, et al. Interstitial lung abnor‑

14. Putman RK, Gudmundsson G, Axelsson GT, et al. Imaging Patterns Are

15. Herazo-Mayo JD, Sun J, Molyneaux PL, et al. Validation of a 52-gene risk

16. Regan EA, Hokanson JE, Murphy JR, et al. Genetic Epidemiology of COPD

17. Vestbo J, Anderson W, Coxson HO, et al. Evaluation of COPD Longitudi‑

18. Hatabu H, Hunninghake GM, Lynch DA. Interstitial lung abnormality: recognition and perspectives. Radiology. 2019;291:1–3.

19. Hata A, Schiebler M, Lynch DA, Hatabu H. Interstitial lung abnormalities: state of the art. Radiology. 2021;34:204367.

20. Hino T, Lee KS, Han J, Hata A, Ishigami K, Hatabu H. Spectrum of pul‑

21. Jiang H, Lei R, Ding S-W, Zhu S. Skewer: a fast and accurate adapter trim‑

22. Deluca DS, Levin JZ, Sivachenko A, et al. RNA-SeqQC. RNA-seq metrics for quality control and process optimization. Bioinformatics. 2012;28:1530–2.

23. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:447.

24. Obeidat M, Nie Y, Chen V, et al. Network-based analysis reveals novel gene signatures in peripheral blood of patients with chronic obstructive pulmonary disease. Respir Res. 2017;18:72.

25. Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010;26:2363–7.

26. Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and sum‑

27. Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and sum‑

28. Hochreiter S, Clevert D-A, Obermayer K. A new summation method for Affymetrix probe level data. Bioinformatics. 2006;22:943–9.

29. Cox DR. Regression models and life tables. J R Stat Soc Ser B. 1972.

30. T T. A Package for Survival Analysis in R. R package version 3.1–12. https://CRAN-R-project.org/package=survival 2020.

31. Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measur‑

32. Gan S. meta: An R package for meta-analysis. R News. 2007;7:40–5.

33. Johan S, Tom L, Beatris M, medfly. An R Package for Flexible Media‑

34. Lange T, Vansteelandt S, Bekaert M. A simple unified approach for estimating natural direct and indirect effects. Am J Epidemiol. 2012;176:190–5.

35. Vansteelandt S, Bekaert M, Lange T. Imputation strategies for the estima‑

36. Foroushabi AK, Brinkman FSL, Lynn DJ. Pathway-GPS and SignORA: identifying relevant pathways based on the over-representation of their gene-pair signatures. PeerJ. 2013;1:e229.

37. Kaminski N, Allard JD, Pittet JF, et al. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflamma‑

38. Huang Y, Oldham JM, Ma S-F, et al. Blood transcriptional predicts progres‑

39. DePianto DJ, Chandriani S, Abbas AR, et al. Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis. Thorax. 2015;70:48–56.

40. Leyman FA, Walter JM, Joshi N, et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am J Respir Crit Care Med. 2019;199:1517–36.

41. Huang M, Sharma S, Zhu LX, et al. IL-7 inhibits fibroblast TGF-beta produc‑

42. Morgan AJ, Guillon C, Symon FA, et al. Expression of CXCR6 and its

43. Hata A, Schiebler M, Lynch DA, Hatabu H. Interstitial lung abnormalities: state of the art. Radiology. 2021;34:204367.

44. Hino T, Lee KS, Han J, Hata A, Ishigami K, Hatabu H. Spectrum of pul‑

45. Miles T, Hoyne GF, Knight DA, Fear MW, Mutsaers SE, Prêle CM. The contribution of animal models to understanding the role of the immune
system in human idiopathic pulmonary fibrosis. Clin Transl Immunol. 2020;9: e1153.
46. Kass DJ, Yu G, Loh KS, et al. Cytokine-like factor 1 gene expression is enriched in idiopathic pulmonary fibrosis and drives the accumulation of CD4+ T cells in murine lungs: evidence for an antifibrotic role in bleomycin injury. Am J Pathol. 2012;180:1963–78.
47. Qiu D, Chu X, Hua L, et al. Gpr174-deficient regulatory T cells decrease cytokine storm in septic mice. Cell Death Dis. 2019;10:233.
48. Attia M, Rachez C, De Pauw A, Avner P, Rogner UC. Nap1l2 promotes histone acetylation activity during neuronal differentiation. Mol Cell Biol. 2007;27:6093–102.
49. Plantier L, Renaud H, Respaud R, Marchand-Adam S, Crestani B. Transcriptome of cultured lung fibroblasts in idiopathic pulmonary fibrosis: meta-analysis of publically available microarray datasets reveals repression of inflammation and immunity pathways. Int J Mol Sci. 2016. https://doi.org/10.3390/ijms17122091.
50. Ninou I, Magkrioti C, Aidinis V. Autotaxin in pathophysiology and pulmonary fibrosis. Front Med. 2018;5:180.
51. Wald NJ, Morris JK, Rish S. The efficacy of combining several risk factors as a screening test. J Med Screen. 2005;12:197–201.
52. Wald NJ, Old R. The illusion of polygenic disease risk prediction. Genet Med. 2019;21:1705–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.