Whole-Genome Sequencing of a Haarlem Extensively Drug-Resistant \textit{Mycobacterium tuberculosis} Clinical Isolate from Medellín, Colombia

N. Alvarez,a,c D. Haft,b U. A. Hurtado,a J. Robledo,a,c F. Rouzauda,d

Corporación para Investigaciones Biológicas–CIB, Medellín, Colombia;a J. Craig Venter Institute, Rockville, Maryland, USA;b Universidad Pontificia Bolivariana–UPB, Medellín, Colombia;c Equal Opportunity Life Sciences–EQUOLS, Rockville, Maryland, USA

Colombia is one of the 105 countries that has reported at least one case of extensively drug-resistant tuberculosis (XDR-TB). The \textit{Mycobacterium tuberculosis} Haarlem genotype is ubiquitous worldwide. Here, we report the high-quality draft genome sequence of a Colombian Haarlem XDR-TB clinical isolate composed of 4,329,127 bp with 4,386 genes.

Received 3 May 2016 Accepted 5 May 2016 Published 16 June 2016
Citation Alvarez N, Haft D, Hurtado UA, Robledo J, Rouzaud F. 2016. Whole-genome sequencing of a Haarlem extensively drug-resistant \textit{Mycobacterium tuberculosis} clinical isolate from Medellín, Colombia. Genome Announc 4(3):e00566-16. doi:10.1128/genomeA.00566-16.

ACKNOWLEDGMENT
We thank Derek Harkins at the J. Craig Venter Institute for assistance with submission to GenBank.

FUNDING INFORMATION
This work, including the efforts of Nataly Alvarez, was funded by Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS) (221356933562).

REFERENCES
1. WHO. 2015. Global tuberculosis report 2015. WHO, Geneva, Switzerland. http://www.who.int/tb/publications/global_report/en.
2. Ferro BE, Nieto LM, Rozo JC, Forero L, van Soolingen D. 2011. Multidrug-resistant \textit{Mycobacterium tuberculosis}. Southwestern Colombia. Emerg Infect Dis 17:1259–1262. http://dx.doi.org/10.3201/eid1707.101797.
3. Nieto LM, Ferro BE, Villegas SL, Mehaffy C, Forero L, Moreira C, Rastogi N, van Soolingen D. 2012. Characterization of extensively drug-resistant tuberculosis (XDR-TB) in Colombia. Emerg Infect Dis 18:1382–1388.

© 2016 Alvarez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
resistant tuberculosis cases from Valle del Cauca, Colombia. J Clin Microbiol 50:4185–4187. http://dx.doi.org/10.1128/JCM.01946-12.
4. Alvarez N, Haft D, Hurtado UA, Robledo J, Rouzaud F. 2016. Whole-genome sequence of a Beijing extensively drug-resistant Mycobacterium tuberculosis clinical isolate from Buenaventura, Colombia. Genome Announc 4(1):e01549-15. http://dx.doi.org/10.1128/genomeA.01549-15.
5. Alvarez N, Haft D, Hurtado UA, Robledo J, Rouzaud F. 2016. Whole-Genome sequencing of two Latin American-Mediterranean extensively drug-resistant Mycobacterium tuberculosis clinical isolates from Medellin, Colombia. Genome Announc 4(2):e01912-16. http://dx.doi.org/10.1128/genomeA.00192-16.
6. Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, Narayanan S, Nicol M, Niemann S, Kremer K, Gutierrez MC, Hilty M, Hopewell PC, Small PM. 2006. Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103:2869–2873. http://dx.doi.org/10.1073/pnas.0511240103.
7. Realpe T, Correa N, Rozo JC, Ferro BE, Gomez V, Zapata E, Ribón W, Puerto G, Castro G, Nieto LM, Díaz ML, Rivera O, Couvin D, Rastogi N, Arbelaez MP, Robledo J. 2014. Population structure among Mycobacterium tuberculosis isolates from pulmonary tuberculosis patients in Colombia. PLoS One 9:e93848. http://dx.doi.org/10.1371/journal.pone.0093848.
8. Reynaud Y, Millet J, Rastogi N. 2015. Genetic structuration, demography and evolutionary history of Mycobacterium tuberculosis LAM9 Sublineage in the Americas as two distinct subpopulations revealed by Bayesian analyses. PLoS One 10:e0140911. http://dx.doi.org/10.1371/journal.pone.0140911.
9. Weniger T, Krawczyk J, Weniger T, Krawczyk J, Supply P, Niemann S, Harmsen D. 2010. MIRU-VNTRplus: a web tool for polyphasic genotyping of Mycobacterium tuberculosis complex bacteria. Nucleic Acids Res 38:W326–W331. http://dx.doi.org/10.1093/nar/gkq351.
10. Mears J, Abubakar I, Cohen T, McHugh TD, Sonnenberg P. 2015. Effect of study design and setting on tuberculosis clustering estimates using mycobacterial interspersed repetitive units-variable number tandem repeats (MIRU-VNTR): a systematic review. BMJ Open 5:e005636. http://dx.doi.org/10.1136/bmjopen-2014-005636.
11. Belisle JT, Sonnenberg MG. 1998. Isolation of genomic DNA from mycobacteria, p. 31–44. In Parish T and Stoker NG (ed), Methods in molecular biology, vol. 101, mycobacteria protocols. Humana Press, Totowa, New Jersey.
12. Denisov G, Walenz B, Halpern A, Miller J, Axelrod N, Levy S, Sutton G. 2008. Consensus generation and variant detection by Celera assembler. Bioinformatics 24:1035–1040. http://dx.doi.org/10.1093/bioinformatics/btn074.
13. Haft DH, Selengut JD, Richter RA, Harkins D, Basu MK, Beck E. 2013. TIGRFAMs and genome properties in 2013. Nucleic Acids Res 41: D387–D395. http://dx.doi.org/10.1093/nar/gks1234.
14. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm I, Mistry J, Sonnhammer EL, Tate J, Punta M. 2014. Pfam: the protein families database. Nucleic Acids Res 42:D222–D230. http://dx.doi.org/10.1093/nar/gkt1223.
15. Cohen KA, Abeel T, Manson McGuire A, Desjardins Ca MV, Shea TP, Walker BJ, Bantubani N, Almeida DV, Alvarado L, Chapman SB, Mvelase NR, Duffy EY, Fitzgerald MG, Govender P, Gujja S, Hamilton S, Howarth C, Larimer JD, Maharaj K, Pearson MD, Priest ME, Zeng Q, Padayatchi N, Grosset J, Young SK, Wortman J, Misana KP, O’Donnell MR, Birren BW, Bishai WR, Pym AS, Earl AM. 2015. Evolution of extensively drug-resistant tuberculosis over four decades: whole genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal. PLoS Med 12:e1001880. http://dx.doi.org/10.1371/journal.pmed.1001880.
16. Mendes NH, Melo FA, Santos AC, Pandoﬁl JR, Almeida EA, Cardoso RF, Berghs H, David S, Johansen FK, Espanha LG, Leite SR, Leite CQ. 2011. Characterization of the genetic diversity of Mycobacterium tuberculosis in São Paulo city, Brazil. BMC Res Notes 4:269. http://dx.doi.org/10.1186/1756-0500-4-269.
17. Millet J, Streit E, Berchel M, Bomer AG, Schuster F, Paasch D, Vanhomwegen J, Cadels G, Rastogi N. 2015. A systematic follow-up of Mycobacterium tuberculosis drug-resistant and associated genotypic lineages in the French Departments of the Americas over a seventeen-year period. BioMed Res Int 2014:689852. http://dx.doi.org/10.1155/2014/689852.
18. Machado LN, Marcondes NR, Leite CQ, Santos AC, Pavan FR, Baldin VP, Castilho AL, Siqueira VL, Baeza LC, Berghs H, Cardoso RF. 2014. First baseline of circulating genotypic lineages of Mycobacterium tuberculosis in patients from the Brazilian borders with Argentina and Paraguay. PLoS One 9:e107106. http://dx.doi.org/10.1371/journal.pone.0107106.
19. Balcells ME, García P, Meza P, Peña C, CIFuentes M, Couvin D, Rastogi N. 2015. A first insight on the population structure of Mycobacterium tuberculosis complex as studied by spoligotyping and MIRU-VNTRs in Santiago, Chile. PLoS One 1:e0118007. http://dx.doi.org/10.1371/journal.pone.0118007.