Generalized Eigenstate Thermalization in 2d CFTs

Anatoly Dymarsky1, 2 and Kirill Pavlenko2, 3

1Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506
2Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia, 143026
3Moscow Institute of Physics and Technology, Dolgoprudny, Russia, 141700

(Dated: March 11, 2019)

Infinite-dimensional conformal symmetry in two dimensions leads to integrability of 2d conformal field theories by giving rise to an infinite tower of local conserved qKdV charges in involution. We discuss how presence of conserved charges constrains equilibration in 2d CFTs. We propose that in the thermodynamic limit large central charge 2d CFTs satisfy generalized eigenstate thermalization, with the values of qKdV charges forming a complete set of thermodynamically relevant quantities, which unambiguously determine expectation values of all local observables from the vacuum family. Equivalence of ensembles further provides that local properties of an eigenstate can be described by the Generalized Gibbs Ensemble that only includes qKdV charges. In the case of a general initial state, upon equilibration, emerging Generalized Gibbs Ensemble will necessarily include negative chemical potentials and holographically will be described by a quasi-classical black hole with quantum soft hair.

The topic of thermalization, and more generally, equilibration of isolated many-body quantum systems has been an active area of research during the past decade. In case of non-integrable systems, i.e. those without an extensive number of local conserved quantities, emergence of the thermal equilibrium has been traced to eigenstate thermalization hypothesis (ETH) which postulates thermal properties of individual energy eigenstates[1–3]. In the simplest form it requires the expectation value of some appropriate (often taken to be local) observable O in a many-body eigenstate $|E_i\rangle$ to be a smooth function of energy,

$$
\langle E_i|O|E_i\rangle = f_O(E_i).
$$

(1)

Qualitatively, eq.(1) postulates that energy is the only thermodynamically relevant quantity, which completely specifies local properties of an eigenstate. The condition(1) may apply to all or most eigenstates, in which case it is referred as strong or weak ETH. The eigenstate thermalization ensures equivalence between the expectation value in the eigen-ensemble, $f_O(E_i)$, and thermal expectation value of O in the Gibbs ensemble, $f_O(E_i) = \text{Tr}(e^{-\beta H}O)/Z$, where the effective temperature β is fixed through the energy balance relation, $E_i = \text{Tr}(e^{-\beta H}O)/Z [4]$.

When the system is integrable, with an extensive number of conserved charges Q_k, ETH does not apply. Accordingly emerging equilibrium can be different from the Gibbs state. In this case the equilibrium can be described by the Generalized Gibbs Ensemble (GGE), a generalization of grand canonical ensemble that includes an infinite tower of conserved charges[5]. Validity of the GGE has been related to the generalized eigenstate thermalization[6–8], which generalizes(1) to include an infinite number of conserved quantities,

$$
\langle E_i|O|E_i\rangle = f_O(Q_k(E_i)).
$$

(2)

Here $|E_i\rangle$ is a mutual eigenstate of the Hamiltonian and charges Q_k, $Q_k(E_i)$ are the eigenvalues of Q_k associated with $|E_i\rangle$, and function f_O is assumed to be a smooth function of all of its arguments. Similarly to(1), at the qualitative level,(2) postulates that charges Q_k form a complete set of thermodynamically relevant quantities which fully specify local properties of an eigenstate. Provided(2) applies to most states, it ensures equivalence between the generalized microcanonical ensemble and GGE, establishing validity for the latter to describe emerging equilibrium e.g. following a quantum quench[6].

In this Letter we discuss thermalization of two-dimensional conformal field theories (CFTs), a rich topic with multiple connections ranging from the cold atom experiments[9] to physics of quantum gravity[10]. It has been shown that following a quantum quench 2d conformal theories equilibrate and reach a steady state, which in many cases can be described in terms of the Gibbs ensemble[11, 12]. At the same time emergence of thermal equilibrium is not universal. Conformal symmetry in two dimensions gives rise to an infinite tower of local mutually commuting conserved qKdV charges Q_{2k-1}, the CFT Hamiltonian for the left-movers being $Q_1 \equiv H$, a part of the integrable structure of the 2d CFTs[13, 15]. The question we are concerned with is how presence of these charges affects equilibration. By analogy with the integrable lattice models it is natural to expect that locally equilibrium states can be described in terms of the GGE, which includes all local qKdV charges. Indeed, emergence of exactly such qKdV GGE was analytically
shown for a special family of so-called Cardy-Calabrese initial states [16].

In the context of integrable systems the question which quantities should be included in the GGE is far from being trivial. Early studies in the context of XXZ and Lieb-Liniger models have shown that a full set of extensive local charges does not specify local properties of eigenstates, signaling failure of generalized ETH [17, 18]. These works raised an important question of the validity beyond currently known leading 1/c expansion.

In the regime of quasi-classical gravity [5], c ≫ 1, expectation values of qKdV charges can be calculated explicitly [34].

\[\ell q_1 = \Delta + \sum_k n_k k, \]
\[\ell q_3 = \Delta^2 + \sum_k n_k \left(6\Delta k + \frac{c k^3}{6} \right) + O(c^0), \]
\[\ell q_{2r-1} = \Delta^r + \sum_k n_k p_{2r-1}(c, \Delta, k) + O(c^{r-2}), \]

where \(p_{2r-1}(c, \Delta, k) \) are some known polynomials of degree 2r − 1 which include only odd powers of k.

Because of translational invariance the expectation value of a full derivative \(\mathcal{O} = \partial \mathcal{O}' \) in energy eigenstate will vanish. Hence it suffices to consider expectation values \(\langle E|\mathcal{O}|E \rangle \) only when \(\mathcal{O} \) is a quasi-primary operator. Below we consider the case when \(\mathcal{O} \) belongs to the vacuum family, i.e. it is a Virasoro descendant of the identity. To streamline the notations we introduce \(\langle \mathcal{O} \rangle \equiv \langle E|\mathcal{O}|E \rangle \). It is convenient to parametrize \(\mathcal{O} \) by its dimension (level). At the levels 2 and 4 there are unique quasi-primaries in the vacuum family,

\[\mathcal{O}_2 = T, \quad \mathcal{O}_4 = T^2 - \frac{3}{10} T^2 T. \]

Thus expectation values of \(\mathcal{O}_{2,4} \) are identically equal to charge densities \(q_1, q_3 \) [33]. At the level 6 there are two quasi-primaries (we always choose quasi-primaries in the basis which diagonalizes Zamolodchikov metric)

\[\mathcal{O}_6^{(1)} = T^3 - \frac{9}{10}(T^2 T) + \frac{4}{35} T^4 T + \frac{93}{70c} + 29 O_6^{(2)}, \]
\[\mathcal{O}_6^{(2)} = (\partial T \partial T) - \frac{4}{5}(T^2 T) + \frac{23}{210} T^4 T. \]

The expectation value of the combination \(\mathcal{O}_6^{(1)} + \frac{5}{9 T^2} \mathcal{O}_6^{(2)} \) is identically equal to \(q_5 \). Similarly to (7-9), at leading order the expectation value of \(\mathcal{O}_6^{(2)} \) has the form of a polynomial in \(\Delta \) and odd powers of k,

\[\langle \mathcal{O}_6^{(2)} \rangle = \frac{9}{5} \sum_k n_k \left(\frac{c}{6} k^5 + 4\Delta k^3 \right) + O(c^0). \]
It is possible to use (7-9) to express any term of the form \(\sum_{k} n_{k} k^{2r-1} \) via \(q_{2j-1} \), \(j \leq r \), but a priori the result would also depend on \(\Delta \). Thus, at leading order in \(1/c \), expectation values of \(O(\beta) \) are some functions of \(\Delta \) and \(q_{2r-1} \). Remarkably, because of the non-trivial cancellations the final result is \(\Delta \)-independent, and can be expressed solely in terms of \(q_{2r-1} \). To simplify the answer we introduce dimensionless ratio \(q_{2k-1} = q_{2k-1}/q_{1}^{2} \) such that \(\delta q_{2k-1} \equiv q_{2k-1} - 1 \) is of order \(1/c \). Then \(O(\beta) \) measured in units of energy density \(q_{1} \) is given by

\[
q_{1}^{-3} O(\beta^{(1)}) = 1 + 3 \delta q_{3} + O(1/c^{2}),
\]

\[
q_{1}^{-3} O(\beta^{(2)}) = \frac{9}{5} c (\delta q_{5} - 3 \delta q_{3}) + O(1/c^{3}).
\]

As we see different quasi-primaries have different scaling with \(c \). Our calculation applies to leading \(1/c \) behavior of each quasi-primary, except for a special one, which includes maximal power of \(T \) without derivatives. The expectation value of that quasi-primary starts with \(O(\beta^{(1)}) \) and our result applies to the first two terms in \(1/c \) expansion.

The possibility to express eigenstate expectation value \(\langle O \rangle \) as a polynomial in \(q_{2j-1} \) extends to all higher levels. For an operator of dimension \(2r \) the answer only depends on \(q_{2j-1} \) for \(j \leq r \). We write down explicit expressions for all operators up to level 10 in terms of \(q_{2j-1} \) in Supplemental Materials. Our results establish generalized eigenstate thermalization for vacuum block observables in large \(c \) CFTs.

That expectation value \(\langle O \rangle \) of an operator of dimension \(2r \) only includes qKdV charges \(q_{2j-1} \) up to the same dimension \(j \leq r \) can be interpreted as a manifestation of locality. It is analogous to the observation in the context of integrable lattice models that to describe equilibrium state locally, at the length scales not exceeding some distance \(a \), it is only necessary to include local and quasi-local charges in the GGE with the support within a \(\delta \) regime.

Generalized eigenstate thermalization implies validity of the qKdV Generalized Gibbs Ensemble

\[
\rho = \exp \left\{ - \sum_{k} \mu_{2k-1} Q_{2k-1} \right\} / Z, \quad \mu_{1} \equiv \beta,
\]

to describe local properties of individual energy eigenstates, provided chemical potentials \(\mu_{2k-1} \) are tuned to match values of the eigenstate charges

\[
\ell q_{2k-1} = \langle E_{i} Q_{2k-1} E_{i} \rangle = \text{Tr}(\rho Q_{2k-1}).
\]

Provided \(q_{2k-1} \) chosen to represent charge densities of some non-equilibrium initial state \(|\Psi\rangle \), a standard argument would consequently equate the GGE expectation values of local operators with those in the diagonal ensemble of \(|\Psi\rangle \), written in the eigenbasis \(\langle \ell | \). In most cases the latter would be equal to the expectation values in state \(|\Psi\rangle \) upon equilibration. It should be noted though that left and right Hamiltonians \(Q_{1}, \tilde{Q}_{1} \) are highly degenerate, and therefore validity of the diagonal ensemble to describe local physics upon equilibration may be violated.

It remains an open question to establish existence of \(q_{2k-1} \) which would solve (17) for any given set of \(q_{2r-1} \). Using explicit form of the generalized partition function in the large \(c \) limit [34] we can find, up to \(O(1/c^{2}) \) corrections,

\[
\delta q_{2k-1} = \frac{q_{2k-1}}{q_{1}^{2}} - 1 = \frac{24 k}{c} \int_{0}^{\infty} \frac{dkk}{2} \frac{(2k-1)_{2} F_{1}(1,1-k,3/2,-k^{2}) - 1}{\exp^{2\pi k \gamma} - 1},
\]

\[
\gamma = \sum_{j=1}^{\infty} \mu_{2j-1} j(2j-1)\sigma_{j}^{-1/2} F_{1}(1,1-j,3/2,-k^{2}),
\]

where \(\mu_{2k-1} = \sigma_{k} \gamma^{k-1/2} \) and \(\sigma_{j} \) is positive and satisfies

\[
\sum_{k=1}^{\infty} k \mu_{2k-1} \gamma^{k-1/2} = 1.
\]

From here it follows that when all chemical potentials are positive \(q_{2k-1} \) satisfy an infinite series of inequalities (see Supplemental Materials)

\[
\frac{q_{1}}{q_{1}^{2}} - 1 \leq \frac{22}{5c} + O(1/c^{2}), \quad \frac{q_{5}}{q_{1}^{3}} - 1 \leq \frac{302}{21c} + O(1/c^{2}),
\]

\[
\ldots
\]

Thus GGE emerging after equilibration of some general initial state will have to include negative chemical potentials, unless all inequalities (20) are satisfied.

To match GGE to a primary state all qKdV densities should be related to each other via \(q_{2k-1} = q_{1}^{2k} \). This is only possible if the integral in (18) vanishes, which requires \(\gamma \) to be infinite. This is consistent with the observation of [30] that an ensemble with any finite number of non-zero \(\mu_{2k-1} \) cannot describe primary states. This is because in full generality \(q_{2k-1} \geq q_{1}^{2k} \) and hence primary states are at the boundary of the phase space of \(q_{2k-1} \)'s. It is nevertheless possible to describe them in the limit, via a GGE with at least some coefficients approaching infinity. The simplest scenario is to consider \(\mu_{1} > 0 \) and arbitrary \(\beta \equiv \mu_{1} \), while all other chemical potentials are identically zero. Then in the limit \(\tau = \beta/(6/\pi^{2} c \mu_{1})^{1/3} \to \infty \), for all \(k, q_{2k-1}/q_{1}^{k} - 1 \) will vanishes as \(\sim |\tau|^{-3} \), as is shown for \(k = 2, 3 \) in Fig. 1.

With just two chemical potentials \(\beta, \mu_{3} \) being non-zero the values of \(q_{2k-1}/q_{1}^{k} - 1 \) is confined to be between zero and their thermal (Gibbs ensemble) values. This constraint is removed already after turning on one more additional chemical potential. For example by taking \(\beta, \mu_{5} > 0 \) and \(\mu_{3} < 0 \) one can fine-tune function \(\gamma \) to become arbitrarily small for some positive value of \(\kappa \), leading to the divergence of the integral in (18) and violating quasi-classical regime (3).
large central charge 2d CFTs in the thermodynamic limit satisfy generalized eigenstate thermalization with the tower of local qKdV charges forming a complete set of thermodynamically-relevant quantities. Our analysis establishes universal validity of Generalized Gibbs Ensemble that includes all qKdV charges to describe individual energy eigenstates, and hence in most cases, asymptotic equilibrium states in such theories. It would be important to extend the analysis to next order in 1/c, which will likely reveal if the eigenstate thermalization is strong i.e. applies to all finite energy density eigenstates, or weak, i.e. applies to most states.

We thank Alex Avdoshkin, Dmitry Abanin, Tomaz Prosen, Marcos Rigol, and Alexander Zhiboedov for discussions.

[1] Josh M Deutsch, “Quantum statistical mechanics in a closed system,” Physical Review A 43, 2046 (1991).
[2] Mark Srednicki, “Chaos and quantum thermalization,” Physical Review E 50, 888 (1994).
[3] Marcos Rigol, Vanja Dunjko, and Maxim Olshanii, “Thermalization and its mechanism for generic isolated quantum systems,” Nature 452, 854 (2008).
[4] Luca D’Alessio, Yariv Kafri, Anatoli Polkovnikov, and Marcos Rigol, “From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics,” Advances in Physics 65, 239–362 (2016).
[5] Marcos Rigol, Vanja Dunjko, Vladimir Yurovsky, and Maxim Olshanii, “Relaxation in a completely integrable many-body quantum system: An ab initio study of the dynamics of the highly excited states of 1d lattice hard-core bosons,” Physical review letters 98, 050405 (2007).
[6] Amy C Cassidy, Charles W Clark, and Marcos Rigol, “Generalized thermalization in an integrable lattice system,” Physical review letters 106, 140405 (2011).
[7] Kai He, Lea F Santos, Tod M Wright, and Marcos Rigol, “Single-particle and many-body analyses of a quasiperiodic integrable system after a quench,” Physical Review A 87, 063637 (2013).
[8] Lev Vidmar and Marcos Rigol, “Generalized gibs ensemble in integrable lattice models,” Journal of Statistical Mechanics: Theory and Experiment 2016, 064007 (2016).
[9] Pasquale Calabrese and John Cardy, “Quantum quenches in 1+1 dimensional conformal field theories,” Journal of Statistical Mechanics: Theory and Experiment 2016, 064003 (2016).
[10] Tarek Anous, Thomas Hartman, Antonin Rovai, and Julian Sonner, “Black hole collapse in the 1/c expansion,” Journal of High Energy Physics 2016, 123 (2016).
[11] Pasquale Calabrese and John Cardy, “Time dependence of correlation functions following a quantum quench,” Physical review letters 96, 136801 (2006).
[12] Pasquale Calabrese and John Cardy, “Quantum quenches in extended systems,” Journal of Statistical Mechanics: Theory and Experiment 2007, P06008 (2007).
[13] Vladimir V Bazhanov, Sergei L Lukyanov, and Alexander Zamolodchikov, “Integrable structure of conformal
field theory, quantum kdv theory and thermodynamic bethe ansatz,” Communications in Mathematical Physics \textbf{177}, 381–398 (1996).

[14] Vladimir V Bazhanov, Sergei L Lukyanov, and Alexander B Zamolodchikov, “Integrable structure of conformal field theory ii. q-operator and ddv equation,” Communications in Mathematical Physics \textbf{190}, 247–278 (1997).

[15] Vladimir V Bazhanov, Sergei L Lukyanov, and Alexander B Zamolodchikov, “Integrable structure of conformal field theory iii. the yang–baxter relation,” Communications in mathematical physics \textbf{200}, 297–324 (1999).

[16] John Cardy, “Quantum quenches to a critical point in one dimension: some further results,” Journal of Statistical Mechanics: Theory and Experiment \textbf{2016}, 023103 (2016).

[17] Michael Brockmann, Bram Wouters, Davide Fioretto, Jacopo De Nardis, Rogier Vlijm, and Jean-Sébastien Caux, “Quench action approach for releasing the nél state into the spin-1/2 xxz chain,” Journal of Statistical Mechanics: Theory and Experiment \textbf{2014}, P12009 (2014).

[18] M Mestyán, B Pozsgay, G Takács, and MA Werner, “Quenching the xxx spin chain: quench action approach versus generalized gibbs ensemble,” Journal of Statistical Mechanics: Theory and Experiment \textbf{2015}, P04001 (2015).

[19] Bram Wouters, Jacopo De Nardis, Michael Brockmann, Davide Fioretto, Marcos Rigol, and J-S Caux, “Quenching the anisotropic heisenberg chain: exact solution and generalized gibbs ensemble predictions,” Physical review letters \textbf{113}, 117202 (2014).

[20] Balázs Pozsgay, Márton Mestyán, Miklós A Werner, Márton Kormos, Gergely Zarán, and Gábor Takács, “Correlations after quantum quenches in the x x z spin chain: Failure of the generalized gibbs ensemble,” Physical review letters \textbf{113}, 117203 (2014).

[21] Garry Goldstein and Natan Andrei, “Failure of the local generalized gibbs ensemble for integrable models with bound states,” Physical Review A \textbf{90}, 043625 (2014).

[22] Enjei Ilievski, Marko Medenjak, and Tomáš Prosen, “Quasilocal conserved operators in the isotropic heisenberg spin-1/2 chain,” Physical review letters \textbf{115}, 120601 (2015).

[23] Enjei Ilievski, Jacopo De Nardis, Bram Wouters, J-S Caux, Fabian HL Essler, and Tomaz Prosen, “Complete generalized gibbs ensembles in an interacting theory,” Physical review letters \textbf{115}, 157201 (2015).

[24] Fabian Helmut Leonha Essler, Giuseppe Mussardo, and M Panfil, “Generalized gibbs ensembles for quantum field theories,” Physical Review A \textbf{91}, 051602 (2015).

[25] Spyros Sotiriadis, “Memory-preserving equilibration after a quantum quench in a one-dimensional critical model,” Physical Review A \textbf{94}, 031605 (2016).

[26] Benjamin Doyon, “Thermalization and pseudolocality in extended quantum systems,” Communications in Mathematical Physics \textbf{351}, 155–200 (2017).

[27] Alvise Bastianello and Spyros Sotiriadis, “Quasi locality of the gge in interacting-to-free quenches in relativistic field theories,” Journal of Statistical Mechanics: Theory and Experiment \textbf{2017}, 023105 (2017).

[28] Tamás Palmai and Robert M Konik, “Quasilocal charges and the generalized gibbs ensemble in the lieb-liniger model,” Physical Review E \textbf{98}, 052126 (2018).

[29] Eric Vernier and Axel Cortés Cubero, “Quasilocal charges and progress towards the complete gge for field theories with nondiagonal scattering,” Journal of Statistical Mechanics: Theory and Experiment \textbf{2017}, 023101 (2017).

[30] Anatoly Dymarsky and Kirill Pavlenko, “Generalized gibbs ensemble of 2d cfts at large central charge in the thermodynamic limit,” Journal of High Energy Physics \textbf{2019}, 98 (2019).

[31] Jan de Boer and Dalit Engelhardt, “Remarks on thermalization in 2d cft,” Physical Review D \textbf{94}, 126019 (2016).

[32] Alfredo Pérez, David Tempo, and Ricardo Troncoso, “Boundary conditions for general relativity on ads3 and the kdv hierarchy,” Journal of High Energy Physics \textbf{2016}, 103 (2016).

[33] Alexander Maloney, Gim Seng Ng, Simon F Ross, and Ioannis Tsiares, “Generalized gibbs ensemble and the statistics of kdv charges in 2d cft,” arXiv preprint arXiv:1810.11054 (2018).

[34] Anatoly Dymarsky and Kirill Pavlenko, “Exact generalized partition function of 2d cfts at large central charge,” arXiv preprint arXiv:1812.05108 (2018).

[35] Nima Lashkari, Anatoly Dymarsky, and Hong Liu, “Universality of quantum information in chaotic cfts,” Journal of High Energy Physics \textbf{2018}, 70 (2018).

[36] Sourav Nandy, Arnab Sen, Arnab Das, and Abhishek Dhar, “Eigenstate gibbs ensemble in integrable quantum systems,” Physical Review E \textbf{94}, 245131 (2016).

[37] B Pozsgay, E Vernier, and MA Werner, “On generalized gibbs ensembles with an infinite set of conserved charges,” Journal of Statistical Mechanics: Theory and Experiment \textbf{2017}, 093103 (2017).
In the units of energy density at leading order they are
\[O_6^{(1)} = T^3 - \frac{9}{10} (T \partial^2 T) + \frac{4}{35} \partial^3 T + \frac{93}{70c + 29} O_6^{(2)}, \] (21)
\[O_6^{(2)} = (T \partial T) - \frac{4}{5} (T \partial^2 T) + \frac{23}{210} \partial^4 T. \] (22)
In the limit (6) they can be simplified to
\[O_6^{(1)} = T^3 + O(1/c), \] (23)
\[O_6^{(2)} = \frac{9}{5} (T \partial T) + O(1/c). \] (24)

In units of the energy density their expectation values are
\[q_1^{-3} O_6^{(1)} = 1 + 3 \delta q_3 + O(1/c^2), \] (25)
\[q_1^{-3} O_6^{(2)} = \frac{9}{5} \frac{12}{c} (\delta q_5 - 3 \delta q_3) + O(1/c^3). \] (26)

Level 8
There are three quasi-primaries at level 8,
\[O_8^{(1)} = T^4 + O(1/c), \] (27)
\[O_8^{(2)} = \frac{9}{5} (T \partial T) + O(1/c), \] (28)
\[O_8^{(3)} = \frac{143}{63} (T^2 \partial^2 T) + O(1/c). \] (29)
In the units of energy density at leading order they are
\[q_1^{-4} O_8^{(1)} = 1 + 6 \delta q_3 + O(1/c^2), \] (30)
\[q_1^{-4} O_8^{(2)} = \frac{9}{5} \frac{12}{c} (\delta q_5 - 3 \delta q_3) + O(1/c^3), \] (31)
\[q_1^{-4} O_8^{(3)} = \frac{143}{63} \frac{180}{c^2} (\delta q_7 - 4 \delta q_5 + 6 \delta q_3) + O(1/c^4). \] (32)

Level 9
There are no quasi-primaries of odd dimension smaller than nine. At level nine there is a unique quasi-primary \(O_9 \), which has zero expectation value, as well as all higher odd-dimensional quasi-primaries, due to parity.

There are four quasi-primaries at level 8. In the limit (6) up to some additional factors they are
\[O_{10}^{(1)} = T^5 + O(1/c), \] (33)
\[O_{10}^{(2)} = (T(T \partial T)) + O(1/c), \] (34)
\[O_{10}^{(3)} = (T(T^2 \partial T^2)) + O(1/c), \] (35)
\[O_{10}^{(4)} = (T^3 \partial^3 T) + O(1/c). \] (36)
In terms of energy density their expectation values are
\[q_1^{-5} O_{10}^{(1)} = 1 + 10 \delta q_3 + O(1/c^2), \] (37)
\[q_1^{-5} O_{10}^{(2)} = \frac{1}{c} \frac{1}{\delta q_3} - 3 \delta q_3 + O(1/c^3), \] (38)
\[q_1^{-5} O_{10}^{(3)} = \frac{180}{c^2} (\delta q_7 - 4 \delta q_5 + 6 \delta q_3) + O(1/c^4), \] (39)
\[q_1^{-5} O_{10}^{(4)} = \frac{3024}{c^3} (\delta q_9 - 5 \delta q_7 + 10 \delta q_5 - 10 \delta q_3) + O(1/c^5). \] (40)

GGE with positive chemical potentials
For any positive integer \(j \) hypergeometric function \(_2F_1(1, 1 - j, 3/2, -\kappa^2) \) is polynomial in \(\kappa^2 \) with non-negative coefficients which starts with one,
\[_2F_1(1, 1 - j, 3/2, -\kappa^2) = 1 + \frac{2}{3} (j - 1) \kappa^2 + \ldots \] (41)
Hence it is a monotonically increasing function of \(\kappa \) which satisfies \(_2F_1(1, 1 - j, 3/2, -\kappa^2) \geq 1 \). From here it follows that when all chemical potentials are non-negative, function \(\gamma \) defined in the equation (18) from the main text satisfies
\[\gamma \leq \sum_{j=1}^\infty (2k - 1)^{\gamma - 1/2} \sum_{j=1}^\infty \tilde{\mu}_{2j-1} \kappa^{j - 1/2} = 1. \] (42)
Thus at leading order in \(1/c \), \(q_{2k-1}/q_1^k - 1 \) is bounded from above by its value in the Gibbs ensemble,
\[\delta q_{2k-1} \leq \frac{24k}{c} \int_0^\infty dk \kappa \left([2k - 1]_2F_1(1, 1 - k, 3/2, -\kappa^2) - 1 \right) \] (43)
\[= \frac{k}{c} \kappa \sum_{p=0}^{\infty} \left(\frac{6(k - 1)\Gamma(k)\Gamma(1/2)}{\Gamma(p + 3/2)\Gamma(k - p)} \right) (-1)^{p+1} \zeta(-1 - 2p) - 1 \gamma \] (44)
This yields \(22/5 \) for \(k = 2 \), \(302/11 \) for \(k = 3 \), \(2428/75 \) for \(k = 4 \), and so on.

GGE with two non-zero chemical potentials
To gain better intuition it is instructive to consider the generalized ensemble which includes only two charges,
the conventional Hamiltonian of CFT $H \equiv Q_1$ and Q_3,
\begin{equation}
\rho = \exp (-\beta H - \mu_3 Q_3) / Z.
\end{equation}

To assure convergence we must require $\mu_3 > 0$ while β can be arbitrary. It is convenient to parametrize β, μ_3 in terms of
\begin{equation}
\tau = \beta \left(\frac{6}{\pi^2 c \mu_3} \right)^{1/3},
\end{equation}
and energy density $q_1 = -\ell^{-1} \partial \ln Z / \partial \beta$, such that
\begin{align*}
\beta &= q_1^{-1/2} \left(\frac{c \pi^2}{6} \right)^{1/2} \frac{2^{3/2} (\tau^3 + 3 \sqrt{6 \tau^3 + 81} + 9) - \tau}{\sqrt{6} \sqrt{\tau^3 + 3 \sqrt{6 \tau^3 + 81} + 9}}, \\
\mu_3 &= q_1^{-3/2} \left(\frac{c \pi^2}{6} \right)^{1/2} \frac{2^{3/2} (\tau^3 + 3 \sqrt{6 \tau^3 + 81} + 9) - \tau}{6 \sqrt{6} \sqrt{\tau^3 + 3 \sqrt{6 \tau^3 + 81} + 9}}.
\end{align*}

Then δq_{2k-1} only depends on τ,
\begin{align*}
\gamma &= 1 + \frac{2^{3/2} (\kappa^2 + 1) \left(\tau^3 + 3 \sqrt{6 \tau^3 + 81} + 9 \right) - \tau}{3^{3/2} \tau^3 + 3 \sqrt{6 \tau^3 + 81} + 9}, \\
\delta q_{2k-1} &= \frac{24k}{e^c} \int_0^\infty d\kappa \kappa \left((2k - 1) F_1 (1, 1 - k, 3/2, -\kappa^2) - 1 \right).
\end{align*}

When τ approaches minus infinity while q_1 is kept fixed,
\begin{align*}
\beta &\sim -q_1^{-1/2} \left(\frac{c \pi^2}{6} \right)^{1/2} |\tau|^{3/2} 2^{-1/2}, \\
\mu_3 &\sim q_1^{-3/2} \left(\frac{c \pi^2}{6} \right)^{1/2} |\tau|^{3/2} 2^{-3/2},
\end{align*}
and we find that $c\delta q_{2k-1}$ approaches zero as $1/|\tau|^3$. We plot $\delta q_{2k-1} = q_1^{-k} q_{2k-1} - 1$ in the units of $1/c$ as a function of τ for $k = 2, 3$ in Fig. [1] in the main text.