FEM SIMULATIONS FOR THE OPTIMIZATION OF THE INLET GATE SYSTEM IN RAPID INVESTMENT CASTING PROCESS FOR THE REALIZATION OF HEAT EXCHANGERS

D. Almonti, G. Baiocco, and N. Ucciardello
Department of Enterprise Engineering Mario Lucertini, University of Rome “Tor Vergata,” Via del Politecnico 1, 00133 Rome, Italy

E. Mingione
Department of Engineering, University of Campania “Luigi Vanvitelli,” Via Roma, 9, 81031 Aversa, Italy

Copyright © 2021 The Author(s)
https://doi.org/10.1007/s40962-021-00668-7

Abstract

Over the last decades, additive manufacturing (AM) has become the principal production technology for prototypes and components with high added value. In the production of metallic parts, AM allows producing complex geometry with a single process. Also, AM admits a joining of elements that could not be realized with traditional methods. In addition, AM allows the manufacturing of components that could not be realized using other types of processes like reticular structures in heat exchangers. A solid mold investment casting that uses printed patterns overcomes typical limitations of additive processes such as expensive machinery and challenging process parameter settings. Indeed, rapid investment casting provides for a foundry epoxy pattern reproducing the component to exploit in the lost wax casting process. In this paper, aluminium radiators with flat heat pipes seamlessly connected with a cellular structure were conceived and produced. This paper aims at defining and investigating the principal foundry parameters to achieve a defect-free heat exchanger. For this purpose, different device CAD models were designed, considering four pipes’ thickness and length. Finite element method numerical simulations were performed to optimize the design of the casting process. Three different gate configurations were investigated for each length. The numerical investigations led to the definition of a castability range depending on flat heat pipes geometry and casting parameters. The optimal gate configuration was applied in the realization of AM patterns and casting processes.

Keywords: rapid investment casting, lost wax casting, heat exchangers, FEM

Introduction

With the evolution of manufacturing methods, new design choices become possible due to the state of the art advance of several engineering components production processes. Additive manufacturing (AM) is a new technology developed in the latest years and now available for functional metallic parts production.

Despite initially applied for visualization prototypes, its application increased with the exploitation of advanced metallic materials such as stainless steel, titanium alloys, aluminium, and nickel-based alloys. Within 10 years (2003–2013), the direct part production passed from 3.9 to 34.7% of the AM total product and service revenue. Directed energy deposition (DED) and powder bed fusion (PBF) are the principal processes exploited to fabricate metallic parts with AM. The former provides for in situ delivery of metal through powder or wires in addition to a focused energy source. In the latter, a powder bed is selectively melted to produce a 3D layer by layer structure. Usually, an electron or laser beam is exploited as the thermal source. However, selective laser melting (SLM) for PBF allows high design freedom and
production of 3D objects with demanding geometries. 34,40,49,50

Wire and arc additive manufacturing (WAAM) is a DED-AM process fed by a metallic wire which is relatively simple and low cost compared to other AM methods. 12 However, it involves severe residual stresses because of the high deposition rate and heat inputs. 14 Also, the high energy and wide heat-affected zone produced by the WAAM afflict the metal deposition in the micro-scale level, concerning the powder-based methods. 20 However, besides few studies, 39,46,56,57 a thorough understanding of the thermal history along with mechanical and surface properties as a function of the process conditions lacks is suffering. 36

The application of AM for heat transfer devices is of great interest allowing miniaturization and performance improvement. The latter may be achieved with the realization of complex designs, capillarity structures, channel arrays, and more. However, many challenges in engineering AM processes must still be faced to achieve workpieces free of defects and high-quality features to match the tight standards required for engineering applications. 45

Common AM component defects include discontinuities, porosity, highly textured columnar grains, complex phases, and compositional variations. 11 However, most of the features inherited from the manufacturing process can be reduced by post heat treatment like hot isostatic pressing (HIP). 21,28,31 Nevertheless, porosity production is still a major problem during AM of aluminium alloys. 8,9,33,52 In WAAM, the metal suffers a complex thermal process and anisotropies within the microstructure and, therefore, in the components properties. 27,58

Proper management of the process parameters, e.g., temperature gradient, solidification rate, alloy composition, thermal cycles and high cooling rate, hinder the anisotropies. 24,50 The SLM process parameters and building strategy also have a broad influence on the structure of the part and, thus, on the mechanical properties. Hence, they must be specifically selected for a given combination of material, geometry and size. In general, a rapid cooling rate produces high residual stresses and fine microstructure. In the powder bed condition, this leads to the creation of porosity. Also, the orientation of the components during the SLM processes exert an influence on grain growth and surface texture. 43,46 Properties such as density and surface roughness are fundamental as they noticeably affect the heat transfer. Generally, solidified grains present textured large columnar grains tough with equiaxed grains close to the melt pool surface. 1,23,30,55,63

The morphology transition within the solidification phase is governed by the ratio of thermal gradient G on the kinetics of mass transfer R rule. Several grains configuration can be achieved through the process parameter management, from equiaxed dendritic to planar. These concerns are valid all the more reason when considering thin-walled components. 50 The smaller the 3D structure thickness, the higher is the defects and morphology influence on their properties.

Aluminium flat thin pipes find several applications in different sectors such as automotive, aeronautics, conditioning, and heat exchange applications. Up to now, a typical production process of hollowed flat aluminium pipes is continuous extrusion. However, several limitations like expansive production costs and billet pre-treatment requirements afflict this manufacturing process. Also, the welded pipes produced cannot be exploited for high-pressure liquid containment. 61 Instead, flow forming (FF) is a forming process exploited to produce seamless thin-wall tubes from thermally treated preformed tubes prepared by extrusion or forging processes. 13,35,37 A challenging multiple parameters setting is required for the FF process, which being a dynamic process requires demanding management. Thus, the variables are often set based on engineers’ experience and practice. However, the flow-formed pipes can respect the higher standards in specific strength, geometrical tolerance and surface roughness. 42

A lately proposed rapid investment casting (RIC) overtake both the limitation of AM and casting. It provides for the 3D printing of meltable models made by foundry resin exploited for a casting process. It has already been proved how this methodology is valuable for metal foams and reticular structure production with outstanding results. 2,4,62 It is mainly due to the peculiar conformation of the metallic cellular structures, which offer a wide exchange surface. 7 Indeed, metal foams have already been applied in heat exchange prototypical devices. 3,22,32,38 In heat exchange devices, this is important as such the contact between these surfaces and flat heat pipes.

Through RIC, it is possible to integrate metallic reticular structure branches within the tube wall bulk in the fundable model. The devices produced by foundry processes will feature a seamless connection between heat pipes and heat exchange surface that improve the heat dissipation performance. The main concerns regard the thickness of the flat tubes achievable with the foundry processes as even modest defects on the thin-walled structure would compromise the device’s functionality.

The finite element method (FEM) help to prevent flaw that may arise during the metal casting. 15–17,26,51,53 Huang et al. 26 optimized a casting process through numerical simulations of the gating system for precision 17-4 PH stainless steel rotor used for hemodialysis machines.

Both flow turbulence and inadequate supply and internal shrinkage can be reduced through appropriate numerical
investigation. Fang et al.17 investigated the preliminary design in investment casting of an exhaust manifold using a numerical analysis with FEM investigation. The results of numerical simulations highlighted the eventuality to optimize and redesign the parameters involved during the casting process. Also, the results obtained were checked and confirmed by the actual production and testing of the exhaust manifold.

The study aims at defining the main foundry parameters to achieve an aluminium radiator free of defects, with flat heat pipes seamlessly connected to a cellular structure. CAD models of the device were produced, considering four different pipes thickness and length. Also, a numerical simulation was performed to design the casting process and avoid defects. The CAD patterns were manufactured through 3D printing and cast with the RIC processes. Numerical investigation and experimental work led to the definition of a range of process parameter values for which the process is feasible, which depends on the geometry of the flat heat pipes.

Materials and Methods

Different radiator models made of AC-44300 aluminium alloy (Table 1) with a different height (20, 40, 60, 80 mm) were designed and realized. Their geometry was produced through Solidworks. Initially, a 2D sketch with four different pipe thicknesses (0.5, 1, 1.5, 2 mm) was realized, as shown in Figures 1 and 2.

The different models are shown in Figure 2. An XFAB 2000 DWS stereolithographic 3D printer was exploited for the realization of the patterns with a photosensitive resin (FUSIA 444) (Table 2). The reticular structure allows a printing process without external supports. The patterns printed were polymerized for 1 hour in a UV oven. Figure 3 depicts the foundry patterns used for the casting process.

Table 1. EN 44300 Chemical Composition %
Elements
Si
Fe
Cu
Mn
Zn
Ti

The plaster mould was produced by mixing plaster powder and water at 25 °C for 30 minutes. The exploitation of a vibrating platform and a vacuum machine after the stirring avoid air inclusions. The expendable pattern is plunged in the plaster suspension in a foundry cylinder. The application of a thermal cycle consolidates the mould structure and allows the removal of the pattern (Figure 4).

The casting process was analyzed through numerical simulation performed with inspire cast. The investigation aim
was to prevent defects such as shrinkage cavities and porosities. These defects depend on several factors like a non-uniform temperature gradient during metal solidification and cooling, the cooling conditions, component geometry and feeding gate placement. The influence of casting location on the tree is not considered because the foundry machine uses a cylinder with a diameter of 120 mm that not allows the assembly of multiple patterns with these sizes.

The casting process is governed by a few relationships: mass conservation, Navier–Stokes equation, energy conservation, volume-of-fluid function (VOF) and $k - \varepsilon$ equations. The former is crucial to calculate the mass conservation during the metal flow in the feeding phase and expressed as follow:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0,$$

Eqn. 1

where ρ is the fluid density, t is the time and \vec{u} the velocity vector. The Navier–Stokes equation allows evaluating pressure and velocity fields:

$$\rho \frac{\partial \vec{u}}{\partial t} + \rho \vec{u} \cdot \nabla \vec{u} = -\nabla P + \mu \nabla^2 \vec{u} + \rho \vec{g},$$

Eqn. 2

with P as the pressure, \vec{g} gravitational acceleration and μ dynamic viscosity of the molten metal. The energy conservation equation allows the temperature field

Model	Number of nodes	Number of elements
20mm pipes	191650	798042
40mm pipes	340246	1411500
60mm pipes	482963	1995573
80mm pipes	634799	2633214

Table 3. Mesh Characteristics of Each Model

Table 4. Boundary Conditions Used During Simulations

Boundary conditions	Value
Molten metal temperature [°C]	730
Plaster mold preheated temperature [°C]	580
Casting time [s]	0.5

Figure 3. Resin model of the radiators with 60 mm pipes, (a) upper side view, (b) front-side view.

Figure 4. Thermal cycle imposed to the plaster mold.

Figure 5. Gate positioning on the 60mm pipes height model: (a) One inlet gate; (b) Three inlet gates; (c) Two inlet gates (lateral gate is near lowest thickness pipe); (d) Two inlet gates (lateral gate is near highest thickness pipe).
calculation and, consequentially, the solidification process management, with the following formula:

$$q = \frac{H}{t} + \frac{q}{C_1/C_2/C_0/C_1(k_T)}$$

Eqn: 3

where H is the enthalpy and q the volumetric heat flux. For the determination of the molten metal patterns, the volume function equation was used and combined with Navier–Stokes, written in the form:

$$\frac{\partial F}{\partial t} + \vec{u} \cdot \nabla F = 0,$$

Eqn: 4

F_v is the volume-of-fluid function, which is set to 0 when the calculation cell is empty, otherwise to 1. A $k - \varepsilon$ turbulence model was used to define the turbulence parameters:

$$\frac{\partial k}{\partial t} + u_j \frac{\partial k}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\frac{u_i + u_j \frac{\partial k}{\partial x_j}}{\sigma_k} \right) \right] + P_{k_e} - \varepsilon$$

Eqn: 5

$$\frac{\partial \varepsilon}{\partial t} + u_j \frac{\partial \varepsilon}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\frac{u_i + u_j \frac{\partial \varepsilon}{\partial x_j}}{\sigma_\varepsilon} \right) \right] + C_{1\varepsilon} P_{k_e} \varepsilon \frac{\varepsilon}{k_e} - C_{2\varepsilon} \frac{\varepsilon^2}{k_e}$$

Eqn: 6

where σ_k is the Prandtl number corresponding to turbulence kinetic energy and σ_ε the Prandtl number corresponding to the dissipation rate. The term u_i is the turbulence eddy viscosity, defined as follows:

$$u_i = \frac{\rho C_p k_2}{\varepsilon}$$

Eqn: 7

The values of the constants used in the turbulence model were $C_p = 0.09$, $\sigma_k = 1.00$, $\sigma_\varepsilon = 1.30$, $C_{1\varepsilon} = 1.44$, $C_{2\varepsilon} = 1.92$. Equations 1–7 describe the physical model of

Table 5. Simulation Time for the Various Gate Configurations and Pipe Length Analyzed

Pipe length	Gate configuration	Simulation time [min]
20 mm	1 Upper Inlet	60
40 mm	3 Upper Inlet	56
60 mm	1 Upper 1 Lateral Inlet LH	42
80 mm	1 Upper 1 Lateral Inlet RH	46

Figure 6. Filling of the 40mm pipes model at $t = 0.2$ s for each gate configuration: (a) One inlet gate; (b) Three inlet gates; (c) Two inlet gates (lateral gate is near lowest thickness pipe); (d) Two inlet gates (lateral gate is near highest thickness pipe).
the molten metal dynamic solidification. Inspire cast solves these equations through a domain discretization (meshing) and a finite element method (FEM) approach. This kind of approach, differently from finite difference method (FDM) one, has a higher accuracy. However, this means higher simulation time, since it is harder to reach convergence each step.

The porosities in the aluminium alloys can derive from contraction phenomena or gas entrapment. The model used for the porosities and shrinkage prediction follows the Niyama criterion, which is used only for the porosities caused by the contraction of the metal during the solidification. The threshold value of the criterion is determined experimentally for each alloy, and the value N_y is calculated with the following equation:

$$N_y = \frac{G}{\sqrt{R}} < C_{Niyama},$$

Eqn. 8

where G denotes the local temperature gradient of interest (K/m); R is the cooling rate; and C_{Niyama} is the threshold value of the Niyama criterion. A tetrahedral mesh was used for the simulations. Table 3 shows the number of nodes and elements generated for simulation processes. Boundary conditions for each simulation are defined in Table 4.

The working volume of the foundry machine used and the dimensions of the components represent a limit that is...
considered in the FEM simulations. This condition has determined the orientation of the components inside the cylinder in axis and not inclined. Indeed, the gates were assumed as perpendicular to the casting. The diameter of the gates was adopted constant in accordance with previous experiments. The diameter of gates was chosen to allow during the filling phase to avoid solidification. The cavity feeding process last 0.5 s, according to experimental evidence that highlight how this value limits the formation of cold joints. Then, inlet gates with a radius of 1.6 mm were placed into the model considering different configuration, as shown in Figure 5. In particular, the different layouts analyzed have:

- One inlet gate placed on the upper face of the model;
- Three inlet gates placed on the upper face of the model;
- Two inlet gates placed, respectively, on the upper and lateral face of the model near the lowest thickness pipe;
- Two inlet gates placed, respectively, on the upper and lateral face of the model near the highest thickness pipe.

Sixteen scenarios were investigated for each pipe length and each inlet gate configuration. The best configuration was exploited for the actual casting process.

Figure 8. Porosity analysis for the 60 mm pipes model at the end of solidification for each gate configurations: (a) One inlet gate; (b) Three inlet gates; (c) Two inlet gates (lateral gate is near lowest thickness pipe); (d) Two inlet gates (lateral gate is near highest thickness pipe).
Results

Table 5 reports the simulation time for each gate configuration and pipe length. The scenario with the highest time provides for, on average, three inlet gates. Therefore, an analysis was carried out to evaluate the trend of mould filling over time. The pipes length does not affect the mould filling; on the opposite, the inlet gate configuration has a significant impact. Figure 6 shows the molten metal state after 0.2 s for the 40 mm model. The cavity filling begins, for the configuration with a single inlet gate, in the central pipes (1–1.5 mm), where the metal reaches the bottom part of the mould. Indeed, these are the closest elements to the inlet gate. Three inlet gate led to a homogenous flow which distributes the metal evenly between the four pipes. This condition allows a reduction of the micro-porosities expected in the connection of the molten metal fronts. The configurations with the two gates have similar behavior concerning the central pipes. However, differences arise due to the different metal fronts produce by the cavity feeding. With the gate on the thinner

Table 6. Simulation Time for the Various Gate Configurations and Pipe Length Analyzed

Pipe length	Solidification time [min]							
	20 mm	40 mm	60 mm	80 mm				
Gate configuration	Start	End	Start	End	Start	End	Start	End
1 Upper Inlet	273,59	296,84	284,33	317,12	334,81	376,20	380,39	429,04
3 Upper Inlet	274,94	298,04	285,33	317,61	335,19	376,92	380,23	429,68
1 Upper 1 Lateral Inlet LH	275,05	297,50	284,47	316,31	335,81	376,59	380,97	428,23
1 Upper 1 Lateral Inlet RH	274,53	298,06	284,32	317,19	334,81	376,42	380,04	429,61

Figure 9. Resin models realized with the three upper inlet gate configuration chosen from the numerical simulations.

Figure 10. Scheme of casting furnace arrangement.

Figure 11. AC-44300 samples with the different pipe length obtained.
tube, (c) configuration, the metal front connection occurs in the 1 mm pipe while in (d) in the 1.5 mm conduit. The molten metal fluxes conjunction area must be carefully considered, since affecting the casting process. High-velocity vectors may produce mold erosion and the embedding of plaster within the final structure. These latter considerations can be extended to the different pipe length. Figures 7 and 8 show, respectively, the micro-porosity and porosity analysis for the 60 mm pipes model at the end of solidification for each gate configuration. A single and the three inlet gate configurations allow achieving a casting without microporosity; on the other hand, two inlet gate produce micro porosities located in the pipes with a higher thickness (1.5 and 2 mm). It is of particular relevance in the last configuration. Figure 8 shows the porosity distribution examined through the Niyama criterion. Except for the last scenario, (a) (b) and (c) configuration have a critical zone between 1.5 mm pipe and the reticular structure. In (d), the porosity is focused between the 2 mm pipe and the reticular lattice, with a small point delocalized near the 0.5 mm tube.

Table 6 shows the solidification phase duration for the different gate configuration and pipes length. The filling period was imposed in the simulations to avoid cold joints during the filling process. Therefore, there are no notable differences in the solidification time between the various gate configurations evaluated.

In the light of the numerical analysis results, the configuration with three upper gates was selected for the actual casting process. The patterns were connected to the inlet gating system, and the casting realized with a foundry machine ASEG Galloni G5. The foundry process was realized in an Argon atmosphere while the metal injection in a vacuum condition. Following the casting process, the plaster was removed from the cylinder after 6 hours of cooling (Figure 9).

Figure 10 shows a scheme of casting furnace arrangement. Figure 11 shows the samples realized through the RIC process. The components realized are free from defect and macro-structural problems. The specimens exhibit accordance between the critical zones identified during numerical simulations, which validate the accuracy of the numerical model.

Conclusions

RIC is considered a very interesting process in the industrial field as it allows to have the advantages of the realization of complex shapes (typical of Additive Manufacturing processes) combined with lower realization costs related to foundry processes. During the design phase, it was possible to realize the interconnected thermal exchange structures (with thermal contact resistance for null hypotheses) with thermal vector elements (tubes). During the printing phase, the limits have been the realization of models with 80 mm of pipes in how much the resin introduces a stiffness that on objects of this dimension it tends to deform and therefore to make to fail the process. The comparison between the results of the simulations and the samples carried out showed that the differences due to the melting process correspond, allowing the results obtained to be considered valid for the process design phase. Future developments related to this experimentation could be to develop a single module that constitutes a working model to evaluate the thermal performance of components made by RIC.

Funding

Open access funding provided by Università degli Studi di Roma Tor Vergata within the CRUI-CARE Agreement.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

REFERENCES

1. S. Al-Bermani, M. Blackmore, W. Zhang, I. Todd, The origin of microstructural diversity, texture, and mechanical properties in electron beam melted ti-6al-4v. Metall. Mater. Trans. 41(13), 3422–3434 (2010). https://doi.org/10.1007/s11661-010-0397-x
2. D. Almonti, G. Baiocco, E. Mingione, N. Ucciarrello, Evaluation of the effects of the metal foams geometrical features on thermal and fluid-dynamical behavior in forced convection. Int. J. Adv. Manuf. Technol. 111(3), 1157–1172 (2020). https://doi.org/10.1007/s00170-020-06092-1
3. D. Almonti, G. Baiocco, V. Tagliaferri, N. Ucciarrello, Design and mechanical characterization of voronoi structures manufactured by indirect additive
13. M.J. Davidson, K. Balasubramanian, G. Tagore, An additive manufacturing. Mater. 13(5), 1085 (2020). https://doi.org/10.3390/ma13051085

4. D. Almonti, N. Ucciardello, Design and thermal comparison of random structures realized by indirect additive manufacturing. Mater. 12(4), 2261 (2019). https://doi.org/10.3390/ma12142261

5. T. Artaza, A. Alberdi, M. Murua, J. Gorrotxategi, J. Frías, G. Puertas, M. Melchor, D. Mugica, A. Suárez, Design and integration of waam technology and in situ monitoring system in a gantry machine. Proc. Manuf. 13, 778–785 (2017). https://doi.org/10.1016/j.promfg.2017.09.014

6. M. Averyanova, P. Bertrand, B. Verquin, Studying the influence of initial powder characteristics on the properties of final parts manufactured by the selective laser melting technology: a detailed study on the influence of the initial properties of various martensitic stainless steel powders on the final microstructures and mechanical properties of parts manufactured using an optimized slm process is reported in this paper. Virtual and Phys. Prototyp. 6(4), 215–223 (2011). https://doi.org/10.1080/17452759.2011.594645

7. G. Baiocco, V. Tagliaferri, N. Ucciardello, Neural networks implementation for analysis and control of heat exchange process in a metal foam prototypal device. Procedia CIRP 62, 518–522 (2017). https://doi.org/10.1016/j.procir.2016.06.035

8. E. Brandl, U. Heckenberger, V. Holzinger, D. Buchbinder, Additive manufactured alsi10mg samples using selective laser melting (slm): Microstructure, high cycle fatigue, and fracture behavior. Mater. Des. 34, 159–169 (2012). https://doi.org/10.1016/j.matdes.2011.07.067

9. D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, J. Bültmann, High power selective laser melting (hp slm) of aluminum parts. Phys. Procedia 12, 271–278 (2011). https://doi.org/10.1016/j.phpro.2011.03.035

10. T. Caffrey, T. Wohlers, Manufacturing state of the Ind. Manuf. Eng. 154, 67–78 (2015)

11. P. Collins, D. Brice, P. Samimi, I. Gharamian, H. Fraser, Microstructural control of additively manufactured metallic mater. Annu. Rev. Mater. Res. 46, 63–91 (2016). https://doi.org/10.1146/annurev-matsci-070115-031816

12. C. Cunninghan, S. Wikshålând, F. Xu, N. Kemakolam, A. Shokrani, V. Dhokia, S. Newman, Cost modelling and sensitivity analysis of wire and arc additive manufacturing. Proc. Manuf. 11, 650–657 (2017). https://doi.org/10.1016/j.promfg.2017.07.163

13. M.J. Davidson, K. Balasubramanian, G. Tagore, An experimental study on the quality of flow-formed aa6061 tubes. J. Mater. Process. Technol. 203(1–3), 321–325 (2008). https://doi.org/10.1016/j.jmatprotect.2007.10.021

14. D. Ding, Z. Pan, D. Cuiuri, H. Li, Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int. J. Adv. Manuf. Technol. 81(1), 465–481 (2015). https://doi.org/10.1007/s00170-015-7077-3

15. W. Everhart, S. Lekakh, V. Richards, J. Chen, K. Chandrashekhar, Crack formation during foam pattern firing in the investment casting process. Inter Metalcast 7(2), 7–14 (2013)

16. W. Everhart, S. Lekakh, V. Richards, J. Chen, H. Li, K. Chandrashekhar, Corner strength of investment casting shells. Inter Metalcast 7(1), 21–27 (2013). https://doi.org/10.1007/BF03355541

17. Y. Fang, J. Hu, J. Zhou, Y. Yu, Numerical simulation of filling and solidification in exhaust manifold investment casting. Int. J. Metalcast. 8(4), 39–45 (2014). https://doi.org/10.1007/BF03355593

18. W.E. Frazier, Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23(6), 1917–1928 (2014). https://doi.org/10.1007/s11665-014-0958-z

19. J. Ge, J. Lin, Y. Lei, H. Fu, Location-related thermal history, microstructure, and mechanical properties of arc additively manufactured 2cr13 steel using cold metal transfer welding. Mater. Sci. Eng. A 715, 144–153 (2018). https://doi.org/10.1016/j.msea.2017.12.076

20. N.P. Gokhale, P. Kala, V. Sharma, M. Palla, Effect of deposition orientations on dimensional and mechanical properties of the thin-walled structure fabricated by tungsten inert gas (tig) welding-based additive manufacturing process. J. Mech. Sci. Technol. 34(2), 701–709 (2020). https://doi.org/10.1007/s12206-020-0115-6

21. B. Gorny, T. Niendorf, J. Lackmann, M. Thoen, T. Troester, H. Maier, In situ characterization of the deformation and failure behavior of non-stochastic porous structures processed by selective laser melting. Mater. Sci. Eng. A 528(27), 7962–7967 (2011). https://doi.org/10.1016/j.msea.2011.07.026

22. S. Guarino, G. Di Ilio, S. Venettacci, Influence of thermal contact resistance of aluminum foams in forced convection: experimental analysis. Mater. 10(8), 907 (2017). https://doi.org/10.3390/ma10080907

23. H. Helmer, A. Bauereiß, R. Singer, C. Körner, Grain structure evolution in inconel 718 during selective electron beam melting. Mater. Sci. Eng. A 668, 180–187 (2016). https://doi.org/10.1016/j.msea.2016.05.046

24. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016). https://doi.org/10.1016/j.actamat.2016.07.019

25. Z. Hu, X. Qin, T. Shao, Welding thermal simulation and metallurgical characteristics analysis in waam for 5crnimo hot forging die remanufacturing. Procedia
47. A.B. Spierings, G. Levy, Comparison of density of stainless steel 316L parts produced with selective laser melting using different powder grades. In: Proceedings of the Annual International Solid Freeform Fabrication Symposium, pp. 342–353. Austin, TX (2009)

48. G. Strano, L. Hao, R.M. Everson, K.E. Evans, Surface roughness analysis, modelling and prediction in selective laser melting. J. Mater. Process. Technol. 213(4), 589–597 (2013). https://doi.org/10.1016/j.jmatprotec.2012.11.011

49. S.M. Thompson, Z.S. Aspin, N. Shamsaei, A. Elwany, L. Bian, Additive manufacturing of heat exchangers: a case study on a multi-layered ti-6al-4v oscillating heat pipe. Addit. Manuf. 8, 163–174 (2015). https://doi.org/10.1016/j.addma.2015.09.003

50. S.M. Thompson, L. Bian, N. Shamsaei, A. Yadollahi, An overview of direct laser deposition for additive manufacturing; part i: transport phenomena, modeling and diagnostics. Addit. Manuf. 8, 36–62 (2015). https://doi.org/10.1016/j.addma.2015.07.001

51. D. Wang, B. He, S. Liu, C. Liu, L. Fei, Dimensional shrinkage prediction based on displacement field in investment casting. Int. J. Adv. Manuf. Technol. 85(1), 201–208 (2016). https://doi.org/10.1007/s00170-015-7836-1

52. H. Wang, W. Jiang, J. Ouyang, R. Kovacevic, Rapid prototyp. of 4043 al-alloy parts by vp-gtaw. J. Mater. Process. Technol. 148(1), 93–102 (2004). https://doi.org/10.1016/j.jmatprotec.2004.01.058

53. J. Wang, S.R. Sama, P.C. Lynch, G. Manogharan, Design and topology optimization of 3d-printed wax patterns for rapid investment casting. Procedia Manuf. 34, 683–694 (2019). https://doi.org/10.1016/j.promfg.2019.06.224

54. B. Wu, Z. Pan, S. Li, D. Cuiuri, D. Ding, H. Li, The anisotropic corrosion behaviour of wire arc additive manufactured ti-6al-4v alloy in 3.5% nacl solution. Corr. Sci. 137, 176–183 (2018). https://doi.org/10.1016/j.corsci.2018.03.047

55. X. Wu, J. Liang, J. Mei, C. Mitchell, P. Goodwin, W. Voice, Microstructures of laser-deposited ti-6al-4v. Mater. & Des. 25(2), 137–144 (2004). https://doi.org/10.1016/j.matdes.2003.09.009

56. W. Xiong, G.B. Olson, Integrated computational mater. design for high-performance alloys. MRS Bull. 40(12), 1035–1044 (2015). https://doi.org/10.1557/mrs.2015.273

57. W. Xiong, G.B. Olson, Cybermaterials: materials by design and accelerated insertion of materials. NPJ Comput. Mater. 2(1), 1–14 (2016). https://doi.org/10.1038/npjcompumats.2015.9

58. X. Xu, S. Ganguly, J. Ding, S. Guo, S. Williams, F. Martina, Microstructural evolution and mechanical properties of maraging steel produced by wire+ arc additive manufacture process. Mater. Charact. 143, 152–162 (2018). https://doi.org/10.1016/j.matchar.2017.12.002

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.