KILLING WILD RAMIFICATION

MANISH KUMAR

Abstract. We compute the inertia group of the compositum of wildly ramified Galois covers. It is used to show that even the p-part of the inertia group of a Galois cover of \mathbb{P}^1 branched only at infinity can be reduced if there is a jump in the ramification filtration at two (in the lower numbering) and certain linear disjointness statement holds.

1. Introduction

Let k be a field of characteristic p. Let $\phi : X \to Y$ be a finite Galois G-cover of regular irreducible k-curves branched at $\tau \in Y$. Let I be the inertia subgroup of G at a point of X above τ. It is well known, $I = P \rtimes \mu_n$ where P is a p-group, μ_n is a cyclic group of order n and $(n, p) = 1$. Abhyankar’s lemma can be viewed as a tool to modify the tame part of the inertia group. For instance, suppose k contains n^{th}-roots of unity. Let y be a regular local parameter of Y at τ. Let $Z \to Y$ be the Kummer cover of regular curves given by the field extension $k(Y)[y^{1/n}]/k(Y)$ and $\tau' \in Z$ be the unique point lying above τ. Then the pullback of the cover $X \to Y$ to Z is a Galois cover of Z branched at τ'. But the inertia group at any point above τ' is P. A wild analogue of this phenomenon appears as Theorem 3.5.

Assume k is also algebraically closed field and let $X \to \mathbb{P}^1$ be a Galois G-cover of k-curves branched only at ∞. Let I be the inertia subgroup at some point above ∞ and P be the sylow-p subgroup of I. Then noting that the tame fundamental group of \mathbb{A}^1 is trivial, it can be seen that the conjugates of P in G generate the whole of G. Abhyankar’s inertia conjecture states that the converse should also be true. More precisely, any subgroup of a quasi-p group G of the form $P \rtimes \mu_n$ where P is a p-group and $(n, p) = 1$ such that conjugates of P generate G is the inertia group of a G-cover of \mathbb{P}^1 branched only at ∞.

An immediate consequence of a result of Harbater ([Ha1, Theorem 2]) shows that the inertia conjecture is true for every sylow-p subgroup of G. In fact Harbater’s result shows that if a p-subgroup P of G occurs as the inertia group of a G-cover of \mathbb{P}^1 branched only at ∞ and Q is a p-subgroup of G containing P then there exists a G-cover of \mathbb{P}^1 branched only at ∞ so that the inertia group is Q. Proposition 3.4 and a study of wild ramification filtration (Proposition 2.6) enables us to show that in certain cases the given G-cover of \mathbb{P}^1 can be modified to obtain a G-cover of \mathbb{P}^1 branched only at ∞ so that the inertia group of this new cover is smaller than the inertia group P of the original cover (Theorem 3.6).

So far the inertia conjecture is only known for some explicit groups. See for instance [BP, Theorem 5] and [MP, Theorem 1.1].

The author is supported by SFB/TR-45 grant.
2. Filtration on ramification group

For a complete discrete valuation ring (DVR) \(R \), \(v_R \) will denote the valuation associated to \(R \) with the value group \(\mathbb{Z} \). Let \(S/R \) be a finite extension of complete DVRs such that \(\text{QF}(S)/\text{QF}(R) \) is a Galois extension with Galois group \(G \). Let us define a decreasing filtration on \(G \) by

\[G_i = \{ \sigma \in G : v_S(\sigma x - x) \geq i + 1, \forall x \in S \} \]

Note that \(G_{-1} = G \) and \(G_0 \) is the inertia subgroup. This filtration is called the ramification filtration. For every \(i \), \(G_i \) is a normal subgroup of \(G \). The following are some well-known results.

Proposition 2.1. [Ser IV, 4, Proposition 2 and 3] Let \(S/R \) be a finite extension of complete DVRs such that \(\text{Gal}(\text{QF}(S)/\text{QF}(R)) = G \). Let \(H \) be a subgroup \(G \). Let \(K \) be the fixed subfield of \(\text{QF}(S) \) under the action of \(H \). Let \(T \) be the normalization of \(R \) in \(K \). Then \(T \) is a complete DVR, \(\text{Gal}(\text{QF}(S)/K) = H \) and the ramification filtration on \(H \) is induced from that of \(G \), i.e. \(H_i = G_i \cap H \). Moreover, if \(H = G_j \) for some \(j \geq 0 \) then \((G/H)_i = G_i/H \) for \(i \leq j \) and \((G/H)_{i} = \{ e \} \) for \(i \geq j \).

Proposition 2.2. [Ser IV, 2, Corollary 2 and 3] The quotient group \(G_0/G_1 \) is a prime-to-\(p \) cyclic group and if the residue field has characteristic \(p > 0 \) then for \(i \geq 1 \), \(G_i/G_{i+1} \) is an elementary abelian group of exponent \(p \). In particular \(G_1 \) is a \(p \)-group.

Lemma 2.3. Let \(S/R \) be an extension of DVRs such that \(\text{QF}(S)/\text{QF}(R) \) = \(G \). Let \(H \) be a normal subgroup of \(G \) and \(T \) be the normalization of \(R \) in \(\text{QF}(S)^H \) then

\[
\sum_{i=0}^{\infty} (|G_i| - 1) = e_{S/T} \sum_{i=0}^{\infty} (|(G/H)_i| - 1) + \sum_{i=0}^{\infty} (|H_i| - 1)
\]

Proof. This follows from the transitivity of the different \(D_{S/R} = D_{S/T}D_{T/R} \) [Ser III, 4, Proposition 8], Hilbert’s different formula \(d_{S/R} = \sum_{i=0}^{\infty} (|G_i| - 1) \) (Sti Theorem 3.8.7]) and \(v_S(x) = v_{S/T}v_T(x) \) for \(x \in \text{QF}(T) \).

Lemma 2.4. Let \(S/R \) be a totally ramified extension of complete DVRs over a perfect field \(k \) of characteristic \(p \) > 0. Suppose \(\text{QF}(S) \) is generated over \(\text{QF}(R) \) by \(\alpha \in \text{QF}(S) \) with \(\alpha^p - \alpha \in \text{QF}(R) \) and \(v_R(\alpha^p - \alpha) = -1 \). Then the degree of the different \(d_{S/R} = 2|G| - 2 \).

Proof. Note that since \(S/R \) is totally ramified, their residue fields are same and by [Con] the residue field is isomorphic to the field of coefficient of \(R \) and \(S \). Replacing \(k \) by this residue field we may assume that the residue fields of \(S \) and \(R \) are \(k \).

We know that \(|G| = p^l \) for some \(l \geq 0 \). We will prove the lemma by induction on \(l \). If \(l = 0 \) then the statement is trivial. Suppose \(l = 1 \). Then by hypothesis there exists \(\alpha \in \text{QF}(S) \) with \(\alpha^p - \alpha \in R \) and \(v_R(\alpha^p - \alpha) = -1 \). Let \(x = (\alpha^p - \alpha)^{-1} \) and \(y = \alpha^{-1} \) then \(v_S(x) = e_{S/R}v_R(x) = p \) and \(v_S(y) = 1 \). By Cohen structure theorem \(R = k[[x]] \) and \(S = k[[y]] \). Also we have that \(m(y) = 0 \) where \(m(T) = T^p + xT^{p-1} - x \in R[T] \). So \(m(T) \) is a minimal polynomial of \(y \) over \(\text{QF}(R) \).

Now in general assume \(l \geq 1 \). Note that \(G = (\mathbb{Z}/p\mathbb{Z})^l \), so by hypothesis there exist \(\alpha_1, \ldots, \alpha_l \in \text{QF}(S) \) such that
We define L_n in third statement follows from the definition of v for each 0.

Claim. For each $0 \leq i \leq l - 1$ and $i < j \leq l$, there exist $\beta_{i,j} \in \text{QF}(S)$ such that the following holds

1. $\beta_{i,j}^p - \beta_{i,j} \in L_i$,
2. $v_i(\beta_{i,j}^p - \beta_{i,j}) = -1$,
3. $L_i(\beta_{i,j}; i < j \leq n) = L_n$ for $i < n \leq l - 1$,
4. $v_{i+1}(\beta_{i,i+1}) = -1$.

We define $\gamma_{i+1} = \beta_{i+1}^{-1}$.

Proof of the claim. We shall proof this by induction. For $i = 0$, we take $\beta_{0,j} = \alpha_j$. The first and the second statement is same as the hypothesis of the lemma. The third statement follows from the definition of L_n's. For the fourth statement note that $\beta_{0,1} = \alpha_1$. Since $v_1(\alpha_1) < 0$, we have $v_1(\alpha_1^p) = v_1(\alpha_1 - \alpha_1) = v_1(x^{-1})$. So $v_1(\alpha_1) = p^{-1}v_1(x^{-1}) = p^{-1}v_0(x^{-1}) = -1$.

Suppose the claim is true for a fixed $i + 1 \geq 0$ and $i < l - 1$. Then we have $\beta_{i,j} \in \text{QF}(S)$ for $i < j \leq l$ satisfying the four properties listed in the claim. Also note that $v_i(y_i) = 1$. So $T_i = k[[y_i]]$. Hence we can write explicitly $\beta_{i,j}^p - \beta_{i,j} = c_j y_i^{-1} + d_j + f_j(y_i)$ where $c_j, d_j \in k, c_j \neq 0$ and $f_j(y_i) \in T_i$ has order at least 1. Let $g_j = f_j + f_j^p + f_j^{p^2} + \ldots \in T_i$ then $g_j - g_j^p = f_j$. Let $\gamma_{i,j} = \beta_{i,j} - g_j$. Then $\gamma_{i,j}$ also satisfies the four properties of the claim. Moreover $\gamma_{i,j}^p - \gamma_{i,j} = c_j y_i^{-1} + d_j$. Hence replacing $\beta_{i,j}$ by $\gamma_{i,j}$, we may assume

\[
\beta_{i,j}^p - \beta_{i,j} = c_j y_i^{-1} + d_j
\]

Now for any j such that $i + 1 < j \leq l$. We define $\beta_{i+1,j} = \beta_{i,j} - a_j \beta_{i,i+1}$ where $a_j \in k$ is such that $a_j^p = c_j^{-1} c_{i+1}$. Note that k is perfect so such an a_j exists.

We shall verify that these $\beta_{i+1,j}$ satisfy the four assertions of the claim. Firstly, since $L_{i+1} = L_i(\beta_{i,i+1})$, for $i+1 < n \leq l - 1$ we have

$$L_{i+1}(\beta_{i+1,j}; i + 1 < j \leq n) = L_i(\beta_{i,j}; i < j \leq n) = L_n$$

Hence the third property is satisfied.

We Compute

\[
\beta_{i+1,j}^p - \beta_{i+1,j} = \beta_{i,j}^p - \beta_{i,j} - a_j^p \beta_{i,i+1} + a_j \beta_{i,i+1} = c_j y_i^{-1} + d_j - a_j^p (\beta_{i,i+1} + c_{i+1} y_i^{-1} + d_{i+1}) + a_j \beta_{i,i+1} = (c_j - a_j^p c_{i+1}) y_i^{-1} + d_j - a_j^p d_{i+1} + (a_j - a_j^p) \beta_{i,i+1} = (a_j - a_j^p) \beta_{i,i+1} + d_j - a_j^p d_{i+1}
\]

Hence $\beta_{i+1,j}^p - \beta_{i+1,j} \in L_{i+1}$. If $a_j = a_j^p$ then $\beta_{i+1,j}^p - \beta_{i+1,j} \in k$ but this will lead to a residue field extension for S/R which contradicts the assumption that S/R is totally ramified. Hence $a_j \neq a_j^p$ and

\[
\beta_{i+1,j}^p - \beta_{i+1,j} = (\text{nonzero constant}) \beta_{i,i+1} + \text{constant}
\]
So \(v_{i+1}(\beta_{i+1,j} - \beta_{i+1,j}) = v_{i+1}(\beta_{i,i+1}) = -1 \). We have now verified the first two properties of the claim too.

Finally, \(v_{i+2}(\beta_{i+1,i+2}) = v_{i+2}(\beta_{i+1,i+2} - \beta_{i+1,i+2}) = v_{i+2}(\beta_{i,i+1}) \). So we deduce that \(v_{i+2}(\beta_{i+1,i+2}) = p^{-1}v_{i+2}(\beta_{i,i+1}) = p^{-1}pv_{i+1}(\beta_{i,i+1}) = -1 \). This completes the proof of the claim. \(\square \)

The field extension \(L_{i-1}/QF(R) \) is Galois with Galois group \((\mathbb{Z}/p\mathbb{Z})^{l-1}\) and \(\text{Gal}(QF(S)/L_{i-1}) = \mathbb{Z}/p\mathbb{Z} \). Moreover, both \(T_{i-1}/R \) and \(S/T_{i-1} \) are totally ramified extension. Note that \(L_{i-1} = QF(R)(\alpha_1, \ldots, \alpha_{i-1}) \). So by induction hypothesis \(d_{T_{i-1}/R} = 2p^{l-1} - 2 \).

Since \(QF(S) = L_{i-1}(\beta_{i-1,i}) \), \(\beta_{i-1,i} \in L_{i-1} \) and \(v_{i-1}(\beta_{i-1,i}) = -1 \), we have \(d_{S/T_{i-1}} = 2p - 2 \) by “\(l = 1 \) case”.

Finally using the transitivity of different, we see that \(d_{S/R} = e_{S/T_{i-1}}d_{T_{i-1}/R} + d_{S/T_{i-1}} = p(2p^{l-1} - 2) - 2p - 2 = 2p^l - 2 \). This completes the proof of the lemma. \(\square \)

Proposition 2.5. Let \(i \geq 1 \) and \(S/R \) be a finite extension of complete DVRs over a perfect field \(k \) of characteristic \(p \) such that \(\text{Gal}(QF(S)/QF(R)) = G = G_i \). Let \(L \) be the subfield of \(QF(S) \) generated over \(QF(R) \) by all \(\alpha \in QF(S) \) such that \(v_R(\alpha^p - \alpha) = -i \). Then \(G_{i+1} \supset \text{Gal}(QF(S)/L) \).

Proof. Let \(L' = QF(S)^{G_{i+1}} \) and \(H = \text{Gal}(QF(S)/L) \leq G \). Let \(T \) and \(T' \) be the normalization of \(R \) in \(L \) and \(L' \) respectively. Since \(G_{i+1} \) is a normal subgroup of \(G \), the extension \(L'/QF(R) \) is Galois and \(\text{Gal}(L'/QF(R)) = G_{i+1} \) (say). Moreover the ramification filtration on \(\bar{G} \) is given by \(G_i = G \) and \(G_{i+1} = \{e\} \) (Proposition 2.3). If \(G_{i+1} = G \) then \(H \subset G_{i+1} \) and we are done. So we may assume \(G_{i+1} \neq G \). By Proposition 2.2 \(\bar{G} \neq \{e\} \) is isomorphic to the direct sum of copies of \(\mathbb{Z}/p\mathbb{Z} \).

Let \(L'' \subset L' \) be any \(\mathbb{Z}/p\mathbb{Z} \)-extension of \(QF(R) \). By Artin-Schrier theory there exists \(\alpha \in L'' \setminus QF(R) \) such that \(\beta = \alpha^p - \alpha \in QF(R) \). Let \(x \) be a local parameter of \(R \) then \(R = k[x] \). If \(v_R(\beta) > 0 \) then \(\alpha = c - \beta - \beta^p - \beta^p \beta^p - \ldots \in R \) for some \(c \in \mathbb{F}_p \). So \(v_R(\beta) \leq 0 \). Moreover since \(G_0 = G \), \(S/R \) is totally ramified. So \(v_R(\beta) \neq 0 \) and hence \(v_R(\beta^p) \leq 0 \). If \(v_R(\beta) \) is a multiple of \(p \) then \(\beta = c_0x^l + c_1x^{l+1} + \ldots \). for some integer \(l < 0 \). Let \(c \in k \) be such that \(c^p = 0 \) and let \(\alpha' = \alpha - cx' \). Then \(\beta' = \alpha'^p - \alpha' = -c_0x^l + c_1x^{l+1} + \ldots \). \(v_R(\beta') \) and \(L'' = QF(R)(\alpha) = QF(R)(\alpha') \). Hence by such modifications we may assume \(v_R(\alpha^p - \alpha) = -r < 0 \) is coprime to \(p \). Let \(T'' \) be the normalization of \(R \) in \(L'' \). By explicit calculation of the different and using Hilbert’s different formula, the degree of the different \(d_{T'/R} = (r+1)(p-1) \). Since \(G_{i+1} \) is trivial and \(G_i = \bar{G} \), by Hilbert’s different formula \(d_{T'/R} = (i+1)|\bar{G}| - i - 1 \). Let \(H \) be the index \(p \) subgroup of \(G \) such that \(L'' = L'H \). Then the ramification filtration on \(H \) (coming from the extension \(T'/T'' \)) is induced from \(\bar{G} \). Hence \(d_{T'/T''} = (i+1)|H| - i - 1 \). Using Lemma 2.3 and \(e_{T'/T''} = |H| \), we obtain

\[
(i+1)|\bar{G}| - i - 1 = |H|(r+1)(p-1) + (i+1)|H| - i - 1
\]

Using \(|\bar{G}| = |P| \) above and solving for \(r \), one gets \(r = i \). Hence \(L'' \subset L \). Since \(L'' \) was an arbitrary \(\mathbb{Z}/p\mathbb{Z} \)-extension of \(QF(R) \) contained in \(L' \) and \(L' \) is generated by such \(\mathbb{Z}/p\mathbb{Z} \)-extensions, we have that \(L' \subset L \). So by the fundamental theorem of Galois theory \(H \subset G_2 \). \(\square \)
Proposition 2.6. Let S/R be a finite extension of complete DVRs over a perfect field k of characteristic p such that $\text{Gal}(\text{QF}(S)/\text{QF}(R)) = G = G_1$. Let L be the subfield of $\text{QF}(S)$ generated over $\text{QF}(R)$ by all $\alpha \in \text{QF}(S)$ such that $v_R(\alpha^p - \alpha) = -1$. Then $G_2 = \text{Gal}(\text{QF}(S)/L)$.

Proof. In view of Proposition 2.5 it is enough to show $G_2 \subset H := \text{Gal}(\text{QF}(S)/L)$. Let T be the normalization of R in L. Note that $L/\text{QF}(R)$ is a Galois extension with Galois group G/H. By Lemma 2.4 $d_{T/R} = 2|G/H| - 2$. So using Lemma 2.3 one gets:

$$2|G| - 2 + \sum_{i=2}^{\infty}(|G_i| - 1) = |H|(2|G/H| - 2) + 2|H| - 2 + \sum_{i=2}^{\infty}(|H_i| - 1)$$

Rearranging and using $|G| = |G/H| \cdot |H|$, the above reduces to the following

$$2|G/H| - 2 + |H| - \sum_{i=2}^{\infty}(|G_i| - |H_i|) = 2|G/H| - 2$$

So $G_i = H_i$ for $i \geq 2$. Hence $G_2 = H \cap G_2$ which implies $G_2 \subset H$. \qed

Corollary 2.7. Let S/R be a finite extension of complete DVRs over a perfect field k of characteristic p such that $\text{Gal}(\text{QF}(S)/\text{QF}(R)) = G = F^3G$. Then $F^3G \neq G$ iff there exists $\alpha \in \text{QF}(S)$ such that $\alpha^p - \alpha \in \text{QF}(R)$ and $v_R(\alpha^p - \alpha) = -1$.

3. Reducing Inertia

For a local ring R, let m_R denote the maximal ideal of R. In this section we shall show how even the wild part of inertia subgroup of a Galois cover can be reduced. We begin with the following lemma.

Lemma 3.1. Let R be a DVR and K be the quotient field of R. Let L and M be finite separable extensions of K and $\hat{\Omega} = LM$ their compositum. Let A be a DVR dominating R with quotient field $\hat{\Omega}$. Note that $S = A \cap L$ and $T = A \cap M$ are DVRs. Let \hat{K}, \hat{L}, \hat{M} and $\hat{\Omega}$ be the quotient field of the complete DVRs \hat{R}, \hat{S}, \hat{T} and \hat{A} respectively. If $A/m_A = S/m_S$ then $\hat{\Omega} = \hat{LM}$. Here all fields are viewed as subfields of an algebraic closure of \hat{K}.

Proof. Note that \hat{L} and \hat{M} are contained in $\hat{\Omega}$. So $\hat{LM} \subset \hat{\Omega}$. Let π_A denote a uniformizing parameter of A. Then $\pi_A \in LM \subset \hat{LM}$. So it is enough to show that $\hat{\Omega} = \hat{L}[[\pi_A]]$. Note that $\hat{S}[[\pi_A]]$ is a finite \hat{S}-module, hence it is a complete DVR [Coh]. Also $\hat{S} \subset S[[\pi_A]] \subset \hat{A}$ and π_A generate the maximal ideal of \hat{A}, hence $\pi_A S$ is the maximal ideal of $S[[\pi_A]]$. Moreover, the residue field of \hat{S} is equal to $S/m_S = A/m_A$ which is same as the residue field of \hat{A}. Hence the residue field of $\hat{S}[[\pi_A]]$ is also same as the residue field of \hat{A}. So $\hat{S}[[\pi_A]] = \hat{A}$ (by [Coh] Lemma 4). Hence the quotient field of $\hat{S}[[\pi_A]]$ is $\hat{\Omega}$. But that means $\hat{L}[[\pi_A]] = \hat{\Omega}$. \qed

Corollary 3.2. Let the notation be as in the above theorem. If $\hat{L} \subset \hat{M}$ then A/T is an unramified extension.

Proof. Since Ω/M is finite extension, so is $\hat{\Omega}/\hat{M}$. Hence \hat{A} is a finite \hat{T}-module. By the above lemma and the hypothesis $\hat{\Omega} = \hat{M}$. So $\hat{A} = \hat{T}$, i.e. A/T is unramified. \qed

Let k be any field.
Theorem 3.3. Let \(X \to Y \) and \(Z \to Y \) be Galois covers of regular \(k \)-curves branched at \(\tau \in Y \). Let \(\tau_x \) and \(\tau_z \) be closed points of \(X \) and \(Z \) respectively, lying above \(\tau \). Suppose \(k(\tau_x) = k(\tau) \). Let \(W \) be an irreducible dominating component of the normalization of \(X \times_Y Z \) containing the closed point \((\tau_x, \tau_z) \). Then \(W \to Y \) is a Galois cover ramified at \(\tau \) and the decomposition subgroup of the cover at \(\tau \) is the Galois group of the field extension \(QF(\mathcal{O}_{X,\tau_x}) QF(\mathcal{O}_{Z,\tau_z}) / QF(\mathcal{O}_{Y,\tau}) \).

Proof. Let \(R = \mathcal{O}_{Y,\tau} \). Note that \(R \) is a DVR. Let \(K \) be the quotient field of \(R \). Let \(L \) and \(M \) be the function field of \(X \) and \(Z \) respectively and \(\Omega = LM \) be their compositum. By definition \(W \) is an irreducible regular curve with function field \(\Omega \) and the two projections give the covering morphisms to \(X \) and \(Y \). Let \(\tau_w \) denote the closed point \((\tau_x, \tau_z) \in W \) and \(A = \mathcal{O}_{W,\tau_w} \). Since \(\tau_w \) lies above \(\tau_x \) under the covering \(W \to X \) and above \(\tau_z \) under the covering \(W \to Z \), we have that \(A \cap L = \mathcal{O}_{X,\tau_x} (= S \text{ say}) \) and \(A \cap M = \mathcal{O}_{Z,\tau_z} (= T \text{ say}) \). Since \(k(\tau_x) = k(\tau) \) and \(k(W) = k(X)k(Z) \) we get that \(k(\tau_w) = k(\tau_x)k(\tau_z) = k(\tau) \). But this is same as \(A/m_A = S/m_S \). So using the above lemma, we conclude that \(\hat{L}M = \hat{\Omega} \).

The decomposition group of the cover \(W \to Y \) at \(\tau_w \) is given by the Galois group of the field extension \(\hat{\Omega}/K \) ([Bou, Corollary 4, Section 8.6, Chapter 6]). This completes the proof because \(\Omega = \hat{L}M = QF(\mathcal{O}_{X,\tau_x}) QF(\mathcal{O}_{Z,\tau_z}) \) and \(\hat{K} = QF(\mathcal{O}_{Y,\tau}) \).

Proposition 3.4. Let \(\Phi : X \to Y \) be a \(G \)-cover of regular \(k \)-curves ramified at \(\tau_x \in X \) and let \(\tau = \Phi(\tau_x) \). Let \(G_{\tau} \) and \(I_{\tau} \) be the decomposition subgroup and the inertia subgroup respectively at \(\tau_x \). Let \(N \leq I_{\tau} \) be a normal subgroup of \(G_{\tau} \).

Suppose there exist a Galois cover \(\Psi : Z \to Y \) of regular \(k \)-curves ramified at \(\tau_z \in Z \) with \(\Psi(\tau_z) = \tau \) such that \(k(\tau_z) = k(\tau) \) and the fixed field \(QF(\mathcal{O}_{Z,\tau_z})^N \) is same as the compositum \(QF(\mathcal{O}_{Z,\tau_z})k(\tau_x) \). Let \(W \) be an irreducible dominating component of the normalization of \(X \times_Y Z \) containing \((\tau_x, \tau_z) \). Then the natural morphism \(W \to Z \) is a Galois cover. The inertia group and the decomposition group at the point \((\tau_x, \tau_z) \) are \(N \) and an extension of \(N \) by \(\text{Gal}(k(\tau_x)/k(\tau)) \) respectively.

Proof. Let \(\tau_w \in W \) be the point \((\tau_x, \tau_z) \). Applying Theorem 3.3 we obtain that the decomposition group of the Galois cover \(W \to Y \) at \(\tau_w \) is isomorphic to \(G_{\tau_w} = \text{Gal}(QF(\mathcal{O}_{X,\tau_x}) QF(\mathcal{O}_{Z,\tau_z}) / QF(\mathcal{O}_{Y,\tau})) \). Since \(QF(\mathcal{O}_{Z,\tau_z}) \subset QF(\mathcal{O}_{X,\tau_x}) \), we have \(G_{\tau_w} = G_{\tau} = \text{Gal}(QF(\mathcal{O}_{X,\tau_x}) / QF(\mathcal{O}_{Y,\tau})) \). Since \(k(\tau_z) = k(\tau) \), the inertia group and the decomposition group of the cover \(Z \to Y \) at \(\tau_z \) are both \(\text{Gal}(QF(\mathcal{O}_{Z,\tau_z}) / QF(\mathcal{O}_{Y,\tau})) \). Since \(QF(\mathcal{O}_{Z,\tau_z})^N = QF(\mathcal{O}_{Z,\tau_z})k(\tau_x) \) we also obtain that \(\text{Gal}(QF(\mathcal{O}_{Z,\tau_z})k(\tau_x) / QF(\mathcal{O}_{Y,\tau})) = G_{\tau}/N \). Moreover, we have \(G_{\tau}/I_{\tau} = \text{Gal}(k(\tau_x)/k(\tau)) = \text{Gal}(k(\tau_x) QF(\mathcal{O}_{Y,\tau}) / QF(\mathcal{O}_{Y,\tau})) \). Since \(\mathcal{O}_{Z,\tau_x}/\mathcal{O}_{Y,\tau} \) is totally...
ramified, $\text{QF}(\hat{O}_{Z,\tau_x})$, $k(\tau_x)/\text{QF}(\hat{O}_{Y,\tau})$ are linearly disjoint over $\text{QF}(\hat{O}_{Y,\tau})$.

\[
\begin{array}{c}
\text{QF}(\hat{O}_{X,\tau_x}) \\
N \downarrow \\
\text{QF}(\hat{O}_{Z,\tau_x})k(\tau_x) \\
G_r/I_r \quad G_r/N \\
\text{QF}(\hat{O}_{Y,\tau})k(\tau_x) \\
\text{QF}(\hat{O}_{Y,\tau})
\end{array}
\]

So $\text{Gal}(\text{QF}(\hat{O}_{Z,\tau_x})k(\tau_x)/\text{QF}(\hat{O}_{Z,\tau_x})) = \text{Gal}(k(\tau_x)/k(\tau))$. So the decomposition group of $W \to Z$ is $\text{Gal}(\text{QF}(\hat{O}_{X,\tau_x})/\text{QF}(\hat{O}_{Z,\tau_x}))$ which is an extension of N by $\text{Gal}(k(\tau_x)/k(\tau))$ and the inertia group is $\text{Gal}(\text{QF}(\hat{O}_{X,\tau_x})/\text{QF}(\hat{O}_{Z,\tau_x})k(\tau_x)) = N$. □

Let k be an algebraically closed field of characteristic $p > 0$.

Theorem 3.5. Let $\Phi : X \to Y$ be a G-Galois cover of regular k-curves. Let $\tau_x \in X$ be a ramification point and $\tau = \Phi(\tau_x)$. Let I be the inertia group of Φ at τ_x. There exists a cover $\Psi : Z \to Y$ of degree $[I]$, such that the cover $W \to Z$ is étale over τ_z where W is the normalization of $X \times_Y Z$ and $\tau_z \in \overline{Z}$ is such that $\Psi(\tau_z) = \tau$. Moreover if there are no non-trivial homomorphism from $G \to P$ where P is a p-Sylow subgroup of I then $W \to Z$ is a G-cover of irreducible regular k-curves.

Proof. Since I is the inertia group, it is isomorphic to $P \times \mu_n$ where $(p, n) = 1$ and μ_n is a cyclic group of order n. Let y be a local coordinate of Y at τ such that $k(Y)[y^{1/n}] \cap k(X) = k(Y)$. Let Z_1 be the normalization of Y in $k(Y)[y^{1/n}]$. Then $Z_1 \to Y$ is a μ_n-cover branched at τ such that $k(Z_1)$ and $k(X)$ are linearly disjoint over $k(Y)$. Let $\tau_1 \in Z_1$ be a point lying above τ. Let X_1 be the normalization of $X \times_Y Z_1$. Then by the above theorem $\Phi_1 : X_1 \to Z_1$ is a G-cover of irreducible regular k-curves and the inertia group at (τ_x, τ_1) is P.

Let $Y_1 = Z_1$, $\tau_{x1} = (\tau_x, \tau_1)$ and $\tau_1 = \tau_{z1}$. Then $\Phi_1 : X_1 \to Y_1$ is a G-cover with $\Phi_1(\tau_{x1}) = \tau_1$ and the inertia group of this cover at τ_{x1} is P. Let y_1 be a regular parameter of Y_1 at τ_1. Then $k(Y_1)/k(y_1)$ is a finite extension. Since Y_1 is a regular curve, we get a finite morphism $\alpha : Y_1 \to \mathbb{P}^1_{y_1}$ such that $\alpha(\tau_1)$ is the point $y_1 = 0$ and α is étale at τ_1 (as $\hat{O}_{Y_1,\tau_1} = k[[y_1]]$).

Note that $\text{QF}(\hat{O}_{Y,\tau})/k((y_1))$ is a P-extension. By [Ha, Cor 2.4], there exist a P-cover $V \to \mathbb{P}^1_{y_1}$ branched only at $y_1 = 0$ (where it is totally ramified) such that $\text{QF}(\hat{O}_{V,\theta}) = \text{QF}(\hat{O}_{X_1,\tau_{x1}})$ as extensions of $k((y_1))$. Here θ is the unique point in V lying above $y_1 = 0$. Since $V \to \mathbb{P}^1_{y_1}$ is totally ramified over $y_1 = 0$ and $Y_1 \to \mathbb{P}^1_{y_1}$ is étale over $y_1 = 0$, the two covers are linearly disjoint. Let Z be the normalization of $V \times_{\mathbb{P}^1_{y_1}} Y_1$. Then the projection map $Z \to Y_1$ is a P-cover. Let $\tau_z \in Z$ be the closed point (θ, τ_1). By Lemma 3.1, $\text{QF}(\hat{O}_{Z,\tau_z}) = \text{QF}(\hat{O}_{V,\theta})\text{QF}(\hat{O}_{Y_1,\tau_1}) = \text{QF}(\hat{O}_{X_1,\tau_{x1}})$. Applying Proposition 3.3 with $N = \{e\}$, we get that an irreducible dominating component W of the normalization of $X_1 \times_Y Z$ is a Galois cover of Z such that
the inertia group over τ_z is $\{e\}$. Hence the normalization of $X_1 \times_Y Z$ is a cover of Z étale over τ_z.

Moreover, there are no nontrivial homomorphism from G to P implies that $k(\tau)$ and $k(X_1)$ are linearly disjoint over $k(Y_1)$. Hence $W \to Z$ is a G-cover. We take $Z \to Y$ to be the composition $Z \to Y_1 \to Y$. Note that the morphism $X \times_Y Z \to Z$ is same as $X_1 \times_Y Z \to Z$ and the degree of the morphism $Z \to Y$ is $|P|n = |I|$. \square

Theorem 3.6. Let $\Phi : X \to \mathbb{P}^1$ be a G-Galois cover of regular k-curves. Suppose Φ is branched only at one point $\infty \in \mathbb{P}^1$ and the inertia group of Φ over ∞ is I. Let P be a subgroup of I such that $I_1 \supset P \supset I_2$. Suppose there are no nontrivial homomorphism from G to P. Then there exist a G-cover $W \to \mathbb{P}^1$ ramified only at ∞ and the inertia group at ∞ is P.

Proof. Let $n = |I : I_1|$ be the tame ramification index of Φ at ∞. Let x be a local coordinate on \mathbb{P}^1 and the point ∞ is $x = \infty$. Let $\mathbb{P}^1_y \to \mathbb{P}^1_x$ be the Kummer cover obtained by sending y^n to x. Since Φ is étale at $x = 0$ and the cover $\mathbb{P}^1_y \to \mathbb{P}^1_x$ is totally ramified at $x = 0$ the two covers are linearly disjoint. So letting W to be the normalization of $X \times_{\mathbb{P}^1} \mathbb{P}^1_y$, we obtain a G-cover $\Phi_1 : W \to \mathbb{P}^1_y$ of regular k-curves. Moreover by Abhyankar’s lemma Φ_1 is ramified only at $y = \infty$ and the inertia group of Φ_1 at $y = \infty$ is same the subgroup I_1 of I. So replacing Φ by Φ_1, we may assume $I = I_1$. Also since I_1/I_2 is abelian, P is a normal subgroup of I.

Let $\tau \in X$ be a point above $x = \infty$. Let $S = \hat{O}_{X,\tau}$ and $R = \hat{O}_{\mathbb{P}^1,\infty}$ then $R = k[[x^{-1}]]$ and $\text{Gal}(\overline{F}(S)/\overline{F}(R)) = I$. Let $L = \text{GF}(S)^P$. Then by Proposition 2.6 $L = \text{GF}(R)(\alpha_1, \ldots, \alpha_l)$ where $\alpha_i \in \text{GF}(S)$ is such that $v_R(\alpha_i^2 - \alpha_i) = -1$ for $1 \leq i \leq l$. Let T be the normalization of R in L. Then $\text{Spec}(T)$ is a principal P-cover of $\text{Spec}(R)$. By [14 Corollary 2.4], this extends to a P-cover $\Psi : Z \to \mathbb{P}^1$ ramified only at $x = \infty$ where it is totally ramified. Let $\tau_z \in Z$ be the point lying above $x = \infty$ then $\text{GF}(\hat{O}_{Z,\tau_z}) = L = \text{GF}(S)^P$. By Lemma 2.2 $d_{T/R} = 2|P| - 2$. So by Riemann-Hurwitz formula, the genus of Z is given by

$$2g_Z - 2 = |P|(0 - 2) + d_{T/R}$$

Hence $g_Z = 0$. So Z is isomorphic to \mathbb{P}^1.

Since there are no nontrivial homomorphism from G to P, Φ and Ψ are linearly disjoint covers of \mathbb{P}^1_z. Let W be the normalization of $X \times_{\mathbb{P}^1} Z$. Now we are in the situation of Proposition 3.3. Hence the G-cover $W \to Z$ is ramified only at τ_z and the inertia group at τ_z is P. This completes the proof as Z is isomorphic to \mathbb{P}^1. \square

Remark 3.7. Note that if G is a simple group different from Z/pZ then there are no nontrivial homomorphism from G to P. Hence the above results apply in this scenario.

Corollary 3.8. Let $\Phi : X \to \mathbb{P}^1$ be a G-Galois cover of regular k-curves branched only at one point $\infty \in \mathbb{P}^1$ and the inertia group of Φ over ∞ is I. Suppose there are no nontrivial homomorphism from G to I_2. Then conjugates of I_2 generate G.

Proof. Applying the above theorem with $P = I_2$, we get an étale G-cover of \mathbb{A}^1 with the inertia group I_2 at ∞. Hence the conjugates of I_2 generate G since a nontrivial étale cover of \mathbb{A}^1 must be wildly ramified over ∞. \square
References

[Bou] Nicholas Bourbaki *Commutative algebra. Chapters 1–7*. Translated from the French. Reprint of the 1989 English translation. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1998. xxiv+625 pp.

[BP] I. I. Bouw and R. J. Pries *Rigidity, reduction, and ramification*, Math. Ann. 326:4 (2003), 803-824.

[MP] Jeremy Muskat and Rachel Pries *Title: Alternating group covers of the affine line*, http://arxiv.org/abs/0908.2140v2 (arxiv preprint).

[Coh] I. S. Cohen *On the structure and ideal theory of complete local rings*, Trans. Amer. Math. Soc. 59, (1946). 541-106.

[Ha] David Harbater *Moduli of p-covers of curves*, Comm. Algebra 8 (1980), no. 12, 10951122.

[Ha1] David Harbater *Embedding problems and adding branch points*, in “Aspects of Galois Theory”, London Mathematical Society Lecture Note series, 256 Cambridge University Press, pages 119-143, 1999.

[Ser] Jean-Pierre Serre *Local fields*, Translated from the French by Marvin Jay Greenberg. Graduate Texts in Mathematics, 67. Springer-Verlag, New York-Berlin, 1979. viii+241 pp.

[Sti] Henning Stichtenoth *Algebraic function fields and codes*, Second edition. Graduate Texts in Mathematics, 254. Springer-Verlag, Berlin, 2009. xiv+355 pp.

Department of Mathematics, Universität Duisburg-Essen, 45117 Essen, Germany
E-mail address: manish.kumar@uni-due.de