Mitochondrial calcium uniporter is essential for hearing and hair cell preservation in congenic FVB/NJ mice

Mayakannan Manikandan1, Steven Walker1, Aditi R. Deshmukh1, Elizabeth Perea1, Danqi Wang2, Kumar N. Alagramam1,3,4 & Ruben Stepanyan1,3*

Mitochondrial Ca²⁺ regulates a wide range of cell processes, including morphogenesis, metabolism, excitotoxicity, and survival. In cochlear hair cells, the activation of mechano-electrical transduction and voltage-gated Ca²⁺ channels result in a large influx of Ca²⁺. The intracellular rise in Ca²⁺ is partly balanced by the mitochondria which rapidly uptakes Ca²⁺ via a highly selective channel comprised of the main pore-forming subunit, the mitochondrial Ca²⁺ uniporter (MCU), and associated regulatory proteins. MCU thus contributes to Ca²⁺ buffering, ensuring cytosolic homeostasis, and is posited to have a critical role in hair cell function and hearing. To test this hypothesis, Ca²⁺ homeostasis in hair cells and cochlear function were investigated in FVB/NJ mice carrying the knockout allele of Mcu (Mcu⁺⁻ or Mcu⁻⁻). The Mcu knockout allele, which originated in C57BL/6 strain cosegregated along with Cdh23ahl allele to the FVB/NJ strain, due to the close proximity of these genes. Neither Mcu⁺⁻ nor Mcu⁻⁻ genotypes affected cochlear development, morphology, or Ca²⁺ homeostasis of auditory hair cells in the first two postnatal weeks. However, Mcu⁻⁻ mice displayed high-frequency hearing impairment as early as 3 weeks postnatal, which then progressed to profound hearing loss at all frequencies in about 6 months. In Mcu⁻⁻ mice, significantly elevated ABR thresholds were observed at 6 months and 9 months of age only at 32 kHz frequency. In three-month-old Mcu⁻⁻ mice, up to 18% of the outer hair cells and occasionally some inner hair cells were missing in the mid-cochlear region. In conclusion, mitochondrial Ca²⁺ uniporter is not required for the development of cochlea in mice, but is essential for hearing and hair cell preservation in congenic FVB/NJ mice.

Acquired hearing impairment is mostly associated with deficiency or loss of cochlear cells laden with mitochondria: the inner and outer hair cells (HCs), the spiral ganglion neurons (SGNs), and the cells of the stria vascularis1,2. Predictably, evidence implicates that mitochondrial dysfunction is a lead cause in several nonsyndromic, syndromic, and acquired forms of deafness3,4. Moreover, mitochondrial DNA mutations (mtDNA) contribute to more than 5% of post-lingual non-syndromic hearing impairment in the Caucasian and Asian populations5,6. Mutations in the mtDNA or nuclear DNA, which affect mitochondrial function, could result in increased oxidative damage and associated loss of HCs, SGNs, or cells of stria vascularis7,8. Like in many other cell types in an organism, mitochondria in the cochlear cells are responsible for vital cellular functions, including energy production, apoptosis, cell signaling, and calcium storage. These functions are dependent on the ability of mitochondria to modulate Ca²⁺ levels9–15. Particularly, Ca²⁺ uptake via mitochondrial calcium uniporter (MCU) is critical for the rapid buffering of increases in intracellular Ca²⁺ loads; an increase in mitochondrial calcium regulates ATP production to fuel Ca²⁺ extrusion from the cell16. Surprisingly, while slightly smaller in size, mice lacking MCU have a normal life-span and exhibit no adverse phenotype when unchallenged17. These mice were generated on a mixed C57BL/6-CD1 (B6-CD1) background17 and the loss of MCU was not conclusively shown to affect hearing18. Importantly, due to their genetic predisposition, both the C57BL/6 and CD1 strains show...
incumbent hearing impairment. Therefore, a "good hearing" strain, such as the CBA/CaJ or FVB/NJ19,21,22 is
required to transcend the potentially confounding issues associated with the B6-CD1 background. For this
purpose, herein, we used marker-assisted breeding, or speed congenics, to transfer the Mcu knockout allele to
the FVB/NJ background. Since the Mcu knockout allele is very closely located to the Cdh23ahl allele, which is
linked to age-related hearing loss, they cosegregated to the FVB/NJ background. Consequently, the FVB/NJ mice
homozygous for the knockout allele of Muc (Mcu−/−) were also homozygous for the C57BL/6 derived Cdh23ahl
allele. We found that the Mcu−/− mice develop substantial hearing loss at one month across all frequencies tested,
experience degeneration of cochlear hair cells at 3 months, and are profoundly deaf by 6 months of age. This
study demonstrates that Muc is essential for hearing preservation in congenic FVB/NJ mice.

Results
Strain-specific effects of Muc−/− and Muc+/− on hearing in mice. To determine a potential role of
MCU in mammalian hearing, we first assessed the auditory brainstem responses (ABRs) of wild type (Muc+/+)
and heterozygous (Muc+/−), and homozygous (Muc−/−) mice on the mixed B6-CD1 background17 at various ages
(Fig. 1). Muc−/− mice showed a modest elevation in ABR thresholds at one month of age when compared to
Muc+/− or Muc+/+ littermates. However, this early difference in threshold elevation in the Muc−/− mice was fol-
lowed by concomitant elevation in ABR thresholds in the Muc−/− and Muc+/− littermates, starting from 3 months
onward (Fig. 1). Our data confirm the obsering genetic effect of the B6-CD1 background and to rectify this
problem, we used marker-assisted breeding to transfer the Muc knockout allele to the FVB/NJ background. CBA/CaJ
Muc+/− × CBA/CaJ Muc−/− crosses did not yield any CBA/CaJ Muc−/− offspring and henceforth all experiments were conducted using the FVB/NJ strain. Other than being smaller (Fig. 2A), young and
old FVB/NJ Muc−/− mice were indistinguishable from their Muc+/− or Muc+/+ littermates. FVB/NJ Muc−/− × FVB/
NJ Muc−/− crosses produced only 14.5% of an approximately equal number of Muc−/− males and females, while
Muc−/− mice comprised 57.9% (Fig. 2B). The small body size and reduced number of Muc−/− offspring in the
FVB/NJ background is on par with the observation reported in the mixed B6-CD1 background17. For confir-
mation, we first quantified the transcript levels of Muc in the cochlea of FVB/NJ mice of all three genotypes.
Indeed, the mRNA levels of Muc were reduced significantly, by more than 50% in the Muc−/− mice compared to
Muc+/− or Muc+/+ littermates (Fig. 2C). Additionally, the relative transcript levels of the predominant PMCA pumps
in coehlear hair cells (Pmcas1 and Pmcas2) and the calcium-binding protein oncomodulin (Ocm) were similar across all three genotypes (Fig. 2C) indicating that Muc expression-deficiency is not compensated by the overexpression of the tested Ca2+ regulators. As the Muc knockout allele was gener-
ated using blastocysts of C57BL/6 mice17, we probed the FVB/NJ mice backcrossed for the Muc knockout allele for a well-known polymorphism that causes age-related hearing loss (AHL) in C57BL/6 mice—the Cdh23ahl
allele variant23. Among a panel of 51 mice tested (Fig. 3A,B), all Muc−/− mice (n = 22) were also found to be
cdh23ahl (homozygous for cdh23.753G), the Muc+/− mice (n = 12) were cdh23.753s (homozygous for cdh23.753G),
and Muc+/+ mice (n = 17) were cdh23.753alh (cdh23.753G/A). Genomic coordinate analyses of Muc and Cdh23 in
Ensembl genome browser identified the close proximity of these genes in Chr.10qB4, with an intergenic distance
of ~ 686 kb (Fig. 3C). Thus, the Cdh23ahl allele is essentially inseparable from the Muc knockout allele by conven-
tional breeding, and the FVB/NJ Muc−/− mice are homozygous for Cdh23ahl.
Following hearing onset, the congenic FVB/NJ Muc−/− mice displayed normal ABR thresholds at low-
to-mid-frequencies and a 10–15 dB SPL threshold elevation at a high (32 kHz) frequency compared to the Muc+/−
or Muc+/+ littermates (Fig. 4). At 1 month, it became apparent that the FVB/NJ Muc−/− mice could not preserve the
hearing sensitivity they displayed around onset; threshold elevation was significant at 8, 16, and 32 kHz. This
trend continued at 3 months, leading to profound hearing loss (Fig. 4). Also, ABR threshold elevations at 16
and 32 kHz in 3 month old heterozygous Muc+/− mice, followed by a further decrease in hearing sensitivity at
32 kHz at 6 months, were observed relative to the corresponding thresholds in the Muc+/− littermates (Fig. 4).
This observation suggests haploinsufficiency, wherein one copy of Mcu results in reduced mRNA levels (Fig. 2C) and is not sufficient to preserve hearing.

Development of the cochlea in Mcu+/− mice. As mentioned above, FVB/NJ Mcu−/− mice were smaller in size, but otherwise normal. The relatively normal ABR thresholds in the Mcu−/− mice at 3 weeks of age (Fig. 4) indicated that the development of the cochlea and the sequential maturation of the peripheral auditory sense organ is not dependent on the MCU. We examined the cochlear hair cells (HCs) in Mcu−/− mice and their littermate controls. The number of HCs at the time following the onset of the hearing was similar in Mcu−/− mice compared to the Mcu+/− and Mcu+/+ littermates (Fig. 5E). Electron micrographs of HCs or their stereocilia from the Mcu−/− mice at one month (Fig. 5A–D) showed no structural defects.

Mitochondrial Ca2+ uptake is thought to be essential for the functioning of HCs. We examined whether (i) the calcium levels are affected in HCs of FVB/NJ Mcu−/− mice at postnatal (P) day P5–P8, after they acquire mechanosensitivity24–26, and whether (ii) the Ca2+ flow via mechano-electrical transduction (MET) channels will be buffered by HC mitochondria differently in Mcu−/− mice compared to the controls. Initially, the MET function was estimated using FM1-43, a fluorescent molecule that serves as an indicator of mechanotransduction channel function. FM1-43 uptake by HCs of Mcu−/− mice demonstrated no significant difference in MET activity as compared to the Mcu+/− and Mcu+/+ littermates (Fig. 6A,B). Likewise, the Ca2+ levels in HCs of Mcu−/−, Mcu+/− and Mcu+/+ mice were similar (Fig. 6E,F). Mitochondrial Ca2+ uptake may regulate reactive oxygen species (ROS) production27,28. Within the mitochondria, the primary source of ROS is superoxide29–31. Therefore, we analyzed the superoxide levels in the mitochondria of HCs in Mcu−/− mice, and found them to be similar to those in Mcu+/− and Mcu+/+ mice (Fig. 6C,D).
Loss of cochlear hair cell stereocilia in three month old Mcu−/− mice. The elevated ABR thresholds observed at one month of age in Mcu−/− mice were not paralleled by any apparent morphological and structural changes in HCs. Hence, we inspected the structural integrity of HCs at 3 months of age (Fig. 7). A fraction of the outer hair cells (OHCs) were missing and the stereociliary bundles of the OHCs that were present showed signs of degeneration in the Mcu−/− mice. Specifically, the third row of hair bundles was affected by the degenerating stereocilia at the edges (Fig. 7A,B lower panel). Occasionally, a few inner hair cells (IHCs) were lost in the Mcu−/− mice. IHC hair bundles of Mcu−/− mice lacked the third, the shortest, row of stereocilia, in striking contrast to hair bundles of Mcu+/− and Mcu+/+ mice (Fig. 7C,D lower panel). In the Mcu+/− mice, the number of OHCs that were missing was comparably less than in the Mcu−/− mice but higher than in the Mcu+/+ littermates (Fig. 7A, middle panel). The stereociliary bundles of both the OHCs and the IHCs appeared normal in the Mcu+/− mice, and no IHCs were lost. Moreover, we enumerated the number of OHCs present in the apical, middle, and basal regions of Mcu−/− cochlea compared to Mcu+/− and Mcu+/+ littermates. This analysis revealed that the mid-cochlear region was the most susceptible in the Mcu−/− mice with only 82.3% of the OHCs present intact in Mcu−/− mice but higher than in the Mcu+/+ littermates (Fig. 7E). Another observation was the loss of ~ 10% of OHCs in the apical region of both Mcu−/− and Mcu+/− mice in comparison to the corresponding value of 4% in Mcu+/+ littermates. However, this difference was not statistically significant. In addition, around 10% of OHCs in the basal region of the cochlea of all three genotypes were observed to be lost.

In conclusion, our data suggest that MCU and rapid uptake of Ca2+ is important for hearing preservation and long-term maintenance of auditory hair cells in congenic FVB/NJ mice.
Discussion

The uniporter protein MCU traversing the inner mitochondrial membrane is a highly selective Ca²⁺ channel necessary for rapid mitochondrial Ca²⁺ uptake in intact cells. Initially, MCU alone was reported to be sufficient for mitochondrial Ca²⁺ uptake. However, further research has identified several other proteins that either act in concert with MCU or fine-tune its activity, thus forming a uniporter complex or uniplex. With pentameric MCU forming the main Ca²⁺ permeant pore that is incumbent for rapid Ca²⁺ uptake, the uniplex includes other protein components such as MCUβ, EMRE, MICU1, MICU2, MICU3, MCUR1, and SLC25A23. The gene encoding for MCU is well conserved in eukaryotes except for yeasts; in humans, it is expressed in all major tissues and organs. Although Ca²⁺ ions are known to regulate numerous and diverse aspects of cochlear physiology, whether the gene coding for MCU is essential for hearing in mammals is yet to be demonstrated. In this study, we show that Mcu−/− adult mice in FVB/NJ background progressively lose their hearing and display accelerated hearing loss leading to profound deafness by 6 months, across all frequencies tested. The Mcu+/− mice displayed a less severe but gradual elevation in ABR thresholds in the mid- to high-frequency ranges. The Mcu+/− auditory phenotype, which surfaces at ~3 months of age, reveals that both copies of MCU are necessary for mice to preserve hearing in the long-term. Our results show that hearing impairment is not due to prenatal defects in cochlear development or early postnatal maturation of the cochlea. Specifically, loss of MCU had no obvious effect on mechanotransduction function, Ca²⁺ homeostasis, or mitochondrial superoxide levels in the hair cells (HCs). A structural correlate to hearing loss in Mcu−/− mice became apparent in adult cochlea around 3 months of age, when a significant fraction of HCs in the mid-cochlear turn showed signs of degeneration. Considering the Mcu knockout allele originated in the C57BL/6 background, and because of its linkage to the Cdh23c.753A loci, the FVB/NJ Mcu−/− mice are also homozygous for the age-related hearing loss linked Cdh23c.753A allele. Thus, MCU deficiency, possibly along with the Cdh23c.753A allele, resulted in hearing loss and degeneration of HCs in the FVB/NJ mice.

We set out by demonstrating the progressive hearing impairment intrinsic to the mixed B6-CD1 background of Mcu knockout mice reported originally. Our observation is concordant with the results reported by a study, where both Mcu−/− and Mcu+/− mice of the same mixed B6-CD1 background had elevated ABR thresholds at high frequency. However, the authors did not assess ABR thresholds in mice later than 7 weeks of age. In the present...
study, we recorded the ABR thresholds longitudinally in mice starting as early as 3 weeks to 12 months of age, in B6-CD1 as well as FVB/NJ background. C57BL/6J and CD1 strains are genetically predisposed to progressive hearing loss19,20, and are known to harbor the Cdh23ahl allele in their genome23,39. The B6-CD1 background, despite being isogenic for Cdh23ahl, may present with genetic variability and/or heterozygosity at innumerable loci; based on our results, this mixed background turned out to be unsuitable to study the hearing phenotype especially relating to MCU. Another logical assumption is the presence of genomic variants in the mixed background that may mask or compensate for the loss of Mcu. Supporting this notion, Mcu loss was shown to be protective to a certain degree against acoustic stress in the mixed B6-CD1 background, while in the CBA/J mice, siRNA or Ru360 mediated inhibition of MCU was protective against noise-induced OHC loss and permanent hearing impairment18. Our strategy to transfer the Mcu−/− to an inbred strain of mice, like FVB/NJ, minimized genetic variation and aided in resolving the hearing impairment associated with Mcu loss. In contrast to the FVB/NJ background, the Mcu−/− (homozygous) genotype in the C57BL/6J or CBA/CaJ resulted in embryonic lethality. Put together, the expression and characteristics of the phenotype associated with the Mcu mutation is strongly influenced by the genetic background. Studying the consequence of Mcu loss in different mouse strains

Figure 5. Cochlear hair cells in young FVB/NJ Mcu+/+ , Mcu+/- , and Mcu−/− mice. (A–D) Representative scanning electron micrographs of cochlear hair cells from 1-month-old FVB/NJ Mcu+/+ , Mcu+/- , and Mcu−/− mice. (A) The typical three-row arrangement of OHCs, (B) single OHC stereocilia at high magnification, (C) the single row of IHCs, and (D) single IHC stereocilia at high magnification. (E) The number of hair cells in the mid-basal cochlear turn at P17–20. Kruskal–Wallis analysis with Dunn’s multiple comparison test did not show any statistically significant differences between groups. The number of mice is 9 (Mcu+/+), 21 (Mcu+/-), and 9 (Mcu−/−). Scale bars are (in µm): 10 (A); 1 (B); 5 (C); 2 (D).
is important to understand the spectrum of genotype–phenotype correlation or variation, and how that might relate to human subjects.41

The fact that the Cdh23ahl allele is linked to the Muc knockout allele may partly explain the accelerated hearing loss observed in the FVB/NJ double homozygous mice. However, we argue that this hearing impairment is a direct result of loss of Muc−/− based on the following observations: (i) The elevation in ABR threshold in Muc−/− mice is noticed as early as 3 weeks, a timeline when the effect of Cdh23ahl allele is insignificant on hearing in several inbred mouse strains22,42–44. Additionally, the rapid ABR threshold elevation at 8 kHz and 16 kHz in FVB/NJ Muc−/− mice at 1 month does not correspond to Cdh23ahl-induced phenotype. (ii) Moreover, Cdh23ahl homozygosity is shown to be necessary in the C57BL/6 mice, but not by itself sufficient to account for the hearing loss44; also the C57BL/6-derived Cdh23ahl allele had little effect on hearing loss in the CBA/CaJ background44. (iii) The

Figure 6. Muc is not required for the development of hair cells. Results obtained in vitro demonstrate that mechanotransduction, Ca2+ levels, and mitochondria superoxide activity are not altered in the cochlear hair cells of Muc−/− mice. (A) Representative images show FMI-43 uptake in hair cells of Muc+/+, Muc+/− or Muc−/− mice (mid-basal turn). (B) The fluorescence intensity of FM1-43 in hair cells is not significantly different between the groups, indicating the normal functioning of MET channels in Muc−/− mice. (C) Representative images showing the MitoSOX indicator levels in hair cells of Muc+/+ or Muc−/−. Asterisks show Muc+/+ and Muc−/− OHCs, which were excluded from statistical analysis due to no detectable superoxide activity. (D) The fluorescence intensity of MitoSOX in hair cells of Muc−/− mice is similar to that of the Muc+/+ mice indicating that there is no difference in oxidative activity caused by cellular superoxide buildup. (E,F) The fluorescence intensity of intracellular (Fluo-2 AM) and mitochondrial (Rhod-2 AM) Ca2+ indicators in hair cells of Muc+/+, Muc+/− and Muc−/− mice were not significantly different. Data represented herein are from mice of age P5–P9. Two-way ANOVA analysis did not show any statistically significant differences between Muc+/+, Muc+/− or Muc−/− groups. The number of mice for all groups was greater than 5. Scale bars in (A) and (C) are 12 µm.
threshold elevation noted at 3 months in double heterozygous mice (\textit{Mcu}^{+/−}, \textit{Cdh23}^{ahl}) evidently indicates the importance of \textit{Mcu} in hearing, given the homozygosity requirement of \textit{Cdh23}^{ahl}. (iv) The postulated synergistic effect of \textit{Mcu}^{−/−} and \textit{Cdh23}^{ahl} on hearing loss in the FVB/NJ strain is not apparent in the mixed B6-CD1 background even at high frequency. The above points suggest a greater cumulative influence of the genetic background on the loss of \textit{Mcu} rather than \textit{Cdh23}^{ahl} itself. This reiterates that AHL adheres to a quantitative trait model in which a recessive or hypomorphic allele act in concert with a few other recessive/hypomorphic alleles to control the progression and severity of hearing impairment and the age of onset. For instance, \textit{Cdh23}^{ahl} has been shown to interact epistatically with \textit{Atp2b2} \textit{dfw/dfw} genotype to accelerate hearing loss, and provides an additive effect by modulating the progression of hearing loss together with \textit{Mass1} \textit{frings/frings} or \textit{Sod1} \textit{tm1Leb/tm1Leb} mutations. The effect of \textit{Cdh23}^{ahl} on \textit{Mcu} gene mutations has not been studied until now opening up a possibility for further exploration. The dispositional attribution of several genes co-transferred with the congenic \textit{Mcu-Cdh23} region adds more complexity to evaluating gene-specific phenotypic and/or modifier effects.

The current study indicates that \textit{Mcu} in congenic FVB/NJ mice is largely dispensable during the development and maturation of HCs, or cochlea in general. The number of HCs in \textit{Mcu}^{−/−} mice are comparable to values in the \textit{Mcu}^{+/+} cochlea. Additionally, neither the basal levels of \text{Ca}^{2+} nor mitochondrial superoxide is different in the HCs of \textit{Mcu}^{−/−} mice. The main sources of \text{Ca}^{2+} influx in HCs are the \text{Ca}^{2+} permeable mechanotransduction channels located at the tips of the shorter stereocilia of the cell, \textit{Mass1} \textit{frings/frings} or \textit{Sod1} \textit{tm1Leb/tm1Leb} mutations. The effect of \textit{Cdh23}^{ahl} on \textit{Mcu} gene mutations has not been studied until now opening up a possibility for further exploration. The dispositional attribution of several genes co-transferred with the congenic \textit{Mcu-Cdh23} region adds more complexity to evaluating gene-specific phenotypic and/or modifier effects.

Figure 7. Loss of hair cells in adult \textit{Mcu}^{−/−} mouse cochlea. (A–D) Representative scanning electron micrographs of cochlear hair cells acquired from \textit{Mcu}^{+/+} (top row), \textit{Mcu}^{+/-} (middle row), and \textit{Mcu}^{−/−} FVB/NJ mice (bottom panel) at P88–P92 time point. (A) The typical three-row arrangement of OHCs, (B) single OHC stereocilia at high magnification, (C) the single row of IHCs, and (D) single IHC stereocilia at high magnification are shown. Note the absence of the third (shortest) row of stereocilia in \textit{Mcu}^{−/−} mice. The arrows in (A) and (C) indicate missing sensory hair cells and the arrowheads in B indicate the degenerating shortest row of stereocilia in OHCs. (E) The SEM images were categorized based on their cochlear region (apical, middle, and basal turn), and the percentage of missing OHCs were plotted (mean ± SEM). **p < 0.001 in comparison to the middle region of \textit{Mcu}^{+/+} and \textit{Mcu}^{+/-} mice, *p < 0.05, ***p < 0.001, Kruskal–Wallis with Dunn’s multiple comparison tests. The number of mice is 12 (\textit{Mcu}^{+/+}), 13 (\textit{Mcu}^{+/-}), and 18 (\textit{Mcu}^{−/−}). Scale bars are (in µm): 10 (A); 1 (B); 5 (C); 2 (D).
reservoirs. In Mcu−/− cochlea, we analyzed the transcript levels of Pmca1, which is expressed in the basolateral membrane of IHCs, Pmca2 predominantly expressed in the hair bundles of OHCs, and Ocm which codes for oncomodulin, a dominant Ca2+ buffer of the EF-hand superfamily in OHCs. The transcript levels of these molecules are unchanged despite the significant loss in expression of Mcu. On the other hand, mitochondrial matrix Ca2+ is not completely abolished in the Mcu−/− mice asserting the existence of additional mitochondrial Ca2+ channels as pointed out by several studies. Debate continues on whether these additional channels allow rapid Ca2+ uptake or a gradual accumulation to sustain mitochondrial Ca2+ homeostasis in the absence of MCU. The ability of model organisms, specifically selective strains of mice, to survive without any overt phenotype in the absence of MCU supports the idea that MCU is either dispensable or is functionally compensated. Nonetheless, the crucial role of MCU in several contexts, including acute energy demand, strenuous exercise, pathological conditions, tissue bioenergetics, and longevity cannot be disregarded. IHCs and other cell types in the cochlea likely face acute energy demand after the onset of hearing, due to chronic stimulation from the surroundings. Our results confirm that cochlear development and onset of acoustic function are not significantly affected in the absence of Mcu. The timeline of the hearing loss phenotype observed in Mcu−/− mice in this study recapitulates the crucial role of MCU in acute energy demand. To the best of our knowledge, this is the first report to show the hearing loss phenotype in Mcu−/− mice.

Although unlikely, the degeneration of HCs and their stereociliary bundles in adult FVB/NJ Mcu−/− mice may be the synergistic result of MCU deficiency and Cdh23ahl. The role of MCU in this aspect could be explained partially by the concentration of mitochondria along the lateral wall and in the belt beneath the cuticular plate of HCs, where MCU potentially contributes to the clearance of Ca2+ entering from the stereocilia during acoustic stimulation. The integrity of stereocilia in IHCs is dependent on chronic Ca2+ influx via MET channels, and without MCU to handle excess Ca2+, the stereocilia may degenerate. In addition, the presence of Cadherin 23 allele disrupts the normal exonic splicing of Cdh23, which is expressed in the basolateral membrane of IHCs, and causes in-frame skipping. Because Cadherin 23 is a component of the tip links of hair cell stereocilia along with Protocadherin, the presence of Cdh23ahl variant may affect the preservation of stereocilia function contributing to HC degeneration. The lack of correlation in the timeline corresponding to the onset of hearing loss and the degeneration of HCs in the FVB/NJ Mcu−/− mice indicates that the latter is a secondary manifestation of the hearing deficit. Genetic mouse models carrying mutated Otof, Ocm, or Vglut3 genes are good examples to show impairment of hearing function ahead of visible hair cell or stereocilia damage. Alternatively, when compared against ABR, a quantitative technique, SEM imaging may fail to capture small structural changes in hair cells that commensurate with a decline in hearing. Degeneration of stereociliary bundles of OHCS and, less frequently, IHCs in older mice, initiating at the base of the cochlea and gradually progressing to the apex, is a distinctive characteristic of the Mcu−/− mice. In contrast, the HC and stereocilia degeneration observed in FVB/NJ Mcu−/− mice at 12 weeks of age, predominantly along the mid-frequency region of the cochlea, might be the outcome of Mcu loss. A burgeoning question is why do only a minority turn fraction of HCs and their stereocilia degenerate in Mcu−/− mice? While further research is warranted, the scientific community is starting to appreciate the tissue-specific or cell-type-specific functions of MCU. In summary, the present study provides convincing evidence that Mcu is essential for the preservation of hearing and stereocilia maintenance in congenic FVB/NJ mice. Understanding the precise mechanism associated with the loss of Mcu and the primary site of dysfunction that lead to the observed phenotype is important. Since the FVB/NJ Mcu mutant mice used in this study are constitutive knockouts, it is difficult to ascertain the initial site of the genesis of hearing loss in this model. It is also possible that the observed phenotype in Mcu mutant mice is a synergistic effect of mitochondria-rich cell types in the cochlea (hair cells, stria vascularis, and spiral ganglion neurons) and the Cdh23ahl allele. Future studies involving cell-type-specific conditional knockout mice will be necessary to dissect the mechanism of hearing loss induced by the lack of MCU.

Methods

Animals. The Mcu−/− heterozygous mice on a mixed B6-CD1 background were purchased from the Texas A&M Institute of Genomic Medicine. The FVB/NJ mice and CBA/CaJ mice were purchased from The Jackson Laboratory (Stock No. 001800 and 000654, respectively). After 6 generations of backcrossing through both the female and the male FVB/NJ line, two Mcu−/− progeny were intercrossed and animals heterozygous for mutant Mcu were selected to generate the experimental mice. All mice had free access to regular feed and water and were maintained under the standard light–dark conditions (12:12 h) at the Animal Resource Centre of Case Western Reserve University (CWRU). An approximately equal proportion of females and males were used in all experiments. All mice experiments and research protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of CWRU. The study was carried out in compliance with the ARRIVE guidelines and all methods were performed in accordance to the IACUC regulations which meets or rather exceeds the requirements of the following agencies: Department of Agriculture Animal Welfare Act, Public Health Service Policy on Humane Care and Use of Laboratory Animals, and Association for Assessment and Accreditation of Laboratory Animal Care International.

DNA isolation and genotyping. Ear punched tissues of weaned mice were collected in sterile Eppendorf tubes and were processed for DNA isolation. Briefly, the tissues were lysed in SNET Lysis buffer, hair and other debris were removed by centrifugation, and the remaining supernatant was mixed with an equal volume of Iso-propanol. DNA was pelleted by centrifugation, washed once with 70% Ethanol, and air-dried at RT for 15 min. The DNA was dissolved in 40 µL 0.5x TE buffer at 50 °C for 1 h and then 2 µL of each of the sample was used for PCR genotyping with DreamTaq Green PCR Master Mix (Thermo Fischer Scientific), and the following primers: Mcu WT Fwd: 5′-GGAGTTAAGTCATGAGCTGC-3′.

https://doi.org/10.1038/s41598-021-88841-0
The primers were synthesized by Integrated DNA Technologies and were used at a final concentration of 200 nmol/PCR reaction. The total reaction volume of the PCR was 20 µL, and the conditions were initial denaturation at 94 °C for 5 min., followed by 35 cycles of 94 °C for 15 s, 48 °C for 15 s, and 72 °C for 1 min, followed by a final extension at 72 °C for 10 min and 4 °C hold. The wild type allele of Mecu produced amplicons of 311 bp while the KO allele amplicons were 176 bp in length. The PCR products were resolved in a 1.5% Agarose Gel run in 1X TAE at 100 V, 400 mA for 35 min. Bullseye DNA SafeStain (MidSci) was used to visualize the DNA.

We developed a PCR–RFLP (Restriction Fragment Length Polymorphism) method for genotyping the Cdh23*734AG polymorphism. A segment of exon 7 spanning the single nucleotide variant of interest of Cdh23 was amplified using the following primers:

Primer Name	Sequence
Cdh23E7-Fwd	5′-AAGCTGTCATATTGTTGTAAC-3′
Cdh23E7-Rev	5′-TACCTAGACAGCTGACGTC-3′

PCR was set up to a total volume of 20 µL, with 100 nmol final concentration of each of the primers, 100 ng of genomic DNA and 1x DreamTaq Green PCR Master Mix. The PCR conditions were 95 °C for 2 min, followed by 40 cycles of 95 °C for 30 s, 60 °C for 30 s, and 72 °C for 30 s, a final extension of 72 °C for 2 min, and 10 °C hold. 10 µL of the PCR products were run in 1.5% agarose gel to verify amplification, and the remaining 10 µL was subjected to restriction digestion using 6 units of BsrI restriction enzyme (New England Biolabs) in 1x NEB 3.1 buffer totaling to a final volume of 25 µL. The digestion was performed at 65 °C for 1 h, followed by inactivation at 80 °C for 20 min. and 10 °C hold. Following digestion, the products were resolved in a 1.5% agarose gel with undigested controls and 100 bp DNA ladder. The 534 bp amplicons with Cdh23*734AG allele remain undigested with BsrI, while the Cdh23*734GA allele produces two fragments of 350 bp and 184 bp upon BsrI digestion. Validation was carried out by sequencing the PCR amplicons to verify restriction digestion.

Auditory brainstem response. The mice were weighed, and anesthetized with an Intra-peritoneal (IP) injection of a cocktail containing ketamine (20 mg/mL) and xylazine (1.75 mg/mL) at a dose of 0.1 mL/20 g. The depth of anaesthesia was tested by the toe-pinch response, eyes lubricated by application of PURALUBE VET Ointment, and the mice were placed in a sound-isolated chamber. The body temperature was maintained at 37 °C through a temperature-controlled heating pad. Subdermal electrodes were inserted at the vertex of the skull (positive), the mastoid region under the left ear (ground), and the mastoid region under the right ear (negative). Pure tone bursts were delivered through earphones using a computer-aided evoked potential system (Intelligent Hearing Systems, the Smart-EP software 3.30, Miami, FL, USA). Thresholds were determined for the 8 kHz, 16 kHz, and 32 kHz frequencies by escalating or deescalating the intensity in 10-dB steps starting at 70 dB, and then in 5-dB steps near-threshold until no organized responses were detected. For each stimulus, 768 sweeps were averaged for a response. Thresholds were defined as the lowest stimulus level where an organized response is observed. The recordings were performed blindly without knowledge of the genotype, and later the recorded values were matched with the genotype and grouped for statistical analyses.

RNA extraction and quantitative PCR. The mice cochleae were quickly dissected and isolated in ice-cold PBS, transferred to RNAlater® solution (Thermo Fischer Scientific), and stored at 4 °C for a day. The next day, cochleae were transferred to ice-cold PBS to give a quick wash, and TRIzol (Invitrogen, Eugene, OR, USA) was used for total RNA extraction following the manufacturer’s recommendation and instructions. The SuperScript IV First-Strand Synthesis System (Invitrogen) was utilized to synthesize cDNA from 2 µg of total RNA and the remaining organ was placed into a glass-bottom Petri dish (FluoroDish, WPI) and cultured in DMEM medium supplemented with 7% fetal bovine serum (Invitrogen, Carlsbad, CA) at 37 °C and 10% CO2. The organ of Corti explants were kept in vitro from one to five days before the experiments. The equivalent age (age of dissection plus days in vitro) of the specimens reported in this study was P5–P9. To prevent contamination, 10 µg/mL of ampicillin (Calbiochem, La Jolla, CA) was added to the medium. FM1-43 (Invitrogen) was used to evaluate mechanotransduction and to count functional hair cells. FM1-43 was dissolved in DMSO to obtain a stock solution with a concentration of 1 mM. Immediately before the experiment, the stock solution was diluted to 5 µM in Ca2+-free HBSS. Then, all specimens were briefly incubated in FM1-43 for 30 s at room temperature and then carefully rinsed in standard HBSS. MitoSOX Red superoxide indicator (Invitrogen), as well as calcium indicators Fluo-2 LeakRes AM (TEFlabs) and Rhod-2 AM (Biotium), were used according to manufacturer provided protocol. The raw images were gathered using an upright Olympus BX51WI microscope equipped with a 100 × 1 NA objective and a Grasshopper3 CMOS camera (FLIR), using manufacturer provided software. Images were subjected to fluorescence measurements using ImageJ (NIH). A region of interest was used to obtain measurements from the hair cells (Icell) and an area without cells (Ibackground) in the same image. Fluorescence intensity (Iload) for the hair cells were normalized (Iload = Icell – Ibackground).
mice at the age of 4 weeks and 12 weeks were removed after euthanasia by CO2 inhalation and fixed with 2.5% ethanol series, critical-point dried using CO2, mounted on an SEM stub, and sputter-coated with 10 nm palladium. Cochlear epithelia were viewed and imaged with a high-resolution scanning electron microscope (FEI Helios NanoLab 650, Germany) housed at Swagelok Center for Surface Analysis of Materials (SCSAM), CWRU.

Statistical analysis. All statistical analyses were performed using Microsoft Excel and GraphPad Prism 7. Data are reported as mean ± SEM unless noted otherwise. Two way ANOVA analyses with post hoc pairwise comparisons using Bonferroni adjustments or Kruskal–Wallis test with Dunn’s multiple comparisons were used depending on data distribution. Comparisons between two groups were tested by Student’s t-test. P values < 0.05 were considered significant.

Table 1. Details of qPCR-primers. Mcu mitochondrial calcium uniporter, Pmca plasma membrane calcium ATPase, Ocm oncomodulin, Hprt hypoxanthine phosphoribosyltransferase, PolR2f polymerase (RNA) II (DNA directed) polypeptide F, Fw forward primer, Rev reverse primer.

Gene	Amplicon length (in bp)	Primer name	Primer sequence (5’ → 3’)
Mcu	187	Mcu_Fw	GGTTGGCCCTCTGTAGACG
		Mcu_Rev	CTGGTGAAGTGATGGGACCA
Pmca1	193	Pmca1_Fw	ACCTGAGCTGACATTACTGTTG
		Pmca1_Rev	ACCCTGCACTAGTGACTACCT
Pmca2	103	Pmca2_Fw	CTGGTGAAGTGACGGGC
		Pmca2_Rev	CATGGCTTCTTGGACCCAGC
Ocm	161	Ocm_Fw	AGCATGAGGACATCTGAGC
		Ocm_Rev	TGTCGTTGTCATGACCTGGGA
Hprt	123	Hprt_Fw	CTATGGACCTGTTAGATGACGGAC
		Hprt_Rev	GGCAGTGCAGGAAAGCTATATAGCC
PolR2f	101	PolR2f_Fw	CGAGCGACTTTGTGAGGCTT
		PolR2f_Rev	GCTGACACAGATGGGAGAATC

Scanning electron microscopy. Samples were prepared as previously described25. Temporal bones of mice at the age of 4 weeks and 12 weeks were removed after euthanasia by CO2 inhalation and fixed with 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.4. (Electron Microscopy Sciences, Hatfield, PA), supplemented with 2 mM CaCl2. After removing the stapes, and opening the round and oval window, the cochlea were immersed in the fixative for 2 h and then stored at 4 °C in 1/10th fixative diluted with buffer until collected for further preparation. The cochlea were removed, then washed with PBS, and placed in 5% EDTA, pH 7.4 for three days to decalcify. Following decalcification, samples were dissected and organs of Corti were removed and divided into apical, middle, and basal parts. The specimens were then dehydrated in a gradient of ethanol series, critical-point dried using CO2, mounted on an SEM stub, and sputter-coated with 10 nm palladium. Cochlear epithelia were viewed and imaged with a high-resolution scanning electron microscope (FEI Helios NanoLab 650, Germany) housed at Swagelok Center for Surface Analysis of Materials (SCSAM), CWRU.
15. Rizzuto, R. & Pozzan, T. Microdomains of intracellular Ca^{2+}: Molecular determinants and functional consequences. *Physiol. Rev.* **86**, 369–408. https://doi.org/10.1152/physrev.00024.2005 (2006).

16. Mannmucari, C. et al. Mitochondrial calcium uptake in organ physiology: From molecular mechanism to animal models. *Pflugers Arch.* **470**, 1165–1179. https://doi.org/10.1007/s00424-018-2123-2 (2018).

17. Pan, X. et al. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. *Nat. Cell Biol.* **15**, 1464–1472. https://doi.org/10.1038/nccb2686 (2013).

18. Wang, X. et al. Mitochondrial calcium transmitters mediate sensitivity to noise-induced losses of hair cells and cochlear synapses. *Front. Mol. Neurosci.* **11**, 469. https://doi.org/10.3389/fnmol.2018.00469 (2018).

19. Erway, L. C., Willott, J. F., Archer, J. R. & Harrison, D. E. Genetics of age-related hearing loss in mice: I. Inbred and F1 hybrid strains. *Hear. Res.* **65**, 125–132 (1993).

20. Le Calvez, S., Ayan, P., Gilain, L. & Romand, R. CD1 hearing-impaired mice. I: Distortion product otoacoustic emission levels, cochlear function and morphology. *Hear. Res.* **120**, 37–58. https://doi.org/10.1016/S0378-5959(98)00030-1 (1998).

21. Martin, G. K. et al. Comparison of distortion product otoacoustic emissions in 28 inbred strains of mice. *Hear. Res.* **234**, 59–72. https://doi.org/10.1016/j.heares.2007.09.002 (2007).

22. Zheng, Q. Y., Johnson, K. R. & Erway, L. C. Assessment of hearing in 80 inbred strains of mice by ABR threshold analyses. *Hear. Res.* **130**, 94–107. https://doi.org/10.1016/S0378-5959(99)00003-9 (1999).

23. Johnson, K. R., Erway, L. C., Cook, S. A., Willott, J. F. & Zheng, Q. Y. A major gene affecting age-related hearing loss in C57BL/6J mice. *Hear. Res.* **114**, 83–92. https://doi.org/10.1016/j.heares.1997.01.015 (1997).

24. Indzhylukian, A. A. et al. Molecular remodeling of tip links underlies mechanosensory regeneration in auditory hair cells. *PLoS Biol.* **11**, e1001583. https://doi.org/10.1371/journal.pbio.1001583 (2013).

25. Stepanyan, R., Belyantseva, I. A., Griffith, A. J., Friedman, T. B. & Frolenkov, G. I. Auditory mechanotransduction in the absence of endolymph. *J. Neurosci.* **18**, 7790–7799. https://doi.org/10.1523/JNEUROSCI.4566-08.2009 (2009).

26. Brookes, P. S., Yoon, Y., Robotham, J. L., Anders, M. W. & Sheu, S. S. Calcium, ATP and ROS: A mitochondrial love-hate triangle. *Am. J. Physiol. Cell Physiol.* **287**, C817–833. https://doi.org/10.1152/ajpcell.00139.2004 (2004).

27. Feissner, R. F., Skalska, J., Gaum, W. E. & Sheu, S. S. Crosstalk signaling between mitochondrial Ca^{2+} and ROS. *Front. Biosci.**14**, 1197–1218. https://doi.org/10.2741/s3003 (2009).

28. Cadenas, E., Boveris, A., Ragan, C. I. & Stoppani, A. O. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. *Arch. Biochem. Biophys.* **180**, 248–257. https://doi.org/10.1016/0003-9861(77)90035-2 (1977).

29. Loesch, G., Azzi, A., Richter, C. & Flohe, L. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. *FEBS Lett.* **12**, 68–72. https://doi.org/10.1016/0014-5793(74)90281-4 (1974).

30. Takeshige, K. & Minakami, S. NADH- and NADPH-dependent formation of superoxide anions by bovine heart sub mitochondrial particles and NADH-ubiquinone reductase preparation. *Biochem. J.* **180**, 129–135. https://doi.org/10.1042/bj1800129 (1979).

31. Baughman, J. M. et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. *Nature**476**, 341–345. https://doi.org/10.1038/nature10234 (2011).

32. Chaudhuri, D., Sancak, Y., Mootha, V. K. & Clapham, D. E. MCU encodes the pore conducting mitochondrial calcium currents. *Elife**2**, e07004. https://doi.org/10.7554/eLife.07004 (2013).

33. Ceriani, F. & Mannmam, F. Calcium signaling in the cochlea—Molecular mechanisms and pathophysiological implications. *Cell Commun. Signal**10**, 20. https://doi.org/10.1186/1478-811X-10-20 (2012).

34. Beurg, M., Nam, J. H., Chen, Q. & Fettiplace, R. Calcium balance and mechanotransduction in rat cochlear hair cells. *J. Neurophysiol.**104**, 18–34 (2010).

35. Corey, D. P. & Hudspeth, A. J. The kinetics of the receptor current in bullfrog saccular hair cells. *J. Physiol.**506**, 185–207. https://doi.org/10.1113/jphysiol.2004.083330 (2004).
55. Brandt, A., Stiressig, J. & Moser, T. CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. J. Neurosci. 23, 10832–10840 (2003).
56. Josub, R., Avitabile, D., Grant, L., Tsaneva-Atanasova, K. & Kennedy, H. J. Calcium-induced calcium release during action potential firing in developing inner hair cells. Biophys. J. 108, 1003–1012. https://doi.org/10.1016/j.bpj.2014.11.3489 (2015).
57. Kennedy, H. J. & Meech, R. W. Fast Ca2+ signals at mouse inner hair cell synapse: A role for Ca2+-induced Ca2+ release. J. Physiol. 539, 15–23. https://doi.org/10.1113/jphysiol.2001.013171 (2002).
58. Lioudyno, M. et al. A “synaptoplasmic cistern” mediates rapid inhibition of cochlear hair cells. J. Neurosci. 24, 11160–11164. https://doi.org/10.1523/JNEUROSCI.3674-04.2004 (2004).
59. Platzner, J. et al. Congenital deafness and sinoatrial node dysfunction in mice lacking class D-type Ca2+ channels. Cell 102, 89–97. https://doi.org/10.1016/s0092-8674(00)00013-1 (2000).
60. Fettiplace, R. & Nam, J. H. Tonotopy in calcium homeostasis and vulnerability of cochlear hair cells. Eur. J. Neurosci. 21, 5066–5078 (2001).
61. Chen, Q.
62. Hackney, C. M., Mahendrasingam, S., Penn, A. & Fettiplace, R. The concentrations of calcium buffering proteins in mammalian cochlear hair cells. J. Neurosci. 25, 7867–7875. https://doi.org/10.1523/JNEUROSCI.1196-05.2005 (2005).
63. Hamilton, J. L. et al. Deletion of mitochondrial calcium uniporter incompletely inhibits calcium uptake and induction of the permeability transition pore in brain mitochondria. J. Biol. Chem. 293, 15652–15663. https://doi.org/10.1074/jbc.A118.002926 (2018).
64. Harrington, J. L. & Murphy, E. The mitochondrial calcium uniporter: Mice can live and die without it. J. Mol. Cell. Cardiol. 78, 46–53. https://doi.org/10.1016/j.yjmcc.2014.10.013 (2015).
65. Chou, S. et al. Mitochondrial calcium uniporter in Drosophila transfers calcium between the endoplasmic reticulum and mitochondria in oxidative stress-induced cell death. J. Biol. Chem. 292, 14473–14485. https://doi.org/10.1074/jbc.M116.765578 (2017).
66. Flicker, D., Sancak, Y., Mick, E., Goldberg, O. & Mootha, V. K. Exploring the in vivo role of the mitochondrial calcium uniporter in brown fat bioenergetics. Cell Rep. 27, 1364-1375 e1365. https://doi.org/10.1016/j.celrep.2019.04.013 (2019).
67. Kwong, J. Q. et al. The mitochondrial calcium uniporter selectively matches metabolic output to acute contractile stress in the heart. Cell Rep. 12, 15–22. https://doi.org/10.1016/j.celrep.2015.06.002 (2015).
68. Luongo, T. S. et al. The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition. Cell Rep. 12, 23–34. https://doi.org/10.1016/j.celrep.2015.06.017 (2015).
69. Tuši, R. et al. Comprehensive genetic characterization of mitochondrial Ca(2+) uniporter components reveals their different physiological requirements in vivo. Cell Rep. 27, 1541–1550. https://doi.org/10.1016/j.celrep.2019.04.033 (2019).
70. Xu, S. & Chisholm, A. D. C. elegans epidermal wounding induces a mitochondrial ROS burst that promotes wound repair. Dev. Cell 31, 48–60. https://doi.org/10.1016/j.devcel.2014.08.002 (2014).
71. Furness, D. N. & Hackney, C. M. In Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3. J. Neurosci. 25, 7867–7875. https://doi.org/10.1523/JNEUROSCI.1196-05.2005 (2005).
72. Furness, D. N. & Hackney, C. M. In Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3. J. Neurosci. 25, 7867–7875. https://doi.org/10.1523/JNEUROSCI.1196-05.2005 (2005).
73. Weaver, S. P. & Schweitzer, L. Development of gerbil outer hair cells after the onset of cochlear function: An ultrastructural study. Hear. Res. 277–289. https://doi.org/10.1016/j.heares.2018.11.002 (2019).
74. Velez-Ortega, A. C., Freeman, M. J., Indzhykulian, A. A., Grossheim, J. M. & Frolenkov, G. I. Mechanotransduction current is essential for stability of the transducing stereocilia in mammalian auditory hair cells. Nature 428, 950–955. https://doi.org/10.1038/nature02483 (2004).
75. Kazmierczak, P. et al. Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449, 87–91. https://doi.org/10.1038/nature06091 (2007).
76. Siemens, J. et al. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428, 950–955. https://doi.org/10.1038/nature02483 (2004).
77. Roux, L. et al. Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 127, 277–289. https://doi.org/10.1016/j.cell.2006.08.040 (2006).
78. Seal, R. P. et al. Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3. Neuron 57, 263–275. https://doi.org/10.1016/j.neuron.2007.11.032 (2008).
79. Tong, B. et al. Osmomodulin, an EF-Hand Ca2+ buffer, is critical for maintaining cochlear function in mice. J. Neurosci. 36, 1631–1635. https://doi.org/10.1523/JNEUROSCI.3311-15.2016 (2016).
80. Hequembourg, S. & Liberman, M. C. Spiral ligament pathology: A major aspect of age-related cochlear degeneration in C57BL/6 mice. J. Assoc. Res. Otolaryngol. JARO 2, 118–129 (2001).
81. Tarasova, N. V., Vishnyakova, P. A., Logashina, Y. A. & Elchaninov, A. V. Mitochondrial calcium uniporter structure and function in different types of muscle tissues in health and disease. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20194823 (2019).
82. Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108. https://doi.org/10.1038/nprot.2008.73 (2008).

Acknowledgements
This work is supported by the National Institute on Deafness and Other Communication Disorders/National Institutes of Health Grant DC015016 (RS). The authors thank Dr. Toren Finkel, Department of Medicine, University of Pittsburgh, for his advice on technical aspects and interpretation issues related to MCU deficient mouse model. We thank Ms. Nanthawan Avishai at Swagelok Center for Surface Analysis of Materials, Case Western Reserve University for help with SEM imaging.

Author contributions
Conceived and designed the experiments: R.S. and M.M. Performed the experiments and analyzed the data: M.M., S.W., and R.S. Wrote the paper: M.M., R.S. Conceptual contribution and discussion: K.N.A. Contribution to the final version of the manuscript: K.N.A., R.S., M.M. Assisted in performing experiments: A.R.D. and E.P. Assisted with SEM imaging: D.W.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to R.S.
Reprints and permissions information is available at www.nature.com/reprints.
