Isolatation and Identification of the Fungi Causing Tomato Fruit Rot Disease in the Vicinity of Tandojam, Sindh

S. Nizamani, A.A. Khaskheli, A.M. Jiskani, S.A. Khaskheli, A.J. Khaskheli, G.B. Poussio, H. Jamro, M.I. Khaskheli

ABSTRACT

Background: The post-harvest tomato fruit rot disease is common threat to the tomato fruit, causing huge economic loss as revealed by (GOP, 2018). The present study was conducted for isolatation and identification of causative agent of tomato fruit rot in order to formulate the proper management strategies.

Methods: Study was conducted in three phases. Phase one included collection of tomato fruit samples from vicinity of Tandojam. In phase two pathogens were isolated from the samples at laboratory, while in the phase three pathogens were identified using standard procedures.

Result: The experimental results indicated Alternaria solani as the main cause of post-harvest tomato fruit rot. The symptoms observed were presence of brown to black rot lesions on tomato fruits with distinct rings ranging from small pin-heads to whole surface of fruit. A total of six different fungi viz., Alternaria alternata, Aspergillus niger, Alternaria solani, Geotrichum candidum, Fusarium oxysporum and Rhizopus stolonifer were found to be associated with post harvest tomato rot. Significantly higher infection was recorded for A. solani (53.667%) followed by A. niger (16.333%) and G. candidum (13.00%). The lowest infection percentage was observed for F. oxysporum (2.333%), followed by A. alternata (4.00%) and R. stolonifer (9.00%). A. solani produced aerial mycelium with yellowish to reddish diffusible pigments. A. niger cultures were typically black and colonies were initially whitish to yellow and later became brown to black in colour. G. candidum produced white and nonaerial colonies. F. oxysporum produced circular, aerial mycelium initially white, later changed to light pink. R. stolonifer produced whitish to grey fuzzy colonies.

Key words: Fruit rot, Fungi, Indetification, Tomato.

INTRODUCTION

The vegetable tomato has originated from South America and now it is widely grown vegetable throughout the world. Botanically, it is called as Lycopersicon esculentum L., belonging to the genus Lycopersicon and family Solanaceae (Wani, 2011). Since the ancient time, it has been consumed by peoples as a fruit in dishes as per evidence by the Aztecs of South America. It was first introduced to Europe by the Spanish conquistador Hernán Cortés and thereafter it became a popularly cultivated crop across Europe as well as other parts of the world by European explorers and colonists (Wee, 2017). Tomato is considered as second most important vegetable crop in the world after potato. Tomato is highly perishable crop. It has been stated that as high as 50% of the crop is lost between rural production and consumption channels in the tropical areas. One of the main reasons for production loss is post-harvest external damages that occurs during harvesting and handling (Mbkuk et al., 2011).

The post harvest losses in fresh tomato fruit has been estimated around 25.80%. The magnitudes of post-harvest losses always vary with region, season and time (Mujib et al., 2007). It is also important to mention here that a tomato rot is also a major contributing factor to the post harvest loss worldwide including Pakistan (Thirupathi et al., 2006). Various micro-organisms are responsible for the post-harvest decay of tomatoes, of which fungi and bacteria are the most destructive (Obetta et al., 2011). It has been well established that the major post-harvest losses of fruits and vegetables are caused by species of pathogens such as Alternaria, Botrytis, Diplodia, Monilinia, Penicilliium, Phenopsis, Rhizopus Sclerotinia, Fusarium, Geotrichum, Heminthosporium, Curvularia and of bacteria Erwinia and...
Isolation and Identification of the Fungi Causing Tomato Fruit Rot Disease in the Vicinity of Tandojam, Sindh

Materials and Methods

Isolation of pathogens

The collected samples were thoroughly washed with tap water. Small pieces of infected portion (about 2-3 mm in length) were cut at the junction of diseased and healthy tissues with the help of alcohol sterilized sharp blade. These pieces were surface sterilized in 0.1 per cent mercuric chloride solution (HgCl₂) for 30 seconds followed by three washing with sterilized distilled water in beakers under aseptic conditions using laminar air flow. The pieces were then completely dried by placing on sterilized blotting paper. Five bits were transferred aseptically to the Petri plates containing sterile potato dextrose agar (PDA) medium amended with an antibacterial agent and filled up to quarter strength. The inoculated plates were incubated at 25±2°C. All the plates were monitored regularly and growing colonies were subjected to different laboratory codes for frequency percentage and further analysis. The frequency of the fungi in the collected specimens was recorded using the following formula given below (Kirk et al., 2008):

\[
\text{Frequency} \% = \frac{\text{Number of pieces colonized}}{\text{Total number of pieces studied}} \times 100
\]

The culture, thus obtained was subjected to purification. A single spore culture technique was used to purify the isolates. Sub-culturing of isolates were made time to time to maintain the fresh culture for further analysis until the end of experiments.

Identification of pathogens

Temporary slides of fungal isolates from pure cultures were made and observed under light microscope at 100X. Morphological and cultural characters of isolated fungi were recorded and compared with standard keys for establishing their identity (Barnett and Hunter, 1972; Nelson et al., 1983). In addition, already published reports on indentification features of Alternaria were also used to compare the morphological characteristics of isolates.

Statistical analysis

The data obtained was statistically analyzed by using the computer software Statistix 8.1 (Gomez and Gomez, 1984). Standard procedures were applied for calculating the analysis of variance, ANOVA (linear model). However, some data were analyzed using MS Excel Programme of MS Office 2007.

Results and Discussion

Identification of fungi causing tomato fruit rot disease

A total of six different fungi viz., Alternaria solani, Alternaria alternata, Aspergillus niger, Geotrichum candidum, Fusarium oxysporum and Rhizopus stolonifer were found to be associated with tomato post harvest rot. All these fungi were isolated and then identified based on the morphological characteristics.

Symptoms produced by fungi on tomato fruit

Alternaria solani Sorauer was found as the main decay causing fungus of post harvest tomato fruits. The symptoms observed in current study showed brown to black rot lesions on tomato fruits, depressed and usually with distinct rings. The spot size ranged from minute pin-heads to areas extending completely across the surface of the fruit giving it a flattened appearance. The attacked fruit parts turned black and wrinkled, ultimately shrivelled and dried up (Fig 1). Fusarium rot caused by Fusarium oxysporum developed fluffy whithish mycelial growth along with pinkish to purple shades. While in case Geotrichum rot, sunken to water-soaked spots were found on tomato fruit during the observation of study (Fig 1).

Morphological characteristics

Morphological features of different species causng tomato fruit rot in tomatoes were observed under the microscope.
Isolation and Identification of the Fungi Causing Tomato Fruit Rot Disease in the Vicinity of Tandojam, Sindh

Fig 1: Symptoms of tomato post harvest rot caused by Alternaria solani and other fungi.

Fig 2: Morphological characteristics of Alternaria solani isolated from tomato post harvest fruit rot (100X).

at 100X magnification and their size were measured using microscopic scale. Results for each observation are depicted in the respective sections below.

Alternaria solani Sorauer

The species *A. solani* was indentified based on the morphological characteristics. The purified culture of the *A. solani* on PDA produced aerial mycelium, yellowish to reddish diffusible pigments later changed to greyish black with black reverse. Microscopic examination revealed septate brown hyphae, with septate and brown conidiophores bearing conidia in chains. The conidia were 12-20 X 120-296 µm and found singly or in chains of two. Conidia were 9–11 transverse septa (cross walls) and long beaks. Conidiophores were pale brown, simple and branched, bearing catenulate conidia at the apex and apical fertile parts (Fig 2).

Aspergillus niger van Tiegh

Colonies of *A. niger* on agar cultures were typically homogeneously black. *Aspergillus* colonies were found fast growing. Colonies were initially whitish to yellow, yellow-brown, then became brown to black in colour and they mostly consisted of a dense felt of erect conidiophores.

Conidiophores terminated in a vesicle covered with either a single palisade-like or layer of phialides. Conidiophores were hyaline or pale brown, erect, simple, thick-walled, with foot cells basally, inflated at the apex forming globose vesicles. Conidia were phialosporous, brown, in mass, globose andminutely echinulate. Conidia were single-celled, smooth or rough walled usually hyaline or pigmented and were basocatenate, forming long dry chains which were either divergent (radiate) or aggregated in compact columns (columnar).

Alternaria alternata (Fr.) Keissler

The species *A. alternate* was indentified based on the morphological characteristics. Microscopic examination (1000X) revealed septate brown hyphae, with septate and brown conidiophores bearing conidia in chains. Conidiophores were pale brown, simple and branched, bearing catenulate conidia at the apex and apical fertile parts. Conidia were catenulate, mostly up to 9 in a chain, often branched. Conidia were prosperous, acropetally developed, dark brown, cylindrical or spindle-shaped, often with cylindrical beaks, muriform composed of 3–4 transverse walls and 1–2 longitudinal walls.

Geotrichum candidum Link

Geotrichum candidum produced white and nonaerial colonies. Conidiophores were usually absent. However, conidia was arthrosporous, aerial on the agar surface forming creeping hyphae. Cylindrical to barrel-shaped or subglobose and hyaline hyphae was developed with single cell, often guttulate. Chlamydospores were subglobose and were solitarily borne at the sterigmata on the hyphae.

Fusarium oxysporum (Schl.) Snyder and Hansen

F. oxysporum produced circular, aerial mycelium initially white, changed to light pink in colour on PDA medium. Microscopic examination revealed that the hyphae were septate and hyaline, along with the presence of macro and micro conidia. Conidiophores were hyaline, simple, short or not well differentiated from hyphae, bearing spore masses at the apexes. Conidia were phialosporous, hyaline and of two kinds: acroconidia boat-shaped, with slightly tapering...
apical cells and hooked basal cells, 4-celled; and microconidia ellipsoidal, 1-celled. Chlamydospores were brown, globose and usually solitary.

Rhizopus stolonifer

Colonies of *R. stolonifer* on agar cultures were whitish to grey fuzzy in colour. Many haploid sporagiospores were developed within the sporangia structure. Sporangia were bulbous structures that sprout from the vegetative hyphae and hold the haploid spores.

Infection frequency of different fungi associated tomato fruit rot

The results regarding the association of fungi with tomato post harvest fruit rot indicated a significant variation among the different fungal isolates. Total of six different fungi viz., *Alternaria solani*, *Alternaria alternata*, *Aspergillus niger*, *Geotrichum candidum*, *Fusarium oxysporum* and *Rhizopus stolonifer* were found to be associated with tomato post harvest rot. Significantly highest frequency percentage of tissue infection was recorded for *A. solani* (53.667%) followed by *A. niger* (16.333%) and *G. candidum* (13.00%). The lowest infection percentage was observed for *F. oxysporum* (2.333%), followed by *A. alternata* (4.00%) and *R. stolonifer* (9.00%), respectively. However, no significant difference was observed between *F. oxysporum* and *A. alternata*; *A. alternata* and *R. stolonifer*; *G. candidum* and *R. stolonifer* causing infection in tomato fruits (Fig 3).

Numerous mycopathogens were reported as cause of post-deterioration of tomatoes (Abdel-Kader et al., 2011). However, the dominancy and infection percentage varies greatly according to areas. It has been well established that the major post-harvest losses of fruits and vegetables are caused by species of pathogens such as *Alternaria*, *Botrytis*, *Monilinia*, *Penicilium*, *Phenopsis*, *Rhizopus Sclerotinia*, *Fusarium*, *Geotrichum*, *Heminitosporium*, *Curvularia* and of bacteria *Erwinia* and *Pseudomonas* (Adekalu et al., 2009).

In our study, a total of six different fungi viz., *Alternaria solani*, *Aspergillus niger*, *Alternaria alternata*, *Geotrichum candidum*, *Fusarium oxysporum* and *Rhizopus stolonifer* were found to be associated with tomato post harvest rot. Significantly highest frequency percentage of tissue infection was recorded for *A. solani* followed by *A. niger* and *G. candidum*. Lowest infection was found for *F. oxysporum*, *A. alternata* and *R. stolonifer* with no significant difference among themselves. Similar to current study, Sajad et al. (2017) observed that most of the tomato fruits have been suffered by fruit rot disease caused by *Alternaria alternata*, *Aspergillus niger*, *Geotrichum candidum*, *Alternaria solani*, *Mucor racemosus*, *Aspergillus flavus*, *Fusarium oxysporum*, *Fusarium moniliforme*, *Penicillium digitatum*, *Rhizopus stolonifer*, *Alternaria alternata*, *Colletotrichum lycopersici*, *Sclerotium rolfsii*, *Myrothecium roridum*, *Phoma destructiva* and *Trichotheccium roseum*. Percentage frequency of occurrences on all tomato fruits were found maximum for *Alternaria alternata* 16.51%. *Alternaria* rot has been considered as the most common disease of tomato fruits and causes heavy losses in quality of the fruits, thus rendering large quantity of tomato fruits unfit for consumption. Awan et al. (2012) have reported *Alternaria* as the main decay causing organism of post harvest tomato fruits producing black rot lesions on tomato fruits. The magnitude of post-harvest losses always vary from one country to another country and one season to another and even one day to another (Mujib et al., 2007; Sajad, 2017).

Further, in present study different fungi causing post harvest tomato fruit rot were isolated and identified from study samples using species specific morphological features. *A. solani* was found to produce purified culture on PDA, aerial mycelium, yellowish to reddish diffusible pigments which later changed to greyish black with black reverse. Colonies of *A. niger* on agar cultures were typically homogeneously black. *Aspergillus* colonies were found fast growing. Their colonies were initially whitish to yellow, yellow-brown, then become brown to black in colour and they mostly

Fig 3: Infection per cent of different fungi associated with tomato post harvest rot.
Isolatation and Identification of the Fungi Causing Tomato Fruit Rot Disease in the Vicinity of Tandojam, Sindh

consist of a dense felt of erect conidiophores. Microscopic examination of A. alternate revealed septate brown hyphae, with septate and brown conidiophores bearing conidia in chains. Conidiophores were pale brown, simple and branched, bearing catenulate conidia at the apex and apical fertile parts. However, colonies of R. stolonifer on agar cultures produced whitish to grey fuzzy colour. Similar study has also been reported by (Bashir et al., 2014) who studied the association of Alternaria sp. with tomato fruits based on morphological characters; Ayala-Zavala et al. (2010) also supported our study. They found similar identification features as observed in the current study. Similar findings have also been stated by Britt and Kristin, (2011) who investigated tomato fruit rots caused by Geotrichum candidum, Rhizopus stolonifer, Alternaria sp. and Fusarium sp. Charchar et al. (2003) and Hassan, (1996) have also reported that Alternaria is the main decay causing organism of post harvest tomato fruits while responsible for black rot lesions on tomato fruits.

CONCLUSION

The present studies concludes that six different fungi viz., Alternaria solani, Alternaria alternata, Aspergillus niger, Geotrichum candidum, Fusarium oxysporum and Rhizopus stolonifer were found be associated with tomato post harvest rot. Further, significantly highest frequency percentage of tissue infection was recorded for A. solani. The results from the present study will form a base for better understanding of tomato post harvest fruit rot and for designing suitable management practices of tomato post harvest rot disease.

REFERENCES

Abdel-Kader, M., El-Mougy, N. and Lashin, S. (2011). Evaluation of grapefruit coating with chemical preservatives as control measure against postharvest decay. Phytopathologia. 59: 25-38.
Adekalu, O.A., Olatunde, I.G. Echendu, B.M. Adepoju, T.C. and Fajemisin O.O. (2009). Antimicrobial and preservative activities of Allium sativum and Eugenia aromatica on fresh tomato puree. African Journal of Agricultural Research. 4: 139-140.
Awan, S.M., Hussain, A., Abbas T. and Karim, R. (2012). Assessment of production practices of small scale farm holders of tomato in Bagrote Valley, CKNP region of Gilgit-Baltistan, Pakistan. Slovenica. 99: 191-199.
Ayala-Zavala, J.F. and Gonzalez-Aguilar, G.A. (2010). Optimizing the use of garlic oil as antimicrobial agent on fresh-cut tomato through a controlled release system. Journal of Food Science. 75: 398-405.
Barnett, H.L. and Hunter, B. (1972). Illustrated genus of imperfect fungi. 3rd ed. Burgress Publishing Company Minneapolis.
Bashir, U., Mushiqat S. and Akhtar, N. (2014). First report of Alternaria metachromatica from Pakistan causing leaf spot of tomato. Pakistan Journal of Agriculture Science. 51: 305-308.
Britt, B.F. and Kristin, R. (2011). Tomato consumption and health: Emerging benefits. American Journal of Life Style Medicine. 81: 2-191.
Charchar, A.U., Gonzaga, J.M., Giordano, V., Boiteuy, L.de. and Reis, L.S. (2003). Reaction of tomato cultivars to infection by a mixed population of M. incognita race and M. javanica in the field. Nematol. Brasileira. 27: 49-54.
Chohan, S., Perween, R., Mirza, A. and Mahmood, A.R. (2016). Fungi colonizing different parts of tomato plant (Lycopersicon lycopersicum L.). Journal of Phytopathology. 28: 25-33.
GOP. (2018). Agriculture statistics of Pakistan. Govt of Pakistan, Area, production of fruit, vegetables and Condiments. Ministry of Food and Agriculture (Economic wing). 2010-11.
Gomez, K. and Gomez, A.A. (1984). Statistical Procedure for the Agriculture Research. Wiley and Sons.
Hassan, H.A.H. (1996). Alternaria mycotoxins in Black rot lesion of tomato fruits: Conditions and regulations of their productions. Acta Immunologica Hungarica. 43:125-133.
Kirk, P.M., Cannon, P.F., Minter, D.W. and Stalpers, J.A. (2008). Dictionary of the Fungi. 10th ed., Wallingford, CAB, 22.
Mbud, E.M., Bassey, N.E., Udoh, E.S. and Udoh, E.J. (2011). Factors influencing postharvest loss of tomato in Uyo Urban market in Uyo Nigeria. Journal of Agriculture Food Environment. 7: 40-46.
Mujib, U.R., Naushad, K. and Inayatullah, J. (2007). Post-harvest losses of tomato crop. Sarhad Journal of Agriculture. 23: 1279-1284.
Nasir, M.U., Sarfraz, H. and Saqib, J. (2015). Tomato processing, lycopene and health benefits: A review. Science Letters. 3: 1-5.
Nelson, P.E., Toussoun, T.A. and Marasas, W.F.O. (1983). Fusarium species. An illustrated manual of identification. The State Univ. Press, University Park, Pennsylvania.
Nowicki, M., Nowakowska, M., Nizgoda, A. and Kozik, E.U. (2012). Alternaria black spot of crucifers: symptoms, importance of disease and perspectives of resistance breeding vegetable crops. Research Bulletin. 76: 5-19.
Obetta, S.E. Nwakonobi, T.U. and Adikwu, O.A. (2011). Microbial effects on selected stored fruits and vegetables under Ambient Makurdi, Benue State, Nigeria. Research Journal of Applied Sciences, Engineering and Technology. 3: 393-398.
Pandey, A.K., Kumar, P., Singh, P., Tripathi, N.N. and Bajpai, V.K. (2017). Essential Oils: Sources of Antimicrobials and Food Preservatives. Frontiers in Microbiology. 7: 2161-2168.
Sajad, A.M. and Jamaluddin Abid, H.Q. (2017). Fungi associated with the spoilage of post harvest tomato fruits in different markets of Jabalpur, Madhya-Pradesh, India. International Journal of Current Research Review. 9: 12-16.
Thirupathi, V., Sasikala, S. and Kennedy, J.Z. (2006). Preservation of fruits and vegetables by wax coating. Sci. Tech. Entrepreneur. 22: 19-24.
Wani, A.H. (2011). An overview of the fungal rot of tomato. Myco-Pathology. 9: 33-38.
Wee, R.Y. (2017). The economies of Southeast Asian nations. Worldatlas.