INJECTIVE PROPERTY RELATIVE TO NONSINGULAR
EXACT SEQUENCES

MARZIEH ARABI-KAKAVAND, SHADI ASGARI, AND YASER TOLOROEI

Abstract. We investigate modules \(M \) having the injective property relative to nonsingular modules. Such modules are called "\(N \)-injective modules." It is shown that \(M \) is an \(N \)-injective \(R \)-module if and only if the annihilator of \(Z_2(R_R) \) in \(M \) is equal to the annihilator of \(Z_2(R_R) \) in \(E(M) \). Every \(N \)-injective \(R \)-module is injective precisely when \(R \) is a right nonsingular ring. We prove that the endomorphism ring of an \(N \)-injective module has a von Neumann regular factor ring. Every (finitely generated, cyclic, free) \(R \)-module is \(N \)-injective, if and only if \(R \) is an \(N \)-injective, if and only if \(R \) is right \(t \)-semisimple. The \(N \)-injective property is characterized for right extending rings, semilocal rings and rings of finite reduced rank. Using the \(N \)-injective property, we determine the rings whose all nonsingular cyclic modules are injective.

1. Introduction

To describe the content of the paper we first state some notations and recall a few relevant results. Throughout, all rings are associative with unity and all modules are unitary right modules. For a subset \(K \) of an \(R \)-module \(M \), we denote \(r_R(K) = \{ r \in R : Kr = 0 \} \), and for a subset \(I \) of \(R \) we denote \(l_M(I) = \{ m \in M : mI = 0 \} \). Recall that the singular submodule \(Z(M) \) of a module \(M \) is the set of \(m \in M \) such that \(mI = 0 \) for some essential right ideal \(I \) of \(R \), or equivalently, \(r_R(m) \leq_e R_R \) (the notation \(\leq_e \) denotes an essential submodule). The Goldie torsion (or second singular) submodule \(Z_2(M) \) of a module \(M \) is defined by \(Z_2(M/Z(M)) = Z(M/Z(M)) \). The following facts are well known: \(Z_2(M/Z_2(M)) = 0 \). If \(f : M \to N \) is a homomorphism, then \(f(Z_2(M)) \leq Z_2(N) \). Moreover, \(Z_2(M) \cap A = Z_2(A) \) for every submodule \(A \) of \(M \), and \(Z_2(\bigoplus \lambda M_\lambda) = \bigoplus \lambda Z_2(M_\lambda) \) for every class of \(R \)-modules \(M_\lambda \). A module \(M \) is called singular if \(Z(M) = M \) and nonsingular if \(Z(M) = 0 \), or equivalently, \(Z_2(M) = 0 \). The module \(M \) is called \(Z_2 \)-torsion if \(Z_2(M) = M \).

Received March 3, 2016; Revised July 19, 2016.

2010 Mathematics Subject Classification. 16D10, 16D70, 16D80, 16D40.

Key words and phrases. nonsingular and \(Z_2 \)-torsion modules, \(N \)-injective modules, right \(t \)-semisimple rings.

The research of the second author was in part supported by a grant from IPM (No. 93160068).
Clearly, a submodule A of M is \mathbb{Z}_2-torsion if and only if $A \leq \mathbb{Z}_2(M)$. The class of \mathbb{Z}_2-torsion modules is closed under submodules, factor modules, direct sums, and extensions. In [2], a submodule A of M is called t-essential in M (written by $A \leq_{tes} M$) if for every submodule B of M, $A \cap B \leq \mathbb{Z}_2(M)$ implies that $B \leq \mathbb{Z}_2(M)$. Using this notion, it is easy to see that $\mathbb{Z}_2(M)$ is the set of $m \in M$ such that $mI = 0$ for some t-essential right ideal I of R, or equivalently, $r_R(m) \leq_{tes} R_R$. Following [2], a submodule C of M is said to be t-closed in M if $C \leq_{tes} C' \leq M$ implies that $C = C'$; and a module M is called t-extending if every t-closed submodule of M is a direct summand. In fact, t-extending modules are precisely the modules M for which every closed submodule of M containing $\mathbb{Z}_2(M)$ is a direct summand of M.

Over the last 50 years numerous mathematicians have investigated rings over which certain cyclic modules have a homological property. Among these, determining the rings whose certain cyclic modules are injective has been of interest. Osofsky [12] proved that every cyclic R-module is injective, if and only if every R-module is injective, if and only if R is semisimple. A cyclic R-module is called proper cyclic if it is not isomorphic to R. A ring R is called a right PCI-ring if every proper cyclic R-module is injective. Faith [5] proved that a right PCI-ring is either a semisimple ring or a simple right semihereditary right Ore domain. An excellent reference for a thorough study of these rings is [8]. The rings for which every singular module is injective were studied by Goodearl [6]. He called them right SI-rings and characterized such rings as those nonsingular ones for which R/I is semisimple for every essential right ideal I of R. Osofsky and Smith [13] showed that every singular cyclic R-module is injective if and only if R is a right SI-ring. More results on such rings can be found in [4] and [14]. Motivated by these, a natural question is: “What are the rings whose all nonsingular cyclic modules are injective?” In [3] the rings whose all nonsingular modules are injective were studied. Such rings are called right t-semisimple rings. It was shown that R is right t-semisimple, if and only if every nonsingular R-module is semisimple, if and only if $R/Z_2(R_R)$ is a semisimple ring, if and only if R is a direct product of two rings, one is semisimple and the other is right Z_2-torsion. By [3, Example 4.15], the class of right t-semisimple rings is properly contained in that of rings R for which every nonsingular cyclic R-module is injective. This raises another question: “Under which condition(s) the class of rings R for which every nonsingular cyclic R-module is injective coincides with that of right t-semisimple rings?” But, it is a fact, obtained by Baer’s criterion, that a nonsingular R-module M is injective precisely when M is injective relative to the nonsingular R-module $R/Z_2(R_R)$. This leads us to investigate the modules M which are injective relative to nonsingular modules for finding the answers of the above questions.

Let M and L be R-modules. Recall that M is said to be L-injective (or, injective relative to L) if for every monomorphism $f : K \to L$ and every homomorphism $g : K \to M$, there is a homomorphism $h : L \to M$ such that $hf = g$. We say that an R-module M is N-injective if M is injective relative
to every nonsingular R-module; in other words, M is injective relative to every nonsingular exact sequence $0 \to K \to L$. (Note that every submodule of a nonsingular module is nonsingular.) Section 2 is devoted to study \mathcal{N}-injective modules. Every injective module and every module over a right t-semisimple ring are \mathcal{N}-injective. It is proved that M is \mathcal{N}-injective, if and only if M is injective relative to $R/Z_2(R_R)$, if and only if $l_M(Z_2(R_R)) = l_{E(M)}(Z_2(R_R))$, if and only if $M = Z_2(M) \oplus M'$, where $Z_2(M)$ is \mathcal{N}-injective and M' is injective (Theorem 2.2). A nonsingular module is \mathcal{N}-injective if and only if it is injective (Corollary 2.3(i)). For a module M,

$$\text{injective} \Rightarrow \mathcal{N}\text{-injective} \Rightarrow t\text{-extending},$$

but none of these implications is reversible (Corollary 2.3(ii)). The classes of injective R-modules and \mathcal{N}-injective R-modules coincide if and only if R is a right nonsingular ring (Proposition 2.7). We prove that if M is an \mathcal{N}-injective module, then S/T is a von Neumann regular ring, where $S = \text{End}(M)$ and $T = \{ \varphi \in S : \varphi M \leq Z_2(M) \}$ (Theorem 2.9). This implies that $R/Z_2(R_R)$ is a von Neumann regular ring whenever R is \mathcal{N}-injective (Corollary 2.10).

In Section 3, we give several characterizations obtained by the \mathcal{N}-injective property. It is proved that R is a right t-semisimple ring, if and only if every (finitely generated, cyclic, free) R-module is \mathcal{N}-injective, if and only if $R^{(3)}$ is \mathcal{N}-injective (Theorem 3.1). This, in particular, implies that a semilocal ring is \mathcal{N}-injective precisely when R is right t-semisimple (Corollary 3.2). In the sequel, it is shown that R is \mathcal{N}-injective if and only if $Z_2(R_R)$ is $R/Z_2(R_R)$-injective and every nonsingular cyclic R-module is injective and projective (Proposition 3.6). A right extending ring R is \mathcal{N}-injective if and only if $R/Z_2(R_R)$ is a right self-injective ring (Theorem 3.7). Moreover, if R is a ring of finite reduced rank, then R is \mathcal{N}-injective if and only if R is right t-semisimple (Proposition 3.8).

By the obtained results, we find some answers to the above mentioned questions: i) The rings whose every nonsingular cyclic module is injective are characterized. In fact, R is such a ring if and only if $R/Z_2(R_R)$ is a right self-injective ring, and if R is right extending, these are equivalent to R being right \mathcal{N}-injective (Theorem 3.7). ii) The class of rings R for which every nonsingular cyclic R-module is injective coincides with that of right t-semisimple rings whenever R is either semilocal or of finite reduced rank (Corollary 3.10).

2. \mathcal{N}-injective modules

We say that an R-module M is \mathcal{N}-injective if M is injective relative to every nonsingular R-module. Clearly, every injective R-module is \mathcal{N}-injective. The following example shows that the class of \mathcal{N}-injective R-modules properly contains that of injective R-modules. More examples of \mathcal{N}-injective modules will be given in Examples 2.6.

Example 2.1. Let R_1 be a right Z_2-torsion ring (e.g., $R_1 = \mathbb{Z}/p^2\mathbb{Z}$, where p is a prime number), R_2 be a semisimple ring (e.g., $R_2 = D$ is a division
ring), and $R = R_1 \times R_2$. Assume that M is an R-module, $f : A \to B$ is an R-monomorphism where B is a nonsingular R-module, and $g : A \to M$ is an R-homomorphism. By [3, Theorems 3.2(4) and 3.8(3)], A is a direct summand of B, and hence g can be extended to an R-homomorphism $h : B \to M$. This shows that M is \mathcal{N}-injective.

The next result gives several equivalent conditions for an \mathcal{N}-injective module.

Theorem 2.2. The following statements are equivalent for an R-module M.

1. M is \mathcal{N}-injective.
2. M is $R/Z_2(R_R)$-injective.
3. $l_M(Z_2(R_R)) = l_{E(M)}(Z_2(R_R))$.
4. $l_M(Z_2(R_R))$ is an injective $R/Z_2(R_R)$-module.
5. $M = Z_2(M) \oplus M'$, where $Z_2(M)$ is \mathcal{N}-injective and M' is injective.
6. For every monomorphism $f : A \to B$ of R-modules where A is nonsingular, and every R-homomorphism $g : A \to M$, there exists an R-homomorphism $h : B \to M$ such that $hf = g$.

Proof. (1) \Rightarrow (6). Let $f : A \to B$ be a monomorphism of R-modules where A is nonsingular, and $g : A \to M$ be a homomorphism. Assume that $\pi : B \to B/Z_2(B)$ is the natural epimorphism. Since A is nonsingular, $\pi f : A \to B/Z_2(B)$ is a monomorphism. So by hypothesis, there exists a homomorphism $\theta : B/Z_2(B) \to M$ such that $\theta \pi f = g$. Set $h = \theta \pi$.

(6) \Rightarrow (5). Let C be a complement of $Z_2(M)$ in M, and $f : C \to E(C)$ be the inclusion map, where $E(C)$ is the injective hull of C. Moreover, assume that $g : C \to M$ is the inclusion map. By hypothesis, there exists a homomorphism $h : E(C) \to M$ such that $hf = g$. Since g is a monomorphism and $C \leq E(C)$, we conclude that h is a monomorphism. Thus $h(E(C)) \cong E(C)$ is injective, and so $h(E(C))$ is a direct summand of M, say $M = K \oplus h(E(C))$. Since C is nonsingular we conclude that $E(C)$ is nonsingular, and so $h(E(C))$ is nonsingular. Thus $Z_2(M) \leq K$. On the other hand, $c = g(c) = hf(c) = h(c)$, for every $c \in C$. Thus $C \leq h(E(C))$. Hence $Z_2(M) \oplus C \leq M$ implies that $Z_2(M) \leq K$. But $Z_2(M)$ is closed, and so $Z_2(M) = K$. Since M satisfies (6) and $Z_2(M)$ is a direct summand of M, it is easy to see that $Z_2(M)$ also satisfies (6). Thus $Z_2(M)$ is \mathcal{N}-injective. Now by setting $M' = h(E(C))$, the desired decomposition is obtained.

(5) \Rightarrow (2). Since $Z_2(M)$ and M' are $R/Z_2(R_R)$-injective, so is M.

(2) \Rightarrow (4). Let $\overline{R} = R/Z_2(R_R)$, and \overline{I} be a right ideal of \overline{R}. Moreover, assume that $g : \overline{I} \to l_M(Z_2(R_R))$ is an \overline{R}-homomorphism. By hypothesis g can be extended to an R-homomorphism $h : \overline{R} \to M$. But clearly, $h(\overline{I}) \leq l_M(Z_2(R_R))$, and so g can be extended to the \overline{R}-homomorphism $h : \overline{R} \to l_M(Z_2(R_R))$. Thus by Baer’s criterion, $l_M(Z_2(R_R))$ is an injective \overline{R}-module.

(4) \Rightarrow (3). Set $\overline{R} = R/Z_2(R_R)$, and $K = l_M(Z_2(R_R))$. By [7, Exercise 5J], $l_{E(K)}(Z_2(R_R)) = E(K_M)$. Now we show that $l_{E(K)}(Z_2(R_R)) = l_{E(M)}(Z_2(R_R))$. Clearly, $E(K)$ is a direct summand of $E(M)$, say $E(K) \oplus D = E(M)$. Let
\(x \in l_{E(M)}(Z_2(R))\) and \(x = e + d\), where \(e \in E(K)\) and \(d \in D\). Obviously, \(e \in l_{E(K)}(Z_2(R))\) and \(d \in l_D(Z_2(R))\). If \(d \neq 0\), then there exists \(r \in R\) such that \(0 \neq dr \in M\). Thus \(dr Z_2(R) \leq dZ_2(R) = 0\), and so \(dr \in K \cap D = 0\) which is impossible. Hence \(d = 0\) and \(x = e \in l_{E(K)}(Z_2(R))\). This shows that \(l_{E(K)}(Z_2(R)) = l_{E(M)}(Z_2(R))\), as desired. Therefore \(E(K\underline{\lambda}) = l_{E(M)}(Z_2(R))\). Since \(K\underline{\lambda}\) is injective we conclude that \(l_M(Z_2(R)) = l_{E(M)}(Z_2(R))\).

(3) \(\Rightarrow\) (1). First note that \(l_{E(M)}(Z_2(R))\) is an injective \(R/Z_2(R)\)-module. In fact, let \(\underline{\tau} = R/Z_2(R)\), and \(\tau\) be a right ideal of \(\underline{\tau}\). Moreover, let \(\varphi : \tau \rightarrow l_{E(M)}(Z_2(R))\) be an \(\underline{\tau}\)-homomorphism. Then \(\varphi\) can be extended to an \(R\)-homomorphism \(\psi : \underline{\tau} \rightarrow E(M)\). But clearly, \(\psi(\underline{\tau}) \leq l_{E(M)}(Z_2(R))\), and so \(\varphi\) is extended to the \(\underline{\tau}\)-homomorphism \(\psi : \underline{\tau} \rightarrow l_{E(M)}(Z_2(R))\). Thus by Baer’s criterion we conclude that \(l_{E(M)}(Z_2(R))\) is an injective \(\underline{\tau}\)-module, as desired.

Now let \(N\) be a nonsingular \(R\)-module, \(f : A \rightarrow N\) be an \(R\)-monomorphism and \(g : A \rightarrow M\) be an \(R\)-homomorphism. Since \(A\) is nonsingular, \(AZ_2(R) = 0\), and hence \(g(A) \leq l_M(Z_2(R))\). But, by hypothesis and what we have shown above \(l_M(Z_2(R))\) is an injective \(\underline{\tau}\)-module. So there exists an \(\underline{\tau}\)-homomorphism \(h : N \rightarrow l_M(Z_2(R))\) such that \(hf = g\). Clearly, \(h : N \rightarrow M\) is an \(R\)-homomorphism. This shows that \(M\) is \(N\)-injective. \(\square\)

Corollary 2.3. (i) A nonsingular module \(M\) is \(N\)-injective if and only if \(M\) is injective.

(ii) If \(M\) is an \(N\)-injective module, then \(M\) is \(t\)-extending.

Proof. (i) This follows from Theorem 2.2(5).

(ii) This is obtained by Theorem 2.2(5) and [2, Theorem 2.11(3)]. \(\square\)

The converse implication of Corollary 2.3(ii) is not always true. For example, \(\mathbb{Z}\) is an extending module which is not injective, hence it is not \(N\)-injective by Corollary 2.3(i).

Corollary 2.4. The following statements are equivalent for a ring \(R\).

1. \(R/Z_2(R)\) is a right Noetherian ring.
2. \(M^{(N)}\) is \(N\)-injective, for every \(N\)-injective module \(M\).
3. Every direct sum of \(N\)-injective modules is \(N\)-injective.

Proof. (1) \(\Rightarrow\) (3). Let \(M = \bigoplus_{\lambda \in \Lambda} M_{\lambda}\), where each \(M_{\lambda}\) is \(N\)-injective. By Theorem 2.2(4), \(l_{M_{\lambda}}(Z_2(R))\) is an injective \(R/Z_2(R)\)-module. Hence \(l_M(Z_2(R)) = \bigoplus_{\lambda \in \Lambda} l_{M_{\lambda}}(Z_2(R))\) is an injective \(R/Z_2(R)\)-module since \(R/Z_2(R)\) is right Noetherian. Thus by Theorem 2.2(4), \(M\) is \(N\)-injective.

(3) \(\Rightarrow\) (2). This implication is clear.

(2) \(\Rightarrow\) (1). By [11, Theorem 7.48(4)], it suffices to show that \(M^{(N)}\) is an injective \(R/Z_2(R)\)-module, for every injective \(R/Z_2(R)\)-module \(M\). Since \(M\)
is \(R/Z_2(R_R) \)-injective as an \(R \)-module. Theorem 2.2(2) implies that \(M \) is \(\mathcal{N} \)-injective. Thus by hypothesis, \(M^{(3)} \) is \(\mathcal{N} \)-injective, hence \(R/Z_2(R_R) \)-injective. So \(M^{(3)} \) is an injective \(R/Z_2(R_R) \)-module. \(\square \)

A ring \(R \) is called a right \(V \)-ring (or right co-semisimple) if every simple \(R \)-module is injective.

Corollary 2.5. The following statements are equivalent for a ring \(R \).

(1) Every simple \(R \)-module is \(\mathcal{N} \)-injective.

(2) \(R/Z_2(R_R) \) is a right \(V \)-injective.

Proof. (1) \(\Rightarrow \) (2). Let \(S \) be a simple \(R/Z_2(R_R) \)-module. Clearly, \(S \) is a simple \(R \)-module, and so as an \(R \)-module, \(S \) is \(\mathcal{N} \)-injective, hence \(R/Z_2(R_R) \)-injective. Thus \(S \) is an injective \(R/Z_2(R_R) \)-module.

(2) \(\Rightarrow \) (1). Let \(S \) be a simple \(R \)-module. Clearly, \(l_S(Z_2(R_R)) \) is \(S \) or \(0 \). So by hypothesis, \(l_S(Z_2(R_R)) \) is an injective \(R/Z_2(R_R) \)-module. Hence \(S \) is \(\mathcal{N} \)-injective by Theorem 2.2(4). \(\square \)

In the following we give more examples of \(\mathcal{N} \)-injective modules.

Examples 2.6. (i) Let \(U \) be a right \(Z_2 \)-torsion ring (e.g., \(U = \mathbb{Z}/p^2\mathbb{Z} \) for a prime number \(p \)). Then \(T = \left(\begin{array}{l} 0 \\ 0 \end{array} \right) \) is a right \(Z_2 \)-torsion ring; see [3, Proposition 3.11]. Set \(R = T \times \mathbb{Z} \), and \(M = T \times \mathbb{Q} \). Since \(T \) is right \(Z_2 \)-torsion, every \(T \)-module \(X \) is \(Z_2 \)-torsion (note that \(XZ_2(T_R) \leq Z_2(X) \)), and hence every \(T \)-module is \(\mathcal{N} \)-injective. On the other hand, \(\mathbb{Q} \) is an injective \(\mathbb{Z} \)-module. Therefore \(T \) is an \(\mathcal{N} \)-injective \(R \)-module and \(\mathbb{Q} \) is an injective \(R \)-module. But, \(Z_2(M) = T \), and so by Theorem 2.2(5), \(M \) is an \(\mathcal{N} \)-injective \(R \)-module.

(ii) Let \(R_1 \) be a right \(Z_2 \)-torsion ring (e.g., \(R_1 = \prod_p \mathbb{Z}/p^2\mathbb{Z} \), where \(p \) runs through the set of prime numbers), \(R_2 \) a right nonsingular right Noetherian ring (e.g., \(R_2 = \left(\begin{array}{l} 0 \\ 0 \end{array} \right) \)), where \(D \) is a division ring), and \(R = R_1 \times R_2 \). By [3, Lemma 3.10], \(Z_2(R_R) = R_1 \), and so \(R/Z_2(R_R) \approx R_2 \) is right Noetherian. Now let \(M \) be an \(R \)-module and \(\Lambda \) be a set. By Corollary 2.4, \(E(M)^{(\Lambda)} \) is an \(\mathcal{N} \)-injective \(R \)-module.

(iii) Let \(R_1 \) be a right \(Z_2 \)-torsion ring (e.g., \(R_1 = \prod_\Lambda \mathbb{Z}/p^2\mathbb{Z} \), where \(p \) is a prime number and \(\Lambda \) is a set), \(R_2 \) a right nonsingular right \(V \)-ring (e.g., \(R_2 \) is a field), and \(R = R_1 \times R_2 \). Then \(Z_2(R_R) = R_1 \), and so \(R/Z_2(R_R) \approx R_2 \) is a right \(V \)-ring. Thus by Corollary 2.5, \(R/L \) is an \(\mathcal{N} \)-injective \(R \)-module, for every maximal right ideal \(L \) of \(R \).

The following result shows that the classes of \(\mathcal{N} \)-injective \(R \)-modules and injective \(R \)-modules coincide if and only if \(R \) is a right nonsingular ring.

Proposition 2.7. The following statements are equivalent for a ring \(R \).

(1) Every \(\mathcal{N} \)-injective \(R \)-module is injective.

(2) \(R \) is right nonsingular.

Proof. The implication (2) \(\Rightarrow \) (1) follows from Theorem 2.2. For (1) \(\Rightarrow \) (2), set \(A = l_R(Z_2(R_R)) \). We show that \(A \) is an essential right ideal of \(R \). Let \(I \) be a
right ideal of R such that $A \cap I = 0$. So $I_{K}(Z_{2}(R)) = 0$ for every R-submodule K of I. Thus by Theorem 2.2(4), K is N-injective, and so by hypothesis it is injective. This implies that I is a semisimple direct summand of R. On the other hand, if J is a nonsingular right ideal of R, then $JZ_{2}(R) \leq Z_{2}(J) = 0$, and so $J \leq A$. Hence by the semisimple property of I we conclude that I is singular. But R cannot contain a nonzero singular direct summand, and so $I = 0$. This shows that A is an essential right ideal of R. Thus $E(A) = E(R)$. By Theorem 2.2(4), $I_{E(A)}(Z_{2}(R))$ is an injective $R/Z_{2}(R)$-module, and so it is N-injective as an R-module. Thus by hypothesis, $I_{E(A)}(Z_{2}(R))$ is an injective R-module. But $A \leq I_{E(A)}(Z_{2}(R))$, and so $I_{E(A)}(Z_{2}(R)) = E(A)$. Thus $Z_{2}(R) = RZ_{2}(R) \leq E(R)Z_{2}(R) = E(A)Z_{2}(R) = 0$. Hence R is right nonsingular.

Corollary 2.8. The following statements are equivalent for a ring R.

1. Every N-injective R-module is projective.
2. R is semisimple.

Proof. It suffices to show that (1) \Rightarrow (2). By hypothesis, every injective R-module is projective. So R is quasi-Frobenius, and hence every projective R-module is injective; see [11, Theorems 7.55 and 7.56(2)]. Thus hypothesis implies that every N-injective R-module is injective. Hence R is right nonsingular by Proposition 2.7. So by [3, Corollary 4.6], R is semisimple.

We end this section by proving that the endomorphism ring of an N-injective module has a von Neumann regular factor ring. It will be observed that the endomorphism ring of an N-injective module is not necessarily von Neumann regular; see Remark 3.5.

Theorem 2.9. Let M be a module, $S = \text{End}(M)$, and $T = \{ \varphi \in S : \varphi M \leq Z_{2}(M) \}$. If M is N-injective, then S/T is a von Neumann regular ring.

Proof. First we show that T is a two-sided ideal of S. Let $\varphi \in T$ and $\psi \in S$. Since $\varphi \in T$ we conclude that $\varphi^{-1}(Z_{2}(M)) = M$. But clearly, $\varphi^{-1}(Z_{2}(M)) \leq (\psi \varphi)^{-1}(Z_{2}(M))$, hence $(\psi \varphi)^{-1}(Z_{2}(M)) = M$. So $\psi \varphi \in T$. On the other hand, $(\psi \varphi)^{-1}(Z_{2}(M)) = (\psi^{-1}(Z_{2}(M))) = \psi^{-1}(M) = M$. Hence $\psi \varphi \in T$. This shows that T is a two-sided ideal of S.

Now we show that S/T is von Neumann regular. Let $\psi \in S$. By Corollary 2.3(ii), M is t-extending. So by [2, Theorem 2.11(5)], there exists a direct summand D of M, say $M = D \oplus E$, such that $\psi^{-1}(Z_{2}(M)) \leq_{t} D$. Assume that ‘bar’ denotes the image in $M/Z_{2}(M)$. Since $Z_{2}(M) \leq \psi^{-1}(Z_{2}(M))$ we conclude that $\overline{M} = \overline{D} \oplus \overline{E}$. Moreover, $\overline{\psi} : \overline{E} \to \overline{E}$ defined by $\overline{x} = \overline{\psi x}$ is an isomorphism ($\overline{\psi}$ is one-to-one, since $\psi x \in Z_{2}(M)$ implies that $x \in \psi^{-1}(Z_{2}(M)) \cap E \leq D \cap E = 0$). But \overline{M} is injective by Theorem 2.2(5), and so \overline{M} has C_{2} condition. Thus $\overline{\psi} E$ is a direct summand of \overline{M}, say $\overline{M} = \overline{\psi E} \oplus K$. This implies that $M = \psi E \oplus (K + Z_{2}(M))$; in fact, it is enough to show that $\psi E \cap (K + Z_{2}(M)) = 0$. Let $\psi x = k + z$, where $x \in E$, $k \in K$ and $z \in Z_{2}(M)$. Then $\psi x + Z_{2}(M) =$
The following statements are equivalent for a ring \(R \) of finite reduced property. For right extending rings, semilocal rings and rings of finite reduced \(\mathbb{Z} \)-injection property. Hence by hypothesis and Theorem 2.2(5), the module \((\psi - \psi \psi)^{-1}(Z_2(M)) = M \). Hence \(\psi - \psi \psi \in T \), and so \(S/T \) is von Neumann regular.

Corollary 2.10. Let a ring \(R \) be \(N \)-injective.

(i) \(R/Z_2(R_R) \) is a von Neumann regular ring.

(ii) \(\text{Rad}(P) \leq Z_2(P) \) for every projective \(R \)-module \(P \).

Proof. (i) Let \(r \in R \), and \(f_r \) be the endomorphism of \(R \) defined by \(f_r(x) = rx \).

If \(r \in Z_2(R_R) \), then \(f_r(R) \leq Z_2(R_R) \). If \(f_r(R) \leq Z_2(R_R) \), then \(f_r(1) = r \in Z_2(R_R) \). Therefore under the ring isomorphism \(\Phi : R \to S = \text{End}(R_R) \) defined by \(\Phi(r) = f_r \), the ideal \(Z_2(R_R) \) is isomorphic to \(T = \{ \varphi \in S : \varphi R \leq Z_2(R_R) \} \).

Hence \(R/Z_2(R_R) \cong S/T \), and so by Theorem 2.9, \(R/Z_2(R_R) \) is a von Neumann regular ring.

(ii) Since the Jacobson radical of a von Neumann regular ring is zero, (i) implies that \(\text{Rad}(R) \leq Z_2(R_R) \). Hence \(\text{Rad}(P) = PRad(R) \leq PZ_2(R_R) \leq Z_2(P) \).

3. More characterizations

In this section we give several characterizations obtained by the \(N \)-injective property. For right extending rings, semilocal rings and rings of finite reduced rank, the \(N \)-injective property is characterized. Moreover, we determine the rings \(R \) for which every nonsingular cyclic \(R \)-module is injective. Recall that a ring \(R \) is right \(t \)-semisimple if and only if \(R/Z_2(R_R) \) is a semisimple ring.

Theorem 3.1. The following statements are equivalent for a ring \(R \).

1. Every free (projective) \(R \)-module is \(N \)-injective.
2. Every cyclic \(R \)-module is \(N \)-injective.
3. Every \(R \)-module is \(N \)-injective.
4. \(R \) is right \(t \)-semisimple.
5. \(R^{(S)} \) is \(N \)-injective.
6. \([R/Z_2(R_R)]^{(S)} \) is an injective \(R/Z_2(R_R) \)-module.

Proof. (1) \(\Rightarrow \) (4). Let \([R/Z_2(R_R)]^{(A)} \) be a free \(R/Z_2(R_R) \)-module. Since \(Z_2(R^{(A)}) = Z_2(R_R)^{(A)} \) we conclude that \([R/Z_2(R_R)]^{(A)} \cong R^{(A)}/Z_2(R_R)^{(A)} \).

Hence by hypothesis and Theorem 2.2(5), the module \([R/Z_2(R_R)]^{(A)} \) is an injective \(R \)-module, and so it is an injective \(R/Z_2(R_R) \)-module. Thus \(R/Z_2(R_R) \) is a right \(\Sigma \)-injective ring, and so it is quasi-Frobenius by [4, 18.1]. On the other hand, \(R/Z_2(R_R) \) is a right nonsingular ring. Thus by [3, Corollary 4.6], \(R/Z_2(R_R) \) is a semisimple ring.
Let M be a cyclic $R/Z_2(R_R)$-module. Then M is a cyclic R-module, and so by hypothesis, M is $R/Z_2(R_R)$-injective. Hence M is an injective $R/Z_2(R_R)$-module. Thus $R/Z_2(R_R)$ is a semisimple ring.

(4) \Rightarrow (3). Assume that B and M are R-modules, and A is a nonsingular submodule of B. By [3, Theorem 3.2(4)], A is a direct summand of B. So clearly, every R-homomorphism $g : A \to M$ can be extended to an R-homomorphism $h : B \to M$. Thus by Theorem 2.2(6), M is N-injective.

(3) \Rightarrow (1), (3) \Rightarrow (2) and (1) \Rightarrow (5). These implications are obvious.

(5) \Rightarrow (6). Clearly, $l_{R}(Z_2(R_R)) = [l_{R}(Z_2(R_R))]$. Thus by Theorem 2.2(4), $[l_{R}(Z_2(R_R))]$ is an injective $R/Z_2(R_R)$-module.

(6) \Rightarrow (1). Let $R^{(A)}$ be a free R-module. By hypothesis, $[l_{R}(Z_2(R_R))]$ is an injective $R/Z_2(R_R)$-module. Thus by [1, Theorem 25.1], $[l_{R}(Z_2(R_R))]^{(A)}$ is an injective $R/Z_2(R_R)$-module. So by Theorem 2.2(4), $R^{(A)}$ is N-injective. □

A ring R is called semilocal if $R/Rad(R)$ is semisimple. Semiperfect rings (hence right and left perfect rings, semiprimary rings, right and left Artinian rings, and local rings) are semilocal. The next result determines the N-injective semilocal rings. Moreover, by Corollary 2.10, if R is N-injective, then $Rad(R) \leq Z_2(R_R)$. The converse implication is not necessarily true even though R is right Noetherian; e.g., $R = Z$. The next result shows that the converse implication holds for semilocal rings.

Corollary 3.2. Let R be a semilocal ring. The following statements are equivalent.

1. R is N-injective.
2. R is right t-semisimple.
3. $Rad(R) \leq Z_2(R_R)$.

If R is local, the above statements are equivalent to

4. R is right Z_2-torsion.

Proof. (3) \Rightarrow (2). If R is semilocal, then $R/Rad(R)$ is semisimple. Thus by hypothesis, $R/Z_2(R_R)$ is semisimple, and so R is right t-semisimple.

(2) \Rightarrow (1). This follows from Theorem 3.1.

(4) \Rightarrow (2). This is clear by [3, Theorem 2.3].

Now assume that R is a local ring. We show that (3) \Rightarrow (4). Since R is local, $Rad(R)$ is essential in R. So by [2, Proposition 2.2(4)], $R/Rad(R)$ is Z_2-torsion. Moreover, by hypothesis, $Rad(R)$ is Z_2-torsion. Therefore R is right Z_2-torsion. □

Recall that a ring R is called quasi-Frobenius if R is right (or left) Artinian and right (or left) self-injective.

Corollary 3.3. A ring R is quasi-Frobenius if and only if R is right t-semisimple and $R^{(N)}$ is $Z_2(R_R)$-injective.

Proof. (\Rightarrow) Since $R^{(N)}$ is injective, it is $Z_2(R_R)$-injective. Moreover, by [3, Proposition 4.5], R is right t-semisimple.
By Theorems 3.1(3) and 2.2(5), \(Z_2(R_R) \) is a direct summand of \(R \). Moreover, by Theorem 3.1(5), \(R^{(5)} \) is \(R/Z_2(R_R) \)-injective. Thus by hypothesis, \(R^{(5)} \) is \(R \)-injective, so \(R^{(5)} \) is injective. Hence \(R \) is quasi-Frobenius by [4, 18.1(b)] and [1, Theorem 25.1]. □

Recall that \(R \) is called a right pseudo-Frobenius ring if \(R \) is an injective cogenerator in \(\text{Mod-} R \). Every quasi-Frobenius ring is right pseudo-Frobenius; see [9, Theorem 19.25]. The next result shows that a right pseudo-Frobenius ring for which the second singular ideal is Noetherian is quasi-Frobenius.

Corollary 3.4. Let \(R \) be a ring.

1. If \(R \) is right pseudo-Frobenius, then \(R \) is right \(t \)-semisimple.
2. \(R \) is quasi-Frobenius if and only if \(R \) is right pseudo-Frobenius and \(Z_2(R_R) \) is Noetherian (Artinian).
3. \(R \) is quasi-Frobenius if and only if \(R \) is right Kasch and \(Z_2(R_R) \) is injective and Noetherian (Artinian).

Proof. (1) Since \(R \) is right pseudo-Frobenius, \(R \) is right self-injective and semi-perfect. Hence Corollary 3.2 implies that \(R \) is right \(t \)-semisimple.

(2) Let \(R \) be right pseudo-Frobenius and \(Z_2(R_R) \) be Noetherian (Artinian). By (1), \(R \) is right \(t \)-semisimple, and so \(R/Z_2(R_R) \) is Noetherian (Artinian). Thus \(R \) is Noetherian (Artinian), and hence \(R \) is quasi-Frobenius. The converse is clear.

(3) Let \(R \) be quasi-Frobenius. Then \(Z_2(R_R) \) is injective and Noetherian (Artinian). Moreover, \(R \) is right pseudo-Frobenius, and so by [9, Theorem 19.25], \(R \) is right Kasch. The converse implication follows from [15, Theorem 5] and (2). □

Remark 3.5. (i) The endomorphism ring of an \(N \)-injective module has a von Neumann regular factor ring (Theorem 2.9), but itself is not necessarily von Neumann regular. In fact, by Theorem 3.1(5) and [10, Proposition 2.17], if \(R \) is a right \(t \)-semisimple ring which is not semisimple, then \(R^{(5)} \) is \(N \)-injective and \(\text{End}(R^{(5)}) \) is not von Neumann regular.

(ii) Recall that every injective \(R \)-module is projective if and only if every projective \(R \)-module is injective (and these are equivalent to \(R \) being quasi-Frobenius). However, Corollary 2.8 and Theorem 3.1 show that this equivalence does not hold if we replace injective by \(N \)-injective.

Proposition 3.6. The following statements are equivalent for a ring \(R \).

1. \(R \) is \(N \)-injective.
2. \(Z_2(R_R) \) is \(R/Z_2(R_R) \)-injective and every finitely generated (cyclic) nonsingular \(R \)-module is injective and projective.

Proof. (1) \(\Rightarrow \) (2). By Theorem 2.2(5), \(Z_2(R_R) \) is \(R/Z_2(R_R) \)-injective. Let \(M \) be a finitely generated nonsingular \(R \)-module. There exists a finitely generated free \(R \)-module \(F \) such that \(M \cong F/C \) for some submodule \(C \) of \(F \). By [2, Proposition 2.6(6)], \(C \) is a \(t \)-closed submodule of \(F \). On the other hand, \(F \) is
\mathcal{N}-injective, and so by Corollary 2.3(ii), F is t-extending. Thus C is a direct summand of F, and so M is isomorphic to a direct summand of F. This implies that M is projective and \mathcal{N}-injective which implies that M is injective by Corollary 2.3(i).

(2) \Rightarrow (1). By Theorem 2.2(2), $Z_2(R_R)$ is \mathcal{N}-injective. Since $R/Z_2(R_R)$ is projective by hypothesis, $Z_2(R_R)$ is a direct summand of R, say $R = Z_2(R_R) \oplus R'$. But, $R' \cong R/Z_2(R_R)$ is injective by hypothesis, and so by Theorem 2.2(5), R is \mathcal{N}-injective. □

The following result characterizes the rings over which every cyclic (finitely generated) nonsingular module is injective. Moreover, this result determines that when a right extending ring is \mathcal{N}-injective.

Theorem 3.7. The following statements are equivalent for a ring R.

(1) Every cyclic (finitely generated) nonsingular R-module is injective.

(2) $R/Z_2(R_R)$ is a right self-injective ring.

If R is right extending, then the above statements are equivalent to

(3) R is \mathcal{N}-injective.

Proof. (1) \Rightarrow (2). By hypothesis, $R/Z_2(R_R)$ is an injective R-module, and hence, a right self-injective ring.

(2) \Rightarrow (1). Let M be a finitely generated nonsingular R-module. Then M is a finitely generated nonsingular $R/Z_2(R_R)$-module. But, $R/Z_2(R_R)$ is a right self-injective ring, and by Proposition 3.6, every finitely generated nonsingular module over a right self-injective ring is injective. So M is an injective $R/Z_2(R_R)$-module. Therefore Baer’s criterion implies that M is an injective R-module.

(3) \Rightarrow (1). This follows from Proposition 3.6.

Now assume that R is right extending. We show that (1) \Rightarrow (3). Since R is right extending, $Z_2(R_R)$ is a direct summand of R, say $R = Z_2(R_R) \oplus R'$. By [4, 7.11], $Z_2(R_R)$ is R'-injective. Hence $Z_2(R_R)$ is $R/Z_2(R_R)$-injective. On the other hand, R' is injective since R' is a cyclic nonsingular R-module. Thus by [2, Theorem 2.11(3)], $R^{(a)} = Z_2(R_R)^{(a)} \oplus R'^{(a)}$ is t-extending. So by hypothesis and [2, Remark 3.14], every finitely generated nonsingular R-module is injective and projective. Thus by Proposition 3.6, R is \mathcal{N}-injective. □

A ring R is called of finite (Goldie) reduced rank if the uniform dimension of $R/Z_2(R_R)$ is finite. Every ring of finite uniform dimension is of finite reduced rank; see [9, (7.35)].

Proposition 3.8. The following statements are equivalent for a ring R of finite reduced rank.

(1) R is \mathcal{N}-injective.

(2) R is right t-semisimple.

(3) Every nonsingular principal right ideal of R is injective.

(4) Every nonsingular principal right ideal of R is a direct summand.
Proof. The implication (2) ⇒ (1) follows from Theorem 3.1, the implication (1) ⇒ (3) follows from Proposition 3.6, and the implication (3) ⇒ (4) is clear.

(4) ⇒ (2). By [3, Theorem 2.3(4)], it suffices to show that a nonsingular right ideal \(K \) of \(R \) is a direct summand. Since \(R \) is of finite reduced rank, so is \(K \). Hence \(K \) is of finite uniform dimension as it is nonsingular. Thus by [9, Proposition (6.30)'] and [1, Proposition 10.14], \(K \) is a finite direct sum of indecomposable right ideals. So by hypothesis, \(K \) is a finite direct sum of minimal right ideals, say \(K = a_1R ⊕ a_2R ⊕ \cdots ⊕ a_nR \). If \(n = 1 \), then \(K \) is a direct summand of \(R \). Let \(n > 1 \). By induction, assume that \(a_2R ⊕ \cdots ⊕ a_nR = eR \) for some idempotent \(e \in R \). Since \((1 - e)a_1R \) is a submodule of \(K \), it is nonsingular. Hence by hypothesis, \((1 - e)a_1R = e'R \) for some idempotent \(e' \in R \). However, \(K = eR + e'R \) and \(ee' = 0 \). Therefore \(e'' = e + e' - e'e \) is an idempotent and \(K = e''R \) is a direct summand of \(R \), as desired.

Following [2], a ring \(R \) is called right \(\Sigma \)-t-extending if every free \(R \)-module is \(t \)-extending.

Corollary 3.9. A ring \(R \) is right \(t \)-semisimple if and only if \(R \) is \(N \)-injective and right \(\Sigma \)-t-extending.

Proof. (⇒) This follows from Theorem 3.1 and [3, Corollary 3.6].

(⇐) Let \(R^{(\lambda)} \) be a free \(R \)-module. By [2, Theorem 2.11(3)], \([R/Z_2(R_R)]^{(\lambda)} \cong R^{(\lambda)}/Z_2(R^{(\lambda)}) \) is an extending \(R \)-module. Thus \([R/Z_2(R_R)]^{(\lambda)} \) is an extending \(R/Z_2(R_R) \)-module. So \(R/Z_2(R_R) \) is a right \(\Sigma \)-extending ring. Thus by [4, 12.21((d) ⇔ (e))], \(R/Z_2(R_R) \) is an Artinian ring. So \(R \) is of finite reduced rank. Thus by Proposition 3.8, \(R \) is right \(t \)-semisimple.

Our last result shows that a ring \(R \) for which every nonsingular cyclic \(R \)-module is injective is precisely a right \(t \)-semisimple ring, whenever \(R \) is either semilocal or of finite reduced rank; see [3, Example 4.15].

Corollary 3.10. Let \(R \) be a ring which is either semilocal or of finite reduced rank. Then every cyclic (finitely generated) nonsingular \(R \)-module is injective if and only if \(R \) is right \(t \)-semisimple.

Proof. The implication (⇐) is obtained by [3, Theorem 3.2(4)]. For (⇒), set \(\overline{R} = R/Z_2(R_R) \). By Theorem 3.7, \(\overline{R} \) is right self-injective. So \(\text{Rad}(\overline{R}) \leq Z_2(\overline{R}) \) by Corollary 2.10(ii). But \(Z_2(\overline{R}) = 0 \), hence \(\text{Rad}(\overline{R}) \leq Z_2(R_R) \). Moreover, \(\overline{R} \) is von Neumann regular by Corollary 2.10(i). So by [3, Lemma 4.12], every nonsingular cyclic right ideal of \(R \) is a direct summand. Thus Corollary 3.2(3) and Proposition 3.8(4) imply that \(R \) is right \(t \)-semisimple.

Acknowledgement. The authors wish to express their gratitude to the referee for carefully reading the article and making many valuable comments.

References

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, New York, Springer-Verlag, 1992.
INJECTIVE PROPERTY RELATIVE TO NONSINGULAR EXACT SEQUENCES

[2] Sh. Asgari and A. Haghany, t-Extending modules and t-Baer modules, Comm. Algebra 39 (2011), no. 5, 1605–1623.
[3] Sh. Asgari, A. Haghany, and Y. Tolooei, t-Semisimple modules and t-semisimple rings, Comm. Algebra 41 (2013), no. 5, 1882–1902.
[4] N. V. Dung, D. V. Huynh, P. F. Smith, and R. Wisbauer, Extending Modules, Pitman Research Notes in Mathematics 313, Harlow, Longman, 1994.
[5] C. Faith, When are proper cyclics injective?, Pacific J. Math. 45 (1973), 97–112.
[6] K. R. Goodearl, Singular Torsion and Splitting Properties, Mem. Amer. Math. Soc. No. 124, AMS, 1972.
[7] K. R. Goodearl and R. B. Warfield Jr., An Introduction to Noncommutative Noetherian Rings, 2nd ed. London Mathematical Society Student Texts, Vol. 16. Cambridge: Cambridge University Press, 2004.
[8] S. K. Jain, A. K. Srivastava, and A. A. Tuganbaev, Cyclic Modules and the Structure of Rings, Oxford University Press, 2012.
[9] T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, Vol. 189, Berlin, New York: Springer-Verlag, 1998.
[10] G. Lee, S. T. Rizvi, and C. S. Roman, Modules whose endomorphism rings are von Neumann regular, Comm. Algebra 41 (2013), no. 11, 4066–4088.
[11] W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge Tracts in Mathematics, Vol. 158, Cambridge: Cambridge University Press, 2003.
[12] B. L. Osofsky, Homological properties of rings and modules, Rutgers University, Doctoral Dissertation, 1964.
[13] B. L. Osofsky and P. F. Smith, Cyclic modules whose quotients have all complements submodules direct summands, J. Algebra 139 (1991), no. 2, 342–354.
[14] S. T. Rizvi and M. F. Yousif, On continuous and singular modules, Noncommutative Ring Theory, Proc., Athens, Lecture Notes in Mathematics, Vol. 1448, pp. 116–124, Berlin, New York and Heidelberg: Springer Verlag, 1990.
[15] M. F. Yousif, Y. Zhou, and N. Zeyad, On pseudo-Frobenius rings, Canad. Math. Bull. 48 (2005), no. 2, 317–320.

Marzieh Arabi-Kakavand
Department of Mathematical Sciences
Isfahan University of Technology
Isfahan, Iran
E-mail address: m.arabikakavand@math.iut.ac.ir

Shadi Asgari
Department of Mathematical Sciences
University of Isfahan
Isfahan, Iran
and
School of Mathematics
Institute for Research in Fundamental Sciences (IPM)
Tehran, Iran
E-mail address: sh.asgari@ipm.ir

Yaser Tolooei
Department of Mathematics
Faculty of Science
Razi University
Kermanshah, Iran
E-mail address: y.tolooei@razi.ac.ir