Synthesis, characterization, and pharmacological evaluation of novel azolo- and azinothiazinones containing 2,4-dihydroxyphenyl substituent as anticancer agents

Joanna Matysiak1 · Małgorzata Juszczak2 · Monika M. Karpińska3 · Ewa Langner2,4 · Katarzyna Walczak4 · Marta Lemieszek2 · Alicja Skrzypek1 · Wojciech Rzeski2,5 · Andrzej Niewiadomy1,3

Received: 18 January 2015 / Accepted: 8 March 2015 / Published online: 2 April 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We reported the synthesis and characterization of a series of azolo- and azino[1,3]thiazinones containing the 2,4-dihydroxyphenyl substituent. The compounds were prepared by a new one-step reaction of aryl-modified sulfinylbis[2,4-dihydroxyphenyl)methanethione]s and the corresponding aminoazolo(azino)carboxamides. Their chemical structures were confirmed by IR, NMR:1H,13C, HSQC, and EI-MS spectral data. The compounds inhibited proliferation and viability of lung cancer A549, colon cancer HT-29, and glioma C6 cells in a structure- and concentration-dependent manner. The activity of some analogues was below 10−6 mol dm−3 (IC50). Glioma C6 cells were the most sensitive to tested compounds. Generally, the derivatives were not toxic for the skin fibroblast HSF culture. Moreover, some of them exerted a protective effect on the treated normal cells. Evaluation of compound properties in silico showed that they possess significant drug-like characteristics and most of them display a low toxicity.

Graphical abstract

Keywords Azolothiazinones · Resorcinols · Antiproliferative activity · Cytotoxicity · ADMET

Introduction

Heterocyclic scaffolds have been a commonly used focal point for the design and development of novel antitumour agents [1–5]. A special group is the derivatives with 2,4-dihydroxyphenyl moiety heat shock protein 90 (Hsp90) inhibitors, for which anticancer activity was very well documented [6]. It includes one five-membered heterocyclic ring of pyrazole [7–11], isoxazole [12], 1,2,3-thiadiazole [13, 14] as well as two fused heterocyclic ring scaffolds of benzisoxazole [15] or 2,3-dihydrobenzimidazol-2-one [16, 17]. It proved that the resorcinol moiety OH groups are critical to binding with the molecular target [8, 14, 18, 19].

One of the isoxazole resorcinol derivatives, luminespib (NVP-AUY922, VER52296), is a third-generation small-molecule Hsp90 inhibitor with potential antineoplastic activity [20, 21]. It acts via several processes to inhibit tumour growth and metastasis [22, 23]. Luminespib was entered in the I/II phase clinical trials for the patients with advanced solid tumours and multiple myeloma [24–26].
Azolo-1,3-thiazin-4-ones are a group of compounds relatively poorly explored in the area of synthesis and of biological activity. Vicentini et al. described a reaction of trichloromethyl chloroformate with \(N\)-(1-alkyl/aryl-5-pyrazolyl)thiocarboxamides and \(N\)-(3-methyl-5-pyrazolyl)thiobenzamide in which pyrazolo[3,4-d][1,3]thiazin-4-ones or pyrazolo[1,5-c][1,3,5]thiadiazine-4-one were obtained, respectively [27]. Imidazo[4,5-d][1,3]thiazine-7(3\(H\))-thiones were prepared from 5(4)-substituted amino-4(5)-ethoxycarbonyl-1(3\(H\))-imidazoles with the Lawesson reagent [28]. They were designed as acyclovir analogues but exhibited weak biological properties [28, 29]. Other derivatives showed antibacterial [30] or fungicidal activity [31].

The studies carried out by our team of two fused of five- or six-membered rings heterocycles with 2,4-dihydroxyphenyl moiety exhibited an interesting profile of anticancer properties. 4\(H\)-3,1-benzothiazin-4-ones show high activity against the human bladder cancer HCV29T, non-small cell lung carcinoma A549, breast cancer T47D, and rectal adenocarcinoma SW707 cells [32]. An antiproliferative effect of some analogues is on the level of cisplatin. Structure–activity elucidation exhibited that the presence of a chlorine atom or alkyl substituent (methyl or ethyl) in position 5 of the resorcinol ring has a beneficial effect on the potency of compounds. A similar spectrum of biological activity and analogous effects of resorcinol...
modification on activity were found for 1,3-thiazolo[5,4-

b]pyridines [33] and 1H-benzimidazoles [34].

In this work to develop new routes for the diversely
substituted drug-like heterocyclic scaffolds, we have tar-
gected the 5–6 and 6–6 fused-ring systems of imidazo-,
pyrazolo-, and pyridothiazin-4-ones incorporating modified
or unmodified 2,4-dihydroxyphenyl substituent. It was as-
sumed that the presence of additional nitrogen atoms
compared to 4H-3,1-benzothiazin-4-one can enhance in-
teractions with a potential molecular target and intensify
biological activity. Antiproliferative effect of the obtained
compounds against the cells of some cancer lines and cy-
totoxicity against normal cells were described.

Additionally, ADMET properties in silico of compounds
were evaluated.

Results and discussion

Chemistry

Using in the reaction with sulfinylbis[(2,4-dihydroxy-
phenyl)methanethione] (STB) corresponding nucleophiles,
heterocyclic carbothioamides possessing an amine group in
the neighbouring position to the CONH₂ group, a set of azolo-
and azino[1,3]thiazin-4-ones has been obtained.

Pyrazolo[3,4-d][1,3]thiazin-4(2H)-one and pyrazolo[4,3-
d][1,3]thiazin-7(1H)-one scaffolds were obtained from
properly substituted 3-amino-1H-pyrazole-4-carboxamides
1 and 4-amino-1H-pyrazole-5-carboxamides 2, respectively
(Scheme 1). In the reaction with aminimidazolecarbox-
amides imidazo-1,3-thiazinones 3 and 4 were formed.

The application of 2-aminonicotinamide gave corresponding 4H-
pyrido[2,3-d][1,3]thiazin-4-one (5). STB analogues 3Me-
STB, 5Me-STB, 5Et-STB, 5Cl-STB, and 3MeO-STB were
also applied in the synthesis of the compounds. They pos-
sessed substituted benzenediol residue and thus the
compounds with modified resorcinol moiety were obtained
(Scheme 1).

The reagents were applied in equimolar proportions.
The reactions were performed in MeOH (sometimes with
the addition of pyridine) under reflux (2–4 h) with mod-
erate to good yields (70–88 %). STB and its analogues as
the initial reagents were obtained from 2,4-dihydroxyben-
zenecarbodithioic acid or its analogues and SOCl₂ in
diethyl ether according to the previously presented method
[35].

The contents of C, H, and N were within ±0.4 % of the
theoretical values. The mass spectra (EI, 70 eV) of all
derivatives exhibited the molecular ion peak [M]+ of the
maximal intensity (B = 100 %). The derivatives of group
2 and ethyl analogue 1c showed the peak at m/z [M−15]⁺
formed after demethylation of molecular ion.

The IR spectra of compounds exhibited a broad strong
band in the range of 3462–3100 cm⁻¹ of ν(O–H). A band
in the 1692–1649 cm⁻¹ range was attributed to C=O group.
These spectra confirmed the presence of >C=N– moiety
stretching in the region around 1640–1575 cm⁻¹. The 13C
NMR spectra of compounds showed signal at
172–165 ppm attributed to carbon atom of C=O group.
Proton of OH group was sometimes invisible (compounds
1b, 4c). CH proton of heterocyclic scaffold of all com-
pounds appeared in the range of 8.4–8.0 ppm. NH proton is
registered in the wider range of 14.0–12.5 ppm. The cross-
peaks of HSQC NMR spectrum of compounds
1b, 1e, and 2c presented in Table 1 further support a formation of new
compounds.

Antiproliferative activity

The anticancer effect of compounds was tested in non-
small cell lung cancer A549, colon carcinoma HT-29, and
glioma C6 cells. The cells were exposed to either culture
medium as the control culture or the compounds in con-
centrations of 10, 25, 50, and 100 μmol dm⁻³. After 96-h
treatment MTT assay was performed and IC₅₀ (concent-
tration that produced a 50 % viability decrease of cells)
values for each cell line were calculated using computer-
ized linear regression analysis of quantal log dose–probit
functions [36]. Cisplatin was used as a reference drug.

The tested compounds inhibited proliferation and via-
bility of cells in a structure- and concentration-dependent
manner. Glioma C6 cells proved to be the most sensitive to
compounds action (Fig. 1). The obtained IC_{50} values are
presented in Table 2. The most active were compounds
1a and 3c with the IC_{50} values 17.2 and 8.2 \text{ l mol dm}^{-3},
respectively (cisplatin: 0.4 \text{ l mol dm}^{-3}). The evident effect
was also detected for compounds 1b, 1c, 2c, 2d, 3a, and 4c
(Fig. 1; Table 2).

The compounds under consideration were a little less
active against A549 cells (Fig. 2). The most potent were
the compounds of group 1, especially 1a (IC_{50} = 9.2 \text{ \mu mol dm}^{-3}). Higher IC_{50} values were calculated for 1c:
32.2 \text{ \mu mol dm}^{-3}, 2a: 56.1 \text{ \mu mol dm}^{-3}, 2d: 35.0 \text{ \mu mol dm}^{-3}, 3a: 48.8 \text{ \mu mol dm}^{-3}, 3c: 49.8 \text{ \mu mol dm}^{-3}, 4c:
46.7 \text{ \mu mol dm}^{-3} (cisplatin: 4.3 \text{ \mu mol dm}^{-3}). The other compounds were less active or inactive in the studied
concentration range (they are not presented in Fig. 2).

The colon cancer HT-29 cells were the most resistant
to the compounds (Fig. 3). The most active were the
compounds of group 1, especially compound 1c
(IC_{50} = 20.9 \text{ \mu mol dm}^{-3}). Lower activities expressed by
IC_{50} were calculated for the following compounds: 1a:
102.3 \text{ \mu mol dm}^{-3}, 1b: 109.3 \text{ \mu mol dm}^{-3}, 2c: 157.2 \text{ \mu mol dm}^{-3}, 3c: 75.4 \text{ \mu mol dm}^{-3}, 4c: 61.4 \text{ \mu mol dm}^{-3} (cisplat-
in: 6.0 \text{ \mu mol dm}^{-3}). The other compounds inhibited
proliferation of HT-29 cells in the studied concentration
range to a small extent or did not show antiproliferation
effect. Generally, in the tested cancer cell lines the most
effective compounds seem to be 1a, 1c, 3c, and 4c.

Additionally, the influence of compounds on normal
human skin fibroblast primary culture (HSF) was assessed.
HSF cells were exposed to compounds (10–100
\text{ l mol dm}^{-3}) for 24 h and the level of lactic dehydrogenase
(LDH) released from the damaged cells was measured
(LDH method). The obtained results (Fig. 4) demonstrated
that the tested derivatives were relatively low toxic for
normal cells. Only compound 2c in all tested concentra-
tions and 2b in the concentration 100 \text{ \mu mol dm}^{-3} were
highly toxic for skin fibroblasts. What is interesting is the
fact that compounds 1a, 1c, 3a, 3b, 3c, and 4a induced a
decrease of death cells in the culture. This may indicate
protective properties of the compounds.

ADMET properties in silico

The principle goal of the in silico calculation of ADMET
properties of compounds is the prediction of their in vivo
biokinetics as potential drugs [37, 38]. ADMET Predictor
Antiproliferative activity of compounds against glioma C6 cells expressed as IC$_{50}$, their molecular descriptors, and parameters of adsorption and distribution processes assumed using ADMET Predictor software

No.	IC$_{50}$/µmol dm$^{-3}$	Log D	M log P	Log P	Rule of nRB	PSA/Å2	S/µg cm$^{-1}$	Peff/cm s$^{-1} \times 10^{-4}$	MDCK/10$^{-7}$	V_d/dm3 kg$^{-1}$	BBB	Log BB	PPB/\%
1a	17.2	2.18	0.95	0	1	99.1	48	2.47	140.73	0.7	Low	-0.29	92.73
1b	35.8	2.17	0.95	0	1	99.1	48	2.49	132.27	0.69	Low	-0.35	92.85
1c	23.1	2.48	1.22	0	2	99.1	43	2.32	136.17	0.79	Low	-0.27	93.97
1d	a	1.75	0.95		0	99.1	37	2.88	184.77	0.23	Low	-0.55	98.52
1e	100.8	1.57	0.19	0	2	108.0	45	2.94	109.44	0.55	Low	-0.41	92.58
2a	48.9	2.69	1.34	0	3	88.2	99	5.18	172.44	0.82	Low	-0.10	96.13
2b	a	2.95	1.59	0	3	88.2	82	5.19	196.52	0.91	Low	-0.10	96.64
2c	27.1	2.99	1.59	0	3	88.2	80	5.21	186.56	0.90	Low	-0.16	96.76
2d	32.2	3.32	1.83	0	4	88.2	70	4.81	193.76	0.97	Low	-0.11	97.32
2e	31.8	2.94	1.59	0	3	88.2	74	5.78	249.87	0.38	Low	-0.34	99.04
3a	33.1	1.42	0.55	0	1	99.1	51	1.96	110.01	1.07	Low	-0.40	88.69
3b	a	1.42	0.55		1	99.1	51	1.98	103.09	1.06	Low	-0.46	88.92
3c	8.2	1.79	0.82	0	2	99.1	46	1.81	104.61	1.18	Low	-0.37	91.06
3d	53.5	0.91	0.55	0	1	99.1	42	2.38	130.67	0.39	Low	-0.65	97.12
4a	a	1.39	0.55		1	99.1	45	2.41	136.76	0.80	Low	-0.49	91.39
4b	89.7	1.76	0.82	0	2	99.1	40	2.26	141.31	0.92	Low	-0.40	92.71
4c	18.3	0.76	0.55	0	1	99.1	37	2.78	187.10	0.27	Low	-0.69	97.34
5	a	3.35	2.20	0	2	83.3	35	4.94	250.10	1.04	Low	-0.07	97.05

Log D octanol–water distribution coefficient, M log P log P according to Moriguchi model, nRB number of rotatable bonds, PSA Polar Surface Area, S water solubility, Peff human jejunal effective permeability, $MDCK$ apparent permeability for Madin–Darby Canine Kidney (MDCK) cells, V_d volume of distribution, BBB qualitative likelihood high/low of crossing the blood–brain barrier, log BB logarithm of the brain/blood partition coefficient, PPB overall fraction of a drug bound in human blood plasma (in %)

* Value was not calculated

7.1 was applied to predict ADMET properties of the compounds under consideration [39].

An oral administration is a commonly used route for drugs and a required one for new agents. Absorption of drugs after oral administration is a very complicated process and a number of parameters for its prediction are used. Relatively simple parameters are molecular weight (M), hydrophobicity: log D, log P from different approaches [40], polar surface area (PSA), and a number of hydrogen bonding atoms (HBA, HBD). They are included in the Lipinski’s rule of five [41]. The data presented in Table 2 show that all considered descriptors are in the recommended range (the number of unfulfilled rules = 0). Two other parameters included in the Oprea’s criteria: the number of rotatable bonds (nRB) and polar surface area (PSA) possess also the recommended values (nRB < 10; PSA < 120 Å2) [37]. This shows that the compounds under consideration possess strong drug-like properties.

A more sophisticated model of absorption prediction takes into account the values of the human jejunal effective permeability (Peff) and apparent permeability (Papp) for Madin–Darby Canine Kidney (MDCK) cells. The data collected in Table 2 show that for all compounds medium permeability in the range of 103–250 × 10$^{-7}$ cm s$^{-1}$ is assumed [42]. The estimated Peff parameter is larger than 1.8 × 10$^{-4}$ cm s$^{-1}$. The values of both descriptors are the highest for the compounds of group 2 and for analogue 5 which are characterized by the highest lipophilicity and the lowest PSA. Good native water solubility (S) for all compounds is estimated (>10 µg cm$^{-3}$) [43–45].

The PPB parameter was also calculated (Table 2). It describes the overall fraction of a drug bound in human blood plasma (in %). The half of the studied compounds indicate strong binding to proteins of plasma (PPB > 95 %) and for some of them a risk associated with this property (1d, 2d, 2e, 3d, 4c, 5). To predict the BBB penetration [46]. The compounds possess V_d in the range of 0.23–1.18 dm3 kg$^{-1}$, and the highest one was found for compounds 3a–3c and 5. To predict the BBB...
penetration, log BB (logarithm of the brain/blood partition coefficient) and BBB filtering (qualitative likelihood high/low of crossing the blood-brain barrier) were calculated. According to the data collected in Table 2 all studied compounds show low brain penetration (log BB ≈ -0.07) and they rather do not across BBB [47].

Anticipating metabolism of compounds we have focused on cytochrome P450 (CYP) enzymes, which are the major enzymes involved in drug metabolism [48]. The following enzymes in human were taken into consideration: CYP 1A2, 2B6, 2C9, 2D6, and 3A4. Table 3 shows that all compounds may be substrates of CYP 1A2 in human and some of 2C9. The data presented in Table 3 show that intrinsic clearance (Clint) due to metabolism mediated by CYP 1A2 in human is significantly lower than via 2C9 enzymes.

Toxicity of compounds, which is a major reason for drug candidate failure, is also estimated. It was presented in two ADMET risk models: TOX MUT Risk and TOX Risk developed by Simulation Plus, Inc. (Table 3) [49]. TOX MUT Risk is a summary of the outputs of the ten different TOX MUT models that independently predict the mutagenicity expected for five strains of S. typhimurium with and without microsomal activation. The TOX Risk model consists of seven rules of different toxicities. Table 3 shows that toxicity in Tox Risk model is not predicted for compounds of group 3. A low toxicity for them is anticipated in Tox Mut Risk model. Predicted toxicity for other compounds is also relatively low and may be...
Fig. 4 Cytotoxicity of compounds in the primary culture of human skin fibroblasts HSF. The cells were grown in the culture medium only (control) and in the presence of tested compounds (10–100 μmol dm$^{-3}$) for 24 h, and the LDH assay was performed. The data represent mean % of control viability ±SEM of 6 trials and were analyzed by means of linear regression.

Table 3 Characteristics of metabolism and toxicity profile of compounds estimated by the ADMET Predictor software

No.	Substrate	CYP1A2/%	Clint CYP1 A2/μcm3 min$^{-1}$ mg$^{-1}$	CYP2C9/ %	Clint CYP2 C9/μcm3 min$^{-1}$ mg$^{-1}$	TOX risk	TOX MUT code	TOX MUT risk	TOX Mut code	TOX Rat/mg kg$^{-1}$	ADMET_Risk	ADMET code
1a	Yes (63)	4.33	Yes (56) 7.32	1.78	Xm, Hp	S3	1372.56	1.78	Xm, Hp			
1b	Yes (63)	4.20	Yes (56) 3.96	1.92	Xm, Hp	S3	1373.27	1.92	Xm, Hp			
1c	Yes (63)	0.87	Yes (56) 6.27	1.63	Xm, Hp	S3	1465.48	1.63	Xm, Hp			
1d	Yes (57)	3.32	Yes (63) 1.75	1.46	Xm, Hp	S3	676.78	2.22	fu, Xm, Hp			
1e	Yes (63)	2.52	Yes (63) 2.07	2.16	Xm, Hp, Mu	m1, S3	1105.78	2.16	Xm, Hp, Mu			
2a	Yes (60)	4.87	No (60) –	3	Xm, Hp, Mu	m1, S3	1342.59	3	Xm, Hp, Mu			
2b	Yes (60)	7.62	No (64) –	3	Xm, Hp, Mu	m1, S3	1454.44	3	Xm, Hp, Mu			
2c	Yes (56)	10.30	No (67) –	3	Xm, Hp, Mu	m1, S3	1449.67	3	Xm, Hp, Mu			
2d	Yes (55)	3.26	No (65) –	3	Xm, Hp, Mu	m1, S3	1474.65	3.16	fu, Xm, Hp, Mu			
2e	Yes (58)	18.10	Yes (58) 27.90	2	Xm, Hp	S3	776.88	4.06	fu, Xm, Hp, 1A, C9			
3a	Yes (63)	4.99	Yes (75) 36.20	0	–	S3	685.69	1	C9			
3b	Yes (63)	4.99	Yes (56) 23.50	0	–	S3	688.09	0.57	C9			
3c	Yes (63)	0.89	Yes (63) 33.30	0	–	m3	716.96	1	C9			
3d	Yes (58)	6.10	Yes (75) 15.00	0	–	m3	487.5	0.06	fu			
4a	Yes (63)	5.92	Yes (63) 18.10	1	Hp	S3	998.28	1.21	Hp, C9			
4b	Yes (63)	1.40	Yes (75) 24.20	1	Hp	m3	1056.83	1.62	Hp, C9			
4c	Yes (57)	5.45	Yes (75) 11.80	1	Hp	m3	595.56	1.17	Fu, Hp			
5	Yes (63)	0.99	Yes (55) 240.00	2	Hp, Mu	S1, S3	1315.29	3.03	fu, Hp, Mu, C9			

Xm: TOX BRM Mouse <35 (carcinogenicity in chronic mouse studies), Hp: hepatotoxicity, Mu: TOX MUT Risk >1, fu: % Unbnd <[1,3] (low fraction unbound in plasma), 1A MET 1A2 km >0.01 μmol dm$^{-3}$ and MET 1A2 CLint >[15,30], C9 MET 2C9 km >0.01 μmol dm$^{-3}$ and MET 2C9 CLint >[15,30 μcm$^{-1}$ min$^{-1}$ mg$^{-1}$], S1 TOX MUT 97 + 1537 = Positive, S3 TOX MUT 102 + wp2 = Positive, m3 TOX MUT m102 + wp2 = Positive AND NOT TOX MUT 102 + wp2 = Positive
connected with carcinogenicity in chronic rat studies (Xm) and hepatotoxicity (Hp) or with mutagenicity in S. typhimurium. The calculated acute rat toxicity values (Tox rat) show that compounds are characterized by medium toxicity in the range of 487–1474 mg kg⁻¹ predicted for rats after oral administration.

ADMET Risk (global ADMET risk), a computational filter developed also by Simulations Plus Inc [49], was additionally applied. The results collected in Table 3 show that compounds of group 3 with imidazo[4,5-d][1,3]thiazin-7(3H)-one skeleton, of the lowest lipophilicity in the studied group of compounds, show the best ADMET properties in the group of the studied compounds. Low risk for compounds 4 was also calculated (<1.6). For comparison, ADMET Risk is larger than 6.5 for about 10 % of the drugs focused WDI [49].

Conclusion

To sum up, we have obtained and characterized a series of azolothiazinones as a new group of heterocyclic compounds possessing the 2,4-dihydroxyphenyl substituent. They were prepared in the one-step novel efficient synthesis procedure. The compounds displayed diverse antiproliferative activities against cancer cell lines. The most sensitive were glioma C6 cells and the most resistant colon carcinoma HT-29. The antiproliferative potency of the most active analogues was below 10 μmol dm⁻³. The majority of the tested compounds were not toxic for normal skin fibroblast culture. Moreover, some of them increased fibroblasts viability. Furthermore, the compounds possess strong drug-like properties and good pharmacokinetics as well as low toxicity is predicted for them in silico. In the light of the presented results, compounds 3c seem to be most promising. They also provide an opportunity of laying the foundation for development of more promising molecules of anticancer potency.

Experimental

Melting points were determined using a BÜCHI B-540 (Flawil, Switzerland) melting point apparatus. The elemental analysis (C, H, N) was performed on Perkin-Elmer 2400. The IR spectra were measured with a Perkin-Elmer FT-IR 1725X spectrophotometer (in KBr) or a Varian 670-IR FT-IR spectrometer (ATR) in the range of 600–4000 cm⁻¹. NMR spectra were recorded in DMSO-d₆ using a Bruker DRX 500 instrument. Chemical shifts (δ/ ppm) were described in relation to tetramethylsilane (TMS). The MS spectra (EI, 70 eV) were recorded using the apparatus AMD-604.

6-(2,4-Dihydroxy-3-methylphenyl)pyrazolo[3,4-d][1,3]thiazin-4(2H)-one (1a, C₁₂H₁₄N₃O₃S)
A mixture of 0.177 g 3-amino-1H-pyrazole-4-carboxamide (Alfa Aesar, 1.4 mmol) and 0.535 g 3Me-STB (1.4 mmol) in 7 cm³ MeOH was heated to reflux for 3 h. The hot mixture was filtered; the formed solid was crystallized from 5 cm³ MeOH to give 0.28 g (73 %) yellowish crystals of 1a. M.p.: 370 °C (dec.). ¹H NMR (500 MHz, DMSO-d₆): δ = 12.88 (s, 1H, NH), 12.19 (s, 1H, C(2')–OH), 10.60 (s, 1H, C(4')–OH) 8.28 (s, 1H, C(3)–H), 7.53 (d, J = 8.8 Hz, 1H, C(6')–H), 6.56 (d, J = 8.8 Hz, 1H, C(5')–H), 2.04 (s, 3H, CH₃) ppm; ¹³C NMR (125 MHz, DMSO-d₆): δ = 164.8, 161.6, 159.0, 155.4, 136.4, 123.3, 126.4, 119.7, 111.2, 110.1, 108.2, 8.0 ppm; IR (ATR): ν = 3213 (OH), 3117 (OH), 1661 (C=O), 1619 (C=N), 1567 (C=C), 1526 (C=C), 1477, 1326, 1252 (C=OH), 1102, 1072, 961, 929, 753 cm⁻¹; MS (70 eV): mlz (%) = 275 (M⁺, 100), 247 (6), 192 (34), 167 (32), 151 (17), 150 (17), 127 (7), 126 (10), 122 (7), 120 (8), 110 (13), 94 (6), 77 (9), 65 (9).

6-(2,4-Dihydroxy-5-methylphenyl)pyrazolo[3,4-d][1,3]thiazin-4(2H)-one (1b, C₁₃H₁₄N₃O₃S)
A mixture of 0.177 g 3-amino-1H-pyrazole-4-carboxamide (Alfa Aesar, 1.4 mmol) and 0.535 g 5Me-STB (1.4 mmol) in 7 cm³ MeOH was heated to reflux for 3 h. The reaction mixture was left at room temperature (24 h) and filtered. The formed solid was combined with that obtained after the filtrate concentration. The formed solid was crystallized from 4 cm³ MeOH to give 0.33 g (86 %) yellow crystals of 1b. M.p.: 230 °C (dec.). ¹H NMR (500 MHz, DMSO-d₆): δ = 13.12 (s, 1H, NH), 10.59 (s, 1H, C–OH), 8.38 (s, 1H, C(3)–H), 7.52 (s, 1H, C(6')–H), 6.44 (s, 1H, C(3')–H), 2.09 (s, 3H, CH₃) ppm; ¹³C NMR (125 MHz, DMSO-d₆): δ = 164.7, 162.6, 158.8, 155.4, 136.6, 132.3, 129.1, 122.1, 117.0, 111.1, 102.7, 15.1 ppm; MS (70 eV): mlz (%) = 276 ([M+1]⁺, 30), 275 (M⁺, 95), 258 (17), 142 (8), 217 (9), 206 (36), 167 (19), 151 (36), 150 (30), 127 (18), 126 (100), 110 (59), 109 (92), 83 (8), 80 (18), 77 (8), 69 (14), 64 (26), 52 (53), 44 (22), 43 (26), 40 (12).

6-(5-Ethyl-2,4-dihydroxyphenyl)pyrazolo[3,4-d][1,3]thiazin-4(2H)-one (1c, C₁₃H₁₄N₃O₃S)
A mixture of 0.177 g 3-amino-1H-pyrazole-4-carboxamide (Alfa Aesar, 1.4 mmol) and 0.575 g 5Et-STB (1.4 mmol) in 7 cm³ MeOH was heated to reflux for 3 h. The hot mixture was filtered; the formed solid was crystallized from 5 cm³ MeOH to give 0.28 g (82 %) dark yellow crystals of 1c. M.p.: 292–293 °C. ¹H NMR (500 MHz, DMSO-d₆): δ = 14.24 (s, 1H, NH), 11.96 (s, 1H, C(2')–OH), 10.54 (s, 1H, C(4')–OH), 8.18 (s, 1H, C(3)–H), 7.49 (s, 1H, C(6')–H), 6.44 (s, 1H, C(3')–H), 2.53 (m, 2H, 3J = 7.32 Hz, 1H), 2.04 (s, 3H, CH₃) ppm; ¹³C NMR (125 MHz, DMSO-d₆): δ = 162.6, 159.0, 155.4, 136.6, 132.3, 129.1, 122.1, 117.0, 111.1, 102.7, 15.1 ppm; MS (70 eV): mlz (%) = 275 ([M+1]⁺, 30), 274 (M⁺, 95), 261 (17), 155 (17), 127 (18), 126 (100), 110 (59), 109 (92), 83 (8), 80 (18), 77 (8), 75 (13), 69 (14), 64 (26), 52 (53), 44 (22), 43 (26), 40 (12).
A mixture of 0.255 g 4-amino-1-methyl-3-propyl-1H-pyrazole-5-carboxamide (Sigma-Aldrich, 1.4 mmol) and 0.496 g STB (1.4 mmol) in 7 cm³ MeOH was heated to reflux for 3 h. The compound was crystallized from 5 cm³ MeOH to give 0.36 g (87 %) yellow crystals of 2a. M.p.: 268–269 °C; ¹H NMR (500 MHz, DMSO-d₆): δ = 12.53 (s, 1H, C(2′)–OH), 10.37 (s, 1H, C(4′)–OH), 7.54 (d, J = 8.81 Hz, 1H, C(6′)–H), 6.41 (dd, J = 8.81, 2.33 Hz, 1H, C(5′)–H), 6.36 (d, J = 2.33 Hz, 1H, C(3′)–H), 4.13 (s, 3H, CH₃), 2.77 (t, J = 7.39 Hz, 2H, CH₂CH₂CH₃), 1.73 (sextet, J = 7.38 Hz, 2H, CH₂CH₂CH₃), 0.94 (t, J = 7.32 Hz, 3H, CH₃CH₂CH₃), ppm; ¹³C NMR (125 MHz, DMSO-d₆): δ = 172.4, 163.2, 162.4, 160.0, 146.2, 133.5, 124.6 (C=O), 121.7, 117.9, 113.5, 1031, 973, 787, 769 cm⁻¹; MS (70 eV): m/z (%) = 317 (M⁺, 100), 304 (21), 289 (75), 280 (13), 256 (9), 242 (15), 214 (20), 173 (21), 153 (10), 119 (7), 69 (6), 42 (8).

5-(2,4-Dihydroxy-3-methylphenyl)-1-methyl-3-propylpyrazolo[4,3-d][1,3]thiazin-7(1H)-one (2b, C₁₅H₁₇N₃O₅S)
A mixture of 0.255 g 4-amino-1-methyl-3-propyl-1H-pyrazole-5-carboxamide (Sigma-Aldrich, 1.4 mmol) and 0.535 g 3MeO-STB (1.4 mmol) in 7 cm³ MeOH was heated to reflux for 2.5 h. The reaction mixture was left at room temperature (24 h) and filtered. The formed solid was crystallized from 5 cm³ MeOH to give 0.40 g (86 %) yellowish crystals of 2b. M.p.: 269–270 °C; ¹H NMR (500 MHz, DMSO-d₆): δ = 13.18 (s, 1H, C(2′)–OH), 10.37 (s, 1H, C(4′)–OH), 7.41 (d, J = 8.80 Hz, 1H, C(6′)–H), 6.51 (d, J = 8.79 Hz, 1H, C(5′)–H), 4.14 (s, 3H, CH₃), 2.80 (t, J = 7.32 Hz, 2H, CH₂CH₂CH₃), 2.02 (s, 3H, CH₃), 1.75 (sextet, J = 7.33 Hz, 2H, CH₂CH₂CH₃), 0.96 (t, J = 7.29 Hz, 3H, CH₂CH₂CH₃) ppm; ¹³C NMR (125 MHz, DMSO-d₆): δ = 172.1, 164.2, 160.3, 158.3, 145.9, 136.7, 126.0, 122.6, 111.1, 107.8, 39.5, 27.4, 21.4, 13.7, 8.0 ppm; IR (ATR): ν = 3185 (OH), 2965 (CH), 1686 (C=O), 1620 (C≡N), 1538 (C=C), 1481, 1433, 1309, 1266 (C=O–CH₃), 1236, 1096, 1066, 1032, 901, 798, 778 cm⁻¹; MS (70 eV): m/z (%) = 331 (M⁺, 100), 303 (62), 302 (10), 256 (40), 187 (13), 167 (6), 77 (6).
0.535 g 5Me-STB (1.4 mmol) in 7 cm³ MeOH was heated to reflux for 3 h. The reaction mixture was left at room temperature (24 h) and filtered. The obtained solid was combined with that obtained after the filtrate concentration.

The formed solid was crystallized from 5 cm³ MeOH to give 0.37 g (79%) pink crystals of 2c. M.p.: 260–261 °C; ¹H NMR (500 MHz, DMSO-d₆): δ = 12.45 (s, 1H, C(2')-OH), 10.40 (s, 1H, C(4')-OH), 7.37 (s, 1H, C(6')-H), 6.30 (s, 1H, C(3')-H), 4.13 (s, 3H, CH₃), 2.74 (t, J = 7.44 Hz, 2H, CH₂CH₂CH₃), 2.07 (s, 3H, CH₃), 1.73 (sextet, J = 7.41 Hz, 2H, CH₂CH₂CH₃), 0.95 (t, J = 7.40 Hz, 3H, CH₃CH₂CH₂CH₃) ppm; ¹³C NMR (125 MHz, DMSO-d₆): δ = 172.2, 163.2, 157.8, 157.3, 146.7, 137.1, 128.7, 122.2, 112.7, 111.9, 104.2, 40.1 (NCH₃), 27.1, 21.5, 13.7 ppm; IR (ATR): ν = 3364 (OH), 2967 (CH), 2845 (CH), 1692 (C=O), 1628 (C=N), 1587 (C=C), 1536 (C=C), 1496, 1442, 1413, 1391, 1263, 1242, 1211, 1192, 1091, 1050, 1032, 974, 891, 870, 850, 805, 762, 737 cm⁻¹; MS (70 eV): m/z (%) = 351 (M⁺, 100), 323 (76), 290 (7), 276 (9), 248 (13), 207 (17), 187 (7), 153 (5), 126 (4), 82 (6), 69 (9), 42 (10).

5-(2,4-Di hydroxy-3-methylphenyl)imidazo[4,5-d][1,3]thiazip-7(1H)-one (3a, C₁₂H₁₀N₃O₃S)
A mixture of 0.252 g 5-amino-1H-imidazole-4-carboxamide (Acros Organics, 2 mmol) and 0.764 g 3Me-STB (2 mmol) in 10 cm³ MeOH was heated to reflux for 3 h. The reaction mixture was left at room temperature (24 h) and filtered. The formed solid was crystallized from 5 cm³ MeOH to give 0.40 g (82%) yellow crystals of 2d. M.p.: 260–261 °C; ¹H NMR (500 MHz, DMSO-d₆): δ = 12.44 (s, 1H, C(2')-OH), 10.40 (s, 1H, C(4')-OH), 7.36 (s, 1H, C(6')-H), 6.40 (s, 1H, C(3')-H), 4.13 (s, 3H, CH₃), 2.78 (t, J = 7.40 Hz, 2H, CH₂CH₂CH₃), 2.50 (t, J = 7.47 Hz, 2H, CH₂CH₂CH₃), 1.73 (sextet, J = 7.47 Hz, 2H, CH₂CH₂CH₃), 1.13 (t, J = 7.47 Hz, 3H, CH₃CH₂CH₃), 0.95 (t, J = 7.34 Hz, 3H, CH₃CH₂CH₂CH₃) ppm; ¹³C NMR (125 MHz, DMSO-d₆): δ = 172.2, 163.5, 160.5, 158.2, 146.1, 136.0, 127.8, 123.4, 119.1, 110.8, 102.8, 39.5 (NCH₃), 27.1, 22.0 (CH₂CH₃), 21.5, 14.1 (CH₃CH₂), 13.7 ppm; IR (ATR): ν = 3319 (OH), 2968 (CH), 1678 (C=O), 1628 (C=N), 1526 (C=C), 1408, 1339, 1238 (C=O), 1226, 1102, 3032, 988, 829, 794, 702 cm⁻¹; MS (70 eV): m/z (%) = 345 (M⁺, 100), 330 ([M–CH₃]⁺, 75), 317 (35), 270 (24), 201 (8), 151 (4), 148 (5), 69 (7).

5-(5-Chloro-2,4-di hydroxyphenyl)-1-methyl-3-propylpyrazolo[4,3-d][1,3]thiazip-7(1H)-one (2e, C₁₅H₁₃ClN₃O₃S)
A mixture of 0.255 g 4-amino-1-methyl-3-propyl-1H-pyrazole-5-carboxamide (Sigma-Aldrich, 1.4 mmol) and 0.575 g 5Et-STB (1.4 mmol) in 7 cm³ MeOH was heated to reflux for 3.5 h. The reaction mixture was left at room temperature (24 h) and filtered. The formed solid was crystallized from 5 cm³ MeOH to give 0.41 g (84%) yellowish crystals of 2e. M.p.: 287–290 °C; ¹H NMR (500 MHz, DMSO-d₆): δ = 12.53 (s, 1H, C(2')-OH), 12.13 (s, 1H, C(4')-OH), 7.66 (s, 1H, C(6')-H), 6.60 (s, 1H, C(3')-H), 4.15 (s, 3H, CH₃), 2.81 (t, J = 7.39 Hz, 2H, CH₂CH₂CH₃), 1.73 (sextet, J = 7.36 Hz, 2H, CH₂CH₂CH₃), 0.95 (t, J = 7.40 Hz, 3H, CH₃CH₂CH₂CH₃) ppm; ¹³C NMR (125 MHz, DMSO-d₆): δ = 172.8, 161.2, 157.8, 157.3, 146.7, 137.1, 128.7, 122.2, 112.7, 111.9, 104.2, 40.1 (NCH₃), 27.1, 21.5, 13.7 ppm; IR (ATR): ν = 3364 (OH), 2967 (CH), 2845 (CH), 1692 (C=O), 1628 (C=N), 1587 (C=C), 1536 (C=C), 1496, 1442, 1413, 1391, 1263, 1242, 1211, 1192, 1091, 1050, 1032, 974, 891, 870, 850, 805, 762, 737 cm⁻¹; MS (70 eV): m/z (%) = 351 (M⁺, 100), 323 (76), 290 (7), 276 (9), 248 (13), 207 (17), 187 (7), 153 (5), 126 (4), 82 (6), 69 (9), 42 (10).
5-Chloro-2,4-dihydroxyphenyl]imidazo[4,5-d][1,3]thiazine-7(3H)-one (3d, C_{11}H_{6}ClN_{3}O_{3}S)
A mixture of 0.252 g 5-amino-1H-imidazole-4-carboxamide (Acros Organics, 2 mmol) and 0.874 g 5Cl-STB (2 mmol) in 10 cm³ MeOH was heated to reflux for 3 h. The reaction mixture was left at room temperature (24 h) and filtered. The formed solid was crystallized from 5 cm³ MeOH to give 0.47 g (80%) light brown crystals of 3d. M.p.: >410 °C; ¹H NMR (500 MHz, DMSO-d₆): δ = 13.49 (s, broad, 2H, NH, C(2')-OH), 10.45 (s, 1H, C(4')-OH), 8.34 (s, 1H, C(2')-H), 7.54 (s, 1H, C(6')-H), 6.66 (s, 1H, C(3')-H) ppm; ¹³C NMR (125 MHz, DMSO-d₆): δ = 165.0, 157.5, 154.7, 134.8, 130.3, 128.8, 120.5, 117.4, 111.7, 103.4 ppm; MS (70 eV): m/z (%) = 295 (M⁺, 100), 261 (14), 260 (15), 235 (13), 187 (19), 165 (7), 171 (14), 153 (7), 69 (7).

5-(2,4-Dihydroxy-5-methylphenyl)imidazo[4,5-d][1,3]thiazin-7(1H)-one (4a, C_{12}H_{10}N_{2}O_{3})
A mixture of 0.189 g 4-amino-1H-imidazole-5-carboxamide (Fluorochem, 1.5 mmol) and 0.574 g 5Me-STB (1.5 mmol) in 7 cm³ MeOH was heated to reflux for 2 h. The hot mixture was filtered. The formed solid was crystallized from 4 cm³ MeOH to give 0.33 g (88%) light brown crystals of 4a. M.p.: 334 °C (dec.); ¹H NMR (500 MHz, DMSO-d₆): δ = 13.96 (s, 1H, NH), 12.67 (s, 1H, C(2')-OH), 10.45 (s, 1H, C(4')-OH), 8.40 (s, 1H, C(2')-H), 7.46 (s, 1H, C(6')-H), 6.45 (s, 1H, C(3')-H), 2.53 (m, 2H, CH₂CH₃), 1.11 (t, 3H, J = 7.48 Hz, CH₃CH₃) ppm; ¹³C NMR (125 MHz, DMSO-d₆): δ = 162.5, 160.0, 157.0, 134.7, 133.4, 128.9, 127.3, 123.3, 119.1, 110.4, 102.4, 22.3, 14.0 ppm; MS (70 eV): m/z (%) = 289 (M⁺, 100), 275 (15), 274 (92), 246 (6), 220 (9), 214 (22), 181 (17), 165 (7), 137 (7), 120 (6), 79 (6), 69 (7).

5-(Ethyl-2,4-dihydroxyphenyl]imidazo[4,5-d][1,3]thiazine-7(1H)-one (4b, C_{13}H_{11}N_{3}O_{3}S)
A mixture of 0.189 g 4-amino-1H-imidazole-5-carboxamide (Fluorochem, 1.5 mmol) and 0.616 g 5Et-STB (1.5 mmol) in 7 cm³ MeOH was heated to reflux for 2 h. The hot mixture was filtered. The formed solid was crystallized from 4 cm³ MeOH to give 0.31 g (71%) light brown crystals of 4b. M.p.: 239–240 °C; ¹H NMR (500 MHz, DMSO-d₆): δ = 13.46 (s, 1H, NH), 11.53 (s, 1H, C(2')-OH), 10.27 (s, 1H, C(4')-OH), 8.12 (s, 1H, C(2'-H)), 7.47 (s, 1H, C(6')-H), 6.45 (s, 1H, C(3')-H), 2.74 (q, J = 7.43 Hz, 2H, CH₂CH₃), 1.09 (t, J = 7.40 Hz, 3H, CH₃CH₃) ppm; ¹³C NMR (125 MHz, DMSO-d₆): δ = 164.2, 161.2, 154.0, 136.5, 136.1, 134.4, 127.4, 123.4, 119.1, 110.8, 102.8, 22.1, 14.2 ppm; IR (ATR): ν = 3467 (OH), 3218 (OH), 2968 (CH), 2837 (CH), 1675 (C=O), 1620 (C=N), 1599 (C=C), 1443, 1379, 1237 (C=OH), 1136, 1118, 1032, 830, 794, 767, 716 cm⁻¹; MS (70 eV): m/z (%) = 289 (M⁺, 94), 274 ([M–CH₃]+, 100), 246 (7), 220 (10), 214 (21), 204 (6), 181 (15), 165 (15), 148 (7), 123 (9), 109 (7), 77 (9), 69 (15), 43 (9), 39 (8).

5-(5-Chloro-2,4-dihydroxyphenyl)imidazo[4,5-d][1,3]thiazine-7(1H)-one (4c, C_{11}H_{6}ClN_{3}O_{3}S)
A mixture of 0.189 g 4-amino-1H-imidazole-5-carboxamide (Fluorochem, 1.5 mmol) and 0.635 g 5Cl-STB (1.5 mmol) in 7 cm³ MeOH and 0.7 cm³ pyridine was heated to reflux for 3 h. The reaction mixture was left at room temperature (24 h) and filtered. The formed solid was crystallized from 5 cm³ MeOH to give 0.31 g (71%) brown crystals of 4c. M.p.: >410 °C (dec.); ¹H NMR (500 MHz, DMSO-d₆): δ = 11.06 (s, 1H, OH), 8.35 (s, 1H, C(2')-H), 7.50 (s, 1H, C(6')-H), 6.64 (s, 1H, C(3')-H) ppm; ¹³C NMR (125 MHz, DMSO-d₆): δ = 164.5, 161.1, 157.0, 136.5, 136.5, 134.8, 129.6, 124.5, 111.8, 111.9, 103.3 ppm; IR (ATR): ν = 3343, 3200 (OH), 2842 (CH), 1592 (C=O), 1545 (C=C), 1529 (C=C), 1447, 1418, 1350, 1305, 1250, 1175, 1111, 1031, 810, 708 cm⁻¹; MS (70 eV): m/z (%) = 295 (M⁺, 100), 267 (6), 260 (24), 235 (16), 207 (7), 187 (18), 180 (11), 173 (8), 171 (24), 160 (10), 153 (8), 144 (13), 142 (12), 126 (18), 109 (13), 79 (11), 69 (18), 64 (23), 52 (10), 39 (6).

2-(Ethyl-2,4-dihydroxyphenyl)-5,7-dimethyl-4H-pyrido[2,3-d][1,3]thiazine-4-one (5, C_{17}H_{12}N_{2}O_{3})
A mixture of 0.248 g 2-amino-4,6-dimethylnicotinamide (Sigma-Aldrich, 1.5 mmol) and 0.616 g 5Et-STB (1.5 mmol) in 10 cm³ MeOH was heated to reflux for 3 h. The hot mixture was filtered. The filtrate was concentrated and the formed solid was crystallized from 4 cm³ MeOH to give 0.34 g (68%) orange crystals of 5. M.p.: >410 °C; ¹H NMR (500 MHz, DMSO-d₆): δ = 14.27 (s, 1H, C(2')-OH), 10.29 (s, 1H, C(4')-OH), 8.06 (s, 1H, C(2')-H), 7.89 (s, 1H, C(6')-H), 6.45 (s, 1H, C(3')-H), 2.53 (q, J = 7.48 Hz, 2H, CH₃CH₃). Springer
2H, CH2CH3), 2.39 (s, 3H, CH3), 2.31 (s, 3H, CH3), 1.13 (t, J = 7.48 Hz, 3H, CH2CH3) ppm; 13C NMR (125 MHz, DMSO-d6): δ = 168.8, 153.3, 152.2, 147.8, 136.2, 136.0, 128.1, 128.7, 123.1, 123.2, 119.7, 111.2, 102.2, 22.0, 21.0, 19.0, 14.1 ppm; IR (ATR): ν = 3299, 3131 (OH), 2967 (CH), 1650 (C=O), 1600 (C=N), 1556 (C=C), 1491, 1430, 1289, 1285, 1239, 1236, 1217, 1140, 1032, 900, 874, 732, 680 cm−1; MS (70 eV): m/z (%) = 328 (M+, 100), 311 (21), 296 (12), 285 (32), 283 (7), 181 (13), 165 (28), 164 (11), 148 (28), 121 (16), 119 (10), 105 (7), 80 (9), 77 (22), 69 (23), 65 (12), 64 (12), 40 (8), 39 (12).

Cell cultures

Human non-small cell lung cancer A549 (Cat. No. 86012804), human colon adenocarcinoma HT-29 (Cat. No. 91072201), rat glioma C6 (Cat. No. 92090409) cell lines were obtained from the PHE Culture Collections (Public Health England Culture Collections, Porton Down, Salisbury, UK). Primary culture of normal human skin fibroblasts (HSF) was obtained by the outgrowth technique from skin explants of young persons in our laboratory. The cells were kept in the following culture media purchased from Sigma (Sigma Chemicals, St. Louis, MO, USA): A549—3:1 mixture of DMEM and Nutrient mixture F-12 Ham; C6 and HSF—DMEM, HT-29—1:1 mixture of DMEM and Nutrient mixture F-12 Ham. All media were supplemented with 10 % FBS (Sigma), penicillin (100 U cm−3, Sigma) and streptomycin (100 μg cm−3, Sigma). The cultures were kept at 37 °C in a humidified atmosphere of 95 % air and 5 % CO2.

Proliferation assay

Cancer cells were plated on 96-well microplates at a density of 1 × 104 (A549), 3 × 104 (HT-29), and 0.5 × 104 (C6) cells cm−3. Next day, the culture medium was removed and the cells exposed to serial dilutions of compounds (10, 25, 50, and 100 μmol dm−3) in a fresh culture medium with a reduced amount of FBS (2 %). Cytotoxicity was detected after 24 h with the use In Vitro Toxicology Assay Kit, Lactic Dehydrogenase based (Sigma). The assay is based on the reduction of NAD by the action of lactic dehydrogenase (LDH) released from damaged cells. The resulting NADH is utilized in the stoichiometric conversion of a tetrazolium dye. The resulting coloured compound is measured spectrophotometrically. The test was carried out according to the kit procedure. The colour product was quantified spectrophotometrically at 450 nm wavelength using an Elx800 microplate reader.

Statistical analysis

Statistical analyses were performed with the use of GraphPad Prism 5 (GraphPad Software, Inc., La Jolla, CA, USA) and Microsoft Office Excel 2007 computer software.

In silico ADMET evaluation

In silico ADMET evaluation of compounds was performed by ADMET Predictor version 7.1 [39]. Structures of the compounds were saved in the mol format using Chem Office software. Then, mol files of compounds were uploaded into the ADMET predictor software for further evaluation. All descriptors were estimated at pH 7.4.

Acknowledgement This project was financed from the funds of the National Science Centre in Poland allocated on the basis of the decision number DEC-2011/01/B/NZ4/05005.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Abdel-Mohsen HT, Ragab FAF, Ramla MM, El Diwani HI (2010) Eur J Med Chem 45:2336
2. Demirayak S, Abu Moosien U, Karaburun AC (2002) Eur J Med Chem 37:255
3. Huang ST, Hsei IJ, Chen CP (2006) Bioorg Med Chem 14:6106
4. Jauhari PK, Bhavani A, Varalwar S, Singhal K, Raj P (2008) Med Chem Res 17:412
5. Yang X-H, Wen Q, Zhao T-T, Sun J, Li X, Xing M, Lu X, Zhu H-L (2012) Bioorg Med Chem 20:1181
6. Kitson RRA, Moody CJ (2013) J Org Chem 78:5117
7. McDonald E, Jones K, Brough PA, Drysdale MJ, Workman P (2006) Curr Top Med Chem 6:1193
8. Cheung KMJ, Matthews TP, James K, Rowlands MG, Boxall KJ, Sharp SY, Maloney A, Roe SM, Prodromou C, Pearl LH, Aherne GW, McDonald E, Workman P (2005) Bioorg Med Chem Lett 15:3338
