Conocimiento y uso práctico de plaguicidas en Cuba

Knowledge and practical use of pesticides in Cuba

Edelbis López-Dávila,1* Liliana Ramos Torres,2 Michael Houbraken,3 Gijs Du Laing,4 Osvaldo Romero Romero,5 Pieter Spanoghe6

1 Profesor auxiliar, Universidad de Sancti Spíritus, Centro de Estudio de Energías y Procesos Industriales. Sancti Spíritus, Cuba. Estudiante de Doctorado, Universidad de Ghent. Ghent, Bélgica. Correo: edelbis.lopezdavila@ugent.be. Orcid: https://orcid.org/0000-0002-8218-0011
2 Profesor auxiliar, Universidad de Sancti Spíritus, Centro de Estudio de Energías y Procesos Industriales. Sancti Spíritus, Cuba. Correo: lramost@uniss.edu.cu. Orcid: https://orcid.org/0000-0003-3950-4508
3 Profesor asistente, Universidad de Ghent Facultad de Ingeniería de Biotecnología. Departamento de Plantas y cultivos. Correo: michael.houbraken@ugent.be. Orcid: https://orcid.org/0000-0001-6661-1312
4 Profesor, Universidad de Ghent Facultad de Ingeniería de Biotecnología. Departamento de Química verde y tecnología. Correo: gijs.dulaing@ugent.be. Orcid: https://orcid.org/0000-0001-6661-1312
5 Profesor, Universidad de Sancti Spíritus Centro de Estudio de Energías y Procesos Industriales. Sancti Spíritus. Correo: osvaldo@uniss.edu.cu. Orcid: https://orcid.org/0000-0003-1447-3151
6 Profesor, Universidad de Ghent, Facultad de Ingeniería de Biotecnología. Departamento de Plantas y cultivos. Correo: pieter.spanoghe@ugent.be. Orcid: https://orcid.org/0000-0002-8158-4401

Editor temático: Felipe Borrero Echeverry (Corporación Colombiana de Investigación Agropecuaria [AGROSAVIA])

Fecha de recepción: 30/01/2019
Fecha de aprobación: 08/08/2019

Para citar este artículo: López-Dávila, E., Ramos Torres, L., Houbraken, M., Du Laing, G., Romero Romero, O., & Spanoghe, P. (2020). Conocimiento y uso práctico de plaguicidas en Cuba. Ciencia y Tecnología Agropecuaria, 21(1), e1282

DOI: https://doi.org/10.21930/rcta.vol21_num1_art:1282

Esta licencia permite distribuir, remezclar, retocar, y crear a partir de la obra de modo no comercial, siempre y cuando se dé el crédito y se licencien sus nuevas creaciones bajo las mismas condiciones.

* Universidad de Sancti Spíritus. Avenida de los Mártires 360 esq. Carretera Central. CP: 62100. Provincia de Sancti Spíritus, Cuba.
Resumen

El uso no autorizado de plaguicidas, como la aplicación en momentos inadecuados o en cultivos no registrados, es un riesgo potencial para el medio ambiente y la salud humana. El objetivo de este estudio fue evaluar el nivel de conocimiento y concientización entre los agricultores sobre el uso, riesgo y peligros asociados con la exposición a plaguicidas en la región agrícola de Sancti Spíritus, Cuba. Para el desarrollo del objetivo se encuestaron 124 campesinos. Los resultados fueron analizados a partir de un análisis descriptivo inicial y luego a través de un análisis de asociación mediante la prueba Chi-Cuadrado y Correlaciones de Spearman, empleando el paquete estadístico SPSS versión 20.0. Los resultados mostraron que solo el 28,3% de los agricultores había recibido capacitación específica en plaguicidas. La experiencia personal es el principal impulsor de las decisiones sobre qué plaguicidas usar y cómo utilizarlo. El 35,8% de los agricultores almacenó plaguicidas en recipientes sin marcar, como botellas de refrescos. Los contenedores vacíos se almacenan para ser incinerados (31,7%) o reutilizados (42,6%) para plaguicidas, agua o gasolina. Alrededor del 90% de los agricultores no utiliza equipos de protección personal. El estudio concluye que la falta de conocimiento, el no uso de equipo de protección personal, la incapacidad para entender las etiquetas y la baja percepción de riesgos son las principales causas de la exposición a los plaguicidas y el riesgo para la salud de los trabajadores y residentes cercanos, así como de los daños al medio ambiente.

Palabras clave: equipos de protección personal, exposición ocupacional, organofosforados, pequeños agricultores, productos fitosanitarios

Abstract

The unauthorized use of pesticides applied at inappropriate times and/or in unregistered crops is a potential risk to the environment and also to human health. The aim of this study was to assess the level of knowledge and awareness of farmers on the use, risk, and hazards associated with the exposure to pesticides in the agricultural region of Sancti Spíritus, Cuba. To comply with the objective, 124 farmers of this province were surveyed. The results were analyzed initially through a descriptive analysis and then, performing an association analysis using the Chi-Square test and Spearman’s correlations, employing the statistical package SPSS version 20.0. The results showed that only 28.3% of the farmers had received specific training on pesticides.

Personal experience was the main driver for decisions about which pesticides to use and how it would be applied. About 35.8% of the farmers stored pesticides in unmarked containers, such as soft drink bottles. The empty containers are stored to be incinerated (31.7%) or reused (42.6%) for pesticides, water, or fuel. Around 90% of the farmers surveyed do not use personal protective equipment. The study concludes that the lack of knowledge and use of personal protective equipment, the inability to understand the labels and also the low risk-perception are the main causes of exposure to pesticides and the health risk for workers and nearby residents, as well as the damages caused to the environment.

Keywords: occupational exposure, organophosphates, personal protection equipment, plant protection products, small lot farmers
Introducción

Desde la Segunda Guerra Mundial, la producción de alimentos se ha triplicado y la disponibilidad de alimentos ha aumentado en más del 40 % en todo el mundo (da Silva, 2015); no obstante, más de la mitad de la población mundial sufre de un consumo insuficiente de alimentos (da Silva, 2015). Aunque el uso de ciertos químicos favorece el proceso de producción de alimentos con ciertos riesgos (Obopile, Munthali, & Matilo, 2008), también es cierto que la aplicación incorrecta de pesticidas y la aplicación a cultivos no registrados hacen que estas sustancias sean un riesgo potencial, afectando la fertilidad del suelo, los organismos benéficos, la fauna silvestre, los reservorios de agua dulce y la salud humana (Bustamante-Villarroel et al., 2014; Leyva-Morales et al., 2014; Mokhele, 2011). Algunos autores consideran que el uso a nivel global de pesticidas será 2,7 veces mayor en el 2050 que en el 2000, exponiendo a los humanos y al medio ambiente a niveles de riesgo considerablemente más altos (Kumari & Reddy, 2013).

No hay pesticida que carezca de toxicidad (del Puerto-Rodríguez, Suárez-Tamayo, & Palacio-Estrada, 2014); la toxicidad depende de la velocidad con la que este se absorbe y se acumula (Arriaga-Barrios, 2012; Damalas & Eleftherohorinos, 2011; Tsimbiri, Moturi, Sawe, Henley, & Bend, 2015). Los pesticidas pueden causar daños graves a los humanos, así como a la vida silvestre, incluyendo efectos teratogénicos, carcinogénicos, mutagénicos y neurotóxicos (Botião-Nerilo et al., 2014; Mwila, Burton, Van Dyk, & Pletschke, 2013; World Health Organization [WHO], 2009), debido a que los humanos y la vida silvestre tienen varias funciones fisiológicas similares a las de las plagas (Bustamante-Villarroel et al., 2014).

Autores de diferentes regiones del mundo afirman que la exposición a los pequeños agricultores y residentes a los pesticidas se produce porque se toman medidas preventivas inadecuadas durante su mezcla y aplicación (Ntzani, Chondrogiorgi, Nritsos, Evangelou, & Tzoulaki, 2013; Tsimbiri et al., 2015). Los estudios sugieren que la falta de equipo de protección, hábitos de aplicación y conceptos erróneos facilitan el envenenamiento (Doan-Ngoc, 2014; Varona-Urbe et al., 2012). La exposición se puede reducir notablemente cuando los trabajadores usan equipo de protección personal (overoles, máscaras y guantes) y se les proporciona agua para lavarse las manos (Eskenazi et al., 2007). Según la Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO, por sus siglas en inglés), la mayoría de las intoxicaciones por plaguicidas se producen en regiones donde se informa que el nivel de conocimiento sobre los plaguicidas es bajo a moderado, y donde hay sistemas de regulación, control, salud o educación ineficientes o inexistentes (Food and Agriculture Organization [FAO], 2014; Lekei, Ngowi, & Londres, 2014; Nalwanga & Ssempebwa, 2011).

La comunicación sobre los riesgos y el uso de equipos de protección personal se ve facilitada por los pictogramas en las etiquetas de los pesticidas (Ajayi & Akinnifesi, 2007; Lekei et al., 2014; Negatu, Kromhout, Mekonnen, & Vermeulen, 2016; Roberts & Routt-Reigart, 2013; Rother, 2008). La etiqueta es la única fuente de información para que el usuario comprenda los riesgos de un pesticida específico. Algunos estudios recientes también advierten sobre la falta de conocimiento e investigación sobre los factores que determinan la exposición a pesticidas para poblaciones en riesgo como las mujeres embarazadas, los ancianos y los niños (da Silva, 2015; Deziel et al., 2015; Lewis et al., 2015), situación que también se presenta en Cuba.

En 1997, el gobierno cubano estableció un programa nacional de manejo integrado de plagas que incluye el uso de productos biológicos (Figueroa-González & Pérez-Consuegra 2012; Vázquez-Moreno, 2012). Este programa se convirtió en 1998 en la Ley Ambiental (Asamblea Nacional del Poder Popular de Cuba, 1997), estableciendo las reglas para la agricultura sostenible. Además, el Ministerio de Ciencia, Tecnología y Medio Ambiente emitió para 2007-2010 una estrategia ambiental nacional como objetivo para el 2010, determinando que el 80 % de las actividades de control de plagas y enfermedades en los cultivos en el país deben realizarse con productos naturales o bioplaguicidas (Hernández-Núñez & Pérez-Consuegra, 2012; Rosquete-Pérez, 2011).
Sin embargo, para aumentar la productividad de los sistemas agrícolas, se han introducido paquetes tecnológicos que integran el uso de pesticidas químicos como el componente principal del sistema de producción (Aguilar, Calero, Rodríguez, & Muniz, 2015; Ponce et al., 2015). Hasta la fecha, no hay informes sobre el cumplimiento de los objetivos del 2010. Además, el número de intoxicaciones por pesticidas reportadas por el Centro Nacional de Toxicología en la última década aumentó de 237 a 390 casos por año (Mederos-Gómez, Lara-Fernández, Miranda-Gómez, & Lorenzo, 2014; Pérez-Rodríguez, Álvarez-Delgado, David-Baldo, & Capote-Marrero, 2012). La mayoría de los pesticidas involucrados en estas intoxicaciones pertenecen a un número limitado de grupos químicos, incluyendo piretroides, organofosforados, carbamatos y organoclorados.

En la provincia de Sancti Spíritus, la producción agrícola es un motor fundamental para la economía; para la población rural (27,43 % de la población provincial), constituye una de las principales fuentes de empleo y apoyo financiero (National Bureau of Statistics and Information, 2015). Además, a medida que aumentan los rendimientos de los cultivos prioritarios en la provincia para reemplazar las importaciones, se han utilizado grandes cantidades de pesticidas (Productos de Protección Vegetal [PPV]), es decir, más de 1.200 toneladas de ingrediente activo durante el periodo 2011-2014 en una proporción promedio de 1,07 kg de ingrediente activo por hectárea de tierra cultivada por año. Por lo tanto, los habitantes de las zonas rurales son un segmento vulnerable de la población, porque corren el mayor riesgo de exposición a los pesticidas. En este contexto, los estudios relacionados con la percepción del riesgo son importantes para comprender la vulnerabilidad de las poblaciones y para planificar las intervenciones. Hasta la fecha, no se han publicado estudios sobre el uso y el conocimiento de los PPV químicos por parte de los agricultores cubanos, y las consecuencias resultantes para el medio ambiente. Los riesgos que los PPV representan para la salud humana y ambiental han motivado este estudio. Por lo tanto, los objetivos de este estudio fueron los siguientes: (i) evaluar el nivel de conocimiento y percepción de riesgos entre los agricultores de la región de Sancti Spíritus sobre el uso de los PPV y (ii) los principales riesgos para la salud humana y el medio ambiente de las prácticas inadecuadas actuales en el uso de los PPV.

Materiales y métodos

Área de estudio y población

El estudio se realizó en la provincia de Sancti Spíritus, a unos 400 km al sureste de La Habana, Cuba (latitud 21°53'45.5" N, longitud -79°26'46.8" O). La provincia está situada en el centro de la isla, con costas al norte y al sur, y tiene un área de 6.777,3 km² con ocho municipios y 466.431 habitantes (National Bureau of Statistics and Information, 2015). Sancti Spíritus tiene un clima tropical típico bueno para actividades agrícolas, con una temperatura promedio anual de 25,3 °C, 78 % de humedad relativa y precipitación promedio anual de 1.374,5 mm. La provincia ha variado la agricultura debido a su diversidad de suelos (11 tipos de suelos genéticos diferentes) (National Bureau of Statistics and Information, 2015). Los cultivos principales son frijoles, arroz, raíces y tubérculos (p. ej., papa), verduras (p. ej., ajo, cebolla, pepino, pimiento y tomate), frutas (p. ej., guayaba y mango), maíz y tabaco.

Encuesta

Se desarrolló un cuestionario basado en investigaciones previas (Houbraken, Bauweraerts, Fevery, Labeke, & Spanoghe, 2016). Los aportes de especialistas en psicología, estudios socioculturales, agrónomos y algunos agricultores se utilizaron para adaptar las preguntas y el lenguaje a la práctica local. Se encuestó a un total de 124 hogares geográficamente aleatorios de la provincia. De estos, se analizaron 120 cuestionarios, y cuatro no fueron utilizados. El tamaño de la muestra se calculó a partir de una lista de los agricultores (190) que, en términos generales, eran los principales aplicadores de pesticidas (que tienen un impacto significativo en la producción agrícola provincial y la presión de los rastros de pesticidas en el medio ambiente y la salud humana), proporcionado...
por las direcciones municipales de agricultura y cultivos variados. Para el cálculo, se utilizó la ecuación descrita por Cochran (1977), con una tasa de error del 5 % y un nivel de confianza del 95 %. La encuesta (tabla 1) se centró en lo siguiente:

1. Información sociodemográfica (género, edad, y nivel educativo) y prácticas agrícolas.
2. Conocimiento de la aplicación de pesticidas (uso de pesticidas, intervalos previos a la cosecha, eliminación final de los envases de pesticidas, manejo de pesticidas no utilizados y comprensión de la etiqueta).
3. El nivel de conciencia de los peligros relacionados con el uso de pesticidas.

Para evaluar el nivel de conocimiento de cada agricultor con respecto a la información provista por las etiquetas y pictogramas de los pesticidas (productos), se les pidió a los participantes que examinaran una imagen de una etiqueta de pesticida conocida por ellos (profenofos) y se les pidió que identificaran información específica necesaria para el uso adecuado del producto. Se hicieron preguntas específicas sobre el nombre del pesticida, el tipo de formulación, la dosis de aplicación, las instrucciones de uso, el daño ambiental, las precauciones que tomar, el ingrediente activo, la categoría de pesticida y el tiempo de reingreso al campo. Además, se mostraron imágenes de 16 pictogramas comunes que se encuentran en las etiquetas (que indican aquellas que representan el manejo y las precauciones adecuadas) y se pidió a los participantes que identificaran su significado. Siguiendo los criterios de evaluación establecidos por el Ministerio de Educación de Cuba, los resultados se calificaron de la siguiente manera: si el 90 % o un mayor porcentaje de las respuestas dadas por el agricultor fueron correctas, el conocimiento se calificó como “excelente”; si las respuestas correctas fueron del 80 %-89 %, su conocimiento se clasificó como “bueno”; si el porcentaje de respuestas correctas fue de 60 %-79 %, su conocimiento se calificó como “promedio”, y si sus respuestas correctas fueron de menos del 60 %, su conocimiento se clasificó como “pobre”.

Tabla 1. Preguntas a los agricultores para evaluar el nivel de conocimiento, conciencia y riesgo relacionado con el uso de pesticidas

Pregunta	Antecedentes sociodemográficos de los trabajadores agrícolas del estudio
¿Cuál es su edad, género, nivel educativo y miembros de la familia/ hectáreas totales?	
¿Recibió entrenamiento para aplicar pesticidas?	
¿Cómo decide si aplicar un pesticida?	

(Continúa)
(Continuación tabla 1)

Pregunta
Conocimiento y uso de pesticidas
¿Dónde guarda los pesticidas?
¿Sigue las instrucciones de la etiqueta?
¿Cuáles son sus fuentes de conocimiento sobre pesticidas?
¿Qué ropa usa normalmente durante la aplicación de pesticidas?
¿Dónde prepara la solución en espray?
¿Qué tan cerca de un cuerpo de agua rocía pesticidas?
¿Cómo se deshace de los envases vacíos de pesticidas?
Aplicación de pesticidas
¿Contra qué aplica principalmente?
¿Qué productos usa?
¿Cuántas horas trabaja en el campo?
¿Cuántos pesticidas aplica por mes?
¿Qué tipo de equipo utiliza para aplicar pesticidas?
¿Cómo maneja las sobras de las soluciones de pesticidas?
¿Cómo limpia el equipo para la aplicación de pesticidas y la protección personal?
¿Qué tipo de medidas toma después de aplicar pesticidas?
Percepción de riesgo de los agricultores para la salud humana y ambiental, por el uso de pesticidas
¿Cuál es el intervalo de reingreso al campo?
¿Cuál es el intervalo previo a la cosecha?
¿Cuál es su tendencia de uso de pesticidas durante los últimos cinco años?
¿Considera que el uso de pesticidas puede afectar su salud y el medio ambiente?
¿Cuáles son los riesgos para la salud relacionados con el trabajo con pesticidas?

Fuente: Elaboración propia
Análisis de datos

Los análisis estadísticos se completaron utilizando el Paquete Estadístico para Ciencias Sociales (SPSS, por su acrónimo en inglés) versión 20.0. Las pruebas de chi-cuadrado \((p < 0,05) \) se utilizaron para analizar las relaciones entre las respuestas con respecto a la capacitación sobre el uso de pesticidas y aquellas relacionadas con el conocimiento de la información provista en la etiqueta y los pictogramas. Se utilizó una correlación de rango de Spearman \((p < 0,01 y p < 0,05) \) para evaluar la correlación entre los agricultores capacitados y el conocimiento de la información provista en la etiqueta y los pictogramas con sus niveles de conocimiento del peligro de los pesticidas para la salud humana y el medio ambiente.

Resultados

Antecedentes sociodemográficos de los agricultores estudiados

En total, 120 pequeños agricultores siembran varios tipos de cultivos según la temporada, como tabaco, granos (p. ej., arroz, frijoles y maíz), vegetales (p. ej., ajo, cebolla, pepino, pimiento y tomate), frutas (p. ej., guayaba, mango), tubérculos (p. ej., camote y papa) y raíces (p. ej., yuca), de la provincia de Sancti Spíritus, Cuba; estos agricultores fueron encuestados desde abril y hasta principios de junio de 2016 (tabla 2).

El número total de miembros de la familia fue en su mayoría de 3 a 5 (19,2%-20,8%). Todas las personas mayores de 18 años se consideraron adultos. El tamaño promedio de las fincas de lotes pequeños fue de 2 ha, y los agricultores cuyo cultivo principal es el arroz tenían lotes promedio de 13,4 ha.

Solo el 28,3% de los agricultores había recibido cursos especializados en manejo de pesticidas. Esta podría ser la razón por la cual el 40,1% de los agricultores indicaron que aplican pesticidas para prevenir la aparición de plagas o enfermedades, mientras que el 44,2% los aplica solo cuando la plaga aparece.

Categoría	Variables	Agricultor	n	%
Género	Hombre	104	86,7	
	Mujer	16	13,3	
	> 21	4	3,3	
	21-30	7	5,8	
	31-40	18	15,0	
	41-50	44	36,7	
	51-60	31	25,8	
	< 61	16	13,3	
Edad (años)	Universidad	19	15,8	
	Escuela secundaria	66	55,0	
	Escuela intermedia	26	21,7	
	Escuela primaria	9	7,5	
	Analfabeto	0	0,0	

Fuente: Elaboración propia
Conocimiento y uso de pesticidas por parte de los agricultores

El hecho de que el 71,7% de los agricultores indicaran que siguen las instrucciones en la etiqueta sugiere un bajo riesgo de exposición humana. Teniendo en cuenta que solo el 34,2% de los agricultores usan pesticidas de los envases originales, mientras que el 35,8% lo utiliza en otro recipiente (p. ej., botella de agua o de refresco), el “bajo riesgo para la exposición humana” podría ser inexacto. Por tanto, la falta de percepción del riesgo puede dominar. Los agricultores restantes (30%) usan ambos métodos. Se encontró una correlación significativa a nivel de 0,01 (r = 0,386; p < 0,01) entre esos parámetros. Para confirmar este punto, se utilizaron las respuestas dadas por los agricultores en la prueba para evaluar el conocimiento de la información proporcionada por las etiquetas de los pesticidas y sus pictogramas. Se encontró que, en términos de etiquetas, el 60% de los agricultores demostraron un conocimiento pobre, el 20,8% demostró conocimiento excelente, el 14,2% demostró conocimiento promedio y el 5% demostró conocimiento bueno. El conocimiento sobre el significado de los pictogramas también fue bajo: 77,5% de los encuestados obtuvieron puntajes bajos, mientras que solo el 5% fueron excelentes, 5,8% buenos y 11,7% promedio.

Como solo el 28,3% de los agricultores habían recibido cursos especializados en manejo de pesticidas, no hay evidencia estadística que indique que existe dependencia o correlación entre la capacitación en el uso de pesticidas y el conocimiento de las etiquetas y sus pictogramas. Esta relación estadística positiva entre la reutilización de envases vacíos y el puntaje bajo en relación con el significado de los pictogramas (χ² = 27,024; p = 0,008). Solo un pequeño porcentaje de agricultores (4,8%) consideró enviar contenedores vacíos al distribuidor. Esto podría deberse a la costumbre de reutilizar los contenedores para otros productos sin tener en cuenta los riesgos.

Por otro lado, cuando los agricultores deciden cómo manejar una enfermedad o plaga en particular, el 55,5% utiliza principalmente su experiencia previa con pesticidas (productos) para proteger sus cultivos. Si esa estrategia no funciona, el 26,7% prueba otro pesticida con una función similar. El 15,8% pide sugerencias a sus vecinos, mientras que solo el 14,2% de los agricultores fueron asesorados por especialistas y técnicos fitosanitarios. Por otro lado, el 91,7% de los agricultores prepararon la mezcla del producto en el campo para ser aplicado, y el 64,2% usa una taza medidora para aplicar la dosis correcta.

Con respecto a la selección de pesticidas utilizados, las respuestas de los agricultores fueron evaluadas por especialistas regionales y provinciales en protección de cultivos, así como por expertos en plagas y enfermedades (un especialista que cumple con la aprobación mediante la obtención de un certificado para el uso de PPV). El 36,8% de los agricultores hacen excelentes selecciones de pesticidas para usar, el 40,1% hace las selecciones apropiadas, y el 15,1% toma malas decisiones sobre qué pesticidas usar. Por otro lado, dependiendo del nivel de infestación...
de las plagas, solo el 19,1 % usó la dosis requerida de pesticidas, y el 57 % de los agricultores encuestados no usan las dosis apropiadas para aplicación. Una combinación de dosis inapropiadas y una selección incorrecta de pesticidas puede causar un serio problema de resistencia a los pesticidas, que de hecho es una de las principales causas identificadas por los agricultores como consecuencia del aumento en el uso de pesticidas en los últimos cinco años. Se ha demostrado un uso similar en una región de Bolivia (Bustamante-Villarroel et al., 2014).

La tabla 3 muestra la frecuencia de uso del equipo de protección personal por parte de los agricultores durante la mezcla y aplicación de pesticidas. Como tradición nacional, el uniforme de un agricultor incluye un sombrero, una camisa de manga larga, unos pantalones largos y botas; por lo tanto, sus valores de frecuencia son bastante altos (figura 1). Por otro lado, el uso del resto del equipo de protección personal como guantes, gafas protectoras, careta y máscara completa con respirador no son frecuentes. Se encontró una correlación positiva entre los agricultores que toman cursos de capacitación con los agricultores que usaron guantes y una máscara completa con un respirador. Una evidencia estadística tal ayuda a mostrar la necesidad de capacitar a los agricultores, aumentando así su percepción de riesgo y reduciendo las consecuencias adversas para los humanos y el medio ambiente. También se encontró que el 91,7 % de los agricultores encuestados tienen un cuerpo de agua en o cerca de su finca. El 59,2 % de ellos aplican pesticidas a 20 m o más cerca del agua superficial, mientras que el 15 % de los agricultores aplicaron pesticidas dentro de los 5 m de los cuerpos de agua.

Categoría	Variables	Agricultor	Observaciones		
	Guantes	25	n. %	r = 0,234; *p < 0,01	¿Ha recibido capacitación para aplicar pesticidas?
para	Gafas	10	n. %	r = 0,095; p = 0,268	¿Ha recibido capacitación para aplicar pesticidas?
proteger	Caretas	12	n. %	r = 0,044; p = 0,604	¿Ha recibido capacitación para aplicar pesticidas?
cara y	Mascaras	19	n. %	r = 0,277; **p < 0,01	¿Ha recibido capacitación para aplicar pesticidas?
manos					

Si las respuestas no alcanzan el 100 %, el agricultor nunca usa el elemento en cuestión. * p < 0,05, ** p < 0,01.
Fuente: Elaboración propia
Figura 1. Frecuencia de uso de la ropa que se usa para proteger el cuerpo cuando se aplican pesticidas.

* Si las respuestas no alcanzan el 100%: el agricultor nunca ha usado el elemento.
Fuente: Elaboración propia

Uso de pesticidas

El 54,1% de los agricultores pasa alrededor de 8 h/día en el campo en actividades de cultivo o monitorizando la presencia de plagas en sus cultivos. El programa de aplicación de pesticidas es específico para cada tipo de cultivo (antes de que comience la campaña de cultivo, los especialistas en protección de cultivos del Instituto Provincial de Protección Fitosanitaria planifican las PPV que deberán usarse, si es necesario, y sus formas de uso basadas en las directrices nacionales). Pero en entrevistas con los especialistas, ellos señalan que no existe una comunicación adecuada con los agricultores para saber qué cultivos se plantarán y su cantidad, razón por la cual muchos agricultores deciden por sí mismos qué cultivos van a sembrar y terminan aplicando las PPV obtenidas en campañas anteriores o las aplican en otros cultivos. La frecuencia de aplicación varió de una vez por semana (29,2%) a tres veces por semana (33,3%), y el tipo más común de equipo de aplicación de pesticidas es el aspersor de mochila (87,5%). Se informó que la aspersión de pesticidas tomó de 1 a 4 h/día; los campos de 1 ha o más a menudo requerían cuatro horas (40,4%). Los agricultores no pueden comprar otro equipo de aplicación de pesticidas porque no están disponibles en Cuba. Aunque los pesticidas se usan principalmente para tratar plagas en sus cultivos (59,1% de los agricultores encuestados), el 18,8% de los agricultores usan pesticidas para tratar las malezas.

Un total de 95 productos comerciales diferentes fueron enumerados por los agricultores incluidos en este estudio (anexo). Del total de productos, 67 ingredientes activos fueron utilizados, incluyendo 27 insecticidas, 22 fungicidas y 18 herbicidas. Los pesticidas predominantes fueron carbamato, ditiocarbamato, triazol, organofosforados y piretroides. Del grupo de pesticidas reportados, solo un número limitado de ingredientes activos son relevantes considerando que se aplican a muchos cultivos (vegetales, frutas, cereales y otros). Estos ingredientes activos incluyen compuestos como tebuconazol, bifentrina, metamidofos, glifosato, cipermetrina, benzoato de emamectina, mancozeb, acefato, deltametrina y oxiduro de cobre. Es importante mencionar que se encontraron compuestos utilizados hace muchos años, como el metamidofos y el acefato que fueron eliminados de su uso en Europa debido a su toxicidad, y que aún se siguen usando en Cuba. En general, los agricultores aplican 14 tanques de mochila (16 L) por ha (67,0%) en una temporada de cultivo. Los insecticidas (46,5%) y los fungicidas (24,3%) se usan comúnmente y se aplican dependiendo del cultivo. En comparación con los insecticidas y fungicidas, los herbicidas se usan mucho menos. Los agricultores prefieren desmalezar con una azada o un arado tirado por bueyes.
El 83.7% de los agricultores rocía la solución sobrante de los pesticidas sobre el cultivo. El 2.5% de los agricultores almacenan las sobras de la solución de pesticidas en un lugar cerrado con llave lejos de su hogar, mientras que el 3.3% informaron que rociaron las sobras de pesticidas dentro o alrededor de la casa.

El 90% de los agricultores limpian inmediatamente el equipo de aplicación con agua después de una aplicación, con una correlación significativa con los agricultores capacitados (r = 0.174, p < 0.05). Sin embargo, el 10.0% de los agricultores limpian su tanque solo una vez por semana. El 88.4% de los agricultores limpia el equipo de protección personal utilizado durante la aplicación inmediatamente después del uso, mientras que solo el 8.3% lo limpia solo semanalmente. El 76.0% de los agricultores se duchan y se cambian de ropa después de aplicar pesticidas, mientras que el resto se lava solamente las manos y la cara, y continúa con sus actividades, lo que representa un alto porcentaje de riesgo para la salud.

Percepción de riesgo sobre la salud humana y ambiental

Los agricultores no estaban familiarizados con el concepto de tiempos de reingreso seguros para los campos tratados. Solo el 7.5% se adhiere al tiempo de reingreso en la etiqueta (sin correlación con los agricultores capacitados, r = 0.135; p = 0.094); el 69.2% espera por defecto un día; y el 12.5% espera varios días. El nivel de riesgo puede reducirse utilizando el equipo de protección personal adecuado al volver a ingresar a un campo, como guantes, mascarilla y filtro respiratorio. El intervalo previo a la cosecha tampoco se comprende completamente. Solo el 22.0% se adhiere al intervalo previo a la cosecha indicado en la etiqueta, mostrando en este caso una correlación positiva con los agricultores capacitados (r = 0.246; p < 0.01); el 55.0% espera una semana; y el 16% de los agricultores esperan más de una semana y hasta varias semanas.

Categoría	Variables	Agricultor	Observaciones
¿Cuál es su tendencia de uso de pesticidas en los últimos 5 años?			
Incrementó	99	82.5	
Constante	7	5.8	
Disminuyó	9	7.5	
Los pesticidas pueden afectar...			
Ganado y diversidad animal	81	67.5	r = 0.598** Los pesticidas pueden afectar el entorno de vida
Enemigos naturales de las plagas	77	64.2	r = 0.601** Los pesticidas pueden afectar el entorno de vida

(Continúa)
Categoría	Variables	Agricultor	Observaciones
		n	%
Los pesticidas pueden afectar...			
	Salud de los trabajadores agrícolas	113	94,2
	Los pesticidas pueden afectar el entorno de vida	r = 0,169; p = 0,054	
	Salud de los consumidores	84	70,0
	Los pesticidas pueden afectar el entorno de vida	r = 0,593**	
	Fertilidad del suelo	54	45,0
	Los pesticidas pueden afectar el entorno de vida	r = 0,610**	
Los pesticidas pueden afectar su salud.			
	Sí	115	95,8
	¿Ha recibido capacitación para aplicar pesticidas?	r = 0,153; p = 0,085	
	No	2	1,7
Los pesticidas pueden entrar al cuerpo a través de...			
	Piel	92	76,7
	Los pesticidas pueden afectar su salud	r = 0,129; p = 0,147	
	Boca	113	94,2
	Los pesticidas pueden afectar su salud	r = 0,247; p = 0,006	
	Nariz	106	88,3
	Los pesticidas pueden afectar su salud	r = 0,139; p = 0,122	
¿Han sufrido algún efecto después de aplicar pesticidas?			
	Sí	53	44,2
	Reutilización de contenedor vacío	χ² = 5,362*	
	Decide aplicar pesticidas por su propia decisión	χ² = 9,684**	
	No	66	55,0

Si las respuestas no alcanzan el 100 %, el agricultor no respondió. * p < 0,05, ** p < 0,01.
Fuente: Elaboración propia
Figura 2. Percepción de riesgo y frecuencia de efectos adversos debido al uso de pesticidas. Si las respuestas no alcanzan el 100 %: el agricultor no respondió.
Fuente: Elaboración propia

- Efectos adversos que los agricultores consideran que pueden ocurrir debido al uso de pesticidas
- Efectos adversos que los agricultores sufrieron por el uso de pesticidas
Los agricultores mencionan como las principales razones del mayor uso de pesticidas (tabla 4) las siguientes: resistencia a las plagas, pesticidas ineficaces, aumentos en las poblaciones de plagas de insectos y sus daños, mayor área agrícola y presupuesto. Ngowi, Mbise, Ijani, London y Ajayi (2007) citaron razones similares para los agricultores en un clima tropical y con cultivos similares. Más de la mitad de los agricultores reconocieron que los pesticidas pueden afectar negativamente la salud humana, siendo los dolores de cabeza, los mareos, los vómitos y las náuseas los más significativos (figura 2). En la tabla 4, también se puede observar que casi la mitad de los encuestados ha sufrido efectos adversos cuando se encontró una relación chi-cuadrado ($\chi^2 = 9,684; p < 0,01$) con la forma en que decide aplicar un pesticida (68,3% por su propia decisión). Además, se encontró una relación ($\chi^2 = 5,362, p < 0,05$) entre sufrir efectos adversos con la reutilización de envases vacíos. Los principales efectos adversos sufridos por los agricultores (mareos, dolor de cabeza, vómitos y náuseas) están bien correlacionados con los principales efectos adversos reconocidos por ellos (figura 2).

Discusión

Antecedentes de los trabajadores agrícolas del estudio

Los agricultores se encontraban principalmente en los grupos de edad de 41-50 años (36,7%) y 51-60 años (25,8%), con un predominio de hombres (86,7%) como cabeza de familia (tabla 2). Porcentajes similares fueron citados en otros lugares (Leungo, Obopile, Madisa, & Assefa, 2012; Rother, 2008; Tsimbiri et al., 2015). Los agricultores encuestados tenían un buen nivel de educación (55,0% habían completado el estudio secundario y 15,8% había finalizado algún estudio universitario) (Silva et al., 2015; Tsimbiri et al., 2015).

Por otra parte, se considera que el nivel de capacitación de los agricultores en el uso de pesticidas es bajo, ya que solo el 28,3% había recibido cursos especializados en el uso de estos (Lekei et al., 2014; Rother, 2008). Sin embargo, el nivel educativo contribuirá al conocimiento de los agricultores una vez que reciban cursos de capacitación. Con base en el análisis de la relación entre el conocimiento obtenido en cursos especializados y la información presente en las etiquetas y pictogramas de los pesticidas, se concluye que será esencial aumentar la oferta de cursos especializados, independientemente del nivel educativo, para mejorar el conocimiento de los agricultores y el uso de los pesticidas, así como la forma en que perciben los pesticidas. El 55,5% indicó “decisión propia” como fuente de conocimiento sobre cómo aplicar el pesticida. Esto demuestra que actualmente no hay suficiente comunicación entre los productores y los consultores fitosanitarios. Los agricultores utilizaron la experiencia de temporadas de cultivo anteriores para evaluar su próxima estrategia de protección de cultivos al observar plagas o enfermedades resistentes.

Esta falta de conocimiento conduce al mal uso de los pesticidas, lo que resulta en un control de plagas fallido debido a la selección inadecuada de productos, dosis inadecuadas o un momento incorrecto de aplicación. Los consultores fitosanitarios cubanos creen que los agricultores entienden que los pesticidas deben usarse para prevenir la aparición de plagas y enfermedades (es decir, no deben usarse profilácticamente). Deben aplicarse en cultivos específicos cuando los niveles de infestación hayan alcanzado un umbral económico, según lo establecido en varias metodologías de monitoreo y predicción de plagas y enfermedades legisladas en Cuba. Esta evidencia de la aplicación de un número indeterminado de agroquímicos en momentos no justificados significa que los beneficios potenciales del control biológico de plagas no están siendo explotados (Rosquete-Pérez, 2011).

Capacitar a los agricultores sobre la seguridad de los pesticidas podría ayudar a prevenir los efectos adversos para la salud asociados con la exposición, así como mejorar la interpretación de la información de la etiqueta del pesticida. Por lo tanto, Cuba debería considerar ofrecer cursos de capacitación para mejorar el conocimiento de los agricultores sobre el uso de pesticidas, como lo hacen muchos otros países.
Riesgos del manejo diario de pesticidas

La calidad de los envases de pesticidas, el almacenamiento adecuado y la eliminación de envases vacíos son cuestiones que los agricultores deben tener en cuenta para mantener un ambiente seguro. El apoyo de los gobiernos y las organizaciones comerciales, para proporcionar un medio de eliminación segura de los envases de pesticidas usados, beneficiaría a los agricultores, a sus familias y al medio ambiente. El 65,8% de los agricultores reciben pesticidas en un recipiente que le proporcionan al vendedor (recipientes secundarios incluyendo botellas de refrescos) o rellenan un recipiente usado previamente. Esto plantea un riesgo significativo para la seguridad de los operadores, otros miembros del hogar, los cultivos y el medio ambiente en general. En la mayoría de los casos, los recipientes en los que se empaqaron los pesticidas no tenían etiqueta o solo tenían un pequeño papel con el nombre del producto. En Tanzania, Lekei et al. (2014) observaron la misma situación que está ocurriendo en Cuba, casi sin encontrar información sobre el empaque de los pesticidas, ya que los agricultores usan diferentes formas de envases o botellas reutilizables (Lekei et al., 2014). Esto limita el conocimiento que los agricultores pueden adquirir para manejar los pesticidas de manera segura (Ngowi et al., 2007; Rother, 2008).

El almacenamiento de pesticidas cerca del hogar contamina fácilmente los productos de consumo y compromete la salud de la familia del aplicador (particularmente los niños). Un riesgo aún mayor ocurre cuando los pesticidas se almacenan dentro de la casa. Al igual que con otros países en desarrollo, Cuba no es inmune a estas deficiencias. Otro riesgo observado en Cuba es el mal uso de los envases vacíos de pesticidas. Solo el 4,8% de estos contenedores vacíos se envían de vuelta al distribuidor, y un alto porcentaje (50,9%), según lo observado por Lekei et al. (2014) y Tsimbiri et al. (2015), son mantenidos por los agricultores para almacenar otros pesticidas, combustible e incluso agua, alimentos y otros productos para el hogar. Más aún, solo se quema una pequeña cantidad de contenedores. La eliminación inadecuada de los envases vacíos de pesticidas confirma la poca conciencia de los agricultores sobre el riesgo a los que están expuestos (Negatu et al., 2016).

El equipo de protección personal es vital para el operador y debe usarse durante la preparación y la aplicación del pesticida. Esto protege al operador del contacto con el producto y sus posibles consecuencias adversas. Este equipo debe limpiarse después de su uso o reemplazarse (Houbraken et al., 2016). En el presente estudio, un alto porcentaje de agricultores (91,0%) no utilizó equipos de protección personal que pudieran protegerlos de la exposición a los pesticidas (p. ej., ropa impermeable, guantes, máscara, careta, máscara completa + respirador). El equipo de protección también mejora la seguridad y la salud del operador o los trabajadores cuando vuelven a ingresar a un cultivo tratado (Ajayi & Akinnifesi, 2007; Tsimbiri et al., 2015). Algunos agricultores afirman que en el ambiente tropical es muy difícil usar estos medios de protección, citando la alta humedad, las altas temperaturas y los altos costos como razones para no usarlos. Otros estudios confirman esta opinión (Clarke, Levy, Spurgeon, & Calvert, 1997). Además de limpiar el equipo de protección, es importante que el aplicador se duche y se cambie de ropa antes de continuar trabajando, especialmente si no se usó el equipo de protección, para eliminar los pesticidas restantes y reducir el riesgo de reacciones adversas. El 76,0% de los agricultores encuestados hacen esto, lo que favorece su seguridad y disminuye el riesgo de sufrir un evento adverso. Igualmente, otros autores han informado situaciones similares en países en desarrollo (Ibitayo, 2006; Negatu et al., 2016; Varona-Uribe et al., 2012), donde esta tarea de rutina no se realiza; los trabajadores agrícolas solamente se lavan las manos y la cara antes de continuar trabajando. El riesgo en el que se colocan estos agricultores es alarmante, especialmente para aquellos que se exponen a 4 horas (40,4%) de fumigación y luego continúan su jornada laboral de 8 horas (54,1%).

El número de solicitudes por semana realizadas por los agricultores también da una medida del riesgo al que están expuestos los aplicadores, los trabajadores de campo y el medio ambiente. Teniendo en cuen-
ta que la mayoría de los agricultores se dedican a diversos cultivos, como tabaco, arroz, tomate, fríjoles, frutas y verduras, existe una alta frecuencia de aplicaciones por semana (el 33,3% aplica tres veces por semana). Sin embargo, frecuencias alarmantes se han registrado en otros países en cultivos similares (Leungo et al., 2012; Ngowi et al., 2007).

El agricultor calcula la cantidad exacta de pesticida a usar para minimizar la mezcla sobrante. Los agricultores expresaron que es caro desperdiciar los pesticidas, por tanto, estos se rocían hasta que se termina la solución. El 3,3% de los agricultores rocían los restos de los pesticidas en la casa, lo que aumenta el riesgo para todas las personas que viven en la casa y sus mascotas. En un estudio en India (Kumari & Reddy, 2013), los agricultores tenían costumbres similares, guardando las sobras de los pesticidas en contenedores de bebidas para su uso posterior y el 2,5% guardaba las sobras para utilizarlas otro día.

Nivel de conocimiento

Para una percepción realista del riesgo de los pesticidas, es importante tener conocimiento de la información provista en la etiqueta del pesticida y sus pictogramas. Las etiquetas y pictogramas de pesticidas tienen un papel importante, ya que los fabricantes de estos y las agencias reguladoras los usan a nivel mundial para comunicar información general a los aplicadores (Ajayi & Akinnifesi, 2007; Waichman, Eve, & da Silva, 2007). La mala interpretación o ignorancia de la información de la etiqueta o el pictograma podría conducir a dosis de aplicación incorrectas, tiempos de reingreso peligrosos y falta de uso de equipos de protección (Lekei et al., 2014; Rother, 2008). Los agricultores cubanos, al igual que los de la India, expresaron que es difícil entender las instrucciones de uso y los procedimientos de seguridad en las etiquetas porque la mayoría de ellos tienen letra pequeña, usan vocabulario difícil o están en un idioma extranjero (Kumari & Reddy, 2013). Si el agricultor no puede entender la información en la etiqueta, se producirán errores. Los agricultores cubanos generalmente no son conscientes de que los pesticidas pueden afectar a plantas y animales no objetivo, enemigos naturales, a la biodiversidad en general, a la fertilidad del suelo, y a la salud del consumidor. Esta alarmante tendencia también se observó en Vietnam (Houbraken et al., 2016). En general, se encontraron correlaciones positivas entre ellos y la percepción de que los pesticidas pueden afectar su área de entorno (tabla 4), pero no en el caso de la salud de los trabajadores agrícolas, ya que no entienden que ellos son parte del área de entorno, independientemente de si recibieron capacitación o no. Era evidente que los agricultores en nuestro estudio no habían recibido suficiente capacitación antes de la encuesta. La capacitación limitada plantea un desafío para la implementación de programas ecológicos e integrados de manejo de plagas, ya que los productores son el eslabón crítico en el proceso de producción y en la adopción de los programas.

El 82,5% de los agricultores encuestados cree que, en los últimos cinco años, ha habido una tendencia hacia un mayor uso de pesticidas. Las razones de este aumento (uso de un volumen inadecuado de plaguicidas, aumento de la resistencia a las plagas, aumento de la población de plagas y aumento del presupuesto) están de acuerdo con las razones citadas por otros autores (Ngowi et al., 2007; Rosquete-Pérez, 2011). Similar a otros estudios, como se puede observar en la tabla 4, los agricultores cubanos consideraron que los pesticidas pueden ingresar al cuerpo a través de la piel, la boca y la nariz (Kumari & Reddy, 2013; Leungo et al., 2012), pero principalmente pueden afectar su salud si se ingieren (correlación positiva), mas no en el caso del contacto con la piel o por la nariz. Si bien los participantes en nuestro estudio eran conscientes de los efectos específicos para la salud (p. ej., náuseas, mareos, estornudos, problemas de la piel, dificultad para respirar, tos, y dolor de cabeza) observados en la figura 2, los beneficios económicos logrados al usar pesticidas superaron sus preocupaciones sobre los peligros, lo que resulta en la adopción de prácticas riesgosas. Otros autores han observado un comportamiento similar (Lekei et al., 2014). El 53,0% de los participantes afirmaron que sufrieron efectos adversos al menos una vez mientras trabajaban...
con pesticidas. Los efectos específicos que sufren los agricultores cubanos (p. ej., mareos, vómitos, náuseas, dolor de cabeza, y estornudos) observados en la figura 2 son similares a los reportados por los agricultores en otras regiones del mundo (Houbraken et al., 2016; Ngowi et al., 2007).

Algunos de los productos almacenados dentro de los hogares incluyen pesticidas clasificados como moderadamente peligrosos. Dentro de estos se encuentran pesticidas clasificados por la OMS como de clase 1 y 11, que incluyen la bifentrina, cipermetrina, metamidofos, fipronil, tiodicarb, tiacloprid, clorfenapir y endosulfán. El endosulfán es un plaguicida organoclorado prohibido en muchos países, debido a que causa problemas de salud y ambientales, y ha sido incluido en la lista de contaminantes orgánicos persistentes (COP) programados para su eliminación (UNEP/POPS/POPRC.5/10, 2009). Se debe dar una formación rápida en relación con lo anterior e implementar medidas de protección para proteger la salud humana y la integridad ambiental (Lekei et al., 2014; Varona-Uribe et al., 2012).

Los aspersores de mochila con los que se aplican estos productos se limpiaron con mayor frecuencia después de cada aplicación. Algunos aspersores de mochila se limpian en el campo. Sin embargo, otros se limpian cerca del agua potable que usa la familia, o en un cuerpo de agua cerca del campo cultivado, lo que representa un alto riesgo para los humanos y la vida acuática. Además de los compuestos activos mencionados anteriormente, los agricultores también emplean benzoato de emamectina, acefato, deltametrina, lambda-cihalotrina, metomil, betaciflutrina y malatión. Todos estos se clasifican como de nivel 1 o 2 en toxicidad para los peces y abejas, representando un riesgo elevado e inminente para la vida silvestre acuática y terrestre (Sutherland, Horne, Weir, Russell, & Oakeshott, 2004). Su uso debe, por lo tanto, minimizarse o prohibirse.

Conclusiones

Se obtuvieron varias fuentes de exposición potencial a pesticidas domésticos y ocupacionales durante la encuesta, a pesar de que el nivel educativo de los aplicadores fue generalmente alto. En su mayor parte, los agricultores son conscientes de los peligros de los pesticidas y reconocen que los pesticidas pueden afectar la salud humana y ambiental, pero no que los riesgos de exposición sean altos. Los beneficios económicos logrados por el uso de pesticidas dominaron sus preocupaciones con respecto al peligro de los pesticidas. La falta de uso del equipo de protección personal, la alta frecuencia de fumigación, la falta de conocimiento y la incapacidad de comprender la etiqueta del pesticida (producto) son las principales causas de riesgo para los trabajadores, los residentes cercanos y el medio ambiente en general. Al proporcionar capacitación específica a los agricultores y con el asesoramiento de las autoridades regionales sobre el control y el suministro de productos más eficientes, más efectivos y menos tóxicos, es posible reducir los riesgos de efectos adversos de los pesticidas en la salud humana y ambiental en Cuba.

Agradecimientos

Los autores no recibieron fondos específicos para este trabajo. Los autores agradecen a la Delegación Provincial de Agricultura en la Provincia de Sancti Spíritus, Cuba, especialmente a los agricultores y a las cooperativas visitadas durante la realización de este estudio.

Descargo de responsabilidad

Todos los autores hicieron contribuciones significativas al documento y están de acuerdo con su publicación; adicionalmente, afirman que no hay conflictos de interés en este estudio.
Referencias

Aguilar, Y., Calero, B., Rodríguez, D., & Muniz, O. (2015). Cuba’s polygon program—agricultural land rehabilitation. Current Opinion in Environmental Sustainability, 15, 72-78. doi:10.1016/j.cosust.2015.09.003.

Ajayi, O. C., & Akinmefiri, F. K. (2007). Farmers’ Understanding of Pesticide Safety Labels and Field Spraying Practices: A Case Study of Cotton Farmers in Northern Côte d’Ivoire. Scientific Research and Essay, 2(6), 204-210. Recuperado de http://www.worldagroforestry.org/downloads/Publications/PDFs/aj07052.pdf.

Arriaga-Barrios, T. (2012). Tratamiento de pesticidas mediante un sistema acoplado de fotocatálisis solar y humedal subacuático (Tesis de Maestría). Universidad del Valle, Cali, Colombia. Recuperado de http://bibliotecadigital.univalle.edu.co/bitstream/10893/7629/1/7720-0445970.pdf.

Asamblea Nacional del Poder Popular. (1997). Gaceta Oficial de la Republica de Cuba. Recuperado de http://www.oas.org/dsd/fda/laws/legislation/cuba/cuba_81-97.pdf.

Bottao-Nerilo, S., Andrade-Martins, F., Botao-Nerilo, L., Coco, V. E., Yoshih-Endo, R., Olivelea-Rocha, G. H., ... Machinski Junior, M. (2014). Pesticide Use and Cholinesterase Inhibition in Small-Scale Agricultural Workers in Southern Brazil. Brazilian Journal of Pharmaceutical Sciences, 50(4), 783-791. doi:10.1590/S1984-8250201400040014.

Bustamante-Villarroel, S., Segales-Rojas, D. J., Zurita-Herrera, L., Fernandez-Aranabia, M., Torrico-Condarcio, S., & Jarro-Mena, R. (2014). Uso inadecuado de plaguicidas y sus consecuencias en la salud de la poblacion La Villa, Punata, Cochabamba, Bolivia, 2013. Gaceta Médica Boliviana, 37(1), 11-14. Recuperado de http://www.scielo.org.bo/pdf/gmb/v37n1/a03.pdf.

Clarke, E., Levy, L., Spurgeon, A., & Calvert, I. (1997). The Problems Associated with Pesticide Use by Irrigation Workers in Ghana. Ocupacional Medicine, 47(5), 301-308. doi:10.1093/occmed/47.5.301.

Cochran, W. G. (1977). Sampling Techniques third edition (3rd ed.). Nueva York, EE. UU.: John Wiley & Sons, Inc. Recuperado de https://archive.org/details/Cochran-1977SamplingTechniques_201703.

da Silva, J. G. (2015). FAO - Noticias Dia Mundial de la Alimentación generar impulso para acabar con el hambre. Milán, Italia: Organización de las Naciones Unidas para la Alimentación y la Agricultura.

Damalas, C. A., & Eletherohorinos, I. G. (2011). Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. International Journal of Environmental Research and Public Health, 8, 1402-1419. doi:10.3390/ijerph8051402.

del Puerto-Rodriguez, A. M., Suárez-Tamayo, S., & Palacio-Estrada, D. E. (2014). Effects of Pesticides on Health and the Environment. Revista Cubana de Higiene y Epidemiología, 52(3), 372-387.

Deziel, N. C., Friesen, M. C., Hoppin, J. A., Hines, C. J., Thomas, K., & Freeman, L. E. B. (2015). Review A Review of Nonoccupational Pathways for Pesticide Exposure in Women Living in Agricultural Areas. Environmental Health Perspectives, 123(6), 515-524. doi:10.1289/ehp.1408273.

Doan-Ngoc, K. (2014). The Development of An Improved Model to Assess Worker Re-Entry Exposure to Plant Protection Products. Gante, Bélgica: Ghent University.

Eskenza, B., Marks, A. R., Bradman, A., Harley, K., Barr, D. B., Johnson, C., ... Jewell, N. P. (2007). Organophosphate Pesticide Exposure and Neurodevelopment in Young Mexican-American Children. Environmental Health Perspectives, 115(5), 792-798. doi:10.1289/ehp.9828.

Figueroa-González, Z. I., & Pérez-Consuegra, N. (2012). Tendencias en el uso de plaguicidas en el municipio Colón, Provincia Matanzas. Agricultura Orgánica, 18(2), 10-14. Recuperado de www.acatf.co.cu/revistas/revista_ao_05/03TENDENCIAS.pdf.

Food and Agriculture Organization (FAO). (2014). FAO Statistical Yearbook 2014 Asia and the Pacific Food and Agriculture. Bangkok, Thailand: United Nations, Food and Agriculture Organization. Recuperado de http://www.fao.org/docs/card/en/c/e222fe82-503e-40f0-aa68-e21c7a69e0f1/.

Hernández-Núñez, J., & Pérez-Consuegra, N. (2012). Tendencias en el uso de plaguicidas en Batabánó, provincia Mayabeque. Agricultura Orgánica, 18(1), 30-33. Recuperado de http://www.acatf.co.cu/revistas/revista_ao_95-2010/Rev2012-1-10plaguicidasBatabano.pdf.

Houbraeken, M., Bauweraerts, I., Fevity, D., Labeke, M. Van, & Spanoche, P. (2016). Pesticide Knowledge and Practice among Horticultural Workers in the Lâm Đồng Region, Vietnam: A case study of chrysanthemum and strawberries. Science of the Total Environment, 550, 1001-1009. doi:10.1016/j.scitotenv.2016.01.183.

Ibitayo, O. O. (2006). Egyptian Farmers’ Attitudes and Behaviors Regarding Agricultural Pesticides: Implications for Pesticide Risk Communication. Risk Analysis, 26(4), 989-995. doi:10.1111/j.1539-6924.2006.00794.x.

Kumari, P. L., & Reddy, K. G. (2013). Knowledge and Practices of Safety Use of Pesticides among Farm Workers. Journal of Agriculture and Veterinary Science, 6(2), 1-8. doi:10.9790/2380-0620108.

Leeke, E. I., Ngwii, A. V., & London, L. (2014). Farmers’ knowledge, practices and injuries associated with pesticide exposure in rural farming villages in Tanzania. BMC Public Health, 14(389), 1-13. doi:10.1186/1471-2458-14-389.

Leung, G., Obopile, M., Oagile, O., Madisa, M. E., & Assefa, Y. (2012). Urban Vegetable Farmworkers Beliefs and Perception of Risks Associated with Pesticides Exposure: A Case of Gaborone City. Journal of Plant Studies, 1(2), 114-119. doi:10.5539/jps.v1n2p114.

Lewis, R. C., Cantonwine, D. E., Del Toro, L. V. A., Calafat, A. M., Valentín-Blasini, L., Davis, M. D., ... Meeker, J. D. (2015). Distribution and Determinants of Urinary Biomarkers of Exposure to Organophosphate Insecticides in Puerto Rican Pregnant Women. The Science of the Total Environment, 512-513, 337-344. doi:10.1016/j.scitotenv.2015.01.059.
Leyva-Morales, J. B., García de la Parra, L. M., Bastidas-Bastidas, P. de J., Astorga-Rodríguez, J. E., Bejarano-Trujillo, J., ... Betancourt-Lozano, M. (2014). Uso de plaguicidas en un valle agrícola tecnificado en el noroeste de México. Revista Internacional de Contaminación Ambiental, 30(3), 247-261. Recuperado de http://www.scielo.org.mx/pdf/rica/v30n3/v30n3a2.pdf.

Mederos-Gómez, A., Lara-Fernández, L. H., Miranda-Gómez, O., & Lorenzo, M. O. (2014). Surveillance Subsystem for Acute Poisonings. Revista Habanera de Ciencias Médicas, 13(6), 913-926.

Mokele, T. A. (2011). Potential Health Effects of Pesticide use on Farmworkers in Lesotho. South Africa Journal of Science, 107(7/8), 1-7. doi:10.4102/sajs.v107i7.8.509.

Mwila, K., Burton, M. H., Van Dyk, J. S., & Pletschke, B. I. (2013). The Effect of Mixtures of Organophosphate and Carbamate Pesticides on Acetylcholinesterase and Application of Chemometrics to Identify Pesticides in Mixtures. Environmental Monitoring and Assessment, 185(3), 2315-2327. doi:10.1007/s10661-012-2711-0.

Nalwanga, E., & Ssempebwa, J. C. (2011). Knowledge and Practices of In-Home Pesticide Use: A Community Survey in Uganda. Journal of Environmental and Public Health, 2011, Article ID 230894. doi:10.1155/2011/230894.

National Bureau of Statistics and Information. (2015). Statistical Yearbook 2014 Sancti Spíritus. Sancti Spíritus. Recuperado de http://www.onsce.org/publicaciones/provincias_masin/sancti_spiritus.htm.

Negatu, B., Kromhout, H., Meckonen, Y., & Vermeulen, R. (2016). Use of Chemical Pesticides in Ethiopia: A Cross-Sectional Comparative Study on Knowledge Attitude and Practice of Farmers and Farm Workers in Three Farming Systems. Annal of Work Exposures and Health, 60(5), 551-566. doi:10.1093/annhyg/rew004.

Ngowi, A. V. F., Mbise, T. J., Ijani, A. S. M., London, L., & Ajayo, O. C. (2007). Smallholder Vegetable Farmers in Northern Tanzania: Pesticides Use Practices, Perceptions, Cost and Health Effects. Crop Protection, 26, 1617-1624. doi:10.1016/j.cropro.2007.01.008.

Ntzani, E. E., Chondrogiorgi, M., Ntritsos, G., Evangelou, E., & Tzoulaki, I. (2013). Literature Review on Epidemiological Studies Linking Exposure to Pesticides and Health Effects. EFSA Supporting Publication, EN-497, 1-159. Recuperado de www.efsa.europa.eu/publications.

Obopile, M., Munthali, D. C., & Mattilo, B. (2008). Farmers’ knowledge, perceptions and management of vegetable pests and diseases in Botswana. Crop Protection, 27(8), 1220-1224. doi:10.1016/j.cropro.2008.03.003.

Pérez-Rodríguez, S., Álvarez-Delgado, M., David-Baldo, M., & Capote-Marrero, B. (2012). Intoxicaciones agudas por plaguicidas consultadas al Centro Nacional de Toxicología durante el bienio Acute pesticide poisoning assisted at the National Toxicology Centre from 2007-2008. Revista Cubana de Medicina Militar, 41(4), 415-422. Recuperado de http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0138-65572012000400012.

Ponce, I., Nahed, J., Roberto, M., Vázquez, P., Fonseca, N., & Guevara, F. (2015). Historical Changes in the Process of Agricultural Development in Cuba. Journal of Cleaner Production, 96, 77-84. doi:10.1016/j.jclepro.2013.11.078.

Roberts, J. R., & Routt-Reigart, J. (2013). Recognition and Management of Pesticide Poisonings. Environmental Protection Agency. Recuperado de https://www.epa.gov/pesticide-worker-safety/recognition-and-management-pesticide-poisonings.

Rosquete-Pérez, C. (2011). Evaluación de impacto de la supresión de endosulfán en el agroecosistema Guía de Melena, Artemisa, Cuba (Tesis de maestría). Universidad Agraria de La Habana Fructuoso Rodríguez Pérez, La Habana, Cuba.

Rother, H. A. (2008). South African Farm Workers’ Interpretation of Risk Assessment Data Expressed as Pictograms on Pesticide Labels. Environmental Research, 108(3), 419-427. doi:10.1016/j.envres.2008.07.005.

Silva D. A., Arancibia H. M., Pulgar G. C., Astorga C. L., Castillo C. A., Adasme A. V., ... Fernanda C. M. (2015). Exposición a plaguicidas y prácticas de uso y protección en embarazadas de zona rurales en control de atención primaria en la región de Valparaiso, Chile. Revista Chilena de Obstetricia y Ginecología, 80(5), 373-380. doi:10.4067/S0717-75262015000500004.

Sutherland, T. D., Horne, I., Weir, K. M., Russell, R. J., & Oakeshott, J. G. (2004). Toxicity and Residues of Endosulfan Isomers. Review in Environmental Contamination and Toxicology, 183, 99-113. doi:10.1007/978-1-4419-9100-3_4.

Tsimbiri, P. F., Moturi, W. N., Sawe, J., Henley, P., & Bend, J. R. (2015). Health Impact of Pesticides on Residents and Horticultural Workers in the Lake Naivasha Region, Kenya. Occupational Diseases and Environmental Medicine, 3(2), 23-34. doi:10.4236/odem.2015.32004. unep/rops/vopcrc.5/10. (2009). Stockholm Convention on Persistent Organic Pollutants. Report of the Persistent Organic Pollutants Review Committee on the work of its fifth meeting. Ginebra, Suiza. Recuperado de http://chm.pops.int/Default.aspx?tabid=592.

Varona-Uribe, M., Castro, R. A., Páez, M. I., Carvajal, N., Barbosa, E., León, L. M., & Díaz, S. M. (2012). Impacto en la salud y el medio ambiente por exposición a plaguicidas e implementación de buenas prácticas agrícolas en el cultivo de tomate , Colombia, 2011. Revista Chilena de Salud Pública, 16(2), 96-106. Recuperado de http://www.revistasaludpublica.uchile.cl/index.php/RCSP/article/viewFile/20267/21435.

Vázquez-Moreno, L. L. (2012). Transición del manejo de plagas en la producción agropecuaria en Cuba. Agricultura Orgánica, 18(2), 21-25. Recuperado de http://www.actaf.co/revistas/revista_ao_95-2010/Rev%202012-2/05%20TRANSICION-I.pdf.

2020 Corporación Colombiana de Investigación Agropecuaria
Waichman, A. V., Eve, E., & da Silva Nina, N. C. (2007). Do Farmers Understand the Information Displayed on Pesticide Product Labels? A Key Question to Reduce Pesticides Exposure and Risk of Poisoning in the Brazilian Amazon. *Crop Protection, 26*(4), 576-583. doi:10.1016/j.cropro.2006.05.011.

World Health Organization (WHO). (2009). *The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification*. Recuperado de http://www.who.int/ipcs/publications/pesticides_hazard_2009.pdf.