The biodistribution of a new bone-seeking agent based on pentaphosphonic acid and gallium-68 in tumor-bearing rats

To cite this article: V K Tishchenko et al 2019 J. Phys.: Conf. Ser. 1189 012042

View the article online for updates and enhancements.
The biodistribution of a new bone-seeking agent based on pentaphosphonic acid and gallium-68 in tumor-bearing rats

V K Tishchenko¹, V M Petriev¹,², A A Mikhailovskaya¹, O A Smoryzanova¹ and A A Postnov²

¹ Tsyb Medical Radiological Research Centre, Obninsk, Russia
² National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia

E-mail: petriev@mrrc.obninsk.ru

Abstract. Many tumors are associated with the occurrence of bone metastases, so skeletal imaging, especially by positron emission tomography (PET), is a major problem in clinical nuclear medicine. Gallium-68 (⁶⁸Ga) is an interesting radionuclide for PET because of its appropriate radiophysical properties. Phosphonates are known to be selectively accumulated in bone tissue, so they can be ideal carriers of radionuclides. The present study was devoted to development of a new compound based on pentaphosphonic acid labeled with ⁶⁸Ga (⁶⁸Ga-PPA) as a potential bone imaging agent for PET applications and evaluation of its biodistribution in Wistar rats with subcutaneously transplanted cholangioma RS-1. Biodistribution studies of ⁶⁸Ga-PPA demonstrated rapid and selective bone accumulation and low uptake in any of the major organs and tissues. A total uptake of ⁶⁸Ga-PPA in skeleton reached 31.17±2.84 %ID and retained at the same level until the end of the study. However, the amount of ⁶⁸Ga-PPA in bone tissue was slightly lower as compared with free ⁶⁸Ga³⁺, but lower level of ⁶⁸Ga-PPA in blood made it more suitable for diagnostic purposes. In conclusion, ⁶⁸Ga-PPA may serve a promising agent in nuclear medicine for bone tissue PET imaging.

1. Introduction

Besides lung and liver, bones are common sites for the development of metastases. They are often complicated by hypercalcemia, pathological fractures, spinal cord compression, severe bone pain that can significantly decrease the quality of life and, therefore, result in shorter survival. So accurate diagnosis of bone metastases at an early stage is of great importance for patients.

Bone metastases can be visualized via both single-photon emission computed tomography (SPECT) and positron emission tomography (PET). These imaging techniques are non-invasive methods, which allow diagnosis, staging, response assessment and subsequent tumor surveillance during follow-up [1]. They are known to detect pathological changes in bones before occurrence of anatomical changes. Phosphonate complexes of ⁹⁹mTc such as MDP (methylenediphosphonate) and DPD (3,3-diphosphono-1,2-propandicarboxylic acid) are already used as SPECT tracers [2]. In contrast to SPECT, PET offers a higher spatial resolution, sensitivity, and accurate signal quantification [3]. These advantages of PET are crucial, especially in the case of small size lesions. Unfortunately, the production of the most utilized PET radiotracers, fluorine-18 fluorodeoxyglucose (¹⁸F-FDG) and ¹⁸F-fluoride, is dependent on the availability of a nearby cyclotron.
Phosphonates and phosphonic acids show high affinity for hydroxyapatite Ca_{10}(PO_4)_6(OH)_2 – a main inorganic component of bone tissue. They are stable against chemical and enzymatic hydrolysis [4]. For these reasons phosphonates can serve as ideal carriers of radionuclides to bone tissue.

Gallium-68 (^{68}\text{Ga}) is a potential radionuclide for PET imaging. ^{68}\text{Ga} possess a half-life of 68 min, positron emission fraction of 89% and E_{\beta}^\text{max} \approx 1.9 \text{ MeV}. It also can be easily obtained on-site from commercial ^{68}\text{Ge}/^{68}\text{Ga} generators without use of a cyclotron [5]. Besides, the use of a ^{68}\text{Ge}/^{68}\text{Ga} generator system ensures direct access to ^{68}\text{Ga} for a period of up to one year [5]. ^{68}\text{Ga}^{3+} cation can form stable complexes with many ligands containing oxygen and nitrogen as donor atoms. This makes ^{68}\text{Ga} suitable for complexation with chelators and various macromolecules, allowing for kit development [6]. Development of ^{68}\text{Ga}-based phosphonate derivatives for bone PET, which can serve as an alternative to already available radiopharmaceuticals, may provide further improvement in bone imaging.

The objective of this study was to evaluate the biodistribution of a new compound based on pentaphosphonic acid labeled with ^{68}\text{Ga} (^{68}\text{Ga}-PPA) as a potential bone imaging agent for PET applications in tumor-bearing rats and compare with ^{68}\text{GaCl}_3 biodistribution.

2. Methods and materials

Biodistribution experiments of both ^{68}\text{Ga}-PPA and ^{68}\text{GaCl}_3 were carried out in female Wistar rats (n = 4 for each time point) weighing 140–160 g with subcutaneously transplanted cholangioma RS-1. To get a solid form of cholangioma RS-1 the donor rat with tumor was killed by cervical disruption, the tumor tissue was isolated, ground up, diluted in physiological saline and implanted subcutaneously into right flanks of Wistar rats (100 mg/rat in a volume of 0.1 ml). When the tumor volume reached 0.7-0.8 cm³, the rats were used for biodistribution experiments.

All animals were divided into two groups. The first group of rats was injected intravenously into the tail vein of each animal with 0.37 MBq of labeled ^{68}\text{Ga}-PPA complex in a volume of 0.1 ml. The second group received intravenously 0.37 MBq of ^{68}\text{GaCl}_3 in a volume of 0.1 ml. The animals of both groups were sacrificed by decapitation at 5 min, 1, 2 and 3 h after injection. The desired organs were collected, washed with normal saline and weighted. The radioactivity in each organ was counted using gamma counter. The data are expressed as a percentage of the injected dose per gram of tissue (%ID/g). Activity in the femur was considered for obtaining the total skeletal uptake assuming the skeleton to be 10% of the total body weight.

The results from the biodistribution data for each group of mice were expressed as mean value and standard error of the mean (M ± m). Student’s t test was used to analyze data throughout all studies between groups at different time points, and p<0.05 was considered statistically significant.

3. Results and discussion

The results of biodistribution experiments are presented in figure 1. It was shown that ^{68}\text{Ga}-PPA had high bone affinity. Femur uptake of ^{68}\text{Ga}-PPA increased from 0.76±0.20 %ID/g at 5 min postinjection (p.i.) to 1.47±0.13 %ID/g at 1 h and then slightly decreased to 1.39±0.05 at 2 h and 1.40±0.13 %ID/g at 3 h p.i. The amount of ^{68}\text{GaCl}_3 in femur was higher as compared with ^{68}\text{Ga}-PPA, as shown in figure 2, and reached 3.03±0.62 %ID/g at 1 h p.i. It is known that ^{68}\text{GaCl}_3 binds to hydroxyapatite, human cortical matrix and demineralised bone matrix (Toegel S, Wadsak W, et al., 2008), but ^{68}\text{GaCl}_3 isn’t suitable for bone lesions imaging because of its high binding affinity to blood protein (e.g. transferrin, lactoferrin, ferritin).

Total amount of ^{68}\text{Ga}-PPA in skeleton was slightly lower than that of ^{68}\text{GaCl}_3. As shown in figure 3, the maximum uptake of ^{68}\text{Ga}-PPA was 31.17±2.84 %ID at 1 h p.i. and then retained at the level of 28.94±1.14 %ID and 28.63±1.38 %ID at 2 and 3 h p.i., respectively. The concentration of ^{68}\text{GaCl}_3 raised from 11.21±3.60 %ID at 5 min p.i. to 40.56±3.84 %ID at 3 h p.i.

High uptake of ^{68}\text{GaCl}_3 (up to 3.64±0.28 %ID/g) was observed in blood. After intravenous injection, the ^{68}\text{Ga} radioactivity can migrate in the blood circulation as free ^{68}\text{Ga}^{3+} or ^{68}\text{Ga}^{3+} bound to transferrin, ferritin, or lactoferrin [8]. The incorporation of ^{68}\text{Ga} into the PPA apparently reduced the
amount of radioactivity in blood. Thus, the amounts of 68Ga-PPA in blood were approximately 2–5 times lower as compared with 68GaCl$_3$ and didn’t exceed 0.70±0.08 %ID/g at 5 min p.i. (figure 4).

![Figure 1. Biodistribution of 68Ga-PPA in Wistar rats with cholangioma RS-1 at different time points after intravenous injection.](image1)

Tumor uptake of 68Ga-PPA was almost similar to 68GaCl$_3$. As shown in figure 5, the highest uptakes of 68Ga-PPA and 68GaCl$_3$ were 0.63±0.24 %ID/g and 0.34±0.07 %ID/g at 5 min p.i., respectively. Tumors are characterized by higher density of newly formed blood vessels compared to non-tumor tissue. Tumor vessels are more leaky due to the discontinuous endothelium and greater
vascular permeability secondary to the elevated levels of vasoactive and growth factors [9]. That’s why 68Ga-PPA and 68GaCl$_3$ non-specifically accumulate in tumor.

![Figure 4](image4.png)

Figure 4. Specific amounts of radioactivity in blood of Wistar rats with cholangioma RS-1 after intravenous injection of 68Ga-PPA and 68GaCl$_3$.

Biodistribution of 68Ga-PPA and 68GaCl$_3$ in liver and kidneys are presented in figures 6 and 7. Liver and kidney uptake of 68Ga-PPA was significantly lower than that of 68GaCl$_3$. Relatively high kidneys uptake of 68Ga-PPA (up to 1.03±0.31 %ID/g) was observed only at 5 min p.i., but then the level of activity in kidneys decreased 3 fold and was 0.28–0.33 %ID/g.

![Figure 5](image5.png)

Figure 5. Specific amounts of radioactivity in tumor of Wistar rats with cholangioma RS-1 after intravenous injection of 68Ga-PPA and 68GaCl$_3$.

![Figure 6](image6.png)

Figure 6. Specific amounts of radioactivity in liver of Wistar rats with cholangioma RS-1 after intravenous injection of 68Ga-PPA and 68GaCl$_3$.

![Figure 7](image7.png)

Figure 7. Specific amounts of radioactivity in kidneys of Wistar rats with cholangioma RS-1 after intravenous injection of 68Ga-PPA and 68GaCl$_3$.

The amounts of 68Ga-PPA in other organs such as lungs, spleen, heart, stomach, small intestine, brain and muscle were quite low (less than 1 %ID/g) throughout the study. Besides, after intravenous injection of 68Ga-PPA the levels of activity in these organs were lower or equal as compared with 68GaCl$_3$ biodistribution.
4. Summary

Biodistribution studies of 68Ga-PPA in tumor-bearing Wistar rats demonstrated rapid and selective bone accumulation and low uptake in any of the major organs and tissues. A total uptake of 68Ga-PPA in skeleton reached 31.17±2.84 %ID and retained at the same level until the end of the study. However, the amount of 68Ga-PPA in bone tissue was slightly lower as compared with free 68Ga$^{3+}$, but lower level of 68Ga-PPA in blood made it more suitable for diagnostic purposes. In conclusion, 68Ga-PPA may serve a promising agent in nuclear medicine for bone tissue PET imaging.

Acknowledgments

Authors acknowledge support from the Ministry of Science and Higher Education of the Russian Federation (project №075-02-2018-097, unique project ID RFMEFI57518X0174).

References

[1] Glasspool R M and Evans T R J 2000 Clinical imaging of cancer metastasis Eur. J. Cancer 36 1661–70
[2] Langsteger W, Rezaee A, Pirich C and Beheshti M 2016 18F-NaF-PET/CT and 99mTc-MDP Bone Scintigraphy in the Detection of Bone Metastases in Prostate Cancer Semin. Nucl. Med. 46 491–501
[3] Velikyan I 2018 Prospective of 68Ga Radionuclide Contribution to the Development of Imaging Agents for Infection and Inflammation Contrast Media Mol. Imaging 2018 9713691
[4] Russell C D and Cash A G 1979 Complexes of technetium with pyrophosphate, etidronate, and medronate J. Nucl. Med. 20 532–7
[5] Martinova L, Palatis L, Etchebehere E and Ravizzini G 2016 Gallium-68 in Medical Imaging. Curr. Radiopharm. 9 187–207
[6] Smith D L, Breeman W A and Sims-Mourtada J 2013 The untapped potential of Gallium 68-PET: the next wave of 68Ga-agents Appl. Radiat. Isot. 76 14–23
[7] Toegel S, Wadsak W, Mien L K, Vierneust H, Kluger R, Eihherr H, Haeusler D, Kletter K, Dudczak R and Mitterhauser M 2008 Preparation and pre-vivo evaluation of no-carrier-added, carrier-added and cross-complexed $[^{68}$Ga]-EDTMP formulations Eur. J. Pharm. Biopharm. 68 406–12
[8] Autio A, Virtanen H, Tolvanen T, Liljenbäck H, Oikonen V, Saanijoki T, Saitonen R, Käkelä M, Schüssle A, Teräs M and Roivainen A 2015 Absorption, distribution and excretion of intravenously injected 68Ge/68Ga generator eluate in healthy rats, and estimation of human radiation dosimetry EJNMMI Research 5 40
[9] Au J L S, Yeung B Z, Wientjes M G, Lu Z and Wientjes M G 2016 Delivery of cancer therapeutics to extracellular and intracellular targets: Determinants, barriers, challenges and opportunities Adv. Drug Deliv. Rev. 97 280–301