THE RESULTS CONCERNING JORDAN DERIVATIONS

Byung Do Kim*

Abstract. Let R be a 3!-torsion free semiprime ring, and let $D : R \to R$ be a Jordan derivation on a semiprime ring R. In this case, we show that $[D(x), x]D(x) = 0$ if and only if $D(x)[D(x), x] = 0$ for every $x \in R$. In particular, let A be a Banach algebra with $\text{rad}(A)$. If D is a continuous linear Jordan derivation on A, then we see that $[D(x), x]D(x) \in \text{rad}(A)$ if and only if $[D(x), x]D(x) \in \text{rad}(A)$ for all $x \in A$.

1. Introduction

Throughout, R represents an associative ring and A will be a real or complex Banach algebra. We write $[x, y]$ for the commutator $xy - yx$ for x, y in a ring. Let $\text{rad}(R)$ denote the (Jacobson) radical of a ring R. And a ring R is said to be (Jacobson) semisimple if its Jacobson radical $\text{rad}(R)$ is zero. See [1] for the more details.

A ring R is called n-torsion free if $nx = 0$ implies $x = 0$. Recall that R is prime if $aRb = (0)$ implies that either $a = 0$ or $b = 0$, and is semiprime if $aRa = (0)$ implies $a = 0$.

An additive mapping D from R to R is called a derivation if $D(xy) = D(x)y + xD(y)$ holds for all $x, y \in R$. And an additive mapping D from R to R is called a Jordan derivation if $D(x^2) = D(x)x + xD(x)$ holds for all $x \in R$.

Johnson and Sinclair [4] proved that any linear derivation on a semisimple Banach algebra is continuous. A result of Singer and Wermer [5] states that every continuous linear derivation on a commutative Banach algebra maps the algebra into its radical. From these two results, we can conclude that there are no nonzero linear derivations on a commutative semisimple Banach algebra.

Received March 10, 2016; Accepted October 17, 2016.

2010 Mathematics Subject Classification: Primary 16N60, 16W25, 17B40.

Key words and phrases: Banach algebra, Jordan derivation, prime and semiprime ring, (Jacobson) radical.
Byung Do Kim

Vukman [7] proved the following: let \(R \) be a 2-torsion free prime ring. If \(D : R \to R \) is a derivation such that \([D(x), x]D(x) = 0\) for all \(x \in R \), then \(D = 0 \).

Moreover, using the above result, he proved that the following holds: let \(A \) be a noncommutative semisimple Banach algebra. Suppose that \([D(x), x]D(x) = 0\) holds for all \(x \in A \). In this case, \(D = 0 \).

In this paper, our first aim is to prove the following result in the ring theory in order to apply it to the Banach algebra theory:

let \(R \) be a 3!-torsion free semiprime ring, and let \(D : R \to R \) be a Jordan derivation on a semiprime ring \(R \). In this case, we show that \([D(x), x]D(x) = 0\) if and only if \([D(x), x]D(x) = 0\) for every \(x \in R \). In particular, let \(A \) be a Banach algebra with \(\text{rad}(A) \) and if \(D \) is a continuous linear Jordan derivation on \(A \), then we see that \([D(x), x]D(x) \in \text{rad}(A)\) if and only if \([D(x), x]D(x) \in \text{rad}(A)\) for all \(x \in A \).

2. Preliminaries

The following lemma is due to Chung and Luh [3].

Lemma 2.1. Let \(R \) be a \(n! \)-torsion free ring. Suppose there exist elements \(y_1, y_2, \cdots, y_{n-1}, y_n \) in \(R \) such that \(\sum_{k=1}^{n} k^t y_k = 0 \) for all \(t = 1, 2, \cdots, n \). Then we have \(y_k = 0 \) for every positive integer \(k \) with \(1 \leq k \leq n \).

The following theorem is due to Brešar [2].

Theorem 2.2. Let \(R \) be a 2-torsion free semiprime ring and let \(D : R \to R \) be a Jordan derivation. In this case, \(D \) is a derivation.

And the following theorem is proved by Vukman in [7] under the condition of the prime ring \(R \).

Theorem 2.3. Let \(R \) be a 3!-torsion free prime ring. Let \(D : R \to R \) be a Jordan derivation on \(R \). In this case, we see that if \([D(x), x]D(x) = 0\) for every \(x \in R \), then \(D(x) = 0 \) for all \(x \in R \).

3. Main results

We need the following notations. After this, by \(S_m \) we denote the set \(\{ k \in \mathbb{N} \mid 1 \leq k \leq m \} \) where \(m \) is a positive integer. When \(R \) is a
The results concerning Jordan derivations ring, we shall denote the maps $B : R \times R \to R$, $f, g : R \to R$ by $B(x, y) \equiv [D(x), y] + [D(y), x]$, $f(x) \equiv [D(x), x]$, $g(x) \equiv [f(x), x]$ for all $x, y \in R$ respectively. And we have the basic properties:

\[
B(x, y) = B(y, x),
\]

\[
B(x, yz) = B(x, y)z + yB(x, z) + D(y)[z, x] + [y, x]D(z)
\]

for all $x, y \in R$ and $z \in R$.

Theorem 3.1. Let R be a 3!-torsionfree semiprime ring. Let $D : R \to R$ be a Jordan derivation on R. In this case, it follows that

\[
[D(x), x]D(x) = 0 \iff D(x)[D(x), x] = 0
\]

for every $x \in R$.

Proof. (Necessity)

It is sufficient to prove the noncommutative case of R.

Assume that

\[
[D(x), x]D(x) = f(x)D(x) = 0, \ x \in R.
\]

Replacing $x + ty$ for x in (3.1), we have

\[
[D(x + ty), x + ty]D(x + ty) = f(x)D(x) + t\{B(x, y)D(x) + f(x)D(y)\} + t^2H(x, y)
\]

\[
+t^3f(y)D(y) = 0, \ x, y \in R, \ t \in S_2
\]

where H denotes the term satisfying the identity (3.2).

From (3.1) and (3.2), we obtain

\[
t\{B(x, y)D(x) + f(x)D(y)\} + t^2H(x, y) = 0, \ x, y \in R, \ t \in S_2.
\]

Since R is 2!-torsionfree, by Lemma 2.1 the relation (3.3) yields

\[
B(x, y)D(x) + f(x)D(y) = 0, \ x, y \in R.
\]

Writing yx for y in (3.4), we get

\[
B(x, yx)D(x) + f(x)D(yx) = B(x, y)xD(x) + 2yf(x)D(x) + [y, x]D(x)^2 + f(x)D(y)x
\]

\[
+f(x)yD(x) = 0, \ x, y \in R.
\]

From (3.1) and (3.5), we obtain

\[
B(x, y)xD(x) + [y, x]D(x)^2 + f(x)D(y)x + f(x)yD(x)
\]

\[
= 0, \ x, y \in R.
\]
Left multiplication of (3.1) by $D(x)$ gives
$$-2D(x)f(x)f(y) - D(x)[y, x]f(x) + D(x)g(x)yD(x) = 0, \quad x, y \in R.$$ (3.14)
From (3.1) and (3.14), we arrive at
$$D(x)f(x)yf(x) + (g(x)D(x) - D(x)g(x))yD(x) = 0, \quad x, y \in R.$$ (3.15)
Right multiplication of (3.15) by $D(x)$ leads to
$$D(x)f(x)yf(x)D(x) + (g(x)D(x) - D(x)g(x))yD(x)^2 = 0, \quad x, y \in R.$$ (3.16)
From (3.1) and (3.16), we obtain
$$g(x)D(x) - D(x)g(x)yD(x)^2 = 0, \quad x, y \in R.$$ (3.17)
Writing \(yD(x) \) for \(y \) in (3.15), we have
\[
D(x)f(x)yD(x)f(x) + (g(x)D(x) - D(x)g(x))yD(x)^2 = 0, \ x, y \in R.
\]
(3.18)

From (3.17) and (3.18), we get
\[
D(x)f(x)yD(x)f(x) = 0, \ x, y \in R.
\]
(3.19)

Since \(R \) is semiprime, (3.19) gives
\[
D(x)f(x) = 0, \ x \in R.
\]

Therefore the necessity is proved.

The inverse statement is symmetrically proved in the expressions proved.

(Sufficiency)
Suppose
\[
D(x)[D(x), x] = D(x)f(x) = 0, \ x \in R.
\]
(3.20)

Replacing \(x + ty \) for \(x \) in (3.20), we have
\[
D(x + ty)[D(x + ty), x + ty] = D(x)f(x) + t[D(y)f(x) + D(x)B(x, y)] + t^2I(x, y)
\]
(3.21)

where \(I \) denotes the term satisfying the identity (3.21).

From (3.20) and (3.21), we obtain
\[
t[D(y)f(x) + D(x)B(x, y)] + t^2I(x, y) = 0, \ x, y \in R, \ t \in S_2.
\]
(3.22)

Since \(R \) is 2!-torsionfree, by Lemma 2.1 the relation (3.22) yields
\[
D(y)f(x) + D(x)B(x, y) = 0, \ x, y \in R.
\]
(3.23)

Writing \(xy \) for \(y \) in (3.23), we get
\[
xD(y)f(x) + D(x)yf(x) + D(x)xB(x, y) + 2D(x)f(x)y + D(x)^2[y, x] = 0, \ x, y \in R.
\]
(3.24)

From (3.20) and (3.24), it follows from that
\[
xD(y)f(x) + D(x)yf(x) + D(x)xB(x, y) + D(x)^2[y, x] = 0, \ x, y \in R.
\]
(3.25)

Left multiplication of (3.23) by \(x \) leads to
\[
xD(y)f(x) + xD(x)B(x, y) = 0, \ x, y \in R.
\]
(3.26)
From (3.25) and (3.26), we get
\[(3.27)\]
\[D(x)yx f(x) + f(x)B(x, y) + D(x)^2[y, x] = 0, \ x, y \in R.\]

Right multiplication of (3.27) by \(x\) yields
\[(3.28)\]
\[D(x)yx f(x) + f(x)B(x, y)x + D(x)^2[y, x]x = 0, \ x, y \in R.\]

Replacing \(yx\) for \(y\) in (3.27), we have
\[(3.29)\]
\[D(x)yx f(x) + f(x)B(x, y)x + 2f(x)yx f(x) + f(x)[y, x]D(x)\]
\[+ D(x)^2[y, x]x = 0, \ x, y \in R.\]

From (3.28) and (3.29), we obtain
\[(3.30)\]
\[D(x)yg(x) - 2f(x)yx f(x) - f(x)[y, x]D(x) = 0, \ x, y \in R.\]

Right multiplication of (3.30) by \(D(x)\) gives
\[(3.31)\]
\[D(x)yg(x)D(x) - 2f(x)yx f(x)D(x) - f(x)[y, x]D(x)^2\]
\[= 0, \ x, y \in R.\]

Putting \(yD(x)\) instead of \(y\) in (3.30), it is obvious that
\[(3.32)\]
\[D(x)yg(x) - 2f(x)yg(x) - f(x)[y, x]D(x)^2\]
\[- f(x)yx f(x)D(x) = 0, \ x, y \in R.\]

From (3.20) and (3.32), we have
\[(3.33)\]
\[D(x)yg(x)D(x) - f(x)[y, x]D(x)^2 - f(x)yx f(x)D(x)\]
\[= 0, \ x, y \in R.\]

From (3.31) and (3.33), we get
\[(3.34)\]
\[D(x)y\{g(x)D(x) - D(x)g(x)\} - f(x)yx f(x)D(x)\]
\[= 0, \ x, y \in R.\]

Left multiplication of (3.34) by \(D(x)\) leads to
\[(3.35)\]
\[D(x)^2yg\{g(x)D(x) - D(x)g(x)\} - D(x)f(x)yx f(x)D(x)\]
\[= 0, \ x, y \in R.\]

From (3.20) and (3.35), we obtain
\[(3.36)\]
\[D(x)^2yg\{g(x)D(x) - D(x)g(x)\} = 0, \ x, y \in R.\]

Substituting \(D(x)y\) for \(y\) in (3.34), we have
\[(3.37)\]
\[D(x)^2yg\{g(x)D(x) - D(x)g(x)\} - f(x)D(x)yx f(x)D(x)\]
\[= 0, \ x, y \in R.\]
From (3.36) and (3.37), we obtain

\begin{equation}
 f(x)D(x)yf(x)D(x) = 0, \; x, y \in R.
\end{equation}

Since \(R \) is semiprime, (3.38) gives

\begin{equation}
 f(x)D(x) = 0, \; x \in R.
\end{equation}

Therefore the sufficiency is proved. \(\square \)

We obtain the equivalent property of continuous Jordan derivations on Banach algebras as the application to the Banach algebra theory.

Theorem 3.2. Let \(A \) be a Banach algebra with \(\text{rad}(A) \). Let \(D : A \rightarrow A \) be a continuous linear Jordan derivation. Then we obtain

\[[D(x), x]D(x) \in \text{rad}(A) \iff D(x)[D(x), x] \in \text{rad}(A) \]

for every \(x \in A \).

Proof. It suffices to prove the case that \(A \) is noncommutative. By the result of B.E. Johnson and A.M. Sinclair [4] any linear derivation on a semisimple Banach algebra is continuous. Sinclair [5] has proved that every continuous linear Jordan derivation on a Banach algebra leaves the primitive ideals of \(A \) invariant. Hence for any primitive ideal \(P \subseteq A \) one can introduce a derivation \(D_P : A/P \rightarrow A/P \), where \(A/P \) is a prime and factor Banach algebra, by \(D_P(\hat{x}) = D(x) + P, \; \hat{x} = x + P \).

By the assumption that \([D(x), x]D(x) \in \text{rad}(A), \; x \in A \), we obtain

\[[D_P(\hat{x}), \hat{x}]D_P(\hat{x}) = 0 \iff D_P(\hat{x})[D_P(\hat{x}), \hat{x}] = 0, \; \hat{x} \in A/P, \] since all the assumptions of Theorem 3.1 are fulfilled. Thus we see that

\[[D(x), x]D(x) \in P \iff D(x)[D(x), x] \in P \]

for every \(x \in A \) and all primitive ideals of \(A \). Therefore we conclude that

\[[D(x), x]D(x) \in \text{rad}(A) \iff D(x)[D(x), x] \in \text{rad}(A) \]

for every \(x \in A \). \(\square \)

As a special case of Theorem 3.2 we get the following result which characterizes commutative semisimple Banach algebras.

Corollary 3.3. Let \(A \) be a semisimple Banach algebra. Then we have

\[[[y, x], x][y, x] = 0 \iff [y, x][[y, x], x] = 0 \]

for every \(x, y \in A \).
Acknowledgment

The author wishes to thank the referees for their valuable comments.

References

[1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Berlin-Heidelberg-New York, 1973.
[2] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 1988, no. 4, 1003-1006.
[3] L.O. Chung and J. Luh, Semiprime rings with nilpotent derivatives, Canad. Math. Bull. 24 1981, no. 4, 415-421.
[4] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 1968, 1067-1073.
[5] A. M. Sinclair, Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 1970, 209-214.
[6] I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 1955, 260-264.
[7] J. Vukman, A result concerning derivations in noncommutative Banach algebras, Glasnik Math. 26 1991, 83-88.

* Department of Mathematics
Gangneung-Wonju National University
Gangneung 25457, Republic of Korea
E-mail: bdkim@gwnu.ac.kr