NOTES ON ALGEBRAIC CYCLES AND HOMOTOPY THEORY

WENCHUAN HU

Abstract. We show that a conjecture by Lawson holds, that is, the inclusion from the Chow variety $C_{p,d}(\mathbb{P}^n)$ of all effective algebraic p-cycles of degree d in n-dimensional projective space \mathbb{P}^n to the space $C_p(\mathbb{P}^n)$ of effective algebraic p-cycles in \mathbb{P}^n is $2d$-connected. As a result, the homotopy and homology groups of $C_{p,d}(\mathbb{P}^n)$ are calculated up to $2d$. We also show an analogous statement for Chow variety $C_{p,d}(\mathbb{P}^n)$ over algebraically closed field K of arbitrary characteristic and compute their etale homotopy groups up to $2d$.

Contents

1. Introduction 1
2. The Method in the proof of the Complex Suspension Theorem 3
3. Proof of the first main result 7
4. Etale homotopy for Chow varieties over algebraically closed fields 10
References 13

1. Introduction

Let \mathbb{P}^n be the complex projective space of dimension n and let $C_{p,d}(\mathbb{P}^n)$ be the space of effective algebraic p-cycles of degree d on \mathbb{P}^n. A fact proved by Chow and Van der Waerden is that $C_{p,d}(\mathbb{P}^n)$ carries the structure of a closed complex algebraic set. Hence it carries the structure of a compact Hausdorff space.

Let $l_0 \subset \mathbb{P}^n$ be a fixed p-dimensional linear subspace. For each $d \geq 1$, we consider the analytic embedding

$$i : C_{p,d}(\mathbb{P}^n) \hookrightarrow C_{p,d+1}(\mathbb{P}^n)$$

defined by $c \mapsto c + l_0$. From this sequence of embeddings we can form the union

$$C_p(\mathbb{P}^n) = \lim_{d \to \infty} C_{p,d}(\mathbb{P}^n).$$

The topology on $C_p(\mathbb{P}^n)$ is the weak topology for $\{C_{p,d}(\mathbb{P}^n)\}_{d=1}^\infty$, that is, a set $C \subset C_p(\mathbb{P}^n)$ is closed if and only if $C \cap C_{p,d}(\mathbb{P}^n)$ is closed in $C_{p,d}(\mathbb{P}^n)$ for all $d \geq 1$. For details, the reader is referred to the book [W]. The background on homotopy theory is referred to the book [L1].

In this note, we will prove the following main result.

Theorem 1. For all n, p and d, the inclusion $i : C_{p,d}(\mathbb{P}^n) \hookrightarrow C_p(\mathbb{P}^n)$ induced by Equation (1) is $2d$-connected.

Date: November 26, 2008.

Key words and phrases. Algebraic cycles; Chow variety; d-connectedness.
This fact was conjectured by Lawson [L1], who had proved that the inclusion \(i : C_{p,d}(\mathbb{P}^n) \hookrightarrow C_p(\mathbb{P}^n) \) has a right homotopy inverse through dimension \(2d \).

The method in the proof of Theorem [L1] comes from Lawson in his proof of the Complex Suspension Theorem [L1], i.e., the complex suspension to the space of \(p \)-homology groups of \(C_{p,d}(\mathbb{P}^n) \) is obtained (cf. Theorem 10).

As applications of the main result, we calculate the first \(2d + 1 \) homotopy and homology groups of \(C_{p,d}(\mathbb{P}^n) \).

The analogous result of Theorem [L1] for Chow varieties over algebraically closed fields is obtained (cf. Theorem 10).

Acknowledgements: I would like to gratefully acknowledge the helpful advice on the organization of the paper.

2. **The Method in the Proof of the Complex Suspension Theorem**

Now we briefly review Lawson’s method in the proof of the Complex Suspension Theorem. The materials in this section can be found in [L1], [F] and [L2].

Fix a hyperplane \(\mathbb{P}^n \subset \mathbb{P}^{n+1} \) and a point \(\mathbb{P}^0 \in \mathbb{P}^{n+1} - \mathbb{P}^n \). For any non-negative integer \(p \) and \(d \), set

\[
T_{p+1,d}(\mathbb{P}^{n+1}) := \{ c = \sum n_i V_i \in C_{p+1,d}(\mathbb{P}^{n+1}) | \dim(V_i \cap \mathbb{P}^n) = p, \forall i \},
\]

when \(d = 0 \), \(C_{p,0}(\mathbb{P}^n) \) is defined to be the empty cycle.

The following result was proved by Lawson and a generalized algebraic version was proved by Friedlander [F].

Proposition 2 ([L1]). The set \(T_{p+1,d}(\mathbb{P}^{n+1}) \) is Zariski open in \(C_{p+1,d}(\mathbb{P}^{n+1}) \). Moreover, \(T_{p+1,d}(\mathbb{P}^{n+1}) \) is homotopy equivalent to \(C_{p,d}(\mathbb{P}^n) \). In particular, their corresponding homotopy groups are isomorphic, i.e.,

\[
\pi_*(T_{p+1,d}(\mathbb{P}^{n+1})) \cong \pi_*(C_{p,d}(\mathbb{P}^n)).
\]

Fix linear embedding \(\mathbb{P}^{n+1} \subset \mathbb{P}^{n+2} \) and two points \(x_0, x_1 \in \mathbb{P}^{n+2} - \mathbb{P}^{n+1} \). Each projection \(p_i : \mathbb{P}^{n+2} - \{ x_0 \} \rightarrow \mathbb{P}^{n+1} \) gives us a holomorphic line bundle over \(\mathbb{P}^{n+1} \).

Let \(D \subset C_{n+1,c}(\mathbb{P}^{n+2}) \) be an effective divisor of degree \(c \) in \(\mathbb{P}^{n+2} \) such that \(x_0, x_1 \) are not in \(D \). Denote by \(\widetilde{Div}_c(\mathbb{P}^{n+2}) \subset C_{n+1,c}(\mathbb{P}^{n+2}) \) the subset of all such \(D \).

Any effective cycle \(c \in C_{p+1,d}(\mathbb{P}^{n+1}) \) can be lifted to a cycle with support in \(D \), defined as follows:

\[
\Psi_D(c) = (\Sigma c) \cdot D.
\]

The map \(\Psi(c,D) := \Psi_D(c) \) is a continuous map with variables \(c \) and \(D \). Hence we have a continuous map \(\Psi_D : C_{p+1,d}(\mathbb{P}^{n+1}) \rightarrow C_{p+1,d}(\mathbb{P}^{n+2} - \{ x_0, x_1 \}) \). The composition of \(\Psi_D \) with the projection \((p_i)_* \) is \((p_0)_* \circ \Psi_D = e \) (where \(e \cdot c = c + \cdots + c \) \(e \) times). The composition of \(\Psi_D \) with the projection \((p_1)_* \) gives us a transformation of cycles in \(\mathbb{P}^{n+1} \) which makes most of them intersecting properly to \(\mathbb{P}^n \). To see this, we consider the family of divisors \(tD, 0 \leq t \leq 1 \), given by scalar multiplication by \(t \) in the line bundle \(p_0 : \mathbb{P}^{n+2} - \{ x_0 \} \rightarrow \mathbb{P}^{n+1} \).

Assume \(x_1 \) is not in \(tD \) for all \(t \). Then the above construction gives us a family transformation

\[
F_{tD} := (p_1)_* \circ \Psi_{tD} : C_{p+1,d}(\mathbb{P}^{n+1}) \rightarrow C_{p+1,d}(\mathbb{P}^{n+1})
\]
for $0 \leq t \leq 1$. Note that $F_{0D} \equiv e$ (multiplication by e).

The question is that for a fixed c, which divisors $D \in C_{n+1,e}(\mathbb{P}^{n+2})$ (x_0 is not in D and x_1 is not in $\bigcup_{0 \leq t \leq 1} tD$) have the property that

$$F_{1D}(c) \in T_{p+1,de}(\mathbb{P}^{n+1})$$

for all $0 < t \leq 1$.

Set $B_c := \{D \in C_{n+1,e}(\mathbb{P}^{n+2}) \mid F_{1D}(c) \text{ is not in } T_{p+1,de}(\mathbb{P}^{n+1}) \text{ for some } 0 < t \leq 1\}$, i.e., all degree e divisors on \mathbb{P}^{n+2} such that some component of $(p_1)_* \circ \Psi_{tD}(c) \subseteq \mathbb{P}^n$

for some $t > 0$.

An important calculation we will use later is the following result.

Proposition 3 (L1). For $c \in C_{p+1,d}(\mathbb{P}^{n+1})$, $\text{codim}_{\mathbb{C}} B_c \geq \frac{(p^2+1)}{e}$.

3. PROOF OF THE FIRST MAIN RESULT

In the construction of the last section, F_{1D} maps $C_{p+1,d}(\mathbb{P}^{n+1})$ to $C_{p+1,de}(\mathbb{P}^{n+1})$, i.e.,

$$F_{1D} := (p_1)_* \circ \Psi_{1D} : C_{p+1,d}(\mathbb{P}^{n+1}) \rightarrow C_{p+1,de}(\mathbb{P}^{n+1}).$$

Moreover, the image of F_{1D} is in the Zariski open subset $T_{p+1,d}(\mathbb{P}^{n+1})$ if D is not B_c. We can find such a D if $\text{codim}_{\mathbb{C}} B_c \geq \frac{(p^2+1)}{e}$ is positive.

Suppose now that $f : S^k \rightarrow C_{p+1,d}(\mathbb{P}^{n+1})$ is a continuous map for $0 < k \leq 2d$. We may assume that f is piecewise linear up to homotopy. Then the map $e \cdot f = F_{0D} \circ f$ is homotopic to a map $S^k \rightarrow T_{p+1,de}(\mathbb{P}^{n+1})$. To see this, we consider the family

$$F_{1D} \circ f : S^k \rightarrow C_{p+1,de}(\mathbb{P}^{n+1}), \quad 0 \leq t \leq 1,$$

where D lies outside the union $\bigcup_{x \in S_k} B_f(x)$. This is a set of real codimension bigger than or equal to $2\left(\frac{p^2+1}{e}\right) - (k + 1)$. Therefore, if $2\left(\frac{p^2+1}{e}\right) - (k + 1) \geq 1$, i.e., $k \leq 2\left(\frac{p^2+1}{e}\right) - 2$, then such a D exists once we choose a large e such that $2d \leq 2\left(\frac{p^2+1}{e}\right) - 2$. Therefore we have the following commutative diagram

$$\begin{array}{ccc}
T_{p+1,d}(\mathbb{P}^{n+1}) & \longrightarrow & T_{p+1,de}(\mathbb{P}^{n+1}) \\
\downarrow F_D & & \downarrow F_D \\
S^k & \longrightarrow & C_{p+1,de}(\mathbb{P}^{n+1})
\end{array}$$

where $F_D := F_{1D}$.

Proposition 4. For any integer $e \geq 1$, the map

$$\phi_e : C_{0,d}(\mathbb{P}^n) \rightarrow C_{0,de}(\mathbb{P}^n), \quad \phi_e(c) = e \cdot c$$

induces injections $\phi_{ke} : \pi_k(C_{0,d}(\mathbb{P}^n)) \rightarrow \pi_k(C_{0,de}(\mathbb{P}^n))$ for $k \leq 2d$.

Proof. First note that $C_{0,d}(\mathbb{P}^n) \cong \text{SP}^d(\mathbb{P}^n)$, where $\text{SP}^d(\mathbb{P}^n)$ denotes the d-th symmetric product of \mathbb{P}^n. Denote by $\Delta : (\mathbb{P}^n)^d \rightarrow (\mathbb{P}^n)^d e = (\mathbb{P}^n)^de$ the diagonal map $\Delta(x) = (x, \ldots, x)$ for e copies of x and and $p_1 : ((\mathbb{P}^n)^d e \rightarrow (\mathbb{P}^n)^d$ the projection on the first component. Hence we have $p_1 \circ \Delta = id : (\mathbb{P}^n)^d \rightarrow (\mathbb{P}^n)^d$ and $p_1 \circ \Delta_\ast = id_\ast : H_k((\mathbb{P}^n)^d) \rightarrow H_k((\mathbb{P}^n)^d)$ for any integer $k \geq 0$. This implies the injectivity of Δ_\ast.
From the commutative diagram of continuous maps of complex varieties

\[
\begin{array}{ccc}
(P^n)^d & \xrightarrow{\Delta} & (P^n)^{de} \\
\pi & \downarrow & \pi \\
SP^d(P^n) & \xrightarrow{\phi_*} & SP^{de}(P^n),
\end{array}
\]

where \(\pi : X^n \to SP^m X\) is the natural projection, we have the induced commutative diagram on homology groups

\[
(4)\begin{array}{ccc}
H_k((P^n)^d, \mathbb{Q}) & \xrightarrow{\Delta_*} & H_k((P^n)^{de}, \mathbb{Q}) \\
\pi_* & \downarrow & \pi_* \\
H_k(SP^d(P^n), \mathbb{Q}) & \xrightarrow{\phi'_* \otimes \mathbb{Q}} & H_k(SP^{de}(P^n), \mathbb{Q}),
\end{array}
\]

for any \(k \geq 0\).

Now we show that \(\phi'_* \otimes \mathbb{Q}\) is injective for all \(e \geq 1\). Let \(\alpha \in H_k(SP^d(P^n), \mathbb{Q})\) be an element such that \(\phi'_* \otimes \mathbb{Q}(\alpha) = 0\). Since \(H_k((P^n)^d, \mathbb{Q})^{S_d} \simeq H_k(SP^d(P^n), \mathbb{Q})\) for any \(d \geq 1\), there is an element \(\tilde{\alpha} \in H_k((P^n)^d, \mathbb{Q})\) such that \(\pi_*(\tilde{\alpha}) = \alpha\), where \(S_d\) is the \(d\)-th symmetric group and \(H_k((P^n)^d, \mathbb{Q})^{S_d}\) is the \(S_d\)-invariant subgroup of \(H_k((P^n)^d, \mathbb{Q})\). The element \(\tilde{\alpha}\) is \(S_d\)-invariant. Set \(\beta := \Delta_*(\tilde{\alpha})\). From the commutative diagram (4), we have \(\pi_*(\beta) = 0\). Since \(\beta\) is \(S_{de}\)-invariant and \(\pi_*(\beta) = 0\), we get \(\beta = 0\) since \(H_k((P^n)^{de}, \mathbb{Q})^{S_{de}} \simeq H_k(SP^{de}(P^n), \mathbb{Q})\) (cf. e.g. [ES]). This implies that \(\tilde{\alpha} = 0\) since \(\Delta_*\) is injective and \(\Delta_*(\tilde{\alpha}) = \beta = 0\). Therefore \(\alpha = \pi_*(\tilde{\alpha}) = 0\), i.e., \(\phi'_* \otimes \mathbb{Q}\) is injective on rational homology groups.

Note that the map \(\phi_e : SP^d(P^n) \to SP^{de}(P^n)\) induces a commutative diagram

\[
(5)\begin{array}{ccc}
\pi_k(SP^d(P^n)) & \xrightarrow{\phi'_*} & \pi_k(SP^{de}(P^n)) \\
\rho & \downarrow & \rho \\
H_k(SP^d(P^n)) & \xrightarrow{\phi'_*} & H_k(SP^{de}(P^n)),
\end{array}
\]

where \(\rho\) are Hurewicz maps.

We claim that if \(k \leq 2d\), then \(\phi'_* : \pi_k(SP^d(P^n)) \to \pi_k(SP^{de}(P^n))\) is injective. First we will show that \(\phi'_* \otimes \mathbb{Q} : \pi_k(SP^d(P^n)) \otimes \mathbb{Q} \to \pi_k(SP^{de}(P^n)) \otimes \mathbb{Q}\) is injective.

Fix \(x_0 \in P^n\). Let \(i : P^n \to SP^d(P^n)\) be the map given by \(i(x) = x + (d - 1)x_0\) and let \(j : SP^d(P^n) \to SP^{de+1}(P^n)\) be induced by the sequence of maps \(SP^d(P^n) \to SP^{d+m}(P^n), y \mapsto y + mx_0\). Then \(i\) induces a commutative diagram

\[
(6)\begin{array}{ccc}
\pi_k(P^n) & \xrightarrow{i_*} & \pi_k(SP^d(P^n)) \\
\rho & \downarrow & \rho \\
H_k(P^n) & \xrightarrow{i_*} & H_k(SP^d(P^n)),
\end{array}
\]

\[
\begin{array}{ccc}
\pi_k(SP^d(P^n)) & \xrightarrow{j_*} & \pi_k(SP^{de}(P^n)) \\
\rho & \downarrow & \rho \\
\pi_k(SP^{de}(P^n)) & \xrightarrow{DT} & H_k(X),
\end{array}
\]

where the dotted map \(DT : \pi_k(SP^d(P^n)) \to H_k(P^n)\) is the Dold-Thom isomorphism. This follows from the fact that, for any connected finite CW complex \(X\) and a fixed point \(x_0 \in X\), the composed map \(\pi_k(X) \xrightarrow{i_*} \pi_k(SP^d(X)) \xrightarrow{DT} H_k(X)\) of the
induced map j_* by the inclusion $j : X = \text{SP}^1(X) \subset \text{SP}^\infty(X)$ and the Dold-Thom map $DT : \pi_k(\text{SP}^\infty(X)) \to H_k(X)$ is the Hurewicz map (cf. [DT]).

Note that $j_* : \pi_k(\text{SP}^d(P^n)) \to \pi_k(\text{SP}^\infty(P^n))$ is an isomorphism for $k \leq 2d$ (cf. [D] or [Mi]). From equation (6), we obtain the injectivity of the Hurewicz map $\rho : \pi_k(\text{SP}^d(P^n)) \to H_k(\text{SP}^d(P^n))$ for $k \leq 2d$ since $i_* \circ DT \circ j_* = \rho$ and the injectivity of i_*. Now the injectivity of $\phi_{e*} \otimes Q : \pi_k(\text{SP}^d(P^n)) \otimes Q \to \pi_k(\text{SP}^{de}(P^n)) \otimes Q$ follows from equation (5) as well as the injectivity of $\rho \otimes Q$ and $\phi_{e*} \otimes Q$. Since

$$\pi_k(\text{SP}^d(P^n)) \cong \pi_k(\text{SP}^{de}(P^n)) \cong \left\{ \begin{array}{ll} \mathbb{Z}, & 0 < k \leq 2d \text{ and } k \text{ even} , \\ 0, & k = 0 \text{ or } k \leq 2d \text{ and } k \text{ odd} \end{array} \right.$$

(cf. [D] or [Mi]), the injectivity of $\phi_{e*} \otimes Q$ implies the injectivity of ϕ_{e*}. □

Remark 5. From the proof of Proposition 4 we obtain that $\phi_{e*} \otimes Q : \pi_k(\text{C}_{0,d}(P^n)) \otimes Q \cong \pi_k(\text{C}_{0,de}(P^n)) \otimes Q$ for all $k \leq 2d$. To see this we note that, for $k \leq 2d$, both $\pi_k(\text{C}_{0,d}(P^n))$ and $\pi_k(\text{C}_{0,de}(P^n))$ are isomorphic to $\pi_k(\text{C}_0(P^n)) \cong H_k(P^n)$. So the injectivity of ϕ_{e*} implies an isomorphism for $\phi_{e*} \otimes Q$.

Lemma 6. There is a commutative diagram

$$\begin{array}{c}
C_{p,d}(P^n) \xrightarrow{\Phi_{p,d,n,e}} C_{p,de}(P^n) \\
\downarrow \Sigma \quad \downarrow \Sigma \\
T_{p+1,d}(P^{n+1}) \xrightarrow{F_{1D}} T_{p+1,de}(P^{n+1}),
\end{array}$$

where $\Phi_{p,d,n,e}$ ($\Phi_{0,d,n,e} = \phi_e$ in Proposition 4) is the composed map

$$C_{p,d}(P^n) \xrightarrow{c} C_{p,d}(P^n) \times \cdots \times C_{p,d}(P^n) \xrightarrow{(c,\ldots,c)} C_{p,de}(P^n),$$

and $D \in \text{Div}_{e}(P^{n+2})$, F_{1D} is the restriction of $F_{1D} : C_{p+1,d}(P^{n+1}) \to C_{p+1,de}(P^{n+1})$.

Proof. Note that the image of the restriction of

$$F_{1D} : C_{p+1,d}(P^{n+1}) \to C_{p+1,de}(P^{n+1})$$

on $T_{p+1,d}(P^{n+1})$ is in $T_{p+1,de}(P^{n+1})$. The remaining part follows from Lemma 5.5 in [L1]. □

Proposition 7. For integers p, d, n, there is an integer $e_{p,d,n} \geq 1$ such that if $e \geq e_{p,d,n}$, then the map $\Phi_{p+1,d,n+1,e} : C_{p+1,d}(P^n) \to C_{p+1,de}(P^{n+1})$ given by $c \mapsto e \cdot c$ induces injections

$$(\Phi_{p+1,d,n+1,e})_* : \pi_k(C_{p+1,d}(P^{n+1})) \to \pi_k(C_{p+1,de}(P^{n+1}))$$

for $k \leq 2d$.

Proof. We prove it by induction. The case that $p = -1$ follows from Proposition 4. We assume that $\Phi_{p,d,n,e} : C_{p,d}(P^n) \to C_{p,de}(P^{n+1})$ defined by $\Phi_{p,d,n,e}(c) = e \cdot c$ induces injections $(\Phi_{p,d,n,e})_* : \pi_k(C_{p,d}(P^n)) \to \pi_k(C_{p,de}(P^n))$ for $k \leq 2d$ and $e \geq e_{p,d,n}$.

Let $\alpha \in \pi_k(C_{p+1,d}(P^{n+1}))$ be an element such that $(\Phi_{p+1,d,n+1,e})_*(\alpha) = 0$, that is, $(F_{1D})_*(\alpha) = 0$. Let $f : S^k \to C_{p+1,d}(P^{n+1})$ be piecewise linear up to homotopy such that $[f] = \alpha$. By assumption, $[F_{1D} \circ f] = 0$.

NOTES ON ALGEBRAIC CYCLES AND HOMOTOPY THEORY 5
By Lemma 3 and Equation 3, we have

\[
\begin{array}{c}
S^k \xrightarrow{g} C_{p,d}(\mathbb{P}^n) \xrightarrow{\Phi_{p,d,n,e}} C_{p,de}(\mathbb{P}^n) \\
\downarrow \Sigma \quad F_D \downarrow \Sigma \\
T_{p+1,d}(\mathbb{P}^{n+1}) \xrightarrow{T_{p+1,de}(\mathbb{P}^{n+1})} \\
S^k \xrightarrow{f} C_{p+1,d}(\mathbb{P}^{n+1}) \xrightarrow{F_{0D}} C_{p+1,de}(\mathbb{P}^{n+1}).
\end{array}
\]

Since \(F_{0D} \) is homotopy to \(F_D : C_{p+1,d}(\mathbb{P}^{n+1}) \to T_{p+1,de}(\mathbb{P}^{n+1}) \) for \(e \geq e_{p+1,d,n} \) (cf. [L1]), we have \([F_D \circ f] = 0 \in \pi_k(T_{p+1,de}(\mathbb{P}^{n+1})) \). By Proposition 2, \(\Sigma^e_1([F_D \circ f]) = 0 \). From the above commutative diagram and the injectivity of \((\Phi_{p,d,n,e})_* \), the map \(f : S^k \to C_{p+1,d}(\mathbb{P}^{n+1}) \) can be lifted to a null homotopy map \(g : S^k \to C_{p,d}(\mathbb{P}^n) \) such that \(\Phi_{p,d,n,e}^*([g]) = \Sigma^e_1([F_D \circ f]) \) and \([f] = [\Sigma g] \). Hence \(\alpha = [f] = 0 \). That is, \((F_{0D})_* = (\Phi_{p+1,d,n+1,e})_* \) is injective for \(k \leq 2d \).

The proof of Theorem 1. The case that \(p = -1 \) has been proved in [L3] and [M1]. By taking limit \(e \to \infty \) in Proposition 3, we get injections \(\pi_k(C_{p+1,d}(\mathbb{P}^{n+1})) \to \pi_k(C_{p+1}(\mathbb{P}^{n+1})) \) for \(k \leq 2d \). On one hand, from the fact that \(\pi_k(C_{p+1}(\mathbb{P}^{n+1})) \) is isomorphic to either \(\mathbb{Z} \) or \(0 \) (cf. [L1]) and the injections above, we obtain \(\pi_k(C_{p+1,d}(\mathbb{P}^{n+1})) \) is isomorphic to either \(\mathbb{Z} \) or \(0 \) for \(k \leq 2d \). On the other hand, the induced map \(i_* : \pi_k(C_{p+1,d}(\mathbb{P}^{n+1})) \to \pi_k(C_{p+1}(\mathbb{P}^{n+1})) \) by equation (4) is surjective for \(k \leq 2d \) (cf. [L1], Theorem 2). Hence \(\pi_k(C_{p+1,d}(\mathbb{P}^{n+1})) \) is isomorphic to \(\pi_k(C_{p+1}(\mathbb{P}^{n+1})) \) for \(k \leq 2d \).

From the fact that the inclusion map \(i : C_{p,d}(\mathbb{P}^n) \subset C_{p}(\mathbb{P}^n) \) in equation (4) induces surjections \(i_* : \pi_k(C_{p,d}(\mathbb{P}^n)) \to \pi_k(C_{p}(\mathbb{P}^n)) \) for \(k \leq 2d \) (cf. [L1]) and

\[
\pi_k(C_{p,(\mathbb{P}^n)}) \cong \pi_k(C_{p}(\mathbb{P}^n)) \cong \begin{cases} \mathbb{Z}, & 0 < k \leq \min\{2d, 2(n-p)\} \\ 0, & \text{all other } k < 2d \end{cases}
\]

we obtain also the injectivity of \(i_* \) for \(k \leq 2d \) since a surjective homomorphism to \(\mathbb{Z} \) is an isomorphism. This completes the proof of Theorem 1.

As applications of Theorem 1 and Lawson’s Complex Suspension Theorem [L1], we get the homotopy and homology groups of \(C_{p,d}(\mathbb{P}^n) \) up to \(2d \).

Corollary 8. The first \(2d+1 \) homotopy groups of \(C_{p,d}(\mathbb{P}^n) \) is given by the formula

\[
\pi_k(C_{p,d}(\mathbb{P}^n)) \cong \begin{cases} \mathbb{Z}, & \text{if } k \leq \min\{2d, 2(n-p)\} \text{ and even,} \\ 0, & \text{all other } k < 2d \end{cases}
\]

Proof. From the proof to Theorem 1 we have \(\pi_k(C_{p,d}(\mathbb{P}^n)) \to \pi_k(C_{p}(\mathbb{P}^n)) \) for \(k \leq 2d \). Recall the fact that \(C_{p}(\mathbb{P}^n) \) is homotopy equivalent to the product \(K(\mathbb{Z},2) \times \cdots \times K(\mathbb{Z},2(n-p)) \) (cf. [L1]), in particular,

\[
\pi_k(C_{p}(\mathbb{P}^n)) \cong \begin{cases} \mathbb{Z}, & \text{if } k \leq 2(n-p) \text{ and even,} \\ 0, & \text{otherwise.} \end{cases}
\]

Corollary 9. The first \(2d+1 \) homology groups of \(C_{p,d}(\mathbb{P}^n) \) is given by the formula

\[
H_k(C_{p,d}(\mathbb{P}^n)) \cong H_k(K(\mathbb{Z},2) \times \cdots \times K(\mathbb{Z},2(n-p)))
\]
for $0 \leq k \leq 2d$ where the right hand side can be computed by using the Künneth formula.

Proof. It also follows from the proof to Theorem 4 and the fact that $C_p(\mathbb{P}^n)$ is homotopy equivalent to the product $K(\mathbb{Z}, 2) \times \cdots \times K(\mathbb{Z}, 2(n-p))$. \hfill \square

4. Etale homotopy for Chow varieties over algebraically closed fields

In this section, we will compute the Etale homotopy groups of Chow varieties over algebraically closed fields. Let \mathbb{P}^n_K be the projective space of dimension n over K, where K is an algebraic closed field of characteristic $\text{char}(K)$. Let l be a prime number which is different from $\text{char}(K)$. Let $C_{p,d}(\mathbb{P}^n)_K$ be the space of effective p-cycles of degree d in \mathbb{P}^n_K.

The notations we use in this section can be found in [F]. Recall that the etale topological type functor $(-)_et$ is a functor from simplicial schemes to pro-simplicial sets; the Bousfield-Kan homotopy inverse limit functor $(\mathbb{Z}/l)_\infty$ maps simplicial sets to simplicial sets; the Bousfield-Kan homotopy inverse limit functor $\text{holim}(\quad)$ maps simplicial sets to topological spaces; and the geometric realization functor $\text{Re}(\quad)$ maps simplicial sets to topological spaces.

Definition 1. Let $|\quad| : (\text{algebraic sets}) \rightarrow (\text{topological spaces})$ be the functor as the composition $\text{Re}(\quad) \circ \text{holim}(\quad) \circ (-)_et$. The k-th etale homotopy group of X_K is defined to be $\pi_k(|X_K|_et)$.

Let $l_0 \subset \mathbb{P}^n_K$ be a fixed p-dimensional linear subspace. For each $d \geq 1$, we consider the closed immersions

$\tilde{i} : C_{p,d}(\mathbb{P}^n_K) \hookrightarrow C_{p,d+1}(\mathbb{P}^n_K)$

defined by $c \mapsto c + l_0$. These immersions induce topological embeddings

$\tilde{i} : |(C_{p,d}(\mathbb{P}^n))_et| \hookrightarrow |(C_{p,d+1}(\mathbb{P}^n))_et|$

(cf. [F], Prop. 2.1).

From this sequence of embeddings we can form the union

$|C_p(\mathbb{P}^n)_et| := \lim_{d \rightarrow \infty} |(C_{p,d}(\mathbb{P}^n))_et|$.

The topology on $|C_p(\mathbb{P}^n)_et|$ is the weak topology for $\{(C_{p,d}(\mathbb{P}^n))_et\}_d^{\infty-1}$. For more general discussion on etale homotopy on spaces of algebraic cycles, the reader is referred to the paper [F].

Our second main result is the following theorem.

Theorem 10. For all n, p and d, the inclusion $\tilde{i} : |(C_{p,d}(\mathbb{P}^n)_et| \hookrightarrow |(C_p(\mathbb{P}^n))_et|$ induced by Equation 7 is $2d$-connected.

Lemma 11. For $k \leq 2d$, we have

$\pi_k(|\text{Sp}^d(\mathbb{P}^n)_et|) = \begin{cases} \mathbb{Z}_l, & \text{if } k \leq 2n \text{ and even}, \\ 0, & \text{if } k = 0 \text{ or } k \geq 2n \text{ or odd.} \end{cases}$

Proof. We need to show that $\pi_k(|\text{Sp}^d(\mathbb{P}^n)_et|) \cong H_k(X, \mathbb{Z}_l)$ for $0 < k \leq 2d$, where $H_k(X, \mathbb{Z}_l)$ is the l-adic homology group of X. First we have $|\text{Sp}^d(\mathbb{P}^n)_et|$ is simply connected for any integer $d \geq 1$. To see this, note that $|\text{Sp}^d(\mathbb{P}^n)_et|$ is homotopy equivalent to $|\text{Sp}^d((\mathbb{P}^n)_et)|$ (cf. the proof of Theorem 4.3 in [F]) and the latter
is simply connected since $|\mathbb{P}_K^n|_\text{et}$ is. Since the inclusion map $\tilde{\varphi} : \mathbb{P}_K^n \to \mathbb{P}_K^n$ is homologically 2d-connected (cf. [F]) and $\pi_1(\mathbb{P}_K^n) = 0$, we obtain the 2d-connectivity of the inclusion map i. That is, $\pi_k(\mathbb{P}_K^n) \cong \pi_k(\mathbb{P}_K^n)$. Now the theorem follows from the fact (cf. [F], Corollary 4.4) that
\[
\pi_k(\mathbb{P}_K^n) = \begin{cases}
\mathbb{Z}_l, & \text{if } 0 < k \leq 2n \text{ and even,} \\
0, & \text{otherwise.}
\end{cases}
\]
\[
\square
\]

Lemma 12. For any integer $e \geq 1$, the map
\[
\tilde{\varphi}_e : C_{0,d}(\mathbb{P}_K^n) \to C_{0,d}(\mathbb{P}_K^n), \quad \tilde{\varphi}_e(c) = e \cdot c
\]
induces injections $\tilde{\varphi}_{e*} : \pi_k([C_{0,d}(\mathbb{P}_K^n)]) \to \pi_k([C_{0,d}(\mathbb{P}_K^n)])$ for $k \leq 2d$.

Proof. Note that there is a bi-continuous algebraic morphism from $C_{0,d}(\mathbb{P}_K^n)$ to \mathbb{P}_K^n (cf. [F]), we need to show $\tilde{\varphi}_{e*} : \pi_k([\mathbb{P}_K^n]) \to \pi_k([\mathbb{P}_K^n])$ is for $k \leq 2d$. Now the proof is word for word from Proposition 4 except that the homotopy groups (resp. singular homology groups) are replaced by the étale homotopy groups (resp. l-adic homology groups), \mathbb{Z} (resp. \mathbb{Q}) are replaced by \mathbb{Z}_l (resp. \mathbb{Q}_l) and the Dold-Thom theorem is replaced by the l-adic analogous version proved by Friedlander [F].

\[
\square
\]

Lemma 13. For integers p, d, n, there is an integer $e_{p,d,n} \geq 1$ such that if $e \geq e_{p,d,n}$, then the map $\tilde{\Phi}_{p+1,d,n+1,e} : C_{p+1,d}(\mathbb{P}_K^n) \to C_{p+1,d}(\mathbb{P}_K^n)$ given by $c \mapsto e \cdot c$ induces injections
\[
(\tilde{\Phi}_{p+1,d,n+1,e})_* : \pi_k([C_{p+1,d}(\mathbb{P}_K^n)_{\text{et}}]) \to \pi_k([C_{p+1,d}(\mathbb{P}_K^n)_{\text{et}}])
\]
for $k \leq 2d$.

Proof. The case that $K = \mathbb{C}$ has been proved in Proposition 7. The analogous argument is given below.

Note that the map $\tilde{\Phi}_{p+1,d,n+1,e} : C_{p+1,d}(\mathbb{P}_K^n) \to C_{p+1,d}(\mathbb{P}_K^n)$ induced a continuous map (also denote by $\tilde{\Phi}_{p+1,d,n+1,e}$) $\tilde{\Phi}_{p+1,d,n+1,e} : [C_{p+1,d}(\mathbb{P}_K^n)_{\text{et}}] \to [C_{p+1,d}(\mathbb{P}_K^n)_{\text{et}}]$ between topological spaces (cf. [F], Prop. 2.1).

We also prove it by induction. The case that $p = -1$ follows from Lemma 12. We assume that $\Phi_{p,d,n,e} : C_{p,d}(\mathbb{P}_K^n) \to C_{p,d}(\mathbb{P}_K^n)$ defined by $\Phi_{p,d,n,e}(c) = e \cdot c$ induces injections $\Phi_{p,d,n,e} : \pi_k([C_{p,d}(\mathbb{P}_K^n)_{\text{et}}]) \to \pi_k([C_{p,d}(\mathbb{P}_K^n)_{\text{et}}])$ for $k \leq 2d$ and $e \geq e_{p,d,n}$.

Let $\alpha \in \pi_k([C_{p+1,d}(\mathbb{P}_K^n)_{\text{et}}])$ be an element such that $\Phi_{p+1,d,n+1,e}((\alpha)) = 0$, that is, $(F_{p,d,n+1,e})_\ast(\alpha) = 0$. Let $\gamma : C_{p+1,d}(\mathbb{P}_K^n)_{\text{et}} \to \pi_k([C_{p+1,d}(\mathbb{P}_K^n)_{\text{et}}])$ be piecewise linear up to homotopy such that $[\gamma] = \alpha$. By assumption, $[F_{p,d,n+1,e} \circ \gamma] = 0$.

By Proposition 3.5 in [F] and the algebraic version of Equation (3), we have
\[
\begin{align*}
S^k & \xrightarrow{g} [C_{p,d}(\mathbb{P}_K^n)_{\text{et}}] \xrightarrow{\Phi_{p,d,n,e}} [C_{p,d}(\mathbb{P}_K^n)_{\text{et}}] \xrightarrow{\Sigma} [T_{p+1,d}(\mathbb{P}_K^n)_{\text{et}}] \\
& \xrightarrow{F_{p+1,d,n+1,e}} [T_{p+1,d}(\mathbb{P}_K^n)_{\text{et}}] \xrightarrow{\Sigma} [C_{p+1,d}(\mathbb{P}_K^n)_{\text{et}}] \\
S^k & \xrightarrow{f} [C_{p+1,d}(\mathbb{P}_K^n)_{\text{et}}] \xrightarrow{F_{p+1,d,n+1,e}} [C_{p+1,d}(\mathbb{P}_K^n)_{\text{et}}].
\end{align*}
\]
Since F_{0D} is homotopy to $F_D : |(C_{p+1,d}(\mathbb{P}^{n+1})_K)_{et}| \to |(T_{p+1,d,c}(\mathbb{P}^{n+1})_K)_{et}|$ for $e \geq \bar{e}_{p+1,d,n}$ (cf. [F]), we have $[F_D \circ f] = 0 \in \pi_k((T_{p+1,d,c}(\mathbb{P}^{n+1})_K)_{et})$. By the algebraic version of Proposition 2 (cf. [F], Prop. 3.2), $\Sigma^{-1}_e((F_D \circ f)) = 0$. From the above commutative diagram and the injectivity of $(\Phi_{p,d,n,e})_*$, the map $f : S^k \to |(C_{p+1,d}(\mathbb{P}^{n+1})_K)_{et}|$ can be lifted to a null homotopy map $g : S^k \to |(C_{p,d}(\mathbb{P}^{n})_K)_{et}|$ such that $(\Phi_{p,d,n,e})_*([g]) = \Sigma^{-1}_e((F_D \circ f))$ and $[f] = [\Sigma \circ g]$. Hence $\alpha = [f] = 0$. That is, $(F_{0D})_* = (\Phi_{p+1,d,n+1,e})_*$ is injective for $k \leq 2d$.

The proof of Theorem 11. The case that $p = -1$ has been proved in [13], [14] and [F]. By taking limit $e \to \infty$ in Lemma 13 we get injections $\pi_k((C_{p+1,d}(\mathbb{P}^{n+1})_K)_{et}) \to |(C_{p+1}(\mathbb{P}^{n+1})_K)_{et}|$ for $k \leq 2d$. On one hand, from the fact that $\pi_k((C_{p+1}(\mathbb{P}^{n+1})_K)_{et})$ is isomorphic to either \mathbb{Z}_l or 0 (cf. [F]) and the injections above, we obtain $\pi_k((C_{p+1}(\mathbb{P}^{n+1})_K)_{et})$ is isomorphic to either \mathbb{Z}_l or 0 for $k \leq 2d$. On the other hand, the induced map $\tilde{i}_* : \pi_k((C_{p+1,d}(\mathbb{P}^{n+1})_K)_{et}) \to \pi_k((C_{p+1}(\mathbb{P}^{n+1})_K)_{et})$ by equation (2) is surjective for $k \leq 2d$. To see this, consider the commutative diagram

\[
\begin{array}{ccc}
|(C_{0,d}(\mathbb{P}^{n})_K)_{et}| & \xrightarrow{\Sigma^p} & |(C_{0,d}(\mathbb{P}^{n+p})_K)_{et}| \\
\downarrow & & \downarrow \tilde{i} \\
|(C_{0}(\mathbb{P}^{n})_K)_{et}| & \xrightarrow{\Sigma^p} & |(C_{p}(\mathbb{P}^{n+p})_K)_{et}| \\
\end{array}
\]

where, $\Sigma^p := \Sigma \circ \Sigma \circ \cdots \circ \Sigma$ is the suspension for p times. By the argument in the proof of Lemma 13 we know that the left vertical arrow in equation (8) is a $2d$-connected mapping, and by Theorem 4.2 in [F] the lower horizontal arrow is a homotopy equivalence. This implies the map induced by \tilde{i} is surjective on homotopy groups for $k \leq 2d$. Hence $\pi_k((C_{p+1,d}(\mathbb{P}^{n+1})_K)_{et})$ is isomorphic to $\pi_k((C_{p+1}(\mathbb{P}^{n+1})_K)_{et})$ for $k \leq 2d$.

By this fact that the inclusion map $\tilde{i} : |(C_{p,d}(\mathbb{P}^{n})_K)_{et}| \subset |(C_{p}(\mathbb{P}^{n})_K)_{et}|$ in equation (2) induces surjections $i_* : \pi_k((C_{p,d}(\mathbb{P}^{n})_K)_{et}) \to \pi_k((C_{p}(\mathbb{P}^{n})_K)_{et})$ for $k \leq 2d$ and $\pi_k((C_{p,d}(\mathbb{P}^{n})_K)_{et}) \cong \pi_k((C_{p}(\mathbb{P}^{n})_K)_{et}) \cong \left\{ \begin{array}{ll} \mathbb{Z}_l, & \text{for } 0 < k \leq \min\{2d, 2(n-p)\} \\
0, & \text{all other } k \leq 2d, \end{array} \right.$

we obtain also the injectivity of i_* for $k \leq 2d$ since a surjective homomorphism to from \mathbb{Z}_l to \mathbb{Z}_l is an isomorphism. This completes the proof of Theorem 13. □

As an application of Theorem 11 and the Algebraic Suspension Theorem [F], we get the homotopy groups of $|(C_{p,d}(\mathbb{P}^{n})_K)_{et}|$ up to $2d$.

Corollary 14. The first $2d + 1$ etale homotopy groups of $C_{p,d}(\mathbb{P}^{n})_K$ are given by the formula

$\pi_k((C_{p,d}(\mathbb{P}^{n})_K)_{et}) \cong \left\{ \begin{array}{ll} \mathbb{Z}_l, & \text{if } k \leq \min\{2d, 2(n-p)\} \text{ and even}, \\
0, & \text{all other } k \leq 2d. \end{array} \right.$
Proof. From the proof to Theorem 10, we have
\[\pi_k(\langle C_{p,d}^\ast(\mathbb{P}^n)_K \rangle_{et}) \to \pi_k(\langle C_p^\ast(\mathbb{P}^n)_K \rangle_{et}) \]
for \(k \leq 2d \). Recall the fact that \(|C_p^\ast(\mathbb{P}^n)_K \rangle_{et} \) is homotopy equivalent to the product
\[K(\mathbb{Z}_l, 2) \times \cdots \times K(\mathbb{Z}_l, 2(n-p)) \] (cf. [F]), in particular,
\[\pi_k(\langle C_p^\ast(\mathbb{P}^n)_K \rangle_{et}) \cong \begin{cases}
\mathbb{Z}_l, & \text{if } k \leq 2(n-p) \text{ and even,} \\
0, & \text{otherwise.}
\end{cases} \]

\[\square \]

References

[D] A. Dold, *Homology of symmetric products and other functors of complexes*. Ann. of Math. (2) 68 1958 54–80.

[DT] A. Dold and R. Thom, *Quasifaserungen und unendliche symmetrische Produkte*. (German) Ann. of Math. (2) 67 1958 239–281.

[ES] E. Javier Elizondo and V. Srinivas, Some remarks on Chow varieties and Euler-Chow series. J. Pure Appl. Algebra 166 (2002), no. 1-2, 67–81.

[F] E. Friedlander, *Algebraic cycles, Chow varieties, and Lawson homology*. Compositio Math. 77 (1991), no. 1, 55–93.

[L1] H. B. Lawson, *Algebraic cycles and homotopy theory*. Ann. of Math. 129 (1989), 253-291.

[L2] H. B. Lawson, *Spaces of algebraic cycles*. pp. 137-213 in *Surveys in Differential Geometry*, 1995 vol.2, International Press, 1995.

[Mi] R.J. Milgram, *The homology of symmetric products*. Trans. Amer. Math. Soc. 138 1969 251–265.

[W] George W. Whitehead, *Elements of homotopy theory*. Graduate Texts in Mathematics, 61. Springer-Verlag, New York-Berlin, 1978. xxi+744 pp. ISBN: 0-387-90336-4