Water-Soluble Copper Complex Catalyzed Solvent-Free Green Oxidation of Alkylarenes with tert-Butyl Hydroperoxide

Abdelaziz Nait Ajjou*, Ateeq Rahman
Department of Chemistry and Biochemistry, University of Moncton, Moncton, Canada
Email: *naitaja@umoncton.ca

Received April 2, 2013; revised May 4, 2013; accepted May 27, 2013

Copyright © 2013 Abdelaziz Nait Ajjou, Ateeq Rahman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Different benzylic compounds were efficiently oxidized to the corresponding ketones with aqueous 70% tert-butyl hydroperoxide (TBHP) and the catalytic system composed of CuCl₂·2H₂O and 2,2’-biquinoline-4,4’-dicarboxylic acid dipotassium salt (BQC). The catalytic system CuCl₂/BQC/TBHP allows obtaining high yields at room temperature under solvent-free conditions. The interest of this system lies in its cost effectiveness and its benign nature towards the environment. Benzylic tert-butylperoxy ethers and benzylic alcohols were observed and suggested as the reaction intermediates. Analysis of organic products by atomic absorption did not show any contamination with copper metal. In terms of efficiency, CuCl₂/BQC system is comparable or superior to the most of the catalytic systems described in the literature and which are based on toxic organic solvent.

Keywords: Oxidation; Water-Soluble Catalyst; Copper Chloride; tert-Butyl Hydroperoxide; Alkylarenes; 2,2’-Biquinoline-4,4’-Dicarboxylic Acid Dipotassium Salt

1. Introduction

Ketones are one of the most important classes of organic compounds. They are used as solvents and precursors to a variety of polymers and biologically active compounds such as pharmaceuticals, flavors, agrochemicals, and fragrances. Furthermore, the occurrence of ketone moiety is widespread among natural products. Ketones are frequently prepared by different methods including, Friedel-Crafts acylation of aromatics, ozonolysis, hydration of alkynes, Weinreb-Nahn synthesis [1], Kornblum-DeLaMare rearrangement [2], cross-coupling between dialkylcuprate and acetyl chlorides, Reaction of organolithium and Grignard with nitriles, oxidation of alcohols including Oppenauer-type reaction [3], and oxidation of methylenes.

The oxidation of hydroxyl and methylene groups to the corresponding carbonyl moieties remains one of the most fundamental and indispensable reactions in organic synthesis [4,5]. For such processes, the utilization of at least stoichiometric amounts of often toxic oxidants, especially chromium (VI) reagents, remains widespread [6]. Safety hazards associated with these oxidants and their toxic by-products, and the difficulty to work-up the reaction mixtures are the major problems of such processes. As a consequence for the increasing demand for cleaner, efficient, and environmentally friendly oxidations, different catalytic methods using small amounts of metallic derivatives and clean oxidants have been developed [4,7,8]. Thanks to its price relatively low and its reduced form which can be recycled, tert-butyl hydroperoxide (TBHP) has been studied for benzylic oxidation in combination with different transition-metal catalysts such as Cr, Co, Mn, Fe, Ru, Rh, Au, and Cu [7-27]. Despite the economic and environmental benefits of copper-based catalysts compare to the other transition metals that are either toxic or very expensive, their use for benzylic oxidations is not abundant [28,29]. With all these metals, the vast majority of catalytic processes are, unfortunately, performed in costly and toxic organic solvents. Furthermore, in the homogeneous processes, the separation of the catalysts from the reaction products and their quantitative recovery in an active form are cumbersome. Very
few organic solvent-free processes have been reported for benzylic oxidation with TBHP [26,27]. However, these processes are based on high temperatures and are limited to very few substrates. Aqueous organometallic catalysis that was emerged as an active field of research in green chemistry is an excellent approach to overcome these drawbacks [30-33]. The use of water as solvent is important for economical, safety, and environmental reasons. The water-soluble catalyst which operates and resides in water is easily separated from the reaction products by simple decantation. In addition, the products are not contaminated with traces of metal catalyst, and the use of organic solvents, such as benzene and chlorinated hydrocarbons is circumvented. Despite the evident ecological and economical advantages of aqueous phase catalysis, to the best of our knowledge there are no reports concerning selective oxidation of alkylarenes to benzylic ketones in water at room temperature and based on copper catalysts. In the past years, we developed different catalytic transformations in water including the hydration of nitriles to the corresponding amides catalyzed by [Rh(COD)Cl]2/P(m-C6H4SO3Na)3 (TPPTS) [34], the transfer hydrogenation of aldehydes and ketones with isopropanol catalyzed by water-soluble rhodium complexes [35], Oppenauer-type oxidation of alcohols [36,37], and reductive amination of ketones [38]. We disclosed also the water-soluble CuCl2/BQC as a highly effective catalyst for the oxidation of secondary benzylic, allylic, propargylic, and 1-heteroaryl alcohols with TBHP [39,40], and for the oxidation of alkynes to the corresponding ynones [41]. The catalytic system is very cheap, stable and can be recycled several times without significant loss of activity. The above mentioned advantages of CuCl2/BQC coupled with those of TBHP prompted us to investigate the catalytic activity of CuCl2/BQC/TBHP system for the oxidation of benzylic methylenes to the corresponding carbonyl moities. In this paper we are pleased to report our results regarding this unprecedented, general, and highly efficient organic solvent-free catalytic oxidation of alkylarenes.

2. Experimental

2.1. Materials and Instruments

All the substrates, Copper chloride dihydrate, 2,2'-biquinoline-4,4'-dicarboxylic acid dipotassium salt (BQC), tetrabutylammonium chloride (TBAC), sodium carbonate, and aqueous 70% tert-butyl hydroperoxide were purchased from Aldrich Chemical Co. and used without further purification.

Routine NMR measurements were performed on a Bruker AC-200 spectrometer at 200 MHz and 50 MHz, respectively, for 1H and 13C, using TMS as internal standard and CDCl3 as solvent.

2.2. Typical Procedure for the Oxidation of Alkylarenes

Into an open 25 mL round-bottom flask charged with distilled water (5 mL), CuCl2·2H2O (0.02 mmol), Na2CO3 (0.14 mmol), and BQC (0.02 mmol), was added TBAC (0.06 mmol). The green-blue solution was stirred for 5 minutes then the substrate (2 mmol) was introduced. The purple mixture was allowed to react for 17 hours at room temperature. At the end of the reaction, the mixture is still purple. The products and substrate, which are not soluble in water, were extracted three times with ethyl acetate (20 mL). The combined organic layers were dried (MgSO4), evaporated to dryness, and then analyzed by thin layer chromatography, 1H NMR and 13C NMR. Conversions and yields were determined after the reaction mixtures were purified using column chromatography (silica gel) with a gradient of petroleum ether/ethyl acetate (100 to 95/5) as the eluant.

3. Results and Discussion

In our preliminary experiments we investigated the oxidation of ethylbenzene (1). Thus, the oxidation of 1 (2 mmol) with aqueous 70% tert-butyl hydroperoxide (2 equivalents, 4 mmol) in the presence of CuCl2·2H2O (0.02 mmol), BQC (0.02 mmol), tetrabutylammonium chloride (0.06 mmol), and Na2CO3 (0.14 mmol) in distilled water, proceeds smoothly at room temperature, will full conversion, affording acetophenone (79%), 1-tert-butylperoxy-ethylbenzene (11%), and 1-phenylethanol with 10% yield (Table 1, entry 1). The catalytic activity and yields were not affected by scaling up the oxidation to a gram-scale of substrate (Table 1, entry 2). When the reaction was performed using 3 and 4 equivalents of TBHP, the amounts of acetophenone collected increased in detriment of 1-tert-butylperoxy-ethyl-benzene and 1-phenylethanol which decreased markedly, and 98% yield was achieved with 4 equivalents of TBHP (Table 1, entries 3 and 4). Since we demonstrated in our previous works that the catalytic system can be recycled efficiently for the oxidation of alcohols [39] and propargylic methylenes [41], no recycling experiments have been attempted in this project. The analysis of organic products by atomic absorption, however, did not show any contamination of acetophenone with copper.

To evaluate the synthetic potential of CuCl2/BQC system, various alkylarenes were subjected to the oxidation with two to four equivalents of aqueous 70% TBHP. Thus, indane (2), tetralin (3), fluorene (4), diphenylmethane (5), deoxybenzoin (6), 6-methoxytetralin (7), and phthalan (8) were studied, and the best results are summarized in Table 2. The oxidation of benzylic me
thylene proceeded smoothly to carbonyl moieties with excellent yields in most cases. As illustrated in Tables 1 and 2, ketones were obtained along with small amounts of either benzylic tert-butyl peroxy ethers, benzylic alcohols, or both, except in the case of deoxybenzoin (Table 2, entry 10). Such compounds have been proven as reaction intermediates for benzylic oxidations of alkylarenes with TBHP [7,8,11,16,25,28,42-43]. When the oxidation of indane was performed without catalytic amount of Na₂CO₃ acetophenone was obtained with only 64% yield (Table 2, entry 3). As we have previously demonstrated the absence of Na₂CO₃ is prejudicial to oxidation process

Table 1. Oxidation of ethylbenzene (1) with aqueous 70%TBHP catalyzed by CuCl₂·2H₂O/BQCₕa.

Entry	TBHP (equiv)	Conversion (%)	\begin{array}{c} \text{Ph} \\ \text{CH₃} \end{array} & \begin{array}{c} \text{O} \\ \text{O} \end{array} & \begin{array}{c} \text{Ph} \\ \text{CH₃} \end{array} & \begin{array}{c} \text{O} \\ \text{O} \end{array} & \begin{array}{c} \text{Ph} \\ \text{CH₃} \end{array}		
1	2	100	79	11	10
2ₕ	2	100	76	12	10
3	3	100	84	8	6
4	4	100	98	Traces	Traces

*Reaction conditions: Ethylbenzene (2 mmol), BQC (0.02 mmol), CuCl₂·2H₂O (0.02 mmol), Na₂CO₃ (0.14 mmol), TBAC (0.06 mmol), aqueous 70% TBHP (4 to 8 mmol), water (5 mL), RT, 17 hours. *The reaction was up scaled 5 times.

Table 2. Oxidation of various alkylarenes with aqueous 70% TBHP catalyzed by CuCl₂·2H₂O/BQCₕa.

Entry	Substrate	TBHP (equiv)	Conversion (%)	\begin{array}{c} \text{Ar} \\ \text{R} \end{array} & \begin{array}{c} \text{O} \\ \text{O} \end{array} & \begin{array}{c} \text{Ar} \\ \text{R} \end{array} & \begin{array}{c} \text{O} \\ \text{O} \end{array} & \begin{array}{c} \text{Ar} \\ \text{R} \end{array}		
1	2	100	84	79	11	10
2	3	100	76	12	10	
3ₕ	3	100	84	8	6	
4	4	100	98	Traces	Traces	

*Reaction conditions: Substrate (2 mmol), BQC (0.02 mmol), CuCl₂·2H₂O (0.02 mmol), Na₂CO₃ (0.14 mmol), TBAC (0.06 mmol), aqueous 70% TBHP (4 to 8 mmol), water (5 mL), RT, 17 hours. *The reaction was performed without Na₂CO₃. *2,3-Dihydro-1,4-naphthoquinone was also obtained in 6% yield. *Ratio of 6-Methoxy-1-tetralone/7-methoxy-1-tetralone. *A mixture of 1-tert-butyl peroxy-6-methoxytetralin and 1-tert-butyl peroxy-7-methoxytetralin was obtained. *A mixture of 6-methoxy-1,2,3,4-tetrahydro-naphthalen-1-ol and 7-methoxy-1,2,3,4-tetrahydro-naphthalen-1-ol was obtained. *6-Methoxy-2,3-dihydro-1,4-naphthoquinone was also obtained in 12% yield. *Other products (intermediates) were observed in H¹NMR spectrum.
since it allows keeping CuCl₂/BQC system in its water-soluble active form [39]. Tetralin afforded, with 4 equivalents of TBHP, α-tetralone in 77% yield, tert-butylperoxy ether (10%), and 6% of 2,3-dihydro-1,4-naphthoquinone. The latter, as an over-oxidation product, was not formed with stoichiometric amount (2 equivalents) of TBHP (Table 2, entries 4 and 5). This dione was also observed in the case of Rh₂(cap)₄/anhydrous TBHP system [16]. 1,4-naphthoquinone that was formed with different chromium catalysts [8], was not detected with our system. 6-methoxytetralin behaves almost in same manner as tetralin. Using 2 equivalents of TBHP, mono ketones 6-methoxy-1-tetralone and 7-methoxy-1-tetralone were isolated respectively in 39 and 17% yields, along with the corresponding peroxides and alcohols, and no over-oxidation products were detected (Table 2, entry 11). Mixture of mono ketones with different ratios have been reported with CrO₃/TBHP [11-12] and Rh₂(cap)₄/anhydrous TBHP [16] systems. By increasing the amount of TBHP to 4 equivalents, yields of mono ketons did not increase significantly. However, mono ketones ratio changed to 50/8 and 6-methoxy-2,3-dihydro-1,4-naphthoquinone was isolated in 12% yield (Table 2, entry 12). The oxidation of phthalan with 2 equivalents of TBHP afforded phthalalde in 70% yield, with full conversion (Table 2, entry 13). The other products according to the analysis of the crude reaction mixture by H¹ NMR, are probably reaction intermediates mainly tert-butylperoxy ether. A similar intermediate was obtained in the case of the oxidations of isochroman with Rh₂(cap)₄/anhydrous TBHP [16]. No increase in the yields of phthalide was observed with longer reaction time, more TBHP, or by increasing reaction temperature.

The synthetic utility of our system is illustrated in Table 3 where our data are compared with those of other homogeneous or heterogeneous catalytic systems described in the literature. The comparison is limited to the oxidation based on the use of an excess of TBHP (at least two equivalents to substrate), and only yields of mono ketones are indicated. In terms of efficiency, our system...
is comparable or superior to the most of the catalytic systems described. For example, oxidation of deoxybenzoin with our system led to benzil with 94% yield, while Cr-PILC [9] system is completely inactive (Table 3, entries 1 and 2). All these catalytic systems require the use of one or more of the following conditions: toxic organic solvent, high temperature, anhydrous TBHP, or catalyst that may be toxic, expensive or difficult to synthesize. With regard to economic and environmental issues, it is largely beneficial to use our system based on CuCl₂·2H₂O and BQC which are available commercially, cheap cost, and relatively benign. Our system is even more interesting since the ligand BQC (2,2'-biquinoline-4,4'-dicarboxylic acid dipotassium salt) is cheaper than the corresponding parent ligand 2,2'-biquinoline. From Aldrich Chemical Co., BQC and 2,2'-biquinoline cost 8485 and 12,994 Canadian dollars per mole, respectively.

4. Conclusion

In conclusion, the catalytic system composed of CuCl₂·2H₂O and 2,2’-biquinoline-4,4’-dicarboxylic acid dipotassium salt (BQC), was found to be highly efficient for the selective oxidation of alkyarenes to the corresponding ketones, with aqueous 70% tert-butyl hydroperoxide at room temperature, under organic solvent-free conditions. This very simple catalytic system is cheap and environmentally friendly.

5. Acknowledgements

We are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) and to the Faculté des Études Supérieures et de la Recherche (FESR) of the Université de Moncton for financial support of this research.

REFERENCES

[1] S. Nahm and S. M. Weinreb, “N-Methoxy-N-Methylamides as Effective Acylating Agents,” Tetrahedron Letters, Vol. 22, No. 39, 1981, pp. 3815-3818. doi:10.1016/S0040-4039(01)91316-4

[2] N. Kornblum and H. E. DeLaMare, “The Base Catalyzed Decomposition of a Dialkyl Peroxide,” Journal of The American Chemical Society, Vol. 73, No. 2, 1951, pp. 880-881. doi:10.1021/ja01146a542

[3] C. F. de Graauw, J. A. Peters, H. van Bekkum and J. Huskens, “Meerwein-Ponndorf-Verley Reductions and Oppenauer Oxidations: An Integrated Approach,” Synthesis, Vol. 1994, No. 10, 1994, pp. 1007-1017.

[4] R. A. Sheldon and J. K. Kochi, “Metal-Catalyzed Oxidations of Organic Compounds,” Academic Press, New York, 1981.

[5] M. Hudlicky, “Oxidations in Organic Chemistry,” American Chemical Society, Washington DC, 1990.

[6] G. Cainelli and G. Cardillo, “Chromium Oxidations in Organic Chemistry,” Springer, Berlin, 1984.

[7] J. Muzart, “Chromium-Catalyzed Oxidations in Organic Synthesis,” Chemical Reviews, Vol. 92, No. 1, 1992, pp. 113-140. doi:10.1021/cr00009a005

[8] J. Muzart, “Homogeneous Cr VI-Catalyzed Benzylic, Allylic and Propargylic Oxidations by tert-Butyl Hydroperoxide,” Mini-Reviews in Organic Chemistry, Vol. 6, No. 1, 2009, pp. 9-20. doi:10.2174/157019309787316120

[9] B. M. Choudary, A. D. Prasad, V. Bhuma and V. Swapna, “Chromium-Pillared Clay as a Catalyst for Benzylic Oxidation and Oxidative Deprotection of Benzyl Ethers and Benzylamines: A Simple and Convenient Procedure,” The Journal of Organic Chemistry, Vol. 57, No. 22, 1992, pp. 5841-5844. doi:10.1021/jo00048a013

[10] J. Muzart and A. N’Ait Ajjou, “Chromium-Promoted Benzylic Oxidations by tert-Butyl Hydroperoxide: A New Catalyst and a Comparison of the Different Procedures,” Synthetic Communications, Vol. 23, No. 15, 1993, pp. 2113-2118. doi:10.1080/00397919308018604

[11] S. Boitsov, A. Riahi and J. Muzart, “Chromium(VI) Oxidation and Oxidative Deprotection of Benzyl Ethers and Benzylamines: A Simple and Convenient Procedure,” Comptes Rendus de l’Académie des Sciences-Series IIC-Chemistry, Vol. 3, No. 9, 2000, pp. 747-750. doi:10.1016/S1387-1609(00)01156-7

[12] J. Muzart, “Practical Chromium VI Oxidation Using tert-Butyl Hydroperoxide,” Tetrahedron Letters, Vol. 28, No. 19, 1987, pp. 2131-2132. doi:10.1016/S0040-4039(00)96061-1

[13] Z. Lounis, A. Riahi, F. Djafrì and J. Muzart, “Chromium-Exchanged Zeolite (Cr₃-ZSM-5) as Catalyst for Alcohol Oxidation and Benzyl Oxidation with t-BuOOH,” Applied Catalysis A: General, Vol. 309, No. 2, 2006, pp. 270-272. doi:10.1016/j.apcata.2006.05.015

[14] M. Selvaraj and C. S. Ha, “Highly Selective Synthesis of Enones from Benzylic Compounds over CrSBA-15,” Catalysis Today, Vol. 175, No. 1, 2011, pp. 546-551. doi:10.1016/j.cattod.2011.04.011

[15] M. Selvaraj, D. W. Park, S. Kawi and I. Kim, “Selective Synthesis of Benzophenone over Two-Dimensional Meso-structured CrSBA-15,” Applied Catalysis A: General, Vol. 415-416, 2012, pp. 17-21. doi:10.1016/j.apcata.2011.11.031

[16] A. J. Catino, J. M. Nichols, H. Choi, S. Gottipamula and M. P. Doyle, “Benzyl Oxidation Catalyzed by Dirhodium(II,III) Caprolactamate,” Organic Letters, Vol. 7, No. 23, 2005, pp. 5167-5170. doi:10.1021/ol0520020

[17] S-I. Murahashi, N. Komiya, Y. Oda, T. Kuwabara and T. Naota, “Ruthenium-Catalyzed Oxidation of Alkanes with tert-Butyl Hydroperoxide and Peracetic Acid,” The Journal of Organic Chemistry, Vol. 65, No. 26, 2000, pp. 9186-9193. doi:10.1021/jo001348f

[18] Y. Bonvin, et al., “Bismuth-Catalyzed Benzylic Oxidations with tert-Butyl Hydroperoxide,” Organic Letters, Vol. 7, No. 21, 2005, pp. 4549-4552. doi:10.1021/ol051765k

[19] M. Nakanishi and C. Bolm, “Iron-Catalyzed Benzylic Oxidation with Aqueous tert-Butyl Hydroperoxide,” Advanced Synthesis & Catalysis, Vol. 349, No. 6, 2007, pp. 112-115.
A. N. AJJOU, A. RAHMAN

41

861-864. doi:10.1002/adsc.200600553

[20] A. Dhakshinamurthi, M. Alvaro and H. Garcia, “Metal Organic Frameworks as Efficient Heterogeneous Catalysts for the Oxidation of Benzyl Compounds with tert-Butylhydroperoxide,” Journal of Catalysis, Vol. 267, No. 1, 2009, pp. 1-4. doi:10.1016/j.jcat.2009.08.001

[21] H. Li, Z. Li and Z. Shi, “Gold-Catalyzed Benzyl Oxidation to Carbonyl Compounds,” Tetrahedron, Vol. 65, No. 9, 2009, pp. 1856-1858. doi:10.1016/j.tet.2008.12.055

[22] A. S. Burange, S. R. Kale and R. V. Jayaram, “Oxidation of Alkyl Aromatics to Ketones by tert-Butyl Hydroperoxide on Manganese Dioxide Catalyst,” Tetrahedron Letters, Vol. 53, No. 24, 2012, pp. 2989-2992. doi:10.1016/j.tetlet.2012.03.091

[23] M. Rogovin and R. Neumann, “Silicate Xerogels Containing Cobalt as Heterogeneous Catalysts for the Side-Chain Oxidation of Alkyl Aromatic Compounds with tert-Butyl Hydroperoxide,” Journal of Molecular Catalysis A: Chemical, Vol. 138, No. 2-3, 1999, pp. 315-318. doi:10.1016/S1381-1169(98)00076-6

[24] M. Jurado-Gonzalez, A. C. Sullivan and J. R. H. Wilson, “Allylic and Benzylic Oxidation Using Cobalt(II) Alkyl Phosphonate Modified Silica,” Tetrahedron Letters, Vol. 44, No. 22, 2003, pp. 4283-4286. doi:10.1016/S0040-4039(03)00833-5

[25] C. Wang, Y. Zhang, B. Yuan and J. Zhao, “Synthesis, Single Crystal Structures and Efficient Catalysis for Tetralin Oxidation of Two Novel Complexes of Cu(II) with 2-Aminomethyl Pyridine,” Journal of Molecular Catalysis A: Chemical, Vol. 333, No. 1-2, 2010, pp. 173-179. doi:10.1016/j.molcata.2010.10.014

[26] S. J. Singh and R. V. Jayaram, “Oxidation of Alkylaromatics to Benzyl Ketones Using TBHP as an Oxidant over LaMO3 (M = Cr, Co, Fe, Mn, Ni) Perovskites,” Catalysis Communications, Vol. 10, No. 15, 2009, pp. 2004-2007. doi:10.1016/j.catcom.2009.07.018

[27] M. Ghiaci, F. Molaie, M. E. Sedaghat and N. Dorostkar, “Metalloporphyrin Covalently Bound to Silica. Preparation, Characterization and Catalytic Activity in Oxidation of Ethyl Benzene,” Catalysis Communications, Vol. 11, No. 8, 2010, pp. 694-699. doi:10.1016/j.catcom.2010.01.023

[28] G. Rothenberg, L. Feldberg, H. Wiener and Y. Sasson, “Copper-Catalyzed Homolytic and Heterolytic Benzyl and Alkyl Oxidation Using tert-Butyl Hydroperoxide,” Journal of the Chemical Society, Perkin Transactions, Vol. 2, No. 11, 1998, pp. 2429-2434.

[29] T. Punniyamurthy and L. Rout, “Recent Advances in Copper-Catalyzed Oxidation of Organic Compounds,” Coordination Chemistry Reviews, Vol. 252, No. 1-2, 2008, pp. 134-154. doi:10.1016/j.ccr.2007.04.003

[30] B. Cornils, “Industrial Aqueous Biphasic Catalysis: Status and Directions,” Organic Process Research & Development, Vol. 2, No. 2, 1998, 121-127. doi:10.1021/op970057e

[31] B. Cornils and W. A. Herrmann, “Applied Homogeneous Catalysis with Organometallic Compounds,” 2nd Edition, Wiley-VCH, Weinheim, 2002.

[32] F. Joó and Á. Kátó, “Recent Developments in Aqueous Organometallic Chemistry and Catalysis,” Journal of Molecular Catalysis A: Chemical, Vol. 116, No. 1-2, 1997, pp. 3-26. doi:10.1016/S1381-1169(96)00075-1

[33] A. Nait Ajjou and H. Alper, “A New, Efficient, and in Some Cases Highly Regioselective Water-Soluble Polymer Rhodium Catalyst for Olefin Hydroformylation,” Journal of the American Chemical Society, Vol. 120, No. 7, 1998, 1466-1468. doi:10.1021/ja973048u

[34] M. C. K.-B. Djoman and A. Nait Ajjou, “The Hydration of Nitriles Catalyzed by Water-Soluble Rhodium Complexes,” Tetrahedron Letters, Vol. 41, No. 25, 2000, pp. 4845-4849. doi:10.1016/S0040-4039(00)00743-7

[35] A. Nait Ajjou and J.-L. Pinet, “The Biphasic Transfer Hydrogenation of Aldehydes and Ketones with Isopropanol Catalystized by Water-Soluble Rhodium Complexes,” Journal of Molecular Catalysis A: Chemical, Vol. 214, No. 2, 2004, pp. 203-206. doi:10.1016/j.molcata.2004.01.004

[36] A. Nait Ajjou, “First Example of Water-Soluble Transition-Metal Catalysts for Oppenauer-Type Oxidation of Secondary Alcohols,” Tetrahedron Letters, Vol. 42, No. 1, 2001, pp. 13-15. doi:10.1016/S0040-4039(00)01882-7

[37] A. Nait Ajjou and J.-L. Pinet, “Oppenauer-Type Oxidation of Secondary Alcohols Catalyzed by Homogeneous Water-Soluble Complexes,” Canadian Journal of Chemistry, Vol. 83, No. 6-7, 2005, pp. 702-710. doi:10.1139/x05-037

[38] A. Robichaud and A. Nait Ajjou, “First Example of Direct Reductive Amination of Aldehydes with Primary and Secondary Amines Catalyzed by Water-Soluble Transition Metal Catalysts,” Tetrahedron Letters, Vol. 47, No. 22, 2006, pp. 3633-3636. doi:10.1016/j.tetlet.2006.03.153

[39] G. Ferguson and A. Nait Ajjou, “Solvent-Free Oxidation of Alcohols by tert-Butyl Hydroperoxide Catalyzed by Water-Soluble Copper Complex,” Tetrahedron Letters, Vol. 44, No. 51, 2003, pp. 9139-9142. doi:10.1016/j.tetlet.2003.10.052

[40] J. Boudreau, M. Doucette and A. Nait Ajjou, “A New and Highly Efficient Water-Soluble Copper Complex for the Oxidation of Secondary 1-Heteroaryl Alcohols by tert-Butyl Hydroperoxide,” Tetrahedron Letters, Vol. 47, No. 11, 2006, pp. 1695-1698. doi:10.1016/j.tetlet.2006.01.061

[41] A. Nait Ajjou and G. Ferguson, “An Unprecedented Highly Efficient Solvent-Free Oxidation of Alkynes to α,β-Acetylenic Ketones with tert-Butyl Hydroperoxide Catalyzed by Water-Soluble Copper Complex,” Tetrahedron Letters, Vol. 47, No. 22, 2006, pp. 3719-3722. doi:10.1016/j.tetlet.2006.03.140

[42] J. Muzart and A. N’Ait Ajjou, “Chromium-Catalyzed Homolytic Scission of Organic Peroxides with tert-Butyl Hydroperoxide and its Relation to Benzyl Oxidation,” Journal of Molecular Catalysis, Vol. 92, No. 2, 1994, pp. 141-147. doi:10.1016/0304-5102(94)00068-9

[43] J. Muzart and A. N’Ait Ajjou, “Highly Efficient Oxygen Transfer from tert-Butyl Hydroperoxide to Benzyl Carbon Catalystized by Chromium(VI) Oxide under High Substrate/ Hydroperoxide Ratios,” Journal of Molecular Catalysis, Vol. 92, No. 3, 1994, pp. 277-283. doi:10.1016/0304-5102(94)00082-4

Copyright © 2013 SciRes.