Tracking K-essence

Takeshi Chiba

Department of Physics, Kyoto University, Kyoto 606-8502, Japan
(November 2, 2018)

Abstract

We derive a condition for converging a common evolutionary track for k-essence (a scalar field dark energy with non-canonical kinetic terms). For the Lagrangian density $V(\phi)W(X)$ with $X = \dot{\phi}^2/2$, we find tracker solutions with $w_\phi < w_B$ exist if $\Gamma \equiv V''V/(V')^2 > 3/2$. Here $w_\phi(w_B)$ is the equation-of-state of the scalar field (background radiation/matter). Our condition may be useful for examining the existence of the attractor-like behavior in cosmology with k-essence (for example, rolling tachyon).

PACS numbers: 98.80.Cq ; 98.80.Es ; 95.35.+d
I. INTRODUCTION

Scalar fields play important role in cosmology. For example, inflation in the early universe may be caused by inflatons, or an ultra-light scalar field with mass $\sim 10^{-33}$ eV (or quintessence) may cause the universe to accelerate recently.

In the case of inflation models, the conditions for existence of inflationary solutions are conveniently described in terms of the slow-roll parameters without solving the equation of motion directly: $(V'/V)^2/2\kappa^2 < 1$ and $V''/\kappa^2V < 1$ with $\kappa^2 = 8\pi G$. Similarly, some quintessence models admit so called tracker fields which have attractor-like solutions in the sense that a very wide range of initial conditions rapidly converge to a common cosmic evolutionary track. It may be particularly useful to express the condition for the existence of tracking solutions in terms of a simple condition of $V(\phi)$ without having to solve the equation of motion directly. For quintessence, the condition for the existence of tracker solutions with $w_\phi < w_B$ is $\Gamma = V''V/(V')^2 > 1$. Here $w_\phi(w_B)$ is the equation-of-state of quintessence (background radiation or matter).

Usually the quintessence field (or inflaton) is modeled by a scalar field with a canonical kinetic term and a potential term. However, as shown in [3,4], a scalar field with solely kinetic terms can (even without potential terms), albeit they are non-canonical, mimic such a (canonical) quintessence/inflaton field. However, the condition for the existence of tracker solutions for k-essence is not known to date.

In view of recent interest in scalar field cosmology with non-canonical kinetic terms [6–8], in this paper we shall express the condition for tracker solutions in terms of a function of the Lagrangian density.

II. TRACKING K-ESSENCE

A. Basics of K-essence

The action of K-essence minimally coupled with gravity is

$$S = \int d^4x \sqrt{-g} \left(\frac{1}{2\kappa^2} R + p(\phi, X) \right),$$

where $\kappa^2 = 8\pi G$ and $X = -\nabla^\mu \phi \nabla_\mu \phi/2$. The pressure of the scalar field ϕ, p_ϕ, is given by $p(\phi, X)$ itself and the energy density ρ_ϕ is given by $\rho_\phi = 2X\partial p/\partial X - p$.\[3,4].

The field equations in flat Friedmann-Robertson-Walker spacetime are

$$H^2 := \left(\frac{\dot{a}}{a} \right)^2 = \frac{\kappa^2}{3}(\rho_B + \rho_\phi) = \frac{\kappa^2}{3} \left(\rho_B + 2X\frac{\partial p}{\partial X} - p \right),$$

$$\frac{\ddot{a}}{a} = -\frac{\kappa^2}{6}(\rho_B + 3p_B + \rho_\phi + 3p_\phi) = -\frac{\kappa^2}{6} ((1 + 3w_B)\rho_B + (1 + 3w_\phi)\rho_\phi),$$

1We named such quintessence as “kinetic” quintessence in [3]. However, later the name “k-essence” was coined by the authors of [3] and got popularity. So in this paper we reluctantly use the term k-essence for such kinetically driven quintessence.
\[
\ddot{\phi} \left(\frac{\partial p}{\partial X} + \phi^2 \frac{\partial^2 p}{\partial X^2} \right) + 3H \frac{\partial p}{\partial X} \dot{\phi} + \frac{\partial^2 p}{\partial X \partial \phi} \phi^2 - \frac{\partial p}{\partial \phi} = 0,
\]

where \(\rho_B \) and \(p_B \) are the energy density and the pressure of the background matter and/or radiation, respectively.

In this paper, as a first step toward more general case, we shall derive a tracker condition for a k-essence with the following factorized form of \(p(\phi, X) \):

\[
p(\phi, X) = V(\phi)W(X).
\]

This form of the Lagrangian is suggested for that of tachyon by using the boundary string field theory \([9,10]\). Moreover, any Lagrangian containing only \(\dot{\phi}^2 \) and \(\dot{\phi}^4 \) terms can be recast in the factorized form after field redefinition.

The equation of motion of the scalar field is then written as

\[
\ddot{\phi} (W_X + 2XW_{XX}) + 3HW_X \dot{\phi} + (2XW_X - W) \frac{V'}{V} = 0,
\]

where \(W_X = dW/dX \).

B. Tracker Equation

We can express the equation of motion of \(\phi \) in alternative form which may be useful for the following analysis:

\[
\frac{V'}{V^{3/2}} = \pm \frac{\kappa}{2} \sqrt{\frac{(1+w_\phi)W_X}{3\Omega_\phi}} (6 + Ay'),
\]

\[
A = \frac{(XW_X - W)(2XW_{XX} + W)}{XW_X^2 - WW_X - XWW_{XX}} = \frac{1-w_\phi}{c_s^2 - w_\phi},
\]

where \(y = (1+w_\phi)/(1-w_\phi) \) and \(y' = d\ln y/d\ln a \), and minus(plus) sign corresponds to \(\dot{\phi} > 0(<0) \), respectively. \(c_s^2 \) is the speed of sound of k-essence defined by \([11]\)

\[
c_s^2 = \frac{p_X}{p_X + 2Xp_{XX}}.
\]

Note that for quintessence with a canonical kinetic term, \(c_s^2 = 1 \). For a tracker solution \((w_\phi \simeq \text{const.}) \), we obtain a relation:

\[
\frac{1}{\sqrt{\Omega_\phi}} = \pm \frac{1}{\kappa \sqrt{3(1+w_\phi)W_X}} \frac{V'}{V^{3/2}},
\]

which might be called the k-essential counterpart of the tracker condition \([8]\).

Similar to \([3]\), we define a dimensionless function \(\Gamma \) by \(\Gamma = VV''/V'^2 \). After taking the time derivative of Eq.(\(7\)), we obtain
\[
\Gamma - \frac{3}{2} = -\frac{1}{(1 + w_\phi)(6 + Ay')} \left[3(w_\phi - w_B)(1 - \Omega_\phi) + \frac{(1 - w_\phi)^2}{2(c_s^2 - w_\phi)} y' \right. \\
\left. + \frac{2(1 - w_\phi)(c_s^2 - w_\phi)y'' + 2(w_\phi(1 - c_s^2) - (c_s^2)(1 - w_\phi)) y'/H}{(6 + Ay')(c_s^2 - w_\phi)^2} \right],
\]

where \(y'' = d^2 \ln y / d \ln a^2 \). Eq. (11) might be called the k-essential counterpart of the tracker equation. Therefore for the tracker solution (assuming \(\Gamma \simeq \text{const.} \) and \(\Omega_\phi \ll 1 \)) we can write \(w_\phi \) in terms of \(\Gamma \):

\[
w_\phi = \frac{w_B - 2(\Gamma - 3/2)}{2(\Gamma - 3/2) + 1} \simeq \text{const.}
\]

C. Tracking Condition

Convergence toward the tracker solution. We now examine the stability of the tracker solution. Consider a solution which is perturbed from the tracker solution with \(w_0 \) (Eq. (12)) by an amount \(\delta \), then the tracker equation Eq. (11) is expanded to lowest order in \(\delta \) to obtain

\[
2\delta'' + 3(1 + w_B - 2w_0)\delta' + 9(c_s^2 - w_0)(1 + w_B)\delta = 0,
\]

where the prime means \(d/d \ln a \). The solution of this equation is

\[
\delta \propto a^\gamma
\]

\[
\gamma = \frac{3}{4}(1 + w_B - 2w_0) \pm \frac{3}{4}\sqrt{1 + w_B - 2w_0}^2 - 8(c_s^2 - w_0)(1 + w_B).
\]

In order for the real part of \(\gamma \) to be negative so that \(\delta \) decays exponentially and the solution approaches the tracker solution, it is required that

\[
w_0 < \frac{1 + w_B}{2} \quad \text{and} \quad w_0 < c_s^2,
\]

where \(c_s^2 \geq 0 \) is assumed for stability against perturbation. Note that for the canonical quintessence (\(c_s^2 = 1 \)) the second requirement in Eq. (16) is automatically satisfied.

From Eq. (12), the above requirements are written in terms of \(\Gamma \):

\[
\Gamma > \frac{3}{2} - \frac{c_s^2 - w_B}{2(c_s^2 + 1)} \quad \text{and} \quad \Gamma > \frac{3}{2} - \frac{1 - w_B}{6 + 2w_B}
\]

or \(\Gamma < 1 \).

\footnote{This assumption is implicit in \([2]\).}
Tracking behavior with $w_\phi < w_B$. In this case, Ω_ϕ increases with increase of time. Then according to Eq.(10), $|V'/V^{3/2}\sqrt{W_X}|$ decreases for a tracker solution. On the other hand, using the equation of motion, we find that

$$
\left(\frac{V'}{V^{3/2}\sqrt{W_X}}\right) = \frac{V'\dot{\phi}}{V^{5/2}\sqrt{W_X}} \left(\Gamma - \frac{3}{2}\right).
$$

Hence, $|V'/V^{3/2}\sqrt{W_X}|$ decreases if $\Gamma > 3/2$. Therefore, tracking behavior with $w_\phi < w_B$ occurs if $\Gamma > 3/2$ and nearly constant. From the stability analysis, this tracker solution is stable if $\Gamma > \max(3/2, 3/2 - (c_s^2 - w_B)/2(c_s^2 + 1))$. In particular for $w_B = 0$, the condition is simply $\Gamma > 3/2$.

Tracking behavior with $w_\phi > w_B$. This is possible for $1 < \Gamma < 3/2$ and nearly constant. However, from the stability analysis, we find that $w_\phi < \min((1 + w_B)/2, c_s^2)$ is additionally required, which demands $\Gamma - 3/2 > \max(-c_s^2 - w_B)/2(c_s^2 + 1), -(1 - w_B)/(6 + 2w_B))$.

Tracking behavior with $w_\phi < -1$. This is possible for $\Gamma < 1$ and nearly constant. From the stability analysis, we find that this solution is stable.

D. Examples

As an example, we consider the universe consisting of matter/radiation and a k-essential scalar field with a power-law model, $V \propto \phi^{-\alpha}$, studied in \[4\]. Since $\Gamma = (\alpha + 1)/\alpha$, if $0 < \alpha < 2$, then tracking behavior with $w_\phi < w_B$ occurs, while if $\alpha < 0$, tracking behavior with $w_\phi < -1$ occurs. From Eq.(12), in this case we have for the tracker solution

$$
w_\phi = (1 + w_B)^{\frac{\alpha}{2}} - 1,
$$

which indeed coincides with the equation-of-state of the attractor solution studied in \[4\] and indeed the solution is stable \[4\].

Another example is the universe consisting of matter/radiation and the rolling tachyon with $W(X) = -\sqrt{1 - 2X}$. The exact classical potential of it has been computed in \[4\] and is given by

$$
V(T) = V_0 (1 + T/T_0) \exp(-T/T_0),
$$

where T is the tachyon field and V_0 is the tension of some unstable bosonic D-brane and T_0 is a constant of the order of the string scale. In this case we have

$$
\Gamma = 1 - (T/T_0)^{-2}
$$

and Γ becomes nearly constant if $T/T_0 \gg 1$. In the limit of large T/T_0, we have $\Gamma = 1$ and obtain $w_\phi = -[w_B(1 - \Omega_\phi) + 1]/\Omega_\phi$ if we do not neglect Ω_ϕ in Eq.(12). Since the rolling tachyon respects the weak energy condition, $w_\phi \geq -1$, this implies $\Omega_\phi \geq 1$ during the radiation dominated epoch (the same result holds for the matter dominated epoch), which would be incompatible with the success of the Big-Bang Nucleosynthesis. Thus the above potential does not admit viable tracker solutions, which implies the need of fine-tuning to account for $\Omega_\phi \sim 1$ today in agreement with the recent analysis \[3\].
III. SUMMARY

We have derived a (sufficient) condition for the existence of tracker solutions for the system of matter/radiation and a scalar field with Lagrangian density of the form Eq.(5). Our results are summarized as follows:

- Tracking behavior with $w_\phi < w_B$ occurs if $\Gamma > \max(3/2, 3/2 + (w_B - c_s^2)/2(c_s^2 + 1))$ and nearly constant. In particular for $w_B = 0$, the condition is simply $\Gamma > 3/2$ and nearly constant.

- Tracking behavior with $w_\phi > w_B$ occurs if $3/2 > \Gamma > 3/2 + \max(-(c_s^2 - w_B)/2(c_s^2 + 1), -(1 - w_B)/(6 + 2w_B))$ and nearly constant.

- Tracking behavior with $w_\phi < -1$ occurs if $\Gamma < 1$ and nearly constant.

Interestingly, thanks to the factorizable ansatz Eq.(5), the conditions are similar to those of canonical quintessence.

ACKNOWLEDGMENTS

We would like to thank Masahide Yamaguchi for useful comments. This work was supported in part by a Grant-in-Aid for Scientific Research (No.13740154) from the Japan Society for the Promotion of Science and by a Grant-in-Aid for Scientific Research on Priority Areas (No.14047212) from the Ministry of Education, Science, Sports and Culture, Japan.
REFERENCES

[1] J.E. Lidsey, A.R. Liddle, E.W. Kolb, E.J. Copeland, T. Barreiro, M. Abney, Rev. Mod. Phys. 69, 373 (1997).
[2] P.J. Steinhardt, L. Wang and I. Zlatev, Phys. Rev. D 59, 123504 (1999).
[3] C. Armendariz-Picón, T. Damour and V. Mukhanov, Phys. Lett. B458, 209 (1999).
[4] T. Chiba, T. Okabe and M. Yamaguchi, Phys. Rev. D 62, 023511 (2000).
[5] C. Armendariz-Picon, V. Mukhanov, and P.J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000).
[6] A. Sen, hep-th/0203211; hep-th/0203263.
[7] G.W. Gibbons, hep-th/0204008; M. Fairbain and M.H.G. Tytgat, hep-th/0204070; S. Mukohyama, hep-th/0204084; T. Padmanabhan, hep-th/0204150.
[8] A. Frolov, L. Kofman and A. Starobinsky, hep-th/0204187; X. Li, J. Hao and D. Liu, hep-th/0204252; G. Shiu and I Wasserman, hep-th/0205003; L. Kofman and A. Linde, hep-th/0205121.
[9] D. Kutasov, M. Marino and G. Moore, JHEP 0010 (2000) 045.
[10] S. Sugimoto and S. Terashima, hep-th/0205083.
[11] J. Garriga and V.F. Mukhanov, Phys. Lett. B458, 219 (1999).