Pharmacognostic characterization of Myrica esculenta leaves

Atul Kabra a, c, Rohit Sharma b, Shivali Singla c, Ruchika Kabra c, Uttam Singh Baghel d, e

a IKG Punjab Technical University, Kapurthala, Punjab, India
b Central Ayurveda Research Institute for Drug Development, CCRAS, Ministry of AYUSH, Government of India, Bidhan Nagar, Kolkata, West Bengal, India
c School of Pharmacy, Abhilashi University, Chail Chowk, Mandi, HP, India
d Khalsa College of Pharmacy, Amritsar, Punjab, India

A R T I C L E I N F O

Article history:
Received 19 May 2017
Received in revised form 23 June 2017
Accepted 18 July 2017
Available online 13 March 2018

Keywords:
Myrica esculenta
Microscopy
Macroscopy
Physicochemical
Fluorescence analysis
HPTLC analysis

A B S T R A C T

Background: Myrica esculenta (Family: Myricaceae) commonly known as Kaiphala or Katphala is a widely used medicinal plant in Ayurveda. In spite of its numerous medicinal attributes, no published work is available till date on pharmacognostical characterization and HPTLC analysis of its leaves.

Objectives: To investigate the pharmacognostical, physicochemical, and HPTLC profiles of M. esculenta leaves.

Materials and methods: The measures taken for pharmacognostical characterization were organoleptic study, macroscopy, microscopy, powder microscopy, leaf constant, fluorescence analysis, preliminary phytochemical screening and HPTLC spectra profile.

Results: Organoleptic and macroscopic studies found that leaves are lanceolate, thin, spirally arranged, dark green in color, with an astringent taste and acute apex. In transverse section, cuticularised epidermis having polygonal cells were found. Mesophyll cells were differentiated into single layered palisade cells on each surface and 2 – 3 layered spongy parenchyma, unicellular and uniseriate hollow trichomes, anomocytic stomata and bowl shaped vascular bundle in mid rib portion containing xylem and phloem tissues. Alkaloids, carbohydrates, flavonoids, glycosides, phenolic compounds and tannins were found present. Analysis on the leaf constants, powder microscopy, fluorescence characteristics and physical parameters resulted a valuable data to establish standards for the plant. HPTLC profile provides number of constituents present in the extracts with their respective Retention Factor (Rf).

Conclusion: Present report on pharmacognostical characterization and HPTLC analysis of M. esculenta leaves provides a vital diagnostic tool for identification, authentication and development of quality parameters of the species. Data obtained by present study may be considered as standard for future studies.

© 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

India has a wide range of traditional medicines from ancient time, based on various medical systems like Unani, Siddha, Homoeopathy and mainly Ayurveda. Plants are used as medicine to maintain human health from ages [1] and are also major natural sources of medicinal compounds in current pharmacopeias [2]. Therefore, there is a need to evaluate phytoconstituents obtained from traditional medicines, based on various phytochemical screening, pharmacological and analytical methods [3]. The very first step in this direction is the herb characterization or detailed pharmacognostic evaluation that gives external appearance, microscopy and physical characteristic of the crude drug [4].

Myrica esculenta Buch-Ham (Family – Myricaceae) Syn., Myrica nagi Hook., commonly known as Kaiphala or Katphala is an evergreen dioecious tree, found mainly in Punjab, Uttarakhand (Garhwal), Kumaun hills, Khasiya mountain and Sylhet in India at elevations of upto 2100 m. Some different varieties are also found in neighboring countries like Nepal, China etc. It is a shade giving, medium sized tree, having a big crown on it. The bark extract has already been reported to contain steroids, reducing sugars, tannins, glycosides, saponins and volatile oils. The hexane extract of the Katphala roots revealed the presence of friedelin and β-sitosterol [5]. Katphala is widely used in Indian system of medicine and various parts of this botanical are used in conditions like Gulma (abdominal lump), Jvara (fever), Arsha (piles), Grahani (irregular bowel function), Pandu roga (anemia), Hrillasa (nausea), Mukha roga (oral disorders), Kasa (cough), Shvasa (dyspnea), Agrinamandhya (indigestion), Aruchi (anorexia) and Kantharoga (ears, nose, and
thoracic and throat disorders) [6]. Stem bark is extensively explored for various pharmacological roles like free radical scavenging [7], antioxidant [7,8], anti-diabetic [9], anxiolytic [10], antibacterial [11], anti-helmintic [12], anti-allergic [13], anti-inflammatory, antimicrobial [14], mast cell stabilizing [15] and anti-asthmatic [16]. The plant has tremendous therapeutic potential with every part of the plant being used medicinally, including leaves.

Earlier reports established pharmacognostical and phytochemical profiles of *M. esculenta* stem [17,18]. In spite of its numerous medicinal attributes, no published work is available till date on pharmacognostical characterization and HPTLC analysis of its leaves. Considering this, the present study was undertaken to develop a quality standard for leaves of this plant. In the present study, investigations were attempted to record the organoleptic characters, macroscopy, microscopy, quantitative values such as physical parameters, phytochemical screening and chromatographic profiles of *M. esculenta* leaves. This would be a milestone in assessing the quality of the crude drug for further development.

2. Materials and methods

2.1. Collection and authentication of plant materials

Leaves of *M. esculenta* were collected from outskirts of Chail Chowk, Mandi, Himachal Pradesh (H.P.) in November 2016. The plant was identified, authenticated and certified (AGI/2015/1220) by Head, Department of Botany, Abhilashi Group of Institutions, Mandi, Himachal Pradesh.

2.2. Chemicals

Toluene, safranin, chloral hydrate, ethyl acetate, methanol, and all other analytical grade chemicals were purchased from E. Merck Limited India and HiMedia Laboratories, Mumbai, India.

2.3. Organoleptic evaluation

Leaves of *M. esculenta* were evaluated for their impact on various organs of sense for organoleptic properties. Its color, odor, size (length and width), taste and other diagnostic parameters was observed and noted [19].

2.4. Macroscopic analysis

Macroscopic features of the leaf viz. type of leaf, shape, apex, margin, lamina, base venation and texture were analyzed by standard method [19].

2.5. Microscopical analysis

2.5.1. Study of transverse section

The potato sandwiched specimens were sectioned with the help of a sharp blade. The obtained thin slide was stained by safranin dye (0.1% w/v solution in distilled water). Photographs of different magnification were taken with Nikon lab photo 2 microscope unit.

2.5.2. Powdered drug microscopy

The coarsely powdered leaf was mounted on a glass slide in glycerin and studied under a microscope. Photographs of different magnified cellular structures were taken with Nikon lab photo 2 microscope units.

2.5.3. Analysis of leaf constants

Different leaf constants viz. vein islet number, vein termination number, stomatal index, stomatal number, palisade ratio were analyzed using standard procedures [20].

2.6. Physiochemical analysis

Physiochemical parameters (ash value, moisture content, foreign matter, fluorescence analysis, extractive value) were determined [21,22].

2.7. Preliminary phytochemical screening

Various extracts of *M. esculenta* leaves were subjected to phytochemical analysis [23]. A series of identification tests were performed to detect presence of alkaloids, flavonoids, saponins, proteins and amino acids, fixed oils and fats, glycosides, tannins and steroids.

2.8. Preparation of extracts

Firstly, the plant leaves were washed with water to remove dirt and other foreign matters and were separated and shade dried. Dried leaves were then milled to coarse powder and then passed over sieve No. 14. The obtained dried powdered leaves of *M. esculenta* (500 g) were placed in the tube of Soxhlet apparatus in the form of thimble and kept on heating mental for 6 h for extraction using various solvents as ethyl acetate, methanol and water. The obtained extracts were filtered while hot and dried by evaporation using rotary vacuum evaporator and the final dried extracts samples were kept at low temperature in fridge for further study.

2.9. Development of chromatographic profile by HPTLC of various extracts of *M. esculenta*

CAMAG-HPTLC system having a sample applicator Linomat 5 was used to obtain HPTLC chromatograms using standard methods [24]. HPTLC profile of the various extracts of *M. esculenta* was developed using toluene: ethyl acetate (7:3) as mobile phase to confirm the occurrence of different phytoconstituents. The chromatographic development processes were performed in an air-conditioned room where the temperature was maintained at 22 °C and relative humidity was maintained at 55%. Ready to use silica gel-G precoated HPTLC aluminum plates were used for chromatographic separation. The extract (10 μL) was spotted as bands of 10 mm width with the help of the auto sampler fitted with 100 μL Hamilton syringe. The solvent system was transferred to CAMAG Twin Trough plate development chamber lined with filter paper and pre-saturated with mobile phase (25 mL) for 30 min. The resulted plates were air dried and scanned. Developed spots on the plate were scanned at the wavelength of 254 and 366 nm respectively. The retention factor (Rf) value for each spot found on plate was recorded.

3. Results

3.1. Organoleptic and microscopic characters

M. esculenta leaves are dorsiventral with a fairly prominent midrib and thin smooth lamina. They are of dark green color having leathery finish and a somewhat light green color on abaxial surface as compared to adaxial surface. The leaves are of yellowish green color in early ages which become darker with age. Leaves were odorless but having a slight bitter and astringent taste that may be due to presence of tannins.
3.2. Macroscopic characters

The leaves are lanceolate with an average petiole measuring 0.4–1.5 cm in length. The lamina of leaf is smooth at both the surfaces with entire margin and an acute apex. In some leaves ¼ part of the margin near to apex is serrate. The leaves were 5–10.2 cm long and 2–3.5 cm broad. Phyllotaxy of the leaves is spiral and venation is reticulate pinnate (Fig. 1).

3.3. Microscopic characters

3.3.1. Transverse sections of leave

Transverse section is showed in Figs. 2–4. The upper and lower epidermis consisted small single layered thick polygonal cells which appear wavy in outline, covered by a thin cuticle containing mucilage. Both epidermises are abundant in unicellular uniseriate hollow trichomes (Fig. 2). Lamina region is differentiated into regular, long, columnar cells of palisade tissue and 3–4 layers of spongy parenchyma which is extended upto midrib region (Fig. 4). There are 4–6 layers of collenchymatous cells on both sides in the midrib region after epidermis, and the rest are several layers of spherical spongy parenchymatous tissue extended from lamina. The vascular strand embedded in spongy parenchyma of midrib region consist of long compact row of thick walled xylem elements and small nests of phloem tissue, both of which form a bowl shape in the center (Fig. 2). The stomata were of anomocytic type on both of the surfaces. Guard cells are surrounded by limited subsidiary cells which are rarely differentiated from epidermal cells (Fig. 3). Abaxial surface (lower epidermis) contains more stomata as compared to adaxial surface.

3.3.2. Powdered drug microscopy

The powder was green in color, with no distinct odor and an astringent taste. It was easy flowable with a fine to coarse texture. Microscopic powder features revealed presence of crystals of calcium oxalate and starch granules; trichomes were found to be hollow unicellular and uniseriate; parts of epidermis in surface view showing straight-walled polygonal epidermal cells,
anomocytic stomata and spiral xylem vessels. The guard cells were shrinking elongating the stomata pore (Fig. 5).

3.3.3. Leaf constants

Anomocytic types of stomata were present on the both surfaces of leaves. The stomatal number on the adaxial and abaxial surface was found as 2.14 and 4.25, respectively. The stomatal indexes of adaxial and abaxial surface was found 16.67 and 17.33, respectively. The vein islet and vein termination were calculated as 9-11 and 13-15. The palisade ratio was found to be 2-4.

3.4. Physicochemical evaluation

The results of physicochemical parameters are summarized in Table 1. Sulphated ash value (2.41%) was found lower than the total ash value (2.83%). The acid insoluble ash was found to be 0.52% and water soluble ash value was 0.38%. On further studies it was concluded that the drug contain 8.72% moisture content, foaming index and swelling index were found to be nil, while foreign organic content was reported to be less than 1%. The extractive values for various solvents such as methanol, ethyl
Table 1
Physicochemical parameters of leaves of *M. esculenta*.

Physicochemical parameters	Results (%)
Ash value	2.83
Acid insoluble ash	0.52
Water soluble ash	0.38
Sulphated ash	2.41
Extractive value Methanolic extract	38.51
Ethyl acetate extract	21.2
Aqueous extract	15.7
Moisture content	8.72
Foreign organic matter	Less than 1%
(Presence of petiole stalks with leaves)	
Foaming index	Nil
Swelling index	Nil

Table 2
Results of phytochemical screening of different extracts of *M. esculenta* leaves extracts.

Constituent	Aqueous extract	Ethyl acetate extract	Methanolic extract
Alkaloids	–ve	+ve	+ve
Carbohydrates	+ve	+ve	+ve
Proteins & amino acids	–ve	–ve	–ve
Fixed oils & fats	–ve	–ve	–ve
Flavonoids	+ve	+ve	+ve
Phenolic compounds	+ve	+ve	+ve
Tannins	+ve	+ve	+ve
Glycosides	+ve	+ve	+ve
Saponins	–ve	–ve	–ve
Steroids	–ve	–ve	–ve

+ve- Present, –ve- Absent.

Table 3
Fluorescence characteristics of leaves extracts.

S. no.	Treatment	Visible light	UV Light	
			254 nm (Short wavelength)	366 nm (Long wavelength)
1	Leaf powder	Green	Green	Light Green
2	Leaf powder rubbed on filter paper	Light Green	Light Yellow	Light Green
3	Leaf powder + 1N NaOH	Reddish Brown	Black	Brown
4	Leaf powder + 1N HCl	Light Green	Light Yellow	Light Green
5	Leaf powder + 1N HNO₃	Light Yellowish Green	Light Yellow	Light Green
6	Leaf powder + 1N H₂SO₄	Light Green	Light Green	Green
7	Methanolic extract of Leaf powder	Dark Green	Black	Green
8	Ethyl acetate Extract of Leaf powder	Green	Light Green	Light Green
9	Aqueous extract of leaf powder	Greenish Brown	No fluorescence	Brown
Thus, these are a good choice as solvent for extraction of leaves of *M. esculenta*. The fluorescence study showed characteristic fluorescence under visible light and UV light (short and long wave length), and this may be useful in the detection of adulterants.

Preliminary phytochemical screening was done to check the presence of active constituents of the leaves. It reveals the presence of alkaloids, carbohydrates, flavonoids, phenolic compounds, tannins and glycosides. The HPTLC chromatogram of various extracts may be useful in the confirmation of presence of number of constituents along with the respective Rf value.

5. Study limitations and future directions

Limitation of present study is the HPTLC carried out is without use of standard/active compound. Since present report is focused mainly on pharmacognostic evaluation and preliminary phytochemical screening; here HPTLC was performed to confirm the number of phytoconstituents present in different extracts and to support the phytochemical screening. *M. esculenta* leaves are known to contain very important phytoconstituents, therefore by using standards, different constituents can be identified and even isolated in future studies. Data obtained by present study may be considered as standard for future studies.

6. Conclusion

Macro-microscopic studies revealed that leaves are lanceolate, thin, spirally arranged, dark green in color, astringent taste, acute apex, cuticularised epidermis having polygonal cells, single layered palisade mesophyll cells on each surface, 2–3 layered spongy parenchyma, unicellular and uniseriate hollow trichomes, anomocytic stomata and bowl shaped vascular bundle in mid rib portion. Alkaloids, carbohydrates, flavonoids, glycosides, phenolic compounds and tannins were found present. HPTLC provides number of constituents present in the extracts with their respective Rf value. Present pharmacognostical assay of *M. esculenta* leaves including data on leaf constants, powder microscopy, fluorescence characteristics and physical parameters provides a vital diagnostic tool for identification, authentication, and detection of adulterants of *M. esculenta* leaves, along with development of quality parameters of the species.

Sources of funding

Abhilashi University, Mandi.

Conflict of interest

None.

Acknowledgement

The author thanks Dr. R.K. Abhilashi, Chancellor Abhilashi University for providing excellent research facilities. Mr. Gaurav is gratefully acknowledged for helping in collection of plant material.

References

[1] Upadhyya V, Hegde HV, Bhat S, Harkalade PJ, Kholkute SD, Hegde GR. Ethnobotanical plants used to treat bone fracture from North-Central Western Ghats of India. J Ethnopharmacol 2012;142:557–62.
[2] Kingston DG. Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod 2011;74:496–511.
[3] Patil Vikas V, Patil R Vijay. Ficus bengalensis Linn.-An overview. Int J Pharm Bio Sci 2010;1(2):1–11.
[4] Rakholya K, Chanda S. Pharmacognostic, physicochemical and phytochemical investigation of Mangifera indica L. var. Kesar leaf. Asian Pac J Trop Biomed 2012;2(Suppl. 2):S580–4.
[5] Parmajep P. Indian medicinal plants. 3rd ed. New Delhi: Chaukhamba Sanskrit Pratishthan; 2012. p. 128.
[6] The ayurvedic pharmacopoeia of India, part I. 1st ed, vol. III. New Delhi: Government of India, Ministry of Health and Family Welfare, Department of Indian System of Medicine and Homeopathy; 1999. p. 92–3.
[7] Chen J, Wang Y, Wu D, Wu Z. Preliminary study on antioxidative and radical scavenging activities of extracts from Myrica esculenta Buch-Ham. Bark. Chem Ind For Prod 2007:1–7.
[8] Rana RK, Patel RK. Antioxidant activity of bark of *Myrica nagi*. Int J Pharm Sci Rev Res 2014;28(1):99–101.
[9] Amalaraj T, Ignacimuthu S. Antidiabetec effect of *Myrica nagi* on diabetic rats. Utrail Pradesh J Zool 1997;17(3):200–2.
[10] Khan MY, Sagrawat H, Upmanyu N, Siddique S. Anxiolytic properties of *M. nagi* bark extract. Pharm Biol 2008;46(10–11):757–61.
[11] Suryawanshi JS, Karande KM, Udagude BV. Antibacterial activity of bark and fruits of *M. nigra*. Ind J Nat Prod 2009;25(3):21–3. Res 2012;26(23):2266–9.
[12] Jain VK, Jain B. Anthelmintic activity of ethanolic extract of bark of *Myrica esculenta*. J Pharm Sci 2010;11(1):129–31.
[13] Patel KG, Rao NJ, Gajera V, Bhatt P, Patel K, Gandhi T. Anti-allergic activity of stem bark of *Myrica esculenta* Buch-Ham. (Myricaceae). J Young Pharm 2010;2(1):74–8.
[14] Patel T, Dudgepia A, Sheath N. Anti inflammatory activity of *Myrica nigra* Linn. Bark. Anc Sci Life 2011;30(4):100–3.
[15] Patel T, Rajeshkar C, Parmar R. Mast cell stabilizing activity of *Myrica nigra* bark. J Pharmacogn Phytother 2011;3(8):114–7.
[16] Patel T, Shah S. Antiathermatic activity of aqueous extract of *M. nigra* bark. J Curr Pharm Res 2012;10(1):34–9.
[17] Singh J, Lan K, Triwedi VP. Pharmacognostic evaluation of Katphala (the bark of *Myrica esculenta* Buch-Ham). Anc Sci Life 1986;6(2):85–7.
[18] Srivastava B, Sharma VC, Pant P, Pandey NK, Jadhav AD. Evaluation for substitution of stem bark with small branches of Myrica esculenta for medicinal use e a comparative phytochemical study. J Ayu Int Med 2016;7:218–23.
[19] Amponsah IK, Mensah AV, Otoo A, Mensah MLK, Jonathan J. Pharmacognostic standardisation of *Hilleria latifolia* (Lam.) H. Watt. (Phytolaccaceae). Asian Pac J Trop Biomed 2014;4:941–946.

[20] Kumar D, Kumar K, Kumar S, Kumar T, Kumar A, Prakash O. Pharmacognostic evaluation of leaf and root bark of *Holoptelea integrifolia* Roxb. Asian Pac J Trop Biomed 2012;2:169–75.

[21] Akbar S, Hanif U, Ali J, Ishtiaq S. Pharmacognostic studies of stem, roots and leaves of *Malva parviflora* L. Asian Pac J Trop Biomed 2014;4(5):410–5.

[22] Naja S, Deokule SS. Pharmacognostic study of *Tylophora dalzellii* Hook.F. J Med Plant Res 2010;4(5):403–6.

[23] Menpara D, Chanda S. Phytochemical and pharmacognostic evalutation of leaves of *Pongamia pinnata* L. (Fabaceae). Phcog Commun 2014;4(2):3–7.

[24] Sethi PD. High performance thin layer chromatography. Student 1st ed., vol. X. New Delhi: CBS Publishers and Distributers; 1996.