Does plant diversity determine the diversity of the rhizosphere microbial community?

Aleksei Zverev*, Arina Kichko¹, Vasilii Shapkin¹, Aleksandr Pinaev¹, Nikolay Provorov¹, Evgeny Andronov¹

¹Laboratory for microbiological monitoring and soil bioremediation, All-Russian Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia

* Corresponding author

Email: azver.bio@gmail.com (AZ)

Abstract

The rhizosphere community represents an “ecological interface” between plant and soil, providing the plant with a number of advantages. Close connection and mutual influence in this
communication allow to talk about the self-adjusting “plant-rhizosphere community” system, which should be studied in connection. Diversity estimation is one of the ways of describing both bacterial and plant communities. Based on the literature, there are two assumptions of how the diversity of plant communities related to the diversity of bacterial communities: 1) an increase in the species richness of plants leads to an increase in the number of available micro-niches, and increasing of microbial diversity, 2) an increase in the species richness of plants is accompanied by the predominant development of bacteria from highly productive specific taxa and decreasing in the diversity of microorganisms. Experimental studies show controversial results.

We analyzed field sites (rye crop field and two fallow sites), using DNA isolation of both the plant root mass (followed by sequencing of the ITS1 region) and rhizosphere microorganisms (followed by sequencing of the 16s rDNA V4 region). This allowed us to 1) accurately determine the abundance and taxonomic position of plant communities; 2) extract information about both plant and microbial communities from the same sample.

There was no correlation between alpha-diversity indices of plants and rhizosphere communities. Alpha-diversity connection should be explored in similar plant communities, such as synusia. We hypothesize, that the significant differences in plant abundances lead to significant changes in exudation profiles, and the loss of diversity connection. The beta-diversity between rhizosphere communities and plant communities is highly correlated, in particular in terms of the abundance of taxa. This can be explained by a potential correlation (as reported in the literature) or by the presence of statistical artifacts.

Introduction

As the formation of a specific microbial community near the plant root, the phenomenon of the rhizosphere effect has been the subject of many works of both classical and modern biology.
The rhizosphere community represents an “ecological interface” between plant and soil, providing
the plant with a number of advantages such as growth stimulation, protection from pathogens,
nutrition, among others [1, 2]. The source of the rhizosphere microbiome is both the microbial
community of plant seeds [3] and the community of soil microorganisms [4]. The composition and
abundance of plant root exudates determine the formation of the bacterial community [5, 6]. The
source of the microbiome, and the development of it, thus forms the final community.

Diversity in both sources and ways of development lead to the specificity of the rhizosphere
microbiome. Several factors can affect the composition of rhizosphere communities. In addition to
the type and agrochemical properties of the soil, the genotype of the plant (species [7, 8] and
cultivar [9]) is a significant factor for microbiome development. This can be explained by the
specific exudation spectrum from various plants, as the spectrum of secreted substances depends not
only on the species or cultivar but also on the developmental phase, physiological state, etc. [10,
11]. In turn, the microbial communities themselves affect the metabolic status of the plant [12],
which allows us to talk about the “plant-rhizosphere community” system as a self-adjusting system
(a kind of “gut-brain axis” in plants). This system is additionally complicated by the high diversity
of plant species, which is natural in indigenous plants populations.

Diversity estimation is one of the ways of describing both bacterial and plant communities. As
self-adjusting systems, rhizosphere microbiomes and plant communities are connected, and
therefore, the following question arises: is the diversity of plant communities related to the diversity
of bacterial communities? Based on the literature, there are two assumptions: 1) an increase in the
species richness of plants leads to an increase in the number of available micro-niches, which leads
to an increase in microbial diversity, 2) an increase in the species richness of plants is accompanied
by the predominant development of bacteria from highly productive specific taxa, which leads to a
general decrease in the diversity of microorganisms [13]. Experimental studies of this relationship
show controversial results: some studies indicate the absence or negative correlation between plant
and bacterial richness [14, 15], whereas others show the presence of a positive relationship [16].

Beta diversity indices show an unambiguous positive correlation between the distances of plant and bacterial communities [17].

There are examples of research of similar relationships between the diversity of plants and the associated microorganisms. A close relationship was demonstrated in a study of the diversity of the rhizobial soil community (by the nodA gene) and the diversity of their symbiotic hosts (the NFR5 and K1 genes of leguminous plants), allowing the authors to formulate the hypothesis of "evolutionary molding", where the plant community plays the role of the rigid matrix and the microbial community acts as a “molding” substance. The whole process not only links diversities, but even phylogenetic topologies; for the description of the last phenomenon, the concept of beta-topological diversity has been introduced [18]. Another example is the close relationship between the diversity of Galega rhizobia and their two hosts, G. orientalis and G. officinales, revealed at the level of genomic AFLP fingerprints [19]. However, for less closely integrated systems with indigenous plant communities, analyzed by taxonomic rather than functional markers, such a relationship has not yet been shown.

One of the reasons for the uncertainty in this area is, most likely, the problem of the correct estimation of plant diversity, for which the same algorithms that are used today for the analysis of microbial diversity could be applied. The development of NGS methods for the estimation of microbial diversity, from DNA extraction methods to statistical analysis of libraries (16S, ITS), has led to the rise of this area observed today [20]. However, in most papers, plant diversity is determined using geobotanical methods [13, 15], but this approach is not accurate enough in both determining the species in the communities and their abundances [21]. In addition, in the context of the aim of this study, there is a question about the correspondence between the “aboveground” and “belowground” plant diversities, which can be quite different [22].
Therefore, in this work, we analyzed the diversity of the plant population via direct DNA isolation of the plant root mass, followed by NGS sequencing of the ITS1 region; rhizosphere soil samples were taken from the same root sample. This allowed us to 1) accurately determine the abundance and taxonomic position of plant communities; 2) extract information about both plant and microbial communities from the same sample; 2) analyze plant diversity using the same NGS approaches as used for the rhizosphere community of microorganisms. Thus, we were able to use the same algorithms and metrics to analyze both communities.

Materials and Methods

Samples were collected on July 21, 2017, on fields of the Pskov Research Institute of Agricultural Sciences and Rodina State Farm in the Pskov region, Russia (coordinates of the collection point are 57.845611 N 28.201028 E). We select one site within a rye crop field (referred to as Monoculture Rye or MonoR) and two fallow sites outside the field border from two locations, dominated by cereals (Polyculture Cereal or PolyC) and *Galium* and *Dactylis* species (Polyculture Galium, or PolyG). In each site, three samples were taken. The photo and the geobotanical description of the sampling sites is provided in the S1 Table and S1 Fig.

Bricks of topsoil (about 15 x 15 x 10 cm) were collected and stored in individual packages not longer than 48 hours. In the laboratory, bulk soil was gently removed manually by shaking, and 30 g of the root mass was intensively shaken with 50 ml of 0.005M Na-phosphate buffer in a Pulsifier II (Microgen, UK) in provided bags (PUL512 Bags) for 1 min. The liquid fraction was centrifuged, and the pellet was used to isolate the total rhizosphere DNA. The root mass was used to isolate plant DNA.

Procaryotic DNA from the pellet was isolated using the MN NucleoSpin Soil Kit (Macherey-Nagel, Germany) and a Precellus 24 homogenizer (Bertin, USA). Quality control was carried out by
PCR and agarose gel electrophoresis. Sequencing of the V4 variable region of the 16S rRNA gene was performed on an Illumina MiSEQ sequencer, using the primers F515 (GTGCCAGCMGCGCGGTAA) and R806 (GGACTACVSGGGTATCTAAT) [23].

Plant DNA from roots was isolated using mechanical destruction in liquid nitrogen, followed by phenol extraction; the quality of the DNA was also checked via agarose gel electrophoresis. Sequencing of the ITS1 variable region was performed on an Illumina MiSEQ sequencer, using the primers ITS-p5 (YGACTCTCGGCAACGGATA) and ITS-u2 (GCGTTCAAAGAYTCGATGRTTC) [24].

The general processing of sequences was carried out in R 3.6.4, using the dada2 (v. 1.14.1) [25] and phyloseq (v. 1.30.0) [26] packages. For taxonomic annotation, the databases SILVA 138 [27] and PLANiTS [28] were used.

The main alpha- and beta-metrics were calculated using the phyloseq and picante [29] packages. For the mean p-distance in a library, we used the home-brew script with following steps: 1) make multiple alignment for reference sequences; 2) extract p-value for every pair of sequence; 3) multiple this p-value to abundance of both sequences; 3) sum all values. Correlations between diversity indices were calculated using Spearman correlation. Significant differences in abundances of taxa between sites were determined using the DeSEQ2 package [30].

All reads were submitted to SRA (PRJNA649486) and are available under the link https://www.ncbi.nlm.nih.gov/sra/PRJNA649486.

Results

The ITS1 sequencing of plant DNA yielded 230 ASVs. The taxonomic position at genus level was defined for 217 of them; the number of reads per sample after rarefaction was 14,210. Regarding 16s rDNA, we found 5,284 ASVs, with 15,487 reads per sample.
Fig 1 shows the taxonomic composition of the communities. The geobotanic description (provided in the S1 Table) corresponded with the composition structure according to ITS1 sequencing (Fig 1A). Almost all reads from MonoR libraries were attributed as Secale; PolyC (samples from the cereal synusia) had about half the reads from Poa, followed by Elymus and Dactilus. PolyG (samples from Galium and Dactylis synusia) was more diverse; most reads were attributed as Galium, Poa. Despite the geobotanical description of this synusia as mixed Galium and Dactylis, there was no evidence of a great amount of Dactylis in the PolyG libraries, which can be explained by difficulties in describing the gramineae vegetation outside the flowering phase.

Fig 1. Relative abundances of plant and bacterial communities in the experimental fields

The bacterial communities from the samples (Fig 1B) were typical for rhizosphere microbiomes [11]. The communities from the two fallow sites (PolyC, PolyG) were similar, whereas the communities from the rye site (MonoR) contained more Gammaproteobacteria (Proteobacteria) and Bacteroidia (Bacteroideta). Differential abundance analysis allowed us to find 584 microbial taxa, which significantly differed between two sites, with information about abundance in repeats. When comparing PolyC and PolyG, none of the OTUs was marked as significantly different. The results of the pairwise comparison of PolyC and PolyG with MonoR are shown in Fig 2 at the order level.

Fig 2. Mean abundances of bacterial orders with different inter-source abundances (according to DeSEQ2)

In this comparison, the most abundant OTUs in rye crop rhizosphere microbiomes were from Proteobacteria (orders Pseudomonadales, Sphingomonadales, Enterobacteriales), followed by Armatimonadota (Fimbriimonadales), Acidobacteriales (Bryobacterales), and Actinobacteriota (Micrococcales). In fallow root microbiomes, Verrucomicrobia (Chthoniobacterales), Acidobacteria (Blastocatellales), and Actinobacteria (Pseudonocardiales) were more abundant.
For all samples, the most common alpha-diversity indices, observed OTUs, Shannon, Simpson, mpd (mean pairwise distance), and p-dist (mean p-distance, restored from alignment, see Materials and Methods), were calculated at different taxonomic levels (Fig 3).

Fig 3. Alpha-diversity indices for plant and bacterial communities (significance for ANOVA in groups; ns – non-significant, * - p < 0.05, ** p < 0.01, * p < 0.005)**

The plant communities were highly diverse at different levels and indices (Fig 3A). The observed OTU index was not useful because of the presence of weedy plants in the rye crop. Weighted indices, such as mpd or p-dist, were more suitable; the differences between sample sites were significant for both indices up to the order level.

The bacterial communities were less diverse. The observed OTUs as well as the p-dist and mpd indices showed that communities from the PolyC site were more diverse, mostly at low taxonomical levels (OTUs, genus). Interestingly, samples from rye roots (MonoR) were significantly less diverse at phylum level, whereas at other taxonomical ranks, there were no such differences.

For each index on the OTU taxonomic level, the correlation between plant diversity indices and microbial diversity indices was calculated. We observed no significant correlations between plant and rhizosphere microbial diversity.

Fig 4 shows the beta-diversity indices (Bray distance and weighted UniFrac). According to the weighted UniFrac index (Dunn index for roots 0.316, for microorganisms 0.821), the samples were mixed (Fig 4A). Samples from rhizosphere communities from PolyC and PolyG were mixed in one cluster. While the MonoR and PolyC samples were close, the PolyG samples were different. This might be connected to the phylogenetic composition of the population; *Secale* and *Poa*, the two main genera from these sites, both belong to the *Poaceae* family, whereas *Galium* belongs to the Rubiaceae family (Fig 1A).
According to the Bray distance (Dunn index for roots 0.832, for microorganisms 0.909), all communities, from plants and from rhizospheres, formed their own clusters (Fig 3B).

The correlation between the distance matrix in plant and bacterial communities was high for the Bray distance \(R = 0.866, p = 0.01 \) and not significant for the weighted UniFrac index. Fig 5 shows the results of the beta-distance correlation, excluding the intra-cluster distance (distance between repeats of the same sample).

Fig 5. Correlation between beta-diversity indices

Discussion

The aim of this work was to determine the potential connection between the diversity of plant communities and the diversity of rhizosphere microbiomes. For this purpose, we used three sites with different plant communities (synusiae) in the same location: a rye crop monoculture (MonoR) and two polyculture fallow sites, dominated by cereals (PolyC) and \textit{Galium} and \textit{Dactylis} (PolyG).

Despite differences in crop species and tillage, soil type, water regime, and main soil properties were similar for all three sites, minimizing the influence of these factors on microbial communities.

The novel approach to estimate plant community composition (ITS1 sequencing) is highly effective. Almost all (217 of 230) determined ASVs were annotated, and the composition and abundance of plant genera fit the geobotanical description. In addition, this method allows 1) to characterize plant communities via their underground parts (which interact with rhizosphere microorganisms); 2) use the same sample for both plant and microbiome analysis (therefore, each rhizosphere library matches with the plant library); 3) use standard approaches for processing and calculating diversity indices and generating bar graphs.

For samples obtained from same soil and location, the most important factor shaping the microbial community of the rhizosphere is the plant community structure. We hypothesize that the
variation in the spectrum of exudates could be one of the possible mechanisms responsible for the
diversity of the rhizosphere microbial community. This spectrum is specific for various plant
species and genotypes, and therefore, in the case of the whole plant community, we can talk about
an “exudome” of the community, whose structure depends on the abundance of plants in the
community. This exudome can be described by the number of the individual plant spectra and by
their weights (amount of exudate spectra of exact plant species in all exxudome), according plant
abundances. In the comparison of two polycultures, the number of plant species is the same (as
shown in Fig 3A), with variations in abundance; it therefore seems logical that the exudomes of
these communities also will differ not in the number of different spectra but in their weights. In
contrast, when comparing monoculture plants communities with polyculture ones, there are
differences in the number of plant species. In this case, exudomes of plant communities will differ
in the number of different spectra and in their weights.

In this study, using modern approaches, we found no correlation between different alpha-
diversity indices. According to all indices, rhizosphere communities in the monoculture site
(MonoR) were as diverse as those in the polycultures (PolyR, PolyC), whereas the plant community
diversity in the monoculture was obviously lower. Regarding the polyculture (and mpd and p-dist
indices), more diverse plant communities (PolyG) showed a less diverse rhizosphere microbial
community. This might be evidence of a negative connection, as suggested by Goberna and
coauthors [13], but this connection can be found only in plant communities with close exudomes
(differing in abundance by not in the number of spectra). Significant differences in exudomes can
lead to different microbial response and a loss of similarity, when environmental factors override
the realistic relationship. Perhaps, this variation in exudome abundance allowed Schlatter and
colleagues to show that in artificial plant communities, there is a decrease in bacterial diversity with
increasing richness (1, 4, 8, 16 species) [31].
Despite the expected main difference in plant diversity between poly- and monocultures, with a moderate variation between polycultures, both alpha- and beta-diversity of the plants showed significant variations between synusiae. In the community of different cereals, PolyG in most cases is significantly more diverse by all alpha-diversity indices, and shows inter-sample variability (sample PolyG.3). This effect is also clear at higher taxonomic levels (family or order).

Differential abundance analysis did not show any difference between rhizosphere communities of polycultures. Similarly, OTUs and Shannon indices of these samples were also not significantly different. Only phylogenetic-related indices (mpd and p-dist) were significantly different, leading us to infer that the phylogenetic composition of communities varies in the rhizospheres of similar plant communities. However, further elaboration of this theory is recommended.

In contrary, when comparing the microbial communities of the polyculture sites with those of the monoculture, there was a significant difference in the observed OTUs, whereas phylogenetic-related indices (mpd, p-dist) showed no clear pattern. Differential abundance analysis enabled us to identify taxa with significant differences in relative diversity, most likely because of significant differences in exudome profiles and the loss of similarity between plant-microbial systems.

This idea also fits well with the beta diversity plots. Indeed, the distances between samples from polycultures were small for both plant and bacterial communities (about 17% of the explained variance in PcoA plots for plants and 8% for microorganisms). The distances between samples from mono- and polycultures were large (about 60% of the explained variance in PcoA plots). This allowed us to estimate a correlation for Bray distances only (due to the taxonomic similarity between rye and cereal, the correlations between weighted Unifac distances were not significant). This correlation might be a true correlation, as observed in previous studies [17], or a statistical artifact (caused by the large distance between monoculture and polyculture clusters).
The significant distance in beta-diversity is connected to the differences in the abundances of the different taxa. Hypothesized as a molding matrix, differences in abundances between plant communities are not useful, whereas abundances of microbial taxa represent the specificity of rhizosphere taxa in different plant communities (at the order level, as shown in Fig 2). Some of them have previously been reported as rhizosphere taxa. Sphingomonadales and Enterobacteriales are typical for plant rhizosphere communities [32], and Fimbriimonadales has previously been described as a bacterial taxon from the Anthurium andraeanum rhizosphere community [33]. In the same case, Blastocatellales has previously been described as an oligotrophic, slightly acidophilic to neutrophilic mesophile from arid soils [34]. However, these data are controversial, as they can describe a novel location of this microorganism or a biased database. More precise data can be obtained by functional or full-genomic analyses of rhizosphere communities.

Despite the absence of a clear correlation between plant and bacterial diversity, comparing the results with the previously mentioned concept of evolutionary molding, where the plant population "molds" in the microbial population and where the correlation between plant and microbial diversities is clear, is challenging. The reasons are as follows: 1) the symbiotic system itself is tighter than the rhizosphere community interaction; 2) in this work, we used regular taxonomic marker genes, not specific plant or bacterial genes. A closer interaction could be revealed with the use of genes directly involved in plant-rhizosphere communication processes. This could be plant genes involved in plant root exudation and responses to bacterial signals (for example, strigolactone-processing genes) and bacterial genes involved in the decomposition of those exudates by microorganisms. Also, it is important to characterize the structure and composition of common exudation profiles of different plant communities.
Conclusions

1. Sequencing of the ITS1 region is highly effective for the taxonomical annotation of plant communities. Almost all ASVs were attributed; abundances of taxa fairly corresponded to the geobotanical descriptions.

2. There was no correlation between alpha-diversity indices of plants and rhizosphere communities. Alpha-diversity connection should be explored in similar plant communities, such as synusia. Significant differences in plant abundances lead to significant changes in exudation profiles, different microbial responses, and the loss of diversity connection.

3. In contrast, the beta-diversity between rhizosphere communities and plant communities is highly correlated, in particular in terms of the abundance of taxa. This can be explained by a potential correlation (as reported in the literature) or by the presence of statistical artifacts.

4. In future studies, the diversity connection should be analyzed by searching for functionally related genetic regions of plants and soil microorganisms.

Acknowledgments

This work was performed using the equipment of the Genome Technologies and Cell Biology Common Use Center, All-Russian Research Institute of Agricultural Microbiology.
References

1. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE. 2013. Inside the root microbiome: bacterial root endophytes and plant growth promotion. American Journal of Botany 100: 1738–1750.

2. Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol. 2013 Nov;11(11):789-99. doi: 10.1038/nrmicro3109. Epub 2013 Sep 23. PMID: 24056930.

3. Kong HG, Song GC, Ryu CM. Inheritance of seed and rhizosphere microbial communities through plant-soil feedback and soil memory. Environ Microbiol Rep. 2019 Aug;11(4):479-486. doi: 10.1111/1758-2229.12760. Epub 2019 May 21. PMID: 31054200.

4. Bakker PAHM, Pieterse CMJ, de Jonge R, Berendsen RL. The Soil-Borne Legacy. Cell. 2018 Mar 8;172(6):1178-1180. doi: 10.1016/j.cell.2018.02.024. PMID: 29522740.

5. Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol. 2009 Apr;68(1):1-13. doi: 10.1111/j.1574-6941.2009.00654.x. Epub 2009 Feb 25. PMID: 19243436.

6. Schlaeppi K, Bulgarelli D. The plant microbiome at work. Mol Plant Microbe Interact. 2015 Mar;28(3):212-7. doi: 10.1094/MPMI-10-14-0334-FI. PMID: 25514681.

7. Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, McHardy AC, Schulze-Lefert P. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe. 2015 Mar 11;17(3):392-403. doi: 10.1016/j.chom.2015.01.011. Epub 2015 Feb 26. PMID: 25732064; PMCID: PMC4362959.

8. Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc
9. Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG, Edgar RC, Eickhorst T, Ley RE, Hugenholtz P, Tringe SG, Dangl JL. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012 Aug 2;488(7409):86-90. doi: 10.1038/nature11237. PMID: 22859206; PMCID: PMC4074413.

10. Sasse J, Martinoia E, Northen T. Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? Trends Plant Sci. 2018 Jan;23(1):25-41. doi: 10.1016/j.tplants.2017.09.003. Epub 2017 Oct 17. PMID: 29050989.

11. Zverev A, Pershina E, Shapkin V, Kichko A, Mitrofanova O, Kobylyanskiii V, Yuzikhin O, Belimov A, Andronov E. Molecular Analysis of the Rhizosphere Microbial Communities from Gramineous Plants Grown on Contrasting Soils. Microbiology. 2020. 89. 231-241. 10.1134/S002626172001018X.

12. Vives-Peris V, de Ollas C, Gómez-Cadenas A, Pérez-Clemente RM. Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep. 2020 Jan;39(1):3-17. doi: 10.1007/s00299-019-02447-5. Epub 2019 Jul 25. PMID: 31346716.

13. Gobena M, Navarro-Cano JA, Verdú M. Opposing phylogenetic diversity gradients of plant and soil bacterial communities. Proc Biol Sci. 2016 Feb 24;283(1825):20153003. doi: 10.1098/rspb.2015.3003. PMID: 26888037; PMCID: PMC4810838.

14. Dassen S, Cortois R, Martens H, de Hollander M, Kowalchuk GA, van der Putten WH, De Deyn GB. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Mol Ecol. 2017 Aug;26(15):4085-4098. doi: 10.1111/mec.14175. Epub 2017 Jun 2. PMID: 28489329.
15. Li H, Wang X, Liang C, Hao Z, Zhou L, Ma S, Li X, Yang S, Yao F, Jiang Y. Aboveground-belowground biodiversity linkages differ in early and late successional temperate forests. Sci Rep. 2015 Jul 17;5:12234. doi: 10.1038/srep12234. PMID: 26184121; PMCID: PMC4505317.

16. Sun YQ, Wang J, Shen C, He JZ, Ge Y. Plant evenness modulates the effect of plant richness on soil bacterial diversity. Sci Total Environ. 2019 Apr 20;662:8-14. doi: 10.1016/j.scitotenv.2019.01.211. Epub 2019 Jan 18. PMID: 30682712.

17. Prober SM, Leff JW, Bates ST, Borer ET, Firn J, Harpole WS, Lind EM, Seabloom EW, Adler PB, Bakker JD, Cleland EE, DeCrappeo NM, DeLorenze E, Hagenah N, Hautier Y, Hofmockel KS, Kirkman KP, Knops JM, La Pierre KJ, MacDougall AS, McCulley RL, Mitchell CE, Risch AC, Schuetz M, Stevens CJ, Williams RJ, Fierer N. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol Lett. 2015 Jan;18(1):85-95.

18. Igolkina AA, Porozov YB, Chizhevskaya EP, Andronov EE. Structural Insight Into the Role of Mutual Polymorphism and Conservatism in the Contact Zone of the NFR5-K1 Heterodimer With the Nod Factor. Front Plant Sci. 2018 Apr 11;9:344. doi: 10.3389/fpls.2018.00344. PMID: 29706972; PMCID: PMC5909492.

19. Osterman J, Chizhevskaja EP, Andronov EE, Fewer DP, Terefework Z, Roumiantseva ML, Onichtchouk OP, Dresler-Nurmi A, Simarov BV, Dzyubenko NI, Lindström K. Galega orientalis is more diverse than Galega officinalis in Caucasus--whole-genome AFLP analysis and phylogenetics of symbiosis-related genes. Mol Ecol. 2011 Nov;20(22):4808-21. doi: 10.1111/j.1365-294X.2011.05291.x. Epub 2011 Oct 10. PMID: 21980996.

20. Sharma TR, Devanna BN, Kiran K, Singh PK, Arora K, Jain P, Tiwari IM, Dubey H, Saklani B, Kumari M, Singh J, Jaswal R, Kapoor R, Pawar DV, Sinha S, Bisht DS, Solanke AU, Mondal TK. Status and Prospects of Next Generation Sequencing Technologies in Crop Plants.
21. Parker J, Helmstetter AJ, Devey D, Wilkinson T, Papadopulos AST. Field-based species identification of closely-related plants using real-time nanopore sequencing. Sci Rep. 2017 Aug 21;7(1):8345. doi: 10.1038/s41598-017-08461-5. PMID: 28827531; PMCID: PMC5566789.

22. Skuodiene R., Tomchuk D. Root mass and root to shoot ratio of different perennial forage plants under western Lithuania climatic conditions. 2015 Romanian Agricultural Research. 1-11.

23. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108(Suppl):4516–4522. doi:10.1073/pnas.1000080107.

24. Cheng T, Xu C, Lei L, Li C, Zhang Y, Zhou S. Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Mol Ecol Resour. 2016 Jan;16(1):138-49. doi: 10.1111/1755-0998.12438. Epub 2015 Jul 3. PMID: 26084789.

25. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016 Jul;13(7):581-3. doi: 10.1038/nmeth.3869. Epub 2016 May 23. PMID: 27214047; PMCID: PMC4927377.

26. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013 Apr 22;8(4):e61217. doi: 10.1371/journal.pone.0061217. PMID: 23630581; PMCID: PMC3632530.

27. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6. doi: 10.1093/nar/gks1219. Epub 2012 Nov 28. PMID: 23193283; PMCID: PMC3531112.
28. Banchi E, Ametrano CG, Greco S, Stanković D, Muggia L, Pallavicini A. PLANiTTS: a curated sequence reference dataset for plant ITS DNA metabarcoding. Database (Oxford). 2020 Jan 1;2020:baz155. doi: 10.1093/database/baz155. PMID: 32016319; PMCID: PMC6997939.

29. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010 Jun 1;26(11):1463-4. doi: 10.1093/bioinformatics/btq166. Epub 2010 Apr 15. PMID: 20395285.

30. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8. PMID: 25516281; PMCID: PMC4302049.

31. Schlatter DC, Bakker MG, Bradeen JM, Kinkel LL. Plant community richness and microbial interactions structure bacterial communities in soil. Ecology. 2015 Jan;96(1):134-42. doi: 10.1890/13-1648.1. PMID: 26236898.

32. Hartman K, van der Heijden MG, Roussely-Provent V, Walser JC, Schlaeppi K. Deciphering composition and function of the root microbiome of a legume plant. Microbiome. 2017;5(1):2. Published 2017 Jan 17. doi:10.1186/s40168-016-0220-z

33. Sarria-Guzmán Y, Chávez-Romero Y, Gómez-Acata S, Montes-Molina JA, Morales-Salazar E, Dendooven L, Navarro-Noya YE. Bacterial Communities Associated with Different Anthurium andraeanum L. Plant Tissues. Microbes Environ. 2016 Sep 29;31(3):321-8. doi: 10.1264/jsme2.ME16099. Epub 2016 Aug 11. PMID: 27524305; PMCID: PMC5017810.

34. Pascual J, Wüst PK, Geppert A, Foesel BU, Huber KJ, Overmann J. Novel isolates double the number of chemotrophic species and allow the first description of higher taxa in Acidobacteria subdivision 4. Syst Appl Microbiol. 2015 Dec;38(8):534-44. doi: 10.1016/j.syapm.2015.08.001. Epub 2015 Sep 28. PMID: 26460220.
Supporting information

S1 Fig. General view, current location and root samples. MonoR — rye crop field; PolyC - forb and cereal meadow dominated by cereals; PolyG - forb and cereal meadow dominated by *Galium* and *Dactylis* species. Samples are: 1 — MonoR.1; 2 — MonoR.2; 3 — MonoR.3; 4 — PolyG.1; 5 — PolyG.2; 6 — PolyG.3; 7 — PolyC.1; 8 — PolyC.2; 9 — PolyC.3;

S1 Table. Geobotanical description of the sampling sites.
A. Weighted UniFrac

B. Bray distance
Fig 5

A. Weighted UniFrac

B. Bray distance
Fig 1

A. Plant diversity

B. Bacterial diversity

Genus

<0.05 abund.
Achillea
Alopecurus
Dactylis
Elymus
Festuca
Fragaria
Galium
Lolium
Poa
Secale
Stellaria
Taraxacum
Veronica
Vicia

Family

<0.01 abund.
Apiaceae
Asteraceae
Caryophyllaceae
Fabaceae
Plantaginaceae
Poaceae
Rosaceae
Rubiaceae

Phylum

<0.02 abund.
Acidobacteriota
Actinobacteriota
Bacteroidota
Crenarchaeota
Firmicutes
Gemmatimonadota
Planctomycetota
Proteobacteria
Verrucomicrobiota

Class

<0.04 abund.
Acidobacteria
Actinobacteria
Alphaproteobacteria
Bacteroidia
Bacteroidia
Blastocatellia
Gammaproteobacteria
Verrucomicrobiae