2010

X-Ray Spectroscopy of Galactic Hot Gas along the PKS 2155-$304$ Sight Line

T Hagihara
Y Yao
NY Yamasaki
K Mitsuda
QD Wang

University of Massachusetts - Amherst, wqd@astro.umass.edu

See next page for additional authors

Follow this and additional works at: http://scholarworks.umass.edu/astro_faculty_pubs

Part of the Astrophysics and Astronomy Commons

Recommended Citation
Hagihara, T; Yao, Y; Yamasaki, NY; Mitsuda, K; Wang, QD; Takei, Y; Yoshino, T; and McCammon, D, "X-Ray Spectroscopy of Galactic Hot Gas along the PKS 2155-$304$ Sight Line" (2010). PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN. 1099.
http://scholarworks.umass.edu/astro_faculty_pubs/1099

This Article is brought to you for free and open access by the Astronomy at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Astronomy Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.
X-ray Spectroscopy of Galactic Hot Gas along the PKS 2155-304 Sight Line

Toshishige Hagihara¹, Yangsen Yao², Noriko Y. Yamasaki³, Kazuhisa Mitsuda¹, Q. Daniel Wang³, Yoh Takei¹, Tomotaka Yoshino¹ * and Dan McCammon⁴

¹Institute of Space and Astronomical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo, Sagamihara, 252-5210
²University of Colorado, CASA, 389 UCB, Boulder, CO 80309, USA
³Department of Astronomy, University of Massachusetts, Amherst, MA 01003, USA
⁴Department of Physics, University of Wisconsin, Madison, 1150 University Avenue, Madison, WI 53706, USA

hagihara@astro.isas.jaxa.jp, yamasaki@astro.isas.jaxa.jp

Abstract

We present a detailed spectroscopic study of the hot gas in the Galactic halo toward the direction of a blazar PKS 2155-304 (z = 0.117). The O VII and O VIII absorption lines are measured with the Low and High Energy Transmission Grating Spectrographs aboard Chandra, and the O VII, O VIII, and Ne IX emission lines produced in the adjacent field of the PKS 2155-304 direction are observed with the X-ray Imaging Spectrometer aboard Suzaku. Assuming vertically exponential distributions of the gas temperature and the density, we perform a combined analysis of the absorption and emission data. The gas temperature and density at the Galactic plane are determined to be 2.5(+0.6,−0.3) × 10^6 K and 1.4(+0.5,−0.4) × 10^3 cm⁻³ and the scale heights of the gas temperature and density are 5.6(+7.4,−4.2) kpc and 2.3(+0.9,−0.8) kpc, respectively. These values are consistent with those obtained in the LMC X-3 direction.

Key words: Galaxy: disk - Galaxy: halo - X-rays: diffuse background - X-rays: ISM

1. Introduction

X-ray observations of edge-on spiral galaxies revealed the existence of hot gas at temperatures of T ~ 10^6 K extending a few kpc beyond the disk (e.g. Wang et al. 2001; Wang et al. 2003; Strickland et al. 2004; Li et al. 2008; Yamasaki et al. 2009). The origin of energy and material in such a hot halo has not been clarified. Feedback from supernovae (SNe) as galactic wind or fountain and heated primordial gas are possible candidates (Norman & Ikeuchi 1989). In any cases, halo gas plays important roles in galactic evolution through chemical circulation and interaction between galaxies and the intergalactic medium.

The hot gaseous halo in and around the Milky-Way has been investigated for a long time. For instance, ROSAT All Sky Survey (RASS) quantitatively mapped the spatial distribution of the Soft X-ray Background emission (SXB: Snowden et al. 1997). The Cosmic X-ray Background (CXB) component extrapolated from the discrete hard X-ray sources could explain only about half of the SXB, leaving the soft X-ray emission below 1 keV being of a diffuse origin. With the high resolution X-ray microcalorimeter flying on a sounding rocket, McCammon et al. (2002) detected emission lines of hydrogen- and helium-like oxygen, neon, and iron ions from about 1 steradian of the sky, which suggests that the emitting gas is of a thermal nature and at temperatures of T ~ 10^6 K. The existence of the hot gas in and around the Milky-Way is consistent with the Chandra observations of nearby edge-on spiral galaxies. However, because these emission data carry very little distance information, the properties of the global hot gas, like its density, temperature, and their distributions, are still poorly understood.

A combined analysis of high resolution absorption and emission data provides us with a powerful diagnostic of properties of the absorbing/emitting plasma. Absorption lines measure the column density of the absorbing material, which is an integration of the density of the absorbing ions along a sight line. In contrast, emission line intensity is sensitive to the emission measure, which is proportional to the density square of the emitting plasma. Thus, a combination of the emission and absorption data naturally yields the density and the size of the corresponding absorbing/emitting gas.

With significantly improved spectral resolution of current X-ray instruments, we are now able to observe the needed high resolution absorption and emission lines produced in the hot plasma. For instance, the X-ray absorption lines at z = 0, in particular the helium- and hydrogen-like O VII and O VIII lines, are detected in spectra of many galactic and extragalactic sources (e.g. Futamoto et al. 2004; Yao & Wang 2005; Williams et al. 2007). Recently, Fang et al. (2006) and Bregman & Lloyd-Davies (2007) find that the O VII absorption line can always be detected in an AGN spectrum as long as the spectrum is of...
high signal-to-noise ratio. On the other hand, the X-ray Imaging Spectrometer (XIS) aboard Suzaku can also resolve emission lines produced in a diffuse emitting plasma at temperatures of $T \sim 10^6$ K. And indeed, the O\textsc{vii} and O\textsc{viii} lines have been detected in nearly all directions (e.g., Smith et al. 2007; Shelton et al. 2007). Recently, a systematic study of emission lines of the hot gas in and around the Galaxy has been conducted by Yoshino et al. (2009), who report the O\textsc{vii} and O\textsc{viii} lines in 14 blank sky observations with the XIS and conclude that the line-of-sight mean temperatures of the emitting gas has a narrow distribution around $2.3 \times 10^6$ K. Since the ion fractions of O\textsc{vii} and O\textsc{viii} and their K-transition emissivities are very sensitive to gas temperature at $\sim 10^6$ K, a combined analysis of these emission and absorption lines will also constrain the gas temperature and its distribution without the complexity of relative chemical abundances of metal elements.

Although this combined analysis method has long been applied in the ultraviolet wavelength band (Shull & Slavin 1994), its application in the X-ray band just began. Complementing the high resolution absorption data obtained with Chandra with the broadband emission data obtained with RASS, Yao & Wang (2007) firstly attempted to conduct the combined analysis in the X-ray band to infer the hot gas properties in our Galaxy. They also proposed a model for the Galactic disk assuming the temperature and density of the hot gas fading off exponentially along the vertical direction. They concluded that the O\textsc{vii} and O\textsc{viii} absorption lines observed along the Mrk 421 sight line are consistent with the Galactic disk origin. Yao et al. 2009 further constrained this disk model by jointly analyzing the high resolution absorption data obtained with Chandra along the LMC X-3 sight line and emission data observed with Suzaku in the vicinity of the sight line. They estimated gas temperature and density at the Galactic plane and their scale heights as $3.6 \times 10^6$ K and 1.4 ($+2.0, -1.0$) $\times 10^{-3}$ cm$^{-3}$ and 1.4 ($+3.8, -1.2$) kpc and 2.8 ($+3.6, -1.8$) kpc, respectively. These results are consistent with the early findings by Yao & Wang (2007), i.e., the SXB can be explained by a kpc-scale halo around our Galaxy.

In this paper, we present the second case study of the combined analysis of high resolution absorption and emission lines. The absorption lines are observed with Chandra along a blazer, PKS 2155–304 sight line and the emission lines are obtained with Suzaku observations of the vicinity of the sight line. In Section 2, we describe our observations and data reduction process. We perform our data analysis in Section 3 and discuss our results in Section 4.

2. Observations and Data Reduction

2.1. Chandra Observations and Data Reduction

Chandra observed PKS 2155–304 many times. There are two grating spectrographs (the low and high energy transmission grating spectrographs; LETG and HETG) and two sets of detectors (the advanced CCD imaging spectrometer; ACIS and the high resolution camera; HRC) aboard Chandra 1. In this work, we used all observations available to the date of 2009 March, except for some observations made with non-standard configuration of ACIS (i.e., putting source outside the CCD-S3 chip) to avoid spectral resolution degradation. The data used in this work include 46 observations with an accumulated exposure time of 1.07 Ms.

We followed the standard scripts to calibrate the observations 2. When extracting the grating spectra and calculating the instrumental response files, we used the same energy grid for all observations with different grating instruments and/or with different detectors for ease of the adding process described in the following. For those HETG observations, we only use the first order grating spectra of the medium energy grating (MEG) to utilize its large effective area at lower ($< 1$ keV) energy. For those observations taken with the HRC, we further followed the procedure presented in Yao et al. (2009) to extract the first order spectra of the LETG. We then added the first grating order spectra of all observations to obtain a single stacked spectrum and a corresponding instrumental response file.

2.2. Suzaku Observations and Data Reduction

We observed the emission of the hot diffuse gas toward two off-fields of the PKS 2155-304 sight line during the AO2 program (Table 1). To minimize confusion by stray lights from the PKS 2155-304 and to average out the possible spatial gradient of the diffuse emission intensity, the

---

1 Please refer to the Chandra Observatory Guide for more information: http://cxc.harvard.edu/proposer/POG/html/index.html
2 Please refer to the CIAO script for more information: http://cxc.harvard.edu/ciao/guides/
Thus we consider that there is no contamination from the southern edge of Radio Loop I (Berkhuijsen et al. 2007), meeting either of the following two criteria by Yoshino et al. (2009). The first one is the solar wind flux in the solar wind exceeds $4 \times 10^{-8} \text{ cm}^{-2} \text{s}^{-1}$ to avoid significant neutral oxygen emission from Earth’s atmosphere (Smith et al. 2007). We created X-ray images in 0.4–1.0 keV energy range for the two observations, and found no obvious discrete X-ray sources in the fields.

In the last step, we excluded those events severely contaminated by the X-ray emission induced by the solar-wind charge exchange (SWCX) from geocorona (Fujimoto et al. 2007), meeting either of the following two criteria by Yoshino et al. (2009). The first one is the solar wind flux (Fig. 2). We used the solar wind data obtained with the Solar Wind Electron Proton and Alpha Monitor (SWEPAM) aboard the Advanced Composition Explorer (ACE) and removed the time intervals when the proton flux in the solar wind exceeds $4 \times 10^{8} \text{ cm}^{-2} \text{s}^{-1}$ (Masui et al. 2009). ACE is in L1 of the Solar-Earth system, 1.5×10^6 km away from the Earth and assuming average solar wind velocity as 300 km s$^{-1}$, we corrected traveling time of the solar wind from L1 to the Earth. The second criteria is the Earth-to-magnetopause (ETM) distance in
the line sight of Suzaku (Fujimoto et al. 2007), which is required to be > 5R_E. We found that about 20% and 5% of the exposure time of our 1st and 2nd observations meets the first criteria and no time meets the second criteria. Thus we exclude that 20% and 5% from 1st and 2nd observations and used the remaining time in further analysis. We also checked the light curve of XIS 1 in the energy range of 0.3 to 2.0 keV in the observation periods and found no evidence for variation (Fig. 2).

We constructed instrumental response files (rmfs) and effective area files (arf) by running the scripts *ziismfgen* and *ziisimarfgen* (Ishisaki et al. 2007). To take into account the diffuse stray light effects, we used a 20'' radius flat field as the input emission in calculating the arf. We also included in the arf file the degradation of low energy efficiency due to the contamination on the XIS optical blocking filter. The versions of calibration files used here were *ae_xi1_quanreff_20080504.fits*, *ae_xi1_rmfparam_20080901.fits*, *ae_xi1_makepni_20080825.fits* and *ae_xi1_contami_20071224.fits*. We estimated the non-X-ray-background from the night Earth database using the method described in Tawa et al. (2008).

We grouped the spectra to have a minimum number of counts in each channel ≥ 50 and used energy range of 0.4–5.0 keV in our analysis. This range is broad enough for constraining the continuum and also covers the H- and He-like emission lines of N, O, Ne, Mg, and the L transition of Fe. The O VII, O VIII, and Ne IX lines are clearly visible in the spectra (Section 3.2).

3. Spectral Analysis and Results

We carried out our data analysis with the Xspec software package, adopting the solar abundances as given in Anders & Grevesse (1989). (Hereafter, use of italic type indicates Xspec models and their parameters.) Errors quoted throughout this paper are single parameter errors given at the 90% confidence level, unless specified otherwise. Sections 3.1 and 3.2 give a discussion of our separate analyses of the absorption and emission data, while sections 3.3 and 3.4 give a discussion of the jointly–analyzed data under the uniform and exponential disk models.

3.1. Chandra X-ray Absorption Spectrum

We first measured the equivalent widths (EWs) of the absorption lines of the highly ionized oxygen ions. Because measurement of these narrow absorption lines is relevant only to the local continuum, we fit the final PKS 2155-304 spectrum between 0.55 and 0.7 keV as shown in figure 3 using a power-law model modified with absorption by the neutral ISM (*wabs*). The column density of neutral hydrogen was fixed to 1.47×10^{20} cm^{-2}, which is the value determined by the LAB Survey of Galactic HI in this direction (Kalberla et al. 2005). Three Gaussian functions were used to model the O VII Kα, O VIII Kα, and O VII Kβ absorption lines (model A1). The measured EWs were found to be consistent with those reported by Williams et al. 2007. The results are summarized in Table 2.

Once the equivalent widths were determined, we applied an absorption line model, *absem*, to replace the *gaussian* functions in order to probe the properties of the absorbing gas. Assuming the temperature and density distributions of the hot plasma, the *absem* model, which is a revision of the *abslines* model of Yao & Wang (2005), can be used to jointly fit the emission and absorption spectra. (See Yao & Wang (2007) and Yao et al. (2009) for a detailed description.) For a gas with a uniform density and a single temperature, the diagnostic procedure is summarized as follows: (1) A joint analysis of O VII Kα and O VII Kβ directly constrains the O VII column density and the Doppler dispersion velocity (v_b). With the constrained v_b, adding the O VIII Kα line in the analysis also yields the column density of O VIII (model A2). (2) Because the column density ratio of O VII and O VIII is sensitive to the gas temperature, a joint analysis of the O VII and O VIII lines will naturally constrain the gas temperature (model A3). (3) Assuming the solar abundance for oxygen and given the constrained gas temperature, the O VII (or O VIII ) column density can be converted to the corresponding hot phase hydrogen column density (model A4). Table 3 gives the results of our fits. The constrained O VII column density, 5.9 (+1.2, −0.9) × 10^{15} cm^{-2} is comparable to typical values ∼ 10^{16} cm^{-2} obtained from AGN observations given in two systematic studies (Fang et al. (2006) and Bregman & Lloyd-Davies (2007)).

![Fig. 3. Chandra spectrum of PKS 2155-304 between 0.55 and 0.7 keV. Fitted model is A4.](image-url)
The best-fit temperature of this model is log $T = 6.06$. We therefore use a $\sim 10^6$ K plasma of 2 LU O VII surface brightness as the SWCX+LHB component. The uncertainty of this estimate is discussed in section 4.1.

Except for the SWCX+LHB component, the observed emission has been absorbed by the foreground ISM. In the following analysis, we also fix the neutral hydrogen column density to be $1.47 \times 10^{20}$ cm$^{-2}$ (Kalberla et al. 2005).

### 3.2.2. Spectral Fitting

To probe the halo gas properties, we used the following model to fit our spectra (model E1): 

$$wabs(power-law_{CXB} + \text{mekal}_{halo}) + \text{mekal}_{LHB+SWCX},$$

with the photon index of the CXB fixed at 1.4 and with the normalization as a free parameter. The temperature and the corresponding emission measure (and thus the normalization) of the $\text{mekal}_{LHB+SWCX}$ component were set to $1.2 \times 10^6$ K and 0.0043 pc cm$^{-6}$, respectively, correspondingly to 2 LU of O VII K$_{\alpha}$ line emission. In the halo component, we fixed the abundance ratio of oxygen to hydrogen to the solar value, and allowed the abundances of nitrogen, neon, and iron vary.

This model fit the spectra from both pointings consistently, except for an apparently higher neon and iron abundance in Sz1 (Table 4) which would be caused by a lower temperature of the Sz1 halo component. It is important to clarify whether this is caused by statistical effects or by a true difference in plasma temperature. The sur-

---

### Table 2. Spectral fitting results of absorption data with model A1

| Model | $\text{O}^{\\text{VII}}$ K$_{\alpha}$ | $\text{O}^{\\text{VIII}}$ K$_{\alpha}$ | $\text{O}^{\\text{VII}}$ K$_{\beta}$ |
|-------|---------------------------------|---------------------------------|---------------------------------|
| A1    | $573.8^{+0.4}_{-0.2}$          | $653.1^{+0.4}_{-0.2}$          | $665.8^{+0.4}_{-0.2}$          |

Model A1: $wabs(power-law+3\times\text{Gaussian})$

### Table 3. Spectral fitting results of absorption data with model A2-A4

| Model | $v_b$ (km s$^{-1}$) | log [Column Density] (cm$^{-2}$) | log $T$ (K) | $\chi^2$/dof |
|-------|-------------------|-------------------------------|------------|--------------|
| A2    | $294^{+140}_{-220}$ | $15.76^{+0.08}_{-0.08}$ | $15.56^{+0.13}_{-0.12}$ | $\cdots$ | $\cdots$ | $489.82/474$ |
| A3    | $375^{+124}_{-188}$ | $15.77^{+0.08}_{-0.08}$ | $\cdots$ | $6.27^{+0.02}_{-0.02}$ | $498.01/474$ |
| A4    | $290^{+152}_{-220}$ | $\cdots$ | $19.08^{+0.06}_{-0.07}$ | $6.28^{+0.02}_{-0.02}$ | $489.84/474$ |

Model A2,A3,A4: $wabs(power-law) \times \text{abs} \times \text{abs} \times \text{abs} \times \text{abs}$

---

Fig. 4. Suzaku spectra between 0.4 and 5.0 keV of Sz1 (top) and Sz2 (bottom) are plotted. Fitted model is E2 ($wabs(power-law_{CXB} + \text{mekal}_{halo}) + \text{mekal}_{LHB+SWCX} + 3\times\text{gausians}$). The O and Ne abundance of the $\text{mekal}_{halo}$ (green, dash-dotted) and $\text{mekal}_{LHB+SWCX}$ (blue, dotted) are set to be zero and three gaussians (magenta, solid) represent $\text{O}^{\\text{VII}}$ K$_{\alpha}$, $\text{O}^{\\text{VII}}$ K$_{\beta}$ + $\text{O}^{\\text{VIII}}$ K$_{\alpha}$, and Ne $\text{IX}$ K$_{\alpha}$ emission lines.

---

galactic sources such as AGNs). Because the contribution from unresolved Galactic sources is expected to be negligible at high galactic latitudes ($|b| > 30^\circ$), we did not consider such a contribution. The CXB spectrum is well described by a power-law.

In a study of 14 Suzaku blank sky observations, Yoshino et al. (2009) found that there are at least 2 LU (photons s$^{-1}$ cm$^{-2}$str$^{-1}$) of O VII line emission even in those directions where the attenuation length for the line is less than 300 pc. This emission is considered to come from the SWCX and LHB, though these contributions are difficult to separate with the current CCD energy resolution. After Smith et al. (2007) and Henley et al. (2007), Yoshino et al. (2009) found that it can be well represented by a model consisting of unabsorbed, optically thin thermal emission from a collisionally-ionized plasma. The best-fit temperature of this model is log $T = 6.06$. We therefore use a $\sim 10^6$ K plasma of 2 LU O VII surface brightness as the SWCX+LHB component. The uncertainty of this estimate is discussed in section 4.1.
Table 4. Spectral fitting results for emission data with the model E1

| Model  | Data    | CXB Norm | LHB+SWCX Norm | log T (K) | log T (K) | halo N/O | Ne/O | Fe/O | $\chi^2$/dof |
|--------|---------|----------|---------------|-----------|-----------|---------|------|------|-------------|
| E1     | Sz1     | 8.40±0.36| 4.3 (fixed)   | 6.06±0.38 | 4.3 (fixed) | 6.26±0.06 | 3.3±1.0 | 6.0±2.0 | 6.5±3.7 | 7.4±14.8 | 148.61/136 |
| E1     | Sz2     | 6.4±0.33 | 4.3 (fixed)   | 6.06±0.38 | 4.3 (fixed) | 6.35±0.06 | 3.4±1.0 | 4.7±2.0 | 2.4±0.9 | 1.0±0.5 | 147.33/141 |
| E1     | Sz1+ Sz2(Sz1) | 8.36±0.38| 4.3 (fixed)   | 6.06±0.36 | 4.3 (fixed) | 6.33±0.02 | 3.0±0.3 | 5.8±1.0 | 3.3±1.2 | 1.7±0.7 | 306.82/282 |
|        | Sz1+ Sz2(Sz2) | 6.50±0.36| 4.3 (fixed)   | 6.06±0.36 | 4.3 (fixed) | 6.33±0.02 | 3.0±0.3 | 5.8±1.0 | 3.3±1.2 | 1.7±0.7 | 306.82/282 |
| E1 †   | Sz1+ Sz2(Sz1) | 8.35±0.36| 4.3 (fixed)   | 6.06±0.02 | 4.3 (fixed) | 6.25±0.02 | 4.2±1.0 | 4.2±1.0 | 4.2±1.0 | 4.2±1.0 | 313.48/282 |
|        | Sz1+ Sz2(Sz2) | 6.59±0.36| 4.3 (fixed)   | 6.06±0.02 | 4.3 (fixed) | 6.25±0.02 | 4.2±1.0 | 4.2±1.0 | 4.2±1.0 | 4.2±1.0 | 313.48/282 |
| E1 ‡   | Sz1+ Sz2(Sz1) | 8.25±0.36| 4.3 (fixed)   | 7.5 (fixed) | 6.37±0.03 | 3.2±1.0 | 6.9±2.0 | 3.2±1.0 | 1.5±0.9 | 299.45/282 |
|        | Sz1+ Sz2(Sz2) | 6.47±0.36| 4.3 (fixed)   | 7.5 (fixed) | 6.37±0.03 | 3.2±1.0 | 6.9±2.0 | 3.2±1.0 | 1.5±0.9 | 299.45/282 |

† indicates linked parameters
Sz1+Sz2: simultaneous fitting of the data Sz1 and Sz2
Model E1: \( wabs(power-law_{\text{CXB}} + vmekal_{\text{halo}}) + vmekal_{\text{LHB+SWCX}} \)
Emission measure of \( mekal_{\text{LHB+SWCX}} \) is fixed to 0.9043 cm\(^{-6}\) which corresponds to 2.0 LU of O\text{VII} K\alpha emission

‡ Emission measure of \( mekal_{\text{LHB+SWCX}} \) is set to 0 as the lower limit

¶ Emission measure of \( mekal_{\text{LHB+SWCX}} \) is set to the upper limit which corresponds to 3.5 LU of O\text{VII} K\alpha emission

\( a \) in unit of photons cm\(^{-2}\) s\(^{-1}\)str\(^{-1}\) eV\(^{-1}\) @1keV

\( b \) Emission measure 10\(^{-3}\) $\int n_e n_p dl$: in unit of cm\(^{-6}\) pc

Table 5. Surface brightness of O\text{VII}, O\text{VIII} and Ne\text{IX}

| Model  | Data    | CXB Norm | LHB+SWCX Norm | halo N/O | O\text{VII} K\alpha | O\text{VII} K\beta+ | O\text{VIII} K\alpha | Ne\text{IX} K\alpha | $\chi^2$/dof |
|--------|---------|----------|---------------|---------|-------------------|-------------------|-------------------|-------------------|-------------|
| E2     | Sz1     | 8.21±0.32| 4.2±0.33     | 6.0 (fixed) | 7.4 (fixed) | 5.00±0.09 | 1.45±0.33 | 1.10±0.36 | 0.63±0.12 | 136.39/132 |
| E2     | Sz2     | 6.37±0.36| 4.5±0.36     | 4.7 (fixed) | 1.0 (fixed)  | 5.15±0.66 | 1.98±0.53 | 1.62±0.42 | 0.58±0.29 | 150.59/137 |

\( a \) in unit of photons cm\(^{-2}\) s\(^{-1}\)str\(^{-1}\) eV\(^{-1}\) @1keV

\( b \) Emission Measure 10\(^{-3}\) $\int n_e n_p dl$: in unit of cm\(^{-6}\) pc

\( c \) in unit of LU = photons s\(^{-1}\) cm\(^{-2}\) str\(^{-1}\)

face brightness of each line is a better indicator for this purpose.

We next evaluated the surface brightness of O\text{VII} and O\text{VIII} lines by modifying model E1 (this is model E2). We set the O and Ne abundance of the halo and LHB+SWCX to zero and used three Gaussian emission lines to represent O\text{VII} K\alpha, (O\text{VII} K\beta + O\text{VIII} K\alpha) and Ne\text{IX} K\alpha emission (Fig. 4). Since the XIS resolution is not high enough to enable us to distinguish the OVII K\beta (656 eV) and OVIII K\alpha (653 eV) lines, they were modeled as a single line. This model fitted both spectra with a $\chi^2$/dof of 135.52/132 and 150.59/137 respectively. Assuming the ratio between O\text{VII} K\beta, and O\text{VII} K\alpha (=\(\mu\)) intensities is 0.07 (see footnote 3), we calculated the O\text{VII}, O\text{VIII} and Ne\text{IX} surface brightnesses as listed in Table 5. Intensities of these lines between the two fields are consistent to within the 90% confidence level, and we assume that the temperature difference is not essential. We plotted the O\text{VII} and O\text{VIII} surface brightness over the Yoshino et al. (2009) results (Fig. 5, with 1 \(\sigma\) error) and found that the O\text{VII} and O\text{VIII} surface brightness of the PKS 2155-304 direction matches the trend of the other 14 fields.

We next fitted both data sets simultaneously with model E1 by linking parameters of the halo component in both observations. The results are shown in Table 5. (Fig. 6). The emission measure for the model is 3.0 (+0.3, –0.3) × 10\(^{-3}\) cm\(^{-6}\) pc and the temperature is 2.1 (+0.1, –0.1) × 10\(^{6}\) K. McCammon et al. (2002) reported the emission measure and temperature of the absorbed thermal component (=halo) as 3.7 × 10\(^{-3}\) cm\(^{-6}\) pc and 2.6 × 10\(^{6}\) K which are comparable to our values.

3. Combined Analysis

Up to now, we have analyzed the absorption and emission data separately and confirmed that the models including the halo component fit both data with a temperature of 1.91(+0.09, –0.09) × 10\(^{6}\) K for the absorption and 2.14 (+0.15, –0.14) × 10\(^{6}\) K for the emission spectra.
the emission measure and the column density. The length and density are found to be 4.0 (+1.9, -1.4) kpc and 7.7 (+2.3, -1.7) ×10^{-4} cm^{-3}, respectively. The errors of the calculated values are overestimated, since these errors are not independent. Moreover, important plasma parameters such as temperature and velocity dispersion were not considered in this simple calculation.

In this section, using the combined analysis, we will try to determine the physical conditions of the halo plasma, including the density, the temperature and their distribution.

3.3.1. Uniform Disk Model

The first step in our combined analysis was to try the simplest model: an isothermal plasma with uniform density extending up to h kpc above the disk (model C1).

To perform this combined analysis the emission measure and column density have to be linked with a common parameter. We chose the equivalent hydrogen column density (N_{H_{tot}}) and scale height (h) as the control parameters and calculated the emission measure. The relation of the density \(n\), scale height \(h\), column density \(N_{H_{tot}}\) and galactic latitude \(b\) is described as \(N_{H_{tot}} = nh/\sin b\). Thus we can use the A4 model for absorption data directly, and revise the E1 model to use the vabmkl instead of the mekal model. The vabmkl, an extension of the mekal model, was constructed for the combined fit and used the column density and plasma length as the fit parameters. (see Yao et al. 2009 for a detailed model description). For the halo components of the emission spectra, we fixed the abundance ratio of oxygen to hydrogen to the solar value and allowed the abundances of nitrogen, neon, and iron to vary again. All parameters except for the normalization of the CXB components are linked over the two sets of emission data. We put lower and upper limits (70-440 km s\(^{-1}\)) to the velocity dispersion (\(v_b\)) which represent the 90 % error range of the values obtained by the absorption analysis.

The model C1 fits both data sets (\(\chi^2/\text{dof}=802.78/754\)) and the results are given in Table 6. The column density and temperature are consistent with the A4 model (Table 3), while the temperature and abundance of Ne and Fe are not consistent with the E1 model (Table 4). This is because the temperature is mostly constrained by the absorption data and the lower temperature for the emission spectra preferred the higher abundance to describe the Ne and Fe lines. The plasma length is 4.2 (+1.5, -1.2) kpc and suggests that under the isothermal assumption the halo expands beyond the Galactic disk (∼1 kpc).

3.3.2. Exponential Disk Model

Observations of edge-on galaxies (ex. Wang et al. 2003, Li et al. 2008, Yamasaki et al. 2009) have revealed that the intensities of X-ray emission from extended hot gas decreases exponentially as a function of height from the galactic plane. As a next step in our analysis, we employed another simple model to fit the data: an exponential distribution model (Yao et al. 2009). In this model, the density \(n\) and temperature \(T\) of the hot gas are distributed according to the following equation,
Table 6. Combined spectral fitting results with the uniform disk model

| Model       | Data               | CXB Norm* | log N_{H_{\text{hot}}} (cm^{-2}) | $h$ (kpc) | log $T$ (K) | $v_b$ (km s^{-1}) | N/O | Ne/O | Fe/O | $\chi^2$/dof |
|-------------|--------------------|-----------|----------------------------------|-----------|--------------|------------------|-----|------|------|--------------|
| C1          | Emission: Sz1      | 8.38$^{+0.37}_{-0.39}$ | 19.08$^{+0.06}_{-0.07}$ | 4.2$^{+0.2}_{-1.2}$ | 6.2$^{+0.02}_{-0.02}$ | $^{...}$ | 4.9$^{+1.4}_{-1.0}$ | 5.2$^{+4.4}_{-1.5}$ | 5.0$^{+1.6}_{-1.7}$ | 802.78/754 |
| Emission: Sz2 | Absorption        | 6.57$^{+0.38}_{-0.39}$ | $^{...}$ | $^{...}$ | $^{...}$ | $^{...}$ | $^{...}$ | $^{...}$ | $^{...}$ | $^{...}$ |

* indicates linked parameters.

\* Parameter range is limited to 70-440 km s^{-1}.

\*a in unit of photons cm^{-2} s^{-1} str^{-1} eV^{-1} @1keV.

\[ n = n_0 e^{-Z/h_n \xi}, \quad T = T_0 e^{-Z/h_T \xi}, \quad \gamma = h_T/h_n \quad (1) \]

where $Z$ is the vertical distance from the Galactic plane, $n_0$ and $T_0$ are the density and temperature at the plane, and $h_n$ and $h_T$ are the scale heights of the density and temperature, respectively, and $\xi$ is the filling factor, which is assumed to be 1 in this paper. Thus the equivalent hydrogen column density of the hot gas ($N_{H_{\text{hot}}}$) is calculated as $N_{H_{\text{hot}}} = \int_0^\infty n dl = \int_0^\infty n_0 e^{-(Z/h_n) dZ/sinb} = n_0 h_n/sinb$.

The models \textit{wabsmekl} and \textit{absem} can also be used in an exponential disk model using the additional parameter $\gamma$ (see Yao et al. (2009) for detailed description). We therefore used the same model as used in the uniform model here (model C2). For fit parameters, for convenience we used the column density $N_{H_{\text{hot}}}$ instead of $n_0$.

We jointly fitted the emission and absorption data using this exponential disk model. The parameters obtained are summarized in Table 7. We first fixed the velocity dispersion ($v_b$) at 290 km s^{-1}. We next examined the robustness of the temperature ($T_0$), column density ($N_{H_{\text{hot}}}$), and scale height ($h_n$), as a function of $\gamma$, $v_b$, and the intensity of foreground SWCX intensity. We found that all parameters are consistent to within 90% statistical errors. When we fitted with $v_b$ allowed to vary freely, the best-fit value of $v_b$ became 54$^{+10}_{-13}$ km s^{-1}. Though this is above the thermal velocity ($\sim$ 30 km s^{-1}), it is a smaller value than that obtained from the absorption spectrum which determined the ratio between the OVII $K_\alpha$ and $K_\beta$ lines. In the exponential disk model, low ($3 \times 10^5 K < T < 10^6 K$) temperature plasma can exist in the outer regions, which contribute only to the OVII absorption line. This might cause the smaller $v_b$ value. The cooling time of such low temperature plasmas is very short, and the actual situation will not follow such a simple exponential model in this temperature range. We therefore fixed $v_b$ at 290 km s^{-1}, as the best-fit value from the absorption analysis.

Confidence contours of $h_n$, $T_0$ and $N_{H_{\text{hot}}}$ versus gamma are plotted in figure 7, overlaid on those of the LMC X-3 direction (Yao et al. 2009). We then obtained the scale height for the temperature gradient as $h_t = 5.6^{+7.4}_{-4.2}$ kpc and the gas density at the galactic plane as $n_0 = (1.4^{+0.6}_{-0.3}) \times 10^{-3}$ cm^{-3} (Figure 8). This values is typical for the mid-plane plasma density (Cox 2005). As the high temperature plasma close to the Galactic plane can emit Fe and Ne lines efficiently, the spectrum can be fitted without an abundance of heavy element higher than the solar value. The emission weighted temperature calculated with best fitted parameters using the intensity ratio of O VIII to O VII becomes $2.2(0.1, -0.1) \times 10^6 K$. 

\[ n = n_0 e^{-Z/h_n \xi}, \quad T = T_0 e^{-Z/h_T \xi}, \quad \gamma = h_T/h_n \quad (1) \]
4. Discussion

4.1. Uncertainty due to of LHB and SWCX

Because our knowledge about the temporal and spatial variability of the SWCX and the LHB is limited, there are uncertainties due to the assumption of their intensity. These uncertainties could result in large uncertainties in our results.

To assess this uncertainty, we estimated the lower and upper values of the LHB and SWCX contributions and evaluated the parameters of the halo components again. The lower limit of the contribution is zero. As for the upper limit, we adopt 3.5 LU for the OVII emission, as obtained by the MBM 12 shadowing observation (Smith et al. 2007). As the heliospheric SWCX is caused by the collision between the Solar wind and the neutral ISM, the estimated emissivity has a peak around the ecliptic plane (Koutrompa et al. 2007, Lallement et al. 2004). MBM 12 is located at (λ, β) = (47.4, 2.6) in ecliptic coordinates, while PKS2155–304 is at (λ, β) = (321.2, –16.8). Thus we assume that the heliospheric SWCX contribution in the PKS 2155-304 direction could not be larger than that for MBM12.

The results using these lower and upper limits are shown in Table 4 and Table 7. Though the best fit values are slightly changed, they are consistent with the previous analysis.

4.2. Comparison with the Results for LMC X-3

We compared our results with those of the LMC X-3 direction, as is summarized in Table 8. The directions of the LMC X-3 and PKS 2155-304 are (1, b) = (273.6, –32.1) and (17.7, –52.2). The fact that we obtained similar values for the two directions indicates that the hot halo is common in the big picture and can be explained with the exponential model of the column density, scale height and temperature as ~2 x 10^19 cm⁻², a few kpc and ~2 x 10^6 K. As the distances to the targets are 50 kpc for LMC X-3 and 480 Mpc for PKS 2155-304, the consistency of the parameters of the exponential disk suggests that there is little contribution from beyond LMC X-3, or from a very extended halo of a 100 kpc scale.

4.3. Distribution of the OVII and OVIII Emitting/ Absorbing Gas and Its Origin

We calculated the distribution of OVII and OVIII ions and their emissivities assuming the best fit parameters at γ = 2.44 and at γ = 1.0 and 3.5 (Fig. 9). We then estimated the total radiative energy loss from the thick disk distributed exponentially. Assuming solar
Table 8. Disk model parameters for two sight lines

| Direction  | log $N_{\text{H}^\text{tot}}$ (cm$^{-2}$) | $h_n$ (kpc) | $\log T_0$ (K) | $\gamma$ | Ne | Fe |
|------------|------------------------------------------|-------------|----------------|--------|----|----|
| PKS 2155-304 | 19.10$^{+0.07}_{-0.07}$ | 2.3$^{+0.8}_{-0.8}$ | 6.40$^{+0.08}_{-0.08}$ | 2.44$^{+1.11}_{-1.41}$ | 3.1$^{+1.2}_{-1.2}$ | 1.5$^{+1.0}_{-1.0}$ |
| LMC X-3†   | 19.36$^{+0.22}_{-0.21}$ | 2.8$^{+3.6}_{-1.8}$ | 6.50$^{+0.11}_{-0.10}$ | 0.5$^{+1.2}_{-1.2}$ | 1.7$^{+0.6}_{-0.4}$ | 0.9$^{+0.2}_{-0.2}$ |

† from Yao et al. 2009

Fig. 8. 68%, 90%, and 99% confidence contours of $T_0$ and $N_{\text{H}^\text{tot}}$ vs. scale height $h_n$ obtained in the joint fit to the X-ray absorption and emission data. In the upper panel the density at the plane $n_0$ is constant along the solid and dashed lines.

Fig. 9. The density of O VII and O VIII ion (top) and the emissivity of O VII and O VIII lines (bottom) as a function of the height from the galactic plane under the best fit parameter of $\gamma$=2.44 (solid line), $\gamma$=1.0 (dashed line) and $\gamma$=3.5 (dash-dotted line).

abundances, best fit parameters and ionization fraction and emissivity as taken from SPEX4, we obtained the energy loss rate as a function of the distance from the Galactic plane $Z$ (Fig. 10). We then integrated the energy loss rate until the temperature of the exponential disk becomes lower than $10^{5.5}$ K. Because our results are based on X-ray observations, it is difficult to detect plasma of $T < 10^{5.5}$ K. We obtained a total radiative energy loss rate of $7.2 \times 10^{36}$ erg s$^{-1}$ kpc$^{-2}$ in 0.001–40 keV and $1.8 \times 10^{35}$ erg s$^{-1}$ kpc$^{-2}$ in 0.3–8.0 keV. These values are consistent with the X-ray luminosity of other spiral galaxies (Strickland et al. 2004).

We next compared the energy loss rate with the energy input rate from SNe. According to Ferrière (1998), the SN rate near the sun is 19 Myr$^{-1}$ kpc$^{-2}$ for type II SNe and 2.6 Myr$^{-1}$ kpc$^{-2}$ for type Ia SNe, respectively. Assuming each SN explosion releases $1 \times 10^{51}$ ergs, the total input energy is then $7 \times 10^{38}$ ergs s$^{-1}$ kpc$^{-2}$. If 1% of the SN explosion energy is input to the hot halo, the total energy loss can be compensated.

4.4. Consistency with O VI Absorbing Gas

It is not clear that our model is consistent beyond $\sim 5$ kpc where the temperature of the gas is below $\sim 10^{5.0}$ K and O VI ion becomes dominant.

Williams et al. (2007) found two local O VI absorption lines in the FUSE PKS 2155-304 spectrum and reported column densities of $1.10 \pm 0.1 \times 10^{14}$ and $8.7 \pm 0.4 \times 10^{13}$ cm$^{-2}$. Our exponential disk model expects O VI column

---

---

4 http://www.sron.nl/index.php?option=com_content &task=view&id=125&Itemid=279
determine the physical state of the global hot gas along the PKS 2155–304 direction. The temperature is indicated by the solid black line. The emissivity is calculated from the model, using a script made by Sutherland. (http://proteus.pha.jhu.edu/~dks/Code/Coolcurve/index.html)

The results obtained by the combined analysis are consistent with those for the LMC X-3 direction. This suggest that the global hot gas surrounding our Galaxy has common structure.

Part of this work was financially supported by Grant-in-Aid for Scientific Research (Kakenhi) by MEXT, No. 20340041, 20340068, and 20840051. TH appreciates the support from the JSPS research fellowship and the Global COE Program “the Physical Sciences Frontier”, MEXT, Japan

References

Anders, E., & Grevesse, N. 1989, Geochim. Cosmo chim. Acta, 53, 197
Berkhuijsen, E. M., Haslam, C. G. T., & Salter, C. J. 1971, A&A, 14, 252
Bregman, J. N., & Lloyd-Davies, E. J. 2007, ApJ, 660, 990
Cox, D. P. 2005, ARA&A, 43, 337
Fang, T., McKee, C.F., Canizares, C.R., Wolfire, M. 2006, ApJ, 644, 174
Ferrière, K. 1998, ApJ, 497, 759
Fujimoto, R., et al. 2007, PASJ, 59, S133
Futamoto, K., Mitsuda, K., Takei, Y., Fujimoto, R., & Yamasaki, N. Y. 2004, ApJ, 605, 793
Henley, D. B., Shelton, R. L., & Kuntz, K. D. 2007, ApJ, 661, 304
Ishisaki, Y., et al. 2007, PASJ, 59, 113
Kalberla, P. M. W., Burton, W. B., Hartmann, D., Arnaud, M. E., Bajaja, E., Morras, R., P&oumlpllepel, W. G. L. 2005, A&A, 440, 775
Kharchenko, V., Rigazio, M., Dalgarno, A., & Krasnopolsky, V. A. 2003, ApJ, 585, L73
Koutroupa, D., Acero, F., Lallement, R., Ballet, J., & Kharchenko, V. 2007, A&A, 475, 901
Koyama, K., et al. 2007, PASJ, 59, 23
Lallement, R., Raymond, J.C., Valleraga, J., Lemoine, M., Dalaudier, F., & Vertaux, J.L. 2004, A&A, 426, 875
Li, J-T., Li, Z., Wang, Q. D., Irwin, J. A., & Rossa, J. 2008, MNRAS, 390, 59
Masui, K., Mitsuda, K., Yamasaki, N. Y., Takei, Y., Kimura, S., Yoshino, T., & McCanmion, D. 2009, PASJ, 61, 115
McCammon, D., et al. 2002, ApJ, 576, 188
Mitsuda, K., et al. 2007, PASJ, 59, 1
Norman, C. A., & Ikeuchi, S. 1989, ApJ, 345, 372
Sembach, K.R, Savage, B.D, & &tramp; T.D. 1997, ApJ, 480, 216
Shelton, R. L., Shallmen, S. M., & Jenkins, E. B. 2007, ApJ, 659, 365
Shull, J. M., & Slavin, J. D. 1994, ApJ, 427, 784
Smith, R. K., et al. 2007, PASJ, 59, S141
Snowden, S. L., Eger, R., Freyberg, M. J., McCanmon, D., Plucinsky, P.P., Sanders, W.T., Schmitt, J.H.M.M., Trimper, J., & Voges, W. 1997, ApJ, 485, 125
Strickland, D. K., Heckman, T. M., Colbert, E. J. M., Hoopes, C. G., & Weaver, K. A. 2004, ApJS, 151, 193
Sutherland, R. S., & Dopita, M. A. 1993, ApJS, 88, 253
Tawa, N. et al. 2008, PASJ, 60, S22
Williams, R. J., Mathur, S., Nicastro, F., & Elvis, M. 2007, ApJ, 665, 247
Wang, Q.D., Immler, S., Walterbos, R., Lauroesch, J. T, Breitschwerdt, D. 2001, ApJL, 555, 99
Wang, Q.D., Chaves, T., Irwin, J.D. 2003, ApJ, 598, 969

5. Summary

We have analyzed high resolution X-ray absorption/emission data observed by Chandra and Suzaku to determine the physical state of the global hot gas along the PKS 2155–304 direction.

1. Suzaku clearly detected O VII Kα, O VIII Kα and O VII Kβ lines. The surface brightnesses of O VII and O VIII in this direction can be understood in the same scheme as obtained by other 14 observations (Yoshino et al. 2009).

2. By the absorption analysis, column density is measured as 3.9 (+0.6, −0.6) cm$^{-3}$ pc and temperature is measured as 1.91 (+0.09, −0.09) × 10⁷ K. By the emission analysis, emission measure is measured as 3.0 (+0.3, −0.3) × 10¹⁲ cm$^{-6}$ pc and temperature is measured as 2.14 (+0.15, −0.14) × 10⁶ K.

3. Combined analysis using the exponential disk model gives a good fit with χ²/ dof of 789.65/756 to both emission and absorption spectra. The gas temperature and density at the Galactic plane are determined to be 2.5 (+0.6, −0.3) × 10⁶ K and 1.4 (+0.5, −0.4) × 10⁻³ cm⁻³ and the scale heights of the gas temperature and density 5.6 (+7.4, −4.2) kpc and 2.3 (+0.9, −0.8) kpc, respectively.

4. The results obtained by the combined analysis are consistent with those for the LMC X-3 direction. This suggest that the global hot gas surrounding our Galaxy has common structure.
Yamasaki, N. Y., Sato, K., Mitsuishi, I., & Ohashi, T. 2009, PASJ, 61, 291
Yao, Y., & Wang, Q. D., 2005, ApJ, 624, 751
Yao, Y., & Wang, Q. D., 2007, ApJ, 658, 1088
Yao, Y., Wang, Q. D., Hagihara, T., Mitsuda, K., McCammon, D., & Yamasaki, N. Y. 2009, ApJ, 690, 143
Yoshino, T., et al. 2009, PASJ, 61, 805