Computational Rational Engineering and Development: Synergies and Opportunities

Ramses Sala

1 Technische Universität Kaiserslautern, Department of Mechanical and Process Engineering. 67663 Kaiserslautern, Germany
sala@rhrk.uni-kl.de

Abstract. Research and development in computer technology and computational methods have resulted in a wide variety of valuable tools for Computer-Aided Engineering (CAE) and Industrial Engineering. However, despite the exponential increase in computational capabilities and Artificial Intelligence (AI) methods, many of the visionary perspectives on cybernetic automation of design, engineering, and development have not been successfully pursued or realized yet. While contemporary research trends and movements such as Industry 4.0 primarily target progress by connected automation in manufacturing and production, the objective of this paper is to survey progress and formulate perspectives targeted on the automation and autonomization of engineering development processes. Based on an interdisciplinary mini-review, this work identifies open challenges, synergies, and research opportunities towards the realization of resource-efficient cooperative engineering and development systems. In order to go beyond conventional human-centered, tool-based CAE approaches and realize Computational Intelligence Driven Engineering and Development processes, it is suggested to extend the framework of Computational Rationality to challenges in design, engineering and development.

Keywords: Computational Intelligence, Artificial Intelligence, Computer-Aided Engineering, Computational Rationality, CAE, CIDD, CRD, CRE.

1 Introduction and motivation

Advances in computer technology and computational science have provided crucial tools to aid the engineering and realization of a wide variety of mechanical structures and systems [1–3]. Examples of influential tools are: the geometrical modeling by means of Computer-Aided Design (CAD) [4, 5], the simulation and analysis of virtual prototypes using Computer-Aided Engineering (CAE) tools [6], and automated machining using Computer-Aided Manufacturing (CAM) [1, 7]. The increase in computational engineering capabilities, however also led to a progressive increase in the complexity of processes and products, which poses a massive challenge for modern industrial engineering [8]. After the 1990s, a paradigm shift in engineering design was expected due to the developments in the fields of Computational Intelligence (CI), Soft Computing (SC), Machine Learning (ML), and AI [9]. But, despite that the capabilities
of computational tools for specific tasks in the engineering process have improved exponentially, the structure, organization, and paradigms of the overall design, engineering and development processes have been adapted only modestly [10]. Many of the visions and expectations on automated engineering and development systems formulated in the early literature [11, 12] have not yet been realized [13]. To address the challenges of increasing complexity in product design, engineering and development [8], new paradigms and research frameworks might be needed [10].

How to effectively realize AI technologies and intelligent systems that can enable improvement and automatization of industrial design, engineering, and development processes? To analyze and discuss the many aspects of this quest, seminal classical works as well as recent results from the fields of Systems Engineering, Computer Science, Computational Mechanics, Uncertainty Quantification, and Operations Research, Cognitive and neuroscience, are reviewed with a focus on intersections related to the understanding and automation of problem-solving and decision making in design, engineering, and development. Based on the presented interdisciplinary mini-review progress, open challenges, synergies, and perspectives on directions for further research are identified, formulated, and discussed in the following sections.

2 Recent and past perspectives on computer systems for automation of engineering and development

Relatively soon after computing machines or early computers became available for non-military purposes, they were applied in the development process of various engineering products [14]. Besides the obvious applications of computers for calculations, more revolutionary ideas, concepts, and theories for computer-aided design systems were established in the 1960s [4]. In particular, the development of graphical human-machine communication interfaces enabled new possibilities for Computer-Aided Design (CAD). Around the same time, also new computational methods to model, simulate and optimize the response of complex systems and structures were developed [15, 16]. Other early developments relevant to engineering automation were general problem-solving programs [17] and expert systems [18]. These and other seminal works initiated the research and development, which eventually resulted in the wide variety of Computer-Aided technologies (CAX) [19] that provide today's state-of-the-art tools for engineering development [5, 20–24].

In 1960, early visionary perspectives related to automation of the engineering process were presented in [11]. The paper described expected developments towards intuitive man-machine cooperation and interaction technologies that would enable computers to facilitate the problem formulation and decision-making processes for complex engineering endeavors. The described targets aimed to go beyond mechanical extensions and mere automation of prescribed tasks, resulting in a man-computer symbiosis, that would enable thinking capacities as no human brain has ever thought.

“One of the main aims of man-computer symbiosis is to bring the computing machine effectively in to the formulative parts of technical problems” [11].
Other visionary concepts of Intelligent Computer-Aided Engineering (ICAE) were described in [12]. The conceptual ideas were presented as a roadmap towards long-term targets for the development of computer programs or partners that could capture engineering knowledge to assist engineers in the engineering design, realization, maintenance, and operation of engineering products. Some of the identified concepts required to achieve ICAE were: broad domain models, layered domain models, routine design, functional descriptions, qualitative simulation, and communication [12]. Furthermore, the importance of developing methods for the hierarchical decomposition of physical problems and qualitative physics models to approximate the responses of the systems and subsystems were highlighted. Also, the necessity for long-term research commitments to go beyond incremental progress was emphasized.

In a perspective paper [25] identifying general open challenges in the field of AI and CI, also important aspects and challenges of importance to the automation of engineering and design were identified. Human intelligence, and the type of intelligence measured by the Turing test, is very multidimensional. These dimensions of intelligence are often considered separately, and many systems can only be considered "partially intelligent". An important observation was that no adequate test or performance measures to quantify utility and integration in AI systems of partially intelligent agents are available [25]. Furthermore, it was highlighted that: "For an artifact, a computational intelligence, to be able to behave with high levels of performance on complex intellectual tasks, perhaps surpassing human level, it must have extensive knowledge of the domain." [25].

The perspective on intelligent machines in the context of engineering design [10] identified that most modern computer-aided design tools are still essentially extensions of engineering and practices going back more than two centuries. It was also was highlighted that: "Today's innovations in robotics, advanced materials and additive manufacturing require newer and more creative design processes, enabling an entirely new kind of Arsenale — an Arsenale in which computers work as our creative partners" [10]. From that perspective, computer-aided design was identified as a next step beyond merely computer-aided design.

The article in [26] on cognitive AI systems provided a discussion on important bottlenecks and topics for further research targeting human-level functionality AI [26]. Many AI or CI systems that intend to aid humans cognitively can be categorized as: (i) Cognitive prosthesis or (ii) Cognitive orthotics. The aim of cognitive prosthetic systems is to operate independently before human supervision. An example of a prosthetic system is for example, machine translation such as Google translate. Although it generally needs human modifications, it is considered a cognitive prosthetic because it operates fully independently before human interaction is needed. Cognitive orthotic systems are characterized by the intent to enhance human capabilities and require human-machine interactions. An important build-in quality ceiling of such systems is the communication with humans [26]. The work pointed out that "In order to burst through the quality ceiling and move toward comprehensive applications that are more like intelligent agents than mechanistic automata, the field must readress newly available theories and methods, the development of systems featuring human-inspired computational models." [p7, [26]].
Relatively recent strategic research initiatives and trends such as "Industry 4.0" [27] and "Made in China 2025" have a strong emphasis on manufacturing and focus less on the engineering design and product development processes [28]. Although these new perspectives and projections on the future of industrial automation lean towards cyber-physical-systems and advanced human-machine interactions, those visionary concepts however still paint a rather human-centered picture in the execution (see also [29]).

Why have intelligent systems as envisioned in [11, 12] with capabilities beyond the current CAX tools not been realized yet [10, 30], despite all progress and advances in computation, simulation, ML, CI, and AI? Based on the articles discussed in this section, several trends, open issues, and obstacles towards automation in engineering and development can be identified and summarized:

1. There seems to have been a trend to focus on human-centered engineering development paradigms and automation approaches such as tool-based systems, cognitive orthotics, and man-computer symbiosis [26, 29].
2. Human-machine communication is still a bottleneck in current intelligent systems for automation in engineering and design [26, 29, 31].
3. Improved domain descriptions and models of the various agent tasks, environments, and resources in engineering and development processes are required [25, 26, 31].
4. The progress and success of AI for narrow tasks seems to have diverted the attention from long-term high-level goals on the automation of complex design and engineering processes towards the many lower hanging fruits in the field of AI and automation [10, 12]. To break the quality ceiling, research that targets intelligent systems with higher-level capabilities is necessary [26].

In the following sections, general and domain-specific aspects central to the research and development of intelligent systems for design, engineering, and development are reviewed and discussed in order to highlight promising directions and areas for future research on automation and decision-making in engineering development.

3 Computational Rationality in Engineering Development

3.1 Domain characteristics: problem-solving and decision-making in the context of industrial design, engineering, and development

Industrial engineering and development are often associated with the resulting technological products and impact on our environment. The resulting technological products are, however, only the tip of the iceberg of the engineering development process. Industrial engineering not only involves the design and engineering of a technological product, but it also involves the planning and development of the processes and facilities involved in material extraction, manufacturing, control, maintenance, and recycling during the product life-cycle stages. Furthermore, not only the final product and the involved production processes, but also the product development process itself (the organization and structuring of all the involved activities), needs to be established and realized in a way that satisfies requirements on performance, quality, cost, sustainability, and other operational aspects. The following
sections review aspects related to intelligence and rationality in the operational and executive processes of engineering development. For interesting aspects beyond rationality related to sustainability, and ethics of the product and process objectives and requirements defined and set by humans is referred to [32–34].

Process and Problem Complexity. The development of engineering products and systems can involve thousands of people over several years. Increasing complexity is one of the biggest challenges in engineering design and modern product development [8]. Many products are becoming increasingly complex due to the integration and blending of various state-of-the-art technologies, such as composite materials, smart materials [35], and distributed control systems. Large-scale concurrent engineering on complex projects involves many tasks, sub-problems, various types of uncertainties [36, 37], decision-making based on incomplete information, and a dense web of information flows and interdependencies [38]. The engineering and product realization process of complex products has itself become a complex system, one that could be described as "organized complexity" [39].

Hierarchical Bounded Rationality. From an industrial engineering perspective, the development of a product generally involves a composition of many interdependent decisions and tasks in a complex hierarchical structure, which all need to be solved using a common resource budget that needs to be allocated over all activities to achieve a common objective. The core challenge in industrial engineering is to organize and address the many sub-tasks in order to realize the overall objectives using only limited information, knowledge, and other resources. The industrial engineering context thus poses a scenario of Bounded Rationality (BR) [40] at the level of individual tasks as well as at the level of the organization [41]. Although the environment and policies of agents dealing with technical decision-problems and organizational problems might be very different, the general concepts from the framework of Computational Rationality (CR) [42] could be used to target further progress in understanding and automation of engineering activities. Although there has been research on hierarchical decision-making [43–45], synergies with concepts from BR and CR for hierarchical decision problems in engineering development seem rather underexplored.

Uncertainties in expected utility and resource use. Challenging aspects in design, engineering, and development processes are the errors and uncertainties involved in the estimation of the system response behavior before its realization [36]. Although by means of virtual-prototyping and simulations, the response of physical systems can be approximated, reliable estimations for the simulation accuracy and effort are still difficult to obtain, especially for nonlinear systems. While there has been substantial progress in the areas of error estimation [46], uncertainty quantification [47–49], Global Sensitivity Analysis [50], and related areas [51] in academic settings, the application of these methods in industrial settings are still relatively rare. Therefore, further work targeting deeper integration of uncertainty quantification in industrial engineering and development processes would be beneficial.
Non-rational design criteria and problem specification. Although the postulation of the design objectives, requirements, and targets are often considered as non-rational [52], many evaluation criteria used in engineering are heuristics in disguise. The high-level, truly non-rational designer preferences often require a translation or reformulation of lower-level technical goals, requirements, and objectives. The activities related to formulating and specifying technical objectives and requirements at various levels of detail are related to the value alignment problem [53] and reward specification in reinforcement learning (RL). Hierarchical (heuristic) sub-problem approximations and approximate rewards or utilities could play a role in problem-solving [54], [55]. Further development of approaches that combine data-mining and simulation workflows (e.g. [56, 57]) could also improve the formulation and specification of partial approximate design evaluation criteria, utility, and reward functions. Besides data and information mining to extract useful design specifications, also effective languages are required. Although several modeling methods and languages have been presented, they are still deficiencies in generality for requirement specification [58]. The work in [59] indicated that it is even not clear how to evaluate and compare the different modeling methods and languages. Relatively recently also reward modeling techniques for RL have been developed, which can efficiently learn from (interactively communicated) human preferences for those decision problems where the evaluation criteria are difficult to specify in formal languages [60]. Since in engineering and development, not only the physical implementation of the systems but also the specification of goals, requirements, and targets can be complex, further work in these directions is required.

3.2 Interdisciplinary opportunities and synergies

Computational Rationality. “A rational agent is one that acts so as to achieve the best outcome or, when there is uncertainty, the best expected outcome.”[53]. Rational agents thus seem the ideal candidates for many activities, including decision making and problem-solving in engineering and development. Because in an industrial engineering development setting, knowledge time and other resources are limited, while there are many tasks and decision problems, agents must decide and act under conditions of Computational Rationality (CR). In a nutshell: the challenge is not only what to decide, but also how to decide, given the available resources. The meta-level decisions about resource allocation and method or policy selection in agent-based bounded rational decision making can be based on metareasoning using metalevel models or on heuristic decision policies [42]. The framework of CR [42, 61] aims to unify the fields of AI, cognitive science, and neuroscience in order to exploit synergies between the fields. The goal of CR is: “Identifying decisions with the highest expected utility, while taking into consideration the cost of computation in complex real-world problems in which most relevant calculations can only be approximated” [42]. This is also relevant in the context of understanding, formalizing, improving, and eventually automating engineering development processes. The perspective of understanding intelligence as computational rationality is in principle domain agnostic and open to consider human, natural, as well as artificial systems and activities.
Neuroscience and Cognition. Engineering and development involve decision-making and problem solving under limited knowledge, time, and other resources. In the framework of CR [42], two directions to address such problems are model-based metareasoning and the application of heuristic methods. Limited resources can make detailed metareasoning or formal methods unfeasible and can justify the use of heuristics for artificial as well as human agents [42, 62]. In [63, 64] systematic errors and biases in common human heuristics and interesting insights on fast heuristics and slow reasoning were identified. The work in [65, 66] highlighted the importance in human agents of matching patterns in the environment with decision heuristics. In [67] various Bayesian-based approaches to build intelligent systems using reverse-engineering of human cognitive functionalities and development were reviewed. This work emphasized the importance of language and hierarchical flexible structured data representations for cognitive capabilities such as abstraction and generalization [67]. In [68], concepts of BR are used and combined with set-based design, meta-modelling and multi-objective optimization to improve decentralized design problems. Investigations in [69] on a human grandmaster chess player indicated the importance of recognition compared to look-ahead search based on investigations on human experts. The theory of Ecological Rationality formalizes that the rationality of a decision policy depends on the circumstances [70]. This conclusion matches in spirit with the results of the No Free Lunch (NFL) theorems [71, 72]. Improved understanding of decisions and meta-decisions in human cognitive processes and other aspects of psychology could contribute to insight and development of computational methods in AI, engineering and science [62, 73–75], and maybe also vice versa.

Design and Engineering Science. Design and Engineering can benefit from strategic, systematic, and scientific approaches [76, 77]. In order to use computers and computational methods to solve design and engineering problems, it could help to establish formal (mathematical) descriptions of the problems or tasks of interest [78, 79]. Aspects related to creative design and problem-solving in the development process can be transformed in constraint satisfaction, optimization and search problems using Formal Design Theory (FDT) [80]. The use and extension of FDT and other formal design approaches (see also [81]) could support the frontiers of research on the automation of engineering design. Surveys on various theories and process models of engineering design have concluded: that presently no single model can address all issues and that different models may be useful for different situations [38, 82]. There are still many aspects of design and engineering which have not yet been rigorously formalized and which thus still pose open challenges and opportunities. Education and further research on general formal design theories and engineering science seem therefore of crucial importance for automation of engineering design and development.

Computational physics and uncertainty quantification. To make predictions and inferences on systems and processes, numerical models and simulations can be used. Computational Physics and Mechanics based models are commonly used in robotics, control and computational engineering of physical systems. In [83], a differentiable
physics simulation was presented, which enabled the use of gradient-based methods in the control and optimization of physical/mechanical systems. A new approach to use physics simulations combined with multi-level path planning in the context of robotics was described in [84]. Conversely, methods to learn and infer physical principles from data have been presented in [85, 86]. The accuracy of physical models and simulations in general is limited due to errors and uncertainties and requires tradeoffs w.r.t. accuracy and computational effort. Important approaches to address and investigate these accuracy limitations are: Validation and Verification (VV) [87], and Uncertainty Quantification (UQ) [48, 88], and Global Sensitivity Analysis [50] approaches.

Optimization and Control. Many sub-tasks and design problems in engineering can be formulated as optimization and control problems. In combination with physics engines or numerical models and simulations, the approximate representation of the properties and behavior of physical systems or processes can be optimized with respect to specified design objectives and constraints. The simulations and responses involved are, however, often relatively complex and computationally non-trivial, such that the selection and tuning of effective optimization algorithms is difficult. Optimization and automated design approaches and workflows have been developed and investigated for applications as: topology optimization and generative design of structures [89, 90], circuit design [91, 92], Elevator Systems [93] bioelectrochemical systems [94], automotive control actuators [95] and electric vehicle transmissions [96]. These examples demonstrate the use and potential of automated Modeling Simulation and Optimization (MSO) workflows for specific applications of industrial relevance. General frameworks for MSO-workflows that include automated agents for decisions regarding modeling accuracy, model parameterization, algorithm selection, and computational resources, are however still lacking, and seem a promising direction for further research. In the context of massive complex software systems, the use of Bayesian Optimization was proposed relatively recently in [97]. In [97] Bayesian Optimization was recognized as a powerful tool to address the many distributed design choices, and a key ingredient to take humans out of the loop in the development of complex software systems. The Bayesian perspective also highlights the importance of model selection, the consideration of uncertainty, and learning or model updating.

When design problems are formulated as true Black-Box optimization or search problems over finite search spaces, the NFL theorems [71, 72] apply. These theorems imply that no universally superior algorithms exist when performance is averaged over all possible problems. Thus, the remaining quest is to match specific problem classes of task-environment-resource combinations with specific efficient policies or algorithms. This, in turn, highlights the importance of: a) problem characterization and categorization (or fitness landscape analysis) [98–101]; b) systematic and generalizable optimization algorithm benchmarking [102–104]; c) algorithm performance analysis and selection [99, 105–107]. While there has been increasing interest towards algorithm selection for black-box optimization problems in a general context [99, 108] as well as for simulation-based engineering applications [100, 109], there are still many open challenges of scientific and practical relevance related to optimization algorithm benchmarking, selection and analysis [104, 106]. The extended process-perspective of
optimization to the meta-level also highlights the need for optimization algorithm performance measures that go beyond fixed-budgeted and fixed-target performance evaluation criteria, to also include measures that can be used in dynamic hierarchical settings. Such settings involve decisions regarding method selection and resource allocation, which require more complex performance measures involving estimations of the expected utility per resource use, also considering the uncertainties.

Operations Research and Systems Engineering. Although not always directly targeted at computer-based automation, interesting methods and strategies to manage the design of complex systems have been developed in the fields of Engineering Management, Operations Research, and Systems Engineering, which could also benefit the automation of engineering and development processes [110–112]. One research direction towards a general approach to manage complexity in systems engineering is Model-Based Systems Engineering [113], there are, however, still many open challenges, and further work is needed to close the gaps between theory and implementation [114]. One of these challenges in to establish models that do not only estimate the expected results but also quantify the uncertainties. One interesting contribution in this research direction is the concept of Experimentable Digital Twins (EDT) [115]. The idea is to establish communication between virtual twin models, which represent the data, functions, and capabilities of real objects or processes, in networks of communicating EDTs on a system level, in order to realize complex control systems. In [116] the potential applicability of RL and ML in the domain of Systems Engineering was discussed, and it was concluded that further work in this promising direction was recommended.

AI and CI cover many areas of high relevance to intelligent systems in general [53, 117]. The following sub-sections highlight recent progress from various sub-fields of specific importance for automation in design and engineering processes.

Automated Software development. Interesting automated software testing and design approaches have been presented that could contribute to the automation of engineering and development of physical products [118–121].

Agent and Multi-Agent Models, Systems and Control. Complex processes can be modeled and controlled by means of agent-based and multi-agent models and systems. [122–125]. Multi-agent based models and systems can be combined with systematic management and systems engineering approaches [123, 126].

Knowledge-based systems for applications in Engineering, often referred to as Knowledge-Based Engineering (KBE), is another approach to capture, store and reuse information that could be used in engineering and development [127, 128]. A review of developments and open challenges for KBE systems is presented in [23].

Robotics and control. In the research field of evolutionary robotics, several methods have been presented that enable the design morphology and control of interesting
virtual creatures/robots [129, 130]. In [131] also aspects of the development and production have been considered.

Machine Learning. Deep artificial neural network-based approaches have been developed and used for generative design and analysis of materials, biomechanical products [132, 133]. In [89, 90] deep neural networks have been combined with topology in the design and optimization of mechanical structures.

Reinforcement learning (RL) approaches have been developed to achieve impressive performance in many applications such as games, control, and simulation-based optimization [60, 134, 135]. Recently also RL methods have been applied in the field of design and engineering, such as drug and circuit design. [136, 137]. A review of advances in reinforcement learning is provided in [135, 138, 139].

Evolutionary Computing and nature-inspired algorithms have been used in the design and optimization of software and mechanical systems [90, 91, 119, 140].

Fuzzy logic approaches enable the consideration of uncertainties in decision-making and have been used in safety engineering and inference systems [51, 141].

4 Discussion and Perspectives

4.1 Mind the gap: intelligent systems for design, engineering, and development

Contemporary design, engineering, and development paradigms are still rather human-centered in the execution stage. In a nutshell: engineering development processes are generally executed by a collective network of human agents that drive and control a wide variety of computational tools and automated workflows. In conventional tool-based engineering development paradigms, the involved “narrow” AI agents are rather passive, and require well-defined problems as well as pre- and postprocessing by human agents. Many of the essential activities in design, engineering, and development processes involve aspects of intelligence (e.g., flexibility, adaptivity, problem decomposition, learning, planning, and resource allocation) that are currently still performed and provided to the process by the human agents in the loop using: intuition, experience, reasoning, heuristics, and creativity. Improved understanding and automation of these and similar qualities and capabilities require further interdisciplinary research and progress.

Towards Computational Rational Processes: interdisciplinary paradigms

The framework of computational rationality [42, 61] aims to unify the fields of AI, cognitive science, and neuroscience with the goal to exploit synergies in improving the understanding of decision-making and problem solving considering conditions with limited resources for reasoning. In the context of design, engineering, and development processes, problem-solving and decision-making not only involves CR but also intersects with fields such as Design, Engineering Science, Operations Research, Systems Engineering, AI, Computational Physics, Uncertainty Quantification,
Optimization, and Control. A joint framework of Computational Rational design (CRd) Engineering (CRE) and Development (CRD) could bring insightful and rewarding synergies in research and development among all of the involved fields. Besides the economic and technological incentives, there is an abundance of possibilities to collect data and feedback from trained and experienced human agents in the respective fields. The central research goal of CRX is to understand and improve how the decisions, policies, agents, organizational structures with the highest expected utility of the overall process X, given the available resources can be identified and realized. The objectives can go beyond increased understanding and automation of individual human-level capabilities and include aspects related to collective human intelligence and AI-human hybrid intelligence. Human intelligence has been described using agent-based models as a “Society of Mind” in [125]. Improved understanding of complex (engineering) processes involving collective intelligence over cooperative agents requires an inter- or even a transdisciplinary approach and a common vocabulary [142].

Technical goals and perspectives: Computational Intelligent Driven Development. Computationally intelligent systems with higher-level competencies could increase the overall capability and efficiency of design, engineering, and development processes. Besides the current trends in the development of a diversity of AI-agents for specific narrow tasks, it could be rewarding to set goals towards the realization of composite intelligent systems that have the capabilities to perform higher-level tasks and which could eventually drive complex design, engineering and development processes.

Computational Intelligence-Driven Engineering (CIDE) and Development (CIDD) could serve as technical goals towards the automation of engineering and development beyond the current state-of-the-art tool-based “computer-aided” approaches. With CIDE as an initial mid-to-long-term milestone with a focus on automated and autonomous engineering design. CIDD could be a next long-term milestone, additionally including further consideration of a wider range of realization aspects such as the engineering of the manufacturing process and extended product life-cycle impact factors. The development of intelligent systems that are able to “drive” engineering and development processes requires more than just connecting the many narrow-capability agents together in a workflow. Although much can be learned from automated manufacturing systems developed using the industry 4.0 paradigm, the processes and tasks in design engineering and development are more complicated and complex and require the collective of agents to work as an integrated hierarchical system to handle demanding interactive higher-level cognitive tasks. Agents or systems that are more flexible with increasing capabilities in areas such as: problem recognition, problem decomposition or disentanglement, adaptivity, planning and resource allocation, method selection, cooperation, self-reflectivity, and learning are therefore needed.

Scientific goals and perspectives: Computational Rational Development
Computational Systems and agents that are can address higher-level and complex engineering development tasks are still an open challenge in science, research, and technology. History indicates that systems are generally realized with increasing levels of complexity when considered functionally and chronologically. Therefore, targets
and progress in the direction of systems and agents for gradually increasing levels of complexity and generality are not only of technological importance but could also contribute towards Artificial General Intelligence (AGI). The scientific challenge of CRD goes beyond the technical goal of establishing programmed or trained learning systems that can deal with specific types of complex engineering development tasks, but the overall aim is to establish the frameworks, theories, and methods that enable the realization of intelligent systems that are capable of higher-level tasks of increasing complexity that feature aspects of development. Understanding and realizing intelligent systems that are capable of causal inference (concluding how things are and how they will be) [143] is an important step towards systems that can grasp features of development (realizing how desirable things that have never been could be achieved). Besides the challenges of realizing such systems also aspects of safety and ethics require research consideration [144, 145]. Both inductive research with reasoning and generalization from the specific, as well as deductive research with reasoning from general theories, can be valuable to understand and create the next generation of intelligent systems. It could therefore be beneficial to establish transdisciplinary research frameworks and programs with the goal to increase the understanding of computationally rational decision-making and problem-solving for complex engineering development tasks and processes by intelligent systems with bounded resources.

4.2 Open challenges and prospective research directions

Improved understanding and the realization of intelligent systems for design, engineering, and development involve a variety of open multidisciplinary challenges at different process levels:

1. **Domain knowledge, problem specification, and description:** Improved methods to formalize and describe the various decision-tasks, activities, environments, and resources that typically occur in engineering development are necessary.
2. **Task and problem decomposition and recognition:** Research on methods for the characterization, decomposition, categorization, and recognition of tasks and decision problems in sub-tasks/problems.
3. **Policy modeling and evaluation:** Development of methods for the estimation and description of the expected performance, resource requirements, and costs for the different available solution procedures and strategies for the overall and sub-problems, under consideration of the available resources and the involved uncertainties.
4. **Policy selection, planning, and resource allocation:** The endowment of agents or agent-based systems with capabilities for meta-level reasoning regarding policy selection, planning, and resource allocation based on systematic evaluation of the sub-problems.
5. **Adaptive reflective agents:** Improvement of methods to enable agents to reflect their true performance after execution w.r.t. their estimated performance in order to update and learn and performance estimates for policy selection.
6. **Organizing the society of mind**: Development of improved methods to link, combine and organize "narrow" AI Systems together, in ways such that the efficiency or capabilities of the integrated system exceed those of the separate systems.

7. **Information representation and communication**: Investigation and development of effective representations and/or languages to store and communicate: problems, solution procedures, and results in ways that enable recognition, generalization, and adaptation for future tasks and problems.

8. **Language, interaction, and communication**: Development of ways to improve human-machine and machine-human interactions. Not only taking into account communication interfaces but also the information, structure, language and context which is being communicated.

9. **Education**: Cross-disciplinary education and training in AI, design, engineering, and related fields to empower the capabilities of human agents to develop and improve automation systems.

5 Concluding Remarks

In order to make progress towards intelligent systems which are able to efficiently realize high-level design, engineering, and development processes, it is necessary to increase the understanding of computational rationality in the context of the complex hierarchically structured task and decision environments occurring in these application domains. To effectively increase the required understanding of the many involved factors, the knowledge and research from various disciplines could be exploited and explored in the scope of transdisciplinary research frameworks such as CRD. This paper highlighted important contributions from various research disciplines, focusing on their intersections related to problem-solving and decision-making processes in design, engineering, and development. Based on the presented mini-review, specific open challenges have been identified, and a road map of future research directions through an interdisciplinary research framework is presented. The overall objective of this contribution was, however, not to restrict future research to specific directions but to motivate and stir up an interdisciplinary discussion and movement to set challenging targets and initiate innovative research. The presented perspectives could extend Herbert Simon’s “science of design” [79], towards a science of systems that purposefully design, engineer, and develop.

References

1. Matta AK, Raju DR, Suman KNS (2015) The integration of CAD/CAM and rapid prototyping in product development: a review. Materials Today: Proceedings 2:3438–3445

2. Harish V, Kumar A (2016) A review on modeling and simulation of building energy systems. Renewable and sustainable energy reviews 56:1272–1292
3. O’Brien JM, Young TM, O’Mahoney DC, Griffin PC (2017) Horizontal axis wind turbine research: A review of commercial CFD, FE codes and experimental practices. Progress in Aerospace Sciences 92:1–24
4. Coons SA (1963) An outline of the requirements for a computer-aided design system. In: Proceedings of the May 21–23, 1963, spring joint computer conference. pp 299–304
5. Hirz M, Rossbacher P, Gulanová J (2017) Future trends in CAD—from the perspective of automotive industry. Computer-Aided Design and Applications 14:734–741
6. Park H-S, Dang X-P (2010) Structural optimization based on CAD–CAE integration and metamodeling techniques. Computer-Aided Design 42:889–902
7. Crowley TH (1963) The computer as an aid to the design and manufacture of systems. Proceedings of the IEEE 51:513–513
8. ElMaraghy W, ElMaraghy H, Tomiyama T, Monostori L (2012) Complexity in engineering design and manufacturing. CIRP annals 61:793–814
9. Saridakis KM, Dentsoras AJ (2008) Integration of Computational Intelligence Applications in Engineering Design. In: Hellenic Conference on Artificial Intelligence. Springer, pp 276–287
10. Regli WC (2017) Design and Intelligent Machines. AI Magazine 38:63–65
11. Licklider JC (1960) Man-computer symbiosis. IRE transactions on human factors in electronics 4–11
12. Forbus KD (1988) Intelligent computer-aided engineering. AI magazine 9:23–23
13. Hehenberger P, Vogel-Heuser B, Bradley D, et al (2016) Design, modelling, simulation and integration of cyber physical systems: Methods and applications. Computers in Industry 82:273–289
14. Strang CR (1951) Computing machines in aircraft engineering. In: 1951 International Workshop on Managing Requirements Knowledge. IEEE, pp 94–94
15. Clough RW (1960) The finite element method in plane stress analysis. In: Proceedings of 2nd ASCE Conference on Electronic Computation, Pittsburgh Pa., Sept. 8 and 9, 1960
16. Schmit LA (1960) Structural design by systematic synthesis. In: Proceedings of the Second National Conference on Electronic Computation, ASCE, Sept., 1960
17. Newell A, Shaw JC, Simon HA (1959) Report on a general problem solving program. In: IFIP congress. Pittsburgh, PA, p 64
18. Feigenbaum EA, Lederberg J (1968) Mechanization of inductive inference in organic chemistry, in in Formal Representation of Human Judgment, B. Kleinmuntz, Cattell R.B. Ed. Wiley, New York (1968)
19. Dankwort CW, Weidlich R, Guenther B, Blaurock JE (2004) Engineers’ CAX education— it’s not only CAD. Computer-Aided Design 36:1439–1450
20. Antonietti PF, Cangiani A, Collis J, et al (2016) Review of discontinuous Galerkin finite element methods for partial differential equations on complicated domains. In: Building bridges: connections and challenges in modern approaches to numerical partial differential equations. Springer, pp 281–310
21. Zawawi MH, Saleha A, Salwa A, et al (2018) A review: Fundamentals of computational fluid dynamics (CFD). In: AIP Conference Proceedings. AIP Publishing LLC, p 020252
22. Łukaszewicz A, Szafran K, Jóźwik J (2020) CAX Techniques Used in UAV Design Process. In: 2020 IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, pp 95–98
23. Plappert S, Gembarski PC, Lachmayer R (2019) The use of knowledge-based engineering systems and artificial intelligence in product development: a snapshot. In: International Conference on Information Systems Architecture and Technology. Springer, pp 62–73
24. Leondes CT (2019) Computer-Aided Design, Engineering, and Manufacturing: Systems Techniques and Applications, Volume V, The Design of Manufacturing Systems. CRC Press
25. Feigenbaum EA (2003) Some challenges and grand challenges for computational intelligence. Journal of the ACM (JACM) 50:32–40
26. Nirenburg S (2017) Cognitive systems: Toward human-level functionality. AI Magazine 38:5–12
27. Kagermann H, Lukas W-D, Wahlster W (2011) Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. industriellen Revolution. VDI Nachrichten 13:2
28. Lu Y (2017) Industry 4.0: A survey on technologies, applications and open research issues. Journal of industrial information integration 6:1–10
29. Romero D, Stahre J, Wuest T, et al (2016) Towards an operator 4.0 typology: a human-centric perspective on the fourth industrial revolution technologies. In: proceedings of the international conference on computers and industrial engineering (CIE46), Tianjin, China. pp 29–31
30. Lesh N, Marks J, Rich C, Sidner CL (2004) “Man-Computer symbiosis” revisited: Achieving natural communication and collaboration with computers. IEICE Trans Inf Syst 87:1290–1298
31. Regli WC, Hu X, Atwood M, Sun W (2000) A survey of design rationale systems: approaches, representation, capture and retrieval. Engineering with computers 16:209–235
32. Mulvenna M, Boger J, Bond R (2017) Ethical by design: A manifesto. In: Proceedings of the European Conference on Cognitive Ergonomics 2017. pp 51–54
33. da Luz LM, de Francisco AC, Pickarski CM, Salvador R (2018) Integrating life cycle assessment in the product development process: A methodological approach. Journal of Cleaner Production 193:28–42
34. Klotz L, Weber E, Johnson E, et al (2018) Beyond rationality in engineering design for sustainability. Nature Sustainability 1:225–233
35. Vyas GM, Andre A, Sala R (2020) Toward lightweight smart automotive hood structures for head impact mitigation: Integration of active stiffness control composites. Journal of Intelligent Material Systems and Structures 31:71–83
36. De Weck O, Eckert CM, Clarkson PJ (2007) A classification of uncertainty for early product and system design. In: DS 42: Proceedings of ICED 2007, the 16th International Conference on Engineering Design, Paris, France, 28.-31.07. 2007. pp 159-160 (exec. Summ.), full paper no. DS42_P_480
37. Eckert CM, Clarkson PJ (2010) Planning development processes for complex products. Research in Engineering Design 21:153–171
38. Wynn DC, Clarkson PJ (2018) Process models in design and development. Research in Engineering Design 29:161–202
39. Weaver W (1948) Science and complexity. American Scientist 53:6–544
40. Simon HA (1982) Models of bounded rationality. MIT press, Cambridge
41. Simon HA (1991) Bounded rationality and organizational learning. Organization science 2:125–134
42. Gershman SJ, Horvitz EJ, Tenenbaum JB (2015) Computational rationality: A converging paradigm for intelligence in brains, minds, and machines. Science 349:273–278
43. Sethi SP, Zhang Q (2012) Hierarchical decision making in stochastic manufacturing systems. Springer Science & Business Media
44. Feyzabadi S, Carpin S (2017) Planning using hierarchical constrained Markov decision processes. Auton Robot 41:1589–1607. https://doi.org/10.1007/s10514-017-9630-4
45. Hu H, Yarats D, Gong Q, et al (2019) Hierarchical decision making by generating and following natural language instructions. arXiv preprint arXiv:190600744
46. Ainsworth M, Oden JT (1997) A posteriori error estimation in finite element analysis. Computer methods in applied mechanics and engineering 142:1–88
47. Marelli S, Sudret B (2014) UQLab: A framework for uncertainty quantification in Matlab. In: Vulnerability, uncertainty, and risk: quantification, mitigation, and management. pp 2554–2563
48. Ghanem R, Higdon D, Owhadi H (2017) Handbook of uncertainty quantification. Springer
49. Sudret B, Konakli K, Mai CV, et al (2018) Recent developments in surrogate modelling for uncertainty quantification. In: 3rd International Conference on Vulnerability and Risk Analysis and Management (ICVRAM 2018). ETH Zurich, Risk, Safety and Uncertainty Quantification
50. Iooss B, Lemaitre P (2015) A review on global sensitivity analysis methods. In: Uncertainty management in simulation-optimization of complex systems. Springer, pp 101–122
51. Kabir S, Papadopoulos Y (2018) A review of applications of fuzzy sets to safety and reliability engineering. International Journal of Approximate Reasoning 100:29–55
52. Simon HA (1993) Decision making: Rational, nonrational, and irrational. Educational Administration Quarterly 29:392–411
53. Russell S, Norvig P (2021) Artificial intelligence: a modern approach, 4th ed. Pearson Education Inc.
54. Marthi B (2007) Automatic shaping and decomposition of reward functions. In: Proceedings of the 24th International Conference on Machine learning. pp 601–608
55. Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE transactions on Systems Science and Cybernetics 4:100–107
56. Heese R, Walczak M, Morand L, et al (2019) The Good, the Bad and the Ugly: Augmenting a black-box model with expert knowledge. In: International Conference on Artificial Neural Networks. Springer, pp 391–395
57. Asprion N, Böttcher R, Pack R, et al (2019) Gray-Box Modeling for the Optimization of Chemical Processes. Chemie Ingenieur Technik 91:305–313
58. Glinz M (2000) Problems and deficiencies of UML as a requirements specification language. In: Tenth International Workshop on Software Specification and Design. IWSSD-10 2000. IEEE, pp 11–22
59. Siau K, Rossi M (2011) Evaluation techniques for systems analysis and design modelling methods – a review and comparative analysis. Information Systems Journal 21:249–268. https://doi.org/10.1111/j.1365-2575.2007.00255.x
60. Christiano P, Leike J, Brown TB, et al (2017) Deep reinforcement learning from human preferences. arXiv preprint arXiv:170603741
61. Lewis RL, Howes A, Singh S (2014) Computational rationality: Linking mechanism and behavior through bounded utility maximization. Topics in cognitive science 6:279–311
62. Griffiths TL, Lieder F, Goodman ND (2015) Rational use of cognitive resources: Levels of analysis between the computational and the algorithmic. Topics in cognitive science 7:217–229
63. Tversky A, Kahneman D (1974) Judgment under uncertainty: Heuristics and biases. science 185:1124–1131
64. Kahneman D (2011) Thinking, fast and slow. Macmillan
65. Todd PM, Gigerenzer G (2000) Précis of “Simple heuristics that make us smart”. Behavioral and brain sciences 23:727–741
66. Goldstein DG, Gigerenzer G (2002) Models of ecological rationality: the recognition heuristic. Psychological review 109:75
67. Tenenbaum JB, Kemp C, Griffiths TL, Goodman ND (2011) How to grow a mind: Statistics, structure, and abstraction. science 331:1279–1285
68. Gurnani AP, Lewis K (2008) Using bounded rationality to improve decentralized design. AIAA journal 46:3049–3059
69. Gobet F, Simon HA (1996) The roles of recognition processes and look-ahead search in time-constrained expert problem solving: Evidence from grand-master-level chess. Psychological science 7:52–55
70. Todd PM, Gigerenzer G (2007) Environments that make us smart: Ecological rationality. Current directions in psychological science 16:167–171
71. Wolpert DH, Macready WG (1995) No free lunch theorems for search. Technical Report SFI-TR-95-02-010, Santa Fe Institute
72. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE transactions on evolutionary computation 1:67–82
73. Griffiths TL, Callaway F, Chang MB, et al (2019) Doing more with less: meta-reasoning and meta-learning in humans and machines. Current Opinion in Behavioral Sciences 29:24–30
74. Elms DG, Brown CB (2013) Intuitive decisions and heuristics—an alternative rationality. Civil Engineering and Environmental Systems 30:274–284
75. Young MT (2018) Heuristics and Human Judgment: What We Can Learn About Scientific Discovery from the Study of Engineering Design. Topoi 1–9
76. Cross N (2021) Engineering design methods: strategies for product design. John Wiley & Sons
77. Cash PJ (2018) Developing theory-driven design research. Design Studies 56:84–119
78. Dixon JR (1987) On research methodology towards a scientific theory of engineering design. Ai Edam 1:145–157
79. Simon HA (2019) The sciences of the artificial. MIT press
80. Braha D, Maimon O (1998) A Mathematical Theory of Design: Foundations, Algorithms and Applications. Springer US
81. Antonsson EK, Cagan J (2005) Formal engineering design synthesis. Cambridge University Press
82. Bahrami A, Dagli CH (1993) Models of design processes. In: Concurrent engineering. Springer, pp 113–126
83. Degreve J, Hermans M, Dambre J (2019) A differentiable physics engine for deep learning in robotics. Frontiers in neurorobotics 13:6
84. Sebastian B, Ben-Tzvi P (2019) Physics based path planning for autonomous tracked vehicle in challenging terrain. Journal of Intelligent & Robotic Systems 95:511–526
85. Raissi M, Karniadakis GE (2018) Hidden physics models: Machine learning of nonlinear partial differential equations. Journal of Computational Physics 357:125–141
86. Wu T, Tegmark M (2019) Toward an artificial intelligence physicist for unsupervised learning. Physical Review E 100:033311
87. Oberkampf WL, Trucano TG, Hirsch C (2004) Verification, validation, and predictive capability in computational engineering and physics. Appl Mech Rev 57:345–384
88. Schetzik R, Thorarinsdottir TL, Gneiting T (2013) Uncertainty quantification in complex simulation models using ensemble copula coupling. Statistical science 28:616–640
89. Oh S, Jung Y, Kim S, et al (2019) Deep generative design: Integration of topology optimization and generative models. ASME J. Mech. Des. 141, 11: 11405. (2019) https://doi.org/10.1115/1.4044229
90. Bužn M, Aulig N, Olhofer M, Duddeck F (2018) Learning-based topology variation in evolutionary level set topology optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference. pp 825–832
91. Koza JR, Bennett FH, Andre D, Keane MA (1996) Automated design of both the topology and sizing of analog electrical circuits using genetic programming. In: Artificial Intelligence in Design'96. Springer, pp 151–170
92. Javaheripi M, Samragh M, Koushanfar F (2019) Peeking into the black box: A tutorial on automated design optimization and parameter search. IEEE Solid-State Circuits Magazine 11:23–28
93. Annunziata L, Menapace M, Tacchella A (2017) Computer Intensive Vs. Heuristic Methods In Automated Design Of Elevator Systems. In: ECMS, pp 543–549
94. Gadkari S, Gu S, Sadhukhan J (2018) Towards automated design of bioelectrochemical systems: a comprehensive review of mathematical models. Chemical Engineering Journal 343:303–316
95. Picard C, Schiffermann J (2020) Automated Design Tool for Automotive Control Actuators. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, p V11BT11A027
96. Kieninger D, Hemsen J, Köller S, Uerlich R (2019) Automated Design and Optimization of Transmissions for Electric Vehicles. MTZ worldwide 80:88–93
97. Shahriari B, Swersky K, Wang Z, et al (2015) Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE 104:148–175
98. Mersmann O, Bischof B, Trautmann H, et al (2011) Exploratory landscape analysis. In: Proceedings of the 13th annual conference on Genetic and evolutionary computation. pp 829–836
99. Kerschke P, Trautmann H (2019) Automated algorithm selection on continuous black-box problems by combining exploratory landscape analysis and machine learning. Evolutionary Computation 27:99–127
100. Sala R, Baldanzini N, Pierini M (2016) Representative surrogate problems as test functions for expensive simulators in multidisciplinary design optimization of vehicle structures. Structural and Multidisciplinary Optimization 54:449–468
101. Muñoz MA, Kirley M, Smith-Miles K (2021) Analyzing randomness effects on the reliability of exploratory landscape analysis. Natural Computing 1–24. https://doi.org/10.1007/s11047-021-09847-1
102. Sala R, Baldanzini N, Pierini M (2017) Global optimization test problems based on random field composition. Optimization Letters 11(4):699–713. https://doi.org/10.1007/s11590-016-1037-1
103. Bartz-Beielstein T, Doerr C, Bossek J, et al (2020) Benchmarking in optimization: Best practice and open issues. arXiv preprint arXiv:200703488
104. Sala R, Müller R (2020) Benchmarking for Metaheuristic Black-Box Optimization: Perspectives and Open Challenges. In: 2020 IEEE Congress on Evolutionary Computation (CEC). IEEE, pp 1–8
105. Rice JR (1976) The algorithm selection problem. Advances in computers 15:5
106. Roughgarden T (2019) Beyond worst-case analysis. Communications of the ACM 62:88–96
107. Muñoz MA, Sun Y, Kirley M, Halgamuge SK (2015) Algorithm selection for black-box continuous optimization problems: A survey on methods and challenges. Information Sciences 317:224–245
108. Golovin D, Solnik B, Moitra S, et al (2017) Google vizier: A service for black-box optimization. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining. pp 1487–1495
109. Vanaret C, Gallard F, Martins J (2017) On the Consequences of the” No Free Lunch” Theorem for Optimization on the Choice of an Appropriate MDO Architecture. In: 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. p 3148

110. Steward DV (1981) The design structure system: A method for managing the design of complex systems. IEEE transactions on Engineering Management EM-28, no. 3, pp. 71-74, Aug.

111. Yassine A, Braha D (2003) Complex concurrent engineering and the design structure matrix method. Concurrent Engineering 11:165–176

112. Yassine AA (2019) Managing the development of complex product systems: an integrative literature review. IEEE Transactions on Engineering Management

113. Wymore AW (1993) Model-Based Systems Engineering. CRC Press

114. Madhi AM, Sievers M (2018) Model-based systems engineering: Motivation, current status, and research opportunities. Systems Engineering 21:172–190

115. Schüle M, Priegemeyer M, Atorl F, Rossmann J (2018) Experimentable digital twins—Streamlining simulation-based systems engineering for industry 4.0. IEEE Transactions on Industrial Informatics 14:1722–1731

116. Lee JH, Shin J, Realff MJ (2018) Machine learning: Overview of the recent progresses and implications for the process systems engineering field. Computers & Chemical Engineering 114:111–121

117. Bezdek JC (2016) (Computational) Intelligence: What’s in a Name? IEEE Systems, Man, and Cybernetics Magazine 2:4–14

118. Branke J, Nguyen S, Pickardt CW, Zhang M (2015) Automated design of production scheduling heuristics: A review. IEEE Transactions on Evolutionary Computation 20:110–124

119. Stützle T, López-Ibáñez M (2019) Automated design of metaheuristic algorithms. In: Handbook of metaheuristics. Springer, pp 541–579

120. Geng Z, Wang Y (2020) Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification. Nature communications 11:1–11

121. Böhlund M, Doneit W, Gröll L, et al (2019) Automated design process for hybrid regression modeling with a one-class SVM. at-Automatisierungstechnik 67:843–852

122. Dorri A, Kanhere SS, Jurdak R (2018) Multi-agent systems: A survey. Ieee Access 6:28573–28593

123. Herrera M, Pérez-Hernández M, Kumar Parlikad A, Izquierdo J (2020) Multi-Agent Systems and Complex Networks: Review and Applications in Systems Engineering. Processes 8:312

124. Mascardi V, Weyns D, Ricci A, et al (2019) Engineering Multi-Agent Systems: State of Affairs and the Road Ahead. ACM SIGSOFT Software Engineering Notes 44:18–28

125. Minsky M (1988) Society of mind. Simon and Schuster

126. DeLoach SA, Wood MF, Sparkman CH (2001) Multiagent systems engineering. International Journal of Software Engineering and Knowledge Engineering 11:231–258

127. Zawadzki P (2018) Methodology of KBE system development for automated design of multivariant products. In: Advances in Manufacturing. Springer, pp 239–248

128. Wu X, Chen H, Wu G, et al (2015) Knowledge engineering with big data. IEEE Intelligent Systems 30:46–55

129. Cheney N, Clune J, Lipson H (2014) Evolved electrophysiological soft robots. In: Artificial Life Conference Proceedings 14. MIT Press, pp 222–229

130. Zhao A, Xu J, Konaković-Luković M, et al (2020) RoboGrammar: graph grammar for terrain-optimized robot design. ACM Transactions on Graphics (TOG) 39:1–16
131. Schulz A, Sung C, Spielberg A, et al (2017) Interactive robogami: An end-to-end system for design of robots with ground locomotion. The International Journal of Robotics Research 36:1131–1147
132. Balu A, Nallagonda S, Xu F, et al (2019) A deep learning framework for design and analysis of surgical bioprosthesis heart valves. Scientific reports 9:1–12
133. So S, Mun J, Rho J (2019) Simultaneous inverse design of materials and structures via deep learning: demonstration of dipole resonance engineering using core–shell nanoparticles. ACS applied materials & interfaces 11:24264–24268
134. Shao K, Tang Z, Zhu Y, et al (2019) A survey of deep reinforcement learning in video games. arXiv preprint arXiv:191210944
135. Kiumarsi B, Vamvoudakis KG, Modares H, Lewis FL (2017) Optimal and autonomous control using reinforcement learning: A survey. IEEE transactions on neural networks and learning systems 29:2042–2062
136. Popova M, Isayev O, Tropsha A (2018) Deep reinforcement learning for de novo drug design. Science advances 4:eaaq7885
137. Settaluri K, Haj-Ali A, Huang Q, et al (2020) Autockt: Deep reinforcement learning of analog circuit designs. In: 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, pp 490–495
138. Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA (2017) Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine 34:26–38
139. Al-Emran M (2015) Hierarchical reinforcement learning: a survey. International journal of computing and digital systems 4(2), 137-143.
140. Sala R, Baldanzini N, Pierini M (2017) SQG-Differential Evolution for difficult optimization problems under a tight function evaluation budget. In: International Workshop on Machine Learning, Optimization, and Big Data. Springer, pp 322–336
141. Ojha V, Abraham A, Snášel V (2019) Heuristic design of fuzzy inference systems: A review of three decades of research. Engineering Applications of Artificial Intelligence 85:845–864
142. Dafoe A, Hughes E, Bachrach Y, et al (2020) Open Problems in Cooperative AI. arXiv preprint arXiv:201208630
143. Schölkopf B, Locatello F, Bauer S, et al (2021) Toward Causal Representation Learning. Proceedings of the IEEE
144. Amodei D, Olah C, Steinhardt J, et al (2016) Concrete problems in AI safety. arXiv preprint arXiv:160606565
145. Russell S (2019) Human compatible: Artificial intelligence and the problem of control. Penguin