NONVANISHING OF KRONECKER COEFFICIENTS FOR RECTANGULAR SHAPES

PETER BÜRGISSER, MATTHIAS CHRISTANDL, AND CHRISTIAN IKENMEYER

Abstract. We prove that for any partition \((\lambda_1, \ldots, \lambda_d)\) of size \(\ell d\) there exists \(k \geq 1\) such that the tensor square of the irreducible representation of the symmetric group \(S_{k\ell d}\) with respect to the rectangular partition \((k\ell, \ldots, k\ell)\) contains the irreducible representation corresponding to the stretched partition \((k\lambda_1, \ldots, k\lambda_d)\). We also prove a related approximate version of this statement in which the stretching factor \(k\) is effectively bounded in terms of \(d\). This investigation is motivated by questions of geometric complexity theory.

1. Introduction

Kronecker coefficients are the multiplicities occurring in tensor product decompositions of irreducible representations of the symmetric groups. These coefficients play a crucial role in geometric complexity theory [MS01, MS08], which is an approach to arithmetic versions of the famous P versus NP problem and related questions in computational complexity via geometric representation theory. As pointed out in [BLMW09] (see Proposition 1 below), for implementing this approach, one needs to identify certain partitions \(\lambda \vdash d\ell d\) with the property that the Kronecker coefficient associated with \(\lambda, \square, \square\) vanishes, where \(\square := (\ell, \ldots, \ell)\) stands for the rectangle partition of length \(d\). Computer experiments show that such \(\lambda\) occur rarely. Our main result confirms this experimental finding. We prove that for any \(\lambda \vdash d\ell d\) there exists a stretching factor \(k\) such that the Kronecker coefficient of \(k\lambda, k\square, k\square\) is nonzero. (Here, \(k\lambda\) stands for the partition arising by multiplying all components of \(\lambda\) by \(k\).) We also prove a related approximate version of this statement (Theorem 2) that suggests that the stretching factor \(k\) may be chosen not too large.

Our proof relies on a recently discovered connection between Kronecker coefficients and the spectra of composite quantum states [Kly04, CM06].
Let ρ_{AB} be the density operator of a bipartite quantum system and let ρ_A, ρ_B denote the density operators corresponding to the systems A and B, respectively. It turns out that the set of possible triples of spectra $(\text{spec} \rho_{AB}, \text{spec} \rho_A, \text{spec} \rho_B)$ is obtained as the closure of the set of triples $(\overline{\lambda}, \overline{\mu}, \overline{\nu})$ of normalized partitions λ, μ, ν with nonvanishing Kronecker coefficient, where we set $\overline{\lambda} := \frac{1}{|\lambda|} \lambda$. For proving the main theorem it is therefore sufficient to construct, for any prescribed spectrum λ, a density matrix ρ_{AB} having this spectrum and such that the spectra of ρ_A and ρ_B are uniform distributions.

In [Kly04] the set of possible triples of spectra $(\text{spec} \rho_{AB}, \text{spec} \rho_A, \text{spec} \rho_B)$ is interpreted as the moment polytope of a complex algebraic group variety, thus linking the problem to geometric invariant theory. We do not use this connection in our paper. Instead we argue as in [CM06] using the estimation theorem of [KW01]. The exponential decrease rate in this estimation allows us to derive the bound on the stretching factor in Theorem 2.

1.1. Connection to geometric complexity theory. The most important open problem of algebraic complexity theory is Valiant’s Hypothesis [Val79, Val82], which is an arithmetic analogue of the famous P versus NP conjecture (see [BCS07] for background information). Valiant’s Hypothesis can be easily stated in precise mathematical terms.

Consider the determinant $\det_d = \det[x_{ij}]_{1 \leq i,j \leq d}$ of a d by d matrix of variables x_{ij}, and for $m < d$, the permanent of its m by m submatrix defined as

$$\text{per}_m := \sum_{\sigma \in S_m} x_{1,\sigma(1)} \cdots x_{m,\sigma(m)}.$$

We chose $z := x_{dd}$ as a homogenizing variable and view \det_d and $z^{d-m}\text{per}_m$ as homogeneous functions $\mathbb{C}^{d^2} \to \mathbb{C}$ of degree d. How large has d to be in relation to m such that there is a linear map $A : \mathbb{C}^{d^2} \to \mathbb{C}^{d^2}$ with the property that

$$(*) \quad z^{d-m}\text{per}_m = \det_d \circ A?$$

It is known that such A exists for $d = O(m^2 2^m)$. Valiant’s Hypothesis states that $(*)$ is impossible for d polynomially bounded in m.

Mulmuley and Sohoni [MS01] suggested to study an orbit closure problem related to $(*)$. Note that the group $GL_{d^2} = GL_{d^2}(\mathbb{C})$ acts on the space $S^d(\mathbb{C}^{d\times d})^*$ of homogeneous polynomials of degree d in the variables x_{ij} by substitution. Instead of $(*)$, we ask now whether

$$(**) \quad z^{d-m}\text{per}_m \in \overline{GL_{d^2} \cdot \det_d}.$$

Mulmuley and Sohoni [MS01] conjectured that $(**)$ is impossible for $d = m^{O(1)}$, which would imply Valiant’s Hypothesis.

Moreover, in [MS01, MS08] it was proposed to show that $(**)$ is impossible for specific values m, d by exhibiting an irreducible representation of SL_{d^2} in the coordinate ring of the orbit closure of $z^{d-m}\text{per}_m$, that does not occur in
the coordinate ring of $\text{GL}_{d^2} \cdot \det_d$. We call such a representation of SL_{d^2} an obstruction for (***) for the values m, d.

We can label the irreducible SL_{d^2}-representations by partitions λ into at most $d^2 - 1$ parts: For $\lambda \in \mathbb{N}^{d^2}$ such that $\lambda_1 \geq \ldots \geq \lambda_{d^2-1} \geq \lambda_{d^2} = 0$ we shall denote by $\mathcal{V}_\lambda(\text{SL}_{d^2})$ the irreducible SL_{d^2}-representation obtained from the irreducible GL_{d^2}-representation \mathcal{V}_λ with the highest weight λ by restriction.

If $\mathcal{V}_\lambda(\text{SL}_{d^2})$ is an obstruction for m, d, then we must have $|\lambda| = \sum_i \lambda_i = \ell d$ for some ℓ, see [BLMW09] Prop. 5.6.2. We call the representation $\mathcal{V}_\lambda(\text{SL}_{d^2})$ a candidate for an obstruction iff $\mathcal{V}_\lambda(\text{SL}_{d^2})$ does not occur in $\mathbb{C}[\text{GL}_{d^2} \cdot \det_d]$.

Proposition 1. Suppose that $|\lambda| = \ell d$ and write $\square = (\ell, \ldots, \ell)$ with ℓ occurring d times. Then $\mathcal{V}_\lambda(\text{SL}_{d^2})$ is a candidate for an obstruction iff the Kronecker coefficient associated with $\lambda, \square, \square$ vanishes.

Proof. This is an immediate consequence of [BLMW09] Prop. 4.4.1 and [BLMW09] Prop. 5.2.1. \qed

We may thus interpret this paper’s main result (Theorem) by saying that candidates for obstructions are in a certain sense rare.

2. Preliminaries

2.1. Kronecker coefficients and its moment polytopes. A partition λ of $n \in \mathbb{N}$ is a monotonically decreasing sequence $\lambda = (\lambda_1, \lambda_2, \ldots)$ of natural numbers such that $\lambda_i = 0$ for all i but finitely many i. The length $\ell(\lambda)$ of λ is defined as the number of its nonzero parts and its size as $|\lambda| := \sum_i \lambda_i$. One writes $\lambda \vdash \ell n$ to express that λ is a partition of n with $\ell(\lambda) \leq d$. Note that $\lambda := \lambda/n = (\lambda_1/n, \lambda_2/n, \ldots)$ defines a probability distribution on \mathbb{N}.

It is well known [EH91] that the complex irreducible representations of the symmetric group S_n can be labeled by partitions $\lambda \vdash n$ of n. We shall denote by \mathcal{S}_λ the irreducible representation of S_n associated with λ. The Kronecker coefficient $g_{\lambda, \mu, \nu}$ associated with three partitions λ, μ, ν of n is defined as the dimension of the space of S_n-invariants in the tensor product $\mathcal{S}_\lambda \otimes \mathcal{S}_\mu \otimes \mathcal{S}_\nu$. Note that $g_{\lambda, \mu, \nu}$ is invariant with respect to a permutation of the partitions. It is known that $g_{\lambda, \mu, \nu} = 0$ vanishes if $\ell(\lambda) > \ell(\mu) + \ell(\nu)$. Equivalently, $g_{\lambda, \mu, \nu}$ may also be defined as the multiplicity of \mathcal{S}_λ in the tensor product $\mathcal{S}_\mu \otimes \mathcal{S}_\nu$.

The Kronecker coefficients also appear when studying representations of the general linear groups GL_d over \mathbb{C}. We recall that rational irreducible GL_d-modules are labeled by their highest weight, a monotonically decreasing list of d integers, cf. [EH91]. We will only be concerned with highest weights consisting of nonnegative numbers, which are therefore of the form $\lambda \vdash d k$ for modules of degree k. We shall denote by \mathcal{V}_λ the irreducible GL_d-module with highest weight λ.

Suppose now that $\lambda \vdash d_1 d_2 k$. When restricting with respect to the morphism $\text{GL}_{d_1} \times \text{GL}_{d_2} \to \text{GL}_{d_1 d_2}, (\alpha, \beta) \mapsto \alpha \otimes \beta$, then the module \mathcal{V}_λ splits as
follows:
\[
\mathcal{V}_\lambda = \bigoplus_{\mu, \nu} g_{\lambda, \mu, \nu} \mathcal{V}_\mu \otimes \mathcal{V}_\nu.
\]

Even though being studied for more than fifty years, Kronecker coefficients are only understood in some special cases. For instance, giving a combinatorial interpretation of the numbers \(g_{\lambda, \mu, \nu}\) is a major open problem, cf. [Sta99, Sta00] for more information.

We are mainly interested in whether \(g_{\lambda, \mu, \nu}\) vanishes or not. For studying this in an asymptotic way one may consider, for fixed \(d = (d_1, d_2, d_3) \in \mathbb{N}^3\) with \(d_1 \leq d_2 \leq d_3 \leq d_1d_2\), the set
\[
\text{Kron}(d) := \left\{ \frac{1}{n} (\lambda_1, \lambda_2, \lambda_3) \mid n \in \mathbb{N}, \lambda_i \vdash d_i \text{ for } i = 1, 2, 3, \quad g_{\lambda_1, \lambda_2, \lambda_3} \neq 0 \right\}.
\]

It turns out that \(\text{Kron}(d)\) is a rational polytope in \(\mathbb{Q}^{d_1+d_2+d_3}\). This follows from general principles from geometric invariant theory, namely \(\text{Kron}(d)\) equals the moment polytope of the projective variety \(\mathbb{P}(\mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2} \otimes \mathbb{C}^{d_3})\) with respect to the standard action of the group \(\text{GL}_{d_1} \times \text{GL}_{d_2} \times \text{GL}_{d_3}\), cf. [Man97, Fra02, Kly04]. For an elementary proof that \(\text{Kron}(d)\) is a polytope see [CHM07].

2.2. Spectra of density operators. Let \(\mathcal{H}\) be a \(d\)-dimensional complex Hilbert space and denote by \(\mathcal{L}(\mathcal{H})\) the space of linear operators mapping \(\mathcal{H}\) into itself. For \(\rho \in \mathcal{L}(\mathcal{H})\) we write \(\rho \geq 0\) to denote that \(\rho\) is positive semidefinite. By the spectrum \(\text{spec}\rho\) of \(\rho\) we will understand the vector \((r_1, \ldots, r_d)\) of eigenvalues of \(\rho\) in decreasing order, that is, \(r_1 \geq \cdots \geq r_d\).

The set of density operators on \(\mathcal{H}\) is defined as
\[
S(\mathcal{H}) := \{ \rho \in \mathcal{L}(\mathcal{H}) \mid \rho \geq 0, \text{tr}\rho = 1 \}.
\]

Density operators are the mathematical formalism to describe the states of quantum objects. The spectrum of a density operator is a probability distribution on \([d] := \{1, \ldots, d\}\).

The state of a system composed of particles \(A\) and \(B\) is described by a density operator on a tensor product of two Hilbert spaces, \(\rho_{AB} \in \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B)\). The partial trace \(\rho_A = \text{tr}_B(\rho_{AB}) \in \mathcal{L}(\mathcal{H}_A)\) of \(\rho_{AB}\) obtained by tracing over \(B\) then defines the state of particle \(A\). We recall that the partial trace \(\text{tr}_B\) is the linear map \(\text{tr}_B : \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B) \to \mathcal{L}(\mathcal{H}_A)\) uniquely characterized by the property \(\text{tr}_B(\rho_A \otimes \rho_B) = \text{tr}(\rho_B) \rho_A\) for all \(\rho_A \in \mathcal{L}(\mathcal{H}_A)\) and \(\rho_B \in \mathcal{L}(\mathcal{H}_B)\).

2.3. Admissible spectra and Kronecker coefficients. The quantum marginal problem asks for a description of the set of possible triples of spectra \((\text{spec}\rho_{AB}, \text{spec}\rho_A, \text{spec}\rho_B)\) for fixed \(d_A = \dim \mathcal{H}_A\) and \(d_B = \dim \mathcal{H}_B\). In [CM06, Kly04, CHM07] it was shown that this set equals the closure of the moment polytope for Kronecker coefficients, so
\[
\text{Kron}(d_A, d_B, d_Ad_B) = \left\{ (\text{spec}\rho_{AB}, \text{spec}\rho_A, \text{spec}\rho_B) \mid \rho_{AB} \in \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B) \right\}.
\]
We remark that this result is related to Horn’s problem that asks for the compatibility conditions of the spectra of Hermitian operators A, B, and $A + B$ on finite dimensional Hilbert spaces. In [Kly98] a similar characterization of these triples of spectra in terms of the Littlewood Richardson coefficients was given. The latter are the multiplicities occurring in tensor products of irreducible representations of the general linear groups. For Littlewood Richardson coefficients one can actually avoid the asymptotic description since the so called saturation conjecture is true [KT99].

2.4. Estimation theorem. We will need a consequence of the estimation theorem of [KW01]. The group $S_k \times \text{GL}_d$ naturally acts on the tensor power $(\mathbb{C}^d)^{\otimes k}$. Schur-Weyl duality describes the isotypical decomposition of this module as

\[(\mathbb{C}^d)^{\otimes k} = \bigoplus_{\lambda \vdash d^k} \mathcal{S}_\lambda \otimes \mathcal{V}_\lambda.\]

(2) We note that this is an orthogonal decomposition with respect to the standard inner product on $(\mathbb{C}^d)^{\otimes k}$. Let P_λ denote the orthogonal projection of $(\mathbb{C}^d)^{\otimes k}$ onto $\mathcal{S}_\lambda \otimes \mathcal{V}_\lambda$. The estimation theorem [KW01] states that for any density operator $\rho \in \mathcal{L}(\mathbb{C}^d)$ with spectrum r we have

\[\text{tr}(P_\lambda \rho^{\otimes k}) \leq (k + 1)^{d(d-1)/2} \exp \left(-\frac{k}{2} \|\lambda - r\|_1^2\right)\]

(3) (see [CM06] for a simple proof). This shows that the probability distribution $\lambda \mapsto \text{tr}(P_\lambda \rho^{\otimes k})$ is concentrated around r with exponential decay in the distance $\|\lambda - r\|_1$.

3. Main results

By a decreasing probability distribution r on $[d^2]$ we understand $r \in \mathbb{R}^{d^2}$ such that $r_1 \geq \cdots \geq r_{d^2} \geq 0$ and $\sum_i r_i = 1$. We denote by $u_d = (\frac{1}{d}, \ldots, \frac{1}{d})$ the uniform probability distribution on $[d]$.

Theorem 1. (1) For all decreasing probability distributions r on $[d^2]$, the triple (r, u_d, u_d) is contained in $\text{Kron}(d, d, d^2)$.

(2) Let $\lambda \vdash \ell d$ be a partition into at most d^2 parts for $\ell, d \geq 1$ and let $\Box := (\ell, \ldots, \ell)$ denote the rectangular partition of ℓd into d parts. Then there exists a stretching factor $k \geq 1$ such that $g_{\lambda, \Box, \Box} \neq 0$.

This result shows that finding partitions λ with $g_{\lambda, \Box, \Box} = 0$, as required for the purposes of geometric complexity theory, requires a careful search.

The next result indicates that the stretching factor k may be chosen not too large.

Theorem 2. Let $\lambda \vdash \ell d$ and $\epsilon > 0$. Then there exists a stretching factor $k = O(\frac{d^4}{\epsilon^2} \log \frac{d}{\epsilon})$ and there exist partitions $\Lambda \vdash k d$ and $R_1, R_2 \vdash d$ and of $k d$ such that $g_{\lambda, \Box, \Box} \neq 0$ and

\[\|\Lambda - k\lambda\|_1 \leq \epsilon|\Lambda| \quad \|R_i - k\Box\|_1 \leq \epsilon|R_i| \quad \text{for } i = 1, 2.\]
3.1. Proof of Theorem 1. We know that \(\text{Kron}(d,d,d^2) \) is a rational polytope, i.e., defined by finitely many affine linear inequalities with rational coefficients. This easily implies that a rational point in \(\text{Kron}(d,d,d^2) \) actually lies in \(\text{Kron}(d,d,d^2) \). Hence the second part of Theorem 1 follows from the first part.

The first part of Theorem 1 follows from the spectral characterization of \(\text{Kron}(d,d,d^2) \) described in \[2.3\] and the following result.

Proposition 2. For any decreasing probability distribution \(r \) on \([d^2]\) there exists a density operator \(\rho_{AB} \in \mathcal{S}(\mathcal{H}_A \otimes \mathcal{H}_B) \) with spectrum \(r \) such that \(\text{tr}_A(\rho_{AB}) = \text{tr}_B(\rho_{AB}) = u_d \), where \(\mathcal{H}_A \simeq \mathcal{H}_B \simeq \mathbb{C}^d \).

The proof of Proposition 2 proceeds by different lemmas. It will be convenient to use the bra and ket notation of quantum mechanics. Suppose that \(\mathcal{H}_A \) and \(\mathcal{H}_B \) are \(d \)-dimensional Hilbert spaces. We recall first the Schmidt decomposition: for any \(|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B \), there exist orthonormal bases \(\{|u_i\rangle\} \) of \(\mathcal{H}_A \) and \(\{|v_i\rangle\} \) of \(\mathcal{H}_B \) as well as nonnegative real numbers \(\alpha_i \), called Schmidt coefficients, such that \(|\psi\rangle = \sum_i \alpha_i |u_i\rangle \otimes |v_i\rangle \). Indeed, the \(\alpha_i \) are just the singular values of \(|\psi\rangle \) when we interpret it as a linear operator in \(\mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B) \simeq \mathcal{H}_A \otimes \mathcal{H}_B \).

Lemma 3. Suppose that \(|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B \) has the Schmidt coefficients \(\alpha_i \) and consider \(\rho := |\psi\rangle \langle \psi| \in \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B) \). Then \(\text{tr}_B(\rho) \in \mathcal{L}(\mathcal{H}_A) \), obtained by tracing over the \(B \)-spaces, has eigenvalues \(\alpha_i^2 \).

Proof. We have \(|\psi\rangle \langle \psi| = \sum_{i,j} \alpha_i \alpha_j |u_i\rangle \langle u_j| \otimes |v_i\rangle \langle v_j| \) and tracing over the \(B \)-spaces yields \(\text{tr}_B(|\psi\rangle \langle \psi|) = \sum_i \alpha_i^2 |u_i\rangle \langle u_i| \). \(\square \)

Let \(|0\rangle, \ldots, |d-1\rangle \) denote the standard orthonormal basis of \(\mathbb{C}^d \). We consider the discrete Weyl operators \(X, Z \in \mathcal{L}(\mathbb{C}^d) \) from \[CW05 \] defined by
\[
X|i\rangle = |i+1\rangle, \quad Z|i\rangle = \omega^i |i\rangle,
\]
where \(\omega \) denotes a primitive \(d \)th root of unity and the addition is modulo \(d \). We note that \(X \) and \(Z \) are unitary matrices and \(X^{-1}ZX = \omega Z \).

We consider now two copies \(\mathcal{H}_A \) and \(\mathcal{H}_B \) of \(\mathbb{C}^d \) and define the “maximal entangled state” \(|\psi_{00}\rangle := \frac{1}{\sqrt{d}} \sum_\ell \langle \ell| \langle \ell| \) of \(\mathcal{H}_A \otimes \mathcal{H}_B \). By definition, \(|\psi_{00}\rangle \) has the Schmidt coefficients \(\frac{1}{\sqrt{d}} \). Hence the vectors
\[
|\psi_{ij}\rangle := (\text{id} \otimes X^i Z^j)|\psi_{00}\rangle,
\]
obtained from \(|\psi_{00}\rangle \) by applying a tensor product of unitary matrices, have the Schmidt coefficients \(\frac{1}{\sqrt{d}} \) as well.

Lemma 4. The vectors \(|\psi_{ij}\rangle \), for \(0 \leq i, j < d \), form an orthonormal bases of \(\mathcal{H}_A \otimes \mathcal{H}_B \).
Proof. We have, for some dth root of unity θ,
\[
\langle \psi_{ij} | \psi_{kl} \rangle = \langle \psi_{00} | (\text{id} \otimes Z^{-j} X^{-i}) (\text{id} \otimes X^k Z^\ell) | \psi_{00} \rangle
\]
\[
= \theta \langle \psi_{00} | \text{id} \otimes X^{k-i} Z^{\ell-j} | \psi_{00} \rangle
\]
\[
= \frac{\theta}{d} \sum_{m,m'} \langle mm | \text{id} \otimes X^{k-i} Z^{\ell-j} | m'm' \rangle
\]
\[
= \frac{\theta}{d} \sum_{m} \langle m | X^{k-i} Z^{\ell-j} | m \rangle = \frac{\theta}{d} \text{tr}(X^{k-i} Z^{\ell-j}).
\]
It is easy to check that $\frac{\theta}{d} \text{tr}(X^{k-i} Z^{\ell-j}) = 0$ if $\ell \neq j$ or $k \neq i$. \qed

Proof of Proposition 2. Let r_{ij} be the given probability distribution assuming some bijection $[d^2] \simeq [d]^2$. According to Lemma 3 the density operator $\rho_{AB} := \sum_{ij} r_{ij} |\psi_{ij}\rangle \langle \psi_{ij}|$ has the eigenvalues r_{ij}. Lemma 3 tells us that $\text{tr}_B(|\psi_{ij}\rangle \langle \psi_{ij}|)$ has the eigenvalues $1/d$, hence $\text{tr}_B(|\psi_{ij}\rangle \langle \psi_{ij}|) = u_d$. It follows that $\text{tr}_B(\rho_{AB}) = u_d$. Analogously, we get $\text{tr}_A(\rho_{AB}) = u_d$. \qed

3.2 Proof of Theorem 2. The proof is essentially the one of Theorem 2 in [CM06]. Suppose that $\lambda \mapsto d^2 \ell d$. By Proposition 2 there is a density operator ρ_{AB} having the spectrum Λ such that $\text{tr}_A(\rho_{AB}) = u_d$, $\text{tr}_B(\rho_{AB}) = u_d$. Let P_X denote the orthogonal projection of $(\mathcal{H}_A)^{\otimes k}$ onto the sum of its isotypical components $\mathcal{S}_\mu \otimes \mathcal{Y}_\mu$ satisfying $||\mu - u_d||_1 \leq \epsilon$. Then $P_X := \text{Id} - P_X$ is the orthogonal projection of $(\mathcal{H}_A)^{\otimes k}$ onto the sum of its isotypical components $\mathcal{S}_\mu \otimes \mathcal{Y}_\mu$ satisfying $||\mu - u_d||_1 > \epsilon$. The estimation theorem (3) implies that
\[
\text{tr}(P_X(\rho_A)^{\otimes k}) \leq (k+1)^d (k+1)^{d(d-1)/2} e^{-\frac{d}{2} \epsilon^2} \leq (k+1)^{d(d+1)/2} e^{-\frac{d}{2} \epsilon^2},
\]

since there at most $(k+1)^d$ partitions of k of length at most d.

Let P_Y denote the orthogonal projection of $(\mathcal{H}_B)^{\otimes k}$ onto the sum of its isotypical components $\mathcal{S}_\nu \otimes \mathcal{Y}_\nu$ satisfying $||\nu - u||_1 \leq \epsilon$, and let P_Z denote the orthogonal projection of $(\mathcal{H}_A \otimes \mathcal{H}_B)^{\otimes k}$ onto the sum of its isotypical components $\mathcal{S}_\lambda \otimes \mathcal{Y}_\lambda$ satisfying $||\lambda - X||_1 \leq \epsilon$. We set $P_Y := \text{Id} - P_Y$ and $P_Z := \text{Id} - P_Z$. Then we have, similarly as for P_X,
\[
\text{tr}(P_Y(\rho_B)^{\otimes k}) \leq (k+1)^{d(d+1)/2} e^{-\frac{d}{2} \epsilon^2},
\]
\[
\text{tr}(P_Z(\rho_{AB})^{\otimes k}) \leq (k+1)^{d(d^2+1)/2} e^{-\frac{d}{2} \epsilon^2}.
\]

By choosing $k = O(d \log \frac{d}{\epsilon})$ we can achieve that
\[
\text{tr}(P_X(\rho_A)^{\otimes k}) < \frac{1}{3}, \quad \text{tr}(P_Y(\rho_B)^{\otimes k}) < \frac{1}{3}, \quad \text{tr}(P_Z(\rho_{AB})^{\otimes k}) < \frac{1}{3}.
\]

We put $\sigma := (\rho_{AB})^{\otimes k}$ in order to simplify notation and claim that
\[
\text{tr}((P_X \otimes P_Y) \sigma P_Z) > 0.
\]
In order to see this, we decompose \(id = P_X \otimes P_Y + P_X \otimes P_Y + P_X \otimes P_Y \). From the definition of the partial trace we have

\[
\text{tr}((P_X \otimes \text{id})\sigma) = \text{tr}(P_X(\rho_A)^{\otimes k}) < \frac{1}{3}.
\]

Similarly,

\[
\text{tr}((P_X \otimes P_Y)\sigma) \leq \text{tr}((\text{id} \otimes P_Y)\sigma) = \text{tr}(P_Y(\rho_B)^{\otimes k}) < \frac{1}{3}.
\]

Hence \(\text{tr}((P_X \otimes P_Y)\sigma) > \frac{1}{3} \). Using \(\text{tr}((P_X \otimes P_Y)\sigma P_Z) \leq \text{tr}(\sigma P_Z) < \frac{1}{3} \), we get

\[
\text{tr}((P_X \otimes P_Y)\sigma P_Z) = \text{tr}((P_X \otimes P_Y)\sigma) - \text{tr}((P_X \otimes P_Y)\sigma P_Z) > \frac{1}{3} - \frac{1}{3} = 0,
\]

which proves Claim (4).

Claim (4) implies that there exist partitions \(\mu, \nu, \Lambda \) with normalizations \(\epsilon \)-close to \(u_d, u_d, r \), respectively, such that \((P_\mu \otimes P_\nu)P_\Lambda \neq 0 \). Recalling the isotypical decomposition (2), we infer that

\[
(S_\Lambda \otimes V_\Lambda) \cap (S_\mu \otimes V_\mu) \otimes (S_\nu \otimes V_\nu) \neq \emptyset.
\]

Statement (1) implies that \(g_{\mu,\nu,\Lambda} \neq 0 \) and hence the assertion follows for \(R_1 = \mu, R_2 = \nu \).

References

[BCS07] Peter Bürgisser, Michael Clausen, and Amin Shokrollahi. Algebraic Complexity Theory. Grundlehren der mathematischen Wissenschaften, Vol. 315. Springer 1997.

[BLMW09] Peter Bürgisser, J.M. Landsberg, Laurent Manivel, and Jerzy Weyman. An overview of mathematical issues arising in the geometric complexity theory approach to VP \(\neq \text{VNP} \). arXiv:0907.2850v1.

[CM06] Matthias Christandl and Graeme Mitchison. The spectra of density operators and the Kronecker coefficients of the symmetric group. Comm. Math. Phys., 261(3):789–797, February 2006.

[CW05] Matthias Christandl and Andreas Winter. Uncertainty, monogamy, and locking of quantum correlations. IEEE Trans. Inf. Theory, 51:3159, 2005.

[CHM07] Matthias Christandl, Aram Harrow, and Graeme Mitchison. On nonzero Kronecker coefficients and what they tell us about spectra. Comm. Math. Phys., 270(3):575–585, 2007.

[Fra02] Matthias Franz. Moment polytopes of projective \(G \)-varieties and tensor products of symmetric group representations. J. Lie Theory, 12(2):539–549, 2002.

[FH91] William Fulton and Joe Harris. Representation theory, volume 129 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1991.

[KW01] Michael Keyl and Reinhard Werner. Estimating the spectrum of a density operator. Phys. Rev. A (3), 64(5):052311, 5, 2001.

[Kly04] Alexander Klyachko. Quantum marginal problem and representations of the symmetric group. 2004. quant-ph/0409113

[Kly98] Alexander A. Klyachko. Stable bundles, representation theory and Hermitian operators. Selecta Math. (N.S.), 4(3):419–445, 1998.

[KT99] Allen Knutson and Terence Tao. The honeycomb model of \(GL_n(C) \) tensor products. I. Proof of the saturation conjecture. J. Amer. Math. Soc., 12(4):1055–1090, 1999.
[Man97] Laurent Manivel. Applications de Gauss et pléthysme. *Ann. Inst. Fourier (Grenoble)*, 47(3):715–773, 1997.

[MS01] Ketan D. Mulmuley and Milind Sohoni. Geometric complexity theory. I. An approach to the P vs. NP and related problems. *SIAM J. Comput.*, 31(2):496–526 (electronic), 2001.

[MS08] Ketan D. Mulmuley and Milind Sohoni. Geometric complexity theory. II. Towards explicit obstructions for embeddings among class varieties. *SIAM J. Comput.*, 38(3):1175–1206, 2008.

[Sta99] Richard P. Stanley. *Enumerative combinatorics. Vol. 2*, volume 62 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 1999.

[Sta00] Richard P. Stanley. Positivity problems and conjectures in algebraic combinatorics. In *Mathematics: frontiers and perspectives*, pages 295–319. Amer. Math. Soc., Providence, RI, 2000.

[Val79] Leslie G. Valiant. Completeness classes in algebra. *Proc. 11th ACM STOC*: 249–261, 1979.

[Val82] Leslie G. Valiant. Reducibility by algebraic projections. In: *Logic and Algorithmic: an International Symposium held in honor of Ernst Specker*, Monogr. No. 30 de l’Enseign. Math., pages 365–380, 1982.

Institute of Mathematics, University of Paderborn, D-33098 Paderborn, Germany

E-mail address: pbuerg@upb.de

Faculty of Physics, Ludwig-Maximilians-Universität München, Theresienstr. 37, D-80333 Munich, Germany

E-mail address: christandl@lmu.de

Institute of Mathematics, University of Paderborn, D-33098 Paderborn, Germany

E-mail address: ciken@math.upb.de
Nonvanishing of Kronecker coefficients for rectangular shapes

Peter Bürgissera,1, Matthias Christandlb,2, Christian Ikenmeyera,1

aInstitute of Mathematics, University of Paderborn, D-33098 Paderborn, Germany
bInstitute for Theoretical Physics, ETH Zurich, CH-8093 Zurich, Switzerland

Abstract

We prove that for any partition \((\lambda_1, \ldots, \lambda_d)\) of size \(\ell d\) there exists \(k \geq 1\) such that the tensor square of the irreducible representation of the symmetric group \(S_{k \ell d}\) with respect to the rectangular partition \((k \ell, \ldots, k \ell)\) contains the irreducible representation corresponding to the stretched partition \((k \lambda_1, \ldots, k \lambda_d)\). We also prove a related approximate version of this statement in which the stretching factor \(k\) is effectively bounded in terms of \(d\). We further discuss the consequences for geometric complexity theory which provided the motivation for this work.

Keywords: Kronecker coefficients, quantum marginal problem, geometric complexity theory, quantum information theory

2000 MSC: 20C30

1. Introduction

Kronecker coefficients are the multiplicities occurring in tensor product decompositions of irreducible representations of the symmetric groups. These coefficients play a crucial role in geometric complexity theory [Mulmuley and Sohoni, 2001, 2008], which is an approach to arithmetic versions of the famous P
versus NP problem and related questions in computational complexity via geometric representation theory. As pointed out in Bürgisser et al. 2009 (see Section 4), for implementing this approach, one needs to identify certain partitions \(\lambda \vdash d \ell \) with the property that a symmetric version of the Kronecker coefficient associated with \(\lambda, \square, \square \) vanishes, where \(\square := (\ell, \ldots, \ell) \) stands for the rectangle partition of length \(d \). Computer experiments show that such \(\lambda \) occur rarely. Our main result confirms this experimental finding. We prove that for any \(\lambda \vdash d \ell \) there exists a stretching factor \(k \) such that the Kronecker coefficient of \(k\lambda, k\square, k\square \) is nonzero (Theorem 1). Here, \(k\lambda \) stands for the partition arising by multiplying all components of \(\lambda \) by \(k \). We also prove a related approximate version of this statement (Theorem 2) that suggests that the stretching factor \(k \) may be chosen not too large. Similar results are shown to hold for the symmetric version of the Kronecker coefficient and thus have a bearing on geometric complexity theory (see Lemma 3 and Section 4).

Our proof relies on a recently discovered connection between Kronecker coefficients and the spectra of composite quantum states (Klyachko, 2004; Christandl and Mitchison, 2006). Let \(\rho_{AB} \) be the density operator of a bipartite quantum system and let \(\rho_A, \rho_B \) denote the density operators corresponding to the systems \(A \) and \(B \), respectively. It turns out that the set of possible triples of spectra \((\text{spec}\rho_{AB}, \text{spec}\rho_A, \text{spec}\rho_B)\) is obtained as the closure of the set of triples \((\lambda, \mu, \nu)\) of normalized partitions \(\lambda, \mu, \nu \) with nonvanishing Kronecker coefficient, where we set \(\overline{\lambda} := \frac{1}{|\lambda|}\lambda \). For proving the main theorem it is therefore sufficient to construct, for any prescribed spectrum \(\overline{\lambda} \), a density matrix \(\rho_{AB} \) having this spectrum and such that the spectra of \(\rho_A \) and \(\rho_B \) are uniform distributions.

The set of possible triples of spectra \((\text{spec}\rho_{AB}, \text{spec}\rho_A, \text{spec}\rho_B)\) is interpreted in (Klyachko, 2004) as the moment polytope of a complex algebraic group variety, thus linking the problem to geometric invariant theory. We do not use this connection in our paper. Instead we argue as in Christandl and Mitchison (2006) using the estimation theorem of Keyl and Werner (2001). The exponential decrease rate in this estimation allows us to derive the bound on the stretching factor in Theorem 2.
2. Preliminaries

2.1. Kronecker coefficients and its moment polytopes

A partition λ of $n \in \mathbb{N}$ is a monotonically decreasing sequence $\lambda = (\lambda_1, \lambda_2, \ldots)$ of natural numbers such that $\lambda_i = 0$ for all but finitely many i. The length $\ell(\lambda)$ of λ is defined as the number of its nonzero parts and its size as $|\lambda| := \sum \lambda_i$. One writes $\lambda \vdash n$ to express that λ is a partition of n with $\ell(\lambda) \leq d$. Note that $\bar{\lambda} := \lambda/n = (\lambda_1/n, \lambda_2/n, \ldots)$ defines a probability distribution on \mathbb{N}.

It is well known (Fulton and Harris, 1991) that the complex irreducible representations of the symmetric group S_n can be labeled by partitions $\lambda \vdash n$. We shall denote by S_λ the irreducible representation of S_n associated with λ. The Kronecker coefficient $g_{\lambda,\mu,\nu}$ associated with three partitions λ, μ, ν of n is defined as the dimension of the space of S_n-invariants in the tensor product $S_\lambda \otimes S_\mu \otimes S_\nu$. Note that $g_{\lambda,\mu,\nu}$ is invariant with respect to a permutation of the partitions. It is known that $g_{\lambda,\mu,\nu} = 0$ vanishes if $\ell(\lambda) > \ell(\mu)\ell(\nu)$. Equivalently, $g_{\lambda,\mu,\nu}$ may also be defined as the multiplicity of S_λ in the tensor product $S_\mu \otimes S_\nu$. If $\mu = \nu$ we define the symmetric Kronecker coefficient $s g_{\mu,\mu}^\lambda$ as the multiplicity of S_λ in the symmetric square $\text{Sym}^2(S_\mu)$. We note that $s g_{\mu,\mu}^\lambda \leq g_{\lambda,\mu,\mu}$.

The Kronecker coefficients also appear when studying representations of the general linear groups GL_d over \mathbb{C}. We recall that rational irreducible GL_d-modules are labeled by their highest weight, a monotonically decreasing list of d integers, cf. [Fulton and Harris, 1991]. We will only be concerned with highest weights consisting of nonnegative numbers, which are therefore of the form $\lambda \vdash_d k$ for modules of degree k. We shall denote by \mathcal{V}_λ the irreducible GL_d-module with highest weight λ.

Suppose now that $\lambda \vdash_{d_1d_2} k$. When restricting with respect to the morphism $\text{GL}_{d_1} \times \text{GL}_{d_2} \to \text{GL}_{d_1d_2}$, $(\alpha, \beta) \mapsto \alpha \otimes \beta$, then the module \mathcal{V}_λ splits as follows:

$$\mathcal{V}_\lambda = \bigoplus_{\mu \vdash_{d_1} k, \nu \vdash_{d_2} k} g_{\lambda,\mu,\nu} \mathcal{V}_\mu \otimes \mathcal{V}_\nu.$$ \hspace{1cm} (1)

Even though being studied for more than fifty years, Kronecker coefficients are only understood in some special cases. For instance, giving a combinatorial interpretation of the numbers $g_{\lambda,\mu,\nu}$ is a major open problem, cf. [Stanley, 1999, 2000] for more information.

We are mainly interested in whether $g_{\lambda,\mu,\nu}$ vanishes or not. For studying this in an asymptotic way one may consider, for fixed $d = (d_1, d_2, d_3) \in \mathbb{N}^3$
with \(d_1 \leq d_2 \leq d_3 \leq d_1d_2 \), the set

\[
\text{Kron}(d) := \left\{ \frac{1}{n}(\lambda, \mu, \nu) \mid n \in \mathbb{N}, \lambda \vdash_{d_1} n, \mu \vdash_{d_2} n, \nu \vdash_{d_3} n \ g_{\lambda, \mu, \nu} \neq 0 \right\}.
\]

It turns out that \(\text{Kron}(d) \) is a rational polytope in \(\mathbb{Q}^{d_1+d_2+d_3} \). This follows from general principles from geometric invariant theory, namely \(\text{Kron}(d) \) equals the moment polytope of the projective variety \(\mathbb{P}(\mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2} \otimes \mathbb{C}^{d_3}) \) with respect to the standard action of the group \(\text{GL}_{d_1} \times \text{GL}_{d_2} \times \text{GL}_{d_3} \), cf. (Manivel, 1997; Franz, 2002; Klyachko, 2004). For an elementary proof that \(\text{Kron}(d) \) is a polytope see Christandl et al. (2007).

2.2. Spectra of density operators

Let \(\mathcal{H} \) be a \(d \)-dimensional complex Hilbert space and denote by \(\mathcal{L}(\mathcal{H}) \) the space of linear operators mapping \(\mathcal{H} \) into itself. For \(\rho \in \mathcal{L}(\mathcal{H}) \) we write \(\rho \geq 0 \) to denote that \(\rho \) is positive semidefinite. By the spectrum \(\text{spec}\rho \) of \(\rho \) we will understand the vector \((r_1, \ldots, r_d)\) of eigenvalues of \(\rho \) in decreasing order, that is, \(r_1 \geq \cdots \geq r_d \). The set of density operators on \(\mathcal{H} \) is defined as

\[
\mathcal{S}(\mathcal{H}) := \{ \rho \in \mathcal{L}(\mathcal{H}) \mid \rho \geq 0, \text{tr}\rho = 1 \}.
\]

Density operators are the mathematical formalism to describe the states of quantum objects. The spectrum of a density operator is a probability distribution on \([d] := \{1, \ldots, d\}\).

The state of a system composed of particles \(A \) and \(B \) is described by a density operator on a tensor product of two Hilbert spaces, \(\rho_{AB} \in \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B) \). The partial trace \(\rho_A = \text{tr}_B(\rho_{AB}) \in \mathcal{L}(\mathcal{H}_A) \) of \(\rho_{AB} \) obtained by tracing over \(B \) then defines the state of particle \(A \). We recall that the partial trace \(\text{tr}_B \) is the linear map \(\text{tr}_B : \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B) \to \mathcal{L}(\mathcal{H}_A) \) uniquely characterized by the property \(\text{tr}(R \text{tr}_B(\rho_{AB})) = \text{tr}(\rho_{AB} R \otimes \text{Id}) \) for all \(\rho_{AB} \in \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B) \) and \(R \in \mathcal{L}(\mathcal{H}_A) \).

2.3. Admissible spectra and Kronecker coefficients

The quantum marginal problem asks for a description of the set of possible triples of spectra \((\text{spec}\rho_{AB}, \text{spec}\rho_A, \text{spec}\rho_B)\) for fixed \(d_A = \dim \mathcal{H}_A \) and \(d_B = \dim \mathcal{H}_B \). In (Christandl and Mitchison, 2006; Klyachko, 2004; Christandl et al., 2007) it was shown that this set equals the closure of the moment polytope for Kronecker coefficients, so

\[
\text{Kron}(d_A, d_B, d_Ad_B) = \left\{ (\text{spec}\rho_{AB}, \text{spec}\rho_A, \text{spec}\rho_B) \mid \rho_{AB} \in \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B) \right\}.
\]
We remark that this result is related to Horn’s problem that asks for the compatibility conditions of the spectra of Hermitian operators A, B, and $A + B$ on finite dimensional Hilbert spaces. Klyachko (1998) gave a similar characterization of these triples of spectra in terms of the Littlewood-Richardson coefficients. The latter are the multiplicities occurring in tensor products of irreducible representations of the general linear groups. For Littlewood Richardson coefficients one can actually avoid the asymptotic description since the so called saturation conjecture is true (Knutson and Tao, 1999).

2.4. Estimation theorem

We will need a consequence of the estimation theorem of Keyl and Werner (2001). The group $S_k \times GL_d$ naturally acts on the tensor power $(\mathbb{C}^d)^\otimes k$. Schur-Weyl duality describes the isotypical decomposition of this module as

$$\mathbb{C}^d)^\otimes k = \bigoplus_{\lambda \vdash d^k} S_\lambda \otimes V_\lambda. \quad (2)$$

We note that this is an orthogonal decomposition with respect to the standard inner product on $(\mathbb{C}^d)^\otimes k$. Let P_λ denote the orthogonal projection of $(\mathbb{C}^d)^\otimes k$ onto $S_\lambda \otimes V_\lambda$. The estimation theorem (Keyl and Werner, 2001) states that for any density operator $\rho \in \mathcal{L}(\mathbb{C}^d)$ with spectrum r we have

$$\text{tr}(P_\lambda \rho^{\otimes k}) \leq (k + 1)^{d(d-1)/2} \exp \left(-\frac{k}{2} \|\bar{\lambda} - r\|_1^2\right) \quad (3)$$

(see Christandl and Mitchison, 2006, for a simple proof). This shows that the probability distribution $\bar{\lambda} \mapsto \text{tr}(P_\lambda \rho^{\otimes k})$ is concentrated around r with exponential decay in the distance $\|\bar{\lambda} - r\|_1$.

3. Main results

By a decreasing probability distribution r on $[d^2]$ we understand $r \in \mathbb{R}^{d^2}$ such that $r_1 \geq \cdots \geq r_{d^2} \geq 0$ and $\sum_i r_i = 1$. We denote by $u_d = (\frac{1}{d}, \ldots, \frac{1}{d})$ the uniform probability distribution on $[d]$.

Theorem 1. The following statements are true:

1. For all decreasing probability distributions r on $[d^2]$, the triple (r, u_d, u_d) is contained in $\text{Kron}(d^2, d, d)$.

2. Let $\lambda \vdash \ell d$ be a partition into at most d^2 parts for $\ell, d \geq 1$ and let $\Box := (\ell, \ldots, \ell)$ denote the rectangular partition of ℓd into d parts. Then there exists a stretching factor $k \geq 1$ such that $g_{k\lambda, k\mu, k\Box} \neq 0$.

5
The next result indicates that the stretching factor k may be chosen not too large.

Theorem 2. Let $\lambda \vdash_d \ell d$ and $\epsilon > 0$. Then there exists a stretching factor $k = O(\frac{d^4}{\log d})$ and there exist partitions $\Lambda \vdash_d k \ell d$ and $R_1, R_2 \vdash_d k \ell d$ of $k \ell d$ such that $g_{k,\lambda, R_1, R_2} \neq 0$ and

$$\|\Lambda - k\lambda\|_1 \leq \epsilon|\Lambda|, \quad \|R_i - k\square\|_1 \leq \epsilon|R_i| \quad \text{for } i = 1, 2.$$

Suppose that $g_{\lambda, \mu, \mu} \neq 0$. By stretching the partitions λ, μ with two, we can guarantee that the corresponding symmetric Kronecker coefficients does not vanish either.

Lemma 3. Let $\lambda, \mu \vdash_n$. If \mathcal{S}_λ occurs in $\mathcal{S}_\mu \otimes \mathcal{S}_\mu$, then $\mathcal{S}_{2\lambda}$ occurs in $\text{Sym}^2(\mathcal{S}_{2\mu})$. In other words, $g_{\lambda, \mu, \mu} \neq 0$ implies $sg_{2\lambda}^2 \neq 0$.

This lemma, when combined with Theorems 1 and 2 shows that finding partitions λ with $sg_{\lambda}^2 = 0$, as required for the purposes of geometric complexity theory (see below), requires a careful search.

4. **Connection to geometric complexity theory**

The most important problem of algebraic complexity theory is Valiant’s Hypothesis (Valiant, 1979, 1982), which is an arithmetic analogue of the famous P versus NP conjecture (see Bürgisser et al., 1997 for background information). Valiant’s Hypothesis can be easily stated in precise mathematical terms.

Consider the determinant $\det_d = \det[x_{ij}]_{1 \leq i, j \leq d}$ of a d by d matrix of variables x_{ij}, and for $m < d$, the permanent of its m by m submatrix defined as

$$\text{per}_m := \sum_{\sigma \in S_m} x_{1, \sigma(1)} \cdots x_{m, \sigma(m)}.$$

We choose $z := x_{dd}$ as a homogenizing variable and view \det_d and $z^{d-m}\text{per}_m$ as homogeneous functions $\mathbb{C}^d \to \mathbb{C}$ of degree d. How large has d to be in relation to m such that there is a linear map $A: \mathbb{C}^d \to \mathbb{C}^d$ with the property that

$$z^{d-m}\text{per}_m = \det_d \circ A? \quad (*)$$

It is known that such A exists for $d = O(m^2 2^m)$. Valiant’s Hypothesis states that (*) is impossible for d polynomially bounded in m.

Mulmuley and Sohoni (2001) suggested to study an orbit closure problem related to (*)(1). Note that the group \(GL_{d}^{2} = GL_{d}^{2}(\mathbb{C}) \) acts on the space \(\text{Sym}^{d}(\mathbb{C}^{d \times d})^{*} \) of homogeneous polynomials of degree \(d \) in the variables \(x_{ij} \) by substitution. Instead of (*), we ask now whether

\[z^{d-m} \text{per}_m \in \overline{GL_{d}^{2} \cdot \text{det}_d}. \]

(2)

Mulmuley and Sohoni (2001) conjectured that (**(2)) is impossible for \(d \) polynomially bounded in \(m \), which would imply Valiant’s Hypothesis.

Moreover, in \(\text{[Mulmuley and Sohoni, 2001, 2008]} \) it was proposed to show that (**(2)) is impossible for specific values \(m, d \) by exhibiting an irreducible representation of \(SL_{d}^{2} \) in the coordinate ring of the orbit closure of \(z^{d-m} \text{per}_m \), that does not occur in the coordinate ring \(\mathbb{C}[GL_{d}^{2} \cdot \text{det}_d] \) of \(GL_{d}^{2} \cdot \text{det}_d \). We call such a representation of \(SL_{d}^{2} \) an obstruction for (**(2)) for the values \(m, d \).

We can label the irreducible \(SL_{d}^{2} \)-representations by partitions \(\lambda \) into at most \(d^2 - 1 \) parts: For \(\lambda \in \mathbb{N}^{d^2} \) such that \(\lambda_1 \geq \ldots \geq \lambda_{d^2-1} \geq \lambda_{d^2} = 0 \) we shall denote by \(\mathcal{Y}_{\lambda}(SL_{d}^{2}) \) the irreducible \(SL_{d}^{2} \)-representation obtained from the irreducible \(GL_{d}^{2} \)-representation \(\mathcal{Y}_{\lambda} \) with the highest weight \(\lambda \) by restriction.

If \(\mathcal{Y}_{\lambda}(SL_{d}^{2}) \) is an obstruction for \(m, d \), then we must have \(|\lambda| = \sum_{i} \lambda_{i} = \ell d \) for some \(\ell \), see \(\text{[Bürgisser et al., 2009, Prop. 5.6.2]} \). We call the representation \(\mathcal{Y}_{\lambda}(SL_{d}^{2}) \) a candidate for an obstruction iff \(\mathcal{Y}_{\lambda}(SL_{d}^{2}) \) does not occur in \(\mathbb{C}[GL_{d}^{2} \cdot \text{det}_d] \). The following proposition relates the search for obstructions to the symmetric Kronecker coefficient.

Proposition 1. Suppose that \(|\lambda| = \ell d \) and write \(\square = (\ell, \ldots, \ell) \) with \(\ell \) occurring \(d \) times. Then \(\mathcal{Y}_{\lambda}(SL_{d}^{2}) \) is a candidate for an obstruction iff the symmetric Kronecker coefficient \(s_{\lambda}^{\square} \) vanishes.

Proof. This is an immediate consequence of Prop. 4.4.1 and Prop. 5.2.1 in \(\text{[Bürgisser et al., 2009]} \). \(\square \)

We may thus interpret this paper’s main results by saying that candidates for obstructions are rare.

5. **Proofs**

5.1. **Proof of Theorem**

We know that \(\text{Kron}(d, d, d^2) \) is a rational polytope, i.e., defined by finitely many affine linear inequalities with rational coefficients. This easily implies
that a rational point in $\text{Kron}(d,d,d^2)$ actually lies in $\text{Kron}(d,d,d^2)$. Hence the second part of Theorem 1 follows from the first part.

The first part of Theorem 1 follows from the spectral characterization of $\text{Kron}(d,d,d^2)$ described in [2,3] and the following result.

Proposition 2. For any decreasing probability distribution r on $[d^2]$ there exists a density operator $\rho_{AB} \in \mathcal{S}(\mathcal{H}_A \otimes \mathcal{H}_B)$ with spectrum r such that $\text{tr}_A(\rho_{AB}) = \text{tr}_B(\rho_{AB}) = u_d$, where $\mathcal{H}_A \simeq \mathcal{H}_B \simeq \mathbb{C}^d$.

The proof of Proposition 2 proceeds by different lemmas. It will be convenient to use the bra and ket notation of quantum mechanics. Suppose that \mathcal{H}_A and \mathcal{H}_B are d-dimensional Hilbert spaces. We recall first the Schmidt decomposition: for any $|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$, there exist orthonormal bases $\{|u_i\rangle\}$ of \mathcal{H}_A and $\{|v_i\rangle\}$ of \mathcal{H}_B as well as nonnegative real numbers α_i, called Schmidt coefficients, such that $|\psi\rangle = \sum_i \alpha_i |u_i\rangle \otimes |v_i\rangle$. Indeed, the α_i are just the singular values of $|\psi\rangle$ when we interpret it as a linear operator in $\mathcal{L}(\mathcal{H}_A^*, \mathcal{H}_B) \simeq \mathcal{H}_A \otimes \mathcal{H}_B$.

Lemma 4. Suppose that $|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$ has the Schmidt coefficients α_i and consider $\rho := |\psi\rangle \langle \psi| \in \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B)$. Then $\text{tr}_B(\rho) \in \mathcal{L}(\mathcal{H}_A)$, obtained by tracing over the B-spaces, has eigenvalues α_i^2.

Proof. We have $|\psi\rangle = \sum_i \alpha_i |u_i\rangle \otimes |v_i\rangle$ for some orthonormal bases $\{|u_i\rangle\}$ and $\{|v_i\rangle\}$ of \mathcal{H}_A and \mathcal{H}_B, respectively. This implies

$$\rho = |\psi\rangle \langle \psi| = \sum_{i,j} \alpha_i \alpha_j \langle u_i | u_j \rangle \otimes \langle v_i | v_j \rangle$$

and tracing over the B-spaces yields $\text{tr}_B(|\psi\rangle \langle \psi|) = \sum_i \alpha_i^2 |u_i\rangle \langle u_i|$.

Let $|0\rangle, \ldots, |d-1\rangle$ denote the standard orthonormal basis of \mathbb{C}^d. We consider the discrete Weyl operators $X, Z \in \mathcal{L}(\mathbb{C}^d)$ defined by

$$X|i\rangle = |i+1\rangle, \quad Z|i\rangle = \omega^i |i\rangle,$$

where ω denotes a primitive dth root of unity and the addition is modulo d (see for instance [Christandl and Winter (2005)])). We note that X and Z are unitary matrices and $X^{-1}ZX = \omega Z$.

We consider now two copies \mathcal{H}_A and \mathcal{H}_B of \mathbb{C}^d and define the “maximal entangled state” $|\psi_{00}\rangle := \frac{1}{\sqrt{d}} \sum |\ell\rangle |\ell\rangle$ of $\mathcal{H}_A \otimes \mathcal{H}_B$. By definition, $|\psi_{00}\rangle$ has the Schmidt coefficients $\frac{1}{\sqrt{d}}$. Hence the vectors

$$|\psi_{ij}\rangle := (\text{id} \otimes X^i Z^j)|\psi_{00}\rangle,$$
obtained from $|\psi_{00}\rangle$ by applying a tensor product of unitary matrices, have the Schmidt coefficients $\frac{1}{\sqrt{d}}$ as well.

Lemma 5. The vectors $|\psi_{ij}\rangle$, for $0 \leq i, j < d$, form an orthonormal bases of $\mathcal{H}_A \otimes \mathcal{H}_B$.

Proof. We have, for some dth root of unity θ,

\[
\langle \psi_{ij} | \psi_{k\ell} \rangle = \langle \psi_{00} | (\text{id} \otimes Z^{-j}X^{-i})(\text{id} \otimes X^kZ^\ell) | \psi_{00} \rangle = \frac{\theta}{d} \sum_{m,m'} \langle mm | (\text{id} \otimes X^kZ^\ell) | m'm' \rangle = \frac{\theta}{d} \sum_m \langle m | (X^kZ^\ell) | m \rangle = \frac{\theta}{d} \text{tr} (X^kZ^\ell).
\]

It is easy to check that $\frac{\theta}{d} \text{tr} (X^kZ^\ell) = 0$ if $\ell \neq j$ or $k \neq i$. \qed

Proof of Proposition 2. Let r_{ij} be the given probability distribution assuming some bijection $[d^2] \simeq [d]^2$. According to Lemma 5, the density operator $\rho_{AB} := \sum_{ij} r_{ij} |\psi_{ij}\rangle \langle \psi_{ij}|$ has the eigenvalues r_{ij}. Lemma 4 tells us that $\text{tr}_B (|\psi_{ij}\rangle \langle \psi_{ij}|)$ has the eigenvalues $1/d$, hence $\text{tr}_B (|\psi_{ij}\rangle \langle \psi_{ij}|) = \frac{u}{d}$. It follows that $\text{tr}_A (\rho_{AB}) = \frac{u}{d}$. Analogously, we get $\text{tr}_A (\rho_{AB}) = \frac{u}{d}$. \qed

5.2. **Proof of Theorem 2**

The proof is essentially the one of Theorem 2 in [Christandl and Mitchison (2006)] carried out in the special case at hand. Suppose that $\lambda \vdash \ell^d$. By Proposition 2 there is a density operator ρ_{AB} having the spectrum λ such that $\text{tr}_A (\rho_{AB}) = u_d$, $\text{tr}_B (\rho_{AB}) = u_d$. Let P_X denote the orthogonal projection of $(\mathcal{H}_A)^{\otimes k}$ onto the sum of its isotypical components $\mathcal{S}_\mu \otimes \mathcal{V}_\mu$ satisfying $\|\mu - u\|_1 \leq \epsilon$. Then $P_X := \text{Id} - P_X$ is the orthogonal projection of $(\mathcal{H}_A)^{\otimes k}$ onto the sum of its isotypical components $\mathcal{S}_\mu \otimes \mathcal{V}_\mu$ satisfying $\|\mu - u\|_1 > \epsilon$. The estimation theorem (3) implies that

\[
\text{tr}(P_X (\rho_A)^{\otimes k}) \leq (k + 1)^d (k + 1)^{(d-1)/2} e^{-\frac{\ell^2}{2d}} \leq (k + 1)^{d(d+1)/2} e^{-\frac{\ell^2}{2d}},
\]

since there are at most $(k + 1)^d$ partitions of k of length at most d.

Let P_Y denote the orthogonal projection of $(\mathcal{H}_B)^{\otimes k}$ onto the sum of its isotypical components $\mathcal{S}_\nu \otimes \mathcal{V}_\nu$ satisfying $\|\nu - u\|_1 \leq \epsilon$, and let P_Z denote
the orthogonal projection of \((\mathcal{H}_A \otimes \mathcal{H}_B)^{\otimes k}\) onto the sum of its isotypical components \(\mathcal{S}_\Lambda \otimes \mathcal{V}_\Lambda\) satisfying \(\|\overline{\Lambda} - \overline{\lambda}\|_1 \leq \epsilon\). We set \(P_{\overline{\gamma}} := \text{Id} - P_Y\) and \(P_{\overline{\pi}} := \text{Id} - P_Z\). Then we have, similarly as for \(P_X\),

\[
\text{tr}(P_{\overline{\gamma}}(\rho_B)^{\otimes k}) \leq (k + 1)^{d(d+1)/2} e^{-\frac{d}{2} \epsilon^2},
\]

\[
\text{tr}(P_{\overline{\pi}}(\rho_{AB})^{\otimes k}) \leq (k + 1)^{d^2(d^2+1)/2} e^{-\frac{d^2}{2} \epsilon^2}.
\]

By choosing \(k = O\left(\frac{d^4 \log d}{\epsilon^2}\right)\) we can achieve that

\[
\text{tr}(P_{\overline{\gamma}}(\rho_A)^{\otimes k}) < \frac{1}{3}, \quad \text{tr}(P_{\overline{\gamma}}(\rho_B)^{\otimes k}) < \frac{1}{3}, \quad \text{tr}(P_{\overline{\pi}}(\rho_{AB})^{\otimes k}) < \frac{1}{3}.
\]

We put \(\sigma := (\rho_{AB})^{\otimes k}\) in order to simplify notation and claim that

\[
\text{tr}((P_X \otimes P_Y) \sigma P_Z) > 0. \tag{4}
\]

In order to see this, we decompose \(\text{id} = P_X \otimes P_Y + P_X \otimes \text{id} + P_X \otimes P_{\overline{\gamma}}\). From the definition of the partial trace we have

\[
\text{tr}((P_X \otimes \text{id}) \sigma) = \text{tr}(P_X(\rho_A)^{\otimes k}) < \frac{1}{3}.
\]

Similarly,

\[
\text{tr}((P_X \otimes P_{\overline{\gamma}}) \sigma) \leq \text{tr}((\text{id} \otimes P_{\overline{\gamma}}) \sigma) = \text{tr}(P_{\overline{\gamma}}(\rho_B)^{\otimes k}) < \frac{1}{3}.
\]

Hence \(\text{tr}((P_X \otimes P_Y) \sigma) > \frac{1}{3}\). Using \(\text{tr}((P_X \otimes P_Y) \sigma P_{\overline{\pi}}) \leq \text{tr}(\sigma P_{\overline{\pi}}) < \frac{1}{3}\), we get

\[
\text{tr}((P_X \otimes P_Y) \sigma P_Z) = \text{tr}((P_X \otimes P_Y) \sigma) - \text{tr}((P_X \otimes P_Y) \sigma P_{\overline{\pi}}) > \frac{1}{3} - \frac{1}{3} = 0,
\]

which proves Claim (4).

Claim (1) implies that there exist partitions \(\mu, \nu, \Lambda\) with normalizations \(\epsilon\)-close to \(u_d, u_d, r\), respectively, such that \((P_\mu \otimes P_\nu)\Lambda \neq 0\). Recalling the isotypical decomposition (2), we infer that

\[
(\mathcal{S}_\Lambda \otimes \mathcal{V}_\Lambda) \cap (\mathcal{S}_\mu \otimes \mathcal{V}_\mu) \otimes (\mathcal{S}_\nu \otimes \mathcal{V}_\nu) \neq \emptyset.
\]

Statement (1) implies that \(g_{\mu,\nu,\Lambda} \neq 0\) and hence the assertion follows for \(R_1 = \mu, R_2 = \nu\). \(\square\)
5.3. Proof of Lemma

We assume that $\lambda, \mu \vdash_d n$. The group $\text{GL}_d \times \text{GL}_d \times \text{GL}_d$ operates on $\mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d$ by tensor product, which induces an action on the polynomial ring A on $\mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d$. Schur-Weyl duality implies that the submodule A_n of homogeneous polynomials of degree n splits as follows (cf. $\text{Landsberg and Manivel, 2004}$):

$$A_n = \bigoplus_{\lambda, \mu, \nu \vdash_d n} (\mathcal{S}_\lambda \otimes \mathcal{S}_\mu \otimes \mathcal{S}_\nu)^{S_n} \otimes \mathcal{V}_\lambda^* \otimes \mathcal{V}_\mu^* \otimes \mathcal{V}_\nu^*.$$

We assume now that $g_{\lambda, \mu, \mu} = \dim (\mathcal{S}_\lambda \otimes \mathcal{S}_\mu \otimes \mathcal{S}_\mu)^{S_n} \neq 0$ for some $\lambda, \mu \vdash_d n$. Hence there exists a highest weight vector $F \in A_n$ of weight (λ, μ, μ). We may assume that the coefficients of F are real (cf. $\text{B"urgisser et al., 2011}$).

Consider the linear automorphism that exchanges the last two factors of $\mathbb{C}^d \otimes \mathbb{C}^d \otimes \mathbb{C}^d$. This induces an automorphism σ of the algebra A. It is easy to see that $F' := \sigma(F)$ is a highest weight vector of weight (λ, μ, μ). Therefore, both squares F^2 and $(F')^2$ are highest weight vectors of weight $(2\lambda, 2\mu, 2\mu)$. Since $F^2 + (F')^2$ is nonzero and invariant under σ, we see that $(\mathcal{S}_{2\lambda} \otimes \mathcal{S}_{2\mu} \otimes \mathcal{S}_{2\mu})^{S_n}$ has a nonzero invariant with respect to σ. Hence

$$(\mathcal{S}_{2\lambda} \otimes \text{Sym}^2(\mathcal{S}_{2\mu}))^{S_n} \neq 0,$$

which means that $sg_{2\lambda}^{2\mu} \neq 0$. \hfill \square

References

B"urgisser, P., Christandl, M., Ikenmeyer, C., 2011. Even partitions in plethysms. Journal of Algebra 328, 322–329.

B"urgisser, P., Clausen, M., Shokrollahi, M.A., 1997. Algebraic complexity theory. volume 315 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin. With the collaboration of Thomas Lickteig.

B"urgisser, P., Landsberg, J., Manivel, L., Weyman, J., 2009. An overview of mathematical issues arising in the geometric complexity theory approach to VP\neqVNP. arXiv:0907.2850v2.
Christandl, M., Harrow, A., Mitchison, G., 2007. On nonzero Kronecker coefficients and what they tell us about spectra. Comm. Math. Phys. 270, 575–585.

Christandl, M., Mitchison, G., 2006. The spectra of density operators and the Kronecker coefficients of the symmetric group. Comm. Math. Phys. 261, 789–797.

Christandl, M., Winter, A., 2005. Uncertainty, monogamy, and locking of quantum correlations. IEEE Trans.Inf. Theory 51, 3159–3165.

Franz, M., 2002. Moment polytopes of projective G-varieties and tensor products of symmetric group representations. J. Lie Theory 12, 539–549.

Fulton, W., Harris, J., 1991. Representation theory. volume 129 of Graduate Texts in Mathematics. Springer-Verlag, New York.

Keyl, M., Werner, R., 2001. Estimating the spectrum of a density operator. Phys. Rev. A 64, 052311.

Klyachko, A., 2004. Quantum marginal problem and representations of the symmetric group. arXiv:quant-ph/0409113v1.

Klyachko, A.A., 1998. Stable bundles, representation theory and Hermitian operators. Selecta Math. (N.S.) 4, 419–445.

Knutson, A., Tao, T., 1999. The honeycomb model of $GL_n(C)$ tensor products. I. Proof of the saturation conjecture. J. Amer. Math. Soc. 12, 1055–1090.

Landsberg, J.M., Manivel, L., 2004. On the ideals of secant varieties of Segre varieties. Found. Comput. Math. 4, 397–422.

Manivel, L., 1997. Applications de Gauss et pléthysme. Ann. Inst. Fourier (Grenoble) 47, 715–773.

Mulmuley, K.D., Sohoni, M., 2001. Geometric complexity theory. I. An approach to the P vs. NP and related problems. SIAM J. Comput. 31, 496–526.
Mulmuley, K.D., Sohoni, M., 2008. Geometric complexity theory. II. Towards explicit obstructions for embeddings among class varieties. SIAM J. Comput. 38, 1175–1206.

Stanley, R.P., 1999. Enumerative combinatorics. Vol. 2. volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge.

Stanley, R.P., 2000. Positivity problems and conjectures in algebraic combinatorics, in: Mathematics: frontiers and perspectives. Amer. Math. Soc., Providence, RI, pp. 295–319.

Valiant, L.G., 1979. Completeness classes in algebra, in: Conference Record of the Eleventh Annual ACM Symposium on Theory of Computing (Atlanta, Ga., 1979). ACM, New York, pp. 249–261.

Valiant, L.G., 1982. Reducibility by algebraic projections. Enseign. Math. (2) 28, 253–268.