Exporting Terrestrial Life Out of the Solar System with Gravitational Slingshots of Earthgrazing Bodies

Amir Siraj1, Abraham Loeb1

1Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138, USA

Abstract
Exporting terrestrial life out of the Solar System requires a process that both embeds microbes in boulders and ejects those boulders out of the Solar System. We explore the possibility that Earthgrazing long-period comets and interstellar objects could export life from Earth by collecting microbes from the atmosphere and receiving a gravitational slingshot effect from the Earth. We estimate the total number of exportation events over the lifetime of the Earth to be $\sim 1 - 10^3$ for long-period comets and $\sim 1 - 50$ for interstellar objects. If life existed above an altitude of 100 km, then the number is dramatically increased up to $\sim 10^5$ exportation events over Earth’s lifetime.
Introduction

Panspermia is the idea that life can propagate from one planet to another (Wesson, 2010; Wickramasinghe, 2010). Impacts on the surface of a planet can launch debris at above the escape speed of the planet, thereby allowing debris spread throughout the planetary system and constituting a plausible mechanism for exchanging life between planets orbiting the same star (Fritz et al., 2005; Mileikowsky et al., 2000). However, it is difficult to eject life-bearing material at speeds above the escape speed from a planetary system that is effectively shielded from destructive radiation, presenting a significant challenge for spreading life between stars (Wesson, 2010).

Life in the Earth’s atmosphere has been detected up to an altitude of 77 km (Imshenetsky et al., 1978), constituting a reservoir of microbes that objects grazing the atmosphere could draw from. Long-period comets (LPCs) represent a population of bodies that can easily be ejected from the Solar System by gravitational interactions with planets due to their low gravitational binding energies and planet-crossing orbits. This makes them ideal, in principle, for both picking up life from Earth and exporting it out of the Solar System.

In addition, the high speed and abundance of interstellar objects (ISOs) make them, in addition to LPCs, potential exporters of life from Earth to exoplanetary systems. 1I/Oumuamua (Meech et al., 2017; Micheli et al., 2018) was the first interstellar object detected in the Solar System, CNEOS 2014-01-08 (Siraj & Loeb, 2019a) was tentatively the first interstellar meteor discovered larger than dust, and 2I/Borisov (Guzik et al., 2019) was the first confirmed interstellar comet. Ginsburg et al. (2018) demonstrate dynamically that ejected objects can be gravitationally captured by other star systems.

In this paper, we study whether it is possible for ISOs and LPCs to have exported life from Earth’s atmosphere out of the solar system. First, we analyze the gravitational slingshot effect of the Earth during such encounters. We then evaluate the effects of atmospheric drag on the transporting body’s size and minimum encounter altitude. Next, we discuss the collection of microbial life during the transporting body’s passage through the atmosphere. We then estimate the total number of exportation events since the dawn of life on Earth. Finally, we summarize our main conclusions.

Gravitational Slingshots with Earth

To gain an understanding of the approximate change in energy that a transporting body receives through a random gravitational interaction with the Earth, we developed a Python code that randomly initializes and integrates the motions of particles from their points of closest approach to Earth in the past or future, computing the total change in energy over the interaction. The Python code created for this work used the open-source N-body integrator software REBOUND\(^a\) to trace the motions of particles under the gravitational influence of the Earth-Sun system (Rein & Liu, 2012).

We initialize the simulation with the Sun, Earth, and a volume of test particles surrounding Earth at 80 km from the Earth’s surface, with near-zero gravitational binding energies from the Sun as appropriate for LPCs.\(^b\) The Sun and Earth define the ecliptic plane. For each test particle, we randomly pick an angle within the ecliptic plane between 0 and 2π, as well as a zenith angle between 0 and π. Using these two angles, we set each particle’s position vector relative to Earth.

To ensure that each particle is at its distance of closest approach, we require the velocity vector to lie in the plane perpendicular to the position vector relative to Earth. For each particle, we pick a random angle between 0 and 2π to determine in which direction the velocity vector points within this plane. Using the angle within the plane perpendicular to the position vector, we construct each particle’s velocity vector. At this point, we have fully initialized the 6D coordinates of each particle in both position and velocity.

In the first stage of the simulation, we integrate all of the particles backward in time and determine which ones are initially unbound. We use the IAS15 integrator in REBOUND to trace each particle from \(t = 0\) to an earlier time \(-t_i\) (Rein & Spiegel, 2014), where \(t_i\) is an amount of time to sample either side of the closest approach to Earth. The only constraint on \(t_i\) is that it is a time interval at and above which the results of the simulation do not change, on the order of a few times the encounter period. We record the change in the speed at infinity for the incoming segment of the particle’s trajectory, \(Δv_{∞, \text{in}}\). In the second stage of the simulation, we integrate the particles with unbound initial conditions forward in time and find which ones will end in bound orbits around the Sun. We use IAS15 to integrate each particle from \(t = 0\) to \(t_f\). We record the change in the speed at infinity for the outgoing segment of the particle’s trajectory, \(Δv_{∞, \text{out}}\), and add it to the the incoming and outgoing changes to find the change in speed at infinity for the entire encounter, \(Δv_{∞}\).

We ran our Python code for 10\(^5\) particles, and the resulting distribution of \(Δv_{∞}\) is shown in Figure 1. Half of encounters result a positive change in energy, as expected from symmetry to time-reversal, and 95% of such encounters result in \(Δv_{∞} ≤ 3 \text{ km s}^{-1}\). This corresponds to objects with perihelion distances \(≥ 200 \text{ AU}\), or LPCs.

\(^a\)https://rebound.readthedocs.io/en/latest/

\(^b\)ISOs are not included in the simulation, as they are assumed to have binding energies significantly below zero.
Atmospheric Drag

As the transporting object grazes the atmosphere, it encounters atmospheric drag, giving rise to constraints on its minimum size and minimum encounter altitude for it to escape.

Because the change in energy due to the gravitational slingshot is small relative to the initial kinetic energy, we approximate the transporting object’s path as linear, summarized by the following expression for altitude,

$$z(x) = R_⊕ + z_{min} - \sqrt{R_⊕^2 - x^2},$$ \hspace{1cm} (1)

where $R_⊕$ is the radius of the Earth, z_{min} is the minimum altitude of the encounter, and x is a distance parameter that fulfills $z(0) = z_{min}$ and $dz = v \, dt$, where v is the instantaneous speed.

The density of the atmosphere as a function of altitude is $\rho(z) = e^{-z/8} \text{ km kg}^{-1} \text{ m}^{-3}$, and the density of the transporting body is taken to be that of a typical cometary nucleus, $\rho_{tb} = 600 \text{ kg m}^{-3}$. The acceleration of the transporting body is given by the drag equation (Collins et al., 2010),

$$\frac{dv}{dt} = -3\rho(z)C_D \frac{v^2}{4\rho_{tb}L_{tb}},$$ \hspace{1cm} (2)

where C_D is the drag coefficient, set to the typical value of 2, and L_{tb} is the length of transporting body.

We use the expression given in Collins et al. (2010) to estimate the yield strength Y_{tb} of the transporting body to be $\sim 4300 \text{ Pa}$. The altitude at which the body begins to break up, z_\ast, is given by the solution to the transcendental equation,

$$Y_{tb} = \rho(z_\ast)v^2(z_\ast),$$ \hspace{1cm} (3)

which yields, $z_\ast \approx 100 \text{ km}$.

Expansion & Slow-down

At $z < 100 \text{ km}$, the transporting body expands according to the equation (Collins et al., 2010),

$$\frac{d^2L_{tb}}{dt^2} = \frac{\rho(z)C_D}{\rho_{tb}L_{tb}} v^2.$$ \hspace{1cm} (4)

We developed Python code that integrates along the path of the transporting body, using equations (1), (2), and (4) to continuously update v and L_{tb}, thereby deriving the total expansion of the object and change in speed as a function of minimum encounter altitude and size. The minimum size to guarantee a negligible expansion of $\lesssim 10\%$ as a function of altitude is shown in Figure 2 for the range of minimum encounter altitudes 20 km – 80 km. The lower bound of 20 km was defined by the result that the minimum size was of order the altitude for lower altitudes. The upper bound, 80 km, was chosen because it is the highest altitude at which life has been detected as of yet (Imshenetsky et al., 1978).

The change in speed for all successful encounters is $\lesssim 10^{-5} \text{ m s}^{-1}$, which is reasonable considering the fact that significant slow-down will lead to runaway expansion. Such a small change in speed does not cause significant heating of the body.

Collection of Microbial Life

While the abundance of microbes in the upper atmosphere is poorly constrained (Burrows et al., 2009), we use the Imshenetsky et al. (1978) detections to come up with an order-of-magnitude estimate. Imshenetsky et al. (1978) reported 31 colonies of microorganisms collected over 4 sounding rocket launches, each with $\sim 30 \text{ s}$ at the altitude range 48 – 77 km, traveling at $\sim 0.75 \text{ km s}^{-1}$, with a detector of size $\sim 5 \times 10^{-3} \text{ m}^2$. The total detection volume for all 4 flights was then $\sim 450 \text{ m}^3$, giving an average colony number density of $\sim 0.1 \text{ m}^{-3}$ at the altitude range 48 – 77 km.

The total number of collected colonies is then estimated by the equation,

$$\sim 10^9 \text{ colonies} \left(\frac{L_{tb}}{400 \text{ m}} \right)^2 \left(\frac{v}{42 \text{ km s}^{-1}} \right) \left(\frac{\tau_{min}}{2 \text{ s}} \right),$$ \hspace{1cm} (5)

where τ_{min} is approximately the amount of time spent at z_{min}. This suggests a large number of collected colonies for typical values.

The collected microbes will experience accelerations of order $10^6 – 10^7 \text{ g}$. For microbes including Bacillus subtilis, Caenorhabditis elegans, Deinococcus radiodurans, E. coli, and P. denitrificans, a large proportion would survive accelerations of $4 – 5 \times 10^2 \text{ g}$, which are of interest for planetary impacts (Mastrapa et al., 2001; Deguchi et al., 2011; De Souza & Pereira, 2018). While the slightly higher accelerations that are of interest to this paper have not been tested, we assume that acceleration is not an important lethal factor for microbes picked up by the transporting body.

In addition, comet nuclei are porous, making it likely that some incident microbes become embedded several meters below the surface, providing protection from harmful radiation in interstellar space (Wesson, 2010).
Number of Exportation Events

Francis (2005) estimate an LPC flux of $F_{LPC} \sim 11$ LPCs yr$^{-1}$ with $q < 4$ AU and $H \lesssim 11$. Francis (2005) estimate $H \sim 11$ to correspond to a cometary diameter of $L_{H<11} \sim 1 - 2.4$ km (Bailey & Stagg, 1988; Weissman, 1990), but Fernandez & Sosa (2012) estimate a cometary diameter of $L_{H<11} \sim 0.6$ km. Weissman (2007) calculate the impact probability of LPCs with the Earth to be $P_\odot \sim 2.2 \times 10^{-9}$ per comet per perihelion. While the cumulative size distribution of sub-km LPCs in uncertain, Vokrouhlicky et al. (2019) estimate a cumulative power-law distribution of sizes with an index of ~ -1.5.

We estimate the total number of exportation events caused by Solar System bodies, N_S^*, over the age of the Earth, T_\odot, and occurring between altitudes z_1 and z_2, to be,

$$N_S^* \sim F_{LPC} T_\odot A_\odot^{-1} \int_{R_\odot+z_2}^{R_\odot+z_1} \left(\frac{L_{th, \ min}}{L_{H<11}} \right)^{-1.5} \pi r \ dr \ .$$

For $z_1 = 20$ km and $z_2 = 80$ km, $N_S^* \sim 1 - 10$.

We also consider ISOs, such as ‘Oumuamua (Meech et al., 2017; Micheli et al., 2018). In the ~ 100 m size regime, the power law exponent for the cumulative size distribution is estimated to be ~ -3 (Siraj & Loeb, 2019b). We can then express the total number of exportation events by ISOs, N_I^*, in terms of the size of ‘Oumuamua, L_O, and the timescale over which an ‘Oumuamua-size object is expected to collide with the Earth, t_O,

$$N_I^* \sim T_\odot A_\odot^{-1} t_O^{-1} \int_{R_\odot+z_2}^{R_\odot+z_1} \left(\frac{L_{th, \ min}}{L_O} \right)^{-3} \pi r \ dr \ .$$

assuming that the composition of such objects are similar to LPCs and that the gravitational deflection by the Earth is small relative to the object’s incoming energy.

‘Oumuamua’s diameter is estimated to be $L_O \sim 100 - 440$ m, based on Spitzer Space Telescope constraints on its infrared emission given its temperature (Trilling et al., 2018). The implied timescale for collisions of ‘Oumuamua-size ISOs with the Earth is $t_O \sim 3 \times 10^7$ yr (Do et al., 2018). As a result, for $z_1 = 20$ km and $z_2 = 80$ km, $N_I^* \sim 1 - 50$.

Possibility of Exportation Events Above 100 km

Life has not yet been detected above an altitude of 80 km. However, if we extrapolate the Imshenetsky et al. (1978) results to $z \gtrsim 100$ km by assuming that turbulent mixing makes the exponential scale height for microbial life equal to that of air, ~ 8 km, breakup will not occur for icy objects, allowing for smaller and therefore more abundant transporting bodies. If we require that the total number of collected colonies $N_{col} \gtrsim 10^4$, we can derive an expression for $L_{th, \ min}$ as a function of z, $L_{th, \ min}^* \approx 2 \sqrt{\frac{e(z-63 \text{ km})/8}{(v/42 \text{ km s}^{-1})(t/2 \text{ s})}}$.

The total number of $z \gtrsim 100$ km exportation events for Solar System bodies and ISOs, respectively, are,

$$N_S^* \sim N_S \{ z_1 = 100 \text{ km}, z_2 = \infty, L_{th, \ min}^* \} ,$$

$$N_I^* \sim N_I \{ z_1 = 100 \text{ km}, z_2 = \infty, L_{th, \ min}^* \} .$$

We find $N_S^* \sim 3 \times 10^2 - 2 \times 10^3$ and $N_I^* \sim 10^3 - 10^5$.

Conclusions

In this paper we evaluated the possibility of LPCs and ISOs exporting life from Earth’s atmosphere out of the Solar System. We estimate the total number of exportation events over the lifetime of the Earth to be $\sim 1 - 10$ for LPCs and $\sim 1 - 50$ for ISOs. If life existed above an altitude of 100 km, we find that up to $\sim 10^5$ exportation events could have occurred over Earth’s lifetime.

The atmospheric scale height, $h \sim \langle v \rangle / g$, where $\langle v^2 \rangle$ includes the sound and turbulence speeds summed in quadrature, and g is the acceleration due to the Earth’s gravity. If the atmospheric temperature was higher due to volcanic activity or the Sun being brighter early on, or if turbulence was stronger, then h could have been larger, making the prospect of interstellar panspermia even more realistic.

Improved measurements of the size distribution of LPCs and ISOs would allow for more precise estimates. In addition, more research into the abundance of characteristics of microbes in the upper atmosphere, as well as into impacts at tens of km/s with such microbes, is crucial for evaluating the merit of the panspermia hypothesis. In particular, the discovery of life above 100 km in the atmosphere would be a very encouraging sign for the feasibility of interstellar panspermia.

Acknowledgement. This work was supported in part by a grant from the Breakthrough Prize Foundation.

References

Bailey M. E., Stagg C. R., 1988, MNRAS, 152, 126
Burrows S. M., et al., 2009, Atmospheric Chemistry and Physics, 9, 9236
Collins G. S., Jay H. M., Marcus R. A., 2010, Meteoritics & Planetary Science, 40, 817
Deguchi S., et al., 2011, PNAS, 108, 7997
De Souza T. A. J., Tiago C. P., 2018, Astrobiology, 18, 7
Do A., Tucker, M. A., Tonry, J. 2018, The Astrophysical Journal, 855, L10
Fernandez J. A., Sosa A., 2012, Monthly Notices of the Royal Astronomical Society, 423, 1674
Francis P. J., 2005, The Astrophysical Journal, 635, 1348
Fritz J., Artemieva N., Greshake A., 2005, Meteoritics & Planetary Science, 40, 1393
Ginsburg I., Lingam M., Loeb A., 2018, The Astrophysical Journal, 868, 1
Guzik, et al., 2019, Interstellar comet C/2019 Q4 (Borisov). (arXiv:1909.05851)
Imshenetsky A. A., Lysenko S. V., Kazakov G. A., 1978, Appl Environ Microbiol., 35(1), 1
Mastrapa R. M. E., et al., 2001, Earth and Planetary Science Letters, 189, 1
Mileikowsky C., et al., 2000, Icarus, 145, 2
Meech K. J., et al., 2017, Nature, 552, 378
Micheli M., et al., 2018, Nature, 559, 223
Rein H., Liu S.-F., 2012, Astronomy & Astrophysics, 537, A128
Rein H., Spiegel D. S., 2014, Monthly Notices of the Royal Astronomical Society, 446, 1424
Siraj A. & Loeb A., 2019a, submitted to The Astrophysical Journal Letters.
Siraj A. & Loeb A., 2019b, RNAAS, 3, 132
Trilling, D., et al., 2018, The Astronomical Journal, 156, 261.
Vokrouhlicky D., Nesvorny D., Dones L., 2019, The Astronomical Journal, 157, 5
Wesson P.S., 2010, Space Science Reviews, 156, 329
Weissman P. R., 1990, in Global Catastrophes in Earth History; An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality, Vol. 247, Geological Society of America, 171â–180
Weissman P. R., 2007, Proceedings IAU Symposium No. 236, 156, 329
Wickramasinghe C., 2010, Space Science Reviews, 9(2), 119