Electronic Supporting Information

Defective MOF Architecture Threaded by Interlaced Carbon Nanotubes for High-Cycling Lithium-Sulfur Batteries

Yujie Pua,b, Wubin Wua, Jianyu Liua,b, Tao Liua,b, Fei Dingb,*, Jing Zhangb and Zhiyuan Tanga,*

a. Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
b. National Key Laboratory of Science and Technology on Power Sources, Tianjin Institute of Power Sources, Tianjin, 300384, PR China
c. Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China.
Fig. S 1 SEM morphologies of (a) and (b) UiO-66, (c) and (d) UC-2, (e) and (f) UC-5
Fig. S 2 (a)-(c) SEM and (d) TEM photographs of UC-3 composite.
Table S 1 BET characteristics of CNTs, Uio-66, UC series and S@UC hybrid series and their pore volume and average pore diameters (except CNTs) derived from their 77K N\textsubscript{2} isotherms based on the nonlocal density function theory (NLDFT).

Samples	$S_{\text{BET}}/(\text{m}^2\cdot\text{g}^{-1})$	$V_{\text{total}}/(\text{cm}^3\cdot\text{g}^{-1})$	$D_{\text{average}}/\text{(nm)}$
CNTs	278	0.72	12.3
Uio-66	1157	0.43	1.08
UC-2	976	0.47	1.33
UC-3	863	0.56	1.59
UC-5	738	0.53	1.64
S@UC-2	17.13	0.058	1.77
S@UC-3	15.36	0.031	1.85
S@UC-5	6.62	0.012	4.54

(Note that all data of CNTs are obtained from its BET characteristics)
Fig. S 3 XRD patterns of Uio-66, S@UC series and sulfur.
Fig. S 4 C 1s and O 1s XPS spectra of (a) and (b) Uio-66, (c) and (d) w/o-UC-3 and (e) and (f) S@UC-3, respectively.
Table S 2 Data obtained from the quantitative analysis for C 1s and O 1s spectra of w/o-UC-3 and UC-3.

Spectrum	Bond	Binding energy (eV)	Content (%)		
	w/o-UC-3	UC-3	w/o-UC-3	UC-3	
C 1s	C-C	287.74	284.75	68.27%	67.37%
	C-O	285.62	285.64	19.01%	18.61%
	C=O	286.74	286.72	4.81%	4.78%
	O=C-O	289.46	289.64	7.91%	9.24%
O 1s	O-Zr	530.8	530.96	7.68%	7.93%
	Zr-O-C	532	532.06	29.09%	24.49%
	O-C	532.8	532.82	57.00%	58.34%
	O=C	533.76	533.92	6.24%	9.24%
Fig. S 5 Galvanostatic charge-discharge profiles of (a) S@CNTs, (b) S@UC-2 and (c) S@UC-5 as the electrode at 0.5 A·g⁻¹
Fig. S 6 The disassemble cell pictures of (a) S@UC-3 electrode and (b) S@CNTs electrode after 300 cycles, conducted and obtained in the Ar gas filled glove box (O₂, H₂O<0.1 ppm). The SEM images of (c)-(e) fresh and (f)-(h) cycled S@UC-3 electrode after 300 cycles cleaned by the DOL/DME (1:1) solvent.
Fig. S 7 Cycling performance of the S@CNTs, S@Uio-66 and S@UC-3 electrodes at the current density of 0.1 A·g⁻¹.
Fig. S 8 Atomic unit model configurations of the intact Uio-66 (top view and side view)
Fig. S 9 Atomic unit model configurations of (a) intact Uio-66 and (b)-(d) defective Uio-66 with one, two and three linker loss (denoted as D₁-Uio-66, D₂-Uio-66 and D₃-Uio-66). Gray, red, white and light blue spheres represent C, O, H and Zr atoms, respectively.
Table S 3 Performance comparisons of the representative MOFs-based sulfur electrodes (1C=1675 mA·g⁻¹).

Cathode	Sulfur content in the electrode	Potential range (V)	Maximum capacity (mAh·g⁻¹)	Average fading Rate	Discharge current density (Cycle number)	Ref.
S@UC-3	~54%	1.7-2.8	1045	0.142%	100 mA·g⁻¹ (100)	
S@rGO/MIL100(Cr)	~41%	1.0-3.0	869	0.200%	0.1C (100)	1
S@ZIF-8	~30%	1.8-2.8	793	0.101%	0.5C (300)	2
S@Ni-MOF	~48%	1.5-3.0	689	0.094%	0.2C (200)	3
S@MOF-525(Cu)	~42%	1.5-3.0	1200	0.207%	0.2C (200)	4
S@rGO/MIL-100(V)	~35%	1.6-3.0	849	0.170%	0.1C (200)	5
S@HKUST-1/CNTs	~40%	1.7-2.8	1263	0.080%	0.2C (500)	6
S@nMOF-867	—	1.7-2.8	907	0.050%	835 mA·g⁻¹ (500)	7
S@Cd-MOF	~50%	1.5-2.8	1092	0.537%	0.1C (50)	8

Note that average fading rate is calculated based on the formula:

\[
\left(\frac{C_{\text{Max}} - C_{\text{Ret}}}{C_{\text{Max}}}\right) \times 100\%
\]

C_{\text{Max}} represents the maximum capacity, C_{\text{Ret}} represents the capacity retention after cycling, N represents the cycling numbers.
Table S 4 Cycling performance comparisons of UC-3 with several representative MOF-derived porous Carbon materials as the sulfur hosts for Li-S batteries

MOFs	Cathode	Sulfur content in the electrode	Potential range (V)	Maximum/Final Capacity (mAh·g⁻¹)	Discharge current density (Cycle number)	Ref.
S@UC-3	~ 54%	1.7-2.8		925/765	500 mA·g⁻¹ (300)	This work
GS-S/C\text{ZIF8-D}	~ 38 %	1.0-3.0	1117/561	168 mA·g⁻¹ (120)		9
C-S-3	~ 22 %	1.0-3.0	1655/936	335 mA·g⁻¹ (100)		10
ZIF-8	S/N3-C	~ 46 %	1.0-3.0	1500/800	0.1C (100)	11
	OCNTA/S	~ 56 %	1.7-2.6	1037/487	0.2C (1000)	12
S/ZIF-8-NS-C	~ 56 %	1.7-2.8	887/587	0.5C (300)		13
RGO/C-Co-S	~ 50 %	1.8-2.6	1218/949	300 mA·g⁻¹ (300)		14
ZIF-67	NC-800-S60	~ 45 %	1.7-2.8	1124/511	800 mA·g⁻¹ (400)	15
S@Co-N-GC	~ 49 %	1.7-2.7	1440/850	0.2C (200)		16
MWCNT@Meso-C/S	~ 47 %	1.5-3.0	1343/540	0.5C (50)		17
MCP-950/S	~ 63 %	1.8-2.8	1274/1041	0.2C (50)		18
MOF-5	MPCM-N-S	~ 56 %	1.7-2.8	1000/740	0.5C (200)	19
S-Zn-MOF	~ 35 %	1.7-2.6	1476/609	0.2C (200)		20
GO@Meso-C/S	~ 64 %	1.8-2.7	1122/825	0.2C (100)		21
Al-MOF	S/FLHPC	~ 46 %	1.5-2.8	1100/751	0.5C (200)	22
Table S 5 Cycling stability comparisons of UC-3 with several representative polar materials as the sulfur host in Li-S batteries (1C=1675 mA·g⁻¹).

Polar host material	Sulfur content in the electrode	Fading rate	Discharge current density	Cycle number	Ref.
UC-3	~ 54 %	0.055%	500 mA·g⁻¹	300	This work
TiO₂	~ 53 %	0.033 %	0.5C	1000	23
Ti₄O₇	~ 48 %	0.060 %	2C	400	24
TiO	~ 56 %	0.082 %	0.5C	500	25
MnO₂	~ 56 %	0.028 %	0.5C	1500	26
VO₂	~ 60 %	0.058 %	0.5C	1000	27
Nb₂O₅	~ 48 %	0.146 %	0.5C	200	28
TiN	~ 50 %	0.070 %	0.5C	500	29
VN	~ 56 %	0.094 %	1C	200	30
TiS₂	~ 33% Li₂S	0.058 %	0.5C	400	31
CoS₂	~ 60 %	0.034 %	2C	2000	32
Co₃S₄	~ 53%	0.080 %	1C	450	33
Co₈S₉	~ 60 %	0.045 %	0.5C	1500	34
WS₂	~ 11 %	0.031 %	0.5C	500	35
MXene	~ 56 %	0.050 %	0.5C	650	36
References:

1. Z. Zhao, S. Wang, R. Liang, Z. Li, Z. Shi and G. Chen, J. Mater. Chem. A, 2014, 2, 13509-13512.

2. J. Zhou, R. Li, X. Fan, Y. Chen, R. Han, W. Li, J. Zheng, B. Wang and X. Li, Energy Environ. Sci., 2014, 7, 2715.

3. J. Zheng, J. Tian, D. Wu, M. Gu, W. Xu, C. Wang, F. Gao, M. H. Engelhard, J.-G. Zhang, J. Liu and J. Xiao, Nano Lett., 2014, 14, 2345-2352.

4. Z. Wang, B. Wang, Y. Yang, Y. Cui, Z. Wang, B. Chen and G. Qian, ACS Appl. Mater. Interfaces, 2015, 7, 20999-21004.

5. Y. Hou, H. Mao and L. Xu, Nano Research, 2017, 10, 344-353.

6. Y. Mao, G. Li, Y. Guo, Z. Li, C. Liang, X. Peng and Z. Lin, Nat. Commun., 2017, 8, 14628.

7. J. H. Park, K. M. Choi, D. K. Lee, B. C. Moon, S. R. Shin, M.-K. Song and J. K. Kang, Sci. Rep-Uk, 2016, 6, 25555.

8. M.-T. Li, Y. Sun, K.-S. Zhao, Z. Wang, X.-L. Wang, Z.-M. Su and H.-M. Xie, ACS Appl. Mater. Interfaces, 2016, 8, 33183-33188.

9. R. Chen, T. Zhao, T. Tian, S. Cao, P. R. Coxon, K. Xi, D. Fairen-Jimenez, R. Vasant Kumar and A. K. Cheetham, APL Mater., 2014, 2, 124109.

10. Z. Li and L. Yin, ACS Appl. Mater. Interfaces, 2015, 7, 4029-4038.

11. X. Li, Q. Sun, J. Liu, B. Xiao, R. Li and X. Sun, J. Power Sources, 2016, 302, 174-179.

12. P. Zuo, H. Zhang, M. He, Q. Li, Y. Ma, C. Du, X. Cheng, H. Huo, Y. Gao and G. Yin, Carbon, 2017, 122, 635-642.

13. Y. Jiang, H. Liu, X. Tan, L. Guo, J. Zhang, S. Liu, Y. Guo, J. Zhang, H. Wang and W. Chu,
14. Z. Li, C. Li, X. Ge, J. Ma, Z. Zhang, Q. Li, C. Wang and L. Yin, *Nano Energy*, 2016, **23**, 15-26.

15. J. Zhang, M. Huang, B. Xi, K. Mi, A. Yuan and S. Xiong, *Adv. Energy Mater.*, **7**, 1701330-n/a.

16. Y.-J. Li, J.-M. Fan, M.-S. Zheng and Q.-F. Dong, *Energy Environ. Sci.*, 2016, **9**, 1998-2004.

17. W. Bao, Z. Zhang, C. Zhou, Y. Lai and J. Li, *J. Power Sources*, 2014, **248**, 570-576.

18. S. Cai, X. Wang, M. Chen, J. Liu, Q. Lu and S. Wei, *J. Electrochem. Soc.*, 2016, **163**, A2922-A2929.

19. X. Qian, L. Jin, S. Wang, S. Yao, D. Rao, X. Shen, X. Xi and J. Xiang, *RSC Adv.*, 2016, **6**, 94629-94635.

20. P. M. Shanthi, P. J. Hanumantha, B. Gattu, M. Sweeney, M. K. Datta and P. N. Kumta, *Electrochim. Acta*, 2017, **229**, 208-218.

21. W. Bao, Z. Zhang, W. Chen, C. Zhou, Y. Lai and J. Li, *Electrochim. Acta*, 2014, **127**, 342-348.

22. X. Yang, N. Yan, W. Zhou, H. Zhang, X. Li and H. Zhang, *J. Mater. Chem. A*, 2015, **3**, 15314-15323.

23. Z. Wei Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P.-C. Hsu and Y. Cui, *Nat. Commun.*, 2013, **4**, 1331.

24. Q. Pang, D. Kundu, M. Cuisinier and L. F. Nazar, *Nat. Commun.*, 2014, **5**, 4759.

25. Z. Li, J. Zhang, B. Guan, D. Wang, L. M. Liu and X. W. Lou, *Nat. Commun.*, 2016, **7**, 13065.

26. X. Wang, G. Li, J. Li, Y. Zhang, A. Wook, A. Yu and Z. Chen, *Energy Environ. Sci.*, 2016, **9**, 25239-25249.
2533-2538.

27. X. Liang, C. Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier, H. Huang, C. J. Hart, D. Houtarde, K. Kaup, H. Sommer, T. Brezesinski, J. Janek and L. F. Nazar, *Adv. Energy Mater.*, 2016, *6*, 1501636-n/a.

28. Y. Tao, Y. Wei, Y. Liu, J. Wang, W. Qiao, L. Ling and D. Long, *Energy Environ. Sci.*, 2016, *9*, 3230-3239.

29. Z. Cui, C. Zu, W. Zhou, A. Manthiram and J. B. Goodenough, *Adv. Mater.*, 2016, *28*, 6926-6931.

30. Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H.-M. Cheng and F. Li, *Nat. Commun.*, 2017, *8*, 14627.

31. Z. W. Seh, J. H. Yu, W. Li, P.-C. Hsu, H. Wang, Y. Sun, H. Yao, Q. Zhang and Y. Cui, *Nat. Commun.*, 2014, *5*, 5017.

32. Z. Yuan, H.-J. Peng, T.-Z. Hou, J.-Q. Huang, C.-M. Chen, D.-W. Wang, X.-B. Cheng, F. Wei and Q. Zhang, *Nano Lett.*, 2016, *16*, 519-527.

33. H. Xu and A. Manthiram, *Nano Energy*, 2017, *33*, 124-129.

34. Q. Pang, D. Kundu and L. F. Nazar, *Mater. Horiz.*, 2016, *3*, 130-136.

35. T. Lei, W. Chen, J. Huang, C. Yan, H. Sun, C. Wang, W. Zhang, Y. Li and J. Xiong, *Adv. Energy Mater.*, 2017, *7*, 1601843-n/a.

36. X. Liang, A. Garsuch and L. F. Nazar, *Angew. Chem. Int. Ed.*, 2015, *54*, 3907-3911.