Abstract. Gastric cancer is one of the leading types of cancer with an annual death toll of 700,000 worldwide. Despite the fact that several agents are approved for its treatment, high percentage of recurrence and intractability of metastatic disease remain a major problem. The identification of new targets and modalities for treatment are therefore of high priority. We have searched the literature for microRNAs down-regulated in gastric cancer with efficacy in gastric cancer-related murine xenograft models after reconstitution therapy. Among the identified miRs were 25 miRs targeting transcription factors, seven of them regulating cell-cycle and apoptosis-related targets, and five of them regulating GTPase-related targets such as GAPs and GEFs. According to criteria such as prognostic impact, functional data, and tractability, miR-133 b/a (MCL1) and miR-518 (MDM2) are suggested as potentially valuable targets for further evaluation and possible treatment of gastric cancer.

Gastric cancer (GC) is the third-leading cause of cancer worldwide and is the fourth most common cancer with an annual worldwide death toll of 700,000 (1). Stomach tumor types include esophageal gastric cancer, gastrointestinal stromal tumors (GIST) and gastric cancer (GC) (1). In this review we focus on gastric cancer (GC). From a histopathological point of view intestinal and diffuse subtypes of GC have been identified. The first is characterised by well differentiated tubular and glandular structures, and the second by undifferentiated or poorly differentiated cells and lack of gland formation (1). From a molecular point of view the following subtypes have been characterized: Epstein-Barr-Virus (EBV), microsatellite instability (MSI), genomically stable (GS) and chromosomal instability (CIN) subtypes, all correlated with differential prognosis (2). The standard therapy of GC patients is platinium- and fluoropyrimidine-based chemoradiotherapy or patient subgroup-specific therapy with Herceptin and chemotherapy or the vascular-endothelial growth factor receptor 2 (VEGFR2) monocolonal antibody (mAb) Ramucirumab in combination with other agents (3, 4). Several Phase III studies are ongoing with immune checkpoint-related mAbs directed against cytotoxic T-lymphocyte associated protein 4 (CTLA4), programmed death 1 (PD1) and programmed death-ligand 1 PD-L1 (3, 4). So far, surgery is the only potentially curative therapy, yet still more than half of radically resected GC patients relapse locally or develop distant metastasis (3, 4). Preferential organs of metastasis are the liver (48%), peritoneum (32%), lung (15%) and bone (12%) (5). Relapsed and metastatic GC only poorly respond to established treatment regimens (3, 4). Regarding the molecular genetics of GC, mutations or loss of heterozygosity of adenomatous-polyposis-coli (APC) (6), chromatin-remodelling protein AT-rich interactive domain containing protein 1A (ARID1A) (7, 8), cell adhesion protein E-cadherin (9) and Ras homolog family member A (RHOA) involved in regulation of the cytoskeleton have been identified (10, 11). Altogether, the identification of new targets and treatment modalities for GC is highly desired. In this review, we describe the role of miRs that are down-regulated in GC, representing tumor-suppressive microRNAs (miRs) affecting transcription factors, cell-cycle related and anti-apoptotic proteins as well as miRs that affect small GTPases and their interacting proteins and proteins such as...
guanine nucleotide exchange factors (GEFs) and GTPases activating proteins (GAPS), in pathogenesis and metastasis of GC. We focus on miRs which are down-regulated in GC tissue in comparison to corresponding normal tissues and exhibit efficacy in preclinical in vivo models.

Roles of microRNAs in Oncology

microRNAs (miRs) are double-stranded RNAs comprising 22-25 nts and are generated from hairpin-containing precursor transcripts (12). They are transcribed in the nucleus by RNA polymerase II, processed, exported to the cytoplasm and released as 22-25 nts miR-duplexes (13, 14). One of the strands of the RNA duplex is maintained (guide strand), the other strand (passenger strand) is degraded (13, 14). Subsequently, the guide strand binds to the 3'-untranslated region (3'-UTR) of the mRNA of the corresponding targets and mediates their degradation and/or inhibition of their translation (13, 14). In contrast to interfering RNA (RNAi) which targets a single type of mRNA, miRs can affect up to several hundreds of different mRNAs (15). Therefore, miRs can modulate several oncogenic and tumor-suppressive pathways and hence have the potential of rewiring tumor cells to a differentiated state (15). In humans, approximately 1,000 genes encoding miRs have been identified so far (16). They are positioned as separate or clustered genes, in introns or in coding regions (6). miRs can act as oncogenes as well as tumor suppressors (16). Their actual function can be context-dependent (16).

In a proof-of-concept experiment (POC) it was shown that expression of the miR-15/16 cluster in mice prevents chronic lymphocytic leukemia analogous to the human disease by targeting B cell lymphoma 2 (BCL2) (17). In another POC experiment an oncogenic role was identified for miR-221, which induced hepatocellular carcinoma in transgenic mice as well as tumor suppressors (16). Their actual function can be studied in vivo (30, 31). Transfection of miR-200a into SGC-7901 cells inhibits cell growth and invasion and induces G0/G1 phase arrest in vitro (30, 31). Transfection of miR-105 into SGC-7901 cells inhibits tumor growth (TG) in vivo in nude mice by up-regulation of E-cadherin and inhibition of WNT/β-catenin signaling (30, 31). miR-200a inhibits EMT and targets ZEB1 and ZEB2 (30, 31), miR-200b over-expression in the GC cell lines MGC-803 and SGC-7901 induces an epithelial phenotype and suppresses TG in nude mice (32). miR-200b suppresses N-Cadherin, vimentin and ZEB1 and induces E-Cadherin in vivo (32). ZEB1 and ZEB2 are inducers of EMT and metastasis (33, 34). In GC patients, ZEB1 and ZEB2 expression is associated with poor survival (35).

miRs Targeting Transcription Factors

miR-15a-3p and miR-16-1-3p target TWIST-1. Over-expression of miRs -15a-3p and -16-1-3p (Figure 1A) in BGC-823 GC cells suppresses migration, invasion and colony formation in vitro (26). Twist family basic helix-loop-helix (BHLH) transcription factor 1 (TWIST-1), which is involved in the epithelial mesenchymal transition (EMT) process by up-regulation of N-Cadherin and down-regulation of E-Cadherin and is over-expressed in GC, has been shown to be a direct target of both miRs (26-28). TWIST-1 over-expression induced cell migration and invasion (26). Both miRs suppress tumorigenicity in nude mice, whereas over-expression of TWIST-1 reverses miR-mediated inhibition of tumorigenesis (26). In GC clinical samples, an inverse correlation between expression of miR-15a-3p, miR-16-1-3p and TWIST-1 mRNA and protein has been noted.

4186
miRs-136 and -489 target homeobox genes HOXC10 and PROX-1. miR-136 (Figure 1A) is down-regulated in GC peritoneal metastasis tissue and is associated with worse prognosis (43). GC-9811P GC cells expressing exogenous miR-136 display unaltered proliferation or apoptotic rates but show reduced mobility and invasion. In vivo, a decrease in peritoneal metastasis formation was noted in a murine tumor model (43). Homebox protein HOXC10 was identified as a direct target of miR-136 (43). Knockdown of HOXC10 reduces migration and invasion of GC-9811P cells in vitro and abolishes metastasis in peritoneal colonization assays (43).

HOXC10 is a member of the human HOX gene family comprising 39 genes, which contain a homeobox gene sequence in the range of 180 bp with DNA binding capacity of the corresponding protein moiety (44). Homeobox genes and their proteins regulate patterns of anatomical development in animals and humans. HOXC10 promotes cell proliferation and migration of GC cells through nuclear factor kappaB (NFκB), mitogen-activated protein kinase (MAPK) pathways and up-regulation of pro-inflammatory cytokines such as tumor necrosis factor α and β (TNFα, β), interleukin 6 (IL6) and epidermal growth factor (EGF) (45-48). miR-489 (Figure 1A) expression is reduced in GC tissues in comparison to corresponding normal tissues (49). miR-489 inhibits proliferation of AGS GC cells and tumorigenicity of AGS cells in nude mice after subcutaneous implantation (49). Prospero homeobox protein 1 (PROX-1) was identified as a direct target of miR-489 (49). Expression of PROX-1 is associated with progression and prognosis in GC (49). PROX-1 is a mediator of tumor cell proliferation,
angiogenesis and lymphangiogenesis and has been identified as a marker for lymphocytic endothelium (50, 51).

miR-27b targets NR2F2. miR-27b (Figure 1B) inhibits proliferation, migration, and invasion of MGC-803 GC cells (52). TG and metastasis to the liver of MGC-803 cells expressing exogenous miR-27b are inhibited after implantation into the stomach or the spleen of nude mice (52). Nuclear receptor subfamily 2, group F, member 2 (NR2F2), also referred to as chicken ovalbumin upstream promoter transcription factor-II (COUP-II) has been identified as a direct target of miR-27b (52). NR2F2 is an orphan nuclear receptor with a DNA and ligand binding domain and context-dependent onogenic and tumor suppressive functions (53, 54). NR2F2 has crucial functions in cell differentiation and cell metabolism (53, 54). In GC, NR2F2 has been found to activate embryonic pathways through up-regulation of expression of Cadherins 6 to 11 (55). However, in GC also a tumor-suppressive function has been reported for NR2F2 through inhibition of proliferation, invasion, and metastasis (56).

miR-31 targets E2F2. miR-31 (Figure 1B) is down-regulated in GC and GC-derived cell lines in comparison to adjacent normal tissues and GES-1 cells (57). miR-31 over-expression in SGC-7901 and MGC-803 cells leads to cell-cycle arrest in the G1 phase, increase in apoptotic index and inhibition of migration and invasion (57). miR-31-mimic transduced SGC-7901 cells exhibit decreased TG after subcutaneous implantation into nude mice and decreased liver metastasis after tail vein injection (57). Transcription factor E2F2 has been identified as a direct target of miR-31 (57). Knock-down of E2F2 reduces cell migration and invasion of SGC-7901 and MGC-803 cells (57). E2F2 binds to retinoblastoma protein (Rb) and after its dissociation it can act as a transcriptional activator or repressor (58). However, the data for the role of E2F2 in GC cancer are controversial since increased expression of E2F2 also was associated with a favorable prognosis (59).

miRs-33b and -494 target c-MYC. miR-33b (Figure 1B) is down-regulated due to DNA methylation in GC samples in comparison to adjacent normal tissues. Its decrease correlates with disease progression and GC patients with metastases have lower levels of miR-33b than those without metastases (60). Over-expression of miR-33b inhibits proliferation, migration, and invasion of the GC cell lines MGC-803 and HGC-27 (60). Tumorigenicity of subcutaneously implanted HGC-27 cells in nude mice is suppressed following their transduction with miR-33b (60). The transcription factor c-MYC was identified as a target of miR-33b (60). miR-494 (Figure 1B) is down-regulated in GC samples and cell lines and is negatively correlated with survival (61). GC-derived AGS cells that are transfected with miR-494 exhibit delayed G1/S entry (61). c-MYC was identified as a direct target of miR-494 (61). Tumor burden of subcutaneously implanted AGS cells into nude mice was attenuated by intraperitoneal injection of a miR-494 mimic (61). c-MYC is a transcription factor with basic helix-loop-helix and leucine zipper structural motifs, which activates many proliferative genes (62). In addition, c-MYC has an impact on cell growth, ribosomal RNA processing and other crucial physiological processes (63-66). c-MYC has been found to be deregulated in GC (67).

miR-34 targets YY1. Ying and Yang1 (YY1), a member of the GLI-Kruppel class of zinc finger transcription factors, was identified as the target of miR-34 (Figure 1B) family, which consists of miRs-34a, -b and -c (68). YY1 contributes to tumor sphere formation in GC-derived SC-M1 cells and up-regulates pluripotency genes cluster of differentiation 44 (CD44), octamer-binding transcription factor 4 (OCT4), SOX2 and homeobox protein NANOG. It is also involved in maintenance of the cancer stem cell (CSC) phenotype (68). Knock-down of YY1 in SC-M1 cells leads to expression of epithelial markers E-Cadherin and plakoglobin (a catenin protein family member homologous to β-catenin), and to decrease of mesenchymal markers N-Cadherin and vimentin (68). Transfection of SC-M1 cells with miR-34b and 34c inhibits tumor growth after subcutaneous implantation and lung metastases after tail vein injection in nude mice (68). miR-34a inhibitors expressed in SC-M1 cells lead to increased lung metastasis in the experimental metastasis assay system in nude mice (68). YY1 activates and represses many genes involved in cellular differentiation, DNA repair, cell division, survival, apoptosis, and autophagy with a context-dependent function as a tumor driver or suppressor (69, 70). YY1 expression contributes to gastric carcinogenesis and its nuclear expression correlates with survival in patients with early-stage gastric adenocarcinoma (71). YY1 also is involved in the regulation of cancer immune cell resistance by up-regulating PD-L1 (72).

miR-145 targets ETS-1. Transcription factor E26 transformation specific-1 (ETS-1) has been identified as a target of miR-145 (Figure 1B) (73). ETS-1 is the cellular homolog of the v-ETS oncogene, and is highly expressed in GC tissues and cell lines. Its expression inversely correlates with miR-145 levels (73). In SGC-7901 and MKN-45 GC cell lines, ectopic expression of miR-145 has no influence on proliferation, but inhibits migration, invasion, and tube formation (73). Transfection of ETS-1 restored the decrease in migration, invasion, and angiogenesis in SGC-7901 and MKN-45 cells mediated by miR-145 (73), whereas knockdown of miR-145 promoted migration, invasion, and angiogenesis (73). Knockdown of ETS-1 phenocopies the effects of miR-145 over-expression in GC cells in vitro (73). Transfection of SGC-
7901 cells with miR-145 has no influence on TG

in vivo, but decreases lung metastasis after tail vein injection (73). The ETS family of transcription factors is composed of 28 members in humans and regulates genes involved in extracellular matrix (ECM) remodelling, migration, and invasion (74). ETS-1 induces genes such as matrix metalloproteinases 1 and 9 (MMP-1, -9) and urokinase plasminogen activator (uPA) (75) and is involved in EMT and angiogenesis (76). GC patients with tumors that express ETS-1 have poorer prognosis than those without expression of ETS-1 (77).

miR-186 targets HIF-1α. miR-186 (Figure 1B) is down-regulated in GC (78). In MKN45 and SGC-7901 cells, miR-186 inhibits cell migration and proliferation and promotes apoptosis (78). Hypoxia-inducible factor-1α (HIF-1α) was identified as a direct target of miR-186 (78). miR-186 promotes down-regulation of hexokinase 2 (HK2) and platelet-type phosphofructokinase (PFKP), two enzymes involved in glycolysis (78). In vivo studies in nude mice with MKN45 and SGC-7901 cells support a tumor-suppressive role of miR-186 (78). Strongest growth inhibition was achieved by combination of miR-186 mimics and small hairpin (sh) HIF-1α (78). In GC, HIF-1α has an impact on apoptosis, EMT, and drug resistance (79, 80). HIF-1α expression indicates a poor prognosis in GC patients (81, 82).

miR-320 targets FOXM1. Human GC exhibits low expression of miR-320 (Figure 1B) (83). Forkhead box protein M1 (FOXM1) was identified as a target of miR-320 (83). Over-expression of miR-320 in the GC cell lines AGS, BGC-823 and HGC-27 leads to inhibition of FOXM1 expression and up-regulation of cyclin-dependent kinase inhibitor 1B (p27KIP1) (83). Conversely, suppression of miR-320 in BGC-823 GC cells leads to increased TG in nude mice through altered FOXM1-p27KIP1 signaling (83). FOXM1 is frequently over-expressed in various cancers, functions as a proto-oncogene and plays a role in cell-cycle progression (84, 85). In GC, FOXM1 facilitates cell migration by inducing cathepsin (86) and cooperates with urokinase plasminogen activator (uPA) to promote disease progression (87). Expression of FOXM1 is associated with poor survival in patients with GC (88).

miR-508-3p targets NFκB1. NFκB1 (p50) and RelA (p65) are up-regulated in primary GC tumors as well as in GC-derived cell lines (89). NFκB1 has been identified as a direct target of miR-508-3p in GC (89). NFκB1 and transcription factor p65 (RELA) mediate proliferation, invasion, and colony formation of MKN28, MGC-803 and SGC-7901 GC cells (89). NFκB1 expression shows a negative correlation with miR-508-3p (Figure 1B) expression in GC specimens (89). NFκB1 expression counteracts the tumor-suppressive effect of miR-508-3p (89). In vivo, MGC-803 cells treated with small interfering RNA (si) NFκB1 grow slower than the untreated cell line after subcutaneous implantation into nude mice (89). In GC, NFκB1 induces cytokines/chemokines, growth factors, anti-apoptotic factors, regulators of angiogenesis and metalloproteinases (90). Furthermore, it has been shown that signal transducer and activator of transcription (STAT3) and NFκB cooperate to promote progression of GC (91).

miR-520b, -1297 target CREB1. miR-520b (Figure 1B) inhibits migration and invasion of GC cells BGC-823 and MKN45 (92). Expression of miR-520b is dependent on zinc transcription factor GATA-binding factor 6 (GATA6) (93), which is down-regulated in metastatic GC specimens and GC-derived cell lines (92). Down-regulation of GATA6 correlates with poor prognosis in GC (92). cAMP response element binding protein 1 (CREB1) has been identified as a direct target of miR-520b. Ectopic expression of miR-520b inhibits migration and invasion of GC cell lines BGC-823 and MKN45 in vitro and in vivo in nude mice (93). miR-1297 (Figure 1B) also targets CREB1 and shows significantly lower expression in GC tissue samples compared to adjacent normal tissue (94). Lower expression of miR-1297 correlates with larger tumor size, lymph node metastases, advanced tumor/lymph node/metastasis (TNM) type and poor survival of GC patients (94). Conversely, up-regulation of miR-1297 leads to inhibition of proliferation and colony formation in vitro in GC cell lines and to suppression of TG in nude mice after subcutaneous implantation (94). Increased CREB1 expression rescued the in vitro effects of miR-1297 in GC cell lines. Independently, it has been shown that CREB1 promotes GC cell proliferation, colony formation, invasion and migration, and TG in vivo (95). CREB1 knock-down in GC cells leads to inhibition of cyclin D1 (CCND1), BCL2 and MMP9 (95). High expression of CREB1 is associated with increased tumor stage, metastasis, and poor outcome in GC patients (96).

Co-activators

miRs-15a, 16-1, -141 target YAP and TAZ. miR-15a and -16-1 (Figure 1C) are down-regulated in GC. In the cell lines AGS, MKN1 and MGC-803, ectopic expression of miR-15a and -16-1 inhibits proliferation, migration as well as invasion, and induces G0/G1 cell-cycle arrest (97). Yes-associated protein 1 (YAP1) was identified as a direct target of miRs -15a and -16-1 (97). YAP1 re-expression abolishes in part the in vitro effects of miRs-15a and -16-1 (97). YAP1 activates the rapidly accelerated fibrosarcoma (RAF)/dual specificity mitogen-activated kinase kinase (MEK)/extracellular regulated kinase (ERK) pathway in GC cells (97). Reduced tumor sizes (vs. controls) were observed after transplantation of siYAP1 expressing MGC-903 cells in nude mice (97). miR-141 (Figure 1C) is down-regulated in primary GC-specimens and correlates
inversely with metastatic propensity of GC (98). miR-141 inhibits proliferation, invasion, and migration of GC cell lines BGC-823, HGC-27 and SGC-7901 by targeting transcriptional co-activator with PDZ-binding motif (TAZ) (98). HGC-27 GC cells transfected with a miR-141 mimic show reduced TG after subcutaneous implantation into nude mice and decreased lung metastases after tail vein injection (98). YAP1 and its paralogue TAZ exert oncogenic activities after association with TEA-domain family (TEAD) transcription factors (99, 100). YAP1 and TAZ are repressed by Hippo pathway upstream regulators and are drivers of TG, metastasis, and resistance to therapy (101). It has been shown that YAP/TAZ initiates gastric tumorigenesis by c-MYC (102), and increased expression of TAZ is associated with EMT (103). Expression of TAZ in association with WNT pathway mutations impacts survival outcomes in advanced GC patients treated with first-line chemotherapy (104). YAP1 expression correlates with poor prognosis in GC patients (105).

miR-19b targets BCL3. miR-19b (Figure 1C) is down-regulated in GC tissues and cell lines and is associated with clinico-pathological factors and poor prognosis in patients (106). miR-19b inhibits cell proliferation and cell-cycle progression of GC cell lines MGC-803 and SGC-7901 (106). B-cell lymphoma 3 (BCL3) was identified as the target of miR-19b (106). Over-expression of miR-19b inhibits TG of MGC-803 GC cells subcutaneously implanted in nude mice (106). Also, silencing of BCL3 abolishes the effects of miR-19b inhibition on cell proliferation and cell-cycle progression (106). BCL3 acts as an oncogene in haematologic malignancies such as B-cell chronic lymphocytic leukemias. But it is also deregulated in solid tumors, modulating proliferation and cell death (107). BCL3 regulates transcription by forming complexes with p50 or p52 homodimers of the NFκB signaling pathway, and also by association with other transcription factors (108). However, the role of BCL3 in GC remains to be explored in more detail.

miR-409-3p targets PHD10. miR-409-3p (Figure 1C) is down-regulated in GC cell lines and tumors (109). In SGC-7901 cells, over-expression of miR-409-3p suppresses proliferation and induces apoptosis in vitro and in vivo in nude mice (109). PHD finger protein 10 (PHD10) was identified as a target of miR-409-3p (109). Expression of the human PHD10 (plant homeodomain containing gene 10) is required for cell proliferation in normal and SV40 immortalized human fibroblasts (110). In GC, PHD10 exerts an anti-apoptotic function by suppressing caspase 3 (111).

Cell-cycle and Apoptosis

miR-29c targets CCND2. miR-29 (Figure 2) is a family consisting of three members (29a-, b- and c) with miR-29c being most down-regulated in GC (112). Low expression levels of miR-29c are associated with aggressive and progressive phenotypes of GC. In HGC-27 and MGC-803 GC cells, over-expression of miR-29 a, -b and –c suppresses cell growth, induces arrest of G1/S transition, and promotes apoptosis in vitro (112). Cyclin D2 (CCND2) and matrix metalloproteinase-2 (MMP2) were identified as direct targets of miR-29c (112). Intratumoral injection of synthetic miRs mimicking miRs-29a, -b and –c inhibit TG of subcutaneously implanted HGC-27 cell xenografts in mice (112). CCND2 forms complexes with cyclin-dependent kinases 4 and 6 (CDK4,6) and is required for G1/S transition (113). MMP2 is up-regulated in different types of tumors including GC (114). Expression of CCND2 is associated with shorter survival in patients with GC (113). Based on TCGA-derived data, miR-29c is
down-regulated in GC specimens in comparison to corresponding normal tissues, in contrast to miRs-29a and -b (Figure 3).

miR-125b, -133b/a target MCL1 and BCL-xL. miR-125b (Figure 2) is down-regulated in GC and decreased levels of miR-125b correlate with advanced clinical stage, lymph node metastases, and poor clinical outcome in GC (115). Induced myeloid leukemia cell differentiation protein (MCL-1) was identified as a target of miR-125b (115). miR-125b inhibits proliferation of MGC-803 cells and TG in nude mice after subcutaneous implantation (115), miR-133b/a (Figure 2) is down-regulated by histone modification of its promoter in GC cells (116). miR-133b/a suppresses GC cell proliferation and promotes apoptosis, delays tumor formation, and reduces tumor size of GC xenografts in nude mice (116). MCL1 and BCL-xL (B-cell lymphoma-extra-large) were identified as targets of miR-133b/a (116). MCL1 is a member of the anti-apoptotic BCL2 family, regulates cell growth, promotes EMT of GC cells, and its expression predicts poor outcome in GC patients (117, 118). BCL-xL is a multifunctional anti-apoptotic protein (119). BCL2 and BCL-xL mediate resistance to receptor-kinase targeted therapy in lung and gastric cancer (120). Based on TCGA data, miRs -125b, -133a and miR-133b are down-regulated in GC tissues in comparison to corresponding normal tissues (Figure 3).

miR-137 targets CDK6. miR-137 (Figure 2) expression correlates with better prognosis in GC patients (121). Ectopic expression of miR-137 in GC cells inhibits proliferation in vitro and in vivo by targeting cyclin-dependent kinase 6 (CDK6) (121). CDK6 inhibitor PD0332991 mediates an anti-proliferative effect in GC cell lines, arrests them in the G1 phase and affects numerous oncogenic pathways such as p53, phosphoinosite-3 kinase (PI3K)/AKT, RAS/ERK, c-jun-N-terminal kinase (JNK)/MAPK, WNT/β catenin, and SMAD signaling (122). CDK4,6 inhibitor palbociclib together with aromatase inhibitor letrozole has been approved for treatment of estrogen receptor positive breast cancer (123, 124). According to data derived from TCGA, miR-137 is down-regulated in GC tissues in comparison to corresponding normal tissues (Figure 3).

miR-181d targets CYLD. miR-181d (Figure 2) is down-regulated in GC and is a predictor for bad prognosis (125). miR-181d targets the cylindromatosus gene (CYLD) and its expression inhibits proliferation and invasion of HGC-27 GC cells (125). In addition, it inhibits EMT and the PI3K/AKT pathway (125). Over-expression of miR-181 inhibits xenograft growth of HGC-27 cells after subcutaneous implantation into nude mice (125). CYLD is a lysine 63 deubiquitinylase, which modulates multiple signaling pathways such as NFkB and MAPK by its catalytic activity on key intermediates of these pathways (126). In GC, down-regulation of CYLD by methylation of its promoter has been noticed (127).

miR-376-3p (BCL2). miR-376-3p (Figure 2) expression is reduced in GC tissues in comparison to adjacent normal
tissues (128). Over-expression of miR-376-3p in SGC-7901 cells enhances apoptosis and inhibits TG of xenografts in nude mice (128). Over-expression of miR-376-3p decreases the levels of BCL2 (B-cell lymphoma 2) and increases the levels of pro-apoptotic protein BCL2 antagonist of cell death (BAD). However, it was not resolved whether BCL2 is a direct target of miR-376-3p (128). BCL2 has been shown to promote cell proliferation of GC cells (129). High Ki67/BCL2 index can predict disease free and overall survival in intestinal type GC (130).

miR-518 targets MDM2. miR-518 (Figure 2) is down-regulated in GC tissues and cell lines (131). In GC cell lines MKN45 and HGC-27 miR-mimics trigger apoptosis in vitro and in vivo (131). Mouse double minute 2 homolog (MDM2) has been identified as a target of miR-518 (131). MDM2 is an E3 ubiquitin-protein ligase which ubiquitinylates p53, triggering its degradation (131). miR-518 up-regulates p53, pro-apoptotic BCL2-associated protein X (BAX), activates caspase 3 and down-regulates BCL2 in GC cells (131). MDM2 up-regulation has been frequently observed in intestinal GC and correlates with nodal and distal metastases (132). An association between MDM2 amplification and tumorigenesis has been noted (133). Targeting p53/MDM2 interaction is an important effort for cancer drug discovery approaches (134).

miR-1254 targets SMURF1. miR-1254 (Figure 2) is down-regulated in human GC tissues and in GC-derived cell lines (135). Expression of miR-1254 inhibits proliferation, migration, and invasion of MGC-803 and SGC-7901 GC cell lines (135). SMAD ubiquitination regulatory factor 1 (SMURF1) was identified as a direct target of miR-1254 (135). SMURF1 is up-regulated in human GC tissues and cell lines (135). SMURF1 expression could partially reverse the effects of miR-1254 on GC cells (135). miR-1254 inhibits EMT and negatively regulates PI3K/AKT signaling by down-regulating SMURF1 (135). In vivo, miR-1254 mimics decrease TG of MGC-803 and SGC-7901 xenografts in nude mice (135). SMURF1 is an E3 ubiquitin ligase which regulates cell-cycle, apoptosis, metastasis, senescence, and genomic stability. It can act, in a context-dependent manner, as a tumor promoter or suppressor (136). According to TCGA-derived expression data, miR-1254 levels are very low in GC and also in corresponding normal tisses. Therefore, the degree of deregulation in GC cannot be determined based on these data (Figure 3).

Small GTPases and Proteins Modulating Their Activity

Let-7a targets RAB40C. Expression of the microRNA (lethal7-precursor) Let-7a (Figure 4) is reduced in GC tissues and cell lines in comparison to corresponding control tissues.

Figure 4. Tumor-suppressive miRs targeting small GTPases and and their regulatory proteins with activity in preclinical in vivo models: miRs- Let-7a, 31, -124, -340, -148-3p, -329, -337. ARHGAP10: RHO GTase activating protein 10; CDC42: cell division control protein 42; CYSK: cytoskeleton; DOCK6: dedicator of cytokinesis 6; GAP: GTase activating protein; GEF: guanine nucleotide exchange factor; RAB40C: ras-related protein 40C; RAC1: Ras-related C3 botulinum toxin substrate 1; RHOA: Ras homolog family member A; SRGAP1: SLIT/ROBO GTase activating protein; TIAM1: T cell lymphoma invasion and metastasis1; WNT: WNT signaling.
and cell lines (137). Ectopic expression of let-7a mediates inhibition of proliferation, anchorage-dependent cell growth, and G1 arrest (137). BGC-823 cells transfected with let-7a mimics exhibit reduced TG after subcutaneous implantation into nude mice (137). RAB40C was identified as a direct target of miR Let-7a (137). RAB40C is a member of the RAS family of GTPases and is expressed in brain neurons and glia, is involved in vesicle transport in oligodendrocytes and plays an important role in tumorigenesis (138-140).

Small GTPases, when activated transmit signaling to a variety of effector proteins after binding of GTP and hydrolyzing it to GDP (140). They are regulated by GAPs, GEFs (GTPase-activating proteins and Guanine nucleotide exchange factors) and RAS homology family member (RHO) guanine dissociation inhibitors (GDIs). GAPs bind to activated G proteins and stimulate their GTPase activity, GEFs promote the exchange of GDP by GTP and GDIs sequester RHO-GTPases in the inactive state by inhibition of dissociation of inactive guanine nucleotides (140). The role of RAB-40C in GC remains to be investigated in further detail.

miR-31 targets RHOA. Expression of miR-31 (Figure 4) is negatively correlated with GC metastasis (141). miR-31 mimics inhibit migration of BGC-823 cells and inhibition of miR-31 promotes migration of SGC-7901 cells (141). Reduced lung metastasis after tail vein injection in nude mice was found when SGC-7901 GC cells were transfected with miR-31 mimics (141). RAS homology family member A (RHOA) was identified as a direct target of miR-31 (141). RHOA is a small GTPase which can activate RHO- associated, coiled-coil containing protein kinase which phosphorylates myosin light chain (MLC) and thus exacerbates the migration and invasion capability of GC cells (142). RHOA is also associated with cytoskeleton regulation such as actin stress fiber formation and actomyosin contractility, cell migration, and metastasis in GC (143).

RHOA has potential clinical significance as a prognostic marker in GC (144). Together with cell division control protein 42 homolog (CDC42) and RAS-related botulinum toxin substrate 1 (RAC1), RHOA is one of the best studied GTPases. Tractability of RHOA as a therapeutic target is a challenging issue, as holds true for all GTPases.

miRs-124, -340 target SRGAPI. miRs-124 and -340 (Figure 4) suppress cell growth, invasion, and colony formation of GC cell lines MKN45, MGC-803, and NCI-N87 (145). SLIT-roundabout (ROBO) GTPase activating protein (SRGAPI) is a downstream effector SLIT/ROBO signaling and was identified as a target of miRs-124 and -340 (145). SRGAPI over-expression is associated with poor prognosis of GC patients (145). SRGAPI promotes xenograft formation of GC cells in nude mice (145) and induces formation of CDC42-GTP, RHOA-GTP, and RAC1-GTP complexes (145). Furthermore, SRGAPI promotes WNT/β-catenin signaling thus establishing a link between SLIT/ROBO signaling and the WNT/β-catenin pathway (145). The downstream effectors CDC42, RHOA, and RAC1 are involved in filopodia formation by stress fibers and focol adhesion complexes, as well as formation of lamellipodia (146, 147). SLIT/ROBO signaling was first discovered in the central nervous system, later on also in cancer as a promoter of angiogenesis, inflammatory chemotaxis, tumor cell migration, and metastasis (148). In GC, miR-340 inhibits cell proliferation and apoptosis through regulation of NFκB and suppressor of cytokine signaling (SOCS)/Janus kinase (JAK)/STAT signaling (149, 150). miR-124 has been shown to suppress TG in GC xenografts in mice (151).

miR-148-3p targets DOCK6. miR-148-3p (Figure 4) targets and reduces the levels of dedicator of cytokines 6, a guanine nucleotide exchange factor (DOCK6) (152). DOCK6 expression is increased in GC tissues and indicates poor prognosis (152). DOCK6 increases proliferation, migration, and invasion of SGC-7901 SM GC cells by activation of RAC1 and CDC42 (152). In nude mice, over-expression of miR-148-3p in SGC-7901 M cells decreased lung and liver metastasis after tail vein injection, while DOCK6 over-expression reversed inhibition of metastasis (152). DOCK6 expression is negatively correlated with with miR-148b expression in GC tissues (152). In mammals, 11 DOCK proteins have been identified as regulators of the actin cytoskeleton, cell adhesion and migration (153). The role of DOCK6 in GC needs further investigation.

miR-329 targets TIAM1. miR-329 (Figure 4) is down-regulated in GC and inhibits migration and invasion of GC cells MGC-803 and HGC-27 (154). *In vivo*, injection of HGC-27 cells together with miR-329 mimics inhibits TG in nude mice (154). T-cell lymphoma invasion and metastasis inducing protein 1 (TIAM1) was identified as a direct target of miR-329 (154). TIAM1 acts as a GEF for activation of RAC1, but also for CDC42, and to a lesser extent for RHOA (154). Protumoral activities of TIAM1 involve modulation of the cytoskeleton, cell polarity, membrane trafficking, cell migration, adhesion, cell growth, survival, carcinogenesis, and metastasis (155). But anti-cancer activity of TIAM1 has also been reported (155). Up-regulation of TIAM1 has been reported in GC and its involvement in cell migration and invasion (156, 157). The propensity of GEFs and GAPs as targets for anti-cancer therapy has been discussed (158).

miR-337 targets ARHGAP10. miR-337 (Figure 4) decreases the motility and viability of SGC-7901 GC cells, although it has no impact on their proliferation (159). RHO GTPase-activating protein 1 (ARHGAP10) was identified as a target
of miR-337 (159). ARHGAP10 restores viability and migration capacity of SGC-7901 cells (159). In vivo, SGC-7901 cells transfected with miR-337 give rise to reduced metastatic foci after tail vein injection in immunocompromized mice (159). RHO-GAPs are regulators of RHO-GTPase signaling pathways related to cytoskeletal dynamics, cell proliferation, and differentiation (160). ARHGAP10 contains a PDZ, a pleckstrin homology domain, and a RHO-GAP domain (160). However, opposite functional roles for ARHGAP10 have been reported. In lung cancer, ARHGAP10 inhibits proliferation, migration, invasion and WNT signaling (161). In colorectal cancer cells, ARHGAP10 inhibits proliferation and metastases via blocking of the RHOA/AKT signaling pathway (162). In ovarian cancer, ARHGAP10 is down-regulated and suppresses tumorigenicity (163).

Therapeutic Aspects

This review focusses on miRs that are down-regulated in GC and affect the expression of transcription factors, cell-cycle and apoptosis-related proteins, and of small GTPases and their regulatory proteins with demonstrated efficacy in preclinical in vivo models. Down-regulation of miRs can be due to aberrant miR processing, methylation of CpG islands in the promoter region and adjacent regions, and other epigenetic mechanisms (164-168). Replacement therapy can be achieved with miR-mimics, synthetic double-stranded RNAs that mimic the endogenous RNAs. Chemical modifications such as introduction of 2’-O-methyl, phosphorothioate and locked nucleic acids (LNA) can improve stability and targeting to the disease site (169-172). miR mimics or miRs can be injected intratumorally or systemically in designed formulations or as plasmid- or viral-derived vectors (169-172). Adeno-associated vectors can transduce target cells efficiently, do not integrate, are eliminated efficiently with minimal toxicity, and have emerged as vehicles for miR-replacement therapies (173, 174). A POC experiment revealed that restoration of miR let-7 was able to inhibit lung cancer in an orthotopic mouse model expressing KRAS G12D, an activating mutation of KRAS (175). Further important POC experiments reconstituting expression of miR-29b and 708-5p have been described in mouse lung cancer models (176, 177).

This review compiles published POC experiments for 37 selected in vivo miR replacement studies in GC-related in vivo models. The design of optimized delivery systems is of paramount importance in this context (169). Delivery systems based on modification of miRs with polyethylene glycol (PEG), neutral lipid emulsions, conjugation with N-acetyl-D-galactosamine, chitosan-nucleic acid conjugates, glucose-based-polymers such as cyclodextrin, dendrimers, synthetic polyethyleneimine based vehicles, poly (lactide or glycolide) particles or TargomiRs, bacterium-based vesicles with surface-based antibodies have been developed (169, 178).

Approaches towards applications of miR replacement therapy in cancer patients have focused on miR-34 (179) or miR-15/16 (180). miR-34 has been validated in numerous preclinical in vitro and in vivo studies as a candidate for replacement therapy (181). This holds true for colorectal, prostate, breast, liver, and lung cancer as well as osteosarcoma and haematological neoplasms (181). miR-34 inhibits crucial oncogenic and metastatic pathways such as EMT mediated by transcription factors SNAIL, SLUG and ZEB1,2, NOTCH-, WNT-, IL6R- and TGFβ/SMAD signaling (181). MRX 34 (Mirna Therapeutics), an amphoteric, lipid nanoparticle filled with miR-34 mimics, has been evaluated in a Phase I clinical study (NCT01829971) in 155 participants in several solid tumors and haematological malignancies. That study, however, had to be terminated due to immune-related side effects in five patients (181, 182). As outlined, in GC, miR-34 targets transcription factor YY1 and may be a possible agent for replacement therapy.

The other ongoing clinical study for miR-replacement therapy is based on epidermal growth factor receptor (EGFR)-coated bacterial minicells (EnGene IC) expressing mimics corresponding to the miR-15/107 consensus sequence (miR-16 mimics). The delivery vehicles are nanocells also referred to as TargomiRs. The Phase I study in patients with metastatic pleural mesothelioma and advanced non-small cell lung carcinoma (NSCLC) is referred to as the mesomiR-1 study (180, 183). In preclinical experiments, expression of miR-16 in mesothelioma cell lines had a tumor-suppressive effect through induction of apoptosis by down-regulation of BCL2 and CCND1 (184). In a phase I study, 27 patients were enrolled with an objective response and stabilization of disease in 15 patients (183).

As of today, several issues that hamper the therapeutic application of miR-related agents remain to be resolved (185-192). These issues are not discussed in detail in this review.

Conclusion

Our comprehensive review of GC-associated miRs revealed 25 down-regulated miRs that target transcription factors, 7 targeting cell-cycle/apoptosis-related genes, and 5 directed against small GTPase-related and -associated molecules such as GEFs and GAPs. These might present as candidates for potential therapeutic intervention in GC patients, in the form of replacement therapy or inhibition of the corresponding up-regulated targets. The applicability of such replacement therapies is still limited by technical hurdles as described above. For target prioritization issues such as prevalence, prognostic relevance, druggability and consistent or context-dependent functional properties are important parameters for ranking. In case of transcription factors, tractability is critical because mode of intervention is difficult because it would
involve inhibition of DNA binding or of co-factor protein-protein interactions (193). Also, modulation of the levels of transcription factors by interfering with ubiquitylation and subsequent proteasome degradation might be considered. Proteolysis targeting chimeras (PROTACs) directed against intrinsically disordered regions of transcription factors with Cys-reactive inhibitors and another moiety engaging an E3 ubiquitin ligase are emerging agents for interference (194). The druggability of small GTPase related molecules, GEFs and GAPs has to be categorized as critical, despite of encouraging recent developments (195, 196).

References

1. Van Cutsem E, Sagaert X, Topal B, Haustermans K and Prenen FB, SA, UB and UHW jointly designed and prepared the manuscript.

Conflicts of Interest

FB, SA, and UB are and UHW was an employee of Roche.

Authors’ Contributions

FB, SA, UB and UHW jointly designed and prepared the manuscript.

1. Van Cutsem E, Sagaert X, Topal B, Haustermans K and Prenen H: Gastric cancer. Lancet 388(10060): 2654-2664, 2016. PMID: 27156933. DOI: 10.1016/S0140-6736(16)30354-3

2. Sohn BH, Hwang JE, Jang HJ, Lee HS, Oh SC, Shim JI, Lee KW, Kim EH, Yim SY, Lee SH, Cheong JH, Jeong W, Cho JY, Kim J, Chae J, Lee J, Kang WK, Kim S, Noh SH, Ajani JA and Lee JS: Clinical significance of four molecular subtypes of gastric cancer identified by the Cancer Genome Atlas Project. Clin Cancer Res, 2017. PMID: 28747339. DOI: 10.1158/1078-0432.CCR-16-2211

3. Oditura M, Galizia G, Sforza V, Gambardella V, Fabozzi A, Laterza MM, Andreozzi F, Ventriglia J, Savastano B, Mabilia A, Lieto E,Ciardiello F and De Vita F: Treatment of gastric cancer. World J Gastroenterol 20(7): 1635-1649, 2014. PMID: 24587643. DOI: 10.3748/wjg.v20.i7.1635

4. Bonelli P, Borrelli A, Tuccillo FM, Silvestro L, Palai R and Buonaguro FM: Precision medicine in gastric cancer. World J Gastrointest Oncol 11(10): 804-829, 2019. PMID: 31662821. DOI: 10.4251/wjgo.v11.i10.804

5. Rihimäki M, Hemminki A, Sundquist K, Sundquist J and Hemminki K: Metastatic spread in patients with gastric cancer. Oncotarget 7(32): 52307-52316, 2016. PMID: 27447571. DOI: 10.18632/oncotarget.10740

6. Tahara E: Genetic alterations in human gastrointestinal cancers. The application to molecular diagnosis. Cancer 75(6 Suppl): 1410-1417, 1995. PMID: 7889467. DOI: 10.1002/1097-0142(19950315)75:6<1410::AID-CNCR2820751504>3.0.CO;2-o

7. Saha A, Wittmeyer J and Cairns BR: Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 7(6): 437-447, 2006. PMID: 16723979. DOI: 10.1038/nrm1945

8. Yaniv M: Chromatin remodelling: from transcription to cancer. Cancer Genet 207(9): 352-357, 2014. PMID: 24825771. DOI: 10.1016/j.cancergen.2014.03.006

9. Lin Y, Wu Z, Guo W and Li J: Gene mutations in gastric cancer: a review of recent next-generation sequencing studies. Tumour Biol 36(10): 7385-7394, 2015. PMID: 26364057. DOI: 10.1007/s13277-015-0002-1

10. Karlsson R, Pedersen ED, Wang Z and Brakebusch C: Rho GTPase function in tumorigenesis. Biochim Biophys Acta 1796(2): 91-98, 2009. PMID: 19327386. DOI: 10.1016/j.bbadis.2009.03.003

11. Wheeler AP and Ridley AJ: Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res 301(1): 43-49, 2004. PMID: 15501444. DOI: 10.1016/j.yexcr.2004.08.012

12. Bartel DP: Metazoan MicroRNAs. Cell 173(1): 20-51, 2018. PMID: 29707994. DOI: 10.1016/j.cell.2018.03.006

13. Li Z and Rana TM: Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 15(6): 321-333, 2015. PMID: 25998712. DOI: 10.1038/nrd4393

14. Lam JK, Chow MY, Zhang Y and Leung SW: siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids 6(1): 622-638, 2014. PMID: 25011539. DOI: 10.1038/mtna.2015.439

15. Peter ME: Targeting of mRNAs by multiple miRNAs: the next industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 15(6): 321-333, 2015. PMID: 25998712. DOI: 10.1038/nrd4393

16. Callegari E, Elamin BK, Giannone F, Milazzo M, Altavilla G, Lieto E, Ciardiello F and De Vita F: Treatment of gastric cancer. World J Gastroenterol 20(7): 1635-1649, 2014. PMID: 24587643. DOI: 10.3748/wjg.v20.i7.1635

17. Lieto E, Ciardiello F and De Vita F: Precision medicine in gastric cancer. World J Gastroenterol 20(7): 1635-1649, 2014. PMID: 24587643. DOI: 10.3748/wjg.v20.i7.1635

18. Peukarsky Y, Balatti V and Croce CM: BCL2 and miR-15/16: from discovery to treatment. Cell Death Differ 21(1): 21-26, 2014. PMID: 24825771. DOI: 10.1038/cdd.2014.7

19. Callegari E, Elamin BK, Giannone F, Milazzo M, Altavilla G, Lieto E, Ciardiello F and De Vita F: Treatment of gastric cancer. World J Gastroenterol 20(7): 1635-1649, 2014. PMID: 24587643. DOI: 10.3748/wjg.v20.i7.1635

20. Peukarsky Y, Balatti V and Croce CM: BCL2 and miR-15/16: from discovery to treatment. Cell Death Differ 21(1): 21-26, 2014. PMID: 24825771. DOI: 10.1038/cdd.2014.7

21. Weidle UH, Dickopf S, Hintermair C, Kollmorgen G, Birzele F and Brinkmann U: The role of micro RNAs in breast cancer metastasis: Preclinical validation and potential therapeutic targets. Cancer Genomics Proteomics 15(1): 17-39, 2018. PMID: 29275360. DOI: 10.21873/cgp.20062
Weidle UH, Birzele F and Nopora A: MicroRNAs as potential targets for therapeutic intervention with metastasis of non-small cell lung cancer. Cancer Genomics Proteomics 16(2): 99-119, 2019. PMID: 30850362. DOI: 10.21873/cgp.20116

Weidle UH, Birzele F and Nopora A: Pancreatic ductal adenocarcinoma: MicroRNAs affecting tumor growth and metastasis in preclinical in vivo models. Cancer Genomics Proteomics 16(6): 451-464, 2019. PMID: 31659100. DOI: 10.21873/cgp.20149

Weidle UH, Schmid D, Birzele F and Birnbaum U: MicroRNAs involved in metastasis of hepatocellular carcinoma: Target candidates, functionality and efficacy in animal models and prognostic relevance. Cancer Genomics Proteomics 17(1): 1-21, 2020. PMID: 31882547. DOI: 10.21873/cgp.20163

Wang T, Hou J, Li Z, Zheng Z, Wei J, Song D, Hu T, Wu Q, Yang JY and Cai JC: miR-15a-3p and miR-16-1-3p negatively regulate Twist1 to repress gastric cancer cell invasion and metastasis. Int J Biol Sci 13(1): 122-134, 2017. PMID: 28123352. DOI: 10.7150/ijbs.14770

Martin A and Cano A: Tumorigenesis: Twist1 links EMT to self-renewal. Nat Cell Biol 12(10): 924-925, 2010. PMID: 20885418. DOI: 10.1038/nclb1010-924

Yan-Qi Z, Xue-Yan G, Shuang H, Yu C, Fu-Lin G, Fei-Hu B, Shi-Ren S, Xu-Feng W, Jie D and Dai-Ming F: Expression and significance of Twist1 basic helix-loop-helix protein overexpression in gastric cancer. Pathology 39(5): 470-475, 2007. PMID: 17886095. DOI: 10.1080/00339488801

Takei Y, Shen G, Morita-Kondo A, Hara T, Mihara K and Yanagihara K: MicroRNAs associated with epithelial-mesenchymal transition can be targeted to inhibit peritoneal dissemination of human scirrhus gastric cancers. Pathobiology 85(4): 232-246, 2018. PMID: 29847827. DOI: 10.1159/000488801

Su J, Zhang A, Shi Z, Ma F, Pu P, Wang T, Zhang J, Kang C and Zhang Q: MicroRNA-200a suppresses the Wnt/β-catenin signaling pathway by interacting with β-catenin. Int J Oncol 40(4): 1162-1170, 2012. PMID: 22211245. DOI: 10.3892/ijo.2011.1322

Cong N, Du P, Zhang A, Shen F, Su J, Pu P, Wang T, Zhang J, Kang C and Zhang Q: Downregulated microRNA-200a promotes EMT and tumor growth through the wnt/β-catenin pathway by targeting the E-cadherin repressors ZEB1/2 in gastric adenocarcinoma. Oncol Rep 29(4): 1579-1587, 2013. PMID: 23381389. DOI: 10.3892/or.2013.2267

Song F, Yang D, Liu B, Guo Y, Zheng H, Li L, Wang T, Yu J, Zhao Y, Niu R, Liang H, Winkler H, Zhang W, Hao X and Chen K: Integrated microRNA network analyses identifies a poor-prognosis subtype of gastric cancer characterized by the miR-200 family. Clin Cancer Res 20(4): 878-889, 2014. PMID: 24352645. DOI: 10.1158/1078-0432.CCR-13-1844

Nieszporek A, Skrzypek K, Adamek G and Majka M: Molecular mechanisms of epithelial to mesenchymal transition in tumor metastasis. Acta Biochim Pol 66(4): 509-520, 2019. PMID: 31883362. DOI: 10.18388/abp.2019_2899

Tania M, Khan MA and Fu J: Epithelial to mesenchymal transition inducing transcription factors and metastatic cancer. Tumour Biol 35(8): 7335-7342, 2014. PMID: 24880591. DOI: 10.1007/s13277-014-2163-y

Chen H, Lu W, Huang C, Ding K, Xia D, Wu Y and Cai M: Prognostic significance of ZEB1 and ZEB2 in digestive cancers: a cohort-based analysis and secondary analysis. Oncotarget 8(19): 31435-31448, 2017. PMID: 28416756. DOI: 10.18632/oncotarget.15634

Jin M, Zhang GW, Shan CL, Zhang H, Wang ZG, Liu SQ and Wang SQ: Up-regulation of miRNA-105 inhibits the progression of gastric carcinoma by directly targeting SOX9. Eur Rev Med Pharmacol Sci 23(9): 3779-3789, 2019. PMID: 31115004. DOI: 10.26355/eurrev_201905_17804

Shang JC, Yu GZ, Ji ZW, Wang XQ and Xia L: MiR-105 inhibits gastric cancer cells metastasis, epithelial-mesenchymal transition by targeting SOX9. Eur Rev Med Pharmacol Sci 23(14): 6160-6169, 2019. PMID: 31634116. DOI: 10.26355/eurrev_201907_18429

Grimm D, Bauer J, Wise P, Krüger M, Simonsen U, Wehland M, Infanger M and Corydon TJ: The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol 67(1): 105-113, 2020. PMID: 32188067. DOI: 10.1016/j.semcancer.2019.06.016

Potent regulators for cancer initiation and development in the human body. Semin Cancer Biol 67(1): 105-113, 2020. PMID: 32188067. DOI: 10.1016/j.semcancer.2019.06.016

Chen J, Ju HL, Yuan XY, Wang TJ and Lai BQ: SOX4 is a potential prognostic factor in human cancers: a systematic review and meta-analysis. Clin Transl Oncol 18(1): 65-72, 2016. PMID: 26250764. DOI: 10.1007/s12094-015-1337-4

Carcasosa-Garcia E, Alvarez-Satta M, Garcia-Puga M, Ribeiro ML, Arevalo S, Arauzo-Bravo M and Matheu A: Therapeutic relevance of SOX9 stem cell factor in gastric cancer. Expert Opin Ther Targets 23(2): 143-152, 2019. PMID: 30572738. DOI: 10.1080/14728229.2019.1559826

Zheng J, Ge P, Liu X, Wei J, Wu G and Li X: MiR-136 inhibits gastric cancer-specific peritoneal metastasis by targeting HOXC10. Tumour Biol 39(6): 1010428317706207, 2017. PMID: 28656883. DOI: 10.1177/101428317706207

Luo Z, Rhie SK and Farnham PJ: The enigmatic HOX genes: Can we crack their code? Cancers (Basel) 11(3): 323, 2019. PMID: 30866492. DOI: 10.3390/cancers1103332

Kim J, Bae DH, Kim JH, Song KS, Kim YS and Kim SY: HOXC10 overexpression promotes cell proliferation and migration in gastric cancer. Oncol Rep 42(1): 202-212, 2019. PMID: 31115563. DOI: 10.3892/or.2019.7164

Guo C, Hou J, Ao S, Deng X and Lyu G: HOXC10 up-regulation promotes gastric cancer cell proliferation and metastasis through MAPK pathway. Chin J Cancer Res 29(6): 572-580, 2017. PMID: 29353980. DOI: 10.21147/j.issn.1000-9604.2017.06.12

Yao S, He L, Zhang Y, Ye L, Lai Y, Huang L, Wu L, Wu G and Zhu S: HOXC10 promotes gastric cancer cell invasion and migration via regulation of the NF-κb pathway. Biochem Biophys Res Commun 501(3): 628-635, 2018. PMID: 29753747. DOI: 10.1016/j.bbrc.2018.05.019
Manicum T, Ni F, Ye Y, Fan X and Chen BC: Prognostic values
Zhang B, Ji S, Ma F, Ma Q, Lu X and Chen X: miR-489 acts as a
tumor suppressor in human gastric cancer by targeting PROX1.
Am J Cancer Res 6(9): 2021-2030, 2016. PMID: 27725907.

Ueta K, Otowa Y, Kakeji Y and Hirashima M: PROX1 is
Feng Q, Wu X, Li F, Ning B, Lu X, Zhang Y, Pan Y and Guan W:
Bringuier PP, Schalken JA, Hervieu V and Giroldi LA:
Polvani S, Pepe S, Milani S and Galli A: COUP-TFII in health
Wang H, Zhang X, Liu Y, Ni Z, Lin Y, Duan Z, Shi Y, Wang G
Kent LN and Leone G: The broken cycle: E2F dysfunction in
by targeting c-myc. J Gastroenterol Hepatol 38(6): 1427-1434,
2014. PMID: 24621089. DOI: 10.1111/jgh.12558

Lüscher B: Function and regulation of the transcription factors of
the Myc/Max/Mad network. Gene 277(1-2): 1-14, 2001. PMID:
11602341. DOI: 10.1016/s0378-1119(01)00697-7

Schuhmacher M, Staeger MS, Pajic A, Polack A, Weidle UH,
Bornkamm GW, Eick D and Kohlhuber F: Control of cell growth by
Greek-Myc in the absence of cell division. Curr Biol 9(21): 1255-
1258, 1999. PMID: 10556905. DOI: 10.1016/s0969-8229(99)
8057-0

Schuhmacher M, Kohlhuber F, Hölzel M, Kaiser C, Burtscher H,
Jarsch M, Bornkamm GW, Laux G, Polack A, Weidle UH and
Eick D: The transcriptional program of a human B cell line in response to Myc. Nucleic Acids Res 29(2): 397-406, 2001. PMID:
11139609. DOI: 10.1093/nar/29.2.397

Schlosser I, Hölzel M, Mürmsee M, Burtscher H, Weidle UH and
Eick D: A role for c-Myc in the regulation of ribosomal RNA
processing. Nucleic Acids Res 31(21): 6148-6156, 2003. PMID:
14576301. DOI: 10.1093/nar/gkg794

Schlosser I, Hölzel M, Hoffmann R, Burtscher H, Kohlhuber F,
Schuhmacher M, Chapman R, Weidle UH and Eick D: Dissection of transcriptional programmes in response to serum and c-Myc in a human B-cell line. Oncogene 24(3): 520-524, 2005. PMID:
15516975. DOI: 10.1038/sj.onc.1208198

Calcagno DQ, Leal MF, Assumpcao PP, Smith MA and Burbano
RR: MYC and gastric adenocarcinoma carcinogenesis. World J
Gastroenterol 14(39): 5962-5968, 2008. PMID: 18932273. DOI:
10.3748/wjg.14.5962

Wang AM, Huang TT, Hsu KW, Huang KH, Fang WL, Yang MH,
Lo SS, Chi CW, Lin JJ and Yeh TS: Yin Yang 1 is a target of
microRNA-34 family and contributes to gastric carcinogenesis.
Oncotarget 6(9): 5002-5016, 2015. PMID: 24970812. DOI:
10.18632/oncotarget.2073

Kang W, Tong JH, Chan AW, Zhao J, Dong Y, Wang S, Yang W,
Khachigian LM: The Yin and Yang of YY1 in tumor growth and
suppression. Int J Cancer 134(3): 460-465, 2018. PMID:
29322514. DOI: 10.1002/ijc.31255

Zheng L, Pu J, Qi T, Qi M, Li D, Xiang X, Huang K and Tong Q:
The c-ets-1 proto-oncogene has oncogenic activity and is positively autoregulated. Oncogene 5(12): 1761-1767, 1990. PMID:
2284095.

Seth A and Papas TS: The c-ets-1 proto-oncogene has oncogenic
activity and is positively autoregulated. Oncogene 5(12): 1761-
1767, 1990. PMID: 2284095.

Seth A and Watson DK: ETS transcription factors and their
emerging roles in human cancer. Eur J Cancer 41(16): 2462-2478,
2005. PMID: 16213704. DOI: 10.1016/j.ejca.2005.08.013

Dittmer J: The role of the transcription factor Ets1 in carcinoma.
Semin Cancer Biol 25: 20-38, 2015. PMID: 26392377. DOI:
10.1016/j.semcancer.2015.09.010
Tsutsumi S, Kuwano H, Nagashima N, Shimura T, Mochiki E and Asao T: Ets-1 expression in gastric cancer. Hepatogastroenterology 52(62): 654-656, 2005. PMID: 15816498.

Liu L, Wang Y, Bai R, Yang K and Tian Z: MiR-186 inhibited aerobic glycolysis in gastric cancer via HIF-1α regulation. Oncogenesis 6(4): e318, 2017. PMID: 28414319. DOI: 10.1038/oncsci.2017.20

Yang SW, Zhang ZG, Hao YX, Zhao YL, Qian F, Shi Y, Li PA, Liu CY and Yu PW: HIF-1α induces the epithelial-mesenchymal transition in gastric cancer stem cells through the Snail pathway. Oncotarget 8(6): 9535-9545, 2017. PMID: 28076840. DOI: 10.18632/oncotarget.14484

Liu H, Jia Y and Wang Y: Targeting HIF-1α signaling pathway for gastric cancer treatment. Pharmazie 74(1): 3-7, 2019. PMID: 30782242. DOI: 10.1691/ph.2019.8674

Zhu CL, Huang Q, Liu CH, Lin XS and Xie F: Prognostic value of HIF-1α expression in patients with gastric cancer. Mol Biol Rep 40(11): 6055-6062, 2013. PMID: 24057269. DOI: 10.1007/s10053-012-1715-z

Lin S, Ma R, Zheng XY, Yu H, Liang X, Lin H and Cai XJ: Meta-analysis of immunohistochemical expression of hypoxia inducible factor-1α as a prognostic role in gastric cancer. World J Gastroenterol 20(4): 1107-1113, 2014. PMID: 24574785. DOI: 10.3748/wjg.v20.i4.1107

Wang Y, Zeng J, Pan J, Geng X, Li L, Wu J, Song P, Wang Y, Liu J and Wang L: MiR-320a inhibits gastric carcinoma by targeting the FoXM1-P27KIP1 axis. Oncotarget 7(20): 40051-40064, 2016. PMID: 27086911. DOI: 10.18632/oncotarget.8676

Myatt SS and Lam EW: The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 7(11): 847-859, 2007. PMID: 17943136. DOI: 10.1038/nrc2223

Borhani S and Gartel AL: FoXM1: a potential therapeutic target in human solid cancers. Expert Opin Ther Targets 24(3): 205-217, 2020. PMID: 32067537. DOI: 10.1080/14728222.2020.1727888

Yang L, Cui M, Zhang L and Song L: FoXM1 facilitates gastric cancer cell migration and invasion by inducing cathepsin D. Int J Oncol 52(12): 32298-32308, 2017. PMID: 28417718. DOI: 10.3748/wjg.v52.i12.32308

Huang T, Kang W, Zhang B, Wu F, Dong Y, Tong JH, Yang W, Zhou Y, Zhang L, Cheng AS, Yu J and To KF: miR-502b/CREB1 axis in gastric cancer. Cell Death Dis 10(2): 35, 2019. PMID: 30674866. DOI: 10.1038/s41419-018-1270-x

Maeda M, Ohashi K and Ohashi-Kobayashi A: Further extension of mammalian GATA-6. Dev Growth Differ 47(9): 591-600, 2005. PMID: 16316404. DOI: 10.1111/j.1440-169X.2005.00837.x

Wang Y, Cao Y, Guo P, Bao X, Zhu H, Zheng J, Yao C, Chen D, Yu S, Chen B, Zhou S, Pang D and Chen W: Downregulation of MiR-1297 predicts poor prognosis and enhances gastric cancer cell growth by targeting CREB1. Biomed Pharmacother 105: 413-419, 2018. PMID: 29870889. DOI: 10.1016/j.biopha.2018.05.094

Rao M, Zhu Y, Cong X and Li Q: Knockdown of CREB1 inhibits tumor growth of human gastric cancer in vitro and in vivo. Oncol Rep 37(6): 3361-3368, 2017. PMID: 28498439. DOI: 10.3892/or.2017.5636

Thompson BJ: YAP/TAZ: Drivers of tumor growth, metastasis, and resistance to therapy. Bioessays 42(5): e1900162, 2020. PMID: 32128850. DOI: 10.1002/bies.201900162

Choi W, Kim J, Park J, Lee DH, Hwang D, Kim JH, Ashktorab H, Smoot D, Kim SY, Choi C, Koh GY and Lim DS: YAP/TAZ initiates gastric tumorigenesis via upregulation of MYC. Cancer Res 78(12): 3306-3320, 2018. PMID: 29669762. DOI: 10.1158/0008-5472.CAN-17-3487

Ge L, Li DS, Chen F, Feng JD, Li B and Wang TJ: TAZ overexpression is associated with epithelial-mesenchymal transition in cisplatin-resistant gastric cancer cells. Int J Oncol 51(1): 307-315, 2017. PMID: 28534974. DOI: 10.3892/ijo.2017.3998

Melucci E, Casini B, Ronchetti L, Pizzuti L, Sperati F, Fallocco M, De Nicola F, Goeman F, Gallo E, Amoreo CA, Sergi D, Terrenato I, Vici P, Di Lauro L, Diodoro MG, Pescarmona E, Barba M, Mazzotta M, Motolesse M, Fanciulli M, Ciliberto G, De Maria R, Bugliosi S and Maugeri-Saccà M: Expression of the Hippo transducer TAZ in association with WNT pathway mutations impacts survival outcomes in advanced gastric cancer patients treated with first-line chemotherapy. J Transl Med 16(1): 22, 2018. PMID: 29402328. DOI: 10.1186/s12967-018-1385-y
107 Maldonado V and Melendez-Zajgla J: Role of Bcl-3 in solid tumors. Mol Cancer 10(2): 152, 2011. PMID: 22195643. DOI: 10.1186/1476-4598-10-152

108 Bours V, Franzosino G, Azarenko V, Park S, Kanno T, Brown K and Siebenlist U: The oncprotein Bcl-3 directly transactivates through kappa B motifs via association with DNA-binding p50B homodimers. Cell 72(5): 729-739, 1993. PMID: 8543667. DOI: 10.1016/0092-8674(93)90401-b

109 Li C, Nie H, Wang M, Su L, Li J, Yu B, Wei M, Ju J, Yu Y, Yan M, Gu Q, Zhu Z and Liu B: MicroRNA-409-3p regulates cell proliferation and apoptosis by targeting PHF10 in gastric cancer. Cancer Lett 320(2): 189-197, 2012. PMID: 22388101. DOI: 10.1016/j.canlet.2012.02.030

110 Banga SS, Peng L, Dasgupta T, Palejwala V and Ozer HL: PHF10 is required for cell proliferation in normal and SV40-immortalized human fibroblast cells. Cytogenet Genome Res 320(2): 227-242, 2009. PMID: 20068294. DOI: 10.1159/000251960

111 Wei M, Liu B, Su L, Li J, Zhang J, Yu Y, Yan M, Yang Z, Chen X, Liu J, Lv X, Nie H, Zhang Q, Zheng Z, Yu B, Ji J, Zhang J, Zhu Z and Gu Q: A novel plant homeodomain finger 10-mediated antiapoptotic mechanism involving repression of caspase-3 in gastric cancer cells. Mol Cancer Ther 9(6): 1764-1774, 2010. PMID: 20530714. DOI: 10.1158/1535-7163.MCT-09-1162

112 Gong J, Li J, Wang Y, Liu C, Jia H, Jiang C, Wang Y, Luo M, Zhao H, Dong L, Song W, Wang F, Wang W, Zhang J and Yu J: Characterization of microRNA-29 family expression and investigation of their mechanistic roles in gastric cancer. Carcinogenesis 35(2): 497-506, 2014. PMID: 24130168. DOI: 10.1093/carcin/bgt337

113 Ding ZY, Li R, Zhang QJ, Wang Y, Jiang Y, Meng QY, Xi QL and Wu GH: Prognostic role of cyclin D2/D3 in multiple human malignant neoplasms: A systematic review and meta-analysis. Cancer Med 8(6): 2717-2729, 2019. PMID: 30950241. DOI: 10.1002/cam4.2152

114 Sampieri CL, de la Peña S, Ochoa-Lara M, Zenteno-Cuevas R and León-Córdoba K: Expression of matrix metalloproteinases 2 and 9 in human gastric cancer and superficial gastritis. World J Gastroenterol 16(12): 1500-1505, 2010. PMID: 20333791. DOI: 10.3748/wjg.v16.i12.1500

115 Wu S, Liu F, Xie L, Peng Y, Lv X, Zhu Y, Zhang Z and He X: miR-125b suppresses proliferation and invasion by targeting MCL1 in gastric cancer. Biomed Res Int 2015: 365273, 2015. PMID: 26504803. DOI: 10.1155/2015/365273

116 Liu Y, Zhang X, Zhang Y, Hu Z, Yang D, Wang C, Guo M and Cai Q: Identification of miRNomes in human stomach and gastric carcinoma reveals miR-133b-3p as therapeutic target for gastric cancer. Cancer Lett 369(1): 58-66, 2015. PMID: 26276722. DOI: 10.1016/j.canlet.2015.06.028

117 Lee WS, Kim N, Park YR, Oh HH, Myung E, Kim SH, Yu HM, Kim MY, Oak CY, Chung CY, Park HC, Myung DS, Cho SB and Joo YE: Myeloid cell leukemia-1 promotes epithelial-mesenchymal transition of human gastric cancer cells. Oncol Rep 34(2): 1011-1016, 2015. PMID: 26058661. DOI: 10.3892/or.2015.4040

118 Lee WS, Park YL, Kim N, Oh HH, Son DJ, Kim MY, Oak CY, Chung CY, Park HC, Kim JS, Myung DS, Cho SB and Joo YE: Myeloid cell leukemia-1 regulates the cell growth and predicts prognosis in gastric cancer. Int J Oncol 46(5): 2154-2162, 2015. PMID: 25672320. DOI: 10.3892/ijo.2015.2890

119 Li M, Wang D, He J, Chen L and Li H: Bcl-XL: A multifunctional anti-apoptotic protein. Pharmacol Res 157: 104547, 2020. PMID: 31734345. DOI: 10.1016/j.phrs.2019.104547

120 Jin, Xiong Y and Cen B: Bcl-2 and Bcl-xL mediate resistance to receptor tyrosine kinase-targeted therapy in lung and gastric cancer. Anticancer Drugs 28(10): 1141-1149, 2017. PMID: 28885672. DOI: 10.1097/CAD.0000000000000561

121 Zheng X, Dong J, Gong T, Zhang Z, Wang Y, Li Y, Shang Y, Li K, Ren G, Feng B, Lin J, Tian Q, Tang S, Sun L, Li M, Zhang H and Fan D: MicroRNA library-based functional screening identified miR-137 as a suppressor of gastric cancer cell proliferation. J Cancer Res Clin Oncol 141(5): 785-795, 2015. PMID: 25342326. DOI: 10.1007/s00432-014-1847-4

122 Wang D, Sun Y, Li W, Ye F, Zhang Y, Guo Y, Zhang D, Yi and Suo J: Antiproliferative effects of the CDK6 inhibitor PD0332991 and its effect on signaling networks in gastric cancer cells. Int J Mol Med 41(5): 2473-2484, 2018. PMID: 29436583. DOI: 10.3892/ijmm.2018.3460

123 Sherr CJ, Beach D and Shapiro GI: Targeting CDK4 and CDK6: From discovery to therapy. Cancer Discov 6(4): 353-367, 2016. PMID: 26658964. DOI: 10.1186/2159-8290-CD-15-0894

124 O’Leary B, Finn RS and Turner NC: Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol 13(7): 417-430, 2016. PMID: 27030077. DOI: 10.1038/nrclinonc.2016.26

125 Jiang K, Xie LF, Xiao TZ, Qiu MY and Wang WL: MiR-181d inhibits cell proliferation and metastasis through PI3K/AKT pathway in gastric cancer. Eur Rev Med Pharmacol Sci 23(20): 8861-8869, 2019. PMID: 31696473. DOI: 10.26355/eurrev_201910_19281

126 Sun SC: CYLD: a tumor suppressor deubiquitinating enzyme regulating NF-kappaB activation and diverse biological processes. Cell Death Differ 17(1): 25-34, 2010. PMID: 19373246. DOI: 10.1038/cdd.2009.43

127 Ghadami E, Nikbakhsh N, Fattahi S, Kosari-Monfared M, Ranaee A, Pilehchian Langroudi M, Samadani AA, Amirbozorgi G, Mirnia V and Akhavan-Niaki H: Epigenetic alterations of CYLD promoter modulate its expression in gastric adenocarcinoma: A footprint of infections. J Cell Physiol 234(4): 4115-4124, 2019. PMID: 30132887. DOI: 10.1002/jcpp.27220

128 Tu L, Zhao E, Zhao W, Zhang Z, Tang D, Zhang Y, Wang C, Zhuang C and Cao H: hsa-miR-376c-3p regulates gastric tumor growth both in vitro and in vivo. Biomed Res Int 2016: 9604257, 2016. PMID: 27965982. DOI: 10.1155/2016/9604257

129 Song C, Han Y, Luo H, Qin Z, Chen Z, Liu Y, Lu S, Sun H and Zhou C: HOXA10 induces BCL2 expression, inhibits apoptosis, and promotes cell proliferation in gastric cancer. Cancer Med 8(12): 5651-5661, 2019. PMID: 31364281. DOI: 10.1002/cam4.2440

130 Min KW, Kim DH, Son BK, Kim DH, Kim EK, Seo J, Ahn SB, Jo YJ, Park YS and Ha J: A High K67/BCL2 index could predict lower disease-free and overall survival in intestinal-type gastric
cancer. Eur Surg Res 58(3-4): 158-168, 2017. PMID: 28273657. DOI: 10.1159/000448945
131 Feng C, Xian Q and Liu S: Micro RNA-518 inhibits gastric cancer cell growth by inducing apoptosis via targeting MDM2. Biomed Pharmacother 97: 1595-1602, 2018. PMID: 29793321. DOI: 10.1016/j.biopha.2017.11.091
132 Aboushousha T, Helal N, Hammam O, Ibrahim M, Khaled S, Mostafa A and Anas A: Overview of MDM2 and B-RAF expression in gastric lesions. Open Access Maced J Med Sci 6(10): 1795-1802, 2018. PMID: 30455751. DOI: 10.3889/oamjms.2018.338
133 Oliner JD, Saiki AY and Caenepeel S: The role of MDM2
134 Wang S, Zhao Y, Aguilar A, Bernard D and Yang CY: Targeting
135 Yang Q, Jie Z, Cao H, Greenlee AR, Yang C, Zou F and Jiang Y:
136 Fu L, Cui CP, Zhang X and Zhang L: The functions and regulation
137 Liu F, Hu H, Zhao J, Zhang Z, Ai X, Tang L and Xie L: miR-124-
138 Liu G and Wu Q: miR-337 3p inhibits gastric tumor metastasis by microRNA-340 influences cell
139 Cheng ASL, Yu J, Wong N, Kang W and To KF: SRGAP1, a crucial target of miR-340 and miR-124, functions as a potential oncogene in gastric tumorigenesis. Oncogene 37(9): 1159-1174, 2018. PMID: 29234151. DOI: 10.1038/s41388-017-0029-7
140 Lin R, Cerione RA and Manor D: Specific contributions of the small GTPases Rho, Rac, and Cdc42 to Dbl transformation. J Biol Chem 274(33): 23633-23641, 1999. PMID: 10438546. DOI: 10.1074/jbc.274.33.23633
141 Hall A: Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33(Pt 5): 891-895, 2005. PMID: 16246005. DOI: 10.1042/BST20050891
142 Feng C, Xian Q and Liu S: Micro RNA-518 inhibits gastric cancer
143 Oliner JD, Saiki AY and Caenepeel S: The role of MDM2
144 Nam S, Kim JH and Lee DH: RHOA in gastric cancer: Functional
145 Huang T, Zhou Y, Zhang J, Wong CC, Li W, Kwan JSH, Yang R, Chan AKY, Dong Y, Wu F, Zhang B, Cheung AHK, Wu WKK, roles and therapeutic potential. Front Genet 10: 438, 2019. PMID: 31156701. DOI: 10.3389/fgen.2019.00438
146 Wang Z, Yao L, Li Y, Hao B, Wang M, Wang J, Gu W, Zhan H, Liu G and Wu Q: miR-337 3p inhibits gastric tumor metastasis by targeting ARHGAP10. Mol Med Rep 21(2): 705-719, 2020. PMID: 31789419. DOI: 10.3892/mmr.2019.10856
147 Hall A: Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33(Pt 5): 891-895, 2005. PMID: 16246005. DOI: 10.1042/BST20050891
148 Tong M, Jun T, Nie Y, Hao J and Fan D: The role of the Slit/Robo signaling pathway. J Cancer 10(12): 2694-2705, 2019. PMID: 31258778. DOI: 10.7150/jca.31877
149 Chen Q, Zhang Y and Xu L: microRNA-340 influences cell proliferation, apoptosis and invasion by targeting NF-kB1 in gastric cancer. Int J Clin Exp Pathol 9(2): 147-155, 2016. PMID: 30013778. DOI: 10.3892/br.2018.1113
150 Xiao C, Hong H, Yu H, Yuan J, Guo C, Cao H and Li W: MiR-340 affects gastric cancer cell proliferation, cycle, and apoptosis through regulating SOCS3/JAK-STAT signaling pathway. Immunopharmacol Immunotoxicol 40(4): 278-283, 2018. PMID: 29658372. DOI: 10.1080/08923973.2018.1455208
151 Liu F, Hu H, Zhao J, Zhang Z, Ai X, Tang L and Xie L: miR-124-3p acts as a potential marker and suppresses tumor growth in gastric cancer. Biomed Rep 9(2): 147-155, 2018. PMID: 30013778. DOI: 10.3892/br.2018.1113
152 Fu L, Cui CP, Zhang X and Zhang L: The functions and regulation of Smurfs in cancers. Semin Cancer Biol 67(Pt 2): 102-116, 2020. PMID: 31899247. DOI: 10.1016/j.semcancer.2019.12.023
153 Yang Q, Jie Z, Cao H, Greenlee AR, Yang C, Zou F and Jiang Y: Low-level expression of let-7a in gastric cancer and its involvement in tumorigenesis by targeting RAB40C. Carcinogenesis 32(5): 713-722, 2011. PMID: 21349817. DOI: 10.1093/carcin/bgr035
154 Li Z, Yu X, Wang Y, Shen J, Wu WK, Liang J and Feng F: By downregulating TIAM1 expression, microRNA-329 suppresses gastric cancer invasion and metastasis by inhibiting the Dock6/Rac1/Cdc42 axis. J Exp Clin Cancer Res 37(1): 71, 2018. PMID: 29387866. DOI: 10.1186/s13046-018-0729-z
155 Gadea G and Blangy A: Dock-family exchange factors in cell migration and disease. Eur J Cell Biol 93(10-12): 466-477, 2014. PMID: 25022758. DOI: 10.1016/j.ejcb.2014.06.003
156 Ng EL and Tang BL: Rab GTTPases and their roles in brain neurons and glia. Brain Res Rev 58(1): 236-246, 2008. PMID: 18485483. DOI: 10.1016/j.brainres.2008.04.006
157 Shi YL, Miao RZ, Cheng L, Guo XB, Yang B, Jing CQ, Zhang L, Zhu JM and Yu PW: Effects of Tiam 1 on invasive capacity of gastric cancer cells. Asian Pac J Cancer Prev 15(7): 607-613, 2014. PMID: 32223738. DOI: 10.2174/1574888X1566620030143958
158 Rodriguez-Gabin AG, Almazan G and Larocca JN: Vesicle transport in oligodendrocytes: probable role of Rab40c protein. J Neurosci Res 76(6): 758-770, 2004. PMID: 15160388. DOI: 10.1002/jnr.20212
159 Saibain and Marshall CJ: RHO-GTPases and cancer. Nat Rev Cancer 2(2): 133-142, 2002. PMID: 12635176. DOI: 10.1038/nrc725
160 Ge F, Wang C, Wang W, Liu W and Wu B: MicroRNA-31 inhibits tumor invasion and metastasis by targeting RhoA in human gastric cancer. Oncol Rep 38(2): 1133-1139, 2017. PMID: 28656284. DOI: 10.3892/or.2017.5578
161 Chen Z, Liu S, Xia Y and Wu K: MiR-31 regulates Rho-associated kinase-myoosin light chain (ROCK-MLC) pathway and inhibits gastric cancer invasion: Roles of RhoA. Med Sci Monit 22: 4679-4691, 2016. PMID: 27904131. DOI: 10.12659/msn.898399
162 Liu H, Liu Y, Zhang X and Wang X: Current study of RhoA and associated signaling pathways in gastric cancer. Curr Stem Cell Res Ther 15(7): 607-613, 2020. PMID: 32223738. DOI: 10.2174/1574888X1566620030143958
163 Nam S, Kim JH and Lee DH: RHOA in gastric cancer: Functional roles and therapeutic potential. Front Genet 10: 438, 2019. PMID: 31156701. DOI: 10.3389/fgen.2019.00438
164 Huang T, Zhou Y, Zhang J, Wong CC, Li W, Kwan JSH, Yang R, Chan AKY, Dong Y, Wu F, Zhang B, Cheung AHK, Wu WKK, Cheng ASL, Yu J, Wong N, Kang W and To KF: SRGAP1, a crucial target of miR-340 and miR-124, functions as a potential oncogene in gastric tumorigenesis. Oncogene 37(9): 1159-1174, 2018. PMID: 29234151. DOI: 10.1038/s41388-017-0029-7
Bassères DS, Tizzei EV, Duarte AA, Costa FF and Saad ST: ARHGAP10, a novel human gene coding for a potentially cytoskeletal Rho-GTPase activating protein. Biochem Biophys Res Commun 294(1): 579-585, 2002. PMID: 12056806. DOI: 10.1016/S0006-291X(02)00514-4

Teng JP, Yang ZY, Zhu YM, Di D, Zhu ZJ and Li XQ: The roles of ARHGAP10 in the proliferation, migration and invasion of lung cancer cells. Oncol Lett 14(4): 4613-4618, 2017. PMID: 28943961. DOI: 10.3892/ol.2017.7629

Luo N, Guo J, Chen L, Yang W, Qu X and Cheng Z: ARHGAP10, downregulated in ovarian cancer, suppresses tumorigenicity of ovarian cancer cells. Cell Death Dis 7: e2157, 2016. PMID: 27010858. DOI: 10.1038/cddis.2015.401

Nadal E, Chen G, Gallegos M, Lin L, Ferrer-Torres D, Truini A, Wang Z, Lin J, Reddy RM, Llatjos R, Escobar I, Moya J, Chang AC, Cardenal F, Capellà G and Beer DG: ARHGAP10 inhibits the proliferation and metastasis of CRC cells via blocking the activity of RhoA/AKT signaling pathway. Oncol Targets Ther 7: 11507-11516, 2019. PMID: 31920339. DOI: 10.2147/OTT.S222564

Lehmann U, Hasemeier B, Christgen M, Müller M, Römermann D, Länger F and Kreipe H: Epigenetic inactivation of microRNA-34b/c predicts poor disease-free survival in early-stage lung adenocarcinoma. Clin Cancer Res 19(24): 6842-6852, 2013. PMID: 24130071. DOI: 10.1186/1078-0432.CCR-13-0736

Korner H, Knyazev P, Diebold J and Hermeking H: Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 9(10): 2591-2600, 2010. PMID: 18719384.

Khojkhoh S, Wickiser JE, Karandikar NJ, Malter JS, Mendell JT and Amatruda JF: Somatic mutations in DROSHA and DICER1 block the activity of RhoA/AKT signaling pathway. Adv Genet 7(3): 29-40, 2009. PMID: 19914449. DOI: 10.1016/S0065-2660(09)67002-4

Garzon R, Marcucci G and Croce CM: Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9(10): 775-789, 2010. PMID: 20885409. DOI: 10.1038/nrd3179

Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, Weidhaas JB, Brown D, Bader AG and Slack FJ: The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 7(6): 759-764, 2008. PMID: 18344688. DOI: 10.4161/cc.7.6.5834

Wu Y, Crawford M, Mao Y, Lee RJ, Davis IC, Elton TS, Lee LJ and Nana-Sinkam SP: Therapeutic delivery of MicroRNA-29b by cationic lipoplexes for lung cancer. Mol Ther Nucleic Acids 2: e84, 2013. PMID: 23591808. DOI: 10.1038/mta.2013.14

Wu X, Liu T, Fang O, Dong W, Zhang F, Leach L, Hu X and Luo Z: MicroRNA-708-5p acts as a therapeutic agent against metastatic lung cancer. Oncotarget 7(3): 2417-2432, 2016. PMID: 26678031. DOI: 10.18632/oncotarget.6594

Labatut AE and Matheolabalakis G: Non-viral based miRNA delivery and recent developments. Eur J Pharm Biopharm 128: 82-90, 2018. PMID: 29679644. DOI: 10.1016/j.ejpb.2018.04.018

Zhang L, Liao Y and Tang L: MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res 38(1): 53, 2019. PMID: 30717802. DOI: 10.1186/s13046-019-1059-5

Reid G, Johnson TG and van Zandwijk N: Manipulating microRNAs for the Treatment of Malignant Pleural Mesothelioma: Past, Present and Future. Front Oncol 10: 105, 2020. PMID: 32117755. DOI: 10.3389/fonc.2020.00105

Zhang L, Liao Y and Tang L: MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res 38(1): 53, 2019. PMID: 30717802. DOI: 10.1186/s13046-019-1059-5

Jones D: Setbacks shadow microRNA therapies in the clinic. Nat Biotechnol 36(10): 909-910, 2018. PMID: 30307922. DOI: 10.1038/nbt1018-909

van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, Huyyn Y, Chrzanoska A, Fulham MJ, Bailey DL, Cooper WA, Kritharides L, Ridley L, Pattison ST, Macdamiad J, Brahmbhatt H and Reid G: Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase I, open-label, dose-escalation study. Lancet Oncol 18(10): 1386-1396, 2017. PMID: 28870611. DOI: 10.1016/S1470-2045(17)30621-6

Reid G, Kao SC, Pavlakis N, Brahmbhatt H, MacDamiad J, Clarke S, Boyer M and van Zandwijk N: Clinical development of TargomiRs, a miniRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics 8(8): 1079-1085, 2016. PMID: 27185582. DOI: 10.2217/epi-2016-0035

MacLeod AR and Crooke ST: RNA therapeutics in oncology: Advances, challenges, and future directions. J Clin Pharmacol 57 Suppl 10: S43-S59, 2017. PMID: 28921648. DOI: 10.1002/jcph.957

Li Z and Rana TM: Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13(8): 622-638, 2014. PMID: 25011539. DOI: 10.1038/nrd4359

Garofalo M, Leva GD and Croce CM: MicroRNAs as anti-cancer therapy. Curr Pharm Des 20(33): 5328-5335, 2014. PMID: 24479801. DOI: 10.2174/1381612820666140128211346

Macle A, Merkel O, Fink L, Czubayko F, Kissel T and Aigner A: In vivo pharmacokinetics, tissue distribution and underlying mechanisms of various PEI(-PEG)/siRNA complexes. Toxicol...
189 Wang AZ, Langer R and Farokhzad OC: Nanoparticle delivery of cancer drugs. Annu Rev Med 63: 185-198, 2012. PMID: 21888516. DOI: 10.1146/annurev-med-040210-162544

190 Rozema DB, Lewis DL, Wakefield DH, Wong SC, Klein JJ, Roesch PL, Bertin SL, Reppen TW, Chu Q, Blokhin AV, Hagstrom JE and Wolff JA: Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc Natl Acad Sci U.S.A. 104(32): 12982-12987, 2007. PMID: 17652171. DOI: 10.1073/pnas.0703778104

191 Copolovici DM, Langel K, Eriste E and Langel Ü: Cell-penetrating peptides: design, synthesis, and applications. ACS Nano 8(3): 1972-1994, 2014. PMID: 24559246. DOI: 10.1021/nn4057269

192 Thorén PE, Persson D, Isakson P, Goksör M, Onfelt A and Nordén B: Uptake of analogs of penetratin, Tat(48-60) and oligoarginine in live cells. Biochem Biophys Res Commun 307(1): 100-107, 2003. PMID: 12849987. DOI: 10.1016/s0006-291x(03)01135-5

193 Darnell JE Jr: Transcription factors as targets for cancer therapy. Nat Rev Cancer 2(10): 740-749, 2002. PMID: 12360277. DOI: 10.1038/nrc906

194 Bushweller JH: Targeting transcription factors in cancer - from undruggable to reality. Nat Rev Cancer 19(11): 611-624, 2019. PMID: 31511663. DOI: 10.1038/s41568-019-0196-7

195 Mott HR and Owen D: Bioblockades join the assault on small G protein signalling. Semin Cancer Biol 54: 149-161, 2019. PMID: 29307570. DOI: 10.1016/j.semcancer.2018.01.001

196 Fletcher S: MCL-1 inhibitors - where are we now (2019)? Expert Opin Ther Pat 29(11): 909-919, 2019. PMID: 31566022. DOI: 10.1080/13543776.2019.1672661

197 Rusiecki R, Witkowski J and Jaszczewska-Adamczak J: MDM2-p53 interaction inhibitors: The current state-of-art and updated patent review (2010-present). Recent Pat Anticancer Drug Discov 14(4): 324-369, 2019. PMID: 31642413. DOI: 10.2174/1574892814666191022163540

198 Zanjirband M and Rahgozar S: Targeting p53-MDM2 interaction using small molecule inhibitors and the challenges needed to be addressed. Curr Drug Targets 20(11): 1091-1111, 2019. PMID: 30947669. DOI: 10.2174/1389450120666190402120701

Received June 22, 2021
Revised July 29, 2021
Accepted July 30, 2021