Microstructure of the coating obtained by magnetron sputtering of a Ni-Cr-B4C composite target

S V Zaitsev1*, D S Prokhorenkov1, M S Ageeva1 and A A Skiba1

1Belgorod State Technological University named after V G Shukhov, Kostyukov St, 46, Belgorod, 308012, Russia
E-mail: sergey-za@mail.ru

Abstract. This paper presents data on obtaining a composite coating by radio frequency (RF) magnetron sputtering of a Ni-Cr-B4C composite target in an inert gas (argon) environment. To make the target, Ni-Cr-B4C composite powder was applied to the copper base of the target by detonation gas-thermal spraying. The obtained targets served as a source of coating material during high-frequency magnetron sputtering. This method of coating production ensures the reproducibility of their properties, as well as the uniformity of coating thickness and good adhesion to various target backings.

The data of the study of the structure and morphology of the composite coating are presented. The resulting composite coating Ni-B/Cr3C with a thickness of 2 microns has a dense homogeneous structure with expressed textured polycrystallinity. The surface of the resulting coating is represented by nanoscale and homogeneous grains. There is no columnar crystal growth in the coating, which has a positive effect, as the columnar structure reduces the mechanical characteristics of the coatings due to faster oxygen diffusion along the grain boundaries. It is established that the combined use of the Ni-B and Cr7C3 binary phases in composite coatings leads to an increase in operational properties.

1. Introduction

Simple coatings have been widely used as protective coatings for many years. Taking into account the ever-increasing industrial requirements, such as high characteristics of corrosion resistance, hardness and wear resistance necessitates the development of new coatings. World recent experience has shown that multicomponent coatings obtained by synthesis from a combination of materials having different element composition have unique functional and protective properties [1, 2].

Nickel boride (NiB) has excellent mechanical properties and chemical resistance. The hardness of NiB coatings can reach 1100 HV; in addition, after heat treatment the hardness increases by several times [3]. The binary Cr-C carbide system is of particular interest because of its high hardness, toughness and chemical stability. The Cr-C system contains several crystalline phases with a complex structure, such as Cr5C2, Cr7C3 and Cr23C6. Crystalline Cr5C2 of these phases exhibits the highest hardness and therefore is the most preferred as a protective coating [4]. The coatings under consideration have been studied in terms of their composition, structure and mechanical properties [5-9]. Thus, it can be expected that the combined use of NiB and Cr5C2 binary phases in composite coatings will lead to improved performance properties.

There are various methods of surface coating, such as physical vapor deposition (PVD), chemical vapor deposition (CVD), thermal spraying, electroplating, and chemical coating [10-14]. Among these methods, physical vapor deposition by magnetron sputtering of coatings has become important
because of its specific characteristics such as uniformity, durability, high wear resistance and low cost. In addition, magnetron sputtering is one of the most suitable methods for industrial use \[15, 16\].

The present work is aimed at studying the microstructure and chemical composition of the coating obtained from the Ni-Cr-B4C composite target by magnetron sputtering.

2. Materials and methods

The Ni-B/Cr3C2 coating was applied by RF magnetron sputtering at 13.56 MHz on silicon and 65G steel target backings, the chemical composition of which is shown in Table 1. A 100-mm-diameter, 4-mm-thick, metal-ceramic-coated copper disk was used as the target. A composite Ni-Cr-B4C powder was applied on the copper target by detonation gas-thermal spraying. The metal-ceramic-coated disk was mounted on a water-cooled magnetron connected to an RF generator (13.56 MHz). In the RF mode, the target with the ceramic-metal coating was sprayed at a discharge power of 150 W for 15 min. The discharge voltage was set at 350 V and the discharge current was 1 A.

The vacuum chamber was evacuated to a pressure of no more than 2×10^{-3} Pa, which was achieved using a turbomolecular pump. To remove residual contaminants, the surface of the target backings was cleaned with argon ions for 10 min at a pressure of 0.12 Pa and a voltage of 2.2 kV on the ion source.

The operating pressure in the chamber was 0.2±0.001 Pa. Pure argon (99.999% purity) was used as the atomizing gas, and the flow rate was 34 SCCM. The target was pre-sprayed for 1 minute to remove any surface contaminants. The distance from the target backings to the magnetron and ion source was the same, 60 mm. While coating, the target backing was not additionally heated.

The phase analysis was performed using X-ray diffraction (XRD) on an ARL X'TRA diffractometer (ThermoTechno) with Cu-Kα radiation ($\lambda = 0.1541744$ nm). The θ-2θ scans were obtained in the range of 5-110° with a step of 0.05°. Phase identification and peak indexing were performed using the JCPDF database. The morphology of the surfaces and chips of the coatings were studied using a scanning electron microscope (TESCAN MIRA 3 LMU). SEM images were acquired at 5 kV acceleration voltages.

Table 1. Chemical composition in % of material steel 65G.

	C	Si	Mn	Ni	S	P	Cr	Cu
	0.62–0.7	0.17–0.37	0.9–1.2	up to 0.25	up to 0.035	up to 0.035	up to 0.25	up to 0.2

3. Results and discussions

The diffractogram of the coating applied by magnetron sputtering from the Ni-Cr-B4C composite target is shown in Figure 1. The analysis of the coating diffraction pattern shows the presence of three main phases γ-Ni, Ni-B and Cr$_7$C$_3$, which corresponds to the results on the production of nickel boride and chromium carbide coatings in works \[17-19\].

The microstructure of the coating applied by magnetron sputtering from the Ni-Cr-B4C target composite is presented in figure 2. From the analysis of the cross-sectional image (figure 2a) we can see that the coatings have a dense homogeneous structure without columnar growth with expressed textured polycrystallinity. The coating thickness was about 2 μm.
The surface of the synthesized coating consists of nanosized and homogeneous grains, as shown in figure 2b. It should be noted that the columnar structure reduces the mechanical characteristics and oxidation resistance of the coatings due to faster oxygen diffusion along the grain boundaries [20].

The elemental composition of the coatings was determined by analyzing the spectra of characteristic X-rays using a spectrometer built into the scanning electron microscope. The spectra of the characteristic X-ray radiation and the elemental composition of the coatings are shown in Fig. 3.
Figure 3. EDS analysis of composite coating Ni-B/Cr$_7$C$_3$.

Analysis of the EDS spectra shows that Ni, Cr, B and C elements are present in the coating. This demonstrated that Cr$_7$O$_3$ particles were embedded in the Ni-B coating. It can be found that Ni content is the highest and B is the lowest. According to the authors of [21], element B is a light element, it can overlap the peak of Ni element, which leads to lower content of element B.

4. Summary
In this work the Ni-B/Cr$_7$C$_3$ composite coating was applied by HF magnetron sputtering of the metal-ceramic composite target Ni-Cr-B$_4$C in Ar gas environment. According to the X-ray diffraction data the presence of three main phases γ-Ni, Ni-B and Cr$_7$C$_3$ was found out. Electron microscopy analysis
showed that the deposited composite coating has a dense homogeneous structure with expressed textured polycrystallinity. From the EDS analysis of spectra it was found that Ni, Cr, B and C elements are present in the composite coating.

Thus, the obtained experimental data of the structure and morphology of Ni-B/Cr₃C₃ composite coating synthesized from the metal-ceramic composite target Ni-Cr-B-C.

Further research will focus on the tribological properties of the Ni-B/Cr₃C₃ composite coating.

5. References

[1] Lu C Y, Diyatmika W, Lou B S, Lee J W 2018 Superimposition of high power impulse and middle frequency magnetron sputtering for fabrication of CrTiBN multicomponent hard coatings Surface and Coatings Technology 350 962-970

[2] Sha C, Munroe P, Zhou Z, Xie Z 2019 Effect of Ni content on the microstructure and mechanical behaviour of CrAlNiN coatings deposited by closed field unbalanced magnetron sputtering Surface and Coatings Technology 357 445-455

[3] Krishnaveni K, Narayanan T S, Seshadri S K 2006 Electrodeposited Ni–B coatings: Formation and evaluation of hardness and wear resistance Materials chemistry and physics 99(2-3) 300-308

[4] Ziebert C, Ye J, Stüber M, Ulrich S, Edinger M, Barzen I 2011 Ion bombardment-induced nanocrystallization of magnetron-sputtered chromium carbide thin films Surface and Coatings Technology 205(20) 4844-4849

[5] Sheu H H, Tzeng Y C, Syu J H 2019 Study of the strengthening mechanism of electrodeposited Ni-B thin films with ultra-low boron content Materials Letters 238 275-277

[6] Ogihara H, Wang H, Saji T 2014 Electrodeposition of Ni–B/SiC composite films with high hardness and wear resistance Applied Surface Science 296 108-113

[7] Barati Q, Hadavi S M M 2020 Electroless Ni-B and composite coatings: A critical review on formation mechanism, properties, applications and future trends Surfaces and Interfaces 100702

[8] Andersson M, Högström J, Urbonaita S, Furlan A, Nyholm L, Jansson U 2012 Deposition and characterization of magnetron sputtered amorphous Cr–C films Vacuum 86(9) 1408-1416

[9] Jellad A, Labdi S, Malibert C, Renou G 2008 Nanomechanical and nanowear properties of Cr₃C thin films deposited by rf sputtering Wear 264(9-10) 893-898

[10] Mutyala K C, Ghanbari E, Doll G. L 2017 Effect of deposition method on tribological performance and corrosion resistance characteristics of CrₓN coatings deposited by physical vapor deposition Thin Solid Films 636 232-239

[11] Rubshtein A P, Gao K, Vladimirov A B, Plotnikov S A, Zhang B, Zhang J 2019 Structure, wear and corrosion behaviours of Cr–Al–C and multilayer [Cr–Al–C/aC] n coatings fabricated by physical vapour deposition and plasma-assisted chemical vapour deposition techniques Surface and Coatings Technology 377 124912

[12] Li J, Wang Y, Lyu Z, Sharma N, Choudhury S D, Li L 2021 Fracture of Ni-Cr-Si-B thermal sprayed and fused reciprocating pump rods during straightening Engineering Failure Analysis 127 105576

[13] Sheu H H, Syu J H, Liu Y M, Hou K H, Ger M D 2018 A Comparison of the Corrosion Resistance and Wear Resistance Behavior of Cr-C, Ni-P and Ni-B Coatings Electroplated on 4140 Alloy Steel J. Electrochem. Sci. 13 3267-3278

[14] Cieślak G, Trzaska M 2020 Structure and Properties of Ni-B/Graphene Oxide Composite Coatings Produced by Chemical Reduction Method Journal of Materials Engineering and Performance 29(3) 1550-1557

[15] Zaitsev S V, Nartsev V M, Vashchilin V S, Prokhorenkov D S, Evtushenko E I 2016 Microstructure and surface morphology of thin AlN films formed on sapphire by dual magnetron sputtering Nanotechnologies in Russia 11(5-6) 280-286
[16] Zaitsev S V, Cherkashina N I, Pavlenko V I, Prochorenkov D S 2020 Formation and stability of W coating on a flexible polyimide substrate Thin Solid Films 715 138424
[17] Groudeva-Zotova S, Vitchev R G, Blanpain B 2000 Phase composition of Cr–C thin films deposited by a double magnetron sputtering system Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films 30(1) 544-548
[18] Zhang Q, Li H, Gao P, Wang L 2014 PVP-NiB amorphous catalyst for selective hydrogenation of phenol and its derivatives Chinese Journal of Catalysis 35(11) 1793-1799
[19] Zhao Y, Wei L, Yi P, Peng L 2016 Influence of Cr-C film composition on electrical and corrosion properties of 316L stainless steel as bipolar plates for PEMFCs International Journal of Hydrogen Energy 41(2) 1142-1150
[20] Lange A, Heilmaier M, Sossamann T A, Perepezko J H 2015 Oxidation behavior of pack-cemented Si–B oxidation protection coatings for Mo–Si–B alloys at 1300 °C Surface and Coatings Technology 266 57-63
[21] Zhang Y, Zhang S, He Y, Li H, He T, Fan Y, Zhang H 2021 Mechanical properties and corrosion resistance of pulse electrodeposited Ni-B/B4C composite coatings Surface and Coatings Technology 421 127458

Acknowledgements
The work was supported by a project of the Russian Science Foundation (21-19-00536). The study was carried out using equipment of the Center of High Technologies of the Belgorod State Technological University and Joint Research Center “Technologies and Materials” of the Belgorod National Research University.