Experimental and Numerical Investigation of Temperature Distribution in the Cutting Zone with Different Coated Tools in Orthogonal Turning Operations

Basim S. Sahib*, Karrar S. Nassrullah*
*Mechanical Engineering Department, College of Engineering, University of Kerbala, Iraq

Abstract. In orthogonal turning operations, the mechanical energy is converted into heat. The generated heat influences tool life and wear, and the accuracy and quality of workpieces. In the current work, the temperature distribution at cutting zone was studied experimentally and numerically. The K-type thermocouple was utilized to measure the cutting zone temperature during turning process for steel AISI 1010. DEFORM-2D has been utilized to simulate the turning operation, which was carried out using many coated and uncoated carbide tools. The experimental tests were implemented at constant depth of cut with different feed rates and cutting speeds. The results of numerical and experimental tests are illustrated. The influences of coated and uncoated tools, feed rate and cutting speed in temperature distribution at cutting zone are discussed, whereby the TiN/Al₂O₃/TiCN coated tool has the lowest temperature distribution at cutting zone compared to the other coated and uncoated tools, while the uncoated tool has the highest temperature distribution compared to coated cutting tools. Also, the increasing of cutting speed and feed rate led to an increase of temperature at the cutting zone.

Keywords: FEM, Temperature Distribution, Coated Tools, Orthogonal Turning.

1. Introduction

Metal cutting factories now use many types of machining, and in particular, turning processes. It is helpful to understand the influences of temperature and heat increases on the turning process. In general, the consumption of mechanical energy in the plastic deformation form is converted into heat during a turning operation. The generated heat has effects on tool life, wear and alteration of the metallurgical structure, and has an influence on the workpiece in terms of quality of surface, dimensional accuracy, oxidation, burning, etc. [1][2][3].

The distribution of temperature at the cutting zone depends on the chemical and mechanical properties of the tool and workpiece materials, tool geometry, feed rate, cutting speed, depth of cut and other parameters [4][5][6]. It is important to measure the cutting zone temperature to expedite the evacuation of chips and the preciseness of the tool-chip contact zone [2]. Many researchers have used various techniques including the embedded thermocouple, tool-chip thermocouple, radiation and thermos colors for measuring the cutting temperature at cutting zones. The technique most widely-used during machining processes is the tool-work thermocouple technique because of its low cost, ability to make many ranges of temperatures available and ease of use in comparison with other techniques [7][8][9].

Cotterell [10] developed a video analysis technique by using IR imagining to measure the temperature distribution and strain during orthogonal cutting. Heigel [11] calculated the temperature at cutting zone in the machining of titanium alloys, using transparent yttrium aluminum garnet (YAG) tools and infrared technique for several speeds of cutting. Satish [12] and Abhang [13] have utilized a tool-work thermocouple technique to measure the average temperature of the cutting zone, accounting for the influences of the coated tools and cutting parameters on steel workpieces. Kannan [14] investigated the optimal cutting
parameters for maximum surface finish and minimum cutting temperature with the response surface method (RSM) technique in turning.

Yahya [15] and Pradip [16] have established in orthogonal cutting a numerical model, by utilizing the finite element method (FEM) for determining temperature distribution. Amulya [17] tried to decrease the heat generation in a turning process via optimized parameters of cutting by use of a genetic algorithm (GA). Abdil [18], by utilizing infrared radiation (IR) pyrometer and K-type thermocouple, has shown that the most influential parameter in cutting zone temperature is the cutting speed.

Adnan [19] has chosen the optimal machining parameters containing cutting temperature in a turning process, using GA. Pedro [20], Julien [21] and Daniel [22] have modelled in orthogonal cutting the temperature of the tool – chip interface by utilizing the infrared thermography technique. Fuat [23] has predicted cutting temperatures by using an artificial neural network (ANN) optimization model in orthogonal cutting. Sadeghifar [24] has selected, for constant force of cutting and minimum temperature of cutting, the optimal parameters of machining by application of a combination of sequential quadratic programming (SQP) and GA techniques. By utilizing GA and RSM, Mandal and Tanmoy [25] optimized the cutting zone temperature for steel workpieces.

In this paper, many experimental and numerical tests were used to study the influence of different coated tools on the temperature of the cutting zone. The K-type thermocouple is a method which can be used to measure the temperature at the cutting zone. In addition to a finite element method, the DEFORM 2D package was used for numerical tests.

2. Experimental procedure and details

The technique used in the current work to measure the cutting zone temperature is the K-type thermocouple, which was selected due to the high response time and good repeatability as well as affordability.

The Seebeck effect is the principle of thermocouple work. The K-type thermocouple can measure temperatures from -200 to +1200 °C [1][26]. The set-up is shown in Figure 1.

All tests were conducted using a KORYO KIGYE lathe (1000×400) mm without any coolant. The workpiece material was steel AISI 1010 as the experiment specimen, where the shape was a hollow cylindrical bar with 48mm outer diameter and 45mm inner diameter. The chemical composition of workpiece is shown in Table 1.

In orthogonal cutting tests, TiN coated, TiN/TiCN coated, TiN/Al₂O₃/TiCN coated and uncoated (WC) cutting tools were used. The identical geometry of these inserts is designated by ANSI as CCMT 09-T304. All these inserts possess angle of rake as (0°) and the angle of clearance as (7°) as shown in Figure 2. The conditions of cutting were implemented at the cutting speed of 27, 48, 85, 121 and 151 m/min, the feed rate of 0.05, 0.075, 0.1, 0.125 and 0.15 mm/rev and the depth of cut as constant value of 1.5 mm.
3rd International Conference on Engineering Sciences
IOP Publishing
IOP Conf. Series: Materials Science and Engineering 671 (2020) 012016
doi:10.1088/1757-899X/671/1/012016

Figure 1. The thermocouple set-up

Figure 2. The carbide insert

Table 1. Chemical composition of the workpiece material

Element	(C)	(Si)	(Mn)	(P)	(S)	(Cr)	(Ni)	(Al)	(Co)	(Cu)	(Fe)
Weight (%)	0.085	0.032	0.532	0.019	0.006	0.014	0.03	0.028	0.003	0.005	99.24

3. FEM model for orthogonal turning

Recently, the finite element method (FEM) has been mainly used to simulate metal cutting operations, especially for temperature distribution at cutting zones [27]. DEFORM-2D (Design Environment for Forming) was utilized to simulate the orthogonal turning process. The created tool has dimensional properties comprising a rake angle of (0°), nose radius of (0.04) mm and clearance angle of (7°). Tool mesh generation was 700 by selecting relative mesh size. The workpiece material was AISI 1010 low carbon steel with an ambient temperature of 20° C and 1500 as workpiece mesh generation. Figure (3) shows the temperature distribution at cutting zone.
4. Results and discussion:

The orthogonal cutting tests were achieved experimentally and numerically, to compare the temperature distribution during the turning operation at coated tungsten carbide and uncoated cutting tools. Figure 4 shows that when the feed rate increased from 0.05 to 0.15 mm/rev at cutting speed 27 m/min, the cutting zone temperature increased numerically from 230°C to 282°C for the uncoated tool and from 215°C to 259°C for TiN/Al₂O₃/TiCN for coated tools. The temperature distribution of the other tools was located between these, or equal. The experimental tests resemble the numerical tests. So, the lowest temperature distribution occurred at TiN/Al₂O₃/TiCN, coated cutting tool, because Al₂O₃ has a low thermal conductivity. In contrast, the highest temperature distribution occurred with the uncoated cutting tool.

Figure 5 shows that when the feed rate increases from 0.05 to 0.15 mm/rev at cutting speed 48 m/min, the cutting zone temperature increased experimentally from 262°C to 326°C for uncoated tool and from 220°C to 308°C for TiN/Al₂O₃/TiCN for coated tool, and the temperature distribution of the other tools fell between them or was equal. The numerical tests are similar to the experimental tests. Also, the temperature distribution of the uncoated tool is higher than the other, coated, tools.

Figure 6 shows that when the feed rate increased from 0.05 to 0.15 mm/rev at cutting speed 85 m/min, the cutting zone temperature increased numerically from 340°C to 389°C for uncoated tool and from 324°C to 362°C for TiN/Al₂O₃/TiCN coated tool, and the temperature distribution of the other tools was located between them or equal. The experimental tests resemble the numerical tests. Also, the temperature distribution of the uncoated tool is higher than the coated tools.
Figure 4. Temperature-feed rate curve for v=27 m/min. a. Numerical. b. Experimental.

Figure 5. Temperature-feed rate curve for v=48 m/min. a. Numerical. b. Experimental.

Figure 6. Temperature-feed rate curve for v=85 m/min. a. Numerical. b. Experimental.

Figure 7 shows that when the feed rate increased from 0.05 to 0.15 mm/rev at cutting speed 121 m/min, the cutting zone temperature increased numerically from 377°C to 420°C for the uncoated tool and from 365°C to 398°C for TiN/Al₂O₃/TiCN coated tool, and the temperature distribution of the other
tools was located between them or equal. The experimental tests are similar to the numerical tests. Also, the temperature distribution of the uncoated tool was higher than the other, coated, tools.

Figure 8 shows that when the feed rate increased from 0.05 to 0.15 mm/rev at cutting speed 151 m/min, the cutting zone temperature increased experimentally from 333°C to 373°C for uncoated tool and from 309°C to 327°C for TiN/Al₂O₃/TiCN coated tool, and the temperature distribution of the other tools was located between them or equal. The numerical tests are similar to the experimental tests. Also, the temperature distribution of uncoated tool was higher than the other coated tools.

Figure 9 shows that when the cutting speed increased from 27 to 151 m/min at feed rate 0.05 mm/rev, the cutting zone temperature increased experimentally from 210°C to 333°C for uncoated tool and from 183°C to 309°C for TiN/Al₂O₃/TiCN coated tools, and the temperature distribution of other tools was found between them or was equal. The numerical tests resemble the experimental tests. So, the lowest temperature distribution occurred at TiN/Al₂O₃/TiCN coated cutting tool because Al₂O₃ has a low thermal conductivity, and in contrast to this, the highest temperature distribution occurred at the uncoated cutting tool.

Figure 10 shows that when the cutting speed increased from 27 to 151 m/min at feed rate 0.075 mm/rev, the cutting zone temperature increased numerically from 248°C to 416°C for the uncoated tool and from 233°C to 397°C for TiN/Al₂O₃/TiCN coated tool, and the temperature distribution of the other tools came between them or was equal. The experimental tests are similar to the numerical tests, and the temperature distribution of uncoated tool is higher than the other coated tools.
Figure 11 shows that when the cutting speed increased from 27 to 151 m/min at feed rate 0.1 mm/rev, the cutting zone temperature increased experimentally from 241°C to 355°C for uncoated tool and from 226°C to 318°C for TiN/Al₂O₃/TiCN coated tool, and the temperature distribution of the other tools was located between them or equal. The numerical tests resemble experimental tests. The temperature distribution of uncoated tool is higher than the other coated tools.

Figure 9. Temperature-cutting speed curve for f=0.05 mm/rev. a. Numerical. b. Experimental.

Figure 10. Temperature-cutting speed curve for f=0.075 mm/rev. a. Numerical. b. Experimental.

Figure 11. Temperature-cutting speed curve for f=0.1 mm/rev. a. Numerical. b. Experimental.

Figure 12 shows that when the cutting speed increased from 27 to 151 m/min at feed rate 0.125 mm/rev, the cutting zone temperature increased experimentally from 262°C to 369°C for uncoated tool and
from 236°C to 323°C for TiN/ Al₂O₃/TiCN coated tool, and the temperature distribution of the other tools is located between them or equal. The numerical tests are similar to the experimental tests. Also, the temperature distribution of the uncoated tool was higher than the other coated tools.

Figure 13 shows that when the cutting speed increased from 27 to 151 m/min at feed rate 0.15 mm/rev, the cutting zone temperature increased numerically from 282°C to 437°C for uncoated tool and from 259°C to 415°C for TiN/ Al₂O₃/TiCN coated tool, and the temperature distribution of the other tools was located between them or equal. The experimental tests are similar to the numerical tests. Also, the temperature distribution of uncoated tool was higher than the other coated tools.

It is noted that there is a difference in numerical and experimental temperature readings, for example the temperature at v=121 m/min and f=0.05 mm/rev of 317°C experimentally and of 377°C numerically. Also, for the same cutting speed and f=0.15 mm/rev the temperature of 364°C experimentally and of 420°C numerically for uncoated tool. This may be a result of the thermocouple set-up, whereby it was mounted on the bottom surface of the tool and to avoid this difference, infrared camera can be used.

5. Conclusions
In this paper, a K-type thermocouple was utilized to measure the cutting zone temperature during orthogonal turning operation on a lathe machine, using coated and uncoated cutting tools on steel AISI 1010 as workpiece material. Also, DEFORMS 2D was used for numerical tests. The paper documents the effects of coated and uncoated cutting tools, cutting speed and feed rate on the temperature distribution at the cutting zone. From numerical and experimental results, the following conclusions can be drawn:

1) It is noticed that the orthogonal cutting temperature for the uncoated tool is higher than that for coated tools, e.g. the temperature at f=0.075 mm/rev and v=85 m/min of 362°C for uncoated tool, of 347°C for TiN coated tool, of 344°C for TiN/ TiCN coated tool and of 338°C for TiN/Al₂O₃/TiCN coated tool, numerically.

2) With coated tools, it is found that the temperature of three-layer tools is lower than for the other coated tools, for example the temperature at f=0.05 mm/rev and v=151 m/min of 395°C for TiN coated tool, of 394°C for TiN/ TiCN coated tool and of 387°C for TiN/Al₂O₃/TiCN coated tool, numerically.

3) Increasing cutting speed leads to increase of the cutting zone temperature, e.g. the temperature increases from 253°C to 410°C numerically at f=0.125 mm/rev and increases v=27 to 151 m/min.

4) If there is an increase in the feed rate, there will also be increase in the cutting zone temperature. Thus, the temperature increases from 387°C to 415°C numerically at increasing f=0.05 to 0.15 mm/rev and v= 151 m/min.

5) When the cutting speed increases, the cutting zone temperature will be more affected than the feed rate.

References

[1] Gosai M, Bhavsar SN. Experimental study on temperature measurement in turning operation of hardened steel (EN36). Procedia Technology. 2016 Jan 1; 23:311-8.

[2] Pervazi S, Deiab I, Wahba E, Rashid A, Nicolescu M. A numerical and experimental study to investigate convective heat transfer and associated cutting temperature distribution in single point turning. The International Journal of Advanced Manufacturing Technology. 2018 Jan 1; 941(4):897-910.

[3] Boldyrev IS, Shchurov IA. FEM thermo-mechanical simulation of the free orthogonal cutting and temperature distribution in tool and workpiece. Procedia Engineering. 2017 Jan 1; 206:1133-6.

[4] Chinchanikar S, Choudhury SK. Evaluation of chip-tool interface temperature: effect of tool coating and cutting parameters during turning hardened AISI 4340 steel. Procedia Materials Science. 2014 Jan 1; 6:996-1005.

[5] Sharman AR, Hughes JI, Ridgway K. The effect of tool nose radius on surface integrity and residual stresses when turning Inconel 718™. Journal of Materials Processing Technology. 2015 Feb 1; 216:123-32.

[6] Kus A, Isik Y, Cakir M, Coşkun S, Özdemir K. Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting. Sensors. 2015; 15(1):1274-91.

[7] Lata S, Rana R. Investigation of Chip-Tool Interface Temperature: Effect of Machining Parameters and Tool Material on Ferrous and Non-Ferrous Metals. Materials Today: Proceedings. 2018 Jan 1; 5(2):4250-7.

[8] Davies MA, Ueda T, M’saoubi R, Mullany B, Cooke AL. On the measurement of temperature in material removal processes. CIRP Annals. 2007 Jan 1; 56(2):581-604.

[9] Chinchanikar S, Choudhury SK. Evaluation of chip-tool interface temperature: effect of tool coating and cutting parameters during turning hardened AISI 4340 steel. Procedia Materials Science. 2014 Jan 1; 6:996-1005.

[10] Cotterell M, Ares E, Yanes J, Lopéz F, Hernandez P, Peláez G. Temperature and Strain Measurement during Chip Formation in Orthogonal Cutting Conditions Applied to Ti-6Al-4 V.
[11] Heigel JC, Whitenton E, Lane B, Donmez MA, Madhavan V, Moscoso-Kingsley W. Infrared measurement of the temperature at the tool–chip interface while machining Ti–6Al–4V. *Journal of Materials Processing Technology*. 2017 May 1; **243**:123-30.

[12] Chinchanikar S, Choudhury SK. Evaluation of chip-tool interface temperature: effect of tool coating and cutting parameters during hardened AISI 4340 steel. *Procedia Materials Science*. 2014 Jan 1; **6**:996-1005.

[13] Abhang LB, Hameedullah M. Chip-tool interface temperature prediction model for turning process. International Journal of Engineering *Science and Technology*. 2010; 2(4):382-93.

[14] Kannan K, Rajagopal KR. A model for the flow of rock glaciers. *International Journal of Non-Linear Mechanics*. 2013 Jan 1; **48**:59-64.

[15] Dogu Y, Aslan E, Camuscu N. A numerical model to determine temperature distribution in orthogonal metal cutting. *Journal of Materials Processing Technology*. 2006 Jan 10; **171**(1):1-9.

[16] Majumdar P, Jayaramachandran R, Ganesan S. Finite element analysis of temperature rise in metal cutting processes. *Applied Thermal Engineering*. 2005 Oct 1; **25**(14-15):2152-68.

[17] Lata S, Rana R. Investigation of Chip-Tool Interface Temperature: Effect of Machining Parameters and Tool Material on Ferrous and Non-Ferrous Metal. *Materials Today: Proceedings*. 2018 Jan 1; **5**(2):4250-7.

[18] Kus A, Isik Y, Cakir M, Coşkun S, Özdemir K. Thermocouple and infrared sensor-based measurement of temperature distribution in metal cutting. *Sensors*. 2015; **15**(1):1274-91.

[19] Jameel A, Minhat M, Nizam M. Using genetic algorithm to optimize machining parameters in turning operation: a review. *International Journal of Scientific and Research Publications*. 2013; **3**(5):1-6.

[20] Arrazola PJ, Aristimuño P, Soler D, Childs T. Metal cutting experiments and modelling for improved determination of chip/tool contact temperature by infrared thermography. *CIRP Annals*. 2015 Jan 1; **64**(1):57-60.

[21] Artozola J, Lescalier C, Bomont O, Dudzinski D. Extended infrared thermography applied to orthogonal cutting: Mechanical and thermal aspects. *Applied Thermal Engineering*. 2014 Mar 1; **64**(1-2):441-52.

[22] Solar D, Aristimuño P, Garay A, Arrazola PJ. Uncertainty of temperature measurements in dry orthogonal cutting of titanium alloys. *Infrared Physics & Technology*. 2015 Jul 1; **71**:208-16.

[23] Kara F, Aslantaş K, Cicek A. Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network. *Applied Soft Computing*. 2016 Jan 1; **38**:64-74.

[24] Sadeghifar M, Sedaghati R, Songmene V. FE modeling and optimization of cutting temperature in orthogonal turning. *International Congress of Theoretical and Applied Mechanics*, 2016, pp. 21–26.

[25] Mandal NK, Roy T. Modelling and optimization of tool chip interface temperature and surface roughness in CNC dry turning of EN 24 steel. *Advanced Engineering Forum* 2016 (Vol. **16**, pp. 7-15). Trans Tech Publications.

[26] Mourad A, Mourad B, Abderrahim B. Measurement and Numerical Simulation of The Cutting Temperature in Cutting Tool During Turning Operation. *Journal of Engineering Science and Technology*. 2017 May 1; **12**(5):1307-17.

[27] Grzesik W. Modelling and Simulation of Machining Processes and Operations. *Advanced Machining Processes of Metallic Materials*. 2008;49-67.