The $\Delta I = 1/2$ rule and other matrix elements\textsuperscript{†‡}

J. Bijnens\textsuperscript{1}

\textsuperscript{1} Department of Theoretical Physics 2, Lund University
Sölvegatan 14A, S22362 Lund, Sweden
E-mail: bijnens@thep.lu.se

Abstract

Recent work by J. Prades and myself on $K \to \pi \pi$ is described. The method we use to consistently connect long and short distances is described and numerical results for the $\Delta I = 1/2$ rule and on $B_0$, the parameter relevant for the strong part of $\epsilon'/\epsilon$, are given in the chiral limit.

1. Introduction

The qualitative feature that $\Gamma(K^0 \to \pi^0\pi^0) \gg \Gamma(K^+ \to \pi^+\pi^0)$ is one of the oldest problems in kaon physics, the $\Delta I = 1/2$ rule. The isospin-2 final state amplitude $A_2$ is much smaller than the isospin-0 amplitude $A_0$, experimentally $|A_0/A_2| = 22.1$, while simple $W$-exchange naively predicts a ratio of $\sqrt{2}$. The work presented here has been published in \cite{1} and presented in \cite{2}. A review of Kaon physics is in \cite{3} and in the talks presented at Kaon99\cite{4}.

The underlying standard model process is the exchange of a $W$-boson but the large difference in the Kaon and $W$-mass enhances normally suppressed contributions by large factors $\ln(m_W^2/m_K^2) \approx 10$. At the same time, at low energies the strong interaction coupling $\alpha_S$ becomes very large which requires us to use non-perturbative methods at those scales.

The resummation of large logarithms at short-distance can be done using renormalization group methods. At a high scale the exchange of $W$-bosons is replaced by a sum over local operators. For weak decays these start at dimension 6. The scale can then be lowered using the renormalization group. The short-distance running is now known to two-loops \cite{5,6} (NLO) which sums the $(\alpha_S \ln(m_W/\mu))^n$ and $\alpha_S (\alpha_S \ln(m_W/\mu))^n$ terms. A review of this can be found in the lectures by A. Buras \cite{7}.

The major remaining problem is to calculate the matrix elements of the local operators at some low scale. I will address some progress on this issue in this talk. The main method was originally proposed in Ref. \cite{8} arguing that $1/N_c$ counting could be used to systematically calculate the matrix elements. Various improvements have since been introduced. The correct momentum routing was introduced in \cite{9}. The use of the extended Nambu-Jona-Lasinio model as an improved low energy model was introduced for weak matrix elements in \cite{10} and a short discussion of its major advantages and disadvantages can be found in \cite{11}. The results obtained were encouraging but a major problem remained. At NLO order the short-distance running becomes dependent on the precise definition of the local operators. This dependence should also be reflected in the calculations of the matrix elements as well as a correct identification of the scale of the renormalization group in the matrix element calculation. The more precise interpretation of the scheme of \cite{10} introduced in \cite{11a} was shown there at one-loop to satisfy the latter criterion. I present in the next section how this method also satisfies the latter at NLO and how it solves the first problem as well. We call this method the $X$-boson method.

The third section describes the numerical results we obtained in \cite{12} for the $\Delta I = 1/2$ rule in the chiral limit. The results obtained there are also reported here in the more standard $B_0$, defined here with respect to our $X$-boson scheme.

Other recent work on matrix elements is the work of \cite{13} and \cite{14} using the $1/N_c$ method as well. A more model dependent approach is \cite{15}.

2. The $X$-boson method

The basic idea is that we know how to hadronize currents or at least that this is a tractable problem. So we replace the effect of the local operators of $H_W(\mu) = \sum_i C_i(\mu)Q_i(\mu)$ at a scale $\mu$ by the exchange of a series of colourless $X$-bosons at a
low scale $\mu$. The scale $\mu$ should be such that the $1/N_c$ suppressed contributions have no longer large logarithmic corrections. Let me illustrate the procedure in the case of only one operator and neglecting penguin contributions. In the more general case all coefficients become matrices.

$$C_1(\mu) (s_L \gamma_\mu d_L)(\bar{u}_L \gamma_\mu u_L) \leftrightarrow X_\mu \left[ g_1 (s_L \gamma_\mu d_L) + g_2 (\bar{u}_L \gamma_\mu u_L) \right] .$$  \hspace{1cm} (1)

Summation over colour indices inside brackets is understood. We now determine $g_1, g_2$ as a function of $C_1$. This is done by equalizing matrix elements of $C_1 Q_1$ with the equivalent ones of $X$-boson exchange. The matrix elements are at the scale $\mu$ chosen such that perturbative QCD methods can still be used and thus we can use external states of quarks and gluons. To lowest order this is simple.

The tree level diagram from Fig. 1(a) is set equal to that of Fig. 1(b) leading to

$$C_1 = g_1 g_2 / M_X^2 .$$  \hspace{1cm} (2)

At NLO diagrams like those of Fig. 1(c) and 1(d) contribute as well leading to

$$C_1 \left( 1 + \alpha_S(\mu) r_1 \right) = \frac{g_1 g_2}{M_X^2} \left( 1 + \alpha_S(\mu) a_1 + \alpha_S(\mu) b_1 \log \frac{M_X^2}{\mu^2} \right) .$$  \hspace{1cm} (3)

At this level the scheme-dependence disappears. The left-hand-side (lhs) is scheme-independent. The right-hand-side can be calculated in a very different renormalization scheme from the lhs. The infrared dependence of $r_1$ is present in precisely the same way in $a_1$ such that $g_1$ and $g_2$ are scheme-independent and independent of the precise infrared definition of the external state in Fig. 1.

One step remains, we now have to calculate the matrix element of $X$-boson exchange between meson external states. The integral over $X$-boson momenta we split in two

$$\int_0^\infty \frac{dp_X}{p_X - M_X^2} \Rightarrow \int_0^{\mu_1} \frac{dp_X}{p_X - M_X^2} + \int_\mu_1^\infty \frac{dp_X}{p_X - M_X^2} .$$  \hspace{1cm} (4)

The second term involves a high momentum that needs to flow back through quarks or gluons and leads through diagrams like the one of Fig. 1(c) to a four-quark-operator with a coefficient

$$\frac{g_1 g_2}{M_X^2} \left( \alpha_S(\mu_1) a_2 + \alpha_S(\mu_1) b_1 \log \frac{M_X^2}{\mu^2} \right) .$$  \hspace{1cm} (5)

The four-quark operator thus needs to be evaluated only in leading order in $1/N_c$. The first term we have to evaluate in a low-energy model with as much QCD input as possible. The $\mu_1$ dependence cancels between the two terms in (4) if the low-energy model is good enough and all dependence on $M_X^2$ cancels out to the order required as well. Calculating the coefficients $r_1$, $a_1$ and $a_2$ gives the required correction to the naive factorization method as used in previous $1/N_c$ calculations.

It should be stressed that in the end all dependence on $M_X$ cancels out. The $X$-boson is a purely technical device to correctly identify the four-quark operators in terms of well-defined products of nonlocal currents.

3. Numerical results and conclusions

We now use the $X$-boson method with $r_1$ as given in (3) and $a_1 = a_2 = 0$, the calculation of the latter are in progress, and $\mu = \mu_1$. For $B_K$ we can extrapolate to the pole for the real case ($\hat{B}_K$) and in the chiral limit ($\hat{B}_K^0$) and for $K \to \pi \pi$ we can get at the values of the octet ($G_8$), weak mass term ($G_8'$) and 27-plet ($G_{27}$) coupling. We obtain

$$\hat{B}_K = 0.69 \pm 0.10 ; \hat{B}_K^0 = 0.25 \pm 0.40 ; G_8 = 4.3 - 7.5 ;$$  \hspace{1cm} (6)

$$G_{27} = 0.25 - 0.40 \text{ and } G_8' = 0.8 - 1.1 ,$$  \hspace{1cm} (6)

to be compared with the experimental values $G_8 \approx 6.2$ and $G_{27} \approx 0.48$.

In Fig. 1 the $\mu$ dependence of $G_8$ is shown and in Fig. 3 the contribution from the various different operators.
Fig. 2. The octet coefficient $G_8$ as a function of $\mu$ using the ENJL model and the one-loop Wilson coefficients, the 2-loop ones and those including the $r_1$ (SI). In the latter case also the factorization (SI fact) and the approach of [12] (SI quad) are shown.

Fig. 3. The composition of $G_8$ as a function of $\mu$. Shown are $Q_2$, $Q_1 + Q_2$, $Q_1 + Q_2 + Q_6$ and all 6 $Q_i$. The coefficients $r_1$ are included in the Wilson coefficients.

Table 1. $B_6$ as a function of $\mu$ using CHPT and the ENJL model. Numbers are calculated using the results of [1].

| $\mu$ (GeV) | CHPT | ENJL |
|------------|------|------|
| 0.6        | 1.19 | 2.27 |
| 0.7        | 0.93 | 2.16 |
| 0.8        | 0.70 | 2.11 |
| 0.9        | 0.50 | 2.11 |
| 1.0        | 0.36 | 2.14 |

at low energies reproduces the $\Delta I = 1/2$ rule quantitatively without any free parameters. The results for $B_6$ are encouraging with respect to the experimental value of $\epsilon/\epsilon'$.

References
[1] J. Bijnens and J. Prades, JHEP 01 (1999) 023 [hep-ph/9811472].
[2] J. Bijnens, hep-ph/9907514, hep-ph/9907307; J. Prades, hep-ph/9909247.
[3] http://hep.uchicago.edu/kaon99
[4] E. de Rafael, hep-ph/9902274.
[5] A. Buras, et al., Nucl. Phys. B370 (1992) 69; (Addendum) B375 (1992) 501; Nucl. Phys. B400 (1993) 75 [hep-ph/9211304].
[6] M. Ciuchini et al., Nucl. Phys. B415 (1994) 403 [hep-ph/9304257]; M. Ciuchini, et al., Z. Phys. C68 (1995) 239 [hep-ph/9501263].
[7] A. Buras, [hep-ph/9806471].
[8] W.A. Bardeen, et al., Nucl. Phys. B293 (1987) 787; Phys. Lett. B192 (1987) 138.
[9] W.A. Bardeen, et al., Phys. Rev. Lett. 62 (1989) 1343; J. Bijnens, et al., Phys. Lett. B257 (1991) 191.
[10] J. Bijnens and J. Prades, Nucl. Phys. B444 (1995) 523 [hep-ph/9502363]; Phys. Lett. B342 (1995) 331 [hep-ph/9409255].
[11] J. Bijnens, et al., Nucl. Phys. B474 (1996) 379 [hep-ph/9511388].
[12] T. Hambye et al., Phys. Rev. D58 (1998) 014017 [hep-ph/9802300]; T. Hambye et al. [hep-ph/9902334, hep-ph/9906434, hep-ph/9908232].
[13] M. Knecht, et al., Phys. Lett. B43 (1998) 255 [hep-ph/9809594]; Phys. Lett. B457 (1999) 227 [hep-ph/9812471]; E. de Rafael, hep-ph/9909210.
[14] S. Bertolini et al., Nucl. Phys. B514 (1998) 63 [hep-ph/9705244, hep-ph/9908268]; M. Franz et al., hep-ph/9908400.
[15] J. Bijnens, et al., Nucl. Phys. B521 (1998) 305 [hep-ph/9801326].
[16] J. Kambor, et al., Phys. Lett. B261(1991)496.