Synthesis of Vinylene-Linked Two-Dimensional Conjugated Polymers via the Horner–Wadsworth–Emmons Reaction

Dominik L. Pastoetter, Shunqi Xu, Mino Borrelli, Matthew Addicoat, Bishnu P. Biswal, Silvia Paasch, Arezoo Dianat, Heidi Thomas, Reinhard Berger, Sebastian Reineke, Eike Brunner, Gianareuilo Cuniberti, Marcus Richter, and Xinliang Feng*

Abstract: In this work, we demonstrate the first synthesis of vinylene-linked 2D CPs, namely, 2D poly(phenylenevinylene) [2D-PPQV1] and 2D poly(N-vinylcarbazole), via the Horner–Wadsworth–Emmons (HWE) reaction of C\textsubscript{2}-symmetric 1,4-bis(diethylphosphonomethyl)benzene or 4,4’-bis(diethylphosphonomethyl)biphenyl with C\textsubscript{2}-symmetric 2,3,8,9,14,15-hexa(4-formylphenyl)diquinoxicalino[2,3-a:2’,3’-c]phenanazine as monomers. Density functional theory (DFT) simulations unveil the crucial role of the initial reversible C–C single bond formation for the synthesis of crystalline 2D CPs. Powder X-ray diffraction (PXRD) studies and nitrogen adsorption-desorption measurements demonstrate the formation of a crystalline polymer, dual-pore structures with surface areas of up to 440 m2 g-1. More importantly, the optoelectronic properties of the obtained 2D-PPQV1 (E\textsubscript{g} = 2.2 eV) and 2D-PPQV2 (E\textsubscript{g} = 2.4 eV) are compared with those of cyano-vinylene-linked 2D-CN-PPQV1 (E\textsubscript{g} = 2.4 eV) produced by the Knoevenagel reaction and imine-linked 2D COF analog (2D-C-N-PPQV1, E\textsubscript{g} = 2.3 eV), unambiguously proving the superior conjugation of the vinylene-linked 2D CPs using the HWE reaction.

The exploration of poly(acetylene) in 1977 by ShiraKawa et al.\cite{ShiraKawa1977} has led to the development of various linear conjugated polymers, which have been widely used in applications such as organic field-effect transistors (OFETs),\cite{OFETs} organic light-emitting diodes (OLEDs),\cite{OLEDs} energy storage\cite{EnergyStorage} and conversion,\cite{Conversion} optical sensing,\cite{OpticalSensing} biomedical applications,\cite{Biomedical} and lasers.\cite{Lasers} In contrast to investigations of linear conjugated polymers and their applications, the successive increase in dimension caused by covalently connecting multiple strands to form two-dimensional conjugated polymers (2D CPs) remains mostly unexplored. Graphene is a prototype 2D conjugated polymer consisting of multiple strands of poly-p-phenylene that are interconnected, leading to a hexagonal network of sp2-hybridized carbon atoms.\cite{Graphene} Therefore, structurally defined 2D CPs with π-electron delocalization in two dimensions are expected to offer highly desirable properties for organic optoelectronics, such as an ideal band structure for superior charge carrier mobility, tailorable highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO–LUMO) band gaps, and defect tolerance enabled by increased dimensionality in comparison to that of linear conjugated polymers.\cite{DefectTolerance}

In contrast to the emergent 2D π-conjugated covalent organic frameworks (COFs), which can be regarded as 2D CPs and have thus far been dominated by Schiff base reactions,\cite{SchiffBase} the synthesis of 2D CPs with fully sp2-carbon-linked backbones still lacks effective protocols to generate crystalline polymer materials.\cite{FullSp2} In particular, sp2-carbon-linked (or vinylene-linked) 2D CPs provide high chemical and thermal stabilities as well as complete π-conjugation over the whole 2D polymer framework, making these materials highly attractive for various applications, such as in optoelectronics, spintronics, and energy storage.\cite{ChemicalStability, ThermalStability, Optoelectronics, Spintronics, EnergyStorage} Thus far, only Knoevenagel\cite{Knoevenagel} and other aldol-type condensation\cite{AldolType} reactions have been reported for the synthesis of crystalline vinylene-linked 2D CPs. However, Knoevenagel polycrystalline provides cyano-vinylene-linked 2D CPs in which additional...
cyano-groups on the conjugated backbone cause structural twisting due to steric hindrance.\cite{20}

In contrast, the reported synthesis of unsubstituted vinylene-linked 2D CPs via other aldol-type polycondensations has been limited to electron-deficient mesitylene building blocks, such as 2,4,6-trimethyl-1,3,5-triazine (TMT) and 3,5-dicyano-2,4,6-trimethylpyridine (DCTMP).\cite{17,18} Therefore, the synthesis of vinylene-linked 2D CPs with tailorable properties employing robust monomer combinations requires rapid development of novel synthetic protocols.

The Horner–Wadsworth–Emmons (HWE) reaction is a chemical reaction between phosphonates and aldehydes to produce predominantly trans-vinylene.\cite{23} It offers stabilized ylide carbanions and therefore reversibility of the initial C–C single bond formation.\cite{22,23} Due to the lower activation energy of the irreversible step for the trans-vinylene, the HWE reaction is not only thermodynamically but also kinetically controlled, favoring the formation of trans-vinyles.\cite{23}

In this work, we demonstrate the first synthesis of quinoxaline-incorporated two-dimensional poly(arylenevinylene)s, namely, 2D-poly(phenylenequinoxalinevinylene)\textsubscript{s} 2D-PPQV\textsubscript{1} and 2D-PPQV\textsubscript{2}, by employing the HWE reaction of 1,4-bis(diethylphosphonomethyl)benzene (1) and 4,4′-bis(die-thylphosphonomethyl)biphenyl (2) with 2,3,8,9,14,15-hexa(4-formylphenyl)diquinoxalino[2,3-a:2′,3′-c]pyrazine (HATN-6CHO).\textsubscript{3} Density functional theory (DFT) simulations unveil the crucial role of the initial reversible C–C single bond formation in the synthesis of crystalline 2D-PPQVs. The vinylene-linked dual-pore structures of 2D-PPQV\textsubscript{1} and 2D-PPQV\textsubscript{2} are disclosed by nitrogen physisorption measurements, showing two main pore size distributions and surface areas of up to 440 m2 g-1. Remarkably, a comparison of the optoelectronic properties of 2D-PPQV\textsubscript{1} (E\textsubscript{g} = 2.2 eV) and 2D-PPQV\textsubscript{2} (E\textsubscript{g} = 2.2 eV) with those of cyano-vinylene-linked 2D-CN-PPQV\textsubscript{1} (E\textsubscript{g} = 2.4 eV) and imine-linked 2D COF analog unambiguously demonstrates the narrower energy gap and superior conjugation of the 2D CPs synthesized by HWE polymerization.

To explore and understand the HWE reaction, different model reactions were first employed: We synthesized the A\textsubscript{2}B\textsubscript{2}-type model compound 4,4′-di((E)-styryl)-1,1′-biphenyl (4) from benzaldehyde (5) and 4,4′-bis(diethyl-phosphonomethyl)biphenyl (2) with Cs\textsubscript{2}CO\textsubscript{3} as the base, with an isolated yield of 80\% (Scheme 1a). Model compound 4 was fully characterized by nuclear magnetic resonance (NMR) spectroscopy and high-resolution matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry (HR-MALDI-TOF-MS) (see the Supporting Information). Under the same reaction conditions, an A\textsubscript{2}B\textsubscript{2}-type linear poly(p-phenylene vinylene) (lin-PPV) based on terephthalaldehyde (6) and 4,4′-bis(diethyl-phosphonomethyl)biphenyl (2) was synthesized in a yield of 79\% (Scheme 1b). Due to the low solubility of the unsubstituted lin-PPV, precipitation of the polymer occurred within hours.\textsubscript{13}C-NMR and FTIR spectroscopy manifested the successful formation of the linear polymer (see Supporting Information). Moreover, the MALDI-TOF-MS spectrum demonstrated a molecular weight of up to 8800 g mol-1 (corresponding to 31 repeat units), which suggested an efficient polymerization degree (see the Supporting Information).

Motivated by the efficiency of the model reactions and the linear polymerization, we explored the polymerization of the targeted 2D-PPQVs (Scheme 1c). To this end, we employed C\textsubscript{2}-symmetric HATN-6CHO (3) together with C\textsubscript{2}-symmetric phosphonates 1 and 2 as monomers. Screening of the A\textsubscript{2}B\textsubscript{2}-type polycondensation was attempted under various solvo-thermal conditions in a temperature range of 120–150°C. In detail, we screened the following bases: Rb\textsubscript{2}CO\textsubscript{3}, Cs\textsubscript{2}CO\textsubscript{3}, NaOH, and 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU). In addition, we examined mixtures of ortho-dichlorobenzene (o-DCB), 1,4-dioxane, N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), and mesitylene (Mes) as solvents for the polymerization. Polycondensation at 120°C in a mixture of DMAc and Mes (1:1) in the presence of Cs\textsubscript{2}CO\textsubscript{3} as the base was found to be the best condition for providing crystalline 2D-PPQV\textsubscript{1} and 2D-PPQV\textsubscript{2} (Scheme 1c). A summary of the synthesis conditions is presented in the Supporting Information (Table S1). After cooling the polymerization reaction to room temperature, the precipitate was filtered and washed with water, tetrahydrofuran (THF), NMP, N,N-dimethylformamide (DMF) and acetone several times. The resultant solid was dried under vacuum to afford 2D-PPQV\textsubscript{1} and 2D-PPQV\textsubscript{2} as red powders in yields of approximately 75 and 78\%, respectively. To further prove the generality of this synthetic approach, the HWE polymerization of 5-(4-formylphenyl)-[1,1′,3′,4′-terphenyl]-4,4′-dicarbaldehyde (TFPB) and 4,4′-bis(diethyl-phosphonomethyl)biphenyl (2) at 120°C in DMAc + o-DCB (1:1) in the presence of Cs\textsubscript{2}CO\textsubscript{3} as the base was also performed. The reaction scheme and analytical data for this achieved 2D-PPPV\textsubscript{1} are presented in the Supporting Information (Scheme S6 and Figure S34).

The chemical identity of 2D-PPQV\textsubscript{1} and 2D-PPQV\textsubscript{2} was confirmed by Fourier transform infrared (FTIR) spectroscopy (Figure 1a and Supporting Information) and 13C cross-polarization magic angle spinning (CP-MAS) NMR spectroscopy (Figure 1b and Supporting Information) in the solid-state. The FTIR spectra of 2D-PPQV\textsubscript{1} and 2D-PPQV\textsubscript{2} exhibit the same characteristic signals at 3025 cm-1 (aromatic C–H valence vibrations, ν(C–H)) and at 1603 cm-1 (vinylene stretches ν(C=C)). Weak carbonyl vibrations ν(C=O) at approximately 1685 cm-1 indicate the presence of -CHO end groups in the HATN moieties. In addition, weak signals at 950–1025 cm-1 indicate the presence of phosphate end groups (ν(PO) and ν(PO-C)). Peaks attributed to tertiary benzene and quaternary benzene ring C atoms appear at chemical shifts of 130 and 140 ppm, respectively. Thermogravimetric analyses (TGA\textsubscript{s}) demonstrate that 2D-PPQV\textsubscript{1} and 2D-PPQV\textsubscript{2} both have high thermal stabilities up to 400°C (Supporting Information, Figure S7). To demonstrate the excellent chemical stability against acidic and basic conditions, we immersed 2D-PPQV\textsubscript{1} and 2D-PPQV\textsubscript{2} in a potassium hydroxide solution (6 or 12 M KOH\textsubscript{aq}) and hydrochloric acid (6 or 12 M HCl\textsubscript{aq}), respectively, for five days. The PXRD and FTIR spectra did not identify any changes in the crystallinity or chemical nature of 2D-PPQV\textsubscript{1} and 2D-PPQV\textsubscript{2} (Supporting Information, Figures S4, and S5).
The crystalline layered structures of 2D-PPQV1 and 2D-PPQV2 were manifested by experimental and simulated PXRD patterns (Figures 1c,d). The first reflection appeared at 3.6° for 2D-PPQV1 and 3.2° for 2D-PPQV2, which are attributed to the (100) plane. In addition, 2D-PPQV2 showed a reflection at 5.6°, which is attributed to the (210) plane. The simulated PXRD patterns were optimized by using the density functional tight-binding (DFTB) method. From the optimized monolayer structures, three stacking modes were investigated (Supporting Information), namely, eclipsed (AA), staggered (AB), and slipped AA (AA slip) stacking. These three stacking modes all yield lattice parameters that are too large with respect to the lattice parameters suggested by the PXRD pattern, and thus, a fourth stacking mode, wherein the linkers connect to centers in different “layers”, in effect creating a zig-zag layer, was modeled (AA mismatch).

Both 2D-PPQV1 and 2D-PPQV2 adopted AA mismatch stacking, with per-layer stabilization energies of 159 and 180 kJ mol⁻¹, respectively (see a comparison in Table S2–S7, and Figure S15–S17). Pawley refinements were performed using the Reflex package in Accelrys’s Materials Studio 7.0 software against the experimental pattern of 2D-PPQV1, giving rise to the unit cell parameters of

\[a = 28.5, b = 28.2, c = 7.0, \alpha = 90.8°, \beta = 90.6°, \gamma = 57.1°, \]

with agreement factors of \(R_{wp} = 5.6\% \) and \(R_p = 8.4\% \). Similarly, for 2D-PPQV2, the resulting unit cell parameters were

\[a = 31.3, b = 31.9, c = 7.0, \alpha = 89.9°, \beta = 89.7°, \gamma = 60.0°, \]

with agreement factors of \(R_{wp} = 5.6\% \) and \(R_p = 9.9\% \) (one unit cell contains two layers). The difference plots in Figures 1c and 1d show that the refined diffraction patterns are consistent with the experimental PXRD data.

The permanent porosity and pore size distribution of 2D-PPQV1 and 2D-PPQV2 were investigated by nitrogen physisorption analysis at 77 K. The Brunauer-Emmett-Teller (BET) surface areas of 2D-PPQV1 and 2D-PPQV2 were determined to be 440 m² g⁻¹ and 100 m² g⁻¹, respectively (Supporting Information, Figures S21, and S22). Further details of the BET measurements are described in the Supporting Information. The isotherm plots of both 2D-PPQV1 and 2D-PPQV2 displayed a rise in the low-pressure...
Figure 1. a) IR spectra and b) 1^C-siNMR assignment of 2D-PPQV1 and 2D-PPQV2, respectively. c) residual dimethylformamide from the washing process; PXRD data of c) 2D-PPQV1 and d) 2D-PPQV2. Experimental (black) and Pawley-refined PXRD (red), difference plot (gray), simulated PXRD with AA mismatch stacking (blue), and the model of the simulated eclipsed layer mismatch structure shown in the inset.

Next, the optoelectronic properties of 2D-PPQV1 and 2D-PPQV2 were investigated by UV/Vis absorption and fluorescence spectroscopy in 2-propanol dispersions with a concentration of 0.2 mg mL\(^{-1}\). To determine the critical role of the conjugation linkage on the optoelectronic properties of the corresponding 2D CPs, we also synthesized a cyano-vinylene-linked 2D-CN-PPQV1 via Knoevenagel condensation and an imine-linked COF 2D-C-N-PPQV1 (Scheme 1c and Supporting Information). Remarkably, UV/Vis absorption measurements reveal absorption edges at 575, 540, and 592 nm, corresponding to optical energy gaps of 2.31, 2.39, 2.20, and 2.23 eV for 2D-C-N-PPQV1, 2D-CN-PPQV1, 2D-PPQV1, and 2D-PPQV2, respectively (Figure 3a). The significantly lower energy gap for 2D-PPQV1 and 2D-PPQV2 in comparison to that of 2D-CN-PPQV1 reveals the superior conjugation of the unsubstituted vinylene-linked 2D CPs, which can be attributed to the structural planarity of their conjugated linkages and therefore increased electron delocalization over the whole sp\(^2\)-carbon backbones.

The fluorescence spectra of 2D-C-N-PPQV1, 2D-CN-PPQV1, 2D-PPQV1, and 2D-PPQV2 are presented in Figure 3b, respectively. Remarkably, all 2D CPs exhibited significantly different emission behavior. In comparison to the vinylene- and cyano-vinylene-linked 2D CPs, the imine-linked 2D-C-N-PPQV1 showed negligible fluorescence. Emission maxima were observed at 564, 629, and 629 nm for 2D-CN-PPQV1, 2D-PPQV1, and 2D-PPQV2, respectively (Figure 3b). Therefore, the emission maxima of 2D-CN-PPQV1 and 2D-PPQV2 underwent a large bathochromic shift of 65 nm compared to that of 2D-CN-PPQV1, emphasizing the critical role of linkage for the enhanced conjugation of the whole 2D CP backbone. The photoluminescence quantum yield (PLQY) was measured to be 5.6, 2.5, and 2.7% for 2D-CN-PPQV1, 2D-PPQV1, and 2D-PPQV2, respectively. We further performed UV/Vis absorption by acid-base titration, showing the reversible nature of the protonation of quinoxaline moieties. In contrast to those in 2-propanol, the absorption spectra of 2D-PPQV1 and 2D-PPQV2 in 6 M
HCl demonstrated a dramatic bathochromic shift, with an absorption edge in the near-infrared region at 850 nm. The shift of the absorption edges can be explained by the protonation of the quinoxaline moieties into cationic resonance structures, which are distributed over the HATN units. This great amount of resonance structures leads to a lack of charge separation.[23] Thus, the optical energy gaps of the protonated 2D-PPQV1 and 2D-PPQV2 were determined to be 1.5 eV. Upon the addition of a 12 M NaOH solution to the HCl dispersion of 2D-PPQV1 and 2D-PPQV2, the initial absorption spectra of the deprotonated 2D CPs were fully recovered (see Supporting Information Figure S30). The reversible protonation and deprotonation process of crystalline 2D CPs. Importantly, optoelectronic property investigations demonstrated the superior conjugation of pristine vinylene-linked 2D CPs with narrow band gaps and large bathochromic shifts of emission compared to those synthesized by the Knoevenagel approach. Thus, HWE polymerization paves a new pathway to the development of unprecedented vinylene-linked 2D CPs with potential applications in (opto)electronics, sensing, catalysis, energy storage, and conversion.

Acknowledgements

This research was supported financially by the EU Graphene Flagship (GrapheneCore, No. 881603), the Collaborative Research Centre (CRC) 1415 “Chemistry of Synthetic Two-Dimensional Materials” (No. 417590517), H2020-MSCA-ITN (ULTIMATE, No. 813036), the Center for Advancing Electronics Dresden (caed), and the ERC Consolidator Grant (T2DCP, No. 819698). We thank M. Sc. SangWook Park for SEM, EDX, and TEM measurements, Dr. Philipp Schlender for PXRD measurements, Dr. Valeriya Tkachova for mass spectroscopy, Matthias Kluge for TGA measurements, M. Sc. Tobias Nickel for NMR measurements, M. Sc. Marcus Rauche for Raman measurements, Dr. Frank Simon, and M. Sc. Friedrich Schwotzer for the use of facilities. We also acknowledge Dipl.-Chem. Daniel Becker, Dr. Naisa Chandrasekhar, B. Sc. Albrecht Waentig, Dr. Thorsten Lohr, Dr. Renhao Dong, Dr. Irena Senkovska, and Dr. Hanjun Sun for practical support as a student research assistant. Computational
Conflict of interest

The authors declare no conflict of interest.

Keywords: 2D conjugated polymers · 2D covalent organic frameworks · 2D materials · Horner–Wadsworth–Emmons reaction · vinylene-linked