ITERATION OF STRONGLY κ^+-CC FORCING POSETS

JAMES CUMMINGS, MIRNA DŽAMONJA, AND ITAY NEEMAN

1. Introduction

One of the basic results in iterated forcing states that a finite support iteration of ccc forcing is ccc. It is natural to look for extensions of this result: the most natural setting for generalisations is to let κ be an uncountable regular cardinal such that $\kappa^{<\kappa} = \kappa$, and consider κ-support iterations in which each iterand is κ-closed and κ^+-cc. It is known that (even for the case where $\kappa = \aleph_1$ and CH holds) such iterations do not in general have κ^+-cc \cite{5}, so we will need to strengthen the closure and chain condition hypotheses on the iterands.

Shelah \cite{4} proved that if we strengthen the chain condition assumption a lot and the closure assumption a little then we get a useful iteration theorem. More precisely, let $\kappa = \kappa^{<\kappa}$ and say that a poset P is *regressively κ^+-cc* if it enjoys the following property: for every sequence $(p_i)_{i<\kappa^+}$ of conditions in P there exist a club set $E \subseteq \kappa^+$ and a regressive function f on $E \cap \text{Cof}(\kappa)$ such that $f(\alpha) = f(\beta)$ implies p_α is compatible with p_β. This looks technical, but can be motivated by the observation that if P was proved to be κ^+-cc by the standard Δ-system and amalgamation arguments then the proof very likely shows that P is regressively κ^+-cc. Shelah’s iteration theorem states that a κ-support iteration with κ-closed, well met, and regressively κ^+-cc iterands is regressively κ^+-cc. Here a poset is *well met* if any pair of compatible conditions has a greatest lower bound (glb): Shelah \cite{4} showed that in general this technical condition can not be removed.

We will prove an iteration theorem where the chain condition hypothesis is strengthened in a different direction. Motivation for this work includes some results by Mekler \cite{2} where the ccc is proved using elementary submodels, and the more recent surge of interest (initiated by Mitchell’s work on $I_{[\omega_2]}$ \cite{3}) in the notion of strong properness.

In Section 2 we give some background on forcing posets, elementary submodels and generic conditions. Section 3 contains the statement and proof of our main theorem. Finally Section 4 discusses some generalisations.

2. Background

For the rest of this paper we fix an uncountable regular cardinal such that $\kappa^{<\kappa} = \kappa$. We make the convention that when we write “$N \prec H_\theta$” we mean “$N \prec (H_\theta, \in ,<_\theta)$” where $<_\theta$ is a wellordering of H_θ. The structure $(H_\theta, \in ,<_\theta)$ has definable Skolem functions, so that if $N,N' \prec H_\theta$ then $N \cap N' \prec H_\theta$. When $N \prec H_\theta$ we write \bar{N} for the transitive collapse of N, $\rho_N : N \simeq \bar{N}$ for the transitive collapsing map, and $\pi_N : \bar{N} \simeq N$ for its inverse.

Definition 1. Let Q be a forcing poset and let $M \prec H_\theta$. A model M is *κ-good for Q* if and only if $\kappa, Q \in M$, $|M| = \kappa$ and $^{<\kappa}M \subseteq M$.

Remark 1. If $Q \in H_\theta$, then the set of M which are κ-good for Q is stationary in $P_{\kappa^+}H_\theta$.

When M is κ-good for Q and G is Q-generic over V, we will study the subset $G \cap M$ of $Q \cap M$. In a mild abuse of notation we sometimes write \hat{G} for the subset $\rho_M[G \cap M]$ of the poset Q. We write $M[G]$ for the set of elements of form $\hat{\tau}$ where τ is a Q-name in M.

Definition 2. Let M be κ-good for Q. Then:

1. A condition $q \in Q$ is (M, Q)-generic iff q forces that \hat{G} is Q-generic over M, and strongly (M, Q)-generic iff it forces that \hat{G} is Q-generic over V.
2. If $q \in Q$ and $r \in Q \cap M$, then r is a strong properness residue of q (for M) iff for every $s \in Q \cap M$ with $s \leq r$, q is compatible with s. We write spr to abbreviate strong properness residue.

Assume that M is κ-good for Q. The following facts are standard:

- If G is Q-generic over V, then $M[G] \prec H_\theta[G] = H_\theta[V[G]]$. If in addition Q is κ-closed then $V[G] = H_\theta[V[G]]$. If in addition Q is κ-closed then $V[G] = H_\theta[V[G]]$. If in addition Q is κ-closed then $V[G] = H_\theta[V[G]]$.
- A condition q is (M, Q)-generic iff q forces that $M[\hat{G}] \cap V = M$. In this case q forces that π_M can be lifted to an elementary embedding $\pi_M : M[\hat{G}] \rightarrow H_\theta[G]$.
- A condition q is strongly (M, Q)-generic iff the set of conditions in Q which have a spr for M is dense below q.
- The poset Q is κ^+-cc iff every condition in Q is (M, Q)-generic.

Definition 3. A forcing poset Q is strongly κ^+-cc if and only if for all large θ, for every $M \prec H_\theta$ which is κ-good for Q, every condition in Q is strongly (M, Q)-generic. Equivalently, densely many conditions have a spr for M, and this implies that in fact all conditions have a spr for M.

3. An iteration theorem

Theorem 1. Let κ be uncountable with $\kappa^{<\kappa} = \kappa$. Let P be an iteration with $< \kappa$-supports such that each iterand Q_α is forced at stage α to have the following properties:

1. Q_α is strongly κ^+-cc.
2. Q_α is well met.
3. Every directed subset of Q_α of size less than κ has a glb.

Then P is strongly κ^+-cc.

Depending on the exact way one defines “directed” in condition [3], condition [3] may be read to subsume condition [2].

Before proving the theorem, we digress briefly to illustrate the difficulties and motivate the main idea. Consider the case of an iteration $P_2 = Q_0 * Q_1$ of length two, where Q_0 is strongly κ^+-cc and forces that Q_1 is strongly κ^+-cc. Let M be κ-good for P_2, and let (q_0, q_1) be an arbitrary condition for which we aim to construct a spr. If r_0 is a spr for q_0 and M, while \hat{r}_1 names a spr for q_1 and $M[\hat{G}_0]$, then we are not warranted in claiming that (r_0, \hat{r}_1) is a spr for (q_0, q_1). The issue is that while \hat{r}_1 names something which is the denotation of a term in M, there is no reason to think \hat{r}_1 itself is in M. In this simple case we can cope by first extending q_0 to some q_0', which determines the identity of some term r_1' which denotes a spr for \hat{q}_1, ...
and then choosing \(r_0^* \) which is a spr for \(q_0^* \): this clearly becomes problematic for an iteration of infinite length. We will deal with this kind of problem by building a spr on every relevant coordinate simultaneously. This is similar to the approach taken by [1], but without a need for side conditions.

Remark 2. It is easy to see that condition \(3 \) is preserved by iteration with \(< \kappa \)-supports, so that \(\mathbb{P} \) satisfies it. To be explicit, if \(D \) is a directed subset of \(\mathbb{P} \) with \(|D| < \kappa \) then we construct a glb \(p \) for \(D \) inductively. We build \(p \) so that \(\text{supp}(p) = \bigcup_{t \in D} \text{supp}(t) \): at stage \(i \) we have that \(p \upharpoonright i \) is a glb for \(\{ t \upharpoonright i : t \in D \} \), observe that \(p \upharpoonright i \) forces \(\{ t(i) : t \in D \} \) to be directed, and choose \(p(i) \) to name a glb for this set.

Proof of Main Claim: We let \(s \) be a glb \(\leq \kappa \), \(q \) be arbitrary. By Remark 2, \(\text{supp}(q) = \bigcup_n \text{supp}(p_n) \) and \(q \upharpoonright \alpha \) forces that \(q(\alpha) \) is the glb of the sequence \((p_n(\alpha)) \).

We may choose \(p_{i+1} \) because (using Remark 2) \(\mathbb{P} \) is \(\kappa \)-closed. At the end we set \(H = \bigcup_n H_n \). By Remark 2, the sequence \((p_n) \) has a glb \(q \).

We record some information:

1. By construction \(H < H_\theta \), \(|H| < \kappa \) and \(p, M \in H \).
2. By Remark 2, \(\text{supp}(q) = \bigcup_n \text{supp}(p_n) \) and \(q \upharpoonright \alpha \) forces that \(q(\alpha) \) is the glb of the sequence \((p_n(\alpha)) \).
3. If \(g = \{ x \in \mathbb{P} \cap H : \exists i \leq \kappa \\} \), then \(g \) is a filter on \(\mathbb{P} \cap H \) which meets every dense open set in \(H \).
4. By definition, \(q \) is the glb of \(g \). We claim that \(g = \{ x \in \mathbb{P} \cap H : q \leq x \} \). Clearly if \(x \in g \) then \(q \leq x \), and if \(x \notin g \) then by genericity there is \(n \) such that \(p_n \perp x \) and so \(q \not\leq x \).
5. We claim that the support of \(q \) is \(H \cap \gamma \). By construction \(\text{supp}(p_n) \subseteq H_n \cap \gamma \) for all \(n \), and so \(\text{supp}(q) \subseteq H \cap \gamma \); conversely if \(\alpha \in H \cap \gamma \) then by genericity there is \(n \) such that \(\alpha \in \text{supp}(p_n) \).

The set \(g \cap M \) is a directed subset of \(\mathbb{P} \) and \(|g \cap M| \leq |H| < \kappa \), so \(g \cap M \) has an glb \(r \). Since \(\kappa M \subseteq M \), \(g \cap M \in M \) and so by elementarity \(r \in M \).

Main Claim: \(r \) is a spr for the condition \(q \) and the model \(M \).

Proof of Main Claim: We let \(s \leq r \) with \(s \in M \) and build inductively a condition \(q^* \) such that \(q^* \) is a common refinement of \(s \) and \(q \). The induction is easy except at coordinates \(\alpha \in \text{supp}(s) \cap \text{supp}(q) \), so fix such an \(\alpha \). The support of \(s \) is contained in \(M \), and the support of \(q \) is contained in \(H \), so \(\alpha \in H \cap M \cap \gamma \). Note that \(s \leq r \) and by induction \(q^* \upharpoonright \alpha \leq s \upharpoonright \alpha \), so that \(q^* \upharpoonright \alpha \models s(\alpha) \leq r(\alpha) \).

For each \(i < \omega \), define a set \(D_i \subseteq \mathbb{P} \) as follows: \(D_i \) is the set of \(t \in \mathbb{P} \) such that either \(t \perp p_i \), or \(t \leq p_i \) and there is \(\dot{r} \in M \) such that \(t \upharpoonright \alpha \) forces \(t(\alpha) \leq \dot{r} \), and
is a spr for \(p_i(\alpha) \) and \(M[G_\alpha]^\omega \). Since \(\alpha, p_i, M \in H \) we have by elementarity that \(D_i \in H \).

We claim that \(D_i \) is dense. Let \(t_0 \in \mathbb{P} \) be arbitrary. If \(t_0 \) is incompatible with \(p_i \) then \(t_0 \in D_i \), otherwise we find \(t_1 \leq t_0, p_i \). Extending \(t_1 \) to \(\alpha \) if necessary, we may assume that \(t_1 \upharpoonright \alpha \) determines some \(\dot{r} \in M \) which denotes a spr for \(t_1(\alpha) \); now \(t_1 \upharpoonright \alpha \) forces that \(\dot{r} \) and \(t_1(\alpha) \) are compatible so extending \(t_1 \) at coordinate \(\alpha \) we obtain a condition \(t_2 \leq t_1 \) such that \(t_2 \upharpoonright \alpha \) forces \(t_2(\alpha) \leq \dot{r} \). Since \(t_2 \leq t_1 \leq p_i \) we have \(t_2 \upharpoonright \alpha \vdash t_1(\alpha) \leq p_i(\alpha) \), so \(t_2 \upharpoonright \alpha \) forces that \(\dot{r} \) is a spr for \(p_i(\alpha) \).

By the construction of the sequence \((p_i) \), we find \(j \) such that \(p_j \in D_i \). From the definitions \(p_j \leq p_i \) (that is \(j \geq i \)), and \(p_j \upharpoonright \alpha \) forces \(p_j(\alpha) \leq \dot{r} \) and \(\dot{r} \) is a spr for \(p_j(\alpha) \) for some \(\dot{r} \in M \). As \(p_j, p_i, \alpha, M \in H \) we may assume by elementarity that \(\dot{r} \in M \cap H \). Now if we let \(r^* \) be the condition in \(\mathbb{P} \) that has \(\dot{r} \) at coordinate \(\alpha \) and is otherwise trivial, \(p_j \leq r^* \in M \cap H \) so that \(r^* \in g \cap M \).

So \(r \leq r^* \), and since \(q^* \upharpoonright \alpha \leq s \upharpoonright \alpha \leq r \upharpoonright \alpha \) we have \(q^* \upharpoonright \alpha \vdash r(\alpha) \leq r^*(\alpha) = \dot{r} \).

Since also \(q^* \upharpoonright \alpha \leq p_j \upharpoonright \alpha \), \(q^* \upharpoonright \alpha \) forces that \(\dot{r} \) is a spr for \(p_j(\alpha) \). Since \(q^* \upharpoonright \alpha \vdash s(\alpha) \leq r(\alpha) \leq \dot{r} \), \(q^* \upharpoonright \alpha \) forces that \(s(\alpha) \) is compatible with \(p_j(\alpha) \).

Now we force below \(q^* \upharpoonright \alpha \) to obtain a generic object \(G_\alpha \), and work in \(V[G_\alpha] \) to compute a lower bound for the decreasing sequence \((s(\alpha) \upharpoonright p_j(\alpha)) \). Let \(q^*(\alpha) \) name a lower bound, then \(q^* \upharpoonright \alpha \) forces that \(q^*(\alpha) \) is a lower bound for the sequence \((p_j(\alpha)) \), and (since \(q^* \upharpoonright \alpha \leq g \upharpoonright \alpha \)) also that \(q(\alpha) \) is the glb for the sequence \((p_j(\alpha)) \). Hence \(q^* \upharpoonright \alpha \) forces that \(q^*(\alpha) \leq q(\alpha) \). Hence \(q^* \upharpoonright \alpha \vdash q^*(\alpha) \leq q(\alpha), s(\alpha) \) as required.

\[\square \]

4. Further results

With more work we can weaken the closure hypotheses on the iterands as follows: it is enough to assume that each iterand \(\mathbb{Q}_\alpha \) is forced to be \(\kappa \)-strategically closed, to be countably closed, and to satisfy the strengthened form of countable strategic closure in which move \(\omega \) is required to be a glb for the moves played at finite stages.

The iteration theorem can also be generalised in other directions. For example let \(S \subseteq \kappa^+ \cap \text{Cof}(\kappa) \) be stationary, and define a poset to be \(S \)-strongly \(\kappa^+ \)-cc if sprs exist for \(\kappa \)-good models \(M \) with \(M \cap \kappa^+ \in S \). Then \(S \)-strongly \(\kappa^+ \)-cc forcing posets preserve the stationarity of \(S \), and an iteration of \(S \)-strongly \(\kappa^+ \)-cc posets with appropriate closure properties is \(S \)-strongly \(\kappa^+ \)-cc. To prove the generalisation to \(S \)-strongly \(\kappa^+ \)-cc posets, simply restrict throughout to \(M \) such that \(M \cap \kappa^+ \in S \).

We briefly sketch the proof of the generalisation weakening the closure hypothesis on the iterands.

We can construct \(p_i \) and \(q \) as in the proof of Theorem [1] from the weaker hypotheses. \(p_{i+1} \) can be constructed using \(\kappa \)-strategic closure. If \(\sigma \) is a strategy for player II to produce descending chains of length \(\omega \) with a glb, and taking \(\sigma \in H_0 \), one can use the fact that \(p_{i+1} \) meets all dense open sets in \(H \) to find a play \((u_n)_{n<\omega} \) by \(\sigma \) so that \(p_{i+1} \leq u_{2i+1} \leq u_{2i} \leq p_i \). This ensures that \((p_i)_{i<\omega} \) has a glb.

The final argument in the proof of Theorem [1] obtaining a lower bound for the sequence \((s(\alpha) \upharpoonright p_i(\alpha)) \), goes through with countable closure.

The only other use of closure in the proof is in defining \(r \), a glb for \(g \cap M \). We prove that this can be done with the weakened assumptions.

The support of \(r \) is \(M \cap H \cap \gamma \). We work by induction on \(\alpha \in M \cap H \cap \gamma \) to define \(r(\alpha) \), assuming that \(r \upharpoonright \alpha \) has been defined and is a glb for \((g \cap M) \upharpoonright \alpha \). Passing to the transitive collapse \(H \) of \(H \), we have that \(\bar{g} = \rho_H[\bar{g}] \) is generic over
\(\bar{H}\) for \(\rho_H(\mathbb{P})\). So \(\bar{g} \upharpoonright \alpha\) is generic for \(\rho_H(\mathbb{P} \upharpoonright \alpha)\) over \(\bar{H}\), and \(\bar{g}(\alpha)\) is generic for \(\bar{Q}_\alpha = \rho_H(\bar{Q}_\alpha[\bar{g} \upharpoonright \alpha])\) over \(H[\bar{g} \upharpoonright \alpha]\).

By the strong chain condition, \(\bar{g}(\alpha) \cap \rho_H(M)[\bar{g} \upharpoonright \alpha]\) is generic over \(\rho_H(M)[\bar{g} \upharpoonright \alpha]\).

Using the strategic closure of the \(\alpha^{th}\) iterand it follows that for each \(i\), there is a lower bound \(\dot{w}_i \in \bar{g}(\alpha) \cap \rho_H(M)[\bar{g} \upharpoonright \alpha]\) for \(\bar{g}(\alpha) \cap \rho_H(H_i)[\bar{g} \upharpoonright \alpha]\). Let \(\tau_\alpha \in H \cap M\) be a strategy for player II to produce descending chains of length \(\omega\) with a glb in \(\bar{Q}_\alpha\). Using the genericity of \(\bar{g}(\alpha) \cap \rho_H(M)[\bar{g} \upharpoonright \alpha]\) one can pick \(\dot{w}_i\) to be part of a play by \(\rho_H(\bar{\tau}_\alpha)[\bar{g} \upharpoonright \alpha]\). Let \(\dot{w}_i\) name \(w_i\). Note that by genericity the fact that the conditions \(\dot{w}_i\) are part of a play by \(\rho_H(\bar{\tau}_\alpha)\) is forced by conditions in \(\bar{g}(\alpha) \cap \rho_H(H_i)[\bar{g} \upharpoonright \alpha]\). Then \(r \upharpoonright \alpha\), being a lower bound for \((g \cap M) \upharpoonright \alpha\), forces that the conditions \(\pi_H(\dot{w}_i)\) are part of a play according to \(\bar{\tau}_\alpha\), and therefore \((\pi_H(\dot{w}_i))_{i<\omega}\) has a glb. Let \(\dot{r}(\alpha)\) name this glb. One can check that then \(r \upharpoonright \alpha + 1\) is a glb for \(g \upharpoonright \alpha + 1\).

References

[1] T. Gilton and I. Neeman, *Side conditions and iteration theorems*, available at http://www.math.ucla.edu/~ineeman/scit.pdf/

[2] A. Mekler, *Universal structures in power \(\aleph_1\)*, Journal of Symbolic Logic 55 (1990), 466–477.

[3] W. Mitchell, *\(I[\omega_1]\) can be the nonstationary ideal on Cof(\(\omega_1\))*\), Transactions of the American Mathematical Society 361 (2009), 561–601.

[4] S. Shelah, *A weak generalization of MA to higher cardinals*, Israel Journal of Mathematics 30 (1978), 297–306.

[5] S. Shelah and L. Stanley, *Generalized Martin’s Axiom and Souslin’s hypothesis for higher cardinals*, Israel Journal of Mathematics 43 (1982), 225–236.

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh PA 15213-3890, USA

E-mail address: jcumming@andrew.cmu.edu

School of Mathematics, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK

E-mail address: M.Dzamonja@uea.ac.uk

Department of Mathematics, University of California, Los Angeles, Los Angeles CA 90095-1555, USA

E-mail address: ineeman@math.ucla.edu