A survey on self-assessed well-being in a cohort of chronic locked-in syndrome patients: happy majority, miserable minority

Marie-Aurélie Bruno, Jan L Bernheim, Didier Ledoux, Frédéric Pellias, Athena Demertzí, Steven Laureys

ABSTRACT

Objectives: Locked-in syndrome (LIS) consists of anarthria and quadriplegia while consciousness is preserved. Classically, vertical eye movements or blinking allow coded communication. Given appropriate medical care, patients can survive for decades. We studied the self-reported quality of life in chronic LIS patients.

Design: 168 LIS members of the French Association for LIS were invited to answer a questionnaire on the Anamnestic Comparative Self-Assessment (ACSA) scale, whose +5 and −5 anchors were their memories of the best period in their life before LIS and their worst period ever, respectively.

Results: 91 patients (54%) responded and 26 were excluded because of missing data on quality of life. 47 patients professed happiness (median ACSA +3) and 18 unhappiness (median ACSA −4). Variables associated with unhappiness included anxiety and dissatisfaction with mobility in the community, recreational activities and recovery of speech production. A longer time in LIS was correlated with happiness. 58% declared they did not wish to be resuscitated in case of cardiac arrest and 7% expressed a wish for euthanasia.

Conclusions: Our data stress the need for extra palliative efforts directed at mobility and recreational activities in LIS and the importance of anxiolytic therapy. Recently affected LIS patients who wish to die should be assured that there is a high chance they will regain a happy meaningful life. End-of-life decisions, including euthanasia, should not be avoided, but a moratorium to allow a steady state to be reached should be proposed.

INTRODUCTION

Locked-in syndrome (LIS) is defined by quadriplegia (or quadriaparesis) and aphasis (or severe hypophonia) with a primary mode of communication by eye movements or blinking. Most often LIS is caused by an acute (vascular) anterior pontine brainstem lesion. The syndrome can be subdivided on the basis of motor disability: ‘classic’ LIS is characterised by quadriplegia and aphasis with coded communication by vertical eye movement or blinking; ‘incomplete’ LIS patients have remnants of voluntary motion other than vertical eye movement; and ‘total’ LIS is defined by complete immobility,
Self-assessed well-being in locked-in syndrome

Article summary

Article focus

Strengths and limitations of this study

- This study is the largest survey of chronic locked-in syndrome patients ever performed and assesses the patients’ own self-assessed quality of life, general well-being and end-of-life wishes. The clinical and ethical implications are evident and important for the medical community at large.
- We also identify variables associated with unhappiness that can be improved and permit evidence-based policy changes in the management of these challenging and vulnerable patients.
- Our study had a low response rate and may be subject to selection bias, and the results might therefore not be representative of chronic LIS patients in general since all participants were members of a patient association (ie, Association of Locked-in Syndrome, ALIS), indicating a stable condition and possibly a degree of social integration. Nonetheless, as discussed in the article, quality of life research has many methodological pitfalls, especially in this low-incidence pathology with limited and difficult communication.

METHODS

Participants and procedures

In collaboration with the French association for LIS (ALIS; http://alis-assoc.fr/), a non-profit association created in 1997 to help LIS patients and their families, 168 patients who were members of LIS were invited (in January 2008) by letter to fill in a structured questionnaire, aided by the patient’s proxy. The questionnaire included items about socio-demographic (age, gender, educational level, place and condition of living, religiosity, net monthly household income), clinical (etiology and duration of LIS, level of speech production and motor recovery) and QoL and SWB variables. We used the French postal version of the Reintegration to Normal Living Index (RNLI),9–12 which evaluates the degree to which a patient has been able to return to a normal life. The RNLI is an 11-item scale that covers areas such as participation in recreational and social activities and movement within the community, and how comfortable the individual is in his or her role in the family and with other relationships. Given the specific constraint of eye-coded communication in the surveyed LIS patients, instead of the visual analogue scale11 a 4-point Likert scale was used as described elsewhere,13 where a value of 1 was assigned to ‘no’, 2 to ‘rather no’, 3 to ‘rather yes’ and 4 to ‘yes’. The scores were normalised to 100, with a score of 100 indicating that the participants were fully satisfied, scores of 60–99 indicating mild to moderate restrictions in self-perceived community reintegration, and scores less than 60 indicating severe restrictions in self-perceived community reintegration, as previously reported.14 Overall SWB was rated by means of the Anamnestic Comparative Self-Assessment (ACSA)15 scale, whose biographical +5 and −5 scale anchors were the patients’ memories of the best period in their life before LIS and their worst period ever (figure 1). Participants were also asked about the presence of depressive symptoms (yes, no), pain and anxiety (none, moderate, extreme) and end-of-life issues: suicidal thoughts (never, occasionally, often), resuscitation in case of cardiac arrest (yes, no) and euthanasia (ensigned, never envisaged). Completion of the anonymous questionnaire was voluntary and taken as consent for participation in the survey. The study was approved by the ethics committee of the Faculty of Medicine of the University of Liège.

Statistical analysis

Data were analysed using Stata 10.0 (Stata, 2007, Stata Statistical Software, TX, USA). The normality distribution of continuous variables was assessed using Shapiro-Wilk tests. For the descriptive analyses, we used subject counts and percentages for categories, calculating mean±SD or median with IQR for continuous variables.

Figure 1 Anamnestic Comparative Self-Assessment scale. LIS, locked-in syndrome.
variables. Only questions with a response rate above 70% were deemed representative of the population and considered for further analyses. ACSA ratings were divided into happy (ratings 0 to 5) and unhappy (ratings –1 to –5). Univariate associations between the dependent variable happy/unhappy and the RNLI and end-of-life questions co-variables were assessed using the Student t test, Wilcoxon or χ^2 tests as appropriate. Multivariable backward stepwise logistic regression was used to assess the associations between happiness status and the significant covariates selected by the univariate analysis. Analyses were performed using casewise deletion. Differences were considered as significant at $p<0.05$.

RESULTS
A total of 168 LIS patients were invited to fill in the structured questionnaire. Seventy-seven patients did not reply (46%). Among the 91 LIS patients who replied, 26 responses (29%) had missing RNLI and/or ACSA data and were excluded: five subjects gave ACSA ratings but failed to answer RNLI questions and 21 failed to report ACSA ratings. The included sample hence consisted of 65 patients (figure 2). LIS patients who failed to report QoL and/or SWB (n=26) were less educated ($p=0.009$) and had more physical pain ($p=0.009$) compared to LIS patients included in the QoL and SWB study sample (n=65). Other socio-demographic, physical and functional variables including age, duration in LIS, living at home or with a partner, income, recovery of speech production or limb mobility were not different between QoL/SWB non-respondents and respondents (table 1).

The socio-demographic characteristics of the 65 LIS patients included in our sample are shown in table 2. All had chronic LIS (>1 year after the insult; median 8 years, range 1–28 years) following a brainstem vascular accident. The majority lived at home (64%), had a spouse or partner (64%) and were religious (70%). About half (55%) had recovered some speech and 70% had recovered some limb mobility.

Overall SWB, as measured by the ACSA scale, permitted the two subpopulations to be disentangled: 72% of LIS patients declared happiness (ACSA rating ≥0, median +3) and 28% unhappiness (ACSA rating <0, median –4) (figure 3). As assessed by the RNLI, 51% of the sampled LIS patients reported severe restrictions and 49% reported mild to moderate restrictions in self-perceived overall community reintegration. Most (82%) were comfortable with personal relationships, but only 21% were engaged most of the day in activities which they considered important. Only a minority were dissatisfied with their participation in recreational (12%) or social (40%) activities.

The happy and unhappy groups did not differ regarding socio-demographic, physical and functional variables including religion, living at home or with a partner, income, education, physical care and feeling comfortable in the company of others (table 2). Depression, suicidal ideas, consideration or wish for euthanasia and the wish not to be resuscitated in case of cardiac arrest were significantly more frequent in the unhappy group. Variables associated with unhappiness were dissatisfaction with mobility in the community, with recreational activities and with the capacity to deal with life events. Shorter time in LIS, anxiety and non-recovery of speech production were also associated with unhappiness. Only half of the respondents stating happiness wished to be resuscitated in case of cardiac arrest and this rate was as low as 14% among the unhappy respondents ($p=0.011$) (table 2). Multivariate logistic regression showed that the variables associated with happiness were time spent in LIS ($p=0.007$), absence of anxiety ($p=0.032$) and recovery of speech production ($p=0.013$) (table 3).

DISCUSSION
It is important to stress that our study may be subject to selection bias given that only 91 of 168 invited patients participated in the study (54%). The patients who did not return the questionnaire may be those with the lowest QoL. Therefore, our results might not be representative of chronic LIS patients in general. All participants were members of a patient association (ie, the French Association of LIS), indicating a stable condition and possibly a degree of social integration.16 Given the dependence of LIS participants on the help of a caregiver for communication of the survey answers, a dependency relationship, social desirability or ‘self-presentation’18 19 may also have biased some responses, despite a written recommendation not to allow helpers influence responses. Patients with a lower educational level and more pain were under-represented among those answering the QoL questions. This might also have resulted in overestimation of QoL rates in our LIS patients as low educational level6 20 and presence of pain are inversely associated with satisfaction with QoL.21–23

In sum, some methodological constraints may have biased the SWB ratings of our patients and most biases were likely to result in overestimations of SWB.

A recurrent problem in QoL research19 is the possible relativity bias or response shift, by which, for example, patients with severe chronic conditions tend to assess their QoL relative to peers or given the circumstances. This problem tends to invalidate comparisons of SWB

Figure 2 Participation. LIS, locked-in syndrome; QoL, quality of life; SWB, subjective well-being.
between groups. Such relativity biases may result in rather similar responses across objectively very dissimilar disease groups, and even between healthy and diseased people, including those with spinal cord injury. We have therefore chosen to employ the ACSA scale, a self-anchored scale whose upper limit here was the memory of the best period in the patient’s life experience before their LIS state. A strength of the ACSA methodology is that by virtue of its biographical references, it affords a practical compromise between the hedonic and the eudaimonic philosophies of QoL, allowing the respondent to choose between the two perspectives, or to take both into account. This internal standard of the ACSA reduces the likelihood of peer relativity or ‘under-the-circumstances’ responses. However, the retrospective anchoring of the ACSA scale also has a drawback. Paraplegic patients may recall their past as happier than do controls, a phenomenon called the ‘nostalgia effect’. If this applies in LIS, it would have tended to depress the ratings of current SWB with the ACSA. This said, some authors have played down relativity biases, arguing that ‘given the circumstances’ responses of disabled people must be taken at face value and that there is no such thing as a disability paradox.

Given these limitations, our results show that most chronic LIS patients self-report severe restrictions in community reintegration, in line with previous studies in paraplegia following spinal cord injury. Nevertheless, the majority of our sample profess ‘good’ SWB. This is in line with the notion that patients with severe disabilities may report a good QoL despite being socially isolated or having major difficulties in activities of daily living. That some LIS patients self-report happiness may suggest that they have succeeded in adapting to their condition of extreme physical disability. According to Cummins’ theory of SWB, their homeostatic resources may have overcome even the formidable challenge of LIS. Our results hence underscore the strength of homeostatic processes of adaptation to chronic (often definitive) extreme disability.

The ‘happy’ subgroup of LIS survivors may indeed be those capable of high flexibility and plasticity who have...
All patients (N = 65)	Unhappy (ACSA < 0) (N = 18)	Happy (ACSA ≥ 0) (N = 47)	p Value	
Mean age ± SD (years)	49 ± 11	50 ± 10	49 ± 12	0.571
Male gender	43/63 (68%)	12/18 (67%)	31/45 (69%)	0.864
Mean duration in LIS*, median (IQR)	8 (5–10)	7 (3–8)	9 (5–13)	0.005
Educational level: university or college (vs high school or lower)	25/56 (45%)	5/16 (31%)	20/40 (50%)	0.197
Net monthly income: €2500 (vs < €2500)	20/53 (38%)	4/13 (30%)	16/40 (40%)	0.547
Place of living: home (vs institution)	38/59 (64%)	9/17 (53%)	29/42 (69%)	0.247
Living with spouse or partner	36/56 (64%)	9/16 (56%)	27/40 (67%)	0.431
Religious (vs non-religious)	40/57 (70%)	13/16 (81%)	27/41 (66%)	0.240
Recovery of speech production				
None	26/58 (45%)	10/16 (63%)	16/42 (38%)	0.049
Words	11/58 (19%)	4/16 (25%)	7/42 (17%)	0.049
Sentences	21/58 (36%)	2/16 (12%)	19/42 (45%)	0.049
Recovery of some limb mobility	39/56 (70%)	10/17 (59%)	29/39 (74%)	0.252
I move around my living quarters as I feel necessary				
Yes	23/60 (38%)	6/17 (35%)	17/43 (40%)	0.453
Rather yes	13/60 (22%)	2/17 (12%)	11/43 (26%)	0.453
Rather no	10/60 (17%)	3/17 (18%)	7/43 (16%)	0.453
No	14/60 (23%)	6/17 (35%)	8/43 (18%)	0.453
I move around my community as I feel necessary				
Yes	6/59 (10%)	0/18 (0%)	6/41 (15%)	0.042
Rather yes	16/59 (27%)	4/18 (22%)	12/41 (29%)	0.042
Rather no	14/59 (24%)	3/18 (17%)	11/41 (27%)	0.042
No	23/59 (39%)	11/18 (61%)	12/41 (29%)	0.042
I am able to take trips out of town as I feel necessary				
Yes	17/57 (30%)	3/17 (18%)	14/40 (35%)	0.298
Rather yes	13/57 (23%)	3/17 (18%)	10/40 (25%)	0.298
Rather no	7/57 (12%)	2/17 (11%)	5/40 (13%)	0.298
No	20/57 (35%)	9/17 (53%)	11/40 (27%)	0.298
I am comfortable with how my self-care needs (dressing, feeding, toileting, bathing) are met				
Yes	36/59 (61%)	10/18 (56%)	26/41 (64%)	0.292
Rather yes	16/59 (27%)	4/18 (22%)	12/41 (29%)	0.292
Rather no	3/59 (5%)	1/18 (6%)	2/41 (5%)	0.292
No	4/59 (7%)	3/18 (16%)	1/41 (2%)	0.292
I spend most of my days occupied in work activity that is necessary or important to me				
Yes	8/60 (13%)	1/18 (5%)	7/42 (17%)	0.390
Rather yes	5/60 (8%)	2/18 (12%)	3/42 (7%)	0.390
Rather no	7/60 (12%)	1/18 (5%)	6/42 (14%)	0.390
No	40/60 (67%)	14/18 (78%)	26/42 (62%)	0.390
I am able to participate in recreational activities (hobbies, crafts, sports, reading, television, games, computers, etc) as I want to				
Yes	35/61 (57%)	8/18 (44%)	27/43 (63%)	0.028
Rather yes	18/61 (31%)	4/18 (22%)	14/43 (33%)	0.028
Rather no	2/61 (3%)	1/18 (6%)	1/43 (2%)	0.028
No	6/61 (9%)	5/18 (28%)	1/43 (2%)	0.028
I participate in social activities with family, friends and/or business acquaintances as is necessary or desirable to me				
Yes	22/60 (37%)	5/18 (28%)	17/42 (40%)	0.113
Rather yes	14/60 (23%)	4/18 (22%)	10/42 (24%)	0.113
Rather no	9/60 (15%)	1/18 (6%)	8/42 (19%)	0.113
No	15/60 (25%)	8/18 (44%)	7/42 (17%)	0.113
I assume a role in my family which meets my needs and those of my family members				
Yes	25/59 (42%)	8/18 (44%)	17/41 (41%)	0.396
Rather yes	21/59 (36%)	4/18 (22%)	17/41 (41%)	0.396
Rather no	5/59 (8%)	2/18 (12%)	3/41 (8%)	0.396
No	8/59 (14%)	4/18 (22%)	4/41 (10%)	0.396

Continued
fully succeeded in recalibrating, reprioritising and reorienting their needs and values, whereas the low raters cope poorly because they cannot shed the needs and values from their previous life. Because such an adaptation process is lengthy, this hypothesis is consistent with the observed positive association of SWB with duration of time in LIS, corroborating previous studies on QoL in spinal cord injury patients.31, 34 However, the direction of causality might be otherwise if unhappiness and its correlates, by whatever mechanisms, reduce survival. Unhappy patients may be more susceptible to complications, these may be treated less vigorously and more end-of-life decisions may be made. The association between a long time in LIS and happiness would then be an effect of selection by attrition.

The second finding is that some LIS patients self-report a state of unhappiness. Depression, suicidal ideas and a wish not to be resuscitated were associated with unhappiness, but are most probably co-variables of unhappiness rather than causal factors. The identified predictors of SWB in LIS differed somewhat from those previously reported in traumatic brain or spinal cord injury.35, 36 Living conditions appear less determining for SWB than in spinal cord injury, possibly because in LIS expectations are lower. In our LIS patients, partner relationships were also not correlated with SWB, unlike in traumatic spinal cord or brain injury37, 38 or in patients with multiple sclerosis.39 Importantly, a shorter time spent in LIS, anxiety and no recovery of speech production were found to be possible predictors of unhappiness. Yet, the studied variables and objective characteristics explained only 38\% of the variance of overall SWB. Maybe this was because some potentially important variables such as

Table 2	Continued				
In general I am comfortable with my personal relationships					
Yes	32/61 (52\%)	9/18 (50\%)	23/43 (53\%)	0.884	
Rather yes	18/61 (30\%)	5/18 (28\%)	13/43 (30\%)		
Rather no	4/61 (7\%)	1/18 (5\%)	3/43 (7\%)		
No	7/61 (11\%)	3/18 (17\%)	4/43 (10\%)		
In general I am comfortable with myself when I am in the company of others					
Yes	27/60 (45\%)	7/18 (39\%)	20/42 (48\%)	0.293	
Rather yes	19/60 (31\%)	4/18 (22\%)	15/42 (36\%)		
Rather no	7/60 (12\%)	3/18 (17\%)	4/42 (9\%)		
No	7/60 (12\%)	4/18 (22\%)	3/42 (7\%)		
I feel that I can deal with life events as they happen*					
Yes	20/60 (33\%)	6/18 (33\%)	14/42 (33\%)	0.022	
Rather yes	18/60 (30\%)	3/18 (17\%)	15/42 (36\%)		
Rather no	12/60 (20\%)	2/18 (11\%)	10/42 (24\%)		
No	10/60 (17\%)	7/18 (39\%)	3/42 (7\%)		
Depression, anxiety and pain					
Depression*	Yes	8/60 (13\%)	5/18 (28\%)	3/42 (7\%)	0.040
No	52/60 (87\%)	13/18 (72\%)	39/42 (93\%)		
Anxiety*	No	20/61 (33\%)	5/18 (28\%)	15/43 (35\%)	0.015
Moderate	33/61 (54\%)	7/18 (39\%)	26/43 (60\%)		
Extreme	8/61 (13\%)	6/18 (33\%)	2/43 (5\%)		
Pain	No	32/59 (54\%)	10/18 (56\%)	22/41 (54\%)	0.071
Moderate	25/59 (43\%)	6/18 (33\%)	19/41 (46\%)		
Extreme	2/59 (3\%)	2/18 (11\%)	0/41 (0\%)		
End-of-life issues					
Resuscitation in case of cardiac arrest*	Yes	23/55 (42\%)	2/14 (14\%)	21/41 (51\%)	0.011
No	32/55 (58\%)	12/14 (86\%)	20/41 (49\%)		
Euthanasia*	Envisaged	31/59 (53\%)	12/16 (75\%)	19/43 (44\%)	0.032
Never envisaged	28/59 (47\%)	4/16 (25\%)	24/43 (56\%)		
Suicidal thoughts*	Never	40/59 (68\%)	9/17 (54\%)	31/42 (74\%)	0.040
Occasionally	14/59 (24\%)	4/17 (23\%)	10/42 (24\%)		
Often	5/59 (8\%)	4/17 (23\%)	1/42 (2\%)		

*Significant variables identified by the univariate analyses comparing unhappy versus happy with related p values.

ACSA, Anamnestic Comparative Self-Assessment Scale; LIS, locked-in syndrome.
personality traits could not be explored in our study. Other variables associated with unhappiness that can potentially be remediated, included dissatisfaction with mobility in the community and with recreational activities, in line with previous studies on QoL in spinal cord injury, multiple sclerosis, cerebral palsy and stroke.40 41

For clinical practice, our data show that, whatever the physical devastation and mental distress of LIS patients during the acute stage of the condition, optimal life-sustaining care and revalidation can have major long-term benefit. Maybe, since low satisfaction with mobility and recreational activities were here associated with poor SWB, extra palliative efforts directed at these problems could be helpful. Also more vigorous treatment of anxiety may be valuable. Finally, our results also bear on existential and ethical issues.42 Because they are cognitively intact, LIS patients are competent to make decisions on whether to continue life in LIS or to ask for withholding or withdrawal of treatment or for physician-assisted death.44 That half of the respondents professing happiness do not wish to be resuscitated in case of cardiac arrest complicates the interpretation of their statement of happiness. As for current wish for euthanasia, expressed by only four of the 59 subjects (7%) responding to this question, it must be taken into account that, unlike in Belgium, the Netherlands, Luxemburg, Oregon, Washington and Montana, euthanasia and physician-assisted suicide are not legally permitted in France, where the study was carried out.

What do our data suggest regarding the practice of euthanasia or physician-assisted suicide? The principal clinical conditions for requests for physician-assisted death to be legally valid are ‘unbearable’ suffering and irreversibility of the situation. Whereas the first condition may apply in some LIS patients, irreversibility cannot be ascertained until, after rehabilitation, their SWB has reached a steady state, which may take as long as a year.3 This is particularly true in view of expected medical progress such as by, for example, brain—computer interfaces (ie, modes of communication in which commands or messages are emitted directly by the brain without needing motor or verbal mediation).45 46 We suggest that patients recently struck by LIS should be informed that, given proper care, they have a considerable chance of regaining a happy life. In our view, shortening-of-life requests by LIS patients are valid only when the patients have been given a chance to attain a steady state of SWB. Anderson et al reported suicidal thoughts in four out of seven LIS patients with long-term survival, but all patients nevertheless wanted life-sustaining treatment.47 Acute or subacute LIS patients’ requests for early death should be received with sympathy, but our data suggest that a moratorium should be proposed.48 49

Taking into account the possible methodological challenges and limitations of QoL research, especially when dealing with LIS patients, our data show that a non-negligible group of chronic LIS survivors self-report a meaningful life and their demands for euthanasia are surprisingly infrequent. It is important to stress the discussed possible biases in our study. The observed results may hence not be representative of chronic LIS patients in general. It should also be noted that given the dependence of LIS participants on the help of a caregiver for communication of their answers, social desirability might have confounded patients’ responses. Nevertheless, in our view, these results are important as healthy individuals and medical professionals might assume that the comfort of a LIS patient is so limited that it is not worth living.8 Such discrepancies in valuation of disability states between the healthy and those affected raise questions about the validity of utility measures based on valuation of disease states by panels of healthy people using, for example, standard gamble or time trade-off.50 Underestimation of patients’ self-reported QoL by caregivers and family has previously

Table 3	Significant associations between happiness status and variables identified by the univariate analyses (marked by an asterisk in table 2)					
Odds ratio	SE	Z score	p>	z		95% CI
Duration in LIS*	1.5	0.2	2.71	0.007	1.1 to 2.0	
Speech production	20.47	24.87	2.48	0.013	1.89 to 221.45	
Anxiety	0.19	0.15	-2.14	0.032	0.04 to 0.87	

*Odds ratio per year in LIS. LIS, locked-in syndrome.
also been reported for amyotrophic lateral sclerosis patients. More research is needed to investigate the factors influencing the success or failure of adaptation to LIS. Also, longitudinal studies of LIS patients should throw light on the reversibility of high or low SWB and on when happiness is a consequence or a causal factor of long survival in LIS.

Acknowledgements We thank the French Association for Locked-in Syndrome (ALIS) and Véronique Blandin for their active collaboration.

Funding This research is funded by the Belgian Fonds National de la Recherche Scientifique (FNRS), European Commission (Mindbridge, DISCOS), CATIA and DECORDER, James S. McDonnell Foundation, Mind Science Foundation, and French Speaking Community Concerted Research Action (ARC 06/11-340).

Competing interests None.

Contributors MAB, SL and JB were responsible for acquisition and analysis of the data. MAB and JB interpreted the data and drafted the manuscript. DL provided statistical expertise. JB, SL, DL, FP and AD contributed to critical revision of the manuscript. All authors read and approved the final manuscript. MAB and JB contributed equally to the manuscript.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES
1. American Congress of Rehabilitation Medicine. Recommendations for use of uniform nomenclature pertinent to patients with severe alterations of consciousness. Arch Phys Med Rehabil 1995;76:205–9.
2. Bauer G, Gerstenbrand F, Rumpf E. Varieties of the locked-in syndrome. J Neurol 1979;221:77–91.
3. Doble JE, Haig AJ, Anderson C, et al. Impairment, activity, participation, life satisfaction, and survival in persons with locked-in syndrome for over a decade: follow-up on a previously reported cohort. J Head Trauma Rehabil 2003;18:435–44.
4. Casanova E, Lazzari RE, Lotta S, et al. Locked-in syndrome: improvement in the prognosis after an early intensive multidisciplinary rehabilitation. Arch Phys Med Rehabil 2003;84:862–7.
5. Leon-Carrion J, van Eeckhout P, Dominguez-Morales Mdel R. The locked-in syndrome: a syndrome looking for a therapy. Brain Inj 2002;16:555–69.
6. Luie D, Zick C, Hacker S, et al. Life can be worth living in locked-in syndrome. Prog Brain Res 2009;177:339–51.
7. Albrecht GL, Devlieger PJ. The disability paradox: high quality of life against all odds. Soc Sci Med 1999;48:977–88.
8. Laureys S, Pellias F, Van Eekhout P, et al. The locked-in syndrome: what is it like to be conscious but paralyzed and voiceless? Prog Brain Res 2005;150:495–511.
9. Wood-Dauphinee S, Williams JL. Reintegration to Normal Living as a proxy to quality of life. J Chronic Dis 1987;40:491–502.
10. Daneski K, Coshall C, Tilling K, et al. Reliability and validity of a postal version of the Reintegration to Normal Living Index, modified for use with stroke patients. Clin Rehabil 2003;17:835–9.
11. Wood-Dauphinee SL, Opzoomer MA, Williams JL, et al. Assessment of global function: The Reintegration to Normal Living Index. Arch Phys Med Rehabil 1998;69:585–93.
12. Stark SL, Edwards DF, Hollingsworth H, et al. Validation of the Reintegration to Normal Living Index in a population of community-dwelling people with mobility limitations. Arch Phys Med Rehabil 2005;86:344–5.
13. Pang MY, Bishawi EL, Miller WC. Determinants of satisfaction with community reintegration in older adults with chronic stroke: role of balance self-efficacy. Phys Ther 2007;87:282–91.
14. Carter BS, Buckley D, Ferraro R, et al. Factors associated with reintegration to normal living after subarachnoid hemorrhage. Neurosurgery 2000;46:1326–33; discussion 1333–24.
15. Bernheim JL. How to get serious answers to the serious question: “How have you been?”: subjective quality of life (QOL) as an individual experiential emergent construct. Bioethics 1999;13:272–87.
16. May LA, Warren S. Measuring quality of life of persons with spinal cord injury: external and structural validity. Spinal Cord 2002;40:341–50.
17. Sprangers MA, Schwartz CE. Integrating response shift into health-related quality of life research: a theoretical model. Soc Sci Med 1999;48:1507–15.
18. Westerman MJ, The AM, Sprangers MA, et al. Small-cell lung cancer patients are just a ‘little bit’ tired: response shift and self-presentation in the measurement of fatigue. Qual Life Res 2007;16:853–61.
19. Westerman MJ, Hak T, Sprangers MA, et al. Listen to their answers! Response behaviour in the measurement of physical and role functioning. Qual Life Res 2008;17:549–58.
20. Bodur H, Ataman S, Rezvani A, et al. Quality of life and related variables in patients with ankylosing spondylitis. Qual Life Res. Published Online First: 27 October 2010. doi:10.1007/s11136-010-9771-9
21. Berges IM, Ottenbacher KJ, Kuo YF, et al. Satisfaction with quality of life poststroke: effect of sex differences in pain response. Arch Phys Med Rehabil 2007;88:413–17.
22. Skevington SM. Investigating the relationship between pain and discomfort and quality of life, using the WHQOL. Pain 1998;76:395–406.
23. Donnelly C, Eng JJ. Pain following spinal cord injury: the impact on community reintegration. Spinal Cord 2005;43:278–82.
24. Schwartz CE, Andresen EM, Nosek MA, et al. Response shift theory: important implications for measuring quality of life in people with disability. Arch Phys Med Rehabil 2007;88:529–36.
25. de Haes JC, Ruijter JH, Tempelaar R, et al. The distinction between affect and cognition in the quality of life cancer patients—sensitivity and stability. Qual Life Res 1992;1:315–22.
26. Chwalisz K, Diener E, Gallagher D. Autonomic arousal feedback and emotional experience: evidence from the spinal cord injured. J Pers Soc Psychol 1988;54:820–8.
27. Ryan RM, Deci EL. On happiness and human potentials: a review of research on hedonic and eudaimonic well-being. Annu Rev Psychol 2001;52:141–66.
28. Bernheim JL, Theuns P, Mazahei M, et al. The potential of anamnestic comparative self-assessment (ACSA) to reduce bias in the measurement of subjective well-being. Journal of Happiness Studies 2006;7:227–50.
29. Brickman P, Coates D, Janoff-Bulman R. Lottery winners and accident victims: is happiness relative? J Pers Soc Psychol 1978;36:917–27.
30. Groling S. ‘You say you’re happy, but...’: contested quality of life judgments in bioethics and disability studies. Journal of Bioethical Inquiry 2008;5:125–35.
31. Tonack M, Hitzig SL, Craven BC, et al. Predicting life satisfaction after spinal cord injury in a Canadian sample. Spinal Cord 2008;46:380–5.
32. Post MW, de Witte LP, van Asbeck FW, et al. Predictors of health status and life satisfaction in spinal cord injury. Arch Phys Med Rehabil 1998;79:395–401.
33. Cummins R. Normative life satisfaction: measurement issues and a homeostatic model. Soc Indicat Res 2003;64:225–56.
34. Calmels P, Béthoux F, Roche G, et al. [Evaluation of the handicap and the quality of life in spinal cord injuries: study in a population of 58 patients living at home] (In French). Ann Readapt Med Phys 2003;46:233–40.
35. Steadman-Paré D, Colattonio A, Ratcliffe G, et al. Factors associated with perceived quality of life many years after traumatic brain injury. J Head Trauma Rehabil 2001;16:330–42.
36. Hammell KW. Exploring quality of life following high spinal cord injury: a review and critique. Spinal Cord 2004;42:491–502.
37. Kreuter M, Sullivan M, Dahllof AG, et al. Participation in everyday occupations in a late phase of recovery after brain injury. Scand J Occup Ther 1999;48:1507–15.
38. Williams RM, Turner AP, Hatzakis M Jr, et al. Factors associated with perceived quality of life many years after traumatic brain injury. Arch Phys Med Rehabil 1998;39:395–401.
39. Cummins R. Normative life satisfaction: measurement issues and a homeostatic model. Soc Indicat Res 2003;64:225–56.
40. Calmels P, Béthoux F, Roche G, et al. [Evaluation of the handicap and the quality of life in spinal cord injuries: study in a population of 58 patients living at home] (In French). Ann Readapt Med Phys 2003;46:233–40.
41. Steadman-Paré D, Colattonio A, Ratcliffe G, et al. Factors associated with perceived quality of life many years after traumatic brain injury. J Head Trauma Rehabil 2001;16:330–42.
42. Hicken BL, Putzke JD, Novack T, et al. Life satisfaction following spinal cord and traumatic brain injury: a comparative study, J Rehabil Res Dev 2002;39:359–65.
43. Williams RM, Turner AP, Hatzakis M Jr, et al. Prevalence and correlates of depression among veterans with multiple sclerosis. Neurology 2005;64:75–80.
44. Crawford A, Hollingsworth HH, Morgan K, et al. People with mobility impairments: Physical activity and quality of participation. Disabil Health J 2008;1:7–13.
45. Johansson U, Hogberg H, Bernspang B. Participation in everyday occupations in a late phase of recovery after brain injury. Scand J Occup Ther 2007;14:116–25.
46. Fins JJ. Clinical pragmatism and the care of brain damaged patients: toward a palliative neuroethics for disorders of consciousness. Prog Brain Res 2005;150:365–82.
47. Schnakers C, Majerus S, Goldman S, et al. Cognitive function in the locked-in syndrome. J Neurol 2008;255:323–30.
44. Bernat JL. Ethical Issues in Neurology. 2nd edn. Boston: Butterworth Heinemann, 2002.
45. Kubler A, Neumann N. Brain-computer interfaces - the key for the conscious brain locked into a paralyzed body. Prog Brain Res 2005;150:513–25.
46. Smart CM, Giacino JT, Cullen T, et al. A case of locked-in syndrome complicated by central deafness. Nat Clin Pract Neurol 2008;4:448–53.
47. Anderson C, Dillon C, Burns R. Life-sustaining treatment and locked-in syndrome. Lancet 1993;342:867–8.
48. Patterson DR, Miller-Perrin C, McCormick TR, et al. When life support is questioned early in the care of patients with cervical-level quadriplegia. N Engl J Med 1993;328:506–9.
49. Anderson JF, Augoustakis LV, Holmes RJ, et al. End-of-life decision-making in individuals with Locked-in syndrome in the acute period after brainstem stroke. Intern Med J 2010;40:61–5.
50. Arnold D, Girling A, Stevens A, et al. Comparison of direct and indirect methods of estimating health state utilities for resource allocation: review and empirical analysis. BMJ 2009;339:1–8.
51. Bach JR, Tilton MC. Life satisfaction and well-being measures in ventilator assisted individuals with traumatic tetraplegia. Arch Phys Med Rehabil 1994;75:826–32.
52. Trail M, Nelson ND, Van JN, et al. A study comparing patients with amyotrophic lateral sclerosis and their caregivers on measures of quality of life, depression, and their attitudes toward treatment options. J Neurol Sci 2003;209:79–85.
STROBE Statement—Checklist of items that should be included in reports of cohort studies

Item No	Title and abstract	Recommendation
1	(a) Indicate the study’s design with a commonly used term in the title or the abstract -ok	
	(b) Provide in the abstract an informative and balanced summary of what was done and what was found -ok	

Introduction
2

Objectives
3

Methods
4
5

Participants
6

Variables
7

Data sources/ measurement
8*

Bias	Study size	Quantitative variables
9	10	11
		Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why -ok

Statistical methods
12

Results
13*

Descriptive data
14*

Outcome data
15*

Main results
16
(b) Report category boundaries when continuous variables were categorized-**ok**

(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period

| Other analyses | 17 | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses-**ok** |

Discussion

Key results	18	Summarise key results with reference to study objectives-**ok**
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias-**ok**
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence-**ok**
Generalisability	21	Discuss the generalisability (external validity) of the study results-**ok**

Other information

| Funding | 22 | Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based-**ok** |

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.