Measurement of the cross section for high-p_T hadron production in the scattering of 160-GeV c/μons off nucleons

C. Adolph, 8 M. G. Alekseev, 24 V. Yu. Alexakhin, 7 Yu. Alexandrov, 15, 8 G. D. Alexeev, 7 A. Amoroso, 27 V. Andreuex, 22 A. Austregesilo, 10, 17 B. Badelek, 31 F. Balestra, 27 J. Barth, 8 G. Baum, 1 Y. Bedfer, 22 A. Berlin, 2 J. Bernhard, 13 R. Bertini, 27 K. Bicker, 10, 17 J. Bierlein, 4 R. Bira, 24 J. Bisplinghoff, 3 M. Boer, 22 P. Bordallo, 12, 4 F. Bradamante, 10, 25 C. Braun, 8 A. Bravar, 24 A. Bressan, 25 M. Büchele, 9 E. Burtin, 22 L. Capozza, 22 M. Chiosso, 27 S. U. Chung, 17, 2 M. L. Crespo, 26 S. Dalla Torre, 24 S. S. Dasgupta, 6 O. Yu. Denisov, 28 S. V. Donskov, 21 N. Doshita, 33 V. Duciu, 25 W. Dünneweber, 16 M. Dzwiecki, 32 A. Efremov, 7 C. Elia, 25 P. D. Eversheim, 3 W. Eyrich, 8 M. Faessler, 16 A. Ferrero, 22 A. Filin, 21 M. Finger, 19 M. Finger, Jr., 19 H. Fischer, 27, 14 N. du Fresne von Hohenesche, 13, 10 J. M. Friedrich, 17 V. Frolov, 10 R. Garfagnini, 27 F. Gautheron, 2 O. P. Gavrichtchouk, 7 S. Gerassimov, 15, 17 R. Geyer, 16 M. Giorgi, 25 I. Gnesi, 27 B. Gobbo, 24 S. Goertz, 7 A. Guskov, 7 T. Guthörl, 9 F. Haas, 17 D. von Harrach, 13 F. H. Heinsius, 9 F. Herrmann, 9 C. Heß, 2 F. Hinterberger, 3 Ch. Höppner, 17 N. Horikawa, 18, 8 N. d’Hose, 22 S. Huber, 17 S. Ishimoto, 13, 8 Yu. Ivanšin, 7 T. Iwata, 33 R. Jahn, 3 V. Jary, 27 P. Jasinski, 13 R. Joosten, 3 E. Kabuß, 13 D. Kang, 13 B. Ketzer, 17 G. V. Khaustov, 21 Yu. A. Khokhlov, 21 Yu. Kisselev, 2 F. Klein, 4 K. Klimaszewski, 30 J. H. Koivuniemi, 2 V. N. Kolosov, 21 K. Kondo, 33 K. Königsmann, 9 I. Koronov, 15, 17 V. F. Konstantinov, 21 A. M. Kotzinian, 27 O. Kuznetzov, 7, 22 M. Krämer, 17 Z. V. Kroumchtein, 7 N. Kuchinski, 7 F. Kunke, 22 K. Kurek, 30 R. P. Kurjata, 32 A. A. Lednev, 21 A. Lehmann, 8 S. Levorato, 25 J. Lichtenstadt, 23 A. Maggiora, 28 A. Magnon, 22 N. Makke, 22, 25, 32 G. K. Mallot, 10 A. Mann, 17 C. Marchand, 22 A. Martin, 25 J. Marzec, 32 H. Matsuura, 33 T. Matsuura, 14 G. Meshcheryakov, 7 W. Meyer, 2 T. Michigami, 33 Yu. V. Mikhailov, 21 Y. Miyachi, 33 A. Morreale, 22, 24 A. Nagaytsev, 7 T. Nagel, 17 F. Nerling, 7 S. Neubert, 17 D. Neyret, 22 V. I. Nikolaenko, 21 C. Novakova, 25 J. Novy, 20 W. D. Nowak, 27 A. S. Nunes, 12 A. O. Olshesky, 7 M. Ostrick, 13 R. Pancknin, 4 D. Panzieri, 29 B. Parsamyan, 27 S. Paul, 17 M. Pesek, 19 G. Piragino, 27 S. Platchkov, 22 J. Pochodzalla, 13 J. Polak, 11, 25 V. A. Polyakov, 21 J. Pretz, 4, 34 M. Quaresma, 12 C. Quintans, 12 S. Ramos, 12, 4 I. G. Reicherz, 7 E. Rocco, 10 V. Rodionov, 7 E. Rondio, 30 N. S. Rossysskaya, 2, D. I. Ryabchikov, 21 V. D. Samoylenko, 21 A. Sandacz, 30 M. G. Sapozhnikov, 7 S. Sarkar, 16 I. A. Savin, 7 G. Shrivzai, 25 P. Schiavon, 25 C. Schill, 7 T. Schlüter, 16 A. Schmidt, 8 K. Schmidt, 7 H. Schmidm, 17, 18 K. Schöning, 10 S. Schopferer, 9 M. Schott, 10 O. Yu. Shevchenko, 7 L. Silva, 12 L. Sinha, 6 S. Sirth, 9 M. Slunecka, 7 S. Sosio, 27 F. Sozzi, 24 A. Srnka, 5 L. Steiger, 24 M. Stolarski, 12 M. Sulc, 11, R. Sulej, 30 H. Suzuki, 33, 8 P. Sznjader, 30 S. Takekawa, 28 J. Ter Wolbeek, 9 S. Tessel, 24 F. Tesselott, 24 F. Thibaud, 22 S. Uhl, 17 I. Uman, 16 M. Vandenbroucke, 22 M. Virtus, 20 J. Vondra, 19 L. Wang, 2 T. Weisrock, 13 M. Wilfert, 13 R. Windmolders, 4 W. Wiślicki, 30 H. Wollny, 22 K. Zaremba, 32 M. Zavaetyaev, 15 E. Zemlyanichkina, 7 N. Zhuravlev, 7 and M. Ziembicki 32 (COMPASS Collaboration)

1Fakultät für Physik, Universität Bielefeld, 33501 Bielefeld, Germany
2Institut für Experimentalphysik, Universität Bochum, 44780 Bochum, Germany
3Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, 53115 Bonn, Germany
4Physikalisches Institut, Universität Bonn, 53115 Bonn, Germany
5Institut für Experimentalphysik, Universität Heidelberg, 69120 Heidelberg, Germany
6Institute of Scientific Instruments, AS CR, 61264 Brno, Czech Republic
7Matrivari Institute of Experimental Research & Education, Calcutta-700 030, India
8Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
9Physikalisches Institut, Universität Erlangen–Nürnberg, 91054 Erlangen, Germany
10Physikalisches Institut, Universität Freiburg, 79104 Freiburg, Germany
11CERN, 1211 Geneva 23, Switzerland
12Institute for Physics, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
13University of Miyazaki, Miyazaki 889-2192, Japan
14Lebedev Physical Institute, 119991 Moscow, Russia
15Department für Physik, Ludwig-Maximilians-Universität München, 80799 Munich, Germany
16Physik Department, Technische Universität München, 85748 Garching, Germany
17Nagoya University, 464 Nagoya, Japan
18Faculty of Mathematics and Physics, Charles University in Prague, 18000 Prague, Czech Republic
19Czech Technical University in Prague, 16634 Prague, Czech Republic
20State Research Center of the Russian Federation, Institute for High Energy Physics, 142281 Protvino, Russia

PHYSICAL REVIEW D 88, 091101(R) (2013)
I. INTRODUCTION

Most of the current knowledge about the structure of the nucleon has been derived from high-energy lepton-nucleon scattering experiments (see e.g. Ref. [1]). The theoretical framework for the interpretation of data from such experiments is perturbative quantum chromodynamics (pQCD). In the presence of a large momentum transfer in the reaction, pQCD relies on the collinear factorization of the cross section into nonperturbative collinear parton distribution functions, hard partonic scattering cross sections calculable in perturbation theory, and nonperturbative collinear fragmentation functions (FFs) [2]. This paper discusses the measurement of the cross section for the production of charged hadrons \((h^\pm)\) with high transverse momenta \(p_T\) in muon-nucleon \((\mu-N)\) scattering at low photon virtualities, \(\mu N \rightarrow \mu' h^\pm X\). In the pQCD framework, the lowest-order contributions to this reaction are (i) photon-gluon fusion (PGF), in which a virtual photon emitted by the lepton interacts with a gluon inside the nucleon via the formation of a quark-antiquark pair, \(\gamma g \rightarrow q\bar{q}\), (ii) QCD Compton (QCDC) scattering, in which the photon interacts with a quark in the nucleon leading to the emission of a hard gluon, \(\gamma q \rightarrow qg\), and (iii) numerous resolved-photon processes.

The comparison of the calculated cross section to the experimentally measured one is sensitive to the accuracy with which the partonic cross section can be calculated in perturbation theory, as well as to the validity of collinear factorization itself, i.e. to soft nonperturbative contributions to the production of high-\(p_T\) hadrons. For inclusive high-\(p_T\) hadron or jet production in proton-proton \((p-p)\) scattering, cross sections have been measured at FNAL [3–5], CERN [6] and BNL [7–12] at center-of-mass system (CMS) energies \(\sqrt{s_{pp}}\) from 20 GeV to 200 GeV. The comparison of these data to next-to-leading order (NLO) pQCD calculations [13] shows that while there is good agreement at \(\sqrt{s_{pp}} = 200\) GeV (RHIC), the theory increasingly underestimates the cross sections with decreasing \(\sqrt{s_{pp}}\). The disagreement reaches up to an order of magnitude at 20 GeV. These discrepancies can be reconciled by the inclusion of all-order resummations of threshold logarithms [14], which are related to soft gluon emissions and are usually performed up to next-to-leading logarithmic (NLL) accuracy.

The electromagnetic probe in muon-lepton scattering has the advantage over \(p-p\) scattering that the kinematics...
II. EXPERIMENT AND DATA ANALYSIS

The hadron-production cross section is measured in bins of p_T and η of widths Δp_T and $\Delta \eta$, respectively, and is defined as

$$E \frac{d^3\sigma}{dp^3} = \frac{1}{2 \pi p_T} \frac{N_h}{\Delta p_T \cdot \Delta \eta \cdot L \cdot \epsilon},$$

where E and p are energy and momentum of the hadron, respectively, $p_T = p \cdot \sin \theta$ is the transverse momentum of the hadron with respect to the direction of the virtual photon (θ is the angle between the virtual photon and the hadron momenta), and $\eta = -\ln \tan(\theta/2)$ is the pseudorapidity of the hadron, all measured in the laboratory system. The integrated luminosity is denoted by L, N_h is the number of observed hadrons in a given bin of p_T and η, and ϵ is the acceptance-correction factor, which is determined independently for both hadron charges for each bin of p_T and η. This factor corrects the number of observed hadrons for geometrical acceptance and detection efficiency of the spectrometer as well as for kinematic smearing. The cross section is defined as a single-inclusive cross section; i.e. several high-p_T hadrons per muon-scattering event are counted for the hadron yield N_h.

The experimental data were recorded in 2004 with the COMPASS spectrometer at CERN. In the experiment a naturally polarized 160 GeV/c μ^+ beam scatters off a polarized, isoscalar target that consists of granulated 6LiD immersed in liquid helium. The small admixtures of H, 3He, and 7Li lead to an excess of neutrons of about 0.1%. The target is arranged in two oppositely polarized 60 cm long cells. The unpolarized cross section is obtained by averaging over the target polarizations. Since the azimuthal angles of the produced hadrons are integrated over, the cross section does not depend on the beam polarization. The integrated luminosity is determined via the direct measurement of the rate of beam muons crossing the target and is found to be equal to 142 pb$^{-1}$ ± 10%(syst) after correction for the dead times of the veto and data acquisition systems. As an independent cross check of the luminosity, the structure function of the nucleon F_2 is determined from this data set and compared to the NMC parametrization of F_2 [23] yielding satisfactory agreement [24]. The analysis is based on high-p_T events that were recorded by the quasireal photoproduction trigger systems [25]. These triggers are based on the coincidence between the detection of the scattered muon at low scattering angles and an energy deposit exceeding about 5 GeV in one of the two hadronic calorimeters, to suppress background from muon-electron scattering and radiative elastic or quasielastic muon-scattering events. Events are accepted if the photon virtuality $Q^2 < 0.1$ (GeV/c)2 and if the fractional energy transferred from the incident muon to the virtual photon is in the range $0.2 \leq y \leq 0.8$, where the acceptance of the trigger systems is largest. These selections result in the energy range $7.8 \leq W_{\gamma N} \leq 15.5$ GeV. The fraction of the virtual-photon energy transferred to the hadron h^\pm is constrained by 0.2 $\leq z \leq$ 0.8. Moreover, hadrons are required to have momenta $p \geq$ 15 GeV/c to ensure full trigger efficiency. The angle of the hadron with respect to the direction of the virtual photon has to be in the range $10 \leq \theta \leq 120$ mrad, which corresponds to a range of μ^N CMS pseudorapidities $2.4 \leq \eta_{CMS} \leq -0.1$. In addition to these kinematic criteria, the selection of reconstructed hadrons is subject to several geometrical cuts: the positions of the muon-scattering vertices are limited to the fiducial target volume, the hadron tracks must not cross the solenoid magnet of the polarized target, and the hadron tracks must hit one of the two hadronic calorimeters, excluding 3 cm wide margins around the edges (for full trigger efficiency).

The acceptance correction factors of Eq. (1) are determined with a Monte Carlo (MC) simulation of μ^N scattering in the COMPASS experiment. Events are generated with PYTHIA6 [26], the response of the spectrometer is simulated with a GEANT3-based program [27], and the data are reconstructed with the same software as the experimental data [19]. The acceptance factor for the bin $p_T \in [p_{T,1}, p_{T,2}]$ is defined as

$$\epsilon = \frac{N_{\text{rec}}(p_T^{\text{rec}} \in [p_{T,1}, p_{T,2}])}{N_{\text{gen}}(p_T^{\text{gen}} \in [p_{T,1}, p_{T,2}])}$$

where N_{rec} is the number of reconstructed hadrons in the bin of reconstructed transverse momentum p_T^{rec}, and N_{gen} is...
the number of generated hadrons in the MC sample in the bin of generated transverse momentum \(p_T^{\text{gen}} \). While both \(N^{\text{rec}} \) and \(N^{\text{gen}} \) are subject to the above-listed kinematic selection criteria, the geometrical cuts are only applied to \(N^{\text{rec}} \) so that the loss of hadrons due to these cuts is accounted for by the acceptance correction.

Hadrons that are created at the \(\mu-N \) vertex constitute the signal of the measurement and have to be separated from background hadrons, which are created in secondary interactions of other hadrons in the target material. This separation is performed by the vertex-reconstruction algorithm, which is, however, impaired by the fact that the angle between the incoming and outgoing muon tracks is very small at low \(Q^2 \). The background contamination cannot be estimated directly from the MC data, because simulations with the two hadron-shower models available in GEANT3 (GHEISHA and FLUKA) give inconsistent results. Hence the background contribution is determined in each \(p_T \) bin from the experimental data by fitting the shape of the distribution of position differences between two-particle vertices formed by the incoming muon track and the outgoing muon track on the one hand, and the incoming muon track and the outgoing hadron track on the other hand [28].

The distribution for signal hadrons, originating from the same interaction as the outgoing muon track, has a symmetric shape, while for background hadrons there is a characteristic asymmetric shape. The results of these fits show that the background contribution to the experimental data is consistent with zero. However, cross-checks with both MC hadron-shower models indicate that the background contribution can be systematically underestimated by 6% using this method. In addition, the described procedure is statistically limited for the highest \(p_T \) bins because there are too few entries in the vertex-difference distributions to exclude a nonzero background contribution with high statistical accuracy. For the four highest \(p_T \) bins, the background level \(p_{\text{excl}} \) at which a nonzero background contribution can be excluded at 90% confidence level is greater than 6%. Therefore, the possible contribution of the residual background to the hadron yield is conservatively estimated to be \(2 \times 6\% \) for the six lowest \(p_T \) bins and \(p_{\text{excl}} + 6\% \) for the four highest \(p_T \) bins. These values are used as systematic uncertainties of the acceptance factors.

A second contribution to the systematic uncertainties of the acceptance factors arises from the fact that they are determined in a one-dimensional way, i.e., by integrating over all kinematic variables other than \(p_T \). The resulting uncertainty is quantified by calculating the acceptance correction binned in two variables, i.e., \(p_T \) and one of the variables \(Q^2, y, x_B \) (Bjorken scaling variable), \(W_{\gamma N}, z, \theta \). A comparison of the cross section calculated in two variables, summed up over the second variable, with the one-dimensional result yields deviations below 3%. This uncertainty is added in quadrature to the uncertainties from background contamination, resulting in the following definition of the upper \((\epsilon_u) \) and lower \((\epsilon_d) \) limits of the systematic uncertainty band of the acceptance factors:

\[
\epsilon_u = \epsilon \cdot (1 + \sqrt{0.03^2 + (0.06 + \max(0.06, p_{\text{excl}}))^2}),
\]

\[
\epsilon_d = \epsilon \cdot (1 - 0.03).
\]

Another systematic uncertainty of the cross section is the 10% normalization uncertainty from the luminosity determination. A dependence of the \(p_T \) distribution of hadrons on the nuclear medium has not been observed at COMPASS energies [29].

III. RESULTS

The differential cross section in bins of \(p_T \) for the production of charged high-\(p_T \) hadrons in \(\mu-N \) scattering at \(Q^2 < 0.1 \text{ (GeV/c)}^2 \) and \(\sqrt{s_{\mu N}} = 17.4 \text{ GeV} \) is presented in Fig. 1 and listed in Table I. The errors in the upper and lower panels are the quadratic sums of statistical and systematic uncertainties. The normalization uncertainty of 10% from the luminosity measurement is not shown. The cross section values are not corrected for QED

![FIG. 1. Upper panel: differential cross section in bins of \(p_T \) for high-\(p_T \) hadron production in \(\mu-N \) scattering (data points) compared to the resummed pQCD calculation [22] (lines). The other kinematic variables have been integrated over. Middle panel: relative statistical and systematic uncertainties of the measurement. Lower panel: ratio of the measured over calculated cross sections.](091101-4)
radiative effects. These have been estimated to be smaller than 5% in the kinematic region of the underlying data sample [30,31]. The discrete p_T values, at which the cross section values from the binned analysis of Eq. (1) are drawn, are calculated using the method of Lafferty and Wyatt [32] and are denoted by $\langle p_T \rangle_W$ in Table I. The cross section drops by about 4 orders of magnitude over the measured p_T range. The only apparent deviation from an exponential shape is a slight hardening of the spectrum at about $p_T = 2.5$ GeV/c. In Fig. 1, the data are compared to an NLO pQCD calculation. The method of the calculation is first described in Ref. [20], and has been updated [21] to implement the kinematic selections presented in Sec. II and the FFs by de Florian, Sassot, Stratmann [33] for unidentified charged hadrons. Recently, the resummation of large logarithmic thresholds to all orders [22] has been included. The three curves correspond to different choices of the renormalization (μ_r) and factorization (μ_f) scales in the pQCD calculation. The standard choice for the scales in pQCD is $\mu = \mu_r = \mu_f = p_T$, and the scale uncertainty is estimated by varying the scale in the range $p_T/2 \leq \mu \leq 2p_T$. The theoretical values are given only for $p_T \geq 1.75$ GeV/c in order to ensure the applicability of perturbative methods. At the standard scale $\mu = p_T$, the resummed result underestimates the experimental cross section by a factor of about 2, but follows the shape of the differential cross section remarkably well, as can be seen in Fig. 1 (bottom panel), which shows the ratio of the measured over the calculated cross sections. Analogous to $p-p$ scattering at low CMS energies [13,14], the all-order resummation of threshold logarithms is found to significantly reduce the normalization discrepancy compared to the fixed-order NLO result [21], which underestimated the experimental cross section by a factor of 3 to 4. The large scale uncertainty of the theoretical cross section, however, shows that higher-order contributions are likely to be significant in the pQCD framework.

In Fig. 2, the p_T dependence of the experimental cross section is presented in bins of η_{CMS}, together with the comparison to the resummed pQCD results. The errors are the quadratic sums of statistical and systematic uncertainties, and are smaller than the symbols, except for the highest p_T values. As in Fig. 1, the normalization uncertainty of 10%
from the luminosity measurement is not shown. The steeper p_T slopes of the cross section at forward rapidities as compared to central rapidity are well described by the pQCD curves. The normalization difference between the theoretical calculation ($\mu = p_T$) and the experimental values shows a slight increase toward smaller pseudorapidities.

To judge whether hadron production at the COMPASS kinematics is correctly described by pQCD, it is interesting to investigate whether the cross section ratio between theory and experiment depends on the virtual photon energy fraction y. At fixed transverse momentum p_T, the phase space for the production of additional partons decreases with decreasing y. Corrections due to the emission of soft gluons are therefore expected to be larger for smaller y. Figure 3 compares the ratio of the COMPASS measurement and the resummed pQCD calculation at $\mu = p_T$ of the double differential cross section $d^2\sigma / (dp_T dy)$ in six p_T bins, integrated over the p_T bin widths,

$$\frac{1}{0.1} \int_{y-0.05}^{y+0.05} dy' \int_{p_{T,a}}^{p_{T,b}} \frac{d^2\sigma}{dp_T dy'} dp_T.$$

The fact that the cross section ratio depends only weakly on y indicates that the resummation procedure correctly includes the contribution of soft gluon emission to the cross section.

The ratio of the cross sections for the production of negatively over positively charged hadrons (charge ratio), displayed in Fig. 4 as a function of p_T, is found to be significantly smaller than unity, showing that the production of positive hadrons is preferred. No strong p_T dependence is observed within the statistical accuracy of the measurement. It is worthwhile to note that most of the systematic uncertainties as well as the normalization uncertainty are expected to cancel out in the charge ratio. The ratio is sensitive to the contributions of the different partonic processes to the cross section. The QCDC process can lead to an excess of positively charged hadrons because the electromagnetic coupling to u quarks is 4 times larger than to d quarks, and u quarks are more likely to produce positively charged mesons. The PGF process, on the other hand, is not expected to result in a charge asymmetry, assuming independent quark fragmentation. The resummed pQCD calculation, also shown in Fig. 4, features a charge ratio of about unity for the lowest p_T values, in disagreement with the data, and a clear decrease with increasing p_T. It should be noted, however, that the scale uncertainty bands were obtained simply by dividing the calculated h^- and h^+ cross sections for a given scale, and thus may underestimate the true scale uncertainty [22].

IV. CONCLUSIONS

In summary, the single-inclusive cross section for charged-hadron production in $\mu-N$ scattering at $\sqrt{\mu N} = 17.4 \text{ GeV}$ was measured for photon virtualities $Q^2 < 0.1 \text{ (GeV/c)}^2$ in the η_{CMS} interval between -0.1 and 2.4 and for transverse hadron momenta up to 3.6 GeV/c. The measured p_T-differential cross section is compared with pQCD calculations. Without the all-order resummation of threshold logarithms, the pQCD calculation at NLO appears to be insufficient to fully describe high-p_T hadron production in $\mu-N$ scattering at low Q^2 in the kinematic domain of COMPASS. The resummation helps to resolve this discrepancy at least partly. At a renormalization and factorization scale corresponding to p_T, the calculation reproduces the shape of the measured cross section over the full rapidity range, but underestimates the experimental cross section by about a factor of 2, independent of p_T. Because of the low values of p_T and $\sqrt{\mu N}$, however, the theory still shows a rather large scale dependence, with an uncertainty band that overlaps with the experimental data. The ratio of the measured cross section and the calculated one is found to depend only weakly on the photon fractional energy y.
indicating that the resummation procedure correctly takes into account corrections due to the emission of soft gluons. The ratio of cross sections for the production of negative over positive hadrons is always found to be smaller than unity in the full p_T range under investigation, with no strong dependence on p_T. This is in contrast to the theory, which shows a ratio close to unity for low p_T values.

As a next step, the pQCD framework will be employed to constrain the polarization of gluons in the nucleon [20], using the double-spin asymmetry of single high-p_T hadron production at low Q^2 extracted from the full COMPASS muon-scattering data set. This approach is complementary to previous measurements of the gluon polarization by COMPASS using spin-dependent, high-p_T hadron-pair production [34,35], which employ the MC generators PYTHIA and LEPTO [36], respectively, to quantify the contribution of PGF to the cross section.

ACKNOWLEDGMENTS

We thank W. Vogelsang and M. Pfeuffer for many useful discussions and for providing the pQCD calculations, and A. Afanasev for estimating the QED radiative corrections. We acknowledge the support of the CERN management and staff, as well as the skills and efforts of the technicians of the collaborating institutions. Special thanks go to V. Anosov and V. Pesaro for their technical support during the installation and the running of this experiment. This work was made possible thanks to the financial support of our funding agencies. Supported by the DFG Research Training Group Programme 1102 “Physics at Hadron Accelerators.” Supported by the German Bundesministerium für Bildung und Forschung. Supported by Czech Republic MEYS Grants No. ME492 and No. LA242. Supported by SAIL (CSR), Govt. of India. Supported by CERN-RFBR Grants No. 08-02-91009 and No. 12-02-91500. Supported by EU FP7 (HadronPhysics3, Grant Agreement No. 283286). Supported by the Portuguese FCT—Fundação para a Ciência e Tecnologia, COMPETE and QREN, Grants No. CERN/FP/109323/2009, No. CERN/FP/116376/2010 and No. CERN/FP/123600/2011. Supported by the MEXT and the JSPS under Grants No. 1800206, No. 20540299 and No. 18540281; Daiko Foundation and Yamada Foundation. Supported by the DFG cluster of excellence “Origin and Structure of the Universe” (www.universe-cluster.de). Supported by the Israel Science Foundation, founded by the Israel Academy of Sciences and Humanities. Supported by the Polish NCN Grant No. DEC-2011/01/M/ST2/02350.

[1] A. W. Thomas and W. Weise, *The Structure of the Nucleon* (Wiley-VCH, Berlin, 2001).
[2] G. Sterman et al., Rev. Mod. Phys. **67**, 157 (1995).
[3] G. Donaldson et al., Phys. Lett. B **73**, 375 (1978).
[4] D. Adams et al. (FNAL E704 Collaboration), Phys. Rev. D **53**, 4747 (1996).
[5] L. Apanasevich et al. (FNAL E706 Collaboration), Phys. Rev. D **68**, 052001 (2003).
[6] D. Lloyd Owen et al., Phys. Rev. Lett. **45**, 89 (1980).
[7] S. Adler et al. (PHENIX Collaboration), Phys. Rev. Lett. **91**, 241803 (2003).
[8] B. Abelev et al. (STAR Collaboration), Phys. Rev. Lett. **97**, 252001 (2006).
[9] J. Adams et al. (STAR Collaboration), Phys. Lett. B **637**, 161 (2006).
[10] A. Adare et al. (PHENIX Collaboration), Phys. Rev. D **79**, 012003 (2009).
[11] B. Abelev et al. (STAR Collaboration), Phys. Rev. D **80**, 111108 (2009).
[12] A. Adare et al. (PHENIX Collaboration), Phys. Rev. C **83**, 064903 (2011).
[13] C. Bourrely and J. Soffer, Eur. Phys. J. C **36**, 371 (2004).
[14] D. de Florian and W. Vogelsang, Phys. Rev. D **71**, 114004 (2005).
[15] S. Frixione, M.L. Mangano, P. Nason, and G. Ridolfi, Phys. Lett. B **319**, 339 (1993).
[16] D. de Florian and S. Frixione, Phys. Lett. B **457**, 236 (1999).
[17] S. Chekanov et al. (ZEUS Collaboration), Phys. Rev. D **76**, 072011 (2007).
[18] A. Airapetian et al. (HERMES Collaboration), J. High Energy Phys. **08** (2010) 130.
[19] P. Abbon et al. (COMPASS Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A **577**, 455 (2007).
[20] B. Jäger, M. Stratmann, and W. Vogelsang, Eur. Phys. J. C **44**, 533 (2005).
[21] W. Vogelsang (private communication).
[22] D. de Florian, M. Pfeuffer, A. Schäfer, and W. Vogelsang, Phys. Rev. D **88**, 014024 (2013).
[23] M. Arneodo et al. (NMC Collaboration), Phys. Lett. B **364**, 107 (1995).
[24] C. Höppner et al. (COMPASS Collaboration), arXiv:1104.2926.
[25] C. Bernet et al., Nucl. Instrum. Methods Phys. Res., Sect. A **550**, 217 (2005).
[26] T. Sjostrand, P. Edén, C. Friberg, L. Lönnblad, G. Miu, S. Mrenna, and E. Norrbin, Comput. Phys. Commun. **135**, 238 (2001).
[27] R. Brun et al., CERN Program Library Long Writeup Report No. W5013, 1993.
[28] C. Höppner, Ph.D. thesis, Technische Universität München [Report No. CERN-THEESIS-2012-005, 2012].
[29] C. Adolph et al. (COMPASS Collaboration), Phys. Lett. B **718**, 922 (2013).
[30] I. Akushevich, N. Shumeiko, and A. Soroko, Eur. Phys. J. C 10, 681 (1999).
[31] A. Afanasev (private communication).
[32] G. Lafferty and T. Wyatt, Nucl. Instrum. Methods Phys. Res., Sect. A 355, 541 (1995).
[33] D. de Florian, R. Sassot, and M. Stratmann, Phys. Rev. D 75, 114010 (2007).
[34] E. Ageev et al. (COMPASS Collaboration), Phys. Lett. B 633, 25 (2006).
[35] C. Adolph et al. (COMPASS Collaboration), Phys. Lett. B 718, 922 (2013).
[36] G Ingelman, A Edin, and J Rathsman, Comput. Phys. Commun. 101, 108 (1997).