LETTER TO THE EDITOR

X-ray emission from MP Muscae: an old classical T Tauri star

C. Argiroffi¹, A. Maggio², and G. Peres¹

¹ Dipartimento di Scienze Fisiche ed Astronomiche, Sezione di Astronomia, Università di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy, e-mail: argi@astropa.unipa.it, peres@astropa.unipa.it
² INAF - Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy, e-mail: maggio@astropa.unipa.it

Received 22 December 2006 / Accepted 25 January 2007

ABSTRACT

Aims. We study the properties of X-ray emitting plasma of MP Mus, an old classical T Tauri star. We aim at checking whether an accretion process produces the observed X-ray emission and at deriving the accretion parameters and the characteristics of the shock-heated plasma. We compare the properties of MP Mus with those of younger classical T Tauri stars to test whether age is related to the properties of the X-ray emission plasma. Methods. XMM-Newton X-ray spectra allow us to measure plasma temperatures, abundances, and electron density. In particular the density of cool plasma probes whether X-ray emission is produced by plasma heated in the accretion process. Results. X-ray emission from MP Mus originates from high density cool plasma but a hot flaring component is also present, suggesting that both coronal magnetic activity and accretion contribute to the observed X-ray emission. We find a Ne/O ratio similar to that observed in the much younger classical T Tauri star BP Tau. From the soft part of the X-ray emission, mostly produced by plasma heated in the accretion shock, we derive a mass accretion rate of \(5 \times 10^{-11} \, M_{\odot} \, \text{yr}^{-1}\).

Key words. stars: abundances – stars: circumstellar matter – stars: coronae – stars: individual: MP Muscae – stars: pre-main sequence – X-rays: stars

1. Introduction

Low mass stars are sources of strong X-ray radiation since their early evolutionary phases. Coronal plasma, responsible for the X-ray emission, is confined and probably heated by magnetic fields which emerge from the stellar surface (Feigelson & Montmerle 1999; Preibisch et al. 2005). The coronal plasma observed in essentially all late-type stars can be characterized by a large variety of average temperatures (from few MK to tens of MK) and metallicities (from one tenth to few times the solar photospheric value), but a common feature is the low density measured at the temperature of formation of O vii He-like triplets (\(N_e \approx 10^{10} - 10^{11} \, \text{cm}^{-3}\) at \(T \sim 2 \, \text{MK}\)) (Testa et al. 2004; Ness et al. 2004).

In very young stars, however, accretion may cause X-ray emission in addition to magnetically-confined coronal plasma. In classical T Tauri stars (CTTSSs) gas falls from the circumstellar envelope, funnelled by the magnetic field, and hits the stellar photosphere. In the resulting shock the accreted material is heated to temperatures of few MK (Calvet & Gullbring 1998). With typical mass accretion rates, the shock-heated plasma can reach X-ray luminosities as high as \(10^{31} \, \text{erg} \, \text{s}^{-1}\).

The few CTTSSs for which high-resolution X-ray spectroscopy was performed up to date show, in most cases, cool plasma components (2 – 4 MK) with large electron densities (\(10^{11} - 10^{13} \, \text{cm}^{-3}\)) which have been interpreted as evidence for X-ray emission due to an accretion shock. The best known examples of this behavior are the CTTSSs TW Hya, BP Tau, and V4046 Sgr (Kastner et al. 2002; Schmitt et al. 2005; G{"u}nther et al. 2006). Noticeable exceptions are the CTTSS T Tau (G{"u}del et al. 2007) and the Herbig star AB Aur (Telleschi et al. 2007).

In the hypothesis of X-ray emission originated in shocks great attention has been focused also on plasma element abundances. In fact, they probe the chemical composition of the accreting stream, and hence provide insightful indications on the physical and chemical processes at work in the inner circumstellar disk (Stelzer & Schmitt 2004; Drake et al. 2005).

In this letter we present the XMM-Newton observation of MP Muscae, one of the oldest known CTTSSs, aimed at studying the properties of the X-ray emitting plasma and the role of the accretion process. MP Mus is a K1 IVe star of the Lower Centaurus Crux (LCC) association. Gregorio-Hetem et al. (1992) identified it as a classical T Tauri star by measuring enhanced Hα emission (EW = −47 Å) and Li absorption (EW = 0.37 Å). Excesses in infrared bands revealed an optically thick circumstellar disk (Mamajek et al. 2002; Silverstone et al. 2006) with an estimated dust mass of \(\sim 5 \times 10^{-5} \, M_{\odot}\) (Carpenter et al. 2005). Batalha et al. (1998) derived a rotational period of 5.75 d from variability in the B, V, R, and I bands, although the amplitude of variability is surprisingly low for a CTTSS.

Mamajek et al. (2002) derived three different ages for MP Mus, 7, 14, and 17 Myr, depending on the adopted theoretical evolutionary tracks. The LCC association, to which MP Mus belongs, is the oldest portion of the Scorpius-Centaurus OB association, and its estimated age is between 16 and 23 Myr (Mamajek et al. 2002; Sartori et al. 2003).

2. Observation and data analysis

MP Mus was observed with XMM-Newton for a duration of \(\sim 110 \, \text{ks}\) on 2006 August 19–20. We processed the data using the
The X-ray emitting plasma in MP Mus is heavily depleted of Fe, Si, and Mg; O, and S are moderately depleted, while Ne displays a larger abundance. If we assume that soft X-rays are produced by plasma heated in the accretion process, the observed abundances probe the chemical composition of the infalling circumstellar material. We compared the present abundance values of MP Mus with those obtained for the other three CTTSs (TW Hya, BP Tau, and V4046 Sgr). Moreover, MP Mus shows also clear evidence of intense coronal activity, as indicated by the flares (see Fig. 1) and by the hot plasma component.

3.1. Abundances

The X-ray emitting plasma in MP Mus is heavily depleted of Fe, Si, and Mg; O, and S are moderately depleted, while Ne displays a larger abundance. If we assume that soft X-rays are produced by plasma heated in the accretion process, the observed abundances probe the chemical composition of the infalling circumstellar material. We compared the present abundance values of MP Mus with those obtained for the other three CTTSs showing evidence of X-ray emission due to shock-heated plasma (Table 3). In all cases the X-ray spectra indicate that the accreted material has a Ne abundance enhanced with respect to the other

Table 1. MP Mus best-fit parameters.

Par.	best-fit value
T°	$2.7^{+0.1}_{-0.2}$
EMb	$7.2^{+0.4}_{-0.3}$
N_e^c	10^{11}
N_e^d	10^{12}
Ab.e	$0.25^{+0.08}_{-0.07}$

a Temperature (MK). b Emission Measure (10^{52} cm$^{-3}$). c Hydrogen column density (10^{20} cm$^{-2}$). d Abundances referred to the solar photospheric values of [Asplund et al. 2005]. All the uncertainties correspond to the 68% confidence level.
Table 2. Strongest RGS lines of MP Mus.

Ion	log \(T_{\text{max}} \) (K)	\(\lambda_{\text{obs}} \) (\AA)	\(\lambda_{\text{pred}} \) (\AA)
Ne x	22.3 ± 1.4	12.1 ± 0.3	12.1 ± 0.3
Fe xvii	22.0 ± 1.5	12.3 ± 0.4	12.3 ± 0.4
Fe xx	21.1 ± 1.7	12.5 ± 0.5	12.5 ± 0.5
Ne x	20.4 ± 1.8	13.0 ± 0.6	13.0 ± 0.6
Ne x	19.7 ± 1.9	14.5 ± 0.7	14.5 ± 0.7
Fe xx	18.8 ± 1.3	15.2 ± 0.8	15.2 ± 0.8
Ne x	17.9 ± 1.5	17.0 ± 1.0	17.0 ± 1.0
Ne x	16.8 ± 1.3	18.9 ± 1.2	18.9 ± 1.2
Fe xx	15.9 ± 1.1	21.0 ± 1.3	21.0 ± 1.3
Na x	14.7 ± 1.2	23.0 ± 1.4	23.0 ± 1.4

Observed and predicted (APED database) wavelengths (\AA), \(T_{\text{max}} \) (K) of maximum emissivity.

Table 3. CTTSs properties.

Star	Stellar Association	Age (Myr)	Ne/O \(\lambda_{\text{med}} \) (MK)	\(T_{\text{med}} \) \(\lambda_{\text{med}} \) (10\(^{15}\) cm\(^{-2}\))
BP Tau	Taurus	0.66	16.1	3.2
TW Hya	TWA	8.9	16.4	5.0
V4046 Sgr	BPMG	12.2	6.4	3.2
MP Mus	LCC	17.4	16.4	5.0

*\(\lambda_{\text{med}} \) = \text{Temperature (K)}.

Fig. 4. Average plasma temperature and Ne/O ratio vs age for the sample of four CTTSs with evidence of high density cool plasma.

The condensation temperature of O is quite low (180 K), therefore the separation between gas and dust must occur at low temperature to produce significant O depletion in the accretion streams.

A large Ne/O abundance ratio is observed also in the X-ray spectrum of V4046 Sgr (Günter et al. 2006), where high density hints again at X-rays from shock-heated plasma. Instead, both MP Mus and BP Tau have Ne/O ratios typical of stellar coronae. Drake et al. (2005) explained the Ne/O ratio of BP Tau, lower than that of TW Hya, on the basis of the different evolutionary stages of their circumstellar disks. Since TW Hya is significantly older than BP Tau, it is conceivable that the dust/gas separation process, and the subsequent depletion of high \(T_c \) elements, is not visible in the latter case because these processes occur on a time scale longer than the age of BP Tau (~ 0.6 Myr).

In Table 3 we report the ages of the four CTTSs introduced above. We adopt an age of 17 Myr for MP Mus (Mamajek et al. 2002), since it is compatible with the age of the LCC association. For the subsequent discussion, the absolute age of each CTTS is unimportant, while only the age sequence matters, whose reliability depends only on the correctness of the membership of these CTTSs to the relevant stellar associations.
Figure 4 shows the variations of plasma average temperature and Ne/O ratio with respect to stellar age, for the sample of four CTTSs (having spectral types ranging from K1 to K7). Both \(T_{\text{med}} \) and Ne/O do not have a monotonic trend with age, but these two plots suggest that stars with hotter plasma have lower Ne/O ratios, and vice versa. It is likely that high \(T_{\text{med}} \) indicates a large contribution from coronal plasma to the whole X-ray emission. In this scenario of mixed accretion-driven and coronal X-ray emission, the measured Ne/O ratio is a weighted average of the values in the shock-heated plasma and in the coronal plasma. Hence any large Ne/O ratio of the accreted material may be partly hidden by the coronal plasma abundances. To check this possibility we fitted the observed EPIC spectra of MP Mus assuming a high Ne/O ratio for the coolest plasma component, but the model does not reproduce the observed spectra as well as the model described in Sect. 2. Moreover, in MP Mus the hot coronal plasma does not contribute significantly to the observed O and Ne line emission (see below).

We conclude that the relatively low Ne/O ratio in MP Mus is a characteristic of the cool accretion component, and the stellar age is likely not the only parameter which determines the Ne/O ratio observed in CTTSs with evidence of high density cool plasma.

3.2. Accretion

For the subsequent discussion we first assume that the cool X-ray emitting plasma of MP Mus is only due to the shock accretion, with no contribution from coronal plasma. Starting from the Mamajek et al. (2002) results on MP Mus, and based on the Siess et al. (2000) stellar models, we adopt for MP Mus a mass of 1.2 \(M_\odot \) and a radius of 1.3 \(R_\odot \).

Using the O vii triplet and the O vii Ly\(\alpha \) lines we infer the electron density \((N_e = 5 \times 10^{11} \text{ cm}^{-3}) \), temperature \((T = 3 \text{ MK}) \), obtained from the O vii Ly\(\alpha \) and O vii r lines), and emission measure \((EM = 2.4 \times 10^{53} \text{ cm}^{-3}) \) of the post shock plasma. In the strong shock scenario, the relevant plasma parameters are linked by the relations:

\[
N_1 = 4N_0, \quad v_1 = \frac{1}{4}v_0, \quad T_1 = \frac{3}{16} \frac{\mu m_u}{k}v_0^2 \tag{1}
\]

where the suffixes 0 and 1 indicate the pre-shock and post-shock plasma, \(N \) the density, \(v \) the velocity, \(T \) the temperature, and \(\mu \) the mean molecular weight (in our case \(\mu = 0.61 \)). From the measured temperature \(T_1 \) we infer that the pre-shock velocity is 470 km s\(^{-1}\). This value corresponds to a free fall from an inner radius of the circumstellar disk of 3 \(R_\star \), or from a larger distance if some energy loss occurs during the fall. From the post-shock plasma temperature and density we derive a cooling time of 350 s, and considering that the post-shock velocity is 120 km s\(^{-1}\), we obtain a characteristic length of the post-shock region \(l = 4 \times 10^6 \text{ cm} = 0.05 R_\star \). Hence, the cross section of the infalling stream \(A = EM/\left(N_e N_{\text{H}}\right) \) is 3 \(\times 10^{20} \text{ cm}^2 \). It corresponds to a filling factor \(f = A/(4\pi R_\star^2) \) of 0.3 % of the stellar surface, and to a mass accretion rate of 5 \(\times 10^{-11} \text{ M}_\odot \text{ yr}^{-1} \).

We made the hypotheses that: (1) the cool plasma is produced in the accretion shock; (2) the cool plasma is optically thin; (3) its density is measured from the O vii \(f/i \).

We are confident that the assumption (1) is appropriate. First note that the two strong flares detected, produced by coronal plasma, contribute just 3.6% of the spectrum above 18 Å (i.e. below 0.7 keV); second, we tried to fit the O vii triplet with two contributions due to low and high electron density (10\(^9\) and 10\(^{12}\) cm\(^{-3}\), respectively), finding that at least 80% of the O vii is due to high density (i.e. shock-heated) plasma, and at most 20% to low density (i.e. coronal) plasma.

Hence the derived accretion rate \(\dot{M} \), which depends only on the hypothesis (1) and (2), but not on \(N_e \), is acceptable, but a larger \(\dot{M} \) could be possible if part of the X-ray emission is absorbed.

The measured \(N_e \) is more uncertain: a small contribution of low \(N_e \) coronal plasma to the O vii triplet might cause an under-estimation of \(N_e \); conversely an UV field might influence the populations of the O vii atomic levels by photoexcitation and hence mimic an high density plasma. No UV excess emission, which could originate from the accretion hot spot, has been reported for this star. However a sufficiently high UV radiation density can be present only very near the accretion hot spot on the stellar surface, and the photoexcitation hypothesis would anyway indicate that the cool X-ray emitting plasma is close to the base of the accretion funnel.

4. Conclusions

From the analysis of the XMM-Newton observation of the CTTS MP Mus we derived evidences that plasma heated in the accretion shock produces the soft part of the X-ray emission. We measured a Ne/O ratio similar to that of BP Tau and reduced by a factor 2 with respect to that of TW Hya and V4046 Sgr: this result suggests that the stellar age is not a useful parameter to predict the amount of grain depletion suffered by the accreting material.

Acknowledgements. CA, AM, and GP acknowledge partial support for this work from contract ASI-INAF I/023/05/0 and from the Ministero dell’ Università e della Ricerca. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.

References

Arnaud, K. A. 1996, in ASP Conf. Ser. 101: Astronomical Data Analysis Software and Systems V , ed. G. H. Jacoby & J. Barnes, 17

Asplund, M., Grevesse, N., & Sauval, A. J. 2005, in ASP Conf. Ser. 336: Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, ed. T. G. Barnes, III & F. N. Bash, 25

Batalha, C. C., Quast, G. R., Torres, C. A. O., et al. 1998, A&AS, 128, 561

Calvet, N. & Gullbring, E. 1998, ApJ, 509, 802

Carpenter, J. M., Wolf, S., Schreyer, K., Lauhardt, R., & Henning, T. 2005, AJ, 129, 1049

Drake, J. J. & Testa, P. 2005, Nature, 436, 525

Drake, J. J., Testa, P., & Hartmann, L. 2005, ApJ, 627, L149

Feigelson, E. D. & Montmerle, T. 1999, ARA&A, 37, 363

Giridhar, S., Lambert, D. L., Reddy, B. E., Gonzalez, G., & Yong, D. 2005, ApJ, 627, 432

Gregorio-Hetem, J., Lepine, J. R. D., Quast, G. R., Torres, C. A. O., & de La Reza, R. 1992, AJ, 103, 549

Güdel, M., Skinner, S. L., Mel’nikov, S. Y., et al. 2007, A&A, in press, (astro-ph/0612589)

Gullbring, E., Hartmann, L., Brïçeno, C., & Calvet, N. 1998, ApJ, 492, 323

Günther, H. M., Liebke, C., Schmitt, J. H. M. M., Robrade, J., & Ness, J., 2006, A&A, 459, L29

Herczeg, G. J., Linsky, J. L., Valenti, J. A., Johns-Krull, C. M., & Wood, B. E. 2002, ApJ, 572, 310

Kashyap, V. & Drake, J. J. 2000, Bulletin of the Astronomical Society of India, 28, 475

Kastner, J. H., Henkenmoerder, D. P., Schulz, N. S., Canizares, C. R., & Weintraub, D. A. 2002, ApJ, 567, 434

Makarov, V. V. & Fabrians, C. 2001, A&A, 368, 866

Mamajek, E. E., Meyer, M. R., & Liebert, J. 2002, AJ, 124, 1670

Ness, J.-U., Güdel, M., Schmitt, J. H. M. M., Audard, M., & Telleschi, A. 2004, A&A, 427, 667

Preibisch, T., Kim, Y.-C., Favata, F., et al. 2005, ApJS, 160, 401
Robrade, J. & Schmitt, J. H. M. M. 2006, A&A, 449, 737
Sartori, M. J., Lépine, J. R. D., & Dias, W. S. 2003, A&A, 404, 913
Savage, B. D. & Sembach, K. R. 1996, ARA&A, 34, 279
Schmitt, J. H. M. M., Robrade, J., Ness, J.-U., Favata, F., & Stelzer, B. 2005, A&A, 432, L35
Siess, L., Dufour, E., & Forestini, M. 2000, A&A, 358, 593
Silverstone, M. D., Meyer, M. R., Mamajek, E. E., et al. 2006, ApJ, 639, 1138
Smith, R. K., Brickhouse, N. S., Liedahl, D. A., & Raymond, J. C. 2001, ApJ, 556, L91
Stelzer, B. & Schmitt, J. H. M. M. 2004, A&A, 418, 687
Telleschi, A., Güdel, M., Briggs, K. R., et al. 2007, A&A, in press, (astro-ph/0610456)
Testa, P., Drake, J. J., & Peres, G. 2004, ApJ, 617, 508
Zuckerman, B., Song, I., Bessell, M. S., & Webb, R. A. 2001, ApJ, 562, L87