Aspirin increases susceptibility of *Helicobacter pylori* to metronidazole by augmenting endocellular concentrations of antimicrobials

Xiao-Ping Zhang, Wei-Hong Wang, Yu Tian, Wen Gao, Jiang Li

Abstract

AIM: To investigate the mechanisms of aspirin increasing the susceptibility of *Helicobacter pylori* (*H. pylori*) to metronidazole.

METHODS: *H. pylori* reference strain 26695 and two metronidazole-resistant isolates of *H. pylori* were included in this study. Strains were incubated in Brucella broth with or without aspirin (1 mmol/L). The *rdxA* gene of *H. pylori* was amplified by PCR and sequenced. The permeability of *H. pylori* to antimicrobials was determined by analyzing the endocellular radioactivity of the cells after incubated with [7-3H]-tetracycline. The outer membrane proteins (OMPs) of *H. pylori* 26695 were depurated and analyzed by SDS-PAGE. The expression of 5 porins (hopA, hopB, hopC, hopD, hopE and hefA, hefB, hefC of *H. pylori*) were analyzed using real-time quantitative PCR.

RESULTS: The mutations in *rdxA* gene did not change in metronidazole resistant isolates treated with aspirin. The radioactivity of *H. pylori* increased when treated with aspirin, indicating that aspirin improved the permeability of the outer membrane of *H. pylori*. However, the expression of two OMP bands between 55 kDa and 72 kDa altered in the presence of aspirin.

CONCLUSION: Although aspirin increases the susceptibility of *H. pylori* to metronidazole, it has no effect on the mutations of *rdxA* gene of *H. pylori*. Aspirin increases endocellular concentrations of antimicrobials probably by altering the OMP expression.

© 2009 The WJG Press and Baishideng. All rights reserved.

Key words: *Helicobacter pylori*; Aspirin; Metronidazole; Resistance; Minimum inhibitory concentrations

INTRODUCTION

Aspirin, referred to as non-steroidal anti-inflammatory drugs (NSAIDs), is one of the most widely used drugs worldwide. It inhibits cyclooxygenases (COX), thereby irreversibly blocking the conversion of arachidonic acid to prostanooids. In addition, aspirin is also considered to offer some protection against coronary heart disease, due in part to inhibition of the thromboxane A2, a potent platelet aggregator. It has been reported that aspirin demonstrates chemopreventative activity against cancers in the esophagus, stomach and colon by inducing apoptosis in epithelial cells and regulating angiogenesis. Aspirin also has numerous effects in different bacterial species. Previous studies reported that aspirin could inhibit the growth of some bacteria, affect the production of virulence factors of some bacteria.
and alter the susceptibility of bacteria to some antibiotics by influencing the gene expression and inducing a number of morphological and physiological alterations in bacteria. We previously reported that NSAIDs, including sodium salicylate, aspirin, indomethacin and celecoxib, inhibited the growth of _H. pylori_ in a dose-dependent manner when incubated in brucella broth _in vitro_. These drugs also significantly affected the activity of virulence factors of _H. pylori_, for example, urease and vaculating cytotoxin. In addition, the minimum inhibitory concentrations (MICs) of clarithromycin, metronidazole and amoxicillin to _H. pylori_ decreased when treated with a low concentration of aspirin, indicating that aspirin increased the susceptibility of _H. pylori_ to these antimicrobials.

The aim of the present study was to investigate the mechanisms of aspirin increasing the susceptibility of _H. pylori_ to metronidazole. The _rdxA_ gene of _H. pylori_ treated with and without aspirin was analyzed by PCR amplification and sequencing. The effect of aspirin on the permeability of the outer membrane of _H. pylori_ was determined using [7-3H]-tetracycline. The effects of aspirin on the expression of outer membrane proteins (OMPs) of _H. pylori_ were also determined.

MATERIALS AND METHODS

Chemicals

Aspirin (Sigma Chemical Co, St Louis, MO, USA) and proton conductor carbonyl cyanide m-chlorophenylhydrazone (CCCP, Sigma Chemical Co.) were dissolved in DMSO (Sigma Chemical Co.) in advance. [7-3H]-tetracycline (0.6 Ci/mmol; 22.2 GBq/mmol; Dupont/NEN Research Products, Boston, Mass.) was freshly dissolved in thin hydrochloric acid.

Strains and culture conditions

H. pylori reference strain 26695 (susceptible to metronidazole) and two clinical isolates of _H. pylori_ (metronidazole resistant, R1 and R2) were included in this study. Strains were cultured on Columbia agar plates containing 8% sheep blood in a microaerobic atmosphere (< 1%, vehicle control) were added for 6 h at 37 °C.

Determination of MICs

Bacteria were prepared in Brain Heart Infusion broth to yield a viable count of 3 × 10^9 CFU/mL (equivalent to 1 McFarland turbidity standard unit) and used as the inocula for susceptibility testing. Bacterial suspension (100 μL) was spread, in duplicate, on Columbia agar plates with or without aspirin (1 mmol/L). A single E-test strip of metronidazole (OXOID Ltd, England) was applied to each plate. The MIC of metronidazole and the possible effect of aspirin on the MIC of metronidazole were determined after 72 h of incubation at 37 °C under microaerobic conditions.

Extraction of genomic DNA

H. pylori genomic DNA was extracted using silicon dioxide method. Cells were harvested and washed twice in phosphate-buffered saline (PBS) (0.01 mol/L, pH 7.2). The cell precipitation was suspended in 100 μL TE. Then 5 μL SiO2. Liq. and 400 μL binding buffer (containing 4 mol/L guanidinium isothiocyanate, 50 mmol/L Tris-HCl, 20 mmol/L EDTA) was added and incubated at 55 °C for 5 min with shaking once every minute. The suspension was centrifuged at 8000 r/min for 30 s at room temperature and the precipitate was washed thrice in cleaning buffer (containing 20 mmol/L Tris-HCl, 1 mmol/L EDTA, 100 mmol/L NaCl and dehydrated alcohol). The resulting suspension was dried at 55 °C and stored at -20 °C.

Amplification of _H. pylori rdxA_ gene and sequencing

The fragments (886 bp) containing the complete _rdxA_ gene was amplified by PCR. Forward primer: 5'-AGGGATTTATTGATGCTACAAG-3'; Reverse primer: 5'-AGGAGCATCAGATAGTTCTGA-3'. The PCR amplification was carried out in 25 μL reaction solution containing 2 μL of _H. pylori_ genomic DNA, 4.5 μL of 10 × PCR buffer (with 15 μmol/L MgCl2), 2 μL of dNTPs (each 2.5 mmol/L), 2 μL of forward and reverse primers (each 5 μmol/L), 0.5 μL of TaqDNA polymerase (1 U/μL) and 9 μL of ddH2O. The reaction was denatured initially at 94 °C for 5 min, followed by 30 cycles, with each cycle composed of 30 s at 94 °C (denaturation), 1 min at 52 °C (annealing), and 1 min at 72 °C (extension). After a final extension of 10 min at 72 °C, the amplicons were electrophoresed in a 1.5% agarose gel and purified using the silicon dioxide method as described above. The resulting _rdxA_ gene was sequenced by the dideoxy chain termination procedure at Beijing Li-Jia-Tai-Cheng Technology Company. The _rdxA_ genes of _H. pylori_ treated with and without aspirin were analyzed on line (http://align.genome.jp).

Uptake studies using [7-3H] tetracycline

Strain 26695 was grown to mid-logarithmic phase (approximately from 3 × 10^8 to 5 × 10^9 CFU/mL) in Brucella broth and then 1 mmol/L of aspirin or DMSO (< 1%, vehicle control) were added for 6 h at 37 °C on a shaker at 60 r/min under microaerobic conditions. Cell suspension was centrifuged at 8000 r/min for 10 min at room temperature and the precipitate washed and suspended in HEPES buffer (pH 7.2, containing 100 μmol/L MgCl2). At room temperature, 5 μCi [7-3H] tetracycline (0.6 Ci/mmol; 22.2 GBq/mmol; Dupont/NEN Research Products, Boston, USA) was added to 10 mL cell suspension. After 20 min, each cell suspension was divided into two halves, and 100 μmol/L CCCP was added to one half. One milliliter aliquots were
taken at 10 min intervals and washed three times in PBS. The resulting pellets were then diluted scintillation fluid and analyzed for radioactivity in an scintillation counter (TRI-CARB 2100TR).

Purification of OMPs

H pylori 26695 was incubated in Brucella broth for 48 h. The suspension was centrifuged at 8000 r/min for 10 min, washed, and suspended in ice-cold Tris-Mg buffer (10 mmol/L Tris-HCl containing 5 mmol/L MgCl₂, pH 7.3) and sonicated (once 30 s at 3-5 s interval for 5 min) until most of the cells were disrupted as visualized microscopically. Unbroken cells were removed by centrifugation at 8000 r/min for 20 min at 4°C. The inner and outer membranes were concentrated by centrifugation at 50000 r/min for 60 min at 4°C. The precipitate was suspended in 2% Triton Tris-Mg buffer (pH 7.5) and incubated for 30 min at room temperature, and then centrifuged and incubated again under the same condition. The resulting pellets, OMPs, were washed twice in 10 mmol/L Tris-HCl and resolved in ddH₂O. The final concentration of OMPs was determined by Coomassie brilliant blue R250 method.

SDS-PAGE gel electrophoresis

Ten microgram OMPs were used for SDS-PAGE gel electrophoresis at permanent voltage (5% stacking gel at 60 V, 10% separating gel at 100 V). After incubation for 30 min in fixing liquid, the gel was dyed with Coomassie brilliant blue G250 for 30 min.

Isolation of total RNA and reverse transcription

Total RNA was obtained by the TRIzol method as described by manufacturer (Invitrogen, Burlington, Ontario, Canada), and the contaminating DNA was removed by DNase I treatment according to the manufacturer (Sigma). For cDNA synthesis, 4 μg RNA diluted with DEPC H₂O was heated to 70°C for 5 min and chilled quickly on ice for 15 min. The samples were then added to a 20 μL reaction mixture containing 2 μL random hexamer primers (1 μg/μL), 0.4 μL of RNasin, 1 μL of M-MLV, 4 μL of dNTPs (each 2.5 mmol/L) and 4 μL of 5 × RT buffer. The cDNA synthesis reaction was performed for 60 min at 37°C. The enzyme was subsequently inactivated at 95°C for 5 min. Aliquots of cDNA were stored at -70°C.

Real-time quantitative PCR

The mRNA levels of hopA, hopB, hopC, hopD, hopE and hefA, hefB, hefC were determined by real-time PCR using an ABI Prism 7700 sequence detection system (Perkin-Elmer Applied Biosystems, Foster City, CA.). Specific primers and TaqMan probes were designed with the aid of the Primer Express program 3.0 (Perkin-Elmer Applied Biosystems) (Table 1). A standard curve was constructed using 10-fold serial dilutions of each cDNA. Reaction mixtures for PCR (50 μL) were prepared by mixing 5 μL synthesized cDNA solution with 5 μL of 10 × PCR buffer (containing 15 μmol/L MgCl₂), 3 μL forward and reverse primers (each 5 μmol/L), 4 μL of dNTPs (each 2.5 mmol/L), 2 μL TaqMan probe, 1 μL of ROX, 0.5 μL TaqDNA polymerase (1 U/μL). PCR was carried out at 95°C for 10 min, followed by 40 cycles of 95°C for 15 s and 60°C for 60 s according to the manufacturers’ instructions. The levels of the protein mRNA were expressed as the ratio of the protein mRNA to 16S rRNA mRNA ([protein mRNA (U/mL)/16S rRNA mRNA (U/mL)] × 100 000). The PCR was carried out in quintuple using samples prepared at the same time.

Statistical analysis

Statistical analysis was performed using SPSS, 13.0. Representative data of endocellular radioactivity and quantitative PCR were presented as mean ± SD. The Student’s *t* test was used to compare data. *P* < 0.05 was considered statistically significant.

RESULTS

Effects of aspirin on MICs of metronidazole

For strain R1, MIC of metronidazole decreased from 256 μg/mL to 0.25 μg/mL in the presence of aspirin (1 mmol/L), and for strain R2, MIC of metronidazole reduced from 64 μg/mL to below the readable value (0.016 μg/mL), indicating that aspirin increased the susceptibility of *H pylori* to metronidazole and converted these two resistant strains to susceptible strains.

Effects of aspirin on mutations of rdxA gene

The 886 bp DNA fragments containing the complete *rdxA* gene were amplified by PCR for *H pylori* reference...
strain 26 695 and the two metronidazole resistant strains (R1, R2) treated with or without aspirin. Sequence analysis revealed that there were point mutations, insertions and deletions in \(\text{rdxA} \) gene of strain R2 when compared with the reference strain 26 695, and the nucleotide homology between the two strains (26 695 and R2) was 94.4%. However, the nucleotide homology of \(\text{rdxA} \) gene between strain R2 and its corresponding isolate R2(A) (strain R2 treated with aspirin) was over 99.5% (Figures 1 and 2).

Effects of aspirin on permeability of outer membrane of \(\text{H pylori} \)

Irrespective of the presence of CCCP, the radioactivity of \(\text{H pylori} \) treated with aspirin was higher when compared to that of the vehicle control (DMSO), indicating that aspirin enhanced the permeability of the outer membrane of \(\text{H pylori} \) (Figure 3).

Irrespective of the presence of aspirin, the radioactivity of \(\text{H pylori} \) cells decreased when the efflux pump inhibitor CCCP was added, indicating that aspirin did not interfere with the collapse effect of CCCP on the proton gradient across the cytoplasmic membrane of \(\text{H pylori} \) (Figure 4).

Effects of aspirin on OMP profiles

The OMP profiles of \(\text{H pylori} \) treated with aspirin were similar to that in control. However, the expression of two OMPs (Band 1 and 2) between 55 kDa and 72 kDa altered in the presence of aspirin (Figure 5).

DISCUSSION

\(\text{H pylori} \) is a spiral-shaped gram-negative bacterium and an important human pathogen that colonizes in the stomach of 50% of the world human population[10,11].

Table 2 cDNAs levels of porins and efflux system of \(\text{H pylori} \) tested by real-time quantitative PCR

Gene	Aspirin group	DMSO control	Blank control
hopA	965.60 ± 23.33	1087.75 ± 26.42	856.27 ± 25.43
hopB	84.00 ± 15.97	91.45 ± 14.83	100.15 ± 16.28
hopC	52.98 ± 11.67	51.77 ± 12.01	52.79 ± 10.27
hopD	83.86 ± 14.09	92.46 ± 17.78	89.92 ± 13.72
hopE	54.07 ± 10.58	52.77 ± 11.93	52.12 ± 9.92
hefA	12.31 ± 2.12	12.51 ± 1.99	12.97 ± 2.76
hefB	25.47 ± 4.73	28.48 ± 5.07	25.60 ± 4.99
hefC	55.62 ± 8.89	50.08 ± 9.97	53.37 ± 10.04

P > 0.05 (Aspirin group compared with DMSO control or blank control).

Effects of aspirin on expression of mRNA of porins and efflux system

Real-time quantitative PCR indicated that there was no significant difference in the levels of the cDNA of hopA, hopB, hopC, hopD, hopE and hefA, hefB, hefC for strains treated with aspirin when compared with that in control. This indicated that, irrespective of the presence of aspirin, the expression of the levels of mRNA of hopA, hopB, hopC, hopD, hopE and hefA, hefB, hefC did not change (Table 2).
Infection results in chronic inflammation of the gastric mucosa and peptic ulcer, and it has been proven that
H pylori infection is strongly associated with adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. International Agency for Research on Cancer affiliated to World Health Organization (WHO) defined
H pylori as one of the first class human carcinogens\(^\text{[12]}\). Recent Studies revealed that
H pylori infection plays important roles in the invasion of heart and brain vascular disorders, autoimmune diseases, nutritional and metabolic diseases, hematopathy and dermatologic diseases. Eradication of
H pylori infection is very important to prevent and cure these diseases. The most successful treatment regimens use combinations of two or more antibiotics, such as amoxicillin, clarithromycin, metronidazole, or tetracycline, along with a proton pump inhibitor or bismuth. However, with the wide use of antimicrobials in clinical practice, antibiotic resistance is more and more apparent and is considered one of the major causes of treatment failure\(^\text{[13]}\).

Early studies suggested that salicylate inhibited the growth of some bacteria, such as *Escherichia coli*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, and *Staphylococcus epidermidis*, and affected the activity of fimbriae, flagellum and the production of biofilm, slime, and thus might alter the pathogenicity of bacteria\(^\text{[14-21]}\). It has been reported that *in vitro*, salicylate could alter the susceptibilities of bacteria to some antimicrobials. Salicylate induced the intrinsic multiple antimicrobial resistance phenotype in many bacteria, such as *Escherichia coli*, *Salmonella typhimurium* and *Staphylococcus aureus*, and increased the susceptibilities of some bacteria to aminoglycosides\(^\text{[22-29]}\). Our previous studies also found that *in vitro* aspirin not only inhibited the growth of
H pylori\(^\text{[6-9]}\), but also decreased the MICs of metronidazole, clarithromycin and amoxicillin to
H pylori, and even converted some resistant strains to susceptible ones\(^\text{[6-8]}\). Therefore, the present study investigated the mechanisms of aspirin increasing the susceptibility of

Figure 3 Radioactivity of
H pylori cells treated with aspirin (1 mmol/L) or vehicle control (DMSO). A: CCCP; B: No CCCP.

Figure 5 OMP profiles of
H pylori 26695. M: Size marker; C: Control; D: DMSO; A: Aspirin. Band 1: OMP increased in the presence of aspirin; Band 2: OMP decreased in the presence of aspirin.

Figure 4 Radioactivity of
H pylori cells treated with CCCP (100 µmol/L) or without CCCP. A: Aspirin; B: Vehicle control.
Metronidazole is a prodrug activated by nitroreductases in bacteria cells. Resistance of metronidazole is caused by either the absence or the inactivation of the nitroreductase\(^{[10]}\). It has been reported that the resistance of \(H\). \(pylori\) to metronidazole was mainly due to null mutations in the \(rdxA\) gene, which encoded an oxygen-insensitive NADPH nitroreductase\(^{[12]}\). However, studies also reported involvement of other reductases in the development of the resistant phenotype. In addition to oxygen-insensitive NADPH nitroreductases, several other nitroreductases in \(H. pylori\), such as NADPH flavin oxidoreductase, ferredoxin-like protein, flavodoxin, \(\alpha\)-ketoglutarate oxidoreductase and pyruvate: flavodoxin oxidoreductase, have been found to reduce metronidazole and to generate active compounds\(^{[35-38]}\). In our study, mutations in \(rdxA\) gene might be involved for the resistance of the isolated strain (R2). However, in the presence of aspirin, the strain converted from metronidazole resistant to susceptible, while the mutations in \(rdxA\) gene did not change. By using isotope scintillation technique with \([7-^{3}H]\)-tetracycline, our study revealed that aspirin increased the endocellular concentration of antimicrobials in \(H. pylori\) cells, indicating that aspirin increased the outer membrane permeability of \(H. pylori\) to antimicrobials. With the higher endocellular concentration in the presence of aspirin, metronidazole might be reduced and activated by other nitroreductases in \(H. pylori\). Therefore, the MIC of \(H. pylori\) to metronidazole decreased, and in some circumstances, resistant strains even converted to susceptible ones.

Two pathways may be involved in the mechanisms for the increasing concentration of antimicrobials in bacteria cells. One is the augmentation of anti-microbials entering into the bacteria cells passively; the other is the impairment of antimicrobials pumping out of the bacteria actively. Previous studies on \(Escherichia coli\) revealed that salicylate increased resistance to multiple antibiotics, including quinolones, cephalosporins, ampicillin, nalidixic acid, tetracycline and chloramphenicol\(^{[22]}\). Aspirin could induce multiple antibiotic resistance (\(mar\) gene), alter the expression of OMPs, and decrease the outer membrane permeability to antimicrobials or increase the efflux of antimicrobials\(^{[35-38]}\). Therefore, the MIC of \(H. pylori\) to metronidazole decreased, and in some circumstances, resistant strains even converted to susceptible ones.

The alteration of the permeability of outer membrane of \(H. pylori\) should be accompanied by the modification of some related OMPs. In the present study, the expression of two OMPs of \(H. pylori\) between 55 kDa and 72 kDa altered in the presence of aspirin. However, the functions and identifications of these OMPs need to be determined by two-dimensional electrophoresis and protein mass-spectrum analysis. If these OMPs were associated with the increase of the permeability of outer membrane of \(H. pylori\), further studies should be performed to determine whether the functional and phenotypic alterations of these OMPs in the presence of aspirin occurred at the levels of protein translation or modification, or some other porins or efflux systems were involved.

Park et al\(^{[43]}\) conducted a pilot study aimed at comparing the efficacy of the standard omeprazole-amoxicillin-clarithromycin (OAC) regimen with a combined OAC regimen and aspirin (OACA). Follow-up endoscopic findings showed that the previous ulcers were completely healed in all subjects. Although the eradication rate for the OACA group (86.7%) was higher than that of the OAC group (80.3%), there was no statistically significant difference between the two groups. The overall adverse events were similar in the two groups. The OACA regimen was well tolerated in the group of patients with peptic ulcer disease. The potential of aspirin and other NSAIDs for clinical use to augment the efficacy of \(H. pylori\) eradication may warrant further investigations.

With the increasing attention paid to the detriment of \(H. pylori\) and the resistance of antimicrobials to this microorganism, it is urgent to investigate new effective therapeutic regimens. Investigating the molecule...
mechanisms of aspirin increasing the susceptibility of \(H \) pylori to antimicrobials will help discover a more effective eradication regimen in clinical practice.

ACKNOWLEDGMENTS

We thank Ding-Fang Bu for his technical assistance.

COMMENTS

Background

It was reported that aspirin inhibited the growth of Helicobacter pylori \((H \) pylori) and the minimal inhibitory concentration (MICs) of clarithromycin, metronidazole, and amoxicillin to \(H \) pylori decreased when treated with aspirin. This indicated that aspirin increased the susceptibility of \(H \) pylori to these antimicrobials, and even converted some resistant strains to susceptible ones.

Research frontiers

\(H \) pylori infection results in chronic inflammation of gastric mucosa, peptic ulcer and is strongly associated with adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Recent research revealed that \(H \) pylori infection played important roles in the invasion of heart and brain vascular disorders, autoimmune diseases, nutritional and metabolic diseases, hemopathies and dermatologic diseases. Eradication of \(H \) pylori infection is, therefore, very important to prevent and cure these diseases. However, with the wide use of antimicrobials in clinical practice, antibiotic resistance has become apparent and is considered one of the major causes of treatment failure.

Innovations and breakthroughs

In vitro, aspirin decreased the MICs of metronidazole, clarithromycin and amoxicillin to \(H \) pylori, and even converted some resistant strains to susceptible ones. This study investigated the mechanisms of aspirin increasing the susceptibility of \(H \) pylori to metronidazole.

Applications

Investigating the molecule mechanisms of aspirin increasing the susceptibility of \(H \) pylori to antimicrobials will help understand the mechanisms of the resistance of \(H \) pylori to antibiotics more intensively and discover a more effective eradication regimen in clinical practice.

Terminology

Carbonyl cyanide m-chlorophenylhydrazone (CCCP), a kind of efflux pump inhibitor that is effective at a micromolar concentration, can alter the pH gradient across the cytoplasmic membrane, therefore, deprives the energy provision of the transport protein.

Peer review

The authors intensively reported that non-steroidal anti-inflammatory drugs (NSAIDs), including sodium salicylate, aspirin, indomethacin and celecoxib, inhibited the growth of \(H \) pylori in a dose-dependent manner and changed the susceptibility of \(H \) pylori to antibiotics. In this study, the authors demonstrated that although aspirin increased the susceptibility of \(H \) pylori to metronidazole, it had no effect on the mutations of \(\text{rdxA} \) gene of \(H \) pylori and that aspirin increased endocellular concentrations of antimicrobials probably by altering the outer membrane proteins (OMPs) expression of \(H \) pylori. This theme is interesting, and will give new insights of \(H \) pylori eradication for physicians.

REFERENCES

1. Kagawa A, Azuma H, Akaime M, Kanagawa Y, Matsumoto T. Aspirin reduces apolipoprotein(a) (apo(a)) production in human hepatocytes by suppression of apo(a) gene transcription. J Biol Chem 1999; 274: 34111-34115
2. Morgan G. Non-steroidal anti-inflammatory drugs and the chemoprevention of colorectal and oesophageal cancers. Gut 1996; 38: 646-648
3. Pelig B, Lubin MF, Cotonson GA, Clark WS, Wilcox CM. Long-term use of nonsteroidal antiinflammatory drugs and other chemopreventors and risk of subsequent colorectal neoplasia. Dig Dis Sci 1996; 41: 1319-1326
4. Vainio H, Morgan G, Kleihues P. An international evaluation of the cancer-preventive potential of nonsteroidal anti-inflammatory drugs. Cancer Epidemiol Biomarkers Prev 1997; 6: 749-753
5. Price CT, Lee IR, Gustafson JE. The effects of salicylate on bacteria. Int J Biochem Cell Biol 2000; 32: 1029-1043
6. Wang WH, Hu FL, Wong BCY, Berg DE, Lam SK. Inhibitory effects of aspirin and indometacin on the growth of Helicobacter pylori in vitro. Clin. J Dig Dis 2002; 3: 172-177
7. Wang WH, Wong WM, Daiidiene D, Berg DE, Gu Q, Lai KC, Lam SK, Wong BC. Aspirin inhibits the growth of Helicobacter pylori and enhances its susceptibility to antimicrobial agents. Gut 2003; 52: 490-495
8. Gu Q, Xia HH, Wang WH, Wang JD, Wong WM, Chan AO, Yuen MF, Lam SK, Cheung HK, Liu XC, Wong BC. Effect of cyclo-oxygenase inhibitors on Helicobacter pylori susceptibility to metronidazole and clarithromycin. Aliment Pharmacol Ther 2004; 20: 675-681
9. Ma BX, Wang WH, Hu FL, Li J. Effect of aspirin and celecoxib on Helicobacter pylori in vitro. Shi jie Hua ren Xiaohua Zazhi 2006; 14: 2747-2752
10. Walker MM, Crabtree JE. Helicobacter pylori infection and the pathogenesis of duodenal ulceration. Ann N Y Acad Sci 1998; 859: 96-111
11. Telford JL, Covacci A, Rappuoli R, Chiara P. Immunobiology of Helicobacter pylori infection. Curr Opin Immunol 1997; 9: 498-503
12. Vandenes plus Y. Helicobacter pylori infection. World J Gastroenterol 2000; 6: 20-31
13. Graham DY. Therapy of Helicobacter pylori: current status and issues. Gastroenterology 2000; 118: 52-58
14. Kunin CM, Hua TH, Guerrant RL, Bakalez LO. Effect of salicylate, bismuth, osmylates, and tetracycline resistance on expression of fimbiae by Escherichia coli. Infect Immun 1994; 62: 2178-2186
15. Farber BF, Wolff AG. The use of salicylic acid to prevent the adherence of Escherichia coli to silastic catheters. J Urol 1993; 149: 667-670
16. Kunin CM, Hua TH, Bakalez LO. Effect of salicylate on expression of flagella by Escherichia coli and Proteus, Providencia, and Pseudomonas spp. Infect Immun 1995; 63: 1796-1799
17. Farber BF, Hsieh HC, Donnenfeld ED, Perry HD, Epstein A, Wolff A. A novel antibacterial chip for contact lens solutions. Ophthalmology 1995; 102: 831-836
18. Muller E, Al-Attar J, Wolff AG, Farber BF. Mechanism of salicylate-mediated inhibition of biofilm in Staphylococcus epidermidis. J Infect Dis 1998; 177: 501-503
19. Teichberg S, Farber BF, Wolff AG, Roberts B. Salicylic acid decreases extracellular biofilm production by Staphylococcus epidermidis: electron microscopic analysis. Infect Immun 1993; 67: 1501-1503
20. Domenico P, Schwartz S, Cunha BA. Reduction of capsular polysaccharide production in Klebsiella pneumoniae by sodium salicylate. Infect Immun 1989; 57: 3771-3774
21. Sato RJ, Domenico P, Tomás JM, Straus DC, Merino S, Benedi VJ, Cunha BA. Salicylate-enhanced exposure of Klebsiella pneumoniae subcapsular components. Infection 1995; 23: 371-377
22. Rosner JL. Nonsteroidal resistance to chloramphenicol and other antibiotics induced by salicylates and other chemotactic repellents in Escherichia coli K-12. Proc Natl Acad Sci USA 1985; 82: 8771-8774
23. Cohen SP, McMurry LM, Hooper DC, Wolfs J, Levy SB. Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction. Antimicrob Agents Chemother 1989; 33: 1318-1325
24. Sulavik MC, Dazer M, Miller PF. The Salmonella typhimurium mar locus: molecular and genetic analyses and assessment of its role in virulence. J Bacteriol 1997; 179: 1857-1866
25 Domenico P, Hopkins T, Cunha BA. The effect of sodium salicylate on antibiotic susceptibility and synergy in Klebsiella pneumoniae. J Antimicrob Chemother 1990; 26: 343-351

26 Gustafson JE, Candelaria PV, Fisher SA, Goodridge JP, Lichocik TM, McWilliams TM, Price CT, O’Brien FG, Grubb WB. Growth in the presence of salicylate increases fluoroquinolone resistance in Staphylococcus aureus. Antimicrob Agents Chemother 1999; 43: 990-992

27 Price CT, O’Brien FG, Shelton BP, Warmington JR, Grubb WB, Gustafson JE. Effects of salicylate and related compounds on fusidic acid MICs in Staphylococcus aureus. J Antimicrob Chemother 1999; 44: 57-64

28 Domenico P, Straus DC, Woods DE, Cunha BA. Salicylate potentiates amikacin therapy in rodent models of Klebsiella pneumoniae infection. J Infect Dis 1993; 168: 766-769

29 Aumercier M, Murray DM, Rosner JL. Potentiation of susceptibility to aminoglycosides by salicylate in Escherichia coli. Antimicrob Agents Chemother 1990; 34: 786-791

30 Messier N, Roy PH. Integron integrases possess a unique additional domain necessary for activity. J Bacteriol 2001; 183: 6699-6706

31 Edwards DI. Nitroimidazole drugs—action and resistance mechanisms. I. Mechanisms of action. J Antimicrob Chemother 1993; 31: 9-20

32 Goodwin A, Kersulyte D, Sisson G, Veldhuyzen van Zanten SJ, Berg DE, Hoffman PS. Metronidazole resistance in Helicobacter pylori is due to null mutations in a gene (rdxA) that encodes an oxygen-insensitive NADPH nitroreductase. Mol Microbiol 1998; 28: 383-393

33 Jenks PJ, Edwards DI. Metronidazole resistance in Helicobacter pylori. Int J Antimicrob Agents 2002; 19: 1-7

34 Mendz GL, Mégraud F. Is the molecular basis of metronidazole resistance in microaerophilic organisms understood? Trends Microbiol 2002; 10: 370-375

35 Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE. Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol 1995; 16: 45-55

36 Fralick JA. Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J Bacteriol 1996; 178: 5803-5805

37 Rosner JL, Chai TJ, Foulds J. Regulation of ompF porin expression by salicylate in Escherichia coli. J Bacteriol 1991; 173: 5631-5638

38 Hancock RE. The bacterial outer membrane as a drug barrier. Trends Microbiol 1997; 5: 37-42

39 Doig P, Exner MM, Hancock RE, Trust TJ. Isolation and characterization of a conserved porin protein from Helicobacter pylori. J Bacteriol 1995; 177: 5447-5452

40 Exner MM, Doig P, Trust TJ, Hancock RE. Isolation and characterization of a family of porin proteins from Helicobacter pylori. Infect Immun 1995; 63: 1567-1572

41 Bina JE, Nano P, Hancock RE. Utilization of alkaline phosphatase fusions to identify secreted proteins, including potential efflux proteins and virulence factors from Helicobacter pylori. FEMS Microbiol Lett 1997; 148: 63-68

42 Bina JE, Alm RA, Uria-Nickelsen M, Thomas SR, Trust TJ, Hancock RE. Helicobacter pylori uptake and efflux: basis for intrinsic susceptibility to antibiotics in vitro. Antimicrob Agents Chemother 2000; 44: 248-254

43 Park SH, Park DI, Kim SH, Kim HJ, Cho YK, Sung JK, Sohn CI, Jeon WK, Kim BI, Keum DK. Effect of high-dose aspirin on Helicobacter pylori eradication. Dig Dis Sci 2005; 50: 626-629