A Calibrated Time Domain Transmissometry Soil Moisture Sensor Can Be Used for Precise Automated Irrigation of Container-grown Plants

Julían Miralles-Crespo
Universidad Politécnica de Cartagena, Escuela Técnica Superior de Ingeniería Agronómica, Departamento de Producción Vegetal, Paseo Alfonso XIII, 48, 30203 Cartagena (Murcia), Spain

Marc W. van Iersel
Department of Horticulture, 1111 Plant Sciences Building, University of Georgia, Athens, GA 30602-7273

Abstract. Irrigation control systems that irrigate container-grown plants based on crop water needs can reduce water and fertilizer use and increase the sustainability of ornamental crop production. The use of soil moisture sensors to determine when to irrigate is a viable option. We tested a commercially available irrigation controller (CS3500; Acclima, Meridian, ID), which uses time domain transmissometry (TDT) sensors to measure soil volumetric water content (θ). The objectives of this study were: 1) to test the accuracy of TDT sensors in soilless substrate; 2) to quantify the ability of the Acclima CS3500 irrigation controller to maintain stable θ readings during the production of container-grown begonia (Begonia semperflorens L.) by turning a drip irrigation system on and off as needed; and 3) to study the growth and photosynthetic physiology of begonia at six θ levels. Calibration of the TDT sensors in pots filled with substrate (but without plants) showed that the θ determined by the TDT sensors had a very close relationship (R² = 0.99) with the gravimetrically determined θ, but the TDT sensors underestimated θ by ≈0.08 m³⁻¹. Therefore, a custom calibration of the TDT sensors for the soilless substrate was necessary to get accurate θ data. The irrigation controller was programmed to maintain six θ thresholds, ranging from 0.136 to 0.472 m³·m⁻³ (based on our own sensor calibration), and was able to maintain θ readings within 0.008 m³·m⁻³ of the threshold. Theta and Sigma probes were used to collect comparative and bulk electrical conductivity (EC) data, respectively. The results showed a strong correlation with TDT sensor measurements of θ (R² = 0.92) but a moderate relationship for bulk EC (R² = 0.53). The begonias had similar dry weight at θ levels of 0.348 m³⁻¹ and higher, whereas total evapotranspiration increased linearly with the θ threshold. The lowest θ threshold reduced leaf size, net photosynthesis (Pn), and stomatal conductance (gs). Overall, the TDT sensors can provide accurate measurements of θ in soilless substrate but need substrate-specific calibration. The Acclima CS3500 controller, using TDT sensors, was able to maintain stable θ readings throughout a production cycle. These results suggest that this irrigation controller may be suitable for production of greenhouse crops as well as in drought stress research.

Revised for publication: 18 Jan. 2011. Accepted for publication: 13 Apr. 2011.
Funding for this research was provided by the Fred C. Gloeckner Foundation and USDA-NIFA-SCRI Award no. 2009-51181-05768.
We thank Acclima for donating the sensors and irrigation controller, Fafard Inc. for donating the substrate, and Sue Dove for technical assistance.

Water conservation through more efficient irrigation has received much attention in recent years, especially in regions suffering from drought and with limited water availability. Population growth and increased urbanization have increased competition for water (Jury and Vaux, 2005). Furthermore, consumers and governments are increasingly interested in agricultural sustainability, resulting in market opportunities for sustainable ornamental crops (Dennis et al., 2010). The ornamentals industry will also need to comply with existing and new laws, regulating the environmental impact of production (Fernandez et al., 2009). Sustainable ornamental crop production must include appropriate irrigation practices. Excessive irrigation results in leaching and runoff of water and fertilizer, which may cause eutrophication and algal blooms (Conover and Poole, 1992; Majsztrik et al., 2011). More efficient irrigation practices can also reduce energy use and CO₂ emissions.

To achieve more efficient irrigation, growers should not use timers or make irrigation decisions based on the visual appearance of the substrate or plants (Nemali et al., 2007). Instead, environmental measurements such as evapotranspiration (Allen et al., 1998) and soil or substrate θ or tension (Shock and Wang, 2011; Toop and Ferre, 2002) can be used to infer plant water needs and to schedule agricultural, municipal, or residential irrigation (Blonquist et al., 2006). Measurements of θ are particularly useful for precise irrigation scheduling in uniform nursery container mixes (Shock and Wang, 2011), whereas the use of soil or substrate θ has become more feasible in recent years with the advent of low-cost sensors (e.g., Nemali and van Iersel, 2006).

Nemali and van Iersel (2006) developed an automated irrigation system that can maintain substrate θ at specific thresholds. The system was accurate and successfully used in further work to study irrigation efficiency in gaura (Gaura lindheimeri Engel. & Gray ‘Sis-kiyou Pink’) (Burnett and van Iersel, 2008) and petunia (Petunia ×hybridra) (van Iersel et al., 2010). This irrigation system determines θ with capacitance sensors connected to a data logger. The datalogger can control irrigation by opening and closing solenoid valves as needed. The limitation of this system is that a basic knowledge of programming and wiring dataloggers is required. However, there are commercially available irrigation systems that not only include soil moisture sensors, but also an interface to control irrigation. Cardenas-Lailahacar and Dukes (2010) tested four commercial, sensor-based irrigation systems in a coarse-textured soil (Arredondo fine sand) and concluded that TDT sensors (Acclima) could be used for accurate control of θ in field plots with Bermuda grass [Cynodon dactylon (L.) Pers.]. McCready et al. (2009) tested the same TDT sensor in a similar soil (field capacity ≈11%) but with three different θ levels (7% dry, 10% medium, and 13% wet) and showed that θ levels of 7% and 10% reduce water use, although 7% reduced St. Augustine grass [Stenotaphrum secundatum (Walker) Kuntze] quality.

The TDT sensor measures the permittivity of the soil by sending an electromagnetic signal along a waveguide and measuring the propagation time of that wave. This propagation time depends on the soil dielectric properties, which are mainly governed by the water content of the soil surrounding the probes (Blonquist et al., 2005a). The TDT sensor provides accurate apparent permittivity measurements, which can be used to estimate θ (Blonquist et al., 2005a). The distortion parameters of the returned wave are used to determine the bulk EC. The dimensions of the TDT sensor are 20.3 cm × 5.4 cm × 1.4 cm (length × width × height) and they explore ≈200 mL of soil or substrate (Blonquist et al., 2006). These sensors have potential use in the irrigation of ornamental crops as well as
irrigation and drought stress research. However, TDT sensors may need a specific calibration for soilless substrate, because the dielectric properties differ from those of mineral soil for which the standard factory calibration was developed. Using TDT sensors with an irrigation controller (e.g., CS3500; Acclima) can provide similar information as the automated irrigation system described by Nemali and van Iersel (2006). To assess the potential of such irrigation control for use with container-grown plants, the accuracy and performance of the sensors, controller, and irrigation system need to be tested. Thus, the aims of this study were: 1) to evaluate the built-in calibration of TDT sensors in soilless substrate and their accuracy in determining \(\theta \); 2) to quantify the ability of the Acclima CS3500 irrigation controller to maintain stable \(\theta \) readings during the production of container-grown begonia (Begonia semperflorens L.) by turning a drip irrigation system on and off as needed; and 3) to study the growth and photosynthetic physiology of begonias at six \(\theta \) levels.

Material and Methods

Sensor calibration. The TDT sensors were calibrated following the protocol described by Nemali et al. (2007). Briefly, different amounts of water were mixed into 3.65 L of substrate (45% peatness, 15% perlite, 15% vermiculite, and 25% bark; Fafard 3B; Fafard, Agawam, MA) and pots were filled with this substrate. The sensors were inserted into the substrate while carefully maintaining close contact between the substrate and TDT sensor by slightly compressing the substrate. The TDT sensors were connected to an irrigation controller (CS3500; Acclima), which was used to take sensor readings. These readings provided measurements of \(\theta \) using the standard soil calibration built into the irrigation controller software (Irrigation Manager; Acclima). The pots with substrate were then weighed, oven-dried at 60 °C until constant weight was reached, and \(\theta \) was determined as \([SW_1 – SW_2]/V \), where \(SW_1 \) is the substrate weight before drying, \(SW_2 \) is the substrate weight after drying, and \(V \) the volume of the pot. The accuracy of the sensors was evaluated by plotting the \(\theta \) as measured by the irrigation controller versus the \(\theta \) determined from substrate weight and volume.

Plant material and crop conditions. Begonia seedlings were obtained from a commercial seedling producer (Speedling, Blairsville, GA). The seedlings were transplanted into 19.5-cm diameter, round pots with a 3.65-L volume filled with a soilless substrate (Fafard 3B; Fafard) and amended with a slow-release fertilizer (Osmocote Plus 14-14-14; 14N–4.2P–11.6K; The Scotts Co., Marysville, OH) at a rate of 15 g/pot.

Pots were arranged in 12 rows of five plants and irrigation of each row of pots was controlled using a 2.5-cm solenoid valve (Watermaster; Orbit Irrigation Products, Bountiful, UT) connected to an irrigation controller (CS3500; Acclima). A TDT sensor was inserted into the substrate at an approximate 45° angle in one of the five pots in a row, and irrigation of all five pots was based on the \(\theta \) reading of that sensor. The sensors were connected to the irrigation controller, which measured the sensor output every 10 min, providing readings of \(\theta \) (but not calibrated for our substrate) and temperature. Bulk EC was measured twice a day. Each irrigation line also had a flow meter (DLJ50; Daniel L. Jerman Co., Hackensack, NJ) to monitor water use in each experimental unit. Each plant was watered using a pressure-compensated drip emitter (2 lph; Netafim USA, Fresno, CA) with a spaghetti tube going to each pot. To allow establishment of the plants, \(\theta \) was maintained at 0.429 m m\(^{-3}\) for 1 week before the treatments started.

The irrigation controller was programmed to maintain six \(\theta \) set points, each replicated twice. Set points programmed into the irrigation controller were 5%, 12%, 19%, 26%, 33%, and 40%. After applying our substrate-specific calibration to the TDT sensor readings, these set points corresponded to actual \(\theta \) levels of 0.136, 0.210, 0.281, 0.348, 0.412, and 0.472 m m\(^{-3}\). When the \(\theta \) dropped below the set point, the irrigation controller opened the corresponding solenoid valve for 15 s, thus applying ≈8.3 mL of water to each plant. To configure the irrigation system, and to establish the irrigation protocols described, the Irrigation Manager software (Acclima) was used.

The experiment was conducted in a greenhouse at the University of Georgia in Athens, GA (lat. 34° N, long. 84° W). Environmental conditions in the greenhouse were monitored using a temperature/relative humidity sensor (HMP50; Vaisala, Woburn, MA) and a photosynthetic photon flux (PPF) sensor (SQ-100; Apogee Instruments, Logan, UT) connected to a datalogger (CR200; Campbell Sci. Inc., Logan, UT). Sensors were measured every minute to obtain daily averages and minimum and maximum values. Daily light integral (DLI; mol m\(^{-2}\) d\(^{-1}\)) was calculated by integrating the PPF measurements throughout the day. Daily minimum and maximum temperatures were 18.0 ± 2.3 °C and 26.9 ± 3.2 °C, daily minimum and maximum relative humidity 46% ± 18% and 82% ± 7%, and the DLI was 13.7 ± 6.8 mol m\(^{-2}\) d\(^{-1}\) (mean ± SD) over the 66 d of the experiment.

Because there was no leaching, except for the first 5 d at the 0.472-m m\(^{-3}\) threshold, total evapotranspiration of each group of plants was determined as the sum of the total amount of water applied as determined from flow meter readings plus the change in the amount of water in the substrate during the experiment as determined from the initial and final \(\theta \) measurements and the volume of the pots \([\theta_{initial} – \theta_{final}] \times 3.65 L\).

Results and Discussion

Calibration of sensors. There was an almost perfect, quadratic relationship between the \(\theta \) as measured by the TDT sensors and the weight-based measurement of \(\theta \) of the substrate (Fig. 1). Because the different \(\theta \) calibration points were obtained with 12 different TDT sensors, these calibration results indicate that there are no major differences among different sensors. However, the standard calibration for the TDT sensors was not accurate for the soilless substrate used in our study. The TDT sensors consistently underestimated \(\theta \), which resulted in errors of up to 0.08 m m\(^{-3}\). Estimation of \(\theta \) using dielectric sensors is based on the ability of sensors to measure the “real” part of the dielectric permittivity (\(\varepsilon \)) or a property directly related...
to ε. The total ε of a soil depends on the ε of the air ($\varepsilon \approx 1$), soil solids (≈ 2 to 9), and water (≈ 80) in the soil (Blonquist et al., 2006). Because water has a much higher ε than air or soil solids, the overall ε of a soil is closely related to θ. However, ε differs among different soils and substrates, thus affecting the calibration of the sensors. By performing a substrate-specific calibration, we were able to convert the TDT measurements to the actual θ of the soilless substrate. The TDT sensors were not able to measure the θ of very dry substrate (less than 0.08 m3 m$^{-3}$) because the sensors consistently read 0 m3 m$^{-3}$ in such dry substrates (results not shown). Blonquist et al. (2005a) concluded that TDT sensors had the accuracy of time domain reflectometry sensors in determining θ under laboratory conditions and were less affected by bulk EC and temperature than other, lower frequency (50 MHz) sensors (Blonquist et al., 2005b).

Substrate water content control. The θ readings of the TDT sensors were close to the threshold θ (average θ levels, based on our calibration, were 0.146, 0.212, 0.285, 0.350, 0.415, and 0.474 m3 m$^{-3}$; 0.002 to 0.010 m3 m$^{-3}$ above the threshold) and with little variation once the threshold θ was reached (Fig. 2). The θ between daily θ means was higher in the driest treatment (0.0044 m3 m$^{-3}$ versus 0.0020 m3 m$^{-3}$ in the wettest treatment), which is consistent with previous findings (Nemali and van Iersel, 2006; van Iersel et al., 2010). This may be the result of the decreased hydraulic conductivity of peat-based substrates at lower water contents (Naasz et al., 2005), which slows water movement through the substrate and may result in a less uniform water distribution (van Iersel et al., 2010).

Fluctuations in θ were ≈ 13 times smaller than those reported by Nemali and van Iersel (2006). One of the reasons for the very stable θ could be the short irrigation time (15 s) used applying only 8 to 9 mL per irrigation event, much smaller than the 100 mL applied by Nemali and van Iersel (2006). van Iersel et al. (2010) reported that reducing the amount of water applied per irrigation event reduced fluctuations in θ.

The θ in the 0.472 m3 m$^{-3}$ treatment increased on Day 5 because the substrate had to be slightly compacted to avoid continuous leaching and improve contact between the substrate and sensor. On Day 55, there was a small θ decrease in all treatments because of problems with the water supply. This decrease was less evident in the driest treatment, probably as a result of its lower evaportranspiration.

Theta and Sigma probe correlations. There was a strong, quadratic relationship between the TDT sensor readings (using our substrate-specific calibration) and the Theta probe measurements of θ over the course of the experiment ($R^2 = 0.91$) (Fig. 3). Theta probe readings were always lower than those of the TDT sensors, likely because the Theta probe only measures approximately the top 6 cm of the substrate, whereas the TDT sensors explore nearly the entire depth of the pot and the top part of a substrate normally is drier than the bottom part (Wallach, 2008). Overall, the TDT sensor can be considered a good θ sensor for soilless substrates, because it can be calibrated for such substrates and is responsive to changes in θ. Furthermore, its readings are strongly correlated with those of the Theta probe, which has been reported to be accurate in soilless substrates with little sensitivity to temperature or EC (Nemali et al., 2007).

The bulk EC measured with the TDT sensor had a weak correlation with pore water EC ($r^2 = 0.30$) and a moderate correlation with the bulk EC ($r^2 = 0.53$) as measured with the SigmaProbe (Fig. 4). One of the factors causing these poor correlations was that the bulk EC measured by the TDT sensors was almost always 0 dS m$^{-1}$ at θ below 0.28 m3 m$^{-3}$. These results suggest a limited usefulness of the TDT sensors for bulk EC.
measurements in soilless substrate. On the other hand, the use of a controlled-release fertilizer may increase variability in the data, because the SigmaProbe measures only a small volume of substrate. This may result in inconsistent readings if the EC of the substrate is not uniform as may be the case with controlled-release fertilizers. The poor correlation between TDT sensor bulk EC measurements and pore water EC is not surprising, because pore water EC depends on substrate properties, the dielectric permittivity (and thus θ), and the bulk EC (Hilhorst, 2000).

Evapotranspiration and plant growth.

The evapotranspiration increased linearly as the threshold θ increased ($r^2 = 0.68$) (Fig. 5). Leaching was only noticed during the first 5 d of the experiment and only in the 0.472-m3-m$^{-3}$ treatment. Average evapotranspiration over the 66-d experiment was 64 mL·d$^{-1}$ in the 0.472-m3-m$^{-3}$ treatment and only 22 mL·d$^{-1}$ in the 0.136-m3-m$^{-3}$ treatment. Conover (2010) reported an average water use of angel-wing begonias (Begonia coccinea) of 68 mL·d$^{-1}$, similar to that at our highest θ threshold. van Iersel et al. (2010) also reported increasing water use with increasing threshold θ but with a much stronger correlation ($r^2 = 0.89$). On the other hand, Burnett and van Iersel (2008) saw leaching and excess irrigation at the highest θ threshold, resulting in a quadratic relationship between θ and water use. The leaching at the beginning of our experiment may explain the high so in the 0.472-m3-m$^{-3}$ treatment, but there is no apparent reason for the high variability in the 0.348-m3-m$^{-3}$ treatment (Fig. 5). This may have been caused by differences in plant size or microclimatic conditions.

Shoot DW increased as the θ threshold increased, but there were no statistical differences in DW at a θ of 0.348 m3-m$^{-3}$ or above (Table 1). Burnett and van Iersel (2008) found a linear growth response in gaura and van Iersel et al. (2010) a quadratic response in petunia with little additional growth above a threshold of 0.25 m3-m$^{-3}$.

There was a quadratic relationship between evapotranspiration and shoot DW. Shoot DW increased linearly as evapotranspiration increased from 1.3 to 3.1 L (Fig. 6). The slope of the regression line is an estimate of the water use efficiency of the plants, indicating that the plants could produce 3 g of dry matter for every liter of water used. This is similar to the 2.54 g·L$^{-1}$ reported for petunia under greenhouse conditions with θ ranging from 0.05 to 0.40 m3-m$^{-3}$ (van Iersel et al., 2010). When evapotranspiration exceeded 3.1 L/plant, there was a tendency for a decrease in DW with increasing evapotranspiration. This could be the result of overirrigation negatively impacting root activity. Nemali and van Iersel (2006) reported a similar behavior in four bedding plants species, in which the highest threshold θ tended to reduce shoot DW.

The area of the fully expanded leaf was greatly reduced by low θ (Table 1). Such leaf area reduction is a well-known drought

Fig. 3. The relationship between substrate volumetric water content (θ) measurements by time domain transmissometry (TDT) sensors (using our substrate-specific calibration) and a Theta probe. Data were collected weekly in pots that were irrigated when θ dropped below one of six different θ thresholds.

Fig. 4. The relationship between bulk electrical conductivity (EC) measurements collected with time domain transmissometry (TDT) sensors and the pore water EC (top) and bulk EC (bottom) as measured using a SigmaProbe.
response, reducing the transpiring surface area of many species, e.g., oleander (Nerium oleander) (Bañón et al., 2005) and gaura (Burnett and van Iersel, 2008). The area of the fully expanded leaf was strongly and positively correlated with shoot DW ($r^2 = 0.93$) (data not shown), suggesting that reduced leaf elongation may be partially responsible for growth reductions under drought conditions.

Photosynthetic activity. The P_n and g_S in soybean and cotton were only decreased in the most severe drought treatment (a substrate water content of 20% of container capacity). There were no treatment differences in maximum quantum yield of photosystem II ($F_v/F_m = 0.80$), photosystem II efficiency ($qP_{PSII} = 0.16$), and non-photochemical quenching ($NPQ = 2.28$). Similar qP_{PSII} in all treatments and lower P_n in the lowest θ treatment suggest that this treatment may have had increased photorespiration, a normal response to drought (Maxwell and Johnson, 2000; Wingler et al., 1999). Cha-un and Kirdmanee (2010) found that F_v/F_m and $qPSII$ of eucalyptus (Eucalyptus camaldulensis) were not sensitive to drought stress, although P_n and NPQ decreased under severe drought. The F_v/F_m results indicate that photosystem II is not damaged by this level of drought (Maxwell and Johnson, 2000), which is consistent with the suggestion of Fracheboud and Leipner (2003) that chlorophyll fluorescence is not a very useful indicator for drought stress in C3 plants. However, the drought stress resulted in morphological and physiological changes (stomatal closure, reduction of leaf size) in the begonias to reduce water loss, but also reduced growth. The strong correlation between leaf size and shoot DW is consistent with findings by Montesano and van Iersel (2007), who found that growth reductions of tomato (Solanum lycopersicum L) exposed to salinity stress are caused more by effects on leaf elongation than by effects on leaf photosynthesis.

Conclusions

The TDT sensors provide accurate measurements of θ after a substrate-specific calibration. The CS3500 irrigation controller, using TDT sensors, accurately maintained θ readings at different, user-specified levels. Growth of begonias was reduced by a θ threshold below 0.348 m3 m$^{-3}$. The lowest threshold θ (0.136 m3 m$^{-3}$) reduced shoot DW, leaf area, leaf photosynthesis, and g_S. However, photosystem II was not damaged by the drought stress. Overall, shoot DW was much better correlated with the area of the uppermost fully expanded leaf than with leaf photosynthesis. This suggests that drought effects on plant growth are caused more by reductions in photosynthetically active surface area than by photosynthesis per unit leaf area.

The CS3500 irrigation controller, using TDT sensors, was able to irrigate plants as needed, suggesting that it can be used for irrigation control of container-grown crops as well as for drought stress research. The CS3500 irrigation controller has the advantage that it is commercially available and easy to install without the need for programming knowledge. As a result of the length of the TDT sensors, their use will be limited to pots of at least 20 cm height. Although the TDT sensors also measure bulk substrate EC, further research must be done to test its value. Under our experimental conditions (soilless substrate and slow-release fertilizer), the TDT sensor generally measured...
a bulk EC of 0 dS m\(^{-1}\) at \(0\) below 0.28 m\(^3\) m\(^{-3}\), which would limit its usefulness.

Literature Cited

Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. FAO, Rome, Italy.

Bañoñ, S., J. Ochoa, J.A. Franco, J.J. Alarcón, and M.J. Sánchez-Blanco. 2005. Hardening of oleander seedlings by deficit irrigation and low air humidity. Environ. Exp. Bot. 56:36–43.

Blonquist, J.M., S.B. Jones, and D.A. Robinson. 2005a. A time domain transmission sensor with TDR performance characteristics. J. Hydrol. (Amst.) 314:235–245.

Blonquist, J.M., S.B. Jones, and D.A. Robinson. 2005b. Standardizing characterization of electromagnetic water content sensors: Part 2 Evaluation of seven sensing systems. Vadose Zone J. 4:1059–1069.

Blandon, S., J.M. Blonquist, S.B. Jones, and D.A. Robinson. 2006. Precise irrigation scheduling for turfgrass using a subsurface electromagnetic soil moisture sensor. Agr. Water Mgt. 84:153–165.

Burnett, S.E. and M.W. van Iersel. 2008. Morphology and irrigation efficiency of Gaura lindheimeri grown with capacitance sensor-controlled irrigation. HortScience 43:1572–1579.

Cardenas-Lailhacar, B. and M.D. Dukes. 2010. Precision soil moisture sensor irrigation controllers under field conditions. Agr. Water Mgt. 97:666–672.

Cha-um, S. and C. Kirdmanee. 2010. Effects of humidity. Environ. Exp. Bot. 56:36–43.

Conover, C.A. 2010. Angel-wing begonia growth and water requirements affected by paclobutrazol. 18 Mar. 2011. <http://mrec.ifas.ufl.edu/foliage/resrpts/rh.94_.4.htm>.

Conover, C.A. and R.T. Poole. 1992. Effect of fertilizer and irrigation on leachate levels of NH\(_4\)-N, NO\(_3\)-N, and P in container production of Nephrolepis exaltata ‘Fluffy Ruufle’. J. Environ. Hort. 10:238–241.

Dennis, J.L., R.G. Lopez, B.K. Behe, C.R. Hall, C. Yue, and B.L. Campbell. 2010. Sustainable production practices adopted by greenhouse and nursery plant growers. HortScience 45:1232–1237.

Earl, H.J. 2003. A precise gravimetric method for simulating drought stress in pot experiments. Crop Sci. 43:1868–1873.

Fernandez, R.T., J. Lea-Cox, G. Zinati, C. Hong, R. Cabrera, D. Merhaut, J. Albano, M. van Iersel, T. Yeager, and D. Buhler. 2009. NCDC216: A new multistate group for water management and quality for ornamental crop production and health. Proc. SNA Res. Conf. 54:35–38.

Fracheboud, Y. and J. Leipner. 2003. The application of chlorophyll fluorescence to study light, temperature, and drought stress. p. 125–150. In: DeEll, J.R. and P.M.A. Toivonen (eds.). Practical applications of chlorophyll fluorescence in plant biology. Kluwer Acad. Pub., Boston, MA.

Hilhorst, M.A. 2000. A pore water conductivity sensor. Soil Sci. Soc. Amer. J. 64:1922–1925.

Jury, W.A. and H. Vaux. 2005. The role of science and daily light integral. HortScience 40:277–282.

Naas, R., J.C. Michel, and S. Charpentier. 2005. Measuring hysteretic hydraulic properties of peat and pine bark using a transient method. Soil Sci. Soc. Amer. J. 69:13–22.

Nemali, K.S., F. Montesano, S.K. Dove, and M.W. van Iersel. 2007. Calibration and performance of moisture sensors in soilless substrates: ECH2O and Theta probes. Sci. Hort. 112:227–234.

Nemali, K.S. and M.W. van Iersel. 2006. An automated system for controlling drought stress and irrigation in potted plants. Sci. Hort. 110:292–297.

Sheng, M., M. Tang, H. Chen, B. Yang, F. Zhang, and Y. Huang. 2008. Influence of arbuscular mycorrhiza on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296.

Shock, C.C. and F.-X. Wang. 2006. Water conservation potential of smart irrigation controllers under field conditions. Agr. Water Mgt. 96:1623–1632.

Wallach, R. 2008. Physical characteristics of soilless media, p. 41–116. In: Raviv, M. and J.H. Lieth (eds.). Soilless culture. Theory and practice. Elsevier, Amsterdam, The Netherlands.

Wingler, A., W.P. Quick, R.A. Bungard, K.J. Bailey, P.J. Lea, and R.C. Leegood. 1999. The role of photosynthesis during drought stress: An analysis utilizing barley mutants with reduced activities of photosynthetic enzymes. Plant Cell Environ. 22:361–373.