Digital skills for medical students – qualitative evaluation of the curriculum 4.0 “Medicine in the digital age”

Abstract

Introduction: The digital transformation has far-reaching implications for the qualification profile of medical students, which have not been addressed in medical studies so far.

Teaching concept: The competence-oriented blended learning curriculum “Medicine in the digital age” has been implemented at Mainz University Medical Centre since 2017. It represents a curricular reform project of the “Curriculum 4.0” program (Stifterverband). In six modules, the qualification requirements for digital skills are addressed.

Evaluation Methodology: The qualitative evaluation of the course concept took place in the form of semi-structured interviews. All 58 participants from five courses were interviewed.

Results: Using the “Qualitative Content Analysis” according to Philipp Mayring, the statements were divided into deductive main categories (process, content, methodology, learning success, learning experience and conclusion). The results reflect the student's view of the curriculum and the current qualification needs that still need to be specialised.

Discussion: The didactic teaching of digital skills is a relevant and highly topical component of the further development of medical studies. In this development, the focus is not only on technological skills, but also on the

Keywords: digital transformation, curriculum 4.0, digital competencies, medical studies, Digital Supply Act

Introduction

Digital transformation refers to an ongoing change process, rooted in digital technologies, that is changing the health care system, clinics, practices, universities, professions and patients. It describes an increasing “super-convergence” of classical medicine with information technologies, which is transforming the previous health care system into a new, digital health care system [1], [2].

Developing medical practice through the introduction of digital health technologies is a complex process of change. In addition to investments in technologies, this requires a profound change in people's mentalities. Medical patient care is multifaceted and is provided by people with deep-rooted personal, social and institutional beliefs and practices. In order to successfully develop medical practice in particular, the digital transformation must be understood by the medical profession as a long-lasting, disruptive process of change and innovation that will fundamentally change roles and the skills and cooperation required for this [3], [4], [5].

The future is now! In 2020, doctors will have to advise patients not only on medications and surgeries, but also on digital forms of treatment and applying these in a differentiated manner. The “Digital Supply Act” set the course for this in November 2019 [6]. Both digital health applications in the form of smartphone apps and telemedical services will become increasingly relevant to practice this year. The agreed and mandatory establishment of the telematics infrastructure will lead to more intensive data provision and is accompanied by high levels of expertise for doctors.

The current generation of medical students, often referred to as “digital natives”, has an enormous educational need in this regard. Growing up with digital media and using them in the role of a “consumer” is not enough to acquire doctor-specific digital skills. This was also shown in a study conducted by the “Hochschulforum Digitalisierung” (University Forum for Digitisation), in which only 21% of the students were rated as “digital allrounders”. The majority of students gained experience primarily from a passive, consuming role and did not actively influence the digital environment [7], [8].

A look at previous curricula of medical studies, but also at the development of the Masterplan for Medical Studies 2020 and the National Competence-Based Learning Objectives Catalogue for Medicine (NKLM) did not pay much attention to digital competencies [9], [http://www.nklm.de]. This results in the necessity to design, implement and evaluate adequate curricular concepts that are future-oriented and meet these challenges. As a curricular reform project of the University Medical Centre Mainz, “Medicine in the Digital Age” was funded by the...
Stifterverband as a “Curriculum 4.0” project from December 2016. The aim of this funding programme is to promote the reorientation and further development of study programmes and to identify new approaches to solutions through curricular reform projects. The first implementation took place in the summer semester 2017 and has since been part of the elective program of the University Medical Center Mainz. Since the number of registrations exceeds the available capacities – in the summer semester 2019 184 registrations compared to 12 available places – participation is distributed randomly.

The current publication presents the qualitative evaluation of the course concept based on 58 semi-structured interviews with all participants of five courses. The aim was to collect the students’ perspective in order to incorporate the results into the iterative and agile development of the course concept, but also into the current national reform processes. Research was guided by the questions of the students’ subjective learning success and the acceptance of the course concept.

Teaching concept

The blended learning curriculum “Medicine in the digital age” consists of six obligatory learning modules, each of which consists of an approx. 2-hour e-learning unit and a 4-hour classroom teaching unit. The teaching concept can be described on three levels: the format level, the method level and the module level.

On the format level, the concept is divided into the teaching forms e-learning, face-to-face teaching and co-production. The different formats change in the course of time and are consecutive. The project planning is based on the recommendations and framework of the Curriculum 4.0 working group of the Hochschulforum Digitalisierung [10], [11]. In e-learning, the participants deal with topics of digital transformation with the help of an e-book in the run-up to the event and work out knowledge-based parts on digital medicine independently and on their own responsibility before the start of class. This includes review articles written by the lecturers, interviews with experts and curated external content for the six modules. In the face-to-face lessons, situations of the digital health system are dealt with in a practical way. Changing lecturers work on various topics in problem-solving oriented teaching concepts. Here, the explicit approach is to depict the digital transformation of medicine in an interdisciplinary and interactive way. Consequently, classroom instruction is conducted in small groups with the support of various medical disciplines (anaesthesia, surgery, medical informatics, medical ethics, psychology, paediatrics, psychosomatics, radiology, trauma surgery and orthopaedics). In addition, the team of lecturers is complemented by app developers, representatives of the State Data Protection Agency and patients in the sense of a transdisciplinary approach.

The co-productions take the form of various project work and allow for an intensive personalisation of learning, which in both analogue and digital form helps to activate the learner and to better adapt teaching to the target group. The resulting “user generated content” strengthens identification with the teaching concept and the positive learning experience. In addition, the developed content makes the learning success visible. Due to the different perspectives of the heterogeneous group of participants – students as well as teachers – diverse experiences and opinions become visible [7], [12]. The contributions will be inserted into an EDU version of the e-book after completion of the elective subject. Individual contributions will be made available for the e-learning of the following semesters (see figure 1).

On the method level, a distinction is made between six methods that are used in different contexts:

- working out learning goals
- keynote speeches
- workshops
- expert and patient interviews
- discussion groups
- project work

At the beginning of each module, the students collect their personal learning goals and present them to the lecturers. This allows for a comparison with the goals formulated by the instructors and enables target group-specific adjustments, especially during the workshops and discussion phase. This is followed by workshops on the module topic, which work with various methodologies. Among other things, app-based treatment concepts, video consultations and discussion groups enable students to actively and practically interact with new treatment concepts. Not only the chances and possibilities of digital medicine are considered, but also the risks and limitations of digital medicine are reflected in critical discussions of the participants with experts and lecturers. Finally, the learning goals are reviewed for their implementation and jointly reflected upon.

The module level describes the structure of the content that will be covered during the course. In total, the concept consists of six modules:

Module 1 – digital doctor-patient communication

Overall learning objectives: The participant is able to reflect on the specific requirements of personal and electronic communication and to apply criteria for appropriate behaviour of virtual doctor-patient communication to practical examples.

The module focuses especially on the changes in doctor-patient communication caused by digital influences. The interdisciplinary team of lecturers consists of a doctor and two psychologists. The participants are sensitized to the professional appearance in social networks and the particularities of digital communication on the three levels: doctor-patient, doctor-doctor and patient-patient.
To this end, the participants will gain insights into an established online rehabilitation aftercare program, evaluate real cases of medical behaviour in social networks and discuss the advantages and disadvantages of digital communication for medical practice. In addition, digital maldevelopments, such as the uncritical use of messengers (e.g. WhatsApp®) in everyday clinical practice, are also addressed.

Module 2 – smart devices and medical apps

Overall learning objectives: The participant is able to critically evaluate the benefits and risks of medical apps and smart devices and to apply them in a patient-oriented way. They will master the handling of Smart Devices and Apps in a health-specific context and will be able to reflect on the possible applications, chances and risks on the patient, physician and research level.

The module “Smart Devices and Medical Apps” shows the digital influences on the medical consumer market. Participants will be confronted with the multitude of existing health apps and smart devices. A comprehensive examination of the qualitative assessment of an app on the levels of consumer, patient and expert will take place in the form of an independently created app review. In an expert discussion with the founders of an app-based treatment concept, the students enter into an exchange about medical, economic and political framework conditions. A comprehensive examination of the qualitative assessment of an app on the levels of consumer, patient and expert will take place in the form of an independently created app review. In an expert discussion with the founders of an app-based treatment concept, the students enter into an exchange about medical, economic and political framework conditions.

Module 3 – telemedicine

Overall learning objectives: After completion of the module, the participant is able to name telemedical procedures and to reflect on the chances and risks of treatment. The participant is able to apply telemedicine solutions in a patient-oriented way and to explain the necessary framework conditions of health care.

The module “Telemedicine” uses a case study to interactively present telemedicine with the partial aspects of tele-emergency medicine, teleradiology and teleconsultation in a practical way [13]. In a video conference, the participants come into direct contact with a patient who can lead a more self-determined life thanks to several years of telemedical care.

Module 4 – virtual reality, augmented reality and computer-assisted surgery

Overall learning objectives: The participant is able to apply and evaluate the new techniques of Virtual Reality (VR), Augmented Reality (AR) and Computer-Assisted Surgery until the end of the module.

“Virtual Reality, Augmented Reality and Computer-Assisted Surgery”, aims at imparting the current state of development and the possible applications of VR/AR and computer-assisted surgery to the participants on the level of practical experience. Guided by experts in computer-assisted surgery, the participants work on the “Da Vinci” surgical robot simulator, use augmented reality for planning surgery and perform virtual reality laparoscopy. Here, too, the method of expert discussion is used to promote low-threshold and constructive reflection on the future role and to arouse lasting interest.

Module 5 – individualised medicine and big data

Overall learning objectives: The participant is able to evaluate the collection and use of patient data in the area of conflict between technical and ethical principles as well as under socio-political conditions and to put it into a medical context.

“Individualized Medicine and Big Data”, addresses the level of critical reflection of the participants. In this module, the opportunities and challenges of digitised medicine are examined and discussed from various perspectives against the background of the social framework of data protection, medical ethics and medical informatics, taking into account the contents of the entire course (access to and availability of Big Data, limitations and predictions, “right to not know”). In doing so, areas of tension in which clinically active physicians currently find themselves become visible. “What is technically possible”, “What is legally permitted”, “What is ethically justifiable” are the guiding questions. The debate takes place in particular through open discussions in the plenary with experts from the fields of medical informatics, data protection and medical ethics [14].
Module 6 – artificial intelligence

Overall objective: The participant is able to evaluate the use and benefit of artificial intelligence in medical practice in the field. Conflicts between technical and ethical principles as well as socio-political conditions are discussed and put into a medical perspective. The participant can explain various fields of application and programs that work with artificial intelligence.

The 6th module deals with the increasing use of clinical decision support systems in everyday medical practice. The students first take a classical anamnesis and then a chatbot-assisted anamnesis (Ada Health). Individual observations of the medical and AI-assisted procedures are recorded on worksheets. In the following discussion round the advantages and disadvantages as well as the chances and risks of the application are critically reflected. In a group project, students research an AI-based clinical support system and critically reflect on the usage. The results will be presented and discussed in the plenary and will be included in the e-book in written form.

Evaluation methodology

“Medicine in the Digital Age” has so far been conducted five times during the elective week (5 days) of the semesters 7-9 (summer semester 2017 to summer semester 2019). Since the number of participants is limited and the number of registrations exceeded the capacities, students were randomly assigned to the course by the Department of Studies and Teaching. The team of lecturers had no influence on the selection of participants. The qualitative evaluations were performed in form of semi-structured interviews with an average duration of about 45 minutes. The interviews were conducted in a way that the research was guided by questions about the students’ subjective learning success and the acceptance of the course concept. Furthermore, the interview form proved to be a suitable instrument to obtain suggestions for the revision and adaptation of the course concept. The results of the evaluation found its way into the iterative development process. The interview guideline consists of both open and targeted questions on three sets of questions – topic-specific, event-related and reflective questions (see attachment 1). Deductively, six main categories (procedure, content, methodology, learning success, learning experience, conclusion) were formed. In the evaluation process, inductive subcategories were assigned to the deductive main categories during the evaluation process. With the help of these subcategories, the individual main categories can now be unlocked and defined in more detail.

Main category procedure

The main category Procedure (see figure 3) includes all statements that refer to the event implementation on an organizational level. The subcategories “Lecturers”, “Structure”, and “Time Management” were created in the evaluation process. In particular, the diverse and motivated lecturers were evaluated very positively. Above all, visiting experts, such as app developers and data protection experts, made a major contribution to the course. The open discussion format was emphasized, which, according to the students, could be maintained throughout the elective week. In addition, there was consistently positive feedback on the structural organization of the event. These relate to the division of passive and active learning phases as well as the use of the different teaching formats of e-learning and classroom teaching. The students describe a smooth procedure and good organization. The temporal structure is seen positively, whereas the temporal framing is seen critically. The students’ express interest in longer teaching units.

Main category content

31% of the statements on the main category “content” refer to the variety of topics (see figure 4). The respondents cited a general overview of the range of topics and insight into the individual practical implementations as particularly relevant. The diversity of content thus contributes to a better understanding of the scope of the topic. This includes a differentiated awareness of the current changes taking place in the medical profession. The remaining 69% of the statements can be assigned to the contents of the individual modules. In the interviews it becomes clear that the students would have wished for even more in-depth discussions on the medical-ethical and medical-legal level. Some papers have already been published on individual modules; others are in the process of being published [3], [12], [13], [14].

Main category methods

The largest category with 30% of all assigned statements is the main category Methods (see figure 5). This category
includes all statements on the method application. In the evaluation process, the subcategories “Method Selection”, “Media and Technique Use” and “Theory/Practice Linkage” were formed. The students assess the selection of methods used as varied and diverse. In particular, the methods discussion and expert discussion are perceived as particularly interesting and instructive. In addition, the participants say that they appreciated the opportunity to exchange ideas with their fellow students in group work, which took the form of workshops, and to work on tasks together. The method fishbowl discussion was evaluated differently by the participants. Individual participants said that they were reluctant to discuss openly, especially at the beginning of the discussion, or on the contrary that they wanted to participate even more and express themselves more often than the method allowed. In contrast to the method selection, however, the students gave an uniform positive assessment of the theory/practice linkage. All respondents were positive about the fact that not only theoretical knowledge was learned in the course, but also practical experience was gained. With great enthusiasm, the students report about their experiences with VR/AR or the DaVinci robot simulator. However, the students recommend that the practical exercises...
should be given an even larger timeframe. In the statements on the use of media and technology in the course, the use of new technologies is particularly positively emphasized. Operating smart watches, tablets and other smart devices was a valuable experience for most students. In addition, the event-related e-book is evaluated as helpful for orientation before the course. The time required to read the e-book is judged to be appropriate. The use of the digital communication tool SLACK is partly praised and partly criticised, as the app was not used by all participants with the same intensity and was perceived by some students as confusing. However, the possibility of networking and information exchange, which was also possible after the course with the help of the app, were viewed positively.

Main category learning success

The learning success is assessed by the participants as longterm (see figure 6). In comparison with other courses in medical studies, the learning success here is rated greater and more sustainable. Moreover, the learning success is particularly high in comparison to the time spent. Accordingly, the time was used very well. Furthermore, the event contributed to the increased interest in the topic and the students want to continue to deal with topics of digital medicine after the end of the course. The fact that the students talk about wanting to continue learning after the course and to obtain further information in their free time represents a learning success. Learning in this class was less about conveying facts, but more about experiences and lessons learned. It is a different way of learning compared to other courses. During the compulsory elective week, critical reflection was encouraged. In the statements of the participants it is clear that
the students link their learning success with activities. Thus, the practical experience of different media, techniques and devices and the subsequent discussion about them has contributed to the fact that the learning success is rated as particularly high. When asked about their personal learning success, many participants mention the concept of broadening horizons. The scope of the topic has now become clear to them, their view has been broadened by different perspectives and they feel “enlightened” about the topic of digital transformation in medicine. The numerous impulses of the lessons encouraged them to think about the topic and sensitized the students to the subject.

Main category learning experience

Participants describe their learning experiences in this event by referring to their learning experiences with different methods (see figure 7). Statements on the topic of learning experience particularly often refer to the methods “collaboration”, “discussion” and “expert talk”. It is explained that the diversity of perspectives in discussions leads to a learning process, as does the opportunity to experiment with technology and media in small groups. Being able to work “hands on” on the DaVinci robot is described by many participants as an impressive learning experience. In addition, the students evaluate the variety of topics in the lessons positively. The fact that they were allowed to set their own learning goals is also emphasized. Overall, the respondents describe their learning experience during the event as extraordinarily varied compared to their other studies and feel it is sustainable. Not only the variety of topics, but also the topic itself is highlighted as an advantage of the course. The students state that they chose the course because of the topic that interests them. In addition, the learning content is described as exciting. Furthermore, the students emphasize the importance of the lecturer. The fact that different co-lecturers were involved on a daily basis is mentioned as a positive aspect. It is emphasized that the lecturers met
the students “at eye level” and were open to any questions.

Main category conclusion

Asked for a final evaluation of the event, almost all respondents expressed a positive opinion about the elective week (see figure 8). The participants say that they learned a lot of new things and gained impressive experiences. Therefore, they recommend this course to others and hope that “Medicine in the digital age” will become part of the compulsory curriculum of medical studies. Although the organisation of the event is praised overall, criticism of time management is also expressed. The participants would like more time for discussions, expert talks and practical exercises and would accept longer classroom sessions for this. In addition, more breaks should be planned. Some participants would also like to see the proportion of practical exercises increased even further and to be able to try out even more “hands on”. For example, they would like to be able to test the software themselves in radiology, or to immerse themselves in the subject of app design.

In comparison to their other medical studies, “Medicine in the digital age” is not about accumulating as much factual knowledge as possible, but about a deeper understanding of the topics and the development of their own opinion. In addition, the motivation of the lecturers is noticeably high, which contributes to an exciting event.

Discussion

The evaluation method is particularly suitable for course concepts that emphasize problem-centred learning, since the interviews not only allow for classical evaluation questions, but also for (critical) exchange, positioning and placing of learning in the individual experience context. Furthermore, the cooperation, which serves as a central didactic element in the context of “Medicine in the digital age”, is transferred to the evaluation phase, since the students’ feedback is incorporated into the further development of the course. The method finds its limits in the intersubjective comparability and the objective measurement of learning progress. Furthermore, it should be noted that the students consciously decide to participate during the elective week, so that it can be assumed that at least a certain interest in the topic is already present.

The results of the evaluation show that the course concept “Medicine in the digital age” is widely accepted. The students regret that the concept can only be taken as part of the compulsory elective week and express the urgent need for longitudinal implementation. The participants would like more time for discussions, expert talks and practical exercises and would accept longer classroom sessions for this. The wish was expressed that the proportion of practical exercises be increased even further. This feedback was taken up in the context of the iterative development. These include modifications in content (e.g. intensification of the AI topic), methods (additional hands-on workshops) and the composition of the lecturers (e.g. greater inclusion of patients as co-lecturers). The methods used are perceived by the students as appropriate and conducive to learning. The results provide important starting points for curriculum development for the digital age, which must not only promote technological application skills in the field of digital medicine, but must also include specific digital health applications, treatment concepts and decision support systems [3], [11], [16]. In addition to these technological aspects, basic digital literacy skills which address the reflection of social, ethical and legal contexts should be taught in particular. This reflection of attitudes is not bound to specific technical solutions but can be transferred to the overall context of digital transformation. In addition, classical key competencies need to be promoted, since skills such as creativity, self-reflection, problem-solving strategies and critical thinking will become increasingly important, especially in the context of

Figure 8: Main category Conclusion, n=177
an growing interdisciplinary, constantly changing medical landscape [17]. Current processes within the medical faculties and IMPP-associated reform efforts have recognized this need. Proportions of the concept and the results of the evaluation could give impulses to some medical faculties (including UKE Hamburg, Charité Berlin) in the design of similar teaching programs. In addition, digital competencies are a central cross-sectional topic in the joint reform efforts of the competency-based learning objectives catalogue of the medical faculties and the state board exam. The main author was able to contribute both the learning objectives and the results of the evaluation. Furthermore, extensive parts of the evaluation were included into the development processes of the German Medical Association's continuing medical education curriculum “Digital Health Applications in Clinics and Practices” as well as several central national strategy processes of the University Forum on Digitization. These include the main topics and publications on “Curriculum Development in the Digital Age” and “Digital Literacy” and “Data Literacy” [10], [11], [16], [17].

The development of a digitisation strategy and its didactic is therefore a relevant component of future planning for the curricular development of medical school, but also for continuous medical education. In the future, this will no longer be possible with a compulsory elective course but requires a comprehensive implementation in the curriculum. In this context, it must be critically reflected whether and how the course can be scaled. We are convinced that the practical and reflective parts must be represented in the form of internships for a maximum of 15 students. When developing these curricula, the high speed of the change process should also be taken into account and curricular adaptation in the sense of “agility by design” should be made possible right from the conception stage [10].

Funding

The project “Medicine in the digital age” was funded by the Stifterverband as part of the support program Curriculum 4.0 and by the Reinhard Frank Foundation as part of “Digital medical studies – artificial intelligence and diagnosis” and “Doctor 2022”.

Competing interests

The authors declare that they have no competing interests.

Attachments

Available from https://www.gms.de/en/journals/zma/2020-37/zma001353.shtml
1. Attachment_1.pdf (77 KB)

References

1. Topol EJ. The Patient will see you now - The Futut of Medicine is in Your Hands. New York: Basic Books; 2015.
2. Topol EJ, Hill D. The creative destruction of medicine: How the digital revolution will create better health care. New York: Basic Books; 2012.
3. Kuhn S. Medizin im digitalen Zeitalter: Transformation durch Bildung. Dtsch Arztebl. 2018;115(14):A-633/B-552/C-552. Zugänglich unter/available from: https://www.aerzteblatt.de/archive/197295/Medizin-im-digitalen-Zeitalter-Transformation-durch-Bildung
4. Kuhn S, Heusel-Weiss M, Kadioglu D, Michl S. Digitale Transformation der Medizin - Die Zukunft aktiv gestalten. Dtsch Arztebl. 2019;116(17):A-830/B-684/C-672. Zugänglich unter/available from: https://www.aerzteblatt.de/archive/206927/Digitale-Transformation-der-Medizin-Die-Zukunft-aktiv-gestalten
5. Ehlers J. Wie die Digitalisierung die Gesundheitsbranche verändert - Und warum sich die medizinischen Fakultäten darauf einstellen müssen. Witten: Universität Witten/Herdecke; 2018. Zugänglich unter/available from: https://www.uni-wh.de/detailseiten/news/wie-die-digitalisierung-die-gesundheitsbranche-veraendert-6735/
6. Bundesgesundheitsministerium. Bundestag beschließt das Digitale-Versorgungsgesetz. Berlin: Bundesgesundheitsministerium; 2019. Zugänglich unter/available from: https://www.bundesgesundheitsministerium.de/presse/pressemitteilungen/2019/4/quadral/digitale-versorgungsgesetz-dvg.html#c16542
7. Deutsch KL, Kuhn S. Das Märchen der Digital Natives. MedienPädagogik. Z Theor Praxis Medienbild. 2019;36:37-47. DOI: 10.21240/mpaed.36/2019.11.11.X
8. Persike M, Friedrich JD. Lernen mit digitalen Medien aus Studierendenperspektive. In: Hochschulforum Digitalisierung, editor. Sonderauswertung aus dem CHE Hochschuranking für die deutschen Hochschulen. Berlin: Stifterverband für die Deutsche Wissenschaft; 2016.
9. Bundesministerium für Bildung und Forschung. Masterplan Medizinstudium 2020. Berlin: Bundesministerium für Bildung und Forschung; 2017. Zugänglich unter/available from: http://www.bmbf.de/de/masterplan-medizinstudium-2020-4024.html
10. Baumgartner P, Brei C, Gerdes A, Lohse A, Kuhn S, Lohse A, Michel A, Pohlenz P, Quadre S, Seidl T, Spinath B. Curriculumentwicklung und Kompetenzen für das digitale Zeitalter - Thesen und Empfehlungen der AG Curriculum 4.0 des Hochschulforum Digitalisierung. Berlin: Stifterverband für die Deutsche Wissenschaft; 2018.
11. Michel A, Baumgartner P, Brei C, Hesse F, Kuhn S, Pohlenz P, Quadre S, Seidl T, Spinath B. Framework zur Entwicklung von Curricula im Zeitalter der digitalen Transformation. Diskussionspapier Nr. 01. Berlin: Stifterverband für die Deutsche Wissenschaft; 2018.
12. Kuhn S, Kirchgässner E, Deutsch K. Medizin im digitalen Zeitalter - "Do it by the book... but be the author". Synergie. 2017;04:28-31.
13. Kuhn S, Jungmann F. Medizin im digitalen Zeitalter - Telediagnose in der studentischen Lehre. Radiologe. 2018;58(3):236-240. DOI: 10.1007/s00117-017-0351-7
14. Kuhn S, Kadioglu D, Deutsch K, Michl S. Data Literacy in der Medizin. Onkologie. 2018;24(5):368-377. DOI: 10.1007/s00761-018-0344-9
15. Mayring P. Qualitative Content Analysis. In: Flick U, von Kardoff E, Steinke I, editors. A Companion to Qualitative Research. Glasgow, UK: Sage; 2004. p.266-269.

16. Seidl T, Baumgartner P, Brei C, Gerdes A, Lohse A, Kuhn S, Michel A, Pohlenz P, Quade S, Spinath B. (Wert-)Haltung als wichtiger Bestandteil der Entwicklung von 21st Century Skills an der Hochschule. Diskussionspapier Nr. 03. Berlin: Hochschulforum Digitalisierung; 2018.

17. Seidl T. Schlüsselkompetenzen als Zukunftskompetenzen-Die Bedeutung der “21st century skills” für die Studiengangsentwicklung. In: Berendt B, editor. Neues Handbuch Hochschullehre. Berlin: DUZ Verlags- und Medienhaus; 2017. p.89-114.

Corresponding author:
Prof. Dr. med. Sebastian Kuhn, MME
Universität Bielefeld, Medizinische Fakultät OWL, AG 4 - Digitale Medizin, Universitätsstr. 25, D-33615 Bielefeld, Germany
sebastian.kuhn@uni-bielefeld.de

Please cite as
Kuhn S, Müller N, Kirchgässner E, Ulzheimer L, Deutsch KL. Digital skills for medical students – qualitative evaluation of the curriculum 4.0 “Medicine in the digital age”. GMS J Med Educ. 2020;37(6):Doc60. DOI: 10.3205/zma001353, URN: urn:nbn:de:0183-zma0013535

This article is freely available from
https://www.egms.de/en/journals/zma/2020-37/zma001353.shtml

Received: 2019-11-26
Revised: 2020-05-04
Accepted: 2020-06-30
Published: 2020-11-16

Copyright
©2020 Kuhn et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Digitale Kompetenzen für Medizinstudierende – qualitative Evaluation des Curriculum 4.0 „Medizin im digitalen Zeitalter“

Zusammenfassung

Einleitung: Die digitale Transformation hat weitreichende Implikationen für das Qualifizierungsprofil von Medizinstudierenden, welche bisher im Medizinstudium nicht adressiert wurden.

Lehrkonzept: Das kompetenzorientierte Blended-Learning-Curriculum „Medizin im digitalen Zeitalter“ wurde seit 2017 als curriculares Reformprojekt im Rahmen des Förderprogramms „Curriculum 4.0“ des Stifterverbandes an der Universitätsmedizin Mainz implementiert. In sechs Modulen soll der Qualifizierungsbedarf an digitalen Kompetenzen adressiert werden.

Evaluationsmethodik: Die qualitative Evaluation des Kurskonzepts erfolgte in Form semi-strukturierter Interviews. Hierbei konnten alle 58 Teilnehmenden aus fünf Kursen befragt werden.

Ergebnisse: Anhand der „Qualitativen Inhaltsanalyse“ nach Philipp Mayring wurden die Aussagen in deduktiv gebildete Hauptkategorien unterteilt. Die Ergebnisse spiegeln die studentische Sichtweise auf das Curriculum und des aktuell noch zu spezifizierenden Qualifizierungsbedarfs wider.

Diskussion: Die didaktische Vermittlung digitaler Kompetenzen ist ein relevanter und hochaktueller Bestandteil der Weiterentwicklung des Medizinstudiums. Bei dieser Entwicklung stehen nicht nur die technologischen Kompetenzen, sondern insbesondere auch die Reflexion der fachlichen, rechtlichen und ethischen Zusammenhänge sowie der Umgang mit Veränderungsprozessen im Fokus.

Schlüsselwörter: Digitale Transformation, Curriculum 4.0, digitale Kompetenzen, Medizinstudium, Digitale-Versorgung-Gesetz

Sebastian Kuhn

Natalie Müller

Elisa Kirchgässner

Lisa Ulzheimer

Kim Lucia Deutsch

1 Universität Bielefeld, Medizinische Fakultät OWL, AG 4 - Digitale Medizin, Bielefeld, Deutschland

2 Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Zentrum für Orthopädie und Unfallchirurgie, Mainz, Deutschland

Einleitung

Die digitale Transformation bezeichnet einen fortfahrenden, in digitalen Technologien begründeten Veränderungsprozess, der das Gesundheitssystem, die Kliniken, Praxen, Universitäten und die Professionen sowie Patienten verändert. Hierbei wird eine zunehmende „Superkonvergenz“ der klassischen Medizin mit Informationstechnologien beschrieben, die das bisherige Gesundheitssystem in ein neues, digitales Gesundheitssystem verwandelt [1], [2]. Ärztliches Handeln durch die Einführung digitaler Gesundheitstechnologien weiterzuentwickeln, ist ein komplexer Veränderungsprozess. Dieser erfordert neben Investitionen in Technologien einen tiefgreifenden Wandel von Mentalitäten der Menschen. Die ärztliche Patientenversorgung umfasst viele Facetten und wird durch Menschen mit tief verwurzelter persönlichen, sozialen und institutionellen Überzeugungen und Praktiken ausgebildet. Um speziell ärztliches Handeln erfolgreich weiterzuentwickeln, muss die digitale Transformation von der Ärzteschaft als ein langanhaltender, disruptiver Veränderungs- und Innovationsprozess verstanden werden, der die Rollen sowie die dafür notwendigen Kompetenzen und Kooperationen massiv verändern wird [3], [4], [5].

Die Zukunft ist jetzt! Im Jahr 2020 werden Ärzte Patienten nicht nur zur Medikation und Operation, sondern auch zu digitalen Behandlungsformen beraten und diese differenziert einsetzen müssen. Das Digitale-Versorgungsgesetz hat hierzu im November 2019 die Weichen gestellt [6]. Sowohl digitale Gesundheitsanwendungen in Form von Smartphone Apps, als auch die telemedizinischen Angebote werden in diesem Jahr zunehmend praxisrelevant. Der beschlossene und verpflichtende Aufbau der Telematik-Infrastruktur führt zu einer intensiveren Datenbereitstellung und geht mit hohen Anforderungskompetenzen für Ärzte einher.

Die häufig als Generation der „Digital Natives“ bezeichnete derzeitige Generation an Medizinstudierenden hat diesbezüglich einen enormen Bildungsbedarf. Mit digitalen Medien aufzuwachsen und diese in der Rolle eines „Consumers“ zu nutzen, ist nicht ausreichend, um sich arztsspezifische digitale Handlungskompetenzen anzueignen.
nen. Dies zeigte sich auch u.a. in einer Studie des Hochschulforsums Digitalisierung, in der nur 21% der Studierende als „Digitale Allrounder“ abschnitten. Der Großteil der Studierenden sammelte Erfahrungen primär aus einer passiven, konsumierenden Rolle heraus und nahm auf die digitale Umwelt nicht aktiv Einfluss [7], [8]. Bei einem Blick in bisherige Curricula des Humanmedizinstudiums, aber auch bei der Erstellung des Masterplans Medizinstudium 2020 und des Nationalen Kompetenzbasierten Lernzielkatalog Medizin (NKLM) fanden digitale Kompetenzen keine wesentliche Beachtung [9], [http://www.nklm.de]. Hieraus ergibt sich die Notwendigkeit, adäquate curriculare Konzepte zu konzipieren, zu implementieren und zu evaluieren, welche sich zukunftsegewandt diesen Herausforderungen stellen. „Medizin im digitalen Zeitalter“ wurde als curriculare Reformprojekt der Universitätsmedizin Mainz ab Dezember 2016 vom Stifterverband als ein „Curriculum 4.0“ Projekt gefördert. Ziel dieses Förderprogramms ist es, die Neuausrichtung und Weiterentwicklung von Studiengängen voranzutreiben und durch curriculare Reformprojekte neue Lösungsansätze aufzuzweigen. Die erstmalige Implementierung erfolgte im Sommersemester 2017 und ist seither Teil des Wahlpflichtprogramms der Universitätsmedizin Mainz. Da die Anmeldungen die verfügbaren Kapazitäten – im Sommersemester 2019 standen 184 Anmeldungen zwölf verfügbaren Plätzen gegenüber – wird die Teilnahme zufällig verteilt.

Die aktuelle Publikation stellt die qualitative Evaluation des Kurzkonzepts basierend auf 58 semi-strukturierter Interviews aller Teilnehmenden aus fünf Kursen dar. Hierbei war das Ziel die studentische Perspektive zu erheben, um die Ergebnisse in die iterative und agile Weiterentwicklung des Unterrichtskonzepts, aber auch in die aktuell stattfindenden nationalen Reformprozesse einfließen zu lassen. Forschungsleitend waren dabei die Fragen nach dem subjektiven Lernerfolg der Studierenden und der Akzeptanz des Kurzkonzepts.

Lehrkonzept

Das Blended-Learning-Curriculum „Medizin im digitalen Zeitalter“ setzt sich aus verpflichteten sechs Lernmodulen zusammen, die jeweils aus einer ca. 2-stündigen E-Learning-Einheit und einer 4-stündigen Präsenzunterrichtseinheit bestehen. Das Lehrkonzept lässt sich auf drei Ebenen beschreiben: der Format-Ebene, der Methoden-Ebene und der Modul-Ebene.

Auf der Format-Ebene ist das Konzept in der Lehrformen E-Learning, Präsenzunterricht und Koproduktion gegliedert. Die verschiedenen Formate wechseln im Verlauf und bauen aufeinander auf. Die Projektplanung orientiert sich hierbei an den Empfehlungen und Framework der Arbeitsgruppe Curriculum 4.0 des Hochschulforsums Digitalisierung [10], [11]. Im E-Learning setzen sich die Teilnehmenden mithilfe eines E-Books bereits im Vorfeld der Veranstaltung mit Themen der digitalen Transformation auseinander und erarbeiten vor Unterrichtsbeginn eigenverantwortlich und unabhängig wissensbasierte Anteile zur digitalen Medizin. Dieses umfassen von den Dozierenden verfasste Übersichtsartikel, Experteninterviews und kuratierte Fremdinhalte zu den sechs Modulen. Im Präsenzunterricht werden Situationen des digitalen Gesundheitssystems praxisnah aufgegriffen. Wechselnde Dozierende bearbeiten diverse Themenbereiche in problemlösungsorientierten Lehrkonzepten. Hier wird explizit der Ansatz, die digitale Transformation der Medizin interdisziplinär und interaktiv abzubilden, verfolgt. Demzufolge wird der Präsenzunterricht in Kleingruppen mit Unterstützung verschiedener medizinischer Fachdisziplinen (Anästhesiologie, Chirurgie, Medizinische Informatik Medizinethik, Psychologie, Pädiatrie, Psychosomatik, Radiologie, Unfallchirurgie und Orthopädie) durchgeführt. Darüber hinaus wird das Dozierendenteam im Sinne eines transdisziplinären Ansatzes durch App-Entwickler, Vertreter des Landesdatenschutzes und Patienten ergänzt. Die Koproduktionen erfolgen in Form diverser Projektarbeiten und ermöglichen eine intensive Personalisierung des Lernens, die in analoger wie digitaler Form dazu beitragen, den Lernenden zu aktivieren und den Unterricht besser an die Zielgruppe anzupassen. Der entstandene „User Generated Content“ stärkt die Identifikation mit dem Lehrkonzept und das positive Lernerlebnis. Hinzu kommt, dass die erarbeiteten Inhalte den Lernern leicht sichtbar gemacht. Durch die unterschiedlichen Sichtweisen der heterogenen Teilnehmergruppe – Studierende wie auch Lehrende – werden diverse Erfahrungen und Meinungen sichtbar [7], [12]. Die Beiträge werden nach Abschluss des Wahlpflichtfachs in eine EDU-Version des E-Books eingefügt. Einzelne Beiträge werden für das E-Learning der folgenden Semester zur Verfügung gestellt (siehe Abbildung 1).

Auf der Methoden-Ebene wird in sechs Methoden unterschieden, die in verschiedenen Zusammenhängen und Kontexten zum Einsatz kommen:

- Lernziele erarbeiten
- Impulsvorträge
- Workshops
- Experten- und Patientengespräche
- Diskussionsrunden
- Projektarbeiten

Zu Beginn eines jeden Unterrichtstags sammeln die Studierenden eigenverantwortlich ihre persönlichen Lernziele zu den jeweiligen Modulen und stellen diese den Dozierenden vor. Dies erlaubt einen Abgleich mit den vom Dozierendenteam formulierten Ziele und ermöglicht eine Zielgruppen-spezifische Anpassung, insbesondere während der Workshops und Diskussionsrunden. Es schließen sich Workshops zum Modulthema an, die mit diversen Methodiken arbeiten. U.a. App-basierte Behandlungskonzepte, Videosprechstunden und Diskussionsrunden ermöglichen, dass die Studierenden mit neuen Behandlungskonzepten aktiv und praktisch interagieren können. Dabei werden nicht nur die Chancen und Möglichkeiten der digitalen Medizin betrachtet, sondern es werden in kritischen Diskussionen der Teilnehmenden
mit Experten und Dozierenden auch die Risiken und Limitationen der digitalen Medizin erörtert. Zum Abschluss werden die Lernziele auf ihre Umsetzung überprüft und gemeinsam reflektiert. Die Modul-Ebene beschreibt die Struktur der Inhalte, die im Verlauf der Unterrichtsveranstaltung behandelt werden. Insgesamt besteht das Konzept aus sechs Modulen:

Modul 1 – Digitale Arzt-Patienten-Kommunikation

Übergeordnete Lernziele: Der/Die Teilnehmende ist in der Lage, die spezifischen Anforderungen persönlicher und elektronischer Kommunikation zu reflektieren sowie Kriterien für angemessenes Verhalten virtueller Arzt-Patienten-Kommunikation bis zum Abschluss des Moduls auf praktische Beispiele anzuwenden.

Das Modul fokussiert insbesondere die Veränderungen der Arzt-Patienten-Kommunikation durch digitale Einflüsse. Das interdisziplinäre Dozierenteam besteht aus einem Arzt und zwei Psychologen. Die Teilnehmenden sollen in Hinsicht auf das professionelle Auftreten in sozialen Netzwerken und den Besonderheiten digitaler Kommunikation auf den drei Ebenen Arzt – Patient, Arzt – Arzt und Patient – Patient sensibilisiert werden. Dafür erhalten die Teilnehmenden Einblicke in ein etabliertes Online Reha-Nachsorge-Programm, bewerten reale Fälle ärztlichen Verhaltens in sozialen Netzwerken und diskutieren die Vor- und Nachteile digitaler Kommunikation für das ärztliche Handeln. Darüber hinaus werden auch digitale Fehlentwicklungen, wie die unkritische Nutzung von Messengern (z.B. WhatsApp®) im klinischen Alltag, adressiert.

Modul 2 – Smart Devices und Medizinische Apps

Übergeordnete Lernziele: Der/Die Teilnehmende ist in der Lage, den Nutzen und die Risiken von medizinischen Apps und Smart Devices bis zum Abschluss des Moduls kritisch zu bewerten und patientenorientiert anzuwenden. Sie beherrschen den Umgang mit Smart Devices und Apps im gesundheitsspezifischen Kontext und können die Einsatzmöglichkeiten, Chancen und Risiken auf Patienten-, Arzt- und Forschungsebene reflektieren.

Das zweite Modul „Smart Devices und Medizinische Apps“ zeigt die digitalen Einflüsse auf den medizinischen Verbrauchermarkt auf. Hierbei werden die Teilnehmenden mit der Vielzahl existierender Gesundheits-Apps und Smart Devices konfrontiert. Eine umfassende Auseinandersetzung mit der qualitativen Beurteilung einer App auf den Ebenen Konsument, Patient und Experten findet in Form eines eigenständig erstellten App-Reviews statt. Im Expertengespräch mit den Gründern eines in Deutschland nach Medizinproduktegesetz zertifizierten App-basierten Behandlungskonzepts treten die Studierenden in Austausch über medizinische, ökonomische und politische Rahmenbedingungen. In einem weiteren Expertengespräch sprechen die Studierenden mit einem Arzt, der die Technik in seiner Praxis etabliert hat, über Erfahrungs- werte, Chancen und Limitationen. Smart-Device-basiertes Monitoring sowie die Überwachung der individuellen Vitalparameter (Quantified-self) werden in Selbstversuchen erlebbar gemacht.

Modul 3 – Telemedizin

Übergeordnete Lernziele: Der/Die Teilnehmende ist in der Lage, telemedizinische Verfahren zu benennen und die Chancen und Risiken der Behandlung nach Abschluss des Moduls zu reflektieren. Der Teilnehmende kann Lösungen der Telemedizin patientenorientiert einsetzen und die notwendigen Rahmenbedingungen der Gesundheitsthematik erläutern.

Das Modul „Telemedizin“ stellt anhand eines Fallbeispiels interaktiv die Telemedizin mit den Teilaspekten Tele-Notfallmedizin, Teleradiologie und Telekonsultation praxisnah dar [13]. In einer Videokonferenz treten die Teilnehmenden in direkten Kontakt mit einer Patientin, die aufgrund einer mehrjährigen telemedizinischen Betreuung ein selbstbestimmteres Leben führen kann.

Modul 4 – Virtual Reality, Augmented Reality und Computer-assistierte Chirurgie

Übergeordnete Lernziele: Der/Die Teilnehmende ist in der Lage, die neuartigen Techniken von Virtual Reality (VR), Augmented Reality (AR) und computer-assistierter Chirurgie bis zum Abschluss des Moduls reflektiert anzuwenden und zu bewerten.

„Virtual Reality, Augmented Reality und Computer-assistierter Chirurgie“, zielt auf der Ebene der Praxiserfahrung darauf ab, den Teilnehmenden den aktuellen Entwicklungsstand und die Einsatzmöglichkeiten von VR/AR und computer-assistierter Chirurgie zu vermitteln. Angeleitet von Experten der computer-assistierten Chirurgie arbeiten
die Teilnehmenden an dem OP-Roboter-Simulator „Da Vinci“, nutzen Augmented Reality für eine OP-Planung und führen eine Virtual Reality-Laparoskopie durch. Auch hier wird die Methode des Expertengesprächs eingesetzt, um niedrigschwellig und konstruktiv die Reflexion der zukünftigen Rolle zu fördern und nachhaltiges Interesse zu wecken.

Modul 5 – Individualisierte Medizin und Big Data

Übergeordnete Lernziele: Der/Die Teilnehmende ist in der Lage, die Sammlung und Nutzung von Patientendaten im Spannungsfeld von technischen und ethischen Grundsätzen sowie unter gesellschafts- und ethischen Rahmenbedingungen zu bewerten und in medizinischen Kontext zu setzen.

„Individualisierte Medizin und Big Data“, adressiert die Ebene der kritischen Reflexion der Teilnehmenden. In diesem Modul werden Chancen und Herausforderungen digitalisierter Medizin vor dem Hintergrund gesellschaftlicher Rahmenbedingungen des Datenschutzes, der Medizinethik und der Medizininformatik, unter Einbezug der Inhalte der gesamten Kurswoche (Zugriff auf und Verfügbarkeit von Big Data, Limitationen und Prädiktionen, Recht auf Nichtwissen) aus verschiedenen Perspektiven beleuchtet und diskutiert. Dabei werden Spannungsfelder sichtbar, in denen sich klinisch tätige Ärzte aktuell befinden. „Was ist technisch möglich?“, „Was ist rechtlich erlaubt?“, „Was ist ethisch vertretbar?“ sind hierbei Leitfragen. Die Auseinandersetzung geschieht insbesondere durch offene Diskussionen im Plenum mit Experten aus dem Bereich Medizininformatik, Datenschutz und Medizinethik [14].

Modul 6 – Künstliche Intelligenz

Übergeordnetes Lernziel: Der/Die Teilnehmende ist in der Lage, Einsatz und Nutzen von Künstlicher Intelligenz im ärztlichen Handeln im Spannungsfeld von technischen und ethischen Grundsätzen sowie unter gesellschaftspolitischen Rahmenbedingungen zu bewerten und in medizinischen Kontext zu setzen. Der/Die Teilnehmende kann diverse Anwendungsgebiete und konkrete Programme, die mit künstlicher Intelligenz arbeiten, erläutern.

Das 6. Modul beschäftigt sich mit dem zunehmenden Einsatz klinischer Entscheidungsunterstützungssysteme im ärztlichen Alltag. Die Studierenden führen zunächst eine klassische Anamnese (Ada Health) durch. Auf Arbeitsblättern werden die individuellen Beobachtungen der ärztlichen und Kl-unterstützen Vorgehensweisen aufgezeichnet. In der folgenden Diskussionsrunde werden Vor- und Nachteile sowie Chancen und Risiken des Einsatzes kritisch reflektiert. In einem Gruppenprojekt recherchieren die Studierenden im Verlauf der Woche ein Kl-basiertes klinisches Unterstützungssystem und reflektieren den Einsatz kritisch. Die Ergebnisse werden abschließend präsentiert, im Plenum diskutiert und erhalten in schriftlicher Form Einzug in das E-Book.

Evaluationsmethodik

„Medizin im digitalen Zeitalter“ wurde bisher fünfmal im Rahmen der Wahlpflichtwoche (5 Tage) der Fachsemester 7-9 (Sommersemester 2017 bis Sommersemester 2019) durchgeführt. Da die Teilnehmendenzahl begrenzt ist und die Anmeldungen die Kapazitäten überstiegen, wurden die Studierende dem Kurs von der Abteilung Studium und Lehre nach dem Zufallsprinzip zugeordnet. Das Dozierendenteam hatte keinen Einfluss auf die Auswahl der Teilnehmenden. Die qualitativen Evaluationen erfolgten in Form semi-strukturierter Interviews mit einer durchschnittlichen Dauer von circa 45 Minuten. Forschungsleitend waren im Rahmen der Interviewdurchführung die Fragen nach dem subjektiven Lernerfolg der Studierenden und der Akzeptanz des Kurzkonzepts. Des Weiteren hat sich die Interviewpraxis als passendes Instrument erwiesen, um Anregungen zur Überarbeitung und Anpassung des Kurzkonzepts einzuholen. Die Auswertung des Interviews findet somit Einzug in den iterativen Prozess der Weiterentwicklung. Der Interviewleitfaden besteht sowohl aus offenen als auch aus zielgerichteten Fragen zur drei Fragenkomplexen – themenspezifische, veranstaltungsbezogene und reflexive Fragen (siehe Anhang 1). Hieraus wurden deduktiv sechs Hauptkategorien (Ablauf, Inhalt, Methodik, Lernerfolg, Lernerlebnis, Fazit) gebildet. Im Auswertungsprozess ergeben sich zudem induktive Unterkategorien. Es konnten alle 58 Teilnehmenden (36 männlich, 22 weiblich) innerhalb von 2 Wochen nach Abschluss der Wahlpflichtwoche befragt werden. Insgesamt wurden 25 Interviews geführt, davon 12 Einzel- und 13 Kleingruppeninterviews. Die Audioaufnahmen wurden transkribiert und die 1259 Aussagen categorisiert und ausgewertet. Der Auswertungsprozess erfolgte durch zwei in der Inhaltsanalyse geschulten wissenschaftlichen Mitarbeitern. Unklarheiten bei der Datenauswertung wurden im Projektteam (zwei weitere wissenschaftliche Mitarbeiter) diskutiert und konsolidiert. Die Evaluationsmethodik erfolgte anhand der „Qualitativen Inhaltsanalyse“ nach Philipp Mayring [15].

Ergebnisse

Die Evaluation der Unterrichtsveranstaltungen „Medizin im digitalen Zeitalter“ umfasst die deduktiv gebildeten Hauptkategorien Ablauf, Inhalt, Methodik, Lernerfolg, Lernerlebnis und Fazit (siehe Abbildung 2). Den deduktiven Hauptkategorien wurden im Auswertungsprozess induktiv entwickelte Unterkategorien zugeordnet. Anhand dieser können nun die einzelnen Hauptkategorien aufgeschlossen und näher definiert werden.
Hauptkategorie Ablauf

Die Hauptkategorie Ablauf umfasst alle Aussagen, die sich auf organisatorischer Ebene auf die Veranstaltungs durchführung beziehen. Im Auswertungsprozess wurden die Unterkategorien „Dozierende“, „Struktur“ und „Zeitmanagement“ gebildet (siehe Abbildung 3). Insbesondere die vielfältigen, motivierten Dozierende wurden sehr positiv bewertet. Vor allem „fachfremde“ Experten, wie App-Entwickler und Datenschutzexperten, lieferten einen großen Beitrag zur Veranstaltung. Betont wurde die offene Gesprächssituation, die nach Aussage der Studierenden im Rahmen der Wahlpflichtwoche durchweg aufrechterhalten werden konnte. Dazu kommen durchweg positive Rückmeldungen zur strukturellen Organisation der Veranstaltung. Diese beziehen sich auf die Aufteilung der passiven und aktiven Lernphasen sowie der Einsatz der verschiedenen Lehrformate von E-Learning und Präsenzlehre. Die Studierenden sprechen hier von einem reibungslosen Verlauf und guter Organisation. Die zeitliche Struktur wird positiv gesehen, die zeitliche Rahmung dagegen kritisch. Die Studierenden äußern Interesse an längeren Unterrichtseinheiten.

Hauptkategorie Inhalt

Die Aussagen zur Hauptkategorie „Inhalt“ beziehen sich zu 31% auf die Themenvielfalt. Die Befragten nennen hier einen generellen Überblick über die Bandbreite der Themen und den Einblick in die einzelnen praktischen Umsetzungen als besonders relevant (siehe Abbildung 4). Die inhaltliche Vielfalt trägt so zu einem besseren Verständnis über die Tragweite der Thematik bei. Dazu gehört ein differenziertes Bewusstsein für die aktuell stattfindende Veränderung des ärztlichen Berufsbilds. Die restlichen 69% der Aussagen können den Inhalten der einzelnen Module zugeordnet werden. In den Interviews wird deutlich, dass sich die Studierenden auf inhaltlicher Ebene noch tiefere Auseinandersetzungen auf medizinethischer und medizinrechtlicher Ebene gewünscht hätten. Zu einzelnen Modulen wurden einige Arbeiten bereits publiziert; weitere befinden sich in Veröffentlichungsprozess [3], [12], [13], [14].

Hauptkategorie Methodik

Die mit 30% aller zugeordneten Aussagen größte Kategorie bildet die Hauptkategorie Methodik. Diese Kategorie umfasst alle Aussagen zum Methodeneinsatz der Veranstaltung. Im Auswertungsprozess wurden die Unterkategorien „Methodenauswahl“, „Medien- und Technikeinsatz“ und „Theorie/Praxisverknüpfung“ gebildet (siehe Abbildung 5). Die Auswahl der eingesetzten Methoden bewerten die Studierenden als abwechslungsreich und vielfältig. Insbesondere die Methoden Diskussionsrunde und Expertengespräch werden als besonders interessant und lehrreich empfunden. Zudem erzählen die Teilnehmenden, dass sie die Gelegenheit schätzten, in Gruppenarbeiten, die in Form von Workshops stattfanden, in Austausch mit ihren Kommilitonen zu treten und gemeinsam Aufgaben zu bearbeiten. Die Methode der Fishbowl-Diskussion wurde von den Teilnehmenden unterschiedlich bewertet. Einzelne Teilnehmende äußerten, dass sie vor allem zu Beginn der Diskussion Hemmungen hatten offen zu diskutieren, oder im Gegenteil, dass sie sich noch stärker beteiligen und häufiger äußern wollten, als die Methode es zuließe. Eineingeschränkt positiv bewerteten die Studierenden im Gegensatz zur Methodenauswahl jedoch die Theorie/Praxisverknüpfung. Alle Befragten äußern sich positiv dazu, dass in der Veranstaltung nicht nur Theore-
tisches gelernt, sondern auch praktische Erfahrungen gesammelt werden konnten. Mit großer Begeisterung berichten die Studierenden von ihren Erfahrungen mit der VR-Brille oder dem DaVinci-Roboter-Simulator. Den praktischen Übungen sollte allerdings ein noch größeres Zeitfenster eingeräumt werden, empfehlen die Studierenden. In den Aussagen zum Medien- und Technikeinsatz der Veranstaltung wird vor allem der Einsatz neuartiger Technologien positiv hervorgehoben. Das Bedienen von Smartwatches, Tablets und anderen Smart Devices war für die meisten Studierenden eine wertvolle Erfahrung. Darüber hinaus wird das veranstaltungsbezogene E-Book als hilfreich zur thematischen Orientierung vor der Veranstaltung bewertet und der mit dem Lesen des E-Books verbundene Zeitaufwand als angemessen beurteilt. Der Einsatz des digitalen Kommunikationstools SLACK wird teilweise gelobt und teilweise kritisiert, da die App nicht von allen Teilnehmenden in gleicher Intensität genutzt wurde und von manchen Studierenden als unübersichtlich empfunden wurde. Gelobt wird jedoch die Möglichkeit zur Vernetzung und zum Informationsaustausch, welcher mithilfe der App auch nach der Veranstaltung noch möglich war.

Hauptkategorie Lernerfolg

Der Lernerfolg wird von den Teilnehmenden als langfristig eingeschätzt (siehe Abbildung 6). Im Vergleich mit ande-
ren Lehrveranstaltungen des Medizinstudiums sei der Lernerfolg hier größer und nachhaltiger. Außerdem sei der Lernerfolg besonders hoch im Vergleich zur aufgewandten Zeit. Demnach sei die Zeit sehr gut genutzt worden. Die Veranstaltung habe darüber hinaus dazu beigetragen, dass das Interesse an der Thematik gestiegen sei und sich die Studierenden auch nach Abschluss der Lehrveranstaltung weiter mit Themen der digitalen Medizin auseinandersetzen wollen. Dass die Studierenden davon erzählen, nach der Veranstaltung weiterlernen und sich in ihrer Freizeit weiter informieren zu wollen, stellt einen Lernerfolg dar. Lernen habe in diesem Unterricht weniger über die Faktenvermittlung, sondern mehr über gesammelte Erfahrungen und Erlebnisse stattgefunden. Es sei eine andere Art des Lernens im Vergleich zum sonstigen Medizinstudium. In der Wahlpflichtwoche sei das kritische Reflektieren gefördert worden. In den Aussagen der Teilnehmenden wird deutlich, dass die Studierenden ihren Lernerfolg mit Aktivitäten verknüpfen. So habe das praktische Erfahren verschiedener Medien, Techniken und Geräte und das anschließende Diskutieren darüber dazu beigetragen, dass der Lernerfolg als besonders hoch eingeschätzt wird. Nach ihrem persönlichen Lernerfolg gefragt, erwähnen viele Teilnehmende den Begriff der Horizontweiterung. Ihnen sei nun die Tragweite des Themas deutlich geworden, ihr Blick habe sich um verschiedene Perspektiven erweitert und sie fühlen sich über das Thema Digitale Transformation der Medizin „aufgeklärt“. Die zahlreichen Impulse des Unterrichts regten zum Mitdenken an und sensibilisierten die Studierenden für die behandelte Thematik.

Hauptkategorie Lernerlebnis

Die Teilnehmenden beschreiben ihre Lernerlebnisse in der Veranstaltung, indem sie auf ihre Lernerfahrungen mit verschiedenen Methoden eingehen. Besonders häufig beziehen sich Aussagen zum Thema „Lernerlebnis“ auf die Methoden „Zusammenarbeit“, „Diskussion“ und „Expertengespräch“ (siehe Abbildung 7). Dabei wird erläutert, dass die Perspektivenvielfalt in Diskussionen ebenso zu einem Lernprozess führe, wie die Möglichkeit, Technik und Medien in Kleingruppen selbst ausprobieren zu können. „Hands on“ am DaVinci Roboter arbeiten zu können, wird von vielen Teilnehmenden als eindrückliches Lernerlebnis bezeichnet. Außerdem bewerten die Studie-
renden die Themenvielfalt des Unterrichts positiv. Dass sie ihre Lernziele selbst festlegen durften, wird ebenso hervorgehoben. Insgesamt beschreiben die Befragten ihre Lernerlebnisse im Rahmen der Veranstaltung als außergewöhnlich abwechslungsreich im Vergleich zu ihrem sonstigen Studium und empfinden sie als nachhaltig. Nicht nur die Vielfalt der Themen, auch das Thema an sich wird als Vorteil der Veranstaltung hervorgehoben. Die Studierenden erklären, die Veranstaltung aufgrund der für sie interessanten Thematik gewählt zu haben. Außerdem wird der Lerninhalt der Veranstaltung als spannend beschrieben. Darüber hinaus heben die Studierenden die Bedeutung der Dozierende hervor, wenn sie von ihren Lernerlebnissen berichten. Dass täglich unterschiedliche Co-Dozierende beteiligt waren, wird als positiv herausgestellt. Hierbei wird betont, dass die Dozierenden den Studierenden „auf Augenhöhe“ begegneten und für jegliche Fragen offen waren.

Hauptkategorie Fazit

Nach einer abschließenden Bewertung der Veranstaltung gefragt, äußern sich nahezu alle Befragten positiv zu der Wahlpflichtwoche (siehe Abbildung 8). Die Teilnehmenden erzählen, dass sie viel Neues gelernt und eindrückliche Erfahrungen gesammelt haben. Daher möchten sie diese Wahlpflichtwoche weiterempfehlen und wünschen sich, dass „Medizin im digitalen Zeitalter“ Einzug in das Pflichtcurriculum des Medizinstudiums findet. Zwar wird insgesamt die Organisation der Veranstaltung gelobt, dennoch wird auch Kritik am Zeitmanagement geäußert. Die Teilnehmenden wünschen sich mehr Zeit für Diskussionen, Expertengespräche und Praxisübungen und würden dafür auch längere Unterrichtseinheiten in Kauf nehmen. Außerdem sollten mehr Pausen eingeplant werden. Einige Teilnehmende wünschen sich darüber hinaus, dass der Anteil praktischer Übungen noch weiter erhöht wird und sie noch mehr „hands on“ ausprobieren.
dürfen. Beispielsweise wünschen sie sich, die Software in der Radiologie selbst autentesten zu können, oder in das Thema der App-Konzeption eintauchen zu können.

Im Vergleich mit ihrem sonstigen Medizinstudium gehe es bei „Medizin im digitalen Zeitalter“ laut den Befragten nicht um die Ansammlung von möglichst großem Faktenwissen, sondern um ein tiefergehendes Verständnis für die Thematiken und das Herausbilden einer eigenen Meinung. Außerdem sei die Motivation der Dozierenden spürbar hoch, was zu einer spannenden Veranstaltung beitrage.

Diskussion

Die Evaluationsmethode eignet sich insbesondere für Kurskonzepte, die problemzentriertes Lernen in den Vordergrund stellen, da die Interviews nicht nur klassische Evaluationsfragen ermöglichen, sondern auch den (kritischen) Austausch, die Positionierung und das Einordnen der Lehreinheiten in den individuellen Erfahrungskontext. Des Weiteren wird das Zusammenarbeiten, das im Rahmen von Medizin im digitalen Zeitalter als zentrales didaktisches Element dient, mit in die Evaluationsphase übertragen, da die Rückmeldungen der Studierenden in die Weiterentwicklung des Kurses einfließen. Ihre Grenzen findet die Methode in der intersubjektiven Vergleichbarkeit, bzw. der objektiven Messung von Lernfortschritten. Des Weiteren ist zu beachten, dass die Studierenden sich im Rahmen der Wahlpflichtwoche bewusst für die Teilnahme am Kurskonzept entscheiden, und so davon ausgegangen werden kann, dass zumindest ein gewisses Interesse an der Thematik schon vorab vorhanden ist. Die Ergebnisse der Evaluation zeigen, dass das Kurskonzept „Medizin im digitalen Zeitalter“ auf große Akzeptanz stoßt. Die Studierenden bedauern, dass sich das Konzept nur im Rahmen des Wahlpflichtfachs belegen lässt und äußern den dringenden Bedarf der longitudinalen Implementierung. Die Teilnehmenden wünschen sich mehr Zeit für Diskussionen, Expertengespräche und Praxisübungen und würden dafür auch längere Unterrichtseinheiten in Kauf nehmen. Geäußert wurde der Wunsch, dass der Anteil praktischer Übungen noch weiter erhöht wird. Diese Rückmeldungen wurden im Rahmen der iterativen Weiterentwicklung aufgenommen. Diese umfassen sowohl inhaltliche Modifikationen (z.B. Intensivierung der Kl-Thematik), methodische (zusätzliche Hans-on Workshops) und Zusammensetzung der Dozierenden (z.B. stärkere Inkludierung von Patienten als Co-Dozierende). Die eingesetzten Methoden werden von den Studierenden als passend und lernfördernd empfunden. Die Ergebnisse geben wichtige Anknüpfungspunkte für die Curriculumentwicklung für das digitale Zeitalter, die nicht nur technologische Anwendungskompetenzen im Bereich der digitalen Medizin fördern muss, sondern auch spezifische digitale Gesundheitsanwendungen, Behandlungskonzepte und Entscheidungsunterstützungssysteme mit einbeziehen muss, deren Grundprinzipien anhand fassbarer Beispiele vermittelt werden sollten [3], [11], [16]. Über diese technologischen Aspekte hinausgehend sollten insbesondere digitale Grundkompetenzen (Digital Literacy) vermittelt werden, die die Reflexion der gesellschaftlichen, ethischen und rechtlichen Zusammenhänge adressieren. Diese Haltungsreflexion ist nicht an spezifische technische Lösungen gebunden, sondern kann auf den Gesamtkontext der digitalen Transformation übertragen werden. Zusätzlich bedarf es der Förderung von klassischen Schlüsselkompetenzen, da Fähigkeiten wie Kreativität, Selbstreflexion, Problemlösestrategien und kritisches Denken insbesondere im Kontext einer zunehmend interdisziplinären, sich fortwährend wandelnden medizinischen Landschaft an Bedeutung gewinnen werden [17].

Die aktuell stattfindenden Prozesse im Rahmen der Facultäten und IMPF-assoziierten Reformbestrebungen haben diesen Bedarf erkannt. Anteile des Konzepts und die Ergebnisse aus der Evaluation konnten einigen medizinischen Fakultäten (u.a. UKE Hamburg, Charité Berlin) bei der Gestaltung ähnlicher Unterrichtsangebote Impulse geben. Darüber hinaus sind digitale Kompetenzen ein zentrales Querschnittsthema bei den gemeinsamen Reformbestrebungen „Weiterentwicklung von NKLM und des Gegenstandskatalogs“ des Instituts für medizinische und pharmazeutische Prüfungsfragen und des Medizinischen Fakultätentags. Hierzu konnte der Hauptautor sowohl die Lernziele als auch Ergebnisse aus der Evaluation einbringen. Des Weiteren flossen umfassende Anteile der Evaluation in die Entwicklungsprozesse des Ärztlichen Fortbildungscurriculums „Digitale Gesundheitsanwendungen in Klinik und Praxis“ der Bundesärztekammer sowie mehreren zentralen nationalen Strategieprozesse des Hochschulforums Digitalisierung. Diese umfassen die Schwerpunkthemen und Publikationen zur „Curriculumentwicklung im digitalen Zeitalter“ sowie „Digital Literacy“ und „Data Literacy“ [10], [11], [16], [17].

Die Entwicklung einer Digitalisierungsstrategie und deren didaktische Vermittlung ist somit ein relevanter Bestandteil der Zukunftspanplanung der curricularen Weiterentwicklung des Medizinstudiums für alle Standorte aber auch für die Fort- und Weiterbildung der Ärzteschaft. Dies wird zukünftig nicht mehr mit einem Wahlpflichtfach-Angebot abbildbar sein, sondern erfordert eine flächendeckende Implementierung in das Curriculum. Hierbei muss kritisch reflektiert werde, ob und wie das hier dargestellte Unterrichtsangebot skalierbar ist. Wir sind der Überzeugung, dass die praktischen und reflektierenden Anteile, auch bei der Skalierung auf Semesterstärke, in Form von Praktika bis max. 15 Studierenden abzubilden sind. Bei der Entwicklung dieser Curricula sollte zusätzlich die hohe Geschwindigkeit des Veränderungsprozesses beachtet und eine curriculare Anpassung im Sinne eines „Agility by Design“ bereits bei der Konzeption ermöglicht werden [10].

Förderung

Das Projekt "Medizin im digitalen Zeitalter" wurde im Rahmen des Förderprogramms Curriculum 4.0 vom Stif-
terverband und im Rahmen von „Medizinstudium digital - Künstliche Intelligenz und Diagnosefindung sowie „Ärztin/Arzt 2022“ von der Reinhard Frank-Stiftung gefördert.

Interessenkonflikt

Die Autor*innen erklären, dass sie keinen Interessenkonflikt im Zusammenhang mit diesem Artikel haben.

Anhänge

Verfügbar unter https://www.egms.de/en/journals/zma/2020-37/zma001353.shtml

1. **Anhang_1.pdf** (83 KB) Interviewleitfaden Medizin im digitalen Zeitalter

Literatur

1. Topol EJ. The Patient will see you now - The Futut of Medicine is in Your Hands. New York: Basic Books; 2015.
2. Topol EJ, Hill D. The creative destruction of medicine: How the digital revolution will create better health care. New York: Basic Books; 2012.
3. Kuhn S. Medizin im digitalen Zeitalter: Transformation durch Bildung. Dtsch Arztebl. 2018;115(14):A-552/B-552/C-552. Zugänglich unter/available from: https://www.aerzteblatt.de/archiv/197293/Medizin-im-digitalen-Zeitalter-Transformation-durch-Bildung
4. Kuhn S, Heusel-Weiss M, Kadioglu D, Michl S. Digitale Transformation der Medizin - Die Zukunft aktiv gestalten. Dtsch Arztebl. 2019;116(17):A-830/B-654/C-672. Zugänglich unter/available from: https://www.aerzteblatt.de/archiv/206927/Digitale-Transformation-der-Medizin-Die-Zukunft-aktiv-gestalten
5. Ehlers J. Wie die Digitalisierung die Gesundheitsbranche verändert - Und warum sich die medizinischen Fakultäten darauf einstellen müssen. Witten: Universität Witten/Herdecke; 2018. Zugänglich unter/available from: https://www.uni-wh.de/detaillisten/news/wie-die-digitalisierung-die-gesundheitsbranche-veraendert-6735/
6. Bundesgesundheitsministerium. Bundestag beschließt das Digitale-Versorgung-Gesetz. Berlin: Bundesgesundheitsministerium; 2019. Zugänglich unter/available from: https://www.bundesgesundheitsministerium.de/presse/pressespiegel/2019/4-quartal/digitale-versorgungsgesetz-dvg.html#c16542
7. Deutsch KL, Kuhn S. Das Märchen der Digital Natives. MedienPädagogik. Z Theor Praxis Medienbild. 2019;36:37-47. DOI: 10.21240/mpaed/36/2019.11.11.X
8. Persike M, Friedrich JD. Lernen mit digitalen Medien aus Studierendenperspektive. In: Hochschulforum Digitalisierung, editor. Sonderauswertung aus dem CHE Hochschulranking für die deutschen Hochschulen. Berlin: Stifterverband für die Deutsche Wissenschaft; 2016.
9. Bundesministerium für Bildung und Forschung. Masterplan Medizinstudium 2020. Berlin: Bundesministerium für Bildung und Forschung; 2017. Zugänglich unter/available from: http://www.bmbf.de/de/masterplan-medizinstudium-2020-4024.html
10. Baumgartner P, Brei C, Gerdes A, Lohse A, Kuhn S, Lohse A, Michel A, Pohlenz P, Quade S, Seidl T, Spinath B. Curriculumentwicklung und Kompetenzen für das digitale Zeitalter - Thesen und Empfehlungen der AG Curriculum 4.0 des Hochschulforum Digitalisierung. Berlin: Stifterverband für die Deutsche Wissenschaft; 2018.
11. Michel A, Baumgartner P, Brei C, Hesse F, Kuhn S, Pohlenz P, Quade S, Seidl T, Spinath B. Framework zur Entwicklung von Curricula im Zeitalter der digitalen Transformation. Diskussionspapier Nr. 01. Berlin: Stifterverband für die Deutsche Wissenschaft; 2018.
12. Kuhn S, Kirchgässner E, Deutsch K. Medizin im digitalen Zeitalter - "Do it by the book... but be the author!". Synergie. 2017;04:28-31.
13. Kuhn S, Jungmann F. Medizin im digitalen Zeitalter - Telemedizin in der studentischen Lehre. Radiologe. 2018;58(3):236-240. DOI: 10.1007/s00117-017-0351-7
14. Kuhn S, Kadioglu D, Deutsch K, Michl S. Data Literacy in der Medizin. Onkologe. 2018;24(5):368-377. DOI: 10.1007/s00761-018-0344-9
15. Mayring P. Qualitative Content Analysis. In: Flick U, von Kardoff E, Steinke I, editors. A Companion to Qualitative Research. Glasgow, UK; Sage; 2004. p.266-269.
16. Seidl T, Baumgartner P, Brei C, Gerdes A, Lohse A, Kuhn S, Michel A, Pohlenz P, Quade S, Spinath B. (Wert-)Haltung als wichtiger Bestandteil der Entwicklung von 21st Century Skills an der Hochschule. Diskussionspapier Nr. 03. Berlin: Hochschulforum Digitalisierung; 2018.
17. Seidl T. Schlüsselkompetenzen als Zukunftskompetenzen-Die Bedeutung der "21st century skills" für die Studiengangsentwicklung. In: Berendt B, editor. Neues Handbuch Hochschullehre. Berlin: DUF Verlags- und Medienhaus; 2017. p.89-114.

Korrespondenzadresse:
Prof. Dr. med. Sebastian Kuhn, MME
Universität Bielefeld, Medizinische Fakultät OWL, AG 4 - Digitale Medizin, Universitätsstr. 25, 33615 Bielefeld, Deutschland
sebastian.kuhn@uni-bielefeld.de

Bitte zitieren als
Kuhn S, Müller N, Kirchgässner E, Ulzheimer L, Deutsch KL. Digital skills for medical students – qualitative evaluation of the curriculum 4.0 "Medicine in the digital age". GMS J Med Educ. 2020;37(6):Doc60. DOI: 10.3205/zma001353, URN: urn:nbn:de:0183-zma0013535

Artikel online frei zugänglich unter https://www.egms.de/en/journals/zma/2020-37/zma001353.shtml

Eingereicht: 26.11.2019
Überarbeitet: 04.05.2020
Angenommen: 30.06.2020
Veröffentlicht: 16.11.2020

Copyright ©2020 Kuhn et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.