Research Article

Design of Data Classification and Classification Management System for Big Data of Hydropower Enterprises Based on Data Standards

Wei Luo, Jian Xu, and Ziqi Zhou

CHN Energy Dadu River Big Data Services CO., LTD, Chengdu 510107, Sichuan, China

Correspondence should be addressed to Jian Xu; 201814010059@zknu.edu.cn

Received 10 September 2021; Revised 3 December 2021; Accepted 13 December 2021; Published 28 January 2022

Academic Editor: Omar Cheikhrouhou

Copyright © 2022 Wei Luo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The advent of the era of big data has had a great impact on traditional management methods, and companies have also begun to make changes. The management approach has changed from initially focusing on business development to now focusing on user experience and putting people first. The data standard classification management system is a system for management and analysis based on the database. Therefore, this article is based on data standards, taking hydropower companies as an example, to design and research the data classification management system to promote the operation and safety of hydropower companies. This article mainly uses the experimental method, data collection method, and algorithm analysis method to thoroughly understand and explore the content of this article. The experimental results show that the testability of this article can basically reach the general level, and the delay time of the system does not exceed 10 seconds, which can be applied to the company.

1. Introduction

As we all know, in modern life, hydropower is a must-have product for every household. People cannot be short of water for a day. Of course, the use of electricity is also common in daily life. People’s lives are gradually getting better, and their water and electricity consumption is also increasing suddenly. In the face of such complex hydropower data, how to conduct statistics and control for enterprises is a problem that needs to be dealt urgently. In response to the development of times, in addition to the rise of basic products, there is also the improvement of technology. Therefore, this article is very valuable for the study of data classification and classification management systems, and it is a direction that hydropower companies can consider.

There are countless research results on the data classification management system. For example, Tao, in order to strengthen the use, management, and protection of enterprise information system data, develops and implements the classification and implementation of enterprise-sensitive confidential data classification strategies to ensure enterprise data security [1]. Aiming at the scattered and extensive data security protection problems in the enterprise big data environment, Chen et al. proposed a data life cycle security protection system based on classification, and designed and implemented a data asset security management and control platform. Li and Wu said that most hydropower plant information early warning systems are developed based on 2G network SMS early warning, which have disadvantages such as low intelligence, poor real-time performance, and a single type of processing information. Therefore, based on the cloud platform and computer monitoring system-related interfaces, they designed a hydropower plant intelligent data information early warning system [2]. Therefore, under the existing research background of scholars, the systematic research on the data classification and classification management of hydropower enterprises is worth a try.

This article first made a brief understanding of data standards, and secondly, studied the advantages of data classification and grading. Then this article puts forward the
2. Data Classification and Classification Management System for Big Data of Hydropower Enterprises

2.1. Data Standard. The data standard is the most basic, important, and systematic form for various information. That is, this is related to a large number of businesses recorded and stored in large corporate databases and is widely used in various specific transaction management. The data standard is the key to the whole system, which mainly includes the design of the enterprise’s big data classification management platform and related rules. The data standard is the basis for classifying data; that is, it is estimated to be unknown based on the known and converted into a specified format. In this way, some items with the same characteristics can be expressed to reflect the basic situation and management requirements of the enterprise [3].

2.2. Data Classification. The data classification index is formulated according to the actual situation and needs of the enterprise. It is classified by a classification system according to data standards and finally divides users of different types, different age groups, and different purposes into multiple subcategories. The main purpose of data classification is to effectively classify various business indicators of an enterprise [4, 5].

2.2.1. Data Migration Technology Based on Hierarchical Storage

(1) Online storage: Online storage has fast access speed and high price. Online storage generally uses high-performance, high-availability, and redundant high-end storage system technology.

(2) Offline storage: Offline storage is also known as backup-level storage. Its access speed is low, but it can achieve mass storage and lower cost.

(3) Near-line storage: Store infrequently used or inaccessible data in low-performance storage devices.

The purpose of tiered data storage is to free up space in more expensive, high-performance devices for more frequently accessed data.

2.2.2. Advantages of Data Hierarchical Storage. The advantages of data hierarchical storage are specifically manifested in

(1) Performance optimization: hierarchical storage allows storage devices with different cost performances to have the most comprehensive benefits

(2) Reduce the overall cost of storage: infrequently accessed data is stored in a cheaper library

(3) Improve data availability: hierarchical storage migrates infrequently used historical data to additional storage or archives it to an offline storage pool

(4) Data migration is transparent to the application: if the data is moved to another storage after tiered storage, there is no need to change the application, which makes the data migration transparent to the application

The hierarchical storage system structure is shown in Figure 1:

2.2.3. Data Classification Algorithm. The data classification algorithm based on access frequency determines the access frequency of the data by recording the number of accesses of the data in a period of time and then classifies the data according to the access frequency. Currently, data classification algorithms based on access frequency mainly include a fixed threshold method [6, 7].

This method sets a fixed data access frequency closed value as the standard of data classification, so as to realize the classification of data. The main process is as follows:

(1) Trigger the migration condition and count the number of visits to the data in the advanced storage within the time period.

(2) Calculate the data access frequency \(G \) in time period \(T \) as

\[
G = \frac{a}{T}
\]

(1)

(3) Set the fixed frequency access threshold \(G_{\text{max}} \).

(4) For data \(G < G_{\text{min}} \) that is accessed frequently within \(T \), it is added to the migration waiting for queue and migrated to lower-level storage.

(5) Repeat the process.

(6) Algorithm ends.

2.2.4. Classification Method. In data mining, we define classification as: classification is to obtain an objective function through learning. The research on data stream classification has two main directions, namely incremental learning algorithms and ensemble learning algorithms.

(1) Hoeffding tree algorithm is a data flow classification method based on the decision tree. It is the basis of incremental learning of data flow classification. The concept adaptive fast decision tree adopts the method based on sliding window to maintain a fixed sliding window in the process of classifier learning. When the new data samples arrive, first remove the old expired samples from the end of the sliding window, then insert new samples, and monitor the impact of the newly added samples on the accuracy of the real-time decision tree classifier [8, 9].

(2) The integrated classification algorithm mainly includes bagging, lifting, and stacking generalization.
Bagging uses sample resampling techniques to improve the performance of the base classifier combination. The promotion adds weight to each basic classifier, and finally, the unknown data is weighted and judged according to the corresponding weight of each classifier to obtain the final decision result [10, 11].

2.2.5. Related Technology

(1) Data Mining Technology. The data mining system does not exist alone, it includes many components, such as databases, file systems, data mining algorithms, analysis systems, and result outputs, and so on. Data mining algorithms are usually used to process data, and the main function of the analysis system and result output is to analyze the data processing results. The data mining process is shown in Figure 2.

Data mining classification is generally divided into two steps:

(i) Data training phase: We need to extract part of the data as a training set for training and learning and then use the data classification algorithm to create a classifier for the data set.

(ii) Data classification stage: This step is to use the designed classifier to classify a large number of data. The data mining classification process is shown in Figure 3.

Classify by calculating the value of users. Generally, there are market value, user contribution value, and potential market value, etc. After obtaining the user data, through a certain calculation method, the comprehensive evaluation value is calculated to classify the users.

(3) Routine experience

According to the conventional data classification algorithm combined with hydropower users, the hydropower load data is processed, and finally, the results are obtained to classify users in a conventional manner.

2.2.6. Hydropower User Classification and Common Algorithm Analysis. There are three commonly used classification methods for users in hydropower companies.

(1) According to the user’s daily load change curve

Extract the user’s load data within a certain period of time and make the user’s average load change curve according to different seasons and periods.

(2) Comprehensive value evaluation of users

(4) K-means clustering algorithm
When using the K-means clustering algorithm, there are two main problems that need to be paid attention to, the first is the calculation of the spatial distance between the cluster center and the nearest points in the target set. Generally, the Euclidean space distance is used.

\[D = \sqrt{\sum (M - Mx)^2}, \]

where \(M \) represents the center of the cluster, \(Mx \) represents several points closest to it.

(5) The K-Medoids clustering algorithm mainly uses the clustering cost function as a standard to judge the clustering center. The clustering cost function is as formula (3)

\[F = \sum_{i=1}^{s} \sum |m_k - p_i|^2, \]

where \(s \) is the number of clusters, \(|m_k - p_i|^2 \) is the Euclidean distance, \(m_k \) is the noncluster center point, \(p_i \) is the cluster center point.

(6) Bayesian classification algorithm.

If the sample is independent of each other, then its classification accuracy and classification efficiency will be very high. Its calculation formula is

\[P(X|Y) = \frac{P(XY)}{P(Y)} = \frac{P(X) \times P(Y|X)}{P(Y)}. \]

2.2.7. Theories Related to Unbalanced Data Classification.

There are many factors that affect the classification of unbalanced data, such as inappropriate evaluation standards and missing data. The processing method at the data level is to resample the data, and the most typical algorithm is the SMOTE algorithm. The SMOTE algorithm is a new type of oversampling method, which can not only better avoid the overfitting problem caused by the classifier during classification, but also allows the classifier to have a larger generalization space for minority samples. The more common algorithms at the algorithm level include cost-sensitive learning and the K-nearest neighbor algorithm.

2.3. Design of Data Classification Management System.

In order to better realize the classification and management of data, the system is divided into 5 levels, namely the first, second, and third levels. The first layer is the business logic server platform, the lowest application software in the large enterprise database. The second layer is to establish a data analysis service platform based on the B/S architecture within the company. The third layer provides related technologies such as the development, design, and maintenance of support function modules for the client, that is, the client as the main body.

2.3.1. System Construction Goals.

Build a practical national large-scale hydropower data management system that integrates data entry, data review, data reporting, and query analysis to realize remote data collection, review, reporting, query analysis, and custom information download functions, and can be combined with the GIS. The technology realizes the platform-based comprehensive information display function of hydropower and provides basic technical support for national hydropower management and regulation.

2.3.2. Data Management System Module

(1) Database Module Design. In a distributed simulation computing platform, two types of information, user information and simulation information, need to be stored. The interaction between the distributed collaborative simulation computing platform and the database is realized by the ADO interface. By calling the interface provided by ADO, you can access the data, so as to add, delete, check, and modify the data saved in the database. This interface usually returns a recordset or a null pointer.

(2) User Data Management Module Design. The database in this part mainly stores user information and authority information, which is the security support part of the distributed collaborative simulation computing platform. Before interacting with the data management system, the user must first verify the legitimacy of the user and the user’s authority, and only the request issued by the user who meets the conditions can be processed. Different users have different management permissions, and the specific permissions of the personnel must be verified after the identity verification is passed.

(3) Design of Real-Time Data Management Module. The real-time data management module, it is mainly for the management and storage of real-time interactive data generated during the entire cosimulation life cycle. The data involved in this part has the characteristics of a huge amount of data and fast update speed, and a large amount of data information interaction may occur in a certain period of time.

In the real-time data management module, the function of data collection is a prerequisite for the latter two functional modules. For the storage of real-time data, there are usually two implementation methods. One is to write the real-time data directly into a file after the real-time data is collected. This method is fast to write, and the other is to write the data into a designed database table. The real-time data is model-related and reflects changes in model-related parameters. The data forwarding function is to make some collected data public, so that other programs that are not linked to the RTI can also receive some real-time data updates.

(4) Design of Simulation Data Management Module. The data management of the simulation part involves all simulation-related data. The information stored in this part has
the characteristics of complex data types and huge data volume, and involves a large amount of data viewing, inserting, and other operations.

(5) Workspace Modular Design. This article involves storing model files and result files. The application simulation workspace stores these two file types, which greatly improves the access speed of the database and provides an intuitive method.

2.3.3. Demand

(1) Data requirements: business data, spatial data

(2) Functional requirements: the system needs to provide data loading, data entry, data review, data reporting, query analysis, and other functions. Among them, the system administrator mainly performs operations such as user management, project management of the reporting unit, and log management. Data entry personnel mainly perform operations such as data loading, data entry, data reporting, query audit results, and modification of data records based on audit results. Data reviewers mainly conduct validity reviews of the entered data such as formulas, logics, and data type matching, and generate review records. At the same time, they can query past review results. General viewers mainly query and analyze the entered data.

(3) Performance requirements: system stability requires no crashes under various conditions. System reliability requires the accuracy of system data calculation. Fault-tolerant and self-adaptive performance can inferentially correct the local error sequence. Operability, the developers participating in this system have many years of experience, and the system interface is intuitive, concise, and clear. Scalability requires that the system is easy to expand and upgrade in terms of functions.

(4) Security and confidentiality requirements: it needs to be encrypted during transmission to ensure the country’s confidentiality requirements for such data.

2.3.4. System Detailed Design

(1) Principles followed in the architecture design of the big data basic platform.

Unity: the core business is unified, the core data model is unified, the core function is unified, and the business system access method is unified.

Advancement: the model is flexible and expandable.

Economical: considering the initial construction investment and subsequent operation and maintenance costs, and pursuing the best corporate economic benefits during the life of the big data basic platform.

Flexibility: flexible interface and flexible expansion. Adapting to changes in business types and changes in business scale.

Timeliness: top-level design, creation of a rolling revision mechanism, continuous improvement of business, continuous refinement of requirements, continuous supplement, and improvement of design results.

(2) The big data basic platform is based on a hybrid architecture and is the data integration center.

The data source layer contains the company’s existing information systems for each business. Through demand analysis, the data of each information system is sorted and divided into three types: structured data, unstructured data, and real-time data.

The data integration layer realizes the data acquisition in the data source layer through the interface table. The data storage layer includes a data warehouse platform, a distributed data platform, and a streaming data platform.

3. System Implementation

3.1. Technology Path. This design plan uses ETL tools for data extraction and reports analysis page display for system data and CDC tools for data extraction for display that requires near real-time data. The path regulations in the system are as shown in Table 1.

3.2. System Development Tools. The development tool used this time is Data Services18, the design tool used is PowerDesigner18.5, and the test tool is Jmeter.

3.3. Data Extraction Process. The ETL extraction process is simply to parse the data source file, read the processing status, processing time, file name, and activity time in the file name after processing the source file, extract the data, and update the results in the target table after extraction. Interface configuration with source data and extraction configuration on ETL can be used for data transmission between systems.

Data organization: ETL extraction and SQL query export. The operating data is organized by means of regular execution plans and is stored in the database after the statistics are completed. Basic archive data is provided by writing SQL, querying the database, and exporting to EXCEL. The data is provided only once.

Data connection mode: DBLINK, EXCEL. Obtain running data through the database chain.

3.4. Experimental Method. The large database platform realizes the integration and storage of various business data. It represents a basic part of the company’s IT architecture. It is oriented to information systems, which is different from classic information systems oriented to end-users. Therefore, as the basic component of enterprise IT architecture, the big data basic platform, its system testing mainly focuses on performance testing and scheduling testing.

This paper first applies the K-means clustering algorithm and Bayesian classification algorithm to classify and manage
hydropower users and then extracts the relevant data of water and electricity for each user through the ETL extraction method. The performance of the system is tested by simulating multithreaded insertion, reading, query, and other methods of the system, and specific experimental results are obtained.

4. Experimental Results

4.1. Distributed Data Platform Testing

The simulated storage data size is set to 32 bytes, and the performance of inserting, reading, and querying the system by simulating multithreading is tested. The throughput of insert, read, and scan are measured and recorded in the following tables and figures.
function tests gradually increase with the increase of threads. The specific conditions are shown in Table 2.

From Figure 4, we can see that the delay time becomes longer. Among them, the delay time of the read function and the scan function is too long, and the insert time is too short.

4.2. ETL Job Scheduling Test. By querying the job log table defined in the data warehouse, you can see the job execution status, as shown in Table 3.

According to Table 3, we can see that the operation was started at 1:10 and stopped at 2:23 on July 12, 2021. The policy was configured according to the job scheduling until it is restarted at 3:30, and the tasks are completed.

5. Conclusion

The main purpose of this article is to use the enterprise data classification standard system to classify the big data in the hydropower industry, and according to the actual situation, this paper designs a business system that meets the development needs of hydropower companies, which can meet the personalized requirements of users, and is efficient and real-time to support customer service. This paper studies the method of data classification and system construction principles, requirements, etc., and designs a data management system. Through experiments, it is concluded that the system developed in this paper can perform data classification and classification management well and conduct hydropower regulation based on the system.

Data Availability

The data underlying the results presented in the study are available within the manuscript.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

References

[1] Z. Tao, “Discussion on classification and classification management strategy of sensitive enterprise data,” Modern Industrial Economics and Information Technology, vol. 9, no. 10, pp. 81-82, 2019.
[2] Li He and M. Wu, “An intelligent information early warning system for hydropower plants based on cloud platform,” Mechanical and Electrical Technology of Hydropower Stations, vol. 042, no. 12, pp. 18-20, 2019.
[3] Y. Lin and L. Tang, “Design and implementation of the integrated property management system of Hunan Hydropower Institute,” Hunan Water Resources and Hydropower, vol. 220, no. 2, pp. 65-68, 2019.
[4] Y. Jin, R. Niu, and N. Liu, “Research on small reservoir safety hierarchical supervision model and cloud platform,” China Rural Water and Hydropower, vol. 447, no. 1, pp. 159-164, 2020.
[5] S. Yao, “Design of campus hydropower management intelligent management and control system based on integrated platform,” Communication Power Technology, vol. 036, no. 10, pp. 41-42, 2019.
[6] W. Tan, T. Y. Ten, and P. Pan, “Hydropower intelligent decision support system based on big data technology,” Mechanical and Electrical Technology of Hydropower Stations, vol. 042, no. 12, pp. 9-12, 2019.
[7] Y. Liang, “Design of intelligent enterprise management system based on big data,” Modern Electronic Technology, vol. 42, no. 6, pp. 166-169, 2019.
[8] J. Ou, “Design of intelligent enterprise management system based on big data,” Computer Products and Circulation, vol. 000, no. 8, p. 107, 2019.
[9] R. Xiao, “Application analysis of intelligent integrated data platform in the hydropower industry in the era of big data,” Electroacoustic Technology, vol. 43, no. 9, pp. 53–55, 2019.
[10] G. Wang, Yu Chen, and Z. Wang, “Hydropower production management reform based on big data + Internet of Things platform,” Mechanical and Electrical Technology of Hydropower Stations, vol. 42, no. 12, pp. 19-20, 2019.
[11] Q. Huang, K. Li, and S. Gao, “Design of integrated intelligent management system for grid business statistics data,” Automation and Instrumentation, vol. 233, no. 3, pp. 110–113, 2019.