Interventional treatments for prolapsing haemorrhoids: network meta-analysis

J. Z. Jin 1, 2*, S. Bhat 3, K.-T. Lee, W. Xia and A. G. Hill 4

Department of Surgery, South Auckland Clinical Campus, University of Auckland, Middlemore Hospital, Auckland, New Zealand

*Correspondence to: South Auckland Clinical Campus, PO Box 93311 Otahuhu, Auckland 1640, New Zealand (e-mail: James.jin@auckland.ac.nz)

Abstract

Background: Multiple treatments for early–moderate grade symptomatic haemorrhoids currently exist, each associated with their respective efficacy, complications, and risks. The aim of this study was to compare the relative clinical outcomes and effectiveness of interventional treatments for grade II–III haemorrhoids.

Methods: A systematic review was conducted according to PRISMA criteria for all the RCTs published between 1980 and 2020; manuscripts were identified using the MEDLINE, Embase, and CENTRAL databases. Inclusion criteria were RCTs comparing procedural interventions for grade II–III haemorrhoids. Primary outcomes of interest were: symptom recurrence at a minimum follow-up of 6 weeks, postprocedural pain measured on a visual analogue scale (VAS) on day 1, and postprocedural complications (bleeding, urinary retention, and bowel incontinence). After bias assessment and heterogeneity analysis, a Bayesian network meta-analysis was performed.

Results: Seventy-nine RCTs were identified, including 9232 patients. Fourteen different treatments were analysed in the network meta-analysis. Overall, there were 59 RCTs (73 per cent) judged as being at high risk of bias, and the greatest risk was in the domain measurement of outcome. Variable amounts of heterogeneity were detected in direct treatment comparisons, in particular for symptom recurrence and postprocedural pain. Recurrence of haemorrhoidal symptoms was reported by 54 studies, involving 7026 patients and 14 treatments. Closed haemorrhoidectomy had the lowest recurrence risk, followed by open haemorrhoidectomy, suture ligation with mucopexy, stapled haemorrhoidopexy, and Doppler-guided haemorrhoid artery ligation (DG-HAL) with mucopexy. Pain was reported in 34 studies involving 5812 patients and 11 treatments. Direct current electrotherapy, DG-HAL with mucopexy, and infrared coagulation yielded the lowest pain scores. Postprocedural bleeding was recorded in 46 studies involving 5696 patients and 14 treatments. Open haemorrhoidectomy had the greatest risk of postprocedural bleeding, followed by stapled haemorrhoidopexy and closed haemorrhoidectomy. Urinary retention was reported in 30 studies comparing 10 treatments involving 3116 participants. Open haemorrhoidectomy and stapled haemorrhoidopexy had significantly higher odds of urinary retention than rubber band ligation and DG-HAL with mucopexy. Nine studies reported bowel incontinence comparing five treatments involving 1269 participants. Open haemorrhoidectomy and stapled haemorrhoidopexy had the highest probability of bowel incontinence.

Conclusion: Open and closed haemorrhoidectomy, and stapled haemorrhoidopexy were associated with worse pain, and more postprocedural bleeding, urinary retention, and bowel incontinence, but had the lowest rates of symptom recurrence. The risks and benefits of each treatment should be discussed with patients before a decision is made.

Introduction

Haemorrhoids are common and affect up to 38.9 per cent of the adult population 1. Patients typically experience symptoms such as perianal pain, bleeding after defaecation, discharge, and difficulties with perianal hygiene and prolapse, with a substantial impact on quality of life 7.

The anatomical degree of prolapse for haemorrhoids is based on Goligher’s grading 3. Grade 1 refers to non-prolapsing haemorrhoids that bleed only. Grade 2 haemorrhoids intermittently prolapse with spontaneous reduction, whereas grade 3 haemorrhoids require manual reduction. Grade IV haemorrhoids are considered most severe; they are permanently prolapsed externally and cannot be reduced manually. Although this grading is used routinely, the anatomical grade of severity does not necessarily correlate with patient-reported symptom severity 4.

The treatment of prolapsing haemorrhoids of grade II–III varies, ranging from office-based procedures to surgical excision, and the choice of intervention can depend on patient or surgeon preference. However, the treatment of choice for grade IV haemorrhoids usually involves a form of surgical excision, such as Milligan–Morgan (open) haemorrhoidectomy, or Ferguson (closed) haemorrhoidectomy. Other techniques such as Doppler-guided haemorrhoid artery ligation (DG-HAL) with mucopexy have also been shown to be effective for grade 4 haemorrhoids 5. The decision regarding the treatment of haemorrhoids depends on patient or surgeon preference and the availability of resources 6.
aimed to assess the available treatments for patients with prolapsing-grade haemorrhoids, excluding studies with permanently prolapsed grade IV haemorrhoids, as the latter are commonly treated with surgical excision, rather than less invasive procedures.

Given the number of procedures available, the use of a network meta-analysis (NMA) to pool the evidence presented in multiple RCTs simultaneously through direct and indirect comparisons could provide a comprehensive insight. RCTs usually compare the treatment efficacy of two treatments directly, resulting in difficulty in gauging each treatment’s relative effectiveness and complication profiles when comparing numerous treatments. Therefore, this systematic review and NMA aimed to compare the clinical outcomes and effectiveness of interventional treatments for grade II–III haemorrhoids.

Methods
This systematic review and NMA was conducted in accordance with the PRISMA guidelines, with extension for network meta-analysis (NMA).

Search strategy
The MEDLINE, Embase, and Cochrane Central Register of Clinical Trials (CENTRAL) were searched systematically using a comprehensive search strategy involving free text and Medical Subject Headings. The complete search string is included in the study protocol (Appendix S1). Articles were restricted to those published in the English language between 1 January 1980 and 15 September 2020. RCTs comparing interventional treatments for patients with grade II or III haemorrhoids were considered for inclusion. Studies that had participants with grade I haemorrhoids were also included as long as over 50 per cent of study participants had grade II or III haemorrhoids. Studies were excluded if more than 3 per cent of the total study population had grade IV haemorrhoids.

Only studies reporting on interventional treatments in an elective setting were included; studies documenting treatments for haemorrhoids in the emergency setting were excluded, as were those reporting on medical treatments for haemorrhoids.

Study selection and data collection
The RCTs for inclusion were identified by two review authors by independent screening of titles and abstracts. Full texts of potentially included studies were then sought and further selection for inclusion was undertaken independently by two review authors, based on the full text. Consensus among the review authors was required before inclusion of each study, and any discrepancies were adjudicated by a senior author.

The following data were extracted from each study independently by two review authors: study characteristics (first author, year of publication, and country), selection criteria (inclusion and exclusion criteria), participant characteristics (sample size, haemorrhoid grade), interventional treatments compared, and outcome measures. Any discrepancies in extracted data were resolved by discussion, and a final decision was taken by the senior author.

Outcomes of interest
The primary outcomes were symptom recurrence, postprocedural pain, and postprocedural complications. Symptom recurrence was defined according to the patient’s self-reported symptoms at a minimum follow-up of 6 weeks after the procedure. Postprocedural pain was measured on day 1 using a visual analogue scale (VAS). Postprocedural complications, defined as any deviation from the normal postprocedural course, were also included in the outcomes. The complications analysed included postprocedural bleeding, urinary retention, and bowel incontinence. Secondary outcomes were repeat treatment, length of hospital stay and time to return to work or resumption of normal activity. Repeat treatment was defined as any additional treatment required within the postprocedure follow-up interval and included a repeat of the same treatment or a different treatment.

Bias assessment
The Cochrane Collaboration’s risk-of-bias tool 2.0 was used to assess the risk of bias in included RCTs based on the following domains: randomization process, deviation from intended interventions, missing outcome data, measurement of outcome, and selection of reported result. For each of these risk domains, studies were categorized as having either a low, uncertain or high risk of bias. The overall risk of bias was calculated according to the algorithm’s overall judgement.

Statistical analysis
An intention-to-treat Bayesian NMA with a non-informative prior was undertaken in R version 3.6.2 (R Foundation for Statistical Computing, Vienna, Austria). For each outcome, a network plot of all treatments assessed was constructed to visually represent all direct comparisons between included interventional treatments. Nodes on the network plot were used to depict the number of participants receiving a particular treatment and the thickness of each connecting line correlated with the number of studies assessing a particular direct comparison. Interventionsal treatments assessed in only one study and not connected to at least two treatments through the network plot were excluded from the analysis of that outcome to minimize bias resulting from single-trial effects. Rubber band ligation (RBL) was used as the reference treatment in the network plot for all outcomes. Continuity corrections were applied to dichotomous (categorical) outcomes with no events, by adding an arbitrary constant of 1 to both the numerator and denominator of each treatment arm. Where continuous data were presented as median and range or interquartile range, mean and standard deviation estimates were calculated. If the standard deviation was not reported, it was calculated from the standard error, P value, confidence interval or interquartile range according to guidance in the Cochrane Handbook for Systematic Reviews of Interventions. Standard deviations that could not be calculated were imputed using the largest value in other trials for that outcome. Categorical and continuous outcomes were reported as an odds ratio (OR) and mean difference (MD) respectively, with 95 per cent credible interval (CrI). Final results for each outcome were illustrated in a league table, showing OR or MD (with 95 per cent CrI) for each treatment comparison, surface under the cumulative ranking (SUCRA) curve, indicating each treatment ranking with its respective ranking probability, and forest plot, illustrating the OR (or MD) of each treatment relative to a reference treatment. SUCRA values range from 0 to 100 per cent; higher values indicate a greater likelihood of a particular treatment being in a top rank, whereas lower values mean a particular treatment is more likely to be in a bottom rank. A node-splitting analysis was conducted to assess for inconsistency between direct and indirect treatment comparisons in each network. Heterogeneity owing to differences between studies within each direct treatment comparison was evaluated by the I² value.
statistic; a value of more than 50 per cent was indicative of significant heterogeneity between the studies.

For each outcome, analyses were performed using both fixed- and random-effects NMA models. The goodness of fit of each model was assessed by means of leverage plots displaying the corresponding effective number of parameters, total residual deviance, and deviance information criterion (DIC). DIC values were compared and the model with the lower value (fewer outliers on visual examination of the leverage plot) was chosen. In most instances, a random-effects model was used, which assumes variation between studies owing to heterogeneity and generates a wider CrI.

An NMA relies on the assumption of transitivity, which refers to potential modifiers of the treatment effect being distributed equally across all included RCTs. In the present NMA, the transitivity assumption was analysed by collecting and comparing data on potential modifiers of the outcomes such as participant age, sex, grade of haemorrhoids, geographical location of studies, and duration of follow-up in each direct treatment comparison.

Sensitivity analyses were also undertaken, including only studies comparing treatments for patients with grade II and grade III haemorrhoids, recognizing that the initial treatment for grade I haemorrhoids is seldom surgical, and so studies including patients with grade I haemorrhoids were excluded.

Results

In total, 2367 articles were screened for relevance based on title and/or abstract. After full-text assessment, 79 RCTs were included, with 9232 patients. Thirty-three full-text articles were excluded based on the inclusion of a significant number of participants with grades I and IV haemorrhoids. Table 1 provides a summary of the studies included in the NMA.

Risk-of-bias analysis

The risk of bias of included RCTs is summarized in Fig. 2 and described for each study in Appendix S2. Bias was mostly attributable to lack of blinding among the outcome observers, in 52 RCTs (64 per cent). Overall, 59 trials (73 per cent) were judged as being at high risk of bias, and the domain showing the greatest risk was measurement of outcome.

Risk of heterogeneity and inconsistency

There were variable amounts of heterogeneity between studies within particular direct treatment comparisons for each outcome. For symptom recurrence, significant heterogeneity was detected among direct comparisons between RBL versus injection sclerotherapy (IJS) and Milligan–Morgan versus laser haemorrhoidectomy. Postprocedural pain was associated with significant heterogeneity among multiple direct treatment comparisons. There were few comparisons with significant heterogeneity for repeat treatment, duration of hospital stay, time off work, postprocedural bleeding, urinary retention, and bowel incontinence (Appendix S3). The node-splitting analysis revealed few instances of inconsistency in the overall network. For symptom recurrence, it revealed an overall consistent profile except for two instances of inconsistency in the network, which were mainly attributable to direct comparisons between laser haemorrhoidectomy versus open haemorrhoidectomy and laser haemorrhoidectomy versus RBL. For
Table 1 Summary of included studies

Reference	Treatments compared	Haemorrhoid grade	Total		
		II	III		
		25	35	60	
		123	122	245	
		40	40	80	
		50	50	100	
		60	195	255	
		43	92	135	
		SH versus MM	79	79	
		MM versus FH	21	55	76
		SH versus LigaHTM	98	98	
		MM versus RBL	60	60	120
		66	52	118	
		207	128	335	
		RBL versus IJS	36	36	72
		IJS versus RBL	120		
		HarS versus SH	88	88	
De Nardi et al. (2014)	RBL versus MM	50	50		
Elshazly et al. (2015)	MM versus SL-M	138	62	200	
Filigate et al. (2019)	HET versus RBL	30	30		
Filingeri et al. (2012)	RBL versus CHR	90	90		
Filingeri et al. (2013)	RFC versus CHR	30	30		
Gagloo et al. (2013)	RBL versus MM	62	38	100	
Gartell et al. (1985)	RBL versus IJS	67	111	218	
Giamundo et al. (2011)	RBL versus IJS	39	21	60	
Greca et al. (1981)	RFC versus MM	7	67	82	
Gupta (2003)	RBL versus IRC	100	100		
Gupta (2004)	RFC versus RBL	80	80		
Gupta et al. (2009)	SL-M versus RFC/SL-M	128			
Gupta et al. (2011)	SL-M versus DG-HAL	48			
Hetzer et al. (2002)	SH versus FH	12	28	40	
Hinton et al. (1990)	DCV versus BPC	50	50		
Huang et al. (2007)	SH versus FH	596	596		
Infantino et al. (2012)	SH versus DG-HAL	169	169		
Izadpanah and Hosseini (2005)	FH versus DCV	63	246	99	408
Jarmo and Jamal (1991)	RBL versus IJS versus CRY	848			
Jensen et al. (1997)	BPC versus HET	32	49	81	
Jutabha et al. (2009)	RBL versus BPC	16	29	45	
Kairaluoma et al. (2003)	SH versus MM	13	12	25	
Kanellos et al. (2003)	DG-HAL versus SH	100	100		
Khalil et al. (2000)	RBL versus IRC	46	48	94	
Khan et al. (2001)	IJS versus BPC	51	51		
Khan and Malik (2006)	MM versus HarS	15	15	30	
Kim et al. (2014)	SH versus MM	51	51		
Lau et al. (2004)	MM versus SH	13	12	25	
Leardi et al. (2016)	DG-HAL versus SH	91	302	393	
Lehur et al. (2016)	TST versus DG-HAL	40	40	80	
Leung et al. (2017)	MM versus MAD versus RBL versus CRY	46	66	112	
Lewis et al. (1983)	RBL versus IRC	100	100		
Liu et al. (2019)	MM versus SOH	46	48	94	
Marques et al. (2006)	RBL versus BPC	46	48	94	
Mikuni et al. (2002)	MM versus SOH	34	34		
Morie et al. (1980)	FH versus RBL	44	43	87	
Naderan et al. (2017)	LASER versus MM	23	27	50	
Nasir et al. (2017)	RBL versus IJS	42	44	86	
Nikooyian et al. (2016)	DCV versus FH	40	40		
Nikshoar et al. (2018)	IRC versus FH	178	178		
Nyström et al. (2010)	SH versus MM	26	64	90	
Parveen et al. (2018)	IJS versus RBL	89	35	133	
Poen et al. (2000)	LASER versus FH versus SL-M	27	94	121	
Poskus et al. (2020)	MM versus BPC	30	58	88	
Quah and Seow-Choen (2004)	DCV versus BPC	30	58	88	
Randall et al. (1994)	IRC versus RBL	12	30	6	48
Ricci et al. (2008)	FH versus SH	22	22		
Rowse et al. (2000)	MM versus RBL	60	80	140	
Saeed et al. (2017)	SL-M versus DG-HAL	36	37	73	
Schuurman et al. (2012)	LASER versus MM	86	86		
Senagore et al. (1993)	SH versus FH	146	146		
Senagore et al. (2004)	MM versus LASER	54	26	80	

(continued)
the repeat treatment outcome, the node-splitting analysis revealed inconsistencies in the network that were attributable to direct comparisons between bipolar coagulation (BPC) versus infrared coagulation (IRC) and BPC versus open haemorrhoidectomy.

Comparison of procedural treatments

The following elective interventions and procedures were identified for the treatment of predominantly grade II and/or III haemorrhoids: open haemorrhoidectomy performed with a scalpel, conventional scissors or diathermy; closed haemorrhoidectomy performed with a scalpel, conventional scissors or diathermy; stapled haemorrhoidectomy (SH), haemorrhoidopexy or the Longo procedure for prolapsed haemorrhoids; transanal haemorrhoid dearterialization with mucopexy or DG-HAL with mucopexy or performed without Doppler; haemorrhoidectomy using a radiofrequency device; haemorrhoidectomy using a LigaSure™ device (Medtronic, Minneapolis, MN, USA); Harmonic scalpel haemorrhoidectomy; MAD, maximal anal dilatation; HarS, Harmonic scalpel haemorrhoidectomy; HET, haemorrhoid energy therapy; CHR, combined haemorrhoidal radiofrequency; RFC, radiofrequency coagulation; n.r., not reported; DCV, direct current electrotherapy; BPC, bipolar coagulation; CRY, cryotherapy, RBL-IJS, combined rubber band ligation and injection sclerotherapy; TST, tissue-selecting technique; SOH, semi-open haemorrhoidectomy; LASER, laser haemorrhoidectomy.

The league tables, SUCRA plot, and forest plot for all comparisons of interventional treatments for each of the outcomes are shown in Table 2 and Appendix S4.

Analysis of transitivity

There was variation in the grade of haemorrhoids included in the treatment comparisons across the studies. Treatment comparisons in patients with grade 1 haemorrhoids also varied, and included RBL, IRC, IJS, BPC, and DCV. Other studies contained a varying proportion of patients with grade II and III haemorrhoids. The duration of follow-up ranged from 6 weeks to 5 years. Participant age and the proportion of female participants did not vary across the included studies. However, the geographical location of the studies was diverse, with most conducted in Europe. Study characteristics are summarized in Fig. 3.

Primary outcomes

Symptom recurrence

Fifty-four studies comparing 14 treatments across 7026 participants were analysed in the network, with 29 unique direct comparisons (Figs 4 and S1). A random-effects model was performed based on the lower DIC statistic. Compared with RBL, closed haemorrhoidectomy (OR 0.16, 95 per cent CI 0.04 to 0.68), suture
ligation with mucopexy (OR 0.24, 0.08 to 0.74), open haemorrhoidectomy (OR 0.27, 0.12 to 0.58), and SH (OR 0.41, 0.18 to 0.98) showed a significantly decreased odds of symptom recurrence (Figs 5 and S1). The highest SUCRA scores, representing treatments associated with the least symptom recurrence, were 0.93 (closed haemorrhoidectomy), 0.86 (suture ligation and mucopexy), and 0.85 (open haemorrhoidectomy). IJS ranked as the treatment associated with the most symptom recurrence, with a SUCRA score of 0.14 (Table 2).

Postprocedural pain
Thirty-four studies comparing 11 treatments across 3812 participants were analysed for pain using a VAS on day 1 after operation. A random-effects model was chosen based on the lower DIC statistic. Compared with RBL, open haemorrhoidectomy (OR 3.66, 95 per cent CI 1.59 to 8.45) was associated with a significantly higher odds of postprocedural pain compared with RBL, open (MD 1.64, 95 per cent CI 0.15 to 3.04) and closed (MD 1.97, 0.28 to 3.57) haemorrhoidectomy were associated with significantly more postprocedural pain. There were no significant differences in postprocedural pain on the VAS in comparisons between the eight remaining treatment modalities, which were IRC, DG-HAL, radiofrequency coagulation, suture ligation with mucopexy, LigaSureTM haemorrhoidectomy, SH, and laser haemorrhoidectomy (Fig S2). The highest SUCRA scores, representing the least painful treatments, were 0.92 (IRC), 0.78 (DG-HAL), and 0.77 (radiofrequency coagulation). Closed haemorrhoidectomy ranked as the most painful treatment, with a SUCRA score of 0.05 (Table 2).

Postprocedural bleeding
Forty-six studies reported post-procedural bleeding, in which 14 treatments were compared across 5696 participants. A random-effects model was used based on the lower DIC statistic. Compared with RBL, open haemorrhoidectomy (OR 3.66, 95 per cent CI 1.79 to 7.00), SH (OR 4.53, 1.46 to 11.56), and DG-HAL (OR 5.82, 1.43 to 23.02) were associated with a significantly higher odds of postprocedural bleeding (Fig S3). The highest SUCRA scores, reflecting the lowest postprocedural bleeding rates, were 0.93 (RBL and JJS combined), 0.92 (DCV), and 0.75 (IJS). Harmonic® scalpel haemorrhoidectomy ranked as the treatment reflecting the highest rate of postprocedural bleeding, with a SUCRA score of 0.15 (Table 2).

Urinary retention
Thirty studies reported urinary retention, comparing 10 treatments across 3116 participants. A random-effects model was used based on the lower DIC statistic. Compared with RBL, DG-HAL (OR 6.73, 95 per cent CI 1.09 to 22.99), open haemorrhoidectomy (OR 7.71, 2.37 to 23.90), and SH (OR 9.56, 2.13 to 28.17) were associated with a significantly higher odds of urinary retention (Fig S4). The highest SUCRA scores, reflecting treatments least likely to result in urinary retention, were 0.77 (RBL) and 0.74 (IRC). SH ranked as being most likely to result in urinary retention, with a SUCRA score of 0.12 (Table 2).

Bowel incontinence
Five treatments were compared among nine studies with 1269 patients. A fixed-effects model was used based on the lower DIC statistic. Compared with RBL, open haemorrhoidectomy (OR 4.42, 95 per cent CI 1.04 to 17.42) and SH (OR 6.96, 1.30 to 58.49) were significantly more likely to result in bowel incontinence. SH also resulted in significantly more bowel incontinence than DG-HAL (OR 4.43, 1.66 to 12.80) or suture mucopexy (OR 4.34, 1.33 to 95 per cent CI 1.04 to 32.42) and SH (OR 6.96, 1.30 to 58.49) were significantly more likely to result in bowel incontinence (Fig S4). The lowest SUCRA scores, reflecting the treatments most likely to result in bowel incontinence, were 0.05 (SH) and 0.23 (open haemorrhoidectomy) (Table 2).

Secondary outcomes
Appendix S4 shows the network plot, league table, SUCRA plot, and SUCRA table for all secondary outcomes.

Repeat treatment
Eighteen studies compared seven different treatments involving 2819 participants. A random-effects model was used based on the lower DIC statistic. Compared with RBL, open haemorrhoidectomy was associated with a significantly lower odds of repeat treatment (OR 0.12, 95 per cent CI 0.01 to 0.48), whereas bipolar
coagulation (OR 39.47, 1.09 to 228.61) and DCV (OR 62.61, 1.11 to 363.35) were associated with a significantly higher odds of repeat treatment (Fig. S6). The lowest SUCRA scores, reflecting treatments most likely to result in repeat treatment, were IRC (0.13) and IJS (0.15). The highest SUCRA scores reflecting treatments least likely to result in repeat treatment were 0.99 (open haemorrhoidectomy) and 0.81 (SH) (Table 2).

Duration of hospital stay
Twenty-one studies reported duration of inpatient hospital admission, with 10 treatment comparisons and 2907 participants. The mean length of stay across the network was 1.6 days. A random-effects model was used based on the lower DIC statistic. Compared with RBL, closed haemorrhoidectomy (MD 1.20, 95 per cent CI 0.32 to 2.09) and suture ligation with mucopexy (MD 1.41, 0.04 to 2.80) were associated with a significantly longer hospital admission (Fig. S7). The highest SUCRA scores, representing treatments with the shortest hospital admission, were 0.80 (RBL and SH) and 0.79 (DG-HAL). Closed haemorrhoidectomy ranked as the treatment associated with the longest hospital admission, with a SUCRA score of 0.17 (Table 2).

Time off work
Eighteen studies reported time off work, comparing nine treatments with a total of 2103 participants. The mean time off work across the network was 14.7 days. A random-effects model was used based on the lower DIC statistic. Compared with RBL, closed haemorrhoidectomy (MD 13.24, 95 per cent CI 0.78 to 26.21), Harmonic scalpel haemorrhoidectomy (MD 15.79, 1.47 to 30.34), open haemorrhoidectomy (MD 15.36, 4.35 to 26.64), and bipolar coagulation (MD 20.05, 0.72 to 39.73) were associated with significantly longer time off work (Fig. S8). The highest SUCRA score, reflecting the treatment associated with the least time off work, was 0.93 (RBL). Open haemorrhoidectomy ranked as the treatment associated with the most time off work, with a SUCRA score of 0.19 (Table 2).

Sensitivity analysis
A sensitivity analysis of symptom recurrence was analysed for 45 studies with 5337 participants comparing 14 treatments. A random-effects model was chosen based on the lower DIC value. Overall, there was no significant difference in the results compared with the initial analysis (Fig. S9). A sensitivity analysis was conducted for postprocedural bleeding, in which 38 studies compared 14 treatments, involving 4482 participants. A fixed-effects model was chosen based on the lower DIC value. Overall, the results of the sensitivity analysis showed no significant difference compared with the main analysis (Fig. S10). No studies reporting on postprocedural pain on the VAS, urinary retention, bowel incontinence, repeat treatment, duration of hospital stay or time off work were omitted as none included grade I haemorrhoids.

Discussion
This systematic review and NMA compared treatment modalities ranging from minimally invasive, clinic-based procedures to excisional therapy requiring anaesthesia for prolapsing haemorrhoids.
The key findings were that for grades II and III haemorrhoids, which are not prolapsed permanently, conservative clinic-based procedures have a greater odds of symptom recurrence, and lower odds of pain and postprocedural complications than excisional treatments.

This study allowed simultaneous comparisons of the clinical outcomes and effectiveness of a multitude of treatments for grade II–III haemorrhoids. An NMA was appropriate to answer a question of this nature, where multiple outcomes were analysed and common treatments were compared through direct and indirect comparisons across the included population. The present study presents evidence for what is commonly observed in clinical practice: excisional therapies are typically preferred after the question of this nature, where multiple outcomes were analysed and common treatments were compared through direct and indirect comparisons across the included population. More conservative clinic-based procedures have not proved more effective, but were less invasive and had better postprocedural outcomes.

Fig. 4 Network plot and surface under cumulative ranking curve for recurrence

a Network plot of studies analysed for the outcome recurrence. The nodes represent the number of participants receiving each treatment, and the line thickness represents the number of studies assessing each direct treatment or procedure comparison. b Surface under cumulative ranking (SUCRA) plot and treatments. Higher rankings are associated with smaller outcome values; BPC, bipolar coagulation; CRY, cryotherapy; DCV, direct current electrotherapy; DG-HAL, Doppler-guided haemorrhoid artery ligation with mucopexy; FH, Ferguson (closed) haemorrhoidectomy; IJS, injection sclerotherapy; IRC, infrared coagulation; LASER, laser haemorrhoidectomy; MM, Milligan–Morgan (open) haemorrhoidectomy; RBL, rubber band ligation; RFC, radiofrequency coagulation; SCL-RBL, combined injection sclerotherapy and rubber band ligation; SH, stapled haemorrhoidopexy; SL-M, suture ligation with mucopexy.

Fig. 5 League table of treatment comparisons for recurrence

Numbers in each cell represent the odds ratio (95% credible interval) for recurrence between the procedure specified in the column versus that specified in the row. FH, Ferguson (closed) haemorrhoidectomy; SL-M, suture ligation with mucopexy; MM, Milligan–Morgan (open) haemorrhoidectomy; SH, stapled haemorrhoidopexy; SCL-RBL, combined injection sclerotherapy and rubber band ligation; DG-HAL, Doppler-guided haemorrhoid artery ligation with mucopexy; BPC, bipolar coagulation; DCV, direct current electrotherapy; CRY, cryotherapy; RBL, rubber band ligation; LASER, laser haemorrhoidectomy; IRC, infrared coagulation; RFC, radiofrequency coagulation; IJS, injection sclerotherapy. *Statistically significant. Greater intensity of shading reflects the greater the effect size.
successful\(^5\). The ranking of treatments based on their complication profile confirms that significant postprocedural complications, such as bleeding, urinary retention, and bowel incontinence, are much more common after excisional compared with non-excisional therapy. This study has also highlighted differences in treatment outcomes such as postprocedural pain scores measured on a VAS, time off work, and duration of hospital stay; excisional treatments, which are more invasive, were found to have higher complication rates.

There were some differences in the distribution of grades across treatments compared, which may have affected transitivity assumptions. In the clinical setting, participants could be offered any of the treatments, but the choice of procedure in clinical practice depends on both patient and surgeon factors. Nonetheless, the treatments compared in this study are broadly applicable to the study population. This was confirmed by the sensitivity analysis that excluded grade I haemorrhoids, and resulted in either no studies being omitted or did not result in a significant change to the outcome of interest. Other factors affecting the outcomes included variation in the duration of follow-up among the analysed studies. The minimum 6-week postprocedure follow-up for symptom recurrence likely led to significant heterogeneity, particularly resulting from studies reporting on longer durations of follow-up for this outcome. There was also a noticeable trend that older studies reported non-surgical treatments, whereas newer studies compared surgical treatments that were introduced more recently. Older studies reported postprocedural pain on a VAS less often and used categorical scales instead. In addition, postprocedural pain comparisons were based only on day 1 scores, owing to the lack of data on pain for other days. Pain scores may vary over several days after the procedure and this should be considered when interpreting data on this outcome. The Cochrane Collaboration’s risk-of-bias tool 2.0 was used to assess study quality, and overall found it to be adequate, except for measurement of blinding of both participants and personnel (risk of bias due to deviation from intended interventions) and outcome assessors (risk of bias in measurement of outcome).

The findings of the present NMA are similar to those of a previously reported NMA\(^103\) of grade III–IV haemorrhoids, which concluded that open and closed haemorrhoidectomy and SH are associated with worse postprocedural pain, bleeding, urinary retention, and bowel incontinence than other non-surgical treatments, but have the advantage of lower rates of symptom recurrence. These results are concordant with a previous meta-analysis\(^102\) comparing conventional with stapled haemorrhoidectomy, which showed the stapled procedure to have better outcomes with regard to operating time, postprocedural pain, duration of hospital stay, and time to return to work, but resulted in a higher recurrence risk. Similarly, a previous meta-analysis\(^103\) that compared DG-HAL with SH showed no differences between the two treatments in terms of postprocedural complications and recurrence of haemorrhoids. The present study also had equivalent results to an earlier meta-analysis\(^104\) comparing conservative treatment options for haemorrhoids, where IJS and IRC were more likely to require further therapy than RBL, but were less painful. A number of studies\(^23,37,48,49,80,99\) reported the use of suture ligation or suture mucopexy for the treatment of prolapsing haemorrhoids. Using NMA, it was documented that suture ligation results in relatively lower odds of symptom recurrence than RBL. However, the included studies in this NMA comparing suture ligation were limited in number and quality, and further studies comparing suture ligation with stapled and excisional (open and closed) haemorrhoidectomy are warranted for grade II–III haemorrhoids.

The limitations of this NMA include the presence of a small number of grade 1 haemorrhoids in studies that compared conservative treatments, such as RBL and IJS. However, the findings of the sensitivity analysis showed that this did not affect the overall results. The inclusion range of the literature also dates back 30 years, which may affect the quality of studies. It was deemed necessary to include older publications, as studies comparing conservative treatments frequently date from older periods, and newer surgical treatments have been published more recently. Other limitations include heterogeneity in the duration of follow-up. Some studies reported follow-up as short as 6 weeks, whereas others had a follow-up of over 2 years, which may have contributed to heterogeneity in the recurrence outcome. Further limitations of an NMA include inconsistencies between direct and indirect comparisons. Although there were few instances of inconsistency in the outcomes measured, the failure to detect inconsistency does not imply consistency. The amount of evidence a treatment carries and the number of available comparisons between treatments determines the diversity and strength of an NMA\(^105\). A major imbalance between the quantity of evidence and treatments available for comparison may affect the power and reliability of the NMA\(^106\). Some treatment comparisons were informed by several RCTs, whereas others were sparsely informed. In the present NMA, treatments analysed in only one study were excluded from the network of that outcome to remove sparsely informed trials and obscure treatments that are not commonly used. The present NMA could not distinguish differences in outcomes between a number of excisional surgical techniques owing to the small number of relevant trials in each network. There was also an inadequate number of studies to reach statistical significance when LigaSure\(^\text{TM}\) and Harmonic\(^\text{®}\) scalpel haemorrhoidectomy were compared with other treatments in this NMA.

Further studies comparing treatments for haemorrhoids should assess treatment effectiveness according to standardized and validated patient-reported outcome measures (PROMs)\(^2,106\). The use of a PROM such as a haemorrhoid symptom severity score or a health-related quality-of-life scale may provide valuable information about the symptomatic burden of disease and is a useful measure for assessing the recurrence of haemorrhoidal symptoms. Many older studies did not use a PROM for haemorrhoid symptom recurrence; such an assessment is important and necessary for a disease such as haemorrhoids, as some symptoms may persist even though the patient may be unconcerned. Future clinical trials should consider reporting outcomes against a haemorrhoid core outcome set with regard to symptoms, complications, and patient satisfaction.\(^106\) A method of standardized reporting of outcomes will enable more reliable comparison of outcomes in meta-analyses. Finally, further higher-quality RCTs are needed to compare interventional treatments for haemorrhoids, particularly in terms of blinding of participants, personnel, and outcome assessors.

A range of treatments is available for grade II–III haemorrhoids, each with its benefits and complication profiles. Conservative, clinic-based procedures are associated with a higher rate of symptom recurrence, but should be considered initially as they carry a lower risk of complications. If they are not successful in resolving symptoms, more invasive treatments with a much greater risk of complications should be offered. The benefits and risks of each treatment should be discussed with the patient before a treatment decision is made.
Disclosure. The authors declare no conflict of interest.

Supplementary material
Supplementary material is available at BJ Open online.

References
1. Riss S, Weiser FA, Schwameis K, Riss T, Mittlböck M, Steiner G et al. The prevalence of hemorrhoids in adults. Int J Colorectal Dis 2012;27:215–220.
2. Jin J, Xia W, Connolly A, Hill AG. Symptom-based scoring for haemorrhoidal disease: a systematic review. Colorectal Dis 2020;22:1518–1527.
3. Goligher J. Surgery of the Anus Rectum and Colon (4th edn). London: Bailliere Tindall; 1980.
4. Gerj R, Lindhoff-Larson A, Nyström PO. Grade of prolapse and symptoms of haemorrhoids are poorly correlated: result of a classification algorithm in 270 patients. Colorectal Dis 2008;10:694–700.
5. Altomare DF, Giuratrabocchetta S. Conservative and surgical treatment of haemorrhoids. Nat Rev Gastroenterol Hepatol 2013;10:513–521.
6. Brown SR. Haemorrhoids: an update on management. Ther Adv Chronic Dis 2017;8:141–147.
7. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Phys Ther 2009;89:873–880.
8. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C et al. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 2015;162:777–784.
9. Sterne JA, Savović J, Page MJ, Elbers RG, Blencowe NS, Bouton I et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019;366:l4898.
10. Béliveau A, Boyne DJ, Slater J, Brenner D, Arora P. BUCoSN: an R package to facilitate the conduct and reporting of Bayesian network meta-analyses. BMC Med Res Methodol 2019;19:196.
11. Sweeting MJ, Sutton AC, Lambert PC. What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Stat Med 2004;23:1351–1375.
12. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 2014;14:135.
13. Luo D, Lan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res 2018;27:1785–1805.
14. Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds). Cochrane Handbook for Systematic Reviews of Interventions (2nd edn). Chichester (UK): John Wiley & Sons; 2019.
15. Salanti G, Ades A, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol 2011;64:163–171.
16. Mbuagbaw L, Rochwerb B, Jaeschke R, Heels-Andress D, Alhazzani W, Thabane L et al. Approaches to interpreting and choosing the best treatments in network meta-analyses. Syst Rev 2017;6:79–75.
17. van Valkenhoef G, Dias S, Ades A, Welton NJ. Automated generation of node-splitting models for assessment of inconsistency in network meta-analysis. Res Synth Methods 2016;7:80–93.
18. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–560.
19. Dias S, Sutton AJ, Ades A, Welton NJ. Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. Med Decis Making 2013;33:607–617.
20. Salanti G. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Res Synth Methods 2012;3:80–97.
21. Abiodun AA, Altatise OI, Okereke CE, Adesunkanmi ARK, Eletta EA, Gomna A. Comparative study of endoscopic band ligation versus injection sclerotherapy with 50% dextrose in water, in symptomatic internal haemorrhoids. Niger Postgrad Med J 2020;27:13–20.
22. Ahmad A, Kant R, Gupta A. Comparative analysis of Doppler Guided Hemorrhoidal Artery Ligation (DG-HAL) & Infrared Coagulation (IRC) in management of hemorrhoids. Indian J Surg 2013;75:274–277.
23. Aigner F, Kronberger I, Oberwalder M, Loizides A, Ulmer H, Gruber L et al. Doppler-guided haemorrhoidal artery ligation with suture mucopexy compared with suture mucopexy alone for the treatment of grade III haemorrhoids: a prospective randomised controlled trial. Colorectal Dis 2016;18:710–716.
24. Ali U, Khan AS. Rubber band ligation versus open haemorrhoidectomy: a study of 100 cases. J Postgrad Med Inst 2005;19:317–322.
25. Ambrose NS, Hares MM, Alexander Williams J, Keighley MRB. Prospective randomised comparison of photocoagulation and rubber band ligation in treatment of haemorrhoids. Br Med J (Clin Res Ed) 1983;286:1389–1391.
26. Ambrose NS, Morris D, Alexander-Williams J, Keighley MR. A randomised trial of photocoagulation or injection sclerotherapy for the treatment of first- and second-degree hemorrhoids. Dis Colon Rectum 1985;28:238–240.
27. Ammaturo C, Tufano A, Spiniello E, sodano B, Jervolino EM, Brilliantino A et al. Stapled haemorrhoidopexy vs. Milligan–Morgan haemorrhoidectomy for grade III hemorrhoids: a randomized clinical trial. il Giornale Chir 2012;33:346–351.
28. Arber G, Krokho H, Haapaniemi S. Closed vs. open hemorrhoidectomy—is there any difference? Dis Colon Rectum 2000;43:31–34.
29. Arslani N, Patrij L, Rajkovic Z, Fapes D, Altarac S. A randomized clinical trial comparing ligation versus stapled hemorrhoidectomy. Surg Laparosc Endosc Percutan Tech 2012;22:58–61.
30. Ashgar Khan M, Khan H, Imran Khan M, Khan A, Naem M, Muhammad Khan S et al. Short term outcome of rubber band ligation versus open hemorrhoidectomy in terms of postoperative complications. J Med Sci (Peshawar) 2013;21:19–22.
31. Awad AE, Soliman HH, Saif SA, Darwish AM, Mosaad S, Elfert AA. A prospective randomised comparative study of endo-scopic band ligation versus injection sclerotherapy of bleeding internal haemorrhoids in patients with liver cirrhosis. Arab J Gastroenterol 2012;13:77–81.
32. Brown S, Tierman J, Biggs K, Hind D, Shepheard N, Bradburn M et al. The HubBLE trial: Haemorrhoidal artery ligation (HAL) versus rubber band ligation (RBL) for symptomatic second- and third-degree haemorrhoids: a multicentre randomized controlled trial and health-economic evaluation. Health Technol Assess 2016;20:1–180.
33. Cestaro G, De Rosa M, Mosella F, Amato B, Gentile M. Rubber band ligation versus endoscopic injection sclerotherapy for...
symptomatic second-degree hemorrhoids: a prospective randomised trial. Chirurgia (Turin) 2013;26:341–343.
34. Cheng FC, Shum DW, Ong GB. The treatment of second degree haemorrhoids by injection, rubber band ligation, maximal anal dilatation, and haemorrhoidectomy: a prospective clinical trial. Aust N Z J Surg 1981;51:458–462.
35. Chung CC, Cheung HY, Chan ES, Kwok SY, Li MK. Stapled hemorrhoidopexy vs. hemorrhopic stapler hemorrhoidopexy: a randomised trial. Dis Colon Rectum 2005;48:1213–1219.
36. De Nardi P, Capretti G, Corsaro A, Staudacher C. A prospective, randomized trial comparing the short- and long-term results of Doppler-guided transanal hemorrhoid dearterialization with mucopexy versus excision hemorrhoidectomy for grade III hemorrhoids. Dis Colon Rectum 2014;57:348–353.
37. Elshazly WG, Gazal AE, Madbouly K, Hussen A. Ligation ano-pexy versus hemorrhoidectomy in the treatment of second- and third-degree hemorrhoids. Tech Coloproctol 2015;19:29–34.
38. Filgate R, Dalzell A, Hulme-Moir M, Rajaratnam S. Haemorrhoid energy therapy versus rubber band ligation for the management of grade I and II haemorrhoids: a randomized trial. ANZ J Surg 2019;89:1466–1469.
39. Filingeri V, Bellini AR, Manuelli MI, Sforza MD. Progressive randomised comparison of rubber band ligation (RBL) and combined hemorrhoidal radioangiocoagulation (CHR). Eur Rev Med Pharmacol Sci 2012;16:224–229.
40. Filingeri V, Bellini AR, Manuelli MI, Sforza MD. Ambulatory therapy with combined hemorrhoidal radioangiocoagulation. Eur Rev Med Pharmacol Sci 2013;17:130–133.
41. Gaglou MA, Hijaz SW, Nasir SA, Reyaz A, Bakshi IH, Chowday NA et al. Comparative study of hemorrhoidectomy and rubber band ligation in treatment of second and third degree hemorrhoids in Kashmir. Indian J Surg 2013;75:356–360.
42. Gartell P, Sheridan R, McGinn F. Out-patient treatment of haemorrhoids: a randomized clinical trial to compare rubber band ligation with phenol injection. Br J Surg 1985;72:478–479.
43. Giamundo P, Salfi R, Geraci M, Tibaldi L, Murru I, Valente M. The hemorrhoid laser procedure technique vs rubber band ligation: a randomized trial comparing 2 mini-invasive treatments for second- and third-degree hemorrhoids. Dis Colon Rectum 2011;54:693–698.
44. Greca F, Hares MM, Nevah E, Alexander-Williams J, Keighley MR. A randomized trial to compare rubber band ligation with phenol injection for treatment of haemorrhoids. Br J Surg 1981;68:250–252.
45. Gupta PJ. Randomized trial comparing in-situ radiofrequency ablation and Milligan–Morgan hemorrhoidectomy in prolapsing hemorrhoids. J Nippon Med Sch 2003;70:393–400.
46. Gupta PJ. Infrared coagulation versus rubber band ligation in early stage hemorrhoids. Braz J Med Biol Res 2003;36:1433–1439.
47. Gupta PJ. Radiofrequency coagulation versus rubber band ligation in early hemorrhoids: pain versus gain. Medina (Kaunas) 2004;40:232–237.
48. Gupta PJ, Heda PS, Kalaskar S. Randomized controlled study between suture ligation and radio wave ablation and suture ligation of grade III symptomatic hemorrhoidal disease. Int J Colorctal Dis 2009;24:455–460.
49. Gupta PJ, Kalaskar S, Taori S, Heda PS. Doppler-guided hemorrhoidal artery ligation does not offer any advantage over suture ligation of grade 3 symptomatic hemorrhoids. Tech Coloproctol 2011;15:439–444.
50. Hetzer FH, Demartines N, Handschin AE, Clavien PA. Stapled vs excision hemorrhoidectomy: long-term results of a prospective randomized trial. Arch Surg 2002;137:337–340.
51. Hinton CP, Morris DL. A randomized trial comparing direct current therapy and bipolar diathermy in the outpatient treatment of third-degree hemorrhoids. Dis Colon Rectum 1990;33:931–932.
52. Huang WS, Chin CC, Yeh CH, Lin PY, Wang JY. Randomized comparison between stapled hemorrhoidopexy and Ferguson hemorrhoidectomy for grade III hemorrhoids in Taiwan: a prospective study. Int J Colorectal Dis 2007;22:955–961.
53. Infantino A, Altomare DF, Bottini C, Bonanno M, Mancini S, Yalti T et al.; THD group of the SICCR (Italian Society of Colorectal Surgery). Prospective randomized multicentre study comparing stapler haemorrhoidopexy with Doppler-guided transanal haemorrhoid dearterialization for third-degree haemorrhoids. Colorectal Dis 2012;14:205–211.
54. Izadpanah A, Hosseini SV. Comparison of electrotherapy of hemorrhoids and Ferguson hemorrhoidectomy in a randomized prospective study. Int J Surg 2005;3:258–262.
55. Jamjoom AM, Jamal YS. A comparative study of different treatments of hemorrhoids. Ann Saudi Med 1991;11:73–79.
56. Jensen DM, Jutabha R, Machicado GA, Jensen ME, Cheng S, Gornbein J et al. Prospective randomized comparative study of bipolar electrocoagulation versus heater probe for treatment of chronically bleeding internal hemorrhoids. Gastrointest Endosc 1997;46:435–443.
57. Jutabha R, Jensen DM, Chavalithhamrong D. Randomized prospective study of endoscopic rubber band ligation compared with bipolar coagulation for chronically bleeding internal hemorrhoids. Am J Gastroenterol 2009;104:2057–2064.
58. Kairaluoma M, Nuorva K, Kellokumpu I. Day-case stapled (circular) vs. diathermy hemorrhoidectomy: a randomized, controlled trial evaluating surgical and functional outcome. Dis Colon Rectum 2003;46:93–99.
59. Kanellos I, Goulimaris I, Christoforidis E, Kelpis T, Betsis D. A comparison of the simultaneous application of sclerotherapy and rubber band ligation with sclerotherapy and rubber band ligation applied separately, for the treatment of haemorrhoids: a prospective randomized trial. Colorect Dis 2003;5:133–138.
60. Khalil KH, O’Bichere A, Sellu D. Randomized clinical trial of sutured versus stapled closed haemorrhoidectomy. Br J Surg 2002;89:1352–1355.
61. Khan S, Pawlak SE, Eggenberger JC, Lee CS, Szilagy EJ, Wu JS et al. Surgical treatment of hemorrhoids: prospective, randomized trial comparing closed excisional hemorrhoidectomy and the harmonic scalpel technique of excisional hemorrhoidectomy. Dis Colon Rectum 2003;46:845–849.
62. Khan N, Malik MA. Injection sclerotherapy versus electrocoagulation in the management outcome of early haemorrhoids. JPMA J Pak Med Assoc 2006;56:579–582.
63. Kim JSV, Yogesh K, Thieltges S, Zehler O, Gawad KA, Yekebas EF et al. Stapled hemorrhoidopexy versus Milligan–Morgan hemorrhoidectomy in circumferential third-degree hemorrhoids: long-term results of a randomized controlled trial. Dis Colon Rectum 2014;57:e8–e9.
64. Lau PY, Meng WC, Yip AW. Stapled haemorrhoidectomy in Chinese patients: a prospective randomised control study. Hong Kong Med J 2004;10:373–377.
65. Leardi S, Pessia B, Mascio M, Piccione F, Schietroma M, Pietroletti R. Bipolar electrocautery hemorrhoidectomy: a prospective, randomised study of 100 patients. Colorectal Dis 2004;6:143–148.
66. Leardi S, Pessia B, Mascio M, Piccione F, Schietroma M, Pietroletti R. Bipolar electrocautery hemorrhoidectomy: a prospective, randomised study of 100 patients. Colorectal Dis 2004;6:143–148.
treatments for hemorrhoidal disease: a multicentre randomized controlled trial comparing transanal Doppler-guided hemorrhoidal artery ligation with mucopexy and circular stapled hemorrhoidopexy. *Ann Surg* 2016;264:710–716.

67. Leung ALH, Cheung TPP, Tung K, Tsang YP, Cheung H, Lau CW et al. A prospective randomized controlled trial evaluating the short-term outcomes of transanal hemorrhoidal dearterialization versus tissue-selecting technique. *Tech Coloproctol* 2017;21:737–743.

68. Lewis AA, Rogers HS, Leighton M. Trial of maximal anal dilatation, cryotherapy and elastic band ligation as alternatives to haemorrhoidectomy in the treatment of large prolapsing haemorrhoids. *Br J Surg* 1983;70:54–56.

69. Liu Z, Song X, Ye F. Comparative study of postoperative complications after rubber band ligation (RBL) and RBL combined with sclerotherapy in treatment of second- and third-degree internal haemorrhoids. *Indian J Surg* 2020;82:345–345.

70. Marques CF, Nahas SC, Nahas CS, Sobrado CW Jr, Habr-Gama A, Kiss DR. Early results of the treatment of internal hemorrhoid disease by infrared coagulation and elastic banding: a prospective randomized cross-over trial. *Tech Coloproctol* 2006;10:312–317.

71. Mikuni N, Oya M, Komatsu J, Yamana T. A prospective randomized trial of transanal hemorrhoidal dearterialization versus bipolar bipolar hemorrhoidopexy. *Br J Surg* 2002;89:40–47.

72. Murie JA, Mackenzie I, Sim AJ. Comparison of rubber band ligation and haemorrhoidectomy for second- and third-degree haemorrhoids: a prospective clinical trial. *Br J Surg* 2005;67:786–788.

73. Naderan M, Shoar S, Nazari M, Elsayed A, Mahmooodzadeh H, Khorgami Z. A randomized controlled trial comparing laser intra-hemorrhoidal coagulation and Milligan-Morgan hemorrhoidectomy. *J Invest Surg* 2017;30:325–331.

74. Nasir MA, Masroor R, Arafat Y, Butt Q, Sarwar S. Injection sclerotherapy versus rubber band ligation for second degree haemorrhoids. *Pak Armed Forces Med J* 2017;67:996–1002.

75. Nikooiyan P, Sardo Parsaieid MJ, Zaherara B, Ahmadi MB. Evaluating the safety, efficacy and complications of electrotherapy and its comparison with conventional method of hemorrhoidectomy. *Gastroenterol Hepatol Bed Bench* 2016;9:259–267.

76. Nikshoor MB, Maleki Z, Honar NB. The clinical efficacy of infrared photocoagulation versus closed hemorrhoidectomy in treatment of hemorrhoid. *J Lasers Med Sci* 2018;9:23–26.

77. Nyström PO, Qvist N, Raahave D, Lindsey I, Mortensen N. Randomized clinical trial of symptom control after stapled anopexy or diathermy excision for haemorrhoidal prolapse. *Br J Surg* 2010;97:167–176.

78. Parveen K, Ahmed S, Mahboob A, Nazar MB. Comparison of injection sclerotherapy versus rubber band ligation for first and second degree haemorrhoids. *Isra Med J* 2019;11:257–260.

79. Poen AC, Felt-Bersma RJ, Cuesta MA, Deville W, Mewissen SG. A randomized controlled trial of rubber band ligation versus infra-red coagulation in the treatment of internal haemorrhoids. *Eur J Gastroenterol Hepatol* 2000;12:535–539.

80. Poskus T, Danys D, Makunaita G, Mainelis A, Mikalauskas S, Poskus E et al. Results of the double-blind randomized controlled trial comparing laser hemorrhoidoplasty with sutured mucopexy and excisional hemorrhoidectomy. *Int J Colorectal Dis* 2020;35:481–490.

81. Quah HM, Seow-Choen F. Prospective, randomized trial comparing diathermy excision and diathermy coagulation for symptomatic, prolapsed hemorrhoids. *Dis Colon Rectum* 2004;47:367–370.

82. Randall GM, Jensen DM, Machicado GA, Hirabayashi K, Jensen ME, You S et al. Prospective randomized comparative study of bipolar versus direct current electrocoagulation for treatment of bleeding internal hemorrhoids. *Gastrointest Endosc* 1994;40:403–410.

83. Ricci MP, Matos D, Saad SS. Rubber band ligation and infrared photocoagulation for the outpatient treatment of hemorrhoidal disease. *Acta Cir Bras* 2008;23:102–106.

84. Rowsell M, Bello M, Hemingway DM. Circumferential mucosectomy (stapled haemorrhoidectomy) versus conventional haemorrhoidectomy: randomised controlled trial. *Lancet (London, England)* 2000;355:779–781.

85. Saeed MT, Ali Z, Khan SA. Milligan–Morgan (open) haemorrhoidectomy vs rubber band ligation. *Pak J Med Health Sci* 2017;11:396–400.

86. Schuurman JP, Borel Rinkes IH, Go PM. Hemorrhoidal artery ligation procedure with or without Doppler transducer in grade II and III hemorrhoidal disease: a blinded randomized clinical trial. *Ann Surg* 2012;255:840–845.

87. Senagore A, Mazier WP, Luchtefeld MA, MacKeigan JM, Wengert T. Treatment of advanced hemorrhoidal disease: a prospective, randomized comparison of cold scalpel vs. contact Nd : YAG laser. *Dis Colon Rectum* 1993;36:1042–1049.

88. Senagore AJ, Singer M, Abcarian H, Fleshman J, Corman M, Wexner S et al.; Procedure for Prolapse and Hemorrhoids (PPH) Multicenter Study Group. A prospective, randomized, controlled multicenter trial comparing staple hemorrhoidopexy and Ferguson hemorrhoidectomy: perioperative and one-year results. *Dis Colon Rectum* 2004;47:1824–1836.

89. Shabahang H, Maddah G, Mofidi A, Nooghabi MJ, Khaniki SH. A randomized clinical trial of laser hemorrhoidoplasty vs Milligan and Morgan hemorrhoidectomy. *World J Laparosc Surg* 2019;12:59–63.

90. Shanmugiaah A, Selvam S. Comparative study between rubber band ligation versus injection sclerotherapy in second degree haemorrhoids. *Int J Surg* 2020;4:628–631.

91. Shanmugam V, Muthukumarasamy G, Cook JA, Vale L, Watson AJ, Loudon MA. Randomized controlled trial comparing rubber band ligation with stapled hemorrhoidopexy for grade II circumferential haemorrhoids: long-term results. *Colorectal Dis* 2010;12:579–586.

92. Templeton JL, Spence RA, Kennedy TL, Parks TG, Mackenzie G, Hanna WA. Comparison of infrared coagulation and rubber band ligation for first and second degree haemorrhoids: a randomised prospective clinical trial. *Br Med J (Clin Res Ed)* 1983;286:1387–1389.

93. Tsunoda A, Takahashi T, Kusanagi H. A prospective randomized trial of transanal hemorrhoidal dearterialization with mucopexy versus ultrasonic scalpel hemorrhoidectomy for grade III hemorrhoidal disease. *Tech Coloproctol* 2017;21:657–665.

94. Van de Stadt J, D’Hoore A, Duinslaeger M, Chasse E, Penninckx ME, You SK et al. Belgian prospective randomized trial. *Acta Gastroenterol Belg* 2019;82:657–665.

95. Varma JS, Chung SC, Li AK. Prospective randomised comparison of current coagulation and injection sclerotherapy for the outpatient treatment of haemorrhoids. *Int J Colorectal Dis* 1991;6:42–45.

96. Walker AJ, Leicester RJ, Nicholls RJ, Mann CV. A prospective study of infrared coagulation, injection and rubber band ligation in the treatment of haemorrhoids. *Int J Colorectal Dis* 1990;5:113–116.
97. Wilson MS, Pope V, Doran HE, Fearn SJ, Brough WA. Objective comparison of stapled anopexy and open hemorrhoidectomy: a randomized, controlled trial. Dis Colon Rectum 2002;45:1437–1444.

98. Yang R, Migikovsky B, Peicher J, Laine L. Randomized, prospective trial of direct current versus bipolar electrocoagulation for bleeding internal hemorrhoids. Gastrointest Endosc 1993;39:766–769.

99. Zhai M, Zhang YA, Wang ZY, Sun JH, Wen J, Zhang Q et al. A randomized controlled trial comparing suture-fixation mucopexy and Doppler-guided hemorrhoidal artery ligation in patients with grade III hemorrhoids. Gastroenterol Res Pract 2016;2016:8143703.

100. Mills EJ, Thorlund K, Ioannidis JP. Demystifying trial networks and network meta-analysis. BMJ 2013;346:f2914.

101. Simillis C, Thoukididou S, Slesser A, Rasheed S, Tan E, Tekkis P. Systematic review and network meta-analysis comparing clinical outcomes and effectiveness of surgical treatments for haemorrhoids. Br J Surg 2015;102:1603–1618.

102. Shao WJ, Li GC, Zhang ZK, Yang BL, Sun GD, Chen YQ. Systematic review and meta-analysis of randomized controlled trials comparing stapled haemorrhoidopexy with conventional haemorrhoidectomy. Br J Surg 2008;95:147–160.

103. Sajid M, Parampalli U, Whitehouse P, Sains P, McFall M, Baig M. A systematic review comparing transanal haemorrhoidal dearterialisation to stapled haemorrhoidopexy in the management of haemorrhoidal disease. Tech Coloproctol 2012;16:1–8.

104. MacRae HM, McLeod RS. Comparison of hemorrhoidal treatment modalities. Dis Colon Rectum 1995;38:687–694.

105. Jansen JP, Naci H. Is network meta-analysis as valid as standard pairwise meta-analysis? It all depends on the distribution of effect modifiers. BMC Med 2013;11:159–158.

106. van Tol R, Kimman M, Melenhorst J, Stassen L, Dirksem C, Breukink S; Members of the Steering Group. European Society of Coloproctology core outcome set for haemorrhoidal disease: an international Delphi study among healthcare professionals. Colorectal Dis 2019;21:570–580.