In Utero Haematopoietic Stem Cell Transplantation (IUHSCT)

Maria Concetta Renda and Aurelio Maggio

U.O.C. Ematologia II con Talassemia, Ospedali Riuniti “Villa Sofia-Cervello”, Palermo

Correspondence to: Aurelio Maggio, A.O. 'V. Cervello'. Via Trabucco 180, 90146 Palermo-Italy. Tel: +39 688 5251; Fax: +39 688 0828; E-mail aureliomaggio@virgilio.it

Published: December 29, 2009
Received: December 14, 2009
Accepted: December 28, 2009

Medit J Hemat Infect Dis 2009, 1 (1): e2009031; DOI 10.4084/MJHID.2009.031
This article is available from: http://www.mjhid.org/article/view/5231
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract: In utero haematopoietic stem cell transplantation (IUHSCT) is a non-myeloablative approach for the prenatal treatment of genetic disorders. However, in target disorders, where there is not a selective advantage for donor cells, a useful donor-cell chimerism has not been achieved. There are three possible barriers to engraftment following IUHSCT: limited space in the fetus due to host-cell competition; the large number of donor cells needed, and the immunological asset of the recipient.

Introduction: Animal models have shown different levels of resistance to IUHSCT engraftment. In primates, goat, rat and mouse the levels of engraftment that have been achieved were low and not therapeutic. Among 46 cases of IUHSCT reported in humans, successful engraftment was obtained only in cases of X-SCID. Useful levels of chimerism have not been achieved in non-immunodeficiency diseases, and a detectable engraftment was reported only in one case of ß-thalassemia, where ß-globin-dependent hemoglobin production and anemia are present during fetal period, microchimerism and tolerance were suggested.

To overcome the IUHSCT engraftment barriers, it is necessary to develop strategies to improve the competitive capacity of donor cells and to define the gestational age of the possible immunological “window of opportunity” in the human fetus.

In utero haematopoietic stem cell transplantation (IUHSCT) is a non-myeloablative promising approach for the prenatal treatment of a variety of genetic disorders and could be an alternative option to therapeutic abortion in some congenital diseases like haematological hereditary syndromes. Observations of “naturally” occurring hematopoietic chimerism, and of experimental chimeras produced by IUHSCT, have demonstrated that allogeneic engraftment of the early gestational fetus with donor-specific tolerance is possible.

Although IUHSCT has been clinically successful in severe combined immunodeficiency disease (SCID), a therapeutic donor-cell chimerism (more than 1%)3, useful for the correction of most diseases, has not been achieved in target disorders, like hemoglobinopathies, where there is not a selective advantage for donor cells.

The reasons for this failure are unclear and reflect a limited understanding of the engraftment barriers involved in clinical IUHSCT.

There are three possible barriers to allogeneic engraftment following IUHSCT: limited space in the fetus due to host-cell competition from a robust...
and highly proliferative fetal hematopoietic compartment; the large number of donor cells needed to successfully compete with host cells for these sites; and the immunological asset of recipient that determines the grade of possible fetal tolerance which is conditional, depending on timing and appropriate presentation of antigen.

The last barrier has been supported by successful allogenic IUHSCT in sheeps and monkeys occurred if donor and recipient fetuses are in a preimmune condition, by the presence of high-level engraftment after IUHSCT in disorders where exists a competitive or survival advantage for donor cells, and by the presence of VDJ TCR β chain transcript since the 7th weeks of gestation.

The goal of therapeutically relevant levels of chimerism following a single in utero transplantation has been difficult to achieve. The induction of tolerance with low levels of chimerism to facilitate postnatal cellular transplantations using minimally ablative conditioning regimens is a more realistic goal for clinical application of IUHSCT.

Cell sources: Hematopoietic stem cells (HSC) have been isolated from fetal liver, umbilical cord blood, adult bone marrow and mobilized peripheral blood. HSC isolated from these sources were well described for their capacity to generate mature cells of all lymphohematopoietic lineage and their self-renewal capacity.

All these cell sources were employed to perform IUHSCT; however, if postnatal cellular therapy is needed, the donor cells must be obtained from a renewable source as adult related bone marrow or mobilized peripheral blood.

Animal models: An “experiment of nature” first described by Owen in 1945 is the best supporting evidence that IUHSCT might work: dizygotic cattle twins that share cross-placental circulation were born chimeric for their sibilings blood elements, and this state of “chimerism” persisted for life and was associated with specific transplantation tolerance.

The first animal model was the sheep. Early gestational transplantation of allogenic, fetal liver-derived HSC into normal sheep fetuses resulted in multilineage hematopoietic chimerism that persisted for many years and ranged from 10% to 15% donor cell expression.

Other normal animal models have shown different levels of resistance to engraftment after in utero transplantation. In the normal primate, goat, rat and mouse the levels of engraftment that has been achieved were low and not therapeutic: successful allogenic IUHSCT in monkeys occurred if donor and recipient fetuses are in a preimmune condition.

Almeida-Porada et al. 2000, used the in utero model of human–sheep HSC transplantation to investigate ways of improving engraftment and differentiation of donor cells after transplantation. In this xenogeneic model, the authors co-transplanted HSC and bone marrow-derived human stromal cells obtaining an enhancement of long-term engraftment of human cells in the bone marrow of the chimeric animals and higher levels of donor cells in circulation both during gestation and after birth.

Hayashi et al. 2002, obtained the induction of prenatal tolerance in mice where a combined approach of IUHSCTx, performed by intraperitoneal injection, followed by postnatal donor lymphocyte infusion has converted low-level mixed hematopoietic chimerism to complete donor chimerism.

A mouse model described by Perenteau et al. strongly support the presence of an immune barrier to allogenic engraftment after IUHSCT. Fourteen weeks old fetal mice were transplanted with high doses of donor cells of either allogeneic or congeneric bone marrow, using intravascular injection technique. Engraftment was lost in 70% of allogeneic recipients by 1 month of age; in contrast, all congeneric recipients maintain stable, long-term, multilineage chimerism, thus giving a strong evidence for an innate immune mechanism, natural killer cell or macrophage mediated, able to eliminate allogeneic cells after IUHSCT.

However, further studies are needed to better characterize the timing of human fetal NK-cell maturation.

The reasons for the failure in the correction most diseases and the absence of predicting tolerance in absence of immunosuppression, both in human or animal models, of IUHSCT are still unclear and reflect a limited understanding of the engraftment barriers.

IUHSCT in Humans: Since Touraine et al published the first instance of intrauterine transplantation in a human fetus affected by bare lymphocyte syndrome (BLS) in 1989, 46 cases of IUHSCT in human for various indications have been reported with different timing of transplantation, source of donor cells and the target disease.
However, successful well-documented engraftment after in utero therapy was obtained only in cases of X-linked SCID by Touraine, Flake and Wengler24,26. Useful levels of chimerism has not been achieved in non-immunodeficiency diseases, as metachromatic leukodystrophy27, chronic granulomatous disease (Flake, unpublished data, 1995) or β-thalassemia major24,27-29.

Particularly, a detectable engraftment, using IUHSC, was reported only in one case of thalassemia major transplanted at 12 weeks of gestation by fetal liver cells30. In this case transitory engraftment was documented by the presence of the Y chromosome of donor origin but not erythroid microchimerism30.

Only in one α-thalassemia case, transplanted at 13 weeks of gestation with paternal CD34+ enriched cells, microchimerism and tolerance were suggested31. However, the prenatal hematopoietic biology of the α and β-thalassemia are different. In the case of α-thalassemia, α-globin-dependent hemoglobin production (HbF) and anemia are present during fetal period and this could determine a selective advantage for the donor-derived haematopoietic stem cells. Instead, in β-thalassemia the selective advantage could be not present because of globin chain synthesis impairment and anemia do not occur until after birth.

Our experience, in cases treated between the 13th and the 18th weeks of gestation using cryopreserved fetal liver haematopoietic stem cells and without immunodepression, was also unsuccessful29.

Particularly, a fetus, affected by β-thalassemia major who underwent a fetus-to-fetus transplantation between the 14th and the 20th week of gestation, generated an alloimmune response as demonstrated by an high cytotoxic T cell precursor (CTLp) frequency against donor cells32.

We set-up a clinical protocol by which two female fetuses, 16-20 weeks old, were transplanted with circulating hematopoietic paternal stem cells after one week of low dose dexamethasone treatment with the aim to overcome the engraftment barrier by inducing a transient mild fetal immuno suppression and induce a donor-specific tolerance. During these procedures no adverse events were observed both for the mothers and the fetuses. At birth, both fetuses showed the presence of Y chromosome of donor origin but only one, at two months of age, showed the presence of paternal blood group allele A cDNA in peripheral blood and an increase of HbA concentration from 3% to 14.4%, suggesting that erythroid microchimerism has been occurred. At 5 months of age haemoglobin decreased to 6.8 g/dl and the girl started a regular blood transfusional regimen33. This could be explained only by a transitory engraftment of donor cells as it was previously shown in the case described by Touraine30.

IUHSC: future perspectives: To overcome the barriers that hinder the success of IUHSC, it is necessary to develop strategies to improve the competitive capacity of donor cells to achieve significant engraftment, and to define the gestational age of the possible immunological “window of opportunity” in the human fetus.

A significant barrier to allogeneic engraftment following IUHSC is limited space in the fetus due to host-cell competition from a robust and highly proliferative fetal hematopoietic compartment in circumstances where a competitive or survival advantage does not exist for donor cells34. Additionally, the inability of HSC to home and engraft with absolute efficiency may limit donor-cell engraftment following allogeneic IUHSC.

Thus, strategies that selectively increase donor HSC homing and engraftment in the fetal recipient may increase both the levels and frequency of engraftment following allogeneic IUHSC. Dipeptidyl peptidase CD26 inhibition may represent a novel approach to increasing the efficacy and success of HSC/HPC transplantation34.

Recent in vitro studies have demonstrated that increased cleavage of stromal-derived factor 1 (SDF-1) by CD26, a chemokine involved in hematopoietic cell chemotaxis, homing, mobilization and survival, results in a loss of its chemotactic effect on primitive hematopoietic cells. Instead, its inhibition results in SDF1–induced migration34.

In vivo, postnatal studies in a murine bone marrow transplantation (BMT) model found increased short-term bone marrow (BM) homing of enriched HSC and low-density BM donor cells after inhibition or absence of CD26 activity. Reduction of CD26 activity on low-density donor BM cells also resulted in increased long-term engraftment, competitive repopulation, secondary transplantation, and mouse survival following lethal irradiation. Therefore, CD26 inhibition may be an important adjunct to other strategies that are directed toward overcoming the barriers to fetal engraftment35. The demonstration that transient manipulation of a single chemokine interaction can
result in improvements in engraftment is encouraging, as there are many steps in the homing and engraftment process that could potentially be manipulated, singly or in combination, to significantly improve engraftment.

Other manipulations that selectively influence expression of homing receptors and engraftment include cotransplantation with stroma. The use of stromal cotransplantation has increased short- and long-term donor cell expression in the sheep model. Human-placenta–derived mesenchymal stem cells (MSC) show a multilineage differentiation capacity and they have a direct immunosuppressive effect on proliferation of T lymphocytes from peripheral blood and umbilical cord blood. Even if the way that human-placenta–derived MSC modulate the immune system is unclear, this immunoregulatory feature implies that human-placenta–derived MSC have a potential application in allograft transplantation.

Therefore, the recognition of an immune barrier suggests potential immune-based strategies for application to IUHSCT that might prevent loss of engraftment.

Some studies in mice support the existence of the phenomenon of fetal tolerance that it may be dependent on timing and appropriate presentation of antigen. Moreover, there are extrathymic mechanisms of rejection (NK – or B-cell-mediated response) that are poorly understood. In the human fetus there is evidence of immunocompetence from at least the 11th week of gestation suggested by the presence of alloreactive T lymphocytes from the 10th week of gestation that could explain the failure of engraftment in fuseses older than this gestation. IUHSCT should be performed before the 10th week of gestation. However, at this so early gestation it is impossible to carry out the infusion of CD34 into the umbilical cord by intravascular route or by their infusion into intraperitoneal cavity. One possible future approach could the infusion of these cells into the coelomic cavity.

Coelocentesis at 6-10 weeks of gestation has been successfully used to obtain fetal DNA for very early prenatal diagnosis of genetic diseases. The celomic cavity is now believed to be an important transfer interface and a reservoir of nutrients for the embryo and it is present since the fourth week after the last menstruation. Therefore, this cavity could be a new route of access to the fetus. In our study of celomic fluid from fuseses sampled from 6.6 to 10 weeks of gestation by coelocentesis we found an immunological pattern showing a very low frequency of the T, pre-B, B lymphocytes, NK and CD34+ cells. Moreover, the analysis of rearranged VDJ TCR β chain transcripts and TCR α chain transcripts showed the presence of only PreTα expression and only 40% (7 of 17) samples showed the presence of some Vβ-subfamilies suggesting that the celomic cavity could be a useful route of CD34+ cells infusion for “in utero transplantation”.

The injection of donor haematopoietic stem cells into this cavity could potentially induce tolerance in the fetus making successive booster stem cells infusions possible. This procedure has already been evaluated in pre-immune fetal sheep in which the injection of human stem cells through the celomic cavity was associated with a significant level of engraftment.

Conclusions: The intrauterine approach was criticized by several authorities in this field who claimed that this approach did not offer any advantage over postnatal transplantation. The main arguments against intrauterine transplantation were that the fetal invasive procedure carried a certain additional risk.

Conversely, promoters of intrauterine transplantation claimed that reconstitution of the immune system before birth results in reduced susceptibility to infections in the neonatal period, and to an improved psychosocial situation for the family. Other potential advantages for an intrauterine approach include cost savings and a reduced risk of GVHD in the fetal environment.

Thus, a consensus has been difficult to reach and fetal transplantation has not been widely adopted, despite the fact that successful cases treated in utero had outcomes comparable with the best reported with postnatal transplantation.

Acknowlegdements: We would like to thank Fondazione Roma, Rome (Italy) and Foundation Franco and Piera Cutino, Palermo (Italy).

References

1. Owen RD: Immunogenetic consequences of vascular anastomoses between bovine cattle twins. Science 102:400, 1945
2. Crombleholme TM, Langer JC, Harrison MR, Zanjani ED. Transplantation of fetal cells. Am J Obstet Gynecol. 1991;164:218-230.
3. Flake AW, Zanjani ED. In utero hematopoietic stem cell transplantation. A status report. JAMA. 1997;278:932-937.

4. Flake AW, Zanjani ED. In utero hematopoietic stem cell transplantation: ontogenic opportunities and biologic barriers. Blood. 1990; 94: 2179-2191.

5. Gaines BA, Colson YL, Kaufman CL, Ildstad S. Facilitating enabling cells enable engraftment of purified fetal liver stem cells in allogenic recipients. Exp Hematol. 1996; 24:902-913.

6. Renda MC, Fecarotta E, Dieli F et al. Evidence of allorreactive T lymphocytes in fetal liver: implications for fetal hematopoietic stem cell transplantation. Bone Marrow Transplant. 2000;25: 135-141

7. Gaines BA, Colson YL, Kaufman CL, Ildstad S. Facilitating enabling cells enable engraftment of purified fetal liver stem cells in allogenic recipients. Exp Hematol. 1996; 24:902-913.

8. Blazar BR, Taylor PA, Valleria DA. Adult bone marrow-derived pluripotent hematopoietic stem cells are engraftable when transferred in utero into moderately anemic fetal recipients. Blood. 1995;85:833-841.

9. G.Almeida-Porada, C. Porada, N. Gupta, A. Torabi, D. Thain, and E.D. Zanjani: The human-sheep chimera as a model for human cell mobilization and evaluation of hematopoietic grafts potential. Exp Hematol. 2007, 35(10): 1594–1600.

10. Flake AW, Harrison MR, Adzick NS, Zanjani ED: Transplantation of fetal hematopoietic stem cells in utero: The creation of hematopoietic chimeras. Science 233:776, 1986

11. Zanjani ED, Ascensao JL, Flake AW, Harrison MR, Tavassoli M: The fetus as an optimal donor and recipient of hematopoietic stem cells. Bone Marrow Transplant 10:107, 1992 (suppl 1)

12. Harrison MR, Slotnick RN, Crombleholme TM, Golbus MS, Tarantal AF, Zanjani ED: In-utero transplantation of fetal liver haemopoietic stem cells in monkeys. Lancet 2:1425, 1989

13. Pearce R, Kiehn D, Armstrong D, Little P, Callahan J, Harrison MR, Slotnick RN, Crombleholme TM, Golbus MS, Tarantal AF, Zanjani ED: In-utero transplantation of fetal liver haemopoietic stem cells in monkeys. Bone Marrow Transplant 10:107, 1992 (suppl 1)

14. Rice HE, Hedrick MH, Flake AW: In utero transplantation of rat hematopoietic stem cells induces xenogeneic chimerism in mice. Transplant Proc 26:126, 1994

15. Pallavicini MG, Flake AW, Madden D, Bethel C, Duncan B, Gonzalez ML et al: Hemopoietic chimerism in rodents transplanted in utero with fetal human hematopoietic cells. Transplant Proc 24:542, 1992

16. Kim HB, Shaaban AF, Yang EY, Liechty KW, Flake AW: Microchimerism and tolerance after in utero bone marrow transplantation in mice. J Surg Res 77:1, 1998

17. Harrison MR, Slotnick RN, Crombleholme TM, Golbus MS, Tarantal AF, Zanjani ED: In-utero transplantation of fetal liver haemopoietic stem cells in monkeys. Lancet 2:1425, 1989

18. G. Almeida-Porada, C.D. Porada, N.Tran, and Esmail D. Zanjani: Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation. Blood 2000; 95:3620-3627

19. S. Hayashi, W.H. Peranteau, A.F. Shaaban, and A.W. Flake: Complete allogeneic hematopoietic chimerism achieved by a combined strategy of in utero hematopoietic stem cell transplantation and postnatal donor lymphocyte infusion . Blood 2002, 100: 804-812

20. W.H. Peranteau, M. Endo, O.O. Adibe, and A.W. Flake: Evidence for an immune barrier after in utero hematopoietic-cell transplantation . Blood 2007, 109(3): 1331–1333

21. E.T. Durkin, K.A. Jones, D.Rajesh and A.F. Shaaban: Early chimerism threshold predicts sustained engraftment and NK-cell tolerance in prenatal allogeneic chimeras. Blood 2008 , 112(13): 5245-5253

22. Touraine JL, Raudrant D, Royo C et al. In utero transplantation of stem cells in bare lymphocyte syndrome. Lancet 1989; 1: 1382-1385.

23. Tibblad E, Westgren M. Fetal stem cell transplantation. Best Pract Res Clin Gastroenterol. 2008;22:189-201

24. Touraine JL, Raudrant D, Rebaud A, Roncarolo MG, Laplace S et al.: In utero transplantation of stem cells in humans: Immunological aspects and clinical follow-up of patients. Bone Marrow Transplant 1:121, 1992

25. Flake A, Roncarolo MG, Puck J et al. Treatment of X-linked severe combined immunodeficiency by in utero transplantation of paternal bone marrow. N Engl J Med 1996; 335: 1806-1810.

26. Wengler G, Lanfranchi A, Frusca T et al. In utero transplantation of parental CD34 haematopoietic progenitor cells in a patient with X-linked severe combined immunodeficiency (SCIDX1). Lancet 1996 ; 348 :1848-1849.

27. Slavin S, Napolasek E, Ziegler M, Lewin A: Clinical application of intrauterine bone marrow transplantation for treatment of genetic disease—Feasibility studies. Bone Marrow Transplant 1:189, 1992

28. Flake AW, Zanjani ED In utero transplantation for thalassemia. Ann NY Acad Sci 1998 ; 850: 300

29. Westgren M, Ringden O, Sturla E-N, Sverker E, Anvret M, et al.: Lack of evidence of permanent engraftment after in utero fetal stem cell transplantation in congenital hemoglobinopathies. Transplantation 61:1176, 1996

30. Touraine JL Stem Cell Transplantation in Utero for Genetic Diseases. Transplantation Proceedings 2001; 33:1750-1751.

31. Hayward A, Ambruso D, Battaglia F et al. Microchimerism and tolerance following intrauterine transplantation and transfusion for α-thalassemia-1. Fetal Diagn Ther. 1998 ; 13 : 8-12.

32. Orlandi F, Giambona A, Messana F et al. Evidence of induced non-tolerance in HLA-identical twins with hemoglobinopathy after in utero fetal transplantation . Bone Marrow Transplant 1996; 18:637-639.

33. M.C. Renda, G. Damiani, E. Fecarotta, M.C. Jakil, A. Indovina, F. Picciotto et al: In utero stem cell transplantation after a mild immunosuppression: evidence of paternal AB0 cDNA in B-thalassemia affected fetus. Blood Transfusion 2005;1:66-69.

34. Peranteau WH, Hayashi S, Kim HB, Shaaban AF, Flake AW: In utero hematopoietic cell transplantation: what are the important questions? Fetal Diagn Ther. 2004;19: 9-12.

35. Campbell TB, Broxmayer HF: CD26 inhibition and hematopoiesis: a novel approach to enhance transplantation.Front Biosc 2008 1;13:1795-805)

36. Christopherson KW 2nd, Hangoc G, Mantel CR, Broxmeyer HE: Modulation of hematopoietic stem cell homing and engraftment by CD26. Science. 2004;305: 1000-1003

37. W H. Peranteau, M Endo, O.O. Adibe, A Merchant, P W. Zoltick, and AW. Flake: CD26 inhibition enhances allogeneic donor-cell homing and engraftment after in utero hematopoietic-cell transplantation. Blood 2006 15; 108(13):4268-4274

38. D Merianos, T Heaton, A W. Flake :In Utero Hematopoietic Stem Cell Transplantation: Progress toward Clinical Application. Biology of Blood and Marrow Transplantation 2008. 14:729-740

39. Almeida-PoradaG, Flake AW, Zanjani ED. Cotransplantation of sheep stroma results in enhancement of engraftment and early expression of donor hematopoietic stem cells in utero. Blood. 1998;92(Suppl 1):116a.

40. Almeida-Porada G, Flake AW, Glimp HA, Zanjani ED. Cotransplantation of stroma results in enhancement of
engraftment and early expression of donor hematopoietic stem cell in utero. Exp Hematol. 1999; 27:1569-1575.

41. Li C, Zhang W et al : Human-placenta –derived mesenchymal stem cells inhibit proliferation and function of allogenic immune cells. cell tissue res 2007 330 (3):437-446

42. Hayashi S. et al. Mixed chimerism following in utero hematopoietic stem cell transplantation in murine models of hemoglobinopathies. Exp Hematol 2003; 31 (2):176-184.

43. Makrydimas G, Georgiou I, Kranas V, Kaponis A, Lolis D. Prenatal paternity testing using DNA extracted from coelomic cells. Fetal Diagn Ther 2004; 19: 75-7

44. Makrydimas G, Georgiou I, Kranas V, Zikopoulos K, Lolis D. Prenatal diagnosis of β thalassaemia by coelocentesis. Mol Hum Reprod 1997;3:729-31.

45. Jauniaux E, Cirigliano V, Adinolfi M. Very early prenatal diagnosis on coelomic cells using quantitative fluorescent polymerase chain reaction. Reprod Biol Med Ondine, 2003 Jun; 6 (4):494-8.

46. Renda MC, Makrydimas G, Nicolaides KH, Fecarotta E et al: Typing of the immunological system in human embryos by coelocentesis. Eur J Haematol. 2007 Nov; 79(5):435-8

47. Noia G et al. A novel route of transplantation of human cord blood stem cells in preimmune fetal sheep: the intracelomic cavity. Stem Cell, 2003; 21: 638-646.

48. M. Westgren: Intrauterine transplantation. Blood 2009, 113:4484