Reply to “Incommensurate vortices and phase transitions in two-dimensional XY models with interaction having auxiliary minima” by S. E. Korshunov

Gabriel A. Canova,1 Fábio Poderoso,1 Jeferson J. Arenzon,1,2 and Yan Levin1

1Instituto de Física, Universidade Federal do Rio Grande do Sul CP 15051, 91501-970 Porto Alegre RS, Brazil
2Université Pierre et Marie Curie-Paris VI, LPTHE UMR 7589, 4 Place Jussieu, FR-75252 Paris Cedex 05, France

We present a rigorous proof and extensive numerical simulations showing the existence of a transition between the paramagnetic and nematic phases, in a class of generalized XY models. This confirms the topology of the phase diagram calculated by Poderoso et al. [PRL 106(2011)067202]. The results disprove the heuristic argument presented by Korshunov in [arXiv:1207.2349v1], against the existence of the generalized-nematic phase in a model with \(q = 3 \).

In a recent Letter [1], we have studied the phase diagram of a generalized XY model with Hamiltonian

\[
H = -\sum_{\langle ij \rangle} \left[\Delta \cos(\theta_i - \theta_j) + (1 - \Delta) \cos(q\theta_i - q\theta_j) \right],
\]

where \(q > 1 \) is an integer and \(0 \leq \Delta \leq 1 \). Using Monte Carlo (MC) simulations, we showed that for \(q = 3 \) and \(0 < \Delta \lesssim 0.4 \), the model exhibits — depending on the temperature — three possible phases: paramagnetic (P), generalized-nematic (N), and ferromagnetic (UF). The phase transition between P and N was found to be in the Kosterlitz-Thouless (KT) universality class, while the transition between N and UF was found to belong to the 3-state Potts universality class. In his Comment on our work [2], Dr. Korshunov argued that the N phase cannot exist for \(q > 2 \), and that there should only be one “genuine phase transition” between the P and UF phases. We will now show that the argument of Ref. [2] is incorrect.

Let us first consider \(\Delta = 0 \). In this case the Hamiltonian becomes purely \(q \)-nematic. Changing variables in the partition function, \(q\theta_i \to \theta_i \), shows that the model is isomorphic to the usual XY model, but with the low temperature phase N, instead of UF. The phase transition from P to N will, therefore, occur at \(T_0 \approx 0.893 \), the same temperature as for the standard XY model and will belong to the KT universality class. This, clearly demonstrates that the N phase exists for \(\Delta = 0 \). Using Ginibre’s inequality [3] it is possible to show that the P to N transition will also extend to finite \(\Delta \) [4]. Furthermore, Ginibre’s inequality allows one to derive a rigorous lower bound [4] on the transition temperature between P and N phases, \(T_{\text{KT}}(\Delta) \geq (1 - \Delta)/T_0 \). Since at very low temperature the system must be in UF phase, this proves the existence of P, N and UF phases for small, but finite values of \(\Delta \), contradicting the heuristic argument of Ref. [2].

To precisely delimit the location of all three phases for the model with \(q = 3 \), we consider a specific example, \(\Delta = 1/4 \). For this \(\Delta \), and using finite size scaling (FSS), in Ref. [1] we have calculated the critical temperature for the N-UF transition to be \(T_{\text{Potts}} \approx 0.365 \), which was found to belong to the 3-state Potts universality class. The order parameter \(m_1 \) (magnetization) shows clearly this transition, see Fig. 1. On the other hand, at \(T_{\text{KT}} \), the nematic order parameter \(m_3 \) shows the transition between N and P phases. At the transition temperature, \(m_3 \) decreases with \(L \) as \(m_3(T_{\text{KT}}) \sim L^{-\beta/\nu} \), with \(\beta/\nu \approx 0.117 \). The exponent is very close to the theoretical value expected for the KT transition, \(1/8 = 0.125 \). To further verify the “genuineness” of this transition, we calculated the helicity modulus \(\Upsilon \) [5], shown in the inset of Fig. 1 as a function of temperature, for several system sizes. The helicity modulus crosses the straight line \(2T/\pi \) [6] at \(T_{\text{KT}}(L) \), when extrapolated to \(L \to \infty \), gives \(T_{\text{KT}} \approx 0.68 \).

In Fig. 2 we present the susceptibility \(\chi_3 \) as a function of \(T \) for different system sizes. The phase transition is very clear from the divergence of the susceptibility at \(T_{\text{KT}} \), as \(L \to \infty \). For a KT phase transition, the FSS predicts that \(\chi_3(T_{\text{KT}}) \sim L^{1.75} \), while our simulations find \(L^{-1.766} \). Finally, if we plot \(\chi_3L^{\eta - 2} \), with the KT \(\eta = 1/4 \), vs. the Binder cumulant, all the susceptibilities for different system sizes should collapse onto a universal curve [6]. This is precisely what is found in our MC simulations, see inset of Fig. 2.

Ref. [2] also questions the transition between the phases F1 and UF, in the model with \(q = 8 \), and the ab-

FIG. 1: Order parameters \(m_1 \) and \(m_3 \) (see Ref. [1]) for several system sizes \(L \) showing phase transitions at \(T_{\text{Potts}} \approx 0.365 \) and \(T_{\text{KT}} \approx 0.68 \). Inset: Helicity modulus \(\Upsilon \) versus \(T \). The crossing with the line \(2T/\pi \) at \(T_{\text{KT}}(L) \), when extrapolated to \(L \to \infty \), gives \(T_{\text{KT}} \approx 0.68 \).
FIG. 2: The susceptibility χ_3 associated with m_3 near the KT transition for various system sizes. Inset: rescaled susceptibility versus the Binder cumulant, $U_3 = \langle m_3^2 \rangle^2 / \langle m_3^4 \rangle$, showing a perfect collapse with the KT exponent $\eta = 1/4$. A similar collapse is also obtained for the magnetization [7].

In conclusion, we have presented a rigorous proof, as well as numerical evidence for the existence of a transition between the N and P phases belonging to the KT universality class, at odds with the heuristic argument of Ref. [2].

[1] F. C. Poderoso, J. J. Arenzon, and Y. Levin, Phys. Rev. Lett. 106, 067202 (2011).
[2] S. Korshunov, arXiv:1207.2349v1
[3] J. Ginibre, Commun. Math. Phys. 16, 310 (1970).
[4] S. Romano, Phys. Rev. E 73, 042701 (2006).
[5] M. E. Fisher, M. N. Barber and D. Jasnow, Phys. Rev. A 8, 1111 (1973).
[6] D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).
[7] G. A. Canova et al, in preparation.
[8] D. Loison, J. Phys.: Condens. Matt. 11, L401 (1999).