The SMARDDA Approach to Ray-Tracing and Particle Tracking

Wayne Arter, Member, IEEE, Elizabeth Surrey, and Damian B. King,

Abstract—There is an increasing need to model plasma interaction with complex engineered surfaces, notably to verify that power deposition rates are acceptable. The SMARDDA algorithm has been developed to meet this requirement, with particular reference to the neutral beam ducts that feed into the vacuum vessels of tokamaks. Application to limiters and divertors is made in a companion paper. The algorithm is described in detail, highlighting key novel features, and illustrative duct calculations presented.

I. INTRODUCTION

THE SMARDDA software suite was developed initially in 2007/08 to model the interaction of beams of neutral particles with the low temperature gas found in neutral beam ducts. The broader context of this work is the need to heat using beams of neutral atoms, high temperature plasmas in magnetic confinement devices. The prototypical device of this kind is the tokamak, where the plasma is produced and confined by a multi-Tesla magnetic field in a toroidal vacuum vessel. The ultimate aim of such experiments, as exemplified by the multi-billion dollar ITER tokamak currently undergoing construction in Southern France, is the development of a low-Carbon, electricity power source from controlled nuclear fusion. Significant amounts of neutral beam power, in the range of tens of MegaWatts, are presently required in most scenarios for ITER operation at energy breakeven, and are likely to feature in any tokamak reactor design.

A. Duct problem

The beams of neutral atoms are produced by a complicated process which involves first accelerating a beam of ions and then neutralising the beam particles. Evidently, the acceleration stage must take place at a distance from the strong confinement fields in the main toroidal vessel. In a reactor design, there are also good radiological reasons for wanting complex engineered structures to be remote from the hot tokamak plasma. Hence the need for neutral beam ducts, see Figure 1. The duct walls will typically be defined using a CAD (Computer Aided Design) package, and may have a complex design to satisfy a range of different engineering constraints including the need for surface cooling. This complex geometry is ultimately represented in CAD geometry database using a special kind of spline function, known as a NURBS, for non-uniform rational B-spline [2].

Fig. 1. Views of ducts. The top shows a duct geometry extracted from the ITER geometry data, with the end blanked off. The duct is approximately 5.5 m long and 1 m wide. The bottom shows a purely indicative design, indicating the entry and exit.

Ideally the ducts are narrow enough to minimise the evacuated volume, yet allow passage of the neutral beam from their point of production into the central torus without hindrance. There are typically two sources of gas within the duct, ions escaping from the tokamak plasma and gas collected in the duct walls that is released by the beam’s impinging upon it. If the former source dominates, gas density will decrease away from the duct’s joint with the torus. Interaction between the beam and the background gas will ionise a fraction of the neutral beam particles and, under the influence of the tokamak magnetic field, these particles are likely to impact the duct wall and deposit a significant amount of heat. The initial aim of the SMARDDA development is to quantify power deposition on the wall, both from reionised particles, and from direct impact by the fast neutrals on the outskirts of the beam. A companion paper [3] describes application of SMARDDA-based software to the calculation of power deposited by a tokamak plasma on limiters and divertors.

B. Related problems

There are two main problems to be treated by SMARDDA. The first is the tracking of charged particles in magnetic fields, corresponding to the motion of the reionised particles in the...
stray field in the duct. The second is to test particle paths for intersection with geometry, corresponding to the interaction of either the charged or neutral particles with the duct walls. To get good particle statistics in order to calculate power deposition accurately, it is desirable to solve these problems in an efficient way as possible consistent with the likely accuracy of both the computed field and the designed surfaces.

Mathematically, the first problem is about the solution of ordinary differential equations (governing single particle motion) defined by discrete field samples (meaning the magnetic field is the result of a separate numerical calculation returning values on a separate grid). The second problem reduces to the ray-tracing problem, the efficient calculation of the intersection of a straight line segment with complex geometry. This is potentially the biggest cause of inefficiency, since the direct approach of comparing the particle trajectory with every part of the geometry gets very costly when for example, the geometry is defined by 100,000 small elements and 100,000 tracks have to be tested for intersection.

The above mathematical problems arise in a number of previously studied situations from which potential insights into the choice of best numerical algorithm for a new software development may be gathered. The two problems arise in combination for the computation of the efficiency of electron guns Section II-B1 and of the motion of tracer particles in a fluid flow, although there seems to be very little published on the latter problem. The second, ray-tracing problem, arises by itself both in neutronics, in the calculation of neutron trajectories through reactor shielding, and most obviously in computer graphics, in the visualisation of complex objects using computer display equipment. Moreover, the computer graphics literature is generous in publishing details of algorithms, a distinct advantage for taking ray-tracing techniques from this field and applying them to others.

1) Electron guns: In gun codes, a charge distribution is calculated by tracking electrons from emitter to dump, then recalculating the electron trajectories in the resulting electric field to give a new charge distribution and so on until a consistent solution is achieved. In PIC or ‘particle-in-cell’ simulation of electrostatic devices such as electron guns, the charged particle paths are normally computed using the “Boris” scheme, a leapfrog scheme which is second-order accurate in both space and time as well as being symplectic, i.e. having excellent conservation properties.

Electromagnetic field values are calculated by direct product spline interpolation between grid values of the fields, often a linear interpolation formula is used. The resulting curved trajectories are typically modelled as sequences of short straight lines or tracks, each corresponding to one timestep of the Boris particle advance algorithm.

Directly adopting this approach has several difficulties. The particles are tracked on the same computational grid which is used for calculating the fields. To ensure charge conservation, this grid is often a cuboidal lattice, and material boundaries are forced to coincide with the faces of the the grid cells or “voxels” (short for volume pixels). This makes for a ragged brick-like approximation to the geometry with consequently a highly inaccurate representation of the surface normals.

More recent PIC work has used unstructured grids, so that vacuum regions are filled irregularly with tetrahedral elements or “tets” rather than with uniform, hexahedral, voxels. The key idea is to use local coordinates within each “tet”, so that particles may be tracked efficiently and accurately across the grid. This concept was later employed in the CTCLASS/MICHELLE software. Unfortunately there is still a drawback for present purposes, in that the optimal grid spacing for the electromagnetic field may be very different from the optimal size of particle step, for example in the case of neutral particles.

2) Neutronics: For deep shielding problems in neutronics, it is critical not to lose any particles due to small, round-off level, mistakes in the meshing, because the entire radiation flux may result from as few as three critical particles. Treatment of this problem, as exemplified by the Monte Carlo N-Particle (MCNP) software, requires representing the geometry by using the CSG (Constructive Solid Geometry) representation, i.e. by intersecting a set of primitive quadric solids such as ellipsoids and tori. CSG has the advantage that particles may be located in cells defined by a small number of intersecting solids. This representation enables a ‘belt and braces’ approach to the movement of particles, because a surface intersected by a track must form part of the definition of the two cells in which the track starts and ends. Provided there are no mistakes in the geometry definition, it is plausible that less than one track in 10^12 is lost due to round-off errors assuming a double precision numerical representation accurate to 13 or so decimal digits. It is unclear that this extreme ability is strictly necessary in duct problems or indeed many others where the motions of many particles are likely to share similar properties.

Of relevance to the present study is the ability of MCNP and similar software to treat particle interactions such as absorption with a background medium. This leads to the reionisation algorithm described in Section II-C below.

3) Plasma neutral transport: The DEGAS software tracks a gas usually consisting of thermal neutrals through a volume meshed with tetrahedra. Unlike the PIC work described above, local coordinates are not used, but a ‘belt and braces’ like in the neutronics work is employed.

4) Computer graphics: Computer graphics software must for most purposes operate in real-time, a typical example’s being the ability to spin an illuminated complex geometrical shape for the user to visualise. Most algorithms which compute detailed views on computer display operate by following rays from the user’s (virtual) screen to the geometry and ultimately to a light source. (This technique corresponds to the adjoint approach in neutronics.) Of the three different problems described in this section, ray-tracing is easily the most tolerant of error, since the human eye can easily compensate for an error rate of 1 in 10,000 pixels.

For computer graphics, the importance of speed results in a discretisation of the geometry which is as simple as possible,
namely as a set of triangles to represent all the surfaces in
the scene. Ray-tracing can then be reduced to a vast number
of repeats of a very simple problem, namely to intersect
a straight-line segment with a triangle, so that for example
the repetitive parts of the algorithm can be implemented in
hardware.

Nonetheless it is helpful to reduce the number of trian-
gles \(N_\Delta \) which need to be tested against a particular track.
This is achieved by use of auxiliary data structures, of which
there are three main types. The first, called SEADS (Spatially
Enumerated Auxiliary Data Structure) uses the voxel concept
introduced in Section I-B1. To each voxel is associated a list
of the surface triangles which intersect it. The idea is that
the voxels which a track crosses may be cheaply found and
and the track tested only against those triangles corresponding to
the relevant part of the SEADS. The other two auxiliary data
structures by which the triangles are indexed are hierarchical
data structures (HDS), eg. the octree divides the computational
domain first into eight equal cuboids, but then only selectively
subdivides these first cuboids into eight, and so on recursively,
depending on details of the scene, see the projections in
Figure 2. Parts of the octree which the track intersects are
identified by a recursive algorithm and then the corresponding
triangles are tested for intersection. For the HDS in particular,
it might be expected that only of order \(\log_2 (N_\Delta) \) objects
need be tested for intersection with a given track. However,
Chang [16], [17] describes how, for specific, selected distribu-
tions of objects in a scene, both SEADS and HDS may still
require \(O(N_\Delta) \) intersection tests.

II. SMARDDA RAY-TRACING

Whilst the mathematical problem of calculating the charged
particle motion can be regarded as solved by use of the
Boris algorithm, its requirement to use a regular mesh is
challenging for efficient solution of the mathematical ray-
tracing problem to compute particle collision with the wall.
A further constraint is provided by the need to discretise
the NURBS-based geometry produced by CAD packages.
To minimise effort, this is best achieved by meshing with
pre-existing software, but meshing packages have their own
limitations. There seems to be little software available to
mesh NURBS consistently with a uniform cuboidal lattice,
and the CSG representation that uses solids is fundamentally
unable to treat the surface representation (“B-rep”) normally
implied by use of NURBS. Thus an approach that involves
the meshing of B-rep NURBS is indicated. Demand from
the finite element community means that there a range of
software to produce good tetrahedral meshes from NURBS.
Since tet meshers normally commence by triangulating the
surfaces, which is a technically easier problem, this implies a
widespread capability to triangulate NURBS.

The literature reviewed above contains no algorithm which
is able to treat efficiently straight particle trajectories which are
both very long, in the case of the fast neutrals, and relatively
short, in the case of the reionised particle motions over one
timestep. The need to treat long trajectories argues against
use of tet meshes, since many tets will have to be crossed,
and in favour of working with the surface triangulations. This
motivates the development of a new ray-tracing algorithm
which incorporates many of the ideas from the computer
graphics literature.

A. SMARDDA Algorithm

The SMARDDA algorithm (pronounced “smarter”) is so
named because it represents a hybrid of two distinct ray-
tracing algorithms which respectively use the octree HDS and
SEADS. The SMART algorithm for ray-tracing using an octree
is described in a paper [18], generally regarded as difficult to understand, and the DDA (Digital Differential Analyser) algorithm uses SEADS [19], [20]. The DDA represents an efficient algorithm to advance a track long compared to cell size through a SEADS cell-by-cell, in much the same way as a charge-conserving PIC algorithm is required to do. The present section outlines the combined algorithm, mathematical details of key parts of SMARDDA are presented in Section II-B3 and the Appendix. A hybrid of SEADS and with a different, binary-spaced partition HDS has been examined by others [21].

The dimensions of the smallest cuboid in the octree can be used to "quantise" the position of a particle, i.e., to assign to it coordinates that each are a multiple of the corresponding cuboid side. By translating the physical coordinates if necessary, it may be arranged that the origin of geometry is close to the zero of the quantised coordinates, so that all particles within the geometry have positive coordinates, each coordinate filling a large interval such as (0, 2047). A key part of the SMART algorithm is the realisation that the binary arithmetic operation of exclusive-or can then be used to locate particle positions relative to the octree. In particular, this leads to a simple test as to whether the positions at the start and end of a track are in the same octree cuboid.

The same-cell test is best illustrated by example, but see also Section II-B. Suppose that two of the particle coordinates have identical integer part, so as to reduce the comparison to a 1-D problem, and further suppose that the octree cell is of size $2^4 = 16$. The test is to shift out the trailing 4 binary digits of each integer-truncated particle position, then apply the bit exclusive OR function of FORTRAN called IEOR on the remaining bits. For, consider the binary integer representations of three points

$$
1 = 0...00001 \quad \text{shift} \rightarrow 0...0 \\
7 = 0...00111 \quad \text{shift} \rightarrow 0...0 \\
17 = 0...10001 \quad \text{shift} \rightarrow 0...1
$$

Supposing that the positions of the particle at the track ends are 1 and 7, shifting the bits and applying IEOR as indicated above gives zero, indicating the positions occupy the same cell, but not so for the positions 7 and 17.

The key idea in SMARDDA is that, having constructed an octree to index the objects in a scene, rays or tracks can be followed through the smallest cuboids at the deepest levels of the octree in a sequential manner analogous to the DDA algorithm, as explained further in the Appendix. An important refinement of the algorithm is to use a multi-octree structure to treat elongated physical structures as explained in the next Section II-B

B. Multi-octree

1) Description: The octree is a widely used data structure, but it should be evident that it may become suboptimal for representing duct geometry which is almost by definition, elongated in one coordinate direction. This anisotropy has motivated the definition of the multi-octree, essentially the introduction of an additional hierarchical level to contain octrees, see Figure 3. Essentially the geometry can be thought of as encompassed by a brick built out of a set of smaller, identical octree bricks arranged in a rectangular $n_x \times n_y \times n_z$ array. In the case of a duct aligned along the y-axis it is probable that $n_x = n_z = 1$ and n_y will approximate the duct aspect ratio. The size $L_x \times L_y \times L_z$ of each brick is chosen such that the volume $n_y L_x \times n_y L_y \times n_z L_z$ does indeed encompass all the geometry.

The next step involves producing an octree indexation of the CAD surfaces or more precisely their triangulations, within each $L_x \times L_y \times L_z$ cuboid. This is implemented as a two-stage process. The first stage uses the classic octree recursion and termination criterion [15]. Cuboids containing triangles are identified [22] and inspected, and where necessary the cuboids are divided into eight to reduce the number of triangles they contain. This process continues recursively until each contains a maximum specified number N_g of triangles, typically $N_g = 20$ is found to give good results. There are the important details that

1) Before indexing starts, coordinates are quantised using the vector $h = (h_x, h_y, h_z)$, defined by $h_i = L_i/2^{NQ}$, $i = x, y, z$ where normally $N_Q = 10$.

2) It is necessary to recognise the case where further subdivision does not reduce the number of triangles within a cuboid (typically this occurs when the cuboid is smaller than the triangles).

Suppose that the above algorithm leads to a depth $N_O \leq N_Q$ of octree, meaning that the number of levels in the resulting octree, excluding the ‘root’ (see the lower part of Figure 3) is N_O. This octree construct is then revised as follows: every cuboid is examined to see whether it is empty or not, and if not, subdivided into eight, but no lower levels than N_O are allowed. Empty cuboids are indicated by a nodal marker, whereas each non-empty cuboid has an associated
proceeds as follows. Assignment of position in each coordinate to the octree then in terms of its bit representations in a vector translation) corresponding to \(x\) is given by \(Q^x = x/h\). Evidently, \(Q^x, Q^y, Q^z\) and hence the two end-points occupy the same cuboid of side \(2^{n_q}\), if their bit representations are the same except in the last \(n_q\) bits. Or, equivalently, in more mathematical language
\[
\sum_{i=3}^{1} \text{ISHFT}(\text{IEOR}(Q^1_i, Q^2_i), -n_q) = 0
\] (2)
where ISHFT is the bit shift function which is defined so as to move bit patterns to the right for positive argument, hence the minus sign, and IEOR is the exclusive-or function introduced earlier.

In many cases, the second end-point will turn out to lie within an adjacent node, and this case is treated specially for efficiency, as follows, by computing the vector with components
\[
\sigma_i = \text{ISHFT}(\text{IEOR}(Q^1_i, Q^2_i), -n_q)
\] (3)
(which are anyway needed in the calculation of the sum Eq. (2) above). If \(\sigma_1 = 1\) for a given \(i\), then the two binary vectors have the same parent node but they occupy different child nodes, and the index vector \(x_q\) for \(Q^2\) differs from that of \(Q^1\) by the vector with components \(\pm \sigma_i\), where the sign taken is that of \((Q^2_i - Q^1_i)\).

3) Descend the tree to the node corresponding to this cuboid, then use the next most significant unmasked bit in each component to descend again and so on until a terminal node or “leaf” corresponding to an undivided cuboid is found.

To illustrate point (2) about the bit-vector, referring to the node labels \(0, 1, \ldots, 7\) in Figure 3, since \(3 = 011_2\), node 3 contains the cuboid in position \((0, 1, 1)\) relative to the parent node in \((x, y, z)\) coordinates.

Hence the tree structure may be descended very economically to termination, by a combination of bit-masking and bit-shifting functions operating on integers.

3) Same-Cell Test: The movement within an octree described at the end of the preceding Section II-B2 draws heavily from the SMART algorithm \[18\]. The same ideas may be applied to the problem of determining whether the two ends of a particle track lay in the same cell. Suppose the coordinates of the two points are truncated to integer values, to give two integer vectors \(Q^1, Q^2\). Evidently, \(Q^1, Q^2\) and hence the two end-points occupy the same cuboid of side \(2^{n_q}\), if their bit representations are the same except in the last \(n_q\) bits. Or, equivalently, in more mathematical language

\[
\sum_{i=3}^{1} \text{ISHFT}(\text{IEOR}(Q^1_i, Q^2_i), -n_q) = 0
\] (2)
where ISHFT is the bit shift function which is defined so as to move bit patterns to the right for positive argument, hence the minus sign, and IEOR is the exclusive-or function introduced earlier.

In many cases, the second end-point will turn out to lie within an adjacent node, and this case is treated specially for efficiency, as follows, by computing the vector with components
\[
\sigma_i = \text{ISHFT}(\text{IEOR}(Q^1_i, Q^2_i), -n_q)
\] (3)
(which are anyway needed in the calculation of the sum Eq. (2) above). If \(\sigma_1 = 1\) for a given \(i\), then the two binary vectors have the same parent node but they occupy different child nodes, and the index vector \(x_q\) for \(Q^2\) differs from that of \(Q^1\) by the vector with components \(\pm \sigma_i\), where the sign taken is that of \((Q^2_i - Q^1_i)\).

III. DUCT CAD AND PHYSICS

As indicated, SMARDDA expects geometry to be presented as a set of possibly millions of triangles. To give a well-defined interface the legacy vtk file format \[23\] is used. It has the advantage that file contents are easily visualised using the freely available ParaView software \[24\]. As its name implies the legacy vtk file format has remained unchanged for many years, and is likely to remain current because a good deal of software, including now SMARDDA, relies upon it. The question of CAD to vtk conversion for the duct problem is now addressed.
A. CAD Conversion

The output from a CAD package is seldom suitable for use by physics software. Invariably, there is too much detail. In the context of duct modelling, only surfaces matter and small screws, bolts and other small features are unimportant provided they are flush or recessed. However, unintentional small gaps which are insignificant on an engineering scale may be disastrous in allowing computed rays or particles to escape the domain. Both these are long-standing issues for finite element engineering packages and many options are commercially available for CAD defeating and repair.

The solution adopted relies heavily on the well-known CATIA™ CAD system supplied by Dassault to perform much of the defeating. The CADfix™ package supplied by ITI TranscenData is largely dedicated to defeating and repair, and can work with CAD from many different vendors, including CATIA files. Thus it is possible for a user without training in CATIA to make final adjustments and repairs to CAD produced using CATIA, then use the inbuilt CADfix mesher to produce a suitable surface mesh of triangles. Locally written software then interrogates the resulting geometry database and produces the vtk file. A separate code generates the HDS together with the quantising vector position transformation.

B. Neutral Launch

The neutral beam input is modelled as a set of one or more beamlets each with a Gaussian cross-section. Let E_b denote the energy of particles in beamlet b which has a total power of P_b. Supposing without loss of generality that the beam is directed close to the z-direction, then the centre of each beamlet is specified by co-ordinates (x_b, y_b) in a plane $z = z_0$, with its spread given standard deviations σ_{xb}, σ_{yb}. It follows that particles crossing $z = z_0$ at position (x, y) have weights $w(x, y)$ proportional to

$$P_b \exp - \left(\frac{(x-x_b)^2}{\sigma_{xb}^2} + \frac{(y-y_b)^2}{\sigma_{yb}^2} \right)$$

Neutral particles are launched from $z = z_0$ so as to sample each beamlet. Quasi-Monte-Carlo sampling is employed, specifically a 2-D Halton sequence composed of sequences of vectors with components given by Van der Corput sequences of base 2 and base 3 respectively, cf. the “quiet start” technique used in PIC codes [6]. Van der Corput sequences contain numbers on the unit interval generated using the reversed bit patterns of the positive integers [25]. A Halton sequence is completely deterministic from which fact derive better sampling properties than the more usual Monte-Carlo technique, yet there is no need to set the length of a Halton sequence in advance unlike with homogeneous sampling techniques. This simplifies the launch of additional particles if additional sampling is indicated by the results of an initial run.

C. Reionisation and Reionised particles

The sources of fast ions in the duct are collisions with the background gas and charge exchange reactions between the neutral beam and ions in the gas. It will be assumed for simplicity, and to give a worst case scenario, that the gas has a uniform density n_0, although the case of variable density can be treated in a similar way [26]. To treat reionisation, the preferred approach is to use particle weighting. The beam particles in any event are weighted by $w(x, y)$ to reflect the Gaussian distribution of number density in each beamlet, now the reionised particles are given a weight w_r according their local rate of formation. If the neutral beam particle trajectory is considered as traversed in $N_{\Delta t}$ small timesteps of duration Δt_b, then

$$w(x, y, t + \Delta t_b) = w(x, y, t)(1 - n_0 \sigma_r v_b \Delta t_b),$$

$$w_r = n_0 \sigma_r v_b \Delta t_b$$

where σ_r is the re-ionisation cross-section and speed $v_b = \sqrt{2|q|E_b/m_b}$, with m_b equal to the mass of beam particles and q is the charge on the electron if E_b is measured in electron-Vols (eV).

The above algorithm results in the production of $N_{\Delta t}$ ionised particles, each assumed to have the velocity of the impacting neutral. The ions are assumed to travel to the duct walls without further particle interactions, under the the Lorentz force law in the static magnetic field $\mathbf{B}(x)$, viz.

$$m_b \frac{d^2 x}{dt^2} = qv \times \mathbf{B},$$

where $x(t)$ is the particle’s position, $v = dx/dt$ is its velocity and t denotes time. The numerical details of the trajectory integration are standard [5] §4-7-1] given a definition of \mathbf{B} in terms of samples on a uniform rectilinear grid. To test for wall collisions, the ion trajectory is assumed to consist of short straight tracks joining the positions x at the start and end of each timestep.

IV. RESULTS

The ITER duct of Figure [1] is converted as described in Section III-A to give a vtk file with 2146 triangles that represents the surfaces. Since the imported duct geometry is so elongated in the x-direction, this is an interesting configuration for testing the effect of variations in the (n_x, n_y, n_z)-size of multi-octree. Note that a $(2, 2, 2)$-multi-octree corresponds to the classical octree. It was rapidly discovered that it was not possible to produce octrees of depth ten or less without setting $N_q = 100$ or so, apparently because of the inhomogeneity of the surface meshing. However, comparatively simple multi-octrees with 200–400 cells were produced with a maximum of 80–100 triangles per cell, see Table [1] in Section IV-A.

A. Ray Statistics

As part of the testing process, a “beam” of neutrals was arranged to be launched from a single point in the duct centre, to fill uniformly a cone of angle α about the long duct axis. Two sizes of α were employed, $\alpha = 0.1$ corresponding to a spread in degrees of approximately 5.7, and $\alpha = 0.5$ giving 28° of spread. The smaller spread is chosen to be indicative for a neutral beam which fills the duct, the larger spread is designed to generate a significant number of collisions with the duct walls as undergone by the fast ions which strike and heat the wall, see Figure [5].
rates are compatible with very accurate calculations of power deposition in the duct.

B. Power deposition

The power deposited in the ITER duct of Figure 1 may be calculated using SMARDDA. Representative parameters are assumed for the neutral beam, viz. total power of 20MW and $E_b = 1\,000\,\text{keV}$. The beam is assumed to consist of a single Gaussian beamlet centred in the middle of the duct with $\sigma_x = 0.216\,\text{m}$, $\sigma_y = 0.338\,\text{m}$. A high background gas density $n_0 = 5 \times 10^{16}\,\text{m}^{-3}$, approximating that of the tokamak edge is assumed, and is assumed to present a cross-section for re-ionisation $\sigma_{ri} = 3.8 \times 10^{-21}\,\text{m}^2$ to the beam. A representative magnetic field is applied that reaches approximately $4\,\text{T}$ at the torus end of the duct.

The beam is sampled using 100 particles and the trajectory of each neutral generates $N_{db} = 300$ ions, so that the total number of particles followed is 60,200 requiring 120,400,000 tracks to be tested for geometry intersection. No aberrant particles are found and the computation completes in under an hour on a laptop, i.e. a cpu cost of 0.25 ms/track. The resulting power deposition profile for the top of the duct is shown in Figure 6. The results are easier to interpret than those from older software which takes a week of cpu.

ACKNOWLEDGMENT

This work was funded by the RCUK Energy Programme grant number EP/ISO0145 and the European Communities under the contract of Association between EURATOM and CCFE. To obtain further information on the data and models underlying this paper please contact PublicationsManager@ccfe.ac.uk. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

APPENDIX

DETAILS OF THE SMARDDA ALGORITHM

The SMARDDA algorithm is encapsulated as a function which takes a straight particle track, specified by its start and end points, and determine whether it intersects any part of the geometry. If so, it returns the first point of intersection. The track is defined by two arguments of type posnode, a type which consists of a position vector and the identifier of the deepest corresponding node in the octree. Frequently, the node of the start position is known as the result of a previous calculation, if not, as occurs typically on the first step, it is calculated by binary look-up in the octree. The

n_x, n_y, n_z	M_g	cpu-0.5	cpu-0.4	Lost
2, 2, 2	299	5.7	4.7	6
8, 1, 2	306	23.2	36.4	17
1, 8, 2	201	12.7	11.1	4
1, 2, 2	245	5.6	3.9	4
second argument will acquire a nodal value only upon exit, corresponding to the end of the track. Its position vector will be changed from the input value only if the track intersects the geometry as signalled by the return of another, the last, function argument.

The function uses the same-cell test of Section II-B3 as a preliminary check. This is efficient when particle trajectories are short. For longer tracks, the particle advance is controlled by a loop in the first coordinate x_1. For reasons which will become apparent, particle track is started from a virtual origin, viz. an integer (quantised) position in the first coordinate, either the largest integer less than the start position if the motion is forwards, or the smallest integer greater than the start position if motion is backwards, see the illustration in Figure 7.

In the DDA applied conventionally to a SEADS, each subsequent increment of the integer loop counter gives a position in a different cell along the track. Supposing that lateral motion of the particle relative to the first coordinate direction is negligible, the first position coordinate is incremented by one when motion is forwards, or decremented by unity when motion is backwards. First, the track is tested against objects in the cell indexed by the octree node corresponding to the start position, and if there is a collision “in the node”, the track terminates at the intersection point. If there is no collision, there is a same-cell test of the new position and the end-point of the track. If this is true, the loop terminates, otherwise the position is updated and the loop continues in a new cell with collision tests etc.

The advance along the track is complicated in higher dimensions because the track may enter new nodes as a result of its motion in the other coordinates. It is efficient to arrange so that the particle moves farthest in the direction of the first coordinate, by relabelling if necessary. The other two coordinates may be chosen purely so that the relabelled coordinates (x_1, x_2, x_3) form a right-handed set. In the resulting (quantised) coordinate system, the vector of advance is $(\alpha_1, \alpha_2, \alpha_3)$ where $\alpha_1 = \pm 1$, $|\alpha_2| < 1$ and $|\alpha_3| < 1$. In outline, coordinate x_2 is incremented by α_2 to see whether this point lies in a new node, then coordinate x_3 is incremented by α_3 and this point tested, and finally all three coordinates are updated, and the new point tested. The latter point now on the track, is then updated like the first virtual point, and so on.

In detail, consider first the x_2 update. There is a quick test as to whether the integer part of x_2 has changed, then if so, a test whether the new x_2 position, shown as point $2'$: $(x_1, x_2 + \alpha_2, x_3)$ in Figure 8, lies in the current node. If $2'$ is found to lie in a new node, the objects in that node are tested for collision with the track, and if no collision is found, the code proceeds. The coordinate x_3 is updated to give the point $3'$: $(x_1, x_2 + \alpha_2, x_3 + \alpha_3)$, which of course may lie in a new node, and if so, the node is tested for collisions in the same way. There is the additional complication that the point $4'$: $(x_1, x_2 + \alpha_2, x_3 + \alpha_3)$ may lie in a node different to that of either of the points $2'$ and $3'$. If so, a further test for collision is performed in this third node. However, this is the maximum number of nodes that need testing between updates of x_1.

Moreover, and distinguishing the SMARDDA algorithm from the DDA variant above, the increment in unity of the position x_1 is replaceable by increments which could be as
large as 2, 4, 8 or more. The idea is to jump along the track as far forwards in the current cell as possible, to an integer point \(x_1 \), such that the next integer increment of \(x_1 \) will produce a point in a new cell, possibly laterally displaced.

The underlying mathematics are as follows. For DDA it is anyway convenient to introduce binary markers \(d_j \) which are unity for forwards motion in direction \(j \) and zero for backwards. Supposed the quantised size of the cell is \(2^{k_j} \) where \(k_j \) labels the octree level, then if \(o_j \) are the coordinates of the current cell’s origin, the path increment \(\Delta \) can be calculated using

\[
\Delta_j = \left(o_j + ISHFT(d_j, k_j - x_j) \right) / o_j, \quad j = 1, 2, 3 \tag{7}
\]

as

\[
\Delta = INT \left(\min \{ \Delta_1, \Delta_2, \Delta_3, |x_1^E - o_1|, ISHFT(1, k) - 1 \} \right) \tag{8}
\]

(The last term corresponds to a displacement limited by the cell size, and the second-last accounts for a track ending at \(x^E \).) One step of the DDA algorithm can then be applied as though beginning from the position

\[
x' = (o_1, x_2, x_3) + (\alpha_1, \alpha_2, \alpha_3) \Delta \tag{9}
\]

but note the need for special treatment at the track end-point. The concept of virtual origin is important here, in that the track can be tested in sections defined by a sequence of virtual origins each corresponding to an integer value of \(x_1 \).

Last details are that the testing of the track for collisions is performed using Badouel’s algorithm \[27\], modified to take into account finite precision computer arithmetic as in ref \[10\]. Where the point of intersection of the track with the object face is needed, e.g. for diagnostic purposes, it is computed as in the second step of Badouel’s algorithm \[10\], \[27\].