Gestational Diabetes Mellitus Among Asians – A Systematic Review From a Population Health Perspective

Ling-Jun Li1*, Lihua Huang2, Deirdre K. Tobias3 and Cuilin Zhang4*

1 Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore, 2 Department of Medical Statistics and Epidemiology, Sun Yat-sen University, Guangzhou, China, 3 School of Public Health, Harvard University, Boston, MA, United States, 4 Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NIH), Bethesda, MD, United States

Objective: Since Asians are particularly vulnerable to the risk of gestational diabetes mellitus (GDM), the life course health implications of which are far beyond pregnancy, we aimed to summarize the literature to understand the research gaps on current GDM research among Asians.

Methods: We systematically searched the articles in PubMed, Web of Science, Embase, and Scopus by 30 June 2021 with keywords applied on three topics, namely “GDM prevalence in Asians”, “GDM and maternal health outcomes in Asians”, and “GDM and offspring health outcomes in Asians”.

Results: We observed that Asian women (natives and immigrants) are at the highest risk of developing GDM and subsequent progression to type 2 diabetes among all populations. Children born to GDM-complicated pregnancies had a higher risk of macrosomia and congenital anomalies (i.e. heart, kidney and urinary tract) at birth and greater adiposity later in life.

Conclusion: This review summarized various determinants underlying the conversion between GDM and long-term health outcomes in Asian women, and it might shed light on efforts to prevent GDM and improve the life course health in Asians from a public health perspective.

Systematic Review Registration: Prospero, CRD42021286075.

Keywords: gestational diabetes mellitus, Asians, prevalence, diagnostic criteria, diagnostic guidelines, maternal health outcomes, offspring health outcomes

INTRODUCTION

Diabetes is a significant cause of morbidity, mortality, and healthcare costs worldwide (1). The global age-adjusted comparative prevalence of diabetes among adults between 20-79 years of age was estimated at 8.3% (463 million) in 2019 (2), including 223 million women living with diabetes. And it is projected to reach 700 million people and 343 million women alone in 2045, respectively (2). Diabetes in pregnancy is similarly increasing in prevalence, with concerning consequences for
both mother and offspring (3). Approximately 1 in 6 live births is affected by diabetes in pregnancy, 84% of which are diagnosed as gestational diabetes mellitus (GDM) (2, 4).

GDM is defined as glucose intolerance with the first onset or recognition during pregnancy (2, 4). Women with GDM have higher risks of cardiometabolic disorders during pregnancy and later in life (5). At the same time, offspring born to women with a history of GDM also encounter increased risks of developing obesity and other cardiometabolic disorders later in life (6, 7). The documented prevalence of GDM varies substantially worldwide, ranging from 1% to >30% (3), while compelling evidence has shown Asians share a high prevalence (i.e., Middle East: 8.8-20.0%; South-East Asia: 9.6-18.3%; Western Pacific: 4.5-20.3%) (3) regardless of the racial/ethnic differences in body mass index (BMI).

A meta-analysis found a more than sevenfold increased risk of T2DM in women with GDM after index pregnancy, compared with women with normoglycaemic pregnancies (8). Data on risk factors—particularly modifiable risk factors that may inform effective intervention strategies—are relatively more collected in the Western population (e.g., North America, Europe, and Oceania) than the Asian population (3, 8-10). Research reporting a full spectrum of long-term health outcomes among both mothers and offspring following pregnancies complicated by GDM also mainly stemmed from the Western population (11). Furthermore, GDM studies have not been comprehensively reviewed on Asian immigrants exclusively, given that an increasing number of Asian migrants live in Western countries for a long-term residency (12). Due to the different environmental exposures such as socioeconomic transitions, lifestyle adaptations, cultural assimilation hardship, and health disparities, there might be exceptionally high attributable risks on GDM development for Asian immigrants compared with Native Asians.

This review sought to summarize the literature to understand research gaps and develop future research directions on Asian women with GDM from a population health perspective. Thus, our review serves the objectives to 1) comprehensively examine the epidemiology of GDM, its risk factors, and health consequences; and 2) identify areas for future research for public health interventions to prevent GDM and its health consequences.

METHODS

Search Strategy and Selection Criteria

We conducted the systematic review according to PRISMA for systematic review protocols. References for this review were identified through searches of Pubmed, Web of Science, Embase, and Scopus for articles published until 30 June 2021. We included three topics in our review, namely “Topic 1—GDM prevalence in Asians”, “Topic 2—GDM and maternal health outcomes in Asians”, and “Topic 3—GDM and offspring health outcomes in Asians”. Search terms included “prevalence”, “incidence”, “gestational diabetes mellitus”, “gestational diabetes” and “diabetes in pregnancy” in combination with the terms “Asia”, “Asians” and “Asian countries” in Topic 1. Search terms included “gestational diabetes mellitus”, “gestational diabetes” and “diabetes in pregnancy” in combination with the terms “Type 2 diabetes”, “prediabetes”, “glucose intolerance”, “abnormal glucose”, “hypertension”, “high blood pressure”, “cardiovascular disease”, “kidney disease”, “cancer”, “liver dysfunction”, “non-alcoholic fatty liver disease” and “health outcomes” and also in combination with the terms “After delivery” and “postpartum” in Topic 2. Search terms included “gestational diabetes mellitus”, “gestational diabetes”, “diabetes in pregnancy” and in combination with terms “cardio-metabolic outcome”, “cognitive outcome”, “congenital disease”, “adiposity”, “hypertension”, “health outcome”, “neuro-cognitive outcome”, “obesity”, “diabetes”, “cardiovascular disease”, “kidney disease” and “cancer” and also in combination with “child” and “offspring” in Topic 3. Articles resulting from these searches and relevant references cited in those articles were reviewed, among which reporting non-Asian human subjects or without full-text available were excluded. Flow charts for literature searching on each topic are shown in Supplementary Figures 1-3. The Prospero registration number for this systematic review is registered as CRD42021286075.

Data Screening & Assessments

Double literature screening was conducted during the literature searching phase by two investigators (H L & L-J L). Furthermore, one investigator (A C) performed the quality assessments for all papers based on the Newcastle–Ottawa Scale Criteria (NOSC), and the other investigators (L-J L) verified the findings independently. The maximum score of 9 points in the Newcastle–Ottawa Scale is distributed in three aspects, namely selection of study groups (four points), comparability of groups (two points), and ascertainment of exposure and outcomes (three points) for case–control and cohort studies (13). We used the points to further categorize the publication quality with low risk of bias (between 7-9 points), high risk of bias (between 4-6 points), and very high risk of bias (between 0-3 points) (Supplementary Tables 1, 2).

RESULTS

Prevalence of GDM by Geography

Overview

GDM prevalence in Asian countries ranges widely from 1.2 to 49.5%, largely accounting for differences in diagnostic criteria, sample size and population source (e.g., hospital-based, community-based) (Figure 1 and Supplementary Table 3).

Guideline-Specific Prevalence of GDM

The prevalence of GDM varied substantially across Asian countries using different guidelines (Figure 2). We identified 29 GDM diagnostic criteria (Supplementary Table 4), among which the International Association of Diabetes and Pregnancy Study Groups (IADPSG) (14), World Health Organization (WHO) (15), Carpenter-Coustan (16), and American College of Obstetricians and Gynecologists (ACOG) (17) criteria were
commonly used. Some countries adopted international guidelines as their national guidelines [e.g., China MOH guidelines (18), Malaysia MOH guidelines (19)], while some countries defined their own [e.g., Japan Japan Diabetes Society (20), India [Diabetes in Pregnancy Study group of India; DIPS1] (21), Turkmenistan (22), Oman (23)]. As the majority (123 out of 147) of included studies were published since 2010, we were not able to tease out whether the increment in GDM prevalence over the years in Asians is due to emerging evidence or new adoption of universal screening [i.e., IADPSG (14)].

We included studies using either one-step or two-step diagnostic guidelines, the latter of which performed a 1-h 50-g glucose challenge test (GCT) glucose challenging test (GCT) additionally during 24-28 weeks of gestation, with a whole blood glucose threshold of 7.2 mmol/l (130 mg/dl). In general, we observed a link between adopting any one-step diagnostic guidelines (e.g., the IADPSG guidelines, the WHO 1999 guidelines) and higher GDM prevalence among Asian studies.

For example, countries exclusively using (e.g., Singapore, UAE) or primarily using (e.g., China, Saudi Arabia, India) a one-step diagnostic approach reported an overall GDM prevalence above 10%. In contrast, countries exclusively using (e.g., Pakistan, South Korea) or primarily using (e.g., Thailand, Turkey, Japan) a two-step diagnostic approach reported an overall GDM prevalence below 10% (Figure 3).

Prevalence of GDM in Asian Migrants
Twenty-eight studies reported GDM prevalence among Asian migrants in Europe, Oceania, and North America, with sample sizes ranging from 1,491 to 10,823,924 participants. Overall GDM prevalence among Asian migrants is comparable to the Native Asian population. However, the prevalence of GDM was generally higher in Asian immigrants (0.18%-24.2%) than non-Hispanic White (NHW) (0.02%-7.0%) living in the same country, regardless of GDM diagnostic guidelines used (Supplementary Table 5). Among Asian immigrants in UK
and Norway, South, East, and West Asian immigrants, as a whole, had doubled the odds for GDM than NHW (24, 25). Interestingly, length of immigration and birth countries seemed to relate to GDM prevalence. For instance, Danish-Chinese migrants with a longer stay (≥ 10 years) had a 62% higher odds of GDM onset than those with a shorter stay (≤ 5 years) (26). Also, foreign-born US-Indian migrants had a higher GDM prevalence than local-born US-Indian migrants (22.9% vs. 12.8%) (27).

Adverse Health Outcomes and Attributable Risk Factors Following an Index GDM-Complicated pregnancy

Overview

Overall, seventy-two studies, predominantly longitudinal cohorts on GDM and maternal postpartum health outcomes, were identified in Asian countries (Table 1 and Figure 4). Among them, prediabetes and T2D, cardiovascular disorders, cancer, and non-alcoholic fatty liver disease (NAFLD) were reported following index pregnancy complicated by GDM, with a mean or median follow-up from 4 weeks to 38 years after delivery. The majority of studies were reported from East Asia (42/72 studies, 58.3%), especially in the Chinese population. Two studies that reported postpartum T2D development in Asian immigrants were identified (Supplementary Table 6). Thirteen out of 74 included studies (18%) were assessed low in risk of bias, while the rest majority (80%) were either high or very high risk of bias (Supplementary Table 1).

Prediabetes and T2D

It is well-known that women with a history of GDM have a substantially increased risk of developing T2D than counterparts without such a history (8). A systematic review and meta-analysis on prospective studies with reasonable retention rates (mainly on European women) suggested that the conversion rate from GDM to T2D was seven folds increased among women GDM after index pregnancy, compared with those who had a normoglycaemic pregnancy (RR 7.43, 95% CI: 4.79-11.51) (8).

Sixty-three studies described the postpartum incidence rate of prediabetes and T2D among mothers diagnosed with GDM in Asia, with sample sizes ranging from 35 to 11 270 subjects, most of which defined prediabetes and T2D using the same guidelines [e.g., WHO 1999 (41) or ADA 2014 guidelines (42)] even though their GDM diagnostic criteria differed. We reported the percentage incidence (%) if prediabetes or T2D was recorded within one year from delivery (mostly between 6 and 12 weeks). Then we reported person-years incidence (per 1000 person-years) if prediabetes or T2D was recorded beyond one year from delivery (up to 15 years).

Within one year from delivery, the conversion rate varied significantly between studies from GDM to prediabetes (11.9%-49.1%) and from GDM to T2D (1.1%-66.7%), respectively. Beyond one year after delivery, the incidence rate from GDM to T2D was the highest in South Asia (47–271 per 1000 person-years), followed by East Asia (9–110 per 1000 person-years). We noted inconsistencies with study estimates within the same region. For instance, one study in Iran reported a much higher incidence T2D conversion rate than another study in Iran (172 vs. 9 per 1000 person-years) (35, 43). Potential reasons for inconsistencies in the conversion rates from GDM to T2D could be the variation in studied population characteristics, duration of follow-up, retention rate, and data collection quality.

As for Asian immigrants, we identified only two reports comparing Asian immigrants with non-Asian counterparts, one from Spain with one-year follow-up (44) and the other from the US with an average 7.6-year follow-up (45). Both studies suggested that prediabetes and T2D conversion rates were higher in South Asian migrants than native NHW [prediabetes: 43.3% vs. 28.5% (44); T2D: 55 vs. 40 per 1000 person-years (45)].

Existing data on risk factors of T2D among women with a history of GDM were firstly reported in the NHW population,
Maternal Health Outcome	Country	No.	PMID	Author Year	Study design	Mean or range of follow-up	No. of GDM	No. of outcome cases	Cumulative incidence rate; Incidence rate (per 1000 person-years) if applicable*	Baseline age, years	Baseline BMI, kg/m²	GDM diagnosis guidelines	Outcome diagnostic guidelines				
Pre-diabetes and T2D	China	1	3309614	Pei et al., 2021	Retrospective cohort study	6-12 weeks	589	Pre-diabetes: 191	T2D: 3.1%	Pre-diabetes: 32.4%	T2D: 3.1%	33-34 (follow-up)	IADPSG WHO 1999				
	China	2	3251565	Mao et al., 2020	Cross-sectional	1.5 year	425	Pre-diabetes: 62	T2D: 27	Pre-diabetes: 14.6%; T2D: 6.3%; 42	32.3	>24: 69.2%; 24-27.9: 24.7%; >28: 6.1%	Did not define	WHO 1999			
	China	3	3208017	Mao et al., 2020	Prospective cohort	5.5 years	55	Pre-diabetes: 19	T2D: 9	Pre-diabetes: 34.6%; T2D: 16.4%; 30	31	<25: 78.0%; >25: 22.0%	NDDG & IADPSG Chinese	WHO 1998			
	China	4	3119619	Wang et al., 2019	Prospective cohort	6-12 weeks	563	Pre-diabetes: 157	T2D: 17	Pre-diabetes: 26.9%; N.A.	32.5	<18.5: 16.0%; <18.5-24: 69.6%; >25: 14.3%	MOH IADPSG	WHO 1999			
	China	5	3099688	Liu et al., 2019	Prospective cohort	6 months	91	Pre-diabetes: 27	T2D:	Pre-diabetes: 29.7%; N.A.	T2D: 1.1%; N.A.	32.7	<18.5: 16.0%; <18.5-24: 69.6%; >25: 14.3%	IADPSG	WHO 1999		
	China	6	3147216	Fan et al., 2019	Prospective cohort	4.22 years	1063	Pre-diabetes: 457	T2D: 114	Pre-diabetes: 36.2%; T2D: 9.0%; 86	32.4	23.1	WHO 1999	WHO 1999			
	China	7	3018271	Ma et al., 2018	Prospective cohort	6-8 weeks	399	T2D: 9	T2D: 2	Pre-diabetes: 75.3%; T2D: 25.6%; N.A.	31.3	23.1	IADPSG	WHO 1999			
	China	8	2439739	Mai et al., 2014	Case-control study	2.5 years	190	Pre-diabetes: 121	T2D: 57	Pre-diabetes: 26.7%; T2D: 12.1%; N.A.	33.1	22.7	ADA 2004	ADA 2010			
	China	9	2527112	Chang et al., 2014	Prospective cohort	6-12 weeks	282	Pre-diabetes: 157	T2D: 17	Pre-diabetes: 26.9%; N.A.	T2D: 2.9%; N.A.	29.6	26.2	ADA 2004	ADA 2007		
	Taiwan	10	1870121	Cao et al., 2016	Prospective cohort	6-6 weeks	186	Pre-diabetes & T2D: 52	T2D: 29	Pre-diabetes & T2D: 28.0%; N.A.	T2D: 40.8%; N.A.	31.7	24.9	NDGG ICD			
	Taiwan	11	2586528	Lin et al., 2016	Retrospective cohort study	6 months - 9 years	71	Pre-diabetes: 182	T2D: 105	Pre-diabetes: 22.7%; N.A.	T2D: 13.1%; N.A.	34	24.8	Abell and Beischer criteria	WHO 1985		
	Taiwan	12	1870121	Cao et al., 2016	Prospective cohort	6-8 weeks	186	Pre-diabetes & T2D: 52	T2D: 29	Pre-diabetes & T2D: 28.0%; N.A.	T2D: 40.8%; N.A.	31.7	24.9	NDGG ICD			
	Taiwan	13	2213984	Tam et al., 2012	Retrospective cohort study	36 months	170	T2D: 9	T2D: 21	Pre-diabetes: 5.3%; 18	T2D: 9.0%; 21	24.4	24.7	WHO 1999	WHO 1999		
	Taiwan	14	2166867	Lee et al., 2012	Retrospective cohort study	52 months	238	T2D: 9	T2D: 21	Pre-diabetes: 5.3%; 18	T2D: 9.0%; 21	24.4	24.7	WHO 1999	WHO 1999		
	Taiwan	15	1468769	Ko et al., 1999	Prospective study	6 weeks	801	Pre-diabetes: 182	T2D: 105	Pre-diabetes: 22.7%; N.A.	T2D: 13.1%; N.A.	34	24.8	Abell and Beischer criteria	WHO 1985		
	Japan	16	3199629	Kasawaki et al., 2020	Retrospective cohort study	1 year	399	Pre-diabetes: 182	T2D: 105	Pre-diabetes: 22.7%; N.A.	T2D: 13.1%; N.A.	34.1	23.4	JSOG/IADPSG	JSOG	AIDPSG	
	Japan	17	3025396	Kasuga et al., 2019	Prospective cohort study	24.9 weeks	213	Pre-diabetes: 51	T2D: 8	Pre-diabetes: 23.9%; T2D: 3.8%; N.A.	34.1	23.4	JSOG/IADPSG	JSOG			
	Japan	18	2969644	Inoue et al., 2018	Prospective cohort study	2 years	77	Pre-diabetes: 17	T2D: 17	Pre-diabetes: 22.1%; 110	T2D: 22.1%; T2D: 110	34.3	23.9	IADPSG	WHO 1998		
	Japan	19	2970619	Kondo et al., 2018	Prospective cohort study	8-12 weeks	123	Pre-diabetes: 41	T2D: 4	Pre-diabetes: 33.3%; T2D: 3.3%; N.A.	34	21.4	IADPSG	WHO 1999			
	Japan	20	2301007	Kugishima et al., 2018	Retrospective cohort study	1.09 years	306	Pre-diabetes: 182	T2D: 105	Pre-diabetes: 22.7%; N.A.	T2D: 13.1%; N.A.	34	21.4	IADPSG	WHO 1999		
	Japan	21	2062402	Nishikawa et al., 2018	Prospective cohort study	6-12 weeks	185	Pre-diabetes: 22	T2D: 3	Pre-diabetes: 11.9%; T2D: 1.6%; N.A.	33.05	23.5	JSGO/IADPSG	JSGO			
	Japan	22	2872525	Yasuhi et al., 2017	Prospective cohort study	1 year	88	Pre-diabetes: 29	T2D: 13	Pre-diabetes: 33.0%; N.A.	T2D: 14.8%; N.A.	33.3	23.9	JSGO/IADPSG	JSGO		
	Japan	23	2549788	Kugishima et al., 2015	Prospective cohort study	6-8 weeks	169	Pre-diabetes: 27	T2D: 17	Pre-diabetes: 29.7%; N.A.	T2D: 11.9%; N.A.	32.6	23.5	JSGO/IADPSG	JSGO		

(Continued)
Maternal Health Outcome	Country	No	PMID	Author	Year	Study design	Mean or range of follow-up	No of GDM	No of outcome cases	Cumulative incidence rate; Incidence rate (per 1000 person-years) if applicable*	Baseline age, years	Baseline BMI, kg/m²	GDM diagnosis guidelines	Outcome diagnostic guidelines		
South Korea	24	30486265	Han et al., 2018	2018	Retrospective cohort study	10 years	4970	Pre-diabetes: 52	T2D: 470	Pre-diabetes: 30.8%	T2D: 3.6%; T2D: 9.5%; 9	28.3	21	JSOG/IADPSG	ICD-10 ICD-10	
	25	27583868	Cho et al., 2016	2016	Prospective cohort	3.98 years	412	T2D: 51	2962	T2D: 12.4%; 31	T2D: 8.4%; 11	30.6	23.5	NDGG ADA 2010		
	26	27159192	Cho et al., 2016	2016	Prospective cohort	8 years	699	Pre-diabetes: 343	T2D: 36	Pre-diabetes: 49.1%; N.A.	T2D: 5.2%; N.A.	29.9	21.7	ICD-10 ICD-10		
	27	26996814	Kim et al., 2016	2016	Prospective cohort	6-12 weeks	498	Pre-diabetes: 157	T2D: 40	Pre-diabetes: 31.5%; N.A.	T2D: 8.0%; N.A.	33.3	23.7	CC	ADA 2004	
	28	26674320	Shin et al., 2016	2016	Prospective cohort	8 years	2962	T2D: 249	249	T2D: 8.4%; 11	T2D: 8.0%; N.A.	29.9	21.7	ICD-10 ICD-10		
	29	26713061	Cho et al., 2015	2015	Retrospective cohort study	6-12 weeks	757	Pre-diabetes: 334	T2D: 139	Pre-diabetes: 44.1%; N.A.	T2D: 18.4%; N.A.	33.7	23.7	CC	ADA 2011	
	30	26171796	Moon et al., 2015	2015	Prospective cohort	4 years	283	Pre-diabetes: 129	T2D: 33	Pre-diabetes: 44.1%; N.A.	T2D: 18.4%; N.A.	33.7	23.7	NDGG ADA 2010		
	31	24431910	Yang et al., 2014	2014	Prospective cohort	15.6 months (1.3 years)	116	Pre-diabetes: 59	T2D: 8	Pre-diabetes: 50.9%; 39	T2D: 6.9%; 53	33.8	23.7 (follow-up)	NDGG ADA 2010		
	32	23471980	Kwak et al., 2013	2013	Prospective cohort	1 year	370	Pre-diabetes: 88	T2D: 88	Pre-diabetes: 50.9%; 39	T2D: 6.9%; 53	33.8	23.7 (follow-up)	NDGG ADA 2010		
	33	24057154	Kwak et al., 2013	2013	Prospective cohort	3.75 years	395	T2D: 116	T2D: 88	T2D: 20.8%; N.A.	T2D: 8.0%; N.A.	32	23	CC	ADA 2014	
	34	21106349	Kim et al., 2011	2011	Prospective cohort	6-12 weeks	381	Pre-diabetes: 161	T2D: 27	Pre-diabetes: 42.3%; N.A.	T2D: 7.1%; N.A.	34.2	23.6	CC	ADA 2004	
	35	18456364	Lee et al., 2008	2008	Prospective cohort	2.1 years	620	Pre-diabetes: 21	T2D: 71	Pre-diabetes: 11.5%; 55	T2D: 17.0%; 42	33.6	23.5	NDGG ADA 2011		
	36	17256060	Lim et al., 2007	2007	Prospective cohort	1 year	81	Pre-diabetes: 21	T2D: 71	Pre-diabetes: 11.5%; 55	T2D: 17.0%; 42	33.6	23.5	NDGG ADA 2011		
	37	16054264	Cho et al., 2006	2006	Prospective cohort	6 years	909	Pre-diabetes: 59	T2D: 120	Pre-diabetes: 50.9%; 39	T2D: 6.9%; 53	33.8	23.7 (follow-up)	NDGG ADA 2011		
	38	12951280	Jang et al., 2003	2003	Prospective cohort	6-8 weeks	311	Pre-diabetes: 72	T2D: 47	Pre-diabetes: 23.2%; 22	T2D: 10.1%; N.A.	30.9	22.7	Korean guidelines		
Thailand		39	29926712	Ruksasakul et al., 2012	2012	Case-control	2.97 years	56	Pre-diabetes: 29	T2D: 47	Pre-diabetes: 23.2%; 22	T2D: 10.1%; N.A.	30.9	22.7	Korean guidelines	
	40	23692133	Youngwanitchsera et al., 2013	2013	Cross-sectional	6 weeks	210	Pre-diabetes: 56	T2D: 47	Pre-diabetes: 23.2%; 22	T2D: 10.1%; N.A.	30.9	22.7	Korean guidelines		
Malaysia	41	23208155	Chew et al., 2012	2012	Cross-sectional study	84 months (7 years)	342	T2D: 53	T2D: 15.5%; 22	T2D: 15.5%; 22	34.7	23.7 (follow-up)	ADA 2010 WHO 1985			
	42	33525398	Hewage et al., 2021	2021	Prospective cohort	1 year	116	Pre-diabetes: 38	T2D: 13	Pre-diabetes: 32.8%; 38	T2D: 11.2%; 11	33.3	23.7	WHO 1999 WHO 1999		
Philippines	43	N/A	Malong et al., 2013	2013	Prospective cohort	3 years	124	Pre-diabetes: 43	T2D: 9	Pre-diabetes: 34.7%; 116	T2D: 7.3%; 24	32.1	23.8	IADPSG/CC/WHO	ADA 2004	

(Continued)
Maternal Health Outcome	Country	No	PMID	Author	Year	Study design	Mean or range of follow-up	No of GDM	No of outcome cases	Cumulative incidence rate; Incidence rate (per 1000 person-years) if applicable*	Baseline age, years	Baseline BMI, kg/m²	GDM diagnosis guidelines	Outcome diagnostic guidelines
India	44	29802954	Goyal et al., 2018	2018	Prospective cohort	20 months (1.7 years)	267	Pre-diabetes: 126; T2D: 28	Pre-diabetes: 47.2%; T2D: 10.5%	32.5	27.3	IADPSG	ADA 2014, WHO 2006	
	45	27329018	Bhavadharini et al., 2016	2016	Prospective cohort	6 weeks -1 year	203	Pre-diabetes: 34; T2D: 7	Pre-diabetes: 16.7%; T2D: 3.4%	29.1	26.9	IADPSG	ADA 2005	
	46	26926329	Gupta et al., 2017	2017	Prospective cohort	14 months (1.2 years)	366	Pre-diabetes: 114 T2D: 119	Pre-diabetes: 39.3%; T2D: 21	30.2	<25.0: 67.9; 25.0-29.0: 25.6% > 30.0: 6.3%	IADPSG	ADA 2014, WHO 2006	
	47	25952037	Jindal et al., 2015	2015	Prospective cohort	6 weeks	62	Pre-diabetes: 17; T2D: 4	Pre-diabetes: 27.4%; T2D: 6.5%	31.5	not specified	ADA 2011	ADA 2011	
	48	24944938	Mahalakshmi et al., 2014	2014	Prospective cohort	4.5 years	174	Pre-diabetes: 3; T2D: 1	Pre-diabetes: 25.1%; T2D: 4.1%	29	28.6	ADA 2005	WHO 2006	
	49	17640759	Krishnaveni et al., 2007	2007	Prospective cohort	5 years	35	Pre-diabetes: 11; T2D: 13	Pre-diabetes: 31.4%; T2D: 37.1%	28.2	25.5 (follow-up)	WHO 2005	WHO 2006	
Sri Lanka	50	29679628	Sudasinghe et al., 2018	2018	Prospective cohort	1 year	59	Pre-diabetes: 17 T2D: 11	Pre-diabetes: 28.8%; T2D: 18.6%	30.2	<25: 8.9%; 25.0-34: 58.0%; 35-49: 33.1%; ≥ 50: not specified	IADPSG	ADA 2014, WHO 2006	
	51	28644881	Herath et al., 2017	2017	Prospective cohort	10.9 years	119	T2D: 73	T2D: 61.3%; T2D: 56	31.7	27.0	WHO 2009	WHO 1999	
	52	16972962	Wijeysinghe et al., 2006	2006	Prospective cohort study	34.6 months (2.9 years)	147	Pre-diabetes: 56; T2D: 20	Pre-diabetes: 38.1%; T2D: 13.6%	33.4	26.3	WHO 2009	IDF	
Pakistan	53	28423981	Azz et al	2018	Prospective cohort	2 years	78	Pre-diabetes: 3; T2D: 11	Pre-diabetes: 3.8%; T2D: 14.1%	28.9	not specified	IADPSG	Did not define	
Israel	54	31167664	Yefet et al, 2019	2019	Prospective cohort study	15.8±5.1 years	446	T2D: 207	T2D: 40.6%	30.1	27.0	CC and NDDG	ICDD	
	55	20636958	Chodick et al., 2010	2010	Retrospective cohort study	5.7 years	11270	T2D: 1125	T2D: 10.0%	32.7	<25: 14.6%; 25-30: 16.3%; >30: 20.0% unknown	WHO 2009	MHS guidelines	
Turkey	56	24591906	Kerimoglu et al, 2010	2010	Prospective cohort	6-12 weeks	78	Pre-diabetes: 28; T2D: 9	Pre-diabetes: 35.9%; T2D: 34.6%	31.3	27.7	CC	WHO 2006	
Iran	57	28432896	Minoose et al, 2017	2017	Prospective cohort	12.1 years	476	Pre-diabetes: 27	Pre-diabetes: 35.8%; T2D: 10.3%	36.5	28.4	WHO 2009	ADA 1997	
	58	28491872	Nouh et al., 2015	2015	Prospective cohort	6-12 weeks	176	Pre-diabetes: 3	Pre-diabetes: 35.9%	29.7	27.8	IADPSG	ADA 2003	
	59	25692996	Valizadeh et al., 2014	2014	Prospective cohort	22.8 months (1.9 years)	110	Pre-diabetes: 11; T2D: 12	Pre-diabetes: 17.6%; T2D: 4.5%	28.5	not specified	ADA 2015	WHO 2006	
	60	17962102	Hossein-Nooshad et al., 2009	2009	Retrospective cohort study	6-12 weeks	114	Pre-diabetes: 24; T2D: 9	Pre-diabetes: 21.4%	27.4	CC	ADA/WHO 2008		
UAE	61	15003951	Agarwal et al, 2004	2004	Retrospective cohort study	4-8 weeks	549	Pre-diabetes: 20; T2D: 9	Pre-diabetes: 20.8%	32	not specified	ADA 1997	WHO 1999	

(Continued)
Maternal Health Outcome	Country	No PMID	Author, Year	Study design	Mean or range of follow-up	No of GDM	No of outcome cases	Cumulative incidence rate; Incidence rate (per 1000 person-years) if applicable*	Baseline age, years	Baseline BMI, kg/m²	GDM diagnosis guidelines	Outcome diagnostic guidelines
Cancer	South Korea	30486285	Han et al., 2018	Retrospective cohort	10 years	4970	Total cancer: 437	Thyroid Cancer: 131	28.3	21	ICD-10	ICD-10
	Taiwan	30796123	Peng et al., 2019	Retrospective cohort	6.84 years	4737	Total cancer: 1063	Breast cancer: 284	29.0	not specified	ICD-10	ICD-10
	Taiwan	24820466	Li et al., 2020	Case-control	6-12 weeks	589	Dyslipidaemia:227	Dyslipidaemia: 38.5%	33.1	21	AHA/NHLBI criteria	NCEP ATP III criteria
Hypertension	China	32157330	Li et al., 2021	Prospective cohort	3.53 years	1263	Mets NCEP ATP III criteria: 246	Mets by NCEP ATP III criteria: 19.5%; 55	33-34 (follow-up)	21.49-21.99	IADPSG	NCEP ATP III criteria
	China	28060987	Wang et al., 2017	Prospective cohort	2.29 years	1261	Hypertension: 16	Hypertension: 7.45%; 33	32.8	24.3	WHO 1999	2007 ESH, ESCG
	China	24397392	Mai et al., 2014	Case-control	2.5 years	190	Hypertension: 16	Hypertension: 7.45%; 33	33.1	22.7	ADA 2004	ADA 2010
	China	33036614	Pei et al., 2017	Retrospective cohort	6-12 weeks	589	Dyslipidaemia:227	Dyslipidaemia: 38.5%	33.1	22.7	ADA 2004	ADA 2010
	China	30005506	Shen et al., 2019	Prospective cohort	3.53 years	1263	Mets NCEP ATP III criteria: 246	Mets by NCEP ATP III criteria: 19.5%; 55	33-34 (follow-up)	21.49-21.99	IADPSG	NCEP ATP III criteria
	South Korea	27583868	Cho et al., 2016	Prospective cohort	3.98 years	412	Mets: 38	Mets: 16.0%; 40	33.6	23.5	NDGG	ADA 2010
	Thailand	29926712	Ruksasakul et al., 2016	Case-control	2.97 years	56	Mets: 15	Mets: 20%; 80	33.1	22.7	ADA 2004	ADA 2010
	South Korea	24397392	Mai et al., 2016	Case-control	2.5 years	190	Mets: 38	Mets: 16.0%; 40	33.6	24.6	CC	AHA/NHLBI criteria

70
8

38.6

(Continued)
Maternal Health Outcome	Country	No	PMID	Author	Year	Study design	Mean or range of follow-up	No of GDM	No of outcome cases	Cumulative incidence rate; Incidence rate (per 1000 person-years) if applicable*	Baseline age, years	Baseline BMI, kg/m²	GDM diagnosis guidelines	Outcome diagnostic guidelines
Non-Alcoholic Fatty Liver Disease (NAFLD)	India	72	32961610	Kubhal et al.,	2021	Cross-sectional	16 months (9-38 months)	201	26.7%	NAFLD: 62.7%; 63	31.9	26.3	IADPSG	Fibroscan
Cardiovascular (CV) events	Israel	71	23749791	Kessous et al.,	2013	Prospective cohort	10 years	4928	Simple CV events (not specified): 365	Simple CV events: 7.4%; 741	32.4	NDGG	ICD	
Cardiovascular (CV) events	Israel	71	23749791	Kessous et al.,	2013	Prospective cohort	10 years	4928	Simple CV events (not specified): 365	Simple CV events: 7.4%; 741	32.4	NDGG	ICD	
Iran	58	25892996	Valizadeh et al.,	2015	Prospective cohort	22.8 months (1.9 years)	110	MetS: 22	20%; 105	>34.64.5%	28.5	Did not define	Israelite National Committee Guidelines	Untitled

N.A., Not available; T2D, type 2 diabetes; HTN, hypertension; MetS, metabolic syndrome; GDM, gestational diabetes mellitus; BMI, body mass index; AHA, American Heart Association; NHLBI, National Heart Lung and Blood Institutes; ICD, International Classification of Diseases; IDF, International Diabetes Federation; NCEP ATPIII, National Cholesterol Education Program Adult Treatment Panel III; ESH-ESC, European Society of Hypertension-European Society of Cardiology Guidelines; MHS, Maccabi Healthcare Services; JSOG, Japan Society of Obstetrics and Gynecology; CC, Carpenter-Coustan; ADA, American Diabetes Association; WHO, World Health Organization; NDDG, National Diabetes Data Group; IADPSG, International Association of Diabetes and Pregnancy Study Groups; MOH, Ministry of Health.

Criteria of Abell and Beischer: GDM was defined as if 3hr 50g OGTT of any 2 abnormal glucose readings: 0-hr ≥5.0 mmol/L; 1-hr ≥9.5 mmol/L; 2-hr ≥8.1 mmol/L; 3-hr ≥7.0 mmol/L.

Korean guidelines: GDM was defined as if 3hr 100g OGTT of any 2 abnormal glucose readings: 0-hr ≥5.8 mmol/L; 1-hr ≥10.6 mmol/L; 2-hr ≥9.2 mmol/L; 3-hr ≥8.1 mmol/L.

Israelite National Committee Guidelines: MetS was defined as having any three of the following traits: waist circumference > 98 cm in females; triglyceride > 150 mg/dL (> 1.70 mmol/L) or drug consumption for elevated triglyceride levels; high-density lipoprotein < 1.30 mmol/L; systolic blood pressure ≥ 130 and/or diastolic blood pressure ≥ 85 mm Hg or receiving antihypertensive drugs; and fasting plasma glucose ≥ 100 mg/dL (≥ 5.55 mmol/L) or consuming antiglycemic agents.

IDF: MetS was defined as if had central obesity (waist circumference ≥ 90 cm in men or ≥ 80 cm in women) plus at least two of the following: (1) raised triglycerides > 1.7 mmol/L or using specific treatment for this lipid abnormality; (2) reduced high-density lipoprotein cholesterol < 1.03 mmol/L in men or < 1.29 mmol/L in women or using specific treatment for this lipid abnormality; (3) raised blood pressure (systolic ≥ 130 mmHg or diastolic ≥ 85 mmHg or using antihypertensive drugs); and (4) raised fasting plasma glucose > 5.6 mmol/L or previously diagnosed type 2 diabetes.

NCEP ATPIII criteria: MetS was defined if had at least three of the following: (1) waist circumference ≥ 90 cm in men, or ≥ 80 cm in women; (2) systolic blood pressure ≥ 130 mmHg, and/or diastolic blood pressure ≥ 85 mmHg, or using antihypertensive drug treatment; (3) fasting glucose > 100 mg/dL, or using drug treatment for elevated glucose; (4) triglyceride > 150 mg/dL, or using drug treatment for elevated triglycerides; (5) high-density lipoprotein cholesterol < 50 mg/dL in women, or < 40 mg/dL in men, or using drug treatment for reduced high-density lipoprotein cholesterol.

AHA/NHLBI criteria: MetS was defined if 3 out of the following 5 criteria are met, (1) waist circumference ≥ 80 cm, (2) blood pressure > 130/85 mmHg or on antihypertensive medication, (3) fasting plasma glucose > 100 mg/dL or on anti-diabetic medication, (4) fasting triglyceride > 150 mg/dL, (5) high-density lipoprotein < 50 mg/dL or on antihyperlipidemic medications.

2007 ESH-ESC Guidelines: hypertension was defined as systolic blood pressure > 140 mmHg or diastolic blood pressure > 90 mmHg or taking antihypertensive medicines

*Incidence rate in per 100 000 person year is only calculated when the mean year of follow-up is above 1 year.
such as greater pre-pregnancy BMI (8, 9), excessive weight gain (3), unhealthy dietary patterns (3), physical inactivity (3), and a short period of lactation (3, 10). In the Asian population, there are also quite a few at-risk pre-natal maternal characteristics recently added to this pond of evidence, such as family history of diabetes (43), a higher degree of consanguineous marriages (43), higher pre-pregnancy BMI (29, 31, 32, 46), higher total cholesterol quartile at GDM diagnosis during the index pregnancy (47), younger age at delivery (<30 years) (46), and a short period of lactation (<6 months) (33). Post-natal risk such as missing medical assistance in the continuum of GDM care after delivery could be another risk for T2D progression among Asian mothers with a history of GDM (48).

Cardiovascular Disorders

Hypertension

A history of GDM was related to increased risk of hypertension (HTN) after the index pregnancy in some but not all studies. For instance, the US Nurses’ Health Study found an increased risk of postpartum HTN among women with a history of GDM (49). In contrast, a Dutch cohort suggested the risk of developing HTN was mainly significant among women with a history of hypertensive disorders during pregnancy (HDP) rather than GDM (50). Among the three studies identified in our review on GDM and subsequent hypertension risk (28, 30, 38), the Chinese Tianjin GDM prevention program reported a much higher incidence rate of HTN among women diagnosed with HDP and GDM than women with GDM alone (118 vs. 26 per 1000 person-years) (38), which partially agreed with the Dutch cohort.

The mechanisms underlying postpartum HTN in women with GDM remain un-elucidated. Insulin resistance may be a component of the underlying pathophysiology linking GDM with postpartum HTN, with or without HDP (51). As we know, obesity and excessive weight gain during pregnancy are associated with insulin resistance (38), inflammation and oxidation (52), all of which may lead to permanent vascular damage (51) and even irreversible peripheral vascular resistance. Due to the largely inadequate evidence, future research to investigate the role of antenatal and postpartum lifestyle (e.g., dietary patterns, physical activities) in the progression of HTN is warranted in Asians.

Cardiovascular Risks and Cardiovascular Diseases

Emerging evidence has led to the increasing recognition of the association between GDM and cardiovascular (CV) risks and CV events later in life (53). Previous studies in the Western population have identified a higher level of inflammatory (e.g., C-reactive protein) (54), vascular endothelial dysfunction (e.g., intimal medial thickness) (55), and a 2-7 times higher risk of coronary artery calcification or CVD after 12-15 years' follow-up (56–58), among women with a history of GDM. In Asia, five studies reported metabolic syndrome in Asian women with a history of GDM, with an incidence rate ranging from 40 to 90 per 1000 person-years. One Chinese study reported postpartum dyslipidemia (38.5%) among women with a history of GDM (47), while the other Israelite study reported a 30-70% higher risk of developing CV events and CV hospitalization among women with a history of GDM, even after adjusting for pre-eclampsia and maternal obesity at index pregnancy (39).

Thus far, only determinants for postpartum CVD risks and CV events were reported as family history of T2D (59) and postpartum development of T2D (58) in the western population. Even though postpartum CVD determinants among women with GDM have yet to be fully investigated, long-standing exposure to cardio-metabolic risks has been speculated in the GDM-CVD link.

Cancer

GDM was associated with 30-40% increased risks of breast cancer, thyroid cancer, stomach cancer, and liver cancer for all races and ethnicities in a recent meta-analysis (60). As in the Asian population alone, we identified six retrospective cohort studies (Taiwan, South Korea and Israel) using either national insurance or a medical database to investigate the association between GDM and various cancers. All of them reported higher incidences of breast cancer, thyroid cancer, pancreatic cancer, ovarian cancer, lung cancer, and kidney cancer among the Asian female population with a history of GDM after a median of 5-38 years of follow-up than those parous women without such a history. For example, the incidence rate of cancer among Israelite women with a history of GDM was reported in breast (2 per 1000 person year) (37) and ovary (1 per 100 person year) (36), respectively.

It has been well documented that T2D is associated with higher risks of all-cancer incidence (61), especially malignancies in the breast, pancreas, and liver in women (62, 63). Some evidence has alluded to the mitogenic effect while binding to the insulin-like growth factor-I receptor secondary to insulin resistance (64). Furthermore, hyperglycemia itself might promote carcinogenesis via increasing oxidative stress (65, 66). However, data regarding cancer risks associated with GDM are merely gathered in the Western population.

Liver Dysfunction

Liver dysfunction is a common cause of chronic liver disease that affects approximately one in four adults worldwide, which is characterized by liver steatosis (fat deposition), inflammation, and hepatocyte damage (67). Researchers have suggested a link between metabolic risks (i.e., obesity, hyperglycemia, hyperlipidemia, and insulin resistance) and hepatic fatty deposition and non-alcoholic fatty liver disease (NAFLD) in the past decades (68, 69). Notably, women with a history of GDM were found to have raised liver triglyceride (TG) levels, highlighting a potential link between GDM and liver dysfunction (70, 71). Despite the higher prevalence of postpartum liver fat (72), abnormal liver score (73) and even NAFLD (71, 74), such results were mostly gathered from the Western population. There is one study from South Asia (India) reported a 2.11-fold higher odds of NAFLD among women with GDM, compared with women without GDM. The researchers suggested that postpartum medical conditions such as overweight/obesity, metabolic syndrome, and prediabetes were
risk factors for developing NAFLD, during a median of 16 months’ follow-up after delivery (40).

Adverse Health Outcomes of Offspring Born From Pregnancies Complicated by GDM

Overview

A body of evidence has implied that specific developmental programming in offspring is influenced by maternal hyperglycemia; in particular, epigenetic modification may be the key underlying mechanism (75, 76). Our review identified forty-two studies conducted on Native Asians (Table 2) and eight studies conducted on Asian immigrants (Supplementary Table 7) with up to 18 years’ follow-up, all of which were within the research scope of adverse health outcomes among offspring born to mothers with GDM. Offspring health outcomes, including fetal growth and neonatal anthropometric measures, were reported in Native Asians and Asian migrants, whereas offspring health outcomes, including congenital anomalies, neuro-cognitive function, and cardio-metabolic phenotypes, were only reported in Native Asians (Figure 4). None of these studies investigated risk factors underlying maternal GDM and the development of offspring health outcomes. Among 50 included studies in this topic, fourteen (28%) were assessed low in risk of bias, while the rest 72% were assessed either high or very high in risk of bias.

GDM and Fetal Growth

In-utero over nourishment can lead to fetal overgrowth, and such influence may predispose the offspring to obesity and T2D later in life if there is an obesogenic environment (84). A cohort in India reported an association between GDM and antenatal fetal growth at mid-late trimester (85). In this prospective cohort, fetuses of women with GDM had a thicker anterior abdominal wall while smaller femur length and biparietal diameter than fetuses of women without GDM. The researcher referred to this as “the thin-fat-phenotype” which represented a predisposition to T2D at birth (85).

Among Asian immigrants, one Norwegian study found that fetuses exposed to maternal GDM tended to be smaller in fetal weight at 24 weeks of gestation but thereafter grew faster until delivery, compared with fetuses not exposed to maternal with GDM (86). This trend was more prominent in South Asian women (86).

GDM and Neonatal Outcomes

Anthropometric Outcome At Birth

It is well-accepted that GDM is related to increased risk for macrosomia and large for gestational age (LGA) (6). We identified 14 papers that focused on this topic, with sample sizes ranging from 72 to 11 999 neonates. Among them, the majority reported consistent findings on either higher prevalence rates (11% to 40%) or higher risk ratios (2.0-2.7 times) of macrosomia or LGA among neonates born to GDM mothers, compared with their non-GDM counterparts, despite a couple reported otherwise. Interestingly, one study specifically looked at different combinations of glycemic abnormalities (fasting, 1-hour, and 2-hour glycemic levels) with macrosomia (77). The researchers found that women with three abnormal OGTT glycemic values had a much higher macrosomia rate in their offspring than those with two or one abnormal glycemic value (77). Such results—to some extent—suggested there might be remarkable neonatal outcomes specific to different GDM phenotypes (77).

Four studies reported neonatal birth size in Asian migrants equivocally. The US studies showed no differences in macrosomia rate between neonates born to NHW and Asian women with GDM (87, 88). In contrast, compared with the NHW counterparts, the Dutch study showed a lower macrosomia rate in offspring born to West Asian migrants (Turkish) (89) (18.6% vs. 22.6% [NHW]), while the Canadian study found that newborns born to South Asian female migrants had a greater skinfold thickness (11.7 vs 10.6 mm [NHW]; p=0.0001) (90).

Neonatal Health Outcomes

Eight papers reporting other neonatal conditions were identified in our review, ranging from 72 to 10 543 in sample size. Neonatal disorders were listed as hypoglycemia, low Apgar score, hyperbilirubinemia/jaundice, polycythemia and respiratory distress syndrome. All studies consistently reported that neonates born to women with GDM were more susceptible to hypoglycemia, hyperbilirubinemia, respiratory distress syndrome and low Apgar score (<7 at 5 minutes), compared with those born to women without GDM.

Congenital Diseases

A total number of six studies reported findings on this topic, only half of which had specified the type of malformation as either congenital heart disease or congenital anomalies of the kidney and urinary tract (CAKUT). In general, there were no differences in congenital heart disease and CAKUT, especially more evident in male neonates (79). Despite the unclear pathophysiological mechanism, it has been speculated that serial maternal antenatal characteristics could affect embryonic development during the first trimester, such as pre-existing diseases prior to pregnancy, overweight and obesity, and excessive weight gain during pregnancy (79, 91, 92).

Neuro-Cognitive Structure and Function

There is one case-control study investigated brain function in pre-term infants born to mother with GDM. In the first 33 days after delivery, the researchers used MRI image and discovered that infants born to mother with GDM tended to have multiple reduced fractional anisotropy in the brain, reflecting a microstructural white matter abnormalities compared with the infants born to mother without GDM (80).

GDM and Childhood Outcomes

Twenty studies on this topic were identified, with nearly half reported in China (n=8), then followed by India (n=4), Israel (n=3), Hong Kong (n=3), Pakistan (n=1), and Sri Lanka (n=1). Childhood outcomes spanned several traits and conditions,
including adiposity and cardiometabolic outcomes, cognitive function, endocrinological and ophthalmological morbidity.

Anthropometry, Blood Pressure and Cardiometabolic Outcomes

The majority of studies (17/20, 85.0%) reported consistent findings on long-term outcomes like childhood adiposity and cardiometabolic risks. Overall, offspring born to women with GDM had higher BMI z-score, higher systolic blood pressure and diastolic blood pressure, higher childhood overweight and obesity rates, higher lipid profile levels, and higher insulin and insulin resistance levels, than those born to women without GDM. These studies involved small (n=164) to large (n=27 157) sample sizes of offspring with an average follow-up of 1-18 years among different ethnicities (Chinese, Indians, Sri Lankans and Israelite Jews).

In terms of cardiac function, we included one Pakistani study (93) and one Indian study (81) with small sample sizes of 136 and 236. Compared with their counterparts, offspring born to women with GDM had higher Carotid Intima-Media Thickness (cIMT), cardiac output and stroke volume, decreased mitral E/A ratio, and total peripheral resistance in early childhood and early adolescence, respectively.

Among Asian immigrants, two studies in the UK (94, 95) and one study in the US (96) with sample sizes ranging from 382 to 6 060 reported a consistent association between GDM and childhood obesity across all races and ethnic groups. The magnitude in such association between NHW women and Asian female immigrants was similar.

Neuro-Cognitive Outcomes

Hyperglycemia during pregnancy may affect fetal neurodevelopment and leave a significant impact on offspring cognition (97). Only one Indian study reported neurocognitive outcomes in the offspring at a mean 9.7 years of age (82). Children born to women with GDM had higher learning, long-term retrieval and storage, and better verbal ability than children born to women without GDM. The authors propose that the finding may be confounded by the strong correlation between GDM and higher social-economic status among this cohort (82).

Endocrinological and Ophthalmological Outcomes

Other childhood outcomes related to GDM include endocrine and ophthalmic morbidities. In two large-scale Israeli cohort studies where young adults (≤ 18 years) with a history of small-than-gestational age (SGA) conditions were recruited. One study showed no difference in the incidence of endocrine morbidity between young adults born to women with and without GDM (83). In contrast, the other study observed a higher prevalence of offspring ophthalmic inflammation (0.74% vs. 0.60%) and a 60% higher risk in ophthalmic-related hospitalization among young adults born to women with GDM and treated with medication (metformin, insulin) (78).

DISCUSSION AND FUTURE DIRECTION

Our review reinforces that, in general, Asians are at the highest risk of developing GDM and for subsequent progression to T2D among all populations. Yet, data among the Asian population on long-term health implications of GDM on women and offspring remain limited and are less in-depth than the Western population. In addition, studies in identifying attributable risk factors that may inform preventive strategies of long-term adverse health outcomes among women and their offspring are less comprehensive in Asians than in the Western population. Methodologically, inferences from existing published data are hindered by considerable heterogeneity in study designs, a high risk of bias (Supplementary Tables 1, 2), and standardized protocols for defining studies of Asians.

In order to address such critical knowledge gaps, future endeavors in the following aspects may be warranted to dissect...
TABLE 2 | Summary of GDM-related offspring health outcomes in Asians.

Offspring outcomes	Country	No	PMID or Doi	Author	Year	Study design	Mean or range of follow-up	Total offspring number and outcomes definition	Baseline maternal age, & offspring age	Multiple variable adjustment	Effect size (referencing to non-GDM mothers)
Fetal outcomes	**Anthropometry**										
India	1	27913848	Venkataraman et al.	2016	Prospective cohort	during pregnancy	153 fetus with GDM mothers, 179 fetus with non-GDM mothers	Dobut: 28.6 years, Fetus: 20 wks GA, 28-32 wks GA	Maternal age, BMI, parity, gestational weight gain, fetal sex and gestational age	Multiple variable adjustment	Fetuses born to GDM mothers had significantly thicker anterior abdominal wall thickness (20 weeks: 0.26 mm, 0.15-0.37, p<0.0001; 28-32 weeks: 0.48, 0.30-0.65, p<0.0001).

Neonatal outcomes											
China	2	33407256	Hu et al.	2021	Prospective cohort	at birth	205 newborns born to GDM mothers, 740 newborns born to non-GDM mothers	Mom: 31.3 years, Offspring: newborn	Age of infants at each measurement, pre-pregnancy BMI, maternal age, parity and gestational age	Crude model	Offspring born to mothers with GDM had higher weight-for-length z-score (WFLZ) [b: 0.26 SD units (95% CI: 0.13-0.40)] across infancy than those of mothers without GDM.
China	3	29886780	Yan et al.	2020	Prospective cohort	at birth	205 newborns born to GDM mothers, 740 newborns born to non-GDM mothers	Mom: 30.5 years, Offspring: newborn	Maternal age, education, average monthly household income, postpartum BMI, parity, passive smoking, family history of diabetes, iron supplementation, multivitamin supplementation, gestational dietary intake, and alcohol use.	Crude model	Infants born to GDM mother had higher risk of macrosomia (RR: 2.11, 95% CI: 1.16-3.83).
China	4	31731641	Cheng et al.	2019	Prospective cohort	at birth	13 newborns born to GDM mothers (n=97); 51 born to non-GDM mothers (n=853)	Mom: did not mention, Offspring: newborn	Maternal age, family history of diabetes, height, parity, nationality, GA at delivery, child gender, smoking or alcohol use before or during pregnancy, intervention for GDM.	Crude model	Infants born to GDM mother had higher risk of macrosomia (OR: 2.70, 95% CI: 2.15-3.40) and LGA (OR: 2.57, 95% CI: 2.05-3.21).
China	5	31271909	Yang et al.	2019	Prospective cohort	at birth	238 newborns born to GDM mothers (n=1495); 1553 born to non-GDM mothers (n=1876).	Mom: 28.5 years, Offspring: newborn	Maternal age, education, average monthly household income, postpartum BMI, parity, passive smoking, family history of diabetes, iron supplementation, multivitamin supplementation, gestational dietary intake, and alcohol use.	Crude model	Based on the OGTT results, women had three abnormal glucose values had more macrosomia (46/406; 11.3%) than women had two (51/939; 5.4%) or one (81/1876; 4.3%) abnormal glucose values (p<0.001).
China	6	30412096	Ding et al.	2018	Retrospective cohort study	at birth	178 newborns born to GDM mothers (n=3221)	Mom: 32.7 years, Offspring: newborn	Maternal age and gestational weeks. No difference in macrosomia and LGA between infants born to GDM and non-GDM mothers. Infants born to obese GDM mothers had higher macrosomia (p=0.001) and LGA (p<0.001) prevalence than non-obese GDM mothers.	Crude model	Infants born to GDM mothers had an increased risk of macrosomia (OR: 2.42, 95% CI: 2.26-2.59).
China	7	27806670	Wang et al.	2017	Retrospective cohort study	at birth	447 newborns born to GDM mothers (n=939); 7975 born to non-GDM mothers (n=12900).	Mom: did not mention, Offspring: newborn	Maternal age and gestational weeks. No difference in macrosomia and LGA between infants born to GDM and non-GDM mothers. Infants born to obese GDM mothers had higher macrosomia (p=0.001) and LGA (p<0.001) prevalence than non-obese GDM mothers.	Crude model	GDM mothers had higher rate of LGA infants (14% vs. 10.4%, p=0.005), compared with non-GDM mothers.
China	8	26496961	Zhao et al.	2015	Prospective cohort	5-10 years	1501 newborns born to GDM mothers (n=1086); 183 born to non-GDM mothers (n=1756).	Mom: 29.8 years, Offspring: newborn	Maternal age and gestational weeks. No difference in macrosomia and LGA between infants born to GDM and non-GDM mothers. Infants born to obese GDM mothers had higher macrosomia (p=0.001) and LGA (p<0.001) prevalence than non-obese GDM mothers.	Crude model	GDM mothers had higher rate of LGA infants (14% vs. 10.4%, p=0.005), compared with non-GDM mothers.
China	9	26401753	Wang et al.	2015	Prospective cohort	at birth	49 newborns born to GDM mothers (n=887; 114 obese vs. 473 non-obese); 33 born to non-GDM mothers	Mom: 30.2 years, Offspring: newborn	Maternal age and gestational weeks. No difference in macrosomia and LGA between infants born to GDM and non-GDM mothers. Infants born to obese GDM mothers had higher macrosomia (p=0.001) and LGA (p<0.001) prevalence than non-obese GDM mothers.	Crude model	GDM mothers had higher rate of LGA infants (14% vs. 10.4%, p=0.005), compared with non-GDM mothers.

(Continued)
Offspring outcomes	Country	No	PMID or Doi	Author Year	Study design	Mean or range of follow-up	Total offspring number and outcomes definition	Baseline maternal age, & offspring age	Multiple variable adjustment	Effect size (referencing to non-GDM mothers)		
	Bangladesh	11	26376766	Chen et al. 2015	Prospective cohort study	0-478 years	LGA: n=182 born to GDM mothers (n=587: 144 obese vs. 433 non-obese); n=136 born to non-GDM mothers (n=478)	LGA: n=97 born to GDM mothers (n=1049)	Multiple variable adjustment	Compared with normal weight GDM mothers, Infants born to overweight or obese GDM mothers had higher risk of LGA than normal weight GDM mothers (OR: OR 3.8; 95% CI: 2.0-7.0; OB: OR 2.0; 95% CI: 1.2-3.3). Compared with normal GWG mothers with GDM, infants born to GDM mothers with excessive GWG had higher risk of LGA (OR: 3.3; 95% CI: 2.1-5.1).		
	South Korea	12	9314639	Jang et al. 1997	Case-control study	0-25 years	Macrosomia: n=10 born to GDM mothers (n=72); n=2 born to non-GDM mothers (n=12)	Macrosomia: n=9 born to GDM mothers (n=65); n=5 born to non-GDM mothers (n=43)	Crude model	Compared with normal weight GDM mothers, Infants born to overweight or obese GDM mothers had higher risk of macrosomia (13.9% vs. 2.8), compared with those born to non-GDM mothers. Infants born to GDM mothers had significantly higher rates of macrosomia (13.9% vs. 3.3%) and LGA (40% vs. 13.1%), compared with non-GDM mothers.		
	Kuwait	13	30944829	Groof et al. 2019	Cross-sectional study	0-25 years	Macrosomia: n=16 born to GDM mothers (n=109); n=43 born to non-GDM mothers (n=758)	Macrosomia: n=9; with 758 years; 30-34 yrs; 92.4%	Crude model	Compared with normal weight GDM mothers, Infants born to overweight or obese GDM mothers had a higher risk of macrosomia (OR = 2.36; 95% CI: 1.14, 4.89).		
	Israel	14	33236556	Riskin et al. 2020	Retrospective cohort study	0-25 years	Macrosomia: n=50 born to GDM mothers	Macrosomia: n=97 born to GDM mothers (n=1049)	Multiple variable adjustment	Compared with normal weight GDM mothers, Infants born to overweight or obese GDM mothers had a higher risk of macrosomia (OR = 2.36; 95% CI: 1.14, 4.89).		
Offspring outcomes	Country	No	PMID or Doi	Author	Year	Study design	Mean or range of follow-up	Total offspring number and outcomes definition	Baseline maternal age, & offspring age	Multiple variable adjustment	Effect size (referring to non-GDM mothers)	
-------------------	---------	----	---------------------	-------------------	------	-------------------------------	----------------------------	---	--------------------------------------	--	-------------------------------------	
Offspring outcomes	Israel	14	30326556	Riskin et al.	2020	Retrospective cohort study	At birth	Macrosomia: n=1318 born to GDM mothers (n=11999); n=867 born to non-GDM mothers (n=118623)	Mean: 30.5 years Offspring: 18 years	Crude model	Compared with newborn born to non-GDM mothers, newborn born to GDM mothers had 3.6 odds of hypoglycaemia and 11.1 odds of polycythemia at birth.	
Offspring outcomes	Malaysia	16	31778255	Samsuddin et al.	2020	Prospective cohort study	At birth	Hypoglycaemia: n=11 born to GDM mothers (n=145); n=7 born to non-GDM mothers (n=962)	Mean: 32.3 years Offspring: newborn	Crude model	Infants born to GDM mothers had higher rate of hypoglycaemia (9.2% vs. 1.9%), compared with non-GDM mothers.	
Offspring outcomes	Saudi Arabia	17	26620797	Alfaedh et al.	2015	Prospective cohort study	At birth	Apgar score <7 at 5 minutes: n=23 born to GDM mothers (n=292); n=3 born to non-GDM mothers (n=281)	Mean: 32.3 years Offspring: newborn	Crude model	Infants born to GDM mothers had higher risk of neonatal low Apgar score (OR: 5.55; 95% CI: 1.58-19.48) and hypoglycaemia (OR: 9.35; 95% CI: 2.79-31.29).	
Offspring outcomes	Thailand	18	26111427	Luengmettakul et al.	2015	Retrospective cohort study	At birth	Hypoglycaemia: n=25 born to GDM mothers (n=487); n=2 born to non-GDM mothers (n=345)	Mean: 32.6 years Offspring: newborn	Crude model	Infants born to GDM mothers had a higher risk of hypoglycaemia (OR: 12.3; P < 0.0001) and neonatal hyperbilirubinemia (OR: 1.9; P = 0.013).	
Offspring outcomes	Thailand	19	24372900	Youngwanichsettha et al.	2013	Prospective cohort study	At birth	Hypoglycaemia: n=50 born to GDM mothers (n=118).	Mean: 32.6 years Crude model	The incidence of neonatal hypoglycaemia was 42.4% among women with a history of GDM.	Continued	
Offspring outcomes	Country	No	PMID or Doi	Author	Year	Study design	Mean or range of follow-up	Total offspring number and outcomes definition	Baseline maternal age,& off-spring age	Multiple variable adjustment	Effect size (referencing to non-GDM mothers)	
--------------------	---------	----	-------------	--------	------	--------------	---------------------------	---	---------------------------------	---------------------------------	---	
India	20	24944938	Mahalakshmi et al.	2014	Retrospective study	Offspring: newborn at birth	Hypoglycaemia: n=22 born to GDM mothers (n=174).	Mom: 29 years	Offspring: newborn	The incidence of neonatal hypoglycaemia was 12.6% among women with a history of GDM		
Bangladesh	11	http://doi.org/10.3329/jom.v13i2.12749	Mannan et al.	2012	Cross-sectional study	Hyperbilirubinemia: n=60 born to GDM mothers (n=72); n=6 born to non-GDM mothers (n=72); Respiratory distress syndrome: n=8 born to GDM mothers (n=72); n=3 born to non-GDM mothers (n=72).	Mom: 15-25 yrs: 69.5%; 26-35 yrs: 23.6%; 36-45 yrs: 6.9%. Offspring: newborn	Crude model	More babies also suffered from neonatal jaundice (22.2% vs 8.4%, p<0.05) and respiratory distress syndrome (11.1% vs 4.17%, p<0.05) in GDM groups than non-GDM groups.			
Turkey	21	322558417	Vijay et al.	2020	Case-control At birth	Vitamin D deficiency (serum values < 20ng/ml): 30 infants born to GDM mothers (n=30); 13 infants born to non-GDM mothers (n=30).	Mom: 30 years old.	Crude model	The mean value of Vitamin D levels in GDM babies was 8.47ng/ml and was 19.51ng/ml in the control (p value <0.001).			
China	6	30412096	Ding et al.	2018	Retrospective cohort study	Fetal malformations did not specify: n=33 born to GDM mothers (n=3221); 11 born to non-GDM mothers (n=3221).	Mom: 32.7 years Old.	Crude model	Female malformation rate born to GDM mothers was 1.02%.			
Turkey	22	DOI:10.5262/tndt.2017.1002.05	Soylu et al.	2017	Case-control study 0-18 years	21 born to GDM mothers, 259 born to non-GDM mothers CAKUT: n=14 for GDM newborns: n=126 for non-GDM newborns	Mom: Did not mention Offspring: Newborn	Crude model	OAKUT had 10% children born to GDM mothers and the controls only had 5% children born to GDM mothers. However, it is not statistically significant.			
Taiwan	23	26844492	Tain et al.	2016	Case-control study	10543 born to GDM mothers, 1591179 born to non-GDM mothers. Among them: Congenital anomalies of kidney and urinary tract (CAKUT): n=11 born to GDM mothers; n=0 born to non-GDM mothers; Musculoskeletal system anomalies: n=38 born to GDM	Mom: Did not mention Offspring: newborn	Crude model	Infants born to GDM mothers had higher risks of OAKUT (OR 2.22; 95% CI: 1.06-4.67), and also higher prevalence of musculoskeletal system (0.32% vs. 0.17%, p=0.001), eye and face (0.28% vs. 0.17%, p=0.001), heart and circulatory system (0.27% vs. 0.10%, p=0.001) and genitourinary system (0.19% vs. 0.07%, p<0.001), compared those born to non-GDM mothers.			
Offspring outcomes	Country	No.	PMID or Doi	Author	Year	Study design	Mean or range of follow-up	Total offspring number and outcomes definition	Baseline maternal age & offspring age	Multiple variable adjustment	Effect size (referencing to non-GDM mothers)	
--------------------	---------	-----	-------------	--------	------	--------------	--------------------------	---	---------------------------------	----------------------------------	---	
Multiple variable adjustment												
1. Anthropometry, Blood	China	26	33633685	Du et al.	2021	Prospective cohort	1 year old	Maternal age, family history of diabetes, parity, gestational weight gain, pre-pregnancy BMI, maternal gestational hypertension, GA, birth weight, birth length, mode of delivery, parental Maternal GDM was found to be independently and significantly associated with overweight or obesity in 1-year aged female offspring only (OR 1.61, 95% CI 1.09–2.37, p < 0.05).				
2. Neuro-Cognitive Structure and Function	China	25	33196602	Xuan et al.	2020	Case-control	First 33-day after delivery	Fractional anisotropy was significantly decreased in the splenium of corpus callosum, posterior limb of internal capsule, thalamus in infants born to GDM mothers, reflecting microstructural white matter abnormalities in the GDM group.				
3. Anthropometry, Blood	China	24	26071138	Liu et al.	2015	Retrospective cohort study	6 months	Congenital heart disease: n=206 born to GDM mothers (n=3060); n=17371 born to non-GDM mothers (n=87736).				
4. Neuro-Cognitive Structure and Function	Bangladesh	11	http://doi.org/10.3329/jom.v13i2.12749	Mannan et al.	2012	Cross-sectional study	at birth	Congenital anomalies (did not specify): n=9 born to GDM mothers (n=174); n=2 born to non-GDM mothers.				
5. Anthropometry, Blood	India	20	24944938	Mahalakshmi et al.	2014	Retrospective cohort study	at birth	Congenital anomalies (did not specify): n=9 born to GDM mothers (n=174); n=2 born to non-GDM mothers.				
6. Anthropometry, Blood	India	20	24944938	Mahalakshmi et al.	2014	Retrospective cohort study	at birth	Congenital anomalies (did not specify): n=9 born to GDM mothers (n=174); n=2 born to non-GDM mothers.				
7. Anthropometry, Blood	Bangladesh	11	http://doi.org/10.3329/jom.v13i2.12749	Mannan et al.	2012	Cross-sectional study	at birth	Congenital anomalies (did not specify): n=9 born to GDM mothers (n=174); n=2 born to non-GDM mothers.				
8. Anthropometry, Blood	India	20	24944938	Mahalakshmi et al.	2014	Retrospective cohort study	at birth	Congenital anomalies (did not specify): n=9 born to GDM mothers (n=174); n=2 born to non-GDM mothers.				
9. Anthropometry, Blood	Bangladesh	11	http://doi.org/10.3329/jom.v13i2.12749	Mannan et al.	2012	Cross-sectional study	at birth	Congenital anomalies (did not specify): n=9 born to GDM mothers (n=174); n=2 born to non-GDM mothers.				
Multiple variable adjustment												
1. Anthropometry, Blood	China	26	33633685	Du et al.	2021	Prospective cohort	1 year old	Maternal age, family history of diabetes, parity, gestational weight gain, pre-pregnancy BMI, maternal gestational hypertension, GA, birth weight, birth length, mode of delivery, parental Maternal GDM was found to be independently and significantly associated with overweight or obesity in 1-year aged female offspring only (OR 1.61, 95% CI 1.09–2.37, p < 0.05).				
2. Neuro-Cognitive Structure and Function	China	25	33196602	Xuan et al.	2020	Case-control	First 33-day after delivery	Fractional anisotropy was significantly decreased in the splenium of corpus callosum, posterior limb of internal capsule, thalamus in infants born to GDM mothers, reflecting microstructural white matter abnormalities in the GDM group.				
3. Anthropometry, Blood	China	24	26071138	Liu et al.	2015	Retrospective cohort study	6 months	Congenital heart disease: n=206 born to GDM mothers (n=3060); n=17371 born to non-GDM mothers (n=87736).				
4. Neuro-Cognitive Structure and Function	Bangladesh	11	http://doi.org/10.3329/jom.v13i2.12749	Mannan et al.	2012	Cross-sectional study	at birth	Congenital anomalies (did not specify): n=9 born to GDM mothers (n=174); n=2 born to non-GDM mothers.				
5. Anthropometry, Blood	India	20	24944938	Mahalakshmi et al.	2014	Retrospective cohort study	at birth	Congenital anomalies (did not specify): n=9 born to GDM mothers (n=174); n=2 born to non-GDM mothers.				
6. Anthropometry, Blood	Bangladesh	11	http://doi.org/10.3329/jom.v13i2.12749	Mannan et al.	2012	Cross-sectional study	at birth	Congenital anomalies (did not specify): n=9 born to GDM mothers (n=174); n=2 born to non-GDM mothers.				
7. Anthropometry, Blood	India	20	24944938	Mahalakshmi et al.	2014	Retrospective cohort study	at birth	Congenital anomalies (did not specify): n=9 born to GDM mothers (n=174); n=2 born to non-GDM mothers.				
8. Anthropometry, Blood	Bangladesh	11	http://doi.org/10.3329/jom.v13i2.12749	Mannan et al.	2012	Cross-sectional study	at birth	Congenital anomalies (did not specify): n=9 born to GDM mothers (n=174); n=2 born to non-GDM mothers.				
9. Anthropometry, Blood	India	20	24944938	Mahalakshmi et al.	2014	Retrospective cohort study	at birth	Congenital anomalies (did not specify): n=9 born to GDM mothers (n=174); n=2 born to non-GDM mothers.				
Multiple variable adjustment												
1. Anthropometry, Blood	China	26	33633685	Du et al.	2021	Prospective cohort	1 year old	Maternal age, family history of diabetes, parity, gestational weight gain, pre-pregnancy BMI, maternal gestational hypertension, GA, birth weight, birth length, mode of delivery, parental Maternal GDM was found to be independently and significantly associated with overweight or obesity in 1-year aged female offspring only (OR 1.61, 95% CI 1.09–2.37, p < 0.05).				
2. Neuro-Cognitive Structure and Function	China	25	33196602	Xuan et al.	2020	Case-control	First 33-day after delivery	Fractional anisotropy was significantly decreased in the splenium of corpus callosum, posterior limb of internal capsule, thalamus in infants born to GDM mothers, reflecting microstructural white matter abnormalities in the GDM group.				
3. Anthropometry, Blood	China	24	26071138	Liu et al.	2015	Retrospective cohort study	6 months	Congenital heart disease: n=206 born to GDM mothers (n=3060); n=17371 born to non-GDM mothers (n=87736).				
4. Neuro-Cognitive Structure and Function	Bangladesh	11	http://doi.org/10.3329/jom.v13i2.12749	Mannan et al.	2012	Cross-sectional study	at birth	Congenital anomalies (did not specify): n=9 born to GDM mothers (n=174); n=2 born to non-GDM mothers.				
5. Anthropometry, Blood	India	20	24944938	Mahalakshmi et al.	2014	Retrospective cohort study	at birth	Congenital anomalies (did not specify): n=9 born to GDM mothers (n=174); n=2 born to non-GDM mothers.				
6. Anthropometry, Blood	Bangladesh	11	http://doi.org/10.3329/jom.v13i2.12749	Mannan et al.	2012	Cross-sectional study	at birth	Congenital anomalies (did not specify): n=9 born to GDM mothers (n=174); n=2 born to non-GDM mothers.				
7. Anthropometry, Blood	India	20	24944938	Mahalakshmi et al.	2014	Retrospective cohort study	at birth	Congenital anomalies (did not specify): n=9 born to GDM mothers (n=174); n=2 born to non-GDM mothers.				
8. Anthropometry, Blood	Bangladesh	11	http://doi.org/10.3329/jom.v13i2.12749	Mannan et al.	2012	Cross-sectional study	at birth	Congenital anomalies (did not specify): n=9 born to GDM mothers (n=174); n=2 born to non-GDM mothers.				
9. Anthropometry, Blood	India	20	24944938	Mahalakshmi et al.	2014	Retrospective cohort study	at birth	Congenital anomalies (did not specify): n=9 born to GDM mothers (n=174); n=2 born to non-GDM mothers.				
Offspring outcomes	Country	No	PMID or Doi	Author Year	Study design	Mean or range of follow-up	Total offspring number and outcomes definition	Baseline maternal age,&offspring age	Multiple variable adjustment	Effect size (referencing to non-GDM mothers)		
--------------------	---------	----	-------------	-------------	--------------	---------------------------	---	---------------------------------	-------------------------------	---		
pressure, and CV risks	27	32861332	Liang et al, 2020	Case-control	6 years old	matched with offspring gender. Case-control	smoking, breastfeeding status, weaning months. 560 infants born to GDM mothers; 554 infants born to non-GDM mothers matched with age and sex-frequency	Mom: 30.0 years Offspring: 6 years old	Children born to GDM mothers had consistently greater BMI z-score and risk of overweight from year 1 to year 6.			
	28	30181654	Wang et al. 2019	Prospective cohort	1-6 years old	1500 born to GDM mothers, 2565 born to non-GDM mothers N.A.	Maternal age and ppBMI, education, smoking status, infant feeding and total GA.	N.A.	Children born to GDM mothers had consistently greater BMI z-score and risk of overweight from year 1 to year 6.			
	29	28120666	Zhang et al. 2017	Cross-sectional study	1-5 years old	1263 born to GDM mothers Childhood obesity: n=128 Childhood central obesity: n=126 Childhood hypertension: n=126	Maternal age and ppBMI, education, smoking status, infant feeding and total GA.	N.A.	Children born to GDM mothers had consistently greater BMI z-score and risk of overweight from year 1 to year 6.			
	8	26496961	Zhao et al. 2015	Prospective cohort	5-10 years old	Childhood overweight: n=177 born to GDM mothers (n=1068); n=221 born to non-GDM mothers (n=1756). Childhood obesity: n=114 born to GDM mothers (n=1068); n=210 born to non-GDM mothers (n=1756).	Maternal ppBMI, child gender, total GA, infant feeding.	N.A.	Children born to GDM mothers had consistently greater BMI z-score and risk of overweight from year 1 to year 6.			
	30	25716565	Chang et al. 2015	6 years	Crude model	Maternal age and ppBMI, education, smoking status, infant feeding and total GA.	Maternal age and ppBMI, education, smoking status, infant feeding and total GA.	N.A.	Children born to GDM mothers had consistently greater BMI z-score and risk of overweight from year 1 to year 6.			
Offspring outcomes	Country	No	PMID or Doi	Author	Year	Study design	Mean or range of follow-up	Total offspring number and outcomes definition	Baseline maternal age,&offspring age	Multiple variable adjustment	Effect size (referencing to non-GDM mothers)	
-------------------	---------	----	-------------	--------	------	--------------	---------------------------	---	---------------------------------	-----------------------------------	---------------------------------	
		31	24689042	Liu et al.	2014	Prospective cohort	at 1 year	1420 born to GDM mothers, 2573 born to non-GDM mothers.	Mom: 29.2 years	Offspring: birth, 3 months, 6 months, 9 months, 12 months	Crude model	Children born to GDM mothers had higher BMI (15.8 vs. 12.3, p=0.001), higher sum of skinfold (Subscapular skinfold thickness + Triceps skinfold thickness) (8.2 vs. 4.8cm, p=0.03), compared with those born to non-GDM mothers.
		32	22160003	Andegiorgish et al.	2012	Cross-sectional study	N.A.	Childhood overweight: n=15 born to GDM mothers (n=24); n=518 born to non-GDM mothers (n=1527).	Mom: Did not mention	Offspring: 7-11 years & 12-18 years	Paternal obesity and maternal obesity.	Children born to GDM mothers had higher rate of overweight (2.8% vs. 0.9%, p=0.003), compared with those born to non-GDM mothers. Children born to GDM mother had a higher risk of overweight (OR: 2.76; 95% CI: 1.11–6.87).
		33	2977227	Hui et al.	2018	Prospective cohort	Month 3-year 16	539 born to GDM mothers, 6758 born to non-GDM mothers N.A.	Mom: ≤24 yrs: 7.3%, 25-34 yrs: 27%, 30-34 yrs: 40%, ≥35 yrs: 26%	Offspring: 3 and 9 months, 2-8 years, 8-16 years	Maternal age and birth place, SES, parental education, presence of PE, maternal smoking and BMI at visit, history of T2D, Child sex, parity and age at visit.	Children born to GDM mothers had a lower BMI z-score during infancy (p=0.13, 95% confidence interval (CI) -0.22, -0.05) but higher BMI z-scores during childhood (0.14, 95% CI 0.03, 0.25) and adolescence (0.25 95% CI 0.11, 0.38). Breastfeeding for the first three months did not modify the association.
		34	28279981	Tam et al.	2017	Prospective cohort	7 years	Childhood overweight or obesity (BMI≥85th percentile): n=30 born to GDM mothers (n=123); n=121 born to non-GDM mothers (n=803).	Mom: Did not mention	Offspring: 6.9 years	Crude model	Offspring born to GDM mothers had higher rates of abnormal glucose tolerance (4.7% vs. 1.7%; p = 0.04), higher rates of overweight or obesity, greater BMI, higher blood pressure, lower oral disposition index, and a trend toward reduced b-cell function, compared with those born to mothers without GDM.
		35	19047239	Tam et al.	2008	Prospective cohort	8 years	63 born to GDM mothers, 101 born to non-GDM mothers	Mom: 28.5 years	Offspring: 7.7 years	Child age and gender.	Children born to GDM mothers had higher SBP (94 vs 88 mm Hg) and DBP (62 vs 57 mm Hg) and lower HDL (1.58 vs 1.71 mmol/L) levels, compared with those born to non-GDM mothers.
Offspring outcomes	Country	No	PMID or Doi	Author	Year	Study design	Mean or range of follow-up	Total offspring number and outcomes definition	Baseline maternal age, & offspring age	Multiple variable adjustment	Effect size (referencing to non-GDM mothers)	
-------------------	---------	----	-------------	--------	------	--------------	----------------------------	---	--	-------------------------------	---	
											Children born to GDM mothers had higher insulin level (54.3 vs. 42.5 pmol/L, p=0.02), higher SBP (mean difference: 5.96; 2.10-9.82) and higher insulin resistance (2.0 vs. 1.6, p=0.02) than those born to non-GDM mothers. Children born to GDM mothers had higher cardiac output (0.49, 0.26-0.72), stroke volume 3.98 (2.00, 5.97) and lower total peripheral resistance (-114; -220~9), compared with those born to non-GDM mothers. Children born to GDM mothers had more adiposity and higher SBP and insulin resistance, compared with control children at age 5 years. And such effects were greater at age 9.5 years. GDM remained significantly associated with offspring 17-year BMI (1.17; 0.81, 1.52) and diastolic BP (1.52; 0.56, 2.48).	
											Children born to GDM mothers had higher median BMI (17.8 vs 16.1, p<0.001), waist circumference 83 cm vs 59.3 cm, p< 0.001, and triceps skinfold thickness (13.7mm vs 11.2 mm, p< 0.001), and also higher risk of overweight (OR: 2.6, 95% CI 1.4-4.9) and abdominal obesity (OR:2.7, 95% CI 1.1-6.9) at the age of 10-11 years.	
											Children born to GDM mothers with medication had a decreased mitral E/A ratio [IQR] = 1.7 [1.6-1.9] and 1.56 [1.4-1.7], respectively, p = 0.02, compared with those born to GDM mothers treated by diet only, and also a higher cIMT (0.48 vs. 0.46, p = 0.03), compared with those born to non-GDM mothers. There was no significant difference in offspring cardiac morphology, myocardial systolic and diastolic function, and macrovascular assessment GDM and non-GDM groups. Children born to GDM mothers had significant higher learning, long-term retrieval/storage (β: 0.45D, 95% CI: 0.01-0.75; p=0.042) and better verbal ability (0.59D, 0.09-0.83; p=0.015). Young adults born to GDM mothers treated by medication had higher risk of offspring ophthalmic related hospitalization (HR: 1.6, 95% CI: 1.1-2.4) compared with non GDM mothers.	

TABLE 2 | Continued

Offspring outcomes	Country	No	PMID or Doi	Author	Year	Study design	Mean or range of follow-up	Total offspring number and outcomes definition	Baseline maternal age, & offspring age	Multiple variable adjustment	Effect size (referencing to non-GDM mothers)
											Children born to GDM mothers had higher insulin level (54.3 vs. 42.5 pmol/L, p=0.02), higher SBP (mean difference: 5.96; 2.10-9.82) and higher insulin resistance (2.0 vs. 1.6, p=0.02) than those born to non-GDM mothers. Children born to GDM mothers had higher cardiac output (0.49, 0.26-0.72), stroke volume 3.98 (2.00, 5.97) and lower total peripheral resistance (-114; -220~9), compared with those born to non-GDM mothers. Children born to GDM mothers had more adiposity and higher SBP and insulin resistance, compared with control children at age 5 years. And such effects were greater at age 9.5 years. GDM remained significantly associated with offspring 17-year BMI (1.17; 0.81, 1.52) and diastolic BP (1.52; 0.56, 2.48).
											Children born to GDM mothers had higher median BMI (17.8 vs 16.1, p<0.001), waist circumference 83 cm vs 59.3 cm, p< 0.001, and triceps skinfold thickness (13.7mm vs 11.2 mm, p< 0.001), and also higher risk of overweight (OR: 2.6, 95% CI 1.4-4.9) and abdominal obesity (OR:2.7, 95% CI 1.1-6.9) at the age of 10-11 years.
											Children born to GDM mothers with medication had a decreased mitral E/A ratio [IQR] = 1.7 [1.6-1.9] and 1.56 [1.4-1.7], respectively, p = 0.02, compared with those born to GDM mothers treated by diet only, and also a higher cIMT (0.48 vs. 0.46, p = 0.03), compared with those born to non-GDM mothers. There was no significant difference in offspring cardiac morphology, myocardial systolic and diastolic function, and macrovascular assessment GDM and non-GDM groups. Children born to GDM mothers had significant higher learning, long-term retrieval/storage (β: 0.45D, 95% CI: 0.01-0.75; p=0.042) and better verbal ability (0.59D, 0.09-0.83; p=0.015). Young adults born to GDM mothers treated by medication had higher risk of offspring ophthalmic related hospitalization (HR: 1.6, 95% CI: 1.1-2.4) compared with non GDM mothers.

2. Cognitive function

Country	No	PMID or Doi	Author	Year	Study design	Mean or range of follow-up	Total offspring number and outcomes definition	Baseline maternal age, & offspring age	Multiple variable adjustment	Effect size (referencing to non-GDM mothers)	
India	41	20614102	Veena et al.	2010	Prospective cohort	9.7 years	32 born to GDM mothers, 483 born to non-GDM mothers	Mom: 26.0 years Offspring: 9.7 years	Child’s age, sex, gestation, neonatal weight and head circumference, maternal age, parity, BMI, parent’s socio-economic status, education and rural/urban residence.	Crude model	Children born to GDM mothers had higher learning, long-term retrieval/storage (β: 0.45D, 95% CI: 0.01-0.75; p=0.042) and better verbal ability (0.59D, 0.09-0.83; p=0.015). Young adults born to GDM mothers treated by medication had higher risk of offspring ophthalmic related hospitalization (HR: 1.6, 95% CI: 1.1-2.4) compared with non GDM mothers.

3. Endocrinological and Ophthalmological morbidity

Country	No	PMID or Doi	Author	Year	Study design	Mean or range of follow-up	Total offspring number and outcomes definition	Baseline maternal age, & offspring age	Multiple variable adjustment	Effect size (referencing to non-GDM mothers)	
Israel	15	29429074	Walter et al.	2019	Retrospective cohort study	18 years	11999 born to GDM mothers, 226623 born to non-GDM mothers	Mom: 30.8 years Offspring: 2-5 years	Child’s age, sex, gestation, neonatal weight and head circumference, maternal age, parity, BMI, parent’s socio-economic status, education and rural/urban residence.	Crude model	Children born to GDM mothers had significant higher learning, long-term retrieval/storage (β: 0.45D, 95% CI: 0.01-0.75; p=0.042) and better verbal ability (0.59D, 0.09-0.83; p=0.015). Young adults born to GDM mothers treated by medication had higher risk of offspring ophthalmic related hospitalization (HR: 1.6, 95% CI: 1.1-2.4) compared with non GDM mothers.
Offspring outcomes	Country	No	PMID or Doi	Author	Year	Study design	Mean or range of follow-up	Total offspring number and outcomes definition	Baseline maternal age, & offspring age	Multiple variable adjustment	Effect size (referencing to non-GDM mothers)
-------------------	---------	----	-------------	-------------------	------	--------------	---------------------------	---	--	-------------------------------------	--
	Israel	42	31117838	Shorer et al.	2019	Retrospective cohort study	18 years	9312 SGA infants: 259 born to GDM mothers, 9053 born to non-GDM mothers. Among all SGA offspring: Thyroid disease: n=0 born to GDM mothers; n=8 born to non-GDM mothers. T1D and T2D: n=0 born to GDM mothers; n=7 born to non-GDM mothers. Hypoglycemia: n=1 born to GDM mothers; n=19 born to non-GDM mothers. Childhood obesity: n=1 born to GDM mothers; n=7 born to non-GDM mothers. Parathyroid hormone disease: n=0 born to GDM mothers; n=3 born to non-GDM mothers. Adrenal hormone disease: n=0 born to GDM mothers; n=2 born to non-GDM mothers.	Mom: 28.9 years Offspring: 18 years	Maternal hypertensive disorders, preterm birth, and maternal age	SGA children born to GDM mothers was not associated with higher risk of long-term endocrine morbidity of the offspring (adjusted HR 1.2, 95% confidence interval 0.27–5.00, p=0.82).

GDM, gestational diabetes mellitus; DM, diabetes mellitus; HC, head circumference; AC, abdomen circumference; FL, femur length; BPD, biparietal diameter; BMI, body mass index; LGA, large for gestational age; OR, odds ratios; OGTT, oral glucose tolerance test; CAKUT, congenital anomalies of the kidney and urinary tract; SD, standard deviation; HR, hazard ratio; BP, blood pressure; cIMT, carotid intima media thickness.
the vicious circle of “diabetes begetting diabetes” and improve the health and well-being of this and future generations.

1. Conducting large scale well-designed cohort studies and/or consortium networks among Asians to investigate risk factors and etiology of GDM. A better understanding of GDM pathogenesis specific to Asian women shall further enhance our knowledge on the unique GDM characteristics among Asian women and develop more targeted and effective intervention approaches to prevent GDM and interrupt the transgenerational diabetic vicious cycle. However, such GDM heterogeneity-specific maternal health outcomes in Asians are still limited in scope, let alone other elements of the potential impact such as genetic factors and fetal sex. Future endeavors to establish parallel prospective pregnancy cohorts—with longitudinal data collection and comprehensive characterization of metabolic profiles through pregnancy in different Asian regions—are warranted to understand biological differences across Asian ethnicities, identify determinants and even develop prediction models for GDM onset and its phenotype-specific transgenerational health outcomes.

2. Conducting prospective cohort studies and/or intervention studies to follow up both GDM women and their offspring following the index pregnancy to identify factors that may mitigate the adverse impact of GDM on both women and their children. With the increasing awareness of the GDM burden and subsequent adverse health outcomes in Asian women and their offspring, a few large-scale ongoing pre-conception and pregnancy trials have focused on lifestyle intervention in Asia, such as Project SARAS in Mumbai (98) and the VINAVAC study in Vietnam (99). However, inferences from these two trials are inconsistent, which might be hindered by participants’ low compliance, including low uptake rate of OGTT, poor quality of data collection (e.g., physical examination, questionnaires administration) during research visits, and not quantitative constituents in the snack or freshly-prepared food given to the intervention group (98, 99). In terms of postpartum trials, substantial evidence in either lifestyle modifications (100) or pharmacological therapies (101–103) gathered from developed countries has shown promising results. However, intervention studies with customized approaches (e.g., diet recommendation, lifestyle modification) according to the Asian population are much fewer in scope than the Western population. Recently, there have been some improvements, including a few postpartum T2D prevention trials conducted in countries like China (100, 104), Singapore (105), Malaysia (106), and India (107), focusing on lifestyle modification, with a sample range between 77 and 1 414 and a length of follow-up up to 10 years. However, most of them are still ongoing, and only two trials reported more significant weight loss, reduction in waist circumference, and improved glucose tolerance during the 6-12 months’ postpartum period (104, 106).

3. Conducting studies of Health Disparities in GDM Care in Asian Populations across countries and continents. Even though developing countries in Asia (e.g., India) have shown increased life expectancy over the past several decades, health inequity is still a severe national issue as progress is uneven within each country (108). Furthermore, not all but a substantial proportion of Asian migrants in Western countries face socio-economical disadvantages such as access to health care and education (109). Among them, women seem to be more affected than men due to their vulnerability (109). Therefore, the fight against GDM and its harm to Asian mothers and children should account for existing health inequity and develop strategies to address health disparities.

4. Health Care System Improvement in Asia. Emerging evidence has pointed out that a portion of GDM cases was indeed overt diabetes that has not been identified before pregnancy, which ultimately drives the risk of maternal and offspring health outcomes even higher (110). For example, collecting information on pre-existing maternal diabetes or overt diabetes identification during early pregnancy in the Asian health care system is critical to screen for and even prevent offspring congenital abnormality or other adverse fetal and neonatal health outcomes. Ideally, GDM rates in the population could be reduced by individual and societal measures designed to promote healthy lifestyle changes, including optimal dietary intake and increased physical activity in the general population, focusing on the health and fitness of women of reproductive age.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

L-JL contributed to the review’s framework conceptualization, study, design, literature research, data collection, analysis and interpretation, and manuscript write-up; LH contributed to literature search, data collection and summary; DT contributed to data interpretation and manuscript editing; CZ contributed to the review’s framework conceptualization, study design, data interpretation and manuscript editing. All authors contributed to the article and approved the submitted version.

FUNDING

L-JL is funded by Singapore National Medical Research Council Clinician Science Award 2021 (NMRC CSAINV/002/2021).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fendo.2022.840331/full#supplementary-material

Supplementary Figure 1 | Flow diagram of search strategy and selection of GDM prevalence in the Asian population including Native Asians and Asian migrants.
Supplementary Figure 2 | Flow diagram of search strategy and selection of GDM-related maternal postpartum health outcomes in the Asian population including Native Asians and Asian migrants.

REFERENCES

1. Collaboration NCDRF. Worldwide Trends in Diabetes Since 1980: A Pooled Analysis of 751 Population-Based Studies With 4.4 million participants. Lancet (2016) 387(10027):1513–30. doi: 10.1016/S0140-6736 (16)00618-8

2. International Diabetes Federation. IDF Diabetes ATLAS 9th Edition 2019 (2019). Available at: https://www.idf.org/our-activities/care-prevention/gdm.

3. McIntyre, Y, CID, Catalano, P, Ling, C, Desoye, G, Mathiesen, ER, Damm, P. Gestational Diabetes Mellitus. Nat Rev Dis Primers (2019) 5(1):47. doi: 10.1038/s41572-019-0098-8

4. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohrrogge AW, et al. IDF Diabetes Atlas: Global Estimates of Diabetes Prevalence for 2017 and Projections for 2045. Diabetes Res Clin Pract (2018) 138:271–81. doi: 10.1016/j.diabres.2018.02.023

5. Yoge Y, Xenakis EM, Langer O. The Association Between Preecclampsia and the Severity of Gestational Diabetes: The Impact of Glycemic Control. Am J Obstet Gynecol (2004) 191(5):655–60. doi: 10.1016/j.ajog.2004.03.074

6. Group HSCR, Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, et al. Hyperglycemia and Adverse Pregnancy Outcomes. N Engl J Med (2008) 358(19):1991–2002. doi: 10.1056/NEJmoa0707943

7. Clausen TD, Mathiesen ER, Hansen T, Jensen DM, Lauenborg J, et al. High Prevalence of Type 2 Diabetes and Pre-Diabetes in Adult Offspring of Women With Gestational Diabetes Mellitus or Type 1 Diabetes: The Role of Intrauterine Hyperglycemia. Diabetes Care (2008) 31(2):340–6. doi: 10.2337/dc07-1596

8. Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 Diabetes Mellitus After Gestational Diabetes: A Systematic Review and Meta-Analysis. Lancet (2009) 373(9677):1773–9. doi: 10.1016/S0140-6736(09)60731-5

9. Basu K, Leung, CT, Catalano, P, Liu FB, Vaag AA, Chavanaro JE, et al. Long-Term Risk of Type 2 Diabetes Mellitus in Relation to BMI and Weight Change Among Women With A History of Gestational Diabetes Mellitus: A Prospective Cohort Study. Diabetologia (2015) 58(6):1212–9. doi: 10.1007/s00125-015-3537-4

10. Ley SH, Chavaro JE, Li M, Bao W, Hinkle SN, Wander PL, et al. Lactation Duration and Long-Term Risk for Incident Type 2 Diabetes in Women With a History of Gestational Diabetes Mellitus. Diabetes Care (2020) 43(4):793–8. doi: 10.2337/dc19-2237

11. Eyal S. Gestational Diabetes Mellitus: Long-Term Consequences for the Mother and Child Grand Challenge: How to Move on Towards Secondary Prevention? Front Clin Diabetes Healthc (2020) 1(546256). doi: 10.3389/fcddhc.2020.546256

12. World Migration Report 2020 (2020). Available at: https://publications.iom.int/system/files/pdf/wmr_2020pdf (Accessed on 24 Aug 2021).

13. Wells BS GA, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P. 17. Committee Opinion No. 504: Screening and Diagnosis of Gestational Diabetes Mellitus. Obstet Gynecol (2011) 118(3):751–3. doi: 10.1097/AOOG.0b013e1823310cc3

Supplementary Figure 3 | Flow diagram of search strategy and selection of GDM-related offspring postpartum health outcomes in the Asian population including Native Asians and Asian migrants.

14. Yang HX. Diagnostic Criteria for Gestational Diabetes Mellitus (WS 331-2011). Chin Med J (Engl) (2012) 125(7):1212–3. doi: 10.2337/dc10-0572

15. Malaysia MoH. Perinatal Care Manual 3rd Edition. Putrajaya, Malaysia: Division of Family Health Development, MOH (2013). p. 251.

16. Kuzuya T, Nakagawa S, Satoh J, Kanazawa Y, Iwamoto Y, Kobayashi M, et al. Report of the Committee on the Classification and Diagnostic Criteria of Diabetes Mellitus. Diabetes Res Clin Pract (2002) 55(1):65–85. doi: 10.1016/S0168-8227(01)00365-5

17. Stolz V, Das AK, Balaji V, Joshi SR, Parikh MN, Gupta S, et al. Gestational Diabetes Mellitus–Guidelines. J Assoc Physicians India (2006) 54:622–8.

18. Parhofer KG, Hasbargen U, Ullgerdetiyewa A, Abdullayewa M, Melebayewa B, Annamahmedov A, et al. Gestational Diabetes in Turkmenistan: Implementation of a Screening Program and First Results. Arch Gynec Obstet (2014) 289(2):293–8. doi: 10.1007/s00404-013-2961-2

19. Abu-Heijia AT, Al-Bash M, Mathew M. Gestational and Prepregnancy Gestational Diabetes Mellitus in Oman Women: Comparison of Obstetric and Perinatal Outcomes. Sultan Qaboos Univ Med J (2015) 15(4):496–500. doi: 10.18295/squmj.2015.15.00409

20. Khalil A, Rezende J, Akolaker R, Syngelaki A, Nicolaides KH, Maternal Racial Origin and Adverse Pregnancy Outcome: A Cohort Study. Ultrasound Obstet Gynecol (2013) 41(3):278–85. doi: 10.1002/uog.12133

21. Jenum AK, Morkrid K, Sletner L, Vangen S, Torper JL, Nakstad B, et al. Impact of Ethnicity on Gestational Diabetes Identified With the WHO and the Modified International Association of Diabetes and Pregnancy Study Groups Criteria: A Population-Based Cohort Study. Eur J Endocrinol (2012) 166(2):317–24. doi: 10.1530/EJE-11-0866

22. Kraglund Nielsen K, Andersen GS, Damm P, Andersen AS. Gestational Diabetes Risk in Migrants. A Nationwide, Register-Based Study of All Births in Denmark 2004 to 2015. J Clin Endocrinol Metab (2020) 105(3). doi: 10.1210/clinem/dgaa024

23. Janetic V, Zeitlin J, Egorova N, Balbierz A, Howell EA. The Role of Obesity in the Risk of Gestational Diabetes Among Immigrant and U.S.-Born Women in New York City. Ann Epidemiol (2018) 28(4):242–8. doi: 10.1016/j.annepidem.2018.02.006

24. Mai C, Wang B, Wen J, Lin X, Niu J. Lipoprotein-Associated Phospholipase A2 and AGEs Are Associated With Cardiovascular Risk Factors in Women With History of Gestational Diabetes Mellitus. Gynecol Endocrinol (2014) 30(3):241–4. doi: 10.1080/09513590.2013.871522

25. Shek NW, Ngai CS, Lee CP, Chan JY, Lao TT. Lifestyle Modifications in the Development of Diabetes Mellitus and Metabolic Syndrome in Chinese Women Who Had Gestational Diabetes Mellitus: A Randomized Interventional Trial. Arch Gynecol Obstet (2014) 289(2):319–27. doi: 10.1007/s00404-013-2971-0

26. Tam WH, Ma RC, Yang X, Ko GT, Lao TT, Chan MH, et al. Cardiometabolic Risk in Chinese Women With Prior Gestational Diabetes: A 15-Year Follow-Up Study. Gynecol Obest Invest (2012) 73(2):168–76. doi: 10.1159/000329339

27. Kondo M, Nagao Y, Mahbub MH, Tanabe T, Tanizawa Y. Factors Predicting Early Postpartum Glucose Intolerance in Japanese Women With Gestational Diabetes Mellitus: Decision-Curve Analysis. Diabetes Med (2018) 35(8):1111–7. doi: 10.1111/dme.13657

28. Kugishima Y, Yasuhi I, Yamashita H, Fukuoka M, Kuzume A, Sugimi S, et al. Risk Factors Associated With Abnormal Glucose Tolerance in the Early Postpartum Period Among Japanese Women With Gestational Diabetes. Int J Gynaecol Obstet (2015) 129(1):42–5. doi: 10.1016/j.ijgo.2014.09.030

29. Hewage SS, Koh XYH, Soh SE, Pang WW, Fok D, Cai S, et al. Breastfeeding Duration and Development of Dysglycemia in Women Who Had Gestational Diabetes Mellitus: Evidence From the Gusto Cohort Study. Nutrients (2021) 13(2):408. doi: 10.3390/nu13020408

30. Malong CL, Sia-Atanacio A, Andag-Silva A, Cunanan E. Incidence of Postpartum Diabetes and Glucose Intolerance Among Filipino Patients With Gestational Diabetes Mellitus Seen at a Tertiary Hospital. J ASEAN Fed Endoctr Soc (2013) 28(1):56.
35. Valizadeh M, Alavi N, Mazloomzadeh S, Piri Z, Amirmoghadam H. The Risk Factors and Incidence of Type 2 Diabetes Mellitus and Metabolic Syndrome in Women With Previous Gestational Diabetes. Int J Endocrinol Metab (2015) 13(2):e21696. doi: 10.5812/ijem.21696

36. Fuchs O, Sheiner E, Metzovitz M, Davidson E, Sergienko R, Shoham-Vardi I. An Association Between Gestational Diabetes Mellitus and Long-Term Maternal Cardiovascular Morbidity. Heart (2013) 99(15):1118–21. doi: 10.1136/hrtjnl-2013-303945

37. Kessous R, Shoham-Vardi I, Pariente G, Sherf M, Sheiner E. An Association Between Gestational Diabetes Mellitus and Future Cardiovascular Risk: A Systematic Review and Meta-Analysis of Observational Studies. Diabetes Metab (2010) 36(6):461–71. doi: 10.1016/j.dianet.2010.02.003

38. Valizadeh M, Alavi N, Mazloomzadeh S, Piri Z, Amirmoghadam H. The Risk Factors and Incidence of Type 2 Diabetes Mellitus and Metabolic Syndrome in Women With Previous Gestational Diabetes. Int J Endocrinol Metab (2015) 13(2):e21696. doi: 10.5812/ijem.21696

39. Pei L, Xiao H, Lai F, Li Z, Li Z, Yue S, et al. Early Postpartum Dyslipidemia. Arch Gynecol Obstet (2017) 295(3):731–6. doi: 10.1007/s00404-016-4275-7

34. Prados M, Flores-Le Roux JA, Benaiges D, Llaurado G, Chillaron JJ, Paya A, et al. Association Between Hypertensive Disorders of Pregnancy and the Risk of Postpartum Hypertension: A Cohort Study in Women With Gestational Diabetes. J Hum Hypertens (2017) 31(11):725–30. doi: 10.1038/jhh.2017.46

41. World Health Organization. Definition DaCoDMaCuRoAWC. Part 1: Diagnosis and Classification of Diabetes Mellitus. Geneva: World Health Organization. (1999). Available at: https://apps.who.int/iris/bitstream/handle/10655/66040/WHO_NCD_NCS_9992pdftextsequence=1&isAllowed=y

53. Burilna S, Daltra MG, Chilceni NC, Lapolla A. Gestational Diabetes Mellitus and Future Cardiovascular Risk: An Update. Int J Endocrinol (2016) 2016:2070926. doi: 10.1155/2016/2070926

42. Di Cianni G, Lencioni C, Volpe L, Ghio A, Cucurru I, Pellegrini G, et al. C-Reactive Protein and Metabolic Syndrome in Women With Previous Gestational Diabetes. Diabetes Metab Res Rev (2007) 23(2):135–40. doi: 10.1002/dmr.661

32. Perrin MC, Terry MB, Kleinhaus K, Deutsch L, Yanetz R, Tiram E, et al. Gestational Diabetes and the Risk of Breast Cancer Among Women in the Jerusalem Perinatal Study. Breast Cancer Res Treat (2008) 108(1):129–35. doi: 10.1007/s10549-007-9585-9

50. Carr DB, Utschneider KM, Hull RL, Tong J, Wallace TM, Kodama K, et al. Gestational Diabetes Mellitus Increases the Risk of Cardiovascular Disease in Women With a Family History of Type 2 Diabetes. Diabetes Care (2006) 29(7):1738–43. doi: 10.2337/dci05-1282

44. Prados M, Flores-Le Roux JA, Benaiges D, Llaurado G, Chillaron JJ, Paya A, et al. Gestational Diabetes Mellitus in a Multiethnic Population in Spain: Incidence and Factors Associated to Impaired Glucose Tolerance One Year After Delivery. Endocrinol Diabetes Nutr (2019) 66(4):240–6. doi: 10.1016/j.endinu.2018.07.007

45. Di Cianni G, Lencioni C, Volpe L, Ghio A, Cucurru I, Pellegrini G, et al. C-Reactive Protein and Metabolic Syndrome in Women With Previous Gestational Diabetes. Diabetes Metab Res Rev (2007) 23(2):135–40. doi: 10.1002/dmr.661

46. Bo S, Valpreda S, Menato G, Bardelli C, Botto C, Gambino R, et al. Should We Consider Gestational Diabetes a Vascular Risk Factor? Atherosclerosis (2007) 194(2):72–9. doi: 10.1016/j.atherosclerosis.2006.09.017

48. Perrin MC, Terry MB, Kleinhaus K, Deutsch L, Yanetz R, Tiram E, et al. Gestational Diabetes and the Risk of Breast Cancer Among Women in the Jerusalem Perinatal Study. Breast Cancer Res Treat (2008) 108(1):129–35. doi: 10.1007/s10549-007-9585-9

39. Kessous R, Shoham-Vardi I, Pariente G, Sherf M, Sheiner E. An Association Between Gestational Diabetes Mellitus and Long-Term Maternal Cardiovascular Morbidity. Heart (2013) 99(15):1118–21. doi: 10.1136/hrtjnl-2013-303945

47. Liu X, Xiao H, Lai F, Li Z, Li Z, Yue S, et al. Early Postpartum Dyslipidemia. Arch Gynecol Obstet (2017) 295(3):731–6. doi: 10.1007/s00404-016-4275-7

57. Bellamy L, Caspi JP, Hingorani AD, Williams DJ. Pre-Eclampsia and Risk of Cardiovascular Disease and Cancer in Later Life: Systematic Review and Meta-Analysis. BMJ (2007) 335(7627):974. doi: 10.1136/bmj.39335.385301.BE

40. Kessous R, Shoham-Vardi I, Pariente G, Sherf M, Sheiner E. An Association Between Gestational Diabetes Mellitus and Long-Term Maternal Cardiovascular Morbidity. Heart (2013) 99(15):1118–21. doi: 10.1136/hrtjnl-2013-303945

49. Kessous R, Shoham-Vardi I, Pariente G, Sherf M, Sheiner E. An Association Between Gestational Diabetes Mellitus and Long-Term Maternal Cardiovascular Morbidity. Heart (2013) 99(15):1118–21. doi: 10.1136/hrtjnl-2013-303945

54. Di Cianni G, Lencioni C, Volpe L, Ghio A, Cucurru I, Pellegrini G, et al. C-Reactive Protein and Metabolic Syndrome in Women With Previous Gestational Diabetes. Diabetes Metab Res Rev (2007) 23(2):135–40. doi: 10.1002/dmr.661

55. Wolf I, Sadetzki S, Catane R, Karasik A, Kaufman B. Diabetes Mellitus and Breast Cancer in Patients With Diabetes Mellitus: A Systematic Review and Meta-Analysis. Endocr Pract (2011) 17(4):616–28. doi: 10.4188/EP10353.RA

56. Wolf I, Sadetzki S, Catane R, Karasik A, Kaufman B. Diabetes Mellitus and Breast Cancer. Lancet Oncol (2005) 6(2):103–11. doi: 10.1016/S1470-2045(05)01736-5

57. Bellamy L, Caspi JP, Hingorani AD, Williams DJ. Pre-Eclampsia and Risk of Cardiovascular Disease and Cancer in Later Life: Systematic Review and Meta-Analysis. BMJ (2007) 335(7627):974. doi: 10.1136/bmj.39335.385301.BE

58. Shah BR, Retnakaran R, Booth GL. Increased Risk of Cardiovascular Disease in Young Women Following Gestational Diabetes Mellitus. Diabetes Care (2008) 31(8):1668–9. doi: 10.2337/dc08-0706
Fatty Liver Disease. *Am J Gastroenterol* (2016) 111(5):e58–64. doi: 10.1038/ajg.2016.57

72. Mehra A, Satsangi S, Margolis M, Ye C, Maple-Brown L, Hanley AI, Connelly PW, et al. Hepatic Fat and Glucose Tolerance in Women With Recent Gestational Diabetes. *BMJ Open Diabetes Res Care* (2018) 8(1):e000549. doi: 10.1136/bmjdrc-2018-000549

73. Donnelly SR, Hinkle SN, Rawal S, Grunnet LG, Chavarro JE, Vaag A, et al. Prospective Study of Gestational Diabetes and Fatty Liver Scores 9 to 16 Years After Pregnancy. *J Diabetes* (2019) 11(11):895–905. doi: 10.1111/jmd.12934

74. Forbes S, Taylor-Robinson SD, Patel N, Allan P, Walker BR, Johnston DG. Increased Prevalence of Non-Alcoholic Fatty Liver Disease in European Women With a History of Gestational Diabetes. *Diabetologia* (2011) 54(3):641–7. doi: 10.1007/s00125-010-1999-0

75. Franzago M, Fraticelli F, Stuppia L, Vitacolonna E. Nutrigenetics, Epigenetics and Gestational Diabetes: Consequences in Mother and Child. *Epigenetics* (2019) 14(3):215–35. doi: 10.1080/15592294.2019.1582777

76. Aiken CE, Ozanne SE. Transgenerational Developmental Programming. *Diabetologia* (2011) 54(3):641–7. doi: 10.1007/s00125-010-1999-0

77. Veena SR, Krishnaveni GV, Srinivasan K, Kurpad AV, Muthayya S, Hill JC, et al. Childhood Cognitive Ability: Relationship to Gestational Diabetes Mellitus: Is It Associated With Long-Term Pediatric Ophthalmic Morbidity of the Offspring? *J Matern Fetal Neonatal Med* (2019) 32(15):2529–38. doi: 10.1080/14767058.2018.1439918

78. Liu X, Liu G, Wang P, Huang Y, Liu E, Li D, et al. Prevalence of Congenital Anomalies of the Newborn. *Diabetologia* (2011) 54(3):641–7. doi: 10.1007/s00125-010-1999-0

79. Liu X, Liu G, Wang P, Huang Y, Liu E, Li D, et al. Prevalence of Congenital Heart Disease and Its Related Risk Indicators Among 90,796 Chinese Infants Aged Less Than 6 Months in Tianjin. *Int J Epidemiol* (2015) 44(3):884–93. doi: 10.1093/ije/dyv107

80. Xuan DS, Zhao X, Liu YC, Xing QN, Shang HL, Zhu PY, et al. Brain Development in Infants of Mothers With Gestational Diabetes Mellitus: A Diffusion Tensor Imaging Study. *J Comput Assist Tomogr* (2020) 44(6):947–52. doi: 10.1097.RCT.0000000000001110

81. Krishnaveni GV, Veena SR, Jones A, Srinivasan K, Osmond C, Karat SC, et al. Exposure to Maternal Gestational Diabetes Is Associated With Higher Cardiovascular Responses to Stress in Adolescent Indians. *J Clin Endocrinol Metab* (2015) 100(3):986–93. doi: 10.1210/jc.2014-3239

82. Veena SR, Krishnaveni GV, Srinivasan K, Kurpad AV, Muthyaya S, Hill JC, et al. Childhood Cognitive Ability: Relationship to Gestational Diabetes Mellitus in India. *Diabetologia* (2010) 53(10):2134–8. doi: 10.1007/s00125-010-1999-0

83. Shorer DT, Wainstock T, Spiegel E, Sheiner E. Maternal Gestational Diabetes Mellitus: Is It Associated With Long-Term Pediatric Ophthalmic Morbidity of the Offspring? *J Matern Fetal Neonatal Med* (2019) 32(15):2529–38. doi: 10.1080/14767058.2018.1439918

84. Hoodbhoy Z, Mohammed N, Aslam N, Fatima U, Ashiqali S, Rizvi A, et al. Is the Child at Risk? Cardiovascular Remodelling in Children Born to Diabetic Mothers. *Cardiol Young* (2019) 29(4):467–74. doi: 10.1017/S1047911819000040

85. Verhaar MC, Knroes NV. Diabetes-Induced Congenital Anomalies of the Kidney and Urinary Tract (CALKUT): Nurture and Nature at Work? *Am J Kidney Dis* (2015) 65(5):644–6. doi: 10.1053/j.ajkd.2015.02.320

86. WY, Liu B, Sun Y, Du Y, Santillan MK, Santillan DA, et al. Association of Maternal Prepregnancy Diabetes and Gestational Diabetes Mellitus With Congenital Anomalies of the Newborn. *Diabetes Care* (2020) 43(12):2983–90. doi: 10.2337/cd20-0261

87. Bowers K, Laughon SK, Kiely M, Brite J, Chen Z, Zhang C. Gestational Diabetes, Pre-Pregnancy Obesity and Pregnancy Weight Gain in Relation to Excess Fetal Growth: Variations by Race/Ethnicity. *Diabetologia* (2013) 56(6):1263–71. doi: 10.1007/s00125-013-2881-5

88. Mocarski M, Savitz DA. Ethnic Differences in the Association Between Gestational Diabetes and Pregnancy Outcome. *Matern Child Health J* (2012) 16(2):364–73. doi: 10.1007/s10995-011-0760-6

89. Kosman MW, Eikes SA, van Selst J, Borrie E, van Gemund N, Karsdorp VH, et al. Perinatal Outcomes in Gestational Diabetes in Relation to Ethnicity in the Netherlands. *Neth J Med* (2016) 74(1):22–9.

90. Anand SS, Gupta M, Teo KK, Schulze KM, Desai D, Abdalla N, et al. Causes and Consequences of Gestational Diabetes in South Asians Living in Canada: Results From a Prospective Cohort Study. *CMAJ Open* (2017) 5(3):E604–E11. doi: 10.9781/cmaoj.201700027

91. Knowler WC, Barrett-Connor E, Sattar NA, Cameron N, et al. Association of Maternal Exposures With Adiposity at Age 4.5 Years in White British and Pakistani Children: Findings From the Born in Bradford Study. *Diabetologia* (2018) 61(1):242–52. doi: 10.1007/s00125-017-4457-2

92. Knowler WC, Barrett-Connor E, Sattar NA, Cameron N, et al. The Relationship Between Early Life Modifiable Risk Factors for Childhood Obesity, Ethnicity and Body Mass Index at Age 3 Years: Findings From the Born in Bradford Birth Cohort Study. *BMJ Open* (2015) 2.9. doi: 10.1136/s40608-015-0037-5

93. Faile R, Santorelli G, Lawlor DA, Bryant M, Bhopal R, Petherick ES, et al. The Relationship Between Early Life Modifiable Risk Factors for Childhood Obesity, Ethnicity and Body Mass Index at Age 3 Years: Findings From the Born in Bradford Birth Cohort Study. *BMJ Open* (2015) 2.9. doi: 10.1136/s40608-015-0037-5

94. West J, Santorelli G, Whincup PH, Smith L, Sattar NA, Cameron N, et al. Association of Maternal Exposures With Adiposity at Age 4.5 Years in White British and Pakistani Children: Findings From the Born in Bradford Study. *Diabetologia* (2018) 61(1):242–52. doi: 10.1007/s00125-017-4457-2
105. Lim K, Chi C, Chan SY, Lim SL, Ang SM, Yoong JS, et al. Smart Phone APP to Restore Optimal Weight (SPAROW): Protocol for a Randomised Controlled Trial for Women With Recent Gestational Diabetes. *BMC Public Health* (2019) 19(1):1287. doi: 10.1186/s12889-019-7691-3

106. Shyam S, Arshad F, Abdul Ghani R, Wahab NA, Safi NS, Nisak MY, et al. Low Glycaemic Index Diets Improve Glucose Tolerance and Body Weight in Women With Previous History of Gestational Diabetes: A Six Months Randomized Trial. *Nutr J* (2013) 12:68. doi: 10.1186/1475-2891-12-68

107. Gupta Y, Kapoor D, Josyula LK, Praveen D, Naheed A, Desai AK, et al. A Lifestyle Intervention Programme for the Prevention of Type 2 Diabetes Mellitus Among South Asian Women With Gestational Diabetes Mellitus [LIVING Study]: Protocol for a Randomized Trial. *Diabetes Med* (2019) 36 (2):243–51. doi: 10.1111/dme.13850

108. The L. Taking Urgent Action on Health Inequities. *Lancet* (2020) 395 (10225):659. doi: 10.1016/S0140-6736(20)30455-4

109. Watkinson RE, Sutton M, Turner AJ. Ethnic Inequalities in Health-Related Quality of Life Among Older Adults in England: Secondary Analysis of a National Cross-Sectional Survey. *Lancet Public Health* (2021) 6(3):e145–54. doi: 10.1016/S2468-2667(20)30287-5

110. McIntyre HD, Kapur A, Divakar H, Hod M. Gestational Diabetes Mellitus—Innovative Approach to Prediction, Diagnosis, Management, and Prevention of Future NCD-Mother and Offspring. *Front Endocrinol (Lausanne)* (2020) 11:614533. doi: 10.3389/fendo.2020.614533

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Li, Huang, Tobias and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.