Molecular Consequences of Proprotein Convertase 1/3 (PC1/3) Inhibition in Macrophages for Application to Cancer Immunotherapy: A Proteomic Study*

Marie Duhamel†, Franck Rodet†, Nadira Delhemi§, Fabien Vanden Abeele¶, Firas Kobeissy‖, Serge Nataf**, Laurent Pays**, Roxanne Desjardins‡‡, Hugo Gagnon§§, Maxence Wisztoriski†, Isabelle Fournier†, Robert Day‡‡, and Michel Salzet††

Macrophages provide the first line of host immune defense. Their activation triggers the secretion of pro-inflammatory cytokines and chemokines recruiting other immune cells. In cancer, macrophages present an M2 anti-inflammatory phenotype promoting tumor growth. In this way, strategies need to be develop to reactivate macrophages. Previously thought to be expressed only in cells with a neural/neuroendocrine phenotype, the proprotein convertase 1/3 has been shown to also be expressed in macrophages and regulated as a function of the Toll-like receptor immune response. Here, we investigated the intracellular impact of the down-regulation of the proprotein convertase 1/3 in NR8383 macrophages and confirmed the results on macrophages from PC1/3 deficient mice. A complete proteomic study of secretomes and intracellular proteins was undertaken and revealed that inhibition of proprotein convertase 1/3 orient macrophages toward an M1 activated phenotype. This phenotype is characterized by filopodial extensions, Toll-like receptor 4 MyD88-dependent signaling, calcium entry augmentation and the secretion of pro-inflammatory factors. In response to endotoxin/lipopolysaccharide, these intracellular modifications increased, and the secreted factors attracted naïve T helper lymphocytes to promote the cytotoxic response. Importantly, the application of these factors onto breast and ovarian cancer cells resulted in a decrease viability or resistance. Under inhibitory conditions using interleukin 10, PC1/3-knockdown macrophages continued to secrete inflammatory factors. These data indicate that targeted inhibition of proprotein convertase 1/3 could represent a novel type of immune therapy to reactivate intra-tumoral macrophages. *Molecular & Cellular Proteomics 14: 10.1074/mcp.M115.052480, 2857–2877, 2015.

Innate immunity is the first line of immune defense and is common to all metazoans (1, 2). In this immune system, macrophages play a crucial role in the maintenance of tissue homeostasis. These cells are involved in almost every disease through their immunological and wound-healing functions (1, 2). During a pathogenic infection, trauma or neurodegeneration, macrophages are recruited and activated contributing to the phagocytosis of pathogens and the secretion of cytokines and chemokines activating other immune cells. Macrophages can develop into classically pro-inflammatory (M1) or alternatively (M2) activated macrophages. M1 macrophages are characterized by the secretion of pro-inflammatory cytokines whereas M2 macrophages secrete anti-inflammatory cytokines (3). Stimulation of macrophages with LPS activates TLR4 signaling leading to the nucleus translocation of NF-κB or IRF3 which activate genes encoding proteins involved in innate immune response (4). Many of these proteins are secreted (cytokines, chemokines…) to attract and activate other immune cells like T lymphocytes. In tumors, macrophages are oriented toward the M2 phenotype and promote cancer growth by suppressing immune cells function (5). Current
research in the therapeutic field focus on ways to reactivate macrophages.

Surprisingly, we have shown that during immune responses, macrophages secrete typical neuroendocrine molecules (6–8), such as neuropeptides (9) or the proprotein convertases (PC)\(^1\) PC2 and PC1/3 and that PC1/3 is an important regulator of innate immune responses (10–12). Proprotein convertases cleave precursor proteins which can lead to the activation, inactivation or functional changes. PC2 and PC1/3 operate within the regulated secretory pathway. Their expression is not restricted to neuroendocrine tissues, they are also expressed in macrophages and lymphocytes (12). In a previous study from our group, PC1/3 knockout (KO) in mice challenged with LPS caused innate immune defects and uncontrolled cytokine secretion (10). Th1 pathway is enhanced in PC1/3 KO mice. Following LPS treatment, PC1/3 colocalized with TLR4 in the endosomal compartment (11). We concluded that PC1/3 contributes to the regulation of TLR4 signaling and the resulting cytokine secretion.

The NR8383 rat pulmonary macrophage cell line was previously shown as a good model to study the role of PC1/3 in the macrophage innate immune response (13). In the present study, we developed a PC1/3-knockdown (KD) NR8383 cell line using lentiviral-delivered shRNAs. Our aim is to understand the cellular impact of PC1/3 inhibition in macrophages and the consequences on their activation. Proteomic analysis of secreted proteins allowed us to identify pro-inflammatory cytokines and alarmins already at 24 h of LPS stimulation in PC1/3-KD secretomes which was confirmed by cytokines arrays. Proteomic studies of PC1/3-KD NR8383 cellular extracts revealed an important perturbation in the intracellular trafficking machinery through the disorganization of cytoskeletal protein expression. These results were confirmed on macrophages from PC1/3 KO mice. Cytokines secretion and cytoskeleton reorganization can be linked to intracellular calcium increase in PC1/3-KD cells. Moreover, we showed that MyD88-dependant TLR4 signaling was sustained when PC1/3 is down-regulated. We describe here that inhibition of PC1/3 induced classically activated phenotype (M1) in macrophages. The chemotactic and anti-tumor properties of the PC1/3-KD macrophage secretome promoted the cytotoxic immune response and inhibited cancer cell viability. The down-regulation of PC1/3 could be used in cancer immunotherapy to reactivate macrophages.

EXPERIMENTAL PROCEDURES

Cell Culture—The rat alveolar macrophage cell line NR8383 (CRL-2192) was obtained from ATCC (Manassas, VA). NR8383 PC1/3-KD and NR8383 nontarget (NT) shRNA cell lines were cultured in Ham’s F12K medium supplemented with 15% fetal bovine serum and 12 μg/ml puromycin at 37 °C in a humidified atmosphere (5% CO2). NR8383 PC1/3 KD was performed using lentivirus transduction as described previously (11).

Confocal Microscopy—The NR8383 cells were grown in culture flasks and treated or not with LPS (InvivoGen, Toulouse, France) at a concentration of 200 ng/ml before being subjected to immunofluorescence studies. For actin immunostaining, the cells were fixed with 4% paraformaldehyde (PFA) for 10 min, washed with PBS, permeabilized with 0.2% Triton X-100 for 10 min at room temperature, blocked with 1% BSA, 1% OVA and 1% normal donkey serum for 1 h and stained with phalloidin labeled with rhodamine (1/100, Santa Cruz Biotechnology, Heidelberg, Germany) at 4 °C for 30 min. After washing with PBS, the nuclei were stained with Hoechst 33342 (1/10000), and the cells were visualized by confocal microscopy. Fluorescence analysis was conducted using a Zeiss LSM 510 confocal microscope (488 nm excitation for Alexa 488 and 543 nm for Alexa 546) connected to a Zeiss Axiovert 200 μ with a 63X1.4 numerical aperture oil immersion objective. Both channels were excited, collected separately and then merged to examine the colocalization. The image acquisition characteristics (pinhole aperture, laser intensity, scan speed) were the same throughout the experiments to ensure comparability of the results.

Identification of Cytokines and Chemokines Using Rat Cytokine Antibody Arrays—NR8383-KD and NT cells were plated on sterile six-well plates until confluence was attained. The cells were starved overnight with Ham’s F12K medium supplemented with 2% FBS and stimulated for 24 h with 20 ng/ml IL-10 (Peprotech) in serum-free medium or left untreated. The medium was then replaced, and the cells were stimulated for 24 h with 200 ng/ml LPS or left untreated. The cell supernatants were collected, centrifuged at 500 g, passed through a 0.22-μm filter to remove cells and immediately frozen in liquid nitrogen.

The Rat Cytokine Array Panel A from R&D system was used to probe the cytokines in the secretome of stimulated and nonstimulated NR8383 cells by following the procedures recommended by the manufacturer. The membranes were quantified by densitometry using ImageJ software. Statistical analyses were performed using the paired t test. Error bars represent the S.E.

Total and Nuclear Protein Extracts—NR8383-KD and NT cells were plated on sterile six-well plates until confluent. For LPS stimulation, the cells were starved overnight with Ham’s F12K medium supplemented with 2% FBS. The cells were stimulated with 200 ng/ml LPS in serum-free medium or left untreated. At 1 h, 3 h, 6 h (for Western blot analysis), and 24 h (for FASP), the cells were collected, washed once with ice-cold PBS and then lysed with RIPA buffer for total protein extraction (150 mM NaCl, 50 mM Tris, 5 mM EDTA, 100 mM NaF, 10 mm sodium pyrophosphate, 1% Nonidet P-40, 1 mM PMSF, 1X protease inhibitors). Cell debris was removed by centrifugation (20000 × g, 10 min, 4 °C); the supernatants were collected. For the nuclear extracts, NE-PER Nuclear and Cytoplasmic Extraction Reagents were used (Thermo Scientific) according to the manufacturer’s instructions. The supernatants were collected, and the protein concentrations were measured using the Bio-Rad Protein Assay.

1 The abbreviations used are: PC, proprotein convertase; KO, knock-out; LPS, lipopolysaccharide; TLR, Toll-like receptor; KD, knock-down; SOC, Store-operated channel; NT, nontarget; PFA, paraformaldehyde; OVA, ovalbumine; FBS, fetal bovine serum; FASP, filter aided sample preparation; HCD, higher energy collision dissociation; FDR, false discovery rate; NK, natural killer; RLU, relative light unit; CCL, chemokine (C-C motif) ligand; CXCL, chemokine (C-X-C motif) ligand; MIF, macrophage migration inhibitory factor; WASP, Wiskott–Aldrich syndrome protein; TGN, trans-golgi network; ECV, endosome carrier vesicle; MVB, multivesicular body; TG, thapsigargin; ER, endoplasmic reticulum; SOCE, store-operated calcium entry; NA, nonactivated; A, activated; shRNA, small hairpin RNA; NaF, sodium fluoride; NP40, Nonide P-40; LQF, label free quantification; HBSS, Hank’s balanced salt solution; PBMC, peripheral blood mononuclear cell.
Western Blot Analysis—The total cell extracts (40 \(\mu \)g) or nuclear extracts (5 \(\mu \)g) were then analyzed by Western blot assays. Primary antibodies were rabbit anti-IRF3, mouse anti-phospho-IkB\(\alpha \), mouse anti-IkB\(\alpha \) (1:1000, from Cell Signaling Technology, Leiden, The Netherlands) and rabbit anti-lamin A (1:1000, from Abcam). Horseradish peroxidase-coupled goat antimouse and goat anti-rabbit secondaries (Jackson ImmunoResearch) were used at 1:3000 and 1:20000 respectively. ImageJ software was used to quantify the bands.

Filter-aided Sample Preparation (FASP)—The total protein extract (0.1 mg) was used for FASP analysis as described previously (14). We performed FASP using Microcon devices YM-10 (Millipore) before adding trypsin (Promega) for protein digestion (40 \(\mu \)g/ml in 0.05 M NH\(_4\)HCO\(_3\)). The samples were incubated overnight at 37 °C. The digests were collected by centrifugation, and the filter device was rinsed with 50 \(\mu \)l of NaCl 0.5 M. Next, 5% TFA was added to the digests, and the peptides were desalted with a Millipore ZipTip device before LC-MS/MS analysis.

Secretome Preparation and Protein Digestion—NR8383-K\(_d\) and -NT cells were plated in sterile 24-well plates until confluent. For LPS stimulation, the cells were starved overnight with Ham’s F12K medium supplemented with 2% FBS. The cells were stimulated with 200 ng/ml LPS in serum-free medium or left untreated. At 1, 16, 24, 48, and 72 h, the cell supernatants were collected, centrifuged at 500 \(\times \) g, passed through a 0.22-\(\mu \)m filter to remove the cells and immediately frozen in liquid nitrogen. The experiments were performed in biological triplicates.

Four hundred microliters of the secretome was collected for each condition. The volume was reduced to 100 \(\mu \)l in a SpeedVac. Secretome digestion was performed as previously described (15). In brief, the cell supernatants were denatured with 2 M urea in 10 mM HEPES, pH 8.0 by sonication on ice. The proteins were reduced with 10 mM DTT for 40 min followed by alkylation with 55 mM iodoacetamide for 40 min in the dark. The iodoacetamide was quenched with 100 mM thiourea. The proteins were digested with 1 \(\mu \)g LysC/Trypsin mixture (Promega) overnight at 37 °C. The digestion was stopped with 0.5% TFA. The peptides were desalted with a Millipore ZipTip device in a final volume of 20 \(\mu \)l of 80% ACN elution solution. The solution was then dried using the SpeedVac. Dried samples were solubilized in water/0.1% formic acid before LC-MS/MS analysis.

LC MS/MS Analysis—The samples were separated by online reversed-phase chromatography using a Thermo Scientific Proxene Easy-nLC system equipped with a Proxene trap column (100 \(\mu \)m I.D. \(\times \) 2 cm, Thermo Scientific) and a C18 packed-tip column (75 \(\mu \)m I.D. \(\times \) 10 cm, Thermo Scientific). The peptides were separated using an increasing amount of acetonitrile (5–35% over 100 min) at a flow rate of 300 nl/min. The LC eluent was electrosprayed directly from the analytical column, and a voltage of 1.7 kV was applied via the liquid junction of the nanospray source. The chromatography system was coupled to a Thermo Scientific Q Exactive mass spectrometer which was programmed to acquire in a data-dependent Top 10 method. The survey scans were acquired at a resolution of 70 000 at m/z 400.

Data Analyses—All MS data were processed with MaxQuant (25) using the Andromeda (26) search engine. The proteins were identified by searching MS and MS/MS data against the Decoy version of the complete proteome for Rattus norvegicus in the UniProt database (UniProt Consortium. Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res. 2012, 40 (Database issue), D71–5). (Release June 2014, 33675 entries) combined with 262 commonly detected contaminants. Trypsin specificity was used for digestion mode, with N-terminal acetylation and methionine oxidation selected as variable, and carbamidomethylation of cysteines set as a fixed modification. We allowed up to two missed cleavages. For the MS spectra, an initial mass accuracy of 6 ppm was selected, and the MS/MS tolerance was set to 20 ppm for the HCD data. For identification, the FDR at the peptide spectrum matches (PSM) and protein level was set to 0.01. Relative, label-free quantification of the proteins was conducted using the MaxLFQ algorithm (27) integrated into MaxQuant with default parameters. The data sets and Perseus result files used for analysis were deposited at the ProteomeXchange Consortium (28) via the PRIDE partner repository (29) with the data set identifier PXD001984 for cellular extracts (For reviewer access only Username: reviewer62003@ebi.ac.uk; Password: zokVruKKN) and PXD001986 for the secretome analyses (For reviewer access only Username: reviewer19925@ebi.ac.uk; Password: PUUJeVt0). Analysis of the identified proteins was performed using Perseus software (http://www.perseus-framework.org/) (version 1.5.0.31). The file containing the information from the identification and hits from the reverse database were used, and proteins with modified peptides and potential contaminants were removed. The LFQ intensity was logarithmized (log2(x)). Categorical annotation of the rows was used to define the different group depending on the following: (1) the cell line (NT or K\(_d\)); (2) the treatment (Ctrl/LPS); and (3) the kinetics of the secretomes (1 h, 16 h, 24 h, 48 h, or 72 h). Multiple-sample tests were performed using ANOVA with a FDR of 5% and preservation of the group randomization. To evaluate or enrichment of the categorical annotations (Gene Ontology terms and KEGG pathway), Fisher’s exact test was performed taking in account the results of the ANOVA for each group. Normalization was achieved using a Z-score with matrix access by rows. Only proteins that were significant by ANOVA were used for the statistical analysis. Hierarchical clustering was first performed using the Euclidean parameter for the distance calculation, and the average option for linkage in the rows and columns of the trees was used with a maximum of 300 clusters. To quantify fold changes in proteins across the samples, we used MaxLFQ. To visualize these fold changes in the context of individual protein abundances in the proteome, we projected them onto the summed peptide intensities normalized by the number of theoretically observable peptides. Specifically, to compare the relative protein abundances between and within samples, the protein length normalized to the log2 protein intensities (termed the “IBAQ” value in MaxQuant) was included in the MaxLFQ differences. Functional annotation and characterization of the identified proteins were performed using PANTHER software (version 9.0, http://www.pantherdb.org) and STRING (version 9.1, http://string-db.org). The GeneMANIA Cytoscape plugin (30) was used to generate co-expression networks from cell extracts proteomics data. A “basal” network composed of 95,886 recognized interactions was generated from the data obtained by the analysis of K\(_d\) or NT cells under basal conditions. A supervised clustering was then performed to identify the top 100 molecules that coregulated with Anxa6 in this “basal network.” The list of 100 genes which encoded molecules were identified was then assessed for gene set enrichment using EnrichR (31) and the GO classification. Following the same approach, two “LPS-stimulated” networks were then generated from the data obtained by the analysis of: (1) unstimulated or LPS-stimulated K\(_d\) cells (89,017 recognized interactions) and (2) unstimulated or LPS-stimulated NT cells (96 563 recognized interactions). A supervised clustering was then performed to identify the top 100 molecules that coregulated with NFKB1 in each of these “LPS-stimulated” networks. Both lists of 100 genes that encoded molecules were identified and then assessed for gene set enrichment using EnrichR and the GO classification. Following the same approach, two “LPS-stimulated” networks were then generated from the data obtained by the analysis of: (1) unstimulated or LPS-stimulated K\(_d\) cells (89,017 recognized interactions) and (2) unstimulated or LPS-stimulated NT cells (96 563 recognized interactions). A supervised clustering was then performed to identify the top 100 molecules that coregulated with NFKB1 in each of these “LPS-stimulated” networks. Both lists of 100 genes that encoded molecules were identified and then assessed for gene set enrichment using EnrichR and the GO classification. Finally, subnetworks of genes presenting significant enrichments for specific GO terms were selected and visualized on Cytoscape. For presentation purposes, nodes were assigned equal weights and subnetworks were slightly distorted to avoid nodes superimposition.

Systems Biology Analysis—The altered pathways relevant to over-expressed proteins in K\(_d\) PC1/3 cells were analyzed using Pathway Studio software v.10 (Ariadne Genomics, Rockville, MD). This soft-
were helps to interpret biological meaning based on gene (protein) expression, to build and analyze pathways, and to identify relationships among genes, proteins, cell processes, and diseases. This software contains a built-in resource named ResNet, which is a database of molecular interactions based on natural language processing of scientific abstracts in PubMed. Using ResNet, a researcher can analyze the gene product/protein list and build a pathway using well-known interactions that are discussed in the existing literature. The program searches the current pathway database and ResNet for interactions with the selected entities and then adds them to the pathway. After the new pathway was constructed, we were able to obtain more detailed information regarding the putative pathways that were altered in response to LPS treatment.

Data Analysis of Mouse Peritoneal Macrophages—An analysis of previously published data was done to obtain information concerning modifications of proteins induced in peritoneal macrophages from wild type (WT) or PC1/3 KO (KO) mice challenged by LPS (8 h) or not (10). Briefly, peritoneal macrophage from wild type (WT) and PC1/3 knockout (KO) mice were collected as described previously (10). Cytosolic and membrane fractions were then prepared according to (16) and processed for Gel-LC-MSMS as described in 10. The resulting trypic peptides were purified and identified by reversed-phase chromatography coupled to an LTO-Orbitrap Velos (Thermo Scientific). For identification, raw files were filtered for high quality spectra and converted to mgf files using scaffold software (4.4.5) (17) and analyzed using ProteinPilot software 4.5 (18). For each sample all gel band of a particular condition were combined for protein identification. FDR was calculated using PSPEP files (Sciex) and protein alignment was done with the protein alignment template 2.0 (Sciex) using a local protein FDR of 95% (19) over a combined list of all identified proteins. Only proteins with a score of over 6, which represents the proteins identified with two or more unique peptides and at least a fold change of 4 (converted log2 value) were kept for analysis. The relative protein expression was calculated based on the protein score, which was shown to be an adequate relative indicator of the relative differential expression (20). Ratio between WT and KO was calculated using the sum of corresponding fractions. Gene ontology analysis was performed using Blast2go (21). The network analysis was performed as follows: The gene names of identified proteins were used as input to retrieve a network from STRING (22), and this network was then loaded into Cytoscape 3.2 (23, 24). With relative expression, to build and analyze pathways, and to identify relations- }

te were harvested and suspended at a concentration of 10^6 cells/ml in RPMI 1640. The chemotaxis protocol was performed as previously described (32) using a 48-well microchemotaxis Boyden chamber with \(\mu \)-pore polycarbonate filters. The cells were incubated for 2 h 30 min at 37 °C in 5% CO2 with NR8383 secretomes (NT and PC1/3-KO, nonstimulated or stimulated with 200 ng/ml LPS for 24 h). Each condition was performed in triplicate. Cells that migrated through the filter were counted in the inferior well. The results are expressed as the number of activated cells that were attracted by each secretome compared with the nonactivated ones.

Cell Viability Measured by the CellTiter-Glo Assay—SKBR3 and SKOV3 cells were seeded into 96-well white plates (6500 and 3000 cells per well, respectively) with NR8383 secretomes obtained after 24 h of LPS stimulation or no stimulation. The assay was conducted for 24, 48, 72, or 96 h. For the 96 h+ medium, conditioned secretomes were removed at 72 h and replaced with fresh ones. CellTiter-Glo reagent (Promega) was added to the wells and incubated at room temperature for 10 min protected from light. The luminescence was recorded using a Berthold luminometer Centro LB960. The results are expressed as relative light units (RLUs).

RESULTS

PC1/3-knockdown NR8383 Cells Express an Inflammatory Profile—A stable PC1/3-KD cell line has been developed by lentiviral delivery of shRNAs (11). To better understand the interaction and regulation of TLR4 by PC1/3, we used these PC1/3-KO NR8383 cells in the present study. A proteomics analysis was performed to identify secreted proteins subsequent to PC1/3 silencing in NR8383 cells, before and after LPS challenge. Shotgun proteomics of secreted proteins (from 1 h to 72 h after stimulation) was performed for nontarget (NT) control cells and KD cells (Fig. 1). More than 1400 proteins were identified in all analyses of the NR8383 secretomes (supplemental Data S1).

Comparison of the identified proteins between resting KD or NT cells and cells challenged with LPS allowed the identification of 28 specific proteins that were directly related to PC1/3 (Fig. 1A). These proteins were only secreted by KD cells, both resting and those stimulated with LPS. The proteins are involved in different functions, e.g., responses to stimuli, RNA processing, endocytosis, regulation of transcription, catabolism, protein binding, regulation of axogenesis and immune responses (Table I).

This study was then further coupled to a kinetic study at 1 h, 16 h, 24 h, 48 h, and 72 h after LPS challenge. Proteins with an abundance that was significantly different among the conditions were determined according to the MaxQuant and Perseus software. As a criterion of significance, we applied an ANOVA significance threshold of \(p < 0.05 \), and heat maps were created. A total of 125 proteins in the cell culture super-
natants of the macrophages stimulated with LPS versus non-stimulated macrophages were considered reliable based on the statistical analysis (Fig. 1B, supplemental Data S2).

Two major branches of the heat map separate the 1-h series from the other time points. In the second branch, two branches distribute the control versus the stimulated cells. Each experiment was performed 3 times, and each sample corresponded to the statistical data obtained per condition. Five specific clusters of over-expressed proteins were retrieved. Cluster 1 is specific to the control (16 h–72 h). Clusters 2 and 5 are specific to LPS stimulation (16 h–72 h). Cluster 3 represents proteins found after 1 h in both control and LPS-stimulated cells. Cluster 4 is specific to later time points (48 h and 72 h). For each cluster, proteins with specific functions were characterized. For example, in cluster 2, proteins implicated in macrophage activation and the immune response were specific to LPS stimulation. In cluster 1, the majority of the proteins were implicated in protein synthesis associated with early stimulation. The complete list of proteins in these clusters is provided in Table II.

Among the proteins identified in clusters 4 and 5 (Table II) were the alarmins (e.g. GRP78, HSP84, HSP86, HSP73, calreticulin, capthepsin B, nucleolin, and granulins)(33). Alarmins are produced by immune cells through the endoplasmic reticulum (ER)-Golgi secretion pathway and are involved in triggering the adaptive immune response. Analyses of the other clusters revealed the release of chemokines (CXCL10 and CCL3), cytokines (MIF), interferon-inducible protein (IFI30) and growth factor (GDF15). Both chemokines and alarmins have known functions in immune responses. These proteins recruit and activate receptor-expressing cells of the innate immune system, including dendritic cells and CD4+ cells, and they also directly or indirectly promote adaptive immune responses (34).

To analyze the chemokine/cytokine pattern between NT and K_D PC1/3 NR8383 cells in detail, time course analyses of chemokine and cytokine protein expression were performed without quantification (Fig. 2A).

Both nonstimulated and challenged K_D cells secreted CCL3, CCL6, CCL9, CXCL10, CXCL2, MIF, and IL-1RA. Challenged K_D cells also secreted CCL7, CCL2, and CXCL3. Comparisons with NT cells revealed that most chemokines were released by both cell types. However, differences in the timing and nature of the secreted chemokines were evident. CXCL3 was only secreted by K_D cells, whereas the inhibitory chemokine TGF-β was secreted by NT cells. MIF protein was not secreted by NT cells in response to LPS stimulation. To validate these results and to quantify the chemokine and cytokine levels released by NR8383 cells, cytokine arrays were performed after 24 h of stimulation (Fig. 2B). As shown, NR8383
Proteins secreted several chemokines, including CCL5, CCL3, CXCL9, CCL20, CXCL10, CXCL1, and CXCL2. We established that without LPS challenge, NR8383 KD cells produced significantly more CCL5, CXCL1, CXCL2, CXCL10, IL-6, and TNF-α than NT cells (Fig. 2B). Moreover, following LPS challenge, KD cells additionally produced CXCL9 and CCL20 and concomitantly released the previous cytokines and chemokines CXCL1, CXCL2, CXCL10, IL-1α, and IL-1β. These chemokine and cytokine profiles are characteristic of secretion through the unconventional secretory pathway, which involves synthesis in the cytoplasm and release without passing through the ER and Golgi complex (35).

PC1/3-KD NR8383 Cells and Modulation of the Intracellular Trafficking Machinery—Members of the IL-1 cytokine family, particularly IL-1α and IL-1β, are key inflammatory cytokines that are released through the unconventional secretory pathway, which involves synthesis in the cytoplasm and release without passing through the ER and Golgi complex (35).

Proteomics of PC1/3 Inhibition Consequences in Macrophages

| Table I List of 28 secreted proteins specific to PC1/3 knockdown from Figure 2A |
Protein Name	Biological Function
Arap1	Response to stimuli, signal transduction
Choline-phosphate cytidylyltransferase A	
STE20-like serine/threonine-protein kinase	
Mitogen-activated protein kinase 14	
Inositol polyphosphate-1-phosphatase	
Paired immunoglobulin-like type 2 receptor alpha	
Galectin-1	
Protein Vnn1	
Insulin-like growth factor-binding protein 2	
Heterogeneous nuclear ribonucleoprotein M	
DEAH box polypeptide 9	
Protein Ddx6	
rRNA 2'-O-methyltransferase fibrillarin	
Mitochondrial import inner membrane translocase	
Protein Tnxd5	
Peptidyl-prolyl cis-trans isomerase	
Vacuolar protein sorting-associated protein 26A	
Protein RGD1300995	
UDP-glucose:glycoprotein glucosyltransferase 1	
H2-K region expressed gene 2	
ATPase Asna1	
Canopy 2 homolog	
Protein Cbx1	
Protein Raly	
Phospholipase A2	
Xaa-Pro dipeptidase	
Protein Ubap21	
Reticulon-4	

Several of the identified proteins were clustered under certain functional classes, such as cellular remodeling (Cluster 1, supplemental Data S5), immune activation and calcium export (Cluster 2, supplemental Data S5), which is consistent with the over-expressed proteins in NT cells (Fig. 3A, Table III and supplemental Data S4). The proteins in each cluster were then analyzed using PANTHER software (http://www.pantherdb.org) to determine the biological functions based on the protein classes. Using this analysis, we demonstrated that over-expressed proteins in KD cells were implicated in cell adhesion, extracellular matrix or cytoskeleton, whereas in NT cells, over-expressed proteins were involved in nucleic acid binding or oxidoreduction functions (Fig. 3B). For a more detailed analysis, we performed a systems biology analysis for network identification of the over-expressed proteins in PC1/3-KD cells (Fig. 3C). Differential pathways were generated using the “direct interaction” algorithm to map the relationships of the identified proteins (supplemental Data S5). We found that among the 85 altered proteins, 32 proteins had direct regulatory relationships, including binding, post-translational modifications and transcriptional regulation. Different biological processes are represented by the over-expressed proteins in PC1/3-KD cells (Fig. 3C). For instance, these proteins are involved in actin organization, inflammatory responses, cytoskeletal assembly, T cell activation, and calcium channels.
Further demonstrating the impact of PC1/3 KD on the cytoskeleton organization, we found that molecules co-up-regulated with Anxa6 in KD cells were highly significantly related with the GO terms “actin binding” or “extracellular vesicular exosome” (Fig. 4A).

Next, we focused on proteins that are important for the cytoskeleton (Table III). Among these cytoskeletal proteins, STRING analysis revealed that most of them are known to be involved in the ARP2/3 complex and the WAVE complex (WASF2, ACTR3, ARPC1B) (supplemental Data S6). Wiskott-Aldrich syndrome protein (WASP) is known to lead to upstream signals resulting in activation of the ARP2/3 complex, which causes a burst of actin polymerization and the formation of a lamellipodium structure. ARP2/3-complex-mediated actin polymerization is crucial for the reorganization of the actin cytoskeleton at the cell cortex during processes such as cell movement and vesicular trafficking (36). Moreover, macrophage activation promotes changes in macrophage cell elasticity that depend on actin polymerization. Cytoskeletal rearrangements are observed between activated and nonactivated macrophages: activated macrophages are elongated, whereas nonactivated cells are more circular (37).

To validate our hypothesis regarding cytoskeletal rearrangements, we incubated NR8383 macrophages with phalloidin to stain the actin filaments. We clearly demonstrated that resting PC1/3-KD cells were more elongated and expressed a high level of directional actin-filled structures compared with NT cells (Fig. 4Ba and b). In this context, PC1/3-KD cells were polarized, with long actin filopodia that emanated from one side of the cell and actin-associated membrane

Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
Alcam	Sqstm1	LOC685186	Rplp2	Hepa8
Mif	Marcks	Eef2	P4hb	Atic
Lpl	Sdc4	Txn	Hspa5	Aldoa
Ifit30	Cxcl10	Pkg1	Ncl	Pygl
Smipd3a	Ccl3	Tcp1	Calr	Rpl5
Gpnmb	Hn1	Ywhab	Vim	Ctc
Ganab	Ndr1g1	Rhoa	Fabp5	Pkm
Fkbp2	Gdf15	Eef1a1	Arhgdia	Hsp90ab1
Axl	Gm15013		Tpm3	Cfl1
Lyz2	Ran		Hnmpa3	Vcp
Ctsd	Gnb2l1		Prdx5	Tpi1
Npc2			Calu	Tkt
	Actg1		Prg4	Gd2
	Ywhaq		Akr1b8	Ywhag
	Clic1		Gm	Rps11
	Tuba1b		Ahnak	Tmsb4x
	Cdc42		Ctsb	Atp6v1b2
	Rpl7		Tpm4	Ywhah
	Cct8		Eef1b2	Hsp90aa1
	Tubb4b			Pgd
	Ugp2			Cap1
	Elf4a1			Val1
	Rpl4			Elf5a
				Actr3
				Cct2
				Prdx1
				Myl6
				Eef1d
				Cndp2
				Cct4
				Pdcd6ip
				Fina
				Atp6v1a
				Cct7
				Msn
				Kpn1b
				Igap1
				Tln1
				Cct6a
ruffling on the other side (Fig. 4Bb). Thus, PC1/3-KD cells expressed an activated phenotype, and, in response to LPS challenge, the number of filopodia increased corresponding to a higher level of activation in these cells (Fig. 4Bc and d). Filopodia in LPS-stimulated NT cells increased as compared with control cells demonstrating an activation state under LPS. These results are consistent with the data obtained using proteomics for cytoskeletal reorganization (Figs. 3 and 4A).

It has been shown that the cytoskeleton regulates cell polarity, migration and cytokine secretion via vesicular trafficking. Based on the proteomic data, proteins specific to Golgi vesicle transport were clearly under-expressed in KD cells (Table IV).

Among them, we found the following proteins in the same cluster: STX7, USO1, NSF, and COPG1. These proteins are required for transport from the endoplasmic reticulum to the Golgi stack (38) and catalyze the fusion of transport vesicles within the Golgi cisternae. By contrast, endosome-specific proteins (early, late, recycling) APPL1, VAC14, EHD4, VPS4B, ANXA6, and RAP2B and GGA2 proteins involved in protein trafficking between the trans-Golgi network (TGN) and endosomes were over-expressed in KD cells (Table IV).
proteins are required for the regulation of cell proliferation in response to extracellular signals from an early endosomal compartment and also play a role in the biogenesis of endosome carrier vesicle (ECV)/multivesicular body (MVB) transport intermediates from early endosomes (38). Moreover, these proteins are involved in the late steps of the endosomal

![Whole-cell extract analysis strategy](image)

Fig. 3. Whole-cell extract analysis strategy. A, NR8383 cells were stimulated with LPS (200 ng/ml) or not (control) and lysed before FASP and LC-MS/MS analysis. MaxQuant and Perseus software were used for the statistical analysis, and a heat map was generated to show proteins that were significantly different between NT and PC1/3-KD NR8383 macrophages in the cell extracts. Two clusters are highlighted. B, The proteins in each cluster were analyzed using Panther software. The biological functions associated with these proteins are shown. The functions framed in red correspond to those of proteins that were over-expressed in KD cells, whereas the functions framed in black correspond to those of proteins that were over-expressed in NT cells. C, Global pathway analysis of the over-expressed proteins identified in PC1/3-KD cells. Over-expressed proteins in PC1/3-KD cells were involved in global altered molecular pathways. The different colors reflect the degree of expression. Proteins in blue are over-expressed in PC1/3-KD cells, whereas those in orange show no expression differences between NT and KD cells.
MVB pathway. MVBs contain intraluminal vesicles that are generated by the invagination and scission from the limiting membrane of the endosomes and are mostly delivered to lysosomes, enabling the degradation of membrane proteins. This phenomenon indicates that PC1/3 \(\text{KD} \) remodels the endosomal compartment, which is consistent with our data obtained using macrophages isolated from PC1/3-KO mice. Ontogenic enrichment of proteins issued from our previous publish proteomic analyses of peritoneal macrophages (10) from wild type (WT) or PC1/3 KO (KO) mice challenged by LPS (8 h) or not, confirms the over-expression of cytoskeleton proteins as well as GTPase activity (5 Go terms) (Fig. 5A).

STRING analysis of proteins with GTPase activity has been performed and the network subsequently analyzed using the visualization tool Cytoscape followed by the Integrated Reactome FI analysis tool which selects subnets with specific ontogenetic functions. The biological interaction network GTPase proteins included 202 proteins. Among the groups of proteins with specific ontogenetic functions two groups are overexpressed in KO samples i.e. receptor activity and vesicles trafficking. We focused our attention on the last one (Fig. 5B). The network consists mainly of small G proteins and Rab proteins responsible for their regulation. The center of the network, the protein Agfg1 (Arf-GAP domain and FG repeats-containing protein (1), has an important role in endocytosis (39) At the periphery of this protein, several Rab show a similar expression profile which is over-expressed in unstimulated KO sub-sample and expressed when stimulated with LPS. These Rab (Rab8, Rab11, Rab14 and Rab27) all have a common function that is exocytosis and secretion (40). This disruption of molecular pathways secretion and the increase of membrane targeted molecules involved in vesicle-associated functions in PC1/3 KO mice (Fig. 5C) correlate with dysregulated cytokine secretion as well as intracellular disruption as we found in NR8383 PC1/3 \(\text{KD} \) cells. Moreover, these results in both NR8383 PC1/3 \(\text{KD} \) cells and PC1/3 KO macrophages are also consistent with the data obtained from the kinetic study of secretion showing a lot of proteins involved in exosomes.

Cluster 1	Cluster 2
LOC684352	Fgcr2b
Lgal1	Hspa5
Slc1a5	Ephx2
Cot1	Colgal1
Acad9	Rpl22i2
Ferm1	Acada
Fam129b	Uap111
Flna	Sh3bg1
Nckap1	Ganab
Atp2b1	Hist1h1b
Fmn11	Kn1
Nmrl1	Cul4b
Naip5	Ube2m
Gadmd	Pld1
Cnn2	Elf4g1
Itgax	Siglec1
Srgap2	Usp5
Ahcy1	Naglu
Vsg8	Atp6v1a
Cyflp1	Apobr
Anxa6	Fam120a
Cct8	Rab32
Ipo7	Hyou1
Wasf2	Fdps
Msn	Hexb
Xdh	Sloc2a13
Sloc2a12	Dnaj1
Ano6	Dist
Itgb2	Calu
Corolc	Atp13a1
Hnrnpd	Acly
Nap11	Psmld5
Strn	Atd13a2
Gga2	Vav1
Sarb	M6pr
Arpc1b	Gaa
Tnmd1	Stx7
Nqo1	Por
Atp1a1	Sfxn3
Prkcd	Gapdh
Aldh4a1	Aidoa

TABLE III

List of proteins identified in specific clusters after Perseus analyses from Fig. 3A and supplementary Data S4

LOC684352	Lgal1	Slc1a5	Fgcr2b	Hspa5	Ephx2
Cot1	Got1	Bpnt1			
Acad9	Gls				
Ferm1	Gclc				
Fam129b	Ii1m				
Flna	Plec				
Nckap1	Gpd2				
Atp2b1	Acadvl				
Fmn11	Anxa6				
Nmrl1	Tbxas1				
Naip5	Pdhb				
Gadmd	Gnb1				
Cnn2	Rap2b				
Itgax	Ctsc				
Srgap2	Ctbs				
Ahcy1	Nlt2				
Vsg8	Vps4b				
Cyflp1	Lsp1				
Anxa6	Actr3				
Cct8	Wdr1				
Ipo7	Tagln2				
Wasf2	Anxa11				
Msn	Ech1				
Xdh	Adk				
Sloc2a12	Gsn				
Ano6	Tuba3a				
Itgb2	Psmb9				
Corolc	Akd				
Hnrnpd	Psme1				
Nap11	Emd				
Strn	Hdh2d				
Gga2	Cct4				
Sarb	Vac14				
Arpc1b	Ehd4				
Tnmd1	Lasp1				
Nqo1	Dbnl				
Atp1a1	Sfxn3				
Prkcd	Gda				
Aldh4a1	Abi1				

Overexpression of proteins in KO samples i.e. receptor activity and vesicles trafficking. We focused our attention on the last one (Fig. 5B). The network consists mainly of small G proteins and Rab proteins responsible for their regulation. The center of the network, the protein Agfg1 (Arf-GAP domain and FG repeats-containing protein (1), has an important role in endocytosis (39) At the periphery of this protein, several Rab show a similar expression profile which is over-expressed in unstimulated KO sub-sample and expressed when stimulated with LPS. These Rab (Rab8, Rab11, Rab14 and Rab27) all have a common function that is exocytosis and secretion (40). This disruption of molecular pathways secretion and the increase of membrane targeted molecules involved in vesicle-associated functions in PC1/3 KO mice (Fig. 5C) correlate with dysregulated cytokine secretion as well as intracellular disruption as we found in NR8383 PC1/3 \(\text{KD} \) cells. Moreover, these results in both NR8383 PC1/3 \(\text{KD} \) cells and PC1/3 KO macrophages are also consistent with the data obtained from the kinetic study of secretion showing a lot of proteins involved in exosomes.
The large amount of inflammatory cytokines produced by the activated PC1/3-KD cells is consistent with MVB discharge. Interestingly, the cytoskeleton, MVB discharge (38, 41) and Ca²⁺ signaling are linked. Indeed, increasing intracellular Ca²⁺ levels stimulate exosome secretion (41). Moreover, the disruption of actin filaments inhibits Ca²⁺ signaling (42). It has been shown that T cells deficient in WAVE2 and WASP present impaired Ca²⁺ mobilization (43). Gelsolin is another protein that promotes the assembly of actin filaments and has Ca²⁺ binding sites. A low concentration of Ca²⁺ inhibits actin binding, whereas a high Ca²⁺ concentration exposes actin binding sites (44). We have shown that in PC1/3-KD cells, gelsolin and certain proteins implicated in the WAVE2 and WASP complexes are over-expressed (Table III). Moreover, cytokine secretion is dependent on an increase in intracellular Ca²⁺ (45). The inhibition of store-operated channels (SOCs) leads to a decrease in TNF-α and IL-6 secretion (46). To determine whether calcium homeostasis was impacted in

![Anxa6 co-expression networks in PC1/3 KD cells](image)

![Control vs LPS](image)

Fig. 4. PC1/3-KD cells exhibit cytoskeletal reorganization. A, Analysis of co-expression network identifies cytoskeletal reorganization in KD cells. The 100 genes which encoded molecules were the most tightly coregulated with Anxa6 in unstimulated KD cells were identified and assessed for gene set enrichment. Shown are subnetworks of genes annotated by the GO terms “actin binding” (adjusted p value for enrichment significance = 6.1e-8) (left panel) or “extracellular vesicular exosome” (adjusted p value for enrichment significance = 3.1e-10) (right panel). Only 18 out of 50 genes forming the subnetwork “extracellular vesicular exosome” are shown. B, Confocal imaging of NR8383 cells stained with rhodamine-phalloidin (1/100). The nuclei were counterstained with Hoechst 33342 (blue). The cells were stimulated with LPS (c and d) or left untreated (a and b) for 24 h. Scale bar, 10 μm.
NR8383 cells, we performed calcium imaging experiments (Fig. 6).

For that purpose, we used the calcium probe fura-2AM to evaluate the cytosolic calcium concentration ([Ca\(^{2+}\)]\(c\)) in sterile conditions or in response to LPS exposure. We clearly demonstrated that LPS (n = 3) rapidly induced a pronounced elevation of [Ca\(^{2+}\)]\(c\) in NR8383-KD cells compared with NT cells (Fig. 6A, 6B). Fig. 6A shows the Ca\(^{2+}\) signals from individual cells, which are quantified in Fig. 6B. We next investigated whether other features important for calcium homeostasis were affected in NR8383-KD cells. Fig. 6C shows the quantitative results obtained from original traces of similar Ca\(^{2+}\) imaging experiments. Resting [Ca\(^{2+}\)]\(c\) levels were significantly increased in NR8383-KD cells. To more thoroughly investigate how the [Ca\(^{2+}\)]\(c\) in NR8383-KD cells was affected, we examined two key processes that determine the basal [Ca\(^{2+}\)]\(c\) in cells. First, we measured store-operated calcium entry (SOCE) mediated by SOCs. SOCs are located in the plasma membrane and are activated by depletion of the internal Ca\(^{2+}\) store in response to stimulation of the surface receptor-coupled signaling pathway (47). Ca\(^{2+}\) entry mediated by SOCE directly influences [Ca\(^{2+}\)]\(c\). New intracellular Ca\(^{2+}\) imaging experiments were conducted using the SERCA pump inhibitor thapsigargin (TG) as a store-depleting agent (48). As expected, the addition of 2 mM extracellular calcium to NR8383 cells that had been pre-incubated for 10 min with TG (1 mM) in Ca\(^{2+}\)-free medium to achieve complete ER Ca\(^{2+}\) store depletion resulted in marked and sustained elevation of the [Ca\(^{2+}\)]\(c\) because of the activation of SOCE (Fig. 6D). The peak [Ca\(^{2+}\)]\(c\) elevation in relation to SOCE increased by ~70% in KD NR8383 cells (Fig. 6E). Moreover, an increasing [Ca\(^{2+}\)]\(c\) in the bathing solution from 0 mM to 2 mM produced more significant elevations of the basal [Ca\(^{2+}\)]\(c\) in KD NR8383 compared with NT cells (Figs. 6F, 6G). Notably, we observed higher resting [Ca\(^{2+}\)]\(c\) levels in NR8383-KD cells compared with NT cells at normal 2 mM external Ca\(^{2+}\) concentrations prior to the application of TG (Fig. 6F). This finding suggests that the PC1/3 KD also promoted enhanced basal Ca\(^{2+}\) influx and not only SOCE. The application of TG in the presence of 2 mM extracellular calcium clearly showed that SOCE was not sustained in control cells compared with NR8383-KD cells. Taken together, these results demonstrate that the basal [Ca\(^{2+}\)]\(c\) increased in KD NR8383-KD cells in relation to SOCE and the increase in the constitutive Ca\(^{2+}\) influx, which is consistent with the results obtained for the cytoskeletal rearrangements and cytokine release in these cells.

PC1/3-KD NR8383 Cells and the TLR4 Intracellular Signaling Pathway—As shown previously, in response to LPS treatment, PC1/3 and TLR4 colocalize in the endosomal compartment (11). In PC1/3-KD cells, this compartment is disorganized (10, 11) (Table IV), and uncontrolled cytokine secretion is observed following LPS stimulation (10). Altogether, these results indicate that PC1/3 or its products may contribute to the regulation of TLR4 signaling. Proteomic data for the cellular extracts allowed us to focus on proteins implicated in immune system responses, particularly TLR signaling (Table V, supplemental Data S3).

LPS stimulation of TLR4 results in the activation of MyD88-dependent signaling and subsequently NF-κB signaling activation. TLR4 can also mediate the activation of MyD88-independent signaling after its internalization leading to the activation of interferon response factor (IRF) 3 (4). It appears that proteins involved in TLR4 signaling were modulated in NR8383-KD cells. Most importantly, the relative abundance of IRF3 decreased, whereas that of NF-κB increased in KD NR8383-KD cells (Table IV). Moreover, an increasing [Ca\(^{2+}\)]\(c\) in the bathing solution from 0 mM to 2 mM produced more significant elevations of the basal [Ca\(^{2+}\)]\(c\) in KD NR8383 compared with NT cells (Figs. 6F, 6G). Notably, we observed higher resting [Ca\(^{2+}\)]\(c\) levels in NR8383-KD cells compared with NT cells at normal 2 mM external Ca\(^{2+}\) concentrations prior to the application of TG (Fig. 6F). This finding suggests that the PC1/3 KD also promoted enhanced basal Ca\(^{2+}\) influx and not only SOCE. The application of TG in the presence of 2 mM extracellular calcium clearly showed that SOCE was not sustained in control cells compared with NR8383-KD cells. Taken together, these results demonstrate that the basal [Ca\(^{2+}\)]\(c\) increased in KD NR8383-KD cells in relation to SOCE and the increase in the constitutive Ca\(^{2+}\) influx, which is consistent with the results obtained for the cytoskeletal rearrangements and cytokine release in these cells.

TABLE IV

Cellular compartment	Protein name	NT control	LPS	KO control	LPS
Early endosome	Filamin A	27.3099	26.6311	28.113	27.8758
	DCC-interacting protein 13 alpha	18.3755	18.6619	19.6669	19.7339
	Protein Vac 14	22.4716	21.1599	22.9718	22.4599
	EH-domain containing protein 4	23.5251	22.8681	25.4616	25.3642
	Vacuolar protein sorting associated	24.3025	23.7961	23.1955	22.1499
	Annexin A6	26.8954	26.0519	27.7486	27.0312
Late endosome	Ras-related protein Rap-2b	22.2046	21.6395	23.7746	22.9046
	Vesicle-associated membrane protein 3	26.1284	25.8384	25.4235	24.6955
Recycling endosome	General vesicular transport factor p115	25.111	24.2455	24.2114	23.9002
	Vesicle-fusing ATPase	24.2388	23.3532	23.4758	22.3273
	Syntaxin-7	25.0211	24.8745	23.6678	23.9565
	Coatamer subunit gamma 1	23.9452	23.0883	23.0444	22.6604
Golgi vesicle transport	Sialoadhesin	23.0034	23.3274	19.2157	21.5666
	Filamin A	23.0461	23.0252	23.5662	23.9651
Clathrin mediated endocytosis	ADP ribosylation factor-binding protein	21.8125	19.7305	23.7937	22.5062
II1Rap), a known active factor in TLR4 signaling that functions by mediating IL-1-dependent activation of NF-κB in the MyD88-dependent pathway. Moreover, the cytoplasmic inhibitor of TLR4 signaling, NLRX1, was under-expressed in both resting and challenged PC1/3-KO cells (49). Finally, we observed that molecules co-expressed with NF-κB1 in LPS-stimulated KO cells comprised Stat1 and Stat2, two major pro-inflammatory transcription factors that were not co-expressed with NF-κB1 in LPS-stimulated NT cells (Fig. 7).

To determine whether NF-κB showed greater activation in PC1/3-KO cells, we conducted Western blot studies of the TLR4 signaling pathway by studying IκB-α phosphorylation and IRF3 nuclear translocation (Fig. 8).

The fold change represents the ratio of the band intensity between LPS-stimulated and nonstimulated samples at each time point. The kinetics of the phosphorylation of IκB-α after LPS challenge from 1 h to 6 h clearly showed that the fold change in phosphorylated IκB-α was higher at 3 h in KO cells compared with NT cells (Fig. 8A, a and 8Ba). At 1 h, the phosphorylation of IκB-α was high in both NT and KO cells. This phosphorylation remained high in KO cells at 3 h, whereas it decreased in NT cells. In KO cells, a decrease in IκB-α phosphorylation was observed at 6 h.
Phosphorylation was observed at 6 h. These features demonstrate that in KD cells, IκB/H9260B phosphorilation was observed for a longer period, leading to NF-κB activation. The TLR4 MyD88-dependent pathway was involved at later stages compared with NT cells. We also focused on the TLR4 MyD88-independent pathway by examining the nuclear translocation of IRF3. After 3 h and 6 h of LPS stimulation, a duplication of the band corresponding to the various phosphorylated states of IRF3 was observed (Fig. 8A). However, no significant difference in IRF3 nuclear translocation was observed between NT and KD cells over time (Fig. 8B), suggesting that this pathway was not impacted by PC1/3 KD (Fig. 8Ab, b'). These data confirmed that NF-κB was mainly activated in PC1/3-KD cells, as expected based on the proteomic analysis of the NR8383 cellular extracts. This phenomenon is also consistent with our results showing the remodeling of the endosomal compartment (10), (11) (Table IV) and perturbations in calcium homeostasis (Fig. 6).

Table V

Protein name	Gene name	NT control	LPS control	NT KD	LPS KD	
Chemokines and cytokines						
Interleukin-1 receptor accessory protein	Il1rap	19.0246	19.2564	18.8126	20.2122	
C-X-C motif chemokine 2	Cxcl2	-	21.6242	-	22.83	
C-C motif chemokine 4	Ccl4	21.7711	-	21.7329	22.0981	
C-C motif chemokine 5	Ccl5	22.5974	27.755	24.8941	27.4812	
Macrophage migration inhibitory factor	Mif	28.9274	27.1267	26.8169	26.1873	
Interferon-induced protein	Protein Itf1	-	22.4039	-	24.6132	
Interferon-induced guanylate-binding protein 2	Gbp2	22.6232	24.1038	23.732	25.3116	
TLR4 signaling	Nuclear factor NF-kappa-B p105 subunit	Nfkbp1	19.4862	21.1055	21.2137	22.8011
Nuclear factor NF-kappa-B p105 subunit	Ikkb	20.5364	20.8487	20.5426	19.4019	
NF-kappa-B essential modulator	Irf3	21.2062	20.5156	19.5384	19.2483	
Interferon regulatory factor 3	Ifit1	-	22.4039	-	24.6132	
Low affinity Fc-gamma receptor IIb isoform 1	Fcgr2b	26.4859	26.1401	20.9933	22.2522	
Interferon regulatory factor 5	Irf5	19.3744	19.9151	20.3435	20.7204	

Fig. 6. PC1/3-knockdown induces remodeling of Ca²⁺ homeostasis. A, The cytosolic calcium concentration ([Ca²⁺]c) rose in NT and KD NR8383 cells in response to LPS (horizontal bar). B, Quantification of the results presented in A. C, Quantification of the resting [Ca²⁺]c in NT and KD NR8383 cells under basal conditions. D, Representative measurements of TG-activated SOCE, as indicated by the elevated [Ca²⁺]c in NR8383 cells. E, Quantification of SOCE in the results presented in D. F, The [Ca²⁺]c in the presence of 0 or 2 mM extracellular Ca²⁺ and after TG treatment in NT or KD NR8383 cells. G, Quantification of the surface area presented in F following the application of 2 mM extracellular Ca²⁺. n = 3.

Proteomics of PC1/3 Inhibition Consequences in Macrophages
Fig. 7. NFKB1 co-expression networks in PC1/3 KD versus NT cells. Lists of 100 genes which encoded molecules are the most tightly coregulated with NFKB1 in KD or NT cells under LPS stimulation were established and assessed for gene set enrichment. Shown are subnetworks of genes annotated by the GO term “cellular response to cytokine stimuli” (adjusted p value for enrichment significance = 9.48e-6 in NT cells and 3.4e-7 in KD cells). Note that Arg1, a prototypic M2 molecule, is specific to the NT subnetwork whereas Stat1 and Stat2, major pro-inflammatory transcription factors, are co-expressed with NFKB1 in KD but not NT cells.

Fig. 8. Western blot analysis of the TLR4 signaling pathway. A, Western blot analysis of phospho IκB-α, total IκB-α (in total extracts, a and a’), IRF3 and Lamin A (in nuclear extracts, b and b’) in NT or KD PC1/3 NR8383 macrophages after LPS stimulation (200 ng/ml) or not at 1 h, 3 h and 6 h. B, Graphic representations of the quantification of phospho IκB-α (a) and IRF3 (b). The data are represented as the fold increase in samples stimulated with LPS relative to nonstimulated samples for phospho IκB-α and IRF3 and normalized to total IκB-α and Lamin A, respectively. * Significant differences between NT cells and KD cells (p = 0.05) by t test. Experiments were performed in triplicate.
Chemoattraction and Antitumor Activities of PC1/3-KD Macrophage Secretomes

—PC1/3 down-regulation in NR8383 macrophages strongly affected morphology and intracellular signaling pathways, leading to the secretion of large amounts of alarmins and pro-inflammatory chemokines and cytokines. These changes clearly suggest that PC1/3KD polarizes NR8383 toward an M1-like profile. M1 phenotype is characterized by high antigen presentation, high production of nitric oxide and high production of pro-inflammatory cytokines. They are known to have a killing function. In contrast, M2 macrophages have repairing functions and produce high concentration of anti-inflammatory cytokines like IL-10.

The chemokines released by PC1/3-KD macrophages are involved in leukocyte migration and activation (34) (Fig. 2B). CXCL10 (also known as IFN-γ-inducible protein of 10 kDa or IP-10) and CXCL9 (also known as monokine induced by IFN-γ or MIG) mainly function in T cell chemoattraction. These two chemokines share a common receptor: CXCR3. CCL20 is another chemokine that has been implicated in T cell chemoattraction, and the expression of its receptor, CCR6, has been detected in T and B lymphocytes (51). To investigate whether PC1/3-KD NR8383 secretomes have chemotactic properties, assays were conducted in naïve (NA) or activated (A) T lymphocytes (CD4+ NA, CD8+ NA) and natural killer (NK) cells (Fig. 9A). Chemotaxis was performed in Boyden chambers using NR8383 secretomes as chemoattractant agents. The secretomes were obtained from

Proteomics of PC1/3 Inhibition Consequences in Macrophages

Fig. 9. Chemoattraction and antitumor properties of NR8383 secretomes. A, NR8383 PC1/3-KD secretome enhanced CD4+ NA cell chemotaxis. Human primary leukocytes (CD4+ (a), natural killer (NK) cells (b) and CD8+ (c) cells that were activated (A) or nonactivated (NA)) were incubated in a Boyden chamber with NR8383 secretomes obtained at 24 h (control nonstimulated or stimulated with LPS) or F12 medium in the lower compartment. SDF1α and IL15 were used as controls for migration. Migration was conducted for 150 min. The results are presented as the number of cells that migrated. The experience was done in triplicates. B, The cell viability of SKBR3 cells (B) and SKOV3 cells (C) was determined using the CellTiter-Glo assay. The cells were incubated with NR8383 secretomes obtained at 24 h after no stimulation (a) or LPS stimulation (b). The assays were conducted for 24 h, 48 h, 72 h and 96 h. At 72 h, conditioned medium was replaced completely with fresh medium (96 h medium). The results were representative of three independent experiments. Significant differences were identified using Student’s t test. *p < 0.05.
nonstimulated or LPS-stimulated NT or PC1/3-KD macrophages after 24 h.

There was a significant attraction of CD4+ NA cells in the presence of the stimulated NR8383 PC1/3-KD secretome (KD LPS). We noticed a 6-fold increase in the attraction of CD4+ NA between NT LPS and KD LPS secretomes (Fig. 9Aa). No significant differences in chemotraction were observed between NK and CD8+ cells (Figs. 9Ab and c). The data indicated that immune factors produced by KD cells following LPS challenge attracted naïve T helper lymphocytes (Th0; Fig. 9Aa). Moreover, the nature of the chemokines and cytokines produced by the PC1/3-KD cells could polarized these cells from a Th0 to a Th1 profile (TNF-α, IL-1α and IL-1β).

Next, we assessed the cytotoxic activities of NR8383 secretomes in the SKBR3 breast cancer cell line (Fig. 9B). The relative luminescence is proportional to cell viability and represents a measure of the level of ATP. Treatment with the supernatants of nonstimulated macrophages (control) did not affect the number of living cells (Fig. 9Ba). Treatment with the supernatants of LPS-stimulated macrophages led to a decrease in the number of living cells at 72 h and 96 h (Fig. 9Bb). A 3-fold decrease in the intensity of luminescence was observed between NT and KD cell secretomes (LPS) at 72 h. At 96 h, a 5-fold decrease was observed. The decreased number of living SKBR3 cells demonstrated the anti-proliferative activity of PC1/3-KD cell supernatants following LPS stimulation. Toxic tumor effects resulted from KD macrophage activation and were mediated by soluble factors which is in line with the high level of chemokines secreted under LPS treatment. Moreover, LPS challenge triggers the release of specific factors impacting the viability of cancer cells. Such factors are absent in naïve cells secretomes.

We then conducted these tests in an ovarian cancer cell line (SKOV3; Fig. 9C). The results confirmed that the secreted factors from PC1/3-KD macrophages exerted antitumor activities, but in different ways, depending on the cell line considered. In SKOV3 cells, the effects were registered at 96 h after refreshing the conditioned medium with activated secreted factors from LPS-challenged PC1/3-KD macrophages (Fig. 9Cb). Under these conditions, NT and KD cells in sterile conditions affected the viability of the SKOV3 tumor cells. A 1.7-fold decrease in luminescence intensity was observed when the cells were exposed to nonstimulated NT and KD cell secretomes (Fig. 9Ca). In LPS-challenged conditions, this decrease was 2.2 fold for the KD secretome and 1.4-fold for the NT secretome.

These results suggested that these two cell lines did not have the same sensitivity toward factors secreted by PC1/3-KD macrophages. SKBR3 cells were more sensitive to the direct actions of the secreted factors. SKOV3 cells were sensitized by these factors, and renewal of the conditioned medium with fresh medium containing the same secreted proteins affected their proliferation. This difference in response to treatment between SKBR3 and SKOV3 cells was noted recently (52). One major difference between these two cell lines is the production of inhibitory cytokines, such as IL-10: SKBR3 cells produce IL-10, whereas SKOV3 cells do not. Nevertheless, in both cases, the factors secreted by PC1/3-KD NR8383 cells were active toward the tumor cells. In those conditions, we assessed whether PC1/3-KD cells were susceptible to IL-10 in terms of their secretion of pro-inflammatory cytokines. As observed in Fig. 10, in response to IL-10 treatment, NT and KD cells secreted decreased amounts of the pro-inflammatory chemokines CXCL1, CXCL2, TNF-α, and IL1–10. However, KD cells were more resistant to this inhibition and could be more resistant to the tumor inhibitory medium. After IL-10 inhibition, cells were then challenged with LPS. In that case chemokine secretion was restored in both NT and KD cells. Of note, a significant increase in chemokine release was again observed in KD cells, especially for CXCL1, CXCL2, CXCL10, IL1–α, and IL-6. These results clearly demonstrate that PC1/3 KD cells still conserve their M1-like phenotype under inhibitory conditions and that the immune profile is pro-inflammatory.

DISCUSSION

The data from our current work demonstrate that PC1/3 is a key enzyme involved in the regulation of cytokine secretion and, consequently, is important for the regulation of macrophage activation, as depicted in Fig. 11.

When PC1/3 was inhibited, immune factors such as pro-inflammatory chemokines as well as alarmins (GRP78, HSP84, HSP86, HSP73, calreticulin, caphthepsin B, nucleolin, granulins) were secreted in the absence of challenge. These alarmins may act as autocrine and paracrine factors and activate an immune response through TLR4 (53). Immune factors, such as IL-6 and TNF-α, are known to be produced by immune cells through the canonical ER-Golgi secretion pathway. However, in NR8383-KD macrophages, numerous unconventional vesicular or organellar pathways have been found. Indeed, proteomic analyses of cell extracts have revealed that the canonical secretion pathway is deregulated and the noncanonical secretion machinery, with an accumulation of endosomes and MVBs, is reinforced. A large number of studies have shown that many proteins known to regulate endocytosis also participate in nuclear signaling. Among them, an adaptor protein containing a pleckstrin homology domain, a phosphotyrosine binding domain and leucine zipper motif 1 (APPL1) has a role in the positive regulation of NF-κB signaling. The overexpression of APPL1 triggers p65 translocation to the nucleus in the absence of stimulation (54). Annexin A6 has been shown to increase NF-κB activity in response to activation signals (55). These two proteins are over-expressed in PC1/3-KD macrophages and may have an impact on TLR4 signaling (Table IV). Co-expression networks analysis showed that two major pro-inflammatory transcription factors, Stat1 and Stat2, are co-expressed with NF-κB1 in PC1/3-KD cells whereas Arg1, a prototypic M2 molecule, is
specific to the NT subnetwork (Fig. 7). Proteomics and Western blot analysis revealed that in PC1/3-\textit{KD} cells, the MyD88-dependent pathway was sustained. As a result, a greater activation of NF-\textit{κB} was observed. This transcription factor is known to regulate the expression of the pore-forming Ca2+ channel unit, Orai1, and its activator, STIM1, to control Ca2+ entry and affect cellular functions (56). The induction of NF-\textit{κB} by ER stress, i.e. Ca2+ efflux from the ER, has been also observed (57), and this induction is inhibited by Ca2+ chelators (58). Moreover, the treatment of cells with thapsigargin, which causes an efflux of Ca2+ from the ER, leads to NF-\textit{κB} translocation (58). In the present study, we showed that, in PC1/3-\textit{KD} cells, both basal Ca2+ and constitutive Ca2+ influx increased. This result is consistent with our findings about NF-\textit{κB} activation (Figs. 7 and 8). Calcium is also known to interact with cytoskeletal proteins. In PC1/3-\textit{KD} cells, cytoskeletal proteins were over-expressed, leading to the formation of a large number of filopodia (Figs. 3 and 4). The cell elasticity determines macrophage functions and is known to regulate phagocytosis or LPS responsiveness. In a positive feedback loop, the cytoskeleton can modulate the intracellular trafficking machinery through microtubules and calcium mobilization (59, 60). This event may amplify such a phenomenon and explain the spontaneous release of pro-inflammatory cytokines. In response to LPS challenge, amplified effects were registered in these PC1/3-\textit{KD} cells, provoking increased Ca2+ entry and thus impacting the morphology of the cells by producing a greater number of filopodia. As a result, these cells secreted more chemokines and cytokines to recruit naïve T helper lymphocytes (CD4+) and to orient the immune response from Th0 to Th1. Altogether, these findings show that PC1/3-\textit{KD} macrophages exhibit an M1-like phenotype.

It is known that, during the tumor development process, M1-polarized macrophages switch to an M2-like phenotype that is characterized by IL-12\textit{low}, IL-10\textit{high} and lose their tumoricidal activities (61). According to our results, PC1/3 inhibition could be a relevant strategy to reverse the macrophage phenotype from an M2-like to an M1-like phenotype. As a first step, we tested whether the inhibitory cytokine IL-10 could...
affect the secretion properties of PC1/3-KD macrophages. Despite IL-10 treatment, these cells still spontaneously released pro-inflammatory cytokines and oriented the immune response toward a cytotoxic one. Thus, these cells clearly remained highly active. Moreover, in response to LPS challenge, their level of reactivity was restored to the same level of significance as that in cells challenged with LPS without IL-10. We also confirmed the antitumoral properties of their secretomes toward two different cell lines, i.e., one that is known to produce large amounts of IL-10 (SKBR3), whereas the other does not (SKOV3). Taken together, we demonstrated that PC1/3-KD affected cell viability and resistance of cancer cells by the more abundant release of antitumoricidal factors such as TNF-α (62). PC1/3 is thus a promising target to reactivate dormant immune cells in tumors and in immunotherapeutic strategies.

Acknowledgments—We thank Elodie Richard of the CCMIC-Université de Lille 1 (BiCel) for her help and technical support in confocal microscopy experiments.

* This work was funded by grants from the Ministère de L’Éducation Nationale, de L’Enseignement Supérieur et de la Recherche, ANR (IF), Région Nord-Pas de Calais ARCIR (IF), the Université de Lille (MD) Siric ONCOLille (IF, MD), Grant INCa-DGOS-Inserm 6041aa, the CCMIC and INSERM.

This article contains supplemental Data S1 to S6.

†† To whom correspondence should be addressed: U-1192 Inserm, Laboratoire de Protéomique, Réponse Inflammatoire, Spectrométrie de Masse (PRISM), Université de Lille 1, Cité Scientifique, 59655 Villeneuve D’Ascq, France. Tel.: +33 (0)3 20 43 41 94; Fax: +33 (0)3 20 43 40 54; E-mail: michel.salzet@univ-lille1.fr.

Competing financial interests: The authors declare no competing financial interests.

REFERENCES

1. Ward, A. E., and Rosenthal, B. M. (2014) Evolutionary responses of innate immunity to adaptive immunity. *Infection, Genetics Evolution* **21**, 492–496

2. Buchmann, K. (2014) Evolution of Innate Immunity: Clues from Invertebrates via Fish to Mammals. *Front. Immunol.* **5**, 459

3. Wang, N., Liang, H., and Zen, K. (2014) Molecular mechanisms that influence the macrophage m1-m2 polarization balance. *Front. Immunol.* **5**, 614

4. Takeda, K., and Akira, S. (2004) TLR signaling pathways. *Front. Immunol.* **16**, 3–9

5. Ostuni, R., Kratochvill, F., Murray, P. J., and Natoli, G. (2015) Macrophages and cancer: from mechanisms to therapeutic implications. *Trends Immunol.* **36**, 229–239

6. Salzet, M., and Day, R. (2003) [Endocrine markers of cellular immunity: defining the endocrine phenotype]. *J. Soc. Biol.* **197**, 97–101

7. Salzet, M. (2002) Immune cells express endocrine markers. *Neuro. Endocrinol. Lett.* **23**, 8–9

8. Salzet, M., Vleau, D., and Day, R. (2000) Crosstalk between nervous and immune systems through the animal kingdom: focus on opioids. *Trends Neurosci.* **23**, 550–555

9. Brogden, K. A., Guthmiller, J. M., Salzet, M., and Zasloff, M. (2005) The nervous system and innate immunity: the neuropeptide connection. *Nat. Immunol.* **6**, 558–564

10. Refaie, S., Gagnon, S., Gagnon, H., Desjardins, R., D’Anjou, F., D’Orléans-Juste, P., Zhu, X., Steiner, D. F., Seidah, N. G., and Lazure, C. (2012)
Disruption of Proprotein Convertase 1/3 (PC1/3) Expression in Mice Causes Innate Immune Defects and Uncontrolled Cytoplasmic Secretion. J. Biol. Chem. 287, 14703–14717

11. Gagnon, H., Refaie, S., Gagnon, S., Desjardins, R., Salzet, M., and Day, R. (2013) Proprotein convertase 1/3 (PC1/3) in the rat alveolar macrophage cell line NR8383: localization, trafficking and effects on cytokine secretion. PLoS ONE 8, e5657

12. Lonsalac, G., Dong, W., Dubois, C. M., Benlarbi, N., Afonso, C., Fournier, I., Salzet, M., and Day, R. (2006) Lipopolysaccharide mediated regulation of neuroendocrine associated proprotein convertases and neuropeptide precursor processing in the rat spleen. J. Neuroimmunol. 171, 57–71

13. Refaie, S., Gagnon, S., Gagnon, H., Desjardins, R., D’Anjou, F., D’Orléans-Juste, P., Zhu, X., Steiner, D. F., Seidah, N. G., Lazure, C., Salzet, M., and Day, R. (2012) Disruption of proprotein convertase 1/3 (PC1/3) expression in mice affects innate immune function and immune response to infection. J. Biol. Chem. 287, 14703–14717

14. Wisniewski, J. R., Owsiasiewicz, P., and Mann, M. (2011) High recovery FASP applied to the proteome analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieved known colon cancer markers. J. Proteome Res. 10, 3040–3049

15. Meisner, F., Scheltema, R. A., Mollenkopf, H. J., and Mann, M. (2013) Direct proteome quantification of the secretome of activated immune cells. Science 340, 475–478

16. Polati, R., Castagna, A., Bossi, A., Campostrini, N., Zaninotto, F., Timperio, A. M., Zolla, L., Olivieri, O., Corrocher, R., and Girelli, D. (2009) High resolution preparation of monocyte-derived macrophages (MDM) protein fractions for clinical proteomics. Proteome Sci. 7, 4

17. Searle, B. C. (2010) Scaffold: a bioinformatic tool for validating MS/MS-based protein identification. J. Proteome Res. 9, 3254–3264

18. Shilov, I. V., Seymour, S. L., Patel, A. A., Loboda, A., Tang, W. H., Keating, S. P., Hunter, C. L., Nuwaysir, L. M., and Schaeffer, D. A. (2007) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 35, D631–D635

19. Tang, W. H., Shilov, I. V., and Seymour, S. L. (2008) Nonlinear fitting method for determining local false discovery rates from decoy database searches. J. Proteome Res. 7, 3661–3667

20. Colinge, J., Chiappe, D., Lagache, S., Moniatte, M., and Bouguerelat, L. (2008) Profiling of secretory and excretory proteins secreted by human monocytes and macrophages by using the BN nanoSDS-PAGE technique. Proteome Sci. 6, 57–71

21. Gotz, S., Garcia-Gomez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Gagnon, H., Refaie, S., Gagnon, S., Desjardins, R., Salzet, M., and Day, R. (2012) Inhibition of protease-activated receptors (PARs) in human neutrophils: effects of PAR-1 and PAR-2 antagonists on cytokine secretion. J. Proteome Res. 11, 577–584

22. Searle, B. C., Bhardwaj, S., and Mann, M. (2013) Direct proteomic quantification of the secretome of activated immune cells. Nat. Methods 10, 1367–1372

23. Svitkina, T., Lutskiy, M. V., and Rubtsov, V. N. (2008) The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation. Cell Signal. 20, 2793–2804

24. Vanin, E. F., Galtung, H., and Nyberg, B. (2010) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 38, 1256–1269

25. Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Ma’ayan, A. (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128

26. Vanin, E. F., Galtung, H., and Nyberg, B. (2010) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 38, 1256–1269

27. Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguet, P., Doersch, T., Burkhardt, J. K., Freedman, B. D., and Billadeau, D. D. (2008) The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation. Curr. Biol. 18, 24–34

28. Svitkina, T., Gertsman, M., and Rubtsov, V. N. (2008) The WAVE2 complex regulates actin cytoskeletal reorganization and CRAC-mediated calcium entry during T cell activation. Cell Signal. 20, 2793–2804

29. Vizcaino, J. A., Cote, R. G., Csordas, A., Diana, J. A., Fabregat, A., Foster, J. M., Griss, J., Alpi, E., Birim, M., Contell, J., O’Kelly, G., Schoenegger, A., Ovelleiro, D., Perez-Riverol, Y., Reisinger, F., Rios, D., Wang, R., and Hermjakob, H. (2013) The PRoteomics Identifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 41, D1063–1069

30. Montejo, J., Zuberi, K., Rodriguez, H., Kazi, F., Wright, G., Donaldson, S. L., Morris, G., and Bader, G. D. (2010) GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics 26, 2927–2928

31. Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V., Clark, N. R., and Ma’ayan, A. (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128

32. Azuau, Z., Xia, X., Cui, J., Wang, H. Y., Zhu, L., Matsueda, S., Wang, Q., Yang, X., Hong, J., Songyang, Z., Chen, Z. J., and Wang, R. (2011) NLRX1
negatively regulates TLR-induced NF-kappaB signaling by targeting TRAF6 and IKK. *Immunity* 34, 843–853
50. Farber, J. M. (1997) Mig and IP-10: CXC chemokines that target lymphocytes. *J. Leukoc. Biol.* 61, 246–257
51. Krzysiek, R., Lefevre, E. A., Bernard, J., Foussat, A., Galanaud, P., Louache, F., and Richard, Y. (2000) Regulation of CCR6 chemokine receptor expression and responsiveness to macrophage inflammatory protein-3alpha/CCL20 in human B cells. *Blood* 96, 2338–2345
52. Bjorkelund, H., Gedda, L., and Andersson, K. (2011) Comparing the epidermal growth factor interaction with four different cell lines: intriguing effects imply strong dependency of cellular context. *PLoS ONE* 6, e16536
53. Lee, K. H., Jeong, J., and Yoo, C. G. (2013) Positive feedback regulation of heat shock protein 70 (Hsp70) is mediated through Toll-like receptor 4-PI3K/Akt-glycogen synthase kinase-3beta pathway. *Exp. Cell Res.* 319, 88–95
54. Hupalowska, A., Pyrzynska, B., and Miaczynska, M. (2012) APPL1 regulates basal NF-kappaB activity by stabilizing NIK. *J. Cell Sci.* 125, 4090–4102
55. Campbell, K. A., Minashima, T., Zhang, Y., Hadley, S., Lee, Y. J., Giovinnazzo, J., Quirno, M., and Kirsch, T. (2013) Annexin A6 interacts with p65 and stimulates NF-kappaB activity and catabolic events in articular chondrocytes. *Arthritis Rheum.* 65, 3120–3129
56. Eyleinstein, A., Schmidt, S., Gu, S., Yang, W., Schmid, E., Schmidt, E. M., Alesutan, I., Szteyn, K., Regel, I., Shumilina, E., and Lang, F. (2012) Transcription factor NF-kappaB regulates expression of pore-forming Ca2+ channel unit, Oral1, and its activator, STIM1, to control Ca2+ entry and affect cellular functions. *J. Biol. Chem.* 287, 2719–2730
57. Prell, T., Lautenschlager, J., Weidemann, L., Ruhmer, J., Witte, O. W., and Grosskreutz, J. (2014) Endoplasmic reticulum stress is accompanied by activation of NF-kappaB in amyotrophic lateral sclerosis. *J. Neuroimmunol.* 270, 29–36
58. Pahl, H. L., Sester, M., Burgert, H. G., and Baeuerle, P. A. (1996) Activation of transcription factor NF-kappaB by the adenovirus E3/19K protein requires its ER retention. *J. Cell Biol.* 132, 511–522
59. Joseph, N., Reicher, B., and Barda-Saad, M. (2014) The calcium feedback loop and T cell activation: how cytoskeleton networks control intracellular calcium flux. *Biochim. Biophys. Acta* 1838, 557–568
60. Murtazina, D. A., Chung, D., Ulloa, A., Bryan, E., Galan, H. L., and Sanborn, B. M. (2011) TRPC1, STIM1, and ORAI influence signal-regulated intracellular and endoplasmic reticulum calcium dynamics in human myometrial cells. *Biol. Reprod.* 85, 315–326
61. Chanmee, T., Ontong, P., Konno, K., and Itano, N. (2014) Tumor-associated macrophages as major players in the tumor microenvironment. *Cancers* 6, 1670–1690
62. Wallach, D., and Kovalenko, A. (2009) 12th international TNF conference: the good, the bad and the scientists. *Cytokine Growth Factor Rev.* 20, 259–269