Supplemental information

Antidepressant drugs act by directly binding
to TRKB neurotrophin receptors

Plinio C. Casarotto, Mykhailo Girych, Senem M. Fred, Vera Kovaleva, Rafael Moliner, Giray Enkavi, Caroline Biojone, Cecilia Cannarozzo, Madhusmita Pryiadrashini Sahu, Katja Kaurinkoski, Cecilía A. Brunello, Anna Steinzeig, Frederike Winkel, Sudarshan Patil, Stefan Vehring, Tsvetan Serchov, Cassiano R.A.F. Diniz, Liina Laukkanen, Iseline Cardon, Hanna Antila, Tomasz Rog, Timo Petteri Pieponen, Clive R. Bramham, Claus Normann, Sari E. Lauri, Mart Saarma, Ilpo Vattulainen, and Eero Castrén
Table S1. Simulated systems discussed in this study. The table lists the variant of TRKB dimers, mole percentage of cholesterol (ρ_{CHOL}), the number of POPC (N_{POPC}), cholesterol (N_{CHOL}), and drug (N_{DRUG}) molecules, temperature (T), the number of simulation repeats (N_{sim}), and the simulation length per repeat (t_{sim}). “WT,” “Y433F.het”, “V437A.hom”, “S440A.hom” refer in respective order to the wild-type, heterozygous Y433F, homozygous V437A, and homozygous S440A variants of TRKB TM dimer (residues 427-459) and TRKA TM dimer (residues 410-443). FLX: fluoxetine, SKE: S-ketamine “Protein-free” refers to the systems without the protein in the membrane. Related to Fig. 1G-J and Fig. 3.

System name	Protein variant	Drug type	ρ_{CHOL} (mol%)	N_{POPC}	N_{CHOL}	N_{DRUG}	T (K)	N_{sim}	t_{sim} (µs)
System 11	WT TRKB	0	128	0	363	10	1		
System 21	WT TRKB	20	90	28	363	10	1		
System 31	WT TRKB	40	90	60	363	10	1		
System 41	Y433F.het TRKB	20	112	28	363	10	1		
System 5	WT TRKB	0	128	0	310	10	1		
System 6	WT TRKB	20	112	28	310	10	1		
System 7	WT TRKB	40	90	60	310	10	1		
System 8	Y433F.het TRKB	20	112	28	310	10	1		
System 9	WT TRKB	20	112	28	310	10	1		
System 10	WT TRKB	20	112	28	310	10	1		
System 11	WT TRKB	20	112	28	310	10	1		
System 12	Y433F.het TRKB	20	112	28	310	10	1		
System 13	V437A.hom TRKB	20	112	28	310	10	1		
System 14	S440A.hom TRKB	20	112	28	310	10	1		
System 151	WT TRKA	0	128	0	363	10	1		
System 161	WT TRKA	20	90	60	310	10	1		
System 171	WT TRKA	40	90	60	310	10	1		
System 18	WT TRKA	0	128	0	310	10	1		
System 19	WT TRKA	20	112	28	310	10	1		
System 20	WT TRKA	40	90	60	310	10	1		
System 21	protein-free	0	200	0	310	1	0.5		
System 22	protein-free	20	160	40	310	1	0.5		
System 23	protein-free	40	120	80	310	1	0.5		
System 24	protein-free	0	200	0	10	310	1	0.5	
System 25	protein-free	20	160	40	310	1	0.5		
System 26	protein-free	40	120	80	310	1	0.5		
System 27	protein-free	0	200	0	20	310	1	0.5	
System 28	protein-free	20	160	40	310	1	0.5		
System 29	protein-free	40	120	80	310	1	0.5		
System 30	protein-free	0	200	0	40	310	1	0.5	
System 31	protein-free	20	160	40	310	1	0.5		
System 32	protein-free	40	120	80	310	1	0.5		
System 33	protein-free	0	200	0	10	310	1	0.5	
System 34	protein-free	20	160	40	310	1	0.5		
System 35	protein-free	40	120	80	310	1	0.5		
System 36	protein-free	0	200	0	20	310	1	0.5	
System 37	protein-free	20	160	40	310	1	0.5		
System 38	protein-free	40	120	80	310	1	0.5		
System 39	protein-free	0	200	0	40	310	1	0.5	
System 40	protein-free	20	160	40	310	1	0.5		
System 41	protein-free	40	120	80	310	1	0.5		
† These simulations were performed in the NVT ensemble, after initial equilibration at 310 K to achieve the correct area per lipid. A flat-bottomed half-harmonic restraint (force constant of 1000 kJ/mol/nm²) was used for TRKB systems to keep the inter-helical distance between the Gly443 Ca atoms below 0.45 nm during the simulations to prevent dissociation of the helices and to achieve proper local sampling (see details above). All other simulations were performed in the NpT ensemble.