A checklist of blue-green algae (Cyanobacteria) from Punjab, India

Yadvinder Singh 1*, Gurdarshan Singh 2, D.P. Singh 3 & J.I.S. Khattar 4*

1-4 Department of Botany and Environmental Science, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab 140406, India.

Abstract: A checklist of Cyanobacteria (Blue-green algae) has been made by reviewing available literature in order to contribute to the knowledge of biodiversity of algae in the Punjab state of India. The list records 317 taxa of the phylum Cyanobacteria distributed among 74 genera, 32 families, and six orders. The order Oscillatoriales has 115 taxa, followed by Nostocales (84), Synechococcales (60), Chroococcales (49), Spirulinales (8), and Pleurocapsales (1). The family Nostocaceae has the maximum number of genera followed by Microcoleaceae, Chroococcaceae, Oscillatoriaceae and other reported families. The genera with the highest number of species were Phormidium (39 species), Lyngbya (15 species), Oscillatoria (14 species), and Leptolyngbya & Scytomena (13 species each). The checklist revealed a high degree of species richness within phylum Cyanobacteria found in Punjab. This checklist can provide a baseline for future floristic studies with taxonomically updated/accepted name of genera/species of cyanobacteria.

Keywords: Algae, biogeography, cyanophyceae, diversity, documentation, inventory, taxonomy.

Editor: K. Priyadarshani, Y.C. Institute of Science, Satara, India. Date of publication: 26 March 2022 (online & print)

Citation: Singh, Y., G. Singh, D.P. Singh & J.I.S. Khattar (2022). A checklist of blue-green algae (Cyanobacteria) from Punjab, India. Journal of Threatened Taxa 14(3): 20758–20772. https://doi.org/10.11609/jott.6754.14.3.20758-20772

Copyright: © Singh et al. 2022. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: Early career research grant (No. ECR/2017/001103) from SERB-DST, New Delhi to Yadvinder Singh (YS).

Competing interests: The authors declare no competing interests.

Author details: DR. YADVINDER SINGH is working as Assistant Professor (Botany) in Department of Botany and Environmental Science of Sri Guru Granth Sahib World University. He has published extensively on various aspects of extremophilic cyanobacteria, fresh water-phytology and ecology, bioremediation potential of cyanobacteria, cyanobacterial systemsatics and phylogenetics. MK. GURDARSHAN SINGH currently doing his PhD at Department of Botany and Environmental Science, Sri Guru Granth Sahib World University. He is doing his research work on the water quality and diversity of blue green algae (cyanobacteria) from the wetlands of Punjab, India. PROF. D.P. SINGH is working as Professor (Botany) and Head in Department of Botany, Punjabi University, Patiala. He is the member of various professional bodies and organisations. He has published a number of research papers in journals of international repute and several books chapters, having more than 674 citations with 15 h-index and 22 i10-index. PROF. J.I.S. KHATTAR is working as Professor (Botany), Department of Botany, Punjabi University. He has published 65 research papers in reputed International Journals on various aspects of algae including the physiology & biochemistry of cyanobacteria, environmental microbiology, and cyanobacterial biotechnology. He was completed 07 research projects sponsored by various funding agencies. He has guided 27 Ph.D. and M.Phil. students in their research projects.

Author contributions: Conceptualization (YS, JISK & DPS), investigation (GS & YS), writing (GS), original draft (YS & GS), writing - review & editing (GS, YS, JISK & DPS).

Acknowledgements: The authors are thankful to the vice-chancellor, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India for providing laboratory facilities and SERB-DST, New Delhi for financial assistance in the form research project (ECR/2017/001103).
INTRODUCTION

Cyanobacteria, also known as Blue-green algae, are oxygenic photosynthetic prokaryotes belonging to the class Cyanophyceae. It has been estimated that these organisms originated nearly 3.5–3.8 billion years ago at the beginning of Archean era (Schopf 2002; Blank & Sanchez-Baracaldo 2010; Sleep 2010). Cyanobacteria occur in diverse range of aquatic and terrestrial habitats including extreme environments (Whitton & Potts 2000; Singh et al. 2014, 2018; Kimambo et al. 2019). They show high degree of phenotypic variation when compared to other prokaryotic organisms (Dvořák et al. 2017). Traditionally these organisms have been identified and categorized mainly using morphological features such as dimension, shape of vegetative and perennation stage, colour & characteristics of sheath, branching pattern, and cell contents (Komárek & Anagnostidis 1998, 2005; Komárek 2013). Presently, the advancement and use of modern taxonomic tools including ultrastructural studies, 16S rRNA gene, 16S-23S rRNA ITS region and cpcB-cpcA IGS region of phycocyanin locus has lead to the changes in taxonomic position of various cyanobacterial genera/species (Komárek 2014). The ability of cyanobacteria to release exopolysaccharides and fix atmospheric nitrogen is pertinent in maintaining a healthy condition of the soil; additionally, this ability can further assist with the reclamation of barren land (Singh et al. 2016). In recent years, cyanobacterial research has gained greater academic interest as many species in this phylum have been identified to be a potential source of various value-added products such as biofertilizers, biofuels, and bioactive compounds. Cyanobacteria is also an attractive laboratory model that is used for genetic studies to understand their adaptation to extreme conditions and climatic changes. (Abed et al. 2008; Al-Ha 2016; Singh et al. 2017; Kumar et al. 2019).

Cyanobacteria have been reported from various habitats in Punjab including wetlands, paddy fields and polluted water etc. (Vasishta 1960a, 1961, 1962a,b, 1963; Pandhol 1974; Grover & Pandhol 1975; Mehta 1975; Sarma et al. 1979; Dhingra 2006; Singh et al. 2009; Khattar et al. 2015). Despite an increase in research effort, knowledge regarding the diversity and distribution of cyanobacteria in Punjab is still inconsistent. Thus there is need for an updated species checklist in order to contribute to the current knowledge of cyanobacterial diversity of the state. Although, in Gupta (2012) published a checklist of cyanobacteria from India in which 218 cyanobacterial taxa were reported from Punjab, the present study adds 99 taxa to this list, hence increasing the total to 317 taxa. Since cyanobacteria are an important component of the aquatic ecosystem, cyanobacterial wealth of the state should be known so that these can be collected and cultured for future studies.

The objective of this work was to revise and organize all available existing taxonomic data for cyanobacteria of recent taxonomic revisions in the state of Punjab. The checklist could serve as a baseline for future diversity, limnological, environmental impact assessment, bio-geographic distribution and speciation studies. Creation of a checklist is the most basic taxonomic work on a group of organisms arranged in systematic or alphabetical order. The checklist prepared during present work is done in a systematic order by reviewing the available literature up to September 2020. This is the first complete checklist of cyanobacteria from Punjab covering all currently accepted species names and their synonyms.

MATERIALS AND METHODS

This checklist has been prepared by consulting available literature including research papers and dissertations (PhD/ M.Phil/ MSc.). Data were compiled by reviewing diversity, taxonomy and ecological studies containing lists of cyanobacteria identified up to species level. Geographically, Punjab is situated in the north of the country between 29.30–32.32 °N and 73.55–76.50 °E (Figure 1). The climate of Punjab is continental, semiarid to sub-humid, it experiences both extreme summer and winter with annual rainfall of 58–96 cm (Gosal 2004; Krishan et al. 2015). The texture of soil in Punjab varies from coarse to fine sand, silt, and loam (Dhingra 2006). Cyanobacterial species recorded in this checklist were identified by various workers from the year 1936 to 2020. In this checklist species were arranged taxonomically by following the classification system recommended by Komárek (2014). Additionally, the taxonomic position, authorities and the currently accepted name was verified from AlgaeBase website (Guiry & Guiry 2020).

RESULTS AND DISCUSSION

This compiled checklist revealed that cyanobacterial diversity within Punjab is represented by 317 taxa (297 species, 13 varieties, and 7 forms) belonging to 74 genera and five orders (i.e., Chroococcales,
Synechococcales, Spirulinales, Oscillatoriales, and Nostocales) of Class Cyanophyceae (Table 1). On the basis of number of species, order Oscillatoriales (36%) is found to be the most diverse followed by Nostocales (27%), Synechococcales (19%), Chroococcales (15%), and Spirulinales (3%) (Figure 2). Among the genera, genus *Phormidium* had the maximum number of species, i.e., 39 followed by *Lyngbya* with 15 species, *Oscillatoria* with 14 species, *Leptolyngbya* and *Scytonema* with 13 species each. The families with the highest number of taxa were Oscillatoriaceae (72), Nostocaceae (51), Microcoleaceae (30), Microcystaceae (22) and Merismopediaceae (16). Vasishta (1960d, 1961, 1963b) reported 117 cyanobacterial taxa from Hoshiarpur district of Punjab. Grover and Pandhol (1974) reported 62 cyanobacterial species from paddy fields of Punjab. Sarma et al. (1979) identified 67 cyanobacterial species from varied localities in Patiala district of Punjab. Extensive floristic work performed by Dhingra (2006) on blue-green algae reported 158 species from moist soils, wetlands, ponds, roadside puddles, bricked and cemented surfaces from various localities of Punjab. Singh et al. (2009) studied cyanobacterial diversity from the rice fields of Patiala district and reported 25 cyanobacterial species from the study area.

The taxonomic identity of 87 cyanobacterial taxa previously reported from Punjab on their morphology has been revised with the help of modern taxonomic tools (marked with ‘*’ in Table 1). Current accepted names of such taxa were updated following Algaebase. Taxonomic revision is continuous leading to the revision of taxonomic status as well as the nomenclature of the organism. Application of modern ecological, ultra-structural and molecular methods, aided by the cultivation of numerous cyanobacterial morphotypes, has substantially changed our knowledge of these organisms (Komárek 2006). Modern taxonomic tools have also enabled major advances in cyanobacterial taxonomy and aided with the criteria used for their phylogenetic classification (Komárek 2006, 2014). Cyanobacteria recorded from Punjab inhabit varied habitats from planktonic to terrestrial and epilithic to epiphytic. Observations made from the present checklist note that the number of cyanobacterial species growing on terrestrial habitats (110) were greater than planktonic (84), epilithic (26), and epiphytic (15) (Table 1). However,
78 cyanobacterial species were reported from more than one habitat (Table 1, Figure 3). They colonize large portions of the available terrestrial habitats due to its ability of ‘anhydrobiosis’ (Billi & Potts 2002; Alpert 2005). Moreover, they have a wide distribution range due to their unimaginable adaptive capacities (Gaysina 2019).

In conclusion, as a first complete and updated checklist of cyanobacteria from Punjab this will provide a baseline data for future floristic study. The explored and poorly explored regions of Punjab in terms of number of cyanobacterial taxa are highlighted in Figure 1. We can also assume that future studies of cyanobacterial diversity from poorly explored regions will increase the number of species by exploring more unexplored habitats of Punjab.

REFERENCES

Abed, R.M.M., S. Dobretsov & S. Kumar (2008). Applications of cyanobacteria in biotechnology. *Journal of Applied Microbiology* 106: 1–12.

Al-Haj, L., Y.T. Lui, R. M. M. Abed, M. A. Gomaa & S. Purton (2016). Cyanobacteria as chassis for industrial biotechnology: Progress and Prospects. *Life* 6: 1–17.

Alpert, P. (2005). The limits and frontiers of desiccation-tolerant life. *Integrative and Comparative Biology*. 45: 685–695.

Billi, D. & M. Potts (2002). Life and death of dry prokaryotes. *Research in Microbiology* 153(1): 7–12.

Blank, C.E. & P. Sanchez-Baracaldo (2010). Timing of morphological and ecological innovations in the cyanobacteria -a key to understanding the rise in atmospheric oxygen. *Geobiology* 8 (1): 1–23.

Dhingra, R. (2006). *Biodiversity assessment and conservation of blue green algae from Punjab*. PhD thesis. Department of Botany, Panjab University, Chandigarh, 241 pp.

Dvořák, P., D.A. Casamatta, P. Hašler, E. Jahodářová, A.R. Norwich & A. Poulíčková (2017) *Diversity of the Cyanobacteria*. pp. 3–46. In: P.C. Hallenbeck (eds.) *Modern topics in the Phototrophic Prokaryotes*. Springer. International Publishing Switzerland, 480pp.

Gaysina, L. A., A. Saraf & P. Singh (2019). *Cyanobacteria in Diverse Habitats*, pp. 1-28. In: Rai, A.N., D.N. Tewari and A.K. Mishra (eds.) *Cyanobacteria: From Basic Science to Applications*. Elsevier: Amsterdam, The Netherlands, 541 pp.

Gosal, G. (2004). Physical geography of the Punjab. *Journal of Punjab Studies*. 11: 19–37.

Grover, I.S. & R.K. Pandhol (1975) *Algal flora of paddy fields of Ludhiana and its adjacent areas. Phykos* 14(1–2): 89–97.

Guiry, M.D. & G.M. Guiry (2020). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org. Searched on 26 February 2020.

Gupta, R.K. (2012). *Algae of India Vol-1: A checklist of Cyanoprokaryota (Cyanophyceae)*. Botanical Survey of India, Ministry of Environment & Forests, Kolkata, 160 pp.

Jindal, N., D.P. Singh & J.I.S. Khattar (2013). Optimization, characterization, and flow properties of exopolysaccharides produced by the cyanobacterium *Lyngbya stagnina*. *Journal of Basic Microbiology* 53(11): 902–912.

Kaur, S., A.S. Ahluwalia & S. Kumar (2017). Seasonal variation of phytoplankton assemblages and relation to environmental variables in a freshwater lake situated in the zoological park, Chattbir, Punjab, India. *Panjab University Research Journal (Science)* 67: 35–48.

Kimambo, O.N., R.G. Jabulani & C. Hector (2019). The occurrence of cyanobacteria blooms in freshwater ecosystems and their link with hydro-meteorological and environmental variations in Tanzania. *Heliyon* 5(3): 1–23.

Khattar, J.I.S. & N. Jindal (2008). Isolation and characterization of exopolysaccharides produced by the cyanobacterium *Phormidium valderianum*. *Journal of Biotechnology* 136: 423–424.

Khattar, J.I.S. & Shailza (2009). Optimization of Cd2+ removal by the cyanobacterium *Synechocystis* pevalekii using the response surface methodology. *Process Biochemistry* 44(1): 118–121.

Khattar, J.I.S., S. Kaur, S. Kaushal, Y. Singh, D.P. Singh, S. Rana & A. Gulati (2015). Hyperproduction of phycobiliproteins by the cyanobacterium *Anabaena fertilissima* PUPCCC 410.5 under...
Taxonomic Assignment	Planktonic	Terrestrial	Epilithic	Epiphytic/Endophytic	References	
Class: Cyanophyceae						
Subclass: Synechococaphycidae						
Order: Synechococcales						
Family: Synechococcaceae						
1. Anathece clathrata (West & G.S.West) Komárek, Kastovsky & Ježberová	+	-	-	-	16	
2. Aphanothece clathrata West & G.S.West	+	-	-	-	16	
3. Synechococcus elongatus (Nägeli) Nägeli	+	+	-	-	16, 20	
Family Merismopediaceae						
4. Aphanocapsa biformis A.Braun	+	-	-	-	7	
5. Aphanocapsa delicatissima West & G.S.West	-	+	-	-	12	
6. Aphanocapsa elachista West & G.S.West	-	+	-	-	12	
7. Aphanocapsa grevillei (Berkeley) Rabenhorst	+	-	-	-	16	
8. Aphanocapsa koordersi K.M.Strøm	+	-	-	-	16	
9. Aphanocapsa muscicola (Meneghini) Wille	+	+	+	-	1, 7, 12	
10. Aphanocapsa roseana De Bary	-	+	-	-	12	
11. Aphanocapsa stagonalis (Lemmernann) R.N.Beljakova	+	-	-	-	12, 16	
12. Limnococcus limneticus (Lemmernann) Komárek, Jezberová, O.Komárek & Zapomelová	+	-	-	-	10	
13. Merismopedia elegans A. Braun ex Kützing	+	-	-	-	16, 25	
14. Merismopedia glauca (Ehrenberg) Kützing	+	+	-	-	7, 10, 16	
15. Merismopedia sparsa Komárek & G.Cronberg	+	-	-	-	30	
16. Merismopedia tranquiíla (Ehrenberg) Trevisan	+	+	-	-	2, 12, 16	
17. Merismopedia warmingiana (Lagerheim) Forti	+	+	+	-	16	
18. Synechocystis aquatilis Sauvageau	+	+	-	-	10, 11, 16	
19. Synechocystis prevollii Ercegovic	+	+	+	-	11, 19, 21	
Family Coelosphaeriaceae						
20. Coelosphaerium aerugineum Lemmernann	+	-	-	-	16	
21. Coelosphaerium dubium Grunow	+	-	-	-	16	
22. Snowella lacustris (Chodat) Komárek & Hindák	+	-	-	-	16	
Family Pseudanabaenaceae						
23. Limnothrix redekei (Goor) Meffert	-	+	-	-	21	
24. Pseudanabaena amphigranulata (Goor) Anagnostidis	+	-	-	-	10	
25. Pseudanabaena catenata Lauterborn	+	+	-	-	16	
26. Pseudanabaena galeata Böcher	+	-	-	-	16	
27. Pseudanabaena limnetica (Lemmernann) Komárek	+	-	-	-	16	
28. Pseudanabaena minima (G.S.An) Anagnostidis	+	+	-	-	16	
29. Pseudanabaena muscolosa (Naumann & Huber-Pestalozzi) Schwabae	-	+	+	-	16, 20	
Family Leptolyngbyaceae						
30. Leptolyngbya gracilis (Rabenhorst ex Gomont) Anagnostidis & Komárek	+	+	-	-	11	
31. Leptolyngbya africana (Lemmernann) Anagnostidis & Komárek	+	+	-	-	12, 20	
Taxonomic Assignment	Planktonic	Terrestrial	Epilithic	Epiphytic/Endophytic	References	
----------------------	------------	-------------	-----------	----------------------	------------	
32 Leptolyngbya amplivaginata (Goor) Anagnostidis & Komárek	+	-	-	-	16	
33 Leptolyngbya boryana (Gomont) Anagnostidis & Komárek	-	+	-	-	31	
*Plectonema boryanum Gomont						
34 Leptolyngbya foveolarum (Gomont) Anagnostidis & Komárek	-	+	-	-	12, 20, 27	
*Phormidium foveolarum Gomont						
35 Leptolyngbya fragilis (Gomont) Anagnostidis & Komárek	-	+	+	-	10, 12	
*Phormidium fragile Gomont						
36 Leptolyngbya mucosa (N.L.Gardner) Anagnostidis & Komárek	-	+	-	-	10, 20	
*Phormidium mucosum N.L.Gardner						
37 Leptolyngbya nostocorum (Bornet ex Gomont) Anagnostidis & Komárek	-	+	-	-	20	
*Plectonema nostocorum Bornet ex Gomont						
38 Leptolyngbya perelegans (Lemmerrmann) Anagnostidis & Komárek	+	+	-	-	6	
*Lyngbya perelegans Lemmerrmann						
39 Leptolyngbya polysiphoniae (Frémy) Anagnostidis & Komárek	-	-	+	-	2	
*Lyngbya polysiphoniae Frémy						
40 Leptolyngbya purpurascens (Gomont ex Gomont) Anagnostidis & Komárek	-	-	+	-	7	
*Phormidium purpurascens Gomont ex Gomont						
41 Leptolyngbya scottii (F.E.Fritsch) Anagnostidis & Komárek	-	+	-	-	10, 12	
*Lyngbya scottii Fritsch						
42 Leptolyngbya truncata (Lemmerrmann) Anagnostidis & Komárek	+	-	-	-	16	
43 Leptolyngbya valderiana (Gomont) Anagnostidis & Komárek	-	+	+	-	7, 18, 20	
*Phormidium valderianaum Gomont						
44 Phormidesmis molle (Gomont) Turicchia, Ventura, Komárková & Komárek	+	+	-	-	12, 20, 22	
*Phormidium molle Gomont						
Family Trichocoleusaceae						
45 Trichocoleus delicatulus (West & G.S.West) Anagnostidis	+	+	-	-	16	
46 Trichocoleus hospitus Hansgirg	-	-	+	-	16	
47 Trichocoleus sociatus (West & G.S.West) Anagnostidis	+	+	-	-	10, 11	
*Microcoleus sociatus West & G.S.West						
Family Oculatellaceae						
48 Drouettella lurida (Gomont) Mai, J.R.Johansen & Pietrasiak	-	-	+	-	7	
*Phormidium luridum Gomont						
Family Synechococcales familia incertae sedis						
49 Dasygloea amorpha Berkeley ex Gomont	+	-	-	-	16	
50 Heteroleibleinia gardneri (Geitler) Anagnostidis & Komárek	+	+	-	-	6	
*Lyngbya gardneri Geitler						
51 Heteroleibleinia kuetzingii (Schmidle) Compère	+	-	-	-	10	
*Lyngbya kuetzingii Schmidle						
52 Heteroleibleinia lachneri (W.Zimmermann) Anagnostidis & Komárek	-	-	+	+	10, 12	
*Lyngbya lachneri (W.Zimmermann) Geitler						
53 Heteroleibleinia mesotricha (Skuja) Anagnostidis & Komárek	-	+	-	-	20	
*Lyngbya mesotricha Skuja						
54 Jaaginema angustissimum (West & G.S.West) Anagnostidis & Komárek	-	+	-	-	16	
55 Jaaginema borodinii (Woronichin) Anagnostidis & Komárek	-	+	-	-	16	
56 Jaaginema subtilissimum (Kützing ex Forl) Anagnostidis & Komárek	+	+	-	-	11, 16	
*Oscillatoria subtilissima Kützing ex Forl						
57 Schizothrix arenaria Gomont	-	+	-	-	16	
58 Schizothrix hauseri Grunow ex Gomont	-	+	-	-	16	
59 Schizothrix lateritia Gomont	-	-	+	-	7	
60 Schizothrix mexicana Gomont	+	-	-	-	1	
Subclass Oscillatoriophycidae						
Order Spirulinales						
61 Spirulina labyrinthiformis Gomont	-	+	-	-	12, 16	
62 Spirulina major Kützing ex Gomont	+	-	-	-	16	
Taxonomic Assignment	Planktonic	Terrestrial	Epilithic	Epiphytic/Endophytic	References	
----------------------	------------	-------------	-----------	----------------------	------------	
63 Spirulina meneghiniana Zanardini ex Gomont	+	-	-	-	16	
64 Spirulina platensis var. tenuis C.B.Rao *Arthrospira platensis tenuis (C.B.Rao) Desikachary	+	-	-	-	11	
65 Spirulina princeps West & G.S.West	+	+	-	-	7, 12, 20	
66 Spirulina subsalsa Generst ex Gomont	+	+	-	-	11, 16	
67 Spirulina subtilissima Kützing ex Gomont	-	+	-	-	11	
68 Spirulina tenerime Kützing ex Gomont	-	+	-	-	16	
Order Chroococcales						
Family Microcystaceae						
69 Gloeocapsa aeruginosa Kützing	-	+	+	-	7, 12	
70 Gloeocapsa calicarea Tilden	-	-	+	-	16	
72 Gloeocapsa decorticans (A.Braun) P.Richter	-	+	-	-	16	
73 Gloeocapsa kuetzingiana Nägeli ex Kützing	-	-	+	-	10	
74 Gloeocapsa livida (Carmichael) Kützing	+	+	-	-	16	
75 Gloeocapsa nigrescens Nägeli	+	-	-	-	11	
76 Gloeocapsa pleurocapsoides Novácek	-	-	+	-	7	
77 Gloeocapsa punctata Nägeli	-	+	-	-	16	
78 Gloeocapsa quaternata Kützing	-	-	-	+	10	
79 Gloeocapsa sanguinea (C.Agardh) Kützing	-	-	-	+	10	
80 Microcystis aeruginosa (Kützing) Kützing	+	+	-	-	6, 11, 12, 16, 30	
81 Microcystis elongata Desikachary	+	-	-	-	12	
82 Microcystis flosaquae (Wittrock) Kirchner	+	-	-	-	7, 11, 16	
83 Microcystis marginata (Meneghinii) Kützing	+	-	-	-	12	
84 Microcystis proteocystis W.B. Crow	+	-	-	-	12	
85 Microcystis pulvere (H.C.Wood) Forti	+	-	-	-	12, 16	
86 Microcystis pulvere f. irregularis (J.B.Petersen) Elenkin *Aphanocapsa lachistoa var. irregularis J.B.Petersen	+	-	-	-	16	
87 Microcystis scripta (P.Richter) Lemmermann	+	-	-	-	16	
88 Microcystis smithii Komárek & Anagnostidis *Aphanocapsa pulchra (Kützing) Rabenhorst	+	+	-	-	11, 12	
89 Microcystis viridis (A.Braun) Lemmermann	+	-	-	-	16	
90 Microcystis wesenbergii (Komárek) Komárek ex Komárek	+	-	-	-	16	
Family Aphanotheceae						
91 Aphanothece microcapsica Nägeli	+	+	-	-	6, 12, 16	
92 Aphanothece naegeli Warthmann	-	+	-	-	11, 16	
93 Aphanothece nidulans P.Richter	+	-	-	-	16	
94 Aphanothece pollida (Kützing) Rabenhorst	+	+	-	-	11	
95 Aphanothece saxicola Nägeli	+	+	-	-	16	
96 Aphanothece stagnina (Sprengel) A.Braun	-	+	-	-	7, 11	
97 Gloeocethe membranacea (Rabenhorst) Bornet	-	+	-	-	12	
98 Gloeocethe rupestris (Lyngbye) Bornet	-	+	-	-	6, 12	
99 Gloeocethe samoensis Will	-	+	-	-	7	
Family Cyanobacteriaceae						
100 Cyanobacterium cedrorum (Sauvageau) Komárek, J. Kapecký & Cepák *Synechococcus cedrorum Sauvageau	+	+	-	-	10, 12	
Taxonomic Assignment	Planktonic	Terrestrial	Epilithic	Epiphytic/Endophytic	References	
----------------------	------------	-------------	-----------	----------------------	------------	
Family Cyanothrichaceae						
101 Johannesbaptista pellucida (Dickie) W.R.Taylor & Drouet	+	-	-	-	16	
Family Gomphosphaeriaceae						
102 Gomphosphaeria natans Komárek & Hindák	+	-	-	-	16	
Family Chroococcaceae						
103 Asterocapsa nidulans (N.L.Gardner) Komárek & Komárková-Legnerová *Anacystis nidulans N.L.Gardner	+	-	-	-	15	
104 Chroococcus indicus Zeller	-	+	-	-	20	
105 Chroococcus minutus (Kützing) Nägeli	+	-	-	-	7	
106 Chroococcus minor (Kützing) Nägeli	+	+	+	-	10, 11, 12, 16	
107 Chroococcus minutus (Kützing) Nägeli	+	+	+	-	7, 11, 16	
108 Chroococcus pollidus Nägeli	-	+	-	-	11	
109 Chroococcus subnudus (Hanșig) G.Cronberg & J.Komárek	+	-	-	-	16	
110 Chroococcus turgidus (Kützing) Nägeli	-	+	-	-	12	
111 Chroococcus varius A.Braun	+	-	-	-	16	
112 Cyanosarcina burmensis (Skuja) Kováčik	-	-	+	-	16	
113 Cyanosarcina spectabilis (Geitler) Kováčik *Myxosarcina spectabilis Geitler	-	-	-	+	10	
114 Gloeocapsopsis cyanee (Krieger) Komárek & Anagnostidis	-	+	-	-	16	
115 Pseudocapsa dubia Ercegovic	+	+	-	-	16	
116 Dactylococcopsis raphidioides Hansgirg	-	-	-	-	7	
Family Entophysalidaceae						
117 Chlorogloea microcystoides Geitler	-	-	+	-	16	
Order Pleurocapsales						
Family Dermocarpellaceae						
118 Stanieria sphaerica (Setchell & N.L.Gardner) Anagnostidis & Pantazidou *Dermocarpa sphaerica Setchell & N.L.Gardner	+	-	-	-	7	
Order Oscillatoriales						
Family Coleofasciculaceae						
119 Anagnostidinema acutissimum (Kufferath) Strunecký, Bohunická, J.R.Johansen & J.Komárek *Geitlerinema acutissimum (Kufferath) Anagnostidis	-	+	-	-	31	
120 Anagnostidinema exile (Skuja) Strunecky *Geitlerinema exile (Skuja) Anagnostidis	-	+	-	-	16	
121 Anagnostidinema ionicum (Skuja) Strunecky *Geitlerinema ionicum (Skuja) Anagnostidis	+	-	-	-	16	
122 Anagnostidinema lemmerrmanni (Woloszyńska) Struney *Geitlerinema lemmerrmanni (Woloszyńska) Anagnostidis	+	-	-	-	16	
123 Coleofasciculus chthonoplastes (Thuret ex Gomont) M.Siegesmund, J.R.Johansen & T.Fried in Siegesmund *Microcoleus chthonoplastes Thuret ex Gomont	-	+	-	-	2, 7, 16	
124 Geitlerinema bigranulatum (C.B.Rao) Anagnostidis *Oscillatoria clarcentrosa f. bigranulata C.B.Rao	-	-	+	-	6	
125 Geitlerinema crassum (Woronichin) Anagnostidis *Oscillatoria deflexa crassa (Woronichin) Elenkin & Poljansky	+	+	-	-	2, 11	
Family Microcoleaceae						
126 Arthrospira gigantea (Schmidle) Anagnostidis *Spirulina gigantea Schmidle	+	-	-	-	10, 11	
127 Arthrospira jenneri Stizenberger ex Gomont	+	+	-	-	11	
128 Arthrospira khaniae Drouet & Strickland	+	-	-	-	7	
129 Arthrospira massartii var. indica Desikachary	+	-	-	-	16	
130 Arthrospira platensis Gomont	+	-	-	-	12	
Taxonomic Assignment	Planktonic	Terrestrial	Epiphytic	Epiphytic/Endophytic	References	
----------------------	------------	-------------	-----------	----------------------	------------	
131 Altorhospira platenis non-constricta (Banerji) Desikachary	+	-	-	-	12, 16	
132 Kamptonema anamale (C.Agardh ex Gomont) Struneyck, Komárek & J.Smarda *Oscillatoria anamala C.Agardh ex Gomont *Phormidium anamale (C.Agardh ex Gomont) Anagnostidis & Komárek	+	+	+	-	10, 16	
133 Kamptonema chlorinum (Kützing ex Gomont) Struneyck, Komárek & J.Smarda *Oscillatoria chlorina Kützing ex Gomont *Phormidium chlorinum (Kützing ex Gomont)	+	+	-	-	6, 11, 12, 16, 22	
134 Kamptonema cortianum (Meneghini ex Gomont) Struneyck, Komárek & J.Smarda *Phormidium cortianum (Meneghini ex Gomont) Anagnostidis & Komárek	-	+	-	-	16	
135 Kamptonema formosum (Bory ex Gomont) Struneyck, Komárek & J.Smarda *Phormidium formosum (Bory ex Gomont) Anagnostidis & Komárek *Oscillatoria formosa Bory ex Gomont	+	+	+	-	10, 16, 20	
136 Kamptonema gebrhardtianum (Clau) Struneyck, Komárek & J.Smarda *Phormidium gebrhardtianum (Clau) Anagnostidis & Komárek *Oscillatoria gebrhardtianum (C.Agardh ex Gomont)	-	+	-	-	16	
137 Kamptonema jasorvense (Vouk) Struneyck, Komárek & J.Smarda *Oscillatoria jasorvense Vouk	-	+	-	-	16	
138 Kamptonema latevirens (H.M.Crouan & P.L.Crouan ex Gomont) Struneyck, Komárek & J.Smarda *Phormidium latevirens (H.M.Crouan & P.L.Crouan ex Gomont) Anagnostidis & Komárek *Oscillatoria latevirens P.Crouan & H.Crouan ex Gomont	-	+	-	-	16, 20	
139 Kamptonema okennii (C.Agardh ex Gomont) Struneyck, Komárek & J.Smarda *Oscillatoria okennii C.Agardh ex Gomont *Phormidium okennii (C.Agardh ex Gomont) Anagnostidis & Komárek	+	+	+	-	11, 12, 16	
140 Kamptonema proteus (Skuja) Struneyck, Komárek & J.Smarda *Oscillatoria proteus Skuja	+	+	-	-	7, 12	
141 Microcoleus amoenus (Gomont) Struneyck, Komárek & J.R.Johansen Struneyck *Phormidium amoenum Kützing ex Anagnostidis & Komárek	-	+	-	-	16	
142 Microcoleus autumnalis (Gomont) Struneyck, Komárek & J.R.Johansen *Phormidium autumnale Gomont	-	+	+	-	16	
143 Microcoleus lacustris Desikachary	-	+	-	-	16	
144 Microcoleus lacustris f. intermedius Vasishta	-	+	-	-	7	
145 Microcoleus paludosus Gomont	+	+	-	-	7, 11, 16	
146 Microcoleus subtorulosus Gomont ex Gomont	+	+	-	-	11	
147 Microcoleus vaginatus Gomont ex Gomont	+	+	-	-	11	
148 Oxynema acuminatum (Gomont) Chatchawan, Komárek, Struneyck, Smarda & Peetarpornsial *Oscillatoria acuminata Gomont	+	+	-	-	20	
149 Plankothrix agardhi (Gomont) Anagnostidis & Komárek *Oscillatoria agardhi Gomont	+	+	-	-	2, 7, 17	
150 Plankothrix compressa (Utermöhl) Anagnostidis & Komárek	+	-	-	-	16	
151 Plankothrix isothrix (Skuja) Komárek & Komárková	+	-	-	-	16	
152 Plankothrix rubescens (De Candolle ex Gomont) Anagnostidis & Komárek *Oscillatoria mugeoti Kützing ex Forti	+	-	-	-	10, 16	
153 Parhyphysiphon kashyapii (Ghose) Anagnostidis & Komárek *Lyngbya kashyapii Ghose	-	+	-	-	11	
154 Parhyphysiphon notarisii Kützing ex Gomont	-	-	+	-	16	
155 Parphysiphon shackletoni (West & G.S.West) Anagnostidis & Komárek *Lyngbya shackletoni W. & G.S. West	-	+	-	-	12	
Family Homoeothrichaceae						
156 Homoeothrix desikacharyensis Vasishta	+	-	-	-	9	
157 Homoeothrix juliana (Bornet & Flahault ex Gomont) Kirchner	-	-	+	-	7	
158 Homoeothrix moniliformis Vasishta	-	+	-	-	9	
Taxonomic Assignment	Planktonic	Terrestrial	Epilithic	Epiphytic/Endophytic	References	
----------------------	------------	-------------	-----------	----------------------	------------	
Family Oscillatoriaeae						
Limnoraphis birgei (G.M.Smith) J.Komárek, E. Zapomelová, J.Smarda, J.Kopecký, E.Rejmáková, J.Woodyhouse, B.A.Neilan & J.Komárková	-	+	-	-	11	
Limnoraphis crytotoga (Schkorbatov) J.Komárek, E.Zapomelová, J.Smarda, J.Kopecký, E.Rejmáková, J.Woodyhouse, B.A.Neilan & J.Komárková	+	+	-	-	10, 11, 12, 20	
Limnoraphis hieronymiusi (Lemmermann) J.Komárek, E.Zapomelová, J.Smarda, J.Kopecký, E.Rejmánková, J.Woodhouse, B.A.Neilan & J.Komárková	+	+	-	-	7, 11, 12	
Limnospira fusiformis (Voronichin) Nowicka-Krawczyk, Mühlsteinová & Hauer	-	-	-	-	16	
Limnospira aeruginacea Gomont	-	+	-	-	11, 12	
Lyngbya aestuarii Liebman ex Gomont	+		-	-	7	
Lyngbya aestuarii var. arbustiva Brühl & Biswas	-	-	-	-	7	
Lyngbya aequicocca C.B.Rao Umezaki & Watanabe *Phormidium anomalum C.B.Rao	+	+	-	+	12, 16	
Lyngbya aequicocca Gomont	+		-	-	16	
Lyngbya aeruginoceleus Gomont	-	+	-	-	7	
Lyngbya palmarum Brühl & Biswas	+	+	-	-	6	
Lyngbya martensiana Meneghini ex Gomont	+	+	+	-	2, 6, 12, 16	
Lyngbya major Meneghini ex Gomont	-	-	-	-	7	
Lyngbya palmarum Brühl & Biswas	-		-	-	6	
Lyngbya purpurascens Montagne ex Gomont	+	-	-	-	7	
Lyngbya semiplena J.Agardh ex Gomont	-	-	+	-	16	
Lyngbya spiralis Geitler	+	+	-	-	6, 20, 22	
Lyngbya spiritulosides Gomont	-	+	-	-	12	
Lyngbya spiritulosides var. minor Vasishta	+	-	-	-	12	
Lyngbya trunciola Ghose	-	-	-	+	16	
Oscillatoria anguina Bory ex Gomont	+	-	-	+	16	
Oscillatoria annae Goor	+	-	-	-	12, 16	
Oscillatoria curvipes C.Agardh ex Gomont	+	+	-	-	11, 12, 16	
Oscillatoria indica P.C.Silva *Oscillatoria salina Biswas	+	-	-	-	7	
Oscillatoria limosa C.Agardh ex Gomont	+	+	-	-	7, 12, 16	
Oscillatoria methali Vasishta	-	-	-	-	9	
Oscillatoria obscura Brühl & Biswas	-	+	-	-	11	
Oscillatoria penornata Skuja	+	-	-	-	16	
Oscillatoria principes Vaucher ex Gomont	+	+	-	-	1, 11	
Oscillatoria sancta Kützing ex Gomont	+	+	-	-	7, 11, 12, 16	
Oscillatoria simplicissimo Gomont	+	-	-	-	12	
Oscillatoria subbrevis Schmidle	+	+	-	-	2, 6, 11, 12, 20	
Oscillatoria tenuis C.Agardh ex Gomont	+	-	-	-	16	
Oscillatoria variabilis C.B.Rao *Oscillatoria noz G. De Toni	+	-	-	-	11, 12	
Phormidium abronema Skuja	-	+	-	-	12	
Phormidium allorgei (Frémy) Anagnostidis & Komárek	-	-	-	-	6	
Phormidium allorgei (Frémy) Anagnostidis & Komárek	-	-	-	-	10, 16	
Phormidium articulatum (N.L.Gardner) Anagnostidis & Komárek	+	-	-	-	16	
Taxonomic Assignment	Planktonic	Terrestrial	Epilithic	Epiphytic/Endophytic	References	
----------------------	------------	-------------	-----------	----------------------	------------	
Phormidium boryanum (Bory ex Gomont) Anagnostidis & Komárek	+	+	-	-	11, 12	
Phormidium breve (Kützing ex Gomont) Anagnostidis & Komárek	-	+	-	-	16	
Phormidium bulgaricum (Komárek) Anagnostidis & Komárek	+	-	-	-	16	
Phormidium calcareum Kützing ex Gomont	-	-	+	-	16	
Phormidium corbieri (Frémy) Anagnostidis	-	-	+	-	16	
Phormidium coriolum Lemmermann	+	-	-	-	12	
Phormidium favosum Gomont	+	-	+	-	16	
Phormidium foreaui (Frémy) Umezaki & Watanabe	*Oscillatoria foreaui Frémy	+	-	-	10, 11, 12	
Phormidium granulatum (N.L.Gardner) Anagnostidis	-	+	-	-	16	
Phormidium hieronymusii Lemmermann	-	+	-	-	10	
Phormidium interruptum Kützing ex Forti	-	-	+	-	16	
Phormidium inundatum Kützing ex Gomont	-	+	-	-	20	
Phormidium jadinianum Gomont	-	+	-	-	12	
Phormidium janthiphorum (Gomont) Elenkin	*Lyngbya stagnina Kützing	+	-	-	16, 24	
Phormidium karakalpakense (Muzafarov) Anagnostidis & Komárek	-	+	-	-	16	
Phormidium kuetzingianum (Kirchner ex Hansgirg) Anagnostidis & Komárek	+	-	-	-	12	
Phormidium molle var. tenuior West & G.S.West ex Geitler	*Phormidium molle f. tenuior West & G.S.West	-	-	+	-	10
Phormidium nigrum (Vaucher ex Gomont) Anagnostidis & Komárek	+	-	-	-	16	
Phormidium papyraceum Gomont ex Gomont	-	+	-	-	12	
Phormidium rubriterricola N.L.Gardner	-	+	-	-	16	
Phormidium schultzii (Lemmermann) Anagnostidis & Komárek	*Oscillatoria schultzii Lemmermann	-	+	-	-	11
Phormidium stagninum Anagnostidis	+	-	+	-	16, 24	
Phormidium stagninum var. minus Vasishta	-	-	+	-	10	
Phormidium subfuscum Kützing ex Gomont	-	+	-	-	16	
Phormidium subincrustatum Fritsch & M.F.Rich	-	+	-	-	12	
Phormidium takyricum (Novichkova) O.N.Vinogradova	*Phormidium paulsenianum f. takyricum Novichkova	+	-	-	-	16
Phormidium terebriforme (C.Agardh ex Gomont) Anagnostidis & Komárek	*Oscillatoria terebriformis C.Agardh ex Gomont	+	-	-	-	2, 11
Phormidium tergestinum (Rabenhorst ex Gomont) Anagnostidis & Komárek	-	+	-	-	16	
Phormidium thwaitesi I.Umezaki & M.Watanabe	-	-	+	-	10	
Phormidium tortuosum (N.L.Gardner) Anagnostidis & Komárek	+	-	-	-	16	
Phormidium uncinatum Gomont ex Gomont	-	+	-	-	16	
Phormidium ustrei Schmidle	-	+	-	-	12	
Phormidium wiliei (N.L.Gardner) Anagnostidis & Komárek	*Oscillatoria wiliei N.L.Gardner	-	+	-	-	11

Family Phormidiaceae

Sub Family Phormidioideae

Taxonomic Assignment	Planktonic	Terrestrial	Epilithic	Epiphytic/Endophytic	References
Potamolinea aerugineocarateae (Gomont) M.D.Martins & L.H.Z.Branco	+	+	-	-	7, 16
Taxonomic Assignment	Planktonic	Terrestrial	Epilithic	Epiphytic/Endophytic	References
---------------------	------------	-------------	-----------	----------------------	------------
Family Gomontiellaceae					
232 Komvophoron breve (N.Carter) Anagnostidis	-	+	-	-	16
233 Komvophoron greenlandicum Anagnostidis et Komarek	+	-	-	-	16
Subclass Nostocophycidae					
Order Nostocales					
Family Scytonemataceae					
234 Scytonema burmanicum Skuja	-	-	+	-	16
235 Scytonema hofmannii C.Agardh ex Bornet & Flahault	-	+	-	-	10, 16
236 Scytonema iyengari Bharadwaja	-	-	+	-	2
237 Scytonema julianum Meneghini ex B.A.Whitton	-	-	+	-	16
238 Scytonema leptobasis S.L.Ghose	-	-	+	-	16
239 Scytonema millei Bornet ex Bornet & Flahault	-	+	-	-	10
240 Scytonema ocellatum Lyngbye ex Bornet & Flahault	-	+	+	-	10, 16
241 Scytonema pseudhofmanni Bharadwaja	-	+	+	-	16
242 Scytonema saleyeriense Weber-van Bosse	+	-	+	-	16
243 Scytonema simplex Bharadwaja	+	-	-	-	16
244 Scytonema simplex f. majori Vasitha	+	-	-	-	7
245 Scytonema tolypothrichiodes Küting ex Bornet & Flahault	-	+	-	-	16
246 Scytonema varium Küting ex Bornet & Flahault	-	+	-	-	17
Family Rivulariaceae					
247 Microchaete tenera var. major Möbius	-	-	-	+	10
248 Rivularia joshii Vasitha	+	-	-	-	8, 11
249 Rivularia mehrai Vasitha	-	+	-	-	5
Family Tolypothrichaceae					
250 Tolypothrix crassa West & G.S.West	-	-	-	+	7
251 Tolypothrix campylonemoides S.L.Ghose	-	-	-	+	7
Family Chlorogloeopsidaceae					
252 Chlorogleopsis fritschii (A.K.Mitra) A.K.Mitra & D.C.Pandey	-	+	-	-	16
Family Hapalosiphonaceae					
253 Hapalosiphon welwitschi/West & G.S.West	-	+	-	-	16
254 Mastigocladius laminausus Cohn ex Kirchner	-	+	-	-	7, 16
255 Westiellopsis proliferica Janet	-	+	-	-	17
Family Gloeotrichiaceae					
256 Gloeotrichia ghosei R.N.Singh	-	+	-	-	11
257 Gloeotrichia natans Rabenhorst ex Bornet & Flahault	*Rivularia natans (Hedwig) S.F.Gray	+	-	-	1
258 Gloeotrichia raciborskii var. kashiensis C.B.Rao	-	-	-	+	7
Family Calothricaceae					
259 Calothrix braunii Bornet & Flahault	-	+	-	-	7, 11
260 Calothrix castellii var. somastipurensis C.S.Rao	+	-	-	-	16
261 Calothrix clavata G.S.West	-	+	-	-	16
262 Calothrix desikacharyensis Vasitha	-	-	-	+	9
263 Calothrix fusca Bornet & Flahault	-	+	-	-	2
264 Calothrix parietina Thuret ex Bornet & Flahault	-	+	-	-	7
Family Aphanizomenonaceae					
265 Anabaenopsis arnoldii Aptekar	+	-	-	-	16
Taxonomic Assignment	Planktonic	Terrestrial	Epilithic	Epiphytic/Endophytic	References
----------------------	------------	-------------	-----------	----------------------	------------
266 Anabaenopsis circularis (G.S.West) Woloszynska & V.V.Miller	+	-	-	-	16
267 Dolichospermum nathii (Vasishta) Wacklin, L.Hoffmann & Komárek	+	-	-	-	3
*Anabaena nathii Vasishta	+	-	-	-	1, 6, 7
268 Nodularia spumigena Mertens ex Bornet & Flahault	+	-	-	-	6
Family Nostocaceae					
269 Anabaena ambiguus C.B.Rao	-	+	-	-	11
270 Anabaena anomala F.E.Fritsch	-	+	-	-	11
271 Anabaena iyengarii Bharadwaja	+	+	-	-	10, 14, 16
272 Anabaena iyengarii var. tenuis C.B.Rao	+	+	-	-	6, 16
273 Anabaena mehraii Vasishta	+	-	-	-	6
274 Anabaena oryzae F.E.Fritsch	-	+	-	-	11
275 Anabaena oscillarioides Bory ex Bornet & Flahault	+	-	-	-	7
276 Anabaena oscillarioides var. croasso Vasishta	+	-	-	-	6
277 Anabaena spathicosa Bornet & Flahault	+	+	-	-	11, 14
278 Anabaena spathicosa var. attenuata Bharadwaja	+	-	-	-	16
279 Anabaena spathicosa f. major Kiselev	+	-	-	-	7
280 Anabaena turulosa Lagerheim ex Bornet & Flahault	+	+	-	-	11, 12, 20, 22, 23
281 Aulosira aenigmatica Frémy	-	+	-	-	12
282 Aulosira fertilissima S.L.Ghose	+	+	-	-	1, 7, 11
283 Aulosira fertilissima var. tenuis C.B.Rao	+	-	-	-	16
284 Aulosira laxa O. Kirchner ex Bornet & Flahault	-	+	-	-	12
285 Aulosira prolifica Bharadwaja	+	+	-	-	6, 11, 12
286 Aulosira pseudoramosa Bharadwaja	-	+	-	-	16
287 Camptylonemopsis iyengarii Desikachary	-	-	-	+	16
288 Cylindrospermum alatosporum F.E.Fritsch	-	+	-	-	6
289 Cylindrospermum doryphorum Brühl & Biswas	-	+	-	-	16
290 Cylindrospermum licheniforme Kützing ex Bornet & Flahault	+	-	-	-	10
291 Cylindrospermum majus Kützing ex Bornet & Flahault	-	+	-	-	11, 16
292 Cylindrospermum michailovskoense Kiselev	-	+	-	-	16
293 Cylindrospermum musciola Kützing ex Bornet & Flahault	+	+	-	-	2, 6
294 Cylindrospermum musciola var. kashmiriensis Bharadwaja	-	+	-	-	16
295 Cylindrospermum musciola f. hastiapurense Vasishta	-	+	-	-	7
296 Cylindrospermum stagnale Bornet & Flahault	+	+	-	-	1, 16
297 Desmonostoc muscorum (C.Agardh ex Bornet & Flahault) Hrouzek & Ventura in Hrouzek	-	+	-	-	7, 13, 16, 29
*Nostoc muscorum C.Agardh ex Bornet & Flahault	-	+	-	-	7, 13, 16, 29
298 Nostoc carneum C.Agardh ex Bornet & Flahault	+	+	-	-	10, 12, 16, 20
*Nostoc spongioformae C.Agardh ex Bornet & Flahault	+	+	-	-	10, 12, 16, 20
299 Nostoc commune C.Agardh ex Bornet & Flahault	-	+	-	-	16
300 Nostoc commune Vaucher ex Bornet & Flahault	-	+	-	-	12
301 Nostoc ellipsoasporum Rabenhorst ex Bornet & Flahault	+	+	-	-	6, 17
302 Nostoc haei S.C.Dixit	+	-	-	-	16
303 Nostoc linckia Bornet ex Bornet & Flahault, *Nostoc piscinale Kützing ex Bornet & Flahault	-	+	-	-	6, 12, 16, 20
304 Nostoc maculiforme Bornet & Flahault	+	+	-	-	7, 11
305 Nostoc paludosum Kützing ex Bornet & Flahault *Nostoc entophytum Bornet & Flahault	-	+	-	-	12, 16
306 Nostoc parmelodes Kutz. ex Born.e/ Flah.	-	+	-	-	16
Taxonomic Assignment	Planktonic	Terrestrial	Epilithic	Epiphytic/Endophytic	References
----------------------	------------	-------------	-----------	----------------------	------------
307 Nostoc punctiforme	-	+	-	-	6, 12, 16
308 Nostoc spongiiiforme var. tenue C.B.Rao	-	+	-	-	10
309 Nostoc verrucosum Vaucher ex Bornet & Flahault	-	-	+	-	2, 6
310 Trichormus azolae (Strasburger) Komárek & Anagnostidis	-	-	+	-	16
311 Trichormus fertilissimus (C.B.Rao) Komárek & Anagnostidis	-	-	+	-	28
*Anabaena fertilissima C.B.Rao	-	-	+	-	4
312 Trichormus hasiarpurensis (Vasishta) Komárek & Anagnostidis	*	-	+	-	20, 26
*Anabaena variabilis Kützing ex Bornet & Flahault Komárek & Anagnostidis	+	-	+	-	16, 20
313 Trichormus indicus Komárek	+	-	+	-	10
*Anabaena vaginicola f. fertilissima Prasad	+	-	+	-	7
*Anabaena naviculoides F.E.Fritsch	+	-	+	-	6
314 Trichormus naviculoides (F.E.Fritsch) J.Komárek & K.Anagnostidis	+	-	+	-	20, 26
315 Trichormus variabilis (Kützing ex Bornet & Flahault) Komárek & Anagnostidis	+	-	+	-	16, 20
*Anabaena variabilis Kützing ex Bornet & Flahault	+	-	+	-	10
316 Wolleia bharadwajae R.N.Singh	-	-	+	-	7
317 Wolleia vaginicola (F.E.Fritsch & Rich) R.N.Singh	-	-	+	-	6

Previously accepted name/synonym of taxa are marked with star *'

1—Randhawa (1936) | 2—Singh (1941) | 3—Vasishta (1960a) | 4—Vasishta (1960b) | 5—Vasishta (1960c) | 6—Vasishta (1960d) | 7—Vasishta (1961) | 8—Vasishta (1962) | 9—Vasishta (1963a) | 10—Vasishta (1963b) | 11—Grover & Pandhol (1975) | 12—Sarma (1979) | 13—Surekha (1989) | 14—Reena (1992) | 15—Khattar et al. (1999) | 16—Dhingra (2006) | 17—Singh et al. (2007) | 18—Khattar & Jindal (2008) | 19—Khattar & Shailza (2009) | 20—Singh et al. (2009) | 21—Khattar et al. (2010) | 22—Shailza (2010) | 23—Singh et al. (2012) | 24—Jindal et al. (2013) | 25—Sharma et al. (2013) | 26—Singh et al. (2013) | 27—Singh et al. (2014) | 28—Khattar et al. (2015) | 29—Singh et al. (2015) | 30—Kaur et al. (2017) | 31—Manpreet (2017).

optimized culture conditions. Algal Research 12: 463–469.

Khattar, J.I.S., T.A. Sarma & D.P. Singh (1999). Removal of chromium ions by agar immobilized cells of the cyanobacterium Anacystis nidulans in a continuous flow bioreactor. Enzyme and Microbial Technology 25(7): 564–568.

Khattar, J.I.S., D.P. Singh, N. Jindal, N. Kaur, Y. Singh, P. Rahi & A. Gulati (2010). Isolation and characterization of exopolysaccharides produced by the cyanobacterium Limnothrix redekei PUPCCC 116. Applied Biochemistry and Biotechnology 162(5): 1327–1338.

Komárek, J. & K. Anagnostidis (1998). Cyanoprokaryota 1. Chroococcales. – In: Ettl H., Gärtner G., Heynig H. & Mollenhauer D. (eds), Süßwasserflora von Mitteleuropa 19/1. Gustav Fischer, Jena-Stuttgart-Lübeck-Ulm, 548 pp.

Komárek, J. & K. Anagnostidis (2005). Cyanoprokaryota 2. Oscillatoriales. – In: Bédul B., Gärnter L, Kriennitz L., Gärnter G. & Schagerl M. (eds), Süßwasserflora von Mitteleuropa 19/2. Elsevier/Spektrum, Heidelberg, 759 pp.

Komárek, J. (2006). Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches. Algale 21: 349–375.

Komárek, J. (2013). Cyanoprokaryota 3. Heterocytous genera. In: Bédul B., Gärnter L, Kriennitz L. & M. Schagerl (eds.), Süßwasserflora von Mitteleuropa/Freshwater flora of Central Europe. Springer Spektrum Berlin, Heidelberg, 1130 pp.

Komárek, J., J. Kaštovský, J. Mareš & J.R. Johansen (2014). Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86: 295–335.

Krishan, G., S.K. Chandniha & A.K. Lohani (2015). Rainfall Trend Analysis of Punjab, India Using Statistical Non-Parametric Test. Current World Environment 10(3): 792–800.

Kumar, J., D. Singh, M.B. Tyagi & A. Kumar (2019). Cyanobacteria: Applications in Biotechnology, pp. 327–346. In: Rai, A.N., D.N. Tewari and A.K. Mishra (eds.) Cyanobacteria: From Basic Science to Applications. Elsevier, Amsterdam, The Netherlands, 541 pp.

Manpreet (2017). Temperature tolerance and level of antioxidants in selected cyanobacteria in the presence of sodium sulphide. PhD Thesis. Department of Botany, Punjabi University, Patiala, 141 pp.

Randhawa, M.S. (1936) Marked periodicity in reproduction of the Panjab freshwater algae. Proceedings of the Indian Academy of Sciences - Section B, 401–406.

Mehta, S.K. (1975). Blue-green algae of Patiala city and adjacent areas. M.Sc. thesis. Department of Botany, Punjabi University, Patiala, 32 pp.

Pandhol, R.K. (1974). Survey of Algal Flora of Ludhiana & its Adjoining areas with particular reference to the Paddy Fields. M.Sc. thesis. PAU, Ludhiana, 146 pp.

Reena (1992). Studies on heterocyst and akinetes differentiation in some anabaena species. PhD Thesis. Department of Botany, Panjab University, Chandigarh, 223 pp.

Sarma, T.A., S. Kanta & Sunita (1979) Algal flora of Patiala and its environs- Cyanophyceae I. Phyllos 18: 13–14

Schopf, J.W., A.B. Kudryavtsev, D.G. Agresti, T.J. Widowlak & A.D. Czaja (2002), Laser–Raman imagery of Earth’s earliest fossils. Nature 416 (6876): 73–76.

Shailza (2010). Evaluation of heavy metal bioremediation potential of algae growing in polluted water. PhD Thesis. Department of Botany, Punjabi University, Patiala, 134 pp.

Sharma, A., R. Jindal, U.B. Singh, A.S. Ahluwalia & R.K. Thakur (2013). Population dynamics and species diversity of plankton in relation to hydrobiological characteristics of river Sutlej, Punjab, India. Ecology, Environment and Conservation 19(3): 717–724.

Singh, D.P., J.I.S. Khattar, G. Ahuja & Y. Singh (2007). Cyanobacterial diversity in rice fields of Malwa region of Punjab and their tolerance to Chlorpyrifos. Journal, Punjab Academy of Sciences 4(1&2): 106–113.

Singh, V.P. (1941) On a collection of algae from the Chamba state (Punjab) I. Proceedings of the Indian Academy of Sciences B 14(3): 250–255.

Singh, Y., A. Gulati, D.P. Singh & J.I.S. Khattar (2018). Cyanobacterial community structure in hot water springs of Indian north-western Himalayas: a morphological, molecular and ecological approach. Algal Research 29: 179–192.

Singh, Y., J.I.S. Khattar, D.P. Singh, P. Rahi & A. Gulati (2014). Limnology and cyanobacterial diversity of high altitude lakes of Lahaul-Spiti in
Himachal Pradesh, India. *Journal of Biosciences* 39: 643–657.

Singh, D.P., J.I.S. Khattar, M. Gupta & G. Kaur (2014). Evaluation of toxicological impact of cartap hydrochloride on some physiological activities of a non-heterocystous cyanobacterium *Leptolyngbya foveolarum*. *Pesticide Biochemistry and Physiology* 110: 63–70.

Singh, D.P., J.I.S. Khattar, G. Kaur, M. Gupta, Y. Singh & A. Gulati (2015). Effect of pretlichlor on nitrogen uptake and assimilation by the cyanobacterium *Desmonostoc muscorum* PUPCCC 405.10. *Acta Physiologiae Plantarum* 37(9): 1–14.

Singh, D.P., J.I.S. Khattar, K. Kaur, B.S. Sandhu & Y. Singh (2012). Toxicological impact of anilofos on some physiological processes of a rice field cyanobacterium *Anabaena torulosa*. *Toxicological & Environmental Chemistry* 94(7): 1304–1318.

Singh, D.P., J.I.S. Khattar & Y. Singh (2009). Effect of pesticides on the distribution pattern of cyanobacteria in a rice field ecosystem. *The Journal of the Indian Botanical Society* 88(1&2): 163–169.

Singh, H., A.S. Ahluwalia & J.I.S. Khattar (2013). Induction of sporulation by different nitrogen sources in *Anabaena naviculoides*, a diazotrophic strain capable of colonizing paddy field soil of Punjab (India). *Vegetos* 26(1): 283–292.

Singh, J.S., A. Kumar, A.N. Rai & D.P. Singh (2016). Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. *Frontiers in Microbiology* 7(529): 1–19.

Singh, R., P. Parihar, M. Singh, A. Bajguz, J. Kumar, S. Singh & V.P. Singh & S.M. Prasad (2017). Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects. *Frontiers in Microbiology* 8(515): 1–37.

Sleep, N.H. (2010). The Hadean-Archaean Environment. *Cold Spring Harbor Perspectives in Biology* 2(6): 1–14.

Surekha (1989). Studies on the effect of some pesticides on growth and differentiation in two blue-green algal species. PhD Thesis. Department of Botany, Panjab University, Chandigarh, 258 pp.

Vasishta P.C. (1960a). *Anabaena nathi* sp. nov. from Hoshiarpur. *Research bulletin of the Panjab University* 2(1–2): 63–67.

Vasishta P.C. (1960b). *Anabaena hoshiarpurensis* sp. nov. from Hoshiarpur. *Research bulletin of the Panjab University* 2(1–2): 93–97.

Vasishta P.C. (1960c). On the structure and life history of *Rivularia mehrai* sp. nov. *Research bulletin of the Panjab University* 2(3–4): 237–244.

Vasishta P.C. (1960d). A systematic and ecological account of the cyanophyceae of Hoshiarpur. *Journal of the Bombay Natural History Society* 57(3): 579–589.

Vasishta P.C. (1961). More cyanophyceae of Hoshiarpur. *Journal of the Bombay Natural History Society* 58(1): 135–146.

Vasishta P.C. (1962a). Some observations on the life history of *Rivularia jashii* sp. nov. from Hoshiarpur (Punjab, India). *Journal of the Indian Botanical Society* 41(4): 516–523.

Vasishta P.C. (1962b). Three colourless Cyanophyceae from Hoshiarpur. *Journal of the Indian Botanical Society* 41(2): 99–103.

Vasishta P.C. (1963a). Five new cyanophyceae from Hoshiarpur. *Journal of the Bombay Natural History Society* 41(1–2): 574–582.

Vasishta P.C. (1963b). More cyanophyceae of Hoshiarpur II. *Journal of the Bombay Natural History Society* 60(3): 671–678.

Whitton, B.A. & M. Potts (2000). Introduction to the Cyanobacteria, pp 1–11. In: Whitton, B.A. & M. Potts (eds.), *Ecology of Cyanobacteria: Their Diversity in Space and Time*, 632 pp.
The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

March 2022 | Vol. 14 | No. 3 | Pages: 20703–20810
Date of Publication: 26 March 2022 (Online & Print)
DOI: 10.11609/jott.2022.14.3.20703-20810

Article

Distribution and habitat-use of Dhole *Cuon alpinus* (Mammalia: Carnivora: Canidae) in Parsa National Park, Nepal
– Santa Bahadur Thing, Jhamak Bahadur Karki, Babu Ram Lamichhane, Shashi Shrestha, Uba Raj Regmi & Rishi Ranabhat, Pp. 20703–20712

Communications

Habitat preference and population density of threatened Visayan hornbills Penelopoides panini and Rhabdotorrhinus waldeni in the Philippines
– Andrew Ross T. Reintar, Lisa J. Paguntalan, Philip Godfrey C. Jakosalem, Al Christian D. Quijot, Dennis A. Warguez & Emelyn Peñaranda, Pp. 20713–20720

Nest colonies of Baya Weaver *Ploceus philippinus* (Linnaeus, 1766) on overhead power transmission cables in the agricultural landscape of Cuddalore and Villupuram districts (Tamil Nadu) and Puducherry, India
– M. Pandian, Pp. 20721–20732

Status and distribution of Mugger Crocodile *Crocodylus palustris* in the southern stretch of river Cauvery in Melagiris, India
– Rahul Gour, Nikhil Whitaker & Ajay Kartik, Pp. 20733–20739

Notes

First record of Doherty’s Dull Oakblue *Arhopala khamti* Doherty, 1891 from upper Assam, India
– Arun Pratap Singh, Pp. 20798–20800

A new species of *Pancratium* Dill. ex L. (Amaryllidaceae) from Eastern Ghats of India
– R. Prameela, J. Prakasa Rao, S.B. Padal & M. Sankara Rao, Pp. 20801–20804

Abnormalities in the female spikelets of Coix lacryma-jobi L. (Poaceae) India
– Nilesh Appaso Madhav & Kumar Vinod Chhotupuri Gosavi, Pp. 20808–20810