Multiple Didymella teleomorphs are linked to the Phoma clematidina morphotype

J.H.C. Woudenberg¹, M.M. Aveskamp¹, J. de Gruyer¹,², A.G. Spiers³, P.W. Crous¹

Key words
Ascochyta vitisae
β-tubulin
Clematis
Didymella clematidis
Didymella vitisae
DNA phylogeny
ITS
LSU
taxonomy

Abstract The fungal pathogen Phoma clematidina is used as a biological agent to control the invasive plant species Clematis vitalba in New Zealand. Research conducted on P. clematidina as a potential biocontrol agent against C. vitalba, led to the discovery of two perithecial-forming strains. To assess the diversity of P. clematidina and to clarify the teleomorph-anamorph relationship, phylogenetic analyses of 18 P. clematidina strains, reference strains representing the Phoma sections in the Didymellaceae and strains of related species associated with Clematis were conducted. Partial sequences of the ITS1, ITS2 and 5.8S rRNA gene, the β-tubulin gene and 28S rRNA gene were used to clarify intra- and inter-species relationships. These analyses revealed that P. clematidina resolves into three well-supported clades which appear to be linked to differences in host specificity. Based on these findings, Didymella clematidina is newly described and the descriptions of P. clematidina and D. vitisae are amended.

Article info Received: 6 January 2009; Accepted: 23 February 2009; Published: 3 March 2009.

INTRODUCTION

The genus Clematis (Ranunculaceae) accommodates (semi-)woody, climbing plants and shrubs. Species of Clematis occur throughout the temperate regions of the northern and southern hemispheres and can also be found in the tropics and montane regions. Clematis contains more than 400 species, and more than 600 varieties are grown commercially. In the 19th century the cultivation of Clematis became popular but soon after the start of its large scale cultivation, a widespread destructive disease which caused high yield losses emerged in Europe and America (van de Graaf et al. 2000). This disease was referred to as Clematis wilt, exhibiting symptoms of stem rot and wilting of above-ground plant parts (Gloyer 1915). Ascochyta clematidina and Coniothyrium clematidis-rectae were identified as the causal organisms of Clematis wilt (Gloyer 1915, Blok 1965).

On the basis of new circumscriptions of Phoma and Ascochyta (Boerema & Bollen 1975), A. clematidina was transferred to Phoma as P. clematidina (Boerema & Dorenbosch 1979). Phoma clematidina is presently regarded as a widespread pathogen of Clematis spp. Incidentally, P. clematidina has also been isolated from plants other than Clematis, including a cultivated Selaginella sp. (Boerema & Dorenbosch 1979). Gloyer (1915) inoculated a series of plant species such as bean, pea, muskmelon, pumpkin, eggplant and elm with P. clematidina to assess its host range and found no development of disease symptoms. However, in the necrotic tissue at the point of inoculation developing pycnidia could be observed, indicating that P. clematidina may survive as a saprobe on different plant hosts.

Clematis vitalba (old man’s beard) is a vine that is native to Europe but has become widespread primarily due to its introduction as an ornamental. As an invasive plant species, C. vitalba is a threat to native trees and shrubs, as it reduces light levels and smothers crowns of trees with its prolific foliage (Gourlay et al. 2000). In New Zealand, C. vitalba is regarded as a serious pest, and much research has been undertaken in order to save the native forest remnants from disappearing due to smothering caused by C. vitalba (Hume et al. 1995, Ogle et al. 2000, Hill et al. 2001, 2004, Paynter et al. 2006). After extensive laboratory tests, a virulent strain of P. clematidina, which was originally isolated from an American C. ligusticifolia, was introduced to New Zealand in 1996 as a biological control agent of C. vitalba (Gourlay et al. 2000). Remarkably, a teleomorph was observed to develop on agar slants in vitro after storage for approximately 2 yr. A similar finding was observed in a strain isolated from C. vitalba from Switzerland.

In the present study the sexual strains of P. clematidina are phylogenetically and morphologically compared to reference strains housed in the culture collections of the Centraalbureau voor Schimmelcultures (CBS) and the Dutch Plant Protection Service (PD). The aims of this study were to assess the variation within this species, and to clarify the morphology of its potential sexual state.

MATERIALS AND METHODS

Fungal isolation and DNA extraction

Small fragments (< 1.0 mm²) of necrotic leaf tissue were removed with a dissecting needle and plated onto filtered V8-juice agar (V8) (Gams et al. 2007), and incubated at 20 °C under a 12 h near-ultraviolet / 12 h dark photo period. After 7 d, the colonies were subcultured onto fresh media. Strain CBS 123707 was isolated from leaves of C. vitalba plants at Gampelsteg, Swiss Valley, Switzerland (Table 1). Strain CBS 123705 was isolated from leaves of C. ligusticifolia at Toppenish, Washington State, USA (Table 1). Isolates were stored on V8 agar slants at 3 °C.

For the phylogenetic study of the two Phoma strains isolated (CBS 123705, CBS 123707), all P. clematidina strains which were available from the CBS and PD collection, one Didymella vitisae strain and six Phoma reference strains were included...
The reference strains represent the type species of the five *Phoma* sections recently classified in the *Didymellaceae* (de Gruyter et al. 2009), including the type species of the genus *Phoma*, *P. herbarum* (CBS 588.69). *Phoma clematidina* has been placed in *Phoma* sect. *Heterospora* (Boerema et al. 1997), however, the type species of this section, *Phoma* *clematidina* (CBS 615.75), *Phoma zeae-maydis* (CBS 507.63, PD 07/03486747), and *Coniothyrium clematidis-rectae* (Boerema et al. 1997), however, the type species of this section has been placed in *clematidina* species of the genus *Phoma* (CBS 615.75).

DNA extraction from all isolates was performed using the UltraClean Microbial DNA isolation kit (Mo Bio Laboratories, Carlsbad, CA, USA), according to the manufacturer’s instructions. All DNA extracts were diluted 10× in milliQ water and stored at 4 °C before their use as PCR templates.

DNA amplification and phylogenetic analyses

For phylogenetic analyses, parts of the ITS1, ITS2 and 5.8S rRNA gene (ITS), the β-tubulin gene (TUB) and 28S rRNA gene (LSU) were analysed. The primers 9V9 (de Hoog & Gerrits van den Ende 1998) and ITS4 (White et al. 1990) were used for the amplification of the ITS region, primers Btub2F (5′-GTG CAC CTY CAR ACC GGY CAR TG-3′) and Btub4Rd (5′-CCR GAY TGR CCR AAR ACR AAG TGG TC-3′) for the TUB region (L.J. Groenewald, CBS) and primers LR0R (Rehner & Samuels 1994) and LR7 (Vilgalys & Hester 1990) for the LSU region. The LSU PCR was performed as described by de Gruyter et al. (2009). The ITS and TUB PCR mixtures both contained 0.5 units of *Taq* polymerase E (Genaxxon Bioscience, Biberach, Germany), 0.2 µM of each primer and 1× PCR buffer E incomplete (Genaxxon Bioscience). The remaining PCR mixture consisted of 0.5 µL diluted genomic DNA, 0.04 mM dNTPs and 1 mM MgCl₂ for the ITS region and 1.0 µL diluted genomic DNA, 0.02 mM dNTPs and 2 mM MgCl₂ for the TUB region. The amplification reactions were performed in a 2720 Thermal Cycler (Applied Biosystems, Foster City, California, USA) and had a total volume of 12.5 µL. Conditions for PCR amplification were comparable for both regions and consisted of an initial denaturation step of 5 min at 94 °C, followed by 35 cycles of denaturation at 94 °C and elongation at 72 °C, with a final elongation step of 10 min at 72 °C.

The amplification and sequencing of the ITS region, the TUB region and the LSU region was performed as described by de Gruyter et al. (2009). DNA sequences were aligned using the clustal algorithm of the program Megalign (Lasergene; DNASTAR, Madison, WI) and a parsimony analysis using the heuristic search option of the program PAUP.* v. 4.0b10 (Swofford 2003). To test whether the three different loci could be used in combined analyses, a partition homogeneity test was executed (Farris et al. 1995). Phylogenetic analyses of the ITS and TUB regions were performed in PAUP v. 4.0b10 (Swofford 2003). To test whether the tree construction was robust, 1000 bootstrap replicates (Farris et al. 1995). Phylogenetic analyses of the ITS and TUB regions were performed in PAUP v. 4.0b10 (Swofford 2003). To test whether the tree construction was robust, 1000 bootstrap replicates were conducted. The resulting trees were printed with TreeView v. 1.6.6 (Page 1996) and are deposited in TreeBASE (www.treebase.org).

Morphology

Characteristics of the strains (Table 1) were studied on oatmeal agar (OA) and malt extract agar (MEA) (Gams et al. 1994) and LR7 (Vilgalys & Hester 1990) for the LSU region.

Table 1 Isolates included in the phylogenetic analyses.

Species	Accession no.¹	Host	Origin	GenBank no.		
Coniothyrium clematidis-rectae	CBS 507.63, PD 07/03486747	Clematis sp.	Netherlands	FJ515606	FJ515624	FJ515647
Phoma clematidina	PD 95/1958	Clematis sp.	Netherlands	FJ515607	FJ515625	FJ515648
Didymella vitalbina	CBS 454.64	Clematis vitalba	France	FJ515605	FJ515623	FJ515646
Phoma exigua	CBS 201.49	Clematis sp.	Netherlands	FJ526991	FJ427102	FJ515628
Phoma glomerata	CBS 195.64	Clematis jackmannii	Netherlands	FJ427100	FJ515629	FJ515630
Phoma complanata	CBS 102.65	Bagheera	England	FJ426888	FJ427100	FJ515630
Phoma clematidina	CBS 520.66, PD 64/657	Selaginella sp.	Netherlands	FJ426892	FJ427103	FJ515631
Phoma glaucii	CBS 108.79, PD 76/522	Clematis sp.	Netherlands	FJ515592	FJ515610	FJ515633
Phoma zeae-maydis	CBS 123705, PD 97/13460.1, ICMP 13664	Clematis linguistictfolia	USA	FJ515593	FJ515611	FJ515634
Phoma zeae-maydis	CBS 123706, PD 08/04373904.5	Clematis vitalba	Netherlands	FJ515594	FJ515612	FJ515635
Phoma zeae-maydis	CBS 123707, PD 97/13460.2, ICMP 13665	Clematis vitalba	Switzerland	FJ515595	FJ515613	FJ515636
Phoma zeae-maydis	PD 75/294	Clematis sp.	Unknown	FJ515596	FJ515614	FJ515637
Phoma zeae-maydis	PD 80/683	Clematis sp.	Netherlands	FJ515597	FJ515615	FJ515638
Phoma zeae-maydis	PD 91/1865	Clematis sp.	Netherlands	FJ515598	FJ515616	FJ515639
Phoma zeae-maydis	PD 95/895	Clematis sp.	Netherlands	FJ515599	FJ515617	FJ515640
Phoma zeae-maydis	PD 97/12061	Clematis cv. New Dawn	Netherlands	FJ515601	FJ515619	FJ515642
Phoma zeae-maydis	PD 97/12062	Clematis cv. New Dawn	Netherlands	FJ515602	FJ515620	FJ515643
Phoma zeae-maydis	PD 99/2069	Clematis vitalba	Netherlands	FJ515603	FJ515621	FJ515644
Phoma zeae-maydis	PD 08/04373904.2B	Clematis vitalba	Netherlands	FJ515604	FJ515622	FJ515645
Phoma zeae-maydis	PD 08/04417700.3	Clematis vitalba	Netherlands	FJ515605	FJ515623	FJ515646
Phoma zeae-maydis	Phoma complanata	CBS 268.92, PD 75/3	Angelica sylvestris	FJ515606	FJ515624	EU754180
Phoma complanata	CBS 273.97	Solanum tuberosum	Netherlands	FJ427001	FJ427112	EU754183
Phoma complanata	CBS 268.92, PD 75/4	Chrysanthemum sp.	Netherlands	FJ427013	FJ427124	EU754184
Phoma complanata	CBS 268.92, PD 75/3447	Chrysanthemum sp.	Netherlands	FJ427013	FJ427112	EU754184
Phoma complanata	CBS 512.66, PD 63/590	Chrysanthemum sp.	Netherlands	FJ427013	FJ427112	EU754184
Phoma complanata	CBS 512.66, PD 73/665, ATCC 2499, IMI 199779	Rosa multiflora	Netherlands	FJ427022	FJ427133	EU754186
Phoma complanata	CBS 512.66	Clematis sp.	Unknown	FJ427086	FJ427190	EU754192

¹ ATCC: American Type Culture Collection, Virginia, USA; CBS: CBS Fungal Biodiversity Centre, Utrecht, The Netherlands; ICMP: International Collection of Micro-organisms from Plants, Auckland, New Zealand; IMI: International Mycological Institute, CABI-Bioscience, Egham, United Kingdom; PD: Dutch Plant Protection Service, Wageningen, The Netherlands.
analyses. The combined alignment consisted of 2 150 bp (ITS 490 bp, TUB 333 bp, LSU 1327 bp), of which 1 978 characters were constant, 60 were parsimony uninformative and 112 were parsimony informative. The Neighbour-Joining trees obtained with the three different substitution models, and the single most parsimonious tree exhibited identical topology. The most parsimonious tree is presented in Fig. 1 (TL = 314 steps, CI = 0.697, RI = 0.888, RC = 0.619). This phylogenetic tree supports division of the \textit{P. clematidina} strains into three distinct and well-supported groups (Fig. 1). A first group (clade A) contains the representative culture of \textit{P. clematidina} CBS 108.79 (Boerema & Dorenbosch 1979) and strains isolated from symptomatic \textit{Clematis} species and hybrids. A second group (clade B) comprises strains isolated from \textit{C. vitalba}, including the freshly isolated strain CBS 123707, producing perithecia in pure culture, and the \textit{D. vitalbina} strain CBS 454.64. Strain CBS 123705 is closely related to strains in clade B but forms a distinct clade (C) on its own. Strain PD 99/2069 clusters with the two \textit{Coniothyrium clematidis-rectae} strains (100 % bootstrap support) among the other clades. The morphological characters of this strain proved to be similar to those of both \textit{C. clematidis-rectae} strains and therefore strain 99/2069 requires renaming.

RESULTS

Phylogenetic analyses of ITS, TUB and LSU

The partition homogeneity test indicated that the DNA sequence data from the three loci were combinable (P = 0.737). Concatenated sequences were thus used in all phylogenetic analyses. The combined alignment consisted of 2 150 bp (ITS 490 bp, TUB 333 bp, LSU 1327 bp), of which 1 978 characters were constant, 60 were parsimony uninformative and 112 were parsimony informative. The Neighbour-Joining trees obtained with the three different substitution models, and the single most parsimonious tree exhibited identical topology. The most parsimonious tree is presented in Fig. 1 (TL = 314 steps, CI = 0.697, RI = 0.888, RC = 0.619). This phylogenetic tree supports division of the \textit{P. clematidina} strains into three distinct and well-supported groups (Fig. 1). A first group (clade A) contains the representative culture of \textit{P. clematidina} CBS 108.79 (Boerema & Dorenbosch 1979) and strains isolated from symptomatic \textit{Clematis} species and hybrids. A second group (clade B) comprises strains isolated from \textit{C. vitalba}, including the freshly isolated strain CBS 123707, producing perithecia in pure culture, and the \textit{D. vitalbina} strain CBS 454.64. Strain CBS 123705 is closely related to strains in clade B but forms a distinct clade (C) on its own. Strain PD 99/2069 clusters with the two \textit{Coniothyrium clematidis-rectae} strains (100 % bootstrap support) among the other clades. The morphological characters of this strain proved to be similar to those of both \textit{C. clematidis-rectae} strains and therefore strain 99/2069 requires renaming.
Taxonomy

Clade A

Phoma clematidina (Thüm.) Boerema, Versl. Meded. Plziektenk. Dienst Wageningen 153 (Jaarb. 1978): 17. 1979

Basionym. Ascochyta clematidina Thüm., Bull Soc. Imp. Naturalistes Moscou 55: 98. 1880.

= Phyllosticta clematis Brunaud, Ann. Soc. Sci. Nat. Charente-Infér. 26: 9. 1889.

= Phyllosticta clematis Ellis & Dearn., Canad. Rec. Sci 5: 268. 1893; not Phyllosticta clematis Brunaud, see above.

= Ascochyta indusiata Bres., Hedwigia 35: 199. 1896.

= Ascochyta davidiana Kabáň & Bubák, Oesterr. Bot. Z. 54: 25. 1904.

Description in vitro (amended from Boerema 1993). **Pycnidia** subglobose, mostly solitary on the agar surface, 110–120 µm diam, or larger, up to 350 µm diam, glabrous or with some hyphal outgrows around the ostioli. **Ostioli** 1(–3), papillate, relatively wide, up to 50 µm diam. **Pycnidial wall** 1–4 cells thick, pseudoparenchymatous, composed of isodiametric, somewhat elongated cells, dark pigmented around the ostioli. **Conidiogenous cells** phialidic, hyaline, simple, smooth, flask-shaped, 6–7.5 × 5.5–7 µm. **Conidia** ellipsoidal, occasionally slightly allantoid, thin-walled, smooth, hyaline, mostly aseptate, (3.5–)4–8.5(–9) × 2–3(–3.5) µm, occasionally larger and 1-septate, 9–13 × 3–4 µm, usually guttulate. **Conidial matrix** honey to salmon. **Chlamydospores** usually scanty, uni- or multicellular, where unicellular usually intercalary in short strains, guttulate, thick-walled, green-brown, 8–10 µm diam, where multicellular irregular dictyo/phragmosporous, often somewhat botryoid and in combination with unicellular chlamydospores, tan to dark brown, 3–50 × 12–25 µm.

Cultural characteristics — Colonies on OA: growth rate 50–65 mm diam after 7 d, with entire margin. Aerial mycelium present in irregular zones, felty or scarcely floccose, white to olivaceous-grey. Colonies olivaceous to iron-grey. Reverse similar. A rosy-buff discoloration of the agar medium often occurs due to the presence of anthraquinone needle-shaped crystals which persist after application of NaOH. Colonies on MEA: growth rate variable, 30–55 mm diam after 7 d, with entire margin. Aerial mycelium fely, white to pale olivaceous-grey, or absent near centre. Colonies rosy-buff to rosy-vinaceous. Reverse similar.

Specimens examined. **Russia**, Minussinsk, on leaves of Clematis glaucae, N. Martianoff, isotype LE 40082. – **The Netherlands**, Spaubeek, on the stem of Clematis sp., July 1978, G.H. Boerema, epitype designated here CBS H-16193, culture ex-epitype CBS 108.79 = PD 78/522.

Notes — The holotype has apparently been lost, and is not in LE or LEP. The isotype is selected here, with similar host, location and collector. The specimen and associated strain designated here as epitype represent the modified taxonomy of this species.

Clade B

Didymella vitalbina Petr., Ann. Mycol. 38: 348. 1940 — Fig. 2

Anamorph. ‘Ascochyta’ vitalbae Briard & Har. apud Briard, Rev. Mycol. (Toulouse) 13: 17. 1891.

≡ Diplodia vitalbae (Briard & Har.) Allesch., Rabenh. Krypt.-Fl., ed. 2. Pilze 6 (Lief. 69): 683. 1900 (vol. dated 1901).

≡ Diplodia clematidina Fautrey & Roum. apud Roum., Rev. Mycol. (Toulouse) 14: 105. 1892.

Description in vitro. **Perithecium** superficial, solitary or clustered, globose/subglobose to pyriform, (75–)200–300 µm, with prominent, ostiolate, elongated neck, 30–60 µm. **Perithecial wall** black, **textura globulosa**, 6.5–10 µm, ectal excipulum 3–4 layers of elongated cells (c. 8 × 3 µm), medullary excipulum

![Image](https://example.com/image.jpg)
8–10 layers of globular cells (5.5 × 5 µm), integrated with 6–8 basal layers of smaller globular cells (5 × 3 µm). Ascospore mass white. Ascii bitunicate, 8-spored uniseriate, cylindrical with club-shaped base, 50–80 × 6.5–9.5 µm, paraphyses septate, but not obvious. Ascospores hyaline, septate, ovate to obpyriform, smooth, 9–15 × 3–5.5 µm (av. 11.2 × 4.1 µm). Pycnidia solitary or confluent, highly variable in shape and size, (sub)globose, to elongated or flask-shaped, glabrous, dark brown, superficial on the agar (105–135–290(–330) × 95–210(–250) µm. Ostioles (1–2–3(–5)), prominent, 11–22 µm diam on an elongated neck. Pycnidial wall pseudoparenchymatous, thin, 5.5–9.5 µm, consisting of up to only 2 cell layers, outer cells isodiametric to oblong. Conidiogenous cells phialidic, hyaline, simple, smooth, variable in shape and size, 6.5–8.5 × 7–11 µm. Conidia ellipsoidal, hyaline, smooth, mainly aseptate, (5.5–)6.5–10(–11) × 2–4 µm, or 1-septate up to 18 × 4 µm, usually guttulate. Conidial matrix honey to rosy-buff/salmon. Chlamydospores absent.

Cultural characteristics — Colonies on OA: growth rate 50–60 mm diam after 7 d, with entire, smooth, sharp margins. Aerial mycelium absent or with some floccose tufts, white to (pale) olivaceous-grey. Colonies olivaceous to iron-grey. Reverse similar. Colonies on MEA: growth rate 45–55 mm diam after 7 d, with entire margin or undulate, smooth. Aerial mycelium felty, white to rosy-buff, near colony margin iron-grey. Colonies iron-grey to olivaceous. Reverse similar.

Specimens examined. AUSTRIA, Vienna, Gaisberg, on stem of Clematis vitalba, April 1939, F. Petrak, holotype 2644. – FRANCE, Var, Jouques, on leaves of Clematis vitalba, Dec. 1964, E. Müller, CBS H-11972, culture ETH2672 = CBS 454.64. – SWITZERLAND, Gampel-Steg, on leaves of Clematis vitalba, 10 Oct. 1991, A.G. Spiers, epitype designated here PDD69378, culture ex-epitype ICMP 13663 isolate 9 = PD 97/13460-2 = CBS 123707.

Notes — The first observations of the teleomorph in vitro were made on V8 subcultures obtained from V8 slants stored at 3 °C for 2 yr. It is not likely that the teleomorph will be observed in vitro after routine cultivation. The anamorph of Didymella vitalbina would be more appropriately accommodated in Phoma than in Ascochyta. However, the priority of the teleomorph name makes a new combination in the anamorph superfluous.

Clade C

Didymella clematidis Woudenberg, Spiers & Gruyter, sp. nov. — MycoBank MB513003; Fig. 3

Anamorph. Ascochyta sp.

Asci bitunicati, octospori, cylindracei, 65–125 × 10–20 µm. Paraphyses septatae, inconspicuae, 2 µm latae. Ascosporea hyalinae, septatae, ovatae usque ad obpyrformes, laeves, 15–22 × 4.5–8 µm (av. 19 × 5.7 µm).

Etymology. Named after its host, Clematis.

Description in vitro. Perithecia superficial, solitary or clustered, globose/subglobose to pyriform, (130–)250–370 µm, with prominent elongated neck, up to 75 µm, with central ostiole. Perithecial wall black, textura globulosa 6–10 µm, ectal excipulum up to several layers of elongated cells (8 × 5 µm), medullary excipulum 4–5 layers of globular cells (5.5 × 8 µm), integrated with 2–3 layers of smaller globular cells (5 × 5.5 µm). Ascospore

Fig. 3 Didymella clematidis (CBS 123705). a. Colony on OA after 14 d; b. colony on MEA after 14 d; c. perithecium with asc; d. e. ascii with ascospores; f. pycnidia; g. longitudinal section through a pycnidium; h. pycnidial wall with conidiogenous cells; i. conidia. — Scale bars: c, f = 100 µm; d, e, h, i = 10 µm; g = 50 µm.
mass white. Asci bitunicate, 8-spored uniseriate/biseriate, cylindrical with club-shaped base, 65–125 × 10–20 µm, paraphyses septate, inconspicuous, 2 µm wide. Ascospores hyaline, septate, ovate to obpyriform, smooth, 15–22 × 4.5–8 µm (av. 19 × 5.7 µm). Pycnidia mostly solitary but also confluent, globose to subglobose or irregular, glabrous, sienna to brown, superficial on the agar but also immersed or in aerial mycelium, (100–)130–360–(560) × 110–340–(475) µm. Ostioli 1–2 or up to 5, 20–50 µm diam, initially non-papillate but forming an elongated neck in a later stage. Pycnidial wall pseudoparenchymatous, thin, 8–12 µm, consisting of up to 5 cell layers, outer cells isodiametric to oblong. Conidigenous cells phialidic, hyaline, simple, smooth, globose or flask-shaped, c. 7–9.5 × 5.5–8.5 µm. Conidia elongate, sometimes slightly allantoid, constricted in the middle, hyaline, smooth, mostly uniseptate, (14.5–)16–23–(30) × 4–7–(7.5) µm, with numerous guttules. Only incidentally smaller, aseptate conidia occur, c. 6–8 × 2–3 µm. Conidial matrix saffron to salmon. Chlamydospores absent.

Cultural characteristics — Colonies on OA: growth rate 55–65 mm diam after 7 d, with entire, smooth, sharp margins. Aerial mycelium woolly to floccose, pale olivaceous-grey. Colonies olivaceous-grey. Reverse iron-grey to (pale) olivaceous-grey. Colonies on MEA: growth rate 55–65 mm diam after 7 d, with entire, smooth, sharp margins. Aerial mycelium woolly to floccose, white. Colonies olivaceous-grey. Reverse iron-grey, with greyish sepia tinged or striated olivaceous-grey zones.

Specimens examined. USA, Washington State, Toppenish, on leaves of Clematis luscistifolia, 7 Sept. 1991, A.G. Spiers, holotype PDD69379, culture ex-holotype ICMP 13664 isolate 30/32 = PD 97/13460-1 = CBS 123705.

Notes — Didymella clematidina produces large 2-celled conidia both in vitro and in vivo. Strain CBS 123705 produced both the teleomorph and anamorphic state in pure culture. The species is highly virulent on C. vitalba.

DISCUSSION

The present study is the first to assess the diversity of P. clematidina by means of DNA sequence comparisons. The reconstructed phylogeny (Fig. 1) indicates that multiple taxa are present within the morphological variation understood to represent P. clematidina. Three distinct and well-supported groups were identified which are elevated to species level. A first clade (clade A) includes the representative culture of Phoma clematidina CBS 108.79 (Boerema & Dorenbosch 1979). This species is characterised by chlamydospore production and a wide ostiola opening. Thus far, no teleomorph connection has been established with this species. In contrast, Phraom strains from clade B, which were identified as anamorphs of D. vitalbina, were lacking chlamydospore production but regularly formed an elongated neck with ostiole. A third novel taxon (clade C), of which we currently have only one single isolate, is described here as D. clematidis. Due to the presence of only two-celled conidia both in vitro and in vivo, the anamorphic stage of D. clematidis is classified in the genus Ascochyta. This species has been applied in New Zealand as a biological control agent of the environmental weed old man’s beard (Gourlay et al. 2000). Its phytopathological value as a highly aggressive strain may be not only due to it being a genetically different entity, but also to its distinct geographical origin. Clematis vitalba originates from Europe and therefore may not have been adapted to this D. clematidis, which is found in the USA. Further research on a larger set of strains originating from various geographical origins is required to obtain more detailed information about the genetic diversity of this species. This may also provide a better assessment of the variation within clade A. The isolates in this clade have been obtained from various Clematis species and hybrids, however, almost exclusively originated from the Netherlands.

The observed difference in susceptibility to Clematis wilt caused by P. clematidina between cultivated and wild Clematis spp. (van de Graaf et al. 2001) may be explained by the existence of three genetically distinct fungal species. Strains that now belong to the newly defined P. clematidina have been isolated from Clematis hybrids, whereas D. vitalbina is recorded exclusively from C. vitalba. Another feature that suggested a high level of variability within P. clematidina is their resistance against benzimidazole fungicides. Van Kuik & Brachter (1997) and van de Graaf et al. (2003) have reported on two groups of P. clematidina within their collections that clearly responded differently to these fungicides. Van de Graaf et al. (2003) could link these groups to slight differences in morphological appearance in culture and to differences in pathogenicity. Although resistance studies could not be conducted within this study, it is worthwhile to conduct further research on the phytopathological features of all taxonomic groups observed.

The previous misidentification of C. clematidis-rectae PD 99/2069 as P. clematidina and the introduction of the Ascochyta anamorph of D. clematidis, previously reported as the P. clematidina biocontrol agent, illustrates the difficulties within the Phoma generic complex. Coniothyrium is characterised by holoblastic, annellidic conidigenous cells and brown conidia (Crous et al. 2007, Damm et al. 2008). In contrast, Phoma spp. produce enteroblastic, phialidic conidigenous cells with hyaline conidia (Sutton 1980). Differences in conidigenousness between these genera are best observed by means of electron microscopy. The difference in conidial pigmentation is also sometimes hard to observe as the conidia of several Phoma spp. have been reported to darken with time (Boerema et al. 2004), whereas (young) conidia of some Coniothyrium species may appear almost hyaline (Taylor & Croux 2001, Verkley et al. 2004). Moreover, both C. clematidis-rectae and P. clematidina can be simultaneously isolated from infected material. The main difference between Ascochyta and Phoma are the annellidic conidigenous and distoseptation of Ascochyta (Boerema & Bollen 1975). When septa occur in Phoma, they are secondary. In Ascochyta spp. the septation is an essential part of the conidial maturation, which explains why mature conidia are nearly always septate, both in vivo and in vitro.

As reported by de Gruyter et al. (2009), the distinction among the different coelomycete genera based on morphological features is not always supported by molecular studies. Some species of the anamorph genera such as Coniothyrium, Ascochyta, Ampelomyces and Microsphaeropsis cluster with Phoma species in the Didymellaceae. This is also seen in our study where strains of C. clematidis-rectae and the Ascochyta anamorph of D. clematidis cluster amidst Phoma isolates within the Didymellaceae. It is therefore recommended to improve the current classification of the anamorphic Pleosporales by further evaluating the Phoma, Ascochyta and Coniothyrium complexes and strive to establish monophyletic groups.

Acknowledgements This research was supported by the Dutch Ministry of Agriculture, Nature and Food Quality through an endowment of the FES programme “Versterking Infrastructuur Plantengesondheid”. The authors would like to thank the following persons: Mrs K. Rosendahl (PD) for providing strains, Dr J.Z. Groenewald (CBS) for designing the TUB primers which we used for our research, Mrs M. Vermaas (CBS) for helping with the photo plates, Dr D.H. Hopcroft (Electron Microscope Unit, Massey University, Palmerston North) for the scanning and transmission electron microscopy pictures, and Dr V. Mel'nik (V.L. Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia), for assisting us in obtaining specimens.
REFERENCES

Blok I. 1965. Verwelkingziekte in Clematis. Jaarboek Proefstation voor de boomkwekerij te Boskoop 1965: 66.

Boerema GH. 1993. Contributions towards a monograph of Phoma (Coelomycetes) – II. Section Peyronellaeae. Persoonia 15: 197–221.

Boerema GH, Bollen GJ. 1975. Conidiogenesis and conidial septation as differentiating criteria between Phoma and Ascochyta. Persoonia 8: 111–144.

Boerema GH, Dorenbosch MMJ. 1979. Mycologisch-taxonomisch onderzoek in Jaarboek 1978. Verslagen en Mededelingen Plantenziektenkundige Dienst 153: 17–21.

Boerema GH, Gruyter J de, Noordeloos ME. 1997. Contributions towards a monograph of Phoma (Coelomycetes) – IV. Section Heterospora: Taxa with large sized conidial dimorphs, in vivo sometimes as Sclagonosporopsis synanamorphs. Persoonia 16: 335–371.

Boerema GH, Gruyter J de, Noordeloos ME, Hamers MEC. 2004. Phoma identification manual. Differentiation of specific and infra-specific taxa in culture. CABI Publishing, Wallingford, United Kingdom.

Crous PW, Braun U, Groenewald JZ. 2007. Mycosphaerella is polyphyletic. Studies in Mycology 58: 1–32.

Damm U, Verkley GJM, Crous PW, Fourie PH, Haegi A, Riccioni L. 2008. Novel Paraconiothyrium species on stone fruit trees and other woody hosts. Persoonia 20: 9–17.

Farris JS, Källersjö M, Kluge AG, Bult C. 1995. Testing significance of incongruence. Cladistics 11: 315–319.

Gams W, Verkley GJM, Crous PW. 2007. CBS Course of Mycology, 5th ed. Centraalbureau voor Schimmelcultures, Utrecht, Netherlands.

Gloyer WO. 1915. Ascochyta clematidina, the cause of stem-rot and leaf-spot of clematis. Journal of Agricultural Research 4: 331–342.

Gourlay AH, Wittenberg R, Hill RL, Spiers AG, Fowler SV. 2000. The biological control programme against Clematis vitalba in New Zealand. In: Spencer NR (ed), Proceeding of the 10th International Symposium on Biological Control of Weeds: 709–718. Montana State University, Bozeman, MT, USA.

Graaf P van de, O’Neill TM, Chartier-Hollis JM, Joseph ME. 2001. Susceptibility of clematis varieties and species to stem infection by Phoma clematidina as an indicator for resistance to wilt. European Journal of Plant Pathology 107: 607–614.

Graaf P van de, O’Neill TM, Chartier-Hollis JM, Joseph ME. 2003. Aspects of the biology and control of benznidazole resistant isolates of Phoma clematidina, cause of leaf spot and wilt in Clematis. Journal of Phytopathology 151: 442–450.

Hill RL, Fowler SV, Wittenberg R, Barton J, Casonato S, Gourlay AH, Winks C. 2004. Phytophyma vitalbae, Phoma clematidina, and insect-plant pathogen interactions in the biological control of weeds. In: Cullen JM, Briese DT, Kriticos DJ, Lonsdale WM, Morin L, Scott JK (eds), Proceedings of the 11th International Symposium of Biological Control of Weeds: 48–56. CSIRO Entomology, Canberra, Australia.

Hill RL, Wittenberg R, Gourlay AH. 2001. Biology and host range of Phytophyma vitalbae and its establishment for the biological control of Clematis vitalba in New Zealand. Biocontrol Science and Technology 11: 459–473.

Hillis DM, Bull JJ. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42: 182–192.

Hoog GS de, Gentsv van den Ende AH. 1998. Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycosen 41: 183–189.

Humie L, West CJ, Watts HM. 1995. Nutritional requirements of Clematis vitalba L. (old man’s beard). New Zealand Journal of Botany 33: 301–313.

Karnovsky JEM. 1965. A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. Journal of Cellular Biology 27: 137–138.

Kuik A van, Brachter E. 1997. Schimmelziekte bij Clematis steekt opnieuw de kop op. De boomkwekerij 9: 18–19.

Ogle CC, Cock GD, Arnold G, Mickelson N. 2000. Impact of an exotic vine Clematis vitalba (F. Ranunculaceae) and of control measures on plant biodiversity in indigenous forest, Taipae, New Zealand. Austral Ecology 25: 539–551.

Page RDM. 1996. TREEVIEW: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357–358.

Paynter Q, Waipara N, Peterson P, Hona S, Fowler S, Gianotti A, Wilkie P. 2006. The impact of two introduced biocontrol agents, Phytomyza vitalbae and Phoma clematidina, on Clematis vitalba in New Zealand. Biological Control 36: 350–357.

Rayner RW. 1970. A mycological colour chart. Commonwealth Mycological Institute and British Mycological Society. Kew, United Kingdom.

Rehner SA, Samuels GJ. 1994. Taxonomy and phylogeny of Gliocladium with large sized conidial dimorphs, in vivo sometimes as Stagonosporopsis synanamorphs. Persoonia 15: 197–221.

Rehner SA, Samuels GJ, Braun U, Groenewald JZ. 2006. The impact of two introduced biocontrol agents, Phytomyza vitalbae and Phoma clematidina, on Clematis vitalba in New Zealand. Biocontrol Science and Technology 11: 459–473.

Sutton BC. 1980. The coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological Institute, Kew, United Kingdom.

Swafford DL. 2003. PAUP*: Phylogenetic Analysis Using Parsimony (and other methods). Version 4. Sinauer Associates, Sunderland, Massachus- setts, USA.

Taylor JE, Crous PW. 2001. Morphological variation and cultural characteristics of Coniothyrium leucospermi associated with leaf spots of Proteaceae. Mycoscience 42: 265–271.

Verkley GJM, Silva M da, Wicklow DT, Crous PW. 2004. Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium mantiaria, anamorphs of Paraphaeosphaeria, and four new species. Studies in My- cology 50: 323–335.

Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of en- zymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246.

White TJ, Brosn T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds), PCR protocols: a guide to methods and applications: 315–322. Academic Press, San Diego, California, USA.