A survey on RGB-D datasets

Alexandre Lopesa,**, Roberto Souzab,c, Helio Pedrinia

aInstitute of Computing, University of Campinas, Brazil
bDepartment of Electrical and Computer Engineering, University of Calgary, Canada
cHotchkiss Brain Institute, University of Calgary, Canada

ABSTRACT

RGB-D data is essential for solving many problems in computer vision. Hundreds of public RGB-D datasets containing various scenes, such as indoor, outdoor, aerial, driving, and medical, have been proposed. These datasets are useful for different applications and are fundamental for addressing classic computer vision tasks, such as monocular depth estimation. This paper reviewed and categorized image datasets that include depth information. We gathered 231 datasets that contain accessible data and grouped them into three categories: scene/objects, body, and medical. We also provided an overview of the different types of sensors, depth applications, and we examined trends and future directions of the usage and creation of datasets containing depth data, and how they can be applied to investigate the development of generalizable machine learning models in the monocular depth estimation field.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Depth is a critical information for many computer vision and image analysis applications. For example, it has been applied for tasks such as synthetic object insertion in computer graphics (Luo et al., 2020), robotic grasping (Lenz et al., 2015) automatic 2D to 3D conversion in film (Xie et al., 2016), robot-assisted surgery (Stoyanov et al., 2010), and autonomous driving (Levinson et al., 2011).

Despite using depth sensors that capture the distance information, researchers also use stereo vision matching to infer it, especially for its condensed size and cost. Lately, deep learning methods are being used to produce more precise and dense depth maps. For example, they can improve finer-grained details (Miangoleh et al., 2021), produce dense maps from sparse inputs (Uhlig et al., 2017), and refine depth for mirror surfaces (Tan et al., 2021a).

An important field of study for depth is monocular depth estimation, especially because it does not require using depth sensors, reducing the size and cost of computer vision systems’ setups. Also, it can be applied to existing monocular systems, that comprise the majority of image capturing systems available. For instance, Light Detection And Ranging (LiDAR) scanners usually cost thousands of dollars, and their cost and weight can be impractical for many small drone applications.

As a result of the extensive range of applications of depth, a considerable number of datasets include distance measurements of points of the scene they acquire. These datasets are collected using different sensors in distinct scenes for applications such as Simultaneous Localization and Mapping (SLAM) (Sturm et al., 2012), Reconstruction (Dai et al., 2017), Object Segmentation (McCormac et al., 2017), and Human Activity Recognition (Zhang et al., 2016a). With the increasing number and diversity of datasets, researchers were able to explore more generalistic forms of depth estimation, leading to techniques focused on zero-shot cross-dataset depth estimation (Li and Snavely, 2018a; Xian et al., 2020a; Ranftl et al., 2021a, 2020). The idea is to produce powerful methods able to estimate depth for in-the-wild scenes, increasing the range of applications for depth estimation.

The main contribution of this paper is to categorize and summarize the existing datasets with depth data. We propose a survey that can be used by researchers of both individual applications and general systems. While there are good reviews of RGB-D datasets (Firman, 2016; Cai et al., 2017), the most
recent one was published in 2017, and datasets have evolved both in complexity and size since then. Our survey presents a comprehensive literature review on more than 200 publicly available datasets included from an initial list of more than 300 datasets. Nearly half of the public datasets were published in 2017 or after, therefore, not included in any other review. We also made this work available on a website to facilitate the filtering by application, scene type, sensor, and year.

The remainder of this paper is structured as follows. In the next section, we discuss and categorize depth sensors, explaining the main differences and applications for each category. In Section 2.1, we present the methodology used to perform the literature review. In Section 2.3, we present the datasets divided into categories, describing the most influential datasets for each category and presenting the rest in tables. In Section 2.5, we present tendencies and discuss future directions for RGB-D data usage. Finally, we provide a summary of the field and discuss how the area is evolving in Section 6.

2. Sensors

Range (or depth) data is crucial for understanding the 3D scene projected onto a 2D plane forming an image. There are multiple ways to obtain such information, either using a depth sensor or estimating depth. A depth sensor is a device that provides the distance from the sensor to an element in the scene, although it is possible to collect distance information using two or more RGB cameras from a scene. We define as Stereo Camera Sensing, all systems formed by two or more cameras. Therefore, light field cameras are also included here.

Previously, authors proposed distinct divisions for the types of sensors (Fisher and Konolige, 2008; Choi, 2019). In this survey, we use a categorization of depth sensors inspired by Choi (2019)’s work. We divide the sensors into the following categories: Structured Light, Time-of-Flight (TOF), Light Detection and Ranging (LiDAR), and Stereo Camera Sensing. We display examples of each category in Figure 1.

Ultrasonic and Radar sensors also produce distance information, but they are out of the scope of this work because they are rarely used to produce depth information associated with RGB data. We detail each one of the sensors categories in the following sub-sections and show the differences of these types and possible application scenes in Table 1.

2.1. Structured Light

Structured Light sensors (also called Active Stereo sensors) rely on a projector of light captured by a camera. The simplest way to achieve such a goal is to project a point with a device and capture this point in the scene with the camera. The depth of this point can be measured by a technique called Triangulation. For estimating depth, it is necessary to find the position of the projected point in the image plane, have the distance between the camera and the light projector, the camera’s internal parameters, and the position in space of the projector. With this information, it is possible to create a triangle and calculate the height of the triangle formed by the camera, projector, and illuminated scene point to determine the distance. The strategy of projecting points would be slow in practice since it is necessary to project a point for every position that is represented as a pixel in the image.

A more efficient strategy is to project the light as a stripe that associated with different coding strategies, such as the Binary Coded Structured Light strategy, can reduce the number of frames necessary to produce a full depth map. It can also be coded with RGB lights. Details about different codification strategies are discussed by Salvi et al. (2004).

Most Structured Light sensors do not work under direct sunlight since they rely on light projection in a scene. Therefore, they are usually suitable for indoor scene applications. Researchers have proposed strategies to overcome challenging light conditions (O’Toole et al., 2015), and new sensors appear in smartphones for face identification systems for both indoor and outdoor scenes. They typically have a low range limit, not going further than 10 meters. Examples of this type of sensor include Matterport, Kinect v1, and RealSense SR300 cameras.

2.2. Time-of-Flight

TOF sensors estimate the distance of an object in the scene to a sensor by measuring the time it takes for an emitted light to be received by the sensor. Therefore, TOF sensors rely on the time that a light wave takes to go to a point in a scene and to be reflected to a sensor. The concept is barely the same as the Ultrasonic and Radar Sensors, but here light is used as the emitted signal.

There are multiple strategies for capturing the time-of-flight of light. The most straightforward strategy is using a technique called Pulse Modulation, where a very fast pulse of light is emitted and then received by the sensor. The time delay between the emitted light pulse and the received light pulse is used to compute the distance of the object in the scene. Continuous-Wave Modulation is another strategy, where the light is modulated by its intensity, and the distance is measured by calculating the shift in phase of the original emitted light and the received light.

TOF sensors generally are compromised under strong sunlight conditions (Kazmi et al., 2012), making this sensor more commonly applied to indoor scenes. Existing studies try to overcome the effect under intense background light (Buttgen and Seitz, 2008) and to reduce the measurement uncertainty under such conditions. Examples of this type of sensor include Kinect v2 (Xbox One sensor), SoftKinetic DS 325, and RIEGL VZ-400.

2.3. LiDAR

LiDAR sensors use the same idea of measuring the time that an emitted light is received by a sensor, but they rely on one or multiple laser beams (concentrated light) to produce depth measurements of points in the scene, and the device usually has a rotating mirror to generate 360° scans of a scene. Hence, LiDAR sensors produce point clouds of a scene, not a dense
depth map of it. They rely on focused laser beams, which allow them to collect distance measurements as far as a few kilometers. LiDAR sensor models have different specifications (e.g., resolution, scans per second, and distance accuracy), and some scans are built in a multilayer (multiple laser beams) configuration, allowing them to measure not only in a 360° plane of the sensor but in 3D.

LiDAR measurement accuracy is usually independent of distance, although some models can fail in adverse weather conditions, such as dense fogs and turbulent snow (Jokela et al., 2019). Each LiDAR point also includes the intensity measurements, which can be interpreted as a measurement of reflectivity of the point that the light hit. This value is suitable for many applications, such as vegetation cover understanding and tunnel damage detection (Kashani et al., 2015), giving LiDAR additional information that other types of sensors do not produce.

LiDAR sensors emit light; therefore, they work in difficult lighting conditions, such as dark environments. They are suitable for indoor and outdoor application scenes, but the available models are usually limited to specific applications, such as aerial measurements, outdoor/driving applications, and small indoor spaces depth estimation. Examples of such types of sensors include Velodyne Sensors, Faro Focus 3D Laser, and SICK LMS-511.

2.4. Stereo Camera Sensing

We define here Stereo Camera Sensing (SCS) as any system formed by two or more image sensors or lenses used to produce a Depth Map of a scene. Hence, simplistic pairs of cameras and complex light field systems composed by multiple microlenses are both identified in the same category. A straightforward strategy to measure depth from two or more cameras is Triangulation. The Triangulation idea is the same as applied in Structured Light sensors, but using a camera instead of a projector. The idea is that finding the position of a pixel in the image plane of camera A projected from a point P in the space, and the position of a pixel projected by the same point P in camera B, it is possible to find the depth of that point in a scene with the intrinsic parameters of the camera. After finding both lines in camera B, it is only necessary to know the distance between the two cameras (baseline distance) and internal parameters of the cameras to know the depth of the point P.

A limitation of this strategy occurs when the point of interest has no texture. For instance, it is practically impossible to determine which point of a smooth painted wall observed in the image projected by camera A is equivalent to the image projected by camera B. Therefore, it is difficult to determine a point’s depth with acceptable accuracy without the correspondence of the pixels in both image planes. Recently, Deep Learning based methods have tried to address this limitation, increasing the accuracy of the estimation (Zbontar and LeCun, 2015). Examples of such types of sensors include light field cameras and ZED cameras.

3. Methodology

A literature review should synthesize previous knowledge, identify biases and gaps in the literature (Rowe, 2014). Since our study aims to describe, categorize, and identify future trends for RGB-D datasets, we defined a non-conventional methodology to find the related papers. Instead of defining search terms to find the papers directly, we collected datasets using backward snowballing. The premise is that many datasets containing depth data do not have depth estimation as their primary goal, as in KITTI Dataset (Geiger et al., 2013). Therefore, defining search strings that could find depth datasets using generalist terms would result in numerous false-positive results. For instance, the search string RGB-D OR Depth AND Dataset searching in abstract, keywords, or title brings more than 23 thousand results in Scopus. Moreover, if we define a complex composed search string to filter the results, we would miss many datasets in the search.

As monocular depth estimation, salient object detection, and action recognition are prominent fields in the area, we defined the following search string to perform backward snowballing: ("single image" OR monocular) AND depth AND estimation) OR ("Salient Object Detection" OR "Action Recognition") AND RGB-D). The terms “monocular” and “single image” are applied mainly for monocular depth estimation but are also used for stereo trained systems, depth completion, and other applications. We conducted the review in Scopus and Google Scholar search engines. In Scopus, we revised all papers from January 1st, 2016, through August 31st, 2021. From Google Scholar, we followed the same dates, but we also included a stop criterion. If we found one search page without relevant items, we would end the year’s search. The inclusion of Google Scholar is justified because many relevant papers are published in arXiv. Consequently, those could also be included in this work.

The exclusion and inclusion criteria for papers are defined in Table 2. These criteria are applied to the papers found using the previous search term. After excluding papers, backward snowballing was applied to find the datasets used/described by the remaining works. Initially, we reviewed 2,119 papers, which led to 374 dataset candidates. We also applied an exclusion criterion to these candidates, and only papers with active project
Fig. 1: Examples of depth data with image (first row) and depth (second row) of the following sensors: (a) Structured Light from NYUv2 [Silberman et al., 2012], (b) TOF from AVD [Ammirato et al., 2017], (c) LiDAR from KITTI [Geiger et al., 2013], and (d) Stereo Camera Sensing from ReDWeb [Xian et al., 2018], where the authors compute correspondence maps by using optical flow.

Table 2: Inclusion and Exclusion Criteria.

Criterion	Category
Papers that discuss depth estimation	Inclusion
Papers using depth sensors, stereo image	Inclusion
sensing, or synthetic data	
Papers not written in English	Exclusion
Papers exclusively using private datasets	Exclusion
Papers not presenting minimal evidence of valid results	Exclusion
Duplicated paper/report. We kept the most complete one	Exclusion

websites, contact information to download the dataset, or direct download link were included. Hence, the final list of datasets to be included was reduced to 231 datasets.

4. Datasets

In recent years, many datasets have been created using the sensors or stereo vision sensing presented in the previous section. In addition to datasets using real data, this paper also includes datasets containing synthetic data. These were created mainly by simulation systems and often presented extra data such as semantic segmentation and 3D object detection bounding boxes. We divided the selected datasets into three different categories and six different sub-categories representing different application areas. The taxonomy tree is available in Figure 2

The categories represent the intended application of the dataset. In the first level, we identify datasets that are mainly interested in Scenes/Objects, Human Body, or Medical Applications. The following sub-sections explore each application area, and list all of them in each sub-category’s table. We also detail three, two or one datasets for each sub-category, based on the total number of datasets of each sub-category. If we detail three papers, the two first ones are the most cited papers that contain complementary scenarios. For example, KITTI Dataset and ScanNet Dataset contain street and indoor scenes, respectively. The third paper is the most cited paper published in 2017 or later. If we detail two papers, these are the most cited ones that contain complementary scenarios, and if we detailed one paper, it is the most cited in the sub-category.

4.1. Scene/Objects

In this category, we grouped all datasets generally intended to expose scenes, individual objects, or groups of objects containing or not humans. Therefore, datasets that reconstruct scenes/objects, segment elements of a scene, salient objects using depth, and contain exclusively depth maps are sub-categorized here. We created an “Other” sub-category to accommodate datasets that did not fit into these previous sub-categories.

Some papers explore multiple applications, primarily synthetic datasets, since they can create reconstruction and segmentation data directly using simulation environments. These papers are presented in one of their application areas to reduce redundancy. The only exception is for datasets of “SLAM, Odometry, or Reconstruction” and “Segmentation or Other Extra Information” sub-categories that are presented together in Table 5 since this combination is very frequent for datasets.

4.1.1. SLAM, Odometry, or Reconstruction

This sub-category contains multiple types of applications, however, all of them have a common characteristic: they present extra information that makes possible to recreate in any detail level, a 3D scene. For SLAM and odometry related papers, they typically present camera pose information, giving position and orientation of the capturing apparatus of each frame/image. We treated odometry differently from SLAM since odometry essentially aims to estimate the path of the camera, and SLAM tries to obtain a consistent trajectory and scene map of the camera [Yousif et al., 2015].

All collected datasets that contain data exclusively for SLAM, Odometry, or Reconstruction are shown in Table 8. In general, applications of indoor scenes focus on reconstruction, and external scenes (such as driving scenes) focus on SLAM/odometry. Table 8 also contains datasets of this sub-category, however, with extra annotated information such as semantic segmentation data. Some of the most cited datasets in the field include:

KITTI Dataset. Analyzing the datasets presented in this paper, this is the most cited one. The KITTI Dataset consists of a complex system of IMU/GPS, LiDAR scanner, and multiple
cameras (Geiger et al., 2013). They recorded 6 hours of traffic scenes and, in addition to collecting the information from the sensors, provided data from 3D object detection bounding boxes, optical flow, and visual odometry/SLAM (Geiger et al., 2012). The project was expanded over the years, and the authors included data for tracking, road/lane detection, semantic/instance segmentation, and depth completion. Its depth completion data is composed of 94 thousand depth annotated RGB images (Uhrig et al., 2017) to produce dense depth maps from LiDAR points.

This dataset influenced the creation of the synthetic datasets Virtual KITTI (Gaidon et al., 2016) and Virtual KITTI 2 (Cabon et al., 2020). Recently, the KITTI authors released the KITTI-360 Dataset (Liao et al., 2021), which has more cameras, sensors, and more annotated data than the original KITTI Dataset.

ScanNet Dataset. ScanNet is an indoor dataset collected using an occipital structure sensor - a structured light sensor similar to Microsoft Kinect v1 (Dai et al., 2017). The authors performed a dense reconstruction and conducted object instance-level annotation of all surfaces in the reconstruction. They also conducted a CAD Model Retrieval and Alignment for the objects in the scenes, which means that a 3D CAD model represented each instance of the annotated object in a scene. This dataset contains 2.5M views in 2,119 different scenes.

SunCG Dataset. The project associated with this dataset is focused on semantic scene completion, where from a single point of view, it estimates a complete 3D representation with the semantic label associated with the scene (Song et al., 2017). Instead of estimating the semantic segmentation of visible surfaces, this project aims to predict the occluded space (3D scene representation) and a label for each voxel in the scene. Therefore, it deals with Reconstruction and Segmentation as a unified task. This dataset comprises synthetic data containing an entire 3D model scene (which can be related to reconstruction), with semantic labels associated with it.

4.1.2. Segmentation or Other Extra Information

In this sub-category, all datasets have extra information that leads to a better scene understanding. Extra information can be seen as semantic or instance segmentation, 2D or 3D object detection, optical flow, salient object detection, etc. For instance, datasets that explore potential applications for depth estimation algorithms and semantic segmentation, and datasets dedicated to salient object detection were categorized here.

The complete list of datasets containing extra information is available in Table 4. We provide the type of extra information for each dataset in the “Extra Data” column. Researchers interested in a specific application, for instance, salient object detection, should use it to filter datasets related to their field of interest. Table 5 also reports datasets for this sub-category, as well as information of “SLAM, Odometry, or Reconstruction” sub-category. Therefore, researchers interested in semantic segmentation datasets may check both tables and refer to the “Extra Data” column to find the datasets that match their interest. Next, three of the most influencing and promising papers for this sub-category are presented.

NYUv2. This dataset contains indoor images and is the most cited dataset for this type of scene in the “Segmentation or Other Extra Information” sub-category. It was collected using Microsoft Kinect v1 sensor and is composed of aligned RGB and depth images, labeled data containing semantic segmentation, and raw data (Silberman et al., 2012). This project is a continuation of NYUv1 (Silberman and Fergus, 2011), which uses the same sensor and type of data, but has fewer scenes and total frames.

Scene Flow Datasets. This dataset is a collection of three datasets: FlyingThing3D, Monkaa, and Driving. The first is composed of everyday objects flying along random
Dataset Name	Ref.	Year	Scene Type	Sensor Type	Sensor Name	Data Modalities	Extra Data	Images/Scenes
GL3D	Shen et al. 2018	2018	Aerial	SCS	Stereo Camera	Color, Depth	-	543 Scenes (125623 Images)
ApolloScape	Wang et al. 2019	2020	Driving	LiDAR	Velodyne HDL-64E	Color, Depth, GPS, Radar	-	155 Min With 93k Frames
KAIST	Jeong et al. 2019	2019	Driving	SCS, LiDAR	Velodyne VLP-16, SICK LMS-511, Stereo Camera	Color, Depth, GPS, IMU, Altimeter	-	19 Sequences (191 Km)
RobotCar	Maddern et al. 2017	2016	Driving	LiDAR	2 X SICK LMS-151 2D LiDAR, 1 X SICK LD-MRS 3D LiDAR	Color, Depth, GPS, INS (Inertial Navigation System)	-	133 Scenes (almost 20M Images (from Multiple Sensors))
Malaga Urban	Blance-Claraco et al. 2014	2014	Driving	SCS, LiDAR	Velodyne HDL-64E, Stereo Camera	Color, Depth, IMU, GPS	-	15 Sequences
Omnidirectional	Schönberg et al. 2014	2014	Driving	SCS, LiDAR	Velodyne HDL-64E, Stereo Camera	Color, Depth	-	152 Scenes (12607 Frames)
Ford Campus Vision And LiDAR	Pandej et al. 2011	2011	Driving	SCS, LiDAR	Velodyne HDL-64E, Stereo Camera	Color, Depth, IMU, GPS	-	2 Sequences
Karlshue	Geiger et al. 2011	2011	Driving	SCS	Stereo Camera	Color, GPS/IMU	-	20 Sequences (16657 Frames)
Multi-FoV (Urban Canyon)	Zhang et al. 2018	2016	Driving, Indoor	-	Synthetic	Color, Depth	-	2 Sequences
– Zessel et al. 2013	2013	Driving, Outdoor	N/A	RGB-D Scans (N/A)	Color, Depth	-	13 Scenes (5 Castle, 5 Church, 3 Street Scenes)	
BlendedStereo Camera	Yao et al. 2020	2020	In-the-wild	-	Synthetic	Color, Depth	-	-
Youtube3D	Chen et al. 2019	2019	In-the-wild	-	Two Pouns Automatically Annotated	Color, Relative Depth	-	795066 Images
– Malteson et al. 2019	2019	In-the-wild	Structured Light, TOF	Kinect V1, V2 And Synthetic	Color, Depth	-	10 Sequences (2703 Frames)	
4D Light Field Benchmark Habitat	Honauer et al. 2016	2016	In-the-wild	-	Light-field (Synthetic)	Color, Depth	-	24 Scenes
Habitat Matterport (HMDJ)	Ramakrishnan et al. 2021	2021	Indoor	Structured Light	Matterport Pno2	Color, Depth	-	1000 Scenes
MilliEgo	Lai et al. 2020	2020	Indoor	Structured Light, LiDAR	Intel D435I Depth, Velodyne HDL-32E, Velodyne Ultra Puck	Color, Depth, IMU, LiDAR, Depth	-	17 Distinct Floors From 6 Different Multistory
ODS	Lai et al. 2019	2019	Indoor	SCS	MiniPolar 360 Camera (Stereo Camera)	Color, Depth	Normal Maps	6 Indoor Areas (50k Images)
360D	Goullis et al. 2018	2018	Indoor	Structured Light	Synthetic And Matterport Camera	Color, Depth	-	12072 Scanned Scenes And 10024 CG Scenes
PanoSUNCG	Wang et al. 2018	2018	Indoor	-	Synthetic	Color, Depth	-	103 Scenes (25k Images)
CoRBS	Wassenmüller et al. 2016	2016	Indoor	TOF	Kinect V2	Color, Depth	-	4 Scenes (9 Hours Of Recording)
EuRoC MAV	Baur et al. 2016	2016	Indoor	TOF, Stereo Camera	Vision Motion Capture, Leica MS50	Color, Depth, IMU	-	11 Scenes
Augmented ICL-NUM	Choi et al. 2015	2015	Indoor	-	Synthetic	Color, Depth	-	4 Scenes (2 Living Room, 2 Offices)
Ikea	Li et al. 2015	2015	Indoor	Structural Light	Kinect V1 And PrimeSense	Color, Depth	-	7 Scenes
ViBRIO	Martínez-Gómez et al. 2013	2013	Indoor	Structural Light	Kinect V1	Color, Depth	Semantic Category of the Scene	5 Sequences (22454 Images)
ICL-NUM	Hamba et al. 2014	2014	Indoor	-	Synthetic	Color, Depth	-	8 Scenes (4 Living Room, 4 Office)
MobileRGBD	Vanfleteren and Negre 2014	2014	Indoor	TOF	Kinect V2	Color, Depth	-	3 Scenes (9.5 Hours Of Recording)
RGBD Object V2	Lai et al. 2014	2014	Indoor	Structured Light	Kinect V1	Color, Depth	-	14 Sequences
– Mattausch et al. 2014	2014	Indoor	LiDAR	Faro Focus 3D Laser	Depth	-	40 Scenes (rooms from Three Offices)	
RGB-D 7 Scenes	Blocher et al. 2013	2013	Indoor	Structural Light	Kinect V1	Color, Depth	-	7 Scenes (500-1000 Frames/scene)
Reading Room	Zhou et al. 2013	2013	Indoor	Structural Light	Asus Xion Pro Live	Color, Depth	-	1 Scene
TUM-RGBD	Srinath et al. 2012	2012	Indoor	Structural Light	Kinect V1	Color, Depth, Accelerometer	-	39 Sequences
IROS 2011 Paper Kinect	Ponteufeas et al. 2011	2011	Indoor	Structural Light	Kinect V1	Depth	-	27 Sequences
– Zhou and Krumm 2013	2013	Indoor, Isolated Objects / Focussed On Objects	Structured Light	Asus Xion Pro Live	Color, Depth	-	6 Scenes	
– Meister et al. 2012	2012	Indoor, Isolated Objects / Focussed On Objects	Structured Light, TOF	Kinect Fusion (Kinect V1) For Two Scenes. Rigl V2-400 For Office	Color, Depth	-	2 Scenes: Statue And Targetbox	
M&M	Ken et al. 2020	2020	Indoor, Outdoor	SCS	Stereo Camera	Color, Depth	-	46900 Scenes (170k Frames) And 130k Images
Manequin Challenge	Li et al. 2019	2019	Indoor, Outdoor	SCS	Stereo Camera	Color	-	46900 Scenes (170k Frames)
Stereo CameraIC	Zhu et al. 2018	2018	Indoor, Outdoor	SCS, LiDAR	Velodyne (LiDAR), Stereo Camera	Color, Depth, IMU	-	5 Sequences
ETH3D	Schöps et al. 2017	2017	Indoor, Outdoor	SCS, LiDAR	Stereo Camera	Color, Depth	-	25 High-res, 10 Low-res

Continue on Next Page
Trajectories [Mayer et al., 2016]. The second was created using Blender computer graphics software, based on the information from an animated short film called Monkaa. The third is composed of a street scene. Scene Flow contains only synthetic data for all three datasets and, in addition to depth and RGB frames, the authors also include optical flow, segmentation, and stereo disparity change data.

Waymo Perception. This dataset is a street scene dataset composed of RGB and LiDAR labels. It consists of street scenes, and the authors labeled LiDAR using 3D bounding boxes for vehicles, pedestrians, cyclists, and signs [Sun et al., 2020]. They also provide RGB images annotations with 2D bounding boxes of vehicles, pedestrians, and cyclists. The 3D bounding boxes also have unique tracking IDs for tracking applications. The Waymo Perception Dataset is composed of 1,150 scenes with 20 seconds of recording each.

4.1.3. Depth Data Only

The datasets presented here are for the specific purpose of training depth estimation algorithms. They do not directly provide reconstruction, SLAM, or other information, although some of these applications are direct results of depth estimation. For example, these works explore monocular depth estimation [Cho et al., 2021b], zero-shot depth estimation [Yin et al., 2020], and multi-camera depth estimation [Antequera et al., 2020].

We present all papers found specifically for depth estimation in Table 6. All datasets for all categories and sub-categories in this paper also contain depth information as it is an inclusion criterion for papers to be incorporated to this work. Some relevant papers in this sub-category are:

RedWeb Dataset. This dataset deals with the in-the-wild scenario, covering scenes such as street, office, park, farm, etc. As formed in the acronym of this dataset’s name “Relative Depth from Web” (RedWeb), this dataset is formed by stereo images collected from the Internet [Xian et al., 2018]. The authors use optical flow to generate correspondence maps and create a relative depth map of the image. They post-process the data by segmenting the sky to increase the quality of the depth maps.

SQUID Dataset. This dataset is composed of underwater images collected from four different sites: two in the Red Sea and two in the Mediterranean Sea [Berman et al., 2021]. In addition to collecting stereo pair images, the authors included a ColorChecker to propose color restoration techniques in underwater images.

Middlebury Datasets. These datasets are a composition of data released in different papers over the years of 2001, 2003, 2005, 2006, and 2014. These datasets are acquired using different strategies: custom structured light using a video projector for the Middlebury 2003 (Scharstein and Szeliski, 2003), Middlebury 2005 (Scharstein and Pal, 2007), Hirschmüller and Scharstein (2011b), Middlebury 2006 (Scharstein and Pal, 2007, Hirschmüller and Scharstein, 2007), and Middlebury 2014 (Scharstein et al., 2014), while Middlebury 2001 (Scharstein and Szeliski, 2002) uses stereo image pair dis-
Table 4: Datasets of “Segmentation or Other Extra Information”

Dataset Name	Ref.	Year	Scene Type	Application	Sensor Type	Sensor Name	Data Modalities	Extra Data	Images/Scenes
VALID	Chen et al. (2020)	2020	Aerial	SOE	-	Synthetic	Color, Depth	Object Detection, Panoptic Segmentation, Instance Segmentation, Semantic Segmentation	6 Scenes (6690 Images)
US3D	Foster et al. (2020)	2019	Aerial	SOE	LiDAR	Airborne LiDAR	Color, Depth	Semantic Segmentation	4160 Images From 3 Different Cities (a Fourth Is Not Available)
Vaihingen	Nada et al. (2010)	2011	Aerial	SOE	LiDAR	Leica ALS50 And ALTM-ORION M	Color, Depth	Semantic Segmentation	33 Patches
Potdam	Rolfsensier et al. (2012)	2011	Aerial	SOE	N/A	N/A	Color, Depth	Semantic Segmentation	38 Patches
Leddar P Iriset	D'Aniello et al. (2021)	2021	Driving	SOE and Tracking (Other)	LiDAR	Leddar Ppixell LiDAR	Color, Depth, IMU, Radar	3D Bounding Boxes, 2D Bounding Boxes, Semantic Segmentation	97 Sequences (20k Frames)
Virtual Kitti 2	Cabou et al. (2020)	2020	Driving	SOE and Tracking (Other)	-	Synthetic	Color, Depth	Semantic Segmentation, Instance Segmentation, Optical Flow	5 Scenes (multiple Conditions For Each Scene)
Waymo Perception	Sun et al. (2020)	2020	Driving	SOE	LiDAR	N/A	Color, Depth	3D Object Detection	1150 Scenes (20 Seconds/scene)
Argoverse	Chong et al. (2019)	2019	Driving	SOE and Tracking (Other)	SCS, LiDAR	Argo LiDAR, Stereo Camera	Color, Depth	Semantic Segmentation	113 Scenes
CityScapes	Cordes et al. (2016)	2016	Driving	SOE	SCS	Stereo Camera	Color, Odometry	Segmentation, 3D-object Detection And Pose	50 Cities (25k Frames)
SYNTHIA	Ros et al. (2016)	2016	Driving	SOE	Virtual 8 Depth Sensors	Synthetic	Color, Depth	Instance Segmentation	5 Sequences (with Sub-sequences) At 5 Fps. 20k Images From Videos
Daimler Urban Segmentation Ground Truth Stixel	Scharwächter et al. (2014)	2014	Driving	SOE	SCS	Stereo Camera	Color	Semantic Labeling	5k Images
	Fleisher et al. (2015)	2013	Driving	SOE	SCS	Stereo Camera	Color	Stixels	12 Sequences
Daimler Stereo Pedestrian	Kellar et al. (2011)	2011	Driving	SOE	SCS	Stereo Camera	Color	Object Detection	28919 Images
Unreal	Manca et al. (2013)	2018	Driving, Outdoor	SOE	-	Synthetic	Color, Depth	Semantic Segmentation	21 Sequences (100k Images)
OASIS V2	Chen et al. (2020)	2021	In-the-wild	SOE	-	From Human Annotation	Color, Depth	Semantic Segmentation, Normal Maps, Instance Segmentation	102k Images
OASIS	Chen et al. (2020)	2020	In-the-wild	SOE	-	From Human Annotation	Color, Depth	Semantic Segmentation, Normal Maps, Instance Segmentation	140k Images
RedWeb-S	Liu et al. (2021)	2020	In-the-wild	SOE	SCS	Stereo Camera	Color	Salieny Mask	3179 Images
DUTLF-Depth	Piao et al. (2019)	2019	In-the-wild	SOE	SCS	Lytro Elum (Light Field (Stereo Camera)	Color, Depth	Salieny Mask	1200 Images
Scene Flow	Mayer et al. (2016)	2016	In-the-wild	SOE	-	Synthetic	Color	Optical Flow, Object Segmentation	2256 Scenes (39049 Frames)
LFSD	Frit et al. (2014)	2015	In-the-wild	SOE	SCS	Lytro Elum (Light Field (Stereo Camera)	Color	Salieny Mask	100 Images
RGBD Salient Object Detection	Peng et al. (2014)	2014	In-the-wild	SOE	Structured Light	Kinect V1	Color, Depth	Salieny Mask	1000 Images
MPT Sintel	Butler et al. (2012)	2012	In-the-wild	SOE	-	Synthetic	Color, Depth	Optical Flow	25 Scenes (50 Frames/scene)
NYU+2-OC++	Ramamonjisoa et al. (2020)	2020	Indoor	SOE	Structured Light	Kinect V1	Color, Depth, Accelometer	Occlusion Boundaries Maps, 2D Object Detection	1449 Images From NYU/2
Near-Collision Set	Mangik et al. (2019)	2019	Indoor	SOE	SCS, LiDAR	LiDAR (N/A), Stereo Camera	Color, Depth	Salieny Mask	16368 Sequences
SfM-RGBD	Camplani et al. (2017)	2017	Indoor	SOE	Structured Light	Kinect V1	Color, Depth	Salieny Mask	33 sequences (15000 frames)
SUN RGB-D	Song et al. (2015)	2015	Indoor	SOE	Structured Light And TOF	Intel RealSense 3D Camera, Asus Xtion LIVE PRO, Kinect V1 and V2, ASUS Xtion ProLive RGB-D	Color, Depth	Semantic Segmentation, Object Detection And Pose	10335 Images
TUW	Aldoma et al. (2014)	2014	Indoor	SOE	Structured Light	Kinect V1	Color, Depth	Object Instance Recognition	15 Sequences (163 Frames)
Willow And Challenge	Aldoma et al. (2014)	2014	Indoor	SOE	Structured Light	Kinect V1	Color, Depth	Object Instance Recognition	24 Sequences (353 Frames) For Willow, 39 Sequences (176 Frames)
An In Depth View of Salency	cpiladi et al. (2013)	2013	Indoor	SOE	Structured Light	Kinect V1	Color, Depth	Salency Mask	80 Images
NYU Depth V2	Silberman et al. (2012)	2012	Indoor	SOE	Structured Light	Kinect V1	Color, Depth, Accelerometer	Semantic Segmentation	464 Scenes (407024 Frames) With 1449 Labeled Aligned RGB-D Images

Continue on Next Page
parities. Despite using a custom structure light system, Middlebury 2014 contains improvements in the acquisition process.

4.1.4. Other

This sub-category contains all datasets that do not fit into the previous divisions. There is no sub-category in “Other” with more than four examples. Therefore, we did not create a specific sub-section for them.

All datasets here contain depth data and are divided into the following applications: novel view synthesis, foggy images for visibility restoration, relative depth between pairs of random points, object tracking, depth refinement for mirror surfaces, and synthesis of 4D RGB-D light field images. In Table 7, we display all these datasets and their respective application as a column of the table. The most cited dataset included here is:

FRIDA2. This dataset is a synthetic dataset of foggy images of the street view. It is formed by 330 synthetic images of 66 different scenes, where each image without fog is associated with four images that vary the intensity of the artificial fog presented in it (Tarel et al., 2012). Therefore, 66 images without fog have one depth map and four foggy images associated with it. FRIDA2 is a continuation of The Foggy Road Image Database (FRIDA) (Tarel et al., 2010), which has similar characteristics to FRIDA2, but fewer images (only 18 distinct scenes). These datasets are created for image enhancement in foggy images, trying to reduce the impact of the fog in the visibility of street scenes.

4.2. Body

In this category, all datasets are focused on body activities, such as action recognition, facial expression, hand activities, and sign language recognition. Here, we have only two sub-categories: the first one encompass full-body activities and the second one includes partial body parts, such as hands or face.

It is essential to notice that some of these datasets also include depth maps of the scene, but the focus of the dataset is on the Human Body (or part of it). Therefore, they are classified in this category.

4.2.1. Human Activities

This sub-category has all datasets focused on human activities, such as drinking, eating, playing tennis, and walking. Here, we have datasets that analyze actions for an individual (Wang et al., 2012b, 2014) or two-person interactions (Yun et al., 2012).

The majority of the works in the “Human Activities” sub-category are collected in controlled scenes, and we only found Hollywood 3D (Hadfield and Bowden, 2013) using in-the-wild datasets. The majority of the datasets are indoor scenes, but as they are centered on actions, they are classified in the “Scene Type” column as “Full Body”. The most common extra data is the person pose (or skeleton) of the people involved in the scene. Such information can help improve automatic action recognition algorithms. Datasets containing Human Activities are presented in Table 8. Next, we present three influential datasets in this sub-category:

NTU RGB+D. This dataset contains more than 50,000 video samples representing 60 distinct actions that are divided into three major groups: health-related actions (e.g., falling down, staggering), 40 daily actions (e.g., eating, drinking), 11 mutual actions (e.g., kicking, hugging) (Shahroudy et al., 2016). Forty subjects aged between 10 and 35 performed the actions in this dataset. The dataset was collected using three Kinect v2 from different horizontal views and is available with RGB, Depth, in-
Dataset Name	Ref.	Year	Scene Type	Application	Sensor Name	Sensor Type	Data Modalities	Extra Data	Images/Scenes	
–	Wu et al. [2021]	2020	Aerial	SOR and SOE	-	Synthetic	Color, Depth	Normal Maps, Edges, Semantic Labels	15 Scenes (144k Images)	
EventScape	Gebring et al.	2021	Driving	SOR and SOE	-	Synthetic	Color, Depth	Semantic Segmentation, Navigation Data (Position, Orientation, Angular Velocity, Etc.)	758 Sequences	
KITTI-360	Liao et al.	2021	Driving	SOR and SOE	SCS, LiDAR	Velodyne (LiDAR) Points Cloud, Stereo Camera	Color, Depth, GPS, IMU	2D-object Detection, 3D-object Detection, Tracking, Instance Segmentation, Optical Flow	These Are Not In Necessary In The Same Dataset	11 Sequences To Over 320k Images And 100k Laser Scan
DDAD	Ouazoulil et al.	2020	Driving	SOR and SOE	LiDAR	Luminar-H2 LiDAR	Color, Depth	Instance Segmentation	150 Scenes (12250 Frames)	
Lyft Level 5	Houston et al.	2020	Driving	SOR and SOE	SCS, LiDAR	3 LiDAR (40 And 64-beam LiDAR), 5 Radars, Stereo Camera	Color, Depth, Radar	3D Object Detection	170k Scenes (25 Seconds Each)	
NuScenes	Caesar et al.	2020	Driving	SOR and SOE	LiDAR	N/A	Color, Depth, Radar, IMU	3D Object Detection, Semantic Segmentation	1000 Scenes (20 Seconds Each), 1.4M Images And 390k LiDAR Sweeps	
Woodscape	Yingamani et al.	2019	Driving	SOR and SOE	LiDAR	Velodyne HDL-64E	Color, IMU, GPS, Depth	Instance Segmentation, 2D Object Detection	Semantic Segmentation, Optical Flow	50 Sequences (100k Frames)
Virtual Kitti	Gaidon et al.	2016	Driving	SOR and SOE	-	Synthetic	Color, Depth	Semantic Segmentation, Instance Segmentation, Optical Flow	50 Videos (21260 Frames)	
KITTI	Geiger et al.	2012	Driving	SOR and SOE	SCS, LiDAR	Velodyne (LiDAR) Points Cloud, Stereo Camera	Color, Grayscale, Depth, GPS, IMU	Instance Segmentation	61 Scenes (42746 Frames)	
Hypersim	Roberts et al.	2021	Indoor	SOR and SOE	-	Synthetic	Color, Depth	Normal Maps, Instance Segmentation, Diffuse Reflectance	461 Scenes (77400 Images)	
RoboTHOR	Deitske et al.	2020	Indoor	SOR and SOE	-	Synthetic	Color, Depth	Instance Segmentation	75 Scenes	
Structured3D	Zheng et al.	2020	Indoor	SOR and SOE	-	Synthetic	Color, Depth	Object Detection, Semantic Segmentation	3500 Scenes With 21835 Rooms (196515 Frames)	
Replica	Straub et al.	2019	Indoor	SOR and SOE	Structured Light	N/A	Color, Depth, IMU, Grayscale Camera	Normal Maps, Semantic Segmentation	18 Scenes	
Gibson	Xia et al.	2018	Indoor	SOR and SOE	LiDAR, Structured Light	NavVis, Matterport Camera, DotProduct	Color, Depth	Normal Maps, Semantic Segmentation	572 Scenes. 1400 Floor Spaces From 572 Buildings	
InterioNet	Li et al.	2018	Indoor	SOR and SOE	-	Synthetic	Color, Depth, IMU	Normal Maps, Semantic Segmentation	20 Million Images	
Taskonomy	Garcia-Hernando et al.	2018	Indoor	SOR and SOE	Structured Light	N/A	Color, Depth	25 Tags (Normals Maps, Semantic Segmentation, Scene Classification, Etc.)	4.5 Million Scenes	
AVD	Ammirato et al.	2017	Indoor	SOR and SOE	TOF	Kinect V2	Color, Depth	Object Detection	15 Scenes (over 30k Images)	
MatterPort3D	Chang et al.	2017	Indoor	SOR and SOE	SCS, Structured Light	Matterport Camera, Stereo Camera	Color, Depth	Semantic Segmentation, 3D Semantic-voxel Segmentation	90 Scenes, 10800 Panoramic Views (194400 Images)	
ScanNet	Dai et al.	2017	Indoor	SOR and SOE	Structured Light	Occupilal Structure Sensor - Similar to Kinect V1	Color, Depth	3D Semantic-voxel Segmentation	1513 Sequences (over 2.5 Million Frames)	
SceneNet RGB-D	McCormac et al.	2017	Indoor	SOR and SOE	-	Synthetic	Color, Depth	Instance Segmentation, Optical Flow	15K Trajectories (scenes) (15M Images)	
SunCG	Song et al.	2017	Indoor	SOR and SOE	-	Synthetic	Color, Depth	Semantic Segmentation	45622 Scenes	
GMU Kitchen	Georgakis et al.	2016	Indoor	SOR and SOE	TOF	Kinect V2	Color, Depth	Object Detection	9 Scenes (6735 Frames)	

Table 5: Datasets of “SLAM, Odometry, or Reconstruction” and “Segmentation or Other Extra Information” Categories
frared (IR) sequences, and person pose (skeleton) information. The authors extended the NTU RGB+D to a new dataset called NTU RGB+D 120, which contains other 60 classes and 57,600 samples, also containing the same capturing system and data modalities as the previous dataset [Liu et al., 2019].

MSR DailyActivity3D Dataset. This dataset covers sixteen different activities: drink, eat, read a book, call cellphone, write on a paper, use a laptop, use a vacuum cleaner, cheer up, sit still, toss paper, play games, lie down on a sofa, walk, play guitar, stand up, and sit down [Wang et al., 2012b]. Ten subjects performed each action twice: one for standing and one for sitting position. This dataset also includes person pose information for each frame. The authors used the Kinect v1 to acquire the depth of the scenes.

MSR Action3D. This dataset covers twenty different actions performed by ten subjects. Each action was performed two to three times, resulting in 557 filtered sequences and 23,797 frames [Li et al., 2010]. The actions are divided into three sets, where the first categorize actions with similar movements. The third set is composed by complex actions together. All sequences were acquired using Kinect v1 sensor.

4.2.2. Gestures (Partial Body)

Here, we grouped all works that involve human actions or activities and have data available for human body parts, such as arms, head, and hand. There is a wide variety of dataset purposes in this sub-category, such as action recognition based on a first-person view (no torso/head parts available in video) [Tang et al., 2017], salad preparation [Stein and McKenna, 2013], hand-pose information [Tompson et al., 2014], and sign language recognition [Wang et al., 2012a].

The most cited datasets in this sub-category include:

NYU Hand Pose Dataset. This dataset was captured using three Kinect v1, with two side views and a frontal view. The authors also re-created a synthetic hand pose for each view [Tompson et al., 2014], and made available 36 hand point locations for each frame. Three people acquired the data: one person used for training and the other two for testing, leading to over 80 thousand acquired frames.

MSR Gesture3D. This dataset contains sign language gestures. The authors collected 12 dynamic American Sign Language (ASL) gestures from ten people. The dataset was captured using Kinect v1, and has 336 sequences since each person performed multiple recordings of all selected signs. The authors performed a hand segmentation, and depth information is available only for the segmented hand regions. Background and body portions below the wrist were removed.

4.3. Medical

In this category, we present datasets that are from any part of the medical field. The exclusion criteria removed most of the datasets found here because these contained only private data. For instance, we collected eleven datasets containing endoscopic data, but only three meets all criteria to be included in our work. This situation is common in medical applications as sharing medical information requires regulated procedures.

We found only four datasets available in this category, of which three of them contain endoscopic data and one contains 3D models of the iris. The most cited dataset in containing depth information in the medical field is:

Colonoscopy CG Dataset. This dataset is composed of endoscopic data of the colon. To the best of our knowledge, this is the most frequent type of data that contains depth maps in the Medical category, even if analyzing datasets with non-shared data. The authors generated a synthetic dataset using Unity graphic engine based on a human CT colonography scan. They extracted a surface mesh using manual segmentation and meshing [Rau et al., 2019]. Their work also proposed and tested an algorithm in real data, but this data is not available for the community thus not included in this paper.
5. Discussion

The datasets presented in Section 4 constitute a collection of different scenes, sensors, and activities. We provide information about the Sensor Type, Number of Images/Scenes, Scene Type, Sensor Name, and Data Modalities available for each dataset. Unlike previous surveys of RGB-D datasets (Firman, 2016), we do not categorize the datasets regarding their realism since this is a subjective criterion and it is up to the researcher who will analyze the datasets to decide. Despite the variety of datasets presented, we identified common tendencies in all areas and discussed them in this section.

Although synthetic data is becoming more present each time, the usage of real data is presented in the majority of the datasets. Comparing the 2016-2018 to the 2019-2021 trienniums, we found a 50% increase in the numbers of datasets containing synthetic data. Synthetic datasets are usually cheaper to produce than performing real data acquisition because extra annotations, e.g., semantic segmentation or object tracking, are automatically generated. On the other hand, complex scene annotations for real data are costly, especially in scenes such as driving and aerial.

Synthetic datasets were initially created using simulators (Tarel et al., 2010, 2012), but these simulators were distinct to real-world scenarios since the computational power of the machines was limited. Hence, it was not possible to generate consistent and realistic datasets for complex scenes. Recently, realistic simulators were created for driving scenes, such as DrivingStereo - Driving Stereo Urban Virtual (UDV), which can produce consistent and realistic datasets for complex scenes. Additionally, realistic simulators were created for aerial scenarios, such as AirSim, which can produce consistent and realistic datasets for complex scenes.
as CARLA (Dosovitskiy et al., 2017), Nvidia Drive Sim\(^2\) and indoor scenes, such as Habitat (Szot et al., 2021; Savva et al., 2019). Despite the usage of simulators, other datasets rely on game engines or general computer graphics engines to build their systems, such as SYNTHIA (Ros et al., 2016). Virtual KITTI (Gaidon et al., 2016), and Virtual KITTI 2 (Cabon et al., 2020) that used Unity\(^3\) as graphic engine, and GTA-SfM (Wang et al., 2017) that uses scenes from the game GTAV.

The usage of synthetic data has been combined with real data to produce more complex scenes. These are applied especially for techniques that explore the generalization of their methods in non-expected scenes, i.e., using datasets not used in the training step (Ummenhofer et al., 2017; Ranftl et al., 2020; Eftekhar and Zisserman, 2021).

These papers combine datasets containing different types of acquisition and scenes to produce generalizable models. Ranftl et al. (2020) created multiple cross-dataset training strategies, and its combination of datasets with more images — called MIX5— contains data from DIML, MegaDepth, Red-Web, WSVD, and 3D Movies datasets. Ranftl et al. (2021b) expanded this combination, creating the MIX6 cross-dataset set containing about 1.4 million training images. Both works were evaluated using a mixture of testing datasets. The robustness of the models are also evaluated in a cross-dataset strategy for estimating depth from a monocular video (Kopf et al., 2021), and instead of testing in multiple types of scenes, Ji et al. (2021) combined distinct datasets of the same type of scene to improve the results for the indoor environment.

Recently, domain adaptation has been applied to improve the performance of the combination of datasets in the training step (Guo et al., 2018; Atapour-Abarghouei and Breckon, 2018; Zhao et al., 2019). Atapour-Abarghouei and Breckon (2018), for instance, combines one synthetic and one real dataset using domain adaptation to improve the result of training. They claim that directly using synthetic data may not improve the results for realistic data evaluation due to dataset bias. They adapt the domain of a synthetic dataset to a real dataset using Style Transfer and combine them to train their models. Zhao et al. (2019) also performs domain adaptation, and they claim that due to the lack of paired synthetic and real images, the synthetic-to-realistic image translation adds distortions to the depth estimation. They overcome this difficulty by exploring a more complex training procedure involving synthetic-to-realistic and realistic-to-synthetic translations. To generate more realistic synthetic data, Su et al. (2015) proposed the use of 3D CAD Models to produce 2D synthetic images, since these CAD Models allow multiple viewpoints and complete control of the deformations in the modeled objects to increase the variability of the created dataset. Planche et al. (2017) also used 3D CAD Models, but they intended to create realistic depth data from the 3D objects. They proposed a framework that simulates real distortion factors of depth data acquisition, e.g., material reflectance and sensor noise, to generate reliable depth data. In addition to using synthetic data, domain adaptation could also be applied to real-to-real translation (Lopez-Rodriguez and Mikolajczyk, 2020; Hornauer et al., 2021) since the dataset bias also affects distinct real datasets, especially by variations of scale and capture’s position of the scenes (Torralba and Efros, 2011).

6. Conclusions

In this work, we presented a survey of publicly available image datasets that contain depth information. We categorized and summarized over 200 datasets based on the image scenes, sensors used to collect the depth information, and the different applications for which these datasets can be used. Almost half of the datasets we describe were proposed after the publication of the last survey (Cai et al., 2017). The new datasets expand the scope of applications that depth datasets can be used for, such as medical applications. The new datasets also expand the quality and quantity of data for other areas.
Dataset Name	Ref.	Year	Scene Type	Sensor Type	Sensor Name	Data Modalities	Extra Data	Images/Scenes
Depth 2 Height	Yin and Zhou [2020]	2020	Full Body	TOF	Kinect V2	Color, Depth	-	2136 Images
SOR3D-AFF	Thermos et al. [2020]	2020	Full Body	TOF	Kinect V2	Color, Depth	-	1201 Sequences
NTU RGB+D 120	Lu et al. [2019]	2019	Full Body	TOF	Kinect V2	Color, Depth, IR	Person Pose (Skeleton)	111480 Sequences
--	Tang et al. [2019]	2019	Full Body	TOF	Kinect V2	Color, Depth	-	800 Frames For Each Person (26 People)
CMDFALL	Tran et al. [2018]	2018	Full Body	Structured Light	Kinect V1	Color, Depth, Accelerometer	-	20 Sequences
UESTC	Ji et al. [2019]	2018	Full Body	TOF	Kinect V2	Color, Depth	-	256600 Sequences
UOW Online Action3D	Tang et al. [2018]	2018	Full Body	TOF	Kinect V2	Color, Depth	Person Pose (Skeleton)	20 Sequences (20 Participants Performing Multiple Actions In A Sequence)
PKU-MMD	Chunhui et al. [2017]	2017	Full Body	TOF	Kinect V2	Color, Depth, Accelerometer	Person Pose (Skeleton)	3076 Sequences
TVPR	Liscotti et al. [2017]	2017	Full Body	Structured Light	Asus Xtion Pro Live	Color, Depth	-	23 Sequences (100 People, 2004 Secs)
Chalaeum LAP IsoGD	Wan et al. [2016]	2016	Full Body	Structured Light	Kinect V1	Color, Depth	-	47953 Sequences
G3D	Bloom et al. [2016]	2016	Full Body	Structured Light	Kinect V1	Color, Depth	Person Pose (Skeleton) Semantic Segmentation	7 Sequences (Multiple Actions Per Sequence)
HHOI	Shu et al. [2016]	2016	Full Body	TOF	Kinect V2	Color, Depth	Person Pose (Skeleton)	8 Actors Recorded Interactions, Each Interaction Lasts 2-7 Seconds Presented At 10-15 Fps
ISR-UoL 3D Social Activity	Coppola et al. [2016]	2016	Full Body	Structured Light	Kinect V1	Color, Depth	Person Pose (Skeleton)	10 Sequences
NTU RGB+D	Shahroudy et al. [2015a]	2015	Full Body	TOF	Kinect V2	Color, Depth, IR	Person Pose (Skeleton)	56880 Sequences
TST Fall Detection V2	Gasparrin et al. [2015b]	2015	Full Body	TOF	Kinect V2	Color, Depth, Accelerometer	Person Pose (Skeleton)	264 Scenes
UOW LargeScale Combined Action3D	Zhang et al. [2016a]	2016	Full Body	TOF	Kinect V2	Color, Depth	Person Pose (Skeleton)	4953 Sequences
CMU Panoptic	Joo et al. [2017]	2015	Full Body	TOF	Kinect V2	Color, Depth	3D Skeleton	65 Sequences (5.5 Capture Hours)
SYSU 3D HOI	He et al. [2017]	2015	Full Body	Structured Light	Kinect V1	Color, Depth	Person Pose (Skeleton)	480 Sequences
TST Intake Monitoring V1	Gasparrin et al. [2015a]	2015	Full Body	Structured Light	Kinect V1	Color, Depth	-	48 Sequences
TST Intake Monitoring V2	Gasparrin et al. [2015a]	2015	Full Body	Structured Light	Kinect V1	Color, Depth	-	60 Sequences
TST TUG DataBase	Cipipitieli et al. [2015]	2015	Full Body	TOF	Kinect V2	Color, Depth, Accelerometer	Person Pose (Skeleton)	60 Sequences
UTD-MHAD	Chen et al. [2015]	2015	Full Body	Structured Light	Kinect V1	Color, Depth, Accelerometer, Motion Capture (ms) Camera	Person Pose (Skeleton)	861 Sequences
Human3.6M	Ionescu et al. [2014]	2014	Full Body	TOF	MESA Imaging SR4000 from SwissRanger	Color, Depth, Accelerometer, Motion Capture (ms) Camera	Person Pose (Skeleton)	447260 RGB-D Frames (almost 3.6M RGB Frames)
KARD	Gaglione et al. [2015]	2014	Full Body	Structured Light	Kinect V1	Color, Depth	Person Pose (Skeleton)	540 Sequences
LIRIS	Wolf et al. [2014]	2014	Full Body	Structured Light	Kinect V1	Color, Depth	-	180 Sequences
MAD	Huang et al. [2014]	2014	Full Body	Structured Light	Kinect V1	Color, Depth	Person Pose (Skeleton)	40 Sequences
Northwestern-UCLA Multiview Action 3D	Wang et al. [2014]	2014	Full Body	Structured Light	Kinect V1	Color, Depth	-	1473 Sequences
Online RAGB Action Dataset (ORAGBD)	Yu et al. [2014]	2014	Full Body	Structured Light	Kinect V1	Color, Depth	Person Pose (Skeleton)	48 Sequences
TST Fall Detection V1	Gasparrin et al. [2014]	2014	Full Body	Structured Light	Kinect V1	Color, Depth, Accelerometer	Person Pose (Skeleton)	20 Sequences
UR Fall Detection	Kwolek and Kempka [2014]	2014	Full Body	Structured Light	Kinect V1	Color, Depth, Accelerometer	-	70 Sequences
Chalearum Multimodal Gesture Recognition	Escalera et al. [2013]	2013	Full Body	Structured Light	Kinect V1	Color, Depth, Audio	User Mask, Person Pose (Skeleton)	707 Sequences (1720800 Frames)
Florence 3D Actions	Seidenari et al. [2013]	2013	Full Body	Structured Light	Kinect V1	Color, Depth	Person Pose (Skeleton)	215 Sequences

Continue on Next Page
We also presented different forms of acquiring depth information from a scene. We expect that this explanation could be used in conjunction with extra information of the datasets to allow researchers to choose the ones that best fulfill their needs. Researchers of zero-shot learning trying to increase generalization capabilities for their model could also benefit from our work since they may select distinct datasets in terms of sensor type, application, and scene type for training and evaluating their methods.

CRediT authorship contribution statement

Alexandre Lopes: Conceptualization, Formal analysis, Investigation, Methodology, Writing - review & editing. Roberto Souza: Funding acquisition, Methodology, Project administration, Supervision, Writing – review & editing. Helio Pedrin: Methodology, Project administration, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors are grateful to the National Council for Scientific and Technological Development, Brazil (CNPq grant 309330/2018-1). Roberto Souza thanks the Natural Sciences and Engineering Research Council (NSERC - RGPIN-2021-02867) for ongoing operational support.

References

Aksoy, E.E., Tamosiunaite, M., Wörgötter, F., 2015. Model-Free Incremental Learning Of The Semantics Of Manipulation Actions. Robotics and Autonomous Systems, 118–133.

Albanis, G., Zioulis, N., Drakoulis, P., Gkitsas, V., Sterzent senko, V., Alvarez, F., Zarpalas, D., Daras, P., 2021. Pano3D: A Holistic Benchmark And A Solid Baseline for 360Deg Depth Estimation, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3727–3737.

Almada, A., Füllhammer, T., Vincze, M., 2014. Automation Of “Ground Truth” Annotation for Multi-View RGB-D Object Instance Recognition Datasets, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5016–5023.

Allan, M., Mcleod, J., Wang, C., Rosenthal, J.C., Hu, Z., Gard, N., Eisert, P., Fu, K.X., Zelek, T., Xia, W., 2021. Stereo Correspondence and Reconstruction of Endoscopic Data Challenge. arXiv preprint arXiv:2101.01133 , 1–17.

Ammirato, P., Poisron, P., Park, E., Kosecka, J., Berg, A.C., 2017. A Dataset for Developing and Benchmarking Active Vision, in: IEEE International Conference on Robotics and Automation (ICRA), pp. 1378–1385.

Antequera, M.L., Gargallo, H., Hofinger, M., Buló, S.R., Kuang, Y., Kontschieder, P., 2020. Mapillary Planet-Scale Depth Dataset, in: European Conference on Computer Vision (ECCV), pp. 589–604.

Armeni, I., Sax, S., Zami, A.R., Savaresi, S., 2017. Joint 2D-3D-Semantic Data for Indoor Scene Understanding. arXiv preprint arXiv:1702.01105 , 1–9.

Atapour-Abbarghouei, A., Breckon, T.P., 2018. Real-time Monocular Depth Estimation using synthetic Data with Domain Adaptation via Image Style Transfer, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2800–2810.

Bagdanov, A.D., Del Bimbo, A., Masi, I., 2011. The Florence 2D/3D Face Dataset, in: Joint ACM Workshop on Human Gesture and Behavior Understanding, p. 79–80.

Barbosa, I.B., Cristani, M., Del Bue, A., Bazzani, L., Murino, V., 2012. Re-Identification With RGB-D Sensors, in: European Conference on Computer Vision (ECCV), pp. 433–442.

References

Aksoy, E.E., Tamosiunaite, M., Wörgötter, F., 2015. Model-Free Incremental Learning Of The Semantics Of Manipulation Actions. Robotics and Autonomous Systems, 118–133.

Albanis, G., Zioulis, N., Drakoulis, P., Gkitsas, V., Sterzent sensko, V., Alvarez, F., Zarpalas, D., Daras, P., 2021. Pano3D: A Holistic Benchmark And A Solid Baseline for 360Deg Depth Estimation, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3727–3737.

Almada, A., Füllhammer, T., Vincze, M., 2014. Automation Of “Ground Truth” Annotation for Multi-View RGB-D Object Instance Recognition Datasets, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5016–5023.

Allan, M., Mcleod, J., Wang, C., Rosenthal, J.C., Hu, Z., Gard, N., Eisert, P., Fu, K.X., Zelek, T., Xia, W., 2021. Stereo Correspondence and Reconstruction of Endoscopic Data Challenge. arXiv preprint arXiv:2101.01133 , 1–17.

Ammirato, P., Poisron, P., Park, E., Kosecka, J., Berg, A.C., 2017. A Dataset for Developing and Benchmarking Active Vision, in: IEEE International Conference on Robotics and Automation (ICRA), pp. 1378–1385.

Antequera, M.L., Gargallo, H., Hofinger, M., Buló, S.R., Kuang, Y., Kontschieder, P., 2020. Mapillary Planet-Scale Depth Dataset, in: European Conference on Computer Vision (ECCV), pp. 589–604.

Armeni, I., Sax, S., Zami, A.R., Savaresi, S., 2017. Joint 2D-3D-Semantic Data for Indoor Scene Understanding. arXiv preprint arXiv:1702.01105 , 1–9.

Atapour-Abbarghouei, A., Breckon, T.P., 2018. Real-time Monocular Depth Estimation using synthetic Data with Domain Adaptation via Image Style Transfer, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2800–2810.

Bagdanov, A.D., Del Bimbo, A., Masi, I., 2011. The Florence 2D/3D Face Dataset, in: Joint ACM Workshop on Human Gesture and Behavior Understanding, p. 79–80.

Barbosa, I.B., Cristani, M., Del Bue, A., Bazzani, L., Murino, V., 2012. Re-Identification With RGB-D Sensors, in: European Conference on Computer Vision (ECCV), pp. 433–442.

References

Aksoy, E.E., Tamosiunaite, M., Wörgötter, F., 2015. Model-Free Incremental Learning Of The Semantics Of Manipulation Actions. Robotics and Autonomous Systems, 118–133.

Albanis, G., Zioulis, N., Drakoulis, P., Gkitsas, V., Sterzent senko, V., Alvarez, F., Zarpalas, D., Daras, P., 2021. Pano3D: A Holistic Benchmark And A Solid Baseline for 360Deg Depth Estimation, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3727–3737.

Almada, A., Füllhammer, T., Vincze, M., 2014. Automation Of “Ground Truth” Annotation for Multi-View RGB-D Object Instance Recognition Datasets, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5016–5023.

Allan, M., Mcleod, J., Wang, C., Rosenthal, J.C., Hu, Z., Gard, N., Eisert, P., Fu, K.X., Zelek, T., Xia, W., 2021. Stereo Correspondence and Reconstruction of Endoscopic Data Challenge. arXiv preprint arXiv:2101.01133 , 1–17.

Ammirato, P., Poisron, P., Park, E., Kosecka, J., Berg, A.C., 2017. A Dataset for Developing and Benchmarking Active Vision, in: IEEE International Conference on Robotics and Automation (ICRA), pp. 1378–1385.

Antequera, M.L., Gargallo, H., Hofinger, M., Buló, S.R., Kuang, Y., Kontschieder, P., 2020. Mapillary Planet-Scale Depth Dataset, in: European Conference on Computer Vision (ECCV), pp. 589–604.

Armeni, I., Sax, S., Zami, A.R., Savaresi, S., 2017. Joint 2D-3D-Semantic Data for Indoor Scene Understanding. arXiv preprint arXiv:1702.01105 , 1–9.

Atapour-Abbarghouei, A., Breckon, T.P., 2018. Real-time Monocular Depth Estimation using synthetic Data with Domain Adaptation via Image Style Transfer, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2800–2810.
Dataset Name	Ref.	Year	Scene Type	Sensor Type	Sensor Name	Data Modalities	Extra Data	Images/Scenes
Bimanual Actions	Dreher et al.	2020	Part Of Body (hand, Head, Etc.)	Structured Light	IntelRealSense SR300/Synthetic	Color, Depth	-	16016 Images
RGB2Hands	Wang et al.	2020	Part Of Body (hand, Head, Etc.)	Structured Light	IntelRealSense SR300/Synthetic	Color, Depth	-	25 Scenes
ObMan	Hasson et al.	2019	Part Of Body (hand, Head, Etc.)	-	Synthetic	Color, Depth	3D Hand Keypoints, Object Segmentation, Hand Segmentation	150k Images
EgoGesture	Zhang et al.	2018	Part Of Body (hand, Head, Etc.)	Structured Light	IntelRealSense SR300/Synthetic	Color, Depth	-	2081 Sequences
	Garcia-Hernando et al.	2018	Part Of Body (hand, Head, Etc.)	Structured Light	IntelRealSense SR300/Synthetic	Color, Depth	-	1175 Sequences
BigHand2.2M	Wun et al.	2017	Part Of Body (hand, Head, Etc.)	Structured Light	IntelRealSense SR300	Color, Depth, 6D Magnetic Sensor	-	N/A Sequences
Pandora	Bonghi et al.	2017	Part Of Body (hand, Head, Etc.)	TOF	Kinect V2	Color, Depth	Upper Body Part Pose (Skeleton)	100 Sequences
RHD	Zimmermann and Bix 2017	2017	Part Of Body (hand, Head, Etc.)	-	Synthetic	Color, Depth	Segmentation, Keypoints	43986 Images
THU-READ	Tang et al.	2017	Part Of Body (hand, Head, Etc.)	Structured Light	PrimeSense Carmine	Color, Depth	-	1920 Sequences
STB	Zhang et al.	2017	Part Of Body (hand, Head, Etc.)	Structured Light	Intel Real Sense F200, Stereo Camera	Color, Depth	-	12 Sequences
Creative Sen3D	Memo et al.	2015	Part Of Body (hand, Head, Etc.)	Structured Light	Creative Sen3D	Color, Depth	-	1320 Sequences
EYEDIAP	Funes Mora et al.	2014	Part Of Body (hand, Head, Etc.)	Structured Light	Kinect V1	Color, Depth	Eye Points, Head Pose	94 Sequences
Eurecom Kinect Face	Man et al.	2014	Part Of Body (hand, Head, Etc.)	Structured Light	Kinect V1	Color, Depth	Face Points	936 Sequences
Hand Gesture	Marin et al.	2014	Part Of Body (hand, Head, Etc.)	Structured Light	Kinect V1	Color, Depth	-	1400 Sequences
MANIC	Akeley et al.	2015	Part Of Body (hand, Head, Etc.)	Structured Light	Kinect V1	Color, Depth	-	103 Sequences
NYU Hand Pose	Timpson et al.	2014	Part Of Body (hand, Head, Etc.)	Structured Light	Structured Light	Color, Depth	Hand Pose	81009 Frames
3D MAD	Nesi and Marcel	2013	Part Of Body (hand, Head, Etc.)	Structured Light	Kinect V1	Color, Depth	Eye Points	255 Sequences
50 Salads	Stein and McKenz	2013	Part Of Body (hand, Head, Etc.)	Structured Light	Kinect V1	Color, Depth, Accelerometer	Activity Classification	50 Sequences
Dexter 1	Strahl et al.	2013	Part Of Body (hand, Head, Etc.)	Structured Light	Kinect V1, Creative Gesture Camera, Stereo Camera	Color, Depth	-	7 Sequences
	Xu and Cheng	2013	Part Of Body (hand, Head, Etc.)	TOF	SoftKinetic DS 325	Color, Depth, Measured Hand	-	870 Images (30 Subjects)
MSRC-12	Fisher-gill et al.	2012	Part Of Body (hand, Head, Etc.)	Structured Light	Kinect V1	Color, Depth	-	594 Sequences
Kinect Gesture	Fothergill et al.	2012	Part Of Body (hand, Head, Etc.)	Structured Light	Kinect V1	Color, Depth	-	719359 Frames
MSR Gesture3D	Wang et al.	2012	Part Of Body (hand, Head, Etc.)	Structured Light	Kinect V1	Color, Depth	-	336 Sequences
Florence 3D Faces	Bagdanov et al.	2011	Part Of Body (hand, Head, Etc.)	-	Synthetic	Color, Depth	-	53 People (N/A Frames/Seq)

Table 9: Datasets of “Gestures (Partial Body) sub-category”

Table 10: Datasets of “Medical” Category.

Benalcazar, D.P., Zambrano, J.E., Bastias, D., Perez, C.A., Bowyer, K.W., 2020. A 3D Iris Scanner From A Single Image Using Convolutional Neural Networks. IEEE Access , 98584–98599.

Berman, D., Levy, D., Avidan, S., Treibitz, T., 2021. Underwater Single Image Color Restoration Using Haze-Lines And A New Quantitative Dataset. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2822–2837.

Bianco-Claraco, J.L., Moreno-Duenas, F.A., González-Jiménez, J., 2014. The Málaga Urban Dataset: High-Rate Stereo and LiDAR In A Realistic Urban Scenario. The International Journal of Robotics Research , 207–214.

Bloom, V., Argyriou, V., Makris, D., 2016. Hierarchical Transfer Learning for Online Recognition of Compound Actions. Computer Vision and Image Understanding, 62–72.

Borghi, G., Venturelli, M., Vezzani, R., Cucchiara, R., 2017. Poseidon: Face-From-Depth for Driver Pose Estimation, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4661–4670.

Borrás, R., Lapedriza, A., Ignac, L., 2012. Depth Information In Human Gait Understanding, 62–72.

Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., Achtelik, M.W., Siegwart, R., 2016. The Euroc Micro Aerial Vehicle Datasets. The
