Circular RNAs (circRNAs), covalently closed noncoding RNAs, are widely expressed in eukaryotes and viruses. They can function by regulating target gene expression, linear RNA transcription and protein generation. The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays key roles in many biological and cellular processes, such as cell proliferation, growth, invasion, migration, and angiogenesis. It also plays a pivotal role in cancer progression. Emerging data suggest that the circRNA/PI3K/AKT axis modulates the expression of cancer-associated genes and thus regulates tumor progression. Aberrant regulation of the expression of circRNAs in the circRNA/PI3K/AKT axis is significantly associated with clinicopathological characteristics and plays an important role in the regulation of biological functions. In this review, we summarized the expression and biological functions of PI3K-AKT-related circRNAs in vitro and in vivo and assessed their associations with clinicopathological characteristics. We also further discussed the important role of circRNAs in the diagnosis, prognostication, and treatment of cancers.

INTRODUCTION

The complexity of cancer and the variability of its clinical features are derived from its complex etiology, involving DNA, RNA, protein, and other factors.1–3 Cancer has become an important public health concern affecting people’s lives.4–6 In the past 10 years, the number of studies on cancer has increased rapidly, providing many novel clues for the treatment of cancer.7,8 The emergence of targeted therapy and immunotherapy has greatly improved the survival rate of cancer patients.9,10 However, cancer treatment remains a major scientific challenge.

CircRNAs are mainly formed by pre-mRNA a back-splicing and are widely expressed in eukaryotes and viruses.14,15 The regulatory role of circRNAs in physiological processes is still not very clear.16 However, accumulating evidence indicates that circRNAs are significantly associated with many diseases and play an important role in the occurrence and development of cancer. A common circRNA-mediated mechanism is that circRNAs act as competitive endogenous RNAs (ceRNAs) of microRNAs (miRNAs) in tumor progression. Circ101237 facilitates the expression of MAPK1 to interact with the PI3K/AKT pathway to regulate cancer progression. Importantly, circRNAs related to the PI3K/AKT pathway have become potential targets in the treatment of cancer. In this review, we summarized the current studies of the role of circRNAs in the circRNA/PI3K/AKT axis is significantly associated with clinicopathological characteristics and plays an important role in the regulation of biological functions. In this review, we summarized the expression and biological functions of PI3K-AKT-related circRNAs in vitro and in vivo and assessed their associations with clinicopathological characteristics. We also further discussed the important role of circRNAs in the diagnosis, prognostication, and treatment of cancers.

THE PI3K/AKT SIGNALING PATHWAY IN TUMORIGENESIS

PI3K

Phosphoinositide 3-kinase (PI3K), a member of the lipid kinase family,7,28 was first identified 3 decades ago.29 It can be divided into 3 types (class I–III) in mammals.19,30,31 Class I PI3Ks have gained much attention in the cancer-related field. PI3K is composed of one catalytic (p110) domain and one regulatory (p85) domain.32,33 p85, which contains the Src homology 2 (SH2) and SH3 protein-binding domains,34,35 can interact with target proteins with corresponding binding sites. The activation of PI3K mainly involves the binding of the substrate near the inner side of the plasma membrane.19 PI3K can be activated in two ways. One is that PI3K interacts with connexin or growth factor receptors with phosphorylated tyrosine residues, and then induces a conformational change of dimer.38–40 It also can be activated by the direct binding of p110 and Ras.41–43
PI3K can be activated by multiple growth factors and signaling complexes, such as G-protein coupled receptors, B-cell receptors, vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), insulin and receptor tyrosine kinases (RTKs) (Fig. 2).20,44–48 These factors induce autophosphorylation through the activation of RTKs and then activate PI3K.49 The p85 subunit provides docking sites for autophosphorylation. In some cases, this process is mediated by the recruitment of adapter proteins. For example, the insulin receptor activates PI3K via insulin receptor substrate-1 (IRS-1).50,51 Activated PI3K increases the conversion of PIP2 to PIP3,
which activates PDK1 and AKT. However, AKT is not the only target molecule of PI3K. PI3K regulates multiple signaling pathways by interacting with BTK, PDK1, and Rac.

AKT
AKT, also called protein kinase B (PKB), is the cellular homolog of the oncogene v-Akt. AKT is a serine/threonine kinase that belongs to the AGC kinase family. There are three different AKT isoforms (AKT1, AKT2, and AKT3), which are widely expressed in most human tissues. AKT can link the interaction between receptors and PI3K to cellular anabolic pathways. AKT acts as a central regulator of cellular metabolism downstream of insulin signaling that is responsible for the regulation of glucose metabolism. In vivo experiments support that AKT2 plays a key role in the regulation of glucose metabolism. Researchers have found that germline mutations of AKT occur during the tumorigenesis and progression of some cancers.

AKT plays a key role in multiple cellular processes, such as cell survival, proliferation, migration, apoptosis, and angiogenesis. AKT prevents TSC1/TSC2 complex formation and activates mTOR pathway, thereby regulating cell growth. It also regulates the expression of cyclin D1 and p53 to affect the cell cycle or the transmission of downstream signaling pathways by inhibiting AKT activity. AKT boosts cell survival via inhibition of apoptosis by regulating specific pathways in gliomas.

Maintenance of AKT activity is required for the survival of tumor cells. AKT regulates the TGFβ signaling by activating or inhibiting downstream target proteins, such as Bad, Caspase9, NF-κB, GSK-3, FKHR, p21, and p27. AKT boosts cell survival via phosphorylation of several proteins including p21 and p27. AKT boosts cell survival via inactivating the pro-apoptotic factors Bad and the transcription factor of the Forkhead (FKHR) family. The expression levels of GABA receptors and ataxin-1 are also regulated by AKT. Some studies have observed that AKT regulates the TGFβ signaling pathway by binding with Smad. The present findings show that AKT is an important target for the treatment of cancer, diabetes, stroke, and neurodegenerative diseases.

The activation of PI3K/AKT pathway
The PI3K/AKT signaling pathway plays a key role in many biological and cellular functions. We have already elaborated on the activation of PI3K when introducing PI3K. The inositol ring of PI3K has five potential phosphorylation sites. PI3K activation could catalyze the phosphorylation of phosphatidylinositols (PI) at the 3'-position of the inositol ring. The phosphorylated products have a critical influence on cellular functions. PI3K can enhance cell migration, and PI3,4-bisphosphate regulates cell activation and insulin sensitivity. AKT and PDK1, which contain PH domains can bind to PI3K. PI3K activates PDK1, and then PDK1 phosphorylates AKT at Thr308 and Ser473. AKT can be also phosphorylated and activated by AKT2 at Ser473. Activated AKT regulates cell proliferation, differentiation, migration, and apoptosis by activating or inhibiting downstream target proteins, such as Bad, Caspase9, Caspase9, NF-kB, GSK-3, FKHR, p21, p53, and FOXO1. Aberrant activation of PI3K/AKT pathway has been found in a variety of cancers. It is widely distributed throughout the nucleus. Intron-derived circRNAs can interact with RNA polymerase II to enhance the transcription of its target genes. The expression of circZKSCAN1 attenuates HCC cell stemness by targeting RBP fragile X mental retardation protein. Moreover, some circRNAs containing the AUG start codon can control gene expression at the translational level. However, this effect has not yet been fully elucidated in cancer.

THE CIRCRNA/PI3K/AKT AXIS IN CANCER
CircRNA plays a critical role in the initiation and development of human cancer. Studies on circRNA are changing our view of cancer genesis, progress, and treatment. CircRNAs alone may be insufficient for driving cancer progression. Similarly, traditional signaling pathways or signaling molecules alone may also be ineffective. Interestingly, studies have found that circRNAs are often interconnected with the PI3K/AKT signaling pathway. The PI3K/AKT signaling pathway plays key roles in many biological and cellular functions, such as cell proliferation, growth, invasion, migration, and angiogenesis. It also plays a pivotal role in the progression of cancer. Recently, a great deal of research regarding the interaction of circRNA with PI3K/AKT signaling pathways has attracted significant research interest. CircRNAs regulate cellular functions and control the occurrence and development of cancer via interactions with the PI3K/AKT pathway. Based on the current study, the mechanism/pattern of interaction between circRNA and PI3K/AKT pathway is primarily the ceRNA mechanism, which involves the activation or repression of downstream pathways by sponging miRNA. Research on the circRNA/PI3K/AKT axis is still in its infancy. With the deepening of research about the structure and function of circRNAs, the mechanism will add clarity regarding the circRNA/PI3K/AKT axis.
Category	Type	CircRNA	Role	Function	Related genes; in vivo	Refs
Digestive system neoplasms	Esophageal cancer	circLPAR3	Oncogene	Cell migration and invasion	miR-198, MET, RAS, MAPK, PI3K, and AKT	171
	Esophageal cancer	cZNF292		Cell viability, migration, invasion, and apoptosis	miR-206, AMPK, PI3K, and AKT	174
	Esophageal cancer	circVRK1	Tumor suppressor	Cell proliferation, migration, EMT, and radiosensitivity	miR-624-3p, PTEN, PI3K, and AKT	172
	Esophageal cancer	circLARP4	Tumor suppressor	Cell proliferation, migration, and apoptosis	miR-1323, PTEN, PI3K, and AKT	173
	Gastric cancer	circPIPSK1A	Oncogene	Cell proliferation, migration, invasion, and EMT	miR-671-5p, KRT80, PI3K, and AKT	175
	Gastric cancer	circ0010882	Oncogene	Cell proliferation, migration, invasion, and apoptosis	PBK, Akt, and mTOR	176
	Gastric cancer	circ0023409	Oncogene	Cell viability, proliferation, migration, invasion, and apoptosis	miR-542-3p, IRS4, PI3K, and AKT	177
	Gastric cancer	cirS-7	Oncogene	Cell viability, cell survival, migration, and apoptosis	miR-7, PTEN, PI3K, and AKT	178
	Gastric cancer	circMAN2B2	Oncogene	Cell viability, cell survival, migration, and apoptosis	miR-145, PI3K, AKT, and JNK	179
	Gastric cancer	circPVT1	Oncogene	Cell viability, proliferation, apoptosis, and cisplatin sensitivity	miR-152-3p, HDGF, PI3K, and AKT	180
	Colorectal cancer	circ001313	Oncogene	Cell proliferation and apoptosis	miR-510-5p, PI3K, and AKT2	181
	Colorectal cancer	circCDYL	Tumor suppressor	Cell viability, migration, invasion, and apoptosis	miR-105-5p, PTEN, PI3K, AKT, JAK2, and STATS	182
	Colorectal cancer	circ0008285	Tumor suppressor	Cell viability, cell survival, migration, and apoptosis	miR-382-5p, PTEN, PI3K, and AKT	183
	Liver cancer	circCDK13	Tumor suppressor	Cell migration, invasion, and cell cycle	JAK, STAT, PI3K, and AKT; tumor progression	184
	Liver cancer	circGF1R	Oncogene	Cell proliferation, apoptosis, and cell cycle	PBK, and AKT	185
	Liver cancer	circ0072309	Tumor suppressor	Cell viability, colony formation, invasion, and migration	miR-665, PI3K, AKT, Wnt, and β-catenin	186
	Liver cancer	circ0079299	Tumor suppressor	Tumor growth, cell cycle	PBK, AKT, and mTOR; tumor size and tumor weight	187
	Liver cancer	circ0004001	Oncogene	Cell proliferation, apoptosis, and cell cycle	miRNAs, VEGF, VEGFR, PI3K, AKT, mTOR, and Wnt	188
	Liver cancer	circ0004123	Oncogene	Cell proliferation, apoptosis, and cell cycle	miRNAs, VEGF, VEGFR, PI3K, AKT, mTOR, and Wnt	188
	Liver cancer	circ0007592	Oncogene	Cell proliferation, apoptosis, and cell cycle	miRNAs, VEGF, VEGFR, PI3K, AKT, mTOR, and Wnt	188
	Liver cancer	cirEphB4	Tumor suppressor	Cell viability, apoptosis, migration, and invasion	HIF-1α, PI3K-AKT, and ZEB1; tumor weight, tumor size, and metastasis foci	189
	Liver cancer	circDYL	Oncogene	Cell proliferation, apoptosis, and cell cycle	mir-892a, mir-328-3p, HDGF, HIF1AN, NCL, PI3K, AKT, NOTCH2, C-MYC, and Survivin	190
	Hepatoblastoma	cirHMGC51	Oncogene	Cell proliferation, apoptosis, and glutaminolysis	miR-503-5p, IGF2, IGF1R, PI3K, and AKT	191
Category	Type	CircRNA	Role	Function	Refs.	
--------------------------	-----------------	---------	--------------------	--	-------	
Pancreatic cancer	Tumor suppressor	circNFIB1	Oncogene	miR-486-5p, PK3R1, and VEGF-C; in vivo	194	
Pancreatic cancer	Oncogene	circEIF6	Cell proliferation, migration, invasion, and apoptosis	miR-486-5p, PIK3R1, and VEGF-C; in vivo	196	
Pancreatic cancer	Oncogene	circBFA1R	Cell proliferation, apoptosis	miR-486-5p, PIK3R1, and VEGF-C; in vivo	198	
Glioma	Oncogene	circ0014359	Cell viability, migration, invasion, and apoptosis	miR-153, PIK3R1, and VEGF-C; in vivo	197	
Glioma	Oncogene	circDICER1	Cell proliferation, invasion, apoptosis, and angiogenesis	miR-153, PIK3R1, and VEGF-C; in vivo	198	
Glioma	Oncogene	circHIPK3	Cell proliferation, metastasis, apoptosis, and sensitivity	miR-153, PIK3R1, and VEGF-C; in vivo	199	
Glioma	Oncogene	circPIP5K1A	Cell proliferation, invasion, apoptosis, and EMT	miR-153, PIK3R1, and VEGF-C; in vivo	200	
Glioma	Oncogene	circ104075	Cell proliferation, apoptosis, and autophagy	miR-153, PIK3R1, and VEGF-C; in vivo	201	
Glioma	Oncogene	circ0000215	Cell proliferation, invasion, apoptosis, and EMT	miR-153, PIK3R1, and VEGF-C; in vivo	202	
Glioblastoma	Tumor suppressor	circAKT3	Cell proliferation, migration, invasion, and resistance	miR-153, PIK3R1, and VEGF-C; in vivo	203	
Glioblastoma	Oncogene	circ0067934	Cell proliferation, metastasis, apoptosis, and sensitivity	miR-153, PIK3R1, and VEGF-C; in vivo	204	
Glioblastoma	Oncogene	circPVT1	Cell viability, migration, apoptosis, and EMT	miR-153, PIK3R1, and VEGF-C; in vivo	205	
Neuroblastoma	Oncogene	circ0002343	Cell proliferation, migration, invasion, and oncogenicity	miR-153, PIK3R1, and VEGF-C; in vivo	206	
Kidney cancer	Tumor suppressor	circ0072309	Cell proliferation, migration, invasion, and apoptosis	miR-153, PIK3R1, and VEGF-C; in vivo	207	
Bladder cancer	Oncogene	circZNF139	Cell proliferation, migration, invasion, and cell clones	miR-153, PIK3R1, and VEGF-C; in vivo	208	
Prostate cancer	Oncogene	circ0001085	Cell proliferation, migration, invasion, and EMT	miR-153, PIK3R1, and VEGF-C; in vivo	209	
Prostate cancer	Oncogene	circMBOAT2	Cell proliferation, migration, invasion, and EMT	miR-153, PIK3R1, and VEGF-C; in vivo	210	
Prostate cancer	Oncogene	circITCH	Cell proliferation, migration, invasion, and resistance	miR-153, PIK3R1, and VEGF-C; in vivo	211	
Prostate cancer	Oncogene	circNOLC1	Cell proliferation, migration, invasion, and EMT	miR-153, PIK3R1, and VEGF-C; in vivo	212	
Ovarian cancer	Tumor suppressor	circRHOBTB3	Cell proliferation, migration, invasion, and EMT	miR-153, PIK3R1, and VEGF-C; in vivo	213	
Endometrial cancer	Oncogene	circ0002577	Cell proliferation, migration, invasion, and metastasis	miR-153, PIK3R1, and VEGF-C; in vivo	214	
Cervical cancer	Oncogene	circCSPP1	Cell proliferation, migration, invasion, and resistance	miR-153, PIK3R1, and VEGF-C; in vivo	215	

Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer...
Xue et al.
Category	Type	CircRNA	Role	Function	Related genes; in vivo	Refs
Tumors of the endocrine system	Thyroid cancer	circ0067934	Oncogene	Cell proliferation, migration, invasion, apoptosis, and EMT	PI3K and AKT	238
	Thyroid cancer	circ0007694	Tumor suppressor	Cell proliferation, migration, invasion, and apoptosis	PI3K, AKT, mTOR, and Wnt tumor growth	239
	Thyroid cancer	circpsd3	Oncogene	Cell proliferation, metastasis, apoptosis, and cell cycle	mir-637, HEMGN, PI3K, and AKT	240
Tumors of the respiratory system	Lung cancer	circGFRA1	Oncogene	Cell proliferation and apoptosis	miR-188-3p, PI3K, and AKT; cell proliferation	245
	Lung cancer	circ100826	Oncogene	Cell proliferation and apoptosis	miR-635, RET, PI3K, and AKT	247
	Lung cancer	circ1018912	Oncogene	Cell proliferation, invasion, apoptosis, and EMT	mir-767-3p, Nidogen 1(NID1), PI3K, and AKT	246
Tumors of the musculoskeletal system	Osteosarcoma	circ0001785	Oncogene	Cell proliferation and apoptosis	miR-1200, HOX82, PI3K, AKT, and Bcl-2	250
	Osteosarcoma	circ0001785	Oncogene	Cell proliferation, migration, and invasion	miR-218, PI3K, and AKT	251
	Osteosarcoma	circTFCH	Tumor suppressor	Cell viability, proliferation, migration, invasion, and apoptosis	miR-22, PTEN, SP-1, PI3K, and AKT	252
	Osteosarcoma	circ0005909	Oncogene	Cell viability and cell clones	miR-338-3p, HMGA1, MAPK-ERK, PI3K, and AKT	253
Tumors of other systems	Oral squamous cell carcinoma	circ043621	Oncogene	Cell proliferation, apoptosis, and cell cycle	MAPK, PI3K, AKT, and Bcl-2	257
	Oral squamous cell carcinoma	circ102459	Tumor suppressor	Cell proliferation, apoptosis, and cell cycle	MAPK, PI3K, AKT, and Bcl-2	257
	Multiple myeloma	circ0007841	Oncogene	Cell proliferation, apoptosis, and cell cycle	miR-338-3p, BRD4, PI3K, and AKT	261
	Breast cancer	circ013809	Oncogene	Cell proliferation, apoptosis, and cell cycle	PI3K and AKT	262
	Breast cancer	circPRMTS	Oncogene	Cell proliferation, apoptosis, and angiogenesis	mir-509-3p, TCF7L2, PI3K, and AKT	263
	Breast cancer	circHIPK3	Oncogene	Cell viability, proliferation, migration, and invasion	mir-193a, HMG81, PI3K, and AKT	264
	Breast cancer	circ000442	Tumor suppressor	Cell viability, colony formation, and cell cycle	mir-148b-3p, PTEN, PI3K, and AKT	265
	Breast cancer	circ001569	Oncogene	Cell growth and metastasis	PI3K and AKT	266
	Breast cancer	circ0000199	Oncogene	Cell proliferation, migration, invasion, chemo-sensitivity, and autophagy	mir-206, mir-613, PI3K, AKT, and mTOR	267
in the initiation and progression of several types of cancer. Current studies may lay the foundation for further research on the mechanisms of cancer progression and provide insights into circRNA-based clinical applications. In this section, we will summarize the expression, biological functions in vitro (Table 1), and associations with clinicopathological characteristics of circRNAs related to the PI3K/AKT signaling pathway (Table 2).

DIGESTIVE SYSTEM NEOPLASMS

Esophageal cancer

The expression of circVRK1 and circLARP4 is significantly downregulated and circLARP3 levels are increased in esophageal squamous cell carcinoma (ESCC).\(^{171,173}\) Low circVRK1 expression predicts poor overall survival in patients with ESCC.\(^{172}\) Elevated circLARP3 levels are markedly associated with lymph node metastasis (LNM) and advanced TNM stage.\(^{171}\) In addition, researchers have also observed alterations in biological functions of the circRNA/PI3K/AKT axis by in vitro functional assays. Silencing of the circRNA cZNF292 inhibits the activity of tumor cells and promotes cell apoptosis in ESCC.\(^{174}\) Upregulation of circVRK1 suppresses cell proliferation, increases the radiosensitivity of ESCC cells, and attenuates epithelial–mesenchymal transition (EMT).\(^{175}\) CircLARP4 inhibits cell apoptosis and promotes cell proliferation in ESCC.\(^{175}\) Furthermore, cZNF292, circVRK1, and circLARP4 all inhibit ESCC cell migration. Contrary to the aforementioned investigations, circLARP3 functions as a tumor oncogene and enhances the malignant phenotype of ESCC tumors.\(^{171}\) Mechanistically, circLARP3 increases the expression of the MET gene to enhance the RAS/MAPK and PI3K/Akt pathways by sponging miR-198 in ESCC. Knockdown of cZNF292 induces inactivation of the PI3K/AKT pathway and upregulation of AMPK signaling to exert effects in ESCC.\(^{176}\) CircVRK1 functions as a tumor suppressor gene by upregulating PTEN and inhibiting the PI3K/AKT axis.\(^{172}\) Similarly, circLARP4 promotes the expression of PTEN and inactivates the PI3K/AKT pathway to suppress the progression of ESCC.\(^{173}\)

Gastric cancer

PI3K/AKT pathway-related circRNAs (circP5K1A, circ0010882, circ0023409, cirS-7, circMAM2B2, and circPV1) are all obviously upregulated in gastric cancer.\(^{175–180}\) The levels of circ0010882 and circ0023409 are positively associated with tumor size and histological grade in gastric cancer patients.\(^{176,177}\) In addition, higher expression of circ0010882 or cirS-7 is associated with shorter overall survival. Circ0023409 promotes LNM in gastric cancer. In terms of biological function, increased circP5K1A, circ0010882, and circ0023409 expression reduces gastric cancer cell proliferation, migration, and invasion.\(^{175–177}\) High expression of circPV1 may enhance the sensitivity of gastric cancer cells to cisplatin (DDP).\(^{180}\) We also found that circMAM2B2 upregulates cell viability and the surviving cell fraction by cell transfection experiments.\(^{178}\) Silencing of circ0010882 attenuated gastric cancer cell growth and motility in vitro.\(^{176}\) In terms of the mechanism, circP5K1A sponges miR-671-5p to facilitate tumor progression by upregulating the KRT80 and PI3K/AKT pathways in gastric cancer.\(^{175}\) Circ0010882 regulates biological functions by promoting PI3K/AKT/mTOR signaling.\(^{176}\) Further studies have

Table 2. Relationship between circRNA/PI3K/AKT axis and clinical features in cancer

Cancer type	CircRNA	Expression	Related features	Refs.
Bladder cancer	circZNF139	Upregulated	Disease-free survival	220
Liver cancer	circGFI1	Upregulated	Tumor size	185
Liver cancer	circRNA0072309	Downregulated	5-year survival	186
Liver cancer	circ0004001, circ0004123, and circ00075792	Upregulated	TNM stage, and tumor size	188
Thyroid cancer	circ0067934	Upregulated	Survival period and AJCC stage	238
Glioma	circP5K1A	Upregulated	Survival time, tumor volume, and tumor stage	200
Glioblastoma	circ0067934	Upregulated	Disease-free survival and overall survival	206
Colorectal cancer	circ0008285	Downregulated	Lymph node metastasis, TNM stage, and tumor size	183
Oral squamous cell carcinoma	circ043621	Upregulated	Clinical stage, lymph node metastasis, and differentiation degree	257
Oral squamous cell carcinoma	circ02459	Downregulated	Clinical stage, lymph node metastasis, and differentiation degree	257
Prostate cancer	circMBOAT2	Upregulated	Gleason score, pathological T stage, and disease-free survival	227
Breast cancer	circPRMT5	Upregulated	Overall survival	263
Breast cancer	circCHIP3	Upregulated	Overall survival	264
Breast cancer	circ001569	Upregulated	Lymph node metastasis, pathological stage, and overall survival	266
Breast cancer	circ0001099	Upregulated	Tumor size, TNM stage, ki-67 level, and 3-year survival	267
Esophageal cancer	circLARP3	Downregulated	Overall survival	172
Esophageal cancer	circVRK1	Downregulated	Lymph node metastasis and TNM stage	172
Gastric cancer	circ0010882	Upregulated	Tumor size, histological grade, and overall survival	176
Gastric cancer	circ0023409	Upregulated	Tumor size, histological grade, and lymph nodes metastasis	177
Gastric cancer	cirS-7	Upregulated	Overall survival	178
Pancreatic cancer	circNF181	Downregulated	Lymph node metastasis	194
Pancreatic cancer	circBFAR	Upregulated	TNM stage, overall survival, and disease-free survival	196
Endometrical cancer	circ0002577	Upregulated	Overall survival, histological grade, lymph node metastasis, and lymph vascular	232

demonstrated that circ0023409, ciRS-7, circMAN2B2, and circPVT1 regulate the PI3K/AKT pathway by acting as sponges of miRNAs in gastric cancer. For example, circ0023409 activates the PI3K/AKT pathway by sponging miR-542-3p to increase IRS4 levels. In addition, researchers have established in vivo xenograft nude mouse models to further explore the relationship between gastric cancer and the circRNA/PI3K/AKT axis. The expression of circPIP5K1A facilitates tumor growth in gastric cancer in vivo.

Colorectal cancer (CRC)

The expression level of circ0001313 is dramatically upregulated while the levels of circCDYL and circ0008285 are decreased in CRC. Circ0008285 expression is positively associated with LNM, tumor-node-metastasis (TNM) stage, and tumor size in patients with CRC. Functionally, circCDYL inhibits CRC cell migration and invasion. Circ0001313 and circCDYL significantly reduce cell apoptosis in CRC. Silencing the expression of circ0008285 enhances cell proliferation and migration in CRC. The expression of circ0001313 increases the level of AKT2, thus contributing to CRC progression by downregulating miR-510-5p expression. CircCDYL inactivates PI3K/AKT and JAK/STAT signaling by decreasing miR-150-5p levels in colon cancer. Circ0001313 and circCDYL significantly reduce cell apoptosis in CRC. Circ0008285 expression reduces migration and proliferation via regulation of the miR-382-5p/PTEN/PI3K/AKT axis in CRC.

Liver cancer

A series of circRNAs related to the circRNA/PI3K/AKT axis has been found to be closely related to the occurrence and progression of hepatocellular carcinoma (HCC). These circRNAs with aberrant expression are listed in Table 1. Tumor size positively correlates with the expression of circGF1R, circ0004001, circ0004123, and circ0075792 in HCC. High expression of circ0072309 is related to better 5-year survival in patients with HCC. Decreased circCDK13 levels enhance cell motility while low levels of circGF1R inhibit cell growth in HCC. High expression of circ0072309 impairs cell growth and motility, affecting cell viability, colony formation, invasion, and migration. Mechanistically, circCDK13 inhibits HCC progression by regulating the PI3K/AKT and JAK/STAT pathways (Table 1). Circ0072309 functions as a sponge of miR-665 to negatively regulate the PI3K/AKT and Wnt/β-catenin pathways in the pathophysiologic processes of HCC. The expression of circEPHB4 impedes HCC progression by negatively regulating the HIF-1α/PI3K/AKT axis and HIF-1α/VEGF-C signaling. Hepatoblastoma is the most common primary malignant hepatic tumor in children. The expression of circHMGCS1 is significantly upregulated in hepatoblastoma cell lines compared to normal hepatocyte cells and HCC cells. circHMGCS1 also promotes cell proliferation and inhibits apoptosis in hepatoblastoma cell lines. CircHMGCS1 markedly upregulates the IGF2/IGF1R/PI3K/AKT axis to regulate proliferation by sponging miR-503-5p. The expression of circEPHB4 was negatively associated with tumor weight, size, and metastatic foci in vivo. A higher level of circ0079929 predicted decreased tumor size and weight in nude mouse models. CircCDK13 is an important negative regulator in the development and progression of HCC.

Pancreatic cancer

The level of circNFIB1 is markedly decreased while circEIF6 and circBFAR expression levels are elevated in pancreatic cancer. High expression of circNFIB1 restrains lymphatic metastasis of pancreatic cancer. Uregulated levels of circBFAR predict high TNM stage and poor prognosis. Functionally, we found that the expression of circEIF6 promotes cell proliferation, increases cell migration and invasion, and inhibits cell apoptosis by performing siRNA-mediated knockdown experiments in pancreatic cancer cells. Mechanistically, circNFIB1 induces VEGF-C inhibition and attenuates LNM by sponging miR-486-5p and inhibiting the PI3K/AKT signaling pathway.
AKT pathway in pancreatic ductal adenocarcinoma. CircEIF6 regulates biological functions by upregulating miR-557 expression, downregulating SLC7A11 levels, and inactivating the PI3K/AKT pathway in pancreatic cancer. CircBFAR facilitates mesenchymal–epithelial transition by sponging miR-34b-5p and upregulating the MET/PI3K/AKT axis in pancreatic ductal adenocarcinoma. In vivo experiments showed that downregulation of circBFAR or circEIF6 expression can lead to lower tumor weight and volume in pancreatic ductal adenocarcinoma.

NERVOUS SYSTEM NEOPLASMS

Glioma
PI3K/AKT axis-associated circRNAs are significantly upregulated in glioma (Table 1). Elevated circPIP5K1A expression is positively correlated with shorter survival time, larger tumor volume, and higher tumor stage in patients with glioma. CircHIPK3, circPIP5K1A, circ104075, and circ0000215 increase glioma cell proliferation in vitro. CircHIPK3, circPIP5K1A, and circ0000215 facilitate cell motility in glioma. Furthermore, circDICER1 markedly attenuates the angiogenesis of glioma-exposed endothelial cells. Downregulated expression of circHIPK3 induces a significant upregulation of temozolomide sensitivity in glioma. Mechanistic studies have revealed that circ0014359 exerts its effects by inhibiting the level of miR-153 and regulating the PI3K axis in glioma. CircDICER1 in combination with MOV10 plays a critical role in glioma angiogenesis via regulation of miR-103a-3p (miR-382-5p)/ZIC4. CircHIPK3 regulates biological functions to improve sensitivity to temozolomide through suppression of the miR-524-5p/KIF2A-mediated PI3K/AKT pathway. A series of studies have shown that circRNAs can facilitate glioma tumorigenesis and progression by regulating the circPIP5K1A/miR-515-5p/TCF12/PI3K/AKT and circ0000215/miR-495-3p/CXCR2/PI3K/AKT pathways.

Glioblastoma (GBM) is the most malignant glioma and has an extremely poor prognosis. CircAKT3 is overexpressed while circ0067934 and circPVT1 expression are significantly downregulated in GBM. A higher level of circ0067934 portends shorter disease-free survival and decreased overall survival rates in GBM. Inhibition of circ0067934 expression may be a promising strategy for improving GBM prognosis. The upregulation of circAKT3 suppresses GBM cell proliferation and increases sensitivity to radiation. The expression of circ0067934 facilitates cell proliferation and metastasis and inhibits cell apoptosis in GBM by upregulating the PI3K-AKT pathway.

Neuroblastoma (NB) and pituitary tumor
NB is the most common extracranial solid tumor in childhood. The expression of circ0002343 was found to be involved in the regulation of EMT in NB. Elevated circ0002343 significantly affects EMT by regulating the RAC1/PI3K/AKT/mTOR axis. Pituitary tumors are some of the most common benign neoplasms of the central nervous system. The levels of circ0054722, circ0012346, and circ0007362 are significantly increased while the expression of some circRNAs (circ0062222, circ0016403, circ0033349, and circ0049730) is downregulated in invasive nonfunctioning pituitary adenomas compared with the levels in noninvasive nonfunctioning pituitary adenomas.

Genitourinary tumors
Kidney cancer and bladder cancer. Kidney cancer is not a single disease but comprises different types of cancer that occur in the kidney. Renal carcinoma-associated transcripts (circ0072309 and circC3P1) are significantly downregulated in renal carcinoma tissues compared to corresponding normal tissues. These circRNAs significantly suppresses cell proliferation, migration, and invasion and promote cell apoptosis in kidney cancer. Circ-0072309 sponges miR-100 to inhibit the PI3K/AKT and mTOR pathways.
pathways in kidney cancer. CircC3P1 exerts diverse biological functions by inhibiting the PI3K/AKT and NF-κB pathways by regulating the miR-21/PTEN axis (Fig. 4a). The overexpression of circZNF139 is markedly associated with disease-free survival in bladder cancer. circZNF139 overexpression also attenuates bladder cancer cell proliferation, colony formation, migration, and invasion by regulating the PI3K/AKT pathway.

Prostate cancer (PCa). PCa is a major cause of male cancer-related mortality worldwide. The level of circNOLC1 is increased while circITCH expression is obviously downregulated in PCa. CircMBOAT2 is overexpressed in PCa and contributes to poor prognosis. Moreover, increased circMBOAT2 levels are positively correlated with Gleason score and pathological T stage. Functionally, circNOLC1, circITCH, and circMBOAT2 govern multiple cellular processes, such as cell proliferation, migration, and invasion, via the circRNA/PI3K/AKT axis in PCa. Circ0001085 induces EMT in PCa cells in vitro. Circ0001085 regulates PCa progression through the PI3K/AKT pathway by sponging miR-196b-5p and miR-451a (Fig. 4b). CircMBOAT2 clearly promotes tumorigenesis and metastasis in PCa in vivo.

Female reproductive system cancers. Ovarian, endometrial, and cervical cancer are three major malignant tumors causing a severe threat to women’s health. The downregulation of circRHOBTB3 not only attenuates cell proliferation and metastasis but also inhibits glycolysis by suppressing the PI3K/AKT pathway in ovarian cancer. Circ0002577 expression is markedly increased while circITCH expression is obviously downregulated in endometrial cancer. Circ0002577 expression is positively correlated with the histological grade of the tumor, LNM, and lymph vascular space invasion. Studies have revealed that patients with high expression of circ0002577 have a poor prognosis. The overexpression of circ0002577 enhances the IGF1R/PI3K/AKT axis to increase the migration, invasion, and proliferation of endometrial cancer cells (Fig. 4c). Silencing of circ0002577 expression significantly inhibits the growth and metastasis of tumors in nude mouse models of endometrial cancer. The expression of circCSPP1 is markedly upregulated in cervical cancer tissues. CircCSPP1 expression inhibits cervical cancer cell apoptosis and promotes cell proliferation and migration via the miR-361-5p/ITGB1/PI3K/AKT axis in cervical cancer (Fig. 4d).

TUMORS OF THE ENDOCRINE SYSTEM
Thyroid cancer is the most common malignancy occurring in the endocrine system. The expression of circ0067934 and circpsd3 is upregulated whereas circ0007694 expression is downregulated in thyroid tumors. High circ0067934 expression is associated with a shorter survival period of thyroid cancer patients. The expression of circ0067934 and circ0007694 affects diverse cell biological functions, such as cell proliferation, migration, invasion, and apoptosis, in thyroid cancer via the PI3K/AKT signaling pathway. During the regulation of different cellular biological processes, circ0067934 acts as an oncogene, but circ0007694 may function as a tumor suppressor gene in the progression of thyroid cancer. Increased circ0007694 expression effectively suppresses the growth of papillary thyroid carcinoma in vivo.

TUMORS OF THE RESPIRATORY AND MUSCULOSKELETAL SYSTEMS
Lung cancer
Lung cancer is one of the leading causes of cancer-related death worldwide, with NSCLC accounting for 85% of all lung cancers. The expression of circGFRA1 and circ0018818 is significantly upregulated in NSCLC tissues compared to normal counterparts. Silencing of circ0018818 expression inhibits proliferation, invasion, and EMT and promotes cell apoptosis. In addition, circGFRA1 activates the PI3K/AKT pathway by downregulating the expression of miR-188-3p in lung cancer. Knockdown of circ100876 reduces cell proliferation, migration, invasion and facilitates NSCLC cell apoptosis by regulating the miR-636/RET axis and PI3K/AKT signaling. The circ0018818/miR-767-3p/NID1/PI3K/AKT axis also plays a key role in the progression of lung cancer (Fig. 5).

Osteosarcoma (OS). OS is the most common primary malignant bone tumor in children and adolescents. The expression of circRNAs associated with the PI3K/AKT axis is listed in Table 1.
The expression of circEIF4G2 and circITCH affects cellular biological functions, such as cell proliferation, migration, and invasion, in OC.252,253 Silencing of circ0005909 obviously decreases cell viability and cell clone capacity in OS cell lines.253 Decreased expression of circ0001785 reduces cell proliferation and facilitates cell apoptosis in OC.250 Mechanistically, the expression of circ-ITCH attenuates cellular biological functions because circ-ITCH acts as a competing endogenous RNA (ceRNA) for miR-22 to inactivate the PTEN/Pi3K/AKT and SP-1 pathways in OS.252 Circ0005909 expression enhances OS malignant progression by upregulating the MAPK-ERK and Pi3K-Akt signaling pathways by sponging miR-338-3p to inhibit the level of HGMA1.254

Tumors of other systems

Oral squamous cell carcinoma (OSCC) is a malignant type of head and neck squamous cell carcinoma.254-256 Circ043621 expression is remarkably elevated and circ102459 levels are dramatically decreased in OSCC tissues.256 CircPARD3 and circ043621 expression levels are relatively associated with clinical stage, LNM, and differentiation degree in OSCC. In vitro assays have revealed that increased circ043621 levels and decreased circ102459 expression can induce arrest in the G0 and/or G1 phase, apoptosis, and inhibition of cell proliferation by activating the MAPK and PI3K/AKT pathways.257 Multiple myeloma (MM) is a plasma cell malignant.258 The expression of circ0007841 is significantly upregulated in MM cell lines and bone marrow-derived cells.258 High circ0007841 expression enhances the malignant behaviors of MM through suppression of cell viability and cell cycle arrest at the G1 phase and decreases colony formation in breast cancer.262-267 (Table 1). The overexpression of circ0000199 is significantly associated with tumor size, TNM stage, and Ki-67 level in patients with breast cancer.267 Higher levels of circPMT5, circHIPK3, circ001569, and circ0000199 predict poor prognosis in breast cancer.263,264,265,266,267 Circ0000199 can affect tumor cell tolerance of chemotherapy via suppression of the Pi3K/AKT/mTOR pathway and activation of the miR-206/miR-613 axis.268,269 Circ0000199 also enhances cell proliferation, migration, and invasion in breast cancer. Silencing of circPMT5 expression attenuates angiogenesis and proliferation and induces apoptosis.263 CircPMT5 contributes to malignant phenotypes by activating the Pi3K/AKT/mTOR axis via regulation of the miR-509-3p/TCF7L2 pathway. High expression of circHIPK3 significantly promotes cell migration, invasion, viability, and proliferation by targeting the miR-193a/HMG1/Pi3K/AKT axis.265 High circ0000442 expression induces suppression of cell viability and cell cycle arrest at the G1 phase and decreases colony formation in breast cancer.265 Circ0000442 knockdown experiments have further confirmed this result. circ0000442 acts as a sponge of miR-148b-3p to downregulate the PTEN/Pi3K/AKT pathway to impede tumor progression. Moreover, the knockdown of circHIPK3 attenuates breast cancer growth in vivo.264

CircRNAs related to the Pi3K/AKT pathway as biomarkers

In recent years, researchers have focused on identifying effective molecular biomarkers to improve the early detection, monitoring, and prediction of therapy response in cancer patients.280 CircRNAs can positively or negatively modulate biological functions and cancer progression through multiple signaling pathways. CircLARP4 promotes the expression of PTEN and inactivates the Pi3K/AKT pathway to suppress the progression of ESCC.175 CircP5K1A sponges mir-671-5p to facilitate tumor progression by upregulating KRT80 and the Pi3K/AKT pathway in gastric cancer.175 Circ0067934 facilitates cell proliferation and metastasis and inhibits cell apoptosis in GBM by upregulating the Pi3K/AKT pathway.206 CircEPHB4 impedes HCC progression by negatively regulating the HIF-1α/Pi3K/AKT axis and the HIF-1α/ZEB1 pathway in HCC.189 Upregulating or downregulating the expression of circRNAs may be a feasible way to regulate tumor progression. Silencing of circ0010882 attenuates gastric cancer cell growth and motility in vitro.176 Knockdown of circ0021097 reduces cell proliferation, migration, and invasion and facilitates NSCLC cell apoptosis.247 In addition, a mir-671-5p inhibitor was able to significantly reduce the level of circP5K1A to inhibit the progression of gastric cancer.175 Rapamycin, an mTOR inhibitor, blocks the circMOAT2/Pi3K/AKT/mTOR pathway to suppress Pca progression.272 CircHIPK3 regulates biological functions to improve sensitivity to temozolamide through suppression of the miR-524-5p/KIF2A-mediated Pi3K/AKT pathway in glioma.179 Circ000199 can make tumor cells sensitive to chemotherapy via suppression of the Pi3K/AKT/mTOR pathway and activation of the miR-206/miR-613 axis in breast cancer.267 High expression of circPVT1 enhances the sensitivity of gastric cancer cells to cisplatin.
Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer...
Xue et al.

REFERENCES
1. Andrei, L. et al. Advanced technological tools to study multidrug resistance in clinical treatment of cancers.
2. Caplow, T. S. et al. A blueprint for the primary prevention of cancer: targeting established, modifiable risk factors. CA Cancer J. Clin. 68, 446–470 (2018).
3. Martínez-Jiménez, F. et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20, 555–572 (2020).
4. Alcaraz, K. I. et al. Understanding and addressing social determinants to advance cancer health equity in the United States: a blueprint for practice, research, and policy. CA Cancer J. Clin. 70, 31–46 (2020).
5. Yabroff, K. R., Gansler, T., Wender, R. C., Cullen, K. J. & Brawley, O. W. Minimizing the burden of cancer in the United States: goals for a high-performing health care system. CA Cancer J. Clin. 69, 166–183 (2019).
6. Bright, C. J. et al. Risk of subsequent primary neoplasms in survivors of adolescent and young adult cancer (Teenage and Young Adult Cancer Survivor Study): a population-based, cohort study. Lancet Oncol. 20, 531–545 (2019).
7. Rupaimoo, R. & Slack, F. J. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 16, 203–222 (2017).
8. Yin, H., Xue, W. & Anderson, D. G. CRISPR-Cas: a tool for cancer research and therapeutics. Nat. Rev. Clin. Oncol. 16, 281–295 (2019).
9. Akhave, N. S., Biter, A. B. & Hong, D. S. Mechanisms of resistance to KRAS(G12C)-targeted therapy. Cancer Discov. 11, 1345–1352 (2021).
10. Evans, E. R., Bugga, P., Arshana, V. & Dreze, R. Metallic nanoparticles for cancer immunotherapy. Mater. Today (Kidlington) 21, 673–685 (2018).
11. Auffiero, S., Reckman, S. J., Canesi, M. & Soccio, V. Circular RNAs as a new target in cardiovascular biology. Nat. Rev. Cardiol. 16, 503–514 (2019).
12. Vo, J. N. et al. The landscape of circular RNA in cancer. Cell 176, 869–881.e183 (2019).
13. Zeng, Z. et al. Circular RNA CircMAP3K5 acts as a microRNA-22-3p sponge to promote resolution of intimal hyperplasia via TET2-mediated smooth muscle cell differentiation. Circulation 143, 354–371 (2021).
14. Wen, G., Zhou, T. & Gu, W. The potential of using blood circular RNA as liquid biopsy biomarker for human diseases. Protein Cell 5, 1–36 (2020).
15. Chen, Y. G. et al. N6-methyladenosine modification controls circular RNA immunity. Mol. Cell 76, 96–109.e109 (2019).
16. Legnini, I. et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell 66, 22–37.e9 (2017).
17. Zhang, Z. Y. et al. CircRNA_101237 promotes NSCLC progression via the miR-490-3p/MAPK1 axis. Sci. Rep. 10, 9024 (2020).
18. Liu, Z. et al. Circular RNA cIARS regulates ferroptosis in HCC cells through interacting with RNA binding protein ALKBH5. Cell Death Discov. 6, 72 (2020).
19. Bilanges, B., Posor, Y. & Vanhaesebroeck, B. PI3K isoforms in cell signalling and vesicle trafficking. Nat. Rev. Mol. Cell Biol. 20, 515–534 (2019).
20. Molinaro, A. et al. Insulin-driven PI3K-AKT signaling in the hepatocyte is mediated by redundant PI3Kα and PI3Kδ activities and is promoted by RAS. Cell Metab. 29, 1400–1409.e1405 (2019).
21. Hopkins, B. D., Goncalves, M. D. & Cantley, L. C. Insulin-PI3K signalling: an evolutionarily insulated metabolic driver of cancer. Nat. Rev. Endocrinol. 16, 276–283 (2020).
22. Fruman, D. A. et al. The PI3K pathway in human disease. Cell 170, 605–635 (2017).
23. Hoxhaj, G. & Manning, B. D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74–88 (2020).
24. Hanek, A. B., Kakkamani, V. & Arteaga, C. L. Challenges for the clinical development of PI3K inhibitors: strategies to improve their impact in solid tumors. Cancer Discov. 9, 482–491 (2019).
25. Okkenhaug, K., Graupera, M. & Vanhaesebroeck, B. Targeting PI3K in cancer: impact on tumor cells, their protective stroma, angiogenesis, and immunotherapy. Cancer Discov. 6, 1090–1105 (2016).
26. Le, X. et al. Systematic functional characterization of resistance to PI3K inhibition in breast cancer. Cancer Discov. 6, 1134–1147 (2016).
27. Fresino Vara, J. A. et al. PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 30, 193–204 (2004).
28. Yuan, T. L. & Cantley, L. C. Introduction. Curr. Top. Microbiol. Immunol. 346, 1–7 (2010).
29. Arefeh, R. & Samuels, Y. PIK3CA in cancer: the past 30 years. Cell Metab. 39, 36–49 (2019).
30. Gullani, F., De Santis, M. C., Margaria, J. P., Martini, M. & Hirsch, E. Class II PI3K functions in cell biology and disease. Trends Cell Biol. 29, 339–359 (2019).
31. Vanhaesebroeck, B., Guillermel-Guilbert, J., Graupera, M. & Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol. 11, 329–341 (2010).
32. El Motiam, A. et al. SUMOylation modulates the stability and function of PI3K-p110β. Cell Mol. Life Sci. 78, 4053–4065 (2021).

ADDITIONAL INFORMATION
Competing interests: The authors declare no competing interests.

SPRINGER NATURE
33. de la Cruz-Herrera, C. F. et al. Conjugation of SUMO to p58 leads to a novel mechanism of PI3K regulation. Oncogene 35, 2873–2880 (2016).
34. Hofmann, B. T. & Jücker, M. Activation of PI3K/Akt signaling by n-terminal SH2 domain mutants of the p85α regulatory subunit of PI3K is enhanced by deletion of its c-terminal SH2 domain. Cell Signal. 24, 1950–1954 (2012).
35. Shin, Y. K., Liu, Q., Tikoo, S. K., Babuik, L. A. & Zhou, Y. Influenza A virus N1 protein interacts with the phosphatidylinositol-3 kinase (PI3K)-Akt pathway by direct interaction with the p85 subunit of PI3K. J. Gen. Virol. 88, 13–18 (2007).
36. Zhang, M., Jang, H. & Nussinov, R. PI3K driver mutations: a biophysical membrane-centric perspective. Cancer Res. 81, 237–247 (2021).
37. Katan, M. & Cockcroft, S. Phosphatidylinositol(4,5)bisphosphate: diverse functions at the plasma membrane. Essays Biochem. 64, 513–531 (2020).
38. Ishikawa, S. et al. Role of connexin-43 in protective PI3K-Akt-GSK-3β signaling in cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 302, H2536–H2544 (2012).
39. Dey, J. H. et al. Targeting fibroblast growth factor receptors blocks PI3K/Akt signaling, induces apoptosis, and impairs mammary tumor outgrowth and metastasis. Cancer Res. 70, 4151–4162 (2010).
40. Chen, J., Nagle, A. M., Wang, Y. F., Boone, D. N. & Lee, A. V. Controlled dimerization of insulin-like growth factor-1 and insulin receptors reveals shared and distinct activities of holo and hybrid receptors. J. Biol. Chem. 293, 3790–3799 (2018).
41. Murillo, M. M. et al. RAS interaction with PI3K p110α is required for tumor-induced angiogenesis. J. Clin. Investig. 124, 3601–3611 (2014).
42. Tamaskovic, R. et al. Intermolecular bipartatic trapping of ErbB2 prevents compensatory activation of PI3K/AKT via RAS-p110 crossstalk. Nat. Commun. 7, 11672 (2016).
43. Johnson, C., Chun-Jen Lin, C. & Stern, M. Ras-dependent and Ras-independent effects of PI3K in Drosophila motor neurons. Genes Brain. Behav. 11, 848–858 (2012).
44. Bresnick, A. R. & Backer, J. M. PI3K-γ-A versatile transducer for GPCR, RTK, and small GTPase signaling. Endo160 156, 533–553 (2019).
45. Oubert, G. Y. et al. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J. Mol. Cell Cardiol. 37, 449–471 (2004).
46. Houslay, D. M. et al. Coincident signals from GPCRs and receptor tyrosine kinases are uniquely transduced by PI3Kβ in myeloid cells. Sci. Signal. 9, ra2 (2016).
47. Zhu, F. et al. PIKMTS is upregulated by B-cell receptor signaling and forms a positive-feedback loop with PI3K in lymphoma cells. Leukemia 33, 2898–2911 (2019).
48. Wang, L., Liu, W. X. & Huang, X. G. MicroRNA-199a-3p inhibits angiogenesis by targeting the VEGF/PI3K/AKT signalling pathway in an in vitro model of diabetic retinopathy. Exp. Mol. Pathol. 116, 104488 (2020).
49. Duan, Y., Haybaeck, J. & Yang, Z. Therapeutic potential of PI3K/AKT/mTOR pathway in gastrointestinal stromal tumors: rationale and progression. Cancers 12, 2972 (2020).
50. Damayanti, N. P. et al. Therapeutic targeting of TFE3/IRS-1/PI3K/mTOR axis in translocation renal cell carcinoma. Mol. Neurobiol. 54, 238–254 (2017).
51. Li, T. et al. P21 and P27 promote tumorigenesis and progression via cell cycle arrest in seminal vesicles of TRAMP mice. Int. J. Biol. Sci. 15, 2198–2210 (2019).
52. Yip, W. K., Leong, V. C., Abdullah, M. A., Yusoff, S. & Seow, H. F. Overexpression of phospho-Akt correlates with phosphorylation of EGF receptor, FRHR and BAD in nasopharyngeal carcinoma. Oncol. Rep. 19, 319–328 (2008).
53. Barati, M. T., Scherer, J., Wu, R., Rane, M. J. & Klein, J. B. Cytoskeletal rearrangement and Src and PI-3K-dependent Akt activation control GABA(BR)-mediated chemotaxis. Cell Signal. 27, 1178–1185 (2015).
54. Calandra, J. M. et al. Ataxin-1 poly(Q)-induced proteotoxic stress and apoptosis are attenuated in neural cells by docosahexaenoic acid-derived neuroprotectin D1. J. Biol. Chem. 287, 23726–23732 (2012).
55. Wu, S. et al. Human adipose-derived mesenchymal stem cells promote breast cancer MCF7 cell epithelial-mesenchymal transition by cross interacting with the TGF-β/Smad and PI3K/AKT signaling pathways. Mol. Med. Rep. 19, 177–186 (2019).
56. Jeong, S. H., Yang, M. J., Choi, S., Kim, J. & Koh, G. Y. Refractoriness of STING activation by polyinosinic-polycytidylic acid in NSCs is rescued by GRP78 induction in a cAMP-response element-binding protein (CREB) activity-dependent manner. J. Genet. Genomics 45, 343–353 (2018).
57. Yang, Q., Jiang, W. & Hou, P. Emerging role of PI3K/AKT in tumor-related epigenetic regulation. Semin. Cancer Biol. 59, 112–124 (2019).
58. Liu, C. C., Biddle, C. C. & Toker, A. PI3K signaling in cancer: beyond AKT. Curr. Opin. Cell Biol. 45, 62–71 (2017).
59. Manning, B. D. & Toker, A. AKT/PI3K signaling: navigating the network. Cell 169, 381–405 (2017).
60. Manning, B. D. & Cantley, L. C. AKT/PI3K signaling: navigating downstream. Cell 129, 1261–1274 (2007).
61. Pearce, L. R., Komander, D. & Alessi, D. R. The nuts and bolts of AGC protein kinases. Nat. Rev. Mol. Cell Biol. 11, 9–22 (2010).
62. Revatidhevi, S. & Munirajan, A. K. Akt in cancer: mediator and more. Semin. Cancer Biol. 59, 80–91 (2019).
63. Leroux, A. E., Schulze, J. O. & Biondi, R. M. AGC kinases, mechanisms of regulation and innovative drug development. Semin. Cancer Biol. 48, 1–17 (2018).
64. Palumbo, S., Paterson, C., Yang, F., Hoad, V. L. & Law, A. J. PKB/Akt2 deficiency impacts brain mTOR signaling, prefrontal cortical physiology, hippocampal plasticity and select murine behaviors. Mol. Psychiatry 26, 411–428 (2021).
65. Hinz, N. & Jücker, M. Distinct functions of AKT isoforms in breast cancer: a comprehensive review. Cell Commun. Signal. 17, 154 (2019).
66. Xia, Y. et al. A novel tumor suppressor protein encoded by circular AK3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1. Mol. Cancer 18, 131 (2019).

Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer… Xue et al.
Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer...

Xue et al.

91. Dangelmaier, C. et al. PDK1 selectively phosphorylates Thr308 on Akt and contributes to human platelet functional responses. Thromb. Haemost. 111, 508–517 (2014).

92. Kawakami, Y. et al. Protein kinase C beta regulates Akt phosphorylation on Ser-473 in a cell type- and stimulus-specific fashion. J. Biol. Chem. 279, 47720–47725 (2004).

93. Hasko, G., Murata, H. & Mueckler, M. Phosphoinositide-dependent kinase-2 is a distinct protein kinase enriched in a novel cytoskeletal fraction associated with adipocyte plasma membranes. J. Biol. Chem. 278, 21615–21622 (2003).

94. Zhao, J. et al. 7,8-Dihydroxyflavone suppresses proliferation and induces apoptosis of human osteosarcoma cells. Acta Biochim. Biophys. Sin. 53, 903–911 (2021).

95. Zhu, S. et al. 20(S)-ginsenoside Rh2 induces caspase-dependent promyelocytic leukemia-retinoic acid receptor A degradation in NB4 cells via Akt/Bax/caspase9 and TNF-a/caspase6 signaling cascades. J. Ginseng Res. 45, 295–304 (2021).

96. Zhang, B. et al. MiR-217 inhibits apoptosis of atherosclerotic endothelial cells via the TLR4/PI3K/Akt/NF-κB pathway. Biochim. Biophys. Acta Mol. Cell Res. 1867, 118770 (2020).

97. Wang, L., Yang, M. & Jin, H. PI3K/AKT phosphorylation activates ERRα by upregulating PGC-1α and PGC-1β in gallbladder cancer. J. Cell. Mol. Med. 25, 693–704 (2021).

98. Haddadi, N. et al. PTEN/PTENP1: ‘Regulating the regulator of RTK-dependent PI3K/AKT signalling’, new targets for cancer therapy. Mol. Cancer 17, 37 (2018).

99. Kim, G. W. et al. HBV-induced increased N6 methyladenosine modification of PTEN RNA affects innate immunity and contributes to HCC. Hepatology 73, 533–547 (2021).

100. Zhou, Y. et al. Hydrazinocurcumin and 5-fluorouracil enhance apoptosis and restrain tumorigenesis of HepG2 cells via disrupting the PTEN-mediated PI3K/Akt signaling pathway. Biomed. Pharmacother. 129, 109851 (2020).

101. Nguyen Hua, T. et al. Redox regulation of PTEN by peroxiredoxins. Antioxidants 10, 302 (2021).

102. Chibaya, L., Karim, B., Zhang, H. & Jones, S. N. Mdm2 phosphorylation by Akt regulates breast cancer cell growth and migration. Cancer Lett. 412, 123–131 (2021).

103. Li, K. et al. High cholesterol induces apoptosis and autophagy through the ROS-mediated AKT/AKT, mTOR, and JNK pathways in Rap1-deficient human osteosarcoma cells. J. Cell. Mol. Med. 24, 12859–12877 (2020).

104. Hou, Y., Li, H. & Huo, W. THBS4 silencing regulates the cancer stem cell-like phenotype of colorectal cancer cells. Mol. Cancer 19, 168 (2020).

105. Haddadi, N. et al. PTEN/PTENP1: ‘Regulating the regulator of RTK-dependent PI3K/AKT signalling’, new targets for cancer therapy. Mol. Cancer 17, 37 (2018).

106. Kim, G. W. et al. HBV-induced increased N6 methyladenosine modification of PTEN RNA affects innate immunity and contributes to HCC. Hepatology 73, 533–547 (2021).

107. Zhou, Y. et al. Hydrazinocurcumin and 5-fluorouracil enhance apoptosis and restrain tumorigenesis of HepG2 cells via disrupting the PTEN-mediated PI3K/Akt signaling pathway. Biomed. Pharmacother. 129, 109851 (2020).

108. Lee, T. J. et al. Strategies to modulate MicroRNA functions for the treatment of cancer or organ injury. Pharmac. Rev. 72, 639–667 (2020).
147. Chen, Y. et al. Circular RNA circAGO2 drives cancer progression through facilitating HIF-repressed functions of AGO2-miRNA complexes. Cell Death Differ. 26, 1346–1364 (2019).
148. Zhang, X. et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT/mTOR pathway. Mol. Cancer 18, 20 (2019).
149. Chen, L. Y. et al. The circular RNA circ-ERBIN promotes growth and metastasis of colorectal cancer by miR-125a-5p and miR-138-5p/4EBP1-mediated cap-independent HIF-1α translocation. Mol. Cancer 19, 164 (2020).
150. Xie, F. et al. Circular RNA BCR-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis. Mol. Cancer 17, 144 (2018).
151. Lu, Q. et al. Circular RNA circSLCA1 acts as a sponge of miRNA-198 in suppressing bladder cancer progression via regulating PTEN. Mol. Cancer 18, 111 (2019).
152. Su, H. et al. Circular RNA cTFCR acts as the sponge of microRNA-107 to promote bladder carcinoma progression. Mol. Cancer 18, 27 (2019).
153. Zhang, Y. et al. Circular intronic long noncoding RNAs. Mol. Cell 51, 792–806 (2013).
154. Ma, N. et al. circTulp4 functions in Alzheimer’s disease pathogenesis by regulating its parental gene, Tulp4. Mol. Ther. 29, 2167–2181 (2021).
155. Li, Z. et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22, 256–264 (2015).
156. Zhan, W. et al. circRNA-RBP interactions. Cell Mol. Life Sci. 77, 256 (2020).
157. Verma, Z. et al. Circular RNA circERBB3 promotes gastric cancer progression via the miR-424-5p/FoxD3/AKT/mTOR pathway. Mol. Cancer 19, 164 (2020).
158. He, Y. et al. Circular RNA circVRK1 regulates tumor progression and radioresistance in esophageal cancer. Mol. Cancer 18, 27 (2019).
159. Shi, Y. et al. Circular RNA LPAR3 sponges microRNA-198 to facilitate esophageal cancer progression by activating the PI3K/AKT pathway. Mol. Cancer 18, 27 (2019).
160. Tewari, D., Patni, P., Bishayee, A., Sah, A. N. & Bishayee, A. Natural products strategy. Semin. Cancer Biol. 38, 485–495 (2019).
161. Wang, J., Luo, J., Liu, G. & Li, X. Circular RNA hsa_circ_0008285 inhibits colorectal cancer cell proliferation and migration via the miR-382-5p/PTEN axis. Biochem. Biophys. Res. Commun. 527, 503–510 (2020).
162. Lin, Q. et al. Circular RNA circCDK13 inhibits gastric cancer progression through regulating the IRS4/PI3K/AKT pathway. Cancer Res. Treat. 51, 90–110 (2019).
163. Song, H. et al. circPIP5K1A activates KRT80 and PI3K/AKT pathway to promote gastric cancer progression via sponging miR-216b-5p. Int. J. Biol. Macromol. 125, 247–258 (2019).
164. Kong, Y. et al. circNFIB1 inhibits lymphangiogenesis and lymphatic metastasis via the miR-486-5p/PIK3R1/VEGF-C axis in pancreatic cancer. Mol. Cancer 19, 20 (2020).
165. Li, J., Yang, Y., Xu, D. & Cao, L. hsa_circ_0023409 accelerates gastric cancer cell growth and metastasis through regulating the IRS4/P3K/AKT Pathway. Cell Transpl. 30, 963689720973390 (2021).
166. Pan, H. et al. Overexpression of circular RNA cir-R7 alleviates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/P3K/AKT signaling pathway. J. Cell Biochem. 119, 440–446 (2018).
167. Sun, B. et al. Circular RNA circMAN2B2 promotes growth and migration of gastric cancer cells by down-regulation of miR-145. J. Clin. Lab. Anal. 34, e223215 (2020).
168. Wang, X., Zhang, Y., Li, W. & Liu, X. Knockdown of circ RNA PTENV1 elevates gastric cancer cisplatin sensitivity via sponging miR-152-3p. J. Surg. Res. 261, 185–192 (2021).
169. Tu, F. L. et al. Circ-0001313/miRNA-510-5p/AKT2 axis promotes the development and progression of colon cancer. Am. J. Transl. Res. 12, 281–291 (2020).
170. Cui, W., Dai, J., Ma, J. & Gu, H. circCDYL/microRNA-105-5p participates in modulating growth and migration of colon cancer cells. Gen. Physiol. Biophys. 38, 485–495 (2019).
171. Wang, J., Luo, J., Liu, G. & Li, X. Circular RNA hsa_circ_0008285 inhibits colorectal cancer cell proliferation and migration via the miR-382-5p/PTEN axis. Biochem. Biophys. Res. Commun. 527, 503–510 (2020).
172. Li, J., Yang, Y., Xu, D. & Cao, L. hsa_circ_0023409 accelerates gastric cancer cell growth and metastasis through regulating the IRS4/P3K/AKT Pathway. Cell Transpl. 30, 963689720973390 (2021).
173. Chen, Y. et al. Circular RNA circAGO2 drives cancer progression through facilitating HIF-repressed functions of AGO2-miRNA complexes. Cell Death Differ. 26, 1346–1364 (2019).
174. Zhang, X. et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT/mTOR pathway. Mol. Cancer 18, 20 (2019).
175. Chen, L. Y. et al. The circular RNA circ-ERBIN promotes growth and metastasis of colorectal cancer by miR-125a-5p and miR-138-5p/4EBP1-mediated cap-independent HIF-1α translocation. Mol. Cancer 19, 164 (2020).
176. Xie, F. et al. Circular RNA BCR-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis. Mol. Cancer 17, 144 (2018).
177. Lu, Q. et al. Circular RNA circSLCA1 acts as a sponge of miRNA-198 in suppressing bladder cancer progression via regulating PTEN. Mol. Cancer 18, 111 (2019).
178. Su, H. et al. Circular RNA cTFCR acts as the sponge of microRNA-107 to promote bladder carcinoma progression. Mol. Cancer 18, 27 (2019).
179. Zhang, Y. et al. Circular intronic long noncoding RNAs. Mol. Cell 51, 792–806 (2013).
180. Ma, N. et al. circTulp4 functions in Alzheimer’s disease pathogenesis by regulating its parental gene, Tulp4. Mol. Ther. 29, 2167–2181 (2021).
181. Li, Z. et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22, 256–264 (2015).
182. Zhan, W. et al. circRNA-RBP interactions. Cell Mol. Life Sci. 77, 1661–1680 (2020).
183. Verma, Z. et al. Circular RNA circERBB3 promotes gastric cancer progression via the miR-424-5p/FoxD3/AKT/mTOR pathway. Mol. Cancer 19, 164 (2020).
184. He, Y. et al. Circular RNA circVRK1 regulates tumor progression and radioresistance in esophageal squamous cell carcinoma by regulating miR-624-3p/PTEN/P3K/AKT signaling pathway. Int. J. Mol. Macromol. 125, 116–123 (2019).
185. Chen, Z. et al. Circular RNA LARP4 sponges miR-1323 and hampers progression of esophageal squamous cell carcinoma through modulating PTEN/P3K/AKT pathway. Dig. Dis. Sci. 65, 2272–2283 (2020).
186. Liu, Z. et al. Silence of cZNF292 suppresses the growth, migration, and invasion of human esophageal cancer Eca-109 cells via upregulating miR-206. J. Cell Biochem. 121, 2354–2362 (2020).
187. Song, H. et al. Circular RNA circPSPK1A activates KRTP8 and P3K/AKT pathway to promote gastric cancer development through sponging miR-671-5p. BioMed. Pharmacother. 126, 109941 (2020).
188. Peng, Y. K. et al. Circular RNA hsa_circ_0010882 promotes the progression of gastric cancer via regulation of the PI3K/Akt/mTOR signaling pathway. Eur. Rev. Med. Pharm. Sci. 24, 1142–1151 (2020).
Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer... Xue et al.
263. Wu, D., Jia, H., Zhang, Z. & Li, S. Circ-PRMT5 promotes breast cancer by the miR-509-3p/TCF7L2 axis activating the PI3K/AKT pathway. *J. Gene Med.* 23, e3300 (2021).

264. Chen, Z. G. et al. Circular RNA CIRCIPK3 promotes cell proliferation and invasion of breast cancer by sponging miR-193a/HMG18/PI3K/AKT axis. *Thorac. Cancer* 11, 2660–2671 (2020).

265. Zhang, X. Y. & Mao, L. Circular RNA Circ_000442 acts as a sponge of miR-148b-3p to suppress breast cancer via PTEN/PI3K/Akt signaling pathway. *Gene* 766, 145113 (2021).

266. Xu, J. H., Wang, Y. & Xu, D. Hsa_circ_001569 is an unfavorable prognostic factor and promotes cell proliferation and metastasis by modulating PI3K-AKT pathway in breast cancer. *Cancer Biomark.* 25, 193–201 (2019).

267. Li, H. et al. Hsa_circ_0000199 facilitates chemo-tolerance of triple-negative breast cancer by interfering with miR-206/613-led PI3K/Akt/mTOR signaling. *Aging (Albany NY)* 13, 4522–4551 (2021).

268. Redman, M. W. et al. Biomarker-driven therapies for previously treated squamous non-small-cell lung cancer (Lung-MAP SWOG S1400): a biomarker-driven master protocol. *Lancet Oncol.* 21, 1589–1601 (2020).

269. Sveen, A., Kopetz, S. & Lothe, R. A. Biomarker-guided therapy for colorectal cancer: strength in complexity. *Nat. Rev. Clin. Oncol.* 17, 11–32 (2020).

270. Whiteside, T. L. Validation of plasma-derived small extracellular vesicles as cancer biomarkers. *Nat. Rev. Clin. Oncol.* 17, 719–720 (2020).

271. Rebbeck, T. R. et al. Precision prevention and early detection of cancer: fundamental principles. *Cancer Discov.* 8, 803–811 (2018).

272. Wender, R. C., Brawley, O. W., Fedewa, S. A., Gansler, T. & Smith, R. A. A blueprint for cancer screening and early detection: advancing screening’s contribution to cancer control. *CA Cancer J. Clin.* 69, 50–79 (2019).

273. Borrebaeck, C. A. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer. *Nat. Rev. Cancer* 17, 199–204 (2017).

274. Lin, X. J. et al. A serum microRNA classifier for early detection of hepatocellular carcinoma: a multicentre, retrospective, longitudinal biomarker identification study with a nested case-control study. *Lancet Oncol.* 16, 804–815 (2015).

275. Wu, L. & Qu, X. Cancer biomarker detection: recent achievements and challenges. *Chem. Soc. Rev.* 44, 2963–2997 (2015).

276. Fan, L., Cao, Q., Liu, J., Zhang, J. & Li, B. Circular RNA profiling and its potential for esophageal squamous cell cancer diagnosis and prognosis. *Mol. Cancer* 18, 16 (2019).

277. Ding, L. et al. Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4. *Mol. Cancer* 18, 45 (2019).

278. Cooper, B. M., Hegre, J., Donovan, Daniel H. O’, Oliveau Halvarsson, M. & Spring, D. R. Peptides as a platform for targeted therapeutics for cancer: peptide-drug conjugates (PDCs). *Chem. Soc. Rev.* 50, 1480–1494 (2021).

279. Oh, D. Y. & Bang, Y. J. HER2-targeted therapies—a role beyond breast cancer. *Nat. Rev. Clin. Oncol.* 17, 33–48 (2020).

280. Comoglio, P. M., Trusolino, L. & Boccaccio, C. Known and novel roles of the MET oncogene in cancer: a coherent approach to targeted therapy. *Nat. Rev. Cancer* 18, 341–358 (2018).

281. Srinivasarao, M., Galliford, C. V. & Low, P. S. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. *Nat. Rev. Drug Discov.* 14, 203–219 (2015).

282. Schmitt, M. W., Loeb, L. A. & Salk, J. J. The influence of subclonal resistance mutations on targeted cancer therapy. *Nat. Rev. Clin. Oncol.* 13, 335–347 (2016).