Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses

Luděk Eyer1,2, Radim Nencka3, Erik de Clercq4, Katherine Seley-Radtke5 and Daniel Růžek1,2

Abstract
Nucleoside analogs represent the largest class of small molecule-based antivirals, which currently form the backbone of chemotherapy of chronic infections caused by HIV, hepatitis B or C viruses, and herpes viruses. High antiviral potency and favorable pharmacokinetics parameters make some nucleoside analogs suitable also for the treatment of acute infections caused by other medically important RNA and DNA viruses. This review summarizes available information on antiviral research of nucleoside analogs against arthropod-borne members of the genus Flavivirus within the family Flaviviridae, being primarily focused on description of nucleoside inhibitors of flaviviral RNA-dependent RNA polymerase, methyltransferase, and helicase/NTPase. Inhibitors of intracellular nucleoside synthesis and newly discovered nucleoside derivatives with high antiflavivirus potency, whose modes of action are currently not completely understood, have drawn attention. Moreover, this review highlights important challenges and complications in nucleoside analog development and suggests possible strategies to overcome these limitations.

Keywords
Nucleoside analog, antiviral agent, arthropod-borne flavivirus, antiviral therapy, inhibitor

Date received: 24 November 2017; accepted: 30 January 2018

Introduction
The genus Flavivirus belongs to the Flaviviridae family and includes more than 70 single-stranded plus-sense RNA viral species. Flaviviruses of human medical importance are tick- or mosquito-transmitted viruses with typical representatives being tick-borne encephalitis virus (TBEV), Omsk hemorrhagic fever virus (OHFV), Kyasanur Forest disease virus (KFDV), Alkhurma hemorrhagic fever virus (AHFV), Powassan virus (POWV), West Nile virus (WNV), dengue virus (DENV), Japanese encephalitis virus (JEV), yellow fever virus (YFV), or Zika virus (ZIKV).1,2 The Flaviviridae family also includes some less known or neglected viruses, such as louping ill virus (LIV), Usutu virus, Langat virus, or Wesselsbron virus.3–6 The flaviviral genome is a single-stranded, plus-sense RNA of about 11 kb in length that encodes a single polyprotein, which is co- and posttranslationally processed into three structural (capsid, premembrane or membrane, and envelope) and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5).7 Both NS3 and NS5 proteins possess enzymatic activities reported to be important targets for antiviral development. Whereas NS3 acts as a serine protease, a 5′-RNA triphosphatase, a nucleoside triphosphatase (NTPase), and a helicase,8,9 NS5 consists of a complex containing the RNA-dependent RNA polymerase (RdRp) and the methyltransferase (MTase) activities.10,11

1Department of Virology, Veterinary Research Institute, Brno, Czech Republic
2Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
3Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
4Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
5Department of Chemistry and Biochemistry, University of Maryland, Baltimore, USA

Corresponding author:
Luděk Eyer, Veterinary Research Institute, Hudcova 70, Brno CZ-62100, Czech Republic.
Email: eyer@vri.cz

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Flaviviral infections are accompanied by a wide spectrum of distinct clinical manifestations, ranging from relatively mild fevers and arthralgia to severe viscerotropic symptoms (YFV and DENV), hemorrhagic fevers (KFDV and OHFV), encephalitis/myelitis (JEV, WNV, and TBEV), and neuropathic or teratogenic manifestations (ZIKV). More than 200 million clinical cases of flaviviral infections, including numerous deaths, are reported annually worldwide. Currently no specific antiviral therapies are available to treat patients with flaviviral infections, thus the search for safe and effective small-molecule inhibitors that would be active against these viruses represents a high research priority.

Nucleoside analog inhibitors have figured prominently in the search for effective antiviral agents. Nucleoside analogs are synthetic, chemically modified nucleosides that mimic their physiological counterparts (endogenous nucleosides) and block cellular division or viral replication by impairment DNA/RNA synthesis or by inhibition of cellular or viral enzymes involved in nucleoside/tide metabolism (Figure 1). The first antiviral analogs were developed in the late 1960s and currently there are over 25 approved therapeutic nucleosides used for the therapy of viral infections of high medical importance, such as HIV/AIDS (tenofovir), hepatitis B (lamivudine/entecavir), hepatitis C (sofosbuvir), or herpes infections (acyclovir). So far, numerous nucleoside analogs have been described to inhibit arthropod-transmitted flaviviruses. Since these viruses are closely related to the hepatitis C virus (HCV), for which many potent inhibitors are being currently developed, anti-HCV nucleoside analogs represent promising tools to be repurposed against other viruses within the Flaviviridae family.

The aim of this review is to provide an overview of known antiviral agents targeting selected arthropod-borne flaviviruses and to discuss their characteristic properties, modes of action, and advantages or limitations of their therapeutic use. Moreover, the important challenges and complications in antiflavivirus nucleoside analog development are highlighted and possible strategies to overcome their shortcomings are suggested.

Major classes of antiflavivirus nucleosides

Nucleoside analogs active against arthropod-borne flaviviruses are usually classified according to their targets in the viral life cycle. Such antiviral molecules act as inhibitors of flaviviral RdRp, MTase, and helicase/NTPase. Other nucleoside scaffolds suppress host cell enzymes involved particularly in nucleoside biosynthetic pathways or in some cases, exhibit multiple modes of action. In vitro antiviral effects and cytotoxicity profiles of the most important antiflavivirus nucleoside analogs are summarized in Table 1. An overview of in vivo antiflaviviral activities of selected nucleosides as evaluated in different animal models is presented in Table 2.

Inhibitors of flaviviral NS5 RdRp

The flavivirus NS5 protein is approximately 900 amino acids in length and consists of the NH2-terminal MTase domain required for the 5'-RNA capping process and the COOH-terminal RdRp domain responsible for the replication of the viral RNA genome. Flaviviral RdRp is a right-handed structure with fingers, palm, and thumb domains; the palm domain is the catalytic domain carrying the polymerase active site that coordinates two Mg2+ ions essential for catalyzing the polymerization reaction. Nucleoside inhibitors of flaviviral RdRp are the most attractive targets for antiviral drug design; as human replication/transcription enzymes lack RdRp activity, such compounds are expected to show fewer deleterious side effects and favorable safety profiles.

The mode of action for nucleoside RdRp inhibitors is based on the premature termination of viral nucleic acid synthesis. Following the intracellular phosphorylation, the 5'-triphosphate metabolites are competitively incorporated into the flaviviral RNA nascent chains (Figure 1). This prevents further extension of the incorporated analog by addition of the next nucleoside triphosphate resulting in formation of incomplete (nonfunctional) viral RNA chains. Nucleoside inhibitors of flaviviral RdRp act as “nonobligate chain terminators,” as their 3'-hydroxyl group is conformationally constrained or sterically/electronically hindered, thus decreasing the potency to form a phosphodiester linkage with the incoming nucleoside triphosphate. The nonobligate terminators differ from “obligate chain terminators,” in which the 3'-hydroxyl group is completely missing, as exemplified by numerous nucleoside reverse transcriptase inhibitors for the treatment of HIV infections. Chemical modifications of the heterobase moiety, different types of glycosidic bonds, and substitutions at different positions of the sugar ring, which are typical modifications for nucleoside inhibitors of flaviviral RdRps, are shown in Table 3.

1'-Cyano substituted nucleosides

GS-441524, a 1'-cyano substituted C-nucleoside derived from 4-aza-7,9-dideazadenosine, was developed by Gilead Sciences, Inc. as a treatment for filovirus infections also showing reasonable antiviral activity against paramyxov- and pneumoviruses.
Intracellular uptake and metabolism of nucleoside analogs and nucleoside analog prodrugs. Nucleoside analogs enter cells through specific plasma membrane nucleoside transporters. Inside the cell, the compounds are phosphorylated by cellular nucleoside kinases resulting in formation of nucleoside mono-, di-, and triphosphates. The first kinase phosphorylation is the rate-limiting step of the triphosphate conversion, which can be overcome by the monophosphate prodrug approach based on the introduction of a phosphorylated group into the 5' nucleoside position. The phosphorylated group includes protecting moieties to increase hydrophobicity and facilitate the cellular uptake of the prodrug. Monophosphate prodrugs enter cells independently of membrane transporters and the protecting groups are removed by intracellular esterases or phosphoramidases after cell penetration. The triphosphates of nucleoside species represent the active forms of nucleoside analogs that act by inhibiting cellular or viral enzymes, such as DNA/RNA polymerases. During DNA/RNA replication, nucleoside analogs are incorporated into nascent DNA or RNA chains resulting in termination of nucleic acid synthesis or in accumulation of mutations in viral genomes to suppress viral replication due to error catastrophe. At normal physiological conditions, intracellular nucleoside concentrations are maintained at low levels due to nucleoside/nucleotide catabolic pathways, such as deamination (oxidation) of heterocyclic base, hydrolysis or phosphorolysis of heterocyclic base, and hydrolysis of phosphomonoester bonds. These catabolic reactions also concern most nucleoside analogs containing the natural N-glycosidic bond and/or the degradable functional groups of the heterocyclic base. Figure created using Servier Medical Art available on www.servier.com.
Table 1. In vitro antiviral activities and cytotoxicity profiles of selected nucleoside inhibitors of flaviviral replication.

Inhibitors of flaviviral RdRp	Virus	Strain	Cell line	Assay	EC_{50} (μM)	CC_{50} (μM)	References
GS-441524	AHFV	200300001	Vero	CPE	49.9	ND	Lo et al.^{45}
	KFDV	P9605	Vero	CPE	46.3	ND	Lo et al.^{45}
	TBEV	Hypr	Vero	CPE	51.2	ND	Lo et al.^{45}
	OHFV	Bogoluvovska	Vero	CPE	50.6	ND	Lo et al.^{45}
	YFV	ND	ND	Cell based	11	>30	Cho et al.^{43}
	DENV-2	ND	ND	Cell based	9.46	>30	Cho et al.^{43}
	WNV	ND	ND	Cell based	>30	>30	Cho et al.^{43}
GS-5734	AHFV	200300001	Vero	CPE	4.2	ND	Lo et al.^{45}
	KFDV	P9605	Vero	CPE	1.8	ND	Lo et al.^{45}
	TBEV	Hypr	Vero	CPE	2.1	ND	Lo et al.^{45}
	OHFV	Bogoluvovska	Vero	CPE	1.2	ND	Lo et al.^{45}
2'-C-methyladenosine	TBEV	Hypr	PS	VTR	1.4	>50	Eyer et al.^{54}
	WNV	New York isol.	Vero	CPE	5.1	25	Migliaccio et al.^{49}
	DENV-2	New Guinea C	Vero	CPE	4	18	Migliaccio et al.^{49}
	YFV	I7-D	Vero	CPE	3.2	13	Migliaccio et al.^{49}
	ZIKV	MR766	Vero	VTR	5.26	>100	Eyer et al.^{23}
7-Deaza-2'-C-methyl-adenosine	TBEV	Hypr	PS	VTR	1.1	>50	Eyer et al.^{54}
	WNV	New York isol.	Vero	CPE	4.5	250	Olsen et al.^{50}
	DENV-2	New Guinea C	Vero	CPE	15	>320	Olsen et al.^{50}
	YFV	I7-D	Vero	CPE	15	>320	Olsen et al.^{50}
	ZIKV	MR766	Vero	CPE	20	>357	Zmurko et al.^{62}
	ZIKV	MR766	Vero	VYR	9.6	>357	Zmurko et al.^{62}
	ZIKV	MR766	Vero	PA	1.3	>357	Zmurko et al.^{62}
	ZIKV	MR766	Vero	IFA	5.7	>357	Zmurko et al.^{62}

(continued)
Table 1. Continued

Structure	Virus	Strain	Cell line	Assay	EC\textsubscript{50} (\textmu M)	CC\textsubscript{50} (\textmu M)	References
2'-C-methylguanosine	TBEV	Hypr	PS	VTR	1.4	>50	Eyer et al.54
	WNV	New York isol.	Vero	CPE	30	>100	Migliaccio et al.59
	DBNV-2	New Guinea C	Vero	CPE	13.6	>60	Migliaccio et al.59
	YFV	17-D	Vero	CPE	17	>50	Migliaccio et al.59
	ZIKV	MR766	Vero	VTR	22.25	>100	Eyer et al.23
INX-08189	DBNV-2	ND	Huh-7	Replicon	0.0142	>1	Yeo et al.58
2'-C-methylcytidine	TBEV	Hypr	PS	VTR	1.8	>50	Eyer et al.54
	AHFV	200300001	A549	qRT-PCR	2.5		Flint et al.55
	AHFV	200300001	A549	CPE	15.3		
	KDFV	P9605	A549	CPE	7.2		
	OIFV	Bogoluvovska	A549	CPE	3.2		
	POWV	Byers	A549	CPE	5.5		
	DBNV	ND	Huh-7	Replicon	11.2	–	Lee et al.56
	YFV	17-D	Vero	Visual inspection	2.5a	22a	Julander et al.63
	YFV	17-D	Vero	Neutral red uptake	2.1a	22a	Julander et al.63
	YFV	17-D	Vero	VYR	0.7a	22a	Julander et al.63
	ZIKV	MR766	Vero	VTR	10.51	>100	Eyer et al.23
2'-C-methyluridine	TBEV	Hypr	PS	VTR	11.1	>50	Eyer et al.54
	ZIKV	MR776	Vero	VTR	45.45	>100	Eyer et al.23

(continued)
Table 1. Continued
Structure
Virus
Strain
Cell line
Assay
EC₅₀ (µM)
CC₅₀ (µM)
References

- **Sofosbuvir**
 - **ZIKV ND**
 - **BHK-21, SH-SY-5', Huh-7**
 - **CPE 0.12–1.9**
 - **CC₅₀ >300**
 - **Reference: Sacramento et al.**

- **ZIKV ND - RdRp inhibition 0.38 ND**
 - **Reference: Sacramento et al.**

- **ZIKV PRVABC59**
 - **Paraiba Dakar 41519**
 - **Huh-7, Jan**
 - **PA qRT-PCR 1–5**
 - **CC₅₀ >200**
 - **Reference: Bullard-Feibelman et al.**

- **2-C-ethynyladenosine**
 - **DENV-2 ND**
 - **A549 CFI 1.41**
 - **CC₅₀ >100**
 - **Reference: Chen et al.**

- **NITD008**
 - **DENV-2 New Guinea C**
 - **MY10245 MY10340 MY22366 MY22713**
 - **A549 CFI 0.46–2.61**
 - **CC₅₀ >100**
 - **Reference: Chen et al.**

- **NITD449**
 - **DENV (1–4) New Guinea C**
 - **MY10245 MY10340 MY22366 MY22713**
 - **A549 CFI 1.62–6.99 ND**
 - **Reference: Chen et al.**
| Structure | Virus | Strain | Cell line | Assay | EC$_{50}$ (µM) | CC$_{50}$ (µM) | References |
|-------------------|---------|-----------------|-----------|----------|----------------|----------------|--------------|
| NITD203 (1–4) | DENV | New Guinea C | A549 | CFI | 0.54–0.71 | ND | Chen et al. 72 |
| | MY10245 | PBMC | | CFI | <0.1 | ND | Chen et al. 72 |
| | MY10340 | PBMC | | CFI | <0.1 | ND | Chen et al. 72 |
| | MY22366 | PBMC | | CFI | <0.1 | ND | Chen et al. 72 |
| | MY22713 | PBMC | | CFI | <0.1 | ND | Chen et al. 72 |
| 4'-C-azidocytidine| TBEV | Hypr | PS | VTR | 2.7 | >50 | Eyer et al. 54 |
| Balapiravir (1–4) | DENV | Various | Huh-7 | qRT-PCR | 5.2–6 | ND | Nguyen et al. 83 |
| | | | PHM | qRT-PCR | 1.9–11 | ND | Nguyen et al. 83 |
| | TBEV | Hypr | PS | VTR | 0.3 | >50 | Eyer et al. 54 |
| Structure | Virus | Strain | Cell line | Assay | EC$_{50}$ (µM) | CC$_{50}$ (µM) | References |
|-----------|-------|--------|-----------|--------|---------------|---------------|------------|
| BCX4430 | TBEV | Hypr | PS | VTR | 1.48 | >100 | Eyer et al. |
| LIV | Li/31 | PS | PS | VTR | 12.33 | >100 | Eyer et al. |
| KFDV | V-377 | PS | VTR | | 11.37 | >100 | Eyer et al. |
| WNv | Eg101 | PS | VTR | | 2.33 | >100 | Eyer et al. |
| YFV | I7-D | ND | ND | ND | 14.1 | >100 | Warren et al. |
| JEV | SA14 | | | | 43.6 | >100 | Warren et al. |
| DENV-2 | New Guinea C | | | | 32.8 | >296 | Warren et al. |
| ZIKV | Various | Vero, Huh-7, RD | CPE | | 3.8–11.7a | >100a | Julander et al. |
| ZIKV | Various | Vero, Huh-7, RD | VYR | | 5.4–18.2b | >100b | Julander et al. |
| T-1106 | YFV | I7-D | Vero | Neutral red uptake | 1800 | >4000 | Julander et al. |
| YFV | I7-D | Vero | CPE | | 2630 | >4000 | Julander et al. |
| YFV | I7-D | Vero | Luciferase based | | 1080 | >4000 | Julander et al. |
| 6-Methyl-7-deazaadenosine | DENV-2 | ND | Vero | PA | 0.062 | ND | Wu et al. |
| 6-Methyl-7-deazaadenosine | DENV-2 | ND | Vero | qRT-PCR | 0.039 | ND | Wu et al. |
| N6-(9-antranylmethyl) adenosine | TBEV | Absettarov | PEK | PA | 15 | >50c | Orlov et al. |

(continued)
Structure	Virus	Strain	Cell line	Assay	EC₅₀ (µM)	CC₅₀ (µM)	References
N6-(1-pyrenylmethyl) adenosine	TBEV	Absettarov	PEK	PA	6	>50	
![N6-(1-pyrenylmethyl) adenosine](image1)							
N6-benzyl-5'-O-trisopropylsilyl adenosine	TBEV	Absettarov	PEK	PA	5	>50	
![N6-benzyl-5'-O-trisopropylsilyl adenosine](image2)							
N6-benzyl-5'-O-trityl adenosine	TBEV	Absettarov	PEK	PA	2	>50	
![N6-benzyl-5'-O-trityl adenosine](image3)							
N6-benzyl-5'-O-tert-butyldimethylsilyl-adenosine	TBEV	Absettarov	PEK	PA	20	>50	
![N6-benzyl-5'-O-tert-butyldimethylsilyl-adenosine](image4)							
Structure	Virus	Strain	Cell line	Assay	EC₅₀ (µM)	CC₅₀ (µM)	References
---------------------------	-------	--------	-----------	-------	----------------------	---------------------	------------------
2',5'Di-O-trityluridine	DENV-2	New Guinea C	Vero	CPE	30^a	>100^a	Saudi et al. 104
	YFV	I7-D	Vero	CPE	1.2^a	>100^a	Saudi et al. 104

3',5'Di-O-trityluridine

Structure	Virus	Strain	Cell line	Assay	EC₅₀ (µM)	CC₅₀ (µM)	References
	DENV-2	New Guinea C	Vero	CPE	1.75^a	>10^a	
	YFV	I7-D	Vero	CPE	1^a	>85^a	

Inhibitors of flaviviral methyltransferase

Structure	Virus	Strain	Cell line	Assay	EC₅₀ (µM)	CC₅₀ (µM)	References
GRL-002	WNV	NY99	–	N-7 methylation inhibition	33.9^d	–	Chen et al. 111
	WMV	NY99	–	2'-O-methylation inhibition	5.5^d	–	Chen et al. 111
	WMV	NY99	A549	VTR	52	48	Chen et al. 111

(continued)
Table 1. Continued

Structure	Virus	Strain	Cell line	Assay	EC_{50} (μM)	CC_{50} (μM)	References
GRL-003	WMV	NY99	–	N-7 methylation inhibition	17.3^{d}	–	Chen et al.^{111}
	WMV	NY99	–	2'-O-methylation inhibition	19.8^{d}	–	Chen et al.^{111}
	WMV	NY99	A549	VTR	27	236	Chen et al.^{111}
Flex 1, R=H, Ac,	DBNV-3	ND	–	2'-O-methylation inhibition	22^{d}	–	K. Seley-Radtke, manuscript in preparation
Flex 1-TP, R=triphosphate	ZIKV	French Polynesia (2013/PFKJ776791.2)	–	2'-O-methylation inhibition	22^{d}	–	
Ribavirin and other nucleoside synthesis inhibitors	DBNV	Various	Vero	CPE	19.8–41.9^{a}	>100^{a,e}	Crance et al.^{31}
Ribavirin	JEV	Nakayama	Vero	CPE	134.1^{a}	>100^{a,e}	Crance et al.^{31}
	WNV	E101	Vero	CPE	71.2^{a}	>100^{a,e}	Crance et al.^{31}
	USUV	DakArD 19848	Vero	CPE	62.6^{a}	>100^{a,e}	Crance et al.^{31}
	LGTV	ND	Vero	CPE	33.9^{a}	>100^{a,e}	Crance et al.^{31}
	YFV	17D and FNV	Vero	CPE	42.4; 48.2^{a}	>100^{a,e}	Crance et al.^{31}
	WESSV	ND	Vero	CPE	91.7^{a}	>100^{a,e}	Crance et al.^{31}
	ZIKV	Various	Vero, Huh-7, RD	CPE	3.8–142.9^{a}	>100^{a,e}	Crance et al.^{31} and Julander et al.^{91}
	ZIKV	Various	Vero, Huh-7, RD	VYR	9.52–281^{b}	>100^{a,e}	Julander et al.^{91}

(continued)
Structure	Virus Strain	Cell line	Assay	EC₅₀ (μM)	CC₅₀ (μM)	References
ETAR	DENV-2	Vero	ND	9.5	>1000	McDowell et al. 135
IM18	DENV-2	Vero	ND	106.1	ND	McDowell et al. 135
6-Azauridine	DENV (1–4)	Various	Vero	0.1–0.5^a	>100^{ae}	Crance et al. 31
JEV	Nakayama	Vero	CPE	0.5^a	>100^{ae}	Crance et al. 31
WNV	E101	Vero	CPE	0.2^a	>100^{ae}	Crance et al. 31
USUV	DakArD 19848	Vero	CPE	0.1^a	>100^{ae}	Crance et al. 31
LGTV	ND	Vero	CPE	0.2^a	>100^{ae}	Crance et al. 31
YFV	I7D and FNV	Vero	CPE	0.2; 0.2^a	>100^{ae}	Crance et al. 31
WESSV	ND	Vero	CPE	1.3^a	>100^{ae}	Crance et al. 31
ZIKV	DakArB 11514	Vero	CPE	1.5^a	>100^{ae}	Crance et al. 31
Rigid amphiphatic nucleosides						
5-(Perylen-3-yl)ethynyl-arabino-uridine	TBEV	Absettarov	PEK	0.018^f	>50^c	Orlov et al. 101

^a Calculated in duplicate in a 96-well plate.
^c Inhibition of cell toxicity at a concentration of 100 μM.
^f Inhibition of cell toxicity at a concentration of 10 μM.
Structure	Virus	Strain	Cell line	Assay	EC₅₀ (µM)	CC₅₀ (µM)	References
5-(Perylen-3-yl)ethynyl-2′-deoxy-uridine	TBEV	Absettarov	PEK	PA	0.024f	>50c	Orlov et al.¹⁰¹
![Chemical Structure](image1)							
5-(Pyren-1-yl)ethynyl-2′-deoxy-uridine	TBEV	Absettarov	PEK	PA	0.98f	>50c	Orlov et al.¹⁰¹
![Chemical Structure](image2)							

AHFV: Alkhurma hemorrhagic fever virus; CFI: cellular flavivirus immunodetection; CPE: cytopathic effect reduction assay; DC: dendritic cells; DENV: dengue virus; JEV: Japanese encephalitis virus; KFDV: Kyasanur Forest disease virus; LGTV: Langat virus; LIV: louping ill virus; ND: not determined; OHFV: Omsk hemorrhagic fever virus; PA: plaque reduction assay; PBMC: peripheral blood mononuclear cells; PHM: primary human macrophages; POWV: Powassan virus; TBEV: tick-borne encephalitis virus; USUV: Usutu virus; VTR: viral titer reduction assay; VYR: viral yield reduction assay; WESSV: Wesselsbron virus; WNV: West Nile virus; YFV: yellow fever virus; ZIKV: Zika virus.

EC₅₀ and CC₅₀ values are expressed as µg/ml.

EC₉₀ values, expressed as µg/ml.

CC₅₀ (24 h): the cell culture was treated for 24 h with the appropriate compound to obtain the cytotoxicity data.

EC₅₀ values obtained from enzyme-based inhibition assays.

CC₅₀ values for confluent compound-treated cells.

EC₅₀ (sim): the cell culture was TBEV infected and simultaneously treated with the appropriate compound.
Table 2. Examples of in vivo antiflaviviral activities of selected nucleoside analogs.

Compound	Animal model	Admin. route	Treatment start	Treatment length	Dose	Virus	Infection route	Survival rate (%)	References	
7-Deza-2’-C-methyladenosine	BALB/c mouse	i.p.	0 dpi	17 days	25 mg/kg/2× day	5–15 mg/kg/2× day	TBEV	s.c.	60	Eyer et al.61
	AG129 mouse	p.o.	–1 h	10 days	50 mg/kg/day	ZIKV	i.p.	25	62	
	ICR suckling mouse	i.c.	1 dpi	5 days	15 or 30 mg/kg/day	DENV	i.c.	60	63	
	Syrian golden hamster	i.p.	–4 h	4–7 days	120 mg/kg/day	YFV	i.p.	90	64	
Sofosbuvir	CS7BL/6J mouse	p.o.	1 dpi	7 days	33 mg/kg/day	ZIKV	s.c.	50	Bullard-Feibelman et al.65	
	Suckling Swiss mouse	i.p.	–24 h	7 days	20 mg/kg/day	ZIKV	i.p.	40	66	
				2 dpi				80		
NITD008	AG129 mouse	p.o.	0 h	ND	25–50 mg/kg/day	25 mg/kg/day	DENV	i.v.	100	Yin et al.67
	A129 mouse	p.o.	1 dpi	ND	50 mg/kg/day	ZIKV	i.p.	50	Deng et al.68	
T-1106	Syrian golden hamster	i.p.	–4 h	8 days	100 mg/kg/2× day	YFV	i.p.	100	Julander et al.69	
			3 dpi				100			
			5 dpi				20			
	BCX4430	i.p.	–4 h	7 days	12.5–125 mg/kg/day	YFV	i.p.	100	Julander et al.70	
			4 dpi				80			
	AG129 mouse	i.m.	–4 h	7–8 days	300 mg/kg/day	ZIKV	s.c.	90	Julander et al.71	
			1 dpi				85			
			3 dpi				10			

DENV: dengue virus; i.c.: intracerebral administration; i.m.: intramuscular administration; i.p.: intraperitoneal administration; i.v.: intravenous administration; ND: not determined; p.o.: per os (oral administration); s.c.: subcutaneous administration; TBEV: tick-borne encephalitis virus; YFV: yellow fever virus; ZIKV: Zika virus.
Flaviviridae family, this compound exerted micromolar inhibitory activity against YFV and DENV-2 (EC\textsubscript{50} values of 11 and 9.46 μM, respectively) in various cell-based screening systems.43 Surprisingly, considerably less favorable in vitro activities (\textgreater{}30–51.2 μM) were reported for WNV and tick-borne flaviviruses, such as AHFV, KFDV, TBEV, and OHFV.43,45

A phosphoramidate prodrug of GS-441524, referred to as GS-5734, recently entered Phase II clinical trials for treatment of Ebola infections, displayed 10- to 40-fold higher antiviral effect against members of the TBEV serocomplex when compared with its parental analog GS-441524. The increased antiviral potency could be related to an improved conversion of the prodrug to the biologically active form; however, the reported SI values (2.4–8.3) indicate a low therapeutic potential for this nucleoside to treat flaviviral infections.45 Further substitutions of GS-441524 molecule at the C1' position with methyl, vinyl, or methyl-ethyl-nolieties yielded compounds with considerably reduced potency and a narrower spectrum of antiviral activity.43

2'-C-methyl substituted nucleosides

2'-C-Methyl-nucleoside scaffolds represent the initial major class of therapeutic nucleosides developed by Merck Research Laboratories to demonstrate potent inhibition of HCV replication.46–50 Antiviral activity of 2'-C-methylated nucleosides beyond the Flaviviridae family was reported for representatives of Picornaviridae and Caliciviridae families,51–53 indicating the potential for broad-spectrum inhibitory activity for these compounds within the positive single-stranded RNA viruses.

The 2'-C-methyl substituent introduced at the nucleoside β-face appears to be an important structural element for highly selective micromolar inhibition of tick-borne flaviviruses, particularly for TBEV, AHFV, KFDV, OHFV, and POWV, when assayed in porcine stable kidney cells (PS), human neuroblastoma cells UKF-NB4, or adenocarcinomic human alveolar basal epithelial cells A549.24,54,55 From mosquito-transmitted flaviviruses, 2'-C-methylated nucleosides inhibited WNV, DENV, and YFV in cell-based or cell-free reporter assay systems, showing low micromolar antiviral activities.50,56,57 A phosphoramidate prodrug of 6'-O-methyl-2'-C-methylguanosine, denoted as INX-08189, exerted nanomolar inhibitory activity against DENV-2, and the combination of INX-08189 with ribavirin resulted in significant synergistic anti-DENV activity in vitro.58 7-Deaza-2'-C-methyladenosine together with other 2'-C-methylated species was the first described nucleoside-based inhibitors of ZIKV, after its epidemiological outbreaks in Oceania and Latin America.23,59 7-Deaza-2'-C-methyladenosine showed anti-ZIKV potency not only on immortalized cell lines, but also on induced pluripotent stem cell-derived neuronal cell types, such as cortical neurons, motor neurons, and astrocytes.60 The triphosphate analogs of 2'-C-methylated nucleosides exhibited strong inhibitory activity in a

Heterobase identity/ modification	Type of the glycosidic bond	Ribose substitution	Ribose position	Example
4-Aza-7,9-dideazaadenine	C-glycosidic	-CN (z)	C1'	GS-441524
4-Aza-7,9-dideazaadenine	C-glycosidic	-CN (z)	C1'	GS-5734
Adenine	N-glycosidic	-CH\textsubscript{3} (\beta)	C2'	2'-C-methyladenosine
7-Deazaadenine	N-glycosidic	-CH\textsubscript{3} (\beta)	C2'	7-Deaza-2'-C-methyladenosine
Guanine	N-glycosidic	-CH\textsubscript{3} (\beta)	C2'	2'-C-methylguanosine
Cytosine	N-glycosidic	-CH\textsubscript{3} (\beta)	C2'	2'-C-methylcytidine
Uracil	N-glycosidic	-CH\textsubscript{3} (\beta)	C2'	2'-C-methyluridine
6-O-methylguanine	N-glycosidic	-CH\textsubscript{3} (\beta)	C2'	INX-08189
Uracil	N-glycosidic	-F (z), CH\textsubscript{3} (\beta)	C2'	Sofosbuvir
Adenine	N-glycosidic	-ethynyl (\beta)	C2'	2'-C-ethynyladenosine
7-Deazaadenine	N-glycosidic	-ethynyl (\beta)	C2'	NITD008
7-Deaza-7-carbamoyladenine	N-glycosidic	-ethynyl (\beta)	C2'	NITD449
Cytosine	N-glycosidic	-H (z), OH (\beta) + N\textsubscript{3} (z)	C2' + C4'	4'-Azoido
Cytosine	N-glycosidic	-N\textsubscript{3} (z)	C4'	4'-Azoido-aracytidine
9-Deazaadenine	C-glycosidic	O exchanged for N	–	BCX4430
3-Oxopyrazine-2-carboxamide	N-glycosidic	No substitution	–	T-1106
6-Methyl-7-deazaadenine	N-glycosidic	No substitution	–	6-Methyl-7-deazaadenosine
Uracil	N-glycosidic	Trityl	C2' and C3'	2',5-di-O-trityluridine
Uracil	N-glycosidic	Trityl	C3' and C5'	3',5-di-O-trityluridine
polymerase-based in vitro assay using an active recombinant ZIKV RdRp.91

Strong antiflaviviral activity for several 2'-C-methyl modified nucleosides was also demonstrated using numerous in vivo efficacy models. For example, 7-deaza-2'-C-methyladenosine substantially improved disease outcome, increased survival, and reduced signs of neuroinfection and viral titers in the brains of BALB/c mice infected with a lethal dose of TBEV.62 This compound also reduced viremia in AG129 mice infected with the African strain of ZIKV.59 Moreover, 2'-C-methylcytidine protected suckling mice challenged with DENV50 and hamsters infected with a lethal dose of YFV, even when administered up to three days postinfection.63

\textbf{2'-Fluoro-2'-C-methyl substituted nucleosides}

Similar to the 2'-C-methylated nucleosides, analogs possessing the 2'-\(\alpha\)-fluoro-2'-\(\beta\)-C-methyl modification were initially identified as promising inhibitors of HCV polymerase activity.64 Sofosbuvir, a phosphoramidate prodrug of 2'-fluoro-2'-C-methyluridine developed by Gilead Sciences, Inc., is one of the most potent and selective inhibitors in this series and was approved by the Food and Drug Administration (FDA) for the treatment of chronic HCV infection.65 Sofosbuvir is nontoxic for most human cell lines and is a very poor substrate for human mitochondrial RdRp, resulting in an acceptable safety profile and negligible mitochondrial toxicity.66,67

Sofosbuvir was demonstrated to inhibit the ZIKV RdRp in a recombinant polymerase assay68 and to suppress ZIKV replication in different cell-based systems using U87 glioblastoma cells, baby hamster kidney fibroblasts (BHK-21), SH-sy5y neuroblasts, hepatocarcinoma Huh-7 cells, Jar human placental choriocarcinoma cells, neural stem cells, and brain organoids with nanomolar or low micromolar inhibitory activity.25,69 Interestingly, no inhibition of ZIKV replication with sofosbuvir even at the 50 \(\mu\)M level was observed in Vero cells,23 indicating that the sofosbuvir-mediated anti-ZIKV effect is strongly cell-type dependent.70 Sofosbuvir protected inbred C57BL/6J mice, which were previously immunosuppressed with a single dose of anti-Ifnar1 blocking monoclonal antibody, against ZIKV-induced mortality.69 Moreover, this compound reduced viral titer in blood plasma, spleen, kidney, and brain in suckling Swiss albino mice and prevented virus-induced neuromotor impairment in ZIKV-infected animals.71

Surprisingly however, sofosbuvir was inactive against TBEV, when screened on both PS and UKF-NB4 cells.54 Another 2'-\(\alpha\)-fluoro-2'-\(\beta\)-C-methyl modified nucleoside, PSI-6206, and its 3',5'-diester prodrug mericitabine, also displayed no activity against TBEV replication. The lack of anti-TBEV activity for the 2'-\(\alpha\)-fluoro-2'-\(\beta\)-C-methyl modified nucleosides could be ascribed to their inefficient intracellular conversion to their corresponding triphosphates and, moreover, to extensive deamination/demethylation in the tested cell cultures resulting in their conversion to uridine.46,54

\textbf{2'-C-ethynyl substituted nucleosides}

2'-C-Ethynyl substituted nucleosides have been primarily identified as inhibitors of DENV.22,72–75 2'-C-Ethynyladenosine represents the lead compound in this series, which inhibited DENV-2 replication with an EC\textsubscript{50} of 1.41 \(\mu\)M in cell-based assays and with a CC\textsubscript{50} value of 40 \(\mu\)M.22 The 7-deaza derivative of 2'-C-ethynyladenosine, denoted as NITD008, inhibited DENV of different serotypes at submicromolar or low micromolar concentrations when tested in BHK-21 cells, A549 cells, Huh-7 hepatocarcinoma cells, and human peripheral blood mononuclear cells (PBMCs), showing a significantly improved cytotoxicity profile (CC\textsubscript{50} of >100 \(\mu\)M) compared with that of 2'-C-ethynyladenosine.26 NITD008 was also assayed against WNV, YFV, and ZIKV and exhibited excellent in vitro inhibitory parameters and a protective effect against WNV and ZIKV infections in mouse efficacy models.26,76 NITD008 was also reported to effectively inhibit the in vitro replication of TBEV, AHFV, KDFV, OHFV, and POWV, with nanomolar or low micromolar antiviral levels observed in various cell-based screening systems.77

Introduction of the C7 carbamoyl moiety to NITD008 molecule provided another 2'-ethynyl modified derivative, referred to as NITD449. Despite its low micromolar anti-DENV efficacy, this nucleoside disappointingly exhibited only low levels in plasma when dosed orally.72 To increase the oral bioavailability, the isobutyryl ester prodrug of NITD449, designed as NITD203, was synthesized. NITD203 successfully exhibited both nanomolar anti-DENV activity as well as improved pharmacokinetic parameters.72 Although NITD008 and NITD203 showed anti-DENV potency in rodent models, even when the treatment was delayed up to 48 h after infection, both nucleosides failed in preclinical toxicity studies in rats and dogs due to their insufficient safety profiles.26,72 NITD008 failed to achieve no-observed-adverse-effect levels (NOAEL) when rats (10 mg/kg/day) and dogs (1 mg/kg/day) were dosed daily for two weeks.26 Similarly, NOAEL was not achieved for NITD203 in the two-week toxicity test when rats were dosed at 30 and 75 mg/kg/day.72
Further substitutions of the C7 position of NITD008 with fluoro or cyano moieties provided compounds with nano- or low micromolar anti-DENV activities and acceptable cytotoxicity profiles. In contrast, 2'-C-ethyl, -vinyl, or -methylethynyl substituted derivatives of 2'-C-ethynyladenosine were completely inactive when tested against DENV. Similarly, the exchange of the adenine base for cytosine or guanine also yielded inactive compounds.

2'-O-substituted nucleosides

2'-O-Methyl substituted adenosine, guanosine, cytidine, and uridine were evaluated for their potential anti-TBEV activity; however, no or negligible antiviral effects were observed when tested in both PS and UKF-NB4 cells. Such abrogation of the nucleoside inhibitory activity could be related to the elimination of the 2'-hydroxy hydrogen bond donor/acceptor properties when the methyl moiety is introduced at the nucleoside O2' position. The ability of flaviviral RdRp to discriminate among nucleosides modified at the 2'-position on the nucleoside z-face is likely related to the need of the polymerase to avoid incorporation of 2'-deoxynucleoside monophosphates into the viral nascent RNA chain.

3'-C- and 3'-O-substituted nucleosides

Methylation of the C3' or O3' position to generate the corresponding 3'-C-methyl or 3'-O-methyl modified structures resulted in a complete loss of anti-TBEV activity, regardless of the purine/pyrimidine heterobase identity. These nucleosides exerted no cytotoxic effects and caused no morphological changes in PS or porcine embryo kidney (PEK) cell cultures. Similarly, 3'-deoxynucleosides exhibited no detectable inhibitory effect on TBEV replication. In contrast, several nucleosides with a trityl group at the C3' position showed micromolar inhibitory activity against DENV and YFV (see below). The observed inactivity of 3'-O-methylated and 3'-dehydroxylated nucleosides could be related to either a strict requirement of the TBEV RdRp active site for a 3'-hydroxyl group to form the appropriate hydrogen bonding interactions with the nucleoside triphosphate molecule, or, to inefficient cellular uptake and metabolism to convert the nucleoside molecule into the corresponding triphosphate form.

4'-Azido substituted nucleosides

Using high-throughput screening of large nucleoside libraries in combination with a rational drug design approach by investigators at Roche, several cytidine analogs with an azido group at the C4' position were identified as potent inhibitors of HCV replication in subgenomic replicon assays. It was later shown that these compounds were also highly active against hepadnaviruses and other paramyxoviruses. Two 4'-azido modified nucleoside analogs, 4'-azidocytidine (R-1479) and 4'-azido-aracytidine (RO-9187), showed nano- or micromolar in vitro antiviral activity against TBEV. Moreover, both compounds were found to be active also against WNV (L. Eyer, manuscript in preparation).

The anti-TBEV activity of RO-9187 (the arabino-counterpart of 4'-azidocytidine) was unexpected, as this compound lacks the 2'-hydroxy moiety, a determinant which was generally considered to be crucial for specific hydrogen-bonding interactions with RdRps during the RNA replication process. Some additional interactions of the polymerase active site with both the 2'-hydroxy substituent and the 4'-azido substituent are thought to compensate for the loss of the 2'-hydroxy interaction, resulting in the strong and selective anti-TBEV activity of RO-9187. Interestingly, the anti-TBEV efficacy of both 4'-azido modified nucleosides was cell-type dependent; the compounds were active only in PS cells, but not in UKF-NB4 cells.

An ester prodrug of 4'-azidocytidine, denoted as balapiravir, was completely inactive against TBEV in vitro, probably because of its poor intracellular uptake or insufficient kinase phosphorylation in the tested host cell lines. In contrast, balapiravir was reported to show strong in vitro antiviral activity against DENV of various serotypes; it was the first direct antiviral agent tested clinically for DENV infection. Unfortunately, this compound failed to achieve antiviral efficacy in DENV patients, which was reflected in a negligible reduction of DENV viremia and persistence of clinical symptoms, even though the plasma concentration of the compound was higher than the 50% effective concentration. One of the possible explanations is that DENV infection stimulates PBMCs to produce cytokines, which are responsible for the decreased efficiency of the conversion of balapiravir to its triphosphate form.

Interestingly, nucleoside analogs combining the 4'-azido moiety with the 2'-C-methyl group in one molecule (e.g., 2'-C-methyl-4'-azidocytidine) did not exhibit any antiviral activity when tested against HCV; however, the corresponding 5'-monophosphate prodrugs displayed considerably improved virus inhibitory effects (EC50 values in the micromolar ranges) without apparent cytotoxicity. Other interesting compounds, 4'-azido-2'-deoxy-2'-C-methylcytidine and its ester prodrugs, were found to show nano- or low micromolar antiviral efficacy in vitro. Unfortunately, such nucleoside scaffolds have not been evaluated against...
arthropod-borne flaviviruses; the reported results originate from HCV replicon-based assays. 85,86

Imino-C-nucleoside analog BCX4430

BCX4430, developed by BioCryst Pharmaceuticals Inc., is an adenosine analog with the furanose oxygen on the ribose ring replaced by nitrogen and the hetero-base nitrogen 9 replaced by carbon. 87 This interesting nucleoside is classified as imino-C-nucleoside. 88 BCX4430 was initially described as an inhibitor of filovirus infections, exerting antiviral activity against a broad spectrum of single-stranded RNA viruses, particularly against members of the Bunyaviridae, Arenaviridae, Picornaviridae, Orthomyxoviridae, Paramyxoviridae, Coronaviridae, and Flaviviridae families. 89 Currently, this compound has entered Phase I clinical trials for Ebola virus disease treatment focused on intramuscular administration of BCX4430 in healthy volunteers and to date has shown promising pharmacokinetics properties and good tolerability. 87

BCX4430 is active against numerous mosquito-transmitted flaviviruses, such as WNV (EC50 of 2.33 μM)90 and representatives of both the African and Asian lineages of ZIKV (3.8–11.7 μg/ml).91 For YFV, JEV, and DENV-2, micromolar EC50 values were reported. 89 In vivo efficacy of BCX4430 was also demonstrated in a lethal hamster model of YFV infection and in a mouse model of ZIKV infection. 91,92 Low micromolar antiviral activity of BCX4430 was also described for some of the medically important tick-borne flaviviruses, such as TBEV, LIV, and KFDV.90

Heterocyclic base-modified nucleosides

Heterocyclic base-modified nucleosides with demonstrated antiflaviviral activities include T-1106,93–95 6-methyl-7-deazaadenosine, 96 and numerous N6-alkyl or aryl substituted nucleosides. 35,97 T-1106 is a ribosylated analog of the pyrazine derivative T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide, favipiravir), 98 which was described to inhibit the HCV RdRp in enzyme assays. 93 Nucleoside inhibitor T-1106 displayed a negligible in vitro activity against YFV in Vero cells, as well as in luciferase-based assays. 94 In contrast, this compound exerted favorable efficacy, bioavailability, and low toxicity in a hamster model of YFV infection, using a hamster-adapted Jimenez YFV strain. After intraperitoneal application of 100 mg/kg/day, T-1106 improved survival rates, serum parameters, weight gain, and mean day to death when administered up to four days after virus challenge. 93,94 In this model, the combination of T-1106 with ribavirin gave superior effects compared to monotherapy (with either T-1106 or ribavirin).95

6-Methyl-7-deazaadenosine is a hydrophobic mimic of adenosine showing nanomolar antiviral activity against DENV-2 in a Vero cell-based screening system, as well as in luciferase-driven DENV-2 replicon assay, with no cytotoxic effects noted after 7 h of treatment. 96 Related compounds such as 6-methyl-1-deazaadenosine and 6-methyl-4-deazaadenosine were completely inactive when tested against DENV-2. Mechanistic studies of the 5'-triphosphate of 6-methyl-7-deazaadenosine revealed that this nucleotide is an efficient substrate for viral RdRp (screened against polio RdRp) and is incorporated into nascent viral RNA strains mimicking both ATP and GTP. 96 N6-Alkyl or aryl substituted nucleosides, originally identified as inhibitors of Lassa fever virus, Marburg virus, and enterovirus A71, showed interesting bioactivity profiles when tested against TBEV. 35,99,100 Whereas N6-methyladenosine and N6-benzyladenosine were completely inactive, nucleosides with bulky substituents, such as N6-(9-anthracenylmethyl)adenosine and N6-(1-pyrenylmethyl)adenosine, exerted a micromolar anti-TBEV effect. In contrast, N2- and N4-substituted analogs showed no antiviral activity. Moderate anti-YFV and anti-DENV activities were also observed in N6-substituted analogs of 5',3',5'- and 5',2',2'-tert-butylidiphenylsilyl-modified adenosine. 97 The mechanism of action of these nucleosides is poorly understood; however, they likely interact with the RdRp or MTase domain of the flaviviral NS5 protein, as demonstrated by docking studies. 35 Bulky aromatic substituents could also play a role in the interaction with the viral membrane resulting in cell entry inhibition. 101

Tritylated nucleosides

In a large-scale cell-based screening campaign of alkylated, silylated, or acylated pyrimidine nucleosides, 2',5'di-O-trityluridine and 3',5'di-O-trityluridine were identified as inhibitors of DENV-2 and YFV replication, showing high antiviral potency and favorable cytotoxicity profiles in Vero cells. 78,102,103 Substantial antiviral effect against YFV was observed also in 2'-deoxy-3',5'-di-O-trityluridine and in several 5-halogenated bis-tritylated pyrimidine nucleosides; however, their anti-DENV activity was proven to be weaker. 104 Thymidine or 2'-deoxuryridine congeners of 2',5'- and 3',5'tritylated nucleosides led to the loss of antiflavivirus activity or to increased compound cytotoxicity.

The mechanisms of action of tritylated nucleosides are not completely understood. Based on the observed inhibition of DENV replication in subgenomic replicon assays, it is assumed that these compounds may be
acting as inhibitors of intracellular viral replication events rather than suppressing either early or late processes of viral infection, such as entry or assembly. Although the presence of large, hydrophobic trityl moieties does not make these structures ideal candidates for further drug development, their chemical structures may provide valuable information for advanced mechanistic studies and for further development of related nucleoside scaffolds with improved biological parameters.

Nucleoside inhibitors of flaviviral MTase

The NH$_2$ domain of flaviviral NS5 protein is associated with the virus’s MTase activity, which is involved in methylation of the 5’-cap structure of genomic RNA. The flaviviral cap structure is formed by the conserved dinucleotide sequence AG (m7GpppAm) and is crucial for mRNA stability and efficient translation. Two topologically distinct methylation reactions are mediated by the flaviviral NS5 MTase: the N7 of guanine is methylated by the (guanine-N7)-MTase and the first nucleotide of RNA transcript is further methylated at the ribose 2'-hydroxyl by (nucleoside-2'-O)-MTase. The resulting product of the methyl donation for both methylation reactions by S-adenosyl-l-methionine is the nucleoside analog S-adenosyl-l-homocysteine (SAH).

SAH and the nucleoside antibiotic sinefungin are natural nonselective inhibitors of many eukaryotic and viral MTases, including those of DENV or ZIKV. Chemical derivatization of SAH at the N6 position provided inhibitors with nano- or low micromolar activity against DENV MTase, which did not inhibit the corresponding human enzymes. Other rationally designed nucleosides with potent inhibitory activity against MTase contain a thymine base with a hydrophobic methyl tert-butyl substituent at the 5’ position of the sugar moiety. Two of these nucleosides, GRL-002 and GRL-003, inhibited the N7 and 2’-O MTase activity of WNV in enzyme-based assays and the observed MTase inhibition was in agreement with the micromolar in vitro anti-WNV efficacy. Another class of promising selective antiflavivirus compounds is represented by 3’-silylated 3’-1,2,3-triazole-substituted nucleoside scaffolds derived from 3’-azidothymidine. Similar structures were originally developed for HIV-1 inhibition. Both the 5’-silyl protecting group and the 3’ bulky triazole substituent appeared to be crucial structural elements for low micromolar inhibition of flaviviral MTase in enzyme-based assays, as well as for inhibition of WNV and DENV replication in cell culture. These nucleosides inhibit the methylation reactions through competitive interactions with the substrate binding site and also with the GTP-binding pocket of the flaviviral NS5 MTase.

Recently, a novel series of flexible nucleoside analogs known as “fleximers” have exhibited activity against several hard to treat viruses, including filoviruses such as Ebola and Sudan, coronaviruses including Severe Acute Respiratory Virus and Middle East Respiratory Virus, as well as most recently, flaviviruses including ZIKV and DENV. The fleximers feature a “split” purine nucleobase that has been shown to impart significant activity to the nucleoside scaffold as well as to allow it to overcome resistance related to point mutations. The most recent series combined the fleximer approach with the acyclic nucleoside acyclovir, an FDA approved drug for herpes virus. While these analogs inhibited the aforementioned viruses, acyclovir shows no activity against any of those viruses, thereby underscoring the importance of the fleximer approach. Since those initial findings, these compounds have also demonstrated potent activity against DENV and ZIKV (K. Seley-Radtke, manuscript in preparation). Preliminary results indicate that these compounds target the DENV and ZIKV NS5 in at least its cap-MTase activity, with negligible effects on the cognate human N7-MTase. In that regard, initial screening revealed promising levels of MTase inhibition, particularly for the triphosphate of the compound (Flex 1-TP), with an IC$_{50}$ of 22 µM for both the DENV and ZIKV 2’-O-MTase (K. Seley-Radtke, manuscript in preparation). As a result, Flex 1-TP was further tested against DENV NS5, and while it was not incorporated, it successfully inhibited further incorporations of additional nucleotides, thereby halting replication, however not as a typical chain terminator. In addition, the acetate-protected dimethoxy analog (Flex 2) is a potent DENV inhibitor (3.2 µM, unpublished results, Smee laboratory, Utah); however, more work needs to be done to fully elucidate these novel compounds’ mechanism of action. It may well be that these nucleotide analogs target the NS5 protein at both the RdRp and MTase regions, which would make them highly effective viral inhibitors, with low probability of viral resistance developing.

Nucleoside inhibitors of flaviviral NTPase/helicase

Flaviviral NTPase and helicase activities are associated with the COOH-proximal domain of the NS3 protein. Flaviviral helicases are capable of unwinding duplex RNA structures during viral replication by disrupting the hydrogen bonds keeping the two strands together. The helicase activity is strictly associated with NTP hydrolysis (NTPase activity); the released
chemical energy is used for the translocation of the enzyme along the double-helix structures, capturing the exposed single strand regions or for a direct disruption of the hydrogen bonds between the two RNA strands.

Specific nucleoside inhibitors of flaviviral NTPase/helicase can interact with dsRNA or DNA resulting in the weakened stability of double-helix structures or by steric hindrance of translocation of the enzyme along the polynucleotide chain. Such a mechanism could modulate the efficacy of the unwinding reaction or NTPase activity of the enzyme and therefore, affect the viral replication process. Weak inhibitory effects on flaviviral NTPase/helicases were described for ribavirin triphosphate, or halogenated benzoyl esters of purine nucleosides, or halogenated benzotriazole-modified nucleosides. These compounds were primarily evaluated in enzyme-based assays for their putative anti-HCV activity; however, some of them have been found to inhibit also NTPase/helicases of WNV, JEV, or DENV.

Ribavirin and other nucleoside synthesis inhibitors

Ribavirin, a nucleoside analog featuring a 1,2,4-triazole ring for a nucleobase, is a licensed drug against various RNA viruses. The predominant inhibitory mechanism for ribavirin against flaviviral replication is the suppression of de novo biosynthesis of guanine nucleotides through direct inhibition of inosine monophosphate dehydrogenase, an enzyme converting inosine monophosphate to xanthosine monophosphate, a precursor in GTP biosynthesis. Speculation over other modes of action for ribavirin includes specific inhibition of the viral RdRP, accumulation of mutations in viral genomes resulting in error catastrophe, interference with mRNA capping guanylation, and immuno-modulation promoting the Th1 antiviral response.

Ribavirin was shown to exert a moderate inhibitory effect for multiple mosquito-borne flaviviruses in various cell cultures, often being used as a positive control in many in vitro and in vivo antiviral studies. Ribavirin administered to YFV-infected hamsters challenged intraperitoneally, resulted in significant improvement in survival rates, even if the therapy was started two days post-YFV infection. In contrast however, in primates, only a weak prophylactic effect on viremia in rhesus monkeys challenged with DENV was observed. Several ribavirin derivatives were recently synthesized and showed interesting bioactivity profiles: ETAR (1-β-D-ribofuranosyl-3-ethyl-n-[1,2,4]triazole) and IM18 (1-β-D-ribofuranosyl-4-ethyl-[1,3]imidazole) inhibited DENV-2 replication in Vero cells by more than 10-fold compared with ribavirin and showed no detectable cytotoxic effects up to 1000 μM. Another derivative, EICAR (1-β-D-ribofuranosyl-5-ethyl-imidazole-4-carboxamide), was reported to possess a similar in vitro spectrum of antiviral activity, but lower selectivity compared with those of ribavirin.

Two nucleosides whose antiviral activity is based on the depletion of the intracellular nucleoside pool are 6-azauridine and 5-aza-7-deazaguanosine. 6-Azauridine and its derivatives are inhibitors of orotidine monophosphate decarboxylase blocking cellular de novo pyrimidine biosynthesis. 6-Azauridine proved to be active against numerous arthropod-borne flaviviruses, however exhibited slight cytotoxicity with an inhibitory effect on the growth of host cells. A triacetate prodrug of 6-azauridine showed low micromolar activity against AHFV and WNV in vitro and very low toxicity in both animal and human studies. Another derivative, 2-thio-6-azauridine, exerted a moderate inhibitory effect on WNV. Similar results were achieved using 5-aza-7-deazaguanosine (ZX-2401); this compound exhibited synergistic in vitro anti-YFV activity in combination with interferon. The mechanism of action for 5-aza-7-deazaguanosine is currently unknown; however, it is conceivable that it likely resembles that of ribavirin.

Rigid amphipathic nucleosides

Nucleoside derivatives containing bulky aromatic substituents (perylene or pyrene moieties) attached to the heterocyclic base were originally synthesized as fluorescent nucleoside probes; later these structures were identified as inhibitors of herpes simplex virus, type 1 and 2 (HSV-1 and HSV-2), vesicular stomatitis virus, and Sindbis virus replication. Further studies demonstrated their broad-spectrum antiviral activity against other enveloped viruses, such as influenza virus, murine cytomegalovirus, and HCV. The mechanism of action of these rigid amphipathic nucleosides is based on their incorporation into the viral or cellular membranes, preventing fusion. Alternatively, these nucleosides may also function by photosensitization of lipid membranes, resulting in irreversible damage of enveloped virion particles.

5-(Perylen-3-yl)ethyl-3-ylarabinouridine and 5-(perylen-3-yl)ethyl-2′-deoxyuridine were shown to act as strong inhibitors of TBEV in PEK cell culture. The perylene moiety as well as the rigid ethynyl linker appeared as crucial structural elements for nanomolar anti-TBEV activity and low cytotoxicity (>50 μM). Interestingly, uracil nucleosides bearing the pyrene moiety, such as 5-[(pyren-3-yl)methoxypropyn-1-yl]-
2′-deoxyuridine and 5-(pyren-1-yl)ethynyl-2′-deoxyuridine, showed almost a 10-fold lower anti-TBEV potency compared to their perylene-substituted counterparts. Such compounds, if not used as therapeutic agents, could still contribute to a better understanding of different modes of action of various nucleoside scaffolds.101

Challenges and complications of antiflavivirus nucleoside analog development

Introduction of various chemical substituents into different positions of the nucleoside scaffold can dramatically affect the physicochemical properties of the compound. Such modifications can also significantly influence the compound’s biological/pharmacokinetic parameters, such as cellular uptake,15,146 the ability of the compound to be activated (phosphorylated) by cellular kinases,147 degradation by nucleoside catabolic enzymes,148 or cellular toxicity.149,150 Use of nucleoside analogs can also result in the undesirable emergence of drug-resistant virus mutants.151–153 This section highlights the most important challenges and complications toward the development of nucleoside inhibitors of arthropod-transmitted flaviviruses and suggests possible strategies to surmount these difficulties.

For most nucleoside analogs, the first kinase phosphorylation is the rate-limiting step for the conversion to the nucleoside triphosphates. This limitation has a major influence on nucleoside analog antiviral activity,147,154 but can be bypassed by the use of a monophosphate prodrug approach based on the introduction of the phosphorylated group into the 5′ nucleoside position. The phosphorylated group includes masking moieties on the charged phosphate leading to a neutral and eventually hydrophobic entity able to deliver the nucleoside 5′-monophosphate into the cells (Figure 1).15 The monophosphate prodrug approach has been shown to convert some inactive nucleosides into strong inhibitors, or, has improved the kinetics parameters of intracellular nucleoside triphosphate formation.85 This strategy, together with enantiomouselective purification, led to the development of the phosphoramidate prodrug sofosbuvir, which exhibited considerably increased phosphorylation efficacy compared to the parent nucleoside, 2′-[C]-fluoro-2′-[C]-methyluridine.155,156

Rapid degradation of nucleoside analogs by nucleoside catabolic pathways (Figure 1) is another undesirable phenomenon, which can adversely affect the antiviral potency of some nucleoside analogs.148 To address this problem, appropriate structural changes can be introduced into the nucleoside scaffolds to protect the nucleosides from metabolic deactivation.157 Such a strategy was successful for 2′-[C]-methyladenosine, which was found to be rapidly deaminated by cellular adenosine deaminase to the inactive inosine derivative and/or degraded by purine nucleoside phosphorylase, resulting in poor bioavailability and rapid clearance of the nucleoside in plasma.49,50 Substitution of the adenine N7 nitrogen for a carbon provided metabolically stable 7-deaza-2′-[C]-methyladenosine, which is a poor substrate for both nucleoside catabolic enzymes. This compound was characterized by excellent bioavailability and half-life in beagle dogs and rhesus monkeys.50 Another possible strategy to increase the metabolic stability of therapeutic nucleosides is based on the introduction of a C-glycosidic bond into the nucleoside scaffold to generate C-nucleoside analogs, such as BCX443089 or GS-5734.43 The major advantage of C-nucleosides over the canonical N-nucleosides lies in their resistance to unwanted phosphorylases by intracellular phosphorylases, which otherwise would cleave the N-glycosidic linkage.58

Individual host cellular types can display differences in expression levels of nucleoside kinases and other enzymes/proteins involved in nucleoside metabolism and transport. This can then result in cell-type dependent antiviral activity as manifested by different EC50 values for the same inhibitor when assayed on different cell lines.158,159 Strong anti-TBEV activity for 2′-[C]-methylguanosine, 4′-azidocytidine, and 4′-azido-aracytidine in PS cells was associated with rapid and efficient nucleoside conversion to the corresponding triphosphates. On the other hand, no anti-TBEV effect or phosphorylation products were observed when both compounds were tested in UKF-NB4.54 Similarly, the loss of anti-ZIKV activity in Vero cells for sofosbuvir is likely related to the increased expression of the multidrug resistance ABC transporter in this cell line, resulting in the efflux of the compound from the cells.23,25

Clearly, cell-type dependent antiviral activity of some nucleosides can considerably affect the results of antiviral screens and therefore, using multiple clinically relevant cell lines for evaluation of compounds for antiviral activity is important.70

Another possible complication in nucleoside drug development is an undesirable toxicity profile for the nucleoside inhibitor, which can be related to poor selectivity between viral and human enzymes.39,149,150 A typical example of a nonselective nucleoside analog is 7-deazaadenosine (tubercidin), which exhibits high in vitro cytotoxicity. This has been attributed to the incorporation of tubercidin monophosphate into cellular DNA/RNA by human polymerases.50 In contrast, two derivatives of tubercidin, 7-deaza-2′-[C]-methyladenosine and 6-methyl-7-deazaadenosine, are selectively recognized by flaviviral RdRp and are nontoxic in most mammalian cell lines.50,96 Some nucleoside analogs
inhibit the mitochondrial DNA or RNA polymerase γ, resulting in mitochondrial toxicity.149,160 This has been the primary reason for the failure of several promising nucleosides/prodrugs in clinical trials, as has been shown for some 2′-C-methyl- and 4′-azido modified nucleosides.67 Newly developed compounds should also be evaluated for their genotoxicity and mutagenicity, as well as for renal, cardiovascular, or liver toxicity using various biochemical in vitro assays.161-163 Nevertheless, even if a compound successfully passes through numerous in vitro tests, it can still exhibit harmful side effects when tested in animals, as observed with the adenosine analog NITD008.26

In that regard, the availability of suitable animal models is crucial for the successful evaluation of a nucleoside’s therapeutic in vivo antiviral efficacy. Some flaviviruses, particularly DEVN and ZIKV, do not readily replicate or cause pathology in immunocompetent mice and, therefore, the use of these rodents as animal infection models is substantially limited.164-166 To overcome this problem, suckling or young mice,167 AG129 mice lacking INF-α/β and INF-γ receptors,168 IFNAR−/− mice lacking only the IFN-α/β receptor,169 or immunosuppressed mice170 can be used as appropriate models to evaluate nucleosides in vivo. However, as these animals are defective in an immune response, this model may also underestimate the real efficacy of the test compounds. Rodent-adapted flavivirus strains, such as the hamster-adapted YFV strain Jimenez,171 mice-adapted DENV strain D2S10,26 or ZIKV African strain Dakar 41519,172 represent other possible options for in vivo antiviral studies; the biological properties of such viruses can be, however, considerably different compared with those of the parent human-adapted strains.169

Another issue is related to the length of therapeutic treatment. Most tick- and mosquito-borne flaviviruses cause acute infections, in which short-time treatment duration is expected, ranging between several days to weeks.173 This is in contrast to chronic diseases, such as HCV, HBV, and HIV infections, which require long-lasting, and sometimes lifelong, treatment regimens.72,173 The differences between the acute and chronic diseases should be considered during preclinical development of antiflaviviral inhibitors. Thus, some compounds that show insufficient safety profiles when tested for treatment of chronic infections can be still suitable and safe for short-term therapy of acute flaviviral diseases.72

Antiviral therapies based on chemical inhibitors of viral replication can be accompanied with a rapid emergence of drug-resistant mutants which substantially complicates the course of infection treatment, as seen in HIV, HBV, or HCV infections.152,153 In flaviviruses, a rapid evolution of resistance to 2′-C-methylated nucleoside inhibitors was observed; this resistance was associated with a signature mutation S603T (in AHVF and TBEV)15,62 or S604T (in ZIKV)68 within the active site of the viral RdRp. Interestingly, the biological properties of the TBEV mutant viruses were dramatically affected, which was manifested by resistance-associated loss of viral replication efficacy in cell culture and a highly attenuated virulence phenotype in mice. This resulted in an unusually low mortality rate when mice were infected with the mutant strain.62 As TBEV mutants resistant to 2′-C-methylated nucleosides are highly sensitive to 4′-azido substituted nucleosides,62 a combination treatment based on two or more inhibitors could be a possible strategy in order to minimize the risks for the emergence of viral drug resistance.174-176

Conclusions

More than 200 million clinical cases caused by arthropod-borne flaviviruses, including numerous deaths, are reported worldwide annually. So many cases of infection indicate the importance for the pursuit of new small molecule-based therapeutics to combat emerging viral pathogens. Among these, inhibitors of flaviviruses represent a critical unmet medical need. In that regard, nucleoside inhibitors of flaviviral RdRps are the most attractive targets for antiviral drug design. Nucleosides with the methyl- or ethynyl- modification at the C2′ position and their 2′-fluoro derivatives are the best understood antiflavivirus nucleoside analogs, many of which were initially developed for treatment of HCV infections and later reemployed to suppress replication of other non-HCV flaviviruses. Other important antiflavivirus nucleosides are represented by inhibitors of nucleoside biosynthesis, whose mode of action is predominantly based on depletion of the intracellular nucleoside pool. Nucleoside inhibitors of flaviviral MTase and NTPase/helicase, as well as some newly discovered flavivirus inhibitors, such as tritylated nucleosides, rigid amphipathic nucleosides, or N6-aryl-substituted adenosine derivatives, whose mechanisms of action are still poorly understood, can be used as initial structures or starting points for further developments of new generations of nucleoside scaffolds with improved biological parameters. Taken together, specific nucleoside analog-based antiviral therapy in combination with effective vaccination strategies could provide potent prophylactic and curative tools to treat human infections caused by flaviviruses.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
References

1. Baier A. Flaviviral infections and potential targets for antiviral therapy. In: Ruzek D (ed) Flavivirus encephalitis. 1st ed. Rijeka: InTech, 2011, pp.89–104.

2. Lazear HM, Stringer EM and de Silva AM. The emerging zika virus epidemic in the Americas research priorities. J Am Med Assoc 2016; 315: 1945–1946.

3. Jeffries CL, Mansfield KL, Phipps LP, et al. Louping ill virus: an endemic tick-borne disease of Great Britain. J Gen Virol 2014; 95: 1005–1014.

4. Ashraf U, Ye J, Ruan XD, et al. Usutu virus: an emerging flavivirus in Europe. Viruses 2015; 7: 219–238.

5. Rumyantsev AA, Murphy BR and Pletnev AG. A tick-borne Langat virus mutant that is temperature sensitive with particular reference to Wesselsbron virus. J Hyg 1980; 85: 1–33.

6. Blackburn NK and Swanepoel R. An investigation of flavivirus infections of cattle in Zimbabwe-Rhodesia with particular reference to Wesselsbron virus. J Hyg 1980; 85: 1–33.

7. Chambers TJ, Hahn CS, Galler R, et al. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 1990; 44: 649–688.

8. Koonin EV. Computer-assisted identification of a putative methyltransferase domain in Ns5 protein of flaviviruses and lambda-2 protein of reovirus. J Gen Virol 1993; 74: 733–740.

9. Zhou YS, Ray D, Zhao YW, et al. Structure and function of flavivirus NS5 methyltransferase. J Virol 2007; 81: 3891–3903.

10. Wu JQ, Liu WC and Gong P. A structural overview of RNA-dependent RNA polymerases from the Flaviviridae family. Int J Mol Sci 2015; 16: 12943–12957.

11. Zou G, Chen YL, Dong H, et al. Functional analysis of two cavities in flavivirus NS5 polymerase. J Virol 2011; 85: 14362–14372.

12. Deval J, Symons JA and Beigelman L. Inhibition of viral RNA polymerases by nucleoside and nucleotide analogs: therapeutic applications against positive-strand RNA viruses beyond hepatitis C virus. Curr Opin Virol 2014; 9: 1–7.

13. Puig-Basagoiti F, Tlgner M, Forshey BM, et al. Triaryl pyrazoline compound inhibits flavivirus RNA replication. Antimicrob Agents Chemother 2006; 50: 1320–1329.

14. De Clercq E. A 40-year journey in search of selective antiviral chemotherapy. Annu Rev Pharmacol Toxicol 2011; 51: 1–24.

15. Jordheim LP, Durantel D, Zoulim F, et al. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 2013; 12: 447–464.

16. Benhamou Y, Tubiana R and Thibault V. Tenofovir disoproxil fumarate in patients with HIV and lamivudine-resistant hepatitis B virus. N Engl J Med 2003; 348: 177–178.

17. Ray AS, Fordyce MW and Hitchcock MJM. Tenofovir alafenamide: a novel prodrug of tenofovir for the treatment of human immunodeficiency virus. Antiviral Res 2016; 125: 63–70.

18. Huang YS, Chang SY, Sheng WH, et al. Virological response to tenofovir disoproxil fumarate in HIV-positive patients with lamivudine-resistant hepatitis B virus coinfection in an area hyperendemic for hepatitis B virus infection. PLoS One 2016; 11: e0169228.

19. Lam YF, Seto WK, Wong D, et al. Seven-year treatment outcome of entecavir in a real-world cohort: effects on clinical parameters, HBsAg and HBcrAg levels. Clin Trans Gastroenterol 2017; 8: e125.

20. Stedman C. Sofosbuvir, a NS5B polymerase inhibitor in the treatment of hepatitis C: a review of its clinical potential. Ther Adv Gastroenterol 2014; 7: 131–140.

21. De Clercq E and Holý A. Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat Rev Drug Discov 2005; 4: 928–940.

22. Chen YL, Yin Z, Duraiswamy J, et al. Inhibition of dengue virus RNA synthesis by an adenosine nucleoside. Antimicrob Agents Chemother 2010; 54: 2932–2939.

23. Eyer L, Nencka R, Huvarova I, et al. Nucleoside inhibitors of zika virus. J Infect Dis 2016; 214: 707–711.

24. Eyer L, Valdes JJ, Gil VA, et al. Nucleoside inhibitors of tick-borne encephalitis virus. Antimicrob Agents Chemother 2015; 59: 5483–5493.

25. Sacramento CQ, de Melo GR, de Freitas CS, et al. The clinically approved antiviral drug sofosbuvir inhibits zika virus replication. Sci Rep 2017; 7: 40920.

26. Yiu Z, Chen YL, Schul W, et al. An adenosine nucleoside inhibitor of dengue virus Proc Natl Acad Sci USA 2009; 106: 20435–20439.

27. Vernekar SK, Qiu L and Zacharias J. Synthesis and antiviral evaluation of 4’-(1,2,3-triazol-1-yl)thymidines. MedChemComm 2014; 5: 603–608.

28. Vernekar SK, Qiu L, Zhang J, et al. 5′-Silylated 3′-1,2,3-triazolyl thymidine analogues as inhibitors of West Nile Virus and Dengue Virus. J Med Chem 2015; 58: 4016–4028.

29. Borowski P, Lang M, Haag A, et al. Characterization of imidazo[4,5-d]pyridazine nucleosides as modulators of unwinding reaction mediated by West Nile virus nucleoside triphosphatase/helicase: evidence for activity on the level of substrate and/or enzyme. Antimicrob Agents Chemother 2002; 46: 1231–1239.

30. Borowski P, Deintert J, Schalinski S, et al. Halogenated benzimidazoles and benzotriazoles as inhibitors of the
NTPase/helicase activities of hepatitis C and related viruses. *Eur J Biochem* 2003; 270: 1645–1653.
31. Crance JM, Scaramozzino N, Jouan A, et al. Interferon, ribavirin, 6-azauridine and glycyrrhizin: antiviral compounds active against pathogenic flaviviruses. *Antiviral Res* 2003; 58: 73–79.
32. Leyssen P, Balzarini J, De Clercq E, et al. The predominant mechanism by which ribavirin exerts its antiviral activity in vitro against flaviviruses and paramyxoviruses is mediated by inhibition of inosine monophosphate dehydrogenase. *J Virol* 2005; 79: 1943–1947.
33. Morrey JD, Smeed SE, Sidwell RW, et al. Identification of active antiviral compounds against a New York isolate of West Nile virus. *Antiviral Res* 2002; 55: 107–116.
34. Ojwang JO, Ali S, Smee DF, et al. Broad-spectrum antivirals. *Antiviral Res* 2005; 68: 49–55.
35. Orlov AA, Drenchiev MS, Olsovsky VE, et al. New tools in nucleoside toolbox of tick-borne encephalitis virus reproduction inhibitors. *Bioorg Med Chem Lett* 2017; 27: 1267–1273.
36. Lescar J and Canard B. RNA-dependent RNA polymerases from flaviviruses and Picornaviridae. *Curr Opin Struct Biol* 2009; 19: 759–767.
37. Choi KH and Rossmann MG. RNA-dependent RNA polymerases from Flaviviridae. *Curr Opin Struct Biol* 2009; 19: 746–751.
38. Behnam MAM, Nitsche C, Boldescu V, et al. The medicinal chemistry of Dengue virus. *J Med Chem* 2016; 59: 5622–5649.
39. Boldescu V, Behnam MAM, Vasiliakis N, et al. Broad-spectrum agents for flaviviral infections: Dengue, Zika and beyond. *Nat Rev Drug Discov* 2017; 16: 565–586.
40. De Clercq E and Neyts J. Antiviral agents acting as DNA or RNA chain terminators. *Handb Exp Pharmacol* 2009; 189: 53–84.
41. De Clercq E. Antivirals and antiviral strategies. *Nat Rev Microbiol* 2004; 2: 704–720.
42. Cihlar T and Ray AS. Nucleoside and nucleotide HIV reverse transcriptase inhibitors: 25 years after zidovudine. *Antiviral Res* 2010; 85: 39–58.
43. Cho A, Saunders OL, Butler T, et al. Synthesis and antiviral activity of a series of 1'-substituted 4-aza-7,9-dideazaadenosine C-nucleosides. *Bioorg Med Chem Lett* 2012; 22: 2705–2707.
44. Warren TK, Jordan R, Lo MK, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. *Nature* 2016; 531: 381–385.
45. Lo MK, Jordan R, Arvey A, et al. GS-5734 and its parent nucleoside analog inhibit filo-, pneumo-, and paramyxoviruses. *Sci Rep* 2017; 7: 43395.
46. Eldrup AB, Allerson CR, Bennett CF, et al. Structure-activity relationship of purine ribonucleosides for inhibition of hepatitis C virus RNA-dependent RNA polymerase. *J Med Chem* 2004; 47: 2283–2295.
47. Carroll SS, Tomassini JE, Bosserman M, et al. Inhibition of hepatitis C virus RNA replication by 2'-modified nucleoside analogs. *J Biol Chem* 2003; 278: 11979–11984.
48. Carroll SS, Koepflinger K, Vavrek M, et al. Antiviral efficacy upon administration of a HepDirect prodrug of 2'-C-methylcytididine to hepatitis C virus-infected chimpanzees. *Antimicrob Agents Chemother* 2011; 55: 3854–3860.
49. Migliaccio G, Tomassini JE, Carroll SS, et al. Characterization of resistance to non-obligate chain-terminating ribonucleoside analogs that inhibit hepatitis C virus replication in vitro. *J Biol Chem* 2003; 278: 49164–49170.
50. Olsen DB, Eldrup AB, Bartholomew L, et al. A 7-deazaadenosine analog is a potent and selective inhibitor of hepatitis C virus replication with excellent pharmacokinetic properties. *Antimicrob Agents Chemother* 2004; 48: 3944–3953.
51. Lefebvre DJ, De Vleeschauwer AR, Goris N, et al. Proof of concept for the inhibition of foot-and-mouth disease virus replication by the anti-viral drug 2'-C-methylcytididine in severe combined immunodeficient mice. *Transbound Emerg Dis* 2014; 61: E89–E91.
52. Rocha-Pereira J, Jochmans D, Dallmeier K, et al. Inhibition of norovirus replication by the nucleoside analogue 2'-C-methylcytidine. *Biochim Biophys Res Commun* 2012; 427: 796–800.
53. Rocha-Pereira J, Jochmans D, Debyng Y, et al. The viral polymerase inhibitor 2'-C-methylcytidine inhibits Norwalk virus replication and protects against norovirus-induced diarrhea and mortality in a mouse model. *J Virol* 2013; 87: 11798–11805.
54. Eyer L, Smidkova M, Nencka R, et al. Structure-activity relationships of nucleoside analogues for inhibition of tick-borne encephalitis virus. *Antiviral Res* 2016; 133: 119–129.
55. Flint M, McMullan LK, Dodd KA, et al. Inhibitors of the tick-borne, hemorrhagic fever-associated flaviviruses. *Antimicrob Agents Chemother* 2014; 58: 3206–3216.
56. Lee JC, Tseng CK, Wu YH, et al. Characterization of the activity of 2'-C-methylcytidine against dengue virus replication. *Antiviral Res* 2015; 116: 1–9.
57. Mateo R, Nagamine CM and Kirkegaard K. Suppression of drug resistance in Dengue virus. *MBio* 2015; 6: e01960–15.
58. Yeo KL, Chen YL, Xu HY, et al. Synergistic suppression of dengue virus replication using a combination of nucleoside analogs and nucleoside synthesis inhibitors. *Antimicrob Agents Chemother* 2015; 59: 2086–2093.
59. Lanko K, Eggermont K, Patel A, et al. Replication of the Zika virus in different iPSC-derived neuronal cells and implications to assess efficacy of antivirals. *Antiviral Res* 2017; 145: 82–86.
60. Hercik K, Brynda J, Nencka R, et al. Structural basis of Zika virus methyltransferase inhibition by sinefungin. *Arch Virol* 2017; 162: 2091–2096.
61. Eyer L, Kondo H, Zouharova D, et al. Escape of tick-borne flaviviruses from 2'-C-methylated nucleoside antivirals is mediated by a single conservative mutation in NS5 that has a dramatic effect on viral fitness. *J Virol* 2017; e01028–17.
62. Zmurok J, Marques RE, Schols D, et al. The viral polymerase inhibitor 7-deaza-2'-C-methyladenosine is a potent inhibitor of in vitro Zika virus replication and delays disease progression in a robust mouse infection model. *PLoS Negl Trop Dis* 2016; 10: e0004695.

63. Julander JG, Jha AK, Choi JA, et al. Efficacy of 2'-C-methylcytidine against yellow fever virus in cell culture and in a hamster model. *Antiviral Res* 2010; 86: 261–267.

64. Sofia MJ, Chang W, Furman PA, et al. Nucleoside, nucleotide, and non-nucleoside inhibitors of hepatitis C virus NS5B RNA-dependent RNA-polymerase. *J Med Chem* 2012; 55: 2481–2531.

65. Keating GM and Vaidya A. Sofosbuvir: first global approval. *Drugs* 2014; 74: 273–282.

66. Arnold JJ, Sharma SD, Feng JY, et al. Sensitivity of mitochondrial transcription and resistance of RNA polymerase II dependent nuclear transcription to antiviral ribonucleosides. *PLoS Pathog* 2012; 8: e1003030.

67. Feng JY, Xu YL, Barauskas O, et al. Role of mitochondrial RNA polymerase in the toxicity of nucleotide inhibitors of hepatitis C virus. *Antimicrob Agents Chemother* 2016; 60: 806–817.

68. Xu HT, Hassounah SA, Colby-Germinario SP, et al. Purification of Zika virus RNA-dependent RNA polymerase and its use to identify small-molecule Zika inhibitors. *J Antimicrob Chemother* 2017; 72: 727–734.

69. Bullard-Feibelman KM, Govero J, Zhu Z, et al. The FDA-approved drug sofosbuvir inhibits Zika virus infection. *Antiviral Res* 2017; 137: 134–140.

70. Mumtaz N, Jimmerson LC, Bushman LR, et al. Cell-line dependent antiviral activity of sofosbuvir against Zika virus. *Antiviral Res* 2017; 146: 161–163.

71. Ferreira AC, Zaverucha-do-Valle C, Reis PA, et al. Sofosbuvir protects Zika virus-infected mice from mortality, preventing short- and long-term sequelae. *Sci Rep* 2017; 7: 9409.

72. Chen YL, Yin Z, Lakshminarayana SB, et al. Inhibition of Dengue Virus by an ester prodrug of an adenosine analog. *Antimicrob Agents Chemother* 2010; 54: 3255–3261.

73. Chen YL, Yokokawa F and Shi PY. The search for nucleoside/nucleotide analog inhibitors of dengue virus. *Antiviral Res* 2015; 122: 12–19.

74. Latour DR, Jekle A, Javanbakht H, et al. Biochemical characterization of the inhibition of the dengue virus RNA polymerase by beta-D-2'-ethynyl-7-deaza-adenosine triphosphate. *Antiviral Res* 2010; 87: 213–222.

75. Yin QX and Schneller SW1. Deaza-5'-noraistormycin. *Nucleosides Nucleotides Nucleic Acids* 2004; 23: 67–76.

76. Deng YQ, Zhang NN, Li CF, et al. Adenosine analog NITD008 is a potent inhibitor of Zika virus. *Open Forum Infect Dis* 2016; 3: ofw175.

77. Lo MK, Shi PY, Chen YL, et al. In vitro antiviral activity of adenosine analog NITD008 against tick borne flaviviruses. *Antiviral Res* 2016; 130: 46–49.

78. McGuigan C, Serpi M, Slusarczyk M, et al. Antiflavivirus activity of different tritylated pyrimidine and purine nucleoside analogues. *Chem Open* 2016; 5: 227–235.

79. Klumpp K, Leveque V, Le Pogam S, et al. The novel nucleoside analog R1479 (4'-azidocytidine) is a potent inhibitor of NS5B-dependent RNA synthesis and hepatitis C virus replication in cell culture. *J Biol Chem* 2006; 281: 3793–3799.

80. Klumpp K, Kalayanov G, Ma H, et al. Deoxy-4'-azido nucleoside analogs are highly potent inhibitors of hepatitis C virus replication despite the lack of 2'-alpha-hydroxyl groups. *J Biol Chem* 2008; 283: 2167–2175.

81. Smith DB, Kalayanov G, Sund C, et al. The design, synthesis, and antiviral activity of 4'-azidocytidine analogues against hepatitis C virus replication: the discovery of 4'-azidodeoxyarabinocytidine. *J Med Chem* 2009; 52: 219–223.

82. Hotard AL, He B, Nichol ST, et al. 4'-Azidocytidine (R1479) inhibits henipaviruses and other paramyxoviruses with high potency. *Antiviral Res* 2017; 144: 147–152.

83. Nguyen NM, Tran CNB, Phung LK, et al. A randomized, double-blind placebo controlled trial of balapiravir, a polymerase inhibitor, in adult dengue patients. *J Infect Dis* 2013; 207: 1442–1450.

84. Chen YL, Ghafar NA, Karuna R, et al. Activation of peripheral blood mononuclear cells by Dengue virus infection potentiates balapiravir. *J Virol* 2014; 88: 1740–1747.

85. Rondia R, Coats SJ, McBraye TR, et al. Anti-hepatitis C virus activity of novel beta-D-2'-C-methyl-4'-azido pyrimidine nucleoside phosphoramidate prodrugs. *Antivir Chem Chemother* 2009; 20: 99–106.

86. Nilsson M, Kalayanov G, Winqvist A, et al. Discovery of 4'-azido-2'-deoxy-2'-C-methyl cytidine and prodrugs thereof: a potent inhibitor of hepatitis C virus replication. *Bioorg Med Chem Lett* 2012; 22: 3265–3268.

87. Taylor R, Kotian P, Warren T, et al. BCX4430-A broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease. *J Infect Public Health* 2016; 9: 220–226.

88. De Clercq E. C-nucleosides to be revisited. *J Med Chem* 2016; 59: 2301–2311.

89. Warren TK, Wells J, Panchal RG, et al. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. *Nature* 2014; 508: 402–405.

90. Eyer L, Zouharova D, Sirmarova J, et al. Antiviral activity of the adenosine analogue BCX4430 against West Nile virus and tick-borne flaviviruses. *Antiviral Res* 2017; 142: 63–67.

91. Julander JG, Siddharthan V, Evans J, et al. Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. *Antiviral Res* 2017; 137: 14–22.

92. Julander JG, Bantia S, Taubenheim BR, et al. BCX4430, a novel nucleoside analog, effectively treats yellow fever in a hamster model. *Antimicrob Agents Chemother* 2014; 58: 6607–6614.

93. Julander JG, Furuta Y, Shafer K, et al. Activity of T-1106 in a hamster model of yellow fever virus infection. *Antimicrob Agents Chemother* 2007; 51: 1962–1966.

94. Julander JG, Shafer K, Smeke DF, et al. Activity of T-705 in a hamster model of yellow fever virus infection in
comparison with that of a chemically related compound, T-1106. Antimicrob Agents Chemother 2009; 53: 202–209.

95. Julander J, Shafer K, Smee D, et al. Efficacy of T-1106 or T-705, alone or in combination with ribavirin, in the treatment of hamsters infected with yellow fever virus. Antiviral Res 2008; 78: A34.

96. Wu R, Smidansky ED, Oh HS, et al. Synthesis of a 6-methyl-7-deaza analogue of adenosine that potently inhibits replication of polio and Dengue viruses. J Med Chem 2010; 53: 7958–7966.

97. Angusti A, Manfredini S, Durini E, et al. Design, synthesis and anti Flaviviridae activity of N-6-, 5',3'-O- and 5',2'-O-substituted adenine nucleoside analogs. Chem Pharm Bull 2008; 56: 423–432.

98. Morrey JD, Taro BS, Siddharthan V, et al. Efficacy of orally administered T-705 pyrazine analog on lethal West Nile virus infection in rodents. Antiviral Res 2008; 80: 377–379.

99. Drenichev MS, Oslovsky VE, Sun L, et al. Modification of the length and structure of the linker of N-6-benzyladenosine modulates its selective antiviral activity against enterovirus 71. Eur J Med Chem 2016; 111: 84–94.

100. Tararov VI, Tijmsa A, Kolychkina SV, et al. Chemical modification of the plant isoprenoid cytokinin N-6-isopentenyladenosine yields a selective inhibitor of human enterovirus 71 replication. Eur J Med Chem 2015; 90: 406–413.

101. Orlov AA, Chistov AA, Kozlovskaya LI, et al. Rigid amphipathic nucleosides suppress reproduction of the tick-borne encephalitis virus. Med Chem Commun 2016; 7: 495–499.

102. Chatelain G, Debing Y, De Burghgraeve T, et al. In search of flavivirus inhibitors: evaluation of different tritylated nucleoside analogues. Eur J Med Chem 2013; 65: 249–255.

103. De Burghgraeve T, Selisko B, Kaptein S, et al. 3',5' Di-O-trityluridine inhibits in vitro flavivirus replication. Antiviral Res 2013; 98: 242–247.

104. Saudil M, Zmurchko J, Kaptein S, et al. In search of flavivirus inhibitors part 2: tritylated, diphenylmethylated and other alkylated nucleoside analogues. Eur J Med Chem 2014; 76: 98–109.

105. Koonin EV and Dolja VV. Evolution taxonomy of positive-strand RNA viruses – implications of comparative-analysis of amino-acid-sequences. Crit Rev Biochem Mol Biol 1993; 28: 375–430.

106. Cleaves GR and Dubin DT. Methylation status of intracellular dengue type-2 40S RNA. Virology 1979; 96: 159–165.

107. Dong H, Fink K, Zuest R, et al. Flavivirus RNA methylation. J Gen Virol 2014; 95: 763–778.

108. Chung KY, Dong HP, Chao AT, et al. Higher catalytic efficiency of N-7-methylation is responsible for processive N-7 and 2'-O methyltransferase activity in dengue virus. Virology 2010; 402: 52–60.

109. Lim SP, Wen DY, Yap TL, et al. A scintillation proximity assay for dengue virus NS5 2'-O-methyltransferase-kinetic and inhibition analyses. Antiviral Res 2008; 80: 360–369.

110. Lim SP, Sonntag LS, Noble C, et al. Small molecule inhibitors that selectively block dengue virus methyltransferase. J Biol Chem 2011; 286: 6233–6240.

111. Chen H, Liu L, Jones SA, et al. Selective inhibition of the West Nile virus methyltransferase by nucleoside analogs. Antiviral Res 2013; 97: 232–239.

112. Yates MK, Raje MR, Chatterjee P, et al. Flex-nucleoside analogues – novel therapeutics against filoviruses. Bioorg Med Chem Lett 2017; 27: 2800–2802.

113. Peters HL, Jochmans D, de Wilde AH, et al. Design, synthesis and evaluation of a series of acyclic fleximer nucleoside analogues with anti-coronavirus activity. Bioorg Med Chem Lett 2015; 25: 2923–2926.

114. Seley KL, Zhang L, Hagos A, et al. “Fleximers”. Design and synthesis of a new class of novel shape-modified nucleosides. J Org Chem 2002; 67: 3365–3373.

115. Seley KL, Quirk S, Salim S, et al. Unexpected inhibition of S-adenosyl-L-homocysteine hydrolase by a guanosine nucleoside. Bioorg Med Chem Lett 2003; 13: 1985–1988.

116. Quirk S and Seley KL. Substrate discrimination by the human GTP fucose pyrophosphorylase. Biochemistry 2005; 44: 10854–10863.

117. Gallinari P, Brennan D, Nardi C, et al. Multiple enzymatic activities associated with recombinant NS3 protein of hepatitis C virus. J Virol 1998; 72: 6758–6769.

118. Hodgman TC. A new superfamily of replicative proteins. Nature 1988; 333: 22–23.

119. Kim JL, Morgenstern KA, Griffith JP, et al. Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure 1998; 6: 89–100.

120. Yao NH, Hesson T, Cable M, et al. Structure of the hepatitis C virus RNA helicase domain. Nat Struct Biol 1997; 4: 463–467.

121. Tai CL, Chi WK, Chen DS, et al. The helicase activity associated with hepatitis C virus nonstructural protein 3 (NS3). J Virol 1996; 70: 8477–8484.

122. Bremer M, Bieger A, Kopańska K, et al. Synthesis and biological activity of 1H-benzotriazole and 1H-benzimidazole analogues – inhibitors of the NTpase/helicase of HCV and of some related Flaviviridae. Antivir Chem Chemother 2005; 16: 315–326.

123. Borowski P, Kuehl R, Mueller O, et al. Biochemical properties of a minimal functional domain with ATP-binding activity of the NTpase/helicase of hepatitis C virus. Eur J Biochem 1999; 266: 715–723.

124. Borowski P, Lang M, Niebuhr A, et al. Inhibition of the helicase activity of HCV NTpase/helicase by 1-beta-D-ribos furanosyl-1,2,4-triazole-3-carboxamide-5'-O-fluorophosphate (ribavirin-TP). Acta Biochim Pol 2001; 48: 739–744.

125. Borowski P, Mueller O, Niebuhr A, et al. ATP-binding domain of NTpase/helicase as a target for hepatitis C antiviral therapy. Acta Biochim Pol 2000; 47: 173–180.

126. Breiten M, Schalinski S, Borowski P, et al. 5'-O-fluorosulfonylbenzoyl esters of purine nucleosides as potential
inhibitors of NTPase/helicase and polymerase of Flaviviridae viruses. *Nucleosides Nucleotides Nucleic Acids* 2003; 22: 1531–1533.

127. Bretner M, Schalinski S, Haag A, et al. Synthesis and evaluation of ATP-binding site directed potential inhibitors of nucleoside triphosphatases/helicases and polymerases of hepatitis C and other selected Flaviviridae viruses. *Antivir Chem Chemother* 2004; 15: 35–42.

128. Eriksson B, Helgstrand E, Johansson NG, et al. Inhibition of influenza-virus ribonucleic-acid polymerase by ribavirin triphosphate. *Antimicrob Agents Chemother* 1977; 11: 946–951.

129. Crotty S, Cameron CE and Andino R. RNA virus error catastrophe: direct molecular test by using ribavirin. *Proc Natl Acad Sci USA* 2001; 98: 6895–6900.

130. Graci JD and Cameron CE. Quasispecies, error catastrophe, and the antiviral activity of ribavirin. *Virology* 2002; 298: 175–180.

131. Li CQ, Guillen J, Rabah N, et al. mRNA capping by Retromer in neural cells. *J Infect Dis* 2010; 192: 1814–1817.

132. Hultgren C, Milich DR, Weiland O, et al. The antiviral compound ribavirin modulates the T helper (Th1)/Th2 subset balance in hepatitis C and virus-specific immune responses. *J Gen Virol* 1998; 79: 2381–2391.

133. Jordan I, Briese T, Fischer N, et al. Ribavirin inhibits West Nile virus replication and cytopathic effect in neural cells. *J Infect Dis* 2000; 182: 1214–1217.

134. McDowell M, Gonzales SR, Kumarapparamu SC, et al. A novel nucleoside analog, 1-beta-D-ribofuranosyl-3-ethyl-2,4-triazole (ETAR), exhibits efficacy against a broad range of flaviviruses in vitro. *Antiviral Res* 2010; 87: 78–80.

135. Malinoski FJ, Hasty SE, Ussery MA, et al. Prophylactic ribavirin treatment of dengue type-1 infection in rhesus-monkeys. *Antiviral Res* 1990; 13: 139–150.

136. Gabrielsen B, Phelan MJ, Barthelrosa L, et al. Synthesis and antiviral evaluation of N-carboxamidine-substituted analogs of 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide hydrochloride. *J Med Chem* 1992; 35: 3231–3238.

137. Crutcher WA and Moschella SL. Double-blind controlled crossover high-dose study of azaribine in psoriasis. *Br J Dermatol* 1975; 92: 199–205.

138. Dukhan D, Leroy F, Peyronnet J, et al. Synthesis of 5-aza-7-deazaguanine nucleoside derivatives as potential anti-flavivirus agents. *Nucleosides Nucleotides Nucleic Acids* 2005; 24: 671–674.

139. Korshun VA, Prokhorenko IA, Gontarev SV, et al. New pyrene derivatives for fluorescent labeling of oligonucleotides. *Nucleosides Nucleotides Nucleic Acids* 1997; 16: 1461–1464.

140. Korshun VA, Manasova EV, Balakin KV, et al. New fluorescent nucleoside derivatives – 5-alkynylated 2’-deoxyuridines. *Nucleosides Nucleotides Nucleic Acids* 1998; 17: 1809–1812.

141. Skorobogatyi MV, Malakhov AD, Pchelintseva AA, et al. Fluorescent 5-alkynyl-2’-deoxyuridines: high emission efficiency of a conjugated perylene nucleoside in a DNA duplex. *ChemBiochem* 2006; 7: 810–816.

142. Jordan AA, Ray AS, Hanes J, et al. Toxicity of anti-hepatitis B virus resistance to direct-acting antiviral agents. *Antiviral Res* 2014; 88: 1849–1853.

143. Li FJ, Maag H and Alfredson T. Prodrugs of nucleoside analogues for improved oral absorption and tissue targeting. *J Pharm Sci* 2008; 97: 1109–1134.

144. Hecker SJ and Erion MD. Prodrugs of phosphates and phosphonates. *J Med Chem* 2008; 51: 2328–2345.

145. Lane AN and Fan TWM. Regulation of mammalian nucleotide metabolism and biosynthesis. *Nucleic Acids Res* 2015; 43: 2466–2485.

146. Johnson AA, Ray AS, Hanes J, et al. Toxicity of anti-HCV compound ribavirin modulates the T helper (Th1)/Th2 subset balance in hepatitis C and virus-specific immune responses. *J Gen Virol* 1998; 79: 2381–2391.

147. Menendez-Arias L, Alvarez M and Pacheco B. Nucleoside/nucleotide analogues for improved oral absorption and tissue targeting. *Antiviral Ther* 2007; 12: H15–H23.
158. Becher F, Landman R, Mboup S, et al. Monitoring of didanosine and stavudine intracellular trisphosphorylated anabolite concentrations in HIV-infected patients. *AIDS* 2004; 18: 181–187.

159. Gao WY, Shirasaka T, Johns DG, et al. Differential phosphorylation of azidothymidine, dideoxycytidine, and dideoxyinosine in resting and activated peripheral-blood mononuclear-cells. *J Clin Invest* 1993; 91: 2326–2333.

160. Kohler JJ and Lewis W. A brief overview of mechanisms of mitochondrial toxicity from NRTIs. *Environ Mol Mutagen* 2007; 48: 166–172.

161. Maurer HH. Screening procedures for simultaneous detection of several drug classes used for high throughput toxicological analyses and doping control. A review. *Comb Chem High Throughput Screen* 2000; 3: 467–480.

162. Mckim JM. Building a tiered approach to in vitro predictive toxicity screening: a focus on assays with in vivo relevance. *Comb Chem High Throughput Screen* 2010; 13: 188–206.

163. Szymanski P, Markowicz M and Mikiciuk-Olasik E. Adaptation of high-throughput screening in drug discovery-toxicological screening tests. *Int J Mol Sci* 2012; 13: 427–452.

164. Adachi A and Miura T. Animal model studies on viral infections. *Front Microbiol* 2014; 5: 672.

165. Dowall SD, Graham VA, Rayner E, et al. A susceptible mouse model for Zika virus infection. *PLoS Negl Trop Dis* 2016; 10: e0004658.

166. Zompi S and Harris E. Animal models of Dengue virus infection. *Viruses* 2012; 4: 62–82.

167. Lee YR, Huang KJ, Lei HY, et al. Suckling mice were used to detect infectious dengue-2 viruses by intracerebral injection of the full-length RNA transcript. *Intervirology* 2005; 48: 161–166.

168. Sarathy VV, White M, Li L, et al. A lethal murine infection model for Dengue Virus 3 in AG129 mice deficient in type I and II interferon receptors leads to systemic disease. *J Virol* 2015; 89: 1254–1266.

169. Zellweger RM and Shresta S. Mouse models to study dengue virus immunology and pathogenesis. *Front Immunol* 2014; 5: 151.

170. Chan JFW, Zhang AJ, Chan CCS, et al. Zika virus infection in dexamethasone-immunosuppressed mice demonstrating disseminated infection with multi-organ involvement including orchitis effectively treated by recombinant type I interferons. *EBioMedicine* 2016; 14: 112–122.

171. McArthur MA, Suderman MT, Mutebi JP, et al. Molecular characterization of a hamster viscerotrophic strain of yellow fever virus. *J Virol* 2003; 77: 1462–1468.

172. Govero J, Esakky P, Scheaffer SM, et al. Zika virus infection damages the testes in mice. *Nature* 2016; 540: 438–442.

173. Gubler D, Kuno G and Markoff L. Flaviviruses In: Knipe DM and Howley PM (eds) *Fields virology*. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2007, pp.1153–1253.

174. Carey I and Harrison PM. Monotherapy versus combination therapy for the treatment of chronic hepatitis B. *Expert Opin Investig Drug* 2009; 18: 1655–1666.

175. Wong GLH, Wong VWS and Chan HLY. Combination therapy of interferon and nucleotide/nucleoside analogues for chronic hepatitis B. *J Viral Hepat* 2014; 21: 825–834.

176. Su TH and Liu CJ. Combination therapy for chronic hepatitis B: current updates and perspectives. *Gut Liver* 2017; 11: 590–603.