Review Article

Genetics of Nonsyndromic Congenital Hearing Loss

Oguz Kadir Egilmez and M. Tayyar Kalcioglu

Department of Otorhinolaryngology, Faculty of Medicine, Istanbul Medeniyet University, 34722 Istanbul, Turkey

Correspondence should be addressed to M. Tayyar Kalcioglu; mtkalcioglu@hotmail.com

Received 14 December 2015; Accepted 19 January 2016

Academic Editor: Zhijun Duan

Copyright © 2016 O. K. Egilmez and M. T. Kalcioglu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Congenital hearing impairment affects nearly 1 in every 1000 live births and is the most frequent birth defect in developed societies. Hereditary types of hearing loss account for more than 50% of all congenital sensorineural hearing loss cases and are caused by genetic mutations. HL can be either nonsyndromic, which is restricted to the inner ear, or syndromic, a part of multiple anomalies affecting the body. Nonsyndromic HL can be categorised by mode of inheritance, such as autosomal dominant (called DFNA), autosomal recessive (DFNB), mitochondrial, and X-linked (DFN). To date, 125 deafness loci have been reported in the literature: 58 DFNA loci, 63 DFNB loci, and 4 X-linked loci (http://hereditaryhearingloss.org/) [6].

Many genes are involved in inner-ear function, and the ear is very sensitive to mutations in genetic loci. This is because the physiology and structure of the inner ear are unique and unlike other anatomical locations. Mutations in genes that control the adhesion of hair cells, intracellular transport, neurotransmitter release, ionic homeostasis, and cytoskeleton of hair cells can lead to malfunctions of the cochlea and inner ear.

1. Introduction

Hearing loss (HL) is a common disorder, and congenital hearing impairment affects nearly 1 in every 1000 live births; it is one of the most distressing disorders and the most frequent birth defect in developed societies [1]. Hearing impairment affects speech development, language acquisition, and education in children and, as a result, often leads to decreased opportunities in work life as those with hearing loss move to isolating themselves from society. In the US, it is estimated that the social costs of untreated hearing loss over the course of a lifetime can reach up to $11 million for every untreated person [2]. These costs could be decreased by 75 percent with early intervention and treatment [3].

Hereditary hearing loss accounts for almost 50% of all congenital sensorineural hearing loss cases, and it is caused by genetic mutations [4]. Deafness can be the result of a mutation in a single gene or a combination of mutations of different genes; it can also be a result of environmental causes such as trauma, medications, medical problems, and environmental exposure or the result of an association between environmental factors and genetics [5].

HL can be either nonsyndromic, which is restricted to the inner ear, or syndromic, a part of multiple anomalies affecting the body. Nonsyndromic HL can further be categorised by its mode of inheritance. Approximately 20% of nonsyndromic sensorineural hearing loss (NSSHHL) is inherited as autosomal dominant, which is also referred to as DFNA; this type of hearing loss is usually delayed onset. Eighty percent of inherited HL is autosomal recessive (DFNB), in which hearing loss is generally congenital, but some forms may emerge later in life. The inheritance of the remaining types of HL is either mitochondrial or X-linked (DFN) (less than 1 percent) [2]. To date, 125 deafness loci have been reported in the literature: 58 DFNA loci, 63 DFNB loci, and 4 X-linked loci (http://hereditaryhearingloss.org/) [6].
In recent years, with the increase in studies of genes involved in congenital hearing loss, genetic counselling and treatment options have emerged and increased in availability. In diagnostic tests, genes that are common causes of hearing loss, such as GJB2, GJB6, SLCO26A4, and OTOF, are frequently involved [7]. The results of these tests can be used when counselling parents about the prognosis of a child’s hearing loss, predicting recurrence in the future offspring and taking into consideration therapeutic options like cochlear implantation [2]. In recent studies, some viral vectors were delivered into the inner ear to replace the normal copy of the gene with the defective gene causing hearing loss. In an animal study, an adenovirus-delivered SLC17A8 (VGLUT-3; vesicular glutamate transporter 3) was found to restore hearing in the mice. In another study, hair cell development and regeneration were induced by delivering the ATOH1 gene [8, 9].

This minireview has presented an overview and described the currently known genes associated with nonsyndromic congenital hearing loss and mutations that cause dysfunctional proteins in the inner ear (Table 1).

2. Genes and Proteins Related to Nonsyndromic Hearing Loss

2.1. Adhesion Proteins. The stereocilia of hair cells in the cochlea are linked and interconnected to the tectorial membrane by different adhesion proteins. Hair bundles are stabilized by a set of temporary links such as transient lateral links and ankle links. These links also induce growth and maturation with signalling complexes [10]. In mature hair cells, stereocilia are connected by tectorial attachment crowns, horizontal top connectors, and tip links [2]. To date, several genes related to the linking apparatus have been reported. These are DFNA4 (CEACAM16 (carcinogenic antigen-related cell adhesion molecule 16)) [11], DFNB12 (CDH23 (cadherin 23)) [12], DFNB16 (STRC (stereocilin)) [13], DFNB18 (USH2C (harmonin)) [14, 15], DFNB22 (OTOA (otoacorin)) [16], DFNB23 (PCDH15 (protocadherin 15)) [17], DFNB31 (WHRN (whirlin)) [18], DFNB66/67 (TMHS (tetraspan membrane protein)) [19], and DFNB84 (PTPRQ (tyrosine phosphate receptor Q)) [20].

The PTPRQ and TMHS genes, as well as cadherin 23 and protocadherin 15, are parts of the transient lateral link. During development, they prevent the fusion of each stereocilium themselves [2]. In mature hair cells, they become the main parts of the tip link and act as a gate, channeling mechanotransduction and providing stability, taking a central role in auditory function [21].

Whirlin and harmonin regulate the link complexes and serve as scaffolding proteins. Mutations in these proteins cause autosomal recessive type hearing loss, but Sans, which is a third scaffolding protein, is related to a complex syndromic hearing loss, Usher syndrome. The other genes, USH2α and VLGR1b, are also associated with Usher syndrome, and they are part of the stereociliary ankle link [22].

Stereocilin is an extracellular matrix protein that attaches the tallest stereocilia of the outer hair cells to the tectorial membrane [13]. The attachment site of this tectorial membrane is generally formed by CEACAM16. In a similar way, otoancrin also attaches nonsensory cells to the tectorial membrane [16].

2.2. Transport Proteins. In the inner ear, all parts of the myosin family can be used for the transportation of different proteins. When using ATP, these myosin proteins bind to the actin cytoskeleton and move forward. Binding sites for carried proteins are on the carboxyl-terminal tails of the transport proteins [23]. The myosins related to hereditary hearing loss are myosin la (DFNA48) [24], myosin IIa (DFNB30) [25], myosin VI (DFNA22/DFNB37) [26, 27], myosin VIIa (DFNA11/DFNB2) [28, 29], nonmuscle myosin heavy chain IX (DFNA17) [30], nonmuscle myosin heavy chain XIV (DFNA4) [31], and myosin XV (DFNB3) [32]. They all have their own unique functions in the inner-ear hair cells [2].

2.3. Proteins of Synapses. VGLUT3, which is a vesicular glutamate receptor, plays a role in the inner hair cells’ synapses. It is encoded by SLC17A8 in the DFNA25 locus and related to autosomal recessive hearing loss [33]. This protein regulates both the exocytosis and the endocytosis of glutamate. Otoferlin (encoded by OTOF) is a protein that works with myosin VI at the synaptic cleft of the inner hair cell and plays a role in the calcium-dependent fusion of vesicles to the plasma membrane. As a result, glutamate is released and the afferent neuron is excited [34]. In an animal study with OTOF and SLC17A8 knockout mice, there was a reduction in the number of postsynaptic ganglion cells, and it was concluded that these proteins are very important for the preservation and development of normal hearing [35].

2.4. Electromotility. The cochlea is sensitive and selective to sounds delivered by the outer hair cells. This is introduced with a process called electromotility, and a protein called Prestin is thought to be responsible for this [2]. It changes the membrane’s potential and enables the outer hair cell length to be altered. When this occurs, the outer hair cell becomes longer upon hyperpolarization and shorter upon depolarization, so it amplifies its sensitivity to the sound [36]. This protein is encoded as SLC26A5 and was first described by Zheng et al. in 2000 [37]. Mutations in SLC26A5 are the cause of DFNB61 hearing loss [38].

2.5. Cytoskeleton. Mutations in some genes associated with the organisation of the cytoskeleton can cause NSSHL; these are ESPN (espin), RDX (radixin), TROBP (trio-binding protein), ACTG1 (diaphanous), and SMPX (small muscle protein, X-linked).

The protein espin provides stability to the stereocilial cytoskeleton. A mutation in ESPN can cause DFNB36 and autosomal dominant hearing loss [39]. More stereocilia stability can be achieved with radixin. It links actin filaments to the plasma membrane and presents along the stereocilia. Mutations in RDX can cause DFNB24 and autosomal recessive deafness [40]. γ-actin acts as a building block for the stereocilia of hair cells. These stereocilia are constantly undergoing depolymerisation at the base and
Table 1: Genes related with nonsyndromic hearing loss.

Locus	Gene	Chromosomal localization	Type of inheritance	Protein	Function	Reference
DFNA1	DIAPH1	5q31	AD	Diaphanous 1	Actin polymerisation (cytoskeleton)	[44]
DFNA2A	RCNQ4	1p34	AD	KCNQ4	Voltage-gated K+ channel (ion haemostasis)	[51]
DFNA2B	GJB3 (Cx31)	1p34	AD	Connexin 31	Gap junction (ion haemostasis)	[57]
DFNA3A	GJB2 (Cx26)	13q12	AD	Connexin 26	Gap junction (ion haemostasis)	[54]
DFNA3B	GJB6 (Cx30)	13q12	AD	Connexin 30	Gap junction (ion haemostasis)	[55]
DFNA4	MYH14	19q13	AD	Nonmuscle myosin heavy chain XIV	Transport	[31]
DFNA4	CAECAM16	19q13	AD	Carcinogenic antigen-related cell adhesion molecule 16	TM attachment crown (adhesion)	[11]
DFNA8/12	TECTA	11q22-24	AD	A-tectorin	Stability and structure of TM (ECM)	[28]
DFNA9	COCH	14q12-q13	AD	Cochlin	Structure of spiral limbus	[30]
DFNA10	EYA4	6q22-q23	AD	Eyes absent 4	Regulation of transcription (transcription factor)	[42]
DFNA11	MYO7A	11q12.3-q12	AD	Myosin VII	Transport	[43]
DFNA13	COLHIA2	6p21	AD	Type I collagen α2	Stability and structure of TM (ECM)	[36]
DFNA15	POU3F4	5q31	AD	Class 3 POU	Regulation of transcription (transcription factor)	[35]
DFNA17	MYH9	22q	AD	Nonmuscle myosin heavy chain IX	Transport	[24]
DFNA20/26	ACTG1	17q25	AD	y-actin	Building cytoskeleton (cytoskeleton)	[50,56]
DFNA22	MYO6	6q13	AD	Myosin VI	Regulation of exocytosis, anchoring stereocilia (cytoskeleton)	[29]
DFNA25	SLC17A8	12q21-24	AD	VGLUT-3	Regulation of exocytosis and endocytosis of glutamate (transport)	[32]
DFNA28	TPC2L3	8q22	AD	Transcription factor CP2-like 3	Regulation of transcription (transcription factor)	[52]
DFNA48	MYO1A	12q13-q14	AD	Myosin la	Transport	[34]
DFNA50	MIR96	7q32	AD	MicroRNA96	Regulation of transcription (transcription factor)	[12]
DFNA51	TJP2	9q31.3-3q4.3	AD	Tight junction protein 2	Cell cycle signaling, binding tight junctions to membrane	[13]
DFNA56	TNC	9q31.3-3q4.3	AD	Tenascin-C	Stability and structure of TM (ECM)	[14]
DFNA64	SMAC/DIABLO	12q24.31-12q24.32	AD	Activator of Caspase/Direct Inhibitor of Apoptosis protein Binding protein with a low pI	Cell cycle signaling	[15]
DFNA65	TBCID24	16p13.3	AD	Tbc1 domain family, member 24	Encoding a GTPase-activating protein expressed in the cochlea	[16,17]
DFNA67	OSBPL2	20q13.2-2q13.33	AD	Oxyysterol-binding Protein-like Protein 2	Intracellular transport of lipids, particularly oxyysterol (transport)	[40,45]
DFNB1A	GJB2 (Cx26)	13q11-q12	AR	Connexin 26	Gap junction (ion haemostasis)	[13]
DFNB1B	GJB6 (Cx30)	13q12	AR	Connexin 30	Gap junction (ion haemostasis)	[49]
Locus	Gene	Chromosomal localization	Type of inheritance	Protein	Function	Reference
----------	-------	--------------------------	---------------------	----------------------------------	---	-----------
DFN62	MYO7A	11q	AR	Myosin VIIa	Transport	[25, 43]
DFN63	MYO15A	17p12.2	AR	Myosin Xv	Transport	[18]
DFN64	SLC26A4	7q31	AR	Pendrin	Acid-base balance of endolymph (ion haemostasis)	[39]
DFN69	OTOF	2p23-p22	AR	Otoferlin	Fusion of synaptic vesicles with Ca\(^{2+}\) (transport)	[38]
DFN62	CDH23	10q21-q22	AR	Cadherin 23	Lateral and tip link (adhesion)	[19]
Modifier of DFN62	ATP2b2/PMCA2	1p32.3	AR	ATP2b2	ATP dependent Ca\(^{2+}\) pump	[53]
DFN16	STRC	15q15	AR	Sterocilin	TM attachment links (adhesion)	[20]
DFN18	USHIC	11p5.1	AR	Harmonin	Scaffolding protein (adhesion)	[48, 58]
DFN21	TECTA	11q22-q24	AR	α-tectorin	Stability and structure of TM (ECM)	[10]
DFN22	OTOA	16p12.2	AR	Otonocorin	TM attachment to nonsensory cells (adhesion)	[21]
DFN23	PCDH15	10q21-q22	AR	Protocadherin 15	Lateral and tip link (adhesion)	[22]
DFN24	RDX	11q23	AR	Radixin	Actin binding to plasma membrane (cytoskeleton)	[23]
DFN28	TRIOBP	2q13.1	AR	Trio-binding protein	Actin binding and organisation (cytoskeleton)	[27, 35]
DFN29	CLDNH	2q22.3	AR	Claudin 14	Tight junction (ion haemostasis)	[36]
DFN30	MYO3A	10p11.1	AR	Myosin IIIa	Transport	[37]
DFN31	WHRN	9q32-q34	AR	Whirlin	Scaffolding protein (adhesion)	[44]
DFN35	ESRRB	14q21.1-q24.3	AR	Oestrogen-related receptor β	Regulation of transcription (transcription factor)	[47]
DFN36	ESPN	1p36.3-p36.1	AR	Espin	Actin crosslinking and bundling (cytoskeleton)	[59]
DFN37	MYO6	6q13	AR	Myosin VI	Regulation of exocytosis, stereocilia anchoring (transport)	[60]
DFN49	TRIC	5q23.3-q41.1	AR	Tricellulin	Tight junction (ion haemostasis)	[53]
DFN53	COLIIA2	6p21.3	AR	Type XI collagen α2	Stability and structure of TM (ECM)	[61]
DFN61	SLC26A5	6p21.3	AR	Prestin	Electromotility	[62]
DFN67	TMHS	6p21.3	AR	Tetraspan membrane protein	Transient link (adhesion)	[63]
DFN73	RSN D	9q34.3	AR	Barttin	K\(^{+}\) channel maturation and trafficking (ion haemostasis)	[64]
DFN79	TPRN	9q34.3	AR	Taperin	Actin regulation (cytoskeleton)	[65]
DFN84	PTPRO	12q21.31-q21.2	AR	Protein tyrosine phosphate receptor Q	Transient link (adhesion)	[66]
DFN91	QR3	6p25	AR	Connexin 3l	Gap junction (ion haemostasis)	[67]
DFN93	C4BP2	1q31.2	AR	Calcium-binding protein 2	(ion haemostasis)	[68]
DFN94	NARS2	1q14.1	AR	Asparaginyl-t-RNA synthetase 2	(transport)	[69]
DFN97	MET	7q11.2	AR	MET protooncogene	Cell-surface receptor for hepatocyte growth factor (adhesion)	[70]
DFN98	TSPEAR	2q22.3	AR	Thrombospondin-type lamin g domain and ear repeats	Cell permeabilization (transport)	[71]
DFN99	TEMEM32E	17q12	AR	Transmembrane protein 132e	Extracellular receptor	[72]
DFN101	CRXCR2	5q32	AR	Glutaredoxin, cysteine-rich 2	Organisation of stereocilia (adhesion)	[73]
DFN102	EPS8	12p12.3	AR	Epidermal growth factor receptor pathway substrate 8	Regulating Rac-specific GEF activity (transcription factor)	[74]
Locus	Gene	Chromosomal localization	Type of inheritance	Protein	Function	Reference
-----------	------------	--------------------------	---------------------	--	---	-----------
DFNB103	CLIC5	6p21.1	AR	Chloride intracellular channel 5	(ion haemostasis)	[75]
	FAM65B	6p22.3	AR	Family with sequence similarity 65, member b	(Cytoskeleton)	[76]
Usher syndrome	SANS/USH1G	17q24.25	AR	SANS	Scaffolding protein (adhesion)	[77]
Usher syndrome	USH2A	1q41	AR	Usherin	Ankle link (adhesion)	[78]
Usher syndrome	VLGR1B	AR		Very large G protein-coupled receptor 1	Ankle link (adhesion)	[79]
DFN2	PRPS1	Xq22.3	X-linked	Phosphoribosylpyrophosphate synthetase 1	Purine and pyrimidine biosynthesis	[80]
DFN3	POU3F4	Xq21	X-linked	Class 3 POU	Regulation of transcription (transcription factor)	[81]
DFN6	SMPX	Xp21.2	X-linked	Small muscle protein X-linked	Stereocilial development and maintenance (cytoskeleton)	[82]
DFNX6	COL4A6	Xq22.3	X-linked	Collagen, type IV, alpha-6	Stability and structure of TM (ECM)	[83]

DFN = nonsyndromic deafness, autosomal dominant; DFNB = nonsyndromic deafness, autosomal recessive; AD = autosomal dominant; AR = autosomal recessive; TM = tectorial membrane; ECM = extracellular matrix; Ca^{2+} = calcium ion; K^+ = potassium ion.
actin polymerisation at the tip [41]. Mutations in ACTG1 can cause DFNA20/26 and autosomal dominant hearing loss [42, 43]. Via a constant remodelling process, other proteins are also important for continuity. Diaphanous 1 regulates the reorganisation and polymerisation of actin monomers into polymers. It is encoded as DIAPH1, and mutations in this gene can cause DFNA1 and autosomal dominant hearing loss [44]. The binding and organisation of γ-actin at the base of stereocilia are provided by two isoforms of the TRIOBP gene. Mutations in isoforms that are TRIOBP4 and TRIOBP5 can cause DFNB28 and autosomal recessive type hearing loss [45, 46]. Another protein, taperin, is localised in the base of the stereocilia and associated with DFNB79 [47]. Small muscle protein X-linked, encoded as SMPX (DFN4), has a function in stereocilial development and maintenance in response to the mechanical stress to which stereocilia are subjected [48].

2.6. Ion Homeostasis and Gap Junctions. The cochlea has two types of fluids: perilymph, which is high in sodium and low in potassium, and endolymph, which is high in potassium and low in sodium; this condition makes a highly positive potential (+80 mV) called endocochlear potential. Potassium influx into the hair cells causes depolarisation and, after that, the hair cell depolarises and moves cations back into the endolymph. This ion homeostasis involves tight junction protein 2 (TJP2), tricellulin (MARVELD2/TRIC), claudin 14 (CLDN14), KCNQ4 (KCNQ4), Barttin (BSND), ATP2b2 (ATP2b2/PMCA2), some connexins (GJBs), and pendrin (SLC26A4), and they are all related to hereditary hearing loss [2].

In a mutation of CLDN14 in DFNB29, claudin 14 protein will be absent or dysfunctional, and the space of Nuel that surrounds the basolateral surface of outer hair cells is affected and might change its electrical potential [49]. Similarly, tricellulin, which is encoded as MARVELD2/TRIC, causes DFNB49 when mutated, and it is functioning as tight junction that connects the cells together [45]. Tight junction protein 2, encoded as the TJP2 gene, binds tight junctions to the actin cytoskeleton, and mutations cause DFNA5 and autosomal dominant type hearing loss [50].

KCNQ4 encodes a protein forming a voltage-gated potassium channel. It is expressed in outer hair cells and, if mutated, causes an autosomal dominant type HL, DFNA2a [51]. It aids in the repolarisation of outer hair cells and regulates the sensitivity to sound.

Barttin and pendrin, encoded as BSND and SLC26A4, respectively, are involved in both nonsyndromic and syndromic HL. Pendrin is an anion exchanger and plays a crucial role in the acid-base balance. Both syndromic (Pendred’s syndrome, associated with goiter) and nonsyndromic HL (DFNB4) are related to the extent of the mutation in SLC26A4 [52]. Barttin protein is one of the subunits of the chloride channel. Mostly, mutations in BSND can cause Bartter syndrome, associated with hearing loss and renal abnormalities, but DFNB73 has also been attributed to a mutation in BSND and causing nonsyndromic deafness [53].

A gap junction is a channel extending over two adjacent membranes that enables the exchange of various molecules and ions in the cochlea. These junctions are made up of proteins called connexins. These junctions also play a role in the recycling of potassium ions needed for normal hearing. It is the most common cause of nonsyndromic HL and was the first identified gene is GJB2; it is encoded as connexin 26 (DFNA3a/DFNB1a) [54]. Other connexins related to nonsyndromic HL are connexin 30 (GJB6, DFNA3b/DFNB1b) [55, 56] and connexin 31 (GJB3, DFNA2b/DFNB91) [57, 58].

2.7. Others. There are also extracellular matrix proteins, that is, TECTA (α-tectorin), COL11A2 (type XI collagen α2), and COCH (cochlin), and transcription factors, such as POU4f3 (class 4 POU), POU4f4 (class 3 POU), MIR96 (microRNA 96), GRHL2 (grainy-head-like 2), ESRRB (oestrogen-related receptor β), and EYA4 (eyes absent 4) involved in hereditary HL.

3. Conclusion

This review presents an overview and description of the currently known genes related to hereditary NSHL. The functions of these genes will be better understood with time, and more genes leading to hearing loss will be discovered soon. With new studies and continued examination, the function of the cochlea will be better understood, and novel molecular and gene therapies for human sensorineural HL will hopefully be developed.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] K. R. White, “Early hearing detection and intervention programs: opportunities for genetic services,” American Journal of Medical Genetics A, vol. 130, no. 1, pp. 29–36, 2004.

[2] F. Stelma and M. F. Bhutta, “Non-syndromic hereditary sensorineural hearing loss: review of the genes involved,” The Journal of Laryngology & Otology, vol. 128, no. 1, pp. 13–21, 2014.

[3] R. Keren, M. Helfand, C. Homer, H. McPhillips, and T. A. Lieu, “Projected cost-effectiveness of statewide universal newborn hearing screening,” Pediatrics, vol. 110, no. 5, pp. 855–864, 2002.

[4] R. J. H. Smith, J. F. Bale Jr., and K. R. White, “Sensorineural hearing loss in children,” The Lancet, vol. 365, no. 9462, pp. 879–890, 2005.

[5] X. M. Ouyang, D. Yan, H. J. Yuan et al., “The genetic bases for non-syndromic hearing loss among Chinese,” Journal of Human Genetics, vol. 54, no. 3, pp. 131–140, 2009.

[6] http://hereditaryhearingloss.org/.

[7] N. Hilgert, R. J. H. Smith, and G. Van Camp, “Forty-six genes causing nonsyndromic hearing impairment: which ones should be analyzed in DNA diagnostics?” Mutation Research/Reviews in Mutation Research, vol. 681, no. 2-3, pp. 189–196, 2009.

[8] O. Akil, R. P. Seal, K. Burke et al., “Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy,” Neuron, vol. 75, no. 2, pp. 283–293, 2012.

[9] L. R. Lustig and O. Akil, “Cochlear gene therapy,” Current Opinion in Neurology, vol. 25, no. 1, pp. 57–60, 2012.
[10] R. J. Goodyear, W. Marotti, C. J. Kros, and G. P. Richardson, "Development and properties of stereociliary link types in hair cells of the mouse cochlea," *Journal of Comparative Neurology*, vol. 485, no. 1, pp. 75–85, 2005.

[11] J. Zheng, K. K. Miller, T. Yang et al., "Carciinoembryonic antigen-related cell adhesion molecule 16 interacts with α-tectorin and is mutated in autosomal dominant hearing loss (DFNA4)," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 108, no. 10, pp. 4218–4223, 2011.

[12] J. M. Bork, L. M. Peters, S. Riazuddin et al., "Usher syndrome ID and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH123," *The American Journal of Human Genetics*, vol. 68, no. 1, pp. 26–37, 2001.

[13] E. Verpy, S. Masmoudi, I. Zwaenepoel et al., "Mutations in a new gene encoding a protein of the hair bundle cause nonsyndromic deafness at the DFNB16 locus," *Nature Genetics*, vol. 29, no. 3, pp. 345–349, 2001.

[14] Z. M. Ahmed, T. N. Smith, S. Riazuddin et al., "Nonsyndromic recessive deafness DFNB18 and usher syndrome type IC are allelic mutations of USH1C," *Human Genetics*, vol. 110, no. 6, pp. 527–531, 2002.

[15] X. M. Ouyang, D. Yan, L. L. Du et al., "Characterization of Usher syndrome type I gene mutations in an Usher syndrome patient population," *Human Genetics*, vol. 116, no. 4, pp. 292–299, 2005.

[16] I. Zwaenepoel, M. Mustapha, M. Leibovici et al., "Otoacinar, an inner ear protein restricted to the interface between the apical surface of sensory epithilia and their overlying acellular gels, is defective in autosomal recessive deafness DFNB22," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 99, no. 9, pp. 6240–6245, 2002.

[17] K. Verhoeven, L. Van Laer, K. Kirschhofer et al., "Mutations in the human α-tectorin gene cause autosomal dominant nonsyndromic hearing impairment," *Nat Genet.*, vol. 19, no. 1, pp. 60–62, 1998.

[18] N. G. Robertson, L. Lu, S. Heller et al., "Mutations in a novel cochlear gene cause DFNA9, a human nonsyndromic deafness with vestibular dysfunction," *Nature Genetics*, vol. 20, no. 3, pp. 299–303, 1998.

[19] S. Wayne, N. G. Robertson, F. DeClau et al., "Mutations in the transcriptional activator EYA4 cause late-onset deafness at the DFNA10 locus," *Human Molecular Genetics*, vol. 10, no. 3, pp. 195–200, 2001.

[20] Z. M. Ahmed, S. Riazuddin, J. Ahmad et al., "PCDH15 is expressed in the neurosensory epithelium of the eye and ear and mutant alleles are responsible for both USH1F and DFNB23," *Human Molecular Genetics*, vol. 12, no. 24, pp. 3215–3223, 2003.

[21] W. T. McGuirt, S. D. Prasad, A. J. Griffith et al., "Mutations in COL11A2 cause nonsyndromic hearing loss (DFNA15)," *Nature Genetics*, vol. 23, no. 4, pp. 413–419, 1999.

[22] O. Vahava, R. Morell, E. D. Lynch et al., "Mutation in transcription factor POU4F3 associated with inherited progressive hearing loss in humans," *Science*, vol. 279, no. 5358, pp. 1950–1954, 1998.

[23] P. Mburu, M. Mustapha, A. Varela et al., "Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31," *Nature Genetics*, vol. 34, no. 4, pp. 421–428, 2003.

[24] M. I. Shabbir, Z. M. Ahmed, S. Y. Khan et al., "Mutations of human TMHS cause recessively inherited non-syndromic hearing loss," *Journal of Medical Genetics*, vol. 43, no. 8, pp. 634–640, 2006.

[25] M. Schraders, J. Oostrik, P. L. M. Hyugen et al., "Mutations in PTPRQ are a cause of autosomal-recessive nonsyndromic hearing impairment DFNB84 and associated with vestibular dysfunction," *The American Journal of Human Genetics*, vol. 86, no. 4, pp. 604–610, 2010.

[26] P. Kazmierczak, H. Sakaguchi, J. Tokita et al., "Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells," *Nature*, vol. 449, no. 7158, pp. 87–91, 2007.

[27] N. Michalski, V. Michel, A. Bahloul et al., "Molecular characterization of the ankle-link complex in cochlear hair cells and its role in the hair bundle functioning," *The Journal of Neuroscience*, vol. 27, no. 24, pp. 6478–6488, 2007.

[28] L. M. Peters, D. W. Anderson, A. J. Griffith et al., "Mutation of a transcription factor, TCPC2L3, causes progressive autosomal dominant hearing loss, DFNA28," *Human Molecular Genetics*, vol. 11, no. 23, pp. 2877–2885, 2002.

[29] L. M. Friedman, A. A. Dror, and K. B. Avraham, "Mouse models to study inner ear development and hereditary hearing loss," *International Journal of Developmental Biology*, vol. 51, no. 6–7, pp. 609–631, 2007.

[30] S. Modamo-Høybø, M. A. Moreno-Pelayo, A. Mencia et al., "A novel locus for autosomal dominant nonsyndromic hearing loss, DFNA50, maps to chromosome 7q32 between the DFNB17 and DFNB13 deafness loci," *Journal of Medical Genetics*, vol. 41, article e14, 2004.

[31] F. Donaudy, A. Ferrara, L. Esposito et al., "Multiple mutations of MYO1A, a cochlear-expressed gene, in sensorineural hearing loss," *The American Journal of Human Genetics*, vol. 72, no. 6, pp. 1571–1577, 2003.

[32] Y. Zhao, F. Zhao, L. Zong et al., "Exome sequencing and linkage analysis identified tenasin-C (TNC) as a novel causative gene in nonsyndromic hearing loss," *PloS ONE*, vol. 8, no. 7, Article ID e69549, 2013.

[33] J. Cheng, Y. Zhu, S. He et al., "Functional mutation of SMAC/DIABLO, encoding a mitochondrial proapoptotic protein, causes human progressive hearing loss DFNA64," *The American Journal of Human Genetics*, vol. 89, no. 1, pp. 56–66, 2011.

[34] H. Azaiez, K. T. Booth, F. Bu et al., "TBCID24 mutation causes autosomal-dominant nonsyndromic hearing loss," *Human Mutation*, vol. 35, 7, pp. 819–823, 2014.

[35] L. Zhang, L. Hu, Y. Chai, X. Pang, T. Yang, and H. Wu, "A dominant mutation in the stereocilia-expressing gene TBCID24 is a probable cause for nonsyndromic hearing impairment," *Human Mutation*, vol. 35, no. 7, pp. 814–818, 2014.

[36] G. Xing, J. Yao, B. Wu et al., "Identification of OSBPL2 as a novel candidate gene for progressive nonsyndromic hearing loss by whole-exome sequencing," *Genetics in Medicine*, vol. 17, no. 3, pp. 210–218, 2015.

[37] M. Thoenes, U. Zimmermann, I. Ebermann et al., "OSBPL2 encodes a protein of inner and outer hair cell stereocilia and is mutated in autosomal dominant hearing loss (DFNA67)," *Orphanet Journal of Rare Diseases*, vol. 10, article 15, 2015.

[38] H. Azaiez, A. R. Decker, K. T. Booth et al., "HOMER2, a stereociliary scaffolding protein, is essential for normal hearing in humans and mice," *PloS Genetics*, vol. 11, no. 3, Article ID e1005137, 2015.

[39] T. Walsh, V. Walsh, S. Vreugde et al., "From flies’ eyes to our ears: mutations in a human class III myosin cause progressive non-syndromic hearing loss DFNB30," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 99, no. 11, pp. 7518–7523, 2002.
A. K. Lalwani, J. A. Goldstein, M. J. Kelley, W. Luxford, C. M. Ruell, S. Emery, R. Nouviane et al., "Impairment of αX - Z. Liu, J. Walsh, P. Mbure et al., "Modification of human motor protein, is defective in non-syndromic hearing loss," Journal of Medical Genetics, vol. 41, no. 8, pp. 591–595, 2004.

S. Y. Khan, Z. M. Ahmed, M. I. Shabbir et al., "Mutations of the RDX gene cause nonsyndromic hearing loss at the DFNB24 locus," Human Mutation, vol. 28, no. 5, pp. 417–423, 2007.

A. K. Rzadzinska, M. E. Schneider, C. Davies, G. P. Riordan, and B. Kachar, "An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewal," The Journal of Cell Biology, vol. 164, no. 6, pp. 887–897, 2004.

M. Ansar, M. A. Din, M. Arshad et al., "A novel autosomal recessive non-syndromic deafness locus (DFNB35) maps to 14q24.1–14q24.3 in large consanguineous kindred from Pakistan," European Journal of Human Genetics, vol. 11, no. 1, pp. 77–80, 2003.

E. van Wijk, E. Krieger, M. H. Kemperman et al., "A mutation in the gamma actin (ACTG1) gene causes autosomal dominant hearing loss (DFNA20/26)," Journal of Medical Genetics, vol. 40, no. 12, pp. 879–884, 2003.

S. Riazuddin, S. Anwar, M. Fischer et al., "Mutation of MYH14 heavy-chain gene (DFNA4)," The American Journal of Human Genetics, vol. 72, no. 5, pp. 1121–1128, 2000.

J. M. Schultz, Y. Yang, A. J. Caride et al., "Modification of human hearing loss by plasma-membrane calcium pump PMCA2," The New England Journal of Medicine, vol. 352, no. 15, pp. 1557–1564, 2005.

F. Donaudy, R. Snoeckx, M. Pfister et al., "Nonmuscle myosin heavy-chain gene MYH4 is expressed in cochlea and mutated in patients affected by autosomal dominant hearing impairment (DFNA4)," The American Journal of Human Genetics, vol. 74, no. 4, pp. 770–776, 2004.

Y. Liang, A. Wang, I. A. Belyantseva et al., "Characterization of the human and mouse unconventional myosin XV genes responsible for hereditary deafness DFNB3 and shaker 2," Genomics, vol. 61, no. 3, pp. 243–258, 1999.

J. Rue, S. Emery, R. Nouvian et al., "Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice," The American Journal of Human Genetics, vol. 83, no. 2, pp. 278–292, 2008.

M. Mustapha, D. Weil, S. Chardenoux et al., "An α-tectorin gene defect causes a newly identified autosomal recessive form of sensorineural pre-lingual non-syndromic deafness, DFNB21," Human Molecular Genetics, vol. 8, no. 3, pp. 409–412, 1999.

S. Yasunaga, M. Grati, M. Cohen-Salmon et al., "A mutation in OTOF, encoding otolithin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness," Nature Genetics, vol. 21, no. 4, pp. 363–369, 1999.

P. Seal, O. Akil, E. Yi et al., "Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3," Neuron, vol. 57, no. 2, pp. 263–275, 2008.

W. E. Brownell, C. R. Bader, D. Bertrand, and Y. de Ribaurpier, "Evoked mechanical responses of isolated cochlear outer hair cells," Science, vol. 227, no. 4683, pp. 194–196, 1985.

L. Zheng, G. Sekerková, K. Vranich, L. G. Tilney, E. Mugnaini, and J. R. Bartles, "The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espsm," Cell, vol. 102, no. 3, pp. 377–385, 2000.

X. Z. Liu, X. M. Ouyang, X. J. Xia et al., "Prestin, a cochlear motor protein, is defective in non-syndromic hearing loss," Human Molecular Genetics, vol. 12, no. 10, pp. 1155–1162, 2003.

S. Naz, A. J. Griffith, S. Riazuddin et al., "Mutations of ESPN cause autosomal recessive deafness and vestibular dysfunction," Journal of Medical Genetics, vol. 41, no. 8, pp. 591–595, 2004.

S. Riazuddin, S. Anwar, M. Fischer et al., "Mutation of the MYH14 heavy-chain gene (DFNA4)," The American Journal of Human Genetics, vol. 72, no. 5, pp. 1121–1128, 2000.

J. M. Schultz, Y. Yang, A. J. Caride et al., "Modification of human hearing loss by plasma-membrane calcium pump PMCA2," The New England Journal of Medicine, vol. 352, no. 15, pp. 1557–1564, 2005.

F. Donaudy, R. Snoeckx, M. Pfister et al., "Nonmuscle myosin heavy-chain gene MYH4 is expressed in cochlea and mutated in patients affected by autosomal dominant hearing impairment (DFNA4)," The American Journal of Human Genetics, vol. 74, no. 4, pp. 770–776, 2004.

Y. Liang, A. Wang, I. A. Belyantseva et al., "Characterization of the human and mouse unconventional myosin XV genes responsible for hereditary deafness DFNB3 and shaker 2," Genomics, vol. 61, no. 3, pp. 243–258, 1999.

J. Rue, S. Emery, R. Nouvian et al., "Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice," The American Journal of Human Genetics, vol. 83, no. 2, pp. 278–292, 2008.

M. Mustapha, D. Weil, S. Chardenoux et al., "An α-tectorin gene defect causes a newly identified autosomal recessive form of sensorineural pre-lingual non-syndromic deafness, DFNB21," Human Molecular Genetics, vol. 8, no. 3, pp. 409–412, 1999.

S. Yasunaga, M. Grati, M. Cohen-Salmon et al., "A mutation in OTOF, encoding otolithin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness," Nature Genetics, vol. 21, no. 4, pp. 363–369, 1999.

R. P. Seal, O. Akil, E. Yi et al., "Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3," Neuron, vol. 57, no. 2, pp. 263–275, 2008.

W. E. Brownell, C. R. Bader, D. Bertrand, and Y. de Ribaurpier, "Evoked mechanical responses of isolated cochlear outer hair cells," Science, vol. 227, no. 4683, pp. 194–196, 1985.

L. Zheng, G. Sekerková, K. Vranich, L. G. Tilney, E. Mugnaini, and J. R. Bartles, "The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espsm," Cell, vol. 102, no. 3, pp. 377–385, 2000.
[70] G. Mujtaba, J. M. Schultz, A. Imtiaz, R. J. Morell, T. B. Friedman, and S. Naz, “A mutation of MET, encoding hepatocyte growth factor receptor, is associated with human DFNB97 hearing loss,” *Journal of Medical Genetics*, vol. 52, no. 8, pp. 548–552, 2015.

[71] S. Delmaghani, A. Aghaie, N. Michalski, C. Bonnet, D. Weil, and C. Petit, “Defect in the gene encoding the EAR/EPTP domain-containing protein TSPEAR causes DFNB98 profound deafness,” *Human Molecular Genetics*, vol. 21, 17, pp. 3835–3844, 2012.

[72] J. Li, X. Zhao, Q. Xin et al., “Whole-exome sequencing identifies a variant in TMEM132E causing autosomal-recessive nonsyndromic hearing loss DFNB99,” *Human Mutation*, vol. 36, no. 1, pp. 98–105, 2015.

[73] A. Imtiaz, D. C. Kohrman, and S. Naz, “A frameshift mutation in GRXCR2 causes recessively inherited hearing loss,” *Human Mutation*, vol. 35, no. 5, pp. 618–624, 2014.

[74] A. Behlouli, C. Bonnet, S. Abdi et al., “EPS8, encoding an actin-binding protein of cochlear hair cell stereocilia, is a new causal gene for autosomal recessive profound deafness,” *Orphanet Journal of Rare Diseases*, vol. 9, article 55, 2014.

[75] C. Z. Seco, A. M. M. Oonk, M. Domínguez-Ruiz et al., “Progressive hearing loss and vestibular dysfunction caused by a homozygous nonsense mutation in CLIC5,” *European Journal of Human Genetics*, vol. 23, no. 2, pp. 189–194, 2015.

[76] O. Diaz-Horta, A. Subasioglu-Uzak, M. Grati et al., “FAM65B is a membrane-associated protein of hair cell stereocilia required for hearing,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 111, no. 27, pp. 9864–9868, 2014.

[77] D. Weil, A. El-Amraoui, S. Masmoudi et al., “Usher syndrome type I G (USH1G) is caused by mutations in the gene encoding SANS, a protein that associates with the USH1C protein, harmonin,” *Human Molecular Genetics*, vol. 12, no. 5, pp. 463–471, 2003.

[78] S. Pieke-Dahl, C. G. Möller, P. M. Kelley et al., “Genetic heterogeneity of Usher syndrome type II: localisation to chromosome 5q.” *Journal of Medical Genetics*, vol. 37, no. 4, pp. 256–262, 2000.

[79] H. Yagi, H. Tokano, M. Maeda et al., “Vlgr1 is required for proper stereocilia maturation of cochlear hair cells,” *Genes to Cells*, vol. 12, no. 2, pp. 235–250, 2007.

[80] X. Liu, D. Han, J. Li et al., “Loss-of-function mutations in the PRPS1 gene cause a type of nonsyndromic X-linked sensorineural deafness, DFN2,” *The American Journal of Human Genetics*, vol. 86, no. 1, pp. 65–71, 2010.

[81] Y. J. de Kok, S. M. van der Maarel, M. Bitner-Glindzicz et al., “Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4,” *Science*, vol. 267, no. 5198, pp. 685–688, 1995.

[82] D. Patzak, O. Zhuchenko, C.-C. Lee, and M. Wohr, “Identification, mapping, and genomic structure of a novel X-chromosomal human gene (SMPX) encoding a small muscular protein,” *Human Genetics*, vol. 105, no. 5, pp. 506–512, 1999.

[83] S. Rost, E. Bach, C. Neuner et al., “Novel form of X-linked nonsyndromic hearing loss with cochlear malformation caused by a mutation in the type IV collagen gene COL4A6,” *European Journal of Human Genetics*, vol. 22, no. 2, pp. 208–215, 2014.