Abstract

In this paper we consider the maximum principle of optimal control for a stochastic control problem. This problem is governed by a system of fully coupled multi-dimensional forward-backward doubly stochastic differential equation with Poisson jumps. Moreover, all the coefficients appearing in this system are allowed to be random and depend on the control variable.

We derive, in particular, sufficient conditions for optimality for this stochastic optimal control problem.

MSC 2010: 60H10, 93E20, 60G55.

Keywords: Poisson process, maximum principle, optimal control, forward-backward doubly stochastic differential equation, adjoint equation.

1 Introduction

Forward-backward stochastic differential equations (FBSDEs in short) were first studied by Antonelli in [1], and since then they are encountered in stochastic optimal control problem and mathematical finance. For example, Xu in [18] studied a non-coupled continuous forward-backward stochastic control system. Then Wu, [16], studied extensively the maximum principle for optimal control problem of fully coupled continuous forward-backward stochastic system. We refer the reader also to [2]. Peng and Wu, [8], considered fully coupled continuous

1 This work is supported by the Science College Research Center at Qassim University, project no. SR-D-012-1958.

2 It is also supported by the Algerian PNR project no. 8/u 07/857.
forward-backward stochastic differential equations with random coefficients and applications to optimal control. A method of continuation is developed there. In this respect one can see also [20]. Shi and Wu in [11] studied the maximum principle for fully coupled continuous forward-backward stochastic system and provided under non-convexity assumption on the control domain necessary optimality conditions. The forward diffusion there does not contain the control variable.

Fully coupled FBSDEs with respect to Brownian motion and Poisson process were considered by Wu in [17] and Yin and Situ in [19]. Such equations have been shown to be very useful for example in studying linear quadratic optimal control problems of random jumps, and also to handle nonzero-sum differential games with random jumps. The work of Wu and Wang in [15] is useful in this respect. In [5] the authors investigated stochastic maximum principle for non-coupled one-dimensional FBSDEs with jumps. Meng, [3], considered an optimal control problem of fully coupled forward-backward stochastic systems with Poisson jumps under partial information. More generally, Shi in [10] provided recently necessary conditions for optimal control of fully coupled FBSDEs with random jumps.

Backward doubly stochastic differential equations were first introduced by Pardoux and Peng in [6]. They gave a probabilistic representation of quasi linear stochastic partial differential equations. In 2003 Peng and Shi, [7], introduced fully coupled forward-backward doubly stochastic differential equations (FBDSDEs in short). Such equations are generalizations of stochastic Hamilton systems. Existence and uniqueness of the solutions to (continuous) FBDSDEs with arbitrarily fixed time duration and under some monotone assumptions are established. Then the authors in [7] provided also a probabilistic interpretation for the solutions of a class of quasilinear SPDEs. In this respect we refer the reader to [9] for an application of fully coupled FBDSDEs to provide a probabilistic formula for the solution of a quasilinear stochastic partial differential-integral equation (SPDIE in short). Another application to SPDEs can be found in [21]. These are some examples to show the importance of studying FBDSDEs.

The existence and uniqueness of measurable solutions to FBDSDEs with Poisson jumps are established in [9] via the method of continuation. This result will be used in Section 2 and Section 3 below. A sufficient maximum principle with partial information for a one-dimensional FBDSDE with jump with a forward equation being independent of the processes of the backward equation was studied in [12]. Necessary optimality conditions for FBDSDEs in [21] were derived also there under non-convexity assumption on the control domain. On the other
hand, in [21] the authors studied the maximum principle to find necessary and sufficient conditions for optimality for a stochastic control problem governed by a continuous FBDSDE in dimension one. Within convex control domains they allow also all the coefficients of these equations to contain control variables.

The general case in particular, the maximum principle for control problems governed by a multi-dimensional discontinuous FBDSDE with its coefficients being allowed to be random and depend on the control variable and when the control domain is not convex is still an interesting incomplete research problem. In the present work we shall consider this discontinuous situation, and study, in particular, a stochastic control problem where the system is governed by a nonlinear fully coupled multi-dimensional FBDSDE with jumps as in system (1.1) below. More precisely, we shall allow both the forward and backward equations to have random jumps, and establish sufficient conditions for optimality in the form of the maximum principle. We will allow also all the coefficients appearing in our system to be random and contain control variables. Our results here are new in this respect. We will consider some relevant necessary optimality conditions for this problem in the future work.

Our system under study is the following:

\[
\begin{align*}
\begin{cases}
 dy_t &= b(t, y_t, Y_t, z_t, Z_t, k_t, v_t)dt + \sigma(t, y_t, Y_t, z_t, Z_t, k_t, v_t)dW_t \\
 &\quad + \int_\Theta \varphi(t, y_t, Y_t, z_t, Z_t, k_t, v_t, \rho) \tilde{N}(d\rho, dt) - z_t d\tilde{B}_t, \\
 dY_t &= -f(t, y_t, Y_t, z_t, Z_t, k_t, v_t)dt - g(t, y_t, Y_t, z_t, Z_t, k_t, v_t)dB_t \\
 &\quad + Z_t dW_t + \int_\Theta k_t(\rho) \tilde{N}(d\rho, dt), \\
y_0 &= x_0, Y_T = h(y_T),
\end{cases}
\end{align*}
\]

where \(b, \sigma, \varphi, f, g \) and \(h \) are given mappings, \((W_t)_{t \geq 0}\) and \((B_t)_{t \geq 0}\) are independent Brownian motions taking their values respectively in \(\mathbb{R}^d \) and \(\mathbb{R}^l \), while \(v \) represents a control process and \(\tilde{N}(d\rho, dt) \) is the compensated Poisson random measure associated with a Poisson point process \(\eta \). Here \(T \) is a fixed positive number.

We shall be interested in minimizing the cost functional

\[
J(v.) = \mathbb{E} \left[\int_0^T \ell(t, y_t, Y_t, z_t, Z_t, k_t, v_t) dt + \beta(y_T) + \gamma(Y_0) \right],
\]

over the set of all admissible controls (to be described in Section 2 below).

The paper is organized as follows. In Section 2, we formulate the problem and give various assumptions used throughout the paper. In Section 3 we introduce the adjoint equation of (1.1), state our main theorem and give an example to illustrate this theorem. Section 4 is devoted to proving the main result.
2 Formulation of the problem and assumptions

Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a complete probability space. Let \((W_t)_{t \in [0,T]}\) and \((B_t)_{t \in [0,T]}\) be two Brownian motions taking their values in \(\mathbb{R}^d\) and \(\mathbb{R}^l\) respectively. Let \(\eta\) be a Poisson point process taking its values in a measurable space \((\Theta, \mathcal{B}(\Theta))\). We denote by \(\nu(d\rho)\) the characteristic measure of \(\eta\) which is assumed to be a \(\sigma\)-finite measure on \((\Theta, \mathcal{B}(\Theta))\), by \(N(d\rho, dt)\) the Poisson counting measure (jump measure) induced by \(\eta\) with compensator \(\nu(d\rho)dt\), and by \(\tilde{N}(d\rho, dt) = N(d\rho, dt) - \nu(d\rho)dt\), the compensation of the jump measure \(N(\cdot, \cdot)\) of \(\eta\). Hence \(\nu(O) = \mathbb{E}[N(O, 1)]\) for \(O \in \mathcal{B}(\Theta)\). We assume that these three processes \(W, B\) and \(\eta\) are mutually independent.

Let \(\mathcal{N}\) denote the class of \(\mathbb{P}\)-null sets of \(\mathcal{F}\). For each \(t \in [0,T]\), we define \(\mathcal{F}_t := \mathcal{F}_t^W \vee \mathcal{F}_{t,T}^B \vee \mathcal{F}_t^\eta\), where for any process \(\{\pi_t\}\), we set
\[
\mathcal{F}_{s,t}^\pi = \sigma(\pi_r - \pi_s; s \leq r \leq t) \vee \mathcal{N}, \quad \mathcal{F}_t^\pi = \mathcal{F}_{0,t}^\pi.
\]

For a Euclidean space \(E\), let \(\mathcal{M}^2(0, T; E)\) denote the set of jointly measurable processes \(\{X_t, t \in [0,T]\}\) taking values in \(E\), and satisfy: \(X_t\) is \(\mathcal{F}_t\)-measurable for a.e. \(t \in [0,T]\), and
\[
\mathbb{E}\left[\int_0^T |X_t|_E^2 dt\right] < \infty.
\]

Let \(L^2_\nu(E)\) be the set of \(\mathcal{B}(\Theta)\)-measurable mapping \(k\) with values in \(E\) such that
\[
\|k\| := \left[\int_\Theta |k(\rho)|_E^2 \nu(d\rho) \right]^{\frac{1}{2}} < \infty.
\]

Denote by \(\mathcal{N}^2_\eta(0, T; E)\) to the set of processes \(\{K_t, t \in [0,T]\}\) that take their values in \(L^2_\nu(E)\) and satisfy: \(K_t\) is \(\mathcal{F}_t\)-measurable for a.e. \(t \in [0,T]\), and
\[
\mathbb{E}\left[\int_0^T \int_\Theta |K_t(\rho)|_E^2 \nu(d\rho)dt\right] < \infty.
\]

Finally, we set
\[
\mathbb{M}^2 := \mathcal{M}^2(0, T; \mathbb{R}^n) \times \mathcal{M}^2(0, T; \mathbb{R}^m) \times \mathcal{M}^2(0, T; \mathbb{R}^{n \times l}) \\
\times \mathcal{M}^2(0, T; \mathbb{R}^{m \times d}) \times \mathcal{N}^2_\eta(0, T; \mathbb{R}^m).
\]
Then M^2 is a Hilbert space with respect to the norm $\| \cdot \|_{M^2}$ given by
\[
\| \zeta \|_{M^2}^2 := \mathbb{E} \left[\int_0^T |y_t|^2 \, dt + \int_0^T |Y_t|^2 \, dt + \int_0^T |z_t|^2 \, dt + \int_0^T |Z_t|^2 \, dt + \int_0^T |k_t|^2 \, dt \right],
\]
for $\zeta = (y, Y, z, Z, k)$.

Let U be a non-empty subset of \mathbb{R}^r. We say that $v : [0, T] \times \Omega \to \mathbb{R}^r$ is admissible if $v \in M^2([0, T] ; \mathbb{R}^r)$ and $v_t \in U$ a.e., \mathbb{P}-a.s. The set of admissible controls will be denoted by U_{ad}. Consider the following controlled fully coupled FBDSDE with jumps:

\[
\begin{align*}
\begin{aligned}
&dy_t = b(t, y_t, Y_t, z_t, Z_t, k_t, v_t) dt + \sigma(t, y_t, Y_t, z_t, Z_t, k_t, v_t) dW_t \\
&\quad + \int_\Theta \varphi(t, y_t, Y_t, z_t, Z_t, k_t, v_t, \rho) N(d\rho, dt) - z_t dB_t, \\
&dY_t = -f(t, y_t, Y_t, z_t, Z_t, k_t, v_t) dt - g(t, y_t, Y_t, z_t, Z_t, k_t, v_t) dB_t, \\
y_0 = x_0, Y_T = h(y_T),
\end{aligned}
\end{align*}
\]
(2.1)

where the mappings

\[
\begin{align*}
b & : \Omega \times [0, T] \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^{n \times l} \times \mathbb{R}^{m \times d} \times L^2(\mathbb{R}^m) \times \mathbb{R}^r \to \mathbb{R}^n, \\
\sigma & : \Omega \times [0, T] \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^{n \times l} \times \mathbb{R} \times L^2(\mathbb{R}^m) \times \mathbb{R}^r \to \mathbb{R}^{n \times d}, \\
\varphi & : \Omega \times [0, T] \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^{n \times l} \times \mathbb{R} \times L^2(\mathbb{R}^m) \times \mathbb{R}^r \to \mathbb{R}^n, \\
f & : \Omega \times [0, T] \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^{n \times l} \times \mathbb{R} \times L^2(\mathbb{R}^m) \times \mathbb{R}^r \to \mathbb{R}^m, \\
g & : \Omega \times [0, T] \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^{n \times l} \times \mathbb{R} \times L^2(\mathbb{R}^m) \times \mathbb{R}^r \to \mathbb{R}^{m \times l}, \\
h & : \Omega \times \mathbb{R}^n \to \mathbb{R}^m,
\end{align*}
\]

are measurable (further properties to be introduced later in this section) and $v \in U_{ad}$. Given a full-rank $m \times n$ matrix R of real indices, we assume that h is defined, for $(\omega, x) \in \Omega \times \mathbb{R}^n$, by $h(\omega, x) := cRx + \xi(\omega)$, where $c \neq 0$ is a constant and ξ is a fixed arbitrary element of $L^2(\Omega, \mathcal{F}_T, \mathbb{P}; \mathbb{R}^m)$.

Note that the integral with respect to dB is a “backward” Itô integral, while the integral with respect to dW is a standard “forward” Itô integral. We refer the reader to [4] for more details on such integrals, which are particular cases of the Itô–Skorohod stochastic integral.

A solution of (2.1) is a quintuple (y, Y, z, Z, k) of stochastic processes such
that \((y, Y, z, Z, k)\) belongs to \(\mathbb{M}^2\) and satisfies the following FBDSDE:
\[
\begin{aligned}
\frac{dy}{dt} &= x_0 + \int_0^t b(s, y_s, Y_s, z_s, Z_s, k_s, v_s) ds + \int_0^t \sigma(s, y_s, Y_s, z_s, Z_s, k_s, v_s) dW_s \\
&\quad + \int_0^t \varphi(s, y_s, Y_s, z_s, Z_s, k_s, v_s, \rho) \tilde{N}(d\rho, ds) - \int_0^t z_s dB_s,
\end{aligned}
\]
\[
\begin{aligned}
Y(t) &= h(y_T) + \int_t^T f(s, y_s, Y_s, z_s, Z_s, k_s, v_s) ds \\
&\quad + \int_t^T g(s, y_s, Y_s, z_s, Z_s, k_s, v_s) d\tilde{B}_s \\
&\quad - \int_t^T Z_s dW_s - \int_t^T \int_\Theta k_s(\rho) \tilde{N}(d\rho, ds), \quad t \in [0, T].
\end{aligned}
\]

Define the cost functional by:
\[
J(v) := \mathbb{E}\left[\int_0^T \ell(t, y_t, Y_t, z_t, Z_t, k_t, v_t) dt + \beta(y_T) + \gamma(Y_0) \right], \quad v \in \mathcal{U}_{ad}, \quad (2.2)
\]
where
\[
\begin{align*}
\beta &: \mathbb{R}^n \to \mathbb{R}, \\
\gamma &: \mathbb{R}^m \to \mathbb{R}, \\
\ell &: \Omega \times [0, T] \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^{n \times l} \times \mathbb{R}^{m \times d} \times L^2(\mathbb{R}^m) \times \mathbb{R}^r \to \mathbb{R}
\end{align*}
\]
are measurable functions such that \((2.2)\) is defined.

Now the control problem of system \((2.1)\) is to minimize \(J\) over \(\mathcal{U}_{ad}\). In this case we say that \(u \in \mathcal{U}_{ad}\) is an optimal control if
\[
J(u) = \inf_{v \in \mathcal{U}_{ad}} J(v). \quad (2.3)
\]

Let us set the following notations:
\[
\begin{align*}
\zeta &= (y, Y, z, Z, k) \in \mathbb{R}^{n+m+n+l+m+d} \times L^2(\mathbb{R}^m), \\
A(t, \zeta, v) &= (-R^* f, Rb, -R^* g, R\sigma, R\varphi)(t, \zeta, v), \\
\langle A, \zeta \rangle &= -\langle y, R^* f \rangle + \langle Y, Rb \rangle - \langle z, R^* g \rangle + \langle Z, R\sigma \rangle + \langle \langle k, R\varphi \rangle \rangle,
\end{align*}
\]
where
\[
R^* g = (R^* g_1 \cdots R^* g_l), \quad R\sigma = (R\sigma_1 \cdots R\sigma_d), \ldots
\]
by using the columns \(\{g_1, \ldots, g_l\}\) and \(\{\sigma_1, \ldots, \sigma_d\}\) of \(g\) and \(\sigma\) respectively, and
\[
\langle \langle k, R\varphi \rangle \rangle(t, \zeta, v) = \int_\Theta \langle k(\rho), R\varphi(t, \zeta, v, \rho) \rangle \nu(d\rho).
\]

The following assumptions will be our main assumptions in the paper. We shall mimic similar assumptions from the literature (e.g. [21]) for this purpose.
Remark 2.1

The same thing happens also for $c < 0$ in (A1)’.

\begin{itemize}
 \item (A1) \quad \forall \zeta = (y, Y, z, Z, k), \bar{\zeta} = (\bar{y}, \bar{Y}, \bar{z}, \bar{Z}, \bar{k}) \in \mathbb{R}^{n+m+n \times t+m \times d} \times L^2_{\nu}(\mathbb{R}^m), \forall t \in [0,T], \forall v \in \mathbb{R}^r,$

\[
\langle A(t, \zeta, v) - A(t, \bar{\zeta}, v), \zeta - \bar{\zeta} \rangle \leq -\mu_1(|R(y - \bar{y})|^2 + |R^*(Y - \bar{Y})|^2) \quad -\mu_2(||R(z - \bar{z})||^2 + ||R^*(Z - \bar{Z})||^2 + ||R^*(k - \bar{k})||^2),
\]

and

\[
c > 0,
\]

or

\begin{itemize}
 \item (A1)’ \quad \langle A(t, \zeta, v) - A(t, \bar{\zeta}, v), \zeta - \bar{\zeta} \rangle \geq \mu_1(|R(y - \bar{y})|^2 + |R^*(Y - \bar{Y})|^2) \quad +\mu_2(||R(z - \bar{z})||^2 + ||R^*(Z - \bar{Z})||^2 + ||R^*(k - \bar{k})||^2),
\end{itemize}

and

\[
c < 0,
\]

where μ_1 and μ_2 are nonnegative constants with $\mu_1 + \mu_2 > 0$. Moreover $\mu_1 > 0$ (resp. $\mu_2 > 0$) when $m > n$ (resp. $n > m$).

\begin{itemize}
 \item (A2) For each $\zeta \in \mathbb{R}^{n+m+n \times t+m \times d} \times L^2_{\nu}(\mathbb{R}^m), v \in \mathbb{R}^r, A(t, \zeta, v) \in \mathcal{M}^2.$
\end{itemize}

\begin{itemize}
 \item (A3) We assume that
\end{itemize}

\begin{itemize}
 \begin{align*}
 (i) \text{the mappings } f, b, g, \sigma, \varphi, \ell \text{ are continuously differentiable with respect to } & \quad (y, Y, z, Z, k, v), \text{ and } \beta \text{ and } \gamma \text{ are continuously differentiable with respect to } \quad y \text{ and } Y, \text{ respectively},
 \\
 (ii) \text{the derivatives of } f, b, g, \sigma, \varphi \text{ with respect to the above arguments are bounded,}
 \\
 (iii) \text{the derivatives of } \ell \text{ are bounded by } C(1 + |y| + |Y| + ||z|| + ||Z|| + ||k||),
 \\
 (iv) \text{the derivatives of } \beta \text{ and } \gamma \text{ are bounded by } C(1 + |y|) \text{ and } C(1 + |Y|)
 \end{align*}
\end{itemize}

respectively,

for some constant $C > 0$.

\textbf{Remark 2.1} The condition $c > 0$ in (A1) guarantees the following monotonicity condition of the mapping h:

\[
\langle h(y) - h(\bar{y}), R(y - \bar{y}) \rangle \geq c|R(y - \bar{y})|^2, \quad \forall y, \bar{y} \in \mathbb{R}^n.
\]

The same thing happens also for $c < 0$ in (A1)’.
The following theorem is concerned with the existence and uniqueness of the solution of (2.1).

Theorem 2.2 For any given admissible control \(v \cdot \), if assumptions (A1)–(A3) (or (A1)', (A2), (A3)) hold, then (2.1) has a unique solution.

Our assumptions in this theorem satisfy the assumptions of the corresponding result in [9], so the proof of this theorem can be gleaned from [9].

3 Adjoint equations and the maximum principle

Suppose that (A1)–(A3) hold. We want to introduce the adjoint equations of FBDSDE (2.1) and then present our main result of the maximum principle for our optimal control problem governed by the FBDSDE with jumps (2.1). To this end, let us begin by defining the Hamiltonian \(H \) from \([0, T] \times \Omega \times \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^{n \times l} \times \mathbb{R}^{m \times d} \times L^2_\nu(\mathbb{R}^m) \times \mathbb{R}^r \times \mathbb{R}^m \times \mathbb{R}^n \times \mathbb{R}^{n \times l} \times \mathbb{R}^{n \times d} \times L^2_\nu(\mathbb{R}^n) \) to \(\mathbb{R} \) by the formula:

\[
H(t, y, z, Z, k, v, p, P, q, Q, V) := \langle p, f(t, y, z, Z, k, v) \rangle - \langle P, b(t, y, z, Z, k, v) \rangle + \langle q, g(t, y, z, Z, k, v) \rangle - \langle Q, \sigma(t, y, z, Z, k, v) \rangle - \ell(t, y, z, Z, k, v) - \int_\Theta \langle V(\rho), \varphi(t, y, z, Z, k, v, \rho) \rangle \nu(d\rho).
\] (3.1)

Let \(v \) be an arbitrary element of \(\mathcal{U}_{ad} \) and \(\{y_t, z_t, Z_t, k_t, t \in [0, T]\} \) be the corresponding solution of (2.1). The adjoint equations of our FBDSDE with jumps (2.1) are

\[
\begin{align*}
dp_t &= H_Y dt + H_Z dW_t - q_t d\tilde{B}_t + \int_\Theta H_k \tilde{N}(d\rho, dt), \\
dP_t &= H_y dt + H_z d\tilde{B}_t + Q_t dW_t + \int_\Theta V(\rho) \tilde{N}(d\rho, dt), \\
p_0 &= -\gamma_y(Y_0), \quad P_T = -c R^* p_T + \beta_y(y_T),
\end{align*}
\] (3.2)

where \(H_y \) is the gradient \(\nabla_y H(t, y, z, Z_t, k_t, v_t, p_t, P_t, q_t, Q_t, V_t) \in \mathbb{R}^n \), etc.

Let us say some thing more about this system (3.2).

Theorem 3.1 Under (A1)–(A3) there exists a unique solution \((p, P, q, Q, V) \) of the adjoint equations (3.2) (in \(\mathbb{M}^2 := \mathcal{M}^2(0, T; \mathbb{R}^m) \times \mathcal{M}^2(0, T; \mathbb{R}^n) \times \mathcal{M}^2(0, T; \mathbb{R}^{n \times l}) \times \mathcal{M}^2(0, T; \mathbb{R}^{n \times d}) \times \mathcal{N}^2_\eta(0, T; \mathbb{R}^n) \)).
Proof. This system (3.2) can be rewritten as in the following system:

\[
\begin{align*}
 dp_t &= (f_t^y p_t - b_t^y P_t + g_t^y q_t - \sigma_t^y Q_t - \int_\Theta \varphi_t^y V_t(p) \nu(d\rho) - \ell_t(y)) dt \\
 &\quad + (f_t^z p_t - b_t^z P_t + g_t^z q_t - \sigma_t^z Q_t - \int_\Theta \varphi_t^z V_t(p) \nu(d\rho) - \ell_t(z)) dW_t - q_t dB_t \\
 &\quad + \int_\Theta (f_k^p p_t - b_k^p P_t + g_k^p q_t - \sigma_k^p Q_t - (\varphi_k^p V_t(p) - \ell_k) N(d\rho, dt),
\end{align*}
\]

which is a linear FBDSDE with jumps. Here \(f_t^y \in \mathbb{R}^{n \times m} \) is the adjoint of the Fréchet derivative \(D_y f(t, y, Y, z, Z, k_t, v_t) \in \mathbb{R}^{m \times n} \) of \(f(t, \cdot, Y, z, Z, k_t, v_t) : \mathbb{R}^n \rightarrow \mathbb{R}^m \) at \(y, \ldots \) etc., and \(\beta_y(y_t) \) is the gradient \(\nabla_y \beta(y_t) \in \mathbb{R}^n \).

Thanks to assumptions (A1)–(A3) this latter linear FBDSDE satisfy easily (A1)', (A2) and (A3). Thus the desired result follows from Theorem 2.2. \(\blacksquare \)

Now our main theorem is the following.

Theorem 3.2 Assume that (A1)–(A3) hold. Given \(u \in U_{ad} \), let \((y, Y, z, Z, k)\) and \((p, P, q, Q, V)\) be the corresponding solutions of the FBDSDEs (2.1) and (3.2) respectively. Suppose that the following assumptions hold:

(i) \(\beta \) and \(\gamma \) are convex,

(ii) for all \(t \in [0, T] \), \(\mathbb{P} \)-a.s., the function \(H(t, \cdot, \cdot, \cdot, \cdot, p_t, q_t, Q_t, V_t) \) is concave,

(iii) we have

\[
H(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, q_t, Q_t, V_t) = \max_{v \in U} H(t, y_t, Y_t, z_t, Z_t, v, p_t, q_t, Q_t, V_t),
\]

for a.e, \(\mathbb{P} \)-a.s.

Then \((y, Y, z, Z, k, u)\) is an optimal solution of the control problem (2.1)–(2.3).

Remark 3.3 Condition (A1) assumed in this theorem and the lemmas that follow is only needed to guarantee the existence and uniqueness of the solutions of (2.1) and (3.2), and so if we can get these unique solutions without assuming (A1) there will not any necessity to assume (A1) in this theorem.
The proof of this theorem will be established in Section 4. Now to illustrate this theorem let us present an example.

Example 3.4 Let \((\Theta, \mathcal{B}(\Theta)) = ([0, 1], \mathcal{B}([0, 1]))\). Let \(\tilde{N}(d\rho, dt)\) be a compensated Poisson random measure, where \((t, \rho) \in [0, 1] \times [0, 1]\). Recall that \(\mathbb{E}[\tilde{N}(d\rho, dt)^2] = \nu(d\rho)dt\) is required to be a finite Borel measure such that \(\int_{[0,1]} \rho^2 \nu(d\rho) < \infty\). Let the controls domain be \(U = [-1, 1]\). Consider the following stochastic control system:

\[
\begin{aligned}
 dy_t &= (1 + t)v_t dt + (-z_t + Z_t + \int_{\Theta} k_1(\rho)\nu(d\rho) + v_t) dW_t - z_t dB_t^t \\
 dY_t &= -(t - 4)v_t dt - \frac{3}{2}(z_t + Z_t + \int_{\Theta} k_1(\rho)\nu(d\rho) + v_t) dB_t^t + Z_t dW_t \\
 y_0 &= Y_1 = x \in \mathbb{R}, \ t \in (0, 1),
\end{aligned}
\]

(3.4)

where \(W, B\) are Brownian motions in \(\mathbb{R}\), and \(W, B\) and \(\tilde{N}\) are mutually independent. Consider also a cost functional given for \(v \in U_{ad}\) by

\[
J(v.) = \frac{1}{2} \mathbb{E} \left[\int_0^1 (y_t^2 + Y_t^2 + z_t^2 + Z_t^2 + \int_{\Theta} k_1^2(\rho)\nu(d\rho) + v_t^2) dt + y_1^2 + Y_0^2 \right].
\]

(3.5)

We define the value function by

\[
J(u^*) = \inf_{v \in U_{ad}} J(v.).
\]

(3.6)

This system (3.4) can be related to the one in (2.1) by setting the following mappings:

\[
\begin{align*}
 b(t, y_t, Y_t, z_t, Z_t, k_t, v_t) &= (1 + t)v_t, \\
 \sigma(t, y_t, Y_t, z_t, Z_t, k_t, v_t) &= -z_t + Z_t + \int_{\Theta} k_1(\rho)\nu(d\rho) + v_t, \\
 \varphi(t, y_t, Y_t, z_t, Z_t, k_t, v_t, \rho) &= -v_t \rho, \\
 f(t, y_t, Y_t, z_t, Z_t, k_t, v_t) &= (t - 4)v_t, \\
 g(t, y_t, Y_t, z_t, Z_t, k_t, v_t) &= \frac{3}{2}(z_t + Z_t + \int_{\Theta} k_1(\rho)\nu(d\rho) + v_t), \\
 h(y_1) &= y_1, \text{ i.e. } c = 1, \xi = 0, \\
 f(t, y_t, Y_t, z_t, Z_t, k_t, v_t) &= \frac{1}{2}(y_t^2 + Y_t^2 + z_t^2 + Z_t^2 + \int_{\Theta} k_1^2(\rho)\nu(d\rho) + v_t^2), \\
 \beta(y_t) &= \gamma(y_t) = \frac{1}{2} y_t^2.
\end{align*}
\]
Letting \(u \equiv 0 \), we find from the construction of FBDSDEs with jumps (as for instance in [9]) that the corresponding solution \((y_t, Y_t, z_t, Z_t, k_t)\) of (3.4) equals \((x, x, 0, 0, 0)\), for all \(t \in [0, 1] \).

Next notice that the adjoint equations of (3.4) are
\[
\begin{cases}
 dp_t = -Y_t dt + \left(\frac{3}{2} q_t - Q_t - Z_t \right) dW_t - q_t dB_t \\
 dP_t = -p_t dt + \left(\frac{3}{2} q_t + Q_t - z_t \right) dB_t + Q_t dW_t + \int_\Theta V_t(\rho) \tilde{N}(d\rho, dt), \\
 p_0 = -x, P_1 = -p_1 + x, \quad t \in (0, 1).
\end{cases}
\]

Since \(p_0 \) is deterministic, then so is \(p_t \). Hence
\[
p_t = p_0 - \int_0^t Y_t dt = p_0 - x \int_0^t dt = -x - xt = -x(1 + t).
\]

Thus \(P_1 \) is deterministic since:
\[
P_1 = -p_1 + x = 3x.
\]

It follows similarly that
\[
P_t = P_1 + \int_t^1 y_t dt = 3x + x(1 - t) = x(4 - t).
\]

In particular, \((p_t, P_t, q_t, Q_t, V_t) \equiv (-x(1 + t), x(4 - t), 0, 0, 0)\) is the unique solution of (3.4). These facts show that the Hamiltonian attains an explicit formula:
\[
H(t, y_t, Y_t, z_t, Z_t, k_t, v, p_t, P_t, q_t, Q_t, V_t) = p_t(t - 4)v - P_t(1 + t)v \\
+ \frac{3}{2} q_t(z_t + Z_t + \int_\Theta k_t(\rho) \nu(d\rho) + v) - d_t(-z_t + Z_t + \int_\Theta k_t(\rho) \nu(d\rho) + v) \\
- \int_\Theta v \rho V_t(\rho) \nu(d\rho) - \frac{1}{2} (y_t^2 + Y_t^2 + z_t^2 + Z_t^2 + \int_\Theta k_t^2(\rho) \nu(d\rho) + v^2) \\
= -x(1 + t)(t - 4)v - x(1 + t)(4 - t)v - \frac{1}{2} v^2 - \frac{1}{2} x^2 - \frac{1}{2} x^2 \\
= -\frac{1}{2} v^2 - x^2, \quad v \in U.
\]

Hence
\[
H(t, y_t, Y_t, z_t, Z_t, k_t, v, p_t, P_t, q_t, Q_t, V_t) - H(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t) \\
= -\frac{1}{2} v^2 - x^2 + \frac{1}{2} u_t^2 + x^2 = -\frac{1}{2} v^2 \leq 0, \quad \forall v \in U, \ a.e \ t, \ \mathbb{P} - a.s.
\]
As a result, condition (iii) of Theorem 3.2 holds here for \(u \cdot \lambda = 0 \). Furthermore, all other conditions of Theorem 3.2 can be verified easily. Consequently,

\[
y, Y, z, Z, k, u \equiv (x, x, 0, 0, 0)
\]

is an optimal solution of the control problem (3.4)–(3.6).

For more applications of the theory of fully coupled FBDSDEs particularly in providing a probabilistic formula for the solution of a quasilinear SPDIE we refer the reader to [9, P. 15].

4 Proofs

In this section we shall establish the proof of Theorem 3.2. Let us recall first the following lemma.

Lemma 4.1 (Integration by parts) Let \((\alpha, \hat{\alpha}) \in [S^2(0, T; \mathbb{R}^n)]^2 \), \((\beta, \hat{\beta}) \in [M^2(0, T; \mathbb{R}^n)]^2 \), \((\gamma, \hat{\gamma}) \in [M^2(0, T; \mathbb{R}^{n \times k})]^2 \), \((\delta, \hat{\delta}) \in [M^2(0, T; \mathbb{R}^{n \times d})]^2 \), and \((K, \hat{K}) \in [\mathcal{N}^2(0, T; \mathbb{R}^m)]^2 \). Assume that

\[
\alpha_t = \alpha_0 + \int_0^t \beta_s ds + \int_0^t \gamma_s \overline{dB}_s + \int_0^t \delta_s dW_s + \int_0^t \int_0^t K_s(\rho) \hat{N}(d\rho, ds),
\]

and

\[
\hat{\alpha}_t = \hat{\alpha}_0 + \int_0^t \hat{\beta}_s ds + \int_0^t \hat{\gamma}_s \overline{dB}_s + \int_0^t \hat{\delta}_s dW_s + \int_0^t \int_0^t \hat{K}_s(\rho) \hat{N}(d\rho, ds),
\]

for \(t \in [0, T] \). Then

\[
\langle \alpha_T, \hat{\alpha}_T \rangle = \langle \alpha_0, \hat{\alpha}_0 \rangle + \int_0^T \langle \alpha_t, d\hat{\alpha}_t \rangle + \int_0^T \langle \hat{\alpha}_t, d\alpha_t \rangle + \int_0^T d \langle \alpha, \hat{\alpha} \rangle_t.
\]

\[
\mathbb{E} [\langle \alpha_T, \hat{\alpha}_T \rangle] = \mathbb{E} [\langle \alpha_0, \hat{\alpha}_0 \rangle] + \mathbb{E} [\int_0^T \langle \alpha_t, d\hat{\alpha}_t \rangle] + \mathbb{E} [\int_0^T \langle \hat{\alpha}_t, d\alpha_t \rangle] - \mathbb{E} [\int_0^T \langle \gamma_t, \hat{\gamma}_t \rangle dt] + \mathbb{E} [\int_0^T \langle \delta_t, \hat{\delta}_t \rangle dt] + \mathbb{E} [\int_0^T \int_0^t \langle K_t(\rho), \hat{K}_t(\rho) \rangle \nu(d\rho) dt].
\]

This lemma can be deduced directly from Itô’s formula with jumps (see e.g. [14] and [13]).

We now prove Theorem 3.2. We start with two lemmas.
Lemma 4.2 Assume (A1)-(A3). Let \(v \) be an arbitrary element of \(U_{ad} \), and let \((y^v, Y^v, z^v, Z^v, k^v)\) be the corresponding solution of (2.1). Then we have

\[
J(v) - J(u) \geq \mathbb{E}[\langle P_T, y^v_T - y_T \rangle] + \mathbb{E}[\langle c R^* p_T, y^v_T - y_T \rangle] - \mathbb{E}[\langle p_0, Y^v_0 - Y_0 \rangle]
\]

\[
+ \mathbb{E}\left[\int_0^T \left(\ell(t, y^v_t, Y^v_t, z^v_t, Z^v_t, k^v_t, v_t) - \ell(t, y_t, Y_t, z_t, Z_t, k_t, u_t) \right) dt \right].
\]

(4.1)

Proof. From (2.2) we get

\[
J(v) - J(u) = \mathbb{E}\left[\beta(y^v_T) - \beta(y_T) \right] + \mathbb{E}\left[\gamma(Y^v_0) - \gamma(Y_0) \right]
\]

\[
+ \mathbb{E}\left[\int_0^T \left(\ell(t, y^v_t, Y^v_t, z^v_t, Z^v_t, k^v_t, v_t) - \ell(t, y_t, Y_t, z_t, Z_t, k_t, u_t) \right) dt \right].
\]

Since \(\beta \) and \(\gamma \) are convex, we obtain

\[
\beta(y^v_T) - \beta(y_T) \geq \langle \beta_y(y_T), y^v_T - y_T \rangle,
\]

\[
\gamma(Y^v_0) - \gamma(Y_0) \geq \langle \gamma_Y(Y_0), Y^v_0 - Y_0 \rangle,
\]

which imply that

\[
J(v) - J(u) \geq \mathbb{E}\left[\langle \beta_y(y_T), y^v_T - y_T \rangle \right] + \mathbb{E}\left[\langle \gamma_Y(Y_0), Y^v_0 - Y_0 \rangle \right]
\]

\[
+ \mathbb{E}\left[\int_0^T \left(\ell(t, y^v_t, Y^v_t, z^v_t, Z^v_t, k^v_t, v_t) - \ell(t, y_t, Y_t, z_t, Z_t, k_t, u_t) \right) dt \right].
\]

But from the adjoint equation (3.1) and system (2.1) we know

\[
p_0 = -\gamma_Y(Y_0), \quad P_T = -c R^* p_T + \beta_y(y_T).
\]

Thus (4.1) holds. \(\blacksquare \)

The following lemma contains duality relations between (2.1) and (3.2) (see the equivalent equations in the proof of Theorem 3.1).

Lemma 4.3 Suppose that assumptions of Theorem 3.2 (in particular (A1)-(A3))
hold. Then

\[- E \left[(p_0, Y_0^v - Y_0) \right] = - E \left[(p_T, Y_T^v - Y_T) \right] \]

\[- E \left[\int_0^T \langle pt, f(t, y_t^v, Y_t^v, z_t^v, Z_t^v, k_t^v, v_t) - f(t, y_t, z_t, Z_t, k_t, u_t) \rangle \, dt \right] \]

\[+ E \left[\int_0^T \langle H_Y(t, y_t, z_t, Z_t, k_t, u_t, pt, qt, Q_t, V_t), Y_t^v - Y_t \rangle \, dt \right] \]

\[- E \left[\int_0^T \langle qt, g(t, y_t^v, Y_t^v, z_t^v, Z_t^v, k_t^v, v_t) - g(t, y_t, z_t, Z_t, k_t, u_t) \rangle \, dt \right] \]

\[+ E \left[\int_0^T \langle H_Z(t, y_t, z_t, Z_t, k_t, u_t, pt, qt, Q_t, V_t), Z_t^v - Z_t \rangle \, dt \right] \]

\[+ E \left[\int_0^T \int_\Theta \langle H_k(t, y_t, z_t, Z_t, k_t, u_t, pt, qt, Q_t, V_t), k_t^v (\rho) - k_t(\rho) \rangle \nu(d\rho) \, dt \right], \quad (4.2) \]

and

\[E \left[(P_T, y_T^v - y_T) \right] = E \left[\int_0^T (Pt, b(t, y_t^v, Y_t^v, z_t^v, Z_t^v, k_t^v, v_t) \right. \]

\[\left. - b(t, y_t, z_t, Z_t, k_t, u_t)) \, dt \right] \]

\[+ E \left[\int_0^T \langle H_y(t, y_t, z_t, Z_t, k_t, u_t, pt, qt, Q_t, V_t), y_t^v - y_t \rangle \, dt \right] \]

\[+ E \left[\int_0^T \langle H_z(t, y_t, z_t, Z_t, k_t, u_t, pt, qt, Q_t, V_t), z_t^v - z_t \rangle \, dt \right] \]

\[+ E \left[\int_0^T \langle Q_t, \sigma(t, y_t^v, Y_t^v, z_t^v, Z_t^v, k_t^v, v_t) - \sigma(t, y_t, z_t, Z_t, k_t, u_t) \rangle \, dt \right] \]

\[+ E \left[\int_0^T \int_\Theta \langle V_t(\rho), \varphi(t, y_t, Y_t^v, z_t^v, Z_t^v, k_t^v, v_t, \rho) \right. \]

\[\left. - \varphi(t, y_t, z_t, Z_t, k_t, u_t, \rho) \rangle \nu(d\rho) \, dt \right]. \quad (4.3) \]
Proof. Applying integration by parts (Lemma 4.1) to \(\langle p_t, Y^v_T - Y_t \rangle \) gives

\[
\langle p_T, Y^v_T - Y_T \rangle = \langle p_0, Y^v_0 - Y_0 \rangle \\
- \int_0^T \langle p_t, f(t, y^v_t, Y^v_t, z^v_t, k^v_t, v_t) - f(t, y_t, Y_t, z_t, k_t, u_t) \rangle \, dt \\
- \int_0^T \langle p_t, (g(t, y^v_t, Y^v_t, z^v_t, k^v_t, v_t) - g(t, y_t, Y_t, z_t, k_t, u_t) \rangle \, dB_t \\
+ \int_0^T \int_{\bar{\Theta}} \langle p_t, (k^v_t(\rho) - k_t(\rho)) \rangle \tilde{N}(d\rho, dt) \\
+ \int_0^T \langle p_t, (Z^v_t - Z_t) \rangle dW_t - \int_0^T \langle Y^v_t - Y_t, q_t \rangle dB_t \\
+ \int_0^T \langle H_Y(t, y_t, Y_t, z_t, k_t, u_t, p_t, q_t, Q_t, V_t), Y^v_t - Y_t \rangle \, dt \\
+ \int_0^T \langle Y^v_t - Y_t, H_Z(t, y_t, Y_t, z_t, k_t, u_t, p_t, q_t, Q_t, V_t) \rangle dW_t \\
+ \int_0^T \int_{\bar{\Theta}} \langle Y^v_t - Y_t, H_k(t, y_t, Y_t, z_t, k_t, u_t, p_t, q_t, Q_t, V_t), k^v_t(\rho) - k_t(\rho) \rangle \tilde{N}(d\rho, dt) \\
- \int_0^T \langle q_t, g(t, y^v_t, Y^v_t, z^v_t, k^v_t, v_t) - g(t, y_t, Y_t, z_t, k_t, u_t) \rangle \, dt \\
+ \int_0^T \langle H_Z(t, y_t, Y_t, z_t, k_t, u_t, p_t, q_t, Q_t, V_t), Z^v_t - Z_t \rangle \, dt \\
+ \int_0^T \int_{\bar{\Theta}} \langle H_k(t, y_t, Y_t, z_t, k_t, u_t, p_t, q_t, Q_t, V_t), k^v_t(\rho) - k_t(\rho) \rangle \nu(d\rho) \, dt.
\]

Now by taking the expectation to the above equality, we obtain (4.2).
Similarly

\[
\langle P_T, y_T^v - y_T \rangle = \int_0^T \langle P_t, b(t, y_t^v, Y_t^v, z_t^v, Z_t^v, k_t^v, v_t) \\
- b(t, y_t, z_t, Z_t, k_t, u_t) \rangle dt \\
+ \int_0^T \langle P_t, (\sigma(t, y_t^v, Y_t, z_t^v, Z_t, k_t^v, v_t) \\
- \sigma(t, y_t, z_t, Z_t, k_t, u_t) \rangle dW_t \rangle \\
+ \int_0^T \int_\Theta \langle y_t^v - y_t, V_t(\rho) \rangle \tilde{N}(d\rho, dt) \\
- \int_0^T \langle P_t, (z_t^v - z_t) \tilde{d}B_t \rangle + \int_0^T \langle y_t^v - y_t, Q_t dW_t \rangle \\
+ \int_0^T \int_\Theta \langle P_t, (\varphi(t, y_t^v, Y_t^v, z_t^v, Z_t^v, k_t^v, v_t, \rho), \\
- \varphi(t, y_t, Z_t, k_t, u_t, \rho)) \rangle \tilde{N}(d\rho, dt) \\
+ \int_0^T \langle y_t^v - y_t, H_z(t, y_t, Y_t, z_t, Z_t, k_t, u_t, P_t, q_t, Q_t, V_t) \rangle dB_t \rangle \\
+ \int_0^T \langle H_y(t, y_t, Y_t, z_t, Z_t, k_t, u_t, P_t, q_t, Q_t, V_t), y_t^v - y_t \rangle dt \\
+ \int_0^T \langle H_z(t, y_t, Y_t, z_t, Z_t, k_t, u_t, P_t, q_t, Q_t, V_t), z_t^v - z_t \rangle dt \\
+ \int_0^T \langle Q_t, \sigma(t, y_t^v, Y_t^v, z_t^v, Z_t^v, k_t^v, v_t) \\
- \sigma(t, y_t, z_t, Z_t, k_t, u_t) \rangle dt \\
+ \int_0^T \int_\Theta \langle V_t(\rho), \varphi(t, y_t^v, Y_t^v, z_t^v, Z_t^v, k_t^v, v_t, \rho), \\
- \varphi(t, y_t, Z_t, k_t, u_t, \rho) \rangle \nu(d\rho) dt.
\]

By taking the expectation to this equality (4.3) holds. □

The remaining is devoted to completing the proof of Theorem 3.2.
Proof of Theorem 3.2. Observe first from (3.1) that
\[\ell(t, y_t^v, Y_t^v, z_t^v, Z_t^v, k_t^v, v_t) - \ell(t, y_t, Y_t, z_t, Z_t, k_t, u_t) \]
\[= - \left(H(t, y_t^v, Y_t^v, z_t^v, Z_t^v, k_t^v, v_t, p_t, q_t, P_t, Q_t, V_t) \right. \]
\[+ \left. \langle p_t, f(t, y_t^v, Y_t^v, z_t^v, Z_t^v, k_t^v, v_t) - f(t, y_t, Y_t, z_t, Z_t, k_t, u_t) \rangle \right) \]
\[- \langle P_t, b(t, y_t^v, Y_t^v, z_t^v, Z_t^v, k_t^v, v_t) - b(t, y_t, Y_t, z_t, Z_t, k_t, u_t) \rangle \]
\[- \langle q_t, g(t, y_t^v, Y_t^v, z_t^v, Z_t^v, k_t^v, v_t) - g(t, y_t, Y_t, z_t, Z_t, k_t, u_t) \rangle \]
\[- \langle Q_t, \sigma(t, y_t^v, Y_t^v, z_t^v, Z_t^v, k_t^v, v_t) - \sigma(t, y_t, Y_t, z_t, Z_t, k_t, u_t) \rangle \]
\[- \int_\Theta \langle V_t(\rho), \varphi(t, y_t^v, Y_t^v, z_t^v, Z_t^v, k_t^v, v_t, \rho) \rangle \]
\[- \varphi(t, y_t, Y_t, z_t, Z_t, k_t, u_t, \rho) \rangle \nu(d\rho). \] (4.4)

Next apply Lemma 4.3 and (4.4) in Lemma 4.2 to find that
\[J(v) - J(u) \]
\[\geq \mathbb{E} \left[\int_0^T \langle H_y(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t), y_t^v - y_t \rangle dt \right] \]
\[+ \mathbb{E} \left[\int_0^T \langle H_Y(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t), Y_t^v - Y_t \rangle dt \right] \]
\[+ \mathbb{E} \left[\int_0^T \langle H_z(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t), z_t^v - z_t \rangle dt \right] \]
\[+ \mathbb{E} \left[\int_0^T \langle H_Z(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t), Z_t^v - Z_t \rangle dt \right] \]
\[+ \mathbb{E} \left[\int_0^T \int_\Theta \langle H_k(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t), k_t^v(\rho) - k_t(\rho) \rangle \nu(d\rho) dt \right] \]
\[- \mathbb{E} \left[\int_0^T \langle H(t, y_t^v, Y_t^v, z_t^v, Z_t^v, k_t^v, v_t, p_t, P_t, q_t, Q_t, V_t) \right. \]
\[\left. - H(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t) \rangle dt \right]. \] (4.5)

Here we have used the formula \(h(\omega, x) := cRx + \xi(\omega), x \in \mathbb{R}^n \), to get the cancellation
\[\mathbb{E} \left[\langle c R^* p_T, y_T^v - y_T \rangle \right] - \mathbb{E} \left[\langle p_T, Y_T^v - Y_T \rangle \right] = 0 \]
resulting from (4.1) of Lemma 4.2 and (4.3) of Lemma 4.3.

On the other hand, from the concavity condition (ii) of the mapping
\[(y, Y, z, Z, k, v) \mapsto H(t, y, Y, z, Z, k, v, p, P, q, Q, V) \]
it follows that

\[
H(t, y^v_t, Y^v_t, z^v_t, Z^v_t, k^v_t, v_t, p_t, P_t, q_t, Q_t, V_t) \\
- H(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t) \\
\leq \langle H_y(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t), y^v_t - y_t \rangle \\
+ \langle H_Y(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t), Y^v_t - Y_t \rangle \\
+ \langle H_z(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t), z^v_t - z_t \rangle \\
+ \langle H_Z(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t), Z^v_t - Z_t \rangle \\
+ \int_{\Theta} \langle H_k(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t), k^v_t(\rho) - k_t(\rho) \rangle \nu(d\rho) \\
+ \langle H_v(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t), v_t - u_t \rangle.
\]

In particular,

\[
- \langle H_v(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t), v_t - u_t \rangle \\
\leq \langle H_y(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t), y^v_t - y_t \rangle \\
+ \langle H_Y(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t), Y^v_t - Y_t \rangle \\
+ \langle H_z(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t), z^v_t - z_t \rangle \\
+ \langle H_Z(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t), Z^v_t - Z_t \rangle \\
+ \int_{\Theta} \langle H_k(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t), k^v_t(\rho) - k_t(\rho) \rangle \nu(d\rho) \\
- \langle H(t, y^v_t, Y^v_t, z^v_t, Z^v_t, k^v_t, v_t, p_t, P_t, q_t, Q_t, V_t) \\
- H(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t) \rangle.
\]

Now by applying this latter result in (4.5) we obtain

\[
J(y) - J(u) \geq -\mathbb{E} \left[\int_0^T \langle H_v(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t), v_t - u_t \rangle \, dt \right].
\]

(4.6)

On the other hand, the maximum condition (iii) yields

\[
\langle H_v(t, y_t, Y_t, z_t, Z_t, k_t, u_t, p_t, P_t, q_t, Q_t, V_t), v_t - u_t \rangle \leq 0.
\]

Hence (4.6) becomes

\[
J(v) - J(u) \geq 0.
\]

Since \(u \) is an arbitrary element of \(\mathcal{U}_{ad} \), this inequality completes the proof if we recall (2.3). \(\blacksquare \)

Acknowledgement. The authors would like to thank the associate editor and anonymous referee(s) for their remarks, which have helped in improving the first version of this paper.
References

[1] F. Antonelli, Forward-backward stochastic differential equations, Ann. Appl. Probab. 3 (1993), 777–793.

[2] K. Bahlali, N. Khelfallah and B. Mezerdi, Necessary and sufficient conditions for near-optimality in stochastic control of FBSDEs, Systems Control Lett. 58 (2009), 12, 857–864.

[3] Q. Meng, Optimal control problem of fully coupled forward-backward stochastic systems with Poisson jumps under partial information, arXiv:0911.3225v1 [math.OC], 2009.

[4] D. Nualart and E. Pardoux, Stochastic calculus associated with Skorokhod’s integral, Lecture Notes in Control and Inf. Sciences, 96 (1987), 363–372.

[5] B. Øksendal and A. Sulem, Maximum principles for optimal control of forward-backward stochastic differential equations with jumps, SIAM J. Control Optim., 48 (2009), 5, 2945–2976.

[6] E. Pardoux and S. Peng, Backward doubly stochastic differential equations and system of quasilinear SPDEs, Prob. Th. & Rel Fields, 98 (1994), no. 2, 209–227.

[7] S. Peng and Y. Shi, A type-symmetric forward-backward stochastic differential equations, C. R. Acad. Sci. Paris Ser. I, 336 (2003), no. 1, 773–778.

[8] S. Peng and Z. Wu, Fully coupled forward-backward stochastic differential equations and applications to optimal control, SIAM J. Control Optim, 37 (1999), 825–843.

[9] Zhu Qingfeng and Yufeng Shi, Forward-backward doubly stochastic differential equations with random jumps and stochastic partial differential-integral equations, [OL].\[201001-1044], http://www.paper.edu.cn/index.php/default/en-releasepaper/downPaper/201001-1044

[10] J. T. Shi, Necessary conditions for optimal control of forward-backward stochastic systems with random jumps, International Journal of Stochastic Analysis Volume 2012, Article ID 258674, doi:10.1155/2012/258674.
[11] J. T. Shi and Z. Wu, The maximum principle for fully coupled forward-backward stochastic control system, Acta Automatica Sinica, 32 (2006), 2, 161–169.

[12] Xu Shuli and Jiang Jun, Maximum principles for forward-backward doubly stochastic differential equations with jumps, [OL], http://www.paper.edu.cn/en_releasepaper/content/4486654.

[13] R. Situ, On solution of backward stochastic differential equations with jumps and applications, Stoch. Process. Appl., 66 (1997), 209-236.

[14] X. Sun and Y. Lu, The property for solutions of the multi-dimensional backward doubly stochastic differential equations with jumps, Chin. J. Appl. Probab. Stat., 24 (2008), 73–82.

[15] X. Wang and Z. Wu, FBSDE with Poisson process and its application to linear quadratic stochastic optimal control problem with random jumps, Acta Automatica Sinica, 29 (2003), 821–826.

[16] Z. Wu, Maximum principle for optimal control problem of fully coupled forward-backward stochastic systems, Systems Sci. Math. Sci., 11 (1998), 3, 249–259.

[17] Z. Wu, Forward-backward stochastic differential equations with Brownian motion and Poisson process, Acta Math. Appl. Sinica, 15 (1999), 433–443.

[18] W. Xu, Stochastic maximum principle for optimal control problem of forward and backward system, J. Australian Mathematical Society B, 37 (1995), 172–185.

[19] Juliang Yin and R. Situ, On solutions of forward-backward stochastic differential equations with Poisson jumps, Stoch. Anal. Appl., 21 (2003), 1419–1448.

[20] J. Yong, Finding adapted solutions of forward-backward stochastic differential equations–method of continuation, Prob. Th. & Rel Fields, 107 (1997), 537–572.

[21] Liangquan Zhang and Yufeng Shi, General doubly stochastic maximum principle and its applications to optimal control of stochastic partial differential equations, arXiv:1009.6061v3[math.OC], 2012.