MYC and TFEB Control DNA Methylation and Differentiation in AML

Xiaoying Wu and Robert N. Eisenman

Summary: Although the MYC transcription factor has been consistently implicated in acute myeloid leukemia (AML), its gene targets and precise role in leukemogenesis remain unknown. In this issue of Blood Cancer Discovery, Yun and colleagues provide evidence that MYC directly suppresses the expression of TFEB, an mTORC1-regulated transcription factor. They show that, in the context of the myelocytic/granulocytic lineage, TFEB acts as a tumor suppressor by inducing the IDH1/2–TET pathway, which in turn, leads to altered DNA methylation and increased expression of genes involved in myeloid differentiation and apoptosis. Therefore, high levels of MYC suppress an epigenetic pathway that should normally act to attenuate leukemic progression. Identification of the components of this pathway is likely to inform new therapeutic tactics for AML and possibly other cancers.

See related article by Yun et al., p. 162 (3).

The bHLH-Z transcription factor MYC is known to be an extraordinarily well-connected protein: It not only directly interacts with MAX and transcriptional coregulator complexes but also interacts functionally with other members of what is known as the proximal MYC network (e.g., MXD proteins, MondoA). These latter interactions are indirect in that they are independent of evident protein–protein association among network members. The members of the MYC network can all be considered to be members of the MYC superfamily—related through paralogous bHLH-Z domains (1). Moreover, there is increasing evidence that MYC functionally interacts with the wider universe of more distantly related bHLH-Z transcription factors. For example, MYC has been reported to influence the activity of the transcription factors that control circadian rhythm (the bHLH-Z proteins BMAL1/CLOCK) through both indirect and direct interactions (2).

The article by Yun and colleagues (3) in this issue of Blood Cancer Discovery and another recent report (4) indicate that MYC is profoundly involved in the activity of TFEB, a bHLH-Z factor and member of the MiT–TFE family (comprising TFE3, TFE4, and MITF). Under non-stressed conditions, TFEB is sequestered in the cytoplasm and some cellular mechanisms, including TFEB phosphorylation by mTORC1 on the lysosomal surface. By contrast, mTORC1 inhibition or nutrient starvation promotes TFEB release, nuclear transport and specific genomic binding to loci that are involved in lysosomal functions and autophagy (5). In this way, it is nutrient sensing by mTORC1 that, under conditions of amino acid starvation for example, triggers a switch to autophagy and promotes survival.

In renal cell carcinomas, TFEB is highly expressed due to chromosome translocation or gene amplification and promotes oncogenesis (5). However, in human acute myeloid leukemia (AML), chromosome regions containing autophagy genes are often deleted. Moreover, single copy loss of Atg5, a key autophagy gene, is able to drive leukemia progression in mice (6), supporting a tumor-suppressive role of autophagy in AML.

As shown in the current study, MYC is highly expressed in a subset of AML, and its expression positively correlates with increased numbers of immature myeloblasts and elevated expression of stem cell markers in The Cancer Genome Atlas and several other AML patient cohorts. Not surprisingly, knockout of MYC promotes myeloid differentiation and inhibits proliferation in AML cells as well as myeloid progenitors, whereas MYC overexpression showed the opposite effects. Therefore, MYC is essential in maintaining normal myeloid progenitor characteristics as well as survival and proliferation of AML cells.

Given the seemingly opposing functions of MYC and autophagy in myeloid development and leukemogenesis, Yun and colleagues set out to examine potential connections between MYC and TFEB. The levels of TFEB and its target genes are inversely correlated with that of MYC in AML cell lines as well as in multiple AML patient cohorts. Consistent with this, doxycycline (dox)-induced expression of MYC in myeloid and leukemia cells decreases the levels of TFEB and its target genes and reduces lysosome biogenesis. Genetic and pharmacologic inhibition of MYC, on the other hand, significantly activates TFEB expression and increases autophagy. Given the seemingly opposing functions of MYC and autophagy in myeloid development and leukemogenesis, Yun and colleagues set out to examine potential connections between MYC and TFEB. The levels of TFEB and its target genes are inversely correlated with that of MYC in AML cell lines as well as in multiple AML patient cohorts. Consistent with this, doxycycline (dox)-induced expression of MYC in myeloid and leukemia cells decreases the levels of TFEB and its target genes and reduces lysosome biogenesis. Genetic and pharmacologic inhibition of MYC, on the other hand, significantly activates TFEB expression and increases autophagy. Given the seemingly opposing functions of MYC and autophagy in myeloid development and leukemogenesis, Yun and colleagues set out to examine potential connections between MYC and TFEB. The levels of TFEB and its target genes are inversely correlated with that of MYC in AML cell lines as well as in multiple AML patient cohorts. Consistent with this, doxycycline (dox)-induced expression of MYC in myeloid and leukemia cells decreases the levels of TFEB and its target genes and reduces lysosome biogenesis. Genetic and pharmacologic inhibition of MYC, on the other hand, significantly activates TFEB expression and increases autophagy. Given the seemingly opposing functions of MYC and autophagy in myeloid development and leukemogenesis, Yun and colleagues set out to examine potential connections between MYC and TFEB. The levels of TFEB and its target genes are inversely correlated with that of MYC in AML cell lines as well as in multiple AML patient cohorts. Consistent with this, doxycycline (dox)-induced expression of MYC in myeloid and leukemia cells decreases the levels of TFEB and its target genes and reduces lysosome biogenesis. Genetic and pharmacologic inhibition of MYC, on the other hand, significantly activates TFEB expression and increases autophagy. Given the seemingly opposing functions of MYC and autophagy in myeloid development and leukemogenesis, Yun and colleagues set out to examine potential connections between MYC and TFEB. The levels of TFEB and its target genes are inversely correlated with that of MYC in AML cell lines as well as in multiple AML patient cohorts. Consistent with this, doxycycline (dox)-induced expression of MYC in myeloid and leukemia cells decreases the levels of TFEB and its target genes and reduces lysosome biogenesis. Genetic and pharmacologic inhibition of MYC, on the other hand, significantly activates TFEB expression and increases autophagy. Given the seemingly opposing functions of MYC and autophagy in myeloid development and leukemogenesis, Yun and colleagues set out to examine potential connections between MYC and TFEB. The levels of TFEB and its target genes are inversely correlated with that of MYC in AML cell lines as well as in multiple AML patient cohorts. Consistent with this, doxycycline (dox)-induced expression of MYC in myeloid and leukemia cells decreases the levels of TFEB and its target genes and reduces lysosome biogenesis. Genetic and pharmacologic inhibition of MYC, on the other hand, significantly activates TFEB expression and increases autophagy. Given the seemingly opposing functions of MYC and autophagy in myeloid development and leukemogenesis, Yun and colleagues set out to examine potential connections between MYC and TFEB. The levels of TFEB and its target genes are inversely correlated with that of MYC in AML cell lines as well as in multiple AML patient cohorts. Consistent with this, doxycycline (dox)-induced expression of MYC in myeloid and leukemia cells decreases the levels of TFEB and its target genes and reduces lysosome biogenesis. Genetic and pharmacologic inhibition of MYC, on the other hand, significantly activates TFEB expression and increases autophagy. Given the seemingly opposing functions of MYC and autophagy in myeloid development and leukemogenesis, Yun and colleagues set out to examine potential connections between MYC and TFEB. The levels of TFEB and its target genes are inversely correlated with that of MYC in AML cell lines as well as in multiple AML patient cohorts. Consistent with this, doxycycline (dox)-induced expression of MYC in myeloid and leukemia cells decreases the levels of TFEB and its target genes and reduces lysosome biogenesis. Genetic and pharmacologic inhibition of MYC, on the other hand, significantly activates TFEB expression and increases autophagy. Given the seemingly opposing functions of MYC and autophagy in myeloid development and leukemogenesis, Yun and colleagues set out to examine potential connections between MYC and TFEB. The levels of TFEB and its target genes are inversely correlated with that of MYC in AML cell lines as well as in multiple AML patient cohorts. Consistent with this, doxycycline (dox)-induced expression of MYC in myeloid and leukemia cells decreases the levels of TFEB and its target genes and reduces lysosome biogenesis. Genetic and pharmacologic inhibition of MYC, on the other hand, significantly activates TFEB expression and increases autophagy. Given the seemingly opposing functions of MYC and autophagy in myeloid development and leukemogenesis, Yun and colleagues set out to examine potential connections between MYC and TFEB. The levels of TFEB and its target genes are inversely correlated with that of MYC in AML cell lines as well as in multiple AML patient cohorts. Consistent with this, doxycycline (dox)-induced expression of MYC in myeloid and leukemia cells decreases the levels of TFEB and its target genes and reduces lysosome biogenesis. Genetic and pharmacologic inhibition of MYC, on the other hand, significantly activates TFEB expression and increases autophagy.
TFEB and other MiT–TFE transcription factor family members. In addition, MYC can also bind to the promoters of TFEB target genes, thereby precluding TFEB binding and transcription activation (4). Consistent with the previous finding, Yun and colleagues show that MYC suppresses TFEB promoter activity, potentially by directly binding to the E-box region upstream of the transcriptional start site. Interestingly, in AML, as distinct from other cancer types, MYC itself does not occupy the promoters of TFEB target genes or affect the binding of TFEB to its target promoters. Therefore, MYC suppresses autophagy and downregulates TFEB target genes by directly inhibiting TFEB expression in AML (Fig. 1).

To directly test if TFEB functions as a tumor suppressor in AML, Yun and colleagues (3) inducibly expressed TFEBS211A, a mutant form of TFEB that constitutively localizes to the nucleus, in myeloid progenitors and AML cells in the presence of dox. Upon dox treatment, cells expressing TFEBS211A showed elevated levels of TFEB target gene expression and lysosome biogenesis. Moreover, short-term TFEBS211A expression promoted monocytic and granulocytic differentiation, whereas long-term TFEBS211A expression leads to apoptosis accompanied by higher levels of apoptotic markers. To further test the role of TFEB in vivo, the authors performed mouse xenograft experiments using AML cells with dox-inducible TFEBS211A. Consistent with ex vivo results, dox-induced expression of TFEBS211A delayed leukemia development and improved survival in recipient mice compared with control groups. Collectively, these data indicate that TFEB acts as a tumor suppressor in AML.

Importantly, the antiproliferative effects of TFEB do not appear to be mediated through regulation of autophagy, as inhibition of autophagy in myeloid progenitor and AML cells does not affect cell fate or survival. Instead, based on RNA-sequencing analysis, TFEB activates genes essential for monocytic and granulocytic differentiation. In that cellular context, such regulation is at least partially achieved by TFEB’s transcriptional activation of IDH1/2 and/or TET, which, in turn, leads to changes in DNA methylation on these genes. TFEB transcription can be directly suppressed by MYC, which is highly expressed in subsets of AML. The precise mechanism by which MYC suppresses TFEB expression is unknown.

Figure 1. The MYC–TFEB–IDH1/2–TET axis in AML. Under nutrient-replete conditions, TFEB is phosphorylated by mTORC1 and other kinases and, as a result, is sequestered in the cytoplasm. When mTORC1 is inhibited upon starvation or AMPK activation (e.g., by GSK-621), unphosphorylated TFEB translocates to the nucleus and activates the transcription of genes involved in autophagy and lysosome biogenesis. In the current study, Yun and colleagues show that TFEB functions as a tumor suppressor in AML by regulating the expression of genes controlling myeloid lineage differentiation and cell death in myeloid progenitor and AML cells. This is partially achieved by TFEB’s transcriptional activation of IDH1/2 and/or TET, which, in turn, leads to changes in DNA methylation on these genes. TFEB transcription can be directly suppressed by MYC, which is highly expressed in subsets of AML. The precise mechanism by which MYC suppresses TFEB expression is unknown.
in active demethylation (for review, see ref. 7). Specific neo-
morphic mutations in IDH (e.g., IDH1R132H) or TET inhibit-
ion impairs DNA demethylation and results in aberrant
proliferation and a block to differentiation. Such mutations
are associated with a subset of AML as well as other tumor
types such as glioblastomas and gliomas (8), and selective
small-molecule mutant IDH inhibitors are showing promise
in treatment of AML (9).

Many of the differentially regulated genes identified by
Yun and colleagues (3) in TFEBS211A-expressing AML cells,
including genes controlling myeloid lineage differentiation
and cell death, showed exclusive gain of 5hmC as well as both
gain and loss of 5mC. Consistent with a MYC-TFEB-IDH–
TET demethylation circuit, the authors find that inducible
expression of MYC, or coexpression of IDH1R132H, suppresses
5hmC levels and myeloid differentiation induced by TFEB in
myeloid progenitor and AML cells. Together, these findings
suggest that MYC control of TFEB can epigenetically regu-
late cell differentiation and survival via the IDH1/2–TET
pathway (Fig. 1).

Lastly, the authors explore the potential therapeutic value
of TFEB activation in treating AML. GSK-621, a specific
analyst of AMPK, induces TFEB nuclear localization, target
gene activation, myeloid differentiation, and cell death in
AML cells. Similar effects were also observed when primary
AML patient samples were treated with this compound.
Given the effect of TFEB on DNA methylation, the authors
also tested if TFEB activation could act synergistically with
azaclitidine, a DNA methyltransferase inhibitor used for
AML treatment. Myeloid progenitor and AML cells with
both TFEB overexpression and azacitidine treatment exhib-
ited significant increases in global 5hmC levels and cell death
compared with cells with either treatment alone. Similarly,
induced expression of TFEBS211A in AML xenografts, com-
bined with azacitidine, modestly improved overall survival
of the recipient mice compared with those with single agent
or no treatment, suggesting that TFEB activation and DNA
hypomethylating agents may serve as a potential combina-
tion treatment for AML.

Taken together, the current study presents a novel regulatory
pathway where TFEB induces the expression of IDH1/2 and
TET2, which in turn leads to a global increase in 5hmC and
the subsequent differentiation and apoptosis of myeloid pro-
genitor and AML cells (Fig. 1). TFEB expression is directly
suppressed by MYC, which is often present at high levels in AML
cells. As noted by the authors, the inverse correlation between
MYC and TFEB expression appears to occur specifically in
AML cells, but not in other leukemia or lymphoma cell lines.
Therefore, whether the MYC-TFEB-IDH1/2–TET axis also
functions in other tumor types awaits further study. In addi-
tion, the mechanism through which MYC, generally thought
of as an activator of expression, suppresses TFEB expression
remains unclear. Previous work has shown that, in HeLa cells,
MYC inhibits the expression of TFEB and other MiT–TFE

family members by co-occupying their promoters with HDAC2
(4). It would be interesting to see if a similar mechanism also
applies in AML. In addition, Miz-1, a POZ domain-containing
transcriptional activator, is known to interact with MYC–MAX
heterodimers and repress gene expression under MYC-high
conditions (10). Given the high levels of MYC in AML, it is fea-
stable that MYC could also suppress TFEB expression via Miz-1.
Finally, not all genes that are differently regulated upon TFEB
expression displayed changes in DNA methylation. Moreover,
as noted by the authors, expression of IDH1 alone is not suf-
ficient to induce AML cell differentiation or death, indicating
other potential mechanisms may be at play, including some
that may be independent of epigenetic regulation. Future
udies on this front will provide more insights into the tumor-
suppressive functions of TFEB.

Authors’ Disclosures

R.N. Eisenman reports personal fees from KronosBio (scientific
advisory board member) and Shenogen Pharma Beijing (scientific
advisory board member) outside the submitted work. No disclosures
were reported by the other author.

Published first January 19, 2021.

REFERENCES

1. Carroll PA, Freie BW, Mathysyaraja H, Eisenman RN. The MYC tran-
scription factor network: balancing metabolism, proliferation and
oncogenesis. Front Med 2018;12:412–25.
2. Alman BJ, Hsieh AL, Sengupta A, Krishnanailah SY, Stine ZE, Walton ZE,
et al. MYC disrupts the circadian clock and metabolism in cancer
cells. Cell Metab 2015;22:1009–19.
3. Yun S, Vincenette ND, Yu X, Watson GW, Fernandez MR, Yang C,
et al. TFEB links MYC signaling to epigenetic control of myeloid dif-
ferentiation and acute myeloid leukemia. Blood Cancer Discov 2021;
2:162–85.
4. Annuziata I, van de Vlekkert D, Wolf E, Finkelstein D, Neale G,
Machado E, et al. MYC competes with MiT/TFE in regulating lys-
oosomal biogenesis and autophagy through an epigenetic rheostat. Nat
Commun 2019;10:3623.
5. Puertollano R, Ferguson SM, Brugarolas J, Ballabio A. The complex
relationship between TFEB transcription factor phosphorylation and
subcellular localization. EMBO J 2018;37:e98804.
6. Watson AS, Riffelmacher T, Stranks A, Williams O, De Boer J, Cain K,
et al. Autophagy limits proliferation and glycolytic metabolism in
acute myeloid leukemia. Cell Death Discov 2015;1:15008.
7. Rasmussen KD, Helin K. Role of TET enzymes in DNA methylation,
development, and cancer. Genes Dev 2016;30:733–50.
8. DiNardo CD, Ravandi F, Agresta S, Konovalov P, Takahashi K, Kadia T,
et al. Characteristics, clinical outcome, and prognostic significance of
IDH mutations in AML. Am J Hematol 2015;90:732–6.
9. Becker JS, Fathi AT. Targeting IDH mutations in AML: wielding the
double-edged sword of differentiation. Curr Cancer Drug Targets
2020;20:490–500.
10. Wiese KE, Wala S, van Eys B, Wolf E, Athineos D, Sansom O, et al.
The role of MIZ-1 in MYC-dependent tumorigenesis. Cold Spring Harb Perspect Med
2013;3:a014290.
MYC and TFEB Control DNA Methylation and Differentiation in AML

Xiaoying Wu and Robert N. Eisenman

Blood Cancer Discov 2021;2:116-118. Published OnlineFirst January 19, 2021.

Updated version Access the most recent version of this article at:
doi: 10.1158/2643-3230.BCD-20-0230

Cited articles This article cites 10 articles, 4 of which you can access for free at:
http://bloodcancerdiscov.aacrjournals.org/content/2/2/116.full#ref-list-1

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://bloodcancerdiscov.aacrjournals.org/content/2/2/116. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.