Many-body resonances and continuum states above many-body decay thresholds

K. Katō\(^1\), T. Myo\(^2,3\) and Y. Kikuchi\(^4\)
\(^1\) Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
\(^2\) General Education, Faculty of Engineering, Osaka Institute of Technology, Osaka, Osaka 535-8585, Japan
\(^3\) Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan
\(^4\) RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
E-mail: kato@nucl.sci.hokudai.ac.jp

Abstract. We study the resonance spectroscopy of the He isotopes and their mirror, proton-rich nuclei with an \(\alpha + N + N + N + N\) cluster model. Many-body resonances are treated with the correct boundary condition as the Gamow states using the complex scaling method. We obtain the resonances up to the five-body decaying states in \(^8\)He and \(^8\)C. The spectrum agrees with the recent experiment systematically for energies and decay widths and we predict several resonances. We also discuss the mirror symmetry breaking of He isotopes and their mirror nuclei for the configurations and the spatial distributions of the valence nucleons.

1. Introduction
Unstable nuclei have often been observed in unbound states beyond the particle thresholds due to the weak binding nature of valence nucleons. The resonance spectroscopy of unbound states in unstable nuclei has been developed using radioactive-beam experiments \(\cite{1,2}\). In addition to the energies and decay widths of resonances, information on their configurations and spatial properties is important to understand the structures of unstable nuclei. In proton- and neutron-rich nuclei, the correlations between valence nucleons and those between a valence nucleon and a core nucleus lead to the exotic nuclear properties in resonances as well as in the weakly bound states. The comparison of the structures between proton- and neutron-rich nuclei is important to examine the mirror symmetry in unstable nuclei with a large isospin.

In this report, we show the results of the recent applications of the complex scaling method (CSM) to the spectroscopy of unstable nuclei. We focus on the structures of the neutron-rich He isotopes and their mirror proton-rich nuclei, most of the states of which are unbound owing to the weak binding of valence nucleons to the \(\alpha\) particle. We investigate the many-body resonances observed in these nuclei, with the correct boundary condition for the multi-particle emission using the CSM beyond the two-body case.

2. Complex-scaled cluster orbital shell model
We briefly explain the method of describing the resonance and non-resonant continuum states of He isotopes and their mirror nuclei on the basis of the cluster model with an \(\alpha\) core. To
describe the unbound states, it is essential to treat the boundary condition of the multi-particle emission and to solve the relative motion of each particle or cluster. For this purpose, we use the cluster orbital shell model with the complex scaling, called as CS-COSM, hereafter. We use the following Hamiltonian for the system consisting of α and valence nucleons $[3, 4, 5, 6, 7]$:

$$
H_{\text{CS-COSM}} = \sum_{i=1}^{N_c} \left[\frac{\vec{p}_i^2}{2\mu} + V_i^\alpha N \right] + \sum_{i<j}^{N_c} \left[\frac{\vec{p}_i \cdot \vec{p}_j}{(A_c + 1)\mu} + V_{ij}^{NN} \right],
$$

where the operator \vec{p}_i represents the relative momentum between a valence nucleon and α. The reduced mass μ is $mA_c/(A_c + 1)$, where m is the nucleon mass and $A_c = 4$ of the α core. The number N_c is a valence nucleon number around the α core.

The total wave function $\Psi_{\text{CS-COSM}}^{JT}$ of the nucleus with a mass number A ($= A_c + N_v$), a spin J, and an isospin T, is represented by the superposition of the various configurations Φ_c^{JT} as

$$
\Psi_{\text{CS-COSM}}^{JT} = \sum_c C_c^{JT} \Phi_c^{JT}(A), \quad \Phi_c^{JT}(A) = \prod_{i=1}^{N_c} a_{\kappa_i}^\dagger |0\rangle,
$$

where the vacuum $|0\rangle$ represents the α particle. The creation operator a_{κ}^\dagger denotes the single-particle state of a valence nucleon above 4He, with the quantum number $\kappa = \{n, \ell, j, t\}$ in a jj coupling scheme. Here, the index n is used to distinguish the different radial component of the single-particle state. The index c represents the set of κ as $c = \{\kappa_1, \cdots, \kappa_{N_c}\}$. The expansion coefficients $\{C_c^{JT}\}$ in Eq. (2) are determined by the diagonalization of the Hamiltonian matrix elements. The schematic illustration of the coordinate set is shown in Fig. 1 for a core + $N_v N$ systems with $N_v = 1, \cdots, 4$. We describe the radial component of the single nucleon wave function using the Gaussian expansion method $[3, 8]$. The antisymmetrization between a valence nucleon and α is treated on the orthogonality condition model $[9]$, in which the single-particle state is imposed to be orthogonal to the $0s$ state occupied by an α core.

In the CS-COSM, the relative coordinates \vec{r}_i between between a valence nucleon and α shown in Fig. 1, are transformed into $\vec{r}_i e^{i\theta}$ for $i = 1, \cdots, N_v$ to describe the many-body resonances and continuum states; here, θ is a scaling angle. Using the complex-scaled Hamiltonian $H_{\text{CS-COSM}}$, the complex-scaled Schrödinger equation is given as

$$
H_{\text{CS-COSM}}^{\theta} \Psi_{\text{CS-COSM}}^{JT, \theta} = E_{JT}^{\theta} \Psi_{\text{CS-COSM}}^{JT, \theta}, \quad \Psi_{\text{CS-COSM}}^{JT, \theta} = \sum_c C_c^{JT, \theta} \Phi_c^{JT}(A).
$$

The energy eigenvalues E_{JT}^{θ} are obtained on a complex energy plane. In the CS-COSM, we adopt a finite number of the radial basis states for valence nucleons, which provides a discretized representation of the continuum states in the CSM.

In Eq. (1), the $\alpha-N$ interaction $V_{\alpha N}$ consists of the KKNN potential $[3, 10]$ for the nuclear part and the folded Coulomb part. We use the Minnesota potential $[11]$ as the nucleon-nucleon...
interaction V^{NN} in addition to the point Coulomb interaction. For the single-particle states, we take the angular momenta $\ell \leq 2$ and adjust the two-neutron separation energy of ^6He to the experimental value of 0.975 MeV.

2.1. Results of He isotopes and their mirror nuclei

We show a systematics of energy levels observed experimentally and calculated by CS-COSM for He isotopes and their mirror nuclei in Fig. 2, measured from on the basis of the α particle. The small numbers near the levels represent the decay widths of the states. A good agreement is observed between the theoretically and experimentally obtained energy positions up to a five-body case of ^8He and ^8C. Further, there are several theoretical predictions of the excited states. The matter and charge radii of the ground states of ^6He and ^8He reproduce the recent experiments, as shown in Table 1. Hence, the CS-COSM wave functions describe the specially extended distributions of neutrons in the halo and skin structures observed in the He isotopes.

Firstly, we focus on the structures of ^7He and its mirror nucleus ^7B [6]. They are both unbound nuclei. Our CS-COSM predicts five resonances for each nucleus. For ^7He, the $3/2^-$ ground state is obtained as the two-body resonance located in the energy range between the thresholds of $^6\text{He}+n$ and $\alpha+3n$. The other four states are four-body resonances above the $\alpha+3n$ threshold energy as shown in Fig. 2. For ^7B, the resonances are all located above the $\alpha+3p$ threshold energy and are interpreted as four-body resonances. There is no experimental data for the excited states of ^7B so far.

Table 1. Matter (R_m) and charge (R_ch) radii of ^6He and ^8He in comparison with the experimental values; a[12], b[13], c[14], d[15], and e[16]. Units are in fm.

	Present	Experiments
^6He	R_m 2.37	2.33(4)a
	R_ch 2.01	2.30(7)b
		2.37(5)c
^8He	R_m 2.52	2.49(4)a
	R_ch 1.92	2.53(8)b
		2.49(4)c
It is meaningful to discuss the mirror symmetry between 7He and 7B consisting of the α core and three valence neutrons or protons. We show the the spectroscopic factors (S-factors) of one-nucleon removal from each nucleus, the 6He-n components of 7He and the 6Be-p components of 7B. These quantities are important to examine the coupling behaviors between the $A = 6$ daughter nuclei and the last nucleon.

We list the results of the S-factors of 7He and 7B in Table 2 and 3, respectively. For the Gamow states, the S-factors can be complex numbers. In the results, most of the components are found to show almost the real values. A sizable difference is observed between the ground states of 7He and 7B in terms of the components including the $A = 6 (2^+_1)$ states. The 6Be(2^+_1)-p component in 7B obtained as 2.35 (Table 3), is larger than the 6He(2^+_1)-n component in 7He as 1.60 (Table 2), by 47% for the real part. This difference indicates the breaking of the mirror symmetry in their ground states. The reason for the different values of the 2^+ couplings is that the 7B ground state is located close to the 6Be(2^+_1) state by 0.45 MeV in the energy as shown in Fig. 2. This situation does not occur in 7He, in which the energy difference between 7He(3^+_2) and 6He(2^+_1) is 1.46 MeV. The small energy difference between 7B and 6Be(2^+_1) enhances the 6Be(2^+_1)-p component in 7B because of the increase of the coupling to the open channel of the 6Be(2^+_1)+p threshold. Contrastingly, the 6Be(0^+_1)-p component in 7B becomes smaller than that of 7He, because the energy difference between the ground states of 7B and 6Be is 1.97 MeV, larger than that in the case of 7He as 0.40 MeV. The difference between the S-factors in 7He and 7B originates from the Coulomb repulsion, which acts to shift the entire energy of the 7B states upward with respect to the 7He energy.

In conclusion, the mirror symmetry is largely broken only in the ground states of 7He and 7B, while the excited states of the two nuclei keep the symmetry approximately. In relation to the S-factors, we have calculated the one-neutron removal strength of 7He to form 6He as a function of the observed excitation energy of 6He [4]. The dominant component comes from the 2^+ state, the strength of which peaks at the resonance energy of 0.84 MeV of 6He(2^+_1).

Secondly, we compare the structures of 8He and 8C for their mirror 0^+ states as the five-body decaying states with an α core [7]. We investigate the role of the Coulomb interaction on the spatial properties of 8C in comparison with 8He. For this purpose, we calculate the various radii sizes of 8He and 8C, which reflect the spatial motion of four valence nucleons. We noted that the radius of Gamow states is obtained as a finite complex number, similar to the S-factors as was discussed. In the present analyses, most of the radii of resonances exhibit imaginary parts that are relatively smaller than the real ones, similar to case of the squared amplitudes [5, 7]. Hence, we discuss the spatial size of resonances using the real part of the complex radii.

The results of the radii of the 0^+_1 states in 8He and 8C are listed in Table 4. We calculate the matter (R_{m}), proton (R_p), neutron (R_n), and charge (R_{ch}) radii, and the mean relative distances between α and a single valence nucleon ($r_{\alpha-N}$) and between α and the center of mass of the four valence nucleons ($r_{\alpha-4N}$).
Table 4. Various radii of the 0_1^+ states of 8He and 8C in units of fm.

	8He(0_1^+)	8C(0_1^+)	8He(0_2^+)	8C(0_2^+)
R_{in}	2.52	2.81 $-$ 0.08i	7.56 $+$ 2.04i	4.87 $+$ 0.13i
R_p	1.80	3.06 $-$ 0.10i	3.15 $+$ 0.69i	5.46 $+$ 0.15i
R_n	2.72	1.90 $-$ 0.01i	8.53 $+$ 2.32i	2.36 $+$ 0.05i
R_{ch}	1.92	3.18 $-$ 0.09i	3.22 $+$ 0.67i	5.53 $+$ 0.15i
r_{c-N}	3.55	4.05 $-$ 0.12i	11.03 $+$ 3.11i	7.21 $+$ 0.21i
r_{c-4N}	2.05	2.36 $-$ 0.03i	5.60 $+$ 1.55i	3.68 $+$ 0.13i

For the 0_1^+ states, the matter radius of 8C is larger than that of 8He by about 12% in the real part. For 0_2^+ states, all the values of radii are complex numbers because of the resonances in the two nuclei. The imaginary parts are fairly large for 8He(0_1^+), but still smaller than the real ones. It is interesting that the matter radius of 8C is smaller than that of 8He in the 0_1^+ states. This relation is opposite to that observed for the ground states of 8He and 8C. For 8He(0_2^+), the observed large matter radius originates from the large neutron radius. For 8C(0_2^+), the large matter radius is due to the large proton radius, which is smaller than the neutron radius of 8He.

We conclude that the relation of the spatial properties between 8He and 8C depends on the states, which can be explained in terms of the Coulomb interaction. The Coulomb interaction acts repulsively, thereby shifting the entire energy of 8C upward with respect to the 8He energy. In the ground state of 8C, this repulsion extends the distances between α and a valence proton and between valence protons. On the other hand, the Coulomb interaction makes the barrier above the particle threshold in 8C and the 0_2^+ resonance is affected by this barrier, the effect of which prevents the wave function of valence protons of 8C from extending spatially. In 8He, there is no Coulomb barrier for the four valence neutrons and the neutrons can extend to a large distance in the resonance. This role of the Coulomb interaction leads to the radius of 8C(0_2^+) being smaller than that of 8He(0_2^+).

Acknowledgments
This work was supported by JSPS KAKENHI Grant Numbers 24740175 and 25400241. Numerical calculations were performed on a supercomputer (NEC SX9) at RCNP, Osaka University.

References
[1] Tanihata I, Savajols H and Kanungo R 2013 Prog. Part. Nucl. Phys. 68 215
[2] Charity R J et al. 2011 Phys. Rev. C 84 014320
[3] Aoyama S, Myo T, Katô K and Ikeda K, 2006 Prog. Theor. Phys. 116 1
[4] Myo T, Ando R and Katô K 2009 Phys. Rev. C 80 014315
[5] Myo T, Ando R and Katô K 2010 Phys. Lett. B 691 150
[6] Myo T, Kikuchi Y and Katô K 2011 Phys. Rev. C 84 064306
[7] Myo T, Kikuchi Y and Katô K 2012 Phys. Rev. C 85 034338, 2013 Phys. Rev. C 87 049902
[8] Hiyama E, Kino Y and Kamimura M 2003 Prog. Part. Nucl. Phys. 51 223
[9] Saito S 1977 Prog. Theor. Phys. Suppl. 62 11
[10] Kanada H, Kaneko T, Nagata S and Nomoto M 1979 Prog. Theor. Phys. 61 1327
[11] Tang Y C, LeMere M and Thompson D R 1978 Phys. Rep. 47 167
[12] Tanihata I et al. 1992 Phys. Lett. B 289 261
[13] Alkhazov G D et al. 1997 Phys. Rev. Lett. 78 2313
[14] Kiselev O A et al. 2005 Eur. Phys. J. A 25, Suppl. 1 215
[15] Mueller P et al. 2007 Phys. Rev. Lett. 99 252501
[16] Brodeur M et al. 2012 Phys. Rev. Lett. 108 052504