COMMENCE Trial – Comparing hypOtherMic teMperaturEs duriNg hemiarCh surgEry A Randomized Controlled Trial of Mild vs Moderate Hypothermia on Patient Outcomes in Aortic Hemiarch Surgery with Anterograde Cerebral Perfusion

Habib Jabagi (✉ hijabagi@yahoo.com)
University of Ottawa Heart Institute https://orcid.org/0000-0003-2326-8336

George Wells
University of Ottawa Heart Institute

Munir Boodhwani
University of Ottawa Heart Institute

Study protocol

Keywords: Aortic arch surgery / Hemiarch repair, Hypothermic circulatory arrest, Mild hypothermia, Antegrade selective cerebral perfusion, Cerebral protection, Stroke, Acute kidney injury, Prospective study, Randomised control trial

Posted Date: February 22nd, 2019

DOI: https://doi.org/10.21203/rs.2.401/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published on December 9th, 2019. See the published version at https://doi.org/10.1186/s13063-019-3713-9.
Abstract

Background Aortic arch surgery remains the only viable life-saving treatment for aortic arch disease. However, the necessity for cessation of systemic blood flow with hypothermic cardiac arrest carries substantial risk of morbidity and mortality, including poor neurological outcomes and kidney failure. While uncontrolled studies have suggested the safety of operating at warmer temperatures, significant variables remain un-investigated supporting the need for a randomized clinical trial to produce evidence-based guidelines for perfusion strategies in aortic surgery. This study proposes a multi-centre RCT, in order to compare outcomes of warmer hypothermic strategies during hemiarch surgery on a composite endpoint of neurologic and acute kidney injury. Methods This is a prospective multi-centre, single-blind two-arm RCT comparing mild (32°C) versus moderate (26°C) hypothermic cardiac arrest in patients (n=282) undergoing aortic hemiarch surgery with antegrade cerebral perfusion. The primary endpoint is a composite of neurological injury (incidence of TIA and/or stroke) and acute kidney injury (1 or higher). Secondary outcomes include death, cardiopulmonary bypass time, bleeding, transfusion rates, prolonged mechanical ventilation, myocardial infarction, length of stay, and quality of life measures. Patients will undergo 1:1 block randomization to each treatment arm on day of surgery. Sequence of operation will be at the surgeon's discretion with mandatory guidelines for temperature and antegrade cerebral perfusion administration. Perioperative management will occur as per enrolling centre standard of care. Neurocognitive function will be assessed using validated neurological screening tests: NIHSS, MOCA, BI, and MRS. Diagnosis and classification of acute kidney injury will be assessed using creatinine measurements. Study duration for each patient will be 60±30 days. Discussion It is hoped that performing hemiarch surgery using mild hypothermia (32°C) and selective anterograde cerebral perfusion will result in a 15% absolute risk reduction in the composite outcomes. The potential of this risk reduction will translate into improved patient outcomes, survival, and long-term financial savings to the Health Care system. In addition to this, the results of this trial will be used to create the first-ever guidelines for temperature management strategy during aortic surgery.

Background:

Thoracic aortic disease (TAD) is a silent epidemic affecting 15,000 people per year, with up to 45,000 deaths per annum in the United States, making it one of the leading causes of death in people over 65. (1) New studies have shown an increased prevalence and incidence of TAD, with surgery remaining the only viable life-saving treatment. (2,3) However, the way in which these surgeries must be conducted carries substantial risk of morbidity and mortality.

When surgery on the aortic arch is required, the necessity of stopping systemic blood flow, to provide a clear operative field, places perfusion sensitive organs, such as the brain and kidneys at significant risk of ischemic injury. Surgery on the aortic arch was only made possible in the mid-1970s with the introduction of deep hypothermic cardiac arrest (DHCA) by Griepp. (4) The concept of deep hypothermia to reduce oxygen and metabolic requirements of hypoxic tissue is well documented (5,6), but it is not achieved without its own adverse effects on body homeostasis and processes, including: longer time
cardiopulmonary bypass (CPB) times, increased coagulopathy, multi-organ dysfunction, systemic inflammatory response (SIRS), endothelial dysfunction, and neuronal apoptosis (7-11). Unfortunately, these drawbacks are intimately associated with worse neurologic (transient ischemic attack (TIA) and stroke) and renal outcomes, which often result in debilitating and lifelong illnesses for patients.

Strokes post cardiac surgery have been shown to double the duration and costs of hospitalization, and are associated with a 5 to 10 fold increase in early mortality, while up to 69% of survivors suffer severe physical disability, often requiring continuing care, rehabilitation, or placement in long term care facilities. (12) Similarly, kidney injury often results in the need for permanent dialysis, requiring on-going hospital visits and substantial increases in mortality and morbidity. (13) These post-operative complications result in significant added expenditures for the Health Care System. It has been estimated that the economic impact of stroke post coronary revascularization (which carries a substantially lower risk of stroke than aortic surgery) exceeds $2 to $4 billion dollars annually worldwide. (14) Thus, it can be inferred that stroke would have a similar, if not higher impact among patients undergoing aortic arch surgery.

To mitigate neurological complications, Bachet and Kazui (5, 7), developed selective anterograde cerebral perfusion (sACP). By directly cannulating the axillary or innominate artery, uninterrupted physiologic cerebral perfusion to the brain could now be maintained in patients during periods of circulatory arrest. This afforded patients almost complete neurological protection during arch surgery, effectively changing total body hypothermic circulatory arrest to isolated lower body circulatory arrest. Despite these advances, these procedures still carry high mortality and morbidity risks secondary to the adverse effects of hypothermia. In an attempt to negate these risks, a trend towards significantly warmer core body temperatures has emerged across cardiac centres with positive outcomes. (8, 12, 13).

Previous retrospective studies and large meta-analyses comparing deep and moderate hypothermic cardiac arrest (MHCA) during aortic arch surgery (with sACP) have shown no differences in hospital mortality, visceral organ protection, and neurologic outcomes. (8,15,16) It is believed that by performing these operations at even warmer temperatures (mild hypothermia) the aforementioned risks associated with DHCA and MHCA can be further mitigated. Multiple case studies examining outcomes post aortic surgery with mild hypothermia have also revealed no significant differences in mortality, renal failure, and neurological injury; even showing benefits with reduced coagulopathies and in some studies decreased permanent neurological deficits. (5,8,17,18)

While retrospective and uncontrolled studies are numerous and suggest the safety of warmer arch surgery (8,15,19), there is significant parametric variability in these studies. The optimal temperature for hypothermic circulatory arrest remains unclear and is confounded by numerous variables that are also without consensus, including: site of temperature monitoring, sACP cannulation site, sACP perfusion rates, rapidity of cooling/rewarming, and the determination of outcome data. (5) Furthermore, there is a paucity of studies that directly compare outcomes of one strategy versus another, and no randomized controlled trials exist to guide such therapy. (5,17)
This lack of evidence-based medicine has resulted in significant practice variation, with no existing guidelines for optimal perfusion strategies in aortic arch surgery. Currently, the University of Ottawa Heart Institute (OHI) performs hemiarch surgery with mild hypothermia and unilateral sACP (uSACP). Pilot data from our mild hypothermic patients have demonstrated excellent outcomes with lower morbidity (combined stroke, need for dialysis, and deep sternal wound infection) and a decreased need for blood products when compared to patients operated under DHCA. (20) With positive and reproducible evidence supporting mild hypothermia, there is an urgent need for a randomized controlled trial to address the aforementioned questions, reduce practice variability, and produce evidence-based guidelines for perfusion strategies in aortic surgery.

Methods:

Study Hypothesis

The aim of this study is to demonstrate that circulatory arrest using mild hypothermia (32±1°C) and uSACP will result in a 15% absolute risk reduction (from 35% to 20%) in our composite outcome during aortic hemiarch surgery, when compared to moderate hypothermia (26±1°C).

Study Design

This trial is a prospective multi-centre, single-blind two-arm RCT comparing mild versus moderate hypothermia for circulatory arrest in hemiarch surgery on a composite outcome of neurological and acute kidney injury in 282 patients undergoing aortic hemiarch surgery with uSACP. Consenting adult patients undergoing ascending aorta and hemi-arch replacement with uSACP and an anticipated circulatory arrest time of less than 20 minutes will be randomized 1:1 to moderate hypothermia (26±1°C, Control Group) versus mild hypothermia (32±1°C, Treatment Group).

Study Setting

The principal study site for this RCT will be the University of Ottawa Heart Institute (UOHI), which is a quaternary care cardiovascular centre with a large thoracic aortic program, performing over 200 thoracic aortic operations per year. Other participating sites are the Foothills Medical Centre (University of Calgary), London Health Sciences Centre (Western University), and Quebec Heart and Lung Institute (University of Laval).

Study Description

Eligibility Criteria

Inclusion Criteria

1. Age ≥ 18 years

2. Planned unilateral or bilateral selective anterograde cardioplegia
3. Anticipated lower body arrest time of < 20 minutes
4. Able to provide written informed consent

Exclusion Criteria

1. Surgery for aortic dissection or urgent/emergent operations
2. Total arch replacement
3. Inability to perform unilateral selective anterograde cardioplegia (uSACP)
4. Patients with known/documented coagulopathies
5. Patients with cold agglutinin disease or those that test positive on routine preop screening
6. Pre-existing severe neurological impairment or inability to accurately assess neurocognitive function as determined by the operating surgeon
7. Severe carotid disease
 a. Any patient with previously documented carotid stenosis of ≥ 70% (via Doppler US, MRA, or CTA) without neurological deficits
 b. Carotid stenosis ≥ 50% with neurological deficits
 c. Previous carotid endarterectomy or stenting
8. Patients in renal failure or currently being treated with renal replacement therapy (RRT) or estimated glomerular filtration rate (eGFR) < 30 ml/min/1.73m2
9. Use of an investigational drug or device at time of enrollment
10. Participation in another clinical trial which interferes with performance of the study procedures or assessment of the outcomes

Recruitment

Screening will occur at the time of the initial appointment, at which time patients will be seen and assessed by the cardiac surgeon for consideration of aortic arch surgery. Patients who are booked for aortic hemiarch surgery with planned DHCA and ACP will be assessed for the aforementioned eligibility in the clinical trial. Once deemed eligible and written informed consent obtained, baseline neurological screening will be performed by a trained personnel.

The following baseline information will then be collected at either this initial visit, or at the time of the pre-operative anesthesia clinic visit:
1. Clinical Information

a. Demographics – age, sex

b. HTN (Hypertension)

c. DM (Diabetes)

d. DLP (Dyslipidemia)

e. NYHA Class (New York Heart Association)

f. Aortic Stenosis

i. Graded: Mild, Moderate, Severe

g. Aortic Valve Regurgitation

i. Graded: 1 to 4+

h. CCS Class (Canadian Cardiovascular Society)

i. CAD (Coronary Artery Disease)

j. Previous history of stroke

k. Previous history of TIA (Transient Ischemic Attack)

l. Carotid Stenosis

m. Renal Disease

n. PVD (Peripheral Vascular Disease)

o. COPD (Chronic Obstructive Pulmonary Disease)

p. Pulmonary HTN

q. Smoking history

r. ETOH use (Ethanol)

s. Congenital aortic disease

t. Aortic Diameter

u. Euroscore II
2. Physical Examination
 a. Height (cm)
 b. Weight (kg)
 c. BMI (kg/m²)
 d. BSA (m²)

3. Laboratory Tests/Investigations
 a. Hb (g/L) - Hemoglobin
 b. Plt (x10^9/L) – Platelet
 c. INR – International Normalized Ratio
 d. Cr (μmol/L) - Creatinine
 e. BUN (mmol/L) – Blood Urea Nitrogen
 f. eGFR (ml/min/1.73m²) – estimated glomerular filtration rate
 g. HbA1C (%)

4. Neurocognitive Testing
 a. NIHSS (The National Institutes of Health Stroke Scale)
 b. MOCA (Montreal Cognitive Assessment)
 c. MRS (Modified Rankin Scale) – only postoperatively in event of stroke
 d. BI (Barthel Index)

5. Quality of life
 a. SF-12 (Short Form) survey

Randomization

Once study eligibility, consent, and baseline assessment are completed, subjects will be randomized using a web-based randomization tool (DACIMA 3.3.8) in a 1:1 ratio on the day of surgery to either mild or moderate hypothermia strategies during aortic hemiarch arch surgery with uSACP.
In order to ensure a normal distribution of kidney function among patients in both treatment arms, stratified randomization will be performed based on two eGFR ranges: 30-59 ml/min/1.73m² and ≥ 60 ml/min/1.73m²

Block randomization will also be used across participating centres, with blocks of 4 being randomized to each treatment arm.

Study Intervention

Subjects will be randomly allocated to one of the following two arms:

1. Mild hypothermia (32°C±1°C) strategy for circulatory arrest (intervention group)
2. Moderate hypothermia (26°C±1°C) strategy for circulatory arrest (control group)

Conduct of Aortic Hemiarch Surgery and Hypothermic Strategy

Sequence of operation up until circulatory arrest with CPB will be at surgeon's discretion. All surgical procedures will be performed via median sternotomy (or upper hemi-sternotomy). During the aortic arch anastomosis, continuous, unilateral selective ACP using axillary or innominate artery cannulation will be employed. Unilateral SACP may be converted to bilateral ACP at the surgeon's discretion if adequate cerebral flows are not being achieved and or if there are concerns with cerebral oximetry measurements.

Once on CPB, the patient will be cooled to a nasopharyngeal temperature of either 32°C or 26°C, depending on to which treatment arm the patient has been randomized. Bladder temperature and venous blood temperature will both be monitored as additional temperature sites. Unilateral SACP will be initiated only when the target temperature has been reached. uSACP via the axillary artery or innominate artery will be commenced with target flows of 10 – 15 ml/kg/min with temperatures of 32°C or 26°C. SACP flows should be titrated to a right radial BP of 60 – 70 mmHg. Heater/cooler temperatures are not to exceed 37.5°C and a temperature gradient of less than 10°C should be maintained.

After completion of the aortic hemiarch replacement, CPB will be resumed and the patient re-warmed to 35°C prior to coming off CPB, with a ≤ 1°C temperature difference between surrogates (NP and bladder probes)

Transfusion Strategy

Transfusion triggers (for packed red blood cells only) will be adhered to whenever possible without compromising patient safety or centre specific transfusion protocols. Thus, a liberal transfusion threshold of Hb <95 g/L will be used intraoperatively and in ICU, while a Hb < 85 g/L will be adhered to after transfer to the ward. These values were chosen based on the TRICS-III trial (Transfusion requirements in Cardiac Surgery III) and will be used for the duration of the patients in hospital stay. (21)

Frequency and Duration of Follow-up
Study participants will be followed up daily during their post-operative course in the hospital, including the ICU stay. Intraoperative information will be collected from the anesthetic record, surgical notes, and perfusion records. Intraoperative data collection will include total operative time (skin to skin time), total CPB time, total cross-clamp time, total hypothermic cardiac arrest time, uSACP time, cooling time, rewarming time, nadir nasopharyngeal and bladder temperature, mean arterial systolic and diastolic BP, nadir hemoglobin concentration (g/L), nadir hematocrit (%), intraoperative RBC transfusion (units) and highest dose of intraoperative inotrope or vasopressor use.

Postoperative data will include tabulations from the following areas:

1. Mortality
 a. Death from any cause
 b. Up to post op day 60±30

2. Neurological Injury
 a. TIA
 b. Stroke
 c. NIHSS (Appendix A)
 d. MOCA (Appendix B)
 e. MRS – only in event of postoperative stroke (Appendix C)
 f. BI – only in event of postoperative stroke (Appendix D)

3. Delirium
 a. Assessed and scored as per the Confusion Assessment Model (CAM) (Appendix E)

4. Acute Kidney Injury
 a. Creatinine and BUN
 b. Urine output (up to 48 hrs)
 c. Renal replacement therapy (dialysis)

5. Prolonged Mechanical Ventilation
 a. Mechanical ventilation times ≥ 48 hrs
 b. Measured in hours from time of admission to the intensive care unit
6. Coagulopathy
 a. Mediastinal re-exploration for bleeding or tamponade
 b. Chest Tube output

7. Perioperative Transfusions
 a. Packed Red Blood Cells (pRBCs)
 b. Platelets
 c. Fresh Frozen Platelets (FFP)
 d. Cryoprecipitate

8. Postoperative Myocardial Infarction
 a. ECG
 b. Troponins

9. Inotropic Support greater than 48 hours

10. Length of Stay
 a. ICU days
 b. Total hospital day

11. Quality of Life Measures
 a. SF-12 (Appendix C)

Study Visits

On postoperative days 2±2 days, 6±1 days, and 60±30 patients, will undergo neurocognitive screening by trained personnel. NIHSS and MOCA examinations will be made at each time point (or prior to discharge if circumstances do not allow earlier testing). In the event a neurological deficit is identified, based on symptoms (focal/global, motor/sensory loss or prolonged delirium/agitation), neurological imaging will be obtained using CT Head or DW-MRI. MRIs will be used only if symptom onset is acute in nature requiring rapid diagnosis. Patients will also undergo Modified Rankin Scale assessment only in the event of a postoperative stroke. Barthel Index scoring will be done preoperatively and postoperatively only in the event of a stroke. Please see Appendix A for NIHSS scoring system, appendix B for MOCA, appendix C for MRS, and appendix D for Bl. (See SPIRIT Figure 1)
Primary Outcome and Definitions

The primary efficacy endpoint for this study will be a composite of neurologic and acute kidney injury. Definitions are defined in secondary outcomes below.

Secondary Outcomes and Definitions

Secondary endpoints will include:

1. Neurologic Injury is divided into two major categories: Temporary Neurologic Dysfunction (TND) and Permanent Neurologic Dysfunction (PND).
 a. Transient Ischemic Stroke (TIA) – neurologic symptoms lasting < 24 hours and without evidence of infarction
 i. Neurological imaging has to be normal with resolution of all symptoms within 24 hours
 b. PND or stroke – presence of either new focal (embolic stroke) or global (diffuse coma) deficits which persists for greater than 72 hours
 i. Positive radiographic evidence of infarction in the appropriate territory
 c. In the event of a suspected neurological injury (TIA or PND), the clinical team will be alerted and the study neurologists will be consulted

2. Neurologic injury will be quantified using a combination of validated cognitive screening tests and neurologic imaging. Screening tests will be performed preoperatively and on postoperative days 2±2, 6±1, and 60±30 by trained personnel (study coordinator, study neurologist, study nurse practitioner). Note both BI and MRS scores will only be performed postoperatively in the event of a postoperative stroke and will occur at same times as the follow up NIHSS/MOCA testing. These points in time have been chosen based on previous studies (22) that actively monitor for stroke post cardiac surgery, as well as to allow for long-term follow up of patients post stroke. Screening tests include:
 a. The National Institutes of Health Stroke Scale (NIHSS) – highly predictive of hospital disposition and long-term stroke outcomes. It has been shown for each 1-point increase in NIHSS, the likelihood of going home is significantly reduced. – See Appendix A (23-25)
 i. 0 = no stroke
 ii. 1-4 = minor stroke
 iii. 5-15 = moderate stroke
 iv. 15-20 = moderate/severe stroke
v. 21-42 = severe stroke

vi. Study neurologists following serial NIHSS scores (see Appendix A) will determine whether there was a change in examination from previous exams and whether this change was because of a suspected stroke.

1. For the purpose of this study, severe strokes are defined as NIHSS ≥ 10 (22)

2. Clinically significant strokes are defined as a change in NIHSS ≥ 4

a. This is based on data which shows NIHSS scores less than 6 indicate a strong likelihood of hospital discharge, with good recovery, and no long term deficits (24,26)

b. The Montreal Cognitive Assessment (MOCA) – highly sensitive in detecting executive dysfunction – See Appendix B (27)

i. Scores > 26 – no cognitive impairment (normal exam)

ii. Scores < 26 – mild cognitive impairment

c. Barthel Index of Activities of Daily Living (BI) – The BI is formed by several disability indexes and is a reliable and reproducible scoring method for the assessment of activities of daily living (ADLs) post stoke in patients – See Appendix C (28-30)

i. Score ranges from 0 to 20, with lower scores indicating increased disability.

ii. When used to measure improvement after rehabilitation, changes of more than two points in the total score reflect probable genuine change.

iii. Change on one item form fully dependent to independent is also likely to be genuine

d. Modified Rankin Scale (MRS) – only to be used in the event of a postoperative stroke. The MRS is a reliable and reproducible scoring method for the assessment of deficits post stoke in patients. Score ranges from 0 to 6. – See Appendix C (31,32)

i. 0 - No symptoms.

ii. 1 - No significant disability. Able to carry out all usual activities, despite some symptoms.

iii. 2 - Slight disability. Able to look after own affairs without assistance, but unable to carry out all previous activities.

iv. 3 - Moderate disability. Requires some help, but able to walk unassisted.

v. 4 - Moderately severe disability. Unable to attend to own bodily needs without assistance, and unable to walk unassisted.
vi. 5 - Severe disability. Requires constant nursing care and attention, bedridden, incontinent.

vii. 6 - Dead.

3. Incidence of Acute Kidney Injury (KDIGO criteria)

a. All those with Stage 1 AKI as defined by the KDIGO criteria (see below)

b. Creatinine measurements will serve as the main indicator for assessing AKI

c. Creatinine measurements will be performed with routine bloodwork on POD 0, 1, 2, 4±1, 6±1, and 60±30 days.

d. Urine output for the diagnosis of AKI will only be measured in the immediate postoperative period (48 hours)

e. Blood urea nitrogen (BUN) levels will also be obtained on the same days

Stage	Serum Creatinine	Urine Output
1	1.5-1.9 times baseline	< 0.5 ml/kg/hr for 6-12 hours
	or	
	≥ 0.3 mg/dl (26.5 µmol/l) increase	
2	2.0-2.9 times baseline	< 0.5 ml/kg/hr for ≥ 12 hours
3	3.0 times baseline	< 0.3 ml/kg/hr for ≥ 24 hours
	or	
	Increase in serum creatinine to ≥ 4 mg/dl (353.6 µmol/l)	
	or	
	initiation of renal replacement therapy	
	or	
	In patients < 18 years, decrease in eGFR to < 35 ml/min per 1.73m2	

4. Incidence of Delirium

a. Delirium – reversible postoperative delirium lasting more than 48 hours without localizing signs

i. Delirium assessment will be performed using the Confusion Assessment Method or CAM (Appendix E)

1. For a diagnosis of delirium by CAM, the patient must display:
a. Presence of acute onset and fluctuating discourse AND

b. Inattention

2. AND EITHER ONE OF

a. Disorganized thinking OR

b. Altered level of consciousness

ii. Assessments will be performed on POD 2±2, 6±1 days

5. Death

a. All cause postoperative 90-day or in-hospital mortality

6. Cardiopulmonary bypass time (CPB) [minutes]

7. Bleeding rates to qualify for mediastinal re-exploration

a. Indication for exploration defined as postoperative mediastinal bleeding of (33,34):

i. > 500 mls in any one hour

ii. > 1000 ml in any 4 hour period

iii. or at surgeons discretion

8. Incidence and quantity [# units/patient] of perioperative blood transfusions

a. Defined as all intraoperative and postoperative transfusions up to POD 7 or discharge (whichever comes first)

b. The transfusion of packed red blood cells (pRBCs) will adhere to a transfusion trigger strategy whenever possible without compromising patient safety

i. A liberal transfusion threshold of Hb <95 g/L will be used intraoperatively and in ICU, while a Hb < 85 g/L will be adhered to after transfer to the ward.

ii. These values were chosen based on the TRICS-III trial (Transfusion requirements in Cardiac Surgery III) and will be used for the duration of the patients in hospital stay. (21)

c. Number of platelets, fresh frozen plasma (FFP), and cryoprecipitate will also be tabulated for the same time period

i. No transfusion triggers given and left to discretion of caring physician
9. Prolonged Mechanical Ventilation

a. Defined as those requiring ≥ 48 hours of mechanical ventilation

b. Measured in hrs from time of admission to the intensive care unit

10. Perioperative Myocardial Infarction

a. Clinically diagnosed using a combination of electrocardiographic (new Q wave on 12 lead ECG) and biochemical (TnI > 45 ng/L) markers or both.

11. Length of Stay

a. Intensive care unit (ICU) hours

b. Hospital days

12. Quality of life

a. SF-12 survey

b. A measure of perceived health (health-related quality of life [QoL]) that describes the degree of general physical health status and mental health distress (35)

Statistical Consideration

In a prospective and contemporary study of patients over the age of 65 years undergoing aortic valve replacement, Floyd et al. observed an incidence of clinical stroke of 17% using similar assessment modalities to those proposed in this trial. (22) Interestingly, clinically documented strokes in the STS database in the same patients were only 7%, suggesting that careful and systematic documentation can reveal a ~2.5 fold higher incidence of neurologic injury than routine clinical evaluation. Furthermore, this study found increasing cardiopulmonary bypass time (CPB) to be an important risk factor for neurologic injury.

In patients undergoing aortic arch surgery, the incidence of neurologic injury is expected to be higher due to a variety of reasons including: longer cardiopulmonary bypass time, manipulation of the aortic arch and branch vessels for cannulation or clamping, and injury associated with hypothermia and re-warming. In a large retrospective study of over 45,000 patients undergoing arch surgery Hughes et al. found a clinical stroke rate of ~6.62%. Notably, the authors did not include patients who may have suffered from a TIA or other temporary neurologic dysfunction.

Their data was also obtained from The Society of Thoracic Surgeons (STS) Adult Cardiac Surgery Database (ACSD), with no prospective or systematic neurologic evaluation. Thus for the purpose of this RCT, we hypothesize that patients in the moderate hypothermia group will experience a 15 - 20% incidence of neurologic injury.
With respect to the incidence of acute kidney injury (AKI), previously reported rates of stage 1 AKI in patients undergoing cardiac surgery by Boodhwani et al. have revealed an incidence of around 22.35% based on the AKIN (Acute Kidney Injury Network) criteria for staging AKI.

(36) Their study population was a mixed surgical population with infrequent procedures such as heart transplantation, ventricular assist device placement, and complex congenital abnormality repair, being excluded.

This RCT will use the newer KDIGO criteria for assessing AKI, which has been shown to identify significantly more AKI in patients than the AKIN criteria. (37) It is also expected that the incidence of AKI will be higher in this study based on the type of surgery being performed, which necessitates a period of lower body ischemia time. Thus we hypothesize a 25% incidence of Stage 1 AKI for this trial using the KDIGO criteria.

Sample Size

Taking into consideration the aforementioned incidence rates of both neurologic and acute kidney injury, a composite outcome of ~ 35% should represent the incidence of these injuries in patients undergoing hemiarch surgery using traditionally methods of hypothermia. This accounts for a 5 - 10% overlap that will likely exist, when a patient will suffer both types of injuries.

We hypothesize that circulatory arrest using mild hypothermia (32°C) and uSACP during aortic hemiarch surgery will result in a 15% absolute risk reduction in composite outcomes (neurologic and acute kidney injury) from 35% to 20%. With an alpha (type 1 error) of 0.05 and power of 80%, and a 5% loss to follow-up of perioperative outcomes, approximately 141 subjects will be needed in each group for a total of a 282 patients. (See Table 1 – Sample Size Calculations)

Statistical Analysis

The trial will be analyzed on an Intention to Treat (ITT) basis. The primary endpoint of our composite outcome (and other continuous secondary endpoints) will be analyzed using Students T-test (or Wilcoxon Rank Sum Test, if the data are not normally distributed). Categorical secondary endpoints will be evaluated using Chi Squared test (or Fisher's Exact test if cell count is < 5 in any cell).

Exploratory multivariable logistic regression analysis will be performed to determine risk factors for neurologic and renal complications post-operatively.

Data Collection – Case Report Forms (CRFs)

Data collection will be completed by authorized study personnel designated by the site investigator. Appropriate training will be completed with the site investigator and all authorized personnel prior to the study being initiated. Data collection started on paper. However, an electronic data collection system has been developed and is now used as the primary data collection method for all sites.
Monitoring and Auditing

Monitoring of study compliance and data collection from other sites will be done by the clinical nursing coordinator at the primary trial site – University of Ottawa Heart Institute. This will involve regular follow up phone conversations, as well as on site trial visits.

A Data Safety Monitoring Board (DSMB) will be assembled to assess the ongoing conduct of the trial. The DSMB will have at least 3 members with sufficient expertise in aortic surgery, clinical research methods, and statistics. The DSMB will meet twice per year, most often by teleconference, and will provide a summary report to the study team, who will in turn submit it to the REB and OHIRC research administration before the due date. The terms of reference for the DSMB have been drafted following OHIRC’s template, and will be stored with the study regulatory files.

Discussion

The principal site for this trial will be the University of Ottawa Heart Institute (UOHI) which is a quaternary care cardiovascular center with a large thoracic aortic program, performing over 200 thoracic aortic operations per year. We perform approximately 40 operations per year that meet the aforementioned recruitment criteria of this trial. Assuming an 80% recruitment rate, we anticipate that we will be able to randomize approximately 30 patients per year into this study at the OHI.

Three other participating centres with similar volumes of aortic operations per year will be taking part in this trial. The centres include: the Foothills Medical Centre (University of Calgary), London Health Sciences Centre (Western University), and Quebec Heart and Lung Institute (University of Laval). We anticipate these three centres to randomize approximately 15-20 patients per year, for an additional 45-60 patient enrollment rate per year. Total enrollment rate for all centres will be 75-90 patients per year.

Non-Compliance, Loss to follow-up, Early Termination, Concomitant Medications and Procedures

The proposed intervention is strictly intraoperative. Both pre-operative and post-operative courses will follow institutional standard practices of care. As such, non-compliance is not expected to be a significant issue in this trial.

Loss to follow is expected to be low as both pre-operative and post-operative courses are as per normal standard of care. This study will follow participants for neurological screening up to 3 months postoperatively, which may translate to only one additional patient visit that falls outside of the normal standard of care; thus we anticipate that the rate of loss to follow up will be low around 5%. Loss to follow-up will only occur after multiple attempts have been made to contact the study participant by telephone, email, and/or registered mail for final in hospital assessment.

All subjects are free to withdraw from participating in the study at any time and for any reason. Additionally, subjects may be excluded from the study for specific reasons, including: ineligibility, change in preoperative diagnosis and/or condition, or non-compliance with study follow-up activities.
There are no restrictions on medication use or food intake for this study. All medications, including over-the-counter (OTC) medications, herbal, and natural remedies will be recorded on the study participant’s medication profile at pre-op and prior to discharge from hospital, as well as during follow up visits. As such, subjects will continue to receive all usual medications, rehabilitation, procedures, and interventions as prescribed or recommended by his/her health care providers.

Adverse Events Reporting

An adverse events (AEs) reporting form has been created to collect, assess, report, and manage the occurrence of adverse events that may impact the trial. The form collects date of event, date of study staff notification, as well as the participant’s unique identifier. A description of the event, subsequent interventions/treatments, event outcome, and classification as serious and/or unexpected is also included on the form. All AEs are then assessed by the principal investigator for their relationship to study treatment and classified on the AE form as either unlikely related, possibly related, probably related, and related.

Blinding, Clinical/Study Staff, and Participant Confidentiality

Knowledge of the patient’s treatment arm has the potential to bias postoperative care; especially with respect to transfusion strategies and decision making when seeking neurodiagnostic imaging for possible deficits. In order to limit these biases, patient temperatures and CPB times will be redacted from the relevant OR records shortly after surgery. This will be performed by a dedicated un-blinded assistant at all study sites. Operating surgeons will also be instructed not to include CPB time or patient temperatures in their dictated operative notes. A copy of the un-redacted OR records will be placed in a sealed envelope and placed with the patient’s chart. The envelope will have the name and contact information of the PI, with instructions to open the envelope only if there is a medical need to know the patients intraoperative temperature.

It will be suggested that clinical staff speak directly with the PI prior to opening this envelope. Upon the patient’s discharge, the envelopes will be stored in a locked file cabinet in the Clinical Research Office. As the envelopes contain identifiable information, they will not be stored with the patient’s study file.

As the administration and/or scoring of both the neurocognitive tests and the quality of life questionnaire may be prone to bias, any study staff administering neurocognitive tests and quality of life questionnaires will be blinded to the patient’s group assignment at all times.

All study-related information, including CRFs, evaluation forms, reports, will be kept strictly confidential. All records will be kept in a secure, locked location and only research staff will have access to the records. Subjects will be identified only by means of a study ID number specific to each subject. All computerized databases will identify subjects only by study ID numbers and will be maintained on secure hospital servers.
A password protected Master List containing both the study ID and the patient’s name and contact information will be maintained on a secure hospital server, in a folder accessible only by study staff.

Trial Status

This trial is registered on Clinicaltrials.gov (https://clinicaltrials.gov/) with the registration number NCT02860364. The trial was registered on August 9th 2016. The most up to date protocol version is “Protocol Version 13 – November 20th 2018”. Recruitment started March 1st 2018. Date of recruitment completion is anticipated to be August 1st 2021.

Declarations

Ethics approval and consent to participate

Central ethics approval has been confirmed by the Ottawa Health Science Network – Research Ethics Board (Approval number: OHSN-REB #20160408) and is the principal study site. Recruitment at participating centres will not begin until local ethical approval has been obtained. Relevant amendments to the protocol will be submitted to the ethics committee for further approval, as warranted.

All participants will be given detailed oral and written information about the trial. Consent forms describing the study intervention, study procedures and risks will be given to each participant and written documentation of informed consent will be required prior to starting study intervention. (See Appendices) Each participant should have sufficient opportunity to discuss the study and consider the information in the consent process prior to agreeing to participate. Informed consent will be obtained by the recruiting physician.

Participants may withdraw consent at any time during the course of the trial. The informed consent form will be signed and dated by the participant and the person who conducts the informed consent discussion. The original signed informed consent form will be stored separately from the patient's de-identified data and a copy of the signed form will be provided to the participant.

Consent for publication

Not applicable.

Availability of data and material

Not applicable, as this is a study protocol.

Competing interests

The authors declare that they have no competing interests.

Funding
The study is funded through Internal funding from the University of Ottawa Heart Institute. The funders had no role in the design of the study, nor will they be involved in the collection, analysis and interpretation of data or the preparation of the manuscript.

Authors’ contributions

MB conceived the study and is the principal investigator. HJ and MB designed the study. HJ, MB, and GW calculated the sample size. HJ wrote the manuscript and is the co-investigator. MB contributed to the final version of this manuscript. MB and HJ will collaborate in patient recruitment, collection of data, and final analysis of data, as well as preparation of any subsequent manuscripts. GW created the computer based CRF platform for data capture and will be involved in all levels of statistical data analysis. All authors read and approved the final version of this manuscript.

Acknowledgements

We thank all contributors and collaborators in our trial for their support.

SPIRIT Guidelines for Interventional Treatments

The COMMENCE protocol as described in the present manuscript conforms to the Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) guidelines (http://www.spirit-statement.org/). (See Additional Files - SPIRIT Figure 1 and Completed SPIRIT Checklist)

List Of Abbreviations
Variables	Definition
ADL	Activity of Daily Living
AKI	Acute Kidney Injury
AKIN	Acute Kidney Injury Network
BI	Barthel Index
BMI	Body Mass Index
BSA	Body Surface Area
BUN	Blood Urea Nitrogen
CAD	Coronary Artery Disease
CAM	Confusion Assessment Method
CCS	Canadian Cardiovascular Society
COPD	Chronic Obstructive Pulmonary Disease
CPB	Cardiopulmonary Bypass
Cr	Creatinine
CTA	Computer Tomographic Angiography
DHCA	Deep Hypothermic Cardiac Arrest
DLP	Dyslipidemia
DM	Diabetes
DSMB	Data Safety Monitoring Board
eGFR	Estimated Glomerular Filtration Rate
ETOH	Ethanol
Hb	Hemoglobin
HTN	Hypertension
ICU	Intensive Care Unit
INR	International Normalized Ratio
ITT	Intention to Treat
KDIGO	Kidney Disease Improving Global Outcomes
LOS	Length of Stay
MHCA	Moderate Hypothermic Cardiac Arrest
Acronym	Full Form
---------	-----------
MOCA	Montreal Cognitive Assessment
MRA	Magnetic Resonance Angiography
MRS	Modified Rankin Scale
NIHSS	National Institutes of Health Stroke Scale
NYHA	New York Heart Association
OHRIC	Ottawa Heart Institute Research Corporation
Plt	Platelet
PND	Permanent Neurologic Dysfunction
POD	Post Operative Day
pRBC	Packed Red Blood Cells
PVD	Peripheral Vascular Disease
RCT	Randomized Control Trial
REB	Research Ethics Board
sACP	Selective Antegrade Cerebral Perfusion
SIRS	Systemic Inflammatory Response
TAD	Thoracic Aortic Disease
TIA	Transient Ischemic Attack
TND	Temporary Neurologic Dysfunction
US	Ultrasound
uSACP	Unilateral Selective Antegrade Cerebral Perfusion

Tables

Table 1 – Sample Size Calculation
Power (%)	Alpha (p Value)	Deep Hypothermia (Control)	Mild Hypothermia (Treatment)	N (per group)	ARR (%)	RRR (%)
0.8	0.05	0.40	0.25	148	15.00	37.50
0.8	0.05	0.35	0.25	324	10.00	28.57
0.8	0.05	0.35	0.2	134	15.00	42.86
0.8	0.05	0.35	0.15	69	20.00	57.14
0.8	0.05	0.30	0.15	117	15.00	50.00

References

1. Go AS, Mozaffarian D, Roger VL et al. Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation 2013;127:e6-e245.

2. Olsson C, Thelin S, Ståhle E, Ekbom A, Granath F. Thoracic Aortic Aneurysm and Dissection: Increasing Prevalence and Improved Outcomes Reported in a Nationwide Population-Based Study of More Than 14 000 Cases From 1987 to 2002. Circulation 2006;114:2611-2618.

3. Patel HJ, Deeb GM. Ascending and arch aorta: pathology, natural history, and treatment. Circulation 2008;118:188-95.

4. Griepp RB, Stinson EB, Hollingsworth JF, Buehler D. Prosthetic replacement of the aortic arch. The Journal of thoracic and cardiovascular surgery 1975;70:1051-63.

5. Englum BR, Andersen ND, Husain AM, Mathew JP, Hughes GC. Degree of hypothermia in aortic arch surgery – optimal temperature for cerebral and spinal protection: deep hypothermia remains the gold standard in the absence of randomized data. Annals of Cardiothoracic Surgery 2013;2:184-93.

6. Yan TD, Bannon PG, Bavaria J et al. Consensus on hypothermia in aortic arch surgery. Annals of Cardiothoracic Surgery 2013;2:163-8.

7. Kumral E, Yüksel M, Büket S, Yagdi T, Atay Y, Güzelant A. Neurologic Complications after Deep Hypothermic Circulatory Arrest: Types, Predictors, and Timing. Texas Heart Institute Journal 2001;28:83-8.

8. Leshnower BG, Myung RJ, Chen EP. Aortic arch surgery using moderate hypothermia and unilateral selective antegrade cerebral perfusion. Annals of Cardiothoracic Surgery 2013;2:288-295.

9. Livesay JJ, Cooley DA, Reul GJ et al. Resection of Aortic Arch Aneurysms: A Comparison of Hypothermic Techniques in 60 Patients. The Annals of Thoracic Surgery;36:19-28.
10. Luehr M, Bachet J, Mohr F-W, Etz CD. Modern temperature management in aortic arch surgery: the dilemma of moderate hypothermia. European Journal of Cardio-Thoracic Surgery 2013.

11. Urbanski PP, Lenos A, Bougioukakis P, Neophytou I, Zacher M, Diegeler A. Mild-to-moderate hypothermia in aortic arch surgery using circulatory arrest: a change of paradigm? European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery 2012;41:185-91.

12. Salazar JD, Wityk RJ, Grega MA et al. Stroke after cardiac surgery: short-and long-term outcomes. The Annals of Thoracic Surgery 2001;72:1195-1201.

13. Kerr M, Bray B, Medcalf J, O'Donoghue DJ, Matthews B. Estimating the financial cost of chronic kidney disease to the NHS in England. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 2012;27 Suppl 3:iii73-iii80.

14. Roach GW, Kanchuger M, Mangano CM et al. Adverse cerebral outcomes after coronary bypass surgery. Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators. The New England journal of medicine 1996;335:1857-63.

15. Pacini D, Leone A, Di Marco L et al. Antegrade selective cerebral perfusion in thoracic aorta surgery: safety of moderate hypothermia. European Journal of Cardio-Thoracic Surgery 2007;31:618-622.

16. Tian DH, Wan B, Bannon PG et al. A meta-analysis of deep hypothermic circulatory arrest versus moderate hypothermic circulatory arrest with selective antegrade cerebral perfusion. Annals of Cardiothoracic Surgery 2013;2:148-58.

17. Vallabhajosyula P, Jassar AS, Menon RS et al. Moderate versus deep hypothermic circulatory arrest for elective aortic transverse hemiarch reconstruction. Ann Thorac Surg 2015;99:1511-7.

18. Leshnower BG, Myung RJ, Thourani VH et al. Hemiarch replacement at 28 degrees C: an analysis of mild and moderate hypothermia in 500 patients. Ann Thorac Surg 2012;93:1910-5; discussion 1915-6.

19. Kamiya H, Hagl C, Kropivnitskaya I et al. The safety of moderate hypothermic lower body circulatory arrest with selective cerebral perfusion: a propensity score analysis. The Journal of thoracic and cardiovascular surgery 2007;133:501-9.

20. Juanda N, Elmistekawy E, Saczkowski R, Boodhwani M. DEEP VERSUS MILD HYPOTHERMIA FOR LIMITED AORTIC ARCH SURGERY. Canadian Journal of Cardiology;30:S261-S262.

21. Mazer D, Shehata N, Ferguson D et al. Transfusion Requirements in Cardiac Surgery III (TRICS-III): Clinical Trial Protocol. Basic & Clinical Pharmacology & Toxicology: Wiley-Blackwell 111 River St, Hoboken 07030-5774, NJ USA, 2016:29-29.
22. Messe SR, Acker MA, Kasner SE et al. Stroke after aortic valve surgery: results from a prospective cohort. Circulation 2014;129:2253-61.

23. Adams HP, Jr., Davis PH, Leira EC et al. Baseline NIH Stroke Scale score strongly predicts outcome after stroke: A report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). Neurology 1999;53:126-31.

24. Schlegel D, Kolb SJ, Luciano JM et al. Utility of the NIH Stroke Scale as a predictor of hospital disposition. Stroke 2003;34:134-7.

25. Amiri H, Bluhmki E, Bendszus M et al. European Cooperative Acute Stroke Study-4: Extending the time for thrombolysis in emergency neurological deficits ECASS-4: ExTEND. International journal of stroke : official journal of the International Stroke Society 2016;11:260-7.

26. Appelros P, Terent A. Characteristics of the National Institute of Health Stroke Scale: results from a population-based stroke cohort at baseline and after one year. Cerebrovascular diseases (Basel, Switzerland) 2004;17:21-7.

27. Fu C, Jin X, Chen B et al. Comparison of the Mini-Mental State Examination and Montreal Cognitive Assessment executive subtests in detecting post-stroke cognitive impairment. Geriatrics & gerontology international 2017.

28. Collin C, Wade DT, Davies S, Horne V. The Barthel ADL Index: a reliability study. International disability studies 1988;10:61-3.

29. Mahoney FI, Barthel DW. FUNCTIONAL EVALUATION: THE BARTHEL INDEX. Maryland state medical journal 1965;14:61-5.

30. Wade DT, Collin C. The Barthel ADL Index: a standard measure of physical disability? International disability studies 1988;10:64-7.

31. Rankin J. Cerebral vascular accidents in patients over the age of 60. III. Diagnosis and treatment. Scottish medical journal 1957;2:254-68.

32. van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 1988;19:604-607.

33. Hartstein G, Janssens M. Treatment of Excessive Mediastinal Bleeding After Cardiopulmonary Bypass. The Annals of Thoracic Surgery;62:1951-1954.

34. Michelson EL, Torosian M, Morganroth J, MacVaugh H, 3rd. Early recognition of surgically correctable causes of excessive mediastinal bleeding after coronary artery bypass graft surgery. American journal of surgery 1980;139:313-7.
35. Ware J, Jr., Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Medical care 1996;34:220-33.

36. Elmistekawy E, McDonald B, Hudson C et al. Clinical impact of mild acute kidney injury after cardiac surgery. Ann Thorac Surg 2014;98:815-22.

37. Jha V, Kumar V. Acute kidney injury: validating the KDIGO definition and staging-one step at a time. Nature reviews Nephrology 2014;10:550-1.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- supplement1.doc
- supplement2.doc
- supplement3.docx