An optimal feed-forward artificial neural network model and a new empirical correlation for prediction of the relative viscosity of Al2O3-engine oil nanofluid

Mohammad Hemmat Esfe1 & Davood Toghraie2*

This study presents the design of an artificial neural network (ANN) to evaluate and predict the viscosity behavior of Al2O3/10W40 nanofluid at different temperatures, shear rates, and volume fraction of nanoparticles. Nanofluid viscosity (μ_{nf}) is evaluated at volume fractions ($\phi=0.25\%$ to $2\%)$ and temperature range of 5 to 55 °C. For modeling by ANN, a multilayer perceptron (MLP) network with the Levenberg–Marquardt algorithm (LMA) is used. The main purpose of this study is to model and predict the μ_{nf} of Al2O3/10W40 nanofluid through ANN, select the best ANN structure from the set of predicted structures and manage time and cost by predicting the ANN with the least error. To model the ANN, ϕ, temperature, and shear rate are considered as input variables, and μ_{nf} is considered as output variable. From 400 different ANN structures for Al2O3/10W40 nanofluid, the optimal structure consisting of two hidden layers with the optimal structure of 6 neurons in the first layer and 4 neurons in the second layer is selected. Finally, the R regression coefficient and the MSE are 0.995838 and 4.14469E−08 for the optimal structure, respectively. According to all data, the margin of deviation (MOD) is in the range of less than $2\% < MOD < + 2\%$. Comparison of the three data sets, namely laboratory data, correlation output, and ANN output, shows that the ANN estimates laboratory data more accurately.

The oils with lower viscosity are more suitable for oil pumping while using high viscosity oils can lead to a growth in bearing load capability. Consequently, the selection of suitable engine oil may lead to higher performance and low fuel consumption. To advance the heat transfer rate of engine oils or other operational fluids, many researchers investigated nanofluids, composed of nanoparticles and operational fluids1–6. A review of previous researches indicates Al2O3 nanoparticles commonly are used to prepare the nanofluids7–11. However, by adding the nanoparticles to fluids, their dynamic viscosity is changed. Regarding the μ_{nf} containing Al2O3 nanoparticles, many studies were reported that μ_{nf} is dependent on different variables12–17. As we know, many experiments should be performed for the determination of the μ_{nf}, which are time-consuming and expensive. Hence, for escaping the costs of additional experiments to predict the behavior of nanofluids, there have been attention to use the ANNs. In this regard, numerous investigations were performed on the thermophysical properties of different nanofluids using ANNs. Hojjat et al.18 firstly measured the k_{nf} of various water-based nanofluids. Using the ANN method, they modeled the experimental data. Longo et al.19 proposed two ANN models to predict the k_{nf} of TiO2/water and Al2O3/water nanofluids. Hemmat Esfe et al.20 used the experimental data and modeled the k_{nf} of MgO/EG nanofluids by ANN. They considered concentration, the diameter of the particle, and temperature as input variables. Using ANNs, Hemmat Esfe et al. modeled the k_{nf} of MWCNTs/water21, MgO/water–EG22, Al2O3/water23, and Mg (OH)2/EG nanofluids24. Hemmat Esfe et al.25 using ANNs predicted the μ_{nf} and k_{nf} of Fe/EG nanofluid. They showed that with satisfying accuracy, the ANNs were able to predict the data. Since in the past few years there has been a growing interest in oil-based nanofluids, improving their thermophysical properties is one of the important factors for industrial needs26–30.

1Department of Mechanical Engineering, Imam Hossein University, Tehran, Iran. 2Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran. *email: Toghraee@iaukhsh.ac.ir
A review of past research on the use of post-processing methods in predicting the μ_{nf} shows that despite the multiplicity of ANNs to predict, almost there were not any specific mechanism for finding the best ANN structure including the best number of hidden layers, the best number of neurons in each layer, the best weighting of the neurons, and the best transmission function. Researchers have analyzed a small number of neural network structures to introduce the best structure among the studied structures. In addition to conducting laboratory studies to identify the properties of Al$_2$O$_3$/10W40 nanofluid, the present study examined 400 different ANN structures with different numbers of neurons in each hidden layer, combining different transfer functions in the first and second hidden layers, and separately optimizing the transfer function. The output layer was taken as an important step in selecting the optimal structure from among the multitude of structures studied to predict the μ_{nf} of Al$_2$O$_3$/10W40 nanofluid.

ANN

ANN is a data processing system and entrusts data processing to many small and many processors that act as interconnected and parallel ANNs to solve a problem. Applications of ANN include pattern classification and recognition, modeling, regression, and mapping in various branches of bioinformatics, system control, time data forecasting, etc. ANN is one of the most important trends in artificial intelligence and is a growing science. In recent years, due to increased laboratory costs as well as time savings, ANNs were used to predict and design various systems, including thermal conductivity and μ_{nf}. One of the most important applications of ANN in nanofluids is when the prediction of μ_{nf} by classical models does not match the experimental results and the ANN model is used to predict μ_{nf} in terms of temperature, ϕ, and shear rate. It was proven that the ANN model is more accurate in predicting μ_{nf} than previous methods. Many researchers showed that ANNs are a reliable tool for modeling and predicting engineering and nanofluid problems. However, extensive researches were conducted on the μ_{nf}. Therefore, in this study, the μ_{nf} of Al$_2$O$_3$/10W40 nanofluid was modeled by ANN in terms of temperature, ϕ, and shear rate. In this modeling, ANNs with a large number of neurons and different transfer functions are examined and a suitable and optimal ANN was selected. Finally, the predicted μ_{nf} as the output of ANN data was compared with the results of laboratory data. ANNs process data based on a multi-layered architecture and provide appropriate output. Perceptron is the simplest and oldest type of ANN. Multilayer perceptron ANNs consist of an input layer, a hidden layer or layers, and an output layer. The transfer function also shows the relationship between the output signal of a control system and the input signal for all possible input values. In any ANN, a transfer function is required to convert the input signal to the output signal. There are generally four types of transfer functions: hard limit transfer, linear transfer function, sigmoid transfer function, and Gaussian transfer function, but the sigmoid transfer function with two logarithmic functions (log-sigmoid) and tangential (tan-sigmoid) is used for nonlinear modeling. The used ANN in the present study is a multilayer perceptron and the used algorithm to teach this Levenberg–Marquardt (ML-ANN). Also, the application of sigmoid transfer functions on neurons in the hidden layers was considered to better orient the training process in designing the structure of the ANN. Also, there are other optimization methods to predict the performance of engineering systems with computers. The following sections provide more complete information on the characteristics of the designed ANN.

Laboratory data and ANN training

The ANN is made up of a large number of processing units called neurons. Neurons are the main components of ANNs that are connected to networks by a set of connections, each with specific weights. The performance of an ANN is highly dependent on weight values. In this study, to model the laboratory data of Al$_2$O$_3$/10W40 nanofluid, ANN method and input variables including ϕ, temperature, and shear rate were used to predict the output variable, i.e. relative viscosity of nanofluid. The ANN model is a multilayer perceptron and the Levenberg–Marquardt (ML-ANN) algorithm was used for the training phase. Sigmoid transfer functions are also used in each of the hidden layers. To select the most optimal structure possible, 400 different structures were examined, which differ in the number of neurons in the first hidden layer, the number of neurons in the second hidden layer, and the combination of applied transfer functions to the hidden layers. In the studied structures, different combinations of tan-sigmoid and log-sigmoid tangent transfer functions in hidden layers were used. Also, based on a parallel optimization process and based on examining the value of R for different transfer functions, the purline linear transfer function was introduced as the best possible option for the output layer. ANN structures with purline transfer function have the highest R-value compared to other transfer functions and therefore this transfer function was selected as a fixed part of the structure but in other parts such as the number of hidden layers, the number of neurons in each hidden layer, transfer functions related to hidden layers of structure optimization were put on the agenda. The method of applied weighting to neurons was also considered random. To achieve the optimal structure and go through the ANN training process, 134 series of experimental data were used, which were randomly divided into three groups: 70% of the data to the train and set the weights, 15% to the validation stage to optimize the number of neurons and hidden layers and 15% to the test stage to test the overall quality of ANN performance. Figure 1 shows the best structure selected from the 400 studied structures to predict the μ_{nf} of Al$_2$O$_3$/10W40 nanofluid.

Figure 2 also shows the flowchart of selecting and measuring the performance of each of the 400 analyzed ANNs. As can be seen, measuring the value of R and bringing it as close as possible to the number 1 is one of the main criteria for selecting the best ANN structure. A higher R-value is a sign that ANN results are more consistent with laboratory results. To evaluate the performance and efficiency of the ANN, the regression parameters of the ANN (R) in different stages of train R, test R, and validation R were given in Table 1 and the best value of R regression coefficient according to the data of Table 1 is 0.995838 which was related to the eighteenth structure. It should be noted
Figure 1. The best ANN.

Figure 2. Flowchart of the suggested algorithm to achieve the optimal ANN.
that the 18 structures presented in Table 1 are the optimal structures among the 400 structures with the highest regression coefficients compared to other studied structures. The number of neurons and the type of transfer functions are shown in Table 1 as characteristics of each structure.

Results and discussion

In Fig. 3, after determining the optimal structure as well as the number of neurons and hidden layers from the set of ANN structures, it is necessary to analyze the predicted data in terms of performance. The correlation relationship between different stages of Test R, Validation R, and Train R and regression coefficient of all data was plotted in 4 separate sections. It was observed that the value of regression coefficients for all data in the present model was higher than 0.9. Also, the value of the regression coefficient close to one shows a close relationship between the experimental data and the ANN data, although in the test and train stages the regression coefficient R occurred in topologies 15 or 16. It is more important for all data, which is equal to 0.995838 and belongs to the eighteenth topology.

Examining the performance of the selected ANN in the four stages of training, testing, validation, and analysis of all data is also very important. Mean-Square Error (MSE) was used to determine the most appropriate performance of the selected ANN model. As can be seen in Fig. 4, the MSE in the training stage has the lowest MSE compared to the other stages. According to Eq. (1), the MSE value is 4.14×10^{-8}. In Eq. (1), μ_{exp} is the viscosity of the experimental data, μ_{pred} is the output viscosity of ANN, and N is the number of performed experiments.

$$\text{MSE} = \frac{1}{N} \sum_{i=1}^{N} (\mu_{\text{rel}|\text{EXP}} - \mu_{\text{rel}|\text{pred}})^2 \quad (1)$$

To evaluate the accuracy of the predicted data of the selected ANN with the results of experimental data in 5 separate sections (All data) and Train, Validation, Test (Optimal, the values of the two are compared in Fig. 5). According to Fig. 5, much of the data is on the bisector, indicating that there is an excellent correlation between the outputs of the ANN and the laboratory data.

Figure 6 shows the adaptation of the ANN results from the train, validation, and test with the laboratory equivalent data set at $\phi = 0.25$ to 2% through the ANN method. As shown in Fig. 6, all predicted points by ANN correspond to experimental points, which indicates the high accuracy and proper performance of ANNs in predicting laboratory data. The highest deviation of the predicted viscosity data was seen at $\phi = 2\%$ in the validation stage.

Candidate topology no	Structure	Function 1	Function 2	R Train R	Val. R	Test R	
1	[1 1]	tansig	tansig	0.955597	0.960002	0.939092	0.958256
2	[1 1]	tansig	logsig	0.956255	0.951010	0.920264	0.977953
3	[1 4]	tansig	tansig	0.956625	0.957146	0.959774	0.943737
4	[1 5]	tansig	logsig	0.956924	0.959406	0.945829	0.905548
5	[1 7]	tansig	tansig	0.957986	0.956876	0.962350	0.959278
6	[1 7]	logsig	tansig	0.959809	0.952818	0.975324	0.971776
7	[2 1]	tansig	tansig	0.966505	0.967086	0.936920	0.982507
8	[2 1]	tansig	logsig	0.977508	0.982078	0.989310	0.942294
9	[2 2]	logsig	tansig	0.983323	0.988026	0.973663	0.983080
10	[2 3]	tansig	tansig	0.984047	0.986994	0.990238	0.964605
11	[2 4]	logsig	tansig	0.988546	0.989743	0.993479	0.984091
12	[2 4]	tansig	logsig	0.988650	0.992175	0.994872	0.976143
13	[2 8]	tansig	tansig	0.990576	0.994783	0.986409	0.968954
14	[2 8]	tansig	logsig	0.990828	0.991620	0.992919	0.986954
15	[4 4]	logsig	tansig	0.992219	0.994015	0.986665	0.987254
16	[4 8]	tansig	tansig	0.994790	0.999537	0.987283	0.983229
17	[5 9]	logsig	tansig	0.995768	0.999103	0.991551	0.985094
18	[6 4]	logsig	tansig	0.995838	0.998231	0.995676	0.986958

Table 1. Characteristics of top 18 ANN structures.
Figure 7 shows the errors related to the predicted viscosity in the range of different temperatures for All Data, Train, Validation, Test, and Optimal data in 5 separate sections. According to the figure, the maximum error of the data was in the range between −0.03 to 0.03, however, at some temperatures, errors are in the range of more than ±0.03 were observed at temperatures of 5, 15 and 35°C.

In Fig. 8, the relative viscosity values of the ANN output were compared with the experimental data for the relative viscosity of Al₂O₃/10W40 nanofluid at a constant shear rate in two separate graphs in terms of temperature and different ϕ. Due to the relative viscosity–temperature curve, the predicted accuracy of the data was very high and the errors were small, and also in the relative viscosity–ϕ diagram of the data, they correspond well with each other.

In Eq. (2), the formula for calculating the margin of deviation (MOD) of the predicted data and laboratory data is presented. In this equation, μ_exp is the viscosity of the experimental data, μ_pre is the output viscosity of the ANN.
Figure 9 shows the MOD of these data in different ϕ. As can be seen, the MOD does not exceed 2%, which indicates the acceptable accuracy of the proposed correlation for estimating the μ_{nf} of Al$_2$O$_3$/10W40 nanofluid.

The highest MOD was observed in All Data, Test, and Validation data at 35.45 °C in the range of 5%. The training stage has the lowest MOD.

Also, to study the efficiency of other post-processing methods in predicting the viscosity properties of nanofluids in the present study, the RSM was used. This method tries to accurately predict the relationship between input and output variables using various mathematical relationships. In this study, cubic, Mean, Linear, 2FI, Quadratic, Quartic and fifth models were used to predict laboratory data. Among these mathematical models, the cubic model was introduced as the best model in terms of accuracy and having the least complexity. The proposed mathematical relation was proposed to predict the viscosity and was of three variables such that its independent variables are: temperature, volume fraction and shear rate. Also, Table 2 provides information about the importance of the various parameters in the equation. The main criterion for measuring the degree of importance of each of the proposed mathematical relation parameters is the p value, which should be less than 0.05 for very important parameters in the mathematical relation and less than 0.1 for important parameters. According to the information in Table 2, all mathematical relation parameters have p values less than 0.1. Also, the values of measuring the accuracy of the mathematical relation were given in Table 3.

$$\mu_{nf}/\mu_{bf} = 1.5509 - 0.1201\varphi + 9.8837E - 003T - 1.5309E - 004\gamma + 1.9622E - 005\varphi\gamma - 3.6198E - 007T\gamma + 0.3312\varphi^2 + 1.7971E - 008\gamma^2 - 7.9962E - 006\varphi^2\gamma - 0.0706\varphi^3 - 6.3956E - 013\gamma^3$$

(3)

In Fig. 10, the ability of two methods of data prediction that are the proposed correlation and the ANN were compared to each other. This comparison was performed at a constant shear rate of 6665 s$^{-1}$ and $T = 15–45$ °C and different φ. As shown, the ANN method has a greater ability to predict experimental based data.
Figure 5. Comparison between predicted data with ANN-based on empirical data for all variables.
Figure 6. Comparison between the experimental data and the data predicted by the ANN.
Figure 7. Calculated error values.
Conclusion
In this study, the μ_{nf} of Al$_2$O$_3$/10W$_40$ nanofluid was evaluated using ANN. Also, 134 laboratory data including temperature, shear rate, and φ parameters were used to model the relative viscosity by the ANN. The results are as follows:

- In this method, the parameters of temperature, φ, and shear rate were considered as ANN input variables and the relative viscosity of ANN data was considered as the output parameter of the ANN.
- Regression coefficient R and MSE for optimal ANN structure were reported to be 0.995838 and 4.14469E−08, respectively.
- The optimal structure was selected from a set of 400 ANN structures that have two hidden layers and 6 and 4 neurons in the first and second hidden layers, respectively.
- The optimal transfer functions are logsig, tansig and purline for the first, second, and output layers, respectively.
- In the all ANN data stage, all data have an error of less than ±0.03.
- The highest frequency of MOD values was in the range of $-2\% < \text{MOD} < +2\%$ and indicates a very low error of ANN data for μ_{nf}.
- The ANN was performed better than the experimental relationship in the μ_{nf} prediction process.
Figure 9. Margin of deviation.

Table 2. Analysis of variance for proposed correlation.

Source	Sum of squares	df	Mean square	F-value	p value
Model	5.72	10	0.57	362.62	<0.0001 Significant
A—solid volume fraction	0.73	1	0.73	460.25	<0.0001
B—temperature	0.39	1	0.39	250.13	<0.0001
C—shear rate	1.989E−004	1	1.989E−004	0.13	0.045
AC	9.454E−004	1	9.454E−004	0.60	0.048
BC	4.602E−003	1	4.602E−003	2.92	0.0605
A^2	0.018	1	0.018	11.38	0.0010
C^2	0.046	1	0.046	28.12	<0.0001
A^2C	6.278E−003	1	6.278E−003	3.98	0.0483
A^3	0.013	1	0.013	7.93	0.0057
C^3	0.040	1	0.040	25.45	<0.0001
Table 3. Accuracy of proposed correlation.

Std. dev	0.040	R-squared	0.9672
Mean	1.62	Adj R-squared	0.9645
C.V. %	2.45	Pred R-squared	0.9559
PRESS	0.26	Adeq precision	74.209

Received: 7 July 2021; Accepted: 12 August 2021
Published online: 23 August 2021

References
1. Sundar, L. S., Singh, M. K. & Sousa, A. C. M. Thermal conductivity of ethylene glycol and water mixture based Fe₃O₄ nanofluid. *Int. Commun. Heat Mass Transf.* 49, 17–24 (2013).
2. Hemmat Esfe, M., Akbari, M., Semiromi, D. T., Karimiopour, A. & Afrand, M. Effect of nanofluid variable properties on mixed convection flow and heat transfer in an inclined two-sided lid-driven cavity with sinusoidal heating on sidewalls. *Heat Transf. Res.* 45, 409–432 (2014).
3. Ahmadi, M. H. et al. Comparing various machine learning approaches in modeling the dynamic viscosity of CuO/water nanofluid. *J. Therm. Anal. Calorim.* 139, 2385–2399 (2020).
4. Kanti, P., Sharma, K. V., Yashawantha, K. M. & Dmk, S. Experimental determination for viscosity of fly ash nanofluid and fly ash–Cu hybrid nanofluid: Prediction and optimization using artificial intelligent techniques. *Energy Sources Part A Recov. Util. Environ. Effects* https://doi.org/10.1080/15567036.2021.1877374 (2020).

Figure 10. Comparison between empirical data and modeling outputs of ANN and correlation.
5. Rostami, S. et al. Forecasting the thermal conductivity of a nanofluid using artificial neural networks. J. Therm. Anal. Calorim. https://doi.org/10.1007/s10973-020-10183-2 (2020).

6. Mei, X. et al. Development of the ANN–KIM composed model to predict the thermal conductivity of water nanofluids in a coaxial pipe. Int. Commun. Heat Mass Transf. 52, 2042–2048 (2019).

7. Parashar, N. et al. Development of an artificial neural network for the prediction of relative viscosity of ethylene glycol based nanofluids. Syst. J. Appl. Sci. 2, 1473. https://doi.org/10.7763/ijerts.2020.03298 (2020).

8. Duanthongkum, W. & Wongwises, S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp. Therm. Fluid Sci. 37, 706–714 (2009).

9. Rea, U., McKeel, T., Hu, L. & Buongiorno, J. Laminar convective heat transfer and viscous pressure loss of alumina–water nanofluids. Int. J. Heat Mass Transf. 52, 2042–2048 (2009).

10. Hojjat, M., Etemad, S. G., Bagheri, R. & Thibault, J. Rheological characteristics of non-Newtonian nanofluids: Experimental study and ANN modelling. Int. Commun. Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2020.105896 (2021).

11. Yiamsawas, T., Mahian, O., Dalkilic, A. S., Kaewna, S. & Wongwises, S. Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications. Appl. Energy 111, 40–45 (2013).

12. Yadav, D., Naruka, D. S. & Singh, P. K. The insight flow characteristics of concentrated MWCNT in water base fluid: Experimental study and ANN modelling. Int. J. Heat Mass Transf. 54, 1017–1023 (2011).

13. Longo, G. A., Zilio, C., Ceseracciu, E. & Reggiani, M. Application of Artificial Neural Network (ANN) for the prediction of thermal conductivity of oxide-water nanofluids. Int. J. Heat Mass Transf. 54, 50–57 (2011).

14. Hemmat Esfe, M. et al. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J. Therm. Anal. Calorim. 118(4), 287–294 (2014).

15. Hemmat Esfe, M., Naderi, A., Akbari, M., Afrand, M. & Karimpour, A. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J. Therm. Anal. Calorim. 121, 1273–1278 (2015).

16. Hemmat Esfe, M., Rostamian, H., Afrand, M., Karimpour, A. & Hassani, M. Modeling and estimation of thermal conductivity of MgO–water/EG (60:40) by artificial neural network and correlation. Int. J. Heat Mass Transf. 68, 98–103 (2015).

17. Hemmat Esfe, M., Afrand, M., Yan, W. M. & Akbari, M. Applicability of artificial neural network and nonlinear regression to predict thermal conductivity modeling of Al2O3–water nanofluids using experimental data. Int. Commun. Heat Mass Transf. 66, 246–249 (2015).

18. Hemmat Esfe, M. et al. Applications of feedforward multilayer perceptron artificial neural networks and empirical correlation for prediction of thermal conductivity of Mg(OH)2–EG using experimental data. Int. J. Heat Mass Transf. 67, 46–50 (2015).

19. Hemmat Esfe, M., Saedodin, S., Sina, N., Afrand, M. & Rostami, S. Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. Int. J. Heat Mass Transf. 68, 50–57 (2015).

20. Vakili-Nezhaad, G. R. & Dorany, A. Investigation of the effect of multiwalled carbon nanotubes and engine oil as nano-lubricant. Chem. Eng. Commun. 196, 997–1007 (2009).

21. Chen, L., Xie, H., Yu, W. & Li, Y. Rheological behaviors of nanofluids containing multi-walled carbon nanotube. J. Dispersion Sci. Technol. 32, 550–554 (2011).

22. Vasheghani, M. H. et al. Effect of Al2O3 phases on the enhancement of thermal conductivity and viscosity of nano-fluids in engine oil. Heat Mass Transf. 47, 1401–1405 (2011).

23. Eftekhari, E., Ahmadi, H., Rashidi, A., Nouralihahi, A. & Mohtasebi, S. S. Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant. Int. Commun. Heat Mass Transf. 46, 142–147 (2013).

24. Eftekhari, E., Rashidi, A., Ahmadi, H., Mohtasebi, S. S. & Pourkhali, M. Thermal and rheological properties of oil-based nanofluids from different carbon nanostructures. Int. Commun. Heat Mass Transf. 48, 178–182 (2013).

25. Bui, D. K., Nguyen, T. N., Ngo, T. D. & Nguyen-Xuan, H. An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings. Energy 190, 116370 (2020).

26. Zhao, Z. et al. Prediction of interfacial interactions related with membrane fouling in a membrane bioreactor based on radial basis function artificial neural network (ANN). Biores. Technol. 282, 262–268 (2019).

27. Abiodun, O. I. et al. State-of-the-art in artificial neural network applications: A survey. Heliyon 4(11), e00938 (2018).

28. Adan, H. et al. A neural network-based predictive model for the thermal conductivity of hybrid nanofluids. Int. Commun. Heat Mass Transf. 119, 104930 (2020).

29. Li, L. et al. Stability, thermal performance and artificial neural network modeling of viscosity and thermal conductivity of Al2O3–ethylene glycol nanofluids. Powder Technol. 363, 360–368 (2020).

30. Longo, G. A., Zilio, C., Ortomina, L. & Zigliotto, M. Application of Artificial Neural Network (ANN) for modeling oxide-based nanofluids dynamic viscosity. Int. Commun. Heat Mass Transf. 83, 8–14 (2017).

31. Geetha, M. C. S. Forecasting the crop yield production in Trichy district using fuzzy C-Means algorithm and multilayer perceptron (MLP). Int. J. Knowl. Syst. Sci. (IJKSS) 11(3), 83–98 (2020).

32. Ghazvini, M., Maddah, H., Peymanfar, R., Ahmadi, M. H. & Kumar, R. Experimental evaluation and artificial neural network modeling of thermal conductivity of water based nanofluid containing magnetic copper nanoparticles. Physica A Stat. Mech. Appl. 551, 124127 (2020).

33. Ruhani, B. et al. Statistical investigation for developing a new model for rheological behavior of ZnO–Ag (50%–50%)/Water hybrid Newtonian nanofluid using experimental data. Phys. A 525, 741–751 (2019).

34. Toghraie, D. et al. Designing an Artificial Neural Network (ANN) to predict the viscosity of Silver/Ethylene glycol nanofluid at different temperatures and volume fraction of nanoparticles. Physica A Stat. Mech. Appl. 534, 122142 (2019).

35. Zhou, J., Qiu, Y., Khandelwal, M., Zhu, S., Zhang, X. Developing a hybrid model of Jaya algorithm-based extreme gradient boosting machine to estimate blast-induced ground vibrations. Int. J. Rock Mech. Min. Sci. 145, 104856. https://doi.org/10.1016/j.ijrmms.2021.104856 (2021).

36. Zhou, J. et al. Improving the efficiency of microseismic source locating using a heuristic algorithm-based virtual field optimization method. Geomech. Geophys. Geo-Energy Geo-Resour. 1–18. https://doi.org/10.1007/s40948-021-00285-y (2021).
43. Yang, H., Wang, Z., & Song, K. A new hybrid grey wolf optimizer-feature weighted multiple kernel-support vector regression technique to predict TBM performance. *Eng. Comput.*, 1–17. https://doi.org/10.1007/s00366-020-01217-2 (2020).

44. Yang, H. Q., Li, Z., Jie, T. Q., & Zhang, Z. Q. Effects of joints on the cutting behavior of disc cutter running on the jointed rock mass. *Tunn. Underg. Space Technol.*, 81, 112–120. https://doi.org/10.1016/j.tust.2018.07.023 (2018).

45. Nejad, R. M., Liu, Z., Ma, W., & Berto, F. Fatigue reliability assessment of a pearlitic Grade 900A rail steel subjected to multiple cracks. *Eng. Fail. Anal.*, 105625. https://doi.org/10.1016/j.engfailanal.2021.105625 (2021).

46. Yang, H. Q., Zeng, Y. Y., Lan, Y. F., & Zhou, X. P. Analysis of the excavation damaged zone around a tunnel accounting for geostress and unloading. *Int. J. Rock Mech. Min. Sci.*, 69, 59–66. https://doi.org/10.1016/j.ijrmms.2014.03.003 (2014).

47. Zhou, J., Chen, C., Wang, M., Khandelwal, M. Proposing a novel comprehensive evaluation model for the coal burst liability in underground coal mines considering uncertainty factors. *Int. J Min Sci Technol*, 1–15. https://doi.org/10.1016/j.ijmst.2021.07.011 (2021).

Author contributions

All authors reviewed the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to D.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[Open Access] This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021