Nucleic acids are useful for biomedical targeting and sensing applications in which the molecular environment is different from that of a dilute aqueous solution. In this study, the influence of various types of mixed solutions of water and water-soluble organic compounds on RNA was investigated by measuring the catalytic activity of the hammerhead ribozyme and the thermodynamic stability of an oligonucleotide duplex. The compounds with a net neutral charge, such as poly(ethylene glycol), small primary alcohols, amide compounds, and aprotic solvent molecules, added at high concentrations changed the ribozyme-catalyzed RNA cleavage rate, with the magnitude of the effect dependent on the NaCl concentration. These compounds also changed the thermodynamic stability of RNA base pairs of an oligonucleotide duplex and its dependence on the NaCl concentration. Specific interactions with RNA molecules and reduced water activity could account for the inhibiting effects on the ribozyme catalysis and destabilizing effects on the duplex stability. The salt concentration dependence data correlated with the dielectric constant, but not with water activity, viscosity, and the size of organic compounds. This observation suggests the significance of the dielectric constant effects on the RNA reactions under molecular crowding conditions created by organic compounds.

© 2014 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
dependence of the thermodynamic stability of oligonucleotide structures [16,17]. Intriguingly, the salt concentration dependence of the stability of DNA duplexes changes in mixed solutions with PEG [11,18–20]. A detailed study of the nature of the salt concentration dependence is important for understanding the factors responsible for the molecular crowding effects and for predicting nucleic acid structures under non-dilute conditions. In this study, we investigated the hammerhead ribozyme activity and the thermodynamic stability of an RNA oligonucleotide duplex under the non-dilute conditions using mixed solutions of water and water-soluble neutral compounds. The hammerhead ribozyme is one of the smallest RNA catalysts that utilize metal ions to hydrolyze a target RNA sequence. Since divalent ions promote a rapid cleavage, many studies have been performed using Mg²⁺ [21]. The Mg²⁺ ions contribute to tertiary folding, and the binding is site-specific in some cases [22,23]. It is a remarkable feature that the ribozyme motif exhibits the catalytic activity when the reaction buffer contains monovalent metal ions at high concentrations instead of Mg²⁺ [24,25]. Monovalent ions do not supposedly play an essential role in the catalytic step, but predominantly assist in the folding of an inactive conformation with a disordered catalytic core into the catalytically active conformation [26]. A molecular dynamics simulation study has demonstrated that the binding patterns of Na⁺ ions necessary for the formation of a catalytically active conformation are not as rigid as those of Mg²⁺ [27]. The relatively nonspecific electrostatic interactions with Na⁺ ions are useful for assessing the influence of non-dilute conditions on RNA folding and its salt concentration dependence. The present study measures the rates of the hammerhead ribozyme-catalyzed RNA cleavage mediated by NaCl and the thermodynamic stability of a short RNA duplex, using aqueous solutions containing a high concentration of neutral additives (referred to as cosolutes), such as PEG, small primary alcohols, amide compounds, and aprotic solvent molecules. This study illustrates correlations of the dielectric constant with the magnitude of the salt concentration dependence of the cleavage rate and the base-pair stability. The results are useful when constructing a prediction model for nucleic acid structures under non-dilute conditions and also when modulating the structural stability by changing the solution composition.

2. Results

2.1. The hammerhead ribozyme reaction mediated by NaCl

RNA sequences used for the ribozyme-catalyzed RNA cleavage are the minimum sequence motif of the trans-acting hammerhead ribozyme and the substrate strand labeled with a fluorophore, as shown in Fig. 1A. The substrate RNA is site-specifically cleaved at a phosophodiester bond located in the catalytic site at the junction of three stems forming the pairwise coaxial stacking [23,26]. We confirmed that the reaction rapidly proceeded in solutions containing Mg²⁺ at several to several tens of millimolar, with a half-life of less than 1 min; but there was no reaction without adding the divalent metal ion to the solution. The cleavage reaction also proceeded in solutions containing NaCl at high concentrations instead of MgCl₂. Although the reaction rate with NaCl was much slower than that with MgCl₂, the site-specific substrate cleavage was observed (Fig. 1B). It was previously proposed that the ribozyme structure in the absence of divalent metal ions is extended with a disordered core and no pairwise coaxial stacking [26]. The binding of Na⁺ ions converts to the more condensed, catalytic active form in equilibrium with inactive species.

The observed reaction rate constant, k, was greatly changed depending on the concentration of NaCl, e.g., 2.1 h⁻¹ with 1.5 M NaCl, 0.31 h⁻¹ with 1 M NaCl, and 0.011 h⁻¹ with 0.5 M NaCl. A linear correlation was obtained between the common logarithm of the rate constant (log k) and that of NaCl concentration (log [NaCl]) (Fig. S1A, in the Supporting information), suggesting that the rate-limiting step remains unchanged within the concentration range.

2.2. RNA cleavage rates in the presence of PEG

The reaction with NaCl was investigated using the solutions containing PEG at 20 wt%, comparable to the amount of biomolecules present in cells [28,29]. The effects of PEG with different average molecular weights (g mol⁻¹) ranging from 2 × 10² to 2 × 10⁶ (PEG200, PEG600, PEG2000, PEG8000, and PEG20000) were compared. As observed in a previous study on the reaction with Mg²⁺ [30], the RNA cleavage rate was increased by the addition of PEGs of different molecular weights (Fig. 1B). The rate acceleration was greater with a larger PEG, but saturated at a molecular weight exceeding 2 × 10⁶ (Fig. 1C). Remarkably, the PEG-induced rate acceleration was more pronounced with moderate rather than high concentrations of NaCl, e.g., 35-fold acceleration of the rate constant with 0.5 M NaCl compared to a maximum acceleration of 1.7-fold with 1.5 M NaCl.

Linear dependences between log k and log [NaCl] with a correlation coefficient greater than 0.995 were obtained, as shown in Fig. 1D. The slope of the plot was changed in the PEG-containing solutions: the slope was 4.9 without cosolutes, and the slope became less steep as the size of the PEG increased, e.g., 2.1 with PEG8000. The results indicate that the PEG-induced rate accelerations, which were more significant at low NaCl concentrations, resulted from the reduced dependence on the salt concentration, and this effect is more significant with large PEG molecules.

2.3. Ribozyme reactions in other mixed solutions

We also employed the following compounds that are inert or non-inert to RNA: ethylene glycol (EG, the monomer unit of PEG); glycerol (Glyc), 1,3-propanediol (PDO), 2-methoxyethanol (MME), and 1,2-dimethoxyethane (DME) (structurally related to EG); methanol (MeOH), ethanol (EtOH), and 1-propanol (ProH) (small primary alcohols); urea and formamide (FA) (amide compounds, known as nucleic acid denaturants); N-methylformamide (NMF), dimethylformamide (DMF), and acetamide (AcAm) (structurally related to FA); acetonitrile (AcCN), dimethyl sulfoxide (DMSO), tetrahydrofuran (THF), and 1,4-dioxane (DOX) (aprotic solvent molecules); and polysaccharide dextran (Dex) with an average molecular weight 1 × 10⁴. Many of these compounds changed the cleavage rate (Fig. S1B), giving the rate constant range of 0.0029–3.7 h⁻¹ with 1.5 M NaCl, as compared in Fig. 2. In particular, urea and FA significantly decreased the rate constant by 100-fold, consistent with their role as nucleic acid denaturants. The FA-like compounds of NMF, DMF, and AcAm also decreased the value by 3.9- to 6.5-fold, whereas many of the other compounds increased or had slight effects on the rate constant. Some of the cosolute effects are consistent with prior studies measuring the hammerhead ribozyme activity with Mg²⁺ in the mixed solutions with Glyc or MeOH [31]. Dex as a polymer molecule had a lower influence on the cleavage rate, but the small primary alcohols that do not cause a large steric effect increased the rate constant as much as large PEG molecules did. The same effects of these compounds on the ribozyme catalysis were observed when the data at low NaCl concentrations were compared. The observations suggest that factors besides the excluded volume effect have major effects. It is a remarkable finding that these cosolute molecules changed the slope of the linear plot of log k versus log [NaCl] (Fig. S1C), as summarized in Table 1. The slope values had a weak correlation with the k values at a certain NaCl concentration, e.g., 1.5 M NaCl (Fig. S1D).
2.4. Stability of RNA base pairs in the mixed solutions

We also investigated the thermodynamic stability of RNA base pairs in the mixed aqueous solutions. In general, the base-pair formation is accompanied by the association of metal ions, and the ions preferentially interact with the phosphate groups through the Coulomb interaction, without obvious site specificity [32]. We prepared an 11-mer RNA duplex 5'-AUCCAGCGCGC-3' / 5'-GUCCUGCAU-3', derived from the base-pair sequence formed by the hammerhead ribozyme and the substrate RNA. Circular dichroism (CD) spectra of the duplex displayed no obvious change in the signal in the mixed solutions (Fig. S2A), suggesting that the double-helical structure is not significantly affected by the cosolutes although the spectra are not particularly sensitive to subtle or local conformational changes.

The values of the free energy change for the duplex formation determined by UV melting curve analysis showed that no cosolutes, excluding those with PEG8000 (phase separation at high temperatures), PEG20000 (phase separation at high temperatures), and THF (evaporated at high temperatures) for which measurements could not be obtained, increased the duplex stability at 1 M NaCl (Fig. S2B). As found in the ribozyme study, the amide compounds had the strongest effect, e.g., FA decreased the \(T_m \) by 9°C and \(-\Delta G^\circ \) by 2.8 kcal mol\(^{-1}\) (Fig. 3A), consistent with previous reports that the stability of DNA duplexes was decreased in the presence of FA or urea due to interactions with unpaired bases through the formation of multiple hydrogen bonds [33–35]. EG,
EG-like compounds (Glyc, PDO, MME, and DME), primary alcohols (MeOH, EtOH, and PrOH), and aprotic compounds (AcCN, DMSO, THF, and DOX), which increased or had slight effects on the RNA cleavage rate, significantly decreased the value of $-\Delta G^\circ$. Small PEG molecules decreased the duplex stability (1.6 kcal mol$^{-1}$ by PEG200 and 0.9 kcal mol$^{-1}$ by PEG600), which can be explained by specific interactions with single-stranded bases [13] and reduction in the water activity [14]. Small cosolutes may act as osmolytes that reduce the activity of water and increase the osmotic pressure [36,37]. The solutions containing PEG or the amide compounds have moderate water activities (0.94–0.96), and those containing EG, the EG-like compounds, the small primary alcohols, and the aprotic compounds have relatively low values (0.93 or less). We found a weak correlation of the $-\Delta G^\circ$, excluding those of the amide compounds, with the logarithm of the water activity, while no correlation was observed with the viscosity (Fig. S3A and B). In addition, the k values of the ribozyme reaction showed no clear correlation with these solution property parameters (Fig. S3C and D), and there was no strong correlation between the values of k and $-\Delta G^\circ$ (Fig. S3E).

Some organic compounds may cause microphase separation or decrease the solubility of NaCl, which could increase the effective concentration of NaCl. The excluded volume effect of large PEG molecules also increases the effective concentration of NaCl, and the effect becomes more significant when a large PEG is used. These effects on the salt concentration are expected to enhance the duplex stability; however, the studied mixed solutions did not increase the stability of the RNA duplex, excepting those containing large PEG molecules at low concentrations of NaCl. Fig. 3B shows the comparison of the effect of the duplex stability on the NaCl concentration. Linear dependences between $\log K = (- \Delta G^\circ / 2.303RT)$, where R is the gas constant and T is the absolute temperature) and $\log [\text{NaCl}]$ with a correlation coefficient greater than 0.990 were obtained, where the data for the small primary alcohols at high salt concentrations and those for large PEG molecules causing phase separation at high salt concentrations and high temperatures were omitted from the linear regression analysis. The slope value 1.8 in the absence of cosolutes was within those previously obtained for DNA and RNA structures, e.g., ranging from 0.6 to 4 which varied depending on the length and structure [19,20,38]. The slope changed when using the mixed solutions: for example, the slope value decreased to 1.1 in the PEG8000-containing solution. The reduction in the dependence on the salt concentration was also reported in previous studies using DNA duplexes with PEG [11,18–20] and RNA tertiary structures with trimethylamine oxide (TMAO) [38]. Our results show that many of the mixed solutions changed the magnitude of the salt concentration dependence of the duplex stability. In contrast, the slope value did not decrease in the FA- or urea-containing solutions. This property is important to keep their role as nucleic acid denaturants at low salt concentrations. Taken together with the ribozyme data, there is a found correlation between the NaCl concentration dependence of k and that of $\log K$ (Fig. 3C) even though the ribozyme activity depends not only on the stability of secondary structures but also on tertiary interactions.

2.5. Correlation with the dielectric constant

We then considered the relative dielectric constant, ε_r. An inclusion of an organic compound having a low dielectric constant lowers the dielectric constant of a solution [39,40]. Most of the studied compounds decrease the dielectric constant, but some amide compounds have a unique dielectric property: the addition of FA or NMF increases the value of ε_r while DMF decreases the value. The studied solutions have values ranging from 55 to 100 (Fig. 5A). Although the creation of a uniform dielectric medium is assumed and the dielectric constant decreases with the salt concentration and the temperature [41], there is some correlation between the values of ε_r^{-1} and k of the ribozyme reaction (Fig. 4A). More strikingly, the inverse of ε_r correlated well with the NaCl concentration-dependent data given in Table 1: the slope value decreases as ε_r^{-1} increases, except in the case of NMF ($\varepsilon_r^{-1} = 0.010$), as shown in Fig. 5B. The deviation for the NMF-containing solution having the highest dielectric constant might be due to the overestimation of ε_r caused by a nonhomogeneous distribution in the solution. Furthermore, the x-intercept of the log k versus log [NaCl] plots also showed a correlation with the ε_r^{-1} (Fig. 4C). It is emphasized that the data points obtained using the mixed solutions with amide compounds, but excluding NMF, fell along the same lines of the correlation plots. The data obtained using the solutions with different cosolute amounts ranging from 5 to 20 wt% and the binary mixture solutions of PEG200, PEG8000, EtOH, and FA followed the same lines of the plots, but no correlation was observed with the water activity or viscosity (Fig. 5S). The same correlations with the ε_r^{-1} were also found for the duplex stability regardless of the cosolute property of interacting with RNA, but no correlation was observed between the values of $-\Delta G^\circ$ and ε_r^{-1} (Fig. 4D–F).

3. Discussion

3.1. Influence of the mixed solutions on the ribozyme catalytic activity

This study investigated the RNA cleavage rate of the hammerhead ribozyme and the thermodynamic stability of RNA base pairs...
in the solutions containing NaCl. The experiments were performed with Na\(^+\) rather than Mg\(^{2+}\) because of several benefits. First, monovalent ions are less likely to associate with cosolute molecules. Second, the association of Na\(^+\) ions is mostly nonspecific through electrostatic interactions. The ion binding enhances the activity of the hammerhead ribozyme by increasing the population of the catalytically active conformation relative to inactive conformations. Third, Na\(^+\) ions weakly but cooperatively associate with RNA, which can be analyzed by a linear regression method presented in Figs. 1D and 3B. The plot of the NaCl concentration dependence provides a steeper slope than the case of MgCl\(_2\) because a greater number of monovalent ions are required for the charge neutralization than when using divalent ions\[^{42}\]. This facilitates the comparison of the salt concentration-dependent data obtained using different solutions.

The studies on the effect of PEG on the hammerhead ribozyme showed increased rates of RNA cleavage in the solutions containing large PEG molecules. The results are consistent with the excluded volume effect that may increase the effective concentration and contribution of ions and waters to the reactions.

3.2. Prediction method in the mixed solutions

It is convenient for practical use to predict nucleic acid structures and their stability under non-dilute conditions. The thermodynamic parameters based on the nearest-neighbor interaction model can be used for the predictions of the hybridization energy and secondary structures of nucleic acids\[^{15}\], and we have previously found the applicability of the nearest-neighbor model for DNA structure formations in several mixed solutions\[^{14}\]. It was reported that EG, MeOH, EtOH, PrOH, urea, FA, DMF, DMSO, and DOX destabilized a short RNA duplex, and there was found no good correlation between the duplex stability and the viscosity, dipole moment, surface tension, or solubility of the nucleotide adenine\[^{47}\]. We demonstrated in this study that there was no correlation between the \(\Delta G^\circ\) of the 11-mer RNA duplex and the dielectric...
constant (Fig. 4D). These results are probably due to significant energetic contributions from specific interactions with several cosolutes (e.g., amide compounds) and from base pairing in a relatively low water activity environment (e.g., EG, Glyc, and small primary alcohols).

The dependence of the duplex stability on the NaCl concentration was characterized by a linear correlation between log K and log [NaCl], as shown in Fig. 3B. Although increasing the ionic strength may replace cosolute molecules that possibly accumulate at the nucleic acid surface, the linear correlations suggest that the replacements could have only minor effects on the data analysis. To evaluate the salt concentration dependence, empirical expressions that take into account the number of phosphate charges contributing to base pairing and the Coulombic end effects in ion accumulation have been developed [16,17]. Our results demonstrate that the salt concentration dependence changes as a function of the dielectric constant (Fig. 4E), which could have some relevance to the phosphate charge effect and the Coulombic end effect. Based on the finding, the value of $-\Delta G$ of an RNA duplex under non-dilute conditions may be predicted by considering a possibility of specific interactions with coexisting compounds, water activity effects, and dielectric constant effects, for example, by using the following calculation: ΔG at a certain salt concentration in a non-dilute solution $\approx (\Delta G_{\text{at a standard condition, e.g., } 1 \text{ M NaCl in a dilute solution}}) + (\text{energy penalty due to specific interactions and the reduced water activity}) + (\text{a term involving the dielectric constant, possibly combined with the phosphate charge effect and the end effect})$.

More comprehensive studies using other sequences and concerning the energy penalty and sequence- and length-dependent dielectric constant effects will contribute to nucleic acid folding predictions under non-dilute conditions.

3.3. Dielectric constant effects on nucleic acids

Based on the polyelectrolyte model of nucleic acids, the magnitude of the dependence of duplex stability on the salt concentration is related to the thermodynamic degree of ion accumulation near nucleic acids [48–50]. Our finding that mixed solutions changed the NaCl concentration dependence (the slope of the linear plots in Fig. 3B) suggests altered binding properties of salt ions to RNA molecules in the solution conditions created by organic compounds. It can therefore be assumed that the linear correlations between the salt concentration dependence data and the c_{w}^{-1} indicate the significance of electrostatic ion binding to RNA, mediated by Coulomb interaction that is inversely proportional to the dielectric constant. In addition to the slope of the linear plots, their x-intercept values have a correlation with the c_{w}^{-1} (Fig. 4C and F).

The environment with a low dielectric constant would enhance the efficiency of ion binding to RNA molecules, and is favorable both for the ribozyme catalysis and for the duplex formation with a lower amount of NaCl, and one of such compounds is PEG having a molecular weight of more than several thousands. In contrast, urea and FA providing a medium of high dielectric constant effects with the phosphate charge effect and the end effect $\times \log[\text{salt}]$. More comprehensive studies using other sequences and concerning the energy penalty and sequence- and length-dependent dielectric constant effects will contribute to nucleic acid folding predictions under non-dilute conditions.

4. Conclusions

We have found that many types of mixed solutions change the rate of the ribozyme-catalyzed RNA cleavage and its dependence on the concentration of NaCl. The solutions also affect the stability of RNA base pairs and its dependence on the salt concentration. Specific interactions with RNA molecules (e.g., urea and FA) and the reduced water activity (e.g., EG, Glyc, and small primary alcohols) can explain their inhibiting effects on the ribozyme catalysis and decreasing effects on the duplex stability, but they do not explain the changes in their NaCl concentration dependence. We found good correlations of the dielectric constant with the salt concentration dependence of the ribozyme reaction rate and the RNA base-pair stability. The observation provides useful insights when constructing a prediction model for RNA structures under non-dilute conditions and also when modulating the stability by changing the solution composition.

5. Materials and methods

5.1. Preparation of RNA oligonucleotides and buffer solutions

The hammerhead ribozyme sequence derived from Schistosoma mansoni was enzymatically prepared as previously described [30]. The substrate RNA labeled with 6-carboxyfluorescein (FAM) at the 5’-end and the 11-mer RNA oligonucleotides, purified by high-performance liquid chromatography (HPLC), were purchased from Hokkaido System Science.

All reagents used to prepare buffer solutions were purchased from Wako with the following exceptions: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and the disodium salt of ethylenediamine-N,N,N’,N”-tetraacetic acid (Na2EDTA) from Dojindo, PEG8000 and dextran with an average molecular weight 1×10^6 from Sigma, and 2-methoxyethanol and 1,2-dimethoxyethane from...
TCI. All reagents were used without further purification. Cosolute molecules were added to buffer solutions at 20 wt%, unless otherwise mentioned. No obvious precipitation and phase separation were observed, excluding the experiments using large PEG molecules at high salt concentrations and high temperatures.

5.2. Ribozyme-catalyzed RNA cleavage

The RNA cleavage rate of the hammerhead ribozyme was measured under the single-turnover conditions, in which the ribozyme (2 μM) was present in excess relative to the substrate (100 nM). The reaction was performed at 37 °C using a buffer solution consisting of 50 mM HEPES and 1 mM Na2EDTA at pH 7.0. No significant contamination of divalent metal ions was confirmed from the experiments using higher concentrations of Na2EDTA.

The RNA solution was annealed in the buffer solution at 60 °C and then incubated at 37 °C for 10 min, followed by the addition of salts to start the reaction, during which the addition of NaCl changed the solution pH by no more than 0.13. The quenched reaction mixture was loaded onto a 20% polyacrylamide gel (acrylamide:bisacrylamide = 19:1) containing 7 M urea. After the gel electrophoresis, the fluorescence emission from the FAM-labeled RNA strands was visualized and quantified by a fluorescence scanner (FLA-5100, Fuji) using a 473-nm excitation laser and a 520-nm emission filter.

The observed rate constant, k, for the ribozyme-catalyzed cleavage of the substrate RNA was determined from a plot of the RNA fraction cleaved at the correct site, f, versus time, t, fitted to the single-exponential equation of \(f = f_0 + (f_{\text{max}} - f_0) \left(1 - \exp(-kt)\right) \), where \(f_0 \) is the fraction at time zero and \(f_{\text{max}} \) is the fraction at the endpoint of the reaction. The fitting was performed using KaleidaGraph 4.1 (Synergy). A linear approximation of the equation was used to calculate the rate constant of very slow reactions.

5.3. CD spectra of an RNA duplex

CD spectra were obtained using a spectropolarimeter (J-820, JASCO). All spectra were measured at 5 °C using an RNA strand concentration of 40 μM in a buffer consisting of 1 M NaCl, 10 mM Na2HPO4 and 1 mM Na2EDTA at pH 7.0. The RNA solution was heated to 80 °C and cooled at the rate of 2 °C min−1 prior to use.

5.4. Thermodynamic stability of an RNA duplex

The thermal melting curve of the RNA duplex was obtained by monitoring the absorption at 260 nm using a spectrophotometer (UV-1800, Shimadzu). The melting curve was measured using an RNA strand concentration of 2 μM in the phosphate buffer. The heating rate was 1 °C min−1, and the cuvette was sealed with an adhesive sheet to prevent evaporation. The melting temperature, \(T_m \), at which half of the duplex structure was denatured, the association equilibrium constant, K, and the free energy change, \(\Delta G^\circ \), at 37 °C were determined from the melting curve [60].

5.5. Properties of the mixed aqueous solutions

The water activity was determined by the osmotic pressure method using vapor phase osmometry (5520XR pressure osmometer, Wescor) or freezing point depression osmometry (Typ Dig L, Hmbmikro). The relative dielectric constant was calculated according to the equation reported by Oster or experimentally determined using a fluorescent probe, 1-anilino-8-naphthalene sulfonate, as previously described [56]. The solution viscosity was measured with a viscometer (SV-10 vibro viscometer, A&D). These solution property parameters were measured using the buffer solutions containing 1 M NaCl and 20 wt% cosolute at 25 °C, unless otherwise mentioned.

Acknowledgements

We thank Akiko Matsuyama and Junpei Ueno for technical assistance. We also thank Prof. Philip C. Bevilacqua (Department of Chemistry, Pennsylvania State University, USA) for critical reading and English editing. This work was supported in part by Grants-in-Aid for Scientific Research from JSPS (Japan Society for the Promotion of Science) (No. 24550200) and MEXT (Ministry of Education, Culture, Sports, Science and Technology in Japan)-Supported Program for the Strategic Research Foundation at Private Universities, 2009-2014.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.febsopenbio.2014.06.009.

References

[1] Johansson, G. and Walter, H. (2000) Partitioning and concentrating biomaterials in aqueous phase systems. Int. Rev. Cytol. 192, 33–60.
[2] Al-Habori, M. (2001) Macromolecular crowding and its role as intracellular signaling of cell volume regulation. Int. J. Biochem. Cell Biol. 33, 844–864.
[3] Vazquez, A. and Olsvik, Z.N. (2011) Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology. PLoS One 6, e19538.
[4] Zhou, H.X., Rivaz, G. and Minton, A.P. (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. Biomol. Struct. 37, 375–397.
[5] Nakano, S., Miyoshi, D. and Sugimoto, N. (2014) Effects of molecular crowding on the structures, interactions, and functions of nucleic acids. Chem. Rev. 114, 2733–2758.
[6] Peterson, A.W., Wolf, I.K. and Georgiadis, R.M. (2002) Hybridization of mismatched or partially matched DNA at surfaces. J. Am. Chem. Soc. 124, 14601–14607.
[7] Ricci, F., Lai, R.Y., Heeger, A.J., Plaxco, K.W. and Sunner, J.J. (2007) Effect of molecular crowding on the response of an electrochemical DNA sensor. Langmuir 23, 6827–6834.
[8] Jayaraman, A., Hall, C.K. and Genzer, J. (2007) Computer simulation study of probe-target hybridization in model DNA microarrays: effect of probe surface density and target concentration. J. Chem. Phys. 127, 144912.
[9] Nakano, S., Kazukiz, T., Nakano, M., Miyoshi, D. and Sugimoto, N. (2011) Measurements of the binding of a large protein using a substrate density-controlled DNA chip. Anal. Chem. 83, 6308–6312.
[10] Minton, A.P. (1998) Molecular crowding: analysis of effects of high concentrations of inert cosolutes on biochemical equilibria and rates in terms of volume exclusion. Methods Enzymol. 295, 127–149.
[11] Goobes, R., Kahana, N., Cohen, O. and Menisky, A. (2003) Metabolic buffering exerted by macromolecular crowding on DNA–DNA interactions: origin and physiological significance. Biochemistry 42, 2431–2440.
[12] Nakano, S., Kirimata, H., Ohtsuki, T., Kawakami, J. and Sugimoto, N. (2004) The effect of molecular crowding with nucleotide length and cosolute structure on DNA duplex stability. J. Am. Chem. Soc. 126, 14330–14331.
[13] Knowles, D.B., LaCroix, A.S., Deines, N.F., Shkel, I. and Record Jr., M.T. (2011) Separation of preferential interaction and excluded volume effects on DNA duplex and hairpin stability. Proc. Natl. Acad. Sci. U.S.A. 108, 12699–12704.
[14] Nakano, S., Yamaguchi, D., Tateishi-Kirimata, H., Miyoshi, D. and Sugimoto, N. (2012) Hydration changes upon DNA folding studied by osmotic stress experiments. Biophys. J. 102, 2808–2817.
[15] Markham, N.R. and Zuker, M. (2005) DNAmet web server for nucleic acid melting prediction. Nucleic Acids Res. 33, W577–W581.
[16] SantaLucia Jr., J. (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. U.S.A. 95, 1460–1465.
[17] Shkel, I.A. and Record Jr., M.T. (2004) Effect of the number of nucleotide oligomer charges on the salt dependence of stability (\(D_{\text{G}}(\text{NaCl}) \)) and melting temperature (\(T_m(\text{NaCl}) \)). NLPB analysis of experimental data. Biochemistry 43, 7090–7101.
[18] Spink, C.H. and Chaires, J.B. (1999) Effects of hydration, ion release, and excluded volume on the melting of triplex and duplex DNA. Biochemistry 38, 496–508.
[19] Kirimata, H., Nakano, S. and Sugimoto, N. (2007) Effects of polyethylene glycol on DNA duplex stability at different NaCl concentrations. Bull. Chem. Soc. Jpn. 80, 1987–1994.
[20] Nakano, S., Wu, L., Oku, H., Kirimata, H.T., Kirihata, T., Sato, Y., Fujii, S., Sakai, H., Kuwahara, M., Sawai, H. and Sugimoto, N. (2008) Conformation and the
sodium ion condensation on DNA and RNA structures in the presence of a neutral cosolute as a mimic of the intracellular media. Mol. BioSyst. 4, 579–588.

[21] Stage-Zimmermann, T.K. and Uhlenbeck, O.C. (1998) Hammerhead ribozyme kinetics. RNA 4, 875–889.

[22] Blount, K.F. and Uhlenbeck, O.C. (2005) The structure–function dilemma of the hammerhead ribozyme. Annu. Rev. Biophys. Biomol. Struct. 34, 415–440.

[23] Martick, M. and Scott, W.G. (2006) Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126, 309–320.

[24] Murray, J.B., Seyhan, A.A., Walter, N.G., Burke, J.M. and Scott, W.G. (2003) Preferential interactions of glycine betaine with condensed ordered DNA. A molecular dynamics computer simulation study. Nucleic Acids Res. 31, 16881–16888.

[25] Furler, M., Knobloch, B. and Sigel, R.K.O. (2009) Influence of decreased solvent barrier to folding from phosphate dehydration. J. Mol. Biol. 388, 195–206.

[26] Soto, A.M., Misra, V. and Draper, D.E. (2007) Tertiary structure of an RNA catalytic domain 5 of a group II intron ribozyme. Inorg. Chim. Acta 362, 771–776.

[27] Smirnov, I.V. and Shafer, R.H. (2007) Electrostatics dominate quadruplex stability. Biopolymers 85, 91–101.

[28] Kilburn, D., Roh, J.H., Guo, L., Biber, R.M. and Woodson, S.A. (2010) Molecular crowding stabilizes folded RNA structure by the excluded volume effect. J. Am. Chem. Soc. 132, 8690–8696.

[29] Levy, A., Andelman, D. and Orland, H. (2012) Dielectric constant of poly(ethylene glycol) and their influence on membrane structure. Biochim. Biophys. Acta 815, 515–518.

[30] Hong, J., Capp, M.W., Anderson, C.F. and Record, M.T. (2003) Preferential interactions in aqueous solutions of urea and KCl. Biophys. Chem. 105, 517–532.

[31] Levy, A., Andelman, D. and Orland, H. (2012) Dielectric constant of poly(ethylene glycol) and their influence on membrane structure. Biochim. Biophys. Acta 815, 515–518.

[32] Ellis, R.J. (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26, 597–604.

[33] Luby-Phelps, K. (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int. Rev. Cytol. 192, 189–221.

[34] Nakano, S., Karimata, H.T., Kitagawa, Y. and Sugimoto, N. (2009) Facilitation of RNA enzyme activity in the molecular crowding media of cosolutes. J. Am. Chem. Soc. 131, 16881–16889.

[35] Asami, K., Hanai, T. and Koizumi, N. (1976) Dielectric properties of yeast cells. J. Membr. Biol. 28, 169–180.

[36] Parsegian, V.A., Rand, R.P. and Rau, D.C. (2000) Osmotic stress, crowding, preferential hydration, and binding: a comparison of perspectives. Proc. Natl. Acad. Sci. U.S.A. 97, 3987–3992.

[37] Hickey, D.R. and Turner, D.H. (1985) Solvent effects on the stability of A2U-p. Biochemistry 24, 2086–2094.

[38] Arscott, P.G., Ma, C., Wenner, J.R. and Bloomfield, V.A. (1995) DNA condensation by cobalt hexammine (III) in alcohol–water mixtures: electrostatic constant and other solvent effects. Biopolymers 36, 345–364.

[39] Record Jr., M.T., Zhang, W. and Anderson, C.F. (1998) Analysis of effects of salts and uncharged solutes on protein and nucleic acid equilibria and processes: a practical guide to recognizing and interpreting polyelectrolyte effects, Hofmeister effects, and osmotic effects of salts. Adv. Protein Chem. 51, 281–353.

[40] Legendre, S. and Sali, A. (2006) Electrostatics dominate quadruplex stability. Biopolymers 85, 91–101.

[41] Finkelstein, V.L. and Finkelstein, S. (2004) Annu. Rev. Biophys. Biomol. Struct. 34, 415–440.

[42] Blandamer, M.J., Engberts, J.B., Gleeson, P.T. and Reis, J.C. (2005) Activity of the hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chem. Biol. 5, 587–595.

[43] Stage-Zimmermann, T.K. and Uhlenbeck, O.C. (1998) Hammerhead ribozyme catalytic activity measured in the presence of osmolytes. J. Am. Chem. Soc. 130, 16881–16889.

[44] Mergny, J.L. and Lacroix, L. (2003) Analysis of thermal melting curves. Methods Enzymol. 469, 433–463.

[45] Rau, D.C. and Parsegian, V.A. (1992) Direct measurement of the intermolecular forces between counterion-condensed DNA double helices. Evidence for long range attractive hydration forces. Biophys. J. 61, 246–259.

[46] Arscott, P.G., Ma, C., Wenner, J.R. and Bloomfield, V.A. (1995) DNA condensation by cobalt hexammine (III) in alcohol–water mixtures: dielectric constant and other solvent effects. Biopolymers 36, 345–364.

[47] Arkhipov, Y.V. (1980) Dielectric Properties of Binary Solutions: A Data Handbook, Pergamon Press, Oxford, UK.