The GAPS Programme at TNG XXXIX

Multiple molecular species in the atmosphere of the warm giant planet WASP-80 b unveiled at high resolution with GIANO-B

Iliaria Carleo,1, 2 Paolo Giacobbe,3, 4 Gloria Guilluy,3, 4 Patricio E. Cubillos,3, 5 Aldo S. Bonomo,3 Alessandro Sozzetti,3 Matteo Brogi,5, 3, 7 Siddharth Gandhi,3, 4 Patricio E. Cubillos,3, 5 Diego Turrini,5, 3 Katia Biazzo,9 Francesco Borsa,10 Antonio F. Lanza,9 Luca Malavolta,11, 2 Antonio Maggio,12 Luigi Mancini,13, 14, 3 Giusti Micela,12, 12, 12, Lorenzo Pino,15 Ennio Poretti,16 Monica Raineri,16 Gaetano Scandariato,9 Eugenio Schisano,17 Gloria Andreuzzi,16, 18 Andrea Bignamini,19 Rosario Cosentino,16 Aldo Fiorenzano,16 Avet Harutyunyan, Emilio Molinari,20 Marco Pedani,16 Seth Redfield,21 and Hristo Stoev

1Astronomy Department, Indiana University, Bloomington, IN 47405-7105, USA
2INAF – Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy
3INAF – Osservatorio Astrofisico di Torino, Via Osservatorio 20, 10025 Pino Torinese TO, Italy
4Osservatorio Astronomico de l’Université de Genève, Chemin Pegasi 51b, 1290, Versoix, Switzerland
5Space Research Institute, Austrian Academy of Sciences, Schmiedlstraße 6, Graz 8042, Austria
6Department of Physics, University of Warwick, CV4 7AL, Coventry, UK
7Centre for Exoplanets and Habitability, University of Warwick, CV4 7AL, Coventry, UK
8Leiden Observatory, Leiden University, Postbus 9513, 2300 RA Leiden, The Netherlands
9INAF – Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania, Italy
10INAF – Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Merate, Italy
11Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova, Italy
12INAF – Osservatorio Astrofisico di Palermo, Piazza del Parlamento, 1, I-90134 Palermo, Italy
13Department of Physics, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, I-00133 Rome, Italy
14Max Planck Institute for Astronomy, Königstuhl 17, 69117 – Heidelberg, Germany
15INAF – Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125 Firenze, Italy
16Fundación Galileo Galilei-INAF, Rambla José Ana Fernandez Pérez 7, 38712 Breña Baja, TF, Spain
17Institute for Space Astrophysics and Planetology INAF-IAPS, Via Fosso del Cavaliere 100, 00133 Rome, Italy
18INAF – Osservatorio Astronomico di Roma, Via Frascati 33, 00078 Monte Porzio Catone, Italy
19INAF – Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34143 Trieste, Italy
20INAF Osservatorio Astronomico di Cagliari & REM, Via della Scienza, 5, I-09047 Selargius CA, Italy
21Astronomy Department and Van Vleck Observatory, Wesleyan University, Middletown, CT 06459, USA

(accepted July 11, 2022)

ABSTRACT

Detections of molecules in the atmosphere of gas giant exoplanets allow us to investigate the physico-chemical properties of the atmospheres. Their inferred chemical composition is used as tracer of planet formation and evolution mechanisms. Currently, an increasing number of detections is showing a possible rich chemistry of the hotter gaseous planets, but whether this extends to cooler giants is still unknown. We observed four transits of WASP-80 b, a warm transiting giant planet orbiting a late-K dwarf star with the near-infrared GIANO-B spectrograph installed at the Telescopio Nazionale Galileo and performed high resolution transmission spectroscopy analysis. We report the detection of several molecular species in its atmosphere. Combining the four nights and comparing our transmission spectrum to planetary atmosphere models containing the signature of individual molecules within the

Corresponding author: Iliaria Carleo
iliariacarleo.astro@gmail.com

* Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated by the Fundación Galileo Galilei (FGG) of the Istituto Nazionale di Astrofisica (INAF) at the Observatorio del Roque de los Muchachos (La Palma, Canary Islands, Spain).
cross-correlation framework, we find the presence of H₂O, CH₄, NH₃ and HCN with high significance, tentative detection of CO₂, and inconclusive results for C₂H₂ and CO. A qualitative interpretation of these results, using physically motivated models, suggests an atmosphere consistent with solar composition and the presence of disequilibrium chemistry and we therefore recommend the inclusion of the latter in future modelling of sub-1000K planets.

Keywords: Exoplanet astronomy (486) — Exoplanet atmosphere (487) — Exoplanet detection methods (489) — Transit photometry (1709) — High resolution spectroscopy (2096) — Molecular spectroscopy (2095)

1. INTRODUCTION

More and more studies of the atmospheres of hot and warm Jupiters, i.e. gaseous giant planets with equilibrium temperatures of $T_{\text{eq}} \gtrsim 1000$ K and $T_{\text{eq}} \lesssim 1000$ K respectively, are yielding important advances in our understanding of the properties of exoplanetary atmospheres and of their possible links to planet formation and migration mechanisms (e.g., Madhusudhan 2019). These hot and warm giant planets are the ideal targets for atmospheric studies through the transmission spectroscopy technique, which allows us to probe the presence of atomic and molecular species at the atmospheric terminator during planetary transits. Indeed, the amplitude of spectral features in transmission spectroscopy is $\propto R_P H / R_\star^2$, where R_P and R_\star are the planet and stellar radii, and $H = k_b T_{\text{eq}} / \mu g$ is the atmospheric scale height, with k_b the Boltzmann’s constant, μ the mean molecular weight and g the planet surface gravity. Planets with higher T_{eq} and lower g and μ (hydrogen- and helium-dominated atmospheres) are thus the most favorable for atmospheric studies.

To date most of the insight from the atmospheres of transiting exoplanets comes from low-resolution ($R \approx 200 - 2000$) spectroscopy (LRS), especially from space thanks to HST, both in the optical and the near-InfraRed (nIR) wavelength ranges (e.g., Sing et al. 2016; Mansfield et al. 2021). High-resolution ($R \gtrsim 30000$) spectroscopy (HRS), resolving the molecular absorption bands into thousands of individual lines, has also been proving an effective tool in the investigation of exoplanetary atmospheres (see e.g. Birkby 2018, for a review), providing additional/complementary information to the low-resolution data. Indeed, while LRS is sensitive to broad-band absorption features and the level of the spectral continuum relative to the stellar one (which gives information on the overall transit depth of the planet), HRS is sensitive to the core of the lines, and gives information on the line shape, line Doppler-shift, line-to-line and line-to-continuum contrast. This allows us to investigate higher layers (lower pressures) of the atmospheres, thus possibly studying layers lying above possible aerosol layers (Gandhi et al. 2020; Hood et al. 2020).

While past nIR HRS observations of warm and hot transiting giant exoplanets have detected at most two species, Giacobbe et al. (2021) have recently reported the detection of multiple molecules in the atmosphere of HD209458b, revealing a rich chemistry in this hot Jupiter and a Carbon-to-Oxygen ratio (C/O) close to or greater than 1, under the assumption of chemical equilibrium. This estimate of C/O would imply that the planet formed beyond the water condensation front (snowline) at about 2-3 au, and then migrated inward without substantial accretion of oxygen-rich solids or gas. Whether the rich chemistry found in the atmosphere of HD209458 b pertains to other hot giant planets and the less studied warm Jupiters is unknown.

WASP-80 b is a transiting warm giant planet ($T_{\text{eq}} = 817$ K) that orbits a relatively active cool (late-K) dwarf every 3.07 days (Triaud et al. 2013). It has a radius of 0.952 R_J and a mass of 0.54 M_J (Triaud et al. 2013; Mancini et al. 2014; Bonomo et al. 2017, the system parameters are listed in Table 1). The resulting low density of ~ 0.8 g/cm3 and the large transit depth of $\sim 3\%$ make it a very good candidate for transmission spectroscopy.

Transmission spectroscopy with different datasets and ground-based instruments points to contrasting results. In fact, while Mancini et al. (2014) could not infer, from their multi-color photometry analysis of WASP-80 b any variation in the planetary radius with wavelength due to large errors in the data, Kirk et al. (2018) found their transmission spectrum best represented by a Rayleigh scattering slope, which indicated the presence of hazes. Moreover, Sedaghati et al. (2017) claimed a detection of the pressure-broadened K I doublet, suggesting a clear and low-metallicity atmosphere for WASP-80 b, while Parviainen et al. (2018) found the opposite result, showing a flat transmission spectrum, with no significant K I and Na I absorptions. Most recently, Fossati et al. 2022 did not find any He planetary absorption, possibly indicating a low He abundance in the atmosphere of WASP-
80b. From the space-based _HST/WFC3_ data, Tsiaras _et al._ (2018) found no significant presence of water in the atmosphere of WASP-80b. Also, Fisher & Heng (2018) performed a retrieval analysis on the _HST/WFC3_ data of WASP-80b: although the best-fit model is the grey-cloud model with the water feature (see Fig. 22 in Fisher & Heng 2018), the Bayesian statistics does not favour this model over a flat line, meaning no conclusive retrieved atmospheric properties can be reported.

In this letter, we present the analysis of the transmission spectrum of WASP-80b using the HR GIANO-B data and the same technique as in Giacobbe _et al._ (2021). The observations and data reduction are described in Sec. 2, the resulting detections of molecules are presented in Sec. 3, which contains the central findings of this work. While this letter is mainly focused on the detection of multiple species, we give possible qualitative interpretations in Sec. 4 and, finally, the conclusions are given in Sec. 5.

Table 1. Parameters of the WASP-80 system.
Parameter
M*
R*
_T__eff
[Fe/H]
v sin _i_
log _g_*
log _R__HK
_P__orb
_M__P_
_R__P_
_K__P_
_T__eq
_ρ__e_
a
e

\(^a\) We calculate the equilibrium temperature using the Equation 1 in López-Morales & Seager (2007), which assumes the Bond albedo equal to zero and redistribution factor \(f=1/4\).

3. TRANSMISSION SPECTROSCOPY AND SEARCH FOR MOLECULES

Cross-Correlation analysis—For the transmission spectroscopy analysis, we followed the recipe by Giacobbe _et al._ 2021. Briefly, a) we wavelength-calibrated and aligned all the spectra to the observer’s rest frame by using the Earth’s absorption lines (telluric) as reference; b) we removed the quasi-stationary (in wavelength) spectral components - not only tellurics but also the star at first order - using our custom Principal Component Analysis (PCA) approach; c) we performed an optimal selection of the spectral orders, for each molecule and for each night, to discard the orders that do not contain enough signal (molecular lines) and/or are strongly contaminated by telluric and stellars; d) we applied the cross-correlation (CC) technique between the observed data and the atmospheric models (described below) to investigate the presence of _H_\(_2\)_O, CH\(_4\), HCN, NH\(_3\), CO, CO\(_2\), C\(_2\)H\(_2\). The cross-correlation function (CCF) is computed over a range of radial velocities between -252 and 252 km s\(^{-1}\) in steps of 3 km s\(^{-1}\) and for each molecule, spectral order, night and exposure, and then co-added over all selected orders and nights. Even if we know with relative precision the theoretical planet’s orbit radial velocity semi-amplitude \(K_\text{P} = 122±4\text{ km s}^{-1}\), we explore a range of \(K_\text{P}\) values

\(^1\) https://theglobalarchitectureofplanetarysystems.wordpress.com/
between 0 and 200 km s\(^{-1}\) with steps of 3 km s\(^{-1}\), in order to explore spurious detections near the expected K\(_P\) and to account for the uncertainty on K\(_P\), as well as for dynamical effects of atmospheric winds. The resolution of 3 km/s was chosen to be equal to the half width half maximum of the instrumental profile for R\(\sim\)50,000.

For each molecule we generated atmospheric transmission spectra using isothermal pressure/temperature (P/T) profiles using GENESIS (Gandhi & Madhusudhan 2017; Giacobbe et al. 2021). The choice of isothermal P/T profiles is guided by the fact that in transmission spectroscopy a change in temperature acts to change the planet scale height with altitude, leading in a change on the overall strength of the spectral lines. Thus, changing the shape of the P/T profile from isothermal to a more complex profile would not significantly change the chemistry in the atmosphere and the molecular detections.

The models span a range of pressure-temperature profiles ([100, 10\(^{-8}\)] bar, [-200, 200] K around T\(_{\text{eq}}\)) and volume mixing ratios (VMR, [10\(^{-12}\), 10\(^{-1}\)]) for each species and are calculated at a constant wavenumber spacing of 0.01 cm\(^{-1}\) in the 0.9-2.6 \(\mu\)m wavelength range. We then convolved the spectra to the instrumental resolution of GIANO assuming a Gaussian profile with a FWHM of 3 km/s was chosen to be equal to the half width half maximum of the instrumental profile for R\(=\)50,000. We adopted the latest and most suitable line lists for high resolution spectroscopy (Gandhi et al. 2020), with CH\(_4\) and CO from the HITEMP database (Rothman et al. 2010), H\(_2\)O, NH\(_3\), HCN and C\(_2\)H\(_2\) from ExoMol (Tennyson et al. 2016), and CO\(_2\) from Ames (Huang et al. 2013; Huang et al. 2017); see Table 2 for a full list of references for each molecular line list. These are broadened by the pressure and temperature into a Voigt profile according to their H\(_2\) and He pressure-broadening coefficients. We additionally include collision induced absorption from H\(_2\)-H\(_2\) and H\(_2\)-He interactions (Richard et al. 2012) as a source of continuum opacity.

Since the CC is marginally dependent on VMR (Gandhi et al. 2020) when considering single species and no clouds, we fixed this parameter and used the highest VMR available for each species for the entire analysis. In particular, VMR=10\(^{-1}\) for H\(_2\)O and CO, VMR=10\(^{-2}\) for CH\(_4\), NCH and NH\(_3\), VMR=10\(^{-3}\) for C\(_2\)H\(_2\) and CO\(_2\). The detection significance is calculated through a Welch t-test (Welch 1947), which consists of creating two distributions of cross-correlation values, one in-trail within \(\pm3\) km s\(^{-1}\) around the expected planet’s RV, and one out-of-trail considering the values \(\pm25\) km s\(^{-1}\) away from the planet’s RV. The null hypothesis is when the two samples have the same mean. The rejection of the null hypothesis represents the significance of the detection. We claim a detection if \(\sigma \geq 4\).

From the CC analysis, we detect five out of seven tested species, namely H\(_2\)O (7.5\(\sigma\)), CH\(_4\) (4.2\(\sigma\)), NH\(_3\) (5\(\sigma\)), HCN (4.1\(\sigma\)), CO (4.6\(\sigma\)). The results are displayed in Table 2 and the significance maps as a function of the rest-frame velocity \(v_{\text{rest}}\) and the planetary semi-amplitude K\(_P\) are shown in Fig. 1. We find a tentative evidence for C\(_2\)H\(_2\), since the most significant peak in the map is located at \(v_{\text{rest}}=63\) km s\(^{-1}\) with 3.7\(\sigma\), but the second significant peak is at the planetary position with a slightly lower \(\sigma=3.4\). As for CO\(_2\), the most significant peak (4.45\(\sigma\)) is at the upper limit of the K\(_P\) range, even though a signal at the nominal (K\(_P\), \(v_{\text{rest}}\)) position is visible, though at a slightly lower significance (4.28\(\sigma\)) than the main peak. Since CO\(_2\) can be strongly affected by the tellurics and, during the third night (26 June 2020) the tellurics position falls close to \(v_{\text{rest}}=0\), we performed the analysis for CO\(_2\) not including this night, and we found a 4.01\(\sigma\) detection at the planetary position (see Table 2), confirming that the result might be affected by telluric contamination.

The H\(_2\)O signal is so strong that we can detect it in each night separately. Conversely, the rest of the detected molecules have weaker signals and are not always detected in each single transit, but are solidly detected by co-adding the four transits. These results demonstrate the advantage of the multi-transit strategy when searching for molecular species in planetary atmospheres.

Likelihood analysis —After performing the cross-correlation approach, we convert the CCFs into likelihood (LH) values (Brogi & Line 2019b). Briefly, the log-likelihood function is defined as in Eq. 9 of Brogi & Line (2019):

\[
\log L = -\frac{N}{2} \log [s_f^2 - 2R(s) + s_s^2], \tag{1}
\]

where N is the number of spectral channels, \(s_f^2\) is the variance of the data, \(s_s^2\) the variance of the model and \(R(s)\) the cross-covariance between the data and the model with s being a bin/wavelength shift. This function is computed for each order and each spectrum. The final log-likelihood value is the sum of all log-likelihood functions for each night. As in Giacobbe et al. (2021), an additional free parameter, namely the line-intensity scaling factor S, is introduced in this framework. If the model (i.e. the strength of the spectral lines) perfectly matches the data, S will be 1, that means \(\log S = 0\). Unlike in the CC (which is a normalized quantity), the line depth is important in the LH framework and the scaling factor allows us to approximate the continuum of the
Table 2. Summary of the results for each molecule for both Cross-Correlation and likelihood frameworks.

Molecule	Database	\(v_{\text{rest}}\) \([\text{km s}^{-1}]\)	\(K_P\) \([\text{km s}^{-1}]\)	Significance \(\sigma\)	\(v_{\text{rest}}\) \([\text{km s}^{-1}]\)	\(K_P\) \([\text{km s}^{-1}]\)	Significance \(\sigma\)	log \(S\)	CC	LH
H_2O	Exomol	0.0	123.0±43.5	7.52	0.0	116^{+15}_{-14}	9.94	0.1	✓	✓
CH_4	HITTEMP	-3.0	115.5^{+64.5}_{-61.5}	4.17	-1.0	124^{+34}_{-38}	4.08	0.1	✓	✓
NH_3	Exomol	0.0	121.5^{+45.0}_{-55.5}	4.96	0.0	119±18	7.63	0.1	✓	✓
C_2H_2	Exomol	0.0	129.0^{+70.5}_{-61.5}	3.39	-69.0	15^{+48}_{-15}	3.88	0.1	~	×
HCN	Exomol	0.0	142.5^{+57.0}_{-55.5}	4.11	0.0	134±30	4.30	-0.5	✓	Detected
CO	HITTEMP	-3.0	124.5^{+93.0}_{-64.5}	4.62	-3.0	74^{+25}_{-24}	6.33	0.3	✓	×
CO_2 (4n)^c	Ames	3.0	199.5^{+163.5}_{-8.5}	4.45	2.0	64^{+18}_{-16}	8.50	0.2	×	Tentative
CO_2 (3n)^d	Ames	0.0	126±68.5	4.01	-1.0	147^{+18}_{-15}	7.09	0.2	✓	✓

References for each molecule: H_2O (Polyansky et al. 2018), CH_4 (Hargreaves et al. 2020), NH_3 (Coles et al. 2019), C_2H_2 (Chubb et al. 2020), HCN (Harris et al. 2006; Barber et al. 2014), CO (Li et al. 2015), CO_2 (Huang et al. 2013; Huang et al. 2017).

a The most significant peak in the CC map is at \(v_{\text{rest}}\)=63 km s\(^{-1}\) with a \(\sigma=3.65\) (see Fig. 1).

b Peak is at an inconsistent \(K_P\).

c 4 nights.

d Third night (26 June 2020) not included.

model as well as to take into account the effects from other species. In this framework, we calculate the significance by comparing the maximum value of the likelihood to the mean LH value in the map used as baseline.

The likelihood function is computed for each order, each observed spectrum and each night on a grid of \(K_P\) ([0, 200] km s\(^{-1}\) in steps of 1 km s\(^{-1}\)), \(v_{\text{rest}}\) ([−99, 99] km s\(^{-1}\) in steps of 1 km s\(^{-1}\)) and \(\log S\) ([−1.1, 1.1] in steps of 0.1). Table 2 reports the \(v_{\text{rest}}\), \(K_P\) and \(\log S\) values, while Fig. 2 shows the log-likelihood confidence interval maps for each molecule maximized at the best-fit scaling factor for the model, with a zoomed \(v_{\text{rest}}\) interval between [−20, 20] km s\(^{-1}\) for a better readability. The original version of this map is shown in Appendix B. Since in our analysis we used fixed VMRs and single-species model (meaning that the line contrast is deeper than in a mixed model), the \(\log S\) values are only indicative and cannot be properly interpreted.

In this likelihood framework, we confirm four out of five molecules detected with the CC, namely H_2O, CH_4, NH_3 and HCN. As in the case of the CC approach, CO_2 is not detected in the 4-night case, showing a significant peak at low \(K_P\) values, even though a slightly less significant peak (4.28σ) is present in the likelihood map as well. Furthermore, when we exclude the third night, the peak around the planetary \(K_P\) becomes the most significant in the map (see Fig. 2).

Finally, the CO signal shows a low value of \(K_P\) in the likelihood map, which is not compatible with the nominal \(K_P\) (see Fig. 2). This low value can be due to the contamination of the stellar CO lines, which is quasi-stationary in wavelength. In fact, because of its rotation, the stellar absorption lines are distorted by the Rossiter-McLaughlin (RM) effect and, during the transit, this effect can cause spurious signals at different transit phases, and finally in the detection maps, being of the same order of magnitude of the planetary signal. Unlike other molecules, the RM effect can heavily affect the CO detection (Brogi et al. 2016). In order to investigate this contamination, we first calculate the theoretical expected \(K_P\) for the stellar atmosphere as \(v \sin i / \sin(2\pi\phi_1)\), where \(\phi_1\) is the phase at transit ingress (0.014 for WASP-80). We find that the expected \(K_P\) corresponding to the stellar CO is 40.4 km s\(^{-1}\), which is lower than the \(K_P\) value for the LH peak. On the other hand, it is possible that our LH result might be a combination of the stellar and planetary signal, which would appear at intermediate \(K_P\) values. As an additional test, we generated a synthetic stellar spectrum with the effective temperature, \(T_\text{eff}\), and metallicity values of WASP-80, from the PHOENIX spectral library (Husser et al. 2013). We convolved this spectrum to the GIANO-B resolution and calculated the CCFs and the LH using the PHOENIX spectrum to mask the stellar lines in our observed spectra. This operation did not improve the previous results, thus resulting inconclusive.
Figure 1. Significance maps of the cross-correlation between the GIANO-B spectra and the isothermal atmospheric models, as a function of the planet’s maximum radial velocity (K_P) and the planet’s rest-frame velocity (v_{rest}). For a better visualization, the maps do not show any signal <2.5σ. The dashed white lines indicate the known velocity for WASP-80b ($K_P=122$ km s$^{-1}$, $v_{\text{rest}}=0$ km s$^{-1}$). The CO$_2$ map is also shown in the case of co-adding only the three nights (not including the third night). See discussion in the text (Sec. 3) and Table 2.

to the line position and relative (i.e. line-to-line) amplitude, the LH analysis is additionally sensitive to the line shape and the line-to-wing contrast ratio. Therefore, a model that matches well the line position in CC might still be penalised in the LH analysis if the line shape/amplitude is mismatched. This is also a strong motivation for presenting both the CC and LH analyses even in the absence of a full atmospheric retrieval. While the LH is advantageous in the amount of information extracted from the spectra, it is also more demanding in terms of the accuracy of the modelling. On the other hand, the CC analysis is probably better at detecting species even with imperfect templates, which is valuable at the exploratory stage.

4. ATMOSPHERIC MODELING

Given the rich set of molecular detections by GIANO-B on WASP-80b, we can make rough estimates of the physical properties of the planet being guided by the observations, even without quantitative abundance estimates. In fact, WASP-80b sits at a particularly favorable location in the parameter space to probe its temperature profile, because its equilibrium temperature straddles between two regimes where either CO ($T > T_{\text{eq}}$) or CH$_4$ ($T < T_{\text{eq}}$) dominate the carbon chemistry (e.g., Moses et al. 2013), thus making the composition particularly sensitive to the temperature profile. We therefore adopted the temperature as a main parameter to focus our exploration.

To model the atmospheric properties and theoretical spectra of WASP-80b, we used the PYRAT BAY2 open-source modeling framework (Cubillos & Blecic 2021). We explored potential physical scenarios under radiative and thermochemical equilibrium (see details in Appendix A), parameterized by the planet’s metallicity and C/O elemental ratio. Certainly, given the equilibrium temperature of WASP-80b, processes like photochemistry or transport-induced quenching can drive the

2 https://github.com/pcubillos/pyratbay
Figure 2. Likelihood confidence intervals maps for each investigated molecule as a function of K_P and v_{rest} and at the best-fit scaling factor. The dashed lines represent the nominal planetary velocities. As for the CC significance maps, the CO$_2$ likelihood map is displayed in the case of co-adding only three nights (not including the third night). As regards C$_2$H$_2$, the likelihood intervals map does not significantly change by co-adding 3 or 4 nights.

Thus, we consider the qualitative effects of disequilibrium chemistry on our models as well. Figure 3 shows two examples of WASP-80b models for a solar metallicity and C/O ratio, where we have shifted the equilibrium temperature profile by ± 200 K, and re-computed the thermochemical equilibrium abundances and their respective transmission spectra. The variation in temperature has a significant impact in both the composition and the transmission spectra.

For the higher-temperature model CO dominates the carbon chemistry, with H$_2$O capturing the remaining—still largely available—oxygen (thin dashed lines). CH$_4$ is abundant in deeper layers, steadily decreasing with altitude. In contrast, for the lower-temperature model CH$_4$ dominates the carbon chemistry (solid thick lines), H$_2$O dominates then the oxygen chemistry, which leads to a much diminished CO abundance. Spectroscopically, both H$_2$O and CH$_4$ should present detectable absorption features in both models (having both broad absorption bands across the 0.9–2.5 μm spectrum), although the spectra are mainly shaped by H$_2$O bands at high temperatures and CH$_4$ at low temperatures, due to the different relative abundances between these molecules (see bottom panel of Fig. 3).

The CO molecule, in contrast, only presents strong absorption in narrow bands (1.6 and 2.5 μm) and should only be detectable in the spectrum of the higher-temperature model. A conclusive detection of CO would have favored the higher-temperature scenario, but this is not the case. The chain of reactions in the chemical network leads to drastic changes in the abundances for most other trace species as well, with CO$_2$, HCN, and C$_2$H$_2$ being more abundant in the higher-temperature case by several orders of magnitude. The abundance of NH$_3$ is somewhat decoupled from the carbon and oxygen chemistry, being more abundant at lower temperatures. At their equilibrium abundances, neither NH$_3$ nor HCN would present detectable features in the transmission spectra in both the low- and high-temperature models.

The detection of NH$_3$ and HCN would thus require to invoke disequilibrium chemistry processes that enhanced their abundances. Specifically, transport-induced quenching can drive the deep-interior abun-
dance throughout the atmosphere, with NH$_3$ and CH$_4$ being two major species expected to be quenched. The HCN abundance can be further enhanced by a pseudo-equilibrium with the quenched CH$_4$ and NH$_3$ and be produced photochemically by stellar ultraviolet photons (see Moses 2014, and references therein). With this in mind, both modeled cases would show evidence of NH$_3$ absorption when quenched from the lower layers. However, HCN would only be detectable on the higher-temperature case since its abundance at depth (from where it would be quenched) is ~ 2 orders of magnitude larger than in the low-temperature case. Thus, the detection of HCN also points toward the higher-temperature case.

Finally, we also explored non-solar compositions. In terms of the global metallicity, CO$_2$ is the molecule most strongly enhanced with increasing metallicity, becoming detectable at metallicities greater than $\sim 10\times$ solar. Thus, a confirmation of the tentative detection of CO$_2$ would point toward supersolar metallicities in the atmosphere of WASP-80b. Our results for subsolar metallicity runs ($0.1\times$) are qualitatively similar to our solar ones. In terms of C/O ratios we also considered carbon-rich atmospheres, due to the strong impact on the chemistry (e.g., Madhusudhan et al. 2011; Madhusudhan 2012; Moses et al. 2013). We found that elemental ratios of C/O > 1 are discouraged since the H$_2$O abundance decreases, favoring then hydrocarbon species like CH$_4$, HCN, or C$_2$H$_2$.

The qualitative picture emerging from the comparison of the detected molecules with the atmospheric models we run provides tentative indications on WASP-80b’s formation history. The metallicity of the host star WASP-80 is sub-solar (Triaud et al. 2013), whereas
our observations suggest a subsolar-to-solar planetary metallicity. Within this range of possibilities, if the planet had a super-stellar metallicity, combined with the solar C/O ratio estimation for WASP-80b, our observations would favour formation scenarios where the giant planet accreted a significant mass of planetesimals while migrating through its native circumstellar disc (Turrini et al. 2021a,b; Pacetti et al. 2022). While the current data do not allow to draw stronger conclusions (e.g. on the extent of WASP-80b's migration), our NH3 detection makes WASP-80b a prime target for future efforts to quantify the abundances of C, O and N in its atmosphere and use their ratios to probe its formation history in more details (Turrini et al. 2021a,b; Kolecki & Wang 2021; Biazzo et al. 2022; Pacetti et al. 2022). In particular, the present work will complement and help in the interpretation of JWST spectra of WASP-80 b whose transit and eclipse observations are planned through the GTO programs (PID 1177, 1185, and 1201).

5. CONCLUSIONS AND FUTURE PERSPECTIVES

We report on the detection of multiple molecular species in the atmosphere of the warm Jupiter, WASP-80b, by analyzing nIR transmission spectra gathered with GIANO-B at TNG during four transits. We used two different statistical frameworks: the cross-correlation function technique and the likelihood approach. We summarize the detections as follows: we report significant detections for H2O, CH4, NH3 and HCN, tentative detection for CO2. We have inconclusive results for C2H2 and CO, whose presence in the WASP-80b atmosphere cannot be either firmly confirmed or excluded (see discussion in Sec. 3), but more observations and higher S/N data will help disentangling the nature of the signals (Figures 1, 2).

The statistically robust detection of several species on WASP-80 b paves the way to estimate the chemical and physical conditions of the planet’s atmosphere. Our initial exploration considering radiative-thermochemical equilibrium models and the impact of disequilibrium processes suggest that the atmosphere is compatible with a solar composition (H2O and CH4 detections), possibly affected by disequilibrium chemistry (NH3 and HCN detections). Future confirmation of the detection (or non-detection) of CO will place strong constraints on the temperature profile. Likewise, a confirmation of CO2 will help to constrain the atmospheric metallicity.

These results demonstrate for the first time that not only hot Jupiters (Giacobbe et al. 2021), but also warm giant planets present a rich chemistry in their atmosphere, breaking new ground in the study of exoplanetary atmospheres. With recent (e.g. CRIRES+, JWST) and future upcoming (e.g., ELTs, ARIEL) instruments, it will be possible to combine multiple wavelength bands and resolutions to derive accurate and precise molecular abundances as well as atmospheric elemental ratios (e.g. the C/O, N/O and C/N ratios) and metallicity, thus confirming/updating our qualitative estimates of solar C/O and metallicity under the assumption of thermochemical equilibrium, and our tentative constraints on WASP-80 b’s formation history. In particular, the combined information provided by the abundance ratios of elements with different volatility, like C, O and N revealed by our detections in WASP-80b’s atmosphere, provides a direct window into the formation and migration history of giant planets (Turrini et al. 2021a,b; Kolecki & Wang 2021). The improved estimates of the abundance of these elements achievable by such future facilities will therefore allow us to reconstruct the details of WASP-80b’s formation history.

We acknowledge financial contributions from PRIN INAF 2019 and from the agreement ASI-INAF number 2018-16-HH. P. C. was funded by the Austrian Science Fund (FWF) Erwin Schroedinger Fellowship J4595-N. M.B. acknowledges support from from the UK Science and Technology Facilities Council (STFC) research grant ST/T000406/1. D.T. and E.S. acknowledge the support of the Italian National Institute of Astrophysics (INAF) through the INAF Main Stream project “Ariel and the astrochemical link between circumstellar discs and planets” (CUP: C54I19000700005) and ASI-INAF contract no. 2021-5-HH.0. VNa, IPa, GPi, and GSc acknowledge support from CHEOPS ASI-INAF agreement n. 2019-29-HH.0.

Software:

PYRAT BAY (Cubillos & Blecic 2021), repack (Cubillos 2017), TEA (Blecic et al. 2016), NUMPY (Harris et al. 2020), SciPY (Virtanen et al. 2020), SYMPY (Meurer et al. 2017), MATPLOTLIB (Hunter 2007), IPYTHON (Perez & Granger 2007), and BIBMANAGER (Cubillos 2019).

Facilities: TNG(GIANO-B)
A. RADIATIVE-EQUILIBRIUM MODELING

To setup the Pyrat Bay modeling framework to attain radiative and thermochemical equilibrium, we solved the radiative-transfer equation in an iterative approach, under the two-stream, plane-parallel, local-thermodynamic, and hydrostatic approximations (following Heng et al. 2014; Malik et al. 2017). To enforce chemical equilibrium, we calculated the compositions using the thermochemical-equilibrium abundances code TEA (Blecic et al. 2016) for input elemental composition, temperature, and pressure profiles. In this work we modeled a chemical network containing H, He, C, N, O, Na, K, H$_2$, H$_2$O, CH$_4$, CO, CO$_2$, OH, C$_2$H$_2$, C$_2$H$_4$, N$_2$, NH$_3$, and HCN. Simultaneously, to enforce radiative equilibrium the code updates the temperature profile until the divergence of the upward–downward net fluxes converges to a negligible value at each layer. As boundary conditions we imposed a 100 K blackbody internal radiative heat and an incident stellar irradiation according to the properties of WASP-80, assuming zero Bond albedo and full day–night energy redistribution.

We performed the radiative-transfer calculation over a fixed pressure profile ranging from 100 to 10^{-9} bar, and a wavelength grid ranging from 0.3 to 30 µm sampled with a 0.3 cm$^{-1}$ spacing, sufficient to encompass the bulk of the stellar and planetary radiation (mainly in the optical and infrared, respectively). The radiative-transfer opacities include line lists for the most relevant molecular species, i.e., CO, CO$_2$, and CH$_4$ from HITEMP (Rothman et al. 2010; Li et al. 2015; Hargreaves et al. 2020) and of H$_2$O, HCN, NH$_3$, and C$_2$H$_2$ from ExoMol (Polyansky et al. 2018; Chubb et al. 2020; Yurchenko et al. 2011; Harris et al. 2006, 2008; Coles et al. 2019). To handle the billion-sized ExoMol line lists, we employed the REPACK algorithm (Cubillos 2017) to extract only the dominant transitions, reducing the number of transitions by a factor of ~ 100 without a significant impact on the resulting opacities. In addition to the molecular opacities, the Pyrat Bay code included alkali resonance-line opacities for Na and K (Burrows et al. 2000); Rayleigh opacity for H, H$_2$, and He (Kurucz 1970); and collision-induced absorption for H$_2$–H$_2$ and H$_2$–He (Borysow et al. 2001; Borysow 2002; Richard et al. 2012).

B. LIKELIHOOD MAPS

REFERENCES

Barbato, D., Pinamonti, M., Sozzetti, A., et al. 2020, A&A, 641, A68, doi: 10.1051/0004-6361/202037954
Barber, R. J., Strange, J. K., Hill, C., et al. 2014, Mon. Not. R. Astron. Soc., 437, 1828, doi: 10.1093/mnras/stt2011
Biazzo, K., D’Orazi, V., Desidera, S., et al. 2022, arXiv e-prints, arXiv:2205.15796.
https://arxiv.org/abs/2205.15796
Birkby, J. L. 2018, arXiv e-prints, arXiv:1806.04617.
https://arxiv.org/abs/1806.04617
Blecic, J., Harrington, J., & Bowman, M. O. 2016, ApJS, 225, 4, doi: 10.3847/0067-0049/225/1/4
Bonomo, A. S., Desidera, S., Benatti, S., et al. 2017, A&A, 602, A107, doi: 10.1051/0004-6361/201629882
Borsa, F., Rainer, M., Bonomo, A. S., et al. 2019, A&A, 631, A34, doi: 10.1051/0004-6361/201935718
Borysow, A. 2002, A&A, 390, 779, doi: 10.1051/0004-6361:20020555
Borysow, A., Jorgensen, U. G., & Fu, Y. 2001, JQSRT, 68, 235, doi: 10.1016/S0022-4073(00)00236-3
Brogi, M., de Kok, R. J., Albrecht, S., et al. 2016, ApJ, 817, 106, doi: 10.3847/0004-637X/817/2/106
Brogi, M., & Line, M. R. 2019, AJ, 157, 114, doi: 10.3847/1538-3881/aafdf3
Burrows, A., Marley, M. S., & Sharp, C. M. 2000, ApJ, 531, 438, doi: 10.1086/308462
Carleo, I., Benatti, S., Lanza, A. F., et al. 2018, A&A, 613, A50, doi: 10.1051/0004-6361/201732350
Carleo, I., Malavolta, L., Lanza, A. F., et al. 2020, A&A, 638, A5, doi: 10.1051/0004-6361/201937360
Chubb, K. L., Tennyson, J., & Yurchenko, S. N. 2020, MNRAS, 493, 1531, doi: 10.1093/mnras/staa229
Claudi, R., Benatti, S., Carleo, I., et al. 2017, European Physical Journal Plus, 132, 364, doi: 10.1140/epjp/i2017-11647-9
Coles, P. A., Yurchenko, S. N., & Tennyson, J. 2019, MNRAS, 490, 4638, doi: 10.1093/mnras/stz2778
Cosentino, R., Lovis, C., Pepe, F., et al. 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446, Ground-based and Airborne Instrumentation for Astronomy IV, ed. I. S. McLean, S. K. Ramsay, & H. Takami, 84461V, doi: 10.1117/12.925738
Cosentino, R., Lovis, C., Pepe, F., et al. 2014, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9147, Ground-based and Airborne Instrumentation for Astronomy V, ed. S. K. Ramsay, I. S. McLean, & H. Takami, 91478C, doi: 10.1117/12.2055813
Figure 4. As Figure 2 but with v_{rest} interval between [-99, 99] km s$^{-1}$.

Cubillos, P. E. 2017, ApJ, 850, 32, doi: 10.3847/1538-4357/aa9228
—. 2019, bibmanager: A BibTeX manager for LaTeX projects, Zenodo, doi:10.5281/zenodo.2547042, Zenodo, doi: 10.5281/zenodo.2547042
Cubillos, P. E., & Blecic, J. 2021, MNRAS, 505, 2675, doi: 10.1093/mnras/stab1405
Damasso, M., Lanza, A. F., Benatti, S., et al. 2020, A&A, 642, A133, doi: 10.1051/0004-6361/202038864
Fisher, C., & Heng, K. 2018, MNRAS, 481, 4698, doi: 10.1093/mnras/sty2550
Fossati, L., Guilluy, G., Shaikhislamov, I. F., et al. 2022, A&A, 658, A136, doi: 10.1051/0004-6361/202142336
Gandhi, S., & Madhusudhan, N. 2017, MNRAS, 472, 2334, doi: 10.1093/mnras/stx1601
Gandhi, S., Brogi, M., Yurchenko, S. N., et al. 2020, MNRAS, 495, 224, doi: 10.1093/mnras/staa981
Giacobbe, P., Brogi, M., Gandhi, S., et al. 2021, Nature, 592, 205, doi: 10.1038/s41586-021-03381-x
Guilluy, G., Andretta, V., Borsa, F., et al. 2020, A&A, 639, A49, doi: 10.1051/0004-6361/202037644
Hargreaves, R. J., Gordon, I. E., Rey, M., et al. 2020, ApJS, 247, 55, doi: 10.3847/1538-4365/ab7a1a
Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357, doi: 10.1038/s41586-020-2649-2
Harris, G. J., Larner, F. C., Tennyson, J., et al. 2008, MNRAS, 390, 143, doi: 10.1111/j.1365-2966.2008.13642.x
Harris, G. J., Tennyson, J., Kaminsky, B. M., Pavlenko, Y. V., & Jones, H. R. A. 2006, Mon. Not. R. Astron. Soc., 367, 400, doi: 10.1111/j.1365-2966.2005.09960.x
Heng, K., Mendonça, J. M., & Lee, J.-M. 2014, ApJS, 215, 4, doi: 10.1088/0067-0049/215/1/4
Hood, C. E., Fortney, J. J., Line, M. R., et al. 2020, AJ, 160, 198, doi: 10.3847/1538-3881/abb46b
Huang, X., Freedman, R. S., Tashkun, S. A., Schwenke, D. W., & Lee, T. J. 2013, JQSRT, 130, 134, doi: 10.1016/j.jqsrt.2013.05.018
Huang, X., Schwenke, D. W., Freedman, R. S., & Lee, T. J. 2017, Journal of Quantitative Spectroscopy and Radiative Transfer, 203, 224, doi: https://doi.org/10.1016/j.jqsrt.2017.04.026
Hunter, J. D. 2007, Computing In Science & Engineering, 9, 90, doi: 10.1109/MCSE.2007.55
Husser, T. O., Wende-von Berg, S., Dreizler, S., et al. 2013, A&A, 553, A6, doi: 10.1051/0004-6361/201219058
