Bringing Diffuse X-ray Scattering Into Focus

Michael E. Wall¹, Alexander M. Wolff²,³, James S. Fraser²

¹Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545
² – Graduate Group in Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
³ – Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
Correspondence: mewall@lanl.gov, jfraser@fraserlab.com

Los Alamos National Laboratory Unclassified Release #LA-UR-17-30486

Abstract

Now that electron microscopy and micro electron diffraction have entered the arena of high-resolution structure determination, X-ray crystallography is experiencing a renaissance as a method for probing the protein conformational ensemble. The inherent limitations of Bragg analysis, however, which only reveals the mean structure, have given way to a surge in interest in diffuse scattering, which is caused by structure variations. Diffuse scattering is present in all macromolecular crystallography experiments. Recent studies are shedding light on the origins of diffuse scattering in protein crystallography, and provide clues for leveraging diffuse scattering to model protein motions with atomic detail.

Introduction

With over 100,000 X-ray structures deposited in the wwPDB [1], improvements in data processing pipelines, and the advent of completely unattended data collection, it seems hard to imagine that there are any aspects of protein X-ray crystallography that remain to be optimized. However, only half of the X-rays scattered by the crystalline sample are currently being analyzed – those in the Bragg peaks. The weaker, more smoothly varying features in diffraction images, known as diffuse scattering, are largely ignored by current practices. While the analysis of diffuse scattering is an established method in the fields of small molecule crystallography [2] and materials science [3], there are only very few foundational studies of diffuse scattering in macromolecular crystallography [4-17]. However, the relative scarcity of diffuse scattering studies is poised to change as activity in the field has recently increased.
Figure 1. A typical detector image in X-ray crystallography (from [18]) (upper, left) records all of the X-rays scattered by a protein crystal during a single exposure. Dark pixels correspond to high X-ray intensities. A cartoon crystal is depicted (lower, left) that contains a series of unit cells, with the contents of any given unit cell adopting one of two conformations (the conformations are expected to be more varied in a real protein crystal). Conformation A is shown in orange, while conformation B is shown in black (lower panel). During analysis, data are reduced by examining only the Bragg peaks (upper, middle), which report on the average charge density within a unit cell (lower, middle). The electron density is shown in blue, with areas of especially strong charge highlighted in purple. While multiple conformations may be modelled into the average density, assigning which conformations occur together across residues requires additional information. Current modeling practices use geometric constraints to help classify different alternative conformation groups [19]. The diffuse scattering left behind during data reduction (upper, right) is an additional potential source of such information. Diffuse scattering includes an isotropic component that is determined both by protein and solvent scattering [20,21], and an anisotropic component that is dominated by correlated protein motions within the crystal [21]. Analyzing this anisotropic signal might help to distinguish networks of residues that move together (lower, right).

A small group of researchers (including MEW and JSF) met in 2014 to discuss the challenges and opportunities of investigating macromolecular diffuse scattering [22]. Our attention was drawn to several key developments in the field of macromolecular crystallography that motivated and enabled assessment of the diffuse signal. First, structural models were reaching a plateau in quality. The origin of this plateau and the “R-factor gap” is likely due to the underlying inadequacies of the structural models refined against crystallographic data [23]. These inadequacies can only be overcome if we can improve the modeling of conformational heterogeneity (especially in data collected at room temperature [24]), solvation, and lattice imperfections that break the assumptions of “perfect crystals” used in data reduction and refinement. Second, new
detectors were enabling collection of data with lower noise, higher dynamic range, and highly localized signal. Third, new light sources were emerging with very bright, micro-focused beams (e.g. X-ray free-electron lasers). Collectively, these factors made us optimistic that diffuse scattering data both was needed and could be measured accurately enough to improve structural modeling. In early 2017, many of us met again to discuss the progress of the field with respect to each of these challenges identified in 2014 [25]. Below, we summarize this progress. While there have been exciting developments in recent years, there are still major challenges ahead. For example, whether diffuse scattering data can be leveraged for resolution extension and crystallographic phasing, as recently claimed [26], still requires additional examination and application to more than one system. Additional remaining challenges include modeling atomic motions in protein crystals using diffuse scattering data with accuracy comparable to the Bragg analysis, as well as utilizing these models of protein motions to distinguish between competing biochemical mechanisms.

Data collection

Extraction of diffuse scattering data from conventional protein crystallography experiments is becoming straightforward thanks to the increased accessibility of photon-counting pixel array detectors (PADs, e.g. Pilatus detectors). These detectors have greater dynamic range and do not suffer from “blooming” overloads that obscured diffuse signals near Bragg peaks on conventional charge-coupled device (CCD) detectors. (An early CCD detector was programmed to drain excess charge away from overflowing pixels to enable measurement of diffuse scattering data [17,27]; however, this feature was not implemented in commercial detectors.) Additionally PADs have enabled new collection strategies, such as fine phi angle scans, that facilitate analysis of Bragg peaks and diffuse features from the same set of images [18]. A second major advance is the measurement of diffuse scattering using an X-ray free-electron laser (XFEL) in a serial femtosecond crystallography (SFX) experiment [26]. Using an XFEL enables collection of radiation-damage-free room temperature data, as well the potential to examine time-resolved changes in the diffuse scattering signal.

Despite these advances in collection of diffuse scattering data, minimizing background scattering remains the most important obstacle to collecting high quality data. While it is possible to remove some background scattering during data processing, the cleanest separation requires one to remove scattering extraneous to the crystal during the experiment. Factors to consider during collection of single crystal datasets include the thickness and orientation of the loop (for relevant mounting schemes), the volume of liquid surrounding the crystal, and the amount of airspace between the crystal and the detector. Background air scatter can be also reduced by a Helium or vacuum path between sample and detector. Collection of SFX data adds additional complexity, as the injection stream and crystal size will vary. Ayyer et al [26] addressed this challenge by selecting only the frames with the strongest diffuse scattering signal, in which the size of the crystal was expected to be comparable to the width of the jet. As the landscape of sample delivery devices for SFX and conventional crystallography continues to evolve,
mounted sample delivery on materials such as graphene [28] provides a promising route for minimization of background scattering.

Data integration

Early studies of protein diffuse scattering focused on explaining features in individual diffraction images. The introduction of methods for three-dimensional diffuse data integration enabled quantitative validation of models of correlated motions [17]. Several approaches to 3D data integration now have been implemented [26,27,29-31]. These approaches differ in several key ways: (1) the scaling of intensities when merging the data; (2) the handling of intensities in the neighborhood of the Bragg peak; and (3) the strategy for sampling of reciprocal space. In the Lunus software for diffuse scattering (https://github.com/mewall/lunus) we have chosen:

1. To use the diffuse intensity itself to scale the diffuse data (as opposed to using the Bragg peaks, as in Ref. [30]). This choice avoids artifacts due to potential differences in the way the Bragg and diffuse scattering vary with radiation damage and other confounding factors. The response of these signals to damage requires further study before a definitive scaling strategy can be chosen.

2. To ignore or filter intensity values in regions where the variations are sharper than the 3D grid that will hold the integrated data. This can include masking halo intensities too close to a Bragg peak, and kernel-based image processing to remove Bragg peaks from diffraction images. These steps avoid the mixing of signal associated with sharp features into the longer wavelength signals. The sharply varying features (e.g. streaks) are an important component of the signal; however, to avoid artifacts in analysis, we prefer to measure them on a grid that is fine enough to resolve them [16]. If the sampling is finer than one measurement per integer Miller index, but still too coarse to resolve the halos, and if the halo intensity is nevertheless included (as in Ref. [30]) then the measurements at integer Miller indices may be segregated from the rest of the data and analyzed separately.

3. To sample at integer subdivisions of Miller indices. Off-lattice sampling strategies are valid (as used in Refs. [26,29]), but on-lattice strategies enable leveraging of existing crystallographic analysis and modeling tools for diffuse scattering.

Recent algorithmic improvements have led to scalable, parallelized methods for real-time processing of single-crystal synchrotron data. These improvements aim to keep pace with real-time analysis of Bragg data at high frame rates, such as those expected at LCLS-II and euXFEL. Initial tests mapped staphylococcal nuclease diffuse data onto a fine-grained reciprocal lattice, using two samples per Miller index [32]. This implementation of the Lunus software is capable of processing thousands of diffraction images within a few minutes on a computing cluster.

In addition to improving the scalability of diffuse scattering data processing, we have also developed methods to make analysis of diffuse data push-button. Inspired by the user-
friendly environment provided by software for analyzing Bragg peaks, such as xia2 [33], we aimed to reduce the barrier for crystallographers to analyze the diffuse signal in their data. The resulting pipeline, *Sematura*, is openly available on GitHub (https://github.com/fraser-lab/diffuse_scattering). To ensure portability the project was built upon the CCTBX framework [34], with future work focusing on moving *Sematura* directly into the CCTBX package for ease of access.

Building and refining models of protein motions

Liquid-like motions. After early experiments on tropomyosin [14], the liquid-like motions (LLM) model became a key tool in interpreting diffuse features in diffraction images [4,6]. In the LLM model, the crystal is treated as a soft material. All atoms are assumed to exhibit statistically identical normally distributed displacements about their mean position. The correlation between atom displacements is a decreasing function of the distance between the atoms, usually an exponential decay. A LLM was used to interpret early 3D diffuse data sets, refined using a correlation coefficient as a target function [16,17]. Successful refinement of a LLM model was used to demonstrate the successful extraction of diffuse datasets from Bragg diffraction experiments collected on Pilatus detectors [18]. Peck et al. [30] recently found the ability of the LLM to capture correlations across unit cell boundaries was essential for modeling the diffuse signal in several 3D datasets. This result is intuitive, as the nearest neighbors of an atom are often found in symmetry related molecules. Overall the LLM model has proven to be a simple means of capturing the data with a straightforward interpretation, and therefore remains an important first approach to analysis of protein diffuse X-ray scattering.

Normal mode analysis and elastic network models. Beyond the LLM model, normal mode analysis (NMA) of elastic network models (ENMs) can provide insights into the soft modes of protein dynamics in more detail, helping to reveal mechanisms that bridge protein structure and function [35]. In an ENM, the atoms of the crystal structure are connected by springs, and the resulting network is coupled to a thermal bath. NMA then yields the covariance matrix of atom displacements. The diagonal elements of the covariance matrix correspond to the crystallographic B factors, which come from the Bragg analysis through the crystal structure model. Riccardi et al. [36] showed how to renormalize the entire covariance matrix using the crystallographic B factors. Importantly, this allows one to scale an ENM in a manner consistent with traditional crystallographic metrics. Despite this strength, different ENMs can match the same Bragg data equally well. This happens when different covariance matrices have the same diagonal elements following renormalization, even though the off-diagonal elements differ. Thus, as with Translation-Libration-Screw refinement [37], the Bragg data alone cannot be used to distinguish between similar ENMs, and also cannot be used to refine ENMs. Diffuse scattering could help differentiate between these ENMs because the off-diagonal elements directly influence the diffuse signal. Thus, there is an opportunity for carefully measured diffuse data to be used in refinement of ENM models, and subsequent refinement of models of protein structure and dynamics.
Indeed, many key elements needed for refinement of normal modes models using diffuse scattering already have been demonstrated. Cloudy diffuse features in X-ray diffraction from lysozyme crystals resemble the diffuse scattering predicted from simulations of normal modes models [9,12]. Similarly, sharper diffuse features in the neighborhood of Bragg peaks in ribonuclease crystals can be captured by lattice normal modes [38]. Different varieties of ENMs for staphylococcal nuclease give rise to distinct diffuse scattering patterns, even when renormalized using the crystallographic B factors [36].

Three-dimensional diffuse scattering data from trypsin and proline isomerase (CypA) recently were modeled using ENMs [18]. The agreement was substantial, considering that the models were not refined. On the other hand, Peck et al. [30] found a low agreement between ENM models and diffuse data. How much can refinement improve the agreement of an ENM model? Here we provide an example. In our example, the asymmetric unit of PDB ID 4WOR was expanded to the P1 unit cell, and an ENM was constructed as in Ref. [18]. The spring force constants between C-alpha atoms were computed as \(e^{-r_{ij}/\lambda}\), where \(r_{ij}\) is the closest distance between atoms \(i\) and \(j\), either in the same unit cell or in neighboring unit cells of the crystal structure. All atoms on the same residue as the C-alpha were assumed to move rigidly as a unit. The initial value \(\lambda = 10.5\) Å yielded a linear correlation of 0.07 with the anisotropic component of the diffuse data, as computed in Ref. [18]. Powell minimization using the \texttt{scipy.optimize.minimize} method was used to refine the value of \(\lambda\), using the negative correlation as a target. The final correlation was 0.54 for a value \(\lambda = 0.157\) Å – a substantial improvement, but one that indicates that the direct interactions are essentially limited to nearest neighbors.

Simulated diffuse intensity in diffraction images calculated using the model vs. the data show similarities in cloudy diffuse features (Fig. 2). Key strategies for improving the model are: extending from a C-alpha network to an all-atom network; using crystalline normal modes that extend beyond a single unit cell (prior studies used the Born von Karman method to compute these modes [36,38], but did not fully include the resulting modes in the thermal diffuse scattering calculation [39]); and allowing spring constants to deviate locally from the exponential behavior. Optimizing this type of model has applications beyond diffuse scattering validation and model refinement, as structures derived from normal modes analysis of network models have been useful for providing alternative starting points for molecular replacement [40] and have recently been used in an exciting local refinement procedure in cryo electron microscopy [41].
Ensemble refinement. A great promise of diffuse scattering is the potential to inform ensemble or multiconformer models of protein structures (Figure 1). As for TLS and ENM models, diffuse signal might be able differentiate between ensembles resulting in the same average structures. Even if information about atomistic conformations remains out of reach, the signal could potentially be leveraged to improve ensemble models derived from time-averaged refinement using the scheme by Gros and colleagues [42]. Currently, this procedure operates on the rationale that large scale deviations can be modeled using a TLS model, and the residual local deviations are then sampled by a molecular dynamics simulation with a time-averaged difference electron density term. Our work has revealed that diffuse scattering calculated from TLS models of disorder do not match the measured diffuse signal, however, indicating that TLS is a poor descriptor of the disorder within the protein crystals we considered [18]. Given the improvements seen when including neighboring unit cells in LLM models [30], the disorder of the crystal environment might be better accounted for by a coarse-grained model of intramolecular motion using a NMA model refined against the diffuse scattering signal. Once large-scale disorder is accounted for by NMA, local anharmonic deviations from the modes can be explored using MD simulations restrained by the X-ray data. As diffuse analysis becomes more sensitive, the selection of the final representative ensemble also can be optimized against the diffuse data. This selection step could supplement the current practice of selecting an ensemble that matches the final rolling Rfree value.

Molecular dynamics simulations

In addition to refining models of protein motions, diffuse scattering can be used to validate MD simulations [7,9,20,21,43-45]. Early efforts were hindered by the use of 10 ns or shorter simulation durations [7,9,20,43], which lacked sufficient sampling for the calculations. Microsecond duration simulations of protein crystals are now becoming routine [21,32,46,47]. For staphylococcal nuclease, microsecond simulations overcome
the sampling limitations for diffuse scattering calculations, while providing insight into ligand binding and catalysis [21].

The agreement of the total diffuse intensity with MD simulations is high for staphylococcal nuclease [21,44], yielding a linear correlation of 0.94 for a microsecond simulation [22]. Agreement with the 10-fold weaker anisotropic component is lower [21,32], but is more sensitive to the details of the simulation, creating opportunities for increasing the accuracy of MD models. Expanding the staphylococcal nuclease model from a single periodic unit cell to a 2x2x2 supercell increased the correlation with the anisotropic component to 1.6 Å resolution from 0.42 to 0.68 for a microsecond simulation [32]. This agreement with the MD is tantalizingly close to what is expected for an initial molecular replacement model in the Bragg analysis, suggesting that the combination of MD simulations and diffuse scattering might soon yield experimentally validated atomic details of protein motions. In addition, recent solid state NMR (ssNMR) experiments combined with crystalline protein simulations [48-50] create opportunities for joint validation of MD simulations using crystallography and NMR.

Phasing and resolution extension

In a high-profile publication, the Chapman and Fromme groups integrated the first three-dimensional diffuse scattering dataset from a serial femtosecond protein crystallography experiment at an X-ray free electron laser [26]. Their analysis focused on the potential for phasing and resolution extension of a charge density map of photosystem II (PSII). The method, based on the difference-map algorithm [51], depends critically on the assumption that the diffuse signal is proportional to the molecular transform of the unit to be resolved. In this respect, the work is closely related to that of Stroud and Agard [52] and Makowski [53] on phasing using continuous diffraction data.

Despite the promise this breakthrough analysis of SFX diffuse scattering heralds [26], many questions remain. One class of questions relates to distinguishing the contribution of the diffuse data in improving the electron density. Bragg spots are visible in the 4.5-3.5 Å range in Fig. 2 of Ref. [26], even though a median filter was applied to the data to suppress intense, sharp features. What effect do the Bragg peaks have on phasing and resolution extension in the 4.5-3.5 Å range? The results in Ref. [26] could be compared to those using the revised diffuse data processing method in Ref. [54] with more aggressive Bragg peak rejection. Depositing even the 2,848 raw diffraction images selected for this analysis from the total dataset of 25,585 in a repository such as the SBGrid Databank [55] or CXIdb [56] could help to distinguish the role of Bragg peaks in determining the electron density from this dataset.

Even if the contribution of Bragg spots at higher resolution is minimal, it is possible that the application of the support mask would improve the electron density map even given randomized data at higher resolution. Such an improvement might be expected based on the known benefits both of the free lunch effect [57] and solvent flattening [58]. How does the improvement in the PSII map compare to what would be obtained by using randomized data in the 4.5-3.3 Å range? The R-factors in the extended resolution range
reported in PDB 5E79 are very high (over 50%) and several bins have Rfree < Rwork. How would this compare to pseudo-crystallographic refinement \[59\] of using either random intensities or the uniform average intensity in these bins? These important controls can help distinguish the added value of the information at these higher angles above random, rather than just absence of data.

In traditional crystallography, omit maps \[60\] are used to assess the degree to which electron density features are determined by the data vs. model bias. In the case of the maps produced in Ref. \[26\] using diffuse data, omit maps can be prepared by setting the charge density of the model to zero in some region and computing a 2FoFc map using the diffuse data at higher resolution. How robust are the improved features of the charge density in Ref. \[26\] to omit map analysis, especially at the solvent/protein interface? Most experimental phasing experiments abandon or seriously down-weight the experimental information as soon as the model quality allows. It is unclear when model phases in the Bragg-region are being used in their approach and how heavily the phases derived from the continuous region are weighted in refinement by MLHL-refinement methods used here.

Questions also remain about the origin of diffuse scattering from the PSII crystals. Ayyer and colleagues \[26\] attribute the effect to independent rigid-body translations of the dimer. In later work \[54\], they found that the correlation between the rigid-body translation model and the diffuse data was substantially improved by randomly rotating the intensities about angles selected from a 1° RMS distribution; this approach is very different from a model of rigid-body rotations of the protein, however, which yield a pattern of diffuse scattering that is distinct from the intensities of the rigid unit \[61\]. They also found the agreement was improved when the intensities were convoluted with a 4x4x4 voxel kernel. Both of these blurring approaches are closely related to the key element of the LLM, in which the crystal transform is convoluted with a smearing function. In addition, because smearing the intensities effectively suppresses the long-distance components of the Patterson function, models using intensities from a unit cell transform vs. symmetrized intensities from an asymmetric unit transform can appear similar. Might a unit cell LLM model (or a ENM or MD model) more accurately describe the diffuse scattering than rigid-body translations of PSII dimers? Can the model be improved by assuming the rigid units are coupled instead of independent \[8\], or if the model included rotations as well as translations \[13\]? What is the role of substitution disorder \[62\] (e.g. unit cells in which one or more copies of the PSII dimer are missing) in determining the diffuse signal?

Integrating diffuse scattering with Bragg diffraction to improve crystallographic models is a major goal in the field \[16,31,63\]. Although assuming proteins are rigid provides the greatest potential for phasing using diffuse scattering data, multiple studies of both Bragg and diffuse scattering point to a more dynamic picture of crystalline proteins. A model with internal motions such as the LLM tends to obscure the molecular transform signal and to limit the information to what is available from the crystal transform, at Miller indices \[30\]. Nevertheless, because the diffuse signal can extend well beyond the resolution limit of the Bragg peaks, it still allows for resolution extension, which we find
to be an even more compelling application than phasing. The blurring of the signal implied by the LLM means there is a loss of information in the diffuse Patterson function at long distances, however [32], so the path to resolution extension might require model refinement in addition to, or instead of, direct methods. In addition, the apparent success of the LLM [4,6,16-18,30] and MD simulations [20,21,32,44,45] in obtaining insights into diffuse scattering data points to a picture in which internal motions are important. This opens up the possibility that diffuse scattering can be used to reveal atomic models of protein motions, a possibility that is eliminated when proteins are treated as rigid units. Regardless of the assumptions needed to take advantage of diffuse scattering for experimental phasing, subsequent model refinement will likely be necessary. As in most experimental phasing applications, the model phases will likely dominate the later stages of refinement, where new mechanistic insights from increased resolution or improved motional models are likely to arise.

Future perspective:
The massive investment in structural genomics in the 2000s dramatically increased the robustness of X-ray crystallography data collection, processing, and refinement. Although diffuse scattering remained relatively unstudied during that time, it is now poised to capitalize on these technological improvements and standardizations. As attention shifts toward electron microscopy, ascendant as a go-to method for determining novel macromolecular structures, and with electron crystallography (microED) making a comeback, it is reasonable to ask: why study the origins of diffuse X-ray scattering? First, despite being present in all macromolecular diffraction patterns, the origins of diffuse scattering in protein crystallography remain mysterious. Whether it is due to long-range [26] or short-range disorder [18,30,32], diffuse scattering can be potentially informative for structural modeling. There are additional parallels between diffuse scattering and the multiple “dynamic” scattering of electrons that are currently being ignored (intentionally and surprisingly without much consequence) in microED studies. Second, the types of conformational heterogeneity that can be validated and, potentially, refined against diffuse scattering data can guide us to define better models of protein structure and dynamics. As the structural biology toolkit expands, X-ray scattering, including diffuse scattering, still provides unique capabilities to probe conformational ensembles over many length scales, as captured in a recent review by Meisburger et al. [64]. Ultimately, the better models of concerted motions will have far ranging impact beyond the average structure that is accessible using conventional X-ray crystallography and cryo-electron microscopy data, yielding a deeper understanding of biochemical mechanism.

Acknowledgements:
We thank TJ Lane, R Stroud, H Chapman, and K Ayyer for helpful comments on the preprint.

1. Burley SK, Berman HM, Kleywegt GJ, Markley JL, Nakamura H, Velankar S: Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive. *Methods Mol Biol* 2017, 1607:627-641.
2. Welberry TR: *Diffuse X-Ray Scattering and Models of Disorder*. Oxford: Oxford University Press; 2004.
3. Keen DA, Goodwin AL: The crystallography of correlated disorder. *Nature* 2015, 521:303-309.
4. Caspar DL, Clarage J, Salunke DM, Clarage M: Liquid-like movements in crystalline insulin. *Nature* 1988, 332:659-662.
5. Chacko S, Phillips GN, Jr.: Diffuse X-ray scattering from tropomyosin crystals. *Biophys J* 1992, 61:1256-1266.
6. Clarage JB, Clarage MS, Phillips WC, Sweet RM, Caspar DL: Correlations of atomic movements in lysozyme crystals. *Proteins* 1992, 12:145-157.
7. Clarage JB, Romo T, Andrews BK, Pettitt BM, Phillips GN, Jr.: A sampling problem in molecular dynamics simulations of macromolecules. *Proceedings of the National Academy of Sciences of the United States of America* 1995, 92:3288-3292.
8. Doucet J, Benoit JP: Molecular dynamics studied by analysis of the X-ray diffuse scattering from lysozyme crystals. *Nature* 1987, 325:643-646.
9. Faure P, Micu A, Pérahia D, Doucet J, Smith JC, Benoit JP: Correlated intramolecular motions and diffuse X-ray scattering in lysozyme. *Nat Struct Biol* 1994, 1:124-128.
10. Helliwell JR, Glover ID, Jones A, Pantos E, Moss DS: Protein dynamics - use of computer-graphics and protein crystal diffuse-scattering recorded with synchrotron X-radiation. *Biochem Soc Transact* 1986, 14:653-655.
11. Kolatkar AR, Clarage JB, Phillips GN, Jr.: Analysis of diffuse scattering from yeast initiator tRNA crystals. *Acta Crystallogr D* 1994, 50:210-218.
12. Mizuguchi K, Kidera A, Gō N: Collective motions in proteins investigated by X-ray diffuse scattering. *Proteins* 1994, 18:34-48.
13. Perez J, Faure P, Benoit JP: Molecular rigid-body displacements in a tetragonal lysozyme crystal confirmed by X-ray diffuse scattering. *Acta Crystallogr D Biol Crystallogr* 1996, 52:722-729.
14. Phillips GN, Jr., Fillers JP, Cohen C: Motions of tropomyosin. Crystal as metaphor. *Biophys J* 1980, 32:485-502.
15. Polikanov YS, Moore PB: Acoustic vibrations contribute to the diffuse scatter produced by ribosome crystals. *Acta Crystallogr D Biol Crystallogr* 2015, 71:2021-2031.
* Careful analysis of the diffuse scattering present in 70S ribosome crystals revealed that lattice vibrations may explain a significant portion of the diffuse signal, highlighting the importance of models that account for correlated variations across unit cell boundaries.
16. Wall ME, Clarage JB, Phillips GN: Motions of calmodulin characterized using both Bragg and diffuse X-ray scattering. *Structure* 1997, 5:1599-1612.
17. Wall ME, Ealick SE, Gruner SM: Three-dimensional diffuse X-ray scattering from crystals of *Staphylococcal nuclease*. *Proceedings of the National Academy of Sciences of the United States of America* 1997, 94:6180-6184.
18. Van Benschoten AH, Liu L, Gonzalez A, Brewster AS, Sauter NK, Fraser JS, Wall ME: Measuring and modeling diffuse scattering in protein X-ray crystallography. *Proc Natl Acad Sci U S A* 2016, 113:4069-4074.
**Diffuse data is extracted from data collected under optimal conditions for Bragg analysis, revealing that modern PAD detectors and fine phi slicing can make diffuse data widely available. Also, LLM and normal modes models of disorder account for a substantial portion of the diffuse signal isolated from cypa and trypsin.

19. van den Bedem H, Bhabha G, Yang K, Wright PE, Fraser JS: Automated identification of functional dynamic contact networks from X-ray crystallography. *Nat Methods* 2013, **10**:896-902.

20. Meinhold L, Smith JC: Correlated dynamics determining X-ray diffuse scattering from a crystalline protein revealed by molecular dynamics simulation. *Phys Rev Lett* 2005, **95**:218103.

21. Wall ME, Van Benschoten AH, Sauter NK, Adams PD, Fraser JS, Terwilliger TC: Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering. *Proc Natl Acad Sci U S A* 2014, **111**:17887-17892.

22. Wall ME, Adams PD, Fraser JS, Sauter NK: Diffuse X-ray scattering to model protein motions. *Structure* 2014, **22**:182-184.

23. Holton JM, Classen S, Frankel KA, Tainer JA: The R-factor gap in macromolecular crystallography: an untapped potential for insights on accurate structures. *FEBS J* 2014, **281**:4046-4060.

24. Fraser JS, van den Bedem H, Samelson AJ, Lang PT, Holton JM, Echols N, Alber T: Accessing protein conformational ensembles using room-temperature X-ray crystallography. *Proc Natl Acad Sci U S A* 2011, **108**:16247-16252.

25. Wall ME, Sweet RM, Ando N, Fraser JS, Phillips GN: Measurement and Interpretation of Diffuse Scattering in X-Ray Diffraction for Macromolecular Crystallography. 2017 (http://www.osti.gov/scitech/biblio/1400134).

26. Ayyer K, Yefanov OM, Oberthur D, Roy-Chowdhury S, Galli L, Mariani V, Basu S, Coe J, Conrad CE, Fromme R, et al.: Macromolecular diffractive imaging using imperfect crystals. *Nature* 2016, **530**:202-206.

**This work extends the analysis of diffuse X-ray scattering into the realm of XFELs and serial crystallography, while also advocating for the use of diffuse scattering for phasing and resolution extension. Rigid body translations of the PSII dimer are the proposed source of the diffuse signal.

27. Wall ME: Diffuse Features in X-Ray Diffraction from Protein Crystals. In *Physics*. Edited by: Princeton University; 1996. vol Ph.D.]

28. Sui S, Wang Y, Kolewe KW, Srajer V, Henning R, Schiffrman JD, Dimitrakopoulos C, Perry SL: Graphene-based microfluidics for serial crystallography. *Lab Chip* 2016, **16**:3082-3096.

* Graphene coated microfluidic chips enable collection of diffraction data with very high signal-to-noise, and may provide an alternative to jet based delivery systems for SFX experiments.
29. Estermann MA, Steurer W: **Diffuse scattering data acquisition techniques. Phase Transitions** 1998, 67:165-195.

30. Peck A, Poitevin F, Lane TJ: **Intermolecular correlations are necessary to explain diffuse scattering from protein crystals.** 2017 (https://arxiv.org/abs/1707.05433).

The authors approach diffuse scattering from a modelling perspective, and rigorously test current disorder models against a series of experimental datasets. Quantitative tests allow them to discern that most disorder models explain a limited portion of the diffuse signal, and that a LLM model is the best option, especially when correlations across unit cell boundaries are included.

31. Wall ME: **Methods and software for diffuse X-ray scattering from protein crystals.** *Methods in molecular biology* 2009, 544:269-279.

32. Wall ME: **Internal protein motions in molecular dynamics simulations of Bragg and diffuse X-ray scattering.** 2017 (https://doi.org/10.1101/190496).

*A molecular dynamics simulation of diffuse X-ray scattering from staphylococcal nuclease crystals is greatly improved when the unit cell model is expanded to a 2x2x2 layout of eight unit cells. The dynamics are dominated by internal protein motions rather than rigid packing interactions.***

33. Winter G, Lobley CM, Prince SM: **Decision making in xia2.** *Acta Crystallogr D Biol Crystallogr* 2013, 69:1260-1273.

34. Grosse-Kunstleve RW, Sauter NK, Moriarty NW, Adams PD: **The Computational Crystallography Toolbox: crystallographic algorithms in a reusable software framework.** *Journal of Applied Crystallography* 2002, 35:126-136.

35. Haliloglu T, Bahar I: **Adaptability of protein structures to enable functional interactions and evolutionary implications.** *Curr Opin Struct Biol* 2015, 35:17-23.

36. Riccardi D, Cui Q, Phillips GN, Jr.: **Evaluating elastic network models of crystalline biological molecules with temperature factors, correlated motions, and diffuse X-ray scattering.** *Biophys J* 2010, 99:2616-2625.

37. Van Benschoten AH, Afonine PV, Terwilliger TC, Wall ME, Jackson CJ, Sauter NK, Adams PD, Urzhumtsev A, Fraser JS: **Predicting X-ray diffuse scattering from translation-libration-screw structural ensembles.** *Acta Crystallogr D Biol Crystallogr* 2015, 71:1657-1667.

* Predicted diffuse scattering patterns differ substantially across different TLS models derived from the same data. This provides an important proof of principle for the use of diffuse scattering in refinement of macromolecular models.***

38. Meinhold L, Merzel F, Smith JC: **Lattice dynamics of a protein crystal.** *Phys Rev Lett* 2007, 99:138101.

39. James R: **The Optical Principles of the Diffraction of X-Rays.** London: Bell; 1948.
40. Suhre K, Sanejouand YH: ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res 2004, 32:W610-614.

41. Schilbach S, Hantsche M, Tegunov D, Dienemann C, Wigge C, Urlaub H, Cramer P: Structures of transcription pre-initiation complex with TFIIH and Mediator. Nature 2017, 551:204-209.

42. Burnley BT, Afonine PV, Adams PD, Gros P: Modelling dynamics in protein crystal structures by ensemble refinement. Elife 2012, 1:e00311.

43. Héry S, Genest D, Smith JC: X-ray diffuse scattering and rigid-body motion in crystalline lysozyme probed by molecular dynamics simulation. Journal of molecular biology 1998, 279:303-319.

44. Meinhold L, Smith JC: Fluctuations and correlations in crystalline protein dynamics: a simulation analysis of Staphylococcal nuclease. Biophys J 2005, 88:2554-2563.

** In this study, the authors demonstrate the importance of long time-scale simulations to accurately sample a protein's correlated motions. The improvement is most evident when examining the anisotropic portion of the diffuse signal attributed to protein dynamics alone.

45. Meinhold L, Smith JC: Protein dynamics from X-ray crystallography: anisotropic, global motion in diffuse scattering patterns. Proteins 2007, 66:941-953.

46. Janowski PA, Cerutti DS, Holton J, Case DA: Peptide crystal simulations reveal hidden dynamics. J Am Chem Soc 2013, 135:7938-7948.

47. Janowski PA, Liu C, Deckman J, Case DA: Molecular dynamics simulation of triclinic lysozyme in a crystal lattice. Protein Sci 2016, 25:87-102.

* MD simulations of lysozyme in a crystalline lattice reveal enhanced agreement with structural models derived from Bragg data. Nonetheless, convergence is slow, the lattice becomes disordered, and fluctuations of residues involved in crystal contacts are too high, indicating the need for improved MD force fields.

48. Kurauskas V, Izmailov SA, Rogacheva ON, Hessel A, Ayala I, Woodhouse J, Shilova A, Xue Y, Yuwen T, Coquelle N, et al.: Slow conformational exchange and overall rocking motion in ubiquitin protein crystals. Nat Commun 2017, 8:145.

49. Ma P, Xue Y, Coquelle N, Haller JD, Yuwen T, Ayala I, Mikhailovskii O, Willbold D, Colletier JP, Skrynnikov NR, et al.: Observing the overall rocking motion of a protein in a crystal. Nat Commun 2015, 6:8361.

50. Mollica L, Baias M, Lewandowski JR, Wylie BJ, Sperling LJ, Rienstra CM, Emsley L, Blackledge M: Atomic-Resolution Structural Dynamics in Crystalline Proteins from NMR and Molecular Simulation. J Phys Chem Lett 2012, 3:3657-3662.

51. Elser V, Millane RP: Reconstruction of an object from its symmetry-averaged diffraction pattern. Acta Crystallographica Section A 2008, 64:273-279.

52. Stroud RM, Agard DA: Structure determination of asymmetric membrane profiles using an iterative Fourier method. Biophys J 1979, 25:495-512.
53. Makowski L: The Use of Continuous Diffraction Data as a Phase Constraint.1. One-Dimensional Theory. Journal of Applied Crystallography 1981, 14:160-168.
54. Chapman HN, Yefanov OM, Ayyer K, White TA, Barty A, Morgan A, Mariani V, Oberthuer D, Pande K: Continuous diffraction of molecules and disordered molecular crystals. J Appl Crystallogr 2017, 50:1084-1103.
55. Meyer PA, Socias S, Key J, Ransey E, Tjon EC, Buschiazzo A, Lei M, Botka C, Withrow J, Neau D, et al.: Data publication with the structural biology data grid supports live analysis. Nat Commun 2016, 7:10882.
56. Maia FR: The Coherent X-ray Imaging Data Bank. Nat Methods 2012, 9:854-855.
57. Caliandro R, Carrozzini B, Cascarano GL, De Caro L, Giacovazzo C, Siliqi D: Phasing at resolution higher than the experimental resolution. Acta Crystallogr D Biol Crystallogr 2005, 61:556-565.
58. Wang BC: Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol 1985, 115:90-112.
59. Fischer N, Neumann P, Konevega AL, Bock LV, Ficner R, Rodnina MV, Stark H: Structure of the E. coli ribosome-EF-Tu complex at <3 A resolution by Cs-corrected cryo-EM. Nature 2015, 520:567-570.
60. Bhat TN, Cohen GH: OMITMAP: An electron density map suitable for the examination of errors in a macromolecular model.
61. Moore PB: On the relationship between diffraction patterns and motions in macromolecular crystals. Structure 2009, 17:1307-1315.
62. Guinier A: X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies. San Francisco: W. H. Freeman and Company; 1963.
63. Clarage JB, Phillips GN, Jr.: Analysis of diffuse scattering and relation to molecular motion. Methods Enzymol 1997, 277:407-432.
64. Meisburger SP, Thomas WC, Watkins MB, Ando N: X-ray Scattering Studies of Protein Structural Dynamics. Chem Rev 2017, 117:7615-7672.

This excellent review thoroughly lays out the connection between diffuse scattering, solution scattering, and crystallography. The assumptions and limitations of various approaches to analyzing diffuse data are clearly explained, and several disorder models are explored using case studies of biochemical interest.