Gauss congruences for rational functions in several variables

by

Frits Beukers (Utrecht), Marc Houben (Utrecht)
and Armin Straub (Mobile, AL)

In honour of Rob Tijdeman’s 75th birthday

1. Introduction. We say that a sequence \((a_k)_{k \geq 0}\) of rational numbers satisfies the Gauss congruences for the prime \(p\) if \(a_k \in \mathbb{Z}_p\) for all \(k \geq 0\) (that is, the \(a_k\) are \(p\)-adically integral) and

\[
a_{mp^r} \equiv a_{mp^r-1} \pmod{p^r}
\]

for all integers \(m \geq 0\) and \(r \geq 1\). These congruences hold for all primes if and only if

\[
\sum_{d|m} \mu\left(\frac{m}{d}\right) a_d \equiv 0 \pmod{m},
\]

where \(\mu\) is the Möbius function, and they are named after the classical congruences that hold in the case \(a_k = \alpha^k\), with \(\alpha \in \mathbb{Z}\). We refer to [Zar08] and [Min14] for a survey of these and related congruences. Well-known examples of sequences satisfying the Gauss congruences for all primes include the Lucas numbers \(L_n\) defined by \(L_{n+1} = L_n + L_{n-1}\), with \(L_0 = 2, L_1 = 1\), and the Apéry numbers

\[
A_n = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2,
\]

which featured in Apéry’s proof [Apé79] of the irrationality of \(\zeta(3)\). In fact, as shown in [Beu85], [Cos88], the Apéry numbers have the remarkable (and rare) property of satisfying [1] modulo \(p^{3r}\) if \(p \geq 5\) (often referred to as a supercongruence).

2010 Mathematics Subject Classification: 11A07, 11B37.
Key words and phrases: Gauss congruences, Laurent series, multivariate rational functions.
Received 14 June 2017; revised 25 June 2018.
Published online 20 August 2018.

DOI: 10.4064/aa170614-13-7
In this paper, we consider the case of multivariate sequences \((a_k)_{k \in \mathbb{Z}^n}\). As in the univariate case, these are said to satisfy the Gauss congruences for the prime \(p\) if \(a_k \in \mathbb{Z}_p\) for all \(k \in \mathbb{Z}_p\) and \(a_{mp^r} \equiv a_{mp^{r-1}} \pmod{p^r}\) for all \(m \in \mathbb{Z}^n\) and all \(r \geq 1\). Our particular focus is on the case when the \(a_k\) are the coefficients of a Laurent series of a rational function. As reviewed in Section 2, a rational function \(f = P/Q\) has a Laurent series expansion associated with each vertex of the Newton polytope \(N(Q)\) of \(Q\). We show that Gauss congruences hold for one of these Laurent series (for all but finitely many primes) if and only if they hold for all Laurent series (Proposition 3.4), in which case we say that \(f\) has the Gauss property.

As observed in [Str14], the rational function

\[
\frac{1}{(1-x_1-x_2)(1-x_3-x_4) - x_1x_2x_3x_4} = \sum_{k \in \mathbb{Z}_2^4} A_k x^k,
\]

where \(x^k\) is short for \(x_1^{k_1}x_2^{k_2}x_3^{k_3}x_4^{k_4}\), has the Apéry numbers \(2\) as its diagonal coefficients, that is, \(A_{n,n,n,n} = A_n\). Moreover, it is proved in [Str14] that the supercongruences for the Apéry numbers hold for all coefficients \(A_n\), meaning that \(A_{mp^r} \equiv A_{mp^{r-1}} \pmod{p^{3r}}\) for all primes \(p \geq 5\). In particular, the rational function \((3)\) has the Gauss property.

One of the goals of this paper is to address the question of which rational functions have the Gauss property. Towards that end, we provide several results that show that the Gauss property holds for large natural classes of rational functions in several variables \(x = (x_1, \ldots, x_n)\). For instance, in Section 4 we show that certain determinants of logarithmic derivatives have the Gauss property. The following is derived (as Theorem 4.5) from a similar result for Laurent series (Theorem 4.4). Because of its central character (indicated in Question 1.2 below) and for future applications, the results of Section 4 are proved over more general rings, namely domains with a \(p\)-Frobenius lift (Definition 4.1).

Theorem 1.1. Let \(m \leq n\) and let \(f_1, \ldots, f_m \in \mathbb{Q}(x)\) be nonzero. Then the rational function

\[
\frac{x_1 \cdots x_m}{f_1 \cdots f_m} \det \left(\frac{\partial f_j}{\partial x_i} \right)_{i,j=1,\ldots,m}
\]

has the Gauss property.

It would be of considerable interest to fully characterize multivariate rational functions with the Gauss property. Towards that end, one might be tempted to ask the following question.

Question 1.2. Suppose that the rational function \(f \in \mathbb{Q}(x)\) has the Gauss property. Can it be written as a \(\mathbb{Q}\)-linear combination of functions of the form \((4)\)?
A recent result of Minton [Min14] answers Question 1.2 affirmatively when \(n = 1 \), the case of a single variable. For the benefit of the reader and in order to be self-contained, we reprove this result, cast in our present language, in Section 8.

Theorem 1.3 (Minton, 2014). A rational function \(f \in \mathbb{Q}(x) \) has the Gauss property if and only if \(f \) is a \(\mathbb{Q} \)-linear combination of functions of the form \(xu'(x)/u(x) \), with \(u \in \mathbb{Z}[x] \).

Although characterizing multivariate rational functions with the Gauss property remains a challenge, we obtain, in Section 5, the following concise classification in the case of rational functions \(P/Q \) for which the Newton polytope \(N(Q) \) of the denominator is contained in \([0, 1]^n\). Note that, in that case, the vertices of \(N(Q) \) form the support of \(Q \).

Theorem 1.4. Let \(P, Q \in \mathbb{Z}[x] \) and suppose that \(Q \) is linear in each variable. Then \(P/Q \) has the Gauss property if and only if \(N(P) \subseteq N(Q) \).

As illustrated by [3], such results for (multivariate) rational functions allow us to establish congruences for numbers, such as the Apéry numbers, whose generating function is much more complicated than a rational function. Indeed, observe that Theorem 1.4 immediately implies that the rational function (3) has the Gauss property. In particular, it follows that the Apéry numbers satisfy the Gauss congruences. In a similar spirit, recent results of Rowland and Yassawi [RY15] show that the series coefficients of certain rational functions satisfy Lucas congruences. Their approach using Cartier operators can also be applied to provide an alternative proof (at least in parts) of the “if” portion of Theorem 1.4 (due to the technicalities involved, we do not pursue this path here).

We obtain Theorem 1.4 as an immediate consequence of the following more general result, which we prove in Section 5 as an application of Theorem 1.1.

Theorem 1.5. Let \(P, Q \in \mathbb{Z}[z, x] \) be such that \(Q \) is linear in the variables \(x_1, \ldots, x_n \). Write \(P = \sum_k p_k(z)x^k \) and \(Q = \sum_k q_k(z)x^k \) with \(p_k, q_k \) in \(\mathbb{Z}[z] \). Then \(P/Q \) has the Gauss property if and only if \(p_k \neq 0 \) implies \(q_k \neq 0 \) and \(p_k/q_k \) has the Gauss property for all \(k \) with \(q_k \neq 0 \).

Our proof of Theorem 1.5 answers Question 1.2 affirmatively for rational functions \(f = P/Q \) with \(Q \) linear in all but one variable. We further show in Example 6.6 that the answer is also affirmative when \(Q \) is a function of two variables and total degree 2.

Although, in general, Question 1.2 remains far from being answered, we can give a number of necessary conditions for the Gauss property to hold. A simple such condition, proved in Proposition 3.5, is that the Newton polytope \(N(P) \) of \(P \) must be contained in \(N(Q) \). As another example, made
precise in Proposition 3.8 consider a face F of $N(Q)$ and let P_F, Q_F be the restrictions of P, Q consisting of those monomials supported on F. If P/Q has the Gauss property, then the same holds for P_F/Q_F. In Proposition 6.1 we prove the straightforward observation that toroidal substitutions preserve the Gauss property. As a consequence, illustrated in Example 6.4, the rational function P_F/Q_F can be reduced to a rational function in essentially fewer than n variables.

Finally, let us indicate a useful consequence of an affirmative answer to Question 1.2 concerning arbitrary substitutions. Suppose that $f \in \mathbb{Q}(x)$ is a \mathbb{Q}-linear combination of functions of the form (4), and let $g_1, \ldots, g_n \in \mathbb{Q}(x)$ be nonzero. Then, by the multivariate chain rule,

\begin{equation}
\frac{x_1 \cdots x_n}{g_1 \cdots g_n} \det \left(\frac{\partial g_j}{\partial x_i} \right)_{i,j=1,\ldots,n} f(g_1(x), \ldots, g_n(x))
\end{equation}

is also a \mathbb{Q}-linear combination of functions of the form (4). In particular, by Theorem 1.1, the rational function (5) has the Gauss property. Hence, if Question 1.2 has an affirmative answer, then it follows that, for any rational function $f \in \mathbb{Q}(x)$ with the Gauss property, the rational function (5) has the Gauss property as well.

Since Question 1.2 remains open, we give a direct and independent proof of the following univariate version in Section 7.

Theorem 1.6. Let $g_j \in \mathbb{Q}(x)$ be nonzero. If $f \in \mathbb{Q}(x)$ has the Gauss property, then so does the rational function

\begin{equation}
\left(\prod_{j=1}^n \frac{x_j g_j'(x_j)}{g_j(x_j)} \right) f(g_1(x_1), \ldots, g_n(x_n)).
\end{equation}

2. Preliminaries and Laurent series expansions. Throughout, p is a prime. The p-adic valuation $\nu_p(a)$ of a rational number $a \in \mathbb{Q}^\times$ is the largest $r \in \mathbb{Z}$ such that $a/p^r \in \mathbb{Z}_p$, with the understanding that $\nu_p(0) = \infty$. If $a = (a_1, \ldots, a_n) \in \mathbb{Q}^n$ is a vector, then $\nu_p(a) = \min\{\nu_p(a_1), \ldots, \nu_p(a_n)\}$. Similarly, we say that p divides a vector a if $\nu_p(a) \geq 1$, that is, p divides each component of a.

When working with several variables, we typically use the vector notation $x = (x_1, \ldots, x_n)$ and write, for instance, $\mathbb{Q}(x) = \mathbb{Q}(x_1, \ldots, x_n)$ for the ring of rational functions, and $\mathbb{Q}[x^{\pm 1}] = \mathbb{Q}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$ for the ring of Laurent polynomials in several variables. Similarly, we write $x^k = x_1^{k_1} \cdots x_n^{k_n}$ for monomials and refer to $k = (k_1, \ldots, k_n)$ as its exponent vector. The support of a Laurent polynomial $P \in \mathbb{Q}[x^{\pm 1}]$, denoted $\text{supp}(P) \subseteq \mathbb{Z}^n$, is the set of exponent vectors of the (nonzero) monomials of P. The Newton polytope $N(P)$ of P is the convex closure of $\text{supp}(P)$. The cone generated by vectors $v_1, v_2, \ldots \in \mathbb{R}^n$ is the $\mathbb{R}_{\geq 0}$-span of these vectors. We say such a cone C is
proper if there exists a linear form α such that $\alpha(w) > 0$ for all nonzero $w \in C$. The cones of importance to us are proper. For instance, suppose that v is a vertex of the Newton polytope $N(P)$ of a Laurent polynomial P. Then the cone generated by $N(Px^{-v})$ is proper. Note that our cones are based at the vertex 0.

In this paper, we frequently discuss rational functions $F = P/Q \in \mathbb{Q}(x)$. In principle, we could choose P and Q to be polynomials. However, for certain purposes, it turns out to be natural to allow P and Q to be Laurent polynomials, that is, $P, Q \in \mathbb{Z}[x^{\pm 1}]$. We have a Laurent series expansion of F associated to each vertex v of $N(Q)$ as follows [GKZ94, p. 195]. Writing $Q = \sum_k q_k x^k$ with $q_k \in \mathbb{Z}$, note that x^v/Q can be expanded as

$$\frac{x^v}{Q} = \frac{1}{q_v + \sum_{k \neq v} q_k x^{k-v}} = \frac{1}{q_v} \sum_{m=0}^{\infty} \left(- \sum_{k \neq v} \frac{q_k x^{k-v}}{q_v} \right)^m \sum_{k \in C} g_k x^k,$$

where C is the proper cone generated by the vectors $N(Q/x^v)$. To see that the g_k in (7) are finite, so that the series is well-defined, let α be a linear form such that $\alpha(w) > 0$ for all nonzero $w \in C$, and observe that $\alpha(k-v) > 0$ for all $k \in \text{supp}(Q)$ with $k \neq v$. Clearly, $g_k \in \mathbb{Z}[q_v^{-1}]$. Multiplying the series (7) by P/x^v, we obtain a Laurent series $f = \sum_k f_k x^k$ for $F = P/Q$. Its coefficients again satisfy $f_k \in \mathbb{Z}[q_v^{-1}]$. We refer to $f \in \mathbb{Q}[[x^{\pm 1}]]$ as the Laurent series expansion of F with respect to v. The support of f, denoted by $\text{supp}(f)$, is the set of all $k \in \mathbb{Z}^n$ such that $f_k \neq 0$. Observe that if p is a prime such that $q_v \in \mathbb{Z}_p^\times$, then $f \in \mathbb{Z}_p[[x^{\pm 1}]]$. In particular, for all but finitely many primes p, all Laurent series expansions of F have coefficients that are p-adic integers.

For any Laurent series $f = \sum_k f_k x^k \in \mathbb{Q}[[x^{\pm 1}]]$, we refer to f_0 as its constant term.

Finally, especially in Section 4, it will be convenient to use the Euler operator $\theta_y = y \frac{\partial}{\partial y}$. If there is no possibility for confusion, we simply write $\theta_i = \theta_{x_i}$.

3. Gauss congruences

Definition 3.1. We say that a Laurent series

$$f = \sum_{k \in \mathbb{Z}^n} f_k x^k \in \mathbb{Q}[[x^{\pm 1}]]$$

satisfies the Gauss congruences for the prime p if $f \in \mathbb{Z}_p[[x^{\pm 1}]]$ and

$$f_{m p^r} \equiv f_{m p^r-1} \pmod{p^r}$$

for all $m \in \mathbb{Z}^n$ and all $r \geq 1$. We say that f has the Gauss property if it satisfies the Gauss congruences for all but finitely many primes.
Let U_p be the operator on Laurent series defined by
\begin{equation}
U_p \left(\sum_{k \in \mathbb{Z}^n} c_k x^k \right) = \sum_{k \in \mathbb{Z}^n} c_{pk} x^k.
\end{equation}

Note that a Laurent series f has the Gauss property if and only if, for all $r \geq 1$ and all but finitely many primes p,
\[U_r^p(f) \equiv U_{r-1}^p(f) \pmod{p^r}. \]
The following observation is more or less straightforward.

Proposition 3.2. Let $\zeta = e^{2\pi i/p}$. If f is the Laurent series of $F \in \mathbb{Q}(x)$ with respect to the vertex v, then $U_p(f)$ is the Laurent series of the rational function
\[F(p) = \frac{1}{p^n} \sum_{r_1, \ldots, r_n = 0}^{p-1} F(\zeta^{r_1} x_1^{1/p}, \ldots, \zeta^{r_n} x_n^{1/p}) \]
with respect to the vertex $p^{n-1}v$.

In fact, let us note that, for $F = P/Q$ with $P, Q \in \mathbb{Z}[x^{\pm 1}]$, we can write $F(p) = P(p)/Q(p)$ with
\[Q(p) = \prod_{r_1, \ldots, r_n = 0}^{p-1} Q(\zeta^{r_1} x_1^{1/p}, \ldots, \zeta^{r_n} x_n^{1/p}), \]
which is in $\mathbb{Z}[x^{\pm 1}]$ with Newton polytope $N(Q(p)) = p^{n-1}N(Q)$. If v is a vertex of $N(Q)$ with coefficient $q_v \in \mathbb{Z}_p^\times$, then $p^{n-1}v$ is a vertex of $N(Q(p))$ with coefficient $q_v^{p^n} \in \mathbb{Z}_p^\times$.

Definition 3.3. A rational function $F = P/Q \in \mathbb{Q}(x)$ has the Gauss property if, for every vertex v of $N(Q)$, the Laurent series expansion of F with respect to v has the Gauss property.

By the next result, it suffices to consider a single vertex v in that definition. The proof relies on the following simple but important observation. If $P, Q \in \mathbb{Z}[x^{\pm 1}]$ and v is a vertex of $N(Q)$, then, for all but finitely many primes p, the Laurent expansion f of P/Q with respect to v has p-adic integers as coefficients. In such a case, $f \equiv 0 \pmod{p^r}$ if and only if $P \equiv 0 \pmod{p^r}$.

Proposition 3.4. Let $P, Q \in \mathbb{Z}[x^{\pm 1}]$. Let v, w be vertices of $N(Q)$. Then the Laurent series expansion of $F = P/Q$ with respect to v has the Gauss property if and only if the Laurent series expansion of F with respect to w has the Gauss property.

Proof. Suppose that $f = \sum_{k \in \mathbb{Z}^n} f_k x^k$ is the Laurent series expansion of F with respect to v. By Proposition 3.2, $U_p(f) \in \mathbb{Z}_p[[x^{\pm 1}]]$ is the Laurent expansion of a rational function $P(p^r)/Q(p^r)$ with respect to $p^{r(n-1)}v$.

Consequently, $U_p^r(f) - U_p^{r-1}(f)$ is the Laurent expansion of a rational function $R_{p,r}$ with denominator $Q(p^r)Q(p^{r-1}) \in \mathbb{Z}[x^{\pm 1}]$. This expansion is with respect to the vertex $p^{(2r-1)(n-1)}v$. Note that the rational function $R_{p,r}$ is independent of the choice of v.

Let p be a prime such that $f \in \mathbb{Z}_p[[x^{\pm 1}]]$. Then the corresponding Laurent expansion $U_p^r(f) - U_p^{r-1}(f)$ of $R_{p,r}$ has p-adic integers as coefficients as well. Consequently, the congruence $U_p^r(f) - U_p^{r-1}(f) \equiv 0 \pmod{p^r}$ holds if and only if the numerator of $R_{p,r}$ is divisible by p^r.

Hence, f has the Gauss property if and only if, for all but finitely many primes p, the numerator of $R_{p,r}$ is divisible by p^r for all $r \geq 1$. Since the latter statement is independent of the choice of v, the claim follows.

The proof of the next observation actually only makes use of the fact that P/Q satisfies the Gauss congruences for a single suitable prime p.

Proposition 3.5. Let $P,Q \in \mathbb{Z}[x^{\pm 1}]$. If P/Q has the Gauss property, then $N(P) \subseteq N(Q)$.

Proof. It is sufficient to show that, for every vertex $v \in N(Q)$, the Newton polytope $N(P/x^v)$ is contained in the cone C generated by the vectors $N(Q/x^v)$. Let p be a prime such that the Gauss congruences for P/Q hold for p and such that the coefficients of P corresponding to vertices of $N(P)$ are p-adic units.

Let $v \in N(Q)$, and let $\sum_k f_kx^k$ be the Laurent series for P/Q with respect to v. For contradiction, suppose that there is a vertex w of $N(P/x^v)$ such that $w \notin C$. It follows from (7) that w is a vertex of the convex hull of the support of the Laurent series of P/Q with respect to v. By our choice of p, f_w is a p-adic unit. On the other hand, the point pw is not in the support of the Laurent series, so that $f_{pw} = 0$. This contradicts the congruence $f_{pw} \equiv f_w (\text{mod } p)$. ■

Example 3.6. The rational function

$$\frac{P}{Q} = \frac{1 + 2x - x^2}{1 - x^2} = \frac{1}{1 - x} + \frac{x}{1 + x}$$

obviously satisfies the Gauss congruences for all primes. As predicted by Proposition 3.5, $N(P) \subseteq N(Q)$. However, note that $\text{supp}(P) \not\subseteq \text{supp}(Q)$.

Corollary 3.7. Suppose $F = P/Q$ with $P,Q \in \mathbb{Z}[x^{\pm 1}]$ has the Gauss property. Then the Laurent series expansion of F with respect to any vertex v of $N(Q)$ is supported on a proper cone, namely the cone generated by $N(Q/x^v)$.

Proof. Recall from (7) that x^v/Q has a Laurent series supported on the proper cone C generated by the vectors $N(Q/x^v)$. By Proposition 3.5, $N(P) \subseteq N(Q)$, so that the Laurent polynomial P/x^v is supported on
\(N(P/x^n) \subset C\). Hence, multiplying the Laurent series for \(x^n/Q\) by \(P/x^n\) results in a Laurent series for \(P/Q\) supported on \(C\).

A face of \(N(Q)\) is a nonempty set \(F \subseteq N(Q)\) which is the intersection of \(N(Q)\) and \(h(w) = d\), where \(h\) is a linear form such that \(N(Q)\) is contained in the half-space \(h(w) \geq d\). Let \(F\) be a face of \(N(Q)\). We denote by \(Q_F\) the Laurent polynomial which is the sum of the monomials of \(Q\) with support in \(F\); and \(P_F\) is likewise obtained from \(P\).

Proposition 3.8. Let \(P,Q \in \mathbb{Z}[x^{\pm 1}]\). If \(P/Q\) satisfies the Gauss congruences for the prime \(p\), then so does \(P_F/Q_F\) for every face \(F\) of \(N(Q)\).

Proof. Choose a vertex \(v\) of \(N(Q)\) contained in \(F\). After multiplication of \(P,Q\) by \(x^{-v}\), we may as well assume that \(v = 0\). Let \(h\) be the linear form such that \(F\) is given as the intersection of \(h(w) = 0\) and \(N(Q)\). Let \(C\) be the cone spanned by the vectors of \(N(Q)\).

Let \(\sum_k f_k x^k\) be the Laurent series for \(P/Q\) with respect to \(0\). We observe from [7] that the Laurent expansion of \(1/Q_F\) with respect to \(0\) is obtained from the corresponding expansion of \(1/Q\) by selecting only those terms corresponding to \(k\) such that \(h(k) = 0\). Consequently, the Laurent expansion of \(P_F/Q_F\) with respect to \(0\) is similarly given by

\[
\sum_{k \in \mathbb{Z}^n} g_k x^k = \sum_{k \in \mathbb{Z}^n, h(k) = 0} f_k x^k.
\]

Since \(h\) is linear, the Gauss congruences \(g_{mp^r} \equiv g_{mp^r-1} \pmod{p^r}\), for \(m\) such that \(h(m) = 0\), translate into \(f_{mp^r} \equiv f_{mp^r-1} \pmod{p^r}\), which holds by assumption. On the other hand, we trivially have \(g_{mp^r} \equiv g_{mp^r-1} \pmod{p^r}\) if \(h(m) \neq 0\) because then both \(g_{mp^r}\) and \(g_{mp^r-1}\) are zero.

4. **Determinants of logarithmic derivatives.** This section is concerned with a proof of Theorem 1.1. As indicated in Question 1.2 and the comments following it, Theorem 1.1 appears to play a central role in the quest of classifying rational functions with the Gauss property. In this section, we therefore work over more general rings before again specializing to \(\mathbb{Z}\). For other, less central, results in this paper we do not pursue this level of generality.

Definition 4.1. Let \(p \in \mathbb{Z}\) be a prime. An integral domain \(R\) with characteristic 0 has a \(p\)-Frobenius lift \(\phi\) if

(a) \((p) \) is a prime ideal in \(R\), and

(b) there is a ring homomorphism \(\phi : R \to R\) such that \(\phi(a) \equiv a^p \pmod{p}\) for every \(a \in R\).

We often write \(a^\phi\) instead of \(\phi(a)\).
The most common example we shall look at is \(\mathbb{Z} \), in which case the identity map \(\phi \) is a \(p \)-Frobenius lift for all primes \(p \). More generally, if \(N \in \mathbb{Z} \), we can consider the ring \(\mathbb{Z}[1/N] \), in which case the identity map \(\phi \) is a \(p \)-Frobenius lift for all primes \(p \) not dividing \(N \). A nontrivial example is the polynomial ring \(R = \mathbb{Z}[x] \) with \(\phi(Q(x)) = Q(x^p) \). The following lemma suggests a generalization of the Gauss congruences to \(R \).

Lemma 4.2. Let \(R \) be a domain with \(p \)-Frobenius lift \(\phi \). Then, for any \(a \in R \) and any positive integers \(m, r \), we have

\[
(9) \quad a^{mp^r} \equiv (a^\phi)^{mp^r-1} \pmod{p^r}.
\]

Proof. It suffices to prove the statement for \(m = 1 \). We use induction on \(r \). For \(r = 1 \), the statement follows from the definition of \(\phi \). Suppose that \((9) \) is true for some \(r \geq 1 \). That is, \(a^{p^r} = (a^\phi)^{p^r-1} + p^r b \) for some \(b \in R \). Raise this equality to the \(p \)th power and consider the result modulo \(p^{r+1} \).

\[
a^{p^{r+1}} \equiv (a^\phi)^{p^r} + p(a^\phi)^{p^r-1}(p-1)p^rb \equiv (a^\phi)^{p^r} \pmod{p^{r+1}}.
\]

This completes the induction step. \(\Box \)

Extending Definition 3.1, we therefore say that a Laurent series \(f = \sum_{k \in \mathbb{Z}^n} f_k x^k \in R[[x^{\pm 1}]] \) satisfies the Gauss congruences for the prime \(p \) if \(R \) has a \(p \)-Frobenius lift \(\phi \) and

\[
f_{mp^r} \equiv f_{mp^r-1}^\phi \pmod{p^r}
\]

for all \(m \in \mathbb{Z}^n \) and all \(r \geq 1 \).

Proposition 4.3. Let \(R \) be an integral domain and let \(f \in R[[x^{\pm 1}]] \) with constant term 1. If \(\text{supp}(f) \subseteq C \) for a proper cone \(C \), then there exist \(a_k \in R \) such that

\[
f = \prod_{k \in C, k \neq 0} (1 - a_k x^k).
\]

Proof. Choose \(\alpha \) to be a linear form such that \(\alpha(w) > 0 \) for all nonzero \(w \in C \), with the additional property that \(\alpha(w) \in \mathbb{Z} \) for \(w \in \mathbb{Z}^n \). For \(r \in \mathbb{Z}_{>0} \), let \(I_r \) be the ideal consisting of Laurent series

\[
\sum_{k \in C, \alpha(k) \geq r} g_k x^k.
\]

We now construct the exponents \(a_k \) using induction on \(\alpha(k) \). Initialization follows from the observation that \(f \equiv 1 \pmod{I_1} \). Suppose we have constructed \(a_k \in R \), for all \(k \in C \) with \(\alpha(k) < r \), such that

\[
f \equiv \prod_{k \in C, k \neq 0, \alpha(k) < r} (1 - a_k x^k) \pmod{I_r}.
\]
Consider the Laurent series
\[g = f \prod_{k \in C, k \neq 0, \alpha(k) < r} (1 - a_k x^k)^{-1} = \sum_{k \in C} g_k x^k, \]
and note that \(g \equiv 1 \) (mod \(I_r \)). For \(k \in C \) with \(\alpha(k) = r \), we now simply choose \(a_k = g_k \). By construction, (11) then holds with \(r \) replaced by \(r + 1 \). □

Recall that \(\theta_i = x_i \frac{\partial}{\partial x_i} \) denotes the Euler operator. Suppose that \(f \in R[[x^{\pm 1}]] \) is a Laurent series satisfying the conditions of Proposition 4.3, so that (10) holds. Then
\[
\frac{\theta_i f}{f} = - \sum_{k \in C, k \neq 0} \frac{k_i a_k x^k}{1 - a_k x^k} \in R[[x^{\pm 1}]].
\]
If \(R \) is a domain with \(p \)-Frobenius lift \(\phi \), then a brief argument and Lemma 4.2 show that \(k_i a_k x^k / (1 - a_k x^k) \) satisfies the Gauss congruences for \(p \). We conclude that \(\theta_i f / f \), as a sum of such terms, satisfies the Gauss congruences for \(p \). This is the case \(m = 1 \) of the next result, which generalizes this observation.

Theorem 4.4. Let \(R \) be a domain with \(p \)-Frobenius lift \(\phi \). Let \(m \leq n \) and let \(f_1, \ldots, f_m \in R[[x^{\pm 1}]] \), each with constant term 1 and \(\text{supp}(f_j) \subseteq C \) for a proper cone \(C \). Then the Laurent series
\[F = \det \left(\frac{\theta_i f_j}{f_j} \right)_{i,j=1,\ldots,m} \]
satisfies the Gauss congruences for \(p \).

Proof. Suppose that \(m < n \). If we define \(f_i = x_i \) for \(i = m + 1, m + 2, \ldots, n \), then the original \(m \times m \) determinant (12) obtained from \(f_1, \ldots, f_m \) is the same as the \(n \times n \) determinant obtained from \(f_1, \ldots, f_n \). We may therefore assume that \(m = n \).

We start with the special case \(f_j = 1 - a_j x^{k(j)} \) with \(k(j) = (k_1^{(j)}, \ldots, k_n^{(j)}) \) \(\in C \) and \(a_j \in R \). Let \(K \) be the \(n \times n \) matrix with entries \(k_i^{(j)} \) with \(i, j = 1, \ldots, n \). Then
\[F = \det \left(\frac{-k_i^{(j)} a_j x^{k^{(j)}}}{1 - a_j x^{k^{(j)}}} \right)_{i,j=1,\ldots,n} = (-1)^n \det(K) \prod_{j=1}^n \frac{a_j x^{k^{(j)}}}{1 - a_j x^{k^{(j)}}}, \]
which can be expanded as
\[F = (-1)^n \det(K) \sum_{r_1, \ldots, r_n \geq 1} \left(\prod_{j=1}^n a_j^{r_j} \right) x^{r_1 k^{(1)} + \cdots + r_n k^{(n)}} = \sum_{k \in C} c_k x^k. \]
If \(\det(K) = 0 \), then all terms are zero and the claim is trivially true. So, assume \(\det(K) \neq 0 \). Then the exponents \(r_1 k^{(1)} + \cdots + r_n k^{(n)} = K r \) are in one-to-one correspondence with the \(n \)-tuples \(r = (r_1, \ldots, r_n) \).
First, suppose that \(r \) is such that \(p \) divides \(r \). Then, by Lemma 4.2,
\[
a^r = \prod_{j=1}^{n} a_j^{r_j} \equiv \prod_{j=1}^{n} (a_j^\phi)^{r_j/p} = (a^\phi)^{r/p} \pmod{p^\nu_p(r)},
\]
so that
\[
c_{K^r} = (-1)^n \det(K) a^r
\equiv (-1)^n \det(K)(a^\phi)^{r/p}
= ((-1)^n \det(K) a^r/p)^\phi = c_{K^r/p}^{\phi} \pmod{p^\nu_p(r)+\nu_p(\det(K))}.
\]

Some linear algebra shows that \(\nu_p(K^r) \leq \nu_p(\det(K)) + \nu_p(r) \). Therefore, \(c_{K^r} \equiv c_{K^r/p}^{\phi} \pmod{p^\nu_p(K^r)+\nu_p(\det(K))} \). Next, suppose that \(p \) does not divide \(r \). Then \(\nu_p(K^r) \leq \nu_p(\det(K)) \), and thus \(c_{K^r} = (-1)^n \det(K) a^r \) is divisible by \(p^\nu_p(K^r) \), whereas \(c_{K^r/p} \equiv 0 \). Hence, the congruence \(c_{K^r} \equiv c_{K^r/p}^{\phi} \pmod{p^\nu_p(K^r)+\nu_p(\det(K))} \) holds again. We conclude that \(F \) satisfies the Gauss congruences for the prime \(p \).

For general Laurent series \(f_j \), we consider the differential form
\[
\Omega = \frac{df_1}{f_1} \wedge \cdots \wedge \frac{df_n}{f_n}
\]
and observe that the coefficient of \(dx_1 \wedge \cdots \wedge dx_n/(x_1 \cdots x_n) \) is given by \(F \).

On the other hand, it follows from Proposition 4.3 that
\[
f_j = \prod_{k \in C, k \neq 0} (1 - a_{k}^{(j)} x^{k})
\]
for some \(a_{k}^{(j)} \in R \), so that
\[
\Omega = (-1)^n \sum_{k^{(1)}, \ldots, k^{(n)} \in C \setminus \{0\}} \left(\prod_{j=1}^{n} a_{k}^{(j)} \right) \frac{dx_{k^{(1)}}}{1 - a_{k}^{(1)} x^{k^{(1)}}} \wedge \cdots \wedge \frac{dx_{k^{(n)}}}{1 - a_{k}^{(n)} x^{k^{(n)}}}.
\]

From our initial special case, we see that the coefficient of \(dx_1 \wedge \cdots \wedge dx_n/(x_1 \cdots x_n) \) in each term satisfies the Gauss congruences for \(p \). Hence, the same holds for their sum, which equals \(F \).

Theorem 4.5. Let \(m \leq n \) and let \(f_1, \ldots, f_m \in \mathbb{Q}(x) \) be nonzero. Then the rational function
\[
(13) \quad \det \left(\frac{\theta_i f_j}{f_j} \right)_{i,j=1,\ldots,m}
\]
has the Gauss property.

Proof. Let us write \(D(f_1, \ldots, f_m) \) for (13). Observe that this quantity is logarithmic in each of its arguments \(f_j \). That is, for instance,
\[
D(gh, f_2, \ldots, f_m) = D(g, f_2, \ldots, f_m) + D(h, f_2, \ldots, f_m).
\]
From this property it follows that it suffices to restrict to Laurent polynomials $f_1, \ldots, f_m \in \mathbb{Z}[x^{\pm 1}]$ (we could further restrict to polynomials but the argument to follow works for Laurent polynomials).

We next determine vertices v_i of $N(f_i)$ such that f_i/x^{v_i} are Laurent polynomials with support in the same proper cone C. To that end, let α be a linear form on \mathbb{R}^n whose coefficients are \mathbb{Q}-linearly independent. For each $i = 1, \ldots, m$, let c_i be the minimum of the set $\{\alpha(x) : x \in N(f_i)\}$. Then $N(f_i)$ is contained in the half-space $\alpha(x) \geq c_i$. Moreover, because the coefficients of α are \mathbb{Q}-linearly independent, the hyperplane $\alpha(x) = c_i$ intersects $N(f_i)$ in a unique vertex v_i. Hence, $N(f_i/x^{v_i})$ is contained in the half-space $\alpha(x) \geq 0$, and the intersection of $N(f_i/x^{v_i})$ and $\alpha(x) = 0$ consists of only the point 0. Let C be the cone spanned by all the $N(f_i/x^{v_i})$. Note that C is proper because $\alpha(x) > 0$ for all nonzero $x \in C$.

By construction, the Laurent polynomials $g_i = f_i/x^{v_i}$ are supported on C, and 0 is a vertex of $N(g_i)$. Using the logarithmic property of (13), and the fact that $\partial x_j/\partial x_i = 0$ if $i \neq j$, it follows that $D(f_1, \ldots, f_m)$ is a \mathbb{Z}-linear combination of terms of the form $D(g_{i_1}, \ldots, g_{i_s})$ with $1 \leq i_1 < \cdots < i_s \leq m$. On the other hand, it follows from Theorem 4.4 that $D(g_{i_1}, \ldots, g_{i_s})$ has the Gauss property, from which we conclude that $D(f_1, \ldots, f_m)$ has the Gauss property as well. ■

5. A classification result. We begin with a somewhat technical but general result. Observe that the case $r = 0$ implies that $q_k x^k/Q$ in (14) satisfies the Gauss congruences. Likewise, the determinant in (14) satisfies the Gauss congruences by Theorem 4.4. That is, both factors of (14) satisfy the Gauss congruences. However, if two Laurent series satisfy the Gauss congruences, then it is not the case, in general, that their product does.

Proposition 5.1. Let $Q \in \mathbb{Z}_p[[x,y]]$ with constant term 1. Suppose that Q is linear in the variables $x = x_1, \ldots, x_n$ (but not necessarily in $y = y_1, \ldots, y_m$). Further, for $0 \leq r \leq m$, let $f_1, \ldots, f_r \in \mathbb{Z}_p[[y]]$ with constant term 1. Write $Q = \sum_k q_k(y) x^k$. Then, for any k,

$$q_k x^k/Q \det \left(\frac{\theta_i f_j}{f_j} \right)_{i,j=1,\ldots,r}$$

(14)

satisfies the Gauss congruences for the prime p.

Proof. Let $k = (k_1, \ldots, k_n) \in \{0, 1\}^n$. Notice that

$$\prod_{j=1}^n \theta_j^{k_j}(1 - \theta_j)^{1-k_j}Q = q_k x^k.$$

Hence, it suffices to show that (14) holds with $q_k x^k$ replaced by any product of θ_j applied to Q. Without loss of generality, we consider the product $\theta_1 \cdots \theta_t Q$.

For \(j = 1, \ldots, \ell \), define
\[
g_j = \frac{\partial}{\partial x_{j-1}} \cdots \frac{\partial}{\partial x_2} \frac{\partial}{\partial x_1} Q,
\]
so that \(g_1 = Q \). Note that \(g_j \) does not depend on the variables \(x_1, \ldots, x_{j-1} \) because \(Q \) is linear in \(x_1, \ldots, x_n \). Therefore, applying Theorem 4.4 to \(g_1, \ldots, g_\ell, f_1, \ldots, f_r \), we find that
\[
\frac{\theta_1 g_1}{g_1} \cdots \frac{\theta_\ell g_\ell}{g_\ell} \det \left(\frac{\theta_i f_j}{f_j} \right)_{i,j=1,\ldots,r}
\]
satisfies the Gauss congruences for \(p \). Observe that, since \(\theta_j g_j = x_j g_{j+1} \),
\[
\frac{\theta_1 g_1}{g_1} \cdots \frac{\theta_\ell g_\ell}{g_\ell} = \frac{\theta_1 \cdots \theta_\ell Q}{Q}.
\]
We have therefore shown that (14) indeed holds with \(q_k x^k \) replaced by any product of \(\theta_j \) applied to \(Q \).

Example 5.2. Take \(Q(x, y) = 1/f(y) - x \) for some
\[
f = \sum_{k=0}^{\infty} a_k y^k \in \mathbb{Z}[[y]].
\]
Since \(Q(x, y) \) is linear in \(x \), Proposition 5.1 implies that
\[
\frac{1/f(y)}{Q(x, y)} = \frac{1}{1 - f(y)x} = \sum_{k=0}^{\infty} f(y)^k x^k
\]
satisfies the Gauss congruences for all primes. Equivalently, the coefficients \(c_{k,\ell} \) of \(x^k y^\ell \), that is,
\[
c_{k,\ell} = \sum_{j_1, \ldots, j_k \geq 0 \atop j_1 + \cdots + j_k = \ell} a_{j_1} \cdots a_{j_k},
\]
satisfy the congruences \(c_{kpr,\ell pr} \equiv c_{kpr-1,\ell pr-1} \pmod{p^r} \) for all primes \(p \) and all \(r \geq 1 \). Establishing these congruences directly is less straightforward.

Example 5.3. Take \(Q(x, y) = 1 - x - x^2 - y \). Since \(Q \) is linear in \(y \), it follows from Proposition 5.1 with \(k = 0 \) that, for any \(f \in \mathbb{Z}_p[[x]] \) with \(f(0) = 1 \), the product
\[
\frac{1 - x - x^2}{1 - x - x^2 - y} \frac{\theta_x f}{f}
\]
satisfies the Gauss congruences for \(p \). In fact, since \((\theta_x f)/f \) is logarithmic in \(f \) and since \((\theta_x x^k)/x^k = k \), the same is obviously true for any \(f \in \mathbb{Z}_p[[x]] \). For instance, choosing \(f = x^2/(1 - x - x^2) \), we find that
\[
\frac{2 - x}{1 - x - x^2 - y}
\]
satisfies the Gauss congruences for all primes. In this particular case, the same conclusion follows from Theorem 5.4.

Theorem 5.4. Let \(P, Q \in \mathbb{Z}[z, x] \) be such that \(Q \) is linear in the variables \(x \). Write \(P = \sum_k p_k(z)x^k \) and \(Q = \sum_k q_k(z)x^k \) with \(p_k, q_k \in \mathbb{Z}[z] \). Then \(P/Q \) has the Gauss property if and only if \(p_k \neq 0 \) implies \(q_k \neq 0 \) and \(p_k/q_k \) has the Gauss property for all \(k \) with \(q_k \neq 0 \).

Proof. Suppose \(P/Q \) has the Gauss property. Let \(k \) be such that \(p_k \neq 0 \). Suppose \(q_k = 0 \). Since the points \(k \) are vertices of the hypercube \([0, 1]^n\), this means that the support of \(p_kx^k \) is outside \(N(Q) \), contradicting Proposition 3.5. Hence, \(q_k \neq 0 \). Further, notice that \(p_k/q_k \) is \(P_F/Q_F \), where \(F \) is the face of \(N(Q) \) corresponding to \(k \). According to Proposition 3.8, \(p_k/q_k \) has the Gauss property.

Now, fix \(k \) and suppose that \(q_k \neq 0 \) and \(p_k/q_k \) has the Gauss property. We shall prove that \(p_k(z)x^k/Q \) has the Gauss property. The general theorem then follows by summing over all such \(k \). First, observe that Theorem 8.1 tells us that there are polynomials \(u_j \in \mathbb{Z}[z] \) such that \(p_k/q_k = \sum_j c_jzu_j'/u_j \) for some \(c_j \in \mathbb{Q} \).

By Proposition 5.1:

\[
\sum_j q_k(z)x^k \frac{zu_j'}{u_j} = \frac{q_k(z)x^k}{Q} p_k(z) \frac{q_k(z)}{Q} = \frac{p_k(z)x^k}{Q}
\]

has the Gauss property. \(\blacksquare \)

Example 5.5. Monthly problem \#11757 [Ges14], proposed by Gessel, concerns the rational function

\[
F(x, y) = \frac{1}{(1 - 3x)(1 - y - 3x + 3x^2)} = \sum_{m,n=0}^{\infty} c_{m,n}x^m y^n.
\]

The problem asks the reader to show that the diagonal Taylor coefficients \(c_{n,n} \) equal \(9^n \). We will not spoil the fun of that challenge but only note that, as a consequence, the sequence of diagonal coefficients satisfies the Gauss congruences for all primes. On the other hand, it is an immediate consequence of Theorems 5.4 and 8.1, applied to

\[
\frac{1}{(1 - 3x)(1 - 3x + 3x^2)} = \frac{\theta_x u}{u}, \quad u = \frac{x(1 - 3x + 3x^2)}{(1 - 3x)^3},
\]

that \(F(x, y) \) has the Gauss property for all primes. In other words, all Taylor coefficients \(c_{m,n} \) satisfy the Gauss congruences for all primes.

A useful and immediate consequence of Theorem 5.4 is the following characterization of rational functions whose denominator is linear in each variable (that is, the denominator \(Q \in \mathbb{Z}[x] \) has \(\text{supp}(Q) \subseteq \{0, 1\}^n \)).
Theorem 5.6. Let $P, Q \in \mathbb{Z}[x]$ and suppose that Q is linear in each variable. Then P/Q has the Gauss property if and only if $N(P) \subseteq N(Q)$.

Example 5.7. The Delannoy numbers D_{n_1, n_2} are the Laurent series coefficients of the rational function
$$\frac{1}{1 - x - y - xy} = \sum_{k_1, k_2 = 0}^{\infty} D_{k_1, k_2} x^{k_1} y^{k_2}$$
with respect to the vertex $(0, 0)$. By Theorem 5.6, each of the rational functions
$$\frac{1}{1 - x - y - xy}, \frac{x}{1 - x - y - xy}, \frac{y}{1 - x - y - xy}, \frac{xy}{1 - x - y - xy}$$
has the Gauss property. In fact, they satisfy the Gauss congruences for all primes. Consequently, for any prime p and $\delta \in \{0, 1\}$, the Delannoy numbers D_n satisfy the (shifted) congruences
$$D_{m p^r - \delta} \equiv D_{m p^r - 1 - \delta} \pmod{p^r}$$
for all $m \in \mathbb{Z}_{>0}$ and all $r \geq 1$.

6. Toroidal substitutions. A substitution of the form $x_i = y^{a_i}, i = 1, \ldots, n$, with $a_1, \ldots, a_n \in \mathbb{Q}^m$ linearly independent, is called a toroidal substitution. Let A be the $m \times n$ matrix with columns a_1, \ldots, a_n. Note that $x^k = y^{A k}$ for any $k \in \mathbb{Z}^n$. We therefore write the toroidal substitution simply as $x = y^A$. The next result shows that toroidal substitutions preserve the Gauss property.

Proposition 6.1. Let $f = \sum_{k \in \mathbb{Z}^n} f_k x^k \in \mathbb{Z}_p[[x^{\pm 1}]]$. Let A be an $m \times n$ matrix with linearly independent columns $a_1, \ldots, a_n \in \mathbb{Q}^m$ such that $A k \in \mathbb{Z}^m$ for all $k \in \text{supp}(f)$. Define the Laurent series $g \in \mathbb{Z}_p[[y^{\pm 1}]]$ by
$$g(y_1, \ldots, y_m) = f(y^{a_1}, \ldots, y^{a_n}) = \sum_{k \in \mathbb{Z}^n} f_k y^{A k}.$$
Suppose that the prime p is such that $A \in \mathbb{Z}_p^{m \times n}$ and $A \pmod{p}$ has rank n. Then g satisfies the Gauss congruences for p if and only if f does.

Proof. Since rank$(A) = n$, the map $\mathbb{Z}^n \to \mathbb{Q}^m, k \mapsto A k$, is injective. Let us write I for the image of this map restricted to \mathbb{Z}^m. That is, I is the set of $m \in \mathbb{Z}^m$ such that $m = A k$ for some $k \in \mathbb{Z}^n$. We write $A^{-1} m = k$ for that unique k.

We claim that $\nu_p(A k) = \nu_p(k)$ for all $k \in \mathbb{Z}^n$. Since $A \in \mathbb{Z}_p^{m \times n}$, we obviously have $\nu_p(A k) \geq \nu_p(k)$. On the other hand, $A \pmod{p}$ has rank n,
that is, $A k \equiv 0 \pmod{p}$ implies $k \equiv 0 \pmod{p}$. It follows inductively (or from the fact that $A \pmod{p^r}$ has rank n) that $A k \equiv 0 \pmod{p^r}$ implies $k \equiv 0 \pmod{p^r}$. Hence, $\nu_p(Ak) \leq \nu_p(k)$. As a consequence, $mp^r \in I$ if and only if $m \in I$.

By construction,

$$g = \sum_{m \in \mathbb{Z}_m} g_m y^m = \sum_{k \in \mathbb{Z}^n} f_k y^A k = \sum_{m \in I} f_{A^{-1} m} y^m,$$

so that $g_m = f_{A^{-1} m}$ if $m \in I$, and $g_m = 0$ otherwise. On the other hand, $f_k = g_{Ak}$ for all k such that $Ak \in \mathbb{Z}^m$.

Suppose that g satisfies the Gauss congruences for p. Let $k \in \mathbb{Z}^n$. If $Ak \in \mathbb{Z}^m$, then

$$f_{kp^r} \equiv g_{Ak} p^r \equiv g_{Ak} p^{r-1} \equiv f_{kp^{r-1}} \pmod{p^r}.$$

If $Ak \notin \mathbb{Z}^m$, then it follows from $A \in \mathbb{Z}_{p^r}^{m \times n}$ that $Ak \pmod{p^r} \notin \mathbb{Z}^m$. Hence, $f_{kp^r} = f_{kp^{r-1}} = 0$. Thus, f satisfies the Gauss congruences for p.

Finally, suppose that f satisfies the Gauss congruences for p. Let $m \in \mathbb{Z}^m$. If $m \in I$, then $m = Ak$ for some $k \in \mathbb{Z}^n$, and

$$g_{mp^r} = f_{kp^r} \equiv f_{kp^{r-1}} = g_{mp^{r-1}} \pmod{p^r}.$$

If $m \notin I$, then $mp^r, mp^{r-1} \notin I$, so that $g_{kp^r} = g_{kp^{r-1}} = 0$. Consequently, g satisfies the Gauss congruences for p. ■

Example 6.2. It follows from Proposition 6.1 that

$$\frac{2 - xy}{1 - xy - x^2 y^2}$$

has the Gauss property if and only if $(2 - x)/(1 - x - x^2)$ does. The latter is the generating function for the Lucas numbers. That it has the Gauss property follows, for instance, from Theorem 4.5.

Example 6.3. As observed in Example 5.3, the rational function $F(x, y) = (2 - x)/(1 - x - x^2 - y)$ has the Gauss property. However, $F(x, 1) = (x - 2)/(x + x^2)$ does not have the Gauss property because it violates the necessary condition of Proposition 3.5. This illustrates that the condition in Proposition 6.1 on the rank of A cannot be dropped.

Example 6.4. Consider $Q = 1 + y_1^3 y_2 y_3 + y_1 y_2 y_3^2 + 3y_1^2 y_2 y_3^2$. In that case, $N(Q)$ lies in a two-dimensional subspace of \mathbb{R}^3. Note that $(3, 1, 1)$ and $(1, 1, 3)$ are vertices of $N(Q)$, while $(2, 1, 2)$ is not. We can obtain $Q(y)$ from $\tilde{Q}(x) = 1 + x_1^2 + x_2^2 + 3x_1 x_2$ via the toroidal substitution

$$x_1 = y_1^{3/2}, \quad y_2 = y_2^{1/2}, \quad y_3 = y_3^{1/2}, \quad x_2 = y_1^{1/2}, \quad y_2 = y_2^{1/2}, \quad y_3 = y_3^{3/2}.$$

Let $p > 2$ be a prime. It follows from Proposition 6.1 that $1/Q$ satisfies the Gauss congruences for p if and only if $1/\tilde{Q}$ does.
Remark 6.5. Let \(\mathbf{x} = y^A \) be a toroidal substitution with invertible matrix \(A \in \mathbb{Q}^{n \times n} \). Observe that, for any \(f_1, \ldots, f_n \),
\[
\det \left(\frac{\partial y_i}{\partial f_j} \right)_{i,j=1,\ldots,n} = \det(A) \det \left(\frac{\partial x_i}{\partial f_j} \right)_{i,j=1,\ldots,n}.
\]
This can be seen, for instance, by recalling that the left-hand side is the coefficient of \(dy_1 \land \cdots \land dy_m/(y_1 \cdots y_m) \) in \(df_1 \land \cdots \land df_m/(f_1 \cdots f_m) \), and realizing that \(dx_1 \land \cdots \land dx_n/(x_1 \cdots x_n) \) and \(dy_1 \land \cdots \land dy_m/(y_1 \cdots y_m) \) only differ by a factor of \(\det(A) \). We conclude that an invertible toroidal substitution does not affect the answer to Question 1.2.

Example 6.6. Suppose that \(Q \in \mathbb{Z}[x, y] \) has total degree 2. We will show that, for any rational function \(P/Q \) with \(P \in \mathbb{Z}[x, y] \), the answer to Question 1.2 is affirmative. That is, \(P/Q \) has the Gauss property if and only if \(P/Q \) can be written as a \(\mathbb{Q} \)-linear combination of functions of the form \((4) \). By Theorem 4.5, we only need to prove the “only if” part of that statement.

First, observe that this is a consequence of our proof of Theorem 5.4 when \(Q \) is linear in at least one of the variables \(x, y \). We may therefore assume that \((2, 0)\) and \((0, 2)\) are vertices of \(N(Q) \). Suppose that \((0, 0)\) is not a vertex of \(N(Q) \). Then \(Q = bx + cy + dx^2 + exy + fy^2 \), so that \(Q/x^2 = bu + cuy + d + ev + fu^2 \) in terms of the toroidal substitution \(u = 1/x, v = y/x \). Note that the latter is linear in \(u \), so that, by Proposition 6.1, we are reduced to a known case. We may therefore assume that \(N(Q) \) is the triangle with vertices \((0, 0), (2, 0), (0, 2)\). The number of lattice points in \(N(Q) \) is 6.

Consider the vector space \(V_Q \) of polynomials \(P \in \mathbb{Z}[x, y] \) such that \(P/Q \) has the Gauss property. It follows from Proposition 3.5 that \(V_Q \) consists of polynomials of total degree at most 2. In particular, \(\dim V_Q \leq 6 \). On the other hand, by Theorem 4.5, \(1 \) as well as \(x \partial Q/\partial x \) and \(y \partial Q/\partial y \) have the Gauss property. Hence, \(V_Q \) contains \(Q, x \partial Q/\partial x \) and \(y \partial Q/\partial y \), implying that \(\dim V_Q \geq 3 \). We will see below that \(\dim V_Q \) can indeed take any value in \(\{3, 4, 5, 6\} \). Let \(F \) be one of the three 1-dimensional faces of \(N(Q) \). By Proposition 3.8 if \(P \in V_Q \), then \(P_F/Q_F \) has the Gauss property.

Note that, possibly after a toroidal substitution, \(P_F/Q_F \) is a univariate rational function \(p_F(x)/q_F(x) \) with \(p_F, q_F \in \mathbb{Z}[x] \), \(\deg q_F = 2 \) and \(q_F(0) \neq 0 \). By the same arguments as above, the vector space \(V_{q_F} \) of polynomials \(p \in \mathbb{Z}[x] \) such that \(p/q_F \) has the Gauss property has dimension 2 or 3. Moreover, it follows from Theorem 8.1 that \(\dim V_{q_F} = 3 \) if and only if \(q_F(x) \) has two distinct rational roots.

Let \(F_x \) be the face with vertices \((0, 0)\) and \((2, 0)\). Likewise, let \(F_y \) be the face with vertices \((0, 0), (0, 2)\), and \(F_{xy} \) the face with vertices \((2, 0), (0, 2)\).

Suppose \(q_{F_x}(x) \) has two distinct rational roots. That is, \(Q = a + bx + cy + dx^2 + exy + fy^2 \) and \(dx^2 + exy + fy^2 = d(x + \alpha y)(x + \beta y) \) for some \(\alpha, \beta \in \mathbb{Q} \).
with \(\alpha \neq \beta \). Without loss, \(d = 1 \). Observe that \(Q = \varepsilon + (x + \alpha y + \gamma)(x + \beta y + \delta) \), where \(\gamma = (ab - c)/(\alpha - \beta), \delta = (c - \beta b)/(\alpha - \beta) \) and \(\varepsilon = a - \gamma \delta \) are all rational. Theorem 4.5, applied to \(f_1 = x + \alpha y + \gamma \) and \(f_2 = Q \), shows that

\[
\frac{\theta_x f_1}{f_1} \frac{\theta_y f_2}{f_2} = \frac{\theta y f_1}{f_1} \frac{\theta x f_2}{f_2} = \frac{(\beta - \alpha)xy}{Q}
\]

has the Gauss property. In particular, \(xy/Q \) has the Gauss property. By using a toroidal substitution to translate to this case and applying Proposition 6.1, we conclude that, for \(m \in \{ x, y, xy \} \), if \(q_{F_m}(x) \) has two distinct rational roots, then \(m/Q \) has the Gauss property and, by Remark 6.5, is a linear combination of functions of the form (4).

Let \(M \subseteq \{ x, y, xy \} \) consist of those \(m \) such that \(q_{F_m}(x) \) has two distinct rational roots. For each \(m \in \{ x, y, xy \} \) with \(m \not\in M \), we obtain a linear constraint for \(V_Q \) coming from the condition that \(P_{F_m}/Q_{F_m} \) has the Gauss property. These 3 \(- |M| \) constraints are linearly independent, so that \(\dim V_Q \leq 6 - (3 - |M|) = 3 + |M| \). On the other hand, \(V_Q \) contains \(Q, x\partial Q/\partial x, y\partial Q/\partial y \) as well as \(m \) for \(m \in M \). Since these are linearly independent, we conclude that \(\dim V_Q = 3 + |M| \) and that all \(P \in V_Q \) are linear combinations of functions of the form (4).

7. Univariate substitutions. In order to prove Theorem 1.6, we begin with the following corresponding result for Laurent series. The statement is necessarily more technical because conditions are needed to ensure that the composition of series is well-defined.

Theorem 7.1. Let \(\alpha \) be a linear form on \(\mathbb{R}^{n+1} \) with \(\alpha(1, 0, \ldots, 0) > 0 \). Let \(f(z, x) \in \mathbb{Z}_p[[z^{\pm 1}, x^{\pm 1}]] \) such that \(\alpha(w) > 0 \) for all \(w \in \text{supp}(f) \). Let \(g(z) \in z^r \mathbb{Z}_p[[z]]^x \) for some \(r \in \mathbb{Z}_{>0} \). Suppose \(f \) satisfies the Gauss congruences for the prime \(p \). Then so does

\[
F(z, x) = \frac{zg'(z)}{g(z)} f(g(z), x).
\]

Proof. By assumption,

\[
f(z, x) = \sum_{\alpha(\ell, k) > 0} f_{\ell, k} z^\ell x^k,
\]

where the sum is over all \(\ell \in \mathbb{Z}, k \in \mathbb{Z}^n \) such that \(\alpha(\ell, k) > 0 \). First, note that

\[
f(g(z), x) = \sum_{\alpha(\ell, k) > 0} f_{\ell, k} g(z)^\ell x^k
\]

is a well-defined Laurent series in \(\mathbb{Z}_p[[z^{\pm 1}, x^{\pm 1}]] \), since contributions to the coefficient of \(z^\ell x^k \) only come from \((\ell, k) \) with \(\ell \leq L \). By the assumption that \(\alpha(1, 0) > 0 \), there are only finitely many such \((\ell, k) \) with \(\alpha(\ell, k) > 0 \).
Write \(f(z, \mathbf{x}) = f_0(\mathbf{x}) + zf_1(z, \mathbf{x}) \). It follows from the case \(m = 1 \) of Theorem 4.4 that \(\frac{zf'(z)}{g(z)} f_0(\mathbf{x}) \) satisfies the Gauss congruences. We may therefore replace \(f(z, \mathbf{x}) \) with \(f(z, \mathbf{x}) - f_0(\mathbf{x}) \). In other words, we may assume that the sum in (15) is over all \(\nu \in \mathbb{Z} \), \(k \in \mathbb{Z}^n \) such that \(\alpha(\ell, k) > 0 \) and \(\ell \neq 0 \).

All subsequent sums are assumed to be of this form. Observe that

\[
F(z, \mathbf{x}) = \frac{zf'(z)}{g(z)} f(g(z), \mathbf{x}) = \sum_{\ell \neq 0, k} \frac{f_{\ell,k}}{\ell} z \frac{d}{dz} [g(z)\ell] x^k.
\]

We rewrite this as \(F = F_1 + F_2 \) with

\[
F_1(z, \mathbf{x}) = \sum_{\ell, k} \frac{f_{\ell,k} - f_{\ell/p,k/p}}{\ell} z \frac{d}{dz} [g(z)\ell] x^k
\]

and

\[
F_2(z, \mathbf{x}) = \sum_{\ell, k} \frac{f_{\ell/p,k/p}}{\ell} z \frac{d}{dz} [g(z)\ell] x^k,
\]

where we use the convention that \(f_{\ell/p,k/p} = 0 \) if \(\ell \) or \(k \) is not divisible by \(p \).

The second sum equals

\[
F_2(z, \mathbf{x}) = \sum_{\ell, k} f_{\ell/p,k/p} z \frac{d}{dz} \left[\frac{g(z)\ell - g(zp)\ell/p}{\ell} \right] x^k + F(zp, x^p).
\]

To prove our claim, we need to show that the coefficient of \(z^L x^k \) in \(F(z, \mathbf{x}) - F(zp, x^p) \) is divisible by \(p^r \) with \(r = \min(\nu_p(\mathbf{L}), \nu_p(\mathbf{k})) \).

Let \(h(z) = (g(z)\ell - g(zp)\ell/p) / \ell \) for \(\ell \in p\mathbb{Z} \). Since \(g(z) \in \mathbb{Z}_p[[z]] \), we have \(g(z)p \equiv g(zp) \), which implies that \(h \) has \(p \)-adically integer coefficients. Let \(h_L \in \mathbb{Z}_p \) be the coefficient of \(z^L \) in \(h(z) \). Then the coefficient of \(z^L \) in \(z^L \frac{d}{dz} h(z) \) is \(Lh_L \), which is divisible by \(p^{\nu_p(\mathbf{L})} \).

It therefore only remains to show that the coefficient of \(z^L x^k \) in \(F_1(z, \mathbf{x}) \) is divisible by \(p^r \) with \(r = \min(\nu_p(\mathbf{L}), \nu_p(\mathbf{k})) \). Equivalently, if \(C_L \) is the coefficient of \(z^L \) in

\[
\frac{f_{\ell,k} - f_{\ell/p,k/p}}{\ell} z \frac{d}{dz} [g(z)\ell],
\]

then we need to show that \(\nu_p(C_L) \geq \min(\nu_p(\mathbf{L}), \nu_p(\mathbf{k})) \). Observe that the \(p \)-adic valuation of the coefficient of \(z^L \) in \(z^L \frac{d}{dz} g(z)\ell \) is at least \(\max(\nu_p(\ell), \nu_p(\mathbf{L})) \). Then, because \(f \) satisfies the Gauss congruences for \(p \),

\[
\nu_p(C_L) \geq \min(\nu_p(\ell), \nu_p(\mathbf{k})) - \nu_p(\ell) + \max(\nu_p(\ell), \nu_p(\mathbf{L})) \geq \min(\nu_p(\mathbf{L}), \nu_p(\mathbf{k})),
\]

which completes the proof. \(\blacksquare \)
COROLLARY 7.2. Let \(g_j \in \mathbb{Q}(x) \) be nonzero. If \(f \in \mathbb{Q}(x) \) has the Gauss property, then so does the rational function

\[
\left(\prod_{j=1}^{n} \frac{x_j g'_j(x_j)}{g_j(x_j)} \right) f(g_1(x_1), \ldots, g_n(x_n)).
\]

Proof. Clearly, it suffices to show that if \(f \in \mathbb{Q}(z, x) \) has the Gauss property, then, for any nonzero \(g \in \mathbb{Q}(z) \), the rational function

\[
F(z, x) = \frac{z g'(z)}{g(z)} f(g(z), x)
\]

has the Gauss property.

First, consider the case that \(g(0) = 0 \). Let \(P, Q \in \mathbb{Z}[z, x] \) and suppose that \(f = P/Q \) has the Gauss property. Observe that there exists a vertex \(v \) of \(N(Q) \) and a linear form \(\alpha \) with \(\alpha(1, 0, \ldots, 0) > 0 \) such that \(\alpha(w) > 0 \) for all nonzero \(w \) in the proper cone \(C \) generated by \(N(Q/(z, x)^v) \). It follows from Corollary 3.7 that the Laurent series expansion of \(f \) with respect to \(v \) is supported on \(C \). Since adding a constant does not affect the Gauss property, we may assume that this series has constant term 0. Hence, the assumptions of Theorem 7.1 are satisfied for all but finitely many primes \(p \). We conclude that \(F(z, x) \) has the Gauss property.

Next, suppose that \(g(z) \) has a pole at \(z = 0 \). By Proposition 6.1, \(F(z, x) \) has the Gauss property if and only if \(F(1/z, x) \) does. Let \(h(z) = g(1/z) \), and note that

\[
(1/z, x) = -\frac{z h'(z)}{h(z)} f(h(z), x).
\]

Since \(h(0) = 0 \), it follows from the previous case that \(F(1/z, x) \), and hence \(F(z, x) \), has the Gauss property.

It therefore remains to consider the case \(g(0) = c \in \mathbb{Q}^\times \). In light of the first case, it suffices to consider \(g(z) = z + c \). Observe that \(g(z) = g_1(g_2(g_1(z))) \) with \(g_1(z) = 1/z \) and \(g_2(z) = z/(1+cz) \). Since the result holds for \(g_1 \) and \(g_2 \), we conclude that it also holds for \(g \).

8. A proof of Minton’s result. In this section, we reprove the following result of Minton [Min14].

THEOREM 8.1 (Minton, 2014). Let \(f \in \mathbb{Q}(x) \). Then the following are equivalent:

(a) \(f \) has the Gauss property.
(b) The coefficients \(a_n \) of the Laurent series expansion \(f = \sum a_n x^n \) satisfy

\[
a_{np} \equiv a_n \pmod{p}
\]

for almost all primes \(p \).
(c) \(f \) is equal to \(f(0) \) plus a \(\mathbb{Q} \)-linear combination of functions of the form \(xu'(x)/u(x) \), where \(u \in \mathbb{Q}[x] \) is irreducible and \(u(0) = 1 \).
Note that (b) concerns only congruences modulo primes. By the theorem, this already implies the Gauss congruences modulo prime powers.

Proof of Theorem 8.1. That (c) implies (a) is a consequence of the case $m = 1$ of Theorem 4.5. Since (a) obviously implies (b), it remains to show that (b) implies (c).

Write $f = P/Q$ with $P, Q \in \mathbb{Z}[x]$. Assume that the congruences (b) hold, or equivalently

\begin{equation}
U_p(P/Q) \equiv P/Q \pmod{p},
\end{equation}

where U is the operator introduced in (8). It follows as in the proof of Proposition 3.5 (which only relied on the Gauss congruences modulo primes, not prime powers) that $N(P) \subseteq N(Q)$. This implies that P/Q has no pole in $x = 0$ and $\deg(P) \leq \deg(Q)$. Since adding a constant to f does not affect the result, we may assume that $Q(0) = 1$ and $\deg(P) < \deg(Q)$. Then P/Q has a partial fraction expansion of the form

$$
\frac{P}{Q} = \sum_{i=1}^{r} \sum_{j=1}^{m_i} \frac{A_{ij}}{(1 - \alpha_i x)^j},
$$

where the $\alpha_i \in \tilde{Q}$ are distinct algebraic numbers, $m_i \geq 1$ and $A_{ij} \in \tilde{Q}$. We first show that $m_i = 1$. To that end, note that, for all sufficiently large prime numbers p, and all i and j, the norms of α_i and A_{ij} are p-adic units, the α_i are distinct modulo p, and $p > m_i$. Let p be a prime satisfying these conditions. Since $p > m_i$, we then have, for all $j = 1, \ldots, m_i$,

\begin{equation}
U_p\left(\frac{1}{(1 - \alpha_i x)^j}\right) = U_p\left(\sum_{k \geq 0} \binom{k + j - 1}{j - 1} \alpha_i^k x^k\right) = \sum_{k \geq 0} \binom{pk + j - 1}{j - 1} \alpha_i^{pk} x^k \\
\equiv \sum_{k \geq 0} \alpha_i^{pk} x^k = \frac{1}{1 - \alpha_i x} \pmod{p}.
\end{equation}

As a consequence, $U_p(P/Q)$, modulo p, is equal to a rational function with simple poles. From (16) we conclude that P/Q has only simple poles as well.

From now on, we may therefore write $A_i = A_{i1}$ and have

$$
\frac{P}{Q} = \sum_{i=1}^{r} \frac{A_i}{1 - \alpha_i x}, \quad U_p\left(\frac{P}{Q}\right) \equiv \sum_{i=1}^{r} \frac{A_i}{1 - \alpha_i x} \pmod{p}.
$$

Moreover, the kth coefficient of $P/Q = \sum_{k \geq 0} f_k x^k$ is $f_k = \sum_{i=1}^{r} A_i \alpha_i^k$. Since $f_k \in \mathbb{Q}$ is a p-adic integer, we have

$$
f_k \equiv f_k^p \equiv \sum_{i=1}^{r} A_i^p \alpha_i^{pk} \pmod{p},
$$
which implies that
\[
\frac{P}{Q} \equiv \sum_{i=1}^{r} \frac{A_i^p}{1 - \alpha_i^p x} \pmod{p}.
\]
Since \(\frac{P}{Q} \equiv U_p(P/Q) \pmod{p} \), we conclude that \(A_i^p \equiv A_i \pmod{p} \) for all \(i = 1, \ldots, r \). From Frobenius’s density theorem (see, for instance, [Jan73, p. 134]), it follows that \(A_i \in \mathbb{Q} \) for all \(i \).

Finally, let us group the \(\alpha_i \) in Galois orbits under \(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \). Suppose, say, that \(\alpha_1, \ldots, \alpha_s \) is such a Galois orbit. Since \(\frac{P}{Q} \) is Galois invariant, and the \(A_i \) are rational, we must have \(A_1 = \cdots = A_s \). Hence, we conclude that \(\frac{P}{Q} \) is a rational linear combination of functions of the form
\[
\sum_{i=1}^{s} \frac{1}{1 - \alpha_i x} = s - x \frac{v'(x)}{v(x)},
\]
where \(v(x) = \prod_{i=1}^{s} (1 - \alpha_i x) \). Moreover, \(v \in \mathbb{Q}[x] \) because \(\alpha_1, \ldots, \alpha_s \) form a Galois orbit. ■

Acknowledgments. The first and third authors would like to thank the Max-Planck-Institute for Mathematics in Bonn, where this work was initiated, for providing support and wonderful working conditions.

References

[Apé79] R. Apéry, Irrationalité de \(\zeta(2) \) et \(\zeta(3) \), Astérisque 61 (1979), 11–13.
[Beu85] F. Beukers, Some congruences for the Apéry numbers, J. Number Theory 21 (1985), 141–155.
[Cos88] M. J. Coster, Supercongruences, PhD thesis, Univ. Leiden, 1988.
[GKZ94] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, MA, 1994.
[Ges14] I. Gessel, Problem 11757, Amer. Math. Monthly 121 (2014), 170.
[Jan73] G. J. Janusz, Algebraic Number Fields, Academic Press, New York, 1973.
[Min14] G. T. Minton, Linear recurrence sequences satisfying congruence conditions, Proc. Amer. Math. Soc. 142 (2014), 2337–2352.
[RY15] E. Rowland and R. Yassawi, Automatic congruences for diagonals of rational functions, J. Théor. Nombres Bordeaux 27 (2015), 245–288.
[Str14] A. Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra Number Theory 8 (2014), 1985–2008.
[Zar08] A. V. Zarelua, On congruences for the traces of powers of some matrices, Proc. Steklov Inst. Math. 263 (2008), 78–98.