Hepatic neuroendocrine carcinoma with metastases to the lymph nodes in a sika deer (Cervus nippon yakushimae)

Ritsu SHIBATA1), Yukino MACHIDA1), Hitoshi HATAKEYAMA2), Hisashi YOSHIMURA3), Masami YAMAMOTO3), Kazuhiro OCHIAI4), Kazuyoshi UEMATSU5) and Masaki MICHISHITA1)*

1)Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
2)Laboratory of Comparative Cellular Biology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
3)Division of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
4)Department of Basic Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan
5)Akishima Animal Hospital, 1260 Nakagami-cho, Akishima, Tokyo 196-0022, Japan

ABSTRACT. A 26-year and 6-month-old male sika deer that was kept at the Showa Park, Tokyo, Japan, collapsed and died of severe disease wasting and severe tabefaction. Grossly, numerous masses, 0.3–1.0 cm diameter, were dispersed throughout the liver. The multiple masses were composed of tumor cells, which had hypochromatic nuclei and abundant faintly eosinophilic cytoplasm, arranged in nests of various sizes. Immunohistochemically, tumor cells were positive for cytokeratin, chromogranin A, synaptophysin and gastrin. Ultrastructurally, the cytoplasm of the tumor cells contained abundant membrane-bound electron-dense granules. A metastatic lesion was observed in the renal, hepatic and pancreatic lymph nodes. On the basis of these findings, this tumor was diagnosed as a neuroendocrine carcinoma with metastases to the lymph nodes.

KEY WORDS: hepatic neuroendocrine carcinoma, metastasis, sika deer

Hepatic neuroendocrine carcinomas (hepatic carcinoid) are extremely rare tumors in animals, but cases have been reported in several animals such as dogs [13], cats [1, 7, 9], cow [8], goat [17] and horse [3]. Hepatic neuroendocrine carcinoma can form small or large masses of multiple nodules scattered throughout the liver [5] and then metastasizes to the various organs, including the lungs and lymph nodes [1, 7, 8, 17]. Neuroendocrine markers such as chromogranin A, synaptophysin and neuron-specific enolase (NSE) are useful for the diagnosis of neuroendocrine carcinoma as well as the characteristic morphological features of the presence of argyrophilic granules positively stained with Grimelius stain and of membrane-bound neuroendocrine granules ultrastructurally [10].

Primary hepatic tumors, including hepatomas, hepatocellular carcinomas, cholangiomas, carcinoids, undifferentiated carcinomas and hemangiosarcomas have been reported in roe deer [4, 6, 11, 12, 15], white-tailed deer [14] and red deer hind [18]. Thus far, only one other case of a neuroendocrine tumor arising from the liver has been reported in a red deer hind, which was classified as a carcinoid tumor without metastasis [18]. However, immunohistochemistry was not conducted [18]. Thus, as far as we know, hepatic neuroendocrine carcinoma with metastases to the lymph nodes has not yet been reported in deer. In this report, we describe the histological, immunohistochemical and ultrastructural features of hepatic neuroendocrine carcinoma in a sika deer (Cervus nippon yakushimae).

A 26-year and 6-month-old male sika deer that was kept at the Showa Park, Tokyo, Japan, collapsed and died of severe wasting and tabefaction. The sika deer fed on root crops such as carrots and sweet potatoes, soybean meal and hay cubes. No detailed clinical examinations were performed. The sika deer was subjected to necropsy within 10 hr of death. The body weight of the deer at necropsy was 23.1 kg. Tissues collected during necropsy were fixed in 10% neutral buffered formalin, processed routinely
The cause of death in the present case may be related to aging as no histopathological lesions were found that could have been considered the cause of death. To the best of our knowledge, this is the first report of a hepatic neuroendocrine carcinoma with metastases to the lymph nodes. This tumor should be distinguished from hepatoblastoma and metastatic neuroendocrine carcinoma of the pancreas, gallbladder and digestive tract. Tumor cells of hepatoblastomas have argyrophilic granules and are positive for cytokeratin, HepPer-1, α-fetoprotein,NSE and synaptophysin but negative for chromogranin A [2, 3, 16]. In contrast, neuroendocrine tumors are negative for hepatocyte and α-fetoprotein [5]. By the detailed postmortem pathological examination, it was possible to rule out the presence of any tumor in the pancreas, gallbladder and digestive tract by the detailed pathological examination. Therefore, these differential diagnoses were excluded in the present case.

A number of neuroendocrine carcinomas arising from the liver are identified as hormone-nonsecreting tumors. However, it has been reported that in rare cases, some tumors can produce hormones such as gastrin, glucagon, insulin and somatostatin, indicating the presence of a functional neoplasm [1, 9, 13]. In cats, paraneoplastic signs of two types have been reported in hepatic neuroendocrine carcinomas: 1) necrotic migratory erythema associated with a glucagon-producing type and 2) increased gastric acid secretion by gastrin production following gastrointestinal ulceration [1, 9]. A previous study in dogs reported the involvement of insulin and serotonin immunoreactivity [13], but the significance of insulin and serotonin expression remains unclear. In the present case, the neuroendocrine carcinoma could be considered as a nonfunctional neoplasm because there were no clinical signs, such as vomiting and bloody feces, or pathological findings, such as gastrointestinal hemorrhage and ulceration; however, some tumor cells were immunohistochemically positive for gastrin.

ACKNOWLEDGMENT. We thank the staff of Showa Park from Akishima city for providing valuable clinical information.

Table 1. Primary antibodies used in the present case

Antibody	Clone	Dilution	Source	Antigen retrieval	Positive control tissue
Cytokeratin	AE1/AE3	1:200	Dako, Glostrup, Denmark	121°C for 15 min in citrate buffer, pH 6.0	Liver
Vimentin	V9	1:100	Dako	121°C for 15 min in citrate buffer, pH 6.0	Liver
Neuron-specific enolase	BBS/NC/VI-H14	1:200	Dako	121°C for 15 min in citrate buffer, pH 6.0	Liver
Synaptophysin	SRA-E5	1:100	TransGenic, Kumamoto, Japan	121°C for 15 min in citrate buffer, pH 6.0	Pancreas
Hepatocyte	OCH1E5	1:25	Dako	121°C for 20 min in citrate buffer, pH 6.0	Liver
Chromogranin A	Polyclonal	1:1,000	Biomed, Foster City, CA, USA	None	Pancreas
Insulin	Polyclonal	1:800	Dako	None	Pancreas
Gastrin	Polyclonal	Prediluted	Dako	None	Duodenum

doi: 10.1292/jvms.19-0472
NEUROENDOCRINE CARCINOMA IN A DEER

Fig. 1. The hepatic neuroendocrine carcinoma in a sika deer. (A) The masses, measuring 0.3–1.0 cm in diameter were randomly dispersed throughout the liver. The external surfaces were smooth and homogeneously pale orange–red in color (A and B). Bar=3.0 cm (A) and 2.0 cm (B).

Fig. 2. The mass is composed of tumor cells arranged in nests of various sizes separated by a delicate fibrovascular stroma. HE. Bar=200 µm.

Fig. 3. Tumor cells have small to intermediate, round hypochromatic nuclei and abundant faintly eosinophilic cytoplasm. HE. Bar=50 µm. Inset: Grimelius stain. Bar=20 µm.

Fig. 4. Metastases of tumor cells are observed in the pancreatic lymph nodes which contain numerous erythrocytes into the lymphatic sinus. HE. Bar=200 µm. Inset: HE. Bar=50 µm.

Fig. 5. Tumor cells from the liver were positive for cytokeratin. Immunohistochemistry. Bar=25 µm.

Fig. 6. A small number of tumor cells from the liver were positive for chromogranin A. Immunohistochemistry. Bar=25 µm.

Fig. 7. A small number of tumor cells from the liver were positive for gastrin. Immunohistochemistry. Bar=25 µm.

Fig. 8. Tumor cells contain abundant electron-dense granules. Bar=500 nm. Inset: membrane-bound granules. Bar=100 nm.
REFERENCES

1. Asakawa, M. G., Cullen, J. M. and Linder, K. E. 2013. Necrolytic migratory erythema associated with a glucagon-producing primary hepatic neuroendocrine carcinoma in a cat. Vet. Dermatol. 24: 466–469, e109–e110. [Medline] [CrossRef]

2. Ano, N., Ozaki, K., Nomura, K. and Narama, I. 2011. Hepatoblastoma in a cat. Vet. Pathol. 48: 1020–1023. [Medline] [CrossRef]

3. Cantile, C., Arispici, M., Abramo, F. and Campani, D. 2001. Hepatoblastoma in a foal. Equine Vet. J. 33: 214–216. [Medline] [CrossRef]

4. Craig, W. A. 1979. Adenoma in a British roe deer (Capreolus capreolus). Vet. Rec. 104: 214–215. [Medline] [CrossRef]

5. Cullen, J. M. 2017. Tumors of the liver and gallbladder. pp. 602–616. In: Tumors in Domestic Animals, 5th ed. (Meuten, D. J. ed), Wiley & Sons, Inc., Ames.

6. de Jong, C. B., van Wieren, S. E., Gill, R. M. and Munro, R. 2004. Relationship between diet and liver carcinomas in roe deer in Kielder Forest and Galloway Forest. Vet. Rec. 155: 197–200. [Medline] [CrossRef]

7. Ferreira-Neves, P., Lezmi, S., Lejeune, T., Rakotovao, F., Dally, C., Fontaine, J. J., Bernex, F. and Cordonnier, N. 2008. Immunohistochemical characterization of a hepatic neuroendocrine carcinoma in a cat. J. Vet. Diagn. Invest. 20: 110–114. [Medline] [CrossRef]

8. Johnson, L. K., Nunez, A., Bracegirdle, J. R., Dwyer, J. R. and Konold, T. 2008. Neuroendocrine carcinoma of the liver and gallbladder in a cow. J. Comp. Pathol. 138: 165–168. [Medline] [CrossRef]

9. Kita, C., Yamagami, T., Kinouchi, S., Nakano, M., Nagata, N., Suzuki, H., Ohtake, Y., Miyoshi, T., Irie, M. and Uchida, K. 2014. A feline case of hepatic neuroendocrine carcinoma with gastrin immunoreactivity. J. Vet. Med. Sci. 76: 887–890. [Medline] [CrossRef]

10. Michishita, M., Takagi, M., Kishimoto, T. E., Nakahira, R., Nagami, T., Yoshimura, H., Hatakeyama, H., Azakami, D., Ochiai, K. and Takahashi, K. 2017. Pancreatic neuroendocrine carcinoma with exocrine differentiation in a young cat. J. Vet. Diagn. Invest. 29: 325–330. [Medline] [CrossRef]

11. Munro, R. 1992. Deer liver tumours. Vet. Rec. 130: 336. [Medline] [CrossRef]

12. Munro, R. and Youngson, R. W. 1996. Hepatocellular tumours in roe deer in Britain. Vet. Rec. 138: 542–546. [Medline] [CrossRef]

13. Patnaik, A. K., Newman, S. J., Scase, T., Erlandson, R. A., Antonescu, C., Craft, D. and Bergman, P. J. 2005. Canine hepatic neuroendocrine carcinoma: an immunohistochemical and electron microscopic study. Vet. Pathol. 42: 140–146. [Medline] [CrossRef]

14. Placke, M. E., Roscoe, D. E., Wyand, D. S. and Nielsen, S. W. 1982. Hepatocellular adenocarcinoma in a white-tailed deer (Odocoileus virginianus). Can. J. Comp. Med. 46: 198–200. [Medline]

15. Schlumberger, H. G. 1957. Tumors characteristic for certain animal species; a review. Cancer Res. 17: 823–832. [Medline]

16. Shiga, A., Shirota, K., Shida, T., Yamada, T. and Nomura, Y. 1997. Hepatoblastoma in a dog. J. Vet. Med. Sci. 59: 1167–1170. [Medline] [CrossRef]

17. Völker, I., Kunnmrow, M., von Dörrnberg, K., Wohlese, P. and Hewicker-Trautwein, M. 2015. Metastasising hepatic neuroendocrine carcinoma in a pygmy goat (Capra hircus hircus). Vet. Rec. Case Rep. 3: e000196. [CrossRef]

18. Zele, D., Gombač, M., Svara, T. and Venguš, G. 2011. A case of hepatic carcinoid in a red deer hind (Cervus elaphus). Acta Vet. Hung. 59: 319–325. [Medline] [CrossRef]