Topological Random Fractals

Moein N. Ivaki, Isac Sahlberg, Kim Pöyhönen and Teemu Ojanen
Computational Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences,
Tampere University, P.O. Box 692, FI-33014 Tampere, Finland and
Helsinki Institute of Physics P.O. Box 64, FI-00014, Finland

We introduce the notion of topological electronic states on random lattices in non-integer dimensions. By considering a class D model on critical percolation clusters embedded in two dimensions, we demonstrate that these topological random fractals exhibit a robust mobility gap, support quantized conductance and represent a well-defined thermodynamic phase of matter. The finite-size scaling analysis further suggests that the critical properties are not consistent with the class D systems in two dimensions. Our results establish topological random fractals as the most complex systems known to support nontrivial band topology with their distinct unique properties.

Introduction — Since the discovery of the quantum Hall effect, the quantized conductance, dissipationless currents and unconventional edge excitations have captured the fascination of generations of physicists [1–8]. These remarkable properties, unlike from the point of view of traditional solid state physics, ultimately result from the topology of the electronic spectrum [9–12]. Recent efforts have revealed that topological states in naturally occurring materials are ubiquitous in nature [13–15].

Currently, the research of topological states of matter has moved beyond crystalline solids to amorphous and quasicrystalline systems [16–49]. While it is not yet clear whether these states of matter exist in nature, they can be realized in artificial designer systems [50–54]. Besides offering new avenues for functional devices, these systems open a new chapter in the physics of topological matter and the theory of Anderson localization. In this vein, the possibility of topological states in fractals has stirred a new research direction. Despite reported signatures of topology in a number of fractal lattices, many aspect of these systems remains unclear or controversial [55–64]. The existence and nature of the spectral gap, possibility of supporting quantized responses and anomalous dependence on system details (such as the coordination number of lattice sites) remain under debate. Furthermore, since the studies are mostly restricted to modest-size structures without systematic finite-size scaling analysis, it is not clear whether the finite samples actually represent a well-defined thermodynamic phase of matter.

The research on topological fractals so far has been limited to deterministic self-similar structures. The organization principle of these structures, as of quasicrystals, is completely deterministic without any element of randomness. In contrast, in this work we demonstrate a novel topological phase on fundamentally more complex self-similar random lattices depicted in Fig. 1. These random fractals are statistically self-similar, i.e. generated from a probability distribution, and characterized by a non-integer spatial dimension $d_f = \frac{91}{48} < 2$ (the number of sites within a circle of radius r scales as r^{d_f} for large r) and a set of standard critical exponents. Our main findings are summarized in the following discoveries: I) the studied topological random fractals have in general a gapless energy spectrum but exhibit a well-defined mobility gap protecting the topological phase, II) the studied system supports robust quantized conductance, III) finite-size scaling analysis show that topological random fractals represent a well-defined thermodynamic phase of matter, IV) the localization exponent for class D random fractals is incompatible with the universal value $\nu = 1$ in two dimensions. The last property suggests that, despite similarities with topological insulators in integer dimensions where they
FIG. 2. Phase diagram of the studied system as a function of the second-nearest-neighbour hopping \(t_2 \) and the mass parameter \(M \), obtained by calculation of the conductance \(G \) for half-filled square-shaped systems with linear dimensions \(L = 150 \). The dashed white line represents the approximate critical surface \(G^c = 0.65 \), which encloses the topological regime where \(G \to 1 \) in the thermodynamic limit \(L \to \infty \). The blue star signifies the tricritical point at \(t_2 = 0 \) and \(M^c \approx 1.1 \). Data is averaged over 650 independent random realizations.

are embedded, topological random fractals represent a distinct state of matter.

Model and phase diagram— In this work we consider random lattices arising from a site percolation process on a square lattice where each site is randomly occupied by probability \(p \) [67]. There exists a critical concentration \(0 < p_c < 1 \), known as the percolation threshold, above which the random lattice has an infinite nearest-neighbour-connected cluster in the thermodynamic limit. Below the threshold, the system consists of disconnected finite clusters. When approaching the percolation threshold, the characteristic length scale of the lattice \(\xi \) (the geometric correlation length) diverges as \(\xi \propto |p - p_c|^{-4/3} \), signifying that the percolating critical cluster becomes a scale-free fractal. On the square lattice this takes place at \(p_c \approx 0.593 \). The percolation transition at \(p_c \) is sharply defined for an infinite system and the correlation length is understood as a statistical average. In Fig. 1 we have illustrated three finite-size realizations of the random fractals generated by the above-described percolation process.

Next we define a two-band tight-binding model on critical square lattice percolation clusters. The model is determined by the Hamiltonian

\[
\mathcal{H} = (2 - M) \sum_i c_i^\dagger \sigma_z c_i - t_2 \sum_{\langle i,j \rangle} c_{i}^\dagger \eta_{ij} c_{j} - t_2 \sum_{\langle\langle i,j \rangle\rangle} c_{i}^\dagger \eta_{ij} c_{j} + \text{h.c.,}
\]

where \(M \) is the onsite mass parameter and \(t \) and \(t_2 \) represent the hopping amplitudes between the nearestand second-nearest-neighbor sites on a square lattice provided those sites are present in a given random realization. The matrix \(\eta_{ij} = \sigma_z + i \cos \theta_{ij} \sigma_x + i \sin \theta_{ij} \sigma_y \) is determined by \(\theta_{ij} \), which denotes the angle between the \(x \) axis and the bond vector from site \(i \) to site \(j \). The two-component operators \(c_i^\dagger = (c_{i1}^\dagger, c_{i2}^\dagger) \) create fermions at site \(i \), and \(\sigma_{x,y,z} \) are the Pauli matrices operating in the two-orbital space. The model (1) breaks time-reversal symmetry and satisfies particle-hole symmetry as \(\sigma_z \mathcal{H}^* \sigma_z = -\mathcal{H} \), hence belonging to the symmetry class \(D \) [68, 69]. On a square lattice with only nearest-neighbor hopping \((t_2 = 0) \), the model supports a topological phase in the region \(0 < M/t < 2 \) \((2 < M/t < 4) \), classified by the Chern number 1 \((-1)\). In the remainder of this paper, we set \(t = 1 \) and express the other parameters in units of \(t \). On a regular lattice, a disordered class \(D \) model is known to host a metallic phase which separates the two insulating topological phases. In the case of anisotropic models, an intervening localized phase appears. The localization exponents at metal-insulator and insulator-insulator transitions are known to be \(\nu_{MI} \approx 1.4 \) and \(\nu_{II} = 1 \), respectively [70–76].

To numerically evaluate a two-terminal conductance \(G \) we employ the KWANT software [77], which implements transport calculations using scattering theory [78]. It is assumed that the studied \(L \times L \) samples are attached to two identical semi-infinite metallic leads, represented by decoupled 1d chains, in the \(x \)-direction. The resulting transmission probabilities are extracted at the half-filling \(E = 0 \) when not stated otherwise. Fig. 2 displays the phase diagram in the \((M, t_2) \) plane obtained by calculation of the configuration-averaged conductance. This reveals the existence of a topological phase, which is characterized by quantized conductance \(G = 1 \) in the thermodynamic limit, and trivial, insulating regions. As discussed below in the context of finite-size scaling, the topological phase is separated from the trivial phases by a critical line which corresponds to critical conductance \(G^c \approx 0.65 \). The critical point at \((t_2^c, M^c) \approx (0, 1.1) \) signifies a meeting point.
of three distinct phases, the topological phase, a trivial spectral insulator and a trivial Anderson insulator. A finite second-nearest-neighbour hopping $|t_2| > 0$ opens up a robust topological phase studied in detail below. The nature of the transition between the trivial spectral and Anderson insulator phases at the $t_2 = 0$ line is illustrated in Fig. 3. In Fig. 3(a), the mid-spectrum density of states indicates the formation of a spectral gap for $M < 1.1$, while for $1.1 < M < 2.9$ the systems is in a gapless Anderson-localized phase. However, both phases separated by the tricritical metallic point $(t_2^c, M^c) \approx (0, 1.1)$ are insulating, as seen in Fig. 3(b). The localization of states in the Anderson insulating phase is further analyzed by the configuration-averaged inverse participation ratio $\text{IPR}(E) = \sum_{\alpha} |\Psi_{\alpha}|^4$. The inverse participation ratio shows great enhancement around $E = 0$ everywhere in the Anderson-localized regime, indicating that the spectrum is gapless but consists of trivial localized states.

Topological random fractal phase—Having established the global features of the phase diagram, we are now establishing the properties of the topological random fractal phase. Most importantly, we concentrate on quantized conductance which is the hallmark of topological states. In contrast to the studies of deterministic fractals [55, 59, 61], we uncover unambiguous and robust quantization of conductance in the topological random fractal phase. The formation of the quantized plateau as a function of t_2 is demonstrated in Fig. 4(a). At the tricritical point $(t_2^c, M^c) \approx (0, 1.1)$, even a marginal increase of t_2 leads to formation of the topological phase with robust conductance quantization. In Fig. 4(b), we have plotted the conductance as a function of the energy (or the chemical potential of the leads) for a number of individual random fractal realizations. All the samples exhibit a finite quantized plateau around $E = 0$. While the topological random fractal phase is gapless, the topology is protected by a mobility gap. The width of the plateaus in Fig. 4(b), which show sample to sample fluctuations, corresponds to the value of the mobility gap. As long as the energy is located in the mobility gap, the conductance (for samples larger than the localization length) remains quantized.

As a testament to the remarkable robustness of the topological states, as the system size grows, the conductance quantization becomes accurate despite the great complexity and variation of different random fractal realizations. As illustrated by histograms in Fig. 4(c), well inside the topological regime, over 90% of configurations with the linear size $L = 1600$ display conductance quantization with 1% accuracy or better. As seen in Fig. 4(d), the quantization develops rapidly when moving from the tricritical point towards the topological phase. Larger systems exhibit on average more precise quantization, indicating that the random fractal phase is a well-defined thermodynamic phase of matter.

To illustrate that topological random fractals constitute a well-defined thermodynamic phase of matter, we carry out a finite-size scaling study. According to the theory of topological localization transitions, near the transition one expects that the configuration-averaged conductance obeys a single-parameter scaling hypothesis in the large system limit. This hypothesis predicts that the conductance curves for different system sizes collapse to a universal curve $G = f \left[L^{1/\nu} \zeta \right]$, where ζ represents a parameter that drives the transition [8]. The scaling function f approaches 0 (1) at large negative (positive) arguments. The scaling behaviour indicates that the system undergoes a sharply-defined topological phase transition at $\zeta = 0$ in the thermodynamic limit, separating two distinct phases of matter. The localization length critical exponent ν is expected to be universal for all systems with the same spatial dimension and symmetry class. In particular, for symmetry class D in two dimensions the exponent is $\nu = 1$ [75, 76]. A high-precision determination of the critical exponents in the topological random fractal is beyond the scope of the present work. However, by calculating the conductance as a function of the second-nearest-neighbour hopping, to explore the validity of the scaling hypothesis $G = f \left[L^{1/\nu} (t_2 - t_2^c) \right]$, we can show that the standard two-dimensional class D scaling does not match the numerical evidence. In Fig. 5(a), we employ the value $\nu = 1$ expected for the insulator-insulator phase transition for class D systems in two dimensions. The curves do accurately cross in a single point, indicating that sufficiently close to the critical
point, the system sizes $L = 300 - 1100$ are in the single-parameter scaling regime, but the data clearly do not follow a single curve. As a contrast, as seen in Fig. 5(b) for a higher value exponent $\nu = 2.4$, the curves collapse to a single curve near the critical point. While not yielding a high-precision numerical value for the exponent, the data supports the conclusion that the transition obeys scaling behaviour. The observed substantial departure of the critical exponent from its universal 2d value further suggests that, despite bearing similarities to its integer-dimensional counterpart, the random fractal phase is a genuinely distinct phase of matter with unique critical properties. Additionally, as the curves are accurate near the critical point we can extract the critical conductance $G^c \approx 0.65$, which provides the basis for the white dashed line as an approximate phase boundary in Fig. 2.

Summary and outlook—In this work we introduced a new electronic state of matter, topological random fractals, and established its central properties. Being the most complex realization of nontrivial band topology known to date, they support robust quantized conductance protected by a mobility gap. The finite-size scaling results suggest that the topological random fractals belong to a different universality class than their integer-dimensional parent states, calling for further studies on topological fractals. Besides the fundamental interest, there is reason for optimism that such systems will become available for experimental studies in the near future. Technological advances have enabled fabrication of artificial and quantum simulator systems realizing quasicrystalline and fractal electronic structures. These advances suggest that experimental realization of topological random fractals may not be far behind.

Acknowledgements—The authors acknowledge the Academy of Finland project 331094 for support.

[1] K. v. Klitzing, G. Dorda, and M. Pepper, “New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance,” Phys. Rev. Lett. 45, 494–497 (1980).
[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized Hall conductance in a two-dimensional periodic potential,” Phys. Rev. Lett. 49, 405–408 (1982).
[3] R. B. Laughlin, “Quantized Hall conductivity in two dimensions,” Phys. Rev. B 23, 5632–5633 (1981).
[4] F. D. M. Haldane, “Model for a quantum Hall effect without landau levels: Condensed-matter realization of the “parity anomaly”,” Phys. Rev. Lett. 61, 2015–2018 (1988).
[5] S. A. Trugman, “Localization, percolation, and the quantum Hall effect,” Phys. Rev. B 27, 7539–7546 (1983).
[6] Robert Joynt and R. E. Prange, “Conditions for the quantum Hall effect,” Phys. Rev. B 29, 3303–3317 (1984).
[7] Yasuhiro Hatsugai, “Chern number and edge states in the integer quantum Hall effect,” Phys. Rev. Lett. 71, 3697–3700 (1993).
[8] Bodo Huckestein, “Scaling theory of the integer quantum Hall effect,” Reviews of Modern Physics 67, 357 (1995).
[9] M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045–3067 (2010).
[10] Xiao-Liang Qi and Shou-Cheng Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).
[11] Yoichi Ando, “Topological insulator materials,” Journal of the Physical Society of Japan 82, 102001 (2013).
[12] B. Andrei Bernevig, *Topological Insulators and Topological Superconductors* (Princeton University Press, 2013).
[13] MG Vergniory, L Elcoro, Claudia Felser, Nicolas Regnault, B Andrei Bernevig, and Zhijun Wang, “A complete catalogue of high-quality topological materials,” *Nature* 566, 480–485 (2019).
[14] Tiantian Zhang, Yi Jiang, Zhida Song, He Huang, Yuqing He, Zhong Fang, Hongming Weng, and Chen Fang, “Catalogue of topological electronic materials,” *Nature* 566, 475–479 (2019).
[15] Feng Tang, Hoi Chun Po, Ashvin Vishwanath, and Xiangang Wan, “Comprehensive search for topological materials using symmetry indicators,” *Nature* 566, 486–489 (2019).
[16] Peiheng Zhou, Gui-Geng Liu, Xin Ren, Yihao Yang, Haoran Xue, Lei Bi, Longjiang Deng, Yidong Chong, and Baile Zhang, “Photonic amorphous topological insulator,” *Light: Science & Applications* 9, 133 (2020).
[17] Paul Corbae, Samuel Ciocys, Daniel Varjas, Steven Zeltmann, Conrad H Stansbury, Manela Molina-Ruihi, Zhanghui Chen, Lin-Wang Wang, Andrew M Minor, Adolfo G Grushin, et al., “Evidence for topological surface states in amorphous BizSe3,” *arXiv preprint arXiv:1910.13412* (2019).
[18] Noah P Mitchell, Lisa M Nash, Daniel Hxner, Ari M Turner, and William TM Irvine, “Amorphous topological insulators constructed from random point sets,” *Nature Physics* 14, 380–385 (2018).
[19] I. C. Fulga, D. I. Pikulin, and T. A. Loring, “Aperiodic weak topological superconductors,” *Phys. Rev. Lett.*
[20] Adhip Agarwala and Vijay B. Shenoy, “Topological insulators in amorphous systems,” Phys. Rev. Lett. 118, 236402 (2017).

[21] Yan-Bin Yang, Tao Qin, Dong-Ling Deng, L-M Duan, and Yong Xu, “Topological amorphous metals,” Physical review letters 123, 076401 (2019).

[22] Marcio Costa, Gabriel R Schleder, Marco Bueno-giorno Nardelli, Caio Lewenkopf, and Adalberto Fazzio, “Toward realistic amorphous topological insulators,” Nano letters 19, 8941–8946 (2019).

[23] Huaqing Huang and Feng Liu, “Quantum spin Hall effect and spin bott index in a quasicrystal lattice,” Phys. Rev. Lett. 121, 126401 (2018).

[24] Dániel Varjas, Alexander Lau, Kim Pöyhönen, Anton R. Akhmerov, Dmitry I. Pikulin, and Ion Cosma Fulga, “Topological phases without crystalline counterparts,” Physical Review B 101, 035142 (2020).

[25] Adhip Agarwala, Vladimir Juričić, and Bitan Roy, “Higher-order topological insulators in amorphous solids,” Physical Review Research 2, 012067 (2020).

[26] Noah P. Mitchell, Ari M. Turner, and William T. M. Irvine, “Real-space origin of topological band gaps, localization, and reentrant phase transitions in gyroscopic metamaterials,” Phys. Rev. E 104, 025007 (2021).

[27] Yaacov E. Kraus, Yoav Lahini, Zohar Ringel, Mor Verbin, and Oded Zilberberg, “Topological states and adiabatic pumping in quasicrystals,” Phys. Rev. Lett. 109, 106402 (2012).

[28] Raúl Arúa and Eric C. Andrade, “Conventional superconductivity in quasicrystals,” Phys. Rev. B 100, 014510 (2019).

[29] Rui Chen, Chui-Zhen Chen, Jin-Hua Gao, Bin Zhou, and Dong-Hui Xu, “Higher-order topological insulator in a dodecagonal quasicrystal,” Phys. Rev. B 102, 201404 (2021).

[30] Vaacov E. Kraus, Yoav Lahini, Zohar Ringel, Mor Verbin, and Oded Zilberberg, “Topological states and adiabatic pumping in quasicrystals,” Phys. Rev. Lett. 109, 106402 (2012).

[31] Chun-Bo Hua, Rui Chen, Bin Zhou, and Dong-Hui Xu, “Higher-order topological insulator in a dodecagonal quasicrystal,” Phys. Rev. B 102, 214102 (2020).

[32] Kai Li, Jiong-Hao Wang, Yan-Bin Yang, and Yong Xu, “Symmetry-protected topological phases in a Rydberg glass,” arXiv preprint arXiv:2104.14097 (2021).

[33] Jiong-Hao Wang, Yan-Bin Yang, Ning Dai, and Yong Xu, “Structural-disorder-induced second-order topological insulators in three dimensions,” Phys. Rev. Lett. 126, 206404 (2021).

[34] Helene Spring, Anton R. Akhmerov, and Daniel Varjas, “Amorphous topological phases protected by continuous rotation symmetry,” SciPost Phys. 11, 22 (2021).

[35] Dominic V. Else, Sheng-Jie Huang, Abhinav Prem, and Andrey Gromov, “Quantum many-body topology of quasicrystals,” Phys. Rev. X 11, 041051 (2021).

[36] Bo Lv, Rui Chen, Rujiang Li, Chunying Guan, Bin Zhou, Guohua Dong, Chao Zhao, Yi Cheng Li, Ying Wang, Huibin Tao, et al., “Realization of quasicrystalline quadrupole topological insulators in electrical circuits,” Communications Physics 4, 1–6 (2021).

[37] Bruno Focassio, Gabriel R. Schleder, Felipe Crasto de Lima, Caio Lewenkopf, and Adalberto Fazzio, “Amorphous Bi2Se3 structural, electronic, and topological nature from first principles,” Phys. Rev. B 104, 214206 (2021).

[38] Miguel A. Bandres, Mikhail C. Rechtsman, and Mordechai Segev, “Topological photonic quasicrystals: Fractal topological spectrum and protected transport,” Phys. Rev. X 6, 011016 (2016).

[39] Luke N. Ivaki, Isac Sahlgren, and Teemu Ojanen, “Criticality in amorphous topological matter: Beyond the universal scaling paradigm,” Phys. Rev. Research 2, 043301 (2020).

[40] Di Zhou, Leyou Zhang, and Xiaoming Mao, “Topological boundary floppy modes in quasicrystals,” Phys. Rev. X 9, 021054 (2019).

[41] Terry A Loring, “Bulk spectrum and k-theory for infinite-area topological quasicrystals,” Journal of Mathematical Physics 60, 081903 (2019).

[42] Paul Corbae, Frances Hellman, and Sinead M. Griffin, “Structural disorder-driven topological phase transition in noncentrosymmetric Bi1–xTe1–x,” Phys. Rev. B 103, 214303 (2021).

[43] Isac Sahlberg, Alex Westström, and Teemu Ojanen, “Critcality in amorphous topological matter: Beyond the universal scaling paradigm,” Phys. Rev. Research 2, 043301 (2020).

[44] Robert Drost, Teemu Ojanen, Ari Harju, and Pieter Liljeroth, “Topological states in engineered atomic lattices,” Nature Reviews Physics 1, 703–715 (2019).

[45] Robert Drost, Teemu Ojanen, Ari Harju, and Pieter Liljeroth, “Topological states in engineered atomic lattices,” Nature Reviews Physics 1, 703–715 (2019).

[46] Sander N Kempkes, Marlou R Slot, Saoirse E Freeney, Robert Drost, Teemu Ojanen, Ari Harju, and Peter Liljeroth, “Creating designer quantum states of matter atom-by-atom,” Nature Reviews Physics 1, 703–715 (2019).

[47] Alexander A Khajetoorians, Mikael C. Rechtsman, and Andrey Gromov, “Quantum many-body topology of quasicrystals,” Phys. Rev. X 11, 041051 (2021).

[48] Bo Lv, Rui Chen, Rujiang Li, Chunying Guan, Bin Zhou, Guohua Dong, Chao Zhao, Yi Cheng Li, Ying Wang, Huibin Tao, et al., “Realization of quasicrystalline quadrupole topological insulators in electrical circuits,” Communications Physics 4, 1–6 (2021).

[49] Alexander A Khajetoorians, Daniel Wegner, Alexander F. Otte, and Ingmar Swart, “Creating designer quantum states of matter atom-by-atom,” Nature Reviews Physics 1, 703–715 (2019).

[50] Dominic V. Else, Sheng-Jie Huang, Abhinav Prem, and Andrey Gromov, “Quantum many-body topology of quasicrystals,” Phys. Rev. X 11, 041051 (2021).

[51] Bo Lv, Rui Chen, Rujiang Li, Chunying Guan, Bin Zhou, Guohua Dong, Chao Zhao, Yi Cheng Li, Ying Wang, Huibin Tao, et al., “Realization of quasicrystalline quadrupole topological insulators in electrical circuits,” Communications Physics 4, 1–6 (2021).

[52] Alexander A Khajetoorians, Daniel Wegner, Alexander F. Otte, and Ingmar Swart, “Creating designer quantum states of matter atom-by-atom,” Nature Reviews Physics 1, 703–715 (2019).
den, Cristiane Morais Smith, Lars Fritz, and Mikael Fremling, “Robustness of chiral edge modes in fractals below two dimensions: A case study,” arXiv preprint arXiv:2104.11533 (2021).

[56] Mikael Fremling, Michal van Hooft, Cristiane Morais Smith, and Lars Fritz, “Existence of robust edge currents in Sierpiński fractals,” Phys. Rev. Research 2, 013044 (2020).

[57] Saswat Sarangi and Anne E. B. Nielsen, “Effect of coordination on topological phases on self-similar structures,” Phys. Rev. B 104, 045143 (2021).

[58] Shriya Pai and Abhinav Prem, “Topological states on fractal lattices,” Phys. Rev. B 100, 155135 (2019).

[59] Askar A. Iliasov, Mikhail I. Katsnelson, and Shengjun Yuan, “Hall conductivity of a Sierpiński carpet,” Phys. Rev. B 101, 045413 (2020).

[60] Marta Brzezińska, Ashley M. Cook, and Titus Neupert, “Topology in the Sierpiński-Hofstadter problem,” Phys. Rev. B 98, 205116 (2018).

[61] Adhip Agarwala, Shriya Pai, and Vijay B Shenoy, “Fractalized metals,” arXiv preprint arXiv:1803.01404 (2018).

[62] Zhi-Gang Song, Yan-Yang Zhang, and Shu-Shen Li, “The topological insulator in a fractal space,” Applied Physics Letters 104, 233106 (2014).

[63] Sourav Manna, Callum W Duncan, Carrie A Weidner, Jacob F Sherson, and Anne EB Nielsen, “Laughlin-type topological order on a fractal lattice with a local Hamiltonian,” arXiv preprint arXiv:2106.13816 (2021).

[64] Sourav Manna, Snehasish Nandy, and Bitan Roy, “Higher-order topological phases on quantum fractals,” arXiv preprint arXiv:2109.03231 (2021).

[65] Christoph W Groth, Michael Wimmer, Anton R Akhmerov, and Xavier Waintal, “Kwant: a software package for quantum transport,” New Journal of Physics 16, 063065 (2014).

[66] C. W. J. Beenakker, “Random-matrix theory of quantum transport,” Rev. Mod. Phys. 69, 731–808 (1997).