Clinical Significance of MYT1L Gene Polymorphisms in Chinese Patients with Gastric Cancer

Yangmei Zhang1,2,*, Haixia Zhu3,4,*, Xunlei Zhang5,*, Dongying Gu1, Xichang Zhou6, Meilin Wang3,4, Chunxiang Cao1, Xiaojing Zhang1, Xiaomin Wu1, Weida Gong6, Yongfei Tang7, Jianwei Zhou8, Cuiju Tang1,*, Zhendong Zhang3,4,*, Jinfei Chen1*

1 Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, 2 Department of Oncology, Xuzhou Central Hospital, Affiliated Xuzhou Hospital, College of Medicine, Southeast University, Xuzhou, Nanjing, 3 Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, China, 4 Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China, 5 Department of Imaging and Nuclear Medicine, Affiliated Hospital of Qinghai University, Medical College of Qinghai University, XINing, China, 6 Department of Surgery, Xining Cancer Hospital, Xining, China, 7 Department of Surgery, Xining People’s Hospital, Xining, China, 8 Department of Molecular Cell Biology and Toxicology, School of Public Health, Cancer Center, Nanjing Medical University, Nanjing, China

Abstract

Background: Myelin transcription factor 1 (MYT1) and its homologue MYT1-like (MYT1L) are the two main members of MYT/NZF family transcription factors, which are highly related, share a high degree of identity and show similar regulatory functions in neural development. There are evidences from several cytology experiments showing that MYT1 is associated with carcinoma.

Methodology/Principal Findings: In the present study, we genotyped 944 surgically resected gastric cancer patients by the SNaPshot method to explore the association of MYT1L rs17039396 polymorphism with survival of gastric cancer in a Chinese population. We found that cardia cancer patients carrying MYT1L rs17039396 GG genotype survived for a significantly shorter time than those carrying the GA genotype. This significance was enhanced in the dominant model (GG vs. GA/AA, log-rank P = 0.001), suggesting a potential protective role of the variant A allele. Multivariate Cox regression analyses showed that the AG/GG genotypes were associated with a significantly decreased risk of death from gastric cancer (adjusted hazard ratio (HR) = 0.57, 95% confidence interval (CI) = 0.40–0.81). Stratification analyses further showed that such protective effect was statistically significant in subgroups of patients with tumor size ≤5 cm (adjusted HR = 0.34, 95%CI = 0.19–0.64), well/moderate gastric cancer (adjusted HR = 0.59, 95%CI = 0.35–0.98), no lymph-node metastasis (adjusted HR = 0.49, 95%CI = 0.31–0.76), no distant metastasis (adjusted HR = 0.59, 95%CI = 0.41–0.84).

Conclusions/Significance: In conclusion, these data represent the first demonstration that MYT1L rs17039396 variants could identify as a favorable prognostic indicator for gastric cancer, particularly among the cardia gastric cancer. Further validation in other studies with different ethnic populations and functional evaluations are needed.

Introduction

Gastric cancer (GC) represents the fourth most common cancer and the second leading cause of cancer-related mortality worldwide [1]. The highest incidence and mortality rates are observed in East Asia, predominantly in China [1]. Remarkable improvements have been made to date in comprehensive treatment strategies of combined surgery, chemotherapy, radiotherapy, and targeted therapy, but GC patients still have a poor prognosis, with 5-year overall survival rates of 30% [2]. Although TNM classification has been widely considered as the best available clinical measure of tumor aggression and prognosis, obvious differences exit even among patients in the same stage [3]. Moreover, multiple genetic and epigenetic alterations are implicated in the multistep process of human stomach carcinogenesis and development [4]. Therefore, discovery of readily accessible molecular markers and their application in incorporated with traditional cancer diagnosis, staging and prognosis could to a large extent be helpful for the improvement of early diagnosis, screening of high-risk individuals, as well as patient care [5]. In recent years,
increased studies had focused on the detection of genetic variants that could play roles in the development and progression of gastric cancer [6].

Zinc finger (ZnF) gene family constitute one of the largest gene families, accounting for about 3% of the genes of the human genome [7], and serve important functions in a diverse array of developmental events and cellular processes, such as control of cellular proliferation, differentiation, development and death [8]. Myelin transcription factor 1 (MYT1, or neural zinc finger 2 (NZF2)) and its homologue MYT1-like (MYT1L, or NZF1) are the two main members of MYT/NZF family transcription factors, each of which contains six copies of a ZnF with a C2HC consensus sequence. They are highly related and display a high degree of identity (91% for the finger regions and 62% at the protein level) [9,10]. Moreover, both proteins recruit the same histone deacetylases to regulate neural transcription via their interaction with Sin3B [11], pointing to similar regulatory functions in deacetylase to regulate neural transcription via their interaction identity (91% for the finger regions and 62% at the protein level) [9,10].

The whole study was approved by the Institutional Review Board of Nanjing Medical University (Nanjing, China), and each of the patients signed an informed consent on the use of clinical samples. The SNaPshot products were analyzed with the 7th edition of the American Joint Committee on Cancer (AJCC).

Genotyping

Genomic DNA was extracted from paraffin-embedded tumor tissue using proteinase K digestion, followed by isopropanol extraction and ethanol precipitation. Genotyping of samples was conducted by multiplex SNaPshot technology using an ABI fluorescence-based assay allelic discrimination method (Applied Biosystems, Foster city, CA, USA), which has been described in detail in previous study [16]. The primers were designed to anneal immediately adjacent to the nucleotide at the mutation site: forward, 5'-TAT TAG TCT GAT GCT GGC CTT TG - 3'; reverse, 5'-GAC TTC ACC TCC ACC AGG ACC A-3'. The primers for extension were as follows: 5'-TTT CCT CGG CGA CGA CGA GTT TT-3'. The SNaPshot products were analyzed by using an ABI 3130 genetic analyzer (Applied Biosystems). Genotype analysis was performed by two investigators blinded to the survival end points. Genotyping was validated by sequencing a randomly selected 10% of samples, and the results were 100% concordant. However, 35 cases failed in genotyping because of poor DNA quality, which were excluded in further analysis. Finally, 909 gastric cancer patients were included in the analysis.

Statistical analysis

Statistical analyses were carried out using SPSS version 16.0 for Windows (SPSS Inc., Chicago, IL, USA). Kaplan-Meier survival curves and the log-rank test were used for survival analysis. Univariate or multivariate Cox proportional hazard models was adopted to estimate the crude hazard ratios (HRs), adjusted HRs and their 95% confidence intervals (CIs), with adjustment for potential confounders. Moreover, Cox stepwise regression analysis was performed to assess the independent impacts of SNP or clinicopathological features on the overall survival after adjusting for other covariates, with a significance level of P<0.05 for entering and P>0.10 for removing the respective explanatory variables. Hardy-Weinberg equilibrium of alleles at individual loci was assessed by a goodness-of-fit \(\chi^2 \) test. All tests were two-sided and \(P<0.05 \) was considered statistically significant.

Results

Associations between clinicopathological variables and overall survival

The final population of this study consisted of 909 patients. The patients characteristics and clinical information are summarized in Table 1. In the follow-up period of 119 months, 421 patients died. There were 699 males (76.9%) and 210 females (23.1%), with the median age of 62 years ranging from 28 to 83 years. Clinicopathological characteristics including tumor size, histological types, differentiation, depth of invasion, lymph node metastasis, distant metastasis and TNM stage were significantly associated with survival time (log-rank \(P<0.05 \)). Specifically, patients with tumor size \(\geq 5 \) cm (MST, 48 months) had a 43% significantly higher risk of death (HR = 1.43, 95% CI = 1.18–1.73), compared with those with tumor size \(\leq 5 \) cm (MST, 74 months), and the diffuse-type gastric cancer patients (MST, 50 months) had a 45% significantly higher risk of death (HR = 1.45, 95% CI = 1.19–1.77), than those intestinal-type patients (MST, 77
Table 1. Association between clinicopathological features and survival of gastric cancer.

Variables	Patients, n = 909	Deaths, n = 421	MST (months)	Log-rank p	HR (95% CI)
Age (years)					
<60	428	197	97	0.431	1.00
>60	481	224	62	1.01	(0.99–1.02)
Sex					
Male	699	322	70	0.564	1.00
Female	210	99	67	1.07	(0.85–1.34)
Tumor size					
≤5 cm	566	238	74	<0.001	1.00
>5 cm	343	183	48	1.43	(1.18–1.73)
Location					
Non-cardia	600	282	67	0.354	1.00
Cardia	309	139	77	0.91	(0.74–1.11)
Histological types					
Intestinal	386	150	77	<0.001	1.00
Diffuse	519	268	50	1.45	(1.19–1.77)
Others	4	3	11		
Differentiation*					
Well to moderate	296	126	77	<0.001	1.00
Poorly	473	230	62	1.15	(0.93–1.43)
Mucinous/signet-ring cell	65	32	62	1.19	(0.81–1.75)
Depth of invasion*					
T1	178	58	84	<0.001	1.00
T2	130	56	78	1.42	(0.99–2.06)
T3	6	3	70	1.42	(0.44–4.52)
T4	576	292	51	1.62	(1.38–2.42)
Lymph node metastasis*					
N0	360	130	80	<0.001	1.00
N1/N2/N3	549	291	47	1.72	(1.41–2.13)
Distant metastasis					
M0	857	391	74	0.015	1.00
M1	52	30	26	1.58	(1.09–2.29)
TNM stage					
I	241	82	83	<0.001	1.00
II	194	78	71	1.24	(0.91–1.69)
III	447	245	39	1.96	(1.52–2.52)
IV	27	16	27	2.40	(1.41–4.11)
Smoking					
Non-smoker	833	389	97	0.399	1.00
Smoker	76	32	65	0.86	(0.60–1.23)
Chemotherapy					
No	298	136	74	0.516	1.00
Yes	611	285	60	1.07	(0.87–1.31)

Abbreviation: MST, median survival time; HR, hazard ratio; CI, confidence interval; AJCC, American Joint Commission on Cancer.
*Partial data were not available, and statistics were based on available data.
†The information about the depth of invasion was not available for two patients; invaded depth of tumor was classified according to the criteria of AJCC 7th.
‡Lymph nodes were staged according to tumor-node-metastasis classification of the 7th edition of AJCC in which the number of lymph nodes with a metastasis of 1–2, 3–6 and ≥7 were classified as N1, N2 and N3, respectively.
§Mean survival time was presented when the median survival time could not be measured.
doi:10.1371/journal.pone.0071979.t001
months). In addition, as the depth of invasion and TNM stage increased, the risk of death for gastric cancer showed a significant increase in a dose-response manner (log-rank \(P = 0.001 \)).

Associations of MYT1L rs17039396 with clinical outcomes of GC

Among 944 specimens of GC patients, MYT1L rs17039396 was successfully genotyped in 909 specimens. The frequency of each genotype was 57.0% (518 specimens) for the GG variant, 37.8% (344 specimens) for the GA variant, and 5.2% (47 specimens) for the AA variant. The genotype frequencies of MYT1L rs17039396 in the cases followed HWE \((P = 0.21) \). The Kaplan-Meier survival analysis and Cox proportional hazard models were used to assess the prognostic effect of MYT1L rs17039396 on GC patients in different genetic models (Table 2). No significant associations were observed between the MYT1L rs17039396 genotypes and OS of GC patients in any genetic models. We further evaluated the associations by stratified analysis of tumor location and histological types. In the overall model, MYT1L rs17039396 polymorphism was associated with the survival of cardia cancer \((log-rank P = 0.015) \). Survival time of patients with the GA genotype \((MST = 98 \) months) was significantly different compared with that of patients with the GG genotype \((MST = 47 \) months), who had a 44% higher risk of death \((HR = 0.56, 95\% CI = 0.39–0.81) \). In the dominant model, a significantly lower risk of death \((HR = 0.57, 95\% CI = 0.40–0.81) \) was found \((log-rank P = 0.001) \), as shown in Fig. 2.

Further stratified analyses and stepwise Cox regression model for survival among cardia cancer

The contribution of MYT1L rs17039396 A allele to the improved survival of cardia gastric cancer patients were further evaluated by stratified analysis of tumor size, histological types, and disease stage. MST, median survival time; HR, hazard ratio; CI, confidence interval.

All patients	Genetic models	Genotypes	Patients	Deaths	MST (months)	Log-rank \(P \)	HR (95% CI)*
Overall model	GG	518	248	56	0.108	1.00	
	GA	344	147	80	0.84 (0.68–1.39)		
	AA	47	26	52	1.21 (0.80–1.81)		
	GA or AA	391	173	78	0.88 (0.72–1.06)		
Dominant model	GG	518	248	56	0.185	1.00	
	GA or AA	344	158	74	0.134	1.00	
	GA or AA	256	124	63	0.546	1.00	
	GA or AA	174	90	47	0.005	1.00	
	GA or AA	116	41	98	0.56 (0.39–0.81)		
	AA	19	8	97	0.67 (0.33–1.38)		
	GA or AA	135	49	97	0.57 (0.40–0.81)		

Figure 1. Overall survival curve in relation to MYT1L rs17039396 polymorphism in patients with cardia gastric cancer in overall model. Figure 1 represents the Kaplan-Meier survival curve in relation to the effect of MYT1L variants on overall survival of the patients with cardia gastric cancer in overall model and the \(P \) value of log-rank test received statistical significance. doi:10.1371/journal.pone.0071979.g001

*Hazard Ratio (HR) adjusted for age, sex, TNM stage.

Mean survival time was presented when the median survival time could not be measured.
Figure 2. Overall survival curve in relation to MYT1L rs17039396 polymorphism in patients with cardia gastric cancer in dominant model. Figure 2 represents the Kaplan-Meier survival curve in relation to the effect of MYT1L rs17039396 polymorphism on overall survival of the patients with cardia gastric cancer in dominant model. Patients with GA or AA genotypes was at lower risk of death, compared with those with GG homozygotes. P value is 0.001, suggesting that MYT1L rs17039396 GA or AA genotypes were associated with better overall survival in 309 patients with cardia gastric cancer.

doi:10.1371/journal.pone.0071979.g002

degree of differentiation, depth of invasion, lymph node metastasis, distant metastasis and TNM stage. As a result, in the stratified analysis among cardia gastric cancer, we found that this protect effect was more prominent among subgroups of patients with tumor size ≤5 cm (adjusted HR = 0.34, 95%CI = 0.19–0.64), well-moderate gastric cancer (adjusted HR = 0.59, 95%CI = 0.35–0.98), no lymph-node metastasis (adjusted HR = 0.49, 95%CI = 0.31–0.76), no distant metastasis (adjusted HR = 0.59, 95%CI = 0.41–0.84) (Table 3). Cox stepwise regression analysis was conducted to evaluate the independent effect of clinicopathological variables and rs17039396 SNP on the OS of the patients with cardia gastric cancer. As shown in Table 4, two variables (TNM stage and MYT1L rs17039396) were included in the regression model by stepwise selection of the covariant variables and rs17039396 SNP was shown to be an independent protective factor for cardia cancer with a 44% decreased risk [HR = 0.56, 95%CI = 0.39–0.79, P = 0.001].

Discussion

In the present study, we investigated the effect of the MYT1L rs17039396 SNP on the progression and survival of GC. Our results indicated that the heterozygote genotype (GA) had a significantly higher survival rate than homozygote genotype (GG), and the association was also observed when analyzing the dominant model (GA/AA vs GG), suggesting that the MYT1L rs17039396 A allele may be associated with survival of GC.

In our results, MYT1L rs17039396 was significantly correlated with improved survival of cardia carcinoma but not noncardia carcinoma of the stomach. There is recently increasing evidence that the cardia type of gastric cancer has different characteristics from the noncardia type in terms of aetiology, pathology, carcinogenesis, biological behavior, prognosis and even genetic background. For example, Kamangar et al reported that H. pylori infection was a strong risk factor for non-cardia gastric cancer but was inversely associated with the risk of gastric cardia cancer [17]. Compared with the non-cardia gastric cancer, gastric cardia cancer is associated with reflux symptoms, predominance in white males and a greater frequency of differentiated-type tumors [18]. Furthermore, a greater tendency towards poorly differentiated histology, lymph node metastasis, advanced pathologic TNM stage, and a poor prognosis were described as characteristics of cardia carcinoma [19]. Therefore, it is rational to consider cardia carcinoma as a specific category of GC. It could be said that the indiscriminate combination of the two subtypes of GC may mask or produce underestimation of the strength of the authentic associations. In the stratified analyses, when confined to the patients with some special clinicopathological features such as tumor size ≤5 cm, well-moderate gastric cancer, no lymph-node metastasis, no distant metastasis, the survival time for the subjects carrying GA or AA genotypes was longer than those for GG genotypes, indicating that the abovementioned prognostic factors may have a combined effect with rs17039396 on the superior OS of cardia gastric cancer.

The MYT1L gene (MIM:613084) maps to chromosome 2p25.3 with 542161 bp in length, comprising twenty-five exons (http://www.ncbi.nlm.nih.gov/GENE/). Exon 1 to exon 5 and the distal part of exon 25 are untranscribed regions, while the other 19 exons and the proximal part of exon 25 are coding regions. Wang et al. [20] found that rs3748998 in exon 9 of MYT1L gene conferred a predisposition to major depressive disorder. A case–control study with a relatively large sample size showed that rs17039396 located near 5′ untranslated regions and rs10190125 in intron 1 of MYT1L gene were significantly associated with Schizophrenia [21]. Our study revealed a significant correlation of rs17039396 located at intron 3 with cardia gastric cancer. Although the roles of these SNPs in MYT1L gene expression and their precise functional and biological significances have been largely unknown, it is not difficult to speculate that antonymous mutations occurring in exons in coding regions could lead to substitutions of amine acids, change the structure of coding-proteins, and subsequently affect their biological functions. Whereas, what is the mechanism of action of intronic polymorphic variants? It has increasingly become apparent that intronic germline variations might involve alterations of gene regulation and transcript processing, or produce splicing variants [22–24]. Recently, a T to G change at the 309th nucleotide in the first intron of the MDM2 gene (SNP309) has been found and shown to increase the affinity of the transcriptional activator Sp1, resulting in higher levels of MDM2 RNA and protein and the subsequent attenuation of the p53 pathway [25]. Subsequently, a case-control study including 438 controls and 410 patients with sporadic gastric carcinoma provided evidence supporting the association of MDM2 SNP309 with both an increased susceptibility to gastric carcinoma and poor prognosis [26]. Furthermore, Narla et al. [27] reported that a relatively common intronic polymorphism of KLF6 gene enhances alternative splicing and is associated with increased prostate cancer risk. Given above-mentioned evidences, it is reasonable to presume that MYT1L intronic polymorphisms might exert their functions through alternative gene expression or splicing variants that permit the generation of protein isoforms having different biology functions. To our knowledge, there have been no published attempts to characterize the functional implications of
the MYT1L intron polymorphisms. Hence, the clear molecular mechanisms by which genetic variants exert their biological implications warrants further experimental investigation.

The MYT1L protein plays a crucial role in CNS development, so it is rational to presume that changes in its expression level or function resulted from genetic variations could lead to psychiatric disorders [20–21]. However, exactly how this protein affect the susceptibility, progression or prognosis of tumor is far from clear.

The MYT1L protein is a member of the myelin transcription factor 1 family that modulates proliferation and differentiation of oligodendrocytes by controlling the transcriptional activity of downstream genes involved in lineage specification [28]. In addition, Riley et al. [29] hypothesized that MYT1L regulates ZNF804A gene expression in schizophrenia patients. Based on these evidences, we hypothesized that genetic variation in MYT1L gene might affects its function to regulate expression levels of sets of tumor-related genes, and consequently involves in carcinogenesis.

Myt1 and Wee1 induced the phosphorylation of Cdc2 leading to G2/M arrest in normal cell line. The p53 tumor suppressor protein plays a crucial role in tumorigenesis and prevents the proliferation of cancer-prone cells primarily by controlling cell-

Variables	Genotypes (deaths/patients)	HR (95% CI)*	P value
Total	GG 90/174 GA/AA 49/135	0.57 (0.40–0.81)	0.002
Tumor size	≤5 cm 53/115 GA/AA 31/89	0.34 (0.19–0.64)	0.001
	>5 cm 37/59 GA/AA 18/46	0.67 (0.43–1.05)	0.082
Histological types	Intestinal 42/84 GA/AA 26/72	0.61 (0.38–1.01)	0.053
	Diffuse 48/90 GA/AA 26/72	0.52 (0.32–1.07)	0.072
Differentiation	Well to moderate 42/75 GA/AA 23/57	0.59 (0.35–0.98)	0.042
	Poorly 37/77 GA/AA 23/61	0.67 (0.33–1.13)	0.129
	Mucinous/signet-ring cell 5/8 GA/AA 1/6	0.13 (0.01–1.39)	0.092
Depth of invasion	T1 4/19 GA/AA 5/20	1.22 (0.30–4.99)	0.778
	T2 13/28 GA/AA 7/20	0.70 (0.27–1.79)	0.455
	T3 0/1 GA/AA 0/0	—	
	T4 72/125 GA/AA 36/92	0.52 (0.35–1.18)	0.062
Lymph node metastasis	N0 30/69 GA/AA 17/56	0.49 (0.31–0.76)	0.002
	N1/N2/N3 60/105 GA/AA 32/79	0.64 (0.36–1.17)	0.148
Distant metastasis	M0 65/166 GA/AA 48/131	0.59 (0.41–0.84)	0.004
	M1 5/8 GA/AA 1/4	—	
TNM stage	I 14/37 GA/AA 8/32	0.55 (0.23–1.32)	0.181
	II 21/45 GA/AA 12/35	0.75 (0.37–1.54)	0.437
	III 52/88 GA/AA 28/67	0.46 (0.28–1.05)	0.202
	IV 3/4 GA/AA 1/1	1.47 (0.03–66.46)	0.842

HR, hazard ratio; CI, confidence interval.
*Hazard Ratio (HR) adjusted for age, sex.
doi:10.1371/journal.pone.0071979.t003

Variables	β	SE	HR 95% CI	P value
Age*	0.006	0.005	1.01 (0.99–1.02)	0.235
Sex	0.066	0.115	1.07 (0.85–1.34)	0.567
TNM stage	0.388	0.110	1.47 (1.19–1.83)	<0.001
rs17039396 (GG vs GA/AA)	−0.582	0.179	0.56 (0.39–0.79)	0.001

β, regression coefficient; SE, standard error; HR, hazard ratio; CI, confidence interval.
*Age was included as a continuous variable in the Cox stepwise regression analysis.
doi:10.1371/journal.pone.0071979.t004
cycle progression and apoptosis. Passer et al. [31] found that upregulated expression of TSAP6, transcriptionally activated by p53, could augment MYT1 activity, resulting in cell-cycle delay and the suppression of growth of cancer-prone cells. Furthermore, a more recent study investigating the functions of MYT1 in checkpoint recovery followed by DNA damage revealed that downregulation of MYT1 potentiated with DNA damage to inhibit tumor cell growth in tumor xenograft mice models, implicating MYT1 as a potential target for anti-cancer therapies [32]. These data highlight the contribution of MYT1 protein to regulation of cell-cycle progression and implicate it as a potential target for anti-cancer therapies. Although MYT1L has not been reported to function to modulate the cell-cycle progression, it is highly homologous to MYT1 [9–10] and the loss of MYT1 function may be compensated by MYT1L activity [14]. So it is plausible that MYT1L protein may have a similar role in regulation of cell-cycle process and their changes stemming from genetic variation may be involved in tumorigenesis process. Taken together, the presented findings of the potential involvement of MYT1L gene in antitumorigenesis prompts us to further characterize its structure, biological function, and interaction with other partners by in vitro or vivo studies.

Some limitations of the present study should be addressed. First, only one SNP in MYT1L is evaluated, and it is possible that some other important SNPs are neglected or the observed associations may be due to other polymorphisms in linkage disequilibrium with the rs17039396 polymorphism. Second, Helicobacter pylori, as a known crucial factor in gastric carcinogenesis, was not considered due to the lack of related follow-up information. Finally, for validation of the genotype–phenotype relationship, further investigation is underway to clarify the association between rs17039396 polymorphism and expression levels of MYT1L protein in gastric cancer tissues and will be reported separately.

In conclusion, our results represent the first demonstration that MYT1L rs17039396 SNP may be associated with the prognosis of cardia cancer patients. The survival of patients in the dominant model was significantly better than the survival in the overall model, suggesting that the mutant allele may serve as a suitable marker for predicting the survival of cardia cancer patients, especially in a Chinese population. Consequently, testing for MYT1L rs17039396 SNP, combined with other traditional prognostic factors may significantly help distinguish a subgroup of patients with poor prognosis, thereby helping to refine therapeutic decisions in the treatment of gastric cancer.

Acknowledgments
We thank Dr. Da Ding and Ms. Yan Liu of Genesky Biotech (Shanghai, China) for excellent technical assistance.

Author Contributions
Conceived and designed the experiments: YZ CT ZZ JC. Performed the experiments: YZ HZ XZ DG XZ MW CC XZ XW WG YT JZ. Analyzed the data: YZ HZ XZ. Contributed reagents/materials/analysis tools: YZ DG XZ MW CC XZ XW WG YT JZ. Wrote the paper: YZ CT ZZ JC.

References
1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global cancer statistics. CA Cancer J Clin 61: 69–90.
2. Santoro R, Carboni F, Lepiane P, Ettorre GM, Santoro E (2007) Clinicopathological features and prognosis of gastric cancer in young European adults. Rev J Surg 94: 737–742.
3. Catalano V, Labianca R, Beretta GD, Gatta G, de Braud F, et al. (2009) Genetic and Epigenetic Alteration in Gastric Carcinogenesis. Helicobacter 15: 34–39.
4. Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5: 845–856.
5. Becker KF, Keller G, Hoffer H (2000) The use of molecular biology in diagnosis and prognosis of gastric cancer. Surg Oncol 9: 5–11.
6. Ludwig JA, Weinstein JN (2005) Biomarkers in Cancer Staging, Prognosis and Treatment Selection. Chichester, England: John Wiley & Sons.
7. Klug A (2010) The Discovery of Zinc Fingers and Their Applications in Gene Regulation and Genome Manipulation. Q Rev Biophys 43: 1–21.
8. Matthews JM, Sunde M, Ludwig JA, Weinstein JN (2002) Zinc Fingers—Folds Along With a Closely Related CCHC Zinc Finger, Is Expressed in Developing Myelin Transcription Factor 1 (Myt1) of the Oligodendrocyte Lineage, and mitotic catastrophe. Mol Cancer Ther 6: 2346–2359.
9. Seidl C, Port M, Gilbertz KP, Morgenstern A, Bruchertseifer F, et al. (2007) Clinicopathological and prognostic features and prognosis of gastric cancer in young European adults. Br J Surg 94: 737–742.
10. Kim JG, Armstrong RC, v Agoston D, Robinsky A, Wiese C, et al. (1997) Expression Differences between Cardia Carcinoma and Noncardia Gastric Adenocarcinomas. Helicobacter 15: 34–39.
11. Romm E, Nielsen JA, Kim JG, Armstrong RC, v Agoston D, Robinsky A, Wiese C, et al. (1997) Expression Differences between Cardia Carcinoma and Noncardia Gastric Adenocarcinomas. Helicobacter 15: 34–39.
12. Santoro R, Carboni F, Lepiane P, Ettorre GM, Santoro E (2007) Clinicopathological and prognostic features and prognosis of gastric cancer in young European adults. Br J Surg 94: 737–742.
13. Choi HS, Bode AM, Shim J-H, Lee S-Y, Dong Z (2009) c-Jun N-Terminal Kinase 1 Phosphorylates Myt1 To Prevent UVA-Induced Skin Cancer. Mol Cell 34: 2346–2359.
14. Seidl C, Port M, Gilbertz KP, Morgenstern A, Bruchertseifer F, et al. (2007) Clinicopathological and prognostic features and prognosis of gastric cancer in young European adults. Br J Surg 94: 737–742.
15. Kessel A, Brunner HG, Ophoff RA, Veltman JA. Recurrent CNVs Disrupt gene and is associated with increased prostate cancer risk. Cancer Res 65: 1213–1222.
16. Narla G, Difeo A, Reeves HL, Schaid DJ, Hirshfeld J, et al. (2005) A germline DNA polymorphism enhances alternative splicing of the KLFG tumor suppressor gene and is associated with increased prostate cancer risk. Cancer Res 65: 1213–1222.
17. Kamangar F, Dasey SM, Blaser MJ, Perez-Perez GI, Perinpan J, et al. (2006) Opposing Risks of Gastric Cardia and Noncardia Gastric Adenocarcinomas Associated With Helicobacter pylori Seropositivity. J Natl Cancer Inst 98: 1445–1452.
18. Tajima Y, Yamazaki K, Makino R, Nishino N, Masuda Y, et al. (2007) Differences in the histological findings, phenotypic marker expressions and genetic alterations between adenocarcinoma of the gastric cardia and distal stomach. Br J Cancer 96: 631–638.
19. Kim MA, Lee HS, Yang HK, Kim WH (2005) Clinicopathologic and Protein Expression Differences between Cardia Carcinoma and Noncardia Carcinoma of the Stomach. Cancer 103: 1439–1446.
20. Wang T, Zeng Z, Li T, Liu J, Li J, et al. (2010) Common SNPs in myelin transcription factor 1-like (MYT1LC) association with major depressive disorder in the Chinese Han population. PLoS ONE 5: e13662. doi:10.1371/journal.pone.0013662.
21. Li W, Wang X, Zhao J, Liu J, Song QX, et al. (2012) Association study of myelin transcription factor 1-like polymorphisms with schizophrenia in Han Chinese population. Genes Brain Behav 11: 87–93.
22. Pagani F, Baralle FE (2006) Genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet 5: 389–396.
23. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, et al. (2004) Selecting a maximally informative set of single nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 74: 106–120.
24. Sjakste T, Paramonova N, Grislis L, Trapina I, Kairisa D, et al. (2011) Analysis of the single-nucleotide polymorphism in the 3′UTR and part of intron 1 of the sheep MSTN gene. DNA Cell Biol 30: 433–444.
25. Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, et al. (2004) A single nucleotide polymorphism in the MDM2 promoter attenuate the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119: 301–312.
26. Ohnnya N, Taguchi A, Mahbuchi N, Iho A, Hirooka Y, et al. MDM2 promoter polymorphism is associated with both an increased susceptibility to gastric carcinoma and poor prognosis. J Clin Oncol 24: 4434–4440.
27. Sajise T, Tanimoto R, Uzuki Y, Maeda T, Tamura K, et al. (2011) A novel single nucleotide polymorphism in the MDM2 promoter attenuate the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119: 301–312.
28. Opposing Risks of Gastric Cardia and Noncardia Gastric Adenocarcinomas. Helicobacter 15: 34–39.
29. Riley B, Thielton D, Maher BS, Bigdeli T, Wormley B, et al. (2010) Replication of association between schizophrenia and ZNF804A in the Irish Case Control Study of Schizophrenia sample. Mol Psychiatry 15: 29–37.

30. Dai X, Yamasaki K, Yang L, Sayama K, Shirakata Y, et al. (2004) Keratinocyte G2/M Growth Arrest by 1,25-Dihydroxyvitamin D3 Is Caused by G2d2 Phosphorylation Through Weel and Myt1 Regulation. J Invest Dermatol 122: 1356–1364.

31. Passer BJ, Nancy-Portebois V, Amzallag N, Prieur S, Cans C, et al. (2003) The p53-inducible TSAP6 gene product regulates apoptosis and the cell cycle and interacts with Nix and the Myt1 kinase. Proc Natl Acad Sci USA 100: 2294–2299.

32. Chow JP, Poon RY (2012) The CDK1 inhibitory kinase MYT1 in DNA damage checkpoint recovery. Oncogene. doi: 10.1038/onc.2012.504.