An in-vitro study to compare and evaluate the anti-diabetic effect of mixed fruit juice nanoemulsion with acarbose

Gayathri K, Karpagavel L*, Murugavel K, Manikandan N

Department of Biochemistry, Chettinad Hospital & Research Institute, Chettinad Academy of Research and Education, Kelambakkam- 603103, Chengalpattu, Tamil Nadu, India

Article History:
Received on: 03 Jun 2020
Revised on: 09 Jul 2020
Accepted on: 10 Aug 2020

Keywords:
Alpha glucosidase, Anti-diabetic, Fruit juice extract, Nanoemulsion

ABSTRACT
Diabetes has become a global health concern, its management lies hugely on expensive medical care and monitoring; thus the need to investigate possible alternatives to reduce treatment cost and also to reduce the side effects of commonly used anti diabetic drugs. This study aims to assess the anti-diabetic effect of mixed fruit juice nanoemulsion of Coccinia grandis, Punica granatum and Phyllanthus emblica. Mixed fruit juice nanoemulsion were prepared in the ratio of VCO oil:water:surfactant- 32:36:32 (%w/w). characterization parameters of mixed fruit juice nanoemulsion including pH, zeta potential, size, morphology were within the standard limits and was used for the study. The anti diabetic effect of nano emulsified mixed fruit juice was compared with that of acarbose by measuring their inhibitory effect on the enzyme alpha glucosidase. Maximum Inhibitory effect of formulated Nano emulsion on enzyme alpha glucosidase was 83% at concentration 81 µg/ml whereas that for the standard anti-diabetic drug Acarbose was 93% at concentration 540 µg/ml. For acarbose, the maximum Inhibition was 92% at the concentration of 540 µg/ml. The relative inhibition Percentage of Nano emulsion versus Control has been analyzed and the results found to be statistically significant (P<0.003).

INTRODUCTION
Diabetes mellitus still continuous to be one of the leading cause of mortality and morbidity (Li et al., 2019). It is estimated that by the year 2030, diabetes mellitus may affect up to 79.4 million individuals in India (Shrivastava et al., 2013). The pathologic hallmark of DM involves the vasculature leading to both microvascular and macrovascular complications (Orasanu and Plutzky, 2010). Chronicity of hyperglycemia is associated with long-term damage and failure of various organ systems mainly affecting the eyes, nerves, kidneys, and the heart (Volume, 2016). Haemoglobin A1c (HbA1c) can be used both for monitoring and diagnosis (George and Erasmus, 2018). Achieving near-normal glycated hemoglobin significantly, decreases risk of macrovascular and microvascular complications (Marín-Peñalver et al., 2016). Currently various classes of anti-diabetic drugs like insulin, sulfonylureas, biguanides, and glinides are available (Sola et al., 2015). Numerous studies have reported anti-diabetic drugs have a number of undesirable effects (Patel et al., 2012). So diabetic patients are still in need of natural preparation which may be better to comply with and have equal efficacy to oral anti diabetic drug (Dwivedi and Daspaul, 2013). Many research article & review article have highlighted the anti diabetic effect of fruit...
juice extracts (Salehi et al., 2019). The purpose of the present in-vitro study is to evaluate the anti diabetic effect of mixed fruit juice nanoemulsion with known oral anti diabetic drug like Acarbose. Until now, based on the google search no such study has been done on the Nano emulsion formulation of fruit juice extract of Phyllanthus emblica, Coccinia grandis and Punica granatum (Nayak and De, 2013). Therefore this is the first study designed in Nanoemulsion form.

MATERIALS AND METHODS

Consumables and reagents

Alpha-glucosidase, Para-nitro phenyl glucopyranoside (PNPG), Acarbose, Sodium Carbonate, Sodium chloride, were purchased from Sisco Research Laboratories (SRL), Chennai.

Glassware and apparatus

ELISA reader (Bio-Rad PR4100) and UV double beam spectrophotometer (Shimadzu) were used to measure the absorbance. The study was conducted in the Department of Bio-chemistry, Chettinad Academy of Research and Education (CARE), Chennai.

RESULTS AND DISCUSSION

α-glucosidase inhibition assay

Evaluation of the antidiabetic effect of mixed fruit juice nanoemulsion

1. **α-glucosidase inhibition assay**

Reagent

1. 100mM phosphate buffer (pH-6.9)

0.819g of Na₂HPO₄, 0.507g of NaH₂PO₄ and 35mg of NaCl were weighed and dissolved in 100ml of Milli-Q-water

2. Alpha Glucosidase solution

Commercially available alpha glucosidase was (169U/mg). 0.1mg of Alpha Glucosidase was weighed and dissolved in 10 ml of 100mM of Phosphate Buffer of pH 6.9 to obtain the concentration of 1.69U/ml.

3. 1mM Para Nitro phenyl α-D Glucopyranoside (PNPG)

30.1 mg of PNPG was weighed and dissolved in 100 ml Milli-Q-water

4. 0.1M Sodium Carbonate

1.05g of Sodium Carbonate was weighed and dissolved in 100 ml of Milli-Q-water.

The IC₅₀ values were determined from plots of percentage inhibition versus log inhibitor concentration and were calculated by non-linear regression analysis from the mean inhibitory values.
Alpha glucosidase inhibitory effect of mixed fruit juice nanoemulsion and acarbose was assessed by the release of p-nitrophenol from PNPG. The IC\textsubscript{50} values of the formulated fruit juice extracts (49.47 μg/ml) on enzyme inhibition activity were found to be decreased when compared to positive control acarbose (274 μg/ml). The maximum inhibition of the formulated nanoemulsion on alpha glucosidase enzyme activity was 83% at 81 μg/ml. For the positive control acarbose the maximum inhibition was 93% at 540 μg/ml.

Statistical Analysis

Data of the present research were expressed as Mean ± Standard Deviation. Statistical difference between the test samples and controls were measured with unpaired independent sample t-Test. Statistical one way ANOVA analysis of the data was performed by IBM SPSS-21 software with P value of <0.05 were considered statistically significant. The P values of the α-glucosidase α-amylase, and glucose diffusion inhibition assay are given below.

Drugs commonly used in the treatment of diabetes mellitus are Metformin and Acarbose (Rojas and Gomes, 2013). In spite of it, many research articles have reported, that these drugs have certain side effects. Gastrointestinal complications like flatulence and diarrhea are the common side effect of acarbose & Metformin that have been reported (Fatima et al., 2018).

In the present health care system, Natural compounds of plant source are thus being preferred over synthetic drugs. Several fruit juice has been investigated for their anti-diabetic properties and is presently being used in Ayurveda (Nayak and De, 2013). The main disadvantage of the raw fruit extract was during formulation and storage of the

Table 1: P Value of inhibition of alpha glucosidase by Mixed fruit juice nanoemulsion and acarbose

Levene’s Test for Equality of Variances	t-test for Equality of Means								
F	Sig.	t	df	Sig (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence interval of the difference		
---	------	---	----	----------------	-----------------	----------------------	---------------------------------------		
Equal	3.020	.157	-	4	.000	-	-.92592	-	-
Equal Variances assumed	242.6	2.235	.000	224.6	.92592	227.2	222.1		
Equal Variances not assumed	242.6			224.6		228.2	221.0		

The obtained results also suggest that the Nano emulsion ranging from 13.5 g/ml to 81 g/ml. The inhibition percentage of Nanoemulsion and acarbose has been analyzed and it has been found to be statistically significant (P<0.001).

In this current research, mixed fruit juice Nano emulsion formulation has been designed to investigate the Anti-diabetic activities of Nano formulations at different concentrations and it has been compared with the standard drug acarbose. Various Inhibitory effects of synthesized Nano emulsion on alpha glucosidase activity were studied. The Data summarized reveals that the maximum Inhibitory effect of formulated Nano emulsion on enzyme alpha glucosidase was 83% at concentration 81μg/ml whereas the standard anti-diabetic drug Acarbose has 93% at concentration 540μg/ml. The study results validate that, the mixed fruit juice Nanoemulsion formulation has high inhibitory effect on alpha glucosidase at low concentration. Inhibitory activity of plant phyto constituents on enzymes were highlighted by numerous scientific reports (Salehi et al., 2019).

The mixed fruit juice nanoemulsion formulation combines the beneficial effects of all the three fruits such as Phyllanthus emblica, Coccinia grandis and Punica granatum exhibits anti diabetic effect by scavenging free radicals, Inhibition of carbohydrate hydrolyzing enzymes, stimulating insulin secretion and regenerating β-cell architecture.

CONCLUSIONS

The present study has been designed based on the concept of famous quotes of Hippocrates, “Let Food be thy Medicine and Medicine be thy Food”. The in-vitro study results on evaluation of Anti-diabetic effect of Nano formulation clearly shows anti diabetic activity by inhibiting enzymes alpha glucosidase. Beneficial effects of three fruits phyto-constituents and Nano formulation enhances absorption, bio-availability, and stability and Pharmacological activity when compared to traditional phyto formulation. Side effects of Allopathic drugs reported in various journals can be overcome by this natural Nanoemulsion formulation. Inclusion of this natural fruits Nano emulsion in our daily diet plan can definitely be useful in the treatment of Diabetes Mellitus. Further, studies are needed to be carried out in Animal model to support the evidence of this In-vitro study. This study paves a way for further screening of phyto constituents, which has potential Anti-diabetic activity and also toxicity of the Nanoemulsion formulation needs to be evaluated.

ACKNOWLEDGEMENT

The authors would like to thank Dr.E. Malligai-Head,Department of Biochemistry for Permitting us to conduct the study. The authors also extend their sincere thanks to all the Faculty members of Biochemistry department.

Funding Support

The authors declare that they have no funding support for this study.

Conflict of Interest

The authors declare that they have no conflict of interest for this study.
REFERENCES

Dwivedi, C., Daspaul, S. 2013. Antidiabetic Herbal Drugs and Polyherbal Formulation Used For Diabetes: A Review. The Journal of Phytopharmacology, 2(23):44–51.

Fatima, M., Sadeeqa, S., Nazir, S. U. R. 2018. Metformin and its gastrointestinal problems: A review. Biomedical Research, 29(11):2285–2289.

George, J. A., Erasmus, R. T. 2018. Haemoglobin A1c or Glycated Albumin for Diagnosis and Monitoring Diabetes: An African Perspective. Indian Journal of Clinical Biochemistry, 33(3):255–261.

Gunasekaran, T., Haile, T., Nigusse, T., Dhanaraju, M. D. 2014. Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pacific Journal of Tropical Biomedicine, 4(1):S1–S7.

Li, S., Wang, J., Zhang, B., Li, X., Liu, Y. 2019. Diabetes Mellitus and Cause-Specific Mortality: A Population-Based Study. Diabetes Metab J, 43(3):319–341.

Marín-Peñalver, J. J., Martín-Timón, I., Sevillano-Collantes, C., del Cañizo-Gómez, F. J. 2016. Update on the treatment of type 2 diabetes mellitus. World Journal of Diabetes, 7(17):354–354.

Nayak, A., De, S. 2013. Anti Diabetic Potential Medicinal Plants. BioMedRx, 1(1):32–46.

Orasanu, G., Plutzky, J. 2010. The Continuum of Diabetic Vascular Disease: From Macro- to Micro. Group, 29(4):249–271.

Patel, D. K., Prasad, S. K., Kumar, R., Hemalatha, S. 2012. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pacific Journal of Tropical Biomedicine, 2(4):320–330.

Rojas, L. B. A., Gomes, M. B. 2013. Metformin: An old but still the best treatment for type 2 diabetes. Diabetology and Metabolic Syndrome, 5(1):1–15.

Salehi, Ata, Kumar, V. A., Sharopov, Ramírez-Alarcón, Ruiz-Ortega, Ayatollahi, A., Fokou, T., Kobarfard, Zakaria, A., Iriti, Taheri, Martorell, Sureda, Setzer, Durazzo, Lucarini, Santini, Capasso, Ostrander, ur Rahman, A., Choudhary, Cho, Sharifi-Rad 2019. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules, 9(10):551–551.

Saxena, V., Hasan, A., Sharma, S., Pandey, L. M. 2018. Edible oil nanoemulsion: An organic nanoantibiotic as a potential biomolecule delivery vehicle. International Journal of Polymeric Materials and Polymeric Biomaterials, 67(7):410–419.

Shrivastava, S. R., Shrivastava, P. S., Ramasamy, J. 2013. Role of self-care in management of diabetes mellitus. Journal of Diabetes & Metabolic Disorders, 12(1).

Sola, D., Rossi, L., Schianca, G. P. C., Maffioli, P., Bigliocca, M., Mella, R., Corliano, F., Fra, G. P., Bartoli, E., Derosa, G. 2015. State of the art paper Sulfonylureas and their use in clinical practice. Archives of Medical Science, 4(4):840–848.

Thakur, L. 2011. Novel approaches for stability improvement in natural medicines. Pharmacognosy Reviews, 5(9):48–54.