First-principles Investigation of Structure and Electronic Properties of NiTe$_2$ Fermi Crossing Type-II Dirac Semimetal

Muzambilu Saminu1*, Sofwan Ibrahim Saleh1, Shafiu Ibrahim Musa1, Gulzar Ahmed1 and M. C. Idris2

1Physics Department, Mewar University, Chittorgarh, Rajasthan, India.
2Physics Department, Sule Lamido University, Kafin Hausa, Jigawa State, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. Author MS designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. Authors SIS and SIM managed the analyses of the study. Authors GA and MCI managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJR2P/2021/v4i130135

1. INTRODUCTION

The electronic structure aspect of transition metal dichalcogenides (TMDs) has so far received intensive research interest. NiTe$_2$ is a novel candidate for type-II DSM with Dirac point near the Fermi surface. In this paper we present a systematic investigation of the structural stabilities and electronic properties of NiTe$_2$ using density functional theory via a plane wave pseudopotential method in the context of the Perdew–Burke–Ernzerh of generalized gradient approximation. The structural parameters, partial and total density of states (DOS) were systematically studied. Our structural study indicates that the material has a trigonal structure with P3m$_1$ space group. In addition, we have computed the cohesive energy and the DOS at the Fermi level [N(E$_f$)]. The results show that NiTe$_2$ is stable.

Keywords: DFT; structural properties; dirac semimetal; NiTe$_2$; dichalcogenides.

Received 14 November 2020
Accepted 19 January 2021
Published 08 February 2021

ABSTRACT

The electronic structure aspect of transition metal dichalcogenides (TMDs) has so far received intensive research interest. NiTe$_2$ is a novel candidate for type-II DSM with Dirac point near the Fermi surface. In this paper we present a systematic investigation of the structural stabilities and electronic properties of NiTe$_2$ using density functional theory via a plane wave pseudopotential method in the context of the Perdew–Burke–Ernzerh of generalized gradient approximation. The structural parameters, partial and total density of states (DOS) were systematically studied. Our structural study indicates that the material has a trigonal structure with P3m$_1$ space group. In addition, we have computed the cohesive energy and the DOS at the Fermi level [N(E$_f$)]. The results show that NiTe$_2$ is stable.

Keywords: DFT; structural properties; dirac semimetal; NiTe$_2$; dichalcogenides.

1. INTRODUCTION

The combination of nickel and telluride in the Ni-chalcogenides family are the very few being perceived due to the nature of tellurium that is comparatively denser than both Selenium and Sulphur, thus poorly adhesive onto the substrate [1]. Nguyen et al. [2] studied the structure of

*Corresponding author: E-mail: muzambilusaminu@gmail.com;
liquid NiTe₂ by using the technique of neutron diffraction. Lately, 2D materials have captured a great deal of study focused particularly because of their separate physical properties and ability to fulfill the future demands of the nano-electronic industry on adaptability, multi-functionality, and flexibility. During investigating for expected promising materials, layered transition metal dichalcogenides have been important members of the 2D materials [3].

Immediately after the discovery of 3D dirac semimetals (DSMs), which are regarded as type-II fermions in which the dirac node is enclosed by an electron pocket, has generated a huge research interest because of the rich physics involved and the tremendous applications therein. Recently the attention has been shifted partially to the so-called type-II dirac semimetals where the dirac cone is strongly tilted because of the broken lorentz symmetry, and due to that, the dirac point appears only at the contact of hole and electron pockets [4-5]. Transition metal dichalcogenides offer a perfect platform to experimentally understand dirac fermions. Though, usually, these interesting quasiparticles are situated far-away from the fermi level, restraining the contribution of dirac-like carriers to the transport properties. NiTe₂ accommodates both bulk Type-II dirac points and topological surface states [6]. Type-II dirac semimetals also called Weyl semimetals are characterized by strongly tilted dirac cones in a way that dirac the dirac node emerges at the boundary of electron and hole pockets as a new state of quantum matter, different from the standard Weyl points with a point like fermi surface which is called as type-I nodes. The type-II dirac semimetals were recently predicted by theory and have since been confirmed experimentally in some other transition metal di-chalcogenides [7]. Even recently, many transition metal di-chalcogenide materials, comprising of PtTe₂, PdTe₂, and PtSe₂, were predicted and found to display tilted dirac cones close to their Fermi surface. For these considered dirac type-II compounds, the hamiltonian comprises of the type-I linear hamiltonian and an additional, momentum dependent, a term that breaks lorentz invariance and leads to quasiparticles showing a momentum energy relation that depends on the direction of travel [8]. New quantum phenomena like the planar Hall effect and superconductivity have been theoretically projected and experimentally confirmed in bulk NiTe₂ [9]. Most of the transition metal di-chalcogenides can achieve superconductivity by pressure or doping. Investigation on the pressure-resistant impression on resistant behavior of NiTe₂, NiTe₂ shows the metallic property at ambient pressure in temperature ranging from 2000-300000 °C [10].

Recent studies on NiTe₂ proposed to find experimental evidence for its existence through the mapping of its electronic band structure via angle-resolved-photoemission spectroscopy (ARPES) measurement or extracting its berry phase from magnetization measurements [11-12]. Though some information about the fermi surface topography, extracted from the angular dependence of the quantum oscillations, along with a comparison with density functional theory calculations were reported detailed information on structural properties of NiTe₂ is still debatable. Therefore, in this paper, we investigated the detailed structural stabilities and electronic properties of NiTe₂ as a fermi crossing dirac type-II semimetal candidate.

2. COMPUTATIONAL DETAILS

Theoretically, the Schrédinger Equation (SE) is a quantum mechanical idea that provides the exact manners and behavior of a system’s natural states like particle motion and its wave-function. The electronic structure of any system can be accurately obtained using the solution of SE without any empirical or semi-empirical parameters [13-14]. Though the SE is not easy to solve because of the nucleus-electron interaction, thereafter a solution was suggested by prominent Born-Oppenheimer approximation. Earlier scholars assume that to split electronic coordinates and nuclear from many-body wave function, the nuclei must be assessed adiabatically because of the variation in mass between electron and nuclei [15]. Even though with this clarification and simplification yet, the many-body problem remains enormously problematic to work out. Then via the Hartree-Fock (H-F) approximation, many body-problems can be simplified to a single-electron problem and offer an exact description of electron exchange, sadly it did not describe the electronic correlation [16]. Because, it is not possible to solve the SE for N-electron, in the year 1964 density functional theory (DFT) was introduced by the renowned Hohenberg and Kohn as a technique to offers the description of the electronic structure of a system at ground state with the idea stated that all ground state properties for many-systems are functional of the ground state density [17-18]. The minimum
value of the total energy functional is the definite single electron ground state density [19]. Kohn and Sham suggested an equation that succeeded in replacing the problem of mutually interacting electrons in an external ion potential to an equivalent set of self-consistent one electron [20]. The significance of electron-electron interaction is provided by Generalized Gradient Approximation (GGA) [21]. Computations based on density functional theory are well-known and distinguished from other ab initio methods as first principle calculations with an approximate error of 10^{-3} eV, the errors can be significantly minimized by adjusting the K-points mesh or the cutoff energy. In numerous cases, the first-principles calculations within the density functional theory framework offer exact guesses of many properties of materials, stable configuration, and total energy.

In this work, we perform the first-principles calculations using the Plane-Wave Self-consistent field (PWSCF) program of the Quantum ESPRESSO simulation code [23] based on the density functional theory (DFT). The cut-off energy for the wavefunction is taken to be 150 Ry. K-point grid in the Brillouin zone is set to be $8 \times 8 \times 1$ grid for NiTe$_2$ in the Monkhorst-Pack method [24]. The Generalized Gradient Approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) formalism is adopted for the exchange-correlation (XC) functional [25] and is used for computing the electronic properties of the material. To obtain optimized atomic configurations of NiTe$_2$, variable cell relaxations for atomic coordinates and dimension of the cell using intrinsic Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm were performed. Fig. 1(a) and 1(b) display the first Brillouin zone and the relax structure of NiTe$_2$. The model is considered as an optimized structure when the Hellmann-Feynman forces and all components of the stress are less than 0.0005 Ry/a.u respectively.

3. RESULTS AND DISCUSSION

3.1 Structural Parameters

The complete relaxation calculations were initially performed to determine the accurate internal positions of the atoms. All atomic positions and lattice parameters were optimized. The numerical calculation was implemented in the Quantum ESPRESSO simulation package. The calculated lattice parameters, Fermi energy, density, and volume for the relaxed structure of NiTe$_2$ are given in Table 1. below. It is worth noting that the result of our calculations is in good agreement with experimental data. Ni and Te consist of stacked Te-Ni-Te layers, where the metal Ni atom is coordinated octahedrally with six atoms of Te. The atoms are covalently bonded within one layer, while the sandwich layers are coupled only by weak vander waals interaction [26]. Fig. 1 depicts the total energy against the volume of NiTe$_2$. The optimized lattice parameters of NiTe$_2$ $a_o (3.8032)$, $b_o (3.8032)$, $c_o (5.9506)$ via GGA-PBE are in good agreement with other theoretical and experimental values. The discrepancy of lattice parameters is within 0.105% when compared with the experimental value. The maximum error of $c_o (5.9506)$ using GGA-PBE reaches about 3.1%, the lattice parameters a_o of NiTe$_2$ is about 0.05 Å lower than other theoretical calculations.

Also using the Birch-Murnaghan equation of state (EOS) given by Equation (1). The optimization of the relaxed structure of NiTe$_2$ was carried out by GGA-PBE to compute the ground state properties which consist of the bulk modulus B_0 and the first derivative of the modulus $B’$ [27].

$$B(\rho) = E_o + \frac{V_o}{\rho} - \frac{6-\delta}{5} \left(\frac{V_o}{\rho} \right)^{\delta}$$

$$+ \left(\frac{V_o}{\rho} \right)^{\delta} \left(\frac{9}{4} \frac{B_0}{\delta} \right)$$

(1)

Where E_o and V_o are the minimum equilibrium energy and volume respectively. Fig. 2 depicts the optimization plot using GGA. For GGA we found that the lowest equilibrium energy value is -157.6 Ry corresponding to 500.4 (a.u)3.

To show the thermodynamic stability of our material we calculated the enthalpy of formation H using the following equation (2)

$$H = \frac{(E_f(NiTe_2) - mE_{Ni} - gE_{Te})}{(m + g)}$$

(2)

Where the term $E_f(NiTe_2)$ is the total ground state energy of the material been studied E_{Ni} and E_{Te} are the ground state energies of the Ni and Te in the unit cell respectively. The parameters m and g in the equation represent the number of the individual atoms in the unit cell. In this work, we reformed Equation (2) above for application on NiTe$_2$, Fermi Dirac type-II material for GGA-PBE as shown below.
3.2 Electronic Properties

The electronic properties of NiTe₂ are crucial in understanding its behavior. The electronic states of NiTe₂ lie above the Fermi level, suggesting that the material is a Dirac type-II semimetal. The Fermi level lies at 0 eV, and the valence band crosses the Fermi level, indicating that NiTe₂ possesses the features of metallic properties.

From our band structure calculations, the Fermi level lies near 0 eV, and the valence band was found to lie above the Fermi level with a Dirac cone pointing toward the Fermi level, hence the material is said to behave as a Dirac type-II semimetal.

We have also calculated and analyzed the total density of states (TDOS) and partial density of states (PDOS) for NiTe₂. The TDOS confirms that the studied material is behaving as a Dirac type-II semimetal. The TDOS confirms the presence of states near the Fermi level, which is characteristic of Dirac semimetal behavior.

The total density and partial density of states (TDOS and PDOS) for NiTe₂ at 0 GPa are displayed in Fig. 4 along with the Fermi energy level represented by a pink dash. DOS aid the elaboration of the nature of the bandgap and provides detailed information about the origin of bands for both valence and conduction bands. In the total density of states plot, near the Fermi level, there are available states which also shows that the studied material is behaving as a Dirac type-II semimetal. The TDOS confirms the presence of states near the Fermi level, which is characteristic of Dirac semimetal behavior.

The valence bands near the Fermi level, E_f, are dominated by a d-orbital derived bands appearing away from the Fermi level.

The total density and partial density of states (TDOS and PDOS) of NiTe₂ at 0 GPa are studied and displayed in Fig. 3 the horizontal dashed line in the Fig is the Fermi level (E_f). The density of states for NiTe₂ can be divided into three regions. For energy regions from -17.5eV to -10.00eV in this region the DOS is mainly composed of Te-s orbital; from -10.00eV to 0 eV, there are available states which also shows that the studied material is behaving as a Dirac type-II semimetal. The TDOS confirms the presence of states near the Fermi level, which is characteristic of Dirac semimetal behavior.

Table 1. Calculated equilibrium lattice parameter, volume, density, minimum energy E₀, and the enthalpy of formation of NiTe₂

	a (Å)	b (Å)	c (Å)	V (Å³)	ρ (g/cm³)	E₀ (Ry)	H (Ry)	B (Gpa)	B’
This work	3.7925	5.939	73.938365	7.01381	-157.58461	-396.22229	224.6	1.00	
Experiment	3.899	5.243	69.036	7.550	396.22229	224.6			

Saminu et al.; AJR2P, 4(1): 27-33, 2021; Article no.AJR2P.64883
Fig. 1. (a) Vesta view of NiTe$_2$ and (b) First brillouin zone of NiTe$_2$ from xcrysden

Fig. 2. Calculated total energy and volume of NiTe$_2$ using GGA

Fig. 3. Computed electronic band structure of NiTe$_2$ using GGA
Fig. 4. The total density of states (TDOS) for NiTe$_2$ and the contribution of each of the individual orbitals of Ni and Te. Ni d-orbital contributed significantly in the conduction band and the p-orbital contributed also significantly in the valence band. While the p-orbital of Te contributed more in both the valence and conduction bands

4. CONCLUSION

Structural and electronic properties of NiTe$_2$ are studied and analyzed by the first-principles calculations. Excellent agreement is found with other theoretical and experimental studies. According to the DOS, there is a constant electron distribution at the Fermi surface, which revealed that NiTe$_2$ is a Dirac type-II semi-metal. We predict that NiTe$_2$ is a noble candidate for type-II DSM. Our work establishes NiTe$_2$ as a major candidate for exploration of Dirac Fermions and applications in transition metal dichalcogenides based infrared plasmonics, spintronic devices, and ultrafast optoelectronics.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Anand TJS, Zaidan M, Azam MA, et al. Structural studies of NiTe2 thin films with the influence of amino additives. Int J Mech Mater Eng. 2014;9:18.
2. Nguyen VT, Gay M, Enderby JE, Newport RJ, Howie RA. The structure and electrical properties of liquid semiconductors; 1982.
3. Qianwen W, Peng W, Gengyu C, Min H. First principle study of the structural and electronic properties of MoS2-MoTe2 monolayer heterostructures. J. Phys. D: Appl. Phys. 2013;46:505308 7
4. Burkov AA. Topological semi-metals. Nat. Mater. 2016;15:1145-1148.
5. Soluyanov AA, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, et al. Type-II weyl semimetals nature. 2015;527:495-498.
6. Saumya M, Sophie F, Pabitra K, Timur K, Laurent C, Mathew D, et al. Fermi-crossing type-II dirac fermions and topological surface states in NiTe2. Scientific Reports. 2020;10:12957.
7. Chungian X, Bin L, Wen J, Wei Z, Bin Q, Raman S, et al. Topological type-II dirac fermions approaching the fermi level in a transition metal dichalcogenide NiTe2. Chem. Mater. 2018;14:4823-4830.
8. Huang H, Zhou S, Duan W. Phys. Rev. B 94, 121117®; 2016.
9. Zheng FP, Li XB, Tan P, Lin YP, Xiong LX, Chen X. Emergent superconductivity in two dimensional NiTe2 crystals. Phys. Rev. B. 2020;101:100505(R).
10. Tao L, Ke W, Chungiang X, Qian H, Hao W, Jun-Yi G et al. Pressure-induced superconductivity in topological type-II dirac semimetal NiTe2. Cond-Mat. Supr-Con; 2019.
11. Ghosh B, Mondal D, Kuo CN, Lue CS, Nayak J, Fujii J et al. Phys. Rev. B 100. 2019;195134.
12. Xu C, Li B, Jiao W, Zhou W, Qian B, Sankar R. Chem. Mater. 2018;30:4823.
13. Foresman J, Frisch A. Exploring chemistry with electronic structure methods 2nd ed. Gaussian, Inc, Pittsburgh, PA; 1996.
14. Novak P, Boucher F, Gressier P, Blaha P, Schwarz K. Phys. Rev. B 63. 2001; 235114-1-8.
15. Filippov A. Non-linear non-local Schrödinger equation in the contest of quantum mechanics. Phys. Lett A. 1996;215:32-9.
16. Callaway J, March N. Density functional methods: Theory and application solid-state physics. 1984;38:135-221.
17. Kuznetsov A, Medvedev I. Does Born-Oppenheimer approximation break down in charge transfer process? An exactly solvable model. Chem. Phys. 2006;324:148-59.
18. Chaikin P, Lubensky T. Principles of condensed matter physics. Cambridge univ. Press; 2000.
19. Hohenberg P, Kohn W. Density functional theory. Phys. Rev. B. 194;136:864-76.
20. Dreizler R, Gross E. Density functional theory: An approach to the quantum many-body problem. Springer Science & Business Media; 2012.
21. Payne M, Teter M, Allan D, Arias T, Joannopoulos J. Iterative minimization techniques for ab initio total energy calculations molecular dynamics and conjugate gradients. Rev. Modern Phys. 1992;64:1045.
22. Giannozzi P, Baroni S, Bonini N, Calandra R, Cavazzoni C, Caresoli D, et al. Phys. Condens. Matter 21. 2009;395502.
23. Monkhorst HJ, Pack JD. special points for brillouin zone integrations. Phys. Rev. B 13, 12. 1976;5188.
24. Perdew JP, Burke K, Ernzerhof M. Phys. Rev. Lett. 1996;77:3865-3868.
25. Hartwigsen S, Goedecker J. Hutter. Relativistic separable dual-space gaussian pseudopotentials from H to Rn, Phys. Rev. B 58.1998;3641.
26. Birch F. Finite elastic strain of cubic crystal. Phys. Rev. 71. 1947;809-824.
27. Wu S, Fecher GH, Shabab S, Felser C. Elastic properties and stability of heusler compounds: cubic Co 2 YZ compounds with L 2 1 structure. J Appl Phys 2019;125.
28. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965;140:1133.
29. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Deck S. The materials project: A material genome approach to accelerating materials innovation APL materials. 2013;1(1):011002.

© 2021 Saminu et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/64883