EFFECTS OF WHOLE FRUIT EXTRACT OF ELAEAGNUS ANGUSTIFOLIA L. ON GLOBLASTOMA CELL LINES

Samaneh Arab1,2, Marjan Bahraminasab1,2, Alireza Yazdani1, Anna Abdolshahi1,2*

Address(es): 1 Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran. 2 Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.

ABSTRACT

Elaeagnus, angustifolia L. (EA) is a natural plant food with therapeutic and medicinal properties for treating various diseases such as rheumatoid arthritis and osteoporosis. Since herbal agents are origins of bioactive compounds, they can be applied in complementary treatment protocols. In this study, EA whole fruit extract's cytotoxic effects were investigated on both animal and human glioblastoma cancer cell lines. The extract of whole fruit of EA was obtained by maceration in ethanol. The phytochemical compounds were identified using high-performance liquid chromatography (HPLC). The MTT and LDH assays were performed to evaluate the cytotoxicity effect of the extract and the determination of cell death. Wound-healing assay and colony formation analysis were employed for migration and proliferation evaluation. Based on HPLC analysis, the main flavonoid components of the extract were included rutin and apigenin. The results demonstrated that EA extract at the dose of 125 to 2000 µg/ml and 61.5 to 2000 µg/ml inhibited C6 and U87 cells’ viability and induced significant cell cytotoxicity at both 48 and 72 h incubation times. Besides, EA extract significantly inhibited cell migration and colony formation at 250 to 1000 µg/ml concentration. Overall, the results showed that EA extract could inhibit several stages in glioblastoma carcinogenesis in vitro. Therefore, it can be suggested as an anticancer in the clinical treatment approaches of glioblastoma cancer.

Keywords: Elaeagnus angustifolia L., Glioblastoma, Cell line, Cytotoxicity, Wound-healing-assay, Colony-forming units' assay

INTRODUCTION

Elaeagnus angustifolia L. (EA), predominantly known as oleaster, Russian olive and, wild olive, belongs to the genus Elaeagnus of the Elaeagnaceae (Rafaelaceae) family. It commonly cultivated in the western and central region of Asia (from Russia to Turkey and Iran)(Çakmakçı, Topdaş et al. 2015). Based on the phytochemical analysis, the EA fruit contains polysaccharides, amino acids, vitamins, carboxylic acids, flavonoids, sitosterols, terpenoids, coumarins, phenol, cardiac glycosides, cardiotonic, saponins, and tannins (Faramarz, Dehghan et al. 2015, Torbati, Asnaashari et al. 2016). Various parts of this plant have been used traditionally for treating several forms of prevalent diseases such as rheumatoid arthritis, osteoporosis, wound, nausea, cough, asthma, fever, flatulence, jaundice, and diarrhea (Farzaei, Bahramosoltani et al. 2015). Cancer has been recognized as the second leading cause of death worldwide after cardiac illness (Nagai and Kim 2017). The uncontrolled proliferation and extensive invasion of tumor cells are the hallmarks of cancer. These factors intensify the metastasis process and thus make treatment difficult (Fouad and Aanei 2017). Glioblastoma multiforme (GBM), as the fatal malignant type of cancer. These factors make its surgical resection difficult. The uncontrolled proliferation and angiogenesis, modulating transcriptional activators, and increasing antioxidant enzymes (Desai, Quzi et al. 2008, Khan, Ali et al. 2020). It has been shown that herbal drugs have limited toxic side effects, provide a better quality of life, prolong survival rate, and extend tumor response in cancer patients (Yin, Wei et al. 2013, Wu, Lu et al. 2015, Sheng, Zou et al. 2018). Also, the medicinal plant’s use combined with routine treatment protocols could increase efficacy and overcome the immunosuppressive tumor microenvironment (Lai, Hung et al. 2010, Lee, Bae et al. 2018).

The antitumor assessments of the E. Angustifolia leaf indicated inhibition features. E. Angustifolia fruit also showed a dose-dependent inhibition trend on hepatoma cells (Wang, Fan et al. 2013, Farzaei, Bahramosoltani et al. 2015). Furthermore, the EA extract could induce suitable anti-neoplastic effects in some tumor models (Mehrabani Natanzi, Pasalar et al. 2012, Amiri Tehraniadeh, Baratian et al. 2016, Hamidpour, Hamidpour et al. 2017). Some studies have considered the effect of EA or its derivative on carcinogenesis. A recent survey by Saleh et al. showed that flower parts of this plant prevent cell proliferation, migration, and colony formation, also cell cycle arrest (Salch, Mohamed et al. 2018). A similar outcome was observed for chemopreventive effect against diethylnitrosamine (Katsamakis, Slot et al.)-induced hepatocellular carcinoma (HCC) in rats (Amer, Hatami et al. 2017).

Regarding glioblastoma cancer, the C6 cells are spindle-like cells that induce human-like GBM when injected into Wistar rats' brains (Giakoumettis, Kritis et al. 2018). U87 is a human primary glioblastoma cell line that is predominantly applied in brain cancer research. (Yu, Ping et al. 2008). There is no finding of the effect of whole fruit of EA (containing the fleshy part, endocarp, and kernel) in any aspect of glioblastoma cell line studies. The present study wants to assess the antitumoral effects of EA whole fruit extract on glioblastoma cell lines C6 and U87 for the first time. Studying the proliferation and survival ability of these tumor cell lines provide new glances into finding the complementary strategies for glioblastoma cancer therapy.

MATERIAL AND METHODS

Chemicals and Plant material

The methanol and ethanol used in this research were of HPLC grade and all chemicals and media were purchased from Sigma (Steinheim, Germany). The Elaeagnus, angustifolia L. fruits (Fig. 1) were obtained from local market in Damghan, Semnan province of Iran. After manual cleaning, the fruits were milled and sieved to a defined particle size (0.5 mm).
The rat C6 and U87 human glioblastoma cell lines were provided by the Pasteur Institute of Iran (National Cell Bank of Iran, Tehran, Iran).

Figure 1 The photo of Elaeagnus angustifolia L. fruit

Extract preparation

The EA whole fruit powder (10 g) was macerated in ethanol (70% v/v) at 1:10 volume for 48 h in a shaker incubator. The solution was filtered using filter paper (Whatman no: 1), and the ethanol was evaporated in a rotary evaporator. The final residual extract was oven-dried at 40°C for 24 h, and then the dried extract was scraped from the surface of glass plates and used for the next analysis.

HPLC analysis

Phenolic compounds and flavonoids of the extract were determined using high-performance liquid chromatography (HPLC) apparatus (waters 2695, USA) equipped with a PDA detector (waters 996, USA). Millennium32 software was used for data acquisition and integration. The used column was a C18-Waters (15 cm×4.6 mm). Solvent A was methanol, and solvent B was distilled water in a gradient manner when the flow rate was 1 ml min⁻¹. The temperature was adjusted at 25°C and the wavelength at 195-400 nm. The quantification was performed using the linear calibration curves of standard compounds.

Cell Culture

The rat C6 and U87 human glioblastoma cell lines were cultured in DMEM-F12 culture media containing heat-treated fetal bovine serum, penicillin, and streptomycin by a monolayer manner (Gibco, Grand Island, USA). Then, they were placed in an incubator with a humidified atmosphere of 95% air and 5% CO₂ at 25°C and the wavelength at 195-400 nm. The quantification was performed using the linear calibration curves of standard compounds.

Cell viability was measured via MTT assay kit (Sigma-Aldrich). Briefly, the glioblastoma cell lines were adjusted at 10⁴ cells/well and cultured in 96-well plates. The cells were transferred to prepared mediums containing determined EA extract concentrations and then incubated for 24, 48, and 72 h. In the next step, the MTT solution was poured into wells, and incubated (37°C for 4 h). The formazan crystals formed were dissolved in 100 µl acid/alcohol (0.04NHCl in isopropanol) by mixing. A microplate reader was used to determine the optical density of samples (570 nm) (Sun, Liu et al. 2018). The evaluation of cell viability was performed in comparison to the non-treated cell.

Cytotoxicity assay

A cytotoxicity detection kit containing lactate dehydrogenase (LDH) was used to analyze cytotoxicity activity (Roche Applied Science, Germany). First, 10⁴ cells were cultured in wells (24 h) and then inoculated to a prepared medium (containing EA extract concentrations). For low and high control, the cells were cultured in a medium. After 48 and 72 h, 100 µL of Triton X-100 solution was poured into high control wells and mixed thoroughly to destroy the cell membranes. Afterward, the plates were centrifuged (10 min at 250 g), and the 100 µL of supernatants were relocated to another flat-bottom plate. In the next step, 100 µL of the reagent of LDH kit placed into each well with incubation at 21°C (Ghanghareh and Zare 2020). The absorbance was monitored in ELISA reader by 490 nm wavelength. The cytotoxicity was calculated as:

\[
\text{Cytotoxicity} \% = \left(\frac{\text{experimental value} - \text{low control}}{\text{high control} - \text{low control}} \right) \times 100
\]

Wound-healing assay

The wound-healing was evaluated to indicate cell migration (Bobadilla, Arévalo et al. 2019). The cells were cultured in 24-well plates in a culture medium (24 h). The wounds were made in monolayers of the cells and the detached cells were separated after washing with PBS. Cells were treated with a determined concentration of EA extract and incubated for 24 h (CO2 incubator) (Ben Sghaier, Pagano et al. 2016). After replacing the medium with PBS, the wound gap photos were taken using a digital camera on a microscope fitted state. The wound width was determined in six random zones and processed using Image J software (National Institutes of Health, Bethesda, MD, USA).

Wound closure distance was quantified according to:

\[
\text{Wound Closure Distance} = \left[A (0h) - A (24h) \right]
\]

Colony formation assay

To assay the colony formation (Helderman, Löke et al. 2020, Jabeen, Sharma et al. 2020) the C6 and U87 cells were plated in 6-well plates (2×10⁴) and exposed to 250, 500, and 1000 µg/ml of EA extract as treatment groups and cell lines without treatment were considered as the control group for 72 h. The medium was refreshed by 3 days up to grow new colonies. At the cell numbers greater than 30, then washed by PBS and placed in paraformaldehyde. Before washing and drying, the cells were stained with crystal violet. The counting of cells was done on colonies containing more than 50 cells using a microscope. The colony formation ratio was determined according to the following equation:

\[
\text{Plate colony formation inhibitory ratio} = \left(\frac{\text{number of colonies treated with EA}}{\text{number of cells inoculated}} \right) \times 100
\]

Statistical Analysis

Statistical analyses were done by SPSS 16.0 and GraphPad Prism version 5.0 software. Comparisons between treatment groups were performed using variance test analysis (ANOVA) followed by post hoc Student's t-tests, and the results were stated as means ± SEM. Differences were considered significant when P ≤ 0.05.

RESULTS

Determination of phytochemical compounds of the extract

HPLC analyzed the phytochemical compounds of EA whole fruit extract are summarized in Table 1. The major compounds of EA extract were rutin and apigenin. These compounds are belonging to the flavonoid class act as core compounds in the pharmacological activities of EA extract. Also, the rutin and apigenin are such plant pigments that are found in certain fruits and vegetables.

Table 1 Major phytochemical compounds of EA extract analyzed by HPLC

Compounds	Retention Time (min)	Detection wavelength (nm)	Concentration (µg/5 mg extract)
Rutin	27	256.8	12.29
apigenin	38.6	276.4	5.12

Cell viability

The effect of EA extract on cell viability in glioblastoma cancer C6, and U87 cells was quantitatively evaluated using the MTT assay. Treatment with EA extract at the dose of 125 to 2000 µg/ml and 61.5 to 2000 µg/ml inhibited C6 and U87 cells' viability, respectively (Fig. 2). The IC50 values of EA for C6 and U87 cells were 541.6 and 247 µg/ml, respectively.
Cytotoxic Effect

The release of LDH is a marker for cell death. We, therefore, assessed whether treatment of cells with EA extract resulted in LDH release. The effects of a range of EA extract concentrations (0, 31.25, 62.5, 125, 250, 500, and 1000 µg/ml) on cell death in glioblastoma lines are shown in Fig. 3. The results revealed that a dose of 1000 at 48 h culture and 62.5, 250, 500, and 1000 µg/ml at 72 h culture resulted in a significant induction of death of the C6 cell line. In the U87 cell line, the concentration of 31.25 to 1000 µg/ml induced remarkable cell cytotoxicity at both 48 and 72 h incubation times, although this response is not dose-dependent.

Colony formation

The effects of EA extract on tumor cell clonogenicity in C6, and U87 cells are illustrated in Fig. 5. As can be seen, the extract not only could notably inhibit the colony formation but also cause a significant decrease in colony formation number ratio in both cell lines. The culture of the C6 cell line with 1000, 500, and 250 µg/ml resulted in diminished colony size significantly. In the U87 cell line, the concentration of 1000 and 500 µg/ml induced a remarkable colony size decreasing. These results reflect the ability of EA extract to prevent the tumor cell from dividing.
DISCUSSION

The phytochemical component of EA extract was identified and the impact of the extract was evaluated on viability, cytotoxicity, migration, and colony formation of determined glioblastoma cell lines. The main quantified flavonoid compounds in EA extract were including rutin and apigenin which is according to the previously reported flavonoid group for EA extract (Hamidpour, Hamidpour et al. 2017, Ozen, Yenigun et al. 2017). However, a broad different type of flavonoids and flavone glycosides are detected in other EA parts (Si, Qin et al. 2011).

It is well documented that flavonoids interfere with several signal transduction pathways in the cancer cells and thus restrict proliferation, angiogenesis, and metastasis and increase apoptosis (García-Lafuente, Guillamón et al. 2009, Ravishankar, Rajora et al. 2013). Furthermore, apigenin, as a phytoestrogen aglycone that alone or in combination with chemotherapy led to apoptosis, inhibits invasion, and induces cell cycle arrest of cancer cells (Chan, Chou et al. 2012, Shi, Shiao et al. 2015, Meng, Zhu et al. 2017). Rutin, a Quercetin Glycoside, improves breast cancer cells’ chemosensitivity, decreases the superoxide generation in colon cancer cells, and inhibits adhesion and migration of lung cancer (ben Sghaier, Pagano et al. 2016, Iriti, Kubina et al. 2017).

Considering the effect of EA fruit extract on two types of glioblastoma cell lines, the EA extract can decrease cell survival and increase tumor cell death in a dose-dependently manner. Our study also shows that the extract significantly inhibits the migration and proliferation of C6 and U87 glioblastoma cancer cells. Rat C6 glioblastoma cell line was initially induced in Wistar rats by N, N’-nitroso-methyl urea. This cell is very close to glioblastoma multiforme (GBM) morphologically when injected into rats’ brains. Another cell line was U87, which is a cell line...
Abbreviations

EA Elaeagnus angustifolia L.
GBM Glioblastoma multiforme
HCC hepatocellular carcinoma
HPLC high-performance liquid chromatography
HUVIC human umbilical endothelial cell
IL-10 Interleukin 10
LDH lactate dehydrogenase
MMF matrix metalloproteinase
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide
TNF-α Tumour Necrosis Factor alpha
PBS phosphate buffer saline

REFERENCES

Abu-Dahab, R. and F. Afifi (2007). “Antiproliferative activity of selected medicinal plants of Jordan against a breast adenocarcinoma cell line (MCF7).” *Pharmacologia* 75(3): 121-146.
https://doi.org/10.5797/pharmacumph.2007.75.121

Amerhe, Z., N. Hatami, F. H. Shiri-Za, S. Gholami, S. H. Hosseini, M. Noubarian, M. Kamalinejad, S. Andalib, F. Keyhanfar and M. R. Eskandari (2017). “Cancer chemoprevention by oleaster (Elaeagnus angustifolia L.) fruit extract in a model of hepatocellular carcinoma induced by diethylnitrosamine in rats.” *Erciyes* 16: 1046-1056.
https://dx.doi.org/10.15171/er.2016.22

Bashash, R., N. Asna, P. Schaffer, N. Francis and M. Schaffer (2017). “Glioblastoma multiforme, diagnosis and treatment: recent literature review.” *Current medicinal chemistry* 24(27): 3000-3009.
https://doi.org/10.2174/192967324266170511212306

Benghaier, M., A. Pagano, M. Moussilmi, Y. Amami, H. Kovacic and J. Luis (2016). “Rutin inhibits proliferation, attenuates superoxide production and decreases adhesion and migration of human cancerous cells.” *Biomedicine & Pharmacotherapy* 84: 1972-1978.
https://doi.org/10.1016/j.biopha.2016.11.001

Benda, P., J. Lightbody, G. Sato, L. Levine and W. Sweet (1968). “Differentiated rat glial cell strain in tissue culture.” *Science* 161(3839): 370-371.

Bobadilla, A. V. P., J. Arévalo, E. Sarró, H. M. Byrne, P. K. Maini, T. Carraro, S. Balocco, A. Meseguer and T. Alarcón (2019). “In vitro cell migration quantification method for scratch assays.” *Journal of the Royal Society Interface* 16(151): 20180709.
https://doi.org/10.1098/rsif.2018.0709

Çakmakçi, S., E. F. Topdak, P. Káln, H. Han, P. Şekerli, L. P. Kös and I. Gürçin (2015). “Antioxidant capacity and functionality of oleaster (Elaeagnus angustifolia L.) flour and crust in a new kind of fruity ice cream.” *International Journal of Food Science & Technology* 50(2): 472-481.
https://doi.org/10.1111/ijfs.12637

Chan, L.-P., T.-H. Chou, H.-Y. Ding, P.-R. Chen, F.-Y. Chiang, P.-L. Kuo and C.-H. Liang (2012). “Apginin induces apoptosis via tumor necrosis factor receptor and Bcl-2-mediated pathway and enhances susceptibility of head and neck squamous cell carcinoma to 5-fluorouracil and cisplatin.” *Biochimica et Biophysica Acta* (BBA)-General Subjects 1820(7): 1081-1091.
https://doi.org/10.1016/j.bjba.2012.04.013

Desai, A. G., N. N. Quazi, R. K. Ganju, M. El-Tamer, J. Singh, A. K. Saxena, Y. S. Bedi, S. C. Taneja and H. K. Bhat (2008). “Medicinal plants and cancer chemotherapy.” *Current drug metabolism* 9(7): 581-591.
https://doi.org/10.2174/138920008785216577

Faramarz, S., G. Dehghan and A. Jahanban (2017). “Elaeagnus glabra L.” *Free Radical Research* 51(12): 1489-1498.
https://doi.org/10.1080/10510794.2017.1467160

Fouda, Y. A. and C. Aanee (2017). “Revisiting the hallmarks of cancer.” *American journal of cancer research* 7(5): 1016-1036.

Garlicafuent, A., E. Guillamón, A. Villares, M. A. Rostagno and J. A. Martínez (2009). “Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease.” *Inflammation Research* 58(9): 537-552.
https://doi.org/10.1007/s00011-009-0037-3

Gangharae, M. and M. Zare (2020). “Cytotoxic Effects of Hydro-Alcoholic Extract of the Leaf of Elaeagnus angustifolia in Hepatocellular Carcinoma Cell Line (HepG2).” *International Journal of Cellular and Molecular Biology* 11(3).
https://doi.org/10.5812/jcibmb.108505

Gaikwadn, L. and N. Foroglou (2018). “C6 cell line: the gold standard in glioma research.” *Hippokratia* 22(3): 105.

Hamidpour, S., R. Hamidpour, M. Hamidpour, M. Shahvari, M. Sohraby, N. Shahlari and R. Hamidpour (2017). “Russian olive (Elaeagnus angustifolia L.): From a variety of traditional medicinal applications to its novel roles as active
antioxidant, anti-inflammatory, antimutagenic and analgesic agent." J Tradit Complement Med 7(1): 24-29. https://doi.org/10.1016/j.tcm.2015.09.004

Helderman, R. F., D. R. Loke, J. Verheof, H. M. Rodermond, G. G. van Bochove, M. Boon, S. van Kesteren, J. J. Garcia Vallejo, H. P. Kok and P. J. Tanis (2020). "The co-employment-dependent effectiveness of platinum-based drugs mitomycin-c and 5-fluorouracil during hyperthermic intraperitoneal chemotherapy (HIPEC) in colorectal cancer cells." Cells 9(8): 1775. https://doi.org/10.3390/cells9081775

Iriti, M., R. Kubina, A. Cochis, R. Sorrentino, E. M. Varoni, A. Kabala-Dzik, B. Azizzonti, A. Dziedzic, L. Rimondini and R. D. Wojtyczka (2017). "Rutin, a quercetin glucoside, reduces gliosensitivity in human breast cancer cells." Phytotherapy Research 31(10): 1529-1538. https://doi.org/10.1093/ptr/5878

Jabeen, A., A. Sharma, I. Gupta, H. Kheraldine, S. Vranić, A.-E. Al Moustafa and H. F. Al Farsi (2020). "Elaeagnus angustifolia plant extract inhibits epithelial-mesenchymal transition and induces apoptosis via HER2 inactivation and JNK pathway in HER2-positive breast cancer cells." Molecules 25(18): 4240. https://doi.org/10.3390/molecules25184240

Jaworski, S., E. Sawosz, M. Grodzik, M. Kutowin, M. Wierzbicki, K. Włodyga, A. Jasik, M. Reichert and A. Chwalibog (2013). "Comparison of tumour morphology and structure from U87 and U118 glioma cells cultured on chicken embryo chorioallantoic membrane." Bulletin of the Veterinary Institute in Pulawy 57(4): 593-598. https://doi.org/10.2478/bvip-2013-0101

Katsamakis, S., D. E. Slot, L. W. Van der Sluis and F. Van der Weijden (2013). "Histological responses of the periodontium to MTA: a systematic review." Journal of Clinical Periodontology 40(4): 334-344.

Khan, T., M. Ali, A. Khan, P. Nisar, S. A. Jan, S. Afridi and Z. K. Shirsawi (2020). "Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects." Biomolecules 10(1): 47. https://doi.org/10.3390/biom1001012058

Lai, C., Y., J.-T. Hung, H.-H. Lin, L. Y. Alice, S.-H. Chen, Y.-C. Tsai, L.-E. Shao, W.-B. Yang and J. Yu (2010). "Immunomodulatory and adjuvant activities of a polysaccharide extract of Ganoderma lucidum in vivo and in vitro." Vaccine 28(31): 4945-4954. https://doi.org/10.1016/j.vaccine.2010.05.037

Lee, Y. K., K. Bae, H.-S. Yoo and S.-H. Cho (2018). "Benefit of Adjuvant Traditional Herbal Medicine With Chemotherapy for Resectable Gastric Cancer." Integrative cancer therapies 17(3): 619-627.

Li, L.-H., I. K. Baek, J. H. Kim, K. H. Kang, Y. S. Koh, Y. D. Jung, C. K. Cho, S.-Y. Choi and B. A. Shin (2009). "Methanol extract of Elaeagnus glabra, a Korean medicinal plant, inhibits HT1080 tumor cell invasion." Oncology reports 21(2): 559-563. https://doi.org/10.3892/or.00000257

Mehrabani Natanzi, M., P. Pasalar, M. Kamalinejad, A. R. Dehpour, S. M. Tahavong, R. Mirafzali, N. Ghanadian, M. Rahimi and S. M. Boon, S. van Kesteren, J. J. Garcia Vallejo, H. P. Kok and P. J. Tanis (2020). "Isolation and characterization of cancer stem cells from a metastatic ovarian cancer cell line." Acta Med Iran 58(9): 599-596.

Meng, S., Y. Zhu, J.-F. Li, X. Wang, Z. Liang, S.-Q. Li, X. Xu, H. Chen, B. Liu, X.-Y. Zheng and L.-P. Xie (2017). "Apigenin inhibits renal cell carcinoma cell proliferation." Oncotarget 8(12): 19834-19842. https://doi.org/10.18632/oncotarget.15771

Naga, H. and H. Y. Kim (2017). "Cancer prevention from the perspective of global cancer burden patterns." Journal of thoracic disease 9(3): 448-451. https://doi.org/10.21037/jtd.2017.02.75

Ozen, T., S. Yenigun, M. Altun and I. Demirtas (2017). "Phytochemical Constituents, ChEs and Urease Inhibitions, Antiproliferative and Antioxidant Properties of Elaeagnus umbellata Thunb." Combinatorial chemistry & high throughput screening 20(6): 559-578. https://doi.org/10.2174/1386207320666170127161837

Ravishankar, D., A. K. Rajora, F. Greco and H. M. Osborn (2013). "Flavonoids as prospective compounds for anticancer therapy." The international journal of biochemistry & cell biology 45(12): 2821-2831. https://doi.org/10.1016/j.biocel.2013.10.004

Saleh, A. I., I. Mohamed, A. A. Mohamed, M. Abdelkader, H. C. Yalcin, T. Aboulkassim, G. Batist, A. Yasmeen and A. A. Moustafa (2018). "Elaeagnus angustifolia Plant Extract Inhibits Angiogenesis and Downgrades Cell Invasion of Human Oral Cancer Cells via Erk1/Erk2 Inactivation." Nutr Cancer 70(2): 297-305. https://doi.org/10.1080/01635581.2018.1412472

Sheng, J., X. Zou, Z. Cheng, Y. Xiang, W. Yang, Y. Lin and R. Cui (2018). "Recent Advances in Herbal Medicines for Digestive System Malignancies." Frontiers in pharmacology 9: 1249. https://doi.org/10.3389/fphar.2018.01249

Shergill, A., A. Bankhead, 3rd, U. Luesakul, N. Muangsin and N. Neamati (2018). "Current Challenges and Opportunities in Treating Glioblastoma." Pharmacological reviews 70(3): 412-445.

Shi, M.-D., C.-K. Shiao, Y.-C. Lee and Y.-W. Shih (2015). "Apigienin, a dietary flavonoid, inhibits proliferation of human bladder cancer: T-24 cells via blocking cell cycle progression and inducing apoptosis." Cancer cell international 15(1): 33. https://doi.org/10.1186/s12935-015-0186-0

Si, C. L., P. P. Qin, Y. Y. Lu, L. Wu, H. H. Wang, L. F. Hui, Z. Liu and Y. H. Ni (2011). "GC-MS analysis of chemical composition and free radical scavenging activity of elaeagnus angustifolia bark." Advanced Materials Research, Trans Tech Publ. https://doi.org/10.4028/www.scientific.net/AMR.183-185.854

Sun, X.-X., H.-p. Liu, X.-h. Liu, Y. Zhang, X.-q. Liu, S. Wang, X.-x. Xu and W.-t. Tian (2018). "Immunological activities of polysaccharide extracted from Elaeagnus angustifolia L." CyTA-Journal of Food 16(1): 995-1002. https://doi.org/10.1002/ptr.5878

Torbati, M., S. Asmaaehari and F. Heshmati Afshar (2016). "Essential Oil from Flowers and Leaves of Elaeagnus Angustifolia (Elaeagnoaceseae): Composition, Radical Scavenging and General Toxicity Activities." Advanced pharmaceutical bulletin 6(2): 163-169. https://doi.org/10.15171/aphb.2016.023