Single top: prospects at LHC

Markus Cristinziani (Uni Bonn) for ATLAS, Giovanni Petrucciani (SNS & INFN Pisa) for CMS
Outline

• What changes between Tevatron and LHC
• Overview of single top quark at LHC
• Searches at CMS, mostly O(10fb$^{-1}$) and early searches at ATLAS, mostly O(1fb$^{-1}$)
• Conclusions
LHC is good for searches

- High luminosity: gathering $O(10\text{fb}^{-1})$ should be easy, once we start.
- High energy: larger signal cross sections (and not so larger background ones)

Process	σ(Tevatron)	σ(LHC)
ttbar pairs	$6.70^{+0.71}_{-0.88}$ pb	825 ± 150 pb
single top, s-ch.	0.88 ± 0.12 pb	10 ± 1 pb
single top, t-ch.	1.98 ± 0.22 pb	245 ± 17 pb
tW production	0.15 ± 0.04 pb	60 ± 10 pb
Wjj (*)	~1200 pb	~7500 pb
bb+jets (*)	$\sim2.4\times10^5$ pb	$\sim5\times10^5$ pb

(*) hep-ph/9806332: after selection cuts to mimic top signals

σ(Tevatron) \div \sigma$(LHC):
- $ttbar$ pairs: $(x120)$
- Single top, s-ch.: $(x10)$
- Single top, t-ch.: $(x120)$
- tW production: $(x400)$
- Wjj: $(x6)$
- bb+jets: $(x2)$
LHC is bad for systematics

- Rejection of backgrounds depends on observables not easy to control at startup:
 - **jet counting**: uncertainties on JES knowledge, extra jets from radiation, pile up or detector noise
 - **b-tagging**: knowledge of its performance with a misaligned detector
 - **MET**: controlling the detector resolution for a small true missing energy (~40GeV) in multi-jet events (none of these comes for free from Z->μμ/ee)
- Because of this, single top can be easy to see but very hard to measure accurately
Overview at LHC

- The cross section hierarchy is different at LHC

\[\sigma_{t-channel} = 240 \text{pb} \]
\[\sigma_{tW \text{ production}} = 60 \text{pb} \]
\[\sigma_{s-channel} = 10 \text{pb} \]

- Only decays with at least one \(\text{e/\mu} \) in the final state will be usable at the beginning
Overview at LHC

• Taking into account the BR, not summing on flavours the cross sections become

 - t-ch \((qt \rightarrow qbW \rightarrow qb\ell\nu)\) \(\sigma \cdot BR = 26pb\) (x2)
 - tW/1\(\ell\) \((tW \rightarrow bWW \rightarrow bqq'\ell\nu)\) \(\sigma \cdot BR = 4pb\) (x2)
 - tW/2\(\ell\) \((tW \rightarrow bWW \rightarrow b\ell\nu\ell'\nu')\) \(\sigma \cdot BR = 0.74pb\) (x4)
 - s-ch \((bt \rightarrow bbW \rightarrow bb\ell\nu)\) \(\sigma \cdot BR = 1.1pb\) (x2)
Studies at CMS

• All the four possible final states have been studied for the Physics TDR \cite{CERN/LHCC-2006-021}

• The basic assumptions were:
 – 10fb$^{-1}$ integrated luminosity, with the \textquotedblright 2\cdot10^{33}\textquotedblright pileup
 – Ideal alignment, calibrations with 10fb$^{-1}$ of data
 – Keeping the analysis simple: extract only σ, as a counting experiment, no multivariate methods
 – Generators: SingleTop and TopRex for signal, TopRex, Alpgen and Pythia for the backgrounds.
 – Use of full GEANT4 simulation when possible, or the fast but fairly accurate FAMOS simulation
Studies at ATLAS

- CSC notes will be public ~July, all results shown here are thus preliminary
- The three channels are considered in the final states with exactly one lepton (electron or muon)
- Studies based on:
 - 1fb^{-1} integrated luminosity, with no pileup
 - Realistic detector and misalignment
 - Cut-and-count analysis as a baseline; multivariate methods in addition for better background rejection
 - Generators: AcerMC for signal, MC@NLO, AlpGen and Pythia for backgrounds
 - Use of full GEANT4 simulation
ATLAS common preselection

• Similar features in the three channels → common preselection to reduce backgrounds (ttbar, W+jets and QCD)
 – Exactly one isolated high p_T lepton
 – 2-4 jets, one of which is tagged as a b-jet
 – MET > 20 GeV

• Single-top efficiency
 – 9-10% (electrons)
 – 10-12% (muons)

• Rejection of W+jets $O(10^4)$, ttbar $O(20)$
ATLAS: t-channel

- Cut-and-count analysis with simple kinematic cuts
 - p_t (b-jet) > 50 GeV (against W+jets)
 - Hardest light jet $|\eta| > 2.5$ (against ttbar)
ATLAS: t-channel sensitivity

- Results for sequential cut analysis
- Significant reduction wrt to ATLAS TDR (1999)
- Difference understood in terms of
 - Pythia new parton shower algorithm
 - ME: Pythia \rightarrow AcerMC
 - W+jets: Herwig \rightarrow Alpgen
 - tt dileptonic and tt with τ were neglected

Process	Efficiency	N (1 fb$^{-1}$)
t-channel (μ or e)	1.8%	1460
tt (l+jets)	0.6%	1560
tt with τ	0.4%	740
tt (dilepton)	1.3%	520
W+jets	0.0017%	870
Wbb+jets	0.4%	70
S/B		0.37
ATLAS: t-channel BDT

- MV analysis to suppress ttbar background
- Boosted Decision Trees (BDT) applied after selection (except η cut)
- 40 object/event level variables considered
- Reduce to sets that are less sensitive to JES, e.g.
 - p_T and $\cos(\theta^*)$ of leading jet
 - p_T and η of leading non-b jets
 - centrality(j_1, j_2), $H_T(j_1,j_2,\text{MET},\ell)$, $M_T(W)$
 - $\Delta R(j_1,j_2)$, $\Delta R(j_1,\text{lep})$, $\Delta R(j_1\text{non-b},\ell)$
 - η (max), #jets
ATLAS: t-channel BDT result

- BDT cut optimised for cross-section uncertainty including systematic effects
 - $S/B = 1.3$ (542 events)
 - 5.7% (stat), 22.4% (total uncert.)

Reco’d top mass after D cut
ATLAS: t-channel systematics

- **Experimental:** b-tagging, jet energy scale
- **Theoretical/MC:** ISR/FSR, PDF, MC model

source	Cuts $\Delta \sigma/\sigma$	BDT $\Delta \sigma/\sigma$	source	Cuts $\Delta \sigma/\sigma$	BDT $\Delta \sigma/\sigma$
MC stat	6.5%	7.9%	Bckgnd normal.	22.9%	8.2%
lumi 5%	18.3%	8.8%	PDF	12.3%	2.6%
b-tag 5%	18.1%	6.6%	Lepton ID	1.5%	0.7%
JES 5%	21.6%	9.9%	MC model	4.2%	4.2%
ISR/FSR	9.8%	9.4%	Total systematic	44.7%	22.4%
Data stat				5.0%	5.7%

Top2008

M. Cristinziani (Bonn), G. Petrucciani (Pisa)

14
CMS, t-channel

- Analysis performed only in the $W\rightarrow \mu\nu$ channel
- 1 muon, 1 b-tagged jet, 1 forward jet, E_T^{miss}
- Cuts on $M_T(W)$, $M(\text{top})$, $|\Sigma_T| = E_T(\mu+b+j+E_T^{\text{miss}})$

Expected events

Process	N/10fb$^{-1}$
Signal	2389
t tbar	1189
Wbb+jet	195
W+jet	102

$S/B \sim 1.4$

[CMS NOTE 2006-084; CMS Physics TDR II, sect. 8.4.2]
CMS: t-channel, results

Uncertainties on S and B for 10fb$^{-1}$, and their impact on the cross section measurement

	signal	ttbar	Wbbj	Wjj	$\Delta\sigma/\sigma$
Statistics	2.0%	2.9%	7.2%	4.9%	2.7%
Theory	4.0%	5.0%	17.0%	5.0%	5.0%
JES (5-2.5%)	3.0%	6.1%	3.1%	<1%	4.3%
B-tagging	4.0%	4.0%	4.0%	4.0%	4.5%
Luminosity	5.0%	5.0%	5.0%	5.0%	8.7%

("theory" includes PDFs, m_t, m_b, Λ_{QCD}, $\sigma_{\text{background}}$)

$$\Delta\sigma/\sigma = 2.7\%^{\text{(stat)}} + 8\%^{\text{(syst)}} + 8.7\%^{\text{(lumi)}}$$
tW production

- The final state is very similar to ttbar production, except for one less b-jet: jet counting is critical
 - CMS: Jets from calorimeter noise were vetoed by using information from tracks and calo tower distribution
 - ATLAS: b-tag veto, analysis adapted according to #jets
- Can't achieve a good S/B, so background normalization from data important to avoid large systematic uncertainties
 - Background-like sample dominated by ttbar selected with cuts very similar to the ones for signal, to cancel out systematics on background subtraction
CMS: tW dileptonic

- In the e+µ channel, to avoid Z background
- Select events with 1 or 2 jets, classify by the P_T of the second jet (if any) and the number of b-tags.
- Signal selected as 1 b-jet, background control as 2 b-jet
CMS: tW semi-leptonic

- Events are selected requiring exactly one lepton (e,\(\mu\)), 1 b-jet and two light quark jets, and some MET (to control QCD background)

- (W,b) pairing from a Fisher discriminant using \(P_T(b+W), \Delta R(W,b)\) and \(q(b) \cdot q(W)\) from jet charge
CMS: tW summary

Expected events [10fb$^{-1}$]

- **Semi-leptonic (S/B~0.2)**
 - signal: 1700
 - ttbar: 7624
 - W+jets: 759
 - t-ch top: 351

- **Di-leptonic (S/B~0.37)**
 - signal: 562
 - ttbar: 1433
 - WW+jets: 55

$\Delta \sigma/\sigma$ expected 10fb$^{-1}$

Source	1L	2L
Statistics	7.5%	8.8%
Luminosity	7.8%	5.4%
Jet E.S.	9.4%	20%
b-tagging	3.6%	8.7%
PDF	1.6%	6.0%
Pileup	10%	6.1%
TOTAL	19%	25%

[CMS NOTE 2006-086; CMS Physics TDR II, sect. 8.4.2]
ATLAS: tW cut-and-count

- Only semi-leptonic final state considered
- Analysis divided according to #jets in final state
- 1 b-tagged jet with $p_T > 50$ GeV, veto second b-jet to optimally reject ttbar (main concern)
- W window cut for events with >3 jets

Events in 1 fb$^{-1}$	1b+1jet	1b+2jets	1b+3jets
tW channel	435	164	40
other single top	1260	99	58
ttbar	1980	770	274
W(bb)+jets	3075	220	44
S/B	6.8%	15%	10.6%

Top2008

M. Cristinziani (Bonn), G. Petrucciani (Pisa)
ATLAS: tW BDT

• for each background
 – ttbar 1l, 2l, W(bb)+jets, t-channel
• and each jet multiplicity a boosted decision tree function is defined \rightarrow12 BDTs (e and μ together)
• pool of 25 discriminating variables identified
 – Opening angles(6), p_T(3), η(2), $\cos\Delta\phi$
 – Invariant (transverse) masses (6), f(MET), H_T(2)
 – p_z(neutrino)
 – sphericity, aplanarity, centrality
• minimize uncertainty on σ including syst. uncert.
ATLAS: tW results

- S/B ratios in the 3 classes
 - 35%, 45%, 16% (86 ev. sel.)
- 3σ evidence with few fb⁻¹
- 20% uncertainty with 10 fb⁻¹

Source	1 fb⁻¹	10 fb⁻¹
Var		
Δσ/σ		
MC stat	15.6%	
Lumi	5%	20%
Bckgnd σ	10%	23.4%
ISR/FSR	9%	24.0%
PDF	2%	5.2%
b-fragm.	3.6%	9.4%
data stat.	20.6%	6.6%
Total uncert.	52%	20.5%
CMS: s-channel

- Much harder at LHC than at Tevatron as the relative cross section is much smaller.

- Selection requirements:
 - one isolated lepton (e, µ)
 - exactly two jets, both b-tagged
 - missing E_T
 - cuts on $M_T(W)$, $M(t)$, $P_T(t)$, Σ_T, H_T

[CMS NOTE 2006-084; CMS Physics TDR II, sect. 8.4.4]
CMS: s-channel

- Two control samples selected to constraint ttbar background (semi-leptonic and di-leptonic)

- **Expected events** [10fb$^{-1}$] (S/B ~ 0.13)

 - signal: 273
 - ttbar: 1260
 - t-channel: 630
 - Wbb: 155

- **Uncertainty on σ** [10fb$^{-1}$]

 $\Delta\sigma/\sigma = 18\%$ (stat) + 31\% (syst) + 19\% (lumi)

 dominated by the systematics on the ttbar semi-leptonic background normalization from JES

[CMS NOTE 2006-084; CMS Physics TDR II, sect. 8.4.4]
ATLAS: s-channel

- Require exactly two b jets, veto any further jet
- Pure cut-and-count analysis not possible
 - S/B 10%, 25 selected events
- Define 5 likelihood functions for background categories (3 ttbar, W+jets, t-channel)
- Discriminating variables
 - see tW channel
 - $\Delta \eta$, p_T(top)
 - choose only most significant
ATLAS: s-channel likelihood

- S/B improves to 19% (15ev)
- ISR/FSR radiation and b-tagging critical

Source	1 fb⁻¹	10 fb⁻¹		
	Var	Δσ/σ	Var	Δσ/σ
MC stat	29%			
Lumi	5%	31%	3%	18%
b-tagging	5%	44%	3%	25%
JES	5%	25%	1%	5%
lepton ID	1%	6%	1%	6%
Bckgnd σ	10%	47%	3%	16%
ISR/FSR	9%	52%	3%	17%
PDF	2%	16%	2%	16%
b-fragm.	3.6%	19%	3.6%	19%
data stat.	64%	20%		
Total	115%	52%		

Top2008

M. Cristinziani (Bonn), G. Petrucciani (Pisa)
ATLAS: QCD rejection

- Observation (e.g. D0): fake MET aligned with lepton → triangular cut in $\Delta \phi$ vs. MET plane
- Fake lepton rate will be determined from data
 - e.g. $m_T(W) < 50$GeV extrapolated to signal region
 - assume QCD background fully under control
CMS: QCD background estimation

- Due to the huge cross section, the background from QCD multi-jet could only be estimated indirectly, using the cut factorization method:
 - The first steps of the selection were grouped into some sets of approximately independent cut sets, for which the efficiency was extracted from QCD simulations
 - The combined efficiency was taken as product of the efficiencies of all the cut sets
 - An upper limit to the efficiency of the later steps of the selection on QCD was taken using the signal efficiency

- The estimated background is very small except for tW semi-leptonic analysis, for which \(B_{QCD}/S \sim 30\% \).
Conclusions

- All channels with leptons have been studied
- t-channel
 - CMS: PhysTDR study gives >5σ observation for 10 fb\(^{-1}\) (naïve rescaling of statistical and systematic uncertainties hints that even 1 fb\(^{-1}\) might be ok)
 - ATLAS: two studies shown for 1 fb\(^{-1}\)
- tW channel should be visible with O(10 fb\(^{-1}\))
- s-channel might be visible with O(10 fb\(^{-1}\)), but it will be hard due to poor S/B ratio
Backup
ATLAS: Effect of pile-up

- With a luminosity of 10^{32} cm$^{-2}$s$^{-1}$ we estimate the relative efficiency for signal and background.
- Pile-up modeling will be tuned with data.
- Uncertainty is expected to become negligible with respect to other sources.
- No systematic uncertainty considered here.

Channel	rel. ε(signal)	rel. ε(ttbar)
t	75%	66%
tW (2jets)	82%	84%
tW (3jets)	53%	61%
tW (4jets)	74%	80%
s	91%	85%
ATLAS: Results summary

Analysis	Stat 1fb⁻¹	Syst 1fb⁻¹	Stat 10fb⁻¹	Syst 10fb⁻¹
t-channel C&C	5.0%	44.4%	1.6%	22.3%
t-channel BDT	5.7%	21.7%	1.8%	9.8%
tW-channel BDT	20.6%	48%	6.6%	19.4%
s-channel LH	64%	95%	20%	48%

Top2008
M. Cristinziani (Bonn), G. Petrucciani (Pisa)
ATLAS: triggering on single top

- Inclusive isolated electron and muon triggers
- Overall top quark efficiency 84%
- Preselection requires 30 GeV leptons, well on the trigger efficiency plateau
CMS: triggering on single top

- Single lepton triggers used.
- Full L1 and HLT simulation included in the analysis.
- Combined L1*HLT efficiency
 - ~50% for channels with a single lepton
 - ~70% for tW di-leptonic
 (note: $W \rightarrow \tau \nu$ are included)
CMS, t-channel: selection

- Selection cuts ($W \rightarrow \mu\nu$ only):
 - 1 muon, $P_T > 19$ GeV, $|\eta| < 2.1$
 - 1 b-jet, $P_T > 35$ GeV, $|\eta| < 2.5$, b-discr > 2.4
 (b-tag cut giving $\epsilon_b \sim 50\%$, $\epsilon_{uds} \sim 0.3\%$)
 - 1 forward jet ($P_T >$ GeV, $|\eta| < 2.5$)
 - $E_T^{\text{miss}} > 40$ GeV
 - $|\Sigma_T| < 43.5$ GeV ($\Sigma_T = \vec{p}_T(\mu) + \vec{E}_T(b) + \vec{E}_T(j) + \vec{E}_T^{\text{miss}}$)
 - $m_T(W)$ within [50, 120] GeV
 - $m(t)$ within [50, 120] GeV
CMS: t-channel, plots

Process	N^{expected}/10fb^{-1}
Signal	2389
t tbar	1189
Wbb+jet	195
W+jet	102

Top2008
M. Cristinziani (Bonn), G. Petrucciani (Pisa)