Earrings: An Obscured Source of Cross-Contamination in Dental Clinics of India

Sweta Singh¹, Priyanka Talmale²* and G. Archana³

¹Department of Public Health Dentistry, K. M. Shah Dental College & Hospital, Sumandeep Vidyapeeth (Deemed to be University), Vadodara, 391760, Gujarat, India.
²Department of Public Health Dentistry, SMBT Institute of Dental Science and Research, Ghoti, Dhamangaon, Igatpuri, 422403, Nashik, Maharashtra, India.
³Department of Microbiology and Biotechnology Centre, M.S University, Vadodara, 390002, Gujarat, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i38A32072

Editor(s):
(1) Dr. Aurora Martínez Romero, Juarez University, Mexico.

Reviewer(s):
(1) Anmol Agarwal, Chaudhary Charan Singh University, India.
(2) Michael McIntire, University of Wisconsin-Green Bay, USA.

Complete Peer review History: https://www.sdiarticle4.com/review-history/71651

Received 18 May 2021
Accepted 21 July 2021
Published 23 July 2021

ABSTRACT

Purpose: This study aimed to check for the bacterial contamination of earrings worn by female dentists involved in direct patient care.

Method: This cross-sectional microbiological study was carried out among female dentists working in clinical departments of a tertiary care dental hospital. A questionnaire concerning awareness regarding the donning of ornaments as possible source of contamination was administered. It also included questions on measures taken to prevent cross contamination through earrings and methods for disinfection of earrings used if any. Two swabs from each participant were taken, one from the earring and other from the underlying skin site using a sterile microbial swab moistened in saline. The samples were then dispensed into 1 ml of sterile water by vortexing for 45s. The vortexed sample was then inoculated onto Blood Agar. The inoculated plates were incubated for 24 hours at 37°C aerobically. Further examination was done for the count of bacteria, type of bacteria and antibiotic sensitivity.

Result: In total 90 swabs, 45 each from earring and underlying skin were cultured for

*Corresponding author: E-mail: priyankatalmale29@gmail.com;
microorganisms. All the (100%) samples were positive for bacterial contamination. The swabs obtained from underlying skin sites were found to have significantly higher microbial load. (p-value = 0.008). Sixty two percent (62%) of the participants were aware of earrings being a possible source of contamination and 55% had the knowledge that ornaments are supposed to be removed while working in patient clinics. Only 5% practiced removing the ornaments which included bangles/bracelets, rings and watches. None reported to have removed earrings while working in clinics.

Conclusion: The results of this study show that earrings are potential source of cross contamination in a dental setting. This can act as nidus for colonization of bacteria and possible source for nosocomial infections and pathogenic transmission.

Keywords: Bacterial contamination; earring; female dentists; dental clinic; cross-contamination.

1. INTRODUCTION

Body piercing has been practiced by many for religious and other purposes across the globe. Piercing has become increasingly popular in recent years. The navel, nipples and ears are the most common sites of piercing [1]. Most commonly adorned ornaments are rings, necklaces, earrings and bangles. It may be made from any material, precious and semi-precious metals, gems etc. Factors that decide the choice of materials include cultural differences, availability and affordability [2].

Ornaments are used differently in different sections of society. The reasons vary from way of showing wealth to the functionality of the ornament like keeping hair in place. These have been designed to adorn every part of body [3]. Thus, making intimate contact with the skin or body of the person. As a result, they serve as a site of easy colonization by bacteria and fungi thereby serving as fomites [4-10]. These organisms get settled on jewelry using glycocalyx and develop into a biofilm on or around the jewelry [11].

Different suggestions have been made that jewelry items could be colonized by nosocomial pathogens and can serve as a nidus of microbial contamination [12]. Hence sanitization of jewelry gains considerable importance.

Jewelry and Indian women are inherently connected. It is customary to gift jewelry to women during wedding and other festivals [13]. However, infection control in dentistry has remained majorly confined to adherence to hand hygiene practices. The National Association of Theatre Nurses (NATN) suggests that all jewelry should be removed before any surgical procedure [13]. Although rings and watches are removed by most dental surgeons, many females those who are working in hospitals do not remove their earrings or necklaces.

There are very few studies that report bacterial contamination of ornaments worn by females working in the hospital. Moreover, despite some evidence that earrings when worn in hospitals may get colonized by microbes, there is great dearth of literature to suggest that viable bacteria develop a biofilm around the skin surface with potential of causing infections. This establishes the need to conduct study substantiating the role of earrings worn by female dentists in direct patient care as potential source of contamination.

2. MATERIALS AND METHODS

The present cross-sectional study was conducted from January 2018 to July 2018. Ninety samples (forty-five each from earring and underlying skin) were taken from female dentists working in clinical departments of a tertiary care dental hospital, Vadodara. The sample included swabs from under graduate students, dental internees and post graduate trainees involved in direct patient care. A questionnaire was pretested on 5 subjects who were not a part of final sample. The test-retest reliability was found to be 0.78. The Cronbach’s α for internal consistency was 0.76.

Two swabs from each participant were taken from the consenting participants using a sterile microbial swab moistened in saline. One swab was taken from earring adorned in the right side ear lobe to maintain consistency and other from its underlying skin site. The investigator wore a new pair of sterile gloves when taking the swab from each participant. All the participants were assigned a number to maintain anonymity. The
collected swabs were placed into separate sterile self-lock clear plastic poly bags and numbered according to the numbers allocated to the participants. After collection, the poly bags were transferred to the department of Microbiology. The samples were then dispensed into 1 ml of sterile water by vortexing for 45s. The vortexed sample was then inoculated onto Blood Agar. The inoculated plates were incubated for 24 hours at 37°C aerobically. Examination was carried out for estimation of total bacteria count and the presence of pathogenic and non-pathogenic bacteria. The resultant colonies and also the number of bacteria present in colony forming units per ml (CFU/ml) was then counted. Several microbiological tests were performed for the identification of different types of bacteria such as Coagulase test, biochemical test, Antibiotic sensitivity test, Methicillin resistance staphylococcus aureus. Data from returned questionnaires were analyzed with SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp. Comparisons of data sets were performed using the student’s t-test and the chi-square test; p≤0.05 was considered statistically significant.

3. RESULTS

Two swabs were collected from each participant (45), one each from earring and underlying skin site. All the swabs (90) were found positive for bacterial contamination. The swabs obtained from underlying skin sites were found to have significantly higher microbial load. (Table 1).

Table 1. Bacterial Contamination rate and Bacterial Load from earrings and skin sites

Ornaments [n (%)]	Skin [n (%)]	p-value	
Bacterial Contamination	Yes	45 (100%)	45 (100%)
	No	0 (0%)	0 (0%)
Mean CFU*		193.53	2076.40

*student’s t-test, p < 0.05: statistically significant

The post graduate students presented with significantly higher mean CFU of microorganisms when compared to the undergraduate trainees. Only 62% participants were aware of the ornaments being a possible source of contamination in clinics and 55% knew that the ornaments should be removed before starting clinical procedures. Only 6% of the subjects practiced removing the ornaments (bangles and finger rings) before starting clinical procedures. However, none reported to having removed the earrings while working in clinics. (Table 2).

Bacillus species was the most common bacterial isolate obtained from the swabs, 31% and 26% respectively from earring and skin. Diptheroids was isolated from 2 earring (4.4%) and 4 skin swabs (8.8%). Total of 11 samples were found to be contaminated with coagulase negative Staphylococcus (CoNS) and 20 swabs with Methicillin Resistant S. aureus. Enterococci was the contaminant in 5(11.1%) of the samples from earrings and 6 (13.33%) from skin. Two swabs from earrings and three from skin were found positive for Pseudomonas. Enterobacteriaceae was isolated only from earrings (4.4%) and E. coli only from skin (2.2%). It has been observed that all the samples were positive for contamination. But there was no statistically significant difference in the type of bacterial contamination of earrings and underlying skin sites. (p value= 0.79) (Table 3).

Table 2. Knowledge of dental trainees with regards to Contamination of Ornaments

Questions	Responses	Undergraduate [n (%)]	Interns/ Post-Graduate [n (%)]	Total [n (%)]
1. Do you know that ornaments can be a potential source of contamination	Yes	11(24.4%)	17(37.7%)	28(62.2%)
2. Do you know you should remove your ornaments before starting your clinical procedures	Yes	9(20%)	16(35.5%)	25(55.5%)
3. Do you remove your ornaments before starting your clinical procedures	Yes	0		
	Interns/ Post-Graduate	3(6.66%)	1(33.3%)	2(66.6%)
	Bangles			
	Rings			
from earrings was 3.59 x 10^5 CFU/ml. The mean bacterial count of the variety of pathogenic and non-pathogenic bacteria. The mean bacterial count recorded from earrings was 3.59 x 10^5 CFU/ml. The common bacteria identified from earrings and underlying skin sites were Bacillus species, Diptheroids, Staphylococci, Enterococcus sp, Pseudomonas sp, E. Coli, Enterobacteriacea, Non Enterobacteriacea. Studies in past have been majorly conducted on contamination of necklaces and hand ornaments [2,3,6].

Staphylococcus aureus was the most common type of organisms in samples from earrings. The second most common organism was Bacillus species. The occurrence of bacteria on jewelry suggests a plausible relationship with sites with greater moisture and inaccessibility to routine hygiene practices. The presence of the Staphylococci, S. pyogenes, Pseudomonas sp, Corynebacterium sp., can be attributed to colonization of the jewelry by microorganisms commonly found on skin, while source of the Bacilli, E. coli, MRSA is likely to be from the environment.

There was no statistically significant difference observed in the type of pathogenic bacteria isolated from ornaments and underlying skin sites. However, significant difference was found in bacterial load of ornaments and underlying skin sites and between the samples obtained from undergraduates and postgraduates. Post Graduate students had significantly higher microbial load compared to the undergraduate trainees possibly because of greater exposure to patient care and longer duration of work.

There have been recommendations on removal of all hand and facial jewelry for the health care team working in surgical units. It has been suggested that surgical team members should remove all jewelry prior to entering the Operating Room. Considering the threat of cross contaminating the patient by microbes which could have colonized under the ornaments, the removal of any jewelry before entering the operatory has been stressed [6-8]. It has also

Bacteria	Ornaments	Skin sites	Total	p-value
Bacillus species	14 (31.1%)	12 (26.6%)	26 (57.7%)	0.79
Diptheroids	2 (4.44%)	4 (8.88%)	6 (13.3%)	NS
Coagulase negative	6 (13.3%)	5 (11.1%)	11 (24.4%)	NS
S. aureus	9 (42.2%)	11(24.4%)	20 (44.4%)	NS
Enterococcus sp.	5 (11.1%)	6 (13.33%)	11 (24.4%)	NS
Pseudomonas sp.	2 (4.44%)	3 (6.66%)	5 (11.1%)	NS
E. Coli	0	1 (2.22%)	1 (2.22%)	NS
Enterobacteriacea	2 (4.44%)	0	2 (4.44%)	NS
Non Enterobacteriacea	5 (11.1%)	3 (6.66%)	8 (17.7%)	NS

4. DISCUSSION

Healthcare associated infections (HAIs) are of considerable public health significance. Microorganisms that cause HAIs can be transmitted to patients, healthcare professionals or the hospital environment. The mode of transmission of microorganisms can be direct or indirect contact and health care workers are invariably the most common channel for transmission. The World Health Organization, Centre for Disease Control considers hand hygiene to be very important for prevention of transmission of microorganism through contact. The relevance of hand hygiene has only become even more important since the emergence of SARS- Cov [14]. There have been discrete and isolated guidelines that recommend removal of jewelry. But, the evidence supporting these recommendations may remain to be inconclusive [15].

Increased atmospheric contamination during routine dental activity with various microorganisms has been scientifically established for some time [16]. Research conducted to assess these environmental hazards have emphasized the gravity of this potential source of cross-contamination [4]. The bacteria associate with and settle on surfaces available, when they remain suspended in atmosphere. This in dental set up is mostly due to aerosol generation. Thus, in these settings, particularly aerosol generating dental clinics, the source of contamination is not just the hands of the healthcare personnel as reported by Brady et al. but also the atmospheric contamination [5].

The present study was done to check for probable bacterial contamination of earrings worn by female dentists working in dental clinics. The study revealed that earrings worn by female dentists involved in direct patient care harbor variety of pathogenic and non-pathogenic bacteria. The mean bacterial count recorded from earrings was 3.59 x 10^5 CFU/ml. The
been stressed upon removal of ant jewelry before entering the operatory to avoid skin desquamation and preventing from falling in sterile field [7]. Moreover, the jewelry that is not removed and remains exposed acts as a surface for the microbes to engage on. It also poses the risk of getting contaminated with blood, or other potentially infectious materials, and serve as a source of cross-contamination. There are however, no guidelines on removal of ornaments other than associated with hand while working in dental clinics. Despite evidences on bacterial atmospheric contamination in dental clinics, posing to be an environmental hazard, the infection control protocols have largely remained confined to hand hygiene only.

The following recommendations may be made considering the significance of infection control in healthcare settings. The dental institutions should take initiative to develop a standard operating protocol for infection control practices. Sensitization and training of students towards the best practices for infection control to safeguard the health of doctors and patients. Dental education can be used as a conduit for training and helping students conform to the guidelines laid down. Principles of occupational and safety can be introduced at entry level as it applies to dentistry before the students come in contact with patients. The wearers of ornaments should be encouraged to sanitize their earrings and other ornaments regularly. Thirdly, guidelines to be drawn and implemented stringently making it mandatory to remove all jewelry before proceeding to the surgical procedure in dental clinics to avoid any cross contamination. Health Care Providers should remain adept with the changing guidelines and good practices on hand hygiene [9].

Limitations of the study are, firstly the small sample size due to which significant differences in bacterial contamination of skin sites and earrings possibly could not established. Secondly, the sweep plate method could have been better method of obtaining samples. However, irrespective of the method of swab collection, it has been established that the ornaments were contaminated with potentially pathogenic organisms. And these could possibly serve as fomites for cross contamination.

The study reinstates the significance of transmission of microorganisms from skin as a potential source of cross-contamination in the hospital based environment. Jewelry and underlying skin can be a site of microbial colonization that could possibly be a source of hospital acquired infection. Hand hygiene is the most stressed upon preventive measure in current era [9]. This hand hygiene practice should be expanded to include awareness on the consequences of wearing jewelry in the clinical workplace and acting as a potential source of cross contamination. Studies on UV-light sanitizers and other methods to sanitize jewelry made of metals are also suggested.

5. CONCLUSION

It can be concluded from the findings of the study that earrings like any other hand and face ornament can act as source of possible cross contamination. The awareness on removal or disinfection of earrings among female dentists is very low. Considering the emergence of newer infectious diseases especially post the SARS-CoV 2 pandemic, importance of infection control in hospital settings has gained highest priority. Dental clinics are high risk zones for spread of infections through aerosols. Therefore, it becomes imperative to practice best preventive measures to prevent the spread of infection and cross contamination. A uniform operating procedure regarding the removal of all the ornaments from hands and face before entering the dental operatory is recommended. There is also a need to sensitize the health care workers on possible risks posed by wearing of ornaments in dental clinics.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

CONSENT

As per international standard or university standard, Participants’ written consent has been collected and preserved by the authors.

ETHICAL APPROVAL

Ethical approval was obtained from University Ethics Committee (IEC no. SVIEC/ON/DENT/SRP/17124).
COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Ziebolz D, Hornecker E, Mausberg RF. Microbiological findings at tongue piercing sites: implications to oral health. Int J Dent Hyg. 2009;7(4):256-62. DOI: 10.1111/j.1601-5037.2009.00369.x. PMID: 19832912.
2. Isitua CC, Igbinidu OF, Imariabe OJ. Microorganisms associated with Gold Jewelries Worn by Students in the University of Benin, Ugbowo Campus, Nigeria. Res. J. Recent Sci., 2012;1(5): 46-50.
3. Yildirim I, Ceyhan AB, Bagdat A, Barin C, Kutluk T, Gur D. A prospective comparative study of the relationship between different types of ring and microbial hand colonization among pediatric intensive care unit nurses. Int J Nurs Stud. 2008;45(11):1572-6. DOI: 10.1016/j.inrsnu.2008.02.010. Epub 2008 May 13. PMID: 18479684.
4. Brady RR, Verran J, Damani NN, Gibb AP. Review of mobile communication devices as potential reservoirs of nosocomial pathogens. J Hosp Infect. 2009;71(4):295-300. DOI: 10.1016/j.jhin.2008.12.009. Epub 2009 Jan 24. PMID: 19168261.
5. Singh S, Acharya S, Bhat M, Rao SK, Pentapati KC. Mobile phone hygiene: potential risks posed by use in the clinics of an Indian dental school. J Dent Educ. 2010;74(10):1153-8. PMID: 20930247.
6. Kelsall NK, Griggs RK, Bowker KE, Bannister GC. Should finger rings be removed prior to scrubbing for theatre? J Hosp Infect. 2006;62(4):450-2. doi: 10.1016/j.jhin.2005.09.002. Epub 2006 Feb 17. PMID: 16487627.
7. Linkin DR, Lautenbach. Environmental safety in the OR; 2004. https://psnet.ahrq.gov/webmm/case/47/environmental-safety-in-the-or-#references.
8. Association of Surgical Technologists. AST Guidelines for Best Practices for Surgical Attire, Surgical Scrub, Hand Hygiene, and Hand Washing; 2008.
9. Association of Surgical Technologists. AST continuing education policies for the CST and CSFA; 2005.
10. Pittet D. Improving adherence to hand hygiene practice: a multidisciplinary approach. Emerg Infect Dis. 2001;7(2): 234-40. DOI: 10.3201/eid0702.010217. PMID: 11294714; PMCID: PMC2631736.
11. Cogen AL, Nizet V, Gallo RL. Skin microbiota: a source of disease or defense? Br J Dermatol. 2008;158(3):442-55. DOI: 10.1111/j.1365-2133.2008.08437.x. PMID: 18275522; PMCID: PMC2746716.
12. Seyed IB. Islamic Medicine: 1000 Years Ahead of its Times, Journal of International Society. 2002;12(2):2-9.
13. Muniraj S. Significance of jewelry in India: a study. Asia Pacific Journal of Research. 2015; 1(30):177-183.
14. Evidence for hand hygiene guidelines. Geneva (CH): World Health Organization; 2017. Available:http://www.who.int/gpsc/tools/faq/s/evidence_hand_hygiene/en/
15. Liang H, Flint DJ, Benson BW. Why should we insist patients remove all jewellery? Dentomaxillofac Radiol. 201;40(5):328-30. DOI: 10.1259/dmfr/77333052. PMID: 21697161; PMCID: PMC3520258.
16. Williams HN, Singh R, Romberg E. Surface contamination in the dental operatory: a comparison over two decades. J Am Dent Assoc. 2003; 134(3):325-30; quiz 339. DOI:10.14219/jada.archive.2003.0161. PMID: 12699046.