Evolution of developmental signalling in Dictyostelid social amoebas

Pauline Schaap

Dictyostelia represent a tractable system to resolve the evolution of cell-type specialization, with some taxa differentiating into spores only, and other taxa with additionally one or up to four somatic cell types. One of the latter forms, *Dictyostelium discoideum*, is a popular model system for cell biology and developmental biology with key signalling pathways controlling cell-specialization being resolved recently. For the most dominant pathways, evolutionary origins were retraced to a stress response in the unicellular ancestor, while modifications in the ancestral pathway were associated with acquisition of multicellular complexity. This review summarizes our current understanding of developmental signalling in *D. discoideum* and its evolution.

Address
School of Life Sciences, University of Dundee, DD15EH Dundee, UK

Corresponding author: Schaap, Pauline (p.schaap@dundee.ac.uk)

D. discoideum developmental control is dominated by cAMP

The identification of cAMP as the *D. discoideum* chemoattractant was soon followed by reports that cAMP also regulates cell differentiation. More regulatory signals were identified in later years (see [7] for a comprehensive review) and current knowledge of the signals and pathways that regulate the developmental programme is summarized in Figure 1. The transition from growth to multicellular development occurs when the bacterial food runs out and amoeba density is high. Amoebas assess their own density by secreting a glycoprotein, PSF (prestarvation factor) at a constant rate [8]. The combination of starvation and high PSF induces expression of the protein kinase YakA [9]. YakA inhibits binding of the translational repressor PufA to the 3' end of the catalytic subunit of cAMP-dependent protein kinase (PkaC) [10]. PkaC is now translated and triggers basal expression of genes that are required for aggregation, such as the cAMP receptor carA, the adenylate cyclase acaA and the extracellular cAMP phosphodiesterase pdsA [11]. In addition to PSF, amoebas secrete a protein, CMF, (conditioned medium factor), which is needed for CarA-mediated signal transduction [12], and synthesize the polyketide MPBD (4-methyl-5-pentybenzene-1,3-diol), that enhances expression of aggregation genes [13].

CarA, AcaA and PdsA are part of the network that generates the secreted pulses of cAMP, which cause cells to aggregate into mounds. The mound tip continues to emit cAMP pulses, which, by attracting cells from underneath, cause the cell mass to project upwards and form the slug [14]. The cAMP pulses also induce intermittent
translocation of the transcription factor GtaC to the nucleus \cite{15**, which induces expression of genes that are required during and after aggregation. Among these genes are \textit{carA, acaA, pkaR} and \textit{regA} and the cell adhesion genes \textit{csaA, tgrB1 and tgrC1}. TgrB1 and TgrC1 are heterophilic cell adhesion proteins that upon interaction induce competence for post-aggregative cell differentiation. Because the Tgr proteins are highly variable between species, they also act to avoid genetic conflict by preventing non-related strains from participating in the same fruiting body. Such cells can cheat the host by differentiating mainly into spores and not stalk cells \cite{16**}.

After aggregation, a second adenylate cyclase, AcgA, is translationally upregulated in the posterior of the slug, where increased secreted and intracellular cAMP induces prespore differentiation \cite{17}. The prespore cells express the enzymes StlB, DmtA and ChlA, which synthesize the chlorinated cyclohexanone DIF-1 \cite{18–20}. DIF-1 induces differentiation of some posterior cells into pstO cells, which later form the upper cup of the spore mass,
and others into pstB cells, which will form the lower cup and basal disc [21]. A polyketide produced by either StlB or StlA, which is neither DIF-1 nor MBPD, is required for expression of pstA genes at the anterior of the prestalk region. However, neither StlA nor StlB are required for stalk formation [19,22].

The signal for stalk cell differentiation is c-di-GMP, which is synthesized by diguanylate cyclase A in prestalk cells [23]. Diguanylate cyclases were previously only found in prokaryotes, where c-di-GMP mediates the effect of a range of stimuli that induce biofilm formation and other cellular responses [24]. c-di-GMP strongly activates AcaA, which in slugs is predominantly expressed at the utmost tip to coordinate morphogenetic cell movement. Increased intracellular cAMP then acts on PKA to activate stalk gene expression [25].

PKA activation also induces spor maturation and prevents spores from germinating in the absence of food [26,27]. Both AegA and a third adenylate cyclase, AcrA, [28] synthesize cAMP in spores, but cAMP hydrolysis by the phosphodiesterase RegA crucially regulates the appropriate timing of spor maturation. RegA is activated by phosphorylation of its N-terminal response regulator by sensor histidine kinases/phosphatases (SHK/Ps) [29]. Most signals that control spor and stalk differentiation act on SHK/Ps to either activate or inhibit RegA. Prestalk cells cleave the protein AceA, released by prespore cells, to yield the peptide SDF-2 [30], which acts on the SHP DhkA to dephosphorylate RegA and so raise cAMP levels and activate PKA. The high ambient osmolarity of the spor head acts on the osmosensor of AegA to activate cAMP synthesis and on the SHP DskA to inhibit RegA, thereby activating PKA in a two-pronged attack [27,31]. Discadenine, a cytokinin released by prestalk cells, activates spor maturation and prevents spor germination by activating the SHK Dkb, which is thought to increase AcrA activity [7].

Stalk cell differentiation is inhibited in the slug stage by ammonia, the product of protein degradation. Ammonia activates the SHK DkkC, which activates RegA and thereby inhibits PKA [32]. Ammonia is lost by diffusion from the aerially projecting fruiting body tip of the early fruiting body, thus lifting PKA inhibition. The redundancy in the pathways regulating spor and stalk formation ensures that the encapsulated spores and stalk cells form at the right time and place, without impacting on fruiting body morphogenesis, which requires amoebae to remain motile.

Developmental cAMP signalling is derived from a unicellular stress response

In recent years, comparative studies have been undertaken to retrace the evolutionary history of cAMP signalling. Dictyostelia can be subdivided into two major monophyletic branches, each containing two major sister groups (Figure 2) [6]. *D. discoideum* resides in group 4 among other species that use cAMP as chemoattractant, have a well-proportioned prestalk/prespore pattern, and build robust solitary fruiting bodies, supported by basal discs. This is distinct from groups 1–3, which use other chemoattractants for aggregation, form small clustered fruiting bodies without supporting discs, and form the stalk by redifferentiation of prespore cells. Many group 1–3 species, such as *Polyphagotropha pallidum*, additionally retain the ancestral survival strategy of encystment as individuals [6,33]. The enzymes AcrA, AegA, RegA and PKA are conserved throughout Dictyostelia, and except for AegA, also in unicellular Amoebozoa [34*,35]. Knock-out of *P. pallidum* PKA or double knock-out of AcrA and AegA prevents encystment, while knock-out of RegA causes precocious encystment, while amoebas are still feeding. PKA is also required for *P. pallidum* fruiting body formation, but AcrA and AegA are not needed for spor or stalk formation, with their roles likely taken over by three copies of the *AcaA* gene. RegA inhibition also causes precocious encystment in the unicellular amoebozoan *Acanthamoeba castellanii* [34*,35]. Combined, these data indicate that the roles of intracellular cAMP, PKA and RegA in *D. discoideum* spor and stalk maturation are evolutionarily derived from an ancestral role in amoebozoan encystment. The genomes of free-living amoebas contain many SHK/Ps that in *D. discoideum* regulate RegA activity [36,37]. In the unicellular amoebas these SHK/Ps may sense environmental factors, such as drought stress or food, and act on RegA to increase or decrease cAMP levels, respectively, and thereby cause encystation or encystation.

The enzymes AcaA and PdsA and the cAMP receptor CarA, which are important for extracellular cAMP signalling, are conserved in Dictyostelia, but, apart from PdsA, not in unicellular Amoebozoa. CarA is only expressed after aggregation in groups 1–3, and deletion of *carA* or *pdsA* in *P. pallidum* disrupts fruiting body morphogenesis, but not aggregation [38,39]. The role of extracellular cAMP in coordinating aggregation is therefore derived from an ancestral role in controlling post-aggregative morphogenesis. Loss of *carA* in *P. pallidum* also prevents cAMP-induced prespore differentiation, causing cysts to differentiate in the ‘spore’ head [39]. Dictyostelium cells secrete most of their cAMP [40]. While starving, extracellular cAMP levels will therefore particularly increase in the confined cellular interstices of the aggregate. For early Dictyostelia, this increase in extracellular cAMP may have acted as the cue to form spores, when aggregated, and not cysts.

The extracellular cAMP phosphodiesterase PdsA and its secreted inhibitor PdIA affect the kinetics of cAMP wave propagation during *D. discoideum* aggregation, favouring spiral over concentric waves. Spiral waves organize larger
Evolution of developmental signalling from a stress response. Dictyostelia are members of the mostly unicellular kingdom of Amoebozoa. They can be subdivided into two branches each containing two major groups [6]. Comparative analysis of cAMP and DIF-1 signalling across the phylogeny suggests a scenario for the evolution of developmental signalling. cAMP was first used as intermediate for stress-induced encystation in unicellular amoebozoa, with stress acting on sensor histidine kinases to inhibit RegA, causing cAMP produced by AcrA, to increase and activate PKA and thereby encystation [34,35]. During Dictyostelid evolution sensor histidine kinases and phosphatase acquired novel roles in sensing developmental signals that control timely spore and stalk maturation. Early aggregating prototypes use secreted cAMP accumulating in aggregates as a signal for spore formation [39]. In early Dictyostelia, an emerging network of CarA, AcaA and PdsA produces cAMP pulses to coordinate fruiting body morphogenesis [38,43]. Finally, group 4 acquires DIF-1 as a signal for basal disc formation, while addition of distal ‘early’ promoters to carA and acaA genes, and increased affinity of PdsA enables the use of cAMP as chemoattractant for aggregation in group 4 [38,43,46].

territories and hence give rise to large aggregates and robust fruiting bodies [41,42]. PdiA belongs to a matrix protein family, but only has true orthologs in group 4, while groups 1–3 PdsAs have a 200-fold lower affinity for cAMP than D. discoideum PdsA, and only partially restore aggregation of a D. discoideum pdsA null mutant [43]. The use of cAMP as chemoattractant in group 4 and its association with robust aggregation and fruiting body formation therefore depended both on changes in PdsA protein function, recruitment of a matrix protein as a PdsA inhibitor and changes in carA gene expression.

DIF-1 signalling causes increased cell-type specialization

DIF-1 is a secreted chlorinated polyketide, that induces differentiation of stalk-like cells in vitro [44]. However, cells lacking either of its biosynthetic enzymes StIB, DmtA and ChIA still form normal stalks, but no longer form the basal disc [18–20]. StIB, dmtA and chIA genes are conserved throughout Dictyostelia, but a group 2 dmtA does not complement the D. discoideum dmtA-mutant [45], and a single tested group 3 species cannot synthesize DIF-1 [46]. The DIF-degrading dechlorinase DcrA is also unique to group 4, supporting biochemical evidence that group 3 species cannot dechlorinate DIF-1 [47]. These data indicate that DIF-1 signalling is unique to group 4. Because it induces basal disc cells, also unique to group 4, it is that likely that modification of its synthetic pathway caused increased cell type specialization in this group.

Conclusions

The comparative studies allow reconstruction of a tentative narrative about the evolutionary origins of developmental signalling in Dictyostelia, and innovations that
occurred at successive stages of their evolution (Figure 2). This narrative assigns a hierarchical structure to the manifold roles of cAMP in modern Dictostelium, with the second messenger role of cAMP in induction of spore formation at the top of the hierarchy. While corroborating evidence for several proposed events is still required, the comparative approach adds a depth of understanding to the underlying logic of current signalling complexity that would be almost impossible to acquire by a single organism approach. The comparative approach can be used for understanding hierarchy in any complex biological network. This is becoming feasible by the rapid increase in phylogeny-wide genome sequences and novel procedures for knock-down, disruption or replacement of genes in a broad range of organisms.

Acknowledgements

P.S. is supported by grant 100293/Z/12/Z from the Wellcome Trust, grant BB/K007799/1 from the Biotechnology and Biological Sciences Research Council and grant RPG-2012-746 from the Leverhulme Trust.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Heidel A, Lawal H, Felder M, Schilde C, Helps N, Tunggal B, Rivero F, John U, Schleicher M, Eichinger L et al.: Phylogeny-wide analysis of social amoeba genomes highlights ancient origins for complex intercellular communication. Genome Res 2011:1882-1891.

2. Brown Matthew W, Kolisko M, Silberman Jeffrey D, Roger Andrew J: Aggregative multicellularity evolved independently in the Eukaryotic supergroup Rhizaria. Curr Biol 2012, 22:1123-1127.

3. Eichinger L, Rivero F (Eds): Dictyostelium discoideum Protocols. Humana Press; 2013.

4. Strassmann JE, Queller DC: Evolution of cooperation and control of cheating in a social microbe. Proc Natl Acad Sci USA 2011, 108:10855-10862.

5. Brock DA, Read S, Bozhchenko A, Queller DC, Strassmann JE: Social amoeba farmers carry defensive symbionts to protect and privatize their crops. Nat Commun 2013, 4:2385.

6. Romeralo M, Skiba A, Gonzalez-Voyer A, Schilde C, Lawal H, Kedziora S, Cvender JC, Glockner G, Urushihara H, Schaar P: Analysis of phenotypic evolution in Dictostelium highlights developmental plasticity as a likely consequence of colonial multicellularity. Proc R Soc B 2013, 280:20130976.

7. Loomis WF: Cell signaling during development of Dictyostelium. Dev Biol 2014, 431:1-16. An excellent comprehensive review of the signalling mechanisms that regulate Dictyostelium discoideum development.

8. Clarke M, Kayman SC, Riley K: Density-dependent induction of discoidin-I synthesis in exponentially growing cells of Dictyostelium discoideum. Differentiation 1987, 34:79-87.

9. Souza GM, Lu SJ, Kuspa A: Yaka, a protein kinase required for the transition from growth to development in Dictyostelium. Development 1998, 125:2291-2302.

10. Souza GM, da Silva AM, Kuspa A: Starvation promotes Dictyostelium development by relieving PufA inhibition of PKA translation through the YakA kinase pathway. Development 1999, 126:3263-3274.

11. Schulkes C, Schaap P: cAMP-dependent protein kinase activity is essential for preaggregative gene expression in Dictyostelium. FEBS Lett 1995, 368:381-384.

12. Yuen IS, Jain R, Bishop JD, Lindsey DF, Deere WJ, Van Haastert PJM, Gomer RH: A density-sensing factor regulates signal transduction in Dictyostelium. J Cell Biol 1995, 129:1251-1262.

13. Narita TB, Chen ZH, Schaap P, Saito T: The hybrid type polypeptide synthase SteelyA is required for cAMP signalling in early Dictyostelium development. PLOS ONE 2014, 9:e106634.

14. Dormann D, Weijer CJ: Propagating chemoattractant waves coordinate periodic cell movement in Dictyostelium slugs. Development 2001, 128:4535-4543.

15. Cai H, Katoh-Kurasawa M, Muramoto T, Santhanam B, Long Y, Li L, Ueda M, Iglesias PA, Shaulsky G, Devreotes PN: Nucleocytoplasmic shuttling of a GATA transcription factor functions as a development timer. Science 2014, 343:1249-1251.

The authors demonstrate how cAMP waves control gene expression by inducing nucleocytoplasmic shuttling of the transcription factor GtaC, using the coordinated action of a nuclear localization signal and cAMP receptor phosphorylation.

16. Hirose S, Benabentos R, Ho H-I, Kuspa A, Shaulsky G: Self-recognition in social amoebae is mediated by allelic pairs of Regulator genes. Science 2011, 333:467-470.

This work show that Dictyostelium cells exhibit avoid social conflict by kin discrimination, using matching pair of trgB1 and trgC1 cell adhesion proteins to prevent non-related strain from participating in the same fruiting structure.

17. Alvarez-Curto E, Saran S, Meima M, Zobel J, Scott C, Schaap P: cAMP production by adenylyl cyclase G induces prespore differentiation in Dictyostelium slugs. Development 2007, 134:959-966.

18. Thompson CR, Kay RR: The role of DIF-1 signaling in Dictyostelium development. Mol Cell 2000, 6:1509-1514.

19. Saito T, Kato A, Kay RR: DIF-1 induces the basal disc of the Dictyostelium fruiting body. Dev Biol 2008, 317:444-453.

20. Neumann CS, Walsh CT, Kay RR: A flavin-dependent halogenase catalyzes the chlorination step in the biosynthesis of Dictyostelium differentiation-inducing factor 1. Proc Natl Acad Sci USA 2010, 107:5798-5803.

21. Williams JG: Transcriptional regulation of Dictyostelium pattern formation. EMBO Rep 2006, 7:694-698.

22. Sato YG, Kagami HN, Narita TB, Fukuzawa M, Saito T: Steely enzymes are involved in prestalk and prespore pattern formation. Biosci Biotechnol Biochem 2013, 77:2008-2012.

23. Chen ZH, Schaap P: The prokaryote messenger c-di-GMP triggers stalk cell differentiation in Dictyostelium. Nature 2012, 498:690-693.

24. Romling U, Gaipelin MY, Gomelsky M: Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 2013, 77:1-52.

25. Chen ZH, Singh R, Cole C, Lawal H, Schilde C, Febrer M, Barton GJ, Schaap P: Adenylyl cyclase A acting on PKA mediates induction of stalk formation by c-di-GMP at the Dictyostelium organizer. Proc Natl Acad Sci USA 2016, [submitted for publication].

26. Hopper NA, Harwood AJ, Bouzid S, Veron M, Williams JG: Activation of the prespore and spore cell pathway of Dictyostelium differentiation by cAMP-dependent protein kinase and evidence for its upstream regulation by ammonia. EMBO J 1993, 12:2459-2466.

27. Van Es S, Virdy KJ, Pitt GS, Meima M, Sands TW, Devilotes PN, Cotter DA, Schaap P: Adenylyl cyclase G, an osmosensor controlling germination of Dictyostelium spores. J Biol Chem 1998, 273:23823-23829.

28. Soderbom F, Anjard C, Irufard N, Fuller D, Loomis WF: An adenylyl cyclase that functions during late development of Dictyostelium. Development 1999, 126:5463-5471.
29. Thomason PA, Traynor D, Cavet G, Chang W-T, Harwood AJ, Kay RR: An interaction of two cAMP PKA and two-component signal transduction systems in Dictyostelium. EMBO J 1998, 17:2838-2845.

30. Anjard C, Loomis WF: Peptide signaling during terminal differentiation of Dictyostelium. Proc Natl Acad Sci USA 2005, 102:7607-7611.

31. Schuster SC, Noegel AA, Oehme F, Gerisch G, Simon Mi: The hybrid histidine kinase DoKα is part of the osmotic response system of Dictyostelium. EMBO J 1996, 15:3890-3899.

32. Singleton CK, Zinda MJ, Mykytka B, Yang P: The histidine kinase dhkC regulates the choice between migrating slugs and terminal differentiation in Dictyostelium discoideum. Dev Biol 1998, 203:345-357.

33. Schilde C, Skiba A, Schap P: Evolutionary reconstruction of pattern formation in 98 Dictyostelium species reveals that cell-type specialization by lateral inhibition is a derived trait. EvoDevo 2014, 8:34.

Using cell-type specific antibodies and genetic markers the authors show how patterns of specialized cells emerged across the dictyostelid phylogeny.

34. Kawabe Y, Schilde C, Du Q, Schaap P: A conserved signalling pathway for amoeboid encystation that was co-opted for multicellular development. Sci Rep 2015, 5:9644.

The authors show that the roles of PKA, AcRA and AcqA in D. discoideum sporulation are derived from ancestral roles in encystation.

35. Du Q, Schilde C, Birgersson E, Chen ZH, McElroy S, Schaap P: The cyclic AMP phosphodiesterase RegA critically regulates encystation in social and pathogenic amoebas. Cell Signal 2014, 26:453-459.

36. Clarke M, Lohan AJ, Liu B, Lagkouvardos I, Roy S, Zafar N, Bertelli C, Schilde C, Kianianmomeni A, Burglin TR et al.: Genome of Acanthamoeba castellani highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biol 2013, 14:R11.

37. Schaap P, Barrantes I, Minx P, Sasaki N, Anderson RW, Benard M, Biggar KK, Buchler NE, Bundschuh R, Chen X et al.: The Physarum polycephalum genome reveals extensive use of prokaryotic two-component and metazoan-type tyrosine kinase signaling. Genome Biol Evol 2015, 8:109-125.

38. Alvarez-Curto E, Rozen DE, Ritchie AV, Fouquet C, Baldauf SL, Schaap P: Evolutionary origin of cAMP-based chemoattraction in the social amoebae. Proc Natl Acad Sci USA 2005, 102:6386-6390.

39. Kawabe Y, Morio T, James JL, Prescott AR, Tanaka Y, Schaap P: Activated cAMP receptors switch encystation into sporulation. Proc Natl Acad Sci USA 2009, 106:7089-7094.

40. Kesbeke F, Van Haastert PJM: Reduced cAMP secretion in Dictyostelium discoideum mutant HB3. Dev Biol 1988, 130:464-470.

41. Sugcgan R, Weijer CJ, Siegert F, Franke J, Kessin RH: Null mutations of the Dictyostelium cyclic nucleotide phosphodiesterase gene block chemotactic cell movement in developing aggregates. Dev Biol 1997, 192:181-192.

42. Palsson E, Lee KJ, Goldstein RE, Franke J, Kessin RH, Cox EC: Selection for spiral waves in the social amoeba Dictyostelium discoideum. Proc Natl Acad Sci USA 1997, 94:13719-13723.

43. Kawabe Y, Weening KE, Marquay-Markiewicz J, Schaap P: Evolution of self-organisation in Dictyostelia by adaptation of a non-selective phosphodiesterase and a matrix component for regulated cAMP degradation. Development 2012, 139:1336-1345.

44. Morris HR, Taylor GW, Masento MS, Jermy KA, Kay RR: Chemical structure of the morphogen differentiation inducing factor from Dictyostelium discoideum. Nature 1987, 613:811-814.

45. Mohri K, Hata T, Kikuchi H, Oshima Y, Uruishiha H: Defects in the synthetic pathway prevent DIF-1 mediated stalk lineage specification cascade in the non-differentiating social amoeba, Acinomyxostelium subglobosum. Biol Open 2014, 3:553-560.

46. Kay RR, Taylor GW, Jermy KA, Traynor D: Chlorine-containing compounds produced during Dictyostelium development. Biochem J 1992, 281:155-161.

47. Van Es S, Hodgkinson S, Schaap P, Kay RR: Metabolic pathways for differentiation-inducing factor-1 and their regulation are conserved between closely related Dictyostelium species, but not between distant members of the family. Differentiation 1994, 58:95-100.

48. Galardi-Castilla M, Garciaandia A, Suarez T, Sastre L: The Dictyostelium discoideum acdA gene is transcribed from alternative promoters during aggregation and multicellular development. PLoS ONE 2010, 5:e13286.