Visual Cues to the Hidden Agenda: Investigating the Effects of Ideology-Related Visual Subtle Backdrop Cues in Political Communication

Supplementary Information

Viorela Dan (LMU Munich)
Florian Arendt (University of Vienna)

A) Test of Conceptual Model

We used PROCESS (model 21, see Hayes, 2013) for the test of the conceptual model visualized in this figure. We dummy-coded the SBC-exposure variable (liberal condition = 0, conservative condition = 1; $n = 222$) for this regression-based approach.

Figure A1. Conceptual model.
Effects of Ideology-Related Visual Subtle Backdrop Cues

Details of analysis:

*************** PROCESS Procedure for SPSS Release 2.13 ***************

Written by Andrew F. Hayes, Ph.D. www.afhayes.com

Documentation available in Hayes (2013). www.guilford.com/p/hayes3

**

Model = 21

Voting Intention = Voting
SBC Treatment = GruDi
Politician’s Perceived Ideology = PercIde
Cue Awareness = CueAw
Respondent’s Political Ideology = RespIdeo

Sample size

222

Table A1.

Outcome: Politician’s political ideology as perceived by citizens

Model Summary

R	R-sq	MSE	F	df1	df2	p
.2021	.0408	1,3164	3,0948	3,0000	218,0000	.0278

Model

coeff	se	t	p	LLCI	ULCI	
constant	4,9604	.1523	32,5640	.0000	4,6601	5,2606
GruDi	-.2852	.2215	-1,2872	.1994	-.7218	.1515
CueAw	-.1123	.0997	-1,1269	.2610	-.3087	.0841
int_1	.3887	.1440	2,6987	.0075	.1048	.6726

Interactions:

int_1 GruDi X CueAw
Table A2.

Outcome: Voting intention

Model Summary

	R	R-sq	MSE	F	df1	df2	p
	0.4792	0.2296	2.4799	16.1672	4.0000	217.0000	0.0000

Model

	coeff	se	t	p	LLCI	ULCI	
	constant	9.0235	1.3054	6.9125	0.0000	6.4507	11.5964
	PercIde	-1.2002	0.2561	-4.6865	0.0000	-1.7049	-0.6954
	GruDi	-0.0672	0.2129	-0.3156	0.7526	-0.4867	0.3524
	Respldeo	-0.6687	0.3517	-1.9014	0.0586	-1.3619	0.0245
	int_2	0.1493	0.0706	2.1141	0.0356	0.0101	0.2885

Interactions:

int_2 PercIde X Respldeo

Number of bootstrap samples for bias corrected bootstrap confidence intervals: 1000

Level of confidence for all confidence intervals in output: 95.00
Additional Analysis to Estimate Conditional Effects
(using PROCESS model 1, Johnson-Neyman Technique)

Table A3.

Predicting politician’s political ideology as perceived by citizens

Moderator value(s) defining *Johnson-Neyman significance region(s):*

Value	% below	% above
1.5924	68.0180	31.9820

Conditional effect of SBC treatment on politician’s political ideology as perceived by citizens at values of the moderator (cue awareness):

Cue Awareness	Effect	se	t	p	LLCI	ULCI
0.0000	-2.852	2.215	-1.2872	1.994	-0.7218	1.515
0.2000	-2.074	2.019	-1.0277	3.052	-0.6053	1.904
0.4000	-1.197	1.846	-0.7027	4.830	-0.4935	2.341
0.6000	-0.052	1.704	-0.3049	7.608	-0.3878	2.839
0.8000	0.0258	1.603	0.1609	8.723	-0.2901	3.416
1.0000	0.1035	1.549	0.6685	5.045	-0.2017	4.088
1.2000	0.1813	1.547	1.1715	2.427	-1.1237	4.862
1.4000	0.2590	1.599	1.6201	1.067	-0.0561	5.741
1.5924	0.3338	1.694	1.9709	0.500	0.0000	6.676
1.6000	0.3368	1.698	1.9830	0.0486	0.0021	6.715
1.8000	0.4145	1.838	2.2553	0.0251	0.0523	7.767
2.0000	0.4922	2.009	2.4497	0.0151	0.0962	8.883
2.2000	0.5700	2.205	2.5846	0.0104	0.1353	1.0046
2.4000	0.6477	2.420	2.6768	0.0080	0.1708	1.1246
2.6000	0.7255	2.648	2.7395	0.0067	0.2035	1.2474
2.8000	0.8032	2.887	2.7819	0.0059	0.2341	1.3723
3.0000	0.8810	3.135	2.8103	0.0054	0.2631	1.4988
3.2000	0.9587	3.389	2.8293	0.0051	0.2909	1.6265
3.4000	1.0364	3.647	2.8416	0.0049	0.3176	1.7553
3.6000	1.1142	3.910	2.8493	0.0048	0.3435	1.8849
3.8000	1.1919	4.177	2.8537	0.0047	0.3687	2.0151
4.0000	1.2697	4.446	2.8559	0.0047	0.3935	2.1459
Table A4.

Predicting voting intention using the Johnson-Neyman Technique

Moderator value(s) defining *Johnson-Neyman significance region(s):*

Value	% below	% above
5.1343	87.2576	12.7424

Conditional effect of politician’s perceived ideology on voting intention at values of the moderator (respondent’s political ideology):

RespIdeo	Effect	se	t	p	LLCI	ULCI
1.0000	-1.1465	.1475	-7.7702	.0000	-1.4367	-.8563
1.3750	-1.0632	.1309	-8.1197	.0000	-1.3207	-.8057
1.7500	-.9799	.1153	-8.4994	.0000	-1.2066	-.7531
2.1250	-.8966	.1010	-8.8731	.0000	-1.0953	-.6979
2.5000	-.8133	.0889	-9.1496	.0000	-.9881	-.6385
2.8750	-.7299	.0798	-9.1504	.0000	-.8868	-.5731
3.2500	-.6466	.0748	-8.6419	.0000	-.7938	-.4995
3.6250	-.5633	.0749	-7.5234	.0000	-.6106	-.4161
4.0000	-.4800	.0799	-6.0066	.0000	-,.6372	-.3229
4.3750	-.3967	.0891	-4.4525	.0000	-,.5719	-.2215
4.7500	-.3134	.1013	-3.0936	.0021	-,.5126	-.1142
5.1250	-.2301	.1156	-1.9907	.0473	-.4574	-.0028
5.1343	-.2280	.1160	-1.9666	.0500	-.4561	-.0000
5.5000	-.1468	.1313	-1.1183	.2642	-.4049	,.1113
5.8750	-.0635	.1479	-.4293	.6680	-.3543	,.2274
6.2500	.0198	.1652	.1200	.9046	-,.3050	,.3447
6.6250	.1031	.1829	.5637	.5733	-.2567	,.4629
7.0000	.1864	.2011	.9272	.3544	-.2090	,.5819
7.3750	.2697	.2195	1.2292	.2198	-.1618	,.7013
7.7500	.3531	.2380	1.4832	.1389	-.1151	,.8212
8.1250	.4364	.2568	1.6993	.0901	-.0686	,.9414
8.5000	.5197	.2757	1.8852	.0602	-.0224	1.0618
B) Additional Analysis: Mere Presence

We used latent variables in structural equation modeling (in IBM SPSS AMOS 25): Politician’s perceived ideology (two items), voting intention (five items) [see methods section]. Voting intention was predicted by politician’s perceived ideology—simultaneously for those with \(n = 222 \) and without \(n = 139 \) the mere presence of SBCs.

Model fit (of the default model) was good:

Notes for Model (Default Model)

Computation of Degrees of Freedom (Default Model)

Model	NPAR	CMIN(\(\chi^2 \))	df	p	CMIN/df
Default model	44	34,491	26	.123	1,327
comparison	43	69,102	27	.000	2,559

Table B1.
Model fit

Model	RMSEA	LO 90	HI 90	PCLOSE
Default model	.030	.000	.055	.901
comparison	.066	.047	.085	.082

Table B2.
RMSEA

Model	NFI Delta	RFI rho1	IFI Delta2	TLI rho2	CFI
Default model	.987	.980	.997	.995	.997
comparison	.975	.961	.984	.976	.984

Table B3.
Baseline Comparisons

To formally test whether the size of the correlation is different in both conditions (i.e., with and without the mere presence of SBCs), we compared an unrestricted model (“default model”) with a model (“comparison”) in which we restricted the strength of the correlation to be equal in both groups. The change in \(\chi^2 \)-statistic was used to formally test whether the size of the correlation, the measure of the priming effect, differed depending on the mere presence of SBCs. The fit of the comparison-model was significantly worse, indicating a significant difference in the strength of the correlation: Table B4. Nested model comparison assuming model default model to be correct.
Model	df	CMIN(χ²)	p	NFI	IFI	RFI	TLI
comparison	1	34,611	,000	.013	.013	.019	.019