Quadruple Cropping Patterns in Bangladesh: Scope and Limitations

Jatish C. Biswas a, Abhijit Saha b, S. M. Shahidullah b, M. Maniruzzaman b, M. M. Haque b and M. S. Hossain b

a Krishi Gobeshona Foundation, Dhaka, Bangladesh.
b Bangladesh Rice Research Institute, Gazipur, Bangladesh.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors were responsible for data collection and analysis. Drafting was done by author JCB and editing was done by author MMH. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/ASRJ/2022/v6i230127

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/86100

Received 14 February 2022
Accepted 23 April 2022
Published 28 April 2022

ABSTRACT

Growing crops in a piece of land influence soil fertility depending on adopted management practices and intensity of cropping. Farmers in many cases do not use balanced fertilizers because of socio-economic conditions and thus nutrient mining is inevitable. We hypothesize that soil degradation is likely along with reduced crop productivity in future with researcher proposed four crops production packages. Semi-structured questionnaire, and IDRISI3.2 were used for data collection and mapping, respectively. Net quadruple cropped areas were about 7.09%. Soil fertility scores of those areas were 40–50 and above 50, covering about 4.56% and 3.66%, respectively of the net cropped areas indicating medium fertility status. Apparent nutrient balances for nitrogen, phosphorus, potassium, sulfur, calcium, magnesium and silicon were negative with researcher's introduced cropping patterns and fertilizer management compared to existing patterns. Zinc with all introduced cropping patterns and boron with Potato–Boro–T Aus–T Aman pattern are increasing but other micro nutrients are diminishing. Phosphorus and Sulfur build ups are taking place under farmer's practice in Mustard–Boro–T Aman, Potato–Boro–T Aman and Boro-Fallow–T Aman patterns. Zinc build up is taking place under farmer's managed cropping patterns; but iron, copper, boron, molybdenum and chloride are deteriorating from the soils. These indicate that growing four crops in a year with existing fertilizer recommendations are not sustainable in terms of soil fertility. Adoption of such intensive crop culture by the majority of the farmers is unlikely except in some sporadic areas having market driven economy of vegetable cultivation.

Keywords: Nutrient balance; rice; soil fertility; vegetables; wheat.

*Corresponding author: E-mail: mhaquesoil@yahoo.com;
1. INTRODUCTION

There are many crop growing niches in Bangladesh, which is determined by climate, environment, resources and socioeconomic conditions of the farmers. Growing crops in a sequence is an annual strategy to optimize agronomic and economic yields in a sustainable manner [1] and commonly known as cropping pattern (CP). Crop diversity, input use, management, weed and disease infestation, soil bulk density, cover crop, green manure, mulches, organic matter, erosion, water infiltration, and so on are influenced by CP.

Construction of houses, roads and industrial infrastructures to support increased population in the country are responsible for losses of cultivable land; while on the other hand, growing more crops yearly from a land are placing tremendous pressures on soil productivity. Among many crops grown, most patterns are rice and wheat based [2,3] in which rice-rice or rice-wheat are dominant [4]. Such scenarios are changing because of increased food demand and availability of short duration varieties of rice, mustard and mungbean that allow the farmers to grow three or more crops in the same land in a year [5].

Mustard, mungbean and rice, the prime crops in Bangladesh, fulfill domestic demands for nutrition [2]; but intensive rice-based cropping causes soil nutrient depletion in many cases [6,7]. Farmers generally use imbalanced fertilizer doses on a single crop basis [8] and thus either nutrient mining [9-11] or build up takes place [12]. Moreover, losses of nutrients through leaching, erosion and emission are also responsible for soil fertility depletion [13,14]. Under such situations, growing legumes in between cereals and oilseeds and balanced use of fertilizers along with integrated nutrient management can contribute in maintaining soil fertility [15,16] and in improving crop yields [17,18].

Study on nutrient balance is important for assessing its fate from added and soil reserves [19,20] that also helps in quantifying fertilizer requirements for yield maximization [21,22]. As the cropping intensity is increasing to feed ever growing populations, it is essential to quantify the fate of soil fertility if four crops are grown in the same land yearly for sustained crop production. We have tested the hypothesis that soil degradation is likely along with reduced crop productivity in future with proposed four crops production packages by the national agricultural research institutes.

2. MATERIALS AND METHODS

2.1 Data Collection

The study was conducted during 2014 to 2016 throughout the whole country. A semi-structured questionnaire was used for data collection on crops, cropping pattern (CP) and its area coverage. Initially, a small team of investigators collected data for each Upazila (a small administrative unit of a district) from the office of the Deputy Director (DD), department of agricultural extension (DAE) and then the questionnaire was distributed to Upazila Agriculture Officers, DAE for the above mentioned data collection. Data from DD offices and Upazila Agriculture offices were analyzed to find out mismatch, if any. After initial analyses, stakeholder consultation workshops were conducted in 64 districts of Bangladesh. A team of researchers, DD and district level officers of DAE and officers from Upazila Agriculture Offices were present in the workshops for finalizing data recording. Quadruple cropping areas were recorded when four crops in a year were grown sequentially and net cropped area was the summation of cultivated areas of a region. Dominant three and two crops patterns such as Mustard–Boro–T. Aman, Potato–Boro–T. Aman and Boro–Fallow–T. Taman were selected based on area coverages for comparison of nutrient balances.

2.2 Fertilizer Dose and Apparent Nutrient Balance

Recommended fertilizer doses were considered for growing different crops as stated by fertilizer recommendation guide-2018 [23]. Above ground biomass of selected crops were considered for determination of total nutrient uptakes in a year, which were computed based on available literatures [24-29] Nutrient concentrations in rain and irrigation water were taken according to Quddus et al. [29] and Biswas et al. [30]. A total nutrient input received by a specific pattern was the summation of indigenous soil nutrients, added fertilizer nutrients and nutrients added through rain and irrigation water. Apparent nutrient balance (ANB) was computed as follows:

$$ANB = (Yearly \ total \ nutrient \ input) - \ (Total \ nutrients \ removed \ by \ all \ crops)$$
2.3 Scoring of Soil Parameters

Data on soil organic carbon (SOC), available P, S, Zn, B, cation exchange capacity (CEC), soil pH and exchangeable K were collected from Bangladesh Agricultural Research Council website, and Soil Resource Development Institute. Soil nutrient status in Bangladesh has been classified as very low, low, medium, optimum and high based on different ranges (FRG 2018). This classification system was considered for assigning scoring (0-100 scale) values as 5, 30, 70, 100 and 100 for very low, low, medium, optimum and high fertility status, respectively against each selected soil attributes. The least score was assigned to the lowest nutrient status and SOC content.

2.4 Soil Fertility Rating and Map Preparation

Attribute-wise soil fertility ratings for target areas were made by using MS-Excel Macros and IDRISI3.2. Soil fertility rating maps were prepared based on arithmetic mean (AM), weighted mean (WM) and geometric mean (GM) scores. Among soil attributes the most limiting factors dictate crop yield, so we have provided weight to such factors in determining WM score as follows:

\[
WM = \left(\frac{1}{5} \right) \times \frac{[(SOC _score) \times (P _score) \times (K _score) \times (CEC _score) \times (pH _score)]}{(1/5)*0.5 + [S _score] \times 0.25 + ([Zn _score] \times [B _score] \times (1/2) \times 0.25)
\]

\[
AM = \frac{[(B _score) + [K _score] + [P _score] + [CEC _score] + [pH _score] + [SOC _score] + [S _score] + [Zn _score]]}{8}
\]

Where, SOC_score is the soil organic carbon, P_score, K_score, S_score, Zn_score and B_score stand for phosphorus, potassium, sulfur, zinc and boron scores, respectively.

2.5 Determination of Crop-field Duration

Field durations of four crops pattern were determined based on Bangladesh Agricultural Research Institute and Bangladesh Rice Research Institute documents. Seedling ages in days for Boro, T. Aus and T. Aman rice considered were 40, 25 and 30 days respectively.

3. RESULTS

3.1 Distribution of Major Four Crops Pattern

Among 11 four-crops cropping patterns (Fig. 1), Mustard–Boro (irrigated dry season rice)–Aus (pre-monsoon rice)–T. Aman (wet season rainfed rice) was dominant (7850 ha) followed by Potato–Boro–Aman (3140 ha), Mustard–Boro–Jute–T Aman (2980 ha), Potato–Boro–Jute–T Aman (2160 ha), Potato–Maize–Aus–Vegetable (1030 ha) and Vegetable–Boro–Aus–T Aman (820 ha). Cucurbits, snake-gourd, gima kalmi (Ipomoea sp), cabbage and potato were the vegetables crops. Mustard–Boro–Aus–T Aman pattern was distributed in north-west, south-west, central and central-east regions (Fig. 2a); Potato–Boro–Aus–T Aman pattern mainly in north-west and south-east regions (Fig. 2b); Mustard–Boro–Jute–T Aman in northern, central and south-west regions (Fig. 2c); Potato–Boro–Jute–T Aman and Potato–Maize–Aus–Vegetable in north-western regions (Fig. 2d & e), and Vegetable–Boro–Aus–T Aman in north-west and south-east regions of the country.

3.2 Net Four Crops Cropping Pattern and Soil Fertility

Net four cropped areas were distributed in north-west, north, central-west and central east regions of the country (Fig. 3a). In terms of net areas, <50 ha, 50–100 ha, 100–500 ha and 500–2500 ha were covered by four crops in 2.03%, 2.13%, 1.93% and 1.0% areas of the country, respectively. Fertility scores in those areas varied from <40 to >55 (Fig. 3b) of which about 4.56% areas belong to 40-50 score category and above 50 score in about 3.66% areas of the country.

3.3 Apparent Nutrient Balance

In four crops cropping patterns under researcher’s management, apparent nutrient balances for N, P, K, S, Ca, Mg, Mn and Si were negative in Mustard–Boro–T Aus–T Aman, Potato–Boro–T Aus–T Aman, Mustard–Mungbean–T Aus–T Aman and Potato–Mungbean–T Aus–T Aman patterns (Fig. 4a). While on the other hand, P and S build ups are taking place under farmer's practice in Mustard–Boro–T Aman, Potato–Boro–T Aman and Boro–T Aman patterns (Fig. 4b). Zinc with all introduced cropping patterns and B with Potato–Boro–T Aus–T Aman pattern are increasing but Fe, Cu,
Mo and Cl are diminishing (Fig. 5a). However, with farmer’s managed cropping patterns, Zn build up is taking place; but Fe, Cu, B, Mo and Cl are mining from soil (Fig. 5b).

Fig. 1. Area coverage by four crops cropping patterns in Bangladesh; Veg = Vegetable, TA = T Aman, S. gourd = Sweet gourd, M. bean = Mungbean

Fig. 2. Area distribution of (a) Mustard-Boro-T. Aus-T. Aman, (b) Potato–Boro–T. Aus–T. Aman, (c) Mustard–Boro–Jute–T. Aman, (d) Potato–Boro–Jute–T. Aman, (e) Potato–Maize–Aus–Vegetables, (f) Vegetables–Boro–T. Aus–T. Aman patterns in Bangladesh
Fig. 3. Distribution of (a) net four cropped areas and (b) soil fertility score in four crops growing areas in Bangladesh

Fig. 4. Apparent nutrient balances in (a) researcher’s and (b) farmer’s fertilizer management options for selected cropping patterns in Bangladesh

Fig. 5. Apparent micronutrients balance in (a) researcher’s and (b) farmer’s fertilizer management options for selected cropping patterns in Bangladesh
Table 1. Minimum field durations required for growing four crops in a year

Proposed patterns	Field duration (days)
Mustard-Boro-T. Aus-T. Aman	345-355
Potato-Boro-T. Aus-T. Aman	350-355
Mustard-Mungbean-T. Aus-T. Aman	300-310
Potato-Mungbean-T. Aus-T. Aman	315-325

4. DISCUSSION

Food demands in Bangladesh are increasing and thus compelling the researchers in adopting different steps to improve its production. Introduction of four crops is one of those efforts for increasing cropping intensity and thus improving total food production that have found in some areas (Fig. 3a) because of soil suitability and growing marketing demands. Such patterns are mostly prevalent in areas having light textured soils. Growing four crops in a year from the same piece of land is challenging in many aspects, such as preparing the land at the right time, irrigating the crops, use of balanced fertilizers, increased natural calamities, etc. Besides, growing four crops in a sequence leaves only a few days in between harvesting one crop and planting/seeding of the next one. Depending on availability of crop varieties in Bangladesh, total field duration requirements would be about 300-355 days for four crops patterns (Table 1) making it difficult for the conventional farmers to accomplish all the jobs to be done at the right time. Sometimes growing short duration rice varieties in T. Aman (monsoon rice) season is not helpful to accommodate winter season crops at the right time because of late heavy rains that are frequently taking place now-a-day under changing climate. Rat damages with early matured rice crops also discourage farmers to grow short duration varieties in many cases. Moreover, crop growing areas are decreasing because of infrastructure development and industrialization. Yearly shifting of agricultural land to non-agricultural use is about 1% [31].

As indigenous soil fertility play an important role in sustainable crop production along with added fertilizer management, recuperating soil fertility is very much essential. Among the tested four-crops cropping patterns, apparent balances of major and micro nutrients were negative except Zn and B with introduced cropping patterns even with researcher’s fertilizers recommendation. A few examples are provided herewith. Hossain et al. [32] reported negative N and K balances even with legume based four-crops cropping pattern (Lentil-Mungbean–T Aus– T Aman). Negative balances even after NPK application with wheat–rice and maize–rice patterns were reported by Salam et al. [33]. Such depletions of nutrients are strongly related with yield reduction [34]. In most cases, micronutrients are not added adequately along with minimum or no use of organic nutrient sources. Besides, marketing of adulterated fertilizers and its use by the farmers are also playing a negative role in maintaining soil fertility [35]. Stated scenarios clearly indicate that soil productivity will decline in near future with such high cropping intensity in Bangladesh. Building up or mining of any nutrient is responsible for disrupting nutrient ratios in soil-plant system and thus impairs growth and development of crop plants resulting in uneconomic harvest.

Soil degradation, especially in terms of fertility is a major cause of yield stagnation or its declining trends in some countries including Bangladesh. The estimated average depletion of N. P₂O₅ and K₂O was about 50 kg yr⁻¹ in 2000 [24]. About 52% soil samples were Ca deficient in agro-ecological zone (AEZ)-3 and 4% in AEZ-21 [10]. We may face a dire consequence of not being able to produce enough to feed our peoples even with high inputs. There are some hopes if we can recycle decomposable wastes for crop production. For example, P recovery from city wastes varies from 10-80% depending on capacity of the recycling systems [24]. Moreover, adoption of precision agriculture, mechanization and market driven policy might alleviate nutrient depletion problems in intensive cropping zones of the world.

5. CONCLUSIONS

Different types of cropping patterns are existed in Bangladesh in which rice-based patterns are dominant. In some areas, four-crops cropping patterns are increasing through the efforts of researchers and extension personnel. Among 11 four-crops cropping patterns tested, Mustard–Boro–Aus–T Aman was the dominant one, although net quadruple crop areas were only about 7.09%. Apparent nutrient balances for most studied nutrients were negative with
researcher's introduced cropping patterns and fertilizer management. Zinc with all introduced cropping patterns and B with Potato–Boro–T Aus–T Aman pattern were increasing but Fe, Cu, Mo and Cl were diminishing. Phosphorus, Zn and S build ups were taking place under farmer's practice in some cases indicating that tuning up of P, Zn and S fertilizer doses need to be done; but Fe, Cu, B, Mo and Cl were deteriorating from the soils. These indicate that growing four crops in a year with existing fertilizer recommendations are not sustainable in terms of soil fertility [36-39].

ACKNOWLEDGEMENT

We greatly acknowledge CRP-II project of KGF and BRRI scientist for their technical support of this manuscript.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Nasim M, Shahidullah SM, Saha A, Muttaleb MA, Aditya TL, Ali MA, Kabir MS. Distribution of crops and cropping patterns in Bangladesh. Bangladesh Rice J. 2017;21:1-55.
2. Sheikh MHR, Khan MS, Hannan A, Huda A, Rahman MT. Sustainable crop production retaining soil fertility and environment through Mustard-Mungbean-T. Aman cropping pattern. J Soil Nature. 2009;3:10-14.
3. Islam IM, Hossain MA, Mondal MA, Ahmed S, Ahmad KU, Khatun F. Soil nutrient management through cultivation of pulses-A system approaches In: M.A. Bakr, M.A. Afzal and H.U. Ahmed (eds.) New Perspective of Pulses Research in Bangladesh. Proc. Natl. Workshop Pulses for National Security and Sustainable Agriculture, 24-25 July 2007, BARI, Gazipur, Bangladesh. 2007.
4. Prasad PVV, Satanarayana V, Muthy VRK, Boote KJ. Maximizing yields in rice-groundnut cropping sequence through integrated nutrient management. Field Crops Res. 2002;75: 9-21.
5. Mondal RI, Begum F, Aziz A, Sharif SH. Crop sequences for increasing cropping intensity and productivity. SAARC J Agric. 2015;13:135-147.
6. Hasan MK, Hossain MA, Awal MA, Choudhury DA. Evaluation of fertilizer application practices in major cropping systems under selected AEZ's of Bangladesh. Bangladesh J Agric Res. 2003;28:481-492.
7. Chitdeshwari T, Velu V, Thilagavathy T. Nutrient balance studies in the soils under intensive rice-rice system. Indian J Agric Res. 2011;45:11-20.
8. Kabir MJ, Hafeez ASMG, Haque MA, Islam MS, Nabi MN. Marginal analysis of fertilizer traits of jute based cropping pattern. Bangladesh J Agric Res. 2002;27:669-680.
9. Panauilah GM, Timsina J, Saleque MA, Ishaque, Pathan MABMBU, Connor DJ, Saha PK, Quayyum MA, Humphreys E, Meisner CA. Nutrient uptake and apparent balances for rice-wheat sequences: III. Potassium. J Plant Nutri. 2006;29:173-187.
10. Saha PK, Islam S, Islam MN, Biswas JC, Haque MM. Soil plant nutrient status under intensive rice-farming systems in unfavorable eco-systems of Bangladesh. EPH-Intl J Biol Pharma Sci. 2016;2:1-11.
11. Mamathashree CM, Shilphma SM, Pradeep. Nutrient mining by selected cereal crops and strategies to sustain soil productivity. Int J Curr Microbiol App Sci. 2017;6:2932-2941.
12. Quddus MA, Mian MJA, Naser HM, Hossain MA, Sultana S, Sattar MA. Crop yields, nutrient uptake and apparent balances for Lentil-Mungbean-T. Aman rice cropping sequence in calcareous soils. Am J Plant Biol. 2017a;2:88-100.
13. Yu YL, Xue LH, Yang LZ. Winter legumes in rice crop rotations reduce nitrogen loss, and improves rice yield and soil nitrogen supply. Agron Sustain Dev. 2014;34:633-640.
14. Padre AT, Ladha JK, Regmi AP, Bhandari AL, Inubushi K. Organic amendment affect soil parameters in two long-term rice-wheat experiments. Soil Sci Soc Am J. 2007;71:442-452.
15. Islam MR, Chowdhury MAH, Saha BK, Hasan MM. Integrated nutrient management on soil fertility, growth and yield of tomato. J Bangladesh Agril Univ. 2013;11:33-40.
16. Stagnari F, Maggio A, Galiemi A, Pisante M. Multiple benefits of legumes for agriculture sustainability: an overview. Biol Technol Agric. 2017;4:2-13.
17. Rundala SR, Kumawat BL, Choudhary GL, Prajapat K, Sit K. Performance of Indian
mustard (Brassica juncea) under integrated nutrient management. Crop Res. 2013;46:115-118.

18. Singh AK, Singh PK, Manoj K, Bordoloi LJ, Jha AK. Nutrient management for improving mungbean (Vigna radiata L.) productivity in acidic soil of northeast India. Indian J Hill Farming. 2014;27:37-41.

19. Blaise D, Singh JV, Blonde AN, Tekale KU, Mayee CD. Effects of farmyard manure and fertilizers on yield, fiber quality and nutrient balance of rainfed cotton (Gossypium hirsutum). Bioresource Tech. 2005;96:345-349.

20. Phong LT, Stoorvogel JJ, van Mensvoort MEH, Udo HMJ. Modeling the soil nutrient balance of integrated agriculture-aquaculture systems in the Mekong Delta, Vietnam. Nutrient Cyc Agroeco. 2011;90:33-49.

21. Paul F, Brentrup F, Isema, Garcia BTF, Norton R, Zingore S. Nutrient/fertilizer use efficiency: Measurement, current situation and trends. IFA, IWMI, IPNI and IPI. 2014.

22. Bindraban PS, Stoorvogel JJ, Jansen DM, Vlaming J, Groot JJR. Land quality indicators for sustainable land management: Proposed method for yield gap and soil nutrient balance. Agric Ecosyst Environ. 2000; 81:103-112.

23. Ahmmed S, Jahiruddin M, Razia MS, Begum RA, Biswas JC, Rahman AS MM, Ali MM, Islam KMS, Hossain MM, Gani MN, Hossain GMA, Sattar MA. Fertilizer Recommendation Guide-2018. Bangladesh Agricultural Research Council, Farmgate, Dhaka. 2018:1215:223.

24. FAO (Food and Agriculture Organization) Plant Nutrition for Food Security: A guide for integrated nutrient management. FAO Fertilizer and Nutrient Bulletin. 2006;16:349.

25. FAO (Food and Agriculture Organization) Chapter 8 - Nutrient management guidelines for some major field crops. 2018:235-263 Available: http://www.fao.org/docrep/pdf/009/a0443e/a0443e04.pdf; Access on 20-9-2018.

26. Tandon HLS. Fertilizers in Indian agriculture- from 20th to 21st century. New Delhi, Fertilizer Development and Consultation Organization. 2004;239.

27. Aulakh MS. Content and uptake of nutrients by pulses and oilseed crops. Ind J Ecol. 1985;12: 238-242.

28. Yara. Potato nutritional summary; 2019. Available:http://www.yara.co.uk/crop-nutrition/potato/potato-nutritional-summary (Access on 15-2-2019)

29. Quddus MA, Mian MJA, Naser HM, Hossain MA, Sultana S. Maximizing yields, nutrient uptake and balance for Mustard-Mungbean-T. Aman rice cropping systems through nutrient management practices in calcareous soils. J Agril Sci. 2017b;9:210-229.

30. Biswas JC, Haque MM, Akter M, Hossain ATMS, Khan FH, Baki MZI, Sarker ABS, Islam MR. Element composition of the atmospheric depositions in Bangladesh. J Environ Protoc. 2018;9:948-956.

31. Hossain M, Bayes A, Islam SMF. A diagnostic study on Bangladesh agriculture. Agricultural Economics Working Paper, BRAC. 2017:218.

32. Hossain MS, Alam SMM, Abidal MY, Hasan MK, Khan ASMMR. Productivity and nutrient balance of Lentil–Mungbean–T Aus–T Aman cropping pattern in High Barind Tract. Bangladesh Agron J. 2018;21:105-115.

33. Salam MA, Solaiman ARM, Karim AJMS, Saleque MA. System productivity, nutrient use efficiency and apparent nutrient balance in rice-based cropping systems. Archives Agron Soil Sci. 2014; 60:747-764.

34. Haque MM, Saleque MA, Shah AL, Waghmode TR. Effects of long-term fertilization and soil native nutrient on rice productivity in double rice cultivation system. Aper J Biochemis Biochem Tech. 2014;103:1-8.

35. Mohiuddin KM, Era FR, Siddiquee MSH, Rahman MM. Quality of commonly used fertilizers collected from different areas of Bangladesh. J Bangladesh Agril Univ. 2017;15:219-226.

36. Divyashree KS, Prakash SS, Yogananda SB, Chandrappa. Seed yield and nutrient content of mungbean and soil nutrient status of micronutrients mixture in a Alfisol. Intl J Curr Microbiol Appl Sci. 2018;7:1706-1713.

37. Patil AA, Durgude AG, Pharande AL. Effect of silicon application along with chemical fertilizers on nutrient uptake and nutrient availability for rice plants. Intl J Chem Stud. 2018;6:260-266.

38. Vasanthi N, Saleena LM, Raj SA. Silicon in day today life. World Appl Sci J. 2012;17:1425-1440.
39. Zublina JP. North Carolina Cooperative Extension Service Publication AG-439-16; 1997.

Available: http://www.soil.ncsu.edu.oil.ncsu.edu.

© 2022 Biswas et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/86100