Position Control of Maximum Wetting Plane for Building Walls with Foam Polystyrene Heat Insulator

V G Gagarin¹², V K Akhmetov³, K P Zubarev¹²

¹Research Institute of Building Physics of Russian Academy of Architecture and Construction Science, Moscow, 127238, Russia.
²Department of Heat and Gas Supply and Ventilation, Moscow State University of Civil Engineering, 26, Yaroslavskoye Shosse, Moscow, 129337, Russia.
³Department of Applied Mathematics, Moscow State University of Civil Engineering, 26, Yaroslavskoye Shosse, Moscow, 129337, Russia.

E-mail: gagarinvg@yandex.ru vadim.akhmetov@gmail.com zubarevkirill93@mail.ru

Abstract. Current theory of moisture transfer, consisting in combined transfer of vapor in sorption wetting zone and liquid in oversorption zone, is reviewed. Moisture potential F, which is the basis for overwetting protection calculation of the enclosing structure, is described. A steady-state problem on moisture distribution along enclosing structure thickness is presented. Expression for maximum wetting plane position assessment in the enclosing structure thickness is described. It is proposed to tie origin of coordinates and exterior insulation surface. “Relative shift of the maximum wetting plane” criterion is developed for the new coordinate system. Maximum wetting plane position for the enclosing structure made of aerated concrete masonry base and expanded polystyrene insulation is calculated. One parameter varied and others were taken as constant to find out dependences between maximum wetting plane shift criterion, layers thickness, and interior micro climate parameters. It is found out that increase in base thickness, temperature or relative humidity of inside air results in maximum wetting plane shift inside the enclosure, and increase in insulation thickness results in maximum wetting plane shift outside the enclosure.

1. Introduction

Moisture affect on the building enclosing structure is of major importance. Calculation methods for unsteady-state moisture regime allows the most precise evaluation of this effect [1,2,3,4,5,6,7,8]. Experimental data on moisture diffusion coefficients [9,10,11,12], and verification of existing calculation patterns by field surveys [13] are required for application of these methods. Construction materials humidity influences on thermal protection [14], lifetime of buildings [15,16], and humans health [17,18].

In engineering practice it is much easier to calculate overwetting protection of enclosing structures, i.e. decide whether this structure can be operated or not. Overwetting protection calculation is based on moisture transfer balance, which is determined with respect to certain enclosing structure section – maximum wetting plane, which specifies the place of maximum moisture content in the enclosing structure.

According to existing theory, moisture transfer takes place in sorption wetting zone under the action of water vapor partial pressure gradient, and in oversorption zone – under the action of
humidity gradient. V.G. Gagarin and V.V. Kozlov developed moisture potential F, which is the sum of water vapor pressure and equivalent liquid moisture pressure [19]:

$$F(w, t) = E_i(t) \cdot \varphi(w) + \frac{1}{\mu} \int_{\zeta}^{w} \beta(\zeta) d\zeta$$

where F – moisture potential, Pa; w – material moisture content, mass percentage (1 kg/kg = 100 mass percentage); t – temperature, °C; E_i – saturated water vapor pressure, Pa; μ – vapor permeability coefficient, kg/(m·s·Pa); φ – relative air humidity; β – moisture conductivity coefficient, kg/(m·s·kg/kg).

Steady-state moisture potential distribution is studied based on this potential [19]:

$$\frac{\partial}{\partial x} \left(\mu \frac{\partial F(w, t)}{\partial x} \right) = 0$$

where x – coordinate, m.

Research for equation (2) maximum results in reduced expression, which is used to define maximum wetting plane position in building enclosing structures [20]:

$$f_i(t_{m,n}) = \frac{5330 \cdot \left(t_i - t_{ext, neg} \right)}{R_i \cdot (e_i - e_{ext, neg})} \cdot \frac{\mu}{\lambda_i}$$

where f_i – function that corresponding to the temperature of the layer i in the maximum moisture zone «maximum wetting complex», (°C)/Pa; $r_{i,v}$ – enclosing structure water vapor permeability total resistance, (m²·s·Pa)/kg; t_i – inside air average temperature, °C; $t_{ext, neg}$ – outdoor air average temperature in the period of monthly average temperature below zero, °C; R_i – enclosing structure heat transfer total resistance, (m²·°C)/W; e_i – partial pressure of inside air water vapor, Pa; $e_{ext, neg}$ – partial pressure of outdoor air water vapor in the period of monthly average temperature below zero, Pa; μ_i – vapor permeability coefficient of i-th layer material, kg/(m·s·Pa); λ_i – thermal conductivity coefficient of i-th layer material, W/(m²·°C); $t_{m,n}$ – maximum wetting temperature, °C.

2. The problem
The expression (3) allows to define maximum wetting plane, then it is possible to evaluate moisture transfer balance and conclude whether the enclosing structure is suitable for operation or not. However this method does not give an answer to a question how will maximum wetting plane position change with variation of enclosure thickness or inner micro climate parameters.

The research goal is to develop dependences allowing to control maximum wetting plane position depending on layers thickness and inner micro climate parameters for the enclosing structure consisting of aerated concrete masonry base and expanded polystyrene insulation.

3. Materials and methods

3.1. Coordinate axis relation to the enclosing structure
Facade heat-insulating composite system, made of aerated concrete masonry base, expanded polystyrene insulation, exterior thin plaster layer, and interior sand-cement mortar layer, is examined. It is proposed to tie origin of coordinates and exterior insulation surface to assess maximum wetting plane position (Fig. 1).
3.2. Criterion development for maximum wetting plane position assessment

Criterion Δ is developed to assess maximum wetting plane position:

$$\Delta = \frac{\delta_x}{\delta_{im}}$$

(4)

where Δ – relative displacement coordinate of maximum wetting plane.

Physically, Δ reflects what fold distance between insulation exterior surface and maximum wetting plane coordinate is greater than insulation thickness. If $\Delta < 0$, then maximum wetting plane is located outside the enclosure or in exterior plaster layer; if $\Delta = 0$, then maximum wetting plane is located on external insulation surface; if $0 < \Delta < 1$, then maximum wetting plane is located inside insulation layer; if $\Delta = 1$, then maximum wetting plane is on internal insulation layer; if $\Delta > 1$, then maximum wetting plane is located on base layer or on interior plaster layer.

4. Results and discussion

The enclosing structure having characteristics presented in the table (Table. 1) was taken as initial for investigation of the maximum wetting plane position. Construction area: Moscow; purpose of the building - residential.

| Table 1. Characteristics of the enclosing structure, consisting of aerated concrete block masonry, insulation of expanded polystyrene plates, exterior and interior plaster layers. |
Wall structure	Layer thickness, m	Density, kg/m^3	Thermal conductivity coefficient, $W/(m\cdot^\circ C)$	Vapor permeability coefficient, $mg/(m\cdot$hour\cdotPa)
Exterior plaster layer	0.007	1260	0.93	0.13
Insulation of expanded polystyrene plates	0.12	25	0.044	0.05
Base of aerated concrete masonry	0.3	400	0.15	0.23
Interior plaster layer	0.02	1800	0.93	0.09

If inside air temperature is equal to 20 $^\circ C$, and relative inside air humidity is equal to 55 %, then criterion $\Delta = 0.208$. It is proposed to vary one of the parameters and keep other constant to investigate dependence of maximum wetting plane position on interior micro climate parameters and layers.
thickness. Thus, to find out dependence between Δ and insulation thickness, the base thickness, temperature and relative humidity of inside air were taken as constant, and insulation thickness was changed in increments of 0.01 m (Fig. 2). To find out dependence between Δ and base thickness, insulation thickness, temperature and relative humidity of inside air were taken as constant, and base thickness was changed in increments of 0.01 m (Fig. 3). To find out dependence between Δ and inside air temperature, layers thickness and inside air relative humidity were taken as constant, and inside air temperature was changed in increments of 1 °C (Fig. 4). To find out dependence between Δ and inside air relative humidity, layers thickness and inside air temperature were taken as constant, and inside air relative humidity was changed in increments of 1 % (Fig. 5).

The graphs show that increase in insulation thickness results in reduction of relative displacement coordinate of maximum wetting plane for the enclosing structure consisting of aerated concrete masonry, insulation of expanded polystyrene, exterior and interior plaster layers; increase in base thickness, inside air temperature, inside air relative humidity results in increase in relative displacement coordinate of the maximum wetting plane, i.e. maximum wetting plane shift inside the enclosure.

Thus, it is possible to control maximum wetting plane position by variation of interior micro climate parameters or layers' thickness.

5. Conclusion
Maximum wetting plane position in the enclosing structure made of aerated concrete masonry base and expanded polystyrene insulation was studied. Dependencies for maximum wetting plane position control depending on layer thickness and interior micro climate parameters were developed.
It is found out that increase in base thickness, inside air temperature or inside air relative humidity result in maximum wetting plane shift inside the enclosure, and increase in heat insulation thickness results in maximum wetting plane shift outside the enclosure.

The given results can be used in engineering practice for overwetting protection calculation of the enclosing structures.

References
[1] Arfvidsson J and Claesson J 2000 Isothermal moisture flow in building materials: modelling, measurements and calculations based on Kirchhoff’s potential Building and environment 35 L6 pp 519-36
[2] Gamayunova O, Musorina T and Ishkov A 2018 Humidity distributions in multilayered walls of high-rise buildings E3S Web of Conferences (Birmingham: HRC 2017) 33 L02045 pp 1-6
[3] Lal S, Lucci F, Defraeye T, Poulikakos L D, Partl M N, Derome D and Carmeliet J 2018 CFD modeling of convective scalar transport in a macroporous material for drying applications International journal of thermal sciences 123 pp 86-98
[4] Tang Y C, Min J C and Wu X M 2018 Selection of convective moisture transfer driving potential and its impacts upon porous plate air-drying characteristics International journal of heat and mass transfer 116 pp 371-6
[5] Melin C B, Hagentoft C E, Holl K, Nik V M and Kilian R 2018 Simulations of moisture gradients in wood subjected to changes in relative humidity and temperature due to climate change Geosciences 8 L10 pp 1-14
[6] Almeida R and Barreira E 2018 Monte Carlo simulation to evaluate mould growth in walls: the effect of insulation, orientation, and finishing coating Advances in civil engineering L8532167 pp 1-12
[7] Kaczmarek A and Wesolowska M 2017 Factors affecting humidity conditions of a face wall layer of a heated building Procedia Engineering (Gliwice: 9th International Conference on Analytical Models and New Concepts in Concrete and Masonry Structures (AMCM)) 193 pp 205-10
[8] Guimaraes A S, Ribeiro I M and Freitas T S 2017 Numerical models performance to predict drying liquid water in porous building materials: Comparison of experimental and simulated drying water content profiles Cogent engineering 4 L1 pp 1-17
[9] Petrov A S and Kupriyanov V N 2018 Determination of humidity conditions of enclosing structures by the color indicator method IOP Conf. Series: Materials Science and Engineering (Vladivostok: International Multi-Conference on Industrial Engineering and Modern technologies) 463 pp 1–5
[10] Nizovtsev M I, Sterlyagov A N and Terekhov V I 2009 Effect of material humidity on heat- and moisture-transfer processes in gas-concrete Concrete materials: properties, performance and applications pp 397-429
[11] Perre P, Pierre F, Casalinho J and Ayous M 2015 Determination of the Mass Diffusion Coefficient Based on the Relative Humidity Measured at the Back Face of the Sample During Unsteady Regimes Drying technology (Paris: EuroDrying Conference 2013) 33 pp 1068-75
[12] Skramlik J, Novotny M, Fuciman O and Suhajda K 2013 3D Data for Calculation of Capillary Conductivity Coefficient Proceedings of the conference on the rehabilitation and reconstruction of buildings CRRB 2012 (14th Conference on the Rehabilitation and Reconstruction of Buildings (CRRB 2012)) 688 pp 180-4
[13] Sass O and Viles HA 2010 Two-dimensional resistivity surveys of the moisture content of historic limestone walls in Oxford, UK: implications for understanding catastrophic stone deterioration Limestone in the built environment: present day challenges for the preservation of the past (Bighi: Workshop on Bioclastic Limestone Decay and Conservation/SWAPNET) 331 pp 237-49
[14] Suchorab Z, Barnat-Hunek D and Sobczuk H 2011 Influence of moisture on heat conductivity
coefficient of aerated concrete "Ecological chemistry and engineering s-chemia i inzynieria ekologiczna s" 18 L1 pp 111-20
[15] Liu Z C, Hansen W and Wang F Z 2018 Pumping effect to accelerate liquid uptake in concrete and its implications on salt frost durability Construction and building materials 158 pp 181-8
[16] Georget F, Prevost J H and Huet B 2018 Impact of the microstructure model on coupled simulation of drying and accelerated carbonation Cement and concrete research 104 pp 1-12
[17] Girault F and Perrier F 2012 Estimating the importance of factors influencing the radon-222 flux from building walls Science of the total environment 433 pp 247-63
[18] Kupriyanov V N and Shafigullin R I 2018 Protective characteristics of enclosing structures exposed to electromagnetic radiation IOP Conf. Series: Materials Science and Engineering (Vladivostok: International Multi-Conference on Industrial Engineering and Modern technologies) 463 pp 1-9
[19] Gagarin V G, Akhmetov V K and Zubarev K P 2018 Assessment of enclosing structure moisture regime using moisture potential theory MATEC Web of Conferences (Moscow: International Scientific Conference Environmental Science for Construction Industry – ESCI 2018) 193 L03053 pp 1-14
[20] Gagarin V G, Kozlov V V and Zubarev K P 2018 Determination of maximum moisture zone on enclosing structures Cold Climate HVAC 2018: Sustainable Buildings in Cold Climates. (Lund: 9th international conference Cold Climate HVAC 2018) pp 925-32