Spectrum generating algebra and coherent states of the C_λ-extended oscillator

C. Quesne *

Physique Nucléaire Théorique et Physique Mathématique,
Université Libre de Bruxelles, Campus de la Plaine CP229,
Boulevard du Triomphe, B-1050 Brussels, Belgium

Abstract

C_λ-extended oscillator algebras, generalizing the Calogero-Vasiliev algebra, where C_λ is the cyclic group of order λ, have recently proved very useful in the context of supersymmetric quantum mechanics and some of its variants. Here we determine the spectrum generating algebra of the C_λ-extended oscillator. We then construct its coherent states, study their nonclassical properties, and compare the latter with those of standard λ-photon coherent states, which are obtained as a special case. Finally, we briefly review some other types of coherent states associated with the C_λ-extended oscillator.

1 Introduction

Coherent states (CS) of the harmonic oscillator [1] are known to have properties similar to those of the classical radiation field. They may be defined in various ways, for instance as eigenstates of the oscillator annihilation operator b. With the corresponding creation operator b^\dagger and the number operator $N_b \equiv b^\dagger b$, the latter satisfies the commutation relations

$$[N_b, b^\dagger] = b^\dagger, \quad [N_b, b] = -b, \quad [b, b^\dagger] = I. \quad (1)$$

In contrast, generalized CS associated with various algebras [4] may have some nonclassical properties, such as photon antibunching or sub-Poissonian photon statistics, and squeezing. As examples of such CS, we may quote the eigenstates of b^2, which were introduced as even and odd CS or cat states [3], and are a special case of generalized CS associated with the Lie algebra $\text{su}(1,1)$ [4]. We may also mention the eigenstates of $b^\lambda (\lambda > 2)$ or kitten states [5], which may be generated in λ-photon processes.

*Directeur de recherches FNRS; E-mail: cquesne@ulb.ac.be
Other examples are provided by nonlinear CS associated with a deformed oscillator (or \(f \)-oscillator). The latter is defined in terms of creation, annihilation, and number operators, \(a^{\dagger} = f(N) b^{\dagger}, a = b f(N), N = N b, \) satisfying the commutation relations \([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]\)

\[
[N, a^{\dagger}] = a^{\dagger}, \quad [N, a] = -a, \quad [a, a^{\dagger}] = G(N),
\]

(2)

where \(f \) is some Hermitian operator-valued function of the number operator and \(G(N) = (N + 1)f^2(N + 1) - N f^2(N) \). Nonlinear CS, defined as eigenstates of \(a \) \([4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]\), of \(a^2 \) \([10, 11]\), or of an arbitrary power \(a^\lambda (\lambda > 2) \) \([11]\), have been considered in connection with nonclassical properties. It has been shown that for a particular class of nonlinearities the first ones are useful in the description of a trapped ion \([8]\).

In the present communication, we shall consider some multiphoton CS, which may be associated with the recently introduced \(C_\lambda \)-extended oscillator \([12]\). The latter may be considered as a deformed oscillator with a \(\mathbb{Z}_\lambda \)-graded Fock space and has proved very useful in the context of supersymmetric quantum mechanics and some of its variants \([12, 13]\). In particular, we shall deal here in detail with CS of the \(C_\lambda \)-extended oscillator spectrum generating algebra \([14]\), which are a special case of the CS of Ref. \([11]\) and exhibit some nonclassical properties.

2 The \(C_\lambda \)-extended oscillator algebra

The \(C_\lambda \)-extended oscillator algebra (where \(C_\lambda = \mathbb{Z}_\lambda \) is the cyclic group of order \(\lambda \)) was introduced as a generalization of the Calogero-Vasiliev algebra, defined by \([12]\)

\[
[N, a^{\dagger}] = a^{\dagger}, \quad [a, a^{\dagger}] = I + \alpha_0 K, \quad \{K, a^{\dagger}\} = 0,
\]

(3)

and their Hermitian conjugates, where \(\alpha_0 \) is some real parameter subject to the condition \(\alpha_0 > -1 \), and \(K \) is some Hermitian operator. The latter may be realized as \(K = (-1)^N \), so that the second equation in \((3)\) becomes equivalent to \([a, a^{\dagger}] = I + \alpha_0 P_0 + \alpha_1 P_1 \), where \(\alpha_0 + \alpha_1 = 0 \) and \(P_0 = \frac{1}{\lambda} [I + (-1)^N], P_1 = \frac{1}{\lambda} [I - (-1)^N] \) project on the even and odd subspaces of the Fock space \(\mathcal{F} \), respectively.

When partitioning \(\mathcal{F} \) into \(\lambda \) subspaces \(\mathcal{F}_\mu \equiv \{ |k \lambda +\mu \rangle \mid k = 0, 1, \ldots \}, \mu = 0, 1, \ldots, \lambda - 1 \), instead of two, the Calogero-Vasiliev algebra is replaced by the \(C_\lambda \)-extended oscillator algebra, defined by \([12]\)

\[
[N, a^{\dagger}] = a^{\dagger}, \quad [a, a^{\dagger}] = I + \sum_{\mu=0}^{\lambda-1} \alpha_\mu P_\mu, \quad a^{\dagger} P_\mu = P_{\mu+1} a^{\dagger},
\]

(4)

and their Hermitian conjugates, where \(P_\mu = \lambda^{-1} \sum_{\nu=0}^{\lambda-1} \exp[2\pi i \nu(N-\mu)/\lambda] \) projects on \(\mathcal{F}_\mu \), \(\sum_{\mu=0}^{\lambda-1} P_\mu = I \), and \(\alpha_\mu \) are some real parameters subject to the conditions \(\sum_{\mu=0}^{\lambda-1} \alpha_\mu = 0 \) and \(\sum_{\nu=0}^{\mu-1} \alpha_\nu > -\mu, \mu = 1, 2, \ldots, \lambda - 1 \). Taking this form of \(P_\mu \) into account, it is clear that the \(C_\lambda \)-extended oscillator algebra \([14]\) is a special case of deformed oscillator algebra, as defined in \([2]\).
The operators N, a^\dagger, a are related to each other through the structure function $F(N) = N + \sum_{\mu=0}^{\lambda-1} \beta_\mu P_\mu$, $\beta_\mu \equiv \sum_{\nu=0}^{\mu-1} \alpha_\nu$, which is a fundamental concept of deformed oscillators. $a^\dagger a = F(N)$, $aa^\dagger = F(N + 1)$ [8] [4]. Comparing with Eq. (2), we get $f(N) = (F(N)/N)^{1/2}$.

The Fock space basis states $|n\rangle = |k\lambda + \mu\rangle = N_{n-1/2}^{-} (a^\dagger)^n |0\rangle$, where $a|0\rangle = 0$, $k = 0, 1, \ldots$, and $\mu = 0, 1, \ldots, \lambda - 1$, satisfy the relations

$$N|n\rangle = n|n\rangle, \quad a^\dagger|n\rangle = \sqrt{F(n + 1)} |n + 1\rangle, \quad a|n\rangle = \sqrt{F(n)} |n - 1\rangle.$$ (5)

Due to the restrictions on the range of the parameters α_μ given below Eq. (4), $F(\mu) = \beta_\mu + \mu > 0$ so that all the states $|n\rangle$ are well defined.

The C_λ-extended oscillator Hamiltonian is defined by [12]

$$H_0 = \frac{1}{\lambda} \{ a, a^\dagger \}.$$ (6)

Its eigenstates are the states $|n\rangle = |k\lambda + \mu\rangle$ and their eigenvalues are given by $E_{k\lambda+\mu} = k\lambda + \mu + \gamma_\mu + \frac{1}{2}$, where $\gamma_\mu \equiv \frac{1}{2} (\beta_\mu + \beta_{\mu+1})$. In each \mathcal{F}_μ subspace of \mathcal{F}, the spectrum of H_0 is harmonic, but the λ infinite sets of equally spaced energy levels, corresponding to $\mu = 0, 1, \ldots, \lambda - 1$, are shifted with respect to each other by some amounts depending upon the parameters $\alpha_0, \alpha_1, \ldots, \alpha_{\lambda-1}$.

3 Spectrum generating algebra of the C_λ-extended oscillator

One can generate the whole spectrum of the C_λ-extended oscillator Hamiltonian (5) from the eigenstates $|\mu\rangle$, $\mu = 0, 1, \ldots, \lambda - 1$, by using the operators [14]

$$J_+ = \frac{1}{\lambda} (a^\dagger)^\lambda, \quad J_- = \frac{1}{\lambda} a^\lambda, \quad J_0 = \frac{1}{\lambda} H_0 = \frac{1}{2\lambda} \{ a, a^\dagger \}.$$ (7)

They satisfy the commutation relations

$$[J_0, J_\pm] = \pm J_\pm, \quad [J_+, J_-] = f(J_0, P_\mu), \quad [J_0, P_\mu] = [J_\pm, P_\mu] = 0,$$ (8)

where $f(J_0, P_\mu)$ (which has nothing to do with the function $f(N)$ of Eq. (2)) is a $(\lambda - 1)$th-degree polynomial in J_0 with P_μ-dependent coefficients, $f(J_0, P_\mu) = \sum_{i=0}^{\lambda-1} s_i(P_\mu) J_0^i$. The spectrum generating algebra (SGA) of the C_λ-extended oscillator is therefore a C_λ-extended polynomial deformation of su(1,1); in each \mathcal{F}_μ subspace, it reduces to a standard polynomial deformation of su(1,1) [5].

Its Casimir operator can be written as

$$C = J_- J_+ + h(J_0, P_\mu) = J_+ J_- + h(J_0, P_\mu) - f(J_0, P_\mu),$$ (9)

where $h(J_0, P_\mu)$ is a λth-degree polynomial in J_0 with P_μ-dependent coefficients, $h(J_0, P_\mu) = \sum_{i=0}^{\lambda} t_i(P_\mu) J_0^i$. Each \mathcal{F}_μ subspace is the carrier space of a unitary irreducible representation (unirrep) of the SGA, characterized by an eigenvalue c_μ of
\[C, \text{ and by the lowest eigenvalue } (\mu + \gamma + \frac{1}{2})/\lambda \text{ of } J_0. \] The explicit expressions of \(f(J_0, P_\mu), h(J_0, P_\mu), \) and \(c_\mu \) are given in Ref. [14].

For \(\lambda = 2 \), for which the \(C_\lambda \)-extended oscillator algebra reduces to the Calogero-Vasiliev algebra, the SGA (7), (8) reduces to the Lie algebra su(1,1), for which \(f(J_0) = -2J_0, h(J_0) = -J_0(J_0 + 1), \) and \(c = (1 + \alpha_\mu)(3 - \alpha_\mu)/16 \) [16].

Nonlinearities make their appearance for \(\lambda = 3 \), for which
\[
\begin{align*}
 f(J_0, P_\mu) &= -9J_0^2 - J_0 \sum_\mu (\alpha_\mu + 2\alpha_{\mu+1})P_\mu - \frac{1}{12} \sum_\mu (1 + \alpha_\mu)(5 - \alpha_\mu)P_\mu, \\
 h(J_0, P_\mu) &= -J_0 \left[3J_0^2 + \frac{1}{2} J_0 \sum_\mu (9 + \alpha_\mu + 2\alpha_{\mu+1})P_\mu + \frac{1}{12} \sum_\mu (23 + 10\alpha_\mu \right. \\
 & \left. + 12\alpha_{\mu+1} - \alpha_\mu^2)P_\mu \right], \\
 c_\mu &= \frac{1}{12}(1 + \alpha_\mu)(5 - \alpha_\mu)(3 + \alpha_\mu + 2\alpha_{\mu+1}).
\end{align*}
\] (10)

For \(\alpha_\mu = 0 \) corresponding to \(a^\dagger = b^\dagger, a = b \), the operators (9) close a polynomial deformation of su(1,1), with \(f(J_0) \) and \(h(J_0) \) expressed in terms of some binomial coefficients and Stirling numbers [14].

4 Coherent states associated with the \(C_\lambda \)-extended oscillator spectrum generating algebra

As CS associated with the \(C_\lambda \)-extended oscillator SGA, let us consider generalizations of the Barut-Girardelle CS of su(1,1) [4], to which they will reduce in the case \(\lambda = 2 \). These are the eigenstates \(|z; \mu\rangle \) of the operator \(J_- \) defined in (7),
\[
J_-|z; \mu\rangle = z|z; \mu\rangle, \quad z \in \mathbb{C}, \quad \mu = 0, 1, \ldots, \lambda - 1. \] (11)

Here \(\mu \) distinguishes between the \(\lambda \) independent (and orthogonal) solutions of equation (11), belonging to the various subspaces \(\mathcal{F}_\mu \). The CS \(|z; \mu\rangle\) may be considered as special cases of the nonlinear CS of Ref. [11], since Eq. (11) is equivalent to \(a^\lambda|z; \mu\rangle = \lambda z|z; \mu\rangle \), for \(a = b f(N_b) \) and \(f(N_b) \) as given in Sec. 2.

It can be shown [14] that the states (11) satisfy Klauder’s minimal set of conditions for generalized CS [17]: they are normalizable, continuous in the label \(z \), and they allow a resolution of unity. The other discrete label \(\mu \) is analogous to the vector components of vector (or partially) CS [18].

The states \(|z; \mu\rangle\) can be written in either of the alternative forms
\[
|z; \mu\rangle = [N_\mu(|z|)]^{-1/2} \sum_{k=0}^\infty \left(\frac{z/\lambda^{(\lambda-2)/2}}{k!} \left(\Pi_{\nu=1}^\mu (\beta_\nu + 1)_k \right) \left(\prod_{\nu'=1+\mu}^{\lambda-1} (\beta_{\nu'})_k \right) \right)^{1/2} k^{\lambda + \mu}, \] (12)

\[
4
\]
\[|z; \mu \rangle = [N_\mu(|z|)]^{-1/2} {}_0F_{\lambda-1} \left(\beta_1 + 1, \ldots, \beta_\mu + 1, \beta_{\mu+1}, \ldots, \beta_{\lambda-1}; z J_+ / \lambda^{\lambda-2} \right) |\mu\rangle, \]

where \(\beta_\mu \equiv (\beta_\mu + \mu) / \lambda \), \((a)_k \) denotes Pochhammer’s symbol, and the normalization factor \(N_\mu(|z|) \) can be expressed in terms of a generalized hypergeometric function,

\[N_\mu(|z|) = {}_0F_{\lambda-1} \left(\beta_1 + 1, \ldots, \beta_\mu + 1, \beta_{\mu+1}, \ldots, \beta_{\lambda-1}; y \right), \quad y \equiv |z|^2 / \lambda^{\lambda-2}. \] (14)

Their unity resolution relation can be written as

\[\sum_\mu \int d\rho_\mu (z; z^*) |z; \mu\rangle \langle z; \mu| = I, \] (15)

where \(d\rho_\mu (z, z^*) \) is a positive measure, given in terms of a generalized hypergeometric function and a Meijer \(G \) - function by

\[d\rho_\mu (z, z^*) = {}_0F_{\lambda-1} \left(\beta_1 + 1, \ldots, \beta_\mu + 1, \beta_{\mu+1}, \ldots, \beta_{\lambda-1}; y \right) h_\mu(y) |z| d|z| d\phi, \]

\[h_\mu(y) = \frac{G_{0\lambda}^0 \left(y | 0, \beta_1, \ldots, \beta_\mu, \beta_{\mu+1} - 1, \ldots, \beta_{\lambda-1} - 1 \right)}{\pi \lambda^{\lambda-2} \left(\prod_{\nu=\mu+1}^{\lambda-1} \Gamma(\beta_\nu + 1) \right) \left(\prod_{\nu'=\mu+1}^{\lambda-1} \Gamma(\beta_\nu') \right)}, \] (16)

with \(y \) defined in Eq. (14).

In the \(\lambda = 2 \) case, the functions \({}_0F_1 \) and \(G_{02}^0 \) of Eqs. (13), (14), and (16) being proportional to modified Bessel functions \(I_{2\nu}(2|z|) \) and \(K_{2\nu}(2|z|) \), \(\nu = (\alpha_0 - 1 + 2\mu) / 2 \), respectively, the CS defined in (11) reduce to Barut-Girardello su(1,1) CS for the appropriate unirreps, as it should be.

For \(\alpha_\mu = 0 \) corresponding to \(a^\dagger = b^\dagger \), \(a = b \), the CS defined in (11) reduce to the eigenstates of \(b^\lambda \) or standard \(\lambda \)-photon CS for the appropriate unirreps, as it should be.

\[|z; \mu \rangle = [N_\mu(|z|)]^{-1/2} \sum_{k=0}^{\infty} \left(\frac{\mu!}{(k \lambda + \mu)!} \right)^{1/2} (\lambda z)^k |k \lambda + \mu\rangle, \] (17)

satisfying the resolution of unity (13) with \(h_\mu(y) \) given by

\[h_\mu(y) = \lambda^{\mu-\lambda+2} (\pi \mu!)^{-1} y^{(\mu-\lambda+1) / \lambda} \exp \left(-\lambda y^{1/\lambda} \right). \] (18)

The states (17) can be rewritten in the alternative form

\[|z; \mu \rangle = \left(\frac{\mu!}{E_{\lambda,\mu+1}(\lambda^2 |z|^2)} \right)^{1/2} E_{\lambda,\mu+1} \left(\lambda^2 z J_+ \right) |\mu\rangle, \] (19)

where \(E_{\alpha,\beta}(x) \equiv \sum_{k=0}^{\infty} x^k / \Gamma(\alpha k + \beta) \) is a generalized Mittag-Leffler function. Hence, they provide a simple example of the Mittag-Leffler CS considered in Ref. [1].
5 Nonclassical properties of coherent states

The CS $|z; \mu\rangle$ may be considered as exotic states in quantum optics. Their properties may be analyzed in two different ways, by considering either “real” photons, described by the operators b^\dagger, b satisfying the canonical commutation relation, as given in Eq. (1), or “dressed” photons, described by the operators a^\dagger, a of Eq. (2), which may appear in some phenomenological models explaining some non-intuitive observable phenomena.

5.1 Photon statistics

Since $N = N_b$, the photon number statistics is not affected by the choice made for the type of photons. A measure of its deviation from the Poisson distribution is the Mandel parameter

$$Q = \frac{\langle (\Delta N)^2 \rangle - \langle N \rangle}{\langle N \rangle}, \quad \Delta N \equiv N - \langle N \rangle,$$

which vanishes for the Poisson distribution, and is positive or negative according to whether the distribution is super-Poissonian (bunching effect) or sub-Poissonian (antibunching effect).

It is well known that for $\lambda = 2$, the standard even (resp. odd) CS, corresponding to $\alpha_0 = \alpha_1 = 0$ or $a^\dagger = b^\dagger$, $a = b$ and $\mu = 0$ (resp. $\mu = 1$), are characterized by a super-Poissonian (resp. sub-Poissonian) number distribution. It can be shown that for the even (resp. odd) CS associated with the Calogero-Vasiliev algebra, i.e., for $\lambda = 2$, $\alpha_0 = -\alpha_1 \neq 0$ and $\mu = 0$ (resp. $\mu = 1$), this trend is enhanced for positive (resp. negative) values of α_0. However, as shown in Fig. 1, for negative (resp. positive) values of α_0 and sufficiently high values of $|z|$, the opposite trend can be seen.

For higher values of λ, more or less similar results are obtained for $\mu = 0$, on one hand, and $\mu \neq 0$, on the other hand. However the behaviour of Q becomes more complicated for intermediate values of μ.

5.2 Squeezing effect

5.2.1 “Dressed” photons

Let us define the deformed quadratures x and p as

$$x = \frac{1}{\sqrt{2}} (a^\dagger + a), \quad p = \frac{i}{\sqrt{2}} (a^\dagger - a).$$

In any state belonging to F_μ, their dispersions $\langle (\Delta x)^2 \rangle$ and $\langle (\Delta p)^2 \rangle$ satisfy the uncertainty relation

$$\langle (\Delta x)^2 \rangle \langle (\Delta p)^2 \rangle \geq \frac{1}{4} |\langle [x, p] \rangle|^2 = \frac{\lambda^2}{4} (\bar{\beta}_{\mu+1} - \bar{\beta}_\mu)^2,$$

where $\bar{\beta}_\mu = \langle \beta_\mu \rangle$.
where the right-hand side becomes smaller than the conventional value 1/4 if $\alpha_0 < 0$
for $\mu = 0$ or $-2 < \alpha_\mu < 0$ for $\mu = 1, 2, \ldots$, or $\lambda - 1$.

In \mathcal{F}_μ, the role of the vacuum state is played by the number state $|\mu\rangle = |0; \mu\rangle$,
which is annihilated by J_-. The corresponding dispersions are given by

$$
\langle (\Delta x)^2 \rangle_0 = \langle (\Delta p)^2 \rangle_0 = \frac{\lambda}{2} (\bar{\beta}_{\mu+1} + \bar{\beta}_\mu).
$$

Comparing with the uncertainty relation (22), we conclude that the state $|\mu\rangle$ satisfies
the minimum uncertainty property in \mathcal{F}_μ, i.e., gives rise to the equality in (22), only
for $\mu = 0$ because $\bar{\beta}_0 = 0$ and $\bar{\beta}_\mu > 0$ for $\mu = 1, 2, \ldots$, $\lambda - 1$. On the other hand,
the dispersions in the vacuum may be smaller than the conventional value 1/2 for
$\mu = 0, 1, \ldots, \lambda - 2$.

Let us restrict ourselves to the CS $|z; 0\rangle$, which satisfies for $z = 0$ the minimum
uncertainty property. The quadrature x (resp. p) is said to be squeezed to the second
order in $|z; 0\rangle$ if $X \equiv \langle (\Delta x)^2 \rangle / \langle (\Delta x)^2 \rangle_0$ (resp. $P \equiv \langle (\Delta p)^2 \rangle / \langle (\Delta p)^2 \rangle_0$) is less than one. Similarly, it is said to be squeezed to the fourth order if $Y \equiv \langle (\Delta x)^4 \rangle / \langle (\Delta x)^4 \rangle_0$
(resp. $Q \equiv \langle (\Delta p)^4 \rangle / \langle (\Delta p)^4 \rangle_0$) is less than one.

For $\lambda = 2$, X and P, or Y and Q, are related with each other by the transformation
$\Re z \rightarrow -\Re z$. Moreover X and Y are minimum for real, negative values of z.
On Fig. 2, they are displayed for such values. We note a large squeezing effect over
the whole range of real, negative values of z for positive values of α_0 (for which the
conventional uncertainty relation is respected).

For $\lambda > 2$, there is no second-order squeezing, but for $\lambda = 4$, a small fourth-order
squeezing is obtained in accordance with the results for standard λ-photon CS [5].

5.2.2 “Real” photons

Let us now define the quadratures x and p as

$$
x = \frac{1}{\sqrt{2}} \left(b^\dagger + b \right), \quad p = \frac{i}{\sqrt{2}} \left(b^\dagger - b \right).
$$

Their dispersions $\langle (\Delta x)^2 \rangle$ and $\langle (\Delta p)^2 \rangle$ satisfy the usual uncertainty relation. Considering again the CS $|z; 0\rangle$, on Fig. 3 we observe for the ratios X and P more or
less similar trends as noted in the case of “dressed” photons.

6 Concluding remarks

In the present contribution, we determined the SGA of the C_λ-extended oscillator
and studied some CS associated with it, namely the eigenstates of its lowering
generator J_-. Other types of CS may be considered and will be studied in a forthcoming
publication. Let us mention here two of them:
1. The eigenstates of the C_λ-extended oscillator annihilation operator a:

$$a |z; \mu\rangle = z |z; \mu\rangle.$$ \hfill (25)

These generalize the paraboson CS, which correspond to $\lambda = 2$. \hfill [20]

2. The solutions of the equation

$$\left[a^{\lambda-\alpha} - z \left(a^\dagger \right)^\alpha \right] |z; \mu\rangle = 0, \quad \alpha = 0, 1, \ldots, \left[\frac{\lambda}{2} \right], \quad \mu = 0, 1, \ldots, \lambda - \alpha - 1.$$ \hfill (26)

For $\alpha = 0$, these are the eigenstates of a^λ, which are directly related to those of J_-, considered here. Moreover, for $\lambda = 2$ and $\alpha = 1$, they reduce to the Perelomov $\text{su}(1,1)$ CS \hfill [2].

References

[1] R.J. Glauber, \textit{Phys. Rev.} \textbf{131} (1963) 2766.

[2] A.P. Perelomov, \textit{Generalized Coherent States and Their Applications} (Springer, Berlin, 1986).

[3] V.V. Dodonov, I.A. Malkin, V.I. Man’ko, \textit{Physica} \textbf{72} (1974) 597.

[4] A.O. Barut, L. Girardello, \textit{Commun. Math. Phys.} \textbf{21} (1971) 41.

[5] V. Bužek, I. Jex, Tran Quang, \textit{J. Mod. Opt.} \textbf{37} (1990) 159.

[6] C. Daskaloyannis, \textit{J. Phys. A} \textbf{24} (1991) L789.

[7] A.I. Solomon, \textit{Phys. Lett. A} \textbf{196} (1994) 29.

[8] R.L. de Matos Filho, W. Vogel, \textit{Phys. Rev. A} \textbf{54} (1996) 4560.

[9] V.I. Man’ko, G. Marmo, F. Zaccaria, E.C.G. Sudarshan, \textit{Phys. Scr.} \textbf{55} (1997) 528.

[10] S. Mancini, \textit{Phys. Lett. A} \textbf{233} (1997) 291; S. Sivakumar, \textit{Phys. Lett. A} \textbf{250} (1998) 257.

[11] X.-M. Liu, \textit{J. Phys. A} \textbf{32} (1999) 8685.

[12] C. Quesne, N. Vansteenkiste, \textit{Phys. Lett. A} \textbf{240} (1998) 21.

[13] C. Quesne, N. Vansteenkiste, \textit{Helv. Phys. Acta} \textbf{72} (1999) 71; C_λ-extended oscillator algebras and some of their deformations and applications to quantum mechanics, preprint \texttt{math-ph/0003029}, to be published in \textit{Int. J. Theor. Phys.}
[14] C. Quesne, *Phys. Lett. A* **272** (2000) 313.

[15] A.P. Polychronakos, *Mod. Phys. Lett. A* **5** (1990) 2325; M. Roček, *Phys. Lett. B* **255** (1991) 554.

[16] T. Brzeziński, I.L. Egusquiza, A.J. Macfarlane, *Phys. Lett. B* **311** (1993) 202.

[17] J. Klauder, *J. Math. Phys.* **4** (1963) 1058.

[18] J. Deenen, C. Quesne, *J. Math. Phys.* **25** (1984) 2354; D.J. Rowe, *J. Math. Phys.* **25** (1984) 2662.

[19] J.-M. Sixdeniers, K.A. Penson, A.I. Solomon, *J. Phys. A* **32** (1999) 7543.

[20] J.K. Sharma, C.L. Mehta, E.C.G. Sudarshan, *J. Math. Phys.* **19** (1978) 2089; J.K. Sharma, C.L. Mehta, N. Mukunda, E.C.G. Sudarshan, *J. Math. Phys.* **22** (1981) 78.