Key Structural Determinants in the Agonist Binding Loops of Human β2 and β4 Nicotinic Acetylcholine Receptor Subunits Contribute to α3β4 Subtype Selectivity of α-Conotoxins

Received for publication, April 2, 2016, and in revised form, August 27, 2016 Published, JBC Papers in Press, September 19, 2016, DOI 10.1074/jbc.M116.730804

Hartmut Cuny†5, Shiva N. Kompella††, Han-Shen Tae†, Rilei Yu†, and David J. Adams‖‡§

From the †Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia, the ‡Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia, and the §Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China

Edited by Paul Fraser

α-Conotoxins represent a large group of pharmacologically active peptides that antagonize nicotinic acetylcholine receptors (nAChRs). The α3β4 nAChR, a predominant subtype in the peripheral nervous system, has been implicated in various pathophysiological conditions. As many α-conotoxins have multiple pharmacological targets, compounds specifically targeting individual nAChR subtypes are needed. In this study, we performed mutational analyses to evaluate the key structural components of human β2 and β4 nAChR subunits that determine α-conotoxin selectivity for α3β4 nAChR. α-Conotoxin RegIIA was used to evaluate the impact of non-conserved human β2 and β4 residues on peptide affinity. Two mutations, αβ2[T59K] and αβ2[S113R], strongly enhanced RegIIA affinity compared with wild-type α3β2, as seen by substantially increased inhibitory potency and slower off-rate kinetics. Opposite point mutations in αβ4 had the contrary effect, emphasizing the importance of loop D residue 59 and loop E residue 113 as determinants for RegIIA affinity. Molecular dynamics simulation revealed the side chains of β4 Lys59 and β4 Arg113 formed hydrogen bonds with RegIIA loop 2 atoms, whereas the β2 Thr69 and β2 Ser113 side chains were not long enough to form such interactions. Residue β4 Arg113 has been identified for the first time as a crucial component facilitating antagonist binding. Another α-conotoxin, AuIB, exhibited low activity at human α3β2 and α3β4 nAChRs. Molecular dynamics simulation indicated the key interactions with the β subunit are different to RegIIA. Taken together, these data elucidate the interactions with specific individual β subunit residues that critically determine affinity and pharmacological activity of α-conotoxins RegIIA and AuIB at human nAChRs.

Neuronal nicotinic acetylcholine receptors (nAChR) are ligand-gated ion channels endogenously activated by acetylcholine (ACh). Presynaptic nAChRs in the central nervous system play an important role in synaptic transmission, as they mediate the release of various neurotransmitters (1). Postsynaptic nAChRs are involved in fast excitatory transmission, and non-synaptic nAChRs modulate many neurotransmitter systems by influencing neuronal excitability (2). The widespread expression and functional diversity makes nAChRs key components in numerous physiological functions of the central and peripheral nervous systems such as learning, memory, attention, motor control, synaptic plasticity, and analgesia (2, 3). Based on these versatile physiological roles, any dysfunction of nAChR subtypes contributes to various disease states, including epilepsy, schizophrenia, Parkinson’s disease, depression, autism, Alzheimer’s disease, and addiction (2–5).

Functional neuronal nAChRs are composed of five transmembrane-spanning subunits combining α (α2–α10) and β (β2–β4) subunits. Combinations of different α and β subunits yield a variety of heteromeric receptors with individual physiological roles and pharmacological profiles (6, 7). Functional neuronal nAChRs containing an α2, α3, α4, or α6 subunit also require a β2 or β4 subunit. The β subunit in these nAChR subtypes influences pharmacological properties including agonist efficacy, desensitization kinetics, and Ca2+ permeability (3).

The ligand binding site of nAChRs lies at the extracellular interface between α and β subunits, with the α subunit contributing the principal (+) face and the β subunit contributing the complementary (−) face. The ligand binding sites of nAChR subtypes are structurally very similar and hence the residues involved in agonist binding are considerably conserved. Therefore, the development of highly subtype-specific competitive ligands is a difficult ongoing task (6).

α-Conotoxins are a large group of disulfide-bonded peptides isolated from the venom of carnivorous marine Conus snails. They have been found to be specific competitive ligands of...
nAChRs, inhibiting ACh-evoked currents in a concentration-dependent manner. All α-conotoxins contain two conserved disulfide bridges and can be subclassified by the number of residues between the cysteines forming the disulfide bonds (e.g. α4/3, α4/4, and α4/7) (8). Individual α-conotoxins have their own selectivity profile and can discriminate between different nAChR subunit combinations and stoichiometries (9, 10).

To date, a number of highly selective α-conotoxins potentially inhibiting the α3β2* subtype have been identified (* indicates the presence of potential other subunits) (8). However, few probes specifically inhibiting single α3-containing nAChR subtypes exist (6). The α3β4 nAChR is the predominant subtype in the peripheral nervous system and mediolateral habenula of the brain and it has been shown to be involved in several pathophysiological disease conditions such as lung cancer, nicotine addiction, and drug abuse (3, 11, 12). Therefore, α3β4 is a promising therapeutic target and pharmacologically active substances modulating this nAChR subtype are sought-after.

The first α3β4 selective α-conotoxin described was α4/6-conotoxin AuIB, which inhibits rat α3β4 with an IC_{50} of 0.75 μM, whereas activity at other subtypes was reported as >100-fold lower (13). Another α4/6-conotoxin, TxID from Conus textile, was recently described as the most potent α3β4* nAChR-inhibiting α-conotoxin, however, besides α3β4 it also inhibits α6/α3β4 with 7.5-fold less potency (14).

α4/7-Conotoxin RegIIA from Conus regius has been reported to potently inhibit α3β4 besides α3β2 and α7 nAChRs (15). Interestingly, a non-natural analogue of RegIIA in which two residues in loop 2 were exchanged by alanines exhibited an enhanced selectivity for the α3β4 subtype compared with the wild-type toxin (16). Furthermore, we have previously shown that the selectivity profile of RegIIA differs between nAChRs of different species, as RegIIA was equipotent at the rat (r) and human (h) α3β4 subtypes but significantly less active at hα3β2 compared with rα3β2. This potency difference could be mapped to a single non-conserved Glu^{198} on the rα3 subunit (proline in human) (17).

Here, we investigated the molecular determinants for nAChR subtype selectivity of α-conotoxins, especially for the hα3β4 subtype. We tested residues, which are non-conserved between the homologous β2 and β4 subunits, for their impact on α-conotoxin affinity and activity using β subunit chimeras and point mutations. α-Conotoxin RegIIA was used as a probe for a major part of this study. We aimed to exhibit key β subunit residues of the ligand-binding interface that profoundly and subtype specifically affect both RegIIA sensitivity and wash-off kinetics.

Experimental Procedures

Peptide Synthesis—α-Conotoxin RegIIA was synthesized as described previously (15). The α-conotoxin AuIB was assembled on Rink amide methylbenzydrylamine resin using solid-phase peptide synthesis with a neutralization/2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethylenuronium hexafluorophosphate activation procedure for Fmoc (N-(9-fluorenyl)-methoxycarbonyl) chemistry. Cleavage was achieved by treatment with 88:2:5:5 (v:v) ratio of trifluoroacetic acid/triisopropylsilane/phenol/water at room temperature (20–25 °C) for 2 h. Trifluoroacetic acid was evaporated at low pressure in a rotary evaporator. Peptides were precipitated with ice-cold ether, filtered, dissolved in 50% buffer A/B (buffer A consists of 99.95% H_{2}O, 0.05% trifluoroacetic acid and buffer B consists of 90% CH_{3}CN, 10% H_{2}O, 0.045% trifluoroacetic acid), and lyophilized. Crude peptides were purified by RP-HPLC on a Phenomenex C18 column using a gradient of 0–50% of buffer B for 50 min, with the eluent monitored at 214/280 nm. Electrospray mass spectrometry confirmed the molecular mass of the peptides before they were pooled and lyophilized for oxidation.

The four cysteines in the peptides were selectively oxidized in two steps to yield the globular conformation. This was achieved by incorporating Fmoc-Cys-acetamidomethyl (Acim)–OH at positions 2 and 8 of the amino acid sequence. In the first step, the two non-protected cysteines were oxidized in 0.1 M NH_{4}HCO_{3} (pH 8–8.5) at a concentration of 0.5 mg/ml, and the mixture was stirred at room temperature for 48 h. The oxidized peptides were then purified and lyophilized as previously outlined. In the second step, the Acim-protected cysteines were oxidized by dissolving the peptides in iodine solution filled at 1 mg/ml, and the mixture was stirred for 35 min. After two rounds of oxidation, peptides were purified by RP-HPLC using a gradient of 0–80% buffer B over 180 min. Analytical RP-HPLC and electrospray mass spectrometry were used to confirm the purity and molecular mass of the synthesized peptides.

Protein Sequence Alignment—Protein sequences of hβ2 and hβ4 nAChR subunit ECDs (RefSeq accession numbers NP_000739 and NP_000741, respectively) were aligned using CLC Viewer 7 software (CLC bio, Aarhus, Denmark). Residues were numbered according to the mature protein sequences.

Site-directed Mutagenesis—Plasmid DNAs encoding human and rat α3, β2, and β4 nAChR subunits were subcloned into the pT7TS Xenopus expression vector (Addgene plasmid 17091) as described previously (17). Two chimeric receptors consisting of hβ2 backbone and portions of the N-terminal extracellular domain (ECD) (N-terminal T1 to loop D Glu^{68} and a lesser conserved Lys^{70}/His^{86} segment between loops D and E) replaced with the corresponding hβ4 sequences, were generated by overlap PCR and molecular cloning. Additional mutants of human β subunit loops D, E and F (Table 1), as well as rat β2[T59K] were engineered using the Geneart Site-directed Mutagenesis System (Invitrogen). All point mutations were confirmed by DNA sequencing (Australian Genome Research Facility, Melbourne, Australia).

Electrophysiological Recordings in Xenopus Oocytes and Data Analysis—RNA preparation, Xenopus laevis oocyte preparation, and expression of nAChR subunits in oocytes were performed as described previously (18).

Membrane currents from Xenopus oocytes were recorded using a single channel two-electrode voltage clamp setup (virtual ground circuit) with a GeneClamp 500B amplifier (Molecular Devices, Sunnyvale, CA) as described previously (17). Briefly, oocytes were continuously perfused with ND96 solution containing (in mM) 96 NaCl, 2 KCl, 1.8 CaCl_{2}, 1 MgCl_{2}, and 5 HEPES (pH 7.4) at 2 ml/min. ACh or ACh plus toxin was applied for ~2 s using a manual HPLC injection module. The effect of the peptides on ACh-evoked currents was defined as ACh plus peptide peak current amplitude relative to the aver-
Key Determinants for α-Conotoxin Interaction with α3β4 nAChRs

age peak current amplitude of 3–5 control ACh applications (300 μM for hα3β4 and 50 μM for all other nAChR subtypes) recorded before preincubation with the peptides (technical replicates of ACh application). Perfusion was switched off during preincubation with the peptide. Concentration-response curves were fitted by unweighted nonlinear regression to the logistic equation,

\[E_x = E_{\text{max}} X^{n_4} / (X^{n_4} + IC_{50}^{\text{ag}}) \]

(Eq. 1)

where \(E_x \) is the response, \(X \) is the antagonist concentration, \(E_{\text{max}} \) is the maximal response, \(n_4 \) is the Hill coefficient, and \(IC_{50}^{\text{ag}} \) is the antagonist concentration that gives 50% inhibition of the agonist response.

Measurement of the recovery from block (\(k_{\text{off}} \)) by the peptides was carried out by incubating the oocyte with the respective peptide for 5 min followed by repeated ACh applications at the indicated time points while continuously perfusing the oocyte with ND96 solution at 2 ml/min. Approximate half-maximal excitatory concentrations (EC50) of ACh were determined at the indicated time points while continuously perfusing the oocyte with the respective peptide for 5 min followed by repeated ACh application. Concentration-response replicates of ACh application. Perfusion was switched off during preincubation with the peptide. Concentration-response curves were fitted by unweighted nonlinear regression to the logistic equation,

\[E_x = E_{\text{max}} X^{n_4} / (X^{n_4} + IC_{50}^{\text{ag}}) \]

(Eq. 1)

where \(E_x \) is the response, \(X \) is the antagonist concentration, \(E_{\text{max}} \) is the maximal response, \(n_4 \) is the Hill coefficient, and \(IC_{50}^{\text{ag}} \) is the antagonist concentration that gives 50% inhibition of the agonist response.

In all simulations, all bonds involving hydrogen atoms were constrained with the SHAKE algorithm and the time step was 2 fs (28). The particle-mesh Ewald method was used to treat long-range electrostatic interactions (29).

Results

Two Single Non-conserved Residues in Loops D and E of the Human β2 and β4 nAChR Subunit ECDs Determine the Differential Sensitivity of α3β2 and α3β4 to α-Conotoxin RegIIA—To identify potential structural determinants responsible for the lower potency of α-conotoxin RegIIA at the hα3β2 subtype relative to hα3β4, we compared the amino acid sequences of the N-terminal ECDs containing the agonist binding domains of each subtype. Pairwise alignments of mature protein sequences of hβ2 and hβ4 lacking the signal peptide revealed an overall homology of 70% (149 of the 213 residues in the ECD are homologous) (Fig. 1A). Interestingly, the amino acids contributing to the complementary face of the ACh-binding loops that correspond to the previously identified homologous loops of the α7 subunit (30) are among the lesser conserved regions in the sequence. Other less conserved regions include the N terminal preceding loop D and the region from amino acids 70 to 86 (Fig. 1A). Homology modeling and overlay of the hα3β2 and hα3β4 intersubunit interfaces revealed the side chain differences between these non-conserved residues on the β2 and β4 subunits (Fig. 1B). These differences could account for the α-conotoxin nAChR subtype selectivity.

From electrophysiological recordings of oocyte-expressed nAChRs, RegIIA exhibited an IC50 of 45.6 nM (95% CI 31.5–65.9 nM; \(n_{\text{HI}} = 0.9 \)) at the hα3β4 subtype, whereas an IC50 of 132.4 nM (95% CI 109.8–159.7 nM; \(n_{\text{HI}} = 1.5 \)) was observed at the hα3β2 subtype (Fig. 2A and B, and Table 1). To investigate if the less conserved sequences in the ECDs of the β-subunits determine the specificity of the peptide, we generated chimeric hβ2β4-pseudosubunits, co-expressed them with wild-type hα3 and tested the effect of the peptide on ACh-evoked current amplitudes. The first chimeric pseudosubunit consisted of hβ2 in which the whole N-terminal region including loop D was replaced by the respective sequence of hβ4 (mutant hα3β2[1–63hβ4]) (Fig. 1A). Although the N-terminal region that precedes loop D is overall less conserved between the receptors, the loop itself only differs in one amino acid, the residue at position 59 (Lys in hβ4, Thr in hβ2). Mutant hα3β2[1–63hβ4] exhibited a similar sensitivity for RegIIA compared with wild-type hα3β2 with an IC50 of 159.2 nM (95% CI 113.0–224.4; \(n_{\text{HI}} = 1.4 \)) (Fig. 2E, Table 1).

A refined mutation in which only the single non-conserved Thr residue in loop D was exchanged to the corresponding Lys residue in hβ4 (mutant hα3β2[Thr59K]) exhibited a concentration-response curve with an IC50 of 49.4 nM (95% CI 33.4–73.1;
Key Determinants for α-Conotoxin Interaction with α3β4 nAChRs

1.2), which was significantly shifted to the left compared with wild-type ho3β2 and resembled the ho3β4 concentration-response curve (Fig. 2, A and C, and Table 1). Thus, the higher RegIIA sensitivity observed with ho3β4 can be (majorly) attributed to loop D. Conversely, the opposite mutation in hβ4 (mutant ho3β4[K59T]) led to a severe loss in sensitivity to RegIIA, represented by an IC50 of 2795.1 nM (95% CI 2346.6–3329.3; nH11005 = 1.4) (Fig. 2, B and D, and Table 1) hence, confirming Lys59 as a key determinant for human nAChR subunit sensitivity to RegIIA.

Similarly, the lesser conserved region between loops D and E (residues 70 to 86) of hβ2 was replaced with the β4 sequence (mutant ho3β2[70–86]β4) and tested in oocytes. However, this mutation did not decrease the IC50 compared with wild-type ho3β2 but rather resulted in considerably lowered potency of the peptide possibly because of structural effects (Fig. 2E, Table 1). Therefore, it was excluded as a factor for the β2- and β4-specific differences in sensitivity to RegIIA.

The non-conserved residues Arg113, Ser114, and Asn115 of hβ2 were replaced with the respective residues of hβ4 (mutant ho3β2[R113S]) to analyze the contribution of loop E for RegIIA affinity. This mutant considerably shifted the concentration-response curve for RegIIA to the right (IC50 = 1056.5 nM, 95% CI 924.9–1206.9 nM; nH11005 = 1.1). Contribution of any of the three residues to the shift was further dissected with point mutations in hβ4. Of these, only mutant ho3β2[R113S] profoundly shifted RegIIA IC50 to the high nanomolar range (805.3 nM, 95% CI 554.7–1169.0 nM; nH11005 = 0.9) (Fig. 2, B, D, and E, and Table 1) compared with little contribution of mutations S114Y and N115D (IC50 of 131.2 nM, 95% CI 112.7–152.7 nM, nH11005 = 1.3, and IC50 of 275.0 nM, 95% CI 221.3–341.5 nM, nH11005 = 1.6, respectively). The opposite mutation, ho3β2[S113R], exhibited a con-
Key Determinants for α-Conotoxin Interaction with α3β4 nAChRs

TABLE 1
RegIIA inhibition of α3-containing nAChR subtypes and subtype mutants

nAChR/mutant	IC50	95% CI	nH
ho3β2			
ho3β4	45.6	31.5–65.9	0.9
ho3β2[K59T]	159.2	113.0–224.4	1.4
ho3β2[T59K]	1268.1	935.7–1718.5	0.9
ho3β2[S113R]	49.4	33.4–73.1	1.2
ho3β2[S113R]	2795.1	2346.6–3329.3	1.4
ho3β2[T164S]	1056.5	924.9–1206.9	1.1
ho3β2[T166V]	23.7	19.0–29.4	1.5
ho3β4	805.3	554.7–1169.0	0.9
ho3β4[S113R]	133.1	105.0–168.6	1.2
ho3β4[N115D]	275.0	221.3–341.5	1.6
ho3β4[M163K+T164S]	158.6	113.2–169.8	2.3
ho3β4[P165E]	217.9	172.9–274.6	1.2
ho3β4[T166V+M169L]	130.2	100.1–169.5	1.9

Further confirming the key role of residue 113 in loop E in determining sensitivity toward RegIIA.

To probe the contribution of loop F to the sensitivity difference of RegIIA at human ho3β4 and ho3β2 we engineered three hβ4 receptor mutants: ho3β4[M163K+T164S], ho3β4[P165E], and ho3β4[T166V+M169L]. When tested in oocytes, none of these three mutants revealed a notable loss of sensitivity to RegIIA (Fig. 2E, Table 1) indicating loop F does not play a key role in determining RegIIA sensitivity. Taken together, the mutational analysis revealed the non-conserved residue in loop D at position 59 (Lys in hβ4, Thr in hβ2) and residue Arg113 in hβ4 (Ser in hβ2) of loop E as the two major determinants for the subtype selectivity of RegIIA at human nAChRs.

Non-conserved Loop D and E Residues Differentially Affect the ACh Half-maximal Excitatory Concentrations (EC50) at Human α3β4 and α3β2 nAChRs—We observed an ~18-fold difference in the EC50 for ACh at human α3β4 and α3β2 nAChRs. The EC50 obtained at ho3β2 was 15.6 μM (95% CI 10.9–22.2 μM; n = 6), whereas an EC50 of 287.6 μM (95% CI 274.1–301.8 μM, n = 8) was observed at ho3β4 (Table 2 and supplemental Fig. S1). In addition, the approximate EC50 values of the mutants at positions 59 and 113 as well as other ho3β4

siderable shift of the concentration-response curve to the left compared with wild-type ho3β2 with an IC50 of 23.7 nM (95% CI 19.0–29.4 nM; nH = 1.5) (Fig. 2, A, C, and E, and Table 1),
TABLE 2
ACh EC\textsubscript{50} values for wild-type and mutant human α3β2 and α3β4 nAChRs

nAChR/mutant	EC\textsubscript{50} (μM)	IC\textsubscript{50} (μM)	n\textsubscript{H}
hoα3β2	15.6	10.9–22.2	0.7
hoα3β4	287.6	274.1–301.8	2.3
hoα3β2[T59K]	14.3	12.5–16.5	1.0
hoα3β4[K59T]	29.8	27.9–31.9	1.1
hoα3β2[S113R]	6.0	5.0–7.2	0.9
hoα3β2[S113S]	42.9	36.4–50.5	1.1
hoα3β2[S114Y]	65.1	56.3–75.3	1.1
hoα3β2[N115D]	140.8	123.8–160.0	1.0
hoα3β2[M163K+T164S]	63.1	58.6–67.9	1.0
hoα3β2[T166E]	43.9	38.6–50.0	1.2
hoα3β2[T166E+M169L]	17.5	15.8–19.4	1.1

In rat β2 and β4 subunits, the residue at position 59 is homologous to human (Thr in β2 and Lys in β4). A similar slowing in wash-off was observed with rat α3β2[T59K] compared with wild-type α3β2 although less severe (Table 3), confirming the key role of residue 59 in loop D for the binding affinity of RegIIA.

Residue 113 mutants (hoα3β2[S113R] and hoα3β4[R113S]) also exhibited considerably different wash-off rates compared with the respective wild-type receptors. Peptide wash-off at hoα3β4[R113S] was very fast, similar to the α3β2 subtype (95% wash-off in <1 min), whereas at hoα3β2[S113R] it was almost as slow as at the opposite wild-type hoα3β4 nAChR (95% wash-off in 9–13 min) (Fig. 3A, D; Fig. 4A and D, and Table 3).

In addition, mutants hoα3β4[P165E] and hoα3β4[T166E+M169L], which also showed a considerably higher affinity to ACh than wild-type, were tested for their RegIIA off-rate. Both mutants exhibited a faster off-rate compared with wild-type, which is consistent with the higher IC\textsubscript{50} and lower EC\textsubscript{50} observed. However, the wash-off was not as fast as observed for hoα3β4[K59T] or hoα3β4[R113S], placing these mutants between hoα3β2 and hoα3β4 with respect to their off-rates (Table 3).

In summary, these findings show that the residues at positions 59 and 113 not only affect the sensitivity of each receptor subtype to RegIIA, but they are also key determinants for the differences observed in wash-off kinetics. Other residues in the agonist binding loops also affect the affinities for ACh and the peptide, but to a lesser extent than the aforementioned positions and they appear to play an auxiliary role for peptide binding.

Molecular Modeling Shows the Interacting Mechanisms between the Non-conserved Residues of Human α3β4 and α3β2 nAChRs and RegIIA—The interactions between RegIIA and the binding sites of hoα3β2 and hoα3β4 nAChRs are very similar, with most of the residues in the first loop forming contacts with the (+) subunit and most of the second loop residues interacting with the (−) subunit.

The non-conserved residues of β4-Lys59 and β4-Arg113 are the key determinants for recovery from block by RegIIA—Human α3β4 and α3β2 nAChRs not only exhibit a difference in sensitivity to α-conotoxin RegIIA with considerably different IC\textsubscript{50} values, but also differences in the time required to recover from block. By repeatedly applying ACh under constant perfusion after incubation with the peptide, we measured the time required for the ACh-evoked current amplitude to recover.

Interestingly, RegIIA revealed notably different wash-off kinetics at hoα3β2 compared with hoα3β4. At hoα3β2, 95% recovery from block by RegIIA was reached within a minute (Fig. 3, A and B, and Table 3). In contrast, 95% wash-off at hoα3β4 took ~13–14 min (Fig. 4, A and B, and Table 3). A similar difference was observed at rat nAChRs, with faster recovery for rcα3β2 (1–2 min) compared with a considerably slower rate for rcα3β4 (16–18 min) (Table 3).

We next tested if any of the mutations that affected the IC\textsubscript{50} of RegIIA also had an impact on the rate of recovery from block. Mutant hoα3β4[K59T] exhibited a rapid off-rate, similar to that observed for wild-type hoα3β2 (95% recovery in <1 min) (Fig. 4, A and C). Conversely, peptide washout at the opposite mutant hoα3β2[T59K] was very slow with less than 50% washout achieved after 45 min of perfusion (Fig. 3, A and C, and Table 3).
Key Determinants for α-Conotoxin Interaction with α3β4 nAChRs

MD simulation of a RegIIA-bound mutant hα3β2[T59K] model revealed that the β4 Lys \(^{59}\) to Thr mutation removed the hydrogen bond between the RegIIA amide terminus and the position 59 side chain, thereby significantly decreasing the affinity of RegIIA compared with wild-type hα3β4. Although the conformation of residues near position 59 was not significantly perturbed by the mutation, the non-conserved residues near the binding site have an unfavorable effect for RegIIA binding at hα3β4[K59T]. MD simulation indicates the opposite mutant hα3β2[T59K] exhibits higher affinity to RegIIA compared with wild-type hα3β2, because RegIIA is stabilized by additional hydrogen bonds formed between β2 Lys \(^{59}\), Asp \(^{170}\), and the amide group of RegIIA. However, this mutation also introduced significant local conformation changes of the β2 binding interface, thereby decreasing contacts between RegIIA and the β2 residue side chains Phe \(^{119}\) and Lys \(^{163}\). These effects counteract the affinity gain resulting from introduction of Lys \(^{59}\), and are likely responsible for the overall only mildly increased RegIIA activity at mutant hα3β2[T59K].

Computational studies on a RegIIA-bound mutant hα3β2[S113R] model revealed that residue β2 Arg \(^{113}\) forms salt bridges with Asp \(^{115}\), similar to Ser \(^{113}\) in wild-type hα3β2 (see Fig. 5E), instead of directly interacting with Asn \(^{11}\) of RegIIA. Interestingly we observed that the backbone oxygen atom of Asn \(^{11}\) forms a hydrogen bond with Lys \(^{79}\) rather than Arg \(^{113}\) due to the relocation of the latter. Thus, our MD simulation indicates that Arg \(^{113}\) of hα3β2[S113R] strengthens the binding of RegIIA through stabilization of the local conformation

Table 3

nAChR/mutant	\(t_{95\%}\) min
hα3β2	1
hα3β4	13–14
hα3β2[T59K]	1–2
hα3β4	16–18
hα3β2[K59T]	1
hα3β2[K113R]	>45
hα3β2[S113R]	<1
hα3β4[P165E]	9–3
hα3β4[T166V+M169L]	3–5

*a Time to reach 95% recovery after continuous peptide washout.

FIGURE 3. Wild-type human α3β2 and α3β4 nAChRs display different wash-off kinetics from block by α-conotoxin RegIIA. Single residue β2 mutations in hα3β2 are sufficient to switch off-rates to those of the opposite subtype. A, graph summarizing the wash-off kinetics data. The hα3β2 nAChR subtype (black circles) exhibits fast recovery of ACh-evoked currents from block by RegIIA, with full recovery achieved in less than 2 min. In contrast, at hα3β4 (black squares) currents recovered from RegIIA block after a 13–14-min washout. When loop D residue 59 in hβ2 was replaced with the respective residue of hβ4 (mutant hα3β2[T59K], green circles) the off-rate of RegIIA was dramatically slowed. A similar replacement of loop E residue 113 in hβ2 (mutant hα3β2[S113R], blue circles) slowed the recovery rate similar to hα3β4. Representative ACh-evoked currents of hα3β2 (A), hα3β2[T59K] (C) and hα3β2[S113R] (D) illustrate the recovery from the RegIIA block. B and C illustrate the off-rates at 1 μM RegIIA washout from block of ACh-evoked currents. Oocytes were incubated with RegIIA for 5 min followed by repetitive application of ACh under continuous perfusion with ND96 solution. Approximate EC\(_{50}\) values for ACh and RegIIA concentrations giving major to full block of ACh-evoked currents under these conditions were used for each subtype tested. All data points in A represent mean ± 95% CI, n = 3–7. The times required to reach 95% recovery from block are summarized in Table 3.

TABLE 3

Recovery time from block by α-conotoxin RegIIA

nAChR/mutant	\(t_{95\%}\) min
hα3β2	1
hα3β4	13–14
hα3β2[T59K]	1–2
hα3β4	16–18
hα3β2[K59T]	45
hα3β2[K113R]	<1
hα3β2[S113R]	3–5
hα3β4[P165E]	9–3
hα3β4[T166V+M169L]	3–7
Key Determinants for α-Conotoxin Interaction with α3β4 nAChRs

FIGURE 4. Single residue β4 mutations in hα3β4 increase the α-conotoxin off-rate of RegIIA to values similar to wild-type hα3β2. A, graph summarizing the wash-off kinetics data. Wild-type hα3β2 and hα3β4 data are the same as described in the legend to Fig. 3 and shown for comparison. Replacing loop D residue 59 in hα3β4 with the respective residue in hβ2 (mutant hα3β4[K59T], green squares) is sufficient to shift the off-rate to the opposite subtype. A mutant in which residue Arg^{113} of hβ4 is replaced with Ser, as in hβ2 (hα3β4[R113S], blue squares) similarly exhibits a fast wash-off rate resembling hα3β2. Representative ACh-evoked currents of hα3β4 (β4), hα3β4[K59T] (C), and hα3β4[R113S] (D) illustrate the recovery from the RegIIA block differs between wild-type and the two mutant hα3β4 nAChR subtypes. Experimental conditions were the same as those described in the legend to Fig. 3. All data points in A represent mean ± 95% CI, n = 3–7. The times required to reach 95% recovery from block are summarized in Table 3.

near the binding site, thereby making mutant hα3β2[S113R] even more RegIIA-sensitive than wild-type hα3β4.

Furthermore, we computationally analyzed RegIIA binding to other hα3β4 mutants that exhibited a major loss in RegIIA activity. The loop F mutation in hα3β4[P165E] created a local conformation change to the entire agonist binding loop F. We identified that the angle defined by the Ca atoms at 164, 165, and 166 positions became significantly larger (right shift). We conclude that this local conformation change might affect RegIIA binding to the α3β4[P165E], but that Pro^{165}, or its neighboring residues, are not determinants for RegIIA binding in the wild-type nAChR subtypes.

The hα3β4[N115D] mutant, which also showed significantly decreased sensitivity to RegIIA compared with wild-type hα3β4, was analyzed further. Based on MD simulation data we suggest β4 Asp^{115} might compete with residues of RegIIA to interact with Arg^{113}. Similar to the interaction of β2 Ser^{113} in hα3β2 (Fig. 5, A and E) residue β4 Arg^{113} forms salt bridges with Asp^{115} rather than with residues of RegIIA in hα3β4[N115D]. This explains the mutational effects of [N115D] to the binding affinity of RegIIA. Although the opposite mutation in β2 (mutant hα3β2[D115N]) would weaken the H-bond with Ser^{113}, the overall effect would not be a reciprocal gain in RegIIA affinity, because the Ser^{113} residue is too short to directly interact with RegIIA.

Overall, our computationally directed mutational studies suggest that mutants hα3β4[P165E] and hα3β4[N115D] negatively affect RegIIA binding through mildly altering the local conformation of either the backbone or the side chains of the residues near the binding site. But those non-conserved positions do not appear to determine the difference in RegIIA sensitivity between wild-type hα3β2 and hα3β4 to a similar extent as do residues 59 and 113.

The non-conserved β subunit residues at positions 34, 36, 71, 78, 79, 114, 115, 163, 164, 165, and 166 are far from the binding site, and their side chains merely form weak interactions with RegIIA. Their effects to the binding affinity of RegIIA are mostly indirect, by forming hydrogen bonds with neighboring residues to affect the local conformation of the binding site (Fig. 5).

Taken together, MD simulations indicate the non-conserved residues 59 and 113 of the – interface are crucial for the observed differences in RegIIA activity, due to their considerably different mode of interaction with the peptide. In hα3β4 nAChRs, hydrogen bonds are formed between the respective residues and RegIIA loop 2, but they are absent in hα3β2.
Key Determinants for α-Conotoxin Interaction with α3β4 nAChRs

FIGURE 5. Molecular docking models illustrate the binding modes of RegIIA to hα3β2 (A) and hα3β4 (B), respectively. Several hydrogen bonds (dashed lines) are formed between pairwise interacting residues of different loops or β-sheets, thereby affecting their local conformation or dynamics, which in turn affects the binding of RegIIA. Note that hydrogen bonds are formed by several non-conserved β2-subunit (Ser115, Asp115, Glu165) and β4-subunit residues (Asn118, Thr118). The α3(+) interface is shown in green, β2(−) in pink, β4(−) in cyan, and RegIIA in orange. Residues near the agonist binding site that affect RegIIA binding are shown as licorice models. Residues from the receptor and RegIIA are labeled using normal and italic fonts, respectively. Key interaction sites responsible for the differences in α-conotoxin RegIIA binding are highlighted with dashed circles. C–F, magnification of the key sites in hα3β2 (C and E) and hα3β4 (D and F) highlighted with circles in A and B.

TABLE 4

Contacts of α-conotoxin RegIIA with hα3β2 and hα3β4 nAChR, respectively

Residue	α3β2 nAChR	α3β4 nAChR
Ser115	Tyr117, Tyr118, Tyr119, Tyr120	Asp117, Trp3
His116	Tyr117, Tyr118	Ser117, Tyr118
Ala117	Ser117	Trp115, Thr119, Phe123, Leu123
Asn118	Asp120, Glu121, Tyr120	Arg121, Val123
Val124	Cys125, Cys126, Glu126	Lys125
Asn127	Cys125, Cys126, Cys127	Arg125, Ile125
His128	Cys125, Cys126, Cys127	Leu121
Ile129	Glu125, Tyr126	Lys129, Leu131

* Only RegIIA residues making direct contact with the nAChRs are listed.
* Residues of the principal side of the binding site.
* Residues of the complementary side of the binding site.

The α3β4 nAChR-selective α-Conotoxin AuIB Is Less Active at the Homologous Human nAChR Subtype—The 4/6 α-conotoxin AuIB has been shown to selectively inhibit the rat α3β4 nAChR with an IC50 of 0.75 μM (13). Activity at human nAChRs has not yet been reported. Therefore, we determined the activity of AuIB at wild-type hα3β2, hα3β4, and relevant β subunit mutants. Interestingly, 1 μM AuIB was inactive at hα3β4 and exhibited a minor block of ACh-evoked currents (10.7 ± 3.2%, n = 9) at hα3β2 nAChR. The nAChR β subunit mutants that distinctly affected the RegIIA activity profile (positions 59 and 113) were all relatively insensitive to 1 μM AuIB (Fig. 7A). Concentration-response analyses with wild-type hα3β2 and hα3β4 nAChRs confirmed the low sensitivity of both nAChR subtypes to AuIB. α-Conotoxin AuIB at 30 μM, reduced ACh-evoked currents mediated by hα3β2 to 75.9 ± 3.7% of control (n = 10) and hα3β4-mediated currents to only 79.6 ± 4.0% (n = 10) of control, indicating that the IC50 is considerably higher than 30 μM at either nAChR subtype (Fig. 7B).
FIGURE 6. MD simulations of 50-ns duration show the evolution of distances between β4 Lys59 heavy atoms and RegIIA residues Asn9 as well as Cys16 (A), and between β4 Arg113 and RegIIA Asn11 (B), respectively. The strengthening of the hydrogen bond is reversely proportional to the distance between hydrogen bond donor and hydrogen bond acceptor. When the distance between the heavy atoms is more than 3.5 Å, the strength of the hydrogen bond is believed to be weak. Red and black colors are used to discriminate the two simulations performed with β4 Lys59. The labels K59&NZ-N9&OD and K59&NZ-C16&O designate the distance between the heavy atom NA of residue β4 Lys59 and the heavy atom OD of residue RegIIA Asn9, and the distance between heavy atom K59&NZ and the heavy atom O of residue RegIIA C16, respectively. The label R113&NH2-N11&O refers to the distance between the heavy atoms NH$_2$ of β4 Arg113 and O of RegIIA Asn11.

FIGURE 7. α-Conotoxin AuIB has minor activity at human α3β2 and α3β4 nAChRs. A, bar graph representing potency of block by α-conotoxin AuIB (1 μM) at wild-type and mutant human α3β2 and α3β4 nAChRs. Data represent mean ± S.E., n = 3–9. B, concentration-response analysis of AuIB at wild-type α3β2 and α3β4 nAChRs indicated the IC$_{50}$ is considerably higher than 30 μM at both nAChR subtypes. AuIB (30 μM) reduced ACh-evoked current amplitude mediated by α3β2 to 75.9 ± 3.7% of control (n = 10) and α3β4 currents to 79.6 ± 4.0% (n = 10), respectively. C and D, molecular dynamics simulation predicted binding modes of AuIB to α3β2 (C) and α3β4 (D). Several hydrogen bonds are formed between pairwise interacting residues of different loops and between toxin and receptor, e.g. AuIB Asp11 with β4 Arg113 (dashed circle, hydrogen bonds as dotted lines). The α3 (+) interface is shown in green, β2 (−) in pink, β4 (−) in cyan, and AuIB in orange. Non-conserved residues are shown as licorice models and labeled. Residues from the receptor and AuIB are labeled using normal and italic fonts, respectively.
TABLE 5

Contacts of α-conotoxin AuIB with hα3β2 and hα3β4 nAChRs, respectively

Contacts between nAChR and AuIB are defined as van der Waals interactions if the distance between heavy atoms of AuIB and nAChR is between 2.6 and 4 Å. Residues of the nAChR forming hydrogen bonds with AuIB are underlined. Residues that are non-conserved between αβ2 and αβ4 nAChRs, as well as AuIB residues making contact with them are shown in bold.

Residue^a	hα3β2 nAChR	hα3β4 nAChR
Ser⁴	Tyr⁵⁹, Tyr¹⁰⁶, Asp¹⁹⁹	Asp¹⁷²
Tyr⁵	Trp⁵⁷, Leu¹²¹	Trp⁵⁷, Leu¹²¹
Pro⁶	Met³⁶, Trp⁵⁷, Thr⁵⁹, Phe¹¹⁹, Leu²¹	Tyr⁹³, Thr⁵⁹, Phe¹¹⁹, Leu²¹
Phe⁷	Arg⁸¹, Val¹¹¹, Phe¹¹⁹	Arg⁸¹, Val¹¹¹, Phe¹¹⁹
Ala¹⁰	Cys¹⁹², Cys¹⁹³	Cys¹⁹², Cys¹⁹³
Thr¹¹	Lys⁷⁹, Val¹¹¹, Phe¹¹⁹	Lys⁷⁹, Val¹¹¹, Phe¹¹⁹
Asn¹²	Lys⁷⁹, Val¹¹¹	Lys⁷⁹, Val¹¹¹
Pro¹³	Lys⁷⁹, Val¹¹¹, Phe¹¹⁹	Lys⁷⁹, Val¹¹¹, Phe¹¹⁹
Asp¹⁴	Lys⁷⁹, Val¹¹¹, Phe¹¹⁹	Lys⁷⁹, Val¹¹¹, Phe¹¹⁹

^a Only AuIB residues making direct contact with the nAChRs are listed.

^b Residues of the principal side of the binding site.

^c Residues of the complementary side of the binding site.

MD Simulation of α-Conotoxin AuIB Binding to hα3β2 and hα3β4 nAChRs, Compared with RegIIA, Indicates Other Key Interactions Affect Binding—In MD simulations, the α4/6-conotoxin AuIB binds at the interface between the subunits and overlaps with the agonist binding sites of hα3β2 and hα3β4 nAChRs. Overall molecular interactions are relatively similar to those with RegIIA, as most of AuIB loop 1 residues form contacts with the (+)-subunit and most of the residues at loop 2 interact with residues at the (−)-subunit (Fig. 7, C and D, and Table 5). However, despite the general similarity of RegIIA and AuIB binding to hα3β2 and hα3β4 nAChRs, several side chains, including the non-conserved residues at positions 59 and 113 of both nAChR β subunits, formed remarkably different interactions with residues in loop 2 of AuIB (Fig. 7, C and D, and Table 5). These differences are a result of a significant shift in orientation between the two α-conotoxins. Direct comparison of the orientation of AuIB with RegIIA at the α3(+)/β4(−) binding interface revealed that the shifted AuIB backbone places AuIB Phe⁹ far away from the β4 Trp⁵⁷ side chain. Thereby no direct interaction between the aromatic ring of AuIB Phe⁹ and the tryptophan can occur. Instead AuIB Phe⁹ is in relatively close proximity to β4 Leu¹¹⁹ and β4 Lys⁵⁹ (Fig. 7D). It is likely the missing interaction between the AuIB Phe⁹ aromatic ring and β4 Trp⁵⁷ is a significant factor for the lack of activity of AuIB at hα3β4, whereas for hα3β2 it is the insufficient stabilization of AuIB Phe⁹ by residue β2 Thr⁵⁹.

Discussion

The α3β4 nAChR subtype represents an important pharmacological target as it is involved in several pathophysiological disease conditions such as lung cancer, nicotine addiction, and drug abuse (3, 11, 12). To date, only a few α-conotoxins have been found to be active at the α3β4 nAChR subtype and even fewer are highly specific for it. A problem complicating the task of developing specific α3β4 receptor antagonists is that the ligand binding sites are structurally very similar among nAChR subtypes. However, the small structural differences between subtypes can cause profound pharmacological effects, as seen with the selectivity profiles of various α-conotoxins.

α-Conotoxin RegIIA has previously been shown to exhibit a species-specific difference in activity between human and rat α3β2 nAChRs, whereas this species difference was not observed at the α3β4 nAChR subtype (17). Given that both the species and subtype selectivity profiles are well described for RegIIA, it represents a suitable probe to investigate pharmacological differences between α3β2 and α3β4 nAChR subtypes in detail.

RegIIA inhibits ACh-evoked currents competitively, like most α-conotoxins, indicating that its binding site overlaps with the agonist binding site (16). Sequence alignment between human β4 and β2 subunits shows their extracellular agonist binding regions are moderately conserved on the amino acid level between subtypes (70% homology, Fig. 1A). A mutational approach was chosen to elucidate how non-conserved structural elements account for functional differences in α-conotoxin binding.

Using receptor chimeras and point mutations to exchange individual residues to those of the opposite subtype, we identified two key residues (at positions 59 and 113, respectively) that crucially determine the selectivity of RegIIA. Exchange of residue 113 between α3β2 and α3β4 nAChR subtypes in 18-fold less sensitive compared with wild-type α3β4. Furthermore, the rate of recovery from block by RegIIA differs considerably between hα3β2 and hα3β4. By exchanging the single residue at position 59 of the β subunit, we were able to swap the wash-off rate of subtypes.

Residue 113 on the β subunit has a similarly important role for RegIIA selectivity. Exchange of β2 Ser¹¹³ to Arg made the mutant hα3β2[S113R] receptor twice as sensitive to RegIIA than wild-type α3β4. In contrast, the opposite mutation in β4 made the mutant receptor (hα3β4[R113S]) 18-fold less sensitive to RegIIA than wild-type α3β4 and 34-fold less sensitive than mutant hα3β2[S113R]. In addition, the single exchange of residue 113 between β2 and β4 was sufficient to switch the off-rate of RegIIA to that of the opposite subtype. To our knowledge, this is the first time Arg¹¹³ at the complementary agonist binding interface of nAChRs has been identified as a key determinant in antagonist binding. Computational modeling of RegIIA-bound mutant hα3β2[S113R] provided insights about why this mutant is even more sensitive to RegIIA than hα3β4.
Key Determinants for α-Conotoxin Interaction with α3β4 nAChRs

When Arg113 is introduced into the β2 backbone it forms salt bridges with Asp115, similar to Ser113 in wild-type hα3β2 (see Fig. 5E). However, in the case of Arg113 this interaction also affects the conformations of residues near the binding site in such way that residue β2 Lys79 can form a hydrogen bond with the backbone oxygen atom of RegIIA Asn11.

It is important to note that the ACh EC50 at hα3β2 is ∼18-fold lower than at hα3β4. As the aforementioned β-subunit residues are both within the agonist binding region at the interface between the α and β subunits, it can be assumed that point mutations would affect the EC50 of ACh. Indeed mutant hα3β4[R113S] exhibited ∼7-fold lower EC50 than wild-type hα3β4. However, unlike the EC50 of RegIIA, there was no reciprocal effect on ACh EC50 with the opposite mutant hα3β2[S113R]. This mutant exhibited an even slightly lower EC50 than hα3β2. Comparably, both hα3β2[T59K] and hα3β4[K59T] revealed an EC50 similar to hα3β2 (Table 2). This discrepancy suggests the mutations affecting ACh EC50 most likely impact the observed RegIIA potencies as well, as ACh competes with RegIIA for the agonist binding site. Mutants hα3β2[T59K] and hα3β2[S113R] are already more RegIIA sensitive than wild-type hα3β2, but it can be assumed they would be even more sensitive if their ACh EC50 values were not considerably lower than the EC50 seen with hα3β4.

Other hα3β4 mutants, primarily within loop F, also decreased RegIIA sensitivity and increased ACh affinity. Compared with the aforementioned hα3β4[K59T] and hα3β4[R113S] mutants, we observed a less extensive increase in RegIIA IC50 and RegIIA wash-off kinetics. We hypothesize the other mutations play an auxiliary role for the subtype selectivity of RegIIA.

Residue 59 on the β subunits of rat nAChRs has previously been identified as a determinant for α-conotoxin LVI A potency and wash-off kinetics (31). α-Conotoxin LVI A exhibited a 17-fold higher selectivity for rat α3β2 over α3β4, and the rat α3β2[T59K] mutation further increased the activity of the peptide by ∼10-fold. Furthermore, similar to our findings with RegIIA, mutant rat α3β2[T59K] considerably slowed the recovery from block by LVI A compared with wild-type α3β2 (31).

In our MD simulations, the evolution of distances between key RegIIA and receptor residues over 50 ns revealed the involvement of the β4 Lys59 residue side chain in forming hydrogen bonds with main chain atoms of RegIIA Asn9 and Cys16 residues, and similarly, β4 Arg113 formed a hydrogen bond with the Asn11 in loop 2 of RegIIA (Figs. 5 and 6). Both RegIIA and LVI A have an asparagine at position 9. Therefore, it is likely the Asn9 residue interacts with β4 Lys59 via a direct hydrogen bond in both peptides. The increased potency and slower wash-off caused by the point mutation of β2 Thr9 to Lys could then be explained by gain of these additional hydrogen bonds, resulting in tighter binding of the peptide to the mutant nAChR. The side chain of β2 Thr9, however, is not long enough to form such interactions with the corresponding residues in loop 2 of RegIIA (Fig. 5C), which would explain the faster wash-off at wild-type α3β2 and mutant hα3β4[K59T], as well as lower potency of the peptide compared with hα3β4 and mutant hα3β2[T59K], respectively.

Furthermore, MD simulation of RegIIA binding to mutant hα3β4[K59T] revealed that the mutation also removed a H-bond between the RegIIA amide terminus and the position 59 side chain, thereby significantly decreasing RegIIA affinity compared with wild-type hα3β4. In addition, non-conserved residues near the RegIIA binding site cannot compensate the affinity decrease of RegIIA with the β4 Lys59 to Thr mutation, which explains the observation that hα3β4[K59T] is even significantly less sensitive to RegIIA than hα3β2.

Our hypothesis that the RegIIA Asn9/β4 Lys59 interaction is critical for the activity of RegIIA at α3β4 is also corroborated by RegIIA alanine-scanning mutagenesis data. It has been shown that the [N9A]RegIIA analogue was inactive at ratα3β4 and α7, but maintained inhibitory activity at ratα3β2 (16). This study also noted that alanine analogues [N11A]RegIIA, [N12A]RegIIA, and [N11A,N12A]RegIIA had improved selectivity for α3β4 compared with the native RegIIA. However, these analogues were less active than RegIIA at α3β4 and the overall higher selectivity for α3β4 resulted from considerable loss of activity at the α3β2 and α7 nAChR subtypes. MD simulation also showed that for α3β2, this was mainly due to destabilization of peptide contacts with multiple residues at the plus (+) and minus (−) interfaces (16).

α-Conotoxin LVI A remarkably revealed a considerable specificity for α3β2 over α6/α3β2β3 rat and human nAChRs, a rare feature not shared by other α-conotoxins such as RegIIA (32). As loops 1 of the two peptides are identical, these specificity differences must be conferred by the second loop in which three residues (11, 12, and 14) are different. Indeed, in our modeling most of the residues in the first loop of RegIIA form contacts with the principal β subunit and most of the residues of the second loop form contacts with the complementary subunits (Table 4). At α3β2 and α3β4 nAChRs, we identified RegIIA residues Asn9, Asn11, and Asn12 as main determinants for interaction with the β subunit. We speculate that the residues at positions 11 and 12 primarily account for the differences in α3β2* subtype sensitivity between LVI A and RegIIA.

Zhangsun et al. (31) also identified residues 111 and 119 in loop E of β2 and β4 subunits as determinants for LVI A potency, whereas for RegIIA, only residue 113 was responsible for the potency of the peptide in loop E. As mentioned previously, our modeling suggests that the β subunit specificity of RegIIA is conferred via interactions of its residues Asn11 and Asn12 with loop E of the receptor, specifically β4 residue Arg113. As LVI A has different residues at these positions, the data on LVI A regarding key interacting residues with loop E (31) cannot be directly compared with RegIIA. However, as Asn9 is present in both RegIIA and LVI A, the interaction with β4 Lys59 likely occurs via the same mechanism leading to the similar observations in mutational analyses.

α-Conotoxin AuIB has been characterized as a selective inhibitor of the rat α3β4 nAChR subtype (13), however, to our knowledge, its specificity profile at human nAChRs had not been evaluated. We tested AuIB at hα3β2 and hα3β4 nAChRs and selected mutants. AuIB appeared to be considerably less active at hα3β4, as 1 μM AuIB did not inhibit ACh-evoked currents at this nAChR subtype and higher concentrations caused minimal inhibition, suggesting that the IC50 is consid-
erably >30 μM (Fig. 7, A and B). This is in contrast to the homologous rat α3β4 nAChR where an IC50 of 0.75 μM was reported (13). Interestingly, we observed some inhibitory activity of AuIB at the hα3β2 subtype. However, inhibition was slight with ACh-evoked current amplitude inhibited by <50% in the presence of 30 μM AuIB, similar to that observed for hα3β4 (Fig. 7B).

Molecular modeling and docking simulation was also performed with α-conotoxin AuIB, indicating that many of the non-conserved residues in the complementary face of the agonist binding site are also involved in the binding of this peptide, although in a different way (Fig. 7, C and D, and Table 5). For example, residue Asp14 of AuIB forms a hydrogen bond with β4 Arg113, whereas at the α3β2 nAChR, β2 Lys79 interacts with Asp14. Residue Phe9 of AuIB interacts with several of the non-conserved residues, similar to Asn9 of RegIIA.

AuIB F9 has previously been identified as the key residue for the specific binding of AuIB to the rat α3β4 nAChR (33). AuIB Phe9 interacts with Trp57 and Lys59 residues of the WLK pocket in rat β4 loop D, (designated Trp59 and Lys61 in this paper), most likely via π−π stacking due to the deep insertion of its aromatic ring (33). An alanine substitution substantially reduced α3β4 inhibition and decreased subtype specificity. Additional AuIB analogues with other side chains at this position demonstrated that size, aromaticity, and hydrophilicity at position 9 of AuIB are important for interaction between the peptide and β4 subunit of the rat α3β4 pentamer (33).

Direct comparison of the orientation of RegIIA and AuIB at the α3(+)/β4(−) binding site by MD simulation revealed that the β4 subunit interface is largely unchanged in conformation, whereas the orientation of the two bound α-conotoxins differs significantly. RegIIA Asn9 is in close proximity to the β4 Trp57 and β4 Lys59 side chains, but the AuIB backbone is shifted relative to RegIIA, locating AuIB Phe9 outside of the WLK pocket (Fig. 7D). Thereby, AuIB Phe9 forms contact with β4 Lys59 and β4 Leu119, but the crucial π−π interaction with β4 Trp57 is absent. As the tryptophan residue was indispensable for the inhibitory effect of AuIB at the rat homologue, and β4 Lys59 appeared to play an auxiliary role (33), the lack of interaction between AuIB F9 and β4 Trp57 could explain the loss of AuIB activity at the hα3β4 subtype. At hα3β2, our modeling revealed contacts between AuIB and β2 Trp57, Thr59, and other residues (Fig. 7C and Table 5). Although the crucial interaction of AuIB Phe9 with the Trp57 residue in loop D is present, residue Thr59 does not form an effective binding pocket for AuIB Phe9, unlike β4 Lys59. The hydrophilic side chain of β2 Thr59 is likely unfavorable to interact with the aromatic phenyl ring of AuIB Phe9. In summary, our modeling offers an explanation for the lower inhibitory activity of AuIB at hα3β2 and hα3β4 nAChRs. The characteristic binding pocket for AuIB F9 formed by the two rat β4 subunit loop D residues is absent in the human β2 and β4 counterparts, resulting in ineffective stabilization of AuIB.

In addition, nAChR subtype selectivity and wash-off kinetics has also been investigated for α-conotoxin BuIA (34, 35). A slow recovery from the BuIA block at α3β4 compared with significantly faster recovery at α3β2 has been observed in different species, including human (35). Mutational studies at rat β2 and β4 subunits have identified residues 59, 111, and 119 as critical for the off-rate differences. Similar to our findings with RegIIA, the off-rate of BuIA was slower in the β2[T59K] mutant compared with wild-type α3β2 (34).

Mutation of β2 T59K has also been shown to be critical for dihydro-β-erythroidine and neuronal bungarotoxin sensitivity of α3β2 (36), as well as affecting the affinity of the agonists, ACh and nicotine to the α3β2 nAChR (37). The high selectivity of α-conotoxin MII for the α3β2 nAChR subtype (>200-fold less active at other nAChR subunit combinations) has been mapped to three sequence segments using α3β2 chimeras. Within the segments, β2 residue Thr59 was identified as one factor determining the higher sensitivity of β2 to MII compared with β4 (38).

In summary, these findings confirm that subtype-selective nAChR antagonists often work through common mechanisms by interacting with the same structural components and sites on the receptor. Knowing the key residue interactions by which antagonists (such as α-conotoxins) can discern between structurally very similar nAChR subtypes provides us with the tools to design novel potent and highly subtype-selective drugs.

Author Contributions—D. J. A., H. C., S. N. K., and R. Y. conceived and designed the study and wrote the manuscript. H. C. conducted the mutagenesis and electrophysiological studies and analyzed the results. S. N. K. and H. S. T. conducted electrophysiological studies and analyzed the results. R. Y. conducted and analyzed the molecular modeling studies. D. J. A. provided the financial support and resources. All authors reviewed the results and approved the final version of the manuscript.

References
1. Wonnacott, S. (1997) Presynaptic nicotinic ACh receptors. Trends Neurosci. 20, 92–98
2. Dani, J. A., and Bertrand, D. (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 47, 699–729
3. Jensen, A. A., Froiland, B., Liljefors, T., and Krosggaard-Larsen, P. (2005) Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J. Med. Chem. 48, 4705–4745
4. Changeux, J. P. (2010) Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nat. Rev. Neurosci. 11, 389–401
5. Gotti, C., and Clementi, F. (2004) Neuronal nicotinic receptors: from structure to pathology. Prog. Neurobiol. 74, 363–396
6. Albuquerque, E. X., Pereira, E. F., Alkondon, M., and Rogers, S. W. (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol. Rev. 89, 73–120
7. Gotti, C., Clementi, F., Foroni, A., Gaimarri, A., Guiducci, S., Manfredi, L., Moretti, M., Pedrazzi, P., Pucci, L., and Zoli, M. (2009) Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem. Pharmacol. 78, 703–711
Key Determinants for α-Conotoxin Interaction with α3β4 nAChRs

8. Lebbe, E. K., Peigneur, S., Wijesekara, I., and Tytgat, J. (2014) Conotoxins targeting nicotinic acetylcholine receptors: an overview. Mar. Drugs 12, 2970–3004
9. Olivera, B. M., Quik, M., Vincler, M., and McIntosh, J. M. (2008) Subtype-selective conopeptides targeted to nicotinic receptors: concerted discovery and biomedical applications. Channels 2, 143–152
10. Muttonenthaler, M., Akondi, K. B., and Alewood, P. F. (2011) Structure-activity studies on α-conotoxins. Curr. Pharm. Des. 17, 4226–4241
11. Hurst, R., Rollem, H., and Bertrand, D. (2013) Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol. Ther. 137, 22–54
12. Salas, R., Sturm, R., Boulter, J., and De Biasi, M. (2009) Nicotinic receptors in the habenulo-interpeduncular system are necessary for nicotine withdrawal in mice. J. Neurosci. 29, 3014–3018
13. Luo, S., Kulak, J. M., Cartier, G. E., Jacobsen, R. B., Yoshikami, D., Olivera, B. M., and McIntosh, J. M. (1998) α-Conotoxin AullB selectively blocks α3β4 nicotinic acetylcholine receptors and nicotine-evoked norepinephrine release. J. Neurosci. 18, 8571–8579
14. Luo, S., Zhangsun, D., Zhu, X., Wu, Y., Hu, Y., Christensen, S., Harvey, P. J., Akcan, M., Craig, D. J., and McIntosh, J. M. (2013) Characterization of a novel α-conotoxin TxID from Conus textile that potently blocks rat α3β4 nicotinic acetylcholine receptors. J. Med. Chem. 56, 9655–9663
15. Franco, A., Kompella, S. N., Akondi, K. B., Melaun, C., Daly, N. L., Luetje, C. W., Alewood, P. F., Craig, D. J., Adams, D. J., and Mari, F. (2012) RegIIA: an α4β7-conotoxin from the venom of Conus regius that potently blocks α3β4 nAChRs. Biochem. Pharmacol. 83, 419–426
16. Kompella, S. N., Hung, A., Clark, R. J., Mari, F., and Adams, D. J. (2015) Alanine scan of α-conotoxin RegIIA reveals a selective α3β4 nicotinic acetylcholine receptor antagonist. J. Biol. Chem. 290, 1039–1048
17. Kompella, S. N., Cuny, H., Hung, A., and Adams, D. J. (2015) Molecular basis for differential sensitivity of α-conotoxin RegIIA at rat and human neuronal nicotinic acetylcholine receptors. Mol. Pharmacol. 88, 993–1001
18. Hogg, R. C., Hopping, G., Alewood, P. F., Adams, D. J., and Bertrand, D. (2003) α-Conotoxins PnIA and [A10L]PnIA stabilize different states of the α7-247T nicotinic acetylcholine receptor. J. Biol. Chem. 278, 26908–26914
19. Yu, R., Craik, D. J., and Kaas, Q. (2011) Blockade of neuronal α7-nAChR by α-conotoxin ImlB explained by computational scanning and energy calculations. PLoS Comput. Biol. 7, e1002011
20. Magrane, M., and UniProt Consortium (2011) UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford) 2011, 10.1093/database/bar009
21. Ulen, C., Hogg, R. C., Celie, P. H., Bertrand, D., Tsetlin, V., Smit, A. B., and Sixma, T. K. (2006) Structural determinants of selective α-conotoxin binding to a nicotinic acetylcholine receptor homolog AChBP. Proc. Natl. Acad. Sci. U.S.A. 103, 3615–3620
22. Dellisanti, C. D., Yao, Y., Stroud, J. C., Wang, Z. Z., and Chen, L. (2007) Crystal structure of the extracellular domain of nAChR α1 bound to α-bungarotoxin at 1.94-Å resolution. Nat. Neurosci. 10, 953–962
23. Zouridakis, M., Giastas, P., Zarkadas, E., Chroni-Tzartou, D., Bregestovski, P., and Tzartos, S. J. (2014) Crystal structures of free and antagonist-bound states of human α9 nicotinic receptor extracellular domain. Nat. Struct. Mol. Biol. 21, 976–980
24. Shen, M. Y., and Sali, A. (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci. 15, 2507–2524
25. Olsson, M. H., Søndergaard, C. R., Rostkowski, M., and Jensen, J. H. (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537
26. Case, D. A., Darden, T. A., Cheatham, T. E., Wang, Z. Z., and Luty, J. M., and Lu, S. (2015) Key residues in the nicotinic acetylcholine receptor β2 subunit contribute to α-conotoxin LvlA binding. J. Biol. Chem. 290, 9855–9862
27. Luo, S., Zhangsun, D., Schroeder, C. I., Zhu, X., Hu, Y., Wu, Y., Weltzin, M. M., Eberhard, S., Kaas, Q., Craik, D. J., McIntosh, J. M., and Whiteaker, P. (2014) A novel α4β7-conotoxin LvlA from Conus lividus that selectively blocks α3β2 vs. α6/α3β2β3 nicotinic acetylcholine receptors. FASEB J. 28, 1842–1853
28. Grishin, A. A., Cuny, H., Hung, A., Clark, R. J., Brust, A., Akondi, K., Alewood, P. F., Craik, D. J., and Adams, D. J. (2013) Identifying key amino acid residues that affect α-conotoxin AullB inhibition of α3β4 nicotinic acetylcholine receptors. J. Biol. Chem. 288, 34428–34442
29. Shiembob, D. L., Roberts, R. L., Luetje, C. W., and McIntosh, J. M. (2006) Determinants of α-conotoxin BuIA selectivity on the nicotinic acetylcholine receptor β subunit. Biochemistry 45, 11200–11207
30. Azam, L., Dowell, C., Watkins, M., Sitzel, I., A., Olivera, B. M., and McIntosh, J. M. (2005) α-Conotoxin BuIA, a novel peptide from Conus bullatus, distinguishes among neuronal nicotinic acetylcholine receptors. J. Biol. Chem. 280, 80–87
31. Harvey, S. C., and Luetje, C. W. (1996) Determinants of competitive antagonist sensitivity on neuronal nicotinic receptor β subunits. J. Neurosci. 16, 3798–3806
32. Parker, M. J., Harvey, S. C., and Luetje, C. W. (2001) Determinants of agonist binding affinity on neuronal nicotinic receptor β subunits. J. Pharmacol. Exp. Ther. 299, 385–391
33. Harvey, S. C., McIntosh, J. M., Cartier, G. E., Maddox, F. N., and Luetje, C. W. (1997) Determinants of specificity for α-conotoxin MII on α3β2 neuronal nicotinic receptors. Mol. Pharmacol. 51, 336–342