Pharmacological Role of *Ostericum koreanum*: A Short Viewpoint

Narges Hosseini Nasab, Fahad Hassan Shah and Song Ja Kim

Abstract

Ostericum koreanum Maxim., a perennial medicinal plant native to Asian countries, is traditionally exploited in Korean Oriental and Chinese Herbal Medicine. It has been used in the treatment of neuralgia, respiratory problems, and joint pain due to its rich content of phytochemicals. Therefore, the significant role of compounds present in *O. koreanum* should not be overlooked to explore and develop drugs against diseases. The purpose of this review is to provide a reference for researchers and to describe the phytochemical constituents and pharmacological activity of *O. koreanum*. In this mini review, we have collected the data from 1980 to 2020 regarding the phytochemicals present and pharmacological activities of this plant. Our findings indicated that this plant possesses a rich source of phytochemicals that have significant pharmacological activities, such as anti-microbial, anti-inflammatory, anti-pyretic, anti-influenza, anti-cancer, and neuroprotective. These phytochemicals have promising pharmacological activity which should be further explored for the treatment of various diseases.

Keywords

medicinal plant, herbal medicine, phytochemicals, umbelliferae, pharmacological activity

Introduction

Historical records revealed that ancient civilizations had mastered the ability to use different plant parts such as stems, roots, leaves, and flowers to prepare therapeutic medication. Herbal medicines contain a wide variety of bioactive compounds which have been utilized against a wide range of diseases. The data regarding these therapeutic substances have been aggregated and compiled in Traditional Chinese Medicine (TCM). Nowadays, about 90% of the population in Asia and other countries rely upon herbal medicine and its market is expected to increase by more than 50 billion US dollars. In the 21st century, advanced chemical and physical techniques allowed us to obtain several bioactive compounds from medicinal plants.

Traditional Chinese medicine was introduced to Korea in the sixth century. Many substances in Korean herbal medicines have been modified and developed separately from traditional Chinese medicines due to differences in location, climate, culture, and politics. As a result, quality control of active components in herbal extracts is critical in both medical and nutritional applications. The importance of medicinal plants in the lives of most people around the world should not be underestimated. Herbal medicines have a long history in Korean Peninsula and are widely used around the world to prevent and treat human sickness. One of the most important perennial traditional herbal medicine is *Ostericum koreanum*, which belongs to the Umbelliferae family and has been used to cure the common cold, fever, relieve rheumatic articular pains, headaches, and neuralgia (Figure 1). Its features include a pungent and warm sensation. The biological and pharmacological properties of this plant include anti-tumor, anti-bacterial, anti-microbial, anti-inflammatory, antioxidant, acaricidal activity, vasorelaxant effects, and antiasthmatic. *Osterici Radix*,

Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, Republic of Korea

Corresponding Author:
Song Ja Kim, Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju 32588, Republic of Korea.

E-mail: ksj85@kongju.ac.kr

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
the root of *O. koreanum*, is grown in Kangwon Province, Korea, where it is known as “Kanghwal.” The origins of this plant have been portrayed differently in Korean, Chinese, and Japanese pharmacopoeias. The Chinese and Japanese pharmacopoeias only include *Notopterygium incisum* and *N. forbesii* as sources of “Kanghwal”, but the Korean pharmacopoeias also include *Ostericum koreanum*.

O. koreanum is known as Kang Bow in South Korea, but also goes by the names of Hogangsaja, Howangsaja, Ganghwa, Gangbori, Ganggol, Gangecheong, Jamgang, and Dokyocho. The plant thrives in cold areas in mountain valleys in Korea. Harvesting takes place between the end of October and the beginning of November. Furthermore, there are two methods for raising this plant in Korea. One is a seeding method known as “Nam-kangwhoal (OK(S))”, while the other is a root splitting method known as “Buk-kangwhoal (OK(N)).” However, this plant has received limited scientific investigation due to its vague taxonomical classification. Therefore, in this mini review, we have compiled the literature from the 1980s to 2021 about *O. koreanum*, including a list of its constituents, and its pharmacological activity in the treatment of various diseases.

Assessment of Compounds

An HPLC-UV detection method published by Lee et al. was the simplest and most sensitive approach for the simultaneous identification of four marker chemicals: bisabolangelone (I), oxypeucedanin (2), imperatorin (3) and isoimperatorin (4) (Figure 2) in *O. koreanum*.

Constituents of Ostericum koreanum and Their Pharmacological Activities

The constituents of the root and stem of *O. koreanum* are summarized in Table 1. Caffeic acid, aesculin, uracil, cimifugin, and adenosine were identified in the root, and bergapten (5), xanthotoxin (6), hamaudol (7), auraptenol (8) (Figure 3), and a combination of phytosterols in the stem. They also reported for the first time the isolation of hamaudol. Kang et al isolated bisabolangelone (I), an acaricidal constituent, from the methanolic extract of the roots.

Jeon et al extracted essential oil and identified the components using gas chromatography-mass spectrometry (GC-MS). β-Phellandrene (38.1%), α-bisabolol (9.4%), 3-methylphenol (6.7%), α-terpinolene (5.5%), 1-acetoxy-1,2-epoxy cyclohexane (5.0%), 4′-hydroxy-3′-methylaceto phenone (4.8%), isosafrole (4.1%), 2-methyl-3-ethylpentane (3.9%), isopentyl-3-methyl butanoate (3.6%), 2,5-dimethyl-3-hexanol acetate (3.4%), (+)-3-carene (2.8%), limonene (2.3%), tridecanolide (2.3%), 2,5-dimethyl-3-vinyl-1,4-hexadiene (2.1%), α-pine (1.5%) and 4,7-dimethyl-5-decyn-4,7-diol (1.3%) were detected. The essential oil included terpene hydrocarbons, oxygenated terpene hydrocarbons, phenols, alcohols, and aliphatic hydrocarbons.

Another GC-MS study of the essential oil of *O. koreanum* was carried out in 2015. This reported β-phellandrene (38.1%), α-bisabolol (9.4%), m-cresol (6.7%), terpinolene (5.5%), 1-acetoxy-1,2-epoxy cyclohexane (5.0%), 4′-hydroxy-3′-methyl acetophenone (4.8%), 2-methyl-3-ethylpentane (3.9%), isopentyl-3-methyl butanoate (3.6%), 2,5-dimethyl-3-hexanol acetate (3.4%), 3′-dimethyl-13,6-octatriene (2.8%), limonene (2.3%), tridecanolide (2.3%), 2,5-dimethyl-3-vinyl-1,4-hexadiene (2.1%), α-pine (1.5%) and 4,7-dimethyl-5-decyn-4,7-diol (1.3%). Shin used steam distillation and diethyl ether extraction to isolate thirty-four essential oil components from the dried roots, which were identified using GC-MS. The main components of this oil were α-pine (41.1%), p-cresol (18.0%), 4-hydroxy-2-methylacetophenone (7.9%) sabine (7.6%), α-bisabolol (2.0%), p-cymen-8-ol (2.0%), and camphene (1.9%). The variation between the reported results may have been caused by several factors, including plant part used (flower, leaves, root, and stem), the different conditions of the plant material used, the geographical location, climate, and soil type.

From the benzene-soluble and n-butanol-soluble portions of *O. koreanum* root, Kwon et al extracted four furocoumarins (imperatorin, isomperatorin, oxypeucedanin and oxypeucedanin hydrate) and two dihydrofurocoumarin glycosides (marmesin and 4′-O-β-D-glucopyranosyl-3′-hydroxymarmesin). Kang et al isolated oxypeucedanin (2), with *in vitro* activity against human prostate carcinoma DU145 cells. Raza et al isolated and characterized isomperatorin (4) from the ethyl acetate fraction of the roots.

Park et al used the ethyl acetate fraction of *O. koreanum* roots to isolate 11-hydroxy-sec-O-glucosylhamaudol (9), three chromones (sec-O-glucosylhamaudol (10), prim-O-glucosylcimifugin (11) and cimifugin (12)), three coumarins (marmesin (13), oxypeucedanin hydrate (14) and bergapto-O-β-D-glucopyranoside (15)), six phenolic compounds (ligusti phenol (16), 2-methoxy-2-(4′-hydroxyphenyl)-ethanol (17),
Figure 2. The chemical structures of bisabolangelone, oxypeucedanin, imperatorin, isoimperatorin.

Table 1. Constituents of *Ostericum koreanum*.

No.	Compounds	Part of Plant	Fraction of methanol extract	Classification
1	Caffeic acid	Root	n-Butanol	Hydroxycinnamic acid
2	Uricil	Root	n-Butanol	Uricil
3	Aesculin	Root	n-Butanol	Coumarin
4	Bergapten	Stem	n-Hexane	Coumarin
5	Xanthotoxin	Stem	n-Hexane	Coumarin
6	Auraptenol	Stem	n-Hexane	Coumarin
7	Marmesinin	Root	Ethyl acetate	Coumarin
8	Oxypeucedanin hydrate	Root	Ethyl acetate	Coumarin
9	Bergaptol-O-β-D-glucopyranoside	Root	Ethyl acetate	Coumarin
10	Imperatorin	Root	Benzene- n-Butanol	Coumarin
11	Isoimperatorin	Root	Benzene- n-Butanol	Coumarin
12	Oxypeucedanin	Root	Benzene- n-Butanol	Coumarin
13	4′-O-β-D-Glucopyranosyl-3′-hydroxymarmesin	Root	Benzene- n-Butanol	Coumarin
14	Cimifugin	Root	n-Butanol	Chromone
15	Hamaudol	Stem	n-Hexane	Chromone
16	11-Hydroxy-sec-O-glucosylhamaudol	Root	Ethyl acetate	Chromone
17	sec-O-Glucosylhamaudol	Root	Ethyl acetate	Chromone
18	prim-O-Glucosylcimifugin	Root	Ethyl acetate	Chromone
19	Cimifugin	Root	Ethyl acetate	Chromone
20	Ligustipheno	Root	Ethyl acetate	Phenolic
21	2-Methoxy-2-(4′-hydroxyphenyl)-ethanol	Root	Ethyl acetate	Phenolic
22	4-(2-Hydroxy-vinyl)-2-methoxy-phenol	Root	Ethyl acetate	Phenolic
23	3-Methoxy benzene-1,4-diol	Root	Ethyl acetate	Phenolic
24	4-(2-Hydroxyvinyl)-benzene-1,2-diol	Root	Ethyl acetate	Phenolic
25	Protocatechuic acid	Root	Ethyl acetate	Phenolic
26	5-Caffeoyquinic acid methyl ester	Root	Ethyl acetate	Quinic acid
27	3,5-Dicaffeoyquinic acid	Root	Ethyl acetate	Quinic acid
28	4,5-Dicaffeoyquinic acid	Root	Ethyl acetate	Quinic acid
29	Bisabolangelone	Root	n-Hexane	Benzo-furan
30	Adenosine	Root	n-Butanol	Furan
Figure 3. The structures of bergapten, xanthotoxin, auraptenol and hamaudol.

Figure 4. Compounds isolated from EtOAc extract of the roots of *Ostericum koreanum*.
Table 2. Summary of Pharmacological Activities Showed by *Ostericum koreanum*.

Part used	Extract	Dose	Model	Time duration	Results	References
Root	Methanol	50.9 µg/cm²	*D. farina* and *D. pteronyssinus*	24 h	Significant acaridical activity (compared to three acaricides such as benzyl benzoate, N,N-diethyl-m-toluamide (DEET), and dibutyl phthalate)	Kang et al. (2006)²²
Oil	—	3.09 and 3.31 µg/cm²	*D. farina* and *D. pteronyssinus*	24 h	Highly useful as mite control agent for house dust mites or highly useful for protection of humans from allergic diseases	Jeon et al. (2012)²³
Root	Methanol	50 µM	Inflammatory property of bisabolangelone in RAW 264.7 cells	24 h	Strong anti-inflammatory activity (inhibiting LPS-stimulated inflammation-associated gene expression)	Jung et al. (2010)³⁶
Root	Diethyl-ether	—	Antibiotic-resistant and antibiotic-susceptible	—	Significant antibiotic activity (*O. koreanum* oil) against the bacterial strains	Shin (2005)¹²
Root	Methanol	—	Antioxidant activity	—	Significant DPPH radical scavenging activity superoxide anion radical scavenging activity (4-(2-Hydroxy-vinyl)-benzene1,2-diol)	Park et al. (2007)¹⁴
Root	Methanol	0.516, 2.884, 1.514 mM/g	Antioxidant and free radical scavenging activities	24 h	Significant antioxidant activity (based on TEAC, ORAC and DPPH)	Mahesh et al. (2011)³⁷
Root	Methanol	—	Inflammatory mediators in LPS-stimulated RAW264.7 Cells	24 h	Anti-inflammatory activity (ethyl acetate fraction)	Kim and Park (2009)³⁸
Root	Methanol	10 to 50 µg/mL	Inflammatory responses in PMA/ A23187-stimulated mast cells	24 h	Anti-inflammatory activity (ethyl acetate fraction)	Seo et al. (2008)³⁹
Root	Distilled water	0 to 25 µg/mL	Lipopolysaccharide [LPS]-induced bone loss in mice	24 h	Significant amelioration of bone-destructive diseases	Kim et al. (2015)⁴¹
Root	Methanol	50 and 100 mg/kg	Allergic responses in ovalbumin-induced allergic rhinitis mice	24 h	Significant anti-allergic properties, improving rhinitis symptoms	Jung et al. (2011)³²
Root	Water	10 and 50 mg/kg	Anti-allergic effect in human mast cell	—	anti-allergic agents for use in a number of allergic diseases	Jung et al. (2010)⁴³
Root	Ethanol	—	Vasorelaxant activity	2 h	Useful for treating cardiovascular diseases such as hypertension	Lee et al. (2012)⁴⁴
Root	Ethanol	50 and 100 mg/kg	Learning and memory impairments induced by scopolamine	—	Useful in cognitive impairment treatment, enhancing the cholinergic nervous system	Kim et al. (2011)⁴⁷
4-(2-hydroxy-vinyl)-2-methoxy-phenol (18), 3-methoxy benzene-1,4-diol (19), 4-(2-hydroxyvinyl)-benzene-1,2-diol (20) and protocatechuic acid (21) and three quinic acids (5-caffeoylquinic acid methyl ester (22), 3,5-dicaffeoylquinic acid (23) and 4,5-dicaffeoylquinic acid (24)). The structures are shown in Figure 4. All the isolated compounds were tested for antioxidant activity using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and superoxide anion radical scavenging assay systems, and it was discovered that chromosomes containing 11-hydroxy-sec-O-glucosylhamamelide (9) and the coumarins did not have significant antioxidant activity, whereas the phenolics and caffeoylquinic acids did.

In LPS-stimulated RAW264.7 cells, the ethyl acetate fraction of the methanol extract of O. koreanum root inhibited nitric oxide (NO) and prostaglandin E2 (PGE2) production efficiently. It was believed that the extract had anti-inflammatory and therapeutic activities by decreasing the generation of inflammatory mediators in activated macrophages. Park et al. conducted another study on the anti-inflammatory and inhibitory effects of O. koreanum root. They evaluated the down-regulated LPS-induced NO and cytokines production via repressing activation of mitogen-activated protein kinase (MAPKs) and degradation of inhibitory kappa Ba (Iκ-Ba). In 2008, the effects were studied of the ethyl acetate extract of O. koreanum on allergic inflammation in activated human mast cells. The extract showed anti-inflammatory properties by lowering the output of inflammatory mediators in activated mast cells, and that the blockage of the nuclear factor kappa-B (NFκB) route was due to its molecular mechanism. Hee and Young reported LPS-induced NO and PGE2 synthesis produced by the ethanol extract of O. koreanum and concluded that the extract could be used for its analgesic and anti-inflammatory properties.

The effects of O. koreanum root extract on lipopolysaccharide (LPS) induced bone loss in mice were investigated by studying bone structure and the levels of Receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) in serum and bone marrow fluid (BMF). Therefore, for the first time, a link between O. koreanum and bone diseases, particularly osteoporosis, was established, and the extract was shown to have the capacity to ameliorate bone-damaging diseases caused by extreme bone resorption.

O. koreanum root extract showed anti-allergic characteristics, improved rhinitis symptoms, inhibited histamine and IL-4 production in ovalbumin-induced allergic rhinitis mice, and inhibited mast cell degranulation in compound 48/80-stimulated mast cells. The root water extract was tested in a human mast cell line and shown to have anti-allergic properties.

An ethanol extract of O. koreanum root was studied for its mechanism of action and effect on vasorelaxant activity. The effects of the extract on several vasorelaxant and vasoconstriction variables were studied using isolated rat aortic rings. The induction of NO synthesis from l-arginine and NO-cGMP routes was thought to be produced by the vasorelaxant activity of the extract. According to their findings, Osterici Radix may be a useful herbal medicine for the treatment of cardiovascular illnesses such as hypertension.

Fascinating results were obtained on the effect of the ethanolic extract of O. koreanum root on better learning and memory deficits generated by scopolamine in an in vivo and in vitro investigation. Beneficial effects were attributed to boosting the cholinergic nervous system.

Conclusions and Future Directions

In this mini review, the therapeutic activity of O. koreanum was highlighted, and essential phytochemicals found in this plant were summarized (Table 2). These phytochemicals play a vital role in providing anti-inflammatory properties through downregulation of inflammatory markers (PGE2, NO, cytokines and interleukins) and inflammatory pathways (NFκB, MAPK) implicated in the inflammation. These phytoconstituents also reduce the growth of pathogenic microorganisms and cancer cells. In addition to these properties, they are recognized as neuroprotective, gastroprotective and cardioprotective. However, there are potential shortfalls which need to be addressed in future studies. The pharmacological activity and phytochemical exploration from other plant components (leaves, flower, stem) are necessary to map and discover new promising compounds for various diseases. To the best of our knowledge, this plant’s pharmacological activity has been explored between 1982 to 2017, but, recently, Ko et al. identified new phytochemicals from the stem of this plant, but their biological activity is unknown yet. The acute toxicity and safety profile of these phytochemicals has not been determined in most of the studies, which is a major setback to introduce them for clinical trials. The anticancer effects of this plant have only been researched in one study, but its activity against different cancer cells should be investigated further.

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korean Government (MEST) (2020R1I1A3069699).

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the National Research Foundation of Korea (grant number 2020R111A3069699).

Ethical Approval
Not applicable, because this article does not contain any studies with human or animal subjects.

Informed Consent
Not applicable, because this article does not contain any studies with human or animal subjects.

ORCID iD
Song Ja Kim https://orcid.org/0000-0001-6380-256X

Trial Registration
Not applicable, because this article does not contain any clinical trials.

Supplemental Material
Supplemental material for this article is available online.

References
1. Petrovska BB. Historical review of medicinal plants’ usage. Pharmacoog Rev. 2012;6(11):1-5. doi:10.4103/0973-7847.95849
2. Wang J, Sasse A, Sheridan H. Traditional Chinese medicine: from aqueous extracts to therapeutic formulae. In: Plant Extracts. IntechOpen; 2019:1-29.
3. Wasse SM, Aragie LL, Taye BW, Mekonnen LB. Knowledge, attitude, and utilization of traditional medicine among the communities of Merawi Town, northwest Ethiopia: a cross-sectional study. Evid Based Complement Alternat Med. 2015;2015:138073. doi:10.1155/2015/138073
4. Cyranoski D. Why Chinese medicine is heading for clinics around the world. Nature. 2018;561(7724):448.
5. Shah FH, Salman S, Idrees J, et al. Current progress of phytomedicine in globelastoma therapy. Curr Med Sci. 2020;40(6):1067-1074.
6. Park HL, Lee HS, Shin BC, et al. Traditional medicine in China, Korea, and Japan: a brief introduction and comparison. Evidence-based Complement Altern Med. 2012;2012:429103. doi:10.1155/2012/429103
7. Korean Food & Drug Administration. The Korean Pharmacopoeia Tenth Edition. Korean Food & Drug Administration; 2013.
8. Pharmacopoeia Commission of the Ministry of Health of the People’s Republic of China. Pharmacopoeia of the People’s Republic of China 2010. China Medical Science Press; 2012.
9. Dubey N, Kumar R, Tripathi P. Global promotion of herbal medicine: India’s opportunity. Curr Sci. 2004;86(1):37-41.
10. Chi HJ, Kim HS. Studies on essential oils of plants of Angelica genus in Korea (IV). essential oils of Angelicae koreanae radix. Korean J Pharmacoog. 1993;24(2):111-115.
11. Kang TJ, Lee SY, Singh RP, Agarwal R, Yim DS. Anti-tumor activity of oxypeucedanin from Ostericum koreanum against human prostate carcinoma DU145 cells. Acta Oncol (Madrid). 2009;48(6):895-900. doi:10.1080/02841860902824925
12. Shin S. In vitro effects of essential oils from Ostericum koreanum against antibiotic-resistant Salmonella spp. Arch Pharm Res. 2005;28(7):765-769. doi:10.1007/BF02977340
13. Park HJ, Bae GS, Kim DY, et al. Inhibitory effect of extract from Ostericum koreanum on LPS-induced proinflammatory cytokines production in RAW264.7 cells. Korea J Herb. 2008;23(3):127-134.
14. Park YJ, Kim HJ, Lee SJ, Choi HY, Jin C, Lee YS. A new chormone, 11-hydroxy-sec-O-glucosylhamaudol from Ostericum koreanum. Chem Pharm Bull. 2007;55(7):1065-1066. doi:10.1248/cpb.55.1065
15. Lee C, Woo W. Coumarin constituents from the roots of Angelica koreana Max. Korean J Pharmacoog. 1982;13(1):10-13.
16. Yun WS, Kim HH, Ahn DK, Rhee JS, Ham IH, Choi HY. Effects of Angelicae koreanae radix on the vasomotor responses and focal cerebral ischemic damage by MCAO. Korean J Herb. 2004;19(3):147-154.
17. Lee SK, Cho HK, Cho SH, Kim SS, Namh DH, Park HS. Occupational asthma and rhinitis caused by multiple herbal agents in a pharmacist. Ann Allergy Asthma Immunol. 2001;86(4):469-474. doi:10.1016/S1081-1206(10)62498-2
18. Kim S, Kim KY, Han CS, et al. Simultaneous analysis of six major compounds in osterici radix and notopterygii rhizoma et radix by HPLC and discrimination of their origins from chemical fingerprint analysis. Arch Pharm Res. 2012;35(4):691-699. doi:10.1007/s12272-012-0413-3
19. Lee MK, Ling JH, Chun MH, et al. Simultaneous determination of biological marker compounds in Ostericum koreanum by HPLC method and discrimination by principal component analysis. Bull Korean Chem Soc. 2008;29(12):2465-2470. doi:10.5012/bkcs.2008.29.12.2465
20. Kwon YS, In KK, Kim CM. Chemical constituents from the roots of Ostericum koreanum. Korean J Pharmacoog. 2000;31(3):284-287.
21. Ko JH, Keum JH, Jung JW, et al. Chemical constituents of Ostericum koreanum stem. Korean J Pharmacoog. 2020;51(5):158-162. doi:10.22889/KJP.2020.51.3.158
22. Kang SW, Kim HK, Lee WJ, Ahn YJ. Toxicity of bisabolangelone from Ostericum koreanum roots to Dermatophagoides farinae and Dermatophagoides pteronyssinus (acari: pyroglyphidae). J Agric Food Chem. 2006;54(10):3547-3550. doi:10.1021/jf060140d
23. Jeon JH, Yang YJ, Chung N, Lee HS. Contact and fumigant toxicities of 3-methylphenol isolated from Ostericum koreanum and its derivatives against house dust mites. J Agric Food Chem. 2012;60(50):12349-12354. doi:10.1021/jf3044296
24. Song JE, Yang YJ, Lee HS. Comparison with volatile compounds derived from essential oils of Ostericum spp. Roots in korea. J Essent Oil Bearing Plants. 2015;18(6):1417-1420. doi:10.1080/0972060X.2015.1010182
25. Lee C, Lee H. Acaricidal activity and function of mite indicator using plumbagin and its derivatives isolated from Diospyros kaki Thunb. roots (Ebenaceae). *J Microbiol Biotechnol*. 2008;18(2):314-321.

26. Kwon YS, Woo ER, Kim CM. A study on the constituents of bioactive fraction of Ostericum koreanum Kitagawa. *Kor J pharmacogn*. 1991;22(2):156-161.

27. Raza H, Abbas Q, Hassan M, et al. Isolation, characterization, and in silico, in vitro and in vivo antioxidant studies of isomuconorinin crystallized from Ostericum koreanum. *Pharm Biol*. 2017;55(1):218-226. doi:10.1080/13880209.2016.1257641

28. Sasaki H, Taguchi H, Endo T, Yoshioka I. The constituents of Ligusticum sinesis. *Chem Pharm Bull*. 1983;30(10):3555-3562. doi:10.1248/cpb.30.3555

29. Harkar S, Razdan T, Waight E. Steroids, chromone and coumarins from Angelica archangelica and Angelica silvestris. *Phytochemistry*. 1983;22(2):553-555. doi:10.1016/0031-9422(83)80344-1

30. Lemmich J, Havelund S, Ole T. Dihydrofurocoumarin glucosides from Ledebouriella stechisides Wolff. I. Structures of three new chromones. *Chem Pharm Bull*. 1982;30(10):3555-3562. doi:10.1248/cpb.30.3555

31. Gu Z, Zhang D, Yang X, Hattori M, Namba T. Isolation of two new coumarin glycosides from Notopterygium forbesii and evaluation of a Chinese crude drug, Qiang-Huo, the underground parts of N. incisum and N. forbesii, by high-performance liquid chromatography. *Chem Pharm Bull*. 1990;38(9):2498-2502. doi:10.1248/cpb.38.2498

32. Yu D, Xie F, Chen R, Huang Y. Studies on the structure of ligustigenol from Ligusticum sinense Oliv. *Chemical and Physical Research* 1996;7(8):721-722.

33. Massumura T, Ishikawa T, Kitajima J. Water-soluble constituents of carrot: aromatic compound, aromatic compound glucoside and glucides. *Phytochemistry*. 2002;64(4):455-459. doi:10.1016/S0031-9422(02)00288-1

34. Saito R, Nonaka G, Nishioka I. Phenol glucoside gallates from Mallotus japonicus. *Phytochemistry*. 1989;28(9):2443-2446. doi:10.1016/S0031-9422(09)8001-4

35. Zhu X, Dong X, Wang Y, Ju P, Luo S. Phenolic compounds from Viburnum cylindricum. *Helv Chim Acta*. 2005;88(2):339-342. doi:10.1002/hlca.200509017

36. Pauli G, Poetsch F, Nahrstedt A. Structure assignment of natural quinic acid derivatives using proton nuclear magnetic resonance techniques. *Phytochem Anal*. 1998;9(4):177-185. doi:10.1002/(SICI)1099-1565(199807/08)9:4<177::AID-PCA404>3.0.CO;2-3

37. Mahesh R, Jung HW, Park JH, Park YK. In vitro antioxidant capacity and neuronal cell toxicity of roots of Ostericum koreanum Maximowicz. *E-Journal Chem*. 2011;8(3):1451-1455. doi:10.1155/2011/183172

38. Kim CM, Park YK. The effects of different extracts of Ostericum koreanum on the production of inflammatory mediators in LPS-stimulated RAW264.7 cells. *Kor J Herbol*. 2009;24(1):169-178.

39. Seo U, Lee J, Park J, Park Y. The ethylacetate extract of north Kangehal (Ostericum koreanum) attenuates the inflammatory responses in PMA/A23187-stimulated mast cells. *Kor J Herbol*. 2008;23(4):81-89.

40. Hee HS, Young CS. Anti-inflammatory and anti-painful and effects of Ostericum koreanum Maximowicz. *Full Gen Meet Acad Conf*. 2006;2:362-363.

41. Kim JY, Ahn SJ, Baek JM, Yoon KH, Lee MS, Oh J. Ostericum koreanum reduces LPS-induced bone loss through inhibition of osteoclastogenesis. *Am J Clin Med*. 2015;43(3):495-512. doi:10.1142/S0192415X15500317

42. Jung HW, Jung JK, Park YK. Antiallergic effect of Ostericum koreanum root extract on ovalbumin-induced allergic rhinitis mouse model and mast cells. *Asian Pacific J Allergy Immunol*. 2011;29(4):338-348.

43. Jung JK, Jung HM, Seo WG, Park YK. Anti-allergic effect of ostercici radix water extract in human mast cells. *Korea J Herbol*. 2010;25(3):35-41. doi:10.6116/kjh.2010.25.3.035

44. Lee K, Park G, Ham I, et al. Vasorelaxant effect of ostercici radix ethanol extract on rat aortic rings. *Evidence-based Complement Altern Med*. 2013;2013:350964. doi:10.1155/2013/350964

45. Gyu KIME, Rang OHS, Bin WS, Wook JJ. The root of Ostericum koreanum maxim. Ameliorates learning and memory impairments induced by scopolamine in mice. *Spring Gen Meet Acad Conf*. 2011;257-257.

46. Jung HW, Mahesh R, Park JH, Boo YC, Park KM, Park YK. Bisabolangelone isolated from Ostericum koreanum inhibits the production of inflammatory mediators by down-regulation of NF-κB and ERK MAP kinase activity in LPS-stimulated RAW264.7 cells. *Int Immunopharmacol*. 2010;10(2):155-162. doi:10.1016/j.intimp.2009.10.010

47. Kim E, Oh S, Wang S, Jung J. The root of Ostericum koreanum Maxim. ameliorates learning and memory impairments induced by scopolamine in mice. In: The Korean Pharmacy Society> Spring General Meeting and Conference; 2011:257.