How to Fairly Allocate Easy and Difficult Chores

Soroush Ebadian¹
University of Toronto

Dominik Peters
University of Toronto

Nisarg Shah
University of Toronto

¹ Email: sorously@cs.toronto.edu
Outline

• Introduction

• Envy-freeness up-to one item + Pareto Optimality
 • Methods for the division of goods
 • Fisher-market-based Algorithms
 • Adapting to chores

• Maximin-Share Fairness
Fair Division of Indivisible Chores
Fair Division of Indivisible Chores

Chore	Man	Woman 1	Woman 2	Woman 3
Cleaning	-20	-20	-20	-20
Laundry	-15	-10	-10	-30
Pet Care	-10	-20	-10	-5
Child Care	-5	-10	-50	-10
Fair Division of Indivisible Chores

Fair and Efficient Allocations
More Formally

• n agents
• m indivisible items
• Agent i values item j at $v_{i,j}$
 • Chores Instance: $v_{i,j} \in \mathbb{R}_{\leq 0}$
 • Work shifts between staff, house chores between roommates, ...

• Additive utilities: $v_i(S) = \sum_{j \in S} v_{i,j}$
More Formally

- \(n \) agents
- \(m \) indivisible items
- Agent \(i \) values item \(j \) at \(v_{i,j} \)
 - **Chores** Instance: \(v_{i,j} \in \mathbb{R}_{\leq 0} \)
 - Work shifts between staff, house chores between roommates, ...
 - **Goods** Instance: \(v_{i,j} \in \mathbb{R}_{\geq 0} \)
 - Estate (inheritance) division, divorce settlement, ...

- Additive utilities: \(v_i(S) = \sum_{j \in S} v_{i,j} \)
More Formally

• n agents
• m indivisible items
• Agent i values item j at $v_{i,j}$
 • **Chores** Instance: $v_{i,j} \in \mathbb{R}_{\leq 0}$
 • Work shifts between staff, house chores between roommates, ...
 • **Goods** Instance: $v_{i,j} \in \mathbb{R}_{\geq 0}$
 • Estate (inheritance) division, divorces settlement, ...

• Additive utilities:
 $$v_i(S) = \sum_{j \in S} v_{i,j}$$

Goal: Find an allocation $A = (A_1, A_2, \ldots, A_n)$ that is **fair** and **efficient**.
Gold Standard Fairness Notion

• Envy-Freeness (EF):
 • No agent prefers another one’s bundle to their allocated bundle.
 • I.e., for all pairs of agents i, j:
 $$v_i(A_i) \geq v_i(A_j)$$
Gold Standard Fairness Notion

• Envy-Freeness (EF):
 • No agent prefers another one’s bundle to their allocated bundle.
 • I.e., for all pairs of agents i, j:
 \[v_i(A_i) \geq v_i(A_j) \]

Envy-free allocations may not exist.
Gold Standard Fairness Notion

• Envy-Freeness (EF):
 • No agent prefers another one’s bundle to their allocated bundle.
 • I.e., for all pairs of agents i, j:
 $$v_i(A_i) \geq v_i(A_j)$$

Envy-free allocations may not exist.
Gold Standard Fairness Notion

- Envy-Freeness (EF):
 - No agent prefers another one’s bundle to their allocated bundle.
 - I.e., for all pairs of agents i, j:
 \[v_i(A_i) \geq v_i(A_j) \]

Envy-free allocations may not exist.
Relaxed Fairness Notion

• Envy-Freeness up to one item ($EF1$):
 • No agent prefers another one's bundle to their allocated bundle, after ignoring at most one item.
 • Chores Instance:
 For all pairs of agents i, j:
 $\exists c \in A_i : v_i(A_i \setminus \{c\}) \geq v_i(A_j)$
Relaxed Fairness Notion

• Envy-Freeness up to one item (EF1):
 • No agent prefers another one’s bundle to their allocated bundle, after ignoring at most one item.

• Chores Instance:
 For all pairs of agents i, j:
 $$\exists c \in A_i : v_i(A_i \setminus \{c\}) \geq v_i(A_j)$$

• Goods Instance:
 For all pairs of agents i, j:
 $$\exists g \in A_j : v_i(A_i) \geq v_i(A_j \setminus \{g\})$$
Relaxed Fairness Notion

• Envy-Freeness up to one item (EF1):
 • No agent prefers another one’s bundle to their allocated bundle, after ignoring at most one item.

• Chores Instance:
 For all pairs of agents i, j:
 $$\exists c \in A_i : v_i(A_i \setminus \{c\}) \geq v_i(A_j)$$

• Goods Instance:
 For all pairs of agents i, j:
 $$\exists g \in A_j : v_i(A_i) \geq v_i(A_j \setminus \{g\})$$

EF1 allocations *always* exist.
Efficiency Notion

• Pareto Optimality (PO):
 • Allocation A is Pareto optimal, if there is no allocation B such that $\forall i : v_i(B) \geq v_i(A)$, and $\exists j : v_j(B) > v_j(A)$.

A is not Pareto Optimal as B Pareto dominates it.
Fair and Efficient Allocations

Does a fair (EF1) and efficient (PO) allocation always exist?
Does a *fair* (EF1) and *efficient* (PO) allocation always exist?

Goods

- EF1 + PO allocations always exist. (Caragiannis et al., 2016)

- Can be found in pseudo-polynomial time. (Barman et al., 2018)

- Poly-time when utility levels are poly-sized / constantly many agents. (Garg et al., 2021)
Fair and Efficient Allocations

Does a fair (EF1) and efficient (PO) allocation always exist?

Goods
- EF1 + PO allocations always exist. (Caragiannis et al., 2016)
- Can be found in pseudo-polynomial time. (Barman et al., 2018)
- Poly-time when utility levels are poly-sized / constantly many agents. (Garg et al., 2021)

Open Problem 1.
Can EF1+PO allocations be found in poly time?
Fair and Efficient Allocations

Does a *fair (EF1)* and *efficient (PO)* allocation always exist?

Chores
- Still open for additive valuations.

Our key contribution:

Theorem 1. For *Bivalued* chores, EF1 + PO allocations *always exist*, and can be found in *poly time*.

Bivalued utilities:
\[
\forall i, j: v_{i,j} \in \{a, b\}, \quad a \leq b \leq 0,
\]

Goods
- EF1 + PO allocations *always exist*. (Caragiannis et al., 2016)

- Can be found in *pseudo-polynomial time*. (Barman et al., 2018)

- Poly-time when utility levels are poly-sized / constantly many agents. (Garg et al., 2021)
Results and Techniques for Goods

• Solution 1: Maximizing Nash Welfare (MNW) i.e., $\max \prod_{A} v_i(A_i)$ or $\max \sum_{A} \log(v_i(A_i))$.

 • Goods: MNW yields EF1 + PO (Caragiannis et al., 2016)
Results and Techniques for Goods

• Solution 1: Maximizing Nash Welfare (MNW)
 i.e., \(\max \prod_{A_i} v_i(A_i) \) or \(\max \sum_{A_i} \log(v_i(A_i)) \).

 • Goods: MNW yields EF1 + PO (Caragiannis et al., 2016)

• For integral utilities:
 Maximizing Harmonic Welfare yields EF1 + PO
 i.e., \(\max \sum_{A_i} H(v_i(A_i)) \) (Montanari et al., 2022)

 • \(H(i) = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{i} \)
Results and Techniques for Goods

• **Solution 1:** Maximizing Nash Welfare (MNW)
 i.e., \(\max_A \prod_i v_i(A_i) \).

• **Goods:** MNW yields EF1 + PO (Caragiannis et al., 2016)

• **Chores:**
 1. Maximizing \(\prod_i |v_i(A_i)| \) or \(\prod_i (v_i(A) - v_i(A_i)) \)
 No, favors higher disutilities. No, counter example.
 2. Maximizing \(\prod_i |v_i(A_i)| \) subject to PO?
 No, fails EF1. (Example with bivalued utilities, n=4, m=8)
 3. Minimizing \(\prod_i |v_i(A_i)| \)
 No, favors having an idle agent with no tasks.
Results and Techniques for Goods

• Solution 1: Maximizing Nash Welfare (MNW)
 • Extension to Chores: not obvious.
Results and Techniques for Goods

• Solution 1: Maximizing Nash Welfare (MNW)
 • Extension to Chores: not obvious.

• Solution 2: Fisher market adaptation (Barman et al. (2018))
 • Finds an EF1 + PO allocation in pseudo-poly time
 • Idea: a local search terminates due to invariants and potential functions
Results and Techniques for Goods

- **Solution 1:** Maximizing Nash Welfare (MNW)
 - Extension to Chores: not obvious.

- **Solution 2:** Fisher market adaptation (Barman et al. (2018))
 - Finds an EF1 + PO allocation in pseudo-poly time
 - Idea: a *local search* terminates due to *invariants* and potential functions

- Extension to Chores:
 - Non-trivial, *invariants* cease to hold
 - Our result:
 - With a more intricate analysis \rightarrow EF1 + PO for *Bivalued* Utilities
Fisher Markets in Fair Division
Fisher Markets

Setup:
• n agents, m items
• Item prices: $p_j \in \mathbb{R}_{\geq 0}$

Def. Bang per Buck: $\frac{v_{i,j}}{p_j}$

Maximum Bang per Buck: $MBB_i = \max_j \frac{v_{i,j}}{p_j}$

Item	Price	BB:	Value
Clothing	2	-3	-1.5
Food	10	-20	-2
Cleaning	10	-15	-1.5

Item	Price	BB:	Value
Clothing	2	-3	-1.5
Food	10	-20	-2
Cleaning	10	-15	-1.5

2 10 10
Fisher Markets

Setup:
- \(n \) agents, \(m \) items
- Item prices: \(p_j \in \mathbb{R}_{\geq 0} \)

Def. Bang per Buck: \(\frac{v_{i,j}}{p_j} \)

Maximum Bang per Buck: \(\text{MBB}_i = \max_j \frac{v_{i,j}}{p_j} \)

Equilibrium:
- All items are allocated
- Agents are only allocated MBB items

First Welfare Theorem:

Pareto Optimal (PO)
Fisher Markets

• An allocation is price envy-free up to one item (pEF1) if for all pairs of agents i, j:
 \[\exists c \in A_j : p(A_j \setminus \{c\}) \leq p(A_i) \]

\[\text{pEF1 + equilibrium} \rightarrow \text{EF1 + PO} \]
Fisher Markets

• An allocation is price envy-free up to one item \((pEF1)\) if for all pairs of agents \(i, j\):
 \[
 \exists c \in A_j : \ p (A_j \setminus \{c\}) \leq p(A_i)
 \]

\(\text{pEF1} \ + \ \text{equilibrium} \quad \rightarrow \quad \text{EF1} \ + \ \text{PO}\)

• Algorithmic Framework:
 • Start with an allocation and prices in equilibrium
 • Make local changes reducing envy \((\text{while remaining in equilibrium})\)
 • Reach pEF1 \((+ \ \text{equilibrium})\)
Fisher Market Algorithm Ideas

• MBB Graph
 • Edge $i \leftarrow j$

• Local changes:
 Suppose $i \leftarrow j$ exists and $p(A_i) < p(A_j) - p_c$ (violation of pEF1), then transferring c to i_1 (1) remains in the equilibrium (2) reduces envy “overall”
Fisher Market Algorithm for Goods

• MBB Graph
 • Edge $i \leftarrow j$

• Algorithm Sketch for Goods (Barman et al. 2018)
 1. Start with welfare maximizing allocation
 2. Least Spender: $ls = \arg\min p(A_i)$
 3. While there is $ls \leftarrow i_2 \leftarrow i_3 \leftarrow \ldots \leftarrow i_{\ell}$
 where ls price envies i_{ℓ}:
 Take the shortest path, make a local transfer, go to 2.
 4. If not pEF1:
 Raise prices of items allocated to ls and agents reaching ls, go to 2.
Fisher Market Algorithm for Goods

• MBB Graph
 • Edge \(i \leftarrow j \)

• Algorithm Sketch for Goods (Barman et al. 2018)
 1. Start with welfare maximizing allocation
 2. Least Spender: \(ls = \arg\min p(A_i) \)
 3. While there is \(ls \leftarrow i_2 \leftarrow i_3 \leftarrow ... \leftarrow i_\ell \) where \(ls \) price envies \(i_\ell \):
 Take the shortest path, make a local transfer, go to 2.
 4. If not pEF1:
 Raise prices of items allocated to \(ls \) and agents reaching \(ls \), go to 2.

Key Invariants:
\[
\downarrow \max_{i} \min_{c \in A_i} p(A_i) - p(c) \\
\uparrow \min_{i} p(A_i)
\]
Attempt 1: Algorithm for Chores

- MBB Graph
 - Edge $i \leftarrow j$

- Sketch of Adaptation for Chores
 1. Start with welfare maximizing allocation
 2. Least Spender: $ls = \arg\min_i p(A_i)$
 3. While there is $ls \leftarrow i_2 \leftarrow i_3 \leftarrow \ldots \leftarrow i_\ell$
 where ls price envies i_ℓ:
 Take the shortest path, make a local transfer, go to 2.
 4. If not pEF1:
 Raise Reduce prices of items allocated to ls and agents reaching ls, go to 2.
Algorithm for Bivalued Chores

[Phase 1: Init]
1. Start with welfare maximizing allocation

[Phase 2a]
2.

[Phase 2b: Reallocate chores]
3. Least Spender: \(l_s = \arg\min_i p(A_i) \)
4. While there is \(l_s \leftarrow i_2 \leftarrow i_3 \leftarrow \ldots \leftarrow i_\ell \)
 where \(l_s \) price envies \(i_\ell \) after removing \(c_{\ell-1} \):
 Take the shortest path, make a local transfer, go to 3.

[Phase 3: Price Reduction]
5. If not pEF1:
 Reduce prices of items allocated to \(l_s \) and agents reaching \(l_s (H_k) \), go to 2.
Algorithm for Bivalued Chores

[Phase 1: Init]
1. Start with welfare maximizing allocation, \(k = 0 \)

[Phase 2a]
2. Eliminate price envy between \(H_k \)'s, \(k = k + 1 \)

[Phase 2b: Reallocate chores]
3. Least Spender: \(l_s = \arg \min_i p(A_i) \)
4. While there is \(l_s \leftarrow i_2 \leftarrow i_3 \leftarrow \ldots \leftarrow i_\ell \) where \(l_s \) price envies \(i_\ell \) after removing \(c_{\ell-1} \):
 Take the shortest path, make a local transfer, go to 3.

[Phase 3: Price Reduction]
5. If not pEF1:
 Reduce prices of items allocated to \(l_s \) and agents reaching \(l_s \), go to 2.
Algorithm for Bivalued Chores

[Phase 1: Init]
1. Start with welfare maximizing allocation, $k = 0$

[Phase 2a]
2. Eliminate price envy between H_k’s, $k = k + 1$

[Phase 2b: Reallocate chores]
3. Least Spender: $ls = \arg\min_i p(A_i)$
4. While there is $ls \leftarrow i_2 \leftarrow i_3 \leftarrow ... \leftarrow i_\ell$
 where ls price envies i_ℓ after removing $c_{\ell - 1}$:
 Take the shortest path, make a local transfer, go to 3.

[Phase 3: Price Reduction]
5. If not pEF1:
 Reduce prices of items allocated to ls and agents reaching ls, go to 2.

Key Idea:
We can make H_k’s disjoint.
Each agent experiences price reduction at most once.
⇒ At most n Phase 3’s

Proof by Induction.
So far

• **EF1 + PO allocations** always exist for **bivalued chores**

• **Major open problems:**

 • Complexity of **EF1 + PO allocations** for goods?

 • Does **EF1 + PO allocations** always exist for chores?

• **Chores division** seems *harder* than **Goods division**
Maximin Share Fairness
Another Fairness Notion

• Maximin Share (MMS) Allocation (Budish, 2011)

 • For all agents i,

 \[v_i(A_i) \geq MMS_i \quad \text{(MMS value)} \]

• MMS value of agent i:

\[
MMS_i = \max_{P=(P_1,P_2,\ldots,P_n)} \min_{P_j \in P} v_i(P_j)
\]
Another Fairness Notion

- **Maximin Share (MMS) Allocation** (Budish, 2011)
 - For all agents i,
 \[v_i(A_i) \geq \text{MMS}_i \quad \text{(MMS value)} \]
 - **MMS value** of agent i:
 \[
 \text{MMS}_i = \max_{P=(P_1,P_2,\ldots,P_n)} \min_{P_j \in P} v_i(P_j)
 \]
 - Finding MMS values is **NP-hard**.
MMS Allocations

• **MMS allocations may not exist in general.** (Procaccia et al. (2014), Kurokowa et al. (2016))

 • Approach 1: Approximation results for general instances (Huang and Lu (2021), Garg and Taki (2020), ...)

 • Approach 2: Existential results for **restricted** instances

 • Binary: $v_{i,j} \in \{0, 1\}$ or $v_{i,j} \in \{0, -1\}$

 • Ternary: $v_{i,j} \in \{0, 1, 2\}$ (Amanatidis et al. (2017))

 • Lexicographical (Hosseini et al. (2018))

 • **Two other classes of utilities** (This work)
Factored Valuations

- Factored valuations:
 \[v_{i,j} \in \{0, p_1, p_2, \ldots, p_k\} \mid p_\ell = p_{\ell-1} \cdot q, \text{ for some } q \in \mathbb{N}. \]

Lemma. For factored valuations, **MMS value** and a corresponding partition can be found in **poly-time**.
Personalized Factored Bivalued

- Personalized Bivalued: $v_{i,j} \in \{a_i, b_i\}$
- Factored: $\frac{a_i}{b_i} \in \mathbb{N}$

Theorem 2 (a). For personalized *factored* bivalued chores or goods:
- MMS allocation always exist
- MMS + PO allocation can be found in poly time

- Feige (2022): MMS exists for bivalued utilities (non-personalized).
Weakly Lexicographic Preferences

• Agents rank items by undesirability allowing ties
 Undesirability levels: \(\{a \sim b \sim d\} > \{e \sim f\} > \{g \sim h \sim k\} \)

• Ties within a level: \(c \sim c' \rightarrow |v_{i,c}| = |v_{i,c'}| \)
 E.g. \(v_{i,a} = v_{i,b} \)

• Lexicographic preference between levels: \(|v_{i,c}| > \sum_{c', < c} |v_{i,c'}| \)
 E.g. \(|v_i(a)| > |v_i(\{e, f, g, h, k\})| \)

Theorem 2 (b). For weakly lexicographic chores or goods:
• MMS allocation always exist
• MMS + PO allocation can be found in poly time
Conclusion and Future Work

- EF1 + PO exists for bivalued chores
 - Chores seem harder than Goods
- MMS exists for two subclasses of factored utilities
 - Weakly lexicographic, Personalized factored bivalued

Open questions
- EFX + PO for bivalued?
 - EFX: no envy after removing any chore
- EF1 + PO for trivalued or weakly lexicographic instances?
- MMS for factored valuations?

Acknowledgements
Our EF1 + PO result was recently independently obtained by a AAAI paper, using a similar technique (Garg et al. (2022))
Thank you!