REVIEW ARTICLE

Na,K-ATPase as a target for endogenous cardiotonic steroids: What’s the evidence?

Sergei N. Orlov a,b,c, Artem M. Tverskoi a,*
Svetlana V. Sidorenko a,b, Larisa V. Smolyaninova a,b
Olga D. Lopina a, Nickolai O. Dulin d, Elizaveta A. Klimanova a,b

a MV Lomonosov Moscow State University, Moscow, 119234, Russia
b National Research Tomsk State University, Tomsk, 634050, Russia
c Siberian State Medical University, Tomsk, 634050, Russia
d University of Chicago, IL, 60637, USA

Received 5 November 2019; received in revised form 24 December 2019; accepted 9 January 2020
Available online 22 January 2020

KEYWORDS
Cell proliferation;
Cellular signaling;
Endogenous cardiotonic steroids;
Na⁺,K⁺-ATPase;
Transcription;
Translation

Abstract With an exception of few reports, the plasma concentration of ouabain and marinobufagenin, mostly studied cardiotonic steroids (CTS) assessed by immunoassay techniques, is less than 1 nM. During the last 3 decades, the implication of these endogenous CTS in the pathogenesis of hypertension and other volume-expanded disorders is widely disputed. The threshold for inhibition by CTS of human and rodent α1-Na,K-ATPase is ~1 and 1000 nM, respectively, that rules out the functioning of endogenous CTS (ECTS) as natriuretic hormones and regulators of cell adhesion, cell-to-cell communication, gene transcription and translation, which are mediated by dissipation of the transmembrane gradients of monovalent cations. In several types of cells ouabain and marinobufagenin at concentrations corresponding to its plasma level activate Na,K-ATPase, decrease the [Na⁺]/[K⁺]-ratio and increase cell proliferation. Possible physiological significance and mechanism of non-canonical Na⁺/K⁺-dependent and Na⁺/K⁺-independent cell responses to CTS are discussed.

Copyright © 2020, Chongqing Medical University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

A half century ago, De Wardener and co-workers reported that in dogs natriuresis triggered by intravenous saline administration occurs even in the absence of significant changes in renal perfusion pressure and glomerular filtration rate. This observation suggesting an implication in renal salt handling new unknown system termed as a Third Factor. Twenty years later, it was shown that natriuretic effect of the Third Factor might be at least partially explained by augmented production of atrial and brain natriuretic peptides (ANP and BNP) which inhibit in renal epithelial cells the basolateral Na,K-ATPase via their interaction with G protein-coupled receptors and activation of cGMP-mediated signaling. At the same time, several research teams demonstrated that low molecular compounds distinct of ANP and BNP can also contribute to this phenomenon. Thus, Buckalew and co-workers found that serosal application of plasma ultrafiltrate from salt-loaded dogs to the frog skin lacking ANP and BNP receptors decreases the transepithelial potential difference and short current thus suggesting an inhibition of the basolateral Na⁺ transport² (for historical details, see³-⁵).

The beneficial effect of digitals in the therapy of heart failure, described more than 200 years ago, led to the identification of numerous plant-derived cardenolides, including ouabain, i.e. the most hydrophilic steroid used in an overwhelming number of in vitro studies. Other members of the cardioactive steroid (CTS) superfamily, bufadienolides, were isolated from amphibians.⁶ A long-lasting search for endogenous CTS (ECTS) resulted in the purification from mammalian species compounds identical to ouabain,⁷-⁹ digoxin,¹⁰ bufalin,¹¹ marinobufagenin (MBG),¹²,¹³ telocinobufagin¹⁴ and marinobufutoxin¹⁵ (structure of some endogenous cardioactive steroids are presented in Fig. 1) Data on association of cardiovascular, renal and neuronal diseases with increased ECTS level and preventive actions of passive immunization by anti-ECTS antibodies allowed researchers to propose an implication of ECTS in the pathogenesis of these and other volume-expanded disorders (for comprehensive review, see¹⁶-²¹).

Starting from early 90th the focus of investigations has been directed to the mechanisms by which ECTS may contribute to physiological and pathophysiological actions of ECTS.¹⁶,¹⁷,²⁰,²³-²⁵ In this review, we examine the potential role of ECTS in the triggering of canonical and non-canonical cellular responses by comparative analysis of their plasma content and dose-dependent actions of ECTS on NKA activity, intracellular content of monovalent cations, intracellular signaling pathways and cellular responses affecting cell proliferation and gene expression.

The content of circulating ECTS

Data on the content of ECTS in the extracellular fluids were mainly obtained by ELISA, RIA, DELFIA and other immunoassay approaches. Table 1 displays that with few exceptions the plasma concentration of immunoreactive ouabain and MBG in mammalian species is less than 1 nM. The huge variability of the plasma content of ouabain (from 0.05 to 1 nM) and MBG (from 0.2 to 6 nM) in healthy patients reported by different laboratories (Table 1) can be explained by numerous features of self-made reagents employed in these investigations. This comment becomes important because 3 research teams failed to detect any immunoreactive ouabain in the human plasma after its high-performance liquid chromatography separation.²⁶-²⁸ More recently, the negative results were also obtained by newly developed ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). This sophisticated technique having a lower limit of quantification of 0.002 nM failed to detect ouabain in the plasma of healthy subjects as well as patients with heart failure.²⁹ Keeping these data in mind it might be proposed that immunoreactive ouabain-like substance(s) rather than authentic ouabain per se has been detected in part of the studies listed in Table 1.

Do ECTS inhibit Na,K-ATPase?

Na,K-ATPase is a complex of proteins integrated into plasma membrane, it is found in all types of animal cells. The enzyme is composed of α- and β-subunits. Larger α-subunit (~110 kDa) hydrolyses ATP, this results in the phosphorylation of Asp369 residue located in enzyme active site. After that the enzyme undergoes E₁-E₂ conformational change that, in turn, leads to enzyme dephosphorylation. As consequence of these events Na,K-ATPase provides electrogenic ion transport (3Na⁺ vs 2K⁺) with a rate of 60–80 phosphorylation–dephosphorylation cycles per sec. Three other NKA α-subunit isoforms were found by screening cDNA libraries in addition to the ubiquitous α₁-isoform. These isoforms are highly expressed in astrocytes, neuronal cells (α3 and α2), heart, skeletal muscle (α2), and testis (α4). In majority of tissues (possibly, with an exception of kidney epithelial cells) at least two different isoforms are expressed: the ubiquitous α₁-NKA is supplied by another (usually regulated) isoform (for review, see³⁰,³¹). The mechanism of CTS inhibiting effect on NKA was mostly investigated with ouabain originating from Strophanthus gratus and having much higher water solubility in comparison with other CTS. Lingrel with coauthors demonstrated that at least 10 amino acid residues in H1, H5 and H7 α-subunit transmembrane segments
as well as in H1–H2, H5–H6 and H7–H8 extracellular loops exert an influence on ouabain affinity of NKA. Their important role in CTS binding was also approved by comparative analysis of NKA derived from different species. Ouabain affinity to rat and mouse NKA α1-subunit (CTS-resistant α1R-NKA) is 3 orders of magnitude lower in comparison with other mammalian species (CTS-sensitive α1S-NKA). It was shown that the replacement of neutral Gln111 and Asn122 in α1-subunit by charged Arg and Asp amino acids resulted in 1000-fold decrease of ouabain affinity to it. The same amino acid replacement significantly decreased α2- and α3-NKA affinity for ouabain. Unlike ubiquitous α1-isozyme, the affinity for CTS of α2-α4-NKA in rodents and other mammalian species are about the same.

In the early 1980s, M.P. Blaustein proposed that augmented ECTS production partially normalizes renal function by inhibiting the Na-pump located in basolateral membranes of renal epithelial cells but elevates total peripheral resistance via suppression of this enzyme in vascular smooth muscle cells. However, that the treatment of congestive heart failure with commercially available cardenolides occurs in the absence of significant natriuresis. The hypothesis on the implication of ECTS via NKA inhibition also contradicts to the comparative analysis of ECTS concentration detected in the extracellular fluids and their dose-dependent action on NKA activity (Fig. 2). Indeed, at concentrations less than 100 nM ouabain had no significant impact on NKA activity in rat renal epithelial cells and vascular smooth muscle cells isolated form rat aorta. In both cases, half-maximal modulation of intracellular cation content was observed at 500–1000 μM of ouabain that was at least 3 orders of magnitude higher than the plasma content of immunoreactive ouabain and MBG. Data on the inhibitory action of ouabain and MBG on the activity of human α1S-NKA as well as CTS-sensitive α2-, α3-isozymes at concentrations less than 1 nM are limited to few publications (Table 2). To the best of our knowledge there is no report showing dissipation of transmembrane gradients of monovalent cations by ECTS at the range corresponding to their concentrations in plasma.

Comparative analysis of the dose-dependent actions of ouabain and MBG on NKA activity in membrane fractions enriched by vascular smooth muscle sarcolemma and perivascular nerve endings (neuronal plasmalemma) containing predominantly α1- and α3-isozymes respectively, demonstrated that affinity for ouabain and MBG of α1- and α3-isozymes are sharply different (IC50 for inhibition of α1-NKA by ouabain and MBG are 50 and 2 nM, respectively, vs 3 and 140 nM in the case of α3-NKA). These data contradict to 5-fold elevation of the affinity for ouabain compared to MBG in Madin–Darby canine kidney cells abundant with α1-NKA and about the same affinity demonstrated in α1-NKA purified from duck salt glands. Possible mechanisms underlying this discrepancy should be examined further.

It is known that in some cell types (neurons, glia, vascular smooth muscle myocytes) α2- and α3-isozymes of NKA are located in microdomains of plasma membrane that
are in close proximity to the underlying endoplasmic reticulum. Keeping in mind this finding and the extremely low affinity of rodent α1R-NKA for CTS, Blaustein and co-workers proposed that ECTS evoked an increase of vascular tone via elevation of \([\text{Na}^+]_i\) in the space-limited plasma membrane-junctional endoplasmic reticulum (plasmerosomes) abundant with ubiquitous isoform of the \(\text{Na}^+/\text{Ca}^{2+}\) exchanger (NCX1) and with \(\alpha2^{-}\), \(\alpha3^{-}\)-NKA. A key role of NCX1 in the development of salt-sensitive hypertension was demonstrated by using a selective inhibitor of this carrier, compound SEA0400. Moreover, it was shown that DOCA-salt-induced increment of blood pressure was absent in NCX1-deficient Slc8a1 −/− mice but was increased in transgenic mice expressing canine Ncx1.3 driven by the smooth muscle-specific promoter. To the best of our knowledge, the elevation of \(\text{Na}^+\) concentration in cytoplasm or plasmerosome compartments by ECTS at concentrations detected in the extracellular fluids has not been demonstrated.

Do ECTS trigger non-canonical \(\text{Na}^+_i/\text{K}^+_i\)-mediated cellular responses?

In this section, we briefly summarized the data on non-canonical cellular responses triggered by CTS and mediated by elevation of the \([\text{Na}^+]_i/[\text{K}^+]_i\)-ratio.

Gene expression

We observed that long-term inhibition of NKA in rat vascular smooth muscle cells (RVSMC) by ouabain results in sharp elevation of RNA synthesis and appearance of hundreds of newly synthesized proteins. Later on we employed Affymetrix technology for identification of cell-type specific and ubiquitous set of \(\text{Na}^+/\text{K}^+\)-sensitive transcripts by comparative analysis of the action of ouabain and \(\text{K}^+\)-free medium on transcriptomic changes in HUVEC, RVSMC and HeLa cell line. In this study, we

CTS and groups under investigation	Values, nM	References
Ouabain		
Humans EH/PA/control	3.39 ± 0.57/4.09 ± 1.12/0.53 ± 0.10	110
Humans CHF/control	0.030–8.3/0.16–0.77	111
Humans CHF/control before HPLC	0.25–1.6/0.13–0.56	28
Humans CHF/control after HPLC	ND/ND	
MHS/MNS	0.076 ± 0.029/0.027 ± 0.014	112
NaCl-loaded rats/control	1.43 ± 0.06/1.14 ± 0.05	113
ACTH-treated subjects/control	0.87 ± 0.25/0.64 ± 0.17	114
ACTH-treated rats/control	0.09 ± 0.01/0.10 ± 0.04	115
Humans: CRF/EH/PA/control	0.14 ± 0.02/0.13 ± 0.05/0.10 ± 0.03/0.09 ± 0.02	116
Humans: preeclampsia/control	0.70 ± 0.16/0.32 ± 0.07	117
3rd trimester of pregnancy/control	0.024 ± 0.004/0.009 ± 0.001	118
Mild EH/control	0.039 ± 0.024/0.029 ± 0.018	119
DS, high/low-NaCl diet	0.12 ± 0.02/0.10 ± 0.02	120,121
Rats, high/normal NaCl intake	0.28 ± 0.04/0.34 ± 0.06	122
Humans: volume expansion/control	0.21 ± 0.04/0.09 ± 0.02	121
Dogs: controls	0.138 ± 0.043	7
Humans: controls	0.037 ± 0.007	7
Humans: nephrectomy/control	0.20 ± 0.06/0.12 ± 0.06	123
Humans: mild hypertension/control	1.34 ± 0.91/0.38 ± 0.31	124
Humans: control	0.152 ± 0.067	125
Humans: low-renin EH/control	0.94 ± 0.22/0.37 ± 0.04	126

Marinobufagenin		
ACTH-treated rats/control	0.44 ± 0.06/0.21 ± 0.05	115
Patients with CRF/EH/PA/control	16.6 ± 5.3/1.7 ± 0.7/13.5 ± 12.9/0.26 ± 0.05	116
Patients with preeclampsia/control	2.63 ± 0.10/0.63 ± 0.07	117
DS, high/low-NaCl diet	1.24 ± 0.02/0.27/0.38 ± 0.04	120,121
Patients with CHF stage IV/stage I	1.90 ± 0.04/0.60 ± 0.14	127
Rats, high/normal-NaCl intake	1.14 ± 0.12/0.55 ± 0.06	122
Patients with AMI/control	1.9 ± 0.38/0.38 ± 0.01	13
Rats with volume expansion/control	0.49 ± 0.05/0.20 ± 0.06	121
Patients with nephrectomy/control	0.57 ± 0.04/0.36 ± 0.02	128
Patients: 24-hr low/high salt diet	0.16–0.30/0.18–0.37	108

Abbreviations: AMI – acute myocardial ischemia; CHF – congestive heart failure; CRF – chronic renal failure; DS – Dahl salt-sensitive rats; EH – essential hypertension; HPLC – high-performance liquid chromatography; MHS and MNS – Milan hypertensive and normotensive strains, respectively; ND – non detectable; PA – primary aldosteronism.
detected changes in expression levels of hundreds of genes that were highly correlated between two treatments thus demonstrating a key role of Na\(^+\)/K\(^+\)-mediated mechanism of excitation-transcription coupling. Importantly, about 80 Na\(^+\)/K\(^+\)-sensitive transcripts were found in all types of cells. This set of ubiquitous Na\(^+\)/K\(^+\)-sensitive transcripts was highly abundant with early response genes (ERG) and other genes involved in transcription regulation.\(^{43,44}\)

Data on the time- and dose-dependent actions of ouabain and MBG on intracellular Na\(^+\) and K\(^+\) content and gene expression in human endothelial cells strongly suggest that both ECTS affect excitation-transcription coupling via NKA inhibition and [Na\(^+\)]\(_i\) elevation.\(^{45}\) This study demonstrated that 4-fold elevation of c-Fos mRNA occurs within 30 min after the addition of ouabain. At that moment [Na\(^+\)]\(_i\) was increased by 5-fold whereas [K\(^+\)]\(_i\) was declined by less than 15%.\(^{46}\)

After Lubin and Ennis\(^{47}\) pioneer observation, a number of laboratories have shown K\(^+\) requirement for protein synthesis thus assuming the bimodal effect of CTS on gene expression via activation and inhibition of transcription and translation, respectively (for review, see\(^{48,49}\)). In reticulocytes [Na\(^+\)]\(_i\) increase reduces the efficiency of K\(^+\)_i-dependent regulation of protein synthesis probably through the competition for one binding site within hypothetical K\(^+\)_i-sensor.\(^{50}\) As another hypothesis it might be suggested that elevation of [Na\(^+\)]\(_i\) reduces the elongation factors transcription. Moreover, we discovered that 6-hr incubation of HUVEC in the presence of ouabain resulted in 3-fold decrease of mRNA encoding eukaryotic translation initiation factor 5 (eIF5).\(^{51}\) This factor plays common role in protein synthesis by inducing mRNA translation and GTP hydrolysis.\(^{52,53}\) The molecular origin of intracellular Na\(^+\) and K\(^+\) sensors involved in activation of gene transcription and translation remains unknown.

Tight junctions and cell adhesion

Gupta and co-workers have shown that discrepancies in dose-dependent decrease the attachment of human and monkey cells possessing CTS-sensitive \(\alpha\)1S-NKA by ouabain, vs mouse and hamster cells, having CTS-resistant \(\alpha\)1R-NKA, positively correlate with discrepancies in dose-dependent suppression of \(^{86}\)Rb influx.\(^{54}\) At large doses, ouabain severely decreased the adhesion of COS-7 \(^{55}\) and human retinal pigment epithelial cells\(^{56}\) and blocked tight junctions in Madin–Darby canine kidney (MDCK) cells, RVSMC\(^{58,59}\) and HeLa cells.\(^{58}\) Importantly, tight junction and adhesion breakdown in cells with \(\alpha\)1R- and \(\alpha\)1S-NKA was observed at concentration of ouabain \(\sim1000\) and 1 \(\mu\)M, respectively,\(^{55,57–60}\) i.e. in the range of these enzymes’ complete inhibition. It should be noted that these ouabain effects were revoked in the medium without Na\(^+\) and were imitated by NKA inhibition in K\(^+\)-depleted medium.\(^{56,57,60,61}\) Viewed collectively, these data assume that Na\(^+\) and K\(^+\) transmembrane gradient maintenance is an obligatory factor for the establishment the adhesion and cell-to-cell communications. The relative contribution the gain of Na\(^+\) and loss of K\(^+\) in this phenomenon remains a matter of speculations.\(^{62}\)

Do ECTS activate Na\(^+\),K\(^+\)-ATPase?

Numerous research team reported that low doses of CTS activate rather than inhibit Na\(^+\),K\(^+\)-ATPase. Thus, it was demonstrated that Na-pump providing ion current in single cardiac myocytes from dog, human hearts, and guinea pig hearts\(^{55}\) is augmented with 10 nM and less ouabain concentration. At this low ouabain doses Na\(^+\) concentration in guinea pig atria\(^{64,65}\) was decreased. At 0.1 nM ouabain an activation of \(^{86}\)Rb uptake was seen in human
erythrocytes, whereas at 10 nM and 10 pM ouabain augmented \(^{86}\)Rb uptake was found in opossum and human kidney proximal tubule cells, respectively. Stimulation of Na-pump and increment of NKA activity by ouabain and MBG were also documented in hippocampal slice cultures and human mesenteric arteries, as well as microsomal fractions from mammalian kidney and duck salt glands. We observed that prolonged incubation of HUVEC with ouabain (1 and 3 nM) decreased \([Na^+]_i\) and increased \([K^+]_i\) resulting in \([Na^+]_i/[K^+]_i\)-ratio attenuation by 30–50%. It should be noted that low doses of ouabain increased the rate of \(^{86}\)Rb influx suggesting that elevation the \([Na^+]_i/[K^+]_i\)-ratio is caused by NKA activation. Considered the data on the plasma content of ECTS obtained by immunoassay technique (Table 1, Fig. 2) it might be assumed that their actions in vivo documented using anti-CTS antibodies are at least partially mediated by NKA activation.

Do ECTS trigger cell proliferation?

Proliferation of cultured human and canine VSMC, proximal tubule cells from opossum kidney, HUVEC, and human polycystic kidney cells increased by 20–30% after the addition of ouabain at concentrations less than 1 nM, that is in the range corresponding to its plasma concentrations (Table 1). At doses lower than 1 nM ouabain also increased growth of rat proximal tubule cells, rat astrocytes and rat VSMC expressing \(\alpha_1R\)-NKA. As noted above at these concentrations ouabain did not inhibit NKA, thus indicating that CTS proliferation action is mediated by Nai\(^+\), K\(^+\)-independent signaling induced by \([Na^+]_i/[K^+]_i\)-ratio elevation.
Table 3 Major signaling pathways triggered by ouabain.

Cellular response	Type of cells/ouabain concentration, nM	References
[Ca\(^{2+}\)]\(_i\), oscillations & elevation	c-PTC, 10−100	100
	h-EC, 1−10	76
	r-PTC, >5 × 10\(^4\)	100,145
	r-CM, 10\(^3\)	87,146
ERK phosphorylation & activation	p-LCC-PK1, >10\(^2\)	88
	r-A7r5, 10\(^3\)	88
	gp-heart, 10\(^2\)	150
	r-heart, 5 × 10\(^4\)	150
	h-breast cancer cells, 10\(^2\)	151
	h-SKMC, 10\(^2\)	152
	c-VSMC, 1	74
Src activation	p-LCC-PK1, 10\(^3\)	88
	r-A7r5, 10\(^3\)	88
	r-CM, 10\(^3\)	87
	h-breast cancer cells, 10\(^2\)	151
	h-SKMC, 10\(^2\)	152
Protein tyrosine phosphorylation	c-PTC, 10\(^3\)	87
	c-REC, 10\(^3\)	153
	c-VSMC, 1	74
Akt phosphorylation	o-kidney PTC, 10\(^6\)	67

Abbreviations: c – canine, f – fish, gp – guinea pig, h – human, m – mouse, mm – monkey; p – pig, r – rat; CGC – cerebellar granule cells; CM – cardiomyocytes; CytD – cytoskeletal D, EC – endothelial cells, EGFR – epidermal growth factor receptor, PKC – protein kinase C; PLC – phospholipase C; PSMC – prostate smooth muscle cells, PTC – proximal tubule cells, SKMC – skeletal muscle cells; VSMC – vascular smooth muscle cells.

Data obtained in rodents appear in italics.

\(* P < 0.05; ** P < 0.01; *** P < 0.001.\)

Nevertheless, it should be noted that the lack of ouabain effect on NKA documented in above-cited studies might be explained by the variety of incubation times used in these measurements. Indeed, cells were placed in the medium with ouabain for more than 24 h in order to estimate proliferation, whereas to assess \(^{86}\)Rb influx rate and NKA activity\(^{57,74,76,79,80}\) 15–30 min of incubation were used. This is important because of long–time interaction of NKA with CTS at their low concentrations documented in human lymphocytes\(^{81}\) and HUVEC.\(^{51}\) Thus, in HUVEC indeed, half-maximal elevation of [Na\(^+\)]\(_i\), by 100 nM ouabain was detected in 6 h, whereas in 24 and 48 h the same increment was detected at ouabain concentrations of 30- and 10 nM, respectively.\(^{51}\) We observed that 48–72 h exposure of HUVEC to low nanomolar to picomolar concentrations of ouabain increased cell growth by 20–40%.\(^{51}\) Importantly, prolonged exposure to 1 and 3 nM ouabain increased [K\(^+\)]\(_i\), and decreased [Na\(^+\)]\(_i\), resulting in attenuation of the [Na\(^+\)]\(_i\)/[K\(^+\)]\(_i\)-ratio by 30–50%. At these concentrations, ouabain increased the rate of \(^{86}\)Rb influx suggesting that side-by-side with Na\(^+\)/K\(^+\)-independent signaling augmented cell proliferation might be caused by NKA activation and elevation the [Na\(^+\)]\(_i\)/[K\(^+\)]\(_i\)-ratio.\(^{51}\) Data on the inhibitory actions of CTS at concentrations 3–4 order of magnitude higher than their plasma level on cell proliferation, oncrosis and apoptosis is out of scope of our review and considered elsewhere\(^{23,82–84}\).

Do ECTS evoke Na\(^+\)/K\(^+\)-independent signals?

Xie and Askari were probably the first to propose that side-by-side with monovalent ions transmembrane gradient dissipation CTS affect cellular function by triggering Na\(^+\)/K\(^+\)-independent signals.\(^{85}\) Table 3 displays the early data on dose-dependent ouabain effects on intracellular signaling intermediates. Recent studies considering the comparative contribution of Na\(^+\)/K\(^+\)-mediated and -independent signaling are briefly described below.

Src-kinase

First evidence supporting membrane-associated non-receptor tyrosine kinase Src activation came from experiments that demonstrated time- and dose-dependent tyrosine phosphorylation in cells treated by CTS.\(^{86}\) Hence, exposure of cardiac myocytes, HeLa, L929, and A7r5 cells to ouabain led to fast activation of Src, its epidermal growth factor receptor (EGFR) and several proteins tyrosine phosphorylation that was removed by Src kinase inhibitors PP2 and herbimycin A.\(^{87,88}\) It was demonstrated that ouabain activates ERK MAPK and Src in transfected pig renal epithelial cells (PY-17) having z1-but not z2-NKA.\(^{89}\) Detailed mapping of z1-NKA nucleotide binding domain revealed 20-amino acid peptide (Ser-415 to Gln-434, NAK-tide). This chemically synthesized NaKtide inhibited Scr (IC\(_{50}\) = 70 nM). Positively charged analogs of NaKtide entered into LLC-PK1 cells and suppressed ouabain-induced Src and ERK MAPK activation.\(^{90}\) Using FRET technology it was shown that ouabain induces Src kinase domain dissociation from z1-NKA nucleotide binding domain that leads to Src tyrosine phosphorylation and activation\(^{91}\) in LLC-PK1 cells. Lately, however, Gable et al. re-examined this effect and reported that Src-418 phosphorylation as the measure of Src activation is increased in cell-free systems not only by ouabain but also by two other NKA inhibitors (oligomycin and vanadate). They concluded that decrease of Src phosphorylation is primary result of ATP-sparing effect and cannot serve as an evidence of NKA and Src interaction triggered by CTS binding.\(^{92}\) Further investigations were carried by Yu et al. using native and mutant forms of z2-NKA.\(^{93}\) Native z2-isofrom is known to lack putative Src-binding sites and fail to carry on Src-dependent signaling. Authors introduced key amino acid residues of the two Src-interacting domains that are on z1-but not z2-sequence into the z2-polypeptide and generate stable cell lines expressing this mutant. Comparison Src-signaling properties of cells expressing this mutant demonstrated that in contrast to wild-type z2, the mutant cells gained z1-like signaling function.

It has been proposed that signaling cascades triggered by NKA interaction with Src do not depend on the change of
intracellular Na⁺, K⁺ and Ca²⁺ concentrations. Indeed, initial publications reported about increased EGFR and several other proteins tyrosine phosphorylation at ouabain concentrations that have no considerably influence on intracellular Na⁺ content and Rb influx. It should be noted, however, that cells loaded with fluorescent dye possessing low Na⁺/K⁺-selectivity was employed in this study. Using Na⁺/K⁺-selective isotope technique we found that MAPK phosphorylation in HUVEC occurs at ouabain concentrations leading to elevation of the [Na⁺]/[K⁺]-ratio. This observation is consistent with other reports showing Src-mediated signaling at CTS concentrations that inhibit NKA and [K⁺]-selectivity. In LA, [K⁺]-selectivity was employed in this study. Using Na⁺/K⁺-selectivity protein kinase B also known as Akt in the presence of 100 nM MBG and [Ca²⁺]i oscillations were also observed in the presence of 100 nM MBG and digoxin. Importantly, unlike modest ouabain concentrations, complete suppression of NKA by 2 mM of ouabain did not produce [Ca²⁺]i oscillations but resulted in continuous [Ca²⁺]i increase. It was also demonstrated that [K⁺]o decreased from 4.0 to 0.5 mM led to the same [Na⁺]o increase as 250 μM of ouabain. Inversely to ouabain ([K⁺]o), decrease abolished [Ca²⁺]i oscillation rather than enhanced them. Based on these observations, authors suggested that [Ca²⁺]i oscillations found in ouabain-treated cells are not primary result of NKA inhibition. Additional investigations should be accomplished to reveal the role of Na⁺/K⁺-independent signaling and dissipation of monovalent cations transmembrane gradient in [Ca²⁺]i oscillations produced by interaction of NKA and InsP₃ receptor interaction.

PI3K-Akt

Liu et al. reported about activation of serine/threonine- specific protein kinase B also known as Akt in the presence of 50 μM ouabain that was abolished by phosphatidylinositol 3-kinase (PI3K) inhibitors in cultured neonatal rat cardiac myocytes. They also detected that ouabain induces phosphatidylinositol 3,4,5-triphosphate (PIP3) content and Rb influx. Importantly, the augmented tyrosine phosphorylation was mimicked by NKA inhibition in K⁺-depleted medium. Viewed collectively, these data strongly suggest that in CTS-treated cells raised [Na⁺]/[K⁺]-ratio contributes to Src-mediated signaling triggering/progression.

Ca²⁺-oscillations

Aperia and co-workers reported that in rat proximal tubule cells partial NKA inhibition by 50–250 μM ouabain was accompanied by increased amplitude of low-frequency [Ca²⁺]i oscillation which were abolished by L-type Ca²⁺ channel blocker nifedipine. It is well-documented that [Ca²⁺]i oscillations activate transcription factors NF-kB and CREB. In fact, ouabain-induced [Ca²⁺]i oscillations blockade that eliminated NF-kB and CREB activation was provided by their enter into the nucleus and phosphorylation, respectively. [Ca²⁺]i oscillations in human COS-7 cells were found in the presence of 100 nM ouabain that induces 10% Rb influx inhibition. Similar oscillations were also observed in the presence of 100 nM MBG and digoxin.

Conclusion and unresolved issues

Scheme illustrating data considered in this review are presented on Fig. 3. Results we examined demonstrate that with exception of few reports the plasma concentration of ouabain and MBG, i.e. two mostly studied CTS assessed by immunoassay techniques, is less than 1 nM. The threshold for inhibition by CTS of human and rodent α1-NKA, i.e. the only isoform detected in renal epithelial cells, is ~1 and 1000 nM, respectively, that rules out the functioning of ECTS as natriuretic hormones (at least in rodents). As predicted, at concentrations <1 nM CTS have no impact on non-canonical cellular responses, including cell adhesion, cell-to-cell communication via tight junction, gene transcription and translation, which are mediated by dissipation of the transmembrane gradients of monovalent cations (for review see73). It should be noted, however, that local ECTS concentration might be essentially higher than that detected in plasma. In addition, NKA sensitivity to CTS is augmented by diverse stimuli, increasing its content in the E₂ ~P state, including attenuation of [K⁺]o, and elevation of [Na⁺]o. Importantly, baseline [K⁺]o in CSF and tubular fluid delivered to distal nephrons is decreased by ~2-fold compared to plasma. In neurons, short periods of synaptic activity produce increases of [Na⁺]o, from ~10 to 30 and 100 mM in apical dendrites and dendritic spines, respectively.

At concentrations less than 1 nM ouabain increases by 20–30% proliferation of several cell types (cultured human and canine VSMC, proximal tubule cells from opossum kidney, and HUVEC proximal tubule cells from opossum kidney, and human polycystic kidney cells) having α1S-NKA. Because many authors reported that ouabain within this range (0.1–1 nM) activates NKA by about 25% (for review see73) we may suggest that cell proliferation is due to NKA activation and elevation the [Na⁺]/[K⁺]-ratio.

So, more experiments should be performed to investigate ECTS role in the triggering of Na⁺/K⁺-mediated cellular responses. What is [Na⁺]- and [K⁺]-sensors molecular origin participating in regulation of gene transcription, translation and other non-canonical cellular responses triggered by NKA inhibition and elevation of the [Na⁺]/[K⁺]-ratio? What is the mechanism of NKA activation by low doses of CTS? Does this mechanism contribute to proliferative effects and activation of several signaling pathways documented in cells subjected to chronic exposure to low
doses of CTS? Do these actions provide a link between the augmented content of ECTS and pathogenesis of volume-expanded disorders proposed by several research teams16–21,53,71,108,109 We address these questions to forthcoming studies.

Conflict of Interests

The authors declare no conflict of interests.

Acknowledgements

This work was supported by grants from the Russian Science Foundation \#19-75-10009 — E.A.K.; the Russian Foundation for Basic Research (\#18-04-00063 - S.N.O., \#18-34-00308 - A.M.T.); the National Institutes of Health Award 1R56HL127395 (N.O.D.) and National Center For Advancing Translational Sciences of the National Institutes of Health Award UL1TR000430 (N.O.D.).

In memorium: Sergei N. Orlov (1947–2019) Paper "Na+,K+-ATPase as a target for endogenous cardiotonic steroids: what's the evidence?" was the last one written by our dear friend and colleague professor Sergei N. Orlov. He passed away on 13 October 2019. Sergei N. Orlov was born on 6 December 1947 in small town Kashira (Russia) that is located on the pictorial bank of the Oka. He graduated from middle school here and in 1966 was accepted at Lomonosov Moscow State University, Faculty of Biology. He graduated from the university in 1971 with outstanding academic achievement and entered a PhD program at Moscow State University in the specialty "biophysics". His PhD thesis was related to the study of free radical oxidation of higher fatty acids in phospholipids of biological membranes. Since 1975 he stated to work in Central scientific research laboratory of Ministry of Health under the guidance of chief forensic pathologist professor Yu.V. Posnov. S.N. Orlov and Yu.V. Postnov collected a group of young scientists and started to study the peculiarities of transport of monovalent cations through the cell membranes of hypertensive animals and patients. In 1983 they established discovery: "Phenomenon of propagated disturbances of cation transport through plasma membrane in essential hypertension". In 1993 Sergei Orlov was awarded by International Society on Hypertension (Pfizer Award) and became a recipient of professorship in Montreal University. Since 1993 up to 2013 he conducted his research in Research Centre of Montreal University. Main problem that was interested professor S.N. Orlov during this time was effect of monovalent cations fluxes on physiological state of different animal cells and especially on gene expression. In 2013 professor S.N. Orlov returned to Moscow State University where he continued research studies up to the fall of 2019. S.N. Orlov is an author of about 350 scientific papers, 7 books and 6 patents. He was a member of editorial teams of 9 scientific journals. Last years of life S.N. Orlov devoted to the search of sensors of monovalent cations, which were considered him as second messengers. Being seriously ill Sergei continued to work until last day of his life. His grave is on the local cemetery of his lovely town Kashira.

References

1. de Wardener HE, Mills IH, Clapham WF, Hayter CJ. Studies on the efferent mechanism of the sodium diuresis which follows the administration of intravenous saline in the dog. Clin Sci. 1961;21:249–258.
2. de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extracts in rats. Life Sci. 1981;28(1):89–94.
3. Buckalew VM, Martinez FJ, Green WE. The effect of dialysates and ultrafiltrates of plasma of saline-loaded dogs on toad bladder sodium transport. J Clin Invest. 1970;49(5):926–935.
4. Buckalew VM. Endogenous digitalis-like factors: an overview of the history. Front Endocrinol. 2015;6, e49.
5. Hamlyn JM. Natriuretic hormones, endogenous ouabain, and related sodium transport inhibitors. Front Endocrinol. 2014;5, e199.
6. Krenn L, Kopp B. Bufadienolides from animal and plant sources. Phytochemistry. 1998;48(1):1–29.
7. Hamlyn JM, Blaustein MP, Bova S, et al. Identification and characterization of a ouabain-like compound from human plasma. Proc Natl Acad Sci U S A. 1991;88(14):6259–6263.
8. Kawamura A, Guo J, Itagaki Y, et al. On the structure of endogenous ouabain. Proc Natl Acad Sci USA. 1999;96(12):6654–6659.
9. Schneider R, Wray V, Nimtz M, et al. Bovine adrenals contain, and its hypertensive effect in rats. Circ Res. 2018;122(11):1223–1232.
10. Bagrov AY, Shapiro JI, Fedorova OV. Effects of two putative endogenous digitalis-like factors, marinobufagenin and ouabain, on the Na⁺,K⁺-pump in human mesenteric arteries. J Hypertens. 1998;16(12 Pt 2):1953–1958.
11. Lichtstein D, Gati I, Samuelov S, et al. Identification of digitalis-like compounds in human cataractous lenses. Eur J Biochem. 1993;216(1):261–268.
12. Bagrov AY, Fedorova OV. Effects of two putative endogenous digitalis-like factors, marinobufagenin and ouabain, on the Na⁺,K⁺-pump in human mesenteric arteries. J Hypertens. 1998;16(12 Pt 2):1953–1958.
13. Komiyama Y, Dong Y, Hishimura N, et al. A novel endogenous digitalis, telocinobufagin, exhibits elevated plasma levels in patients with terminal renal failure. Clin Biochem. 2005;38(1):36–45.
14. Yoshida K, Komiyama Y, Konishi M, et al. Novel digitalis-like factor, marinobufotoxin, isolated from cultured Y-1 cells, and its hypertensive effect in rats. Hypertension. 2007;49(1):209–214.
15. Schoner W, Scheiner-Bobis G. Endogenous and exogenous cardiac glycosides: their role in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol. 2007;293(2):C509–C536.
16. Bagrov AY, Shapiro JI, Fedorova OV. Endogenous cardiotonic steroids: physiology, pharmacology, and novel therapeutic targets. Pharmacol Rev. 2009;61(1):9–38.
17. Leenen FHH. The central role of the brain aldosterone-“ouabain” pathway in salt-sensitive hypertension. Biochim Biophys Res Commun. 1990;173(3):1093–1101.
18. Lichtstein D, Gati I, Samuelov S, et al. Identification of digitalis-like compounds in human cataractous lenses. Eur J Biochem. 1993;216(1):261–268.
19. Komiyama Y, Dong Y, Hishimura N, et al. A novel endogenous digitalis, telocinobufagin, exhibits elevated plasma levels in patients with terminal renal failure. Clin Biochem. 2005;38(1):36–45.
20. Yoshida K, Komiyama Y, Konishi M, et al. Novel digitalis-like factor, marinobufotoxin, isolated from cultured Y-1 cells, and its hypertensive effect in rats. Hypertension. 2007;49(1):209–214.
21. Schoner W, Scheiner-Bobis G. Endogenous and exogenous cardiac glycosides: their role in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol. 2007;293(2):C509–C536.
22. Bagrov AY, Shapiro JI, Fedorova OV. Effects of two putative endogenous digitalis-like factors, marinobufagenin and ouabain, on the Na⁺,K⁺-pump in human mesenteric arteries. J Hypertens. 1998;16(12 Pt 2):1953–1958.
23. Bagrov AY, Fedorova OV. Effects of two putative endogenous digitalis-like factors, marinobufagenin and ouabain, on the Na⁺,K⁺-pump in human mesenteric arteries. J Hypertens. 1998;16(12 Pt 2):1953–1958.
24. Schoner W, Scheiner-Bobis G. Endogenous and exogenous cardiac glycosides: their role in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol. 2007;293(2):C509–C536.
25. Hamlyn JM, Blaustein MP. Endogenous ouabain: recent advances and controversies. Hypertension. 2016;68(3):526–532.
26. Doris PA, Jenkins LA, Stocco DM. Is ouabain an authentic endogenous mammalian substance derived from the adrenal? Hypertension. 1994;23(5):632–638.
27. Gómez-Sánchez EP, Poeking MF, Sellers D, Gomez-Sanches CE. Is the circulation ouabain-like compound ouabain? Am J Hypertens. 1994;7(7 Pt 1):647–650.
28. Lewis LK, Yandle TG, Lewis JG, et al. Ouabain is not detectable in human plasma. Hypertension. 2019;24(5):549–555.
29. Baecher S, Krouis M, Fasnacht M, Vogeser M. No endogenous ouabain is detectable in human plasma by ultra-sensitive UPLC/MS/MS. Clin Chim Acta. 2014;431:87–92.
30. Clausen M, Hilbers F, Poulsen H. The structure and function of the Na,K-ATPase isofoms in health and disease. Front Physiol. 2017;8, e371.
31. Lingrel JB, Croyle ML, Woo AL, Arguello MJ. Ligand binding sites of Na,K-ATPase. Acta Physiol Scand. 1998;163(suppl. 643):69–77.
32. Lingrel JB. The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na,K-ATPase. Annu Rev Pharmacol Toxicol. 2010;72:395–412.
33. Blaustein MP. A sodium pump inhibitor in patients after acute myocardial infarction. Hypertension. 1998;31(5):1097–1103.
34. Schoner W, Scheiner-Bobis G. Endogenous and exogenous cardiac glycosides: their role in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol. 2007;293(2):C509–C536.
35. Bagrov AY, Fedorova OV. Endogenous cardiotonic steroids: physiology, pharmacology, and novel therapeutic targets. Pharmacol Rev. 2009;61(1):9–38.
36. Leenen FHH. The central role of the brain aldosterone-“ouabain” pathway in salt-sensitive hypertension. Biochim Biophys Res Commun. 2010;1802(12):1132–1139.
37. Hodes A, Lichtstein D. Natriuretic hormones in brain function. Front Endocrinol. 2014;5:201.
38. Khalaf FK, Dube P, Mohamed A, et al. Cardiotonic steroids and the sodium trade balance: new insights into trade-off mechanisms mediated by the Na⁺,K⁺-ATPase. Int J Mol Sci. 2018;19(9), e2576.
39. Blaustein MP, Chen L, Hamlyn JM, et al. Pivotal role of ad2 Na⁺ pumps and their high affinity ouabain binding site in cardiovascular health and disease. J Physiol. 2016;594(21):6079–6103.
40. Skou JC. Further investigation on a Mg²⁺ + Na⁺-activated adenosinetriphosphatase possibly related to the active transport of Na⁺ and K⁺ across the nerve cell membrane. Biochim Biophys Acta. 1960;42:6–23.
41. Dvela M, Rosen H, Feldmann T, Neshem M, Lichtstein D. Diverse biological responses of different cardiotonic steroids. Physiol Res. 2007;56(3–4):159–166.
42. Xie Z, Xie J. The Na⁺/K⁺-ATPase-mediated signal transduction as a target for new drug development. Front Biosci. 2005;10:3100–3109.
transcriptome and intracellular content of Na\(^+\) and K\(^+\): a comparative analysis. *Sci Rep.* 2017;7:45403.

46. Taurin S, Dulin NO, Pchelintsev D, et al. c-Fos expression in ouabain-treated vascular smooth muscle cells from rat aorta: evidence for an intracellular-sodium-mediated, calcium-independent mechanism. *J Physiol.* 2002;543(Pt 3):835–847.

47. Lubin M, Ennis HL. On the role of intracellular potassium in protein synthesis. *Biochim Biophys Acta.* 1964;80:614–631.

48. Orlov SN, Hamet P. Intracellular monovalent ions as second messengers. *J Membr Biol.* 2006;210(3):161–172.

49. Orlov SN, Hamet P. Salt and gene expression: evidence for Na\(^+\),K\(^+\)-mediated signaling pathways. *Pflug Arch Eur J Physiol.* 2015;467(3):489–498.

50. Cahn F, Lubin M. Inhibition of elongation steps of protein synthesis at reduced potassium concentrations in reticulocytes and reticulocyte lysate. *J Biol Chem.* 1978;253(21):7798–7803.

51. Tverskoi AM, Sidorenko SV, Klimanova EA, et al. Effects of ouabain on proliferation of human endothelial cells correlate with Na\(^+\),K\(^+\)-ATPase activity and intracellular ratio of Na\(^+\) and K\(^+\). *Biochemistry (Mosc).* 2016;81(8):876–883.

52. Das S, Maitra U. Mutational analysis of mammalian translation initiation factor 2 (eIF2): role of interaction between β subunit of eIF2 and eIF5 in eIF2 function in vitro and in vivo. *Mol Cell Biol.* 2000;20(11):3942–3950.

53. Jennings MD, Pavitt GD. eIF5 is a dual function GAP and GDI for eukaryotic translational control. *Small GTPases.* 2010;1(2):118–123.

54. Gupta RS, Chora A, Stetsko DK. Cellular basis for the species differences in sensitivity to cardiac glycosides (digitalis). *J Cell Physiol.* 1986;127(2):197–206.

55. Belusa R, Aizman O, Andersson RM, Aperia A. Changes in Na\(^+\),K\(^+\)-ATPase activity influence cell attachment to fibronectin. *Am J Physiol Cell Physiol.* 2001;282(2):C302–C309.

56. Rajasekaran SA, Hu J, Gopal J, et al. Na,K-ATPase inhibition alters tight junction structure and permeability in human retinal pigment epithelial cells. *Am J Physiol Cell Physiol.* 2003;284(6):C1497–C1507.

57. Rajasekaran SA, Palmer LG, Moon SY, et al. Na,K-ATPase activity is required for formation of tight junctions, desmosomes, and induction of polarity in epithelial cells. *Mol Biol Cell.* 2001;12(12):3717–3732.

58. Martin PE, Hill NS, Kristensen B, Errington RJ, Griffith TM. Ouabain exerts biphasic effects on connexin functionality and expression in vascular smooth muscle cells. *Br J Pharmacol.* 2003;140(7):1261–1271.

59. Matchkov VV, Gustafsson H, Rahman A, et al. Interaction between Na\(^+\)/K\(^+\)-pump and Na\(^+\)/Ca\(^2+\)-exchanger modulates intercellular communication. *Circ Res.* 2007;100(7):1026–1035.

60. Violette MI, Madan P, Watson AJ. Na\(^+\) /K\(^+\)-ATPase regulates tight junction formation and function during mouse preimplantation development. *Dev Biol.* 2006;289(2):406–419.

61. Lee J-M, Grabb MC, Zipfel GJ, Choi DW. Brain tissue responses to ischemia. *J Clin Invest.* 2000;106(6):723–731.

62. Rajasekaran AK, Rajasekaran SA. Role of Na-K-ATPase in the assembly of tight junctions. *Am J Physiol Ren Physiol.* 2003;285(3):F388–F396.

63. Gao J, Wymore RS, Wang Y, et al. Isomor-specific stimulation of cardiac Na/K pumps by nanomolar concentrations of glycosides. *J Gen Physiol.* 2002;119(4):297–312.

64. Li J, Zeelenin S, Aperia A, Aizman O. Low doses of ouabain protect from serum deprivation-triggered apoptosis and stimulate kidney cell proliferation via activation of NF-kappaB. *J Am Soc Nephrol.* 2006;17(7):1848–1857.

65. Ghyzel-Burton J, Godfraind T. Stimulation and inhibition of the sodium pump by cardiotonic steroids in relation to their binding sites and ionotropic effect. *Br J Pharmacol.* 1979;66(2):175–184.

66. Balzan S, D’Urso G, Nicolini G, Forini F, Pellegrino M, Montali U. Erythrocyte sodium pump stimulation by ouabain and an endogenous ouabain-like factor. *Cell Biochem Funct.* 2007;25(3):297–303.

67. Khundmiri SJ, Metzler MA, Ameen M, Amin V, Rane MJ, Delamere NA. Ouabain induces cell proliferation through calcium-dependent phosphorylation of Akt (protein kinase B) in opossum kidney proximal tubule cells. *Am J Physiol Cell Physiol.* 2006;291(6):C1247–C1257.

68. Khundmiri SJ, Saiyer SA, Farmer B, et al. Structural determinants for te ouabain-stimulated increase in Na-K-ATPase activity. *Biochim Biophys Acta.* 2014;1843(6):1089–1102.

69. Oselkin M, Tian D, Bergold PJ. Low-dose cardiotonic steroids increase sodium-potassium ATPase activity that protects hippocampal slice cultures from experimental ischemia. *Neurosci Lett.* 2010;473(2):67–71.

70. Holthouser KA, Mandal A, Merchant ML, et al. Ouabain stimulates Na-K-ATPase through a sodium/hydrogen exchanger-1 (NHE1)-dependent mechanism in human kidney proximal tubule cells. *Am J Physiol Ren Physiol.* 2010;299(1):F77–F90.

71. Khundmiri SJ. Advances in understanding the role of cardiac glycosides in control of sodium transport in renal tubules. *J Endocrinol.* 2014;222(1):R11–R24.

72. Askari A, Na\(^+\), K\(^+\)-ATPase: on the number of the ATP sites of the functional unit. *J Bioenerg Biomembr.* 1987;19(4):359–374.

73. Orlov SN, Klimanova EA, Tverskoi AM, Vladychenskaya EA, Smolyaninova LV, Lopina OD. Na\(^+\),K\(^+\)-dependent and -independent signaling triggered by cardiotonic steroids: facts and artifacts. *Molecules.* 2017;22(4), e635.

74. Aydemir-Koksoy A, Abramowicz J, Allen JC. Ouabain-induced signaling and vascular smooth muscle cell proliferation. *Am J Physiol Ren Physiol.* 2001;276(49):46605–46611.

75. Abramowicz J, Dai C, Hirschi KK, et al. Ouabain- and marinobufagenin-induced proliferation of human umbilical vein smooth muscle cells and a rat vascular smooth muscle cell line, AT75. *Circulation.* 2003;108(24):1049–1054.

76. Saunders R, Scheiner-Bobis G. Ouabain stimulates endothelin release and expression in human endothelial cells without inhibiting the sodium pump. *Eur J Biochem.* 2004;271(5):1054–1062.

77. Nguyen AN, Wallace DP, Blanco G. Ouabain binds with high affinity to the Na\(^+\),K\(^+\)-ATPase in human polycystic kidney cells and induces extracellular signal-regulated kinase activation and cell proliferation. *J Am Soc Nephrol.* 2007;18(1):46–57.

78. Murata Y, Matsuda T, Tamada K, et al. Ouabain-induced cell proliferation in cultured rat astrocytes. *Jpn J Pharmacol.* 1996;72(4):347–353.

79. Dmitrieva RI, Doris PA. Ouabain is a potent promoter of growth and activator of ERK1/2 in ouabain-resistant rat renal epithelial cells. *J Biol Chem.* 2004;278(30):28160–28166.

80. Desfrere L, Karlsson M, Hiyoshi H, et al. Na,K-ATPase signal transduction triggers CREB activation and dendritic growth. *Proc Natl Acad Sci USA.* 2009;106(7):2212–2217.

81. Segel GB, Lichtman MA. The apparent discrepancy of ouabain inhibition of cation transport and lymphocyte proliferation is explained by time-dependency of ouabain binding. *J Cell Physiol.* 1980;104(1):21–26.

82. Orlov SN, Hamet P. Apoptosis vs oncosis: role of cell volume and intracellular monovalent cations. *Adv Exp Med Biol.* 2004;559:219–233.

83. Akimova OA, Platonova AA, Koltsova SV, et al. Cell death triggered by cardiotonic steroids: role of cell volume perturbations and α1-Na\(^+\), K\(^+\)-ATPase subunit. *Siberian Med Bull.* 2013;12:24.

84. Akimova OA, Tverskoi AM, Smolyaninova LV, et al. Critical role of the α1-Na\(^+\), K\(^+\)-ATPase subunit in insensitivity of rodent
cells to cytotoxic action of ouabain. Apoptosis. 2015;20(9):1200–1210.

85. Xie Z, Askari A. Na⁺/K⁺-ATPase as a signal transducer. Eur J Biochem. 2002;269:2434–2439.

86. Liu J, Xie Z. The sodium pump and cardiotoxic steroids-induced signal transduction protein kinases and calcium-signaling microdomains in regulation of transporter trafficking. Biochim Biophys Acta. 2010;1802(12):1237–1245.

87. Haas M, Askari A, Xie Z. Involvement of Src and epidermal growth factor receptor in the signal transducing function of Na⁺/K⁺-ATPase. J Biol Chem. 2000;275(36):27832–27837.

88. Aizman O, Uhlen P, Lal M, Brismar H, Aperia A. Ouabain, a calcium-oscillations triggered by cardiotoxic steroids. FEBS J. 2013;280(21):5450–5455.

89. Somjen GG. Ions in the Brain: Normal Functions, Seizures, and Stroke. New York: Oxford University Press; 2004.

90. Fedorova OV, Lakatta EG, Bagrov AY, Melander O. Plasma level of the endogenous sodium pump ligand marinobufagenin is related to the salt-sensitivity. J Hypertens. 2015;33(3):533–541.

91. Fedorova OV, Kolodkin NI, Bagrov AY. Marinobufagenin, an endogenous sodium pump inhibitor, induces signal transduction protein kinases and calcium-oscillations triggered by cardiotonic steroids. J Biol Chem. 2000;275(36):27832–27844.

92. Jordan WJ, Harris KM, Gomes LS, et al. Ouabain induces signal transduction protein kinases and calcium-oscillations triggered by cardiotonic steroids. J Biol Chem. 2000;275(36):27832–27844.

93. Konnerth A. NMDA-receptor-mediated Na⁺ signals in spines and dendrites. J Neurosci. 2001;21(12):4207–4214.

94. Liu J, Tian J, Haas M, Shapiro JI, Askari A, Xie Z. Ouabain-mediated inter-receptor cross-talk between the Na⁺/K⁺-ATPase and epidermal growth factor receptor relays the signal from ouabain to mitogen-activated protein kinases. J Biol Chem. 2002;277(21):18694–18702.

95. Yu H, Cui X, Zhang J, et al. Heterogeneity of signal transduction pathway with digitalis-induced hypertrophy of cardiac myocytes. Am J Physiol Cell Physiol. 2007;293(5):C2024–C2100.

96. Kulikov A, Eva A, Kirch U, Boldyrev A, Scheiner-Bobis G. Ouabain activates signaling pathways associated with cell death in human neuroblastoma. Biochim Biophys Acta. 2007;1768(7):1691–1702.

97. Wu J, Akkuratov EE, Bai Y, Gaskill CM, Askari A, Liu L. Cell signaling associated with Na⁺/K⁺-ATPase; activation of phosphatidylinositol 3-kinase IA/Akt by ouabain is independent of Src. Biochem. 2013;52(50):9059–9067.

98. Liu L, Abramowitz J, Askari A, Allen JC. Role of caveolae in ouabain-induced proliferation of cultured vascular smooth muscle cells of the synthetic phenotype. Am J Physiol Heart Circ Physiol. 2004;287(5):H2173–H2182.

99. Liu L, Zhao X, Pierre SV, Askari A. Association of PI3K-Akt signaling pathway with digitalis-induced hypertrophy of cardiac myocytes. Am J Physiol Cell Physiol. 2007;293(5):C1489–C1497.

100. Aizman O, Uhlen P, Lal M, Brismar H, Aperia A. Ouabain, a steroid hormone that signals with slow calcium oscillations. Proc Natl Acad Sci USA. 2001;98(23):13420–13424.

101. Dolmetsch RE, Xu K, Lewis RS. Calcium oscillations increase the efficiency and specificity of gene expression. Nature. 1998;392(6679):933–936.

102. Lonze BE. Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002;35(4):605–623.

103. Zhang S, Maimersjo S, Li J, et al. Distinct role of the N-terminal tail of the Na,K-ATPase catalytic subunit as a signal transducer. J Biol Chem. 2006;281(31):21954–21962.

104. Fontana JM, Burlaka I, Khodou G, Brismar H, Aperia A. Calcium oscillations triggered by cardiotoxic steroids. FEBS J. 2013;280(21):5450–5455.

105. Fedorova OV, Lakatta EG, Bagrov AY. Endogenous ligand of Na⁺/K⁺-ATPase initiates signal transduction in regulatory microdomains in regulation of transporter trafficking. Biochim Biophys Acta. 2010;1802(12):1237–1245.
Na\(^+\),K\(^-\)-ATPase as a target for cardioactive steroids

123. Harwood S, Mullenn AM, McMahon AC, Dawny A. Plasma OLS is elevated in mild experimental uremia but is not associated with hypertension. Am J Hypertens. 2001;14(11 Pt 1):1112–1115.

124. Berendes E, Cullen P, van Aken H, et al. Endogenous glycosides in critically ill patients. Crit Care Med. 2003;31(5):1331–1337.

125. Wang JG, Staessen JA, Messangio E, et al. Salt, endogenous ouabain and blood pressure interactions in general population. J Hypertens. 2003;21(8):1475–1481.

126. Balzan S, Nicolin G, Iervasi A, Di Cecco P, Fomee M. Endogenous ouabain and acute salt loading in low-renin hypertension. Am J Hypertens. 2005;18(7):906–909.

127. Fridman AI, Matveev SA, Agalakova NI, Fedorova OV, Roukoyatkina NI, Shpen VM. Endogenous marinobufagenin-like immunoreactive substance: a possible endogenous ligand of Na,K-ATPase. J Hypertens. 2006;24(12):1615–1623.

128. Kennedy DJ, Vetter K, van Aken H, et al. Endogenous glycoadenosine triphosphatase in humans. Nature. 1978;274(5668):285–286.

129. Ferrari P, Torielli L, Ferrandi M, et al. PST2238: a new anti-ionotropic effect of ouabain on isolated heart is accompanied by activation of signal pathways that link Na\(^+\)/K\(^-\)-ATPase to growth-related genes in cardiac myocytes. J Biol Chem. 2003;278(50):40355–40361.

130. Lee K, Jung J, Kim M, Guidotti G. Interaction of the Na,K-ATPase inhibitor with vasoconstrictor activity. Br J Pharmacol. 2004;142(6):909–914.

131. Li S, Wattenberg EV. Differential activation of mitogen-activated protein kinases by palytoxin and ouabain, two ligands for the Na\(^+\)/K\(^-\)-ATPase. Mol Pharmacol. 1998;53(5):936–941.

132. Fedorova OV, Lakatta EG, Bagrov AY. Differential effects of acute NaCl loading on endogenous ouabain-like and marinobufagenin-like ligands of the sodium pump in Dahl hypertensive rats. Circulation. 2000;102:3009–3014.

133. Fedorova OV, Talan MI, Agalakova NI, Lakatta EG, Bagrov AY. Coordinated shifts in Na/K-ATPase isoforms and their endogenous ligands during cardiac hypertrophy and failure in NaCl-sensitive hypertension. J Hypertens. 2004;22(2):1–9.

134. Dmitrieva RI, Georgiev IY, Shpen VM, Bagrov AY. Bufadienolide nature of an endogenous inhibitor of sodium-potassium adenosine triphosphate in humans. J Evol Biochem Physiol. 1997;33(3):355–363.

135. Fedorova OV, Dorofeeva NA, Lopatin DA, Lakatta EG, Bagrov AY. Phorbol diacetate potentiates Na\(^+\),K\(^-\)-ATPase inhibition by a putative endogenous ligand, marinobufagenin. Hypertension. 2002;39(2):298–302.

136. Sceinin M, Koulou M, Laurikainen E, Allonen H. Hypokalemia and other non-bronchial effects of inhaled fenoterol and salbutamol: a placebo controlled dose-response study in healthy volunteers. Br J Clin Pharmacol. 1987;24(5):645–653.

137. Blanco G, Sanchez G, Mercer RW. Comparison of the enzymatic properties of the Na,K-ATPase \(\alpha_3/\beta_1\) and \(\alpha_3/\beta_2\) isozymes. Biochem. 1995;34(31):9897–9903.

138. Brownlee AA, Johnsson P, Mills IH. Actions of bufalin and cinobufotin, two bufadienolides respectively more active and less active than ouabain, on ouabain binding and 86Rb uptake by human erythrocytes. Clin Sci. 1990;78(2):169–174.

139. Flier JS. Ouabain-like activity in toad skin and its implication for endogenous regulation of ion transport. Nature. 1978;274(5668):285–286.

140. Senn N, Lelievre LG, Braquet P, Garay R. High sensitivity of the Na\(^+\),K\(^-\)-pump of human red blood cells to genins of cardiac glycosides. Br J Pharmacol. 1988;93(4):803–810.

141. Senn N, Lelievre LG, Braquet P, Garay R. High sensitivity of the Na\(^+\),K\(^-\)-pump of human red blood cells to genins of cardiac glycosides. Br J Pharmacol. 1988;93(4):803–810.

142. Tao QF, Hollenberg NK, Price DA, Graves SV. Sodium pump isofrom specificity for digitalis-like factor isolated from human peritoneal dialysate. Hypertension. 1996;29(3):815–821.

143. Rodriguez-Manas L, Pareja A, Sanchez-Ferrer CR, Casado MA, Salacies MJ. Endothelial role in ouabain-induced contraction of Guinea pig carotid arteries. Hypertension. 1992;20(5):674–681.

144. Miiakawa Naito A, Uhnin P, Lai M, et al. Cell signaling microdomain with Na,K-ATPase and inositol 1,4,5-trisphosphate receptor generates calcium oscillations. J Biol Chem. 2003;278(50):50355–50361.

145. Cheng SC, Guh JH, Chen J, Lai MK, Teng CM. Dual effect of ouabain on the regulation of proliferation and apoptosis in human prostatic smooth muscle cells. J Urol. 2001;166(1):347–353.

146. Chueh SC, Guh JH, Chen J, Lai MK, Teng CM. Dual effect of ouabain on the regulation of proliferation and apoptosis in human prostatic smooth muscle cells. J Urol. 2001;166(1):347–353.

147. Li S, Wattenberg EV. Differential activation of mitogen-activated protein kinases by palytoxin and ouabain, two ligands for the Na\(^+\)/K\(^-\)-ATPase. Toxicol Appl Pharmacol. 1998;151(2):377–384.

148. Kometiani P, Li J, Grudli L, Kahn BB, Askari A, Xie Z. Multiple signal transduction pathways link Na\(^+\)/K\(^-\)-ATPase to growth-related genes in cardiac myocytes: the roles of ras and mitogen-activated protein kinases. J Biol Chem. 1998;273(24):15249–15256.

149. Mohammadi K, Liu L, Tian J, Kometiani P, Askari A. Positive ionotropic effect of ouabain on isolated heart is accompanied by activation of signal pathways that link Na\(^+\)/K\(^-\)-ATPase to ERK1/2. J Cardiovasc Pharmacol. 2003;41(4):609–614.

150. Kotova O, Al-Khalili L, Hooke C, Fedorova OV, Bagrov AY, Chibalin AV. Cardiotonic steroids stimulate glycogen synthase in human skeletal muscle cells via a Src- and MAPK-dependent pathway. Am J Physiol. 2003;285(6):E1245–E1251.

151. Valente RC, Capella LS, Monteiro RQ, Rumjanek VM, Lopes AG, Capella MAM. Mechanisms of ouabain toxicity. Faseb J. 2003;17(12):1700–1702.