Prediction of Delivered Quantities of Drinking Water and Discharged Wastewater of the Nišava District (Serbia)

Nina Pavićević

Abstract

Water, as a natural resource, is the most basic substance of life that has immeasurable significance for the living world, ecosystems, and planet earth. In this paper, a prediction of delivered quantities of drinking water (DQDW) and total discharged wastewater (TDWW) of the Nišava district (Serbia) for the period 2019-2023 is given. The prediction for DQDW for the period 2019-2023 was made based on linear regression model, quadratic regression model, and cubic regression model according to which the data on DQDW of the Nišava district (Serbia) for the period 2006-2018 were approximated. The prediction for TDWW for the period 2019–2023 was done based on the 4th-degree polynomial regression model, the 5th-degree polynomial regression model, and the 6th-degree polynomial regression model by which the DQDW data were approximated of the Nišava district (Serbia) for the period 2006–2018. The presented prediction is a continuation of the paper “Trend analysis of total affected water and total discharged wastewater of the Nišava district (Serbia)” by the same author, in which for data on DQDW and TDWW of the Nišava district (Serbia) for the period 2006–2018 trend analysis and selected regression models have been shown.

Introduction

Natural resources (NR) are raw organic materials or substances, found in nature and representing the general natural wealth with its usable value for industrial production and/or consumption [1], [2], [3], [4], [5]. Statistical analysis of different NR is given in papers [6], [7], [8], [9].

One of the main factors of NRs is water, which is a non-organic material. Water is consumed by plants, animals, and humans.

The most essential material and a natural resource, water, are unambiguously significant for the life and the living world, ecosystems, and planet Earth. The significance of water is maintaining and enabling life by constantly circulating in nature between the earth and the atmosphere. Water is spectacular in its moving, changing its appearance and never really disappearing. It has been present on earth for hundreds of millions of years, consumed by plants, animals, and humans.

Water quality index (WQI) assesses the most important characteristic of water its quality. The analysis of WQI in different regional territories is presented in the following papers [10], [11], [12], [13], [14], [15]. WQI as management tool is given in paper [16], and as classification tool it is given in papers [17], [18]. Prediction of WQI is given in papers [19], [20], [21], etc.

In this paper, a prediction of delivered quantities of drinking water (DQDW) and total discharged wastewater (TDWW) of Nišava district (Serbia) for the period 2019-2023 is given.

Data and Methods

Data on values of DQDW and TDWW of Nišava district (Serbia) are taken from “Municipalities and Regions in the Republic of Serbia” of the Statistical Office of the Republic of Serbia for the period 2006–2018 [22], [23], [24], [25], [26], with significant calculations by the authors.

Niš, Aleksinac, Gadžin Han, Doljevac, Merošina, Ražanj and Svrljig are the municipalities of the Nišava District (Figure 1). In 2018, the total area for the Nišava district was 2728 km². Population in Nišava district was 381.757 (187.780 and 193.977, men and women, respectively) in 2002 and in 2018 it was 362.331 [26], which is less for 19.426 or CAGR=-0.33% and CGI=94.91% [1].
For the prediction of DQDW and total discharged waste-water (TDWW) of Nišava district (Serbia) for the period 2019–2023, polynomial regression models (PRM) are used. The estimation of parameters of the PRM models was realized using the least-squares method (LSM), and software (MS-Excel) using the LSM method was used [27], [28], [29]. Examples of determination of PRM models are described in the papers [27], [30], [31], [32], etc.

Standard statistical analysis methods and MS-Excel software system were used to calculate the statistical description parameters, graphical representation of data, approximation, and prediction of the DQDW and total discharged waste-water (TDWW) for Nišava district (Serbia) [27], [28], [29].

Results and Discussion

In Table 1, data are given about total affected quantities of water (TAQW), DQDW, and total discharged waste-water (TDWW) for Nišava district (Serbia) for the period 2006–2018 [1], [22], [22], [23], [24], [25], [26].

The data about TAQW ($\times10^3$ m3) for Nišava district (Serbia) for the period 2006–2018 changed in intervals from 5783 to 41740, with arithmetic mean AM=25771.85, and the median are Med=37782. Standard deviation is SD=1541.88 and CoV=6.80. Values of trend analysis are: CGI=85.81% in 2018 compared to 2006, and CAGR=-0.95% per year for the period 2006–2018 [1].

For prediction of DQDW for Nišava district (Serbia) for the period 2019-2023, data about DQDW for the period 2006-2018 are approximated using linear regression model (LRM), quadratic regression model (QRM), and cubic regression model (CRM).

Equation of LRM for approximation of the data about DQDW for Nišava district (Serbia) for the period 2006-2018 is presented in the following form:

\[DQDW = 649634.51 - 311.60 \times y \] (1)

with coefficient of correlation \(R = 0.7870 \) and coefficient of determination \(R^2 = 0.6194 \).

Where: \(y \) – year and \(DQDW \) – Delivered quantities of drinking water ($\times10^3$ m3).

Equation of QRM for data approximation about DQDW for Nišava district (Serbia) for the period 2006-2018 is presented in the following form:

\[DQDW = -6.57715 \times 10^6 + 6872.1 \times y - 1.7852 \times y^2 \] (2)

with coefficients \(R = 0.7872 \) and \(R^2 = 0.6197 \).

Equation of CRM for approximation of the data about DQDW for Nišava district (Serbia) for the period 2006-2018 is presented in the form:

\[DQDW = 5.74842 \times 10^6 - 8.57417 \times 10^6 \times y + 4263.157 \times y^2 - 0.70658 \times y^3 \] (3)

with coefficients \(R = 0.7874 \) and \(R^2 = 0.6200 \).

Table 2 shows LRM, QRM, and CRM regression models for DQDW for Nišava district for the period 2006–2018, with values for coefficients R and \(R^2 \).

Table 1: Data on water supply for Nišava district for the period 2006–2018

Year	Total affected quantities of water ($\times10^3$ m3)	Delivered quantities of drinking water ($\times10^3$ m3)	Total discharged wastewater ($\times10^3$ m3)
2006	41,740	23,777	19,097
2007	40,536	25,418	18,940
2008	38,965	24,214	17,967
2009	37,782	22,962	15,964
2010	38,045	23,099	16,820
2011	40,051	22,918	16,287
2012	41,314	23,030	22,395
2013	8871	23,018	22,374
2014	5783	19,085	19,411
2015	10,378	19,111	20,651
2016	10,726	23,306	22,982
2017	10,912	21,180	23,099
2018	9531	20,402	23,018

Table 2: Regression models for delivered quantities of drinking water (DQDW) in ($\times10^3$ m3) for Nišava district for the period 2006–2018

No.	Model	Form of regression equation	R	R²
1.	Linear regression model	$DQDW=649634.51 - 311.60 \times y$	-0.7870	0.6194
2.	Quadratic regression model	$DQDW=-6.57715 \times 10^6 + 6872.1 \times y - 1.7852 \times y^2$	0.7872	0.6197
3.	Cubic regression model	$DQDW=5.74842 \times 10^6 - 8.57417 \times 10^6 \times y + 4263.157 \times y^2 - 0.70658 \times y^3$	0.7874	0.6200
From Table 2, it can be seen that all three analyzed regression models (LRM, QRM, and CRM) describe approximately the same statistical data for DQDW for Nišava district (Serbia) for the period 2006-2018, because their coefficients R and R^2 are approximately equal.

Table 3: Statistical and calculated values for DQDW for LRM, QRM, and CRM models for Nišava district for the period 2006–2018

Year	DQDW ($\times 10^3$ m³)	Calculated values for DQDW	for LRM	for QRM	for CRM
2006	23,777	24,556.09	24,516.81	24,563.45	
2007	25,418	24,244.48	24,224.85	24,224.85	
2008	24,214	23,932.88	23,929.31	23,903.87	
2009	22,982	23,621.27	23,630.20	23,596.28	
2010	23,099	23,309.67	23,327.52	23,297.85	
2011	22,918	22,998.07	23,021.27	23,004.32	
2012	23,030	22,686.46	22,711.45	22,711.45	
2013	23,018	22,374.86	22,398.06	22,415.02	
2014	19,805	22,063.25	22,081.10	22,110.78	
2015	23,306	21,751.65	21,760.57	21,794.49	
2016	21,775	21,440.04	21,436.47	21,461.91	
2017	21,180	21,128.44	21,108.80	21,108.80	
2018	20,402	20,816.84	20,777.56	20,730.93	

Statistical and calculated values for DQDW for LRM, QRM, and CRM models for Nišava district for the period 2006-2018 are shown in Table 3 and prediction values for DQDW for LRM, QRM, and CRM models for Nišava district for the period 2020-2024 in Table 4.

Table 4: Prediction values for DQDW for LRM, QRM, and CRM models for Nišava district for the period 2020–2024

Year	Prediction values for DQDW	for LRM	for QRM	for CRM
2019	20,505	20,437	20,387	
2020	20,194	20,098	19,957	
2021	19,882	19,755	19,489	
2022	19,571	19,409	18,981	
2023	19,259	19,059	18,428	

Figures 2-4 show the statistical values for DQDW of Nišava district (Serbia) for the period 2006–2018 and the curves for LRM, QRM, and CRM, retrospectively, with prediction values (blue curve in figures) for the period 2019–2023.

The data about TDWW ($\times 10^3$ m³) for Nišava district (Serbia) for the period 2006–2018 changed in intervals from 15964 to 22669, with AM=19516.69, and Med=19411. Standard deviation is SD=2310.23 and CoV=11.84. Values of trend analysis are: CGI=104.19% in 2018 compared to 2006, and CAGR=0.26% per year for the period 2006–2018 [1].

For prediction of TDWW for Nišava district (Serbia) for the period 2019–2023, data about TDWW for the period 2006-2018 are approximated using 4th-degree polynomial regression model (PRM4), 5th-degree polynomial regression model (PRM5), and 6th-degree polynomial regression model (PRM6).

Equation of PRM4 for approximation of the data about TDWW for Nišava district (Serbia) for the period 2006-2018 is presented as follows:

$$TDWW = 2139.4084443.10y^4 - 42406941511.776y^3 + 31521507.6319y^2 - 4913.33863y + 1.29003$$

with coefficients $R=0.7778$ and $R^2=0.6049$.

Where: y – year and TDWW – Total discharged waste-water ($\times 10^3$ m³).

Equation of PRM5 for approximation the data about TDWW for Nišava district (Serbia) for the period 2006-2018 is presented in the following form:

$$TDWW = 5124997.631647.10y^5 + 127372101954392y^4 - 126623482277.547y^3 + 62939529.68857y^2 - 15642.35137y + 1.55503$$

with coefficients $R=0.7778$ and $R^2=0.6049$.

The data about TDWW ($\times 10^3$ m³) for Nišava district (Serbia) for the period 2006-2018 is presented in the following form:

$$TDWW = 5124997.631647.10y^5 + 127372101954392y^4 - 126623482277.547y^3 + 62939529.68857y^2 - 15642.35137y + 1.55503$$

with coefficients $R=0.7778$ and $R^2=0.6049$.
Table 5: Regression models for total discharged wastewater (×10^3 m^3) for Nišava district for the period 2006–2018

No.	Model	Form of regression equation	R	R^2
1	PRM4	TDWW=2139.4084442923.10^-4-4240694151.7762y+31521507.6319y^-10413.3386y^-1.29003y^0.7778 0.6049		
2	PRM5	TDWW=5124997.831641.10^-1273721019.5392y+126623482277.547y^-72939529.68857y^-15642.35137y^-1.5503y^0.8207 0.6736		
3	PRM6	TDWW=30938.78884488.10^-622.23739324.10^-11457.826286862.10^-75909172177.8344y^-28288393.7586y^-5622.32854y^-0.4656y^-0.8515 0.7251		

Equation of PRM6 for approximation of the data about TDWW for Nišava district (Serbia) for the period 2006–2018 is presented in form:

TDWW = –30938.78884488 ×10^3 + 92.23773924 ×10^-11 + 1273721019.5392y^-11457.826286862 ×10^-7 + 75909172177.8344y^-28288393.7586y^-5622.32854y^-0.4656y

(6)

with coefficients R=0.8207 and R^2=0.6736.

Table 5 shows PRM4, PRM5, and PRM6 regression models for TDWW for Nišava district for the period 2006–2018, with values for coefficients R and R^2.

From Table 5, it can be seen that the PRM6 best describes the statistics for DQDW for Nišava district (Serbia) for the period 2006-2018, because its coefficients R and R^2 are the highest.

Statistical and calculated values for TDWW for PRM4, PRM5, and PRM6 models for Nišava district for the period 2006–2018 are shown in Table 6.

Table 6: Statistical and calculated values for TDWW for PRM4, PRM5, and PRM6 models for Nišava district for the period 2006–2018

Year	TDWW (×10^3 m^3)	Calculated values for TDWW		
	For PRM4	For PRM5	For PRM6	
2006	19,897	19,888,32	19,879,38	
2007	18,940	17,782.42	18,848	18,918
2008	17,967	16,910.57	17,424	17,498
2009	15,954	16,946,41	16,744	16,734
2010	16,260	17,594,53	17,088	17,003
2011	16,287	18,590,50	18,168	18,238
2012	22,393	19,700.78	19,808	19,914
2013	22,374	20,722.87	21,400	21,432
2014	19,411	21,485.15	22,304	22,296
2015	22,669	21,846.97	22,288	22,277
2016	21,247	21,698.69	21,304	21,310
2017	20,651	20,961.51	20,128	20,211
2018	19,897	19,587.71	20,248	20,202

Figures 5-7 show the statistical values for TDWW (×10^3 m^3) of Nišava district (Serbia) for the period 2006-2018 and the curves for PRM4, PRM5, and PRM6, retrospectively, with prediction values (blue curve in figures) for the period 2020–2024.

Based on polynomial regression models (PRM): RPM4 (Figure 5), PRM5 (Figure 6), and PRM6 (Figure 7) predictions for TDWW differ greatly so that for PRM4 and PRM6 models are predicted a decrease values of TDWW for the period 2019-2013 (Figures 5 and 7, respectively) and the PRM5 model predicts an increase values or growth of TDWW (Figure 6).

Figures 5, 6, and 7, respectively, predict an increase values or growth of TDWW (Figures 5, 6, and 7, respectively). Table 5 shows PRM4, PRM5, and PRM6 regression models for TDWW for Nišava district for the period 2006–2018, with values for coefficients R and R^2.

From Table 5, it can be seen that the PRM6 best describes the statistics for DQDW for Nišava district (Serbia) for the period 2006-2018, because its coefficients R and R^2 are the highest.

Statistical and calculated values for TDWW for PRM4, PRM5, and PRM6 models for Nišava district for the period 2006–2018 are shown in Table 6.

Table 6: Statistical and calculated values for TDWW for PRM4, PRM5, and PRM6 models for Nišava district for the period 2006–2018

Year	TDWW (×10^3 m^3)	Calculated values for TDWW		
	For PRM4	For PRM5	For PRM6	
2006	19,897	19,888,32	19,879,38	
2007	18,940	17,782.42	18,848	18,918
2008	17,967	16,910.57	17,424	17,498
2009	15,954	16,946,41	16,744	16,734
2010	16,260	17,594,53	17,088	17,003
2011	16,287	18,590,50	18,168	18,238
2012	22,393	19,700.78	19,808	19,914
2013	22,374	20,722.87	21,400	21,432
2014	19,411	21,485.15	22,304	22,296
2015	22,669	21,846.97	22,288	22,277
2016	21,247	21,698.69	21,304	21,310
2017	20,651	20,961.51	20,128	20,211
2018	19,897	19,587.71	20,248	20,202

Figures 5-7 show the statistical values for TDWW (×10^3 m^3) of Nišava district (Serbia) for the period 2006-2018 and the curves for PRM4, PRM5, and PRM6, retrospectively, with prediction values (blue curve in figures) for the period 2020–2024.

Conclusion

Values for DQDW (×10^3 m^3) for Nišava district (Serbia) for the period 2006–2018 decreased from 23,777 in 2006 to 20,402 in 2018 (CGI=85.81% in 2018 compared to 2006, and CAGR=–0.95% per year) [1].

The prediction for DQDW for Nišava district (Serbia) for the period 2019-2023 was made based on LRM, QRM, and CRM models. Values for DQDW for Nišava district (Serbia) for the period 2006–2018 is
applied using: LRM model (eq. 1) with coefficients r=−0.7870 and \(R^2=0.6194 \), QRM model (eq. 2) with coefficients R=0.7872 and \(R^2=0.6197 \) and CRM model (eq. 3) with coefficients R=0.7874 and \(R^2=0.6200 \).

Since for all three models (LRM, QRM, and CRM), the coefficients R and \(R^2 \) are approximately equal, for DQDW prediction it can be realized on the basis of any of the mentioned three models.

Values for TDWW (×10³ m³) for Nišava district (Serbia) for the period 2006–2018 increased from 19097 in 2006 to 19897 in 2018 (CGL=104.19% in 2018 compared to 2006, and CAGR=0.26% per year).

The prediction for TDWW for Nišava district (Serbia) for the period 2019-2023 was done based on the PRM4, PRM5, and PRM6 models. Values for TDWW for Nišava district (Serbia) for the period 2006-2018 are approximated using: PRM4 model (eq. 4), with coefficients \(R=0.7778 \) and \(R^2=0.6049 \), PRM5 model (eq. 5), with coefficients R=0.8207 and \(R^2=0.6736 \) and PRM6 model (eq. 6), with coefficients R=0.8515 and \(R^2=0.7251 \). Since the coefficients R and \(R^2 \) are the highest for the PRM6 model, this model can be adopted as the most adequate for predicting TDWW.

Based on the TDWW analysis, it can be concluded that the prediction values differ greatly from the chosen polynomial regression model (PRM4, PRM5, or PRM6).

References

1. Pavičević N. Trend analysis of total affected water and total discharged waste-water of Nišava district (Serbia). Open Access Maced J Med Sci. 2020;7(4):127-32. https://doi.org/10.3889/oamjms.2020.4764
2. Barbier EB. Natural Resources and Economic Development. 2nd ed. Cambridge, UK: Cambridge University Press; 2019.
3. Andersen AD. Towards a new approach to natural resources and development: The role of learning, innovation and linkage dynamics. Int J Technol Learn Innov Dev. 2012;5(3):291-324.
4. Salvati L, Marco Z. Natural resource depletion and economic performance of local districts: Suggestions from a within-country analysis. J Sustain Dev World Ecol. 2008;15(6):518-23. https://doi.org/10.1080/13504500809469847
5. Schilling M, Chiang L. The effect of natural resources on sustainable development policy: The approach of non-sustainable externalities. Energy Policy. 2011;39(2):990-8. https://doi.org/10.1016/j.enpol.2010.11.030
6. Nelson SL, Hudson JW, Hooker A. The use of statistical analysis to optimize pioneer natural resources’ vertical spraberry-trend portfolio. SPE Econ Manage. 2013;5(3):105-17. https://doi.org/10.2118/162927-pa
7. Smith VK. Natural resource scarcity: A statistical analysis. Rev Econ Stat. 1979;61(3):423-7.
8. Tarasev AM, Vasilev JA, Turygina VF. Statistical Analysis and Forecasting of Extraction and Use of Natural Resources, 2040: Article No. 050011. AIP Conference Proceedings; 2018. https://doi.org/10.1063/1.5079109
9. Tarasev AM, Vasilev JA, Turygina VF, Kravchuk SV, Streichuk AE. Methods for Predicting the Production of Natural Resources, 2186: Article No. 050010. AIP Conference Proceedings; 2019. https://doi.org/10.1063/1.5137943
10. Adžić A, Imamović M. Statistical Descriptions of Delivered Quantity of Water by Sources in the Federation of Bosnia and Herzegovina, 126: Article No. 04007. MATEC Web of Conferences; 2017. https://doi.org/10.1051/matecconf/201712604007
11. Bordalo AA, Teixeira R, Wiebe WJ. A water quality index applied to an international shared river basin: The case of the Douro River. Environ Manage. 2006;38(6):910-20. https://doi.org/10.1007/s00267-004-0037-6
PMid:17039391
12. Egborge AB, Benka-Coker J. Water quality index: Application in the Wari River, Nigeria. Environ Pollut B. 1986;12(1):27-40. https://doi.org/10.1016/0143-148x(86)90004-2
13. Elezović N, Ilić-Kornatina D, Dervišević I, Ketin S, Dašić P. Analysis of SWQI index of the river Ibar (Serbia). Fresenius Environ Bull. 2018;27(4):2505-9.
14. Selvam S, Manimaran G, Sivasubramanian P, Balasubramanian N, Seshunarayana T. GIS-based evaluation of water quality index of groundwater resources around Tuticorin Coastal city, South India. Environ Earth Sci. 2014;71(6):2847-67. https://doi.org/10.1007/s12665-013-2662-y
15. von der Ohe CP, Prüß A, Schäfer RB, Liess M, de Deckere E, Brack W. Water quality indices across Europe—a comparison of the good ecological status for five river basins. J Environ Monit. 2007;9(9):970-8. https://doi.org/10.1039/b704699p
PMid:17726558
16. Ferreira NC, Bonetti C, Seiffert WQ. Hydrological and water quality indices as management tools in marine shrimp culture. Aquaculture. 2011;318(3-4):425-33. https://doi.org/10.1016/j. aquaculture.2011.05.045
17. Boyacioglu H. Utilization of the water quality index method as a classification tool. Environ Monit Assess. 2010;167(1-4):115-24. https://doi.org/10.1007/s10661-009-1035-1
PMid:19543993
18. Kannel PR, Lee S, Lee YS, Kanel SR, Khan SP. Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment. Environ Monit Assess. 2007;132(1-3):93-110. https://doi.org/10.1007/s10661-006-9505-1
PMid:17279460
19. Gupta AK, Gupta SK, Patil RS. A comparison of water quality indices for coastal water. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2003;38(11):2711-25. https://doi.org/10.1080/1059050031000122531
20. Kaurish FW, Younos T. Developing a standardized water quality index for evaluating surface water quality. J Am Water Resour Assoc. 2007;43(2):533-45. https://doi. org/10.1111/j.1752-1688.2007.00042.x
21. René ER, Saidutta MB. Prediction of water quality indices by regression analysis and artificial neural networks. Int J Environ Res. 2008;2(2):183-8.
22. Kovačević M, editor. Municipalities in the Serbia, 2006. Belgrade, Serbia: Republican Bureau of Statistics of Serbia; 2007.
23. Milojić A. editor. Municipalities in the Serbia, 2010. Belgrade, Serbia: Republican Bureau of Statistics of Serbia; 2010.
24. Milojić A. editor. Municipalities and Regions in the Republic of Serbia, 2014. Belgrade, Serbia: Republican Bureau of Statistics of Serbia; 2014.
25. Gavrilović D, editor. Municipalities and Regions in the Republic of Serbia, 2016. Belgrade, Serbia: Republican Bureau of Statistics of Serbia; 2016.
26. Gavrilović D, editor. Municipalities and Regions in the Republic of Serbia, 2019. Belgrade, Serbia: Republican Bureau of Statistics of Serbia; 2019.

27. Cowan G. Statistical Data Analysis. New York, USA: Oxford University Press; 1998.

28. Schmuller J. Statistical Analysis with Excel for Dummies. 4th ed. Hoboken, New Jersey, USA: John Wiley & Sons Inc.; 2016.

29. Winston W. Microsoft Excel data Analysis and Business Modelling. 5th ed. Redmond, Washington, USA: Microsoft Press; 2016.

30. Dašić P. Application of polynomial regression models for approximation of time series. J Econ Manag Based New Technol. 2012;1(2):81-160.

31. Dašić P, Dašić J, Antanasković D, Pavičević N. Statistical analysis and modeling of global innovation index (GII) of Serbia. Lect Notes Netw Syst. 2020;128:515-21. https://doi.org/10.1007/978-3-030-46817-0_59

32. Tošović R, Dašić P, Ristović I. Sustainable use of metallic mineral resources of Serbia from an environmental perspective. Environ Eng Manag J. 2016;15(9):2075-84. https://doi.org/10.30638/eemj.2016.224