Heating Through Phonon Excitation Implied by Collapse Models

Stephen L. Adler

Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA.

We calculate the rate of heating through phonon excitation implied by the noise postulated in mass-proportional-coupled collapse models, for a general noise power spectrum. For white noise with reduction rate λ, the phonon heating rate reduces to the standard formula, but for non-white noise with power spectrum $\lambda(\omega)$, the rate λ is replaced by $\lambda_{\text{eff}} = \frac{2}{3\pi^2} \int d^3w e^{-\omega_L^2 \vec{w}^2} \lambda(\omega_L(\vec{w}/r_c))$, with $\omega_L(\vec{q})$ the longitudinal acoustic phonon frequency as a function of wave number \vec{q}, and with r_C the noise correlation length. Hence if the noise power spectrum is cut off below $\omega_L(|\vec{q}| \sim r_c^{-1})$, the heating rate is sharply reduced.

There is increasing interest in testing wave function collapse models [1], by searching for effects associated with the noise which drives wave function collapse when nonlinearly coupled in the Schrödinger equation. A recent cantilever experiment of Vinate et al. [2] has set noise bounds consistent with the enhanced noise strength [3] needed to make latent image formation a trigger for state vector collapse, and reports a possible noise signal. Various other suggested experiments [4] focus on noise-induced motions or heating of small masses or collections of oscillators, assuming a white noise spectrum. Since recent experiments on gamma ray emission from germanium [5] have shown that with the enhanced noise strength of [3], a white noise spectrum is experimentally ruled out, it becomes important to take the effects of a cutoff in the noise spectrum into account. In this paper we focus on noise-induced heating, motivated by the astute observation of Vinate [6] that since the noise wave number density is peaked near $|\vec{q}| \sim r_c^{-1}$, heating effects will be reduced if the noise spectrum cuts off below the longitudinal acoustic phonon frequency associated with the wave number peak. Our aim is to give a quantitative calculation of this effect; its application to possible experiments involving bulk heating effects will be given elsewhere [7].

Consider a system in initial state i with energy $E_i = h\omega_i$ at time $t = 0$, acted on by a perturbation V which at time t leads to a transition to a state f with energy $E_f = h\omega_f$. Working in the interaction picture, the transition amplitude $c_{fi}(t)$ is given by

$$ c_{fi}(t) = -\frac{i}{\hbar} \int_0^t V_{fi}(t') e^{i\omega_{fi} t'} dt' , $nolip"}
taneous localization (CSL) model,
\[V = \int d^3z \frac{dW_t(z)}{dt} \mathcal{V}(\vec{z}, \{\vec{x}\}) \right. , \]
\[\mathcal{V}(\vec{z}, \{\vec{x}\}) = -\frac{\hbar}{mN} \sum_\ell m_\ell g(\vec{z} - \vec{x}_\ell) \left. , \right. \tag{2} \]
where we have followed the notation used in [8]. Here \(\vec{x}_\ell \) are the coordinates of atoms of mass \(m_\ell \), \(g(\vec{x}) \) is a spatial correlation function, conventionally taken as a Gaussian
\[g(\vec{x}) = (2\pi)^{-3/2} \left(\frac{r_c}{2\pi} \right)^3 e^{-\vec{r}^2/(2r_c^2)} \left(\frac{r_c}{2\pi} \right)^{3/2} \int d\vec{q} e^{-i\vec{q} \cdot \vec{x}} \right. \tag{3} \]
and the non-white noise has expectation \(\mathcal{E} \)
\[\mathcal{E} \left[\frac{dW_t(\vec{x})}{dt} \frac{dW_{t'}(\vec{y})}{dt'} \right] = \frac{1}{2\pi} \int_{-\infty}^\infty d\omega \gamma(\omega) e^{-i\omega(t-t')} \delta^3(\vec{x} - \vec{y}) \right. , \tag{4} \]
with \(\gamma(\omega) = \gamma(-\omega) \) related to the reduction rate parameter \(\lambda(\omega) \) by
\[\gamma(\omega) = 8\pi^{3/2}r_c^3 \lambda(\omega) \left. . \right. \tag{5} \]

We wish now to calculate the expectation \(\mathcal{E}[E(t)] \) of the energy attained by the system at time \(t \), given by
\[\mathcal{E}[E(t)] = \mathcal{E}\left[\sum_f \hbar \omega_{fi} |c_{fi}(t)|^2 \right] \right. . \tag{6} \]
Substituting Eqs. (1) – (5), carrying out integrations, and using the formulas \[9 \]
\[\int_0^t dt' e^{i(\omega_{fi} - \omega)t'} = \frac{e^{i(\omega_{fi} - \omega)t} - 1}{i(\omega_{fi} - \omega)} \equiv 2\pi e^{i(\omega_{fi} - \omega)t/2} \delta(t) (\omega_{fi} - \omega) \] ,
\[[\delta(t)(\omega_{fi} - \omega)]^2 \approx \frac{t}{2\pi} \delta(t)(\omega_{fi} - \omega) \] ,
we find in the large \(t \) limit the formula for the energy gain rate
\[t^{-1} \mathcal{E}[E(t)] = \frac{r_c^3}{\pi^{3/2}m_N^2} \int d^3q \sum_f e^{-r_c^2 \vec{q}^2} \lambda(\omega_{fi}) \hbar \omega_{fi} \left| \left(\sum_\ell m_\ell e^{i\vec{q} \cdot \vec{x}_\ell} \right) \right|_{fi}^2 . \tag{8} \]

The next step is to evaluate the matrix element appearing in Eq. (8) by introducing phonon physics, following the exposition in the text of Callaway [10]. We consider first the simplest case of a monatomic lattice with all \(m_\ell \) equal to \(m_A \), independent of the index \(\ell \), and write the atom coordinate \(\vec{x}_\ell \) as
\[\vec{x}_\ell = \vec{R}_\ell + \vec{u}_\ell \] ,
\[\tag{9} \]
with \vec{R}_ℓ the equilibrium lattice coordinate and with \vec{u}_ℓ the lattice displacement induced by the noise perturbation. Writing

$$\sum_\ell m_\ell e^{i\vec{q} \cdot \vec{x}_\ell} = m_A \sum_\ell e^{i\vec{q} \cdot \vec{R}_\ell} e^{i\vec{q} \cdot \vec{u}_\ell},$$

we note that since the Gaussian in Eq. (8) restricts the magnitude of \vec{q} to be less than of order of r_c^{-1}, with $r_c \sim 10^{-5}$ cm, whereas the magnitude of the lattice displacement is much smaller than 10^{-8} cm, the exponent in $e^{i\vec{q} \cdot \vec{u}_\ell}$ is a very small quantity. So we can Taylor expand to write

$$e^{i\vec{q} \cdot \vec{u}_\ell} \simeq 1 + i\vec{q} \cdot \vec{u}_\ell.$$

(11)

The leading term 1 does not contribute to energy-changing transitions, so we have reduced the matrix element in Eq. (8) to the simpler form

$$\left(\sum_\ell m_\ell e^{i\vec{q} \cdot \vec{x}_\ell}\right)_{fi} \simeq im_A \left(\sum_\ell e^{i\vec{q} \cdot \vec{R}_\ell} \vec{q} \cdot \vec{u}_\ell\right)_{fi}, \quad f \neq i.$$

(12)

The approximation leading to Eq. (12) is a phonon analog of the electric dipole approximation made in electromagnetic radiation rate calculations.

We now substitute the expression [10] for the lattice displacement in terms of phonon creation and annihilation operators,

$$\vec{u}_\ell = \frac{\Omega}{8\pi^3} \left(\frac{hN}{m_A}\right)^{1/2} \sum_j \int \frac{d^3k}{2\omega_j(\vec{k})^{1/2}} \left[\bar{e}^{(j)}(\vec{k}) e^{i\vec{k} \cdot \vec{R}_\ell} a_j(\vec{k}) + \bar{e}^{(j)*}(\vec{k}) e^{-i\vec{k} \cdot \vec{R}_\ell} a_j^\dagger(\vec{k})\right],$$

(13)

where the sum on j runs over the acoustic phonon polarization states, and where Ω and N are respectively the lattice unit cell volume, and the number of unit cells. Taking the initial state i to be the zero phonon state, only the a_j^\dagger term in Eq. (13) contributes, and we can evaluate the sum over lattice sites ℓ in Eq. (12) using the formula [10]

$$\sum_\ell e^{i(\vec{q} - \vec{k}) \cdot \vec{R}_\ell} = \frac{8\pi^3}{\Omega} \delta^3(\vec{q} - \vec{k}).$$

(14)

Carrying out the \vec{k} integration, noting that $\vec{q} \cdot \bar{e}^{(j)}(\vec{q})$ selects the longitudinal phonon with frequency $\omega_L(\vec{q})$, defining $\vec{w} = r_c \vec{q}$, writing $M = Nm_A$ for the total system mass, and assembling all the pieces, we arrive at the answer

$$t^{-1} \mathcal{E}[E(t)] = \frac{h^2 M}{m_A N r_c^2} \frac{1}{2\pi^{3/2}} \int d^3w e^{-\vec{w}^2} \mathcal{W}^2 \lambda(\omega_L(\vec{w}/r_c)) = \frac{3}{4} \frac{\lambda_{\text{eff}} M}{m_A N r_c^2},$$

$$\lambda_{\text{eff}} = \frac{2}{3\pi^{3/2}} \int d^3w e^{-\vec{w}^2} \mathcal{W}^2 \lambda(\omega_L(\vec{w}/r_c)).$$

(15)
In the white noise case, where $\lambda(\omega)$ is a constant λ, we can pull it outside the \vec{w} integral and use

$$\int d^3 w e^{-\vec{w}^2 \vec{w}^2} = \frac{3}{2} \pi^{3/2}$$

(16)

to get the standard formula [11]

$$t^{-1} \mathcal{E}[E(t)] = \frac{3 \hbar^2 \lambda M}{4 m^2 r_c^2} \omega_L$$

(17)

When the noise spectrum has a cutoff below $\omega_L(\vec{q})$ for $|\vec{q}| \sim r_c^{-1}$, the energy gain rate is sharply reduced.

Although we have derived the result of Eq. (15) for the case of a monatomic lattice and a zero phonon initial state, the result is more general. For a multi-atom unit cell, the same answer holds, with m_A the sum of masses in the unit cell, and with $\omega_L(\vec{q})$ again the longitudinal acoustic phonon frequency. In the multi-atom case the formula of Eq. (15) neglects optical phonon contributions, but these are the “internal excitations” that are neglected in the derivation of the center-of-mass energy gain formula of Eq. (17). When the initial state is constructed from n-phonon states, as in a thermal ground state, the a^\dagger term in Eq. (13) contributes a term proportional to $(n+1)\omega_L$ to the energy gain, while the a term in Eq. (13) contributes a corresponding term proportional to $-n\omega_L$ to the energy gain; the sum of the two terms is proportional to $(n+1-n)\omega_L = \omega_L$, so n drops out and the formula of Eq. (15) is recovered. This simplification could have been anticipated from our earlier analysis of the noise-induced energy gain by an oscillator [12], which showed that the rate of energy gain is a constant independent of the number of oscillator quanta that are present.

I wish Andrea Vinante for an email that stimulated this paper, and to thank Angelo Bassi for helpful conversations.

Added Note

Apart from updating Ref. [7], the preceding body of this paper is identical to the version posted on arXiv on Jan. 1, 2018. Andrea Vinante has called our attention to a paper by M. Bahrami [13] posted on Jan. 11, with an update on Jan. 14, in which a similar calculation is done. For a monatomic lattice, Bahrami’s result and ours are in agreement. In his Jan. 14 posting, Bahrami gives a formula for the case of a multi-atom unit cell, which he notes disagrees with our statement that this gives the same result as the monatomic case. Bahrami’s multi-atom formula is incorrect, as a result of his using the wrong normalization for the phonon polarization vectors, and does not reduce to the standard formula in the white noise case when $\lambda(\omega)$ is a constant λ. In this version of our paper, we have added an Appendix giving a brief derivation of the correct result in the multi-atom case.
Later Added Note
Bahrami agrees, and will revise his posting.

Appendix: Brief derivation of the formula for the multi-atom case
In the monatomic case, focusing only on the atomic mass factors and longitudinal phonon polarization vectors, Eqs. (12) and (13) give a factor

\[m_A^{1/2} e^{(L)\ast}(\vec{k}) \simeq m_A^{1/2} e^{(L)\ast}(\vec{0}) \quad . \tag{18} \]

After the \(\simeq \) sign we have used the fact, noted after Eq. (10), that the correlation length \(r_C \) allows only contributions from phonon wavelengths that are long on a lattice scale, corresponding to \(\vec{k} \simeq \vec{0} \).

In the multi-atom case, focusing only on acoustic phonons,\(^1\) the left-hand side of Eq. (18) is replaced by

\[m_\kappa^{1/2} e^{(L)\ast}(\vec{k}) \quad , \tag{19} \]

corresponding to Eqs. (1.4.22a,b) of [10], with \(\kappa \) labeling an atom in the multi-atom unit cell.

Referring now to the unnumbered equation in Callaway [10] between his Eqs. (1.1.22) and (1.1.23), which we write (using the fact that for \(\vec{k} = 0 \) the polarization vectors are real numbers; see Callaway Eq. (1.1.21)) as

\[m_\kappa^{-1/2} e^{(L)\ast}(\vec{0}) = m_\kappa^{-1/2} e^{(L)}(\vec{0}) = \vec{C} \quad , \tag{20} \]

with \(\vec{C} \) a constant, we see that the longitudinal polarization vectors are no longer unit normalized, as in the monatomic case. Instead, the normalization is given in Eq. (1.1.18a) of [10],

\[\sum_\kappa \bar{e}^{(L)\ast}(\vec{0}) \cdot \bar{e}^{(L)}(\vec{0}) = 1 \quad , \tag{21} \]

which on substituting Eq. (20) gives

\[|\vec{C}| = \left(\sum_\kappa m_\kappa \right)^{-1/2} \quad , \tag{22} \]

and implies for small \(\vec{k} \)

\[m_\kappa^{1/2} \vec{k} \cdot \bar{e}^{(L)\ast}(\vec{k}) \simeq m_\kappa |\vec{C}| = m_\kappa \left(\sum_\kappa m_\kappa \right)^{-1/2} \quad . \tag{23} \]

\(^1\) Optical phonons leave the unit cell center of mass stationary, so obey \(\sum_\kappa m_\kappa^{1/2} \bar{e}^{(s)\ast}(\vec{0}) = 0 \) for any optical phonon mode \(s \). Hence for mass-proportional noise coupling, optical phonons do not contribute to the energy gain rate to leading order in \(a/r_C \), with \(a \) the unit cell dimension.
Recalling Eqs. (11)–(14), summing over \(\kappa \) to get the total contribution to the one-phonon creation amplitude, we have

\[
\sum_{\kappa} m_{\kappa} \left(\sum_{\kappa} m_{\kappa} \right)^{-1/2},
\]

which when squared gives a factor

\[
\sum_{\kappa} m_{\kappa} = m_{\text{cell}},
\]

which is the total atomic mass in the unit cell. Thus the only change from the monatomic to the multi-atomic case is the replacement of \(m_A \) by \(m_{\text{cell}} \), and since \(N m_{\text{cell}} = M \), the total system mass, the monatomic formula of Eq. (15) is unchanged. Heuristically, the reason for this is that, as emphasized by Callaway, for \(\vec{k} = 0 \) acoustic phonons Eq. (20) implies that all “...particles in each unit cell move in parallel with equal amplitudes”, and so behave as a single particle with mass \(m_{\text{cell}} \).

[1] For reviews see: A. Bassi and G. C. Ghirardi, Phys. Rep. 379, 257 (2003); P. Pearle, in “Open Systems and Measurements in Relativistic Quantum Field Theory”, Lecture Notes in Physics Vol. 526, H.-P. Breuer and F. Petruccione, eds., Springer, Berlin, 1999.

[2] A. Vinante, R. Mezzena, P. Falferi, M. Carlesso, and A. Bassi, Phys. Rev. Lett. 119, 110401 (2017).

[3] S. L. Adler, J. Phys. A: Math. Theor. 40, 2935, (E) 13501 (2007).

[4] Alternative recent proposals include: M. Bahrami, M. Paternostro, A. Bassi, and H. Ulbricht, Phys. Rev. Lett. 112, 210404 (2014); S. Nimmrichter, K. Hornberger, and K. Hammerer, Phys. Rev. Lett. 113, 020405 (2014); F. Laloe, W. J. Mullin, and P. Pearle, Phys. Rev. A 90, 052119 (2014); L. Diósi, Phys. Rev. Lett. 114, 050403 (2015); D. Goldwater, M. Paternostro, and P. F. Barker, Phys. Rev. A 94, 010104 (2016).

[5] K. Piscicchia, A. Bassi, C. Curceanu, R. Del Grande, S. Donadi, B. C. Hiesmayr, and A. Pichler, arXiv:1710.01973.

[6] A. Vinante, private communication.

[7] S. L. Adler and A. Vinante, “Bulk Heating Effects as Tests for Collapse Models”, arXiv:1801.06857.

[8] S. L. Adler and F. M. Ramazanoglu, J. Phys. A: Math. Theor. 40, 13395 (2007), (E) 42, 109801.

[9] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, “Atom-Photon Interactions”, John Wiley & Sons, Inc., New York (1992), Eq. (20) on p. 20 and Eq. (49) on p. 35.

[10] J. Callaway, “Quantum Theory of the Solid State, Part A”, Academic Press, New York (1974), Chapter 1 and Appendix A. See especially Eq. (1.2.9) on p. 13, Eq. (1.4.22b) on p. 24, and Eq. (A.9b) on p. 354.
[11] P. Pearle and E. Squires, Phys. Rev. Lett. 73, 1 (1994), Eq. (2); S. L. Adler, ref [3] op. cit., Eq. (7) and the related comments contained in references [5] and [6]. For a detailed derivation in the continuous spontaneous localization (CSL) model, see F. Laloë, W. J. Mullin, and P. Pearle, ref [4] op. cit., Appendix A.

[12] S. L. Adler, J. Phys. A: Math. Gen. 38, 2729 (2005).

[13] M. Bahrami, “Testing Linearity of Quantum Mechanics with a Thermometer”, [arXiv:1801.03636](http://arxiv.org/abs/1801.03636) v1 and v2.