SOME STRUCTURAL AND CLOSURE PROPERTIES OF AN
EXTENSION OF THE q-TENSOR PRODUCT OF GROUPS, $q \geq 0$

IVONILDES RIBEIRO MARTINS DIAS, NORAÍ ROMEU ROCCO*,
AND EUNICE CÂNDIDA PEREIRA RODRIGUES

Abstract. In this work we study some structural properties of the group $\eta^q(G, H)$, q a non-negative integer, which is an extension of the q-tensor product $G \otimes^q H$, where G and H are normal subgroups of some group L. We establish by simple arguments some closure properties of $\eta^q(G, H)$ when G and H belong to certain Schur classes. This extends similar results concerning the case $q = 0$ found in the literature. Restricting our considerations to the case $G = H$, we compute the q-tensor square $D_n \otimes^q D_n$ for q odd, where D_n denotes the dihedral group of order $2n$. Upper bounds to the exponent of $\eta^q(G, G)$ are also established for nilpotent groups G of class ≤ 3, which extend to all $q \geq 0$ similar bounds found by Moravec in [21].

1. Introduction

Let G and H be groups each of which acts upon the other (on the right) and upon themselves by conjugation, in a compatible way, that is,

$$(1) \quad g^{(h_{g_1})} = \left((g^{h_{g_1}})^h \right)^{g_{g_1}} \quad \text{and} \quad h^{(g_{h_1})} = \left((h^{g_{h_1}})^g \right)^{h_{h_1}},$$

for all $g, g_1 \in G$ and $h, h_1 \in H$. In this situation, the non-abelian tensor product $G \otimes H$ of G and H, as defined by Brown and Loday in [8], is the group generated by the symbols $g \otimes h$, where $g \in G$ and $h \in H$, subject to the defining relations

$$(2) \quad gg_1 \otimes h = (g^{g_1} \otimes h^{g_1})(g \otimes h) \quad \text{and} \quad g \otimes hh_1 = (g \otimes h_1)(g^{h_1} \otimes h^{h_1}),$$

where $g, g_1 \in G$ and $h, h_1 \in H$.

Brown and Loday [8] gave a topological significance for the non-abelian tensor product of groups. They used it to describe the third relative homotopy group of a triad as a non-abelian tensor product of the second relative homotopy groups of appropriate subspaces (see also [2]). When $G = H$ and all actions are by conjugation in G, then the group $G \otimes G$ is called the non-abelian tensor square of G. The commutator map induces a homomorphism $\kappa : G \otimes G \to G$, such that $g \otimes h \mapsto [g, h]$,
for all $g, h \in G$, whose kernel is usually denoted by $J_2(G)$. Its topological interest is given by the isomorphism (Cf. [8]):

$$\pi_3 SK(G, 1) \cong J_2(G),$$

where $\pi_3 SK(G, 1)$ is the third homotopy group of the suspension of the Eilenberg-MacLane space $K(G, 1)$.

Non-abelian tensor products of groups have been studied by a number of authors. In [27] the second author derived some properties of the non-abelian tensor square of a group G via its embedding in a larger group, $\nu(G)$, defined as follows. Let G^φ be an isomorphic copy of G via an isomorphism $\varphi : G \to G^\varphi$, such that $g \mapsto g^\varphi$, for all $g \in G$. Then, $\nu(G)$ is defined to be the group

$$\nu(G) := \langle G \cup G^\varphi \mid [g, h^\varphi]^k = [g^k, (h^k)^\varphi] = [g, h^\varphi]^k \rangle,$$

for all $g, h, k \in G$.

Besides its intrinsic group theoretical interest, the motivation in introducing $\nu(G)$ is that its subgroup $[G, G^\varphi]$ is naturally isomorphic with the non-abelian tensor square, $G \otimes G$. Independently, Ellis e Leonard [15] introduced a similar construction.

Following [27] and [15], Nakaoka [23] extended the operator ν to an operator η, for the case of two groups G and H acting compatibly on one another. To this end it is considered an isomorphic copy H^φ of H, where $\varphi : h \mapsto h^\varphi$, for all $h \in H$. For any $x, x_1 \in G$ and $y, y_1 \in H$, set

$$s_1(x, y, x_1) = [x, y^\varphi]^{x_1} : [x^{x_1}, (y^{x_1})^\varphi]^{-1},$$

$$s_2(x, y, y_1) = [x, y^\varphi]^{y_1} : [x^{y_1}, (y^{y_1})^\varphi]^{-1}.$$

Let $S_1 = \{s_1(x, y, x_1) \mid x, x_1 \in G, \ y \in H\}$, $S_2 = \{s_2(x, y, y_1) \mid x \in G, \ y, y_1 \in H\}$ and $S = S_1 \cup S_2$. Then the group $\eta(G, H)$ is defined by (Cf. [23]):

$$\eta(G, H) = \langle G, H^\varphi \mid S \rangle,$$

the factor group of the free product $G \ast H^\varphi$ by its normal subgroup generated by S. It follows from [18, Proposition 1.4] that the map $g \otimes h \mapsto [g, h^\varphi]$ gives rise to an isomorphism from $G \otimes H$ onto the subgroup $[G, H^\varphi] \ast \eta(G, H)$. When $G = H$ and all actions are by conjugation then $\eta(G, H)$ becomes the group $\nu(G)$.

Ellis and Rodríguez-Fernández [16], Brown [5], and Conduché and Rodríguez-Fernández [10] started the investigation of a modular version of the non-abelian tensor product. In [13] Ellis considered the so called q-tensor product $G \otimes^q H$, of G and H, where q is a non-negative integer, in the case where G and H are normal subgroups of a larger group L and all actions are by conjugation in L. In this situation the q-tensor product, $G \otimes^q H$, is defined to be the group generated by the symbols $g \otimes h$ and \tilde{k}, for $g \in G, \ h \in H$ and $k \in G \cap H$, subject to the following relations (for all $g, g_1 \in G, \ h, h_1 \in H$ and $k, k_1 \in G \cap H$), where for elements $x, y \in L$ the conjugate
of x by y is written $x^y = y^{-1}xy$ and the commutator of x and y is $[x, y] = x^{-1}yx$:

$$g \otimes h_1 = (g \otimes h_1)(g^{h_1} \otimes h^{h_1});$$

(6)

$$gg_1 \otimes h = (g^{g_1} \otimes h^{g_1})(g_1 \otimes h);$$

(7)

$$(g \otimes h)^k = g^{(k^q)} \otimes h^{(k^q)};$$

(8)

$$\kappa k_1 = k \prod_{i=1}^{q-1} (k \otimes (k_1^{-i})^{k^{q-1-i}})k_1;$$

(9)

$$[\kappa, k_1] = k^q \otimes k_1^q;$$

(10)

$$[g, h] = (g \otimes h)^q.$$

(11)

For $q = 0$ the 0-tensor product $G \otimes^0 H$ is just the non-abelian tensor product $G \otimes H$ (cf. [8]), that is, the group generated by the symbols $g \otimes h$, for $g \in G$, $h \in H$, subject to the relations (6) and (7) only. When $G = H$ then we get the q-tensor square, $G \otimes^q G$.

In [5] Brown showed that if G is a q-perfect group, that is, G is generated by commutators and q-th powers, then the (unique) universal q-central extension of G is isomorphic with

$$1 \to H_2(G, \mathbb{Z}_q) \to G \otimes^q G \to G \to 1.$$

In this paper we address some structural properties of the group $\eta^q(G, H)$, an extension of $G \otimes^q H$ by $G \times H$ which also generalizes in a certain sense the group $\eta(G, H)$ in the particular situation where G and H are normal subgroups of a larger group L. The group $\eta^q(G, H)$ first appeared in [14] using a slightly different approach.

Notation is fairly standard (see for instance [25]); as usual we write x^y to mean the conjugate $y^{-1}xy$ of x by y; the commutator of x and y is then $[x, y] = x^{-1}y^{-1}xy$. Our commutators are left normed, that is, $[x, y, z] = [[x, y], z]$.

The paper is organized as follows. In Section 2 we briefly describe the group $\eta^q(G, H)$ and treat of some basic structural results. In Section 3 we prove Theorem 3.2 where we address some closure properties of $\eta^q(G, H)$, extending similar results concerning $\nu^q(G)$ and the q-tensor square found in [9] and elsewhere. In Section 4 we concentrate on polycyclic groups and present some computations. Finally, in Section 5 we prove Theorem 5.2 were we establish upper bounds to the exponent of $G \otimes^q G$ for nilpotent groups of at most class 3, extending to all $q \geq 0$ similar bounds found by Moravec [21] in the case $q = 0$.

Acknowledgements: The authors are very grateful to Raimundo Bastos for the interesting discussions and suggestions on the best approach to these results.

2. Basic Structural Results

We begin this section by giving a brief description of the group $\eta^q(G, H)$. To this end we assume that G and H are normally embedded in a larger group L and that all
actions are by conjugation in \(L \). For \(q \geq 1 \) let \(K = G \cap H \) and let \(\hat{K} = \{ \hat{k} | k \in K \} \) be a set of symbols, one for each element of \(K \) (for \(q = 0 \) we set \(\hat{K} = \emptyset \), the empty set). Let \(F(\hat{K}) \) be the free group on \(\hat{K} \) and \(\eta(G, H) \ast F(\hat{K}) \) be the free product of \(\eta(G, H) \) and \(F(\hat{K}) \). Since \(G \) and \(H^x \) are embedded into \(\eta(G, H) \), we shall identify the elements of \(G \) (respectively of \(H^x \)) with their respective images in \(\eta(G, H) \ast F(\hat{K}) \). Let \(J \) be the normal closure in \(\eta(G, H) \ast F(\hat{K}) \) of the following elements, for all \(k, k_1 \in K, g \in G \) and \(h \in H \):

\[
\begin{align*}
(12) & \quad g^{-1} \hat{k} \hat{g}(\hat{k}^g)^{-1}; \\
(13) & \quad (h^x)^{-1} \hat{k} \hat{h}^x(\hat{k}^h)^{-1}; \\
(14) & \quad (\hat{k})^{-1} [g, h^x] \hat{k} \left[g^{k^x}, (h^{k^x})^x \right]^{-1}; \\
(15) & \quad (\hat{k})^{-1} k \hat{k}_1(\hat{k}_1)^{-1} \left(\prod_{i=1}^{q-1} [k_i, (k_i^{-1})^x]^{k_i^{-1-x}} \right)^{-1}; \\
(16) & \quad [\hat{k}, \hat{k}_1] [k^q, (k_1^{-1})^x]^{-1}; \\
(17) & \quad [\hat{g}, \hat{h}] [g, h^x]^{-q}.
\end{align*}
\]

According to [9] (see also [13]), the group \(\eta^q(G, H) \) is then defined to be the factor group

\[
\eta^q(G, H) := (\eta(G, H) \ast F(\hat{K})) / J.
\]

For \(q = 0 \) the set of relations from (12) to (17) is empty; in this case we have \((\eta(G, H) \ast F(\hat{K})) / J \cong \eta(G, H) \). Also, for \(G = H = L \) we get that \(\eta^q(G, G) \cong \nu^q(G) \), which becomes the group \(\nu(G) \) if \(q = 0 \).

There is an epimorphism \(\rho : \eta^q(G, H) \rightarrow GH, \ g \mapsto g, h^x \mapsto h, \hat{k} \mapsto k^q \). On the other hand, the immersion of \(G \) into \(\eta(G, H) \) induces a homomorphism \(i : G \rightarrow \eta^q(G, H) \). We have that \(g^{\rho} = g \) and thus \(i \) is injective. Similarly, the immersion of \(H^x \) into \(\eta(G, H) \) induces a homomorphism \(j : H^x \rightarrow \eta^q(G, H) \). Hence, the elements \(g \in G \) and \(h^x \in H^x \) are identified with their respective images \(g^i \) and \((h^x)^j \) in \(\eta^q(G, H) \).

We write \(K \) to denote the subgroup of \(\eta^q(G, H) \) generated by the images of \(\hat{K} \). By relations (12) and (13), \(K \) is normal in \(\eta^q(G, H) \) and, by relations (13), (14) and (15), the subgroup \(T := [G, H^x] \) is normal in \(\eta^q(G, H) \). Consequently, \(\Upsilon^q(G, H) := [G, H^x]K \) is a normal subgroup of \(\eta^q(G, H) \).

By the above considerations we obtain

\[
\eta^q(G, H) = (\Upsilon^q(G, H) \cdot G) \cdot H^x,
\]

where the dots indicate (internal) semi-direct products.
Besides its intrinsic interest as a group theoretical construction, one of the main motivations to introduce and study the group \(\eta^q(G, H) \) is the canonical “hat” (power) and commutator approach to the \(q \)-tensor product \(G \otimes^q H \).

In effect, an adaptation of the proof of [13] Proposition 2.9] can be easily carried out (see also [13, Theorem 8]) to give us the following:

Proposition 2.1. There is an isomorphism \(T^q(G, H) \cong G \otimes^q H \) such that \([g, h^e] \mapsto g \otimes h \) and \(\hat{k} \mapsto \hat{k} \), for all \(g \in G, h \in H \) and \(k \in K \).

This approach provides us not only with more psychological comfort but it also brings computational advantages by treating tensors as commutators in a larger group (see for instance, [15, 26, 9, 17, 28, 11]).

The \(q \)-exterior product \(G \wedge^q H \) is defined to be the quotient of \(G \otimes H \) by its (central) subgroup \(\nabla^q(G, H) := \langle k \otimes k \mid k \in K \rangle \). According to our approach we write

\[
\Delta^q(G, H) := \langle [k, k^e] \mid k \in K \rangle \quad \text{and} \quad \tau^q(G, H) := \frac{\eta^q(G, H)}{\Delta^q(G, H)},
\]

so that

\[
G \wedge^q H \cong \frac{T^q(G, H)}{\Delta^q(G, H)}.
\]

In the following Lemma we collect some basic consequences of the defining relations of \(\eta^q(G, H) \); their proofs can be easily adapted from [9, Lemma 2.4] and are omitted.

Lemma 2.2. [9, Lemma 2.4] Let \(G \) and \(H \) be normal subgroups of a group \(L \) and \(q \geq 0 \). Then the following relations hold in \(\eta^q(G, H) \), for all \(g, g_1 \in G, h, h_1 \in H \) and \(k, k_1 \in K \).

1. \([g, h^e][g_1, h_1^e] = [g, h^e][g_1, h_1] \);
2. \([g, h^e, h_1^e] = [g, h, h_1^e] ; [g_1, g, h^e] = [g_1, g, h^e]. \) In particular, \([g, h^e, k^e] = [g, h^e, k] = [(g, h)^e, k] \);
3. If \(k \in K' \) (or if \(k_1 \in K' \)) then \([k, k_1^e][k_1, k^e] = 1 \);
4. \(\hat{k}, [g, h] = [\hat{k}, [g, h^e]] = [\hat{k}, [g, h^e]] = [k^q, [g, h^e]] = [(k^q)^e, [g, h^e]] \);
5. \(\hat{k}, [k^e] = [k^q, h^e], [g, \hat{k}] = [g, (k^q)^e] \);
6. If \([k, k_1] = 1 \) then \([k, k_1^e] \) and \([k_1, k^e] \) are central elements in \(\eta^q(G, H) \) and they have the same finite order dividing \(q \). If in addition \(k \) and \(k_1 \) are torsion elements of orders \(o(k) \) and \(o(k_1) \), respectively, then the order of \([k, k_1^e] \) divides \(\gcd(o(k), o(k_1)) \);
7. \([k, k^e] \) is central in \(\eta^q(G, H) \), for all \(k \in K \);
8. \([k, k_1^e][k_1, k^e] \) is central in \(\eta^q(G, H) \);
9. \([k, k^e] = 1 \), for all \(k \in K' \);
10. If \([k, g] = 1 = [k, h] \) then \([g, h, k^e] = 1 = [(g, h)^e, k] \).

The next corollary extends [9, Corollary 2.5] to \(\eta^q(G, H) \).
Corollary 2.3. [27 Corollary 2.5] If $[G, H] = 1$ then $\Upsilon^q(G, H)$ is a central subgroup of $\eta^q(G, H)$. Furthermore, in this case we have

$$\Upsilon^q(G, H) \cong \frac{G}{G^G} \otimes \mathbb{Z} \frac{H}{H^H}.$$ \hspace{1cm} (22)

Proof. It follows directly from parts (ii) and (iv) of Lemma 2.2 that $[G, H^q]$ is central in $\eta^q(G, H)$. Since under our assumptions $K = G \cap H$ is abelian, by relations (12), (13) and (17), we have $[\widehat{k}, \widehat{k_1}] = [k^q, (k_1^q)^q] = [k^q, (k_1)^q]^q = ([k, k_1])^q = 1$ and $(\widehat{k})^q = \widehat{k} = (\widehat{k})^{h^q}$, for all $g \in G, h \in H, k, k_1 \in K$. Hence, the subgroup K is central in $\eta^q(G, H)$, too. Consequently, $\Upsilon^q(G, H)$ is central in $\eta^q(G, H)$. The isomorphism (22) is proved in [10, Theorem 1.24].

We recall the epimorphism $\rho : \eta^q(G, H) \to GH$, where $g \mapsto g, h^q \mapsto h$ and $\widehat{k} \mapsto k^q$. We write $\theta^q(G, H)$ to denote the kernel, ker ρ. The following result is essentially an adaptation of [8, Proposition 2.3] to our context.

Proposition 2.4. Let G and H be normal subgroups of L and q a non-negative integer. Then,

(a) The epimorphism ρ induces a homomorphism $\rho' : \Upsilon^q(G, H) \to G \cap H$ such that $\rho'(g, h^q) = [g, h^q]$ for all $g \in G, h \in H$ and $k \in G \cap H$;

(b) $[t, h] = [((t)^q)^q, k^q]$ for all $t \in [G, H^q], g \in G, h \in H$ and $\widehat{k} \in K$;

(c) $\mu^q(G, H) := \ker \rho'$ is a central subgroup of $\eta^q(G, H)$.

Proof. Item (a) is an immediate consequence of the definitions of ρ and $\Upsilon^q(G, H)$. Item (b) follows by using an induction argument based on Lemma 2.2 (ii), (iv) and commutator calculus. To prove Item (c), we first notice that every element $w \in \Upsilon^q(G, H) = TK$ can be written as a product $w = t\widehat{k}$ where $t \in T = [G, H^q]$ and $\widehat{k} \in K$; this follows by an induction argument using defining relations (14) and (15). Now we have

$$[g, w] = [g, t\widehat{k}]$$

$$= [g, \widehat{k}][g, t]$$

$$= [g, (k^q)^q][g, ((t)^q)^q]\widehat{k}$$

by Lemma 2.2 (iv), and Item (b)

$$= [g, (k^q)^q][g, ((t)^q)^q]k^q$$

by Relations (14)

$$= [g, (k^q)^q][g, ((t)^q)^q]k^q$$

by Relations (14)

$$= [g, ((t\widehat{k})^q)^q].$$

With similar arguments we get that $[w, h^q] = [(w)^q, h^q]$ and $[w, \widehat{k}] = [(w)^q, (k^q)^q]$. Consequently, if $w \in \mu^q(G, H) = \ker \rho'$, then $[g, w] = [w, h^q] = [w, \widehat{k}] = 1$, for all $g \in G, h^q \in H^q$, and $k \in K$. Therefore, ker ρ' is central in $\eta^q(G, H)$. \hfill \Box
Remark 2.5. Notice that \(\eta^q(G, H)/\Upsilon^q(G, H) \cong G \times H \), while \(\eta^q(G, H)/\theta^q(G, H) \cong GH \). This implies that there is an isomorphism from \(\eta^q(G, H)/\mu^q(G, H) \) to a subgroup of \(G \times H \times GH \). In addition, \(\eta^q(G, H)/[G, H^p] \cong (K/[G, H]) \times G \times H \), since \([G, H^p]/K/[G, H^p] \) is generated by the elements \(\hat{k} \), for \(k \in K \), with the relations \(\hat{k} \hat{k}_1 = \hat{k} \hat{k}_1 \) and \([\hat{k}, \hat{k}_1] = 1 \), according to defining relations (15) and (16). Set \(\mu_0^q(G, H) := [G, H^p] \cap \mu^q(G, H) \). We thus obtain the following exact sequence

\[(24) \quad 1 \to \mu_0^q(G, H) \to \eta^q(G, H) \to (K/[G, H]) \times G \times H \times GH.\]

Now, let \(p \) and \(q \) be non-negative integers with \(p \geq 1 \). Let \(\delta : \eta^p(G, H) \to \eta^q(G, H) \) be defined on the generators of \(\eta^p(G, H) \) by \((g)\delta := g \), \((h^p)\delta := h^q \) and \((\hat{k})\delta := \hat{k}^q \), for all \(g \in G \), \(h^p \in H^p \) and \(k \in K \). It is a routine to check that in this way \(\delta \) preserves the defining relations of \(\eta^p(G, H) \); relations (12), (13), (14), (16) and (17) are easily carried out. However, relation (15) demand tedious calculations and the impatient reader can consult [10, Theorem 1.22]. Thus we obtain a homomorphism from \(\eta^p(G, H) \) to \(\eta^q(G, H) \). Set \(\delta' = \delta|\Upsilon^p(G, H) : \Upsilon^p(G, H) \to \Upsilon^q(G, H) \). The next Proposition generalises [9, Proposition 2.6] and [10, Theorem 1.22].

Proposition 2.6. Let \(p \geq 1 \). There are exact sequences

\[(25) \quad \eta^p(G, H) \xrightarrow{\delta} \eta^q(G, H) \to \frac{K}{[G, H]K^q} \to 1;\]

\[(26) \quad \Upsilon^p(G, H) \xrightarrow{\delta} \Upsilon^q(G, H) \to \frac{K}{[G, H]K^q} \to 1;\]

In particular, if \(q = 0 \) then we have:

\[(27) \quad \eta(G, H) \xrightarrow{\delta} \eta^q(G, H) \to \frac{K}{[G, H]} \to 1;\]

\[(28) \quad \Upsilon(G, H) \xrightarrow{\delta} \Upsilon^q(G, H) \to \frac{K}{[G, H]} \to 1.\]

Proof. According to the definition of \(\delta \) we have

\[\text{Im}(\delta) = \langle g, h^q, \hat{k}^q \mid g \in G, \ h \in H \text{ and } k \in K \rangle.\]

Thus, it follows from Lemma 2.22 that \(\text{Im}(\delta) \) is a normal subgroup of \(\eta^p(G, H) \). Now, as already observed in Remark 2.5, \(\eta^p(G, H)/\text{Im}(\delta) \) is generated by the cosets of the elements \(\hat{k} \in \hat{K} \) with the relations \(\hat{k}\hat{k}_1 = \hat{k}\hat{k}_1 \). Furthermore, as \(\hat{k}^q \in \text{Im}(\delta) \) for all \(k \in K \), it follows that \((\hat{k})^q \equiv 1 \pmod{\text{Im}(\delta)} \). This proves (25). The sequence (26) is essentially [13, Theorem 6, (ii)] and follows by a similar argument as above, since \(\text{Im}(\delta') \) is also normal in \(\Upsilon^p(G, H) \). The sequences (27) and (28) follow at once, respectively from (25) and (26) with \(q = 0 \). This completes the proof. \(\square \)
The next result shows that the derived group $\eta^q(G, H)'$ has the same formal structure for all $q \geq 0$. In order to avoid any confusion, we write $\mathcal{T}(G, H)$ for the subgroup $[G, H^\varphi] \leq \eta(G, H)$ (case $q = 0$), which is isomorphic with the non-abelian tensor product $G \otimes H$ for all compatible actions of one group upon another. In many places in this paper we write \mathcal{T} for the subgroup $\big[[G, H \varphi] \leq \eta^q(G, H)\big]$ (case $q = 0$), which is isomorphic with the non-abelian tensor product $G \otimes H$ for all compatible actions of one group upon another. In many places in this paper we write \mathcal{T} for the subgroup $\big[[G, H \varphi] \leq \eta^q(G, H)\big]$ (case $q = 0$), which is isomorphic with the non-abelian tensor product $G \otimes H$ for all compatible actions of one group upon another.

Proposition 2.7. Let G and H be normal subgroups of a group L. Then, for all $q \geq 0$, $\eta^q(G, H)' = [G, H^\varphi] \cdot G' \cdot (H')^\varphi$. In particular, if $q = 0$ then the non-abelian tensor product $G \otimes H \cong \mathcal{T} K$. If $q = 0$ then $\mathcal{T}(G, H) = \mathcal{T}$.

Proof. With the above discussion, we can write $\eta^q(G, H) = T K G H$, according to (19). Now, T and TK are normal subgroups of $\eta^q(G, H)$, while $[G, H^\varphi] = T$. By defining relations (16) we find that $K' \leq T$. Additionally, from Lemma 2.2 (v) we obtain that $[K, G]$ and $[K, H^\varphi]$ are both contained in T. Therefore, $\eta^q(G, H)' = [TKG^\varphi, TKG^\varphi] = TG' (H')^\varphi = [G, H^\varphi]G' (H')^\varphi$. □

3. Some Closure Properties for $\eta^q(G, H)$

A number of authors have studied some closure properties such as finiteness, solubility, polycyclicity and nilpotency, among others, of the non-abelian tensor product of groups and of related constructions (cf. [12, 13, 20, 22, 23, 30]). In the context of $\nu(G)$, $\eta(G, H)$ and $\nu^q(G)$, such closure properties were studied for instance in [3, 4, 26, 27, 9, 11, 1]. In this section we extend these considerations to the scope of $\eta^q(G, H)$, $q \geq 0$. We will consider the following question: Let \mathfrak{X} be a class of groups. If G, H are normal subgroups of a certain group L such that G and H belong to \mathfrak{X}, then does $\eta^q(G, H)$ belong to \mathfrak{X}?

Recall that a class \mathfrak{X} of groups is called a Schur class if for any group G such that the factor group $G/Z(G)$ belongs to \mathfrak{X}, also the derived subgroup G' is a \mathfrak{X}-group. Thus, the famous Schur’s theorem just states that finite groups form a Schur class. Other interesting classes of groups (e.g., finite π-groups, locally (finite π-groups), polycyclic groups, polycyclic-by-finite groups) are Schur classes. The classical reference to this matter is [24].

In [8] Brown and Loday proved that if G is a finite π-group, then the non-abelian tensor square $G \otimes G$ is a finite π-group; in particular, $\nu(G)$ is a finite π-group. Ellis [13] proved the finiteness of $G \otimes H$ when G and H are finite groups. Moravec [21] showed that if G is a locally (finite π-groups), then the so is $\nu(G)$. In [20], Lima and Oliveira proved that if G is polycyclic-by-finite, then so is $\nu(G)$. Here we extend these results to the scope of $\eta^q(G, H)$, $q \geq 0$, and give elementary proofs of them by using only the structural properties discussed in Section 2 and the definition of a Schur class, based on Proposition 2.4 and Remark 2.5.
We write \mathfrak{F}_π to indicate the class of finite π-groups and $L\mathfrak{F}_\pi$ for the class of locally (finite π-groups), where π is a set of primes. To ease reference we state Lemma 3.1, which extends Schur’s theorem to the class $L\mathfrak{F}_\pi$.

Lemma 3.1. Let G be any group. If $G/Z(G) \in L\mathfrak{F}_\pi$, then $G' \in L\mathfrak{F}_\pi$.

In the next theorem we establish some closure properties on $\eta^q(G, H)$.

Theorem 3.2. Let G and H be normal subgroups of a group L and let q be a non-negative integer. Then,

(i) If $G, H \in \mathfrak{F}_\pi$, then $\eta^q(G, H) \in \mathfrak{F}_\pi$;

(ii) If $G, H \in L\mathfrak{F}_\pi$, then $\eta^q(G, H) \in L\mathfrak{F}_\pi$; if furthermore G and H have finite exponents, then the exponent of $\eta^q(G, H)$ can be bound in terms of q, $\exp G$, and $\exp H$;

(iii) If G and H are soluble groups of derived lengths l_1 and l_2, respectively, then $\eta^q(G, H)$ is also soluble, of at most derived length $l_1 + l_2 + 1$;

(iv) If G and H are nilpotent groups of nilpotency classes c_1 and c_2, respectively, then $\eta^q(G, H)$ is nilpotent of at most class $c_1 + c_2 + 1$;

(v) If G and H is polycyclic-by-finite, then so is $\eta^q(G, H)$.

Proof. (i). If $G, H \in \mathfrak{F}_\pi$ then clearly $(\mathcal{K}/[G, H]) \times G \times H \times GH \in \mathfrak{F}_\pi$. Thus, $\eta^q(G, H)/\mu^0_\pi(G, H) \in \mathfrak{F}_\pi$, by Remark 2.3, sequence (2.1). By Schur’s theorem (25, 10.1.4), $\eta^q(G, H)'$ is finite and $\exp(\eta^q(G, H)')$ divides $[G]^2 [H]^2$, that is, $\eta^q(G, H)' \in \mathfrak{F}_\pi$. Since, by Proposition 2.4, $\mu^0_\pi(G, H) \leq [G, H^2] \leq \eta^q(G, H)'$, we get that $\mu^0_\pi(G, H) \in \mathfrak{F}_\pi$ and so, $\eta^q(G, H) \in \mathfrak{F}_\pi$.

(ii). Using a similar argument as in Part (i) and Lemma 3.1 we find that both $\eta^q(G, H)/\mu^0_\pi(G, H)$ and $\mu^0_\pi(G, H)$ are locally (finite π-groups). Therefore, $\eta^q(G, H) \in L\mathfrak{F}_\pi$, by Reidemeister-Schreier’s theorem (25, 6.1.8)]. If in addition G and H have finite exponents, then by [21, Corollary 5] $\exp \eta(G, H)$ can be bound in terms of $\exp G$ and $\exp H$. Thus, by sequence (27) in Proposition 2.6 we see that the same is true for $\eta^q(G, H)$, with the additional restriction that, due to Lemma 2.2 (vi), such upper bound may also involve q in $\text{Im} \delta$.

Part (iii) follows directly from Proposition 2.4 by the fact that $G \times H \times GH$ is soluble of at most derived length $l_1 + l_2$, while $\mu^q(G, H)$ is abelian.

(iv). Analogously, by Fitting’s theorem (25, 5.2.8) $G \times H \times GH$ is nilpotent of class at most $c_1 + c_2$, while $\mu^q(g, H)$ is central in $\eta^q(G, H)$.

(v). Again, we have that $\eta^q(G, H)/\mu^0_\pi(G, H)$ is polycyclic-by-finite and $\mu^0_\pi(G, H) \leq Z(\eta^q(G, H))$. Therefore, $\eta^q(G, H)'$ is polycyclic-by-finite. It suffices to show that $\mu^0_\pi(G, H)$ is polycyclic. Let $M \leq \eta^q(G, H)'$ be a polycyclic normal subgroup of finite index. Then $M \cap \mu^0_\pi(G, H)$ is a polycyclic normal subgroup of finite index of the abelian group $\mu^0_\pi(G, H)$. Therefore $\mu^0_\pi(G, H)$ is polycyclic. The proof is complete. □
Remark 3.3. Notice that if $G = H = L$ is a soluble group of derived length l (respectively, nilpotent of class c), then the bounds in parts (iii) and (iv) of Theorem 3.2 become $l + 1$ (respectively, $c + 1$), according to [9, Theorem 2.8].

4. A polycyclic presentation for the q-tensor square of the dihedral group D_n, q odd

In this Section we restrict our attention to the group $\nu^q(G)$ (that is, the group $\eta^q(G,G)$ when $G = H = L$), particularly on the computation of the q-tensor square of the dihedral groups D_n when q is odd. We begin with a brief description of an algorithm derived in [11] for computing polycyclic presentations for $\nu^q(G)$, when G is a polycyclic group given by a consistent polycyclic presentation.

Let G be a polycyclic group defined by a consistent polycyclic presentation F/R, where F is a free group generated by $g_1, ..., g_n$. The relations of a consistent polycyclic presentation F/R are (cf. [29, Section 9.4]):

For some $I \subseteq \{1, ..., n\}$, some exponents $e_i \in \mathbb{N}$ with $i \in I$, $\alpha_{i,j}, \beta_{i,j,k}, \gamma_{i,j,k} \in \mathbb{Z}$ and for all i, j and $k \in \{1, ..., n\}$. Recall that this presentation is refined if all $i \in I$ are prime numbers.

Following [11], we write the relations of G as relators of the form $r_1, ..., r_l$, where every relator r_j is a word in the generators $g_1, ..., g_n$, $r_j = r_j(g_1, ..., g_n)$. Let

$$E_q(G) := \frac{F}{R^q[F,R]}$$

which is a q-central extension of G.

A presentation for the group $E_q(G)$ can be obtained according to the following construction (see [11]): for each relator r_i, we introduce a generator t_i; $E_q(G)$ is then the group generated by $g_1, ..., g_n, t_1, ..., t_l$ subject to the relators:

1. $r_i(g_1, ..., g_n)t_i^{-1}$ for $1 \leq i \leq l$,
2. $[t_i, g_j]$ for $1 \leq j \leq n$, $1 \leq i \leq l$,
3. $[t_i, t_j]$ for $1 \leq j < i \leq l$,
4. t_i^q for $1 \leq i \leq l$.

This is a polycyclic presentation of $E_q(G)$, possibly inconsistent (see [11]). The consistency relations can be evaluated in the consistent polycyclic presentation of $E_q(G)$ using a collection system from left to right, given by

1. $r_i(g_1, ..., g_n)t_i^{q_1} ... t_i^{q_l}$ for $1 \leq i \leq l$,
2. $[t_i, g_j]$ for $1 \leq j \leq n$, $1 \leq i \leq l$,
3. $[t_i, t_j]$ for $1 \leq j < i \leq l$,
Proposition 4.1. [17] Proposition 4.2] $G \wedge \epsilon = (E_q(G))' (E_q(G))^\epsilon$. Furthermore, $(E_q(G))' (E_q(G))^\epsilon$ is the subgroup

$$\langle [g_i, g_j]^\epsilon, g_k^\epsilon \mid 1 \leq i < j \leq n, 1 \leq k \leq n \rangle,$$

where $\epsilon = 1$ if G is finite and $\epsilon = \pm 1$ otherwise.

Hence, to obtain a presentation for the q-exterior square of a polycyclic group G defined by a consistent polycyclic presentation, we apply the standard methods to determine presentations for subgroups of polycyclic groups (see [17]).

Now, let us consider the dihedral group $G = D_n$ given by the consistent polycyclic presentation

$$D_n = \langle g_1, g_2 \mid g_1^2 = 1, g_1^{-1} g_2 g_1 = g_2^{n-1}, g_2^n = 1 \rangle.$$

We will compute the q-exterior square of D_n, q-odd. To this end we begin with the following proposition. Recall that a group G is called q-perfect if $G = G'G^q$.

Proposition 4.2. For q odd, D_n is q-perfect.

Proof. Let $G := D_n$. Then we have

$$G'G^q = \langle g_1^q, g_2^q, [g_1, g_2] \rangle = \langle g_1, g_2, g_1^2 \rangle.$$

Since q is odd, $qx + 2y = 1$ for some $x, y \in \mathbb{Z}$. Therefore, $g_2 = (g_1^q)^x (g_2^q)^y \in K'K^q$. \square

Notice that if G is q-perfect then by Lemma 2.2, $\Delta^q(G) = 1$ and hence $G \otimes \epsilon G \cong G \wedge \epsilon G$. In this case $G \otimes \epsilon G$ can be computed using Proposition 4.1. Now,

$$E_q(D_n) = \langle g_1, g_2, t_1, t_2, t_3 \mid g_1^2 = t_1, g_1^{-1} g_2 g_1 = g_2^{n-1} t_2, g_2^n = t_2, t_3 \rangle.$$

Testing the consistency of this presentation we obtain the unique relation:

$$t_2 t_3^{n-2} = 1.$$

Computing a consistent polycyclic presentation for $W = E_q(G)' E_q(G)^\epsilon \cong D_n \wedge \epsilon D_n$ we obtain $W = \langle [g_1, g_2], g_1^q, g_2^q \rangle$. Since $[g_1, g_2] = g_2^{-1} t_2^{-1} = (g_2^{n-2} t_2)^{-1} = [g_2, g_1]^{-1}$, we find $W = \langle g_2^{n-2} t_2, g_1^q, g_2^q \rangle$.

Routine computations give us the following result, where we write (a, b) for $\text{lcm}(a, b)$, $[a, b]$ for $\text{lcm}(a, b)$ and $o(g)$ for the order of the element g:

Proposition 4.3. Let q be an odd integer. Then, in $E_q(D_n)$ we have:

$$o(g_1) = 2q, \ o(g_2) = [n, q], \ o(t_1) = q, \ o(t_2) = \frac{q}{(n-2, q)} \text{ and } o(t_3) = \frac{q}{(n, q)}.$$

Proposition 4.4. For q odd, $D_n \otimes \epsilon D_n \cong D_n$ and $H_2(D_n, \mathbb{Z}_q) = \{1\}$.

(4) $e_i^d_i$ for $1 \leq i \leq l$ with $d_i \mid q$.

Proof. As above, we have that \(D_n \otimes^q D_n \cong W = \langle g_2^{n-2}t_2, g_1^{a}, g_2^{b} \rangle \). We need to show that \(W \cong D_n \). Since \(q \) is odd, \(qx + 2y = 1 \) for some \(x, y \in \mathbb{Z} \). Set \(h := (g_2^2)^x(g_2^{n-2}t_2)^{-y} = g_2(t_2t_3)^{-y} \in W \). Thus, \(g_1^q h g_1^q = h^{-1} \) and \(h^n = 1 \). Moreover, since \(q, y \) is odd, it follows that \(g_2^y \neq 1 \) and \(g_2^y \neq t^z \) for all \(l < n \). Therefore, \(o(h) \leq n \) and thus, \(o(h) = n \). On the other hand, setting \(H := \langle h \rangle \) we find that \(g_2^{n-2}t_2^{-y} = (g_2^2)^{-x} h \in H \) and \(g_2^{n-2}t_2 = \{(g_2^{n-2}t_2)^{-y}\}^{-b}(g_2^{n-2}t_2)^{-2a} \in H \), where \(a, b \) are integers such that \(qa + yb = 1 \). Therefore,

\[
W = \langle g_1^{a}, h \mid (g_1^{a})^2 = 1, g_1^{-q}h g_1^{a} = h^{-1}, h^n = 1 \rangle \cong D_n.
\]

\[\square\]

5. Exponents of the \(q \)-tensor square of nilpotent groups of class \(\leq 3 \)

Moravec [22] gives an estimate for \(\text{exp}(G \otimes G) \) in terms of \(\text{exp}(G) \) and \(\text{exp}(G \wedge G) \) and he observed that for finite metabelian groups, \(\text{exp}(G \wedge G) \) divides \((\text{exp}(G))^2 \text{exp}(G') \); consequently, \(\text{exp}(G \otimes G) \) divides \((\text{exp}(G))^3 \text{exp}(G') \). For finite nilpotent groups of class \(\leq 3 \) he proved that \(\text{exp}(G \otimes G) \) divides \(\text{exp}(G) \) (cf. [22, Theorem 2]). In this section we show that this upper bound can be extended to the \(q \)-tensor square of finite nilpotent groups of class \(\leq 3 \), \(q \geq 0 \).

Lemma 5.1. Let \(G \) be a nilpotent group of class \(\leq 3 \) and let \(q \geq 1 \). Then

(i) \([K, \gamma_3(\nu^q(G))] = 1\);
(ii) if \(t = \prod_{i=1}^{r}[x_i, y_i^\varphi]^\epsilon_i \) is an arbitrary element in \(T = [G, G^\varphi] \), where \(r \geq 1 \) and \(\epsilon_i = \pm 1 \) for \(i = 1, \ldots, r \), then, for all \(\hat{k} \in \hat{K} \) we have

\[
[t, \hat{k}] = \prod_{i=1}^{r}[x_i, y_i^\varphi, \hat{k}]^{\epsilon_i} = \prod_{i=1}^{r}[x_i, y_i^\varphi, k^\varphi]^{\epsilon_i} = [t, k]^q;
\]

(iii) for all positive integers \(n \) and \(t, \hat{k} \) as in part (ii), we have,

\[
(t \hat{k})^n = t^n[k, k^\varphi]^{-\langle \varphi \rangle}(\hat{k})^n = t^n[k, k^{-\varphi}](\hat{k})^n
\]

Proof. (i). By [3, Proposition 2.7] we know that \(\gamma_j(\nu^q(G)) = [\gamma_{j-1}(G), G^\varphi]\gamma_j(G)\gamma_j(G^\varphi) \), for all \(j \geq 2 \). This implies that \(\nu^q(G) \) has nilpotency class at most 4. Now let \(\hat{k} \in \hat{K} \) be any generator of \(K \). From defining relations [12], [13] and Lemma 2.2 (iv), we see that conjugation of \(\hat{k} \) by any commutator \([x^\alpha, y^\beta, z^\gamma] \in \gamma_3(\nu^q(G)) \), where \(\alpha, \beta, \gamma \in \{1, \varphi\} \), is the same as conjugating \(\hat{k} \) by the commutator \([x, y, z] \in \gamma_3(G) \). This shows that \(\gamma_3(\nu^q(G)) \) centralizes \(K \) if \(G \) has nilpotency class \(\leq 3 \).

(ii). The first equality follows from commutator calculus and induction on \(r \), since \([\gamma_3(\nu^q(G)), \gamma_2(\nu^q(G))] \leq \gamma_5(\nu^q(G)) = 1\), as \(\nu^q(G) \) has class \(\leq 4 \). The second equality follows from the identity \([x, y^\varphi, \hat{k}] = [x, y^\varphi, k^\varphi] \), according to Lemma 2.2 (iv), while the last one is obtained by the way back, making use of part (i) to write \([x_i, y_i^\varphi, k^\varphi] = [x_i, y_i^\varphi, \hat{k}]^q \) for \(i = 1, \ldots, r \).
(iii). We expand \((\hat{t}\hat{k})^n\) by induction on \(n\), collecting commutators in the middle, to get
\[
(\hat{t}\hat{k})^n = t^n \prod_{i=1}^{n-1} ([t, (\hat{k})^{-i}]^{t^{n-1-i}})(\hat{k})^n.
\]
Since \([t, (\hat{k})^{-i}] \in \gamma_3(\nu^q(G))\), we see that \([t, (\hat{k})^{-i}]^{t^{n-1-i}} = [t, (\hat{k})^{-i}], i = 1, \ldots, n - 1\). In addition, by parts (i) and (ii), \([t, (\hat{k})^{-i}] = [t, (\hat{k})]^{-i} = [t, k]^{-i} = ([t, k]^{-q})^i\). Consequently, \(\prod_{i=1}^{n-1} ([t, (\hat{k})^{-i}]^{t^{n-1-i}}) = [t, k]^{-q(\hat{k})^n}\) which, by part (i) and induction, is also equal to \([t, k]^{-q(\hat{k})^n}\) since \([t, k] \in \gamma_3(\nu^q(G))\). This completes the proof. \(\square\)

Theorem 5.2. Let \(G\) be a finite nilpotent group of class \(\leq 3\) with \(\exp G = n\) and let \(q \geq 0\). Then,

(i) \(\exp(G \otimes^q G)\) divides \(\exp G\) if either \(n\) is odd or \(4 \mid q\);

(ii) \(\exp(G \otimes^q G)\) divides \(2\exp G\), otherwise.

Proof. We use the isomorphism \(G \otimes^q G \cong T^q(G) = TK\), where \(T = [G, G^\nu]\), to work inside \(\nu^q(G)\). As already observed in the proof of Proposition 2.4, by defining relations (11) and (15) we see that \(\hat{K}\) provides a right transversal for \(T\) in \(TK\), that is, \(TK = \{t\hat{k} \mid t \in [G, G^\nu], k \in K\}\). So, all we need is to control the orders of an arbitrary element \(t\hat{k} \in T^q(G)\).

(i). Firstly we consider the case \(q = 0\). Here we have \(\nu^0(G) = \nu(G)\) and \(G \otimes^0 G = G \otimes G\), the non-abelian tensor square of \(G\). So, this case is dead by [21, Theorem 2]: \(\exp(G \otimes G)\) divides \(\exp G\). Thus, suppose \(q \geq 1\) and let \(n := \exp G\). By part (iii) of Lemma 5.1 we have
\[
(\hat{t}\hat{k})^n = t^n \exp([t, k^{-q(\hat{k})}]) = (\hat{k})^n,
\]
if \(n\) is odd or if \(q\) is even. Notice that \(t \in [G, G^\nu]\) and so, \(t^n = 1\) for all \(n\), by the case \(q = 0\) and [21]). Now, an induction on \(n\) using relation (15) gives
\[
1 = (k^n) = (\hat{k})^n[k, k^\nu]^{-q(\hat{k})^n},
\]
which implies that \((\hat{k})^n = [k, k^\nu]^{-q(\hat{k})^n}\). Thus, if \(n\) is odd or if \(4 \mid q\), then \((\hat{k})^n = 1\) and, consequently, \((\hat{t}\hat{k})^n = 1\).

(ii). In the case \(n\) even and \(4 \nmid q\) then certainly we get, from (11) and Lemma 5.1 (i),
\[
(\hat{t}\hat{k})^{2n} = ([t, k^{-q(\hat{k})}])(\hat{k})^{2n} = [t, k^{-q(\hat{k})}]^{2}(\hat{k})^{n-1}[k, k^\nu]^{-q(\hat{k})^{n-1}} = 1.
\]
This completes the proof. \(\square\)

Example 5.3. The third of the following simple examples borrowed from [9] Theorem 3.1 and Table 1] shows that the bound in part (ii) of Theorem 5.2 can be attained in the simplest situation, of a cyclic group.

1. \(D_4 \otimes^4 D_4 \cong C_5^2 \times C_4\);
2. \(Q_8 \otimes^4 Q_8 \cong C_2^4 \times C_4\);
\(C_n \otimes^q C_n \cong C_{2n} \times C_s \) if \(q, n \equiv 2 \pmod{4} \) and \(\gcd(q, n) = 2s \).

REFERENCES

[1] R. Bastos, I. N. Nakaoka and N. R. Rocco, Finiteness conditions for the non-abelian tensor product of groups, Monatsh. Math., 187 (2018) 603–615.
[2] R. Bastos, N. R. Rocco and E. R. Vieira, Finiteness of homotopy groups related to the non-abelian tensor product, Annali di Matematica, 198 6 (2019) 2081–2091.
[3] R. D. Blyth, F. Fumagalli and M. Morigi, Some structural results on the non-abelian tensor square of groups, J. Group Theory, 13 (2010) 83–94.
[4] R. D. Blyth and R. F. Morse, Computing the nonabelian tensor squares of polycyclic groups, J. Algebra, 321 (2009) 2139–2148.
[5] R. Brown, \(q \)-perfect Groups and Universal \(q \)-central Extensions, Publ. Mat. 34 (1990) 291–297.
[6] R. Brown, D. L. Johnson and E. F. Robertson, Some computations of non-abelian tensor products of groups, J. Algebra 111 (1987) 177–202.
[7] R. Brown and J.-L. Loday, Excision homotopique en base dimension, C.R. Acad. Sci. Paris S.I Math. 298, No. 15 (1984) 353–356.
[8] R. Brown and J.-L. Loday, Van Kampen Theorems for Diagrams of Spaces, Topology, 26 (1987) 311–335.
[9] T. P. Bueno and N. R. Rocco, On the \(q \)-tensor square of a group, J. Group Theory 14 (2011) 785–805.
[10] D. Conduché and C. Rodríguez-Fernandez, Non-abelian Tensor and Exterior Products modulo \(q \) and Universal \(q \)-central Relative Extensions, J. Pure Appl. Algebra, 78, No.2 (1992) 139–160.
[11] I. R. M. Dias and N. R. Rocco, A polycyclic presentation for the \(q \)-tensor square of a polycyclic group, J. Group Theory, 23, No.1 (2020) 97-120.
[12] G. Donadze, M. Ladra and V. Thomas, On some closure properties of the non-abelian tensor product, J. Algebra, 472 (2017) 399–413.
[13] G. Ellis, The non-abelian tensor product of finite groups is finite, J. Algebra, 111 (1987) 203–205.
[14] G. Ellis, Tensor products and \(q \)-crossed modules, J. London Math. Soc., 2 (51) (2) (1995) 243–258.
[15] G. Ellis and F. Leonard, Computing Schur multipliers and tensor products of finite groups, Proc. Royal Irish Acad., 95A (1995) 137–147.
[16] G. Ellis and C. Rodríguez-Fernández, An exterior product for the homology of groups with integral coefficients modulo \(p \), Cah. Top. Géom. Diff. Cat. 30 (1989) 339–343.
[17] B. Eick and W. Nickel, Computing the Schur multiplicator and the nonabelian tensor square of a polycyclic group, J. Algebra 320, No.2 (2008) 927–944.
[18] N. D. Gilbert and P. J. Higgins, The non-abelian tensor product of groups and related constructions, Glasgow Math. J. 31 (1989) 17–29.
[19] M. Ladra and V. Z. Thomas, Two generalizations of the nonabelian tensor product, J. Algebra, 369 (2012) 96–113.
[20] B. C. R. Lima and R. N. Oliveira, Weak commutativity between two isomorphic polycyclic groups, J. Group Theory, 19 (2016) 239–248.
[21] P. Moravec, The exponents of nonabelian tensor products of groups, J. Pure Appl. Algebra, 212 (2008) 1840–1848.
[22] P. Moravec, *The nonabelian tensor product of polycyclic groups is polycyclic*, J. Group Theory 10 (2007) 795–798.

[23] I. N. Nakaoka, *Non-abelian tensor products of solvable groups*, J. Group Theory, 3 (2000) 157–167.

[24] D. J. S. Robinson, *Finiteness conditions and generalized soluble groups*, Part 1, Springer-Verlag, 1972.

[25] D. J. S. Robinson, *A course in the theory of groups*, 2nd edition, Springer-Verlag, New York, 1996.

[26] N. R. Rocco, *On a construction related to the non-abelian tensor square of a group*, Bol. Soc. Brasil Mat., 22 (1991) 63–79.

[27] N. R. Rocco, *A presentation for a crossed embedding of finite soluble groups*, Comm. Algebra 22 (1994) 1975–1998.

[28] N. R. Rocco and E. C. P. Rodrigues, *The q-tensor square of finitely generated nilpotent groups, q odd*, J. Algebra Appl., 16 no. 11 (2017) 1750211, 16 pp.

[29] C. C. Sims, *Computation With Finitely Presented Groups*, CUP, Cambridge, 1994.

[30] M. P. Visscher, *On the nilpotency class and solvability length of the nonabelian tensor product of groups*, Arch. Math. 73 (1999) 161–171.

Institute of Mathematics and Statistics, Universidade Federal de Goiás, Goiânia-GO, 74001-970 Brazil

E-mail address: ivonildes@ufg.br

Departamento de Matemática-IE, Universidade de Brasília, Brasília-DF, 70910-900 Brazil

E-mail address: norai@unb.br

Institute of Exact and Natural Sciences, Universidade Federal de Rondonópolis, 78730-614 Rondonópolis-MT, Brazil

E-mail address: eunicecpf@hotmail.com