音響誘起電磁波計測技術の薄鋼板探傷への応用

四辻　淳一*1・生嶋　健司2・山田　尚人2

Flaw Detection for Thin Sheet Using Acoustic Stimulated Electromagnetic Wave Technique

Junichi Yotsuji, Kenji Ikushima and Hisato Yamada

Synopsis : The signal of acoustically stimulated electromagnetic (ASEM) response have been investigated in steel. In the ASEM method, ultrasonic and electromagnetic techniques are used. Magnetization is modulated with the radio frequency (RF) of irradiated ultrasonic waves through magnetomechanical coupling. The signal amplitude of ASEM waves is determined by the magnitude of piezomagnetic phenomenon which is acoustically excited locally. The induced RF magnetic fields are detected by a resonant coil antenna. Here, we applied the ASEM method to detect defects on thin steel sheets. If there is a defect in a steel sheet at a constant magnetization, magnetic flux density distribution around the defect is different from that of sound area. This difference can be detected through the ASEM method. Using a small antenna, 5 mm in diameter and 10 mm at liftoff, we can detect a 0.1 mm through hole in a steel sheet at 0.16 mm in thickness.

Key words: ultrasonic waves; electromagnetic waves; magnetic flux density; steel sheet; through hole; detection.

1. 緒言

近年、非破壊計測分野において音響誘起電磁波（acoustic stimulated electromagnetic wave, 以下ASEM）技術の応用が進んでいる。被測定対象に超音波を照射し、表面層に生じる電磁波を磁気センサを用いて測定する技術1-3）である。これまで生体、特に骨への適用が試みられてきたが、金属への応用も行われる様子もしてきた。生体応用においては超音波による誘電体の電界変動が電磁波発生要因になるが、鋼の様々な強磁性体金属においては、超音波により付与された微小歪により生じる磁性変化（透磁率、保磁力、B-H曲線）2）が電磁波発生の要因となる。本論文ではこのASEM発生原理を薄鋼板探傷に適用した結果を示すものである。

今回対象とした薄鋼板において用いられている探傷法に漏洩磁束探傷法（Magnetic Flux Leakage Testing：MFLT）がある。その原理をFig.1に示す。対象の薄鋼板を磁気飽和に近いレベルまで磁化し、欠陥が存在した場合に鋼板内から漏洩磁束を磁気センサで検出する手法である。ここでMFLTの特性として磁化する手法が直流もしくは低周波交流という事が挙げられる。これらの磁化手法により生じる漏洩磁束は距離による減衰が大きく、遠方まで届かないのである。そのためMFLTを適用した探傷の場合、漏洩磁束を検出する磁気センサは数mm以下というリフトオフ（センサと測定対象表面との距離）となることが多い。リフトオフが小さい場合、実機適用において鋼板との接触などの不都合が懸念される。

一方電磁波は直流の磁場に比べて遠方まで到達する。直流磁化にて生じる特徴が例えば鋼板の磁気的な特性など電磁波情報として送信することが可能であれば、リフトオフを大きくすることが可能となり、先述の懸念点が減ることになる。ASEM技術をMFLTに適用することを考えた理由はここにある。もう一つ特徴として超音波による振動の印加が挙げられる。本論文では10 MHzの超音波を使用しており、鋼板内の磁波速度を5900 m/sとすると波長は0.59 mmとなり、薄鋼板探傷に必要な分解能が波長と同程度である場合には十分適用可能である。

薄鋼板に欠陥が存在すると、磁気性体である鋼板内の磁束は一般に非磁性である欠陥（空気もしくは非磁性介在物）の周囲において、磁束密度分布が健全部と異なる。ASEMは、超音波により微小歪を与えてきやすく密度分布の相違を検出する手法であるため、欠陥検出の可能性があると
いうことであり、その相違を遠方で計測可能なのである。
これらより鋼材探傷におけるASEMの利点は大きく次の3点にまとめられる。

1) リフトオフ条件の大幅な緩和
2) 鋼材内部の磁束密度分布を画像化
3) 超音波探傷と同時測定可能であり、幾何学的な異常と磁気的な異常を併せて判断可能

上記発想に基づき、これまでφ1 mmの貫通亀裂に対し検出した例6)、小型化した検出コイルを用いることによってφ0.3 mmの貫通亀裂を検出した例9)が示されていた。本論文では小型化の詳細を述べるとともに、φ0.1 mmの貫通亀裂を検出できたのでその結果についても述べる。

2. ASEM法の原理

Fig.2にASEM測定時の基本的な構成を示す。探傷対象となる鋼板を磁化する電磁石と、鋼板を挟む反対側に超音波探傷子と磁気センサ（本論文ではコイルを使用）を設置する。コイルは発生する電磁磁場の方向により向きを変えて設置する。

Fig.3にASEM発生原理を示す。
①超音波探傷子より鋼板表面には歪が与えられる。
②歪により鋼材の磁性の変化（B-H特性）が変化する（歪磁効果）。
③直流磁場を所定の強さで印加しておくと、交流の磁性変化に対応して漏洩磁束が交流で変化する（振幅ΔB）。
④交流漏洩磁束をコイルにて検出する。

ここでコイルを用いるのは、漏洩磁束変化が微小であるため一般的な磁気センサでは感度不足となることと、超音波による局所の変換成分であればコイルの方が感度を得られるからである。

歪により鋼材の磁性が変化することはAsaiら10)の研究で示されており、超音波による強度についての見解もついてはYamadaら11)に示されている。

欠陥が無い場合でも鋼板を磁化する強度が変化すればASEMの出力は変化する。Fig.4に鋼板の磁化状態とASEM出力の関係を示す。鋼板の磁化状態は電磁石による磁化力で示している。磁化力を変化させると、鋼板のB-H特性に

Fig.2. Schematic of the experimental setup for measuring the ASEM.

Fig.3. Principle of ASEM.

Fig.4. Magnetization VS ASEM output. (at X =5 mm, Y =5 mm from center of sample)
応じて、鋼板内部の磁束密度が変化する。磁束密度の変化をASEMが検出している例である。磁化力が小さい領域ではB-H曲線の傾きが大きい部分、すなわち高透磁率のエリアであり、磁化力が大きい領域はほぼ磁気飽和の状態となっている領域である。

次に欠陥探傷にASEMを適用する基本的な考え方を示す。鋼板に欠陥が有る場合、鋼板内の磁束分布は欠陥周辺で健全部と大きく異なる。Fig.5, Fig.6は磁場シミュレーションモデルによる鋼板内の磁場強度計算結果例である。2次元モデルでありX軸・Y軸それぞれに関して対称である。

Fig. 5. Magnetic flux density simulation without a hole.

Fig. 6. Magnetic flux density simulation with a hole of 0.5 mm in diameter in (a) stronger magnetization, (b) weaker magnetization.

3. 人工欠陥ASEM探傷実験

3・1 実験装置

実験として用いたのは0.16 mm厚の缶用鋼板である。80 mm x 80 mmの中央において、φ0.5 mm, φ0.3 mm, φ0.1 mmの貫通穴を加工した。加工は放電加工である。

実験装置の構成をFig.7に示す。超音波探傷器では10 MHzバースト波（3波）を送信し、フォーカス型探触子（10 MHz, 焦点距離24 mm, 焦点径約1 mm）から照射する。接触媒質はジェル状のものを使用した。受信コイルはφ15 mm（コイルA）とφ5 mm（コイルB）を使用した。それぞれ約10 MHzに共振点を持っており、コイルAはφ15 mmのアクリル枠に0.5 mmの銅線を1層で20 T, コイルBはφ5 mmのアクリル枠に13 T + 12 T + 11 Tの3層で巻いており36 Tとした。コイルの中心軸は、鋼板表面に

Fig. 7. Schematic of the experimental set up.
対し15°傾けており、軸の延長線上が鋼板表面超音波照射位置となるように設置した。鋼板表面とコイルとの距離は10 mmとなっている。電極は850 Tとし、磁極と鋼板との間隔は4 mmとした。回路図をFig.8に示す。コイルからの信号はプリアンプで46 dB増幅し、フォルタリングの後、アンプにて40 dBの増幅を行う。その後用に搭載のADボードにてデータ採取する。

測定時は鋼板側をX-Yステージにて移動させ、2次元マップ形式にてデータを取得した。実験のS/N比が十分でないため、1点あたり1000回の平均を求めている。従ってX-Yステージ駆動も一定速度ではなく、ステップ駆動としている。

3・2 実験結果

超音波の受信波形をFig.9に示す。超音波の受信波形において送信時間の次に検知される信号は鋼板表面からの反射波である。従って、反射波が観測される時刻、探触子と鋼板表面混の往復伝播時間後である。この場合、音響レンズ内の速度を2340 m/s（ポリウレタン製）とすると、往復伝播時間は21.4 μsとなる。音響レンズと鋼板の隙間に接触媒質を用いているため、全体で約23 μsの伝播時間である。一方ASEM信号は超音波が鋼板表面に達した時点で発生し、ほぼ光速でコイルに到達するために、超音波受信波形の観測時間の半分の時間にて観測される。超音波送信波形に応じてASEM波形の強度を求めめて鋼板内部の磁場状態を推定する。例えば今回の実験において超音波送信周波数10 MHz、3波パーストにて行っている。ASEM波形の強度を求める際は、Fig.10に示すASEM信号拡大部分においての積分（絶対値波形の面積）を用いた。

Fig.11（a）にコイルAにより得られたASEM信号、（b）にコイルBにより得られたASEM信号を示す。探触子からの信号を基準として比較すると、鋼板からのASEM信号のS/Nがかなり向上していることが確認できる。

このコイルBを用いて圧縮の2次元マップを作成した図がFig.12である。画像の濃淡は信号強度を示している。（a）が人工欠陥φ0.5 mm、（b）がφ0.3 mm、（c）がφ0.1 mmの結果である。上段が超音波、下段がASEMの結果である。人工欠陥は超音波検査でも検知できるがφ0.1 mmは難しい。一方ASEMによる結果は、コイルBを小さ化し受信指向性を増したためS/Nが向上した。その結果、コイルAでは検出不可能であったφ0.1 mmが検出可能となった。Fig.13は2次元マップにおける点線部分のチャートを示している。

コイルAは受信面積が大きい分、対象信号以外の信号も受けやすい。現実の実験においてはX-Yステージのサポート制御ノイズや、超音波探触子からの電界ノイズが存在したため、結果としてS/Nが悪くなる。これらのノイズを抑える事が可能であれば、コイルAを用いてφ0.1 mm人工欠陥が検出可能であるかもしれません。しかし、今回の微弱欠陥を検出する様々な方法を考察する必要がある。

![Fig.8. Connection diagram.](image1)

![Fig.9. Observed signals.](image2)

![Fig.10. Enlarged ASEM signal.](image3)
核探傷用途を考慮するとアンテナとしての指向性が優れたコイル B が優位と思われる。

Fig.14 に (a) φ0.5 mm と (b) φ0.1 mm の穴周辺の磁束変化を 2 次元シミュレーション結果により示す。磁化力は探傷時の 1000 AT を等とすると、下段は穴中央から X 軸、Y 軸に沿った位置での磁束密度分布である。穴の直上では磁束密度が上昇すること、穴の横では磁束密度が減少することが示されている。この磁束密度の増減は、ASEM 値の増減を生じさせる。ここで探傷時の磁化力が約 1000 AT であると Fig.4 の結果から、磁束増ASEM 増とされることが推測できる。Fig.12 の結果を観察すると、穴の上下で ASEMS 信号が減少し、左右では増加していることが確認でき、文献 4) の推測とおりであること

が分かる。欠陥が小さくなると (Fig.12 (c) 下図)、信号が増加している部分 (白部分) が二つに分離せず、やや左右に伸ばしたパターンとなっている。これは、超音波の照射径 (1 mm 程度) が欠陥サイズよりも十分大きいことで理解される。

ここで信号の出力値評価を試みる。φ0.5 mm の周辺、特に磁束増となる領域 (Fig.14 (a) 下図 X の値) は Fig.4 における高磁磁率域に達していると考えられる。Fig.12 (a) 下図のASEM 検出値は周辺平均値 +0.6 V となっており、Fig.4 における 1000 AT の値より約 0.6 V 大きい高磁磁率域にほぼ一致する。ここで、φ0.5 mm の周辺 (Fig.14 (a) 下図の V の値) では、穴から 1 mm 上方離れた領域においても磁束密度が平均値より大きい。これは超音波の照射径

Fig. 11. ASEM signals using (a) coil A and (b) coil B. Arrows indicate from the ample surface.

Fig. 12. 2D mapping of UT detection and ASEM detection by coil B at 1000AT.
（1 mm程度）よりも大きい。一方、Φ0.1 mmの周辺（Fig.14（b）下図の値）では、穴から0.5 mm程度で平均値に到達している。超音波の照射領域において穴周辺の磁束密度が変化する領域は小さかったため、Φ0.1 mm穴周辺の信号増加はΦ0.5 mm穴に比べて半減することが予想される。したがって、Fig.13下図の検出値が周辺平均値±0.3 V程度であることは定性的にも妥当である。

他の信号増加の要因としては、残余応力や成分ばらつきによる磁性変化が考えられる。残余応力に関しては、文献4）を含めたこれまでの実験により、本実験の磁束密度領域でかつ弾性変形領域であれば影響は少ないと考えている（文献4）のFig.5参照）。塑性変形領域では信号が大きく変化する可能性があるが、塑性変形（例えば押し込み試験、カキ試験など）は微小欠陥の一種と捉えることが出来るので、検査として欠陥を検出したと捉えることができる。成分ばらつきについては、結晶粒径の単位で存在すると推測できるが、薄板の粒径は10 μm〜30 μm程度小さく、今回のΦ1 mm領域であれば、品質として問題となる程度の成分ムラが無い場合は影響が少ないと考えている。

3.3 考察

Φ0.5 mmおよびΦ0.3 mmのASEM探傷については、薄板内の磁束変化を捉えている。Φ0.1 mmについては、得られた分布が左右非対称であるなど、分布のパターンが他の欠陥とは異なるが欠陥の存在は確認できた。

比較としてMFLTによるΦ0.1 mm貫通穴の探傷結果をFig.15に示す。（a）はリフトオフ0.5 mm、（b）および（c）はリフトオフ2 mmである。（c）は（b）においてハイパスフィルターを通し、欠陥信号を強調した結果である。いずれも鋼板表面から1 mmにおける漏洩磁束水平方向成分0.06 T,
ホール素子使用という条件で行った。リフトオフ0.5 mmにおいては明確に検出できているが、リフトオフ2 mmでは検出困難になっていることが分かる。また、MFLTは調査板内から漏洩する磁束を検出するその原理上、空間的広がりが大きいこと、リフトオフが大きくなるとその広がりがさらに大きくなることが確認できる。一方ASEM法ではリフトオフ10 mmで検出しているにも関わらず、信号は大きく広がることはない。これは欠陥の位置分解能と言う点でASEMが優位であると言える。ASEMが超音波を利用することから、カップリング剤が必要となり、リフトオフを上げられない懸念が生じるが、水浸法もしくはレーザー超音波といった手法の適用により、超音波発生のリフトオフ拡大も可能である。水浸法での実例は文献4）にも示されている。

信号の広がりについてであるが、ASEM探傷では穴径に比較して反応領域がmmオーダで狭がっている。実際の欠陥寸法に関してASEM分布が広がる点については磁場シミュレーションから説明でき、欠陥による磁束分布変化的広がりがその要因である。今回0.1 mmにおけるASEM探傷分布は上下非対称であり、これまでの特徴とは異なっている。この非対称分布について、超音波探傷子の照射径が穴に対して大きいことにより生じていると考えられる。詳細な分析のためにはさらなる分割能向上が必要であり、さらに超音波の集束径を小さくしなくてはならない。一方で集束径を小さくするためには周波数を高かくする必要が有り、コイルの再設計を含め受信系の再検討が必要となる。今後の課題とした。

超音波探傷子の集束径および受信コイルの設計など、条件に合わせた計測系を選択することが重要である。測定対象分布が広い場合は、超音波を非収束タイプとし、より広い領域からのASEM信号を受信するために、コイルとしてもコイルAのように径が大きいものを用いる等の構成が考えられる。

4. 結言

本稿では、薄鋼板の探傷にASEMを用いることを検討した。その結果、
(1) 受信コイルの小型化により感度が向上
(2) リフトオフ10 mmにてφ0.1 mmの貫通人工欠陥を検出可能であったことを確認した。

今回は探傷への適用という観点で検討を行った。現状使用されている薄鋼板の探傷装置は、ライン速度600 mpmなどの高速通板に対応しているが、ASEMは現状10点／秒程度の測定速度のため、オンライン化へは課題多い。まずは実験室評価レベルからの適用を進めながら、将来的オンライン化を目指した高速化を考えたい。

文献
1) K.Ikushima, S.Watanuki and S.Komiyama: Appl. Phys. Lett., 89(2006), 194103.
2) K.Ikushima and H.Yamada: J. JSNDI, 60(2011), No.10, 599.
3) H.Yamada, K.Takashima, K.Ikushima, H.Toida, M.Sato and Y.Ishizawa: Rev. Sci. Instrum., 84(2013), 044903.
4) H.Yamada, K.Watanabe and K.Ikushima: Jpn. J. Appl. Phys., 54(2015), 086601.
5) K.Asai, E.Matsumoto and T.Shibata: Trans. Jpn. Soc. Mech. Eng. A, 64(1998), No.624, 2183.
6) J.Yotsuji and K.Ikushima: CAMP-ISIJ, 29(2016), 678, CD-ROM.

Fig. 15. 2D maps and charts of MFLT of the sample with a 0.1 mm hole: (a) liftoff 0.5 mm, (b) liftoff 2 mm, (c) liftoff 2 mm with HPF.