A Comprehensive Survey on Transfer Learning

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Senior Member, IEEE, Hui Xiong, Senior Member, IEEE, and Qing He

Abstract—Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.

Index Terms—Transfer learning, machine learning, domain adaptation, interpretation.

1 INTRODUCTION

Although traditional machine learning technology has achieved great success and has been successfully applied in many practical applications, it still has some limitations for certain real-world scenarios. The ideal scenario of machine learning is that there are abundant labeled training instances, which have the same distribution of the test data. However, collecting sufficient training data is often expensive, time-consuming, or even unrealistic in many applications. Semi-supervised learning can partly solve this problem by relaxing the need of mass labeled data. Typically, a semi-supervised approach only requires a limited number of labeled data, and it utilizes a large amount of unlabeled data to improve the learning accuracy. But in many cases, unlabeled instances are also difficult to collect, which usually makes the resultant traditional models unsatisfying.

Transfer learning, which focuses on transferring the knowledge across domains, is a promising machine learning methodology for resolving the above problem. In practice, a person who has learned the piano can learn the violin faster than others. Inspired by human beings’ capabilities to transfer knowledge across domains, transfer learning aims to leverage knowledge from a related domain (called source domain) to improve the learning performance or minimize the number of labeled examples required in a target domain. It is worth mentioning that the relationship between the source and the target domains affects the performance of the transfer learning models. Intuitively, a person who has learned the viola usually learns the violin faster than the one who has learned the piano. In contrast, if there is little in common between the domains, the learner is particularly likely to be negatively affected by the transferred knowledge. This phenomenon is termed as negative transfer.

Roughly speaking, according to the discrepancy between domains, transfer learning can be further divided into two categories, i.e., homogeneous and heterogeneous transfer learning [1]. Homogeneous transfer learning approaches are developed and proposed for handling the situation that the domains have the same feature space. Some studies assume that domains differ only in marginal distributions. Therefore, they adapt the domains by correcting the sample selection bias [2] or covariate shift [3]. However, this assumption does not hold in many cases. For example, in sentiment classification problem, a word may have different meaning tendencies in different domains. This phenomenon is also called context feature bias [4]. To solve this problem, some studies further adapt the conditional distributions. Heterogeneous transfer learning refers to the knowledge transfer process in the situation that the domains have different feature space. In addition to distribution adaptation, heterogeneous transfer learning requires feature space adaptation [4], which makes it more complicated than homogeneous transfer learning.

The survey aims to give readers a comprehensive understanding about transfer learning from the perspectives of data and model. The mechanisms and the strategies of the transfer learning approaches are introduced to make readers grasp how the approaches work. And a number of the existing transfer learning researches are connected and systematized. Specifically, over forty representative transfer learning approaches are introduced. Besides, we conduct
experiments to demonstrate on which dataset a transfer learning model performs well.

In this survey, we focus more on homogeneous transfer learning. Some interesting transfer learning topics are not covered in this survey, such as reinforcement transfer learning [5], lifelong transfer learning [6], and online transfer learning [7]. The rest of this survey are organized into seven sections. Section 2 clarify the difference between transfer learning and other related machine learning techniques. Section 3 introduces the notations used in this survey and the definitions about transfer learning. Sections 4 and 5 interpret transfer learning approaches from the data and the model perspectives, respectively. Section 6 introduces some applications of transfer learning. Experiments are conducted and the results are provided in Section 7. The last section concludes this survey. The main contributions of this survey are summarized below.

- Over forty representative transfer learning approaches are introduced and summarized, which can give readers a comprehensive overview about transfer learning.
- We conduct experiments to compare different transfer learning approaches. The performance of twenty different approaches is displayed intuitively and then analyzed, which may be instructive and helpful for the readers to select the appropriate ones in practice.

2 Related Work

Some areas related to transfer learning are introduced. The connections and the difference between them and transfer learning are clarified.

Semi-Supervised Learning [8]: Semi-supervised learning is a kind of machine learning tasks and methods, which lies between supervised learning (with completely labeled instances) and unsupervised learning (without any labeled instances). Typically, a semi-supervised task utilizes abundant unlabeled instances combined with a limited number of labeled instances to train a learner. Semi-supervised learning relaxes the dependence on labeled instances, and thus reduces the expensive labeling costs. Note that, in semi-supervised learning, both the labeled and unlabeled instances are drawn from the same distribution. In contrast, in transfer learning, the data distributions of the source and the target domains are different.

In transfer learning, the concept that whether label information is available is ambiguous because both the source and the target domains can be involved. Therefore, semi-supervised transfer learning is a controversial term. It is worth mentioning that many transfer learning approaches absorb the technology of semi-supervised learning. The key assumptions in semi-supervised learning, i.e., smoothness, cluster, and manifold assumptions, are also made use of in transfer learning.

Multi-View Learning [9]: Multi-view learning focuses on the machine learning problems with multi-view data. A view represents a distinct feature set. An intuitive example about multiple views is that a video object can be described from two different viewpoints, i.e., the image signal and the audio signal. Briefly, multi-view learning describes an object from multiple views, which results in abundant information. By properly considering the information from all views, the learner’s performance could be improved. There are several strategies adopted in multi-view learning such as subspace learning, multi-kernel learning, and co-training [10]. These strategies are also used in some transfer learning approaches.

Multi-Task Learning [11]: The thought of multi-task learning is to jointly learn a group of related tasks. In this way, the generalization of each task is enhanced. The main difference between transfer learning and multi-task learning is that the former transfer the knowledge contained in the related domains, while the latter transfer the knowledge via simultaneously learning some related tasks. In other words, multi-task learning pays equal attention to each task, while transfer learning pays more attention to the target task than to the source tasks.

Multi-task learning reinforces each task by making use of the interconnections between tasks, taking into account both the relevance and the difference between tasks. There are some commons and associations between transfer learning and multi-task learning. Both of them aim to improve the performance of learners via knowledge transfer. Besides, they adopt some similar strategies for constructing models, such as feature transformation and parameter sharing. Note that some existing studies utilize both the transfer learning and the multi-task learning technologies [12].

3 Overview

In this section, the notations used in this survey are listed for convenience. Besides, some definitions and categorizations about transfer learning are introduced. Some related surveys are also provided.

3.1 Notation

For convenience, a list of symbols and their definitions are shown in Table 1. Besides, we use $\| \cdot \|$ to represent the norm and superscript T to denote the transpose of a vector/matrix.

3.2 Definition

In this subsection, some definitions and categorizations about transfer learning are given. Before giving the definition of transfer learning, let us review the definitions of a domain and a task.

Definition 1. (Domain) A domain D is composed of two parts, i.e., a feature space \mathcal{X} and a marginal distribution $P(\mathcal{X})$. In other words, $D = \{\mathcal{X}, P(\mathcal{X})\}$. And the symbol X denotes an instance set, which is defined as $X = \{x|x_i \in \mathcal{X}, i = 1, \cdots, n\}$.

Note that the marginal distribution $P(\mathcal{X})$ is generally an invisible component, and it is hard to obtain its explicit formulation.

Definition 2. (Task) A task \mathcal{T} consists of a label space \mathcal{Y} and a decision function f, i.e., $\mathcal{T} = \{\mathcal{Y}, f\}$. The decision function f is an implicit one, which is expected to be learned from the sample data.

Some machine learning models actually output the predictions of the conditional distributions of instances. In this case, $f(x_j) = \{P(y_k|x_j)|y_k \in \mathcal{Y}, k = 1, \cdots, |\mathcal{Y}|\}$.

Definition 3. (Transfer Learning) Given some observation(s) corresponding to \(n^S\) \(\in N^+\) source domain(s) and task(s) (i.e., \(\{D_S_i, T_S_i\} | i = 1, \ldots, n^S\)), and some observation(s) about \(m^T\) \(\in N^+\) target domain(s) and task(s) (i.e., \(\{D_T_j, T_T_j\} | j = 1, \ldots, m^T\)), transfer learning utilizes the knowledge implied in the source domain(s) to improve the performance of the learned decision functions \(f^{T_i}\) (\(i = 1, \ldots, m^T\)) on the target domain(s).

The above definition, which covers the situation of multi-source transfer learning, is an extension of the one presented in the survey [13]. If \(m^S\) equals 1, the scenario is called single-source transfer learning. Otherwise, it is called multi-source transfer learning. Besides, \(m^T\) represents the number of the transfer learning tasks. A few studies focus on the setting that \(m^T \geq 2\) [14]. The existing transfer learning studies pay more attention to the scenarios where \(m^T = 1\) (especially where \(m^S = m^T = 1\)). It is worth mentioning that the observation of a domain or a task is a concept with broad sense. An observation is often instantiatied as the labeled/unlabeled instances or a pre-learned model. A common scenario is that we have abundant labeled instances or have a well-trained model on the source domain, and we only have limited labeled target-domain instances. In this case, the resources such as the instances and the model are actually the observations, and the goal of transfer learning is to learn a more accurate decision function on the target domain.

3.3 Categorization of Transfer Learning

There are several categorization criteria of transfer learning. For example, transfer learning problems can be divided into three categories, i.e., transductive, inductive, and unsupervised transfer learning [13]. The complete definitions of these three categories are presented in [13]. These three categories can be interpreted from a label-setting aspect. Roughly speaking, transductive transfer learning refers to the situation that the label information only comes from the source domain. If the label information of the target-domain instances is available, the scenario can be categorized into inductive transfer learning. If the label information is unknown for both the source and the target domains, the situation is known as unsupervised transfer learning. Another categorization is based on the consistency between the source and the target feature spaces and label spaces. If \(\mathcal{X}^S = \mathcal{X}^T\) and \(\mathcal{Y}^S = \mathcal{Y}^T\), the scenario is termed as homogeneous transfer learning. Otherwise, if \(\mathcal{X}^S \neq \mathcal{X}^T\) or \(\mathcal{Y}^S \neq \mathcal{Y}^T\), the scenario is referred to as heterogeneous transfer learning.

According to the survey [13], the transfer learning approaches can be categorized into four groups: instance-based, feature-based, parameter-based, and relational-based approaches. Instance-based transfer learning approaches are mainly based on the instance weighting strategy. Feature-based approaches transform the original features to create a new feature representation; they can be further divided into two subcategories, i.e., asymmetric and symmetric feature-based transfer learning. Asymmetric approaches transform the source features to match the target ones. In contrast, symmetric approaches attempt to find a common latent feature space and then transform both the source and the target features into a new feature representation. The parameter-based transfer learning approaches transfer the knowledge via the models or the parameters. Relational-based transfer learning mainly focuses on the problems in relational domains. This type of approach transfers the logical relationship or rules learned in the source domain to the target domain. For better understanding, Fig. 1 shows the above-mentioned categorizations of transfer learning.
Some surveys are provided for the readers who want to have a more complete understanding of this field. The survey by Pan and Yang [13], which is a pioneering work, categorizes transfer learning and reviews the research progress before 2010. The survey by Weiss et al. introduces and summarizes a number of homogeneous and heterogeneous transfer learning approaches [1]. Heterogeneous transfer learning is specially reviewed in the survey by Day et al. [4]. Some surveys focus on the specific application scenarios including activity recognition [18], visual categorization [19], collaborative recommendation [20], computer vision [17], and sentiment analysis [21].

In the next two sections, transfer learning approaches are interpreted from the data and the model perspectives.

4 Data-Based Interpretation

Many transfer learning approaches, especially the data-based approaches, focus on transferring the knowledge via the adjustment and the transformation of the data. Fig. 2 shows the strategies and the objectives of the approaches from the data perspective. As shown in Fig. 2, space adaptation is one of the objectives. This objective should be satisfied mostly in heterogeneous transfer learning scenarios. In this survey, we focus more on the homogeneous transfer learning, and the main objective in this scenario is to reduce the distribution difference between the source-domain and the target-domain instances. Besides, some advanced approaches may attempt to preserve the data properties in the domain adaptation process. There are generally two strategies to realize the objectives from the data perspective, i.e., instance weighting and feature transformation. In this section, some related transfer learning approaches are introduced in proper order according to the strategies shown in Fig. 2.

4.1 Instance Weighting Strategy

Let us first consider a simple scenario in which a large number of labeled source-domain and a limited number of target-domain instances are available; domains differ only in marginal distributions, i.e., $P^S(X) \neq P^T(X)$ and $P^S(Y | X) = P^T(Y | X)$. In this scenario, it is nature to consider adapting the marginal distributions. A simple idea is to assign weights to the source-domain instances in the loss function. The weighting strategy is based on the following equation [2]:

$$
\mathbb{E}_{(x, y) \sim P^T}[L(x, y; f)] = \mathbb{E}_{(x, y) \sim P^S}\left[\frac{P^T(x, y)}{P^S(x, y)} L(x, y; f) \right] = \mathbb{E}_{(x, y) \sim P^S}\left[\frac{P^T(x)}{P^S(x)} L(x, y; f) \right].
$$

Therefore, the general objective function of a learning task can be written as [2]:

$$
\min_f \frac{1}{n^S} \sum_{i=1}^{n^S} \beta_i \mathcal{L} \left(f(x^S_i), y^S_i \right) + \Omega(f),
$$

where $\beta_i (i = 1, 2, \cdots, n^S)$ is the weighting parameter. The theoretical value of β_i is equal to $P^T(x_i)/P^S(x_i)$. However, this ratio is generally unknown and is difficult to be obtained by using the traditional methods.

Kernel Mean Matching (KMM) [2], which is proposed by Huang et al., resolves the estimation problem of the above unknown ratios by matching the means between the source-domain and the target-domain instances in a Reproducing Kernel Hilbert Space (RKHS), i.e.,

$$
\arg \min_{\beta_i \in [0, B]} \left\| \frac{1}{n^S} \sum_{i=1}^{n^S} \beta_i \Phi(x^S_i) - \frac{1}{n^T} \sum_{j=1}^{n^T} \Phi(x^T_j) \right\|^2_H
$$

subject to $\frac{1}{n^S} \sum_{i=1}^{n^S} \beta_i - 1 | \leq \delta$,
approach termed Kullback-Leibler Importance Estimation Procedure (KLIEP) [3]. KLIEP depends on the minimization of the Kullback-Leibler (KL) divergence; it also incorporates a built-in model selection procedure, which makes this approach more useful and reliable. Based on the studies of weight estimation, some instance-based transfer learning frameworks or algorithms are proposed. For example, Sun et al. proposed a multi-source transfer learning framework termed 2-Stage Weighting Framework for Multi-Source Domain Adaptation (2SW-MDA) [22].

1. **Instance Weighting**: In the first stage, the source-domain instances are assigned with weights to reduce the marginal distribution difference, which is similar to KMM.

2. **Domain Weighting**: In the second stage, weights are assigned to each source domain for reducing the conditional distribution difference based on the smoothness assumption [23].

The source-domain instances are reweighted based on the instance weights and the domain weights. These reweighted instances and the labeled target-domain instances are used to train the target classifier. By adopting the 2-stage weighting operations, 2SW-MDA can reduce both the marginal and the conditional difference.

In addition to directly estimating the weighting parameters, adjusting weights iteratively is also effective. The key is to design a mechanism to decrease the weights of the instances which have negative effects on the target learner. A representative work is TrAdaBoost [24], which is a framework proposed by Dai et al. This framework is an extension of AdaBoost [25]. AdaBoost is an effective boosting algorithm designed for traditional machine learning tasks. In each iteration of AdaBoost, a learner is trained on the instances with updated weights, which results in a weak classifier. The weighting mechanism of instances ensures that the instances with incorrect classification are given more attention. Finally, the resultant weak classifiers are combined to form a strong classifier. TrAdaBoost extends the AdaBoost to the transfer learning scenario; a new weighting mechanism is designed to reduce the impact of the distribution difference. Specifically, in TrAdaBoost, the labeled source-domain and labeled target-domain instances are combined as a whole, i.e., a training set, to train the weak classifier. The weighting mechanism is different for the source-domain and the target-domain instances. In each iteration, a temporary variable δ, which measures the classification error rate on the labeled target-domain instances, is calculated. Then, the weights of the target-domain instances are updated based on δ and the individual classification results, while the weights of the source-domain instances are updated based on a designed constant and the individual classification results. For better understanding, the formulas used in the k-th iteration ($k = 1, \cdots, N$) for updating the weights are presented repeatedly as follows [24]:

$$
\beta_{k,i}^S = \beta_{k-1,i}^S (1 + \sqrt{2 \ln n^S/N})^{-|f_k(x^S_i) - y^S_i|} \quad (i = 1, \cdots, n^S),
$$

$$
\beta_{k,j}^T = \beta_{k-1,j}^T (\tilde{\delta}_k/(1 - \tilde{\delta}_k))^{-|f_k(x^T_j) - y^T_j|} \quad (j = 1, \cdots, n^T).
$$

Note that each iteration forms a new weak classifier. The final classifier is constructed by combining and ensembling half the number of the newly resultant weak classifiers through voting scheme.

Some studies further extend TrAdaBoost. The work by Yao and Doretto [26] proposes a Multi-Source TrAdaBoost (MsTrAdaBoost) algorithm. This approach is designed for
multi-source transfer learning, which mainly has the following two steps in each iteration.

1. **Candidate Classifier Construction**: A group of candidate weak classifiers are respectively trained on the weighted instances in the pairs of each source domain and the target domain, i.e., \(D_{S_i} \cup D_T \) \((i = 1, \cdots, m^2)\).

2. **Instance Weighting**: A classifier which has the minimal classification error rate \(\delta \) on the target domain instances is selected (denoted by \(j \)), and then is used for updating the weights of the instances in \(D_{S_i} \) and \(D_T \).

Finally, the selected classifiers from each iteration are combined to form the final classifier. Another parameter-based algorithm, i.e., TaskTrAdaBoost, is also proposed in that work [26], which is introduced in Section 5.

Some approaches realize instance weighting strategy in a heuristic way. For example, Jiang and Zhai proposed a general weighting framework for the adaptation of instances [27]. According to the paper, three types of instances (i.e., labeled source-domain, labeled target-domain, and unlabeled target-domain instances) are used to construct the target classifier. There are three terms in the objective function, which are designed corresponding to the instances’ types for minimizing the cross-entropy loss.

- **Labeled Target-domain Instance**: The classifier should minimize the cross-entropy loss on them, which is actually a standard supervised learning task.
- **Unlabeled Target-domain Instance**: These instances’ true conditional distributions \(P(y|x^T_i) \) are unknown and should be estimated. A possible solution is to train an auxiliary classifier on the labeled source-domain and target-domain instances to help estimate the conditional distributions or assign pseudo labels to these instances.
- **Labeled Source-domain Instance**: The authors define the weight of \(x^S_i \) as the product of two parts, i.e., \(\alpha_i \) and \(\beta_i \). The weight \(\beta_i \) is ideally equal to \(P^T(x_i)/P^S(x_i) \), which can be estimated by non-parametric methods such as KMM or can be set uniformly in the worst case. The weight \(\alpha_i \) is used to filter out the source-domain instances that differ greatly from the target domain.

A heuristic method can be used to produce the value of \(\alpha_i \), which contains the following three steps.

1. **Auxiliary Classifier Construction**: An auxiliary classifier trained on the labeled target-domain instances are used to classify the unlabeled source-domain instances.
2. **Instance Ranking**: The source-domain instances are ranked based on the probabilistic prediction results.
3. **Heuristic Weighting (\(\beta_i \))**: The weights of the top-k source-domain instances with wrong predictions are set to zero, and the weights of others are set to one.

The objective function of this framework consists of four terms, i.e., the above-mentioned three terms with three tradeoff parameters controlling the balance among the types of instances and a regularizer controlling the complexity of the model.

4.2 Feature Transformation Strategy

Feature transformation strategy is often adopted in feature-based approaches. Feature-based approaches transform each original feature into a new feature representation for transfer learning. The objectives of constructing a new feature representation include minimizing the marginal and the conditional distribution difference, preserving the properties or the potential structures of the data, and finding the correspondence between features. The operations of feature transformation can be divided into three types, i.e., feature augmentation, feature reduction, and feature alignment. Besides, feature reduction can be further divided into several types such as feature mapping, feature clustering, feature selection, and feature encoding. A complete feature transformation process designed in an algorithm may consist of several operations.

4.2.1 Distribution Difference Metric

One primary objective of feature transformation is to reduce the distribution difference of the source and the target domain instances. Therefore, how to measure the distribution difference or the similarity between domains effectively is an important issue.

The measurement termed Maximum Mean Discrepancy (MMD) is widely used in the field of transfer learning, which is formulated as follows [28]:

\[
\text{MMD}(X^S, X^T) = \| \frac{1}{n^S} \sum_{i=1}^{n^S} \Phi(x^S_i) - \frac{1}{n^T} \sum_{j=1}^{n^T} \Phi(x^T_j) \|_H^2.
\]

MMD can be easily computed by using kernel trick. Briefly, MMD quantifies the distribution difference by calculating the distance of the mean values of the instances in a RKHS. Note that the above-mentioned KMM actually produces the weights of instances by minimizing the MMD distance between domains.

Table 2 lists some commonly used metrics and the related algorithms. In addition to Table 2, there are some other measurement criteria adopted in transfer learning, including Wasserstein distance [52], [53], Central Moment Discrepancy [54], etc. Some studies focus on optimizing and improving the existing measurements. Take MMD as an example. Gretton et al. proposed a multi-kernel version of MMD, i.e., MK-MMD [55], which takes advantage of multiple kernels. Besides, Yan et al. proposed a weighted version of MMD [56], which attempts to address the issue of class weight bias.

4.2.2 Feature Augmentation

Feature augmentation operations are widely used in feature transformation, especially in symmetric feature-based approaches. To be more specific, there are several ways to realize feature augmentation such as feature replication and

Measurement	Related Algorithms				
Maximum Mean Discrepancy	29	30	31	32	...
Kullback-Leibler Divergence	33	34	35	36	...
Jensen-Shannon Divergence	38	39	40	41	...
Bregman Divergence	43	44	45	46	...
Hilbert-Schmidt Independence Criterion	48	49	50	51	...
feature stacking. For better understanding, we start with a simple transfer learning approach which is established based on feature replication.

The work by Daum proposes a simple domain adaptation method, i.e., Feature Augmentation Method (FAM) \[57\]. This method transforms the original features by simple feature replication. Specifically, in single-source transfer learning scenario, the feature space is augmented to three times its original size. The new feature representation consists of general features, source-specific features and target-specific features. Note that, for the transformed source-domain instances, the target-specific features are set to zero. Similarly, for the transformed target-domain instances, their source-specific features are set to zero. The new feature representation of FAM is presented as follows:

\[
\Phi_S(x_i^S) = \langle x_i^S, x_i^S, 0 \rangle, \quad \Phi_T(x_i^T) = \langle x_i^T, 0, x_i^T \rangle,
\]

where \(\Phi_S\) and \(\Phi_T\) denote the mappings to the new feature space from the source and the target domain, respectively. The final classifier is trained on the transformed labeled instances. It is worth mentioning that this augmentation method is actually redundant. In other words, augmenting the feature space in other ways (with fewer dimensions) may be able to produce competent performance. The superiority of FAM is that its feature expansion has an elegant form, which results in some good properties such as the generalization to the multi-source transfer learning scenario. An extension of FAM is proposed in \[58\] by Daum et al., which utilizes the unlabeled instances to further facilitate the knowledge transfer from source to target.

However, FAM may not work well in handling heterogeneous transfer learning tasks. The reason is that directly replicating features and padding zero vectors are less effective when the source and the target domains have different feature representations. To solve this problem, Li et al. proposed an approach termed Heterogeneous Feature Augmentation (HFA) \[59\], \[60\]. The feature representation of FAM is presented below:

\[
\Phi_S(x_i^S) = \langle W^S x_i^S, x_i^S, 0^S \rangle, \quad \Phi_T(x_i^T) = \langle W^T x_i^T, 0^S, x_i^T \rangle,
\]

where \(W^S x_i^S\) and \(W^T x_i^T\) have the same dimension; \(0^S\) and \(0^T\) denote the zero vectors with the dimensions of \(x_i^S\) and \(x_i^T\), respectively. HFA maps the original features into a common feature space, and then performs a feature stacking operation. The mapped features, the original features, and the zero elements are stacked in a particular order to produce a new feature representation.

4.2.3 Feature Mapping

In the field of traditional machine learning, there are many feasible mapping-based methods of extracting features such as Principal Component Analysis (PCA) \[61\] and Kernelized-PCA (KPCA) \[62\]. However, these methods mainly focus on the data variance rather than the distribution difference. In order to solve the distribution difference, some feature extraction methods are proposed for transfer learning. Let us first consider a simple scenario where there is little difference in the conditional distributions of the domains. In this case, the following simple objective function can be used to find a mapping for feature extraction:

\[
\min_{\Phi} \left(\text{DIST}(X^S, X^T; \Phi) + \lambda \Omega(\Phi) \right) / \langle \text{VAR}(X^S \cup X^T; \Phi) \rangle,
\]

where \(\Phi\) is a low-dimensional mapping function, \(\text{DIST}(\cdot)\) represents a distribution difference metric, \(\Omega(\Phi)\) is a regularizer controlling the complexity of \(\Phi\), and \(\text{VAR}(\cdot)\) represents the variance of instances. This objective function aims to find a mapping function \(\Phi\) that minimizes the marginal distribution difference between domains and meanwhile makes the variance of the instances as large as possible. The objective corresponding to the denominator can be optimized in several ways. One possible way is to optimize the objective of the numerator with a variance constraint. For example, the scatter matrix of the mapped instances can be enforced as an identity matrix. Another way is to optimize the objective of the numerator in a high-dimensional feature space at first. Then, a dimension reduction algorithm such as PCA or KPCA can be performed to realize the objective of the denominator.

Further, finding the explicit formulation of \(\Phi(\cdot)\) is non-trivial. To solve this problem, some approaches adopt linear mapping technique or turn to the kernel trick. In general, there are three main ideas to deal with the above optimization problems.

- (Mapping Learning + Feature Extraction) A possible way is to find a high-dimensional space at first where the objectives are met by solving a kernel matrix learning problem or a transformation matrix finding problem. Then, the high-dimensional features are compacted to form a low-dimensional feature representation. For example, once the kernel matrix is learned, the principal components of the implicit high-dimensional features can be extracted to construct a new feature representation based on PCA.

- (Mapping Construction + Mapping Learning) Another way is to map the original features to a constructed high-dimensional feature space, and then a low-dimensional mapping is learned to satisfy the objective function. For example, a kernel matrix can be constructed based on a selected kernel function at first. Then, the transformation matrix can be learned, which projects the high-dimensional features into a common latent subspace.

- (Direct Low-dimensional Mapping Learning) It is usually difficult to find a desired low-dimensional mapping directly. However, if the mapping is assumed to satisfy certain conditions, it may be solvable. For example, if the low-dimensional mapping is determined to be a linear one, the optimization problem can be easily solved.

Some approaches also attempt to match the conditional distribution and preserve the structures of the data. To achieve this, the above simple objective function needs to incorporate new terms or/and constraints. For example, the following general objective function is a possible choice:

\[
\min_{\Phi} \mu \text{DIST}(X^S, X^T; \Phi) + \lambda_1 \Omega^{\text{GEO}}(\Phi) + \lambda_2 \Omega(\Phi) + (1 - \mu) \text{DIST}(Y^S | X^S, Y^T | X^T; \Phi),
\]

s.t. \(\Phi(X)^T H \Phi(X) = I\), with \(H = I - (1/n) \in \mathbb{R}^{n \times n}\), where \(\mu\) is a parameter balancing the marginal and the conditional distribution difference \[63\]. \(\Omega^{\text{GEO}}(\Phi)\) is a regularizer controlling the geometric structure, \(\Phi(X)\) is the matrix whose rows are the instances from both the source and the target domains with the extracted new feature representation, \(H\) is the centering matrix for constructing the scatter matrix, and the constraint is used to maximize
the variance. The last term in the objective function denotes the measurement of the conditional distribution difference.

Before the further discussion about the above objective function, it is worth mentioning that the label information of the target-domain instances is often limited or even unknown. The lack of the label information makes it difficult to estimate the distribution difference. In order to solve this problem, some approaches resort to the pseudo-label strategy, i.e., assigning pseudo labels to the unlabeled target-domain instances. A simple method to realize this is to train a base classifier to assign pseudo labels. By the way, there are some other methods of providing pseudo labels such as co-training [64, 65], tri-training [66, 67]. Once the pseudo-label information is complemented, the conditional distribution difference can be measured. For example, MMD can be modified and extended to measure the conditional distribution difference. For example, MMD can be measured by the matched kernel function, it is worth mentioning that the label information is crucial for solving the class imbalance problem. In this way, it avoids solving the SDP problem, which results in relatively low computational burden. The final optimization problem can be easily solved via eigen-decomposition. TCA can also be extended to utilize the label information. In the extended version, the scatter matrix constraint is replaced by a new one that balances the label dependence (measured by HSIC) and the data variance. Besides, a graph Laplacian regularizer [23] is also added to preserve the geometry of the manifold. Similarly, the final optimization problem can also be solved by eigen-decomposition.

• (μ = 0.5 and λ1 = 0) Long et al. proposed an approach termed Joint Distribution Adaptation (JDA) [31]. JDA attempts to find a transformation matrix that maps the instances to a low-dimensional space where both the marginal and the conditional distribution difference are minimized. To realize it, the MMD metric and the pseudo-label strategy are adopted. The desired transformation matrix can be obtained by solving a trace optimization problem via eigen-decomposition. Further, it is obvious that the accuracy of the estimated pseudo labels affects the performance of JDA. In order to improve the labeling quality, the authors adopt the iterative refinement operations. Specifically, in each iteration, JDA is performed, and then a classifier is trained on the instances with the extracted features. Next, the pseudo labels are updated based on the trained classifier. After that, JDA is performed repeatedly with the updated pseudo labels. The iteration ends when convergence occurs. Note that JDA can be extended by utilizing the label and structure information [71], clustering information [72], various statistical and geometrical information [73], etc.

• (μ ∈ (0, 1) and λ1 = 0) The paper by Wang et al. proposes an approach termed Balanced Distribution Adaptation (BDA) [63], which is an extension of JDA. Different from JDA which assumes that the marginal and the conditional distributions have the same importance in adaptation, BDA attempts to balance the marginal and the conditional distribution adaptation. The operations of BDA are similar to JDA. In addition, the authors also proposed the Weighted BDA (WBDA). In WBDA, the conditional distribution difference is measured by a weighted version of MMD to solve the class imbalance problem.

It is worth mentioning that some approaches transform the features into a new feature space (usually of a high dimension) and train an adaptive classifier simultaneously. To realize this, the mapping function of the features and the decision function of the classifier need to be associated. One possible way is to define the following decision function: $f(x) = \theta \cdot \Phi(x) + b$, where θ denotes the classifier parameter; b denotes the bias. In light of the representer theorem [24], the parameter θ can be defined as $\theta = \sum_{i=1}^{n} \alpha_i \Phi(x_i)$, and thus we have $f(x) = \sum_{i=1}^{n} \alpha_i \Phi(x_i) \cdot \Phi(x) + b = \sum_{i=1}^{n} \alpha_i \kappa(x_i, x) + b$, where κ denotes the kernel function. By using the kernel matrix as the bridge, the regularizers designed for the map-
ping function can be incorporated into the classifier’s objective function. In this way, the final optimization problem is usually about the parameter (e.g., \(\alpha_i \)) or the kernel function. For example, the paper by Long et al. proposes a general framework termed Adaptation Regularization Based Transfer Learning (ARTL) \[32\]. The goals of ARTL are to learn the adaptive classifier, to minimize the structural risk, to jointly reduce the marginal and the conditional distribution difference, and to maximize the manifold consistency between the data structure and the predictive structure. The authors also proposed two specific algorithms under this framework. In the algorithms, the coefficient matrix for computing MMD and the graph Laplacian matrix for manifold regularization are constructed at first. Then, a kernel function is selected to construct the kernel matrix. After that, the classifier learning problem is converted into a parameter (i.e., \(\alpha_i \)) solving problem, and the solution formula is also given by the authors.

In ARTL, the choice of the kernel function affects the performance of the final classifier. In order to construct a robust classifier, some studies turn to kernel learning. For example, the paper by Duan et al. proposes a unified framework termed Domain Transfer Multiple Kernel Learning (DTMKL) \[25\]. In DTMKL, the kernel function is assumed to be a linear combination of a group of base kernels, i.e., \(\kappa(x_i, x_j) = \sum_{k=1}^{N} \beta_k \kappa_k(x_i, x_j) \). DTMKL aims to minimize the distribution difference, the classification error, etc., simultaneously. The general objective function of DTMKL can be written as follows:

\[
\min_{\beta_k, f} \sigma(\text{MMD}(X^S, X^T; \kappa)) + \lambda \Omega^L(\beta_k, f),
\]

where \(\sigma \) is any monotonically increasing function, \(f \) is the decision function with the same definition of the one in ARTL, and \(\Omega^L(\beta_k, f) \) is a general term representing a group of regularizers defined on the labeled instances such as the ones for minimizing the classification error and controlling the complexity of the resultant model. The authors develop an algorithm to learn the kernel and the decision function simultaneously by using the reduced gradient descent method \[76\]. In each iteration, the weight coefficients of base kernels are fixed to update the decision function at first. Then, the decision function is fixed to update the weight coefficients. Note that DTMKL can incorporate many existing kernel methods. And the authors proposed two specific algorithms under this framework. The first algorithm implements the framework by using hinge loss and Support Vector Machine (SVM). The second algorithm is an extension of the first one. The authors generate the pseudo labels of the unlabeled instances by using base classifiers, and use an additional regularizer to utilize pseudo-label information.

4.2.4 Feature Clustering

Feature clustering aims to find a more abstract feature representation of the original features. Although it can be regarded as a way of feature extraction, it is different from the above-mentioned mapping-based extraction.

For example, some transfer learning approaches implicitly reduce the features by using the co-clustering technique, i.e., simultaneously clustering both the columns and rows of (or say, co-cluster) a contingency table based on the information theory \[77\]. The paper by Dai et al. \[3] proposes an algorithm termed Co-Clustering Based Classification (CoCC), which is used for document classification. In a document classification problem, the transfer learning task is to classify the target-domain documents (denoted by a document-to-word matrix) with the help of the labeled source document-to-word data. CoCC regards the co-clustering technique as a bridge to transfer the knowledge. In CoCC algorithm, both the source and the target document-to-word matrices are co-clustered. Besides, the source document-to-word matrix is co-clustered to generate the word clusters based on the known label information, and these word clusters are used as constraints during the co-clustering process of the target-domain data. The co-clustering criterion is to minimize the loss in mutual information, and the clustering results are obtained by iteration. Each iteration contains the following two steps.

1. **Document Clustering:** Each row of the target document-to-word matrix is re-ordered based on the objective function for updating the document clusters.
2. **Word Clustering:** The word clusters are adjusted to minimize the joint mutual-information loss of the source and the target document-word matrices.

After several times of iterations, this algorithm converges, and the classification results are obtained. Note that, in CoCC, the word clustering process implicitly extracts the word features to form unified word clusters.

Dai et al. also proposed an unsupervised clustering approach, which is termed as Self-Taught Clustering (STC) \[35\]. Similar to CoCC, this algorithm is also a co-clustering-based one. However, STC does not need the label information. STC aims to simultaneously co-cluster the source-domain and the target-domain instances with the assumption that these two domains share the same feature clusters in their common feature space. Therefore, two co-clustering tasks are separately performed at the same time to find the shared feature clusters. Each iteration of STC has the following steps.

1. **Instance Clustering:** The clustering results of the source-domain and the target domain instances are updated to minimize their respective loss in mutual information.
2. **Feature Clustering:** The feature clusters are updated to minimize the joint loss in mutual information.

When the algorithm converges, the clustering results of the target-domain instances are obtained.

Different from the above-mentioned co-clustering-based ones, some approaches extract the original features into concepts. In the document classification problem, the concepts represent the high-level abstractness of the words (e.g., word clusters). In order to introduce the concept-based transfer learning approaches easily, let us briefly review the Latent Semantic Analysis (LSA) \[28\], the Probabilistic LSA (PLSA) \[29\], and the Dual-PLSA \[80\].

- **LSA:** LSA is an approach to mapping the document-to-word matrix to a low-dimensional space (i.e., a latent semantic space) based on the SVD technique. In short, LSA attempts to find the true meanings of the words. To realize this, SVD technique is used to reduce the dimensionality,
which can remove the irrelevant information and filter out the noise information from the raw data.

- **PLSA**: PLSA is developed based on a statistical view of LSA. PLSA assumes that there is a latent class variable \(z \), which reflects the concept, associating the document \(d \) and the word \(w \). Besides, \(d \) and \(w \) are independently conditioned on the concept \(z \). The diagram of this graphical model is presented as follows:

\[
\begin{align*}
 d & \overset{P(d_i|z_k)}{\sim} \overset{P(z_k)}{\sim} \overset{P(w_j|z_k)}{\sim} w,
\end{align*}
\]

where the subscripts \(i, j \) and \(k \) represent the indexes of the document, the word, and the concept, respectively. PLSA constructs a Bayesian network, and the parameters are estimated by using the Expectation-Maximization (EM) algorithm [81].

- **Dual-PLSA**: The Dual-PLSA is an extension of PLSA. This approach assumes there are two latent variables \(z^d \) and \(z^w \) associating the documents and the words. Specifically, the variables \(z^d \) and \(z^w \) reflect the concepts behind the documents and the words, respectively. The diagram of the Dual-PLSA is provided below:

\[
\begin{align*}
 d & \overset{P(d_i|z_k^d)}{\sim} \overset{z^d}{\sim} \overset{P(z_k^d,z_k^w)}{\sim} \overset{z^w}{\sim} \overset{P(w_j|z_k^w)}{\sim} w.
\end{align*}
\]

The parameters of the Dual-PLSA can also be obtained based on the EM algorithm.

Some concept-based transfer learning approaches are established based on PLSA. For example, the paper by Xue et al. proposes a cross-domain text classification approach termed Topic-Bridged Probabilistic Latent Semantic Analysis (TPLSA) [82]. TPLSA, which is an extension of PLSA, assumes that the source-domain and the target-domain instances share the same mixing concepts of the words. Instead of performing two PLSAs for the source domain and the target domain separately, the authors merge those two PLSAs as an integrated one by using the mixing concept \(z \) as a bridge, i.e., each concept has some probabilities to produce the source-domain and the target-domain documents. The diagram of TPLSA is provided below:

\[
\begin{align*}
 d^S & \overset{P(d_i^d|z_k)}{\sim} \overset{z^d}{\sim} \overset{P(z_k^d,z_k^w)}{\sim} \overset{z^w}{\sim} \overset{P(w_j^w|z_k^w)}{\sim} w.
\end{align*}
\]

Note that PLSA does not require the label information. In order to exploit the label information, the authors add the concept constraints, which include must-link and cannot-link constraints, as the penalty terms in the objective function of TPLSA. Finally, the objective function is iteratively optimized to obtain the classification results (i.e., \(\arg \max \theta P(z|d^l) \)) by using the EM algorithm.

The work by Zhuang et al. further proposed a general framework that is termed as Homogeneous-Identical-Distinct-Concept Model (HIDC) [84]. This framework is also an extension of Dual-PLSA. HIDC is composed of three generative models, i.e., identical-concept, homogeneous-concept, and distinct-concept models. These three graphical models are presented below:

Identical-Concept Model:

\[
D \rightarrow d \leftarrow z^d \rightarrow z^w_{IC} \rightarrow w,
\]

Homogeneous-Concept Model:

\[
D \rightarrow d \leftarrow z^d \rightarrow z^w_{HC} \rightarrow w,
\]

Distinct-Concept Model:

\[
D \rightarrow d \leftarrow z^d \rightarrow z^w_{DC} \rightarrow w.
\]

The original word concept \(z^w \) is divided into three types, i.e., \(z^w_{IC} \), \(z^w_{HC} \), and \(z^w_{DC} \). In the identical-concept model, the word distributions only rely on the word concepts, and the word concepts are independent of the domains. However, in the homogeneous-concept model, the word distributions also depend on the domains. The difference between the identical and the homogeneous concepts is that \(z^w_{IC} \) is directly transferable, while \(z^w_{HC} \) is the domain-specific transferable one that may have different effects on the word distributions for different domains. In the distinct-concept model, \(z^w_{DC} \) is actually the nontransferable domain-specific one, which may only appear in a specific domain. The above-mentioned three models are combined as an integrated one, i.e., HIDC. Similar to other PLSA-related algorithms, HIDC also uses EM algorithm to get the parameters.

4.2.5 Feature Selection

Feature selection is another kind of operation for feature reduction, which is used to extract the pivot features. The pivot features are the ones that behave in the same way in different domains. Due to the stability of these features, they can be used as the bridge to transfer the knowledge. For example, Blitzer et al. proposed an approach termed Structural Correspondence Learning (SCL) [85]. Briefly, SCL consists of the following steps to construct a new feature representation.

1. **Feature Selection**: SCL first performs feature selection operations to obtain the pivot features.
2. **Mapping Learning**: The pivot features are utilized to find a low-dimensional common latent feature space by using the structural learning technique [86].
3. **Feature Stacking**: A new feature representation is constructed by feature augmentation, i.e., stacking the original features with the obtained low-dimensional features.

Take the part-of-speech tagging problem as an example. The selected pivot features should occur frequently in source and target domains. Therefore, determiners can be included in pivot features. Once all the pivot features are defined and selected, a number of binary linear classifiers whose function is to predict the occurrence of each pivot feature are constructed. Without losing generality, the decision function of the \(i \)-th classifier, which is used to predict the \(i \)-th pivot feature, can be formulated as \(f_i(x) = \text{sign}(\theta_i \cdot x) \), where \(x \) is assumed to be a binary feature input. And the \(i \)-th classifier is trained on all the instances excluding the features derived from the \(i \)-th pivot feature. The following formula can be used to estimate the \(i \)-th classifier’s parameters, i.e.,

\[
\theta_i = \arg \min_{\theta} \frac{1}{n} \sum_{j=1}^{n} L(\theta \cdot x_j, \text{Row}_i(x_j)) + \lambda||\theta||^2,
\]

where \(\text{Row}_i(x_j) \) denotes the true value of the unlabeled instance \(x_j \) in terms of the \(i \)-th pivot feature. By stacking the obtained parameter vectors as column elements, a matrix \(W \) is obtained. Next, based on singular value decomposition (SVD), the top-\(k \) left singular vectors, which are the principal components of the matrix \(W \), are taken to construct the transformation matrix \(W \). At last, the final classifier is trained on the labeled instances in an augmented feature space, i.e., \((|x_i^T; W^T x_i^T|; y_i^T) \).

4.2.6 **Feature Encoding**

In addition to feature extraction and selection, feature encoding is also an effective tool. For example, autoencoders, which are often adopted in deep learning area, can be used for feature encoding. An autoencoder consists of an encoder and a decoder. The encoder tries to produce a more abstract representation of the input, while the decoder aims to map back that representation and to minimize the reconstruction error. Autoencoders can be stacked to build a deep learning architecture. Once an autoencoder completes the training process, another autoencoder can be stacked at the top of it. The newly added autoencoder is then trained by using the encoded output of the upper-level autoencoder as its input. In this way, deep learning architectures can thus be constructed.

Some transfer learning approaches are developed based on autoencoders. For example, the paper by Glorot et al. proposes an approach termed Stacked Denoising Autoencoder (SDA) [87]. The denoising autoencoder, which can enhance the robustness, is an extension of the basic one [88]. This kind of autoencoder contains a randomly corrupting mechanism that adds noise to the input before mapping. For example, an input can be corrupted or partially destroyed by adding a masking noise or Gaussian noise. The denoising autoencoder is then trained to minimize the denoising reconstruction error between the original clean input and the output. The SDA algorithm proposed in the paper mainly encompasses the following steps.

1. **Autoencoder Training**: The source-domain and target-domain instances are used to train a stack of denoising autoencoders in a greedy layer-by-layer way.

2. **Feature Encoding & Stacking**: A new feature representation is constructed by stacking the encoding output of intermediate layers, and the features of the instances are transformed into the obtained new representation.

3. **Learner Training**: The target classifier is trained on the transformed labeled instances.

Although the SDA algorithm has excellent performance for feature extraction, it still has some drawbacks such as high computational and parameter-estimation cost. In order to shorten the training time and to speed up traditional SDA algorithms, Chen et al. proposed a modified version of SDA, i.e., Marginalized Stacked Linear Denoising Autoencoder (mSLDA) [89, 90]. This algorithm adopts linear autoencoders, and marginalizes the randomly corrupting step in a closed form. It may seem that linear autoencoders are too simple to learn complex features. However, the authors observe that linear autoencoders are often sufficient to achieve competent performance when encountering high dimensional data. The basic architecture of mSLDA is a single-layer linear autoencoder. The corresponding single-layer mapping matrix \(W \) (augmented with a bias column for convenience) should minimize the expected squared reconstruction loss function, i.e.,

\[
W = \arg \min_W \frac{1}{2n} \sum_{i=1}^{n} \mathbb{E}_{P(x_i|\mathbf{y})} \left(||x_i - W \tilde{x}_i||^2 \right),
\]

where \(\tilde{x}_i \) denotes the corrupted version of the input \(x_i \). The solution of \(W \) is given by [89, 90]:

\[
W = \left(\sum_{i=1}^{n} x_i \mathbb{E}[x_i] \right) \left(\sum_{i=1}^{n} \mathbb{E} \left[x_i \tilde{x}_i^T \right] \right)^{-1}.
\]

When the corruption strategy is determined, the above formulas can be further expanded and simplified into a specific form. Note that, in order to insert nonlinearity, a nonlinear function is used to squash the output of each autoencoder after we obtain the matrix \(W \) in a closed form. Then, the next linear autoencoder is stacked to the current one in a similar way to SDA. In order to deal with high dimensional data, the authors also put forward an extension approach to further reduce the computational complexity.

4.2.7 **Feature Alignment**

Note that feature augmentation and feature reduction mainly focus on the explicit features in a feature space. In contrast, in addition to the explicit features, feature alignment also focuses on some implicit features such as the statistic features and the spectral features. Therefore, feature alignment can play various roles in the feature transformation process. For example, the explicit features can be aligned to generate a new feature representation, or the implicit features can be aligned to construct a satisfied feature transformation.

There are several kinds of features that can be aligned, which includes subspace features, spectral features, and statistic features. Take the subspace feature alignment as an example. A typical approach mainly has the following steps.
1. **Subspace Generation:** In this step, the instances are used to generate the respective subspaces for the source and the target domains. The orthonormal bases of the source and the target domain subspaces are then obtained, which are denoted by M_S and M_T, respectively. These bases are used to learn the shift between the subspaces.

2. **Subspace Alignment:** In the second step, a mapping, which aligns the bases M_S and M_T of the subspaces, is learned. And the features of the instances are projected to the aligned subspaces to generate new feature representation.

3. **Learner Training:** Finally, the target learner is trained on the transformed instances.

For example, the work by Fernando et al. proposes an approach termed Subspace Alignment (SA) [91]. In SA, the subspaces are generated by performing PCA; the bases M_S and M_T are obtained by selecting the leading eigenvectors. Then, a transformation matrix W is learned to align the subspaces, which is given by [91]:

$$W = \arg \min_W \|M_SW - M_T\|_F^2 = M_S^TM_T,$$

where $\| \cdot \|_F$ denotes the Frobenius norm. Note that the matrix W aligns M_S with M_T, or say, transforms the source subspace coordinate system into the target subspace coordinate system. The transformed low-dimensional source-domain and target-domain instances are given by X^SM_SW and X^TM_T, respectively. Finally, a learner can be trained on the resultant transformed instances.

In light of SA, a number of transfer learning approaches are established. For example, the paper by Sun and Saenko proposes an approach that aligns both the subspace bases and the distributions [92], which is termed as Subspace Distribution Alignment between Two Subspaces (SDA-TS). In SDA-TS, the transformation matrix W is formulated as $W = M_S^TM_TQ$, where Q is a matrix used to align the distribution difference. The transformation matrix W in SA is a special case of the one in SDA-TS by setting Q to an identity matrix. Note that SA is a symmetrical feature-based approach, while SDA-TS is an asymmetrical one. In SDA-TS, the labeled source-domain instances are projected to the source subspace, then mapped to the target subspace, and finally mapped back to the target domain. The transformed source-domain instances are formulated as $X^SM_SW^TM_T^T$.

Another representative subspace feature alignment approach is Geodesic Flow Kernel (GFK) [93], which is proposed by Gong et al. GFK is closely related to a previous approach termed Geodesic Flow Subspaces (GFS) [94]. Before introducing GFK, let us review the steps of GFS at first. GFS is inspired by incremental learning. Intuitively, utilizing the information conveyed by the potential path between two domains may be beneficial to the domain adaptation. GFS generally takes the following steps to align features.

1. **Subspace Generation:** GFS first generates two subspaces of the source and the target domains by performing PCA, respectively.

2. **Subspace Interpolation:** The two obtained subspaces can be viewed as two points on the Grassmann manifold [95]. A finite number of the interpolated subspaces are generated between these two subspaces based on the geometric properties of the manifold.

3. **Feature Projection & Stacking:** The original features are transformed by stacking the corresponding projections from all the obtained subspaces.

Despite the usefulness and superiority of GFS, there is a problem about how to determine the number of the interpolated subspaces. GFK resolves this problem by integrating infinite number of the subspaces located on the geodesic curve from the source subspace to the target one. The key of GFK is to construct an infinite-dimensional feature space that incorporating the information of all the subspaces lying on the geodesic flow. In order to compute the inner product in the resultant infinite-dimensional space, the geodesic-flow kernel is defined and derived. In addition, a subspace-disagreement measure is proposed to select the optimal dimensionality of the subspaces; a rank-of-domain metric is also proposed to select the optimal source domain when multi-source domains are available.

Statistical feature alignment is another kind of feature alignment. For example, Sun et al. proposed an approach termed Co-Relation Alignment (CORAL) [95]. CORAL constructs the transformation matrix of the source features by aligning the second-order statistic features, i.e., the covariance matrices. The transformation matrix W is given by [96]:

$$W = \arg \min_W \|W^TCSW - C_T\|_F^2,$$

where C denotes the covariance matrix. Note that CORAL avoids the subspace generation and projection process compared with the above subspace-based approaches, and is very easy to implement.

Some transfer learning approaches are established based on spectral feature alignment. In traditional machine learning area, spectral clustering is a clustering technique based on graph theory. The key of this technique is to utilize the spectrum, i.e., eigenvalues, of the similarity matrix to reduce the dimension of the features before clustering. The similarity matrix is constructed to quantitatively assess the relative similarity of each pair of data/vertices. On the basis of spectral clustering and feature alignment, Spectral Feature Alignment (SFA) [97] is proposed by Pan et al. SFA is an algorithm for sentiment classification. This algorithm tries to identify the domain-specific words and domain-independent words in different domains, and then aligns these domain-specific word features to construct a low-dimensional feature representation. SFA generally contains the following five steps.

1. **Feature Selection:** In this step, feature selection operations are performed to select the domain-independent/pivot features. The paper presents three strategies to select domain-independent features. These strategies are based on the occurrence frequency of words, the mutual information between features and labels [98], and the mutual information between features and domains, respectively.

2. **Similarity Matrix Construction:** Once the domain-specific and the domain-independent features are identified, a bipartite graph is constructed. Each edge of this bipartite graph is assigned with a weight that measures the co-occurrence relationship between a domain-specific word and a domain-independent word. Based on the bipartite graph, a similarity matrix is then constructed.
3. **Spectral Feature Alignment**: In this step, a spectral clustering algorithm is adapted and performed to align domain-specific features \([99], [100]\). Specifically, based on the eigenvectors of the graph Laplacian, a feature alignment mapping is constructed, and the domain-specific features are mapped into a low-dimensional feature space.

4. **Feature Stacking**: The original features and the low-dimensional features are stacked to produce the final feature representation.

5. **Learner Training**: The target learner is trained on the labeled instances with the final feature representation.

There are some other spectral transfer learning approaches. For example, the work by Ling et al. proposes an approach termed Cross-Domain Spectral Classifier (CSC) \([101]\). The general ideas and steps of this approach are presented as follows.

1. **Similarity Matrix Construction**: In the first step, two similarity matrices are constructed corresponding to the whole instances and the target-domain instances, respectively.

2. **Spectral Feature Alignment**: An objective function is designed with respect to a graph-partition indicator vector; a constraint matrix is constructed, which contains pair-wise must-link information. Instead of seeking the discrete solution of the indicator vector, the solution is relaxed to be continuous, and the eigen-system problem corresponding to the objective function is solved to construct the aligned spectral features \([102]\).

3. **Learner Training**: A traditional classifier is trained on the transformed instances.

To be more specific, the objective function has a form of the generalized Rayleigh quotient, which aims to find the optimal graph partition that respects the label information with small cut-size \([103]\), to maximize the separation of the target-domain instances, and to fit the constraints of the pair-wise property. After eigen-decomposition, the last eigenvectors are selected and combined as a matrix, and then the matrix is normalized. Each row of the normalized matrix represents a transformed instance.

5 Model-Based Interpretation

Transfer learning approaches can also be interpreted from the model perspective. Fig. 5 shows the corresponding strategies and the objectives. The main objective of a transfer learning model is to make accurate prediction results on the target domain, e.g., classification or clustering results. Note that a transfer learning model may consist of a few sub-modules such as classifiers, extractors, or encoders. These sub-modules may play different roles, e.g., feature adaptation or pseudo label generation. In this section, some related transfer learning approaches are introduced in proper order according to the strategies shown in Fig. 5.

5.1 Model Control Strategy

A natural thought is to directly add the model-level regularizers to the learner’s objective function. In this way, the knowledge contained in the pre-obtained source models can be transferred into the target model during the training process. For example, the paper by Duan et al. proposes a general framework termed Domain Adaptation Machine (DAM) \([104], [105]\), which is designed for multi-source transfer learning. The goal of DAM is to construct a robust classifier for the target domain with the help of some pre-obtained base classifiers that are respectively trained on multiple source domains. The objective function is given by:

\[
\min_{f^T} \mathcal{L}^T, L(f^T) + \lambda_1 \Omega_p(f^T) + \lambda_2 \Omega(f^T),
\]

where the first term represents the loss function used to minimize the classification error of the labeled target-domain instances, the second term denotes different regularizers, and the third term is used to control the complexity of the final decision function \(f^T\). Different types of the loss functions can be adopted in \(\mathcal{L}^T, L(f^T)\) such as the square error or the cross-entropy loss. Some transfer learning approaches can be regarded as the special cases of this framework to some extent.

- **(Consensus Regularizer)** The work by Luo et al. proposes a framework termed Consensus Regularization Framework (CRF) \([106]\). CRF is designed for multi-source transfer learning with no labeled target-domain instances. The framework constructs \(m^S\) classifiers corresponding to each source domain, and these classifiers are required to reach mutual consensuses on the target domain. The objective function of each source classifier, denoted by \(f^S_k\) (with \(k = 1, \ldots, m^S\), is similar to that of DAM, which is presented below:

\[
\min_{f^S_k} - \sum_{i=1}^{n^S_k} \log P(y^S_k | x^S_k; f^S_k) + \lambda_2 \Omega(f^S_k) + \lambda_1 \sum_{i=1}^{n^T, U} \sum_{y_j \in Y} \sum_{k=0}^{m^S} P(y_j | x^T, U; f^S_k),
\]

where \(f^S_k\) denotes the decision function corresponding to the \(k\)-th source domain, and \(S(x) = -x \log x\). The first term is used to quantify the classification error of the \(k\)-th classifier on the \(k\)-th source domain, and the last term is the consensus regularizer in the form of cross-entropy. The consensus regularizer can not only enhance the agreement of all the classifiers, but also reduce the uncertainty of the predictions on the target domain. The authors implement this framework based on the logistic regression. A difference between DAM and CRF is that DAM explicitly constructs the target classifier, while CRF makes the target predictions based on the reached consensus from the source classifiers.

- **(Domain-dependent Regularizer)** Fast-DAM is a specific algorithm of DAM \([104]\). In light of the manifold assumption \([23]\) and the graph-based regularizer \([107], [108]\), Fast-DAM designs a domain-dependent regularizer. The objective function is given by:

\[
\min_{f^T} \sum_{j=1}^{n^T, L} \left(f^T(x^T, L_j) - y^T, L_j \right)^2 + \lambda_2 \Omega(f^T) + \lambda_1 \sum_{k=1}^{m^S} \sum_{i=1}^{n^T, U} \left(f^S(x^T, U_i) - f^S(x^T, U_i) \right)^2,
\]
5.2 Parameter Control Strategy

The parameter control strategy focuses on the parameters of models. The parameters of a model actually reflect the knowledge learned by the model. Therefore, it is possible to transfer the knowledge at the parametric level.

5.2.1 Parameter Sharing

An intuitive way of controlling the parameters is to directly share the parameters of the source learner to the target learner. Parameter sharing is widely employed especially in the network-based approaches. For example, if we have a neural network for the source task, we can freeze (or say, share) most of its layers and only finetune the last few layers to produce a target network. The network-based approaches are introduced in Section 5.4.

In addition to network-based parameter sharing, matrix-factorization-based parameter sharing is also workable. For example, Zhuang et al. proposed an approach for text classification, which is referred to as Matrix Tri-Factorization Based Classification Framework (MTrick) [111]. The authors observe that, in different domains, different words or phrases sometimes express the same or similar connotative meaning. Thus, it is more effective to use the concepts behind the words rather than the words themselves as a bridge to transfer the knowledge in source domains. Different from PLSA-based transfer learning approaches that utilize the concepts by constructing Bayesian networks, MTrick attempts to find the connections between the document classes and the concepts conveyed by the word clusters through matrix tri-factorization. These connections are considered to be the stable knowledge that is supposed to be transferred. The main idea is to decompose a document-to-word matrix into three matrices, i.e., document-to-cluster, connection, and cluster-to-word matrices. Specifically, by performing the matrix tri-factorization operations on the source and the target document-to-word matrices respectively, a joint optimization problem is constructed, which is given by

\[
\min_{Q,R,W} ||X^S - Q^S RW^S||^2 + \lambda_1 ||X^T - Q^T RW^T||^2 \\
+ \lambda_2 ||Q^S - \hat{Q}^S||^2
\]

s.t. Normalization Constraints,

where \(X\) denotes the document-to-word matrix, \(Q\) denotes the document-to-cluster matrix, \(R\) represents the transformation matrix from document clusters to word clusters, \(W\) denotes the cluster-to-word matrix, \(n^d\) denotes the number of the documents, and \(\hat{Q}^S\) represents the label matrix. The matrix \(\hat{Q}^S\) is constructed based on the class information of the source-domain documents. If the \(t\)-th document belongs

\[
\min_{f^j} \sum_{j=1}^{n_T} \left(f^T(x_j) - y_j^T \right)^2 + \lambda_2 \sum_{j=1}^{n_S} \left(f^T(x_j^S) \right)^2 \\
+ \lambda_1 \sum_{k=1}^{m_S} \sum_{i=1}^{n_C} \left(f^T(x_i^C) - f^S_k(x_i^S) \right)^2 + \lambda_3 \Omega(f^T).
\]

Similar to Fast-DAM, the \(\varepsilon\)-insensitive loss function can also be utilized [105].

where \(f^S_k (k = 1, 2, \ldots, m^S)\) denotes the pre-obtained source decision function for the \(k\)-th source domain and \(\beta_k\) represents the weighting parameter that is determined by the relevance between the target domain and the \(k\)-th source domain and can be measured based on the MMD metric. The third term is the domain-dependent regularizer, which transfers the knowledge contained in the source classifier motivated by domain dependence. In [104], the authors also introduce and add a new term to the above objective function based on \(\varepsilon\)-insensitive loss function [109], which makes the resultant model have high computational efficiency.

- (Domain-dependent Regularizer + Universum Regularizer) Univer-DAM is an extension of the Fast-DAM [105]. Its objective function contains an additional regularizer, i.e., Universum regularizer. This regularizer usually utilizes an additional dataset termed Universum where the instances do not belong to either the positive or the negative class [110]. The authors treat the source-domain instances as the Universum for the target domain, and the objective function of Univer-DAM is presented as follows:

\[
\min_{f^j} \sum_{j=1}^{n_T} \left(f^T(x_j) - y_j^T \right)^2 + \lambda_2 \sum_{j=1}^{n_S} \left(f^T(x_j^S) \right)^2 \\
+ \lambda_1 \sum_{k=1}^{m^S} \sum_{i=1}^{n_C} \left(f^T(x_i^C) - f^S_k(x_i^S) \right)^2 + \lambda_3 \Omega(f^T).
\]
to the k-th class, $\bar{Q}_{k}^{2} = 1$. In the above objective function, the matrix R is actually the shared parameter. The first term aims to tri-factorize the source document-to-word matrix, and the second term decomposes the target document-to-word matrix. The last term incorporates the source-domain label information. The optimization problem is solved based on the alternating iteration method. Once the solution of Q^{T} is obtained, the class index of the k-th target-domain instance is the one with the maximum value in the k-th row of Q^{T}.

Further, Zhuang et al. extended MTrick and proposed an approach termed Triplex Transfer Learning (TriTL) [112]. MTrick assumes that the domains share the similar concepts behind their word clusters. In contrast, TriTL assumes that the concepts of these domains can be further divided into three types, i.e., domain-independent, transferable domain-specific, and nontransferable domain-specific concepts, which is similar to HIDC. This idea is motivated by Dual Transfer Learning (DTL), where the concepts are assumed to be composed of the domain-independent ones and the transferable domain-specific ones [114]. The objective function of TriTL is provided as follows:

$$\min_{Q^{T},R^{W}} \sum_{k=1}^{m^{S}+m^{T}} \|X_k - Q_k [R^{DI} R^{TD} R^{ND}] W^{DI} W^{TD} W^{ND}\|^2$$

subject to Normalization Constraints,

where the definitions of the symbols are similar to those of MTrick and the subscript k denotes the index of the domains with the assumption that the first m^{S} domains are the source domains and the last m^{T} domains are the target domains. The authors proposed an iterative algorithm to solve the optimization problem. And in the initialization phase, W^{DI} and W^{TD} are initialized based on the clustering results of the PLSA algorithm, while W^{UT} is randomly initialized; the PLSA algorithm is performed on the combination of the instances from all the domains.

5.2.2 Parameter Restriction

Another parameter-control-type strategy is to restrict the parameters. Different from the parameter sharing strategy that enforces the models share some parameters, parameter restriction strategy only requires the parameters of the source and the target models to be similar.

Take the approaches to category learning as examples. The category-learning problem is to learn a new decision function for predicting a new category (denoted by the $(k+1)$-th category) with only limited target-domain instances and k pre-obtained binary decision functions. The function of these pre-obtained decision functions is to predict which of the k categories an instance belongs to. In order to solve the category-learning problem, Tommasi et al. proposed an approach termed Single-Model Knowledge Transfer (SMKL) [114]. SMKL is based on Least-Squares SVM (LS-SVM). The advantage of LS-SVM is that LS-SVM transforms inequality constraints to equality constraints and has high computational efficiency; its optimization is equivalent to solving a linear equation system problem instead of a quadratic programming problem. SMKL selects one of the pre-obtained binary decision function, and transfers the knowledge contained in its parameters. The objective function is given by

$$\min_{f} \frac{1}{2} \|\theta - \beta \theta\|^2 + \frac{1}{2} \sum_{j=1}^{n^{T,L}} \eta_j \left(f(x^{T,L}_j) - y^{T,L}_j\right)^2,$$

where $f(x) = \theta \cdot \Phi(x) + b$, β is the weighting parameter controlling the transfer degree, θ is the parameter of a selected pre-obtained model, and η_j is the coefficient for resolving the label imbalance problem. The kernel parameter and the tradeoff parameter are chosen based on cross-validation. In order to find the optimal weighting parameter, the authors refer to an earlier work [115]. In [113], Cawley proposes a model selection mechanism for LS-SVM, which is based on the leave-one-out cross-validation method. The superiority of this method is that the leave-one-out error for each instance can be obtained in a closed form without performing the real cross-validation experiment. Motivated by Cawley’s work, the generalization error can be easily estimated to guide the parameter setting in SMKL.

Tommasi et al. further extend SMKL by utilizing all the pre-obtained decision functions. In [118], an approach that is referred to as Multi-Model Knowledge Transfer (MMKL) is proposed. Its objective function is presented as follows:

$$\min_{f} \frac{1}{2} \left\| \theta - \sum_{i=1}^{k} \beta_i \theta_i \right\|^2 + \frac{1}{2} \sum_{j=1}^{n^{T,L}} \eta_j \left(f(x^{T,L}_j) - y^{T,L}_j\right)^2,$$

where θ_i and β_i are the model parameter and the weighting parameter of the i-th pre-obtained decision function, respectively. The leave-one-out error can also be obtained in a closed form, and the optimal value of $\beta_i (i = 1, 2, \ldots, k)$ is the one that maximizes the generalization performance.

5.3 Model Ensemble Strategy

Model ensemble is another commonly used strategy. This strategy aims to combine a number of weak classifiers to make the final predictions. Some previously mentioned transfer learning approaches already adopted this strategy. For example, TrAdaBoost and MsTrAdaBoost ensemble the weak classifiers via voting and weighting, respectively. In this subsection, several typical ensemble-based transfer learning approaches are introduced to help readers better understand the function and the appliance of this strategy.

As mentioned in Section 4.1, TaskTrAdaBoost, which is an extension of TrAdaBoost for handling multi-source scenarios, is proposed in the paper [25]. TaskTrAdaBoost mainly has the following two stages.

1. **Candidate Classifier Construction**: In the first stage, a group of candidate classifiers are constructed by performing AdaBoost on each source domain. Note that, for each source domain, each iteration of AdaBoost results in a new weak classifier. In order to avoid the overfitting problem, the authors introduced a threshold to pick the suitable classifiers into the candidate group.

2. **Classifier Selection and Ensemble**: In the second stage, a revised version of AdaBoost is performed on the target-domain instances to construct the final classifier. In each iteration, an optimal candidate classifier which has the lowest classification error on the labeled target-domain
instances is picked out and assigned with a weight based on the classification error. Then, the weight of each target-domain instance is updated based on the performance of the selected classifier on the target domain. After the iteration process, the selected classifiers are ensembled to produce the final predictions.

The difference between the original AdaBoost and the second stage of TaskTrAdaBoost is that, in each iteration, the former constructs a new candidate classifier on the weighted target-domain instances, while the latter selects one pre-obtained candidate classifier which has the minimal classification error on the weighted target-domain instances.

The paper by Gao et al. proposes another ensemble-based framework that is referred to as Locally Weighted Ensemble (LWE) [117]. LWE focuses on the ensemble process of various learners; these learners could be constructed on different source domains, or be built by performing different learning algorithms on a single source domain. Different from TaskTrAdaBoost that learns the global weight of each learner, the authors adopted the local-weight strategy, i.e., assigning adaptive weights to the learners based on the local manifold structure of the target-domain test set. In LWE, a learner is usually assigned with different weights when classifying different target-domain instances. Specifically, the authors adopt a graph-based approach to estimate the weights. The steps for weighting are outlined below.

1. **Graph Construction**: For the i-th source learner, a graph G_T^S is constructed by using the learner to classify the target-domain instances in the test set; if two instances are classified into the same class, they are connected in the graph. Another graph G_T is constructed for the target-domain instances as well by performing a clustering algorithm.

2. **Learner Weighting**: The weight of the i-th learner for the j-th target-domain instance x^T_j is proportional to the similarity between the instance’s local structures in G_T^S and G_T. And the similarity can be measured by the percentage of the common neighbors of x^T_j in these two graphs.

Note that this weighting scheme is based on the clustering-manifold assumption, i.e., if two instances are close to each other in a high-density region, they often have similar labels. The validity of this assumption should be checked. To be more specific, the target task is tested on the source-domain training set(s). For example, the clustering quality of the training set(s) can be quantified and checked by using a metric such as purity or entropy. And if the clustering quality is not satisfactory, uniform weights are assigned to the learners instead. Besides, it is intuitive that if the measured structure similarity is particularly low for every learner, weighting and combining these learners seems unwise. Therefore, the authors introduce a threshold and compare it to the average similarity. If the similarity is lower than the threshold, the label of x^T_j is determined by the voting scheme among its reliable neighbors, where the reliable neighbors are the ones whose label predictions are made by the combined classifier.

The above-mentioned TaskTrAdaBoost and LWE approaches mainly focus on the ensemble process. In contrast, some studies focus more on the construction of weak learners. For example, Ensemble Framework of Anchor Adapters (ENCHOR) [118] is a weighting ensemble framework proposed by Zhuang et al. An anchor is a specific instance. Different from TrAdaBoost which adjusts weights of instances to train and produce a new learner iteratively, ENCHOR constructs a group of weak learners via using different representations of the instances produced by anchors. The thought is that the higher similarity between a certain instance and an anchor, the more likely the feature of that instance remains unchanged relative to the anchor, where the similarity can be measured by using the cosine or Gaussian distance function. ENCHOR contains the following steps.

1. **Anchor Selection**: In this step, a group of anchors are selected. These anchors can be selected based on some rules or even randomly. In order to improve the final performance of ENCHOR, the authors proposed a method of selecting high-quality anchors [118].

2. **Anchor-based Representation Generation**: For each anchor and each instance, the feature vector of an instance is directly multiplied by a coefficient that measures the distance from the instance to the anchor. In this way, each anchor produces a new pair of anchor-adapted source and target instance sets.

3. **Learner Training and Ensemble**: The obtained pairs of instance sets can be respectively used to train learners. Then, the resultant learners are weighted and combined to make the final predictions.

The framework ENCHOR is easy to be realized in a parallel manner in that the operations performed on each anchor are independent.

5.4 Deep Learning Technique

Deep learning methods are particularly popular in the field of machine learning. Many researchers utilize the deep learning techniques to construct transfer learning models. For example, the SDA and the mSLDA approaches mentioned in Section 4.2.6 are related to the deep learning technique. In this subsection, we specifically focus on the deep-learning-related transfer learning models. Besides, the deep learning approaches are divided into two types, i.e., non-adversarial (or say, traditional) ones and adversarial ones.

5.4.1 Traditional Deep Learning

As said earlier, autoencoders are often used in deep learning area. In addition to SDA and mSLDA, there are some other reconstruction-based transfer learning approaches. For example, the paper by Zhuang et al. proposes an approach termed Transfer Learning with Deep Autoencoders (TLDA) [32]. TLDA adopts two autoencoders for the source and the target domains, respectively. These two autoencoders share the same parameters. The encoder and the decoder both have two layers with activation functions. The diagram of the two autoencoders is presented as follows:

$$
\begin{align*}
X^S \xrightarrow{W_1, b_1} Q^S \xrightarrow{R^S (W_2, b_2)} \hat{Q}^S (W_1, b_1) \xrightarrow{\text{Softmax Regression}} \hat{X}^S, \\
X^T \xrightarrow{W_1, b_1} Q^T \xrightarrow{R^T (W_2, b_2)} \hat{Q}^T (W_1, b_1) \xrightarrow{\text{Softmax Regression}} \hat{X}^T.
\end{align*}
$$

&
\begin{align*}
\uparrow \text{KL Divergence} \\
\downarrow \text{KL Divergence}
\end{align*}

\]
There are several objectives of TLDA, which are listed as follows.

1. **Reconstruction Error Minimization**: The output of the decoder should be extremely close to the input of encoder. In other words, the distance between X^S and \hat{X}^S as well as the distance between X^T and \hat{X}^T should be minimized.

2. **Distribution Adaptation**: The distribution difference between Q^S and Q^T should be minimized.

3. **Regression Error Minimization**: The output of the encoder on the labeled source-domain instances, i.e., R^S, should be consistent with the corresponding label information Y^S.

Therefore, the objective function of TLDA is given by

$$\min_{\Theta} \mathcal{L}_{REC}(X, \hat{X}) + \lambda_1 \text{KL}(Q^S \| Q^T) + \lambda_2 \Omega(W, b, \hat{W}, \hat{b})$$

$$+ \lambda_3 \mathcal{L}_{REC}(R^S, Y^S),$$

where the first term represents the reconstruction error, $\text{KL}(\cdot)$ represents the KL divergence, the third term controls the complexity, and the last term represents the regression error. TLDA is trained by using a gradient descent method. The final predictions can be made in two different ways. The first way is to directly use the output of the encoder to make predictions. And the second way is to treat the autoencoder as a feature extractor, and then train the target classifier on the labeled instances with the feature representation produced by the encoder’s first-layer output.

In addition to the reconstruction-based domain adaptation, discrepancy-based domain adaptation is also a popular direction. In earlier research, the shallow neural networks are tried to learn the domain-independent feature representation [119]. It is found that the shallow architectures often make it difficult for the resultant models to achieve excellent performance. Therefore, many studies turn to utilize deep neural networks. Tzeng et al. [120] added a single adaptation layer and a discrepancy loss to the deep neural network, which improves the performance. Further, Long et al. performed multi-layer adaptation and utilized multi-kernel technique, and they proposed an architecture termed Deep Adaptation Networks (DAN) [121].

For better understanding, let us review DAN in detail. DAN is based on AlexNet [122] and its architecture is presented below [121].

$$X^S \xrightarrow{\text{conv}} Q^S_1 \xrightarrow{\text{conv}} Q^S_2 \xrightarrow{\text{conv}} Q^S_3 \xrightarrow{\text{conv}} Q^S_4 \xrightarrow{\text{conv}} Q^S_5 \xrightarrow{\text{conv}} Q^S_6 \xrightarrow{\text{conv}} Q^S_7 \xrightarrow{\text{conv}} Q^S_8 \xrightarrow{\text{conv}} \hat{X}^T$$

There are five convolutional layers and three fully connected layers.

In the above network, the features are first extracted by five convolutional layers in a general-to-specific manner. Next, the extracted features are fed into one of the two fully connected networks switched by their original domains. These two networks both consist of three fully connected layers that are specialized for the source and the target domains. DAN has the following objectives.

1. **Classification Error Minimization**: The classification error of the labeled instances should be minimized. The cross-entropy loss function is adopted to measure the prediction error of the labeled instances.

2. **Distribution Adaptation**: Multiple layers, which include the representation layers and the output layer, can be jointly adapted in a layer-wise manner. Instead of using the single-kernel MMD to measure the distribution difference, the authors turn to MK-MMD. The authors adopt the linear-time unbiased estimation of MK-MMD to avoid numerous inner product operations [53].

3. **Kernel Parameter Optimization**: The weighting parameters of the multiple kernels in MK-MMD should be optimized to maximize the test power [55].

The objective function of the DAN network is given by:

$$\min_{\Theta} \max_{\kappa} \sum_{i=1}^{n^T} \mathcal{L}(f(x^T_i), y^T_i) + \lambda_1 \sum_{l=1}^{l_{\text{end}}} \text{MK-MMD}(R^S_l, R^T_l; \kappa),$$

where l denotes the index of the layer. The above optimization is actually a minimax optimization problem. The maximization of the objective function with respect to the kernel function κ aims to maximize the test power. After this step, the subtle difference between the source and the target domains are magnified. This train of thought is similar to the Generative Adversarial Network (GAN) [123]. In the training process, the DAN network is initialized by a pre-trained AlexNet. There are two categories of parameters that should be learned, i.e., the network parameters and the weighting parameters of the multiple kernels. Given that the first three convolutional layers output the general features and are transferable, the authors freeze them and fine-turn the last two convolutional layers and the two fully connected layers [124]. The last fully connected layer (or say, the classifier layer) is trained from scratch.

Long et al. further extended the above DAN approach and proposed the DAN framework [125]. The new characteristics are summarized as follows.

1. **Regularizer Adding**: The framework introduces an additional regularizer to minimize the uncertainty of the predicted labels of the unlabeled target-domain instances, which is motivated by entropy minimization criterion [126].

2. **Architecture Generalizing**: The DAN framework can be applied to many other architectures such as GoogLeNet [124] and ResNet [128].

3. **Measurement Generalizing**: The distribution difference can be estimated by other metrics. For example, in addition to MK-MMD, the authors also present the Mean Embedding test for distribution adaptation [129].

The objective function of the DAN framework is given by:

$$\min_{\Theta} \max_{\kappa} \sum_{i=1}^{n^T} \mathcal{L}(f(x^T_i), y^T_i) + \lambda_1 \sum_{l=1}^{l_{\text{end}}} \text{DIST}(R^S_l, R^T_l)$$

$$+ \lambda_2 \sum_{i=1}^{n^T} \sum_{j \in Y^T} S(P(y_j | f(x^T_{i,l}))),$$

where l_{start} and l_{end} denote the boundary indexes of the fully connected layers for adapting the distributions.
There are some other impressive works. For example, Long et al. constructed residual transfer networks for domain adaptation, which is motivated by deep residual learning [130]. Besides, another work by Long et al. proposes the Joint Adaptation Network (JAN) [131], which adapts the joint distribution difference of multiple layers. Sun and Saenko extended CORAL for deep domain adaptation and proposed an approach termed Deep CORAL (DCORAL), in which the CORAL loss is added to minimize the feature covariance [132]. Chen et al. realized that the instances with the same label should be close to each other in the feature space, and they not only add the CORAL loss but also add an instance-based class-level discrepancy loss [133]. Pan et al. constructed three prototypical networks (corresponding to D_S, D_T and $D_S \cup D_T$) and incorporated the thought of multi-model consensus. They also adopt pseudo-label strategy and adapt both the instance-level and class-level discrepancy [134]. Kang et al. proposed the Contrastive Adaptation Network (CAN), which is based on the discrepancy metric termed contrastive domain discrepancy [135]. Zhu et al. aimed to adapt the extracted multiple feature representations, and proposed the Multi-Representation Adaptation Network (MRAN) [136].

Deep learning technique can also be used for multi-source transfer learning. For example, the work by Zhu et al. proposes a framework that is referred to as Multiple Feature Spaces Adaptation Network (MFSAN) [137]. The architecture of MFSAN consists of a common-feature extractor, m^S domain-specific feature extractors, and m^S domain-specific classifiers. The corresponding schematic diagram is shown below.

In each iteration, MFSAN has the following steps.

1. **Common Feature Extraction**: For each source domain (denoted by D_{S_k} with $k = 1, \ldots, m^S$), the source-domain instances (denoted by $X_{S_k}^k$) are separately input to the common-feature extractor to produce instances in a common latent feature space (denoted by Q_k^S). Similar operations are also performed on the target-domain instances (denoted by X_T), which produces Q_T.

2. **Specific Feature Extraction**: For each source domain, the extracted common features Q_k^S is fed to the k-th domain-specific feature extractor. Meanwhile, Q_T is fed to all the domain-specific feature extractors, which results in R_k^T with $k = 1, \ldots, m^S$.

3. **Data Classification**: The output of the k-th domain-specific feature extractor is input to the k-th classifier. In this way, m^S pairs of the classification results are predicted in the form of probability.

4. **Parameter Updating**: The parameters of the network are updated to optimize the objective function.

There are three objectives in MFSAN, i.e., classification error minimization, distribution adaptation, and consensus regularization. The objective function is given by:

$$\min_{\Theta} \sum_{i=1}^{m_S} \mathcal{L}(\hat{Y}_i^S, Y_i^S) + \lambda_1 \sum_{i=1}^{m_S} \text{MMD}(R_i^S, R_i^T) + \lambda_2 \sum_{i \neq j} |\hat{Y}_i^T - \hat{Y}_j^T|,$$

where the first term represents the classification error of the labeled source-domain instances, the second term measures the distribution difference, and the third term measures the discrepancy of the predictions on the target-domain instances.

5.4.2 Adversarial Deep Learning

The thought of adversarial learning can be integrated into deep-learning-based transfer learning approaches. As mentioned above, in the DAN framework, the network Θ and the kernel κ play a minimax game, which reflects the thought of adversarial learning. However, the DAN framework is a little different from the traditional GAN-based methods in terms of the adversarial matching. In the DAN framework, there is only a few parameters to be optimized in the max game, which makes the optimization easier to achieve equilibrium. Before introducing the adversarial transfer learning approaches, let us briefly review the original GAN framework and the related work.

The original GAN [123], which is inspired by the two-player game, is composed of two models, a generator g and a discriminator d. The generator produces the counterfeits of the true data for the purpose of confusing the discriminator and making the discriminator produce wrong detection. The discriminator is fed with the mixture of the true data and the counterfeits, and it aims to detect whether a data is the true one or the fake one. These two models actually play a two-player minimax game, and the objective function is as follows:

$$\min_{g} \max_{d} \mathbb{E}_{x \sim P_{\text{true}}} \left[\log d(x) \right] + \mathbb{E}_{z \sim P_{\text{noise}}} \left[\log (1 - d(g(z))) \right],$$

where z represents the noise instances (sampled from a certain noise distribution) used as the input of the generator for producing the counterfeits. The entire GAN can be trained by using the back-propagation algorithm. When the two-player game achieves equilibrium, the generator can produce almost true-looking instances.

Motivated by GAN, many transfer learning approaches are established based on the assumption that a good feature representation contains almost no discriminative information about the instances’ original domains. For example, the work by Ganin et al. proposes a deep architecture termed Domain-Adversarial Neural Network (DANN) for domain adaptation [138], [139]. DANN assumes that there is no labeled target-domain instance to work with. Its architecture consists of a feature extractor, a label predictor, and a domain classifier. The corresponding diagram is as follows.

![Diagram showing the architecture of DANN](image-url)
The feature extractor acts like the generator, which aims to produce the domain-independent feature representation for confusing the domain classifier. The domain classifier plays the role like the discriminator, which attempts to detect whether the extracted features come from the source domain or the target domain. Besides, the label predictor produces the label prediction of the instances, which is trained on the extracted features of the labeled source-domain instances, i.e., $Q^{S,L}$. DANN can be trained by inserting a special gradient reversal layer (GRL). After the training of the whole system, the feature extractor learns the deep feature of the instances, and the output $\hat{Y}^{T,U}$ is the predicted labels of the unlabeled target-domain instances.

There are some other related impressive works. The work by Tzeng et al. proposes a unified framework for adversarial domain adaptation [140]. The work by Shen et al. adopts Wasserstein distance for domain adaptation [52]. Hoffman et al. adopted cycle-consistency loss to ensure the structural and semantic consistency [141]. Long et al. proposed the Conditional Domain Adversarial Network (CDAN), which utilizes a conditional domain discriminator to assist adversarial adaptation [142]. Zhang et al. adopted a symmetric design for the source and the target classifiers [143]. Zhao et al. utilized domain adversarial networks to solve the multi-source transfer learning problem [144].

Some approaches are designed for some special scenarios. Take the partial transfer learning as an example. The partial transfer learning approaches are designed for the scenario that the target-domain classes are less than the source-domain classes, i.e., $Y^S \subseteq Y^T$. In this case, the source-domain instances with different labels may have different importance for domain adaptation. To be more specific, the source-domain and the target-domain instances with the same label are more likely to be potentially associated. However, since the target-domain instances are unlabeled, how to identify and partially transfer the important information from the labeled source-domain instances is a critical issue.

The paper by Zhang et al. proposes an approach for partial domain adaptation, which is called Importance Weighted Adversarial Nets-Based Domain Adaptation (IWANDA) [145]. The architecture of IWANDA is different from that of DANN. DANN adopts one common feature extractor based on the assumption that there exists a common feature space where $Q^{S,L}$ and $Q^{T,U}$ have the similar distribution. However, IWANDA uses two domain-specific feature extractors for the source and the target domains, respectively. Specifically, IWANDA consists of two feature extractors, two domain classifiers, and one label predictor. The diagram of IWANDA is presented below.

Before training, the source feature extractor and the label predictor are pre-trained on the labeled source-domain instances. These two components are frozen in the training process, which means that only the target feature extractor and the domain classifiers should be optimized. In each iteration, the above network is optimized by taking the following steps.

1. **Instance Weighting**: In order to solve the partial transfer issue, the source-domain instances are assigned with weights based on the output of the first domain classifier. The first domain classifier is fed with $Q^{S,L}$ and $Q^{T,U}$, and then outputs the probabilistic predictions of their domains. If a source domain instance is predicted with a high probability of belonging to the target domain, this instance is highly likely to associate with the target domain. Thus, this instance is assigned with a larger weight and vice versa.

2. **Prediction Making**: The label predictor outputs the label predictions of the instances. The second classifier predicts which domain an instance belongs to.

3. **Parameter Updating**: The first classifier is optimized to minimize the domain classification error. The second classifier plays a minmax game with the target feature extractor. This classifier aims to detect whether a instance is the instance from the target domain or the weighted instance from the source domain, and to reduce the uncertainty of the label prediction $\hat{Y}^{T,U}$. The target feature extractor aims to confuse the second classifier. These components can be optimized in a similar way to GAN or by inserting a GRL.

In addition to IWANDA, the work by Cao et al. constructs the selective adversarial network for partial transfer learning [146]. There are some other studies related to transfer learning. For example, the work by Wang et al. proposes a minimax-based approach to select high-quality source-domain data [147]. Chen et al. investigated the transferability and the discriminability in the adversarial domain adaptation, and proposed a spectral penalization approach to boost the existing adversarial transfer learning methods [148].

6 Application

Transfer learning has been widely applied to various tasks such as text-related and image-related ones.

Text-Related Application: There have been a lot of transfer learning studies on text-related applications such as text classification and sentiment classification. Some of them are already introduced in the previous sections. For example, CoCC utilizes co-clustering technique to classify target-domain documents [84]; TPLSA [82], CD-PLSA [83], and HIDC [84] construct generative statistical models based on PLSA; MTrick [111] and TriTL [112] utilize matrix factorization technique for cross-domain text classification. In terms of sentiment classification problem, Glorot et al. proposed SDA [87] for domain adaptation based on autoencoders; Pan et al. proposed SFA [97] to reduce the gap between domains via the alignment of spectral features.

Image-Related Application: Image classification tasks are widely encountered in many applications. Most of the above-mentioned deep-learning-based studies focus on the image classification problem, such as DAN [121], DCORAL [132], and DANN [138], [139]. Besides, some approaches
such as SA [91] and GFK [55] can adapt the features based on the manifold technique in the context of image classification; HFA [59], [60] can adapt the features of images based on feature augmentation; The work by Zhu et al. [149] utilizes a set of source images with tags and a set of documents to help construct the target classifier for images. Some studies focus on real-world transfer learning applications, which are briefly introduced as follows.

Medical Application: Biomedical imaging plays an important role in the medical area, which is a powerful tool for diagnosis. With the development of computer technology such as machine learning, computer-aided diagnosis has become a popular and promising direction. Transfer learning technology can be utilized for biomedical imaging analysis. For example, Shin et al. finetuned the pre-trained deep neural network to help diagnose [150]. Similarly, Maqsood et al. finetuned the AlexNet for the detection of Alzheimer [151]. Byra et al. utilized the transfer learning technology to help assess knee osteoarthritis [152]. In addition to imaging analysis, transfer learning has other applications in the medical area. For example, the work by Tang et al. combines the active learning and the domain adaptation technologies for the classification of various medical data [153]. Zeng et al. utilized transfer learning for automatically encoding ICD-9 codes that are used to describe a patient’s diagnosis [154].

Bioinformatics Application: The work by Mei et al. proposes a gene-ontology-based model for the predictions of protein subcellular localization, where the gene ontology terms are transferred and a kernel-based classifier is trained [155]. Another work by Mei proposes an approach to predict the subcellular multi-locations of plant proteins via knowledge transfer [156]. Besides, transfer learning can also be utilized to construct models for predicting the associations between genes and phenotypes [157].

Communication Application: In addition to being applied to WiFi localization tasks [13], [29], transfer learning has also been employed in wireless-network applications. For example, Bastug et al. proposes a caching mechanism [158]; the knowledge contained in contextual information, which is extracted from the interactions between devices, is transferred to the target domain. Besides, some studies focus on the energy saving problems. The work by Li et al. proposes an energy saving scheme for cellular radio access networks, which utilizes the transfer-learning expertise [159]. The work by Zhao and Grace applies transfer learning to topology management for reducing energy consumption [160].

Transportation Application: Transfer learning technology can be utilized for anomaly detection, which makes it a good helper in the field of public transport. For example, Gopalakrishnan et al. made use of a pre-trained deep neural network to construct a model for automatic detection of pavement cracks [161]. Transfer learning can also be utilized for anomalous activity detection [162]. There are some other applications of transfer learning such as traffic sign recognition [163] and vehicle classification [164].

Other Applications: Transfer learning has also been applied to some recognition tasks such as hand gesture recognition, face recognition, and speech emotion recognition [165], [166], [167]. Besides, a number of studies incorporate the transfer-learning expertise into various areas such as collaborative filtering, social network, and hyperspectral image analysis [47], [168], [169], [170].

7 Experiment

Transfer learning techniques have been successfully applied in many real-world applications. In this section, we perform experiments to evaluate the performance of some representative transfer learning models of different categories on two mainstream research areas, i.e., object recognition and text classification. The datasets are introduced at first. Then, the experimental results and further analyses are provided.

7.1 Dataset and Preprocessing

Three datasets are studied in the experiments, i.e., Office-31, Reuters-21578, and Amazon Reviews. For simplicity, we focus on the classification tasks. The statistical information of the preprocessed datasets are listed in Table 3.

- **Amazon Review** [98] is a multi-domain sentiment dataset which contains product reviews taken from Amazon.com of four domains (Books, Kitchen, Electronics and DVDs). Each review in the four domains has a text and a rating from zero to five. In the experiments, the ratios that are less than three are defined as the negative ones, while others are defined as the positive ones. The frequency of each word in all reviews is calculated. Then, the five thousand words with the highest frequency are selected as the attributes of each review. In this way, we finally have one thousand positive instances, one thousand negative instances, and about five thousand unlabeled instances in each domain. In the experiments, every two of the four domains are selected to generate twelve tasks.

- **Reuters-21578** [2] is a dataset for text categorization, which has a hierarchical structure. The dataset contains 5 top categories (Exchanges, Orgs, People, Places, Topics). In our experiment, we use the top three big category Orgs, People and Places to generate three classification tasks (Orgs vs People, Orgs vs Places and People vs Places). In each task, the subcategories in the corresponding two categories are separately divided into two parts. Then, the resultant four parts are used as the components to form two domains. Specifically, taking the task Orgs vs People as an example, one part from Orgs and one part from People and combined to form the source domain; similarly, the rest two parts form the target domain. Note that the instances in the three categories are all labeled. In order to generate the unlabeled instances, a number of labeled instances are randomly selected from the dataset, and their labels are ignored.

- **Office-31** [171] is an object recognition dataset which contains thirty-one categories and three domains, i.e., Amazon, Webcam, and DSLR. The images in Amazon are the online e-commerce pictures taken from Amazon.com. The images in Webcam are the low-resolution pictures taken by web cameras. And the images in DSLR are the high-resolution pictures taken by DSLR cameras. In the experiments, every two of the three domains (with the
order considered) are selected as the source and the target domains, which results in six tasks.

7.2 Experiment Setting

Experiments are conducted to compare some representative transfer learning models. Specifically, seven algorithms are performed on the dataset Office-31 for solving the object recognition problem. Besides, thirteen algorithms are performed and evaluated on the dataset Reuters-21578 for solving text classification problem. In the sentiment classification problem, ten algorithms are performed on Amazon Reviews. The classification results are evaluated by accuracy, which is defined as follows:

\[
\text{accuracy} = \frac{|\{x_i | x_i \in D_{test} \land f(x_i) = y_i\}|}{|D_{test}|}
\]

where \(D_{test}\) denotes the test data and \(y\) denotes the truth classification label; \(f(x)\) represents the predicted classification result. Note that some algorithms need the base classifier. In these cases, an SVM with a linear kernel is adopted as the base classifier in the experiments. Each algorithm was executed three times, and the average results are adopted as our experimental results.

The evaluated transfer learning models include: HIDC [131], TriTL [112], CD-PLSA [83], MTrick [111], SFA [97], mSLDA [89], [90], SDA [87], GFK [93], SCL [85], TCA [29], CoCC [34], JDA [31], TrAdaBoost [24], DAN [121], DCORAL [132], MRAN [136], CDAN [142], DANN [138], [139], JAN [131], and CAN [135].

7.3 Experiment Result

In this subsection, we compare twenty algorithms on three datasets in total. The parameters of all algorithms are set to the default values or the recommended values mentioned in the original papers. The experimental results are presented in Tables 4, 5, and 6 corresponding to Amazon Reviews, Reuters-21578, and Office-31, respectively. In order to help readers understand the experimental results more intuitively, three radar maps, i.e., Figs. 4, 5, and 6 are provided, which visualize the experimental results. In the radar maps, each direction represents a task. The general performance of an algorithm is demonstrated by a polygon whose vertices representing the accuracy of the algorithm for dealing with different tasks.

Table 4 shows the experimental results on Amazon Reviews. Fig. 4 visualizes the results. As shown in Fig. 4, most algorithms are relatively well-performed when the source domain is electronics or kitchen, which indicates that these two domains may contain more transferable information than the other two domains. In addition, it can be observed that HIDC, SCL, SFA, MTrick and SDA perform well and relatively stable in all the twelve tasks. Meanwhile, other algorithms, especially mSLDA, CD-PLSA, and TriTL, are relatively unstable; the performance of them fluctuates in a range about twenty percent. TriTL has a relatively high accuracy on the tasks where the source domain is kitchen, but has a relatively low accuracy on other tasks. The algorithms TCA, mSLDA, and CD-PLSA have similar performance on all the tasks with an accuracy about seventy percent on average. Among the well-performed algorithms, HIDC and MTrick are based on feature reduction (feature clustering), while the others are based on feature encoding (SDA), feature alignment (SFA), and feature selection (SCL). Those strategies are currently the mainstreams of feature-based transfer learning.

Table 5 presents the comparison results on Reuter-21578 (here we directly use the results of CoCC from the original paper [34]), and Fig. 5 which has the same structure of Fig. 4 visualizes the performance. For clarity, thirteen algorithms are divided into two parts that correspond to the two subfigures in Fig. 5. It can be observed that most algorithms are relatively well-performed for Orgs vs Places and Orgs vs People, but poor for People vs Places. This phenomenon indicates that the discrepancy between People and Places may be relatively large. Specifically, the algorithms HIDC, SFA, MTrick, and TrAdaBoost have relatively consistent performance in the three tasks. These algorithms are also well-performed in the previous experiment on Amazon Reviews. In addition, the top two well-performed algorithms in terms of People vs Places are CoCC and TrAdaBoost.

In the third experiment, seven deep-learning-based models (i.e., DAN, DCORAL, MRAN, CDAN, DANN, JAN, and CAN) are performed on the dataset Office-31 (here we directly use the results of CDAN, JAN, and CAN from the
Fig. 5. Comparison results on Reuters-21578.

Model	Orgs vs Places	People vs Places	Orgs vs People	Average
HIDC	0.7698	0.6945	0.8375	0.7673
TriTL	0.7150	0.7250	0.6775	0.7201
CD-PLSA	0.7475	0.7225	0.7020	0.7257
MTrick	0.8200	0.8350	0.8125	0.8197
SFA	0.6525	0.5590	0.5825	0.5845
mSLDA	0.7975	0.7825	0.7925	0.7910
SDA	0.6425	0.6275	0.6325	0.6305
GFK	0.6200	0.5700	0.6300	0.6100
SCL	0.8575	0.8625	0.8725	0.8710
TCA	0.7550	0.7550	0.7550	0.7550

Fig. 6. Comparison results on Office-31.

The experimental results are provided in Table 6 and the average performance is visualized in Fig. 6. As shown in Fig. 6, all of these seven algorithms have excellent performance, especially on the tasks D → W and W → D, whose accuracy is very close to one hundred percent. This phenomenon reflects the superiority of the deep-learning based approaches, and is consistent with the fact that the difference between Webcam and DSLR is smaller than that...
between Webcam/DSLR and Amazon. Clearly, CAN outperforms the other six algorithms. In all the six tasks, the performance of DANN is similar to that of DAN, and is better than that of DCORAL, which indicates the effectiveness and the practicability of incorporating adversarial learning.

It is worth mentioning that, in the above experiments, the performance of some algorithms is not ideal. One reason is that we use the default parameter settings provided in the algorithms’ original papers, which may not be suitable for the dataset we selected. For example, GFK was originally designed for object recognition, and we directly adopt it into text classification in the first experiment, which turns out to produce an unsatisfactory result (having about sixty-two percent accuracy on average). The above experimental results are just for reference. These results demonstrate that some algorithms may not be suitable for the datasets of certain domains. Therefore, it is important to choose the appropriate algorithms as the baselines in the process of research. Besides, in practical applications, it is also necessary to find a suitable algorithm.

8 Conclusion

In this survey paper, we have summarized the mechanisms and the strategies of transfer learning from the perspectives of data and model. The survey gives the clear definitions about transfer learning and manages to use a unified symbol system to describe a large number of representative transfer learning approaches and related works. We have basically introduced the objectives and strategies in transfer learning based on data-based interpretation and model-based interpretation. Data-based interpretation introduces the objectives, the strategies, and some transfer learning approaches from the data perspective. Similarly, model-based interpretation introduces the mechanisms and the strategies of transfer learning but from the model level. The applications of transfer learning have also been introduced. At last, experiments have been conducted to evaluate the performance of representative transfer learning models on two mainstream area, i.e., object recognition and text categorization. The comparisons of the models have also been given, which reflects that the selection of the transfer learning model is an important research topic as well as a complex issue in practical applications. As a popular and promising area in machine learning, transfer learning shows some advantages over traditional machine learning such as less data dependency and less label dependency. We hope our work can help readers have a better understanding of the research status and the research ideas.

Acknowledgments

The research work is supported by the National Key Research and Development Program of China under Grant No. 2018YFB1004300, the National Natural Science Foundation of China under Grant No. U1836206, U1811461, 61773361, and the Project of Youth Innovation Promotion Association CAS under Grant No. 2017146.

References

[1] K. Weiss, T.M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” J. Big Data, vol. 3, no. 1, Dec. 2016.
[2] J. Huang, A.J. Smola, A. Gretton, K.M. Borgwardt, and B. Scholkopf, "Correcting sample selection bias by unlabeled data," in Proc. 30th Annual Conference on Neural Information Processing Systems, Vancouver, Dec. 2006, pp. 601–608.
[3] M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, P. Bnau, and M. Kawanabe, "Direct importance estimation for covariate shift adaptation," Ann. Inst. Stat. Math., vol. 60, no. 4, pp. 699–746, Dec. 2008.
[4] O. Day and T.M. Khoshgoftaar, “A survey on heterogeneous transfer learning,” J. Big Data, vol. 4, no. 1, Dec. 2017.
[5] M.E. Taylor and P. Stone, “Transfer learning for reinforcement learning domains: A survey,” J. Mach. Learn. Res., vol. 10, pp. 1633–1685, Sep. 2009.
[6] H.B. Ammar, E. Eaton, J.M. Luna, and P. Ruvolo, “Autonomous cross-domain knowledge transfer in lifelong policy gradient reinforcement learning,” in Proc. 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Jul. 2015, pp. 3345–3351.
[7] P. Zhao and S.C.H. Ho, “OTL: A framework of online transfer learning,” in Proc. 27th International Conference on Machine Learning, Haifa, Jun. 2010, pp. 1231–1238.
[8] O. Chapelle, B. Scholkopf, and A. Zien, Semi-supervised Learning. Cambridge: MIT Press, 2010.
[9] S. Sun, “A survey of multi-view machine learning,” Neural Comput. Appl., vol. 23, no. 7–8, pp. 2031–2038, Dec. 2013.
[10] C. Xu, D. Tao, C. Xu, “A survey on multi-view learning,” 2013, arXiv:1304.3641v1.
[11] Y. Zhang and Q. Yang, “An overview of multi-task learning,” Natl. Sci. Rev., vol. 5, no. 1, pp. 30–43, Jan. 2018.
[12] A. Liu, N. Xu, W. Nie, Y. Su, and Y. Zhang, “Multi-domain and multi-task learning for human action recognition,” IEEE Trans. Image Process., vol. 28, no. 2, pp. 853–867, Feb. 2019.
[13] S.J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1545–1559, Oct. 2010.
[14] X. Peng, Z. Huang, X. Sun, and K. Saenko, “Domain agnostic learning with disentangled representations,” in Proc. 36th International Conference on Machine Learning, Long Beach, Jun. 2019, pp. 5102–5112.
[15] J. Lu, V. Behbood, P. Hao, H. Zuo, S. Xue, and G. Zhang, “Transfer learning using computational intelligence: A survey,” Knowledge-Based Syst., vol. 85, pp. 14–23, May 2015.
[16] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A Survey on deep transfer learning,” in Proc. 27th International Conference on Artificial Neural Networks, Rhodes, Oct. 2018, pp. 270–279.
[17] M. Wang and W. Deng, “Deep visual domain adaptation: A survey,” Neurocomputing, vol. 312, pp. 135–153, Oct. 2018.
[18] D. Cook, K.D. Feuz, and N.C. Krishnan, “Transfer learning for activity recognition: A survey,” Knowl. Inf. Syst., vol. 36, no. 3, pp. 537–556, Sep. 2013.
[19] L. Shao, F. Zhu, and X. Li, “Transfer learning for visual categorization: A survey,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 5, pp. 1019–1034, May 2015.
[20] W. Pan, “A survey of transfer learning for collaborative recommendation with auxiliary data,” Neurocomputing, vol. 177, pp. 447–453, Feb. 2016.
[21] R. Liu, Y. Shi, C. Ji, and M. Jia, “A Survey of sentiment analysis based on transfer learning,” IEEE Access, vol. 7, pp. 85401–85412, Jun 2019.

Model	A → W	D → W	W → D	A → D	D → A	A → W	Average
DAN	0.826	0.977	1.00	0.831	0.668	0.666	0.828
DCORAL	0.790	0.980	1.00	0.827	0.653	0.645	0.816
MRAN	0.914	0.969	0.998	0.864	0.683	0.709	0.856
CDAN	0.931	0.982	1.00	0.898	0.701	0.680	0.865
DANN	0.826	0.978	1.00	0.833	0.668	0.661	0.828
JAN	0.854	0.974	0.998	0.847	0.686	0.700	0.843
CAN	0.945	0.991	0.998	0.950	0.780	0.770	0.906
27
of Alzheimer’s disease stages using 3D MRI scans,” Sensors, vol. 19, no. 11, pp. 1–19, Jun. 2019.

[152] M. Byra, M. Wu, X. Zhang, H. Jang, Y.-J. Ma, E.Y. Chang, S. Shah, and Jiang Du, “Knee menisci segmentation and relaxometry of 3D ultrashort echo time cones MR imaging using attention U-Net with transfer learning,” Magn. Reson. Med., Sep. 2019, doi: 10.1002/mrm.27969.

[153] X. Tang, B. Du, J. Huang, Z. Wang, and L. Zhang, “On combining active and transfer learning for medical data classification,” IET Comput. Vis., vol. 13, no. 2, pp. 194–205, Feb. 2019.

[154] M. Zeng, M. Li, Z. Fei, Y. Yu, Y. Pan, and J. Wang, “Automatic ICD-9 coding via deep transfer learning,” Neurocomputing, vol. 324, pp. 43–50, Jan. 2019.

[155] S. Mei, W. Fei, and S. Zhou, “Gene ontology based transfer learning for protein subcellular localization,” BMC Bioinformatics, vol. 12, no. 1, pp. 1–12, Feb. 2011.

[156] S. Mei, “Predicting plant protein subcellular multi-localization by Chou’s PseAAC formulation based multi-label homolog knowledge transfer learning,” J. Theor. Biol., vol. 310, pp. 80–87, Oct. 2012.

[157] R. Petegrosso, S. Park, T.H. Hwang, and R. Kuang, “Transfer learning across ontologies for phenome-genome association prediction,” Bioinformatics, vol. 33, no. 4, pp. 529–536, Feb. 2017.

[158] E. Bastug, M. Bennis, and M. Debbah, “A transfer learning approach for cache-enabled wireless networks,” in Proc. 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, Mumbai, May 2015, pp. 161–166.

[159] R. Li, Z. Zhao, X. Chen, J. Palicot, and H. Zhang, “TACT: A transfer actor-critic learning framework for energy saving in cellular radio access networks,” IEEE Trans. Wirel. Commun., vol. 13, no. 4, pp. 2000–2011, Apr. 2014.

[160] Q. Zhao and D. Grace, “Transfer learning for QoS aware topology management in energy efficient 5G cognitive radio networks,” in Proc. 1st International Conference on 5G for Ubiquitous Connectivity, Aksalombolo, Nov. 2014, pp. 152–157.

[161] K. Gopalakrishnan, S.K. Khaitan, A. Choudhary, and A. Agrawal, “Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection,” Constr. Build. Mater., vol. 157, pp. 322–330, Dec. 2017.

[162] S. Bansod and A. Nandedkar, “Transfer learning for video anomaly detection,” J. Intell. Fuzzy Syst., vol. 36, no. 3, pp. 1967–1975, Mar. 2019.

[163] G. Rosario, T. Sonderman, and X. Zhu, “Deep transfer learning for traffic sign recognition,” in Proc. IEEE International Conference on Information Reuse and Integration, Salt Lake City, Jul. 2018, pp. 178–185.

[164] S.Y. Jo, N. Ahn, Y. Lee, and S. Kang, “Transfer learning-based vehicle classification,” in Proc. International SOC Design Conference, Daegu, Nov. 2018, pp. 127–128.

[165] U. Cote-Allard, C.L. Fall, A. Drouin, A. Campeau-Lecours, C. Gosselin, K. Glette, F. Laviolette, and B. Gosselin, “Deep learning for electromyographic hand gesture signal classification using transfer learning,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 4, pp. 760–771, Apr. 2019.

[166] C. Ren, D. Dai, K. Huang, and Z. Lai, “Transfer learning of structured representation for face recognition,” IEEE Trans. Image Process., vol. 23, no. 12, pp. 5440–5454, Dec. 2014.

[167] J. Deng, Z. Zhang, E. Marchi, and B. Schuller, “Sparse autoencoder-based feature transfer learning for speech emotion recognition,” in Proc. Humaine Association Conference on Affective Computing and Intelligent Interaction, Geneva, Sep. 2013, pp. 511–516.

[168] W. Pan and Q. Yang, “Transfer learning in heterogeneous collaborative filtering domains,” Artif. Intell., vol. 197, pp. 39–55, Apr. 2013.

[169] J. Tang, T. Lou, J. Kleinberg, and S. Wu, “Transfer learning to infer social ties across heterogeneous networks,” ACM Trans. Inf. Syst., vol. 34, no. 2, pp. 1–43, Apr. 2016.

[170] L. Zhang, L. Zhang, D. Tao, and X. Huang, “Sparse transfer manifold embedding for hyperspectral target detection,” IEEE Trans. Geosci. Remote Sensing, vol. 52, no. 2, pp. 1030–1043, Feb. 2014.

[171] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to new domains,” in Proc. 11th European Conference on Computer Vision, Heraklion, Sep. 2010, pp. 213–226.