Soliton trains after interaction quenches in Bose mixtures

André Cidrim, Luca Salasnich and Tommaso Macrì

Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, Brazil
Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova, via Marzolo 8, 35131 Padova, Italy
INFN, Sezione di Padova, via Marzolo 8, 35131 Padova, Italy
CNR-INO, via Nello Carrara, 1 - 50019 Sesto Fiorentino, Italy
Padua Quantum Technologies Research Center, University of Padova, Via Gradignano 6/b, 35131 Padova, Italy
Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal-RN, Brazil

*Author to whom any correspondence should be addressed.
E-mail: macri@fisica.ufrn.br

Keywords: solitons, modulational instability, quench dynamics, multi-component BECs

Abstract

We investigate the quench dynamics of a two-component Bose mixture and study the onset of modulational instability, which leads the system far from equilibrium. Analogous to the single-component counterpart, this phenomenon results in the creation of trains of bright solitons. We provide an analytical estimate of the number of solitons at long times after the quench for each of the two components based on the most unstable mode of the Bogoliubov spectrum, which agrees well with our simulations for quenches to the weak attractive regime when the two components possess equal intraspecies interactions and loss rates. We also explain the significantly different soliton dynamics in a realistic experimental homonuclear potassium mixture in terms of different intraspecies interaction and loss rates. We investigate the quench dynamics of the particle number of each component estimating the characteristic time for the appearance of modulational instability for a variety of interaction strengths and loss rates. Finally we evaluate the influence of the beyond-mean-field contribution, which is crucial for the ground-state properties of the mixture, in the quench dynamics for both the evolution of the particle number and the radial width of the mixture. In particular, even for quenches to strongly attractive effective interactions we do not observe the dynamical formation of solitonic droplets.

1. Introduction

Modulational instability (MI) is a generic phenomenon that consists of the spontaneous exponential growth of perturbations resulting from the interplay between nonlinearity and anomalous dispersion. MI occurs in several areas of physics. It has been observed in classical [1, 2] and quantum [3–7] fluids, in waveguides [8] and in lattices [9], as well as in nonlinear optics [10] and in charged plasmas [11].

In ultracold Bose–Einstein condensates several experimental [3–7] and theoretical [12–16] works examined the conditions for the appearance of MI. In such systems, the combination of dissipative nonequilibrium dynamics and the nonlinearity due to the interactions results in MI that, after a variable time interval, induces the formation of a train of solitons [3–5, 17–19]. On the theoretical side, the far-from-equilibrium dynamics induced by an interaction quench from the repulsive regime to the attractive is usually well captured by mean-field approaches based on the solution of the Gross–Pitaevskii equation with the inclusion of dissipative three-body losses. When the BEC is confined in a quasi one-dimensional waveguide, a description based on the non polynomial nonlinear Schrödinger equation typically predicts accurately the number of solitons for relatively weak attractive interactions [5, 18–20]. The relevant scale that determines the insurgence of MI is the (inverse) most unstable wavenumber q_{MI}. Then, one finds that the number of solitons increases monotonically with the final value of the final...
scattering length. Interestingly, it is also possible to observe that the particle number of the BEC decreases with a universal power law of the holding time rescaled by the characteristic time for the creation of the modulational instability, independently of the strength of the quench [4]. Recently, the excitation spectrum of matter-wave solitons has also been measured in a quasi one-dimensional cesium condensate [21].

Whereas most works on MI in BECs focused on a single component BEC, the realization of multicomponent systems offers a natural playground to observe nonequilibrium effects in a more general framework. Restricting to two-component BECs, one notices already a rich variety of phases in the ground state. In purely repulsive mixtures, one observes a homogeneous superfluid or a phase separation when inter-species repulsion overcomes the intra-species interaction strength. In the attractive regime a series of recent experiments showed the formation of dilute self-bound droplet states in a two-component BEC both in a tight optical waveguide [22, 23] and in free space [24–26], closely following the theoretical predictions [27]. In the quasi one-dimensional geometry, upon varying the mean-field interaction from the weakly to the strongly attractive regime, one observes a smooth crossover between bright soliton states and self-bound droplets. Notably, solitons are excitations appearing genuinely in low-dimensional systems. If the one-dimensional interaction strength is attractive (focusing nonlinearity) one retrieves bright solitons, while for repulsive condensates (self-defocusing nonlinearity) one finds dark solitons. Droplets instead result from the competition between mean-field and quantum fluctuation energies with opposite sign.

Although the ground-state properties of binary BEC mixtures have been extensively investigated, the study of the conditions leading to MI in these setups has only recently received attention, both theoretically [28] and experimentally [23]. MI has been observed in the counterflow dynamics of two-component BECs in the miscible (purely repulsive) phase [25]. Also, a recent experiment with coherently coupled BECs rapidly quenched into the attractive regime reported the creation of bright soliton trains formed by dressed-state atoms [29].

In this work we thoroughly investigate the quench dynamics in a binary mixture of Bose–Einstein condensates from the repulsive to the attractive regime in an elongated quasi one-dimensional waveguide. We provide results for quenches from the repulsive to the weakly and strongly attractive regime, where solitonic states and quantum droplets respectively are expected in the ground state. We quantitatively characterize the resulting nonequilibrium dynamics by computing the number of particles and solitons as a function of the holding time after the quench. In section 2 we present a theoretical model for a two-component mixture which allows us to provide a quantitative estimate of the number of solitons following a quench dynamics based on the most unstable mode. In section 3 we discuss our numerical results. We perform simulations for the quench dynamics in three different regimes: repulsive to soliton, repulsive to droplet and soliton to droplet. Finally in section 4 we present our conclusions. In the appendix we provide some details about the ground-state phase diagram, the dynamics of the radial width of the two-component mixture, the effect of beyond-mean-field corrections on the nonequilibrium dynamics and the algorithm used to monitor the number of solitons in our simulations.

2. Model and simulations

We describe the nonequilibrium dissipative dynamics of a binary homonuclear mixture in a quasi one-dimensional waveguide with radial trapping frequency \(\omega_r \) and components \(i, j = 1, 2 \) (with \(i \neq j \)) by the generalized coupled Gross–Pitaevskii equations (GPEs), which, in rescaled units, read

\[
\frac{\partial \psi_i}{\partial t} = \left(\frac{1}{2} \nabla^2 + V(\mathbf{r}) + 4\pi \frac{a_i}{\hbar} |\psi_i|^2 + 4\pi \frac{a_{ij}}{\hbar} |\psi_j|^2 + \frac{128\sqrt{\pi}}{3} \frac{a_i}{\hbar} \left(\frac{a_i}{a_r} |\psi_i|^2 + \frac{a_i}{a_r} |\psi_j|^2 \right)^{\frac{3}{2}} - i\Gamma_i |\psi_i|^4 \right) \psi_i. \tag{1}
\]

Here time, energy and space are scaled in units of the inverse radial trapping frequency \(\omega_r^{-1} \), the radial trapping energy \(\hbar \omega_r \), and the associated harmonic oscillator length \(a_r = \sqrt{\hbar/m \omega_r} \), respectively and sum over the indices in the interaction term is assumed. The coefficients \(a_i \) and \(a_{ij} \) furnish the intra- and inter-species corresponding scattering lengths. The effective mean-field scattering length is thus given by the parameter \(\delta a = a_{12} + \sqrt{a_1 a_2} \). The number of particles in each component equals \(N_{1,2} \). We consider a cigar-shaped trapping harmonic potential \(V(\mathbf{r}) = m [\omega_x^2 (x^2 + y^2) + \omega_z^2 z^2]/2 \) with frequencies \(\omega_x/2 \pi = 346 \text{ Hz} \) and \(\omega_z/2 \pi = 7.6 \text{ Hz} \), similarly to [4], thus having a radial harmonic oscillator length of \(a_r = 0.87 \mu \text{m} \). The generalization comes first phenomenologically including a three-body loss term \(\Gamma_i = L_{\text{th}} N_i^2/(2\hbar \omega_{ij}^2) \). Following [24] we do not include mixed two-body or three-body inelastic loss rates. Secondly, in order to take into account corrections due to quantum fluctuations, we introduce the
Lee–Huang–Yang (LHY) terms in the GPEs, with component-dependent strength. The ratio between the mean-field chemical potential and the transverse harmonic oscillator energy (ρ_{mf}) is displayed in the text.

In order to evaluate the derivatives involved in the kinetic term, we employ a discrete (zero-order) Hankel transform in the radial direction and the usual fast Fourier transform in the longitudinal direction [32].
3. Results

3.1. Modulational instability in a binary Bose mixture

In this section we present a theoretical model to describe the MI in a binary BEC after a quench to the attractive regime $\delta a_f < 0$. To characterize quantitatively the MI we introduce the Bogoliubov spectrum for a two-component BEC, which reads [33]

$$E_{\pm}(q) = \frac{\varepsilon_1^2 + \varepsilon_2^2}{2} \pm \sqrt{\left(\frac{\varepsilon_1^2 - \varepsilon_2^2}{4}\right)^2 + \frac{g_{12}^2 n_1 n_2 a_f^4}{m_1 m_2}},$$

where we defined the Bogoliubov energies of each component

$$\varepsilon_n(q) = \sqrt{\frac{q^2}{2m_i} \left(\frac{q^2}{2m_i} + g_{i} n_i \right)}.$$

In this work we focus on the equal mass case $m_1 = m_2$. We define the total density of the system as $n = n_1 + n_2$. In our simulations we fix the ratio of the densities (and particle numbers) at the initial time to $\frac{n_1}{n_2} = \frac{\sqrt{n_1}}{\sqrt{n_2}}$, i.e. the equilibrium configuration that minimizes the energy functional in the attractive regime [34]. Under the condition $\delta a = a_{12} + \sqrt{a_1 a_2} < 0$ the lower branch $E_{-}(q)$ becomes unstable. The most unstable mode corresponds to the wavenumber q_{min} that minimizes the argument of $E_{-}(q)$.

Upon solving $dE_{-}(q)/dq = 0$ we obtain

$$q_{\text{min}}^2 = 2n \sqrt{a_1 a_2} \left(\sqrt{1 - \frac{8 \delta a}{(\sqrt{a_1} + \sqrt{a_2})^2}} + \frac{4 \delta a^2}{\sqrt{a_1 a_2} (\sqrt{a_1} + \sqrt{a_2})^2} - 1 \right),$$

where we scaled the scattering lengths a_i and consequently also δa by a factor 2π to account for the effective soliton dynamics along the longitudinal direction. When $|\delta a| \ll (\sqrt{a_1} + \sqrt{a_2})^2$ then we can expand q_{min} to a reduced expression to first order in δa which reads

$$q_{\text{min}}^2 \approx (q_{\text{red}}^2)^2 = 8n |\delta a| \frac{\sqrt{a_1 a_2}}{(\sqrt{a_1} + \sqrt{a_2})^2}.\tag{5}$$

We can now define the associated wavelength $\lambda_0 = 2\pi/q_{\text{min}}$. Starting with a quasi-1D binary Bose mixture of length L (ex. the longitudinal Thomas-Fermi radius), a sudden quench to the attractive regime induces the formation of a train of solitons. The number of solitons N_s can then be estimated as

$$N_s = \frac{L}{\lambda_0}.\tag{6}$$

3.2. Number of solitons

We now discuss the creation of soliton trains induced by the MI. In figure 2 we show snapshots of the density for the symmetric regime (i) at two different times: one right before the quench from the repulsive mean-field regime to the attractive one and another at $t = 30$ ms. Figure 2(a) corresponds to a quench to the weakly attractive regime $\delta a = -3a_0$ where the ground state of the system is an extended soliton (see appendix A for a thorough discussion of the phase diagram). Figure 2(b) corresponds to a quench to the strongly attractive regime $\delta a = -9a_0$ where the ground state is instead a self-bound droplet. For both cases the initial state is the ground state of the system for repulsive interactions. Notice that for the sake of visualization the density is normalized at its peak value, therefore the color code is the same for both components to emphasize the density modulations, even if the number of particles changes with time. We observe that, as soon as MI sets in, density peaks are formed, creating a soliton train. The number of solitons increases with the strength of the attractive interaction.

We compute the number of solitons numerically from the peaks of the density distribution for each of the two components, employing an algorithm that we describe in detail in appendix D. The results of this analysis are shown in figure 3.

In figure 3 the average number of solitons computed from the numerics (points) is compared to our prediction from equations (4) and (6) (dashed black line). We notice that the expression for $q_{\text{min}}^\text{red}$ in equation (5) reproduces to an excellent approximation q_{min} for the parameters used in this work. For weakly attractive interactions the agreement between the numerics and the analytical result is good for $|\delta a| \lesssim 6a_0$. For stronger attractive interactions we observe a larger deviation of the analytical prediction...
Figure 2. Snapshots of the time-evolution of the density at the initial time $t = 0$ and at $t = 30$ ms after a quench with a 1 ms-ramp for different initial and final scattering lengths. We consider the initial number of particles $N_i = N_f = 2.5 \times 10^4$ and symmetric intraspecies interactions $a_1 = a_2$ which are quenched simultaneously. The interspecies scattering length a_{12} is left unaltered during the quench. The system is initialized in the ground state for the corresponding value of δa_i by relaxing in imaginary time a variational gaussian wavefunction. For details of the numerical algorithm and the initial ground-state function see appendix A. The three-body loss parameters are chosen equal to $L^{(1)}_3$. After the quench the initial state develops an MI toward the soliton train visible at longer times. (a) Quench from the repulsive ground state at $\delta a_i = 1a_0$ to the soliton regime at $\delta a_f = -3a_0$. (b) Quench to the droplet phase at $\delta a_f = -9a_0$. (c) Quench from the soliton $\delta a_i = -3a_0$ to the droplet phase at $\delta a_f = -9a_0$. See supplementary material (https://stacks.iop.org/NJP/23/023022/mmedia) for videos showing the full dynamics of the three cases presented here.

Figure 3. Number of bright solitons in quench dynamics as a function of the final value of the effective scattering length δa_f for a symmetric mixture with equal intraspecies interactions and dissipations. Solitons are identified from counting density peaks after radial integration. We compare the numerical results with the estimate of the number of solitons from equations (4) and (6) (black dashed line). We set $N_i = N_f = 2.5 \times 10^4$ particles with $\omega_r/2\pi = 346$ Hz and $\omega_z/2\pi = 7.6$ Hz and $L_3^{(1)} = L_3^{(2)} = 3.6 \times 10^{-27}$ cm6 s$^{-1}$. Here we set $a_{12} = -52a_0$ and vary $a_1 = a_2$, computing then $\delta a = \delta a_{12} + \sqrt{\delta a_1^2 + \delta a_2^2}$. The dynamics is initialized in the ground state with a repulsive BEC with $a_1 = a_2 = 53a_0$.

from the numerics, likely due to the far from equilibrium dynamics involved in the creation of the soliton train.

In figure 2(c) we show the snapshot of the density starting from a solitonic, weakly attractive configuration to the regime of strong attraction. We observe that the initial condensate splits into just two bright solitons. This has to be compared to figure 2(b), where, due to the larger initial longitudinal length, the quench dynamics produces a soliton train with several density peaks.

We also performed simulations in the realistic case (ii) for the experimental parameters of section 2. The dynamics is significantly more complex than in the symmetric case. First the asymmetry in the number of particles (see section 3.3 and inset of figure 4) is such that the particles in the second component is almost constant during the expansion dynamics after the quench, whereas $N_1(t)$ is greatly reduced after tens of milliseconds, similarly to the symmetric case. The effect is that the second component is only weakly
Figure 4. Time evolution for number of atoms, starting from a total $N = 5.0 \times 10^4$ particles for the case (a) of symmetric intraspecies interactions $a_1 = a_2$ and equal three-body loss coefficients $L_1^{(3)} = L_2^{(3)} = 3.6 \times 10^{-27}$ cm6 s$^{-1}$ and (b) realistic case of asymmetric intraspecies interactions and dissipations as described in section 2. The system is quenched from $\delta a_i = 1a_0$ to different δa_i. Notice that for realistic three-body losses coefficients $L_1^{(3)} \gg L_2^{(3)}$, therefore the second component (inset) practically maintains its particle number throughout the evolution. In (a) the dissipation acts on the two components equally, therefore $N_1(t) = N_2(t)$ for all times. Different curves in (a) and (b) correspond to different final effective interaction strength as in the color scale bar.

affected by the attractive dynamics due to the limited overlap with the first component. Therefore the soliton trains observed after the quench are poorly described by the theory presented in section 3. We provide further details in appendix D.

3.3. Number of atom loss

In this section we discuss the evolution of the number of particles as a function of time after the quench. In figure 4 we show the results for both quantities from GPE simulations of the two coupled components $N_1(t)$ and $N_2(t)$ for (a) the case of symmetric interactions and losses (b) and for the realistic experimental parameters of section 2. In the symmetric case $N_1(t) = N_2(t)$ for all times, whereas in the realistic case the number of particles in components 1 and 2 decrease with time at different rates because of the different three-body losses coefficients $L_1^{(3)}, L_2^{(3)}$. The first component has a much larger three-body decay, resulting in a more complex dynamics. We observe that for all the final attractive mean-field interactions considered in figure 4, the number of particles for short times slowly decreases before establishing the MI at $t = t_{\text{MI}}$

$$t_{\text{MI}} \omega_r = \frac{(\sqrt{|a_1|} + \sqrt{|a_2|})^2}{4n_0|\delta a| a_0^2},$$

where n_0 is the peak density of the initial configuration [20]. Consistently with the prediction of equation (7), in our simulations for the symmetric (a) and the realistic case (b), quenching to the strongly attractive regime leads to faster decrease of the particle number.

4. Conclusions

In this work we studied the nonequilibrium dynamics of a two-component Bose–Einstein condensate after a quantum quench to the attractive interspecies interactions. We specialized to the experimentally relevant case of potassium binary mixture. Quenching the effective mean-field scattering length from repulsive to attractive values in a wide interval we observed an MI and the creation of soliton trains. We characterized quantitatively the number of solitons via numerical simulations of the coupled Gross–Pitaevskii equations. In the stationary, long-time limit we observed that an analytical model based on the calculation of the most unstable Bogoliubov mode is in reasonable quantitative agreement with the number of solitons for both components in the symmetric configuration. The experimentally relevant case, with asymmetric intraspecies interactions and different loss rates, leads to a more intricate dynamics which is only qualitatively captured by our model. The related timescale for the rise of the instability however does not translate into a universal scaling for the losses of both components, in contrast to what was recently observed for a single component lithium BEC with small final scattering length $|a_f|$ [4].

We emphasize that this work focuses on a far-from-equilibrium dynamical regime. For the fast magnetic field ramps considered here, even in the strongly attractive regime $|\delta a| \gtrsim 7a_0$, the solitonic bumps in the density are not self-bound droplets, as their width equals the transverse harmonic oscillator length and the atom number decay is different from what has been observed in the formation of self-bound droplets [34] (see also appendix B).
The MI analysis can be used to study also other Bose-condensed systems. A sudden quench of the s-wave scattering length can be applied not only to atomic gases in the same or different hyperfine states, but also to heteronuclear bosonic mixtures. Moreover, in bosonic systems with spin–orbit and Rabi couplings the MI can be induced by varying these one-body couplings. However, our work strongly suggests that generically one cannot trust only the analytical calculations based on the most unstable mode of the elementary excitations: a comparison with numerical simulation is needed to obtain reliable predictions. Extensions of this work may include a systematic study on the effects of coherently coupling a two-components mixture \[29, 35, 36\], the inclusion of long-range dipolar interactions \[37\], or the investigation of finite-temperature effects \[38\] across the normal-to-BEC transition in the attractive regime and its connection to the Kibble–Zurek mechanism \[39, 40\].

Acknowledgments

We thank D Luo, R Hulet, and S Wüster for useful discussions. This research was developed with the help of XMDS2 software \[41\]. We thank the High Performance Computing Center (NP AD) at UFRN for providing computational resources. TM acknowledges CNPq for support through Bolsa de produtividade em Pesquisa n.311079/2015-6. This work was supported by the Serrapilheira Institute (Grant No. Serra-1812-27802), CAPES-NUFFIC Project No. 88887.156521/2017-00. TM thanks the Physics Department of the University of L’Aquila for the hospitality where part of the work was done. AC is supported by FAPESP through Grant No. 2017/09390-7. LS acknowledges the BIRD project ‘Superfluid properties of Fermi gases in optical potentials’ of the University of Padova for financial support.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Appendix A. Ground-state phase diagram

In this appendix we discuss the ground-state properties of a two-component mixture in the attractive regime in a cigar-shaped harmonic potential. In figure A1 we show the numerical and the variational phase diagram obtained by imaginary-time evolution of the generalized GPE of equation (1) (numerical) and by minimizing the corresponding energy functional (variational). For the variational approach we employ a Gaussian wavefunction

\[
\psi(r) = \sqrt{\frac{N}{\pi^2 \sigma_r^2 \sigma_z}} \exp\left(-\sum_{i=x,y,z} \frac{r_i^2}{2 \sigma_i^2}\right),
\]

(A.1)

with variational parameters \(\sigma_r\) and \(\sigma_z\). The wavefunction is normalized to the total number of particles \(\|\psi\|^2 = N\) \[31\].

We observe a smooth crossover from the droplet to the soliton phase. First, for low particle number or, equivalently, small values of \(|\delta a|\), the ground state of the system corresponds to a soliton, whose shape depends on the external trapping, for which \(\sigma_r \sim a_r\), while \(\sigma_z \gg a_r\). Specifically, beyond-mean-field corrections are not necessary for the stability of this state \[20\]. Reducing \(\delta a\) the ground state is (almost) isotropic \(\sigma_r \sim \sigma_z < a_r\), independent of the confinement aspect ratios. The existence of this self-bound state is enabled by taking into account the contribution of Gaussian quantum fluctuations in the variational energy equation (1).

We compare the ground states obtained from the variational analysis with the numerical simulation of the GP equation. After relaxation in imaginary time, we find that the ground state of the system for the strongly attractive inter-species scenario is a self-trapped, spherical droplet state.

Appendix B. Evolution of the radial width

The results of the dynamics of the radial widths of each of the two components of the mixture after the quench are shown in figure B1. The radii of both components fluctuate closely to the initial radial harmonic oscillator length \(a_r\) for both quenches to the weakly attractive and strongly attractive regimes. In particular, for the cases where \(\delta a_f = -9.0 a_0\) (symmetric) \(\delta a_f = -10.92 a_0\) (realistic) and which have a self-bound droplet phase as a ground state (see figure A1) we observe no signature of such a state throughout the dynamics.
Figure A1. Crossover soliton-droplet as a function of the effective scattering length for a two-component mixture with $N = 5.0 \times 10^4$ particles with $\omega_r/2\pi = 346$ Hz and $\omega_z/2\pi = 7.6$ Hz. Orange line: σ_r, blue line: σ_z in units of a_r. (a) Symmetric case. We set $a_{12} = -52a_0$ and vary $a_1 = a_{12}$, so as to effectively vary $\delta a = a_{12} + \sqrt{a_1 a_2}$. (b) Realistic experimental case. We fix $a_1 = 37.5a_0$ and $a_{12} = -52a_0$, and vary a_2. For large negative δa the system is in the droplet phase $\sigma_r \sim a_r < \sigma_z$. For small negative δa the system is in the soliton phase $\sigma_r \sim a_r < \sigma_z$. Numerical simulation of the ground state wavefunction obtained by imaginary-time evolution of the generalized GPE of equation (1) in the absence of dissipation are shown with orange (\(\sigma_r\)) and blue (\(\sigma_z\)) points.

Figure B1. Time evolution of the radial widths after integrating along the longitudinal direction for the (a) symmetric and (b) realistic experimental case. In the realistic experimental case (b) we plot the time evolution for component 1 (upper panel) and component 2 (lower panel). We consider a two-component mixture with $N = 5.0 \times 10^4$ particles with $\omega_r/2\pi = 346$ Hz. We notice that, independently of the quench parameters, the radial widths oscillate around the harmonic potential length (a_r).

Appendix C. Effect of quantum fluctuations

The effect of the quantum fluctuations for two-component Bose gas is described by the term $g^{1\text{LHY}}_l = \frac{128}{3} \frac{\sqrt{\frac{a_l}{a_r}}}{\sqrt{\frac{a_l}{a_r} + \frac{a_l}{a_r}}} \left(|\psi_l|^2 + |\psi_l|^2 \right)^{3/2}$ in the extended GPE equation (1). We tested the effect of removing this term in our simulations for quenches into the weak and strong attractive regime. The results are shown in figure C1 for symmetric interactions and loss terms and for the realistic experimental configuration. Whereas the results for the second component in the realistic case are almost identical, the first component displays a much faster particle number decay in the absence of beyond-mean-field terms. This can be explained by the attractive nature of the mean-field interaction which is not balanced by the additional repulsive LHY correction leading to higher densities and therefore to higher losses. At the same time, MI takes place on a shorter time scale, leading to a faster stabilization of the particle number. Therefore, at longer times, in the absence of beyond-mean-field effects we observe a larger particle number.
Figure C1. Effect of beyond-mean-field corrections on the dynamics of the particle number decay after the quench for (a) the symmetric case, with equal interactions $a_1 = a_2$ and loss rates $L_1^{(1)} = L_3^{(1)}$, and (b) the realistic experimental case, with the parameters of section 2. Full lines: simulation with LHY correction. Dashed lines: simulations without LHY correction. In (b) we only show $N_1(t)$ as N_2 remains constant for the whole time interval.

Figure D1. Number of solitons for $N = 5 \times 10^4$ in the (a) realistic and (b) symmetric cases. The latter compares the effect of disregarding the three-body losses.

Appendix D. Details on the soliton number algorithm and comparison with theory

We briefly describe the algorithm to compute the number of solitons from the dynamics of the density $n(z, t)$ integrated along the transverse directions as a function of time. Our method identifies local maxima in $n(z, t)$ as bright solitons. We start by disregarding, at each instant, peaks in low-density regions (with amplitudes $\lesssim 10\%$ of the mean initial density). A weak Gaussian filter is applied to smooth out most numerical effects at distances much smaller than the typical healing length ξ of the system. Finally, we avoid overcounting solitons which are undergoing a probable splitting process by treating as one visible peaks that are apart by distances smaller than ξ at a particular instant.

In figure D1 we provide further numerical results about the comparison between the realistic and the symmetric case with our theoretical model. In the realistic case, as discussed in the main text, we only plot the number of solitons in the first component N_1^j. The dynamics in the realistic case is significantly more complex than in the symmetric one. Therefore the soliton trains observed after the quench are inadequately described by the theory in this context. Due to this poor agreement between the numerics and the estimate from equation (6), we only show the effect of three-body losses on the solitons number in the more controllable symmetric case. We observe that in the absence of losses equation (6) is still able to provide a reasonable estimate of the number of solitons for quenches to intermediate values of $|\delta a|$. However, for larger $|\delta a|$ the deviation can be as much as 100%. In the realistic case it can be argued that a similar increase in the number of solitons might be observed in the absence of dissipation, therefore partially compensating for the mismatch of the theoretical (dashed line) and the numerics. However a more refined theory is needed to explain the behavior of both components.

ORCID iDs

André Cidrim https://orcid.org/0000-0003-0007-2330
Luca Salasnich https://orcid.org/0000-0003-0817-4753
Tommaso Macrì https://orcid.org/0000-0002-7778-8014
