A Folkman Linear Family

Qizhong Lina, Yusheng Lib

aCenter for Discrete Mathematics, Fuzhou University
Fuzhou 350108, China
bDepartment of Mathematics, Tongji University
Shanghai 200092, China
Email: linqizhong@fzu.edu.cn, lyusheng@tongji.edu.cn

Abstract
For graphs F and G, let $F \rightarrow (G, G)$ signify that any red/blue edge coloring of F contains a monochromatic G. Define Folkman number $f(G; p)$ to be the smallest order of a graph F such that $F \rightarrow (G, G)$ and $\omega(F) \leq p$. It is shown that $f(G; p) \leq cn$ for graphs G of order n with $\Delta(G) \leq \Delta$, where $\Delta \geq 3$, $c = c(\Delta)$ and $p = p(\Delta)$ are positive constants.

Keywords: Folkman number; Folkman linear; Multi-partite regularity lemma

1 Introduction

For graphs F and G, let $F \rightarrow (G, G)$ signify that any red/blue edge coloring of F contains a monochromatic G. The Ramsey number $R(G)$ is the smallest N such that $K_N \rightarrow (G, G)$. For most graphs G, it is difficult to determine the behavior of $R(G)$, and even more difficult if the edge-colored graphs are restricted within that of smaller cliques instead of the complete graphs.

Define a family $\mathcal{F}(G; p)$ of graphs as
$$\mathcal{F}(G; p) = \{ F : F \rightarrow (G, G) \text{ and } \omega(F) \leq p \},$$
where $\omega(G)$ is the clique number of G, and define
$$f(G; p) = \min \{|V(F)| : F \in \mathcal{F}(G; p)\},$$
which is called the Folkman number. We admit that $f(G; p) = \infty$ if $\mathcal{F}(G; p) = \emptyset$, and thus $f(G; p) = \infty$ if $p < \omega(G)$.

The investigation was motivated by a question of Erdős and Hajnal [9] who asked what was the minimum p such that $\mathcal{F}(K_3; p) \neq \emptyset$. An important result of Folkman [10] states that $\mathcal{F}(K_n; p) \neq \emptyset$ for $p \geq n$, which was generalized by Nešetřil and Rödl [20] as $\mathcal{F}(G; p) \neq \emptyset$ for $p \geq \omega(G)$. The following property is clear.

Lemma 1 The function $f(G; p)$ is decreasing on p, and if $p \geq R(G)$, then $f(G; p) = R(G)$.

Graham [14] proved that $f(K_3; 5) = 8$ by showing $K_8 \not\rightarrow (K_3, K_3)$. Irving [15] proved that $f(K_3; 4) \leq 18$, and it was further improved by Khadzhiivanov and Nenov [16] to $f(K_3; 4) \leq 16$. Finally,
Piwakowski, Radziszowski, and Urbanski [13] and Lin [18] proved \(f(K_3; 4) = 15 \). However, both upper bounds of Folkman and of Nešetřil and Rödl for \(f(K_3; 3) \) are extremely large. Frankl and Rödl [11] first gave a reasonable bound \(f(K_3; 3) \leq 7 \times 10^{11} \). Erdős set a prize of $100 for the challenge \(f(K_3; 3) \leq 10^{10} \). This reward was claimed by Spencer [10, 11], who proved that \(f(K_3; 3) < 3 \times 10^9 \). Erdős then offered another $100 prize (see [2], page 64) for the new challenge \(f(K_3; 3) < 10^6 \). Chung and Graham [3] conjectured further \(f(K_3; 3) < 10000 \), which was confirmed by Lu [19] with \(f(K_3; 3) < 9697 \), and by Dudek and Rödl [7] with more computer aid.

Let us call a family \(G \) of graphs \(G_n \) of order \(n \) to be Ramsey linear if there exists a constant \(c = c(G) > 0 \) such that \(R(G_n) \leq cn \) for any \(G_n \in G \). Similarly, we call \(G \) to be Folkman \(p \)-linear if \(f(G_n; p) \leq cn \) for any \(G_n \in G \), where \(p \) is a constant. Let \(\Delta(G_n) \) be the maximum degree of \(G_n \) of order \(n \) and set a family of graphs as

\[
G_{\Delta} = \{ G_n \mid \Delta(G_n) \leq \Delta \}.
\]

A result of Chvátal, Rödl, Szemerédi and Trotter [5] is as follows.

Theorem 1 The family \(G_{\Delta} \) is Ramsey linear.

The proof of Theorem 1 is a remarkable application of Szemerédi regularity lemma, in which they used the general form of the lemma. In order to generalize Theorem 1 to Folkman number, we shall have a multi-partite regularity lemma as follows.

Theorem 2 For any \(\epsilon > 0 \) and integers \(m \geq 1 \) and \(p \geq 2 \), there exists an \(M = M(\epsilon, m, p) \) such that each \(p \)-partite graph \(G(V^{(1)}, \ldots, V^{(p)}) \) with \(|V^{(s)}| \geq M, 1 \leq s \leq p \), has a partition \(\{ V_{i}^{(s)}, \ldots, V_{k}^{(s)} \} \) for each \(V^{(s)} \), where \(k \) is same for each part \(V^{(s)} \) and \(m \leq k \leq M \), such that

1. \(|V_{i}^{(s)}| - |V_{j}^{(s)}| \leq 1 \) for each \(s \);
2. All but at most \(ek^2(p) \) pairs \((V_{i}^{(s)}, V_{j}^{(t)}) \), \(1 \leq s < t \leq p, 1 \leq i, j \leq k \), are \(\epsilon \)-regular.

Using the above Theorem 2 we can deduce the following result on the Folkman \(p \)-linearity of \(G_{\Delta} \) for some fixed \(p \).

Theorem 3 Let \(\Delta \geq 3 \) be an integer and \(p = R(K_{\Delta}) \). Then the family \(G_{\Delta} \) is Folkman \(p \)-linear.

Note that for sub-family \(G_{\Delta, \chi} \) consisting of \(G \in G_{\Delta} \) with \(\chi(G) \leq \chi \), we can take \(p = R(K_{\chi}) \) such that \(G_{\Delta, \chi} \) is Folkman \(p \)-linear. A natural problem is asking what is a smaller \(p \) such that \(G_{\Delta} \) is Folkman \(p \)-linear.

For an integer \(r \geq 2 \), we call an edge coloring of a graph by \(r \) colors as an \(r \)-edge coloring of the graph. For graphs \(F \) and \(G \), let \(F \to (G)_r \) signify that any \(r \)-edge coloring of \(F \) contains a monochromatic \(G \). Thus \(R_r(G) \) is the smallest \(N \) such that \(K_N \to (G)_r \), and \(f_r(G; p) \) is the smallest \(N \) such that there exists a graph \(F \) of order \(N \) with \(\omega(F) = p \) satisfying \(F \to (G)_r \). Theorem 3 can be generalized as follows.

Theorem 4 Let \(\Delta \geq 3 \) and \(r \geq 2 \) be integers and \(p = R_r(K_{\Delta}) \). Then, there is some constant \(c = c(\Delta, r) > 0 \) such that \(f_r(G_n; p) \leq cn \) for any \(G_n \in G_{\Delta} \).

2 Multi-partite regularity lemma

Let \(A \) be a set of positive integers and \(A_n = A \cap \{1, \ldots, n\} \). In the 1930s, Erdős and Turán conjectured that if \(\lim_{n \to \infty} \frac{|A_n|}{n} > 0 \), then \(A \) contains arbitrarily long arithmetic progressions. The conjecture in case of length 3 was proved by Roth [22, 23]. The full conjecture was proved by Szemerédi [20] with a deep and complicated combinatorial argument. In the proof he used a result, which is now called the bipartite regularity lemma, and then he proved the general regularity lemma in [24]. The lemma has become a totally new tool in extremal graph theory. Sometimes the regularity lemma is called uniformity lemma,
see e.g., Bollobás [2] and Gowers [13]. For many applications, we refer the readers to the survey of Komlós and Simonovits [17]. In this note, we shall discuss multi-partite regularity lemma in slightly different forms.

Let $G(U, V)$ be a bipartite graph on two color classes U and V. For $X \subseteq U$ and $Y \subseteq V$, denote by $e(X, Y)$ the number of edges between X and Y of G. The ratio

$$d(X, Y) = \frac{e(X, Y)}{|X||Y|}$$

is called the edge density of (X, Y), which is the probability that any pair (x, y) selected randomly from $X \times Y$ is an edge. Clearly $0 \leq d(X, Y) \leq 1$.

The first form of regularity lemma given by Szemerédi in [26] is as follows, in which corresponding to each subset U_i in the partition of U, we have to choose its own partition V_{ij} of V.

Lemma 2 (Bipartite Regularity Lemma-Old Form) For any positive $\epsilon_1, \epsilon_2, \delta, \rho_1, \rho_2$, there exist k_1, k_2, M_1, M_2 such that every bipartite graph $G(U, V)$ with $|U| > M_1$ and $|V| > M_2$, there exist disjoint $U_i \subseteq U$, $i < k_1$, and for each $i < k_1$, disjoint $V_{ij} \subseteq V$, $j < k_2$, such that:

1. $|U_i - \cup_{j<k_2}U_i| < \rho_1|U_i|$, and $|V_j - \cup_{i<k_1}V_{ij}| < \rho_2|V_j|$ for any $i < k_1$;
2. For all $i < k_1$, $j < k_2$, $X \subseteq U_i$ and $Y \subseteq V_{ij}$ with $|X| > \epsilon_1|U_i|$ and $|Y| > \epsilon_2|V_{ij}|$, we have
 $$d(X, Y) \geq d(U_i, V_{ij}) - \delta;$$

3. For all $i < k_1$, $j < k_2$ and $x \in U_i$, $|N(x) \cap V_{ij}| \leq (d(U_i, V_{ij}) + \delta)|V_{ij}|$.

For $\epsilon > 0$, a disjoint pair (X, Y) is called ϵ-regular if any $X' \subseteq X$ and $Y' \subseteq Y$ with $|X'| > \epsilon|X|$ and $|Y'| > \epsilon|Y|$ satisfy

$$|d(X, Y) - d(X', Y')| \leq \epsilon.$$

We shall call $U_0 = U - \cup_{i<k_1}U_i$, and $V_0 = V - \cup_{j<k_2}V_{ij}$ in Theorem 2 to be the exceptional sets. The following is the general regularity lemma of Szemerédi [27], in which the partition C_0, C_1, \ldots, C_k is equitable in sense of that all sets C_i other than the exceptional set C_0 have the same size.

Lemma 3 (General Regularity Lemma) For any $\epsilon > 0$ and any $m \geq 1$, there exists $M = M(\epsilon, m) > m$ such that every graph G of order at least m has a partition C_0, C_1, \ldots, C_k with $m \leq k \leq M$ such that:

1. $|C_0| = |C_2| = \cdots = |C_k|$ and $|C_0| \leq cm$;
2. All but at most ck^2 pairs (C_i, C_j) with $1 \leq i < j \leq k$ are ϵ-regular.

There are many generalizations of Szemerédi regularity lemma, in particular, Frankl and Rödl [12] generalized it to hypergraphs and later Chung [4] formulated regularity lemma on t-uniform hypergraphs when discussing the problems of quasi-random hypergraphs.

The regularity lemma has numerous applications in various areas, mainly in extremal graph theory such as [5] by Chvátal, Rödl, Szemerédi and Trotter. In an application, Eaton and Rödl [8] obtained a form of the regularity lemma for p-partite p-uniform hypergraph. To state their result for multi-partite graph, let us have some definitions.

Let $G(V^{(1)}, \ldots, V^{(p)})$ be a p-partite graph on vertex set $\cup_{i=1}^p V^{(i)}$. Consider partitions of the set $V^{(1)} \times \cdots \times V^{(p)}$, where each partition class is of the form $W_1 \times \cdots \times W_p$, $W_i \subseteq V^{(i)}$, $1 \leq i \leq p$, which is called cylinders. Let us say that a cylinder $W_1 \times \cdots \times W_p$ is ϵ-regular if the subgraph of G induced on the set $\cup_{i=1}^p W_i$ is such that all pairs (W_i, W_j), $1 \leq i < j \leq p$, are ϵ-regular.

Eaton and Rödl stated their result with exceptional p-tuples instead of exceptional sets, for which Alon, Duke, Leffmann, Rödl and Yusterk studied the computational difficulty of finding such a regular partition in [4].
Lemma 4 Let \(G(V^{(1)}, \ldots, V^{(p)}) \) be a \(p \)-partite graph with \(|V^{(i)}| = n, i = 1, \ldots, p \). Then for every \(\epsilon > 0 \) there exists a partition of \(V^{(1)} \times \cdots \times V^{(p)} \) into \(k \) cylinders with \(k \leq 4^h \), where \(h = \frac{\epsilon}{2} \), such that all but at most \(\epsilon n^p \) of the \(p \)-tuples \((v_1, \ldots, v_p) \) of \(V^{(1)} \times \cdots \times V^{(p)} \) are in \(\epsilon \)-regular cylinders of the partition.

Note that in Lemma 6 the transverse section \(\{W_i\} \) of the partition is a partition of \(V^{(i)} \), which may be not equitable, and for \(i \neq j \), the numbers of subsets in the partitions \(\{W_i\} \) and \(\{W_j\} \) may be different. We shall have a multi-partite regularity lemma as follows.

Lemma 5 For any \(\epsilon > 0 \) and integers \(m \geq 1 \) and \(p \geq 2 \), there exists \(M = M(\epsilon, m, p) \) such that each \(p \)-partite graph \(G(V^{(1)}, \ldots, V^{(p)}) \) with \(|V^{(s)}| \geq M \), \(1 \leq s \leq p \), has a partition \(\{V^{(s)}_0, V^{(s)}_1, \ldots, V^{(s)}_k\} \) for each \(V^{(s)} \), where \(k \) is same for each part \(V^{(s)} \) and \(m \leq k \leq M \), such that

1. \(|V^{(s)}_i| = \cdots = |V^{(s)}_k| \) and \(|V^{(s)}_0| \leq \epsilon |V^{(s)}| \) for each \(s \);
2. All but at most \(\epsilon k^2 p \) pairs \((V^{(s)}_i, V^{(t)}_j), 1 \leq s < t \leq p, 1 \leq i, j \leq k \), are \(\epsilon \)-regular.

The following multicolor multi-partite regularity lemma is an analogy of Theorem 2, which is needed for proof of Theorem 4.

Lemma 6 For any \(\epsilon > 0 \) and integers \(m \geq 1 \), \(p \geq 2 \) and \(r \geq 1 \), there exists an \(M = M(\epsilon, m, p, r) \) such that if the edges of a \(p \)-partite graph \(G(V^{(1)}, \ldots, V^{(p)}) \) with \(|V^{(s)}| \geq M \), \(1 \leq s \leq p \), are \(r \)-colored, then all monochromatic graphs have the same partition \(\{V^{(s)}_1, \ldots, V^{(s)}_k\} \) for each \(V^{(s)} \), where \(k \) is same for each part \(V^{(s)} \) and \(m \leq k \leq M \), such that

1. \(||V^{(s)}_i| - V^{(s)}_j|| \leq 1 \) for each \(s \);
2. All but at most \(\epsilon k^2 r p \) pairs \((V^{(s)}_i, V^{(t)}_j), 1 \leq s < t \leq p, 1 \leq i, j \leq k \), are \(\epsilon \)-regular in each monochromatic graph.

3 Proofs for multi-partite regularity lemma

In this section, we prove Lemma 5, Theorem 2, and Lemma 6. To reduce the complicity of notations in the proofs, we shall prove them in case \(p = 2 \), which are bipartite regularity lemmas.

Lemma 7 Let \(G(U, V) \) be a bipartite graph and let \(X \subseteq U \) and \(Y \subseteq V \). If \(X' \subseteq X \) and \(Y' \subseteq Y \) satisfy \(|X'| > (1 - \delta)|X| \) and \(|Y'| > (1 - \delta)|Y| \), then

\[
|d(X', Y') - d(X, Y)| < 2\delta \quad \text{and} \quad |d^2(X', Y') - d^2(X, Y)| < 4\delta.
\]

A crucial point for the regularity lemma in partition is that the number \(k \) of classes in partition is bounded for any graph. For proofs, we need the well-known defect form of Cauchy-Schwarz inequality.

Lemma 8 Let \(d_i \) be reals and \(s > t \geq 1 \) be integers. If

\[
\frac{1}{s} \sum_{i=1}^{s} d_i = \frac{1}{t} \sum_{i=1}^{t} d_i + \delta,
\]

then

\[
\frac{1}{s} \sum_{i=1}^{s} d_i^2 \geq \left(\frac{1}{s} \sum_{i=1}^{s} d_i \right)^2 + \frac{t\delta^2}{s-t}.
\]
Let $G(U, V)$ be a bipartite graph, a partition

$$\mathcal{P} = \left\{ U_i, V_j \mid 0 \leq i, j \leq k \right\},$$

where $U = \bigcup_{i=1}^k U_i$ and $V = \bigcup_{i=1}^k V_i$, is called to be an equitable partition of $U \cup V$ with exceptional classes U_0 and V_0 if $|U_i| = |U_j|$ and $|V_i| = |V_j|$ for $1 \leq i, j \leq k$. For convenience, we say an equitable partition \mathcal{P} is ϵ-regular if all but at most ϵk^2 pairs of (U_i, V_j) are ϵ-regular. Define

$$q(\mathcal{P}) = \frac{1}{k^2} \sum_{1 \leq i, j \leq k} d^2(U_i, V_j).$$

It is easy to see that $0 \leq q(\mathcal{P}) \leq 1$ since $0 \leq d(U_i, V_j) \leq 1$.

In the following, we will show that if \mathcal{P} is not ϵ-regular, then there is a partition \mathcal{P}' with the new exceptional classes a bit larger than the old one, but $q(\mathcal{P}') \geq q(\mathcal{P}) + \frac{\epsilon}{2}$. Do this again if \mathcal{P}' is not ϵ-regular yet. The number of iterations is thus at most $4/\epsilon^2$ in order to obtain an ϵ-regular partition. Without loss of generality, we assume that $0 < \epsilon \leq 1/2$ since if $\epsilon > 1/2$, one can take $M(\epsilon, m)$ to be $M(1/2, m)$.

Lemma 9 Let $G(U, V)$ be a bipartite graph with $|U| = n_1 \geq M$ and $|V| = n_2 \geq M$, which has an equitable partition

$$\mathcal{P} = \left\{ U_i, V_j \mid 0 \leq i, j \leq k \right\}$$

with exceptional classes U_0 and V_0. Suppose $2^k \geq 16/\epsilon^5$, $|U_i| = c_1 \geq 2^{3k}$ and $|V_j| = c_2 \geq 2^{3k}$. We have if \mathcal{P} is not ϵ-regular; then there is an equitable partition

$$\mathcal{P}' = \left\{ U_i', V_j' \mid 0 \leq i, j \leq \ell \right\}$$

with exceptional class $U_0' \supseteq U_0$ and $V_0' \supseteq V_0$, and $\ell = k(4^k - 2^k)$ satisfying

1. $|U_0'| \leq |U_0| + n_1/2^{k-1}$ and $|V_0'| \leq |V_0| + n_2/2^{k-1}$;
2. $q(\mathcal{P}') \geq q(\mathcal{P}) + \epsilon^5/4$.

Proof. Separate all pairs (i, j), $1 \leq i, j \leq k$, of indices into S and T, corresponding with that the pair (U_i, V_j) is ϵ-regular or not, respectively. For $(i, j) \in S$, set $U_{ij} = V_{ji} = \emptyset$, and for $(i, j) \in T$, set $U_{ij} \subseteq U_i$ and $V_{ji} \subseteq V_j$ with $|U_{ij}| > \epsilon c_1$, $|V_{ji}| > \epsilon c_2$, and

$$d(U_{ij}, V_{ji}) - d(U_i, V_j) > \epsilon.$$

For fixed i, $1 \leq i \leq k$, consider an equivalence relation \equiv on U_i as $x \equiv y$ if and only if both x and y belong to the same U_{ij}'s. The equivalence classes are atoms of algebra induced by U_{ij}, and each U_i has at most 2^k atoms. Similarly, each V_j has at most 2^k atoms.

For $p = 1, 2$, set $d_p = [c_p/4^k]$. Let us cut each atom in U_i into pairwise disjoint d_1-subsets. Denote by z for the maximal number of these d_1-subsets that one can take, clearly $z \geq 4^k - 2^k$ as $zd_1 + 2^k(d_1 - 1) \geq c_1$. Set

$$H = 4^k - 2^k,$$

and take exactly H such d_1-subsets and add the remainder to the “rubbish bin” to get a new exceptional set U_0'. Label all these d_1-subsets in U_i as D_{i1}, \ldots, D_{iH}. Set $U_0' = U_0 \cup \left[\bigcup_{h=1}^{H-1} \left(U_i \setminus \cup_{h=1}^{H-1} D_{ih} \right) \right]$, and so $|U_0'| = |U_0| + k(c_1 - Hd_1)$. Since

$$Hd_1 \geq (4^k - 2^k)(\frac{c_1}{4^k} - 1) > c_1 - \frac{c_1}{2^{k-1}}$$

by noting $c_1 \geq 2^{3k}$, we have $|U_0'| \geq |U_0| + n_1/2^{k-1}$. Rename D_{ih} as U_s' for $1 \leq s \leq \ell$, where $\ell = kH$.

5
Similarly, we can cut each atom in V_j into pairwise disjoint d_2-subsets and take H such subsets E_{j1}, \ldots, E_{jH} in V_j. Set $V_0' = V_0 \cup \left(\cup_{i=1}^k \left(V_j \setminus \cup_{h=1}^H E_{jh} \right) \right)$, and similarly $|V_0'| \leq |V_0| + n_2/2^{k-1}$. Rename E_{jh} as V_t' for $1 \leq t \leq \ell$.

Denote the new equitable partition by

$$P' = \left\{ U_i', V_j' \mid 0 \leq i, j \leq \ell \right\}$$

of $U \cup V$ with exceptional classes $U_0' \supseteq U_0$ and $V_0' \supseteq V_0$. All that remains is to show $q(P') \geq q(P) + \epsilon^5/4$.

For $1 \leq i, j \leq k$, set

$$U_i = \cup_{h=1}^H D_{ih}, \quad U_{ij} = \cup \{ D_{ih} : D_{ih} \subseteq U_{ij} \}, \quad \text{and} \quad V_j = \cup_{h=1}^H E_{jh}, \quad V_{ji} = \cup \{ E_{jh} : D_{jh} \subseteq V_{ji} \}.$$

Set partition $P = \{ U_0', U_1', \ldots, U_k'; V_0', V_1', \ldots, V_k' \}$ with exceptional class U_0' and V_0'.

Claim 1. $q(P') \geq q(P) - \epsilon^5/2$.

Proof of Claim 1. Note that $\frac{|U_i \setminus U_{ij}|}{|U_{ij}|} < \frac{1}{2} < \frac{\epsilon^4}{8}$ and $\frac{|V_j \setminus V_{ji}|}{|V_{ji}|} < \frac{\epsilon^4}{8}$ for any pair (U_i, V_j), we have

$$|d(U_i, V_j) - d(U_i', V_j')| \leq \frac{\epsilon^5}{4} \quad (1)$$

by Lemma. Hence $d^2(U_i, V_j) \geq d^2(U_i', V_j') - \epsilon^5/2$, which implies that $q(P') \geq q(P) - \epsilon^5/2$ as claimed.

Claim 2. If $(i, j) \in T$, then $|d(U_{ij}, V_{ji}) - d(U_{ij}, V_{ji})| > \frac{\epsilon^3}{12} \epsilon$.

Proof of Claim 2. Clearly, $\frac{|U_{ij} \setminus U_{ij}'|}{|U_{ij}'|} \leq \frac{\epsilon^3}{8}$ and $\frac{|V_{ji} \setminus V_{ji}'|}{|V_{ji}'|} \leq \frac{\epsilon^3}{8}$, which and Lemma give

$$|d(U_{ij}, V_{ji}) - d(U_{ij}, V_{ji})| \leq \frac{\epsilon^4}{4} \quad (2)$$

Therefore, if $(i, j) \in T$, the bounds (1) and (2) with the fact that $0 < \epsilon \leq 1/2$ will yield the desired inequality.

Let us return to the partition P' in which each class is either a d_1-subset D_{iu} or a d_2-subset E_{jv} except U_0' and V_0'. For any pair (U_i, V_j),

$$d(U_i, V_j) = \frac{1}{H^2} \sum_{1 \leq u, v \leq H} d(D_{iu}, E_{jv})$$

since $|U_i| = Hd_1$ and $|V_j| = Hd_2$. Set

$$A(i, j) = \frac{1}{H^2} \sum_{1 \leq u, v \leq H} d^2(D_{iu}, E_{jv}).$$

Then from Cauchy-Schwarz inequality, for any pair (i, j), we have

$$A(i, j) \geq d^2(U_i, V_j). \quad (3)$$

If $(i, j) \in T$, we have some gain. Let $R = R(i, j)$ be the set of indices (u, v) such that $D_{iu} \in U_{ij}$ and $E_{jv} \in V_{ji}$. Then

$$d(U_{ij}, V_{ji}) = \frac{1}{|R|} \sum_{(u, v) \in R} d(D_{iu}, E_{jv}).$$
Note that \(\frac{|R|}{H^2} = \frac{k}{2} + \frac{4}{k} \geq (1 - 2^{-7})\epsilon^2\), So Lemma 5 and Claim 2 imply

\[
A(i, j) \geq d^2(U_i, V_j) + \frac{|R|}{H^2} (d(U_i, V_j) - d(U_i, V_j))^2 \geq d^2(U_i, V_j) + \frac{3}{4} \epsilon^4. \tag{4}
\]

Noticing that \(\ell = kH\), we have

\[
q(P') = \frac{1}{k^2} \sum_{1 \leq s \neq t \leq \ell} d^2(U_s', V_t') = \frac{1}{k^2} \sum_{1 \leq s \neq t \leq \ell} \sum_{1 \leq i, j \leq \ell} d^2(D_{ii}, E_{jj}) = \frac{1}{k^2} \sum_{1 \leq i, j \leq k} A(i, j).
\]

Now, combine inequalities (3) and (4), and recall Claim 1 and that \(P\) is not \(\epsilon\)-regular, we have

\[
q(P') \geq \frac{1}{k^2} \left[\sum_{(i,j) \in S} d^2(U_i, V_j) + \sum_{(i,j) \in \mathcal{T}} \left(d^2(U_i, V_j) + \frac{3}{4} \epsilon^4 \right) \right] \geq q(P) + \frac{\epsilon^5}{4}.
\]

This completes the proof of Lemma 6.

\[\square\]

Proof of Lemma 5. Let \(k_0 \) be an integer such that \(k_0 \geq m\) and \(2^{-k_0} \leq \epsilon^5/16\), and define \(k_{i+1} = k_i (4^{k_i} - 2^{k_i})\). Set \(M_i = k_i 2^{k_i}\), and \(M = M_i\). Lemma 5 implies that at most \(t = 4|\epsilon^{-5}\) iterations will yield a required partition, which completes the proof of Lemma 6.

\[\square\]

Proof of Theorem 2. For given \(\epsilon > 0\) and \(m \geq 1\), Theorem 2 implies that there is an \(M > m\) and an equitable and \(\frac{\epsilon}{4}\)-regular partition \(P = \{U_i, V_j\}, 0 \leq i, j \leq k\) with \(m \leq k \leq M\). Since \(|U_0| < \frac{\epsilon}{4}n_1\), we have \([1 - \epsilon^2/4]n_1/k \leq |U_0| \leq n_1/k\). Partition \(U_0\) into \(k\) classes \(U_{01}, U_{02}, \ldots, U_{0k}\) such that \(|U_{0i}| = [\frac{|U_0|}{k}]\) or \([\frac{|U_0|}{k}]\). Set \(U_i' = U_i \cup U_0\), clearly \(|U_i'| = n_1/k\) or \(|U_i'| = n_1/k\). Similarly, let us partition \(V_0\) into \(k\) classes \(V_{01}, V_{02}, \ldots, V_{0k}\) such that \(|V_0| = [\frac{|V_0|}{k}]\) or \(|V_0| = [\frac{|V_0|}{k}]\). Set \(V_i' = V_i \cup V_0\), we have the sizes of any \(V_i'\) and \(V_j'\) differ at most by one. Then the Partition \(P' = \{U_i', V_j'\}, 0 \leq i, j \leq k\) is as desired by noting that if a pair \((U_i, V_j)\) is \(\frac{\epsilon}{4}\)-regular, then \((U_i', V_j')\) is \(\epsilon\)-regular.

\[\square\]

Proof of Lemma 6. A similar proof as Theorem 2 but modify the definition of index by summing the indices for each color,

\[
q(P) = \frac{1}{k^2} \sum_{1 \leq k \leq r} \sum_{1 \leq s < t \leq p} \sum_{1 \leq i, j \leq k} d^2(V_i^{(s)}, V_j^{(t)}).
\]

Then we have analogy of Lemma 5 for multi-color case. Furthermore, we have Lemma 6.

\[\square\]

4 A Folkman linear family

In this section, we shall apply multi-partite regularity lemma to the Folkman numbers involving the family \(G_{\Delta}\) of graphs with maximum degree bounded. In order to prove Theorem 3 and Theorem 4, we shall establish the following Lemma, in which \(K_p(k)\) is the complete \(p\)-partite graph with \(k\) vertices in each part.

Lemma 10. For integers \(k \geq 1\) and \(p \geq 2\), let \(t_p(k)\) be the maximum number of edges in a subgraph of \(K_p(k)\) that contains no \(K_p\). Then

\[
t_p(k) = \left[\frac{p}{2} \right] k^2.
\]
Proof. By deleting all edges between a pair of parts of $K_p(k)$, we have the lower bound for $t_p(k)$ as required. On the other hand, we shall prove by induction of k that if a subgraph $G = G(V^{(1)}, \ldots, V^{(p)})$ of $K_p(k)$ contains no K_p, then $\epsilon(G) \leq \left(\frac{p}{2} - \frac{1}{2}\right) k^2$. Suppose $k \geq 2$ and $p \geq 3$ as it is trivial for $k = 1$ or $p = 2$. Furthermore, suppose that G has the maximum possible number of edges subject to this condition. Then G must contain $K_p - e$ as a subgraph, otherwise we could add an edge and the resulting graph would still not contain K_p. Pick a vertex set X consisting of a vertex from each $V^{(i)}$ for $i = 1, 2, \ldots, p$ such that $\epsilon(X)$ is maximum among all such vertex subsets, and so $\epsilon(X) = \left(\frac{p}{2} - \frac{1}{2}\right) k^2$. We may suppose that X induces a complete graph of order p with an edge v_1v_2 missing, where $v_1 \in V_1$ and $v_2 \in V_2$. Let $Y = V(G) \setminus X$, clearly each part of Y has $k - 1$ vertices. Now, by noticing the fact that no vertex in $V^{(i)} \cap V(Y)$ is adjacent to all the vertices of $X \setminus \{v_i\}$ for $i = 1, 2$ since G contains no K_p, we can safely deduce the desired upper bound of $t_p(k)$ by a simple calculation, which completes the induction hypothesis hence the proof.

Lemma 11 Let (A, B) be an ϵ-regular pair of density $d \in (0, 1]$, and $Y \subseteq B$ with $|Y| \geq \epsilon |B|$. Then there exists a subset $A' \subseteq A$ with $|A'| \geq (1 - \epsilon)|A|$, each vertex in A' is adjacent to at least $(d - \epsilon)|Y|$ vertices in Y.

Proof. Let X be the set of vertices with fewer than $(d - \epsilon)|Y|$ neighbors in Y. Then $\epsilon(X, Y) < (d - \epsilon)|X||Y|$, so $d(X, Y) < d - \epsilon$. Since (A, B) is ϵ-regular, this implies that $|X| < \epsilon |A|$.

Proof of Theorem 3. We will consider a red/blue edge coloring of $K_p(cn)$. Denote by H_R and H_B the subgraphs spanned by red edges and blue edges, respectively. Note that a partition obtained by applying Theorem 2 for Δ is such a partition for H_B.

Let $p = R(K_\Delta)$ as defined. Clearly, we can only consider graphs $G = G_n$ in G_Δ with $n \geq \Delta + 2$. Choose $\epsilon = \min\left\{\frac{1}{p}, \frac{1}{\Delta}\right\}$, where m is a positive integer such that

$$(1 - \Delta \epsilon)(1/2 - \epsilon)^2 m \geq 1 \quad \text{hence} \quad (1 - \Delta \epsilon)(1/2 - \epsilon)^2 \geq \epsilon.$$

Let $M = M(\epsilon, m, p) > 2m$ be the integer determined by ϵ and p in Theorem 2 for H_R. Finally, let $c = mM$ which is a constant determined completely by Δ. We shall show that either H_R contains G or H_B contains G, hence $f(G; p) \leq c pn$.

Let the vertex set of the $K_p(cn)$ be $V = V^{(1)} \cup \cdots \cup V^{(p)}$ with $|V_\ell| = cn$ for $1 \leq \ell \leq p$. There is a partition of V, in which each $V^{(\ell)}$ is partitioned into $\{V_1^{(\ell)}, \ldots, V_{k}^{(\ell)}\}$ with $|V_1^{(\ell)}| = |V_k^{(\ell)}| \leq 1$ and $m \leq k \leq M$, and all but at most $ek^2(\frac{p}{2})$ pairs $(V_i^{(s)}, V_j^{(t)})$, $1 \leq i, j \leq k$, $1 \leq i \neq t \leq p$, are ϵ-regular.

Let F be the subgraph of $K_p(k)$, whose vertices are $\{V_1^{(\ell)} \mid 1 \leq \ell \leq p, 1 \leq i \leq k\}$ in which a pair $(V_i^{(s)}, V_j^{(t)})$ for $s \neq t$ is adjacent if and only if the pair is ϵ-regular in H_R. Then the number of edges of F is at least

$$(1 - \epsilon)k^2\left(\frac{p}{2} - \frac{1}{2}\right) k^2 = t_p(k).$$

By Lemma 11, F contains a complete graph K_p. Without loss of generality, assume that $V_1^{(1)}, \ldots, V_p^{(p)}$ are pairwise ϵ-regular. Color an edge between a pair $(V_i^{(s)}, V_j^{(t)})$ green if $d(V_i^{(s)}, V_j^{(t)}) \geq 1/2$, or white if $d(V_i^{(s)}, V_j^{(t)}) < 1/2$. As $p = R(K_\Delta)$, we have Δ sets in $\{V_1^{(1)}, V_1^{(2)}, \ldots, V_1^{(p)}\}$ such that they form a monochromatic K_Δ. We may assume that the color is green since otherwise we consider the graph H_B.

Relabeling the sets in the partition if necessary, we assume that $V_1^{(1)}, V_1^{(2)}, \ldots, V_1^{(\Delta)}$ are pairwise ϵ-regular in H_R, and $d(V_1^{(s)}, V_1^{(t)}) \geq 1/2$. Write

$$C_1 = V_1^{(1)}, C_2 = V_1^{(2)}, \ldots, C_\Delta = V_1^{(\Delta)}.$$
We thus finished the general step hence the proof of Theorem 3.

Note that if $Y_i \subseteq C_i$ with $|Y_i| \geq (1 - \Delta \epsilon)(1/2 - \epsilon)\Delta |C_i|$, then $|Y_i| \geq \epsilon |C_i|$, which is the preparation for using Lemma [1] and

$$|Y_i| \geq (1 - \Delta \epsilon)(1/2 - \epsilon)\Delta \frac{cn}{M} \geq n,$$

which will give us enough room to maneuver for constructing a color class of G.

Note that if a graph is neither a complete graph nor an odd cycle, its chromatic number is at most $\Delta(G)$. For considered graph $G = G_n$, as $n \geq \Delta + 2$ and $\Delta \geq 3$, we have $\chi(G) \leq \Delta$.

Assume that $V(G) = \{u_1, u_2, \ldots, u_n\}$. We shall show that the red graph H_R contains G as a subgraph. We will choose v_1, v_2, \ldots, v_n from the sets C_1, C_2. Since $\chi(G) \leq \Delta$, so $V(G)$ can be partitioned into Δ color classes, which defines a map $\phi: \{1, \ldots, n\} \rightarrow \{1, \ldots, \Delta\}$, where $\phi(i)$ is the color of vertex u_i. Our aim is to define an embedding $u_i \rightarrow v_i \in C_{\phi(i)}$, such that v_i, v_j is an edge of H_R whenever u_i, u_j is an edge of G.

Our plan is to choose the vertices v_1, \ldots, v_n inductively. Throughout the induction, we shall have a target set $Y_i \subseteq C_{\phi(i)}$ assigned to each i. Initially, Y_i is the entire $C_{\phi(i)}$. As the embedding proceeds, Y_i will get smaller and smaller. Some vertices will be deleted in procedure. But any $C_{\phi(i)}$ will really have some vertices deleted at most Δ times. To make this approach work, we have to ensure Y_i do not get too small.

Let us begin the initial step. Set

$$Y_1^0 = C_{\phi(1)}, \ Y_2^0 = C_{\phi(2)}, \ldots, \ Y_n^0 = C_{\phi(n)}.$$

Note that Y_i^0 and Y_j^0 are not necessarily distinct sets.

We then begin the first step by considering u_1, for which v_1 will be selected from Y_1^0, and its neighbors, $u_\alpha, \ldots, u_\beta$, say. Suppose that the degree of u_1 is d. By using Lemma [1] repeatedly, we know that there exists a subset $Y_1^1 \subseteq Y_1^0$ with $|Y_1^1| \geq (1 - \Delta \epsilon)d |C_1| \geq n$, such that each vertex in Y_1^1 has at least $(1/2 - \epsilon)|Y_1^0|$ neighbors in Y_1^0, where $j = \alpha, \ldots, \beta$. Choose an arbitrary vertex v_1 from Y_1^1. For $j = \alpha, \ldots, \beta$, define Y_1^j be the neighborhood of v_1 in Y_1^0. For $j \geq 2, j \neq \alpha, \ldots, \beta$, define $Y_1^j = Y_1^0$, that is, no vertices are deleted from such Y_1^0. In this step, v_1 has been chosen and it completely adjacent to Y_1^1 in H whenever u_1 and u_j are adjacent in G.

In a general step, we consider u_1 and its neighbors. We will choose v_1 for u_i from Y_i^{j-1}. Suppose that u_i has d_1 neighbors in $\{u_1, \ldots, u_{i-1}\}$, and d_2 neighbors, $u_\alpha, \ldots, u_\beta$, say, in $\{u_{i+1}, \ldots, u_n\}$. Then $d_1 + d_2 \leq \Delta$, and $|Y_i^{j-1}| \geq (1/2 - \epsilon)^{d_1} |Y_i^0|$. That is to say, the current set Y_i^{j-1} are obtained from Y_i^0 by deleting some vertices d times before this step. By using Lemma [1] repeatedly again, we have a subset $Y_i^j \subseteq Y_i^{j-1}$ with $|Y_i^j| \geq (1 - d\epsilon) |Y_i^{j-1}|$ such that each vertex in Y_i^j has at least $(1/2 - \epsilon)|Y_i^{j-1}|$ neighbors in Y_i^{j-1}, where $j = \alpha, \ldots, \beta$. Since

$$|Y_i^j| \geq (1 - d\epsilon) |Y_i^{j-1}| \geq (1 - d\epsilon)(1/2 - \epsilon)^{d_2} |Y_i^0| \geq (1 - \Delta \epsilon)(1/2 - \epsilon) \Delta |C_i| \geq n,$$

we can choose a vertex v_i from Y_i^j, which is distinct from v_1, \ldots, v_{i-1} that have been chosen before this step, and some may be from Y_i^j. For $j = \alpha, \ldots, \beta$, define Y_i^j to be the neighborhood of v_i in Y_i^{j-1}. For $j \geq i + 1, j \neq \alpha, \ldots, \beta$, define $Y_i^j = Y_i^{j-1}$, that is, no vertices are deleted from such Y_i^{j-1}. Note that v_i is adjacent to any v_j, where $j < i$ and u_j is adjacent to u_i, and v_i is completely connected with each set Y_j^i, in which a neighbor of v_i will be selected after this step.

It is easy to check that the condition for using Lemma [1] can be satisfied since $(1 - \Delta \epsilon)(1/2 - \epsilon)^\Delta \geq \epsilon$. We thus finished the general step hence the proof of Theorem [4].

Proof of Theorem [4] For $p = R_r(K_\Delta)$, take $\epsilon = \min\{\frac{1}{r}, \frac{1}{m}\}$, where m is an integer such that

$$(1 - \Delta \epsilon)(1/r - \epsilon)^\Delta m \geq 1.$$
In the proof, we use Lemma 6. We shall have p sets, say $V_1^{(1)}, \ldots, V_1^{(p)}$, such that every pair $(V_1^{(s)}, V_1^{(t)})$, $1 \leq s < t \leq p$, is ϵ-regular in each monochromatic graph. Connecting this pair with color ℓ if its edge density is at least $1/r$ in the monochromatic graph in color ℓ, $1 \leq \ell \leq r$. Then we have a r-edge coloring of K_p, which implies a monochromatic K_Δ in some color, say the color a. Hence we obtain Δ sets, say $V_1^{(1)}, \ldots, V_1^{(\Delta)}$, such that each pair $(V_1^{(s)}, V_1^{(t)})$, $1 \leq s < t \leq \Delta$, is ϵ-regular in monochromatic graph of color a, and the edge density of the pair is at least $1/r$ in this color. The remaining proof is similar to that for Theorem 3.

References

[1] N. Alon, R. Duke, H. Lefmann, V. Rödl and R. Yuster, The Algorithmic Aspects of the Regularity Lemma, J. Algorithms, 16 (1994), pp. 80-109.
[2] B. Bollobás, Modern Graph Theory, Springer-Verlag, New York, 1998.
[3] F. Chung and R. Graham, Erdős on Graphs: His Legacy of Unsolved Problems, A K Peter, 1999.
[4] F. Chung, Regularity lemmas for hypergraphs and quasi-randomness, Random Structures and Algorithms, 2 (1991), pp. 241-252.
[5] V. Chvátal, V. Rödl, E. Szemerédi and T. Trotter, The Ramsey Number of a graph with bounded maximum degree, J. Combinatorial Theory Ser. B, 34 (1983), pp. 239-243.
[6] D. Conlon, A new upper bound for the bipartite Ramsey problem, J. Graph Theory, 58 (2008), pp. 351-356.
[7] A. Dudek and V. Rödl, On the Folkman number $f(2, 3, 4)$, Experiment. Math., 17 (2008), pp. 63 - 67
[8] N. Eaton and V. Rödl, A Regularity Lemma, Tech. Report, Math. Department, Emory University, 1992.
[9] P. Erdős and A. Hajnal, Research problem 2-5, J. Combin. Theory, 2 (1967), p. 104.
[10] J. Folkman, Graphs with monochromatic complete subgraphs in every edge coloring, SIAM J. Appl. Math., 18 (1970), pp. 19-24.
[11] P. Frankl and V. Rödl, Large triangle-free subgraphs in graphs without K_4, Graphs Combin., 2 (1986), pp. 136-144.
[12] P. Frankl and V. Rödl, The Uniformity Lemma for hypergraphs, Graphs Combin., 8 (1992), pp. 309-312.
[13] W. Gowers, Lower bounds of tower type for Szemerédi’s uniformity lemma, Geom. Funct. Anal., 7 (1997), pp. 322-337.
[14] R. Graham, On edgewise 2-colored graphs with monochromatic triangles and containing no complete hexagon, J. Combin. Theory, 4 (1968), p. 300.
[15] R. Irving, On a bound of Graham and Spencer for a graph coloring constant, J. Combin. Theory Ser. B, 15 (1973), pp. 200-203.
[16] N. G. Khadzhivivanov and N. D. Nenov, An example of a 16-vertex Ramsey (3, 3)-graph with clique number 4, Serdica, 9 (1983), pp. 74-78 (in Russian).
[17] J. Komlós and M. Simonovits, **Szemerédi’s regularity lemma and its applications in graph theory**, in: Combinatorics, Paul Erdős is eighty, vol. 2 (Miklós, Sós, and Szőnyi eds.), Bolyai Math. Soc., Budapest (1996), 295-352.

[18] S. Lin, **On Ramsey numbers and K_r-coloring of graphs**, J. Combin. Theory Ser. B, 12 (1972), pp. 82-92.

[19] L. Lu, **Explicit construction of small Folkman graphs**, SIAM J. Discrete Math., 21 (2008), pp. 1053-1060.

[20] J. Nešetřil and V. Rödl, **The Ramsey property for graphs with forbidden complete graphs**, J. Combin. Theory Ser. B, 20 (1976), pp. 243-249.

[21] K. Piwakowski, S. Radziszowski and S. Urbanski, **Computation of the Folkman number $F_r(3,3;5)$**, J. Graph Theory, 32 (1999), pp. 41-49.

[22] K. Roth, **On certain sets of integers**, J. Lond. Math. Soc., 28 (1953), pp. 104-109.

[23] K. Roth, **On certain sets of integers, II**, J. Lond. Math. Soc., 29 (1954), pp. 20-26.

[24] J. Spencer, **Three hundred million points suffice**, J. Combin. Theory Ser. A, 49 (1988), pp. 210-217.

[25] J. Spencer, **Erratum to three hundred million points suffice**, J. Combin. Theory Ser. A, 50 (1989), pp. 323.

[26] E. Szemerédi, **On sets of integers containing no k elements in arithmetic progression**, Acta Arithmetica, 27 (1975), pp. 199-245.

[27] E. Szemerédi, **Regular partitions of graphs**, in: Problèmes Combinatoires et théorie des graphes, Colloque Inter. CNRS, Univ. Orsay, Orsay, 1976, J. Bermond, J. Fournier, M. Las Vergnas, and D. Scotteau, Eds. (1978), pp. 399-402.