Resistotyping and extended-spectrum beta-lactamase genes among Escherichia coli from wastewater treatment plants and recipient surface water for reuse in South Africa

B. Nzima1, A. A. Adegoke1-2, U. O. M. Al-Dahmoshi3, M. Saki4,5, U. U. Ndubusi-Nnaji1 and C. U. Inyang2

1) Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa, 2) Department of Microbiology, Faculty of Science, University of Uyo, Uyo, Akwa Ibom State, Nigeria, 3) Biology Department, College of Science, University of Babylon, Babylon Province-Hilla City, Iraq, 4) Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran and 5) Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Abstract

The spread of extended-spectrum β-lactam (ESBL)-producing Escherichia coli has increased in different environments. This study aimed to evaluate the patterns of antibiotic resistance and ESBL genes among E. coli isolates collected from wastewater and recipient surface water in South Africa. Fifteen samples containing nine wastewater and six river water samples were collected from a local wastewater treatment plant. The E. coli isolates were detected using standard microbiology methods. Antibiotic susceptibility testing was performed using disc diffusion agar. The occurrence of blaCTX-M, blaSHV and blaTEM ESBL genes was investigated by PCR. Exactly 140 isolates were selected from the primary enumeration plates with a log10 CFU/mL count that ranged from 4.1 to 4.2 (influent), 4.2 to 4.5 (biofilter) and 2.5 to 3.3 (effluent). The wastewater effluent showed an impact on the receiving water environment, as the treatment efficiency was 92% and the downstream log10 CFU/mL count (range, 3.6–3.8 log10 CFU/mL) was higher than the upstream count (range, 3.3–3.6 log10 CFU/mL). Antibiotic testing results showed that 40% to 100% of E. coli isolates were resistant to ampicillin, penicillin, tetracycline and cefotaxime but susceptible to imipenem, meropenem and ciprofloxacin. A total of 40 studied isolates (28.6%) had both the blaTEM and blaCTX-M genes, while no blaSHV was detected. The wastewater treatment plants contributed multidrug-resistant ESBL-producing E. coli isolates that can be potential environmental health risks. Regular monitoring policies are recommended to prevent the spread of antibiotic resistance in the region.

© 2020 The Authors. Published by Elsevier Ltd.

Keywords: ESBLs, Escherichia coli, South Africa, wastewater treatment plants, WWTP

Original Submission: 25 June 2020; Revised Submission: 27 October 2020; Accepted: 28 October 2020

Article published online: 31 October 2020

Introduction

Water scarcity for irrigation has been one of the most important setbacks for agriculture in arid and semiarid regions of the earth. Agricultural reuse of treated wastewater has been acknowledged as an effective pathway to circumvent water scarcity. Although irrigation is recognized for its immense advantages, the benefits may be exacerbated if potentially antibiotic-resistant pathogens such as Escherichia coli are identified [1,2].

From a general perspective, antibiotic-resistant bacteria and antibiotic resistance genes, including extended-spectrum β-lactamases (ESBLs), are of special concern in wastewater as they can be conveyed into the food cycle [3,4]. Their effects on human health depend on the pathogenicity of the bacteria and their potential to resist conventional antibiotics. Escherichia coli as a commensal bacterium can be plentifully transmitted to the environment through the use of manure, animal faeces,
improperly treated wastewater or sewage and sewage overflow caused by heavy rains [2]. Some of the commensal as well as pathogenic *E. coli* strains that are excreted into the environment may have the capacity to produce ESBL enzymes. The occurrence of ESBL-producing *E. coli* in surface waters has been reported in different parts of the world [5,6].

Bacteria with the potential to produce ESBL are on the rise globally, with hundreds of ESBL genes reported so far. Resistance associated with production of ESBL by *Enterobacteriaceae* in which *E. coli* has been identified led to high mortality and a huge cost of hospitalization [7,8]. There has been concomitant resistance to wide range of antibiotics among *E. coli* harbouring ESBL genes beyond β-lactam antibiotics. Human exposure to these bacteria may occur, for instance during recreation in contaminated surface water, or indirectly, when contaminated surface water is used for irrigation of fresh crops contaminated surface water, or indirectly, when contaminated wastewater being reused in agriculture because of its potential effects on the food cycle [10–13].

In order to prevent further spread of *E. coli* harbouring ESBLs in different environments, understanding the possible influence of wastewater treatment plant (WWTP) on the surface is essential to provide insight into the contribution of different possible environmental contamination sources and exposure routes. This necessitates regular surveillance of the wastewater being reused in agriculture because of its potential effects on the food cycle [10–13].

We aimed to determine the presence of ESBL-producing *E. coli* in surface water receiving effluent discharge from a WWTP, as well as the treatment efficiency and possible contribution of the WWTP to the distribution of ESBL-producing *E. coli* in surface water. Furthermore, the resistance profiles and presence of blaTEM, blaSHV and blaCTX-M genes were also examined.

Materials and methods

Sample collection

This 3-month study was conducted on WWTP receiving domestic, industrial and hospital wastewater in Durban, South Africa, from May to July 2017. Influent and effluent wastewater (*n* = 9) and surface water samples (*n* = 6) from the final effluent were collected from four different sampling points including influent, biofilter, effluent, upstream and downstream at different sampling times and mixed with sodium thiosulphate (100 μL in 2 L of the bottle) immediately to decrease the level of and neutralize the activity of chlorine.

Isolation and identification of potential ESBL-producing *E. coli*

Microbial enumeration and isolation were carried out using *E. coli* CHROMagar ECC (bioMérieux, Marcy l’Étoile, France). Isolation procedures were based on standard isolation procedures for the selective isolation of *E. coli* using chromogenic media adapted to enable the selective growth of ESBL-producing variants. Specifically, isolation and recovery of bacteria was carried out using the membrane filtration method. Multiple volumes of samples (10 mL, 1 mL and 0.1 mL) were vacuum-filtered through 0.45 μm pore size filters. Filters were then placed onto CHROMagar ECC selective for the isolation of *E. coli* and incubated at 37°C for 24 hours. Blueish colonies were selected for further characterization by Gram staining and standard indole, methyl red/Voges-Proskauer and Simmon citrate (IMVIC) biochemical tests. Finally, the ESBL-production was assessed using ChromID ESBLagar (bioMérieux) [14]. The isolates identified as ESBL-producing *E. coli* were frozen in tryctic soy broth plus 20% glycerol at −80°C [15].

Molecular identification of *E. coli* isolates

Molecular identification was performed on the 140 presumptive ESBL-producing *E. coli* isolates by PCR using the specific primers for a conserved region situated within the *E. coli* alanine racemase (Afr) gene [13]. The primers were synthesized by Inqaba Biotechnical Industries (Pty) Ltd, South Africa. The boiling method was used for DNA extraction from isolates as previously described [16]. The PCR reaction consisted of initial denaturation at 95°C for 5 minutes, 35 cycles of 30 seconds’ denaturation at 95°C, annealing at 58°C for 30 seconds per extension at 72°C for 30 seconds and a final extension for 5 minutes at 72°C. *E. coli* ATCC 25922 was used as a positive control. The standard reaction mixture contained 1.25 units of thermostable DNA polymerase, 1 × Ex Taq buffer, 2 mM MgCl2, 10 pmol of each oligonucleotide primer, 10 nmol of dNTP and 2 μL of template DNA suspension in a final volume of 50 μL.

Antibiotic susceptibility testing

Antibiotic susceptibility testing was conducted following the 2017 guidelines of the Clinical Laboratory Standard Institute (CLSI) [17]. The bacterial suspensions were made in sterile phosphate-buffered saline (pH 7.4) to match a 0.5 McFarland standard in order to achieve an inoculum density of approximately 1 × 108 CFU/mL. Sterile swabs were used to inoculate the surface of Müller-Hinton agar (Merck, Darmstadt, Germany) plates from these suspensions. Antibiotic-impregnated
Density of ESBL-producing \textit{E. coli} in WWTP and surface water

The PCR assay confirmed all 140 isolates to be \textit{E. coli} strains. All four sampling points (influent, biofilter, effluent, upstream, downstream) had ESBL-producing \textit{E. coli}, with an occurrence range of 44\% (region B) to 100\% (region D). The concentrations of ESBL-producing \textit{E. coli} in WWTP ranged from 1.0 to 4.5 \(\log_{10} \) CFU/mL, whereas it ranged from 3.3 to 4.0 \(\log_{10} \) CFU/mL in surface water samples. The average concentrations of ESBL-producing \textit{E. coli} in the influent (in studied WWTPs) were in the same range or slightly higher than those in the biofilter, but were significantly reduced in the effluent samples discharged into surface waters (Tables 2 and 3). Concentrations of ESBL-producing \textit{E. coli} at a distance from WWTP discharge points (upstream) were comparable to that in downstream and on average were 2- to 3-\(\log_{10} \) units higher than that in the effluent (away from the discharged point). The best treatment efficiency was 92.5\% at sampling time \(T_3 \), while the least was 91.9\% at sampling time \(T_2 \) (Fig. 1).

Antibiotic resistance profiles of potential ESBL-producing \textit{E. coli}

The majority of \textit{E. coli} from influent samples were resistant to penicillin (70\%) and 30\% were intermediately resistant; biofilter isolates were resistant to penicillin (100\%) and cefotaxime (100\%); effluent isolates were resistant to penicillin (100\%) and tetracycline (80\%); surface water upstream isolates were resistant to penicillin (100\%) and trimethoprim (50\%); and samples from downstream surface water exhibited resistance to ciprofloxacin (60\%), tetracycline (60\%), trimethoprim (67\%) and penicillin (80\%). Resistance to penicillin, tetracycline and ampicillin was frequent, whereas resistance to cefotaxime, cefsazidime and trimethoprim were less frequently observed in other parts of WWTP except the biofilter. Resistance to the carbapenem antibiotics imipenem and meropenem was not seen in the studied isolates. Remarkably, in effluent samples, ESBL \textit{E. coli} was 40\% to 100\% resistant to ampicillin, penicillin and tetracycline but susceptible to imipenem, meropenem and ciprofloxacin. Overall, 33.3\% of isolates from biofilter, 44.4\% from WWTP effluents, 55.6\% from upstream surface water (under the influence of WWTP discharge points) and 44.4\% from surface waters downstream (not under the direct influence of the investigated WWTPs) showed resistance to at least three antibiotic categories in addition to \(\beta \)-lactam antibiotics. It was thus designated as a multidrug-resistant pathogen.

Overall reduction of \textit{E. coli} due to treatment was in the range 1.2 to 3.1 \(\log_{10} \) CFU/mL (Table 4). The best treatment

TABLE 1. Primer sequences and expected size of PCR-amplified genes

Gene target	Primer sequence 5’–3’	Amplicon size (bp)
\(\text{Alr} \)	F: CTGGAGAGGCTAGCCTGGACGAG	366
\(\text{bla}_{\text{CTX-M}} \)	F: CGGGAGCCAGACTCTGGGTGT	381
\(\text{bla}_{\text{TEM}} \)	F: GTGCCGGATACATCTTCTCA	258
\(\text{bla}_{\text{SHV}} \)	F: GCGTCTGCTGTTTGTATGG	319

Discs were placed onto the Müller-Hinton agar surface with the use of sterile forceps. The plates were incubated for 18 to 24 hours at 37°C. The selected antibiotic discs used for this analysis included: ampicillin (10 \(\mu \)g), penicillin (10 U), ciprofloxacin (5 \(\mu \)g), tetracycline (30 \(\mu \)g), trimethoprim (10 \(\mu \)g), cefotaxime (30 \(\mu \)g), cefsazidime (30 \(\mu \)g), sulfamethoxazole (24 \(\mu \)g) and carbapenems (imipenem and meropenem) (10 \(\mu \)g). The interpretation criteria (sensitive/resistant) for the antibiotics were determined on the basis of the zone diameters provided in CLSI 2017 [17]. An isolate was designated multiple antibiotic resistant if it was resistant to at least three antibiotics classes [18–21]. The antibiotics used in this study were selected on the basis of their clinical and agricultural significance. Each of these antibiotics has either been found at potentially active concentrations in wastewater or has previously been associated with increased resistance in environmental \textit{E. coli}.

Detection of ESBL genes among \textit{E. coli} using multiplex PCR

Multiplex PCR (M-PCR) was performed by using the specific primers listed in Table 1 for screening for ESBL genes in \textit{E. coli} isolates [13]. The screening of \(\text{bla}_{\text{TEM}}, \text{bla}_{\text{SHV}} \) and \(\text{bla}_{\text{CTX-M}} \) was done in a total volume of 25 \(\mu \)L containing 12.5 \(\mu \)L of master mix (DreamTag MM; Thermo Fisher Scientific, Waltham, MA, USA), 20 \(\mu \)M of each forward and reverse primers, distilled water and 5 \(\mu \)L of the DNA template. The M-PCR protocol was as follows: pre-denaturation at 95°C for 5 minutes, followed by 30 cycles of denaturation at 95°C for 30 seconds, annealing at 56°C for 40 seconds, extension at 72°C for 50 seconds and a final extension at 72°C for 10 minutes.

Statistical analyses

A statistically significant difference (\(p \leq 0.05 \)) in \textit{E. coli} concentrations between sampling points and sampling time was evaluated by two-way ANOVA. Correlation analysis was performed for inference on differences in average numbers of ESBL-producing \textit{E. coli} between sampling locations and time. Analyses were performed by SPSS 22 software (IBM, Armonk, NY, USA).
Concentration of stream) and WWTP effluents. Previous study conducted by Blaak et al. [14] suggested that the same site. This observation was in consonance with a relative high concentrations of total E. coli counts \((r = 0.96\) at \(p = 0.05\)). Nonetheless, the proportion of ESBL-producing E. coli relative to total E. coli numbers varied among the sampling points, as well as between sampling times at the same site. This observation was in consonance with a previous study conducted by Blaak et al. [14].

The receiving surface water at the points of discharge (upstream) and WWTP effluents contained ESBL-producing E. coli. The occurrence of ESBL-producing E. coli in these sampling locations may be thought to directly reflect the strains load exist in the discharged effluents at the time of sampling, even though a small quantity of them may be obtained from upstream sites. The concentrations of ESBL-producing E. coli at effluent locations were on average 1- to 2-log units lower than those in upstream samples \((p < 0.05\)), and were similar to concentrations downstream of the WWTP, suggesting a possible impact of the connecting water body receiving WWTP effluent. This study demonstrated the impact of WWTP in contributing to the load of ESBL-producing E. coli in surface water with possible risk of exposure to users of that water body. To this end, studies have identified recreational freshwater swimming in surface water as a significant risk factor for acquiring urinary tract infections caused by ESBL-producing E. coli [5,23]. The results of the present study provide substantial evidence to this epidemiologic and public health concern, as ingesting contaminated surface water may lead to intestinal colonization by extraintestinal ESBL E. coli and subsequent urinary tract infection [24]. Also, the frequent existence of ESBL-producing E. coli upstream of the WWTPs and in connecting water bodies was not influenced by the studied WWTPs, suggesting the presence of other sources of ESBL-producing E. coli. The current study focused on the possible impact of discharged effluents of WWTP as a possible source of ESBL-producing E. coli in nearby surface water, but it did not investigate the contribution of sewage overflows or more remote WWTPs. Because overflows contain untreated sewage, they serve as an important source of ESBL-producing E. coli in surface water during heavy rainfall. Although the locations of overflow exhausts in the area under investigation were not mapped in this study, both overflows and more remote WWTPs may have also contributed to the faecal contamination in the investigated surface water. Moreover, animal manure may again contribute, because ESBL-producing E. coli are ample in food animals, particularly in broilers,veal calves and pigs [14]. Further to this, faeces of wild animals such as birds may contribute ESBL-producing E. coli to surface water [25].

Table 2: Presumptive Escherichia coli counts and pathogen log reduction from wastewater treatment plants

Sampling point	Influent	Biofilter	Effluent									
	T₁	T₂	T₃	Mean	T₁	T₂	T₃	Mean	T₁	T₂	T₃	Mean
1	4.3	4.1	4.3	4.2	-	-	-	-	-	-	-	-
2	4.5	4.3	4.3	4.4	4.5	4.2	4.0	4.2	3.3	3.3	3.0	3.2
3	4.3	4.1	4.0	4.1	4.3	4.0	3.5	3.9	3.0	3.0	3.0	3.2

T₁, T₂ and T₃ refer to sampling time points.

Table 3: Concentration of Escherichia coli in surface water samples

Sampling point	Upstream	Downstream						
	T₁	T₂	T₃	Mean	T₁	T₂	T₃	Mean
1	3.5	3.0	3.3	3.3	3.8	3.4	3.5	3.3
2	3.3	3.5	3.5	3.3	4.0	4.0	3.6	3.9
3	3.8	3.3	3.6	3.6	3.7	3.7	3.9	3.8

T₁, T₂ and T₃ refer to sampling time points.
investigated river may be located within a suburban area, suggesting that ESBL-producing \textit{E. coli} in the examined surface waters may be a mixture of human and animal origin. ESBL-producing \textit{E. coli} recovered from recreational waters carried similar ESBL genes, partially in the same phylogenetic background, as ESBL-producing \textit{E. coli} in effluents and/or upstream-located surface waters.

It is worth highlighting that the results this study obtained by antibiotic susceptibility profiling showed resistance to ceftaxime, a third-generation cephalosporin, in three out of the five sampling points. This is consistent with the findings of other studies that show an increasing emergence of resistance to third- and even fourth-generation cephalosporins \cite{26,27}. Paterson and Bonomo \cite{28} linked this resistance to hydrolysis by \textit{bla}\textsubscript{CTX-M} gene-coded β-lactamase enzyme. ESBL-producing \textit{E. coli} recovered from surface waters have been revealed to carry similar ESBL genes or genes partially on the same phylogenetic background \cite{5,14,24}. The epidemiology of ESBL genes, especially \textit{bla}\textsubscript{CTX-M} based, shows distinct variability around variation locations around the world \cite{29} and are common among bacterial isolates from hospitals \cite{30–32}. The current study showed some consistency with this observation, as all isolates showing resistance expressed at least one type of \textit{bla}\textsubscript{CTX-M} and \textit{bla}\textsubscript{TEM} genes. Several research reports from Nigeria also indicated the detection of \textit{bla}\textsubscript{CTX-M} \cite{30–32}, though in a clinical setting. Currently, \textit{bla}\textsubscript{CTX-M-15} is the most dominant resistance gene in humans in the United States, which is accompanied by a broadly circulated strain of \textit{E. coli} O:25b \cite{33}. In tandem with our study, \textit{bla}\textsubscript{CTX-M} in \textit{E. coli} from wastewater samples was reported by Čornejová et al. \cite{34}.

Unlike our study, where only \textit{bla}\textsubscript{CTX-M} and \textit{bla}\textsubscript{TEM} were

![FIG. 1. Escherichia coli removal efficiency of treatment process at three different sampling times. High log reduction was observed at various stages of treatment. Treatment efficiencies was high on three sampling occasions. Error bars indicate standard deviation.]

TABLE 4. Antibiotic susceptibility results
Sample points
\textit{Influent}
\textit{Biofilter}
\textit{Final effluent}
\textit{Downstream}
\textit{Upstream}

I, intermediate; R, resistant; S, susceptible.
detected, a study in Bangladesh by Yesmin et al. [35] reported \textit{bla}_TEM (50.5%), \textit{bla}_CTX-M (46.7%) and \textit{bla}_SHV (18.7%). The emergence of such resistant species in the environment limits the optimal treatment options for ESBL infections, thereby reducing the recovery rate of ESBL patients.

This study had several limitations. Firstly, we were unable to sequence the ESBL genes. Secondly, the source of ESBL-producing \textit{E. coli} into the WWTPs and surface water was not traced.

Conclusions

This study revealed that WWTP and surface water are repositories of multidrug-resistant \textit{E. coli} isolates harbouring ESBL genes. This finding highlights the serious health risk to humans upon exposure. In addition, the results showed the need for effective control of the release of bacterial contaminants into local surface waters and may form the basis of future research in adjoining surface waters.

Conflict of interest

None declared.

References

[1] Hong PY, Julian TR, Pype ML, Jiang SC, Nelson KL, Graham D, et al. Reusing treated wastewater: consideration of the safety aspects associated with antibiotic-resistant bacteria and antibiotic resistance genes. Water 2018;10:244.
[2] Johannessen GS, Wennberg AC, Nesheim I, Tryland I. Diverse land use and the impact on (irrigation) water quality and need for measures—a case study of a Norwegian river. Int J Environ Res Public Health 2015;12:6979–7001.
[3] Kraemer SA, Ramachandran A, Perron GG. Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms 2019;7:180.
[4] Amarasiri M, Sano D, Suzuki S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: current knowledge and questions to be answered. Crit Rev Environ Sci Technol 2020:50:2016–59.
[5] Franz E, Veerman C, van Hoek AH, de Roos Husman A, Blaak H. Pathogenic \textit{Escherichia coli} producing extended-spectrum \textit{β}-lactamases isolated from surface water and wastewater. Sci Rep 2015;5:14372.
[6] Poirier L, Madec JY, Lupo A, Schink A-K, Kieffer N, Nordmann P, et al. Antibacterial resistance in \textit{Escherichia coli}. Microbiol Spectr 2018;6. ARBA-0026-2017.
[7] Pandit R, Awal B, Shrestha SS, Joshi G, Rijal BP, Parajuli NP. Extended-spectrum \textit{β}-lactamase (ESBL) genotypes among multidrug-resistant uropathogenic \textit{Escherichia coli} clinical isolates from a teaching hospital of Nepal. Interdiscip Perspect Infect Dis 2020:2020:6525826.
[8] Tekiner IH, Ozpinar H. Occurrence and characteristics of extended spectrum \textit{β}-lactamases—producing \textit{Enterococci} from foods of animal origin. Braz J Microbiol 2016;47:444–51.
[9] Gekendis MT, Qi W, Hummerjohn J, Zbinden R, Walsh F, Drissner D. Antibiotic-resistant indicator bacteria in irrigation water: high prevalence of extended-spectrum beta-lactamase (ESBL)-producing \textit{Escherichia coli}. PLoS One 2018;13:e0207857.
[10] Blaak H, Lynch G, Italiander R, Hamidjaja RA, Schets FM, de Roos Husman AM. Multidrug-resistant and extended spectrum \textit{β}-lactamase—producing \textit{Escherichia coli} in Dutch surface water and wastewater. PLoS One 2015;10:e0127752.
[11] Adegoke AA, Faleyec AC, Singh G, Stenström TA. Antibiotic resistant superbugs: assessment of the interrelationship of occurrence in clinical settings and environmental niches. Molecules 2017;22:29.
[12] Adegoke AA, Faleyec AC, Stenström TA. Residual antibiotics, antibiotic resistant superbugs and antibiotic resistance genes in surface water catchments: public health impact. Phys Chem Earth 2018;105:177–83.
[13] Adegoke AA, Madu CE, Ayegore OA, Stenström TA, Okoh AI. Antibigram and beta-lactamase genes among cefotaxime resistant \textit{E. coli} from wastewater treatment plant. Antimicrob Resist Infect Control 2020;9:1–2.
[14] Blaak H, de Kruif J, Hamidjaja RA, van Hoek AH, de Roos Husman AM, Schets FM. Prevalence and characteristics of ESBL-producing in Dutch recreational waters influenced by wastewater treatment plants. Vet Microbiol 2014;171:448–59.
[15] Yazdansetad S, Alkhudhairiy MK, Najafpour R, Farajtabarzi E, Al-Mosawi RM, Saki M, et al. Preliminary survey of extended-spectrum \textit{β}-lactamases (ESBLs) in nosocomial uropathogen \textit{Klebsiella pneumoniae} in north-central Iran. Heliyon 2019;5:e02349.
[16] Khoshnood S, Shafir I, Jomehzadeh N, Montazeri EA, Saki M, Morzavi SM, et al. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among methicillin-resistant \textit{Staphylococcus aureus} strains isolated from burn patients. Acta Microbiol Immunol Hung 2019;66:387–98.
[17] Clinical Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. Twenty-seventh informational supplement. Document M100-S27. Wayne, PA: CLSI; 2017.
[18] Abbasi Montazeri E, Seyed-Mohammadi S, Asarehazdegan Dezfuli A, Khosravi AD, Dastoorpoor M, Roointan M, et al. \textit{Antibiotic resistant} Enterobacteriaceae associated with antibiotic-resistant bacteria and antibiotic resistance genes. Reusing treated wastewater: consideration of the safety aspects associated with antibiotic-resistant bacteria and antibiotic resistance genes. Water 2018;10:244.
[19] Montazeri EA, Khosravi AD, Saki M, Sirous M, Khezikhaei B, Seyed-Mohammadi S. Prevalence of extended-spectrum \textit{β}-lactamase—producing \textit{Enterobacteriaceae} causing bloodstream infections in cancer patients from southwest of Iran. Infect Drug Resist 2020;13:1319–26.
[20] Amin Mansour, Sirous M, Javaherizadeh H, Motamedifard M, Saki M, Veisi H, et al. Antibiotic resistance pattern and molecular characterization of extended-spectrum \textit{β}-lactamase producing enter-aggregative \textit{Escherichia coli} isolates in children from southwest Iran. Infect Drug Resist 2018;11:1097–104.
[21] Adekannibi AO, Adejoba AT, Banjo OA, Saki M. Detection of sul1 and sul2 genes in sulfonamide-resistant bacteria (SRB) from sewage, aquaculture sources, animal wastes and hospital wastewater in southwest Nigeria. Gene Rep 2020;20:100742.
[22] World Health Organization (WHO). WHO priority pathogens list for R&D of new antibiotics. Available at:. 2017. https://www.who.int/en/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed.
[23] Sarraa A, Sundsfjord A, Sandven I, Brunborg C, Jenum PA. Risk factors for community-acquired urinary tract infections caused by ESBL-producing \textit{Enterobacteriaceae}—a case–control study in a low prevalence country. PLoS One 2013;8:e69581.
[24] Tanner WD, VanDerSloice JA, Goel RK, Leecker MK, Fisher MA, Olstado J, et al. Multi-state study of \textit{Enterobacteriaceae} harboring extended-spectrum \textit{β}-lactamase and carbapenemase genes in US drinking water. Sci Rep 2019;9:1–8.
[25] Guenther S, Ewers C, Wieler LH. Extended-spectrum beta-lactamases producing E. coli in wildlife, yet another form of environmental pollution? Front Microbiol 2011;2:246.

[26] Grover SS, Sharma M, Chattopadhya D, Kapoor H, Pasha ST, Singh G. Phenotypic and genotypic detection of ESBL mediated cephalosporin resistance in Klebsiella pneumoniae: emergence of high resistance against cefepime, the fourth generation cephalosporin. J Infect 2006;53:279–88.

[27] Tissera S, Lee SM. Isolation of extended spectrum β-lactamase (ESBL) producing bacteria from urban surface waters in Malaysia. Malays J Med Sci 2013;20:14–22.

[28] Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev 2005;18:657–86.

[29] Hawkey PM, Jones AM. The changing epidemiology of resistance. J Antimicrob Chemother 2009;64(Suppl. 1):i3–10.

[30] Raji M, Opemh O, Rotimi O. Sequence analysis of genes mediating extended-spectrum beta-lactamase production in isolates of enterobacteriaceae in Lagos Teaching Hospital. Biomed Cent Infect Dis 2015;15:259.

[31] Ogefere H, Aigbiremwen P, Omorogbe R. Extended-spectrum beta-lactamase producing Gram negative isolates from urine and wound specimens in a tertiary health facility in Southern Nigeria. Trop J Pharma Res 2015;14:1089–92.

[32] Rani S, Jahnvi I, Nagamani K. Phenotypic and molecular characterization of ESBLs producing Enterobacteriaceae in a tertiary care hospital. J Dent Med Sci 2016;15:27–34.

[33] Overdevest I, Willemsen I, Rijnsburger M, Eustace A, Xu L, Hawkey P, et al. Extended-spectrum β-lactamase genes of Escherichia coli in chicken meat and humans, The Netherlands. Emerg Infect Dis 2011;17:1216–22.

[34] Čornejová T, Venglovsky J, Gregova G, Knetova M, Kmet V. Extended spectrum beta-lactamases in Escherichia coli from municipal wastewater. Ann Agric Environ Med 2015;22:447–50.

[35] Yesmin T, Hossain A, Paul S, Yussuf A, Sultan S, Gmowa G. Detection of extended-spectrum beta-lactamases producing genes among third generation cephalosporins sensitive bacteria strains from a medical college hospital in Bangladesh. J Allergy Disord Ther 2014;1:1.