MODULI OF STABLE SHEAVES SUPPORTED ON CURVES OF GENUS THREE CONTAINED IN A QUADRIC SURFACE

MARIO MAICAN

ABSTRACT. We study the moduli space of stable sheaves of Euler characteristic 1 supported on curves of arithmetic genus 3 contained in a smooth quadric surface. We show that this moduli space is rational. We compute its Betti numbers by studying the variation of the moduli spaces of α-semi-stable pairs. We classify the stable sheaves using locally free resolutions or extensions. We give a global description: the moduli space is obtained from a certain flag Hilbert scheme by performing two flips followed by a blow-down.

1. Introduction

Let \mathbb{P}^1 be the projective line over \mathbb{C} and consider the surface $\mathbb{P}^1 \times \mathbb{P}^1$ with fixed polarization $\mathcal{O}(1,1) = \mathcal{O}_{\mathbb{P}^1}(1) \otimes \mathcal{O}_{\mathbb{P}^1}(1)$. For a coherent algebraic sheaf F on $\mathbb{P}^1 \times \mathbb{P}^1$, with support of dimension 1, the Euler characteristic $\chi(F(m,n))$ is a polynomial expression in m, n, of the form

$$P_F(m,n) = rm + sn + t,$$

where r, s, t are integers depending only on F. This is the Hilbert polynomial of F. The slope of F is $p(F) = t/r + s$. Let $M(P)$ be the coarse moduli space of S-equivalence classes of sheaves on $\mathbb{P}^1 \times \mathbb{P}^1$ that are semi-stable with respect to the fixed polarization and that have Hilbert polynomial P. We recall that F is semi-stable, respectively, stable, if it is pure and for any proper subsheaf $F' \subset F$ we have $p(F') \leq p(F)$, respectively, $p(F') < p(F)$. According to [10], $M(P)$ is projective, irreducible, and smooth at points given by stable sheaves. Its dimension is $2rs + 1$ if $r > 0$ and $s > 0$. The spaces $M(rr + n + 1), M(2m + 2n + 1)$ and $M(2m + 2n + 2)$ were studied in [1]. In fact, it is not difficult to see that $M(rr + n + 1)$ consists of the structure sheaves of curves of degree $(1, r)$, so it is isomorphic to \mathbb{P}^{2r+1}. The space $M(3m + 2n + 1)$ was studied in [4] and [12]. We refer to the introductory section of [12] for more background information.

This paper is concerned with the study of $M = M(4m + 2n + 1)$. The closed points of M are in a bijective correspondence with the isomorphism classes $[F]$ of stable sheaves F supported on curves of degree $(2, 4)$ and satisfying the condition $\chi(F) = 1$. As already mentioned, M is a smooth irreducible projective variety of dimension 17. For any $t \in \mathbb{Z}$, twisting by $\mathcal{O}(t, t)$ gives an isomorphism $M \simeq M(4m + 2n + 6t + 1)$. According to [12 Corollary 1], $M \simeq M(4m + 2n - 1)$. In the following theorem we classify the sheaves in M.

Theorem 1.1. The variety M can be decomposed into an open subset M_0, two closed irreducible subsets M_2, M'_2, each of codimension 2, a locally closed irreducible subset M_3 of codimension 3, and a locally closed irreducible subset M_4 of codimension 4. These subsets are defined as follows: M_0 is the set of sheaves F having a resolution of the form

$$0 \rightarrow \mathcal{O}(-1, -3) \oplus \mathcal{O}(0, -3) \oplus \mathcal{O}(-1, -2) \overset{\varphi}{\rightarrow} \mathcal{O}(0, -2) \oplus \mathcal{O}(0, -2) \oplus \mathcal{O} \rightarrow F \rightarrow 0,$$

2010 Mathematics Subject Classification. Primary 14D20, 14D22.

Key words and phrases. Moduli spaces, Semi-stable sheaves, Wall crossing.
where the entries \(\varphi_{12} \) and \(\varphi_{22} \) are linearly independent and the maximal minors of the matrix \((\varphi_{ij})_{i,j=1,2,3} \), describing the corestriction of \(\varphi \) to the first two summands, have no common factor; \(M_2 \) is the set of sheaves \(\mathcal{F} \) having a resolution of the form

\[
0 \to \mathcal{O}(-2, -2) \oplus \mathcal{O}(-1, -3) \xrightarrow{\varphi} \mathcal{O}(-1, -2) \oplus \mathcal{O}(0, 1) \to \mathcal{F} \to 0,
\]

with \(\varphi_{11} \neq 0, \varphi_{12} \neq 0 \); \(M_2 \) is the set of sheaves \(\mathcal{F} \) having a resolution of the form

\[
0 \to \mathcal{O}(-2, -1) \oplus \mathcal{O}(-1, -4) \xrightarrow{\varphi} \mathcal{O}(-1, -1) \oplus \mathcal{O} \to \mathcal{F} \to 0,
\]

with \(\varphi_{11} \neq 0, \varphi_{12} \neq 0 \); \(M_3 \) is the set of extensions of the form

\[
0 \to \mathcal{O}_Q \to \mathcal{F} \to \mathcal{O}_L(1, 0) \to 0
\]

satisfying the condition \(\mathcal{H}^0(\mathcal{F}) \cong \mathbb{C} \), where \(Q \subset \mathbb{P}^1 \times \mathbb{P}^1 \) is a quintic curve of degree \((2, 3) \) and \(L \subset \mathbb{P}^1 \times \mathbb{P}^1 \) is a line of degree \((0, 1) \); \(M_4 \) is the set of extensions of the form

\[
0 \to \mathcal{O}_Q(p) \to \mathcal{F} \to \mathcal{O}_L \to 0,
\]

where \(\mathcal{O}_Q(p) \) is a non-split extension of \(\mathbb{C}_p \) by \(\mathcal{O}_Q \) for a point \(p \in Q \), and satisfying the condition \(\mathcal{H}^0(\mathcal{F}) \cong \mathbb{C} \).

Moreover, \(M_2 \) is the Brill-Noether locus of sheaves for which \(\mathcal{H}^1(\mathcal{F}) \neq \{0\} \).

The proof of Theorem 1.11 given in Section 3 relies on the Beilinson spectral sequence, which we recall in Section 4. The varieties \(X \) that appear in this paper have no odd homology, so we can define the Poincaré polynomial

\[
P(X)(\xi) = \sum_{i \geq 0} \dim_{\mathbb{C}} H^i(X, \mathbb{Q})\xi^{i/2}.
\]

Theorem 1.2. The Euler characteristic of \(M \) is 288. The Poincaré polynomial of \(M \) is

\[
\xi^{17} + 3\xi^{16} + 8\xi^{15} + 16\xi^{14} + 21\xi^{13} + 23\xi^{12} + 24\xi^{11} + 24\xi^{10} + 24\xi^9 \\
+ 24\xi^8 + 24\xi^7 + 24\xi^6 + 23\xi^5 + 21\xi^4 + 16\xi^3 + 8\xi^2 + 3\xi + 1.
\]

The proof of this theorem rests on the wall-crossing method of Choi and Chung [3]. In Section 4, we investigate how the moduli spaces \(M^{\alpha}(4m+2n+1) \) of \(\alpha \)-semi-stable pairs with Hilbert polynomial \(4m+2n+1 \) change as the parameter \(\alpha \) varies. In Theorem 4.11, we find that \(M^{\alpha}(4m+2n+1) \) are related by two explicitly described flipping diagrams. Combining this with Proposition 4.12, yields a global description: \(M \) is obtained from the flag Hilbert scheme of three points on curves of degree \((2, 4) \) in \(\mathbb{P}^1 \times \mathbb{P}^1 \) by performing two flips followed by a blow-down centered at the Brill-Noether locus \(M_2 \).

The total space \(X \) of \(\omega_{\mathbb{P}^1 \times \mathbb{P}^1} \) is a Calabi-Yau threefold. For a homology class \(\beta = (r, s) \in H_2(\mathbb{P}^1 \times \mathbb{P}^1) \subset H_2(X) \) let \(N_{\beta}(X) \) be the genus zero Gromov-Witten invariant of \(X \) and let \(n_{\beta}(X) \) be the genus zero Gopakumar-Vafa invariant of \(X \), as introduced in [8]. It was noticed in [4] that, up to sign, the latter is the Euler characteristic of a moduli space:

\[
n_{\beta}(X) = (-1)^{\dim M(4m+2n+1)}e(M(4m+2n+1)).
\]

In [8], Katz conjectured the relation

\[
N_{\beta}(X) = \sum_{k \mid \beta} \frac{n_{\beta/k}(X)}{k^3}.
\]

For \(\beta = (4, 2) \), this conjecture reads

\[
N_{(4,2)}(X) = (-1)^{\dim M(4m+2n+1)}e(M(4m+2n+1)) + \frac{1}{8}(-1)^{\dim M(2m+n+1)}e(M(2m+n+1)) = (-1)^{\dim M}e(M) + \frac{1}{8}(-1)^{\dim \mathbb{P}^5}e(\mathbb{P}^5) = (-1)^{17}288 + \frac{1}{8}(-1)^{5}6 = -288.75.
\]
2. Preliminaries

Our main technical tool in Section 3 will be the Beilinson spectral sequence. Let \mathcal{F} be a coherent sheaf on $\mathbb{P}^1 \times \mathbb{P}^1$. According to [2, Lemma 1], we have a spectral sequence converging to \mathcal{F}, whose first level E_1 has display diagram

\[
(1) \quad H^2(\mathcal{F}(-1, -1)) \otimes \mathcal{O}(-1, -1) = E_1^{2,1} \longrightarrow E_1^{1,2} \longrightarrow E_1^{0,2} = H^2(\mathcal{F}) \otimes \mathcal{O}
\]

\[
H^1(\mathcal{F}(-1, -1)) \otimes \mathcal{O}(-1, -1) = E_1^{1,1} \theta_1 E_1^{0,1} \quad \text{and} \quad H^0(\mathcal{F}(-1, -1)) \otimes \mathcal{O}(-1, -1) = E_1^{0,0} \theta_2 E_1^{0,0} = H^0(\mathcal{F}) \otimes \mathcal{O}
\]

where $E_1^{i,j} = \{0\}$ if $i \notin \{-2, -1, 0\}$ or if $j \notin \{0, 1, 2\}$ and

\[
(2) \quad E_1^{-1-j} = H^j(\mathcal{F}(0, -1)) \otimes \mathcal{O}(0, -1) \oplus H^j(\mathcal{F}(-1, 0)) \otimes \mathcal{O}(-1, 0).
\]

If \mathcal{F} has support of dimension 1, then the first row of (1) vanishes and the convergence of the spectral sequence forces θ_2 to be surjective and yields the exact sequence

\[
(3) \quad 0 \longrightarrow \text{Ker}(\theta_1) \theta_2 \text{Coker}(\theta_1) \longrightarrow \mathcal{F} \longrightarrow \text{Ker}(\theta_2)/\text{Im}(\theta_1) \longrightarrow 0.
\]

An application of the Beilinson spectral sequence is the following lemma that will be used in Section 3

Lemma 2.1. Let $Z \subset \mathbb{P}^1 \times \mathbb{P}^1$ be a zero-dimensional subscheme of length 3 that is not contained in a line of degree $(1, 0)$ or $(0, 1)$. Then the ideal of Z has resolution

\[
0 \longrightarrow 2\mathcal{O}(-2, -2) \xrightarrow{\zeta} \mathcal{O}(-1, -2) \oplus \mathcal{O}(-2, -1) \oplus \mathcal{O}(-1, -1) \longrightarrow \mathcal{I}_Z \longrightarrow 0,
\]

where the maximal minors of ζ have no common factor. The dual of the structure sheaf of Z has resolution

\[
0 \longrightarrow \mathcal{O}(-2, -4) \longrightarrow \mathcal{O}(-1, -3) \oplus \mathcal{O}(0, -3) \oplus \mathcal{O}(-1, -2) \xrightarrow{\zeta} 2\mathcal{O}(0, -2) \longrightarrow \mathcal{E}xt^2(\mathcal{O}_Z, \mathcal{O}) \longrightarrow 0.
\]

Proof. We apply the spectral sequence (1) to the sheaf $\mathcal{F} = \mathcal{I}_Z(1, 1)$. By hypothesis, $H^0(\mathcal{I}_Z(1, 0)) = \{0\}$ and $H^0(\mathcal{I}_Z(0, 1)) = \{0\}$ hence, from [2], we obtain the vanishing of $E_1^{-1,0}$. Since $H^0(\mathcal{I}_Z) = \{0\}$, also $E_1^{-2,0}$ vanishes. From the short exact sequence

\[
0 \longrightarrow \mathcal{I}_Z \longrightarrow \mathcal{O} \longrightarrow \mathcal{O}_Z \longrightarrow 0
\]

we obtain the vanishing of $H^2(\mathcal{I}_Z)$. Analogously, $H^2(\mathcal{I}_Z(1, 0))$, $H^2(\mathcal{I}_Z(0, 1))$, and $H^2(\mathcal{I}_Z(1, 1))$ vanish. The first row of (1) vanishes. Denote $d = \dim_\mathbb{C} H^1(\mathcal{I}_Z(1, 1))$. Display diagram (1) now takes the simplified form

\[
\begin{array}{c c c c c}
0 & \longrightarrow & \mathcal{I}_Z & \longrightarrow & \mathcal{O} \\
& & \theta_1 & \longrightarrow & \mathcal{O}(0, -1) \oplus \mathcal{O}(-1, 0) \theta_2 \longrightarrow d\mathcal{O} \\
& & \theta_2 & \longrightarrow & (d + 1)\mathcal{O}
\end{array}
\]

From the convergence of the spectral sequence we see that θ_2 is surjective. There is no surjective morphism $\theta_2: \mathcal{O}(0, -1) \oplus \mathcal{O}(-1, 0) \rightarrow d\mathcal{O}$ for $d \geq 1$, hence $d = 0$. Thus, Ker(θ_1) is a subsheaf of \mathcal{O}. We claim that
$\ker(\theta_1) = \{0\}$. Indeed, if $\ker(\theta_1)$ were non-zero, then $\mathcal{O}/\ker(\theta_1)$ would be a torsion subsheaf of $\mathcal{I}_Z(1,1)$. Combining the exact sequences

$$0 \rightarrow \mathcal{O} \rightarrow \mathcal{I}_Z(1,1) \rightarrow \text{Coker}(\theta_1) \rightarrow 0,$$

$$0 \rightarrow 2\mathcal{O}(-1,-1) \rightarrow \mathcal{O}(0,-1) \oplus \mathcal{O}(-1,0) \rightarrow \text{Coker}(\theta_1) \rightarrow 0$$

yields the resolution

$$0 \rightarrow 2\mathcal{O}(-1,-1) \rightarrow \mathcal{O}(0,-1) \oplus \mathcal{O}(-1,0) \oplus \mathcal{O} \rightarrow \mathcal{I}_Z(1,1) \rightarrow 0.$$ Applying $\text{Hom}(-, \mathcal{O}(-1,-3))$, we obtain resolution \([11]\). If the maximal minors of the matrix representing ζ had a common factor f, then the reduced support of $\text{Coker}(\zeta)$ would contain the curve $\{f = 0\}$. But this is impossible because $\text{Ext}^2(\mathcal{O}_Z, \mathcal{O})$ has support of dimension zero.

Lemma 2.2. Let S be a smooth projective surface and let $C \subset S$ be a locally Cohen-Macaulay curve. Let Z be a coherent sheaf on S with support of dimension zero. Let F be an extension of Z by \mathcal{O}_C without zero-dimensional torsion. Then F is uniquely determined up to isomorphism, meaning that if F' is another extension of Z by \mathcal{O}_C without zero-dimensional torsion, then $F' \cong F$. Moreover, $Z \cong \text{Ext}^1_{\mathcal{O}_S}(\mathcal{O}_Z, \mathcal{O}_S)$ for a subscheme $Z \subset C$ of dimension zero, so we have the exact sequence

$$0 \rightarrow \mathcal{O}_C \rightarrow F \rightarrow \text{Ext}^2_{\mathcal{O}_S}(\mathcal{O}_Z, \mathcal{O}_S) \rightarrow 0.$$ **Proof.** This lemma is a direct consequence of \([13]\) Proposition B.5). Indeed, given an exact sequence

$$0 \rightarrow \mathcal{O}_C \rightarrow F \rightarrow Z \rightarrow 0$$

in which F has no zero-dimensional torsion, then the pair (\mathcal{O}_C, F) is a stable pair supported on C, in the sense of \([13]\). By \([13]\) Lemma B.2, we have $\text{Ext}^1_{\mathcal{O}_C}(F, \mathcal{O}_C) = \{0\}$. Applying $\text{Hom}_{\mathcal{O}_C}(\cdot, \mathcal{O}_C)$ to \([6]\), yields the exact sequence

$$0 \rightarrow \text{Hom}_{\mathcal{O}_C}(F, \mathcal{O}_C) \rightarrow \mathcal{O}_C \rightarrow \text{Ext}^1_{\mathcal{O}_C}(Z, \mathcal{O}_C) \rightarrow 0.$$ Thus, $\text{Ext}^1_{\mathcal{O}_C}(Z, \mathcal{O}_C)$ is the structure sheaf \mathcal{O}_Z of a zero-dimensional subscheme $Z \subset C$. Under the bijection of \([13]\) Proposition B.5) between stable pairs supported on C and zero-dimensional subschemes of C, the pair (\mathcal{O}_C, F) corresponds to Z, so it is uniquely determined, up to isomorphism. Tensoring \([7]\) with the dualising line bundle ω_C on C, yields the exact sequence

$$0 \rightarrow \text{Hom}(F, \omega_C) \rightarrow \omega_C \rightarrow \mathcal{O}_Z \rightarrow 0.$$ We claim that $\text{Hom}(F, \omega_C) \cong \text{Ext}^1(F, \omega_S)$. This follows by applying $\text{Hom}(F, \cdot)$ to the exact sequence

$$0 \rightarrow \omega_S \rightarrow \omega_S \otimes \mathcal{O}(C) \rightarrow \omega_S \otimes \mathcal{O}(C)|_C \cong \omega_C \rightarrow 0.$$ We obtain the exact sequence

$$0 \rightarrow \text{Hom}(F, \omega_C) \rightarrow \text{Ext}^1(F, \omega_S) \rightarrow \text{Ext}^1(F, \omega_S \otimes \mathcal{O}(C)).$$ The last morphism is locally multiplication with an equation f defining C. But $C = \text{supp}(F)$, hence f annihilates F, and hence f annihilates $\text{Ext}^1(F, \omega_S)$. This proves the claim. According to \([11]\) Remark 4), $\text{Ext}^1(\text{Ext}^1(F, \omega_S), \omega_S) \cong F$. Clearly,

$$\text{Ext}^1(\mathcal{O}_Z, \omega_S) = \{0\}, \quad \text{Ext}^1(\omega_C, \omega_S) \cong \mathcal{O}_C, \quad \text{Ext}^2(\omega_C, \omega_S) = \{0\}.$$ Applying $\text{Hom}(\cdot, \omega_S)$ to \([8]\) yields extension \([5]\). Comparing with \([11]\), we see that $Z \cong \text{Ext}^2(\mathcal{O}_Z, \mathcal{O}_S)$. □

Crucial for our classification of semi-stable sheaves is the following vanishing result that should be compared with \([12]\) Proposition 4). We fix vector spaces V_1 and V_2 over \mathbb{C} of dimension 2 and we identify $\mathbb{P}^1 \times \mathbb{P}^1$ with $\mathbb{P}(V_1) \times \mathbb{P}(V_2)$. Let $\{x, y\}$ be a basis of V_1^* and let $\{z, w\}$ be a basis of V_2^*. A morphism $\mathcal{O}(i,j) \rightarrow \mathcal{O}(k,l)$ will be represented by a form in $S^{k-j}V_1^* \otimes S^{l-i}V_2^*$.

Proposition 2.3. Assume that the sheaf F gives a point in \mathbf{M}.

(i) We have \(H^0(\mathcal{F}(-1, -1)) = \{0\} \) and \(H^1(\mathcal{F}(0, -1)) = \{0\} \).

(ii) If \(\mathcal{F} \) satisfies the vanishing condition \(H^0(\mathcal{F}(0, -1)) = \{0\} \), then \(H^1(\mathcal{F}) = \{0\} \).

Proof. (i) The vanishing of \(H^0(\mathcal{F}(-1, -1)) \) follows from \cite{12} Proposition 2(ii). To prove the vanishing of \(H^0(\mathcal{F}(0, -1)) \) we can argue as in the proof of \cite{12} Proposition 3.

(ii) Assume now that \(H^0(\mathcal{F}(0, -1)) = \{0\} \). From \cite{2} and part (i) of the proposition, we deduce that \(E^{-1,1}_1 \simeq \mathcal{O}(0, -1) \oplus 3\mathcal{O}(-1, 0) \). Denote \(d = \dim_\mathbb{C} H^1(\mathcal{F}) \). There is no surjective morphism

\[
\theta_2: O(0, -1) \oplus 3O(-1, 0) \longrightarrow \mathcal{O}
\]

for \(d \geq 4 \), hence \(d \leq 3 \). Assume that \(d = 3 \). The maximal minors for a matrix representation of \(\theta_2 \) have no common factor, otherwise \(\theta_2 \) would not be surjective. Thus, \(\text{Ker}(\theta_2) \simeq \mathcal{O}(-3, -1) \), hence \(\theta_2 = 0 \), and hence, from the exact sequence \([3]\), we obtain a surjective morphism \(\mathcal{F} \rightarrow \mathcal{O}(-3, -1) \). This is absurd. Thus, the case when \(d = 3 \) is unfeasible.

Consider now the case when \(d = 2 \). If \(\theta_2 \) is represented by a matrix of the form

\[
A = \begin{bmatrix}
0 & * & * & * \\
0 & * & * & *
\end{bmatrix},
\]

then \(\text{Ker}(\theta_2) \simeq \mathcal{O}(0, -1) \oplus \mathcal{O}(-3, 0) \), hence \(\mathcal{O}(-3, 0) \) is a direct summand of \(\text{Ker}(\theta_2)/\text{Im}(\theta_1) \), and hence, from the exact sequence \([3]\), we obtain a surjective morphism \(\mathcal{F} \rightarrow \mathcal{O}(-3, 0) \). This is absurd. If \(\theta_2 \) is represented by a matrix of the form

\[
B = \begin{bmatrix}
* & * & * & 0 \\
* & * & * & 0
\end{bmatrix},
\]

then \(\text{Ker}(\theta_2) \simeq \mathcal{O}(-2, -1) \oplus \mathcal{O}(-1, 0) \), hence \(\mathcal{O}(-2, -1) \) is a direct summand of \(\text{Ker}(\theta_2)/\text{Im}(\theta_1) \), and hence we obtain a surjective morphism \(\mathcal{F} \rightarrow \mathcal{O}(-2, -1) \). This is absurd. If \(\theta_2 \) is not represented by a matrix of the form \(A, B \) or \(C \), then \(\theta_2 \) is represented by a matrix of the form

\[
C = \begin{bmatrix}
1 \otimes u & v \otimes 1 & 0 & 0 \\
0 & 0 & x \otimes 1 & y \otimes 1
\end{bmatrix},
\]

then \(\text{Ker}(\theta_2) \simeq \mathcal{O}(-1, -1) \oplus \mathcal{O}(-2, 0) \) and we obtain a surjective morphism \(\mathcal{F} \rightarrow \mathcal{O}(-2, 0) \). This is absurd.

We claim that, if \(\theta_2 \) is not of the form \(A, B \) or \(C \), then \(\theta_2 \) is represented by a matrix of the form \(D \), with \(v \neq 0 \). Indeed, since \(\theta_2 \sim A \) and \(\theta_2 \sim B \), we may write

\[
\theta_2 = \begin{bmatrix}
1 \otimes u & v_1 \otimes 1 & v_2 \otimes 1 & 0 \\
1 \otimes u_1 & 0 & x \otimes 1 & y \otimes 1
\end{bmatrix},
\]

with \(u \neq 0, v \neq 0 \). Since \(\theta_2 \sim B \), \(v_1 \) and \(v_2 \) cannot both be zero. If \(v_1 \) and \(v_2 \) are linearly independent, then \(\theta_2 \sim D \). If \(v_1 \) and \(v_2 \) span a one-dimensional vector space, then, since \(\theta_2 \sim B \), we may write

\[
\theta_2 = \begin{bmatrix}
1 \otimes u & v_1 \otimes 1 & 0 & 0 \\
1 \otimes u_1 & 0 & x \otimes 1 & y \otimes 1
\end{bmatrix}.
\]

Since \(\theta_2 \sim C \), we have \(u_1 \neq 0 \), forcing \(\theta_2 \sim D \). In the case when \(\theta_2 = D \), it is easy to see that the morphism \(\theta_1: 5\mathcal{O}(-1, -1) \longrightarrow \mathcal{O}(0, -1) \oplus 3\mathcal{O}(-1, 0) \) is represented by a matrix of the form

\[
\begin{bmatrix}
x \otimes 1 & y \otimes 1 & 0 & 0 & 0 \\
1 \otimes z & 0 & 0 & 0 & 0 \\
0 & 1 \otimes z & 0 & 0 & 0 \\
* & * & 0 & 0 & 0
\end{bmatrix}.
\]
hence \(\operatorname{Ker}(\theta_1) \simeq 3\mathcal{O}(-1, -1) \), and hence \(\operatorname{Coker}(\theta_2) \) has Hilbert polynomial \(3m + 3n + 3 \). But then, in view of the exact sequence (3), \(\operatorname{Coker}(\theta_3) \) is a destabilizing subsheaf of \(\mathcal{F} \). Thus, the case when \(d = 2 \) is also unfeasible.

It remains to examine the case when \(d = 1 \). Recall that \(\theta_2 \) is surjective, hence it can have two possible forms. Firstly, if

\[
\theta_2 = \begin{bmatrix} 0 & x \otimes 1 & y \otimes 1 & 0 \end{bmatrix},
\]

then \(\operatorname{Ker}(\theta_2) \simeq \mathcal{O}(0, -1) \oplus \mathcal{O}(-2, 0) \oplus \mathcal{O}(-1, 0) \) and we obtain a surjective morphism \(\mathcal{F} \to \mathcal{O}(-2, 0) \), which is absurd. The second form is

\[
\theta_2 = \begin{bmatrix} -1 \otimes z & x \otimes 1 & y \otimes 1 & 0 \end{bmatrix}.
\]

If \(\theta_1 \) is represented by a matrix having two zero columns, then \(\operatorname{Ker}(\theta_1) \simeq 2\mathcal{O}(-1, -1) \), hence \(\operatorname{Coker}(\theta_5) \) has Hilbert polynomial \(2m + 2n + 2 \), and hence \(\operatorname{Coker}(\theta_5) \) is a destabilizing subsheaf of \(\mathcal{F} \). Thus, we may write

\[
\theta_1 = \begin{bmatrix} x \otimes 1 & y \otimes 1 & 0 & 0 & 0 \\ 1 \otimes z & 0 & 0 & 0 & 0 \\ 0 & 1 \otimes z & 0 & 0 & 0 \\ 0 & 0 & 1 \otimes z & 1 \otimes w & 0 \end{bmatrix},
\]

hence \(\operatorname{Ker}(\theta_1) \simeq \mathcal{O}(-1, -2) \oplus \mathcal{O}(-1, -1) \), and hence \(\operatorname{Coker}(\theta_5) \) has Hilbert polynomial \(3m + 2n + 2 \). But then \(\operatorname{Coker}(\theta_5) \) is a destabilizing subsheaf of \(\mathcal{F} \). We deduce that the case when \(d = 1 \) is also unfeasible. □

3. Classification of sheaves

We begin our classification of semi-stable sheaves by examining the Brill-Noether locus of sheaves that do not satisfy the first vanishing condition in Proposition 2.3(ii).

Proposition 3.1. The sheaves \(\mathcal{F} \) in \(\mathbf{M} \) satisfying the condition \(H^0(\mathcal{F}(0, -1)) \neq \{0\} \) are precisely the non-split extension sheaves of the form

\[
0 \to \mathcal{O}_C(0, 1) \to \mathcal{F} \to C_p \to 0,
\]

where \(C \subset \mathbb{P}^1 \times \mathbb{P}^1 \) is a curve of degree \((2, 4)\) and \(p \) is a point on \(C \). Moreover, the sheaves from (9) are precisely the sheaves \(\mathcal{F} \) having a resolution of the form

\[
0 \to \mathcal{O}(-2, -2) \oplus \mathcal{O}(-1, -3) \to \mathcal{O}(-1, -2) \oplus \mathcal{O}(0, 1) \to \mathcal{F} \to 0,
\]

with \(\varphi_{11} \neq 0, \varphi_{12} \neq 0 \). Let \(\mathbf{M}_2 \subset \mathbf{M} \) be the subset of sheaves \(\mathcal{F} \) from (7). Then \(\mathbf{M}_2 \) is closed, irreducible, of codimension 2, and is isomorphic to the universal curve of degree \((2, 4)\) in \(\mathbb{P}^1 \times \mathbb{P}^1 \). Thus, \(\mathbf{M}_2 \) is a fiber bundle with fiber \(\mathbb{P}^3 \) and base \(\mathbb{P}^1 \times \mathbb{P}^1 \).

Proof. Let \(\mathcal{F} \) give a point in \(\mathbf{M} \) and satisfy \(H^0(\mathcal{F}(0, -1)) \neq \{0\} \). As in the proof of [12, Proposition 2], there is an injective morphism \(\mathcal{O}_C \to \mathcal{F}(0, -1) \) for a curve \(C \) of degree \((s, r)\), \(0 \leq s \leq 2, 0 \leq r \leq 4, 1 \leq r + s \leq 6 \). From the stability of \(\mathcal{F} \) we have the inequality

\[
p(\mathcal{O}_C(0, 1)) = \frac{r + 2s - rs}{r + s} \leq \frac{1}{6} = p(\mathcal{F}),
\]

which has the unique solution \((s, r) = (2, 4)\). We obtain extension (9). Conversely, let \(\mathcal{F} \) be given by the non-split extension (9). As in the proof of [12, Proposition 3], we can show that \(\mathcal{O}_C(0, 1) \) is stable, from which it immediately follows that \(\mathcal{F} \) gives a point in \(\mathbf{M} \) and that \(H^0(\mathcal{F}(0, -1)) \neq \{0\} \). Choose \(\varphi_{11} \in V_1^* \otimes \mathbb{C} \) and \(\varphi_{12} \in \mathbb{C} \otimes V_2^* \) defining \(p \). Since \(p \in C \), we can find \(\varphi_{21} \in S^2 V_1^* \otimes S^3 V_2^* \) and \(\varphi_{22} \in V_1^* \otimes S^4 V_2^* \) such that the polynomial \(\varphi_{11} \varphi_{22} - \varphi_{12} \varphi_{21} \) defines \(C \). Consider the morphism

\[
\varphi: \mathcal{O}(-2, -2) \oplus \mathcal{O}(-1, -3) \to \mathcal{O}(-1, -2) \oplus \mathcal{O}(0, 1),
\]

\[
\varphi = \begin{bmatrix} \varphi_{11} & \varphi_{12} \\ \varphi_{21} & \varphi_{22} \end{bmatrix}.
\]
From the snake lemma we see that $\text{Coker}(\varphi)$ is an extension of \mathbb{C}_p by $\mathcal{O}_C(0,1)$. Since $\text{Coker}(\varphi)$ has no zero-dimensional torsion, we can apply Lemma 2.2 to deduce that $\mathcal{F} \simeq \text{Coker}(\varphi)$. Thus, $[\mathcal{F}] \in \mathcal{M}_2$ if and only if \mathcal{F} has resolution (10).

In the remaining part of this section we will assume that \mathcal{F} satisfies both vanishing conditions from Proposition 2.3(ii). The exact sequence (3) takes the form

\begin{equation}
\begin{aligned}
0 &\rightarrow \text{Ker}(\theta_1) \xrightarrow{\varrho} \mathcal{O} \rightarrow \mathcal{F} \rightarrow \text{Coker}(\theta_1) \rightarrow 0,
\end{aligned}
\end{equation}

where

\begin{equation}
\begin{aligned}
\theta_1 : 5\mathcal{O}(-1,-1) &\rightarrow \mathcal{O}(0,-1) \oplus 3\mathcal{O}(-1,0).
\end{aligned}
\end{equation}

Proposition 3.2. Assume that $[\mathcal{F}] \in \mathcal{M}$ and that $H^0(\mathcal{F}(0,-1)) = \{0\}$. Assume that the maximal minors of θ_1 have a common factor. Then \mathcal{F} is an extension of the form

\begin{equation}
\begin{aligned}
0 &\rightarrow \mathcal{O}_Q \rightarrow \mathcal{F} \rightarrow \mathcal{O}_L(1,0) \rightarrow 0
\end{aligned}
\end{equation}

for a quintic curve $Q \subset \mathbb{P}^1 \times \mathbb{P}^1$ of degree $(2,3)$ and a line $L \subset \mathbb{P}^1 \times \mathbb{P}^1$ of degree $(0,1)$, or is an extension of the form

\begin{equation}
\begin{aligned}
0 &\rightarrow \mathcal{O}_Q(p) \rightarrow \mathcal{F} \rightarrow \mathcal{O}_L \rightarrow 0,
\end{aligned}
\end{equation}

where $\mathcal{O}_Q(p)$ is a non-split extension of \mathbb{C}_p by \mathcal{O}_Q for a point $p \in Q$.

Conversely, any extension \mathcal{F} as in (12) or (13) satisfying the condition $H^0(\mathcal{F}) \simeq \mathbb{C}$ is semi-stable. Let $\mathcal{M}_1 \subset \mathcal{M}$ be the subset of sheaves \mathcal{F} as in (12) satisfying the condition $H^0(\mathcal{F}) \simeq \mathbb{C}$. Let $\mathcal{M}_3 \subset \mathcal{M}$ be the subset of sheaves \mathcal{F} as in (13) satisfying the condition $H^0(\mathcal{F}) \simeq \mathbb{C}$. Then \mathcal{M}_3 and \mathcal{M}_4 are locally closed, irreducible subsets, of codimension 3, respectively, 4.

Proof. Let η_i be the maximal minor of a matrix representing θ_1 obtained by deleting column i. Denote $g = \gcd(\eta_1, \ldots, \eta_5)$. Let $(s, r) = (2, 4) - \deg(g)$. It is easy to check that the sequence

\begin{equation}
\begin{aligned}
0 &\rightarrow \mathcal{O}(-s, -r) \xrightarrow{\eta} 5\mathcal{O}(-1,-1) \xrightarrow{\theta_1} \mathcal{O}(0,-1) \oplus 3\mathcal{O}(-1,0),
\end{aligned}
\end{equation}

is exact. From (11) we see that $\text{Coker}(\theta_5)$ is a subsheaf of \mathcal{F}, hence we have the inequality

\begin{equation}
\begin{aligned}
1 - \frac{rs}{r+s} = p(\text{Coker}(\theta_5)) \leq p(\mathcal{F}) = \frac{1}{6},
\end{aligned}
\end{equation}

forcing $(s, r) = (2, 3)$ or $(s, r) = (2, 2)$. If $(s, r) = (2, 2)$, then $P_{\text{Coker}(\theta_1)} = 2m + 1$ and $\text{Coker}(\theta_1)$ is semi-stable, which follows from the semi-stability of \mathcal{F}. But, according to [10 Proposition 10], $M(2m + 1) = 0$.

This contradiction shows that $(s, r) \neq (2, 2)$, hence $(s, r) = (2, 3)$. From (11) we obtain the extension

\begin{equation}
\begin{aligned}
0 &\rightarrow \mathcal{O}_Q \rightarrow \mathcal{F} \rightarrow \text{Coker}(\theta_1) \rightarrow 0.
\end{aligned}
\end{equation}

If $\text{Coker}(\theta_1)$ has no zero-dimensional torsion, we obtain extension (12). Otherwise, the zero-dimensional torsion has length 1, its pull-back in \mathcal{F} is a semi-stable sheaf $\mathcal{O}_Q(p)$, and we obtain extension (13).

Conversely, let \mathcal{F} be an extension as in (12) satisfying $H^0(\mathcal{F}) \simeq \mathbb{C}$. Assume that \mathcal{F} had a destabilizing subsheaf \mathcal{F}'. Let G be the image of \mathcal{F}' in $\mathcal{O}_L(1,0)$. According to (12) Proposition 1, \mathcal{O}_Q is stable, hence $\chi(\mathcal{F}) \leq -1$. Since $\chi(\mathcal{F}) \geq 1$, we see that $\chi(G) \geq 2$, hence $G \simeq \mathcal{O}_L(1,0)$ and $\mathcal{O}_Q \nsubseteq \mathcal{F}'$. Thus $H^0(\mathcal{F}) = \{0\}$, hence the map $H^0(\mathcal{F}') \rightarrow H^0(\mathcal{O}_L(1,0))$ is injective. But this map factors through $H^0(\mathcal{F}') \rightarrow H^0(\mathcal{O}_L(1,0))$, which, by hypothesis, is the zero map. We deduce that $H^0(\mathcal{F}') = \{0\}$, which yields a contradiction. Thus, there is no destabilizing subsheaf. The same argument applies for extensions (13) satisfying $H^0(\mathcal{F}) \simeq \mathbb{C}$.

By Serre duality

\begin{equation}
\begin{aligned}
\text{Ext}^1(\mathcal{O}_L(1,0), \mathcal{O}_Q) &\simeq \text{Ext}^1(\mathcal{O}_Q, \mathcal{O}_L(-1,-2))^*.
\end{aligned}
\end{equation}
From the short exact sequence
\[0 \to \mathcal{O}(-2, -3) \to \mathcal{O} \to \mathcal{O}_Q \to 0, \]
we obtain the long exact sequence
\[\{0\} = H^0(\mathcal{O}_L(-1, -2)) \to H^0(\mathcal{O}_L(1, 1)) \cong \mathbb{C}^2 \to \text{Ext}^1(\mathcal{O}_Q, \mathcal{O}_L(-1, -2)) \to H^1(\mathcal{O}_L(-1, -2)) = \{0\}. \]
Thus \(\text{Ext}^1(\mathcal{O}_L(1, 0), \mathcal{O}_Q) \cong \mathbb{C}^2\), hence \(M_4\) is isomorphic to an open subset of a \(\mathbb{P}^1\)-bundle over \(\mathbb{P}^{11} \times \mathbb{P}^1\).
By Serre duality we have
\[\text{Ext}^1(\mathcal{O}_L, \mathcal{O}_Q(p)) \cong \text{Ext}^1(\mathcal{O}_Q(p), \mathcal{O}_L(-2, -2))^*. \]
Using Lemma 2.2 it is easy to see that the sheaves \(\mathcal{O}_Q(p)\) are precisely the sheaves having a resolution of the form
\[(14) \quad 0 \to \mathcal{O}(-2, -2) \oplus \mathcal{O}(-1, -3) \xrightarrow{\psi} \mathcal{O}(-1, -2) \oplus \mathcal{O} \to \mathcal{O}_Q(p) \to 0, \]
where \(\psi_{11} \neq 0, \psi_{12} \neq 0\) (cf. Proposition 3.3). From resolution (14) we obtain the long exact sequence
\[\text{Ext}^1(\mathcal{O}_Q(p), \mathcal{O}_L(-2, -2)) \to H^0(\mathcal{O}_L \oplus \mathcal{O}_L(-1, 1)) \cong \mathbb{C} \to \text{Ext}^1(\mathcal{O}_Q(p), \mathcal{O}_L(-1, -2)) \to H^1(\mathcal{O}_L \oplus \mathcal{O}_L(-1, 1)) = \{0\}. \]
Thus, \(\text{Ext}^1(\mathcal{O}_L, \mathcal{O}_Q(p)) \cong \mathbb{C}^2\), hence \(M_3\) is obviously. □

Lemma 3.3. Assume that \([\mathcal{F}] \in M\) and \(H^0(\mathcal{F}(0, -1)) = \{0\}\). Assume that the maximal minors of \(\theta_1\) have no common factor. Then \(\text{Ker}(\theta_1) \cong \mathcal{O}(-2, -4)\) and \(\text{Coker}(\theta_1) \cong \text{Ext}^2(\mathcal{O}_Z, \mathcal{O})\) with \(Z\) described below. We have an extension
\[(15) \quad 0 \to \mathcal{O}_C \to \mathcal{F} \to \text{Ext}^2(\mathcal{O}_Z, \mathcal{O}) \to 0, \]
where \(C\) is a curve of degree \((2, 4)\) and \(Z \subset C\) is a subscheme of dimension zero and length 3. Moreover, \(Z\) is not contained in a line of degree \((0, 1)\).

Proof. The fact that \(\text{Ker}(\theta_1) \cong \mathcal{O}(-2, -4)\) is well-known. The Hilbert polynomial of \(\text{Coker}(\theta_1)\) is 3, hence \(\text{Coker}(\theta_1)\) has dimension zero and length 3. From (14), we obtain the exact sequence
\[0 \to \mathcal{O}_C \to \mathcal{F} \to \text{Coker}(\theta_1) \to 0. \]
We can now apply Lemma 2.2 to obtain the extension (15) and the isomorphism \(\text{Coker}(\theta_1) \cong \text{Ext}^2(\mathcal{O}_Z, \mathcal{O})\).

Assume that \(Z\) is contained in a line \(L\) of degree \((0, 1)\). Then \(\mathcal{O}_Z \cong \text{Ext}^2(\mathcal{O}_Z, \mathcal{O})\). Choose \(\varphi_{11} \in \mathbb{C} \otimes V_2^*\) defining \(L\). Choose \(\varphi_{12} \in S^3V_1^* \otimes \mathbb{C}\) such that \(\varphi_{11}\) and \(\varphi_{12}\) define \(Z\). If \(L \not\subset C\), then \(L.C = 2\), which contradicts the fact that \(Z \subset L \cap C\). Thus \(L \subset C\), so there is \(\varphi_{22} \in S^2V_1^* \otimes S^3V_2^*\) such that \(\varphi_{11} \varphi_{22}\) is a defining polynomial of \(C\). Consider the exact sequence
\[0 \to \mathcal{O}(1, -4) \oplus \mathcal{O}(-2, -3) \xrightarrow{\varphi} \mathcal{O}(1, -3) \oplus \mathcal{O} \to \mathcal{F}' \to 0, \]
where
\[\varphi = \begin{bmatrix} \varphi_{11} & \varphi_{12} \\ 0 & \varphi_{22} \end{bmatrix}. \]
Then \(\mathcal{F}'\) is an extension of \(\mathcal{O}_Z\) by \(\mathcal{O}_C\) without zero-dimensional torsion. Since, from the exact sequence (15), \(\mathcal{F}\) is an extension of \(\mathcal{O}_Z\) by \(\mathcal{O}_C\) without zero-dimensional torsion, we can apply Lemma 2.2 to deduce that \(\mathcal{F} \cong \mathcal{F}'\). We obtain a contradiction from the isomorphisms \(\mathbb{C} \cong H^0(\mathcal{F}) \cong H^0(\mathcal{F}') \cong \mathbb{C}^3\). □

Proposition 3.4. Let \(M_0 \subset M\) be the subset of sheaves \(\mathcal{F}\) for which \(H^0(\mathcal{F}(0, -1)) = \{0\}\), \(\text{Ker}(\theta_1) \cong \mathcal{O}(-2, -4)\) and \(\text{supp}(\text{Coker}(\theta_1))\) is not contained in a line of degree \((1, 0)\) or \((0, 1)\). Then \(M_0\) is open and can be described as the subset of sheaves \(\mathcal{F}\) having a resolution of the form
\[(16) \quad 0 \to \mathcal{O}(-1, -3) \oplus \mathcal{O}(0, -3) \oplus \mathcal{O}(-1, -2) \xrightarrow{\varphi} \mathcal{O}(0, -2) \oplus \mathcal{O}(0, -2) \oplus \mathcal{O} \to \mathcal{F} \to 0, \]
where \(\varphi_{12} \) and \(\varphi_{22} \) are linearly independent and the maximal minors of the matrix \((\varphi_{ij})_{i=1,2; j=1,2,3}\) have no common factor.

Proof. Let \(\mathcal{F} \) give a point in \(M_0 \). Let \(Z \) and \(C \) be as in Lemma 3.5. By hypothesis \(Z \) is not contained in a line of degree \((1,0)\) or \((0,1)\), hence \(\text{Ext}^2(\mathcal{O}_Z, \mathcal{O}) \simeq \text{Coker}(\zeta) \) as in (1). Let \(\zeta_1, \zeta_2, \zeta_3 \) be the maximal minors of \(\zeta \). They are the defining polynomials of \(Z \), hence we can find \(\varphi_{31} \in V_1^* \otimes S^3 V_2^* \), \(\varphi_{32} \in C \otimes S^4 V_2^* \), \(\varphi_{33} \in V_1^* \otimes S^2 V_2^* \) such that \(\zeta_1 \varphi_{31} - \zeta_2 \varphi_{32} + \zeta_3 \varphi_{33} \) is the polynomial defining \(C \). Let

\[
\varphi = \begin{bmatrix} \varphi_{31} & \varphi_{32} & \varphi_{33} \end{bmatrix}.
\]

Then \(\text{Coker}(\varphi) \) is an extension of \(\text{Ext}^2(\mathcal{O}_Z, \mathcal{O}) \) by \(\mathcal{O}_C \) without zero-dimensional torsion and, by Lemma 3.5, the same is true of \(\mathcal{F} \). From Lemma 2.2 we deduce that \(\mathcal{F} \simeq \text{Coker}(\varphi) \). By Proposition 2.3 \(H^0(\mathcal{F}) \simeq \mathbb{C} \), hence the map \(H^1(\mathcal{O}(0, -3)) \rightarrow H^1(2\mathcal{O}(0, -2)) \) is injective, which is equivalent to saying that \(\varphi_{12} \) and \(\varphi_{22} \) are linearly independent. We have shown that \(\mathcal{F} \) has resolution (10).

Conversely, assume that \(\mathcal{F} \) has resolution (10). Then \(H^0(\mathcal{F}) \simeq \mathbb{C} \) because \(\varphi_{12} \) and \(\varphi_{22} \) are linearly independent. From the snake lemma we see that \(\mathcal{F} \) is an extension of \(\text{Ext}^2(\mathcal{O}_Z, \mathcal{O}) \) by \(\mathcal{O}_C \), where \(Z \) is the zero-dimensional scheme of length 3 given by the maximal minors of the matrix obtained by deleting the third row of \(\varphi \), and \(C \) is the curve of degree \((2,4)\) defined by \(\det(\varphi) \). Thus, \(H^0(\mathcal{F}) \) generates \(\mathcal{O}_C \). We will show that \(\mathcal{F} \) is semi-stable. Assume that \(\mathcal{F} \) had a destabilizing subsheaf \(\mathcal{F}' \). Then \(\chi(\mathcal{F}') < 0 \) and \(\chi(\mathcal{F}') \leq \dim_{\mathbb{C}} H^0(\mathcal{F}) = 1 \), hence \(\chi(\mathcal{F}') = 1 \), forcing \(H^0(\mathcal{F}') \simeq \mathbb{C} \). Hence \(H^0(\mathcal{F}) \) gives a point in \(M \). Since \(\varphi_{12} \) and \(\varphi_{22} \) are linearly independent, we have \(H^0(\mathcal{F}(0,1)) = \{0\} \). Since \(H^0(\mathcal{F}) \) generates \(\mathcal{O}_C \), \(\ker(\theta_1) \simeq \mathcal{O}(-2, -4) \) and \(\text{Coker}(\theta_1) \simeq \text{Ext}^2(\mathcal{O}_Z, \mathcal{O}) \). Note that \(Z \) is not contained in a line of degree \((1,0)\) or \((0,1)\). In conclusion, \(\mathcal{F} \) gives a point in \(M_0 \). \(\square \)

Proposition 3.5. The variety \(M \) is rational.

Proof. By Lemma 2.4, Lemma 2.2, Lemma 3.5 and Proposition 3.4, the open subset of \(M_0 \), given by the condition that \(Z \) consist of three distinct points, is a \(\mathbb{P}^1 \)-bundle over an open subset of \(\text{Hilb}_{\mathbb{P}^1 \times \mathbb{P}^1}(3) \), so it is rational. \(\square \)

Proposition 3.6. Let \(\mathcal{F} \) be an extension as in (10) without zero-dimensional torsion, for a curve \(C \) of degree \((2,4)\) and a subscheme \(Z \subset C \) that is the intersection of two curves of degree \((1,0)\), respectively, \((0,3)\). Then \(\mathcal{F} \) gives a point in \(M \). Let \(M'_2 \subset M \) be the subset of such sheaves \(\mathcal{F} \). Then \(M'_2 \) is closed, irreducible, of codimension 2, and can be described as the set of sheaves \(\mathcal{F} \) having a resolution of the form

\[
0 \rightarrow \mathcal{O}(-2, -1) \oplus \mathcal{O}(-1, -4) \xrightarrow{\varphi} \mathcal{O}(-1, -1) \oplus \mathcal{O} \rightarrow \mathcal{F} \rightarrow 0,
\]

with \(\varphi_{11} \neq 0 \), \(\varphi_{12} \neq 0 \).

Proof. Note that \(\mathcal{O}_Z \simeq \text{Ext}^2(\mathcal{O}_Z, \mathcal{O}) \). Let \(\mathcal{F} \) be an extension of \(\mathcal{O}_Z \) by \(\mathcal{O}_C \) without zero-dimensional torsion. Let \(\varphi_{11} \in V_1^* \otimes C \) and \(\varphi_{12} \in C \otimes S^4 V_2^* \) be the defining polynomials of \(Z \). We can find \(\varphi_{21} \in S^2 V_1^* \otimes V_2^* \) and \(\varphi_{22} \in V_1^* \otimes S^4 V_2^* \) such that \(\varphi_{11} \varphi_{22} - \varphi_{12} \varphi_{21} \) is the defining polynomial of \(C \). Then the cokernel of \(\varphi = (\varphi_{ij})_{1 \leq i,j \leq 2} \) is an extension of \(\mathcal{O}_Z \) by \(\mathcal{O}_C \) without zero-dimensional torsion, hence, by Lemma 2.2, \(\mathcal{F} \simeq \text{Coker}(\varphi) \). Conversely, arguing as in Proposition 3.4, we can show that any sheaf of the form \(\text{Coker}(\varphi) \), with \(\varphi \) as in (17), is semi-stable. \(\square \)

Proof of Theorem 7.7. By Propositions 3.1, 3.2, 3.4 and 3.6, \(M \) is the union of the subvarieties \(M_0, M_2, M'_2, M_3, M_4 \). For \([\mathcal{F}] \in M_2 \), we have \(H^0(\mathcal{F}) \simeq \mathbb{C}^2 \), whereas, for \([\mathcal{F}] \) in any of the other subvarieties, we have \(H^0(\mathcal{F}) \simeq \mathbb{C} \). Thus, \(M_2 \) is disjoint from the other subvarieties. For \([\mathcal{F}] \in M_2 \cup M'_2 \), \(H^0(\mathcal{F}) \) generates the structure sheaf of a curve \(C \) of degree \((2,4)\), whereas, for \([\mathcal{F}] \in M_3 \cup M_4 \), \(H^0(\mathcal{F}) \) generates the structure sheaf of a curve \(Q \) of degree \((2,3)\). Thus, \(M_2 \cup M'_2 \) is disjoint from \(M_3 \cup M_4 \). For \([\mathcal{F}] \in M_0 \), the support of \(\mathcal{F}/\mathcal{O}_C \) is not contained in a line of degree \((1,0)\), whereas, for \([\mathcal{F}] \in M'_2 \), the support of \(\mathcal{F}/\mathcal{O}_C \) is contained
in a line of degree $(1, 0)$. Thus, M_0 is disjoint from M'_0. For $[F] \in M_3$, F/O_Q has zero-dimensional torsion, whereas, for $[F] \in M_4$, F/O_Q is pure. Thus, M_3 is disjoint from M_4. In conclusion, the subvarieties in question form a decomposition of M.

4. Variation of the moduli spaces of α-semi-stable pairs

A coherent system $\Lambda = (\Gamma, F)$ on $\mathbb{P}^1 \times \mathbb{P}^1$ consists of a coherent algebraic sheaf F on $\mathbb{P}^1 \times \mathbb{P}^1$ and a vector subspace $\Gamma \subset H^0(F)$. Let α be a positive real number and let $P_F(m, n) = rm + sn + t$ be the Hilbert polynomial of F. We define the α-slope of Λ as the ratio

$$p_\alpha(\Lambda) = \frac{\alpha \dim \Gamma + t}{r + s}.$$

We say that Λ is α-semi-stable, respectively, α-stable, if F is pure and for any proper coherent subsystem $\Lambda' \subset \Lambda$ we have $p_\alpha(\Lambda') \leq p_\alpha(\Lambda)$, respectively, $p_\alpha(\Lambda') < p_\alpha(\Lambda)$. According to [9] and [7], for fixed positive real number α, non-negative integer k and linear polynomial $P(m, n)$, there is a coarse moduli space, denoted $Syst(\mathbb{P}^1 \times \mathbb{P}^1, \alpha, k, P)$, which is a projective scheme whose closed points are in a bijective correspondence with the set of S-equivalence classes of α-semi-stable coherent systems (Γ, F) on $\mathbb{P}^1 \times \mathbb{P}^1$ for which $\dim \Gamma = k$ and $P_\infty = P$. When $k = 0$ this space is $M(P)$. A coherent system for which $\dim \Gamma = 1$ will be called a pair. Our main concern is with the moduli space of α-semi-stable pairs $M^\alpha(P) = Syst(\mathbb{P}^1 \times \mathbb{P}^1, \alpha, 1, P)$. It is known that there are finitely many positive rational numbers $\alpha_1 < \ldots < \alpha_n$, called walls, such that the set of α-semi-stable pairs with Hilbert polynomial P remains unchanged as α varies in one of the intervals $(0, \alpha_1)$, or (α_i, α_{i+1}), or (α_n, ∞). In fact, from the definition of α-semi-stability, we can see that, if α is a wall, then there is a strictly α-semi-stable pair, i.e. a pair Λ for which there exists a subpair or quotient pair Λ', such that $p_\alpha(\Lambda) = p_\alpha(\Lambda')$. This equation has only rational solutions in α. For $\alpha \in (0, \alpha_1)$ we write $M^\infty(P) = M^\alpha(P)$. For $\alpha \in (0, 1)$ we write $M^{++}(P) = M^\alpha(P)$. If $\gcd(r + s, t) = 1$, then, from the definition of α-semi-stability, we see that $(\Gamma, F) \in M^{++}(P)$ if and only if F is semi-stable. At the other extreme we have the following proposition due to Pandharpande and Thomas.

Proposition 4.1. For $\alpha \gg 0$, a pair $\Lambda = (\Gamma, F)$ is α-semi-stable if and only if F is pure and F/O_C has dimension zero or is zero, where O_C is the subsheaf of F generated by Γ. In particular, $t \geq r + s - rs$.

The scheme $M^\infty(rm + sn + t)$ is isomorphic to the relative Hilbert scheme of zero-dimensional schemes of length $t - r - s + rs$ contained in curves of degree (s, r).

Proof. Assume that (Γ, F) is α-semi-stable for $\alpha \gg 0$. If $P_{O_C}(m, n) = r'm + s'n + t'$ with $r' + s' < r + s$, then

$$p_\alpha(\Gamma, O_C) = \frac{\alpha + t'}{r' + s'} > \frac{\alpha + t}{r + s} = p_\alpha(\Lambda) \quad \text{for } \alpha \gg 0,$$

which contradicts our hypothesis. Thus, $P_{O_C}(m, n) = rm + sn + r + s - rs$. Conversely, assume that O_C has this Hilbert polynomial and that F is pure. Let $\Lambda' = (\Gamma', F') \subset \Lambda$ be a proper coherent subsystem with $P_{F'}(m, n) = r'm + s'n + t'$. If $\Gamma' = \{0\}$, then

$$p_\alpha(\Lambda') = \frac{t'}{r' + s'} < \frac{\alpha + t}{r + s} = p_\alpha(\Lambda) \quad \text{for } \alpha \gg 0.$$

If $\Gamma' = \Gamma$, then $O_C \subset F'$, hence $r' = r$, $s' = s$, $t' < t$, and we have

$$p_\alpha(\Lambda') = \frac{\alpha + t'}{r' + s'} < \frac{\alpha + t}{r + s} = p_\alpha(\Lambda).$$

The isomorphism between $M^\infty(P)$ and the relative Hilbert scheme is a particular case of [13, Proposition B.8]. As a map, it is given by $(\Gamma, F) \mapsto (Z, C)$, where $Z \subset C$ is the subscheme introduced at Lemma 2.2.2.

Corollary 4.2. The scheme $M^\infty(4m + 2n + 1)$ is isomorphic to a fiber bundle with fiber \mathbb{P}^1 and base the Hilbert scheme of three points in $\mathbb{P}^1 \times \mathbb{P}^1$, so it is smooth.
Proof. The relative Hilbert scheme of pairs \((Z, C)\), where \(C \subseteq \mathbb{P}^1 \times \mathbb{P}^1\) is a curve of degree \((2, 4)\) and \(Z \subseteq C\) is a subscheme of dimension zero and length 3, has fiber \(\mathbb{P}(\mathbb{H}^0(I_Z(2,4)))\) over \(Z\). If \(Z\) is not contained in a line of degree \((0,1)\) or \((1,0)\), then, from Lemma 2.1, we deduce that \(\mathbb{H}^0(I_Z(2,4)) \simeq \mathbb{C}^{12}\). If \(Z\) is contained in such a line, then it is straightforward to check that \(\mathbb{H}^0(I_Z(2,4)) \simeq \mathbb{C}^{12}\).

Lemma 4.3. Assume that \(M^\alpha(rm+sn+t) \neq \emptyset\). Then \(t \geq r+s-rs\). For \(r, s\) non-negative integers, not both zero, and \(\alpha \in (0, \infty)\), we have

\[
M^\alpha(rm+sn+r+s-rs) \simeq M^\infty(rm+sn+r+s-rs).
\]

Proof. We use induction on \(r+s\). If \(r+s = 1\), or if there is no wall in \([\alpha, \infty)\), then \(M^\alpha(rm+sn+t) = M^\infty(rm+sn+t)\) and the conclusion follows from Proposition 1.4. Assume that \(r+s > 1\) and that there is a wall \(\alpha' \in [\alpha, \infty)\). There is a pair \(\Lambda \in M^\alpha(rm+sn+t)\) and a subpair or quotient pair \(\Lambda' \in M^\gamma(r'm+s'n+t')\), such that \(p_{\alpha'}(\Lambda) = p_{\alpha'}(\Lambda')\). We have \(0 \leq r' \leq r, 0 \leq s' \leq s, 1 \leq r' + s' < r + s\),

\[
\frac{\alpha' + t'}{r' + s'} = \frac{\alpha + t}{r + s}.
\]

hence

\[
t = \frac{(r + s - r' - s')\alpha' + (r + s)t'}{r' + s'} > \frac{r + s}{r' + s'}t'
\]

\[
\geq \frac{r + s}{r' + s'}(r' + s' - r's') \quad \text{(by the induction hypothesis)}
\]

\[
= r + s - \frac{r + s}{r' + s'}r's' \geq r + s - rs.
\]

If \(t = r + s - rs\), then there is no wall in \([\alpha, \infty)\), hence we have an isomorphism as in the lemma.

Proposition 4.4. With respect to \(P(m,n) = 4m + 2n + 1\) there are only two walls at \(\alpha_1 = 5\) and \(\alpha_2 = 11\).

Proof. Assume that \(\alpha\) is a wall. Then there are pairs \(\Lambda \in M^\alpha(4m+2n+1)\) and \(\Lambda' \in M^\alpha(rm+sn+t)\) such that \(\Lambda'\) is a subpair or a quotient pair of \(\Lambda\) and

\[
(18) \quad \frac{\alpha + t}{r + s} = \frac{\alpha + 1}{6}.
\]

Here \(0 \leq r \leq 4, 0 \leq s \leq 2, 1 \leq r + s \leq 5\). By Lemma 1.3, we also have \(t \geq r + s - rs\). Assume that \(r = 3, s = 2, t \geq -1\). Equation (18) has solutions \(\alpha_1 = 5\) for \(t = 0\) and \(\alpha_2 = 11\) for \(t = -1\). Assume that \(r = 2, s = 2, t \geq 0\). Equation (18) has solution \(\alpha = 2\) for \(t = 0\). In this case either \(\Lambda \in \text{Ext}^1(\Lambda', \Lambda'')\) or \(\Lambda \in \text{Ext}^1(\Lambda'', \Lambda')\) for some \(\Lambda'' \in M(2m + 1)\). However, according to Proposition 10, \(M(2m + 1) = \emptyset\). Thus, there is no wall at \(\alpha = 2\). For all other choices of \(r\) and \(s\) equation (18) has no positive solution in \(\alpha\).

Denote \(M^\alpha = M^\alpha(4m+2n+1)\). For \(\alpha \in (11, \infty)\), write \(M^\alpha = M^\infty\). For \(\alpha \in (5,11)\), write \(M^\alpha = M^{11-}\). For \(\alpha \in (0,5)\), write \(M^\alpha = M^{0+}\). The inclusions of sets of \(\alpha\)-semi-stable pairs induce the birational morphisms

\[
\begin{align*}
M^\infty &\to M^{11-} \\
M^{11-} &\to M^{5+} \\
M^{5+} &\to M^{0+}
\end{align*}
\]

In view of Theorem 4.11, the above are flipping diagrams (consult [12, Remark 5] for details).
Remark 4.5. From the proof of Proposition 4.4, we see that an S-equivalence class of strictly α-semistable elements in \(M^{11} \) consists of (split or non-split) extensions of \((\Gamma_1, E_1)\) by \((0, O_L(1,0))\), together with the extensions of \((0, O_L(1,0))\) by \((\Gamma_1, E_1)\). Here \((\Gamma_1, E_1)\) lies in \(M^{11}(3m + 2n -1) \) and \(L \subset \mathbb{P}^1 \times \mathbb{P}^1 \) is a line of degree \((0,1)\). We say, for short, that the strictly \(\alpha \)-semi-stable elements of \(M^{11} \) are of the form \((\Gamma, E) \oplus (0, O_L(1,0))\). According to Lemma 4.3 and Proposition 4.1, \(E \) is semi-stable, in fact \([\alpha] \approx O_Q \) for a quintic curve \(Q \subset \mathbb{P}^1 \times \mathbb{P}^1 \) of degree \((2,3)\). Thus, \(M^{11}(3m + 2n -1) \approx \mathbb{P}^{11} \).

Again from the proof of Proposition 4.4, we see that the strictly \(\alpha \)-semi-stable elements in \(M^5 \) are of the form \((\Gamma, E) \oplus (0, O_L)\), where \((\Gamma, E) \in M^5(3m + 2n)\). We claim that \(M^5(3m + 2n) \approx M^5(3m + 2n) \). To see this, we will show that there are no walls relative to the Polynomial \(P(m,n) = 3m + 2n \). As in the proof of Proposition 4.4, we attempt to solve the equation

\[
\frac{\alpha + t}{r + s} = \frac{\alpha}{5}
\]

with \(0 \leq r \leq 3, 0 \leq s \leq 2, 1 \leq r + s \leq 4, t \geq r + s - rs\). For all choices of \(r \) and \(s \) we have \(t \geq 0 \), hence the above equation has no positive solutions in \(\alpha \). From Proposition 4.4 we see that \(M^5(3m + 2n) \) isomorphic to the universal quintic of degree \((2,3)\), so it is a \(\mathbb{P}^{10} \)-bundle over \(\mathbb{P}^1 \times \mathbb{P}^1 \). More precisely, the elements in \(M^5(3m + 2n) \) are of the form \((\mathbb{H}^0(O_Q(p)), O_Q(p))\), where \(O_Q(p) \) is a non-split extension of \(C_p \) by \(O_Q \).

Proposition 4.6. Let \(Q \subset \mathbb{P}^1 \times \mathbb{P}^1 \) be a quintic curve of degree \((2,3)\), let \(p \in Q \) be a point, let \(O_Q(p) \) be a non-split extension of \(C_p \) by \(O_Q \), and let \(L \subset \mathbb{P}^1 \times \mathbb{P}^1 \) be a line of degree \((0,1)\). Then any non-split extension sheaf \(F \) as in (1.2) is semi-stable. The set of such sheaves is the closure of \(\mathcal{M}_3 \) in \(\mathcal{M} \). The boundary \(\mathcal{M}_3 \setminus \mathcal{M}_3 \) is contained in \(\mathcal{M}_2 \), more precisely, it consists of extensions as in \([7]\) in which \(C = Q \cup L \) and \(p \in Q \).

Proof. The case when \(H^0(F) \simeq C \) was examined at Proposition 3.2, so we need only consider the case when \(H^0(F) \simeq C^2 \). In this case the canonical morphism \(\mathcal{O} \to O_L \) lifts to a morphism \(\mathcal{O} \to F \), hence we can combine resolution (1.4) with the standard resolution of \(O_L \) to obtain the resolution

\[
0 \to O(-2, -2) \oplus O(-1, -3) \oplus O(0, -1) \xrightarrow{\varphi} O(-1, -2) \oplus O \oplus O \to F \to 0,
\]

where \(\varphi \) is given by the equations \(\varphi_{11} \neq 0, \varphi_{12} \neq 0, \) and \(\varphi_{23} \) and \(\varphi_{33} \) are linearly independent. Note that \(p \) is given by the equations \(\varphi_{11} = 0, \varphi_{12} = 0 \). From the snake lemma, we obtain an extension

\[
0 \to F' \to F \to C_p \to 0,
\]

where \(F' \) is given by the resolution

\[
0 \to O(-2, -3) \oplus O(0, -1) \xrightarrow{\varphi'} 2O \to F' \to 0,
\]

where \(\varphi' = \begin{bmatrix} \varphi_{11} & \varphi_{23} \\ \varphi_{12} & \varphi_{33} \end{bmatrix} \), \(\varphi'_{11} = \varphi_{11} \varphi_{22} - \varphi_{12} \varphi_{21} \).

We claim that \(F' \simeq O_C(0,1) \), where \(C = Q \cup L \). In view of Proposition 3.2, the claim implies that \(F \) is semi-stable, in fact \([F] \in \mathcal{M}_2 \). It remains to prove the claim. Let \(K \) be the kernel of the canonical morphism \(O_C \to O_Q \). Since \(K \) has no zero-dimensional torsion and \(P_K = m - 1, K \simeq O_L(-2,0) \). Applying \(\mathcal{H}om(-, \omega) \) to the exact sequence

\[
0 \to O_L(-2,0) \to O_C(0,1) \to O_Q(0,1) \to 0,
\]

yields the exact sequence

\[
0 \to \mathcal{E}xt^1(O_Q(0,1), \omega) \to \mathcal{E}xt^1(O_C(0,1), \omega) \to \mathcal{E}xt^1(O_L(-2,0), \omega) \to 0,
\]
Proposition 4.7. The preimages of the sets of strictly semi-stable elements are the flipping loci:

Assume now that \(\Gamma \in \Lambda \), then \(\Lambda \) is semi-stable. We have in this case

\[
\begin{align*}
F^\infty &= \rho_\infty^{-1}(M^{11}(3m+2n-1) \times M(m+2)) \subset M^{\infty}, \\
F^{11} &= \rho_{11}^{-1}(M^{11}(3m+2n-1) \times M(m+2)) \subset M^{11^-}, \\
F^{5} &= \rho_5^{-1}(M^5(3m+2n) \times M(m+1)) \subset M^{5^+}, \\
F^{0} &= \rho_0^{-1}(M^5(3m+2n) \times M(m+1)) \subset M^{0^+}.
\end{align*}
\]

\textbf{Proposition 4.7.} Consider \(\Lambda_1 \in M^{11}(3n+2n-1) \), \(\Lambda_2 \in M(m+2), \Lambda_3 \in M^{5}(3m+2n), \text{ and } \Lambda_4 \in M(m+1) \).

(i) Over a point \((\Lambda_1, \Lambda_2)\), \(F^{\infty} \) has fiber \(\mathbb{P}(\text{Ext}^1(\Lambda_1, \Lambda_2)) \).

(ii) Over a point \((\Lambda_1, \Lambda_2)\), \(F^{11} \) has fiber \(\mathbb{P}(\text{Ext}^1(\Lambda_2, \Lambda_1)) \).

(iii) Over a point \((\Lambda_3, \Lambda_4)\), \(F^{5} \) has fiber \(\mathbb{P}(\text{Ext}^1(\Lambda_3, \Lambda_4)) \).

(iv) Over a point \((\Lambda_3, \Lambda_4)\), \(F^{0} \) has fiber \(\mathbb{P}(\text{Ext}^1(\Lambda_4, \Lambda_3)) \).

\textbf{Proof.} (i) We refer to the argument at [12] Remark 2.

(ii) Assume that \(\Lambda = (\Gamma, F) \in F^{11} \) lies over \((\Lambda_1, \Lambda_2)\). Then \(\Lambda \) is a non-split extension of \(\Lambda_1 \) by \(\Lambda_2 \), or, vice versa, of \(\Lambda_2 \) by \(\Lambda_1 \). If \(\Lambda_2 \subset \Lambda \), then

\[
p_\alpha(\Lambda_2) = 2 > \frac{\alpha + 1}{6} = p_\alpha(\Lambda) \quad \text{for } \alpha \in (5, 11),
\]

which violates the semi-stability of \(\Lambda \). Thus \(\Lambda \in \mathbb{P}(\text{Ext}^1(\Lambda_2, \Lambda_1)) \). Conversely, given such \(\Lambda \), we need to show that \(\Lambda \in M^a \) for \(\alpha \in (5, 11) \). Write \(\Lambda_1 = (\Gamma_1, O_Q), \Lambda_2 = (0, O_L(1, 0)) \). We have a non-split extension of sheaves

\[
0 \longrightarrow O_Q \longrightarrow \mathcal{F} \longrightarrow O_L(1, 0) \longrightarrow 0.
\]

Let \(\Lambda' = (\Gamma', F') \) be a proper coherent subsystem of \(\Lambda \). Let \(\mathcal{G} \) be the image of \(\mathcal{F} \) in \(O_L(1, 0) \). If \(\mathcal{F}' \cap O_Q = \{0\} \), then \(\mathcal{G} \neq O_L(1, 0) \), forcing \(\chi(F') = \chi(G) \leq 1 \). If \(\mathcal{F}' \cap O_Q \neq \{0\} \), then \(\chi(F' \cap O_Q) \leq -1 \) because, by virtue of [11] Lemma 9], \(O_Q \) is semi-stable. We have in this case \(\chi(F') = \chi(F' \cap O_Q) + \chi(G) \leq -1 + 2 = 1 \). If \(\Gamma' = \{0\} \), then

\[
p_\alpha(\Lambda') = p_\alpha(\mathcal{F}') \leq 1 < \frac{\alpha + 1}{6} = p_\alpha(\Lambda) \quad \text{for } \alpha \in (5, 11).
\]

Assume now that \(\Gamma' \neq \{0\} \). Then \(\Gamma' = \Gamma = H^0(O_Q) \), hence \(O_Q \subset F' \). If \(O_Q = F' \), then

\[
p_\alpha(\Lambda') = \frac{\alpha - 1}{5} < \frac{\alpha + 1}{6} = p_\alpha(\Lambda) \quad \text{for } \alpha \in (5, 11).
\]

If \(O_Q \not\subset F' \), then \(r(F') + s(F') = 6 \), hence \(\chi(F') \leq 0 \), and hence

\[
p_\alpha(\Lambda') = \frac{\alpha + \chi(F')}{6} \leq \frac{\alpha}{6} < \frac{\alpha + 1}{6} = p_\alpha(\Lambda).
\]
In all cases we have the inequality $p_\alpha(\Lambda') < p_\alpha(\Lambda)$, hence $\Lambda \in \mathbf{M}^\alpha$, for $\alpha \in (5,11)$.

(iii) We will show that every $\Lambda = (\Gamma, \mathcal{F}) \in \mathbb{P}(\text{Ext}^1(\Lambda_3, \Lambda_4))$ gives a point in \mathbf{M}^α for $\alpha \in (5,11)$. Write $\Lambda_3 = (\Gamma_3, \mathcal{O}_Q(p))$, $\Lambda_4 = (0, \mathcal{O}_L)$. We have a, possibly split, extension of sheaves

$$0 \to \mathcal{O}_L \to \mathcal{F} \to \mathcal{O}_Q(p) \to 0.$$

Let $\Lambda' = (\Gamma', \mathcal{F}')$ be a proper coherent subsystem of Λ. Let \mathcal{G} be the image of \mathcal{F}' in $\mathcal{O}_Q(p)$. Using the fact that \mathcal{O}_Q is semi-stable, it is easy to see that $\mathcal{O}_Q(p)$ is semi-stable, as well. Thus, $\chi(\mathcal{G}) \leq 0$, hence $\chi(\mathcal{F}') = \chi(\mathcal{F}' \cap \mathcal{O}_L) + \chi(\mathcal{G}) \leq 1 + 0 = 1$. If $\Gamma' = \{0\}$, then

$$p_\alpha(\Lambda') = p(\mathcal{F'}) \leq 1 < \frac{\alpha + 1}{6} = p_\alpha(\Lambda) \quad \text{for } \alpha \in (5,11).$$

Assume now that $\Gamma' \neq \{0\}$, i.e. $\Gamma' = \Gamma$. Then $\mathcal{O}_Q \subset \mathcal{G}$. If $\mathcal{F}' \cap \mathcal{O}_L = \{0\}$, then $\mathcal{F}' \not\cong \mathcal{O}_Q(p)$, otherwise $\Lambda \simeq \Lambda_3 \oplus \Lambda_4$. In this case $\mathcal{F}' \simeq \mathcal{O}_Q$, hence

$$p_\alpha(\Lambda') = \frac{\alpha - 1}{5} < \frac{\alpha + 1}{6} = p_\alpha(\Lambda) \quad \text{for } \alpha \in (5,11).$$

Assume now that $\mathcal{F}' \cap \mathcal{O}_L \neq \{0\}$. Then $r(\mathcal{F}') + s(\mathcal{F}') = 6$, hence $\chi(\mathcal{F}') \leq 0$, and hence $p_\alpha(\Lambda') < p_\alpha(\Lambda)$.

(iv) If $(\Gamma, \mathcal{F}) \in \mathbb{P}(\text{Ext}^1(\Lambda_1, \Lambda_4))$, then we have the non-split extension (13), hence, by Proposition 4.6, \mathcal{F} is semi-stable. Thus $(\Gamma, \mathcal{F}) \in \mathbf{M}^{p+}$, i.e. $(\Gamma, \mathcal{F}) \in \mathbb{F}^0$.

Proposition 4.8. ([7 Corollaire 1.6]) Let $\Lambda = (\Gamma, \mathcal{F})$ and $\Lambda' = (\Gamma', \mathcal{F}')$ be two coherent systems on a separated scheme of finite type over \mathbb{C}. Then there is a long exact sequence

$$0 \to \text{Hom}(\Lambda, \Lambda') \to \text{Hom}(\mathcal{F}, \mathcal{F}') \to \text{Hom}(\Gamma, \text{H}^0(\mathcal{F}')/\mathcal{I}') \to \text{Ext}^1(\Lambda, \Lambda') \to \text{Ext}^1(\mathcal{F}, \mathcal{F}') \to \text{Hom}(\Gamma, \text{H}^1(\mathcal{F}')) \to \text{Ext}^2(\Lambda, \Lambda') \to \text{Ext}^2(\mathcal{F}, \mathcal{F}') \to \text{Hom}(\Gamma, \text{H}^2(\mathcal{F}')).$$

Proposition 4.9. The flipping loci F^∞, F^{11}, F^5, F^0 are smooth bundles with fibers \mathbb{P}^3, \mathbb{P}^1, \mathbb{P}^2, respectively, \mathbb{P}^1.

Proof. We need to determine the extension spaces of pairs occurring at Proposition 4.7.

(i) Choose $\Lambda_1 = (\Gamma_1, \mathcal{O}_Q)$ and $\Lambda_2 = (0, \mathcal{O}_L(1,0))$. From Proposition 4.8 we have the long exact sequence

$$0 \to \text{Hom}(\Lambda_1, \Lambda_2) \to \text{Hom}(\mathcal{O}_Q, \mathcal{O}_L(1,0)) \to \text{Hom}(\Gamma_1, \text{H}^0(\mathcal{O}_L(1,0))) \simeq \mathbb{C}^2$$

$$\to \text{Ext}^1(\Lambda_1, \Lambda_2) \to \text{Ext}^1(\mathcal{O}_Q, \mathcal{O}_L(1,0)) \to \text{Hom}(\Gamma_1, \text{H}^1(\mathcal{O}_L(1,0))) = \{0\}.$$

For $\alpha \gg 0$, Λ_1 and Λ_2 are α-stable coherent systems of different slopes, hence $\text{Hom}(\Lambda_1, \Lambda_2) = \{0\}$. From the short exact sequence

$$0 \to \mathcal{O}(-2,-3) \to \mathcal{O} \to \mathcal{O}_Q \to 0,$$

we obtain the long exact sequence

$$0 \to \text{Hom}(\mathcal{O}_Q, \mathcal{O}_L(1,0)) \to \text{H}^0(\mathcal{O}_L(1,0)) \simeq \mathbb{C}^2 \to \text{H}^0(\mathcal{O}_L(3,3)) \simeq \mathbb{C}^4$$

$$\to \text{Ext}^1(\mathcal{O}_Q, \mathcal{O}_L(1,0)) \to \text{H}^1(\mathcal{O}_L(1,0)) = \{0\}.$$

Combining the last two long exact sequences, we obtain the isomorphism $\text{Ext}^1(\Lambda_1, \Lambda_2) \simeq \mathbb{C}^4$.

(ii) From Proposition 4.8 we have the exact sequence

$$\{0\} = \text{Hom}(0, \text{H}^0(\mathcal{O}_Q)/\Gamma_1) \to \text{Ext}^1(\Lambda_2, \Lambda_1) \to \text{Ext}^1(\mathcal{O}_L(1,0), \mathcal{O}_Q) \simeq \text{Ext}^1(\mathcal{O}_Q, \mathcal{O}_L(-1,-2))^* \to \text{Hom}(0, \text{H}^1(\mathcal{O}_Q)) = \{0\}.$$
From resolution \([12]\), we obtain the exact sequence
\[
\{0\} = H^0(O_L(-1, -2)) \to H^0(O_L(1, 1)) \cong \mathbb{C}^2 \to \text{Ext}^1(O_Q, O_L(-1, -2)) \to H^1(O_L(-1, -2)) = \{0\}.
\]
Combining the last two exact sequences, we obtain the isomorphism \(\text{Ext}^1(\Lambda_2, \Lambda_1) \cong \mathbb{C}^2\).

(iii) Choose \(\Lambda_3 = (\Gamma, O_Q(p))\) and \(\Lambda_4 = (0, O_L)\). From Proposition \([13]\) we have the long exact sequence
\[
\{0\} = \text{Hom}(\Lambda_3, \Lambda_4) \to \text{Hom}(O_Q(p), O_L) \to \text{Hom}(\Gamma, H^0(O_Q)) \cong \mathbb{C} \to \text{Ext}^1(\Lambda_3, \Lambda_4) \to \text{Ext}^1(O_Q(p), O_L) \to \text{Hom}(\Gamma, H^1(O_Q)) = \{0\}.
\]
From resolution \([14]\) we obtain the exact sequence
\[
0 \to \text{Hom}(O_Q(p), O_L) \to H^0(O_L(1, 2) \oplus O_L) \cong \mathbb{C}^3 \to H^0(O_L(2, 2) \oplus O_L(1, 3)) \cong \mathbb{C}^5
\]
\[
\to \text{Ext}^1(O_Q(p), O_L) \to H^1(O_L(1, 2) \oplus O_L) = \{0\}.
\]
Combining the last two exact sequences, it follows that \(\text{Ext}^1(\Lambda_3, \Lambda_4) \cong \mathbb{C}^3\).

(iv) From Proposition \([15]\) we obtain the exact sequence
\[
\{0\} = \text{Hom}(0, H^0(O_Q(p))/\Gamma) \to \text{Ext}^1(\Lambda_4, \Lambda_3) \to \text{Ext}^1(O_L, O_Q(p)) \cong \text{Ext}^1(O_Q(p), O_L(-2, -2))^* \to \text{Hom}(0, H^1(O_Q(p))) = \{0\}.
\]
From resolution \([14]\) we obtain the exact sequence
\[
\{0\} = H^0(O_L(-1, 0) \oplus O_L(-2, -2)) \to H^0(O_L \oplus O_L(-1, 1)) \cong \mathbb{C} \to \text{Ext}^1(O_Q(p), O_L(-2, -2))
\]
\[
\to H^1(O_L(-1, 0) \oplus O_L(-2, -2)) \cong \mathbb{C} \to H^1(O_L \oplus O_L(-1, 1)) = \{0\}.
\]
Combining the last two exact sequences, it follows that \(\text{Ext}^1(\Lambda_4, \Lambda_3) \cong \mathbb{C}^2\).

\[\square\]

Lemma 4.10. (i) For \(\Lambda \in F^{11}\) we have \(\text{Ext}^2(\Lambda, \Lambda) = \{0\}\).

(ii) For \(\Lambda \in F^0\) we have \(\text{Ext}^2(\Lambda, \Lambda) = \{0\}\).

Proof. (i) In view of the exact sequence
\[
0 \to \Lambda_1 \to \Lambda \to \Lambda_2 \to 0
\]
it is enough to show that \(\text{Ext}^2(\Lambda_1, \Lambda_j) = \{0\}\) for \(i, j = 1, 2\). From Proposition \([4.8]\) we have the exact sequence
\[
\{0\} = \text{Hom}(\Gamma_1, H^1(O_L(1, 0))) \to \text{Ext}^2(\Lambda_1, \Lambda_2) \to \text{Ext}^2(O_Q, O_L(1, 0)) \cong \text{Hom}(O_L(1, 0), O_Q(-2, -2))^*.
\]
The group on the right vanishes because \(H^0(O_Q(-3, -2)) = \{0\}\). Thus, \(\text{Ext}^2(\Lambda_1, \Lambda_2) = \{0\}\). From the exact sequence
\[
\{0\} = \text{Hom}(0, H^1(O_Q)) \to \text{Ext}^2(A_2, A_1) \to \text{Ext}^2(O_L(1, 0), O_Q) \cong \text{Hom}(O_Q, O_L(-1, -2))^* = \{0\}
\]
we obtain the vanishing of \(\text{Ext}^2(\Lambda_2, \Lambda_1)\). From the exact sequence
\[
\{0\} = \text{Hom}(0, H^1(O_L(1, 0))) \to \text{Ext}^2(A_2, A_2)
\]
\[
\to \text{Ext}^2(O_L(1, 0), O_L(1, 0)) \cong \text{Hom}(O_L(1, 0), O_L(-1, -2))^* = \{0\}
\]
we obtain the vanishing of \(\text{Ext}^2(\Lambda_2, \Lambda_2)\). From Proposition \([15]\) we have the exact sequence
\[
\{0\} = \text{Hom}(\Gamma_1, H^0(O_Q))/\Gamma_1) \to \text{Ext}^1(\Lambda_1, \Lambda_1) \to \text{Ext}^1(O_Q, O_Q) \to \text{Hom}(\Gamma_1, H^1(O_Q)) \cong \mathbb{C}^2
\]
\[
\to \text{Ext}^2(\Lambda_1, \Lambda_1) \to \text{Ext}^2(O_Q, O_Q) \cong \text{Hom}(O_Q, O_Q(-2, -2))^* = \{0\}.
\]
According to [7, Théorème 3.12], \(\text{Ext}^1(\Lambda_1, \Lambda_1) \) is isomorphic to the tangent space of \(M^1(3m + 2n - 1) \cong \mathbb{P}^{11} \) (see Remark 4.5) at \(\Lambda_1 \), so it is isomorphic to \(\mathbb{C}^{11} \). From resolution (19), we obtain the exact sequence

\[
0 \to \text{Hom}(O_Q, O_Q) \cong H^0(O_Q) \to H^0(O_Q(2, 3)) \cong \mathbb{C}^{11} \\
\to \text{Ext}^1(O_Q, O_Q) \to H^1(O_Q) \cong \mathbb{C}^2 \to H^1(O_Q(2, 3)) = \{0\}.
\]

Combining the last two exact sequences we obtain the vanishing of \(\text{Ext}^2(\Lambda_1, \Lambda_1) \).

(ii) As above, we need to prove that \(\text{Ext}^2(\Lambda_i, \Lambda_j) = \{0\} \) for \(i, j = 3, 4 \). From Proposition 4.8, we have the exact sequence

\[
\{0\} = \text{Hom}(\Gamma, H^1(O_L)) \to \text{Ext}^2(\Lambda_3, \Lambda_4) \to \text{Ext}^2(O_Q(p), O_L) \cong \text{Hom}(O_L, O_Q(p)(-2, -2))^* = \{0\}.
\]

Thus, \(\text{Ext}^2(\Lambda_3, \Lambda_4) = \{0\} \). From the exact sequence

\[
\{0\} = \text{Hom}(0, H^1(O_Q(p))) \to \text{Ext}^2(\Lambda_4, \Lambda_3) \to \text{Ext}^2(O_L, O_Q(p)) \cong \text{Hom}(O_Q(p), O_L(-2, -2))^* = \{0\}
\]

we obtain the vanishing of \(\text{Ext}^2(\Lambda_4, \Lambda_3) \). From Proposition 4.8, we have the exact sequence

\[
\{0\} = \text{Hom}(\Gamma, H^0(O_Q(p))/\Gamma) \\
\to \text{Ext}^1(\Lambda_3, \Lambda_3) \to \text{Ext}^1(O_Q(p), O_Q(p)) \to \text{Hom}(\Gamma, H^1(O_Q(p))) \cong \mathbb{C} \\
\to \text{Ext}^2(\Lambda_3, \Lambda_3) \to \text{Ext}^2(O_Q(p), O_Q(p)) \cong \text{Hom}(O_Q(p), O_Q(p)(-2, -2))^* = \{0\}.
\]

From resolution (14), we obtain the exact sequence

\[
0 \to \text{Hom}(O_Q(p), O_Q(p)) \to H^0(O_Q(p)(1, 2)) \oplus H^0(O_Q(p)) \to H^0(O_Q(p)(2, 2)) \oplus H^0(O_Q(p)(1, 3)) \\
\to \text{Ext}^1(O_Q(p), O_Q(p)) \to H^1(O_Q(p)(1, 2)) \oplus H^1(O_Q(p)) \to H^1(O_Q(p)(2, 2)) \oplus H^1(O_Q(p)(1, 3)) \to 0.
\]

Since \(\text{Hom}(O_Q(p), O_Q(p)) \cong \mathbb{C} \), it follows that

\[
\dim_{\mathbb{C}} \text{Ext}^1(O_Q(p), O_Q(p)) = 1 - \chi(O_Q(p)(1, 2)) - \chi(O_Q(p)) + \chi(O_Q(p)(2, 2)) + \chi(O_Q(p)(1, 3)) = 13.
\]

According to [7, Théorème 3.12], \(\text{Ext}^1(\Lambda_3, \Lambda_3) \) is isomorphic to the tangent space at \(\Lambda_3 \) of \(M^5(3m + 2n) \), which, according to Remark 4.5, is smooth of dimension 12. We obtain the vanishing of \(\text{Ext}^2(\Lambda_3, \Lambda_3) \).

Theorem 4.11. Let \(M^\alpha \) be the moduli space of \(\alpha \)-semi-stable pairs on \(\mathbb{P}^1 \times \mathbb{P}^1 \) with Hilbert polynomial \(P(m, n) = 4m + 2n + 1 \). We have the following blowing up diagrams

\[
\begin{array}{c}
\beta_{11} \downarrow \\
\beta_{11} \downarrow \\
M^\infty & M^{11} & M^{11} & M^{5+} & M^0+ \\
\beta_{11} \downarrow & \beta_{11} \downarrow & \beta_5 \downarrow & \beta_5 \downarrow & \beta_0 \downarrow \\
M^{11} & M^{5+} & M^{5+} & M^{5+} & M^0+
\end{array}
\]

Here \(\beta_{11} \) is the blow-up along \(F^\infty \) and \(\beta_{11} \) is the contraction of the exceptional divisor \(F^\infty \) in the direction of \(\mathbb{P}^3 \), where we view \(F^\infty \) as a \(\mathbb{P}^3 \times \mathbb{P}^1 \)-bundle with base \(M^{11}(3m + 2n - 1) \times M(m + 2) \). Likewise, \(\beta_5 \) is the blow-up along \(F^5 \) and \(\beta_0 \) is the contraction of the exceptional divisor \(F^5 \) in the direction of \(\mathbb{P}^2 \), where we view \(F^5 \) as a \(\mathbb{P}^2 \times \mathbb{P}^1 \)-bundle over \(M^5(3m + 2n) \times M(m + 1) \).
Proof. A birational morphism $\beta_{11}: \tilde{M}^{\infty} \to M^{11-}$ can be constructed as at [3, Theorem 3.3] such that β_{11} contracts \tilde{F}^{∞} in the direction of P^3, β_{11} is an isomorphism outside F^{11}, and $\beta_{11}^{-1}(x) \simeq \mathbb{P}^3$ for any $x \in F^{11}$. We now apply the Universal Property of the blow-up [3, p. 604] to deduce that β_{11} is a blow-up with center F^{11}. For this we need to know that M^{11-} and F^{11} are smooth. By Corollary [4.2], M^{11-} is smooth, so by Proposition [3.1], the blowing up center F^{11} is smooth, hence M^{11-} is smooth, too. Since β_{11} is an isomorphism outside F^{11}, $M^{11-} \setminus F^{11}$ is smooth. Since all points of M^{11-} are α-stable, we can apply the Smoothness Criterion [7, Théorème 3.12], which states that $\Lambda \in M^{11-}$ is a smooth point if $\text{Ext}^2(\Lambda, \Lambda) = \{0\}$. Thus, in view of Lemma [4.10(i)], M^{11-} is smooth at every point of F^{11}. The smoothness of F^{11} was proved at Proposition [4.9].

For the second blow-up diagram we reason analogously, using the facts that F^5 and F^0 are smooth, and using Lemma [4.10(ii)]. □

According to [7, Théorème 4.3], there is a universal family $(\tilde{\Gamma}, \tilde{F})$ of coherent systems on $M^{0+} \times \mathbb{P}^1 \times \mathbb{P}^1$. In particular, \tilde{F} is a family of semi-stable sheaves on $\mathbb{P}^1 \times \mathbb{P}^1$ with Hilbert polynomial $4m + 2n + 1$, which is flat over M^{0+}. It induces the so called forgetful morphism $\phi: M^{0+} \to M$. We have $\phi(\Gamma, F) = [F]$. Proposition 4.12. The forgetful morphism $\phi: M^{0+} \to M$ is a blow-up with center the Brill-Noether locus M_2.

Proof. According to Proposition [2.3 ii), for $[F] \in M \setminus M_2$ we have $H^0(F) \simeq \mathbb{C}$, hence $\phi^{-1}([F]) = (H^0(F), F)$ is a single point. Thus, ϕ is an isomorphism away from M_2. According to Proposition [4.11] for $[F] \in M_2$ we have $H^0(F) \simeq \mathbb{C}^2$, hence $\phi^{-1}([F]) \simeq \mathbb{P}^1$. Taking into account that M and M_2 are smooth, we can apply the Universal Property of the blow-up [6, p. 604] to conclude that ϕ is a blow-up with center M_2. □

Proof of Theorem 4.11. By virtue of Proposition 4.12 we have the relation

$$P(M) = P(M^{0+}) - \xi P(M_2).$$

According to Proposition 5.1 we have the relation

$$P(M_2) = P(\mathbb{P}^1) P(\mathbb{P}^1 \times \mathbb{P}^1).$$

By virtue of Theorem 4.11 we have the relation

$$P(M^{0+}) = P(M^{\infty}) \left(P(\mathbb{P}^1) - P(\mathbb{P}^3) \right) P(M^{11}(3m + 2n - 1) \times M(m + 2))$$

$$+ \left(P(\mathbb{P}^1) - P(\mathbb{P}^2) \right) P(M^5(3m + 2n) \times M(m + 1)).$$

In view of Corollary 4.2 and Remark 4.5 we have the relation

$$P(M^{0+}) = P(\mathbb{P}^{11}) P(\text{Hilb}_{\mathbb{P}^1 \times \mathbb{P}^1}(3)) + (P(\mathbb{P}^1) - P(\mathbb{P}^3)) P(\mathbb{P}^{11}) P(\mathbb{P}^1) + (P(\mathbb{P}^1) - P(\mathbb{P}^2)) P(\mathbb{P}^{10}) P(\mathbb{P}^1 \times \mathbb{P}^1) P(\mathbb{P}^1).$$

According to [5, Theorem 0.1], we have the equation

$$P(\text{Hilb}_{\mathbb{P}^1 \times \mathbb{P}^1}(3)) = \xi^6 + 3\xi^5 + 9\xi^4 + 14\xi^3 + 9\xi^2 + 3\xi + 1.$$

The final result reads

$$P(M) = \frac{\xi^{12} - 1}{\xi - 1}(\xi^6 + 3\xi^5 + 9\xi^4 + 14\xi^3 + 9\xi^2 + 3\xi + 1) - (\xi^3 + \xi^2) \frac{\xi^{12} - 1}{\xi - 1}(\xi + 1)$$

$$- \xi^2 \frac{\xi^{11} - 1}{\xi - 1}(\xi + 1)^3 - \xi \frac{\xi^{14} - 1}{\xi - 1}(\xi + 1)^2. \quad \square$$

Acknowledgement. The author would like to thank Jean-Marc Drézet for several helpful discussions.
References

[1] E. Ballico, S. Huh. Stable sheaves on a smooth quadric surface with linear Hilbert bipolynomials. Sci. World J. (2014), article ID 346126.
[2] N. P. Buchdahl. Stable 2-bundles on Hirzebruch surfaces. Math. Z. 194 (1987), 143–152.
[3] J. Choi, K. Chung. Moduli spaces of α-stable pairs and wall-crossing on \mathbb{P}^2. J. Math. Soc. Japan 68 (2016), 685–709.
[4] J. Choi, S. Katz, A. Klemm. The refined BPS index from stable pair invariants. Commun. Math. Phys. 328 (2014), 903–954.
[5] L. Göttsche. The Betti numbers of the Hilbert scheme of points on a smooth projective surface. Math. Ann. 286 (1990), 193–207.
[6] P. Griffiths, J. Harris. Principles of Algebraic Geometry. John Wiley & Sons, New York, 1994.
[7] M. He. Espaces de modules de systèmes cohérents. Int. J. Math. 9 (1998), 545–598.
[8] S. Katz. Genus zero Gopakumar-Vafa invariants of contractible curves. J. Differential Geometry 79 (2008), 185–195.
[9] J. Le Potier. Systèmes cohérents et structures de niveau. Astérisque 214, 1993.
[10] J. Le Potier. Faisceaux semi-stables de dimension 1 sur le plan projectif. Rev. Roumaine Math. Pures Appl. 38 (1993), 635–678.
[11] M. Maican. A duality result for moduli spaces of semistable sheaves supported on projective curves. Rend. Sem. Mat. Univ. Padova 123 (2010), 55–68.
[12] M. Maican. Moduli of sheaves supported on curves of genus two in a quadric surface. Geom. Dedicata 199 (2019), 307–334.
[13] R. Pandharipande, R. P. Thomas. Stable pairs and BPS invariants. J. Amer. Math. Soc. 23 (2010), 267–297.

Institute of Mathematics of the Romanian Academy, Calea Grivitei 21, Bucharest 010702, Romania
E-mail address: maican@imar.ro