RESEARCH ARTICLE

Investigation of the Phytochemical Contents and Antimicrobial Effects of *Telfaria Occidentalis* on Microorganisms

Andrew Omachi
Department of Chemistry Kogi State College of Education, Ankpa.

Manuscript Info

Manuscript History
Received: 31 August 2021
Final Accepted: 30 September 2021
Published: October 2021

Key words:
T. Occidentalis, Phytochemical, Ethanol, Acetone, Antimicrobial

Abstract

The rise in several deadly diseases like infections by multidrug-resistant bacteria implies re-inventing the wheel on drug discovery. Perhaps, extensive research has been dedicated to identifying alternatives to mitigating the effects of antibiotics resistance. Over the years, plants have contributed significantly to traditional medicine, proven effective in human health care, and were extensively used as alternative antibiotics in certain conditions. Thus, the current study's primary purpose is to determine the phytochemical contents and the antimicrobial activity of *T. occidentalis* microorganisms, including *Staphylococcus aureus*, *Pseudomonas aeruginosa*, and *Candida albicans*. The result of the phytochemical analysis conducted on the leaf and seed of *T. occidentalis* revealed alkaloids, tannin, steroids, flavonoids, phenol, and saponins. However, it was found that tannins and phenol were mainly deposited in the plant's seed. Also, the antimicrobial analysis conducted revealed that *S. aureus* was more vulnerable to the ethanol, acetone, and hot aqueous extracts of *T. occidentalis*. At the same time, *P. aeruginosa* and *C. Albicans* showed sensitivity to ethanol and acetone exposure but failed to react to the hot aqueous extracts. The study concludes that the observed biological reactions shown by the aqueous extracts of *T. occidentalis* corroborate the traditional application of this plant as an alternative antibiotic.

Introduction:

Infectious diseases are among the most common causes of human death worldwide (Guo et al., 2020). However, the growing resistance of some microorganisms to antibiotics is compromising the efficacy of the currently available pharmacotherapies (Aira et al., 2019; Akter et al., 2020; Avner et al., 2012; Carro, 2018; Dias et al., 2020; Frattari et al., 2019; Ichim et al., 2019; Oliva et al., 2020; Pabasara et al., 2021; Pérez-López et al., 2012; Ravensbergen et al., 2019; Shin et al., 2019). Multi-drug resistant microorganisms have become a severe public health problem worldwide (Dias et al., 2020). It has resulted in a high rate of mortality, disability, and diseases across the world (Al-Salami & Al-Abbasy, 2020; Calonico et al., 2018; Dahake & Kamble, 2014; Lee et al., 2004; Luna et al., 2001; Mallick et al., 2020; Nayak et al., 2014; Pal et al., 2021; Pinteu et al., 2020; Tutchenko et al., 2021). Especially in developing countries (Okwu et al., 2019). The upsurge of several deadly diseases and infections by multidrug-resistant bacteria implies re-inventing the wheel on drug discovery (Lage et al., 2018). Perhaps, extensive research has been dedicated to identifying alternatives to mitigating the effects of antibiotics resistance (De Freitas, 2017; Shrivastava et al., 2018; Tacconelli et al., 2018; WHO, 2017).
Medicinal plants and traditional preparation with antimicrobial activities have been used extensively in almost all cultures (Jamshidi-Kia et al., 2018). Over the years, plants have contributed significantly to traditional medicine and have proven effective in human health care worldwide (Asif, 2013; Hamayun et al., 2006; Johnson et al., 2015; Kumar et al., 2013; Tripathi & Pandey, 2017). It is presumed that about 80% of people living in developing countries use traditional medicines, which are majorly prepared from medicinal plants to meet their primary healthcare needs (Oguntibeju, 2019). The efficacy of alternative medicine has attracted many people to utilize it in treating various illnesses (Albejo et al., 2015; Ali et al., 2020; Baars et al., 2019; James et al., 2018; Mordeniz, 2019).

The bioactive and secondary metabolites constitute the vital components in the therapeutic potentials of plants. Perhaps, empirical knowledge relating to the underlying mechanisms of the therapeutic effect of medicinal plants remains unclear. However, the usefulness of plants in combating varying fungal, bacterial, and other related infections is implicated in the efficacy of traditional medicines in remediying various diseases (El Hajj & Holst, 2020; Kamatenesi-Mugisha et al., 2008; Kayanja, 2008; Martin & Ernst, 2003; Wang et al., 2014). Numerous researches have highlighted the use of medicinal plants in Nigeria. For example, complementary and alternative medicines from plants have been deployed in treating various sicknesses among Nigerians, including cancer (Aliy et al., 2017; Ezeome & Anarado, 2007), diabetes, and hypertension (Ala et al., 2020; Olayemi et al., 2015), HIV infection (Oshikoya et al., 2014), acute illnesses (Duru et al., 2020), kidney diseases (Okwuonu et al., 2014), malaria (Odugbemi et al., 2007), epilepsy (Lagunju, 2013), and asthma (Adeyeye et al., 2011). Thus, plants are essential in health, and research in their bioactive components remains significant. Therefore, the present study is focused on *Telfaria occidentalis*.

Telfaria occidentalis, commonly referred to as fluted pumpkin, is a vegetable that belongs to the family Cucurbitaceae and is also a green vegetable popularly consumed among the native of Africa (Adisa et al., 2012). It is a darkish green leafy vegetable popularly used in soup and folk medicine to manage many diseases in Nigeria (Akindele et al., 2013; Saalu et al., 2010). *T. occidentalis* is widely known for its commercial importance in West Africa region. The therapeutic activities of *T. occidentalis* have been reported by many investigators. *T. occidentalis* leaves are tropical vegetables of medicinal properties (Jimoh, 2018). It possesses high antioxidant activity (Eseyin, Sattar, et al., 2018). Several medicinal uses of the *T. occidentalis* in traditional medicine have been documented (Aisida et al., 2019; Ajani & Akinyemi, 2016; Aregheore, 2011; Atabo et al., 2016; Aworunse et al., 2018; Igbeneghu & Abdu, 2014; Kayode & Kayode, 2011; Kayode et al., 2009; Nwidu & Oboma, 2019; Alia, 2012).

Research on the pharmacological potentials of *T. occidentalis* indicates that the plant possesses antibacterial properties (Noumedem et al., 2013), antioxidant (Airaodion et al., 2019; Eseyin, Benedict, et al., 2018), antimicrobial (Stanley et al., 2018), anxiolytic (Ajao & Akindele, 2013), anticancer (Eseyin et al., 2014), antidiabetic (James et al., 2016), antimalarial (Okokon et al., 2009), and antifungal activities (Nkiru, 2018). Although *T. occidentalis* has been widely studied and its phytochemical properties and activities established. The present study intends to further assess existing evidence from the literature on the antimicrobial effects of *T. occidentalis* bacteria. Thus, the current study’s primary purpose is to determine the phytochemical contents and the antimicrobial activity of *T. occidentalis* *Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans*.

Materials and Methods:

Collection and Preparation of Plant Materials

Fresh samples of the *T. occidentalis* plant were collected from the open market in Ankpa, Kogi State, Nigeria, and were conveyed to the laboratory for proper identification and authentication. The samples were washed and prepared according to the method described by Alara et al. (2019).

Sample Extraction

Aqueous Extract

Ten grams of the ground sample of the plant stem bark and leaf of *T. occidentalis* were extracted and added to 100ml of sterile distilled. The extraction of the plant’s aqueous components was done following the method adopted in Abdulmalik et al. (2016) and Ali et al. (2017).
Phytochemical Screening of T. occidentalis
Phytochemical screening of the T. occidentalis leaf and seed extracts was conducted to ascertain bioactive components such as alkaloids, tannins, saponins, steroids, phenols, and flavonoids using the standard qualitative method as previously described by Trease and Evans (1989).

Sterility Test of the Plant Extracts
The plant's aqueous extract was tested for sterility following sterilization by inoculating 1 mL of each extract on sterile nutrient agar incubated at 37°C for 24 hours. Perhaps, the plates were carefully observed for growth.

Standardization of the Bacterial Cell Suspension
McFarland standard (Washington, 2011) was adopted to test for the standardization of the bacterial suspension. Colonies of the tested organism were picked into a sterile test tube containing sterile nutrient broth and incubated for one day.

Determination of Antimicrobial Activities
The crude extracts' antimicrobial activity was conducted using the agar well diffusion method described in Chaman et al. (2013) with few modifications.

Result:-
Table 1: Table showing the phytochemical contents of the leaf and seed of T. occidentalis.

Phytochemical compounds	leaf	Seed
Alkaloids	+ +	+ +
Saponins	+ +	+ + +
Phenolic	-	+ +
Steroid	+ + +	+
Tannin	-	+ +
Flavonoids	+ +	+

Key: + = Positive, + + = Moderate + + + = High, - = Negative

The above table shows the outcome of the aqueous screening conducted on the leaf and seed of T. occidentalis, indicates that the plant contains a significant number of alkaloids, tannin, steroids, flavonoids, phenol, and saponins. However, the screening revealed tannins and phenols in the seed and not the plant's leaf.

Table 2: Table showing the sensitivity parameter of the organisms to ethanol extract.

Organisms	Seed	%	leaf	%
C. albicans	8mm	36.89	2mm	12.45
P. aeruginosa	5mm	18.21	1mm	6.78
S. aureus	8mm	37.10	7mm	36.26

Table showing the observed zone of inhibition of ethanol extract on T. occidentalis seed and leaf against some pathogenic organisms. Exposing the microorganisms to the aqueous extract of seed for sensitivity revealed the same 8mm diameter of inhibition zone (36.89% and 37.10%), respectively, for C. Albicans and S. aureus. However, P. aeruginosa possessed a minimal 5mm (6.78%) diameter inhibition zone than C. Albicans and S. aureus. The test on an ethanol extract of the leaf shows that S. aureus produced a high diameter of inhibition zone of 7mm (36.26%) while C. albicans produced lower with 3mm (12.45%) diameter of inhibition zone.

Table 3: Table showing the sensitivity parameter of the organism to an acetone extract of the plant.

Organisms	Seed	%	leaf	%
C. albicans	8mm	21.38	7mm	41.19
P. aeruginosa	15mm	31.36	3mm	8.82
S. aureus	15mm	36.10	5mm	26.16
The table above shows the test organisms' sensitivity parameter when exposed to an acetone extract of *T. occidentalis* seed and leaf. The result indicated a high diameter of inhibition zones of 15mm for *P. aeruginosa* and *S. aureus* (31.36% and 36.10%), respectively, when tested with acetone seed extract of *T. occidentalis*. However, *C. Albicans* produced a reduced diameter of inhibition zones of 8mm (21.38%). Furthermore, it was revealed that *C. Albicans* produced an increased diameter of inhibition zones of 7mm (41.19%) when subjected to acetone leaf extract of *T. occidentalis*.

Organisms	Seed	%	Leaf	%
C. albicans	r	-	r	-
P. aeruginosa	r	-	r	-
S. aureus	8mm	96.10	r	-

The organisms were exposed to hot aqueous extract of the plant. Only one pathogenic organism (*S. aureus*) exhibited a reaction with the 8mm diameter of inhibition zone. Thus, other organisms maintained a resistant position towards the extract.

Discussion:

The present study was conducted to assess the phytochemical constituents and antimicrobial activity of fluted pumpkins on *Candida albicans*, *Pseudomonas aeruginosa*, and *Staphylococcus aureus*. The result of the phytochemical analysis conducted on the leaf and seed of *T. occidentalis* revealed the presence of alkaloids, tannin, steroids, flavonoids, phenol, and saponins. However, it was found that tannins and phenol were mainly deposited in the plant's seed. Thus, the study is consistent with previous studies (Eltayeb & Hamid, 2017; Mensah, 2017; Oladele et al., 2020; Otitoju et al., 2016). The plant's phytochemical constituents have been implicated in the antimicrobial potentials of *T. occidentalis* (Deepika et al., 2020).

Furthermore, the antimicrobial analysis conducted revealed that *S. aureus* was more vulnerable to the ethanol, acetone, and hot aqueous extracts of *T. occidentalis*. This is indicated in the increased size of the inhibition zones' diameter, as shown in the tables. However, *P. aeruginosa* and *C. Albicans* showed sensitivity to ethanol and acetone exposure. However, they failed to react to the hot aqueous extracts. Consistent with (Adetutu et al., 2011; Moreno et al., 2006), the findings affirmed ethanol and acetone extracts' antimicrobial potentials compared to aqueous extracts.

Conclusion:

The present study assessed the antimicrobial potentials of *T. occidentalis* extracts on *Candida albicans*, *Pseudomonas aeruginosa*, and *Staphylococcus aureus*. The result confirmed that the seed and leaf extracts of the plant possess antimicrobial tendencies. Thus, the observed biological reactions shown by the aqueous extracts of *T. occidentalis* corroborate the traditional application of this plant as an alternative antibiotic.

References:

1. Abdulmalik, O., Oladapo, O. O., & Bolaji, M. O. (2016). Effect of aqueous extract of Vernonia amygdalina on atherosclerosis in rabbits. ARYA Atherosclerosis, 12(1).
2. Adetutu, A., Morgan, W. A., & Corcoran, O. (2011). Ethnopharmacological survey and in vitro evaluation of wound-healing plants used in South-western Nigeria. Journal of Ethnopharmacology, 137(1). https://doi.org/10.1016/j.jep.2011.03.073
3. Adeyeye, O. O., Onadeko, B. O., Ogunleye, O., Bamisile, R. T., & Olubusi, A. (2011). The use of complementary and alternative medicine by asthma patients receiving care in an urban tertiary center in Nigeria. Int J Biol Med Res, 2(4).
4. Adisa, W. A., Otamere, H. O., Osifo, C. U., Ediange, A. P., Ogarah, P. A., Aigbogun, T. O., & Info, A. (2012). Plasma glucose in Telfaria occidentalis treated rats. Advances in Applied Science Research, 3(3).
5. Aira, A., Fehé, C., Rubio, E., & Soriano, A. (2019). The Intestinal Microbiota as a Reservoir and a Therapeutic Target to Fight Multi-Drug-Resistant Bacteria: A Narrative Review of the Literature. In Infectious Diseases and Therapy (Vol. 8, Issue 4). https://doi.org/10.1007/s40121-019-00272-7
6. Airaodion, A. I., Ibrahim, A. H., Ogbaru, U., Ogbaru, E. O., Awosanya, O. O., Akinmolayan, J. D., Njoku, O. C., Obajimi, O. O., Adeniji, A. R., & Adegbe, O. A. (2019). Evaluation of Phytochemical Content and
Antioxidant Potential of Ocimum gratissimum and Telfairia occidentalis Leaves. Asian Journal of Research in Medical and Pharmaceutical Sciences. https://doi.org/10.9734/ajrpm/2019/v7i130110
7. Aisida, S. O., Ugwu, K., Nwanya, A. C., Bashir, A. K. H., Uba Nwankwo, N., Ahmed, I., & Ezema, F. I. (2019). Biosynthesis of silver oxide nanoparticles using leave extract of Telfairie Occidentalis and its antibacterial activity. Materials Today: Proceedings, 36. https://doi.org/10.1016/j.matpr.2020.03.005
8. Ajani, R., & Akinyemi, A. (2016). Telfairie occidentalis Leaf and Seed Extract as Possible Preventive and Therapeutic Agents for Induced Benign Prostatic Hyperplasia. European Journal of Medicinal Plants, 12(1). https://doi.org/10.9734/ejpm/2016/22856
9. Ajao, M. Y., & Akindele, A. J. (2013). Anxiolytic and sedative properties of hydroethanolic extract of Telfairie occidentalis leaves in mice. Revista Brasileira de Farmacognosia, 23(2). https://doi.org/10.1590/S0102-695X2012005000138
10. Akindele, A. J., Ajao, M. Y., Aigbe, F. R., & Enumah, U. S. (2013). Effects of telfairie occidentalis (fluted pumpkin; Cucurbitaceae) in mouse models of convolution, muscle relaxation, and depression. Journal of Medicinal Food, 16(9). https://doi.org/10.1089/jmf.2012.0211
11. Akter, S., Lee, S. Y., Siddiqi, M. Z., Balusamy, S. R., Ashrafudoulla, M., Rupa, E. J., & Huq, M. A. (2020). Ecofriendly synthesis of silver nanoparticles by Terrabacter humi sp. nov. and their antibacterial application against antibiotic-resistant pathogens. International Journal of Molecular Sciences, 21(24). https://doi.org/10.3390/ijms21249746
12. Al-Salami, A. K., & Al-Abbasy, A. J. (2020). Antibiotic resistance among Gram-negative bacilli isolated from different clinical samples in Al-Sader Medical City. Drug Invention Today, 13(5).
13. Ala, A. O., Ojo, O. A., Enikiumein, C. A., Ajani, G. O., Olamoyegun, M. A., Akinlade, A. T., & Olabode, O. R. (2020). Prevalence and Determinants of Complementary and Alternative Medicine (CAM) Use among Diabetes Patients in Southwestern Nigeria. West African Journal of Medicine, 37(5).
14. Alara, O. R., Abdurahman, N. H., Ukaegbu, C. I., & Kabashi, N. A. (2019). Extraction and characterization of bioactive compounds in Vernonia amygdalina leaf ethanolic extract comparing Soxhlet and microwave-assisted extraction techniques. Journal of Taibah University for Science, 13(1). https://doi.org/10.1080/16583655.2019.1582460
15. Albejo, B., Endale, M., Kibret, B., & Anza, M. (2015). Phytochemical investigation and antimicrobial activity of leaves extract of Vernonia auriculifera Hiern. Journal of Pharmacy and Pharmacognosy Research, 3(6).
16. Ali, M., Yahaya, A., Zage, A., & Yusuf, Z. (2017). In-vitro Antibacterial Activity and Phytochemical Screening of Psidium guajava on Some Enteric Bacterial Isolates of Public Health Importance. Journal of Advances in Medical and Pharmaceutical Sciences, 12(3). https://doi.org/10.9734/jamps/2017/31126
17. Ali, S., Ullah, S., Paudyal, V., Ali, M., Khalid Tipu, M., & Ur-Rehman, T. (2020). Complementary and Alternative Medicines for the Treatment of Hepatitis C: Perspectives of Users and CAM Practitioners. Evidence-Based Complementary and Alternative Medicine, 2020. https://doi.org/10.1155/2020/3932690
18. Aliyu, U. M., Awosan, K. J., Oche, M. O., Taiwo, A. O., Jimoh, A. O., & Okuofu, E. C. (2017). Prevalence and correlates of complementary and alternative medicine use among cancer patients in Usman Danfodiyo University Teaching Hospital, Sokoto, Nigeria. Nigerian Journal of Clinical Practice, 20(12). https://doi.org/10.4103/njcp.njcp_88_17
19. Areghere, E. M. (2011). Nutritive Value and Inherent Anti-nutritive Factors in Four Indigenous Edible Leafy Vegetables in Human Nutrition in Nigeria: A Review. Journal of Food Resource Science, 1(1). https://doi.org/10.3923/jfrs.2012.1.14
20. Asif, M. (2013). Anticonvulsant potential of some medicinal plants and their beneficial properties. TANG [Humanitas Medicine], 3(4). https://doi.org/10.5667/tang.2013.0012
21. Atabo, S., Umar, I. A., James, D. B., & Mamman, A. I. (2016). Sickled Erythrocytes Reversal and Membrane Stabilizing Compounds in Telfairie occidentalis. Scientificia, 2016. https://doi.org/10.1155/2016/1568061
22. Avner, B. S., Fialho, A. M., & Chakrabarty, A. M. (2012). Overcoming drug resistance in multi-drug resistant cancers and microorganisms. Bioengineered, 3(5). https://doi.org/10.4161/bioe.21130
23. Aworunse, O. S., Bello, O. A., Popoola, J. O., & Obembe, O. O. (2018). Pharmacotherapeutic properties of Telfairie occidentalis Hook F.: A systematic review. In Pharmacognosy Reviews (Vol. 12, Issue 24). https://doi.org/10.4103/phrev.phrev_12_18
24. Baars, E. W., Zoen, E. B. Van, Breitkreuz, T., Martin, D., Matthes, H., Schoen-Angerer, T. Von, Soldner, G., Vagedes, J., Wietmarschen, H. Van, Patijn, O., Willcox, M., Flotow, P. Von, Teut, M., Ammon, K. Von, Thangavelu, M., Wolf, U., Hummelsberger, J., Nicolai, T., Hartemann, P., … Huber, R. (2019). The Contribution of Complementary and Alternative Medicine to Reduce Antibiotic Use: A Narrative Review of
25. Calonico, C., Pesavento, G., Delfino, V., Forni, S., & Lo Nostro, A. (2018). Prevalence of Antibiotic Resistance in Enterococci: A 14 Year Survey. Journal of Food and Nutrition Research, 6(10). https://doi.org/10.12691/jfnr-6-10-3

26. Carro, L. (2018). Protein-protein interactions in bacteria: A promising and challenging avenue towards the discovery of new antibiotics. In Beilstein Journal of Organic Chemistry (Vol. 14). https://doi.org/10.3762/bjoc.14.267

27. Chaman, S., Sharma, G., & Reshi, A. K. (2013). Study of antimicrobial properties of Catharanthus roseus by agar well diffusion method. International Research Journal of Pharmaceutical and Applied Sciences, 3(5).

28. Dahake, P. R., & Kamble, S. I. (2014). Investigatory study on antimicrobial activity and phytochemical screening of Butea monosperma linn. Biosciences Biotechnology Research Asia, 11(3). https://doi.org/10.13005/bbra/1571

29. De Freitas, L. C. (2017). WHO (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Cadernos de Pesquisa, 43(148).

30. Deepika Tekaday, Reena Antony, & Sourabh Jain. (2020). Antimicrobial, antioxidant and phytochemical investigation of Thuja occidentalis (Arbor vitae) leave extract. GSC Biological and Pharmaceutical Sciences, 12(3). https://doi.org/10.30574/gscbps.2020.12.3.0292

31. Dias, L. D., Blanco, K. C., Mfouo-Tynga, I. S., Inada, N. M., & Bagnato, V. S. (2020). Curcumin as a photosensitizer: From molecular structure to recent advances in antimicrobial photodynamic therapy. In Journal of Photochemistry and Photobiology C: Photochemistry Reviews (Vol. 45). https://doi.org/10.1016/j.jphotochemrev.2020.100384

32. Duru, C., Nduka, I., & Obikeze, O. (2020). Complementary and Alternative Medicine Use for Treatment of Acute Illnesses in Children Living in Yenagoa Nigeria. Journal of Complementary and Alternative Medical Research. https://doi.org/10.9734/jocamr/2019/v8i430127

33. El Hajj, M., & Holst, L. (2020). Herbal Medicine Use During Pregnancy: A Review of the Literature with a Special Focus on Sub-Saharan Africa. In Frontiers in Pharmacology (Vol. 11). https://doi.org/10.3389/fphar.2020.00866

34. Eltayeb, I. M., & Hamid, A. S. (2017). Phytochemical screening and antimicrobial activity of thuja occidentalis seeds extract against the isolated common skin infecting microorganisms. International Journal of Pharmacy and Pharmaceutical Sciences, 9(10). https://doi.org/10.22159/ijpps.2017v9i10.21310

35. Eseyin, O. A., Benedict, U., Thomas, P. S., Etim, I., Essien, E., Johnson, E., Ebong, A., Munavvar, Z., Ahmad, A., Sheryar, A., & Akpan, U. (2018). Isolation and characterization of antioxidant constituents of the fruit of telfairia occidentalis hook f (Cucurbitaceae). Tropical Journal of Pharmaceutical Research, 17(10). https://doi.org/10.4314/tjpr.v17i10.9

36. Eseyin, O. A., Sattar, M. A., & Rathore, H. A. (2014). A review of the pharmacological and biological activities of the aerial parts of Telfairia occidentalis Hook.f. (Cucurbitaceae). In Tropical Journal of Pharmaceutical Research (Vol. 13, Issue 10). https://doi.org/10.4314/tjpr.v13i10.28

37. Eseyin, O. A., Sattar, M. A., Rathore, H. A., Aigbe, F., Afzal, S., Ahmad, A., Lazhari, M., & Akthar, S. (2018). GC-MS and HPLC profiles of phenolic fractions of the leaf of Telfairia occidentalis. Pakistan Journal of Pharmaceutical Sciences, 31(1).

38. Ezeome, E. R., & Anarado, A. N. (2007). Use of complementary and alternative medicine by cancer patients at the University of Nigeria Teaching Hospital, Enugu, Nigeria. BMC Complementary and Alternative Medicine, 7. https://doi.org/10.1186/1472-6882-7-28

39. Frattari, A., Savini, V., Polilli, E., Di Marco, G., Lucisano, G., Corridoni, S., Spina, T., Costantini, A., Nicolucci, A., Fazii, P., Viale, P., & Parruti, G. (2019). Control of Gram-negative multi-drug resistant microorganisms in an Italian ICU: Rapid decline as a result of a multifaceted intervention, including conservative use of antibiotics. International Journal of Infectious Diseases, 84. https://doi.org/10.1016/j.ijid.2019.04.002

40. Guo, Y., Song, G., Sun, M., Wang, J., & Wang, Y. (2020). Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. In Frontiers in Cellular and Infection Microbiology (Vol. 10). https://doi.org/10.3389/fcimb.2020.00107

41. Hamayun, M., Khan, S. A., Kim, H. Y., Chae, I. N., & Lee, I. J. (2006). Traditional knowledge and ex situ conservation of some threatened medicinal plants of Swat Kohistan, Pakistan. International Journal of Botany, 2(2). https://doi.org/10.3923/ijb.2006.205.209
42. Ichim, D. L., Duceac, L. D., Marcu, C., Iordache, A. C., Ciomaga, I. M., Luca, A. C., Goroftei, E. R. B., Mitrea, G., Damir, D., & Stafie, L. (2019). Synthesis and Characterization of Colistin Loaded Nanoparticles Used to Combat Multi-drug Resistant Microorganisms. Revista de Chimie, 70(10). https://doi.org/10.37358/rc.19.10.7635

43. Igbenedhu, O. A., & Abdu, A. B. (2014). Multiple antibiotic-resistant bacteria on fluted pumpkin leaves, an herb of therapeutic value. Journal of Health, Population and Nutrition, 32(2). https://doi.org/10.3329/jhp.v32i2.2611

44. James, P. B., Wardle, J., Steel, A., & Adams, J. (2018). Traditional, complementary and alternative medicine use in Sub-Saharan Africa: A systematic review. BMJ Global Health, 3(5). https://doi.org/10.1136/bmjgh-2018-000895

45. James SA, Omwirhiren REM, Joshua IA, D. I. (2016). Antidiabetic Properties and Phytochemical Studies of Ethanolic Leaf Extracts of Murraya koeingii and Telfairia occidentalis on Alloxan-Induced Diabetic Albino Rats. Advances in Life Science and Technology, 49(January).

46. Jamshidi-Kia, F., Lorigooini, Z., & Amini-Khoei, H. (2018). Medicinal plants: Past history and future perspective. In Journal of HerbMed Pharmacology (Vol. 7, Issue 1). https://doi.org/10.15171/jhp.2018.01

47. Jimoh, T. O. (2018). Enzymes inhibitory and radical scavenging potentials of two selected tropical vegetables (Moringa oleifera and Telfairia occidentalis) leaves relevant to type 2 diabetes mellitus. Revista Brasileira de Farmacognosia, 28(1). https://doi.org/10.1016/j.rjfp.2017.04.003

48. Johnson, M., Kolawole, O. S., & Olufunmilayo, L. A. (2015). Phytochemical analysis, in vitro evaluation of the antioxidant and antimicrobial activity of methanolic leaf extract of Vernonia amygdalina (bitter leaf) against Staphylococcus aureus and Pseudomonas aeruginosa. International Journal of Current Microbiology and Applied Sciences, 4(5).

49. Kamatenesi-Mugisha, M., Oryem-Origa, H., Odyek, O., & Makawiti, D. W. (2008). Medicinal plants used in the treatment of fungal and bacterial infections in and around Queen Elizabeth Biosphere Reserve, western Uganda. African Journal of Ecology, 46(SUPPL. 1). https://doi.org/10.1111/j.1365-2028.2008.00935.x

50. Kayanja, F. I. B. (2008). Biodiversity in inhabited areas of Eastern Africa. African Journal of Ecology, 46(1).

51. Kayode, A. A. A., & Kayode, O. T. (2011). Some medicinal values of telfairia occidentalis: A review. American Journal of Biochemistry and Molecular Biology, 1(1). https://doi.org/10.3923/ajbmb.2011.30.38

52. Kayode, O. T., Kayode, A. A., & Odetola, A. A. (2009). Therapeutic effect of Telfairia occidentalis on protein-energy malnutrition-induced liver damage. Research Journal of Medicinal Plant, 3(3). https://doi.org/10.3923/rjmp.2009.80.92

53. Kumar, G., Jalaluddin, M., Rout, P., Mohanty, R., & Dileep, C. L. (2013). Emerging trends of herbal care in dentistry. In Journal of Clinical and Diagnostic Research (Vol. 7, Issue 8). https://doi.org/10.7860/JCDR/2013/6339.3282

54. Lage, O. M., Ramos, M. C., Calisto, R., Almeida, E., Vasconcelos, V., & Vicente, F. (2018). Current screening methodologies in drug discovery for selected human diseases. In Marine Drugs (Vol. 16, Issue 8). https://doi.org/10.3390/md16080279

55. Lagunju, I. A. (2013). Complementary and alternative medicines use in children with epilepsy in Ibadan, Nigeria. African Journal of Medicine and Medical Sciences, 42(1).

56. Lee, N. C., Chen, S. J., Tang, R. Bin, & Hwang, B. T. (2004). Neonatal bacteremia in a neonatal intensive care unit: Analysis of causative organisms and antimicrobial susceptibility. Journal of the Chinese Medical Association, 67(1).

57. Luna, C. M., Gherardi, C., Famiglietti, A., & Vay, C. (2001). Bacterial resistance and antimicrobial therapy in respiratory medicine and critical care. Medicina, 61(5 1).

58. Mallick, U. K., Yusuf, M. A., Islam, M. S., Nayeem, A., & Mondal, G. (2020). Bacteriological Profiles with Antibiotic Susceptibility Pattern in Different Clinical Specimens of Specialized Neuroscience Hospital of Bangladesh. Journal of National Institute of Neurosciences Bangladesh, 6(2). https://doi.org/10.3329/jninb.v6i2.50746

59. Martin, K. W., & Ernst, E. (2003). Herbal medicines for the treatment of bacterial infections: A review of controlled clinical trials. In Journal of Antimicrobial Chemotherapy (Vol. 51, Issue 2). https://doi.org/10.1093/jac/dkg087

60. Mensah, SI, O. K. A. L.A. (2017). Phytochemical Profile of Telfairia occidentalis Leaf Grown in Soilless and Soil Media using HPLC. Journal of Agricultural Studies, 5(4). https://doi.org/10.5296/jas.v5i4.12296

61. Mordeniz, C. (2019). Introductory Chapter: Traditional and Complementary Medicine. In Traditional and Complementary Medicine. https://doi.org/10.5772/intechopen.86373
62. Moreno, S., Scheyer, T., Romano, C. S., & Vojnov, A. A. (2006). Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radical Research, 40(2). https://doi.org/10.1080/10715760500473834
63. Nayak, S., Kumar, V., Pai, A., Ganesh, H., Rai, R., & Sanjeev, H. (2014). Distribution of microorganisms in neonatal sepsis and antimicrobial susceptibility patterns in a tertiary care hospital. Archives of Medicine and Health Sciences, 2(2). https://doi.org/10.4103/2321-4848.144304
64. Nkiri, U. (2018). Antifungal effect and phytochemical screening of Telfairia occidentalis (hook f.) Leaf extracts. Journal of Plant Biotechnology and Microbiology, 1(1).
65. Noumedem, J. A. K., Mihasan, M., Kuiate, J. R., Stefan, M., Cojocaru, D., Dzoyem, J. P., & Kuete, V. (2013). In Vitro antibacterial and antibiotic-potentiation activities of four edible plants against multidrug-resistant gram-negative species. BMC Complementary and Alternative Medicine, 13. https://doi.org/10.1186/1472-6882-13-190
66. Nwudu, L. L., & Oboma, Y. I. (2019). Telfaria occidentalis (Cucurbitaceae) pulp extract mitigates rifampicin-isoniazid-induced hepatotoxicity in an in vivo rat model of oxidative stress. Journal of Integrative Medicine, 17(1). https://doi.org/10.1016/j.jim.2018.11.008
67. Odugbemi, T. O., Akinsulire, O. R., Abinu, I. E., & Fabeku, P. O. (2007). Medicinal plants useful for malaria therapy in Okeigbo, Ondo State, Southwest Nigeria. African Journal of Traditional, Complementary and Alternative Medicines, 4(2). https://doi.org/10.4314/ajtcam.v4i2.31207
68. Oguntibeju, O. O. (2019). Medicinal plants and their effects on diabetic wound healing. In Veterinary World (Vol. 12, Issue 5). https://doi.org/10.14202/vetworld.2019.653-663
69. Okokon, J. E., Ekpo, A. J., & Eseyin, O. A. (2009). Evaluation of in vivo antimalarial activities of ethanolic leaf and seed extracts of telfaria occidentalis. Journal of Medicinal Food, 12(3). https://doi.org/10.1089/jmf.2008.0099
70. Okwu, M. U., Olley, M., Akpoka, A. O., & Izevbuwa, O. E. (2019). Methicillin-resistant staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: A brief review. In AIMS Microbiology (Vol. 5, Issue 2). https://doi.org/10.3934/microbiol.2019.2.117
71. Okwuonu, C., Ezeani, I., Olorok, A., & Aniede, E. (2014). Belief in complementary and alternative medicine in the management of kidney diseases in a rural population of South-East Nigeria. International Journal of Medicine and Biomedical Research, 3(3). https://doi.org/10.14194/ijmbrr.3.3.4
72. Oladele, J. O., Oyeleke, O. M., Awosanya, O. O., Olowookere, B. D., & Oladele, O. T. (2020). Fluted Pumpkin (Telfaria occidentalis) protects against phenyl hydrazine-induced anaemia and associated toxicities in rats. Advances in Traditional Medicine. https://doi.org/10.1007/s13596-020-00499-7
73. Olayemi, S. O., Nwaiwu, O., Fasanmade, O., Aro, A. O., & Ibrahim, A. (2015). Clinical outcomes in hypertensive or diabetes patients who concomitantly use complementary medicines in Lagos, Nigeria. East African Medical Journal, 92(1).
74. Oliva, A., Miele, M. C., De Angelis, M., Costantini, S., Mascellino, M. T., Mastroianni, C. M., Vullo, V., & d’Ettorre, G. (2020). Antibacterial Effectiveness of Fecal Water and In Vitro Activity of a Multi-Strain Probiotic Formula against Multi-Drug Resistant Microorganisms. Microorganisms, 8(3). https://doi.org/10.3390/microorganisms8030332
75. Oshikoya, K. A., Oreagba, I. A., Ogunleye, O. O., Hassan, M., & Senbanjo, I. O. (2014). Use of complementary medicines among HIV-infected children in Lagos, Nigeria. Complementary Therapies in Clinical Practice, 20(2). https://doi.org/10.1016/j.ctcp.2013.12.001
76. Otitoju, G. T. O., Otitoju, O., Nwamahar, & Ene-Obong. (2016). Anti-nutrient and phytochemical compositions of Psychotria, Cnidoscolusacantolilieus, and Telfariaoccidentalis from South Eastern Nigeria. IOSR Journal of Environmental Science Ver. II, 10(2). https://doi.org/10.9790/2402-10228690
77. Pabasara, G. V. S., Dilakshana, K., Bandara, N. C., Ekanayaka, A., Liyanapathirana, L. V. C., & Bandara, B. M. R. (2021). Antibacterial activity of eight invasive alien plants against selected multi-drug resistant microorganisms. Sri Lankan Journal of Infectious Diseases, 11(0). https://doi.org/10.4038/sljid.v11i0.8379
78. Pal, N., Dolui, S. K., Majhi, B., & Das, M. (2021). Diversity and Prevailing Antimicrobial Resistance in Blood Stream Pathogens at NICU of a Tertiary Care Institute in Kolkata. Journal of Evidence-Based Medicine and Healthcare, 8(14). https://doi.org/10.18414/jebmh/2021/167
79. Pérez-López, J., Pardos-Gea, J., San José Laporte, A., Almirante Gragera, B., Marian Oltane, D., & Vilardell Tarrés, M. (2012). Home intravenous antimicrobial therapy in multi-drug resistant microorganism infections. Medicina Clinica, 138(13). https://doi.org/10.1016/j.medcli.2011.03.028
80. Pinteus, S., Lemos, M. F. L., Simões, M., Alves, C., Silva, J., Gaspar, H., Martins, A., Rodrigues, A., & Pedrosa, R. (2020). Marine invasive species for high-value products' exploration – Unveiling the antimicrobial
potential of Asparagopsis armata against human pathogens. Algal Research, 52. https://doi.org/10.1016/j.algal.2020.102091

81. Ravensbergen, S. J., Louka, C., Ott, A., Rossen, J. W., Cornish, D., Pournaras, S., Bathoorn, E., & Stienstra, Y. (2019). Proportion of asylum seekers carrying multi-drug resistant microorganisms is persistently increased after arrival in the Netherlands. Antimicrobial Resistance and Infection Control, 8(1). https://doi.org/10.1186/s13756-018-0455-5

82. Saalu, L. C., Kpela, T., Benebo, A. S., Oyewopo, A. O., Anifowope, E. O., & Oguntola, J. A. (2010). The dose-dependent testiculoprotective and testiculotoxic potentials of Telfairia occidentalis Hook f. leaves extract in rat. International Journal of Applied Research in Natural Products, 3(3).

83. Shin, D. J., Andini, N., Hsieh, K., Yang, S., & Wang, T. H. (2019). Emerging Analytical Techniques for Rapid Pathogen Identification and Susceptibility Testing. In Annual Review of Analytical Chemistry (Vol. 12). https://doi.org/10.1146/annurev-anchem-061318-115529

84. Shrivastava, S. R., Shrivastava, P. S., & Ramasamy, J. (2018). World health organization releases a global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. In JMS - Journal of Medical Society (Vol. 32, Issue 1). https://doi.org/10.4103/jms.jms_25_17

85. Stanley, H. O., Alexander, J., & Ugboma, C. J. (2018). Soil Rhizosphere Microbial Properties of Selected Farmlands in Rumuokparali Community. Asian Journal of Advanced Research and Reports. https://doi.org/10.9734/ajarr/2018/v2i329761

86. T Alia A E, G. I. (2012). In-vitro Antimicrobial Activities and Nutritional Assessment of Roots of Ten Nigerian Vegetables. In New York Science Journal (Vol. 5, Issue 12).

87. Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Klyutmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., … Zorzet, A. (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, 18(3). https://doi.org/10.1016/S1473-3099(17)30753-3

88. Tripathi, Y. C., & Pandey, A. K. (2017). Bioprospecting of Phytodiversity for New Therapeutic Products: Trends, Potential, and Challenges. Organic and Medicinal Chemistry International Journal, 2(1).

89. Tutchenko, T. M., Burka, O. A., Marfina, Y. A., Tarasiuk, T. Y., & Illiashenko, T. A. (2021). Antibiotic resistance markers are a necessary tool in many clinical areas. In Reproductive Endocrinology (Issue 56). https://doi.org/10.18370/2309-4117.2020.56.49-56

90. Wang, Y. F., Que, H. F., Wang, Y. J., & Cui, X. J. (2014). Chinese herbal medicines for treating skin and soft-tissue infections. In Cochrane Database of Systematic Reviews (Vol. 2014, Issue 7). https://doi.org/10.1002/14651858.CD010619.pub2

91. Washington, W. (2011). McFarland Standard. In Dalynn Biologicals.

92. WHO. (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. In Cadernos de Pesquisa (Vol. 43, Issue 148).