Study of Gamow-Teller transitions in isotopes of titanium within the quasi particle random phase approximation

Sadiye Cakmak 1,2, Jameel-Un Nabi 2, Tahsin Babacan 1 and Cevad Selam 3

Abstract The Gamow-Teller (GT) transition is inarguably one of the most important nuclear weak transitions of the spin-isospin $\sigma \tau$ type. It has many applications in nuclear and astrophysics. These include, but are not limited to, r-process β^+-decays, stellar electron captures, neutrino cooling rates, neutrino absorption and inelastic scattering on nuclei. The quasiparticle random phase approximation (QRPA) is an efficient way to generate GT strength distribution. In order to better understand both theoretical systematics and uncertainties, we compare the GT strength distributions, centroid and width calculations for $^{40-60}$Ti isotopes, using the pn-QRPA, Pyatov method (PM) and the Schematic model (SM). The pn-QRPA and SM are further sub-divided into three categories in order to highlight the role of particle-particle (pp) force and deformation of the nucleus in the GT strength calculations. In PM, we study only the influence of the pp force in the calculation. We also compare with experimental results and other calculations where available.

We found that the inclusion of pp force and deformation significantly improves the performance of SM and pn-QRPA models. Incorporation of pp force leads to pinning down the centroid value in the PM. The calculated GT strength functions using the pn-QRPA (C) and SM (C) models are in reasonable agreement with measured data.

Keywords pn-QRPA; Pyatov method; Schematic model; GT strength distributions (total GT strengths, centroids, widths); Ikeda sum rule; titanium isotopes

1 Introduction

The Gamow-Teller (GT) response of nuclei in the medium mass region are crucial prerequisites in order to determine the precollapse evolution of a supernova [1]. GT excitations act only on the spin-isospin ($\sigma \tau$) degrees of freedom. The isospin operator in spherical coordinates has three components τ_\pm, τ_0. Here, the plus sign refers to Gamow-Teller (GT^+) transitions in which a proton is changed into a neutron (e.g. in β^+-decays and electron captures), while the minus sign corresponds to GT$^-$ transitions in which a neutron is changed into a proton (realized in β^--decays). The total GT$^-$ and GT$^+$ strengths, noted as S_- and S_+, respectively, are connected by the model independent Ikeda sum rule as $S_- - S_+ = 3(N - Z)$, where N and Z are the numbers of neutrons and protons [2]. The third component GT0 is of relevance to inelastic neutrino-nucleus scattering for low neutrino energies and it would not be further considered in this manuscript. The GT transitions in fp-shell nuclei play decisive roles in presupernova phases of massive stars and also during the core collapse stages of supernovae, specially in neutrino induced processes. The lepton fraction (Y_e) of the stellar matter is one of the factors that controls the gravitational core-collapse of massive stars. It is the degeneracy pressure of the leptons which counters the mammoth gravitational force of massive stars. Once the lepton content of the stellar matter in turn is governed by β-decay and electron capture rates among iron-regime nuclides. The β-decay gives positive contribution whereas electron capture rates give a negative contribution to Y_e. The time

Sadiye Cakmak, Jameel-Un Nabi, Tahsin Babacan and Cevad Selam

1Department of Physics, Celal Bayar University, Manisa, Turkey
2Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Swabi, Khyber Pakhtunkhwa, Pakistan
3Department of Physics, Alparslan University, Mus, Turkey

This study is supported by BAP project of Celal Bayar University with number 2013-004
evolution of Y_e is a crucial parameter which is also a key to generate a successful explosion in modeling and simulation of core-collapse supernovae. Nuclei in the mass range $A \sim 60$, at stellar densities less than around 10^{11} g cm$^{-3}$, posses electron chemical potential of the same order of magnitude as the nuclear Q-value. Under such conditions the electron capture rates are sensitive to the detailed GT distributions. A reliable and microscopic calculation of ground and excited states GT distribution functions is then in order. At much higher stellar densities, the electron chemical potential is much larger than Q-values. For high densities electron capture rates are more sensitive to the total GT strength. Additionally for higher densities centroids and widths of the GT distribution become important parameters for estimation of weak-interaction rates. Hence one needs not only the microscopic GT strength distribution functions but also the total strength, centroid and width of the distributions to reliably calculate electron capture rates in stellar matter under given physical conditions.

GT distributions have been extracted experimentally using different techniques. The isovector response of nuclei may be studied using the nucleon charge-exchange reactions (p,n) (e.g. 3) or (n,p) (e.g. 1); by other reactions such as $(^3\text{He},t)$ (e.g. 2) or $(t,^3\text{He})$ (e.g. 4), $(d,^2\text{He})$ (e.g. 5) or through heavy ion reactions (e.g. 6). The GT cross sections ($\Delta T = 1, \Delta S = 1, \Delta L = 0$, $\theta h\omega$ excitations) are proportional to the analogous beta-decay strengths at vanishing linear momentum transfer. Charge-exchange reactions at small momentum transfer can therefore be used to study beta-decay strength distributions when beta-decay is not energetically possible. The (p,n), $(^3\text{He},t)$ reactions probe the GT$^-$ strength whereas the (n,p), $(d,^2\text{He})$ reactions give the GT$^+$ strength.

One also requires GT strength distributions of hundreds of unstable nuclei which requires much effort and technology to be studied experimentally. The situation is improving with the construction of next-generation radioactive ion-beam facilities. To further complicate the matters, one also requires excited state GT strength distribution functions in astrophysical environments (as parent excited states are thermally populated at high stellar temperatures) where no measured data is available. Consequently, astrophysical calculations rely heavily on detailed microscopic calculations.

Theoretical calculations of GT transitions fall generally into three major categories: simple independent-particle models; full-scale interacting shell-model calculations; and, in between, the random-phase approximation (RPA) and quasi-particle random-phase approximation (QRPA). The simple independent-particle models have reported to pose problems in correct placement of GT centroid. These models place the centroid of the GT strength too high for even-even parent nuclides and too low on odd-A and odd-odd parents 8. Full interacting shell-model calculations are computationally demanding although one can exploit the Lanczos algorithm to efficiently generate the strength distribution 9. For medium-mass nuclei, one still needs to choose from among a number of competing semi-realistic/semi-empirical interactions in shell model calculations. RPA and QRPA can be treated as approximations to a full shell-model calculation and they are much less demanding computationally. Furthermore, they have the additional advantage that one can employ a separable multi-shell interaction which in turn grants access to a huge model space, up to $7\hbar\omega$, to perform the calculations.

The main difficulty with both experiment and theory is that the strength distribution connects to many states. In contrast to Fermi transitions, which relate a parent state to a single daughter state (the isobaric analog state), GT transitions are fragmented over many daughter states. This is caused by the fact that the GT operator does not commute with the residual interaction beyond the mean-field approximation which gives rise to shell model single-particle orbits.

Three widely used model within the QRPA formalism are the pn-QRPA model, the Schematic Model (SM) and the Pyatov Method (PM). The pn-QRPA theory is an efficient way to generate GT strength distributions. It was Halbleib and Sorensen 11 who generalized this model to describe charge-changing transitions of the type $(Z,N) \rightarrow (Z \pm 1, N \mp 1)$ whereas the usual RPA was formulated for excitations in the same nucleus. The model was then extended from spherical to deformed nuclei (using Nilsson-model wave functions) by Krumlinde and Möller 12. Further extension of the model to treat odd-odd nuclei and transitions from nuclear excited states was done by Muto and collaborators 13. It was Nabi and Klapdor-Kleingrothaus who used the pn-QRPA theory for the first time to calculate the stellar weak interaction rates over a wide range of temperature and density scale for sd- 14 and fp/fpg-shell nuclei 15 in stellar matter (see also Ref. 16). Since then, these calculations were further refined with use of more efficient algorithms, computing power, incorporation of latest data from mass compilations and experimental values, and fine-tuning of model parameters (e.g. see 17 18 19 20 21 22 23 24). There is a considerable amount of uncertainty involved in all types of calculations of stellar weak interactions. The uncertainty associated with the microscopic calculation of the pn-QRPA model was discussed in detail in Ref. 19. The reliability of the pn-QRPA calculations was discussed in length by Nabi and Klapdor-Kleingrothaus
lists, electron captures on

tures and was performed for the most important electron cap-
after core silicon burning, were considered and a search
nova evolution. Phases of evolution in massive stars,
searched for key weak interaction nuclei in presupernova
electromagnetic giant resonances. Schematic Model is
resonances correspond to the coherent proton-hole pro-
in the daughter nucleus known as GTR states. These
GT transition strength in a narrow excitation region
the nucleons results in concentration of most of total
transition strength in a narrow excitation region in the
daughter nucleus known as GTR states. These
resonances correspond to the coherent proton-hole pro-
ton and neutron-hole neutron excitations in the known
electromagnetic giant resonances. Schematic Model is
a special case of Pyatov method and it would be

tation parameter is recently argued to be one of the
tion of nucleus on the GT strength functions. The de-
formation parameter is recently argued to be one of the
most important parameters in pn-QRPA calculations
order to check the effect of incorporation of
deformation in the pn-QRPA and SM models, we fi-
nally lift the initial assumption of spherical nuclei and
introduce deformations in the Model (B) to get Model
In other words, Model (C) takes into account nu-
clear deformations and also perform calculation in both
pp and ph channels. Incorporation of deformation into
PM is currently being worked on and it would be taken
up as a future assignment.

The next section briefly describes the theoretical for-
alism used to calculate the GT strength distributions
using the PM, SM and the pn-QRPA theory. The calculated
GT± strength distributions for titanium isotopes are
presented and compared with measurements and against
other theoretical calculations in Sec. 3. The main
conclusions of this work are finally presented in
Sec. 4.

2 Theoretical Formalism

2.1 Pyatov Method and the Schematic Model

Restoration of the broken super symmetry property in
static pairing interaction potential is of great impor-
tance for GT transitions. On the other hand, no effect
of the translational and rotational invariance violations
on GT transitions is seen. The Pyatov Method (PM) used in this paper provides this restoration in two different ways: addition of static interaction potential to the total Hamiltonian after its broken symmetry property has been restored and the restoration of the broken symmetry in quasi particle space. We employ the second method in this article. The Schematic Model (SM) is a special case of the PM where we exclude the effective interaction term from the total Hamiltonian. We next consider the case of even-even and odd-A cases separately and describe the necessary formalism within the PM and SM.

2.1.1 Even-Even Nuclei

The Schematic Model (SM) Hamiltonian for GT excitations in the quasi particle representation is given as

$$H_{SM} = H_{SQP} + h_{ph} + h_{pp},$$

where $$H_{SQP}$$ is the Single Quasi Particle (SQP) Hamiltonian, $$h_{ph}^{GT}$$ and $$h_{pp}^{GT}$$ are the GT effective interactions in the ph and pp channels, respectively. The effective interaction constants in the ph and pp channel were fixed from the experimental value of the Gamow-Teller (GTR) energy and the $$\beta$$-decay log$$ft$$ values between the low energy states of the parent and daughter nucleus, respectively. In order to restore the super symmetry property of the pairing part in total Hamiltonian, certain terms which do not commute with the shell model mean field approximation was restored by adding an effective interaction term $$h_0$$

$$[H_{SM} - h_{ph}^{GT} - h_{pp}^{GT} - V_1 - V_c - V_{ls} + h_0, G_{1\mu}^\pm] = 0,$$

or

$$[H_{SQP} - V_1 - V_c - V_{ls} + h_0, G_{1\mu}^\pm] = 0,$$

where $$V_1$$, $$V_c$$ and $$V_{ls}$$ are isovectors, Coulomb and spin orbital term of the shell model potential, respectively. The restoration term $$h_0$$ in Eq. (3) is included in a separable form:

$$h_0 = \sum_{\rho=\pm} \frac{1}{2\gamma_\rho} \sum_{\mu=0,\pm 1} [H_{sqp} - V_c - V_{ls} - V_1, G_{1\mu}^\rho]^\dagger,$$

$$[H_{sqp} - V_c - V_{ls} - V_1, G_{1\mu}^\rho].$$

The strength parameter $$\gamma_\rho$$ of $$h_0$$ effective interaction is found from the commutation condition in Eq. (3) and the following expression is obtained for this constant (for details see Ref. [43]).

$$\gamma_\rho = \frac{\hbar}{2} (0[[H_{sqp} - V_c - V_{ls} - V_1, G_{1\mu}^\rho], G_{1\mu}^\rho]|0).$$

The total Hamiltonian of the system according to PM finally becomes

$$H_{PM} = H_{SQP} + h_0 + h_{ph} + h_{pp}.$$

(5)

The eigenvalues and eigenfunctions of Hamiltonian given in Eq. (5) are solved within the framework of the pn-QRPA method. We considered the GT $$1^+$$ states occurring in odd-odd nuclei generated from the correlated ground state of the parent nucleus by the charge-exchange spin-spin forces and used the eigenstates of the single quasi particle Hamiltonian $$H_{SQP}$$ as a basis.

In pn-QRPA, the $$i^{th}$$ excited GT $$1^+$$ states in odd-odd nuclei are considered as the phonon excitations and described by

$$|1_i^+ > = Q_i^\dagger(\mu)|0 >$$

$$= \sum_{np} [\psi_{np}^i C_{np}^\dagger(\mu) - (-1)^{1+\mu} \varphi_{np}^i C_{np}(-\mu)]|0 >,$$

where $$Q_i^\dagger(\mu)$$ is the pn-QRPA phonon creation operator, $$|0 >$$ is the phonon vacuum which corresponds to the ground state of an even-even nucleus and fulfills $$Q_i(\mu)|0 > = 0$$ for all $$i$$. The $$\psi_{np}^i$$ and $$\varphi_{np}^i$$ are quasi boson amplitudes.

Assuming that the phonon operators obey the commutation relations

$$< 0 | [Q_i(\mu), Q_{i'}^\dagger(\mu')]|0 > = \delta_{ij} \delta_{\mu\mu'},$$

we obtain the following orthonormalization condition for amplitudes $$\psi_{np}^i$$ and $$\varphi_{np}^i$$

$$\sum_{np} [\psi_{np}^i \psi_{np}^{i'} - \varphi_{np}^i \varphi_{np}^{i'}] = \delta_{ii'},$$

(7)

The energies and wave functions of the GT $$1^+$$ states are obtained from the pn-QRPA equation of motion:

$$[H_{PM}, Q_i^\dagger(\mu)]|0 > = \omega_i Q_i^\dagger(\mu)|0 >,$$

(8)

where $$\omega_i$$ is the energy of the GT $$1^+$$ states occurring in neighboring odd-odd nuclei. We obtain the secular equation for excitation energies $$\omega_i$$ of the GT $$1^+$$ states in the neighbor odd-odd nuclei:

$$[\chi_+ - \sum_{np} \frac{\varepsilon_{np}^+ (E_{np}^+)^2}{\varepsilon_{np}^2 - \omega_i^2}]|\chi_+ - \sum_{np} \frac{\varepsilon_{np}^- (E_{np}^-)^2}{\varepsilon_{np}^2 - \omega_i^2}|.$$
One of the characteristic quantities for the GT 1^+ states occurring in neighboring odd-odd nuclei is the GT transition matrix elements. The $0^+ \rightarrow 1^+$ β^- and β^+ transition matrix elements are calculated as

$$M_{\beta^-}(0^+ \rightarrow 1^+_i) = <1^+_i, \mu | G_{1\mu}^- | 0^+ >$$

and

$$M_{\beta^+}(0^+ \rightarrow 1^+_i) = <1^+_i, \mu | G_{1\mu}^+ | 0^+ >$$

The amplitude for one quasi-particle state, the amplitude for three quasi-particle states, and the dispersion equation for excitation energies $W_{I_nK_n}$ corresponding to states given in Eq. (16), is obtained as

$$W_{I_nK_n} = E_{I_nK_n} - \frac{1}{2} \left[\sum_{n,p} \left(\langle 0_n^+ | T_{I_pK_p} | I_nK_n \rangle \right)^2 \right]$$

where $E_{I_nK_n}$ and $E_{I_pK_p}$ are neutron and proton single quasi-particle energies. The amplitude for three quasi-particle state state, $R_{ij}^{I_pK_p}$, is written in terms of the amplitude for one quasi-particle state, $N_{I_n}^j$, as follows:

$$R_{ij}^{I_pK_p} = \frac{\sqrt{2} \left[X_{GT}^{ph} (d_{I_pK_p} M_{i}^+ + d_{I_pK_p} M_{i}^-) - X_{GT}^{pp} (b_{I_pK_p} F_{i}^+ + b_{I_pK_p} F_{i}^-) \right]}{W_{I_nK_n} - w_i - E_{I_pK_p}} N_{I_n}^j$$

where $N_{I_n}^j$ is calculated from Eq. (17). The corresponding expressions for the nuclei with odd-proton number are formulated by performing the transformation $I_nK_n \leftrightarrow I_pK_p$ in Eqs. (16)-(20). The GT transition matrix elements of odd-A nuclei is given by

$$M_{\beta \pm} = \langle \psi_{I_nK_n}^j | \beta_{\mu} | \psi_{I_pK_p}^j \rangle.$$
The corresponding matrix elements of odd-A transitions are expressed for two different cases as follows:

(a) The case in which the number of pair does not change:

\[M_{\beta^-} = \langle \psi_i^{f}_{I_p K_p} | \beta^- | \psi_i^{i}_{I_n K_n} \rangle = \]

\[-[d_{I_p} N_i^f + \bar{d}_{I_p} \sum_j R_{ij}^{I_p} R_{I_p}^{I_j}] \]

\[+ N_i^i \sum_j R_{I_j}^{I_p} M_{I_j}^- + N_i^f \sum_j R_{I_j}^{I_p} M_{I_j}^+] . \] \((22) \)

(b) The case in which the number of pair changes:

\[M_{\beta^-} = \langle \psi_i^{f}_{I_p K_p} | \beta^- | \psi_i^{i}_{I_n K_n} \rangle = \]

\[-[d_{I_p} N_i^f + \bar{d}_{I_p} \sum_j R_{ij}^{I_p} R_{I_p}^{I_j}] \]

\[+ N_i^i \sum_j R_{I_j}^{I_p} M_{I_j}^- + N_i^f \sum_j R_{I_j}^{I_p} M_{I_j}^+] . \] \((23) \)

The reduced transition probability for the \(I_i K_i \rightarrow I_f K_f \) transitions in the laboratory frame is expressed by

\[B_{GT}^\pm (I_i K_i \rightarrow I_f K_f) = \]

\[\frac{g_{\nu}^2}{4\pi} (I_i K_i, I_f K_f) |M_{\beta \pm}|^2 , \] \((27) \)

The formalism used in PM is also used in Schematic Model (SM) with one major difference. The effective interaction term \((h_0) \) is not added to the total Hamiltonian in the SM (for further details, see Refs. 35, 36, 37, 42, 43).

2.2 The pn-QRPA Method

The Hamiltonian of the pn-QRPA model is given by

\[H^{QRPA} = H^{sp} + V^{pair} + V^{ph}_{G} + V^{pp}_{G} , \] \((28) \)

and it is diagonalized as outlined below. Single particle energies and wave functions are calculated in the Nilsson model which takes into account nuclear deformation (for our Model (C)). Pairing is treated in the BCS approximation. Details of these two steps can be seen from Ref. (41) and they are not reproduced here to save space.

In the pn-QRPA formalism, GT transitions are expressed in terms of phonon creation and one defines the QRPA phonons as

\[A_{\nu}^\pm (\mu) = \sum_{pn} (X_{\omega}^{pn}(\mu) a_{\nu}^+ + Y_{\omega}^{pn}(\mu) a_{\nu}^-) . \] \((29) \)

The sum in Eq. [29] runs over all proton-neutron pairs with \(\mu = m_p - m_n = -1, 0, 1 \), where \(m_{p/n} \) denotes the third component of the angular momentum. The ground state of the theory is defined as the vacuum with respect to the QRPA phonons, \(A_{\omega}(\mu)|QRPA\rangle = 0 \). The forward and backward-going amplitudes \(X \) and \(Y \) are eigenfunctions of the RPA matrix equation

\[\left[\begin{array}{cc} A & B \\ -B & -A \end{array} \right] \left[\begin{array}{c} X \\ Y \end{array} \right] = \omega \left[\begin{array}{c} X \\ Y \end{array} \right] , \] \((30) \)

where \(\omega \) are energy eigenvalues. Again we refer to [41] and references therein for solution of the RPA equation [30].

The proton - neutron residual interaction occurs through two channels: pp and ph channels. Both the interaction terms can be given a separable form. The ph force is given by

\[V_{GT}^{ph} = 2\chi \sum_{\mu} (-1)^{\mu} Y_\mu Y_{-\mu}^\dagger, \]
with

\[Y_\mu = \sum_{j_n,j_p} \langle j_p m_p | t^\sigma \mu | j_n m_n \rangle c_{j_p}^+ m_p c_{j_n} m_n, \]

(31)

whereas the pp interaction given by the separable force

\[V_{pp}^{GT} = 2\kappa \sum_{\mu} (-1)^\mu P_\mu P_{-\mu}^+, \]

with

\[P_\mu^+ = \sum_{j_n,j_p} \langle j_n m_n | (t^0 \sigma \mu)^+ | j_p m_p \rangle \]

\[\times (-1)^{j_n+j_p-m_n} C_{j_p m_p}^+ C_{j_n m_n}^+, \]

(32)

is taken into account (in Models (B) and (C)). The interaction constants \(\chi \) and \(\kappa \) in units of MeV are both taken to be positive. The different signs of \(V_{pp}^{GT} \) reflect a well-known feature of the nucleon-nucleon interaction: the ph force is repulsive while the pp force is attractive. For further details see Ref. (41). The reduced transition probabilities for GT transitions from the QPRA ground state to one-phonon states in the daughter nucleus are obtained as

\[B_{GT}^\pm(\omega) = |\langle \omega, \mu | t^{\pm} \sigma \mu | QPRA \rangle|^2. \]

(33)

For odd-A nuclei, there exist two different types of transitions: (a) phonon transitions with the odd particle acting only as a spectator and (b) transitions of the odd particle itself. For case (b) phonon correlations are introduced to one-quasiparticle states in first-order perturbation. For further details, we refer to (41).

In order to improve the reliability of calculated results in pnQRPA (C) and SM (c) models, experimentally adopted value of the deformation parameter for \(^{42,44,46,48,50}_{56}Ti \), extracted by relating the measured energy of the first \(2^+ \) excited state with the quadrupole deformation, was taken from Raman et al. (47). For all other cases, where measurement has not been so far done, the deformation of the nucleus was calculated using

\[\delta = \frac{125(Q_2)}{1.44(Z/A)^{2/3}}, \]

(34)

where \(Z \) and \(A \) are the atomic and mass numbers, respectively and \(Q_2 \) is the electric quadrupole moment taken from Ref. (48). Q-values were taken from the recent mass compilation of Audi et al. (49).

3 GT\(\pm \) Strength Distributions

In a sense both \(\beta^- \) decay and capture rates are very sensitive to the location of the GT\(_+ \) centroid. An \((n,p)\) experiment on a nucleus \((Z,A)\) shows the place where in \((Z-1,A)\) the GT\(_+ \) centroid corresponding to the ground state of \((Z,A)\) resides. The \(\beta^- \) decay and electron capture rates are exponentially sensitive to the location of GT\(_+ \) resonance while the total GT strength affect the stellar rates in a more or less linear fashion (50). Each excited state of \((Z,A)\) has its own GT\(_+ \) centroid in \((Z-1,A)\) and all of these resonances must be included in the stellar rates. We do not have the ability to measure these resonances. Similar is the case in the \(\beta^- \) direction. Here, every excited state of \((Z,A)\) also has its own GT\(_- \) centroid in \((Z+1,A)\) and again all the contributions should be included in a reliable estimate of stellar \(\beta^- \)-decay rates. Turning to theory, we see that the pioneer calculation done by Fuller and collaborators (51) (referred to as FFN throughout this text) had to revert to approximations in the form of Brink’s hypothesis and “back resonances” to include all resonances in their calculation. Brink’s hypothesis states that GT strength distribution on excited states is identical to that from ground state, shifted only by the excitation energy of the state. GT back resonances are the states reached by the strong GT transitions in the inverse process (electron capture) built on ground and excited states. Even the microscopic large-scale shell model calculations (52) had to use the Brink assumption to include all states and resonances. On the other hand, the pn-QRPA model is the only model that provides a microscopic way of calculating the GT\(_\pm \) centroid and the total GT\(_\pm \) strength for all parent excited states and it can lead to a fairly reliable estimate of the total stellar rates. The PM and SM have so far not been used to calculate excited state GT strength functions.

In this section, our calculation results for GT strength distribution function by using different models (pn-QRPA, PM and SM) are given. As discussed previously, we sub-divide the pn-QRPA and SM into three categories namely (A), (B) and (C). Model (A) is the most basic model in which only the interaction in ph channel is considered. Model (B) is to check the difference in calculation results for GT\(_\pm \) strength for all parent excited states and it can lead to a fairly reliable estimate of the total stellar rates. The PM and SM have so far not been used to calculate excited state GT strength functions.
smaller quenching factor of 0.23 for 55Mn, 0.31 for 56Fe and 58Ni for strength below 10 MeV excitation to compare shell model calculation with the measured data. Our calculated GT strengths are all quenched within the pn-QRPA formalism by universal factor of $f_s^2 = (0.6)^2$ which is used for fp shell nuclei (also employed in Ref. [22]). The re-normalized Ikeda sum rule in pn-QRPA is given by

$$ISR_{renorm} = S^-(S^+ + 3f_q^2(N - Z)).$$

(35)

Rather than presenting the detailed GT strength distributions for the twenty-one isotopes of titanium using the eight different models mentioned above, the key statistics of GT strength distribution (total strength, centroid and width) are shown in Tables 1 to 4. It is noted that the re-normalized Ikeda sum rule is fulfilled by pn-QRPA models (deviations are within a few percent and are attributed to non-nucleonic effects). The Ikeda Sum Rule in SM and PM models is given by Eq. 13. Total strength calculations are performed up to 20 MeV in pn-QRPA whereas in PM and SM models they are calculated up to 40 MeV.

Table 1 displays the calculated total GT strengths, centroids and widths for isotopes of titanium ($^{40-44}$Ti) in both β-decay and electron capture directions. Results are shown for all eight models (which are also explained in the footnote of Table 1). Centroids and widths are given in units of MeV and B(GT) strengths are given in units such that B(GT) = 3 for neutron decay.

As seen from Table 1, the calculated values for 40Ti show that PM and SM models give much bigger values for total GT strength in electron capture direction. The centroids are also placed at higher excitation energies in daughter nuclei for the PM and SM models. These two models also generally calculate bigger widths than the corresponding results of pn-QRPA model. The effect of the inclusion of the pp interaction in pinning down the centroid values is more pronounced in PM model (they approximately decrease to half their original values). However, pp force does not show any similar change in other calculated quantities by remaining two models. The pn-QRPA model calculates the lowest centroids and widths.

For the case of odd-A nucleus 41Ti, one notes that for electron capture direction, the pn-QRPA (C) calculates bigger total strength as compared to pn-QRPA (A) and (B). In the β-decay direction, the three pn-QRPA models show close results. The SM (C) and PM (B) models bring substantial improvement over SM (A), SM (B) and PM (B) models leading to much lower values of centroids and widths in β-decay direction and bigger total GT strength values. SM (C) calculates lowest centroid and biggest strengths for 41Ti.

The B(GT) values, centroids and widths for 42Ti calculated by the pn-QRPA model decrease when the pp interaction for spherical case is taken into account (compare versions (A) and (B)), albeit not much. Deformation substantially changes the pn-QRPA results for total strength and centroid. PM (B) brings down the calculated centroid values roughly by a factor of three and at the same time increases the total strength and width values in both directions. The pp force in PM method pins down the centroid values but results in no significant changes in the calculated values of total strength and width. The role of pp force in SM model for spherical case increases the total strengths, centroids and widths. However, when the pp force is considered together with deformation, the centroids and widths are roughly halved and at the same time there is an increase in total strength values. The pp force in all models assists in shifting the centroid to lower excitation energies in daughter.

No appreciable difference is seen among the three pn-QRPA models for the case of 43Ti specially in the β-decay direction. On the other hand, SM (C) not only substantially changes the results of SM (A) and SM (B) but also calculates lower widths and centroids as compared to pn-QRPA (C). Moreover, SM (C) is also able to calculate bigger total strength, especially in β-decay direction. PM (A) and PM (B) give smaller B(GT) values than pn-QRPA and SM models. The effect of the incorporated deformation is significant in the case of SM.

The calculated results for 44Ti have been presented as a last entry in Table 1. The biggest and lowest values for total strengths have been obtained by the SM (C) and PM (A) models, respectively. PM model values calculate very small GT strength. All three models do not exhibit any substantial change in calculated quantities in the given versions. Deformation tends to increase total strength, centroid and width values in SM model. SM and pn-QRPA models have around three times larger B(GT) values than the PM models. For the case of centroids and widths, the results of PM models are approximately three times bigger than the corresponding ones in SM and pn-QRPA models.

The key statistics for calculated GT transitions in $^{45-50}$Ti are presented in Table 2. For 45,47,49Ti there is no much appreciable change in the results of all quantities calculated by pn-QRPA and PM models for β^- and 3^+ decay. For the case of 45Ti, PM (A), PM (B) and SM (B) calculate small total strength in both directions. The effect of the pp force does not change significantly the results in PM model. Deformation provides a drastic decrease in widths of the calculated GT distributions
for SM model. The centroid values in PM model are appreciably low. On the other hand, the calculated width values in PM models for β^- and β^+ decays are bigger than the corresponding results in SM and pn-QRPA models. For ^{47}Ti, SM (C) makes a significant change in the centroid, width and total strength values. The effect of the incorporated deformation in the three models is most pronounced in SM and least in pn-QRPA. For ^{49}Ti, results are similar as in the case of $^{45,47}\text{Ti}$. When deformation is taken into account the B(GT) values for β-decay in pn-QRPA and SM models increase by a factor of 2-3. PM models gives a very small total strength for β^+ decay. For the case of even-even isotopes ($^{46-50}\text{Ti}$), it is noted that no pronounced difference occurs among the results of pn-QRPA (A) and pm-QRPA (B) versions. One notes that pn-QRPA (B) version gives lower B(GT) and width values for both β^+ and β^- decay in $^{46,48}\text{Ti}$. Vanishing total strength in β^+ direction is calculated for ^{48}Ti in PM models. In ^{50}Ti isotope, SM (C) model gives the highest centroid and width values amongst all other models.

In Table 3, the calculated total GT strengths, centroids and widths for $^{51-56}\text{Ti}$ are shown for the three models. For $^{51,53,55}\text{Ti}$, SM (C) calculates biggest total strength along β-decay direction. For the odd-A cases, SM (C) calculates the biggest total strength. The SM models tend to calculate largest centroid values along β-decay direction. The pn-QRPA models calculate the lowest centroid in β-decay direction for all Ti isotopes in Table 3.

Table 4 finally displays the calculated total strengths, widths and centroids for $^{57-60}\text{Ti}$. Isotopes of titanium gets progressively neutron-rich as one proceeds from Table 1 to Table 4. In Table 4, pn-QRPA (C) model calculates low centroids and reasonable GT strengths (satisfying renormalized Ikeda sum rule Eq. 29). PM model places centroids for β^--decay centroids in $^{58,60}\text{Ti}$ at much lower energies than the SM model. It can be seen that the total strength values in PM (A) and PM (B) models are very closer to the corresponding ones in SM (A) and SM (B) for $^{58,60}\text{Ti}$. In $^{57,59}\text{Ti}$, the calculated GT strength values increases substantially in SM (C) in accordance with the Ikeda sum rule.

Tables 1 to 4 show that the pn-QRPA models follow systematic trend in the calculation of GT strength function for both even-even and odd-A nuclei. The values of pn-QRPA calculated total strength decreases (increases) systematically, separately for even-even and odd-A nuclei, along the electron capture (β-decay) direction. This trend is valid only for even-even nuclei in PM and SM models. The pn-QRPA (C) is the best model for the calculation of GT strength distribution amongst all eight models presented in this work for even-even and odd-A nuclei. The pn-QRPA (C) model calculates reasonable total strength in both directions for all cases (see comparison with measured data below). Moreover, the model calculates lower centroid energies in daughter which translates into bigger weak interaction rates and can bear consequences for astrophysical applications. Further, it is only the pn-QRPA (C) model that fulfills the re-normalized Ikeda sum rule Eqt. (35). Only in the case of ^{55}Ti is the re-normalized sum rule satisfied to only 94%. The pn-QRPA (A) is not able to satisfy the sum rule for few odd-A cases whereas version (B) fails for few mixed cases. However, PM (B) model also shows good results of GT strength distributions for even-even nuclei. The PM (B) and SM (C) tend to fulfill the Ikeda sum rule Eqt. (15) for even-even nuclei. The PM (B) and SM (C) are the better model in its genre and shows overall better results in their class. The results support the argument that the QRPA models perform best when performed both in pp and ph channels, taking nuclear deformation into consideration.

So far we have only shown the mutual comparison of the calculated total GT strength distributions amongst the eight theoretical models. It would be interesting to see the comparison of the results for these models with the measured data where available. For this reason, we searched the literature and were able to find at least five cases of reported measured GT strength distributions of titanium isotopes ($^{40,41,46,47,48}\text{Ti}$). Next, we compare the measured data with the the results of three preferred models, namely pn-QRPA (C), SM (C) and PM (B). Moreover, we also compare our results for these cases with other theoretical calculations.

Fig. 4 shows the GT strength distribution for ^{40}Ti. Liu and collaborators (38) studied the β decay of ^{40}Ti and ^{41}Ti and its subsequent implication for detection of solar neutrinos. Trinder et al. also made a study of the β-decay measurement of ^{40}Ti (53) at GANIL using the LISE3 spectrometer. For details of experiment, we refer to (53). The results of these two β-decay experiments are shown in top two panels of Fig. 4. In the top panel, Exp. 1 shows the measured data of Ref. (53) while Exp. 2 corresponds to that of Ref. (38). The third, fourth and fifth panels show our calculated results of pn-QRPA (C), SM (C) and PM (B) models, respectively. We also show the $(0+2)\hbar\omega$ shell model calculation of GT$_+$ strength distribution for ^{40}Ti in bottom panel performed by Ormand and collaborators (56). In order to bring their calculated GT strength in compliance with the measured GT data, the authors re-normalized the free nucleon GT operator by the factor 0.775 (56). The horizontal axis in Fig. 4 shows the energy scale in daughter ^{40}Sc in units of MeV. It can
be seen from Fig. 1 that the pn-QRPA (C) model reproduces well the low-lying measured GT strengths of Refs. (38, 55) and also predicts some GT transitions above 8 MeV in daughter which are not reported by measurements. Shell Model calculation (57) is in good agreement with the measured data. The pn-QRPA (C) calculated total strength, up to 15 MeV in daughter, is 6.00 and is in very good agreement with the measured strength of 5.86 (5.87) by Ref. (38) (Ref. (55)). Shell Model calculated a total strength of 5.62. The SM (C) and PM (B) models give a total strength value of 7.62 and 10.80, up to 15 MeV, and they are considerably bigger than the experimental values. The shell model data is not well fragmented as compared to pn-QRPA (C) data. This is possibly due to the neglect of higher-order correlations in the shell model. The pn-QRPA (C) model placed the GT centroid at 3.91 MeV in daughter and it is also in very good agreement with the measured data of 3.87 MeV by Ref. (38) and 3.78 MeV by Ref. (55). Shell model placed the centroid at 4.67 MeV whereas the PM(B) and SM (C) models placed the centroid at a too high excitation energy of 11.47 MeV and 12.17 MeV, respectively.

Honkanen et al. (57) performed an improved high-resolution study of the β-decay of 41Ti produced in the 40Ca(3He,2n) reaction at 40 MeV at the IGISOL facility (57). In addition, the authors also performed a shell model calculation of the GT strength distribution of 41Ti in the safp space. For details of the experiment and theoretical shell model calculation, we refer to (57). We show the measured data by Honkanen and collaborators (57) as Exp. 1 in the top panel of Fig. 2. The measured GT strength distribution of 41Ti by Liu et al. (55) is shown in second panel as Exp. 2. The next three panels show our calculated results for pn-QRPA (C), SM (C) and PM (B) models, respectively. In the bottom panel, we show the shell model calculation of Ref. (57). The measured data is well fragmented up to 8 MeV in daughter. The theoretical models calculate a well fragmented data, akin to measured data. All theoretical models do calculate high-lying GT transitions not reported by experiments. The Shell Model data calculates much bigger total strength of 10.92 which is to be compared with measured strength of 4.83 by Liu et al. and 4.34 by Honkanen and collaborators. The pn-QRPA (C) model calculates a total strength of 4.89 in excellent agreement with the measured value of 4.83 (55). The total strength calculated by the SM (C) is 4.36 in excellent agreement with the measured value of 4.34 (57) whereas the PM (B) model finds a total strength of 7.76. The centroid in the SM (C) model is placed at too high excitation energy of 8.13 MeV in 41Sc. The pn-QRPA (C) calculated the centroid value of 8.96 MeV which can be compared with the shell model results of 7.86 MeV. In comparison, the centroids of measured data by Refs. (57) and (38) are at 5.27 MeV and 5.67 MeV, respectively. The PM (B) model gives a centroid value of 8.61 MeV. It is to be noted that whereas the measured data is available only up to an excitation energy of 8 MeV, the theoretical data are given up to an excitation energy of 15 MeV in daughter. If one cuts the theoretical data also till 8 MeV then the calculated centroids can come in reasonable agreement with the measured centroids. Fig. 2 shows that a quenching of GT strength calculated by shell model is in order. Experimentalists are urged to search for high-lying GT transitions (up to 15 MeV) in 41Sc.

For the case of 46Ti, there are quite a few theoretical GT calculations available in the β-decay direction. The results are shown in Fig. 3 which comprises of eight panels. The measured data was taken from the recent β-decay measurement of 46Ti by Adachi and collaborators (58) and it is shown in the top panel of Fig. 3. The authors performed a high-resolution (4He,t) experiment on 46Ti at 0° and at an intermediate incident energy of 140 MeV/nucleon for the study of precise measurement of GT transitions in 46V. A very good energy resolution of ΔE ≤ 50 keV was realized in the experiment. For further details of the experiment, Ref. (58) can be seen. Besides our pn-QRPA (C), SM (C) and PM (B) models (shown in second, third and fourth panel, respectively), we also show the results of GT strength distributions from four other theoretical calculations. The large scale shell model (LSSM) calculation of Petermann et al. (59) is shown in the fifth panel. Petermann and collaborators used the KB3G interaction (60) and employed Lanczos method with 100 iterations ensuring convergence in their calculation for 1-2 MeV excitation energies. The sixth panel shows the quasideutron (QD) model calculation with a deformed core (i.e. rotor + quasideutron model) performed by Lisetskiy et al (61). The last two panels show shell model calculations using KB3G (60) and GXPFI (62) interactions, respectively. All shell model data as well as the QD model used a quenching factor of (0.74)2 in their calculations. It can be seen from Fig. 3 that the pn-QRPA (C) data is well fragmented and it is in good agreement with the β-decay measurement performed by Adachi et al. The pn-QRPA (C) model also calculates its strongest GT transition around 3 MeV akin to measured data. The SM (C) model calculates the fragmented GT strength distribution and high-lying transitions in the range of 6-12 MeV. The largest GT strength which is 4-8 times larger than other calculations and experimental result is obtained by PM (B) model. In this model, only one GT peak is seen around 9 MeV. The shell model results
do not produce enough fragmentation of GT strength, specially at low excitation energies (between 1 and 3 MeV). The QD model calculates only four transitions. In QD model, the low-lying states in 46V are described by an angular-momentum-coupled proton-neutron pair (quasideutron) made of the valence odd proton and neutron occupying Nilsson orbits coupled to the rotating 44Ti core. Table 5 presents the total GT strength as well as the calculated centroid for all GT distribution functions shown in Fig. 3. It can be seen from Table 5 that the QD model best reproduces the measured total GT strength up to 5.4 MeV in 46V. Once again it is to be noted that LSSM, pn-QRPA (C), PM (B) and SM (C) have a high cutoff in daughter excitation energy and reducing this cutoff can lead to much better comparison with measured data. At the same time, experimentalists can be directed to perform their measurement up to around 15 MeV in daughter to look for more high-lying GT strength in 46V.

A high resolution $(^3\text{He},t)$ experiment for 47Ti was performed at the Research Center for Nuclear Physics, Japan at an intermediate incident energy of 140 MeV/nucleon and a very fine energy resolution of 20 keV. The measurement was reported recently (63) up to an excitation energy of 12.5 MeV in 47V. The authors were suggestive that high-lying GT strength beyond 12.5 MeV might also exist well. The results of the measurement are shown in the top panel of Fig. 4. Once again we depict the calculated results of pn-QRPA (C), SM (C) and PM (B) in the second, third and fourth panel of Fig. 4 respectively. The bottom panel finally shows the shell model calculation using the GXPF1 interaction (62) including a quenching factor of $(0.74)^2$. The shell model and experimental results are generally in agreement. However, above 10 MeV, the shell model cumulative sum is larger than the experimental one. The pn-QRPA (C) data is also fragmented like the shell model and experimental data and it is in excellent agreement with the measured data. The SM (C) and PM (B) do not perform well for this odd-A isotope of titanium. The PM (B) calculates a peak value of 0.16 at a relative low excitation energy of 0.2 MeV whereas the SM (C) calculates the biggest transition of 1.04 magnitude at 11.6 MeV. The pn-QRPA (C) calculated a total strength of 3.58 in complete agreement with the measured value of 3.60. The corresponding value calculated within the shell model is 2.76. The SM (C) calculates yet smaller value of total strength of 2.47 whereas the PM (B) bags a paltry sum of 0.36. Regarding centroid placement, one notes that pn-QRPA (C) calculates the centroid at 7.62 MeV which is again in excellent agreement with the measured centroid of 7.5 MeV. LSSM fixes the centroid at 7.59 MeV. The SM (C) places the centroid at a higher value of 9.48 MeV and PM (B) places it at 4.45 MeV.

We finally present the GT strength distributions of 48Ti (in the electron capture direction) in Fig. 5. Alford and collaborators (64) studied the 48Ti(n,p) reaction at an energy of 200 MeV and they were able to obtain GT strength distribution of 48Ti up to a comparatively much higher energy value of around 12 MeV in daughter nucleus, 48Sc. Further details of the performed experiment can be seen from Ref. (64). The top panel of Fig. 5 shows the measured GT distribution obtained from the (n,p) reaction experiment. This is followed by our model calculations of pn-QRPA (C), SM (C) and PM (B). The bottom panel presents the shell model calculation by Brown (65) in a model space $(f_7/2)^n(f_5/2p_3/2p_1/2)^n$ with $n = 0, 1, 2$. The shell model data has been quenched by a factor 0.6. It can be seen from Fig. 5 that the measured GT strength is well fragmented and extend to high excitation energies in 48Sc. The pn-QRPA (C) calculation is also well fragmented. The first measured peak at 2.52 MeV is well reproduced by the pn-QRPA (C) model but it also calculates a strong peak of 0.6 at 2.64 MeV in 48Sc. The SM (C) data is also fragmented but is off much lower strength. The shell model calculates the strongest peak of 0.6 at 6.44 MeV. The total measured GT strength of 1.44 is to be compared with the theoretical values of 1.78, 0.90, 0.26 and 1.08 by pn-QRPA (C), SM (C), PM (B) and shell model, respectively. The centroid of the measured GT distribution resides at 7.31 MeV in daughter. The pn-QRPA (C) model calculates a much lower centroid at 4.12 MeV. The SM (C) locates the centroid at 5.72 MeV whereas the shell model places it at 6.19 MeV in daughter 48Sc. The highest centroid value has been obtained by PM (B) model which is 8.47 MeV. This value is higher than the measured data although the corresponding values for other theoretical calculations are lower than the experimental results. The closest match with the measured centroid value for the case of 48Ti is provided by shell model calculation.

4 Summary and conclusions

Fermi and Gamow-Teller transitions are required for an accurate calculation of β-decay and electron capture rates in terrestrial and stellar environments. Reliable estimates of β-decay half-lives (including many neutron-rich nuclei) are in high demand in various nuclear physics (e.g. for the experimental exploration of the nuclear landscape at existing and future radioactive ion-beam facilities) and astrophysical problems (e.g. for a better understanding of the supernova explosion
mechanism and heavy element nucleosynthesis). It is
the GT transitions which are fragmented and are very
challenging to calculate. The GT transitions assume
a nuclear model for its calculation whereas calculation
of Fermi transitions is straight forward (these are con-
centrated in a single state known as isobaric analogue
state). The Gamow-Teller strength distribution for is-
otope of titanium, $^{40-60}\text{Ti}$, were calculated and ana-
yzed by using three microscopic models (namely the
pn-QRPA, Pyatov Method and Schematic Method).
The pn-QRPA and Schematic model were further sub-
divided into three classes in order to highlight the role
of particle-particle (pp) force and deformation of the
nucleus in the GT strength calculation within the mod-
els. In Pyatov Method, only the effect of the pp force
was studied. The calculated GT strength functions
were compared with the corresponding experimental
and other theoretical model calculations wherever avail-
able. The isotopes of titanium chosen for this project
also included neutron-rich cases and have astrophysical
significance.

Our calculations strongly suggest that models with
pp force and deformation of nucleus incorporated give
better results for GT strength distribution functions.

The calculations show that the inclusion of pp in-
teraction and deformation in pn-QRPA model tends to
bring down the centroid values. In PM and SM mod-
els, the pp force has a rather unpredictable effect on
centroid placement. Further, in general, for the case of
SM and PM models, the pp force does not show any
sharp change in width and GT strength calculations
(see Tables 1 to 4). Centroid placement in SM is gen-
erally at higher excitation energies as compared to the
PM even though the same effective interaction constant
values (χ_{ph} and χ_{pp}) are used in both models. Lower
centroids are attributed to the inclusion of \hbar_0 in PM
models.

The calculated GT strength distribution functions
were also compared with measured GT distributions
where available. Comparison with other theoretical cal-
culations were also sought in such cases. The pn-QRPA
(C) is best able to reproduce the measured strength
and centroid of ^{40}Ti. The shell model calculated to-
tal strength is also in good agreement with the mea-
sured strength of ^{40}Ti. For the case of ^{41}Ti, both the
pn-QRPA (C) and SM (C) models were able to repro-
duce the measured total strength. All theoretical mod-
els calculated high-lying GT transitions for ^{41}Ti not
reported by measurements. The QD model best repro-
duces the measured GT strength function in ^{46}V. For
^{47}Ti, the pn-QRPA (C) best reproduces the measured
total strength and centroid placement (shell model cal-
culated centroid is also in agreement with measured
data). For ^{48}Ti, shell model is successful in reproduc-
ing the measured GT strength function.

The pn-QRPA (C) model satisfied the re-normalized
Ikeda sum rule to within a few percent and calculated
much bigger GT strengths and lower centroids as com-
pared to other QRPA models. The model also followed
a systematic trend in calculation of GT strength for
even-even and odd-A titanium isotopes. This trend is
valid only for even-even nuclei in PM and SM models.
The pn-QRPA (C) model also performed reasonably
well in comparison to measured GT strength distribu-
tions. SM (C) model also displayed encouraging results.

One expects significant progress in our understand-
ing of supernova explosions and heavy element nucle-
osynthesis to come from next-generation radioactive
ion-beam facilities (e.g. FAIR (Germany), FRIB (USA)
and FRIB (Japan)) when we would have access to mea-
sured GT strength distribution of many more nuclei
(including unstable isotopes). Nonetheless, for astro-
physical applications, one needs microscopic and reli-
able calculation of GT strength distributions for hun-
dreds of iron-regime nuclei. We are in a process of cal-
culating GT strength functions for other key fp-shell
nuclei (including many neutron-rich unstable nuclei) in
a microscopic fashion and hope to report our findings
in near future.

Acknowledgements S. Cakmak and T. Babacan
would like to acknowledge the support of research grant
provided by BAP Project with number 2013-004. S.
Cakmak would also like to acknowledge the kind hospi-
tality provided by the GIK Institute of Engineering Sci-
ciences and Technology, Pakistan, where major portion
of this project was completed and manuscript written.
References

F. Osterfeld.: Nuclear-Spin And Isospin Excitations. Rev. Mod. Phys. 64, 491 (1992).
Ikeda K., Fujii S., Fujita J. I.: The (p,n) reactions and beta decays. Phys. Lett. 3, 271 (1963).
Anderson B. D., Tamimi N., Baldwin A. R., Eleasir M., Madey R., Manley D. M., Mostajaboddavati M., Watson J. W., Zhang W. M. and Foster C. C.: Gamow-Teller strength in (p,n) reaction at 136 MeV on 20Ne,25Mg and 26Si. Phys. Rev. C 43 1 (1991).
El-Kateb S., Alford W. P., Abegg R., Azuma R. E., Brown B. A., Celler A., Frekers D., Häusser O., Helmer R., Henderson R. S., Hicks K. H., Jeppesen K., King J. D., Raywood K., Shute G. G., Spicer B. M., Trudel A., Vetterli M. and Yen S.: Spin-isospin strength distributions for fp shell nuclei: Results for the 55Mn(n,p), 56Fe(n,p), and 58Ni(n,p) reactions at 198 MeV. Phys. Rev. C 49 3128 (1994).
Fujita Y., Akimune H., Daito I., Fujimura H., Fujiwara M., Harakeh M. N., Inomata T., Jänecke J., Katori K., Tamii A., Tanaka M., Ueno H., and Yosoi M.: Mirror-symmetry structure of $A = 27$, $T = 1/2$ nuclei studied through strong, weak, and electromagnetic interactions. Phys. Rev. C 59, 90 (1999).
Cole A. L., Akimune H., Austin Sam M., Bazin D., Berg A. M. van den, Berg G. P. A., Brown J. W., Daito I., Fujita Y., Fujiwara M., Gupta S., Harakeh M., Janecte J., Kawabata T., Nakamura T., Roberts D. A., Sherrill B. M., Steiner M., Ueno H., and Zegers R. G. T.: Measurement of the Gamow-Teller strength distribution in 58Co via the 58Ni(t,3He) reaction at 115 MeV/nucleon. Phys. Rev. C 74, 034333 (2006).
Bäumer C., Berg A. M. van den, Davids B., Frekers D., Frenne S. De, Grewe E. W., Haefner P., Harakeh M. N., Hofmann F., Hollstein S., Haynadi M., Hun M. A. de, Jacobs E., Junk B. C., Korff A., Langanke K., Martínez-Pinedo G., Negret A., Neumann-Cosel P. von, Rakers S., Richter A., and Wörthe M. J.: Determination of the Gamow-Teller strength distribution from the odd-odd nucleus 55V measured through 50V(3He,5Li) and astrophysical implications. Phys. Rev. C 71, 024603 (2005).
Bertulania C. A., Lotti P.: Fermi and Gamow-Teller strength in charge exchange with radioactive beams. Phys. Lett. B 402 237-242 (1997).
Martínez-Pinedo G., Langanke K., Dean D. J.: Competition of electron capture and beta-decay rates in supernova collapse. Astrophys. J. Suppl. Ser. 126, 493 (2000).
Caurier E., Martínez-Pinedo G., Nowacki F., Poves A., Zuker A. P.: The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 77, 427 (2005).
Halbleib J. A. and Sorensen R. A.: Gamow-Teller beta decay in heavy spherical nuclei and the unlike particle-hole rpa. Nucl. Phys. A 498, 542 (1967).
Krumlinde J. and Möller P.: Calculation of Gamow-Teller β-strength functions in the rubidium region in the rpa approximation with Nilsson-model wave functions. Nucl. Phys. A 417, 419 (1984).
Muto K., Bender E., Oda T. and Klapdor-Kleingrothaus H. V.: Proton-neutron quasiparticle RPA with separable Gamow-Teller forces. Z. Phys. A 341, 407 (1992).
Nabi J.-Un and Klapdor-Kleingrothaus H. V.: Weak Interaction Rates of sd-Shell Nuclei in Stellar Environments Calculated in the Proton-Neutron Quasiparticle Random-Phase Approximation. At. Data Nucl. Data Tables 71, 149 (1999).
Nabi J.-Un, Klapdor-Kleingrothaus H. V.: Microscopic calculations of stellar weak interaction rates and energy losses for fp- and fpg-shell nuclei. At. Data Nucl. Data Tables 88, 237 (2004).
Nabi J.-Un and Klapdor-Kleingrothaus H. V.: Microscopic calculations of weak interaction rates of nuclei in stellar environment for $A = 18$ to 100. Eur. Phys. J. A 5, 337 (1999).
Nabi J.-Un and Rahman M.-Ur.: Gamow-Teller strength distributions and electron capture rates for 55Co and 56Ni. Phys. Lett. B612, 190 (2005).
Nabi J.-Un, Sajjad M., Rahman M.-Ur.: Electron capture rates on titanium isotopes in stellar matter. Acta Physica Polonica B 38, 3203 (2007).
Nabi J.-Un and Sajjad M.: Neutrino energy loss rates and positron capture rates on 54Co for presupernova and supernova physics. Phys. Rev. C77, 055802 (2008).
Nabi J.-Un.: Weak-interaction-mediated rates on iron isotopes for presupernova evolution of massive stars. Eur. Phys. J. A 40, 223 (2009).
Nabi J.-Un.: Expanded calculation of neutrino cooling rates due to 56Ni in stellar matter. Phys. Scr. 81, 025901 (2010).
Nabi J.-Un.: Ground and excited states Gamow-Teller strength distributions of iron isotopes and associated capture rates for core-collapse simulations. Astrophys Space Sci. 331, 537 (2011).
Nabi J.-Un.: Nickel isotopes in stellar matter. Eur. Phys. J. A 48, 84 (2012).
Nabi J.-Un and Johnson C. W.: Comparison of Gamow-Teller strengths in the random phase approximation. J. Phys. G 40, 065202 (2013).
Payot N. I. and Salamov D. I.: Conservation laws and collective excitations in nuclei. Nucleonica 22, 127 (1977).
P. Dirac: Lecture in Quantum Mechanics, Yeshiva University Press, New York 1964
Civitarese O. and Licciardo M. C.: Symmetry restoring treatment of the pairing Hamiltonian in quasiparticle representation. Phys. Rev. C 38, 967 (1988).
Civitarese O. and Licciardo M. C.: Comparison between effective Hamiltonians in symmetry restoring theories. Phys. Rev. C 41, 1778 (1990).
Civitarese O., Faessler A. and Licciardo M. C.: Symmetry breaking of the Galilean invariance in superfluid nuclei and its connection with quadrupole pairing interactions. Nucl. Phys. A 542, 221 (1992).
Sakamoto K. T.: Microscopic analysis of nuclear collective motions in terms of the boson expansion theory: Numerical calculations. Nucl. Phys. A 528, 73 (1991).
Civitarese O., Hess P. D., Hirsch J. G. and Reboiro M.: Spontaneous and dynamical breaking of mean field symmetries in the proton neutron quasi particle random phase approximation., Phys. Rev. C 59, 194 (1998).
Magierski P. and Wyss R.: Self consistent effective interactions and symmetry restoration. Phys. Lett. B 468, 54 (2000).
Kuliev A. A., Akkaya R., Ilhan M., Guliev E., Salamov C. and Selvi S.: Rotational invariant model of the states with $K''=1^+$ and their contribution to the scissors mode. Int. J. Modern Phys. E 9, 249 (2000).

Babacan T., Salamov D. I. and Kucukbursa A.: The effect of the pairing interaction on the energies of isobar resonances in $^{112-124}$Sb and isospin admixture in $^{100-124}$Sn isotopes. J. Phys. G 30, 759 (2004).

Babacan T., Salamov D. I. and Kucukbursa A.: Gamow-Teller 1^+ states in 208Bi. Phys. Rev. C 71, 037303 (2005).

Babacan T., Salamov D. I. and Kucukbursa A.: The investigation of the log(ft) values for the allowed Gamow-Teller transitions of some deformed nuclei. Math. Comp. Application 10, 359 (2005).

Sarkan S. and Pramana J.: Relevance of thermally populated first excited state of 44Ti to the abundance problem of Cassiopeia A: A model study. Phys. B 53, 469 (1999).

Liu W., Hellström M., Collatz R., Benlliure J., Chulkov L., Heger A., Woosley S. E., Martínez-Pinedo G. and Langanke K.: Presupernova evolution with improved rates for weak interaction nuclei in presupernova evolution. Astrophys. J. Suppl. Ser. 91, 389 (1994).

Heger A., Woosley S. E., Martínez-Pinedo G. and Langanke K.: Presupernova evolution with improved rates for weak interactions. Astrophys. J. 560, 307 (2001).

Hirsch M., Staude A., Muto K. and Klapdor-Kleingrothaus H. V.: Microscopic predictions of β^+/EC-decay half-lives. At. Data Nucl. Data Tables 53, 165 (1993).

Stetcu I. and Johnson C. W.: Gamow-Teller transitions and deformation in the proton-neutron random phase approximation. Phys. Rev. C 69, 024311 (2004).

Cakmak N., Unlu S. and Selam C.: Gamow-Teller 1^+ states in $^{112-124}$Sb isotopes, Indian Academy of Sciences, Nuclear Interactions, Osaka, eds. Ejiri E and Fukuda T (Singapore: World Scientific), 359 (1984).

Grotz K. and Klapdor H. V.: The Weak Interaction in Nuclear, Particle and Astrophysics. IOP Publishing Limited 1990.

Trinder W., Anne R., Lewitowicz M., Saint-Laurent M. G., Donzau C., Guillemaud-Mueller D., Leenhart S., Mueller A. C., Pougheon F., Sorlin O., Bhattacharya M., García A., Kalokamis N. I., Adelberger E. G. and Swanson H. E.: 40Ti β decay and the neutrino capture cross section of 40Ar. Phys. Lett. B 415, 211 (1997).

Ormand W. E., Pizzochero P. M., Bortignon P. F. and Broglia R. A.: Neutino capture cross sections for 40Ar and β-decay of 40Ti. Phys. Lett. B 345, 343 (1995).

Honkanen A., Dendooven P., Huhta M., Lhersonneau G., Lipas P. O. Oinonen M., Parmonen J.-M., Penttilä H., Peräjärvi K., Siiskonen T. and Äystö: High-resolution study of the beta decay of 41Ti. Nucl. Phys. A 621, 689 (1997).

Adachi T. et. al.: High-resolution study of Gamow-Teller transitions from the $T_Z = 1$ nucleus 40Ar to the $T_Z = 0$ nucleus 46V. Phys. Rev. C 73 024311 (2006).

Petermann I., Martínez-Pinedo G., Langanke K. and Bauer R.: Breaking of the SU(4) limit for the Gamow-Teller strength in $N-Z$ nuclei. Eur. Phys. J. A. 34, 319 (2007).

Poves A., Sánchez-Solano J., Caurier E. and Nowacki F.: Shell model study of the isobaric chains $A = 50$, $A = 51$ and $A = 52$. Nucl. Phys. A 691, 157 (2001).

Lisetskiy A. F., Gelberg A., Josri R. V., Pietralla N. and Brentano P. von: Quasideuteron states with deformed core. Phys. Lett. B 512 290 (2001).

Honma M., Otsuka T., Brown B. A. and Mizusaki T.: New effective interaction for pf-shell nuclei and its implications for the stability of the N=Z=28 closed core. Phys. Rev. C 69, 034335 (2004).
Ganioğlu et al.: High-resolution study of Gamow-Teller transitions in the 47Ti(3He,t)47V reaction. Phys. Rev. C 87, 014321 (2013).
Alford W. P., Helmer R. L., Abegg R., Celler A., Frekers D., Green P., Häusser R., Henderson R., Hicks K., Jackson K. P., Jeppesen R., Miller C. A., Trudel A., Vetterli M., Yen S., Pourang R., Watson J., Brown B. A. and Engel J.: Gamow-Teller strength observed in the 48Ti(n,p)48Sc reaction: Implications for the doule beta decay of 48Ca. Nucl. Phys. A514, 49 (1990).
Brown B. A.: Nuclear shell models, ed. Vallieres M. and Widenthal B. H. (World Scientific, Singapore) p.42 (1985).
Fig. 1 Comparison of Gamow-Teller (GT) strength distributions for 40Ti β decay. Measured data Exp. 1 and Exp. 2 were taken from (55) and (38), respectively. Shell Model results were taken from Ref. (56).
Fig. 2 Comparison of Gamow-Teller (GT) strength distributions for 41Ti β decay. Measured data Exp. 1 and Exp. 2 were taken from (57) and (38), respectively. Shell Model results were taken from Ref. (57).
Fig. 3. Comparison of Gamow-Teller (GT−) strength distributions for 46Ti β-decay. Measured data Exp. was taken from (58). Large Scale Shell Model (LSSM) results were taken from Ref. (59), whereas Shell Model:KB3G int. and Shell Model:GXPF1 int. were taken from Ref. (60) and (62), respectively. Quasi Deutron (QD) model data was taken from Ref. (61).
Fig. 4 Comparison of Gamow-Teller (GT−) strength distributions for 47Ti β-decay. Measured data Exp. was taken from [63]. Shell Model results were taken from Ref. [62].
Fig. 5 Comparison of Gamow-Teller (GT+) strength distributions for 48Ti β-decay. Measured data Exp. was taken from (64) whereas Shell Model (SM) results were taken from Ref. (65).
Table 1 Total GT strengths, centroids and widths of calculated GT strength distribution functions of titanium isotopes, both in electron capture and β^--decay directions, for various QRPA models given in first column. For explanation of QRPA models see footnote at the end of Table 1.

	$\sum B(\text{GT}_-)\,$	$\sum B(\text{GT}_+)\,$	\bar{E}	\bar{E}_i	Width$_{\text{ph}}$	Width$_{\text{pp}}$
^{40}Ti						
pn-QRPA (A)a	0.78	4.95	6.51	4.16	3.08	2.43
pn-QRPA (B)b	0.77	5.05	6.34	3.89	3.01	2.37
pn-QRPA (C)c	1.77	6.04	6.41	3.97	3.02	2.37
PM (A)d	0.65	13.20	16.49	10.92	7.05	2.29
PM (B)e	0.65	11.81	8.94	5.69	7.71	2.97
SM (A)f	0.43	11.76	13.57	11.59	9.7	8.25
SM (B)g	0.44	11.76	9.48	8.89	7.20	5.94
SM (C)h	0.28	9.01	16.48	12.62	4.80	3.01
^{41}Ti						
pn-QRPA (A)	0.68	2.08	9.51	6.65	2.61	2.11
pn-QRPA (B)	0.71	3.45	9.46	9.08	2.61	3.66
pn-QRPA (C)	0.70	4.00	9.54	8.99	2.47	2.74
PM (A)	0.82	5.63	7.58	11.42	4.02	6.08
PM (B)	0.27	8.16	11.82	7.83	10.78	5.37
SM (A)	0.29	7.38	16.86	11.56	10.7	10.82
SM (B)	0.25	7.95	15.83	11.88	9.19	10.54
SM (C)	2.09	12.15	7.02	8.18	4.08	3.03
^{42}Ti						
pn-QRPA (A)	1.25	3.36	5.92	5.63	3.08	3.22
pn-QRPA (B)	1.18	3.32	5.36	5.15	2.95	3.14
pn-QRPA (C)	2.64	4.76	3.47	4.26	2.50	2.88
PM (A)	0.97	5.86	12.18	11.21	4.08	2.01
PM (B)	1.42	7.42	4.57	3.57	4.75	3.31
SM (A)	0.75	6.87	15.65	13.22	7.34	5.58
SM (B)	1.04	7.17	18.59	16.09	9.13	7.82
SM (C)	1.63	7.30	7.73	8.14	4.88	3.45
^{43}Ti						
pn-QRPA (A)	1.17	1.75	10.54	8.58	3.10	3.86
pn-QRPA (B)	1.14	2.59	10.02	8.29	2.98	3.71
pn-QRPA (C)	1.18	2.29	9.87	9.01	2.99	3.62
PM (A)	0.13	0.83	17.36	5.41	6.46	7.11
PM (B)	0.74	0.66	13.86	10.47	7.43	4.46
SM (A)	0.5	7.02	18.87	10.56	7.19	7.40
SM (B)	0.37	7.31	19.73	10.67	8.07	7.24
SM (C)	2.37	6.06	5.06	7.27	2.23	2.81
^{44}Ti						
pn-QRPA (A)	2.60	2.60	5.04	5.13	3.54	3.61
pn-QRPA (B)	1.79	1.76	6.37	6.59	1.90	1.85
pn-QRPA (C)	3.19	3.18	4.62	4.85	3.13	3.24
PM (A)	0.14	0.08	16.25	8.18	6.46	9.55
PM (B)	0.39	0.37	12.24	6.86	8.45	7.88
SM (A)	3.84	3.86	5.61	5.72	3.78	3.72
SM (B)	3.31	3.34	5.78	5.78	3.81	3.48
SM (C)	3.87	3.92	7.94	7.89	3.87	3.99

apn-QRPA (A) are results of spherical pn-QRPA with only ph channel

bpn-QRPA (B) are results of spherical pn-QRPA with both ph+pp channels

cpn-QRPA (C) are results of deformed pn-QRPA with both ph+pp channels

dPM (A) are results of spherical PM with only ph channel

ePM (B) are results of spherical PM with both ph+pp channels

fSM (A) are results of spherical (SM) with both ph+pp channels

gSM (B) are results of spherical SM with both ph+pp channels

hSM (C) are results of deformed SMM with both ph+pp channels
Table 2 Same as Table I but for $^{45-50}$Ti.

	45Ti	46Ti	47Ti	48Ti	49Ti	50Ti
	$\sum B(GT_{-})$	$\sum B(GT_{+})$	\bar{E}	\bar{E}_f	Width$_{0}$	Width$_{+}$
45Ti						
pn-QRPA (A)	3.52	1.25	5.35	10.14	4.25	2.93
pn-QRPA (B)	3.46	1.25	5.25	9.81	4.10	2.80
pn-QRPA (C)	2.59	1.50	7.61	8.83	3.75	3.07
PM (A)	0.39	0.39	1.67	1.82	9.69	3.81
PM (B)	0.43	0.21	2.77	2.03	9.35	4.78
SM (A)	1.23	1.01	7.28	9.16	4.31	5.42
SM (B)	0.93	0.45	7.17	9.54	4.49	6.38
SM (C)	2.72	2.1	8.49	8.58	2.63	1.64
46Ti						
pn-QRPA (A)	4.37	2.07	4.66	5.04	3.41	3.10
pn-QRPA (B)	2.92	1.59	6.24	5.78	1.62	1.87
pn-QRPA (C)	4.48	2.31	4.82	4.11	2.95	3.09
PM (A)	6.81	1.16	5.71	0.44	3.72	2.35
PM (B)	6.55	0.43	6.05	6.44	2.81	6.82
SM (A)	9.20	3.55	8.04	6.14	6.34	5.04
SM (B)	6.64	2.97	6.25	5.01	4.05	3.64
SM (C)	8.60	2.94	10.00	7.42	3.25	3.93
47Ti						
pn-QRPA (A)	3.72	0.40	8.08	8.08	3.65	3.20
pn-QRPA (B)	3.64	0.39	7.73	7.70	3.44	2.97
pn-QRPA (C)	3.63	0.39	7.75	7.70	3.44	2.98
PM (A)	0.34	1.23	2.07	1.38	7.96	4.22
PM (B)	0.38	1.36	3.58	3.04	8.13	4.18
SM (A)	2.79	0.59	12.03	11.35	8.08	8.27
SM (B)	2.61	0.44	9.55	10.19	4.67	6.96
SM (C)	9.16	1.44	8.93	6.38	1.89	1.45
48Ti						
pn-QRPA (A)	6.19	1.84	4.38	4.21	3.25	2.72
pn-QRPA (B)	4.12	1.58	6.10	4.31	1.44	2.11
pn-QRPA (C)	6.12	1.80	5.69	3.57	3.00	2.94
PM (A)	11.71	0.005	2.08	8.96	0.49	5.45
PM (B)	11.85	0.29	2.40	3.08	1.62	5.62
SM (A)	14.10	2.10	7.28	5.83	3.36	1.92
SM (B)	13.86	1.84	7.23	5.57	3.40	1.05
SM (C)	13.85	2.09	12.76	6.42	3.55	4.19
49Ti						
pn-QRPA (A)	3.81	0.31	7.36	6.66	5.06	3.69
pn-QRPA (B)	4.07	0.31	7.20	6.39	4.88	3.46
pn-QRPA (C)	5.59	0.29	7.80	6.72	3.23	2.78
PM (A)	6.93	0.02	10.59	11.27	1.06	7.35
PM (B)	5.29	0.18	10.08	9.13	1.59	6.42
SM (A)	4.22	0.50	9.09	8.02	4.02	3.91
SM (B)	5.17	0.44	8.75	7.56	4.04	3.65
SM (C)	16.00	1.43	12.33	8.06	2.97	1.73
50Ti						
pn-QRPA (A)	8.10	1.64	4.55	3.88	3.40	3.23
pn-QRPA (B)	8.03	1.56	4.28	3.41	3.28	3.04
pn-QRPA (C)	8.01	1.57	5.80	3.86	3.10	3.44
PM (A)	18.75	0.83	5.65	1.47	2.19	1.90
PM (B)	18.60	0.67	5.59	1.96	2.35	4.16
SM (A)	19.66	1.73	8.28	2.40	3.53	1.95
SM (B)	20.01	1.59	8.37	2.16	3.48	1.99
SM (C)	19.13	1.78	14.69	6.45	3.89	4.38
Ti	\(\sum B(GT^-)\)	\(\sum B(GT^+)\)	\(\bar{E}\)	\(\bar{E}_s\)	Width_{\text{PM}}	Width_{\text{SM}}
-----	----------------	----------------	---------	---------	-------------	-------------
51Ti						
pn-QRPA (A)	8.78	0.27	8.10	7.62	2.93	0.79
pn-QRPA (B)	8.83	0.27	8.07	7.43	2.92	0.78
pn-QRPA (C)	7.90	0.27	8.35	7.29	2.87	1.00
PM (A)	4.99	1.11	9.42	4.80	1.72	1.62
PM (B)	4.67	1.10	9.42	4.34	1.75	2.02
SM (A)	6.44	0.92	11.62	5.56	4.24	1.99
SM (B)	7.08	0.83	13.31	5.19	7.62	1.97
SM (C)	24.61	0.30	13.77	9.51	4.89	6.66
52Ti						
pn-QRPA (A)	10.08	1.52	6.19	3.96	3.25	4.37
pn-QRPA (B)	10.02	1.43	5.96	3.33	3.12	3.89
pn-QRPA (C)	10.01	1.41	6.13	3.31	3.12	3.63
PM (A)	24.67	0.88	8.20	4.64	2.25	2.61
PM (B)	23.45	0.24	7.94	11.45	2.74	6.94
SM (A)	25.40	1.61	14.69	5.22	3.73	4.43
SM (B)	25.21	1.41	14.43	4.17	3.53	2.18
SM (C)	24.73	1.69	16.55	5.82	3.88	4.22
53Ti						
pn-QRPA (A)	9.35	0.14	8.89	6.44	3.20	2.74
pn-QRPA (B)	11.09	0.23	7.00	4.08	3.48	2.16
pn-QRPA (C)	10.00	0.25	7.28	4.50	3.70	2.73
PM (A)	10.55	0.43	8.41	5.03	1.99	2.38
PM (B)	11.89	0.09	7.71	13.09	4.19	7.76
SM (A)	25.40	1.61	14.69	5.22	3.73	4.43
SM (B)	1.96	0.66	9.05	4.57	5.59	2.18
SM (C)	38.71	0.44	13.05	4.61	3.43	3.14
54Ti						
pn-QRPA (A)	12.08	1.40	6.53	2.77	3.20	4.56
pn-QRPA (B)	12.03	1.29	6.26	2.14	3.11	4.03
pn-QRPA (C)	11.96	1.26	6.74	2.43	3.16	4.00
PM (A)	29.93	0.77	7.43	6.16	2.71	3.27
PM (B)	29.00	0.29	7.43	11.54	2.86	6.70
SM (A)	30.99	1.44	16.7	4.85	3.91	5.43
SM (B)	3.81	1.24	16.44	3.54	3.65	2.64
SM (C)	35.14	0.27	20.40	8.87	4.00	6.55
55Ti						
pn-QRPA (A)	9.50	0.13	10.19	5.65	3.27	2.92
pn-QRPA (B)	12.56	0.14	8.05	6.93	4.40	2.49
pn-QRPA (C)	11.35	0.22	7.75	4.04	6.62	4.06
PM (A)	10.08	0.26	9.83	8.42	2.93	3.27
PM (B)	11.16	0.10	7.70	11.77	2.98	6.98
SM (A)	17.62	0.84	17.72	5.16	3.47	3.64
SM (B)	18.21	0.77	17.89	4.52	2.96	2.17
SM (C)	41.96	0.18	13.24	6.01	4.27	3.25
56Ti						
pn-QRPA (A)	13.98	0.88	7.06	2.13	3.43	4.86
pn-QRPA (B)	13.10	0.11	7.30	11.16	2.93	15.08
pn-QRPA (C)	13.49	0.54	7.52	2.85	3.26	4.74
PM (A)	36.89	1.69	6.94	2.29	2.64	3.05
PM (B)	35.95	0.23	6.93	11.69	2.66	5.39
SM (A)	36.32	1.03	18.22	1.92	4.04	2.76
SM (B)	36.17	0.92	18.14	3.10	4.01	7.13
SM (C)	34.45	0.84	19.67	5.72	4.49	5.55
Table 4 Same as Table I but for $^{57-60}$Ti.

	$\sum B(\text{GT}_-) \text{MeV}$	$\sum B(\text{GT}_+) \text{MeV}$	$E_c \text{MeV}$	$E_i \text{MeV}$	Width MeV	Width $_1 \text{MeV}$		
57Ti	pn-QRPA (A) 14.13 0.11 10.34 4.95 3.59 3.66	pn-QRPA (B) 13.92 0.06 10.10 8.95 3.29 3.00	pn-QRPA (C) 14.23 0.20 7.61 2.33 5.12 3.70	PM (A) 14.15 0.91 10.99 2.68 8.62 2.97	PM (B) 20.78 0.12 7.79 11.86 5.54 5.22	SM (A) 11.5 0.55 18.64 2.34 4.51 2.29	SM (B) 14.40 0.49 19.29 3.00 5.04 5.76	SM (C) 47.48 0.16 15.14 6.64 4.44 3.59
58Ti	pn-QRPA (A) 15.88 0.71 7.34 2.55 3.81 5.46	pn-QRPA (B) 14.14 1.01 7.91 11.85 3.01 4.90	pn-QRPA (C) 15.65 0.50 7.49 2.55 3.71 5.02	PM (A) 42.09 1.05 6.26 3.39 3.39 4.28	PM (B) 39.29 0.31 6.59 10.76 3.23 4.63	SM (A) 41.47 0.41 18.93 2.72 4.72 4.08	SM (B) 41.33 0.24 18.66 6.14 4.71 7.41	SM (C) 39.05 0.57 20.55 6.92 4.93 6.09
59Ti	pn-QRPA (A) 15.34 0.06 10.36 5.32 3.87 5.02	pn-QRPA (B) 14.64 0.02 10.64 9.13 3.26 3.33	pn-QRPA (C) 16.70 0.15 7.23 1.54 5.59 3.17	PM (A) 16.49 0.55 8.17 2.93 6.89 3.98	PM (B) 23.73 0.12 6.67 11.39 4.31 4.73	SM (A) 41.17 0.22 18.54 2.23 5.01 3.08	SM (B) 7.87 0.12 19.08 4.53 8.72 6.65	SM (C) 35.81 0.07 20.55 6.92 4.93 6.09
60Ti	pn-QRPA (A) 17.70 0.50 7.28 3.07 4.03 5.75	pn-QRPA (B) 15.27 0.09 8.15 11.86 3.03 4.35	pn-QRPA (C) 17.67 0.39 7.34 2.85 3.98 5.35	PM (A) 47.59 0.66 5.58 6.20 4.19 4.65	PM (B) 46.53 0.71 5.49 6.86 4.06 5.83	SM (A) 47.03 0.15 19.29 5.65 5.49 5.52	SM (B) 46.92 0.09 19.16 8.76 5.33 6.28	SM (C) 40.69 0.46 20.01 8.28 5.31 6.05

Table 5 Total GT$_-$ strengths and calculated centroids for all GT distribution functions of 46Ti shown in Fig. 3.

Panel	$\sum B(\text{GT}_-) \text{MeV}$	$E_c \text{MeV}$	Cutoff energy in daughter (MeV)					
Exp.	1.77 2.53 4.38	pn-QRPA (C) 4.00 4.31 14.84	SM (C) 8.32 9.66 15.99	PM (B) 6.43 9.87 15.06	LSSM 4.17 5.56 15.21	SM:KB3G int. 2.25 2.76 5.76	SM:GXPF1 int. 2.03 2.80 5.96	QD 1.74 2.83 5.42