Supporting Information

A Concise Asymmetric Total Synthesis of (+)-Epilupinine

Tomohiro Tsutsumi, Sangita Karanjit, Atsushi Nakayama and Kosuke Namba*
Department of Pharmaceutical Science, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan.
E-mail: namba@tokushima-u.ac.jp

General Procedures and Methods
All the reactions were carried out under an argon atmosphere. Anhydrous solvents and reagents were commercial grade and used as supplied. NMR spectra were recorded on a Bruker AVANCE III 500 (500 MHz). Chemical shifts were reported in parts per million (ppm). For 1H NMR spectra (CDCl$_3$), the residual solvent peak was used as the internal reference (7.26 ppm), whereas the central solvent peak was used as the reference (77.0 ppm) for 13C NMR spectra. Mass spectra were recorded on a Waters/Micromass LCT PREMIER. Infrared (IR) spectra were recorded on a JASCO FT/IR-4200 spectrometer using KBr plate. Specific rotation was recorded on a JASCO P-2200 polarimeter. Analytical thin layer chromatography (TLC) was performed with E. Merck pre-coated TLC plates, silica gel 60F$_{254}$, layer thickness 0.25 mm. Reaction components were visualized by ninhydrin in 3% acetic acid in nBuOH or p-anisaldehyde in 10% sulfuric acid in ethanol. Flash column chromatography was performed on Kanto Chemical 60 N (0.04-0.05 mm) mesh silica gel. Melting point was measured with AS ONE ATM-01.

• Additional optimization for the cascade reaction S02–S09
• Experimental Detail S10–S13
• Computational Detail S14–S29

• 1H NMR and 13C NMR spectra of synthetic intermediates (4, 5, 6, 7, 9, 11), (+)-epilupinine, and 19F NMR spectra of MTPA ester of (+)-epilupinine and (±)-tashiromine. S30–S44
Additional optimization for the cascade reaction

Table S1. Optimization of Cascade Reaction with Various Asymmetric Organocatalysts in MeOH

Entry	Catalyst (mol %)	Yield (%)	Specific Rotation	ee (%)
1a	A (10)	8	+19.1	-
2	A (20)	15	+20.4	-
3	A (10)	25	-	33
4a	B (10)	6	+17.6	-
5a	C (10)	6	+11.2	-
6	C (10)	29	-	13
7	G (30)	14	+7.5	<5
8a	H (10)	6	+11.4	-
9	H (10)	20	+11.5	-
10	I (10)	17	-	37

Reaction Condition: 0.095 mmol of 5, 0.19 mmol of PhSH, 0.28 mmol of K₂CO₃, 2.4 mL of MeOH, 0.14 mmol of NaBH₄, *Purified by preparative thin layer chromatography
Table S2. Optimization of Cascade Reaction with Various Solvents Using Catalyst A

Reaction Condition: 0.095 mmol of 5, 0.019 mmol of catalyst A, 0.19 mmol of PhSH, 0.28 mmol of K$_2$CO$_3$, 2.4 mL of solvent and MeOH, 0 °C to rt; NaBH$_4$, MeOH, 0 °C to rt

entry	solvent	yield (%)	specific rotation	ee (%)
0a	MeOH	15	+20.4	-
1	DMSO	decomp.	-	-
2	MeCN	n.r.	-	-
3	CHCl$_3$	71	+0.7	-
4	tPrOH	b	-	-

aMeOH was not added to reaction mixture in reduction. bThe Ns group was removed but the Mannich reaction did not proceed.
Table S3. Optimization of Cascade Reaction with Various Asymmetric Organocatalysts in CHCl₃

|| entry | catalyst (mol %) | yield (%) | specific rotation | ee (%) |
|-------|----------------|-----------|-------------------|--------|
| 0 | A (20) | 71 | -0.7 | - |
| 1 | B (20) | . | - | - |
| 2 | C (20) | 73 | +14.4 | 61 |
| 3 | C (50) | 61 | +12.9 | 59 |
| 4 | D (20) | 33 | - | <5 |
| 5 | E (20) | 28 | -2.9 | - |
| 6 | F (20) | trace | - | 11 |
| 7 | G (20) | . | - | - |
| 8 | H (20) | 57 | -9.0 | - |
| 9 | H (100) | 68 | -17.2 | 69 |
| 10 | D-prolinol (20) | 57 | -4.0 | - |

Reaction Condition: 0.095 mmol of 5, 0.19 mmol of PhSH, 0.28 mmol of K₂CO₃, 2.4 mL of CHCl₃ and MeOH, 0.14 mmol of NaBH₄. * The Ns group was removed but the Mannich reaction did not proceed.
Table S4. Optimization of Cascade Reaction with Various Conditions Using Catalyst C

entry	solvent	additive (eq)	yield (%)	specific rotation	ee (%)
0	CHCl₃	-	73	+14.4	61
1	CH₂Cl₂	-	29	10.9	-
2	toluene	-	42	+12.4	-
3	Et₂O	-	-	-	-
4	THF	-	decomp.	-	-
5	CHCl₃	AcOH (3.0)	49	+5.6	-
6	CHCl₃	AcOH (6.0)	decomp.	-	-
7ᵇ	CHCl₃	-	26	+15.2	-

Reaction Condition: 0.095 mmol of 5, 0.019 mmol of catalyst C, 0.19 mmol of PhSH, 0.28 mmol of K₂CO₃, 2.4 mL of CHCl₃ and MeOH, 0.14 mmol of NaBH₄. *= was insoluble in Et₂O, b0.095 mmol of PhSH and 0.095 mmol of K₂CO₃ were used.
Table S5. Optimization of Cascade Reaction with Various Solvents Using L-proline (I)

![Image of the reaction scheme](image)

entry	solvent	yield (%)	specific rotation	ee (%)
0\(^a\)	MeOH	17	-	37
0\(^b\)	CHCl\(_3\)	68	-17.2	69
1	DMF	30	+13.5	-
2	DMSO	decomp.	-	-
3	THF	24	+9.6	-
4	1,4-dioxane	32	+5.9	-
5	AcOEt	34	+9.9	-
6	MeNO\(_2\)	decomp.	-	-

Reaction Condition: 0.095 mmol of 5, 0.095 mmol of L-proline (I), 0.19 mmol of PhSH, 0.28 mmol of K\(_2\)CO\(_3\), 2.4 mL of solvent and MeOH, 0.14 mmol of NaBH\(_4\). \(^a\)0.0095 mmol of L-proline (I) was used. \(^b\)D-proline (H) was used.
Table S6. Optimization of Cascade Reaction with Various Condition Using L-proline (I) in CHCl₃

Reaction Condition: 0.095 mmol of 5, 0.095 mmol of L-proline, 0.19 mmol of PhSH, 0.28 mmol of K₂CO₃, 2.4 mL of CHCl₃ and MeOH, 0 °C to rt

entry	additive (eq)	temp (°C)	conc. (M)	yield (%)	specific rotation	ee (%)
0°	-	rt	0.04	68	-17.2	69
1°	H₂O (10)	rt	0.04	26	-9.8	-
2	MeOH (20)	rt	0.04	30	+11.5	-
3	-	0	0.04	61	+18.7	76
4	-	-15	0.04	38	+8.4	-
5	-	0	0.1	54	+19.9	-
6	-	0	0.01	31	+21.4	77
7	-	-15	0.005	44	+17.3	-

Remarks: MeOH was used.
Table S7. Optimization of Cascade Reaction with Various Bases Using L-proline (I) in CHCl₃

Reaction Condition: 0.095 mmol of 5, 0.095 mmol of L-proline (I), 0.19 mmol of PhSH, 0.28 mmol of Base, 2.4 mL of CHCl₃ and MeOH, 0.14 mmol of NaBH₄. a13.5 mmol of 5, 13.5 mmol of L-proline (I), 27.0 mmol of PhSH, 40.5 mmol of Cs₂CO₃, 335 mL of CHCl₃ and MeOH was used, bPhSH was not added.

entry	base (eq)	yield (%)	specific rotation	ee (%)
0	K₂CO₃ (3.0)	61	+18.7	76
1	Li₂CO₃ (3.0)	n.r.	-	-
2ᵃ	Cs₂CO₃ (3.0)	70	+19.2	83
3	Cs₂CO₃ (1.5)	37	+15.7	-
4	Tl₂CO₃ (3.0)	n.r.	-	-
5	Triton B (3.0)	53	+7.4	-
6ᵇ	Trimethyl Benzyl Ammonium salt (3.0)	30	-	61
7	Me₂NOH (3.0)	n.r.	-	-
Table S8. Optimization of Cascade Reaction with Various Condition Using cesium salt (J) in CHCl₃

Reaction Condition: 0.095 mmol of 5, 0.095 mmol of L-proline (I), 0.19 mmol of additive, 0.28 mmol of Cs₂CO₃, 2.4 mL of CHCl₃ and MeOH, 0 °C to rt.

entry	Catalyst (mol %)	additive (2.0 eq)	yield (%)	specific rotation	ee (%)
0ᵇ	I (100)	PhSH	70	+19.2	83
1	J (100)	PhSH	35	-	92
2	J (20)	PhSH	38	-	65
3	J (100)	PhSCs	ᵇ	-	-

*b*The Ns group was removed but the Mannich reaction did not proceed.
Experimental Detail

N,N-bis(5-hexenyl)-2-nitrobenzenesulfonamide (8)

\[\text{N}_2\text{N}_2 + \text{Br} \quad \text{K}_2\text{CO}_3 \quad \text{DMF, 100 °C} \quad \rightarrow \quad \text{8} \]

To a solution of 6 (7.56 g, 37.4 mmol) in DMF (375 mL) were added K\(_2\)CO\(_3\) (31.0 g, 224 mmol) and 7 (10.0 mL, 74.8 mmol) at room temperature. The reaction mixture was heated to 100 °C for 16 h. The reaction was quenched with water and the mixture was extracted with Et\(_2\)O (x3). The combined organic layers were washed with brine, dried over anhydrous MgSO\(_4\), filtered, and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (Hexane/AcOEt = 9/1 to 4/1) to give 8 (13.4 g, 36.6 mmol, 98%) as a pale yellow oil. \(^1\)H NMR (500 MHz, CDCl\(_3\), \(\delta\)): 8.01 (m, 1H), 7.69-7.65 (m, 2H), 7.61 (m, 1H), 5.73 (ddt, \(J = 17.0, 10.1, 6.7\) Hz, 2H), 4.97 (dq, \(J = 17.1, 1.7\) Hz, 2H), 4.94 (ddt, \(J = 10.8, 2.1, 1.0\) Hz, 2H), 3.28 (t, \(J = 7.6\) Hz, 4H), 2.03 (q, \(J = 7.2\) Hz, 4H), 1.54 (quint, \(J = 7.7\) Hz, 4H), 1.35 (quint, \(J = 7.6\) Hz, 4H); \(^13\)C NMR (125 MHz, CDCl\(_3\), \(\delta\)): 148.1, 138.2, 133.9, 133.2, 131.5, 130.8, 124.1, 114.9, 47.0, 33.2, 27.4, 25.7; IR (KBr): 3076, 2932, 1640, 1545, 1373, 1347, 1160, 1124, 996, 912, 740 cm\(^{-1}\); HRMS-ESI (m/z): [M + H]\(^+\) calcd for C\(_{18}\)H\(_{27}\)N\(_2\)O\(_4\)S, 367.1692; found, 367.1689.

N,N-bis(5-oxopentyl)-2-nitrobenzenesulfonamide (5)

\[\text{O}_3, \text{CH}_2\text{Cl}_2, -78 °C; \quad \text{PPh}_3, -78 °C \text{ to rt} \quad \rightarrow \quad \text{5} \]

Ozone was bubbled through a solution of 8 (13.4 g, 36.6 mmol) in CH\(_2\)Cl\(_2\) (200 mL) at -78 °C until the color of the solution changed to blue. After bubbling of argon until the blue color disappeared, to the mixture was added PPh\(_3\) (28.8 g, 110 mmol) at -78 °C. The mixture was stirred at room temperature for 1 h and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (CH\(_2\)Cl\(_2\)/AcOEt = 1/0 to 19/1) to give 5 (11.7 g, 31.6 mmol, 86%) as a pale yellow oil. \(^1\)H NMR (500 MHz, CDCl\(_3\), \(\delta\)): 9.74 (t, \(J = 1.4\) Hz, 2H), 8.01 (m, 1H), 7.71-7.68 (m, 2H), 7.62 (m, 1H), 3.30 (t, \(J = 7.0\) Hz, 4H), 2.46 (td, \(J = 6.7, 1.3\) Hz, 4H), 1.62-1.57 (m, 8H); \(^13\)C NMR (125 MHz, CDCl\(_3\), \(\delta\)): 201.7, 148.1, 133.5, 133.4, 131.6, 130.7, 124.2, 47.0, 43.1, 27.4, 18.9; IR (KBr): 2929, 2729, 1720, 1542, 1373, 1343, 1160, 1141, 745 cm\(^{-1}\); HRMS-ESI (m/z): [M + H]\(^+\) calcd for C\(_{16}\)H\(_{23}\)N\(_2\)O\(_6\)S, 371.1277; found, 371.1278.
To a solution of 5 (5.00 g, 13.5 mmol) in CHCl₃ (335 mL) were added Cs₂CO₃ (13.2 g, 40.5 mmol), L-proline (I) (1.55 g, 13.5 mmol) and PhSH (2.76 mL, 27.0 mmol) at 0 °C, and the mixture was stirred at 0 °C for 12 h. To the mixture were added MeOH (335 mL) and NaBH₄ (766 mg, 20.2 mmol), and the mixture was stirred at room temperature for 10 min. The reaction was quenched with saturated aqueous solution of NaHCO₃, and the mixture was extracted with CHCl₃ (x3). The combined organic layers were dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by silica-gel column chromatography (AcOEt/MeOH = 3/1) to give 1 (1.60 g, 9.45 mmol, 70%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃, δ): 3.64 (dd, J = 10.9, 3.6 Hz, 1H), 3.55 (dd, J = 10.9, 5.8 Hz, 1H), 2.85-2.75 (m, 2H), 2.06-1.98 (m, 2H), 1.89 (m, 1H), 1.83 (m, 1H), 1.76 (m, 1H), 1.72-1.65 (m, 3H), 1.63-1.56 (m, 2H), 1.41 (m, 1H), 1.29-1.14 (m, 3H); ¹³C NMR (125Hz, CDCl₃, δ): 64.6, 64.3, 56.9, 56.6, 43.9, 29.7, 28.2, 25.5, 25.0, 24.5; IR (KBr): 3351, 2928, 1443, 1370, 1113, 1092, 1069, 769 cm⁻¹; HRMS-ESI (m/z): [M + H⁺] calcd for C₁₀H₂₀NO, 170.1545; found, 170.1546; [α]D²⁹ +19.2 (c 0.60, EtOH).

Recrystallization of (+)-epilupinine (1)

Triphenylacetic acid (1.59 g, 5.52 mmol) was added to a solution of 1 (935 mg, 5.52 mmol) in CHCl₃ at room temperature, and the mixture was concentrated under reduced pressure. The residue was recrystallized from CHCl₃/Et₂O at 0 °C in closed vessel. The mixture was filtrated, and the crystals were collected. The crystals were dissolved in 1M aqueous solution of HCl, and the mixture was extracted with Et₂O (x3). To the aqueous layer was added 3M aqueous solution of NaOH, and the mixture was extracted with nBuOH (x3). The combined organic layers were dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure to give 1 (496 mg, 2.93 mmol, 53%, 3 cycles) as a white solid. mp 77-78 °C [lit. 1 77-79 °C]; [α]D¹⁸ +31.5 (c 0.35, EtOH) [lit. [α]D²⁰ 31.8 (c 0.60, EtOH)].
Determination of ee (epilupinine)

To a solution of 1 (2.80 mg, 0.0165 mmol) in CH$_2$Cl$_2$ (100 µL) were added NEt$_3$ (3.46 µL, 0.0248 mmol) and (S)-MTPACl (3.71 µL, 0.0198 mmol) at 0 °C. The mixture was stirred at room temperature for 12 h. The reaction was quenched with saturated aqueous solution of NaHCO$_3$ and the mixture was extracted with AcOEt (x3). The combined organic layers were dried over anhydrous MgSO$_4$, filtered, and concentrated under reduced pressure. The residue was measured by 19F NMR without further purification, and the ee was determined by the integration ratio of the CF$_3$ peaks.

Benzyltrimethylammonium L-prolinate (S3)

To a 40% solution of benzyltrimethylammonium hydroxide (Triton B) in methanol (363 µL, 0.869 mmol) was added L-proline (I) (100 mg, 0.869 mmol) at room temperature. The mixture was stirred at room temperature for 1 h and concentrated under reduced pressure. The residue was used without further purification.

Benzyltrimethylammonium thiophenoate (S5)

To a 40% solution of benzyltrimethylammonium hydroxide (Triton B) in methanol (363 µL, 0.869 mmol) was added PhSH (88.8 µL, 0.869 mmol) at room temperature. The mixture was stirred at room temperature for 1 h and concentrated under reduced pressure. The residue was used without further purification.
Cesium L-prolineate (J)

\[
\begin{array}{c}
\text{OH} \\
\text{I} \\
\text{Cs}_2\text{CO}_3 \\
\text{H}_2\text{O}, \text{rt} \\
\text{OCs} \\
\text{J}
\end{array}
\]

To a solution of L-proline (I) (5.00 g, 43.4 mmol) in H₂O (45 mL) was added Cs₂CO₃ (7.08 g, 21.7 mmol) at room temperature, and the mixture was stirred at room temperature for 1 h. The mixture was concentrated under reduced pressure. The residue was used without further purification.

Cesium thiophenoate (S6)

\[
\begin{array}{c}
\text{PhSH} \\
\text{S4} \\
\text{Cs}_2\text{CO}_3 \\
\text{H}_2\text{O}, \text{rt} \\
\text{PhSCs} \\
\text{S6}
\end{array}
\]

To a solution of PhSH (500 µL, 4.86 mmol) in MeOH (25 mL) was added Cs₂CO₃ (796 mg, 2.44 mmol) at room temperature, and the mixture was stirred at room temperature for 1 h. The mixture was concentrated under reduced pressure. The residue was used without further purification.

\(N\)-(4-oxobutyl)-\(N\)-(5-oxopentyl)-2-nitrobenzenesulfonamide (9)

pale yellow oil; \(^1\)H NMR (500 MHz, CDCl₃, \(\delta\)): 9.77 (s, 1H), 9.64 (t, \(J = 1.4\) Hz, 1H), 8.03 (m, 1H), 7.74-7.71 (m, 2H), 7.65 (m, 1H), 3.35 (t, \(J = 7.4\) Hz, 2H), 3.34 (t, \(J = 7.1\) Hz, 2H), 2.56 (td, \(J = 7.0, 0.6\) Hz, 2H), 2.51-2.47 (m, 2H), 1.89 (quint, \(J = 7.1\) Hz, 2H), 1.64-1.59 (m, 4H); \(^{13}\)C NMR (125 MHz, CDCl₃, \(\delta\)): 201.7, 200.9, 148.0, 133.6, 133.2, 131.7, 130.7, 124.1, 47.0, 46.4, 43.0, 40.4, 27.4, 20.4, 18.9; IR (KBr): 2942, 2732, 1720, 1543, 1373, 1342, 1161, 1142, 745 cm\(^{-1}\); HRMS-ESI (m/z): [M + H]\(^+\) calcd for C₁₅H₂₁N₂O₆S, 357.1120; found, 357.1118.

\(N,N\)-bis(4-oxobutyl)-2-nitrobenzenesulfonamide (11)

pale yellow oil; \(^1\)H NMR (500 MHz, CDCl₃, \(\delta\)): 9.74 (s, 2H), 8.01 (m, 1H), 7.72-7.68 (m, 2H), 7.63 (m, 1H), 3.34 (t, \(J = 7.4\) Hz, 4H), 2.53 (td, \(J = 7.0, 0.6\) Hz, 4H), 1.88 (quint, \(J = 7.2\) Hz, 4H); \(^{13}\)C NMR (125 MHz, CDCl₃, \(\delta\)): 201.1, 148.2, 133.9, 133.3, 132.0, 131.1, 124.4, 46.8, 40.7, 20.7; IR (KBr): 2942, 2732, 1720, 1543, 1373, 1342, 1161, 1134, 755 cm\(^{-1}\); HRMS-ESI (m/z): [M + Na]\(^+\) calcd for C₁₄H₁₈N₂O₆SNa, 365.0783; found, 365.0786.

Reference
1. Su, D.; Wang, X.; Shao, C.; Xu, J.; Zhu, R.; Hu, Y. *J. Org. Chem.* 2011, 76, 188-194.
Computational Detail

Density functional theory calculations were performed with Gaussian 09 suite of programs.1 Geometries of all the molecules and transition states in the cationic form were optimized without any symmetry constrains using the B3LYP method combined with the 6-31G*(d,p) basis set. Vibrational analyses were performed at the same level of theory on all optimized geometries, to ensure that the optimized structures corresponded to local minima. The relative free energy (ΔG) obtained from vibrational frequency calculation was reported in kcal/mol anywhere in the discussion.

Figure S1. Transition states (TS\textsubscript{Si}) for a) Cs-salt and b) K-salt using catalyst I.

Table S1. Parameters for Transition states (TS\textsubscript{Si}) with Cs-salt and K-salt

Distance (Å)	Cs-salt	K-salt
C1-C2	2.551	2.501
O--H	2.880	3.224
C2-H	1.085	1.083
N-C2	1.333	1.32
C2-C3	1.499	1.492
Figure S2. Energy profile diagram for formation of enantiomers and diasteromers of Epilupinione using catalyst A

Cartesian coordinates of all calculated intermediates and transition states

A-Cs

1 1
C -2.41360100 -1.31250700 -0.34649500
H -2.07607800 -1.06036300 -1.34249600
C -1.37152700 -1.58196100 0.68505200
H -0.60084300 -0.78989900 0.60777200
H -0.83464000 -2.49008700 0.35450600
C -1.93899200 -1.76626800 2.10530700
Atom	X	Y	Z
H	-2.120618	-0.783598	2.562852
H	-1.204539	-2.276666	2.737311
C	-3.258789	-2.565052	2.056821
H	-3.688998	-2.676485	3.058782
H	-3.072040	-3.576354	1.670031
N	-3.706495	-1.455802	-0.159598
C	-4.728091	-1.082521	-1.198432
H	-5.496033	-0.497522	-0.673092
H	-5.200498	-2.015293	-1.535203
C	-4.189998	-0.274105	-2.392186
H	-4.998314	-0.254952	-3.136497
H	-3.363872	-0.811203	-2.879240
C	-3.786530	1.200590	-2.076637
H	-3.309542	1.474035	0.104687
C	-1.575277	1.830895	-0.968346
H	-1.102980	1.851546	-1.951079
C	-1.206457	2.361868	1.449906
C	0.679659	2.507087	-0.116355
C	0.075427	2.754502	2.227016
H	-1.985522	3.137877	1.512557
H	-1.644033	1.424989	1.829296
C	1.002669	3.357156	1.141139
H	0.853736	3.083224	-1.033301
H	0.536845	1.862160	2.666073
H	-0.139230	3.459410	3.036210
H	2.063508	3.311802	1.397171
H	0.737338	4.405002	0.954138
N	-0.754897	2.215115	0.053971
C	1.602460	1.256838	-0.201330
O	1.133273	0.069384	0.054880
O	2.825670	1.512815	-0.517756
C	-4.283689	-1.848680	1.164387
H	-5.150938	-2.487226	0.960241
H	-4.651320	-0.931806	1.647335
Cs	4.069219	-1.135019	-0.347982

TS

Si-Cs

| C | -4.249703 | -1.140786 | -2.108234 |

Notes:

- The table lists atomic coordinates in angstroms (Å).
- The table represents a molecular structure with selected atoms and their corresponding coordinates.
- The structure includes hydrogens (H), carbons (C), nitrogens (N), oxygens (O), and a cesium (Cs) atom.
- The TS (transition state) and Si-Cs structures are highlighted, indicating potential energy minima or saddle points in the molecular dynamics.

Image:

- The image contains a series of coordinates for various atoms, arranged in a tabular format.
- The coordinates are organized by atom type, with X, Y, and Z components listed for each atom.
| Element | X | Y | Z |
|---------|------------|------------|------------|
| C | -3.184322 | -0.075922 | -2.481625 |
| C | -2.635565 | 0.745646 | -1.318597 |
| C | -2.088624 | -1.222073 | 0.209585 |
| N | -3.277605 | -1.816332 | 0.106870 |
| C | -3.727462 | -2.298023 | -1.230529 |
| C | -1.580835 | -0.634442 | 1.492135 |
| C | -2.698875 | -0.283110 | 2.490584 |
| C | -3.734922 | -1.425094 | 2.546650 |
| C | -4.332755 | -1.674739 | 1.152470 |
| H | -4.638361 | -1.588040 | -3.033940 |
| H | -5.103520 | -0.656270 | -1.616262 |
| H | -3.645360 | 0.598096 | -3.219968 |
| H | -2.351189 | -0.567206 | -3.010542 |
| H | -3.369061 | 1.223741 | -0.667260 |
| H | -1.352902 | -1.441669 | -0.557118 |
| H | -2.878837 | -2.791342 | -1.721134 |
| H | -4.509325 | -3.049343 | -1.074408 |
| H | -0.922385 | 0.203560 | 1.237286 |
| H | -0.897577 | -1.384461 | 1.927194 |
| H | -2.270059 | -0.105358 | 3.483161 |
| H | -3.196378 | 0.648719 | 2.185926 |
| H | -3.258629 | -2.343720 | 2.915605 |
| H | -4.550749 | -1.182399 | 3.237503 |
| H | -4.997809 | -0.845714 | 0.868154 |
| H | -4.926625 | -2.595702 | 1.140112 |
| C | -1.323312 | 1.185428 | -1.308866 |
| H | -0.617211 | 0.718539 | -1.992753 |
| C | 0.685736 | 2.405449 | -0.469388 |
| C | -1.548906 | 3.035036 | 0.374918 |
| C | 0.831923 | 3.393499 | 0.717562 |
| H | 0.984761 | 2.906380 | -1.402147 |
| C | -0.526773 | 4.133221 | 0.749529 |
| H | -2.417860 | 3.427633 | -0.169434 |
| H | -1.921104 | 2.512788 | 1.269928 |
| H | 1.687488 | 4.057170 | 0.577870 |
| H | 0.985297 | 2.835896 | 1.650822 |
| H | -0.543458 | 4.930535 | -0.003455 |
| H | -0.742747 | 4.583328 | 1.723662 |
| N | -0.771719 | 2.117427 | -0.491569 |
| C | 1.611253 | 1.168910 | -0.319924 |
| O | 1.107305 | -0.011489 | -0.111242 |
| Atom | x | y | z |
|------|-----------|-----------|-----------|
| O | 2.86781800| 1.43901500| -0.41066100|
| Cs | 4.05492300| -1.22733600| 0.00257500|
| A'-Cs| | | |
| C | -2.74319900| -1.32686200| 0.76841800|
| H | -1.77814400| -0.78855700| 0.85275300|
| C | -2.88265800| -2.68861600| 1.38157200|
| H | -2.45008700| -2.63869900| 2.39050000|
| H | -2.20806900| -3.35651600| 0.82038100|
| C | -4.32499400| -3.23728400| 1.40023300|
| H | -4.87339300| -2.81407800| 2.25269400|
| H | -4.30993000| -4.32319600| 1.54050800|
| C | -5.04468400| -2.86928100| 0.08658500|
| H | -6.07889800| -3.23148900| 0.09285400|
| H | -4.54029000| -3.34692700| -0.76456800|
| N | -3.70755400| -0.73265300| 0.11548300|
| C | -3.50327200| 0.64210200 | -0.45398200|
| H | -2.62460400| 1.06431900 | 0.04076800 |
| H | -4.39055600| 1.23435800 | -0.19501600|
| C | -3.26656600| 0.64783400 | -1.98126400|
| H | -4.20150000| 0.48094500 | -2.53546400|
| H | -2.57196300| -0.16457200| -2.23878800|
| C | -2.61901700| 2.00516200 | -2.42314900|
| H | -2.53978200| 1.99220900 | -3.51938800|
| H | -3.29844400| 2.83253600 | -2.16693500|
| C | -1.27178100| 2.20347800 | -1.76688000|
| H | -0.47633200| 1.52947700 | -2.08364400|
| C | -1.09747600| 3.00707300 | -0.67863400|
| H | -1.90760600| 3.67751300 | -0.38569800|
| C | 0.07059500 | 3.96355700 | 1.32525300 |
| C | 1.11979700 | 2.11947300 | 0.08123600 |
| C | 1.18966900 | 3.34508100 | 2.19132300 |
| H | 0.32786300 | 4.99009100 | 1.01864200 |
| H | -0.89097900| 4.00038200 | 1.85522200 |
| C | 2.11254500 | 2.67285300 | 1.14492900 |
| H | 1.58046700 | 2.13354600 | -0.91746900|
| H | 0.76802700 | 2.58741400 | 2.86187800 |
| H | 1.70818600 | 4.09568600 | 2.79659800 |
| H | 2.73727400 | 1.88110200 | 1.56960600 |
| H | 2.76859600 | 3.42344000 | 0.68449200 |
| N | -0.00250400| 3.05885600 | 0.15741400 |
| | | | |
|---|---------|---------|---------|
| C | 0.76321800 | 0.61722600 | 0.36086700 |
| O | -0.38492300 | 0.30391800 | 0.84254700 |
| O | 1.71957100 | -0.21065900 | 0.07318700 |
| C | -5.05925600 | -1.34564700 | -0.10666100 |
| H | -5.75072400 | -0.86258500 | 0.59652800 |
| H | -5.36993900 | -1.07434300 | -1.12005900 |
| Cs| 4.09102800 | -1.61616200 | -0.37566600 |

TS_{Re-Cs}

C	-2.92138000	-0.75297900	0.96713900
H	-3.71279000	-0.15672000	1.41716700
C	-1.64001000	-0.91044400	1.76309500
H	-1.85330900	-0.63535600	2.80535000
H	-0.86242100	-0.22413300	1.39957800
C	-1.07879700	-2.34717400	1.67191700
H	-1.67843400	-3.04667900	2.27157600
H	-0.60058800	-2.35512200	2.07527000
C	-1.07634700	-2.78306800	0.19354900
H	-0.61724600	-3.77138800	0.06510700
H	-0.48260800	-2.06058200	-0.38145900
N	-3.38029700	-1.76098500	0.18868500
C	-4.70409500	-1.58313400	-0.45932100
H	-5.43891500	-1.32166900	0.31382900
H	-5.00673900	-2.54108400	-0.89516600
C	-4.65719600	-0.47885400	-1.53657200
H	-5.66888300	-0.36368400	-1.94679900
H	-4.01282300	-0.79646300	-2.36898300
C	-4.16824700	0.88950200	-0.99943100
H	-4.29782700	1.63141500	-1.80083800
H	-4.82399500	1.22219100	-0.17678200
C	-2.70511900	0.88835900	-0.53946300
H	-2.00070800	0.41276500	-1.22517300
C	-2.22041400	1.91794300	0.27596700
H	-2.91757800	2.38407100	0.97754400
C	-0.52940000	3.35179400	1.40448200
C	0.07564800	2.23681900	-0.70711700
C	0.84847000	3.86680400	0.91914100
H	-1.26571600	4.16343900	1.48117200
H	-0.46432700	2.84610500	2.37421300
C	0.84062200	3.58281800	-0.60348800
H	-0.40665600	2.12214500	-1.68450800
---	---	---	---
H	1.65259900	3.30500200	1.40726200
H	0.98663000	4.92707500	1.15019400
H	1.83736600	3.50336500	-1.04126700
H	0.28813700	4.36706400	-1.13612000
N	-0.96147000	2.39055300	0.34445800
C	1.05205600	1.03593600	-0.53229800
O	0.94738900	0.25668400	0.49949600
O	1.93914700	0.92934200	-1.46085300
C	-2.51687000	-2.84663900	-0.34476600
H	-2.98973100	-3.79896500	-0.07052200
H	-2.51897900	-2.79038500	-1.44712200
Cs	3.74585600	1.04224900	-0.15307000

A''-Cs

C	2.25644000	-1.37980400	-0.04089000
H	1.67123100	-1.54048100	0.85699500
C	1.52243500	-1.17719800	-1.32267400
H	0.70421100	-0.45730500	-1.12632500
H	0.98685000	-2.12138100	-1.53142500
C	2.43403400	-0.78996000	-2.50098200
H	2.66678000	0.28307800	-2.45222700
H	1.90980900	-0.95711200	-3.44789600
C	3.74201100	-1.60651500	-2.45551400
H	4.41316600	-1.32749800	-3.27605700
H	3.51766200	-2.67595100	-2.57016600
N	3.56465100	-1.48651200	0.05808400
C	4.25991000	-1.64896800	1.38164100
H	5.26207900	-1.22449500	1.24950700
H	4.38076900	-2.72493900	1.57147500
C	3.57390300	-0.94455100	2.56823300
H	4.25126200	-1.08478900	3.42183300
H	2.63788600	-1.44912900	2.84577200
C	3.31591000	0.57538200	2.35294300
H	3.31440800	1.05194300	3.34466500
H	4.16890000	1.01722100	1.81393100
C	2.01567600	0.91585100	1.64242000
H	1.09639400	0.63431900	2.15695200
C	1.94952500	1.71579200	0.52830500
H	2.88150300	2.00272500	0.03587800
C	0.87335300	3.04518100	-1.29825100
Atom	X	Y	Z
------	-----	-----	-----
C	-0.49665100	2.27102000	0.59906600
C	-0.60304900	3.42988200	-1.54088600
H	1.49976500	3.93940200	-1.15162300
H	1.29262000	2.46893000	-2.13391000
C	-1.20315900	3.45936400	-0.11432300
H	-0.37989700	2.47428500	1.67144700
H	-1.09598900	2.65810500	-2.14342900
H	-0.69508500	4.38758500	-2.06247900
H	-2.29066100	3.35616500	-0.09191100
H	-0.94004800	4.39840100	0.38861300
N	0.82393200	2.23463900	-0.05570600
C	-1.35495200	0.97893200	0.49390800
O	-1.04929200	0.04851000	-0.36374900
O	-2.38153200	0.94827600	1.27390600
C	4.47449600	-1.36965300	-1.12643700
H	4.92491900	-0.36728200	-1.09788400
H	5.28007900	-2.09947100	-0.98418900
Cs	-3.91438900	-1.24912300	0.04391300

TS’-Cs

Atom	X	Y	Z
C	-1.87382200	-1.25711100	0.13888700
H	-1.15006400	-1.59042000	-0.59936500
C	-1.31265000	-0.78208900	1.45990300
H	-0.57734300	0.00889400	1.29525400
H	-0.73917900	-1.63005800	1.87469500
C	-2.39567000	-0.35598600	2.46849300
H	-2.81362400	0.61850400	2.17815900
H	-1.94691900	-0.22785300	3.45991900
C	-3.51831800	-1.41071500	2.51259300
H	-4.31087100	-1.11571800	3.21059000
H	-3.11309500	-2.36873400	2.86634400
N	-3.10282400	-1.80073800	0.06231200
C	-3.57982000	-2.35570400	-1.24139600
H	-4.67002800	-2.42943400	-1.17082000
H	-3.18913300	-3.37512700	-1.36757400
C	-3.20203300	-1.45821000	-2.44429500
H	-3.90446600	-1.68554300	-3.25573100
H	-2.20255400	-1.71258500	-2.82188500
C	-3.24323800	0.05585300	-2.11140100
H	-3.32196600	0.61253700	-3.05660000
H	-4.15623800	0.29487100	-1.54346300
	x	y	z
---	-------	-------	---------
C	-1.99903900	0.51966200	-1.36033800
H	-1.04214200	0.26055300	-1.81616600
C	-2.02384700	1.61912100	-0.50509200
H	-2.97918900	1.96179900	-0.10563600
C	-1.02680400	3.48513400	0.84156200
C	0.40921800	2.22608600	-0.71555000
C	0.02158400	4.45884500	0.26801800
H	-2.04404700	3.89199700	0.85465400
H	-0.75524700	3.17650500	1.86037000
C	1.13866900	3.50714300	-0.23115700
H	0.27161700	2.20122500	-1.80410900
H	0.38431400	5.16711100	1.01891900
H	-0.41039700	5.02876200	-0.56356900
H	1.80033800	3.23329200	0.59657100
H	1.73925700	3.95160100	-1.03095600
N	-0.94516400	2.32564200	-0.08522800
C	1.16386100	0.91822200	-0.31562500
O	1.72434900	0.87671400	0.84839900
O	1.18489100	-0.04669000	-1.18404700
C	-4.13531300	-1.59559200	1.11725600
H	-4.74436600	-0.71708400	0.84920400
H	-4.79608100	-2.46969300	1.10244900
Cs	3.76719200	-1.21551700	0.02769500

A-K

	x	y	z
C	1.95091900	0.96497300	-0.49578400
H	1.56474800	0.61156600	-1.44101200
C	1.04647900	1.76450200	0.36762200
H	0.06824200	1.25683100	0.37467000
H	0.85495300	2.69805300	-0.18778600
C	1.61811100	2.05606200	1.75818700
H	1.46642800	1.18673000	2.40679000
H	1.07984200	2.88998100	2.21673300
C	3.11496800	2.36718200	1.65082300
H	3.55679300	2.55320900	2.63429200
H	3.26923600	2.37486700	1.05413900
N	3.20069600	0.72776200	-0.23895800
C	4.04890600	-0.15674500	-1.09087300
H	4.57418000	-0.81999000	-0.39279500
H	4.80417200	0.48726600	-1.55592000
C	3.30514100	-0.98924900	-2.13576200
Atom	X	Y	Z
------	-------	-------	-------
H	4.08111600	-1.39828300	-2.79371300
H	2.70274400	-0.34079500	-2.78380000
C	2.46336100	-2.17040700	-1.58591900
H	1.93451100	-2.61003800	-2.44003900
H	3.16676600	-2.94303700	-1.24514300
C	1.48191400	-1.88408600	-0.46858800
H	1.87525200	-1.87095100	0.54554500
C	0.13207700	-1.82545500	-0.65381200
H	-0.26670300	-1.88292800	-1.66660900
C	-0.52952700	-1.76204300	1.73448600
C	-2.25029100	-1.59563600	0.01434400
C	-1.90539500	-1.60028200	2.40533200
H	-0.05712000	-2.72559300	1.97795400
H	0.17419500	-0.97128700	2.03164900
C	-2.89548300	-2.08216700	1.32963900
H	-2.51850000	-2.25351800	-0.82002100
H	-2.08684700	-0.54604300	2.64097200
H	-1.97788400	-2.16729400	3.33685300
H	-3.90671600	-1.69232300	1.45427200
H	-2.94943700	-3.17620200	1.32516100
N	-0.82034000	-1.70317000	0.30304500
C	-2.74309800	-0.17729700	-0.38007600
O	-1.94076500	0.81095100	-0.36480700
O	-3.96256200	-0.11754400	-0.70160400
C	3.85718900	1.19991700	1.00581700
H	4.88123300	1.47402500	0.73547200
H	3.91438500	0.33830200	1.68342900
K	-3.99018200	2.38170700	-1.14443300

TS_{Sr-K}:

Atom	X	Y	Z
C	-3.62194700	0.06196100	-2.11337600
C	-2.19955600	0.57143200	-2.42190800
C	-1.39233600	1.02617500	-1.21716000
C	-1.75361900	-1.05409700	0.12378600
N	-3.07080100	-1.08463600	0.03610500
C	-3.68024600	-1.23759300	-1.30185600
C	-1.03487200	-0.85334700	1.41623400
C	-1.87023000	-0.11886500	2.46860900
C	-3.29540400	-0.68238200	2.48876100
C	-3.94078400	-0.55808600	1.10991400
H	-4.14264200	-0.12734400	-3.05869600
Atom	X	Y	Z
------	---------	---------	---------
H	-4.19586500	0.84482800	-1.60157100
H	-2.30115900	1.40487200	-3.13101000
H	-1.64453000	-0.20748200	-2.96578300
H	-1.88397100	1.72039200	-0.53738400
H	-1.21171500	-1.52655200	-0.68735000
H	-3.14271700	-2.03814000	-1.82156300
H	-4.71254300	-1.56853400	-1.16107000
H	-0.06692600	-0.38978600	1.20315500
H	-0.78160700	-1.86592600	1.77185600
H	-1.40060700	-0.21718600	3.45170200
C	-0.01713000	0.95540300	-1.21538600
H	0.47009400	0.29531400	-1.93031700
C	2.29446800	1.35942900	-0.42130100
C	0.45210800	2.67470200	0.51836000
C	2.80815300	2.22658400	0.74718800
H	2.69941000	1.74082800	-1.36871100
C	1.78538200	3.36930700	0.83039600
H	-0.27309100	3.33243300	0.02649700
H	-0.01733700	2.27906400	1.43018400
H	3.83136600	2.56235700	0.57459200
H	2.80024300	1.64089900	1.67431300
H	1.99748100	4.12690700	0.06794600
H	1.77571600	3.86685100	1.80355900
N	0.83532900	1.58024900	-0.38549800
C	2.75854800	-0.10978700	-0.30417700
O	1.91408400	-1.02934400	-0.07152700
O	4.00128700	-0.27012800	-0.44753400
K	3.94326500	-2.79843800	-0.08305300

A’-K:

Atom	X	Y	Z
C	1.87777300	0.51361400	0.59323300
H	0.91718100	0.01215600	0.72585200
C	1.87528000	1.99867600	0.51433900
H	1.24420200	2.35317400	1.33831100
H	1.29380600	2.23405500	-0.38927400
C	3.26757500	2.63761700	0.50557500
Atoms	x	y	z
-------	--------	--------	---------
H	3.65110000	2.70968100	1.53059300
H	3.21016500	3.65857600	0.11823300
C	4.21817700	1.78716500	-0.34242300
H	5.22890700	2.20546700	-0.34887100
H	3.87523300	1.76203700	-1.38415100
N	2.94141200	-0.20987200	0.47595000
C	2.90248100	-1.69559600	0.57425600
H	2.02390700	-1.94944300	1.16873000
H	3.79438100	-1.97980300	1.13897900
C	2.84712800	-2.38488900	-0.80911800
H	3.69105000	-3.07605600	-0.90963000
H	2.96401000	-1.63392100	-1.60011600
C	1.51475400	-3.14697300	-1.02722000
H	1.56516500	-1.69559600	0.88427000
H	1.46213000	-2.38291800	-0.31475700
C	0.29049900	-2.28135700	-0.90072300
H	0.11907700	-1.53921200	-1.67820100
C	-0.58432200	-2.41366900	0.12892700
H	-0.38148600	-3.17459200	0.88427000
C	-2.65179900	-2.13472100	1.44536100
C	-2.38291800	-0.86686000	-0.62219500
C	-3.90636200	-1.28444600	1.20571300
H	-2.88162600	-3.20717400	1.35913200
H	-2.20859700	-1.96272200	2.43348200
C	-3.88688900	-1.05990500	-0.31475700
H	-2.14988000	-1.22556900	-1.63292700
H	-3.82199100	-0.32884500	1.73653400
H	-4.81452700	-1.78174400	1.55607300
H	-4.48388300	-0.21198400	-0.65302400
H	-4.24853300	-1.95623500	-0.83057000
N	-1.73313400	-1.71559800	0.37254200
C	-1.98963300	0.63540200	-0.59366800
O	-1.13218600	1.07406100	0.24099400
O	-2.60832400	1.35660100	-1.42778300
C	4.28868300	0.36658000	0.20681900
H	4.84230400	0.32371800	1.15219300
H	4.78020800	-0.31317500	-0.49397700
K	-2.33098600	3.50948300	-0.14368500

TS\textsubscript{R2-K}

C	x	y	z
C	2.27066700	0.11083000	0.99271900
Element	X	Y	Z
---------	------------	------------	------------
H	2.68265500	-0.73684900	1.53142900
C	1.16933900	0.88961500	1.67212500
H	1.23308400	0.67478800	2.74619500
H	0.18378400	0.53878600	1.34482500
C	1.27840300	2.39776400	1.40457800
H	2.08135400	2.84223100	2.00612100
H	0.34519300	2.88330000	1.70353200
C	1.55757100	2.62202200	-0.08396800
H	1.58002400	3.68702900	-0.33667700
H	0.75369400	2.16526200	-0.67372100
N	3.17053800	0.73190200	0.22108700
C	4.28704800	-0.07405900	-0.30287700
H	4.76462500	-0.58056600	0.54395000
H	5.02374200	0.60829100	-0.73521300
C	3.80218500	-1.09905900	-1.33438100
H	4.66903400	-1.68409000	-1.66020200
H	3.42633200	-0.57988800	-2.22548900
C	2.71880900	-2.05480000	-0.80110900
H	2.53827100	-2.81932700	-1.56776600
H	3.10515400	-2.60143600	0.07296500
C	1.40229600	-1.37207500	-0.44439500
H	1.01094500	-0.68713100	-1.19596100
C	0.47920900	-2.02918100	0.36235400
H	0.86005000	-2.72284500	1.11534600
C	-1.68926700	-2.56323600	1.39880500
C	-1.65768300	-1.34605000	-0.72336300
C	-3.11630000	-2.49349700	0.82504200
H	-1.34261200	-3.59623700	1.52077700
H	-1.60026500	-2.05076400	2.36110900
C	-2.90299700	-2.25962400	-0.68134200
H	-1.10884200	-1.45223000	-1.66269300
H	-3.65607800	-1.65213700	1.26929600
H	-3.68347600	-3.40330000	1.03549300
H	-3.75650400	-1.79966200	-1.18180000
H	-2.67800600	-3.20357000	-1.18968900
N	-0.84768600	-1.89086800	0.37965200
C	-2.06472200	0.14371800	-0.57958200
O	-1.86427500	0.74441100	0.51875700
O	-2.62536900	0.63587500	-1.59707700
C	2.90530200	2.00846900	-0.47004300
H	3.72861300	2.68494600	-0.20780400
---	----------	----------	----------
H	2.95986200	1.83839700	-1.55262700
K	-3.47908500	2.70697100	-0.31828400
A''-K			
C	-1.92193100	1.09451300	0.12161800
H	-1.45104700	1.29433700	1.07565200
C	-1.15894500	1.39521800	-1.11366000
H	-0.14329200	0.98808100	-0.97247100
H	-1.01049700	2.48795300	-1.11840100
C	-1.84974200	0.92265000	-2.39531300
H	-1.66452900	-0.14906900	-2.53835700
H	-1.42047600	1.43447000	-3.26084100
H	-3.55144600	-0.22019600	-2.39531300
H	-3.85784800	0.34396600	1.41640000
H	-4.58124700	-0.43156200	1.14645800
H	-4.43039900	1.22672400	1.72815400
C	-2.96419500	-0.17899900	2.54394400
H	-3.65596800	-0.42631400	3.35757800
H	-2.32171600	0.61544100	2.94365700
H	-2.12282300	-1.43012500	2.18971100
H	-1.93398300	-1.96861200	3.12808200
H	-2.73073600	-2.11272400	1.57947900
C	-0.80118900	-1.16233700	1.50628200
H	-0.05853000	-0.61625200	2.08577400
C	-0.44537800	-1.71666200	0.31469500
H	-1.19803200	-2.27436000	-0.24558100
C	1.00295900	-2.39020600	-1.56650100
C	2.01675500	-1.37454500	0.41311500
C	2.51667500	-2.26913300	-1.78064500
H	0.69857800	-3.44354000	-1.47400200
H	0.42497300	-1.94186500	-2.38319200
C	3.06702000	-2.22056700	-0.34636400
H	1.93169000	-1.70804900	1.45459800
H	2.74874900	-1.33903200	-2.31097400
H	2.91715900	-3.10041800	-2.36647300
H	4.06713800	-1.79192100	-0.26692900
H	3.09852600	-3.22947100	0.07952700
N	0.77046000	-1.67465900	-0.29901000
Slow Step 1	Slow Step 2	Slow Step 3	
-------------	-------------	-------------	
C	2.43081800	0.11823500	0.47734200
O	1.77198400	1.00376100	-0.15604700
O	3.45645600	0.34617000	1.17804200
C	-3.94469400	0.46000600	-1.09146900
H	-3.98657500	-0.62509100	-1.25076300
H	-4.96286500	0.80018700	-0.87972100
K	3.70043000	2.77384000	0.44642000

TS’-K

Slow Step 1	Slow Step 2	Slow Step 3	
C	-1.81665000	-0.99067400	0.02299100
H	-1.40818100	-1.65825300	-0.72951500
C	-1.14108900	-1.02713900	1.36755300
H	-0.07852900	-0.79095600	1.25704600
H	-1.18148300	-2.08261000	1.68367800
C	-1.83463600	-0.16100800	2.42225900
H	-1.62332700	0.89990400	2.23599900
H	-1.42831500	-0.39066300	3.41200800
C	-3.34681100	-0.39945200	2.38723900
H	-3.86899100	0.23861400	3.10743000
H	-3.56577600	-1.43906400	2.66093500
N	-3.14034600	-0.80425300	-0.06620300
C	-3.78998600	-0.92521200	-1.39173600
H	-4.73250000	-0.37560300	-1.32722100
H	-4.04095700	-1.97720600	-1.57864700
C	-2.92988400	-0.33768100	-2.52217300
H	-3.59700800	-0.09501200	-3.35516400
H	-2.22753800	-1.08625100	-2.90882000
C	-2.14961900	0.91695000	-2.08953000
H	-1.83644900	1.46136500	-2.98921000
H	-2.81500400	1.60083200	-1.54448100
C	-0.91885400	0.60254100	-1.24809800
H	-0.17415600	-0.01557000	-1.74969200
C	-0.43400800	1.54577500	-0.34339800
H	-1.14287700	2.23538300	0.11530100
C	1.22244000	2.69866700	1.07725700
C	2.00530600	1.15968400	-0.64681000
C	2.52071700	3.26930000	0.50154600
H	0.42727600	3.43669900	1.21265400
H	1.40124000	2.19431600	2.03527300
C	3.18394200	2.02979700	-0.12372600
H	1.85081900	1.30655200	-1.72048900
H 3.14396500 3.74237800 1.26450300
H 2.29155900 4.01813300 -0.26448400
H 3.73462400 1.47859300 0.64562000
N 0.82571500 1.70349500 0.06450900
C 2.31158800 -0.33717400 -0.41276600
O 2.00063200 -0.85753700 0.70076400
O 2.93355200 -0.91106900 -1.34813800
C -3.90230800 -0.11553800 0.99275000
H -3.89749600 0.96680500 0.78956800
H -4.93943000 -0.45347600 0.91465700
K 3.61448400 -2.90552600 0.15744900

References
1. Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Seuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsui, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2013.
$^1\text{H NMR (500 MHz), CDCl}_3$
13C NMR (125 MHz), CDCl$_3$
^{1}H NMR (500 MHz), CDCl$_3$
\[
\text{OHC-} - N - \text{CHO}
\]

\[^{13}\text{C NMR (125 MHz), CDCl}_3\]
1H NMR (500 MHz), CDCl$_3$
13C NMR (125 MHz), CDCl₆
19F NMR (470 MHz), CDCl$_3$
(R)-MTPAO

\[\text{H} \]

\[
\text{(S1)} \quad \begin{array}{c}
\text{N} \\
\text{S1} \quad (83\% \text{ ee})
\end{array}
\]

\[
\text{S2}
\]

\[
\text{H}
\]

\[\text{19F NMR (470 MHz), CDCl}_3 \]

\[\text{NMR spectrum} \]

\[
\text{\(\delta \) / ppm}
\]

\[
-71.5 \quad -71.2 \quad -71.25 \quad -71.3 \quad -71.36 \quad -71.4
\]
(R)-MTPAO

$^1^9F$ NMR (470 MHz), CDCl$_3$

S1
(92% ee)

S2

$^1^9F$ NMR (470 MHz), CDCl$_3$
(R)-MTPAO

S1

enantiomerically pure

19F NMR (470 MHz), CDCl$_3$
$\text{OHC} \quad \text{Ns} \quad \text{CHO}$

$^1\text{H NMR (500 MHz), CDCl}_3$

Diagram of NMR spectrum with peaks at different ppm values.
13C NMR (125 MHz), CDCl$_3$
19F NMR (470 MHz), CDCl$_3$
OHC\[\begin{array}{c}
\text{N} \\
\text{Ns} \\
11
\end{array}\]
\text{CHO}

1H NMR (500 MHz), CDCl$_3$
13C NMR (125 MHz), CDCl$_3$