This paper presents the phytosociological description of a drained swamp community, *Veratro albi-Fraxinetum angustifoliae*, so far found only in the Nyírség at Nyírábrány “Kis-kőrises”, “Mogyorósi-erdő”; Vámospércs “Jónásrész-Kőrises”; and Vámospércs “Jónásrész-Buzita”. The habitat of the community is transitional between that of alder swamps (*Fraxino pannonicae-Alnetum glutinosae*), and hardwood riparian forests (*Fraxino pannonicae-Ulmetum*). The community is characterised by high proportions of character species of Alnion glutinosae and Molinion coerulei as well as Quercetea pubescentis-petraeae s. l., whereas character species of the order Fagetalia are almost completely absent. It hosts several rare, often threatened species, such as *Angelica palustris*, *Ophioglossum vulgatum*, *Trollius europaeus* and *Veratrum album*.

Key words: ash swamp, Great Hungarian Plain, Natura 2000, nature reserve, syntaxonomy

INTRODUCTION

Hardwood riparian forests have been the subject of our long-term research on the distribution, composition and geographical variation of the forest vegetation in Hungary. Hardwood riparian forests still occur in most lowland areas of Hungary under different environmental conditions and thus are particularly suitable for studying phytosociological differentiation and biogeographical relationships in the forest vegetation within the Carpathian Basin. During our work in the Nyírség, an extensive area in the northeastern part of Hungary covered with eolic sand, we found several *Fraxinus angustifolia* dominated forest stands that seemed to be different from all known forest communities described previously in the country (Figs 1–2). No similar forest community is known to exist in the European vegetation either (Braun-Blanquet 1964, Ellenberg 1986, Horvat 1938, Horvat *et al.* 1974, Mucina *et al.* 1993, Oberdorfer 1992a, b, Rodwell *et al.* 2002, Willner and Grabherr 2007a, b).

Because their species composition appeared to be substantially different from that of the *Fraxino pannonicae-Ulmetum* Soó in Aszód 1935 corr. Soó
1963, a community once widely distributed in similarly moist habitats across the country, and Fraxino pannonicae-Alnetum Soó et Járai-Komlódi in Járai-Komlódi 1958, we described it as a novel association under the name Veratro albi-Fraxinetum angustifoliae Kevey et Papp L. (Kevey 2008).

Unfortunately, this association has not been described in more detail, nor has a synoptic table of it been published since then. Here we are going to fill this gap by providing a detailed description of the community based on our sample material of ten relevés. Our primary goal is to substantiate the split of this new association from the rest of the hardwood riparian forests found in Hungary.

MATERIAL AND METHODS

Research area

The studied Fraxinus angustifolia dominated stands were found in four different forest areas in the Nyírség: the Mogyorósi-erdő and Kis-kőrises near the town of Nyírábrány, and the Jónásrész-Kőrises and Jónásrész-Buzita near the village of Nyíracsád. The stands were all found along the edge of local

![Fig. 1. Veratro albi-Fraxinetum angustifoliae: Vámospércs “Jónásrész” with Veratrum album in the foreground (photo: L. Papp)](image-url)

Acta Bot. Hung. 61, 2019
depressions where the habitat is characterised by high groundwater levels, which rises above the ground surface only in very wet periods. They either grow at the fringe of genuine alder swamps (*Fraxino pannonicae-Alnetum*) in the deepest parts of local depressions, or form the transition zone between these swamps and oak-ash-elm forests (*Fraxino pannonicae-Ulmetum*) growing on higher ground (Fig. 3). Since the ground is normally not covered with water throughout most of the vegetative period in their habitats, the soil contains only small amounts of peat that is generally decaying.

The three studied forest areas are all parts of the Natura 2000 network, and are also protected by national law. The Jónásrész “Kőrises” and “Buzita”, and “Kis-kőrises” are state reserves, whereas the “Mogyorósi-erdő” is under strict protection.

Methods

Our sampling procedure followed the traditional quadrate method of the Zürich-Montpellier phytosociological school (Becking 1957, Braun-Blanquet 1964). Sample plots were designated visually by selecting the parts of a stand that seemed to be the most homogeneous in habitat characteristics,

Fig. 2. Veratro albi-Fraxinetum angustifoliae: Vámospércs “Jónásrész” with Trollius europaeus in the herb layer (photo: L. Papp)
vegetation structure and species composition, and showed no signs of human impact (including forest management). Because the traditionally used 400 m2 plot size does not satisfy the requirement for minimal area (see Du Rietz 1921), our sample plots were 1600 m2 in size except for one (1200 m2). This size suffices the requirement of representativity in temperate deciduous forests (Kevey 2008).

Because forests in similarly mesic habitats tend to exhibit large phenological changes during the vegetative period, we sampled each stand twice (spring and summer) using the same plots. During sampling, we recorded all species within the sample quadrate and estimated their projected cover. We also estimated the height of each vegetation layer, and the trunk diameter of trees.

The raw data were compiled and arranged in a synoptic table by the NS software program (Kevey and Hirmann 2002), which also was used to calculate constancy values of each species, and proportions of species characteristic of a particular syntaxon. To assess the syntaxonomic relationship of the studied stands, we compared them to a representative material of the spatially adjacent Fraxino pannonicae-Alnetum and Fraxino pannonicae-Ulmetum, and all previously described communities growing in similar habitats in Hungary: Ophioglosso-Betuletum pubescentis (Vértesalja: Riezing and Szollát 2008–2009: 6 relevés); Molinio-Alnetum glutinosae (Tengelici-homokvidék: Kevey 2008: 20 relevés); Molinio-Salicetum cinereae (Szigetköz: Kevey 2008: 25 relevés). In doing so, we performed pairwise comparisons between sample sets and deter
mined the set of differential species (species that differed in their constancy value by at least two steps) and the proportions of character species. We also carried out binary cluster and principal coordinates analyses (PCoA) with the help of the Syntax 2000 package (Podani 2001). The method of grouping in the cluster analyses was complete link, and the similarity coefficient in both types of analyses was that of Baroni-Urbani and Buser.

The names of plants and syntaxonomic categories follow the nomenclature of Király (2009) and that of Borhidi and Kevey (1996), Borhidi et al. (2012), and Kevey (2008), respectively. Designation of species as character species of phytosociological taxa is primarily adopted from Soó (1964, 1966, 1968, 1970, 1973, 1980) with some modifications based on more recent literature (see Borhidi 1993, 1995, Horváth et al. 1995) and our own research experience (Kevey ined.).

The order of syntaxa in the synoptic and statistical tables follows the modified syntaxonomic system of Soó (1980) according to the suggestions and results of Borhidi et al. (2012), Kevey (2008), Mucina et al. (1993) and Oberdorfer (1992a, b).

RESULTS

Physiognomy and structure

In the studied stands, the forest canopy was structured into two distinct layers. The upper layer was situated at about 20–28 m height and was rather dense with high (60–80%) projected cover. The most abundant (A–D: 3–4) tree species in this layer were *Fraxinus angustifolia* subsp. *danubialis* and *Populus alba*. They were also constant species across the samples.

The lower canopy layer was at the height of 12–20 m. The projected cover was rather variable among samples. It was made up of mostly tree-sized shrubs and young individuals of trees. The most abundant species in this layer was *Fraxinus angustifolia* subsp. *danubialis*.

Shrubs in the samples were 1.5–3.5 m tall, and formed a moderately dense layer with 25–70% cover value. It was composed of *Cornus sanguinea*, *Crataegus monogyna*, *Frangula alnus*, *Fraxinus angustifolia* subsp. *danubialis*, and *Ligustrum vulgare*. Only *Cornus sanguinea* and *Ligustrum vulgare* had rather high cover values. The layer of saplings was greatly variable in projected cover (1–50%).

All samples had an apparent herbaceous layer, which greatly varied in cover (35–85%). The most frequent species include *Angelica sylvestris*, *Brachypodium sylvaticum*, *Cucubalus baccifer*, *Filipendula ulmaria*, *Geranium palustre*, *Listera ovata*, *Lychnis flos-cuculi*, *Lysimachia nummularia*, *Moehringia trinervia*, *Poa trivialis*, *Scrophularia nodosa*, *Valeriana officinalis*, *Veratrum album*. Only two species (*Brachypodium sylvaticum* and *Convallaria majalis*) were locally abundant at places (Table 1).
Table 1

Veratro albi-Fraxinetum angustifoliae

	1	2	3	4	5	6	7	8	9	10	A–D	K	%		
1. Querco-Fagea															
1.1. Salicetea purpureae															
1.1.1. Salicetalia purpureae															
1.1.1.1. Salicion albae															
Cucubalus baccifer (Cal,Ulm)	C	+	+	−	−	+	+	+	+	−	+	IV	70		
Salix fragilis (Ai,Cal)	A1	+	−	−	−	2	−	−	−	−	1	+	+2	40	
	A2	−	−	−	1	−	−	−	−	−	−	1	I	10	
	S	+	−	−	−	−	2	−	−	−	1	+	+2	40	
Humulus lupulus (Cal,Ate,Ai)	B1	−	−	−	−	+	−	−	−	−	−	−	+	I	10
	C	−	−	−	−	−	−	2	−	−	−	+	+	II	30
	S	−	−	−	−	−	−	−	2	−	−	+	+	II	30
1.2. Alnetea glutinosae															
1.2.1. Alnetalia glutinosae															
Betula pubescens (Qr,PQ)	A2	−	−	−	−	+	−	−	−	−	−	−	+	I	10
1.2.1.1. Alnion glutinosae															
Angelica palustris	C	−	−	−	−	+	+	+	−	−	+	II	40		
Calamagrostis canescens (Pte)	C	−	−	−	−	−	−	−	−	−	−	+	I	10	
1.3. Querco-Fagetea															
Brachypodium sylvaticum (Qpp)	C	3	3	5	2	3	2	4	2	3	3	2–5	V	100	
Table 1 (continued)

Species	1	2	3	4	5	6	7	8	9	10	A–D	K	%	
Cornus sanguinea (Qpp)	B1	2	1	2	3	3	2	3	3	2	1–3	V	100	
	B2	+	+	1	2	+	2	+	1	+	+	+2	V	100
	S	2	1	2	4	3	2	3	3	2	1–4	V	100	
Crataegus monogyna (Qpp)	A2	+	+	–	–	–	–	–	–	–	2	+2	II	30
	B1	2	2	+	–	+	1	+	+	+	+	+2	V	90
	B2	+	+	+	+	+	+	+	+	+	+	+	V	100
	S	2	2	+	+	+	1	+	+	+	2	+2	V	100
Geum urbanum (Epa,Cp,Qpp)	C	+	+	+	+	+	+	+	+	+	+	V	100	
Ligustrum vulgare (Cp,Qpp)	B1	+	+	2	3	2	2	+	1	3	+3	III	50	
	B2	+	+	1	1	+	1	1	2	+2	V	100		
	S	+	+	1	2	+	2	2	1	2	4	+4	V	100
Euonymus europaeus (Qpp)	B1	–	+	–	+	–	+	–	+	+	+	III	50	
	B2	–	–	–	+	–	+	+	+	+	+	III	60	
	S	–	+	+	+	+	+	+	+	+	+	V	90	
Rhamnus catharticus (Qpp,Pru)	A2	–	–	–	–	–	–	–	–	–	+	I	10	
	B1	–	–	–	–	+	+	+	–	+	+	III	50	
	B2	+	+	+	+	+	+	–	+	+	V	90		
	S	+	+	+	+	1	–	+	+	+	–1	V	90	
Scrophularia nodosa (GA,Epa)	C	+	–	+	+	+	+	+	+	+	+	V	90	
Quercus robur (Ai,Cp,Qpp)	A1	–	–	–	–	1	2	–	–	2	1–2	II	40	
	A2	–	–	+	–	–	–	–	–	+	+	I	20	
	B1	–	–	–	–	+	–	–	–	–	+	I	10	

DRAINED ASH SWAMP IN THE NYÍRSÉG, NE HUNGARY
Table 1 (continued)

	1	2	3	4	5	6	7	8	9	10	A–D	K	%	
Quercus robur (Ai,Cp,Qpp)														
B2	–	+	+	–	–	–	+	+	+	–	III	50		
S	–	+	+	–	1	1	2	+	+	2	IV	80		
Ulmus minor (Ai,Ulm,Qpp)														
A2	1	1	2	–	–	–	+	1	–	1	III	60		
B1	+	+	2	–	–	–	+	+	–	2	III	60		
B2	+	+	+	–	–	+	+	+	–	+	IV	70		
S	1	1	3	–	–	+	1	1	–	2	+3	IV	70	
Corylus avellana (Qpp)														
A2	1	1	–	–	–	–	–	–	–	1	I	20		
B1	2	+	+	–	–	–	1	–	+	–2	III	50		
B2	+	+	+	–	–	+	–	+	+	1	III	60		
S	2	1	+	+	–	–	1	–	+	–2	III	60		
Dactylis polygama (Qpp,Cp)														
C	+	1	+	+	–	–	–	+	1	+1	III	60		
Geranium robertianum (Epa)														
C	+	+	1	–	+	–	–	–	+	+	+1	III	60	
Veronica chamaedrys (Qpp,Ara)														
C	–	+	+	+	–	–	–	+	–	+	III	60		
Convallaria majalis (Qpp)														
C	3	4	+	–	–	–	–	4	–	1	+4	III	50	
Populus tremula (Qr,Qc,Ber)														
A1	+	–	–	–	–	–	–	1	–	+1	I	20		
A2	1	–	+	–	–	–	–	–	–	+1	I	20		
B1	+	–	–	–	–	+	–	–	–	+	I	20		
B2	–	+	+	–	–	+	–	+	+	1	II	30		
S	1	–	+	–	–	+	–	1	+	+1	III	50		
Ajuga reptans (MoA)														
C	–	–	–	–	+	1	1	1	–	–	+1	II	40	
Campanula trachelium (Epa,Cp)														
C	+	1	1	+	–	–	–	–	–	+1	II	40		
Table 1 (continued)

Species	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	Column 8	Column 9	Column 10	A–D	K	%
Carex spicata (Qpp,Epa)	C	–	–	+	+	–	–	+	–	–	II	40	
Heracleum sphondylium (Qpp,MoA)	C	+	+	+	–	–	–	–	–	+	II	40	
Polygonatum latifolium (Qpp)	C	+	+	–	–	–	–	–	+	+	II	40	
Cruciata glabra	C	+	+	–	–	–	–	–	+	–	II	30	
Ranunculus auricomus agg. (MoA)	C	–	–	–	–	–	+	+	–	+	II	30	
Carex divulsa	C	–	–	–	–	–	–	–	–	–	I	20	
Fragaria vesca (Qpp,Epa)	C	–	–	–	–	+	–	–	+	–	I	20	
Galeopsis pubescens (Qpp,Epa)	C	–	–	–	+	–	–	–	+	+	I	20	
Veronica hederifolia subsp. lucorum	C	–	+	+	–	–	–	–	–	+	I	20	
Acer campestre (Qpp)	A2	1	–	–	–	–	–	–	–	1	I	10	
	B1	+	–	–	–	–	–	–	–	–	I	10	
	B2	+	–	–	–	–	–	–	–	+	I	10	
	S	1	–	–	–	–	–	–	–	–	I	10	
Cephalanthera damasonium (Qpp)	C	–	–	–	–	+	–	–	–	+	I	10	
Cephalanthera longifolia	C	–	–	–	–	+	–	–	–	–	I	10	
Lapsana communis (Qpp,GA,Epa)	C	+	–	–	–	–	–	–	–	+	I	10	
Mycelis muralis	C	–	–	–	–	+	–	–	–	–	I	10	
Platanthera bifolia (Qpp,PQ,NC,Moa)	C	–	–	–	–	+	–	–	–	–	I	10	
Poa nemoralis (Qpp)	C	+	–	–	–	–	–	–	–	+	I	10	
Vicia sepium (Ara,Qpp)	C	–	–	–	–	–	–	–	–	+	I	10	
Viola mirabilis (F,Qpp)	C	+	–	–	–	–	–	–	–	+	I	10	
Table 1 (continued)

1	2	3	4	5	6	7	8	9	10	A–D	K	%			
1.3.1. Fagetalia sylvaticae															
Listera ovata (Ate,Ai)	C	−	+	+	−	+	+	+	+	+	IV	80			
Moehringia trinervia	C	+	+	+	+	−	+	−	+	+	IV	70			
Carex sylvatica	C	1	1	+	+	−	−	−	−	−	+1	40			
Stachys sylvatica (Epa)	C	+	1	+	+	−	−	−	−	−	+1	40			
Circaea lutetiana (Ai)	C	−	+	+	−	−	−	−	−	−	+	30			
Milium effusum	C	+	+	−	−	−	−	−	−	−	+	20			
Aegopodium podagraria (Ai,Cp)	C	+	−	−	−	−	−	−	−	−	+	10			
Cardamine bulbifera	C	−	−	+	−	−	−	−	−	−	+	10			
Carpinus betulus (Cp)	B2	−	−	−	−	+	−	−	−	−	+	10			
Epipactis helleborine agg.	C	−	−	−	+	−	−	−	−	−	+	10			
Galeopsis speciosa (Epn,Ai)	C	−	−	−	−	−	−	−	−	+	+	10			
Polygonatum multiflorum (QFt)	C	+	−	−	−	−	−	−	−	+	+	10			
1.3.1.1. Alnion incanae															
Fraxinus angustifolia subsp. *danubialis* (Ate)	A1	4	4	3	3	4	4	3	4	2–4	V	100			
	A2	2	3	3	2	3	2	2	2	2	2–3	V	100		
	B1	1	−	2	1	1	2	2	2	1	+	+2	90		
	B2	1	−	+	2	2	2	2	1	2	+2	90			
	S	5	5	4	5	5	5	5	3	3–5	3–5	V	100		
Populus alba (Sal,AQ)	A1	1	2	2	1	1	1	2	3	1–3	V	100			
	A2	−	−	1	1	−	−	−	−	+	+1	30			
Species	Site	Sign	1	2	3	4	5	6	7	8	9	10	A–D	K	%
-------------------------------	------	------	---	---	---	---	---	---	---	---	---	----	-----	---	---
Populus alba (Sal,AQ)	B1	±	-	-	-	-	-	-	-	+	+	I	20		
	B2	±	+	+	-	-	+	+	+	+	+	IV	80		
	S		1	2	2	2	1	1	1	2	3	1–3	V	100	
Viburnum opulus (Ate)	B1	-	-	-	1	-	-	-	-	+	+	+1	I	20	
	B2	+	+	+	1	+	+	+	+	+	1	+1	V	100	
	S	+	+	+	2	+	+	+	+	+	1	+1	V	100	
Frangula alnus (Ate,Qr,PQ)	B1	-	+	+	+	+	+	+	+	+	+	IV	70		
	B2	-	-	+	+	+	+	+	+	+	+	IV	70		
	S	-	+	+	+	+	+	+	+	+	+	V	90		
Elymus caninus (Pna,Qpp)	C	+	+	+	+	+	-	-	-	-	+	+	III	60	
Festuca gigantea (Cal,Epa)	C	-	+	+	-	-	-	1	-	-	+	+1	II	40	
Rumex sanguineus (Epa,Pna)	C	+	-	+	-	-	-	-	-	-	+	+	II	30	
Carex remota	C	+	-	-	-	-	-	-	-	-	+	+	I	20	
Equisetum hyemale (F)	C	+	-	-	-	-	-	-	-	-	+	+	I	20	
Ribes rubrum	B1	-	-	-	-	-	-	-	-	-	+	+	I	10	
	B2	+	-	-	-	-	-	-	-	-	+	+	I	10	
	S	-	+	-	-	-	-	-	-	-	+	+	I	20	
Ulmus laevis (Sal,Ulm)	A1	-	-	-	-	-	-	+	-	-	2	+2	I	20	
	A2	-	-	-	-	-	-	-	-	-	+	+	I	10	
	B1	-	-	-	-	-	-	-	-	-	+	+	I	10	
	B2	-	-	-	-	-	-	+	-	-	-	+	I	10	
	S	-	-	-	-	-	+	-	-	-	2	+2	I	20	
Table 1 (continued)

	1	2	3	4	5	6	7	8	9	10	A–D	K	%
Malus sylvestris (Qpp)	B2	-	+	-	-	-	-	-	-	+	I	10	
Padus avium	A2	-	-	-	-	-	-	-	-	+	+	I	10
	B1	-	-	-	-	-	-	-	-	+	+	I	10
	B2	-	-	-	-	-	-	-	-	+	+	I	10
	S	-	-	-	-	-	-	-	-	1	1	I	10
Viola elatior (Moa)	C	-	-	-	-	-	-	+	-	-	+	I	10

1.4. Quercetea pubescentis-petraeae

Prunus spinosa (Pru,Prf)	B1	-	-	+	+	-	+	-	-	+	III	50	
	B2	-	-	+	+	+	+	-	+	+	IV	70	
	S	-	-	+	+	+	+	-	+	+	IV	70	
Pyrus pyraster (Cp)	A1	-	-	-	-	-	1	-	-	-	I	10	
	A2	-	-	+	-	1	2	+	-	+	+	+2	30
	B1	-	-	-	-	-	+	+	-	-	I	20	
	B2	-	+	-	-	+	-	-	-	-	+	II	30
	S	-	+	+	-	+	1	2	+	-	+	+2	40
Clinopodium vulgare	C	-	+	+	+	+	+	-	-	+	III	60	
Betonica officinalis (MoA)	C	+	-	-	-	+	+	-	+	+	III	50	
Carex michelii	C	+	-	-	-	+	-	-	-	+	II	30	
Pulmonaria mollissima	C	-	-	+	+	+	-	-	-	-	+	II	30
Rosa canina agg. (Pru,Prf)	B1	-	-	+	-	-	-	-	-	+	I	10	
	B2	-	+	+	-	-	-	-	-	+	II	30	
	S	-	+	+	-	-	-	-	-	+	II	30	
Table 1 (continued)

Species	1	2	3	4	5	6	7	8	9	10	A–D	K	%	
Astragalus glycyphyllos	C	+	−	−	−	−	−	−	−	+	I	20		
Lactuca quercina subsp. *sagittata*	C	+	−	−	−	−	−	−	−	+	I	20		
Euonymus verrucosus (Pru)	B1	+	−	−	−	−	−	−	−	+	I	10		
	B2	+	−	−	−	−	−	−	−	+	I	10		
	S	+	−	−	−	−	−	−	−	+	I	10		
Inula salicina (MoA,Fvg)	C	−	−	−	+	−	−	−	−	+	I	10		
Melampyrum cristatum (Fvl)	C	−	−	−	−	−	−	−	−	+	I	10		
Polygonatum odoratum (Fvl)	C	−	−	−	−	−	−	−	−	+	I	10		
1.4.1. Quercetalia cerridis														
Gagea pratensis (Sea)	C	−	−	−	−	−	+	−	−	−	+	I	10	
Trifolium medium	C	−	−	−	−	−	+	−	−	−	+	I	10	
1.4.1.1. Aceri tatarici-Quercion														
Acer tataricum (Qpp)	B1	+	+	+	−	−	−	−	−	+	II	30		
	B2	+	+	+	−	−	−	−	−	+	II	30		
	S	+	+	+	−	−	−	−	−	+	II	30		
2. Cypero-Phragmitea														
2.1. Phragmitetea														
Eupatorium cannabinum (Epa,Sal,Ate,Ai)	C	+	+	+	+	+	+	+	−	+	V	90		
Carex acutiformis (Mag,Cgr,Moj,Sal,Ate)	C	−	+	−	1	−	+	+	+	1	+1	III	60	
Iris pseudacorus (Sal,Ate,Ai)	C	−	+	+	−	−	+	+	−	−	+	III	50	
Hypericum tetragonum (FiC)	C	−	+	+	+	−	−	−	−	−	+	II	30	
Lycopus europaeus (Moa,Cal,Bia,Spu,Ate)	C	−	−	−	−	−	−	−	+	+	I	20		
Code	Species	Section	Compositional Characteristics	Dominant Species	Relative Abundance									
------	---------	---------	------------------------------	------------------	-------------------									
Acta Bot. Hung. 61, 2019														
3.1. Molinio-Juncetea

Veratrum album (Ate, Ai)
| C | + | + | + | + | + | 2 | + | 2 | 1 | 1 | +–2 | V | 90 |

Cirsium canum (Mag, Ate, Ai)
| C | – | – | + | + | + | – | + | – | + | + | + | III | 60 |

Deschampsia caespitosa (Des, Sal, Ate, Ai)
| C | – | – | – | – | + | 2 | 1 | 1 | + | + | +–2 | III | 60 |

Cirsium rivulare (Mag, Ate, Ai)
| C | – | + | + | – | – | – | – | – | + | – | + | II | 40 |

Symphytum officinale (Pte, Cal, Spu, Ate, Ai)
| C | – | – | – | – | + | – | – | + | + | + | + | II | 40 |

Selinum carvifolia (Mon, Ate, PQ)
| C | – | – | – | – | + | – | – | – | + | – | + | I | 20 |

Succisa pratensis (Mon, Tof, NC)
| C | – | – | – | – | – | – | – | – | + | + | – | I | 10 |

3.1.1. Molinietalia coeruleae

Angelica sylvestris (Mag, Ate, Ai)
| C | + | + | 1 | + | + | + | + | + | + | + | +–1 | V | 100 |

Valeriana officinalis (Mag, FiC)
| C | – | – | – | + | + | + | + | + | + | + | + | IV | 70 |

Ophioglossum vulgatum (NC, Arn)
| C | – | – | – | – | + | + | + | + | + | + | + | III | 60 |

Trollius europaeus (Ate)
| C | – | + | – | + | + | + | + | – | + | – | + | III | 60 |

Orchis militaris (FBt, Qpp)
| C | – | – | – | – | + | + | – | – | – | – | + | I | 20 |

3.1.1.1. Filipendulo-Cirsion oleracei

Filipendula ulmaria (Moa, Sal, Ate, Ai)
| C | + | + | 1 | 1 | + | + | + | + | + | + | +–1 | V | 100 |

Geranium palustre (Ate)
| C | + | + | 1 | + | + | + | + | + | – | – | +–1 | IV | 80 |

4. Festuco-Bromea

Campanula glomerata (Qpp)
| C | – | – | – | + | – | – | + | – | – | + | II | 30 |

5. Chenopodio-Scleranthea

5.1. Secalieta

Muscari comosum (FBt)
| C | – | – | – | – | – | – | – | – | + | – | + | I | 10 |
Table 1 (continued)

Category	1	2	3	4	5	6	7	8	9	10	A–D	K	%	
5.2. Chenopodietea														
Arctium minus (Ar,Bia,Pla)	C	+	-	+	-	+	-	+	-	+	III	50		
5.3. Galio-Urticetea														
5.3.1. Calystegietalia sepium														
5.3.1.1. Galio-Alliarion														
Chaerophyllum temulum	C	+	+	-	+	1	-	-	+	-	+−1	III	60	
Alliaria petiolata (Epa)	C	-	-	-	+	+	-	-	-	+	II	30		
5.3.1.2. Calystegion sepium														
Myosoton aquaticum (Pte,Spu,Ate,Ai)	C	-	+	-	+	-	-	-	-	-	+	I	20	
Bryonia alba (Ar,GA)	C	-	-	+	-	-	-	-	-	-	+	I	10	
Calystegia sepium (Pte,Bia,Pla,Spu,Ate)	C	-	-	-	-	-	-	-	+	+	I	10		
5.4. Epilobietea angustifolii														
5.4.1. Epilobietalia														
Galeopsis bifida (Cal)	C	-	-	+	-	-	-	-	-	-	+	I	10	
Salix caprea (US,QFt)	A2	-	-	-	-	-	-	-	-	+	+	I	10	
6. Indifferens														
Equisetum arvense (Mo,A,Sea,Sal,Ate,Ai)	C	+	+	+	+	+	+	+	+	+	V	100		
Galium aparine (Sea,Epa,QFt)	C	+	1	+	+	+	+	+	1	+	+−1	V	100	
Lysimachia nummularia (Pte,MoJ,Bia)	C	+	+	+	+	+	+	+	1	+	+−1	V	100	
Rubus caesius (Spu)	B2	+	+	1	1	1	1	-	+	+	1	+−1	V	90
Torilis japonica (Ar,GA,Epa,QFt)	C	+	+	+	+	+	+	+	-	+	V	90		
Glechoma hederacea (MoA,QFt,Sal,Ai)	C	+	+	1	1	+	+	-	+	-	+−1	IV	80	
Species (Common Names)	1	2	3	4	5	6	7	8	9	10	A–D	K	%	
------------------------	---	---	---	---	---	---	---	---	---	----	-----	---	---	
Taraxacum officinale agg. (MoA,ChS)	C	+	–	+	–	+	+	+	+	–	+	IV	70	
Urtica dioica (Ar,GA,Epa,Spu)	C	–	–	–	+	+	+	+	+	–	+	III	60	
Sambucus nigra (Epa,US,QFt)	B2	–	–	+	–	+	–	–	+	+	+	III	50	
Caltha palustris (Mag,MoJ,Spu,Ate,Ai)	C	–	+	+	–	–	–	–	+	+	+	II	40	
Galium mollugo (MoA,FBt,Qrp,Qpp)	C	–	–	+	+	–	–	–	–	+	+	+	II	40
Ranunculus repens (Pte,MoA,ChS,Spu,Ate)	C	–	–	–	+	–	–	–	+	+	+	II	40	
Serratula tinctoria (MoA,MoJ,Qrp,Qpp,PQ)	C	–	–	–	–	+	–	–	–	+	+	I	20	
Stellaria media (ChS,QFt,Spu)	C	–	+	+	–	–	–	–	–	–	+	I	20	
Carex hirta (Pte,MoA,Pla)	C	–	–	–	+	–	–	–	–	–	–	I	10	
Lamium album (Ar,GA,Cal)	C	–	–	–	–	–	–	–	–	–	+	I	10	
Lysimachia vulgaris (Ai,Pte,SCn,MoJ,Sal)	C	–	–	–	–	–	–	–	+	+	+	I	10	
Mentha aquatica (Pte,Moa,Spu,Ate,Ai)	C	–	–	–	–	–	–	–	–	+	+	+	I	10
Prunella vulgaris (Pte,MoA,ChS,QFt)	C	–	–	–	–	–	–	–	–	–	+	+	I	10
Pseudolysimachion longifolium (Des,FiC)	C	–	–	–	–	+	–	–	–	+	+	I	10	
7. Adventiva														
Fraxinus pennsylvanica	A2	–	–	–	–	+	2	–	1	–	–	+–2	II	30
	B1	–	–	–	–	1	1	+	–	–	–	+–1	II	30
	B2	–	–	–	–	+	+	+	+	–	–	+	II	40
	S	–	–	–	–	+	+	+	+	–	–	+–2	II	40
Acer negundo	B1	–	+	–	–	–	–	–	–	–	–	+	I	10
	B2	–	+	+	–	–	–	–	–	–	–	+	I	20
	S	–	+	+	–	–	–	–	–	–	–	+	I	20
Frequency distribution of constancy classes

The ten samples included 22 constant (K: V) and 12 sub-constant (K: IV) species. The number of accessorial (K: III), sub-accessorial (K: II), and accidental (K: I) species in the samples was 19, 37, and 69, respectively (see Table 1).

Table 1

1	2	3	4	5	6	7	8	9	10
A–D	K	%							
B2	I	20	+						
B2	I	10	+						
B2	I	10	+						
B2	I	10	+						
B2	I	10	+						
B2	I	10	+						
B2	I	10	+						
B2	I	10	+						
B2	I	10	+						
B2	I	10	+						

Fig. 4. Frequency distribution of species in different constancy classes in *Veratro albi-Fraxinetum angustifoliae*

Fig. 5. Proportion of Alnetea glutinosae s. l. character species. Fr-A = *Fraxino pannonicae-Alnetum*, Nyírség (Kevey and Papp L. ined.: 5 relevés); V-Fr = *Veratro albi-Fraxinetum angustifoliae*, Nyírség (Kevey and Papp L. ined.: 10 relevés); Fr-U = *Fraxino pannonicae-Ulmetum*, Nyírség (Kevey et al. 2017: 20 relevés)
Table 2

Data of the relevés

Number of sample plot	1	2	3	4	5	6	7	8	9	10
	5932	5935	15808	15809	5921	5924	5927	5928	5930	15807
Year of first sampling 1	2004	2004	2005	2007	2004	2004	2004	2004	2004	2007
Month and day of first sampling 1	04.26	04.26	08.20	04.22	04.26	04.26	04.26	04.26	06.25	04.22
Year of first sampling 2	2004	2004	2007	2007	2004	2004	2004	2004	2007	2007
Month and day of first sampling 2	06.26	06.26	04.22	08.12	06.25	06.25	06.25	06.25	04.22	08.12
Altitude above sea level (m)	137	137	137	137	130	130	130	130	133	133
Exposition	0	0	0	0	0	0	0	0	0	0
Cover of upper canopy layer (%)	75	80	60	65	75	70	65	70	70	65
Cover of lower canopy layer (%)	30	40	60	25	40	40	40	25	20	40
Cover of shrub layer (%)	50	25	50	70	50	60	40	60	50	70
Cover of saplings (%)	3	1	15	50	25	25	40	5	30	40
Cover of understory (%)	80	85	85	35	60	65	60	80	70	50
Height of upper canopy layer (m)	28	28	22	25	25	22	20	25	27	25
Height of lower canopy layer (m)	16	15	15	15	18	16	15	18	20	12
Height of shrub layer (m)	3	3,5	2,5	3	3	3	1,5	3	2,5	3
Mean trunk diameter (cm)	55	60	40	50	45	40	35	40	45	50
Area of sample plot (m²)	1600	1600	1600	1600	1600	1600	1600	1200	1600	1600

Location: 1–4: Nyírábrány “Mogyorósi-erdő”; 5–8: Nyíracsád “Jónásrész-Kőrises”; 9: Nyíracsád; “Jónásrész-Buzita”; 10: Nyírábrány “Kis-kőrises”

Type of baserock: 1–10: sand. Soil type: peaty soil with decaying peat.

Authors: 1–3, 5–10, Kevey and Papp L. ined.; 4 : Kevey ined.
Fig. 6. Proportion of Saliceta purpureae s. l. character species. Fr-A = Fraxino pannonicae-Alnetum, Nyírség (Kevey and Papp L. ined.: 5 relevés); V-Fr = Veratro albi-Fraxinetum angustifolii, Nyírség (Kevey and Papp L. ined.: 10 relevés); Fr-U = Fraxino pannonicae-Ulmetum, Nyírség (Kevey et al. 2017: 20 relevés)

Fig. 7. Proportion of Alnion incanae s. l. character species. Fr-A = Fraxino pannonicae-Alnetum, Nyírség (Kevey and Papp L. ined.: 5 relevés); V-Fr = Veratro albi-Fraxinetum angustifolii, Nyírség (Kevey and Papp L. ined.: 10 relevés); Fr-U = Fraxino pannonicae-Ulmetum, Nyírség (Kevey et al. 2017: 20 relevés)

Fig. 8. Proportion of Fagetalia character species. Fr-A = Fraxino pannonicae-Alnetum, Nyírség (Kevey and Papp L. ined.: 5 relevés); V-Fr = Veratro albi-Fraxinetum angustifolii, Nyírség (Kevey and Papp L. ined.: 10 relevés); Fr-U = Fraxino pannonicae-Ulmetum, Nyírség (Kevey et al. 2017: 20 relevés)

Fig. 9. Proportion of Phragmitetea s. l. character species. Fr-A = Fraxino pannonicae-Alnetum, Nyírség (Kevey and Papp L. ined.: 5 relevés); V-Fr = Veratro albi-Fraxinetum angustifolii, Nyírség (Kevey and Papp L. ined.: 10 relevés); Fr-U = Fraxino pannonicae-Ulmetum, Nyírség (Kevey et al. 2017: 20 relevés)
Table 3
Percentages of characteristic species in *Veratro albi- Fraxinetum angustifoliae* and five similar associations selected for comparison

Association	Fr-A	V-Fr	O-B	M-A	M-S	Fr-U	Fr-A	V-Fr	O-B	M-A	M-S	Fr-U
Querco-Fagea	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Salicetalia purpureae	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Salicetalia purpureae	8.2	2.0	1.5	3.6	3.8	1.3	2.2	0.5	0.2	2.5	4.6	0.3
Salicetalia purpureae	6.6	3.3	1.9	3.0	3.7	1.6	8.0	2.7	1.3	3.9	2.2	1.9
Salicetalia purpureae	8.2	2.0	1.5	3.6	3.8	1.3	2.2	0.5	0.2	2.5	4.6	0.3
Salicetalia purpureae s. l.	14.8	5.8	3.4	6.7	8.0	3.1	10.2	3.3	1.5	6.4	8.6	2.2
Alnetalia glutinosae	13.9	8.2	5.0	7.4	7.6	2.3	25.4	17.7	13.0	18.5	15.5	5.6
Alnetalia glutinosae	1.1	0.8	0.0	0.7	1.0	0.0	1.7	0.1	0.0	0.8	11.7	0.0
Alnetalia glutinosae s. l.	15.0	9.0	5.0	8.1	8.6	2.3	27.1	17.8	13.0	19.3	27.2	5.6
Alnetalia glutinosae s. l.	15.0	9.0	5.0	8.1	8.6	2.3	27.1	17.8	13.0	19.3	27.2	5.6
Querco-Fagetea	2.7	13.0	9.8	4.9	2.1	20.7	0.2	21.9	12.8	6.0	0.8	25.4
Fagatalia sylvaticae	0.3	3.9	7.0	0.2	0.3	19.9	0.0	0.7	1.2	0.0	0.0	17.2
Alnion incanae	12.9	9.8	5.2	6.0	5.1	8.1	21.0	20.8	1.5	17.1	13.4	13.8
Alnienion glutinosae-incanae	0.9	0.0	0.5	0.0	0.0	6.2	0.0	0.0	12.8	0.0	0.0	0.0
Almienion	0.0	0.8	0.3	0.4	0.3	1.1	0.0	0.9	0.0	0.1	0.1	1.2
Almienion incanae s. l.	13.8	10.6	5.5	6.9	5.4	9.2	27.2	21.7	1.5	30.0	13.5	15.0
Table 3 (continued)

Percentage of characteristic species in K%	Percentage of characteristic species in A-D										
Fr-A	V-Fr	O-B	M-A	M-S	Fr-U	Fr-A	V-Fr	O-B	M-A	M-S	Fr-U
------	------	-----	-----	-----	------	------	------	-----	-----	-----	------
Fagion sylvaticae	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Eu-Fagenion	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0
Carpinenion betuli	0.1	2.5	1.8	1.1	0.4	4.1	0.0	2.7	0.2	0.2	0.1
Tilio-Acerenion	0.0	0.0	0.6	0.1	0.0	0.5	0.0	0.0	0.1	0.0	0.0
Fagion sylvaticae s. l.	0.1	2.5	2.4	1.2	0.4	4.9	0.0	2.7	0.3	0.2	0.1
Aremonio-Fagion	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0
Fagetalia sylvaticae s. l.	14.2	17.0	14.9	8.3	6.1	34.4	27.2	25.1	3.0	30.2	13.6
Quercetalia roboris	0.6	0.6	1.3	0.5	0.2	0.5	0.1	0.1	11.4	0.1	0.1
Quercion robori-petraeae	0.0	0.2	0.4	0.4	0.3	0.0	0.0	0.0	0.1	0.1	0.1
Quercetalia roboris s. l.	0.6	0.8	1.7	0.9	0.5	0.5	0.1	0.1	11.5	0.2	0.2
Querco-Fagetalia s. l.	17.5	30.8	26.4	14.1	8.7	55.6	27.5	47.1	27.3	36.4	14.6
Quercetea pubescentis-petraeae	1.1	14.1	11.3	9.0	6.9	13.5	0.1	21.9	12.4	6.6	1.6
Orno-Cotinetalia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Orno-Cotinion	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
Orno-Cotinetalia s. l.	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
Quercetalia cerridis	0.1	0.4	0.0	0.2	0.2	0.3	0.0	0.1	0.1	0.1	0.0
Quercion farnetto	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0
Quercion petraeae	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0
Aceri tatarici-Quercion	0.5	0.8	0.1	0.2	0.3	0.7	0.1	1.7	0.0	0.0	0.2
Quercetalia cerridis s. l.	0.6	1.2	0.1	0.4	0.5	1.6	0.1	1.8	0.0	0.1	0.2
Table 3 (continued)

Percentage of characteristic species in K%	Percentage of characteristic species in A-D											
	Fr-A	V-Fr	O-B	M-A	M-S	Fr-U	Fr-A	V-Fr	O-B	M-A	M-S	Fr-U
Prunetalia spinosae	0.0	1.1	1.1	1.2	0.5	0.4	0.0	0.2	0.1	0.6	0.1	0.0
Berberidion	0.1	0.2	0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0
Prunion fruticosae	0.0	0.5	0.7	0.8	0.3	0.2	0.0	0.1	0.1	0.2	0.0	0.0
Prunetalia spinosae s. l.	0.1	1.8	1.8	2.1	0.8	0.7	0.0	0.4	0.2	0.8	0.1	0.0
Quercetalia pubescentis-petraeae s. l.	1.8	17.1	13.2	11.5	8.2	15.9	0.2	24.1	12.6	7.5	1.9	22.4
Querco-Fagea s. l.	49.1	62.7	48.0	40.4	33.5	76.9	65.0	92.3	54.4	69.6	52.3	95.0
Abieti-Piceea	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
Vaccinio-Piceetea	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
Pino-Quercetalia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Pino-Quercion	0.4	0.6	2.0	0.9	0.6	0.2	0.0	0.1	11.5	0.2	0.1	0.0
Pino-Quercetalia s. l.	0.4	0.6	2.0	0.9	0.6	0.2	0.0	0.1	11.5	0.2	0.1	0.0
Vaccinio-Piceetea s. l.	0.5	0.6	2.0	0.9	0.6	0.3	0.0	0.1	11.5	0.2	0.1	0.0
Abieti-Piceea	0.5	0.6	2.0	1.0	0.6	0.4	0.0	0.1	11.5	0.2	0.1	0.0
Lemno-Potamea	1.2	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
Hydrochari-Lemnetea	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hydrocharieltalia	0.8	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
Lemnion minoris	0.8	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0
Hydrocharieltalia s. l.	1.6	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0
Hydrochari-Lemnetea s. l.	1.6	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0
Potamea	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lemno-Potamea s. l.	3.2	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0
Table 3 (continued)

Percentage of characteristic species in K%	Percentage of characteristic species in A-D	
	Fr-A V-Fr O-B M-A M-S Fr-U	Fr-A V-Fr O-B M-A M-S Fr-U
Cypero-Phragmitea	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Phragmiteta	11.6 2.6 1.4 5.2 7.5 0.4 8.8 0.4 0.5 3.4 16.6 0.0 0.0	
Phragmitetalia	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Phragmition	1.3 0.0 0.0 0.2 0.1 0.0 0.6 0.0 0.0 0.1 0.0 0.0 0.0	
Phragmitetalia s. l.	1.3 0.0 0.0 0.2 0.1 0.0 0.6 0.0 0.0 0.1 0.0 0.0	
Nasturtio-Glycerietalia	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Glycerio-Sparganion	1.0 0.1 0.0 0.3 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0	
Nasturtio-Glycerietalia s. l.	1.0 0.1 0.0 0.3 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0	
Magnocaricetalia	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Magnocaricion	3.6 2.5 1.6 3.6 5.7 0.1 7.0 0.4 0.7 1.4 2.2 0.0	
Caricenion rostratae	0.0 0.0 0.0 0.5 1.9 0.0 0.0 0.0 0.0 0.1 0.8 0.0	
Caricenion gracilis	1.5 0.3 0.2 0.3 1.3 0.0 6.0 0.1 0.4 0.7 0.9 0.0	
Magnocaricion s. l.	5.1 2.8 1.8 4.4 8.9 0.1 13.0 0.5 1.1 2.2 3.9 0.0	
Magnocaricetalia s. l.	5.1 2.8 1.8 4.4 8.9 0.1 13.0 0.5 1.1 2.2 3.9 0.0	
Phragmitetalia s. l.	19.0 5.5 3.2 10.1 16.5 0.5 22.5 0.9 1.6 5.7 20.5 0.0	
Isoëto-Nanojuncetea	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Nanocyperetalia	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Nanocyperion flavescentis	0.7 0.0 0.1 0.3 0.7 0.0 0.1 0.0 0.1 0.1 0.1	
Nanocyperetalia s. l.	0.7 0.0 0.1 0.3 0.7 0.0 0.1 0.0 0.1 0.1	
Isoëto-Nanojuncetea s. l.	0.7 0.0 0.1 0.3 0.7 0.0 0.1 0.0 0.1	
Cypero-Phragmitea s. l.	19.7 5.5 3.3 10.4 17.2 0.5 22.6 0.9 1.6 5.8 20.6 0.0	
Table 3 (continued)

Percentage of characteristic species in K%	Percentage of characteristic species in A-D										
Fr-A	V-Fr	O-B	M-A	M-S	Fr-U	Fr-A	V-Fr	O-B	M-A	M-S	Fr-U
---	---										
Oxycocco-Caricea nigrae	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Scheuchzerio-Caricetalia nigrae	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Scheuchzerio-Caricetalia nigrae s. l.	0.3	0.0	0.2	0.2	0.3	0.0	0.0	0.0	0.1	0.2	0.0
Oxycocco-Caricea nigrae s. l.	0.3	0.0	0.2	0.2	0.3	0.0	0.0	0.0	0.1	0.2	0.0
Molinio-Arrhenatheraea	1.4	4.0	5.4	4.9	8.3	1.5	0.1	0.7	0.8	1.8	0.3
Molinio-Juncetea	3.8	2.3	4.7	8.3	10.8	0.4	5.8	0.9	22.6	11.8	7.5
Tofieldietalia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Caricion davallianae	0.0	0.0	0.1	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tofieldietalia s. l.	0.0	0.0	0.1	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Molinietalia coeruleae	1.7	2.2	2.0	2.3	3.2	0.3	0.3	0.3	0.5	1.1	0.0
Molinion coeruleae	0.0	0.1	0.4	0.4	0.1	0.0	0.0	0.0	0.1	0.1	0.0
Deschampion caespitosae	0.9	0.4	0.4	1.2	3.5	0.1	0.2	0.2	0.7	2.4	2.8
Filipendulo-Cirsion oleracei	0.0	1.7	0.6	1.1	0.9	0.3	0.0	0.3	0.1	0.2	0.3
Alopecurion pratensis	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Molinietalia coeruleae s. l.	2.7	4.4	3.4	5.0	7.7	0.7	0.5	0.8	1.2	3.2	4.2
Molinio-Juncetea s. l.	6.5	6.7	8.2	13.5	18.5	1.1	6.3	1.7	23.8	15.0	11.7
Arrhenatheretea	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Arrhenatheretalia	0.0	0.4	0.6	0.3	0.3	0.3	0.0	0.0	0.1	0.0	0.0
Arrhenatherion elatioris	0.0	0.4	0.6	0.4	0.4	0.0	0.0	0.0	0.2	0.1	0.1
Cynosurion cristati	0.0	0.0	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Table 3 (continued)

	Percentage of characteristic species in K%	Percentage of characteristic species in A-D										
	Fr-A	V-Fr	O-B	M-A	M-S	Fr-U	Fr-A	V-Fr	O-B	M-A	M-S	Fr-U
Arrhenatheretalia s. l.	0.0	0.8	1.5	0.8	0.7	0.3	0.0	0.0	0.1	0.1	0.0	
Arrhenatheretea s. l.	0.0	0.8	1.5	0.8	0.7	0.3	0.0	0.0	0.1	0.1	0.0	
Nardo-Callunetea	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Nardetalia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Nardo-Agrostion tenuis	0.0	0.4	0.5	0.5	0.0	0.2	0.0	0.0	0.1	0.1	0.3	
Nardetalia s. l.	0.0	0.4	0.5	0.5	0.0	0.2	0.0	0.0	0.1	0.1	0.3	
Nardo-Callunetea s. l.	0.0	0.4	0.5	0.5	0.0	0.2	0.0	0.0	0.1	0.1	0.3	
Calluno-Ulicetea	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Vaccinio-Genistetalia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Calluno-Genistion	0.0	0.0	0.0	0.1	0.0	0.2	0.0	0.0	0.0	0.0	0.3	
Vaccinio-Genistetalia s. l.	0.0	0.0	0.0	0.1	0.0	0.2	0.0	0.0	0.0	0.0	0.3	
Calluno-Ulicetea s. l.	0.0	0.0	0.0	0.1	0.0	0.2	0.0	0.0	0.0	0.0	0.3	
Molinio-Arrhenatherea s. l.	7.9	11.9	15.6	19.8	27.5	3.3	6.4	2.4	24.9	16.0	13.6	0.9
Puccinellio-Salicornia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Festuco-Puccinellietea	0.1	0.0	0.4	0.2	0.8	0.0	0.1	0.0	0.7	1.1	0.0	
Festuco-Puccinellietalia	0.6	0.2	0.3	0.5	0.8	0.0	0.1	0.0	0.1	0.1	0.0	
Juncion gerardi	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Beckmannion eruciformis	0.0	0.0	0.0	0.1	0.5	0.0	0.0	0.0	0.0	0.0	0.2	
Festuco-Puccinellietalia s. l.	0.7	0.2	0.4	0.7	1.3	0.0	0.2	0.0	0.0	0.1	0.3	
Artemisio-Festucetalia pseudovinae	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Festucion pseudovinae	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	
Table 3 (continued)

Percentage of characteristic species in K%	Percentage of characteristic species in A-D											
Fr-A	V-Fr	O-B	M-A	M-S	Fr-U	Fr-A	V-Fr	O-B	M-A	M-S	Fr-U	
Artemisio-Festucetalia pseudovinae s. l.	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	
Festuco-Puccinellietea s. l.	0.0	0.2	0.8	0.9	2.2	0.0	0.0	0.0	0.0	0.8	1.4	0.0
Puccinellio-Salicornea s. l.	0.7	0.2	0.8	0.9	2.2	0.0	0.2	0.0	0.0	0.8	1.4	0.0
Festuco-Bromea	0.0	0.2	0.5	0.3	0.5	0.0	0.0	0.0	0.1	0.0	0.1	0.0
Festucetalia vaginatae	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Festucetalia vaginatae	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Festucetalia vaginatae	0.0	0.1	0.0	0.9	0.9	0.0	0.0	0.0	0.1	0.4	0.0	
Festucetalia vaginatae	0.0	0.1	0.0	0.9	0.9	0.0	0.0	0.0	0.1	0.4	0.0	
Festucetalia vaginatae s. l.	0.0	0.1	0.0	0.9	0.9	0.0	0.0	0.0	0.1	0.4	0.0	
Festucetalia vaginatae	0.0	0.2	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0
Festucetalia valesiaceae	0.0	0.2	0.2	0.2	0.2	0.0	0.0	0.0	0.0	0.0	0.1	0.0
Festucetalia valesiaceae	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Festucion rupicola	0.0	0.0	0.6	0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0
Cynodonto-Festucenion	0.0	0.0	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Festucion rupicola s. l.	0.0	0.0	1.2	0.7	0.1	0.0	0.0	0.0	0.1	0.1	0.0	0.0
Festucion rupicola s. l.	0.0	0.0	1.4	0.9	0.5	0.0	0.0	0.0	0.1	0.1	0.1	0.0
Festucetalia valesiaceae	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Brometalia erecti	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cirso-Brachypodion	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
Brometalia erecti s. l.	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0
Festuco-Bromea	0.0	0.6	3.1	2.1	1.3	0.2	0.0	0.1	0.5	0.3	0.2	0.0
Festuco-Bromea s. l.	0.0	0.9	3.6	3.3	2.7	0.2	0.0	0.1	0.6	0.4	0.7	0.0
Table 3 (continued)

Species	Fr-A	V-Fr	O-B	M-A	M-S	Fr-U	Fr-A	V-Fr	O-B	M-A	M-S	Fr-U
Chenopodio-Scleranthea	0.5	0.6	1.0	1.1	0.9	0.2	0.0	0.1	0.1	0.2	0.2	0.0
Secalietea	0.5	0.9	0.3	0.9	0.8	0.6	0.0	0.2	0.0	0.1	0.1	0.1
Oryzetea sativae	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Oryzetalia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Oryzion sativae	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Oryzeta s. l.	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Oryzeta sativae s. l.	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Chenopodietea	0.1	0.2	1.0	0.7	0.1	0.5	0.0	0.0	0.1	0.1	0.0	0.1
Onopordetalia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Onopordion acanthii	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Onopordetalia s. l.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Chenopodietea s. l.	0.0	0.2	1.7	0.7	0.1	0.0	0.0	0.0	0.2	0.1	0.0	0.0
Artemisietea	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Artemisietalia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Arction lappae	0.5	0.8	1.6	1.0	0.0	1.1	0.1	0.1	0.2	0.2	0.0	0.1
Artemisietalia s. l.	0.5	0.8	1.6	1.0	0.0	1.1	0.1	0.1	0.2	0.2	0.0	0.1
Artemisietea s. l.	0.5	0.8	1.6	1.0	0.0	1.1	0.1	0.1	0.2	0.2	0.0	0.1
Galio-Urticetea	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Calystegietalia sepium	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Galio-Alliarion	0.4	2.3	3.6	1.8	0.0	3.9	0.1	0.4	0.6	0.4	0.0	0.6
Table 3 (continued)

Percentage of characteristic species in K%	Percentage of characteristic species in A-D											
	Fr-A	V-Fr	O-B	M-A	M-S	Fr-U	Fr-A	V-Fr	O-B	M-A	M-S	Fr-U
Calystegion sepium	5.0	1.5	1.2	2.5	1.9	0.9	3.1	0.5	0.2	0.8	2.3	0.1
Calystegietalia sepium s. l.	5.4	3.8	4.8	4.3	1.9	4.8	3.2	0.9	0.8	1.2	2.3	0.7
Galio-Urticetea s. l.	5.4	3.8	4.8	4.3	1.9	4.8	3.2	0.9	0.8	1.2	2.3	0.7
Bidentetalia	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Bidentetalia	3.1	0.8	0.4	1.8	1.7	0.5	0.9	0.2	0.1	0.5	0.6	0.0
Bidetion tripartiti	0.7	0.0	0.0	0.2	0.1	0.0	0.2	0.0	0.0	0.0	0.0	0.0
Chenopodion rubri	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Bidentetalia s. l.	4.1	0.8	0.4	2.0	1.8	0.5	1.1	0.2	0.1	0.5	0.6	0.0
Bidentetalia s. l.	4.1	0.8	0.4	2.0	1.8	0.5	1.1	0.2	0.1	0.5	0.6	0.0
Plantaginetea	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Plantaginietalia majoris	0.5	0.3	0.9	1.0	1.0	0.2	0.1	0.0	0.1	0.3	0.3	0.0
Agropyro-Rumicion crispil	0.0	0.0	0.0	0.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Plantaginetalia majoris s. l.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Plantaginetalia s. l.	0.5	0.3	0.9	1.2	1.1	0.2	0.1	0.0	0.1	0.3	0.3	0.0
Epilobieta angustifolii	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Epilobieta angustifolii	1.8	4.5	5.7	2.3	0.9	6.1	0.2	0.8	1.6	0.7	0.2	1.4
Epilobieta angustifolii	0.0	0.1	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0
Epilobieta angustifolii s. l.	1.8	4.6	5.7	2.3	0.9	6.3	0.2	0.8	1.6	0.7	0.2	1.4
Epilobieta angustifolii s. l.	1.8	4.6	5.7	2.3	0.9	6.3	0.2	0.8	1.6	0.7	0.2	1.4
Urtico-Sambucetee	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
The frequency distribution of species in the five constancy categories, from I to V, follows a characteristic pattern. The highest frequency value at I steeply drops to II, then decreases further with diminishing increments to IV, where it reaches its minimum. At V, its value is again higher (Fig. 4). This pattern is only typical of phytosociological samples that are representative of the sampled vegetation unit (see Kevey 2008).

Proportion of character species

As usual in temperate deciduous forests in Central Europe, the species characteristic of the Querco-Fagetea class or syntaxa within it play a substantial role (30.8%) in the species composition of these *Fraxinus angustifolia* dominated stands. They are followed by the character species of SE European dry oak woods, Quercetea pubescentis-petraeae s. l. (17.1%) despite the rather mesic habitat, and Alnetea glutinosae s. l., Molinio-Juncetea s. l., and Phragmitetea s. l. in decreasing order. Within the Querco-Fagetea class, Fageta s. l. and Alnion incanae species attain the highest proportions.

In comparison to other communities, it is noteworthy that character species proportions in all but two syntaxa were typically intermediate between those in *Fraxino pannonicae-Alnetum* and

Percentage of characteristic species in K%	Fr-A	V-Fr	O-B	M-A	M-S	Fr-U	O-B	V-Fr	O-B	M-A	M-S	Fr-U
Sambucelatia capreae	0.1	0.3	0.6	0.3	0.1	0.1	0.3	0.1	0.3	0.3	0.1	0.3
Sambuccetalia s. l.	0.1	0.3	0.6	0.3	0.1	0.1	0.3	0.1	0.3	0.3	0.1	0.3
Sambuco-Salicion capreae	13.8	17.0	7.5	14.6	4.7	2.3	4.7	2.3	4.7	2.3	4.7	2.3
Chenopodio-Scleranthea s. l.	3.6	3.8	4.7	4.9	5.9	2.9	4.9	2.9	4.9	2.9	4.9	2.9
Indifferens	0.5	1.9	4.9	2.4	1.0	1.1	0.8	0.4	0.1	0.0	0.0	0.8
Adventiva	0.5	1.9	4.9	2.4	1.0	1.1	0.8	0.4	0.1	0.0	0.0	0.8
Table 4
Differential species in *Veratro albi-Fraxinetum angustifoliae* and *Fraxino pannonicae-Alnetum*

Species	V-Fr	Fr-A	V-Fr	Fr-A
Constant species				
Crataegus monogyna	V	–	VI	–
Euonymus europaeus	V	–	VI	–
Filipendula ulmaria	V	–	VI	–
Geum urbanum	V	–	VI	–
Ligustrum vulgare	V	–	VI	–
Lychnis flos-cuculi	V	–	VI	–
Rhamnus catharticus	V	–	VI	–
Scrophularia nodosa	V	–	VI	–
Torilis japonica	V	–	VI	–
Veratrum album	V	I	VI	–
Angelica sylvestris	V	I	VI	–
Equisetum arvense	V	I	VI	–
Galium aparine	V	I	VI	–
Brachypodium sylvaticum	V	II	VI	–
Cornus sanguinea	V	II	VI	–
Lysimachia nummularia	V	II	VI	–
Viburnum opulus	V	II	VI	–
Sub-constant species				
Cucubalus baccifer	IV	–		
Equisetum arvense			V	–
Galium aparine			V	–
Brachypodium sylvaticum			V	–
Cornus sanguinea			V	–
Lysimachia nummularia			V	–
Viburnum opulus			V	–
Frangula alnus			V	III
Populus alba			V	III
Alnus glutinosa	–	V	–	V
Lemna minor	–	V	–	V
Oenanthe aquatica	–	V	–	V
Salix cinerea	–	V	–	V
Carex riparia	I	V	–	V
Galium palustre	I	V	–	V
Lycopus europaeus	II	V	–	V
Salix fragilis	II	V	–	V
Solanum dulcamara	II	V	–	V
Symphytum officinale	II	V	–	V
Carex acutiformis	III	V	–	V

DRAINED ASH SWAMP IN THE NYÍRSÉG, NE HUNGARY

Acta Bot. Hung. 61, 2019
Table 4 (continued)

	V-Fr	Fr-A		V-Fr	Fr-A
Sambucus nigra	III	I	Hypericum tetapterum	II	–
Bidens tripartita	–	III	Polygonatum latifolium	II	–
Carex vesicaria	–	III	Pulmonaria mollissima	II	–
Glyceria maxima	–	III	Ranunculus auricomus agg.	II	–
Impatiens noli-tangere	–	III	Rosa canina agg.	II	–
Lythrum salicaria	–	III	Rumex sanguineus	II	–
Salix alba	–	III	Stachys sylvatica	II	–
Sub-accessorial species			Vicia cracca	II	–
Acer tataricum	II	–	Chenopodium polyspermum	–	II
Alliaria petiolata	II	–	Myosotis nemorosa	–	II
Angelica palustris	II	–	Persicaria hydropiper	–	II
Campanula glomerata	II	–	Poa palustris	–	II
Campanula trachelium	II	–	Scutellaria galericulata	–	II
Carex michelii	II	–	Teucrium scordium	–	II
Carex spicata	II	–	Thelypteris palustris	–	II
Carex sylvatica	II	–	Typha latifolia	–	II
Circaea lutetiana	II	–			
Cirsiurn rivulare	II	–			
Crucita glabra	II	–			
Fraxinus pennsylvanica	II	–			
Galium mollugo	II	–			
Heracleum sphondylium	II	–			

Number of differential species: 68, 32

Fig. 10. Proportion of Molinio-Juncetea s. l. character species. Fr-A = Fraxino pannoniccae-Alnetum, Nyírség (Kevey and Papp L. ined.: 5 relevés); V-Fr = Veratro albi-Fraxinetum angustifoliiæ, Nyírség (Kevey and Papp L. ined.: 10 relevés); Fr-U = Fraxino pannoniccae-Ulmetum, Nyírség (Kevey et al. 2017: 20 relevés)
Table 5
Differential species in *Veratro albi-Fraxinetum angustifoliae* and *Fraxino pannonicae-Ulmetum*

Constant species	V-Fr	Fr-U	V-Fr	Fr-U
Angelica sylvestris	V	–		
Equisetum arvense	V	–		
Filipendula ulmaria	V	I		
Lychnis flos-cuculi	V	I		
Eupatorium cannabinum	V	I		
Frangula alnus	V	I		
Veratrum album	V	I		
Rhamnus catharticus	V	II		
Lysimachia nummularia	V	III		
Populus alba	V	III		
Viburnum opulus	V	III		
Ranunculus ficaria	–	V		
Viola reichenbachiana	–	V		
Acer campestre	I	V		
Milium effusum	I	V		
Polygonatum multiflorum	I	V		
Ajuga reptans	II	V		
Circaea lutetiana	II	V		
Stachys sylvatica	II	V		
Chaerophyllum temulum	III	V		
Convallaria majalis	III	V		
Corylus avellana	III	V		
Geranium robertianum	III	V		
Sambucus nigra	III	V		
Sub-constant species				
Geranium palustre	IV	–		
Valeriana officinalis	IV	–		
Glechoma hederacea	IV	I		
Poa trivialis	IV	I		
Prunus spinosa	IV	I		
Pyrus pyraster	IV	I		

Accessorial species				
Taraxacum officinale agg.	IV	I		
Chelidonium majus	–	IV		
Pulmonaria officinalis	–	IV		
Carpinus betulus	I	IV		
Lapsana communis	I	IV		
Ulmus laevis	I	IV		
Veronica hederifolia subsp. lucorum	I	IV		
Viola mirabilis	I	IV		
Alliaria petiolata	II	IV		
Carex sylvatica	II	IV		
Festuca gigantea	II	IV		
Betonica officinalis	III	–		
Carex acutiformis	III	–		
Cirsium canum	III	–		
Iris pseudacorus	III	–		
Ophioglossum vulgatum	III	–		
Trollius europae	III	–		
Clinopodium vulgare	III	I		
Deschampsia caespitosa	III	I		
Elymus caninus	III	I		
Populus tremula	III	I		
Actaea spicata	–	III		
Bromus ramosus agg.	–	III		
Fallopia dumetorum	–	III		
Hedera helix	–	III		
Lilium martagon	–	III		
Tilia cordata	–	III		
Tilia tomentosa	–	III		
Carex divulsa	I	III		
Carex remota	I	III		

Unauthenticated | Downloaded 09/15/23 11:56 AM UTC
Table 5 (continued)

Sub-accessorial species	V-Fr	Fr-U
Angelica palustris	II	–
Campanula glomerata	II	–
Carex michelii	II	–
Carex otrubae	II	–
Carex spicata	II	–
Cirsium rivulare	II	–
Galium mollugo	II	–
Hypericum tetragonatum	II	–
Lycopus europaeus	II	–
Pulmonaria mollissima	II	–
Sium latifolium	II	–
Symphytum officinale	II	–
Vicia cracca	II	–
Allium ursinum	–	II
Anemone ranunculoides	–	II
Cerasus avium	–	II

| Number of differential species | 41 | 47 |

V-Fr = Veratro albi-Fraxinetum angustifolii (Kevey and Papp L. ined.: 10 rel.); *Fr-U = Fraxino pannonicae-Ulmetum, Nyírség* (Kevey and Papp L. ined.: 20 rel.)

Table 6

Differential species in Veratro albi-Fraxinetum angustifolii and Ophioglosso-Betuletum

Constant species	V-Fr	O-B	V-Fr	O-B	
Cornus sanguinea	V	–	Carex flacca	–	V
Filipendula ulmaria	V	–	Chelidonium majus	–	V
Fraxinus angustifolia subsp. danubialis	V	–	Circaes vitalba	–	V
Lychnis flos-cuculi	V	–	Cynoglossum officinale	–	V
Lysimachia nummularia	V	–	Dactylis glomerata	–	V
Scrophularia nodosa	V	–	Fallopia dumetorum	–	V
Populus alba	V	I	Galium odoratum	–	V
Equisetum arvense	V	II	Molinia coerulea	–	V
Galium aparine	V	II	Phragmites australis	–	V
Acer pseudo-platanus	–	V	Quercus cerris	–	V
Arctium lappa	–	V	Ranunculus polyanthemos	–	V
Sanguisorba officinalis	–	V			

Acta Bot. Hung. 61, 2019
Table 6 (continued)

	V-Fr	O-B		V-Fr	O-B
Solidago gigantea	–	V	Achillea millefolium	–	IV
Acer campestre	I	V	Cardamine impatiens	–	IV
Acer negundo	I	V	Cerasus avium	–	IV
Betula pubescens	I	V	Festuca rubra	–	IV
Galeopsis pubescens	I	V	Alliaria petiolata	II	IV
Lapsana communis	I	V			
Lysimachia vulgaris	I	V	Arctium minus	III	–
Mycelis muralis	I	V	Betonica officinalis	III	–
Ranunculus acris	I	V	Cirsium canum	III	–
Selinium carvifolia	I	V	Clinopodium vulgare	III	–
Serratula tinctoria	I	V	Convallaria majalis	III	–
Circaea lutetiana	II	V	Corylus avellana	III	–
Festuca gigantea	II	V	Dactylis polygama	III	–
Fraxinus pennsylvanica	II	V	Elymus caninus	III	–
Galium mollugo	II	V	Iris pseudacorus	III	–
Humulus lupulus	II	V	Populus tremula	III	–
Rosa canina agg.	II	V	Trollius europaeus	III	–
Stachys sylvatica	II	V	Veronica chamaedrys	III	–
Carex acutiformis	III	V	Agrimonia eupatoria	–	III
Chaerophyllum temulum	III	V	Colchicum autumnale	–	III
Deschampsia caespitosa	III	V	Dianthus superbus	–	III
Geranium robertianum	III	V	Mentha pulegium	–	III
Ophioglossum vulgatum	III	V	Poa angustifolia	–	III
Sambucus nigra	III	V	Rubus fruticosus agg.	–	III
Urtica dioica	III	V	Tussilago farfara	–	III
			Lathyrus pratensis	I	III

Sub-constant species

Geranium palustre	IV	–			
Glechoma hederacea	IV	–			
Listera ovata	IV	–			
Ulmus minor	IV	–			
Valeriana officinalis	IV	–			
Poa trivialis	IV	I			
Quercus robur	IV	I			
Prunus spinosa	IV	II			

Sub-accessorial species

Acer tataricum	II	–			
Ajuga reptans	II	–			
Angelica palustris	II	–			
Caltha palustris	II	–			
Campanula glomerata	II	–			
Campanula trachelium	II	–			
Cardamine pratensis	II	–			
Fraxino pannonicae-Ulmetum, which reflects the transitional habitat of *Veratrot albi-Fraxinetum angustifolii* between the former two (Table 3, Figs 5–10). The two exceptions are the Quercetea pubescentis-petraeae s. l. and Molino-Juncetea s. l. species. The proportion of the former is the highest not only among the three, but among all six communities, whereas that of the latter is the highest among the three hardwood riparian forest associations, but is the smallest among all drained swamp communities. The distribution of character species proportions in *Veratrot albi-Fraxinetum angustifolii* are rather different from the latter communities. The largest differences are found in the character species of Phragmitetea s. l., Molino-Juncetea s. l., Galio-Urticetea s. l., Epilobietea s. l., Salicetea purpureae s. l., Alnetea glutinosae s. l., Querco-Fagetea s. l., Fagetealia, Alnion incanae s. l. and Quercetea pubescentis-petraeae s. l. (Table 4).

The occurrence of introduced aliens (*Fraxinus pennsylvanica*, *Acer negundo*, *Celtis occidentalis*, *Echinocystis lobata*, *Parthenocissus inserta*, *Robinia pseudoacacia*, *Vitis riparia*) in the association is apparent (Table 1), but compared to other associations in the region, their proportion is low (1.9%).

Number of differentiating species

The number of differentiating species (species for which the difference between their constancy values in the compared two communities equals or exceeds two) in *Veratrot albi-Fraxinetum angustifolii* is greater than 40 in all pairwise comparisons. The highest number of differentiating species (68) was
Differential species in *Veratro albi-Fraxinetum angustifoliae* and *Molinio-Alnetum glutinosae*

Constant species	V-Fr	M-A	Sub-constant species	V-Fr	M-A
Filipendula ulmaria	V	–	*Geranium palustre*	IV	–
Fraxinus angustifolia subsp. danubialis	V	–	*Listera ovata*	IV	–
Scrophularia nodosa	V	–	*Moehringia trinervia*	IV	–
Lychnis flos-cuculi	V I		*Glechoma hederacea*	IV I	
Torilis japonica	V I		*Ulmus minor*	IV II	
Veratrum album	V I		*Pyrus pyraster*	IV III	
Euonymus europaeus	V II		*Asclepias syriaca*	– IV	
Populus alba	V II		*Carex flacca*	– IV	
Gewm urbanum	V III		*Cynoglossum hungaricum*	– IV	
Ligustrum vulgare	V III		*Equisetum palustre*	– IV	
Lysimachia nummularia	V III		*Lythrum salicaria*	– IV	
Viburnum opulus	V III		*Phragmites australis*	– IV	
Alnus glutinosa	– V		*Potentilla reptans*	– IV	
Molinia coerulea	– V		*Ranunculus polyanthemos*	– IV	
Poa pratensis	– V		*Sonchus palustris*	– IV	
Salix cinerea	– V		*Galium palustre*	I IV	
Sanguisorba officinalis	– V		*Mentha aquatica*	I IV	
Solidago gigantea	– V		*Selinum carvifolia*	I IV	
Valeriana dioica	– V		*Stachys palustris*	I IV	
Calystegia sepium	I V		*Caltha palustris*	II IV	
Celtis occidentalis	I V		*Rosa canina agg.*	II IV	
Lysimachia vulgaris	I V		*Clinopodium vulgare*	III –	
Ranunculus acris	I V		*Convallaria majalis*	III –	
Lycopus europaeus	II V		*Corylus avellana*	III –	
Ranunculus repens	II V		*Trollius europaeus*	III –	
Solanum dulcamara	II V		*Betonica officinalis*	III I	
Vicia cracca	II V		*Dactylis polygama*	III I	
Carex acutiformis	III V		*Elymus caninus*	III I	
Cirsium canum	III V		*Ophioglossum vulgatum*	III I	
Deschampsia caespitosa	III V		*Veronica chamaedrys*	III I	
Iris pseudacorus	III V		*Carex elata*	– III	
Sambucus nigra	III V				
found in the comparison to the alder swamp (*Fraxino-Alnetum glutinosae*), whereas the smallest number (41) occurred in relation to *Fraxino pannonicae-Ulmetum* (Tables 5–8).

Number of protected species

The stands of *Veratro albi-Fraxinetum angustifoliae* host numerous rare, threatened, or otherwise protected plant species. These are: *Veratrum album* (K: V), *Listera ovata* (K: IV) *Ophioglossum vulgatum*, *Trollius europaeus* (both

Table 7 (continued)

V-Fr	M-A	V-Fr	M-A		
Galium boreale	–	III	*Allium angulosum*	–	II
Galium verum	–	III	*Bromus sterilis*	–	II
Genista tinctoria subsp. elata	–	III	*Carex paniculata*	–	II
Phalaris arundinacea	–	III	*Cirsium arvense*	–	II
Euphorbia palustris	I	III	*Cirsium vulgare*	–	II
Succisa pratensis	I	III	*Dactylis glomerata*	–	II
			Festuca pratensis	–	II
			Gentiana pneumonanthe	–	II
			Iris sibirica	–	II
			Leucojum aestivum	–	II
			Morus alba	–	II
			Padus serotina	–	II
			Phytolacca americana	–	II
			Pulicaria dysenterica	–	II
			Salix alba	–	II
			Salix rosmarinifolia	–	II
			Scirpoides holoschoenus	–	II
			Scutellaria galericulata	–	II
			Thalictrum flavum	–	II
			Trifolium montanum	–	II
				Number of differential species 43 63	

V-Fr = *Veratro albi-Fraxinetum angustifoliae* (Kevey and Papp L. ined.: 10 rel.); M-A = *Molinio-Alnetum glutinosae*, Mezőföld (Kevey 2008: 20 rel.)
K: III), *Betula pubescens*, *Cephalanthera damasonium*, *C. longifolia*, *Epipactis hel-leborine agg.*, *Equisetum hyemale* (incl. *Equisetum × moorei*), *Orchis militaris*, *Pla-tanthera bifolia* (all K: I).

Similarity relations in multivariate analyses

In the cluster analysis with complete linkage algorithm, the ten samples of *Veratro albi-Fraxinetum angustifoliae* grouped with the samples of *Fraxino pannonicae-Ulmetum*. The rest of the samples formed the sister cluster of this group. In this cluster, samples of the alder swamp (*Fraxino pannonicae-Alnetum*) were the sister cluster of the three drained swamp communities (*Ophioglosso-Betuletum pubescentis*, *Molinio-Alnetum*, *Molinio-Salicetum cinereae*) (Fig. 11). The result in the analysis with the group-average algorithm differed only in the placement of one of the drained swamp communities (*Ophioglosso-Betuletum*...)

![Binary dendrogram of alder swamp, hardwood riparian forest and drained swamp communities I (method: complete link; coefficient: Baroni-Urbani and Buser).](image-url)

Fig. 11. Binary dendrogram of alder swamp, hardwood riparian forest and drained swamp communities I (method: complete link; coefficient: Baroni-Urbani and Buser). 1/1–5 = *Fraxino pannonicae-Alnetum*, Nyírség (Kevey and Papp L. ined.); 2/1–10 = *Veratro albi-Fraxinetum angustifoliae*, Nyírség (Kevey and Papp L. ined.); 3/1–6 = *Ophioglosso-Betuletum pubescentis*, Vértesalja (Riezing and Szollát 2008–2009); 4/1–25 = *Molinio-Salicetum cinereae*, Szigetköz (Kevey 2008); 5/1–20 = *Molinio-Alnetum glutinosae*, Mezőföld (Kevey 2008); 6/1–20 = *Fraxino pannonicae-Ulmetum*, Nyírség (Kevey et al. 2017)
pubescentis) as a sister group of the Veratro albi-Fraxinetum and Fraxino pannonicae-Ulmetum cluster (Fig. 12). The dissimilarity level of the Veratro albi-Fraxinetum and Fraxino pannonicae-Ulmetum was very similar, though slightly smaller than those between the Ophioglosso-Betuletum and Molinio-Alnetum (complete linkage), and Molinio-Alnetum and Molinio-Salicetum cinereae (group average).

The result of the PCoA is in agreement with the above. In the plane of axes one and two, the samples of Veratro albi-Fraxinetum were adjacent to both, Fraxino pannonicae-Ulmetum and Ophioglosso-Betuletum pubescentis (Fig. 13). However, the position of the latter changed substantially in the plane of axes one and three, while the spatial relation of the samples of Veratro albi-Fraxinetum and Fraxino pannonicae-Ulmetum essentially did not change (Fig. 14).

Fig. 12. Binary dendrogram of alder swamp, hardwood riparian forest and drained swamp communities II (method: group average; coefficient: Baroni-Urbani and Buser). 1/1–5: Fraxino pannonicae-Alnetum, Nyírség (Kevey and Papp L. ined.); 2/1–10: Veratro albi-Fraxinetum angustifoliae, Nyírség (Kevey and Papp L. ined.); 3/1–6: Ophioglosso-Betuletum pubescentis, Vértesalja (Riezing and Szollát 2008–2009); 4/1–25: Molinio-Salicetum cinereae, Szigetköz (Kevey 2008); 5/1–20: Molinio-Alnetum glutinosae, Mezőföld (Kevey 2008); 6/1–20: Fraxino pannonicae-Ulmetum, Nyírség (Kevey et al. 2017)
FIELD OBSERVATIONS ON HABITAT CHARACTERISTICS OF VERATOM ALBI-FRAXINETUM ANGUSTIFOLIAE SUGGESTED ITS TRANSITIONAL NATURE BETWEEN FRAXINO PANNONICAE-ALNETUM AND FRAXINO PANNONICAE-ULMETUM. IT IS LIKELY THAT THIS COMMUNITY DEVELOPS FROM FRAXINO PANNONICAE-ALNETUM AS ORGANIC AND INORGANIC DEPOSITS ACCUMULATE AND THE HABITAT GRADUALLY DRIES OUT. DURING THIS PROCESS, MOST SPECIES OF THE LEMNO-POTAMEAE S. I. CLASS, AND ALSO MANY PHRAGMITETEA S. I. AND ALNETEA GLUTINOSAE S. I. SPECIES DISAPPEAR OR ARE REPLACED BY MOLINIELTALIA S. L., QUERCO-FAGETEA AND QUERCETEA PUBESCENCI-PETRAEAE SPECIES. THIS GENEALOGIC RELATIONSHIP WOULD MANIFEST ITSELF IN SIMILARITIES IN SPECIES COMPOSITION AND CHARACTER SPECIES PROPORTIONS TO BOTH ASSOCIATIONS.

IT ALSO SEEMED REASONABLE TO ASSUME THAT THIS ASSOCIATION MAY BE CLOSELY RELATED TO DRAINED SWAMP COMMUNITIES BASED ON THEIR SIMILARITIES IN HABITAT CONDITIONS. THE HABITAT OF THESE COMMUNITIES MAY BE COVERED WITH WATER IN WET PERIODS, BUT THE SOIL IS TYPICALLY NOT SATURATED WITH WATER MOST OF THE TIME. THIS ALLOWS THE ESTABLISHMENT OF MOLINIELTALIA AND QUERCETEA SPECIES IN RELATIVELY HIGH PROPORTIONS. THESE COMMUNITIES ALSO SHARE A NUMBER OF ADDITIONAL

Fig. 13. Ordination diagram (axes 1 and 2) of alder swamp, hardwood riparian forest and drained swamp communities I (method: principal coordinates analysis; coefficient: Baroni-Urbani and Buser). 1/1–5: Fraxino pannonicae-Alnetum, Nyírség (Kevey and Papp L. ined.); 2/1–10: Veratom albi-Fraxinetum angustifoliae, Nyírség (Kevey and Papp L. ined.); 3/1–6: Ophioglosso-Betuletum pubescentis, Vértesalja (Riezing and Szollát 2008–2009); 4/1–25: Molinio-Salicetum cinereae, Szigetköz (Kevey 2008); 5/1–20: Molinio-Alnetum glutinosae, Mezőföld (Kevey 2008); 6/1–20: Fraxino pannonicae-Ulmetum, Nyírség (Kevey et al. 2017)
features including the relatively high proportions of Phragmitetea and Alnetalia glutinosae, and the low proportion of Fagetalia elements.

Despite these similarities, the Veratro albi-Fraxinetum angustifoliae cannot be identified with any of the studied associations, but is best recognised as a novel association. Its distinctiveness is supported by a suite of evidence, including the number of differentiating species, the distribution of character species proportions, and the dissimilarity in floristical composition. In our

Fig. 14. Ordination diagram (axes 1 and 3) of alder swamp, hardwood riparian forest and drained swamp communities II (method: principal coordinates analysis; coefficient: Baroni-Urbani and Buser). 1/1–5: Fraxino pannonicae-Alnetum, Nyírség (Kevey and Papp L. ined.); 2/1–10: Veratro albi-Fraxinetum angustifoliae, Nyírség (Kevey and Papp L. ined.); 3/1–6: Ophioglosso-Betuletum pubescentis, Vértesalja (Riezing and Szollát 2008–2009); 4/1–25: Molinio-Salicetum cinereae, Szigetköz (Kevey 2008); 5/1–20: Molinio-Alnetum glutinosae, Mezőföld (Kevey 2008); 6/1–20: Fraxino pannonicae-Ulmetum, Nyírség (Kevey et al. 2017)
opinion, the amount of differences in these features are sufficiently high to designate this community as a distinct association.

Whereas the *Veratro albi-Fraxinetum angustifoliae* is best treated as a new association, its syntaxonomic affinity is rather difficult to ascertain. Owing to its intermediate characteristics in many respects, it could be placed either in the Alnetea or the Querco-Fagetea class. The Molinio-Betuletea class by Paszarge and Hofmann (1968), which includes strongly acidophilic communities distributed over the more humid western and northern parts of Europe, may be excluded for this reason. Based on preliminary data, Kevey (2008) placed the *Veratro albi-Fraxinetum angustifoliae* in the class Alnetea glutinosae, within an alliance Molinio-Alnion glutinosae, established for basiphilic drained swamp communities.

*Abbreviations: A1 = upper forest canopy layer; A2 = lower forest canopy layer; Ai = Alnion incanae; Aon = Alnion glutinosae; AQ = Aceri tatarici-Quercion; Ar = Artemisietea; Ara = Arrhenatheretalia; Arn = Arrhenatherion elatioris; Ate = Alnetea glutinosae; B1 = shrub layer; B2 = saplings; Bec = Beckmannion eruciformis; Ber = Berberidion; Bia = Bidentetalia; Bin = Bidention tripartiti; C = herbaceous layer; Cal = Calystegion sepium; Cgr = Caricion gracilis; ChS = Chenopodio-Scleranthea; Cp = Carpinetalia betuli; Des = Deschampsion caespitosae; Ep = Epilobietea angustifoliia; Epn = Epilobion angustifoliia; F = Fagetalia sylvaticae; FBt = Festuco-Brometea; FiC = Filipendulo-Cirsion oleracei; FPi = Festuco-Puccinellietalia; Fr-A = alder swamp (*Fraxino pannonicae-Alnetum*); Fr-U = hardwood riparian forest (*Fraxino pannonicae-Ulmetum*); Fvg = Festucetalia vaginatae; Fvl = Festucetalia valesiacae; GA = Galio-Alliarion; incl. = inclusive; ined. = ineditum (unpublished); M-A = drained alder swamp (*Molinio-Alnetum glutinosae*); M-S = drained willow swamp (*Molinio-Salicetum cinereae*); Mag = Magnocaricetalia; Moa = Molinietalia coerulacea; MoA = Molinio-Arrhenatheretalia; MoJ = Molinio-Juncetalia; Mon = Molinion coerulea; NC = Nardo-Callunetalia; NG = Nasturtio-Glycerietalia; O-B = drained birch swamp (*Ophioglosso-Betuletum pubescentis*); Pla = Plantaginetalia; Pna = Populenion nigro-albae; PQ = Pino-Quercetalia; Prf = Prunion fruticosae; Pru = Prunetalia spinosae; Pte = Phragmitetalia; Qc = Quercetalia cerridis; QFt = Querco-Fagetea; Qpp = Quercetalia pubescentis-petraeae; Qr = Quercetalia robori; Qrp = Quercion robori-petraeae; S = summa (sum); Sal = Salicion albae; SCn = Scheuchzerio-Caricetea nigrae; Sea = Secalietalia; s. l. = sensu lato (in the broad sense); Spu = Salicetalia purpureae; s. str. = sensu stricto (in the narrow sense); ToF = Tofieldietalia; Ulm = Ulmenion; US = Urtico-Sambucetalia, V-Fr = drained ash swamp (*Veratro albi-Fraxinetum angustifoliae*).
Acknowledgements – We thank László Papp junior and Endre Papp for their help during our fieldwork, and the two anonymous reviewers for their help improving the manuscript.

REFERENCES

Aszód, L. (1935): Adatok a nyírségi homoki vegetáció ökológiájához és szociológiájához. – Tisia 1(1): 1–33.

Becking, R. W. (1957): The Zürich-Montpellier School of phytosociology. – Bot. Review 23: 411–488.

Borhidi, A. (1961): Klimadiagramme und klimazonale Karte Ungarns. – Ann. Univ. Sci. Budapest., Sect. Biol. 4: 21–250.

Borhidi, A. (1993): A magyar flóra szociális magatartás típusai, természetességi és rel ativ ökológiai értékszámái. – Janus Pannonius Tudományegyetem, Pécs, 95 pp.

Borhidi, A. (1995): Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora. – Acta Bot. Acad. Sci. Hung. 39: 97–181.

Borhidi, A. and Kevey, B. (1996): An annotated checklist of the Hungarian plant communities II. – In: Borhidi, A. (ed.): Critical revision of the Hungarian plant communities. Janus Pannonius University, Pécs, pp. 95–138.

Borhidi, A., Kevey, B. and Lendvai, G. (2012): Plant communities of Hungary. – Akadémiai Kiadó, Budapest, 544 pp.

Braun-Blanquet, J. (1964): Pflanzensoziologie. (ed. 3). – Springer Verlag, Wien, New York, 865 pp.

Du Rietz, G. E. (1921): Zur methodologischen Grundlage der modernen Pflanzensoziologie. – Akademisk Afhandling, Uppsala, 272 pp.

Ellenberg, H. (1986): Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht. (ed. 4). – Eugen Ulmer Verlag, Stuttgart, 989 pp.

Horvat, I. (1938): Biljnosociološka istraživanja šuma u Hrvatskoj. – Annales pro experimentis foresticis Zagreb 6: 127–279.

Horvat, I., Glavač, V. and Ellenberg, H. (1974): Vegetation Südosteuropas. – Gustav Fischer Verlag, Stuttgart, 768 pp.

Horváth, F., Dobolyi, Z. K., Morschhauser, T., Lőkös, L., Karas, L. and Szerdahelyi, T. (1995): Flóra adatbázis 1.2. – Vácrátót, 267 pp.

Járai-Komlódi, M. (1958): Die Pflanzengesellschaften in dem Turjánegebiet von Öcsa–Dabas. – Acta Bot. Acad. Sci. Hung. 4: 63–92.

Kevey, B. (2008): Magyarország erdőtársulásai. (Forest associations of Hungary). – Tilia 14: 1–488.

Kevey, B. and Hirmann, A. (2002): „NS” számítógépes cönológiai programcsomag. – In: Horváth, A. (ed.): Összefoglalók. Aktuális flóra- és vegetációkutatások a Kárpát-medencében V, Pécs, 2002. március 8–10., p. 74.

Kevey, B., Papp, L. and Lendvai, G. (2017): A Nyírség tölgy-kőris-szil ligetei (Fraxino pannonicae-Ulmetum Soó in Aszód 1935 corr. Soó 1963). – Kitaibelia 22(1): 179–220. https://doi.org/10.17542/kit.22.179

Király, G. (ed.) (2009): Új magyar füvészkönyv. Magyarország hajtásos növényei. Határozókulcsok. – Aggteleki Nemzeti Park Igazgatóság, Jósvafő, 616 pp.
Mucina, L., Grabherr, G. and Wallnöfer, S. (1993): Die Pflanzengesellschaften Österreichs III. Wälder und Gebüsche. – Gustav Fischer, Jena, Stuttgart, New York, 353 pp.

Oberdorfer, E. (1992a): Süddeutsche Pflanzengesellschaften IV. A. Textband. – Gustav Fischer Verlag, Jena, Stuttgart, New York, 282 pp.

Oberdorfer, E. (1992b): Süddeutsche Pflanzengesellschaften IV. B. Tabellenband. – Gustav Fischer Verlag, Jena, Stuttgart, New York, 580 pp.

Papp, L. and Dudás, M. (1992): Data on botanical values of central and south Nyírség and their vicinity. – Déri Múzeum Évkönyve, Debrecen, 1989–1990: 7–35.

Passarge, H. and Hofmann, G. (1968): Molinio-Betuletea pubescentis. – In: Passarge, H. and Hofmann, G. (eds): Pflanzengesellschaften des nordostdeutschen Flachlandes II. VEB Gustav Fischer Verlag, Jena, pp. 190–199.

Podani J. (2001): Syntax 2000, computer programs for data analysis in ecology and systematics. – Scientia, Budapest, 53 pp.

Riezing, N. and Szollát, Gy. (2008–2009): Kiszáradó nyírlápok a Vértesalján (Ophioglosso-Betuletum pubescentis Riezing, Szollát and Simon ass. nova). – Kanitzia 16(3–4): 45–58.

Rodwell, J. S., Schaminée, J. H. J., Mucina, L., Pignatti, S., Dring, J. and Moss, D. (2002): The diversity of European vegetation. – Wageningen, Wateringen, 168 pp.

Soó, R. (1964, 1966, 1968, 1970, 1973, 1980): A magyar flóra és vegetáció rendszertani-növényföldrajzi kézikönyve I–VI. – Akadémiai Kiadó, Budapest.

Tüxen, R. (1937): Die Pflanzengesellschaften Nordwestdeutschlands. – Mitt. Flor.-Soziol. Arbeitsgem. Niedersachsen, Hannover 3: 1–170.

Westhoff, V., Dijk, J. W. and Passchier, H. (1946): Overzicht der plantengemeenschappen in Nederland. – Tweede druk, G. W. Breughel, Amsterdam, 118 pp.

Willner, W. and Grabherr, G. (2007a): Die Wälder und Gebüsche Österreichs 1 Textband. – Elsevier Spektrum Akademischer Verlag, München, 302 pp.

Willner, W. and Grabherr, G. (2007b): Die Wälder und Gebüsche Österreichs. Tabellenband. – Elsevier Spektrum Akademischer Verlag, München, 290 pp.

Open Access statement. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited, a link to the CC License is provided, and changes – if any – are indicated. (SID_1)
Attila Borhidi
Maira Fernández-Zequeira
Ramona Oviedo-Prieto

Rubiáceas de Cuba