STUDY OF THE EFFECT OF LOMUSTIN ON HER2-POSITIVE BREAST CANCER IN FVB/N HER-2 TRANSGENIC MICE

A.N. Stukov¹, S.F. Vershinina², N.A. Koziavin¹, T.Yu. Semiglazova¹, L.V. Filatova¹, D.Kh. Latipova¹, A.O. Ivantsov¹, V.G. Bespakov¹, A.L. Semenov¹, O.A. Belyaeva¹, G.S. Kireeva¹, V.A. Alexandrov¹, G.V. Tochilnikov, I.N. Vasilyeva¹, M.A. Maydin¹, M.L. Tyndyk¹, S.S. Kruglov¹, G.A. Yanus¹,²,³, M.N. Yurova¹

N.N. Petrov National Medical Research Center of Oncology, the Ministry of Healthcare of the Russian Federation, St. Petersburg, Russia¹
68, Leningradskaya Street, Pos. Pesochny, 197758, St. Petersburg, Russia.
E-mail: stukov2008@yandex.ru¹

A.M. Granov Russian Research Center for Radiology and Surgical Technologies, the Ministry of Healthcare of the Russian Federation, St. Petersburg, Russia²
70, Leningradskaya Street, Pos. Pesochny, 197758, St. Petersburg, Russia²

St. Petersburg State Pediatric Medical University, the Ministry of Healthcare of Russian Federation, St. Petersburg, Russia³
2, Litovskaya Street, 194100, St. Petersburg, Russia³

Abstract

Because of the high risk of brain metastases from HER2-positive breast cancer, the study of the anticancer activity of drugs used to treat brain tumors, in particular lomustine, is of great importance. In the FVB/N Her-2 transgenic mice bearing HER2-positive breast cancer (BC HER2+), a single oral administration of lomustine at a dose of 50 mg/kg resulted in a significant tumor growth inhibition (up to 96 %, p<0.0001). The tumor growth index (TGI) expressed as a ratio between the areas under the kinetic curves of tumor growth in the study and control groups and amounted to 33 % (p<0.001) indicated the high activity of lomustine. However, the effect of lomustine on intramuscularly transplanted Ehrlich tumor was insignificant (tumor growth inhibition and tumor growth index were <39 % and 68 %, respectively). Lomustine administered orally at a single dose of 50 mg/kg 24 hours after intracranial transplantation of BC HER2+ increased the median survival time up to 30 days in FVB/N mice compared to 21 days in the control group mice (p<0.001). The high therapeutic effect of lomustine in HER2-positive breast cancer mice is likely can be explained by the biological characteristics of this tumor; therefore clinical trials of lomustine for HER2-positive tumors are needed.

Key words: HER2-positive breast cancer, HER2 transgenic FVB/N mice, lomustine, intracranial tumor, tumor growth index.
ИЗУЧЕНИЕ АКТИВНОСТИ ЛОМУСТИНА ПРИ ПРЕВИВАЕМОМ
HER2-ПОЛОЖИТЕЛЬНОМ РАКЕ МОЛОЧНОЙ ЖЕЛЕЗЫ
У МЫШЕЙ ЛИНИИ FVB/N, ТРАНСГЕННЫХ ПО HER2

А.Н. Стуков1, С.Ф. Вершинина2, Н.А. Козявин1, Т.Ю. Семиглазова1,
Л.В. Филатова1, Д.Х. Латипова1, А.О. Иванцов1, В.Г. Беспалов1,
А.Л. Семёнов1, О.А. Беляева1, Г.С. Киреева1, В.А. Александров1,
Г.В. Точильников1, И.Н. Васильева1, М.А. Майдин1, М.Л. Тындык1,
С.С. Круглов1, Г.А. Янус13, М.Н. Юрова1

ФГБУ «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России, г. Санкт-Петербург, Россия1
Россия, г. Санкт-Петербург, 197758, пос. Песочный, ул. Ленинградская, 68.
E-mail: stukov2008@yandex.ru1

ФГБУ «Российский научный центр радиологии и хирургических технологий имени академика А.М. Гранова» Минздрава России, г. Санкт-Петербург, Россия2
Россия, г. Санкт-Петербург, 197758, пос. Песочный, ул. Ленинградская, 702

ФГБОУ ВО «Санкт-Петербургский государственный педиатрический медицинский университет» Минздрава России, г. Санкт-Петербург, Россия 3
Россия, г. Санкт-Петербург, 194100, ул. Литовская, 23

Аннотация
В связи с высоким риском метастазирования HER2-положительного рака молочной железы в головной мозг целесообразно изучение активности при HER2-положительных опухолях препаратов, используемых в терапии опухолового поражения головного мозга, в частности ломустина. У мышей линии FVB/N, трансгенной по гену рецептора эпидермального фактора роста 2-го типа (HER2), с трансплантированным внутримышечно синтетическим HER2-положительным раком молочной железы (РМЖ HER2+) одно- кратное пероральное введение ломустина в дозе 50 мг/кг вызвало значительное торможение роста опухоли (ТРО=96%; p<0,0001). О высокой активности ломустина при этой опухоли свидетельствовал и индекс роста опухоли (IRO), выражающий процентное соотношение между площадью под кинетической кривой роста опухоли в исследуемой и контрольной группах и составивший 33 % (p<0,001). В то же время на перевитой внутримышечно опухоли Эрлиха эффект ломустина был незначительным (ТРО<39 %, IРО=68 %). Ломустин при однократном пероральном введении в дозе 50 мг/кг через 24 ч после интракраниальной трансплантации РМЖ HER2+ мышам FVB/N увеличил медиану продолжительности жизни до 30 дней по сравнению с 21 днем в контроле (p<0,001). Высокий терапевтический эффект ломустина при HER2-положительном раке молочной железы у мышей, вероятно, объясняется биологическими особенностями этой опухоли и позволяет считать целесообразным клиническое изучение ломустина при HER2-положительных новообразованиях.

Ключевые слова: HER2-положительный рак молочной железы, трансгенные по гену HER2 мыши линии FVB/N, интракраниальная опухоль, ломустин, индекс роста опухоли.

Introduction
Human epidermal growth factor receptor 2 (HER2 receptor) is a member of the epidermal growth factor receptor family encoded by the ERBB2 (HER2) proto-oncogene. HER2 overexpression is determined in 25–30 % of patients with breast cancer and is associated with an aggressive course of the disease, low sensitivity to chemotherapy and hormonal therapy [1]. In addition to breast cancer, HER2 overexpression is observed in cells of gastric cancer, colorectal cancer, pancreatic cancer, salivary cancer, mucinous and clear-cell ovarian cancer, and endometrial cancer [2, 3].

In HER2-positive metastatic breast cancer patients, the incidence of central nervous system (CNS) metastases is very high, 30–55 % [4], an incidence that is considerably higher than that reported for breast cancer overall (5–15 %) [5]. HER2-positive breast cancer patients with CNS metastases treated with trastuzumab emtansine had longer overall survival than patients treated with combination of lapatinib and capecitabine (median 26.8 months compared to 12.9 months); however, survival of patients without disease progression was equally low (5.9 and 5.7 months, respectively) [6]. Lomustine is a chemotherapy drug used to treat brain tumors. Because of the high risk of brain metastasis from HER2-positive breast cancer, we aimed to study the effect of lomustine on HER2-positive tumors.

Material and Methods
FVB/N Her-2 transgenic mice and BALB/c mice were used in the study. FVB/N mice carrying the HER2 oncogene were originally obtained from the National Institute of Aging (Ancona, Italy) and bred in our
animal facilities. These mice are characterized by a significant frequency of development of spontaneous mammary tumors in females, sometimes they also occur in males [7, 8].

The animals were kept under standard conditions (12:12 h light:dark artificial lighting regimen at 20–25 °C by HVAC system) and had free access to standard food and tap water ad libitum. All experimental studies were carried out in accordance with the rules adopted by the European Convention for the Protection of Vertebrate Animals used for experimental and other scientific purposes (Strasbourg, 1986), under the supervision of the ethical committee of the N.N. Petrov National Medical Research Center of Oncology.

To obtain an experimental therapeutic model of transplantable HER2-positive breast cancer, a mammary tumor arising spontaneously in the FVB/N Her-2 transgenic mouse was inoculated to 9 other healthy male mice of the same strain. Mice were inoculated intramuscularly into the femoral muscle with 0.2 ml of a 20 % tumor cell suspension diluted with 0.9 % sodium chloride solution. On day 31 after inoculation, the average weight of tumor nodules was 2463 ± 153 mg. Histological examination revealed invasive breast cancer (Fig. 1). A real-time PCR and delta Ct method detected a pronounced increase in HER2 expression.

Cryopreserved tumor tissue is stored in the tumor bank of the N.N. Petrov National Medical Research Center of Oncology.

The effect of lomustine on the growth of HER2+ breast cancer in FVB/N mice was compared to that on a solid Ehrlich tumor in BALB/c mice. Ehrlich tumor was transplanted intramuscularly to 20 male BALB/c mice by injecting into the thigh muscle with 0.2 ml of 0.9 % sodium chloride solution containing 5×10^6 tumor cells collected from ascetic fluid of a mouse with Ehrlich ascites tumor. On day 6 after inoculation of Ehrlich tumor, 10 mice were administered with lomustine once orally at a dose of 50 mg/kg as a suspension in a 2.5 % starch solution. The other 10 mice served as controls and were treated with a 2.5 % starch solution.

Intracranial transplantation of HER2+ breast cancer was performed by injecting into the brain of 0.025 ml of 20 % tumor suspension according to the modified method of intracerebral infection of mice with rabies virus [9]. Histological examination revealed brain tumor growth (Fig. 2). The study included 22 FVB/N Her-2 transgenic male mice. Twenty-four hours after inoculation, 10 mice were given lomustine at a dose of 50 mg/kg once orally in a 2.5 % starch solution, and 12 mice of the control group were orally administered with a 2.5 % starch solution.

Intracranial transplantation of HER2+ breast cancer was performed by injecting into the thigh muscle of 0.2 ml of 20 % tumor cell suspension diluted with 0.9 % sodium chloride solution. On day 6 after transplantation, 14 of the 28 mice were given an oral dose of 50 mg/kg lomustine as a suspension in a 2.5 % starch solution in a volume of 0.2 ml per 10 g of mouse body weight. The control group included the other 14 mice. They were administered with a 2.5 % starch solution of 0.2 ml per 10 g of body weight.

The effect of lomustine on HER2+ breast cancer in FVB/N mice was compared to that on a solid Ehrlich tumor in BALB/c mice. Ehrlich tumor was transplanted intramuscularly to 20 male BALB/c mice by injecting into the thigh muscle with 0.2 ml of 0.9 % sodium chloride solution containing 5×10^6 tumor cells collected from ascetic fluid of a mouse with Ehrlich ascites tumor. On day 6 after inoculation of Ehrlich tumor, 10 mice were administered with lomustine once orally at a dose of 50 mg/kg as a suspension in a 2.5 % starch solution. The other 10 mice served as controls and were treated with a 2.5 % starch solution.

Intracranial transplantation of HER2+ breast cancer was performed by injecting into the brain of 0.025 ml of 20 % tumor suspension according to the modified method of intracerebral infection of mice with rabies virus [9]. Histological examination revealed brain tumor growth (Fig. 2). The study included 22 FVB/N Her-2 transgenic male mice. Twenty-four hours after inoculation, 10 mice were given lomustine at a dose of 50 mg/kg once orally in a 2.5 % starch solution, and 12 mice of the control group were orally administered with a 2.5 % starch solution.
The antitumor activity of intramuscularly transplanted tumors was assessed by the tumor growth inhibition (TGI), area under the tumor growth kinetic curve (S) and tumor growth index (TGI) [10]. Tumor growth inhibition (TGI) was calculated using the formula

\[\text{TGI} = \frac{V_c - V_T}{V_c} \times 100, \]

where TGI is a tumor growth inhibition (%); \(V_c \) is a mean tumor volume in mice in the control group, mm³; \(V_T \) is a mean tumor volume in treated mice, mm³.

Tumor growth index (TGI) was calculated using the formula

\[\text{TGI} = \frac{S_T}{S_C} \times 100, \]

where TGI is a tumor growth inhibition (%); \(S_T \) is an area under the tumor growth kinetic curve in treated mice group, \(S_C \) is an area under the tumor growth kinetic curve in the control group.

In mice with HER2+ breast cancer transplanted intracranially, the therapeutic effect was estimated by the median survival time (MST) and by the increase in survival time (IST)

\[\text{IST} = \frac{\text{MST}_T - \text{MST}_C}{\text{MST}_C} \times 100, \]

where MSTₜ is the median survival time in the treated mice group, MSTₜ is the median survival time in the control group.

The statistical data analysis was performed using the methods of variation statistics with the statistical software packages SPSS Statistics 17.0 and GraphPad Prism 6.0. The significance of differences was assessed using the Student’s t-test, Fisher’s LSD test for one-way ANOVA, Mantel-Haenszel test.

Table 1

The effect of lomustine on the growth of an intramuscularly grafted HER2-positive invasive breast cancer (BC HER2+)

Group	Tumor volume mm³ (M±m), TI (%), p vs control	Day after transplantation	S	TGI			
		12	16	20	24	28	
I. Control (n=14)	495 ± 91	1375 ± 198	2251 ± 262	3612 ± 381	6339 ± 455	50286 ± 4456	100 %
II. Lomustine 50 mg/kg (n=14)	19 ± 7	291 ± 80	795 ± 156	1499 ± 250	3055 ± 358	16488 ± 2607	33 % p<0.0001

TI (%) – tumor growth inhibition, S – area under the tumor growth kinetic curve, TGI – tumor growth index (which is the ratio of S in the study group to S in the control group, expressed as a percentage).

Table 2

The effect of lomustine on the growth of an intramuscularly grafted Ehrlich tumor

Group	Tumor volume mm³ (M±m), TI (%), p vs control	Day after transplantation	S	TGI			
		10	12	15	17	20	
I. Control (n=12)	2119 ± 177	2692 ± 309	3538 ± 225	3690 ± 303	4609 ± 120	32332 ± 2429	100% p=0.072
II. Lomustine 50 mg/kg (n=12)	1430 ± 257	1649 ± 312	2372 ± 282	2426 ± 294	3000 ± 252	22048 ± 2865	68% p=0.016

TI (%) – tumor growth inhibition, S – area under the tumor growth kinetic curve, TGI – tumor growth index (which is the ratio of S in the study group to S in the control group, expressed as a percentage).

Table 3

The effect of lomustine on the lifespan of FVB/N mice with an intracranially inoculated HER2+ breast cancer

Group	No of mice/live by day 27	MLS	95% CI	ILS
I. Control	12/0	21	14.2–27.8	-
II. Lomustine 50 mg/kg (n=0.0007)	10/7	30	27.0–33.0	43 %

MLS – median of life span, ILS – increase of the life span, 95% CI – 95% confidence interval.
Results and Discussion

A single oral administration of lomustine at a dose of 50 mg/kg resulted in a significant inhibition of the growth of transplantable HER2-positive breast cancer (BC HER2+). On day 12 after inoculation (day 6 after lomustine injection), tumor growth inhibition reached 96 % (p=0.0004) and subsequently remained at a high level (Table 1), being 52 % on day 28 (p<0.0001). The area under the kinetic curve of tumor growth in mice treated with lomustine was 3 times less than that in the control group, and the tumor growth index (TGI) was 33 % (Table 1).

No pronounced effect of lomustine on the growth of intramuscularly transplanted Ehrlich tumor in BALB/c mice was observed (Table 2). After administration of lomustine at the dose of 50 mg/kg, the inhibition of Ehrlich tumor growth was statistically significant, but did not exceed 39 %. No pronounced effect of lomustine on Ehrlich tumor was found when the tumor growth index reached 68 % (Table 2).

The median survival of FVB/N mice with intracranially transplanted HER2+ breast cancer treated with lomustine was 43 % higher than that in the control group mice (p<0.001) (Table 3). On day 27 after inoculation, all 12 mice in the control group died. Of the 10 mice treated with lomustine, 7 were alive (70 %; p=0.0007).

Thus, lomustine showed a significant therapeutic effect on HER2-positive breast cancer in FVB/N Her-2 transgenic mice. However, the effect of lomustine on Ehrlich tumor in BALB/c mice was very moderate. The high activity of lomustine in FVB/N mice with transplanted HER-2 positive breast cancer is obviously can be explained by the biological characteristics of this tumor, thus suggesting that clinical trials of lomustine for HER-2 positive tumors are needed.

Conclusion

HER2-positive breast cancer in FVB/N Her-2 transgenic mice demonstrates significant sensitivity to lomustine in both extra- and intracranial tumor localization. The high therapeutic effect of HER-2 positive breast cancer in FVB/N Her-2 transgenic mice indicates the need for conducting clinical trials of lomustine in patients with HER-2 positive tumors, including HER2-positive cancer with brain metastases.
Сведения об авторах

Стуков Александр Николаевич, доктор медицинских наук, старший научный сотрудник отдела инновационных методов терапевтической онкологии и реабилитации, ФГБУ «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России (г. Санкт-Петербург, Россия). SPIN-код: 16307589600. Author ID (Scopus): 7004016508.

Вершинина София Фатхулловна, доктор биологических наук, ведущий научный сотрудник, ФГБУ «Российский научный центр радиологии и хирургических технологий им. А.М. Гранова» Минздрава России (г. Санкт-Петербург, Россия). AuthorID (РИНЦ): 287723. Author ID (Scopus): 700411804.

Ковалев Никита Александрович, врач, ФГБУ «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России (г. Санкт-Петербург, Россия). SPIN-код: 4301-8679. Author ID (Scopus): 700411804.

Семитлазова Татьяна Юрьевна, доктор медицинских наук, заведующий отделом инновационных методов терапевтической онкологии и реабилитации, ФГБУ «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России (г. Санкт-Петербург, Россия). SPIN-код: 9773-3759. Author ID (Scopus): 8562948700.

Филатова Лариса Валентиновна, доктор медицинских наук, ведущий научный сотрудник, ФГБУ «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России (г. Санкт-Петербург, Россия). SPIN-код: 2564-9233. Author ID (Scopus): 4301-8679.

Лаптикова Дилором Хамидовна, кандидат биологических наук, старший научный сотрудник, научная лаборатория канцерогенеза и старения, ФГБУ «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России (г. Санкт-Петербург, Россия). SPIN-код: 5124-5881. Author ID (Scopus): 4301-8679.

Беспалов Владимир Григорьевич, доктор медицинских наук, заведующий научной лабораторией химиопрофилактики рака, ФГБУ «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России (г. Санкт-Петербург, Россия). SPIN-код: 8347-0332. Author ID (Scopus): 700411804.

Иванцов Александр Олегович, доктор медицинских наук, ведущий научный сотрудник, ФГБУ «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России (г. Санкт-Петербург, Россия). SPIN-код: 1920-1515. Author ID (Scopus): 26025936100.

Янус Григорий Аркадьевич, кандидат научных работ, научная лаборатория химиопрофилактики рака и онкофармакологии, ФГБУ «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России (г. Санкт-Петербург, Россия). SPIN-код: 1307589600.

Беляева Олеся Александровна, кандидат биологических наук, старший научный сотрудник отдела инновационных методов терапевтической онкологии и реабилитации, ФГБУ «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России (г. Санкт-Петербург, Россия). SPIN-код: 9773-3759. Author ID (Scopus): 8562948700.

Филатова Лариса Валентиновна, доктор медицинских наук, старший научный сотрудник отдела инновационных методов терапевтической онкологии и реабилитации, ФГБУ «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России (г. Санкт-Петербург, Россия). SPIN-код: 9773-3759. Author ID (Scopus): 8562948700.

Лаптикова Дилором Хамидовна, кандидат биологических наук, старший научный сотрудник, научная лаборатория канцерогенеза и старения, ФГБУ «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России (г. Санкт-Петербург, Россия). SPIN-код: 5124-5881. Author ID (Scopus): 4301-8679.

Семёнов Александр Леонидович, научный сотрудник, научная лаборатория химиопрофилактики рака и онкофармакологии, ФГБУ «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России (г. Санкт-Петербург, Россия). SPIN-код: 8347-0332. Author ID (Scopus): 700411804.

Иванцов Александр Олегович, доктор медицинских наук, ведущий научный сотрудник, ФГБУ «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России (г. Санкт-Петербург, Россия). SPIN-код: 1920-1515. Author ID (Scopus): 26025936100.

Янус Григорий Аркадьевич, кандидат научных работ, научная лаборатория химиопрофилактики рака и онкофармакологии, ФГБУ «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России (г. Санкт-Петербург, Россия). SPIN-код: 1307589600.

Беляева Олеся Александровна, кандидат биологических наук, старший научный сотрудник отдела инновационных методов терапевтической онкологии и реабилитации, ФГБУ «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России (г. Санкт-Петербург, Россия). SPIN-код: 9773-3759. Author ID (Scopus): 8562948700.

Филатова Лариса Валентиновна, доктор медицинских наук, старший научный сотрудник отдела инновационных методов терапевтической онкологии и реабилитации, ФГБУ «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России (г. Санкт-Петербург, Россия). SPIN-код: 9773-3759. Author ID (Scopus): 8562948700.

Лаптикова Дилором Хамидовна, кандидат биологических наук, старший научный сотрудник, научная лаборатория канцерогенеза и старения, ФГБУ «НМИЦ онкологии им. Н.Н. Петрова» Минздрава России (г. Санкт-Петербург, Россия). SPIN-код: 5124-5881. Author ID (Scopus): 4301-8679.
Laboratory and Experimental Studies

Sofia F. Vershinina, DSc, Leading Researcher, A.M. Granov Russian Research Center for Radiology and Surgical Technologies (St. Petersburg, Russia). Author ID (PII): 287723. Author ID (Scopus): 7004111804.

Nikita A. Kozhavin, MD, Physician, N.N. Petrov National Medical Research Center of Oncology (St. Petersburg, Russia). ORCID: 0000-0003-2759-4817.

Tatiana Yu. Semiglazova, MD, DSc, Head of Department of Innovative Methods of Therapeutic Oncology and Rehabilitation, N.N. Petrov National Medical Research Center of Oncology (St. Petersburg, Russia). Author ID (Scopus): 8562948700.

Larisa V. Filatova, MD, DSc, Leading Researcher, Department of Innovative Methods of Therapeutic Oncology and Rehabilitation, N.N. Petrov National Medical Research Center of Oncology (St. Petersburg, Russia). Author ID (Scopus): 18334377100.

Dilorom Kh. Latipova, MD, PhD, N.N. Petrov National Medical Research Center of Oncology (St. Petersburg, Russia). Author ID (Scopus): 50961448800.

Alexander O. Ivanov, MD, PhD, Leading Researcher, N.N. Petrov National Medical Research Center of Oncology (St. Petersburg, Russia). Author ID (Scopus): 26025936100.

Vladimir G. Bespalov, MD, DSc, Head of Laboratory for Cancer Chemoprevention and Oncopharmacology, N.N. Petrov National Medical Research Center of Oncology (St. Petersburg, Russia). Author ID (Scopus): 56921601600.

Alexander L. Semenov, Researcher, Laboratory for Cancer Chemoprevention and Oncopharmacology, N.N. Petrov National Medical Research Center of Oncology (St. Petersburg, Russia). Author ID (Scopus): 16307589600.

Olesya A. Belyaeva, PhD, N.N. Petrov National Medical Research Center of Oncology (St. Petersburg, Russia). Author ID (Scopus): 54993582100.

Galina S. Kireeva, PhD, Senior Researcher, Laboratory for Carcinogenesis and Aging, N.N. Petrov National Medical Research Center of Oncology (St. Petersburg, Russia). SPIN-код: 5643-6973. Author ID (Scopus): 56184283000. ORCID: 0000-0002-4732-5895.

Valery A. Alexandrov, MD, DSc, Leading Researcher, Laboratory for Cancer Chemoprevention and Oncopharmacology, N.N. Petrov National Medical Research Center of Oncology (St. Petersburg, Russia). Author ID (Scopus): 7006723656.

Grigoriy V. Tochilnikov, MD, PhD, Senior Researcher, Laboratory for Cancer Chemoprevention and Oncopharmacology, N.N. Petrov National Medical Research Center of Oncology (St. Petersburg, Russia). Author ID (Scopus): 57194493773.

Irina N. Vasilyeva, PhD, Senior Researcher, Laboratory for Cancer Chemoprevention and Oncopharmacology, N.N. Petrov National Medical Research Center of Oncology (St. Petersburg, Russia). Author ID (Scopus): 7003273722.

Mikhail A. Maydin, Researcher, Laboratory for Carcinogenesis and Aging, N.N. Petrov National Medical Research Center of Oncology (St. Petersburg, Russia). Author ID (Scopus): 56184141100.

Margarita L. Tyndyk, PhD, Senior Researcher, Laboratory for Carcinogenesis and Aging, N.N. Petrov National Medical Research Center of Oncology (St. Petersburg, Russia). Author ID (Scopus): 6602634277. ORCID: 0000-0002-4755-9317.

Stepan S. Kruglov, Researcher, Laboratory for Carcinogenesis and Aging, N.N. Petrov National Medical Research Center of Oncology (St. Petersburg, Russia). Author ID (Scopus): 36011349100.

Grigory A. yanus, MD, PhD, Senior Researcher, Laboratory of Molecular Oncology, N.N. Petrov National Medical Research Center of Oncology (St. Petersburg, Russia). Author ID (Scopus): 6602814066. ORCID: 0000-0003-3589-5871.

Funding
This study was supported by a grant from the Russian Science Foundation, project No. 17-75-30027.

Conflict of interest
The authors declare that they have no conflict of interest.