All unicyclic graphs of order n with locating-chromatic number $n - 3$

Edy Tri Baskoroa, Arfinb

aCombinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia.
bMaster Program in Mathematics for Teaching, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia

ebaskoro@math.itb.ac.id, yong_arfin@yahoo.co.id

Abstract

Characterizing all graphs having a certain locating-chromatic number is not an easy task. In this paper, we are going to pay attention on finding all unicyclic graphs of order $n \geq 6$ and having locating-chromatic number $n - 3$.

Keywords: locating-chromatic number, unicyclic, graph, characterization
Mathematics Subject Classification: 05C12
DOI: 10.19184/ijc.2021.5.2.3

1. Introduction

Let $G = (V,E)$ be a connected graph. For any two vertices a and b in G, define the distance between a and b, denoted by $d(a,b)$, is the length of a shortest path connecting a and b. The distance from a vertex a to a set S in G, denoted by $d(a,S)$, is $\min\{d(a,x) \mid x \in S\}$. Let $\Pi = \{L_1, L_2, ..., L_k\}$ be an ordered partition of $V(G)$ induced by a k-coloring c. The color code $c_\Pi(v)$ of a vertex v of G is defined as

$$c_\Pi(v) = (d(v, L_1), d(v, L_2), ..., d(v, L_k)).$$
If any two distinct vertices u and v of G satisfy that $c_\Pi(u) \neq c_\Pi(v)$, then the coloring c is called a locating-coloring of G. The locating-chromatic number of G, denoted by $\chi_L(G)$, is the smallest integer k such that G has a locating-coloring with k colors.

Chartrand et al. [5] introduced the notion of the locating-chromatic number of a graph. They derived some bounds of the locating-chromatic number of a graph in terms of its order and diameter. The locating-chromatic numbers of some well-known graphs are also obtained, such as for paths, cycles, double stars, and complete multipartite graphs. The existence of a tree of order $n \geq 5$ having locating-chromatic number k for any $k \in \{3, 4, \ldots, n - 2, n\}$ is also shown. In [8], Furuya and Matsumoto have proposed an algorithm to estimate an upper bound for the locating-chromatic number of any tree. This bound depends on the number of leaves and the number of local end-branches in a tree. Recently, Assiyatun et al. [3] proposed an improved algorithm for calculating the upper bound for the locating-chromatic number of any tree. The bound obtained is much better than the one of Furuya and Matsumoto.

All connected graphs of order n and having locating-chromatic number n have been completely characterised, i.e., complete multipartite graphs, see [5]. For small locating-chromatic number, all connected graphs with locating-chromatic number 3 have been characterized, see [4] and [2]. In particular for trees, Syofyan et al. [9] has found all trees of order n with locating-chromatic number t, where $2 \leq t < \frac{n}{2}$. Furthermore, in [6], Chartrand et al. characterized all connected graphs of order n and having locating-chromatic number $n - 1$. However, the problem on characterizing all connected graphs of order n and having locating-chromatic number $n - 2$ is still open. A graph is called unicyclic if it contains exactly one cycle. Recently, Arfin and Baskoro [1] characterized all unicyclic graphs of order $n \geq 5$ with locating-chromatic number $n - 2$. Such graphs are presented in the following theorem. In this paper, we characterize all unicyclic graphs of order $n \geq 6$ with locating-chromatic number $n - 3$.

Theorem 1.1. [1] There are exactly 9 non-isomorphic unicyclic graphs of order $n \geq 5$, listed in Figure 1, with locating-chromatic number $n - 2$.

![Figure 1](image_url)

Figure 1. All unicyclic graphs of order $n \geq 5$ with locating-chromatic number $n - 2$.

2. Basic Properties

In this section, we give some basic properties of locating-chromatic number of graphs. Let $G(V, E)$ be a nonempty connected graph of order n. The degree of vertex v in G, denoted by
The number of vertices in that are adjacent to \(v \). A vertex of degree one is called an end-vertex or a leaf of \(G \). The external degree of a vertex \(v \) in \(G \), denoted by \(d^+(v) \), is the number of leaves adjacent to \(v \). The maximum external degree of a graph \(G \) is \(\max\{d^+(v) \mid v \in V(G)\} \) and denoted by \(\Delta^+(G) \). The set of all vertices adjacent to vertex \(v \) in \(G \) is denoted by \(N(v) \). The following observation and corollary are natural.

Observation 2.1. [5] Let \(c \) be a locating-coloring in a connected graph \(G \). If \(u \) and \(v \) are distinct vertices of \(G \) such that \(d(u, w) = d(v, w) \) for all \(w \in V(G) \setminus \{u, v\} \), then \(c(u) \neq c(v) \). In particular, if \(u \) and \(v \) are nonadjacent vertices of \(G \) such that \(N(u) = N(v) \), then \(c(u) \neq c(v) \).

Corollary 2.1. [5] If \(G \) is a connected graph containing a vertex \(v \) with \(d^+(v) = p \), then \(\chi_L(G) \geq p + 1 \). Furthermore, if \(\Delta^+(G) = P \), then \(\chi_L(G) \geq P + 1 \).

Furthermore, Chartrand, et al. [5] derived some bounds on the locating-chromatic number of a connected graph in relation with its order and diameter, as shown in the following theorem.

Theorem 2.1. [5] If \(G \) is a graph of order \(n \geq 3 \) and \(\text{diam}(G) \geq 2 \), then

\[
\log_{d+1} n \leq \chi_L(G) \leq n - \text{diam}(G) + 2
\]

Note that \(\text{diam}(G) \) is the diameter of graph \(G \). As a direct consequence of Theorem 2.1, we have the following corollaries.

Corollary 2.2. If \(G \) is a graph of order \(n \geq 6 \) with locating-chromatic number \(n - 3 \), then \(2 \leq \text{diam}(G) \leq 5 \).

Corollary 2.3. If \(k \) is the length of a cycle in a unicyclic graph \(G \) of order \(n \) \((\geq 6)\) with locating-chromatic number \(n - 3 \), then \(3 \leq k \leq 11 \).

A tree \(T \) for which a vertex \(v \) is distinguished is called a rooted tree and the distinguished vertex is called a root of the tree. A rooted tree will be considered to be leveled, i.e. level 0 contains the root, \(v \), of the tree, level 1 consists of all vertices adjacent to \(v \), etc. A rooted tree \(T \) is called trivial if it is of order 1, otherwise it is nontrivial. Let \(H \) be a unicyclic graph containing a cycle of length \(k \). Then, the graph \(H \) can be also considered as the graph obtained from \(k \) rooted trees \(T_i \) of roots \(a_i (1 \leq i \leq k) \) by connecting all these roots into a cycle \(C_k \) such that:

\[
V(H) = \bigcup_{i=1}^{k} V(T_i) \quad \text{and} \quad E(H) = \left(\bigcup_{i=1}^{k} E(T_i) \right) \cup E(C_k).
\]

In this paper, we denote by \(\mathbb{H} \) the set of all unicyclic graphs \(H \) of order \(n \geq 6 \) with \(\chi_L(H) = n - 3 \). Note that there is no such unicyclic graph \(H \) of order \(n \leq 5 \) with \(\chi_L(H) = n - 3 \).
3. Maximum external degree

In this section, we are going to show that every unicyclic graph \(H \) of order \(n \geq 8 \) with \(\chi_L(H) = n - 3 \) must have the maximum external degree \(n - 4 \), namely \(\Delta^+(H) = n - 4 \). To do this, let us first consider the following lemma.

Lemma 3.1. If \(H \) is a unicyclic graph of order \(n \geq 8 \) with \(\Delta^+(H) = 1 \), then \(\chi_L(H) \leq n - 4 \).

Proof. Let \(H \) be a unicyclic graph of order \(n \geq 8 \) with \(\Delta^+(H) = 1 \). Let \(k \) be the length of the unique cycle in \(H \). Then, consider the following two cases.

Case 1: \(3 \leq k \leq 7 \). Consider any connected subgraph \(I \) of \(H \) of order 8 and containing the unique cycle with \(\Delta^+(I) = 1 \). Then, all these possible subgraphs \(I \) for each \(k \) are shown in Figures 2 and 3, along with their minimum locating-colorings.

It can be seen that every subgraph \(I \) in Figures 2 and 3 has a minimum locating-coloring with either 3 or 4 colors. Now extend this coloring into \(H \) by coloring all the remaining vertices in \(H \) with new different colors. Of course, this extended coloring is a locating-coloring in \(H \). Therefore, \(\chi_L(H) \leq n - 4 \).

Case 2: \(k \geq 8 \). Now, consider the unique cycle \(C_k \) in \(H \) and let \(V(C_k) = \{a_i \mid 1 \leq i \leq k\} \). If \(k \) is odd, then define a coloring \(c : V(C_k) \to \{1, 2, 3\} \) with:

\[
c(a_i) = \begin{cases}
1, & \text{if } i = 1 \\
2, & \text{if } i \text{ is even} \\
3, & \text{if } i \geq 3 \text{ and } i \text{ is odd}.
\end{cases}
\]

If \(k \) is even, then define a coloring \(c : V(C_k) \to \{1, 2, 3, 4\} \) with:

\[
c(a_i) = \begin{cases}
1, & \text{if } i = 1 \\
2, & \text{if } i = 2 \\
3, & \text{if } i \geq 3 \text{ and } i \text{ is odd} \\
4, & \text{if } i \geq 4 \text{ and } i \text{ is even}.
\end{cases}
\]

It is clear that \(c \) is a locating-coloring in \(C_k \). Now, extend this coloring \(c \) into \(H \) by coloring all the remaining vertices in \(H \) with new different colors. Of course, this extended coloring is a locating-coloring in \(H \). Then, we obtain \(\chi_L(H) \leq n - 4 \). \(\square \)

Theorem 3.1. If \(H \) is a unicyclic graph of order \(n \geq 8 \) with \(\chi_L(H) = n - 3 \), then \(\Delta^+(H) = n - 4 \).

Proof. Let \(H \) be a unicyclic graph of order \(n \geq 8 \) with \(\chi_L(H) = n - 3 \). If \(\Delta^+(H) \geq n - 3 \), then by Corollary 2.1 we have \(\chi_L(H) \geq n - 3 + 1 = n - 2 \), a contradiction. Therefore, \(\Delta^+(H) \leq n - 4 \). Now, assume \(\Delta^+(H) < n - 4 \). Let \(x \) be a vertex with maximum external degree, i.e. \(d^+(x) = \Delta^+(H) \leq n - 5 \).

If \(\Delta^+(H) = 0 \), it follows that \(H \cong C_n \) which means \(\chi_L(H) = 3 \) for odd \(n \) or 4 for even \(n \), a contradiction. If \(\Delta^+(H) = 1 \), then by Lemma 3.1, we have \(\chi_L(H) \leq n - 4 \), a contradiction. Therefore, \(2 \leq \Delta^+(H) \leq n - 5 \). Let \(u_1, u_2, \ldots, u_{\Delta^+(H)} \) be the leaves adjacent to \(x \) in \(H \). By Corollary 2.1 the vertices \(x, u_1, u_2, \ldots, u_{\Delta^+(H)} \) must be assigned with distinct colors, say \(1, 2, \ldots, \Delta^+(H) + 1 \). Now, consider the remaining vertices other than \(x \) and its leaves in \(H \).
Let \(J \) be a subgraph induced by these remaining vertices, say \(V(J) = \{v_1, v_2, \cdots, v_{n-\Delta^+(H)-1}\} \). Then, there are at least 5 vertices in \(J \). Let \(p \) and \(q \) be two non-adjacent vertices in \(J \) such that \(d(p, w) \neq d(q, w) \) for some \(w \in V(H) \setminus \{p, q\} \). Define a coloring such that \(p \) and \(q \) are assigned with the same color, and the other \(n - \Delta^+(H) - 3 \) remaining vertices in \(J \) are assigned with distinct colors different from the colors of \(p \) and \(q \). Such a coloring of \(H \) is a locating-coloring, hence \(\chi_L(H) \leq \max\{\Delta^+(H) + 1, n - \Delta^+(H) - 2\} \leq n - 4 \), which is a contradiction. Therefore, \(\Delta^+(H) = n - 4 \).
4. Characterization

Let H be a unicyclic graph of order $n \geq 6$ with $\chi_L(H) = n - 3$. In this section, we will characterize all graphs H.

Theorem 4.1. There are exactly three non-isomorphic unicyclic graphs H of order $n \geq 8$ with $\chi_L(H) = n - 3$.

Proof. Let H be a unicyclic graph of order $n \geq 8$ and $\chi_L(H) = n - 3$. By Theorem 3.1, we have $\Delta^+(H) = n - 4$. Let x be a vertex of H with maximum external degree, i.e. $d^+(x) = \Delta^+(H) = n - 4$. Then, there are exactly three remaining vertices other than x and its leaves. The connected subgraph induced by these three vertices together with x will contain a unique cycle. Therefore, there are exactly three possible graphs H up to isomorphism (see Figure 5). For the converse, by Corollary 2.1, we have that $\chi_L(H) \geq n - 3$. Next, each of these three graphs has a locating-coloring with $n - 3$ colors (see Figure 5), hence $\chi_L(H) \leq n - 3$. Therefore, for each of these graphs H, we have $\chi_L(H) = n - 3$. \qed
All unicyclic graphs of order n with locating-chromatic number $n - 3$

E.T. Baskoro and Arfin

Figure 5. Three non-isomorphic unicyclic graphs H of order n and $\chi_L(H) = n - 3$ with their minimum locating-colorings.

To complete the characterization, we have to find all the unicyclic graphs H of order $n \leq 7$ with the required locating-chromatic number. Our search will be based on the length of the unique cycle C_k in H.

Theorem 4.2. There are exactly two non-isomorphic unicyclic graphs H of order $n \leq 7$ with $\chi_L(H) = n - 3$ containing C_k for $k \geq 5$.

![Graphs](image)

Proof. Let H be a unicyclic graph of order $n \leq 7$ with $\chi_L(H) = n - 3$ and containing the cycle of length $k \geq 5$. Then, $k = 5, 6,$ or 7. If $k = 7$ then $H \cong C_7$ and $\chi_L(C_7) = 3$ ($= n - 4$), a contradiction. If $k = 5$ or 6, then H must be isomorphic to C_6, G_1, G_2, G_3, G_4, or G_5 (see Figure 6). We can see that G_1 and G_5 are the only graphs having the required locating-chromatic number.

Theorem 4.3. There are exactly 12 non-isomorphic unicyclic graphs H of order $n \leq 7$ containing C_3 with $\chi_L(H) = n - 3$.

Proof. Let H be a unicyclic graph of order $n \leq 7$ containing C_3. Since the order of H must be at least 6, then H must be a connected graph obtained from three rooted trees of total order $n = 6$ or $n = 7$, by connecting all roots into such a cycle C_3. By Corollary 2.2, the diameter of H is at least 2 and at most 5. These restrictions lead to 25 possible graphs H up to isomorphism, as shown in Figure 7 with their minimum locating-colorings. Thus, there are only 12 of them having the required locating-chromatic number (inside the blue square).
Theorem 4.4. There are exactly 8 non-isomorphic unicyclic graphs H of order $n \leq 7$ containing C_4 with $\chi_L(H) = n - 3$.

Proof. Let H be a unicyclic graph of order $n \leq 7$ containing C_4. Since the order of H must be at least 6, then H must be a connected graph obtained from three rooted trees of total order $n = 6$ or $n = 7$, by connecting all roots into such a cycle C_4. By Corollary 2.2, the diameter of H is at least 2 and at most 5. These restrictions lead to 13 possible graphs H up to isomorphism, as shown in Figure 8 with their minimum locating-colorings. Thus, there are only 8 of them having the required locating-chromatic number (inside the blue square), hence it completes the proof.

Figure 8. All possible graphs H of order $n \leq 7$ containing C_4 with their minimum locating-colorings.
Acknowledgement

This research has been supported by the Research Grant “Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT)”, Ministry of Education, Culture, Research and Technology, Indonesia.

References

[1] Arfin and E.T. Baskoro, Unicyclic graph of order n with locating-chromatic number $n - 2$, Jurnal Matematika dan Sains 24 (2019), 36–45.

[2] Asmiati and E.T. Baskoro, Characterizing all graphs containing cycles with locating-chromatic number 3, AIP Conf. Proc. 1450 (2012), 351–357.

[3] H. Assiyatun, D.K. Syofyan and E.T. Baskoro, Calculating an upper bound of the locating-chromatic number of trees, Theor. Comput. Sci. 806 (2020), 305–309.

[4] E.T. Baskoro and Asmiati, Characterizing all trees with locating-chromatic number 3, Electron. J. Graph Theory Appl. 1 (2) (2013), 109–117.

[5] G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater and P. Zhang, The locating-chromatic number of a graph, Bull. Inst. Combin. Appl. 36 (2002), 89–101.

[6] G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater and P. Zhang, Graph of order n with locating-chromatic number $n - 1$, Discrete Math. 269 (2003), 65–79.

[7] M. Dudenko and O. Bogdana, On unicyclic graph of metric dimension 2, Algebra and Discrete Math. 23 (2017), 216–222.

[8] M. Furuya and N. Matsumoto, Upper bounds on the locating-chromatic number of trees, Discrete Appl. Math. 257 (2019), 338–341.

[9] D.K. Syofyan, E.T. Baskoro and H. Assiyatun, Trees with certain locating-chromatic number, J. Math. Fund. Sci. 48 (1) (2016), 39–47.