A NOTE ON QUASILINEAR EQUATIONS WITH FRACTIONAL DIFFUSION

BOUMEDIENE ABDELLAOUI, PABLO OCHOA, IRENEO PERAL

Abstract. In this paper, we study the existence of distributional solutions of the following non-local elliptic problem

\[
\begin{cases}
(-\Delta)^s u + |\nabla u|^p = f & \text{in } \Omega \\
u = 0 & \text{in } \mathbb{R}^N \setminus \Omega,
\end{cases}
\]

where \(s \in (1/2, 1) \).

We are interested in the relation between the regularity of the source term \(f \), and the regularity of the corresponding solution. If \(p < 2s \), that is, the natural growth, we are able to show the existence for all \(f \in L^1(\Omega) \).

In the subcritical case, that is, for \(p < p_* := N/(N - 2s + 1) \), we show that solutions are \(C^{1,\alpha} \) for \(f \in L^m \), with \(m \) large enough. In the general case, we achieve the same result under a condition on the size of the source. As an application, we may show that for regular sources, distributional solutions are viscosity solutions, and conversely.

1. Introduction

Throughout this article, we shall consider the following Dirichlet integro-differential problem

\[
\begin{cases}
(-\Delta)^s u + |\nabla u|^p = f & \text{in } \Omega \\
u = 0 & \text{in } \mathbb{R}^N \setminus \Omega,
\end{cases}
\]

for \(s \in (1/2, 1), \Omega \subset \mathbb{R}^N, p > 1 \) and \(f \) a non-negative measurable function. When the nonlinear term appears in the right-hand side the model (1.1) may be seen as a Kardar-Parisi-Zhang stationary problem driving by fractional diffusion (see [25] for the model in the local setting and [2] in the nonlocal case). The problem with the nonlinear term in the left hand side is the stationary counterpart of a Hamilton-Jacobi equation with a viscosity term, the principal nonlocal operator. See [37] and the references therein.

The fractional Laplacian operator \((-\Delta)^s \), and more general pseudo-differential operators, have been a classic topic in Harmonic Analysis and PDEs. Moreover, these are a renovated interest in these kind of operators. Non-local operators arise naturally in continuum mechanics, image processing, crystal dislocation, phase transition phenomena, population dynamics, optimal control and theory of games as pointed out in [7], [11], [12], [13], [22] and the references therein. For instance, the fractional heat equation may appear in probabilistic random-walk procedures and, in turn, the stationary case may do so in pay-off models (see [11] and the references therein). In the works [30] and [31] the description of anomalous diffusion via fractional dynamics is investigated and various fractional partial differential equations are derived from Lévy random walk models, extending Brownian walk models in a natural way. Fractional operators are also involved in financial

Date: March 31, 2020.

2010 Mathematics Subject Classification. 35B65, 35J62, 35D40.

Key words and phrases. fractional diffusion, nonlinear gradient terms, viscosity solutions,

The first and the third authors are partially supported by Project MTM2016-80474-P, MINECO, Spain. The first author also is partially supported by DGRSDT, Algeria. The second author is partially supported by CONICET and grant PICT 2015-1701 AGENCIA.
mathematics, since Lévy processes with jumps revealed as more appropriate models of stock pricing. The boundary condition
\[u = 0 \text{ in } \mathbb{R}^N \setminus \Omega \]
which is given in the whole complement may be interpreted from the stochastic point of view as the fact that a Lévy process can exit the domain \(\Omega \) for the first time jumping to any point in its complement.

Regarding the integro-differential problem that we discuss in the present manuscript, the main results of our research may be summarized as follows

- In the sub-critical scenario \(p < p_* := \frac{N}{N - 2s + 1} \), there is a unique non-negative distributional solution \(u \in W^{1,q}_0(\Omega) \) of (1.1) for any \(q < p_* \).
- Moreover, if \(1 < p < p_* \), with similar arguments to those in [2] and [16], we have
 - If \(m < \frac{N}{2s - 1} \), then \(|\nabla u|^d \in L^q(\Omega) \) for all \(q < \frac{mN}{m(2s - 1)} \).
 - If \(m = \frac{N}{2s - 1} \), then \(|\nabla u|^d \in L^q(\Omega) \) for all \(q < \infty \).
 - If \(m > \frac{N}{2s - 1} \), then \(\nabla u \in C^{\alpha}(\Omega) \) for some \(\alpha \in (0,1) \).

In the interval \(1 < p < p_* \) the result lies on the estimates for the Green function by Bogdan and Jakubowski in [9].
- For any \(1 < p < \infty \), \(u \) is \(C^{1,\alpha} \) provided the source is sufficiently small.
- Any solution \(u \in C^{1,\alpha}(\Omega) \) with Hölder continuous source is a viscosity solution, and conversely.

Notice that in the local case \(s = 1 \), the main existing results can be summarized into two points: If \(p \leq 2 \), then the existence of solution is obtained for all \(f \in L^1(\Omega) \) using approximation arguments and suitable test function, see [8] and the references therein. However the truncating argument are not applicable for \(p > 2 \) including for \(L^\infty \) data. In the case of lipschitz data, the author in [28] were able to get the existence and the uniqueness of a regular solution for all \(p \). However this last argument is not applicable for \(L^m \) data including for \(p \) close to two.

For the non local case, the first existence result was obtained in [16]. Indeed, they consider the problem

\[
\begin{cases}
 (-\Delta)^s u + \epsilon g(|\nabla u|) = \nu & \text{in } \Omega \\
 u = 0 & \text{in } \mathbb{R}^N \setminus \Omega, \quad s \in (1/2,1),
\end{cases}
\]
with \(\epsilon \in \{-1,1\} \), for a continuous and non-negative function \(g \) satisfying \(g(0) = 0 \) and a non-negative Radon measure \(\nu \) so that
\[
\int_\Omega \delta^\beta d\nu < \infty, \quad \delta(x) := \text{dist}(x, \Omega^c),
\]
with \(\beta \in [0,2s - 1) \). In [16, Thm. 1.1], they show that for \(\epsilon = 1 \) and under the integrability assumption
\[
\int_1^\infty g(s)s^{1-p^*}ds < \infty,
\]
problem (1.2) admits a non-negative distributional solution \(u \in W^{1,q}_0(\Omega) \), for all \(q < p_*^0 \) where

\[
p_{*,\beta} := \frac{N}{N - 2s + 1 + \beta}.
\]
In particular, this result implies that the Dirichlet problem (1.1) admits a solution \(u \) in \(W^{1,q}_0(\Omega) \) for all \(q \in [1,p_*) \) and for \(p < p_* \). Moreover, for \(g \) Hölder continuous and bounded in \(\mathbb{R} \), solutions to (1.2) becomes strong for a Hölder continuous source.
The regularity of solutions to (1.1) is strongly related to the corresponding issue for problems
\begin{equation}
\begin{aligned}
(-\Delta)^s v &= f \quad \text{in } \Omega, \\
v &= 0 \quad \text{in } \mathbb{R}^N \setminus \Omega,
\end{aligned}
\end{equation}
As a by-product of the results in [2], [16] and [17], we have the following result which will be largely used throughout our paper.

Theorem 1.1. Suppose that \(f \in L^m(\Omega) \) with \(m \geq 1 \) and define \(v \) to be the unique solution to problem (1.3) with \(s > \frac{1}{2} \). Then for all \(p < \frac{mN}{N-m(2s-1)} \), there exists a positive constant \(C \equiv C(\Omega, N, s, p) \) such that
\begin{equation}
\left\| |\nabla v| d^{1-s} \right\|_{L^p(\Omega)} \leq C \|f\|_{L^m(\Omega)}.
\end{equation}
Moreover,
\begin{enumerate}
 \item If \(m = \frac{N}{2s-1} \), then \(|\nabla v| d^{1-s} \in L^p(\Omega) \) for all \(p < \infty \).
 \item If \(m > \frac{N}{2s-1} \), then \(v \in C^{1,\sigma}(\Omega) \) for some \(\sigma \in (0,1) \), and
 \[\left\| |\nabla v| d^{1-s} \right\|_{L^\infty(\Omega)} \leq C \|f\|_{L^m(\Omega)}. \]
\end{enumerate}

In the case where \(f \in L^1(\Omega) \cap L^m_{loc}(\Omega) \) where \(m > 1 \), then as it was proved in [2], the above regularity results hold locally in \(\Omega \). More precisely we have

Proposition 1.2. Assume that \(f \in L^1(\Omega) \cap L^m_{loc}(\Omega) \) with \(m > 1 \). Let \(v \) the unique solution to problem (1.3). Suppose that \(m < \frac{N}{2s-1} \), then for any \(\Omega_1 \subset \subset \Omega \) and for all \(p \leq \frac{mN}{N-m(2s-1)} \), there is \(C := C(\Omega, \Omega_1, p) \) such that
\begin{equation}
\|\nabla v\|_{L^p(\Omega_1)} \leq C(\|f\|_{L^1(\Omega)} + \|f\|_{L^m(\Omega_1)}).
\end{equation}
Moreover,
\begin{enumerate}
 \item If \(m = \frac{N}{2s-1} \), then \(|\nabla v| \in L^p_{loc}(\Omega_1) \) for all \(p < \infty \).
 \item If \(m > \frac{N}{2s-1} \), then \(v \in C^{1,\sigma}(\Omega) \) for some \(\sigma \in (0,1) \).
\end{enumerate}

As a consequence we conclude that, if \(f \in L^m(\Omega) \) with \(m > 1 \), then
\begin{enumerate}
 \item If \(m \geq \frac{N}{2s-1} \), then \(\int_\Omega |\nabla v|^a dx < \infty \) for all \(a < \frac{1}{1-s} \).
 \item If \(1 < m < \frac{N+2s}{2s-1} \), then \(\int_\Omega |\nabla v|^a dx < \infty \) for all \(a < \frac{1}{P} := \frac{mN}{N(m(1-s)+1)-m(2s-1)} \).
\end{enumerate}

Remark 1.3. It is clear that \(a < a_0 = \frac{1}{1-s} \) is optimal.

To see the optimality of \(a_0 \) in this regularity result, we argue by contradiction. Assume that, for \(0 \leq f \in L^\infty(\Omega) \), there exists a solution \(v \) to (1.3) such that \(v \in W^{1,p}_0(\Omega) \) with \(p > \frac{1}{1-s} \).

By using the classical Hardy inequality we obtain that
\[\int_\Omega \frac{v^p}{d^p} \, dx \leq \int_\Omega |\nabla v|^p dx < +\infty. \]
By the results in [32] the solution behaves as \(v \simeq d^a \), therefore, as a consequence, \(\frac{1}{P(1-s)} \in L^1(\Omega) \), that is, \(p < \frac{1}{1-s} \), a contradiction.

Hence, the bound for the exponent of the gradient seems to be natural if we impose that the solution lies in the Sobolev space \(W^{1,p}_0(\Omega) \) for the problem with reaction gradient term.
In the case of absorption gradient term, this affirmation seems to be difficult to prove, however, in Theorem 2.6, we will show that the non existence result holds, at least, for large value of p and for all bounded non negative data.

In the case of gradient reaction term and for $2s \leq p < \frac{s}{1-s}$, the authors in [2] proved the existence of a solution u with $|\nabla u| \in L^p_{\text{loc}}(\Omega)$ using a fixed point argument. In the present paper we will use the same approach to get the existence of a solution for $p \geq 2s$. However, in addition to the regularity condition of f, smallness condition on the source term $||f||_{L^m(\Omega)}$ is also needed.

The paper is organized as follows. In Section 2, we introduce the functional setting and we precise the notion of solution that we will use throughout this work as the weak sense and the viscosity sense. We give also some useful estimates for weak solution and the general comparison principle. A non existence result is proved using suitable estimate on the Green function for the fractional Laplacian with drift term.

The existence of a solution is proved in Section 3. In the Subsection 3.1 we treat the case of natural growth behavior in the gradient term, namely the case $p < 2s$. In this case existence of a solution is obtained for all L^1 datum. As a complement of the result proved in [16], we prove that if $p > p_*$, the existence of a solution for general measure data ν is not true and additional hypotheses on ν related to a fractional capacity is needed.

Problem with a linear zero order reaction term is also analyzed. In a such case we are able to show existence for data in L^1 and then a breaking of resonance occur under natural hypotheses on the zero order term and p.

Some additional regularity results are obtained in the subcritical case $p < p_*$.

The general case, $p \geq 2s$, is treated in Subsection 3.3. Here and since we will use fixed point theorem, we need to impose some additional condition on the regularity and the size of f. The existence result is obtained in a suitable weighted Sobolev space under additional hypotheses on p. The above existence result holds trivially for the case $s = 1$ and then can be seen as an extension of the existence result obtained in [28] in the framework of L^m datum.

The analysis of the viscosity solution is done is Section 4 where it is also proved that weak solution is a viscosity solution and viceversa if the data f is sufficiently regular and s is close to 1.

Some related open problems are given in the last section.

1.1. Basic notation. In what follows, Ω will denote a bounded, open and C^2 domain in \mathbb{R}^N with bounded boundary, $N \geq 1$. We introduce some functional-space notation. By $USC(\Omega)$, $LSC(\Omega)$ and $C(\Omega)$, we denote the spaces of upper semi-continuous, lower semi-continuous and continuous real-valued functions in Ω, respectively. Moreover, the space $C^k(\Omega)$, $k \geq 1$, is defined as the set of functions which derivatives of orders $\leq k$ are continuous in Ω. Also, the Hölder space $C^{k,\alpha}(\Omega)$ is the set of $C^k(\Omega)$ whose k–th order partial derivatives are locally Hölder continuous with exponent α in Ω.

For any $x \in \Omega$, we set $\delta(x) := \text{dist}(x, \Omega^c)$ the distance of the point x to the set $\Omega^c := \mathbb{R}^N \setminus \Omega$.

For $\sigma \in \mathbb{R}$, we define the truncation operator as follows

$$T_k(\sigma) := \max(-k, \min(k, \sigma)).$$

Finally, for any u, we denote by

$$u_+ = \max\{0, u\} \quad \text{and} \quad u_- = \max\{0, -u\}.$$
2. Preliminaries and technical tools.

In order to introduce the notion of distributional solutions, we give some definitions. For $s \in (\frac{1}{2}, 1)$ and $u \in \mathcal{S}(\mathbb{R}^N)$, the fractional Laplacian $(-\Delta)^s$ is given by

$$(-\Delta)^s u(x) := \lim_{\epsilon \to 0} (-\Delta)_\epsilon^s u(x)$$

where

$$(-\Delta)_\epsilon^s u(x) := \int_{\mathbb{R}^N} \frac{u(x) - u(y)}{|x-y|^{N+2s}} \chi_\epsilon(|x-y|)dy$$

with:

$$\chi_\epsilon(|x|) := \begin{cases} 0, & |x| < \epsilon \\ 1, & |x| \geq \epsilon \end{cases}.$$

For larger class of functions the fractional laplacian can be defined by density. See [19] or [35] for instance.

Definition 2.1. We say that a function $\phi \in C(\mathbb{R}^N)$ belongs to $\mathcal{X}_s(\Omega)$ if and only if the following holds

- $\text{supp}(\phi) \subset \overline{\Omega}$.
- The fractional Laplacian $(-\Delta)^s \phi(x)$ exists for all $x \in \Omega$ and there is $C > 0$ so that $|(-\Delta)^s \phi(x)| \leq C$.
- There is $\varphi \in L(\Omega, \delta^s dx)$ and $\epsilon_0 > 0$ so that $|(-\Delta)^s \phi(x)| \leq \varphi(x)$, a. e. in Ω and for all $\epsilon \in (0, \epsilon_0)$.

Before staring the sense for which solution are defined, let us recall the definition of the fractional Sobolev space and some of its properties.

Assume that $s \in (0, 1)$ and $p > 1$. Let $\Omega \subset \mathbb{R}^N$, then the fractional Sobolev Space $W^{s,p}(\Omega)$ is defined by

$$W^{s,p}(\Omega) \equiv \left\{ \phi \in L^p(\Omega) : \int_\Omega \int_\Omega |\phi(x) - \phi(y)|^p d\nu < +\infty \right\},$$

where $d\nu = \frac{dx dy}{|x-y|^{N+ps}}$.

Notice that $W^{s,p}(\Omega)$ is a Banach Space endowed with the norm

$$||\phi||_{W^{s,p}(\Omega)} = \left(\int_\Omega \int_\Omega |\phi(x) - \phi(y)|^p d\nu \right)^{\frac{1}{p}} + \left(\int_\Omega \int_\Omega |\phi(x) - \phi(y)|^p d\nu \right)^{\frac{1}{p}}.$$

The space $W^{s,p}_0(\Omega)$ is defined as the completion of $C_0^\infty(\Omega)$ with respect to the previous norm.

If Ω is a bounded regular domain, we can endow $W^{s,p}_0(\Omega)$ with the equivalent norm

$$||\phi||_{W^{s,p}_0(\Omega)} = \left(\int_\Omega \int_\Omega |\phi(x) - \phi(y)|^p d\nu \right)^{\frac{1}{p}}.$$

Notice that if $ps < N$, then we have the next Sobolev inequality, for all $v \in C_0^\infty(\mathbb{R}^N)$,

$$\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|v(x) - v(y)|^p}{|x-y|^{N+ps}} dx dy \geq C \left(\int_{\mathbb{R}^N} |v(x)|^p dx \right)^{\frac{p}{ps}},$$

where $p_s^* = \frac{pN}{N-ps}$ and $S \equiv S(N, s, p)$.

In the following definition, we introduce the class of distributional solutions.
Assume that \(\nu \) is a bounded Radon measure and consider the problem

\[
\begin{aligned}
(-\Delta)^s v &= \nu \quad \text{in } \Omega, \\
v &= 0 \quad \text{in } \mathbb{R}^N \setminus \Omega,
\end{aligned}
\]

(2.1)

Let us begin by precising the sense in which solutions are defined for general class of data.

Definition 2.2. We say that \(u \) is a weak solution to problem (2.1) if \(u \in L^1(\Omega) \), and for all \(\phi \in \mathcal{X}_s \), we have

\[
\int_{\Omega} u(-\Delta)^s \phi \, dx = \int_{\Omega} \phi \, d\nu,
\]

where \(\mathcal{X}_s \) is given in Definition 2.1.

For \(\sigma \in \mathbb{R} \), we set

\[
T_k(\sigma) = \max(-k, \min(k, \sigma)) \quad \text{and} \quad G_k(\sigma) = \sigma - T_k(\sigma).
\]

As a consequence of the properties of the Green function, the authors in [17] obtain the following regularity result.

Theorem 2.1. Suppose that \(s \in (\frac{1}{2}, 1) \) and let \(\nu \in \mathcal{M}(\Omega) \), be a Radon measure such that

\[
\int_{\Omega} \delta^\beta \, d\nu < \infty, \quad \delta(x) := \text{dist}(x, \Omega^c),
\]

with \(\beta \in [0, 2s-1) \). Then the problem (2.1) has a unique weak solution \(u \) in the sense of Definition 2.2 such that \(u \in W^{1,q}_0(\Omega) \), for all \(q < p^*_\beta \) where \(p^*_\beta := \frac{N}{N - 2s + 1 + \beta} \). Moreover

\[
\|u\|_{W^{1,q}_0(\Omega)} \leq C(N, q, \Omega) \int_{\Omega} \delta^\beta \, d\nu.
\]

(2.2)

For \(\nu \in L^1(\Omega) \), setting \(T : L^1(\Omega) \to W^{1,\theta}_0(\Omega) \), with \(T(f) = u \), then \(T \) is a compact operator.

Related to \(T_k(u) \) and for \(s > \frac{1}{2} \), we have the next regularity result obtained in [2].

Theorem 2.2. Assume that \(f \in L^1(\Omega) \) and define \(u \) to be the unique weak solution to problem (2.1), then \(T_k(u) \in W^{1,\alpha}_0(\Omega) \cap H^s_0(\Omega) \) for any \(\alpha < 2s \), moreover

\[
\int_{\Omega} |\nabla T_k(u)|^\alpha \, dx \leq Ck^{\alpha-1} \|f\|_{L^1(\Omega)}.
\]

We recall also the next comparison principle proved in [2]

Theorem 2.3. (Comparison Principle). Let \(g \in L^1(\Omega) \) and suppose that \(w_1, w_2 \in W^{1,q}_0(\Omega) \) for all \(q < \frac{N}{N - 2s + 1} \) are such that

\[
\begin{aligned}
(-\Delta)^s w_1 &= H_1(x, w_1, \nabla w_1) + g \quad \text{in } \Omega, \\
w_1 &= 0 \quad \text{in } \mathbb{R}^N \setminus \Omega,
\end{aligned}
\]

\[
\begin{aligned}
(-\Delta)^s w_2 &= H_2(x, w_2, \nabla w_2) + g \quad \text{in } \Omega, \\
w_2 &= 0 \quad \text{in } \mathbb{R}^N \setminus \Omega,
\end{aligned}
\]

where

(1) \(H_1(x, w_1, \nabla w_1), H_1(x, w_2, \nabla w_2) \in L^1(\Omega) \) and
(2) \(H_1(x, w_1, \nabla w_1) - H_1(x, w_2, \nabla w_2) = \langle B(x, w_1, w_2), \nabla (w_1 - w_2) \rangle + f(x, w_1, w_2) \) in \(\Omega \) with \(B \in (L^a(\Omega))^N \) and \(a > \frac{N}{2s+1} \) and \(f \in L^1(\Omega) \) with \(f \leq 0 \) in \(\Omega \).

Then \(w_1 \leq w_2 \) in \(\Omega \).
Recall that we are considering problem (1.1), then we have the next definition.

Definition 2.3. A function \(u \in L^1(\Omega) \), with \(|\nabla u|^p \in L^{1}_{\text{loc}}(\Omega)\), is a distributional solution to problem (1.1) if for any \(\phi \in X_s(\Omega) \), there holds
\[
\int_{\Omega} u(-\Delta)^s \phi + \int_{\Omega} \phi |\nabla u|^p = \int_{\Omega} f \phi,
\]
and \(u = 0 \) in \(\mathbb{R}^N \setminus \Omega \).

We denote by \(G_s \) the Green kernel of \((-\Delta)^s\) in \(\Omega \) and by \(G_s[\cdot] \) the associated Green operator defined by
\[
G_s[f](x) := \int_{\Omega} G_s(x,y) df(y).
\]
See [9] for the estimates of the Green function.

Definition 2.4. A function \(u : \Omega \to \mathbb{R} \) is a strong solution to the equation
\[
(-\Delta)^s w + |\nabla w|^p = f
\]
in \(\Omega \) if \(u \in C^{2s+\alpha}(\Omega) \), for some \(\alpha > 0 \) and
\[
(-\Delta)^s u(x) + |\nabla u(x)|^p = f(x)
\]
for every \(x \) in \(\Omega \).

The other class of solutions that we shall consider is the class of viscosity solutions. Unlike the distributional scenario, the notion of viscosity solutions requires the punctual evaluation of the equation using appropriate test functions that touch the solution from above or below.

Definition 2.5. An upper semicontinuous function \(u : \mathbb{R}^N \to \mathbb{R} \) is a viscosity subsolution to (1.1) in \(\Omega \), if \(u \in L^{1}_{\text{loc}}(\mathbb{R}^N) \), and for any open set \(U \subset \Omega \), any \(x_0 \in U \) and any \(\phi \in C^2(U) \) such that \(u(x_0) = \phi(x_0) \) and \(\phi \geq u \) in \(U \), if we define \(v \) as
\[
v(x) := \begin{cases}
\phi(x), & \text{in } U \\
u(x), & \text{outside } U,
\end{cases}
\]
we have
\[
(-\Delta)^s \phi(x_0) + |\nabla \phi(x_0)|^p \leq f(x_0),
\]
and \(v \leq 0 \) in \(\mathbb{R}^N \setminus \Omega \). On the other hand, a lower semicontinuous function \(u : \mathbb{R}^N \to \mathbb{R} \) is a viscosity supersolution to (1.1) in \(\Omega \) if \(u \in L^{1}_{\text{loc}}(\mathbb{R}^N) \), and for any open set \(U \subset \Omega \), any \(x_0 \in U \) and any \(\psi \in C^2(U) \) such that \(u(x_0) = \psi(x_0) \) and \(\phi \leq u \) in \(U \), if we define \(v \) as
\[
v(x) := \begin{cases}
\psi(x), & \text{in } U \\
u(x), & \text{outside } U,
\end{cases}
\]
there holds
\[
(-\Delta)^s \psi(x_0) + |\nabla \psi(x_0)|^p \geq f(x_0)
\]
and \(v \geq 0 \) in \(\mathbb{R}^N \setminus \Omega \). Finally, a viscosity solution to (1.1) is a continuous function which is both a subsolution and a supersolution to (1.1).

To end this section, we prove the next non existence result that justify in some way the condition \(p < \frac{1}{1-s} \) that will be used nextly.

Theorem 2.6. Assume that \(p > \frac{2s-1}{1-s} N + 1 \), then for all \(0 \leq f \in L^\infty(\Omega) \), problem (1.1) has no solution \(u \) such that \(u \in W^{1,p}_0(\Omega) \).
Proof. Suppose by contradiction that problem (1.1) has no solution \(u \) with \(u \in W_{0}^{1,p}(\Omega) \). It is clear that \(u \) solves the problem

\[
(-\Delta)^{s}u + (B(x), \nabla u) = f,
\]

where \(B(x) = |\nabla u|^{p-2}\nabla u \). Since \(p > \frac{2s}{N-2s}N + 1 \), then \(|B| \in L^{\sigma}(\Omega) \) with \(\sigma > \frac{N}{2s} \) and then \(B \in \mathcal{K}_{\lambda}(\Omega) \) the Kato class of function defined by formula (30) in [9]. Thus

\[
u(x) = \int_{\Omega} \hat{G}_{s}(x, y)f(y)dy,
\]

where \(\hat{G}_{s} \) is the Green function associated to the operator \((-\Delta)^{s} + B(x)\nabla \). From the result of [9], we know that \(\hat{G}_{s} \simeq G_{s} \), the Green function associated to the fractional laplacian. Hence

\[
\hat{G}_{s}(x, y) \simeq C(B) \frac{1}{|x-y|^{N-2s}} \left(\frac{d^{p}(x)}{|x-y|^{p}} \wedge 1 \right) \left(\frac{d^{p}(y)}{|x-y|^{p}} \wedge 1 \right).
\]

Using the fact that \(\frac{d^{p}(x)}{|x-y|^{p}} \geq C(\Omega)d^{p}(x) \), we reach that

\[
u(x) \geq C(B)d^{p}(x) \int_{\Omega} f(y)dy.
\]

Therefore, using the Hardy inequality we deduce that

\[
\frac{d^{p}}{dp} \leq C\frac{u^{p}}{dp} \in L^{1}(\Omega).
\]

Thus \(\frac{1}{d^{p}} \in L^{1}(\Omega) \). Since \(p(1-s) \geq 1 \), then we reach a contradiction.

\[
\text{Corollary 2.7. Let } f \text{ be a Lipschitz function such that } f \geq 0, \text{ then if } p > \frac{1}{1-s}, \text{ problem (1.1) has no solution } u \text{ such that } u \in C^{1}(\Omega) \text{ with } |\nabla u| \in L^{p}(\Omega).
\]

\[
\text{Remark 2.8. It is clear that the above result makes a significative difference with the local case and the general existence result proved in [28] for Lipschitz function. We conjecture that the non existence result holds at least for all } p > \frac{1}{1-s} \text{ as in the case of gradient reaction term.}
\]

3. Existence results.

3.1. The problem with natural growth in the gradient: \(p < 2s \). In this section we consider the case of natural growth in the gradient, namely we will assume that \(p < 2s \). Then using truncating argument, we are able to show the existence of a solution to problem (1.1) for a large class of data. We are also we treat the case where a linear reaction term appears in (1.1).

In the case where \(p < p_{*} \), then for more regular data \(f \), we can show that the solution is in effect a classical solution.

\[
\text{Theorem 3.1. Let } f \in L^{m}(\Omega) \text{ with } m \geq 1, \text{ and assume that } p < p^{*}. \text{ Then, the Dirichlet problem}
\]

\[
\begin{align*}
(-\Delta)^{s}w + |\nabla w|^{p} &= f & \text{in } \Omega \\
w &= 0 & \text{in } \mathbb{R}^{N} \setminus \Omega,
\end{align*}
\]

has a unique distributional solution \(w \) verifying

- if \(m < \frac{N}{2s-1} \), then \(\nabla w \in L_{\text{loc}}^{q}(\Omega) \) for all \(q < \frac{mN}{N-m(2s-1)} \);
- if \(m = \frac{N}{2s-1} \), then \(\nabla w \in L_{\text{loc}}^{q}(\Omega) \) for all \(q < \infty \);
- if \(m > \frac{N}{2s-1} \), then \(\nabla w \in C^{\alpha}(\Omega) \) for some \(\alpha \in (0, 1) \).

Moreover, if in addition \(f \in C^{*}(\Omega) \), for some \(\epsilon \in (0, 2s-1) \), then the \(C^{1,\alpha} \) distributional solution is a strong solution.
Proof. It is clear that the existence and the uniqueness follow using \[16\] and \[2\], however, the regularity in the local Sobolev space follows using Proposition 1.2. Notice that, in this case \(|\nabla u|^{p-1} \in L^\sigma(\Omega)| \) with \(\sigma > \frac{N}{2s-1}\) and then we can iterate the local regularity result in Proposition 1.2 to deduce that \(|\nabla u| \in L^\theta_{\text{loc}}(\Omega)|\) for all \(\theta > 0\). Hence \(|\nabla u| \in C^a(\Omega)|\) for some \(a < 1\).

Now, assume that \(f \in C^t(\Omega)|\), and let \(\Omega' \Subset \Omega|\), open and let \(u|\) be a distributional solution to problem (1.1). Since \(u \in L^\infty(\mathbb{R}^N)|\) and \(f - |\nabla u|^p \in L^\infty(\Omega')\), we apply Proposition 2.3 in \[32\] to derive

\[u \in C^\beta(\Omega''|, \text{ for all } \beta \in (0, 2s)|, \Omega'' \Subset \Omega'.\]

In particular, we have \(\nabla u \in C^{\beta-1}(\Omega'')\) for any \(\beta \in (1, 2s)|.\) Consequently, \(f - |\nabla u|^p \in C^\epsilon(\Omega'')\).

Appealing now to Corollary 2.4 in \[32\], we obtain \(u \in C^{2s+\epsilon} \text{ in a smaller subdomain of } \Omega''\). Thus, \(u \in C^{2s+\epsilon} \text{ locally in } \Omega\).

We prove that \(u|\) is a strong solution. Since the term \(f - |\nabla u|^p\) is \(C^t\) in \(\Omega|,\) and then, by appropriate extension, in \(\overline{\Omega}\), we deduce from \[17, \text{Lemma 2.1(ii)}\] that \(u \in \mathbb{X}_s\). Hence the integration by parts formula

\[\int_\Omega u(-\Delta)^s \phi = \int_\Omega \phi(-\Delta)^s u\]

holds for all \(\phi \in \mathbb{X}_s\). For any \(\phi \in C^\infty_0(\Omega)|\) we hence obtain

\[\int_\Omega \phi(-\Delta)^s u = \int_\Omega u(-\Delta)^s \phi = \int_\Omega f \phi - \int_\Omega |\nabla u|^p \phi.\]

Therefore

\[(-\Delta)^s u(x) = f(x) - |\nabla u(x)|^p\]

for almost everywhere \(x \in \Omega\). By continuity, it holds in the full set \(\Omega|\).

\[\square\]

Remark 3.2. Observe that the reasoning employed to prove the above result gives the precise way in which the function \(f|\) transfers its regularity to a solution \(u|\). Indeed, if \(f \in C^{2s+\epsilon-n}\) locally in \(\Omega|,\) for \(\epsilon \in (0, 2s-1)|\) and \(n \geq 0\), then \(u \in C^{2s+\epsilon-n}\) locally in \(\Omega\).

3.2. The case \(p_* \leq p < 2s \text{ with general datum.}\) In this subsection we will assume that \(p_* \leq p < 2s|\), then the first existence result for problem (1.1) is the following.

Theorem 3.1. Assume that \(p < 2s\), then for all \(f \in L^1(\Omega)|\) with \(f \geq 0|,\) the problem (1.1) has a maximal weak solution \(u|\) such that \(u \in W^{1,p}_0(\Omega)|\) and \(T_k(u) \in W^{1,\alpha}_0(\Omega) \cap H^\delta(\Omega)|\) for any \(1 < \alpha < 2s|\) and for all \(k > 0\).

Proof. We follow by approximation. Define \(u_n|\) to be the unique solution to the problem

\[
\begin{cases}
(-\Delta)^s u_n + \frac{|\nabla u_n|^p}{1 + \frac{1}{n} |\nabla u_n|^p} = f_n & \text{in } \Omega, \\
\quad u_n = 0 & \text{in } \mathbb{R}^N \setminus \Omega.
\end{cases}
\]

where \(f_n = T_n(f)|.\) By the comparison principle in Theorem 2.3, it follows that \(u_{n+1} \leq u_n \leq w|\) for all \(n|\) where \(w|\) is the unique solution to problem

\[
\begin{cases}
(-\Delta)^s w = f & \text{in } \Omega, \\
\quad w = 0 & \text{in } \mathbb{R}^N \setminus \Omega.
\end{cases}
\]

Hence, there exists \(u|\) such that \(u_n \downarrow u|\) strongly in \(L^\sigma(\Omega)|\) for all \(\sigma \leq \frac{N}{2s}\).
We set \(g_n(|\nabla u_n|) = \frac{|\nabla u_n|^p}{1 + n|\nabla u_n|^p} \), and let \(k > 0 \), using \(T_k(u_n) \) as a test function in (3.1) it follows that
\[
\int B_\alpha \frac{(T_k(u_n(x)) - T_k(u_n(y)))^2}{|x - y|^{N + 2s}} dx dy + \int \Omega g_n(|\nabla u_n|)T_k(u_n) dx \leq Ck.
\]
Hence \(\{T_k(u_n)\}_n \) is bounded in \(H^s_0(\Omega) \) for all \(k \) and then, up to a subsequence, we have \(T_k(u) \to T_k(u) \) weakly in \(H^s_0(\Omega) \). We claim that \(\{g_n\}_n \) is bounded in \(L^1(\Omega) \). To see that, we fix \(\varepsilon > 0 \) and we use \(v = \frac{u}{\varepsilon + u_n} \) as a test function in (3.1). It is clear that \(v_n, \varepsilon \leq 1 \), then taking into consideration that
\[
(u_n(x) - u_n(y))(v_n, \varepsilon(x) - v_n, \varepsilon(y)) \geq 0,
\]
it follows that
\[
\int \Omega g_n(|\nabla u_n|)v_n, \varepsilon(x) dx \leq \int \Omega f_n dx \leq C.
\]
Letting \(\varepsilon \to 0 \), we reach that \(\int \Omega g_n(|\nabla u_n|) dx \leq C \) and the claim follows. Define \(h_n = f_n - g_n \), then
\[
\|h_n\|_{L^1(\Omega)} \leq C.
\]
As a consequence and by the compactness result in Theorem 2.1, we reach that, up to a subsequence, \(u_n \to u \) strongly in \(W^{1, \alpha}_0(\Omega) \) for all \(\alpha < \frac{N}{N - 2s + 1} \) and then \(\nabla u_n \to \nabla u \) a.e in \(\Omega \). Hence \(g_n \to g \) a.e. in \(\Omega \) where \(g(x) = |\nabla u|^p \). Since \(p < 2s \), then by Theorem (2.2) and using Vitali Lemma we conclude that
\[
T_k(u_n) \to T_k(u) \text{ strongly in } W^{1, \sigma}_0(\Omega) \text{ for all } \sigma < 2s.
\]
In particular
\[
T_k(u_n) \to T_k(u) \text{ strongly in } W^{1, p}_0(\Omega).
\]
Hence to get the existence result we have just to show that \(g_n \to g \) strongly in \(L^1(\Omega) \).

Notice that, using \(T_1(G_k(u_n)) \) as a test function in (3.1) it holds that
\[
\int_{u_n \geq k + 1} g_n dx \leq \int_{u_n \geq k} f dx \to 0 \text{ as } k \to \infty.
\]
Let \(\varepsilon > 0 \) and consider \(E \subset \Omega \) to be a measurable set, then
\[
\int_E g_n dx = \int_{E \cap \{u_n < k + 1\}} g_n dx + \int_{E \cap \{u_n \geq k + 1\}} g_n dx \leq \int_{E \cap \{u_n < k + 1\}} |\nabla T_{k+1}(u_n)|^p dx + \int_{\{u_n \geq k + 1\}} f_n dx.
\]
By (3.3), letting \(n \to \infty \), we can chose \(|E| \) small enough such that
\[
\limsup_{n \to \infty} \int_{E \cap \{u_n < k + 1\}} |\nabla T_{k+1}(u_n)|^p dx \leq \frac{\varepsilon}{2}.
\]
In the same way and since \(f_n \to f \) strongly in \(L^1(\Omega) \), we reach that
\[
\limsup_{n \to \infty} \int_{\{u_n \geq k + 1\}} f_n dx \leq \frac{\varepsilon}{2}.
\]
Hence, for \(|E| \) small enough, we have
\[
\limsup_{n \to \infty} \int_E g_n dx \leq \varepsilon.
\]
Thus by Vitali lemma we obtain that \(g_n \to g \) strongly in \(L^1(\Omega) \). Therefore we conclude that \(u \) is a solution to problem (1.1).
If \(\hat{u} \) is an other solution to (1.1), then by an induction argument we can show that \(\hat{u} \leq u_n \) for all \(n \) and then \(\hat{u} \leq u \).

Remark 3.3.

1. The existence of a unique solution to the approximating problem (3.1) holds for all \(p \geq 1 \).
2. As a consequence of the previous result and following closely the same argument we can prove that for all \(p < 2s \), for all \(a > 0 \) and for all \((f, g) \in L^1(\Omega) \times L^1(\Omega)\) with \(f, g \geq 0 \), the problem

\[
\begin{cases}
(-\Delta)^s u + |\nabla u|^p = g(x) \frac{u}{1 + au} + f & \text{in } \Omega, \\
u = 0 & \text{in } \mathbb{R}^N \setminus \Omega.
\end{cases}
\]

has a positive solution \(u \).

In the case where the datum \(f \) is substituted by a Radon measure \(\nu \), existence of solution holds for all \(p < p_* \) as it was proved in [16]. However, if \(p > p_* \), then the situation change completely as in the local case, and, additional hypotheses on \(\nu \) related to a fractional capacity \(\text{Cap}_{\sigma, p} \) are needed, with \(\sigma < 1 \).

The fractional capacity \(\text{Cap}_{\sigma, p} \) is defined as follow.

For a compact set \(K \subset \Omega \), we define

\[
\text{Cap}_{\sigma, p}(K) = \inf \left\{ \|\psi\|_{W^{\sigma,p}_0(\Omega)} : \psi \in W^{\sigma,p}_0(\Omega), 0 \leq \psi \leq 1 \text{ and } \psi \geq \chi_K \text{ a.e. in } \Omega \right\}
\]

Now, if \(U \subset \Omega \) is an open set, then

\[
\text{Cap}_{\sigma, p}(U) = \sup \left\{ \text{Cap}_{\sigma, p}(K) : K \subset U \text{ compact of } \Omega \text{ with } K \subset U \right\}.
\]

For any borelian subset \(B \subset \Omega \), the definition is extended by setting:

\[
\text{Cap}_{\sigma, p}(B) = \inf \left\{ \text{Cap}_{\sigma, p}(U), U \text{ open subset of } \Omega, B \subset U \right\}.
\]

Notice that, using Sobolev inequality, we obtain that if \(\text{Cap}_{\sigma, p}(A) = 0 \) for some set \(A \subset \Omega \), then \(|A| = 0 \). We refer to [38] for the main properties of this capacity.

To show that the situation changes for the set of general Radon measure, we prove the next non existence result.

Theorem 3.2. Assume that \(p > p_* \), \(\frac{1}{2} < s < 1 \) and let \(x_0 \in \Omega \), then the problem

\[
\begin{cases}
(-\Delta)^s u + |\nabla u|^p = \delta_{x_0} & \text{in } \Omega, \\
u = 0 & \text{in } \mathbb{R}^N \setminus \Omega,
\end{cases}
\]

has non solution \(u \) such that \(u \in W^{1,p}_0(\Omega) \).

Proof. For simplify of tipping we assume that \(x_0 = 0 \in \Omega \) and we write \(\delta \) for \(\delta_0 \). We follow closely the argument used in [5]. Assume by contradiction that for some \(p > p_* \), problem (3.6) has a solution \(u \in W^{1,p}_0(\Omega) \). Then \(u \in W^{\sigma,p}_0(\Omega) \) for all \(\sigma < 1 \). We claim that \((-\Delta)^s u \in W^{-\sigma,p}(\Omega) \), the dual space of \(W^{\sigma,p}_0(\Omega) \), for all \(\sigma \in (2s - 1, 2s) \). To see that, we consider \(\phi \in C_0^\infty(\Omega) \), then

\[
|\int_\Omega (-\Delta)^s u \phi dx| \leq \iint_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)||\phi(x) - \phi(y)|}{|x - y|^{N + 2s}} dxdy
\leq \left(\iint_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N + p(2s - \sigma)}} dxdy \right)^{\frac{1}{p}} \left(\iint_{\mathbb{R}^{2N}} \frac{|\phi(x) - \phi(y)|^{p'}}{|x - y|^{N + p' \sigma}} dxdy \right)^{\frac{1}{p'}}.
\]
Since $2s - \sigma \in (0,1)$, then
\[
\left(\int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N+p(2s-\sigma)}} \, dx \, dy \right)^{\frac{1}{p}} \leq C(\sigma, s, N, \Omega)||u||_{W_0^{1,p}(\Omega)}. \]
Thus
\[
|\int_{\Omega} (-\Delta)^{s} u \phi \, dx| \leq C||u||_{W_0^{1,p}(\Omega)}||\phi||_{W_0^{-\sigma,p}(\Omega)},
\]
and then the claim follows. Hence going back to problem (3.6), we deduce that $\delta \in L^1(\Omega) + W^{-\sigma,p}(\Omega)$.

As in [8], let's now show that if $\nu \in W^{-\sigma,p}(\Omega)$, then $\nu \ll \text{Cap}_{\sigma,p}$. Notice that, if in addition, ν is nonnegative, then we can prove that
\[
\nu(A) \leq C(\text{Cap}_{\sigma,p}(A))^{\frac{1}{p}},
\]
and we deduce easily that $\nu \ll \text{Cap}_{\sigma,p}$. Here we give the proof without the positivity assumption on ν.

Let $A \subset \subset \Omega$ be such that $\text{Cap}_{\sigma,p}(A) = 0$, then there exists a Borel set A_0 such that $A \subset A_0$ and $\text{Cap}_{\sigma,p}(A_0) = 0$. Let $K \subset A_0$ be a compact set, then there exists a sequence $\{\psi_n\}_{n \in \mathbb{C}^\infty(\Omega)}$ such that $0 \leq \psi_n \leq 1$, $\psi_n \geq \chi_K$ and $||\psi_n||_{W_0^{-\sigma,p}(\Omega)} \to 0$ as $n \to \infty$. It is clear that $\psi_n \to \chi_K$ a.e in Ω, as $n \to \infty$. Hence
\[
\nu(K) = \lim_{n \to \infty} \int \psi_n \, d\nu = \lim_{n \to \infty} \langle \psi_n, \nu \rangle_{W_0^{-\sigma,p}(\Omega),W_0^{-\sigma,p}(\Omega)}. \]
Thus
\[
|\nu(K)| \leq \limsup_{n \to \infty} |\langle \psi_n, \nu \rangle_{W_0^{-\sigma,p}(\Omega),W_0^{-\sigma,p}(\Omega)}| \leq \limsup_{n \to \infty} ||\nu||_{W_0^{-\sigma,p}(\Omega)} ||\psi_n||_{W_0^{-\sigma,p}(\Omega)} = 0.
\]
Therefore, we conclude that for any compact set $K \subset A_0$, we have $|\nu(K)| = 0$. Hence $|\nu(A_0)| = 0$ and the result follows.

Notice that if $h \in L^1(\Omega)$, then $|h| \ll \text{Cap}_{\sigma,p}$. As a conclusion, we deduce that $\delta \ll \text{Cap}_{\sigma,p}$ for all $\sigma \in (2s - 1, 2s)$.

Since $p > p_*$, then we can choose $\sigma_0 \in (2s - 1, 2s)$ such that $p_0 < N$. To end the proof, we have just to show that $\text{Cap}_{\sigma_0,p}(\Omega) = 0$. Without loss of generality, we can assume that $\Omega = B_1(0)$.

Since $p_0' < N$, setting $w(x) = \left(\frac{1}{|x|^\alpha} - 1 \right)_+$ with $0 < \alpha < \frac{N - p_0'}{p_0'}$, we obtain that $w \in W_0^{\sigma,p'}(\Omega)$.

Notice that, for all $v \in W_0^{\sigma,p'}(\Omega)$, we know that
\[
\text{Cap}_{\sigma,p'}\{v \geq k\} \leq \frac{C}{k} ||v||_{W_0^{\sigma,p'}(\Omega)},
\]
Since $w(0) = \infty$, then $\{0\} \subset \{v \geq k\}$ for all $k > 0$. Thus
\[
\text{Cap}_{\sigma,p'}\{0\} \leq \frac{C}{k} ||w||_{W_0^{\sigma,p'}(\Omega)} \text{ for all } k.
\]
Letting $k \to \infty$, it holds that $\text{Cap}_{\sigma,p'}\{0\} = 0$ and the result follows.

As a direct consequence of the above Theorem we obtain that for $p > p_*$, to get the existence of a solution to problem (1.1) with measure data ν, then necessarily ν is continuous respect to the capacity $\text{Cap}_{\sigma,p}$ for all $\sigma \in (2s - 1, 2s)$.

Let consider now the next problem

\[
\begin{cases}
(\Delta)^s u + |\nabla u|^p = \lambda g(x)u + f & \text{in } \Omega, \\
u = 0 & \text{in } \mathbb{R}^N \setminus \Omega.
\end{cases}
\]

with \(g \geq 0 \). As in local case studied in [3], we can show that under natural condition on \(q \) and \(g \), the problem (3.7) has a solution for all \(\lambda > 0 \). Moreover, the gradient term \(|\nabla u|^q \) produces a strong regularizing effect on the problem and kill any effect of the linear term \(\lambda gu \).

Before stating the main existence result for problem (3.7), let us begin by the next definition.

Let \(g \) be a nonnegative measurable function such that \(g \in L^1(\Omega) \). We say that \(g \) is an admissible weight if

\[
C(g, p) = \inf_{\phi \in \mathcal{W}^{1,p}_0(\Omega) \setminus \{0\}} \frac{\left(\int_{\Omega} |\nabla \phi|^p \, dx \right)^{\frac{1}{p}}}{\int_{\Omega} g|\phi| \, dx} > 0.
\]

Hence we are able to state the next result.

Theorem 3.3. Assume that \(1 < p < 2s \) and suppose that \(g \) is an admissible weight in the sense given in (3.8). Then for all \(f \in L^1(\Omega) \) with \(f \geq 0 \) and for all \(\lambda > 0 \), the problem (3.7) has a solution \(u \) such that \(u \in \mathcal{W}^{1,p}_0(\Omega) \) and \(T_k(u) \in \mathcal{W}^{1,s}_0(\Omega) \cap H^s_0(\Omega) \) for any \(1 < \alpha < 2s \) and for all \(k > 0 \).

Proof. Fix \(\lambda > 0 \) and define \(\{u_n\}_n \) to be a sequence of positive solution to problem

\[
\begin{cases}
(\Delta)^s u_n + |\nabla u_n|^p = \lambda g(x) \frac{u_n}{1 + \frac{1}{n}u_n} + f & \text{in } \Omega, \\
u_n = 0 & \text{in } \mathbb{R}^N \setminus \Omega.
\end{cases}
\]

To reach the desired result we have just to show that the sequence \(\{g(x) \frac{u_n}{1 + \frac{1}{n}u_n}\}_n \) is uniformly bounded in \(L^1(\Omega) \). To do that, we use \(T_k(u_n) \) as a test function in (3.9), hence

\[
||T_k(u_n)||^2_{H^s_0(\Omega)} + \int_{\Omega} |\nabla u_n|^p T_k(u_n) \, dx \leq k\lambda \int_{\Omega} g(x)u_n \, dx.
\]

It is clear that

\[
\int_{\Omega} |\nabla u_n|^p T_k(u_n) = \int_{\Omega} |\nabla H_k(u_n)|^p \, dx
\]

where \(H_k(\sigma) = \int_0^\sigma (T_k(t))^{\frac{1-p}{p}} \, dt \). By a direct computations we obtain that

\[
H(\sigma) \geq C_1(k)\sigma - C_2(k),
\]

Thus using (3.8) for \(H_k(u_n) \) it holds that

\[
\int_{\Omega} |\nabla H_k(u_n)|^p \, dx \geq C(g, p) \left(\int_{\Omega} g H_k(u_n) \, dx \right)^p \geq C_1 \left(\int_{\Omega} g u_n \, dx \right)^p - C_2
\]

where \(C_1, C_2 > 0 \) are independent of \(n \).
Therefore, going back to (3.10), we conclude that
\[C_1 \left(\int_{\Omega} |gu_n|^p \, dx \right) \leq C_2(k, \Omega) \int_{\Omega} g u_n \, dx + k \lambda \int_{\Omega} u_n \, dx. \]
Since \(p > 1 \), then by Young inequality we reach that \(\{ gu_n \}_{n} \) is uniformly bounded in \(L^1(\Omega) \). The rest of the proof follows exactly the same compactness arguments as in the proof of Theorem 3.1. \[\square \]

Corollary 3.4. In the case where \(g(x) = \frac{1}{|x|^{2s}} \), the Hardy potential, the condition (3.8) holds if \(p > \frac{N}{N-(2s-1)} \). Thus, in this case and for all \(\lambda > 0 \), problem (3.7) has a \(u \) such that \(u \in W_0^{1,p}(\Omega) \) and \(T_k(u) \in W_0^{1,\alpha}(\Omega) \cap H^\alpha(\Omega) \) for all \(\alpha < 2s \).

3.3. The case \(2s \leq p < \frac{N}{1-s} \): Existence in a weighted Sobolev space.

For \(2s \leq p < \frac{s}{1-s} \) and in the same way as above we can show the next existence result.

Theorem 3.5. Suppose that \(f \in L^m(\Omega) \) with \(m > N/[p'(2s-1)] \). Then there is \(\lambda^* > 0 \) such that if \(\|f\|_{L^m(\Omega)} \leq \lambda^* \), problem (1.1) admits a solution \(ud^{1-s} \in W_0^{1,p}(\Omega) \).

Proof. The proof follows closely the argument used in [2], however, for the reader convenience we include here some details.

Without loss of generality we can assume that \(N \geq 2 \) and that \(\frac{N}{2s} < m < \frac{N}{2s-1} \). Fix \(\lambda^* > 0 \) such that if \(\|f\|_{L^m(\Omega)} \leq \lambda^* \), then there exists \(l > 0 \) satisfies
\[\tilde{C}(l + \|f\|_{L^m(\Omega)}) = l^{\frac{1}{p'}} \]
and define the set
\[(3.11) \quad E = \{ v \in W_0^{1,1}(\Omega) : v \ d^{1-s} \in W_0^{1,2sm}(\Omega) \text{ and } \left(\int_{\Omega} \frac{|\nabla(v \ d^{1-s})|^{2sm}}{\tilde{C}^{\frac{1}{m}}} \, dx \right)^{\frac{1}{2m}} \leq l^{\frac{1}{p'}} \}. \]

It is clear that \(E \) is a closed convex set of \(W_0^{1,1}(\Omega) \). Using Hardy inequality, we deduce that \(v \in E \), then \(|\nabla v|^{2sm} \ d^{2sm(1-s)} \in L^1(\Omega) \) and
\[\left(\int_{\Omega} \frac{|\nabla v|^{2sm}}{\tilde{C}^{\frac{1}{m}}} \, dx \right)^{\frac{1}{2m}} \leq \tilde{C} \tilde{C}_{0} l^{\frac{1}{p'}}. \]

Define now the operator
\[T : E \rightarrow W_0^{1,1}(\Omega) \]
\[v \rightarrow T(v) = u \]
where \(u \) is the unique solution to problem
\[(3.12) \quad \left\{ \begin{array}{lcl} (-\Delta)^s u &=& |\nabla v|^{2s} + \lambda f \quad \text{in } \Omega, \vspace{0.2cm} \\
0 &=& 0 \quad \text{in } \mathbb{R}^N \setminus \Omega, \vspace{0.2cm} \\
u &> & 0 \quad \text{in } \Omega. \end{array} \right. \]

To prove that \(T \) is well defined we will use Theorem 2.1, namely we show the existence of \(\beta < 2s-1 \) such that \(|\nabla v|^{2s} \ d^\beta \in L^1(\Omega) \). It is clear that \(|\nabla v|^{2s} \in L^1(\Omega) \), moreover, we have
\[\int_{\Omega} |\nabla v|^{2s} \ d^\beta \ dx = \int_{\Omega} |\nabla v|^{2s} \ d^{2s(1-s)} \ d^{\beta-2s(1-s)} \ dx \leq \left(\int_{\Omega} |\nabla v|^{2sm} \ d^{2sm(1-s)} \ dx \right)^{\frac{1}{m'}} \left(\int_{\Omega} d^{(\beta-2s(1-s))m'} \ dx \right)^{\frac{1}{m'}}. \]
If $2s(1-s) < 2s-1$, we can chose $\beta < 2s-1$ such that $2s(1-s) < \beta$. Hence $\int_{\Omega} d(\beta - 2s(1-s)) m' \, dx < \infty$.

Assume that $2s(1-s) \geq 2s-1$, then $s \in \left(\frac{1}{2}, \frac{1}{2s} \right]$. Notice that $2s(1-s) - (2s-1) = 1 - 2s^2$. Since $m > \frac{N}{2s}$ and $N \geq 2$, then $1 - 2s^2) m' < 1$. Hence we get easily the existence of $\beta < 2s-1$ such that $(2s(1-s) - \beta)m' < 1$ and then we conclude.

Then using the fact that $v \in E$, we reach that $|\nabla v|^{2s} + f \in L^1(\Omega)$. Therefore the existence of u is a consequence of Theorems 2.1 and 1.1. Moreover, $|\nabla u| \in L^\alpha(\Omega)$ for all $\alpha < \frac{N}{N-s}$. Hence T is well defined.

Now following the argument used in [2] and for l defined as above, we can prove that T is continuous, compact operator on E and that $T(E) \subset E$.

T is a continuous and compact operator on E. Therefore by the Schauder Fixed Point Theorem, there exists $u \in E$ such that $T(u) = u$, then $u \in W^{1,2s}_\text{loc}(\Omega)$ solves (1.1).

\textbf{Remark 3.6.}

(1) It is clear that the above argument does not take advantage from the fact that the gradient term appears as an absorption term.

(2) The existence can be also proved independently of the sign of f.

As in Theorem 3.1, if in addition we suppose that f is more regular, then under suitable hypothesis on s and p, we get the following analogous result of Theorem 3.1.

\textbf{Corollary 3.7.} Assume that the conditions of Theorem 3.5 hold. Assume in addition that

\begin{equation}
N < \frac{s(2s-1)}{1-s} \quad \text{and} \quad p < \frac{s(2s-1)}{N(1-s)} - 1.
\end{equation}

Then if $f \in C^\epsilon(\Omega)$, for some $\epsilon \in (0, 2s-1)$, then the $C^{1,\alpha}$ distributional solutions from Theorem 3.5 is a strong solution.

Notice that the condition (3.13) is used in order to show that $|\nabla u|^{p-1} \in L^\sigma_{\text{loc}}(\Omega)$ for some $\sigma > \frac{N}{2s-1}$ which is the key point in order to get the desired regularity.

In the case where $f \leq 0$, we can prove also that $u \geq 0$, more precisely, we have

\textbf{Corollary 3.8.} Assume that the above conditions hold. Let $f \in C^\epsilon(\Omega) \cap L^\infty(\overline{\Omega})$, for some $\epsilon \in (0, 2s-1)$. If $f(x) \geq 0$ for all $x \in \Omega$, then the solution from Theorem 3.5 is non-negative. Moreover, if $f_1 \leq f_2$ and u_1 and u_2 are the corresponding strong solutions to f_1 and f_2 from Corollary (3.7), respectively, then $u_1 \leq u_2$.

\textbf{Proof.} Suppose that there is a point $x_0 \in \Omega$ so that $u(x_0) < 0$. Since u is continuous in \mathbb{R}^N (see Proposition 1.1 in [32]), we have u attains its negative minimum at an interior point x_1 of Ω. Hence $\nabla u(x_1) = 0$, $(-\Delta)^s u(x_1) < 0$.

But hence we obtain the contradiction $0 \leq f(x_1) - 0 = (-\Delta)^s u(x_1) < 0$.

We next prove the last statement in the Corollary. Let $f_1 \leq f_2$. Let u_1 and u_2 be the corresponding strong solutions from Corollary (3.7), and assume that

\[\min_{\Omega} (u_2 - u_1) = u_2(x_0) - u_1(x_0) < 0. \]

Hence $\nabla (u_1 - u_2)(x_0) = 0$ and $(-\Delta)^s (u_2 - u_1)(x_0) < 0$, so we have the contradiction

\[f_1(x_0) = (-\Delta)^s u_1(x_0) + |\nabla u_1(x_0)|^p > (-\Delta)^s u_2(x_0) + |\nabla u_2(x_0)|^p = f_2(x_0). \]
4. EQUIVALENCE BETWEEN DISTRIBUTIONAL AND VISCOSITY SOLUTIONS

In this section, we investigate the relation between distributional solutions and viscosity solutions. Let us recall that according to Theorem 3.1 and Corollary 3.7, to obtain strong solutions to (1.1) it is sufficient that

\[p < p^* \]

or

\[N < \frac{s(2s-1)}{1-s}, \quad p^* \leq p < \frac{s(2s-1)}{N(1-s)} - 1 \text{ and } ||f||_{L^m(\Omega)} \leq \lambda^*, \]

for \(\lambda^* \) defined in Theorem 3.5. In this section we show that strong solutions to (1.1) are viscosity solutions. The converse is also true provided a comparison principle for viscosity solutions proved in the next subsection.

4.1. A comparison principle for viscosity solutions. We prove a comparison result for viscosity solutions of problem (1.1). This result requires a continuous source term \(f \).

In order to state the result, we shall need some technical lemmas that could have interest by themselves. For related results see [27].

We start with a usual property for the fractional Laplacian of smooth functions.

Lemma 4.1. Let \(B_\epsilon(x) \subset U \subset \Omega \) and let \(u \in C^2(U) \). Then:

\[
|\text{P.V.} \int_{B_\epsilon(x)} \frac{u(x) - u(y)}{|x - y|^{N+2s}} dy| \leq c_\epsilon
\]

where \(c_\epsilon \) is independent of \(x \) and \(c_\epsilon \to 0 \) as \(\epsilon \to 0 \).

In the definition of viscosity solutions do not evaluate the given equation in the solution \(u \).

However, the following lemma state an extra information when \(u \) is touched from below or above by \(C^2 \)-test functions.

Lemma 4.2. Let \(u \) be a viscosity supersolution to (1.1) and suppose that there exists \(\phi \in C^2(U) \), \(U \subset \Omega \), touching \(u \) from below at \(x_0 \in U \). Then \((-\Delta)^s u(x_0) \) is finite and moreover:

\[
(-\Delta)^s u(x_0) + |\nabla \phi(x_0)|^p \geq f(x_0).
\]

A similar result holds for subsolutions.

Proof. We assume that \(x_0 = 0 \) and \(u(0) = 0 \). For \(r > 0 \) so that \(B_r := B(0,r) \subset U \), define:

\[
\phi_r(x) := \begin{cases}
\phi(x), & \text{in } B_r \\
u(x), & \text{outside } B_r,
\end{cases}
\]

Hence for all \(0 < \rho < r \)

\[
\int_{B_r \setminus B_\rho} \frac{u(0) - u(y)}{|y|^{N+2s}} dy = \int_{B_r \setminus B_\rho} \frac{\phi(y) - u(y)}{|y|^{N+2s}} dy - \int_{B_r \setminus B_\rho} \frac{\phi(y)}{|y|^{N+2s}} dy - \int_{B_r \setminus B_\rho} \frac{\phi(y)}{|y|^{N+2s}} dy
\]

\[
\leq -\int_{B_r \setminus B_\rho} \frac{\phi(y)}{|y|^{N+2s}} dy,
\]

where we have used that \(\phi \) touches \(u \) from below. As \(\rho \to 0 \), the last integral converges since \(\phi \in C^2(B_r) \). Hence

\[
\lim_{\rho \to 0} \int_{B_r \setminus B_\rho} \frac{u(0) - u(y)}{|y|^{N+2s}} dy \in [-\infty, M],
\]
where
\[M := \lim_{\rho \to 0} \left(- \int_{B_r \setminus B_\rho} \frac{\phi(y)}{|y|^{N+2s}} dy \right). \]

Also, from the fact that \(u \) is a supersolution, we have \(u \geq 0 \) in \(\mathbb{R}^N \setminus \Omega \). Thus
\[
\int_{\mathbb{R}^N \setminus B_r} \frac{u(0) - u(y)}{|y|^{N+2s}} dy \leq \int_{\mathbb{R}^N \setminus B_r} \frac{-u(y)}{|y|^{N+2s}} dy.
\]
Since \(u \in LSC(\overline{\Omega}) \), there is a constant \(m \) so that \(u(y) \geq m \), for all \(y \in \Omega \setminus B_r \).

Hence from (4.3), it follows
\[
\hat{R}_N \setminus B_r u(0) - u(y) |y|^{N+2s} dy \leq -m \hat{\Omega} \setminus B_r - u(y) |y|^{N+2s} dy < \infty.
\]
This fact, together with (4.2), imply that \((-\Delta)^s u(0) \in [-\infty, \infty)\).

We now prove the estimate (4.1), and consequently that \((-\Delta)^s u(0)\) is finite. For \(\delta > 0 \), we have by Lemma 4.1 that
\[
\left| P.V. \int_{B_r} \frac{\phi(y)}{|y|^{N+2s}} dy \right| \leq \delta,
\]
choosing \(r \) small enough. Hence
\[
\int_{\mathbb{R}^N \setminus B_r} \frac{u(0) - u(y)}{|y|^{N+2s}} dy = \int_{\mathbb{R}^N \setminus B_r} \frac{\phi_r(0) - \phi_r(y)}{|y|^{N+2s}} dy
\]
\[
= (-\Delta)^s \phi_r(0) - P.V. \int_{B_r} \frac{-\phi(y)}{|y|^{N+2s}} dy
\]
\[
geq -|\nabla \phi(0)|^p + f(0) + \delta.
\]
By letting \(r \to 0 \), and then \(\delta \to 0 \), we derive (4.1).

We now give the main result of this section.

Theorem 4.3 (Comparison principle for viscosity solutions). Assume that \(f \in C(\Omega) \). Let \(v \in USC(\overline{\Omega}) \) be a subsolution and \(u \in LSC(\overline{\Omega}) \) be a supersolution, respectively, of (1.1). Then \(v \leq u \) in \(\Omega \).

Proof. We argue by contradiction. Assume that there is \(x_0 \in \Omega \) so that:
\[\sigma := \sup_{\Omega} (v - u) = v(x_0) - u(x_0) > 0. \]
As usual, we double the variables and consider for \(\epsilon > 0 \) the function
\[\Psi_{\epsilon}(x,y) := v(x) - u(y) - \frac{1}{\epsilon} |x - y|^2. \]
By the upper semi continuity of \(v \) and \(-u\), there exist \(x_\epsilon \) and \(y_\epsilon \) in \(\overline{\Omega} \) so that
\[M_\epsilon := \sup_{\Omega \times \overline{\Omega}} \Psi_{\epsilon} = \Psi_{\epsilon}(x_\epsilon, y_\epsilon). \]
By compactness, \(x_\epsilon \to \overline{x} \) and \(y_\epsilon \to \overline{y} \), up to subsequence that we do not re-label. From (4.4)
\[\Psi_{\epsilon}(x_\epsilon, y_\epsilon) \geq \Psi_{\epsilon}(x_0, x_0) \]
and the upper boundedness of \(v \) and \(-u\) in \(\overline{\Omega} \), we derive
\[
\lim_{\epsilon \to 0} |x_{\epsilon} - y_{\epsilon}|^2 = 0,
\]
hence \(\overline{x} = \overline{y} \). Moreover
\[
\Psi_{\epsilon}(x_{\epsilon}, y_{\epsilon}) \geq \Psi_{\epsilon}(\overline{x}, \overline{y})
\]
implies that:
\[
\lim_{\epsilon \to 0} \frac{1}{\epsilon} |x_{\epsilon} - y_{\epsilon}|^2 = 0.
\]
As a consequence, by letting \(\epsilon \to 0 \) in (4.4) and using the semicontinuity of \(u \) and \(v \), we obtain
\[
\sigma = \lim_{\epsilon \to 0} (v(x_{\epsilon}) - u(y_{\epsilon})).
\]
Also, observe that \(\overline{x} \in \Omega \), because otherwise there is a contraction with \(v \leq u \) in \(\mathbb{R}^N \setminus \Omega \).

Define the \(C^2 \) test functions
\[
\phi_{\epsilon}(x) := v(x_{\epsilon}) - \frac{1}{\epsilon} |x_{\epsilon} - y_{\epsilon}|^2 + \frac{1}{\epsilon} |x - y|^2,
\]
\[
\psi_{\epsilon}(y) := u(y_{\epsilon}) - \frac{1}{\epsilon} |x_{\epsilon} - y_{\epsilon}|^2 + \frac{1}{\epsilon} |x_{\epsilon} - y|^2.
\]
Then \(\phi_{\epsilon} \) touches \(v \) from above at \(x_{\epsilon} \) and \(\psi_{\epsilon} \) touches \(u \) from below at \(y_{\epsilon} \). By Lemma 4.2, we have
\[
(-\Delta)^s v(x_{\epsilon}) + |\nabla \phi_{\epsilon}(x_{\epsilon})|^p \leq f(x_{\epsilon})
\]
and
\[
(-\Delta)^s u(y_{\epsilon}) + |\nabla \psi_{\epsilon}(y_{\epsilon})|^p \geq f(y_{\epsilon})
\]
Therefore:
\[
(-\Delta)^s v(x_{\epsilon}) - (-\Delta)^s u(y_{\epsilon}) \leq f(x_{\epsilon}) - f(y_{\epsilon}) + |\nabla \psi_{\epsilon}(y_{\epsilon})|^p - |\nabla \phi_{\epsilon}(x_{\epsilon})|^p.
\]
Since \(f \in C(\Omega) \) and
\[
\nabla \psi_{\epsilon}(y_{\epsilon}) = -\nabla x_{\epsilon} \phi_{\epsilon}(x_{\epsilon}),
\]
we have that the right hand side in (4.6) tends to 0 as \(\epsilon \to 0 \). Thus, we obtain
\[
\liminf_{\epsilon \to 0} \int_{\mathbb{R}^N} \frac{v(x_{\epsilon}) - v(x_{\epsilon} + z) - u(y_{\epsilon}) + u(y_{\epsilon} + z)}{|z|^{N+2s}} dz
\]
\[
= \liminf_{\epsilon \to 0} ((-\Delta)^s v(x_{\epsilon}) - (-\Delta)^s u(y_{\epsilon})) \leq 0.
\]
Let \(A_{1,\epsilon} := \{ z \in \mathbb{R}^N : x_{\epsilon} + z, y_{\epsilon} + z \in \Omega \} \). Hence for \(z \in A_{1,\epsilon} \), we have from the inequality
\[
\Psi_{\epsilon}(x_{\epsilon}, y_{\epsilon}) \geq \Psi_{\epsilon}(x_{\epsilon} + z, y_{\epsilon} + z)
\]
that
\[
v(x_{\epsilon}) - v(x_{\epsilon} + z) - u(y_{\epsilon}) + u(y_{\epsilon} + z) \geq 0.
\]
Define \(A_{2,\epsilon} := \mathbb{R}^N \setminus A_{1,\epsilon} \). We will justify that we are allowed to use Fatou’s Theorem in
\[
\liminf_{\epsilon \to 0} \int_{A_{2,\epsilon}} \frac{v(x_{\epsilon}) - u(y_{\epsilon}) - v(x_{\epsilon} + z) + u(y_{\epsilon} + z)}{|z|^{N+2s}} dz
\]
by showing that the integrand is bounded from below by an \(L^1 \) function. Firstly, let \(r > 0 \) so that \(B_{3r}(\overline{\Omega}) \subset \Omega \) and take \(\epsilon_0 \) small enough such that \(x_{\epsilon}, y_{\epsilon} \in B_r(\overline{\Omega}) \) for all \(\epsilon < \epsilon_0 \). Take \(z \in A_{2,\epsilon} \). We show now that \(|z| \geq 2r \). Indeed, to reach a contradiction, assume that \(|z| < 2r \). Since \(z \notin A_{1,\epsilon} \), it follows that \(x_{\epsilon} + z \) or \(y_{\epsilon} + z \) does not belong to \(\Omega \). Without loss of generality, assume \(x_{\epsilon} + z \notin \Omega \). Hence
\[
|x_{\epsilon} + z - \overline{x}| < 3r,
\]
and so \(x_\varepsilon + z \in B_{3r}(x_\varepsilon) \subset \Omega\) which is a contradiction. Next, notice that

\[
\frac{v(x_\varepsilon) - v(x_\varepsilon + z)}{|z|^{N+2s}} \geq - \frac{|v(x_\varepsilon)|}{|z|^{N+2s}} - \frac{|v_+(x_\varepsilon + z)|}{|z|^{N+2s}}.
\]

Hence, using that \(z \notin B_{2r}\) when \(z \in A_{2r}\), we have

\[
\int_{A_{2r}} \frac{|v(x_\varepsilon)|}{|z|^{N+2s}} dz \leq C \int_{\mathbb{R}^N \setminus B_{2r}} \frac{1}{|z|^{N+2s}} dz < \infty.
\]

On the other hand

\[
\int_{A_{2r}} \frac{|v_+(z + x_\varepsilon)|}{|z|^{N+2s}} dz \leq \int_{\mathbb{R}^N \setminus B_{2r}} \frac{|v_+(z + x_\varepsilon)|}{|z|^{N+2s}} dz = \int_{\mathbb{R}^N \setminus B_{2r}(x_\varepsilon)} \frac{|v_+(y)|}{|y - x_\varepsilon|^{N+2s}} dy.
\]

Since \(v\) is a subsolution, we have \(v \leq 0\) in \(\mathbb{R}^N \setminus \Omega\). Hence

\[
\int_{A_{2r}} \frac{|v_+(z + x_\varepsilon)|}{|z|^{N+2s}} dz \leq \int_{\Omega \setminus B_{2r}(x_\varepsilon)} \frac{|v_+(y)|}{|y - x_\varepsilon|^{N+2s}} dy \leq \int_{\Omega \setminus B_{r}(x_\varepsilon)} \frac{|v_+(y)|}{|y - x_\varepsilon|^{N+2s}} dy \leq \frac{1}{r^{N+2s}} \int_{\Omega \setminus B_{r}(x_\varepsilon)} v_+(y) dy.
\]

Observe that the last integral is finite since \(v \in L^1_{\text{loc}}(\mathbb{R}^N)\) by definition. In this way, recalling (4.10), the term

\[
\frac{v(x_\varepsilon) - v(x_\varepsilon + z)}{|z|^{N+2s}}
\]

is bounded from below by an \(L^1\)-integrable function. A similar result follows for

\[
\frac{u(y_\varepsilon + z) - u(y_\varepsilon)}{|z|^{N+2s}}.
\]

Hence, we may use Fatou Lemma in (4.9) and derive

\[
\liminf_{\varepsilon \to 0} \int_{A_{2r}} \frac{v(x_\varepsilon) - u(y_\varepsilon) - v(x_\varepsilon + z) + u(y_\varepsilon + z)}{|z|^{N+2s}} dz \\
\geq \int_{\mathbb{R}^N} \liminf_{\varepsilon \to 0} \frac{v(x_\varepsilon) - u(y_\varepsilon) - v(x_\varepsilon + z) + u(y_\varepsilon + z)}{|z|^{N+2s}} \chi_{A_{2r}}(z) dz \\
\geq \int_{\mathbb{R}^N \setminus A_\infty} \frac{\sigma + u(\bar{z}) - v(\bar{z}) + u(\bar{z} + z)}{|z|^{N+2s}} dz.
\]

Here \(A_\infty := \{ z \in \mathbb{R}^N : \bar{z} + z \in \Omega \}\) and we have used the a. e.-pointwise convergence of \(\chi_{A_{2r}}\) to \(\chi_{A_\infty}\) [10, Lemma 4.3] together with a diagonal argument to conclude for a subsequence

\[
\liminf_{\varepsilon \to 0} [v(x_\varepsilon) - u(y_\varepsilon) - v(x_\varepsilon + z) + u(y_\varepsilon + z)] \geq \sigma + u(\bar{z}) - v(\bar{z}) + u(\bar{z} + z)
\]

for a. e \(z \in \mathbb{R}^N\). Moreover, the inequality \(u \geq v\) in \(\mathbb{R}^N \setminus \Omega\) implies that the last integral in (4.11) is non-negative. Then

\[
\liminf_{\varepsilon \to 0} \int_{A_{2r}} \frac{v(x_\varepsilon) - u(y_\varepsilon) - v(x_\varepsilon + z) + u(y_\varepsilon + z)}{|z|^{N+2s}} dz \geq 0.
\]
Therefore by Fatou Lemma, (4.12) and (4.7), we deduce
\[\liminf_{\epsilon \to 0} \int_{\mathbb{R}^N} \frac{v(x_{\epsilon}) - u(y_{\epsilon}) - v(x_{\epsilon} + z) + u(y_{\epsilon} + z)}{|z|^{N+2s}} \chi_{A_{1,\epsilon}} \, dz \]
\[\leq \liminf_{\epsilon \to 0} \int_{A_{1,\epsilon}} \frac{v(x_{\epsilon}) - u(y_{\epsilon}) - v(x_{\epsilon} + z) + u(y_{\epsilon} + z)}{|z|^{N+2s}} \, dz \]
\[\leq \liminf_{\epsilon \to 0} \int_{A_{1,\epsilon}} \frac{v(x_{\epsilon}) - u(y_{\epsilon}) - v(x_{\epsilon} + z) + u(y_{\epsilon} + z)}{|z|^{N+2s}} \, dz \]
\[+ \liminf_{\epsilon \to 0} \int_{A_{2,\epsilon}} \frac{v(x_{\epsilon}) - u(y_{\epsilon}) - v(x_{\epsilon} + z) + u(y_{\epsilon} + z)}{|z|^{N+2s}} \, dz \]
\[\leq \liminf_{\epsilon \to 0} \int_{\mathbb{R}^N} \frac{v(x_{\epsilon}) - u(y_{\epsilon}) - v(x_{\epsilon} + z) + u(y_{\epsilon} + z)}{|z|^{N+2s}} \, dz \leq 0. \]

Hence
\[\liminf_{\epsilon \to 0} \frac{v(x_{\epsilon}) - u(y_{\epsilon}) - v(x_{\epsilon} + z) + u(y_{\epsilon} + z)}{|z|^{N+2s}} \leq 0 \]
almost everywhere in $A_{1,\epsilon}$. In particular for $z \in A_{\Sigma}$, we then have by the lower semicontinuity of $-v$ and u in $\bar{\Omega}$ and (4.5), that
\[0 \geq \liminf_{\epsilon \to 0} [v(x_{\epsilon}) - u(y_{\epsilon}) - v(x_{\epsilon} + z) + u(y_{\epsilon} + z)] \]
\[\geq \sigma + u(\bar{x} + z) - v(\bar{x} + z). \]

Since $z \in A_{\Sigma}$ is arbitrary, we conclude $\sigma \leq v(x) - u(x)$ for a.e. in $\bar{\Omega}$, which implies for $x \in \partial \Omega$
\[0 \geq v(x) - u(x) \geq \limsup_{y \to x, y \in \bar{\Omega}} (v(y) - u(y)) \geq \sigma. \]

A contradiction with the hypothesis.

4.2. **Equivalence between strong and viscosity solutions.** In this subsection we prove that strong and viscosity solutions coincide.

Theorem 4.4. Any strong solution $u \in C^{1,\alpha}(\Omega)$ to problem (1.1) is a viscosity solution as well.

Remark 4.5. For conditions to ensure the existence of strong solutions to problem (1.1) see Theorem 3.1, Theorem 3.5 and Corollary 3.7.

Proof. The proof is straightforward, we give it by completeness. Let $u \in C^{1,\alpha}(\Omega)$ be such that
\[(-\Delta)^s u(x) + |\nabla u(x)|^p = f(x), \quad \text{for all } x \in \Omega. \]

Let $U \subset \Omega$ be open, take $x_0 \in U$ and let $\phi \in C^2(U)$ be such that $u(x_0) = \phi(x_0)$ and $\phi \geq u$ in U. Define
\[v(x) := \begin{cases} \phi(x), & \text{in } U \\ u(x), & \text{outside } U. \end{cases} \]

Hence, since $u \in C^1$, $\nabla u(x_0) = \nabla \phi(x_0)$ and then we have that
\[(-\Delta)^s \phi(x_0) + |\nabla \phi(x_0)|^p = (-\Delta)^s u(x_0) + |\nabla u(x_0)|^p. \]

By the assumption on ϕ, we have that $(-\Delta)^s \phi(x_0) \leq (-\Delta)^s u(x_0)$ and so the u is a viscosity sub-solution. In a similar way, u is a super-solution and the conclusion follows.

Theorem 4.6. Assume that the condition (3.13) holds that $f \in C^s(\Omega) \cap L^m(\Omega)$, for some $\epsilon > 0$ and $m > \frac{N}{N-s}$. We suppose that $||f||_{L^m(\Omega)} \leq \lambda^s$ defined in Theorem 3.5. Then any viscosity solution is a strong solution.
Proof. To prove the converse, assume that u is a viscosity solution to problem (1.1). In view of Theorem 3.5 and Corollary 3.7, there exists a distributional solution v (which is also strong in view of the assumptions on f). Since any strong solution is of viscosity, we consequently infer from the Comparison Theorem 4.3 that $u = v$. This ends the proof of the theorem.

5. SOME OPEN PROBLEMS.

(1) For the existence of solution using approximating argument, the limitation $p < 2s$ seems to be technical, we hope that the existence of a solution holds for all $p \leq 2s$ and for all $f \in L^1(\Omega)$. For $p > 2s$, this is an interesting open question, even for the Laplacian, with L^m data. Notice that this is not the framework of the paper [28].

(2) For $p > 2s$, it seems to be interesting to eliminate the smallness condition $||f||_{L^m(\Omega)}$ and to treat more general set of p without the condition (3.13).

(3) In order to understand a bigger class of linear integro-differential operators, is seems necessary to obtain alternative techniques independent of the representation formula.

REFERENCES

[1] N. Abatangelo, Large S-harmonic functions and boundary blow-up solutions for the fractional Laplacian , Discrete Contin. Dyn. Syst., 35(12) (2015), 5555-5607.

[2] B. Abdellaoui, I. Peral, Towards a deterministic KPZ equation with fractional diffusion: the stationary problem. Nonlinearity 31, 2018, 1260-1298. (arXiv:1609.04561v3 [math.AP] 2 Oct 2019)

[3] B. Abdellaoui, I. Peral, and A. Primo : Some remarks on non-resonance for elliptic equations with gradient term. Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), no. 5, 969-985.

[4] O. Alvarez and A. Tourin, Viscosity solutions of nonlinear integro-differential equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 13 3 (1996), 293-317.

[5] P. Baras, M. Pierre, Critere d’existence des solutions positives pour desequations semi-lineaires non monotones. Ann. I.H.P. 2 (1985), no.3, 185-212.

[6] G. Barles and C. Imbert, Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 25 3 (2008), 567-585.

[7] C. Bjorland, L. Caffarelli and A. Figalli, Non-local Tug-of-War and the infinite fractional Laplacian. Adv. Math. 230 (2012) 1859-1894.

[8] L. Boccardo, T. Gallouët, L. Orsina, Existence and nonexistence of solutions for some nonlinear elliptic equations, J. Anal. Math. 73 (1997) 203-223.

[9] K. Bogdan, T. Jakubowski, Estimates of the Green Function for the Fractional Laplacian Perturbed by Gradient, Potential Anal 36 (2012), 455-481.

[10] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations. Springer, 2011.

[11] C. Bucur and E. Valdinoci, Nonlocal diffusion and applications. Springer, 2016.

[12] L. Caffarelli, Non local operators, drifts and games. Nonlinear PDEs. Abel Symposia 7 (2012), 37-52.

[13] L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. (2010) 1903-1930.

[14] L. Caffarelli and L. Silvestre, Regularity theory for fully-nonlinear integro-differential equations. Comm. Pure Appl. Math. 62 (2009), 597-638.

[15] Z. Chen and R. Song, Estimates for Green functions and Poisson kernels for symmetric stable processes. Mathematische Annalen 312 (1998), 465-501.

[16] H. Chen and L. Veron, Semilinear fractional elliptic equations with gradient nonlinearity involving measures. Journal of Functional Analysis. 266 8 (2014), 5467-5492.

[17] H. Chen and L. Veron, Semilinear fractional elliptic equations involving measures. Journal of Differential Equations. 257 5 (2014), 1457-1486.

[18] M. Crandall, H. Ishii and P-L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. of Amer. Soc. 27 1 (1992), 1-67.

[19] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573.

[20] I. Fonseca and G. Leoni, Modern methods in the Calculus of Variations: L^p spaces. Springer, 2007.

[21] Y. Giga, (2006). Surface evolution equations: a level set method. Basel: Monographs in Mathematics 99, Birkhauser Verlag.
[22] G. Gilboa and S. Osher, Non-local operators with applications to image processing. Multiscale Model. Simul. 7 (2008), 1005-1028.
[23] K Hansson, V.G. Maz’ya, I.E. Verbitsky, Criteria of solvability for multidimensional Riccati equations, Ark. Mat., 37, (1999), 87-120.
[24] Ishii, H., Perron’s method for Hamilton-Jacobi equations. Duke math. J. 55 2 (1987), 369-384.
[25] M. Kardar, G. Parisi and Y.C. Zhang, Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56 (1986), 889-892.
[26] J. Korvenpää, T. Kuusi and E. Lindgren, Equivalence of solutions to fractional p-Laplace type equations. To appear.
[27] E. Lindgren, Hölder estimates for viscosity solutions of equations of fractional p-Laplace type. arXiv preprint arXiv:1405.6612 (2014).
[28] P.L. Lions Résolution de problèmes quasilinéaires, s Archive for Rational Mechanics and Analysis 74 (4),(1980), 335-353
[29] V.G. Maz’ya, I.E. Verbitsky, Capacitary estimates for fractional integrals, with applications to partial differential equations and Sobolev multipliers, Ark. Mat. 33 (1995), 81-115.
[30] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1-77.
[31] R. Metzler and J. Klafter, The restaurant at the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37 (2004), 161-208.
[32] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. Journal de Mathématiques Pures et Appliquées 101 3 (2014), 275-302.
[33] R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation. Publ. Mat. 58 1 (2014), 133-154.
[34] R. Showalter, Monotone operators in Banach spaces and partial differential equations. AMS, 1997.
[35] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2007), no. 1, 67-112.
[36] L. Silvestre, Hölder estimates for solutions of integral-differential equations like the fractional Laplacian. Indiana Univ. Math. J. 55 3 (2006), 1155-1174.
[37] L. Silvestre, On the differentiability of the solution to the Hamilton-Jacobi equation with critical fractional diffusion, Advances in Mathematics 226 (2011), 2020-2029.
[38] M. Warma, The Fractional Relative Capacity and the Fractional Laplacian with Neumann and Robin Boundary Conditions on Open Sets. J. Potential Analysis, 42, (2015), no 2, 499-547.

B. Abdellaoui, Laboratoire d’Analyse Nonlinéaire et Mathématiques Appliquées, Département de Mathématiques, Université Abou Bakr Belkaïd, Tlemcen, Tlemcen 13000, Algeria.
E-mail address: boumediene.abdellaoui@inv.uam.es

P. Ochoa, Universidad Nacional de Cuyo-CONICET, 5500 Mendoza, Argentina
E-mail address: ochopablo@gmail.com

I. Peral, Universidad Autónoma de Madrid, 28049 Madrid, Spain
E-mail address: ireneo.peral@uam.es