Phytochemical, Nutritional and Pharmacological Potentialities of *Amaranthus spinosus* Linn.: A review

Mehedy Hasan Abir**, Monsur Ahmad

Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Khulshi 4225, Chattogram, Bangladesh

**Corresponding author:** abirfst9@gmail.com

Abstract

*Amaranthus spinosus* has long been cultivated in tropical and subtropical areas of the world, especially in South Asia. It is well accepted by the people for its nutritional, pharmacological, phytochemical, and therapeutic functions in the human body. Tender stems, leaves, shoots, grains and sometimes the whole part of *A. spinosus* are eaten by humans or fed to farm animals, which contain carbohydrates, proteins, fats, fibers, vitamins, minerals and many other phytochemicals. This review aims to represent the nutritional and pharmacological activities of *A. spinosus*. To have a better understanding, we have discussed the nutritional status of *A. spinosus*, its available phytochemicals and their functional properties. Further, we demonstrated the potentiality of *A. spinosus* in various disease condition by discussing its functional activities, which includes antioxidant, anti-diabetic, immune-modulator, hematological, gastrointestinal, anti-inflammatory, diuretic, antimicrobial, antimalarial, anti-ulcer, anti-arthritic, and antigenic activity. The availability of various important phytochemicals along with their functional properties make *Amaranthus spinosus* valuable for pharmaceuticals and nutraceuticals industry.

1. Introduction

Plant-based medicine is potentially the oldest form of medicine, some of which are not only used as medicine but also as nutritional victuals that showed the value of in-depth scientific evaluation. *Amaranthus spinosus* Linn. (Family: Amaranthaceae) is a most frequent consumable vegetable which has many medicinal aspects and is commonly known as Katanote in Bengali, Pigweed in English, and Kanatabhaji in Hindi (Alegejo, 2014; Kawade et al., 2013). It is widely distributed from tropical, subtropical, and some temperate regions (Tannmy et al., 2014). The genus *Amaranthus* has approximately 60 species, but 20 are important as weeds and others are widely used as vegetables, cereals and ornamental plants (Venskonitis & Kraujalis, 2013). Its tender stems, leaves, shoots and grains are eaten by humans which contain thousands of phytochemicals and prevents several chronic and degenerative disease. Phenolic compounds named quercetin, kaempferol glycosides and hydroxyxynamates are found in *A. spinosus* with the ranges from 305 mg/100 g to 329 mg/100 g (Stintzing et al., 2004). The stem of *A. spinosus* has anti-diabetic activity, and its effectiveness is proved for diabetes mellitus (Preethi, 2013), the root is used for the treatment of malaria (Bahekar & Kale, 2013) and the whole plant contains α-spinasterols octacosanoate & saponin which are effective as anti-inflammatory substances (Sengupta et al., 2012). It is also proved that consuming *A. spinosus* extract significantly increases prolactin level and helps to produce breast milk in postpartum mothers (Kuswanirung et al., 2017). It also contains a red
pigment which is utilized as a coloring agent in foods or medicine (Amabye, 2016). This plant is largely utilized as vegetables because of its excellent source of antioxidant leaf pigments such as β-cyanin, β-xanthine, betalain and as a source of other pigments such as carotenoids, anthocyanin, and chlorophylls. It is also a great source of antioxidant phytochemicals such as β-carotene, vitamin C, phenolics and flavonoids (Jiménez-Aguilar & Grusak, 2017; Sarker & Oba, 2019). In Malaysia, it is used as an expectorant and as a cure for acute bronchitis (Alegbejo, 2014). The decoction of this plant is used for toothache, the ash is used as salt, boiled leaves and roots are eaten as laxative, the whole plant is fed to livestock as forage, and it also has numerous pharmacological uses such as astringent, antitussive, antiseptic, anti-inflammatory, anti-rheumatic, anti-bacterial, anti-fungal, and diuretic activity. This plant is widely found in roadsides, waste places and fields (Tanmoy et al., 2014). To provide a descriptive overview of A. spinosus, nutritional and phytochemicals of this vegetables, evaluation methods, internal and external factors that influence its functional properties were summarized and reviewed.

2. Proximate composition

A. spinosus is an abundant source of dietary fibers. It also contains ash, moisture, crude fat and crude protein (Sarker & Oba, 2018, 2019). After analyzing 100 g of its leaves, it was found that the crude fiber content was 1.16 g, energy 27 kcal, moisture 91 g, protein 4 g, fat 0.6 g, fiber 2.48 g, ash 2.76 g (Figure 1A). In dry weight per 100g, the mineral content was 38.4 mg iron (Fe), 968.7 mg Calcium (Ca), 912.4 mg magnesium (Mg), 816.3 mg phosphorus (P), 6.8 mg manganese (Mn), 1.2 mg copper (Cu), 6.8 mg zinc (Zn) (Figure 1B) (Kawade et al., 2013). It has high nutritive value because of its elevated concentration of antioxidant compounds, fibers, proteins and amino acids, predominantly lysine (Tanmoy et al., 2014).

3. Phytochemistry

There are abounding active phytoconstituents in A. spinosus, which belong to the group of flavonoids, alkaloids, amino acids, lipids, glycosides, phenolics, steroids, terpenoids, saponins, betalains, catechins, tannins, betaines such as trigonelline and glycine betaine, and carotenoids. Amarantines, amaranthines, quercetins and kaempferols are mostly found in stems. Quercetin, α-xyloforosynol uracil, β-D-ribofuranosyl adenine, β-sitosterol glucoside, 7-p-coumaroyl apigenin 5-O-β-D-glucopyranoside, amaranthoside, rutin, and amaricin are found in the whole plant. α-sinapersterol and saponins are found in roots of the plant. Hecitracantone, oleanolic acid, D-glucose, D-glucuronic acid, aliphatic ester-α-spinasterol octacosanoate are generally found in leaves and less frequently in stems (Tanmoy et al., 2014). The main betalains in A. spinosus are found as quercetin, amaranthine, isoamaranthine, hydroxyccinnamates and kaempferol glycosides. Coumaroyl flavone glucoside is identified from the n-butanol fraction of methanol extract. In the A. spinosus plant, the rutins and the quercitins are present as flavonoids. Rutin is identified in the whole plant powder. Separation and identification of amaranthoside, amaricin, and stemasterol glycoside have become possible through the phytochemicals investigating method using n-butanol fraction of methanol extract of whole plant of A. spinosus. By using petroleum ether extract, α-spinasterol and hecitracantone are isolated. Some new compounds, such as aliphatic esters and saponins, specifically saponin I and saponin II were identified in A. spinosus (Sarker & Oba, 2019; Tanmoy et al., 2014). The presence of all these compounds explicitly relates to some medicinal properties of A. spinosus. Compounds like vitamin C, flavonoids and phenolics are phytochemical compounds which show most of the antioxidant activity in different plants including A. spinosus. It is evident that phenolic and flavonoid compounds may prevent or lessen the effect of particular cancer and cardiovascular diseases, along with the chronic and neurodegenerative types of diseases. A. spinosus has reported to provide antidiabetic, anti-inflammatory, anti-malarial, anti-fertility, anti-Hyperlipidemic, spermatogenic and antimicrobial effects (Figure 2) (Ganjare & Raut, 2019; Kawade et al., 2013).

**Figure 1** A. spinosus constituents and its mineral contents have been illustrated in the graphs, which are found in 100 gm weight. (A) Proximate composition or constituents of A. spinosus found in 100 gm of its leaves are demonstrated in this chart. This chart suggests that protein, ash, fiber and carbohydrates are quite good in A. spinosus, whereas fat content is the lowest in amount (B) Minerals found per 100 gm dry weight of A. spinosus has been demonstrated in the chart. It suggests that Ca, Mg and P are found in higher amount, whereas Fe, Zn, Mn and Cu are found in lower amount.
4. Phytochemical constituents

Most of the phytochemicals of *A. spinosus* are found in the matured leaves, because maximum metabolism in plants occurs in matured stage. To obtain the extract, leaves are air-dried at room temperature and allowed for grinding and finally extract is collected by solvent extraction. The analysis of *A. spinosus* to determine its phytochemical contents are done by standard procedures (Amabye, 2016; Maiyo et al., 2010). Numerous phytochemical and phenolic compounds are found in several extracts of *Amaranthus spinosus*, still some other phytochemical compounds did not show their presence in the extract. The wide range of phytochemical constituents, and their presence or absence in different extracts can easily be recognized if analyzed properly (Table 1).

*Amaranthus spinosus* plant extract shows in vitro bioactivity because of the presence of innumerable phytochemical compounds (Amabye, 2016; Maiyo et al., 2010). Moreover, biologically active phytochemical compounds largely contribute to the amelioration of public health (Table 2).

### Table 1 Quantitative screening for phytochemical constituents of *Amaranthus spinosus*

| Constituents | Presence (+) or Absence (-) | Methanol | Ethanol | Hexane | Chloroform | Aqueous | Reference |
|--------------|-----------------------------|----------|---------|--------|------------|---------|-----------|
| Alkaloids    | +                           | -        | -       | -      | -          | -       | (Amabye, 2016; Khanal et al., 2015) |
| Tannins      | -                           | -        | -       | +      | -          | -       | (Amabye, 2016; Maiyo et al., 2010) |
| Flavonoids   | +                           | +        | +       | +      | +          | +       | (Jiménez-Aguilar & Grusak, 2017; Khanal et al., 2015) |
| Saponins     | +                           | +        | -       | -      | -          | -       | (Amabye, 2016; Khanal et al., 2015; Maiyo et al., 2010) |

Content: 13.14 ± 0.86 mg g⁻¹ dry weight; 6.07 ± 0.93 mg g⁻¹ dry weight; 1.70 ± 0.56 mg g⁻¹ dry weight; 53.0 ± 0.50 mg g⁻¹ dry weight.
### Table 2 Phytoconstituents and pharmacological activities of *Amaranthus spinosus*

| Phytoconstituents                                                                 | Plant part | Extract          | Pharmacological activity                  | Reference                                                                 |
|---------------------------------------------------------------------------------|------------|------------------|-------------------------------------------|---------------------------------------------------------------------------|
| Rutin, Quercetin, 7-p-coumaroyl apigenin 4-O- β-D-glucopyranoside, α-xyloruranosyl uracil, β-sitosterol glucoside, β-D-ribofuranosyl adenine, Amaranthoside, Amaricin, Stigmasterol glycoside | Whole      | Ethanol          | Hepatoprotective activity                 | (Azhar-ul-Haq et al., 2004; Suryavanshi et al., 2007; Zeashan et al., 2008; Zeashan et al., 2009b) |
|                                                                                  | Whole      | Petroleum ether, methanol, chloroform, aqueous | Antioxidant activity               | (Kumar et al., 2010b; Kumar et al., 2010c)                                |
| D-glucuronic acid and D-glucose, α-spinasterol, hectriacontane                   | Leaves     | Ethanol          | Anti-inflammatory activity                | (Olajide et al., 2004; Sengupta et al., 2012)                              |
|                                                                                  | Leaves     | Aqueous          | Anthelminthic activity                   | (Baral et al., 2010; Kumar et al., 2010a)                                 |
|                                                                                  | Whole      | Ethanol          | Anti-diarrheal activity                  | (Hussain et al., 2009)                                                   |
|                                                                                  | Whole      | Ethanol          | Anti-ulcer activity                      | (Hussain et al., 2009; Mitra, 2013)                                       |
|                                                                                  |            | Petroleum ether, methanol, chloroform, aqueous | Anti-ulcer activity              | (Kumar et al., 2010b; Kumar et al., 2010c)                                |
| Amaranthine, Isoamaranthine, Quercetin, Hydroxycinnamates, Kaempferol glucosides | Stems      | Methanol         | Anti-diabetic activity                   | (Sangameswaran & Jayakar, 2008; Stintzing et al., 2004)                   |
|                                                                                  | Stems      | Aqueous          | Anti-malarial activity                   | (Hilou et al., 2006)                                                     |
| Saponins                                                                        | Roots      | Hexane           | Anti-bacterial activity                  | (Ahmad & Basha, 2006; Banerji, 1973, 1979, 1980; Vardhana, 2011)          |
|                                                                                  | Roots      | Ethyl acetate    | Anti-bacterial activity                  |                                                                           |
5. Nutritional and pharmacological activities

Several nutritional and pharmacological properties of *A. spinosus* are said to contain in traditional system. These have been scientifically substantiated by scientists which are discussed in the following sections.

The antioxidant activity

The antioxidant activity of *A. spinosus* is analyzed by non-enzymatic haemoglycosylation assay, which showed that secondary metabolites, named rutin and quercetin have inhibition tendency of haemoglycosylation up to 42% and 52% respectively (Tanmoy *et al.*, 2014). Analysis of roadside *A. spinosus* reported they contain free radical scavenging system which can combat air pollution and it also contains Betalain pigment which shows strong antioxidant activity. The EC50 values range from 3.4-8.4 µM (Jhade *et al.*, 2009).
antioxidant activity is also examined by determining the oxidation of linoleic acid (Amabye, 2016). Some of the methods include DPPH or 2,2-diphenyl-1-picrylhydrazyl scavenging; superoxide anion radical scavenging; nitric oxide scavenging; hydroxyl free radical scavenging; and ABTS or 2,2'-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid radical scavenging assays (Kumar et al., 2010c).

Table 3 The antioxidant activity of Amaranthus spinosus illustrated by several methods

| Evaluation method                             | Standard antioxidant          | Extracts used   | Conc. used    | Preventive effect | Reference                  |
|-----------------------------------------------|-------------------------------|-----------------|---------------|-------------------|----------------------------|
| Non-enzymatic haemoglycosylation assay         | α-tocopherol (vitamin E)      | Petroleum ether | 0.5 mg/mL     | 13.1 %            | (Kumar et al., 2010b)       |
|                                               |                               |                 | 1 mg/mL       | 16.4 %            |                            |
|                                               |                               | Chloroform      | 0.5 mg/mL     | 5.7 %             |                            |
|                                               |                               |                 | 1 mg/mL       | 12 %              |                            |
|                                               |                               | Methanol        | 0.5 mg/mL     | 36.91 %           |                            |
|                                               |                               |                 | 1 mg/mL       | 56.07 %           |                            |
|                                               |                               | Aqueous         | 0.5 mg/mL     | 22.2 %            |                            |
|                                               |                               |                 | 1 mg/mL       | 31.01 %           |                            |
| DPPH radical scavenging assay                 | Ascorbic acid (vitamin C)     | Methanol        | 50-250 µg/mL   | 87.50 ± 3.52 µg/mL| IC<sub>50 </sub> value    |
|                                               |                               |                 |               |                   | (Bulbul et al., 2011)       |
| ABTS radical scavenging assay                 | Ascorbic acid (vitamin C)     | Methanol        | 25-250 µg/mL   | 147.50 ± 2.61 µg/mL| IC<sub>50 </sub> value    |
|                                               |                               |                 |               |                   | (Kumar et al., 2010c)       |
| Hydroxyl radical scavenging method             | Butylated hydroxyanisole (BHA)| Ethanol (50%)   | 400 µg/mL      | 140-145 µg/mL IC<sub>50 </sub> value | (Zeashan et al., 2009b) |

The antidiabetic activity

A. spinosus has alpha amylase enzyme, which is a potential compound associated with carbohydrate digestion and glycemic balance. Antidiabetic activity was studied by introducing methanolic extract of A. spinosus stem in diabetic rats (Jhade et al., 2009). The antidiabetic potential of methanolic extract of A. spinosus was diagnosed through in vitro alpha amylase inhibition by a compound named CNPG-3 or 2-chloro-4-nitrophenyl-α-D-maltotrioside, in alloxan-induced diabetic rats. The study manifested significant restraining capacity of glucose level on a 15-day study. A. spinosus leaf extract also reduces hyperglycemia by abating pancreatic cells damage (Figure 4) and oxidative stress in streptozotocin-nicotinamide induced diabetes albino rats (Mishra et al., 2012; Tanmoy et al., 2014).

Figure 4 Active phytochemicals of Amaranthus spinosus can reduce pancreatic cell damages. Insulin released from pancreatic cells stimulate both glucose uptake and glycogen formation, therefore, manifests antidiabetic activity by lowering the blood sugar level.
The immuno-modulatory activities

*A. spinosus* has been demonstrated to possess immunological effects. It was determined by investigating the stimulatory effects of aqueous *A. spinosus* extract on spleen cells of female albino rats. The result showed that the extracts facilitate stimulation of more B lymphocytes without increasing T lymphocytes level, and the immuno-stimulating effects of aqueous extract help B lymphocyte activation and proliferation of T-cell *in vitro*. Several studies substantiated that the extract of this plant can significantly escalate the spleenocyte growth. The results also proved immuno-modulatory activity via direct *in vitro* B lymphocyte activation. A new immunostimulatory protein (GFII) having molecular mass of 313 kDa, which is thought to be a glycoprotein and heat labile, has 309 times higher immunostimulatory activity than that of water extract. This compound is highly potential for immune pharmacological use (Ganjare & Raut, 2019; Goyal et al., 2016).

Immuo-modulatory effects were also discovered using dexamethasone (DEX)-induced apoptosis in murine primary splenocytes and wild *A. spinosus* water extract. The result determined that *A. spinosus* water extract is capable of inhibiting the spontaneous, as well as the DEX induced apoptosis of splenocyte cells (Lin et al., 2008). Cell-mediated immune response by delayed type of hypersensitivity reaction to sheep RBC, and humoral immune response measured by hemagglutination antibody titre also corroborated the immuno-modulatory activity. The result showed both immuno-modulatory and immunosuppressant activity due to presence of various glycosides, steroids and other phytochemicals. Aqueous and alcoholic extracts showed more immuno-modulatory effect, and petroleum ether extract showed immunosuppressant effect (Tatia et al., 2007).

The hematological activity

There has been a study on the effect of aqueous extract of leaves of *A. spinosus* on hematological parameters along with blood coagulation time in rat model, which showed little changes in the hematological activity and several enzymes level such as glutamate pyruvate transaminase, alkaline phosphatase, and serum glutamate oxaloacetate transaminase (Akinloye & Oloredo, 2000).

In another study, *A. spinosus* leaf extract was fed to growing pigs and administered to determine its effects on packed cell volume, white blood cell, red blood cell, and hemoglobin concentration. The result showed that there has been temporary decrease in levels of packed cell volumes, white blood cell, red blood cell and hemoglobin (Olufemi et al., 2003). Change in hematocellular constituents of albino rats using *A. spinosus* methanolic extract has been also been diagnosed, which showed that WBC, RBC and Hb level was highly restored after using *A. spinosus* methanolic extract (Gul et al., 2011).

The hepatoprotective activity

*A. spinosus* extract (whole) in 50% ethanol can be assessed against carbon tetrachloride induced hepatic damaged rats. The *A. spinosus* whole plant in 50% ethanol extract was fed to the carbon tetrachloride induced rats for 14 days and introduced oral doses of 100, 200 and 400 mg/kg in an experiment. The result showed substantive escalation of different enzymatic levels, such as serum glutamate pyruvate transaminase, glutamate oxaloacetate transaminase, and serum alkaline phosphatase; also, the bilirubin level came back to normal significantly. Conclusively, hepatoprotective activity is significant at higher dose of *A. spinosus* ethanol (50%) extract against CCl4 inducing hepato-toxicity, because 400 mg/kg dose showed greater hepatoprotective activity than other doses (Zeashan et al., 2008).

In another study, 50% ethanolic extract of *A. spinosus* whole plant is evaluated for hepatoprotective and *in vitro* antioxidant activity. Standard gallic acid curve (0-1.0 mg/mL) and an antioxidant naming butylated hydroxy anisole showed highest total phenolic compounds level and the hepatotoxicity reduction capacity of ASE respectively. The result had shown the hepatotoxicity reducing capability of ASE is 2.26 times of BHA and total polyphenolics expressed as gallic acid equivalent was 336 ± 14.3 mg/g, which proved that ASE possesses significant hepatoprotective activity (Zeashan et al., 2009b).

The gastrointestinal activity

To determine the effect of *A. spinosus* in gastrointestinal tract, aqueous extract of *A. spinosus* was evaluated in mice using charcoal meal method. In the experiment, first group served as the basis of control, second group was made the standard, and the remaining 3-5 groups were fed *A. spinosus* aqueous extract at a dose of 50, 100 and 200 mg/kg weight of the mice respectively. Result of the experiment showed significant gastrointestinal motility at 100 mg/kg dose (Kumar et al., 2008).

Another *in-vivo* experiment in mice using crude extract of *A. spinosus* showed the laxative activity, which is partially intervened through the cholinergic action (Chaudhary et al., 2012).

The anti-inflammatory activity

The anti-inflammatory activity of *A. spinosus* has been evaluated by an experiment in which the methanolic extract of *A. spinosus* was evaluated in various animal models. The extract inhibited the carrageenan inducing mice paw edema at a dose of 25-100 mg/kg and helped in inhibition of acetic acid inducing increased vascular permeability. Though the 50 and 100 mg/kg extract dose produced gastric erosion in rats along with indomethacin, 25 mg/kg extract along with tween-80 (poly sorbate-80) did not show this effect in macroscopic evaluation. However, several experiments corroborated the anti-inflammatory properties of *A. spinosus* (Baral et al., 2010; Olaajide et al., 2004).

The diuretic activity

To examine the diuretic activity of *A. spinosus* aqueous extract (ASAE) in rats, various doses of ASAE (200, 500, 1000, 1500 mg/kg), thiazide (10 mg/kg) and vehicle were fed to rats orally and their urine was collected and analyzed after 24 hours. The result showed that ASAE increased the concentrations of Na⁺, K⁺, Cl⁻ and caused alkalization of urine. The report of this test proved that the *A. spinosus* may act as a thiazide-like diuretic, occupying the carbonic anhydrase inhibiting property (Amuthan et al., 2012).

The antidepressant activity

By using Forced swimming test and Tail suspension test patterns, the anti-depressant activity of the methanolic extract of *A. spinosus* (MEAS) was examined, where reference standards were Escitalopram and Imipramine. The result of this experiment showed that the MEAS cause significant diminution of immobility in FST and TST comparing with Escitalopram and Imipramine (Kumar et al., 2014).

The Antimicrobial Activity

The *A. spinosus* has various pharmacologically active compounds, which shows antimicrobial activities in the disc
diffusion essay. Even though the trend for anti-fungal activity is same as of the anti-bacterial activity, the potency towards fungal strain is not as effective as for bacterial strains (Amabye, 2016). Terpenoids show antimicrobial activity against bacterium, fungus, virus and protozoa, and it is used to control Listeria monocytogenes. These terpenoid compounds demonstrate antimicrobial activity by lipophilic membrane disruption mechanism. If the hydrophilic behavior of ent-kaurene diterpenoid compounds can be increased by addition of methyl group, this will reduce the antimicrobial activity of these compounds. Flavonoids generally are known to show response against microbial infections. Flavonoids form complexes with extra-cellular and soluble proteins, as well as with bacterial cells in vivo. This is why flavonoids are also effective as antimicrobial agents (Maiyo et al., 2010).

Usage of dichloromethane extract of A. spinosus moderately shows antiprotozoal activity, especially on Blastocystis hominis when 2 mg/mL dose is introduced (Kawade et al., 2013). Ethanol extracts of A. spinosus leaves show anthelmintic activity if fed to growing pigs. The result shows that mean egg count of helminths, predominantly Ascaris suum, is remarkably decreased due to ethanol extract of A. spinosus leaves (Assiak et al., 2002).

### Table 4 Antimicrobial activities of A. spinosus methanol leaf extract

| Organism types | Test Organisms | Extract          | Zone of growth inhibition (mm) | Reference               |
|---------------|----------------|------------------|--------------------------------|-------------------------|
| Bacteria      | Staphylococcus aureus | Methanol 100% | 24.0                           | (Amabye, 2016)          |
| Bacteria      | Escherichia coli | Methanol | 11.6 ± 0.2                     | (Barku et al., 2013)    |
| Bacteria      | Bacillus subtilis | Methanol | 8.0 ± 0.26                     | (Cherian & Sheela, 2016) |
| Bacteria      | Salmonella typhi | Hexane 100% | 13.0 ± 1.2                     | (Maiyo et al., 2010)    |
| Bacteria      | Klebsiella sp. | Distilled water | 7.0                           | (Sheeba et al., 2012)   |
| Fungi         | Fusarium solani | Methanol 100% | 17.0                           | (Amabye, 2016)          |
| Fungi         | Aspergillus flavus | Methanol | 6 ± 0.76                       | (Cherian & Sheela, 2016) |

### The antimalarial activity

Screening of A. spinosus shows impressive antimalarial activity in mice when evaluated by suppressive antimalarial assay for 4 days. A study on Plasmodium berghei berghei parasite strain, which was inoculated in mice, had been inhibited greatly by A. spinosus at elevated doses of the extract produced from the plant. With 100 mg/kg dose introduction, the inhibition percentage of parasitemia is low, but increased doses (300 mg/kg to 900 mg/kg) had given better inhibition percentage. Though the plant has lower antimalarial activity compared to malarial medicine chloroquine, it's parasitemia inhibition percentage can also be increased by introducing relatively higher doses (1000 mg/kg or more) (Hilou et al., 2006).

### The anti-ulcer activity

In an interesting study on antiulcerogenic activity of A. spinosus, it was found out that A. spinosus possesses anti peptic ulcer activity when powdered leaves of A. spinosus is fed to gastric and duodenal ulcerated albino rats. The result shows that A. spinosus leaves can immensley protect ethanol inducing peptic or gastric ulcers, and cysteamine inducing gastric ulcers (duodenal ulcers). Though the anti-ulcer activity of A. spinosus showed less effect than a peptic ulcer drug, omeprazole, still it's role is crucial because of no known side effects or prolonged effects (Debiprasad et al., 2013).

In another study of anti-ulcer activity, 50% ethanolic extract of A. spinosus (ASE) whole plant was evaluated in rats. Induction of acute gastric mucosal lesions were monitored using three different assay models in the investigation. The result proved that ASE can significantly protect both ethanol induced and aspirin induced ulcer (Hussain et al., 2009). One of the important factors in ulcerogenesis is lipid peroxidation, and studies have substantiated that ASE can control this type of lipid peroxidation (Hussain et al., 2009; Sairam et al., 2002).

Search for new drugs of gastric ulcer led to another experiment on A. spinosus for its antiulcer activity. Result of the study showed that leaves of A. spinosus can prevent the loss of gastric protein, and the lipid peroxidation due to aspirin induced ulceration. Simultaneously, the leaves of this plant had increased gastric mucin, and showed cytoprotective effect against gastritis (Mitra et al., 2014).

More studies showed that roots and stems along with leaves of A. spinosus exhibits antulcer activity in albino rats. The effect is prevalent against ethanol, HCl, Swimming stress (SS), pyloric ligation, and indomethacin inducing peptic or gastric ulcer. However, the result showed that utilization of powdered roots of A. spinosus with one of the ulcerogenic medicine can bring about more ulcerative protection in ethanol, HCl, SS, pyloric ligation, and indomethacin induced gastric ulcer than utilization of stems and leaves of A. spinosus (Mitra, 2013).

### The antipyretic and antinociceptive activity

Antipyretic drugs can suppress the expression of COX-2 so that the higher temperature of the body is reduced through inhibition of PGE2 biosynthesis, whereas natural COX-2 inhibitors have fewer side effects (Luo et al., 2005). Methanol extract of A. spinosus shows antipyretic activity without inhibition of COX-2 expression when introduced to rats with yeast-induced elevated level of body temperature (Lakshman & Jayaveera, 2011). The antipyretic effect of A. spinosus is quite significant, and is similar to the paracetamol group when the introduced dose is 400 mg/kg (Bagepalli et al., 2011; Kumar et al., 2010c). In a study, 50% ethanolic extract of A. spinosus (ASE) had shown antinociceptive activity when introduced to male swiss albino rats by some methods, including acetie acid test, formalin test, tail suspension test and hot plate test. Result from the study had shown that ASE possesses the central as well as the peripheral antinociceptive activity, and significantly blocks pain in the first phase at higher dose of the extract (400 mg/kg). In the second
phase, ASE had blocked pain from inflammation with introduction of all the doses (Zeeshan et al., 2009a).

The antigenic and allergic activity

Pollen antigen standardization can assist in immunotherapy and diagnosis of allergenicity. *A. spinosus* is an essential aero-allergen and it has significance in type 1 hypersensitivity disorders. SDS-PAGE and IEF Analysis of five *A. spinosus* pollen samples showed that seven protein fractions have IgE binding capacities and nine proteins have allergenic properties (Singh & Dahiya, 2002).

6. Toxicities

The toxicity of *A. spinosus* was detected by scientists using OECD guidelines. By following this guideline, lethal dose 50% (LD50) was determined in a lab experiment using albino rats. The dose was 5 mg/kg, 50 mg/kg, 200 mg/kg, 300 mg/kg (later the dose was 250 mg/kg and 300 mg/kg for further study) with sufficient amount of water orally in a single dose. The result showed *A. spinosus* extract did not cause any toxicity in the animals up to 2000 mg/kg (Jhade et al., 2011; Mishra et al., 2012).

The genotoxicity of *A. spinosus* leaf extract was determined using meristematic root cells of *Allium cepa* and the antigenotoxic effects was determined by evaluating against *H₂O₂*-induced genetic damage in *Allium cepa*. The report of this experiment manifested that higher dose of *A. spinosus* extract cause mitodepressive and clastogenic effects, and lower dose of the *A. spinosus* extract reverts the clastogenicity caused by *H₂O₂*. This clastogenicity, which is induced by the *A. spinosus* extract demonstrates its genotoxicity. These results determined that *A. spinosus* extract has genotoxic as well as the antigenotoxic property (Prajitha & Thoppil, 2016).

7. Conclusion

*A. spinosus* is abundant in phytocomedicals. This review of *A. spinosus* shows that it holds nutritional potential along with various pharmacological properties. Leaf extract of this plant shows antimicrobial activities, especially against food-borne pathogens, and some fungus. Though some detailed studies have been done on this plant, it has not been developed as a drug yet. More exhaustive data on *A. spinosus* is not available till now even though the study on this potential plant was started in 1970s through analyzing its grain composition. Data on extraction of supercritical fluid and fractionation, high pressure and extrusion processing techniques are unavailable. Yet the screening or analysis within last 3 decades revealed so many information of this plant, such as its application for high quality baked goods production, edible films, functional ingredients etc. More extensive research and analysis is required for the cataloging, documentation and commercialization of this plant, considering its potentialities.

Acknowledgements

No funding was received for conducting this study.

Declaration of interest

All authors declare that there is no conflict of interest.

References

1. Ahmad, V. U., & Basha, A. (2006). Spectroscopic Data of Steroid Glycosides: Stigmastanes, Furostanes, Spiristanes. Springer-Verlag US.

2. Akinloye, O. A., & Okorede, B. R. (2000). Effect of Amaranthus spinosus leaf extract on haematology and serum chemistry of rats. *Nigerian Journal of Natural Products and Medicine, 4*, 79–81. https://doi.org/10.4103/njnpm.v4i1.41746

3. Alagbajo, I. (2014). Nutritive Value and Utilization of Amaranthus (Amaranthus spp.) – A Review. *Bayero Journal of Pure and Applied Sciences, 6*(1), 136. https://doi.org/10.4314/bjgas.v6i1.27

4. Amaybe, T. G. (2016). Evaluation of Physiochemical, Phytochemical, Antioxidant and Antimicrobial Screening Parameters of Amaranthus spinosus Leaves. *Natural Products Chemistry & Research, 04*(01). https://doi.org/10.4172/2239-6836.1000199

5. Amuthan, A., Chogut, B., Barry, K. L., & Prakash, M. (2012). Evaluation of diuretic activity of Amaranthus spinosus Linn. aqueous extract in Wistar rats. *Journal of Ethnopharmacology, 140*(2), 424–427. https://doi.org/10.1016/j.jep.2012.01.049

6. Assia, I. E., Ohuemb, B. E., Ayonde, G. O., & Onigemo, M. (2002). Preliminary studies on the effects of Amaranthus spinosus Leaf Extract as an Anthelmintic in growing pigs. *Tropical Veterinarian, 20*(2). https://doi.org/10.4314/tv.v20i2.4521

7. Azhar-ul-Haq, Malik, A., Khan, A. ul H. S. B., Shah, M. R., & Muhammad, P. (2004). Spinoside, new coumaroyl flavone glycoside from Amaranthus spinosus. *Archives of Pharmacal Research, 27*(12), 1216–1219. https://doi.org/10.1007/BF02979804

8. Bagepalli, S. A. K., Kurnali, P. & Jayawarada, A. N. (2011). Comparative antirheumatic activity of methanolic extracts of some species of Amaranthus. *Asian Pacific Journal of Tropical Biomedicine, 1*(1), S47–S50. https://doi.org/10.1016/s2221-1691(11)60121-4

9. Bahekar, S., & Kale, R. (2013). Herbal Plants Used For the Treatment of Malaria- A Literature Review. *J Pharmacognosy and Phytochemistry, 6*(1), 141–146.

10. Baneri, N. (1973). Constituents of Amaranthus Spinosus Linn (Amaranthaceae). *Journal of the Institution of Chemists (India), 45*(6), 205–208.

11. Baneri, N. (1979). Chemical-constituents of Amaranthus-spinosus roots. In *Indian Journal of Chemistry Section B-Organic Chemistry including Medicinal Chemistry* (Vol. 17, Issue 2, pp. 180–181). Council of Scientific and Industrial Research, New Delhi.

12. Baneri, N. (1980). Two new saponins frm the root of Amaranthus spinosus Linn. *J Indian Chem Soc., 57*, 417–419.

13. Baral, M., Chakraborty, S., & Chakraborty, P. (2010). Evaluation of Anthelmintic and Anti-Inflammatory Activity of Amaranthus. *Int. J. Carr. Pharm. Res., 2*(4), 2–5.

14. Barku, V. Y. A., Opoku-Boahen, Y., Owusu-Ansam, E., Dayie, N. T. K. D., & Mensah, F. E. (2015). In-Vitro Assessment of Antioxidant and Antimicrobical Activities of Methanol Extracts of Six Wound Healing Medicinal Plants. *Journal of Natural Sciences Research, 3*(1), 74–80.

15. Babul, I. J., Nahar, L., Ripa, F. A., & Haque, O. (2011). Antibacterial, cytotoxic and antioxidant activity of chloroform, n-hexane and ethyl acetate extract of plant Amaranthus spinosus. *International Journal of PharmTech Research, 3*(3), 1675–1680.

16. Chevahry, M. A., Imran, L, Bashir, S., Mehmood, M. H., Rehman, N., & Gilani, A.-H. (2012). Evaluation of gut modulatory and bronchodilator activities of Amaranthus spinosus Linn. *BMC Complementary and Alternative Medicine, 12*(1), 1–11. https://doi.org/10.1186/1472-6882-12-166

17. Cherian, P., & Sheela, D. (2016). Antimicrobial activity of Amaranth alkaloid against pathogenic microbes. *International Journal of Herbal Medicine, 4*(5), 70–72.

18. Debiprasad, G., Prasenjit, M., Tanaya, G., & Kumar, M. P. (2013). Anti peptic ulcer activity of the leaves of Amaranthus spinosus L. in rats. *Mintage Journal of Pharmaceutical Medical Sciences, 2*(3), 52–53.

19. Ganjare, A., & Raut, N. (2019). Nutritional and medicinal potential of Amaranthus spinosus. *Journal of Pharmacognosy and Phytochemistry, 8*(3), 3149–3156.

20. Gotyal, D. M., Hiremath, S. K., & Sarangi, M. S. (2016). A Review of Amaranthus Spinous Linn: A Potential Medicinal Plant. *Indian
55. Stintzing, F. C., Kammerer, D., Schieber, A., Adama, H., Nacoulma, O. G., & Carle, R. (2004). Betacyanins and Phenolic Compounds from Amaranthus spinosus L. and Boerhavia erecta L. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 59(1–2), 1–8. https://doi.org/10.1515/znc-2004-1-201

56. Suryawanshi, V. L., Srith, P. A., Bajing, M. M., Singh, G. R., & Lakshmi, S. N. (2007). Determination of Rutin in Amaranthus spinosus Linn. Whole Plant Powder by HPTLC. Chromatographia, 65(11), 767. https://doi.org/10.1365/s10337-007-0239-1

57. Tiab, M. J. A., Nazmul, Q., Asif, A. M., Amran, H. M., Shams-Ud-Doha, K. M., & Apurba, S. A. (2011). Analgesic activity of extracts of the whole plant of Amaranthus spinosus linn. Int J Drug Dev Res, 3(4), 189-193p.

58. Tanmoy, G., Arijit, M., Tanushree, S., Jagadish, S., & Kumar, M. T. (2014). Pharmacological actions and phytoconstituents of Amaranthus spinosus Linn: A review. International Journal of Pharmacognosy and Phytochemical Research, 6(2), 405–413.

59. Tatiya, A. U., Surana, S. J., Khope, S. D., Gokhale, S. B., & Sutar, M. P. (2007). Phytochemical investigation and Immunomodulator activity of Amaranthus spinosus linn. Indian Journal of Pharmaceutical Education & Research, 337.

60. Vardhana, H. S. (2011). In vitro antibacterial activity of Amaranthus spinosus root extracts. Pharmacophore, 2(5), 229–234.

61. Venskutonis, P. R., & Kraujalis, P. (2013). Nutritional Components of Amaranth Seeds and Vegetables: A Review on Composition, Properties, and Uses. Comprehensive Reviews in Food Science and Food Safety, 12(4), 381–412. https://doi.org/10.1111/1541-4337.12021

62. Zeashan, H., Amresh, G., Rao, C. V., & Singh, S. (2009a). Antinociceptive activity of Amaranthus spinosus in experimental animals. Journal of Ethnopharmacology, 122(3), 492–496. https://doi.org/10.1016/j.jep.2009.01.031

63. Zeashan, H., Amresh, G., Singh, S., & Rao, C. V. (2008). Hepatoprotective activity of Amaranthus spinosus in experimental animals. Food and Chemical Toxicology, 46(11), 3417–3421. https://doi.org/10.1016/j.fct.2008.08.013

64. Zeashan, H., Amresh, G., Singh, S., & Rao, C. V. (2009b). Hepatoprotective and antioxidant activity of Amaranthus spinosus against CCl4 induced toxicity. Journal of Ethnopharmacology, 125(2), 364–366. https://doi.org/10.1016/j.jep.2009.05.010