Regulatory role of miRNAs in Wnt signaling pathway linked with cardiovascular diseases

Jiban Kumar Behera,1, Manojit Bhattacharya,1, Pabitra Mishra, Akansha Mishra, Adya Anindita Dash, Niladri Bhusan Kar, Bhaskar Behera, Bidhan Chandra Patra*

ARTICLE INFO

Keywords:
MicroRNAs
Wnt
Cardiovascular diseases
Heart development
Homeostasis

ABSTRACT

MicroRNAs (miRNAs) are discovered in science about 23 years ago. These are short, a series of non-coding, single-stranded and evolutionary conserved RNA molecules found in eukaryotic cells. It involved post-transcriptional fine-tune protein expression and repressing the target of mRNA in different biological processes. These miRNAs binds with the 3'-UTR region of specific mRNAs to phosphorylate the mRNA degradation and inhibit the translation process in various tissues. Therefore, aberrant expression in miRNAs induces numerous cardiovascular diseases and developmental defects. Subsequently, the miRNAs and Wnt singling pathway are regulating a cellular process in cardiac development and regeneration, maintain the homeostasis and associated heart diseases. In Wnt signaling pathway majority of the signaling components are expressed and regulated by miRNAs, whereas the inhibition or dysfunction of the Wnt signaling pathway induces cardiovascular diseases. Moreover, inadequate studies about the important role of miRNAs in heart development and diseases through Wnt signaling pathway has been exist still now. For this reason in present review we summarize and update the involvement of miRNAs and the role of Wnt signaling in cardiovascular diseases. We have discussed the mechanism of miRNA functions which regulates the Wnt components in cellular signaling pathway. The fundamental understanding of Wnt signaling regulation and mechanisms of miRNAs is quite essential for study of heart development and related diseases. This approach definitely enlighten the future research to provide a new strategy for formulation of novel therapeutic approaches against cardiovascular diseases.

1. Introduction

Heart disease is a leading cause of human morbidity, mortality, and physical disability worldwide. Present day the heart diseases are rising, and it has been found that about 10% of people globally will be suffering from heart failure of the total population in the year 2030 (Salinas and Lin, 2019). Major organ and multiple gene encoded protein signaling also affected by biological, genetic and vascular risk factors that influence several type heart diseases. Heart failure is caused by numbers of related heart diseases like myocardial ischemia, valve diseases, heart rhythm disorders, pericardial abnormalities and cardiac dysfunction (Ingall, 2004).

Wnt and Fzd (Frizzled) is significant protein molecules of signal transduction pathway where Wnt act as ligand for the Fzd proteins family. This signal transduction pathway mainly control tissue development, cells migrate and polarity processes (Qiang and Walsh, 2005). It also noted that a total 19 families of Wnt genes are identified in mammalian genomes, which have glycosylated protein containing 350–400 amino acids and consist with 22–24 cysteine residues (Janda and Garcia, 2015; Clevers, 2006). In molecular signaling pathway Wnt has two binding sites and consist of low-density receptor-related protein (LPR5/LPR6) (Bhanot and Brink, 1996; Joiner and Ke, 2013). The complex receptor of Wnt activates the β-catenin protein signaling, considering as a secondary messenger of canonical signaling pathway. It is phosphorylated by the ubiquitin pathway, consist with the destruction protein complex of axin, adenomatous polyposis coli (APC), casein kinase 1 (CK1) and glycogen synthase kinase 3β (GSK-3β) to showing its imminent activity (Yost and Torres, 1996). Therefore, when the

*Corresponding author. Department of Zoology, Vidyasagar University, Midnapore, 721102, West Bengal, India.
E-mail address: bcpatra@mail.vidyasagar.ac.in (B.C. Patra).

1 Authors contributed equally.

https://doi.org/10.1016/j.crphar.2022.100133
Received 1 July 2022; Received in revised form 15 September 2022; Accepted 30 September 2022
2590-2571/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
lipoprotein receptor-like protein is activated, it formed intracellular adaptor disheveled protein (Dvl) to the plasma membrane. That dissociates and accumulates the β-catenin protein complex. The β-catenin protein migrates to the nucleus as secondary messenger and interacts with the transcription factors of TCF and LEF, and become activated the gene expression (Fagotto and Glück, 1998; MacDonald and Tamai, 2009). Several secondary signaling pathways are activated by Wnt protein, such as planar cell polarity (PCP) and Ca²⁺ pathway, to activate the protein kinase C (PKC) protein by β-catenin mediated molecular signaling (Veeman and Axelrod, 2003). Planar cell polarity pathway activates the Rock and Jnk-kinase pathway by G-protein Rho and Rac receptor and controls the cell orientation to adjacent cells (Carvajal-Gonzalez and Roman, 2016). But in Wnt/Ca²⁺ pathway activated phospholipase C (PLC) via heterotrimeric G proteins. That results in Ca²⁺ dependent enzyme rising in the cell that leads to activation of heart physiology like protein kinase C (PKC), calcium dependent kinase-II and calcineurin proteins (Kühli and Sheldahl, 2000).

The Wnt signaling pathway performed a major role in the gene expression pattern of cardiovascular diseases. A new point of intervention of the Wnt pathway may lead to low molecular compounds targeted by novel drugs. The pathway inhibitors outlined the cancer treatment and the effects of cardiovascular diseases of human being. We are providing an overview of the Wnt signaling pathway regulating mechanism with the role of β-catenin in gene expression and the effect of miRNAs against the cardiovascular diseases. We also summarize the key roles and figure out the involvement of miRNAs in Wnt signaling in the cardiovascular diseases. Thus, the signaling modulates an active condition in heart diseases by pharmacological events. Probably this is the first report may provide a novel direction for miRNAs mediated molecular signaling pathway for the treatment of heart diseases.

Recently, modern medical biotechnology demonstrated that the miRNAs have essential regulatory function and emerged as promising diagnostic and therapeutic tools against the high risk cardiac diseases (Ouyang and Wei, 2021). MicroRNAs are single-stranded, small size (19–25 nucleotides), evolutionary conserved RNA molecules with non-coding sequences (Mencía Castaño and Raferty, 2020). Generally, these are the epigenetic regulators that modulate the gene expression and primarily associate with posttranslational modifications (Ardekani and Naeini, 2010). In post transcriptional modification event’s the miRNAs target messenger RNA (mRNAs) to inhibit the translation and loaded into the RNA-induced silencing complex (RISC) (Vaghf and Khansari, 2012). The RISC has endonuclease slicer that required for shaping miRNAs and other structural core protein, e.g Argonaut protein (Ago2) (Hammond and Boettcher, 2001). The Ago2 protein associate with miRNAs complex that able to bind with srRNAs and dsRNAs (Martinez and Patkanowski, 2002).

Recent study revealed that the miRNAs regulates Wnt signaling pathways, and both are interlinking each other to implicated different biological processes in animal body. MicroRNAs are participating at every step of Wnt signaling pathway to performed a key role in Wnt protein regulation and expression (Ueno and Hirata, 2013). During cardiac vascular diseases miRNAs execute the positive or negative regulation of Wnt protein in Wnt signaling pathway (Su, Zhang et al., 2012; Imui, Martello et al., 2010). MicroRNAs might be potential vital element in cardiac diseases as these are play an important role for signal transduction and cellular development of an organism (Bartels and Tsongalis, 2009). Therefore, the basic knowledge about the miRNAs mediated role of cellular mechanisms are used in therapeutic and diagnostic approaches for biological activities, and diseases at cellular level (Wang and Kwong, 2013; Espinoza-Levis and Wang, 2012; CDC, 2001). Recently, scientific communities are still investigating about the therapeutic tools of miRNAs against heart diseases (Balatti and Acunzo, 2016). Moreover, in this review we briefly reviewed the biogenesis and function of miRNAs, mechanism of action in Wnt signaling pathway, and finally highlighted the functional aspects of miRNAs that are regulates to targeting the Wnt signaling pathway linked with the cardiovascular diseases.

2. Biosynthesis pathway of miRNAs

In miRNA biogenesis pathway multiple protein components regulates the mature miRNA structure and its functions (Cheloufi and Dos Santos, 2010). Similar to proteins, the genes coding for miRNAs are exist in DNA of the nucleus. Each gene is transcribed by RNA polymerase II and produces either a regulatory or messenger RNA. The miRNA profiling, gene regulation, and understanding their biogenesis mechanism as well as the expression patterns is very much significant in defining miRNAs biological roles (Yang and Lai, 2011; Ledda and Ottaggio, 2020). Molecular pathway of this whole process is accurate, organized, and stepwise composite procedure which initiated from the inter-nuclear region and persistent to the cytoplasmic part of the cell until its final production completed.

Firstly, the long primary miRNA (pri-miRNA) was sliced by drosha protein along with its co-factor the Di George syndrome chromosomal region 8 (DGCR8). These protein remove the tail portion and developed a hairpin or stem-loop likes precursor miRNA structure (Bhattacharya and Sharma, 2020). Afterwards one of the nucleocytoplasmic transporter proteins, exportin-5 of karyopherin family and Ran-GTP cofactor recognized the pre-microRNA and brings it to the cytoplasm region of the cell (Melo and Melo, 2014). Here, the RNase-III endonuclease together with Dicer complex and its cofactor element, trans-activator RNA binding protein (TRBP)/PKR-activating protein (PACT) remove the loop, resulting as formation of an asymmetrical double stranded mature microRNA (Maurin and Cazalla, 2012). This synthesized the miRNA is of 20–25 nucleotides long. Subsequently, the matured miRNA loaded on Ago2 protein and interacts with dicer molecule to bind the short chain of miRNA. Now the miRNA is unwound, and one strand is completely released. The remaining strand, called as guide strand link with Ago2 and some additional proteins to form the RISC (RNA induced silencing complex). The RISC can now lead to its target and inactivates one or multiple genes of mRNA sequence. The 3’UTR of mRNA (messenger RNA) of a targeted gene is complementary to the sequence of the miRNA, which enables the base pairing of match nucleotides pair (Fig. 1). Once it bound, there are three ways of RISC to inactivate the function of messenger RNA. Within the complex proteins can cut the mRNA chain and further degraded by deadenlyation in the cell. Considering the inhibition of translation mechanism; the RISC complex inhibits the ribosomal subunits from binding to the specific mRNA strand. Therefore, in both cases mRNA will unable to translate any protein, and the gene will be silenced (Krol and Lodige, 2010). Besides that, miRNAs also participate in various biological functions and detected all types of human biological fluids. Therefore, it confirmed that miRNAs play an important role as biomarker in human diseases and developmental process (Bhattacharya and Sharma, 2020).

3. Wnt signaling pathway and miRNAs regulation

Wnt (Wingless and int-1) signaling pathways are evolutionarily conserved and are classified as canonical β-catenin-independent, non-canonical β-catenin-dependent, Wnt cell polarity and calcium pathways (Villarroyo and del Valle-Pérez, 2020). It consists of 19 secreted glycoproteins, Wnt ligands, Fzd (Frizzled) receptors, associate co-receptor and scaffolding proteins (Astudillo, 2020). These proteins are employed in a diverse plethora of cellular activity. While these proteins are not functioning in cellular system, this signaling pathway is correlated with various diseases (Wang, de Marco et al., 2019; Cicci, Corrado et al., 2019; Huang and Wei, 2019). From transcriptional regulation in the cytoplasm to post-translational modification of Wnt protein is tightly regulated at every level cellular expression (Ma and Hottiger, 2015). It also noted that the Wnt signaling mechanism is absent to result in phosphorylation of cytoplasmic β-catenin degraded by destruction complex with Axin, β-catenin, adenomous polyposis coli (APC), Ser/Thr kinases GSK-3β and casein kinase I δ (CKIδ) protein subunit (MacDonald and Tamai, 2009; Tolwinski and Wieschaus, 2004). Simultaneously the destruction
complex of GSK-3β and CKIα phosphorylate β-catenin also be degraded by ubiquitination (Clevers and Nusse, 2012). Whereas, the β-catenin play a vital role in Wnt signaling pathways since the lack of β-catenin in the nucleus results to inhibit the TCF-mediated activation of targeted signaling genes. When the TCF protein is present and accumulates the β-catenin in the cytoplasm, the complex has undergoes in nuclear translocation, activation and finally initiates the transcription of heart related genes (Rao and Kühl 2010). Subsequently, the inhibitory factors protein Dickkof (DKK) bind to the extracellular Wnt ligands, and secreted the Frizzled-related protein (sFRP) family, LRP6 or LRP5 and Wnt
inhibitory factor 1 (WIF1) that inhibits the active status of β-catenin (Kawano and Kypta, 2003; He and Semenov, 2004; Clevers, 2006). Dickkopf protein have consist four members of secreted glycoproteins, these are bind with low-density lipoprotein receptor related protein (LPR) and initiate the Wnt signal inhibition with high affinities (Bafico and Liu, 2001). Recent studies have seen the numbers of cardiovascular disease are performed a very important factor in sudden heart attacks. These diseases are cardiac hypertrophy, arrhythmias, fibrosis, coronary artery diseases, myocardial infarction and heart failure due to the lack of Wnt signaling protein activation (Calore and Lorenzon, 2019; Raso and Dirix, 2019). The genetic mutation in Wnt protein families in Wnt signaling pathway causes cardiovascular diseases within the human body. Thus, the Wnt protein performed a crucial role in cardiovascular diseases at recent era of modern peoples (Fig. 2). The regulation mechanism of mRNA directly depends on miRNAs binding to the corresponding 3’-UTR sequence in the target mRNA gene at diverse levels, and controlling the Wnt signal transduction in cardiovascular diseases (Bhat and Jarmolowski, 2016). Several studies found that miRNAs act as a vital element in Wnt signaling pathway, these are miR-1, miR-16, miR-27b, miR-30d, miR-126, and miR-133 (Thum and Catalucci, 2008; Ardekani and Naeini, 2010). The human miRNAs are annotated by their gene ID of human genome organization and its mature sequences (Hayashi and Chuva de Sousa Lopes, 2008). These all miRNAs which regulate the Wnt signaling pathway associated components and have significant impacts on various cardiovascular diseases is listed in Table 1.

3.1. GSK-3β protein

The GSK-3β (glycogen synthase kinase-3β) protein is associated with cardiovascular diseases and also involved in the Wnt signaling pathway. This protein based enzyme is a multifunctional proline rich serine-threonine kinase residue coded by the human GSK-3β gene and a key regulator of insulin-dependent glycogen synthesis (Stambolic and Woodgett, 1994; Doble and Woodgett, 2003; Luo, 2009). The GSK-3β protein is inactivating mediator and a phosphorylating agent of enzyme glycogen synthase within the eIF2B enzymes component. It also observed Woodgett, 1994; Doble and Woodgett, 2003; Luo, 2009). The GSK-3β protein is a regulator of insulin-dependent glycogen synthesis (Stambolic and Woodgett, 1994; Doble and Woodgett, 2003; Luo, 2009).

Sl. no	Names of the miRNA	Target gene	Possible role in Wnt signaling pathway	Type of cardiovascular diseases	References
1.	hsa-miR-29b	GSK3-β and Wnt5a	Inhibition of β-catenin activity	Cardiomyocyte	(Wang and Liu, 2017)
2.	hsa-miR-29a	GSK3-β, ICAT, CNTNBP1, HBPI, and GLI5b	Regulate the Wnt/β-catenin signaling activity	Hypertrophic cardiomyopathy, fibrosis	(Rubí and Toton-Zurániska, 2017)
3.	hsa-miR-29c	GSK3-β, ICAT, CNTNBP1, HBPI, and GLI5b	Regulate the Wnt/β-catenin signaling activity	Cardiomyocyte hypertrophy, fibrosis	(Roncarati and Viviani Anselmi, 2014)
4.	hsa-miR-33a	GSK3-β, p38	Negatively Regulates Wnt/β-catenin signaling pathway	Myocardial fibrosis	(Chen and Ding, 2018)
5.	hsa-miR-126	GSK3-β, SPRED1, EP300, WRCH1, FBZ1, Axin1	Suppressing Wnt/β-catenin signaling activity	Heart failure	(Song and Nigam, 2015)
6.	hsa-miR-128	TCF7, NFAT5, Ikaros	Wnt signaling mediates for the transcriptional control of Dnmt3b in cardiac cells	Cardiac hypertrophy	(Wang and Zhao, 2018)
7.	hsa-miR-133b	GSK3a2b	Wnt signaling activity in the heart	Atherosclerosis, smooth muscle cell differentiation	(Eken and Jin, 2017)
8.	hsa-miR-210	β-catenin, P-FD, sFRP2, HIPK2, PDCD4	Regulated Wnt/β-catenin signaling activity	Induced hypertrophy in cardiomyocytes	(Song and Nigam, 2015)
9.	hsa-miR-214	β-catenin, P-FD, sFRP2, HIPK2, PDCD4	Regulated Wnt/β-catenin signaling activity	Arrhythmogenic cardiomyopathy/arrhythmias, ischaemic injury	(Calore and Lorenzon, 2019)
One abundant miRNA (miR-128) expressed high level in various types of cardiovascular diseases. It exists in the chromosomal position of Ch2q21.3 and consist 82 nts long chain of nucleotide bases. This miRNA regulates the upstream direction and inhibits the GSK-3β protein function, and also accumulates β-catenin for translocate to the nucleus. The β-catenin binds to the TCF/LEF protein that might leads to the gene activation of cardiac cells and promote associate cardiovascular diseases (Foulquier and Daskalopoulos, 2018).

3.2. Protein complex (FZD-WNT-LRP5/6)

In the activation state of the Wnt signaling pathway, the Wnt ligand protein bind with cellular membrane protein (frizzled receptor and LRP5/6 proteins). The frizzled protein is a G-protein coupled receptor that is more essential for Wnt pathway (Malbon, 2004). These trimeric protein complex phosphorylated by the protein kinase and inhibits the activity of β-catenin and block the phosphorylation of GSK-3β. Consequently the β-catenin accumulates in the cytoplasm and followed by nuclear translocation in the nucleus. The GSK-3β protein dissociates with β-catenin and result into the binding with transcription factors TCF/LEF in the nucleus. Whereas, the transcription factors activated the Wnt responsive gene and expressed the linked disorders (Wang and Shu, 2005; Nusse and Clevers, 2017). This trimeric protein complex controls the numbers of biological activities like growth, metabolisms and development of cardiovascular diseases. These cardiovascular diseases are negatively regulated by miRNA-154, miRNA-499 and positively regulated by miRNA-210, miRNA-218 and miRNA-29 (Sun and Liu, 2021; Foulquier and Daskalopoulos, 2018). The miRNA-154 has encoded from the chromosomal position Ch14q32.31 and 84 nts long, whereas microRNA-499 has 122 nts base pair length and coded from the Ch20q11.22 chromosome position in human (Ibrahim and Fritz, 2021; Wang and Zhang, 2021). However, the miRNA-29 family, namely miRNA-29a/c found in chromosome position is Ch7q32.3 and Ch1q32.2, respectively. It also noted that the miRNA-154 and miRNA-499 suppress the Wnt signaling pathway. The miRNA-210 and miRNA-218 are equal 110 nts long and induce the Wnt signaling by blocking the APC, DKK and sFRPs receptor protein. This phenomena offered the Wnt protein plays a vital role in cardiovascular diseases.

3.3. Transcription factors family protein

The TCF/LEF protein family member plays vital role for heart development during the embryonic stage and different types of heart disease in adult condition. The transcription factors family protein interlinked with the cofactors that regulated by the Wnt protein subunit. The TCF7L1 protein is stage dependent and very enigmatic; it may be specially required for heart formation. Conversely deletion of TCF7L1 protein led to cardiomyocyte formation as the study was carried out on the mouse model (Athanasouli and Balli, 2022). TCF7L12 is the main TCF (T-cell factor) member of β-catenin protein expressed in CMs (cardiomyocytes), particularly during the late stage of cardiogenesis. During heart development and maturation stage the TCF7 and LEF1 protein decreased while TCF7L1 and TCF7L12 remain moderately constant level (Ye and Li, 2019). The TCF7L12 targets and restrict the cardiac function of heart in diseased condition (Iyer and Nagarajan, 2018). However, multiple factors promote the target gene of cardiovascular diseases because the activation of TCF/LEF protein stimulates the heart functions at the cardiovascular disease stage. The miRNA-133b/a functionally lowering the activities of β-catenin and TCF/LEF (Lin and Lin, 2021). The miRNA-133b/a consist with 119 nts and encoded from the Ch6p12.2 in humans. Previously, limited number of studies shown on the involvement of miRNAs in cardiovascular diseases through Wnt signalling pathway. Therefore, it is essential to do more scientific research on miRNAs as considering potential and functional aspects of molecular biology. Additional experimental and laboratory based studies are also required to identify how the Wnt signalling protein family regulates heart diseases coupled with the miRNAs.

4. miRNAs mediated cell activation of cardiovascular diseases

The miR-133b/a and miR-1 are dynamic muscle-specific miRNAs which helps in calcium signaling, cell growth and cellular development (Dong and Chen, 2010). In intracellular Ca$^{2+}$ regulation both the miR-133b/a and miR-1 reduced cardiac hypertrophy with the down regulation of mRNA and calcineurin protein (Dong and Chen, 2010; Liu and Bezprozvannaya, 2008). These miRNAs also blocked cardiomyocyte hypertrophy by the effector's gene NFATC4. The GSK-3β inhibits by Wnt protein complex and activates the 3β-catenine protein unit. This 3β-catenine protein also phosphorylate and transfer from cytoplasm to the nucleus and attached with the transcription factors protein (TCF/LEF) to regulates the Wnt signaling pathway. The miRNA-1 also promotes cardiomyocyte hypertrophy in human embryonic stem cell, which is a multipotent progenitor that suppress Wnt signaling pathway (Lu and Lin, 2013). Another pro-hypertrophic miRNA-29 positively regulates the...
cardiac fibrosis. It prevents TAC (Transverse aortic constriction)-induced cardiomyocyte hypertrophy and inhibits the genetic deficiency. But during the overexpression of miR-29 it directly promotes phenylephrine-induced cardiomyocyte hypertrophy (Sassi and Avramopoulos, 2017; Roncarati and Viviani Amelmi, 2014). Such phenomenon was induced by the Wnt signaling inhibitory factors such as GSK3β, ICAT/CTNNBIP1, HBP1 and GLI2 proteins (Wehbe and Nasser, 2019). Additionally, the human miRNAs and their HGNC ID, chromosome location, gene regulation, pre-miRNAs nucleotide length, the mature sequence and the map accession number interrelated with the Wnt signaling pathway in cardiovascular diseases are also listed in Table 2.

5. Future perspectives

The miRNA-based research and its future applications for clinical purposes are increasing in faster ways. Within a short period (last decade) from the first reporting of miRNAs in human body has been considered an effective novel tool for diagnosis and therapies purposes linked with cardiovascular diseases. Nevertheless, there also still much more significant things that remain to understand. In the outlook of the current research viewpoint, more advanced studies are required to illuminate this precise approach. In fact the miRNAs are competent to suppress the protein translation and initiate the process of mRNA degradation pathways. Likewise, the particular sources, positions and roles of miRNA in light of the cell to cell molecular communication are need to be understood in a well-defined state.

Furthermore, the miRNAs also served as important prognostic and diagnostic biomarkers in the perception of diverse clinical approaches. The superior clinical trials or research analysis are prerequisites factor to establishing whether the current miRNAs candidates offered added advantages over and above those of other prevailing known biomarkers of cardiovascular diseases. Currently, more technological progress are essential to facilitated the quick, consistent and reproducible results targeted to the absolute quantification of cardiovascular diseases linked with miRNAs to facilitated the transition into an effective clinical practices.

Lastly, while there continue a number of vital challenges to overwhelmed, researchers should be aware about the impending arrival of miRNA-based therapeutics within the specified domain of clinical medicine for cardiovascular diseases.

6. Conclusions

Nowadays, human miRNAs can possibly be used as the new promising elements for novel personalized therapies. Numerous scientific reports previously highlighted about the usefulness of miRNA based treatments (in vivo) model. Even through, more significant studies are urgently required to translate these miRNA regulated gene interaction results into the bench to clinical applications. Additionally, the foremost effort also needs to address to test the multiple safety parameters of the miRNAs delivery systems, dosage, and mode of administration, time span of the treatments, the occurrence and also the prevention of side effects specific for the cardiovascular diseases.

Thus, it has been scientifically confirmed that the miRNAs performed a crucial role in numerous types of cardiovascular pathologies. The preliminary studies of Wnt signaling pathway and miRNAs already shown high promises for the scientific uses of miRNA as novel biomarkers and even therapeutic targets in the near future.

CRediT authorship contribution statement

Jiban Kumar Behera: Writing – original draft, Validation, Investigation. Manojit Bhattacharya: Conceptualization, Formal analysis, Writing – review & editing. Pabitra Mishra: Visualization, Data curation, Formal analysis. Akansha Mishra: Visualization, Validation. Adya Anindita Dash: Visualization, Validation, Niladri Bhusan Kar: Visualization, Validation. Bhaskar Behera: Validation, Formal analysis. Bidhan Chandra Patra: Supervision, Validation, Project administration.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

The authors thank to the authorities of Fakir Mohan University and Vidyasagar University.

Abbreviation

miRNA	MicroRNA
UTR	Untranslated region
Fzd	Frizzled
APC	Adenomatous polyposis coli
CK1	Casein kinase 1
GSK-3β	Glycogen synthase kinase 3β

Table 2
Various human miRNAs and their HGNC ID, chromosome location, gene regulation, pre-microRNAs nucleotide length, the mature sequence and the map accession number interrelated with Wnt signaling pathway in cardiovascular diseases.

Names of the miRNA	HGNC	Chromosome location	Gene regulation	Nucleotide length (nt) of pre-miRNA	Mature sequence of miRNA	miRNA map accession no.
hsa-miR-26b	31612	Ch2q35	DOWN	77 nt	47 - CCUGUUCUCAUUCAUCUGUU - 67	MI0000094
hsa-miR-29a	31616	Ch7q32.3	UP	64 nt	42 - UAGGACCAUCUAAACUGCGUA - 63	MI0000897
hsa-miR-29c	31621	Ch1q32.2	UP	88 nt	54 - UAGGACCAUCUUAAACUGCGU - 75	MI0000735
hsa-miR-33a	31634	Ch22q13.2	DOWN	69 nt	46 - CAUUGUUUCACAGUUGCAUCAC - 67	MI0000091
hsa-miR-126	31508	Ch9q43.4	DOWN	85 nt	52 - UGUAGCGUGUAUGUAUAGUGG - 73	MI0000471
hsa-miR-128	31510	Ch2q21.3	UP	82 nt	50-UCAACGGUGAAGCGCUUCUUU - 70	MI0000447
hsa-miR-133b	31759	Ch6p1.2	DOWN	119 nt	66-UUGUGGGCCUCUUCAGGGCAUGA - 87	MI0000822
hsa-miR-154	31541	Ch4q32.31	UP	84 nt	51-AUAUAUACACGGUGUAGCUAUU - 72	MI0000480
hsa-miR-210	31587	Ch1p15.5	UP	110 nt	66-UGUAGGGGUUGACAGGGCGUGA - 87	MI0000286
hsa-miR-218	31595	Ch4p15.31	UP	110 nt	68-UGUAGGGGCUACAAUGCACUGUG - 89	MI0000294
hsa-miR-499-5p	32133	Ch20q11.22	UP	122 nt	33-U1AAGACUUGCAGUGACGUG - 53	MI0003183
Nusse, R., Clevers, H., 2017. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169 (6), 985–999.

Ouyang, Z., Wei, K., 2021. miRNA in cardiac development and regeneration. Cell Regen. 10 (1), 1–21.

Qi, Y.-W., Walsh, K., et al., 2005. Wnts induce migration and invasion of myeloma plasma cells. Blood 106 (5), 1786–1793.

Rao, T.P., Kähö, M., 2010. An updated overview on Wnt signaling pathways: a prelude for more. Circ. Res. 106 (12), 1798–1806.

Raso, A., Dirks, E., et al., 2019. Therapeutic delivery of mir-148a suppresses ventricular dilation in heart failure. Mol. Ther. 27 (3), 584–599.

Romaine, S.P., Tomaszewski, M., et al., 2015. MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart 101 (12), 921–928.

Roncarati, R., Viviani Anselmi, C., et al., 2014. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 63 (9), 920–927.

Rubini, P., Totoń-Zuranska, J., et al., 2017. Relations between circulating microRNAs (miR-21, miR-26, miR-29, miR-30 and miR-133a), extracellular matrix fibrosis and serum markers of fibrosis in dilated cardiomyopathy. Int. J. Cardiol. 231, 201–206.

Salinas, J., Lin, H., et al., 2019. Whole blood microRNA expression associated with stroke: results from the Framingham Heart Study. PloS One 14 (8), e0219261.

Sansi, Y., Avramopoulos, P., et al., 2017. Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling. Nat. Commun. 8 (1), 1–11.

Simon, M., Grandage, V.L., et al., 2005. Constitutive activation of the Wnt/β-catenin signalling pathway in acute myeloid leukaemia. Oncogene 24 (14), 2410–2420.

Song, J.L., Nigam, P., et al., 2015. microRNA regulation of Wnt signaling pathways in development and disease. Cell. Signal. 27 (7), 1380–1391.

Sonntag, K.C., Woo, T.-U.W., et al., 2012. Converging miRNA functions in diverse brain disorders: a case for miR-124 and miR-126. Exp. Neurol. 235 (2), 427–435.

Stakhnev, D., 2020. Wnt/β-catenin and mTOR signaling in regulation of T-cell phenotype and cytotoxic activity for adoptive cellular immunotherapy of cancer. https://hdl.handle.net/20.500.11956/121237.

Stambolic, V., Woodgett, J.R., 1994. Mitogen inactivation of glycogen synthase kinase-3 β in intact cells via serine 9 phosphorylation. Biochem. J. 303 (3), 701–704.

Tolwinski, N.S., Wieschaus, E., 2004. Rethinking WNT signaling. Trends Genet. 20 (4), 177–181.

Ueno, K., Hirata, H., et al., 2013. Frizzled homolog proteins, microRNAs and Wnt signaling in cancer. Int. J. Cancer 132 (8), 1731–1740.

Yaghi, A., Khansarinejad, B., et al., 2021. The role of microRNAs in diseases and related signaling pathways. Mol. Biol. Rep. 1–13.

Ye, B., Li, L., et al., 2019. Opposing roles of TCF7/LEF1 and TCF7L2 in cyclin D2 and GSK-3β regulation in occurrence of valvular heart disease with atrial fibrillation based on computational evidences. PloS One 14 (9), e0221906.

Yang, J.S., Lai, E.C., 2011. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell 43 (6), 892–903.

Ye, B., Li, L., et al., 2019. Sources and Fyn define a new signaling cascade activated by canonical and non-canonical Wnt ligands and required for gene transcription and cell invasion. Cell. Mol. Life Sci. 77 (5), 919–935.

Wang, D., Liu, C., et al., 2017. Impact of miR-26b on cardiomyocyte differentiation in P19 cells through regulating canonical/non-canonical Wnt signalling. Cell Prolif 50 (6), e12371.

Wang, G., Rao, N., et al., 2019. Analysis of potential roles of combinatorial microRNA regulation in occurrence of valvular heart disease with atrial fibrillation based on computational evidences. PloS One 14 (9), e0221906.

Wang, L.Q., Kwong, Y.L., et al., 2015. Epigenetic inactivation of miR-9 family microRNAs in chronic lymphocytic leukemia implications on constitutive activation of NFκB pathway. Mol. Cancer 12 (1), 1–9.

Wang, M., de Marco, P., et al., 2019. Update on the role of the non-canonical Wnt/planar cell polarity pathway in neural tube defects. Cells 8 (10), 1198.

Wang, X., Zhang, F., et al., 2021. Resolution factor 15-epi-Lipoxin A4 modulates miRNA-21, miR-26, miR-29, miR-30 and miR-133a), extracellular matrix fibrosis and serum markers of fibrosis in dilated cardiomyopathy. Int. J. Cardiol. 231, 201–206.

Wang, Z., Sha, W., et al., 2005. Wnt7b activates canonical signaling in epithelial and vascular smooth muscle cells through interactions with Fzd1, Fzd10, and LRP5. Mol. Cell Biol. 25 (12), 5022–5030.

Webbe, N., Nasser, S.A., et al., 2019. MicroRNAs in cardiac hypertrophy. Int. J. Mol. Sci. 20 (19), 4714.

Woodgett, J.R., 2001. Judging a protein by more than its name: GSK-3. 2001 Sci. STKE (100), re12.

Xie, B., Li, L., et al., 2021. MicroRNA-1246 by targeting AXIN2 and GSK-3β overcomes drug resistance and induces apoptosis in chemo-resistant leukemia cells. J. Cancer 12 (14), 4196.

Yang, J.-S., Lai, E.C., 2011. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell 43 (6), 892–903.

Ye, B., Li, L., et al., 2019. Opposing roles of TCPT/LEFI and TCFT2 in cyclin D2 and Lmp4 expression and cardiomyocyte cell cycle control during late heart development. Lab. Invest. 99 (6), 807–818.

Yost, C., Torres, M., et al., 1996. The axis-inducing activity, stability, and subcellular distribution of β-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10 (12), 1443–1454.

Zhang, Y., Han, P., et al., 2021. Oncogenic landscape of somatic mutations perturbing pan-cancer IncRNA-ceRNA regulation. Front. Cell Dev. Biol. 9, 658346. https://doi.org/10.3389/fcell.2021.658346.