The complete chloroplast genome sequence of *Lilium concolor var. pulchellum*

Shengnan Kanga, b,*, Xuemin Zhanga, b,*, Mingfang Zhangb, Yunpeng Dub, Haiying Qinc, Xiaonan Yua and Zhang Xiuhaib

aBeijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing, China; bInstitute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; cChongqing Municipal Agricultural School, Chongqing, China

ABSTRACT

Lilium concolor var. pulchellum is a perennial herbaceous plant with high ornamental and edible value; it is a critical breeding parent of Asiatic hybrids. In this study, we reported the complete chloroplast genome of *L. concolor var. pulchellum*. The total size of the genome is 152,126 bp with a GC content of 37.0%. It has a conserved quadripartite structure comprising 136 genes, including 38 tRNA genes, 83 protein-coding genes, and 7 pseudogenes. Phylogenetic analysis strongly supported a close relation between *L. concolor var. pulchellum* and *L. callosum*. The complete plastome sequence of *L. concolor var. pulchellum* could provide useful information for phylogetic evolution of the genus *Lilium*.

KEYWORDS

Lilium concolor var. pulchellum; *Lilium* chloroplast genome; phylogenetic analysis

Lilium concolor var. pulchellum (Fisch.) Regel 1876, belonging to the genus *Lilium* in the Liliaceae family, is an excellent germplasm resource of the genus *Lilium*. It has a great potential for development and utilization (Du et al. 2014). *L. concolor var. pulchellum* is naturally distributed in Northern China (Liaoning, Jilin, Heilongjiang, Hebei province), South Korea, Russia, and North Korea (Liang and Tamuram 2000). At present, the main phylogenetic clades of the genus *Lilium* have been basically defined, and the renewal system could be divided into seven sections (Martagon, Pseudolirium, Lilium, Archelirion, Sinomartagon, Leucolirion, and Oxypetalum) according to the morphological taxonomy and molecular phylogenetic methods (Gao et al. 2013; Du et al. 2017). Some of these groups are subdivided into several subgroups. Sinomartagon is the fifth group, divided into Sinomartagon5a and Sinomartagon5b due to morphological characteristics (Comber 1949; De 1974). In this study, we report the complete chloroplast (cp) genome of *L. concolor var. pulchellum* for the first time. It could provide the genomic resource for further studies on the genetic evolution of the genus *Lilium*.

Healthy and fresh leaves of *L. concolor var. pulchellum* species were collected from National Lily Germplasm Bank of Beijing Academy of Agriculture and Forestry Sciences, Beijing, China (39°56′37″N, 116°17′15″E). The collection of plant material was carried out in accordance with the guidelines provided by National Lily Germplasm Bank of Beijing Academy of Agriculture and Forestry Sciences and with the permission from the institution. The specimen was stored in the Herbarium, Institute of Botany, Chinese Academy of Sciences (contact Wang Zhongtao, pe@ibcas.ac.cn). The specimen accession number is Z0166. Total genomic DNA was extracted using a plant genome extraction kit (Tiangen, Beijing, China). Subsequently, DNA concentration was measured using a NanoDrop spectrophotometer 2000 (Thermo Fisher Scientific, America). DNA was sheared to construct a 400 bp (insert size) paired-end library by the Illumina HiSeq 4000 standard protocol. The paired-end reads were qualitatively assessed and completed using SPAdes 3.6.1 (Bankevich et al. 2012). The gaps were filled by PCR amplification and Sanger sequencing. The Sanger sequence reads were proofread and assembled with Sequencher 4.10 (http://www.genecodes.com).

All genes encoding proteins, transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs) were annotated on *Lilium*. Plastomes were annotated using Dual Organellar Genome Annotator (DOGMA) software and the tRNA Scan-SE 1.21 program (Wyman et al. 2004, Schattner et al. 2005). Initial annotation and the putative starts, stops and intron positions were identified by comparison with other *Lilium* cp homologous genes. The complete cp genome of *L. concolor var. pulchellum* was submitted to GenBank with the accession number MZ751064.

The length of *L. concolor var. pulchellum* chloroplast genome is 152,126 bp. The genome is assembled in the single circular, double-stranded DNA sequences, displaying a typical quadripartite structure, consisting of a pair of Inverted...
Repeats (IRs, 26,492 bp) separated by the Large Single Copy (LSC, 82,058 bp) and Small Single Copy (SSC, 17,084 bp) regions. The total GC content is 37.0%, and the corresponding values of the LSC, SSC, and IR regions are 34.8, 30.8, and 42.5%, respectively. The chloroplast genome contained 136 genes in total, including 83 protein-coding genes, 38 tRNA genes, 8 rRNA genes, and 7 pseudogenes (ycf68, ycf15, ycf1, and infA). In addition, there were 23 genes that contained the introns, three of them (ycf3, rps12, clpP) had two introns, and the rest had only one intron (trnK-UUU, trnS-UGC, atpF, rpoC1, trnL-UAA, trnV-UAC, petB, petD, rpl16, rpl2, trnH-GUG, trnL-GAU, trnA-UGC, ndHA, trnA-GAU, trnA-UGC, trnA-GAU). A total of 64 simple sequence repeats (SSR) were identified in the chloroplast genome of L. concolor var. pulchellum (Beier et al. 2017), ranging from the mononucleotide to pentanucleotide repeat motifs.

To explore the phylogenetic relationship among this species and its related taxa, 17 Lilium chloroplast plastome sequences were downloaded from the NCBI Genbank database, using Cardiocrinum giganteum, Notholirion bulbuliferum, Notholirion campanulatum, and Fritillaria persica as the outgroup. Phylogenetic trees were constructed by the maximum-likelihood (ML) and Bayesian analysis (BI) methods using the entire cp genome. The ML analyses were performed using RAxML-HPC2 on XSEDE (8.2.12) at the CIPRES Science Gateway website (Stamatakis et al. 2008; Miller et al. 2015) (http://www.phylo.org/sub_sections/portal/), as suggested with 1000 bootstrap replicates. The BI was performed with MrBayes 3.2 (Ronquist et al. 2012). A random tree and 100,000 generations started in the Markov chain Monte Carlo (MCMC).

Phylogenetic analysis showed that L. concolor var. pulchellum belonged to Sinomartagon 5b, and it formed the closest clade with L. callosum with a strong bootstrap support of 100% (Figure 1). The chloroplast genome of L. concolor var. pulchellum provides the valuable genomic resource for the phylogenetic studies of the genus Lilium.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was funded by National Natural Science Foundation projects [Grants 31601781], the science and technology development center project of State Forestry and Grassland Administration [KZX5A202108], the special projects for capacity-building in scientific and technological innovation of Beijing Academy of Agriculture and Forestry [KJCKX20200103], The Youth Fund Project of Beijing Academy of Agriculture and Forestry [QNJ201910].

Author contributions

Shengnan Kang was involved in the conception and design and analysis and interpretation of the data; Xuemin Zhang was involved in the drafting of the paper, Mingfang Zhang and Yunpeng Du were involved in revising it critically for intellectual content; Haiying Qin, Xiaonan Yu and Xiuhai Zhang were involved in the final approval of the version to be published; and that all authors agree to be accountable for all aspects of the work.

ORCID

Shengnan Kang http://orcid.org/0000-0002-9891-6185

Data availability statement

This data has been uploaded to GenBank of NCBI at https://www.ncbi.nlm.nih.gov/genbank, with GenBank accession number MZ751064. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA791705, SRX13501476, and SAMN24338948, respectively.

References

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. 2012. SPAdes: a
new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19(5):455–477.
Beier S, Thiel T, Münch T, Scholz U, Mascher M. 2017. MISA-web: a web server for microsatellite prediction. Bioinformatics. 33(16):2583–2585.
Comber HF. 1949. A new classification of genus Lilium, lily yearbook. Roy Hort Soc. 13:86–105.
De Jong PC. 1974. Some notes on the evolution of lilies. North Am Lily Yearbook. 27:23–28.
Du Y-P, Bi Y, Yang F-P, Zhang M-F, Chen X-Q, Xue J, Zhang X-H. 2017. Complete chloroplast genome sequences of Lilium: insights into evolutionary dynamics and phylogenetic analyses. Sci Rep. 7(1):5751.
Du Y-p, He H-b, Wang Z-x, Wei C, Li S, Jia G-x. 2014. Investigation and evaluation of the genus Lilium resources native to China. Genet Resour Crop Evol. 61(2):395–412.
Gao Y-D, Harris AJ, Zhou S-D, He X-J. 2013. Evolutionary events in Lilium (including Nomocharis, Liliaceae) are temporally correlated with orogenies of the Q-T plateau and the Hengduan Mountains. Mol Phylogenet Evol. 68(3):443–460.
Liang SY, Tamuram MN. 2000. Lilium Linnaeus, vol 24. Flora of China. Beijing/St. Louis (MO): Science Press/Missouri Botanical Garden Press.
Miller MA, Schwartz T, Pickett BE, He S, Klem EB, Scheuermann RH, Passarotti M, Kaufman S, O’Leary MA. 2015. A RESTful API for Access to Phylogenetic Tools via the CIPRES Science Gateway. Evol Bioinform Online. Mar 16;11:43–8.
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 61(3):539–542.
Schattner P, Brooks AN, Lowe TM. 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33:686–689.
Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol. 57(5):758–771.
Wyman SK, Jansen RK, Boore JL. 2004. Automatic annotation of organelar genomes with DOGMA. Bioinformatics. 20(17):3252–3255.