Troy+ brain stem cells cycle through quiescence and regulate their number by sensing niche occupancy

Onur Basak1,a,b,1, Teresa G. Kriegerb, Mauro J. Muraro1,a, Kay Wiebrandsb,², Daniel E. Stange1,a,b,², Javier Frias-Aldeguearb,c,d, Nicolas C. Rivron1,a,b,², Marc van de Weteringb,a,b,3, Johan H. van Es1,a,b, Alexander van Oudenaarden1,a,², Benjamin D. Simons1,a,b, and Hans Clevers1,a,b,²,e,3

1Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT, Utrecht, The Netherlands; ²Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 GC, Utrecht, The Netherlands; 3The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QH, United Kingdom; 4MELN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229ER, Maastricht, The Netherlands; 5Princess Máxima Centre, 3584 CT, Utrecht, The Netherlands; 6Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom; and 7Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1TJ, United Kingdom

Contributed by Hans Clevers, November 7, 2017 (sent for review September 11, 2017; reviewed by Francois Guillemot and Ana Martin-Villalba)

The adult mouse subependymal zone provides a niche for mammalian neural stem cells (NSCs). However, the molecular signature, self-renewal potential, and fate behavior of NSCs remain poorly defined. Here we propose a model in which the fate of active NSCs is coupled to the total number of neighboring NSCs in a shared niche. Using knock-in reporter alleles and single-cell RNA sequencing, we show that the Wnt target Tnrfsf19/Troy identifies both active and quiescent NSCs. Quantitative analysis of genetic lineage tracing of individual NSCs under homeostasis or in response to injury reveals rapid expansion of stem-cell number before some return to quiescence. This behavior is best explained by stochastic fate decisions, where stem-cell number within a shared niche fluctuates over time. Fate mapping proliferating cells using a Kit6creERT2 allele confirms that active NSCs reversibly return to quiescence, achieving long-term self-renewal. Our findings suggest a niche-based mechanism for the regulation of NSC fate and number.

Significance

Adult mammalian tissues contain stem cells that contribute to tissue homeostasis and regeneration, with potential therapeutic applications. Specialized niches regulate their fate. Here we evaluated quantitatively how the subependymal zone niche regulates neural stem cell (NSC) number in the adult mouse brain. Using knock-in reporter alleles and single-cell RNA sequencing, we show that the Wnt target Tnrfsf19/Troy identifies both active and quiescent NSCs. Using the Kit6creERT2 mouse model, we found that dividing stem cells have long-term self-renewal potential. We propose a model where the fate of NSCs is coupled to their density within a closed niche. Our results suggest a new mechanism for regulating adult stem cell number, which might be deregulated in brain malignancies and in aging.
is “disposable” so that, once activated, they either differentiate directly or stay in the cell cycle, becoming exhausted over time. Recently, evidence in favor of the “disposable” stem cell model has been provided by genetic lineage tracing and live-imaging studies, which suggest that aNSCs eventually lose neurogenic potential (32–35). Studies based on the direct visualization of radial glia in slice cultures as well as invertebrate models have placed emphasis on invariant asymmetric cell division (36). However, evidence in support of either niche-directed asymmetric NSC division or the spontaneous segregation of fate determinants is currently lacking. Alongside their identity and fate behavior, the nature of NSC regulation also remains unresolved: In particular, does the fate behavior of NSCs follow from intrinsic (cell-autonomous) regulation or through interactions with the local environment? If the latter, do NSCs explore an open or facultative niche, or are they confined to a closed domain?

Here, we have combined long-term genetic lineage tracing assays and detailed quantitative analysis of clone fate with single-cell RNA expression profiling to resolve the molecular identity, functional heterogeneity, self-renewal potential, and fate behavior of NSCs in the SEZ of adult mice.

Results

Troy Marks Adult NSCs in the SEZ. The Wnt signaling pathway is pivotal for the maintenance of multiple adult stem-cell populations (37). However, its role in regulating SEZ NSC fate is poorly understood (38–40). Recently, the Wnt target Tnfsf19/Troy has been found to mark active intestinal stem cells and a quiescent stem-cell population in the stomach (41, 42). Since Troy expression has been reported in the SEZ (43), we questioned whether Troy+ cells may be NSCs and used the TroyGFPPresCreERf/+;IHet knock-in mouse to characterize their functional behavior in adult neurogenesis.

We found TroyGFP expression (visualized by endogenous fluorescence) to be highly restricted to the SEZ (Fig. 1B and SI Theory). Analyzed by immunohistochemistry, TroyGFP+ cells expressed progenitor markers MS11 and SOX2 (94 ± 9% and 72 ± 11% of TroyGFP+ cells, respectively) as well as the astrocyte/stem-cell marker GFAP (76 ± 9%; Fig. 1C, D, and H and Fig. S1 A and B), but did not express the NB marker doublecortin (DCX; 0 ± 0%; Fig. 1E and H); 0.7 ± 0.7% of TroyGFP+ cells expressed the astrocyte/ependymal marker S100β (Fig. 1F and H). These TroyGFP+S100β+ cells were located below the ventricular surface and showed astrocyte-like processes (Fig. S1C). Consistently, acetylated tubulin staining confirmed that TroyGFP+ cells lacked ependymal-specific multiple motile cilia (Fig. 1F and H). Of note, we could not detect endogenous TroyGFP expression in parenchymal astrocytes (Fig. 1B and D). While some TroyGFP+ cells were observed to be in the cell cycle, as indicated by proliferating cell nuclear antigen (PCNA; 19 ± 2%) and Ki67 (18 ± 2%) expression, they formed only a fraction of proliferating SEZ cells (24 ± 10% of Ki67+ cells; Fig. 1G and H and Fig. S1D); 72 ± 50% of the GFAP+ SEZ astrocytes expressed TroyGFP, while none of the S100β+ ependyma with acetylated tubulin bundles (0 ± 0%) and DCX+ NBs (0 ± 0%) expressed TroyGFP (Fig. 1F and S1F). TroyGFP+ cells touched the ventricles between S100β+ ependyma and contacted blood vessels, both key morphological features of NSCs (Fig. 1F and Fig. S1E). Single-molecule FISH (smFISH) revealed that the average copy number of Troy mRNA per cell was highest in subependymal cells and low in cells lining the ventricles (Fig. S1G). While ependymal cells might express low levels of Troy mRNA, all Troy-high cells were subependymal. Some cells with low levels of TroyGFP fluorescence were also visible in the blood vessels and in the parenchyma (Fig. 1B). These cells were never GFP-high and were outside the neurogenic niche and, as such, were not

**or differentiating (8, 28–30). However, the fate behavior of individual NSCs remains undefined. In the “classical” model, maintenance of the NSC population is thought to involve serial rounds of invariant asymmetric cell division. In this paradigm, following entry of qNSCs into the cycle only one daughter cell returns to quiescence, while the other differentiates into a TA cell either directly or through a series of terminal divisions (31). Alternatively, the fate behavior of NSCs could be stochastic such that, upon activation, an average of one aNSC returns to quiescence for every qNSC that enters into the cell cycle. In the first paradigm, which we term “division asymmetry,” only qNSCs maintain long-term self-renewal potential while, in the second, termed “population asymmetry,” self-renewal potential is shared by quiescent and aNSCs and achieved only at the population level. Finally, another intriguing possibility is that the NSC pool

Fig. 1. TroyGFP population displays NSC characteristics. (A) Schematic representation of the adult SEZ niche. b.v., blood vessels; E, ependymal cells; TA, transient amplifying cells; SOX2, Sox2, and GFAP+ (D–H) Characterization of the TroyGFP population using confocal assisted immunohistochemistry. TroyGFP cells include SOX2+ (C) and GFAP+ (D) progenitors but not DCX+ NbS (E) or S100β+ E cells (F). Some TroyGFP cells are actively cycling (Ki67+, G). (H) Quantification of the results in C–G. (I) FACS-sorted GFP+ cells were assayed for their neurosphere-forming potential. (J) Individual TroyGFP+–derived spheres (40-40 spheres, five animals) could be expanded over at least 10 passages and displayed multipotency generating β3-tubulin+ neurons (red, Left), GFAP+ astrocytes (green, Left), and CNPase+ (red, Right) oligodendrocytes upon differentiation. (K) Lineage tracing using TroyGFPPresCreER RosaIRE mice. X-Gal staining of coronal sections of brains isolated 2 d (Lower Left) or 1 y (Lower Right) after 5 d of Tmx administration (1 × 5 mg each day). Error bars show SD. (Scale bars: B, 1 mm; C and G, 10 μm; D and F, 20 μm; E, 100 μm; I, 100 μm.)
analyzed further. The Troy^GFP^ population therefore includes both astrocytic and proliferating cells of the SEZ.

To investigate whether Troy+ cells could self-renew and differentiate into the diverse cell types of the adult brain we performed neurosphere assays. When placed in culture, we found that Troy^GFP^ cells formed neurospheres (1.3 ± 0.4%) much more efficiently than Troy^GFP−^ and Troy^GFP−^ cells (0.02 ± 0.02% and 0%, respectively; P < 0.0001; Fig. 1F). Individual Troy^GFP−^ cells displayed multipotency, differentiating into neurons, astrocytes, and oligodendrocytes (Fig. 1J). When compared directly to published NSC markers (15, 44), Troy^GFP−^ cells (1.8 ± 0.2%) generated neurospheres more efficiently than SLC1A3+EGFR− qNSCs (0 ± 0%; P < 0.005) and SLC1A3+ PROM1− astrocytes (0.56 ± 0.12%; P < 0.005; Fig. S1H). SLC1A3+EGFR+ aNSCs and Troy^GFP−^ cells formed comparable numbers of neurospheres (2.23 ± 0.15%; P = 0.048; Fig. S1H). Thus, Troy^GFP^ cells display self-renewal potential and multipotency in vitro.

To probe the self-renewal and differentiation potential of Troy+ cells in vivo we used Troy^GFPiresCreER+ /Het Rosa26LacZ+ /Het mice where tamoxifen (Tmx) injection results in heritable activation of LacZ expression (Fig. 1K). Following five rounds of daily Tmx injection, labeled cells were confined to the SEZ at 2 d postinduction and robustly populated the OB over time (Fig. 1K). Recombined cells remained in the SEZ even after 6 mo and 1 y postlabeling and generated new NBs, identifying Troy as a marker whose expression pattern overlaps with that of the adult NSC pool (Fig. 1K and Fig. S1 I–S).

Single-Cell Whole Transcriptome Atlas of Adult Neurogenesis. To characterize the molecular features and heterogeneity of Troy+ NSCs we generated a single-cell atlas of adult neurogenesis in the SEZ using Sort-seq, which combines FACS with automated single-cell RNA sequencing (45, 46) (Fig. 2A and Fig. S24; see SI Theory for further details on this section). We isolated cells using key published surface markers (15, 47), Scl1a3 (NSCs), and EGF binding ability (dividing cells), as well as reporters based on transgenic mouse models Troy^GFPiresCreER^ (NSCs) and Klf6^RFP^ (dividing cells) (48), among others. We then used the RaceID2 algorithm to cluster 1,465 cells which passed our quality control, based on similarity of their transcriptome to find virtually all cell types present in the SEZ (Fig. S24 and Dataset S1). Focusing on the 1,205 cells that are on the NSC-to-neuron differentiation axis, we identified nine clusters showing a near-continuous variation in the pattern of expression together with a small isolated cluster on the t-distributed stochastic neighbor-embedding (t-SNE) map (Fig. 2 A and B and Fig. S2 A and B). We considered genes significantly enriched (false discovery rate <0.01) in a given cluster(s) compared with the rest of the dataset as their “molecular signature,” as described before (49). These included Scl1a3/Hes5/Nr2e1+ NSCs (clusters 1, 2, 3, 4, and 6) where Troy^GFP^ sorted cells as well as Troy mRNA were enriched (15, 50, 51) (Fig. 2 A and C and Fig. S24). Expression of Egfr and

![Fig. 2](https://www.pnas.org/cgi/doi/10.1073/pnas.1715911114)

- **Fig. 2.** Single-cell transcriptome atlas of adult neurogenesis. (A) A t-SNE map showing clusters identified by RaceID2 and expression of key marker genes.
- (B) Summary of genes differentially expressed in each cluster. Unique (left lane) as well as shared (middle and right lane) genes are shown. See Dataset S2 for a complete list. (C) t-SNE maps displaying the normalized log2 expression of key genes. The color key shows expression values. (D) Distribution of sorted cell populations along pseudotime. Putative cell types are indicated above. Boxes highlight clusters 2, 1, and 6. Colors code for RaceID2 clusters shown in A. (E) Plot displaying the running mean average expression levels of representative (exemplar) genes for selected gene modules. In D and E, cells are ordered on the x axis according to pseudotime; the color bar displays RaceID2 clusters.
Fabp7 identified aNSC clusters 1 and 6, the latter of which is enriched in Ascl1 (S2) (Fig. 2A and B and Fig. S2C). Marker expression identified Dlx1/Dlx2/Sox11+ clusters 5 and 8 as TA cells, Dcx+ cluster 7 as NBs, and Gad1, Snap25, and Rbfox3 cluster 9 (consistent with them being isolated from the OB) as neurons (Fig. 2B and Fig. S2A–D). When placed in a linear order on the NSC–neuronal differentiation axis (pseudotime; see SI Theory), TroyGF+ aNSCs were placed early and partially overlapped with Kig7YFP+ and SLC1A3/EGFR+ (putative aNSCs) cells (53) (Fig. 2D). SLC1A3/EGFR– cells, with an expression profile similar to published signatures of qNSCs, also expressed Troy mRNA (Fig. S3C). Analysis of the single-cell transcriptome data provided independent evidence that Troy+ cells display key molecular features of NSCs and overlap with published stem cell signatures. A detailed analysis of the expression pattern of new and published markers is described in SI Theory. Here, we focused on the putative aNSCs to investigate the molecular basis of their functional differences.

For this purpose, we used coexpression of a selected set of genes as a proxy to define coregulated gene modules using the APcluster package (54) for affinity propagation clustering and identified 19 gene modules (Fig. 2E, Fig. S3 E and F, and Datasets S3 and S4). Most modules displayed marked changes in gene expression at intermediate points along the pseudotime axis, where cells of clusters 2, 1, 6, and 5 reside (Fig. 2E and Fig. S3F). In contrast, cell cycle-related gene modules were up-regulated almost simultaneously along the pseudotime axis from cluster 6 onward, demonstrating that dividing and nondividing cell types were clearly separated (Fig. S3G). Consistently, ribosomal gene expression displayed a three-stage pattern: low in clusters 4 and 3 (qNSCs), medium in clusters 2 (NSCs primed for activation, pNSCs) and 1 (aNSCs), and high in clusters where cell cycle-related gene expression is elevated (Fig. S2C).

Apart from cell cycle-related modules, changes in gene expression do not occur simultaneously, which argues against a single molecular switch of differentiation (Fig. 2E). Instead, Grpr371, Ape1, and Slc1a2 modules all diminish at different points along the pseudotime axis (Fig. 2E). An initial peak of expression of the carboxypeptidase E (Cpe) gene module in primed NSCs was followed by peaks of Ascl1 and Fos gene modules in aNSCs. Expression of Npm1, Hmgb2, Hnrnpab, and Sox11 modules initiated at distinct points in aNSCs along the pseudotime axis and persisted in putative TA cells (Dlx2+) and NBs (Dcx+) (Fig. 2E and Fig. S3F). Similarly, signaling pathway components and surface receptors implicated in cell fate decisions display a complex pattern in aNSCs (Fig. S3F). This behavior is consistent with the absence of a “point of no return,” where the distinction between traditional NSCs and TA cells is clear-cut.

In summary, these findings suggest that niche-related signaling pathways display dynamic changes along the NSC–neuronal differentiation axis and distinct expression in aNSCs, which may continuously adjust their differentiation potential.

Troy+ aNSCs Undergo Limited Proliferation Within Clones. Recent studies have suggested that individual aNSCs do not retain long-term self-renewal potential but become exhausted within a few weeks of activation (33). Thus, ongoing neurogenesis would require constant activation of additional qNSCs over time. To resolve the dynamics of NSC activation, division, and maintenance we employed a genetic lineage tracing approach to trace the progeny of individual marked Troy+ cells over time. A single injection of Tmx (50 mg/kg) in TroyGFProxCreERT2 RosaYFP+ /Het mice generated ∼85 clones per cerebral hemisphere, which we analyzed by position and cell composition at 2 and 4 d as well as 1, 2, 4, 8, 16, and 32 wk postrecombination (Fig. 3 A and B and Methods). The entire neurogenic niche was visualized en face by generating a 3D reconstruction from confocal images (55). We confirmed that TroyGF signal does not leak into the and RosaYFP channel, allowing independent detection of the channels (Fig. S4A and SI Theory). One week after recombination,
some of the recombinated YFP+ cells coexpressed TroyGFP and the astrocyte marker GFAP and displayed astrocytic morphology (Fig. S4B). Recombinated cells did not express S100β (0 ± 0%) and were not multiciliated (0 ± 0%), indicating that the en- eralysis is not labeled with our induction regimen (Fig. S4 C and D). After 1 mo, labeled YFP+ cells migrated to the granule and periglomerular layers of the OB to generate new neurons, in- cluding NeuN+ or Calretinin+ subtypes (Fig. S4E). Using KI67 as a pan-proliferation marker and DCX as a neuronal differ- entiation marker, we classified cells within clones as qNSCs (TroyGFP+KI67−) or aNSCs (TroyGFP+KI67+). TA cells (TroyGFP−KI67+DCX−), or early NBs (TroyGFP−KI67+DCX+) (Fig. 3 B–E). Since postmitotic NBs (KI67−DCX+) rapidly migrate away from their source, we excluded them from our analysis (Fig. 3 A and B). We confirmed by nearest-neighbor distance analysis that mergers between clones were highly unlikely (SI Theory and Fig. S4F). No correlation was observed between the location of a clone in the SEZ and its size or composition, sug- gesting that clonal behavior is independent of the spatial position of NSCs (Fig. S4G). Further, the cellular composition of clones by 7 d postinduction mirrored that of the surrounding tissue, implying that TroyGFP+ expression marks a representa- tive population of NSCs (Fig. 3F).

Throughout the time course most clones were composed of a single qNSC (Fig. S4H). Small clones with at least one cycling cell (fewer than five cells) consisted almost entirely of aNSCs (Fig. 3C, arrows, Fig. 3G, and Fig. S4H). For larger clone sizes, a decline in the number of aNSCs was accompanied by an increase in TA cell number (Fig. 3D, arrowheads, Fig. 3G, and Fig. S5A). The largest clones typically contained several NBs and a single qNSC (Fig. 3E, yellow arrow). However, aNSCs persisted in clones even at 8 mo postinduction, consistent with the contin- uous production of olfactory neurons from Troy+ cells (Fig. 3G and Fig. S4 H and I).

Previous studies have proposed that NSCs undergo invariant asymmetric cell division in which only one of the daughter cells retains stem-cell competence (56, 57). In contrast, we found that clones at early time points were composed primarily of multiple TroyGFP+ cells, suggesting that NSCs are capable of symmetric division upon activation (Fig. 3C and Fig. S4H). Further, the size and composition of Troy-traced clones did not change signifi- cantly from day 14 onward, with each clone containing 1.5 ± 0.1. TroyGFP+ cells on average (Fig. 3H). This shows that NSC proliferation is thus balanced by differentiation and loss through cell migration. Such clonal behavior resonates with lineage tracing studies of other adult tissues where homeostasis follows from population asymmetry, with stochastic stem-cell differentiation and loss compensated by the duplication of neighboring stem cells (58). However, within such a framework the number of stem cells in individual clones would then be predicted to evolve according to “neutral drift” dynamics in which some clones undergo chance expansion while others would contract or become lost through differentiation so that the total number of NSCs remains con- stant over time. As a result, the number of surviving clones would gradually decrease over time while the average number of those per surviving clone would gradually increase. Here, in contrast, both the density of NSC-retaining clones and their stem-cell content (as indicated by the average number of TroyGFP+ cells per clone) remained constant from day 14 onward (Fig. 4 A and B). Stem cells in the SEZ thus do not conform to a sim- ple pattern of neutral drift dynamics as observed in adult epithelial tissues.

To determine how the Troy+ stem-cell pool is maintained in the SEZ we focused on the actively cycling and quiescent stem-cell content of clones. We found that, at any given time post- induction, a fraction of clones contained only aNSCs (Fig. S5B). Since the density of clones in the SEZ remained approximately constant over time (Fig. 4B), it follows that these clones are not lost from the tissue. This implies that aNSCs must be able to return to long-term quiescence after one or more rounds of cell division. Further, the average qNSC and aNSC content of clones also remained constant from day 14 onward, indicating that, on average, one aNSC must return to quiescence for every qNSC that becomes activated (Fig. 4A).

If the pattern of self-renewal and the return of aNSCs to quies- cence were stochastic processes, regulated by cell-autonomous factors, then one would expect to find some clones at later time points having an increasing number of qNSCs. Instead, the frequency of clones with a given number of qNSCs remained constant from day 14 onward (i.e., while the size and composi- tion of individual clones may fluctuate over time, when averaged across the ensemble, the distribution becomes stationary) (Fig. 4C). Within this distribution, most clones (78 ± 2%) contain just one qNSC while others contain as many as seven. As clones are not lost from the SEZ over time, the self-renewal probability of an NSC dividing in a niche containing no other stem cells is unity (since otherwise clones would not be maintained long-term). In order for the distribution of NSCs in clones to remain constant from 14 d postlabeling, it then follows that when an NSC divides in a niche containing more than one stem cell its self-renewal probability decreases with the number of NSCs already present in the local niche (otherwise the average number of NSCs within

![Image](https://example.com/image.png)

Fig. 4. A restricted niche regulates adult NSC numbers. (A) Average number of active (aNSC) and quiescent (qNSC) NSCs per NSC-containing clone scored over time alongside model predictions (shaded areas indicate 95% plausible intervals). (B) Density of NSC-retaining clones over time. (C) Distribution of the number of qNSCs per NSC-containing clone averaged over time points between d 14–112 and model prediction (95% plausible intervals). (D) Schematic representation of the model of niche regulation of NSC numbers. qNSCs become activated at rate a, while aNSCs return to quiescence at rate μ or divide at rate λ. When an aNSC divides in a niche containing a total of k NSCs (active or quiescent), it undergoes symmetric cell duplication with a probability p_λ and symmetric differentiation with a probability $1−p_\lambda$, with $p_\lambda = 1/k^x$ and $x = 0.9 ± 0.1$ (see SI Theory for details). (E) Sample plots com- paring the fraction of clones with given aNSC and qNSC composition esti- mated by simulation of the model (bars) to collected data (red bars) at various time points.
clones would grow over time, and their distribution would grow broader). Crucially, the convergence of clone sizes onto a stationary distribution thus shows that aNSC fate is not determined by a cell-intrinsic mechanism, since persisting clones do not continue to expand in size over time. Instead, it must follow from a cell-extrinsic mechanism, where aNSC fate is conditioned by the behavior of neighboring stem cells.

Taken together, these results suggest that the SEZ is organized into a 2D array of isolated niche domains that each host a variable but limited number of qNSCs and aNSCs. Following pulse labeling of NSCs using the Troy promoter, a short period of clonal competition becomes resolved in the clonal “fixation” of qNSCs and aNSCs within the niche, after which the average clone density and size distribution become constant. In this model, at long chase times, variability of individual clone sizes reflects a continuous and dynamic process of NSC activation, expansion, contraction, and deactivation that, when averaged across the ensemble of clones, leads to the observed stationary size distribution.

Troy+ NSC Dynamics Are Consistent with a Restricted Niche Model. To determine whether such a restricted niche-based mechanism could result in the observed dynamics we developed a simple and predictive model of NSC behavior in the SEZ (Fig. 4D and SI Theory). Within this model, qNSCs become activated sporadically at a constant rate and enter into cycle, while aNSCs stochastically return to quiescence at another constant rate. During their active phase, NSCs may independently and stochastically choose between cell duplication, giving rise to two aNSCs, and a symmetric differentiating division generating two TA cells. For simplicity, we do not consider explicitly asymmetric fate outcome since such events can be captured within the model as a combination of the two symmetrical fates (SI Theory). The stationarity of the clone size distribution at longer chase times indicates that NSC number within clones must be locally constrained. To accommodate this observation, we proposed that individual aNSC divisions result in cell duplication or symmetric differentiation with a relative probability that depends on the total number of existing NSCs (active or quiescent) in the local neighborhood or niche (Fig. 4D). Further, to ensure the observed long-term survival of clones, we imposed the condition that a single NSC occupying a niche always divides symmetrically, giving rise to two NSCs. As the number of neighboring NSCs in the niche increases, the fate of aNSCs becomes gradually more biased toward differentiation into TA cells, effectively restricting the capacity of the niche. Over time, these “rules” translate to dynamics in which, on average, one NSC returns to quiescence for each NSC that becomes activated. Therefore, while the NSC and TA cell content of individual clones fluctuates over time (Fig. 3H), once the niche becomes clonally fixed the average total number of NSCs, the average number of aNSCs, and the corresponding clone size distributions are all maintained constant over time, as observed (Figs. 3H and 4A and Fig. S4H and I).

To infer the rates of NSC activation, division, and return to quiescence we adopted a maximum-likelihood approach (SI Theory). Scanning the space of possible parameters, we performed stochastic simulations to determine for every parameter combination the expected clone size distributions based on the proposed NSC dynamics. By comparing these predictions with the experimentally observed clone size distributions we deduced the “best-fit” parameters. These corresponded to a qNSC activation rate of once per 20 ± 4 d, an aNSC division rate of once per 16 ± 2 h, and a rate of return to quiescence of once per 5 ± 2 d. With these parameters we found that the model could recapitulate the full joint distribution of qNSCs and aNSCs in clones, from the transient short-term dynamics, up to 14 d postlabeling, to the longer-term steady-state behavior (Fig. 4D and E, SI Theory, and Fig. S5 C–E).

Once activated, the model predicts that NSCs go through an average of ~2.7 rounds of division before they return to quiescence or differentiate, giving rise to ~3.4 TA cells that proceed to generate neurons (Fig. 4D, SI Theory, and Fig. S5F). Note that the inclusion of additional contributions from aNSC divisions leading to asymmetric fate outcome may revise these estimates. However, our inferred aNSC division rate is consistent with existing estimates from the literature (57). Moreover, few clones in our data contain both aNSCs and differentiating progeny (Fig. S5A). If asymmetric aNSC divisions occur at all, their relative frequency is therefore likely to be small. To develop the model of NSC behavior above we relied on measures of the functional behavior of Troy+ NSCs. To test the representativeness of Troy labeling, and the quantitative predictions of the model, we turned to an independent and unbiased labeling strategy.

Fate Mapping of Proliferating Cells Confirms Expansion of NSCs Within the Niche. Our model, which is based on population asymmetric self-renewal, suggests that actively cycling NSCs are not committed to differentiation. Instead, they may return to quiescence. To challenge our model with an independent approach, we generated a second in vivo genetic labeling strategy to track the fate of proliferating cells, including aNSCs (see SI Theory for further details on this section). Specifically, we used Ki67 expression as a proxy for cells in the G1, S, G2, and M phases of the cell cycle. As opposed to quiescent cells resting in the G0 state (59). We generated the Kilı67iresCreER⁺ mouse by inserting aniresCreER^{T2} coding sequence downstream of the stop codon in the last exon of the Mki67 gene (Fig. S6). Recombination in Kilı67iresCreER⁺HET RosatdTomato⁺HET mice resulted in labeling (tdTomato expression) of both Kilı67+ dividing cells (51 ± 5% of tdTomato+ cells) and their immediate nondividing DCX+ progeny 1 d postrecombination (47 ± 3% of tdTomato+ cells, Fig. 5A–C). To test the specificity of the Kilı67iresCreER⁺ allele, we sequenced single tdTomato+ cells 2 d after recombination. Most tdTomato+ cells expressed multiple (and each cell expressed at least one of the) well-known cell cycle genes, indicating that the Kilı67iresCreER⁺ allele labels cycling cells (Fig. S3D). A single BrdU injection 1 d before Tim induction (d 0) labeled 35 ± 15% of the tdTomato+ Kilı67+ cells at day 2 (Fig. S6 B and C), indicating that some of the cycling Kilı67iresCreER⁺ labeled cells exit the cell cycle during this period. tdTomato+ cells continued to contribute to adult neurogenesis 1 y postrecombination, indicating that not only TA cells but also aNSCs are targeted by the Kilı67iresCreER⁺ allele (Fig. 5B and C and Fig. S6 D–F). In summary, these results show that the Kilı67iresCreER⁺ mouse allele allows fate mapping of dividing cells in the adult SEZ.

To identify NSCs we focused on the tdTomato+ cells that contact the ventricles in the pinwheel niche structures (Fig. 5D). Consistent with the Troy data, most pinwheels contained just a single tdTomato+ NSC at all time points (Fig. 5E). While most NSCs were active (80 ± 5%) at 1 d postinduction, all single NSCs were Kilı67− by 1 wk, 1 mo, and 1 y postinduction, confirming that aNSCs can return to long-term quiescence (Fig. 5D and E). Moreover, some pinwheels contained multiple qNSCs at 1 wk, 1 mo, and 1 y postinduction (13 ± 13% of all pinwheels), indicating clonal expansion (Fig. 5E and F). At 2 mo postinduction, progeny of marked Kilı67+ cells colocalized with NSCs and expressed Troy mRNA, consistent with dividing aNSCs’ having the capacity to generate Troy+ qNSCs (Fig. 2D and Fig. S3C). Thus, the Kilı67 lineage tracing data confirmed that, while the majority of aNSCs exit cell cycle within a short period of time, some aNSCs expand within their niche before returning to quiescence. Moreover, the qNSC progeny of aNSCs may persist long-term, reenter the cell cycle, and contribute to ongoing adult...
neurogenesis. By transiting reversibly between active and quiescent states, NSCs are able to achieve long-term self-renewal. These results are consistent with our model predictions and provide an independent confirmation of the heterogeneity of cellular dynamics within the NSC compartment.

The sensitivity of aNSC fate to the total number of NSCs within the same clone suggests that NSCs can sense and “count” the number of neighboring stem cells within their local niche. Pinwheel structures in the SEZ provide a candidate anatomical feature that demarcates separate niche domains (9). The TroyGFP population includes cells in the pinwheels (B\textsubscript{L} cells) as well as cells placed deeper in the SEZ (B\textsubscript{R} cells). Consistent with this hypothesis, we found that the distribution of TroyGFP+YFP+ cell numbers in putative pinwheel structures was strikingly similar to the observed steady-state distribution of all TroyGFP+ cells in clones (Fig. 5 G and H). Moreover, comparison of the distribution of tdTomato+ NSCs within pinwheels with the distribution of TroyGFP+ NSCs within pinwheels, and with the steady-state distribution of NSCs in clones, showed that the distributions were also strikingly similar (Fig. 5 G and H). It was also consistent with the reported distribution of astrocytes in pinwheels, from which we could deduce that around one in three astrocytes in pinwheels is TroyGFP+ (9) (SI Theory and Fig. S5G).

Dynamics of Troy+ qNSC Activation Following Niche Perturbation. To challenge the niche organization and proliferative potential of NSCs we perturbed the neurogenic niche. Previous studies have shown that qNSCs become activated upon injury and can regenerate the SEZ (3, 15). To study the response of NSCs to injury, we made use of 5-fluorouracil (5-FU) treatment, which is reported to deplete most proliferative cells in the SEZ (60). Through optimization we found that the majority of proliferative cells in the SEZ could be eliminated using a single i.p. injection of 250 mg/kg of 5-FU (Methods and Fig. S7A). To study the targeted response of NSCs on injury, we combined 5-FU injection with our clonal induction protocol using the TroyGFPiresCreER +/HET RosaYFP+/HET mice (Fig. 6d; also see SI Theory for further details on this section).

Following Tmx administration, analysis of tissue 2 d after 5-FU injection revealed the large-scale depletion of Ki67+ cells while TroyGFP+ cells survived (Fig. 6d and Fig. S7A). Proliferation was visible all over the SEZ at 7 d after 5-FU treatment, consistent with published protocols (60). At this point, almost all (99 ± 1%) recombined cells were found to be TroyGFP+ (Fig. S7B). More than half (52 ± 5%) of these cells were also Ki67+ (Fig. 6 A and B), suggesting increased activation of qNSCs upon injury. Under homeostatic conditions most clones were composed of a single qNSC (Fig. S4H); 19 ± 4% of all clones surviving 5-FU treatment were composed of a single Ki67+ TroyGFP+ cell (Fig. S6C and Fig. S7B).

To generate the SEZ (3, 15). To study the response of NSCs to injury, we combined 5-FU injection with our clonal induction protocol using the TroyGFPiresCreER +/HET RosaYFP+/HET mice (Fig. 6d; also see SI Theory for further details on this section).

Following Tmx administration, analysis of tissue 2 d after 5-FU injection revealed the large-scale depletion of Ki67+ cells while TroyGFP+ cells survived (Fig. 6d and Fig. S7A). Proliferation was visible all over the SEZ at 7 d after 5-FU treatment, consistent with published protocols (60). At this point, almost all (99 ± 1%) recombined cells were found to be TroyGFP+ (Fig. S7B). More than half (52 ± 5%) of these cells were also Ki67+ (Fig. 6 A and B), suggesting increased activation of qNSCs upon injury. Under homeostatic conditions most clones were composed of a single qNSC (Fig. S4H); 19 ± 4% of all clones surviving 5-FU treatment were composed of a single Ki67+ TroyGFP+ cell (Fig. S6C and Fig. S7B). Consistent with our observation that NSCs can increase their number upon activation, some 48 ± 4% of clones contained only aNSCs (Fig. 6 B and C and Fig. S7C). The increase in the fraction of clones that include aNSCs indicates recruitment of qNSCs into the cell cycle in response to injury, a feature of deep qNSCs (15).

However, by day 14 after 5-FU treatment significantly fewer clones were composed of a single aNSC (1 ± 2%; P = 0.012) or only aNSCs (5 ± 3%; P < 0.001) (Fig. 6d and Fig. S7C and D). Rather, most recombined clones contained TroyGFP−Ki67+ DCX− TA cells and DCX+ NBs, confirming the restoration of neurogenesis from labeled, initially quiescent, TroyGFP+ cells (Fig. 6d and Fig. S7B). Significantly, at this time point the distribution of NSC number within clones matched closely that found at day 14 postinduction under homeostatic conditions (Fig. 6e), suggesting that the integrity of the restricted niche domain remains intact even during regeneration. However, although the average number of NSCs per clone was set at around 1.5 ± 0.1 cells, consistent with the capacity of the unperturbed niche, the relative fraction of quiescent and aNSCs was tilted toward the latter, suggesting that NSC activity may subside only slowly during regeneration.

Next, we used the 5-FU-mediated killing of dividing cells to test the cell-cycle dynamics of Ki67GFPiresCreER+5-FU-labeled cells. Injection of 5-FU (d 0) in Ki67GFPiresCreER+ RosatdTomato mice abolished proliferation at d 2, quantified by the density of Ki67+ cells (62.8 ± 8.2 compared with 2,012 ± 378 cells per mm2 in controls; Fig. 6 F and G). Tmx treatment 1 d after (d 1) 5-FU treatment (d 0) led to
a major loss of recombined cells (3.3 ± 4.0 tdTomato+ cells per mm²) compared with controls (835.9 ± 124.9 tdTomato+ cells per mm²; Fig. 6 F and G); 92 ± 10% of the remaining rare tdTomato+ cells were Ki67+ (Fig. 6F). These findings confirm that the KI67iresCreER allele is specifically active in proliferating cells. When Tmx was administered 1 d before (−d 1) 5-FU treatment (d 0), some of the tdTomato+ cells survived, indicating that they exit the cell cycle before 5-FU treatment is effective (27% of controls, Fig. 6 F and G); 89 ± 5% of the remaining tdTomato+ cells were DCX+ NBs that left the cell cycle (Fig. 6 F and G), while the remaining (11 ± 5%) Ki67−DCX− cells were seen on the surface of the SEZ at d2 (Fig. 6F); 11 ± 0% of tdTomato+ clones contained multiple cells, consistent with aNSCs’ being able to increase their number and return to quiescence within 1 d (Fig. 6G and SI Theory).

In summary, these results suggest that, following injury, the depletion of aNSCs is compensated by the rapid activation of qNSCs that quickly expand to repopulate the closed niche and reestablish neurogenesis. However, during this process, until day 14 after injury the proliferative activity of aNSCs is sustained at a higher rate than under homeostatic conditions.

Discussion

Despite extensive investigation, the molecular identity and long-term fate behavior of individual adult NSCs of the SEZ have remained in question. By combining long-term lineage tracing assays using two knock-in alleles (not previously explored in the brain) with quantitative clonal analysis we have proposed a model in which NSCs may transit reversibly between the quiescent and active compartments. When active, the fate of NSCs is chosen stochastically, with probabilities correlated with the number of neighboring NSCs in their localized niche. As a result, NSCs are rarely lost altogether from within a niche, while their capacity to expand becomes increasingly suppressed as their number grows locally. Consistent with the arrangement of NSCs and astrocytes in pinwheel structures, our results support the presence of multiple physically separated niche structures within the SEZ.

We provide a comprehensive, high-quality transcriptome atlas of the adult neurogenic niche with single cells from 11 FACSPurified populations. Direct comparison of TroyGFP and Sla1a+ EGFR− cells reveal a large overlap between both populations, suggesting that Troy is expressed by a large population of qNSCs. Our clustering algorithm did not detect any Sla1a3-high astrocytes reported by Llorens-Bobadilla et al. (15), which we attribute to either technical problems in detecting astrocytes or to differences in the region cells were isolated (SI Theory). Important to this study, we identify a large aNSC pool with diverse gene expression pattern.

In the course of NSC division, key transcriptional factors compete to regulate NSC self-renewal and differentiation. With emphasis placed on division asymmetry of NSCs, it has been assumed that commitment to differentiation occurs at, or immediately after, stem cell division, triggering a strictly unidirectional differentiation pathway (61). By contrast, our findings indicate that stem-cell maintenance is achieved through a process of niche-based population asymmetry. The decision to differentiate or reenter quiescence takes place after an initial expansion of NSCs within their niche. In particular, tracings of different gene expression pattern. Gene modules, composed of genes with highly correlated expression patterns, are activated separately and in a partially overlapping manner in aNSCs. Some of the genes are shared with Troy− TA cells and NBs, suggesting that a differentiation program is activated in aNSCs. This likely results in decreased probability of return to quiescence. This continuum from quiescence to differentiation fits well with our clonal tracing data; following NSC activation, the composition of
clones is not fixed but depends on the stochastic fate decisions of aNSCs to proliferate or differentiate. These findings strongly suggest that stem-cell potential is distributed between active and qNSC populations.

The self-renewal potential of NSCs in the adult hippocampus remains controversial. While Encinas et al. (32) suggest that aNSCs eventually differentiate into mature astrocytes, Bonaguidi et al. (62) provide evidence based on clonal lineage tracing that individual NSCs may be long-term self-renewing. In support, Urbán et al. (28) suggest that long-term self-renewal of NSCs is achieved through return to a transient quiescent state. Similarly, the ability of dividing SEZ stem cells to return to long-term quiescence has been debated. A recent study employing clonal lineage tracing from Slc1a3+ NSCs suggested their depletion following limited rounds of division as a manifestation of aging (33). Similarly, lineage tracing of embryonic precursors of adult NSCs suggests that individual NSCs might only be active for limited periods throughout adulthood (34). In contrast, our results, based on the Ki67iresCreER allele, provide clear evidence that some aNSCs return to quiescence. Combined with our clonal tracing data, we found that NSCs are then activated again after a refractory period of ~3 wk on average, during which time the TA population becomes exhausted. Thus, neuronal production is not continuous at the level of individual progenitors, but follows a pattern of “boom-and-bust” (Fig. 7). Cells that have proliferated in young adults remain potent even after a year; they can reenter the cell cycle and generate new neurons. Whether these Troy+ qNSCs display sporadic activation or remain dormant during this period remains to be seen. However, we observe that a large fraction of NSCs are quiescent at d 60, suggesting that there might be long periods of inactivity following repeated cycles of activation. Our quantitative analysis does not provide evidence for functionally distinct qNSCs. However, activation of a large pool of qNSCs upon injury as well as our single-cell analysis suggest that both dormant and sporadically activated qNSCs may coexist. As we used different induction protocols compared with previous studies, the apparent discrepancy may arise from labeling functionally different stem-cell states. Indeed, if Slc1a3+ NSCs were more likely labeled in an active state or in niches containing multiple NSCs, our model would predict that they are more likely to be “displaced” by neighboring stem cells, resulting in commitment to differentiation.

Multiple studies indicate a loss of NSC number with age that can, at least in part, be restored by “youth-related” signals (63). To avoid confounding the fate of the qNSC during homeostatic turnover with mechanisms of age-related NSC loss, mice induced at 8–10 wk of age were analyzed up to ~10 mo of age when neurogenesis is at levels comparable to those in young adults (64).

The cellular and molecular mechanisms by which the niche controls NSC numbers have remained an intriguing open question. Our model suggests that the self-renewal capacity of NSCs decreases with the number of NSCs that occupy the same closed niche. In common with intestinal stem cells (65), the short-term self-renewal potential and molecular identity of NSCs in the adult SEZ is not invariant but changes in response to local extrinsic cues. Based on the current findings, a mechanism in which the fate behavior of Troy+ NSCs is correlated with the number of neighboring stem cells provides the most likely explanation of the clonal dynamics (Fig. 7). At the molecular level, such competition could be mediated through limited access to the ventricular and endothelial surfaces, a limited supply of niche factors produced by other SEZ cell types, or an inhibitory effect of direct cell-to-cell contact of NSCs. The functional study of differentially regulated genes identified by single-cell transcriptome profiling in this study and others (15, 47, 66) could provide a starting point for addressing the molecular interactions that mediate the regulation of NSC number.

Methods

A detailed description of materials and methods can be found in SI Methods.

Contact for Reagents and Resource Sharing. Requests for reagents should be directed to Hans Clevers at h.clevers@hubrecht.eu.

Mouse Strains Used in This Study. TroyiresCreER mice were described before (41). Ki67iresCreER mice were generated by homologous recombination in embryonic stem cells targeting an iresCreERT2 cassette at the transcriptional stop site of mK67 (Fig. 5A). Details of embryonic stem cell targeting are described elsewhere (67). RosaLacZ, RosaYFP, and Rosa ireCreERT2 (Jackson Laboratory) mice were used for lineage tracing in TroyiresCreER (RosaLacZ and Rosa ireCreERT2) mice. All mice were bred on a C57BL/6 background. All animal procedures and experiments were performed in accordance with national animal welfare laws under a project license obtained from the Dutch government, and were reviewed by the Animal Ethics Committee of the Royal Netherlands Academy of Arts and Sciences. All rodents are housed in a barrier facility in conventional cages and are changed without using a change station. All personnel entering the barrier must wear protective clothing (including caps and special clogs). All animals are received directly from approved vendors (Charles River) or generated in-house. Animals arriving from other sources must pass the GDL quarantine for screening or by embryo transfer. After screening these specific-pathogen-free mice are housed in micro isolator cages and are transferred to the Hubrecht laboratory. Details of the lineage tracing experiments, 5-FU treatment and the number of mice are described in SI Methods.

Single-Cell RNA Sequencing. RNA samples were prepared using a modified version of the CEL-seq protocol as described previously, with a few modifications (49, 68). Data processing is described in SI Methods and SI Theory.

Statistical Analysis. Data are presented as mean ± SD. When two groups of samples were compared, P values were calculated using the unpaired, two-tailed Student’s t test.

ACKNOWLEDGMENTS. We thank Anko de Graaff for imaging support, Maaike van den Born for excellent technical assistance with mouse experiments, Harry Beugthel for help with histology, Jeroen Korving for ES cell injections, Stefan van der Elst for assistance with FACS sorting, Prof. Okano for kindly providing reagents, all members of the H.C. and B.D.S. group for useful discussions, and the Hubrecht Institute animal caretakers for animal support. This work was supported by NIRM/ Clevers and Basak et al.
D.E.S.), KWF/PF-HUBR 2007-3956 and Stichting Vrienden van het Hubrecht (O.B.), EU/232814-StemCellMark (to K.W. and A.v.O.), and Wellcome Trust Grant 098357/2/12/Z (to B.D.).

30. Hatakeyama Y, et al. (2011) Olig2 modulates BEAM cell identity and responsiveness to BMP signaling. J Cell Sci 124:877–888.

31. Basak O, Giachino C, Fiorini E, Macdonald HR, Taylor V (2012) Neurogenic subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716.

32. Ahn S, Jooyan H (2005) Generation of neural stem cells from human embryonic stem cells. J Neurosci Res 82:845–854.

33. Calzolari F, et al. (2015) Fast clonal expansion and limited neural stem cell self-renewal in the adult subventricular zone. Cell Stem Cell 17:177–187.

34. Muraro MJ, et al. (2016) A single-cell transcriptome atlas of the human pancreas. Cell Syst 3:385–394.e3.

35. Barbas JS, et al. (2015) Neurodevelopment. Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain. Science 348:789–793.

36. Parada LN, Huttner WB (2014) Neurogenesis during development of the vertebrate central nervous system. EMBO Rep 15:351–364.

37. Clevers H, Loh KM, Naver R (2014) Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346:1248012.

38. Azim K, et al. (2014) Persistent Wnt(+)–catenin signaling determines dorsalization of the postnatal subventricular zone and neural stem cell specification into oligodendrocytes and glutamatergic neurons. Stem Cells 32:1301–1312.

39. Zhou Y, et al. (2014) Phosphatase WIP1 regulates adult neurogenesis and WNT signaling during aging. J Clin Invest 124:3623–3627.

40. Ortega F, et al. (2013) Oligodendrogligenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signaling. Nat Cell Biol 15:602–613.

41. Stange DE, et al. (2014) Differentiated Tre+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155:357–368.

42. Fafleik B, et al. (2013) Troy, a tumor necrosis factor receptor family member, interacts with lgr5 to inhibit wetting in intestinal stem cells. Gastroenterology 144:381–391.

43. Hisaoka T, Morikawa Y, Senba E (2006) Characterization of TROY/TNFRSF19/A1J–expressing cells in the adult mouse forebrain. Brain Res 1100:81–94.

44. Pantrana E, Cheng LC, Doetsch F (2016) Simultaneous quantitative purifi cation of adult subventricular zone neural stem cells and their progeny. Proc Natl Acad Sci USA 106:6387–6392.

45. Hashimshony T, et al. (2016) CEL-Seq2: Sensitive highly multiplexed single-cell RNA-seq. Genome Biol 17:77.

46. Urban N, et al. (2016) Return to quiescence of mouse neural stem cells by degradation of SDF1/CXCR4 signaling. EMBO J 35:2057–2068.

47. Grin D, et al. (2015) Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525:251–255.

48. Giachino C, et al. (2014) Molecular diversity subdivides the adult forebrain neural stem cell population. Stem Cells 32:70–84.

49. Liu HK, et al. (2008) The nuclear receptor taflsil is required for neurogenesis in the adult subventricular zone. Genes Dev 22:2473–2478.

50. Kim EJ, Ables JL, Dickel DK, Eisich AJ, Johnson JE (2011) Ascl1 (Math1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS One 6:e18472.

51. Ji Z, Ji H (2016) TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res 44:e17.

52. Bodenhofer U, Kothmeier A, Hochreiter S (2011) APcluster: An R package for affiliation propagation clustering. Bioinformatics 27:2463–2464.

53. Mirzadeh Z, Doetsch F, Sawamoto K, Wichterle H, Alvarez-Buylla A (2010) The subventricular zone en-face: Wholemount staining and ependymal flow. J Vis Exp 39:1938.

54. Costa MR, et al. (2011) Continuous live imaging of adult neural stem cell division and lineage progression in vitro. Development 138:1057–1068.

55. Ponti G, et al. (2013) Cell cycle and lineage progression of neural progenitors in the ventricular–subventricular zones of adult mice. Proc Natl Acad Sci USA 110:16031–16036.

56. Villeda SA, et al. (2011) The ageing systemic milieu negatively regulates neurogenesis in the subventricular zone. Nature 475:694–698.

57. Goodell MA, Nguyen H, Shroyer N (2015) Somatic stem cell heterogeneity: Diversity in tissues. Nat Rev Mol Cell Biol 16:1082–1098.

58. Simonas BD, Clevers H (2011) Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145:851–862.

59. Hutchins JR, et al. (2010) Systematic analysis of human protein complexes identifi es chromosome segregation proteins. Science 328:589–599.

60. Han R, et al. (2008) Systemic S-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. J Biol 7:12.

61. Goodell MA, Nguyen H, Shroyer N (2015) Somatic stem cell heterogeneity: Diversity in the blood, skin and intestinal stem cell compartments. Nat Rev Mol Cell Biol 16:299–309.

62. Bonaguidi MA, et al. (2011) In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145:1142–1155.

63. Villeda SA, et al. (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 473:90–94.

64. Shook BA, Manzh D, Peters JS, Kang S, Conover JC (2012) Spatiotemporal changes to the subventricular zone stem cell pool through aging. J Neurosci 32:6947–6956.

65. Risma L, et al. (2014) Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 510:362–365.

66. Luo Y, et al. (2015) Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell 161:1175–1186.

67. Barker N, et al. (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:108–112.

68. Hashimshony T, Wagner F, Shen Y, Yanai I (2012) CEL-Seq: Single-cell RNA-Seq by multiplexed linear amplification. Cell Rep 2:666–673.