ON REFINEMENT MASKS OF TIGHT WAVELET FRAMES

E. A. Lebedeva* and I. A. Shcherbakov†

UDC 517.5

Sufficient conditions for a trigonometric polynomial to be a refinement mask corresponding to a tight wavelet frame are obtained. The condition is formulated in terms of the roots of a mask. In particular, it is proved that any trigonometric polynomial can serve as a mask if its associated algebraic polynomial has only negative roots (of course at least one of them equals \(-1\)). Bibliography: 4 titles.

1. Introduction

The unitary extension principle (UEP) of Ron and Shen [1] is one of the main tools for the construction of tight wavelet frames. We recall it here for completeness of the presentation.

The unitary extension principle. Let \(\varphi \in L_2(\mathbb{R}) \) be a refinable function, i.e. the following refinement equation holds:

\[
\hat{\varphi}(\xi) = m_0(\xi/2)\hat{\varphi}(\xi/2) \quad \text{a.e.,}
\]

where \(m_0 \in L_2(0, 1) \) is a refinement mask. Suppose \(\hat{\varphi} \) is continuous at zero and \(m_1, \ldots, m_r \) are 1-periodic functions in \(L_2(0, 1) \), called wavelet masks, such that the matrix

\[
M(\xi) = \begin{pmatrix}
m_0(\xi) & m_1(\xi) & \cdots & m_r(\xi) \\
m_0(\xi + 1/2) & m_1(\xi + 1/2) & \cdots & m_r(\xi + 1/2)
\end{pmatrix}
\]

satisfies the equality

\[
M(\xi)M^*(\xi) = I_2, \quad \text{a.e.,}
\]

where \(I_2 \) is the identity matrix of size 2. Define wavelet functions \(\psi^{(1)}, \ldots, \psi^{(r)} \) in the Fourier domain as follows:

\[
\hat{\psi^{(k)}}(\xi) = m_k(\xi/2)\hat{\varphi}(\xi/2) \quad \text{a.e.,} \quad k = 1, \ldots, r.
\]

Then the system of functions \(\psi^{(k)}_{j,k}, j, k \in \mathbb{Z}, k = 1, \ldots, r \), forms a tight frame in \(L_2(\mathbb{R}) \) with frame bounds \(A = B = |\hat{\varphi}(0)|^2 \).

It is well known [2] that the general setup together with the inequality

\[
|m_0(\xi)|^2 + |m_0(\xi + 1/2)|^2 \leq 1 \quad \text{a.e.}
\]

always provides a solution for matrix equation (2) and makes it possible to obtain a frame with two wavelet generators \(\psi^{(1)}, \psi^{(2)} \). Thus, to construct a frame by means of UEP we need to find a function \(\varphi \in L_2(\mathbb{R}) \) such that (1) is fulfilled with a mask \(m_0 \) satisfying (4) and \(\hat{\varphi} \) is continuous at zero. One can construct a wavelet frame starting with a refinement mask. In this case the corresponding refinable function is determined by an infinite product as follows:

\[
\hat{\varphi}(\xi) = \prod_{j=1}^{\infty} m_0(\xi/2^j),
\]

and one needs to check that \(\varphi \in L_2(\mathbb{R}) \). It can be done using the following Mallat theorem.

*St. Petersburg State University, St.Petersburg, Russia, e-mail: ealebedeva2004@gmail.com.
†St. Petersburg State University, St.Petersburg, Russia, e-mail: stscherbakov99@yandex.ru.

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 499, 2021, pp. 53–66. Original article submitted October 28, 2020.
Theorem 1 ([3]). Suppose \(m_0(\xi) = \sum_{k \in \mathbb{Z}} c_k e^{2\pi i k \xi}, m_0(0) = 1, c_k = O(|k|^{-2-\varepsilon}), \varepsilon > 0 \), and (4) holds. Set \(\hat{\varphi}(\xi) = \prod_{j=1}^{\infty} m_0(\xi/2^j) \). Then \(\varphi \in L_2(\mathbb{R}) \), and \(\|\varphi\| \leq 1 \).

Let \(m_0 \) be a trigonometric polynomial such that \(m_0(0) = 1 \). It is well known that the function \(\hat{\varphi}(\xi) = \prod_{j=1}^{\infty} m_0(\xi/2^j) \) is an entire function of exponential type, thus \(\hat{\varphi} \) is continuous at zero. If additionally \(m_0 \) satisfies inequality (4), then, in accordance with the Mallat theorem, the function \(\hat{\varphi}(\xi) = \prod_{j=1}^{\infty} m_0(\xi/2^j) \) is in \(L_2(\mathbb{R}) \), and \(\varphi \) is a refinable function generating a tight wavelet frame because it is constructed by UEP.

The purpose of the paper is to provide sufficient conditions under which a trigonometric polynomial \(m_0 \) is a refinement mask generating a tight frame. As it is seen from the above, inequality (4) is a cornerstone for the constructions of tight wavelet frames. It is worth noting that in the case of orthogonal wavelets assumptions on the mask \(m_0 \) are much more restrictive (see [3, Theorem 4.1.2]). The paper is organized as follows. In Sec. 2, first we consider polynomials of low degrees (2 and 3) and obtain not only a sufficient, but also a necessary condition to satisfy (4). This is done in Propositions 1 and 2. Then in Theorem 2, we consider polynomials of arbitrary degree and obtain a sufficient condition to satisfy (4). In particular, an extremely easily checked case of Theorem 2 is formulated in Corollary 2. In Sec. 3, we present a validation algorithm for the sufficient condition obtained in Theorem 2.

2. Results

2.1. Preliminary. Consider the algebraic polynomial \(P(z) \) associated with \(m_0(\xi) \), that is given by the equation \(m_0(\xi) = P(e^{2\pi i \xi})e^{2\pi i \xi \max\{-N,0\}} \). It is easy to see that the inequality

\[
|P(z)|^2 + |P(-z)|^2 \leq 1 \text{ a.e. on } \mathbb{T}
\]

is equivalent to (4), and \(m_0(0) = 1 \) if and only if \(P(1) = 1 \).

We immediately make a couple of obvious remarks.

Remark 1. If an algebraic polynomial \(P(z) \) satisfies inequality (5) and \(P(1) = 1 \), then this polynomial has a root at the point \(z = -1 \).

Remark 2. If \(P(1) = 1 \), then the polynomial \(P \) can be written in the form \(P(z) = \prod_{i=1}^{n} \frac{z-z_i}{1-z_i} \), where \(z_i \neq 1 \).

Remark 3. A polynomial \(P(z) \) of degree at least 2 satisfies the conditions \(P(1) = 1 \) and (5) if and only if inequality (5) holds true with \(Q(z) = zP(z) \) instead of \(P(z) \).

Let a function \(\psi_{z_0} \) be given by \(z \in \mathbb{T} \rightarrow \psi_{z_0}(z) = \frac{|z-z_0|^2}{1-z_0^2} \), where \(z_0 \neq 1 \). If a polynomial \(P(z) \) has roots \(z_1, \ldots, z_n \) and \(P(1) = 1 \), then, in accordance with Remark 2, \(|P(z)|^2 = \prod_{i=1}^{n} \psi_{z_i}(z) \). Suppose \(\alpha \in \text{Arg}(z-z_0) \) and \(\beta \in \text{Arg}(z_0) \), then it follows from the cosine theorem

\[477 \]
that

\[
\psi_{z_0}(z) = \frac{1 + |z_0|^2 - 2|z_0| \cos \alpha}{1 + |z_0|^2 - 2|z_0| \cos \beta},
\]

\[
\psi_{z_0}(e^{i\varphi}) = \frac{1 + |z_0|^2 - 2|z_0| \cos(\varphi - \beta)}{1 + |z_0|^2 - 2|z_0| \cos \beta}.
\]

Setting \(x = \text{Re } z_0\) and \(y = \text{Im } z_0\), we get a trigonometric first degree polynomial dependent on \(x, y\)

\[
\psi_{z_0}(e^{i\varphi}) = \frac{1 + x^2 + y^2 - 2x \cos \varphi - 2y \sin \varphi}{1 + x^2 + y^2 - 2x}.
\]

Denote by

\[
F_1(x, y) = 1 + \frac{2x}{(x - 1)^2 + y^2},
\]

\[
F_2(x, y) = -\frac{2x}{(x - 1)^2 + y^2},
\]

\[
F_3(x, y) = -\frac{2y}{(x - 1)^2 + y^2}.
\]

the coefficients of this polynomial, then

\[
\psi_{z_0}(z) = \psi_{z_0}(e^{i\varphi}) = F_1(x, y) + F_2(x, y) \cos \varphi + F_3(x, y) \sin \varphi,
\]

and

\[
\psi_{z_0}(-z) = \psi_{z_0}(e^{i(\pi + \varphi)}) = F_1(x, y) - F_2(x, y) \cos \varphi - F_3(x, y) \sin \varphi.
\]

Thus, the left-hand side of inequality (4) takes the form

\[
|P(z)|^2 + |P(-z)|^2 = \prod_{i=1}^{n} \psi_{z_i}(z) + \prod_{i=1}^{n} \psi_{z_i}(-z) =: T(\varphi).
\]

In the sequel, to obtain sufficient conditions for the roots \(z_1, \ldots, z_n\) of the polynomial \(P(z)\) to satisfy inequality (4), we study the trigonometric polynomial \(T(\varphi)\). Note that \(T\) has degree at most \(n\), it is nonnegative and \(\pi\)-periodic. Thus, it only contains monomials with even angles.

2.2. The simplest cases

First we assume that the degree of a polynomial \(P\) is equal to 2.

In this case we obtain not only a sufficient, but also a necessary condition to satisfy (4).

Proposition 1. Let \(P(z)\) be an algebraic polynomial satisfying the condition \(P(1) = 1\). If the numbers \(z_1 = -1\) and \(z_2\) are all roots of this polynomial, then (5) holds if and only if \(z_2 \leq 0\).

Proof. In this case \(F_1(z_1) = F_2(z_1) = \frac{1}{2}\) and \(F_3(z_1) = 0\). Set \(A = F_1(z_2)\) and \(B = F_3(z_2)\). Substituting this into (7), we get

\[
T(\varphi) = \left(\frac{1}{2} + \frac{1}{2} \cos \varphi\right)\left(A + (1 - A) \cos \varphi + B \sin \varphi\right)
\]

\[
+ \left(\frac{1}{2} - \frac{1}{2} \cos \varphi\right)\left(A - (1 - A) \cos \varphi - B \sin \varphi\right) = A + (1 - A) \cos^2 \varphi + B \sin \varphi \cos \varphi
\]

\[
= \frac{1 + A}{2} + \frac{1 - A}{2} \cos 2\varphi + \frac{B}{2} \sin 2\varphi \leq \frac{1 + A}{2} + \frac{1}{2} \sqrt{(1 - A)^2 + B^2}.
\]
Since this inequality is sharp, it follows that inequality (7) is equivalent to
\[
\frac{1 + A}{2} + \frac{1}{2}\sqrt{(1 - A)^2 + B^2} \leq 1,
\]
that is
\[
\sqrt{(1 - A)^2 + B^2} \leq 1 - A,
\]
which is equivalent to the following two conditions
\[
\begin{align*}
1 - A &\geq 0 \iff F_2(z_2) \geq 0 \iff \Re z_2 \leq 0, \\
B &\equiv 0 \iff F_3(z_2) = 0 \iff \Im z_2 = 0.
\end{align*}
\]
\[\square\]

Similarly one can get a necessary and sufficient conditions for \(n = 3\).

Proposition 2. Let \(P(z)\) be an algebraic polynomial satisfying the condition \(P(1) = 1\). Suppose the numbers \(\frac{1}{2}, z_1\) and \(z_2\) are all roots of this polynomial, and set \(A_1 = F_1(z_1), A_2 = F_1(z_2), B_1 = F_3(z_1)\) and \(B_2 = F_3(z_2)\). Then (5) holds if and only if
\[
\begin{align*}
1 - A_1A_2 - B_1B_2 &\geq 0, \\
B_1 + B_2 &\equiv 0.
\end{align*}
\]

Proof. As in the previous proof, we substitute all the notations into (7) and get
\[
T(\varphi) = \left(\frac{1}{2} + \frac{1}{2}\cos \varphi\right) \left(A_1 + (1 - A_1)\cos \varphi + B_1\sin \varphi\right) \left(A_2 + (1 - A_2)\cos \varphi + B_2\sin \varphi\right)
\]
\[
+ \left(\frac{1}{2} - \frac{1}{2}\cos \varphi\right) \left(A_1 - (1 - A_1)\cos \varphi - B_1\sin \varphi\right) \left(A_2 - (1 - A_2)\cos \varphi - B_2\sin \varphi\right)
\]
\[
= A_1A_2 + \cos^2 \varphi((1 - A_1)(1 - A_2) + (1 - A_1)A_2 + (1 - A_2)A_1) + \sin^2 \varphi \cdot B_1B_2
\]
\[
+ \cos \varphi \sin \varphi((1 - A_1)B_2 + (1 - A_2)B_1 + A_1B_2 + A_2B_1)
\]
\[
= \frac{1 + A_1A_2 + B_1B_2}{2} + \cos \varphi \frac{1 - A_1A_2 - B_1B_2}{2} + \sin \varphi \frac{B_1 + B_2}{2}
\]
\[
\leq \frac{1 + A_1A_2 + B_1B_2}{2} + \sqrt{(1 - A_1A_2 - B_1B_2)^2 + (B_1 + B_2)^2}.
\]

Since this inequality is sharp, it follows that inequality (7) is equivalent to
\[
\frac{1 + A_1A_2 + B_1B_2}{2} + \sqrt{(1 - A_1A_2 - B_1B_2)^2 + (B_1 + B_2)^2} \leq 1.
\]

This can be rewritten as
\[
\sqrt{(1 - A_1A_2 - B_1B_2)^2 + (B_1 + B_2)^2} \leq 1 - A_1A_2 - B_1B_2,
\]
that is equivalent to
\[
\begin{align*}
1 - A_1A_2 - B_1B_2 &\geq 0, \\
B_1 + B_2 &\equiv 0.
\end{align*}
\]
\[\square\]

Corollary 1. Let \(P(z)\) be an algebraic polynomial of degree 3 with real roots \(x_1, x_2\) and \(-1\), and let \(P(1) = 1\). Then (5) holds if and only if
\[
x_1x_2(x_1 + x_2 - 2) + x_1 + x_2 \leq 0
\]

Proof. Note that for real roots we get \(B_1 = B_2 = 0\), thus, the necessary and sufficient conditions from Proposition 2 can be written as follows:
\[
\left(1 + \frac{2x_1}{(x_1 - 1)^2}\right)\left(1 + \frac{2x_2}{(x_2 - 1)^2}\right) \leq 1 \iff 4x_1x_2 + 2x_1(x_2 - 1)^2 + 2x_2(x_1 - 1)^2 \leq 0
\]
\[
\iff x_1x_2(x_1 + x_2 - 2) + x_1 + x_2 \leq 0
\]
\[\square\]
2.3. The main result. Now we return to polynomials of degree \(n \). We consider a trigonometric polynomial \(m_0 \) and the algebraic polynomial \(P \) associated with \(m_0 \), that is \(m_0(\xi) = P(e^{2\pi i \xi})e^{2\pi i \xi} \max[-N,0] \). Suppose all roots \(z_1, \ldots, z_n \) of the polynomial \(P \) are real. Set \(a_i = F_1(z_i,0), i \in [1, \ldots, n] \) (see (6)). Denote by \(\sigma_k \) the elementary symmetric polynomials
\[
\sum_{S \subseteq [1, \ldots, n], \# S = k} \prod_{j \in S} a_j \text{ for all } k \in [0, \ldots, n],
\]
and set \(\rho_k := \frac{\sigma_k}{k!} \) (see [4, page 73]). Now we are ready to formulate the main theorem.

Theorem 2. Let \(T(\varphi) \) be a trigonometric polynomial constructed by the polynomial \(P \) determined in (7). Let all roots \(z_1, \ldots, z_n \) of the polynomial \(P \) be real and at least one of them equal \(-1\). If
\[
\Delta^{2k} \rho_{n-2k} = \sum_{j=n-2k}^{n} \binom{2k}{n-j} (-1)^{n-j} \rho_j \geq 0
\]
for any \(k \in [0, \ldots, \left\lfloor \frac{n}{2} \right\rfloor] \), then \(T(\varphi) \leq 1 \) for any \(\varphi \in \mathbb{R} \).

Proof. Taking into account that \(i \in [1, \ldots, n] \) whenever \(z_i \in \mathbb{R} \), we get \(F_2(z_i,0) = 1 - a_i \). Also we have \(F_3(z_i,0) = 0 \) (see (6)). Hence the function \(\psi_{z_i} \) has a simpler form
\[
\prod_{i=1}^{n} \psi_{z_i}(e^{i\varphi}) = \prod_{i=1}^{n} (a_i + (1 - a_i) \cos \varphi) = \sum_{k=0}^{n} \cos^k \varphi \cdot \sum_{S \subseteq [1, \ldots, n], \# S = k} \prod_{j \in S} (1 - a_j) \prod_{j \notin S} a_j.
\]

Therefore, we have
\[
T(\varphi) = \prod_{i=1}^{n} \psi_{z_i}(e^{i\varphi}) + \prod_{i=1}^{n} \psi_{z_i}(e^{i(\pi + \varphi)}) = 2 \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \cos^{2k} \varphi \cdot \sum_{S \subseteq [1, \ldots, n], \# S = 2k} \prod_{j \in S} (1 - a_j) \prod_{j \notin S} a_j. \tag{8}
\]

First we use Euler’s formula for the cosine with \(k \geq 1 \)
\[
\cos^{2k} \varphi = \frac{(e^{i\varphi} + e^{-i\varphi})^{2k}}{2} = \frac{1}{2^{2k}} \sum_{l=0}^{2k} \binom{2k}{l} e^{i\varphi l} e^{-i\varphi (2k-l)}
\]
\[
= \frac{1}{2^{2k}} \left(\left(\frac{2k}{k} \right) + \sum_{l=0}^{k-1} \binom{2k}{l} (e^{2i\varphi (l-k)} + e^{2i\varphi (k-l)}) \right) = \frac{1}{2^{2k}} \left(\binom{2k}{k} + 2 \sum_{l=0}^{k-1} \binom{2k}{l} \cos (l-k) \varphi \right)
\]
\[
= \frac{1}{2^{2k}} \left(\binom{2k}{k} + 2 \sum_{l=1}^{k} \binom{2k}{k-l} \cos 2l \varphi \right).
\]

Second we consider the coefficients of \(T(\varphi) \) as combinations of symmetric polynomials of \(a_1, \ldots, a_n \):
\[
\sum_{S \subseteq [1, \ldots, n], \# S = 2k} \prod_{j \notin S} (1 - a_j) \prod_{j \in S} a_j = \sum_{S \subseteq [1, \ldots, n], \# S = 2k} \prod_{j \notin S} a_j \cdot \sum_{l=0}^{2k} \binom{2k}{l} \sum_{T \subseteq S, \# T = l} \prod_{m \in T} a_m
\]
\[
= \sum_{l=0}^{2k} \binom{2k}{l} \sum_{T \subseteq S, \# T = l} \prod_{m \in T \cup S^c} a_m = \sum_{l=0}^{2k} \binom{2k}{l} \sum_{T \subseteq S, \# T = l} \prod_{m \in T \cup S^c} a_m
\]
Thus, all coefficients of \(\mathcal{F} \) equals \(1 \), as was to be proved.

\[
T(\varphi) = 2\sigma_n + 2\sum_{k=1}^{\lfloor \frac{n}{2}\rfloor} \frac{1}{2^{2k}} \binom{2k}{k} + 2\sum_{l=1}^{\lfloor \frac{k-1}{2}\rfloor} \frac{2k}{k-l} \cos 2l\varphi \cdot \sum_{m=0}^{2k} (-1)^m \binom{n-m}{2k-m} \sigma_{n-m}
\]

\[
= 2\sigma_n + 2\sum_{k=1}^{\lfloor \frac{n}{2}\rfloor} \sum_{m=0}^{2k} \frac{1}{2^{2k}} \binom{2k}{k} (-1)^m \binom{n-m}{2k-m} \sigma_{n-m}
\]

\[
+ 4\sum_{l=1}^{\lfloor \frac{n}{2}\rfloor} \cos 2l\varphi \left(\sum_{k=1}^{\lfloor \frac{n}{2}\rfloor} \sum_{m=0}^{2k} (-1)^m \frac{1}{2^{2k}} \binom{2k}{k} \binom{n-m}{2k-m} \sigma_{n-m} \right)
\]

To simplify notations, we denote the coefficients by

\[
d_l = 4\sum_{k=l}^{\lfloor \frac{n}{2}\rfloor} \sum_{m=0}^{2k} (-1)^m \frac{1}{2^{2k}} \binom{2k}{k} \binom{n-m}{2k-m} \sigma_{n-m},
\]

where \(l \in [0, \ldots, \lfloor \frac{n}{2}\rfloor] \). Then \(T(\varphi) \) takes the form \(T(\varphi) = d_0 + \sum_{l=1}^{\lfloor \frac{n}{2}\rfloor} d_l \cos 2l\varphi \). Note that

\[
d_l = 4\sum_{k=l}^{\lfloor \frac{n}{2}\rfloor} \frac{1}{2^{2k}} \sum_{m=0}^{2k} (-1)^m \binom{2k}{k} \binom{n-m}{2k-m} \binom{n}{m} \rho_{n-m}
\]

\[
= 4\sum_{k=l}^{\lfloor \frac{n}{2}\rfloor} \frac{1}{2^{2k}} \binom{n}{n-2k,k-l,k+l} \sum_{m=0}^{2k} (-1)^m \binom{2k}{m} \rho_{n-m}
\]

\[
= 4\sum_{k=l}^{\lfloor \frac{n}{2}\rfloor} \frac{1}{2^{2k}} \binom{n}{n-2k,k-l,k+l} \Delta^{2k} \rho_{n-2k} \geq 0.
\]

Therefore, all coefficients of \(T(\varphi) \) are nonnegative and \(T(\varphi) \leq T(0) = \prod_{i=1}^{n} \psi_{z_i}(1) + \prod_{i=1}^{n} \psi_{z_i}(-1) = 1 + \prod_{i=1}^{n} (2a_i - 1) \). Since at least one of \(z_1, \ldots, z_n \) equals \(-1\), it follows that at least one of \(a_1, \ldots, a_n \) equals \(F_1(-1) = 1/2 \). Therefore, \(T(0) = 1 \), as was to be proved. \(\square \)
Corollary 2. Let \(T(\varphi) \) be a trigonometric polynomial constructed by a polynomial \(P \) as it is determined in (7). Let all roots \(z_1, \ldots, z_n \) of the polynomial \(P \) be less or equal to zero and at least one of them equal \(-1\). Then \(T(\varphi) \leq 1 \) for any \(\varphi \in \mathbb{R} \).

Proof. It is clear, that \(z_i \leq 0 \iff a_i \leq 1 \). Then using (8) we get

\[
T(\varphi) = 2 \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \cos^{2k} \varphi \cdot \sum_{S \subset \{1, \ldots, n\}} \prod_{j \in S} (1 - a_j) \prod_{j \notin S} a_j \leq 2 \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \sum_{S \subset \{1, \ldots, n\}} \prod_{j \in S} (1 - a_j) \prod_{j \notin S} a_j.
\]

The last expression is exactly \(T(0) = 1 \), as was to be proved. \(\square \)

3. The validation algorithm

Based on the previous theorem we create an algorithm for checking the sufficient condition on \(\mathbb{C}^+ \):

```cpp
#include <iostream>
#include <vector>
#include <cmath>
#include <iomanip>

int main () {
    int n;
    std::cin >> n;

    std::vector<double> x(n+1, 0);
    std::vector<double> a(n+1, 0);
    std::vector<double> sigma (n+1, 1);

    for (size_t i =1; i <= n; i++)  // compute a_i 
    { 
        std::cin >> x[i];
        a[i]=1+2*x[i]/((x[i]-1)*(x[i]-1));
    }

    for (int k =1; k <= n; k++)  // compute the symmetric polynomials 
    { 
        double sum_j = 0;
        for (int j =0; j <= k-1; j++) 
        { 
            double pkj = 0;
            for (int l =1; l <= n; l++) 
            { 
                pkj += std::pow(a[l], k-j); 
            }
            sum_j += pow(-1, k-j-1) * sigma[j] * pkj;
        }
        sigma[k] = sum_j / (double) k;
    }

    std::vector<std::vector<double> >
    c(n+1, std::vector<double>(n+1, 1));
    for(int i = 0; i <= n; ++i) // compute the binomial coefficients 
    { 
        for (int j = 1; j < i; ++j) 
        { 
            c[i][j] = c[i - 1][j - 1] + c[i - 1][j];
        }
    }

    return 0;
}
```

482
std::vector<double> ro(n+1, 0);
for (int k = 0; k <= n; k++) // the symmetric means
{
 ro[k] = sigma[k] / c[n][k];
}

std::vector<std::vector<double>> deltaRo(n+1, std::vector<double>(n+1, 0));
for (int i = 0; i <= n; i++)
{
 deltaRo[0][i] = ro[i];
}

for (int i = 1; i <= n; i++) // the divided differences
{
 for (int j = i; j <= n; j++)
 {
 deltaRo[i][j] = deltaRo[i-1][j] - deltaRo[i-1][j-1];
 }
}

for (int i = 0; i <= n; ++i) // output
{
 for (int j = 0; j <= n; ++j)
 {
 std::cout << deltaRo[i][j] << " ";
 }
 std::cout << std::endl;
}

bool isDone = true;
for (int k = 0; k <= n/2; k++)
 if (deltaRo[2 * k][n] < 0)
 isDone = false;

if (isDone)
 std::cout << "[TRUE] The inequality holds" << std::endl;
else
 std::cout << "[FALSE] The criteria doesn’t answer" << std::endl;
return 0;
}

This program takes a positive integer \(n \) (the degree of the polynomial), as an input, and then \(n \) real numbers (the roots of the polynomial) are taken. Note that at least one root must be equal to \(-1\). The values of elementary symmetric polynomials are calculated recursively using Newton’s formula: \(\sigma_k = \frac{1}{k} \sum_{i=0}^{k-1} (-1)^{k-i-1} \sigma_i \sum_{j=1}^{n} a_j^{k-i} \). The screen displays a table of divided differences for \(\rho_k \) and the result of checking the criterion.

The first author was supported by the Russian Science Foundation under grant No. 18-11-00055.

Translated by the authors.
REFERENCES

1. A. Ron and Z. Shen, “Affine systems in $L_2(\mathbb{R}^d)$: the analysis of the analysis operator,” *J. Funct. Anal.*, **148**, 408–447 (1997).
2. A. Petukhov, “Explicit construction of framelets,” *Appl. Comput. Harmon. Anal.*, **11**, 313–327 (2001).
3. I. Ya. Novikov, V. Yu. Protasov, and M. A. Skopina, *Wavelet Theory*, Translations of Mathematical Monographs, 239, AMS, Providence (2011).
4. G. V. Milovanovic, D. S. Mitrinovic, and Th. M. Rassias, *Topics in Polynomials: Extremal Problems, Inequalities, Zeros*, World Scientific, Singapure (1994).