THE FUNDAMENTAL THEOREM OF CURVES AND CLASSIFICATIONS IN THE HEISENBERG GROUPS

HUNG-LIN CHIU, XIUHONG FENG, YEN-CHANG HUANG

Abstract. We study the horizontally regular curves in the Heisenberg groups H_n. We show the fundamental theorem of curves in H_n ($n \geq 2$) and define the orders of horizontally regular curves. We also show that the curve γ is of order k if and only if, up to a Heisenberg rigid motion, γ lies in H_k but not in H_{k-1}; moreover, two curves with the same order differ from a rigid motion if and only if they have the same invariants: p-curvatures and contact normality. Thus, combining with our previous work [1] we have completed the classification of horizontally regular curves in H_n for $n \geq 1$.

1. Introduction

The Heisenberg group H_n, $n \geq 1$, is the space \mathbb{R}^{2n+1} associated with the group multiplication

$$(x_1, \ldots, x_n, y_1, \ldots, y_n, z) \circ (\tilde{x}_1, \ldots, \tilde{x}_n, \tilde{y}_1, \ldots, \tilde{y}_n, \tilde{z}) = (x_1 + \tilde{x}_1, \ldots, x_n + \tilde{x}_n, y_1 + \tilde{y}_1, \ldots, y_n + \tilde{y}_n, z + \tilde{z} + \sum_{j=1}^n (y_j \tilde{x}_j - x_j \tilde{y}_j))$$

It is a $(2n+1)$-dimensional Lie group, and the space of all left invariant vector fields is spanned by the basic vector fields:

$$\hat{e}_j = \frac{\partial}{\partial x_j} + y_j \frac{\partial}{\partial z},$$
$$\hat{e}_{n+j} = \frac{\partial}{\partial y_j} - x_j \frac{\partial}{\partial z},$$
$$T = \frac{\partial}{\partial z},$$

for $1 \leq j \leq n$.

The Heisenberg group H_n can be regarded as the n-dimensional CR manifold with zero Webster-curvature. For more details, the reader can refer the Appendix in [3] or [1][2][4][6]. We give the brief description of geometric structures on H_n: the standard contact bundle in H_n is the subbundle ξ of the tangent bundle TH_n, which is spanned by \hat{e}_j and \hat{e}_{n+j} for $1 \leq j \leq n$. The contact bundle can also be defined as the kernel of the contact form

$$\theta = dz + \sum_{j=1}^n (x_j dy_j - y_j dx_j).$$

The standard CR structure on H_n is the almost complex structure defined on ξ by

$$J(\hat{e}_j) = \hat{e}_{n+j}, \quad J\hat{e}_{n+j} = -\hat{e}_j.$$
Throughout the article, we regard the Heisenberg group H_n with the standard pseudo-hermitian structure (J, θ) as a pseudohermitian manifold (H_n, J, θ). Denote the group of pseudohermitian transformations on H_n by $PSH(n)$ which forms the group of rigid motions. An element in $PSH(n)$ is called a pseudohermitian transformation or a symmetry on H_n, which is a deffeomorphism $\Phi : H_n \to H_n$ preserving both the CR structure J and the contact form θ. More precisely, it satisfies

$$\Phi_* J = J\Phi_*, \quad \Phi^* \theta = \theta.$$

Here are our settings for curves: suppose $\gamma : I \subset \mathbb{R} \to H_n$ is a parametrized curve defined by

$$\gamma(t) = (x_1(t), \cdots, x_n(t), y_1(t), \cdots, y_n(t), z(t)).$$

For $k = 1, \cdots, n$, the kth derivative $\gamma^{(k)}$ of the curve γ has the natural decomposition

$$\gamma^{(k)}(t) = \gamma^{(k)}_\xi(t) + \gamma^{(k)}_T(t),$$

where $\gamma^{(k)}_\xi$ (resp. $\gamma^{(k)}_T$) is the orthogonal projection of $\gamma^{(k)}$ on the contact plane ξ along T-direction (resp. on T along ξ) with respect to the Levi metric. Recall that a curve is called horizontally regular if it has the non-vanishing first derivative in the horizontal part, $\gamma^{(1)}(t) \neq 0$ for all t. In [1] we show that any horizontally regular curve can be reparametrized by horizontal arc length s with respect to the Levi metric, namely, $|\gamma^{(1)}(s)| = 1$ for all s. In the article, we use different parameters t and s to distinguish from being parametrized by arc length or not. Moreover, by identifying $H_n \cong \mathbb{C}^n \times \mathbb{R}$ and the natural projection,

$$\begin{array}{rcl}
H_n & \cong & \mathbb{C}^n \times \mathbb{R} \\
\gamma & \mapsto & (x_1(t), \cdots, x_n(t), y_1(t), \cdots, y_n(t), z(t)) \\
\pi & \mapsto & \mathbb{C}^n \cong \mathbb{R}^{2n}
\end{array}$$

we may rewrite the curve γ in the real sense

$$\gamma(t) = (x_1(t), \cdots, x_n(t), y_1(t), \cdots, y_n(t), z(t)) \in \mathbb{R}^{2n} \times \mathbb{R},$$

with its projection on \mathbb{R}^{2n}

$$\alpha(t) = (x_1(t), y_1(t), \cdots, x_n(t), y_n(t)),$$

or equivalently in the complex sense

$$\beta(t) = (z_1(t), \cdots, z_n(t)) \in \mathbb{C}^n,$$

where $z_j(s) = x_j(s) + \sqrt{-1}y_j(s)$ for $1 \leq j \leq n$.

A key observation is that in case $H_1 \ni \gamma = (\beta, z)$, we have

$$\gamma' = (\beta', z') \in \mathbb{C} \times \mathbb{R}$$

$$= (x', y', z') \in \mathbb{R}^2 \times \mathbb{R}$$

$$= x'\dot{\epsilon}_1 + y'\dot{\epsilon}_2 + (z' - yx' + x'y)T.$$

Thus, $\beta' \neq 0$ if and only if the curve γ is horizontally regular in H_1. Given a curve in H_n, in general, we ask if one can establish the concept such that the curve is horizontally regular in any lower dimensional subspaces of H_n.

Recall [4] a real linear subspace P is totally real if and only if any vector $X \in P$ implies $JX \notin P$. Inspired by Griffiths [5], we generalize the definition of non-degenerate curves in H_n.

Definition 1.1. A **non-degenerate horizontally regular curve** in H_n is a horizontally regular curve $\gamma(t) = (\beta(t), z(t)) \in \mathbb{C}^n \times \mathbb{R}$ satisfying

\[W^{[n]}_\beta(t) := \gamma'_\xi(t) \wedge \cdots \wedge \gamma^{(n)}_\xi(t) \neq 0 \text{ for all } t, \]

and the set

\[\{ \gamma'_\xi(t), \cdots, \gamma^{(n)}_\xi(t) \} \text{ is totally real for all } t. \]

The condition (1.0) ensures that we can always choose an oriented frame along the non-degenerate horizontally regular curve γ

\[(\gamma(s); e_1(s), \cdots, e_n(s), e_{n+1}(s), \cdots, e_{2n}(s), T) \]

inductively satisfying the condition, for $1 \leq j \leq n$,

\[e_1(s) \wedge \cdots \wedge e_j(s) = \pm \frac{\gamma'_\xi(s) \wedge \cdots \wedge \gamma^{(j)}_\xi(s)}{|\gamma'_\xi(s) \wedge \cdots \wedge \gamma^{(j)}_\xi(s)|} \]

and

\[e_{n+j} = J e_j. \]

Along the curve γ, as in [1], we define the **p-curvatures** $\kappa_j(s)$, $1 \leq j \leq n$ and the **contact normality** $\tau(s)$ as

\[\kappa_j(s) = \left(\frac{d e_j(s)}{ds}, e_{n+j}(s) \right), \text{ for } 1 \leq j \leq n - 1, \]

\[\kappa_n(s) = \left(\frac{d e_n(s)}{ds}, e_{2n}(s) \right), \]

\[\tau(s) = \left(\frac{d \gamma(s)}{ds}, T \right). \]

We point out that all quantities above are invariant under the group actions of $P\Sigma H(n)$. Our main theorem shows that those invariants completely determine the non-degenerate horizontally regular curve up to a Heisenberg rigid motion, which is analogous to the fundamental theorem of curves in \mathbb{R}^n.

Theorem 1.2. Given $(n + 1)$ smooth functions $\kappa_i(s)$ for $1 \leq i \leq n$ and $\tau(s)$, there exists a non-degenerate horizontally regular curve $\gamma(s) \in H_n$ parametrized by the horizontal arc-length s such that the functions κ_i’s and τ are the p-curvatures and the contact normality of γ, respectively. In addition, two non-degenerate horizontally regular curves satisfying the same conditions above differ from a rigid motion in $P\Sigma H(n)$.

It is obvious that $\gamma(s)$ is a horizontal if $\gamma'(s) = \gamma'_\xi(s)$ for all $t \in I$, and therefore $\gamma(s)$ is horizontal if and only if $\tau(s) = 0$. We immediately have the corollary:

Corollary 1.3. Given smooth functions $\kappa_i(s), 1 \leq i \leq n$, there exists a horizontal curve $\gamma(s) \in H_n$ parametrized by the horizontal arc-length s having $\kappa_i(s), 1 \leq i \leq n$ as its p-curvatures. In addition, two horizontal curves having the same p-curvatures differ from a rigid motion in $P\Sigma H(n)$.
Next we define the order of the curves. It is similar to the concept that spacial curves in \mathbb{R}^3 cannot be "squeezed" into any linear 2-dimensional subspaces, but planar curves can be. The order of a horizontal curve gives the minimal dimension of the subspaces in which the curve lives.

Definition 1.4. A horizontally regular curve $\gamma(t) = (\beta(t), z(t)) \in H_n$ is of order k, denoted by $\text{order}(\gamma) = k$, if there exists a positive integer $k \in [1, n]$ such that

$$
\begin{cases}
\beta'(t) \wedge \cdots \wedge \beta^{(k+1)}(t) = 0, \\
\beta'(t) \wedge \cdots \wedge \beta^{(k)}(t) \neq 0,
\end{cases}
$$

for all t. A horizontally regular curve is called degenerate in H_n if $\text{order}(\gamma) < n$.

Remark 1.5. By Definition 1.4, any non-degenerate horizontally regular curve γ is of the top order, $\text{order}(\gamma) = n$, and vice versa. In contrast to Theorem 1.2, two curves with different orders never lie in the same subspace of H_n, and hence they cannot be congruent to each other by any Heisenberg rigid motion.

We also characterize the degenerate horizontally regular curves of top order $(n-1)$. Similar to the fact that a planar curve in \mathbb{R}^3 can be "moved" to xy-plane, any degenerate regular curve $\gamma \in H_n$ can be acted by a symmetry of $PSH(n)$ to H_{n-1}.

Proposition 1.6. Let $\gamma(t) = (\beta(t), z(t)) \in H_n \cong \mathbb{C}^n \times \mathbb{R}$ be a degenerate horizontally regular curve. Then there exists a symmetry $\Phi \in PSH(n)$ such that $\Phi(\gamma) = \tilde{\gamma}$, where $\tilde{\gamma} = (\tilde{\beta}(t), z(t))$ is a horizontally regular curve with the projection $\tilde{\beta} = (\tilde{\beta}_1, \cdots, \tilde{\beta}_{n-1}, 0)$ of β onto \mathbb{C}^{n-1}. Thus, we conclude that $\tilde{\gamma} \in H_{n-1} \subseteq H_n$.

Remark 1.7. In summary, we have the dichotomy to classify any horizontally regular curve γ in H_n: let $\gamma(t) = (\beta(t), z(t)) \in H_n$. If γ is non-degenerate, then by Theorem 1.2 it must be uniquely determined by the p-curvatures $\kappa_i(s)$, $1 \leq i \leq n$, and contact normality $\tau(t)$ up to a symmetry in $PSH(n)$; otherwise, the Wronskian $W^{[n]}(t) = 0$ somewhere and we keep checking if $W^{[n-1]}(t)$ is nonzero for all t. The nonzero condition implies that γ is degenerate of order $(n-1)$. By using Proposition 1.6 and applying Theorem 1.2 to H_{n-1}, we obtain that γ lies in the subspace H_{n-1} but not in H_{n-2}, and is uniquely determined by the invariants $\kappa_1, \cdots, \kappa_{n-1}, \tau$. However, if $W^{[n-1]}(t) = 0$ somewhere, we have to check if $W^{[n-2]}(t)$ is nonzero again for all t. Repeating above processes, and finally we conclude that two curves with the same order $k \leq n-1$ differ from a symmetry in $PSH(k)$ if and only if both have same k_i, $i = 1, \cdots, k-1$ and τ. Thus, we complete the classification of horizontally regular curves.

An interesting example is that the order of horizontal geodesics in H_n, $n \geq 1$, is always 1. By the processes described in Remark 1.7, the horizontal geodesics can always be embedded into H_1.

Proposition 1.8. Every horizontal geodesic $\gamma \in H_n$, $n \geq 1$, is of order 1 with constant p-curvatures and zero contact normality. Therefore, γ is non-degenerate in H_1 and degenerate in H_n for $n \geq 2$.

The structure of the paper is as follows: in Section 2 we recall the well-known theorems for existence and uniqueness. In Section 3 we derive the Darboux derivatives. In Section 4 we prove the Theorem 1.2. Finally, in Section 5, we characterize
the degenerate curves (Proposition 1.6), and, as an example, the order of horizontal geodesics will be calculated.

Acknowledgments The first author would like to thank the Ministry of Science and Technology for the support of the project: MOST-104-2115-M-008-003-MY2, and also thanks for support from NCTS. The third author would like to express his appreciation to Professor Paul Yang and Professor Sun-Yung Alice Chang for their comments and suggestions.

2. Calculus on Lie groups

In the section, we shall give two well-known and essentially local results concerning smooth maps from manifold M into the Lie group G. Given a connected smooth manifold M. Let $G \subset GL(n, R)$ be a matrix Lie group with Lie algebra \mathfrak{g} and the (left-invariant) Maurer-Cartan form ω on G. The first result is the existence theorem:

Theorem 2.1 ([5]). Suppose that ϕ is a \mathfrak{g}-valued one form on a simply connected manifold M. Then there exists a C^∞-map $f : M \to G$ with $f^* \omega = \phi$ if and only if $d\phi + \phi \wedge \phi = 0$.

The second result states that the pull-back of the Maurer-Cartan form uniquely determines the map up to a group action:

Theorem 2.2 ([5]). Given two maps $f, \tilde{f} : M \to G$, then $\tilde{f}^* \omega = f^* \omega$ if and only if $\tilde{f} = g \circ f$ for some $g \in G$.

We call the Lie algebra valued one-form $f^* \omega$ the Darboux derivative of the map $f : M \to G$.

3. Differential Invariants of Horizontally Regular Curves in H_n

Recall (equations (4.9)(4.10) in [2]) that any point $p \in H_n$ and element $\Phi_{p,R} \in PSH(n)$ have the corresponding representations respectively

$$p \in H_n \leftrightarrow X := \begin{pmatrix} 1 \\ p \end{pmatrix} \in \mathbb{R}^{2n+2},$$

$$\Phi_{p,R} \in PSH(n) \leftrightarrow M \in PSH(n),$$

satisfying the matrix multiplication

$$MX = \begin{pmatrix} 1 \\ \Phi_{p,R}(p) \end{pmatrix}.$$

Denote the indices

$$1 \leq a, b \leq 2n,$$

$$1 \leq j, k \leq n.$$

We also have the Maurer-Cartan form ω of $PSH(n)$ ([2], page 1104)

$$
\begin{pmatrix}
0 & 0 & 0 & 0 \\
\omega_k & \omega_k & \omega_n+k & 0 \\
\omega_n+k & \omega_n+k & \omega_n+j & 0 \\
\omega_{2n+1} & \omega_{n+j} & -\omega_j & 0
\end{pmatrix}.$$
where ω^k, ω^j, ω^{2n+1} are 1-forms on $PSH(n)$ satisfying $\omega^b_n = -\omega^a_n$, $\omega^{n+k}_n = -\omega^{n+j}_n$.

Let $(p; e_j, e_{n+j}, T)$ be an oriented frame at point $p \in H_n$. By identifying $PSH(n)$ with the space of all oriented frames on H_n,

$$M \in PSH(n) \leftrightarrow (p, e_j, e_{n+j}, T),$$

we have

$$(p, e_j, e_{n+j}, T) = (0, \dot{e}_j, \dot{e}_{n+j}, T) \cdot M,$$

where \cdot denotes the matrix multiplication. Thus, one can derive the moving frame formulas (page 1105, [2])

\begin{align}
&dp = e_j \omega^j + e_{n+j} \omega^{n+j} + T \omega^{2n+1}, \\
&de_j = e_k \omega^j + e_{n+k} \omega^{n+k} + T \omega^{n+j}, \\
&de_{n+j} = e_k \omega^{n+j} + e_{n+k} \omega^{n+k} - T \omega^j, \\
&dT = 0.
\end{align}

(3.1)

Let $\gamma(s)$ be a horizontally regular curve with horizontal arc-length parameter s. Each point of γ uniquely defines the oriented frame as $[\gamma]$ and we still denote the corresponding lifting $\tilde{\gamma} \in PSH(n)$ of γ by

$$\tilde{\gamma}(s) = (\gamma(s), e_1(s), \cdots, e_n(s), e_{n+1}(s), \cdots, e_{2n}(s), T),$$

which is unique up to a $SO(2n)$ group action. Let ω be the Maurer-Cartan form of $PSH(n)$. We shall derive the Darboux derivative $\tilde{\gamma}^* \omega$ of the $\tilde{\gamma}$.

By the moving frame formulas (3.1),

$$d\gamma(s) = e_j(s)\tilde{\gamma}^* \omega^j + e_{n+j}(s)\tilde{\gamma}^* \omega^{n+j} + T \tilde{\gamma}^* \omega^{2n+1},$$

on the other hand, by the choice of the oriented frame

$$d\gamma(s) = \gamma'_{\xi}(s)ds + \gamma'_{\tau}(s)ds = e_1(s)ds + \gamma'_{\tau}(s)ds.$$

Comparing the components in above equations, we have

\begin{align}
\tilde{\gamma}^* \omega^1 &= ds, & \tilde{\gamma}^* \omega^\ell &= 0 & \text{for } 2 \leq \ell \leq 2n, \\
\tilde{\gamma}^* \omega^{2n+1} &= (\frac{d\gamma(s)}{ds}, T)ds = \tau(s)ds.
\end{align}

Again from (3.1), we have

\begin{align}
de_j(s) &= e_k(s)\tilde{\gamma}^* \omega^k + e_{n+k}(s)\tilde{\gamma}^* \omega_{n+k} + T \tilde{\gamma}^* \omega^{n+j} \\
&= e_k(s)\tilde{\gamma}^* \omega^k + e_{n+k}(s)\tilde{\gamma}^* \omega_{n+k}.
\end{align}

(3.3)

For $1 \leq j \leq n-1$, since $e_j(s)$ (resp. $de_j(s)$) is the linear combination of $\gamma_{\xi}^{(1)}(s), \cdots, \gamma_{\xi}^{(j)}(s)$, (resp. $\gamma_{\xi}^{(1)}(s), \cdots, \gamma_{\xi}^{(j+1)}(s)$), one has

$$\tilde{\gamma}^* \omega^j = 0, \text{ for } i > j + 1.$$

(3.4)

By (3.3) and the definition of p-curvatures, we also have

\begin{align}
\tilde{\gamma}^* \omega_{j+1}^{j+1} &= (\frac{d e_j(s)}{ds}, e_{j+1}(s))ds = \kappa_j(s)ds.
\end{align}

(3.5)

Similarly, for $j = n$,

\begin{align}
de_n(s) &= e_k(s)\tilde{\gamma}^* \omega^k + e_{n+k}(s)\tilde{\gamma}^* \omega_{n+k} + T \tilde{\gamma}^* \omega^{2n} \\
&= e_k(s)\tilde{\gamma}^* \omega^k + e_{n+k}(s)\tilde{\gamma}^* \omega_{n+k}.
\end{align}
In addition, since \(\omega_n^{n+k} = -\omega_k^n = \omega_n^{2n} \), \(\tilde{\gamma}^*\omega_n^{n+i} = \tilde{\gamma}^*\omega_n^{2n} = 0 \), for \(1 \leq j \leq n - 1 \). One has

\[
(3.6) \quad \tilde{\gamma}^*\omega_n^{2n} = \left(\frac{d\omega_n(s)}{ds}, e_{2n}(s) \right) ds = \kappa_n(s) ds.
\]

By \(\{12\} \{14\} \{16\} \{18\} \{20\} \{22\} \) and use the anti-symmetric property, \(\omega_j^i = -\omega_i^j \), finally we reach the moving frame formulae for the curve \(\gamma(s) \)

\[
(3.7) \quad \begin{align*}
 d\gamma(s) &= e_1(s) ds + T\tau(s) ds, \\
 de_j(s) &= -e_{j-1}(s)\kappa_{j-1}(s) ds + e_{j+1}(s)\kappa_j(s) ds, \\
 de_n(s) &= -e_{n-1}(s)\kappa_{n-1}(s) ds + e_{2n}(s)\kappa_n(s) ds.
\end{align*}
\]

In conclusion, we obtain the Darboux derivative \(\tilde{\gamma}^*\omega \) of \(\tilde{\gamma} \)

\[
(3.8) \quad \begin{pmatrix}
0 & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
1 & 0 & -\kappa_1(s) & 0 & \cdots & 0 & 0 \\
0 & \kappa_1(s) & \ddots & \ddots & \ddots & \ddots & \ddots \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\vdots & \vdots & \vdots & -\kappa_{n-1}(s) & \ddots & \ddots & \ddots \\
0 & 0 & \cdots & 0 & \kappa_{n-1}(s) & 0 & \cdots & 0 & -\kappa_n(s) & 0 \\
0 & 0 & \cdots & 0 & 0 & -\kappa_1(s) & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \kappa_1(s) & 0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\
\vdots & \vdots & \vdots & 0 & 0 & 0 & \cdots & \cdots & 0 & -\kappa_{n-1}(s) & \cdots \\
0 & 0 & \cdots & 0 & \kappa_n(s) & 0 & \cdots & \kappa_{n-1}(s) & 0 & 0 \\
\tau(s) & 0 & \cdots & \cdots & \cdots & \cdots & 0 & -1 & 0
\end{pmatrix} = \text{ds}.
\]

4. Proof of the main theorem

We show the proof of Theorem 1.2 in this section.

Proof. First we show the existence. Given \((n + 1)\) functions \(\kappa_i(s), 1 \leq i \leq n \), and \(\tau(s) \) defined on an open interval \(I \). Define a \(PSH(n) \)-valued one-form \(\varphi \) on \(I \) with entries \(\kappa_i \)'s, \(\tau \) as the one in \((3.8) \). It is easy to show that \(d\varphi + \varphi \wedge \varphi = 0 \), and by Theorem 2.3 there exists a curve

\[
\tilde{\gamma}(s) = (\gamma(s); e_1(s), \cdots, e_n(s), e_{n+1}(s), \cdots, e_{2n}(s), T) \in PSH(n)
\]

such that \(\tilde{\gamma}^*\omega = \varphi \). Therefore, by the moving frame formula \((3.7) \), we have

\[
\begin{align*}
 d\gamma(s) &= e_1(s) ds + T\tau(s) ds, \\
 de_j(s) &= -e_{j-1}(s)\kappa_{j-1}(s) ds + e_{j+1}(s)\kappa_j(s) ds, \\
 de_{n+1}(s) &= -e_{n+1}(s)\kappa_n(s) ds + e_{2n}(s)\kappa_n(s) ds, \\
 de_{n+2}(s) &= -e_{n+1}(s)\kappa_{n-1}(s) ds + e_{n+1}(s)\kappa_{n-1}(s) ds, \\
 de_{2n}(s) &= -e_n(s)\kappa_n(s) ds - e_{2n-1}(s)\kappa_n(s) ds,
\end{align*}
\]
for $1 \leq j \leq n - 1$, which implies that

$$e_1(s) = \gamma'_\xi(s),$$

$$\kappa_j(s) = \frac{de_j(s)}{ds}, e_{j+1}(s)), 1 \leq j \leq n - 1,$$

$$r_n(s) = \frac{de_n(s)}{ds}, e_{2n}(s)),$$

$$\tau(s) = \frac{d\gamma(s)}{ds}, T).$$

We have reached the proof of existence.

Next, for the uniqueness, suppose that γ_1 and γ_2 have the same p-curvatures $\kappa_j(s), 1 \leq j \leq n$ and the contact normality $\tau(s)$. By the moving frame formulas \[3.1\] we get

$$\tilde{\gamma}_1^* \omega = \tilde{\gamma}_2^* \omega.$$

Therefore, Theorem \[2.2\] implies that there exists an element $g \in PSH(n)$ such that $\tilde{\gamma}_2(s) = g \circ \tilde{\gamma}_1(s)$, and hence $\gamma_2(s) = g \circ \gamma_1(s)$ for all s. This completes the proof of uniqueness. \hfill \square

5. The degenerate case

We give the proof of Proposition 1.6.

Proof. Without lose of generality, we may assume order(γ) = $n - 1$ and $\gamma(0) = (\beta(0), z(0)) = 0$. We observe that the second condition in \[1.9\] holds if and only if

$$\gamma'_\xi(s) \wedge \cdots \gamma^{(n-1)}_\xi(s) \wedge J\gamma_\xi(s) \wedge \cdots \wedge J\gamma^{(n-1)}_\xi(s) \neq 0.$$

At $s = 0$, we may take the orthonormal frame $e_1(0), \ldots, e_{n-1}(0)$ satisfying $e_1(0) \wedge \cdots \wedge e_k(0) = \gamma'_\xi \wedge \cdots \gamma^{(k-1)}_\xi \wedge e_k(0)$ for all $1 \leq k \leq n - 1$ such that $\text{span}_\mathbb{R}\{e_1(0), \ldots, e_{n-1}(0), Je_1(0), \ldots, Je_{n-1}(0)\} = \mathbb{C}^{n-1} \subset \mathbb{C}^n$. We also have the natural orthogonal decomposition

$$\mathbb{C}^n \ni \beta(s) = \beta'(s) + a(s)N$$

for some function $a(s)$, where N is normal to \mathbb{C}^{n-1} and $\beta' \in \mathbb{C}^{n-1}$. Since $\beta(0) \in \mathbb{C}^{n-1}$, we have the initial condition

$$a(0) = 0. \quad (5.1)$$

We shall claim that $a(s) = 0$ for all s, which implies that $\gamma(s) \in \mathbb{C}^{n-1}$. Since $\beta^{(j)}(0) \in \mathbb{C}^{n-1},$

$$a^{(j)}(0) = 0 \text{ for } 1 \leq j \leq n - 1. \quad (5.2)$$

On the other hand, by the assumption

$$0 = \beta' \wedge \cdots \wedge \beta^{(n)}$$

$$= (\beta' + a'N) \wedge \cdots \wedge (\beta^{(n)} + a^{(n)}N)$$

$$= (\beta' \wedge \cdots \wedge \beta^{(n)}) + \sum_{h=1}^{n} \beta' \wedge \cdots \wedge \beta^{(h-1)} \wedge (a^{(h)}N) \wedge \beta^{(h+1)} \wedge \cdots \wedge \beta^{(n)}$$

$$= (a'b_1 + a''b_2 + \cdots + a^{(n-1)}b_{n-1} + a^{(n)})(\beta' \wedge \cdots \wedge \beta^{(n-1)} \wedge N),$$
where we denote \(\tilde{\beta}(n) = \sum_{j=1}^{n-1} b_j \tilde{\beta}(j) \) for some smooth functions \(b_j(s) \) independent of \(a(j)'s \) and we have used the fact that the complex \(n \)-form \(\Lambda_{n=1}^{n-1} \tilde{\beta}(k) \) vanishes in \(\mathbb{C}^n \). Since the volume form \((\Lambda_{n=1}^{n-1} \tilde{\beta}(k)) \wedge N \) is nonzero, together with (5.1), (5.2), we obtain the \(n \)-th order O.D.E. system with the initial conditions

\[
\begin{cases}
 a^{(n)}(s) + \sum_{j=1}^{n-1} b_j(s) a^{(j)}(s) = 0, \\
 a^{(j)}(0) = 0 \text{ for } j = 0, \ldots, n - 1.
\end{cases}
\]

Hence by the existence and uniqueness theorem of O.D.E. one has \(a(s) \equiv 0 \) for all \(s \), which implies \(\gamma(s) \in H_{n-1} \subset H_n \), and complete the proof. \(\square \)

Finally we calculate order \(\gamma = 1 \) if \(\gamma \) is a horizontal geodesic in \(H_n \) for any \(n \geq 1 \).

Proof of Proposition 11.8. In [7], the horizontal geodesic \(\gamma : I \to H_n \) satisfies the equation

\[
D_{\gamma'} \gamma'' + 2\lambda J(\gamma') = 0,
\]

for some constant \(\lambda \in R \).

Let \(\gamma(s) = (x_1(s), \ldots, x_n(s), y_1(s), \ldots, y_n(s), z(s)) \) be a horizontal geodesic with horizontal arc-length \(s \). Then, for \(1 \leq j \leq n \), we have the following expression

\[
\begin{align*}
(5.3) \quad & x_j(s) = (x_0)_j + A_j \left(\frac{\sin(2\lambda s)}{2\lambda} \right) + B_j \left(\frac{1 - \cos(2\lambda s)}{2\lambda} \right), \\
(5.4) \quad & y_j(s) = (y_0)_j + A_j \left(\frac{1 - \cos(2\lambda s)}{2\lambda} \right) + B_j \left(\frac{\sin(2\lambda s)}{2\lambda} \right), \\
(5.5) \quad & z(s) = t_0 + \frac{1}{2\lambda} \left(s - \frac{\sin(2\lambda s)}{2\lambda} \right) + \sum_{j=1}^{n} \left\{ (A_j(x_0)_j + B_j(x_0)_j) \left(\frac{1 - \cos(2\lambda s)}{2\lambda} \right) \right. \\
& \quad \left. - (B_j(x_0)_j - A_j(x_0)_j) \left(\frac{\sin(2\lambda s)}{2\lambda} \right) \right\},
\end{align*}
\]

with the initial conditions \(x_j(0) = (x_0)_j \), \(y_j(0) = (y_0)_j \), and \(x'_j(0) = A_j \), \(y'_j(0) = B_j \) satisfying \(\sum_{j=1}^{n} (A_j^2 + B_j^2) = 1 \). By the decomposition (1.2)

\[
\gamma'(s) = (x'_1(s), \ldots, x'_n(s), y'_1(s), \ldots, y'_n(s), z'(s))
\]

\[
= \sum_{j=1}^{n} \left(x'_j(s) \frac{\partial}{\partial x_j} + y'_j(s) \frac{\partial}{\partial y_j} \right) + z'(s) \frac{\partial}{\partial z}
\]

\[
= \sum_{j=1}^{n} \left(x'_j(s) \tilde{e}_j + y'_j(s) \tilde{e}_{n+j} \right) + \sum_{j=1}^{n} \left(z'(s) + x_j y'_j - y_j x'_j \right) \frac{\partial}{\partial z},
\]

we have

\[
(5.6) \quad \gamma' = \sum_{j=1}^{n} \left(x'_j(s) \tilde{e}_j + y'_j(s) \tilde{e}_{n+j} \right),
\]

\[
\gamma' = \sum_{j=1}^{n} \left(z'(s) + x_j y'_j - y_j x'_j \right) T,
\]
where \(\frac{\partial}{\partial z} = T \). Since the geodesic is horizontal, the contact normality \(\tau(s) = 0 \).

Moreover, by (5.3), (5.4), (5.6)

\[
\gamma'_\xi(s) = \sum_{j=1}^{n} \left((A_j \cos(2\lambda s) + B_j \sin(2\lambda s))\hat{e}_j + (-A_j \sin(2\lambda s) + B_j \cos(2\lambda s))\hat{e}_{n+j} \right),
\]

Note that \(|\gamma'_\xi(s)| = 1 \), we may take \(e_1 = \gamma'_\xi \). Taking the derivatives, we observe that

\[
\gamma''_\xi(s) = \sum_{j=1}^{n} \left((-2\lambda A_j \sin(2\lambda s) + 2\lambda B_j \cos(2\lambda s))\hat{e}_j + (-2\lambda A_j \cos(2\lambda s) - 2\lambda B_j \sin(2\lambda s))\hat{e}_{n+j} \right),
\]

\[
\langle \gamma''_\xi(s), \gamma'_\xi(s) \rangle = 0,
\]

By Definition 1.4, we conclude that the order of geodesics is one. There is only one invariant, p-curvature, for \(\gamma \), namely,

\[
\kappa_1 = \langle \frac{de_1(s)}{ds}, e_2(s) \rangle \]

\[
= -2\lambda \sum_{j=1}^{n} \left\{ (A_j \sin(2\lambda s) - B_j \cos(2\lambda s))^2 + (A_j \cos(2\lambda s) + B_j \sin(2\lambda s))^2 \right\} \]

\[
= -2\lambda,
\]

where \(e_2 = Je_1 \).

\[\square \]

REFERENCES

[1] H.L. Chiu, Y.C. Huang, S.H. Lai, The application of the moving frame method to Integral Geometry in Heisenberg group, preprint, arxiv.org/abs/1509.00950.

[2] H.L. Chiu, S.H. Lai, The fundamental theorem for hypersurfaces in Heisenberg groups, Calc. Var. Partial Differential Equations 54 (2015), no. 1, 1091-1118.

[3] J.H. Cheng, J.F. Hwang, A. Malchiodi, P. Yang, Minimal surfaces in pseudohermitian geometry, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.1 (2005): 129-177.

[4] J.H. Cheng, H.L. Chiu, J.F. Hwang, Paul Yang, Umbilicity and characterization of Pansu spheres in the Heisenberg group, Journal fur Die Reine und Angewandte Mathematik (2015), (to appear)

[5] P. Griffiths, On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry, Duke Math. J. 41 (1974), 775-814.

[6] H. Jacobowitz, An introduction to CR structures, Mathematical Survey and Monographs, No. 32, AMS. 1994.

[7] M. Ritore, A Proof by calibration of an isoperimetric inequality in the Heisenberg group \(H_n \). Calculus of Variations (2012), 44, 47-60.

Department of Mathematics, National Central University, Chung Li, 32054, Taiwan, R.O.C.

E-mail address: hlchiu@math.ncu.edu.tw

Department of Mathematics, The School of Mathematics and Statistics, Nanjing University of Information Science and Technology

E-mail address: fengxiuhong@nuist.edu.cn

Department of Mathematics, National Central University, Chung Li, 32054, Taiwan, R.O.C.

E-mail address: yenchang.huang1@gmail.com