Complete Genome Sequence of Streptomyces sp. Strain CCM_MD2014, Isolated from Topsoil in Woods Hole, Massachusetts.

https://escholarship.org/uc/item/5bh5h26b

Genome announcements, 3(6)

2169-8287

Mariita, Richard M
Bhatnagar, Srijak
Hanselmann, Kurt
et al

2015-12-31

10.1128/genomea.01506-15

Peer reviewed
The genome sequence of Streptomyces sp. strain CCM_MD2014 (phylum Actinobacteria), isolated from surface soil in Woods Hole, MA. Its single linear chromosome of 8,274,043 bp in length has a 72.13% G+C content and contains 6,948 coding sequences.

ACKNOWLEDGMENTS

The isolation and culturing of this organism were carried out as part of the 2014 Microbial Diversity Summer Program at the Marine Biological Laboratory in Woods Hole, MA. The program was supported by generous grants from the Simons Foundation (grant 309981) to the Marine Biological Laboratory), the Beckman Foundation, and the Howard Hughes Medical Institute. This material is based upon work supported by the National Aeronautics and Space Administration (grant NNA13AA92A), the National Science Foundation (grant MCB-1417876), and the U.S. Department of Energy (grant DE-FG02-85ER13361). R.M.M. was supported by a fellowship from Alabama EPSCoR GRSP, Auburn University's Cell and Molecular Biosciences (CMB) Summer Fellowship, Selman A. Waksman Endowed Scholarship in Microbial Diversity, Bernard Davis Endowed Scholarship (no. 47802012050), an Auburn Graduate School Travel Award, and the Joseph Kirby Farrington Endowed Fund for Excellence. These funders had no role in the study design, data collection and interpretation, or the decision to submit the work for publication.

Promega Corporation donated the molecular reagents used in this project. The sequencing for this organism was supported and carried out by the Beckman Foundation, and the Howard Hughes Medical Institute. This material is based upon work supported by the National Aeronautics and Space Administration (grant NNA13AA92A), the National Science Foundation (grant MCB-1417876), and the U.S. Department of Energy (grant DE-FG02-85ER13361). R.M.M. was supported by a fellowship from Alabama EPSCoR GRSP, Auburn University's Cell and Molecular Biosciences (CMB) Summer Fellowship, Selman A. Waksman Endowed Scholarship in Microbial Diversity, Bernard Davis Endowed Scholarship (no. 47802012050), an Auburn Graduate School Travel Award, and the Joseph Kirby Farrington Endowed Fund for Excellence. These funders had no role in the study design, data collection and interpretation, or the decision to submit the work for publication.

Promega Corporation donated the molecular reagents used in this project. The sequencing for this organism was supported and carried out by the Beckman Foundation, and the Howard Hughes Medical Institute. This material is based upon work supported by the National Aeronautics and Space Administration (grant NNA13AA92A), the National Science Foundation (grant MCB-1417876), and the U.S. Department of Energy (grant DE-FG02-85ER13361). R.M.M. was supported by a fellowship from Alabama EPSCoR GRSP, Auburn University's Cell and Molecular Biosciences (CMB) Summer Fellowship, Selman A. Waksman Endowed Scholarship in Microbial Diversity, Bernard Davis Endowed Scholarship (no. 47802012050), an Auburn Graduate School Travel Award, and the Joseph Kirby Farrington Endowed Fund for Excellence. These funders had no role in the study design, data collection and interpretation, or the decision to submit the work for publication.

Promega Corporation donated the molecular reagents used in this project. The sequencing for this organism was supported and carried out by the Beckman Foundation, and the Howard Hughes Medical Institute. This material is based upon work supported by the National Aeronautics and Space Administration (grant NNA13AA92A), the National Science Foundation (grant MCB-1417876), and the U.S. Department of Energy (grant DE-FG02-85ER13361). R.M.M. was supported by a fellowship from Alabama EPSCoR GRSP, Auburn University's Cell and Molecular Biosciences (CMB) Summer Fellowship, Selman A. Waksman Endowed Scholarship in Microbial Diversity, Bernard Davis Endowed Scholarship (no. 47802012050), an Auburn Graduate School Travel Award, and the Joseph Kirby Farrington Endowed Fund for Excellence. These funders had no role in the study design, data collection and interpretation, or the decision to submit the work for publication.

Promega Corporation donated the molecular reagents used in this project. The sequencing for this organism was supported and carried out by the Beckman Foundation, and the Howard Hughes Medical Institute. This material is based upon work supported by the National Aeronautics and Space Administration (grant NNA13AA92A), the National Science Foundation (grant MCB-1417876), and the U.S. Department of Energy (grant DE-FG02-85ER13361). R.M.M. was supported by a fellowship from Alabama EPSCoR GRSP, Auburn University’s Cell and Molecular Biosciences (CMB) Summer Fellowship, Selman A. Waksman Endowed Scholarship in Microbial Diversity, Bernard Davis Endowed Scholarship (no. 47802012050), an Auburn Graduate School Travel Award, and the Joseph Kirby Farrington Endowed Fund for Excellence. These funders had no role in the study design, data collection and interpretation, or the decision to submit the work for publication.

Promega Corporation donated the molecular reagents used in this project. The sequencing for this organism was supported and carried out by the Beckman Foundation, and the Howard Hughes Medical Institute. This material is based upon work supported by the National Aeronautics and Space Administration (grant NNA13AA92A), the National Science Foundation (grant MCB-1417876), and the U.S. Department of Energy (grant DE-FG02-85ER13361). R.M.M. was supported by a fellowship from Alabama EPSCoR GRSP, Auburn University’s Cell and Molecular Biosciences (CMB) Summer Fellowship, Selman A. Waksman Endowed Scholarship in Microbial Diversity, Bernard Davis Endowed Scholarship (no. 47802012050), an Auburn Graduate School Travel Award, and the Joseph Kirby Farrington Endowed Fund for Excellence. These funders had no role in the study design, data collection and interpretation, or the decision to submit the work for publication.

Promega Corporation donated the molecular reagents used in this project. The sequencing for this organism was supported and carried out by the Beckman Foundation, and the Howard Hughes Medical Institute. This material is based upon work supported by the National Aeronautics and Space Administration (grant NNA13AA92A), the National Science Foundation (grant MCB-1417876), and the U.S. Department of Energy (grant DE-FG02-85ER13361). R.M.M. was supported by a fellowship from Alabama EPSCoR GRSP, Auburn University’s Cell and Molecular Biosciences (CMB) Summer Fellowship, Selman A. Waksman Endowed Scholarship in Microbial Diversity, Bernard Davis Endowed Scholarship (no. 47802012050), an Auburn Graduate School Travel Award, and the Joseph Kirby Farrington Endowed Fund for Excellence. These funders had no role in the study design, data collection and interpretation, or the decision to submit the work for publication.

Promega Corporation donated the molecular reagents used in this project. The sequencing for this organism was supported and carried out by the Beckman Foundation, and the Howard Hughes Medical Institute. This material is based upon work supported by the National Aeronautics and Space Administration (grant NNA13AA92A), the National Science Foundation (grant MCB-1417876), and the U.S. Department of Energy (grant DE-FG02-85ER13361). R.M.M. was supported by a fellowship from Alabama EPSCoR GRSP, Auburn University’s Cell and Molecular Biosciences (CMB) Summer Fellowship, Selman A. Waksman Endowed Scholarship in Microbial Diversity, Bernard Davis Endowed Scholarship (no. 47802012050), an Auburn Graduate School Travel Award, and the Joseph Kirby Farrington Endowed Fund for Excellence. These funders had no role in the study design, data collection and interpretation, or the decision to submit the work for publication.
by Pacific Biosciences. We thank George O’Toole, Alison Butler, Emil Ruff, Arpita Bose, Suzanne Kern, Louis Kerr, Kurt Dahlstrom, Alice Michel, and Cristian Salgado for their assistance and advice.

R.J.R. works for New England BioLabs, a company that sells research reagents, including restriction enzymes and DNA methylases, to the scientific community. J.K. and M.B. are full-time employees at Pacific Biosciences, a company that develops single-molecule real-time sequencing technologies, including the sequencing platform used in this project. This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Any reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

REFERENCES

1. Hodgson EK, Fridovich I. 1975. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide. Inactivation of the enzyme. Biochemistry 14:5294–5299. http://dx.doi.org/10.1021/bi00695a010.

2. El-Nakeeb MA, Lechevalier HA. 1963. Selective isolation of aerobic actinomycetes. Appl Microbiol 11:75–77.

3. Chin C, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. http://dx.doi.org/10.1038/nmeth.2474.

4. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D, Garrity GM, Kodira CD, Kyrpides N, Madupu R, Markowitz V, Tatusova T, Thompson N, White O. 2008. Toward an Online Repository of Standard Operating Procedures (SOOPs) for (Meta) genomic annotation. Omics J Integr Biol 12:137–141. http://dx.doi.org/10.1089/omi.2008.0017.

5. Tatusova T, DiCuccio MD, Badrettin A, Chetvernin V, Ciuro S, Li W. 2013. Prokaryotic genome annotation pipeline, the NCBI handbook, 2nd ed. National Center for Biotechnology Information, Bethesda, MD.

6. Grissa I, Vergnaud G, Pourcel C. 2007. CRISPRFinder: a Web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57. http://dx.doi.org/10.1093/nar/gkm360.

7. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. 2011. PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352. http://dx.doi.org/10.1093/nar/gkr485.

8. Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T. 2013. antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41:W204–W212. http://dx.doi.org/10.1093/nar/gkt449.

9. Roberts RJ, Vincze T, Posfai J, Macelis D. 2014. REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 43:D298–D299.

10. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, Pati A. 2015. Microbial species delineation using whole genome sequences. Nucleic Acids Res 43:6761–6771. http://dx.doi.org/10.1093/nar/gkv657.