Primary Intraosseous Cavernous Hemangioma in the Skull

Yi Yang, MD, Jian Guan, MD, Wenbin Ma, MD, Yongning Li, MD, Bing Xing, MD, Zuyuan Ren, MD, Changbao Su, MD, and Renzhi Wang, MD

Abstract: Primary intraosseous cavernous hemangiomas (PICHs) are benign vascular tumors that may involve any part of the body. PICH occurs more frequently in the spine and less commonly in skull. The earliest description in the English literature was in 1845 by Toynbee, who reported a vascular tumor arising in the confines of the parietal bone. Skull PICHs do not always have typical radiologic features and should always be considered in the differential diagnosis of malignant skull lesions. We now reviewed and analyzed related literatures in detail with reporting a rare case of PICH in the left front bone that was surgically resected.

INTRODUCTION

Primary intraosseous cavernous hemangiomas (PICHs) is a rare bone tumor accounting for 0.7% to 1.0% of all bone tumors.1 PICHs are usually found in the vertebral column and rarely seen in the skulls. The earliest description of skull PICH was in 1845 by Toynbee. Much to our knowledge, there have only been 93 cases of skull PICH reported previously. The number of relevant literatures each year shows a general tendency to increase over time. A timeline of the related publications is available as Figure 1. On the basis of a world map with the global distribution of skull PICH-related publications based on the analysis of their geolocational data, the countries that the publications are from are mainly concentrated in Europe, North America, and East Asia (Figure 2).

PICH is mostly seen in middle age and the male-to-female ratio ranges from 3:1 to 2:1.2,3 Among the skulls, the frontal bone is the most commonly involved, followed by the parietal bone, temporal bone, and less frequently by the occipital bone. The pathogenesis is still unknown but a history of trauma seems to be related in some case reports.4 Total surgical excision is the treatment of choice and the prognosis after complete excision is excellent and recurrence is usually rare. Herein, we present a rare case of a skull PICH in a 17-year-old girl. The clinical presentation, pathology, differential diagnosis, and treatment of this rare disorder are discussed. Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the editor of this journal. Because of this, there is no need to conduct special ethic review and the ethical approval is not necessary.

CLINICAL CASE DESCRIPTION

A 17-year-old girl presented with a swelling on the left forehead, which had been slowly enlarging for 2 year. She denied headache, dizziness, and past trauma history. Other medical history and a review of systems were insignificant. On examination, the diameter of the mass on the left frontal bone was about 6 cm long. In consistency, the lesion was immobile, hard, and not tender. There is no abnormality for routine biochemical tests.

Plain cranioural x-ray demonstrated a radiolucent mass and the CT image showed a 9.3 mm × 18.9 mm × 13.4 mm osteolytic lesion within the diploe on the frontal bone near the orbital roof (Figure 3). Original impression of the mass by a radiologist was a skull eosinophilic granuloma or a fibrous dysplasia. A left parietal craniectomy and total lesion resection with a margin of surrounding normal bones was conducted under general anesthesia. The lesion extended intracranially to the adjacent dura mater loosely and externally to the corresponding scalp. It was rich in blood supply by clusters of small vessels. After surgery, a histologic examination of the specimen demonstrated an intradiploic cavernous hemangioma featured by expanded small blood vessels with thin wall and sinusoids surrounded by a thin layer of endotheliocytes. The patient had a good recovery after surgery. At 1-year follow-up there was not any lesion recurrence.

DISCUSSION AND REVIEW

Hemangiomas can be histologically divided into 3 types: cavernous, capillary, and mixed. Cavernous hemangioma consists of clusters of dilated blood vessels, which are separated by fibrous septa, whereas capillary ones are rich in small vascular luminas without much fibrous septa. The majority of hemangiomas in skull are of the cavernous type (PICHs), while hemangiomas in vertebrae are usually the capillary type. PICHs of the cranium are rare benign vascular tumors that account for about 0.2% of all bone tumors and 10% of benign skull tumors.1 It occurs most commonly in the vertebral column and rarely in the skull. Of the 93 cases of skull PICH reported in previous literatures from 1845 to 2015, 44.1% were located in the frontal bone, 12.9% involved the temporal bones, 11.8% occurred in the occipital bone, 12.9% in parietal bone, and 5.4% in Cranial fossa; fewer cases have been reported in sphenoid, zygomatic, ethmoid, clivus, and orbital rim, etc. (Table 1 and Figure 4).

They are predominantly seen in patients in their fourth and fifth decades. Unlike the age predominance, our patient was an adolescent female (17-year old). The male-to-female ratio...
FIGURE 1. A timeline of the publications related to skull PICH.

FIGURE 2. A world map with the global distribution of skull PICH-related publications based on the analysis of their geolocational data.

FIGURE 3. CT scan (bone window) demonstrated an intradiploic osteolytic mass.
ranges from 3:1 to 2:1.² The earliest description in the English literature was in 1845 by Toynbee, who reported a vascular tumor arising in the confines of the parietal bone.⁴ PICH arises from the vessels in the diploic space and supplied by the branches of the external carotid artery, arising in the skull vault. The middle and superficial temporal arteries are the main sources of blood supply. Within the lesion, the capillaries are widely dilated separated by fibrous tissue. The pathogenesis of PICH remains unknown. The cause is considered to be congenital, but this has not yet been proven. Some scholars proposed a hereditary nature for “vascular malformations” in the skull with an autosomal recessive inheritance mode. Others indicated that proliferation and differentiation of the undifferentiated primitive mesenchymal cells induced by a variety of stimuli may be the potential etiology. Trauma may also be an important etiology.⁵

Like our present case, the patient presented with a slow-developing palpable firm swelling without tenderness. Local neurological deficits were uncommon partly because the masses

TABLE 1. Literature Review of Cases of Intraosseous Hemangioma of the Skull From 1845 to 2015 (Total 93 cases)

Frontal	Temporal	Occipital	Parietal	Cranial Fossa	Other Sites
Pilcher, 1894	Sharma et al, 1999	Sargent et al, 1965	Petersen et al, 1992	Toynbee et al, 1845	Jackson et al, 1980
Wyke, 1949	Suzuki et al, 2001	Mangham et al, 1981	Cervoni et al, 1993	Kuman et al, 1993	Glasscock et al, 1984
Gupta et al, 1975	Heckl et al, 2002	Mangham et al, 1981	Corr, 2000	Yoshida et al, 1999	Mazzoni et al, 1988
McIntyre et al, 1977	Pottelbergh et al, 2004	Mangham et al, 1981	Garci?a-Mar et al, 2001	Heckl et al, 2002	Bottrill and Poc, 1995
Gross and Roth, 1978	Politi et al, 2005	Glasscock et al, 1984	Khanam et al, 2001	Paradowski et al, 2007	Khaman et al, 2001
Fouad et al, 1979, ×2	Cheng et al, 2006	Suss et al, 1984	Heckl et al, 2002	Naama et al, 2008	Naama et al, 2008
Shinno et al, 1986	Buhl et al, 2007	Mazzoni et al, 1988	Buhl et al, 2007	Sasagawa et al, 2009	Sasagawa et al, 2009
Hook et al, 1987	Nasser et al, 2007	Buchanan et al, 1992	Mazzoni et al, 1988	Gibson, 2007	Ruma et al, 2013
Zucker et al, 1989	Naama et al, 2008, ×2	Fierek et al, 2004	Prayson, 2007	Atci et al, 2013	Atci et al, 2013
Hoffmann et al, 1990	Sasagawa et al, 2009	Fierek et al, 2004	Sasagawa et al, 2009	Prakash et al, 2011	Lee et al, 2014
Hornig et al, 1990, ×2	Roel et al, 2012	Yang et al, 2014	Balzara et al, 2008	Hsiao et al, 2015	Hsiao et al, 2015
Sinnreich, 1990	Park et al, 2013	Yeti et al, 2014	Hsiao et al, 2015	Kilani et al, 2015	Kilani et al, 2015
Aurora et al, 1991	Xu et al, 2013	Uemura et al, 2014, ×2	Murrone et al, 2014	Chun et al, 2015	Yen et al, 2014
Faerber and Hiatt, 1991	Relf et al, 1991, ×2	Peterson et al, 1992	Cervoni et al, 1995, ×2	Pastore et al, 1999	Pastore et al, 1999
41 cases (44.1%)	12 cases (12.9%)	11 (11.8%)	12 (12.9%)	5 (5.4%)	12 (12.9%)

Other sites indicate the case where the lesion was located in sphenoid, zygomatic, ethmoid, clivus, and orbital rim, etc.

FIGURE 4. Pie graph of the location of previous reported skull intraosseous hemangioma cases.
Author	Year	Age, y	Sex	Clinical Features	Size	Location	Radiographic Features	Treatments	Pathologic Features	Outcomes
Muzumdar	2001	26	F	A bony swelling over the occipital region in the region of the torcular area, progressively enlarging for 5 years	8 cm x 8 cm x 6 cm	Occipital bone	CT showed an intradiploic expansive tumor in the occipital region in close proximity to the torcular area, with a characteristic sunburst pattern with striations radiating from the center	Partial resection and radiotherapy	Multiple dilated vascular spaces lined by endothelium separated by fibrocollagenous tissue	The patient was well at follow-up examination after 9 months
Muzumdar	2001	30	F	A painful occipital swelling, progressively enlarging for 8 months.	7 cm x 3 cm x 3 cm	Occipital bone	Axial CT showed an intradiploic subtorcular tumor expanding the inner and outer tables	Preoperative embolization and partial excision	Histological examination confirmed the diagnosis of cavernous hemangioma	The patient was well and symptom-free at follow-up examination after 12 months
Friedman	2002	51	M	Recurrent episodes of right facial spasm for 3 years and recurrent right facial paresis for 2 years	–	Right temporal bone	CT revealed a soft tissue mass of the right temporal bone, involving the geniculate ganglion, with extension to the tympanic segment of the facial nerve	Observation for 2.5 years. Then, he underwent excision of the mass through a right transmastoid and middle fossa approach. The facial nerve was resected along with the mass. A greater auricular nerve cable graft was used to repair the facial nerve.	Histopathologic evaluation showed that the lesion was a cavernous hemangioma of the facial nerve	At 12 months after surgery, his right-sided facial function had improved
Liu	2003	40	F	Chronic headaches and facial numbness	2.5 cm	Left sphenoid bone at the skull base	MRI showed a 2.5 cm enhancing mass involving the left sphenoid bone at the skull base, encroaching on the cavernous sinus and mildly displacing the cavernous carotid artery posteriorly	The patient elected surgical removal for a definitive diagnosis and complete resection	Thin-walled vascular channels lined by a single layer of flattened endothelial cells interspersed among bony trabecula	Her facial numbness resolved in the ensuing weeks and her headache symptoms improved dramatically. The patient has remained stable after 1 year of follow-up
Dogan	2005	53	F	Stabbing headache in the right frontal region and local swelling	6 cm x 6 cm x 3 cm	Right frontal bone	CT demonstrated an extensive lesion that had eroded both tables of the right frontal bone. The mass had well-defined margins, and a mixed lytic, and slightly sclerotic appearance	Surgery was performed with en bloc resection of the lesion and additional removal of a 1-cm-wide margin of the surrounding uninvolved bone	Multiple endothelium-lined vessels of varying sizes embedded in fibrolipomatous tissue	The patient did well after the operation. Follow-up at 6 months post-surgery revealed no recurrence
Author	Year	Age, y	Sex	Clinical Features	Size	Location	Radiographic Features	Treatments	Pathologic Features	Outcomes
------------	------	--------	-----	--	------------------	---------------------------	---	-------------------------------------	---	----------
Politi	2005	46	F	A gradually enlarging mass on her forehead. The mass was painless and did not produce any symptoms except cosmetic deformity	3 cm × 4 cm × 6 cm	Right frontal bone	MRI demonstrated a mass in the right frontal bone with intra- and extracranial extension with an enhanced dural tail after gadopentetate dimeglumine injection	Complete resection	Dilated blood-filled vessels, arranged in a diffuse haphazard pattern, with a single layer of endothelial cells	—
Nasser	2007	32	M	A swelling above the right eyebrow persisting for 1 year	1.5 cm	Lateral to the right frontal sinus	CT demonstrated a 1.5-cm mass between the outer and inner tables just lateral to the right frontal sinus. The outer and inner tables were thin and partially defective	The lesion was removed en bloc, and the circumferential normal part of the surrounding bone was also removed	Photomicrograph showing thin-walled vascular channels lined by a thin layer of endothelial cells interspersed among bony trabeculae	—
Paradowski	2007	35	F	Headaches for 6 years	–	Left parietal bone	X-ray showed an osteolytic lesion in the parietal bone, suggesting the presence of hemangioma. CT and MRI: honeycomb-like internal structure, pressing the adjacent cortex	Neurosurgery of the tumor involved total resection and cranioplasty	Immunohistochemical examination revealed the presence of endothelial cells expressing CD34 and vimentin	The brain compression resolved and the headaches improved
Reis	2008	73	M	A sudden onset of dizziness and reading difficulty	–	Right frontotemporal region	An ischemic area on the left occipital region and an intraosseous expansive lytic lesion on the right frontotemporal region, without signs of brain tissue involvement	Right frontotemporal craniectomy with en bloc resection of the osseous lesion, followed by cranioplasty with acrylic cement	Primary osseous cavernous-type hemangioma	–
Cosar	2008	16	M	A complaint of painless swelling lesion on the right part of his calvarium skull that had developed in the previous 3 months	2 cm × 2 cm × 2 cm	Right parietal bone	CT revealed an intradiploic mass in the right parietal bone. T1WI showed nonhomogeneously isointense mass and contrast enhancing while T2WI revealed a heterogeneous hyperintense images	The mass was removed with a rim of surrounding normal bone tissue	The photograph showing the expanded vascular structures layered with endothelial cells between the bone spicules	Postoperative course of the patient was uneventful. Three months follow-up CT and MRI of the patient revealed no recurrences and complaints
Author	Year	Age, y	Sex	Clinical Features	Size	Location	Radiographic Features	Treatments	Pathologic Features	Outcomes
-----------------	------	--------	-----	---	------	---------------------------	---	---	--	--
Sasagawa	2009	55	F	Presented with a painless swelling on her right forehead 6 years previously	2 cm	Right forehead	CT demonstrated an osteolytic lesion. The lesion	The lesion was resected en bloc and the circumferential normal bone was	Erythrocytes filling many sinusoidal channels lined with a single layer	The postoperative period was uneventful at follow-up examination after 2
Salunke	2010	11	M	Progressive painless bilateral visual loss over the last 2 years; chronic headache; blind in both eyes and fundoscopy showed optic atrophy	–	Skull base	CT revealed an abnormal rarefaction and trabeculated appearance with intact cortical margins, extending inferiorly into the pterygoid plates and anteriorly into the ethmoidal sinuses. MRI showed a huge mass, isointense on T1, hyperintense on T2 and enhancing uniformly on contrast	Bilateral internal maxillary arteries were embolized using PVA particles (300–700 µ). The tumor was debulked via an extended bifrontal approach	Thin-walled vascular channels lined by flattened endothelial cells interpersed among bony trabeculae diagnostic of intraosseous cavernous hemangioma	The patient succumbed to post operative infection
Tyagi	2011	28	F	Huge swelling over the right parietal region progressively increasing in size over the past 15 years	6.3 cm \times 5.3 cm \times 5.6 cm	Right high parietal region	CT: a uniform hyperdense mass. The involved bone showed complete erosion of both the inner and outer tables	Complete resection Bone bits with mature lamellar bone and bony spicules. Medullary spaces between bony trabeculae showing ectatic thin-walled blood vessels with single layer of flat endothelial cells	Symmetric expansion of cancellous bone covered by an unremarkable cortex with normocellular intervening marrow consistent with reactive bone. Numerous irregular small blood vessels permeating the mature fibrous tissue	At 3-year follow-up there is no recurrence of lesion
Philpott	2011	1	F	An enlarged but stable head circumference greater than the 95th percentile with no neurologic signs	–	Right parietal bone	MRI: an unexpected finding of focal expansion of the cancellous diploe of the right parietal bone with diffuse thickening and enhancement of the underlying dura	Excisional biopsy, along with resection of abnormal bone, was performed	Symmetric expansion of cancellous bone covered by an unremarkable cortex with normocellular intervening marrow consistent with reactive bone. Numerous irregular small blood vessels permeating the mature fibrous tissue	MR imaging at 6-month follow-up revealed reduction in dural thickening consistent with spontaneous involution and appropriate bony healing
Author	Year	Age, y	Sex	Clinical Features	Size	Location	Radiographic Features	Treatments	Pathologic Features	Outcomes
--------	------	--------	-----	------------------	------	----------	----------------------	------------	---------------------	----------
Yucel	2011	4 months	F	Neurological examination revealed no abnormality except the right parietal solid mass lesion	3 cm	Right parietal bone	CT showed a soft tissue density mass that expanded the diploic space on the right side. Both inner and outer tables were increased in thickness and there were some defective areas on the cortex of the inner table	A right parietal craniectomy with total excision of the lesion and a margin of surrounding uninvolved bone	Dilated and proliferated vascular space between the bone trabeculae. Monoclonal antibody to CD34 highlights a single layer of flattened endothelial cells lining the dilated vascular spaces	–
Xu	2013	24	M	Progressive right eye exophthalmous for 1 year; left frontal bone destruction was found on plain radiographs of the skull	3 cm × 3 cm × 3 cm	Left frontal bone	CT: a mass with regular edges destroying the surrounding bone and penetrating into the internal skull in the upward wall of the right orbit. MRI: T1-isointense and T2-hyperintense circumscribed lesions. These uniformly enhancing lesions were associated with an enhancing dural tail	Complete resection	Immunohistochemical staining for CD34, CD31, P53, and Ki-67 were all positive	–
Rumana	2013	3 months	M	Have a small soft swelling over the parietal area at birth. No history suggestive of perinatal insult. The swelling increased in size and became harder	5 cm × 6 cm	Right parietal area	Asymmetric enlargement of the skull over the right parietal area with increased diploic space of the right parietal bone. The inner table was irregular and the outer table was thinned and expanded	Parietal craniectomy with total excision of the lesion	Thin-walled, dilated, irregular vascular channels lined by a single layer of flattened endothelial cells interspersed among bony trabeculae, consistent with an intraosseous cavernous hemangioma	–
Aki	2013	38	M	A left parietal mass and intermittent localized pain was admitted to our clinic. A history of a motor vehicle injury to the left parietal region 2 years ago	2 cm × 2 cm × 2 cm	Left parietal bone	CT: an increase in the left parietal diploic space. MRI: an expansive lesion in the bone structure	Complete resection	Fibroconnective tissue containing osseous areas in some places and large blood vessels in the stroma	–
Park	2013	39	F	A bony hard, tender swelling mass on the left forehead, which had been slowly enlarging for 1 year. She had a history of minor trauma on her forehead 1-and-a-half years earlier	3 cm × 3.5 cm × 1.5 cm	Left frontal bone	CT scan demonstrated an intradiploic osteolytic mass adjacent to the left frontal sinus wall and the orbital roof	There was no recurrence of the tumor visible on a CT scan 9 months after the operation	An intraosseous cavernous hemangioma characterized by extended, thin-walled vessels and sinuses lined with a single layer of endothelial cells	There was no recurrence of the tumor visible on a CT scan 9 months after the operation
Author	Year	Age, y	Sex	Clinical Features	Size	Location	Radiographic Features	Treatments	Pathologic Features	Outcomes
--------	------	--------	-----	-------------------	------	----------	----------------------	------------	---------------------	----------
Yu	2014	59	M	A slowly enlarging mass in the lateral orbital rim of the left eye for 1 year; a history of craniofacial defect in the left front bone (6 years earlier)	3 cm × 2.5 cm	Lateral orbital rim of the left eye	CT: a mass with poorly defined margins, which invaded the neighboring tissue and nearly damaged the bone. MRI: hypointense on T1WI and hyperintense on T2WI; significantly inhomogeneous enhancement	Complete resection	Postoperative histopathological examination confirmed that the mass was cavernous hemangioma	The postoperative period was uneventful at follow-up examination after 1 year
Murrone	2014	50	F	A slow-growing frontal mass, tender to pressure, with spontaneous pain. No history of trauma	–	Left frontal bone	MRI scan showed a hypointense lesion on the T1WI and a hyperintense lesion on the T2WI. CT scan showed an osteolytic lesion with erosion of the skull bone.	A left frontal craniectomy via linear incision was performed with excision of the frontal lesion and a margin of surrounding uninvolved bone and a cranioplasty	A cavernous hemangioma of the diploe with large, thin-walled, dilated capillary spaces lined by flattened endothelial cells without evidence of malignancy	Her postoperative course was uneventful and a CT scan showed complete resection of the mass with a correct cranioplasty
Hsiao	2015	29	F	A painful skull defect found incidentally over the right parietal area. The lesion was soft and with mild dimpling. Intermittent pain had started at least 3 weeks before the initial visit	Right parietal (10 mm × 9 mm) and frontal (8 mm × 9 mm) areas of the skull	Right parietal and frontal areas of the skull	CT scan revealed osteolytic lesions with erosion of the skull bone, whereas MRI showed low signals on T1WI, high signals on T2WI, and heterogeneous enhancing effects on gadolinium-enhanced T1WI	A large craniectomy was performed for the evacuation of the 2 osteolytic lesions	The final histological report confirmed the diagnosis of intraosseous cavernous hemangioma	The patient recovered well. She has been followed up for 4 years with no recurrence
Kilani	2015	72	F	Headache without neurological disturbances	–	Right parietal convexity	A well-defined, extra-axial right parietal convexity space-occupying lesion isointense on T1WI and hyperintense on T2WI. Intense homogeneous post-contrast enhancement	Surgical removal of the lesion via a right parietal approach	Bone trabeculae widely separated by loose connective tissue enclosing multiple thin-walled vascular spaces lined by endothelial cells, suggesting cavernous hemangioma of the skull	—

CT = computed tomography, MRI = magnetic resonance imaging, PVA = polyvinyl alcohol, T1WI = T1 weighted imaging, T2WI = T2 weighted imaging.
Lesion	Clinical Features	Radiographic Appearances	Pathologic Features	Treatments
Osteoma	Osteomas are slow growing lesions that are normally completely asymptomatic. A few may be associated with Gardner syndrome	CT: small, well-defined round or oval dense and homogeneous lesions. Homogeneous low signal intensity on T1WI; variable appearance on T2WI; not enhance after gadolinium administration	Compact osteomas: mature lamellar bone with no Haversian canals and no fibrous component. Trabecular osteomas: cancellous trabecular bone with marrow surrounded by a cortical bone margin	Not require surgical treatment unless the location or size of the lesion affects the adjacent structures (orbit, sinus, brain)
Myeloma	Bone pain, deterioration of health or abnormalities on blood or urinary test (eg, high erythrocyte sedimentation rate, anemia)	Multiple small, roundish osteolytic lesions that are relatively uniform in size with sharp and non-sclerotic margins. On MRI, the signal intensity of the lesions is nonspecific; a “salt-and-pepper” appearance or diffuse bone marrow replacement may be noted	Myeloma is a malignant disease of the bone marrow characterized by a monoclonal proliferation of plasma cells	Treatment depends on the stage of the disease. The most common treatments are based on chemotherapy or grafting of hematopoietic cells
Skull metastases	Usually secondary to breast, lung, prostate, kidney, and thyroid cancer; generally asymptomatic; may be revealed by a painful swelling	Mostly multiple, well-circumscribed osteolytic lesions, which generally extend into the adjacent soft tissues. Usually homogeneously enhanced on enhanced MRI, but heterogeneous enhancement, peripheral ring enhancement, or lack of enhancement (sclerotic lesions) can be observed	As same as the primary tumor	Surgical treatment may be possible when there is only 1 metastasis, especially if without any neoplastic context. External radiotherapy is another alternative
Intracranial meningioma	Predominantly seen in women in the fifth and sixth decades of life and often revealed by painless and expanded swelling	CT: osteosclerotic lesion with destructive irregular and spiculated borders. Low signal intensity on T1WI; variable signal intensity on T2WI; not enhance. Meningeal enhancement is rare and is explained by adjacent dural irritation or invasion, but the center of the tumor growth is outside the dura	Mostly solid tumors with complete capsule and rich vascular supply, usually accompanied with calcification; a few with necrosis, cyst degeneration, hemorrhage	Surgical resection of the lesion is required. The therapeutic decision depends on the possibility of resecting the lesion and on the patient’s health
Osseous hemangioma	Principally located in frontal and parietal bones; discovered incidentally by pain, swelling, facial paralysis, or hearing loss; 3 times more frequent in female during the 40–50th decades	CT: well-circumscribed intradiploic osteolytic lesion; enhanced homogeneously after contrast injection. MRI: isointense on T1WI and hyperintense on T2WI	Mostly are cavernous and contain dilated blood vessels separated by fibrous septa; rarely contain capillaries; often solitary	Mainly is surgery. Embolization may be considered before surgery. Radiotherapy stops tumor growth but cannot reduce its volume
Lesion	Clinical Features	Radiographic Appearances	Pathologic Features	Treatments
---------------------------	--	--	--	---
Langerhans histiocytosis	Clinical features are variable, from asymptomatic lesions to painful swellings	CT: unequal involvement of the inner and outer tables; appearance of having bevelled edges. The lesion center may contain a sequestrum, representing residual intact bone. MRI: usually strongly enhance after gadolinium administration.	Heterogeneous collections of Langerhans cells with eosinophils, neutrophils, small lymphocytes, and histiocytes. Eosinophilic abscesses may be present demonstrating central necrosis.	Single lesions: conservative treatment (surveillance or systemic corticosteroids). More diffuse or aggressive forms: surgical excision, radiotherapy, and chemotherapy.
Epidermoid and dermoid cysts	Painless subcutaneous swelling; discovered mainly during the third and fourth decades; predominantly occur laterally in the parietal or frontal bone	CT: well-demarcated osteolytic lesions with sclerotic borders; may tend to expand into both the inner and outer tables; homogeneously hypodense. MRI: fluidlike signal intensity on T1WI and T2WI and high signal intensity on DWI; usually do not enhance.	Epidermoid cysts, lined with thin squamous epithelium, contain remnants of cholesterol and keratin.	Treatment of these cystic lesions is surgical, usually without recurrence.
Aneurysmal bone cyst	Mainly in children and adolescents; may be secondary to other underlying lesions like fibrous dysplasia, chondroblastoma and osteosarcoma	Sharply defined expanded osteolytic lesion with thin sclerotic borders, although the tables appear disrupted when expansion is significant.	Composed of numerous blood-filled spaces of variable size separated by connective tissue.	The traditional treatment is complete surgical excision.
Fibrous dysplasia	Usually painless; may be revealed by an enlarging mass with symptoms resulting from mass effect; preferentially affects the frontal and temporal bones and may cross the sutures	Mainly affects frontal and temporal bones and may cross sutures; hypointense on T1WI but are sometimes isointense if fibrous tissue is rich. Signal intensity on T2WI is heterogeneous and depends on the fibrous tissue density, intrasoselal cellularity, and hemorrhagic or cystic rearrangements.	Abnormal differentiation and maturation of osteoblasts, with progressive replacement of normal bone by immature woven bone.	Medical treatment is based on bisphosphonates. Surgical decompression is considered in cases of severe mass effect.
Paget disease	Abnormal and excessive remodeling of 1 or more bones in patients typically older than 55 years; particularly affect the frontal and occipital bones; usually asymptomatic and is frequently discovered incidentally	CT: homogeneous enlargement of the skull vault and thickening of the tables and of the trabecular bone. MRI: initially, high signal intensity on T2WI and strong enhancement due to bone resorption; later, fatty bone marrow develops with hypointense thickened trabeculae and surrounded by thick hypointense tables.	Characteristic jigsaw puzzle-like/mosaic pattern.	Treatment relies mainly on bisphosphonates.
are more inclined to extend externally than intracranially. A variety of clinical manifestations may occur depending on the involved sites. Proptosis and impaired vision may appear if the orbit was invaded. Facial nerve paralysis, twitching of oral commissure, pulsatile tinnitus, and hearing loss may occur if temporal bones are involved. Patients may rarely present with an associated epidural hematoma or subarachnoid hemorrhage. We reviewed some previously reported cases of skull PICH since 2000 (Table 2). The commonest clinical feature is a solid swelling in the skull, painful or painless. Some patients may also present with headache or dizziness.

Radiologic evaluation includes plain skull x-rays, CT scan, and magnetic resonance imaging (MRI). CT is an excellent investigation, as it allows detailed characterization of the cortical and trabecular bone to be made. Although the appearance on CT may vary, an expansive lesion with thin borders and intact internal and external skull plates is the most common finding. MRI signal intensity depends on the amount of venous stasis in the lesion and also on the rate of transformation of red marrow into yellow marrow. Although T1WI may give high- or low-intensity signals, water-sensitive sequences, such as T2WI and FLAIR, commonly give high-intensity signals. The CT or MRI features of the cases previously reported are also shown in Table 2.

The differential diagnosis for intradiploic skull masses includes dermoid tumors, metastatic diseases, meningiomas, sarcomas, Langerhans cell histiocytosis, cosinophilic granulomas, fibrous dysplasia, giant cell tumors, aneurysmal bone cysts, osteomas, Paget diseases, and so on. Because the imaging findings are not specific, preoperative diagnosis is difficult and histopathology is essential. A thorough clinical, radiographic, pathologic, and treatment comparison to other entities in the differential diagnosis is seen in Table 3.

The treatment of choice for skull PICH is total resection with an adequate normal bone margin to reduce the risk of bleeding. The bony defect can be reconstructed by virtue of a variety of methods. Relapse is uncommon if sufficient safety margins are achieved. Other treatment options include curettage which can be followed by recanalization and irradiation, which may reduce the tumor volume and has demonstrated symptomatic improvement, but has the risk of radiation-induced carcinoma. Radiotherapy alone can only can prevent the tumor from growing, but it cannot eradicate the lesions. In keeping with the most widely recommended technique, we opted for a craniectomy with total resection, keeping a 0.5-cm safety margin. We then performed cranioplasty with titanium plate.

CONCLUSIONS

PICHs of the skull are rare benign lesions of vascular origin, showing so semblable medical imaging findings to many other bone lesions that it is hard to differentiate them. Thus, there hemorrhagic features within operative fields and histopathologic examinations remain as the "gold standards" for diagnostics. Total resection with enough uninvolved bone margins must be attempted. PICH's relapse is rare when this surgery is successful.

REFERENCES

1. Park BH, Hwang E, Kim CH. Primary intraosseous hemangioma in the frontal bone. Arch Plast Surg. 2013;40:283–285.

2. Salunke P, Sinha R, Khandelwal NK, et al. Primary intraosseous cavernous hemangioma of the skull base. Br J Neurosurg. 2010;24:84–85.
3. Rumana M, Khursheed N, Farhat M, et al. Congenital intraosseous cavernous hemangioma of the skull: an unusual case. Pediatr Neurosurg. 2013;49:229–231.

4. Tyagi DK, Balasubramaniam S, Sawant HV. Giant primary ossified cavernous hemangioma of the skull in an adult: a rare calvarial tumor. J Neurosci Rural Pract. 2011;2:174–177.

5. Yu J, Li Y, Duan X. Posttraumatic cavernous hemangioma of the skull. J Craniofac Surg. 2014;25:e48–e51.

6. Murrone D, De Paulis D, Millimaggi DF, et al. Cavernous hemangioma of the frontal bone: a case report. J Med Case Rep. 2014;8:121.

7. Atci IB, Albayrak S, Yilmaz N, et al. Cavernous hemangioma of the parietal bone. Am J Case Rep. 2013;14:401–404.

8. Kilani M, Darmoul M, Hammedi F, et al. Cavernous hemangioma of the skull and meningioma: association or coincidence? Case Rep Neurol Med. 2015;2015:716837.

9. Yucel E, Akkaya H, Gurkanlar D, et al. Congenital cavernous hemangioma of the skull. Turk Neurosurg. 2011;21:645–647.

10. Philpott C, Wray A, MacGregor D, et al. Dural infantile hemangioma masquerading as a skull vault lesion. AJNR Am J Neuroradiol. 2012;33:E85–E87.

11. Cosar M, Eser O, Aslan A, et al. Intradiploic cavernous hemangioma of the skull in a child: a case report. Childs Nerv Syst. 2008;24:975–977.

12. Nasser K, Hayashi N, Kurosaki K, et al. Intraosseous cavernous hemangioma of the frontal bone. Neurol Med Chir (Tokyo). 2007;47:506–508.

13. Paradowski B, Zub W, Sasiadek M, et al. Intraosseous hemangioma in parietal bone. Neurology. 2007;68:44.

14. Politi M, Romeike BF, Papamigiotou P, et al. Intraosseous hemangioma of the skull with dural tail sign: radiologic features with pathologic correlation. AJNR Am J Neuroradiol. 2005;26:2049–2052.

15. Dogan S, Kocaeli H, Sahin S, et al. Large cavernous hemangioma of the frontal bone. Neurol Med Chir (Tokyo). 2005;45:264–267.

16. Hsiao IH, Cho DY, Liu CL. Multifocal osteolytic lesions of the skull: a primary cavernous hemangioma mimicking a neoplastic invasive lesion. Biomedicine (Taipei). 2015;5:12.

17. Sasagawa Y, Akai T, Yamamoto K, et al. Multiple cavernous hemangiomas of the skull associated with hepatic lesions. Case report. Neurol Med Chir (Tokyo). 2009;49:162–166.

18. Xu P, Lan S, Liang Y, et al. Multiple cavernous hemangiomas of the skull with dural tail sign: a case report and literature review. BMC Neurol. 2013;13:155.

19. Muzumdar D, Goel A, Desai K, et al. Primary hemangioma of the occipital bone in the region of the torcular—two case reports. Neurol Med Chir (Tokyo). 2002;42:27–30.

20. Reis BL, Carvalho GT, Sousa AA, et al. Primary hemangioma of the skull. Arq Neuropsiquiatr. 2008;66:569–571.

21. Liu JK, Burger PC, Harnsberger HR, et al. Primary intraosseous skull base cavernous hemangioma: case report. Skull Base. 2003;13:219–228.

22. Friedman O, Neff BA, Willcox TO, et al. Temporal bone hemangiomas involving the facial nerve. Otol Neurotol. 2002;23:760–766.

23. Patnaik A, Mishra SS, Mishra S, et al. Intradiploic ossified giant cavernous hemangioma of skull with a dural tail sign mimicking primary calvarial meningioma. Neurol India. 2012;60:250–252.

24. Nasrallah IM, Hayek R, Duhaime AC, et al. Cavernous hemangioma of the skull: surgical treatment without craniectomy. J Neurosurg Pediatr. 2009;4:575–579.