Obesidade, sarcopenia, obesidade sarcopênica e mobilidade reduzida em idosos brasileiros com 80 anos ou mais

Obesity, sarcopenia, sarcopenic obesity and reduced mobility in Brazilian older people aged 80 years and over

Vanessa Ribeiro dos Santos¹, Igor Conterato Gomes², Denise Rodrigues Bueno³,
Diego Giuliano Destro Christofaro¹, Ismael Forte Freitas Jr.¹, Luis Alberto Gobbo¹

RESUMO

Objetivo: Analisar quais agravos na composição corporal (obesidade, sarcopenia ou obesidade sarcopênica) estão relacionados à redução da mobilidade em idosos com 80 anos ou mais. Métodos: A amostra foi constituída por 116 sujeitos com idade igual ou superior a 80 anos. A composição corporal foi mensurada pela técnica de absorciometria de raios X de dupla energia (DXA), e a mobilidade foi avaliada por testes motores. O teste \( \chi^2 \) foi utilizado para analisar a proporção de idosos com sarcopenia, obesidade e obesidade sarcopênica, de acordo com o sexo, bem como para indicar a associação entre obesidade, sarcopenia, obesidade sarcopênica e mobilidade. A análise de regressão logística binária, ajustada pelas variáveis (sexo e doenças osteoarticulares), foi utilizada para expressar a magnitude das associações. A análise de variância foi usada para comparar a mobilidade entre os quatro grupos (Normal, Obesidade, Sarcopenia e Obesidade Sarcopênica). Resultados: O Grupo Sarcopenia apresentou menor desempenho no teste de força de membros inferiores e na soma dos dois testes, comparado aos Grupos Obesidade e Normal. Idosos com sarcopenia apresentaram maior chance de redução da mobilidade (OR: 3,44; IC95%: 1,12-10,52). Conclusão: Idosos com idade igual ou superior a 80 anos com sarcopenia têm mais chance de redução da mobilidade.

Descritores: Envelhecimento; Composição corporal; Marcha; Densitometria; Idoso de 80 anos ou mais; Idoso; Sarcopenia; Obesidade; Limitação da mobilidade

ABSTRACT

Objective: To analyze which abnormalities in body composition (obesity, sarcopenia or sarcopenic obesity) are related to reduced mobility in older people aged 80 years and older. Methods: The sample included 116 subjects aged 80 years and older. The body composition was measured using dual-energy X-ray absorptiometry (DXA) and mobility was assessed by motor tests. The \( \chi^2 \) test was used to analyze the proportion of older people with sarcopenia, obesity and sarcopenic obesity based on sex as well as to indicate an association between obesity, sarcopenia, sarcopenic obesity and mobility. Binary logistic regression, adjusted for the variables (sex and osteoarticular diseases), was used to express the magnitude of these associations. One-way analysis of variance was used to compare the mobility of four groups (Normal, Obesity, Sarcopenia and Sarcopenic Obesity). Results: The Sarcopenia Group had lower performance in the lower limbs strength test and in sum of two tests compared with Obesity and Normal Groups. Older people with sarcopenia had higher chance of reduced mobility (OR: 3.44; 95%CI: 1.12-10.52). Conclusion: Older people aged 80 years and older with sarcopenia have more chance for reduction in mobility.

Keywords: Aging; Body composition; Gait; Densitometry; Aged, 80 and over; Aged; Sarcopenia; Obesity; Mobility limitation
nida como sarcopenia\(^{(3)}\) e, quando esta condição coe-
xiste com excesso de gordura corporal, é definida com
obesidade sarcopênica.\(^{(4)}\)

A redução na mobilidade pode ser considerada in-
dicador de saúde devido aos efeitos na qualidade de
vida no processo de envelhecimento, já que prejudica
a realização de atividades diárias e o uso do transpor-
te público, afetando diretamente a independência dos
idosos. Outras consequências sérias no desenvolvimento
da limitação física são o aumento da necessidade de
hospitalização e o uso de serviços de saúde,\(^{(5)}\) resultan-
do em impacto negativo ao sistema público de saúde.
Evidências indicam que a sarcopenia,\(^{(6,7)}\) obesidade\(^{(8,9)}\) e
obesidade sarcopênica\(^{(10,11)}\) são precursores da redução de
mobilidade, porém torna-se necessário investigar quais
destas condições estão mais relacionadas a com mobi-
lide reduzida em idosos com 80 anos ou mais, já que
indivíduos pertencentes ao este grupo etário são mais
predispostos à incapacidade.\(^{(12)}\)

**OBJETIVO**

Determinar quais condições desfavoráveis na composi-
ção corporal (obesidade, sarcopenia ou obesidade sar-
copênica) estão relacionadas à mobilidade reduzida em
idosos com 80 anos ou mais.

**METÓDOS**

Trata-se de estudo transversal, com amostra por conve-
niência, não randomizada, realizado entre outubro de
2009 e maio de 2010, na cidade de Presidente Prudente
(SP), que tinha aproximadamente 210 mil habitantes,
localizada na Região Sudeste do Brasil.\(^{(13)}\)

Idosos com 80 anos ou mais de ambos os sexos foram
convidados para participar do estudo. A secretaria mu-
nicipal de saúde de Presidente Prudente disponibilizou
nomes, endereços e número de telefones dos indivíduos
que utilizavam o serviço público de saúde na cidade.
O convite foi realizado por meio de telefone e, além
disso, a pesquisa também foi divulgada na mídia local.
No total, 135 indivíduos responderam ao convite. Ex-
cluímos aqueles que não podiam se locomover, acama-
dos, residentes de áreas rurais, institucionalizados, com
marca-passo e com dados incompletos na base de dados.
A amostra final foi constituída por 116 indivíduos.

Os objetivos e metodologias utilizadas para cole-
ta de dados foram explicados, e os indivíduos foram
informados que poderiam desistir da participação a
qualquer momento. Somente aqueles que assinaram o
Termo de Consentimento foram incluídos na amostra.

**Composição corporal**

Para análise da composição corporal utilizou-se modelo
de três compartimentos de absorciometria por duplo feixe de raios X (DXA, Lunar brand\(^{°}\), modelo DPX-MD,
software 4.7. Esta técnica permite estimar a composição
corporal no todo e por segmento corporal (massa magra,
massa gorda e densidade mineral do tronco, membros
superior e inferiores). Os dados foram transmitidos
para um dispositivo conectado em computador, sendo
registrados os resultados de massa magra, gorda cor-
poral e densidade mineral óssea.

**Velocidade da marcha**

Utilizou-se teste de caminhada de 3 metros para avaliar
a velocidade da marcha. Os indivíduos foram instruídos
para caminhar naturalmente, e foi registrado o menor
tempo (em segundos) obtido entre as duas caminhadas.

**Definição dos grupos**

A amostra foi dividida em quatro grupos: Grupo Normal
(GN), com indivíduos que não eram obesos ou sarco-
pênicos; Grupo Obeso (GO), com indivíduos com per-
centual de gordura acima do percentil 60 (34,1 e 44,2%,
para homens e mulheres, respectivamente), de acordo
com recomendações de Baumgartner et al.,\(^{(14)}\) Grupo
Sarcopenia (GS), com indivíduos que apresentaram baixa
massa muscular e baixa velocidade na marcha; Grupo
Obesidade Sarcopênica (GOS), com indivíduos que
apresentaram ambas as condições desfavoráveis (obesi-
dade e sarcopenia).

Para classificação da massa muscular, o índice de massa
magra apendicular (IMMA) foi utilizado (massa ma-
gra de membro superior + membro inferior [kg]/esta-
tura [m\(^{2}\)], e os indivíduos que apresentaram valores de
IMMA abaixo de 7,59kg/m\(^{2}\) e 5,57kg/m\(^{2}\) para homme
e mulher, respectivamente, foram considerados com
baixa massa muscular. A adoção destes pontos de cor-
te foi baseada em dois desvios padrão abaixo da média
de um grupo de referência com adultos jovens brasilei-
ros (n=60; 25 homens e 35 mulheres) com idade entre
20 e 30 anos.\(^{(15)}\) Para velocidade de marcha, indivíduos
com velocidade de marcha abaixo de 0,8m/s no teste de
caminhada de 3 metros foram considerados com baixa
velocidade de marcha.\(^{(3)}\)

**Mobilidade**

A mobilidade foi definida por meio do desempenho no
teste de equilíbrio estático e no teste da cadeira, a par-
tir da versão modificada do *Short Physical Performance
Battery*.\(^{(16)}\)
O teste de equilíbrio estático teve quatro passos, realizados em uma sequência (10 segundos cada): em pé com pés juntos, lado a lado: tocar o calcanhar no lado do dedão do pé oposto, semi-tandem: equilíbrio de um pé, primeiro com qualquer um dos pés, depois com o outro; e em pé com um dos pés na frente do outro.

Cada medida foi considerada de sucesso quando o indivíduo conseguiu permanecer por 10 segundos na posição mencionada. As pontuações possíveis para este teste foram as seguintes: zero se deficiência e incapaz de realizar qualquer ação no tempo estipulado; 1 se capaz de manter na posição lado a lado, contudo incapaz de manter a posição semi-tandem; 2 se capaz de manter a posição semi-tandem, porém incapaz de manter-se ereto em um pé só; 3 se capaz de manter-se ereto em um pé só, mas incapaz de manter a posição tandem; 4 se capaz de manter-se completamente na posição tandem.

Para medir a força dos membros inferiores, o teste da cadeira foi aplicado; nele, os indivíduos mantinham seus braços cruzados na frente do peito e, ao sinal do avaliador, levantava e sentava na cadeira o mais rápido possível, sem pausa, por cinco vezes. Aqueles que falharam em realizar o teste em menos de 60 segundos foram desqualificados. Os escores atribuídos para este teste foram: zero se impossível realizar o teste; 1 se tempo maior ou igual a 16,70 segundos; 2 se tempo envolvido entre 13,70 e 16,69 segundos; 3 se tempo envolvido entre 11,20 e 13,69 segundos; 4 se tempo envolvido menor ou igual a 11,19 segundos.

Para classificação da mobilidade, considerou-se o desempenho por meio da soma dos dois testes (zero a 8 pontos), com aqueles com escore total abaixo do percentual de 25 (3 pontos) sendo considerado como indivíduos com mobilidade reduzida.

**Doenças osteoarticular**

**Osteopenia e osteoporose**

A identificação da osteopenia e da osteoporose foi feita por DXA. A densidade mineral óssea do fêmur proximal total foi analisada por um técnico experiente, de acordo com protocolo. Os indivíduos foram classificados com osteopenia ou osteoporose, de acordo com critério estabelecido pela Organização Mundial da Saúde.¹⁷

**Outros doenças osteoarticulares**

A prevalência de artrite, osteoartrite, hérnia de disco, lombalgia e escoliose na população do estudo foi verificada pelo questionário de morbilidades, baseado no *Standard Health Questionnaire* do Estado de Washington.¹⁸ Trata-se de pesquisa com perguntas fechadas, que identifica a presença/ausência de doenças crônicas, distribuídas em três grupos: cardiovascular, metabólico e osteoarticular.

**Análise estatística**

O teste $\chi^2$ foi utilizado para analisar a proporção de idosos nos grupos (GN, GO, GS e GOS) de acordo com sexo, e também para indicar associações entre as variáveis de dependência (mobilidade) e independência (sarcopenia, obesidade e obesidade sarcopênica). As variáveis de independência com $p<0,20$ no teste $\chi^2$ foram incluídas no modelo multivariado construído por análise binária de regressão logística, ajustada para variáveis de controle (sexo e doenças osteoarticular), que expressam a magnitude das associações nos valores de *odds ratio* (OR) e intervalos de confiança de 95%. A análise de variância (ANOVA) foi utilizada para comparar a mobilidade dos quatro grupos analisados seguidos por teste Tukey *post-hoc*. A análise estatística foi realizada com o *Statistical Package of Social Science software* (SPSS), versão 17.0, e nível de significância de 5%.

**RESULTADOS**

A amostra do estudo incluiu 116 idosos com idade entre 80 e 95 anos, média de 83,3 (2,7) anos; 69 (60%) mulheres, média 83,8 (2,9) anos; e 47 (40%) homens, média 83,3 (2,5) anos.

Não houve diferença significativa entre os grupos (GN, GO, GS e GOS) na proporção para doenças osteoarticulares ($p=0,748$).

Figura 1 mostra a distribuição da amostra de acordo com obesidade, sarcopenia e obesidade sarcopênica, e a comparação das análises entre os sexos. Houve maior proporção de obesidade sarcopênica entre os homens idosos (8,6%) e maior proporção de obesidade entre as mulheres idosas (23,3%).

---

*Figura 1. Distribuição da frequência dos Grupos Normal, Obeso, Sarcopenia e Obesidade Sarcopênica de acordo com sexo*
A comparação da mobilidade entre os quatro grupos é mostrada na tabela 1. O GS mostrou baixo desempenho no teste de força de membros inferiores \((p=0,003)\) e soma dos dois testes \((p=0,049)\) comparado aos GO e GN.

A associação entre obesidade, sarcopenia, e obesidade sarcopênica e mobilidade é mostrada na tabela 2. Observou-se associação entre sarcopenia e redução da mobilidade.

Na tabela 3, é mostrada a análise entre sarcopenia e mobilidade reduzida. Os idosos com sarcopenia comparados àqueles sem sarcopenia tiveram 3,44 vezes mais chances de mobilidade reduzida independente do sexo e da presença de doenças osteoarticulares.

### DISCUSSÃO

Este estudo determinou qual anormalidade da composição corporal (obesidade, sarcopenia, ou obesidade sarcopênica) está relacionada à mobilidade reduzida de brasileiros idosos com 80 anos ou mais. Observou-se que idosos com sarcopenia tiveram maior limitação na mobilidade comparados com o GN, GO ou GOS.

A redução na massa magra é uma das variáveis mais frequentemente utilizadas para indicar perdas na mobilidade.\(^7\) Os homens apresentaram maiores quantidades de massa magra e alta incidência de sarcopenia comparados com as mulheres.\(^{19}\) Nossos achados corroboram estudos anteriores, em que a proporção de idosos com 80 anos ou mais com sarcopenia foi maior entre os homens \((10,3\%)\) do que entre mulheres \((7,8\%)\) e, consequentemente, de obesidade sarcopênica \(-8,6\% e 1,7\%\), respectivamente.

A sarcopenia está relacionada à mobilidade e à disfunção funcional em idosos com mais de 60 anos de idade.\(^{20}\) Ainda, ela influencia na mobilidade, porém, a quantidade de gordura e o tamanho do corpo também devem ser considerados em tais análises.\(^6\) Em nosso estudo, somente a sarcopenia esteve associada com mobilidade reduzida, e aumentou as chances de um idoso de 80 anos ou mais apresentar mobilidade reduzida 3,44 vezes, independente do sexo e da presença de doenças osteoarticulares.

Mulheres têm maior proporção de gordura corporal.\(^{21}\) Gomes et al.,\(^{22}\) também observaram esta evidência em mulheres com 80 anos ou mais, resultado similar ao encontrado neste estudo, em que 23,3% das mulheres foram identificadas com obesidade, comparadas a 7,8% dos homens.

Uma maior quantidade de massa gorda ou alta proporção de gordura corporal pode aumentar a sobrecarga corporal e limitar os movimentos, impondo estresse adicional nas articulações e nos músculos, e acentuando o risco de deficiência.\(^{23}\) Em nosso estudo, a obesidade não foi um fator limitador da mobilidade. Similar aos nossos resultados, Sallinen et al.,\(^{24}\) também não encontraram associação entre a gordura corporal e a mobilidade em indivíduos com 80 anos ou mais. Estes resultados podem indicar que a gordura corporal não interfere na mobilidade de idosos com 80 anos ou mais, já que a gordura tende a redistribuir e a reduzir com o envelhecimento.\(^{25}\)

A obesidade sarcopênica representa um desafio para profissionais de saúde, que precisam aplicar intervalos apropriados na população idosa para reduzir o risco que a gordura excessiva pode causar na saúde, enquanto preserva a massa magra.\(^{26}\) Devido a estes fatores, ela é...
considerada uma das condições morfológicas que mais causam lesões, tanto para mobilidade como para saúde geral de idosos.\(^{(27)}\)

Esta associação foi observada por Stenholm et al.\(^{(11)}\) que encontraram que a obesidade sarcocênica aumentou o risco de um declínio na velocidade da caminhada e disfunção de mobilidade em idosos com mais de 65 anos. Nossos achados diferiram dos mencionados, já que os idosos com 80 anos ou mais com obesidade sarcocênica não mostraram mobilidade reduzida comparados com outros grupos.

É importante mencionar que o nível de atividade física afeta os componentes de massa magra e de gordura corporal. Com o tempo, os idosos tendem a se tornar mais sedentários, o que leva a um ciclo vicioso de mobilidade reduzida e, com a redução na mobilidade, o níveis de atividade física são ainda menores.\(^{(26)}\)

Carmo et al.\(^{(29)}\) demonstraram a influência da atividade física quando reportaram que a mobilidade para atividades como caminhar, sentar, levantar de uma cadeira e levantar partindo da posição prona estava mais preservada em mulheres fisicamente ativas. Portanto, a atividade física deve ser vista como uma solução para perda de mobilidade, por preservar os componentes fí-

Apesar da relevância dos resultados encontrados neste estudo, algumas limitações podem ser mencionadas: o não uso de variáveis de controle, como atividade física, consumo energético e classe socioeconômica, Escala Analógica de Dor; o não uso de questionários de Atividades de Vida Diária; e o desenho transversal das: o não uso de variáveis de controle, como atividade física, consumo energético e classe socioeconômica, Escala Analógica de Dor; o não uso de questionários de Atividades de Vida Diária; e o desenho transversal dos estudos, que limita a habilidade de estabelecer relações de causa. Porém, deve-se estabelecer que estudos com objetivo de verificar tais aspectos em idosos com 80 anos ou mais são limitados.

CONCLUSÃO

Idosos com 80 anos ou mais com sarcopenia têm maior chance de redução na mobilidade. Medidas preventivas, como prática de atividade física, especialmente ao longo da vida, podem evitar a ocorrência de sarcopenia e atenuar a redução da mobilidade nesta população. Além disto, sugerem-se novos estudos longitudinais para observar a relação de casualidade.

AGRADECIMENTOS

Este estudo recebeu financiamento por meio de bolsa de estudos (VRS) do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasil.

REFERÊNCIAS

1. Strugnell C, Dunstan DW, Magliano DJ, Zimmet PZ, Shaw JE, Daly RM. Influence of age and gender on fat mass, fat-free mass and skeletal muscle mass among Australian adults: the Australian diabetes, obesity and lifestyle study (AusDiab). J Nutr Health Aging. 2014;18(5):540-6.

2. Vincent HK, Vincent KR, Lamb KM. Obesity and mobility disability in the older adult. Obes Rev. 2010;11(8):568-79. Review.

3. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M; European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412-23.

4. Zamboni M, Mazzoli G, Fantin F, Rossi A, Di Francesco V. Sarcopenic obesity: a new category of obesity in the elderly. Nutr Metab Cardiovasc Dis. 2008;18(5):388-95. Review.

5. Lubitz J, Cai L, Kramarow E, Lentzner H. Health, life expectancy, and health care spending among the elderly. N Engl J Med. 2003;349(11):1048-55.

6. Dufour AB, Hannan MT, Murabito JM, Kiel DP, McLean RR. Sarcopenia definitions considering body size and fat mass are associated with mobility limitations: the Framingham Study. J Gerontol A Biol Sci Med Sci. 2013;68(2):168-74.

7. da Silva Alexandre T, de Oliveira Duarte YA, Ferreira Santos JL, Wong R, Lebrão ML. Sarcopenia according to the European working group on sarcopenia in older people (EWGSOP) versus dynapenia as a risk factor for disability in the elderly. J Nutr Health Aging. 2014;18(6):547-53.

8. Hergenroeder AL, Wert DM, Hile ES, Studenski SA, Brach JS. Association of body mass index with self-report and performance-based measures of balance and mobility. Phys Ther. 2011;91(8):1223-34.

9. Murphy RA, Reinders I, Register TC, Ayonayon HN, Newman AB, Satterfield S, et al. Associations of BMI and adipose tissue area and density with incident mobility limitation and poor performance in older adults. Am J Clin Nutr. 2014;99(5):1059-65.

10. Rolland Y, Lauwers-Cances V, Cristini C, Abellan van Kan G, Janssens I, Morley JE, et al. Difficulties with physical function associated with obesity, sarcopenia, and sarcopenic-obesity in community-dwelling elderly women; the EPIDOS (EPIDIeimologie de l’OSTeoporose) Study. Am J Clin Nutr. 2009;89(6):1895-900.

11. Stenholm S, Alley D, Bandellini S, Griswold ME, Koskinen S, Rantanen T, et al. The effect of obesity combined with low muscle strength on decline in mobility in older persons: results from the InCHIANTI study. Int J Obs (Lond). 2009;33(6):635-44.

12. Cardoso JH, da Costa JS. [Epidemiological characteristics, functional capacity and factors associated with elders in a private health insurance]. Cien Saude Colet. 2010;15(6):2871-8. Portuguese.

13. Instituto Brasileiro de Geografia e Estatística (IBGE). Censos demográficos [Internet]. Rio de Janeiro: IBGE; 2010 [citado 2012 Jan 12]. Disponível em: http://www.ibge.gov.br/home/estatistica/populacao/censo2010/caracteristicas_da_populacao/caracteristicas_da_populacao_tab_brasil_zip.shtm

14. Baumgartner RN, Wayne SJ, Waters DL, Janssen I, Gallagher D, Morley JE. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes Res. 2004;12(12):1995-2004.

15. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147(8):755-63. Erratum in: Am J Epidemiol. 1999;149(12):1161.

16. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85-94.

17. World Health Organization (WHO). Prevention and management of osteoporosis: Report of a WHO scientific group. Geneva: WHO; 2003. [WHOtechnical report series; 921]
18. Washington State Health Insurance Pool. Standard Health Questionnaire for Washington State. Washington [Internet]. 2005 [cited 2009 Jun 9]. Available from: http://www.wship.org/Docs/SHQ_Recert2005_REV_4-11-2005.pdf

19. Abe T, Thiebaud RS, Loenneke JP, Loftin M, Fukunaga T. Prevalence of site-specific thigh sarcopenia in Japanese men and women. Age (Dordr). 2014;36(1):417-26.

20. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50(5):889-96.

21. Farooq A, Knez WL, Knez K, Al-Noaimi A, Grantham J, Mohamed-Ali V. Gender differences in fat distribution and inflammatory markers among Arabs. Mediators Inflamm. 2013;2013:497324.

22. Gomes IC, Santos VR, Christofaro DG, Santos LL, Freitas Júnior IF. The most frequent cardiovascular risk factors in Brazilian aged 80 years or older. J Appl Gerontol. 2013;32(4):408-21.

23. Bouchard DR, Choquette S, Dionne IJ, Brochu M. Is fat mass distribution related to impaired mobility in older men and women? Nutrition as a determinant of successful aging: the Quebec longitudinal study. Exp Aging Res. 2011;37(3):346-57.

24. Sallinen J, Stenholm S, Rantanen T, Heliöaara M, Sainio P, Koskinen, S. Effect of age on the association between body fat percentage and maximal walking speed. J Nutr Health Aging. 2011;15(6):427-32.

25. Buffa R, Floris GU, Putzu PF, Marinii E. Body composition variations in ageing. Coll Antropol. 2011;35(1):259-65. Review.

26. Weinheimer EM, Sands LP, Campbell WW. A systematic review of the separate and combined effects of energy restriction and exercise on fat-free mass in middle-aged and older adults: implications for sarcopenic obesity. Nutr Rev. 2010;68(7):375-88. Review.

27. Benton MJ, Whyte MD, Dyal BW. Sarcopenic obesity: strategies for management. Am J Nurs. 2011;111(12):38-44; quiz 45-6.

28. Hunter GR, McCarthy JP, Bamman MM. Effects of resistance training on older adults. Sports Med. 2004;34(5):329-48. Review.

29. Carmo NM, Mendes EL, Brito CJ. Influência da atividade física nas atividades da vida diária de idosas. Rev Bras Cien Env Hum. 2008;5(2):16-23.

30. Bann D, Kuh D, Wills AK, Adams J, Brage S, Cooper R; National Survey of Health and Development scientific and data collection team. Physical activity across adulthood in relation to fat and lean body mass in early old age: findings from the Medical Research Council National Survey of Health and Development, 1946-2010. Am J Epidemiol. 2014;179(10):1197-207.