Comparative genomic and transcriptomic analyses of Family-1 UDP glycosyltransferase in three *Brassica* species and *Arabidopsis* indicates stress-responsive regulation

Hafiz Mamoon Rehman1, Muhammad Amjad Nawaz2, Zahid Hussain Shah2, Jutta Ludwig-Müller3, Gyuhwa Chung4, Muhammad Qadir Ahmad4, Seung Hwan Yang1 & Soo In Lee5

In plants, UGTs (UDP-glycosyltransferases) glycosylate various phytohormones and metabolites in response to biotic and abiotic stresses. Little is known about stress-responsive glycosyltransferases in plants. Therefore, it is important to understand the genomic and transcriptomic portfolio of plants with regard to biotic and abiotic stresses. Here, we identified 140, 154, and 251 putative UGTs in *Brassica rapa*, *Brassica oleracea*, and *Brassica napus*, respectively, and clustered them into 14 major phylogenetic groups (A–N). Fourteen major KEGG pathways and 24 biological processes were associated with the UGTs, highlighting them as unique modulators against environmental stimuli. Putative UGTs from *B. rapa* and *B. oleracea* showed a negative selection pressure and biased gene fractionation pattern during their evolution. Polyploidization increased the intron proportion and number of UGT-containing introns among *Brassica*. The putative UGTs were preferentially expressed in developing tissues and at the senescence stage. Differential expression of up- and down-regulated UGTs in response to phytohormone treatments, pathogen responsiveness and abiotic stresses, inferred from microarray and RNA-Seq data in *Arabidopsis* and *Brassica* broaden the glycosylation impact at the molecular level. This study identifies unique candidate UGTs for the manipulation of biotic and abiotic stress pathways in *Brassica* and *Arabidopsis*.

Studying the similarities and differences at the genomic and transcriptomic levels to infer the function and evolution of various biological processes is known as comparative genomics and transcriptomics. The Brassicaceae family in the plant kingdom comprises a set of diverse species of great economic, agronomic, and scientific importance, including the model plant *Arabidopsis*1. The six most cultivated species of the genus *Brassica* include three diploid species, namely, *B. rapa* (AA, 2n = 20), *B. nigra* (BB, 2n = 16), and *B. oleracea* (CC, 2n = 18), together with three amphidiploid species, i.e., *B. juncea* (AABB, 2n = 36), *B. napus* (AACC, 2n = 38), and *B. carinata* (BBCC, 2n = 34). These six *Brassica* species are related to each other and their relationship has been demonstrated by cytogenetics and hybridization studies, which confirmed that the amphidiploid species are natural hybrids of the diploids1. The inter-relationship of the six *Brassica* species has also been confirmed at the molecular level through genome evolution and comparative sequence analysis2. Genomic studies are mainly focused on the cultivated

Received: 13 July 2017
Accepted: 3 January 2018
Published online: 30 January 2018

1Department of Biotechnology, Chonnam National University, Yeosu, Chonnam, 59626, Korea. 2Department of Arid Land Agriculture, King Abdul-Aziz University, Jeddah, Saudi Arabia. 3Institut für Botanik, Technische Universität Dresden, 01062, Dresden, Germany. 4Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, 6000, Pakistan. 5Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Jeonju, 54874, Republic of Korea. Correspondence and requests for materials should be addressed to S.H.Y. (email: ymichigan@jnu.ac.kr) or S.I.L. (email: silee@korea.kr)
Gossypium hirsutum findings provide insights into the evolutionary history of UGT genes and their putative roles in development, as infection, which could possibly play a role in the crosstalk of salicylic acid (SA) and jasmonic acid (JA) 24–26.

Based on phylogeny, UGTs can be divided into 16 distinct groups (A–P). In sive compounds, such as phenolics, glucosinolates, salicylates, and anthocyanins 3–5. Glycosyltransferase (GT) to allotetraploid level. sequences of all three CAZy website21.

was observed when in tobacco31. Accumulation of sinapate esters, coniferin, and glycosylated pinoresinol and lariciresinol lignans during changing the composition of several indole derivatives 36. In tobacco, ectopic expression of TOGT1 resulted in reduced TMV resistance by storing the aglycone in the form of scopolin (a glycoconjugated coumarin)23,30. Overexpression of the TOGT genes also increased resistance against the potato virus Y (PVY) in tobacco31. Accumulation of sinapate esters, coniferin, and glycosylated pinoresinol and lari-cresinol lignans were observed when Arabidopsis leaves were infected by the soil-borne ascomycote, Verticillium longisporum32,33.

Transgenic plants that overexpressed UGT72E2 were less susceptible to this fungi, owing to the accumulation of coniferin21. Plant species can also display glycosylation-related cultivar- and pathogen-dependent responses to biotic stresses23. An upregulation of cytochrome P450 (CYP709C1) and UGT-encoding genes in wheat was observed during the infection by Fusarium graminearum, compared with Magnaporthe grisea. The cultivar resistance to F. graminearum led to a stronger expression in incompatible (resistant) interactions with the Chinese spring wheat cultivar, Sumai 3 23,33. The constitutive overexpression of the (UGT73C5) gene in Arabidopsis led to an enhanced tolerance against the deoxyvinvalenol mycotoxin produced by Fusarium, by glycosylating it into DOGT1 34. These studies underline the importance of some UGT genes implicated in pathogen response and reox status, during pathogen infection. To date, UGT84F1 in B. napus and BrUGT in B. rapa has been functionally characterized for inhibition of the biosynthesis of sinapine and abiotic stress tolerance, respectively35.

The biological role of the putative UGTs in response to abiotic stresses is largely unknown. For example, in Arabidopsis, UGT85U1/2 and UGT85V1 were found to be involved in salt and oxidative stress tolerance by changing the composition of several indole derivatives36. In tobacco, ectopic expression of UGT85A5 resulted in enhanced salt stress tolerance in transgenic plants37. Furthermore, in Arabidopsis, ectopic over-expression of UGT74E2 increased the tolerance to salinity and drought stress, and reduced the water loss in plants38, while 11 UGTs were up-regulated in response to H2O2 stress in catalase-deficient plants39. Recently, UGT85C2, UGT74G1, and UGT76G1 were shown to be downregulated under polyethylene glycol-induced drought stress in Stevia rebaudiana40. The role of abscisic acid (ABA) in mediating drought stress has been extensively studied and several UGTs have been functionally characterized for ABA-glucose ester formation40–42. ABA glycoconjugate genes from various plants have been characterized, including UGT71A33, UGT71A34a/b and UGT71A35 (strawberry), UGT71A2, UGT71B7, UGT71B8, UGT71B6, and UGT71C5 (Arabidopsis), ABAGT (Phaseolus vulgaris), UGT73C14 (Gossypium hirsutum), and ABAGT (Vigna angularis)33,43–45.

An extensive research interest have attracted the plant UGTs in response to physiological function as well as their potential biotechnological applications46. It will be essential to integrate data from in vitro and in vivo studies across crops to obtain a complete picture of the potential biological and molecular roles of UGTs in plants46. Here, we employed bioinformatics techniques to identify 545 putative UGTs in three Brassica species, and then subjected these to genomic and transcriptomic analyses. To the best of our knowledge, the present study identified UGT genes at a genome-wide scale in B. napus, B. oleracea, and B. rapa, and compare these with Arabidopsis; our findings provide insights into the evolutionary history of UGT genes and their putative roles in development, as well as the response to biotic and abiotic stresses.
Results

Identified Putative UGTs in Brassica. We identified 545 putative UGTs in three Brassica species, with a PSPG (Plant Secondary Product Glycosyltransferase) motif at their C-terminal from the projected proteomes (Supplementary Table S1), having a sequence similarity of 40% to 98% with the Arabidopsis UGTs (Supplementary Fig. S1). Out of these 545 putative UGTs, 140 belong to B. rapa, 154 to B. oleracea, and 251 to B. napus. The PHMMR tool used for the identification of UGTs produced consistent results in terms of the UDPGT domain with PFAM00201. The average peptide lengths and molecular weights of the putative UGTs were found to be almost similar across the species, with an average length and weight of 438 aa and 49 kDa in B. napus, 457 aa and 51 kDa in B. oleracea, and 454 aa and 51 kDa in B. rapa (Supplementary Table S1). In B. rapa, Bra034848.1 was the gene with a maximum length of 1183 aa among all three Brassica species, and it had a PSPG motif. All the UGT sequences started with a methionine and were full-length sequences. The percentage of GC content was also found to be similar among all Brassica species putative UGTs, with a range of 44.36% to 45% (Supplementary Table S1). As per the calculated amino acid composition for the putative UGTs in all three Brassica species, the amino acids, leucine, valine, glycine, and aspartate were predominant across all the UGT proteins (Table S1). Cysteine and tyrosine were found minimally.

Phylogenetic Analysis and Comparison. The final alignment file contained the aligned positions with two highly conserved sites, 490 variables, and 17 singleton sites. The constructed phylogenetic tree suggested a classification into 14 major groups (A–N), as seen in all higher plants such as maize, cotton, peach, and apple (Fig. 1A)12,14,15,17. Two newly discovered groups (O and P) were absent in all three Brassica species as well as Arabidopsis, but are present in Z. mays15. The PSPG motif was found to vary in each phylogenetic group, but was similar across all three Brassica species and Arabidopsis (Supplementary Table S1 and Fig. 1B). The histidine at positions 10 and 19 in the PSPG motif was the most conserved site across all three Brassica species (Fig. 1B).

Across the Brassica and Arabidopsis species, groups D, E, H, and L had the largest numbers of UGTs (Fig. 2). Phylogenetic groups E and L in B. napus were the most expanded ones among all the compared groups, with 48 and 61 genes, respectively (Fig. 2). Groups I, J, K, M, and N were found to be conserved among all three Brassica species (Fig. 2). B. napus had the maximum number of putative UGTs in each group, while B. rapa and B. napus had almost the similar number of genes in their phylogenetic groups. In B. oleracea, group F was found to be absent.

KEGG Pathway Mapping and Go Annotation. The Go ontology analysis of all the identified putative UGTs from all three-brassica species associated them with 13 molecular function and 24 biological processes shown in (Fig. 3A and B). In general, fourteen major KEGG pathways (steroid hormone biosynthesis, metabolism of xenobiotics by cytochrome P450, zeatin biosynthesis, phenylpropanoid biosynthesis, pentose and glucuronate
interconversions, tryptophan metabolism, drug metabolism - other enzymes, flavone and flavanol biosynthesis, ascorbate and aldolate metabolism, glucosinolate biosynthesis, drug metabolism - cytochrome P450, retinol metabolism, porphyrin and chlorophyll metabolism, and anthocyanin biosynthesis) were found to be linked with the putative UGTs (Supplementary Table S2). Phylogenetic group wise KEGG pathway mapping was also investigated and listed in (Supplementary Table S2). Each group UGTs were found to be involved for specific KEGG pathways. The putative UGTs involvement in various biological processes and their molecular functions is presented in group wise (Supplementary Fig. S2). Overall most of the putative UGTs were found to be involved in quercetin 3-O- and 7-O glucosyltransferases, hormonal glycosylation and various flavonoid glucuronidation and their biosynthesis.

Chromosomal distribution, Duplication, and Divergence. All the chromosomes in all three Brassica species contained UGTs (Fig. 4), although the numbers varied among them. In B. napus, some genes were found without any chromosome number and were included in the random category (Fig. 4). A comparison between B. rapa and B. napus AA chromosomes showed that the putative UGTs of B. napus followed the exact pattern of chromosome involvement as its progenitor B. rapa (Fig. 4). The same was observed for CC genome from B. oleracea and B. napus.
The maximum clustering of the putative UGTs in all three *Brassica* species was observed in phylogenetic groups E, L, and H (Fig. 4). Cluster size was found to be variable for each chromosome in all three *Brassica* species (Fig. 4).

We found 28 clusters of tandemly duplicated UGTs in *B. rapa* (Supplementary Table S3, Supplementary Fig. S4). The maximum clusters consisted of two to four UGT genes. Some clusters had five to seven UGT genes, for example Cluster_17 and Cluster_13 (Supplementary Fig. S4). For *B. rapa*, almost all the clusters belonging to the same phylogenetic groups, except some clusters, such as Cluster_171, which had a gene from phylogenetic
blocks (A, F, T, J, O, X, N) were detected (Supplementary Table S3). Similarity in the syntenic sequences of the genetic group of the putative UGTs belongs to different syntenic blocks, for example, in group E, different syntenic orthologs was contained in the more fractioned subgenome (MF2) of all three Brassica species. Each phylogenetic group, the intron numbers were found to vary among the three species. The maximum number of introns was found in E, D, L, and H, whereas the minimum number of introns was found in B, C, F, I, M, and N groups, in all three Brassica species (Supplementary Table S3). Intron phases in some phylogenetic groups were A and D (Supplementary Table S3). We also found 17 clusters of tandemly duplicated UGTs in B. oleracea (Supplementary Fig. S4, Supplementary Table S3). The cluster size in B. oleracea was 2 to 4 genes per cluster. We also found that some cluster genes belonged to two different phylogenetic groups, such as the genes in Cluster_1498, Cluster_453, and Cluster_1455 in B. oleracea groups A and D (Supplementary Table S3). We also found 17 clusters of tandemly duplicated UGTs in B. oleracea (CC) genomes at the time of divergence from their progenitor (Table 1). Almost all the duplicated UGT gene pairs belonged to those genes that had undergone a genes that had undergone a whole-genome duplication (WGD) or segmental duplication, and all the pairs had a Ka/Ks ratio of less than 1, indicating the purifying selection acting on these genes. The calculation of the divergence time of the duplicated UGTs spanned from 1.41 to 21.07 million years ago (MYA) (Table 1). Duplicated gene pairs 2,5,11, 17, 18, and 21 diverged around 13.65 to 21.07 MYA, while fourteen gene pairs (1, 3, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 19, 20, 22, 24, and 25) diverged around 1 to 5 MYA. Only two UGT gene pairs diverged around 5 to 9 MYA.

Table 1. Calculation of Ka/Ks and the divergence time of the duplicated UGT gene pairs in B. rapa (AA) and B. oleracea (CC) genomes.

Duplicated Gene Pairs	Ka	Ks	Ka/Ks	Duplication type	Purifying Selection	Time(MYA)
1. Bo4g005410-B. rapa.A00194	0.0306	0.133	0.22	WGD/Segmental	Yes	4.45
2. Bo4g122730-B. rapa.I03603	0.0802	0.370	0.21	WGD/Segmental	Yes	12.36
3. Bo4g122730-B. rapa.D00540	0.0086	0.424	0.23	WGD/Segmental	Yes	1.41
4. Bo5g082490-B. rapa.I03603	0.0562	0.178	0.31	WGD/Segmental	Yes	5.94
5. Bo5g082490-B. rapa.D00540	0.0753	0.419	0.17	WGD/Segmental	Yes	13.98
6. Bo3g082510-B. rapa.I03606	0.0178	0.081	0.19	WGD/Segmental	Yes	3.06
7. Bo3g041900-B. rapa.C02459	0.0174	0.080	0.21	WGD/Segmental	Yes	2.69
8. Bo5g156510-B. rapa.E03602	0.0181	0.060	0.30	WGD/Segmental	Yes	2
9. Bo4g030990-B. rapa.E00800	0.0145	0.088	0.16	WGD/Segmental	Yes	2.96
10. Bo5g164990-B. rapa.D01677	0.0096	0.106	0.09	WGD/Segmental	Yes	3.53
11. Bo4g059680-B. rapa.C01536	0.164	0.63	0.26	WGD/Segmental	Yes	21.07
12. Bo5g124870-B. rapa.E02501	0.016	0.09	0.17	WGD/Segmental	Yes	3.26
13. Bo3g179780-B. rapa.H00222	0.0184	0.12	0.15	WGD/Segmental	Yes	4.14
14. Bo6g025900-B. rapa.F00261	0.048	0.012	4	WGD/Segmental	No	4.05
15. Bo9g087430-B. rapa.G02296	0.025	0.09	0.27	WGD/Segmental	Yes	3.3
16. Bo3g009950-B. rapa.C00639	0.019	0.061	0.31	WGD/Segmental	Yes	2.03
17. Bo3g009950-B. rapa.I01993	0.100	0.42	0.23	WGD/Segmental	Yes	14.29
18. Bo3g091760-B. rapa.G00317	0.102	0.40	0.25	WGD/Segmental	Yes	13.65
19. Bo3g091760-B. rapa.C04165	0.020	0.98	0.02	WGD/Segmental	Yes	3.27
20. Bo4g059400-B. rapa.H02763	0.015	0.07	0.21	WGD/Segmental	Yes	2.65
21. Bo9g165610-B. rapa.C00639	0.10	0.43	0.23	WGD/Segmental	Yes	14.48
22. Bo9g165610-B. rapa.I01993	0.017	0.07	0.24	WGD/Segmental	Yes	2.63
23. Bo9g018780-B. rapa.E00824	0.10	0.19	0.52	WGD/Segmental	Yes	6.64
24. Bo9g090770-B. rapa.I02539	0.017	0.05	0.34	WGD/Segmental	Yes	1.67
25. Bo9g169250-B. rapa.I02137	0.01	0.081	0.12	WGD/Segmental	Yes	2.71

Gene synteny and subgenomic fractionation of the putative UGTs in Brassica. B. rapa showed paleo hexaploidy, with three subgenomes that share the same diploid ancestor as that of the model species A. thaliana. Here, we provide B. rapa-orthologous syntenic genes in B. napus, B. oleracea, and the model plant Arabidopsis. We found, 100 UGT genes of B. rapa were having the syntenic genes in all three-compared species including Arabidopsis (Supplementary Table S3). Overall, All the syntenic genes belonged to tPCK (the ancestral genome of Brassica species) chromosomes 1 to 7 and the following syntenic blocks: A, B, C, E, F, H, I, J, M, N, O, R, T, U, Wb, and x (Supplementary Table S3). The maximum number of syntenic UGT genes was retained in the fractioned subgenome (LF) of B. rapa, B. oleracea, and B. napus (Supplementary Table S3). The minimum number of orthologs was contained in the more fractioned subgenome (MF2) of all three Brassica species. Each phylogenetic group of the putative UGTs belongs to different syntenic blocks, for example, in group E, different syntenic blocks (A, F, T, J, O, X, N) were detected (Supplementary Table S3). Similarity in the syntenic sequences of the putative UGTs among LF, medium fractionated subgenomes (MF1), and MF2 subgenomes are shown in (Fig. 5).

Exon/Intron organization of the putative UGTs in Brassica. Of the 545 UGTs, 219 possess no introns, whereas 326 had introns (Supplementary Table S4). Out of the 326 intron-containing UGTs, 71, 80, and 175 genes were found in B. rapa, B. oleracea, and B. napus, respectively. A ratio of 1.35, 1.25, and 0.7 introns per intron-containing UGT was observed in B. rapa, B. oleracea, and B. napus, respectively (Supplementary Table S4). Except Brat034848, which had 11 introns, almost all the remaining UGTs had 1–4 introns per gene. In each phylogenetic group, the intron numbers were found to vary among the three Brassica species. The maximum number of introns was found in E, D, L, and H, whereas the minimum number of introns was found in B, C, F, I, M, and N groups, in all three Brassica species (Supplementary Table S4). Intron phases in some phylogenetic groups were
Based on the RPKM values, the maximum number of downregulated UGTs against *P. brassicae* was 48. The maximum number of UGT genes were found developed rosette, bolting, young flower, developed flower, Flower/silique, silique, and senescence. RNA-seq data at 24 hai and 48 hai stages, in response to *P. brassicae*, were investigated in *Arabidopsis* [16]. The maximum number of UGT genes were found to be downregulated upon early and late infection by *P. brassicae*, in both *Arabidopsis* and *B. rapa* (Supplementary Table S5, Supplementary Fig. S6A). Only 9 UGT genes (UGT71B3P, UGT71C1, UGT72D1, UGT72E1, UGT72E2, UGT74B1, UGT74C1, and UGT76F2) were found to be upregulated, based on the Reads Per Kilobase of transcript per Million mapped reads (RPKM) values for infection with *P. brassicae*. Some genes were up- and downregulated simultaneously, but at different stages of infection, for example the UGT74E2 gene was found to be upregulated after 48 hai, whereas downregulated at 24 hai, compared to the control. UGT71C1, UGT72E1, and UGT72E2 showed the maximum TPM values against *P. brassicae* infection. The UGT79B5 gene in *Arabidopsis* was maximally downregulated, with RPKM reduction from 229 to 106, against the clubroot pathogen. Based on the RPKM values, the maximum number of downregulated UGTs against *P. brassicae* was observed in the clubroot-resistant line compared to the susceptible line of *B. rapa* [17] (Supplementary Table S5, Supplementary Fig. S6B). All the downregulated UGTs had low RPKM values against early and late infectious stages of *P. brassicae*. Twenty-one UGTs were found to be upregulated against the clubroot disease. Interestingly, UGTs from group M were found to be upregulated in both *Arabidopsis* and *B. rapa* against clubroot.

Transcriptome analysis of tissue-specific expression. Glycosylation of fungal-responsive pathway proteins was evaluated using RNA-seq data in *Arabidopsis* and *B. rapa*. RNA-seq data at 24 hai and 48 hai stages, in response to *P. brassicae*, were investigated in *Arabidopsis* [16]. The maximum number of UGT genes were found to be downregulated upon early and late infection by *P. brassicae*, in both *Arabidopsis* and *B. rapa* (Supplementary Table S5, Supplementary Fig. S6A). Only 9 UGT genes (UGT71B3P, UGT71C1, UGT72D1, UGT72E1, UGT72E2, UGT74B1, UGT74C1, and UGT76F2) were found to be upregulated, based on the Reads Per Kilobase of transcript per Million mapped reads (RPKM) values for infection with *P. brassicae*. Some genes were up- and downregulated simultaneously, but at different stages of infection, for example the UGT74E2 gene was found to be upregulated after 48 hai, whereas downregulated at 24 hai, compared to the control. UGT71C1, UGT72E1, and UGT72E2 showed the maximum TPM values against *P. brassicae* infection. The UGT79B5 gene in *Arabidopsis* was maximally downregulated, with RPKM reduction from 229 to 106, against the clubroot pathogen. Based on the RPKM values, the maximum number of downregulated UGTs against *P. brassicae* was observed in the clubroot-resistant line compared to the susceptible line of *B. rapa* [17] (Supplementary Table S5, Supplementary Fig. S6B). All the downregulated UGTs had low RPKM values against early and late infectious stages of *P. brassicae*. Twenty-one UGTs were found to be upregulated against the clubroot disease. Interestingly, UGTs from group M were found to be upregulated in both *Arabidopsis* and *B. rapa* against clubroot.

Transcriptome analysis of *Plasmodiophora brassicae*. Glycosylation of fungal-responsive pathway proteins was evaluated using RNA-seq data in *Arabidopsis* and *B. rapa*. RNA-seq data at 24 hai and 48 hai stages, in response to *P. brassicae*, were investigated in *Arabidopsis* [16]. The maximum number of UGT genes were found to be downregulated upon early and late infection by *P. brassicae*, in both *Arabidopsis* and *B. rapa* (Supplementary Table S5, Supplementary Fig. S6A). Only 9 UGT genes (UGT71B3P, UGT71C1, UGT72D1, UGT72E1, UGT72E2, UGT74B1, UGT74C1, and UGT76F2) were found to be upregulated, based on the Reads Per Kilobase of transcript per Million mapped reads (RPKM) values for infection with *P. brassicae*. Some genes were up- and downregulated simultaneously, but at different stages of infection, for example the UGT74E2 gene was found to be upregulated after 48 hai, whereas downregulated at 24 hai, compared to the control. UGT71C1, UGT72E1, and UGT72E2 showed the maximum TPM values against *P. brassicae* infection. The UGT79B5 gene in *Arabidopsis* was maximally downregulated, with RPKM reduction from 229 to 106, against the clubroot pathogen. Based on the RPKM values, the maximum number of downregulated UGTs against *P. brassicae* was observed in the clubroot-resistant line compared to the susceptible line of *B. rapa* [17] (Supplementary Table S5, Supplementary Fig. S6B). All the downregulated UGTs had low RPKM values against early and late infectious stages of *P. brassicae*. Twenty-one UGTs were found to be upregulated against the clubroot disease. Interestingly, UGTs from group M were found to be upregulated in both *Arabidopsis* and *B. rapa* against clubroot.
Differentially expressed UGT genes for Phytohormone Glycosylation. Diversity in the putative UGTs to glycosylate phytohormones was evaluated using microarray analysis in Arabidopsis, and further confirmed in B. rapa for MeJa-treated RNA-seq data. All the 118 UGTs were differentially expressed against 2,4-D + trichostatin, ABA + SA, indole acetic acid (IAA), MeJa, SA, and zeatin (Fig. 6). The fold change and p-values are provided in Fig. 6. UGT71C3, UGT74D1, and UGT90A2 genes were downregulated in the hypocotyl segments treated with 2,4-D and trichostatin (a histone deacetylase inhibitor) (Fig. 6). UGT72E2, UGT74B1, and UGT79B7 were found to be upregulated in response to 2,4-epibrassionolide and in glucose-treated seedlings (Fig. 6). A differential expression of UGT71B7, UGT85A5, and UGT87A2 was observed in the cell suspension cultures under 25 μM ABA and 300 μM SA after 3 h of treatment. Interestingly, UGT72E1 was downregulated in the leaf samples treated with 50 mM ABA for 3 h, and cell samples treated with 25 mM ABA after 3 and 24 h. An upregulation of UGT72D1, UGT73B4, and UGT76E12 was observed in the seeds of ABA-hypersensitive mutant (ahg1-1), germinated on a medium containing 0.5 μM ABA. A downregulation of UGT71C1 and UGT73D1 was observed in the root xylem pole pericycle protoplast samples transferred to 5μM IAA solution for 3 h. UGT74E2 and UGT75B1 were maximally downregulated in the root samples of Col-0 grown for 6 days under continuous light and then transferred to 1 μM IAA for 8 and 12 h. UGT71B7, UGT72B3, UGT72E1, AT3G11340, UGT78D2, and UGT87A2 were the most downregulated UGT genes in the leaf disc samples of Ler and Penta plants grown under short-day light conditions and sprayed with 10 μM MeJa. UGT71D1, UGT73B3, UGT79B2, and UGT90A1 genes were upregulated under 10 μM MeJa-treated leaf disk samples from Ler and Penta plants of Arabidopsis. UGT74D1 and UGT74E2 were found to be downregulated in the leaf discs samples treated with 10 μM naphthalene acetic acid NAA (Fig. 6). UGT73E4 and UGT76E12 were upregulated in response to Col-0 plant samples treated with 75 μM 12-oxo-phytodienoic acid (OPDA) for 4 h. A consistent upregulation of UGT76B1 and down regulation of UGT89C1 was observed in rosette leaf samples taken from plants of 16 different genetic background, treated with 0.3 mM SA. UGT75C1 and UGT78D3 were the only downregulated UGT genes in 21-day old whole plants, which overexpressed the ARR22 (Col-0 background) and were treated with 20 μM trans-zeatin for 3 h (Fig. 6). To compare this data, we found only the RNA-seq (GSM1243356) dataset of B. rapa leaves treated with 0.2 mM MeJa for ZSN5 cultivar. We found 50 upregulated and 39 downregulated UGT genes in response to pathogens such as Alternaria brassicicola, Bumelia graminis, Escherichia coli, G. cichoracearum, Golovinomyces orontii, Hyaloperonospora arabidopsidis, Plectosphaerella cucumerina, P. syringae, Rhizoctonia solani, and Xanthomonas campesiris (Fig. 7). Interestingly, UGT73B3, UGT73B4, and UGT73B5 were differentially upregulated in response to all the above-mentioned pathogens. UGT71C3, UGT74E2, and UGT85A1 were highly upregulated in rosette leaf samples treated with the pathogens, A. brassicicola and B. graminis. A very low level of gene regulation of UGTs was observed against E. coli, H. arabidopsidis, and R. solani in Arabidopsis. The UGT89C1 gene was highly downregulated in response to G. cichoracearum-treated whole rosette leaf samples after 18 h and 36 h in cultivars

Differentially expressed Arabidopsis UGT genes under Biotic and Abiotic stresses. Overall, the maximum number of UGT genes in Arabidopsis was found to be upregulated in response to pathogens such as Alternaria brassicicola, Bumelia graminis, Escherichia coli, G. cichoracearum, Golovinomyces orontii, Hyaloperonospora arabidopsidis, Plectosphaerella cucumerina, P. syringae, Rhizoctonia solani, and Xanthomonas campesiris (Fig. 7). Interestingly, UGT73B3, UGT73B4, and UGT73B5 were differentially upregulated in response to all the above-mentioned pathogens. UGT71C3, UGT74E2, and UGT85A1 were highly upregulated in rosette leaf samples treated with the pathogens, A. brassicicola and B. graminis. A very low level of gene regulation of UGTs was observed against E. coli, H. arabidopsidis, and R. solani in Arabidopsis. The UGT89C1 gene was highly downregulated in response to G. cichoracearum-treated whole rosette leaf samples after 18 h and 36 h in cultivars
of Col-0 and edr1 genetic background (Fig. 7). UGT73B3 and UGT89C1 were upregulated against G. orontii infection in the rosette leaf samples in plants of Col-0 and eds16-1 genetic background. UGT73B3, UGT76C1, UGT87A1, and UGT87A1 responded positively in response to P. cucumerina treatment in rosette leaf samples of plants with agb1-1 genetic background. An upregulation of UGT73D1 was observed against P. syringae pv. phaseolicola in the leaves of Col-0 plants. The maximum number of UGT genes was found to be upregulated in response to P. syringae treatment in plants (Fig. 7). Again, UGT73B3 responded positively in terms of gene expression against X. campestris treatment in the leaves of plants with Ws-4 genetic background.

A diverse range of differentially expressed UGT genes of Arabidopsis was observed against cold, drought, heat, hypoxia, osmotic, salt, and submergence conditions (Fig. 8). UGT73C1, UGT78D3, UGT79B2, UGT84A3, and UGT90A1 were dominantly expressed in the aerial tissue samples of sf2 plants, grown at 21 °C under 24 h illumination and then exposed to cold (4 °C) for 24 h. A downregulation of UGT72E1 and UGT74F2 was observed in the aerial tissue samples of Col-0 plants, grown at 20 °C under 8 h light/16 h dark for 28 days and then exposed to cold (4 °C) for 10 days. UGT72B1 and UGT75B1 were downregulated, whereas UGT78D3 and UGT90A1 were upregulated in rosettes of atcsp1-1 (a knockdown mutant) plants maintained at 4 °C. In drought, UGT73B3, UGT73B5, UGT73C1, UGT74E2, and UGT79B1 were highly upregulated in leaf samples from wild type (Col-0) plants, which had not been watered for 7 days. UGT79B2, AT4G31780, UGT85A1, UGT85A2, UGT86A2, and UGT90A1 were downregulated in hsf1:hsf3 (mutant plants significantly impaired with respect to the induction of HS gene expression) leaf samples after 1-h heat treatment (37 °C). In response to hypoxia, UGT71B1, UGT71B2, UGT71B7, UGT74D1, UGT76E1, UGT76F2, UGT78D1, UGT78A1, and UGT88A1 were highly downregulated in ANAC102(KO-1) (mutant) plants exposed to low oxygen treatment for 4 h in a dark chamber. UGT73B3, UGT73B5, and UGT73B6 were found to be upregulated in response to the low oxygen treatment. A very low level of regulation of UGT genes was observed in response to 300 mM mannitol-treated leaf samples of col-0 plants. The maximum number of UGT genes was found to be highly downregulated, such as UGT71B1, UGT71C1, UGT71C2, UGT71B1, UGT71D1, UGT72B2, UGT74D1, UGT74F2, UGT76E9, UGT84A2, and UGT84A4, in root epidermis and lateral root cap protoplast samples treated for 3 h (Fig. 8). A downregulation of UGT75C1 and UGT78D1 was observed in the leaf samples shifted from cold to freezing conditions.

A high expression of putative UGTs in B. oleracea was observed in root and pod tissues in comparison to the leaf and flower tissues (Fig. 9). A high expression of Bo3g039900, Bo2g099830, Bo1g007610, Bo3g018000, Bo3g091760, and Bo9g009770 genes was observed in root tissues (Fig. 9). Bo9g169250, Bo5g124870, Bo1g056770, Bo1g007610, Bo3g078830 were dominantly expressed in pod tissue of B. oleracea (Fig. 9). Two UGTs i.e. Bo3g091760 and Bo1g056770 were maximally expressed only in flower, while Bo1g076610, Bo4g031150, Bo4g049480, Bo4g030990, and Bo9g090770 genes were expressed in leaf tissues (Fig. 9). The UGTs from the following phylogenetic groups (E, D, H, L, K, A and M) were abundantly expressed in calcium limited seedling tissues of root, leaf, and flower (Fig. 9). Some key regulated UGTs were following i.e. Bo3g078820, Bo2g099830, Bo7g021600, Bo9g176810, Bo1g056770, Bo4g030990, Bo9g090770, and Bo5g008070 against low calcium treatment (Fig. 9).

In B. napus, UGTs from phylogenetic groups (E, D, L, J, K, I and A) were having the most pathogen responsive genes against Leptosphaeria maculans infection. In resistant genotype (DF78), a low expression of maximum UGTs was observed upon L. maculans infection after 0, 3, 7 and 11 days treatment (Fig. 10). BnaA05g19470D, BnaA05g002220D, BnaC04g08440D, BnaC04g12860D and BnaC05g71890D UGTs increased their expression.

Figure 7. Differential expression of up and downregulated UGTs of Arabidopsis in response to different pathogen infestations (A. brassicicola, B. graminis, E. coli, G. cichoracearum, G. orontii, H. arabidopsisis, P. cucumerina, P. syringae, R. solani, and X. campestris). Green color is showing down regulated UGTs and red color is showing up regulated UGTs.
in Westar genotype (susceptible) upon infestation (Fig. 10). Only two UGT genes i.e. BnaCnng01870D and BnaC01g31820D were found to be upregulated in DF78 genotype upon infection (Fig. 10).

Again, a decrease in expression of maximum UGTs in Westar and ZY821 (resistant genotype) upon sclerotinia stem rot infestation after 24 hpi (Fig. 10). UGTs from phylogenetic groups (A, B, C, D, E, L, J, K, and M) showed a variation in their expression upon infestation. BnaA03g36460D, BnaCnng24700D, BnaC05g03820D, BnaA09g30680D, BnaA05g07450D, BnaC06g04480D, BnaC05g28300D, and BnaA10g04700D were the only UGTs increased their expression in both genotypes against stem rot in *B. napus* (Fig. 10).

The salt treatment in *B. napus* decreased the putative UGTs expression at different levels in leave and root tissues (Fig. 10). A 12 h salt treated leaves and root tissues abruptly decreased the expression of maximum number of UGTs. BnaA03g36450D, BnaA07g04240D, BnaC03g72710D, BnaA08g28350D, and BnaC05g05040D UGTs showed an increase in their expression upon 1 h salt treatment only, while the same genes were showing a decreased expression upon 12 h stress treatment (Fig. 10).

The drought treatment of 200 g L$^{-1}$ PEG-6000 in B07Y19 (resistant) and 07Y29 (susceptible) genotypes also resulted a decrease in maximum UGTs expression in both genotypes (Fig. 10). BnaC04q14940, BnaC04q14950D, BnaCnng7330D, BnaA06q18440D, BnaC09g49560D, BnaC04q08280D and BnaC05g36720D were up-regulated in B07Y19 upon drought treatment (Fig. 10). A decreased expression of the same genes was observed in 07Y29 upon treatment (Fig. 10).

Discussion

A greater number of identified putative UGTs (251) in *B. napus*, compared to its diploid progenitors *B. rapa* (140 UGTs) and *B. oleracea* (154 UGTs), showed the direct effect of polyploidization in increasing the number of UGTs in polyploid crops (Supplementary Table S1). This effect has also been observed in *Gossypium hirsutum* (196 UGTs), compared to *G. raimondii* (142 UGTs) and *G. arboretum* (146 UGTs)14. Thus, we propose that polyploid crops (wheat, cotton, tobacco, peanut, apple, etc.) have diversified their secondary metabolite biosynthesis, as indicated by the increased number of UGT genes. Total transcriptome sharing of the putative UGTs with 0.32%, 0.26%, and 0.24% in *B. rapa*, *B. oleracea*, and *B. napus* indicates that UGTs constitute one of the largest multigene families in *Brassica*. A similar transcriptome sharing ratio of the putative UGT genes was also observed in Arabidopsis (0.22%) and *Linum usitatissimum* (0.31%)10,13. By employing the same tools as those used in the present study, the UDP-1 family has been investigated in several other species, such as *Prunus persica* (169 UGTs), *Malus x domestica* (254 UGTs), *Vitis vinifera* (184 UGTs), *Linum usitatissimum* (138 UGTs), *Glycine max* (149 UGTs), *Gossypium hirsutum* (196 UGTs), and *Populus trichocarpa* (191 UGTs; unpublished data), which showed a wide distribution of this family among vascular plants12–17,45,50. The conserved percentage of GC contents from 44.36% to 45% from the diploid to polyploid level, in all three *Brassica* species, indicate their conserved mode of multiplication from progenitors to cultivars14 (Supplementary Table S1). The same conservation pattern of putative UGTs with respect to leucine-rich proteins was also observed in soybean14 (Supplementary Table S1).

The 14 identified phylogenetic groups (A–N) of all the putative UGTs in the three *Brassica* species were similar to Arabidopsis, which indicates that this family has not expanded in terms of new phylogenetic groups after separation from Arabidopsis10,11 (Figs 1 and 2). The presence of newly identified O and P groups in higher plants such as maize, but their absence in the three *Brassica* species and Arabidopsis indicates that they have been lost at some stage during the evolution of these plants13 (Figs 1 and 2). An expansion of D, E, H, and L groups in all
three *Brassica* species compared to *Arabidopsis*, indicates that multiple functions are associated with these groups of UGTs and they have a broad substrate specificity\(^1\). Groups B, C, and O were not as expanded as others, which suggests that they have a conserved substrate specificity\(^1\) (Figs 1 and 2). Surprisingly, group H expanded only in the three *Brassica* species and *Arabidopsis*, whereas it contracted in all other eudicots, indicating that these UGTs are more required in *Brassica* species but have limited functions in other plants (Figs 1 and 2). An expansion, conservation, and reduction of UGT genes in each phylogenetic group of the eudicots reflects the physiological

Figure 9. Differential expression of up and down regulated UGTs of *B. oleracea* in response to leaf, flower, pod, root, and calcium limited seedling tissues i.e. root, leaf and flower. Dark blue color is showing up-regulated UGTs and white color is showing down-regulated UGTs. Different colors are showing each phylogenetic group of putative UGTs.
challenges that plants have to overcome for survival on land13. The absence of group F was observed in *B. oleracea*, indicating that these UGTs have been lost during evolution, and the same results were found for *G. hirsutum*, where group C was found missing14.

Structural investigation of the PSPG motif in each phylogenetic group revealed the role of specific amino acid residues that are highly conserved at positions 1 (W), 4 (Q), 10 (H), 19 (H), and 44 (Q) (Fig. 1B). The occurrence

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure10.png}
\caption{Differential expression of up and down regulated UGTs of *B. napus* in response to biotic stresses (blackleg and stem rot disease) and abiotic stresses (salinity and drought stress). Dark blue color is showing up-regulated UGTs and white color is showing down-regulated UGTs. Different colors are showing each phylogenetic group of putative UGTs in *B. napus*.}
\end{figure}
of these specific amino acids at these positions in the sequence provides certain evolutionary and functional information that could be helpful for enzyme discovery.

The involvement of all 545 putative UGTs in *Brassica* to manipulate 14 major KEGG pathways and 24 biological processes suggests that this family is highly important for plants to cope with environmental stimuli and cellular homeostasis (Fig. 3A,B). The maximum involvement of putative UGTs in flavonoid glucuronidation and their biosynthesis indicates their mode of action through flavonoid glycosylation i.e quercetin 3-O-, 7-O glycosylation etc. (Supplementary Fig. S2 and Supplementary Table S2). The maximum involvement of UGT genes in flavonoid glucuronidation, in response to toxic substances and ABA stimulus, indicates that they are unique modulators in plants that interact with the environment.

Several genes for ABA glycosylation have already been functionally characterized in *Arabidopsis*, *Phaseolus vulgaris*, and *Vigna angularis*. Their involvement in plant growth and development has already been verified, for instance, in the in seed and fiber development in soybean and cotton.

A varied chromosomal distribution, but the same pattern of chromosome sharing in *B. rapa* AA genome to *B. napus* AA genome, and *B. oleracea* CC genome to *B. napus* CC genome, reflects the occurrence of recent gene duplication events and close phylogenetic relationships, which is consistent with the results for *Arabidopsis*, soybean, and cotton UGTs.

The expansion of the UGT gene family is primarily due to WGD events. Tandemly duplicated UGT genes in *B. rapa* and *B. oleracea* suggest that chromosomal rearrangements took a part in the versatility of plant secondary metabolism, and the same results was observed in mustard family, where 45% and 48% of the glucosinolate UGT loci in *Arabidopsis* and *Aethionema* descend from tandem duplication.

All the duplicated gene pairs had a Ka/Ks ratio < 1, indicating that UGT genes might have preferentially conserved function and structure under selection pressure. The sixteen pairs of diverged duplication pairs of UGT genes between *B. rapa* and *B. oleracea* and 1 to 9 MYA indicate a recent divergence during *Brassica* triplication events 5–9 MYA.

The maximum number of UGTs retained in LF subgenome in all three *Brassica* species suggests that the fractionation is biased (Supplementary Table S3). The minimum number of UGTs in MF (MF1 and MF2) subgenomes reflected the round of gene loss in these subgenomes. It seems that LF experienced one round of gene loss in UGTs and retained more genes than MF1 and MF2, which experienced two rounds of gene loss. Some UGTs were not contained in all three subgenomes, suggesting that these UGTs evolved individually and later became a part of the genome. The maximum number of duplicated regions were observed in MF1 and MF2 UGTs in *Brassica*, suggesting that these genes remained highly conserved during subgenome fractionation and rounds of genome duplication (Fig. 5).

An increased number of intron-containing UGTs in *B. napus*, compared to *B. rapa* and *B. oleracea*, suggested that polyploidization increased the proportion of introns during the hybridization of genomes (Supplementary Table S4). The results are in line with those on cotton polyploidization, where duplicated genes were found to evolve independently after the polyploid formation. Conserved intron between (150–200 amino acids) was the most widespread and oldest intron observed in most members of the different phylogenetic groups in all three *Brassica* species. The same intron insertion was observed in z. mays, *P. persica*, *flax*, soybean, and cotton UGTs.

Most of the intron insertions were observed in phase 1, across all three compared *Brassica* gene structures, suggesting that the majority of conserved introns are ancient elements and that their phases remain stable (Supplementary Table S4). Intron size within each phylogenetic group appears to be variable (Table S4), suggesting that the intron size has been gene-specific during evolution.

The maximum expression of UGTs in callus, flower root, and silique suggested their active involvement in phytohormones, which are highly active in developing tissues (Supplementary Fig. S4A). The same results were observed in cotton and soybean, where the maximum expression of these genes was observed in developing seeds and fiber. The individual gene expression of each UGT in a particular tissue reflected their specific role in various plant parts. The maximum expression of UGTs at the senescence stage in *Arabidopsis* suggested their involvement in the biological ageing of plant tissues, and the results were supported by up-regulated UGT genes at the senescence stage in cotton.

To date, UGT genes have been well studied with respect to their functional role in the hypersensitive response against *P. syringae*, *F. graminearum* mycotoxin inactivation, DON resistance from *Fusarium* head blight, in tomato, *Arabidopsis*, wheat, and rice. The maximum number of downregulated UGTs genes in response to infection with *P. brassicae* at early and late infection stages suggested their possibly role in SA and JA crosstalk and glycosylation. A very few number of up-regulated UGT genes upon infection to *P. brassicae* suggested that these genes are also involved in some metabolite glycosylation, which is indirectly involved in pathogen resistance.

A diverse range of expression was observed in 118 UGTs of *Arabidopsis*, upon different phytohormone treatments. To date, several UGT genes have been functionally characterized as the glycoconjugates of phytohormones in *Arabidopsis*, for example UGT74D1, UGT74B1, UGT84B1 (IAA glycosylation), UGT78A2, UGT75D1, UGT71C5, UGT71B7, UGT71B8, UGT71B6 (ABA glycosylation), UGT75D1, UGT74E2, UGT71B8, UGT71B7 (IAA glycosylation), UGT73C5, UGT773C6 (brassinosteroids glycosylation), UGT78A1, UGT76C1, UGT76C2 (zeatin glycosylation), UGT77F1, UGT77F2, UGT73B3, UGT73B5 (SA glycosylation), and UGT76B1 (SA-JA crosstalk). Thus, we proposed that, in group L, UGTs for IAA, SA, and IBA glycosylation, in group E, UGTs for ABA glycosylation, group D UGTs for brassinosteroids and SA glycosylation, group H for zeatin glycosylation and SA-JA crosstalk in all three *Brassica* species.

The differentially up-regulated UGT73B3, UGT73B4, and UGT73B5 genes in response to all the studied pathogens suggest that they are the key genes regulated under all pathogen infection in *Arabidopsis* (Fig. 7). They belong to phylogenetic group D, the members of which preferably glycosylate the SA (pathogen responsive hormone) and...
In tomato, UGT73B3 and UGT73B5 have been functionally characterized against the *P. syringae* hypersensitive response, based on SA-dependent induction. In wheat, UGT73C5 has been successfully transformed from *Arabidopsis* to inactivate the deoxynivalenol mycotoxin against *Fusarium* head blight. Thus, we propose that the D group UGTs are key regulatory genes against pathogen response in all three *Brassica* species. The maximum up-regulation of UGT71C3, UGT74E2, and UGT78A1 in response to *A. brassicicola* and *B. grammis* also confirmed their involvement in IBA and zeatin glycosylation. Highly responsive UGT87A1 against *P. cucumerina* infection in *Arabidopsis* suggested the ABA glycosylation of this gene against the pathogen.

In *Arabidopsis*, UGT85U1 and UGT85V1 for salt and oxidative stress, UGT73B5 for oxidative stress, UGT84A1, A2, A3, and A4 for UV-B radiation stress, UGT85A5 for salt tolerance, UGT73B2 for oxidative stress, and UGT74E2 for water stress, have already been functionally characterized in *Arabidopsis*. Recently, a role is played by UGT73C1, UGT78D3, UGT79B2, and UGT90A1 in salt tolerance, UGT73B3, UGT73B5, UGT73C1, UGT74E2, and UGT79B1 in drought tolerance, UGT79B2, AT4G31780, UGT85A1, UGT85A2, UGT86A2, and UGT90A1 in heat tolerance, UGT71B1, UGT71B2, UGT71B7, UGT74D1, UGT76E1, UGT76F2, UGT78D1, UGT87A1, UGT88A1, UGT73B3, and UGT73B6 in oxidative stress response, UGT71B1, UGT71C1, UGT71C2, UGT71B1, UGT71D1, UGT72B2, UGT74D1, UGT74F2, UGT76E9, UGT84A2, and UGT84A4 in salt tolerance, and UGT77C1 and UGT78D1 in chilling resistance, in *Arabidopsis* and all three *Brassica* species.

Until now, few reports have been published about functional characterization of UGT genes against stress responsiveness in all three *Brassica* species. The availability of Arabidopsis data provides sufficient evidence about UGTs importance in plant physiology and a maximum homology of all three *Brassica* UGTs with *Arabidopsis* is another opportunity to validate this data in brassica species (Supplementary Fig. S1). Recently, a role is played by UGT73C1, UGT78D3, UGT79B2, and UGT90A1 in salt tolerance, UGT73B3, UGT73B5, UGT73C1, UGT74E2, and UGT79B1 in drought tolerance, UGT79B2, AT4G31780, UGT85A1, UGT85A2, UGT86A2, and UGT90A1 in heat tolerance, UGT71B1, UGT71B2, UGT71B7, UGT74D1, UGT76E1, UGT76F2, UGT78D1, UGT87A1, UGT88A1, UGT73B3, and UGT73B6 in oxidative stress response, UGT71B1, UGT71C1, UGT71C2, UGT71B1, UGT71D1, UGT72B2, UGT74D1, UGT74F2, UGT76E9, UGT84A2, and UGT84A4 in salt tolerance, and UGT77C1 and UGT78D1 in chilling resistance, in *Arabidopsis* and all three *Brassica* species.

Methods

Data resources used. One hundred and eighteen UGT sequences of *Arabidopsis* were retrieved from (http://www.p450.kvl.dk/UGT.shtml). Genomic, proteomic, and cDNA sequences, as well as the annotation data for *B. napus*, *B. oleracea*, and *B. rapa* was downloaded from BioMart Ensemble plants (https://plants.ensembl.org/index.html) and Uniprot (http://www.uniprot.org/). The Hidden Markov Model (HMMER) (http://www.hmmer.org/index.html) and Uniprot (http://www.uniprot.org/) were used to retrieve the genes containing UDPGT (PF00201.17) domain (stem rot resistance). The gene name, chromosomal location, % GC content, peptide length, and Fold change against *M. graminis* were downloaded from BioMart Ensemble Plants database. Gene ontology (metabolic process, integral components, and transferase activity) and enzyme class data were retrieved using the ID mapping tool in Uniprot software.

Identification of Putative UGTs. In the reference proteomes of all three *Brassica* species, UDPGT domain encoding genes were identified through a PHMMER profile corresponding to the PFAM 00201.17 domain, using HMMER web search restricted by taxonomy and significant cut off E- values (0.01 for sequence and 0.03 for hit). The selected protein sequences were screened through 44 amino acid-based conserved PSPG motifs, high quality sequences were aligned using the MUSCLE alignment tool in MEGA7 (http://www.megasoftware.net/). These quality sequences were used to construct the specific UGT profiles for all three *Brassica* species, using the hmmbuild module in the HMMER program. With these models, the final datasets of the UGT genes were identified from each *Brassica* proteome. The gene name, chromosomal location, % GC content, peptide length, and mass data were obtained from the Biomart Ensemble Plants database. Gene ontology (metabolic process, integral components, and transferase activity) and enzyme class data were retrieved using the ID mapping tool in Uniprot database. Amino acid composition of all the putative UGTs was retrieved using the data explorer tool in MEGA7 software.

Phylogenetic Analysis and Comparison. The downloaded sequences were aligned with MUSCLE using the MEGA7 software. Sequences that were too short, too divergent, or too long were removed from the input file after the initial alignment, and the remaining sequences were then re-aligned. The obtained alignment file contained only those sequences similar to the desired PSPG motif. Phylogenetic analysis was performed using the Neighbor-joining statistical method with 1000 bootstrap replicates in MEGA7. A 100% data coverage was used to construct the phylogeny. The phylogenetic tree was visualized using the iTOL website (http://itol.embl.de/). To compare the phylogenetic groups of the putative UGTs in all three *Brassica* species, we collected the published data on the number of putative UGTs and the number of phylogenetic groups in *Arabidopsis*.

KEGG Pathway Mapping and Go Annotation. Gene ontology and KEGG pathway mapping of all the putative UGTs in the three *Brassica* species were conducted using the Blast2Go tool (https://www.blast2go.com/). Individual UGTs from each phylogenetic group in all three *Brassica* species were blasted against *Arabidopsis* in the NCBI database following with mapping and annotation. This analysis provided us the sequence similarity with *Arabidopsis* and the Go annotation (molecular function, and biological process) for each group and gene. KEGG pathway mapping based on phylogenetic groups provided us with enzyme-specific pathway information, EC code, and the responsible genes in each group and each UGT gene of all three *Brassica* species.

Chromosomal distribution, Duplication, and Divergence. The physical location of each UGT on the chromosomes was retrieved using the start and stop positions of the genes taken from BioMart. Mapchart 2.2 was used to visualize the UGT gene distribution on each chromosome in all three *Brassica* species. A gene cluster was defined as two or more copies located in a chromosomal region of length <200 kb\(^{29}\). A lot is known about the dominant pattern of UGT duplication by segmental duplication and WGD in maize and peach\(^{13,14}\). To detect the tandem duplication pattern of the putative UGTs, we used the Plant Tandem Duplicated Genes database (http://ocri-genomics.org/PTGBase/). Tandem repeats of each gene were retrieved using the Gene ID as the query in that specific species cluster. The cluster name and its graphical representation was recorded and saved.

To estimate the divergence of the duplicated UGT genes between *B. rapa* (AA) and *B. oleracea* (CC) genomes, the duplicated pairs were detected in the Plant gene duplication database (http://chibba.agtec.uga.edu/duplication/) using the locus IDs as a search tool and the Ka (non-synonymous)/Ks (synonymous rate) values were recorded for each duplicated pair in a 100-kb display range. The R-value was taken as 1.5 \(\times 10^{-8}\) synonymous substitutions per site per year in the case of dicotyledonous plants for MYA calculation\(^{30}\).

Gene Synteny and subgenomic Fractionation of the putative UGTs. Syntenic gene analysis for the three *Brassica* species and *Arabidopsis* was conducted using the webtool, syntenic gene, in the Brad database (http://brassicadb.org/brad/). All the four species were selected and the gene IDs of *B. rapa* were used to retrieve information such as TPCK (Chromosome of translocation Proto-Calepineae Karyotype, ancestral genome of *Brassica* species), block (A, B, C, etc), LF, MF1, MF2, and gene IDs\(^{38}\). Graphical representation was achieved using the Circoletto webtool (http://tools.bat.inspire.fr/circoletto/) by providing the FASTA sequences in each block for all three *Brassica* species and *Arabidopsis*.

Exon/Intron organization of the putative UGTs in *Brassica*. The exon/intron organization for each phylogenetic group was illustrated using the Gene structure display server (GSDS) program (http://gsds.cbi.pku.edu.cn/), by aligning the coding and genomic sequences for each *Brassica* species. Exon/intron maps were calculated based on structure, phase, length, and number. A UGT intron map was constructed in accordance with a previously established method\(^{12,16,17}\). The splice sites of the intron-containing UGTs were mapped on all aligned sequences of intron-containing UGT peptides using the PIECE web tool (https://wheat.pw.usda.gov/PIECE/). Intron distribution graph was built for each phylogenetic group on the basis of the introns contained in each group.

Transcriptome analysis for tissue-specific expression. To check tissue-specific expression of the putative UGTs in all three *Brassica* species, the RNA-Seq data (GSE43245) of *B. rapa* was selected and the expression of the putative UGTs in different tissues, such as callus, flower, leaves, roots, silique, and stem, was obtained and analyzed according to the phylogenetic groups. A heatmap of the data was generated using the distance function (Euclidean) and hierarchical clustering (Average) on the Heatmapper website (http://heatmapper.ca/). To compare tissue-specific expression data of *B. rapa*, we analyzed the RNA-Seq and microarray data for expression of 118 UGTs across 10 developmental stages and 105 anatomical parts, using the Genevestigator database.

Transcriptome analysis against *Plasmodiophora brassicae*. To infer the role of the putative UGTs against the obligate biotrophic protist, *P. brassicae*, in *B. rapa* and *Arabidopsis*, RNA seq data were obtained at two timepoints: an early timepoint, at which the pathogen had colonized the root, and a later timepoint, at which more than 60% of the host root cells were colonized and the root morphology was drastically altered\(^{48}\). In *Arabidopsis*, RNA-Seq data at early stages of infection and within a relatively short period of 24 and 48 h post-inoculation (hpi) were retrieved from a previous study\(^{48}\). The retrieved RNA-seq data against *P. brassicae* in *Arabidopsis* was compared with the obtained RNA-seq data from near-isogenic lines carrying clubroot-resistant and susceptible alleles in *B. rapa* in response to *P. brassicae* during the early infection stages\(^{48}\). Heatmaps were generated to understand the graphical representation of gene expression.

Differential expression of Phytohormone Glycosylation. The glycosylation of phytohormones is an essential mechanism to control the level of active hormones in a cell. To check the expression of individual UGTs against auxins, cytokinins, SA, and JA, microarray datasets were obtained from GENEVESTIGATOR\(^{30}\) (https://genevestigator.com/gv/) for *Arabidopsis*, and the results were further confirmed using *B. rapa* RNA-seq data (Only MeJA data available). Genes were declared to be differentially expressed if they show a fold-change of at least 1.5 and also satisfied \(p < 0.05\) after adjustment for multiple testing\(^{22,23}\). Thus, we generated the heatmaps with fold-change value of 1.5 and \(p < 0.05\) against all the treatments. Down- and up-regulated expressed genes were shown to propose the functional characterization of UGTs for phytohormone glycosylation.

Differential expression against Biotic and Abiotic stresses in *Arabidopsis*. To contribute to the existing knowledge for future studies and examine the link of glycosylation phenomena with various biological processes in the plants, we checked the differential expression of these genes against various biotic and abiotic stress treatments. By using the fold-change value of 1.5 and \(p < 0.05\), we identified the differentially expressed genes against *A. brassicicola*, *B. graminis*, *E. coli*, *G. cichoracearum*, *G. orontii*, *H. arabidopsidis*, *P. cucumerina*, and the results were further confirmed using *B. rapa* RNA-seq data (Only MeJA data available). Genes were declared to be differentially expressed if they show a fold-change of at least 1.5 and also satisfied \(p < 0.05\) after adjustment for multiple testing\(^{22,23}\). Thus, we generated the heatmaps with fold-change value of 1.5 and \(p < 0.05\) against all the treatments. Down- and up-regulated expressed genes were shown to propose the functional characterization of UGTs for phytohormone glycosylation.
P. syringae, R. solani, and X campesistris pathogens, as well as cold, drought, heat, hypoxia, osmotic, salt, and wounding stresses. Heatmaps of the down- and up-regulated UGTs were generated using Genevestigator.

Differential expression against Biotic and Abiotic stresses in B. oleracea and B. napus. The following SRA datasets PRJNA22725879 (calcium- limited seedlings expression in 102043 and 107140 genotypes) and SRP04079680 (leaf, flower, root and pod expression) were obtained and analyzed by Galaxy (https://usegalaxy.org/) RNA-seq analysis webtool in B. oleracea for differential gene expression in tissues and calcium limited plants. The UGTs involvement against abiotic stresses (drought and salt) and biotic stresses (blackleg and stem rot) in polyploid B. napus was evaluated by analyzing the following SRA datasets i.e. SRP05146183 (drought), SRP02857552 (salinity), GSE7772383 (blackleg) and GSE8154584 (stem rot). Hence, we generated the individual heatmaps in B. oleracea and B. napus using the fold-change value of 1.5 and p < 0.05.

Data Availability statement. All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

1. Sharma, A., Li, X. & Lim, Y. P. Comparative genomics of Brassicaceae crops. *Breed Sci* 64, 3–13 (2014).
2. Schmidt, R. & bancroft, I. Genetics and genomics of the Brassicaceae. Plant genetics and genomics: crops and models. *Springer* 9 (2011).
3. Bowles, D., Lim, E. K., Poppenberger, B. & Vaistij, F. E. Glycosyltransferases of lipophilic small molecules. *Annu Rev Plant Biol* 57, 567–597 (2006).
4. Jones, P. & Vogt, T. Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. *Planta* 213, 164–174 (2001).
5. Vogt, T. & Jones, P. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. *Trends Plant Sci* 5, 380–386 (2000).
6. Coutinho, P. M., Deleyre, E., Davies, G. J. & Henriussat, B. An evolving hierarchical family classification for glycosyltransferases. *J Mol Biol* 328, 307–317 (2003).
7. Hughes, J. & Hughes, M. A. Multiple secondary plant product UDP-glucose glycosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons. *DNA Seq.* 5, 41–49 (1994).
8. Lorenc-Kukula, K. et al. Glucosyltransferase: the gene arrangement and enzyme function. *Cell Mol Biol Lett* 9, 935–946 (2004).
9. Offen, W. et al. Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. *Embo J* 25, 1396–1405 (2006).
10. Li, Y., Baldauf, S., Lim, E. K. & Bowles, D. J. Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. *J Biol Chem* 276, 4338–4343 (2001).
11. Yu, J., Hu, E., Dossas, K., Wang, Z. & Ke, T. Genome-wide analysis of UDP-glycosyltransferase super family in Brassica rapa and Brassica oleracea reveals its evolutionary history and functional characterization. *BMC Genomics* 18, 474 (2017).
12. Barvkar, V. T., Pardeshi, V. C., Kale, S. M., Kadoo, N. Y. & Gupta, V. S. Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns. *BMC Genomics* 13, 175 (2012).
13. Caputi, L., Malmoj, N., Goremykin, Y., Nikiforova, S. & Martens, S. A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land. *Plant J* 69, 1030–1042 (2012).
14. Huang, J. et al. Genome-wide analysis of the family 1 glycosyltransferases in cotton. *Mol Genet Genomics* 290, 1805–1818 (2015).
15. Li, Y. et al. Genome-wide identification and phylogenetic analysis of Family-1 UDP glycosyltransferases in maize (Zea mays). *Planta* 239, 1265–1279 (2014).
16. Mamoon Rehman, H. et al. Genome-wide analysis of Family 1 UDP glycosyltransferases in soybean confirms their abundance and varied expression during seed development. *J Plant Physiol.* 206, 87–97 (2016).
17. Wu, B. et al. Genome-Wide Identification, Expression Patterns, and Functional Analysis of UDP Glycosyltransferase Family in Peach (Prunus persica L. Batsch). *Front Plant Sci* 8, 389 (2017).
18. Campbell, J. A., Davies, G. J., Bulone, V. & Henriussat, B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. *Biochem J* 326(Pt 3), 929–939 (1997).
19. Ross, J., Li, Y., Lim, E. & Bowles, D. J. Higher plant glycosyltransferases. *Gene Bio* 2, Reviews 3004 (2001).
20. Yonekura-Sakakibara, K. & Hanada, K. An evolutionary view of functional diversity in family 1 glycosyltransferases. *Plant J* 66, 182–193 (2011).
21. Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. *Nucleic Acids Res* 37, D233–8 (2009).
22. Park, B. H., Karpintets, T. V., Syed, M. H., Leuze, M. R. & Uberbacher, E. C. CAZymes Analysis Toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. *Glycobiology* 20, 1574–1584 (2010).
23. Le Roy, I., Huss, B., Creach, A., Hawkins, S. & Neutelings, G. Glycosylation Is a Major Regulator of Phenylpropanoid Availability and Biological Activity in Plants. *Front Plant Sci* 7, 735 (2016).
24. Langlois-Meurinne, M., Gachon, C. M. M. & Saindrenan, P. Pathogen-responsive expression of glycosyltransferase genes UG733B3 and UG773B5 is necessary for resistance to Pseudomonas syringae pv tomato in Arabidopsis. *Plant Physiol*, https://doi.org/10.1104/pp.105.067223 (2005).
25. von Saint Paul, V. et al. The Arabidopsis glucosyltransferase UGT77B1 conjugates isocitic acid and modulates plant defense and senescence. *Plant Cell* 23, 4124–4145 (2011).
26. Song, J. T. et al. Overexpression of AtSGT1, an Arabidopsis salicylic acid glucosyltransferase, leads to increased susceptibility to Pseudomonas syringae. *Phytochemistry* 69, 1128–1134 (2008).
27. Boachon, B. et al. Role of two UDP-Glycosyltransferases from the L group of arabidopsis in resistance against pseudomonas syringae. *Eur J Plant Pathol.* 139, 707–720 (2014).
28. George Thompson, A. M., Iancu, C. V., Neet, K. E., Dean, J. V. & Chase, J. Differences in salicylic acid glucose conjugations by UGT77B1 and UGT74F2 in Arabidopsis thaliana. *Nat. Sci. Reports* 7, 46629 (2017).
29. Manoharan, R. K., Shannugam, A., Hwang, I., Park, J.-I. & Nou, I.-S. Expression of salicylic acid-related genes in Brassica oleracea var. capitata during Plasmodiophora brassicae infection. *Genome* 59, 379–391 (2016).
30. Chong, J. et al. Downregulation of a pathogen-responsive tobacco UDP-Glc:phenylpropanoid glucosyltransferase reduces scopoletin glucoside accumulation, enhances oxidative stress, and weakens virus resistance. *Plant Cell* 14, 1093–1107 (2002).
31. Matros, A. & Mock, H. P. Ecopic expression of a UDP-glc:phenylpropanoid glucosyltransferase leads to increased resistance of transgenic tobacco plants against infection with Potato Virus Y. *Plant Cell Physiol* 45, 1185–1193 (2004).
32. König, S. et al. Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum. *New Phytol* 202, 823–837 (2014).
33. Ha, X., Koopmann, B. & von Tiedemann, A. Wheat Blast and Fusarium Head Blight Display Contrasting Interaction Patterns on Ears of Wheat Genotypes Differing in Resistance. *Phytopathology* **106**, 270–281 (2016).
34. Poppenberger, B. et al. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. *J Biol Chem* **278**, 47905–47914 (2003).
35. Hettwer, K. et al. Dynamic metabolic changes in seeds and seedlings of Brassica napus (oileseed rape) suppressing UGT84A9 reveal plasticity and molecular regulation of the phenylpropanoid pathway. *Phytochemistry* **124**, 46–57 (2016).
36. Ahrazem, O. et al. Ectopic expression of a stress-inducible glucosyltransferase from *S. cerevisiae* enhances salt and oxidative stress tolerance in Arabidopsis while alters root anchor formation. *Plant Sci* **234**, 60–73 (2015).
37. Sun, Y. G. et al. Ectopic expression of Arabidopsis glucosyltransferase UGT85A5 enhances salt stress tolerance in tobacco. *PLoS One* **8**, e59924 (2013).
38. Tognetti, V. B. et al. Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. *Plant Cell* **22**, 2660–2679 (2010).
39. Vanderauwera, S. et al. Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. *Plant Physiol* **139**, 806–821 (2005).
40. Hajishambah, S., Khuzan, J. & Geuns, J. Gene transcription and steviol glycoside accumulation in Stevia rebaudiana under polyethylene glycol-induced drought stress in greenhouse cultivation. *FEBS Open Bio* 6, 937–944 (2016).
41. Gilbert, M. T. et al. A transcript profiling approach reveals an asbiscic acid-specific glucosyltransferase (UGT73C14) induced in developing fiber of Lignot lintless-2 mutant of cotton (Gossypium hirsutum L.). *PLoS One* **8**, e75268 (2013).
42. Liu, Z. et al. UDP-glucosyltransferase UGT71C5, a major glucosyltransferase, mediates abscisic acid homeostasis in Arabidopsis. *Plant Physiol* **167**, 1659–1670 (2015).
43. Priest, D. M., Jackson, R. G., Ashford, D. A., Abrams, S. R. & Bowles, D. J. The use of abscisic acid analogues to analyse the substrate selectivity of UGT71B6, a UDP-glucosyltransferase of Arabidopsis thaliana. *FEBS Lett* **579**, 4454–4458 (2005).
44. Zhang, G. Z. et al. Ectopic expression of UGT75D1, a glucosyltransferase preferring indole-3-butyric acid, modulates cotyledon development and stress tolerance in seed germination of Arabidopsis thaliana. *Plant Mol Biol* **90**, 77–93 (2016).
45. Song, C. et al. Functional Characterization and Substrate Promiscuity of UGT71I1 Glucosyltransferases from Strawberry (Fragaria x ananassa). *Plant Cell Physiol* **56**, 2478–2493 (2015).
46. Kwon, K. et al. Isolation and functional characterization of BrUGT encoding a UDP-glucosyltransferase from Chinese cabbage (Brassica rapa). *J. Plant Biotechnol* **39**, 212–218 (2012).
47. Cheng, F., Wu, J. & Wang, X. Genome triplication drove the diversification of Brassica plants. *Hortic. Res.* 1, 14024 (2014).
48. Zhao, Y. et al. Transcriptome Analysis of Arabidopsis thaliana in Response to Plasmopodia brassicae during EarlyInfection. *Front. Microbiol.* **8**, 673 (2017).
49. Chen, T. et al. Arabidopsis Mutant bik1 Exhibits Strong Resistance to Plasmopodia brassicae. *Front Physiol* **7**, 402 (2016).
50. Bonisch, F. et al. Activity-based profiling of a physiologic aglycone library reveals sugar acceptor promiscuity of family 1 UDP-glucosyltransferases from grape. *Plant Physiol* **166**, 23–39 (2014).
51. Rehman, H. M. et al. Genome-wide analysis of Family-1 UDP-glucosyltransferases in soybean confirms their abundance and varied expression during seed development. *J. Plant Physiol.* **206**, 87–96 (2017).
52. Mierziak, J., Kostyn, K. & Kulma, A. Flavonoids as important molecules of plant interactions with the environment. *Molecules* **19**, 16240–16265 (2014).
53. Li, P. et al. The Arabidopsis UGT87A2, a stress-inducible family 1 glucosyltransferase, is involved in the plant adaptation to abiotic stresses. *Plant Physiol* **159**, 416–432 (2017).
54. Palaniyandi, S. A., Chung, G., Kim, S. H. & Yang, S. H. Molecular cloning and characterization of the ABA-specific glucosyltransferase gene from bean (Phaseolus vulgaris L.). *J. Plant Physiol.* **178**, 1–9 (2015).
55. Hopfer, J. A., Lyons, E., Edger, P. P., Chris Pires, J. & Eric Schranz, M. Whole genome and tandem duplicate retention facilitated glucosinolate pathway diversification in the mustard family. *Genome Biol Evol* 5, 2155–2173 (2013).
56. Nekrutken, A., Makova, K. D. & Li, W. H. The K(A)/K(S) ratio test for assessing the protein-coding potential of genomic regions: an empirical and simulation study. *PLoS One* **20**, 1237–1246 (2015).
57. Michlmayr, H. et al. Biochemical Characterization of a Recombinant U1D6-glucosyltransferase from Rice and Enzymatic Production of Deoxynivalenol-3-O-β-D-glucoside. *Toxins (Basel)*, 7, 2685 (2015).
58. Poppenberger, B. et al. The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. *Proc. Natl Acad. Sci. USA* **102**, 15253–15258 (2005).
59. Tanaka, K. et al. UGT74D1 catalyzes the glucosylation of 2-oxindole-3-acetic acid in the auxin metabolic pathway in Arabidopsis. *Plant Cell Physiol* **55**, 218–228 (2014).
60. Grubb, C. D. et al. Comparative analysis of Arabidopsis UGT74 glucosyltransferases reveals a special role of UGT74C1 in glucosinolate biosynthesis. *Plant J.* **79**, 92–105 (2014).
61. Dong, T. et al. Abscisic acid uridine diphosphate glucosyltransferases play a crucial role in abscisic acid homeostasis in Arabidopsis. *Plant Physiol* **165**, 287–289 (2014).
62. Jackson, R. G. et al. Identification, and biochemical characterization of an Arabidopsis indole-3-acetic acid glucosyltransferase. *J Biol Chem* **276**, 4350–4356 (2001).
63. Sun, Y. G. et al. Ectopic Expression of Arabidopsis Glucosyltransferase UGT85A5 Enhances Salt Stress Tolerance in Tobacco. *PLoS One*, https://doi.org/10.1371/journal.pone.0059924 (2013).
64. Husar, S. et al. Overexpression of the UGT73C6 alters brassinosteroid glucoside formation in Arabidopsis thaliana. *BMC Plant Biol* **11**, 51 (2011).
65. Hou, B., Lim, E. K., Higgins, G. S. & Bowles, D. J. N-glucosylation of cytokinins by glucosyltransferases of Arabidopsis thaliana. *J Biol Chem* **279**, 47822–47832 (2004).
66. Mazel, A. & Levine, A. Induction of glucosyltransferase transcription and activity during superoxide-dependent cell death in Arabidopsis plants. *Plant Physiol. Biochem.* **40**, 133–140 (2002).
67. Klein, A. F. & Sattely, E. S. Biosynthesis of cabbage phytoalexins from indole glucosinolates. *Proceedings of the National Academy of Sciences of the United States of America* **114**, 1910–1915, https://doi.org/10.1073/pnas.1615625114 (2017).
68. Zhang, Y. et al. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea. *PLoS ONE* **10**, 1–17 (2015).
75. Voorrips, R. E. MapChart: software for the graphical presentation of linkage maps and QTLs. *J Hered* **93**, 77–78 (2002).
76. Koch, M. A., Haubold, B. & Mitchell-Olds, T. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). *Mol Biol Evol* **17**, 1483–1498 (2000).
77. Peart, M. J. et al. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. *Proc Natl Acad Sci USA* **102**, 5697–5702 (2005).
78. Raoul, A. et al. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. *Cell Stem Cell* **3**, 109–118 (2008).
79. Kim, H. A. et al. High-Throughput Sequencing and De Novo Assembly of Brassica oleracea var. Capitata L. for Transcriptome Analysis. *PLOS ONE* **9**, 1–10 (2014).
80. Parkin, I. A. P. et al. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. *Genome Biology* **15**, R77 (2014).
81. Wang, D. et al. Transcriptomic basis for drought-resistance in Brassica napus L. *Sci Rep* **7**, https://doi.org/10.1038/srep40532 (2017).
82. Yong, H.-Y. et al. Comparative Transcriptome Analysis of Leaves and Roots in Response to Sudden Increase in Salinity in Brassica napus by RNA-seq. *BioMed research international* **2014**, 19, https://doi.org/10.1155/2014/467395 (2014).
83. Becker, M. G. et al. Transcriptome analysis of the *Brassica napus*-Leptosphaeria maculans pathosystem identifies receptor, signaling and structural genes underlying plant resistance. *The Plant journal: for cell and molecular biology* **90**, 573–586, https://doi.org/10.1111/tpj.13514 (2017).
84. Girard, I. J. et al. RNA sequencing of *Brassica napus* reveals cellular redox control of Sclerotinia infection. *J Exp Bot* **68**, 5079–5091, https://doi.org/10.1093/jxb/erx338 (2017).

Acknowledgements
This study was supported by the Next-Generation Biogreen 21 Program (Project No.: PJ01116603) and by the Rural Program for Agricultural Science and Technology Development (Project No.: PJ01247202), Rural Development Administration, Korea.

Author Contributions
H.M.R., M.A.N., and S.H.Y. laid out the study. H.M.R. and Z.H.S., M.Q.A. retrieved the data and S.I.L. prepared figures and tables. H.M.R. wrote the manuscript. G.C., J.L.M., and S.H.Y. supervised the study and all authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-19535-3.

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018