Phase-transfer catalyzed, energy-efficient and facile synthesis of 5-arylidene-1,3-thiazolidine-2,4-diones was developed. Three independent variables (temperature, bases and phase-transfer catalyst (PTC)) were screened through one-factor-at-a time (OFAT) study. The optimum reaction conditions suggested by the OFAT analysis were the use of tetrabutylammonium bromide (8 mol%) and potassium carbonate (1 mmol) for the reaction at 100°C. The nitrogen of PTC stabilizes carbonyl groups of thiazolidine-2,4-dione (TZD). The active methylene hydrogen of TZD forms potassium salt with potassium carbonate and generates 5-arylidene-1,3-thiazolidine-2,4-diones (1–16) through nucleophilic attack on the carbonyl carbon of arylaldehydes. The prominent advantages of this new process are economic viability, shorter reaction time (15 min), simple product isolation (non-chromatographic method), good to excellent yields (78–96%) and solvent-free conditions.

Keywords: phase-transfer catalyst; Knoevenagel condensation; 5-arylidene-1,3-thiazolidine-2,4-dione; OFAT study; green synthesis

*Corresponding author. Email: anandurai78@gmail.com

This article makes reference to supplementary material available on the publisher’s website at http://dx.doi.org/10.1080/17415993.2014.970555.
1. Introduction

Design of benign organic transformations to reduce, eliminate and replace hazardous resources (energy and solvents) is a major concern of green chemistry.[1] Knoevenagel condensation generates carbon–carbon (C–C) bonds and plays a pivotal role in synthetic transformations of medicinal chemistry research.[2] Knoevenagel condensation is useful in the construction of clinical candidates [3] such as pioglitazone, rosiglitazone and englitazone (PPARγ agonists), epalrestat (aldose reductase inhibitor), nifedipine (calcium channel blocker), atorvastatin (HMG-CoA reductase inhibitor), entacapone (COMT inhibitor), sulindac (anti-inflammatory agent) and lumefantrin (antimalarial agent).

The Knoevenagel condensation of the active methylene group of thiazolidinone (1,3-thiazolidine-2,4-dione/rhodanine) and aryl aldehydes generates 5-aryldene-thiazolidinones. These scaffolds exhibited antidiabetic,[4] antimicrobial [5] and anti-cancer [6] properties. The literature demonstrates the aldose reductase,[7] β-lactamase,[8] hepatitis C virus protease,[9] JNK stimulatory phosphatase 1 (JSP 1), [10] tyrosine phosphatase,[11] protein mannosyl transferase 1 (PMT1) [12] and enoyl-acyl carrier protein (enoyl-ACP) reductase [13] inhibitory potentials of 5-arylidene-thiazolidinones. The representative analogues are under clinical development for their inhibitory potential against phospholipase A2, cyclooxygenase-2 and 5-lipoxygenase.[14] The agonistic activity of these molecules on peroxisome proliferator-activated receptor gamma (PPARγ) and free fatty acid receptors (FFAR1 and FFAR2) is well appreciated.[15,16]

These prominent properties prompted medicinal chemists to develop a facile and efficient process for the generation of 5-arylidene-1,3-thiazolidine-2,4-diones. Several bases such as piperidine,[17] piperidinium acetate,[18] sodium acetate [19] and ammonium acetate [20] were utilized to accelerate the Knoevenagel condensation. The catalytic function of urea and thiourea,[16] benzoic acid,[21] polyethylene glycol-300,[22] potash alum,[23] L-proline,[23] boric acid,[23] oxalic acid,[23] ionic liquids,[24] Bakers yeast,[25] Mg-doped Ce–Zr [26] and morpholine [27] were utilized in the improved syntheses.

Microwave,[28] ultrasonication [29] and grinding-assisted methods [30] were also utilized to improve the yield of 5-arylidene-1,3-thiazolidine-2,4-diones. However, these methods are associated with limitations, such as low yield, prolonged heating, toxic residues, carcinogenic amines, expensive catalysts and are of important environmental concern. Hence, an efficient and versatile procedure (mild reaction conditions) to construct 5-arylidene-1,3-thiazolidine-2,4-diones is in great demand. Phase-transfer catalysts (PTCs) are one of the most powerful greener tools in fine chemical synthesis.[31]

In light of the above-mentioned facts, the effect of eight PTCs in the synthesis of 5-arylidene-1,3-thiazolidine-2,4-diones was investigated and were found to be effective promoters.

2. Results and discussion

In continuation of our research interest on PTCs,[32,33] herein we report that the PTC promoted efficient synthesis of 5-arylidene-1,3-thiazolidine-2,4-diones (Scheme 1) through Knoevenagel condensation. The condensation of anisaldehyde and 2,4-thiazolidinedione generated 5-(4-methoxybenzylidene)-1,3-thiazolidine-2,4-dione (compound 1) and was selected as our model reaction. The effects of temperature, bases and catalysts (PTCs) in the model reaction were examined. The reaction at room temperature with tetrabutylammonium bromide (TBAB) and piperidine gave trace yields (detected in TLC) and the reaction at 60°C produced 38% yield (requires purification). However, the reaction at 100°C gave higher yield (52%) of compound 1.
Table 1. TBAB catalyzed condensation of 4-methoxybenzaldehyde and thiazolidine-2,4-dione using different bases.

Entry	Bases	Concentration (mmol)	Yield (%)
1	Piperidine	2	52
2	Potassium carbonate	2	69
3	Potassium carbonate	1.5	81
4	Potassium carbonate	1	91
5	Potassium carbonate	0.5	43
6	Tyrosine	2	Trace*
7	Ammonium acetate	2	47
8	Potassium hydroxide	2	58
9	Potassium phosphate	2	Trace*
7	Triethyl amine	2	26

Note: Reaction conditions: 4-methoxybenzaldehyde (5 mmol), thiazolidine-2,4-dione (5 mmol), TBAB (10 mol%), heated with stirring at 100°C for 15 min; * = detected in TLC.

At higher temperatures, collision of molecules is appreciable due to their substantial kinetic energy and enhances the reaction yield.

The effect of seven different bases, namely piperidine, potassium carbonate, tyrosine, ammonium acetate, potassium hydroxide, potassium phosphate and triethyl amine at 2 mmol concentration was studied. In the presence of potassium carbonate, the reaction gave a good yield (69%, Table 1, entry 2) of compound 1. The reaction with potassium hydroxide, piperidine and ammonium acetate produced fairly good yields (58%, 52% and 47%, respectively), while triethyl amine produced a very poor yield (26%). However, tyrosine and potassium phosphate gave only trace yields. Potassium carbonate was chosen as the suitable base from this analysis for further investigation and it was examined at four different concentrations (0.5, 1, 1.5 and 2 mmol). The reaction with 1 mmol concentration of potassium carbonate gave excellent yield (91%, Table 1, entry 4).

The catalytic potential of eight PTCs, namely TBAB, benzyltriethylammonium chloride (BTEAC), benzyltrimethylammonium chloride (BTMAC), tetrapropylammonium bromide
Table 2. Condensation of 4-methoxybenzadehyde and thiazolidine-2,4-dione using different PTCs.

Entry	Catalysts	Concentration (mol%)	Yield (%)
1	TBAB	10	91
2	TBAB	12	72
3	TBAB	8	96
4	TBAB	6	69
5	BTEAC	10	51
6	BTMAC	10	45
7	TPAB	10	49
8	CTAB	10	21
9	TBAI	10	53
10	TPEAC	10	48
11	TEAB	10	37

Note: Reaction conditions: 4-methoxybenzadehyde (5 mmol), thiazolidine-2,4-dione (5 mmol), potassium carbonate (10 mol%), heated with stirring at 100°C for 15 min.

(TPAB), cetyltrimethylammonium bromide (CTAB), tetrabutylammonium iodide (TBAI), triphenylethylammonium chloride (TPEAC) and tetaethylammonium bromide (TEAB) at 10 mol% was investigated next. The reaction with potassium carbonate (1 mmol) and TBAB (10 mol%) exhibited the highest catalytic potential (91%, Table 2, entry 1). This analysis permitted the ranking of catalysts as TBAB > TBAI > BTEAC > TPAB > TPEAC > TEAB > BTMAC > CTAB. Higher catalytic potential of TBAB, TBAI and BTEAC reactions can be correlated with their substrate extraction potential (TBAB > TBAI > BTEAC). The reason for the lower catalytic function of CTAB is the high aliphatic load.[34,35] The catalytic potential of TBAB at four different concentrations (6, 8, 10 and 12 mol%) was explored further. TBAB at 8 mol% in the presence of potassium carbonate (1 mmol) produced a very high yield (96%, Table 2, entry 3).

Scheme 2. Phase transfer catalysis mechanism involved between the two phases in the Knoevenagel condensation [14, 26].
Further increase in the catalyst concentration did not produce a significant effect on the yield enhancement.

The synthesis of 5-(4-hydroxybenzylidene)-1,3-thiazolidine-2,4-dione (2) under the heterogeneous system (n-butanol and water, 1:1) was performed in order to investigate the substrate extraction potential of PTC. PTC shuttles between two phases and activates the carbonyl groups of TZD and aryl aldehydes (Scheme 2). It combines with the active methylene group of TZD present in the aqueous phase and transfers it into the organic phase (seat of reaction). The migrated PTC-TZD undergoes nucleophilic attack with aryl aldehydes and produce 5-arylidene-1,3-thiazolidine-2,4-dione.[14,26] This investigation produced a similar trend to that of the homogenous reaction (Table 3).

The available literature describes only small-scale synthesis. Hence, the condensation of multifold concentrations (1, 2, 5 and 10 folds) of 4-hydroxybenzaldehyde and thiazolidine-2,4-dione under the optimized conditions was carried out to test the utility of the reaction for process development programs. The trends indicated linearity between 2-fold and 10-fold concentration increases (Table 4). The yields are appreciable and high (> 69%). The R^2 values of curvelinear trend (0.9177) and log scale (0.9991) are indicative of the significance of prediction. Therefore, the present work demonstrates that the optimized conditions can be applied to multifold reaction.

Sixteen 5-arylidene-1,3-thiazolidine-2,4-dione analogues were prepared using the optimized conditions. The yields of 5-arylidene-1,3-thiazolidine-2,4-diones were found to be in the range of 78–96% (Table 5). The synthesis of 5-arylidene-1,3-thiazolidine-2,4-diones was compared with methods reported in the literature (Table 6). All catalysts gave very good yields (> 82); however, a few have distinct disadvantages. The major limiting factors are large reaction time and laborious workup. The toxicological studies revealed the genotoxic nature of urea and thiourea, which also produce dermatitis.[36,37] Ionic liquids and PEG300 are carcinogenic, while cerrium

Entry	Catalysts (8 mol%)	Yield (%)
1	TTBAB	92
2	BTEAC	78
3	BTMAC	71
4	TPAB	74
5	CTAB	29
6	TBAI	85
7	TPEAC	73
8	TEAB	70

Note: Reaction conditions: 4-methoxybenzaldehyde (5 mmol), thiazolidine-2,4-dione (5 mmol), potassium carbonate (10 mol%), refluxed with stirring for 60 min.

Entry	Number of folds	Yield (%)
1	1	91
2	2	84
3	5	76
4	10	69

Note: Reaction conditions: 4-hydroxybenzaldehyde (5 mmol), thiazolidine-2,4-dione (5 mmol), TBAB (8 mol%), potassium carbonate (1 mmol), heated with stirring at 100°C for 15 min.
Table 5. TBAB catalyzed synthesis of 5-arylidene-1,3-thiazolidine-2,4-diones (1-16).

Compound code	Ar	Rf	Yield (%)	Melting range (°C)
1	4-OCH₃C₆H₄	0.70	96	214–216
2	4-OH₂C₆H₄	0.68	91	280–281
3	C₆H₅	0.60	93	239–240
4	4-Cl–C₆H₄	0.47	94	222–224
5	4-F-C₆H₄	0.64	90	216–217
6	4-N,N–CH₃–C₆H₄	0.66	92	274–276
7	2,4-Cl–C₆H₃	0.73	81	219–220
8	2-OHC₆H₄	0.64	95	276–277
9	4-OH, 3-OCH₃–C₆H₃	0.71	83	194–195
10	2-Furyl	0.49	78	234–236
11	2-Thienyl	0.72	87	239
12	4-NO₂–C₆H₄	0.65	86	281–283
13	3-OHC₆H₄	0.76	89	246–248
14	3,4-OCH₃–C₆H₃	0.70	84	234–236
15	5-CH₃–Furfuryl	0.70	86	228–230
16	2,5-OCH₃–C₆H₃	0.81	92	210–212

Table 6. Comparison of proposed and literature methods for the synthesis of 5-(4-methoxybenzylidene-1,3-thiazolidine-2,4-dione (compound 1).

Catalyst (concentration)	TBAB (8 mol%) + K₂CO₃	Urea/thiourea (10 mol%)	PEG300 (5 mL)	Alum (10 mol%)	Bmim[Cl] (0.5 mol)	Bakers yeast (2 g)	Mg-doped Ce–Zr (200 mg)
Solvent	Solvent free	Solvent free	Water (10 mL)	Solvent free	Ethanol (30 mL)	Ethanol + water (20 mL)	
Time (min)	15	10	180	90	12	2400	90
Yield (%)	96	93	82	88	94	50	92
Reference Comments	Present Practicability, viable	Ref. [16]	Ref. [22]	Ref. [23]	Ref. [24]	Ref. [25]	Ref. [26]
	Dermatitis, explosive, genotoxic	-	-	Carcinogenic	Carcinogenic	Laborious work up	Expensive and eco pollutant

and zirconium are expensive.[38,39] In the present method, purification of the compounds is done through simple washing (non-chromatographic method) with cold toluene–ethanol mixture (1:1, 1 mL), and this is a major advantage of our method.

3. Conclusion

The utility of PTC in the straightforward synthesis of 5-arylidene-1,3-thiazolidine-2,4-diones by Knoevenagel condensation was established for the first time. This solvent-free (benign) methodology is applicable to a wide range of substrates (aryl aldehydes and heteroaryl aldehydes). This energy-efficient procedure is consistent with high atom economy (economic viability) of a green chemistry strategy. The multifold reactions substantiated the utility of this protocol in pharmaceutical process chemistry. The attractive features of this new protocol are shorter reaction time, simple product isolation (non-chromatographic method) and good to excellent yields.
4. Experimental section

Melting points were determined in the DBK program melting point apparatus and expressed in °C and were uncorrected. Aluminum-backed plates coated with silica 60 F254 (Merck) were used for reactions monitoring by thin layer chromatography. The chromatograms were visualized under UV light (254 and 366 nm) and by staining with iodine. The structures of the synthesized compounds were established using IR, NMR (1H and 13C) and mass spectra. The IR spectra were recorded on an IR affinity-1 spectrophotometer (Schimadzu, Japan) using DRS 8000 and are expressed in cm\(^{-1}\). 1H NMR and 13C NMR spectra were recorded on an Avance 300 NMR spectrophotometer (Bruker, Switzerland). The chemical shifts were reported as parts per million (δ ppm), using tetramethylsilane as an internal standard. Mass spectrum was recorded on GC-AccuTOF (Jeol, USA, Inc).

4.1. General method for one-factor-at-a-time investigations

A mixture of anisaldehyde (5 mmol), thiazolidine-2,4-dione (5 mmol), base and PTC loaded in the 25 ml flat bottom flask was heated with stirring. The reaction mixture was cooled to room temperature, poured into a beaker containing crushed ice (5 g). The isolated precipitate was washed with cold toluene–ethanol mixture (1:1, 1 mL) and air dried.

4.2. Phase-transfer catalysis in heterogeneous (liquid–liquid) system

4-Hydroxy benzaldehyde (5 mmol) and thiazolidine-2,4-dione (5 mmol) were dissolved in n-butanol–water mixture (10 mL, 1:1) loaded in the flask. PTC (8 mol%) and potassium carbonate (1 mmol) were added to the flask and refluxed with stirring for 60 min. The organic layer was washed with water (several times), isolated product was washed with cold toluene–ethanol mixture (1:1, mL) and air dried.

4.3. Synthesis of 5-arylidene-1,3-thiazolidine-2,4-diones (1–17)

Thiazolidine-2,4-dione was prepared by condensing equimolar quantities of urea and chloroacetic acid. A mixture of aryl/heteroaryl aldehyde (5 mmol), thiazolidine-2,4-dione (5 mmol) and potassium carbonate (1 mmol) was heated with stirring at 100°C in the presence of TBAB (8 mol%) for 15 min. The reaction mixture was cooled to room temperature, poured into a beaker containing crushed ice (5 g). The precipitate was separated by filtration under vacuum. The isolated product was washed with cold toluene–ethanol mixture (1:1, 1 mL) and air dried.

\[(\text{5Z})-5-(4-\text{Methoxybenzylidene})-1,3-\text{thiazolidine-2,4-dione} \text{ (1)}: \text{ FT-IR (KBr, cm}^{-1}\text{)}: 3226 (\text{NH symmetric stretching}), 3050 (\text{ArCH stretching}), 1728 (\text{C}=\text{O stretching}), 1696 (\text{C}=\text{O stretching}), 1510 (\text{C}=\text{C stretching}), 1340 (\text{C}–\text{O}–\text{C stretching}), 1317 (\text{C}–\text{N stretching}), 701 (\text{C}–\text{S}–\text{C stretching}). \text{1H NMR (300 MHz, DMSO-d}6\text{)}: \delta 11.72 (\text{s, 1H, NH}), 7.43 (\text{s, 1H, =CH}), 7.08 (\text{d, 2H, } J=6.0 \text{ Hz, Ar-H}), 6.62 (\text{d, 2H, } J=6.0 \text{ Hz, Ar-H}), 2.70 (\text{s, 3H, OCH}_3). \text{ MS } m/z (\%) : 235.07 (M}^+\text{, 3), 164 (34), 149 (44), 121 (48), 93 (23), 77 (23), 69 (4). \]

\[(\text{5Z})-5-(4-\text{Hydroxybenzylidene})-1,3-\text{thiazolidine-2,4-dione} \text{ (2)}: \text{ FT-IR (KBr, cm}^{-1}\text{)}: 3428 (\text{OH stretching}), 3162 (\text{NH symmetric stretching}), 3033 (\text{ArCH stretching}), 1739 (\text{C}=\text{O stretching}), 1681 (\text{C}=\text{O stretching}), 1365 (\text{C}–\text{N stretching}), 1281 (\text{C}–\text{O}–\text{C stretching}), 676 (\text{C}–\text{S}–\text{C stretching}). \text{1H NMR (300 MHz, DMSO-d}6\text{)}: \delta 9.70 (\text{brs, 2H, OH phenolic, TZD-NH}), 7.58 (\text{d, 2H, } J=6.0 \text{ Hz, Ar-H}), 6.62 (\text{d, 2H, } J=6.0 \text{ Hz, Ar-H}), 2.70 (\text{s, 3H, OCH}_3). \text{ MS } m/z (\%) : 235.07 (M}^+\text{, 3), 164 (34), 149 (44), 121 (48), 93 (23), 77 (23), 69 (4). \]
(2C, C2, C3, Ar), 159.90 (2C, C5, C6, Ar), 167.54 (1C, −C=O, C2 of TZD ring), 168.09 (1C, −C=O, C4 of TZD ring); MS m/z (%): 221 (M+, 24), 150 (100), 121 (20), 77 (9), 69 (15), 55 (17).

(5Z)-5-Benzylidene-1,3-thiazolidine-2,4-dione (3): FT-IR (KBr, cm−1): 3223 (NH symmetric stretching), 3034 (ArCH stretching), 1698 (C=O stretching), 1632 (C=O stretching), 1431 (C−N−C stretching), 638 (C=S−C stretching). 1H NMR (300 MHz, DMSO-d6): δ 12.63 (s, 1H, NH), 7.80 (s, 1H, =CH), 7.59-7.61 (d, 2H, J = 8.49 Hz, Ar-H), 7.48-7.56 (m, 3H, Ar-H); MS m/z (%): 205 (M+, 4), 134 (72), 108 (9), 89 (37), 63 (46).

(5Z)-5-(4-Chlorobenzylidene)-1,3-thiazolidine-2,4-dione (4): FT-IR (KBr, cm−1): 3189 (NH symmetric stretching), 3021 (ArCH stretching), 1712 (C=S−C stretching), 1465 (C=N stretching), 634 (C=S−C stretching). 1H NMR (300 MHz, DMSO-d6): δ 12.50 (s, 1H, NH), 7.73 (s, 1H, =CH), 7.52 (d, 2H, J = 8.82 Hz, Ar-H), 7.06 (d, 2H, J = 7.11 Hz, Ar-H).

(5Z)-5-(4-Fluorobenzylidene)-1,3-thiazolidine-2,4-dione (5): FT-IR (KBr, cm−1): 3109 (NH symmetric stretching), 3043 (ArCH stretching), 1753 (C=O stretching), 1698 (C=O stretching), 1443 (C=N stretching), 1146 (C−F stretching), 639 (C=S−C stretching). 1H NMR (300 MHz, DMSO-d6): δ 12.61 (s, 1H, NH), 7.65 (s, 1H, =CH), 7.34–7.68 (m, 4H, Ar-H); MS m/z (%): 223.12 (M+ +, 4), 222.08 (100).

(5Z)-5-(4-(Dimethylamino)benzylidene)-1,3-thiazolidine-2,4-dione (6): FT-IR (KBr, cm−1): 3109 (NH symmetric stretching), 3007 (ArCH stretching), 1725 (C=O stretching), 1680 (C=O stretching), 1517 (C=C stretching), 1340 (C=N−C stretching), 647 (C=S−C stretching). 1H NMR (300 MHz, DMSO-d6): δ 12.30 (s, 1H, NH), 10.51 (s, 1H, OH), 7.34 (d, 2H, J = 8.73 Hz, Ar-H), 3.00 (s, 6H, N,N(CH3)2). MS m/z (%): 248 (M+, 11), 177 (100), 161 (15), 134 (12), 89 (24), 63 (10).

(5Z)-5-(2,4-Dichlorobenzylidene)-1,3-thiazolidine-2,4-dione (7): FT-IR (KBr, cm−1): 3223 (NH symmetric stretching), 3072 (ArCH stretching), 1725 (C=O stretching), 1680 (C=O stretching), 1517 (C=C stretching), 1340 (C=N−C stretching), 647 (C=S−C stretching). 1H NMR (300 MHz, DMSO-d6): δ 12.80 (s, 1H, NH), 7.65 (s, 1H, =CH), 7.39 (d, 2H, J = 9 Hz, Ar-H), 6.78 (d, 2H, J = 8.73 Hz, Ar-H), 3.00 (s, 6H, N,N−CH3). MS m/z (%): 251.99 (M+, 15), 274.05 (63), 272.04 (100).

(5Z)-5-(2-Hydroxybenzylidene)-1,3-thiazolidine-2,4-dione (8): FT-IR (KBr, cm−1): 3421 (NH symmetric stretching), 3030 (ArCH stretching), 1776 (C=O stretching), 1678 (C=O stretching), 1454 (C=C stretching), 1334 (C−O−C stretching), 1247 (C=N−C stretching), 748 (C=S−C stretching). 1H NMR (300 MHz, DMSO-d6): δ 12.47 (s, 1H, NH), 10.51 (s, 1H, OH), 8.01 (s, 1H, =CH), 7.31 (t, 2H, Ar-H), 6.97 (q, 2H, Ar-H); MS m/z (%): 221 (M+, 11), 196 (8), 178 (12), 150 (24), 121 (55), 107 (77), 91 (100), 78 (75), 65 (30).

(5Z)-5-(4-Hydroxy-3-methoxybenzylidene)-1,3-thiazolidine-2,4-dione (9): FT-IR (KBr, cm−1): 3480 (OH stretching), 3192 (NH symmetric stretching), 3034 (ArCH stretching), 1737 (C=O), 1678 (C=O), 1516 (C=C), 1290 (C−O−C stretching). 1H NMR (300 MHz, DMSO-d6): δ 9.77 (br, s, 2H, OH, NH), 7.57 (s, 1H, =CH), 7.15 (d, 1H, J = 1.6 Hz, Ar-H), 7.02 (dd, J = 1.6, 1.6 Hz, 1H, Ar-H), 6.87 (d, 2H, J = 8.00 Hz, Ar-H); MS m/z (%): 215.1 (M+, 12), 250.1 (100).

(5Z)-5-(Furan-2-ylmethylidene)-1,3-thiazolidine-2,4-dione (10): FT-IR (KBr, cm−1): 3123 (NH symmetric stretching), 3032 (ArCH stretching), 1728 (C=O stretching), 1681 (C=O stretching), 1475 (C=N stretching), 1284 (C−O−C stretching), 685 (C=S−C stretching). 1H NMR (300 MHz, DMSO-d6): δ 12.44 (s, 1H, NH), 8.03 (s, 1H, =CH), 7.06-7.59 (m, 3H, Ar-H); MS m/z (%): 195 (M+, 8), 124 (100), 96 (57), 69 (52).

(5Z)-5-(Thiophen-2-ylmethylidene)-1,3-thiazolidine-2,4-dione (11): FT-IR (KBr, cm−1): 3124 (NH symmetric stretching), 3045 (ArCH stretching), 1732 (C=O stretching), 1681 (C=O stretching), 1595 (C=C stretching), 1415 (C=N stretching), 634 (C=S−C stretching). 1H NMR (300 MHz, DMSO-d6): δ 12.55 (s, 1H, NH), 8.04 (s, 1H, =CH), 7.98 (d, 1H, J = 4.98 Hz, Ar-H), 7.65 (d, 1H, J = 3.48 Hz, Ar-H), 7.25 (q, 1H, Ar-H); MS m/z (%): 211 (M+, 2), 140 (26), 96 (17), 82 (30), 69 (48).
(5Z)-5-(4-Nitrobenzylidene)-1,3-thiazolidine-2,4-dione (12): FT-IR (KBr, cm\(^{-1}\)): 3268 (NH symmetric stretching), 3034 (ArCH stretching), 1678 (C=O stretching), 1610 (C=O stretching), 1411 (C−N stretching), 631 (C−S−C stretching). \(^1\)H NMR (300 MHz, DMSO-\(d_6\)):\(\delta\) 12.75 (s, 1H, NH), 7.91 (s, 1H, =CH), 7.83 (d, 2H, \(J = 8.40\) Hz, Ar-H).

(5Z)-5-(3-Hydroxybenzylidene)-1,3-thiazolidine-2,4-dione (13): FT-IR (KBr, cm\(^{-1}\)): 3302 (NH symmetric stretching), 3070 (ArCH stretching), 1753 (C=O stretching), 1691 (C=O stretching), 1591 (C=C stretching), 1448 (C−O−C stretching), 1236 (C−N stretching), 790 (C−S−C stretching). \(^1\)H NMR (300 MHz, DMSO-\(d_6\)):\(\delta\) 9.89 (s, 1H, NH), 7.65 (s, 1H, =CH), 7.30 (s, 1H, OH), 7.02 (d, 2H, \(J = 9\) Hz, Ar-H).

(5Z)-5-(3,4-Dimethoxybenzylidene)-1,3-thiazolidine-2,4-dione (14): FT-IR (KBr, cm\(^{-1}\)): 3216 (NH symmetric stretching), 3044 (ArCH stretching), 1731 (C=O stretching), 1693 (C=O stretching), 1501 (C=C stretching), 1332 (C−O−C stretching), 1315 (C−N stretching), 714 (C−S−C stretching). \(^1\)H NMR (300 MHz, DMSO-\(d_6\)):\(\delta\) 12.52 (s, 1H, NH), 7.75 (s, 1H, =CH), 7.17 (d, 2H, \(J = 6.8\) Hz, Ar-H), 7.11 (d, 2H, \(J = 12.0\) Hz, Ar-H), 3.81 (s, 6H, 3,4-OCH\(_3\)). MS \(m/z\) (%): 265.2 (M\(^+\), 23), 264.1 (100).

(5Z)-5-(3-Methylfuran-2-yl)methylidene)-1,3-thiazolidine-2,4-dione (15): FT-IR (KBr, cm\(^{-1}\)): 3185 (NH symmetric stretching), 3037 (ArCH stretching), 1681 (C=O stretching), 1616 (C=O stretching), 1411 (C−N stretching), 1284 (C−O−C stretching), 686 (C−S−C stretching). \(^1\)H NMR (300 MHz, DMSO-\(d_6\)):\(\delta\) 12.41 (s, 1H, NH), 8.03 (s, 1H, =CH), 7.13 (d, 2H, \(J = 8.70\) Hz, Ar-H), 2.71 (s, 3 H, CH\(_3\)). MS \(m/z\) (%): 209 (M\(^+\), 30), 138 (100), 109 (10), 95 (15), 81 (13), 69 (7), 51 (9).

(5Z)-5-(2,5-Dimethoxybenzylidene)-1,3-thiazolidine-2,4-dione (16): FT-IR (KBr, cm\(^{-1}\)): 3444 (NH symmetric stretching), 3028 (ArCH stretching), 1732 (C=O stretching), 1680 (C=O stretching), 1591 (C=C stretching), 1344 (C−O−C stretching), 1220 (C=N stretching), 680 (C−S−C stretching). \(^1\)H NMR (300 MHz, DMSO-\(d_6\)):\(\delta\) 12.85 (s, 1H, NH), 7.89 (s, 1H, =CH), 7.06 (s, 2H, Ar-H), 6.89 (s, 1H, Ar-H), 3.81 (s, 3H, OCH\(_3\)), 3.73 (s, 3H, OCH\(_3\)); MS \(m/z\) (%): 265 (M\(^+\), 100), 179 (100), 151 (23), 136 (23), 108 (12), 97 (17), 82 (13), 69 (5).

Acknowledgements

The authors are thankful to the President, Gokaraju Rangaraju Educational Society, Hyderabad and the Chairman, Natco Pharma Ltd, Hyderabad, for providing the necessary facilities.

Supplemental data

Supplemental data for this article can be accessed at 10.1080/17415993.2014.970555.

References

[1] Cuea BW, Zhang J. Green process chemistry in the pharmaceutical industry. Green Chem Lett Rev. 2009;2(4):193–211.
[2] Sammelson RE, Kurth MJ. Carbon–carbon bond forming solid phase reactions. Part II. Chem Rev. 2001;101(1):137–202.
[3] Lednicer D. Strategies for drug synthesis and design. 2nd ed. Hoboken, NJ: Wiley; 2008.
[4] Kim BY, Ahn JB, Lee HW, Kane SK, Lee JH, Shin JS, Ahn SK, Hone C, Yoon SS. Synthesis and biological activity of novel substituted pyridines and purine containing 2,4-thiazolidinedione. Eur J Med Chem. 2004;39:433–447.
[5] Tuncbilek M, Altanlar N. Synthesis and antimicrobial evaluation of some 3-(substituted phenacyl)-5-(4'-4H-4-oxo-1-benzopyran-2-yl)-benzylidene)-2,4-thiazolidinediones. II Farmaco. 1999;54:475–478.
[6] Gouveia FL, de-Oleveira RMB, de-Oleveira TB, da-Silva IM, do-Nascimento SC, de-Sena KXFR, de-Albuquerque JFC. Synthesis, antimicrobial and cytotoxic activities of some 5-arylidine-4-thiioxo-thiazolidine-2-ones. Eur J Med Chem. 2009;44:2038–2043.
[7] Carbone V, Giglio M, Chung R, Huyton, T, Adams, J, Maccari R, Ottana P, Har a A, El-Kabbani O. Structure of aldehyde reductase in ternary complex with a 5-aryliden 2,4-thiazolidinedione aldo reductase inhibitor. Eur J Med Chem. 2010;45:1140–1145.

[8] Grant EB, Guiadeen D, Baum EZ, Folenbo BD, Jin H, Montenegro DA, Nelson EA, Bush K, Hlasta DJ. The synthesis and SAR of rhodanines as novel class C β-lactamase inhibitors. Bioorg Med Chem Lett. 2000;10:2179–2182.

[9] Sing WT, Lee CL, Yeo SL, Lim SP, Sim MM. Aryalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor. Bioorg Med Chem Lett. 2001;11:91–94.

[10] Cutfall NS, O’Day C, Prezhdo M. Rhodanine derivatives as inhibitors of JSP-1. Bioorg Med Chem Lett. 2005;15:3374–3379.

[11] Maccari R, Paoli P, Ottana R, Jacomelli M, Ciurlleo R, Mana o G, Steindl T, Langer T, Vigoritaa MG, Camici G, 5-Arylidene-2,4-thiazolidinediones as inhibitors of protein tyrosine phosphatases. Bioorg Med Chem. 2007;15:5137–5149.

[12] Orchard MG, Neuss JC, Galley CMS, Carr A, Porter DW, Smith P, Scopes DIC, Hayson D, Vousden K, Stubberfield CR, Young K, Page M. Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosferase-1 (PMT-1). Bioorg Med Chem Lett. 2004;14:3975–3978.

[13] Gyanendra K, Parassaram P, Sharma SK, Banerjee T, Karmodiyka K, Surolia N, Surolia A. Discovery of Rhodan ine class of compounds as inhibitors of Plasmidium falciparum enoyl-acyl carrier protein reductase. J Med Chem. 2007;50(11):2665–2675.

[14] Shah S, Singh B. Urea/thiourea catalyzed, solvent-free synthesis of 5-aryldienethiazoline-2,4-diones and 5-aryldiene-2-thioxothiazoline-4-ones. Bioorg Med Chem Lett. 2012;22:5388–5391.

[15] Tanaka T, Fujikuma Y, Itoh H, Doi K, Yamashita J, Chu n TH, Inoue M, Masatdugu K, Saito T, Sawada N, Sakaguchi S, Arai H, Nakao K. Therapeutic potential of thiazolidinediones in activation of peroxisome proliferator-activated receptor gamma for monocyte recruitment and endothelial regeneration. Eur J Pharmacol. 2005;508:255–265.

[16] Kotarsky K, Nilsson NE, Flodgren E, Owman C, Olde B. A human cell surface receptor activated by free fatty acids and thiazolidinedione derivatives. Biochem Biophys Res Commun. 2003;301:406–410.

[17] Bruno G, Costantino L, Curinca C, Maccari R, Monforte F, Nico l o F, Ottana R, Vigorita MG. Synthesis and aldose reductase inhibitory activity of 5-aryldiene-2,4-thiazolidinediones. Bioorg Med Chem. 2002;10:1077–1084.

[18] Chen H, Fan YH, Natarajan A, Guo Y, Iyase J, Harbinski F, Luus L, Christ W, Aktasa H, Halperin JA. Synthesis and biological evaluation of thiazolidine-2,4-dione and 2,4-thione derivatives as inhibitors of translation initiation. Bioorg Med Chem Lett. 2004;14:5401–5405.

[19] Ibrahim MA, Abdel-Hamed MAM, El-Gohary NM. A new approach for the synthesis of bioactive heteroaryl thiazolidine-2,4-diones. J Braz Chem Soc. 2011;22(6):1130–1139.

[20] Jeong TS, Kim JR, Kim KS, Cho KH, Ba e KH, Lee WS. Inhibitory effect of multi-substituted benzylidenethiazoline-2,4-diones on LDL oxidation. Bioorg Med Chem. 2004;12:4017–4023.

[21] Gupta D, Ghosh NN, Chandra R. Synthesis and pharmacological evaluation of substituted 5-[4-[2-(6,7-dimethy l-1,2,3-tetrahydro-2-oxo-4-quinozalinyl) ethoxy][phenyl][methylene] thiazolidine-2,4-dione derivatives as potent euglycemic and hypolipidemic agents. Bioorg Med Chem Lett. 2005;15:1019–1022.

[22] Mahalle SR, Netanak PD, Bondge SP, Mane RA. An efficient method for Knoevenagel condensation: A facile synthesis of 5-arylidene 2,4-thiazolidinedione. Green Chem Lett Rev. 2008;12:103–106.

[23] Shelke KS, Sapkal SB, Kakade GK, Shingate BB, Shingare MS. Alum catalysed simple and efficient synthesis of 5-arylidene-2,4-thiazolidinedione in aqueous media. Green Chem Lett Rev. 2010;3(1):17–21.

[24] Khazaee A, Veisi H, Safaei M, Ahmadian H. Green synthesis of 5-arylidene-2,4-thiazolidinedione, 5-benzylidenerhodanine and dihydrothiophene derivatives catalyzed by hydrated liquid ionid tetrabutylammonium hydroxide in aqueous medium. J Sulfur Chem. 2014;35(3):270–278.

[25] Pratap UR, Jawale DV, Waghmare RA, Lingampalee DL, Mane RA. Synthesis of 5-arylidene-2,4-thiazolidinediones by Knoevenagel condensation catalyzed by baker’s yeast. New J Chem. 2011;35:49–51.

[26] Rathod S, Navgire M, Arbad B, Lande M. Preparation of Mg-doped Ce-Zr solid catalysts and their catalytic potency for the synthesis of 5-arylidene-2,4-thiazolidinediones via Knoevenagel condensation. S Afr J Chem. 2012;65:196–201.

[27] Popav-Pergal KM, Poleti D, Rancic MP, Meden A, Pergal MV. Synthesis and structure of new 5-(arylidene)-3-(4-methylenzoxy)thiazolidin-2,4-diones. J Heterocyclic Chem. 2010;47(1):224–228.

[28] Zhou JF, Zhu FX, Song YZ, Zhu YL. Synthesis of 5-aryalkylidenerhodanines catalyzed by tetrabutylammonium bromide in water under microwave irradiation. ARKIVOC. 2006;xiv:175–180.

[29] Suresh, Sandhu JS. Ultrasound-assisted synthesis of 2,4-thiazolidindiones and rhodanine derivatives catalyzed by task-specific ionic liquid:[TMG][Lac]. Org Med Chem Lett. 2013;3(2):1–6.

[30] Metwally NH, Rateb NM, Zohdi HF. A simple and green procedure for the synthesis of 5-arylidene-4-thiazolidinediones by grinding. Green Chem Lett Rev. 2011;4(3):225–228.

[31] Freedman HH. Industrial applications of phase transfer catalysis (PTC): past, present and future. Pure Appl Chem. 2005;58(6):857–868.

[32] Durai Ananda Kumar T, Mohan P, Subrahmanyam CVS, Satyanarayana K. Comparative study of catalytic potential of TBAB, BTEAC and CTAB in one-pot synthesis of 1,4-diarylpyridines under aqueous medium. Synth Commun. 2014;44(4):574–582.
[33] Durai Ananda Kumar T, Yamini N, Subrahmanyam CVS, Satyanarayana K. Design and optimization of ecofriendly one-pot synthesis of 2,4,5-triaryl-1H-imidazoles by three-component condensation using response surface methodology. Synth Commun. 2014;44(15):2256–2268.

[34] Ooi T, Maruoka K. Recent advances in asymmetric phase-transfer catalysis. Angew Chem Int Ed. 2007;46:4222–4266.

[35] Lele SS, Bhave RR, Sharma MM. Fast and very slow reactions: phase-transfer catalysis. Chem Eng Sci. 1983;38(5):765–773.

[36] Persad AS, Cowden J, Hotchkiss AK, Keshava C, Lee JS, Marcus A, Rooney A, Sams R. Toxicological review of urea. United States Environmental Protection Agency (US EPA): Washington, DC; CAS No. 57-13-6: 2011.

[37] Ziegler-Skylakakis K, Kielhorn J, Konnecker G, Koppenhofer J, Mangelsdorf M. Thiourea. World Health Organization: Geneva; Document 49:2003.

[38] Zhu S, Chen R, Wu Y, Chen Q, Zhang X, Yu Z. A mini-review on greenness of ionic liquids. Chem Biochem Eng Q. 2009;23(2):207–211.

[39] Biondi O, Motta S, MOsesso P. Low molecular weight polyethylene glycol induces chromosome aberrations in Chinese hamster cells cultured in vitro. Mutagenesis. 2002;17(3):261–264.