QUOTIENTS BY COMPLEX CONJUGATION FOR REAL COMPLETE INTERSECTION SURFACES

S. M. FINASHIN

Abstract. Quotients $Y = X / \text{conj}$ by the complex conjugation $\text{conj}: X \to X$ for complex surfaces X defined over \mathbb{R} tend to be completely decomposable when they are simply connected, i.e., split into connected sums $\#_n \mathbb{CP}^2 \#_m \overline{\mathbb{CP}}^2$ if $w_2(Y) \neq 0$, or into $\#_n (S^2 \times S^2)$ if $w_2(Y) = 0$. The author proves this property for complete intersections which are constructed by method of a small perturbation.

§1. Introduction

We mean by a Real variety (Real curve, Real surface etc.) a pair (X, conj), where X is a complex variety and $\text{conj}: X \to X$ an anti-holomorphic involution called the real structure or the complex conjugation. Given an algebraic variety over \mathbb{R} we consider the set of its complex points with the natural complex conjugation (the Galois transformation) as the corresponding Real variety. The fixed point set of conj will be denoted by $X_{\mathbb{R}}$ and called the real part of X. We put $Y = X / \text{conj}$ and confuse in what follows $X_{\mathbb{R}}$ with its image $q(X_{\mathbb{R}})$ under the quotient map $q: X \to Y$.

If (X, conj) is a nonsingular Real curve then Y is a compact surface with the boundary $X_{\mathbb{R}}$ and its topological type depends, obviously, only on the genus of X, the number of components in $X_{\mathbb{R}}$ and orientability of Y; the latter depends on vanishing of the fundamental class $[X_{\mathbb{R}}] \in H_1(X; \mathbb{Z}/2)$. It is also trivial enough that any compact surface with nonempty boundary can appear as Y for some Real curve.

The subject of the author’s interest is topology of Y in the case of nonsingular Real surfaces. It is not difficult to see that Y in this case is a closed 4-manifold with the map q being a 2-fold covering branched along $X_{\mathbb{R}}$. Moreover, Y inherits from X an orientation and a smooth structure making q...
smooth and orientation preserving. The natural question is to describe the
diffeomorphism types of 4-manifolds which can arise as the quotients Y for
Real surfaces X. Another interesting question is if the topological types
of X and $X_{\mathbb{R}}$ together with some information about the fundamental class
$[X_{\mathbb{R}}] \in H_2(X; \mathbb{Z}/2)$ determine the topology of Y like in the case of curves.

It turns out that in all the known examples if Y is simply connected then
it splits into a connected sum of copies of \mathbb{CP}^2, $\overline{\mathbb{CP}}^2$ or $S^2 \times S^2$. Let call this
property CDQ-property (complete decomposability for quotients) and call the
Real surfaces satisfying it CDQ-surfaces. Note that Y is simply connected,
for example, if X is simply connected and $X_{\mathbb{R}} \neq \emptyset$.

CDQ-property is known for all Real rational [3] and all Real $K3$ surfaces
[2] except the cases when $X_{\mathbb{R}} = \emptyset$. Further, CDQ-property is proved for a
plenty of double planes, for a family of elliptic surfaces and in fairly general
setting for doubles of CDQ-surfaces branched along certain “double” curves
(for details and more history see [2]).

In the present paper we show that CDQ-surfaces can be found among
complete intersections in \mathbb{CP}^{n+2} of arbitrary multi-degrees (d_1, \ldots, d_n). More
precisely, it appears that the straightforward construction of Real complete
intersections by a small perturbation method produces CDQ-surfaces.

This gives some arguments for the following relatively moderate conjecture:
any deformation type of simply connected complex algebraic surfaces contains
a CDQ-surface.

§2. Main results

Let (V, conj) be a Real variety. A holomorphic linear bundle $p: L \to V$
will be called a Real bundle if it is supplied with an anti-linear involution
$\text{conj}_L: L \to L$, which covers conj:

$$
\begin{array}{ccc}
L & \xrightarrow{\text{conj}_L} & L \\
p \downarrow & & \downarrow p \\
V & \xrightarrow{\text{conj}} & V
\end{array}
$$

A section $f: V \to L$ is called real if $\text{conj}_L \circ f = f \circ \text{conj}$. The zero divisor
of f is, clearly, a Real subvariety of V.

Assume now that (V, conj) is a Real nonsingular and connected 3–fold,
$L_i \to V$, $i = 1, 2$, are real linear bundles and $f_i: V \to L_i$ are real sections
which zero divisors $X_0^{(i)}$ are nonsingular and intersecting transversally. Assume
further that $f: V \to L$ is a real section of $L = L_1 \otimes L_2$ which zero
divisor X intersects transversally the surfaces $X_0^{(i)}$, $i = 1, 2$, and the curve
Consider the section \(f_\varepsilon : V \to L_0 \), \(f_\varepsilon = f_1 \otimes f_2 + \varepsilon f \), \(\varepsilon \in \mathbb{R} \), and denote by \(X_\varepsilon \) its zero divisor, which is nonsingular for a sufficiently small \(\varepsilon > 0 \), as it can be easily seen.

Theorem 1. If \(X_0^{(1)} \) and \(X_0^{(2)} \) are CDQ-surfaces, \(A \) is connected, \(A_\mathbb{R} \neq \emptyset \) and \(\varepsilon > 0 \) is small enough then \(X_\varepsilon \) is CDQ-surface as well.

We prove this theorem in §3 and discuss in the rest of this section some of its implications.

Let \((V, \text{conj})\) be as above. We call a real linear bundle \(L \) **CDQ-bundle** if it is very ample and admits a real section with a nonsingular CDQ zero divisor.

Lemma 2. If \(L \) is a CDQ-bundle then its multiples \(L \otimes d \), \(d \geq 1 \), are CDQ-bundles as well.

Proof. Let \(X_0^{(1)} \) be a CDQ-divisor of \(L \). We prove by induction on \(d \) that there exists a CDQ-divisor, \(X_0^{(2)} \), of \(L \otimes d \) which intersects \(X_0^{(1)} \) transversally along a curve having nonempty real part. This claim is trivial for \(d = 1 \), since we can perturb \(X_0^{(1)} \) so that the result will intersect \(X_0^{(1)} \) transversally and contain a given real point of it.

Suppose that \(X_0^{(2)} \) satisfies the induction assumption. By Lefschetz Theorem \(A \) is connected. A generic real section of \(L \otimes (d+1) \) has zero divisor \(X \) transversal to \(X_0^{(i)} \) and to \(X_0^{(1)} \cap X_0^{(2)} \), hence, we can apply Theorem 1 and get a CDQ-divisor \(X_\varepsilon \) by a perturbation of \(X_0 \cup X_0^{(2)} \) via \(X \). We can also choose \(X \) containing a real point of \(X_0^{(1)} \), since \(L \otimes (d+1) \) is very ample. Then, for a sufficiently small \(\varepsilon > 0 \), \(X_\varepsilon \) intersects \(X_0^{(1)} \) transversally and \(X_\varepsilon \cap X_0^{(1)} = X \cap X_0^{(1)} \) has nonempty real part. \(\square \)

Theorem 3. For arbitrary integers \(n, d_1, \ldots, d_n \geq 1 \) there exists a CDQ-surface \(X \subset \mathbb{C}P^{n+2} \) which is a complete intersection of multi-degree \((d_1, \ldots, d_n)\).

Proof. Induction on \(n \). \(\mathbb{C}P^2 / \text{conj} \) is diffeomorphic to \(S^4 \) (see, e.g., [1]), therefore, \(O(1)_{\mathbb{C}P^2} \) is a CDQ-bundle. By Lemma 2, \(O(d)_{\mathbb{C}P^3} \), \(\forall d \geq 1 \), is a CDQ-bundle as well. Assume now that we have given a complete intersection of Real hypersurfaces, \(X = H_1 \cap \cdots \cap H_n \subset \mathbb{C}P^{n+2} \), of multi-degree \((d_1, \ldots, d_n)\) and that \(X \) is CDQ-surface. Choose hypersurfaces \(H'_i \subset \mathbb{C}P^{n+3} \), \(i = 1, \ldots, n \), so that \(H'_i \cap \mathbb{C}P^{n+2} \) and the intersection \(V = H'_1 \cap \cdots \cap H'_n \) is transversal. Then the bundle \(L \to V \) induced from \(O(1)_{\mathbb{C}P^{n+3}} \) is CDQ-bundle, hence, \(X \) is its zero divisor. By Lemma 2, \(L \otimes d \) is also CDQ-bundle, hence, there exists a CDQ complete intersection of multi-degree \((d_1, \ldots, d_n, d)\). \(\square \)

Remark. The method used for Theorem 3 can be applied similarly to complete intersections in weighted projective spaces or in products of projective spaces and yields also CDQ-surfaces of arbitrary multi-degree.
§3 Proof of Theorem 1

Denote by \(N(i) \) a conj-invariant tubular neighborhood of \(A \) in \(X_0(i) \) and put \(\overline{N(i)} = N(i)/\text{conj} \). \(B = A/\text{conj} \), \(Y(i) = X_0(i)/\text{conj} \) and \(Y_\varepsilon = X_\varepsilon/\text{conj} \). It can be easily seen that \(\overline{N(i)} \) is a regular neighborhood of \(B \) in \(Y(i) \). Let \(2k \) denote the number of imaginary points in \(A \cap X \).

Proposition 4. There exists a diffeomorphism \(\overline{\varphi} : \partial \overline{N(1)} \to \overline{N(2)} \), such that \(Y_\varepsilon \cong ((Y(1) - \overline{N(1)}) \cup \overline{\varphi}(Y(2) - \overline{N(2)})) \# k \mathbb{C}P^2 \).

Let see first how Theorem 1 follows from the above proposition.

Since \(A \) is connected and has nonempty real part, \(B \) is a compact connected surface with a nonempty boundary, hence, \(\overline{N(i)} \) are handlebodies with one 0-handle and several 1-handles embedded into \(Y(i) \). It is well known that if we glue a pair of simply connected 4-manifolds, \(Y(i), i = 1, 2 \), along the boundary of such handlebodies the result is diffeomorphic to \(Y(1) \# Y(2) \# g \mathbb{Z} \), where \(g = \text{rank}(H_1(B)) \) and \(Z = S^2 \times S^2 \) or \(\mathbb{C}P^2 \# \mathbb{C}P^2 \) (see, e.g., [4]). This implies complete decomposability of \(Y_\varepsilon \) if \(Y(i) \) are completely decomposable.

The proof of Proposition 4 follows closely the idea of [4]. By blowing up \(\hat{V} \to V \) we lift the pencil \(X_t = (1 - t)X_0 + tX \) to a real fibering \(\hat{V} \to \mathbb{C}P^1 \). Then we apply the deformation theorem of [4] in the equivariant version. Specifically, assume that \(\varepsilon \in \mathbb{R} \) and \(\varepsilon > 0 \) is sufficiently small. Then \(X_\varepsilon \) intersects \(X_0(i), i = 1, 2 \) transversally along the curve \(C_i = X_0(i) \cap X \). Consider first the blow-up, \(\hat{V} \to V \), along \(C_1 \) and denote by \(\hat{C}_i, \hat{X}_0(i) \), and \(\hat{X}_t \) the proper images of \(C_i, X_0(i) \) and \(X_t \). The pencil \(\hat{X}_t \) has the base-curve \(\hat{C}_2 \), therefore, the next blow-up \(\hat{V} \to \hat{V} \) along \(\hat{C}_2 \) gives a fibering over \(\mathbb{C}P^1 \) with fibers \(\hat{X}_t \) (here and below we mark by a hat the proper image in \(\hat{V} \)).

The projections \(\hat{X}_\varepsilon \to X_\varepsilon, \hat{X}_0(1) \to X_0(1) \) are biregular, as well as \(\hat{X}_0(2) \to \hat{X}_0(2) \), whereas \(\hat{X}_0(2) \to X_0(2) \) is the blow-up at \(C_1 \cap X_0(2) = A \cap X \).

The real structure on \(V \) can be obviously lifted to the real structure, \(\text{conj}_\hat{V} : \hat{V} \to \hat{V} \), and we have \(\hat{V}(1) \cong Y(1), \hat{Y}_\varepsilon \cong Y_\varepsilon \) and \(\hat{V}(2) \cong Y(2) \# k(\mathbb{C}P^2) \), where \(\hat{V}(1), \hat{Y}_\varepsilon, \hat{V}(2) \) denote the quotients by \(\text{conj}_\hat{V} \) of \(\hat{X}_0(1), \hat{X}_\varepsilon \) and \(\hat{X}_0(2) \). The latter diffeomorphism follows from that blow-ups at real points do not change the diffeomorphism type of the quotient, since \(\mathbb{C}P^2 / \text{conj} \cong S^4 \), whereas a pair of blow-ups at conjugated imaginary points descends to a blow-up in the quotient. Restrictions give diffeomorphisms between \(N(i) \) and regular neighborhoods of \(\hat{A} / \text{conj}_\hat{V} \) in \(\hat{X}_0(i) / \text{conj}_\hat{V} \) for \(\hat{A} = \hat{X}_0(1) \cap \hat{X}_0(2) \).

To complete the proof we use the deformation theorem [4]. Recall the statement of one of its corollaries.
Let \(f: W \to \Delta \) be a nonconstant proper holomorphic mapping of a 3-fold \(W \) into a disc, \(\Delta \subset \mathbb{C} \), around zero. Assume that \(f \) has a critical value only at zero and the zero divisor \(X_0 \) of \(f \) consists of two nonsingular irreducible components \(X_0^{(i)}, i = 1, 2, \) of multiplicity 1 crossing transversally along a nonsingular irreducible curve \(A \). Suppose that \(U \subset W \) is a sufficiently small tubular neighborhood of \(A \), so that \(N^{(i)} = U \cap X_0^{(i)} \) is a tubular neighborhood of \(A \) in \(X_0^{(i)}, i = 1, 2 \). Then there exists a bundle isomorphism \(\varphi: \partial N^{(1)} \to \partial N^{(2)} \), reversing orientations of fibers, such that \(X_t = f^{-1}(t) \) is diffeomorphic to \((X_0^{(1)} - N^{(1)}) \cup \varphi(X_0^{(2)} - N^{(2)}) \) for a non-critical value \(t \in \Delta \).

In the equivariant version of this theorem we assume in addition that \(W \) is supplied with a real structure \(\text{conj}_W: W \to W \) and \(f \circ \text{conj}_W = \text{conj} \circ f \), where \(\text{conj}: \Delta \to \Delta \) is the complex conjugation on \(\mathbb{C} \). Then one can choose the neighborhood \(U \) to be \(\text{conj}_W \)-invariant, make the isomorphism \(\varphi \) \(\text{conj}_W \)-equivariant and the diffeomorphism \(X_t \cong (X_0^{(1)} - N^{(1)}) \cup \varphi(X_0^{(2)} - N^{(2)}) \) commute with the involutions of complex conjugation in \(X_t \) and \(X_0^{(i)} - N^{(i)} \).

To prove the latter one should repeat the arguments of [4] with some, not essential modifications: we need to choose a \(\text{conj}_W \)-invariant metric on \(W \) and instead of the fibering \(U \cap X_t \to A \) considered in [4] deal with its quotient, \(U \cap X_t / \text{conj}_W \to B \), and then apply similarly the arguments on the reduction of the structure group.

References

[1] V. I. Arnold, *A branched covering of \(\mathbb{C} \mathbb{P}^2 \to S^4 \), hyperbolicity and projectivity topology*, Sibirskii Mat. Zhurnal 29 (1989), no. 2, 717–725.

[2] S. Finashin, *Rokhlin Conjecture and Quotients of Complex Surfaces by Complex Conjugation*, J. Reine Ang. Math. (to appear).

[3] S. Finashin, *Decomposability of Quotients by complex conjugation for rational surfaces* (to appear).

[4] R. Mandelbaum, B. Moishezon, *On the topology of simply-connected algebraic surfaces*, Trans. Amer. Math. Soc. 260 (1980), no. 1, 195–222.

Middle East Technical University, Ankara, 06531, Turkey
St.-Petersburg Electrotechnical University, 199376, Russia
E-mail address: serge@rorqual.cc.metu.edu.tr

5