SIRT1 is a positive regulator of the master osteoblast transcription factor, RUNX2

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation
Zainabadi, Kayvan et al. “SIRT1 Is a Positive Regulator of the Master Osteoblast Transcription Factor, RUNX2.” Edited by Jung-Eun Kim. PLOS ONE 12, 5 (May 2017): e0178520 © 2017 Zainabadi et al

As Published
http://dx.doi.org/10.1371/JOURNAL.PONE.0178520

Publisher
Public Library of Science

Version
Final published version

Citable link
http://hdl.handle.net/1721.1/113262

Terms of Use
Creative Commons Attribution 4.0 International License

Detailed Terms
http://creativecommons.org/licenses/by/4.0
SIRT1 is a positive regulator of the master osteoblast transcription factor, RUNX2

Kayvan Zainabadi*, Cassie J. Liu, Leonard Guarente

Glenn Center for the Science of Aging, Department of Biology, Koch Institute, MIT, Cambridge, Massachusetts, United States of America

¤ Current address: Institute for Global Health, Division of Malaria Research, University of Maryland School of Medicine, Baltimore, Maryland, United States of America

* kayvan@alum.mit.edu

Abstract

Activation of SIRT1 has previously been shown to protect mice against osteoporosis through yet ill-defined mechanisms. In this study, we outline a role for SIRT1 as a positive regulator of the master osteoblast transcription factor, RUNX2. We find that ex vivo deletion of sirt1 leads to decreased expression of runx2 downstream targets, but not runx2 itself, along with reduced osteoblast differentiation. Reciprocally, treatment with a SIRT1 agonist promotes osteoblast differentiation, as well as the expression of runx2 downstream targets, in a SIRT1-dependent manner. Biochemical and luciferase reporter assays demonstrate that SIRT1 interacts with and promotes the transactivation potential of RUNX2. Intriguingly, mice treated with the SIRT1 agonist, resveratrol, show similar increases in the expression of RUNX2 targets in their calvaria (bone tissue), validating SIRT1 as a physiologically relevant regulator of RUNX2.

Introduction

The mammalian genome contains seven yeast SIR2 homologues which have been named the Sirtuins. SIRT1 is the mammalian orthologue of SIR2 and is an NAD+ dependent deacetylase that plays a key role in regulating pathways ranging from metabolism to aging [1–2]. Cementing its important role in mammalian longevity, mice genetically engineered to overexpress sirt1, or wildtype mice treated with SIRT1 agonists, show increased healthspan [3–11] and life-span [12–14]. These increases are associated with a delay in the onset of many aging-related diseases, including osteoporosis [5–6, 14]. How SIRT1 helps preserve bone mass during aging is not clearly understood.

Osteoporosis is a classic aging disease associated with low bone mass that arises when bone remodeling (the coupled process of bone formation by osteoblasts and resorption by osteoclasts) becomes uncoupled [15]. Type 2 osteoporosis (also known as aging-related osteoporosis) occurs in both sexes and is associated with decreased bone formation by osteoblasts. In contrast, Type 1 osteoporosis (or post-menopausal osteoporosis) results primarily from increased osteoclast activity due to waning circulating estrogen levels (an osteoclast inhibitor) following menopause.
Osteoblasts are derived from a pluripotent mesenchymal stem cell (MSC) population in the bone marrow that also gives rise to adipocytes, myocytes, and chondrocytes [16]. Differentiation of MSCs down any lineage involves at least two steps: first, commitment to a particular fate (i.e. from MSC to an osteoblast progenitor); and second, differentiation of the progenitor cell to a terminal cell type (i.e. from pre-osteoblast to osteoblast). How a pluripotent stem cell commits and then differentiates into a mature osteoblast involves a complex circuitry of external and internal cues consisting of both pro/anti-stimulatory signals [17].

One of the key pro-osteoblast factors is the RUNX2 transcription factor. RUNX2 has been shown to be essential for osteoblast differentiation and bone formation—runx2 knockout mice lack a mineralized skeleton, and overexpression of runx2 is sufficient to activate the osteoblast transcriptional program [18–20]. The early induction of RUNX2 expression and activity occurs in part by the homeodomain transcriptional regulators: MSX2, DLX3 and DLX5 [17, 21–24]. Further, the adipocyte master transcription factor, PPARγ—which SIRT1 is a known repressor [25]—has been reported to repress RUNX2 activity and thereby direct the MSC precursor cell away from the osteoblast and towards the adipocyte lineage [26–27]. Additionally, RUNX2 has also been reported to be regulated at a post-translational level via phosphorylation, ubiquitination, and acetylation in response to different stimuli [28–31].

Once the RUNX2 transcriptional program is established, RUNX2 mediates its effects by binding to osteoblast specific cis-acting elements (OSE2) in the promoter of nearly all of the major osteoblast genes [18, 32–33]. Many of these genes are extracellular matrix protein necessary for mineralization and bone formation, including osteocalcin, osteopontin, and bone sialoprotein (BSP). Another target of RUNX2, osterix, is a second transcription factor that is essential for the establishment of the late osteoblast program, including mineralization [34–35]. Highlighting its importance, osterix knockout mice also fail to develop a mineralized skeleton [35].

Here we present evidence that SIRT1 interacts with and regulates the transcriptional activity of RUNX2. This regulation has important consequences: osteoblast cells lacking SIRT1 show decreased differentiation whereas cells treated with SIRT1 agonists show enhanced differentiation. Interestingly, mice fed resveratrol, another SIRT1 agonist, also show evidence of increased RUNX2 activity in their calvaria (bone tissue), indicating that this regulation is physiologically relevant.

Materials and methods

Animal experimentation

All mice were housed under controlled temperature (25 ± 1°C) and lighting conditions and fed standard chow unless otherwise indicated. Sirt1^{flox/flox} mice were obtained from Jackson Laboratory. All mice were cared for in accordance with the MIT Committee on Animal Care (MITCAC) which approved this study.

For resveratrol feeding experiments, 12 month old male C57BL/6J mice were fed 400mg/kg/day resveratrol or vehicle control in standard chow. After four months, mice were euthanized via carbon dioxide asphyxiation as approved by MITCAC and the calvaria (top of the skull) isolated, washed extensively to remove non-osseous tissue and flash-frozen in liquid nitrogen. For RNA isolation, calvaria was minced in Trizol (Thermo Fisher), and thoroughly homogenized using a Tissue Tearor homogenizer (VWR). Lysates were then spun down at 15,000g for 10 minutes, with the resulting supernatant used for RNA isolation using the RNeasy MinElute Cleanup kit (Qiagen).
Isolation and differentiation of primary osteoblasts

Primary osteoblast precursors were isolated from 1–3 day old pups as previously described [36]. Calvaria were removed, cleaned and placed in 5mL of no-serum α-MEM media (Sigma Aldrich) containing 0.1% Collagenase type 2 (Sigma Aldrich) and 0.1% Trypsin/EDTA (Sigma Aldrich). Eight serial incubations were performed at 37˚C for 15 minutes in an orbital shaker, with the solutions from the first two incubations discarded, and the remaining solutions combined for plating in α-MEM with 10% FBS (3 pups/10cm plate). Cells were expanded for a maximum of three passages, then trypsinized, filtered through a 70μm nylon filter (BD Falcon), and plated in 6 or 12-well plates for experiments.

Cells were allowed to reach confluency, and two days thereafter infected with either CRE-GFP or empty vector adenovirus (Viral Vector Core Facility, University of Iowa) at 50 multiplicity of infection (MOI) for 24 hours in α-MEM containing 10% FBS. Cells were then allowed to recover for 24 hours before being differentiated with 50μg/mL ascorbic acid and 10mM β-glycerophosphate (Sigma Aldrich). Cells were stained for alkaline phosphatase (3–6 days post-differentiation) using the Alkaline Phosphatase Blue Membrane Substrate Kit (Sigma Aldrich) and mineralization (6–12 days post-differentiation) using 1% Alizarin Red (VWR). Alkaline phosphatase activity was ascertained using p-Nitrophenyl Phosphatase Liquid Substrate System (Sigma Aldrich). In experiments with SRT1720 and SRT2183 (SirTris), drugs were added at a final concentration of 1μM (unless otherwise stated) at Day 0 and DMSO was used as empty vehicle control.

Quantitative reverse-transcription polymerase chain reaction (qRT-PCR)

Total RNA was extracted from cells (3–6 days post-differentiation) or tissues using Trizol (Thermo Fisher) and the RNeasy MinElute Cleanup kit (Qiagen). 1μg of RNA was used for cDNA synthesis using the SuperScript III reverse transcriptase kit (Thermo Fisher). cDNA was then subjected to qRT-PCR analysis with gene-specific primers in the presence of iQSYBR green (Bio-Rad) (Table 1). At least three biological replicates and three technical replicates were used for quantitation of relative mRNA abundance after normalization to ribosomal rpl19 levels.

Luciferase assays

For RUNX2 luciferase assays, the U2OS osteosarcoma cell line (ATCC) was used owing to its high transfection efficiency (primary osteoblasts proved difficult to transfect) and its previous use in RUNX2 luciferase studies [37–39]. U2OS cells were grown to 50% confluency and then transfected (Fugene HD, Roche) with the RUNX2 luciferase reporter construct (p6OSE2) with Renilla as an internal control [32–33]. To measure the effect of SIRT1, cells were transfected with either SIRT1 overexpression constructs: pBABE-Vector or pBABE-SIRT1; or SIRT1 RNAi constructs: pSUPERretro-Vector or pSUPERretro-SIRT1 [25]. SIRT1 agonists, SRT1720 and SRT2183 (SirTris) [40], were added at a final concentration of 1μM and DMSO was used as empty vehicle control. Luciferase activity was measured 24 hours after transfection (or 4–6 hours after addition of drugs) from four biological replicates according to manufacturer instructions using a dual luciferase reporter kit from Promega.

Western blot and immunoprecipitation

Antibodies for western blotting and immunoprecipitation (IP) were obtained from the following sources: SIRT1 (Upstate), RUNX2 (Sigma and Abcam), HSP90 (Abcam), SIRT6 (Cell Signaling), FLAG (Sigma Aldrich), HA (Santa Cruz Biotechnology). IPs were carried out in the
following manner: 293T cells were transfected with FLAG-SIRT1, HA-RUNX2 or both, with empty plasmid backbones serving as controls.

For endogenous IPs, U2OS osteosarcoma cells (ATCC) were used due to their fast replicative cycle, which provided ample starting material for performing and optimizing IP conditions. 15cm plates were washed twice with phosphate buffered saline (PBS), removed in the presence of PBS + 0.5% Triton X100 (Sigma Aldrich) and complete protease inhibitors (Roche), and homogenized by passing (5 times each) through a 21G, 23G, and finally a 26G needle. Cells were then allowed to lyse on an orbital shaker for 30 minutes (4˚C) and then centrifuged at 15,000g for 10 minutes (4˚C). The resulting supernatants were used for IP experiments. IPs were generally performed using antibodies at a final concentration of 0.5ug-1 μg/ml with incubation performed overnight at 4˚C. Protein G agarose (Santa Cruz Biotechnology) was then added for 1–2 hours, after which the agarose was washed at least 3 times with PBS + 0.1% Triton X100, and then boiled for 3 minutes in SDS sample buffer. The IP eluates were run on 4–15% gels (Bio-Rad), transferred to nitrocellulose membrane, and probed by Western blot.

Table 1. Primer sequences used in this study.

Gene	Sequence
Runx2 type II	forward: TGA GAT TTG TGG GCC GGA
	reverse: TCT GTG CCT TCT TGG TTC CC
Runx2 type I	forward: ATG CGT ATT CCT GTA GCG AGC
	reverse: GGT GGT CCG AGA TGA TCT
Osteocalcin	forward: AAG CAG GAG GCC AAT AAG GT
	reverse: TTT GTA GGC GGT CTT CAA GC
Osterix	forward: GCA AGG CCT CGC ATC TGA AA
	reverse: AAC TCC TTT TCC CGG GTG TGA
Bone Sialoprotein	forward: CAG GGA GCC AGT GAC TCT TC
	reverse: AGT GTC GAA AGT GTC GCA TT
Osteopontin	forward: AGC AAG AAA CTC TTC CAA GCA A
	reverse: GTG AGA TTC GTC AGA TTC ATC CG
Msx2	forward: GGG TCT AAA GCG GAA GTC ACT
	reverse: GAT GGC GAC TAC TTT CTT GTC
Dlx5	forward: TCT CTA GGA AGC CAA ACA
	reverse: GTT ACA GGC CAT AGG GTC GC
Dlx3	forward: CAC TGA CCT GGG CTA TTA CAG C
	reverse: GAG ATT GAA CTG GTG GTG GTA G
AP2	forward: GGG GCC AGG CTT CTA TTC C
	reverse: GGA GCT GGG TTA GGT ATG GG
PPARγ	forward: TCG CTG ATG CAC TCC CTA TG
	reverse: GAG AGG TCC ACA GAG CTG ATT
Lipoprotein Lipase	forward: GGG AGT TTG CCT CCA GAG TTT
	reverse: TGT GTC TTC AGG GGT CCT TAG
Rpl19	forward: AAG CCT GTG ACT GTC CAT TC
	reverse: CTT CTT GGA TTC CCG GTA TC

https://doi.org/10.1371/journal.pone.0178520.t001

Statistical analysis

Statistical analysis was performed using an unpaired Student’s t test, and significant differences are indicated by single asterisk (*) when p < 0.05, double asterisk (**) when p < 0.01, and tripe
Deletion of SIRT1 inhibits osteoblast differentiation

To determine how SIRT1 regulates osteoblast differentiation, we isolated primary osteoblasts from Sirt1flox/flox neonatal mice and excised SIRT1 \textit{ex vivo} with the use of adenoviral CRE (Fig 1A). To minimize any extraneous effects of SIRT1 on cell proliferation and/or terminal cell division (as opposed to differentiation \textit{per se}), cells were infected two days post-confluency. Upon addition of CRE-adenovirus, the \textit{sirt1} catalytic domain (exon 4) is excised with near 100\% efficiency, creating in effect an isogenic SIRT1 knockout cell line (Fig 1B). Osteoblasts deleted for SIRT1 displayed marked reductions in both early and late markers of differentiation, including alkaline phosphatase and alizarin red, a marker of mineralization (Fig 1C and 1D). Consistent with previous reports [41–43], these results indicate that SIRT1 is a positive regulator of osteoblast differentiation.

Fig 1. \textit{Ex vivo} deletion of \textit{sirt1} inhibits osteoblast differentiation. A) Primary osteoblasts obtained from the calvaria of Sirt1flox/flox neonates were infected two days post-confluency with adenoviral-CRE to excise \textit{sirt1}. B) Cells infected with adenoviral-CRE show excision of SIRT1 catalytic exon 4 (T1Δ4) as indicated by a smaller PCR product obtained with primers flanking exon 4. C) CRE-infected cells show reduced alkaline phosphatase enzymatic activity, an early marker of osteoblast differentiation. (n = 3, * p<.005) D) CRE-infected cells showed reduced staining for two different markers of osteoblast differentiation, alkaline phosphatase and alizarin red, a marker of mineralization.

https://doi.org/10.1371/journal.pone.0178520.g001

Results

Deletion of SIRT1 inhibits osteoblast differentiation

To determine how SIRT1 regulates osteoblast differentiation, we isolated primary osteoblasts from Sirt1flox/flox neonatal mice and excised SIRT1 \textit{ex vivo} with the use of adenoviral CRE (Fig 1A). To minimize any extraneous effects of SIRT1 on cell proliferation and/or terminal cell division (as opposed to differentiation \textit{per se}), cells were infected two days post-confluency. Upon addition of CRE-adenovirus, the \textit{sirt1} catalytic domain (exon 4) is excised with near 100\% efficiency, creating in effect an isogenic SIRT1 knockout cell line (Fig 1B). Osteoblasts deleted for SIRT1 displayed marked reductions in both early and late markers of differentiation, including alkaline phosphatase and mineralization, respectively (Fig 1C and 1D). Consistent with previous reports [41–43], these results indicate that SIRT1 is a positive regulator of osteoblast differentiation.
Deletion of SIRT1 results in decreased expression of RUNX2 downstream targets

To determine how SIRT1 exerts its effect, we examined the expression of a number of key osteoblast transcription factors (Fig 2A). SIRT1 wildtype and knockout cells show no differences in the expression of the homeobox family of transcriptional regulators, dlb3, dlb5, and mls2, which are important for establishing the early osteoblast transcriptional program [17, 21–24] (Fig 2B). Expression of the master osteoblast transcription factor, runx2, is also unchanged (Fig 2C). However, deletion of SIRT1 results in a two-fold reduction of the RUNX2 downstream target, osterix (osx), a transcription factor essential for osteoblast differentiation (Fig 2C). Other RUNX2 downstream targets, including osteocalcin, osteopontin, and bone sialoprotein (BSP), also show reduced expression in SIRT1 knockout cells (Cre), suggesting decreased transcriptional activity of RUNX2 in the absence of SIRT1. (n>3, * p<.05; ** p<.01; *** p<.005).

https://doi.org/10.1371/journal.pone.0178520.g002

Fig 2. Ex vivo deletion of sirt1 decreases expression of RUNX2 downstream targets. A) A schematic representing the osteoblast transcriptional regulators and markers examined in this study. The homeodomain transcriptional regulators, Msx2, Dlx3, and Dlx5, help establish the early osteoblast transcriptional program, including upregulation of Runx2 expression and activity [17, 21–24]. Runx2 then directly binds to and stimulates the transcription of osteoblast specific genes, including Osterix (Osx), an essential osteoblast transcription factor. B) There are no differences in the expression of Msx2, Dlx3, and Dlx5 in SIRT1 knockout (Cre-infected) versus wildtype (vector-infected) osteoblasts as ascertained by quantitative reverse-transcription PCR (qRT-PCR). C) While SIRT1 knockout osteoblasts (Cre) express comparable amounts of Runx2, they show a near two-fold reduction in the expression of the Runx2 downstream target, Osterix (Osx). D) Three other RUNX2 targets, Osteocalcin, Osteopontin, and Bone Sialoprotein (BSP), also show reduced expression in SIRT1 knockout cells (Cre), suggesting decreased transcriptional activity of RUNX2 in the absence of SIRT1. (n>3, * p<.05; ** p<.01; *** p<.005).
sialoprotein (bsp), also show reduced expression in SIRT1 knockout cells. These results indicate RUNX2 hypoactivity in the absence of SIRT1 (Fig 2D).

SIRT1 is a known repressor of PPARγ, a master adipocyte transcription factor which has previously been shown to repress RUNX2 activity in mesenchymal stem cells [25–26]. We therefore examined the expression of PPARγ and its downstream targets, lipoprotein lipase and adipocyte protein 2 (ap2), as a measure of PPARγ activity. PPARγ and its downstream targets were all undetectable in both wildtype and SIRT1 knockout cells, indicating that PPARγ hyperactivity was unlikely the cause of the observed decreases in RUNX2 transcriptional activity.

SIRT1 interacts with RUNX2

Since RUNX2 expression itself was not changed, but expression of its downstream targets were, we hypothesized SIRT1 might act in a post-translational manner to increase RUNX2 activity. This would require for SIRT1 and RUNX2 to interact. Co-immunoprecipitation (co-IP) experiments with tagged versions of SIRT1 and RUNX2 show that they do in fact interact: FLAG-SIRT1 was able to co-immunoprecipitate HA-RUNX2, and vice versa (Fig 3A).

To determine whether SIRT1 and RUNX2 interact at endogenous levels in osteoblasts, we first pre-screened a number of commercially available antibodies for their ability to IP and/or detect RUNX2 by Western blot. While none of the antibodies were able to detect endogenous RUNX2 by Western blot, two were able to successfully immunoprecipitate RUNX2 from whole-cell lysates of U2OS osteosarcoma cells (Fig 3B). Importantly, both antibodies also co-immunoprecipitated SIRT1, but not the closely related SIRT6 nor the abundantly expressed HSP90 (Fig 3B). These results indicate that SIRT1 and RUNX2 interact in osteoblasts and that this interaction is specific.

SIRT1 promotes RUNX2 transcriptional activity

Next, to determine the molecular consequences of this interaction, we used a RUNX2 dual luciferase reporter (p6OSE2) which contains six RUNX2 osteoblast specific cis-acting elements (OSE2) upstream of luciferase [32–33]. As expected, we saw a dose-dependent increase in luciferase activity with increased dosage of the construct, confirming that endogenous RUNX2 in U2OS cells is able to activate the promoter. Notably, overexpression of SIRT1 significantly

Fig 3. SIRT1 interacts with RUNX2. A) Tagged versions of SIRT1 and RUNX2 interact in 293T cells: FLAG-tagged SIRT1 is able to co-immunoprecipitate HA-tagged RUNX2, and vice versa. (WB: western blot; IP: immunoprecipitation) B) This interaction also exists at the endogenous level. Two different RUNX2 antibodies (Sigma and Abcam) co-immunoprecipitate SIRT1, but not closely related SIRT6 or abundantly expressed HSP90, in U2OS osteosarcoma cell lysates. The band below the RUNX2 band (in the Runx2 WB panel) represents heavy chain IgG. (AB: antibody). https://doi.org/10.1371/journal.pone.0178520.g003
increased this luciferase activity, while RNA-interference of SIRT1 reduced it (Fig 4A). Consistent with a stimulatory role for SIRT1, cells treated with two different SIRT1 small molecule activators, SRT1720 and SRT2183 [40], showed a similar increase in luciferase activity (n = 4). We next set out to determine how activation of SIRT1 affected the expression of endogenous RUNX2 targets in osteoblasts. In line with our previous findings, primary osteoblasts treated with SRT2183 (the more potent of the two SIRT1 activators) show increased expression of the RUNX2 downstream target bone sialoprotein (BSP), but not that of runx2 itself (Fig 4C). This increase in BSP expression was not observed in osteoblasts in which SIRT1 had been deleted, indicating that the effect of SRT2183 on RUNX2 is SIRT1-dependent. The expression of Runx2 itself is unchanged. (n ≥ 3, *p < .05; **p < .01; ***p < .005).

Activation of SIRT1 stimulates expression of RUNX2 targets in vivo

We were next interested in determining how pharmacological activation of SIRT1 impacted osteoblast differentiation. Primary osteoblasts treated with SRT2183 showed a dose-dependent increase in markers of differentiation (Fig 5A). These findings are consistent with the observed upregulation of RUNX2 activity and increased expression of OSTERIX.

Intriguingly, another small molecule activator of SIRT1, resveratrol, has been shown to have protective effects against age-related osteoporosis in mice and rats [5, 44]. To determine whether this was in part due to stimulation of RUNX2 activity in bone tissue, we fed mice 400mg/kg/day of resveratrol and then analyzed the expression of RUNX2 targets in their calvaria (skullcap) (Fig 5B). While these mice did not show an increase in bone mass as assessed by microcomputed tomography (due to the short treatment regimen) (Fig 5C), they did
intriguingly show similar increases in the expression of RUNX2 downstream targets, but not RUNX2 itself, in their calvaria (Fig 5D). These findings indicate that SIRT1 also acts in vivo to stimulate RUNX2 transcriptional activity in bone.

Discussion

Here, we present evidence that SIRT1 interacts with and positively regulates the transcriptional activity of RUNX2. This regulation has important consequences in osteoblasts: cells lacking SIRT1 show decreased differentiation associated with reduced expression of RUNX2 targets,
while cells treated with SIRT1 agonists show enhanced differentiation associated with increased expression of RUNX2 targets (Figs 1 and 2). Importantly, one of these affected downstream targets is OSTERIX (Olx), a second transcription factor essential for osteoblast differentiation [35]. The increase in RUNX2 activity, and resulting increase in OSTERIX expression, is a very plausible explanation for the stimulatory effects of SIRT1 on osteoblast differentiation.

RUNX2 activity has previously been shown to be regulated at a post-translational level, including by class I and class II histone deacetylases. These proteins interact with and repress the activity of RUNX2 [28–30]. SIRT1, a member of the class III histone deacetylases, is therefore unique in that it functions to enhance, and not repress, RUNX2 activity.

The exact mechanism by which SIRT1 regulates RUNX2 activity in osteoblasts is currently unknown, though several lines of evidence point towards its deacetylase activity. First, excision of the catalytic domain of SIRT1 in primary osteoblasts is sufficient to reduce the expression of RUNX2 downstream targets. Conversely, agonists which increase SIRT1 deacetylase activity produce an opposite effect, both in osteoblasts (Fig 4C) and bone tissue in mice (Fig 5D). Whether SIRT1 acts directly on RUNX2 or the histones of RUNX2 targets is yet unknown, though given that histone deacetylation is generally repressive the latter mechanism is unlikely. We thus speculate that it is more likely that SIRT1 deacetylates RUNX2 directly, though we were unable to demonstrate this in the present study. However, a recent report found that treatment with nicotinamide (a pan-Sirtuin inhibitor) or SIRT1 knockdown resulted in increased RUNX2 acetylation in mesenchymal stem cells [45]. It will be important to determine whether a similar mechanism occurs in osteoblasts, and how deacetylation of specific lysine residue(s) affects RUNX2 activity.

Special care was taken to minimize any indirect effects that SIRT1 may have on osteoblast differentiation. This was performed in two ways: 1) First we used primary osteoblasts derived from the calvaria of Sirt1fl/o neonates which consist of a relatively pure population of cells already committed to the osteoblast lineage [36]; 2) We excised sirt1 in these cells two days after they had reached confluency and thus had exited the cell cycle (Fig 1A). An added benefit of such a strategy is that since both wildtype and knockout cells come from the same source (ie Sirt1fl/o mice) they are essentially isogenic, with the exception of the SIRT1 deletion. These precautions should help reduce any effects SIRT1 might have on cell proliferation/survival, terminal cell division or osteoblast commitment per se. This latter point (ie commitment versus differentiation) is particularly cogent, as a previous report found an increase in RUNX2 expression (albeit in mesenchymal stem cells, MSCs) upon stimulation of SIRT1 [46]. We did not observe any changes in RUNX2 expression associated with SIRT1 activity, similar to a previous study in osteoblasts [43], which is likely attributable to the fact we used osteoblasts already committed to the osteoblast lineage as opposed to pluripotent MSCs. Consistent with this, PPARγ and its downstream targets were undetectable in our cells but were readily detectable in the MSCs used in the aforementioned study [46].

In contrast, we did find that SIRT1 increased the activity of RUNX2, and the expression of OSTERIX, two pro-osteoblast transcription factors which would be expected to promote differentiation; which was experimentally verified (Fig 5A). Given this stimulatory role in osteoblasts, SIRT1 provides a unique pharmacological target for the treatment of age-related osteoporosis, a disease associated with reduced osteoblast activity (and for which few effective treatments currently exist). Our analysis reveals that pharmacological activation of SIRT1 in vivo is associated with upregulation of RUNX2 transcriptional activity in bone tissue (Fig 5D), suggesting this may in part explain the previously described salutary effects of SIRT1 on bone during aging [5, 44]. Intriguingly, a recent randomized placebo-controlled trial in humans
showed that resveratrol treatment also led to increased bone mineral density and bone alkaline phosphatase activity in obese men [47]. How this stimulation affects in vivo osteoblast differentiation, function and bone formation, and whether RUNX2 or SIRT1 activity in bone change with age are all outstanding questions. Additionally, how in vivo activation of SIRT1 affects the other principal cell types of bone, namely osteoclasts and mesenchymal stem cells, is an area of warranted study. Preliminary evidence gives reason to be optimistic: SIRT1 appears to promote commitment of MSCs towards the osteoblast lineage [45–46, 48–49] and repress differentiation of osteoclasts [43, 50–51]. Indeed, recent studies with second and third generation SIRT1 agonists have shown even greater promise in preserving bone mass in mice [14, 52], raising hopes for a possible novel therapeutic for osteoporosis in the not so distant future.

Acknowledgments

This work was supported by grants from the NIH and The Glenn Foundation for Medical Research.

Author Contributions

Conceptualization: KZ CL LG.
Data curation: KZ CL.
Formal analysis: KZ CL.
Funding acquisition: LG.
Investigation: KZ CL.
Methodology: KZ CL LG.
Project administration: KZ CL LG.
Resources: KZ CL.
Supervision: KZ LG.
Validation: KZ CL LG.
Visualization: KZ CL LG.
Writing – original draft: KZ.
Writing – review & editing: KZ CL LG.

References

1. Haigis MC, Guarente LP. Mammalian sirtuins—emerging roles in physiology aging and calorie restriction. Genes Dev. 2006; 20:2913–21. https://doi.org/10.1101/gad.1467506 PMID: 17079682
2. Imai S, Armstrong CM, Kaebeltein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000; 403:795–800. https://doi.org/10.1038/35001622 PMID: 10693811
3. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006; 444:337–42. https://doi.org/10.1038/nature05354 PMID: 17086191
4. Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, et al. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice. PLoS One. 2008; 3:e2264. https://doi.org/10.1371/journal.pone.0002264 PMID: 18523577
5. Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008; 8:157–68. https://doi.org/10.1016/j.cmet.2008.06.011 PMID: 18599363

6. Herranz D, Muñoz-Martín M, Cañamero M, Mulero F, Martínez-Pastor B, Fernández-Capetillo O, et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun. 2010; 1:3. https://doi.org/10.1038/ncomms1001 PMID: 20975665

7. Banks AS, Kon N, Knight C, Matsumoto M, Gutiérrez-Juárez R, Rossetti L, et al. Sirt1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 2008; 8:333–41. https://doi.org/10.1016/j.cmet.2008.08.014 PMID: 18840364

8. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Liner C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006; 127:1109–22. https://doi.org/10.1016/j.cell.2006.11.013 PMID: 17112576

9. Gräff J, Kahn M, Samiei A, Gao J, Ota KT, Rei D, et al. A dietary regimen of caloric restriction or pharmacological activation of SIRT1 to delay the onset of neurodegeneration. J. Neurosci. 2013; 33:8951–60. https://doi.org/10.1523/JNEUROSCI.5657-12.2013 PMID: 23699506

10. Bordon L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell. 2007; 6:759–67. https://doi.org/10.1111/j.1474-9726.2007.00335.x PMID: 17877786

11. Kane AE, Hilmer SN, Boyer D, Gavin K, Nines D, Howlett SE, et al. Impact of Longevity Interventions on a Validated Mouse Clinical Frailty Index. J. Gerontol. A. Biol. Sci. Med. Sci. 2016; 3:333–9.

12. Satoh A, Brace CS, Rensing N, Cliften P, Wozniak DF, Herzog ED, et al. Sirt1 extends lifespan and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013; 18:416–30. https://doi.org/10.1016/j.cmet.2013.07.013 PMID: 24011076

13. Mitchell SJ, Martin-Montalvo A, Mercken EM, Palacios HH, Ward TM, Abulwadi G, et al. SRT2104 activation of SIRT1 and PGC-1alpha Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun. 2010; 1:3. https://doi.org/10.1038/ncomms1001 PMID: 20975665

14. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004; 429:771–6. https://doi.org/10.1038/nature02583 PMID: 15175761

15. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature. 2004; 429:771–6. https://doi.org/10.1038/nature02583 PMID: 15175761
26. Jeon MJ, Kim JA, Kwon SH, Kim SW, Park KS, Park SW, et al. Activation of peroxisome proliferator-activated receptor-gamma inhibits the Runx2-mediated transcription of osteocalcin in osteoblasts. J Biol Chem. 2003; 278:23270–7. https://doi.org/10.1074/jbc.M211610200 PMID: 12704187

27. Kawaguchi H, Akune T, Yamaguchi M, Ohtag S, Ogata N, Chung UI, et al. Distinct effects of PPAR-gamma insufficiency on bone marrow cells osteoblasts and osteoclastic cells. J. Bone Miner. Metab. 2005; 23:275–9. https://doi.org/10.1007/s00774-005-0599-2 PMID: 15981022

28. Jeon EJ, Lee KY, Choi NS, Lee MH, Kim HN, Jin YH, et al. Bone morphogenetic protein-2 stimulates Runx2 acetylation. J. Biol. Chem. 2006; 281:16502–11. https://doi.org/10.1074/jbc.M512494200 PMID: 1613856

29. Kang JS, Alliston T, Delston R, Derynick R. Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3. EMBO J. 2005; 24:2543–55. https://doi.org/10.1038/sj.emboj.7600729 PMID: 15990875

30. Schroeder TM, Kahler RA, Li X, Westendorf JJ. Histone deacetylase 3 interacts with runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation. J. Biol. Chem. 2004; 279:41998–2007. https://doi.org/10.1074/jbc.M40370200 PMID: 15292260

31. Jensen ED, Nair AK, Westendorf JJ. Histone deacetylase co-repressor complex control of Runx2 and bone formation. Crit. Rev. Eukaryot. Gene Expr. 2007; 17:187–96. PMID: 17725488

32. Ducy P, Karsenty G. Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol. Cell. Biol. 1995; 15:1858–1869. PMID: 7891679

33. Zhang R, Ducy P, Karsenty G. 1.25-dihydroxyvitamin D3 inhibits osteocalcin expression in mouse through an indirect mechanism. J Biol Chem. 1997; 272:110–6. PMID: 8952325

34. Nishio Y, Dong Y, Paris M, O'Keefe RJ, Schwarz EM, Drissi H. Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene. 2006; 372:62–70. https://doi.org/10.1016/j.gene.2005.12.022 PMID: 16574347

35. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 1997; 106:17–29.

36. Helfrich MH,Ralston SH. Bone Research Protocols. Methods in Molecular Medicine. 2003; 80.

37. Thomas DM, Johnson SA, Sims NA, Trivett MK, Slavin JL, Rubin BP, et al. Terminal osteoblast differentiation, mediated by runx2 and p27Kip1, is disrupted in osteosarcoma. J Cell Biol. 2004; 167:925–34. https://doi.org/10.1083/jcb.200409187 PMID: 15583032

38. Hawse JR, Cicek M, Grygo SB, Bruinsma ES, Rajamannan NM, van Wijnen AJ, et al. TIEG1/KLF10 modulates Runx2 expression and activity in osteoblasts. PLoS One. 2011; 6:e19429. https://doi.org/10.1371/journal.pone.0019429 PMID: 21593663

39. Zhang Y, Hassan MQ, Xie RL, Hawse JR, Speilberg TC, Montecino M, et al. Co-stimulation of the bone-related Runx2 P1 promoter in mesenchymal cells by SP1 and ETS transcription factors at polymorphic purine-rich DNA sequences (Y-repeats). J Biol Chem. 2009; 284:3125–35. https://doi.org/10.1074/jbc.M109013200 PMID: 19017640

40. Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007; 450:712–6. https://doi.org/10.1038/nature06261 PMID: 18046409

41. Iyer S, Han L, Bartell SM, Kim HN, Gubrij I, de Cabo R, et al. Sirtuin1 (Sirt1) promotes cortical bone formation by preventing β-catenin sequestration by FoxO transcription factors in osteoblast progenitors. J. Biol Chem. 2014; 289:24069–78. https://doi.org/10.1074/jbc.M114.561803 PMID: 25002589

42. Cohen-Kfir E, Araki H, Levin A, Abramowitz E, Bajayo A, Gurt I, et al. Sirt1 is a regulator of bone mass and a repressor of Sost encoding for sclerostin, a bone formation inhibitor. Endocrinology. 2011; 152:4514–24. https://doi.org/10.1210/en.2011-1128 PMID: 21952235

43. Edwards JR, Perrien DS, Fleming N, Nyman JS, Ono K, Connelly L, et al. Silent information regulator (Sir)T1 inhibits NF-kB signaling to maintain normal skeletal remodeling. J Bone Miner Res. 2013; 28:960–9. https://doi.org/10.1002/jbmr.1824 PMID: 23172686

44. Durbin SM, Jackson JR, Ryan MJ, Gigliotti JC, Alway SE, Tou JC. Resveratrol supplementation preserves long bone mass, microstructure, and strength in hindlimb-suspended old male rats. J. Bone Miner. Metab. 2014; 32:38–47. https://doi.org/10.1007/s00774-013-0469-2 PMID: 23866002

45. Shikawa M, Shayan P, Busch F, Aldinger C, Buhrmann C, Lueders C, et al. Resveratrol mediated modulation of Sirt1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: potential role of Runx2 deacetylation. PLoS One. 2012; 7:e35712. https://doi.org/10.1371/journal.pone.0035712 PMID: 22539994

46. Tseng PC, Hou SM, Chen R, Peng HW, Hsieh CF, Kuo ML, et al. Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. J Bone Miner Res. 2011; 26:2552–63. https://doi.org/10.1002/jbmr.460 PMID: 21713995
47. Ornstrup MJ, Harsløf T, Kjaer TN, Langdahl BL, Pedersen SB. Resveratrol increases bone mineral density and bone alkaline phosphatase in obese men: a randomized placebo-controlled trial. J. Clin. Endocrinol. Metab. 2014; 99:4720–9. https://doi.org/10.1210/jc.2014-2799 PMID: 25322274

48. Bäckesjö CM, Li Y, Lindgren U, Haldosén LA. Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. J. Bone Miner. Res. 2006; 21:993–1002. https://doi.org/10.1359/jbmr.060415 PMID: 16813520

49. Simic P, Zainabadi K, Bell E, Sykes DB, Saez B, Lotinun S, et al. SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating β-catenin. EMBO Mol Med. 2013; 5:430–40. https://doi.org/10.1002/emmm.201201608 PMID: 23364955

50. Gurt I, Artsi H, Cohen-Kfir E, Hamdani G, Ben-Shalom G, Feinstein B, et al. The Sirt1 Activators SRT2183 and SRT3025 Inhibit RANKL-Induced Osteoclastogenesis in Bone Marrow-Derived Macrophages and Down-Regulate Sirt3 in Sirt1 Null Cells. PLoS One. 2015 Jul 30; 10:e0134391. https://doi.org/10.1371/journal.pone.0134391 PMID: 26226624

51. Kim HN, Han L, Iyer S, de Cabo R, Zhao H, O'Brien CA, et al. Sirtuin1 Suppresses Osteoclastogenesis by Deacetylating FoxOs. Mol. Endocrinol. 2015; 29:1498–509. https://doi.org/10.1210/me.2015-1133 PMID: 26287518

52. Artsi H, Cohen-Kfir E, Gurt I, Shahar R, Bajayo A, Kalish N, Bellido TM, Gabet Y, et al. The Sirtuin1 activator SRT3025 down-regulates sclerostin and rescues ovariectomy-induced bone loss and biomechanical deterioration in female mice. Endocrinology. 2014; 155:3508–15. https://doi.org/10.1210/en.2014-1394 PMID: 24949665