Complex function block of processing and transferring asynchronous data for the IC of reading out the signals of multichannel detectors

P. Ivanov, E. Atkin, A. Voronin, D. Normanov, V. Shumkin
National Research Nuclear University MEPhI

The 2nd International Conference on Particle Physics and Astrophysics
Moscow, Oct. 2016
Outline

- Floor plan
- CFP features
- CFP structure
- Data flow rate estimation
- Timestamp
- Peak detector
- GBT interface
- Present status
Floor plan

ASIC area
5000 x 5000 um = 25 mm2

CFP (Digital part) ~ 14 % of the whole area

Technology - UMC 180 nm
CFP features

1. Timestamp generation
2. Peak detection
3. Data readout
4. Data exchange with host via I2C/GBT interfaces
 4.1 Global time synchronization
 4.2 Slow control
 4.2.1 Selective block resetting
 4.2.2 Standby mode control
 4.2.3 DACs codes setting
 4.2.4 PD control
 4.2.5 TS control
 4.2.6 Readout fifos status monitoring
 4.3 Payload data transfer to host
5. ADC control
PD – peak detector block
TS – timestamp block
ReadOut – data readout block
I2C – I2C interface block
GBT – GBTX interface block
Structure of the data processing and readout channel
Interface part structure (GBT + I2C)
Data flow rate estimation

GBT interface:
5 бит / 3.125 нс = 1.6 Гб/с (@ 320 MHz)

Data to send at 20% loading level:
32 ch. x 0.2 x 40 bit ~ 256 bits

Time required to send data:
256 / (1.6 * 10^9) = 160 ns
States:
IDLE – idle
GNT0 – time saved, waiting for HOLD approval signal during T_{Hold} time
GNT1 – time saved and approved, waiting for read enable signal

Main characteristics:
- timestamp resolution – 3.125 ns
- gray code
- 14 bit
Peak detector

States:
- IDLE
- GNT0 – data processing
- GNT1 – peak time found and saved, new incoming data is ignored, waiting for read enable signal

Main characteristics:
- 2 modes: simple and smart
- Prevention of the false peak detection due to the noise
- Adjustable sensitivity level for noise detection
- Adjustable peak detection condition
- Overlay detection

State diagram:

- **GNT0**: Data processing
- **GNT1**: Peak time found and saved, new data is ignored, waiting for read enable signal
- **IDLE**: Waiting state
- **SLOWCMP**: Slow compare
- **PF**: Peak found
- **EREAD**: Read enabled
GBT synchronization

Regular link synchronization procedure

Sending START of Synch	Waiting for SOS from all asics	CLK delay adjustment determining optimal setting	Data delay adjustment	End of Synch	Waiting for EOS from all CBM_MUC	Sending FRAME	K28.5 is detected

Downlink
- SOS
- SOS
- SOS
- SOS
- SOS
- SOS
- K28.1
- K28.1
- K28.1
- EOS
- EOS
- EOS
- EOS
- FRAME
- FRAME
- FRAME
- FRAME

Uplink
- K28.5
- K28.5
- K28.5
- K28.5
- K28.5
- K28.5
- SOS
- EOS
- K28.5
- FRAME
- FRAME
- FRAME
- FRAME

Handling
- Forming a STAT packet RT of Synch

After RESET or when synchronization is required

****Quick link synchronization procedure****

Set pre-determined delays in GBTx	Wait EOS from all CBM_MUCH	K28.5 is detected

Downlink
- K28.1
- K28.1
- K28.1
- K28.1
- EOS
- EOS
- EOS
- EOS
- FRAME
- FRAME
- FRAME
- FRAME

Uplink
- K28.5
- EOS
- K28.5
- FRAME
- FRAME
- FRAME
- FRAME

After RESET or when synchronization is required

GBT outgoing frames

Not coded by the 8b10b coder

BYTE0	BYTE1	BYTE2	BYTE3																																				
TYPE	39	38	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOS	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					
EOS	1	1	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	1	1	0	0				

Coded by the 8b10b coder

Name	Comment
S	Overlay Pick Detector
CP	Config parity
Res	Reserve

Ack[1:0]	Comment	STATUS[3:0]	Comment
0x0	No operation	0x0	No warning
0x1	Acknowledgment	0x1	FIFO full
0x2	Error	0x2	Sync alert
0x3	Warning(See STATUS[3:0])	0x3	Sequence error
		0x4	Check register error

SOS – start of synchronization
EOS – end of synchronization
K28.5 – waiting for synchronization
K28.1 – calculated latch (control word)
GBT incoming frames

BYTE0	BYTE1	BYTE2	BYTE3	BYTE4	BYTE5
47 46 45 44 43 42 41 40	39 38 37 36 35 34 33 32	31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0

Frame ID & Chip Address | Request type/Reserve | Payload | CRC | CRC |

K28.5 <7:4> chip address<3:0>, <3:0> sequence number<3:0> <7:6> Request type <1:0>, <5:0> Reserve <5:0> <7:0> Payload <7:0> <7:0> CRC <15:8> <7:0> CRC <7:0>

Chip Address	Comment
0x0 ... 0x7	Individual chip addressing (max 8)
0x8 ... 0xE	Reserve
0xF	Broadcast

Request Type	Code	Ack request	Payload	Comment
No_op	0x0	No	X	No operation
Wraddr	0x1	Yes	[7:0] address	Write address. Address remains for consecutive Wrdata request. But Rddata overwrites it with register address used in Rddata frame.
Wrdata	0x2	Yes	[7:0] data	Write data to register block (address set previously by Wraddr). Wrdata must have the sequence number higher by one from the last Wraddr command, otherwise it is not accepted.
Rddata	0x3	Yes	[7:0] address	Read data from register
The following items are developed:
- Basic structure of the CFP
- Behavioral models of the main subblocks
- Functional tests

Items to do:
- Assembly of all subblocks
- More complex verification tests
- Layout design and verification
- Noise and IR-drop analyzes

Chip submission to be done in December 2016
Thank you for Your attention!