1. Introduction

The relevance of using cements containing mineral admixtures of both natural and artificial origin is determined by compliance with current trends in sustainable mankind development in terms of efficient consumption of raw materials and energy and responsible attitude to the environment. From the environmental point of view, partial replacement of cement clinker with mineral admixtures contributes to the reduction of CO₂ emissions. In addition, materials based on such cements are characterized by high quality, functionality and durability. For example, efficiency of using blast furnace slag, zeolite and limestone in composite eco-cements with high initial strength has been demonstrated [1]. Replacement of clinker with zeolite promotes higher strength of concrete and its freeze/thaw resistance and crack resistance [2]. Improvement of concrete performance attributes is possible through joint use of several mineral admixtures due to optimization of granulometric composition of cement [3]. The principle of raising performance attributes by the use of multi-component cement systems can be applied to various materials, that is decorative mortars (plasters for restoration and finishing works, etc.) [4].

Various types of activation (calcium, sulphate, alkaline, etc.) are used to raise initial strength of two-component cement systems [5]. Alkaline activation is possible through joint use of several mineral admixtures due to the principle of raising performance attributes by the use of multi-component cement systems. Improvement of concrete performance attributes is possible through joint use of several mineral admixtures due to optimization of granulometric composition of cement [3]. The principle of raising performance attributes by the use of multi-component cement systems can be applied to various materials, that is decorative mortars (plasters for restoration and finishing works, etc.) [4].

Various types of activation (calcium, sulphate, alkaline, sulphate-alkaline, etc.) are used to raise initial strength of two-component cement systems [5]. Alkaline activation is possible through joint use of several mineral admixtures due to the principle of raising performance attributes by the use of multi-component cement systems. Improvement of concrete performance attributes is possible through joint use of several mineral admixtures due to optimization of granulometric composition of cement [3]. The principle of raising performance attributes by the use of multi-component cement systems can be applied to various materials, that is decorative mortars (plasters for restoration and finishing works, etc.) [4].

Various types of activation (calcium, sulphate, alkaline, sulphate-alkaline, etc.) are used to raise initial strength of two-component cement systems [5]. Alkaline activation is possible through joint use of several mineral admixtures due to the principle of raising performance attributes by the use of multi-component cement systems. Improvement of concrete performance attributes is possible through joint use of several mineral admixtures due to optimization of granulometric composition of cement [3]. The principle of raising performance attributes by the use of multi-component cement systems can be applied to various materials, that is decorative mortars (plasters for restoration and finishing works, etc.) [4].

Various types of activation (calcium, sulphate, alkaline, sulphate-alkaline, etc.) are used to raise initial strength of two-component cement systems [5]. Alkaline activation is possible through joint use of several mineral admixtures due to the principle of raising performance attributes by the use of multi-component cement systems. Improvement of concrete performance attributes is possible through joint use of several mineral admixtures due to optimization of granulometric composition of cement [3]. The principle of raising performance attributes by the use of multi-component cement systems can be applied to various materials, that is decorative mortars (plasters for restoration and finishing works, etc.) [4].

Various types of activation (calcium, sulphate, alkaline, sulphate-alkaline, etc.) are used to raise initial strength of two-component cement systems [5]. Alkaline activation is possible through joint use of several mineral admixtures due to the principle of raising performance attributes by the use of multi-component cement systems. Improvement of concrete performance attributes is possible through joint use of several mineral admixtures due to optimization of granulometric composition of cement [3]. The principle of raising performance attributes by the use of multi-component cement systems can be applied to various materials, that is decorative mortars (plasters for restoration and finishing works, etc.) [4].

Various types of activation (calcium, sulphate, alkaline, sulphate-alkaline, etc.) are used to raise initial strength of two-component cement systems [5]. Alkaline activation is possible through joint use of several mineral admixtures due to the principle of raising performance attributes by the use of multi-component cement systems. Improvement of concrete performance attributes is possible through joint use of several mineral admixtures due to optimization of granulometric composition of cement [3]. The principle of raising performance attributes by the use of multi-component cement systems can be applied to various materials, that is decorative mortars (plasters for restoration and finishing works, etc.) [4].

Various types of activation (calcium, sulphate, alkaline, sulphate-alkaline, etc.) are used to raise initial strength of two-component cement systems [5]. Alkaline activation is possible through joint use of several mineral admixtures due to the principle of raising performance attributes by the use of multi-component cement systems. Improvement of concrete performance attributes is possible through joint use of several mineral admixtures due to optimization of granulometric composition of cement [3]. The principle of raising performance attributes by the use of multi-component cement systems can be applied to various materials, that is decorative mortars (plasters for restoration and finishing works, etc.) [4].

Various types of activation (calcium, sulphate, alkaline, sulphate-alkaline, etc.) are used to raise initial strength of two-component cement systems [5]. Alkaline activation is possible through joint use of several mineral admixtures due to the principle of raising performance attributes by the use of multi-component cement systems. Improvement of concrete performance attributes is possible through joint use of several mineral admixtures due to optimization of granulometric composition of cement [3]. The principle of raising performance attributes by the use of multi-component cement systems can be applied to various materials, that is decorative mortars (plasters for restoration and finishing works, etc.) [4].

Various types of activation (calcium, sulphate, alkaline, sulphate-alkaline, etc.) are used to raise initial strength of two-component cement systems [5]. Alkaline activation is possible through joint use of several mineral admixtures due to the principle of raising performance attributes by the use of multi-component cement systems. Improvement of concrete performance attributes is possible through joint use of several mineral admixtures due to optimization of granulometric composition of cement [3]. The principle of raising performance attributes by the use of multi-component cement systems can be applied to various materials, that is decorative mortars (plasters for restoration and finishing works, etc.) [4].

Various types of activation (calcium, sulphate, alkaline, sulphate-alkaline, etc.) are used to raise initial strength of two-component cement systems [5]. Alkaline activation is possible through joint use of several mineral admixtures due to the principle of raising performance attributes by the use of multi-component cement systems. Improvement of concrete performance attributes is possible through joint use of several mineral admixtures due to optimization of granulometric composition of cement [3]. The principle of raising performance attributes by the use of multi-component cement systems can be applied to various materials, that is decorative mortars (plasters for restoration and finishing works, etc.) [4].

Various types of activation (calcium, sulphate, alkaline, sulphate-alkaline, etc.) are used to raise initial strength of two-component cement systems [5]. Alkaline activation is possible through joint use of several mineral admixtures due to the principle of raising performance attributes by the use of multi-component cement systems. Improvement of concrete performance attributes is possible through joint use of several mineral admixtures due to optimization of granulometric composition of cement [3]. The principle of raising performance attributes by the use of multi-component cement systems can be applied to various materials, that is decorative mortars (plasters for restoration and finishing works, etc.) [4].

Various types of activation (calcium, sulphate, alkaline, sulphate-alkaline, etc.) are used to raise initial strength of two-component cement systems [5]. Alkaline activation is possible through joint use of several mineral admixtures due to the principle of raising performance attributes by the use of multi-component cement systems. Improvement of concrete performance attributes is possible through joint use of several mineral admixtures due to optimization of granulometric composition of cement [3]. The principle of raising performance attributes by the use of multi-component cement systems can be applied to various materials, that is decorative mortars (plasters for restoration and finishing works, etc.) [4].

Various types of activation (calcium, sulphate, alkaline, sulphate-alkaline, etc.) are used to raise initial strength of two-component cement systems [5]. Alkaline activation is possible through joint use of several mineral admixtures due to the principle of raising performance attributes by the use of multi-component cement systems. Improvement of concrete performance attributes is possible through joint use of several mineral admixtures due to optimization of granulometric composition of cement [3]. The principle of raising performance attributes by the use of multi-component cement systems can be applied to various materials, that is decorative mortars (plasters for restoration and finishing works, etc.) [4].

Various types of activation (calcium, sulphate, alkaline, sulphate-alkaline, etc.) are used to raise initial strength of two-component cement systems [5]. Alkaline activation is possible through joint use of several mineral admixtures due to the principle of raising performance attributes by the use of multi-component cement systems. Improvement of concrete performance attributes is possible through joint use of several mineral admixtures due to optimization of granulometric composition of cement [3]. The principle of raising performance attributes by the use of multi-component cement systems can be applied to various materials, that is decorative mortars (plasters for restoration and finishing works, etc.) [4].

Various types of activation (calcium, sulphate, alkaline, sulphate-alkaline, etc.) are used to raise initial strength of two-component cement systems [5]. Alkaline activation is possible through joint use of several mineral admixtures due to the principle of raising performance attributes by the use of multi-component cement systems. Improvement of concrete performance attributes is possible through joint use of several mineral admixtures due to optimization of granulometric composition of cement [3]. The principle of raising performance attributes by the use of multi-component cement systems can be applied to various materials, that is decorative mortars (plasters for restoration and finishing works, etc.) [4].
Environmental benefits of AAC are associated with the possibility of ensuring the highest content of by-products and production wastes, such as slag, fly ash, red mud, etc. [6]. Possibility of utilization of industrial wastewater in production of safe building materials on AAC basis has also been shown [7]. Such cements are characterized by high heat-resistance [8], corrosion resistance [9] and freeze/thaw resistance [10] in comparison with those based on conventional clinker cements for general and special construction purposes.

However, along with advantages, AACS have their own features. These features include high proper deformations that can intensify crack formation and reduce durability of structures if left unchecked. One of the solutions for the problem of proper deformations is the introduction of complex organo-mineral admixtures [14–25] to modify AAC and to regulate the process of mortar and concrete hardening [9, 21]. It has been shown that maximum plasticizing effect is enabled by addition of sodium lignosulfonate [23], sodium gluconate [24], polyatomic alcohols and other acyclic low- and high-molecular compounds [13].

In addition, cement shrinkage can be reduced by using surfactants as shrinkage reducing admixtures (SRA) and admixtures having a water-reducing effect [20]. The shrinkage reducing effect when using surfactants is explained by fall of surface tension of interstitial fluid. This makes it possible to reduce cement shrinkage deformation due to the falling pressure in capillaries and slowing down rate of moisture evaporation. Since most of surfactants are ineffective in a hydration medium of AAC, principles of their selection were proposed for such cements according to the criteria of variation of plastic strength [13], stability of molecular structure of admixtures having plasticizing [21] and other types of action [22] in a high alkaline medium. In this regard, it has been shown that maximum plasticizing effect is enabled by addition of sodium lignosulfonate [23], sodium gluconate [24], polyatomic alcohols and other acyclic low- and high-molecular compounds [13]. Additional effects of such compounds are known. For example, a decrease in AASC shrinkage in presence of polypropylene glycol (polyether) is due to redistribution of the pore space through raising number of pores with diameter of 0.1–1 μm in which capillary pressure is much lower than that in smaller capillaries [25].

The presented studies [14–25] show positive influence of mineral and organic admixtures on reduction of AAC shrinkage, however there is no explanation of the mechanism of their structure formation. This fact limits understanding ways of regulating proper deformations in artificial stone. This necessitates studies to identify effective ways of influencing the processes of structure formation in AAC with the provision of specified proper deformations.

Generalization of above results makes it possible to predict effectiveness of property regulation including regulation of proper deformations in AAC when varying content of GBS from 0 to 100 % of aluminosilicate component weight by a complex interference in the structure formation. It can be predicted whether complex modifying admixtures jointly influencing development of crystallization processes, formation of effective pore structure and morphology of hydration phases will be effective for this purpose. All of this determines urgency of using soluble compounds containing SO$_4$$^-$$^-$, NO$_3$$^-$$^-$, F$^-$, Cl$^-$ anions, etc. in combination with high-calcium compounds and effective surfactant types.
– to substantiate choice of the most effective complex admixture and study its effect on AASC structure formation;
– to propose a solution concerning regulation of proper deformations in AAC when varying content of GBS from 0 to 100% of weight of aluminosilicate component.

4. Materials and methods used for studying effectiveness of admixtures for regulating AAC properties

4.1. Raw materials used
Two types of AAC were used in the studies: type I (AASC) and type II (AAPC).

The following materials were used as aluminosilicate components for AASC and AAPC, respectively:
– GBS from PJSC Dzerzhinsky Integrated Iron&Steel Works named after Dzerzhinsky (Kamyanske, Ukraine) according to DSTU B V.2.7-302:2014, specific surface $S_{B} = 4,500 \text{ cm}^{2}/\text{g}$ (according to Blaine), basicity modulus $M_{B} = 1.11$, content of the glass phase: 84.0%;
– Portland cement clinker (hereinafter referred to as clinker) manufactured by Baltsem OJSC (Balakliya, Ukraine) with specific surface area of 4,500 cm^{2}/g, 66.15% CaO; 22.61% SiO$_2$; 5.29% Al$_2$O$_3$; 3.93% Fe$_2$O$_3$; 0.84% MgO; 0.15% Na$_2$O; 0.98% K$_2$O; 0.50% SO$_3$.

Sodium metasilicate (SM) (Na$_2$SiO$_3$·5H$_2$O) in a dry powder form was used as alkaline component of AAC.

The following materials were used as components of complex organo-mineral admixtures:
– mineral compounds: Na$_2$SO$_4$ sodium sulfate (CAS No. 7757-82-6), NaNO$_2$ sodium nitrate (CAS No. 7631-99-4), Na$_2$PO$_4$ (CAS No. 7601-54-9), NaCl (CAS No. 7647-14-5), Ca(NO$_3$)$_2$ (CAS No. 13477-34-4), Ca(OH)$_2$ (CAS No. 1305-62-0), CaSO$_4$·0.5H$_2$O (according to DSTU B V.2.7-104:2000);
– surfactants of two types: sodium lignosulfonate (SLS) and sodium gluconate (SG) according to CAS No. 527-07-1.

According to the complex effect of reducing water demand, slowing down the hardening period and raising strength of AAC, the most effective formulations of admixtures were determined and further used to regulate proper deformations of AAC.

The studied AACs were prepared by mixing dry components with water in a Hobart laboratory blade mixer. Content of SM in AASC composition was 3% (by Na$_2$O) or 10.26% (by dry matter) of clinker weight. Content of SM in AASC was 3.91 (by Na$_2$O) or 10.26 (by dry matter) of clinker weight. SM content in AAPC composition was 3.93% or 10.26% of weight of aluminosilicate component.

4.2. The methods used in studying effectiveness of complex organo-mineral admixtures
Development of cement stone microstructure was studied by methods of physio-chemical analysis: differential-thermal analysis (DTA) using derivatograph of R. Paulik, I. Paulik, L. Erdy system, MOM Company (Budapest, Hungary), and probe analysis using REMMA 102.02 raster electron microscope-microanalyzer (SELMI OJSC, Suny, Ukraine).

Normal consistency of cement paste and setting time of cements were determined according to DSTU B V.2.7-185:2009.

Water-reducing effect of complex admixtures was assessed by reduction of W/C values of solution mixtures (1:3) when spreading on a flow table (106–115 mm) according to DSTU B V.2.7-187:2009. Strength of the cured solution was also determined by this standard.

Proper deformations in AAC were determined on 40×40×160 mm specimens made of cement-sand mortar (1:3). After making specimens and hardening in molds for 1 day with surface covered, the specimens were cured for 7 days under normal conditions (t=20±2°C, R.H.=95±5%). The specimens were then stored at temperature t=20±2°C and relative humidity R.H.=65%. These conditions of specimen storage correspond to conventional conditions of mortar and concrete hardening. When calculating proper deformation, length of 1-day specimens was taken as initial value.

5. Results obtained in determining the effect of complex organo-mineral admixtures on proper deformations in AAC

5.1. Effect of complex organo-mineral admixtures on properties of alkali-activated portland cement

AAPC of “clinker–SM” system (control composition) was characterized by normal consistency of cement paste value of 19.7% and too short setting time: the initial setting 5 min and the end setting 7 min. Values of compressive strength of AAPC were 30.3 MPa on day 2, 37.3 MPa on day 7, and 43.5 MPa on day 28 at W/C=0.34.

Comparative analysis of AAPC properties in hydrate systems “clinker–SM”, “clinker–SM–mineral compound”, “clinker–SM–mineral compound–surfactant” was conducted.

Content of admixtures of mineral compounds was 50% of alkaline component weight which corresponded to 2.96% of clinker weight. Surfactants (SLS, SG) were introduced in amounts of 0.45 and 0.25% of clinker weight, respectively.

It was found that by the complex effect on decrease in normal consistency of cement paste, setting time slowdown and hardening acceleration, effectiveness of mineral compounds decreased in the following order: Ca(OH)$_2$>CaSO$_4$·0.5H$_2$O>NaNO$_2$>Na$_2$SO$_4$>Na$_2$PO$_4$>Ca(NO$_3$)$_2$>NaCl.

The greatest effect of “clinker–SM” system on reduction of proper deformations of AAPC in presence of surfactants was observed when using salt electrolytes Na$_2$SO$_4$ and NaNO$_2$ (Fig. 1). In presence of Na$_2$SO$_4$, expansion of 0.062 mm/m was observed and with the use of NaNO$_2$, a virtually shrink-free system with shrinkage value of 0.017 mm/m was obtained.

![Fig. 1. Development of proper deformations in alkali-activated portland cement modified with complex admixtures](image-url)
In addition, it was found that the complex admixture of \(\text{Na}_2\text{SO}_4 - \text{SLS} - \text{SG} \) composition in relation to the control specimen provided a decrease in normal consistency of cement paste value from 19.7 to 17.0 %. In this case, extension of setting time: from 5 to 30 min for the beginning of hardening and from 7 to 35 min for the end of hardening was observed. There was a slight increase in compressive strength of modified AACP relative to AACP with no admixtures through reduction of the W/C value from 0.34 to 0.33: 34.6 MPa (2 days), 41.7 MPa (7 days) and 47.8 MPa (28 days).

Replacement of \(\text{Na}_2\text{SO}_4 \) with \(\text{NaNO}_2 \) in the composition of complex admixture determines additional lengthening of AACP hardening time at normal consistency of cement paste=17.1 %: up to 37 min for the beginning and up to 44 min for the end. There was a much higher intensity of increase in compressive strength of solution through reduction of W/C from 0.34 to 0.29: 39.3 MPa (2 days), 48.7 MPa (7 days), 53.1 MPa (28 days).

Thus, presence of surfactants in composition of complex organo-mineral admixtures provides slowdown of hardening and increase in AACP strength.

5.2. Structure formation in alkali-activated portland cement modified with complex organo-mineral admixtures

Features of structure formation in AACP modified with complex admixtures based on \(\text{Na}_2\text{SO}_4 \) and \(\text{NaNO}_2 \) were studied using differential-thermal analysis (DTA) (Fig. 2), electron microscopy (Fig. 3–5, a) and probe analysis (Fig. 3–5, b). Chemical and oxide compositions of new AACP formations under study obtained by probe analysis with the help of REMMA 102-02 electron microscope-microanalyzer are given in Tables 1–3.

Formation of low-basicity calcium hydroxides of CSH (B) structure and xonotlite \(6\text{CaO} \cdot \text{SiO}_2 \cdot \text{H}_2\text{O} \) (end effects at \(t=160 \) and 845 °C, that is recrystallization into wollastonite) was revealed in the products of hydration of AACP without admixtures (Fig. 2). The presence of end effects at \(t=490 \) and 670 °C characterizes formation of a slightly crystallized hydrosilicate of \(\text{C}_6\text{SH}(\text{A}) \) structure. In addition to hydroxides, formation of slightly crystallized calcium hydroaluminates of \(\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 10\text{H}_2\text{O} \) structure (exogenous effects at \(t=520 \) and 710 °C) was observed in the hydration products.

Analysis of electronic micrographs of cleavage surface of artificial AACP stone of “clinker–SM” system makes it possible to identify globular formation of gel-like calcium hydroxides (Fig. 3, a) and calcium hydroaluminates with inclusions of \(\text{Na}^+ \) and \(\text{K}^+ \) ions in their structure (Table 1). Drop-like formations on the gel surface represent nuclei of the crystalline phase.

Microstructure of the AACP stone modified with complex admixture “\(\text{Na}_2\text{SO}_4 - \text{SLS} - \text{SG} \)” (Fig. 2) is represented mainly by the same new hydrate formations as the composition with no admixtures but with a greater degree of crystallization. Increased crystallization of calcium low-basicity hydroxides is indicated by displacement of the end effect of their recrystallization to the region of elevated temperatures (\(t=850 \) °C instead of 845 °C for the admixture system). Shift of the end effect which characterizes formation of calcium hydroaluminate (\(\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 10\text{H}_2\text{O} \)) towards the elevated temperature (\(t=540 \) °C) and appearance of exo-effect at \(t=915 \) °C also characterize growth of microstructure crystallization.

Analysis of electron photomicrograph of the cleavage surface of AACP stone modified with complex admixture “\(\text{Na}_2\text{SO}_4 - \text{SLS} - \text{SG} \)” confirms presence of these new hydrate formations with a high degree of crystallization (Fig. 4, a). The results of probe analysis (Table 2) indicate additional formation of hexagonal lamellar crystalline structures of minamiite (\(\text{Na}, \text{Ca}_{0.5} \text{Al}_2\text{SO}_4\text{O}_9\text{OH}_6 \) in the structure of artificial stone [26].
5.3. Effect of complex organo-mineral admixtures on alkali-activated slag cement properties

Based on the studies, organo-mineral complex admixtures of the “salt electrolyte–surfactant” system based on Na_2SO_4 and NaNO_3 have been identified as the most effective for regulating proper deformations in AACP. This has made it possible to introduce such systems together with clinker as modifying complex admixtures to regulate proper deformations in AASC of the GBS-SM system (control composition). Content of the complex admixture was 6% of slag weight.

It has been found that AASC of control composition was characterized by following indicators: normal consistency of cement pastes 21.67%, initial setting 45 min, end setting 60 min. Values of compressive strength of AASC at W/C = 0.29 were 28.8 MPa on day 2, 40.0 MPa on day 7, and 50.3 MPa on day 28.

The use of organo-mineral complex admixture of “clinker–salt electrolyte–surfactant” system provided slowdown of AASC hardening as well as water-reducing effect. For example, complex admixture of “clinker–Na_2SO_4–SLS–SG” composition provided hardening beginning in 60 min and end in 75 min. Compressive strength of modified AASC has increased from 28.8 to 34.4 MPa at the age of 2 days, from 40.0 up to 45.3 MPa at the age of 7 days and from 50.3 to 56.9 MPa at the age of 28 days due to manifestation of water-reducing effect of the complex admixture (W/C was reduced from 0.29 to 0.26).

Replacement of Na_2SO_4 with NaNO_3 in the complex admixture makes it possible to obtain cement with initial setting 65 min and end setting 83 min. Also, strength of pastes at the age of 2 days, 43.4 MPa at the age of 7 days and from 50.3 to 56.9 MPa at the age of 28 days.

The results of influence of organo-mineral admixtures of the “clinker–salt electrolyte–surfactant” system on proper deformations in AASC are shown in Fig. 6.

Unlike the system with Na_2SO_4, new layered lamellar formations with a distinct crystalline structure were observed along with calcium hydrosilicates and hydroaluminates during hardening of the AACP modified with a complex admixture of “NaNO_3–SLS–SG” system (Fig. 5, a). These new formations can be attributed to calcium hydronitroaluminates, $3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot \text{Ca(NO}_3)_2 \cdot 10\text{H}_2\text{O}$, (Table 3) [27] which is confirmed by the presence of strong peaks in the DTA curves at $\tau = 140$, 510 and 847 °C (Fig. 2). These new crystalline formations block the space between gel-like phases and may explain reduction of the cement stone shrinkage.

![Diagram](Image)

Fig. 5. Characteristics of microstructure of alkali-activated portland cement modified with complex admixture “NaNO_3–SLS–SG” after 28 days of hardening: a – electron photomicrograph of the cleavage surface; b – probe analysis

Table 1

Oxide composition, %
O
52.88

Table 2

Oxide composition, %
O
37.95

Table 3

Oxide composition, %
O
6.77

![Graph](Image)

Fig. 6. Development of proper deformations in alkali-activated slag cement when using complex admixtures of “clinker–salt electrolyte–surfactant” system.
The use of complex admixtures “clinker–Na₂SO₄–SLS–SG” and “clinker–NaNO₃–SLS–SG” enabled a reduction of AASC shrinkage from 0.984 to 0.810 and 0.683 mm/m, respectively.

5.4. Structure formation in alkali-activated slag cement modified with a complex organo-mineral admixture

Influence of the most effective complex admixture of “NaNO₃–SLS–SG” composition on structure formation in AASC was studied using DTA (Fig. 7), electron microscopy (Fig. 8, a) and probe analysis (Fig. 8, b). Chemical and oxide compositions of new formations of the modified AASC obtained in probe analysis by means of REMMA 102-02 electron microscope-microanalyzer are given in Table 4.

According to the DTA results (Fig. 7), phase composition of modified AASC after hydration was represented mainly by calcium hydroxides and gyrolite 2CaO·3SiO₂·2H₂O (end effects at 610–785 °C and 785–825 °C–>recrystallization to wollastonite). The end effect at 590–610 °C indicated the presence of sodium hydroaluminosilicate of gmelinite type (Na₂Ca)·Al₂Si₃O₁₀·6H₂O in the hydrate products.

Modification of AASC with complex admixture “clinker–NaNO₃–SLS–SG” provided an increased degree of crystallization of calcium hydroxides of low basicity as evidenced by the shift of exo-effect temperature from 785 to 825 °C characteristic for recrystallization of above new formations to wollastonite.

New hydroaluminosilicate formations additionally contain nitric oxide (Table 4) and form clusters in a form of spherulites and plates (Fig. 8).

Thus, microstructure of the modified AASC is characterized by higher density, uniformity, and consolidation of new hydrate formations with a high degree of crystallization.

6. Discussion of results obtained from studying the effect of complex organo-mineral admixtures on proper deformations in AAC

Ways were offered and regularities revealed for effective regulation of proper deformations in AAC at variation of GBS content from 0 to 100 %.

It was shown that the types of AAC that are diametrically opposite in content of slag (AAPC and AASC) are characterized by different kinetics of structure formation, phase composition of hydrate products and morphology of new formations. These differences determined different properties of these cements and required different approaches to regulate their proper deformations without adverse effect on their physical and mechanical properties.

For example, shrinkage of the “clinker–SM” system with SM content in AAC composition from 0 to 100 % and, accordingly, alkaline component from 3.00 to 3.91 % for Na₂O determined satisfactory setting times AASC of the “GBS–SM” system: the initial setting 45 min and the end setting 7 min. Such short setting times lead to formation of imperfect initial structure of artificial stone. Composition of new hydrate formations of APS is represented mainly by gel-like hydrate formations resulting in a nucleus of crystalline phase on the gel surface.

Growth of GBS content in AAC composition from 0 to 100 % and, accordingly, alkaline component from 3.00 to 3.91 % for Na₂O determined satisfactory setting times AASC of the “GBS–SM” system: the initial setting 45 min and the end setting 60 min. In this case, growth of cement proper deformations was observed. For example, shrinkage of AASC of the control system was 0.984 mm/m (Fig. 6). Higher values of AASC shrinkage were found by higher content of gel-like formations in composition of the hydration products in comparison with AAPC.

Complex organic-mineral admixtures based on the “salt electrolyte–surfactant” system have been proposed to regulate proper deformations of AAC. Positive effect of complex admixtures on reduction of shrinkage was determined by a decrease in water content (water-reducing effect) and an increase in the degree of crystallization of new formations (Fig. 2).
For example, when using a complex admixture based on NaNO$_2$ for modification of AAC, a decrease in W/C from 0.34 to 0.29 led to an increase in strength of AAC compared with the control composition: from 30.3 to 39.3 MPa (2 days), from 37.3 to 48.7 MPa (7 days), from 43.5 to 53.1 MPa (28 days).

By means of methods of physico-chemical analysis, the degree of crystallization of artificial stone of AAC was raised when using complex admixtures based on Na$_2$SO$_4$ and NaNO$_2$ during formation of lamellar crystalline structures of mixtures (Na$_2$Ca$_{3-x}$Al$_x$(SO$_4$)$_3$(OH)$_6$) (Fig. 4, a) and calcium hydronitroaluminate 3CaO·Al$_2$O$_3$·Ca(NO$_3$)$_2$·10H$_2$O (Fig. 5, a), respectively. Expansion of AAC to 0.062 mm/m when using admixture “Na$_2$SO$_4$–SLS–SG” and a slight shrinkage of 0.017 mm/m when using the admixture “NaNO$_2$–SLS–SG” (Fig. 1) was the combined effect of action of organo-mineral complex admixtures. In this case, modification of AAC with complex admixtures based on Na$_2$SO$_4$ and NaNO$_2$ led to a longer the initial setting from 5 to 30 and 37 min, respectively, and to the end setting from 7 to 35 and 44 min, respectively.

The obtained results have allowed us to propose complex organo-mineral admixtures using clinker as expanding admixture for modification of AASC of the “GBS–SM” system with providing water-reducing effect and intensification of crystallization processes and, accordingly, reducing the gel phase content.

According to the study results, the greatest influence on reduction of AASC shrinkage was exerted by admixture of “clinker–NaNO$_3$–SLS–SG” composition. Reduction of shrinkage deformations was determined by reduction of W/C (from 0.29 to 0.26) and formation of globular formations of sodium hydroaluminosilicates of gmelinite type (Na$_2$Ca$_4$Al$_2$Si$_4$O$_{12}$·6H$_2$O) (Fig. 7) in the composition of hydrate products along with calcium hydrosilicates of low basicity. In this case, an increase in density, uniformity and consolidation of the artificial stone structure and reduction of content of the gel phase was observed. The use of a complex admixture has made it possible to reduce AASC shrinkage from 0.984 to 0.683 mm/m (Fig. 6) with a slight extension of hardening time: the initial setting from 45 to 60 and the end setting from 60 to 75 min. Reduction of W/C and intensification of crystallization processes through the use of complex admixtures have led to an increase in AASC strength compared to the control composition (without admixtures). For example, strength increased from 28.8 to 34.4 MPa, from 40.0 to 45.3 MPa and from 50.3 to 56.9 MPa on day 2, 7, and 28, respectively.

Hence, when GBS varied from 0 to 100 % (of weight of the aluminosilicate component), modification of AAC with organo-mineral complex admixtures of the developed compositions made it possible to reduce deformation shrinkage. Such changes are determined by influence of above admixtures on the degree of crystallization of new hydrate formations and their morphology while reducing water content in artificial stone. It should be noted that the use of complex admixtures of the salt electrolyte-surfactant system can significantly reduce AACP shrinkage. Modification of AAC with admixtures of “clinker–salt electrolyte–surfactant” system also led to reduction of shrinkage deformation, but these variations were smaller compared to those of AACP.

This was determined by lower content of gel phase in the structure of artificial AACP stone as well as formation in this case of new hydrate formations with a distinct crystalline structure (minaimite, calcium hydronitroaluminate). Instead, structure of AASC modified with complex admixture “clinker–NaNO$_3$–SLS–SG” was characterized by a high content of gel phase, even with growth of crystallization degree due to formation of gmelinite crystals. Thus, increase in GBS content in AAC makes it difficult to reduce shrinkage deformation in cement.

Thus, regularities of influence of complex organo-mineral admixtures on the processes of structure formation and AAC properties with GBS content from 0 to 100 % were revealed. Effective ways of regulating proper deformations of such cements by varying phase composition of new hydrate formations, their morphology and the degree of crystallization using the proposed complex admixtures were proposed. The obtained patterns can be used in development of materials for various functional purposes (concretes, mortars, dry building mixes) when optimizing content and composition of complex organo-mineral admixtures.

7. Conclusions

1. It was established that admixtures of “Na$_2$SO$_4$–SLS–SG” and “NaNO$_3$–SLS–SG” compositions are the most effective from the point of view of their influence on properties of AACP of the “clinker–SM” system. It has been shown that modification of AACP with a complex admixture of the “salt electrolyte–surfactant” system based on NaNO$_3$ reduces cement shrinkage from 0.406 to 0.017 mm/m. The use of an admixture based on Na$_2$SO$_4$ brought about expansion effect on AACP measuring 0.062 mm/m. In addition, the use of a complex admixture based on Na$_2$SO$_4$ provided extension of the hardening period of unmodified AACP: the initial setting from 5 to 30 min and the end setting from 3 to 35 min. Replacement of Na$_2$SO$_4$ with NaNO$_3$ in composition of a complex admixture provides an additional increase in the hardening time of AACP: the initial setting – up to 37 min and the end setting – up to 44 min. Accelerated growth of AACP strength by reducing the W/C ratio (water-reducing effect of surfactants) and increasing the degree of crystallization of new formations was also observed.

2. It was found that the effect of compensated shrinkage in AACP when using complex admixtures was provided by raising the degree of crystallization of hydroxilicate components in the structure of artificial stone. In addition, formation of additional phases with a distinct crystalline structure was observed in hydrated cement systems. For example, formation of sulfate-containing sodium-calcium hydroaluminate and calcium hydronitroaluminate in composition of the products of AACP hydration was observed when using complex admixtures based on Na$_2$SO$_4$ and NaNO$_3$, respectively. Additional crystalline phases created stresses in the interfacial space of new hydrate formations which reduced AACP shrinkage.

3. It was shown that the use of complex “clinker–Na$_2$SO$_4$–SLS–SG” and “clinker–NaNO$_3$–SLS–SG” admixtures provided reduction of AASC shrinkage from 0.984 to 0.810 and 0.683 mm/m, respectively. In addition, a complex admixture based on Na$_2$SO$_4$ provided extension of the AASCs initial setting from 45 to 60 min and the end setting from 60 to 75 min. Replacement of Na$_2$SO$_4$ with NaNO$_3$ in composition of a complex admixture provided the cement with the initial setting 65 min and the end setting 83 min. The use of complex admixtures provided a water-reducing effect and intensifica-
tion of crystallization processes which caused an increase in strength characteristics of AASC. Complex admixture of “clinker–NaNO₃–SLS–SG” composition had the strongest effect on AASC properties.

4. Reduction of shrinkage deformation in AASC when using a complex admixture based on NaNO₃ was attained by increasing density, uniformity, and consolidation of hydrosilicate formations. Formation of hydroalumosilicate structures of different morphologies with inclusion of nitrate anions further contributed to the effect of compensated shrinkage.

5. Approaches to regulation of proper deformations of AAC were proposed and different efficiency of complex organo-mineral admixtures of the “clinker–salt electrolyte–surfactant” system depending on GBS content in the cement composition was shown. Increase in GBS content in AAC composition brought about a greater content of gel phase during hydration which required greater efficiency of the complex admixture to counteract shrinkage deformation in the AAC. In other words, an increase in GBS content in AAC has made it difficult to regulate proper deformations. For example, AAPC (0 % GBS) featured expansion (0.062 mm/m) when using an admixture based on Na₂SO₄ and a slight shrinkage (0.017 mm/m) when using an admixture based on NaN₃. In this case, modification of AASC (100 % GBS) with an admixture of “clinker–NaNO₃–SLS–SG” composition determined reduction of shrinkage from 0.984 to 0.683 mm/m. Reduction of shrinkage deformations in AAC under influence of complex admixtures was determined in a general case by their water-reducing effect, intensification of crystallization processes and change of morphology and composition of hydrate phases in artificial stone.

Acknowledgement

The authors are grateful to the contribution of COST Action CA15202 SARCOS scientific collaboration program: Self-healing as Preventive Repair of Concrete Structures (http://www.cost.eu/COST_Actions/ca/CA15202). The authors also express their gratitude for financial support of this study performed under budgetary financing No. 0118U002017.

References

1. Kropyvnytska, T., Rucinska, T., Ivashchyshyn, H., Kotiv, R. (2019). Development of Eco-Efficient Composite Cements with High Early Strength. Lecture Notes in Civil Engineering, 211–218. doi: https://doi.org/10.1007/978-3-030-27011-7_27
2. Markiv, T., Sobol, K., Fransus, M., Fransus, W. (2016). Mechanical and durability properties of concretes incorporating natural zeolite. Archives of Civil and Mechanical Engineering, 16 (4), 554–562. doi: https://doi.org/10.1016/j.acme.2016.03.013
3. Syntsyk, M., Kropyvnytska, T., Kruts, T., Horpyko, O., Gaviu, I. (2018). Design of Rapid Hardening Quaternary Zeolite-Containing Portland-Composite Cements. Key Engineering Materials, 761, 193–196. doi: https://doi.org/10.4028/www.scientific.net/kem.761.193
4. Syntsyk, M., Kropyvnytska, T., Kotiv, R. (2014). Modified Plasters for Restoration and Finishing Works. Advanced Materials Research, 923, 42–47. doi: https://doi.org/10.4028/www.scientific.net/amr.923.42
5. Krivenko, P., Syntsyk, M., Kropyvnytska, T. (2018). Alkali-Sulfate Activated Blended Portland Cements. Solid State Phenomena, 276, 9–14. doi: https://doi.org/10.4028/www.scientific.net/ssp.276.9
6. Krivenko, P., Petrovlovskiy, O., Kovalchuk, O., Lapovska, S., Pasko, A. (2018). Design of the composition of alkali activated portland cement using mineral additives of technogenic origin. Eastern-European Journal of Enterprise Technologies, 4 (6 (94)), 6–15. doi: https://doi.org/10.15587/1729-4061.2018.140324
7. Kochetov, G., Prikhna, T., Kovalchuk, O., Samchenko, D. (2018). Research of the treatment of depleted nickelplating electrolytes by the ferritization method. Eastern-European Journal of Enterprise Technologies, 3 (6 (93)), 52–60. doi: https://doi.org/10.15587/1729-4061.2018.133797
8. Fernández-Jiménez, A., Pastor, J. Y., Martín, A., Palomo, A. (2010). High-Temperature Resistance in Alkali-Activated Cement. Journal of the American Ceramic Society, 93 (10), 3411–3417. doi: https://doi.org/10.1111/j.1551-2916.2010.03887.x
9. Xie, Y., Lin, X., Ji, T., Liang, Y., Pan, W. (2019). Comparison of corrosion resistance mechanism between ordinary Portland concrete and alkali-activated concrete subjected to biogenic sulfuric acid attack. Construction and Building Materials, 228, 117071. doi: https://doi.org/10.1016/j.conbuildmat.2019.117071
10. Krivenko, P., Petrovlovskiy, O., Kovalchuk, O. (2018). A comparative study on the influence of metakaolin and kaolin additives on properties and structure of the alkaliactivated slag cement and concrete. Eastern-European Journal of Enterprise Technologies, 1 (6 (91)), 33–39. doi: https://doi.org/10.15587/1729-4061.2018.119624
11. Krivenko, P. (2017). Why Alkaline Activation – 60 Years of the Theory and Practice of Alkali-Activated Materials. Journal of Ceramic Science and Technology, 8 (3), 323–334. doi: http://dx.doi.org/10.4416/JCST2017-00042
12. DSTU B V.2.7-181:2009. Tsementy luzhni. Tekhnichni umovy (2009). Kyiv, 10.
13. Kryvenko, P., Runova, R., Rudenko, I., Skorik, V., Omelchuk, V. (2017). Analysis of plasticizer effectiveness during alkaline cement structure formation. Eastern-European Journal of Enterprise Technologies, 4 (6 (88)), 35–41. doi: https://doi.org/10.15587/1729-4061.2017.106803
14. Yuan, X., Chen, W., Lu, Z., Chen, H. (2014). Shrinkage compensation of alkali-activated slag concrete and microstructural analysis. Construction and Building Materials, 66, 422–428. doi: https://doi.org/10.1016/j.conbuildmat.2014.05.085
15. Fridrichová, M., Dvořák, K., Gazdíč, D., Mokrá, J., Kulisek, K. (2016). Thermodynamic Stability of Ettringite Formed by Hydration of Yešelmite Clinker. Advances in Materials Science and Engineering, 2016, 1–7. doi: https://doi.org/10.1155/2016/9280131
16. Chen, K., Yang, C.-H., Yu, Z.-D. et. al. (2011). Effect of admixture on drying shrinkage of alkali-activated slag mortar. Chongqing Daxue Xuebao/Journal of Chongqing University, 34, 38–40.
17. Bílek Jr., V., Pařízek, L., Kosár, P., Kratochvíl, J., Kalina, L. (2016). Strength and Porosity of Materials on the Basis of Blast Furnace Slag Activated by Liquid Sodium Silicate. Materials Science Forum, 851, 45–50. doi: https://doi.org/10.4028/www.scientific.net/msf.851.45
18. Samchenko, S. V. (2016). Formirovanie i genezis struktury tsementnogo kamnya. Moscow: NIU MGSU, 284.
19. Omelchuk, V., Ye, G., Runova, R., Rudenko, I. I. (2018). Shrinkage Behavior of Alkali-Activated Slag Cement Pastes. Key Engineering Materials, 761, 45–48. doi: https://doi.org/10.4028/www.scientific.net/kem.761.45
20. Mora-Ruacho, J., Gettu, R., Aguado, A. (2009). Influence of shrinkage-reducing admixtures on the reduction of plastic shrinkage cracking in concrete. Cement and Concrete Research, 39 (3), 141–146. doi: https://doi.org/10.1016/j.cemconres.2008.11.011
21. Runova, R., Gots, V., Rudenko, I., Konstantynovskyi, O., Lastivka, O. (2018). The efficiency of plasticizing surfactants in alkali-activated cement mortars and concretes. MATEC Web of Conferences, 230, 03016. doi: https://doi.org/10.1051/matecconf/201823003016
22. Rudenko, I. I., Konstantynovskyi, O. P., Kovalchuk, A. V., Nikolainko, M. V., Obremsky, D. V. (2018). Efficiency of Redispersible Polymer Powders in Mortars for Anchoring Application Based on Alkali Activated Portland Cements. Key Engineering Materials, 761, 27–30. doi: https://doi.org/10.4028/www.scientific.net/kem.761.27
23. Palacios, M., Houst, Y. F., Bowen, P., Puertas, F. (2009). Adsorption of superplasticizer admixtures on alkali-activated slag pastes. Cement and Concrete Research, 39 (8), 670–677. doi: https://doi.org/10.1016/j.cemconres.2009.05.005
24. Najimi, M., Ghafoori, N., Sharbaf, M. (2019). Alkali-Activated Natural Pozzolan/Slag Binders: Limitation and Remediation. Magazine of Concrete Research, 1–48. doi: https://doi.org/10.1680/jmacr.18.00184
25. Bílek, V., Kalina, L., Novotaň, R., Tkacz, J., Pařízek, L. (2016). Some Issues of Shrinkage-Reducing Admixtures Application in Alkali-Activated Slag Systems. Materials, 9 (6), 462. doi: https://doi.org/10.3390/ma9060462
26. Bayliss, P., Kolitsch, U., Nickel, E. H., Pring, A. (2010). Alunite supergroup: recommended nomenclature. Mineralogical Magazine, 74 (5), 919–927. doi: https://doi.org/10.1180/minmag.2010.074.5.919
27. Plugin, A. A., Runova, R. F. (2018). Bonding Calcium Chloride and Calcium Nitrate into Stable Hydration Portland Cement Products: Stability Conditions of Calcium Hydrochloraluminates and Calcium Hydronitroaluminates. International Journal of Engineering Research in Africa, 36, 69–73. doi: https://doi.org/10.4028/www.scientific.net/jera.36.69