Umbilical Coiling Index as a Marker of Perinatal Outcome

Dr. T. Shobha1, Dr. V. Sai Sharanya2

1Associate Professor Modern Government Maternity Hospital, Petlaburz, Department of Obstetrics and Gynaecology, Osmania Medical College, Hyderabad – Telangana

2Post Graduate, Modern Government Maternity Hospital, Petlaburz, Department of Obstetrics and Gynaecology, Osmania Medical College, Hyderabad – Telangana

Abstract: Aim: To correlate the importance of patterns of umbilical coiling in terms of umbilical coiling index with various fetal parameters in a 2 year study period. Objectives: The present study is being done to compare the perinatal outcome with the abnormal coiling of umbilical cord respect to umbilical coiling index. Materials and Methods: This was a prospective study which was carried out in the department of Obstetrics and Gynaecology, Osmania Medical College, Hyderabad, Telangana for a period of 2 years. 200 patients in active labour who were admitted in labour room irrespective of their parity were selected randomly for the study. Results: The total number of cases studied were 200. The number of babies with birth weight < 2.5 kg were 26 (13%), between 2.5 – 3.5 kgs are 168 (84%) and > 3.5 are 6(3%). Babies born with Apgar score at 1 minute < 4 were 43 (21.5%) and > 4 were 157 (78.5%). Babies born with Apgar score at 5 minutes < 7 were 25 (12.5%) and > 7 were 175 (87.5%). Out of 200 babies, 35 (17.5%) were admitted in NICU and the rest 165(82.5%) were not admitted. In the study of 200 babies, 23 (11.5%) had FGR, and 177 (88.5%) had no FGR. Out of 200 babies in the study, 52 (26%) had fetal distress and the rest 148 (74%) had no fetal distress. The meconium stained liquor was found in 42 cases (21%) and clear liquor is seen in 158(79%). any concentration of liquor was taken into the criteria (thin or thick). Conclusion: UCI < 10th percentile < 0.06, UCI > 90th percentile >0.41. The mean length of the umbilical cord in the study was 52.87 +/- 13.49. The mean umbilical coiling index (UCI) was 0.24 +/- 0.09 which is consistent with the previous studies. The UCI was correlated to the birth weight, APGAR score at 1 min and 5 min, NICU admissions, meconium staining, fetal distress, fetal growth restriction. HYPERCOILING (UCI >90th percentile) is associated with low birth weights, low APGAR score at 1 minute of the baby, low APGAR scores at 5 minutes, more NICU admissions, fetal distress associated with the baby and also meconium staining of the liquor. HYPOCOILING (UCI <10th percentile) is associated with low birth weights, low APGAR score at 1 minute, NICU admissions, and fetal growth restriction. It is also associated with fetal distress of the baby and also meconium staining of the liquor. Thus antenatal detection of the coiling index can identify fetus at risk and thus help in further management and timely intervention.

Keywords: Hypercoiled umbilical cord, Hypocoiled umbilical cord, Intrauterine fetal growth restriction, Meconium stained liquor, Umbilical coiling index.

1. Introduction

The umbilical cord or funis forms connecting link between the fetus and placenta through which the fetal blood flows to and from the placenta. Its three blood vessels pass along the length of the cord in a coiled or helical fashion1 (spiral course3). A coil is defined as completed 360 degrees spiral course of umbilical vessels around Wharton’s jelly1.

- The coiling property of cord vessels was described as early as in 1521 by Berengariuls. In 1954 umbilical coiling was first quantified by Edmonds who divided the total number of coils by the umbilical cord length in centimeters and called it “the index of twist”. He assigned positive and negative scores to clock wise and anti clock wise coiling respectively1,5. Later strong et al simplified by eliminating these directional scores and named it the “umbilical coiling index”1,4.
- An abnormal UCI includes both hypo coiled cords (i.e., cords with UCI <10th percentile) and hyper coiled cords (i.e., UCI >90th percentile). An abnormal umbilical coiling has been studied in relation to adverse perinatal outcomes1,2,3,6,7.
- The present study has been undertaken to compare the perinatal outcome with the abnormal coiling of umbilical cord with respect to umbilical coiling index.

2. Materials and Methods

This was a prospective study which was carried out in the department of Obstetrics and Gynaecology, OSMANIA MEDICAL COLLEGE, Hyderabad, Telangana for a period of 2 years.

Ethical committee clearance was obtained from the Institute research council and Ethics committee.

200 patients in active labour who were admitted in labour room irrespective of their parity were selected randomly for the study.

Inclusion Criteria
- Women with term gestation irrespective of parity
- Singleton pregnancies
- Live baby
- Spontaneous onset of labour
- Women in active labour.
- Cephalic presentation

Exclusion Criteria
- Twin gestation
- Preterm delivery
- Intrauterine death
• Anomalous baby
• Malpresentation
• Pre eclampsia
• Elective caesarian sections.

200 patients who were in active labour with term gestations, irrespective of parity, with singleton pregnancies with live babies and were admitted in labour room were included in the study. Patients were observed in second and third stage of labour. After separating the baby from umbilical cord, the cord was clamped and cut close to the baby as possible. The umbilical cord was measured including both the placental end of the cord and umbilical stump on the baby side. Number of complete coils or spirals was counted.

After this UCI was calculated by dividing total number of coils by the total length of the cord in centimeters.

\[UCI = \frac{\text{numbr of coils}}{\text{total length of the cord}} \]

Then, perinatal parameters like birth weight, meconium staining, gender, NICU admission, Apgar score at 1 minute, Apgar score at 5 minutes, fetal growth restriction, direction of twist were correlated with umbilical coiling index.

Thus the effect of umbilical vascular coiling and perinatal outcome was studied. All the mothers and babies were followed up till discharge.

Statistical Analysis
- Data was entered in Microsoft excel and analysis was done using SPSS version 20.
- Prospective statistical analysis was done. Results are presented as numbers and percentages.
- Chi square test is used to find out the significance of study parameters on a categorical scale between two groups.
- P value : Significance is assessed at 5 % level of significance.

3. Results

Table 1: Birth weight

Baby details	criteria	Number of neonates	%
Birth weight	< 2.5	26	13%
	2.5 – 3.5	168	84%
	> 3.5	6	3%
Total		2	100%

The number of babies with birth weight < 2.5 kg are 26 (13%), between 2.5 – 3.5 kgs are 168(84%) and > 3.5 are 6(3%).

Table 2: Apgar score at 1 minute

Baby details	criteria	Number of neonates	%
Apgar score at 1 min	< 4	43	21.5%
	> 4	157	78.5%
total		200	100%

Babies born with Apgar score at 1 minute < 4 were 43 (21.5%) and > 4 were 157 (78.5%).

Table 3: Apgar score at 5 minutes

Baby details	criteria	Number of neonates	%
Apgar score at 5 min	< 7	25	12.5%
	> 7	175	87.5%
total		200	100%

Babies born with Apgar score at 5 minutes < 7 were 25 (12.5%) and > 7 were 175 (87.5%).

Out of 200 babies, 35 (17.5%) were admitted in NICU and the rest 165(82.5%) were not admitted.

Table 4: NICU admissions

Baby details	criteria	Number of neonates	%
NICU admissions	Yes	35	17.5%
	no	165	82.5%
total		200	100%

Out of 200 babies in the study, 52 (26%) had fetal distress and the rest 148 (74%) had no fetal distress.

Table 5: fetal distress

Baby details	criteria	Number of neonates	%
Fetal distress	Yes	52	26%
	no	148	74%
total		200	100%

Table 6: Meconium staining

Baby details	Criteria	Number of Neonates	%
Meconium Staining	Yes	42	21%
	NO	158	79%
Total		200	100%

The meconium stained liquor was found in 42 cases (21%) and clear liquor is seen in 158(79%) . any concentration of liquor was taken into the criteria (thin or thick).

4. Discussion

Several studies in the past have correlated the relationship between perinatal outcome and the UCI The umbilical coiling index has found to be an effective indicator of perinatal outcome.

This is a prospective study over a time period of 2 YEARS from conducted in the department of obstetrics and gynecology, Modern Government Maternity Hospital, Osmania medical college, Hyderabad aimed to correlate the importance of patterns of umbilical coiling in terms of umbilical coiling index with various fetal parameters.

Women as per the selection criteria were taken for the study UCI was calculated by strong et al formula, dividing the total number of coils by the total length of the cord in centimeters and the UCI obtained was correlated with the various parameters. The UCI was correlated to the birth weight, Apgar score at 1 min and 5 min, NICU admissions, meconium staining, fetal distress, fetal growth restriction.

The mean length of the umbilical cord in the study was 52.87 +/- 13.49. The mean number of coils was 12.59 +/- 5.38.
The mean UCI in the study is comparable to the study done by Ezimokhai et al (2001) and Chitra et al (2012).

In consideration of the abnormal versus normal coiling distribution in this study, it was observed that 10th percentile — hypocoiling (UCI < 0.06) and 90th percentile — hypercoiling (UCI >0.41) were in agreement with the previous studies. Among the 200 patients, out of which 159 (79.5%) had normocoiling i.e., UCI between 10th to 90th percentile. 23 cases (11.5%) had hypocoiling i.e., UCI <10th percentile, 18(9%) cases had hypercoiling, i.e., UCI >90th percentile.

The women included in the present study were in the age group ranging from 18-35 years. Majority of the women in the age group 20-27 years. Total number of mothers in the age group between 18 – 34 were 197(98.5%) . among which 22(11.16%) had hypocoiled cords, 157(79.69%) had normocoiled cords and 18(9.14%) had hypercoiled cords.3(1.5%) were in the age group of >/- 35 years, among which 1(33.33%) had hypocoiling and the rest 2(66.66%) had normocoiled cords. P value for hypocoiled cords was found to be 0.28 and hypercoiled cords was 0.63. there is no statistical significance between these two groups.

Ezimokhai et al. found hypercoiling to be associated with extremes of maternal age (<20 and >35 years). None of the other studies found age to be a significant factor.

UCI was correlated with birth weights of the newborn 20(13%) had birth weights < 2.5 kgs, out of which 13(50%) had normocoiling, 12(46.15%) had hypercoiling and 1(3.84%) had hypocoiling. 168 (84%) babies had birth weights between 2.5 – 3.5 kgs . Of which 141(83.92%) had normocoiled cords, 21(12.5%) had hypocoiling and 6(3.57%) had hypercoiled cords. 6 (3%) had birth weights >3.5 kgs, of which 5(83.33%) had normocoiled and 1(16.66%) had hypocoiling. P value being <0.01 is strongly significant. Literature has found a consistent association between hypercoiled and LBW babies, as shown by Rana et al . , Raio et . al and de Laat et. al. However the authors were unable to give a satisfactory explanation for this association.

Out of 200 babies, 23(11.5 %) had fetal growth restriction. Out of which 2(8.69%) had hypocoiling, 8 (34.78%) had normocoiling and 13(56.52%) had hypercoiled cords. Rest 177 (88.5 %) had no fetal growth restriction, of which, 21(11.86%) had hypocoiled cords, 151(85.31 %) had normocoiled cords and 5(2.82 %) had hypercoiled cords. P value being 0.51 for hypocoiled cords and <0.001 for hypercoiled cords, suggests strong significance between hypercoiled cords and fetal growth restriction.

In consideration of the abnormal versus normal coiling distribution in this study, it was observed that 10th percentile — hypocoiling (UCI < 0.06) and 90th percentile — hypercoiling (UCI >0.41) were in agreement with the previous studies. Among the 200 patients, out of which 159 (79.5%) had normocoiling i.e., UCI between 10th to 90th percentile. 23 cases (11.5%) had hypocoiling i.e., UCI <10th percentile, 18(9%) cases had hypercoiling, i.e., UCI >90th percentile.

The women included in the present study were in the age group ranging from 18-35 years. Majority of the women in the age group 20-27 years. Total number of mothers in the age group between 18 – 34 were 197(98.5%) . among which 22(11.16%) had hypocoiled cords, 157(79.69%) had normocoiled cords and 18(9.14%) had hypercoiled cords.3(1.5%) were in the age group of >/- 35 years, among which 1(33.33%) had hypocoiling and the rest 2(66.66%) had normocoiled cords. P value for hypocoiled cords was found to be 0.28 and hypercoiled cords was 0.63. there is no statistical significance between these two groups.

Ezimokhai et al. found hypercoiling to be associated with extremes of maternal age (<20 and >35 years). None of the other studies found age to be a significant factor.

UCI was correlated with birth weights of the newborn 20(13%) had birth weights < 2.5 kgs, out of which 13(50%) had normocoiling, 12(46.15%) had hypercoiling and 1(3.84%) had hypocoiling. 168 (84%) babies had birth weights between 2.5 – 3.5 kgs . Of which 141(83.92%) had normocoiled cords, 21(12.5%) had hypocoiling and 6(3.57%) had hypercoiled cords. 6 (3%) had birth weights >3.5 kgs, of which 5(83.33%) had normocoiled and 1(16.66%) had hypocoiling. P value being <0.01 is strongly significant. Literature has found a consistent association between hypercoiled and LBW babies, as shown by Rana et al . , Raio et . al and de Laat et. al. However the authors were unable to give a satisfactory explanation for this association.

Out of 200 babies, 23(11.5 %) had fetal growth restriction. Out of which 2(8.69%) had hypocoiling, 8 (34.78%) had normocoiling and 13(56.52%) had hypercoiled cords. Rest 177 (88.5 %) had no fetal growth restriction, of which, 21(11.86%) had hypocoiled cords, 151(85.31 %) had normocoiled cords and 5(2.82 %) had hypercoiled cords. P value being 0.51 for hypocoiled cords and <0.001 for hypercoiled cords, suggests strong significance between hypercoiled cords and fetal growth restriction.

Out of 200 babies, 52 (26%) had fetal distress. Out of which 17(32.69 %) had hypocoiling, 28 (53.84%) had normocoiling and 7(13.46 %) had hypercoiled cords. Rest 148 (74 %) had no fetal distress, of which, 64% had hypocoiled cords, 131(88.5%) had normocoiled cords and 11(7.43 %) had hypercoiled cords. p value being <0.01 for hypocoiled cords and 0.032 for hypercoiled cords, suggests strong significance between two groups. hypocoiled is more associated than hypercoiled cords .Rana et al. and Ercai et al. found FHR decelerations to be significantly associated with hypoocoiled cords. Rana et al. explained that coiling provides turgor and compression resistant properties to the cord which become compromised as the cord becomes hypoocoiled.

Out of 200 cases studied, 42(21%) had meconium stained liquor out of which, 14(33.33%) had hypoocoiled cords, 22(52.38%) had normocoiled cords and 6(14.28%) had hypoocoiled cords. 158(79%) did not have any meconium staining of the liquor. Of out of them, 9(5.69%) had hypercoiled cords, 137(86.7%) had normocoiled cords and 12(7.59%) had hypercoiled cords. Meconium staining of the amniotic fluid was found to be significantly associated with both hypoocoiled (p value = <0.01) and hypercoiled (p value = 0.03) cords .Gupta S et . al studied 107umbilical cords and found that in hypoocoiled cords, low apgar scores were present . in another study which was done by Padmanabhan et . al 130 umbilical cords were studied and it was found that in hypoocoiled groups, there were significantly low Apgar scores.

25(12.5 %) babies had Apgar at 5 min < 7, out of them 17(68%) had normocoiling, 6 (24%) had hypocoiling and 2 (8%) had hypercoiling. 175 (87.5%) babies had Apgar at 5 minutes >7, out of them 142 (81.14%) had normocoiling, 17 (9.71%) had hypocoiling and 16 (9.14%) had hypercoiling . p value being for hypoocoiled cords 0.002 and for hypercoiled cords 0.97 . the p value of hypoocoiled cords is strongly suggestive of significant correlation between the two groups. hypocoiled cords are associate with low apgar at 7 minutes.

35(17.5%) babies out of 200 babies were required NICU care, out of them 19 (54.28 %) had normocoiling, 10 (28.57%) had hypocoiling and 6 (17.14 %) had hypercoiling. 16(82.5%) babied did not require any NICU care, out of them 140(84.84 %) had normocoiling, 13 (7.87 %) had hypocoiling and 12(7.27 %) had hypercoiling. p value being >0.001 for hypoocoiled cords and 0.0136 for hypercoiled cords is strongly significant suggestive of correlation between the two groups, hypocoiled cords more associated than hypercoiled cords.

Out of 200 babies, 52 (26%) had fetal distress. Out of which 17(32.69 %) had hypocoiling, 28 (53.84%) had normocoiling and 7(13.46 %) had hypercoiled cords. Rest 148 (74 %) had no fetal distress, of which, 64% had hypocoiled cords, 131(88.5%) had normocoiled cords and 11(7.43 %) had hypercoiled cords. p value being <0.01 for hypocoiled cords and 0.032 for hypercoiled cords, suggests strong significance between two groups. hypocoiled is more associated than hypoacoiled cords .
5. Conclusion

UCI < 10th percentile < 0.06
UCI > 90th percentile >0.41

The mean length of the umbilical cord in the study was 52.87 +/- 13.49.
The mean number of coils was 12.59 +/- 5.38.

The mean umbilical coiling index (UCI) was 0.24 +/- 0.09 which is consistent with the previous studies.

The UCI was correlated to the maternal factors like maternal age, birth weight, APGAR score at 1 min and 5 min, NICU admissions, meconium staining, fetal distress, fetal growth restriction, direction of twist of the cord.

HYPOCOILING (UCI <10th percentile) is associated with low birth weights, low APGAR score at 1 minute of the baby, low APGAR scores at 5 minutes, more NICU admissions, fetal distress associated with the baby and also meconium staining of the liquor.

HYPERCOILING (UCI >90th percentile) is associated with low birth weights, low APGAR score at 1 minute, NICU admissions, and fetal growth restriction. It is also associated with fetal distress of the baby and also meconium staining of the liquor.

Thus antenatal detection of the coiling index can identify fetus at risk and thus help in further management and timely intervention.

6. Summary

The umbilical cord is vital for development, wellbeing and survival of the fetus and yet, it is vulnerable to kinking, compressions, traction and torsion which may affect the perinatal outcome. The total number of coils for any particular cord is believed to be established early in gestation. The pattern of coiling develops during second and third trimesters, presumably due to smashes in the cord and these changes as the pregnancy advances. The three blood vessels pass along the length of the cord in helical or coiled fashions. The helical fashion of these umbilical vessels is termed as spiral course.

The vessels of the cord like all hollow cylinders are prone to torsion, compression, tension, and subsequent interruption of the blood flow. This risk is minimized by their helical disposition. The coiled umbilical cord perhaps of its elastic properties, is able to resist external forces that might compromise the umbilical vascular flow. The coiled umbilical cord acts like a semi erectile organ that is more resistant to snarling, torsion, stretch and compression than noncoiled cord. This is referred to as "spontaneous internal ballotment". Regardless of its origin, umbilical coiling appears to confer turgor to the umbilical unit, producing the cord that is strong but flexible.

This is a prospective study with 200 cases carried out to calculate the UCI and correlate the relationship between the abdominal umbilical coiling index (hypo or hyper) and adverse perinatal outcome.

Baseline characters were similar in the three groups. There was a significant difference between the hypercoiled and hypocoiled group with respect to the perinatal parameters like FGR, meconium staining, low APGAR score at 1 min and 5 minutes and birth weights.

Thus both hypo and hypercoiling of cords had significant correlation with adverse fetal outcome. The findings of the present study point out that low UCI is an indicator of perinatal complications. Antenatal detection of this abnormal coiling index by ultrasound can lead to identification of fetus at risk. The sensitivity values of antenatal sonography to predict hypocoiling and hypercoiling were 78.9% and 25.4% respectively. Thus quantitating the degree of umbilical vascular coiling can be significant with proper correction in the antepartum period.

References

[1] Gupta S, Faridi MMA, Krishnan J. Umbilical coiling index. The Journal of Obstetrics & Gynecology of India. 2006; 56(4):315–319.
[2] Rana J, Ebert GA, Kappy KA. Adverse perinatal outcome in patients with an abnormal umbilical coiling index. Obstetrics and Gynecology. 1995;85(4):573–577.
[3] Edmonds HW. The spiral twist of the normal umbilical cord in twins and in singletons. American Journal of Obstetrics and Gynecology. 1954;67(1):102–120.
[4] Strong TH, Jarles DL, Vega JS, Feldman DB. The umbilical coiling index. American Journal of Obstetrics and Gynecology. 1994;170(1, part 1):29–32.
[5] Lacro RV, Jones KL, Benirschke K. The umbilical cord twist: origin, direction, and relevance. American Journal of Obstetrics and Gynecology. 1987;157(4):833–838.
[6] Strong TH, Finberg HL, Mattox JH. Antepartum diagnosis of noncoiled umbilical cords. Am J Obstet Gynecol. 1994;170:1729–33.
[7] Erkal T, Laun S, Altunyurt S, Saygili U, Cinar O, Mumcu A. Umbilical coiling index: is it a marker for fetus at risk? The British Journal of Clinical Practice. 1996;50(5):254–256.
[8] Cunningham FG, Gant NF, Leveno KJ, Gilstra III LC, Hauth JC, Westrom KD. The placenta and fetal membranes in ; textbook of William 21st edition. New York :Mc graw hill.:2001:105-106.
[9] Stephen A. Heifetz . The umbilical cord : Obstetrically important lesions, clinical Obstetrics and Gynaecology 1996 ;39 :571 – 87.
[10] Dutta D.C ., the placenta and fetal membrane ; textbook of obstetres ; 6 th edn, Calcutta, new central book agency private limited :2004 :28-40.
[11] M. W. M. De Laat , A. Franx , M. L. Bots , G. H. A. Visser, and P. G. J. Nikkels, “Umbilical coiling index in normal and complicated pregnancies. ” Obstetrics and Gynecology, 2006: 107 (5):1049–1055.
[12] Georgiou HM, Rice GE, Walker SP, Wein P, Gude NM, Permezel M. The effect of vascular coiling on venous perfusion during experimental umbilical cord encirclement. Am J Obstet Gynecol, 2001;184(4):673–678.
[13] Fox H. pathology of placenta .Philadelphia .WB saunders 1970.
Abnormal umbilical cord coiling is associated with adverse perinatal outcomes. J Obstet Gynecol Obstet 1999;86 (4) :990-93

Politzer G, Sternberg SH, Uberdiekentwicklung der venenalse mangel undes nabelstrings bewuschen Z. gen. anat 1930; 92 :279 - 379

Bleckstein I, Varon E. Implications of the difference in coiling indices at different segments of umbilical cord. Gynecol obstet invest 2001 ; 52 :203 -06

Machin GA, Ackermann J, Gilbert- Barness E. Abnormal umbilical cord coiling is associated with adverse perinatal outcomes. Pediatr and Developmental Pathology. 2000;3(5):462-471

Sibulkin M.A note on the bath tub vortex theory and the earth's rotation. Am Sci 1983; 71:352-53.

Corballis MC, Morgan MJ. On the biological basis of human laterality: evidence for a maturational left – right gradient. If the mechanisms of inheritance. Behav brain sci 1978 ;2 :261 – 336.

Pande BS, Singh J. One sided dominances in the upper limbs of human fetuses as evidence by asymmetry in muscle and bone. J Anat 1971 ;109 : 457 -59.

K lopper A. DiezFalusy E. fetus and placenta (Blackwell, oxford 1969)

Brews . Holland and brew’s manual of obstetrics .12th edition. London :Churchill ;1963

Johnstone RW, Keller RJ. A textbook of midwifery for students and practitioners. 19th edn. London : Adams and Black :1963

Masani KM, Parikh MN. A textbook of obstetrics. 2nd edn. Bombay :popular prakashan :1969.

Strong Jr. TH, Elliott JP, Radin TG. Non-coiled umbilical blood vessels: a new marker for the fetus at risk. Obstetrics and Gynecology. 1993;81(3):409-411.

Ezimokhai M, Rizk DEE, Thomas L. Maternal risk factors for abnormal vascular coiling of the umbilical cord. American Journal of Perinatology. 2000;17(8):441-446.

Pudmanabhan LD, Mhaskar R, Mhaskar A. umbilical vascular coiling and the perinatal outcome J Obstet And Gynecol India 2001; 51 (6) :43 -44

Predanic M, Perini SC, Chasen ST et al. Assessment of umbilical cord coiling during the routine fetal sonographic anatomic survey in the second trimester. J Ultrasound Med 2005;24: 185-91

Y.Qin, T.K. Lau and M.S.Rogers.second trimester ultrasonographic assessment of the umbilical coiling index, Ultrasound obstetrics and gynaecology 2002 :20:458-463

Raio L, Ghezzi F, Di Naro E, et al. Prenatal diagnosis of a lean umbilical cord: a simple marker of the fetuses at risk. Ultrasound in Obstetrics & Gynecology. 1999;13(3):157-160.

Dr J. Nishio, Y. Nakai, M. Mine, M. Imanaka and S. Ogita Characteristics of blood flow in intrauterine growth-restricted fetuses with hypercoiled cord, ultrasound Obstet gynecol 1999 ; 13 :171 - 175

Dakshayini devaru and Meghna thosoo . umbilical coiling index and perinatal outcome J obst and gynaec India, 2012;62(1) :43 - 46

T.Chitra . Y.S Sushanth, S.Raghavan, umbilical coiling index as a marker of perinatal outcome :an analytical study, obst and gynecol. 2012

Jo YS, Jang DK, Lee G. the sonographic umbilical cord coiling in late second trimester of gestation and perinatal outcomes: Int J Med Sci 2011;8(7) :594 -98

Dw Laat MW, Franx A, Nikkels PG, Visser GH .prenatal ultrasonographic prediction of the umbilical coiling index at birth and adverse perinatal outcome, 2006:28(5) :704 -09

Degani S, Leibovich Z, Shapiro I, Gonen R, Ohel G. Early second-trimester low umbilical coiling index predicts small-for-gestational-age fetuses. J Ultrasound Med. 2001 Nov;20(11):1183-8.

Bruch JF3, Sibony O, Benali K, Challier JC, Blot P, Nessmann C. Computerized microscope morphometry of umbilical vessels from pregnancies with intrauterine growth retardation and abnormal umbilical artery Doppler. Hum Pathol. 1997 Oct;28(10):1395-45.

Jeanneen Gebrane-Younes, Hoang Ngoc Minh, Louis Oerc1. Ultrastructure of human umbilical vessels: a possible role in amniotic fluid formation? Placenta 986 ; 7 : 173 - 185

Bernard Rosner Fundamentals of Biostatistics, 5th Edition, duxbury, page 80- 240

M.Venkatassamy reddy, statistics for mental health care research, NIMHANS publication, INDIA, 2002 : 108 - 144

Sunder Rao P S S, Richard J : an introduction to biostatistics, a manual for students in health sciences, New Delhi :prentice hall of India, 86-160

Eng J. Sample size estimation: how many individuals should be studied? Radiology 2003; 227: 309-313

[35] M. Venkatassamy reddy, statistics for mental health care research, NIMHANS publication, INDIA, 2002 : 108 - 144

[36] Sunder Rao P S S, Richard J : an introduction to biostatistics, a manual for students in health sciences, New Delhi :prentice hall of India, 86-160

[37] Eng J. Sample size estimation: how many individuals should be studied? Radiology 2003; 227: 309-313