The proportional UAP characterizes weak Hilbert spaces*

by W. B. Johnson and G. Pisier

Abstract: We prove that a Banach space has the uniform approximation property with proportional growth of the uniformity function iff it is a weak Hilbert space.

* Both authors were supported in part by NSF DMS 87-03815
Introduction

The “weak Hilbert spaces” were introduced and studied in [P 2]. Among the many equivalent characterizations in [P 2] perhaps the simplest definition is the following. A Banach space is a weak Hilbert space if there is a constant C such that for all n, for all n-tuples (x_1, \ldots, x_n) and (x_1^*, \ldots, x_n^*) in the unit balls of X and X^* respectively, we have

$$|\det(< x_i^*, x_j>)|^\frac{1}{n} \leq C.$$

The first example of a non Hilbertian weak Hilbert space was obtained by the first author (cf. [FLM], Example 5.3 and [J]).

Recall that a Banach space X has the uniform approximation property (in short UAP) if there is a constant K and a function $n \to f(n)$ such that for all n and all n-dimensional subspaces $E \subset X$, there is an operator $T : X \to X$ with $\text{rk}(T) \leq f(n)$ such that $\|T\| \leq K$ and $T|_E = I|_E$.

For later use, given $K > 1$ we introduce

$$k_X(K,n) = \sup_{E \subset X, \dim E = n} \inf \{\text{rk}(T)\}$$

where the infimum runs over all $T : X \to X$ such that $\|T\| \leq K$ and $T|_E = I|_E$.

Note that X has the UAP iff there is a constant K such that $k_X(K,n)$ is finite for all n; we then say that X has the K-UAP. The asymptotic growth of the function $n \to k_X(K,n)$ provides a quantitative measure of the UAP of the space X.

For instance, if X is a Hilbert space we have clearly $k(1,n) = n$, hence if X is isomorphic to a Hilbert space there is a constant K such that

$$k_X(K,n) = n \quad \text{for all } n.$$

The converse is also true by the complemented subspace theorem of Lindenstrauss-Tzafriri [LT 1].

The main result in this paper can be viewed as an analogous statement for weak Hilbert spaces, as follows.
Main Theorem. A Banach space X is a weak Hilbert space iff there are constants K and C such that

$$k_X(K, n) \leq Cn \quad \text{for all } n.$$

That is, proportional asymptotic behavior of the uniformity function in the definition of the UAP characterizes weak Hilbert spaces.

It was proved in [P 2] that weak Hilbert spaces have the UAP but no estimate of the function $n \to k_X(K, n)$ was obtained.

For the purposes of this paper we will say that X has the proportional UAP if there are constants K and C such that (0.1) holds.

The authors thank V. Mascioni and G. Schechtman for several discussions concerning the material in this paper.

§1. **Weak Hilbert spaces have proportional UAP**

We first recall a characterization of weak Hilbert spaces in terms of nuclear operators. Recall that an operator $u : X \to X$ is called nuclear if it can be written

$$u(x) = \sum_{n=1}^{\infty} x^*_n(x)x_n$$

with $x^*_n \in X^*$, $x_n \in X$ such that $\sum \|x^*_n\| \|x_n\| < \infty$. Moreover the nuclear norm $N(u)$ is defined as

$$N(u) = \inf \left\{ \sum \|x^*_n\| \|x_n\| \right\}$$

where the infimum runs over all possible representations. We also recall the notation for the approximation numbers

$$\forall k \geq 1 \quad a_k(u) = \inf \{\|u - v\| \mid v : X \to X, \ \rk(v) < k\}.$$
By [P 2], a Banach space \(X \) is a weak Hilbert space iff there is a constant \(C \) such that for all nuclear operators \(u : X \to X \) we have

\[
(1.1) \quad \sup_{k \geq 1} ka_k(u) \leq CN(u)
\]

The following observation is identical to reasoning already used by V. Mascioni [Ma 2].

Proposition 1.1. Let \(X \) be a weak Hilbert space. Assume that there is a constant \(K' \) such that for all \(n \) and all \(n \)-dimensional subspaces \(E \subset X \) there is an operator \(u : X \to X \) such that \(u|_E = I|_E \), \(\|u\| \leq K' \) and \(N(u) \leq K'n \). Then \(X \) has the proportional UAP. (Recall that if \(u \) has finite rank then \(N(u) \leq \text{rk} (u) \|u\| \), hence the converse to the preceding implication is obvious.)

Proof: Let \(u \) be as in the preceding statement. We use (1.1) with \(k = [2CK'n] + 1 \), so that

\[
a_k(u) \leq CN(u)k^{-1} \leq CK'nk^{-1} \leq \frac{1}{2}.
\]

This means that there is an operator \(v : X \to X \) with \(\text{rk} (v) \leq 2CK'n \) such that \(\|u - v\| \leq \frac{1}{2} \). By perturbation, it follows that the operator

\[
V = v - u + I
\]

is invertible on \(X \) with \(\|V^{-1}\| \leq 2 \). Moreover we have

\[
(1.2) \quad V|_E = v|_E.
\]

It follows that if we let \(T = V^{-1}v \), then we have

\[
\|T\| \leq \|V^{-1}\| \|v\| \leq 2(\|u\| + \|u - v\|) \leq 2K' + 1,
\]

also \(\text{rk} (T) \leq \text{rk} (v) \leq 2CK'n \) and \(T|_E = I|_E \) by (1.2).

We conclude that \(X \) has the UAP with \(k_X (K, n) \leq 2CK'n \), where \(K = 2K' + 1 \).

We will use duality via the following proposition (a similar kind of criterion was used by Szankowski [S] to prove that certain spaces fail the UAP):
Proposition 1.2. Let X be a reflexive Banach space with the approximation property; in short, AP; let α, β be positive constants; and let $n \geq 1$ be an integer. The following are equivalent.

(i) For all nuclear operators T_1, T_2 on X such that $T_1 + T_2$ has rank $\leq n$, we have

$$|\text{tr} (T_1 + T_2)| \leq \alpha N(T_1) + \beta n \|T_2\|.$$

(ii) Same as (i) with T_1, T_2 of finite rank.

(iii) For any subspace $E \subset X$ with dimension $\leq n$ there is an operator $u : X \to X$ such that $u|_E = I_E$, $\|u\| \leq \alpha$ and $N(u) \leq \beta n$.

Proof: (i) \Rightarrow (ii) is trivial.

Assume that (ii) holds.

We equip $X^* \otimes X$ with the norm $|w| = \inf \{\alpha N(T_1) + \beta n \|T_2\|\}$ where the infimum runs over all decompositions

$$u = T_1 + T_2$$

with T_1 and T_2 in $X^* \otimes X$ (identified with the set of finite rank operators on X). On $X^* \otimes X$ this norm is clearly equivalent to the operator norm.

Now let $E \subset X$ be a fixed subspace with $\dim (E) \leq n$. Let $S \subset X^* \otimes X$ be the subspace $X^* \otimes E$ of all the operators on X with range in E. On this linear subspace the linear form ξ defined by $\xi(w) = \text{tr} (w)$ has norm ≤ 1 relative to $|\cdot|$ by our assumption (ii).

Therefore there is a Hahn-Banach extension $\tilde{\xi}$ defined on the whole of $X^* \otimes X$ which extends ξ and satisfies

$$|\tilde{\xi}(w)| \leq |w| \quad \forall w \in X^* \otimes X.$$

(1.3)

By classical results, $\tilde{\xi}$ can be identified with an integral operator $u : X \to X^{**}$. Since X is reflexive, u is actually a nuclear operator on X, and we have $\tilde{\xi}(w) = \text{tr} (wu)$ for all w in $X^* \otimes X$.

Since $\tilde{\xi}$ extends ξ, we must have
∀x∗ ∈ X∗ ∀e ∈ E < ˜ξ, x∗ ⊗ e >= tr (x∗ ⊗ e) = x∗(e) hence x∗(ue) = x∗(e).

Equivalently

\[u|_E = I|_E. \]

On the other hand, by (1.3) we have

\[|\text{tr} (uT_1)| \leq \alpha N(T_1) \quad \text{and} \quad |\text{tr} (uT_2)| \leq \beta n \| T_2 \| \]

for all finite rank operators \(T_1 \) and \(T_2 \) on \(X \).

This implies \(\| u \| \leq \alpha \) and (again using the reflexivity of \(X \)) \(N(u) \leq \beta n \).

This shows that (ii)⇒(iii).

Finally we show (iii)⇒(i). Assume (iii). Let \(T_1, T_2 \) be as in (i), let \(E \) be the range of \(T_1 + T_2 \) and let \(u \) be as in (iii). Then we have \(T_1 + T_2 = u(T_1 + T_2) \) hence since \(X \) has the AP (which ensures that \(|\text{tr} (T)| \leq N(T) \) for all nuclear operator \(T : X \rightarrow X \)) we have

\[|\text{tr} (T_1 + T_2)| = |\text{tr} (uT_1) + \text{tr} (uT_2)| \]

\[\leq \| u \| N(T_1) + N(u)\| T_2 \| \]

\[\leq \alpha(T_1) + \beta n \| T_2 \|. \]

Remark: Note that (i) is also equivalent to (i'):

(i') For all \(T_1, T_2 \) on \(X \) such that \((T_1 + T_2) \) has rank \(\leq n \), we have

\[N(T_1 + T_2) \leq \alpha N(T_1) + \beta n \| T_2 \|. \]

Indeed; (assuming the AP and reflexivity) we have

\[N(T_1 + T_2) = \sup \{ \text{tr} (S(T_1 + T_2)) ; S : X \rightarrow X, \| S \| \leq 1 \}. \]

This shows that (i)⇒(i'). Since \(X \) has the AP the converse is obvious.

Of course, a similar remark holds for (ii).

Remark: If \(X \) is not assumed to have the AP a variant of Proposition 1.2 will still hold provided we use the projective tensor norm on \(X^* \otimes X \) instead of the nuclear norm.
We will use the following result already exploited in [P 2] to prove that weak Hilbert spaces have the AP. Whenever \(u : X \to X \) is a finite rank operator, we denote by \(\det (I + u) \) the quantity

\[
\Pi(1 + \lambda_j(u))
\]

where \(\{ \lambda_j(u) \} \) are the eigenvalues of \(u \) repeated according to their algebraic multiplicity. Equivalently, \(\det (I + u) \) is equal to the ordinary determinant of the operator \((I + u)|_E \) restricted to any finite dimensional subspace \(E \subset X \) containing the range of \(u \).

Lemma 1.3. Let \(u, v \) be finite rank operators on a weak Hilbert space \(X \) with \(\text{rk}(u) \leq n \). Then we have

\[
|\det (I + u + v)| \leq \left(\sum_{j=0}^{n} \frac{C^j}{j!} N(u)^j \right) \exp CN(v)
\]

where \(C \) is the “weak Hilbert space constant” of \(X \); that is to say,

\[
C = \sup_{x_i \in B_X} |\det \langle x_i^*, x_j \rangle|^{1/n}.
\]

For the proof we refer to [P 3] p. 229. Note that if \(N(u) \geq 1 \) then (1.4) implies for all complex numbers \(z \),

\[
\det (I + z(u + v)) \leq N(u)^n \exp \{ C|z| + C|z|N(v) \}.
\]

Let \(f(z) = \det (I + z(u + v)) \). Then \(f \) is a polynomial function of \(z \in \mathbb{C} \) such that

\[
f(0) = 1 \text{ and } f'(0) = \text{tr}(u + v).
\]

In [G], Grothendieck showed that the function \(u \to \det (I + u) \) is uniformly continuous on \(X^* \otimes X \) equipped with the projective norm, and therefore extends to the completion \(X^* \hat{\otimes} X \). This shows that if \(X \) has the AP, the determinant \(\det (I + v) \) can be defined unambiguously for any nuclear operator \(v \) on \(X \). As shown in [G], the function \(z \to \det (I + z(u + v)) \) is an entire function satisfying (1.4) if \(u \) is of rank \(\leq n \) and \(v \) possibly of infinite rank. We use
this extension in Theorem 1.5 below, but in the proof of our main result the special case of \(v \) of finite rank in Theorem 1.5 is sufficient. This makes our proof more elementary.

We will make crucial use of the following classical inequality of Carathéodory; we include the proof for the convenience of the reader.

Lemma 1.4. Let \(h \) be an analytic function in a disc \(D_R = \{ z \in \mathbb{C} ; \ |z| < R \} \) such that \(h(0) = 0 \). Then for any \(0 < r < R \) we have

\[
|h'(0)| \leq \frac{2}{r} \sup_{|z|=r} \text{Re} \ (h(z)).
\]

Proof. Let \(M = \sup \{ \text{Re} \ (h(z)), |z| < r \} \). Note that \(M \geq 0 \).

Let \(g(z) = \frac{h(z)}{2M - h(z)} \). Then \(|g(z)| \leq 1 \) if \(|z| \leq r \), \(g \) is analytic in \(D_r \) and \(g(0) = 0 \). By the Schwarz lemma we have

\[
|g(z)| \leq \frac{|z|}{r} \quad \text{for all } z \text{ in } D_r \quad \text{and} \quad |g'(0)| \leq 1/r.
\]

Since \(h(z) = \frac{2Mg(z)}{1+g(z)} \) we have \(h'(0) = 2Mg'(0) \) hence \(|h'(0)| \leq 2M/r \). \(\blacksquare \)

We now prove the main result of this section, namely that any weak Hilbert space has the proportional UAP. Let \(X \) be a weak Hilbert space. We will show that \(X \) satisfies (ii) in Proposition 1.2. Actually, we obtain the following result of independent interest.

Theorem 1.5. Let \(X \) be a weak Hilbert space with constant \(C \) as in (1.5). Let \(u, v \) be nuclear operators on \(X \) and let \(\rho \) be the spectral radius of \(u + v \). Then if \(\text{rk}(u) \leq n \) and \(N(u) > 1 \)

\[
|\text{tr} \ (u + v)| \leq 2n \rho \log N(u) + 2C + 2CN(v)
\]

hence also

\[
N(u + v) \leq 2n \|u + v\| \log N(u) + 2C + 2CN(v).
\]

Proof: Let \(R = 1/\rho \). The function \(f(z) = \det (I + z(u + v)) \) is entire and does not vanish in \(D_R \). Therefore there is an analytic function \(h \) on \(D_R \) such that \(f = \exp(h) \) and since \(f(0) = 1 \) we can assume \(h(0) = 0 \).
Note that $f'(0) = h'(0) = \text{tr} (u + v)$. By (1.6) we have if $N(u) \geq 1$ and $r < R$

$$\sup_{|z|=r} \text{Re} \ h(z) \leq n \log N(u) + Cr + CN(v)$$

hence by Lemma 1.4

$$|\text{tr} (u + v)| = |h'(0)| \leq \frac{2n}{r} \log N(u) + 2C + 2CN(v)$$

Letting r tend to $R = \frac{1}{\rho}$, we obtain (1.7).

For (1.8) we simply observe that if $N(u) > 1$ we have

\begin{equation}
N(u) = \sup\{|\text{tr} (uS)|; \quad S : X \to X, \quad \|S\| \leq 1, \quad N(uS) > 1\}.
\end{equation}

Therefore (1.8) follows from (1.7) since $\rho \leq \|u + v\|$ and we can take the supremum of (1.7) over all S as in (1.9). ■

Finally we prove the “only if” part of our main theorem. Let X be a weak Hilbert space. The first and second authors proved, respectively, that X is reflexive (cf. [P 3], chapter 14) and that X has the AP ([P 3], chapter 15). We will show that (ii) in Proposition 1.2 holds for suitable constants. Let T_1, T_2 be as in Proposition 1.2. Let $u = T_1 + T_2$ and $v = -T_1$.

By homogeneity we may assume $n\|T_2\| + N(T_1) = 1$.

Then if $N(T_1 + T_2) > 1$ we have by (1.8)

$$N(T_1 + T_2) \leq N(u + v) + N(v) \leq 2n\|T_2\| \log N(T_1 + T_2) + 2C + (2C + 1)N(T_1) \leq 2\log N(T_1 + T_2) + 4C + 1,$$

and (since $2\log x \leq (x/2) + 2$ if $x > 1$) this implies that if $N(T_1 + T_2) > 1$ then

$$N(T_1 + T_2) \leq 8C + 6.$$

Since in the case $N(T_1 + T_2) \leq 1$ this bound is trivial, we conclude by homogeneity that (if $T_1 + T_2$ has rank $\leq n$)
\[N(T_1 + T_2) \leq (8C + 6)n\|T_2\| + N(T_1). \]

By proposition 1.2 and 1.1 we conclude that \(X \) has the proportional UAP. ■

Remark: Replacing \((u+v)\) by \(\epsilon(u+v)\) in (1.7) yields that if \(\epsilon \geq N(u)^{-1}\), then \(|\text{tr} (u+v)| \leq 2n\rho\log (\epsilon N(u)) + 2C\epsilon^{-1} + 2CN(v)\) hence after minimization over \(\epsilon \geq N(u)^{-1}\) we find that if \(N(u) \geq n\rho/C\), then

\[|\text{tr} (u+v)| \leq 2n\rho\log \left(\frac{CN(u)}{n\rho}\right) + 1) + 2CN(v). \]

On the other hand if \(N(u) < n\rho/C\) we have trivially since \(C \geq 1\)

\[|\text{tr} (u+v)| \leq N(u+v) \]
\[\leq n\rho/C + N(v) \]
\[\leq 2n\rho + 2CN(v) \]

hence we conclude that without any restriction on \(N(u)\) we have if \(\text{rk} (u) \leq n\)

\[|\text{tr} (u+v)| \leq 2n\rho\log \left(\frac{CN(u)}{n\rho}\right) + 1) + 2CN(v). \]

Even in the case of a Hilbert space we do not see a direct proof of this inequality.
§2. The converse

Recall that X is a weak cotype 2 space if there are constants C and $0 < \delta < 1$ such that every finite dimensional subspace $E \subset X$ contains a subspace $F \subset E$ with $\dim F \geq \delta \dim E$ such that $d_F \equiv d(F, l_2^{\dim F}) \leq C$ (cf. [MP]).

We begin with a slightly modified presentation of Mascioni’s [Ma 1] proof that a Banach space X which has proportional UAP must have weak cotype 2. Suppose that $k_X(n, K) \leq L n$ for all $n = 1, 2, \ldots$. Take any $(1 + \delta)n$-dimensional subspace G_0 of X, and, using Milman’s subspace of quotient theorem [M] (or see [P 3], chapters 7 & 8), choose an n–dimensional subspace G of G_0 for which there exists a subspace H of G such that $\dim H \leq \delta n$ and $d = d_{G/H}$ is bounded by a constant which is independent of n, where δ is chosen so that $\delta L \leq \frac{1}{2}$.

Take $T: X \to X$ with $T|_H = I_H$, $\|T\| \leq K$, and $\text{rk}(T) \leq \delta Ln$. Let $Q: G \to G/H$ be the quotient map and set $E = \ker(T) \cap G$. If x is in E, then

$$\|Qx\| = \inf_{h \in H} \|x - h\|$$

$$\geq \inf_{h \in H} \frac{\|(I - T)(x - h)\|}{\|I - T\|}$$

$$= \frac{\|x\|}{\|I - T\|};$$

that is, $Q|_E$ is an isomorphism and $\|(Q|_E)^{-1}\| \leq \|I - T\|$. Thus $d_E \leq \|I - T\|d_{G/H}$, which finishes the proof since $\dim E \geq n - \delta Ln \geq \frac{n}{2}$.

Since we do not know a priori that the proportional UAP dualizes, we need to prove Mascioni’s theorem under a weaker hypothesis.

Theorem 2.1. Let X be a Banach space. Assume that there are constants K and L such that for all finite dimensional subspaces $E \subset X$ there is an operator $T: X \to X$ satisfying $T|_E = I_E$ and such that $\|T\| \leq K$ and $\pi_2(T) \leq L(\dim E)^{1/2}$. Then X is a weak cotype 2 space.

Proof: Recall that if $T: X \to Y$ is an operator, then

$$\pi_2(T)^2 = \sup \left\{ \sum \|T u(e_i)\|^2; u: l_2 \to X, \|u\| \leq 1 \right\}$$
where $\{e_i\}_{i=1}^\infty$ is the unit vector basis for l_2.

Take any $(1 + \delta)n$-dimensional subspace G_0 of X, where δ is chosen so that $L\sqrt{\delta} \leq \frac{1}{8}$.

By Milman’s subspace of quotient theorem ([M] or [P 3], chapters 7 & 8), we can choose an n-dimensional subspace G of G_0 for which there exists a subspace H of G such that $\dim(H) \leq \delta n$ and $d = d_{G/H}$ is bounded by a constant which is independent of n. Using the ellipsoid of maximal volume, we get from the Dvoretzky-Rogers lemma (cf. [P 3], lemma 4.13) a norm one operator $J: l_2^n \to G$ such that $\|x_i\| \geq \frac{1}{2}$ for all $i = 1, 2, \ldots, \frac{n}{2}$, where $x_i = Je_i$. By [FLM], all we need to check is that there is a constant τ so that

$$\left(\text{Average}_\pm \| \sum_{i=1}^n \pm x_i \|^2 \right)^{\frac{1}{2}} \geq \tau \sqrt{n}.$$

Let $Q: G \to G/H$ be the quotient map. Then

$$\tau_0 \sqrt{n/4} \equiv \left(\text{Average}_\pm \| \sum_{i=1}^{n/2} \pm Qx_i \|^2 \right)^{\frac{1}{2}} \geq \frac{1}{d} \left(\sum_{i=1}^{n/2} \|Qx_i\|^2 \right)^{\frac{1}{2}}.$$

So we can assume without loss of generality that $\|Qx_i\| \leq d\tau_0$ for $1 \leq i \leq \frac{n}{4}$. Now take $T: X \to X$ with $T|_H = I_H$ and $\pi_2(T) \leq L\sqrt{\delta n}$. Thus also

$$\left(\sum_{i=1}^{n/4} \|Tx_i\|^2 \right)^{\frac{1}{2}} \leq L\sqrt{\delta n}$$

hence without loss of generality $\|Tx_1\| \leq 2L\sqrt{\delta}$. But then

$$d\tau_0 \geq \|Qx_1\| = \inf_{h \in H} \|x_1 - h\|$$

$$\geq \frac{\| (I - T)x_1 \|}{\| I - T \|} \geq \frac{\frac{1}{2} - \|Tx_1\|}{\| I - T \|} \geq \frac{\frac{1}{2} - 2L\sqrt{\delta}}{\| I - T \|} \geq \frac{1}{4\| I - T \|};$$

that is, $\tau_0 \geq (4d\|I - T\|)^{-1}$.

12
Proof of converse of Main Theorem: By [LT 2], X^{**} also has proportional UAP; in fact, $k_{X^{**}}(K,n) = k_X(K,n)$ for all K and n. Then, just as in the proof of Theorem 4 in [Ma 2], Lemma 1 in [Ma 2] (or its unpublished predecessor proved by Bourgain and mentioned in [Ma 2]) yields that X^* satisfies the hypothesis of Theorem 2.1 and hence X^* as well as X has weak cotype 2. By the results of [P 1], it only remains to check that X has non-trivial type; this is done as in Theorem 3.3 of [Ma 1]: since X and X^* have weak cotype 2, they both have cotype $2+\epsilon$ for all $\epsilon > 0$. Since X has the bounded approximation property, the main result of [P 1] yields that X has non-trivial type. ■

Remark: With a bit more work, the converse of the Main Theorem can be improved. Following Mascioni [Ma 2], given an ideal norm α, a normed space X, and $K > 1$, we write

$$\alpha-k_X(K,n) = \sup_{E \subset X, \dim E=n} \inf \{\alpha(T)\}$$

where the infimum runs over all finite rank operators $T : X \to X$ such that $\|T\| < K$ and $T|_E = I|_E$. (We use “$< K$” instead of “$\leq K$” in order to avoid in the sequel statements involving awkward “$K + \epsilon$ for all $\epsilon > 0$”.) We say that X has the α-UAP if there is a $K > 1$ such that for all n, $\alpha-k_X(K,n) < \infty$; when the value of K is important, we say that X has the K-α-UAP. Notice that the “finite rank” can be ignored if the space X has the metric approximation property or (by adjusting K) if X has the bounded approximation property. Here we are interested in $\alpha = \pi_2$ and $\alpha = \pi_2^d$, where $\pi_2^d(T) \equiv \pi_2(T^*)$. Since for either of these α’s, $\alpha(T) < \infty$ implies that T^2 is uniformly approximable by finite rank operators (T^2 factors through a Hilbert-Schmidt operator), for these two α’s the K-α-UAP implies the bounded approximation property. In fact, by passing to ultraproducts and using [H], it follows that for either of these α’s the K-α-UAP implies the $(K^2+\epsilon)$-UAP; in particular, X^{**} has the bounded approximation property. (This is really a sloppy version of Mascioni’s reasoning [Ma 2]; Mascioni gives a better estimate for $k_X(K',n)$ in terms of $\alpha-k_X(K,n)$.)

We now state an improvement of the converse in the Main Theorem:
Theorem 2.2. Suppose that there are constants K and L so that the Banach space X satisfies for all n \(\pi_2 k_X(K, n) \leq L \sqrt{n} \) and \(\pi_2^d k_X(K, n) \leq L \sqrt{n} \). Then X is a weak Hilbert space.

Proof: In view of the discussion above, we can ignore the “finite rank” condition in the definition of α-UAP. It is then easy to see for $\alpha = \pi_2$ or $\alpha = \pi_2^d$ that for all n and K $\alpha k_{X^{**}}(K, n) = \alpha k_X(K, n)$, hence by Lemma 1 of [Ma 2] and Theorem 2.1 we conclude that X and X^* have weak cotype 2. The argument used in the proof of the converse in the Main Theorem shows that X has non-trivial type, so X is weak Hilbert. ■
§3. Related results and concluding remarks

In [Ma 1], Mascioni proved (but stated in slightly weaker form) that for \(2 < p < \infty\) and all \(K\), there exists \(\delta = \delta(p, K) > 0\) so that for all \(n\), \(k_p(K, n) \geq \delta n^{p/2}\). (We write \(k_p(K, n)\) for \(k_{L_p}(K, n)\) and \(\alpha-k_p(K, n)\) for \(\alpha-k_{L_p}(K, n)\). See [FJS], [JS], and [Ma 1] for results about the UAP in \(L_p\)-spaces, \(1 \leq p \leq \infty\).) We prove here the corresponding result for \(1 < p < 2\).

Theorem 3.1. For each \(2 < p < \infty\) and \(K > 1\), there exists \(\epsilon = \epsilon(p, K) > 0\) so that for all \(n\), \(\pi_2-k_p(K, n) \geq \epsilon n^{p/2}\). Consequently, for \(1 < q < 2\), \(k_q(K, n) \geq \pi_2^{d} - k_q(K, n)^2 \geq \epsilon^2 n^{p/2}\) where \(\frac{1}{p} + \frac{1}{q} = 1\).

Proof: The proof is basically the same as the proof of Theorem 2.1 once we substitute a result of Gluskin [Gl] for Milman’s subspace of quotient theorem, so we use notation similar to that used in Theorem 2.1. Fix \(n\), set \(G = l^n_p\), let \(J\) denote the formal identity from \(l^n_2\) into \(l^n_p\), and let \(x_i = J e_i\) be the unit vector basis of \(l^n_p\). By Gluskin’s theorem [Gl], given any \(\gamma > 0\) there is \(M = M(p, \gamma)\) independent of \(n\) and a subspace \(H\) of \(G\) with \(\dim H \leq M n^{p/2}\) so that \(\delta = d_{G/H} \leq \gamma n^{p/2} - \frac{1}{2}\). Let \(Q: G \to G/H\) be the quotient map. Define \(\epsilon_0\) by the formula \(\pi_2-k_p(K, \dim H) = \epsilon_0 \left(\frac{1}{2} \right)^{p/2} \left(\sum_{i=1}^{n} \left\| x_i \right\| \right)^{1/2}\), and choose \(T: X \to X\) with \(T|_H = I_H\), \(\|T\| \leq K\), and \(\pi_2(T) \leq \epsilon_0 M^2 \sqrt{n}\). We need to show that \(\epsilon_0\) is bounded away from 0 independently of \(n\). Now

\[
\frac{1}{2} \left(\sum_{i=1}^{n} \| x_i \| \right)^{1/2} \leq \epsilon_0 \left(\frac{1}{2} \right)^{p/2} \left(\sum_{i=1}^{n} \| x_i \| \right)^{1/2} \leq \frac{1}{d} \left(\sum_{i=1}^{n} \| Q x_i \| \right)^{1/2},
\]

So we can assume without loss of generality that for \(i = 1, \ldots, n/2\),

\[
\| Q x_i \| \leq \sqrt{2} d \left(\frac{1}{2} \right)^{p/2} \cdot \frac{1}{2}.
\]

Since \(\left(\sum_{i=1}^{n/2} \| T x_i \| \right)^{1/2} \leq \pi_2(T) \leq \epsilon_0 M^2 \sqrt{n}\), we can also assume without loss of generality that \(\| T x_1 \| \leq \sqrt{2} \epsilon_0 M^2 \). But then

\[
\sqrt{2} d \left(\frac{1}{2} \right)^{p/2} \cdot \frac{1}{2} \geq \| Q x_1 \| = \inf_{h \in H} \| x_1 - h \| \geq \frac{\| (I - T) x_1 \|}{\| I - T \|} \geq \frac{1 - \| T x_1 \|}{\| I - T \|} \geq \frac{1 - \sqrt{2} \epsilon_0 M^2}{\| I - T \|}.
\]
that is,
\[d \geq \frac{1 - \sqrt{2} \epsilon_0 M^\frac{k}{2}}{\sqrt{2\|I - T\|} n^{\frac{1}{2}}}. \]
For sufficiently small \(\gamma \) (e.g., \(\gamma \leq \frac{1}{2} (K + 1)^{-1} \)), this gives a lower bound on \(\epsilon_0 \) since \(d \leq \gamma n^{\frac{1}{2}} \).

The “consequently” statement follows by duality from Lemma 1 in [Ma 2].

\[\bullet \quad \bullet \quad \bullet \]

The trick of Mascioni’s [Ma 1] mentioned at the beginning of section 2 can be used to answer a question Pełczyński asked the authors twelve years ago; namely, whether every \(n \)-dimensional subspace of \(l^{2n}_\infty \) well-embeds into \(l^{(1+\epsilon)n}_\infty \) for each \(\epsilon > 0 \). Since \(l^{2n}_\infty \) has an \(n \)-dimensional quotient \(F \) with \(d_F \) bounded independently of \(n \) by Kašin’s theorem ([K] or [P 3], corollary 6.4), Proposition 3.2 gives a strong negative answer to Pełczyński’s question.

Proposition 3.2. Set \(G = l^n_\infty \), let \(H \) be a subspace of \(G \), set \(d = d_{G/H} \), and assume that \(H \) is \(K \)-isomorphic to a subspace of \(l^k_\infty \). Then \(d \geq e^{-2} (K + 1)^{-1} \left(\frac{n - k}{\log k} \right)^\frac{1}{2} \).

Proof: Let \(u: H \to l^k_\infty \) satisfy \(\|u\| = 1 \), \(\|u^{-1}\| \leq K \), let \(U \) be a norm one extension of \(u \) to an operator from \(G \) to \(l^k_\infty \), let \(S \) be an extension of \(u^{-1} \) to an operator from \(l^k_\infty \) to \(G \) with \(\|S\| \leq K \), and set \(T = SU \). So \(T|_H = I_H \) and \(\|T\| \leq K \). Let \(Q: G \to G/H \) be the quotient map and set \(E = \ker(T) \), so that \(\dim E \geq n - k \). Thus (see the argument at the beginning of section 2)
\[d_E \leq \|I - T\| d \leq (K + 1)d. \]

But by [BDGJN], p. 182 (let \(s = \log k \) there),
\[d_E \geq e^{-2} \left(\frac{n - k}{\log k} \right)^\frac{1}{2}. \]

\[\bullet \quad \bullet \quad \bullet \]

We conclude with two open problems related to the material in section 1.

Problem 3.3. If \(X \) is a weak Hilbert space, then is \(k_X(K, n) \) proportional to \(n \) for all \(K > 1 \)?
Since weak Hilbert spaces are superreflexive, for all \(K > 1 \) \(k_X(K, n) < \infty \) for every weak Hilbert space \(X \) by a result of Lindenstrauss and Tzafriri [LT 2], but their argument does not give a good estimate of \(k_X(K, n) \) for \(K \) close to one when one has a good estimate for large \(K \).

For the known weak Hilbert spaces \(X \), the growth rate of \(k_X(K, n) - n \) is very slow (cf. [J], [CJT]), at least for sufficiently large \(K \). It follows from recent work of Nielsen and Tomczak-Jaegermann that \(k_X(K, n) - n \) has the same kind of slow growth for any weak Hilbert space \(X \) which has an unconditional basis. On the other hand, we do not know any improvement of the result presented in section 2 for general weak Hilbert spaces. This suggests:

Problem 3.4. *If \(X \) is a weak Hilbert space, does there exist \(K \) so that \(k_X(K, n) - n = o(n) \)?*
References

[BDGJN] G. Bennett, L. E. Dor, V. Goodman, W. B. Johnson, and C. M. Newman, On uncomplemented subspaces of L_p, $1 < p < 2$, Israel J. Math. 26 (1977), 178–187.

[CJT] P. G. Casazza, W. B. Johnson, and L. Tzafriri, On Tsirelson’s space, Israel J. Math. 47 (1984), 81–98.

[FJS] T. Figiel, W. B. Johnson, and G. Schechtman, Factorizations of natural embeddings of l^n_p into L_r, I, Studia Math. 89 (1988), 79–103.

[FLM] T. Figiel, J. Lindenstrauss, and V. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53–94.

[Gl] E. D. Gluskin, Norms of random matrices and diameters of finite dimensional sets, Mat. Sbornik 120 (1983), 180–189.

[G] A. Grothendieck, La Théorie de Fredholm, Bull. Soc. Math. France 84 (1956), 319–384.

[H] S. Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980), 72–104.

[J] W. B. Johnson, Banach spaces all of whose subspaces have the approximation property, Special Topics of Applied Mathematics North-Holland (1980), 15–26.

[JS] W. B. Johnson and G. Schechtman, Sums of independent random variables in rearrangement invariant function spaces, Ann. Prob. 17 (1989), 789–808.

[K] B. S. Kašin, Sections of some finite-dimensional sets and classes of smooth functions, Izv. Akad. Nauk SSSR 41 (1977), 334–351 (Russian).

[LT 1] J. Lindenstrauss and L. Tzafriri, On the complemented subspaces problem, Israel J. Math. 9 (1971), 263–269.

[LT 2] J. Lindenstrauss and L. Tzafriri, The uniform approximation property in Orlicz spaces, Israel J. Math. 23 (1976), 142–155.
[Ma 1] V. Mascioni, *Some remarks on the uniform approximation property in Banach spaces*, Studia Math. (to appear).

[Ma 2] V. Mascioni, *On the duality of the uniform approximation property in Banach spaces*, Illinois J. Math. (to appear)

[M] V. D. Milman, *Almost Euclidean quotient spaces of subspaces of finite dimensional normed spaces*, Proc. AMS 94 (1985), 445–449.

[MP] V. Milman and G. Pisier, *Banach spaces with a weak cotype 2 property*, Israel J. Math. 54 (1986), 139–158.

[PT] A. Pajor and N. Tomczak-Jaegermann, *Subspaces of small codimension of finite dimensional Banach spaces*, Proc. A.M.S. 97 (1986), 637–642.

[P 1] G. Pisier, *On the duality between type and cotype*, Springer Lecture Notes 939 (1982), 131–144.

[P 2] G. Pisier, *Weak Hilbert spaces*, Proc. London Math. Soc. 56 (1988), 547–579.

[P 3] G. Pisier, *The volume of convex bodies and Banach space Geometry*, Cambridge Univ. Press (1989).

[S] A. Szankowski, *On the uniform approximation property in Banach spaces*, Israel J. Math. 49 (1984), 343–359.

Texas A&M University, College Station, TX 77843, U.S.A.
Texas A&M University, College Station, TX 77843, U.S.A., and Equipe d’Analyse, Université Paris VI, 75230 Paris, FRANCE