Drug-eluting stents and acute myocardial infarction: A lethal combination or friends?

Shuji Otsuki, Manel Sabaté

Shuji Otsuki, Manel Sabaté, Thorax Institute, Department of Cardiology, Hospital Clinic, University of Barcelona, 08015 Barcelona, Spain

Author contributions: All authors contributed to this work.
Correspondence to: Manel Sabaté, MD, PhD, Thorax Institute, Department of Cardiology, Hospital Clinic, University of Barcelona, C/Villarroel 170, 08036 Barcelona, Spain. masabate@clinic.ub.es Telephone: +34-93-2275400 Fax: +34-93-2279305
Received: February 10, 2014 Revised: March 12, 2014 Accepted: July 17, 2014 Published online: September 26, 2014

Abstract

Primary percutaneous coronary intervention is the preferred reperfusion strategy for patients presenting with ST-segment elevation myocardial infarction (STEMI). First generation drug-eluting stents (DES), (sirolimus drug-eluting stents and paclitaxel drug-eluting stents), reduce the risk of restenosis and target vessel revascularization compared to bare metal stents. However, stent thrombosis emerged as a major safety concern with first generation DES. In response to these safety issues, second generation DES were developed with different drugs, more biocompatible durable polymers or bioabsorbable polymeric coating. This article presents an overview of safety and efficacy of the DES in STEMI.

Otsuki S, Sabaté M. Drug-eluting stents and acute myocardial infarction: A lethal combination or friends? World J Cardiol 2014; 6(9): 929-938 Available from: URL: http://www.wjgnet.com/1949-8462/full/v6/i9/929.htm DOI: http://dx.doi.org/10.4330/wjc.v6.i9.929

INTRODUCTION

Primary percutaneous coronary intervention (PCI) has become a well-established reperfusion strategy for patients presenting with acute ST-segment elevation myocardial infarction (STEMI)\(^1,2\). In this setting, bare-metal stents (BMS) reduced the risk of recurrent ischemia and restenosis compared to balloon angioplasty\(^3\). First-generation drug-eluting stents (DES)-sirolimus-eluting stents (SES) and paclitaxel-eluting stents (PES)-were also able to reduce the risk of restenosis and target-vessel revascularization (TVR) compared to BMS in this context\(^4,5\). However, stent thrombosis emerged as a major safety concern\(^6\). In response, second-generation DES were developed with different drugs, more biocompatible durable polymers or bioabsorbable polymeric coatings, and new stent platforms, including fully bioresorbable vascular scaffolds.

PATHOPHYSIOLOGY OF STEMI

As shown in Figure 1, STEMI is an event related to ath-
erosclerotic plaque rupture, ulceration, fissuring, erosion, or dissection that results in intraluminal thrombus in one or more of the coronary arteries, leading to decreased myocardial blood flow or distal platelet emboli with ensuing myocyte necrosis. During the early years after the introduction of coronary stents, it was thought that implanting a metallic device under a thrombotic environment in the acute phase of STEMI could increase the risk of adverse outcome. However, refinement of stent implantation technique and the development of new antithrombotic regimen have overcome those initial concerns.

PATHOPHYSIOLOGY OF STENT THROMBOSIS

The pathophysiology of stent thrombosis includes procedure-, stent-, and patient-related factors (Figure 2). The PCI procedure for acute coronary syndrome, including STEMI, is one of the most powerful predictors for stent thrombosis in the vast majority of registries (Figure 3). Late stent malapposition is common in STEMI patients and may eventually provoke stent thrombosis. Late malapposition may be linked to underdeployment of stents at the time of STEMI treatment, due mainly to dissolution of thrombus behind the struts or undersized vessels due to the spastic condition of the coronary arteries in the acute phase of STEMI. Implanting DES over a necrotic core may also significantly delay healing, due to less neointimal growth and greater inflammation, fibrin deposits, and uncovered struts compared to DES implanted over coronary stable plaques.

Currently, patients are categorized as having early or late stent thrombosis. Early stent thrombosis is defined as occurring within 30 d of implantation, and is further categorized as acute (events within 24 h) or subacute (events on day 1-30) thrombosis. Events that occur more than 30 d postimplantation are classified as late stent thrombosis, and those occurring beyond 12 mo as very late stent thrombosis.

Early and late stent thrombosis differ in their pathophysiology and mechanism. Early stent thrombosis is mainly related to one or more procedural characteristics, such as stent underexpansion, incomplete stent apposition, dissection, thrombus, tissue protrusion, and persistent slow flow. It may occur after either BMS or DES implantation.

Late stent thrombosis may result when neointimal healing is delayed, as this can lead to inadequate neointimal coverage and/or to incomplete stent apposition. Evaluation of angioscopy, optical coherence tomography, and autopsy revealed that first-generation DES are associated with delayed arterial healing due to hypersensitive reactions to polymers that cause chronic inflammation. These phenomena are typically observed more than 1 year after implantation.

SAFETY AND EFFICACY OF FIRST-GENERATION DES IN STEMI

Twelve randomized controlled trials (RCTs) of first-generation DES outcomes in STEMI have been published. Comparisons were made as follows: BMS

Figure 1 Pathophysiology of ST-segment elevation myocardial infarction. A: Normal coronary artery; B: Coronary artery with early atheroma; C: Vulnerable plaque with thin fibrous cap; D: Ruptured plaque; E: Platelets aggregated to heal the ruptured plaque; F: Protruding thrombus; G: Thrombotic occlusion (acute myocardial infarction).
The TYPHOON study [4] was the largest RCT to consider SES, enrolling 712 patients to assess the effectiveness and safety of SES vs BMS at 1 year. Target-vessel failure was significantly lower in the SES (7.3%) than in the BMS (14.3%) group (\(P = 0.004\)), driven by a decrease in the rate of TVR (5.6% vs 13.4%, respectively; \(P < 0.001\)). There was no significant difference between the two groups in the rates of mortality (2.3% vs 2.2%; \(P = 1.00\)), repeat myocardial infarction (MI) (1.1% vs 1.4%; \(P = 1.00\)), or stent thrombosis (3.4% vs 3.6%; \(P = 1.00\)). At 4-year follow-up\(^4\), freedom from target lesion revascularization was significantly better in the SES group, compared to BMS (92.4% vs 85.1%; \(P = 0.002\)). However, no differences were observed, respectively, in freedom from cardiac death (97.6% vs 95.9%; \(P = 0.37\)), freedom from repeat MI (94.8% vs 95.6%; \(P = 0.85\)), or definite/probable stent thrombosis (4.4% vs 4.8%, \(P = 0.83\)). Other studies have also reported that SES was superior or non-inferior to BMS in mortality, repeat MI, TVR, and stent thrombosis rates\(^{[20-25,33]}\) (Table 1).
With regard to PES, the HORIZONS-AMI study was the largest RCT. A total of 3006 patients were enrolled in this 12-mo trial to assess the effectiveness and safety of PES vs BMS. The PES group had significantly lower 12-mo rates of ischemia-driven target lesion revascularization (4.5% vs 7.5%; \(P = 0.002 \)) and TVR (5.8% vs 8.7%; \(P = 0.006 \)). There were no significant differences between the PES and BMS groups in 12-mo rates of mortality (3.5% vs 3.5%; \(P = 0.98 \)) and stent thrombosis (3.2% vs 3.4%; \(P = 0.77 \)). At the 3-year follow-up, the PES group had lower rates of ischemia-driven target lesion revascularization (9.4% vs 15.1%; \(P < 0.0001 \)), but did not differ from the BMS group in mortality, repeat MI, stroke, or stent thrombosis rates. Other studies have also shown that PES was superior or noninferior to BMS in mortality, repeat MI, TVR, and stent thrombosis rates (Table 1).

Although RCTs did not identify any safety issues with first-generation DES, this topic became a firestorm during the 2006 European Society of Cardiology Annual Meet-

Table 1 Randomized controlled trials of first-generation drug eluting stents in stent thrombosis elevated myocardial infarction

Study, author (Ref.)	Year	Primary endpoint	Design	Randomized ratio	Maximal length of follow-up	Stent comparators (n)	Results of the primary endpoint
Pasceri et al. [19]	2003	Death, MI, recurrent ischemia at 1 yr	Single center	1:1	1 yr	BMS/SES (65/33/32)	No significant differences between stents
TYPHOON [16]	2006	TVF at 1 yr	Multicenter, superiority	1:1	4 yr	BMS/SES (712/33/37)	SES superior to BMS
STRATEGY [17]	2007	Death, MI, stroke, binary restenosis at 8 mo	2-center, superiority	1:1	2 yr	BMS/SES (175/87/88)	SES superior to BMS
SESAM [12]	2007	Binary restenosis at 1 yr	Single-center, superiority	1:1	5 yr	BMS/SES (320/160/160)	SES superior to BMS
Díaz de la Llera et al. [23]	2007	Death, MI, TVR at 1 yr	Single center, superiority	1:1	1 yr	BMS/SES (114/54/60)	SES superior to BMS
MISSION [24]	2008	In-segment late luminal loss at 9 mo	Single center, noninferiority	1:1	5 yr	BMS/SES (310/152/158)	SES superior to BMS
MULTISTRATEGY [25]	2008	Death, MI, clinically driven TVR at 8 mo	Multicenter, superiority	1:1	3 yr	BMS/SES (744/372/372)	SES superior to BMS
HAMU-STENT [26]	2006	Death, MI, late lumen loss, TVR at 1 yr	Single center, superiority	1:1	1 yr	BMS/SES (164/82/82)	SES superior to BMS
SELECTION [27]	2007	Neointimal proliferation by IVUS at 7 mo	Single-center, superiority	1:1	7 mo	BMS/SES (76/39/37)	SES superior to BMS
PASSION [28]	2008	Cardiac death, MI, TVR at 2 yr	2-center, superiority	1:1	5 yr	BMS/SES (619/310/309)	Superiority not demonstrated
HORIZONS-AMI [29,30]	2009	TLR	Multicenter, superiority (TLR)	3:1	3 yr	BMS/SES (3006/2257/749)	PES superior for TLR and noninferior for clinical endpoints
GRACIA-3 [31]	2010	In-segment binary restenosis, myocardial flow at 1 yr	Noninferiority (Death, MI, stroke, ST)	1:1	1 yr	BMS/PES (419/210/209)	BMS noninferior to PES
PROSIT [32]	2008	Death, MI, TVR, ST at 1 yr	Multicenter, noninferiority	1:1	3 yr	BMS/PES (708/154/154)	Superiority not demonstrated
Juwana et al. [33]	2009	Late lumen loss at 9 mo	Single center, superiority	1:1	1 yr	BMS/PES (397/196/201)	SES superior to PES
PASEO [34]	2009	TLR at 12 mo	Single-center, superiority	1:1:1	4 yr	BMS/PES/SES (270/60/90/90)	PES and SES superior to BMS

MI: Myocardial infarction; TLR: Target lesion revascularization; ST: Stent thrombosis; PES: Paclitaxel-eluting stents; SES: Sirolimus-eluting stents; BMS: Bare metal stent stents; TVR: Target vessel revascularization; IVUS: Intravascular ultrasound.
Table 2 Randomized controlled trials of second-generation drug eluting stents in ST elevated myocardial infarction

Study	Year	Primary endpoint	Design	Randomized ratio	Maximal length of follow-up	Stent comparisons (n)	Results of the primary endpoint
ZEST-AMI	2009	Death, MI, and ischemia-driven	Multicenter,	1:1:1	1 yr	PES/SBS/PC-ZES 328 (110/110/108)	No significant differences between stents
		TVR at 1yr	safety study				
KOMER	2011	Cardiac death, MI, ischemia-	Multicenter,	1:1:1	18 mo	PES/SBS/PC-ZES 611 (202/204/205)	PC-ZES as safe as SES and PES
		driven-TR at 1yr	safety study				
EXAMINATION	2011	Death, MI, any revascularization	Multicenter,	1:1:1	2 yr	CoCr-EES/BMS 1504 (751/747)	CoCr-EES superior to BMS
		at 1yr	superriority				
XAMI	2012	Cardiac death, MI, TVR at 1yr	Multicenter,	2:1	1 yr	EES/SBS 625 (404/221)	EES noninferior to SES
			noninferiority				
COMFORTABLE	2012	cardiac death, reinfarction, and	Multicenter,	1:1:1	1 yr	EES/BMS 1161 (575/582)	SES superior to BMS
AMI		TLR at 1yr	superiosity				

M1: Myocardial infarction; TLR: Target lesion revascularization; CoCr-EES: Cobalt-chromium everolimus-eluting stents; PC-ZES: Phosphorylcholine polymer based zotarolimus-eluting stent; PES: Paclitaxel-eluting stents; SES: Sirolimus-eluting stents; TVR: Target vessel revascularization; BMS: Bare metal stent stents.

Second-generation DES were developed to resolve these issues. Stent design and polymeric coating were improved by the use of biocompatible or bioabsorbable polymers. Two RCTs have been published about zotarolimus-eluting stents (ZES) implantation in STEMI patients (38, 39) (Table 2).

The multicenter, prospectively randomized, ZEST-AMI trial included 328 patients who were randomly assigned to ZES (n = 108), SES (n = 110), or PES (n = 110) groups. Mortality, MI, and ischemia-driven TVR rates at 12 mo were 11.3%, 8.2%, and 8.2%, respectively (P = 0.834); there were no differences in mortality, recurrent MI, and ischemia-driven TVR rates. The SES group had 2 acute and 2 subacute cases of stent thrombosis. In the PES group, 3 patients had subacute thrombosis.

The KOMER study was also a multicenter, prospective, single-blind RCT. The 611 participants were STEMI patients undergoing primary PCI. They were randomized to treatment with ZES (n = 205), SES (n = 204), or PES (n = 202). At 12-mo follow-up, the incidence of cardiac death, MI, or ischemia-driven target lesion revascularization was 5.9% in the ZES group, 3.4% in the SES group, and 5.7% in the PES group, respectively (P = 0.457). The rate of stent thrombosis was similar in all 3 groups (approximately 2%).

The XAMI trial randomized 625 patients with acute myocardial infarction (2:1) to receive EES or SES (42). Death, nonfatal MI, or any TVR at 1 year was lower at 4.0% for...
Table 3 Current polymer-free stents undergoing clinical evaluation

Stent	Study	Platform	Drug	Primary endpoint	Design	Randomized ratio	Stent comparisons (n)	Result
Yukon (Translumina)	ISAR TEST	316 L microporous surface	Sirolimus + Probucol	MACE/ST at 1yr	RCT	2:1	Yukon/R-ZES 3002/2002/1000	Noninferior
Cre 8 (CID)	NEXT	CoCr abluminal reservoirs	Amphilimus	LL at 6 mo	RCT	1:1	Cnc 8/ PES 323 (162/161)	Superior
BioFreedom DCS	BioFreedom FIM	316 L microstructured surface	Biolimus A9	LL at 12 mo	RCT	1:1:1	Standard dose/low dose BioFreedom/ PES 382 (60/32/69)	Noninferior
Vestasync (MIV therapeutics)	VESTASYNC II	316 L microporous nanofilm Hap	Sirolimus	LL at 14 and 9 mo	RCT	2:1	VESTASYNC/ BMS 75 (50/25)	Superior
Amazonia Pax (Minvasys)	Pax A and Pax B	CoCr nonstretched	Paclitaxel	LL at 6 mo	RCT	1:1	PAXA/ PES 30 (15/15), PAXB = 100	Noninferior
Yinyi (Liaoning Biomed.Mat)	FREEDOM	316 L micropores	Paclitaxel	MACE/ST/TVR	RCT	2:1	Yinyi/S 1626 (993/489)	Noninferior
Bicare+ (Lepu Medical)	BICARE	316 L	Sirolimus + Probucol	TVF at 30 d	FIM	-	n = 52	TVF = 9.4%, LLI 0.14, ISR = 3.2%
Pronova XR (Vascular Concepts)	EURONOVA XR	Co-Cr	Sirolimus	LL at 6 mo	FIM	-	n = 50	In-stent LI 0.45
Focus NP (Envision Scientific)	Nano active FIM	nano active	Sirolimus nanoparticles	LL at 6 mo	FIM	-	n = 100	Ongoing
Mitsui (Meril Medical)	-	CoCr ultrathin struts	Merilimus	-	-	-	Planned -	
Hollow-core DFS (Medtronic)	-	CoCr holes and hollow tube	Sirolimus	-	-	-	Planned -	
Nano+ (Lepu medical)	Nano+	Microporous	Sirolimus	OCT evaluation	FIM	-	n = 45	Ongoing

MACE: Major adverse cardiac events; ST: Stent thrombosis; RCT: Randomized control trial; LL: Late lumen loss; R-ZES: Resolute zotarolimus-eluting stents; PES: Paclitaxel-eluting stents; BMS: Bare metal stents; SES: Sirolimus-eluting stents; TVR: Target vessel revascularization; TVF: Target vessel failure; ISR: In-stent restenosis; OCT: Optical coherence tomography; FIM: First-in-man trial.

EES vs 7.7% for SES (P = 0.048) and 1-year incidence of definite and/or probable stent thrombosis was 1.2% for EES vs 2.7% for SES (P = 0.01).

The COMFORTABLE AMI is the only RCT by the use of biolimus-eluting stents (BES) in STEMI patients[43]. A total of 1161 patients were randomized 1:1 to receive BES (n = 575) or BMS (n = 582). Major adverse cardiac events at 1 year occurred in 24 patients (4.3%) receiving BES and in 49 patients (8.7%) receiving BMS (P = 0.004). The difference was driven by a lower risk of target vessel-related repeat MI [3 (0.5%) vs 15 (2.7%); P = 0.01] and ischemia-driven target-lesion revascularization [9 (1.6%) vs 32 (5.7%); P = 0.001] in patients receiving BES compared with those receiving BMS. Rates of cardiac death were not significantly different [16 (2.9%) vs 20 (3.5%), P = 0.53]. Definite stent thrombosis occurred in 5 patients (0.9%) treated with BES and 12 patients (2.1%, P = 0.10) treated with BMS.

Recent meta-analyses also showed that EES were associated with significantly lower rates of stent thrombosis than both BMS and PES at 1-year follow-up. In addition, EES were associated with significantly lower rates of cardiac death or MI compared with PES[44,45].

Pathological analysis also showed that late and very late stent thrombosis occurred less often in the EES (4%) than in the SES (21%; P = 0.029) and PES groups (26%; P = 0.008). The percentage of uncovered struts was lower in the EES (media n = 2.6%) than in SES (18.0%; P < 0.0005) or PES groups (18.7%; P < 0.0005). Furthermore, EES was associated with less inflammation, no hypersensitivity, and less fibrin deposit than both SES and PES[46].
GLIMPSE INTO THE FUTURE: NEXT-GENERATION STENT PLATFORMS FOR STEMI?

A new, self-apposing stent has been developed to reduce malapposition, which may eventually provoke stent thrombosis. In the APPOSITION II study, optical coherence tomography at 3 d after implantation showed a lower rate of malapposed stent struts in the self-apposing BMS group than in the balloon-expandable group (0.58% vs 5.46%, \(P = 0.001 \))[57]. In the APPOSITION IV study, patients treated with a self-apposing SES had better apposition (\(P = 0.001 \)) and better coverage at 4-mo follow-up than the balloon-expandable ZES (31.6% vs 3.8%; \(P = 0.03 \))[60].

The micronet-mesh-covered stent has been developed to prevent distal embolization. In the MASTER study, complete ST-segment resolution was significantly improved in patients treated with micronet-mesh-covered stent, compared with commercially available BMS or SES (57.8% vs 44.7%; \(P = 0.008 \))[61].

NONPOLYMERIC STENTS IN STEMI

Nonpolymeric stents have been developed to avoid polymer-related delayed neointimal healing and late stent thrombosis, and several have undergone clinical investigation (Table 3). However, most of the clinical data have been gathered in low-risk patients without STEMI.[50-56] A small study showed that polymer-free PES (PF-PES) were noninferior to polymer-based PES (PB-PES) in patients with STEMI, both in terms of target lesion failure (10.9% PB-PES vs 12.0% PF-PES; \(P = 0.861 \)) and definite or probable stent thrombosis (1.8% PB-PES vs 2.0% PF-PES; \(P = 1.000 \)) at one year.[57]

BIORESORBABLE SCAFFOLDS IN STEMI

Fully bioresorbable vascular scaffold (BVS) was developed to overcome problems associated with a durable polymer and metallic scaffold. Disappearance of the stent from the treated site might decrease the risk of stent thrombosis. So far, a few studies with short-term follow-up have been published about bioresorbable vascular scaffold in STEMI or acute coronary syndrome.[58-61] Further studies in a larger number of patients and long-term follow-up are planned.

The ongoing ISAR-absorb MI trial (A Prospective, Randomized Trial of BVS vs EES in Patients Undergoing Coronary Stenting for Myocardial Infarction, www.clinicaltrial.gov, NCT01942070) tests the clinical performance of the everolimus-eluting BVS as durable polymer EES in patients undergoing PCI in the setting of acute MI. The primary endpoint is percent diameter stenosis in angiographic follow-up at 6 to 8 mo. Subsequent clinical follow-up will be undertaken up to 5 years.

Another ongoing study is ABSORB STEMI: the TROFI II trial (www.clinicaltrial.gov, NCT01986803), a prospective, single-blinded, noninferiority, European multicenter RCT. The primary endpoint is to assess the neo-intimal healing score as evaluated by intracoronary optical frequency domain imaging in patients with STEMI and treated with everolimus-eluting BVS at 6 mo follow-up, compared to that of EES. Furthermore, the safety and feasibility of implanting everolimus-eluting BVS in patients with STEMI will be assessed.

CONCLUSION

The second-generation DES significantly reduced TVR compared with BMS, without an increase in mortality, MI, or stent thrombosis rates. In patients with STEMI, the use of second-generation DES appears safer and more efficacious than either BMS or first-generation DES. Results of the ongoing ISAR-absorb trial and ABSORB STEMI: the TROFI II trial will shed light on the potential benefits of the new BVS in the context of STEMI.

REFERENCES

1. Kushner FG, Hand M, Smith SC, King SB, Anderson JL, Antman EM, Bailey SR, Bates ER, Blankenship JC, Casey DE, Green LA, Hochman JS, Jacobs AK, Krumholz HM, Morrison DA, Ornato JP, Pearle DL, Peterson ED, Sloan MA, Whittle PL, Williams DO. 2009 focused updates: ACC/AHA guidelines for the management of patients with percutaneous coronary intervention (updating the 2006 guidelines and 2009 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2006 guidelines and 2007 focused update) A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2009; 54: 2205-2241 [PMID: 19942100 DOI: 10.1016/j.jacc.2009.10.015]

2. Fischman DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn I, Detre K, Veltri L, Ricci D, Nebuyoshi M. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators. N Engl J Med 1994; 331: 496-501 [PMID: 8041414 DOI: 10.1056/NEJM199408253310802]

3. Stone GW, Grines CL, Cox DA, Garcia E, Tcheng JE, Griffin JJ, Guagliumi G, Stuckey T, Turco M, Carroll JD, Rutherford BD, Lansky AJ. Comparison of angioplasty with stenting, with or without abciximab, in acute myocardial infarction. N Engl J Med 2002; 346: 957-966 [PMID: 11919304 DOI: 10.1056/NEJMoa013404]

4. Spaulding C, Teiger E, Commeau P, Varenne O, Bramucci E, Slama M, Beatt K, Tiourouzamian A, Polonski L, Stella PR, Clugston R, Fajadet J, de Boisgelin X, Bode C, Carrière D, Erglis A, Merkely B, Hosten S, Cebrian A, Wang P, Stoll HP, Henry P. Four-year follow-up of TYPHOON (trial to assess the use of the CYPHer sirolimus-eluting coronary stent in acute myocardial infarction treated with or without abciximab, in acute myocardial infarction). N Engl J Med 2012; 366: 907-918 [PMID: 2251624 DOI: 10.1056/NEJMa130403]

5. Stone GW, Lansky AJ, Pocock SJ, Gersh BJ, Dangas G, Wong SC, Witzenbichler B, Guagliumi G, Peruga JZ, Brodie BR, Dudek D, Möckel M, Otsuki S

6. Eisenstein EL, Anstrom KJ, Kong DF, Shaw LK, Tuttle RH, Mark DB, Kramer JM, Harrington RA, Matchar DB, Kandzari DE, Peterson ED, Schulman KA, Calif RM. Clopidogrel use and long-term clinical outcomes after drug-eluting stent im-
29 Stone GW, Witzenbichler B, Guagliumi G, Peruga JZ, Brodie BR, Dudek D, Kornowski R, Hartmann F, Gersh BJ, Pocock SJ, Dansgård C, Wong SC, Fahy M, Fanise H, Mehran R. Hepa-
rin plus a glycoprotein IIb/IIIa inhibitor versus bivalirudin
monotherapy and paclitaxel-eluting stents versus bare-metal
stents in acute myocardial infarction (HORIZONS-AMIR): fi-
nal 3-year results from a multicentre, randomised controlled
trial. Lancet 2011; 377: 2193-2204 [PMID: 21665265 DOI: 10.
1016/S0140-6736(11)60764-2]

30 Sánchez PL, Gimeno F, Ancillo P, Sanz JJ, Alonso-Biales JH,
Bosa F, Santos I, Sanchis J, Bethencourt A, López-Messa J,
de Prado AP, Alonso JJ, San Román JA, Fernández-Avilés F.
Role of the paclitaxel-eluting stent and tirofiban in patients
with ST-elevation myocardial infarction undergoing postfi-
brinolysis angioplasty: the GRACIA-3 randomized clinical
trial. Circ Cardiovasc Interv 2010; 3: 297-307 [PMID: 20716575
DOI: 10.1161/CIRCINTERVENTIONS.109.928688]

31 Lee SW, Park SW, Kim YH, Yun SC, Park DW, Lee CW,
Hong MK, Rhee KS, Chae JK, Ko JK, Park JH, Lee JH, Choi
SW, Jeong JO, Seong IW, Cho YH, Lee NH, Kim CJ, Chun
KJ, Kim HS, Park SJ. A randomized comparison of sirolimus-
versus Paclitaxel-eluting stent implantation in patients with
diabetes mellitus. J Am Coll Cardiol 2008; 52: 727-733 [PMID:
18718419 DOI: 10.1016/j.jacc.2008.04.056]

32 Juwana YB, Suryaprana H, Ottervanger JP, De Luca G,
ván’t Hof AW, Dambrink JH, de Boer MJ, Gosselin AT,
Hoornije JC. Comparison of rapamycin- and paclitaxel-
eluting stents in patients undergoing primary percutaneous
coronary intervention for ST-elevation myocardial infarc-
tion. Am J Cardiol 2009; 104: 205-209 [PMID: 19576348 DOI:
10.1016/j.amjcard.2009.03.015]

33 Di Lorenzo E, Sauro R, Varrichio A, Carbone G, Cortese
G, Capasso M, Lanzillo T, Manganelli F, Mariello C, Siano
F, Pagliuca MR, Stanco G, Rosato G, De Luca G. Long-Term
outcome of drug-eluting stents compared with bare metal
stents in ST-segment elevation myocardial infarction results: of
the paclitaxel- or sirolimus-eluting stent versus bare metal
stent in Primary Angioplasty (PASEO) Randomized Trial.
Circulation 2009; 120: 964-972 [PMID: 19729039]

34 Camenzind E, Steg PG, Wijns W. ST-segment elevation late af-
ter implantation of first-generation drug-eluting stents: a
cause for concern. Circulation 2007; 115: 1440-1455; discus-
ion 1455 [PMID: 17344324 DOI: 10.1161/CIRCULATIONA
HA.106.168600]

35 Ong AT, Lee SW, Seog JW, Park SJ, Bae JH, Hur SH, Rha SW,
Oh SK, Kim DI, Jang Y, Choi JW, Kim BO. Comparison of zotarolimus-eluting stents versus sirolimus-eluting stents versus paclitaxel-eluting stents for primary percutaneous coronary intervention in pa-

tients with ST-elevation myocardial infarction: results from
the Korean Multicentre Endeavor (KOMER) acute myocardial
infarction (AMI) trial. EuroIntervention 2011; 7: 936-943
[PMID: 21959255 DOI: 10.4244/EIJV7IA148]

36 Sabate M, Cequier A, Iniguez A, Serra A, Hernandez-Antolin
R, Mainar V, Valgimigli M, Tespli M, den Heijer P, Bethen-
court A, Vazquez N, Gomez-Hospital JA, Bax JA, Martin-
Yuste V, van Geuns RJ, Alfonso F, Bordier P, Teballd M,
Masotti M, Silvestro A, Bach K, Brugaletta S, van Es GA,
Serruys PW. Everolimus-eluting stent versus bare-metal stent
in ST-segment elevation myocardial infarction (EXAMINA-
TION): 1 year results of a randomised controlled trial. Lancet
2012; 380: 1482-1490 [PMID: 22953105 DOI: 10.1016/S0140-
6736(12)61223-9]

37 Sabaté M, Brugaletta S, Cequier A, Iniguez A, Serra A,
Hernández-Antolín R, Mainar V, Valgimigli M, Tespli M, den
Heijer P, Bethencourt A, Vazquez N, Bacs B, Serruys PW.
The EXAMINATION trial (Everolimus-Eluting Stents Versus
Bare-Metal Stents in ST-Segment Elevation Myocardial Infarc-
tion): 2-year results from a multicenter randomized controlled
trial. JACC Cardiovasc Interv 2014; 7: 64-71 [PMID:
24352423]

38 Hofma SH, Brouwer J, Velders MA, van’t Hof AW, Smits
PC, Queré M, de Vries CJ, van Boven AJ. Second-generation
eluting stents versus first-generation sirolimus-eluting stents
in acute myocardial infarction. 1-year results of the randomized
XAMI (XienceV Stent vs. Cypher Stent in Primary PCI for Acute
Myocardial Infarction) trial. J Am Coll Cardiol 2012; 60: 381-387
[PMID: 22835668 DOI: 10.1016/j.jacc.2012.01.073]

39 Räber L, Kelbaek H, Ostojic M, Baumbach A, Heg D, Tüll-
der L, von Birgelen C, Roffi M, Moschovitis A, Khattab AA,
Wenaweser P, Bonvini R, Pedrazzini G, Kornowski R, Weber
K, Trelle S, Lüscher TF, Taniwaki M, Matter CM, Meier B,
Jüni P, Windecker S. Effect of biolimus-eluting stents with
biodegradable polymer vs bare-metal stents on cardiovascu-
lar events among patients with acute myocardial infarc-
tion: the COMFORTABLE AMI randomized trial. JAMA 2012;
308: 777-787 [PMID: 22910755 DOI: 10.1001/jama.2012.10865]

40 Palmerini T, Bordi-Vioccai G, Della Riva D, Mariani A, Sa-
baté M, Valgimigli M, Fogari R, Gedihi E, Smits PC, Kage C,
Generex P, Galatius S, Kirtane AJ, Stone GW. Clinical out-
come with drug-eluting and bare-metal stents in patients
with ST-segment elevation myocardial infarction: evidence
from a comprehensive network meta-analysis. J Am Coll
Cardiol 2013; 62: 496-504 [PMID: 23747778 DOI: 10.1016/j.
jacc.2013.05.022]

41 Sabaté M, Räber L, Heg D, Brugaletta S, Kelbaek H, Cequier
A, Ostojic M, Iniguez A, Tüllder D, Serra A, Baumbach A,
von Birgelen C, Hernandez-Antolin R, Roffi M, Mainar V,
Valgimigli M, Serruys PW, Jüni P, Windecker S. Comparison
of newer-generation drug-eluting with bare-metal stents in
patients with acute ST-segment elevation myocardial infarc-
tion: a pooled analysis of the EXAMINATION (clini-
cal Evaluation of the Xience-V stent in Acute Myocardial
Infarction): 2-year results from a multicenter randomized
trial. J Am Coll Cardiol 2012; 60: 381-387 [PMID: 22835668 DOI: 10.1016/j.
JACC Cardiovasc Interv 2014; 7: 55-63 [PMID:
24332419]

42 Otsuka F, Vorpahl M, Nakano M, Foerst J, Newell JB,
Sakakura K, Kutsu R, Ladhic E, Finn AV, Koldogie FD, Vir-
mani R. Pathology of second-generation everolimus-eluting
stents versus first-generation sirolimus- and paclitaxel-elut-
ing stents in humans. Circulation 2014; 129: 211-223 [PMID:
24163064 DOI: 10.1161/CIRCULATIONAHA.113.018790]
