Non-PSEUDO-AntiBiotiCs Score—A Predictor of Bacteraemia Caused by *Pseudomonas aeruginosa*: A Case-control Study

Kaori Iwami
St. Luke's International Hospital

Takahiro Matsuo (tmatsuo@luke.ac.jp)
St. Luke's International Hospital

Kuniyoshi Hayashi
St. Luke's International University

Nobuyoshi Mori
St. Luke's International Hospital

Research Article

Keywords: *Pseudomonas aeruginosa*, bacteraemia, Non-PSEUDO-AntiBiotiCs score

Posted Date: April 22nd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-408340/v1

License: ☺️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Immoderate use of broad-spectrum antimicrobials could lead to emergence of resistant bacteria. The purpose of this study was to identify factors associated with *Pseudomonas aeruginosa* bacteraemia and develop an exclusion scoring system to help clinicians select an appropriate antimicrobial treatment.

Methods: This single-centre case-control study recruited inpatients and outpatients (age ≥ 20 years) with *P. aeruginosa* or *Escherichia coli* bacteraemia at St. Luke's International Hospital in Tokyo from April 2005 to March 2020. Bivariate associations were assessed using χ² test, Fisher's exact test, or Mann–Whitney U test, and the relationship between *P. aeruginosa* bacteraemia and other variables was determined using multivariable logistic regression analysis.

Results: A total of 1562 patients (208 patients with *P. aeruginosa* bacteraemia and 1354 patients with *E. coli* bacteraemia) were included. Multivariable analysis revealed 11 variables associated with *P. aeruginosa* bacteraemia: Nosocomial infections, Pneumonia, Sex (males), Exposure to antibiotics within 90 days, Urinary tract infection, Urinary catheterization, abdominal infection, Age < 77 years, Body mass index < 19, presence of Central venous catheter, and Central line-associated bloodstream infection/peripheral line-associated bloodstream infection; these variables were used to develop the Non-PSEUDO-AntiBiotiCs score. The area under the receiver operating characteristic curve was 0.89 (95% confidence interval: 0.88–0.92), and the best cut-off-point was 5; a score of ≥ 5 had a sensitivity of 80% and a specificity of 83%.

Conclusion: We developed the Non-PSEUDO-AntiBiotiCs score. This score may allow clinicians to rule out the possibility of *P. aeruginosa* bacteraemia and prevent the abuse of broad-spectrum antimicrobials.

Background

Pseudomonas aeruginosa bacteraemia (PAB) has a higher mortality rate (29%) [1] than bacteraemia caused by other gram-negative rods, such as *Escherichia coli* and *Klebsiella* spp. [2]. *P. aeruginosa* is an innately antibiotic-resistant microorganism, and its toxicity mechanisms have been shown to be associated with restricted permeability of the cell wall, enhanced activity of the efflux system, and presence of the ampC gene for inducible chromosome beta-lactamase [3]. Empiric antimicrobial treatment failure is known to result in higher mortality rates in both community-acquired and nosocomial infections [4]. Therefore, clinicians often need to determine whether *P. aeruginosa* is a causative organism based on previously reported risk factors.

Notably, the abuse of broad-spectrum antimicrobials for treating *P. aeruginosa* could lead to emergence of resistant bacteria and an increase in adverse events [5]. Because inadequate empirical treatment is related to all-cause mortality and infection-related mortality due to PAB [1], appropriate and prompt antimicrobial treatments are essential for the management of PAB. Risk factors for PAB have already been identified and include male sex [1, 6, 7], haemodialysis [1, 7], solid organ transplants [1], cancer [1], and others.
human immune deficiency virus infection [1], diabetes [8], neutropenia [6, 7, 9], haematological malignancy [7, 9, 10], central venous catheter [11, 12], healthcare-associated infection [7, 11], prior hospital admission [7], and prior antimicrobial use [12, 13]. Although these factors are useful for suspecting the presence of PAB, to the best of our knowledge, no scoring systems are available to help clinicians rule out the possibility of PAB. Therefore, the purpose of this study was to identify factors associated with PAB and develop an exclusion score system that will assist in clinical practice.

Methods

Study Aim and Design

This study aimed to identify factors associated with Pseudomonas aeruginosa bacteraemia and develop an exclusion scoring system to help clinicians select an appropriate antimicrobial treatment. A retrospective, single-centre, case-control study was performed at St. Luke's International Hospital (a 520-bed hospital) in Tokyo, Japan, between April 2005 and March 2020.

Inclusion and Exclusion Criteria

Inpatients and outpatients (age ≥ 20 years) with PAB or *E. coli* bacteraemia (ECB) were selected from the electronic hospital database based on positive blood culture findings. Patients with *E. coli* detected by blood culture during the corresponding period were included in the control group, and those with multiple bacteraemias were excluded. In addition, in patients with multiple episodes of bacteraemia, only the first episode of bacteraemia was included in the analysis.

Data Collection

Patient data were extracted from inpatients' and outpatients' electronic medical records. Study variables included patient demographics, comorbidities, probable causes of bacteraemia, presence of foreign bodies, use of immunosuppressive drugs, chemotherapy, antibiotics within 90 days before bacteraemia, hospitalization within 1 year, surgery within 1 year, vital signs, laboratory results and microbiological findings, length of stay, admission to the intensive care unit, and mortality.

Variable Definitions

PAB and ECB were defined by the laboratory findings of at least one set of positive blood cultures collected using standard sterile techniques [11]. Neutropenia was defined as a neutrophil count of less than 500/mm³ [8]. The source of bacteraemia was comprehensively determined through a review of the electronic discharge summary and the daily chart record of patient symptoms, physical examinations, laboratory results, and radiological findings. A central venous catheter, such as a central venous port catheter, peripherally inserted central catheter, or temporary or permanent catheter for haemodialysis, was defined as an intravascular access device or a catheter whose end is placed in or near the heart or in one of the main veins [8, 14, 15]. Malignancies included both solid tumours and hematologic malignancies that had been treated with chemotherapy within the last 90 days. Central line-associated bloodstream
infection (CLABSI) was classified as an infection of central venous catheters and peripherally inserted central venous catheters using the Centres for Disease Control and Prevention definitions [16], and peripheral line-associated bloodstream infection (PLABSI) was defined as bacteraemia with at least one of the following criteria: existence of phlebitis and/or disappearance of clinical symptoms after peripheral line withdrawal, and/or careful exclusion of bacteraemia as another focus [17, 18]. Intra-abdominal infections included cholangitis, cholecystitis, intestinal obstruction, oesophageal varices, appendicitis, diverticulitis, peritonitis, liver abscess, intra-abdominal abscess, and acute pancreatitis. Skin and soft tissue infections included erysipelas, cellulitis, subcutaneous abscess, necrotizing fasciitis, and wound infections. Respiratory diseases included chronic obstructive pulmonary disease (COPD), asthma and COPD overlap syndrome, bronchiectasis, interstitial pneumonia, diffuse panbronchiolitis, and bronchial asthma. Nosocomial infections (healthcare-associated infections) were diagnosed when patients had a positive blood culture after 48 hours of hospitalization. Community-acquired bacteraemia was diagnosed when it occurred in the outpatient setting or within 48 hours of hospitalization; however, patients who fulfilled one or more of the following criteria were categorized as having healthcare-associated infections [11, 19]: 1) underwent intravenous therapy at home or in an outpatient setting within the past 30 days; 2) attended a hospital, haemodialysis clinic, or received intravenous chemotherapy within the past 30 days; 3) had more than two days of hospitalization in the past 90 days; and 4) spent two or more days in a nursing home or in an assisted living facility in the past 90 days.

Microbiological Tests

We used the BacT/ALERT 3D system (bioMérieux, Inc.) for blood cultures and the MicroScan WalkAway 96PLUS (Beckman Coulter, Tokyo, Japan) for susceptibility testing.

Statistical Analyses

In bivariate associations, we used the chi-square or Fisher’s exact test for categorical variables and the Mann–Whitney U test for continuous variables. Variables significantly associated with PAB in univariate analysis were applied to the CART model as a part of the multivariable analysis after removing highly correlated explanatory variables in terms of the variance inflation factor for multicollinearity. For continuous variables, those that were statistically significant in univariate analysis were converted into binary categorical variables using the CART model. As a result, variables that appeared at higher branch levels in the tree of the CART model and those that were clinically important among variables that were statistically significant in univariate analysis were included as explanatory variables in the multivariate logistic regression analysis. The final explanatory variables of the model were selected by the forward stepwise approach. The receiver operating characteristic (ROC) curve was plotted with the model, and the values of the cut-off-point and area under the ROC curve were calculated from this ROC curve.

The statistical significance threshold was set at P < 0.05. All statistical analyses were carried out using the statistical software program SPSS 19.0J (IBM Japan, Tokyo, Japan) and EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan), which is a graphical user interface for R (The R Foundation for Statistical Computing, Vienna, Austria).
Results

Study Participants

Of the 1592 observations, 14 observations (7 patients with both PAB and ECB) were excluded, and the first episodes of bacteraemia of 16 patients with multiple episodes of bacteraemia were included. Ultimately, 1562 patients (208 PAB and 1354 ECB) were included in the study (Fig. 1). Comparisons of demographic characteristics, comorbidities, and site of infection between the PAB and ECB groups are shown in Table 1. Patients with PAB were younger (72 years versus 76 years, p < 0.001) and less obese (19.7% versus 21.7, p < 0.001) and had higher proportions of males (68.3% versus 40.5%; p < 0.001), solid tumours (11.1% versus 7.0%; p = 0.048), haematological malignancy (5.3 % versus 2.1%; p = 0.013), diabetes (37.0% versus 28.7%; p = 0.018), chronic kidney disease (12.5% versus 7.8%; p = 0.030), haemodialysis (12.5% versus 4.5%; p < 0.001), and neutropenia (5.8% versus 1.6%; p = 0.001) than those with ECB. In addition, the PAB group had higher percentages of urinary catheters (65.4 % versus 22.7%; p < 0.001), central venous catheter (38.5% versus 9.7%; p < 0.001), peripherally inserted central venous catheter (PICC) (4.8% versus 1.9%; p = 0.021), and arterial line (31.7% versus 9.2%; p < 0.001) than the ECB group.
Table 1
Comparison of patient characteristics between *Pseudomonas aeruginosa* and *Escherichia coli* bacteraemia groups using univariate analysis

	P. aeruginosa (n = 208)	*E. coli* (n = 1354)	p values
Age, median (IQR)	72 (60–79.8)	76 (64–84)	< 0.001
Sex (male), n (%)	142 (68.3)	548 (40.5)	< 0.001
BMI, median (IQR)	19.7 (17.4–22.7)	21.7 (19–24.3)	< 0.001
Comorbid conditions, n (%)			
Solid tumour	23 (11.1)	95 (7.0)	0.048
Haematological malignancy	11 (5.3)	28 (2.1)	0.013
Diabetes mellitus	77 (37.0)	388 (28.7)	0.018
Chronic kidney disease	26 (12.5)	105 (7.8)	0.030
Haemodialysis	26 (12.5)	61 (4.5)	< 0.001
Peritoneal dialysis	1 (0.5)	3 (0.2)	0.436
Neutropenia	12 (5.8)	22 (1.6)	0.001
Respiratory disease	30 (14.4)	172 (12.7)	0.505
Predisposing condition, n (%)			
Urinary catheterization	136 (65.4)	308 (22.7)	< 0.001
Presence of central venous catheter	10 (25)	14 (24.1)	< 0.001
Presence of peripherally inserted central venous catheter	10 (4.8)	26 (1.9)	0.021
Arterial line	66 (31.7)	124 (9.2)	< 0.001
Venous line	175 (84.1)	518 (38.3)	< 0.001
Use of a mechanical ventilator	30 (14.4)	49 (3.6)	< 0.001
Tracheal intubation	30 (14.4)	38 (2.8)	< 0.001
Primary site of infection (source of bacteraemia), n (%)			
Urinary tract infection	67 (32.2)	881 (65.1)	< 0.001

Abbreviations: IQR, interquartile range; BMI, body mass index; CLABSI, central line-associated bloodstream infection; PLABSI, peripheral line-associated bloodstream infection; SpO₂, oxygen saturation measured by a pulse oximeter; γ-GTP, γ-glutamyl transpeptidase; CRP, C-reactive protein.
	P. aeruginosa (n = 208)	E. coli (n = 1354)	p values
Abdominal Infection	35 (16.8)	335 (24.7)	0.016
Pneumonia	67 (32.2)	36 (2.7)	< 0.001
CLABSI/PLABSI	13 (6.3)	3 (0.2)	< 0.001
Skin and soft tissue	5 (2.4)	9 (0.7)	0.037
Unknown and others	21 (10.1)	90 (6.6)	0.097
Drug use within the prior 90 days, n (%)			
Steroid	72 (34.6)	189 (14.0)	< 0.001
Chemotherapy	34 (16.3)	123 (9.1)	0.003
Antibiotics	172 (82.7)	372 (27.5)	< 0.001
Hospitalization within the prior 1 year, n (%)			
Surgery within the prior 1 year, n (%)			
Nosocomial	149 (71.6)	431 (31.8)	< 0.001
Vital signs, median (IQR)			
Systolic blood pressure (mmHg)	120 (104–135)	120 (102–138)	0.908
Pulse rate (/minute)	90 (78–108)	88 (76–102)	0.173
Respiratory rate (/minute)	18 (16–24)	18 (16–23.25)	0.065
Temperature (°C)	37.3 (36.7–38.3)	37.7 (36.8–38.6)	0.003
Oxygen saturation (%)	97 (95–98)	96 (95–98)	0.042
Laboratory findings, median (IQR)			
White blood cell count (×10^3/μL)	9.85 (6.2–15.1)	10.5 (7–14.4)	0.291
Albumin (g/dL)	2.85 (2.3–3.4)	3.4 (2.9–3.8)	< 0.001
Total bilirubin (mg/dL)	0.7 (0.4–1.1)	0.8 (0.6–1.5)	< 0.001
γ-GTP (U/L)	67 (29.5–162.5)	48 (22–148.5)	0.019
Creatine kinase (U/L)	50 (26–112.5)	67 (38–136.8)	0.001

Abbreviations: IQR, interquartile range; BMI, body mass index; CLABSI, central line-associated bloodstream infection; PLABSI, peripheral line-associated bloodstream infection; SpO₂, oxygen saturation measured by a pulse oximeter; γ-GTP, γ-glutamyl transpeptidase; CRP, C-reactive protein.
Regarding the sources of bacteraemia, pneumonia (32.2% vs. 2.7%; p < 0.001), CLABSI/PLABSI (6.3% vs. 0.2%; p < 0.001), and skin and soft tissue infections (2.4% vs. 0.7%; p = 0.037) were significantly more commonly seen in the PAB group than in the ECB group. The PAB group had higher percentages of a history of hospitalization (37.5% vs. 29.0%; p = 0.015) and surgery (42.8% versus 16.3%; p < 0.001) and recent usage of steroids (34.6% versus 14.0%; p < 0.001), chemotherapy (16.3% versus 9.1%; p = 0.003), and antibiotics (82.7% versus 27.5%; p < 0.001) than the ECB group.

The independent associated factors for PAB that were revealed in the multivariable analysis were as follows: nosocomial infection (OR = 1.84, 95% CI = 1.2–2.8; p = 0.006), pneumonia (OR = 4.2, 95% CI = 1.92–9.11; p < 0.001), sex (males) (OR = 2.48, 95% CI = 1.64–3.76; p < 0.001), exposure to antibiotics within 90 days (OR = 4.4, 95% CI = 2.64–7.46; p < 0.001), urinary catheterization (OR = 2.01, 95% CI = 1.27–3.19; p = 0.003), age < 77 years (OR = 1.69, 95% CI = 1.11–2.59; p = 0.015), body mass index (BMI) < 19 (OR = 2.42, 95% CI = 1.61–3.64; p < 0.001), presence of central venous catheter (OR = 2.42, 95% CI = 1.11–3.0; p = 0.018), and CLABSI/PLABSI (OR = 15.3, 95% CI = 3.09–75.6; p < 0.001) (Table 2). In addition, urinary tract infection (OR = 0.34, 95% CI = 0.18–0.65; p = 0.001) and abdominal infection (OR = 0.47, 95% CI = 0.23–0.96; p = 0.039) were sources of bacteraemia negatively associated with PAB (Table 2).
Table 2
Results of the multivariable logistic regression analysis used to determine the Non-PSEUDO-AntiBiotiCs score.

	Adjusted OR	Beta coecient	95% CI	p values	Points
Nosocomial	1.84	0.61	1.2–2.8	0.006	1
Pneumonia	4.2	1.43	1.92–9.11	< 0.001	3
Sex (male)	2.48	0.91	1.64–3.76	< 0.001	2
Exposure to antibiotics within 90 days	4.4	1.49	2.64–7.46	< 0.001	3
Urinary tract infection	0.34	–1.1	0.18–0.65	0.001	–2
Urinary catheterization	2.01	0.70	1.27–3.19	0.003	1
AbDOMinal Infection	0.47	–0.75	0.23–0.96	0.039	–1
Age < 77	1.69	0.53	1.11–2.59	0.015	1
BMI < 19	2.42	0.88	1.61–3.64	< 0.001	2
Presence of Cenrtal venous catheter	1.82	0.60	1.11–3.0	0.018	1
CLABSI/PLABSI	15.3	2.73	3.09–75.6	< 0.001	5

To develop a prediction system for PAB, we focused on the beta coefficients corresponding to the variables that were statistically significant in the multivariable analysis. We calculated the weight scores by dividing each beta coefficient by the smallest value among the absolute beta coefficients and rounding the divided beta coefficients to develop the understandable rule. The obtained weight scores (Non-PSEUDO-AntiBiotiCs score) are shown as follows: Nosocomial (1 point); Pneumonia (3 points); Sex (males, 2 points); Exposure to antibiotics within 90 days (3 points); Urinary tract infection (-2 points); Urinary catheterization (1 point); AbDOMinal infection (-1 point); Age < 77 years (1 point); BMI < 19 (2 points); presence of Central venous catheter (1 point); and CLABSI/PLABSI (5 points).

In the final analysis, the area under the ROC curve was 0.89 (95% CI: 0.88–0.92) (Fig. 2), and the best cutoff point was 5. A score of 5 or higher had a sensitivity of 80%, a specificity of 83%, a positive predictive value of 42%, and a negative predictive value of 96%.
Discussion

To the best of our knowledge, this study is the first to develop a clinically predictive (exclusion) score for PAB, “Non-PSEUDO-AntiBiotiCs score”, using 11 elements that were significantly different in multivariable analysis. Males, age < 77 years, BMI < 19, placement of the urinary catheter, indwelling central venous catheter, nosocomial infection, use of antibiotics within 90 days, pneumonia, and CRBSI as a source of bacteraemia were independent associated factors for PAB, and the probability of PAB tended to be low if the score was less than 5. The current study differs from previous studies in that it included larger sample size and provided a simple and useful prediction score in the clinical setting. This scoring system would help clinicians select empirical antibacterial therapy.

It is often difficult for clinicians to decide whether *P. aeruginosa* should be considered in the setting of suspected community-acquired and nosocomial infections, such as pneumonia, urinary tract infection, and intra-abdominal infections. While the failure of empirical treatment in patients with PAB has already been shown to increase the mortality rate [20], abuse of broad-spectrum antimicrobial agents could lead to multidrug-resistant bacteria [5] and increase adverse events, such as *Clostridium difficile* infections [21], thereby resulting in longer hospital stays and additional costs [22]. Therefore, it is important to select appropriate empirical antimicrobials based on patients’ risk factors and clinical findings.

Two previous large studies determined the risk factors for PAB using ECB as a control group and found that an indwelling central venous catheter (CVC) [11], neutropenia [11], presentation with septic shock [11], healthcare-associated infection [11], and respiratory tract infection [8] were independent risk factors. Similarly, the present study also showed that the presence of CVC and respiratory infection were independent factors for PAB [8, 13]. In addition, urinary tract infection was found to be one of the negative factors for PAB; this finding is consistent with that in a previous study [8].

In comparison to findings in previous studies, one of the new independent associated factors identified in this study was CLABSI/PLABSI. This result could be explained by the fact that *P. aeruginosa* is the most common gram-negative rod causing CLABSI/PLABSI, while *E. coli* is relatively rare [23, 24]. A previous study showed the above trend, but the finding was not statistically significant [11]. The larger sample size might have contributed to the significant findings in this present study. The current study also showed that BMI < 19 was an associated factor for PAB. Because this study was a cross-sectional study, it is unclear whether low BMI is a cause or a consequence of PAB; however, *P. aeruginosa* infection could be a cause of emaciation because chronic infection with *P. aeruginosa* has been reported to produce pyocyanin, which leads to weight loss [25]. In addition, patients with chronic underlying diseases, such as bronchiectasis and cancer, may develop malnutrition [26, 27]. These patients may have contracted *P. aeruginosa* infection during their medical treatment in hospitals. Moreover, the findings of other significant associated factors, including age, male sex [1, 6, 7], exposure to antibiotics [12, 13], and urinary catheterization [12], are consistent with those in previous studies. However, it is possible that some hidden confounding factors could not be identified in the present retrospective study since it
addressed only cases of recent hospitalization for a period of less than one year, and this could be an issue for future studies.

Since delays in treatment of PAB are known to be associated with increased mortality [1, 20], early prediction of PAB may contribute to patients' clinical outcomes. Our scoring system may help clinicians determine whether *P. aeruginosa* should be considered a causative pathogen of infection. Moreover, the use of this scoring system may reduce unnecessary broad-spectrum antimicrobial use, thereby preventing the emergence of multidrug-resistant bacterial pathogens.

This study has several limitations. First, this study was performed at a single institution, and the sample size was relatively small. Second, this was an observational study; thus, it is possible that unknown risk factors were distributed unequally between the two groups. Third, this study included only patients with positive blood cultures. Therefore, this scoring system cannot be applied to all patients with negative blood cultures. Since it is often unclear whether bacteraemia is present in the early onset of the disease, this scoring system should be interpreted expansively and judged carefully together with clinical information. Fourth, this scoring system cannot be used if the source of infections remains unknown at the time of diagnosis because clinicians need to use the source of infection to calculate the score.

Conclusion

We developed the Non-PSEUDO-AntiBiotiCs score. This scoring system may allow clinicians to rule out the possibility of *P. aeruginosa* bacteraemia and optimize the use of broad-spectrum antimicrobials.

List Of Abbreviations

CLABSI, Central line-associated bloodstream infection; COPD, chronic obstructive pulmonary disease; CVC, central venous catheter; ECB, E. coli bacteraemia; PAB, Pseudomonas aeruginosa bacteraemia; PLABSI, peripheral line-associated bloodstream infection; ROC, receiver operating characteristic.

Declarations

Ethics approval and consent to participate:

The research protocol of this study was approved by the Facility Review Committee of St. Luke's International Hospital, Tokyo (number: 20-J001). This study was conducted in accordance with the Declaration of Helsinki and followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines. Because this study is based on a retrospective analysis of the routinely obtained data, the requirement for patient agreement was waived by the Facility Review Committee of St. Luke's International Hospital.

Consent for publication:
Availability of data and materials:

The datasets used and analysed during the current study available from the corresponding author on reasonable request.

Competing interests:

The authors declare that they have no competing interests.

Funding:

The authors did not receive any funding for this study.

Author contributions:

All authors contributed to the study conception and research design. KI compiled and synthesized the data and drafted the first version of the manuscript. TM, KH, and NM contributed to the writing of the manuscript. KI and KH conducted the statistical analysis. All authors were responsible for interpreting the results and approved the final version of the manuscript.

Acknowledgments:

We would like to thank Editage (www.editage.com) for English language editing.

References

1. Parkins MD, Gregson DB, Pitout JDD, Ross T, Laupland KB. Population-based study of the epidemiology and the risk factors for pseudomonas aeruginosa bloodstream infection. Infection. 2010;38:25-32.

2. Thaden JT, Park LP, Maskarinec SA, Ruffin F, Fowler VG, van Duin D. Results from a 13-year prospective cohort study show increased mortality associated with bloodstream infections caused by pseudomonas aeruginosa compared to other bacteria. Antimicrob Agents Chemother. 2017;61:1-11.

3. Lambert PA. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med. 2002;95 Suppl 4:22-6.

4. Tschudin-Sutter S, Fosse N, Frei R, Widmer AF. Combination therapy for treatment of Pseudomonas aeruginosa bloodstream infections. PLoS One. 2018;13:1-13.

5. Karam G, Chastre J, Wilcox MH, Vincent J-L. Antibiotic strategies in the era of multidrug resistance. Crit Care. 2016;20:136.

6. Lee CC, Hsieh CC, Lee NY, Chan TY, Hong MY, Chi CH, et al. Different clinical presentation of community-onset bacteremia among neutropenic adults in the ED. Am J Emerg Med. 2015;33:907-
12. Hernandez C, Cobos-Trigueros N, Feher C, Morata L, De La Calle C, Marco F, et al. Community-onset bacteraemia of unknown origin: clinical characteristics, epidemiology and outcome. Eur J Clin Microbiol Infect Dis. 2014;33:1973-80.

8. Choi Y, Paik JH, Kim JH, Han SB, Durey A. Clinical predictors of pseudomonas aeruginosa bacteraemia in emergency department. Emerg Med Int. 2018;2018:1-6.

9. Rojas A, Palacios-Baena ZR, Lópex-Cortés LE, Rodríguez-Baño J. Rates, predictors and mortality of community-onset bloodstream infections due to Pseudomonas aeruginosa: systematic review and meta-analysis. Clin Microbiol Infect. 2019;25:964-70.

10. Iversen BG, Brantsæter AB, Aavitsland P. Nationwide study of invasive Pseudomonas aeruginosa infection in Norway: Importance of underlying disease. J Infect. 2008;57:139-46.

11. Cheong HS, Kang C-I, Wi YM, Kim ES, Lee JS, Ko KS, et al. Clinical significance and predictors of community-onset Pseudomonas aeruginosa bacteremia. Am J Med. 2008;121:709-14.

12. Schechner V, Nobre V, Kaye KS, Leshno M, Giladi M, Rohner P, et al. Gram-negative bacteraemia upon hospital admission: when should pseudomonas aeruginosa be suspected? Clin Infect Dis. 2009;48:580-6.

13. Hammer KL, Justo JA, Bookstaver PB, Kohn J, Albrecht H, Al-Hasan MN. Differential effect of prior β-lactams and fluoroquinolones on risk of bloodstream infections secondary to Pseudomonas aeruginosa. Diagn Microbiol Infect Dis. 2017;87:87-91.

14. Aminzadeh Z, Simpson P, Athan E. Central venous catheter associated blood stream infections (CVC-BSIs) in the non-intensive care settings: Epidemiology, microbiology and outcomes. Infect Dis Heal. 2019;24:222-8.

15. Ling ML, Apisarnthanarak A, Jaggi N, Harrington G, Morikane K, Thu LTA, et al. APSIC Guide for Prevention of Central Line Associated Bloodstream Infections (CLABSI). Antimicrob Resist Infect Control. 2016;5:1-9.

16. Chopra V, O’Horo JC, Rogers MAM, Maki DG, Safdar N. The risk of bloodstream infection associated with peripherally inserted central catheters compared with central venous catheters in adults: a systematic review and meta-analysis. Infect Control Hosp Epidemiol. 2013;34:908-18.

17. Ishikane M, Hayakawa K, Kutsuna S, Takeshita N, Ohmagari N. Epidemiology of blood stream infection due to Candida species in a tertiary care hospital in Japan over 12 years: Importance of peripheral line-associated candidemia. PLoS One. 2016;11:e0165346.

18. Tsuboi M, Hayakawa K, Mezaki K, Katanami Y, Yamamoto K, Kutsuna S, et al. Comparison of the epidemiology and microbiology of peripheral line- and central line-associated bloodstream infections. Am J Infect Control. 2019;47:208-10.

19. Friedman ND. Health care–associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med. 2002;137:791.

20. Cheong HS, Kang C-I, Wi YM, Ko KS, Chung DR, Lee NY, et al. Inappropriate initial antimicrobial therapy as a risk factor for mortality in patients with community-onset Pseudomonas aeruginosa
bacteraemia. Eur J Clin Microbiol Infect Dis. 2008;27:1219-25.

21. Chalmers JD, Al-Khairalla M, Short PM, Fardon TC, Winter JH. Proposed changes to management of lower respiratory tract infections in response to the Clostridium difficile epidemic. J Antimicrob Chemother. 2010;65:608-18.

22. Webb BJ, Sorensen J, Jephson A, Mecham I, Dean NC. Broad-spectrum antibiotic use and poor outcomes in community-onset pneumonia: a cohort study. Eur Respir J. 2019;54:1900057.

23. Surapat B, Montakantikul P, Malatham K, Kiertiburanakul S, Santanirand P, Chindavijak B. Microbial epidemiology and risk factors for relapse in gram-negative bacteria catheter-related bloodstream infection with a pilot prospective study in patients with catheter removal receiving short-duration of antibiotic therapy. BMC Infect Dis. 2020;20:1-12.

24. Gupta S, Mallya SP, Bhat A, Baliga S. Microbiology of non-tunnelled catheter-related infections. J Clin Diagnostic Res. 2016;10:DC24-8.

25. Larian N, Ensor M, Thatcher SE, English V, Morris AJ, Stromberg A, et al. Pseudomonas aeruginosa-derived pyocyanin reduces adipocyte differentiation, body weight, and fat mass as mechanisms contributing to septic cachexia. Food Chem Toxicol. 2019;130:219-30.

26. Olveira G, Olveira C, Gaspar I, Porras N, Martín-Núñez G, Rubio E, et al. Fat-free mass depletion and inflammation in patients with bronchiectasis. J Acad Nutr Diet. 2012;112:1999-2006.

27. Lidoriki I, Schizas D, Frountzas M, Machairas N, Prodromidou A, Kapelouzou A, et al. GNRI as a prognostic factor for outcomes in cancer patients: a systematic review of the literature. Nutr Cancer. 2021;73:391-403.

Figures
Study design Of the 1592 observations, 14 observations (7 patients with both PAB and ECB) were excluded, and the first episodes of bacteraemia of 16 patients with multiple episodes of bacteraemia were included. Consequently, 1562 patients (208 PAB and 1354 ECB) were included in the study.

Abbreviations: P. aeruginosa, Pseudomonas aeruginosa; E. coli, Escherichia coli; PAB, Pseudomonas aeruginosa bacteraemia; ECB, E. coli bacteraemia.

Figure 1

Study design Of the 1592 observations, 14 observations (7 patients with both PAB and ECB) were excluded, and the first episodes of bacteraemia of 16 patients with multiple episodes of bacteraemia were included. Consequently, 1562 patients (208 PAB and 1354 ECB) were included in the study. Abbreviations: P. aeruginosa, Pseudomonas aeruginosa; E. coli, Escherichia coli; PAB, Pseudomonas aeruginosa bacteraemia; ECB, E. coli bacteraemia.
Figure 2

The receiver operating characteristic curve of the Non-PSEUDO-AntiBiotiCs score. In the final analysis, the area under the receiver operating characteristic curve was 0.89 (95% CI: 0.87-0.91), and the best cut-off point was 5. A score of 5 or higher had a sensitivity of 80%, a specificity of 83%, a positive predictive value of 42%, and a negative predictive value of 96%.