Risk factors for osteoporosis in male patients with chronic obstructive pulmonary disease in Taiwan

Chu-Hsu Lin 1, Kai-Hua Chen 1,2, Chien-Min Chen 1,2, Chia-Hao Chang 3, Tung-Jung Huang Corresp. 4,5, Chia-Hung Lin 1

1 Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Chiayi, Puzi City, Chiayi County, Taiwan
2 School of Medicine, Chang Gung University, Taoyuan City, Taiwan
3 Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Puzi City, Chiayi County, Taiwan
4 Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Yunlin, Mailiao Township, Yunlin County, Taiwan
5 Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi Campus, Puzi City, Chiayi County, Taiwan

Corresponding Author: Tung-Jung Huang
Email address: donaldhuang@cgmh.org.tw

Objective. To investigate the risk factors for osteoporosis in male Taiwanese patients with chronic obstructive pulmonary disease (COPD). Methods. This cross-sectional study evaluated male COPD outpatients and age-matched male subjects at a regional teaching hospital. The following data were obtained and analyzed: bone mineral density of the lumbar spine and hip on dual-energy X-ray absorptiometry, demographic characteristics, questionnaire interview results, pulmonary function test results, chest posterior–anterior radiographic findings, and biochemical and high-sensitivity C-reactive protein (hs-CRP) levels. Results. Fifty-nine male COPD patients and 36 age-matched male subjects were enrolled. COPD patients had lower body mass index (BMI) (23.6 ± 4.1 vs. 25.2 ± 3.0 kg/m²) and higher total prevalence for osteoporosis and osteopenia than controls. Among COPD patients, patients with osteoporosis had lower BMI, body weight, waist circumference, and triglyceride level but higher hs-CRP level, and tended to have lower creatinine level. Binary logistic regression analysis for factors including age, BMI, creatinine, hs-CRP, smoking, steroid use, and forced expiratory volume in one second (FEV1) revealed that an hs-CRP level ≥ 5 and decreased creatinine level were independent risk factors for osteoporosis in COPD patients. BMI tended to be associated with osteoporosis development, although it did not reach statistical significance, and hs-CRP was associated with COPD severity and steroid use history. Conclusion. The total prevalence of osteoporosis and osteopenia in male Taiwanese COPD patients is higher than that in age-matched male subjects and systemic inflammation is an independent risk factors for osteoporosis. Low creatinine level in COPD patients should raise the suspicion of sarcopenia and associated increased risk of osteoporosis.
Title: Risk factors for osteoporosis in male patients with chronic obstructive pulmonary disease in Taiwan.

Chu-Hsu Lin¹, Kai-Hua Chen¹², Chien-Min Chen¹², Chia-Hao Chang³, *Tung-Jung Huang⁴⁵, Chia-Hung Lin¹

¹Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Chiayi,
²School of Medicine, Chang Gung University, Taoyuan, ³Department of Nursing, Chang Gung University of Science and Technology, Chiayi Campus, Chiayi, ⁴Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital, Yunlin, ⁵Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi Campus, Chiayi

Corresponding author: Tung-Jung Huang, Division of Thoracic Medicine, Department of Internal Medicine, Chang Gung Memorial Hospital at Yunlin, No.1500, Gongye Rd., Mailiao Township, Yunlin County 638, Taiwan (R.O.C.) Tel: 886-5-6915151 ext 2000, FAX: 886-5-6913222

E-mail: donaldhuang@cgmh.org.tw
Abstract

Objective. To investigate the risk factors for osteoporosis in male Taiwanese patients with chronic obstructive pulmonary disease (COPD).

Methods. This cross-sectional study evaluated male COPD outpatients and age-matched male subjects at a regional teaching hospital. The following data were obtained and analyzed: bone mineral density of the lumbar spine and hip on dual-energy X-ray absorptiometry, demographic characteristics, questionnaire interview results, pulmonary function test results, chest posterior–anterior radiographic findings, and biochemical and high-sensitivity C-reactive protein (hs-CRP) levels.

Results. Fifty-nine male COPD patients and 36 age-matched male subjects were enrolled. COPD patients had lower body mass index (BMI) (23.6 ± 4.1 vs. 25.2 ± 3.0 kg/m²) and higher total prevalence for osteoporosis and osteopenia than controls. Among COPD patients, patients with osteoporosis had lower BMI, body weight, waist circumference, and triglyceride level but higher hs-CRP level, and tended to have lower creatinine level. Binary logistic regression analysis for factors including age, BMI, creatinine, hs-CRP, smoking, steroid use, and forced expiratory volume in one second (FEV1) revealed that an hs-CRP level ≥ 5 and decreased creatinine level were independent risk factors for osteoporosis in COPD patients. BMI tended to be associated with osteoporosis development, although it did not reach statistical significance, and hs-CRP was
associated with COPD severity and steroid use history.

Conclusion. The total prevalence of osteoporosis and osteopenia in male Taiwanese COPD patients is higher than that in age-matched male subjects and systemic inflammation is an independent risk factors for osteoporosis. Low creatinine level in COPD patients should raise the suspicion of sarcopenia and associated increased risk of osteoporosis.
Introduction

Chronic obstructive pulmonary disease (COPD), a major global public health issue burdening health-care systems, is characterized by persistent and usually progressive airflow limitation resulting from chronic inflammation of the airways and lungs (Vestbo et al., 2013). The incidence and prevalence of COPD are much greater in men than in women worldwide (Afonso et al., 2011). Currently, it is regarded as a heterogeneous disease with many systemic manifestations and comorbidities, such as ischemic heart disease, heart failure, anemia, diabetes, skeletal muscle wasting, osteoporosis, and osteoporotic fracture (Barnes & Celli, 2009; Lee et al., 2016). It is also predicted to become the third leading cause of death in the world by 2020 (Murray & Lopez, 1997).

Osteoporosis, an important comorbidity of COPD, increases the risk of fracture, with resultant pain, functional limitation, and increased mortality (Sambrook & Cooper, 2006). Several studies showed that COPD patients have a high prevalence of osteoporosis or low bone mineral density (BMD), although estimates of prevalence are often underestimated and varied, depending on the study methodology and case enrollment criteria (Rittayamai et al., 2012; Romme et al., 2013). A recent systematic review revealed mean prevalences for osteoporosis and osteopenia in COPD patients as approximately 35.1% (9–69%) and 38.4% (27–67%), respectively (Graat-Verboom et al., 2009). Therefore, early detection, prevention, and treatment of osteoporosis in COPD patients
is important.

The cause of osteoporosis in COPD patients is complex, and various risk factors are likely related to the pathogenesis, such as old age (Kanis et al., 2008); tobacco smoking (Afonso et al., 2011); female sex (Ekstrom et al., 2012); lower body mass index (BMI) (Graat-Verboom et al., 2009); physical inactivity (Silva et al., 2011); steroid use (Loke et al., 2011); lower fat-free mass (Graat-Verboom et al., 2009); and systemic inflammation markers such as C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) (Liang & Feng, 2012; Rittayamai et al., 2012). However, cumulative results of these studies are inconclusive, and the definite pathogenic mechanism remains unclear. To our knowledge, data regarding risk factors in Taiwan are limited, with no current research regarding the association between inflammation markers or systemic inflammation and osteoporosis development (Chen et al., 2015; Lee et al., 2016; Lin et al., 2015; Liu et al., 2015). Therefore, this study primarily aimed to investigate risk factors for osteoporosis, particularly whether increased CRP is a predictor for osteoporosis development in male Taiwanese COPD patients since it is a common and available test in the hospital.

Materials and methods

Subjects and study design

This cross-sectional study was a sub-program of community elderly medical research program.
It enrolled male COPD patients aged ≥45 years from a chest outpatient clinic in a regional teaching hospital in the west Chiayi County, Taiwan. Patients were clinically stable without recent acute exacerbation in the previous 3 months. Age-matched male subjects were recruited from participants in health examinations at local public health centers in the west Chiayi County. Subjects who were willing to undergo anthropometric measurements, questionnaire interviews, blood tests, chest radiography, spirometry, and BMD examination were included. Subjects with rheumatic disease, bronchial asthma, or other structural lung diseases (including lung cancer, bronchiectasis, and lung fibrosis) revealed by past medical history or chest radiography were excluded. Written informed consent was obtained from all participants, and the study was approved by the local Institutional Review Board of Chiayi Chang Gung Memorial Hospital (IRB number: 96-0495B).

Anthropometric measurements

Body weight, height, and waist and hip circumferences were measured with participants wearing light clothing without shoes. BMI was calculated.

Questionnaire interview and medical records review

All participants were interviewed using a comprehensive questionnaire. Age, medical history, dietary habits, and lifestyle factors including tobacco smoking, milk or calcium supplement consumption, exercise, and employment as a manual labor were recorded. If applicable, further
information was collected on the amount, frequency, and duration of certain lifestyle habits.

Habitual milk consumption was defined as drinking ≥7 glasses per week for ≥1 year. Subjects with habitual milk or calcium supplement consumption were considered to have a high calcium intake. Habitual exercise was defined as exercising ≥3.5 hours/week for ≥1 year. Subjects who were habitual exercisers or manual labors were defined as those with high physical activity.

Past medical history (including hypertension, diabetes mellitus, dyslipidemia, liver disease, and renal disease) was recorded. If present, liver or renal disease was further defined.

Steroid use or history of acute exacerbation of COPD in the previous 3 years was determined from the medical records by a physician. Steroid use was classified as (1) oral for > 6 months regardless of continuous or intermittent use, (2) inhaled for >6 months regardless of continuous or intermittent use, (3) occasional (either oral or inhaled for <6 months), or (4) not used (See Table 1).

Blood tests

Biochemical parameters were determined for serum blood urea nitrogen, creatinine, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglyceride, glycohemoglobin (HbA1c), uric acid, homocysteine, vitamin B12, folate, and high-sensitivity CRP (hs-CRP). Subjects with a CRP level above the normal reference value in the hospital (≥5 mg/dL) were classified as the group of increased hs-CRP.

Lung examination
All subjects underwent posterior–anterior chest radiography and spirometry. Post-bronchodilator spirometry examination was performed by trained personnel using a KoKo spirometer (Pulmonary Data Services, Inc., Louisville, KY, USA). The following parameters were recorded: forced expiratory volume in 1 second (FEV1), FEV1 % of predicted value (FEV1% predicted), forced vital capacity (FVC), FVC % of predicted value (FVC% predicted), FEV1/FVC ratio, and forced expiratory flow 25–75% (FEF 25–75%). Chest radiography and spirometry data were interpreted by a chest physician. The diagnosis and classification of the severity (stages I–IV) of COPD were based on the diagnostic criteria of the Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines (Johannessen et al., 2013).

Bone mineral density examination

BMD measurements at the first to fourth lumbar vertebrae (L1–L4) and left hip (right hip if left hip BMD unreadable because of conditions such as a fracture) were obtained using dual-energy X-ray absorptiometry (Delphi A, QDR series; Hologic, Bedford, MA, USA).

According to the diagnostic criteria proposed by a World Health Organization working party (Melton et al., 1993), osteoporosis and osteopenia were defined as a BMD T-score at either the lumbar spine or the hip of <−2.5 and between −1 and −2.5, respectively.

Data analysis

Continuous variables are presented as the mean ± standard deviation and categorical variables as the frequency and group percentage. Continuous and categorical variables were compared
among groups using the independent sample \(t \)-test and Pearson’s chi-square test or Fisher’s exact test, respectively. Binary logistic regression analyses were used for multivariate analysis to assess which background variables were predictive of osteoporosis, and odds ratios were calculated with a 95% confidence interval (CI). A \(P \)-value of <0.05 was considered significant for all tests.

Statistical analysis was performed with SPSS software, version 18 (SPSS, Inc., Chicago, IL, USA).

Results

From May 2009 to August 2011, 59 male COPD patients and 36 age-matched male subjects were enrolled. The data of FEV1/FVC was all above 70% in control group, on the other hand, it was all below 70% in COPD patient and the mean FEV1 of COPD patients was 1.26 ± 0.47 L (51.0% ± 18.0% predicted). The mean age of the two groups was similar, but body weight and BMI were lower in COPD patients. More people in COPD group had history of cigarette smoking. Hip BMD was lower in COPD group. Lumbar spine BMD also tended to be lower in COPD group, although it did not reach statistical significance (Table 2). Among COPD patients, 17 (28.8%) exhibited osteoporosis and 25 (42.4%) osteopenia compared with 16.7% and 33.3%, respectively, in controls. The total prevalence of osteoporosis and osteopenia in COPD patients was significant higher than that in controls by the Person’s Chi-square test \((P = 0.038)\). However,
in multivariate binary logistic regression analysis showed that low BMI was the independent risk
factors of increased prevalence of osteoporosis and osteopenia and the variable COPD (COPD
patients versus controls) lost its statistical significance (Table 3).

General clinical characteristics and laboratory findings among COPD patients with and without
osteoporosis are shown in Table 4. Body weight, BMI, waist circumference, and triglyceride level
were significantly lower in the osteoporosis group. The creatinine level tended to be lower in the
osteoporosis group, although the statistical significance was marginal ($P = 0.050$). Patients with
increased hs-CRP (≥ 5 mg/L) showed a high risk of osteoporosis compared with those with low
hs-CRP although the mean value of hs-CRP in osteoporosis group was not significantly higher
than that in non-osteoporosis group probably due to high standard deviation of the value.

Hs-CRP showed strong associations with COPD severity and pulmonary function parameters
(including COPD GOLD stage, FEV1, FEV1% predicted, FVC, FVC% predicted, FEV1/FVC,
and FEF 25–75%) and steroid use. The high hs-CRP group tended to have lower BMI, although
there were no significant differences in age, smoking habits, and history of acute exacerbation
(Table 5).

Factors related to COPD between the osteoporosis and non-osteoporosis groups are compared
in Table 6. There was no significant association between osteoporosis and other variables (age,
COPD severity, pulmonary function test parameters, calcium intake, physical activity, cigarette
smoking, frequent exacerbation of COPD, and corticosteroid use).

Multivariate analysis using binary logistic regression including age, BMI, creatinine, and increased hs-CRP (category), still smoking (category), oral or inhaled steroid use for more than 6 months (category), and FEV1 showed that an hs-CRP level ≥ 5 and decreased creatinine level were independent risk factors for osteoporosis in COPD patients, with odds ratios of 58.90 (95% CI, 2.09–1548.13) and 0.01 (95% CI, 0.00–0.67), respectively. BMI tended to be negatively associated with osteoporosis development, although statistically insignificant (Table 7). Because body weight, waist circumference, and triglyceride level were strongly associated with BMI, and all of the other respiratory parameters were strongly associated with FEV1 by the Pearson correlation test, these factors were not included in the regression analysis.

Discussion

The present study revealed that the prevalences of osteoporosis and osteopenia in COPD patients at a community hospital in Taiwan were 28.8% and 42.4%, respectively, and the total prevalence of them were higher than those in age-matched healthy controls, which was mainly contributed by low BMI in COPD patients. This is in agreement with previous studies showing that the risk of osteoporosis was greater in COPD patients than in healthy subjects (Graat-Verboom et al., 2009; Rittayamai et al., 2012; Schnell et al., 2012). However, the prevalence of...
osteoforosis in our study was lower than the 40% reported in a recent study also conducted in
Chiayi, Taiwan (Lin et al., 2015). This may be explained by differences in subject enrollment and
osteoforosis definition. That study enrolled male and female COPD patients and defined
osteoforosis as a BMD T-score <−2.5 or the presence of thoracolumbar vertebral compression
fracture on radiography.
This study also revealed that increased hs-CRP, decreased creatinine, and decreased BMI and
its related parameters such as body weight, waist circumference, and triglyceride level were
associated with osteoforosis in COPD patients in univariate analysis. Multivariate analysis with
binary logistic regression revealed increased hs-CRP, and decreased creatinine were independent
risk factors for osteoforosis development in COPD patients, which implied increased systemic
inflammation and probably decreased muscle mass played important roles in bone loss.
The association between osteoforosis and COPD is multi-factorial and could be confounding
(Romme et al., 2013). Increasing evidence suggests an association between low BMD and
systemic inflammation. This may be observed in several rheumatic diseases such as systemic
lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease (Ali et al., 2009;
Lacativa & Farias, 2010; Lane, 2006). COPD is a systemic inflammatory disease with pulmonary
and extra-pulmonary manifestations. A link between COPD and extra-pulmonary comorbidities
such as osteoforosis, atherosclerosis, skeletal muscle dysfunction, and anemia may be explained
by systemic inflammation (Barnes & Celli, 2009; Sin et al., 2006). The disease process is believed to be initiated when lung tissues are exposed to environment irritants such as tobacco smoke and air pollutants; subsequently, stimulated epithelial cells and macrophages release inflammatory mediators, which may directly or indirectly damage the lungs and other specific organs. In addition to the lungs, these mediators were detected in peripheral blood (Gan et al., 2004).

Several inflammatory markers are associated with low BMD or increased fracture risk. This study revealed that increased hs-CRP was associated with osteoporosis development in COPD patients after adjustment for common confounding factors including age and BMI, which is in agreement with Rittayamai et al.’s study (Rittayamai et al., 2012). Another study reported that TNF-α and IL-6 were independent predictors of low BMD. CRP also tended to be associated with low BMD, although statistically insignificant (Liang & Feng, 2012). Different case selection, for example, patients with different disease severity, might have contributed to this subtle difference.

However, because tests to determine CRP level are relatively available and inexpensive (Buess & Ludwig, 1995), this parameter may worth considering first for detection of the existence and severity of inflammation in COPD to predict disease outcome and the possibility of extra-pulmonary comorbidity such as osteoporosis.

This study showed that increased CRP level was related to COPD severity as classified by the
GOLD staging criteria and each pulmonary function parameter, and systemic steroid use, which indicated that patients with persistent systemic inflammation had an increased need to use systemic steroid to either prevent acute exacerbation or relieve the symptoms of airway obstruction. These findings were in line with several previous studies. CRP was negatively related to FEV1 (de Torres et al., 2008; Saetta, 1999), FEV1% predicted (Saetta, 1999), and FEV1, FVC, and arterial oxygen saturation (Dahl et al., 2007). Furthermore, Sin and Man found that the negative association between CRP, and FEV1 and FVC, in COPD patients was much stronger in men than in women (Sin & Man, 2003). These findings suggest that persistent systemic inflammation in COPD links worse lung condition with extra-pulmonary comorbidities such as osteoporosis or general cachexia and explains why some studies revealed that poor pulmonary function parameters such as FEV1 were associated with osteoporosis development (Lin et al., 2015; Watanabe et al., 2015).

Low creatinine level was associated with osteoporosis in this study. Lower creatinine level could indicate two possibilities, one was relatively better renal function, and the other was relatively lower muscle mass. Serum creatinine is a metabolite of creatine phosphate, which mostly originates from skeletal muscle with a stable breakdown rate. Therefore, serum creatinine level directly reflects the amount of muscle mass unless renal function changes (Huh et al., 2015; Kim et al., 2016). A recent study reported that low serum creatinine was related to low
appendicular muscle mass and low BMD in subjects with a glomerular filtration rate >60 mL/min/1.73 m². Sarcopenia and osteoporosis should be considered in male and female patients with creatinine levels <0.88 mg/dL and <0.75 mg/dL, respectively (Huh et al., 2015). Loss of fat-free mass was related to COPD severity and low BMD (Bolton et al., 2004). In the questionnaire interview of the present study, most COPD patients had no history of renal diseases except only one COPD patient in non-osteoporotic group was reported to have chronic kidney disease (Table 4). And since it is well known that good renal function is not related to the development of osteoporosis, the only explanation of the association between low creatinine level and osteoporosis was that low muscle mass relating to the occurrence of osteoporosis. For the findings, we suggest that the occurrence of sarcopenia and increased risk of osteoporosis should be considered in COPD patients with low creatinine levels, although normal creatinine levels should not exclude sarcopenia or chronic kidney disease because prevalences of both sarcopenia and chronic kidney disease may be increased in COPD patients (Bolton et al., 2004; Chen et al., 2013; Incalzi et al., 2010). In this situation, a low creatinine level would be a more sensitive indicator of sarcopenia. Because measurement of creatinine is simple and inexpensive, this parameter may be a useful screening tool for sarcopenia and osteoporosis in COPD patients. Recently, some studies reported that increased homocysteine, decreased vitamin B12, and decreased folate levels might be related to increased fracture risk or osteoporosis, although these
findings remain controversial (Cagnacci et al., 2003; Fratoni & Brandi, 2015). A study on whether homocysteine, vitamin B12, and folate play roles in osteoporosis development in COPD patients is still lacking. The present study included these items but did not find obvious associations between them and osteoporosis in male COPD patients.

There were several limitations in the present study. First, the limited case number resulted in insufficient statistical power for analysis of some variables. Second, this study enrolled stable male COPD patients; thus, the majority of patients belonged to GOLD stages II and III, which were not the group of the most severe disease with most significant inflammation. Third, certain variables that might have confounded osteoporosis development, such as vitamin D deficiency, were not included. Furthermore, assessments of calcium intake amount were based solely on frequency of milk or calcium supplement consumption, and intensity of physical activity was based on the average hours spent exercising per week or the nature of the daily employed work. Differing intensity levels of different kinds of exercise or daily activity were not considered. Thus, the precise role of calcium intake amount and intensity of physical activity were not conclusive in this study. Moreover, recall bias might have existed in the questionnaire interview. Further, this study did not include other inflammation markers such as TNF-α, and the CRP level was only measured once. There was no continuous monitoring to detect fluctuations in inflammation marker level along the disease course and the effect on the pathogenesis of
osteoporosis. Another limitation was the cross-sectional design of the study. Further comprehensive prospective cohort studies are needed to confirm the causal relationships and clarify the underlying mechanisms.

Conclusions

The total prevalence of osteoporosis and osteopenia in male Taiwanese COPD patients is higher than that in age-matched male subjects and increased CRP level, which indicated systemic inflammation is an independent risk factor for osteoporosis development. Low creatinine level in COPD patients should raise the suspicion of sarcopenia and associated increased risk of osteoporosis.

Acknowledgment

The authors are honored to acknowledge the assistance of the Chiayi County Health Bureau and local public health centers.

References

Afonso AS, Verhamme KM, Sturkenboom MC, Brusselle GG. 2011. COPD in the general population: prevalence, incidence, and survival. Respir Med 105:1872-1884. 10.1016/j.rmed.2011.06.012

Ali T, Lam D, Bronze MS, Humphrey MB. 2009. Osteoporosis in inflammatory bowel disease. Am J Med 122:599-604. 10.1016/j.amjmed.2009.01.022

Barnes PJ, Celli BR. 2009. Systemic manifestations and comorbidities of COPD. Eur Respir J
Bolton CE, Ionescu AA, Shielz KM, Pettit RJ, Edwards PH, Stone MD, Nixon LS, Evans WD, Griffiths TL, Shale DJ. 2004. Associated loss of fat-free mass and bone mineral density in chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 170:1286-1293.

Buess T, Ludwig C. 1995. [Diagnostic value of C-reactive protein in comparison with erythrocyte sedimentation as routine admission diagnostic test]. *Schweiz Med Wochenschr* 125:120-124.

Cagnacci A, Baldassari F, Rivolta G, Arangino S, Volpe A. 2003. Relation of homocysteine, folate, and vitamin B12 to bone mineral density of postmenopausal women. *Bone* 33:956-959.

Chen CY, Hsu TW, Mao SJ, Chang SC, Yang PC, Lee YC, Yang KY. 2013. Abnormal renal resistive index in patients with mild-to-moderate chronic obstructive pulmonary disease. *Copd* 10:216-225. 10.3109/15412555.2012.719051

Chen SJ, Liao WC, Huang KH, Lin CL, Tsai WC, Kung PT, Chang KH, Kao CH. 2015. Chronic obstructive pulmonary disease and allied conditions is a strong independent risk factor for osteoporosis and pathologic fractures: a population-based cohort study. *Qjm* 108:633-640. http://dx.doi.org/10.1093/qjmed/hcv012

Dahl M, Vestbo J, Lange P, Bojesen SE, Tybjaerg-Hansen A, Nordestgaard BG. 2007. C-reactive protein as a predictor of prognosis in chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 175:250-255. 10.1164/rccm.200605-713OC

de Torres JP, Pinto-Plata V, Casanova C, Mullerova H, Cordoba-Lanus E, Muros de Fuentes M, Aguirre-Jaime A, Celli BR. 2008. C-reactive protein levels and survival in patients with moderate to very severe COPD. *Chest* 133:1336-1343. 10.1378/chest.07-2433

Ekstrom MP, Jogreus C, Strom KE. 2012. Comorbidity and sex-related differences in mortality in oxygen-dependent chronic obstructive pulmonary disease. *PLoS One* 7:e35806. 10.1371/journal.pone.0035806

Fratoni V, Brandi ML. 2015. B vitamins, homocysteine and bone health. *Nutrients* 7:2176-2192. 10.3390/nu7042176

Gan WQ, Man SF, Senthilselvan A, Sin DD. 2004. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. *Thorax* 59:574-580.

Graat-Verboom L, Wouters EF, Smeenk FW, van den Borne BE, Lunde R, Spruit MA. 2009. Current status of research on osteoporosis in COPD: a systematic review. *European Respiratory Journal* 34:209-218.

Huh JH, Choi SI, Lim JS, Chung CH, Shin JY, Lee MY. 2015. Lower Serum Creatinine Is
Associated with Low Bone Mineral Density in Subjects without Overt Nephropathy.

PLoS ONE [Electronic Resource] 10:e0133062.

Incalzi RA, Corsonello A, Pedone C, Battaglia S, Paglino G, Bellia V. 2010. Chronic renal failure: a neglected comorbidity of COPD. Chest 137:831-837. 10.1378/chest.09-1710

Johannessen A, Nilsen RM, Storebo M, Gulsvik A, Eagan T, Bakke P. 2013. Comparison of 2011 and 2007 Global Initiative for Chronic Obstructive Lung Disease guidelines for predicting mortality and hospitalization. Am J Respir Crit Care Med 188:51-59.

10.1164/rcm.201212-2276OC

Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. 2008. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385-397.

10.1007/s00198-007-0543-5

Kim SW, Jung HW, Kim CH, Kim KI, Chin HJ, Lee H. 2016. A New Equation to Estimate Muscle Mass from Creatinine and Cystatin C. PLoS ONE [Electronic Resource] 11:e0148495.

Lacativa PG, Farias ML. 2010. Osteoporosis and inflammation. Arq Bras Endocrinol Metabol 54:123-132.

Lane NE. 2006. Therapy Insight: osteoporosis and osteonecrosis in systemic lupus erythematosus. Nat Clin Pract Rheumatol 2:562-569. 10.1038/nccprheum0298

Lee PH, Kok VC, Chou PL, Ku MC, Chen YC, Horng JT. 2016. Risk and clinical predictors of osteoporotic fracture in East Asian patients with chronic obstructive pulmonary disease: a population-based cohort study. PeerJ 4:e2634. 10.7717/peerj.2634

Liang B, Feng Y. 2012. The association of low bone mineral density with systemic inflammation in clinically stable COPD. Endocrine 42:190-195. 10.1007/s12020-011-9583-x

Lin CW, Chen YY, Chen YJ, Liang CY, Lin MS, Chen W. 2015. Prevalence, risk factors, and health-related quality of life of osteoporosis in patients with COPD at a community hospital in Taiwan. International Journal of Copd 10:1493-1500.

http://dx.doi.org/10.2147/COPD.S85432

Liu WT, Kuo HP, Liao TH, Chiang LL, Chen LF, Hsu MF, Chuang HC, Lee KY, Huang CD, Ho SC. 2015. Low bone mineral density in COPD patients with osteoporosis is related to low daily physical activity and high COPD assessment test scores. International Journal of Copd 10:1737-1744. http://dx.doi.org/10.2147/COPD.S87110

Loke YK, Cavallazzi R, Singh S. 2011. Risk of fractures with inhaled corticosteroids in COPD: systematic review and meta-analysis of randomised controlled trials and observational studies. Thorax 66:699-708. 10.1136/thx.2011.160028

Melton LJ, 3rd, Atkinson EJ, O'Fallon WM, Wahner HW, Riggs BL. 1993. Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 8:1227-
Murray CJ, Lopez AD. 1997. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. *Lancet* 349:1436-1442. 10.1016/S0140-6736(96)07495-8

Rittayamai N, Chuaychoo B, Sriwijitkamol A. 2012. Prevalence of osteoporosis and osteopenia in Thai COPD patients. *J Med Assoc Thai* 95:1021-1027.

Romme EA, Smeenk FW, Rutten EP, Wouters EF. 2013. Osteoporosis in chronic obstructive pulmonary disease. *Expert Review of Respiratory Medicine* 7:397-410.

Saetta M. 1999. Airway inflammation in chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 160: S17-20. 10.1164/ajrccm.160.sufflement_1.6

Sambrook P, Cooper C. 2006. Osteoporosis. *Lancet* 367:2010-2018. 10.1016/s0140-6736(06)68891-0

Schnell K, Weiss CO, Lee T, Krishnan JA, Leff B, Wolff JL, Boyd C. 2012. The prevalence of clinically-relevant comorbid conditions in patients with physician-diagnosed COPD: a cross-sectional study using data from NHANES 1999-2008. *BMC Pulm Med* 12:26. 10.1186/1471-2466-12-26

Silva DR, Coelho AC, Dumke A, Valentini JD, de Nunes JN, Stefani CL, da Silva Mendes LF, Knorst MM. 2011. Osteoporosis prevalence and associated factors in patients with COPD: a cross-sectional study. *Respir Care* 56:961-968. 10.4187/respcare.01056

Sin DD, Anthonisen NR, Soriano JB, Agusti AG. 2006. Mortality in COPD: Role of comorbidities. *Eur Respir J* 28:1245-1257. 10.1183/09031936.0013805

Sin DD, Man SF. 2003. Why are patients with chronic obstructive pulmonary disease at increased risk of cardiovascular diseases? The potential role of systemic inflammation in chronic obstructive pulmonary disease. *Circulation* 107:1514-1519.

Vestbo J, Hurd SS, Agusti AG, Jones PW, Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ, Nishimura M, Stockley RA, Sin DD, Rodriguez-Roisin R. 2013. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. *Am J Respir Crit Care Med* 187:347-365. 10.1164/rcm.201204-0596PP

Watanabe R, Tanaka T, Aita K, Hagiya M, Homma T, Yokosuka K, Yamakawa H, Yarita T, Tai N, Hirano J, Inoue D, Okazaki R. 2015. Osteoporosis is highly prevalent in Japanese males with chronic obstructive pulmonary disease and is associated with deteriorated pulmonary function. *J Bone Miner Metab* 33:392-400. 10.1007/s00774-014-0605-7
Table 1 (on next page)

Definition of some lifestyle habit or medical condition variables
Variables	Habits/conditions	Frequency	Duration	Source
High calcium intake (milk or calcium supplement)	Habitual milk	≥7 glasses/week	≥1 year.	Questionnaire
	Calcium consumption	Frequent use	≥1 year.	Questionnaire
High physical activity (habitual exercise or manual labor)	Habitual exercise	≥3.5 hours/week	≥1 year	Questionnaire
	Manual labor	As a job	≥1 year	Questionnaire
COPD with acute exacerbation	Yes	Any acute exacerbation	During	Medical records
	No	No any exacerbation	previous 3 years	
Steroid use	Not used	No any steroid used history*		
	Occasional	Cumulative steroid use < 6 months	During previous 3 years	Medical records
	Inhaled	Inhaled steroid > 6 months in previous 3 years regardless of continuously or intermittently		
	Oral	Oral steroid use >6 months in previous 3 years regardless of continuously or intermittently		

Abbreviations: COPD, Chronic Obstructive Pulmonary Disease

* Note: some people did not have medical records for more than 3 years
Table 2 (on next page)

Clinical characteristics of COPD patients and control subjects
Table 2 Clinical characteristics of COPD patients and control subjects

Variables	Control group	COPD group	P-value	
	n	mean ± SD, percentage	n	mean ± SD, percentage
Age (years)	36 71.1 ± 5.9	59 71.3 ± 7.4	0.846a	
Body height (cm)	36 161.4 ± 5.3	59 164.2 ± 6.1	0.028b	
Body weight (kg)	36 65.8 ± 8.4	59 63.6 ± 11.8	0.340b	
BMI (kg/m²)	36 25.2 ± 3.0	59 23.6 ± 4.1	0.035b	
L spine BMD (g/cm²)	35 1.03 ± 0.21	58 0.94 ± 0.19	0.054b	
Hip BMD (g/cm²)	36 0.92 ± 0.13	57 0.84 ± 0.145	0.011b	
Smoking				
no smoking	36 69.4% (25/36)	59 28.8% (17/59)	0.001b	
quit	36 13.9% (5/36)	59 39.0% (23/59)		
still smoking	36 16.7% (6/36)	59 32.2% (19/59)		
High physical activity	36 63.9% (23/36)	59 52.5% (31/59)	0.279b	
Comorbidity				
Hypertension	36 38.9% (14/36)	59 33.9% (20/59)	0.623b	
Diabetes mellitus	36 2.8% (1/36)	59 5.1% (3/59)	1.000c	
Dyslipidemia	36 11.1% (4/36)	59 8.5% (5/59)	0.726c	
Chronic kidney disease	36 2.8% (1/36)	59 1.7% (1/59)	1.000c	
Chronic hepatitis	36 2.8% (1/36)	58 1.7% (1/58)	1.000c	

Abbreviations: BMD, bone mineral density; BMI, body mass index; SD, standard deviation

a P-value by independent sample t-test.
b P-value by Chi-square test.
c P-value by Fisher’s exact test.
Table 3 (on next page)

Binary logistic regression for multivariate analysis for the risk of increased prevalence of osteoporosis and osteopenia in COPD and healthy control subjects
Table 3 Binary logistic regression for multivariate analysis for the risk of increased prevalence of osteoporosis and osteopenia in COPD and healthy control subjects

Variables	B	SE	Odds ratio	95% CI Lower	95% CI Upper	P-value
Age (years)	-0.003	0.038	1.00	0.93	1.07	0.938
BMI (kg/m²)	-0.229	0.080	0.80	0.68	0.93	0.004
COPD	0.631	0.506	1.88	0.70	5.07	0.213
hs-CRP ≥ 5 (mg/L)	1.724	1.198	5.61	0.54	58.71	0.150
Creatinine	-0.767	1.017	0.46	0.006	3.41	0.451
Still smoking	-0.177	0.613	0.84	0.25	2.79	0.838
Milk/Calcium supplement	-0.187	0.521	0.83	0.30	2.30	0.719
Hight physical activity	6.789	3.712	887.80			0.067

Abbreviations: BMI, body mass index; COPD, chronic obstructive pulmonary disease; hs-CRP, hypersensitive C-reactive protein; FEV1, forced expiratory volume in one second; CI, confidence interval;
Table 4 (on next page)

Clinical characteristics and laboratory test of COPD patients with and without osteoporosis
Table 4 Clinical characteristics and laboratory test of COPD patients with and without osteoporosis

Variables	Non-osteoporosis group	Osteoporosis group	P-value
	n mean ± SD, percentage	n mean ± SD, percentage	
Age (years)	42 70.8 ± 7.2	17 72.8 ± 8.2	0.354†
L spine BMD (g/cm²)	41 1.02 ± 0.16	17 0.76 ± 0.10	<0.001*
Hip BMD (g/cm²)	41 0.89 ± 0.12	16 0.72 ± 0.11	<0.001*
Anthropometric data			
Body height (cm)	42 164.0 ± 6.3	17 164.7 ± 6.0	0.664*
Body weight (kg)	42 65.7 ± 11.8	17 58.4 ± 10.5	0.030*
BMI (kg/m²)	42 24.4 ± 4.1	17 21.4 ± 3.2	0.009*
Waist circumflex (cm)	39 91.1 ± 11.7	16 83.2 ± 10.4	0.024*
Hip circumflex (cm)	38 94.1 ± 7.1	16 91.3 ± 6.1	0.174*
Laboratory test			
Bun (mg/dL)	37 16.9 ± 5.1	14 15.7 ± 6.0	0.497†
Creatinine (mg/dL)	39 1.2 ± 0.3	14 1.0 ± 0.2	0.050*
Cholesterol (mg/dL)	38 188.8 ± 35.1	14 184.0 ± 29.0	0.651*
HDL (mg/dL)	38 52.6 ± 14.0	14 53.9 ± 11.1	0.765*
LDL (mg/dL)	38 120.8 ± 30.6	14 119.6 ± 31.3	0.901*
Triglyceride (mg/dL)	38 112.9 ± 61.6	14 79.9 ± 18.9	0.005*
HbA1c (%)	37 5.9 ± 0.9	14 5.7 ± 0.3	0.372*
Uric acid (mg/dL)	38 6.8 ± 1.6	14 6.3 ± 1.3	0.311*
Homocysteine (umol/L)	42 17.5 ± 21.7	17 12.6 ± 3.3	0.358*
Vitamin B12 (pg/mL)	42 628.6 ± 287.1	17 713.8 ± 413.8	0.370*
Folate (ng/mL)	40 11.5 ± 7.3	17 9.8 ± 3.9	0.363*
hs-CRP (mg/L); (≥ 5 (mg/L))	41 2.60 ± 3.58; 7.3%	16 22.63 ± 47.06; 31.3%	0.109*; 0.032*
Milk/Calcium supplement	42 40.5% (17/42)	17 35.3% (6/17)	0.712b
High physical activity	42 47.6% (20/42)	17 64.7% (11/17)	0.234b
Comorbidity			
Hypertension	42 35.7% (15/42)	17 29.4% (5/17)	0.643b
Diabetes mellitus	42 7.1% (3/42)	17 0 (0/17)	0.550 c
Dyslipidemia	42 33.3% (4/42)	17 5.9% (1/17)	1.000 c
Chronic kidney disease	42 2.4% (1/42)	17 0 (0/17)	1.000 c
Chronic hepatitis	41 2.4% (1/41)	17 0 (0/17)	1.000 c

Abbreviations: BMD, bone mineral density; BMI, body mass index; HDL, high density
lipoprotein; LDL, low density lipoprotein; SD, standard deviation

\(^a\) \text{P-value by independent sample t-test.}

\(^b\) \text{P-value by Chi-square test.}

\(^c\) \text{P-value by Fisher’s exact test.}
Table 5 (on next page)

Comparison of COPD patients with high and low hypersensitive C-reactive protein level
Table 5 Comparison of COPD patients with high and low hypersensitive C-reactive protein level

Variables	hs-CRP < 5 (mg/L)	hs-CRP ≥ 5 (mg/L)	P-value		
	N	mean ± SD, percentage	n	mean ± SD, percentage	
Age (years)	49	71.0 ± 7.4	8	71.0 ± 7.3	0.988^a
BMI	49	24.0 ± 4.1	8	21.4 ± 3.5	0.092^a
COPD GOLD stage	49		8		0.023^b
Stage I	14.3% (7/49)	0 (0/8)			
Stage II	20.8% (20/49)	25% (2/8)			
Stage III	42.9% (21/49)	37.5% (3/8)			
Stage IV	2.0% (1/49)	37.5% (3/8)			
Pulmonary function test					
FEV1 (L)	49	1.36 ± 0.44	8	0.78 ± 0.33	0.001^a
FEV1% predicted (%)	49	54.4 ± 17.4	8	34.1 ± 14.4	0.003^a
FVC (L)	49	2.16 ± 0.60	8	1.40 ± 0.41	0.001^a
FVC% predicted (%)	49	67.8 ± 16.7	8	50.1 ± 20.8	0.010^a
FEV1/FVC (%)	49	62.4 ± 8.8	8	54.3 ± 10.3	0.022^a
FEV25-75 (%)	49	32.7 ± 14.2	8	17.9 ± 7.7	0.000^a
Smoking	49		8		0.165^a
No smoking		30.6% (15/49)	12.5% (1/8)		
Quit		34.7% (17/49)	75.0% (6/8)		
Still smoking		34.7% (17/49)	12.5% (1/8)		
Acute exacerbiation	43	30.2% (13/43)	62.5% (5/8)		0.112^c
Steroid used	49		8		0.005^a
No steroid used		44.9% (22/49)	0 (0/8)		
Occasional		12.2% (6/49)	12.5% (1/8)		
Inhaled		34.7% (17/49)	37.5% (3/8)		
Systemic		8.2% (4/49)	50% (4/8)		

Abbreviations: hs-CRP, hypersensitive C-reactive protein; GOLD, global Initiative for Chronic Obstructive lung Disease; FEV1, forced expiratory volume in one second; FEV1% predicted, forced expiratory volume in one second of predicted value; FVC, forced vital capacity; FVC% predicted, forced vital capacity of predicted value; FEF 25-75, forced expiratory flow 25–75%;

^a P-value by independent sample t-test.
^b P-value by Fisher’s exact test
^c P-value by Chi-square test.
Table 6 (on next page)

COPD related factors in patients with and without osteoporosis
Variables	Non-osteo porosis group	Osteoporosis group	P-value		
	N	mean ± SD, percentage	n	mean ± SD, percentage	
COPD GOLD stage	42	16.7% (7/42)	17	0 (0/17)	0.271a
Stage I	42	33.3% (14/42)	17	52.9% (9/17)	
Stage II	42	42.9% (18/42)	17	41.2% (7/17)	
Stage III	42	7.1% (3/42)	17	5.9% (1/17)	
Pulmonary function test					
FEV1 (L)	42	1.29 ± 0.49	17	1.18 ± 0.44	0.428b
FEV1% predicted (%)	42	53.1 ± 19.4	17	47.8 ± 13.8	0.313b
FVC (L)	42	2.06 ± 0.67	17	1.97 ± 0.53	0.619b
FVC% predicted (%)	42	66.4 ± 19.0	17	63.5 ± 15.7	0.589b
FEV1/FVC (%)	42	62.0 ± 9.2	17	58.8 ± 9.5	0.233b
FEF 25-75 (%)	42	31.6 ± 15.1	17	27.3 ± 11.5	0.294b
Smoking	42	28.6% (12/42)	17	29.4% (5/17)	0.956c
No smoking					
Quit	42	38.1% (16/42)	17	41.2% (7/17)	
Still smoking	42	33.3% (14/42)	17	29.4% (5/17)	
Acute exacerbation	37	32.4% (12/37)	16	43.8% (7/16)	0.430c
Steroid used	42	11.9% (5/42)	17	17.6% (3/17)	0.946c
Oral					
Inhaled	42	38.1% (16/42)	17	35.3% (6/17)	
Occasional	42	11.9% (5/42)	17	11.8% (2/17)	
No steroid used	42	38.1% (16/42)	17	35.3% (6/17)	

Abbreviations: GOLD, global Initiative for Chronic Obstructive lung Disease; FEV1, forced expiratory volume in one second; FEV1% predicted, forced expiratory volume in one second of predicted value; FVC, forced vital capacity; FVC% predicted, forced vital capacity of predicted value; FEF 25-75, forced expiratory flow 25–75%; hs-CRP, hypersensitive C-reactive protein, SD, standard deviation

a P-value by Fisher’s exact test.
b P-value by independent sample t-test.
c P-value by Chi-square test.
Table 7 (on next page)

Binary logistic regression for multivariate analysis of osteoporosis risk factors in COPD patients
Table 7 Binary logistic regression for multivariate analysis of osteoporosis risk factors in COPD patients.

Variables	B	SE	Odds ratio	95% CI	P-value	
				Lower	Upper	
Age (years)	0.076	0.077	1.08	0.93	1.26	0.322
BMI (kg/m²)	-0.276	0.157	0.76	0.56	1.03	0.079
hs-CRP ≥ 5 (mg/L)	4.041	1.686	58.90	2.09	1548.13	0.017
Creatinine	-4.781	2.233	0.01	0.00	0.67	0.032
Still smoking	1.324	1.015	3.76	0.51	27.49	0.192
Oral or inhaled steroid > 6 months	-1.570	1.423	0.21	0.01	3.39	0.270
FEV1	0.458	1.455	1.58	0.09	27.37	0.753
Constant	3.733	8.196	41.82			0.649

Abbreviations: BMI, body mass index; hs-CRP, hypersensitive C-reactive protein; FEV1, forced expiratory volume in one second; CI, confidence interval;