Left ventricular pseudoaneurysm after replacement of a Melody valve in the left atrioventricular valve position

Daniel A. Castellanos, MD, a Robert D. B. Jaquiss, MD, b and Poonam P. Thankavel, MD, a Dallas, Tex

From the aDivision of Cardiology, Department of Pediatrics, and bPediatric Group, Department of Cardiothoracic Surgery, Children’s Medical Center Dallas, University of Texas Southwestern Medical Center, Dallas, Tex. Disclosures: The authors reported no conflicts of interest.

Received for publication Aug 30, 2020; accepted for publication Sept 17, 2020; available ahead of print Sept 24, 2020.

Address for reprints: Daniel A. Castellanos, MD, 1935 Medical District Dr, MC B3.09, Dallas, TX 75235 (E-mail: dcastell@alumni.nd.edu).

CENTRAL MESSAGE

There is risk of left ventricular pseudoaneurysm development with replacement of the Medtronic Melody valve in the mitral valve position.

See Commentaries on pages 251 and 253.

CASE PRESENTATION

A female patient was born with partial atrioventricular septal defect, coarctation of the aorta, and multiple ventricular septal defects. At 8 days of life, she underwent coarctation repair followed by placement of a main pulmonary artery band at 3 weeks of age. After somatic growth was achieved, she underwent removal of the pulmonary artery band, fenestrated atrial septal defect repair, and closure of multiple ventricular septal defects at 10 months of age. Her postoperative course was complicated by severe left atrioventricular valve regurgitation and residual interventricular shunt, with unsuccessful attempts at valve repair and device closure of the ventricular septal defect at 10.5 months of age. At 11 months of age, a Melody valve (a Contegra valved conduit attached to a stent) was placed in the mitral position, which required eventual balloon dilation in the catheterization laboratory. She then relocated and established care at our institution at 2 years of age.

At 4 years of age, due to moderate regurgitation and moderate stenosis, she underwent repeat Melody valve balloon valvuloplasty. The procedure was complicated by worsened...
valvar regurgitation (moderate to severe); thus, she under-
went surgical replacement with a 19-mm Regent mechan-
ical heart valve (St Jude Medical, St Paul, Minn) at 5 years of
age. Postoperative transesophageal echocardiogram
demonstrated no residual lesions, and her recovery was
uneventful.

Routine follow-up with surveillance echocardiography
demonstrated a well-functioning prosthetic valve with no
stenosis nor regurgitation. One month postoperatively, a
small left ventricular pseudoaneurysm was noted on the
lateral posterior aspect of the left ventricle, just below the
native mitral annulus and in close proximity to the pro-
sthetic valve. Due to progressive enlargement of this pseu-
doaneurysm (Figure 1), the patient underwent left
ventricular pseudoaneurysm repair 19 months after the St
Jude valve placement. A cardiac computed tomography
scan was obtained to delineate its relationship to the coro-
nary arteries and to assist with operative approach. The
pseudoaneurysm was noted to be near the circumflex coro-
nary artery (Figure 2). At reoperation, due to intense scar-
ring around the base of the heart, the pseudoaneurysm
could not be visualized externally, and a left atrial incision
was performed. The pseudoaneurysm opening was visual-
ized through the prosthetic valve, with the most basal aspect
of the ostium located 7 to 8 mm below the prosthetic valve
ring. Repair of the defect was performed with a patch of
bovine pericardium, working through the open valve. Post-
operative transesophageal echocardiogram demonstrated
normal prosthetic valve function and no residual flow into
the aneurysm. Recovery was uneventful, and the patient re-
 mains well at 6-month postoperative follow-up. Verbal con-
sent for publication was obtained by the patient’s mother.

DISCUSSION

Left ventricular pseudoaneurysm after mitral valve
replacement has been previously reported in the adult popu-
lation and has been classified into various types based on
anatomic location within the ventricle.1,2 Type 1 is a rupture
located in the posterior atroventricular groove, type 2 is a
rupture in the posterior wall of the left ventricle at the base
of the papillary muscle, and type 3 is a rupture in the area be-
tween the atroventricular groove and papillary muscle. Our
case is consistent with a type 3 pseudoaneurysm. Due to risk
of progressive enlargement and subsequent rupture, surgical
repair of the pseudoaneurysm is the recommended approach.
An intracardiac approach has been recommended for type 1
and the external approach for types 2 and 3.134 In our patient,
the external approach was not feasible due to scarring and
proximity of the pseudoaneurysm to the coronary artery.
 Intracardiac repair was possible without valve removal and
replacement. Echocardiography was vital for diagnosis and
surveillance, whereas computed tomography scan was
helpful in demonstrating the relationship of the circumflex
coronary artery to the pseudoaneurysm.

The use of Medtronic Melody valve in the left atriovent-
ricular valve position is considered in infants and children
when a small prosthesis is required that has the potential to
be expanded with somatic growth.7 As the use of such
valves becomes more popular, it is important to recognize
the potential complications of a stented valve in the mitral
position. Aggressive sharp surgical dissection to free the
Melody valve from its surroundings at explantation may
result in injury to the ventricular wall and such an injury
may go unrecognized during the immediate perioperative
period. Careful excision of the Melody valve during
replacement along with echocardiographic surveillance
for left ventricular pseudoaneurysm formation at follow-
up is warranted. This case represents the first report of left
ventricular pseudoaneurysm formation in a pediatric patient
after Melody valve replacement.

FIGURE 2. Computed tomography scan was obtained to delineate the
relationship of the coronary artery to the left ventricular pseudoaneurysm.
Three-dimensional computed tomography angiography reconstruction
demonstrates the proximal left circumflex coronary artery, the pseudoa-
neurysm (*), and the left ventricular cavity (LV). The course of the left
circumflex coronary artery was in close proximity to the pseudoaneurysm.
References

1. Treasure RL, Rainer WG, Strevey TE, Sadler TR. Intraoperative left ventricular rupture associated with mitral valve replacement. *Chest*. 1974;66:511-4.
2. Lanjewar C, Thakkar B, Kerkar P, Khandeparkar J. Submitral left ventricular pseudoaneurysm after mitral valve replacement: early diagnosis and successful repair. *Interact Cardiovasc Thorac Surg*. 2007;6:505-7.
3. Bjöörk VO, Henze A, Rodriguez L. Left ventricular rupture as a complication of mitral valve replacement. *J Thorac Cardiovasc Surg*. 1977;73:14-22.
4. Quinones LG, Breibart R, Tworotsky W, Lock JE, Marshall AC, Emani SM. Stented bovine jugular vein graft (Melody valve) for surgical mitral valve replacement in infants and children. *J Thorac Cardiovasc Surg*. 2014;148:1443-9.