A MIXED PARSEVAL–PLANCHEREL FORMULA

OMRAN KOUBA

Abstract. In this note, a general formula is proved. It expresses the integral on the line of the product of a function f and a periodic function g in terms of the Fourier transform of f and the Fourier coefficients of g. This allows the evaluation of some oscillatory integrals.

1. Introduction and notation

In [6] the following integral was described as “difficult”:

$$\int_{-\infty}^{\infty} \frac{dx}{(\cosh a + \cos x) \cosh x} \text{ for } a > 0, \quad (1)$$

it was used to test the trapezoidal rule after transforming the integral using a “sinh” transformation. Also, in [5] S. Tsipelis proposed to evaluate the following integral

$$\int_{-\infty}^{\infty} \frac{\log(\cos^2 x)}{1 + e^{2|x|}} dx. \quad (2)$$

Both integrals are of the form $\int_{\mathbb{R}} f(x)g(x)dx$ where g is a 2π-periodic function. The particular case, where f is of the form $x \mapsto 1/(x+z)$, (for some $z \in \mathbb{C} \setminus \mathbb{R}$,) was thoroughly investigated in [3] using methods that are different from those discussed here.

In this note, we prove a general formula, that allows us to express this kind of integrals in terms of the Fourier transform of f and the Fourier coefficients of g.

Before we proceed, let us recall some standard notation. The spaces $L^1(\mathbb{R})$, $L^2(\mathbb{R})$, and $L^2,loc(\mathbb{R})$ are, respectively, the space of integrable functions, the space of square integrable functions, and the space of locally square integrable functions on \mathbb{R}. The spaces $L^1(\mathbb{R})$ and $L^2(\mathbb{R})$ are equipped with the standard norms denoted $\|\cdot\|_1$ and $\|\cdot\|_2$:

$$\|f\|_p = \left(\int_{\mathbb{R}} |f(t)|^p dt \right)^{1/p}, \quad \text{for } p = 1, 2.$$

We consider also $L^1(\mathbb{T})$, (resp. $L^2(\mathbb{T})$), the space of integrable, (resp. square integrable), 2π-periodic functions. The spaces $L^1(\mathbb{T})$ and $L^2(\mathbb{T})$ are equipped with the standard norms denoted $\|\cdot\|_{L^1(\mathbb{T})}$ and $\|\cdot\|_{L^2(\mathbb{T})}$ and defined as follows:

$$\|f\|_{L^p(\mathbb{T})} = \left(\frac{1}{2\pi} \int_{\mathbb{T}} |f(t)|^p dt \right)^{1/p}, \quad \text{for } p = 1, 2.$$

Mathematics subject classification (2010): 42A16, 42A38, 42B20.

Keywords and phrases: Fourier series, Fourier transform, oscillatory integrals.
For a function \(f \in L^1(\mathbb{R}) \) we recall that its Fourier transform \(\hat{f} \) is defined by

\[
\hat{f}(\omega) = \int_{\mathbb{R}} f(t) e^{-i\omega t} \, dt, \quad \text{for } \omega \in \mathbb{R}.
\]

And for a \(2\pi \)-periodic function \(g \in L^1(\mathbb{T}) \) we recall that the exponential Fourier coefficient \(C_n(g) \) of \(g \) is defined by

\[
C_n(g) = \frac{1}{2\pi} \int_{\mathbb{T}} g(t) e^{-int} \, dt, \quad \text{for } n \in \mathbb{Z},
\]

In section 2 we will prove our main results and in section 3 we will give some detailed examples and applications.

2. The main result

In this section we state and prove the main theorem.

THEOREM 1. (The mixed Parseval-Plancherel formula) Consider a function \(f \) from \(L^2,\text{loc}(\mathbb{R}) \), and a \(2\pi \)-periodic function \(g \) from \(L^2(\mathbb{T}) \). Suppose that

\[
M(f) \overset{\text{def}}{=} \sum_{k \in \mathbb{Z}} \| \mathbb{1}_{I_k} f \|_2 < +\infty,
\]

where \(\mathbb{1}_{I_k} \) is the characteristic function of the interval \(I_k = [2\pi k, 2\pi (k+1)] \). Then

\[
\int_{\mathbb{R}} f(x) g(x) \, dx = \sum_{n \in \mathbb{Z}} \hat{f}(n) \overline{C_n(g)}.
\]

where \(\hat{f} \) is the Fourier transform of \(f \), and \(\{C_n(g)\}_{n \in \mathbb{Z}} \) is the family of exponential Fourier coefficients of \(g \).

Proof. First, note that \(\| \mathbb{1}_{I_k} f \|_1 \leq \sqrt{2\pi} \| \mathbb{1}_{I_k} f \|_2 \) for every \(k \in \mathbb{Z} \). It follows that

\[
\int_{\mathbb{R}} |f(x)| \, dx = \sum_{k \in \mathbb{Z}} \| \mathbb{1}_{I_k} f \|_1 \leq \sqrt{2\pi} M(f) < +\infty.
\]

Thus, \(f \) belongs to \(L^1(\mathbb{R}) \), and we can consider its Fourier transform. Similarly,

\[
\int_{\mathbb{R}} |f(x)g(x)| \, dx = \sum_{k \in \mathbb{Z}} \int_{I_k} |f(x)g(x)| \, dx \leq \sqrt{2\pi} M(f) \|g\|_{L^2(\mathbb{T})} < +\infty,
\]

thus \(fg \) belongs also to \(L^1(\mathbb{R}) \).

Now, let us consider the the family \(\{f_k\}_{k \in \mathbb{Z}} \) defined by \(f_k(x) = f(x+2\pi k) \). Clearly \(\| \mathbb{1}_{m} f_k \|_2 = \| \mathbb{1}_{m+k} f \|_2 \). Thus

\[
\sum_{k \in \mathbb{Z}} \| \mathbb{1}_{m} f_k \|_2 = M(f) < +\infty
\]
and the series \(\sum_{k \in \mathbb{Z}} 1_{m}f_{k} \) is normally convergent in \(L^{2}(\mathbb{R}) \) for every \(m \in \mathbb{Z} \). This proves that the formula \(F = \sum_{k \in \mathbb{Z}} f_{k} \) defines a function \(F \) that belongs to \(L^{2,\text{loc}}(\mathbb{R}) \). Moreover, this function is clearly \(2\pi \)-periodic, and \(\|F\|_{L^{2}(\mathbb{T})} \leq \frac{1}{\sqrt{2\pi}} M(f) \). Now, the classical Parseval’s formula, (see [2, Chap. I, §5.] or [4, Chap. 5, §3.],) implies that

\[
\frac{1}{2\pi} \int_{\mathbb{T}} F(x)\overline{g(x)} \, dx = \sum_{n \in \mathbb{Z}} C_n(F)\overline{C_n(g)}. \tag{5}
\]

Using the fact that \(\sum_{k=-n}^{n-1} 1_{I_{0}}f_{k} \) converges to \(1_{I_{0}}F \) in \(L^{2}(\mathbb{R}) \), and that \(1_{I_{0}}g \in L^{2}(\mathbb{R}) \), we conclude that

\[
\int_{0}^{2\pi} F(x)\overline{g(x)} \, dx = \lim_{n \to \infty} \int_{0}^{2\pi} f_{k}(x)\overline{g(x)} \, dx
= \lim_{n \to \infty} \sum_{k=-n}^{n-1} \int_{2\pi k}^{2\pi(k+1)} f(x)\overline{g(x)} \, dx
= \int_{\mathbb{R}} f(x)\overline{g(x)} \, dx \tag{6}
\]

where, for the last equality, we used the fact that \(fg \in L^{1}(\mathbb{R}) \).

Similarly,

\[
2\pi C_{n}(F) = \int_{0}^{2\pi} F(x)e^{-int} \, dx = \lim_{n \to \infty} \sum_{k=-n}^{n-1} \int_{0}^{2\pi} f_{k}(x)e^{-int} \, dx
= \lim_{n \to \infty} \sum_{k=-n}^{n-1} \int_{2\pi k}^{2\pi(k+1)} f(x)e^{-int} \, dx
= \int_{\mathbb{R}} f(x)e^{-int} \, dx = \hat{f}(n) \tag{7}
\]

where we used again the fact that \(f \in L^{1}(\mathbb{R}) \) for the last equality. Replacing (6) and (7) in (5), the desired formula follows. \(\square \)

The next corollary is straightforward.

COROLLARY 1. Consider a function \(f \) from \(L^{2,\text{loc}}(\mathbb{R}) \), and a \(T \)-periodic, square integrable function \(g \). Suppose that

\[
M_{T}(f) \overset{\text{def}}{=} \sum_{k \in \mathbb{Z}} \|1_{[kT,(k+1)T]}f\|_{2} < +\infty, \tag{8}
\]

Then

\[
\int_{\mathbb{R}} f(x)\overline{g(x)} \, dx = \sum_{n \in \mathbb{Z}} \hat{f}\left(\frac{2\pi n}{T}\right) \overline{C_n(g)}. \tag{9}
\]

where \(\hat{f} \) is the Fourier transform of \(f \), and \((C_{n}(g))_{n \in \mathbb{Z}} \) is the family of exponential Fourier coefficients of \(g \).
3. Examples

Example 1. For positive real numbers a and b, let g and f be the functions defined by

$$g(x) = \frac{1}{\cosh a + \cos x}, \quad f(x) = \frac{1}{\cosh(bx)},$$

It is known [1, Chap.I, §9] that $\hat{f}(\omega) = \frac{\pi}{b} f\left(\frac{\pi}{2b}\omega\right)$. Moreover, it is easy to note that for every $k \in \mathbb{Z}$ we have $\left\| \mathbb{I}_k f \right\|_2 \leq Be^{-2\pi|k|}$ for some absolute constant B.

Furthermore, it is easy to check that

$$g(x) = \frac{1}{\sinh a} \sum_{n \in \mathbb{Z}} (-1)^n e^{-|n|a} e^{inx},$$

that is

$$C_n(g) = \frac{(-1)^n e^{-|n|a}}{\sinh a}, \quad \text{for } n \in \mathbb{Z}.$$

Applying Theorem 1, we obtain

$$\int_{-\infty}^{\infty} \frac{dx}{(\cosh a + \cos x) \cosh(bx)} = \frac{\pi}{b \sinh a} + \frac{2\pi}{b \sinh a} \sum_{n=1}^{\infty} \frac{(-1)^n e^{-na}}{\cosh(\pi n/(2b))}.$$

In particular, for $b = 1$, we obtain the following expression of the integral (1) as a rapidly convergent series:

$$\int_{-\infty}^{\infty} \frac{dx}{(\cosh a + \cos x) \cosh x} = \frac{\pi}{\sinh a} + \frac{2\pi}{\sinh a} \sum_{n=1}^{\infty} \frac{(-1)^n e^{-na}}{\cosh(\pi n/2)}.$$

This is a simpler alternative series expansion to the one given in [6].

Example 2. In our second example, let g and f be the functions defined by

$$g(x) = \log(\cos^2 x), \quad f(x) = \frac{1}{1 + e^{2|x|}}.$$

It is easy to note that for every $k \in \mathbb{Z}$ we have $\left\| \mathbb{I}_k f \right\|_2 \leq Be^{-2\pi|k|}$ for some constant B. Moreover,

$$\hat{f}(\omega) = 2 \int_{0}^{\infty} \frac{e^{-2x}}{1 + e^{-2x}} \cos(\omega x) dx$$

$$= 2 \sum_{k=1}^{\infty} (-1)^{k-1} \int_{0}^{\infty} e^{-2kx} \cos(\omega x) dx$$

$$= \sum_{k=1}^{\infty} (-1)^{k-1} \frac{4k}{4k^2 + \omega^2}.$$

Further, since

$$g(x) = 2 \log |1 + e^{2ix}| - 2 \log 2 = 2 \Re \log(1 + e^{2ix}) - 2 \log 2.$$
with Log being the principal branch of the logarithm, we conclude that for every \(n \in \mathbb{Z} \) we have
\[
C_{2n+1}(g) = 0, \quad \text{and} \quad C_{2n}(g) = \begin{cases}
(-1)^{n-1}/|n| & \text{if } n \neq 0, \\
-2 \log 2 & \text{if } n = 0.
\end{cases}
\]

Using Theorem 1, we obtain
\[
\int_{-\infty}^{\infty} \frac{\log(\cos^2 x)}{1 + e^{2|x|}} \, dx = \sum_{n \in \mathbb{Z}} \hat{f}(2n) \overline{C_{2n}(g)}
\]
\[
= -2 \log 2 \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} + 2 \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} \frac{(-1)^{k+n}}{(k^2 + n^2)n} \right)
\]
\[
= -2 \log^2 2 + 2J
\]
with
\[
J = \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} \frac{(-1)^{k+n}}{(k^2 + n^2)n} \right)
\]
(10)

Now, this double series is not absolutely convergent, so we must be careful. First, exchanging the roles of \(k \) and \(n \) we have
\[
J = \sum_{k=1}^{\infty} \left(\sum_{n=1}^{\infty} \frac{(-1)^{k+n}n}{k(n^2 + k^2)} \right)
\]
(11)

Now, using the properties of convergent alternating series we have
\[
\sum_{n=1}^{\infty} \frac{(-1)^{k+n}n}{k(n^2 + k^2)} = \sum_{n=1}^{q-1} \frac{(-1)^{k+n}n}{k(n^2 + k^2)} + R_q(k),
\]
with
\[
R_q(k) = \frac{(-1)^k}{k} \sum_{n=q}^{\infty} \frac{(-1)^n n}{n^2 + k^2} \quad \text{and} \quad |R_q(k)| \leq \frac{1}{k} \cdot \frac{q}{k^2 + q^2}
\]

Thus
\[
J = \sum_{n=1}^{q-1} \left(\sum_{k=1}^{\infty} \frac{(-1)^{k+n}n}{k(n^2 + k^2)} \right) + \varepsilon_q
\]
(12)
with \(\varepsilon_q = \sum_{k=1}^{\infty} R_q(k) \) and
\[
\varepsilon_q \leq \sum_{k=1}^{\infty} \frac{q}{k(k^2 + q^2)}.
\]

Now, since
\[
\frac{q}{k(k^2 + q^2)} \leq \frac{1}{2k^2} \quad \text{for every } q,
\]
- the series \(\sum_{k=1}^{\infty} \frac{1}{2k^2} \) is convergent,
• and \(\lim_{q \to \infty} \frac{q}{k^2 + q^2} = 0 \) for every \(k \),

we conclude that \(\lim_{q \to \infty} \epsilon_q = 0 \). So, letting \(q \) tend to \(+\infty \) in (12) we get

\[
J = \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} \frac{(-1)^{k+n} n}{k(n^2 + k^2)} \right)
\]

Taking the sum of the two expressions (11) and (13) of \(J \) we obtain

\[
2J = \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} \frac{(-1)^{k+n} (n + k)}{n^2 + k^2} \right) = \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} \frac{(-1)^{k+n}}{nk} \right) = (-\log 2)^2 = \log^2 2.
\]

Replacing back in (10) we obtain

\[
\int_{-\infty}^{\infty} \frac{\log(\cos^2 x)}{1 + e^{2|x|}} \, dx = -\log^2 2.
\]

Example 3. For positive real numbers \(a \) and \(b \), let \(g \) and \(f \) be the functions defined by

\[
g(x) = \frac{1}{\cosh a - \cos x}, \quad f(x) = e^{-x^2/(4b)},
\]

It is known [1, Chap.I, §4] that \(\hat{f}(\omega) = 2\sqrt{\pi b} f(2b\omega) \). Moreover,

\[
C_n(g) = \frac{e^{-|n|a}}{\sinh a}, \quad \text{for } n \in \mathbb{Z}.
\]

Hence

\[
\int_{\mathbb{R}} \frac{e^{-x^2/(4b)}}{\cosh a - \cos x} \, dx = \frac{2\sqrt{\pi} b}{\sinh a} \left(1 + 2 \sum_{n=1}^{\infty} e^{-an - bn^2} \right)
\]

In particular, for \(b = a \) we get

\[
\int_{\mathbb{R}} \frac{e^{-x^2/(4a)}}{\cosh a - \cos x} \, dx = \frac{2\sqrt{\pi} a}{\sinh a} \left(1 + 2 \sum_{n=1}^{\infty} e^{-an(n+1)} \right) = \frac{2\sqrt{\pi} a}{\sinh a} \left(e^{a/4} \vartheta_2(0, e^{-a}) - 1 \right),
\]

where \(\vartheta_2(u, q) \) is one of the well-known Jacobi Theta functions [7, Chap. XXI].

References

[1] A. Erdélyi et al., *Tables of Integral Transforms, vol. I*, McGraw Hill, New York, 1954.
[2] Y. Katznelson, *An Introduction to Harmonic Analysis*, 3rd ed., Cambridge University Press, 2004.
[3] O. Kouba, Exact Evaluation of Some Highly Oscillatory Integrals, Journal of Classical Analysis 3, 1 (2013), 45–57. http://files.ele-math.com/articles/jca-03-04.pdf.
[4] G.P. Tolstov and R.A. Silverman, *Fourier Series*, Dover Books on Mathematics, Dover Publication, Inc., New York, 1962.
A mixed Parseval-Plancherel formula

[5] S. Tsipelas, Proposed problem V4-6, The Asymmetry Online Mathematical Journal 4 November (2013). http://www.asymmetry.gr/images/asymmetry/Asymmetry_V4_Nov_2013.pdf.

[6] J. Waldvogel, Towards a general error theory of the trapezoidal rule, Approximation and Computation, In honor of Gradimir V. Milovanović. W. Gautschi, G. Mastroianni, Th.M. Rassias (eds.), Springer Optimization and its Applications 42, Springer, New York, 2011, pp. 267–282.

[7] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge Mathematical Library, Cambridge University Press, 1927 (reissued 1996).

(Received May 21, 2014)

Omran Kouba
Department of Mathematics
Higher Institute for Applied Sciences and Technology
P. O. Box 31983
Damascus, Syria

E-mail: omran_kouba@hiast.edu.sy