Pair production by an electron to excited levels in a magnetic field

O Novak
The Institute of Applied Physics of National Academy of Sciences of Ukraine, 58, Petropavlivska street, 40000 Sumy, Ukraine.
E-mail: novak-o-p@ukr.net

Received 20 February 2015, revised 25 May 2015
Accepted for publication 12 June 2015
Published 9 July 2015

Abstract
The resonant process of electron–positron pair production by an electron in a subcritical magnetic field has been studied when the pair is produced to exited Landau levels. The spin dependency of the process rate has been analyzed. In the spin state with the greatest rate the virtual photon is emitted with a flip of electron spin. This behavior is not suppressed for radiative transitions from a relativistic initial state to low energy levels.

Keywords: pair production, magnetic field, resonance

1. Introduction
An external electromagnetic field strongly modifies known physical processes and allows new ones to occur when its strength approaches the critical value $B_0 = m^2 c^3 / e \hbar$, $B_0 \approx 4.41 \times 10^{13}$ G. An area of research where the processes in strong magnetic fields play an important role is the study of neutron star atmospheres and their radiation. Predicted values of neutron star magnetic field vary from 10^{12} G for radio-pulsars to 10^{15} G for magnetars and GRB’s. For instance, developing of electron–positron pair cascades in the magnetosphere of a pulsar has long been considered as an important part of the pulsars emission mechanism [1–5].

In laboratory conditions the strong quasi-static magnetic field up to about 30 MG can be obtained by utilization of exploding generators [6]. Laser assisted magnetic field generation attracts great interest as well. Irradiation of a solid with a short-pulse laser generates picosecond-duration pulses of giga-gauss magnetic field at laser intensities of $\sim 10^{21}$ W cm$^{-2}$ [7].

Petawatt class laser facilities are capable of delivering ultra-high focused intensities greater than 10^{21} W cm$^{-2}$ corresponding to field strength of the order of $\sim 10^{10}$ G. Non-linear effects of QED in strong electromagnetic field were observed for the first time at SLAC National Accelerator Laboratory in experiments with terawatt laser [8–10]. In particular, positron production in collisions of electron beam with intense laser pulses was reported [9]. The effect was explained as two step process where the first a high energy γ-photon is generated by Compton backscattering off the electron beam, which afterwards creates the pair in a photon–multiphoton collision [11–13]. This process, however, may be treated as a resonant case of the laser-dressed trident pair creation,

$$ e^- \rightarrow e^- + e^- + e^+. \quad (1) $$

A non-perturbative QED calculations of this process are provided in [14].

Nevertheless, it was discussed in [15, 16], that indirect treatment of the process (1) is possible using Nikishov–Ritus theorem [12, 17]. According to this theorem the rates of some reaction in different field configurations are closely connected. This allows to describe the laser-dressed trident production (1) using relatively simple analytic expressions for the case of an external magnetic field.

A cascade of photon emission process followed by photoproduction in a magnetic field was first studied in [18]. The estimation of the number of produced positrons in the SLAC experiment was made in [15], that showed a reasonable agreement with the experimental results. However, in [15] the simplest case of pair production to ground levels was studied. In the present work the process of magnetic pair production by an electron is studied in the general case when particles can be produced on excited energy levels.
Figure 1. Feynman diagrams of e^-e^+ pair production by an electron in a magnetic field.

2. Process rate

The Feynman diagrams of the magnetic e^-e^+ pair production by an electron is shown in figure 1.

It is known that an electron in a magnetic field occupies discrete energy levels. If z-axis is directed along the field then the energy eigenvalues are

$$E = \sqrt{\hat{m}^2 + p_z^2}, \quad \hat{m}^2 = m\sqrt{1 + 2lb},$$

where $b = B/B_0$ is magnetic field strength in the units of the critical one and l is the energy level number.

Note that the longitudinal momentum of the initial electron p_{lc} can be eliminated by the choice of the reference frame without changing the external magnetic field, $p_{lc} = 0$.

We will study the process in the so-called lowest Landau levels (LLL) approximation,

$$l_j b \ll 1, \quad l_j \sim 1,$$

where the subscript f denotes the final electrons and the positron, $f = 1, 2, +$.

At the same time, the initial electron energy E_i should exceed the threshold value. The threshold condition is [15]

$$\tilde{m}_i \geq \tilde{m}_1 + \tilde{m}_2 + \tilde{m}_+,$$

where the subscript i denotes the initial electron quantities.

We assume the longitudinal momenta of the final particles to be small, $p_{lf} \ll m\sqrt{b}$. This condition is fulfilled near the process threshold when

$$\delta = \frac{1}{m}(\tilde{m}_1 - \tilde{m}_1 + \tilde{m}_2 + \tilde{m}_+) \sim b,$$

and, consequently,

$$l_j b \approx 4 + 3\left[\delta + b(l_1 + l_2 + l_+)\right] = 4 + O(b).$$

The probability amplitude of the given process has the following form:

$$S_f = i\alpha \int \int d^4x_1 \times\
\times \left[(\Psi^* \sigma^\mu \Psi)(\Psi^*_f \gamma^\mu \Psi_f) - (\Psi^* \gamma^\mu \Psi)(\Psi^*_f \sigma^\mu \Psi_f) \right].$$

The solutions of the Dirac equation in a magnetic field in a Cartesian coordinates were used as electron wave functions,

$$\Psi = \frac{1}{\sqrt{S}} \exp[-i(Et - p_1y - p_2z)]\psi_\mu(x),$$

where the coordinate wave functions $\psi_\mu(x)$ depend on electron polarization $\sigma = 2s_z$. They can be expressed via normalized functions

$$U_l(x) = \frac{1}{2\sqrt{Em}} e^{-i\tilde{z}/2}H_l(x),$$

where $H_l(x)$ are the Hermite polynomials.

The Feynman gauge of the photon propagator is chosen which is convenient for practical calculations [19],

$$D_{\mu\nu} = \frac{g_{\mu\nu}}{(2\pi)^3} \int d^4k \frac{4\pi}{k^2} e^{-i(k - x)},$$

where α is the fine structure constant and $g_{\mu\nu}$ is the metric tensor.

The choice of the wave functions (8) allows simple integration of the amplitude over the 4-radius vectors x and x' as well as over the y- and z- components of the virtual photon momentum. It results in appearance of delta functions expressing conservation laws of energy and corresponding momentum components. The probability amplitude describing the first Feynman diagram takes on the form

$$S_f^{(1)} = \frac{i\alpha\nu^3}{S^2} \delta^3(p_i - p_1 - p_2 - p_{f+})
\times \int dk_1 \frac{N}{\nu^2 - k_1^2 - k_2^2 - k_3^2}.$$
I (l', l) are the known functions [17, 20] resulting from the integration over the 'quantized' coordinate x,

\[I (l', l) = \sqrt{\text{Be}} \int U_l (\zeta') U_l (\zeta) e^{-i k x} \, dx, \]

(17)

where \(\zeta = \sqrt{\text{Be}} (x + \mu r / \text{Be}) \) with \(\mu = +1 \) for electrons and \(\mu = -1 \) for positrons respectively. The explicit form of the functions (17) is

\[I (l', l) = e^{\Phi} (\pm i \xi)^{\Delta - \lambda} \sqrt{\frac{\Lambda!}{\lambda!}} F(-\lambda, \Lambda - \lambda + 1, q). \]

(18)

Here,

\[q = \xi^2 + u^2, \quad \kappa = \frac{\mu p_y - i \mu p_z}{\sqrt{2} \text{Be}}, \]

(19)

\[\Phi = \frac{q}{2} + i \xi \frac{\mu p_y + i \mu p_z}{\sqrt{2} \text{Be}}, \]

(20)

\[\xi = \frac{k_x}{\sqrt{2} \text{Be}}, \quad u = \frac{k_y}{\sqrt{2} \text{Be}}, \]

(21)

\[\Lambda = \max (l, l'), \quad \lambda = \min (l, l'). \]

(22)

Note that in the considered case of pair production by an electron the conservation laws give

\[\omega = E_i - E_i, \]

(23)

\[k_y = p_{iy} - p_{iy}, \]

(24)

\[\kappa = \pm u. \]

(25)

When kinematics allows the denominator of the photon propagator (10) to vanish,

\[k_i k_j = 0, \]

(26)

then resonant divergences occur in the amplitude and in the process rate, which are common for two-vertex QED processes in an external field. To eliminate the divergences it is necessary to introduce the state width \(\Delta \to \) to the denominator in equation (10) according to the Breit–Wigner prescription [21], \(\omega \to \omega - i \Delta / 2 \).

It has been shown in [15] that the process rate is determined by the parameter region where the integrand in equation (11) contains a pole and the condition equation (26) is satisfied. In the notation defined by equations (19) and (21), it takes on the form

\[\Omega^2 - \xi^2 = 0, \]

(27)

where

\[\Omega^2 = \left(E_i - E_i \right)^2 - k_i^2. \]

(28)

It will be shown below that the differential rate contains a singularity located at \(u = \pm \Omega \). Taking into account that in the considered case \(E_i \sim 3 \text{m} \), \(E_i \approx m \) and \(k_i \approx m \sqrt{\text{Be}} \), one can estimate \(\Omega \approx 2 / \text{Be} \). Hence, for the vicinity of the resonance it follows that \(\xi \ll 1 \) and \(\xi \ll u \), and one can neglect \(\xi \) compared to \(u \) in polynomials in equation (18) to simplify the integral in \(d \xi \). As a result, the amplitude \(S_\beta \) can be expressed in terms of the known integrals \(X \),

\[X = \int \frac{e^{-\xi^2 - 2i \xi}}{\Omega^2 - u^2 - \xi^2 + i \xi} \, d \xi, \]

(29)

where

\[v = \frac{p_{iy} - p_{iy}}{\sqrt{2} \text{Be}}. \]

(30)

The explicit form of the integral equation (29) reads [15]

\[X = \frac{\pi e^{-\xi_0^2}}{2 i \xi_0} \left[e^{-2 i \xi_0} \text{erfc}(-i \xi_0 + v) + e^{2 i \xi_0} \text{erfc}(-i \xi_0 - v) \right]. \]

(31)

where \(\xi_0 = \sqrt{\Omega^2 - u^2 + i \xi} \) is the singularity point and \(g = \Delta / \text{mBe} \).

With the adopted definitions equations (21) and (30), the process rate may be written as

\[W_\beta = \text{Be} \int \left| S_\beta^{(1)} - S_\beta^{(2)} \right|^2 \, da \, \text{d} v \, \text{d} p_\gamma \, \text{d} p_\gamma. \]

(32)

Here, \(S_\beta^{(2)} \) is the exchange amplitude obtained from \(S_\beta^{(1)} \) by replacing subscripts \(1 \approx 2 \). \(S \) is the normalizing area and \(d_s p_\gamma = \text{d} p_\gamma \text{d} p_\gamma \). Note that the interference term in the rate equation (32) may be neglected due to the presence of rapidly oscillating factors [15].

The expansion of the amplitude into power series in \(b \) allows to derive the rate (32) in a simple analytical form. To find the approximate expressions for the confluent hypergeometric functions \(F \) entering (18) note that in the resonant case the argument is much greater than unity, \(q \approx \Omega^2 / 2 \delta b \gg 1 \). At the same time, the level numbers \(l_i \) and \(l_\gamma \) are considered to be small, \(l_i, l_\gamma \sim 1 \). Thus, for the functions that depend on \(l_i \) and \(l_\gamma \) it is possible to use the known expansion [22],

\[F(a, b, z) \approx \frac{\Gamma(b)}{\Gamma(b - a)} (-z)^a \left[1 + O \left(\frac{1}{z} \right) \right]. \]

(33)

where \(z \to \infty \) and \(a, b \) are limited. Inserting here \(a = -\lambda \) and \(b = \Lambda - \lambda + 1 \) one can readily find

\[F(-\lambda, \Lambda - \lambda + 1, q) \approx \frac{(\Lambda - \lambda)!}{\Lambda!} \left(-q \right)^\lambda \left(1 + O \left(q^{-1} \right) \right). \]

(34)

Here, \(\Lambda = \max (l_i, l_\gamma) \), \(\lambda = \min (l_i, l_\gamma) \) and the residual term is

\[O \left(q^{-1} \right) \approx \frac{2 \Lambda}{q}. \]

(35)

The asymptotic formula (34) can not be used for the functions \(F(-\lambda, l_1 - l_2 + 1, q) \) since the threshold condition (6) requires the inequality \(l_1 \geq 2q \) to be fulfilled. Consequently, \(l_1 \to \infty \) when \(q \to \infty \). However, considering the presence of a sharp maximum at \(u = \Omega \) in the amplitude (11), the relatively slow hypergeometric function can be replaced
by its value at the singularity point. It can be shown, that its resonant value is

$$F\left(-l_1, l_1 - l_2 + 1, \Omega^2\right) \approx \left(\frac{l_1 - l_2}{l_1!}\right) \Omega^{2l_1}$$

(36)

in the threshold case when \(l_1 \approx 2q\). Note the absence of the factor \((-1)^q\) compared to equation (34).

After substitution the approximate form of the hypergeometric functions (34) and (36) to the rate (11) the dependency on \(u\) and \(v\) factors out and enters the rate in the form of the integrals [15]

$$\int du \, dv \, \left| e^{-x^2} a^X \right|^2 \approx b \pi^2 \sqrt{\Omega^2} \frac{\Omega^{2p} e^{-2\Omega^2}}{\Delta m \sqrt{n}}$$

(37)

when the number \(n\) is large.

Finally, after the simple integration over \(dp_1z\) and \(dp_2z\), it is easy to find the rate of the process in a closed analytical form for each spin state.

The process has the greatest rate in the following spin state,

$$\sigma_i = +1, \quad \sigma_{i+} = -1, \quad \sigma_{i-} = +1.$$

(38)

The corresponding expression reads (in CGS units)

$$W_{i+}^{i+} = \frac{a^2}{\Delta} \left(\frac{me^2}{\hbar}\right)^2 \Omega^2 b \sqrt{\pi} \frac{\Omega^{2p} e^{-2\Omega^2}}{\Delta m \sqrt{n}},$$

(39)

where \(L = l_1 + l_1 + l_2 + l_4\).

The rates for the other spin states divided by \(W_{i+}^{i+}\) are

$$w_{i+}^{i+} = 1, \quad w_+^{i+} = \frac{5\delta}{3} l_1 b,$$

$$w_+^{+} = \frac{5\delta}{3} l_1 b, \quad w_+^{++} = \frac{5\delta}{3} l_2 b,$$

$$w_+^{++} = \frac{1}{2} l_1 l_1 b^2, \quad w_+^{++} = \frac{1}{4} l_1 l_2 b^2,$$

$$w_+^{++} = \frac{1}{2} l_1 l_2 b^2, \quad w_+^{++} = \frac{1}{4} l_1 l_1 b^3,$$

$$w_{i+}^{i+} = \frac{4\delta}{3}, \quad w_{i+}^{i+} = \frac{1}{2} l_1 b,$$

$$w_{i+}^{++} = \frac{1}{2} l_2 b,$$

$$w_{i+}^{++} = \frac{2\delta}{3} l_2 l_1 b^2, \quad w_{i+}^{++} = \frac{2\delta}{3} l_1 l_2 b^2,$$

$$w_{i+}^{++} = \frac{2\delta}{3} l_1 l_2 b^2, \quad w_{i+}^{++} = \frac{2\delta}{6} l_1 l_1 b^3.$$

(40)

Here, the superscript denotes the initial electron polarization and the subscripts denote polarizations of the final electrons and a positron respectively. The quantity \(\delta\) is defined in equation (5).

Let us consider the spin dependence of the obtained rates (40) and (41). Apparently, the process rate substantially depends on spin projections of the final particles. The rate has the greatest order of magnitude in the spin state defined by equation (38) when magnetic moments of the final particles are oriented along the field. In this case the energy of dipole interaction with magnetic field has the minimum value. The change of spin orientation of each particle results in appearance of the factor \((l_1 b)\) in the rate. The similar effect can be seen in one-photon pair production [20, 23].

On the other hand, when the polarizations of the final particles are fixed then changing the initial electron spin projection does not affect the power of the small parameter \(b\). Weak influence of the initial electron polarization on the rate seems to be unexpected. Indeed, in the resonant case the process decomposes to photon emission followed by pair production. It is known that emission of a photon is less probable when the change of the electron spin is involved. However, the exception is the case of near-ground transitions from relativistic initial state [23, 24]. When a relativistic electron transits to the lowest levels emitting a hard photon, then the rate of spin-flip process approaches the rate of radiation without change of the spin projection. Apparently, conditions of the LLL approximation (3) together with the threshold requirement \(E \geq 3 m\) require such near-ground transition, which is the reason for the weak influence of initial electron spin on the rate of pair production by an electron.

References

[1] Sturrock P A 1971 Astrophys. J. 164 529–56
[2] Burns M L and Harding A K 1984 Astrophys. J. 285 747–57
[3] Zhang B 2001 Astrophys. J. 562 L59–62
[4] Harding A K, Muslimov A G and Zhang B 2002 Astrophys. J. 576 366–75
[5] Medin Z and Lai D 2010 Mon. Not. R. Astron. Soc. 406 1379–404
[6] Boyko B A et al 1999 Digest of Technical Papers. XII IEEE Int. Pulsed Power Conf. (Monterey) vol 2 pp 746–9
[7] Wagner U et al 2004 Phys. Rev. E 70 026401
[8] Bula C et al 1996 Phys. Rev. Lett. 76 3116–9
[9] Burke D L et al 1997 Phys. Rev. Lett. 79 1626–9
[10] Bamber C et al 1999 Phys. Rev. D 60 092004
[11] Reiss H R 1962 J. Math. Phys. 3 59–67
[12] Nikishov A I and Ritus V I 1964 Sov. Phys.—JETP 19 529–41
[13] Avetissian H K 2006 Relativistic Nonlinear Electrodynamics (Springer Series in Optical Sciences vol 120) ed W T Rhodes (New York: Springer)
[14] Hu H, Müller C and Keitel C H 2010 Phys. Rev. Lett. 105 080401
[15] Novak O P and Kholodov R I 2012 Phys. Rev. D 86 105013
[16] King B and Ruhi H 2013 Phys. Rev. D 88 013005
[17] Nikishov A I 1979 Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk SSSR 111 152 (Moskow: Nauka)
[18] Erber T 1966 Mod. Phys. 38 626–59
[19] Berestetskii V B, Lifshitz E M and Pitaevskii L P Relativistic Quantum Theory (Oxford: Pergamon)
[20] Klenpikov N P 1954 Zh. Exp. Theor. Phys. 26 19–34
[21] Graziani C, Harding A K and Sina R 1995 Phys. Rev. D 51 7097–110
[22] Abramovic M and Stegun I 1965 Handbook of Mathematical Functions (New York: Dover)
[23] Novak O P and Kholodov R I 2009 Phys. Rev. D 80 025025
[24] Harding A K and Preece R 1987 Astrophys. J. 319 939–50