Structure of 23Al from a multi-channel algebraic scattering model based on mirror symmetry

P. R. Fraser1,*, A. S. Kadyrov1, K. Massen-Hane1, K. Amos2,3, L. Canton4, S. Karataglidis2,3, D. van der Knijff2, and I. Bray1

E-mail: *paul.fraser@curtin.edu.au

1 Department of Physics, Astronomy and Medical Radiation Sciences, Curtin University, GPO Box U1987, Perth 6845, Australia
2 School of Physics, University of Melbourne, Victoria 3010, Australia
3 Department of Physics, University of Johannesburg, P.O. Box 524 Auckland Park, 2006, South Africa
4 Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova I-35131, Italia

Abstract. The proton-rich nucleus 23Al has a ground state just 123 keV below the proton drip-line, and as a result comparatively little is known experimentally about its properties, as with many such nuclei. Theoretical investigations have tended to model exclusively the ground and first one to three excited states known. In this paper, we theoretically model most of the known spectrum, and predict what states may as yet be unobserved. We use the multichannel algebraic scattering (MCAS) method to describe states as resonances of a valence proton coupled to a 22Mg rotor core. Six states with low-excitation energies and defined J^* are matched, and we make the first prediction of the properties of four others and propound the possible existence of several more.

PACS numbers: 21.10.Ft, 21.60.Ev, 25.40.-h

Submitted to: J. Phys. G: Nucl. Phys.
1. Introduction

The proton-rich nucleus ^{23}Al was first discovered in 1969 [1], but having only one bound state, 123 keV below the one-proton emission threshold, comparatively little is known about its properties. As a result, much experimental effort has been spent on it in recent years [2] [3] [4] [5] [6] [8] [9] [10], filling in details of the low-energy resonant spectrum. Several positive-parity states have been measured, some of which with details tentatively known. No negative parity states have been observed, though a result, much experimental effort has been spent in 1969 [1], but having only one bound state, 123 keV below the one-proton emission threshold, in ^{23}Al.

The proton-rich nucleus ^{23}Al was first discovered to ^{23}Ne and ^{23}Al. These he compared with those predicted by a shell model, as a part of a broad survey [11]. A more recent shell model investigation was undertaken using the OXBASH shell-model code [12] and the USD family of interactions [13]. Theoretical treatment of this pair as nucleon and mass-22 systems has been undertaken in the context of asymptotic normalisation coefficients (ANCs) in capture reactions [14] [15] (and references therein).

Most of those theoretical studies concentrated upon the Gamow window region and so tend to focus only upon the ground and one or few low excitation resonance states. There are more resonance states in the known spectrum and we seek a description of this currently known spectrum.

We use the multi-channel algebraic scattering (MCAS) method to predict spectral properties of ^{23}Al to ~ 4 MeV excitation, and to obtain elastic scattering cross sections. The method solves the coupled-channel problem of a nucleon coupled to a number of states in a ‘core’ nucleus. Lippmann-Schwinger equations for the coupled-channel problem are solved in momentum space starting with a set of coupled-channel interactions defined in coordinate space. They are specified using a collective model prescription. Those coupled-channel interactions are expanded using a set of Sturmian functions, and the coupled-channel Green’s function is determined via an iterative process [16].

The coupled-channels scattering potentials of the system are formed with a target described by a Tamura collective model of rotor character [17], coupled to the projectile nucleus. The basic potential used for is

$$V_{cc'}(r) = f(r) \left\{ V_0 \delta_{cc'} + V_\ell (\ell \cdot \ell')_{cc'} + V_s s_{cc'} \right\} + g(r) V_{ss} \left(s \cdot s'_{cc'} \right),$$

(1)

where c and c' denote channels, V_0 is the central potential strength, V_ℓ is the orbital angular momentum dependent potential strength, V_s is the spin-orbit potential strength, and V_{ss} is the spin-spin potential strength, with all parameters in MeV. The channels (c) denote the underlying set of unique quantum numbers for each value of the total spin-parity of the compound system (J^π). The potentials are taken to have a Woods-Saxon form,

$$f(r) = \left[1 + \exp \left(\frac{r - R_0}{a_0} \right) \right]^{-1}; \quad g(r) = \frac{1}{r} \frac{df(r)}{dr}$$

(2)

and matrix elements are shown in detail in Ref. [16]. This potential is then expanded to second order in terms of deformation of the nucleus. Full details of the expansion and the final form are provided in the Appendix of Ref. [18].

To account for the effects of Pauli blocked orbitals, orthogonalizing pseudo-potentials (OPP) are utilised. The OPP method was developed from the Orthogonality Condition Model of Saito [19]. The original potential, $V_{cc'}(r)$, is modified by adding OPP to define

$$\mathcal{V}_{cc'}(r, r') = V_{cc'}(r) \delta(r - r') + \lambda_c A_c(r) A_{c'}(r') \delta_{cc'},$$

(3)

where $A_c(r)$ is the single-nucleon radial wave function of an occupied orbital. For OPP to block the Pauli-forbidden orbitals, the blocking parameter, λ_c is set ostensibly to infinity, but 10^6 MeV suffices in practice. Though not used here, OPP blocking energies can be set at values between zero and infinity, for cases of ‘hindrance’ from partially filled orbitals [20]. Full details are presented in Ref. [21].

Consequently, the MCAS approach is particularly suitable for studying properties of the first few MeV of the spectra of systems such as ^{23}Al, which may be considered in that regime as a nucleon plus (core) nucleus clusters. Further, as the method readily given scattering amplitudes, it enables prediction of cross sections for low-energy nucleon scattering from those ‘core’ nuclei in which resonance states of the compound can have effect.

To calculate a spectrum for ^{23}Al, we first study the mirror system, ^{23}Ne, as a $n+^{22}\text{Ne}$ cluster so defining the nuclear part of the $p+^{22}\text{Mg}$ Hamiltonian. Results for the spectrum of ^{23}Ne are given in Section [2] for completeness. They differ slightly from those published recently [22], as in that publication the model parameters were tuned to the case where coupling to one less target state was considered.

The nuclear interaction so defined is then used for the $p+^{22}\text{Mg}$ system. In Section [3] a discussion is presented regarding the form of the Coulomb interactions added (with an alternative form discussed in Appendix A), and in Section [4] we give a prediction of the spectrum of ^{23}Al. Cross sections for elastic scattering of protons from ^{22}Mg from $E_{lab} = 0$ to 3 MeV are also shown and discussed therein. (Data at energies higher than the potential is designed for
are examined in Appendix B.) In Section 5 we present results obtained when the number of target nuclear states, used in the coupled-channel calculations, is reduced to that previously deemed [9] to contribute to the ground state of 23 Al. Finally, in Section 6 we draw our conclusions.

2. The nuclear interaction from the n+22Ne system

In a recent paper [18], a good match was obtained between experiment and MCAS calculation for the excitation energies of the nine lowest eigenstates of 23Ne, treated as the n+22Ne system. These are all deeply bound with regard to the neutron emission threshold. Those states span an energy range of ∼3.5 MeV. At energies higher than this, processes other than coupling of a single particle to a collective target with two rotor-like bands come into effect.

The coupled channels for the mirror n+22Ne study were formed using a rotational model description of the lowest five states of 22Ne. The three lowest energy states were taken to be states of the principle rotor band; the 0g.s., the 21 state (1.274 MeV in 22Ne and 1.247 MeV in 22Mg), and the 41 state (3.357 MeV in 22Ne and 3.308 MeV in 22Mg). Next we add the 42 state at 5.523 MeV excitation in 22Ne (5.293 MeV in 22Mg). We include this state since, recently, the one-proton knock-out reaction from the ground state of 23Al was studied experimentally by Banu et al. [9], with γ-rays from the resultant excited 22Mg indicating which states of that nucleus combine with a proton to populate the 23Al ground state. Three γ-transitions were observed, 42 → 41, 41 → 21, and 21 → 01. However, while this experiment suggests that only these four target states are relevant to defining the 23Al ground state, we seek to define more states than the ground state. Thus, the fourth known state of the spectrum, the 22 state (4.456 MeV in 22Ne and 4.402 MeV in 22Mg) was included. This state, like the 21 state, E2-decays to the ground [23]. In 22Mg, the 42 also γ-decays to the 0g.s. [24]. 21 (characterised as M1 + E2 [24]) and 41 states. Thus, we expect it to play a role in channel coupling, even if not significantly with regard to the ground state of 23Al. This is discussed in Section 5.

All of the above experimentally-known γ-transitions are summarised in Fig. 1. We note that in the case of 22Mg, most possible decays between these five states have been observed experimentally, with four exceptions: there have been no observed 42 → 22, 41 → 22, 41 → 01, or 41 → 01 transitions. In our calculations we still assume all couplings, however.

The 21 and 41 states are not members of the main rotor band, but they can still be considered using the rotational model. Assuming a shape co-existence, these appear part of the second K = 0 β-band, though no 02 band head has been clearly observed. Alternatively, they may be the first and third states of a K = 2 γ-band, in which case all states should possess the same deformation, though no 32 state, the second state in such a band, has been clearly observed [25]. There is an uncertainly-assigned state in 22Mg, denoted (0+, 1, 2, 3, 4+), at 5 MeV that could be either [24]. Here, we effectively treat these states as part of a secondary K = 0 rotor band.

We denote the quadrupole coupling deformation of the primary and secondary rotor band as β2 and β2, respectively. Assuming shape co-existence, we determine the ratio of these two deformations by considering the mean lifetime of a state that γ-decays to the ground state, which is a function of the transition probabilities, and for E2 multipolarity this is:

\[
\frac{1}{\tau} = 1.23 \times 10^9 E_\gamma \beta_2 B(E2),
\]

with τ in s, Eγ in MeV, and B(E2) in e^2 fm^4. In 22Ne, the E2 transitions of the 2+ states at 1.275 and 4.456 MeV have half lives of 3.63(5) ps and 37(6) fs respectively [24]. Thus, from Eq. (4) we obtain

\[
B(E2)|_{1.275} = 46.06 \text{ and } B(E2)|_{4.456} = 8.67 \beta_2 \beta_2 = 0.43 \beta_2.
\]

As the simplest possible formalism, we assume that couplings involving the 42 have the same β2.

Table 1 contains the parameters that define the nuclear potential used in calculation of both n+22Ne and p+22Mg. The positive-parity central well depth, V0, differs from the value of -51.3 MeV used in Ref. [18], to bring the 23Ne ground state energy, relative to the neutron emission threshold, in line with experiment to three decimal points. (In Ref. [18], the parameters were selected without consideration of the 42 state. The adjustment here is to address that.) β4 indicates a small hexadecapole deformation, and R0 and a0 are radius and diffusivity of Eq. (2). The MCAS spectrum of 23Ne found using the parameter set of Table 1 is compared to experiment in Fig. 2. This calculation results in a match, within 0.5 MeV, for the nine lowest-energy states known for which spin-parities are well assigned or postulated. This makes a good result for a range of up to 3.5 MeV.

There are three higher-spin states in the MCAS spectrum that have no currently known partner: a 32 state at -5.061 MeV relative to the neutron emission threshold, a 32 state at -3.565 MeV, and an 12 state at -1.764 MeV. If a 32 state existed at such
Structure of ^{23}Al from a multi-channel algebraic scattering model based on mirror symmetry

![Diagram showing energy levels and transitions in ^{22}Ne and ^{22}Mg](image)

Table 1. Parameter values defining the $n+^{22}\text{Ne}$ interaction.

Parameter	Odd parity	Even parity
V_0 (MeV) Fig. 2 & 3	-65.200	-50.894
V_0 (MeV) Fig. 5	-64.620	-50.372
V_0 (MeV) Fig. 8	-64.825	-50.650
V_0 (MeV) Fig. B1	-1.01	-0.30
V_{th} (MeV)	-49.650	
V_{sh} (MeV)	7.00	7.00
V_{ss} (MeV)	-0.20	-1.45

$\lambda^{(OPP)}$	$s_{1/2}$	$p_{3/2}$	$p_{1/2}$	$d_{3/2}$
10^6	10^6	10^6	0.0	

β_2 for linking 2^+_2 and 4^+_2 to each other and other states; 43% of 0.22.

Figure 1. The low-energy experimental spectra of ^{22}Ne and ^{22}Mg. Solid, thick lines represent states of the main rotor band, and thick, dashed lines are states known to couple to them by γ-emission. Observed couplings between states in and out of the main rotor band shown by arrows. Data are from Ref. [9, 23, 24].

Table 1. Parameter values defining the $n+^{22}\text{Ne}$ interaction. $\lambda^{(OPP)}$ are blocking strengths of occupied shells, in MeV, with the same values used for all target states considered.

Parameter	Odd parity	Even parity
V_0 (MeV) Fig. 2 & 3	-65.200	-50.894
V_0 (MeV) Fig. 5	-64.620	-50.372
V_0 (MeV) Fig. 8	-64.825	-50.650
V_0 (MeV) Fig. B1	-1.01	-0.30
V_{th} (MeV)	-49.650	
V_{sh} (MeV)	7.00	7.00
V_{ss} (MeV)	-0.20	-1.45

$\lambda^{(OPP)}$	$s_{1/2}$	$p_{3/2}$	$p_{1/2}$	$d_{3/2}$
10^6	10^6	10^6	0.0	

β_2 for linking 2^+_2 and 4^+_2 to each other and other states; 43% of 0.22.

Low energy, it would likely have been observed in experiment by population of $E1 \Gamma$-emission from the $\frac{7}{2}^-$ state predicted in this work. This $\frac{7}{2}^-$ state is likely to exist near this energy, given the observation of such a state in ^{23}Ne. In this calculation, the state in question arises from coupling of the ^{22}Mg 2^+ and 4^+ states with protons of $\ell \leq 11$, as appropriate. To determine what partial probabilities the various coupled-channel components contribute requires calculation of coordinate space wavefunctions, which is future work. As it is known from Ref. [9] that three of these states of ^{22}Mg are involved in the ground state of ^{23}Al, it is reasonable to expect that a low-energy $\frac{7}{2}^-$ state exists, but with a higher energy than that calculated. This likely indicates the need for a more-refined scattering potential.

While there is room for further elaboration of this potential, including better accounting for the difference in inter- and intra-band coupling strengths, and consideration of Pauli hindrance [21], this potential suffices for making predictions of the cross section of the mirror system, $p+^{22}\text{Mg}$, and the spectrum of the compound system, ^{23}Al. For this, a suitable charge distribution of ^{22}Mg is necessary.
Structure of 23Al from a multi-channel algebraic scattering model based on mirror symmetry

Coulomb potentials for calculations of proton-nucleus cluster structure and proton scattering with these nuclei. One such theory, the relativistic mean-field (RMF) model [31], was used recently by Wang and Ren [22, 33] to calculate charge distributions for light proton-rich nuclei, the properties of which they later compared with standard parameterised functions of charge distribution [34]. In particular, they found an RMF charge distribution for 22Mg with an rms charge radius, R_{rms}, of 3.088 fm, and this is used here to derive the Coulomb potential for p^+^{22}Mg scattering. This charge distribution and the Coulomb potential are shown in panel (a) and (b) of Fig. 3, respectively. Additionally, panel (b) shows the Coulomb potential that results from assuming a point-like 22Mg target, i.e., $V_{\text{Coul}} = 12 e^2 / r$. This indicates that the asymptotic behaviour of the potential derived from the charge distribution is correct.

Figure 3. (a) RMF model theoretical charge distribution for 22Mg from Ref. [33]. (b) Resultant Coulomb potential (solid line) and potential assuming point-like target (dashed line). In Appendix A, the use of Coulomb potentials generated from three-parameter Fermi (3pF) charge distributions is investigated, and compared to the results from the RMF charge distribution.
4. Observables of the p+22Mg system

The compiled spectrum of 23Al consists of eight states [26], of which only the ground state is bound, with the one-proton separation energy being 123 keV. The ground state and first known excited state at 0.55 MeV have angular momentum and positive parity firmly assigned, as well as measured half-lives. Five more states have firmly assigned positive parity and tentative angular momentum. Only the excitation energy is known of the remaining state. Since that compilation, He et al. [4] found four resonances in 1H(22Mg,p)22Mg scattering with E_x = 3.00, 3.14, 3.26 and 3.95 MeV. By R-matrix analysis, they argue that the first and last of these may have spin-parity 3^+ and 7^+, respectively. The state at 3.00 MeV is a likely partner to the 2^+ state in 23Ne at 3.432 MeV above the ground state. The states at 3.14 and 3.26 MeV were both tentatively assigned as $(\frac{7}{2}^+, \frac{5}{2}^+)$. Gade et al. [5] measured a state 1.616 MeV above the ground state which they argued to have spin-parity $\frac{7}{2}^+$, of which a probable partner, currently assigned $(\frac{5}{2}^+, \frac{3}{2}^+)$, is known in 23Ne 1.701 MeV above the ground state. Certainly, though, the low-energy spectrum will be much richer than that so far observed.

4.1. Charge symmetry

Fig. 4 shows the MCAS spectrum of 23Al that results from using the parameter set of Table 1 with the addition of the Coulomb potential derived from the charge distribution of Ref. [33]. This is compared to the few observed states of 23Al. Each experimentally observed state has a theoretical partner nearby, though all are overbound. The ground state is overbound by ~229 keV. A deviation of similar magnitude has been observed from studies of other mirror systems with MCAS calculations made using Coulomb interactions defined from charge distributions with the known rms charge radii [22]. In those cases the deviation could possibly be ascribed to nuclear effects (possibly charge symmetry breaking). See Appendix A for a study of the impact of the choice of Coulomb potential used.

4.2. Adjusted charge symmetry

As the p+22Mg central potential depth, V_0, is much greater than the other components of the nuclear potential, slight adjustments can be used to alter the binding of all calculated compound states without altering the spacing between them. Using the RMF-derived charge distribution from Ref. [33], a value of ~50.372 MeV for the central well depth for positive parity states, V_0^+, reduces the ground state binding by the 229 keV necessary to obtain a match with data.

Figure 4. (Color online.) The known experimental 23Al spectrum (solid lines [26], long dashed lines [4], short dashed lines [5]) and that calculated from MCAS evaluation of the p+22Mg, with target state set 0^+, 2^+, 4^+, 2^+, 1^-, with charge distribution from Ref. [33]. Parameters are as per Table 1 with $V_0^+ = -65.200$ MeV and $V_0^- = -50.894$ MeV. The bar denotes the use of reduced coupling for channels involving this state. In the experimental spectrum, energies before the slash are relative to the one-proton emission threshold, and energies after relative to the ground state. Uncertainties are shown in italics. In the ‘Theory’ spectrum, unbracketed values are level energy relative to one-proton emission threshold. Bracketed values are full width at half maximum. All energies are in MeV.
For the same increase in energy of the first calculated negative parity state, with \(J^p = \frac{7}{2}^- \), a value of 64.620 MeV is used for the negative parity states' central well depth, \(V_0^- \). The resultant spectrum is shown in Fig. 5.

Thus, MCAS recreates the observed \(\frac{5}{2}^+ \), \(\frac{3}{2}^- \), \(\frac{3}{2}^+ \), \(\frac{1}{2}^- \), \(\frac{5}{2}^- \), \(\frac{3}{2}^+ \), \(\frac{1}{2}^- \), and the \(\frac{1}{2}^- \) state observed at 3.595 MeV above the one-proton emission threshold, though the spins of all but the lowest two are uncertain. The model gives many more resonance states in the low excitation region and it remains to be seen if such have any empirical matches. The resonance widths found are solely for one-proton emission, which is not problematic as the energies considered are below the emission thresholds for \(\alpha \)-particles (8.58 MeV above the ground state), deuterons (17.28 MeV), neutrons (19.48 MeV) and tritons (25.75 MeV). \(\Gamma \)-decay channels, while open, have negligible widths compared to particle emissions. This is illustrated, for example, for the \(\frac{1}{2}^+ \) state by Table IV of Ref. [3].

The model predicts a \(\frac{5}{2}^+ \) state (in Fig. 5 at 1.826 MeV) not observed thus-far, in addition to the four lowest-energy states known in the literature [5, 13, 26, 35]. The shell-model calculation of Ref. [13] concerned itself with only states at 2.222 MeV, a \(\frac{1}{2}^- \) at 2.486 MeV, and a \(\frac{1}{2}^- \) state at 2.658 MeV. However, if the other known states in the region are a guide, it might be expected that those states exist \(-0.5\) MeV higher than MCAS predicts. Furthermore, with this potential MCAS predicts several states around 3.5 MeV (relative to the one-proton emission threshold), and two high-spin states at lower energies. These may correspond to the partially defined states observed in this region. To obtain a better match to the three highest energy states observed experimentally, being two \(\frac{1}{2}^- \) states at 3.95 MeV and 4.2 MeV, and a \(\frac{1}{2}^- \) at 11.8 MeV, all relative to the ground state, requires improvement to the model specification of the channel coupling interactions and, possibly taking more states of \(^{22}\text{Mg} \) into account.

In Table 2 the MCAS results are compared with experimental data and those of other calculations reported in the literature [5, 13, 26, 35]. The shell-model calculation of Ref. [13] concerned itself with only the four lowest-energy states known in \(^{23}\text{Al} \), \(\frac{5}{2}^+ \), \(\frac{1}{2}^- \), \(\frac{3}{2}^+ \), \(\frac{3}{2}^+ \), and \(\frac{5}{2}^- \), making no predictions. We tabulate their calculation which uses the USD* \((V^\text{USD})\) interaction, as this provided them their best match to experimental data. (Note that in their Table IV they appear to have the labels of the \(\frac{3}{2}^- \) and \(\frac{3}{2}^+ \) states reversed.) Ref. [14] calculated properties of the \(\frac{1}{2}^- \) resonance, obtaining an excitation energy of 0.405 MeV, and a proton

![Figure 5](Color online.) The known experimental \(^{23}\text{Al} \) spectrum [3][26], and that calculated from MCAS evaluation of the \(p + ^{22}\text{Mg} \), relative to the one-proton emission threshold. The MCAS results are obtained with target state set \(0_1^+, 2_1^+, 4_1^+, 2_2^+ \) and \(2_2^+ \), with charge distribution from Ref. [33]. Parameters are as per Table I with \(V_{0}^- = -64.620 \text{ MeV} \) and \(V_{0}^+ = -50.372 \text{ MeV} \). The bar denotes the use of reduced coupling for channels involving this state. In the experimental spectrum, energies before the slash are relative to the one-proton emission threshold, and energies after are relative to the ground state. Uncertainty in italics. In the 'Theory' spectrum, unbracketed values are energy levels relative to one-proton emission threshold. Brackets values are full widths at half maximum. All energies are in MeV.
width of 2.01×10^{-2} MeV and 9.19×10^{-2} MeV from a multichannel and a single-channel microscopic cluster model, respectively. Ref. [15] reports on calculations focused solely on the ground state and $\frac{1}{2}^+$ state of ^{23}Ne and ground state of ^{23}Al, obtaining agreement with experiment to three decimal places. Their interest, however, was with capture reactions and so they used a simple model which couples a valence nucleon to a rotor core [36], without some of the features of the MCAS model used herein, and with only the $0^+, 2^+$ and 4^+ states of the core-nucleus’ primary rotor band. Based on the results of Ref. [18] and Section 3 of this work, it may be interesting for them to repeat their investigation including also the $\frac{7}{2}^+$ core state. Ref. [4] reported four new states between 3 and 4 MeV above the ground state, and provided tentative J^π designations based on measurement and on R-matrix fits, Table 2 quoting the those suggested by measurement. Finally, in Ref. [5] a theoretical estimate of the width of the $\frac{7}{2}^+$ state they measured was made using an USDB shell model calculation.

Widths for the three lowest-energy resonances known, both experimental and theoretical, are extremely small in all investigations. Regarding the $\frac{7}{2}^+$ state, the result of Ref. [14] is of the same order as the experimental result, where the MCAS result is larger. With MCAS, the excitation energy of this state is overestimated by 0.17 MeV. The microscopic cluster model [14] underestimated the energy of that state by about the same amount. This state is important in any study of resonant capture and, as such reactions are planned for future MCAS studies, more detailed analyses leading to more accurate properties for this state will be needed. However, as the goal in the present work is to predict the spectrum over several MeV, rather than focusing solely on the Gamow window, this discrepancy is not of prime concern here. The excitation energies of the first four observed states reported in Ref. [13] are closer to experiment than we have found here, and closer to experiment than the $\frac{7}{2}^+$ result in Ref. [14]. Ref. [13] presents no information for higher-energy states. The ($\frac{3}{2}^+$) measured at 3.00 MeV in Ref. [3] is the only state of that work for which the MCAS calculation finds a match. The width of this state found by MCAS is five times that of the measurement of Ref. [4]. The other states of Ref. [4] are not recreated as these are in an energy regime that is higher than where this MCAS calculations is most accurate.

4.3. Elastic scattering cross sections

Fig. 6 shows several low-energy elastic scattering cross sections obtained using the charge distribution of Ref. [33] and the same nuclear parameter set as for the $n + ^{22}\text{Ne}$ investigation. Fig. 6 presents cross sections that result from the adjustment of V_0^+ and V_0^- detailed previously.

Comparing panels (a) in Figs. 6 and 7, the differential cross sections at fixed angles 50° and 90° for proton energies from 0.0 to 3.0 MeV. All presented as ratio to Rutherford cross sections. Parameters are as per Table 1, with $V_0^- = -65.200$ MeV and $V_0^+ = -50.894$ MeV.

Comparing panels (b) in each figure, the cross sections remain very similar until ~ 2.5 MeV. Changing the V_0^+ parameter from -50.894 MeV to -50.372 MeV removes the good agreement the $\frac{7}{2}^+$ excitation energy had with experiment in Fig. 4, but...
in the cross sections the corresponding resonance is of extremely narrow width. This means that the non-resonant part of the cross section calculated in this energy regime in Fig. 7 might be a reasonable prediction. Importantly, the unobserved $\frac{3}{2}^+$ and $\frac{11}{2}^+$ states found in the spectral calculation do not appear in the calculated cross sections. Above ~2.25 MeV, the larger-width $\frac{5}{2}^+, \frac{5}{2}^-, \frac{9}{2}^+$ and $\frac{3}{2}^+$ resonances dominate the cross section, and therefore their excitation energies relative to states that may or may not exist here influence the quality of the predicted cross sections at these energies. It remains to be seen what resonant states at 2.5 MeV and higher exist before the accuracy of the cross sections calculated in this energy region may be assessed.

5. The effect of the 2^+_2 target state

When investigating which states of 22Mg couple with a valence proton to form the 23Al ground state, Banu et al. [9] did not observe the 2^+_2 state playing a role. We repeat the calculation of Fig. 5 using only the target-state set 0^+_1, 2^+_1, 4^+_1, and $(4)_2^-$, to see if it erroneously plays a role in the calculated ground state, and if it need be considered in other states of 23Al. Again, V_0^+ was adjusted to match the ground state to experiment. Without experimental guidance, V_0^- was adjusted to match the first predicted negative parity state, $\frac{3}{2}^-$, to the same energy as in Fig. 5. This gave the values $V_0^- = -64.825$ MeV and $V_0^+ = -50.650$ MeV. The resulting spectrum is compared to experimental eigenenergies in Fig. 8. In Fig. 9 the resulting fixed-angle cross sections are compared to those of Fig. 7.

It is seen that the $(2)_2^+$ target state makes a negligible contribution to the ground state, in agreement with the experimental observation of Banu et al. It also makes a negligible contribution to all other states in the calculated spectrum, with the following exceptions: its absence brings the calculated counterpart of the $\frac{1}{2}^+$ resonance, observed at 0.427 MeV above the one-proton emission threshold, into slightly better agreement with experiment; the energy of the calculated $\frac{3}{2}^+$ resonance is slightly increased; and the magnitude of cross sections is slightly reduced at the higher end of the calculated energy range. Additionally, the calculated widths of the resonances from this calculation are somewhat smaller than those of Fig. 7.

As the coupling of this state to the valence proton contributes to the $\frac{3}{2}^-$ state just above the one-proton removal threshold, its inclusion may be of importance for studies focused on that state, for example Ref. [36].
Structure of 23Al from a multi-channel algebraic scattering model based on mirror symmetry

6. Conclusion

Relatively little is known experimentally about the low-energy spectrum of 23Al, and we have endeavoured to perform the most comprehensive calculation of this spectrum to date, over several MeV. We have treated it as a clusterisation of a proton and 22Mg, using a coupled-channel approach. Channels have been defined by five low excitation states in 22Mg. The nuclear interaction was determined using mirror symmetry and the related coupled-channel problem of the neutron+22Ne cluster [18]. The five states of the core nucleus were deemed to be members of two rotation bands; the three lowest (0^+_1 g.s., 2^+_1, 4^+_1) belonging to a ground state rotation band. The 2^+_2 and 4^+_2 were assumed as members of a second band with coupling to the other three via a scaled strength. The deformation strengths defining these

![Figure 7](image-url)
Figure 7. (Color online.) (a) $p+^{22}$Mg elastic scattering cross section at several fixed proton laboratory energies (b) $p+^{22}$Mg elastic scattering cross section at fixed angles 50° and 90° for proton from 0.0 to 3.0 MeV. All presented as ratio to Rutherford cross sections. Parameters are as per Table 1, with $V^-_0 = -64.620$ MeV and $V^+_0 = -50.372$ MeV.

![Figure 8](image-url)
Figure 8. (Color online.) The known experimental 23Al spectrum [4, 5, 26] and that calculated from MCAS evaluation of the $p+^{22}$Mg, relative to the one-proton emission threshold. The MCAS results are obtained with target state set $(0^+_1\ g.s.,\ 2^+_1,\ 4^+_1,\ 4^+_2)$, with charge distribution from Ref. [33]. Parameters are as per Table 1 with $V^-_0 = -64.825$ and $V^+_0 = -50.650$. The bar denotes the use of reduced coupling for channels involving this state. In the experimental spectrum, energies before the slash are relative to the one-proton emission threshold, and energies after are relative to the ground state. Uncertainties are shown in italics. In the ‘Theory’ spectrum, unbracketed values are energy levels relative to one-proton emission threshold. Bracketed values are full widths at half maximum. All energies are in MeV.
couplings were linked to the known γ-decay properties (in 22Ne). The 2^+_2 was found to contribute only to the 1^+_1 state of 23Al, supporting the findings of Banu et al. that it is not involved in the ground state. Coulomb interactions associated with a theoretical model of the charge distribution of 22Mg [38] were used. The coupled-channel problems were solved using the MCAS procedure in which the Pauli principle effects were accommodated.

Where previous theoretical calculations have restricted themselves to just the ground state [15], the ground state and first known resonant state [14], or the four lowest energy states known [13], in this investigation, many 23Al eigenstates in the first ~ 3.5 MeV of the spectrum have been calculated, and low-energy elastic scattering cross sections have been presented at several energies and two fixed angles. After accounting for a small overbinding which may be due to charge symmetry breaking of the nuclear forces, a theoretical partner was found within ~ 0.6 MeV for each state of the compound system with experimentally assigned J^π. Below ~ 2.25 MeV, where placement of excitation energies is good, calculated proton-emission widths are very small, as are the one known experimentally and the other theoretical results available [3, 14]. Being very small, these do not have much influence on the scattering background, giving some confidence that the presented cross section calculations are reasonable predictions. Such was the case in past uses of MCAS for nucleons on 12C [21, 37] and 14O [20].

Obtaining the known spectrum of 23Al through the threshold region as well as elastic scattering cross sections (protons from 22Mg) is necessary for planned future evaluations of the capture process using MCAS [38], so that both the scattering and capture states can be defined by a single Hamiltonian. The capture of protons by 22Mg has pertinence in specific nucleosynthesis problems. We intend, as future work, to build MCAS to evaluate capture cross sections and, for the case of proton capture by 22Mg, an interaction then will be needed that gives better energy values for the ground and first excited states in 23Al.

Acknowledgments

The authors gratefully acknowledge Z. Wang and Z. Ren for providing numerical results from their published nuclear charge distributions, and J. J. He and collaborators for providing their published $p^{+}22$Mg cross section data. This work was supported by the Australian Research Council. ASK acknowledges a partial support from the U.S. National Science Foundation under Award No. PHY-1415656. LC acknowledges funds from the Dipartimento di Fisica e Astronomia dell’Università di Padova. SK acknowledges support from the National Research Foundation of South Africa.

Appendix A. 3pF charge distributions

It is instructive to investigate also a simple parameterised functional form for the charge distribution of 22Mg. We examine several cases of the three-parameter Fermi distribution [39], as this form recreates the central ‘dip’ seen also in the charge distribution of Ref. [33]. It has the form

\[
\rho_{ch}(r) = \rho_0 \frac{1 + \frac{w^2}{R^2}}{1 + \exp \left(\frac{-R - r}{a} \right)},
\]

(A.1)

The three parameters in this form for the charge distribution are, R, a Woods-Saxon radius, a, the diffusivity of that function, and w, a modifying form scale value. Here ρ_0 is the central charge density value with which the volume integral of this distribution leads to the charge of the nucleus (12 for 22Mg).

Normally, the parameters can be constrained to a surface in the 3-dimensional space by requiring the experimentally-known $R_{rms}^{(c)}$. However, there is no experimentally determined $R_{rms}^{(c)}$ value available for 22Mg. Panels (a), (c), and (e) of Fig. A1 each show three 3pF functions with $R_{rms}^{(c)} = 2.888$ fm, $R_{rms}^{(c)} = 3.088$ fm (the value of Ref. [33]), and $R_{rms}^{(c)} = 3.288$ fm. We show the functions in arbitrary units, with $\rho_0 = 1$ e·fm$^{-3}$. Panels (b), (d) and (f) show the Coulomb potentials that result from the scaled functions, as well as the Coulomb potential assuming a point-like...
Figure A1. (a) Three 3pF functions which result in charge distributions with $R_{\text{rms}}(c) = 2.888$ fm. (b) Resultant Coulomb potentials (solid lines) and potential assuming point-like target (dashed line). (c) Three 3pF functions which result in charge distributions with $R_{\text{rms}}(c) = 3.088$ fm. (d) Resultant Coulomb potentials (solid lines) and potential assuming point-like target (dashed line). (e) Three 3pF functions which result in charge distributions with $R_{\text{rms}}(c) = 3.288$ fm. (f) Resultant Coulomb potentials (solid lines) and potential assuming point-like target (dashed line). Bottom: Resulting MCAS spectra compared to that resulting from using the RMF charge distribution of Ref. 33.
target. The bottom panel of Fig. [A1] shows the MCAS 23Al spectra that result from using these Coulomb potentials with the nuclear potential used in Fig. 2 and 4. The spectrum of Fig. 4 obtained by using the RMF charge distribution of Ref. [33], is also shown.

The different 3pF charge distributions for each value of $R_{rms}^{(c)}$ result in similar spectra of 23Al. As was observed in Ref. [22], parameter variations essentially lead only to an energy shift of the spectrum of a few tens of keV. Changes in $R_{rms}^{(c)}$ result in greater changes in the spectra, of the order of hundreds of keV for the values examined. This reaffirms that when using a 3pF charge distribution, the $R_{rms}^{(c)}$ is the important consideration. The exact values of the parameters (R, a, w) that coincide with the required $R_{rms}^{(c)}$ are of secondary importance.

Comparing the Coulomb potential in panel (b) of Fig. 3 with those of panels (b), (d) and (e) of Fig. A1 we see that the RMF-derived potential differs from those of a 3pF charge distribution in two ways: it has a higher strength at $r = 0$ fm than a potential from a 3pF distribution of lower $R_{rms}^{(c)}$, but has lower strength at larger r, more like a potential derived from a 3pF charge distribution of higher $R_{rms}^{(c)}$.

With these differences in potential we expect variations in calculated observables, and indeed the RMF charge distribution results in lower energies of states than the 3pF distributions with the same $R_{rms}^{(c)}$, by ~ 150 keV. This of course means that using a 3pF distribution with this charge radius in Section 4.2 would require less correction to the central well, V_0, of the nuclear potential to find matches to experimentally-known 23Al eigenenergies. However, rather than use the $R_{rms}^{(c)}$ value of Ref. [33] but not that charge distribution, we have opted to use both in absence of experimental guidance.

Appendix B. Observables of the p+22Mg system, $E_{com} = 2.6$ MeV to 3.1 MeV

In Section 4 the parameters of the scattering potential were selected to give the best possible fit to spectral data for the first ~ 2 MeV above the 23Al ground state, while predicting the existence of eigenstates up to ~ 3.5 MeV, if not their exact energies. Elastic cross sections were predicted for this region of best fit, where no data currently exists.

Elastic scattering differential cross section data, however, do exist for the energy window $E_{com} = 2.6$ to 3.1 MeV, from Ref. [4]. In that study, recoiling protons from the reaction 1H$(^{22}$Mg,$p)^{23}$Mg were detected at $\sim 4^\circ$, $\sim 17^\circ$, and $\sim 23^\circ$, which correspond in the centre of mass frame to 172°, 142°, and 134°. It is for the first two of these, and in the centre of mass frame, that elastic scattering cross sections were provided.

We stress that the potential used here is not best suited to this energy window, where the density of states is higher and behaviour other than that of a valence proton above a rotor-like core may affect the spectrum. Additionally, there are almost certainly negative-parity states in this region, but as none have been experimentally observed, we cannot assess their placement by MCAS. However, we have adjusted the V_0^+ well depth to match the MCAS A_{-1}^+ state’s energy with that observed in Ref. [4] at 2.877 MeV relative to the one-proton emission threshold. Additionally, the negative-parity potential was turned off to remove uncertainty from potentially poorly-placed states. The resultant spectrum is shown in Fig. [B1] and the resultant cross sections are shown in Fig. [B2].

Given the conditions outlined above, the results are reasonable. The resonance feature at ~ 2.85 MeV in the data is of different shape than that in the MCAS cross section, but the order of magnitude of the cross section is the same, and the theoretical cross section passes through or near several of the higher-energy data points.

[1] Cerny J, Mendelson Jr R A, Wozniak G J, Esterl J E and Hardy J C 1969 Phys. Rev. Lett. 22 612
[2] Wiescher M, Görres J, Sherrill B, Mohar M, Winfield J S and Brown B A 1988 Nucl. Phys. A 484 90 – 97 ISSN 0375-9474
[3] Caggiano J A, Bazin D, Benenson W, Davids B, Ibbotson R, Scheit H, Sherrill B M, Steiner M, Yurkon J, Zeller A F, Blank B, Chartier M, Greene J, Nolen J A, Wuosmaa A H, Bhattacharya M, Garcia A and Wiescher M 2001 Phys. Rev. C 64 (2) 025802
[4] He J J, Kubono S, Teranishi T, Notani M, Baba H, Nishimura S, Moon J Y, Nishimura M, Iwasaki H, Yanagisawa Y, Hokiwa N, Kibe M, Lee J H, Kato S, Gono Y and Lee C S 2007 Phys. Rev. C 76 (5) 055802
[5] Gade A, Adrich P, Bazin D, Bowen M D, Brown B A, Campbell C M, Cook J M, Glasmacher T, Hosier K, McDaniel S, McGlinchery D, Obertelli A, Riley L A, Siwek K, Testevin J A and Weisshaar D 2008 Phys. Lett. B 666 218
[6] Al-Abdullah T, Carstoiu F, Chen X, Clark H L, Fu S, Gagliardi C A, Liu Y W, Mukhamedzhanov A, Tabacaru G, Tokimoto Y, Trache L and Tribble R E 2010 Phys. Rev. C 81 (3) 035802
[7] Saastamoinen A, Trache L, Banu A, Bentely M A, Davison T, Hardy J C, Iacob V E, McCleskey M, Roeder B T, Simmons E, Tabacaru G, Tribble R E, Woods P J and Åystö J 2011 Phys. Rev. C 83 (4) 045808
[8] Kirschbom O, Fynbo H, Jokinen A, Madurga M, Riisager K, Saastamoinen A, Tengblad O and Åystö J 2011 Eur. Phys. J. A 47 130
[9] Banu A, Trache L, Carstoiu F, Achouri N L, Bonaccorso A, Catford W N, Chartier M, Dimmock M, Fernández-Domínguez B, Freer M, Gaudelfroy L, Horoi M, Labiche M, Laurent B, Lemmon R C, Negoita F, Orr N A, Paschalis S, Patterson N, Paul E S, Pietri M, Pietras B, Roeder B T, Rotaru F, Rousseau-Chomaz P, Simmons E, Thomas J S and Tribble R E 2011 Phys. Rev. C 84 (1) 015803
[10] Banu A, Carstoiu F, Achouri N L, Catford W N, Chartier M, Fernández-Domínguez B, Horoi M, Laurent B, Orr N A, Paschalis S, Patterson N, Pietras B, Roeder B T,
Structure of 23Al from a multi-channel algebraic scattering model based on mirror symmetry

Figure B1. (Color online.) The known experimental 23Al spectrum [4, 5, 26] and that calculated from MCAS evaluation of the $p+^{22}$Mg, relative to the one proton emission threshold. The MCAS results are obtained with target state set 0^+_1, 2^+_1, 4^+_1, and (4^+_2), with charge distribution from Ref. [33]. Positive-parity are as per Table I with $V_0^+ = -49.65$ MeV. No negative-parity potential is used. The bar denotes the use of reduced coupling for channels involving this state. In the experimental spectrum, energies before the slash are relative to the one-proton emission threshold, and energies after are relative to the ground state. Uncertainties are shown in italics. In the ‘Theory’ spectrum, unbracketed values are energy levels relative to one-proton emission threshold. Bracketed values are full widths at half maximum. All energies are in MeV.

Figure B2. (Color online.) $p+^{22}$Mg elastic scattering cross section for proton energies from 2.6 to 3.6 MeV at fixed angle (a) 172^o and (b) 147^o for proton energies from 2.6 to 3.1 MeV. Parameters are as per Table I with $V_0^+ = -49.65$ MeV. The experimental data are from Ref. [4].

Roussel-Chomaz P, Thomas J S, Trache L and Tribble R E 2012 Phys. Rev. C 86(1) 015806
[11] Sherr R 1977 Phys. Rev. C 16(4) 1159
[12] OXBASH-MSU (the Oxford-Buenos-Aries-Michigan State University shell model code). A. Etchegoyen, W.D.M. Rae, and N.S. Godwin (MSU version by B.A. Brown, 1986); B.A. Brown, A. Etchegoyen, and W.D.M. Rae, MSUCCL Report Number 524 (1986)
[13] Yuan C, Qi C, Xu F, Suzuki T and Otsuka T 2014 Phys. Rev. C 89 044327
[14] Timofeyuk N K and Descouvemont P 2005 Phys. Rev. C 72 064324
[15] Titus L J, Capel P and Nunes F M 2011 Phys. Rev. C 84 035805
[16] Amos K, Canton L, Pisent G, Svenne J P and van der Knijff D 2003 Nucl. Phys. A 728 65
[17] Tamura T 1965 Rev. Mod. Phys. 37 679
[18] Fraser P R, Canton L, Amos K, Karataglidis S, Svenne J P and van der Knijff D 2014 Phys. Rev. C 90 024616
[19] Saito S 1969 Prog. Theor. Phys. 41 705
[20] Canton L, Pisent G, Svenne J P, Amos K and Karataglidis S 2006 Phys. Rev. Lett. 96 072502
[21] Amos K, Canton L, Fraser P, Karataglidis S, Svenne J and van der Knijff D 2013 Nucl. Phys. A 912 7
[22] Fraser P R, Amos K, Canton L, Karataglidis S, van der
Structure of 23Al from a multi-channel algebraic scattering model based on mirror symmetry

Knijff D and Svenne J P 2015 EPJ A 51 110

[23] Basunia M S 2015 Nucl. Data Sheets 127 69
[24] Firestone R B et al. 2005 Nucl. Data Sheets 106 1
[25] Davidson J P 1968 Collective Models of the Nucleus (New York, London: Academic Press)
[26] Firestone R B et al. 2007 Nucl. Data Sheets 108 1
[27] de Vries H, de Jager C W and de Vries C 1987 At. Data. Nucl. Data 36 495
[28] Svenne J P et al. forthcoming
[29] Suda T, Wakasugi M, Emoto T, Ishii K, Ito S, Kurita K, Kuwajima A, Noda A, Shirai T, Tamae T, Tongu H, Wang S and Yano Y 2009 Phys. Rev. Lett. 102(10) 102501
[30] Suda T 2014 Pramana J. Phys. 83 739
[31] Serot B D and Walecka J D 1986 Adv. Nucl. Phys. 16 1
[32] Wang Z and Ren Z 2004 Phys. Rev. C 70 034303
[33] Wang Z and Ren Z 2007 Nucl. Phys. A 794 47
[34] Chu Y, Ren Z, Wang Z and Dong T 2010 Phys. Rev. C 82(2) 024320
[35] Timofeyuk N K and Descouvemont P 2005 Phys. Rev. C 71 064305
[36] Nunes F M, Thompson I J and Johnson R C 1996 Nucl. Phys. A 596 171
[37] Svenne J P, Amos K, Karataglidis S, van der Knijff D, Canton L and Pisent G 2006 Phys. Rev. C 73 027601
[38] Canton L and Levchuk L G 2008 Nucl. Phys. A 808 192
[39] Hodgson P E 1971 Nuclear Reactions and Nuclear Structure (Oxford University Press)