Identification of the Ca\(^{2+}\) entry pathway involved in deoxygenation-induced phosphatidylserine exposure in red blood cells from patients with sickle cell disease

U. M. Cytlak · A. Hannemann · D. C. Rees · J. S. Gibson

Received: 10 May 2013 / Revised: 5 June 2013 / Accepted: 5 June 2013 / Published online: 18 June 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract Phosphatidylserine (PS) exposure in red blood cells (RBCs) from sickle cell disease (SCD) patients is increased compared to levels in normal individuals and may participate in the anaemic and ischaemic complications of SCD. Exposure is increased by deoxygenation and occurs with elevation of intracellular Ca\(^{2+}\) to low micromolar levels. The Ca\(^{2+}\) entry step has not been defined but a role for the deoxygenation-induced pathway, P\(_{\text{sickle}}\), is postulated. Partial P\(_{\text{sickle}}\) inhibitors 4-acetamido-4′-isothiocyanostilbene-2,2′-disulphonic acid (SITS), 4,4′-dithiocyanostilbene-2,2′-disulphonic acid (DIDS) and dipyridamole inhibited deoxygenation-induced PS exposure (DIDS IC\(_{50}\), 118 nM). Inhibitors and activators of other pathways (including these stimulated by depolarisation, benzodiazepines, glutamate and stretch) were without effect. Zn\(^{2+}\) and Gd\(^{3+}\) stimulated PS exposure to high levels. In the case of Zn\(^{2+}\), this effect was independent of oxygen (and hence HbS polymerisation and RBC sickling) but required extracellular Ca\(^{2+}\). The effect was completely abolished when Zn\(^{2+}\) (100 μM) was added to RBCs suspended in autologous plasma, implying a requirement of high levels of free Zn\(^{2+}\).

Keywords Sickle cell disease · Red blood cell · Phosphatidylserine · Deoxygenation · Calcium · Cation channel

Introduction

Phosphatidylserine (PS) is an aminophospholipid which is normally confined to the inner leaflet of lipid bilayers [40]. In red blood cells (RBCs), this is particularly important because its exposure is prothrombotic, encourages phagocytosis and increases RBC adherence [7, 29, 59, 63, 64]. In healthy individuals, usually <1 % RBCs expose PS [40]. Programmed externalisation is thought to occur in damaged or senescent RBCs to aid their removal from the circulation. This process has been termed eryptosis [42, 45] and is analogous to the apoptosis of nucleated cells. Elevated PS exposure is also seen in a number of disease states, including sickle cell disease (SCD) [17, 66].

In SCD, patients show various complications which fall into two main groups: a chronic anaemia and acute vaso-occlusive disorders (such as pain, stroke, acute chest syndrome and osteonecrosis). PS exposure is observed in a high, but variable, percentage of RBCs (2–10 % is often quoted [15, 17, 40, 41, 66, 67]). PS may therefore contribute to both the anaemic and ischaemic complications of SCD [29]. The mechanism by which it becomes externalised has therefore received considerable attention [1, 17, 40].

Asymmetrical distribution of PS is usually maintained by high activity of an ATP-dependent aminophospholipid translocase (or flippase) in conjunction with relatively low activity of a Ca\(^{2+}\)-activated scrambling process (or scramblase activity) [4, 25]. The presence of the abnormal haemoglobin, HbS, in patients’ RBCs somehow perturbs this equilibrium to favour PS exposure. HbS molecules are able to aggregate on deoxygenation forming rigid polymers which distort RBC shape, alter rheology and stimulate a number of other deleterious sequelae [29]. Deoxygenation also stimulates PS exposure [6, 49, 66]. Damage to the cytoskeleton may free PS from anchor sites resulting in its higher mobility [22,
In addition, however, deoxygenation-induced PS exposure is Ca$^{2+}$-dependent requiring elevation of the concentration of intracellular Ca$^{2+}$ ([Ca$^{2+}]_i$) to low micromolar levels [66]. The high cation permeability of HbS-containing RBCs may be involved in this process [24, 31, 46]. In particular, a role has been postulated for the deoxygenation-induced cation conductance (sometimes termed P$_{\text{sickle}}$) which is activated upon deoxygenation, HbS polymerisation and RBC shape change [32, 46, 50]. This pathway is permeable to divalent cations including Ca$^{2+}$ and can therefore mediate Ca$^{2+}$ entry. Elevated [Ca$^{2+}]_i$ both inhibits the flippase and also activates the scramblase [25]. A number of other RBC cationic permeabilities have also been described, however, including conductances activated by depolarisation, glutamate, benzodiazepines and stretch, as well as following infection with intraerythrocytic parasites like malaria [3, 35] (although the latter is more widely considered to increase activity of anion-selective pathways [39]). One or more of these, instead of, or as well as P$_{\text{sickle}}$, may contribute to the Ca$^{2+}$ entry involved in deoxygenation-induced PS exposure. Clear identification of the pathway(s) involved would be beneficial as it would direct the search for potential inhibitors amenable to clinical use for amelioration of the complications of SCD.

In this study, we use various inhibitors and agonists of RBC pathways in an attempt to clarify the Ca$^{2+}$ entry step which results in deoxygenation-induced PS exposure in RBCs from SCD patients. Results indicate that partial inhibitors of P$_{\text{sickle}}$ reduced deoxygenation-induced PS exposure, consistent with mediation of Ca$^{2+}$ entry via this pathway, but those inhibitors and activators of several other potential entry pathways were without effect.

Materials and methods

Solutions and chemicals

The main experimental saline comprised (in millimolar): NaCl 140, KCl 4, CaCl$_2$ 1.1, MgCl$_2$ 0.15, N-2-hydroxyethylpiperazine-N'-2-ethanesulphonic acid (HEPES) 10 and inosine 10 with a pH of 7.4 at 37 °C (low potassium-containing saline, HK HBS). For washing red blood cells (RBCs), a high potassium-containing saline (HK HBS) was usually used, comprising (in millimolar) NaCl 54, KCl 90, MgCl$_2$ 0.15, HEPES 10 and inosine 10 with a pH of 7.4 at room temperature. For experiments carried out in plasma, the RBC wash solution comprised NaHCO$_3$ 24 mM and NaCl 137 mM equilibrated with air and 5 % CO$_2$, pH 7.4. The ice-cold wash solution for K$^+$ flux measurements comprised (in millimolar) MgCl$_2$ 107, 3-(N-morpholino)-propanesulphonic acid (MOPS) 10, pH 7.4 at 0 °C. Fluorescein isothiocyanate-conjugated lactadherin (LA-FITC)-binding buffer consisted of LK HBS with 1 mM vanadate and 16 nM LA-FITC. Osmolality of all solutions was 290±5 mOsm kg$^{-1}$. LA-FITC was obtained from Cambridge Bioscience (Cambridge, UK), phycoerythrin (PE)-conjugated anti-glycophorin A from Becton Dickinson Biosciences (CA, USA), HEPES and 4,4′-dithiocyano-2,2′-stilbene-disulphonic acid (DIDS) from Calbiochem (Merck, Darmstadt, Germany) and 86Rb$^+$ from PerkinElmer (MA, USA). Diazepam and PK11195 were gifts from Dr. Guillaume Bouyer (CNRS, Roscoff, France). All other chemicals came from Sigma-Aldrich (Poole, Dorset, UK).

RBC preparation

Blood samples were collected from HbSS SCD patients, with consent and ethical permission (11/LO/0065), in the anticoagulant EDTA, except for the experiments in which RBCs were incubated in autologous plasma. In this case, heparin was used as an anticoagulant to prevent chelation of Ca$^{2+}$ and/or Zn$^{2+}$ (Fig. 6). In Fig. 6, only RBCs from normal (HbAA) individuals were used. RBCs were washed three times into HK HBS for 3 min at 600 g and then subsequently twice into LK HBS, unless otherwise indicated, to give a final haematocrit (Hct) of 5 %. RBC suspensions were then deoxygenated for 20 min in Eschweiler tonometers flushed with warmed humidified N$_2$, by which time PS exposure was unchanged relative to that measured in untreated RBCs (as shown previously [66]). They were then diluted into test tubes also pre-equilibrated with N$_2$ (final Hct 0.5 %) in the absence or presence of potential inhibitors/activators of PS exposure. Incubation was carried out at 37 °C for up to 60 min in the presence of 1 mM vanadate to inhibit both the flippase and the plasma membrane calcium pump. Solutions of DIDS (stock 5–50 mM in DMSO) were made up fresh every other day as stability decreased after 3 days resulting in strong stimulation of PS exposure, probably through the action of a breakdown product(s). Controls were exposed to the same final concentration of solvent (DMSO or H$_2$O, 0.2 %) but otherwise treated in the same way. For experiments with glutamate receptor agonists, N-methyl-D-aspartate (NMDA) and homocysteine, RBCs were kept oxygenated and incubated in Eppendorf tubes (up to 60 min, 37 °C). For experiments to test the effect of plasma on the action of Zn$^{2+}$, RBCs were re-suspended in autologous plasma after washing, equilibrated with air and 5 % CO$_2$ delivered using a Wösthoff gas mixer (Bochum, Germany) at 37 °C to give a final pH 7.4. Normal total plasma Zn$^{2+}$ levels are about 10–15 μM [16, 28, 48]. This was not measured, rather additional Zn$^{2+}$ at the concentration indicated was added directly to plasma and thus represented the minimum total concentration present.

Labelling of PS exposure

Samples of 5 μl aliquots (105 RBCs) were placed in 250 μl of LA-FITC binding buffer. PS labelling was carried out in
the dark, because of the high sensitivity of FITC to light, at room temperature for 10 min. RBCs were then pelleted by centrifugation for 10 s at 16,100×g and washed once into LK HBS to remove unbound LA-FITC. Unlike annexin-V, LA-FITC binds to PS in a Ca²⁺-independent manner [14, 61]. Control experiments showed that binding was irreversible. Samples were then kept on ice until analysed by flow cytometry (FACS). Inhibitors/activators were tested (at 100 μM) for self-fluorescence using unlabelled RBCs. The percentage of RBCs exposing PS is usually normalised to values measured in control RBCs prior to addition of inhibitors, as the absolute magnitude of exposure varied between samples. These control values are given in the figure legends.

FACS acquisition and analysis

Externalised PS was measured in the FL-1 channel, with an emission wavelength for FITC of 519 nm, of a fluorescence-activated flow cytometer (FACSCalibur, Becton Dickinson, BD) and analysed with BD CellQuest Pro software using the protocol as previously published [66]. In control experiments, forward scatter (FSC, size) and side scatter (SSC, granularity) gates for RBCs were identified using a PE-labelled anti-glycophorin A assay. FSC was set with threshold at 512. Measurements were taken under logarithmic gain with voltages set at FSC, E00; SSC, 235; FL-1, 688; FL-2, 630; and FL-3, 590. Compensation was set as FL-1, 2.0 % of FL-2; FL-2, 19.6 % FL-1; FL-2, 0.0 % FL-3; and FL-3, 8.5 % FL-2 to minimise the effect of over spill of fluorescence to adjacent channels. For each measurement 10,000 events were gated. All gated LA-FITC-labelled cells were additionally cross checked against overlap into FL-2 and FL-3 fluorescent channels and for spill out of the size gate and if these occurred events were excluded from analysis. The percentage of such resolved events was noted and for most experiments was ≤1 %. On FL-1/FL-2 dot plot graph, the cut-off quadrants, for negative fluorescent gate, were set using unlabelled cells as x=20 and y=20. The PS-positive cells were represented as the percentage of all gated RBCs with sufficient externalised PS to appear positive fluorescently in the FL-1 channel [14] and thus fallen into the quadrant (x>20 and y<20).

K⁺ flux measurements

Potassium fluxes were measured using ⁸⁶Rb⁺ as a tracer for K⁺ [18, 62]. In these experiments, RBCs (Hct about 20 %) were first equilibrated in Eschweiler tonometers (Kiel, Germany) in air or N₂ at 37 °C, pH 7.4, in LK saline in which Cl⁻ was substituted with NO₃⁻ and MOPS for HEPES. Cl⁻ substitution prevented K⁺ transport through the Na⁺-K⁺-2Cl⁻ cotransporter and K⁺-Cl⁻ cotransporter. Aliquots were then diluted tenfold into test tubes containing the same saline and also pre-equilibrated with air or N₂ for flux measurements. Bumetanide (10 μM), ouabain (100 μM) and clotrimazole (5 μM) were all also present to inhibit K⁺ transport through the Na⁺-K⁺-Cl⁻ cotransporter, Na⁺/K⁺ pump and Ca²⁺-activated K⁺ channel. ⁸⁶Rb⁺ was then added into a KCl solution to give a final [K⁺] of 7.5 mM. Influx was performed over 10 min, after which RBCs were washed four times in ice-cold isotonic MgCl₂ wash solution, lysed using Triton X-100 (0.1 %) and protein was precipitated with trichloroacetic acid (5 %) and 5 min centrifugation at 13,000×g. ⁸⁶Rb⁺ (K⁺) in the supernatant was then counted by liquid scintillation as Čerenkov radiation (Tri-Carb 2100TR, PerkinElmer, MA, USA). The difference in K⁺ influx at the two gas tensions provides a measure of the deoxygenation-induced cation conductance, Pₛickled.
Although there are no specific inhibitors of \(P_{\text{sickle}} \), stilbenes [30] and the pyrimidine derivative dipyridamole [33] have been shown to inhibit the deoxygenation-induced cation permeability of RBCs from SCD patients. In the first series of experiments, therefore, the effects of 4-acetamido-4′-isothiocyanostilbene-2,2′-disulphonic acid (SITS), 4,4′-dithiocyanato-2,2′-stilbene-disulphonic acid (DIDS) and dipyridamole were tested on deoxygenation-induced PS exposure (Fig. 1). Each of the three reagents significantly inhibited the deoxygenation-induced PS exposure at both 30 and 60 min, at all concentrations used (10, 50 and 100 \(\mu \text{M} \)). The effect of DIDS was explored in more detail. Significant inhibition was observed by 100 nM (\(p<0.005 \)), with an IC\(_{50}\) of 118±10 nM (\(n=9 \)), and was largely complete by 250 nM.

It was possible that these reagents acted indirectly through inhibition of HbS polymerisation and sickling. This was tested using morphological studies to assess the percentage of RBCs which underwent sickling following deoxygenation. After 60 min deoxygenation, in the absence and presence of DIDS (100 \(\mu \text{M} \)), sickling was 61±8 and 62±5 % (means ± S.E.M., \(n=4 \), not significant (N.S.)), respectively. A possible explanation for the effect of DIDS on PS exposure via inhibition of sickling was therefore discounted.
Effect of inhibitors of the non-specific cation channels of RBCs

A non-selective cation conductance has been described in RBCs from normal individuals, activated by a number of manoeuvres including osmotic or oxidative shock, or Cl− substitution with gluconate (which will also cause RBC shrinkage) [19, 43]. Amiloride derivatives represent effective inhibitors of this pathway [44]. The effect of ethylisopropylamiloride (EIPA) was therefore tested on the deoxygenation-induced PS exposure of RBCs from patients with SCD but no significant effect was observed (Fig. 2).

Effects of inhibitors of unusual RBC cation pathways

Recently, it has been proposed that RBCs express a conductance mediated via the peripheral benzodiazepine receptor (PBR) [9]. This pathway has multiple conductance states and is permeable to a number of ions including anions. It has also been postulated that RBCs respond to glutamate receptor agonists, such as NMDA and homocysteine, with the possibility that these ligand-gated channels may also be present [51]. Various agonists and antagonists of these pathways were investigated (Fig. 3). In experiments on deoxygenation-induced PS exposure, however, neither the PBR agonist diazepam (10–100 μM; Fig. 3a) nor its antagonist PK11195 (10–100 μM; Fig. 3b) had any significant effects. When tested on oxygenated RBCs, the glutamate receptor agonists NMDA and homocysteine (both 100 μM; Fig. 3c) did not affect PS exposure. Similarly, the NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801, 50 μM) had no effect on the deoxygenation-induced PS exposure (data not shown).

Effects of inhibitors of stretch-activated channels

Under certain conditions, the aminoglycoside antibiotics, streptomycin and gentamicin [13], and the heavy metals Zn2+ and Gd3+ [10, 13, 50] reduce the permeability of RBCs from SCD patients, possibly acting as stretch-activated channel blockers [60]. Long-term treatment with Zn2+ has also been observed to induce PS exposure in normal human RBCs [38]. Their effects on deoxygenation-induced PS exposure were investigated (Figs. 4 and 5). In the presence of streptomycin, PS exposure increased, but not significantly (Fig. 4).

Both Zn2+ (up to 100 μM) and Gd3+ (up to 50 μM) markedly increased PS exposure (Fig. 5a, b). Higher concentrations of Gd3+ (100 μM) caused RBC aggregation and its effects could not be investigated using FACS. The action of Zn2+ (100 μM) was studied in more detail (Table 1). Zn2+ significantly increased PS exposure in both oxygenated and deoxygenated RBCs. Its effect was therefore different to the deoxygenation-induced PS exposure, requiring HbS polymerisation and sickling. The effect, however, was also dependent on the presence of extracellular Ca2+ (1.1 mM) and largely abolished when it was omitted (Table 1). Additionally, similar effects were observed for both the RBCs from SCD patients and from healthy individuals (cf Fig. 5a (HbSS)) and Fig. 6 (HbAA). In corresponding K+ flux measurements, Zn2+ increased the deoxygenation-induced K+ influx from 0.59±0.14 to 1.02±0.13 mmol(l cells h)−1 (means ± S.E.M., n=3; p<0.002) thus almost doubling the activity of the P_sickle-like activity.

As negatively charged plasma proteins are likely to chelate Zn2+, in the final series of experiments, the effect of Zn2+ was determined in RBCs (in this case from normal HbAA individuals suspended in autologous plasma, Fig. 6). In these experiments, PS exposure was measured in the absence and presence of added Zn2+ (100 μM). In saline, as in Fig. 5a, Zn2+ resulted in considerable PS exposure. In plasma, however, an increase in the percentage of RBCs showing PS exposure remained modest even after 60 min of incubation. Similar findings were observed with RBCs from SCD patients (data not shown).

Discussion

The present findings further define the Ca2+ entry step responsible for deoxygenation-induced PS exposure in RBCs from SCD patients. In particular, partial P_sickle inhibitors (the
stilbenes, SITS and DIDS and the pyrimidine derivative dipyridamole) were similarly active against PS externalisation. By contrast, modulators of other pathways (including inhibitors of the non-specific cation channel and agonists or blockers of glutamate- and benzodiazepine-gated channels) were without effect. Heavy metals Zn$^{2+}$ and Gd$^{3+}$, rather than inhibiting PS exposure, caused increased levels of externalisation, an effect which in the case of Zn$^{2+}$ was shown to be Ca$^{2+}$ dependent but independent of oxygen tension, HbS polymerisation and RBC sickling.

RBCs from SCD patients have been known to show increased solute permeability for over 50 years. Seminal experiments by Tosteson and colleagues showed that deoxygenated RBCs from SCD patients lost K$^+$ at greater rates than they gained Na$^+$, resulting in net solute loss and shrinkage [65]. This is particularly important as the lag time to HbS polymerisation following deoxygenation is inversely proportional to a very high power of the concentration of HbS [20]. Modest dehydration will markedly increase the likelihood of sickling as RBCs traverse hypoxic areas of the vasculature. Since then, the nature of the altered permeability has been much studied and several pathways have been identified [23, 31, 46]. Amongst these are the KCl cotransporter (likely KCC1 and KCC3 isoforms) and the Ca$^{2+}$-activated K$^+$ channel (or Gardos channel). In addition to increased permeability to univalent cations, RBCs from SCD patients also show elevated permeability to both Ca$^{2+}$ and Mg$^{2+}$ [21, 55, 58]. The pathway(s) responsible for passage of these ions remains less certain, but a pre-eminent role for the deoxygenation-induced cation conductance termed P_{sickle} has been proposed [31, 46].

Although the permeability characteristics of P_{sickle} have been extensively investigated, its molecular identity remains enigmatic [31, 32]. As a flux pathway, its activation is associated with deoxygenation, HbS polymerisation and RBC shape change [31, 53, 58]. It is permeable to both univalent and divalent cations including Ca$^{2+}$, shows a distinct pH dependence for both activation and permeation [34].
and appears randomly (or “stochastically") activated upon deoxygenation [47]. As for its molecular nature, identification of specific inhibitors has proved elusive. Stilbenes [30] and dipyridamole [33], however, are partial inhibitors, with the latter having been used in clinical trials [12].

Deoxygenation of RBCs from SCD patients is known to result in increased PS exposure [6, 49, 66]. The effect is Ca^{2+} dependent, requiring physiological levels of extracellular Ca^{2+} and elevation of intracellular Ca^{2+} to low micromolar levels [66]. Psickle is therefore an obvious candidate for mediation of Ca^{2+} entry with subsequent PS exposure following from inhibition of the aminophospholipid translocase (or flippase) and stimulation of the RBC scramblase—both now known to occur at low micromolar [Ca^{2+}] [5, 66]. Notwithstanding, various other RBC cation pathways have been described [35] and it is possible that one or more of these are also involved.

The present results support a role for the Psickle-like pathway in deoxygenation-induced PS exposure. Thus, stilbene derivatives and dipyridamole were active against deoxygenation-induced PS exposure, with no effect on morphological sickling (as also observed previously [30]) implying that they do not act via reduction in HbS polymerisation and subsequent RBC shape change. Inhibition by DIDS, in particular, occurred at low concentrations (IC_{50} 118 nM), more similar to those required to inhibit anion flux through the anion exchanger AE1, rather than monovalent cation flux through the Psickle pathway described previously [30]. Altered AE1 behaviour has been postulated to play a role in the conductance of deoxygenated sickle cells [46] and has been shown to mediate a cation permeability [11] or alter the activity of other cation transporters [8], at least when mutated, which may be relevant to the present findings. DIDS may also directly inhibit the scrambling transporter, as well as Ca^{2+} entry, but this occurs at much lower affinity with an IC_{50} of about 10 μM [37]. Here, 250 nM reduced PS exposure during deoxygenation to oxygenated levels.

By contrast, none of the other channel inhibitors/agonists, including those for the more established non-specific cation
channel [2, 3, 27] or for the more controversial PBR- and glutamate-gated pathways [9, 51], had any effect. Streptomycin, which might act as a stretch-activated channel blocker [13, 60], was also without effect.

Zn$^{2+}$ and Gd$^{3+}$, which also inhibit the cation conductance of RBCs from SCD patients [10, 50], did not inhibit PS exposure. Instead, they caused greatly increased levels of externalisation—an effect previously described for Zn$^{2+}$ in RBCs from normal individuals following longer term (24 h) exposure [38]. This was not dependent on oxygen tension and appears to be mediated via a different mechanism than the deoxygenation-induced PS exposure under study. Their stimulation also required extracellular Ca$^{2+}$, as described previously [38]. It would appear that both destabilise the RBC permeability, in a similar way to that described previously for lead and aluminium [45]. A possible action is via titration of the surface negative charges. K$^+$ influx measurements, however, also showed a rise in the activity of P$^{\text{sickle}}$-like pathway which may also provide increased entry of Ca$^{2+}$ for PS scrambling. Notwithstanding, experiments in plasma suggest that chelation of Zn$^{2+}$ would reduce its free concentration below values required for the rapid PS exposure described here. This effect may be of some significance as some SCD patients are Zn$^{2+}$ deficient and supplementation is sometimes given [56, 57]. Ensuring that free plasma [Zn$^{2+}$] does not rise excessively is an obvious caveat in these cases.

Finally, although the present work is concerned with Ca$^{2+}$ entry and deoxygenation-induced PS exposure in RBCs from SCD patients, it is also important to note that in RBCs from normal individuals other pathways may be significant. In this context, it is important to note that the present results concern RBCs from SCD patients whose permeability is altered by the presence of polymerised HbS. Most previous reports on PS exposure have been carried out on RBCs from normal individuals (e.g. [44]). It is likely that Ca$^{2+}$ entry, which triggers subsequent PS exposure, can occur via several different routes. Thus, in addition to the P$^{\text{sickle}}$ pathway of sickle cells, normal RBCs show marked Ca$^{2+}$ elevation in response to lysophosphatidic acid [54, 63, 68], possibly via the non-selective cation channel [35, 36, 44]. An alternative
pathway for PS exposure involving protein kinase C has also been proposed [54, 63], as well as the Ca²⁺-mediated one. The role of these pathways in RBCs from SCD patients remains to be investigated; however, the lack of effect of EIPA on deoxygenation-induced PS exposure argues against the involvement of the non-specific cation channel.

In summary, we show that PS exposure in RBCs from SCD patients is stimulated by deoxygenation, via a pathway likely consistent with mediation via Pₘₛᵢₑₛ. Future experiments will be aimed at establishing the molecular identity of this pathway and the establishment of inhibitors with potential for clinical use.

Acknowledgments UMC is supported by a BBSRC studentship. We also thank the British Heart Foundation and the Medical Research Council for financial support for the work.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Barber LA, Palascak MB, Joiner CH, Franco RS (2009) Aminophospholipid translocase and phospholipid scramblase activities in sickle erythrocyte subpopulations. Br J Haematol 146:447–455
2. Bennekou P (1993) The voltage-gated non-selective cation channel from human red cells is sensitive to acetylecholine. Biochim Biophys Acta 1147:165–167
3. Bennekou P, Christophersen P (2003) Ion channels. In: Bernhardt I, Lutz HU (eds) Cryohydrocytosis: increased activity of cation carriers in red cells from a patient with a band 3 mutation. Biochim Biophys Acta 904:268–282
4. Blumenfeld N, Zachowski A, Galacteros F, Beuzard Y, Devaux PF (1987) Ion regulation of phosphatidylserine and phosphatidylethanolamine outside-inside translocation in human erythrocytes. Biochim Biophys Acta 904:268–282
5. Blumenfield N, Zachowski A, Galacteros F, Beuzard Y, Devaux PF (1991) Transmembrane mobility of phospholipids in sickle erythrocytes: effect of deoxygenation on diffusion and asymmetry. Blood 77:849–854
6. Boas FE, Forman L, Beutler JA (1998) Phosphatidylserine exposure and red cell viability in red cell ageing and in hemolytic anemia. Proc Natl Acad Sci USA 95, 3077-3081
7. Bogdanova A, Goede JS, Weiss E, Bogdanov N, Bennekou P, Bernhardt I, Lutz HU (2010) Cryohydrocytosis: increased activity of cation carriers in red cells from a patient with a band 3 mutation. Haematologica 95:189–198
8. Bogdanova A, Goede JS, Weiss E, Bogdanov N, Bennekou P, Bernhardt I, Lutz HU (2010) Cryohydrocytosis: increased activity of cation carriers in red cells from a patient with a band 3 mutation. Haematologica 95:189–198
9. Bouyer G, Cuenf A, Eggé S, Kmiciek J, Maksimova Y, Glogowska E, Gallagher PG, Thomas SL (2011) Erythrocyte peripheral benzodiazepine receptor/voltage-dependent anion channels are upregulated by Plasmodium falciparum. Blood 118:2305–2312
10. Browning JA, Robinson HC, Ellory JC, Gibson JS (2007) Deoxygenation-induced non-electrolyte pathway in red cells from sickle cell patients. Cell Physiol Biochem 19:165–174
11. Bruce L, Robinson HC, Guizouarn H, Borgese F, Harrison P, King MJ, Goede JS, Coles SE, Gore DM, Lutz HU, Layton DM, Iolascon A, Ellory JC, Stewart GW (2005) Monovalent cation leaks in human red cells caused by single amino-acid substitutions in the transport domain of the band 3 chloride-bicarbonate exchanger, AE1. Nat Genet 37:1258–1263
12. Chermaski L, Congdon HB (2010) Effects of antiplatelet and anti-coagulant medications on the vasococlusive and thrombotic complications of sickle cell disease: a review of the literature. Am J Health Syst Pharm 67:895–900
13. Dalibalta S, Ellory JC, Browning JA, Wilkins R, Rees DC, Gibson JS (2010) Novel permeability characteristics of red blood cells from sickle cell patients. Blood Cells Mol Dis 45:46–52
14. Dasgupta SK, Ghughat P, Thiagarajan P (2006) Lactadherin binding and phosphatidylserine expression on a cell surface—comparison with annexin A5. Transl Res 148:19–25
15. Dasgupta SK, Thiagarajan P (2005) The role of lactadherin in the phagocytosis of phosphatidylserine-expressing sickle red blood cells by macrophages. Haematologica 90:1267–1268
16. Davies IJT, Musa M, Dormandy TL (1968) Measurements of plasma zinc. J Clin Pathol 21:359–365
17. de Jong K, Larkin SK, Styles LA, Bookchin RM, Kuyper J (2001) Characterization of the phosphatidylserine-exposing sub-populations of sickle cells. Blood 98:860–867
18. Dunham PB, Ellory JC (1981) Passive potassium transport in low potassium sheep red cells: dependence upon cell volume and chloride. J Physiol 318:511–530
19. Duranton SM, Huber SM, Lang F (2002) Oxidation induces a CI-dependent cation conductance in human red blood cells. J Physiol 539:847–855
20. Eaton JW, Hofrichter J (1987) Hemoglobin S gelation and sickle cell disease. Blood 70:1245–1266
21. Etzion Z, Tiffert T, Bookchin RM, Lew VL (1993) Effects of deoxygenation on active and passive Ca²⁺ transport and on the cytoplasmic Ca²⁺ levels of sickle cell anemia red cells. J Clin Investig 92:2489–2498
22. Franck PFH, Bevers EM, Lubin BH, Comfruitius P, Chiu DT-Y, On den Kamp JAF, Zwaal RF, van Deenen LLM, Roelofsen B (1985)Uncoupling of the membrane skeleton from the lipid bilayer. J Clin Investig 75:183–190
23. Gibson JS (2001) Oxygen-sensitive cation transport in sickle cells. Blood Cells Mol Dis 27:112–120
24. Gibson JS, Khan A, Speake PF, Ellory JC (2001) O₂ dependence of K⁺ transport in sickle cells: the effects of different cell populations and the substituted benzaldehyde, 12C:79. FASEB J 15:823–832
25. Haest CWM (2003) Distribution and movement of membrane lipids. In: Bernhardt I, Ellory JC (eds) Red cell membrane transport in health and disease. Springer, Berlin, pp 1–25
26. Haest CWM, Plasa G, Kamp D, Deutschke B (1978) Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane. Biochim Biophys Acta 509:21–32
27. Halperin JA, Brugnara C, Tosteson MT, Van Ha T, Tosteson DC (1989) Voltage-activated cation channels in human erythrocytes. Am J Physiol 257:C986–C996
28. Halsted JA, Smith JC (1970) Plasma-zinc in health and disease. Lancet 1(7642):322
29. Hallstrom J, Smith JC (1970) Plasma-zinc in health and disease. Lancet 1(7642):322–324
30. Hebbel RP (1991) Beyond hemoglobin polymerization: the red blood cell membrane and sickle cell disease pathophysiology. Blood 77:214–237
31. Joiner CH (1990) Deoxygenation-induced cation fluxes in sickle cells: II. Inhibition by stilbene disulfonates. Blood 76:212–220
32. Joiner CH (1993) Cation transport and volume regulation in sickle red blood cells. Am J Physiol 264:C251–C270
33. Joiner CH, Dew A, Ge DL (1988) Deoxygenation-induced fluxes in sickle cells. I. Relationship between net potassium efflux and net sodium influx. Blood Cells 13:339–348
34. Joiner CH, Jiang M, Clausen WJ, Roszell NJ, Yasin Z, Franco RS (2001) Dipyridamole inhibits sickling-induced cation fluxes in sickle red blood cells. Blood 97:3976–3983
34. Joiner CH, Morris CL, Cooper ES (1993) Deoxygenation-induced cation fluxes in sickle cells. Ill. Cation selectivity and response to pH and red cell membrane potential. Am J Physiol 264:C734–C744
35. Kaeestner L (2011) Cation channels in erythrocytes—historical and future perspective. Open Biol 4:27–34
36. Kaeestner L, Tabellion W, Lipp P, Bernhardt I (2004) Prostaglandin E2 activates channel-mediated calcium entry in human erythrocytes: an indication of a blood clot formation supporting process. Thromb Haemost 92:1269–1272
37. Kamp D, Sieberg T, Haest CWM (2001) Inhibition and stimulation of phospholipid scrambling activity. Consequences for lipid asymmetry, echinocytosis, and microvesiculation of erythrocytes. Biochemistry 40:9438–9446
38. Kiedaisch V, Akel A, Niemoeller OM, Wieder T, Lang F (2008) Zinc-induced suicidal erythrocyte death. Am J Clin Nutr 87:1530–1534
39. Kirk K (2001) Membrane transport in the malaria-infected erythrocyte. Physiol Rev 81:495–537
40. Kuypers FA (2008) Red cell membrane lipids in hemoglobinopathies. Curr Mol Med 8:633–638
41. Kuypers FA, Lewis RA, Hua M, Schott MA, Discher D, Ernst JD, Lubin BH (1996) Detection of altered membrane phospholipid asymmetry in subpopulations of human red blood cells using fluorescently labeled annexin V. Blood 87:1179–1187
42. Lang F, Lang KS, Lang PA, Huber SM, Wieder T (2006) Mechanisms and significance of eryptosis. Antioxid Redox Signal 8:1183–1192
43. Lang F, Lang KS, Wieder T, Myssina S, Birka C, Lang PA, Kaiser S, Kempe DS, Duranton C, Huber SM (2003) Cation channels, cell volume and the death of an erythrocyte. Eur J Physiol 447:121–125
44. Lang KS, Myssina S, Tanneur V, Wieder T, Huber SM, Lang F, Duranton C (2003) Inhibition of erythrocyte cation channels and apoptosis by ethylisopropylamiloride. Naunyn Schmiedebergs Arch Pharmacol 367:391–396
45. Lang E, Qadri SM, Lang F (2012) Killing me softly—suicidal erythrocyte death. Int J Biochem Cell Biol 44:1236–1243
46. Lew VL, Bookchin RM (2005) Ion transport pathology in the mechanism of sickle cell dehydration. Physiol Rev 85:179–200
47. Lew VL, Ortiz OE, Bookchin RM (1997) Stochastic nature and red cell population distribution of the sickling-induced Ca2+ permeability. J Clin Investig 99:2727–2735
48. Lindeman RD, Clark ML, Colmore JP (1971) Influence of age and sex on plasma and red-cell zinc concentrations. J Gerontol 26:358–363
49. Lubin B, Chiu D, Bastacky J, Roelofsen B, Van Deenen LLM (1981) Abnormalities in membrane phospholipid organization in sickled erythrocytes. J Clin Investig 67:1643–1649
50. Ma Y-L, Rees DC, Gibson JS, Ellory JC (2012) The conductance of red blood cells from sickle cell patients: ion selectivity and inhibitors. J Physiol 590:2095–2105
51. Makhro A, Wang J, Vogel J, Boldyrev AA, Gassman M, Kaestner L, Bogdanova A (2010) Functional NMDA receptors in rat erythrocytes. Am J Cell Physiol 298:C1315–C1325
52. Middelkoop E, Lubin B, Bevers EM, Op den Kamp JA, Comfurius B, Chiu DT, Zwaal RF, van Deenen LLM, Roelofsen B (1988) Studies on sickle erythrocytes provide evidence that the asymmetric distribution of phosphatidylserine in the red cell membrane is maintained by both ATP-dependent translocation and interaction with membrane skeletal proteins. Biochim Biophys Acta 937:281–288
53. Mohandas N, Rossi ME, Clark MR (1986) Association between morphologic distortion of sickle cells and deoxygenation-induced cation permeability increases. Blood 68:450–454
54. Nguyen DB, Wagner-Britz L, Maia S, Steffen P, Wagner C, Kaestner L, Bernhardt I (2011) Regulation of phosphatidylserine exposure in red blood cells. Cell Physiol Biochem 28:847–856
55. Ortiz OE, Lew VL, Bookchin RM (1990) Deoxygenation permeabilizes sickle cell anaemia red cells to magnesium and reverses its gradient in the dense cells. J Physiol 427:211–226
56. Prasad AS (2002) Zinc deficiency in patients with sickle cell disease. Am J Clin Nutr 75:181–182
57. Reed JD, Redding-Lallinger R, Orringer EP (1987) Nutrition and sickle cell disease. Am J Hematol 24:441–455
58. Rhoda MD, Apovo M, Beuzard Y, Giraud F (1990) Ca2+ permeability in deoxygenated sickle cells. Blood 75:2453–2458
59. Setty BN, Kulkarni S, Stuart MJ (2002) Role of erythrocyte phosphatidylserine in sickle red cell-endothelial adhesion. Blood 99:1564–1571
60. Shen M-R, Chou C-Y, Chiu WT (2003) Streptomyacin and its analogues are potent inhibitors of the hypotonicity-induced Ca2+ entry and Cl− channel activity. FEBS Lett 554:494–500
61. Shi J, Gilbert GE (2003) Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid-binding sites. Blood 101:2628–2636
62. Speake PF, Roberts CA, Gibson JS (1997) Effect of changes in respiratory blood parameters on equine red blood cell K-Cl cotransporter. Am J Physiol 273:C1811–C1818
63. Steffen P, Jung A, Nguyen DB, Muller T, Bernhardt I, Kaestner L, Wagner C (2011) Stimulation of human red blood cells leads to Ca2+-mediated intracellular adhesion. Cell Calcium 50:54–61
64. Stuart MJ, Setty BN (2001) Hemostatic alterations in sickle cell disease: relationships to disease pathophysiology. Pediatr Pathol Mol Med 20:27–46
65. Tosteson DC, Carlsen E, Dunham ET (1955) The effects of sickling on ion transport. I. Effect of sickling on potassium transport. J Gen Physiol 39:31–53
66. Weiss E, Cytlak UM, Rees DC, Osei A, Gibson JS (2012) Deoxygenation-induced and Ca2+-dependent phosphatidylserine externalisation in red blood cells from normal individuals and sickle cell patients. Cell Calcium 51:51–56
67. Wood BL, Gibson DF, Tait JF (1996) Increased erythrocyte phosphatidylserine exposure in sickle cell disease: flow-cytometric measurement and clinical associations. Blood 88:1873–1880
68. Yang L, Andrews DA, Low PS (2000) Lyso phosphatidic acid opens a Ca2+ channel in human erythrocytes. Blood 95:2420–2425