Rewarding Conversation Between Oocyte and Cumulus Cells Directs the Process of Folliculogenesis

Duygu Dayanır1, Halil Ruso2, Ziya Kalem3, Timur Gürgan2,3, Candan Özoğul4

1 Gazi University Faculty of Medicine, Department of Histology and Embryology, Ankara, Turkey
2 Gürgan Clinic Women’s Health- Infertility and IVF Center, Ankara, Turkey
3 Bahcesehir University Faculty of Medicine, Department of Obstetrics and Gynecology, Istanbul, Turkey
4 University of Kyrenia Faculty of Medicine, Department of Histology and Embryology, Kyrenia, Turkish Republic of Northern Cyprus

ABSTRACT

The process of folliculogenesis needs a balanced environment to create a mature oocyte that is expected to have characteristics in order to form the ability of a healthy fertilisation. Previous studies have been focused on endocrine effects of hypothalamic–pituitary system on ovarian functions. Influences of this system have been studied for many years. Besides of extra-ovarian factors, recent studies have focused on intraovarian factors which forms the relationship between oocyte and cumulus cells. It has been shown that even the maturity of antral follicule and oocyte has been effected from this communication. These factors which takes part at process of folliculogenesis, were shown to be efficient even at the success of assisted reproductive technologies. We studied general lines of this conversation based on main research articles that continue to be relevant at this topic.

Key Words: Cumulus cell, oocyte, folliculogenesis, assisted reproductive technologies

INTRODUCTION

The process of folliculogenesis needs a balanced environment to create a mature oocyte that is expected to have characteristics in order to form the ability of a healthy fertilisation. Previous studies have been focused on endocrine effects of hypothalamic–pituitary system on ovarian functions (1). The data obtained in this field have been shared with the effect of pituitary gonadotropin hormones (FSH, LH, GnRH) and gonadal hormones during folliculogenesis process. However, the maintenance of healthy ovarian function and follicle development are also influenced by the paracrine / autocrine-acting local growth factors and cytokine releases (2, 3).

Intracytoplasmic sperm injection (ICSI) had been of great importance in assisted reproductive techniques (ART), and can be summarized as injection of a single sperm into an egg under a microscope. This technique, was firstly described in 1978, and had a great impact in those years. Surgeon Patrick Steptoe was awarded the Nobel Prize in 2010 for his work at the time (4). Despite all the advanced techniques provided in the scope of assisted reproductive techniques, pregnancy cannot be achieved in approximately 40%–50% of the patients undergoing the procedure (5). Selection of the best quality sample from the oocyte pool has a great importance in the success achieved by assisted reproduction techniques (ART). The importance of oocyte and follicle development on fertility is known (6).
Ovarian follicles can be considered as functional units of the female reproductive system as well as ovaries. In a healthy female reproductive cycle, those follicles are under the influence of many neural, neuroendocrine, endocrine, paracrine / autocrine control mechanisms for obtaining a healthy completed ovulation process. (3, 12). In addition to these effects, the bidirectional interaction between the oocyte and the surrounding somatic cells determines the fate of the developing oocyte as well as the follicle function. In fact, besides the effect of cytoplasm and molecular system functioning of the oocyte on complete progression of embryogenesis steps, bi-directional communication between the oocyte and surrounding cells have been expounded as ascendant determinants at these durations (13). Studies examining these complicated interactions share that oocyte secretion factors play a key role in determining the fate of oocytes as a result of their effects on the cumulus cells (8, 9).

The primary effect of oocyte on follicle development and differentiation is based on its specific factors. Among these factors, Growth Differentiation Factor - 9 (GDF-9) and Bone Morphogenetic Factor - 15 (also known as BMP-15, GDF-9B), which are members of the family of Transforming Growth Factor - Beta (TGF-β), are of great importance. (14). TGF-β is the largest family of extracellular protein groups found in mammals. Proteins of this group bind to the transmembrane type-1 and type-2 serine threonine kinase receptors after synthesis, leading to activation of intracellular signal cascades (such as SMADs). This pathway can be effective in many physiological and pathophysiological processes (15). Especially in the last decade, many important studies on BMP system, mainly on rats, have been shared in the literature. However, the synthesis of BMP molecules between species varies. For example; While BMP4 and BMP7 are frequently encountered in theca and stroma cells of rats (16), only BMP7 occurs only in human oocyte structure. (17). GDF-9 and BMP-15, which are one of the the largest subgroups of TGF-β family and synthesized by oocytes, are also referred to as osteoinductive factors due to their stimulating effects on bone and cartilage production (3, 18). In modern terminology, a subgroup of BMP-15 and GDF-9 molecules is found under the heading BMP (3). This connection between the somatic cells and the signal molecules provided by the oocyte plays a role in many critical functions of the early stages of follicle development, such as the migration of germ cells and the complete completion of the early stages of ovarian development. (1, 19, 20).

For the first time in 1959, the effect of oocyte on follicle development was investigated on the rabbit model by Falck et al. In this study, the inhibition of luteinization of the oocytes cells placed in the ectopic area was demonstrated. The data obtained from this research are considered as the first example showing the continuous site of oocytes on follicle developments (21). Numerous studies conducted over the years have shown that the key mechanisms of action of molecules synthesized by oocytes play a role in controlling the follicle development of the oocyte. Research results have shown that molecules synthesized by oocytes have a major impacts on healthy egg development through the interaction of somatic cells surrounding the oocyte (22-26). The complex relationship between oocyte and surrounding cumulus cells continues to attract great attention for many women with infertility and ovarian dysfunction complaints who resort to assisted reproductive techniques with the hope of finding solutions.

This close relationship, which is known to work in two ways, is also important in female fertility. Efficient interaction between oocyte and surrounding cells is effective in many stages from oocyte adequacy to a healthy embryo. GDF-9 and BMP-15 molecules, which play a major role in this interaction, play an important role in the interaction between oocyte and cumulus cells and have an effect on oocyte cytoplasmic - nuclear maturation processes, successful fertilization and healthy embryo production (13, 27). In many studies on GDF-9 and BMP-15 factors, the relationship between both factors and fertility was shared in different experimental models and in humans (13-15).

TGF-β superfamily signaling molecules are known to act with type-1 and type-2 receptors / serine / threonine kinase receptors located in the transmembranal region. This interaction results in phosphorylation of Smα- and Mad-related protein transcription factors (28). There are 5 type-2 receptors (BMPRII, ACVR2A, ACVR2B, TβR2 and AMHR2) in total, while 7 type-1 receptors (ALK1-7), also known as activin receptor-like kinases, are known.
In the light of this information, the effect of cumulus cells and granulosa cells was accepted in the meiotic arrest of the oocyte. In the study conducted by Wigglesworth et al., it was shared that the oocyte has played the main role. Oocyte-derived paracrine factors (Oocyte-derived paracrine factors (ODPFs)) were found to increase the expression of nitric oxide (NO) (Nqrp2) mRNA in cumulus cells, thereby controlling GMP release by a series of reactions. This result is important in that the oocyte acts as a manager in the two-way interaction between oocytes and somatic cells (6).

GDF-9 and BMP-15 molecules can achieve the same effect on the same hormone by following different pathways. For example, the research results presented by Chang et al. shared the inhibitory activity of both GDF-9 and BMP-15 on progestrone with different pathways. According to the results of the research; The BMP-15 molecule inhibits progesterone production via stromal-endothelial acute regulatory protein (STAR) to prevent follicular luteinization. In contrast, the GDF-9 molecule acts on hypophysial gonadotropins to reduce progesterone levels. The rapid decrease observed in the level of both factors as a result of ovulation in the corpus luteum leads to an increase in STAR level and subsequent progesterone production (3).

Some of the effects of GDF-9 and BMP-15 molecules on oocyte development also proceed through the synthesis of essential compounds for oocyte metabolism. For example, in a study of Su et al. showed that the common effect of GDF-9 and BMP-15 molecules was affected by the biosynthesis of cholesterol in the cumulus cells and consequently provided the necessary metabolic support for oocyte maturation (20). Similar results were also shared with the research results of Sugura et al. In the light of the research data, it is accepted that GDF-9 and BMP-15 molecules synthesized by oocytes ultimately affect the level of glycolysis in cumulus cells and thus play a role in oocyte maturation (3).

One of the other effect of cumulus cells on folliculogenesis is formed by matrix components of cumulus oocyte complex (COC). Hyaluronic acid, an important component for COC, is concentrated in the matrix of the complex. Apart from endocrine system regulation in the control of hyaluronic acid level; GDF-9 and BMP-15 factors also play a role in autocrine and paracrine interaction (19). Hyaluronic acid synthase 2 (Has 2) is involved in the synthesis of hyaluronic acid, which is called the backbone of the matrix because of its great importance in the realization of matrix functions, and this enzyme level is controlled by LH. In the further stabilization of this structure, a complex protein network including versican, tumor necrosis factor stimulating gene -6 protein (TSG-6), interα trypsin inhibitor, pentraxin 3 (PTX3) proteins is involved (3, 8, 19). GDF-9 and BMP-15 molecules are responsible for increasing the regulation of the associated genes, Has 2 and PTX 3, which are responsible for the expansion of cumulus cells with similar effect (3, 15).

In the light of the data presented, the effect of oocyte-secreted signaling molecules (mainly BMP-15 and GDF-9 molecules) on the architecture of ovarian physiology, as well as their effects on differentiation of granulosa cells, at all stages of oocyte maturation process, ovulation-luteinization stages and embryo quality also known to be involved in key processes of the female reproductive system (3, 8). Based on these results, it can be thought that abnormal synthesis of these factors may be associated with infertility and embryo implantation processes, PCOS, primary ovarian insufficiency (POI), endometriosis, which can be observed in female patients (25, 45-47).

Genetic approaches are of great importance in researches on the effects of GDF-9 and BMP-15 molecules on the female reproductive system. The BMP-15 gene is known to be located on the X chromosome and plays a major role in all subsequent stages of folliculogenesis starting from the primordial follicle stage (48). The gene responsible for coding the GDF-9 protein is located in the long (q) arm of chromosome 5. GDF-9 protein shows activity starting from primary follicle stage (49). Although GDF-9 and BMP-15 molecules contain very similar protein structures, they show similarities with their effects on the mechanism of action and ovarian functions.

CONCLUSION

Recent studies indicate that the communication between GDF-9 and BMP-15 is in a synergistic pattern and acts as the GDF-9 / BMP-15 heterodimer called cumulin (cumulin). Thus, this stimulation affects the functions of cumulus cells and ultimately plays a role in improving oocyte quality (15, 50).

The signal molecules secreted by the oocyte affect the cumulus cells, especially the folliculogenesis process; they have been shown to be determinant in many key processes such as ovulation, fertilization and healthy embryo acquisition. However, there is still a need for planned scientific studies in larger groups for the role of signaling molecules in this process to increase the success rate of assisted reproductive techniques.

Conflict of interest

No conflict of interest was declared by the authors.

REFERENCES

1. Juengel J, McNatty K. The role of proteins of the transforming growth factor-β superfamily in the intraovarian regulation of follicular development. Human reproduction update. 2005;11:144-61.
2. Knight PG, Gister C. TGF-β superfamily members and ovarian follicle development. Reproduction. 2006;132:191-206.
3. Chang H-M, Qiao J, Leung PC. Oocyte–somatic cell interactions in the human ovary—novel role of bone morphogenetic proteins and growth differentiation factors. Human reproduction update. 2016;23:1-18.
4. Steptoe PC, Edwards RG. Birth after reimplantation of a human embryo. Lancet. 1978;2:366.
5. Lin D, Ran J, Zhu S, Quan S, Ye B, Yu A, et al. Effect of GOLPH3 on cumulus granulosa cell apoptosis and IC57B6 pregnancy outcomes. Scientific Reports. 2017;7:10632.
6. Wigglesworth K, Lee K-B, O’Brien MJ, Peng J, Matzuk MM, Eppig JJ. Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes. Proceedings of the National Academy of Sciences. 2013;110:E3723-E9.
7. Raman RS, Chan PJ, Corselli JU, Patton WC, Jacobson JD, Chan SR, et al. Comet assay of cumulus cell DNA status and the relationship to oocyte fecundity assessed via intracytoplasmic sperm injection. Human Reproduction. 2001;16:831-5.
8. Sanfins A, Rodrigues P, Albertini DF. GDF-9 and BMP-15 direct the follicle symphony. Journal of assisted reproduction and genetics. 2018;1:10.
9. Belli M, Shimasaki S. Molecular Aspects and Clinical Relevance of GDF9 and BMP15 in Ovarian Function. Vitamins and hormones. 2018;107:317-48.
10. Da Broi M, Giorgi V, Wang F, Keffe D, Albertini D, Navarro P. Influence of follicular fluid and cumulus cells on oocyte quality: clinical implications. Journal of assisted reproduction and genetics. 2018;35:735-51.
11. Li Y, Li R-Q, Ou S-B, Zhang N-F, Ren L, Wei L-N, et al. Increased GDF9 and BMP15 mRNA levels in cumulus granulosa cells correlate with oocyte maturation, fertilization, and embryo quality in humans. Reproductive Biology and Endocrinology. 2014;12:81.
12. Gougeon A. Regulation of ovarian follicular development in primates: facts and hypotheses. Endocrine research. 1996;17:121-55.
13. de Castro FC, Cruz MHC, Leal CLV. Role of growth differentiation factor 9 and bone morphogenetic protein 15 in ovarian function and their importance in mammalian female fertility—A review. Asian Australasian journal of animal sciences. 2016;29:1065.
14. McNatty KP, Juengel JL, Reader KL, Lun S, Myllymaa S, Lawrence SB, et al. Bone morphogenetic protein 15 and growth differentiation factor 9 cooperate to regulate granulosa cell function in ruminants. Reproduction. 2005;129:R1-7.
15. Peng J, Li Q, Wigglesworth K, Rangarajan A, Kattamuri C, Peterson RT, et al. Growth differentiation factor 9: bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions. Proceedings of the National Academy of Sciences. 2013;110:E776-E85.
16. Abir K, Ben-Haroush A, Melamed N, Felz C, Krisi H, Fisch B. Expression of bone morphogenetic proteins 4 and 7 and their receptors IA, IB, and II in human ovaries from fetuses and adults. Fertility and sterility. 2008;89:1430-40.
17. Erickson GF, Shimasaki S. The spatiotemporal expression pattern of the bone morphogenetic protein gene family in rat ovary cell types during the estrous cycle. Reproductive Biology and Endocrinology. 2003;1:9.
18. Wagner DO, Sieber C, Bhushan R, Börgermann JH, Graf D, Knaus P. BMPs: from bone to body morphogenetic proteins. American Association for the Advancement of Science; 2010.
19. Yoshino O, McMahon HE, Sharma S, Shimasaki S. A unique preovulatory expression pattern plays a key role in the physiological functions of BMP-15 in the mouse. Proceedings of the National Academy of Sciences. 2006;103:10678-83.
20. Su Y-Q, Sugira K, Wigglesworth K, O’Brien MJ, Affourtit JP, Pangas SA, et al. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development. 2008;135:113-21.
21. Falck B. Site of production of oestrogen in rat ovary as studied in micro-transplants. Acta Physiologica Scandinavica. 1960;47:1-101.
22. Hutt KJ, Albertini DF. An ovarian view of folliculogenesis and embryogenesis. Reproductive biomedicine online. 2007;14:758-64.
23. Erickson GF, Shimasaki S. The role of the oocyte in folliculogenesis. Trends in Endocrinology & Metabolism. 2000;11:193-8.
24. Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002;296:2178-80.
25. Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Human reproduction update. 2008;14:159-77.

26. Su Y-Q, Sugiyama K, Eppig JJ, editors. Mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Seminars in reproductive medicine; 2009: Thieme Medical Publishers.

27. Dias F, Khan M, Adams G, Sirard M, Singh J. Granulosa cell function and oocyte competence: super-follicles, super-moms and super-stimulation in cattle. Animal reproduction science. 2014;149:80-9.

28. Shi Y, Massagué J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. cell. 2003;113:685-700.

29. Miyazono K, Kusunoki K, Inoue H. Divergence and convergence of TGF-β/BMP signaling. Journal of cellular physiology. 2001;187:265-76.

30. Mueller TD, Nickel J. Promiscuity and specificity in BMP receptor activation. FEBS letters. 2012;586:1846-59.

31. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature. 2003;425:577-86.

32. Moore RK, Otsuka F, Shimasaki S. Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells. Journal of Biological Chemistry. 2003;278:304-10.

33. Mehlmann LM, Jones TL, Jaffe LA. Meiotic arrest in the mouse follicle maintained by a Gs protein in the oocyte. Science. 2002;297:1343-5.

34. Richard FJ, Tsafriti A, Conti M. Role of phosphodiesterase type 3A in rat oocyte maturation. Biology of reproduction. 2001;65:1444-51.

35. Sugiura K, Su Y-Q, Diaz FJ, Pangas SA, Sharma S, Wigglesworth K, et al. Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development. 2007;134:2593-603.

36. Takebayashi K, Takakura K, Wang H-Q, Kimura F, Kasahara K, Noda Y. Mutation analysis of the growth differentiation factor-9 and-9B genes in patients with premature ovarian failure and polycystic ovary syndrome. Fertility and sterility. 2000;74:976-9.

37. Crispi S, Piccolo MT, D’avino A, Donizetti A, Viceconte R, Syprou M, et al. Transcriptional profiling of endometriosis tissues identifies genes related to organogenesis defects. Journal of cellular physiology. 2013;228:1927-34.

38. Skinner MK. Regulation of primordial follicle assembly and development. Human reproduction update. 2005;11:461-71.

39. Huang Z, Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Molecular human reproduction. 2010;16:715-25.