Evaluation of antiaggregatory activity of flavonoid aglycone series

Mirza Bojić1, Željko Debeljak1,2, Maja Tomićić3, Marica Medić-Šarić1* and Siniša Tomić4

Abstract

Background: Among natural compounds, present in every day diet, flavonoids have shown beneficial effect in prevention of cardiovascular diseases that can be attributed, at least partially to the described antiaggregatory activity i.e. antiplatelet effects of flavonoids. Due to the ever increasing pharmacological interest in antiplatelet agents a systematic experimental evaluation of large flavonoid series is needed.

Methods: A set of thirty flavonoid aglycones has been selected for the evaluation. All measurements of aggregation were done under standardized and firmly controlled in vitro conditions. The whole blood samples, multiple platelet functional analyzer and adenosine diphosphate (ADP) as a weak agonist of aggregation were selected for this purpose.

Results: The results were expressed as minimal concentration of flavonoid that can significantly lower the platelet aggregation compared to the corresponding untreated sample (minimal antiaggregatory concentration - MINaAC). All analyzed flavonoids exhibited antiaggregatory activity MINaAC ranging from 0.119 μM to 122 μM, while the most potent representatives were 3,6-dihydroxyflavone (0.119 μM) and syringetin (0.119 μM).

Conclusions: Measurable antiplatelet activity established at submicromolar flavonoid concentrations suggests that even a dietary consumption of some flavonoids can make an impact on in vivo aggregation of platelets. These findings also point out a therapeutical potential of some flavonoids.

Background

In the developed countries most of the older population is affected by cardiovascular diseases. Platelets are involved in haemostasis, thrombosis and inflammatory processes, hence as a consequence of that physiological role heart stroke and cerebrovascular insult can occur. Most commonly used drug in prevention of mentioned diseases is acetylsalicylic acid while clopidogrel represents another therapeutic option. Neither of these drugs is free of side effects, thus the search for new and safer drug from this group continues [1]. From the natural compounds, present in every day diet, polyphenols, mainly flavonoids (Figure 1), have shown beneficial effect in prevention of cardiovascular diseases [2-7]. Flavonoids naturally occur in a free form (aglycones) or bound to a sugar moiety via hydroxyl groups (glycosides).

Flavonoid antiplatelet activity can be attributed to the increased production of prostacyclin by endothelian cells. Prostacyclin decreases aggregation via synthesis of cAMP - increased concentration of cAMP inhibits the expression of platelet GPIIb/IIIa receptors [6]. In vitro inhibition of cyclooxygenase, lipooxygenase, thyrosine kinase, phosphodiesterase or phospholipase by flavonoids has also been documented and connected to their antiplatelet activity [8-12]. Although different possible mechanisms have been analyzed a unique mechanism of antiaggregatory activity of flavonoids has not been undoubtedly proven yet.

There are also doubts about antiaggregatory effectiveness in vivo, due to high concentrations of flavonoids that have been used in experiments in vitro (10 - 1000 μM) that can not be reached in vivo after oral intake (0.6 μM) [13].

Most of the research on antiaggregatory effect of flavonoids has been done using Born spectrophotometric aggregometry. A major disadvantage of this method is usage of platelets rich plasma (PRP) instead of whole
blood. Furthermore, most authors tested a range or even a single concentration of flavonoids, and often the series of tested flavonoids were small, thus limiting the overall interpretation of the results [9,14-18]. Finally, influence of biological variability has not been evaluated.

In this paper our objective was to analyse antiaggregatory effect of a relatively large set consisting of 30 flavonoid aglycons. Instead of Born method impedance aggregometry has been chosen as it enables usage of whole blood. This method reduces problems related to lack of standardization of PRP preparation and provides insight to possible interactions of flavonoids with blood components other than platelets. Biological triplicates of all experiments have been made on blood samples taken from three different blood donors. Along with the statistical evaluation of difference between treated and untreated samples this approach clearly minimizes chance effects caused by large biological variability.

Methods
Materials
A set of thirty flavonoids has been tested. Structures and the names of the suppliers are stated in the Table 1, Table 2, Table 3, Table 4 and Table 5. Clopidogrel, an ADP-receptor antagonist, was used as a positive control. This substance was a kind gift of HALMED, Croatia. All standards solutions were prepared by dissolving and semi-dissolution (1/2 n) in dimethyl sulfoxide (DMSO, Sigma-Aldrich, Switzerland) in the concentration range of 500 mM to 30 nM depending of the flavonoid

Table 1 Antiaggregatory activity of flavanons

Flavanons	Structure	MINaAC/μM	p
Hesperetins	![Hesperetin](image)	1.907	0.035
Homoeriodictyol	![Homoeriodictyol](image)	7.629	0.003
Isosakuranetin	![Isosakuranetin](image)	0.954	0.037
Pinocembrin	![Pinocembrin](image)	15.259	0.010
Pinocembrin-7-methylether	![Pinocembrin-7-methylether](image)	0.954	0.025

Minimal antiaggregatory concentration of flavanons expressed in μM with statistical significance (p).

Flavonoids purchased from "Sigma-Aldrich, Switzerland, "BioChemika, Switzerland, "Extrasynthese, France."
Table 2 Antiaggregatory activity of flavones

Flavones	Structure	MINaAC/μM	p
6-hydroxyflavone¹	![6-hydroxyflavone](image)	0.954	0.030
7-hydroxyflavone¹	![7-hydroxyflavone](image)	15.259	0.038
Acacetin²	![Acacetin](image)	3.815	0.013
Apigenin²	![Apigenin](image)	3.815	0.037
Chrysin²	![Chrysin](image)	3.815	0.016
Chrysin dimethylether³	![Chrysin dimethylether](image)	1.907	0.025
Diosmetin³	![Diosmetin](image)	7.629	0.021
Flavone³	![Flavone](image)	3.815	0.037
Luteolin³	![Luteolin](image)	7.629	0.029
Tangeretin³	![Tangeretin](image)	30.518	0.029
Tectochrysin³	![Tectochrysin](image)	0.954	0.013

Minimal antiaggregatory concentration of flavones expressed in μM with statistical significance (p).

Flavonoids purchased from ¹ChromaDex, USA, ²BioChemika, Switzerland, ³Fluka, Germany, ⁴Extrasynthese, France.
analyzed. Final concentration of DMSO in all experiments was 3%.

ADP was obtained from Dynabyte, Germany, and saline-CaCl₂ (0.003 M CaCl₂ in 0.9% NaCl) from Croatian Institute of Transfusion Medicine, Croatia.

Flavanonols	Structure	MINaAC/µM	p
3-hydroxyflavone^a	![Structure](image)	1.907	0.019
3,6-dihydroxyflavone^a	![Structure](image)	0.119	0.005
3,7-dihydroxyflavone^a	![Structure](image)	1.907	0.001
Fisetin^b	![Structure](image)	122.070	0.003
Galangin^c	![Structure](image)	122.070	0.008
Isoflavonetin^d	![Structure](image)	7.629	0.029
Quercetin^e	![Structure](image)	15.259	0.047
Rhamnetin^f	![Structure](image)	0.954	0.041
Syringetin^g	![Structure](image)	0.119	0.003

Minimal antiaggregatory concentration of flavanols expressed in µM with statistical significance (p).

Flavonoids purchased from: ^aChromaDex, USA, ^bExtrasynthese, France, ^cSigma-Aldrich, Switzerland, ^dBioChemika, Switzerland, ^eFluka, Germany; *in the form of quercetin dihydrate.
Transfusion Medicine and Faculty of Pharmacy and Biochemistry, University of Zagreb. A total number of 100 volunteers participated in this research. All volunteers gave informed written consent.

Experimental procedure
Platelet aggregation was analyzed by Multiplate® analyzer (Dynabyte, Germany). Generic procedure was used: 300 μL of blood was incubated for 6 minutes with 20 μL flavonoid solution and 300 μL of saline-CaCl2 preheated at 37°C. For negative control (untreated sample) 20 μL of solvent - DMSO was used (final concentration 3%). Aggregation cascade was induced by adding 20 μL of adenosine diphosphate reagent (ADPtest; final concentration of ADP 6.5 μM). Aggregation was measured for 6 minutes and expressed as area under curve in arbitrary units (AU).

Data analysis
The results of antiaggregatory effect of flavonoids were expressed as minimal antiaggregatory concentration \((MINaAC) \) that presents the lowest concentration of flavonoid which can cause statistically significant reduction of aggregation when compared to the untreated sample. Procedure for determination of \(MINaAC \) is illustrated on Figure 2. Statistical analysis was performed using paired Student’s \(t \)-test within R v2.8.1 environment (Austria). Normal distribution of aggregation on ten healthy volunteers was checked using Shapiro-Wilk test \((p = 0.501) \) justifying the use of \(t \)-test.

Results and Discussion
All analyzed flavonoids exhibited antiaggregatory activity with \(MINaAC \) ranging from 119 nM to 122 μM.

Table 4 Antiaggregatory activity of isoflavones

Isoflavones	Structure	\(MINaAC/\mu M \)	\(p \)
Daidzein\(^*\)	![Daidzein](image)	15.259	0.048
Formononetin\(^*\)	![Formononetin](image)	7.629	0.043
Genistein\(^*\)	![Genistein](image)	30518	0.013
Prunetin\(^*\)	![Prunetin](image)	7.629	0.033

Minimal antiaggregatory concentration of isoflavones expressed in μM with statistical significance \((p) \). Flavonoids purchased from \(^*\)Extrasynthese, France.

Table 5 Antiaggregatory activity of positive control and catechin

Substance	Structure	\(MINaAC/\mu M \)	\(p \)
Epicatechin\(^*\)	![Epicatechin](image)	1.907	0.030
Clopidogrel	![Clopidogrel](image)	0.019	0.029

Minimal antiaggregatory concentration of positive control and catechin expressed in μM with statistical significance \((p) \). Flavonoid purchased from \(^*\)Sigma-Aldrich, Switzerland.
Pinocembrine-7-methylether has lower MINaAC than pinocembrin, thus methylated derivates of flavanons have greater antiaggregatory effect. Most potent flavanones are p-O-methylated derivates at B-ring (Table 1).

Monohydroxylated flavones are most potent if substituted at the position 6 of the A-ring (6-hydroxyflavone, Table 2). However, most naturally occurring flavonoids are hydroxylated at position 7 (7-hydroxyflavone), thus having lower antiaggregatory effect. Increase in number of hydroxyl groups does not influence antiaggregatory effect (flavone, chrysin, apigenin). Methylation increases antiaggregatory effect, the same as it does in case of flavones (tectochrysin > chrysin). If the flavone has more than four substituents the activity decreases, even if methylated (diosmetin, luteolin, tangeretin).
Generally hydroxylated flavanons have greater antiaggregatory effect than flavones (pinocembrin > chrysin), opposite to methylated derivates (hesperetin > diosme-
tin, isosakuranetin > acacetin, pinocembrin-7-methyl-
ether = tectochrysin).

Comparing monohydroxylated flavanons to monohydroxylated flavones antiaggregatory effect is higher (3,6-
dihydroxyflavone > 6-hydroxyflavone, 3,7-dihydroxyflavo-
none > 7-hydroxyflavone). As it is the case with flavones, increase in number of substituents (four and more) decreases, while methylation increases antiaggregatory effect (syringetin > rhamnetin > quercetin, Table 3).

Isoflavonoids are less potent antiaggregatory agents, but the same as for flavonoids applies: increase in hydroxylation decreases while methylation increases antiaggregatory effect (Table 4). This is probably due to greater volume and higher lipophilicity of the methyl radical \(V = 37.15, \pi = -0.09 \) compared to hydroxyl group \(V = 11.79, \pi = -0.74 \). Higher lipophilicity can lead to significant interactions with the platelet's mem-
brane by increasing rigidity. The membrane is stabilized and the appearance of the receptors - integrins e.g. GPlIa/IIb at the platelet surface is limited [19-21].

Epicatechin, present in wine, was the only catechin analyzed (Table 5). It has greater antiaggregatory effect compared to flavone and flavanonol parallels, namely luteolin and quercetin.

- double bond at the position C2-C3 increases activity for hydroxylated derivates, but decreases activity for methylated derivates at the ring A and B,
- hydroxyl group at the position C3 increases antiag-
eggregatory activity,
- transfer of B ring from C2 to C3 decreases activity (iso-
flavonoids),
- absence of carbonyl group at the position C4 increases activity,
- most potent flavonoids are substituted at the posi-
tion C6 of the ring A,
- O-methylation of the rings A and B increases activity,
- if the rings A and B have 4 and more radicals activity decreases.

The results of antiaggregatory effect of flavonoids were compared to clopidogrel which acts as antagonist of ADP and serves as positive control in the experiment (Table 5). Although results for clopidogrel are compar-
able to results of the most potent flavonoids 3,6-dihy-
droxyflavone and syringetin, this should be interpreted with caution. Clopidogrel is a pro-drug whose metabolic activation to some extent can occur in vitro as main enzyme responsible for activation CYP2C19 is present in different tissues including the blood [22].

Dell’Agli et al. reported that inhibitory effect on plate-
let aggregation (induced by thrombin) of 10 \(\mu \)M concentra-
tion of individual compound followed the order: luteolin, quercetin and apigenin, the last being inactive [9]. In our study MINaAC followed the other arrange-
ment: apigenin (3.815 \(\mu \)M), luteolin (7.629 \(\mu \)M), querce-
tin (15.259 \(\mu \)M), using ADP to induce aggregation.

Comparing the sets of flavonoids analyzed in our research to the work of Navarro-Nuñez et al., where antiaggregatory effect was expressed as percentage of inhibition of SQ 29548 binding to thromboxane A\(_2\) \((\text{TxA}_2)\) receptor, apigenin was the most potent antago-
nist of aggregation [23]. Thus, it achieves antiaggrega-
tory effect both through antagonism of thromboxane A\(_2\) receptors as well as ADP receptors. However, genistein was next potent antagonist of TxA\(_2\) receptors, contrary to our research where isoflavonoids showed lower antagonism to ADP receptors compared to other classes of flavonoids. Hesperetin has MINaAC of 1.907 \(\mu \)M, ten to thirty times lower than reported by Jin et al., as expected due to usage of strong agonists of aggregation (collagen, arachidonic acid) [17].

The daily consumption of flavonoids is reported to be \(m = 23 \) mg per day [24]. If we take into account that absorption of flavonoid aglycone is \(f = 24\% \) (as reported for quercetin [25]) of the consumed dose it would mean that concentration which can be achieved with normal diet is:

\[
c = \frac{f \cdot m}{M} = 3.7\mu M
\]

where \(M \) represents average molar mass of flavonoid being 300 \(\mu \)g/mol and \(V \) total blood volume of 5 L.

The most potent flavonoids cause minimal antiaggregatory effect in even lower concentrations: 3,6-dihydroxy-
flavone, syringetin (MINaAC = 0.119 \(\mu \)M), 6-
hydroxyflavone, pinocembrin-7-methyl ether, tectochrysin, rhamnetin and isosakuranetin (MINaAC = 0.954 \(\mu \)M). These levels of flavonoids in serum have been exper-
mentally confirmed for the most commonly consumed flavonoids: hesperetin and naringenin from orange juice, and epi catechins from coco and green tea - ranging from 0.01 to 1.1 \(\mu \)M for individual flavonoid [26-29]. This is contrary to findings of Janssen et al. that flavo-
noids are active in concentrations that can not be achieved in vivo [13].

Conclusions

This work provides insight in the antiaggregatory activ-
ity of a relatively large set of flavonoid aglycons
measured by standardized impendence aggregometry in whole blood against ADP as an inducer. SAR of flavonoids shows that increase in the number of hydroxyl groups at the rings A and B, decreases activity. On the other hand, if O-methyl groups are introduced activity increases. This indicates that the size/volume and lipophilicity of the radical is important factor, which should be confirmed in further QSAR prediction studies.

The results obtained suggest that even a daily consumption of flavonoids can effect aggregation of platelets. As flavonoids are ubiquitous substances in plants, this work can serve as source of information for further assessment of food influence on antiaggregatory/anticoagulation treatment.

Acknowledgements
This work was supported by the Ministry of Science, Education and Sports of the Republic of Croatia (project No. 006-0061117-1237 - NMS).

Author details
1University of Zagreb, Faculty of Pharmacy and Biochemistry, Department of Medicinal Chemistry, A. Kovačića 1, 10000 Zagreb, Croatia. 2Department of Clinical Laboratory Diagnostics, CHC Osijek, J. Huttlera 4, 31000 Osijek, Croatia. 3Croatian Institute of Transfusion Medicine, Department of Platelet and Leukocyte Immunology, Petrova 3, 10000 Zagreb, Croatia. 4Agency for Medicinal Products and Medical Devices of Croatia, Ksavarska cesta 4, Zagreb, Croatia.

Authors’ contributions
NMS and ZD contributed to experimental design. MB and MT carried out the experiments. MB, ZD, NMS and ST contributed to the analysis of the data. MB was principally responsible for writing the paper with assistance from NMS and ZD. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 15 March 2011 Accepted: 11 July 2011
Published: 11 July 2011

References
1. Sweetman S: Martindale: The Complete Drug Reference London: Pharmaceutical Press, 2011.
2. de Lange DW, Verhoef S, Gorter G, Kraaijenhagen RJ, van de Wiel A, Akkerman JW: Polyphenolic grape extract inhibits platelet activation through PECAM-1: an explanation for the French paradox. Alcohol Clin Exp Res 2007, 31:1308-1314.
3. Liefert WR, Abeywardena MY: Cardioprotective actions of grape polyphenols. Nutr Rev 2008, 28:729-737.
4. Sumpio BE, Cordova AC, Berke-Schlesel DW, Qin F, Chen QH: Green tea, the “Asian paradox,” and cardiovascular disease. J Am Coll Surg 2006, 202:813-825.
5. Medić-Sarć M, Rastija V, Bojić M, Maleš Z: From functional food to medicinal product: systematic approach in analysis of polyphenolics from propolis and wine. Nutr J 2009, 8:33.
6. Akhlaghi M, Bandy B: Mechanisms of flavonoid protection against myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 2009, 46:309-317.
7. Lill G, Voir S, Schör K, Weber AA: Complex effects of different green tea catechins on human platelets. FEBS Lett 2003, 546:265-270.
8. Pigatelli P, Di Santo S, Buchetti B, Sanguinetti V, Brunelli A, Voli F: Polyphenols enhance platelet nitric oxide by inhibiting protein kinase C-dependent NADPH oxidase activation: effect on platelet recruitment. FASEB J 2006, 20:1082-1089.
9. Dell’Agli M, Maschi O, Galli GV, Fagnani R, Dal Cero E, Caruso D, Bossio E: Inhibition of platelet aggregation by olive oil phenols via CAMP-phosphodiesterase. Br J Nutr 2008, 99:945-951.
10. Freedman JE, Parker C, Li L, Perlman JA, Frei B, Ivanov V, Deak LR, Jr, Ijart MD, Folts JD: Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation 2001, 103:2792-2798.
11. Guerreiro JA, Lozano ML, Castillo J, Benavente-García O, Vicente V, Rivera J: Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor. J Thromb Haemost 2005, 3:369-376.
12. Nakahata N: Thromboxane A2: physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol Ther 2008, 118:13-35.
13. Janssen K, Menink RP, Cox FJ, Harryvan JL, Hovenier R, Hollman PC, Katari MB: Effects of the flavonoids quercetin and apigenin on hemostasis in healthy volunteers: results from an in vitro and a dietary supplement study. Am J Clin Nutr 1998, 67:255-262.
14. Weng R, Chan SC, Lu YH, Lin HC, Ko HH, Lin CN: Antiplatelet prenyflavonoids from Arctoascus communis. Phytochemistry 2006, 67:824-829.
15. Heptinstall S, May J, Fox S, Kwik-Uribe C, Zhao L: Cocoa flavonoids and platelet and leukocyte function: recent in vitro and ex vivo studies in healthy adults. J Cardiovasc Pharmacol 2006, 47(Suppl 2):S197-205.
16. Hubbard GP, Wolffram S, Lovegrove JA, Gibbins JM: Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in humans. J Thromb Haemost 2004, 2:2138-2145.
17. Jin YR, Han XH, Zhang YH, Lee JJ, Lim Y, Chung YH, Yun YP: Antiplatelet activity of hesperitin, a bioflavonoid, is mainly mediated by inhibition of PLC-gamma2 phosphorylation and cyclooxygenase-1 activity. Atherosclerosis 2007, 194:144-152.
18. Pignatelli P, Pulcinelli FM, Celestini A, Lenti G, Gisella A, Gazzaniga PP, Voli F: The flavonoids quercetin and catechin synergistically inhibit platelet function by antagonizing the intracellular production of hydrogen peroxide. Am J Clin Nutr 2000, 72:1150-1155.
19. Futakawa M, Tsuchiya H, Nagaya M, Tanaka T, Nakaya K, Inuma M: Antiplatelet and membrane-rigidifying flavonoids in brownish scale of onion. J Health Sci 2003, 49:475-480.
20. Hendrich AB: Flavonoid-membrane interactions: possible biological effects of some polyphenolic compounds. Acta Pharmacol Sin 2006, 27:27-40.
21. O’Malley BA: Primary Hemostasis. In Clinical Laboratory Hematology. 2 edition. Edited by: McKenzie SB, Williams JL. New York: Pearson; 2010:612-638.
22. Božina N, Bradamante V, Lovrič M: Genetic polymorphism of metabolic enzymes P450 (CYP) as a susceptibility factor for drug response, toxicity, and cancer risk. Am Hig Rada Toksikol 2009, 60:217-242.
23. Navarro-Núñez L, Castillo J, Lozano ML, Martinez C, Benavente-García O, Vicente V, Riveta J: Thromboxane A2 receptor antagonism by flavonoids: structure-activity relationships. J Agric Food Chem 2009, 57:1589-1594.
24. Hertog MG, Hollman PC, Katan MB, Kromhout D: Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands. Nutr Cancer 1993, 20:21-29.
25. Hollman PC, de Vries JH, van Leeuwen SD, Mengelers MJ, Katan MB: Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr 1995, 62:1276-1282.
26. Stalmach A, Mullen W, Steiling H, Williamson G, Lean ME, Crozier A: Absorption, metabolism, and excretion of green tea flavan-3-ols in humans with an ileostomy. Mol Nutr Food Res 2010, 54:323-334.
27. Galenda C, Guarneri S, Rivei P, Simonetti P, Porrini M: Flavonane plasma pharmacokinetics from blood orange juice in human subjects. Br J Nutr 2007, 98:165-172.
28. Breidsford L, Nielsen IL, Rasmussen SE, Cornett C, Baron D, Bouisset F, Oloff E, Williamson G: Absorption, conjugation and excretion of the flavanones, naringenin and hesperitin from alpha-rhamnosidase-treated orange juice in human subjects. Br J Nutr 2010, 103:1602-1609.
29. Mullen W, Archeveque MA, Edwards CA, Matsumoto H, Crozier A: Bioavailability and metabolism of orange juice flavonones in humans: impact of a full-fat yogurt. J Agric Food Chem 2008, 56:11157-11164.

doi:10.1186/1475-2891-10-73
Cite this article as: Bojić et al.: Evaluation of antiaggregatory activity of flavonoid aglycone series. Nutrition Journal 2011 10:73.