Hygrophorus russula complex (Hygrophoraceae, Agaricales) in China

Hong-Yan Huang · Wen-Hao Zhang · Ting Huang · Moreno Gabriel · Tie-Zhi Liu · Li-Ping Tang

Received: 1 February 2021 / Revised: 29 May 2021 / Accepted: 6 June 2021
© German Mycological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

The Chinese species complex of *Hygrophorus russula* in subsection *Clitocyboides* has been studied. Three new species, *H. orientalis*, *H. qinggangjun*, and *H. yunnanensis* were proposed based on morphology, molecular systematics, and chemical reactions. *Hygrophorus qinggangjun* and *H. yunnanensis* occur at high elevations of Yunnan China; *H. orientalis* widely distributes at low elevations in East Asia. At present, seven taxa have been revealed in the *H. russula* species complex, and a key to these species is provided.

Keywords Cryptic species · Ectomycorrhizal fungi · Molecular systematics · Taxonomy

Introduction

The genus *Hygrophorus* Fr. (Hygrophoraceae, Agaricales) contains around 270 species based on the Index Fungorum (http://www.indexfungorum.org). Most species are widespread in the temperate regions of the Northern Hemisphere (Tedersoo et al. 2010) and are characterised by sub-viscid to glutinous pileus, adnate to decurrent lamellae, and divergent hymenophoral trama (Hesler and Smith 1963; Arnold 1990; Candusso 1997; Lodge et al. 2014). *Hygrophorus* are generally ectomycorrhizal, but a couple is parasitic, such as *H. olivaceoalbus* (Fr.) Fr. and *H. penarius* Fr. (Marino 2008; Agerer 2012). Most form associations with broad-leaved or coniferous trees. This genus appears to show host preference: for example, *H. alboflavescens* A. Naseer & A.N. Khalid forms ectomycorrhizal associations with *Quercus incana* (Naseer et al. 2019); *H. betulae* K. Bendiksen & E. Larss. is associated with *Betula pubescens* (Larsson and Bendiksen 2020); *H. boyeri* Lebeuf, Bellanger & H. Lambert and *H. meridionalis* Loizides, P.-A. Moreau, Athanassiou & Athanasiades are found in pine forests (Moreau et al. 2018); *H. russuliformis* Murill occurs with oak in Florida (Hesler and Smith 1963); *H. yadigarii* E. Sesli, Antonín & Contu occurs in hornbeam-spruce-dominated forests (Sesli et al. 2018) and *H. yukishiro* N. Endo, Tokoo & A. Yamada grows on the ground of oak forests (*Quercus acutissima* and *Q. serrata*) (Endo et al. 2018).

Lodge et al. (2014) proposed the infrageneric updates of *Hygrophorus* based on molecular phylogeny and revealed, in many cases, that a widely applied name may harbour several different phylogenetic species. Other studies uncovered hidden diversity in North America and Europe: for example, *H. hypothejus* (Fr.) Fr. complex in section *Aurei* (Bataille) E. Larss. (Moreau et al. 2018) and *H. agathosmus* (Fr.) Fr. group in subsection *Tephroleucii* (Bataille) Singer (Larsson et al. 2018).

Hygrophorus russula (Schaeff. ex Fr.) Kauffman was originally described based on material from Europe (Schaeffer 1774), belongs to subsection *Clitocyboides* (Hesler & A.H. Sm.) E. Larss, and is characterised by a pinkish-red to vinaceous-purple pileus. This name has been widely used for some similar species found in Africa (GenBank sequence KU973852), Asia (Hongo 1982; Chen and Li 2013), North America (Hesler and Smith 1963; Siegel and Schwarz 2016), and South America (GenBank sequence KF381523). Recent studies indicate that this name harbours at least a couple of new taxa in Asia, viz. *H. deliciosus* C.Q. Wang & T.H. Li and *H. parvirussula* H.Y. Huang & L.P. Tang, both from south-western China (Huang et al. 2018; Wang and Li 2020).
These results indicated that the species diversity within *Hygrophorus* is higher than previous estimates.

In order to explore the genetic diversity, host preference and geographic distribution of the *H. russula* complex, we studied more than 80 well-documented specimens mainly from China. Based on morphological characters, chemical reactions and phylogenetic results, along with sequences of this species complex from GenBank, three species are proposed as new: *H. qinggangjun* and *H. yunnanensis* from south-western China and *H. orientalis* widely distributing in East Asia.

Materials and methods

Sampling and morphological studies

Most specimens were collected in central, northern, and south-western China during rainy seasons (July–October). Basidiomes were found in broad-leaved forests, mainly Ericaceae and Fagaceae. Herbarium materials, identified as *H. russula*, were loaned from the University of Alcalá (AH). Other specimens were deposited in the Herbarium of Cryptogams, Kunming Institute of Botany, Chinese Academy of Sciences (HKAS), the Mycological Herbarium, Institute of Mycology, Chinese Academy of Sciences (HMAS), the Mycological Herbarium of Kunming Medical University (MHKMU), and the Herbarium of the Royal Botanic Garden, Edinburgh (RBGE).

Macro-morphological descriptions were taken from field notes and images of basidiomes, with colour codes following Kornerup and Wanscher (1981). Micro-morphological characters were observed from dried materials after being sectioned and mounted in 5% potassium hydroxide (KOH) and 1% Congo Red solution (w/v) under a Leica DM2500 microscope. Melzer’s reagent was used to test the amyloidy of basidiospores. Basidiospores and basal mycelium of stipe were examined with a ZEISS Sigma 300 scanning electron microscope (SEM) at 7.00 kV. The procedures of stipe were examined with a ZEISS Sigma 300 scanning electron microscope. Melzer’s reagent was used to test the amyloidy of basidiospores. Basidiospores and basal mycelium of stipe were examined with a ZEISS Sigma 300 scanning electron microscope (SEM) at 7.00 kV. The procedures of stipe were examined with a ZEISS Sigma 300 scanning electron microscope.

Chemical reactions

Seven chemical reagents were applied in this study:

- **C₆H₅OH = 10% (w/v) phenol**
- **EtOH = 95% (w/v) ethanol**
- **FeCl₃ = 10% (w/v) ferric chloride**
- **FeSO₄ = 10% (w/v) ferrous sulphate**
- **KOH = 5% (w/v) potassium hydroxide**
- **NH₄OH = 10% (w/v) ammonium hydroxide**

A piece of tissue was taken separately from the pilei, context, lamellae, and stipes of dried basidiocarps. Colour changes were recorded following the application of reagents.

DNA extraction, PCR amplification, and sequencing

Total genomic DNA was extracted from about 10–20 mg of dried basidiome tissue using a modified CTAB method (Doyle 1987). The nuclear ribosomal DNA internal transcribed space regions (ITS), large subunit nuclear ribosomal RNA (LSU), and translation elongation factor 1-α (*TEF1*) were amplified by a polymerase chain reaction (PCR) using primer pairs ITS5/ITS4, LROR/LR5, and EF1-983F/EF1-1567R (Vilgalys and Hester 1990; White et al. 1990). PCR reactions were performed in 25 μl reaction mixtures containing 2.5 μl of 10× amplification buffer (with MgCl₂), 0.5 μl dNTP (200 μM), 0.2 μl Taq DNA polymerase (5 U/μl), 1 μl of each primer (10 μM), 1 μl DNA template, and 18.8 μl sterile water. PCR conditions followed the programme of Yang et al. (2018). PCR products were checked on 1% agarose gels. Amplified PCR products were sequenced using an ABI 3730 DNA Analyzer (Sangon, Shanghai, China) with the same primers.

Sequence alignment and phylogenetic analyses

Raw sequences were assembled and edited using SeqMan (DNASTAR Lasergene 9) and deposited in GenBank (http://www.ncbi.nlm.nih.gov) (see Table 1). DNA sequences of ITS, LSU, and *TEF1* were independently aligned using MUSCLE 3.6 (Edgar 2004) and manually adjusted where necessary in BioEdit 7.0.9 (Hall 1999); the concatenated datasets were manually constructed. The dataset was analysed with maximum likelihood (ML) and Bayesian inference (BI). ML analyses were performed using RAxML 7.0.3 (Stamatakis et al. 2008); GTRGAMMA was set by default as the selected model; statistical support of clades was obtained with 1000 rapid bootstrap replicates. For BI, concatenated sequences were partitioned into ITS1 (1–136), 5.8S (137–300), ITS2 (301–585), LSU (586–1442), and *TEF1* (1443–1981). The best-fit model of nucleotide substitution was obtained in PartitionFinder 2 (Lanfear et al. 2016) based on the Akaike information criteria (AIC). The selected models were GTR+G+I for ITS1 and ITS2, SYM+G for 5.8S, GTR+I for LSU, and SYM+G for *TEF1*. Bayesian analysis was performed with MrBayes 3.2 (Ronquist et al. 2012) on the CIPRES portal. Four simultaneous Markov chains were run for 6,000,000 generations for ITS and LSU, 3,000,000 generations for *TEF1*, and 5,000,000 generations for concatenated sequences and sampled every 1000 generations. At the end of the run, the average
Taxon	Voucher	Locality	GenBank accession no. (ITS)	GenBank accession no. (LSU)	GenBank accession no. (TEF1)	References
Hygrophorus deliciosus	ZJ0002LS04	China, Sichuan	KU836534	—	—	Liu et al. unpublished
H. deliciosus	GDGM 79,208	China, Yunnan	MT363808	—	—	Wang and Li 2020
H. deliciosus	HKAS 54,703	China, Yunnan	MW290158*	MW290225*	—	This study
H. deliciosus	HKAS 51,000	China, Sichuan	MW290159*	MW290226*	MW928549*	This study
H. deliciosus	HKAS 76,246	China, Sichuan	MW290160*	MW290227*	MW928550*	This study
H. deliciosus	HKAS 69,670	China, Yunnan	MW290161*	MW290228*	MW928551*	This study
H. deliciosus	HKAS 54,510	China, Yunnan	MW290162*	MW290229*	—	This study
H. deliciosus	MHKMU S.D. Yang 43	China, Yunnan	MW290163*	MW290230*	MW928552*	This study
H. deliciosus	HKAS 55,053	China, Yunnan	MW290164*	—	—	This study
H. deliciosus	HKAS 61,276	China, Yunnan	MW290165*	MW290231*	—	This study
H. deliciosus	HKAS 61,315	China, Yunnan	MW290166*	MW290232*	—	This study
H. deliciosus	HKAS 71,624	China, Yunnan	MW290167*	—	—	This study
H. deliciosus	HMAS 253,198	China, Tibet	MW290168*	—	—	This study
H. deliciosus	HMAS 253,233	China, Tibet	MW290169*	MW290233*	—	This study
H. deliciosus	HMAS 253,249	China, Tibet	MW290170*	MW290234*	—	This study
H. deliciosus	MHKMU H.Y. Huang 725	China, Yunnan	MW290171*	—	—	This study
H. deliciosus	MHKMU H.Y. Huang 806	China, Yunnan	MW290172*	MW290235*	—	This study
H. deliciosus	MHKMU H.Y. Huang 807	China, Yunnan	MW290173*	MW290236*	—	This study
H. deliciosus	MHKMU H.Y. Huang 1006	China, Yunnan	MW290174*	MW290237*	MW928553*	This study
H. deliciosus	MHKMU H.Y. Huang 1008	China, Yunnan	MW290175*	MW290238*	MW928554*	This study
H. orientalis	HKAS 75,586	China, Hubei	MW290176*	MW290239*	MW928555*	This study
H. orientalis	HKAS 63,417	China, Jilin	MW290177*	MW290240*	—	This study
H. orientalis	HKAS 71,845	China, Jilin	MW290178*	MW290241*	—	This study
H. orientalis	HKAS 71,851	China, Shaanxi	MW290179*	MW290242*	—	This study
H. orientalis	HKAS 58,741	China, Yunnan	MW290180*	MW290243*	—	This study
H. orientalis	MHKMU H.Y. Huang 472	China, Jilin	MW290181*	—	—	This study
H. orientalis	CFSZ 20,884	China, Inner Mongolia	MW290182*	MW928625*	MW928556*	This study
H. parvirussula	HKAS 53,605	China, Sichuan	MH160768	MH160772	—	Huang et al. 2018
H. parvirussula	MHKMU L.P. Tang 1691	China, Yunnan	MH160769	MH160773	—	Huang et al. 2018
H. parvirussula	MHKMU N.K. Zeng 2878	China, Yunnan	MH160770	MH160774	—	Huang et al. 2018
H. parvirussula	MHKMU S.D. Yang 434	China, Yunnan	MH160771	MH160775	—	Huang et al. 2018
H. parvirussula	HKAS 56,191	China, Yunnan	MW290183*	—	—	This study
H. parvirussula	HKAS 57,447	China, Yunnan	MW290184*	—	—	This study
H. parvirussula	HKAS 58,821	China, Yunnan	MW290185*	—	—	This study
H. parvirussula	MHKMU S.D. Yang 12	China, Yunnan	MW290186*	MW290244*	—	This study
H. parvirussula	MHKMU W.H. Zhang 177	China, Yunnan	MW290187*	MW290245*	—	This study
Taxon	Voucher	Locality	GenBank accession no. (ITS)	GenBank accession no. (LSU)	GenBank accession no. (TEF)	References
---------------------	-----------------	-------------------	-----------------------------	-----------------------------	-----------------------------	--------------------------------
H. parvirussula	MHKMU W.H. Zhang 178	China, Yunnan	MW290188*	MW290246*	—	This study
H. parvirussula	MHKMU W.H. Zhang 179	China, Yunnan	MW290189*	MW290247*	—	This study
H. parvirussula	MHKMU T. Huang 220	China, Yunnan	MW290190*	MW290248*	MW928557*	This study
H. parvirussula	MHKMU H.Y. Huang 501	China, Yunnan	MW290191*	MW290249*	—	This study
H. parvirussula	MHKMU W.H. Zhang 183	China, Yunnan	MW290192*	MW290250*	—	This study
H. parvirussula	MHKMU W.H. Zhang 195	China, Yunnan	MW290193*	MW290251*	—	This study
H. parvirussula	MHKMU H.Y. Huang 534	China, Yunnan	—	MW290252*	—	This study
H. parvirussula	MHKMU Y.J. Pu 171	China, Yunnan	MW290194*	MW290253*	—	This study
H. parvirussula	MHKMU H.Y. Huang 911	China, Yunnan	MW290195*	MW290254*	MW928558*	This study
H. parvirussula	MHKMU L.P. Tang 3420	China, Yunnan	MW290196*	MW290255*	MW928559*	This study
H. parvirussula	MHKMU T. Huang 455	China, Yunnan	MW290197*	—	—	This study
H. parvirussula	MHKMU T. Huang 476	China, Yunnan	—	—	—	This study
H. parvirussula	MHKMU T. Huang 491	China, Yunnan	MW290198*	—	—	This study
H. parvirussula	MHKMU M. Mu 770	China, Yunnan	MW290199*	—	—	This study
H. parvirussula	MHKMU Y.J. Pu 376	China, Yunnan	MW290200*	MW290256*	—	This study
H. parvirussula	MHKMU Y.J. Pu 399	China, Yunnan	MW290201*	MW290257*	—	This study
H. parvirussula	MHKMU W.H. Zhang 535	China, Yunnan	MW290202*	MW290258*	MW928560*	This study
H. parvirussula	MHKMU T. Huang 516	China, Yunnan	MW290203*	—	—	This study
H. parvirussula	MHKMU H.Y. Huang 1007	China, Yunnan	MW290204*	MW290259*	—	This study
H. penarioides	SJ94067	Sweden, Gotlands	EF395370	—	—	Jacobsson and Larsson 2007
H. penarioides	G0490	Hungary, —	—	MK278196	—	—
H. pudorinus	PBM2721	USA, Colorado	—	—	GU187710	—
H. qinggangjun	Zhao 447	China, Yunnan	MW290147*	MW290218*	—	—
H. qinggangjun	HKAS 68,397	China, Yunnan	MW290148*	MW290219*	MW928544*	—
H. qinggangjun	MHKMU S.D. Yang 20	China, Yunnan	MW290149*	MW290220*	MW928545*	—
H. qinggangjun	MHKMU L.P. Tang 1683	China, Yunnan	MW290150*	MW290221*	—	This study
H. qinggangjun	HKAS 55,496	China, Yunnan	MW290151*	—	—	This study
H. qinggangjun	HKAS 60,481	China, Yunnan	MW290152*	—	—	This study
H. qinggangjun	HKAS 60,530	China, Yunnan	MW290153*	—	—	This study
H. qinggangjun	HKAS 72,665	China, Yunnan	MW290154*	—	—	This study
H. qinggangjun	MHKMU M. Mu 464	China, Yunnan	MW290155*	MW290222*	MW928546*	This study
H. qinggangjun	MHKMU M. Mu 436	China, Yunnan	MW290156*	MW290223*	MW928547*	This study
Taxon	Voucher	Locality	GenBank accession no. (ITS)	GenBank accession no. (LSU)	GenBank accession no. (TEF1)	References
---------------	-------------	---------------------------------	-----------------------------	-----------------------------	--------------------------------	-----------------------------------
H. qinggangjun	MHKMU H.Y. Huang 724	China, Yunnan	MW290157*	MW290224*	MW928548*	This study
H. russula	AH 19,677	Spain, Torrelodones	MW290205*	MW290260*	—	This study
H. russula	AH 37,145	Spain, Javierregay	MW290206*	MW290261*	—	This study
H. russula	LAS 85,196	Sweden, —	EF395376	—	—	Jacobson and Larsson 2007
H. russula	VAC 8b-09	France, —	JF506764	—	—	Shahin unpublished
H. russula	11,936	Italy, —	JF908065	—	—	Osmundson et al. 2013
H. russula	992	Italy, —	JF908077	—	—	Osmundson et al. 2013
H. russula	HE 2787	—	KC505575	—	—	Sun et al. unpublished
H. russula	CFMR JP-3	Japan, Shiga	KF291216	KF291217	—	Lodge et al. 2014
H. russula	CLO-4280	Belize, Mountain Pine Ridge	KF381523	—	—	Lodge et al. 2014
H. russula	GO-2009–116	Mexico, Temascaltepec	KT875017	—	—	Garibay et al. unpublished
H. russula	4433	Canada, Quebec	KM248883	—	—	Berube et al. unpublished
H. russula	NIFoS 1987	South Korea, —	KX814449	—	—	Wang et al. 2016
H. russula	NIFoS 2003	South Korea, —	KX814450	—	—	Wang et al. 2016
H. russula	MB344	USA, Arkansas	KX358034	—	—	Stephenson et al. 2017
H. russula	EMB 141/86	Italy, —	MF399419	—	—	Peintner et al. unpublished
H. russula	EMB 710/90	Italy, —	MF399423	—	—	Peintner et al. unpublished
H. russula	IB19630793	Switzerland, Lucerne	MF399427	—	—	Peintner et al. unpublished
H. russula	IB19710232	Switzerland, Bern	MF399432	—	—	Peintner et al. unpublished
H. russula	IB19730073	Switzerland, Bern	MF399433	—	—	Peintner et al. unpublished
H. russula	IB19740604	France, Provence	MF399434	—	—	Peintner et al. unpublished
H. russula	420,526MF0429	China, —	MG712352	—	—	Wang et al. unpublished
H. russula	iNaturalist 31,828,832	USA, Arizona	MN498103	—	—	Clements and Tighe unpublished
H. cf. russula	JLF 7925	USA, Arizona	MT101865	—	—	Frank unpublished
H. russula	IB 19,740,604	France, —	MT158400	—	—	Papetti et al. unpublished
H. russula	EMB 141 86	Italy, —	MT158401	—	—	Papetti et al. unpublished
H. russula	EMB 710 90	Italy, —	MT158402	—	—	Papetti et al. unpublished
H. russula	IB19630793	Switzerland, —	MT158403	—	—	Papetti et al. unpublished
H. russula	GDGM25,922	China, Jilin	MT363801	—	—	Wang and Li 2020
H. russula	GDGM42,113	China, Jilin	MT363802	—	—	Wang and Li 2020
H. russula	GDGM41,951	China, Jilin	MT363803	—	—	Wang and Li 2020
H. russula	CFSZ18,156	China, Inner Mongolia	MT363804	—	—	Wang and Li 2020
H. russula	CFSZ19,893	China, Inner Mongolia	MT363805	—	—	Wang and Li 2020
deviation of split frequencies was below 0.005. Burn-in values were determined in Tracer 1.7 (Rambaut et al. 2018). The first 25% of generations were discarded as burn-in, when the plot generated by the sump command levelled off and effective sample sizes were well over 200 for all sampled parameters for each run.

Results

Phylogenetic analysis

One hundred fifty-six ITS, LSU, and TEF1 sequences were newly generated for the *H. russula* complex in this study. DNA sequences were edited and aligned. The alignment length is 585 characters for the ITS dataset, 874 characters for the LSU...
dataset, 592 characters for the TEF1 dataset, and 1981 for the concatenated dataset. Sequences of the H. russula complex were selected as the in-group, H. sordidus Peck and H. penaroides Jacobsson & E. Larss. in subsection Clitocyboides served as outgroups for ITS and LSU dataset based on the previous study (Huang et al. 2018); Hygrophorus pudorinus (Fr.) Fr. in subsection Pudorini served as outgroups for the TEF1 dataset. The alignment is available at TreeBASE (Accession 27,296). All sequences acquired from this study are listed in Table 1.

The phylogenetic trees from BI and RAxML were almost identical, while statistical support showed slight differences. The ITS and concatenated trees were almost identical. The phylogenetic analysis recovered 13 supported clades from Asia, Europe, North America, and South America, corresponding to unique lineages within the sequence data of H. russula (Figs. 1, 2, and 3, Appendix 1–2). European “H. russula” formed two groups. Sequences of “H. russula” from North America represented five phylogenetic species. The Belize sequence of “H. russula” represented the South American group forming a single branch, which is the basal group of the H. russula species complex in the ITS tree (Fig. 1). The Chinese collections respectively formed five monophyletic clades with strong support, corresponding to five taxa, three new species (H. orientalis, H. qinggangjun, and H. yunnanensis) and two known taxa (H. deliciosus and H. parvirussula). These collections of “H. russula” from the same continent did not cluster together, although some species have close relationships. For example, H. deliciosus exhibited a sister relationship with H. qinggangjun with strong support in the ITS and concatenated trees, while appeared to be sister to H. yunnanensis in the LSU tree. Hygrophorus parvirussula and H. russula were sister species in the ITS and LSU, while appeared to be sister to H. yunnanensis in the TEF1 tree. Hygrophorus orientalis had a close relationship to “H. russula” from Europe, probably as its Europe vicariant; the relationships cannot be resolved according to the present data and needs further research.

Chemical reactions studies

FeSO₄, NH₄OH, KOH, and Melzer’s reagent were applied to test possible colour changes, which help to delimit sections or distinguish some species in Hygrophorus (Helser and Smith 1963; Larsson and Jacobsson 2004; Moreau et al. 2018). In this study, we used seven reagents based on the previous research (Huang et al. 2018). All species in the H. russula complex from China showed a negative reaction to EtOH, FeCl₃, FeSO₄, KOH, NH₄OH, and Melzer’s reagent, while the pileus turning pinkish in C₆H₅OH.

Taxonomy

Hygrophorus deliciosus C.Q. Wang & T.H. Li, Phytotaxa 449: 232–242, 2020 (Figs. 4a–c, 5a, 6a–b, 7a, 8a).

The following description is mainly taken from Wang and Li (2020), combined with our field notes including macro-morphology, habit, distribution, host plants, and examination.

Description: Basidiomata sparsely scattered to gregarious on soil, medium-sized, fleshy, rather fragile. Pileus 5–14 cm diam., rounded-conical to convex at first, expanding to plane at maturity; dirty white, flesh pink (10A3) to reddish-brown (10C7), covered with pale reddish-brown or reddish-purple (10C7–8) scales. Context white to pinkish (10A2), up to 2.4 cm thick. Lamellae adnate to decurrent, subdistant, 60–75 pieces of complete lamellae/cap, 0.5–1 cm wide, white to flesh pink (10A2–3), the surface often covered by reddish-purple (10C7–8) spots, short gills or lamellulae numerous and narrowed. Stipe 7–12 cm long, 1.2–2.2 cm diam., central, cylindrical, equal, white, yellowish-white, pinkish (10A2), with red (10A7) to brownish-red (10D7) scales; flesh often pinkish (10A2); basal mycelium (bundles of hyphae attached to the base of stipe) white. Odour not distinctive. Taste mild.

Basidiospores [80/6/16] 6.44–8 (−9) × 4.6–6 μm, Q = 1.25–1.6, Qm = 1.42 ± 0.12, broad ellipsoid to ellipsoidoid, smooth under a light microscope and SEM, thin-walled, hyaline, non-amyloid, with a distinct hilar appendix. Basidia 45–55 × 4–7 μm, mostly 4-spored, occasionally 2-spored, clavate, slender, thin-walled; sterigmata 6–10 μm in length. Cheilocystidia 29–43 × 3–4 μm, rare, scattered, subfusiform, narrowly clavate, spathulate, subcylindrical, flexuous, thin-walled, colourless. Pleurocystidia 32–50 × 3–6 μm, abundant, scattered, subfusiform, narrowly clavate, spathulate, flexuous, thin-walled, hyaline. Lamellar trama divergent, composed of short elements and long hyphae, short elements 10–25 × 3–4 μm, next to hymenium, cylindrical, long ellipsoid, pear-shaped or irregularly shaped, colourless and hyaline; long hyphae 3–15 μm diam., long ellipsoid, clavate or irregularly shaped, colourless and hyaline. Pileipellis an ixorichoderm, consisting of narrow hyphae 2–5 μm diam. in gluten, loosely interwoven, branched or non-branched, thin-walled. Pileal trama made up of hyphae 6–20 μm diam., thin-walled. Stipitipellis a cutis, composed of hyphae 3–5 μm diam., thin-walled, mostly arranged in parallel. Stipititrama made up of hyphae 6–18 (~30) μm diam., arranged in parallel, thin-walled. Mycelial hyphae 2–4 μm diam., smooth under a light microscope, mostly smooth and occasionally covered with a massive nipple-shaped protuberance under SEM. Clamp connections present in all tissues.

Known distribution: South-western China, the subalpine to the alpine belt of Sichuan, Tibet and Yunnan.
Habit and habitat: Scattered or gregarious in broad-leaved forests, mainly Fagaceae (*Quercus aquifolioides*), elev. 1990–3700 m; in summer (July–September).

Materials examined: CHINA. Sichuan Province: Litang Prefecture, Junba Town, 30° 18.70′ N, 100° 17.73′ E, elev. 3630–3675 m, 26 August 2006, Z.W. Ge 1414 (HKAS 51,000); Muli Prefecture, Liziping Town, elev. 3400–3700 m, 1 August 2012, T. Guo 554 (HKAS 76,246). Tibet Autonomous Region: Linzhi Prefecture, Lulang Town, elev. 3325 m, 11 August 2013, T.Z. Wei 3592 (HAMAS 253,198); Milin Prefecture, elev. 2990 m, 12 August 2013, T.Z. Wei & T.Z. Li & X.Y. Liu & J.Y. Zhuang 3740 (MHKMU H.Y. Huang 806). Yunnan Province: Chuxiong City, Nanhua Wild Mushrooms Market, elev. unknown, 5 August 2020, H.Y. Huang 725 (MHKMU H.Y. Huang 725); Jianchuan Prefecture, Diannan Town, elev. unknown, 10 August 2010, J. Zhang 5 (HKAS 61,315); Lijiang Prefecture, Shaxi Town, elev. 3018 m, 6 October 2020, H.Y. Huang 1006 (MHKMU H.Y. Huang 1006), H.Y. Huang 1008 (MHKMU H.Y. Huang 1008); Jianchuan Prefecture, Shibao Mountain, elev. about 2500 m, 11 August 2010, X.Y. Zhou 14 (HKAS 61,276); the same location, 26° 23.73′ N, 99° 50.41′ E, elev. 2540 m, 19 August 2014, S.D. Yang 43 (MHKMU S.D. Yang 43); Kunming City, the Park of Wild Duck Lake, elev. 1990 m, 17 September 2008, Z.L. Yang 5214 (HKAS 54,510); Laping Prefecture, elev. 2700 m, 14 August 2011, Y.J. Hao 515 (HKAS 71,624); Lijiang City, Gucheng Area, elev. 2600 m, 18 August 2010, Q. Zhao 949 (HKAS 69,670); Lijiang City, Taian Town, elev. about 3200 m, 19 August 2020, H.Y. Huang 806 (MHKMU H.Y. Huang 806), H.Y. Huang 807 (MHKMU H.Y. Huang 807); Yulong Prefecture, Lijiang Observatory, elev. about 3100 m, 20 July 2008, Q. Zhao 852 (HKAS 55,053); Yulong Prefecture, Yulong Snow Mountains, elev. 2940 m, 24 July 2008, L.P. Tang 472 (HKAS 54,703).

Comments: *Hygrophorus deliciosus* is quite common in SW China as a wild commercial fungus known from the local name “Qinggangjun” or “Mitangjun” (Fig. 1). “Mitang” is a kind of soup made from rice. “Mitangjun” means that this mushroom soup is thick and looks like “Mitang”. It is distinguished by its medium-sized basidiomata, thick context (up to 2.4 cm), broad ellipsoid basidiospores, probably associated with *Quercus aquifolioides*, and scattered to gregarious at varied elevations from 1900 to 3700 m.

This species is likely to be confused with *Hygrophorus qinggangjun*, both are sold as edible mushrooms in Yunnan Province markets and have been identified from the samples of Nanhua Wild Mushrooms Market. These two species have a very weak or mild taste when fresh and a little bitter after cooking. *Hygrophorus qinggangjun* has wavy and uplifted margin, thin context (0.4–0.9 cm), broad basidiole (43–49 × 6–9 μm), and varied basidiospores (broad ellipsoid, ellipsoid, and oblong). This taxon prefers to grow in a solitary manner or scattered in mixed forests, probably associated with *Quercus serrata*, and with narrow distribution (Yunnan Province) and elevation (2000–2780 m).

According to our phylogenetic analyses, *H. deliciosus* exhibits a sister relationship with *H. qinggangjun* with strong support in the ITS and concatenated trees (Figs. 1 and 2), while appears to be sister to *H. yunnanensis* in the LSU tree (Appendix 1). Differently, *H. yunnanensis* has small basidiomata (pileus 4–8 cm), thin context (0.3–0.7 cm), narrow basidiospores (5.5–7.5 × 4–5 μm), probably associated with *Lyonia ovalifolia* and *Ternstroemia gymnanthera*, is so far restricted to Yunnan Province and prefers to grow alone or sparsely scattered in low elevations (2100–2600 m).

Hygrophorus orientalis

H.Y. Huang & L.P. Tang, sp. nov. (Figs. 4d–f, 5b, 6c–d, 7b, 8b). MycoBank: MB 838040.

Diagnosis: *Hygrophorus orientalis* is different from other species of the *H. russula* complex in having large basidiomata (pileus > 15 cm diam.), dense lamellae (> 100 pieces of complete lamellae/cap), small basidiospores (5.5–7.5 × 3.5–4.8 μm), and extensive distribution.

Etymology: Latin “orientalis” means the species widely distributing in East Asia.

Holotype: CHINA. Hubei Province: Shennongjia Forestry District, Miyu Town, 31° 40.83′ N, 110° 26.45′ E, elev. 1900 m, 18 July 2012, Q. Cai 852 (HKAS 75,586), ITS GenBank Accession No. MW290176.

Description: Basidiomata solitary to gregarious on soil, large. *Pileus* 9–25 cm diam., often with a depressed centre and an in-rolled margin; pink (10A2–3), purplish-pink (14A4) to rose red (14A8), darker at the centre, covered with white to yellowish (1A2), rather fragile, concolorous (14A4) to rose red (14A8), darker at the centre, covered with reddish-brown (10C7–8) scales. *Context* white (–A1), up to 3 cm thick. *Lamellae* adnate to slightly decurrent, crowded, 120–145 pieces of complete lamellae/cap, 0.5–1 cm wide, white to yellowish (1A2), rather fragile, concolorous (14A4) with the pileus when damaged, some gills branched. *Stipe* 7–15 cm long, 2.5–5 cm diam., solid, fibrillose, central to slightly eccentric, cylindrical, equal, more or less concolorous (10A2–3) with the pileus, covered with reddish-brown (10C7–8) scales, surface cracking and upward curved with age; flesh pink (10A2–3); basal mycelium (bundles of hyphae attached to the base of stipe) white. *Odour* and *taste* not recorded.

Basidiospores [80/5/5] 5.5–7 (–8) × 3.5–4.8 (–5) μm, Q = (1.3–) 1.33–1.79, Qm = 1.57 ± 0.15, ellipsoid, smooth under a light microscope and SEM, thin-walled.
hyaline, non-amyloid, with a distinct hilar appendix. Basidia 30–40×4–7 μm, 4-spored, clavate, thin-walled; sterigmata 4–7 μm in length. Cheilocystidia 30–40×3–5 μm, rare, scattered, subfusiform, narrowly clavate, spathulate, subcylindrical, flexuous, thin-walled, colourless. Pleurocystidia 28–35×3–5 μm, rare, scattered, subfusiform, spathulate,

Fig. 2 Phylogenetic tree of *Hygrophorus russula* complex, based on the concatenated dataset of ITS, LSU and *TEF1*. RAxML BP values (≥ 70%) and Bayesian posterior probabilities (≥ 0.90) are shown above branches.

Fig. 3 Distribution of *Hygrophorus russula* complex.
flexuous, thin-walled, hyaline. Lamellar trama divergent, composed of short elements and long hyphae, short elements 5–15 × 4–7 μm, next to hymenium, subcylindrical, broadly ellipsoid, pear-shaped or irregularly shaped, colourless and hyaline; long hyphae 4–18 μm diam., long ellipsoid, clavate or irregularly shaped, colourless and hyaline. Pileipellis an ixotrichoderm, consisting of narrow hyphae (2.5–4.5 μm diam.) in gluten, loosely interwoven, branched or non-branched, thin-walled. Pileal trama made up of hyphae 4–22 μm diam., thin-walled. Stipitipellis a cutis, composed of hyphae 3–6 μm diam., thin-walled, mostly arranged in parallel. Stipititrama made up of hyphae 6–20 μm diam., arranged in parallel, thin-walled. Mycelial hyphae 2–5 μm diam., smooth under a light microscope, mostly smooth and occasionally covered with a massive nipple-shaped protuberance under SEM. Clamp connections present in all tissues.

Known distribution: East Asia; including China, Japan (GenBank accession KF291216), South Korea (GenBank accession KX814449–814,450).
Fig. 5 Basidiospores of *Hygrophorus russula* complex under a light microscope. a *H.* deliciosus (HKAS 61,315). b *H.* orientalis (MHKMU H.Y. Huang 472). c *H.* parvirussula (MHKMU N.K. Zeng 2878). d *H.* qinggangjun (MHKMU L.P. Tang 1683). e *H.* russula (AH 19,677). f *H.* yunnanensis (MHKMU S.D. Yang 12). Bars = 10 μm

Fig. 6 Basidia and cystidia of *Hygrophorus russula* complex. a, b *H.* deliciosus. c, d *H.* orientalis. e, f *H.* qinggangjun. g, h *H.* yunnanensis. i–l *H.* russula. a, c, e, g, i, j basidia and cheilocystidia. b, d, f, h, k, l basidia and pleurocystidia. Bars = 10 μm
Habit and habitat: Scattered to gregarious, at times in arcs or fairy rings, in broad-leaved forests, mainly Fagaceae, probably associated with *Cyclobalanopsis* sp. or *Quercus mongolica*, elev. 750–2340 m; in summer (July–September).

Additional materials examined: CHINA. Inner Mongolia: Ningcheng Prefecture, Heilihe National Nature Reserve, in broad-leaved forests, mainly Fagaceae, elev. 750–2340 m; in summer (July–September).

- **a** *H. deliciosus* (HKAS 54,510).
- **b** *H. orientalis* (HKAS 71,845).
- **c** *H. qinggangjun* (MHKMU L.P. Tang 1683).
- **d** *H. yunnanensis* (MHKMU H.Y. Huang 322).

Bars = 10 μm

Fig. 7 Hymenium (including basidia, pleurocystidia, and lamellar trama) of *Hygrophorus russula* complex. **a** *H. deliciosus* (HKAS 54,510). **b** *H. orientalis* (HKAS 71,845). **c** *H. qinggangjun* (MHKMU L.P. Tang 1683). **d** *H. yunnanensis* (MHKMU H.Y. Huang 322). Bars = 10 μm.
1280 m, 4 September 2010, X.F. Shi 659 (HKAS 71,851). Yunnan Province: Yongping Prefecture, Longmen Town, elev. 2340 m, 1 August 2009, Q. Cai 74 (HKAS 58,741).

Comments: *Hygrophorus orientalis* can be recognised from other species of the *H. russula* complex by its large basidiomata, dense lamellae, small basidiospores and scattered to gregarious (at times in arcs or fairy rings) habit, probably associated with *Cyclobalanopsis* sp. or *Quercus mongolica*. This taxon has a wide distribution in East Asia (including China, Japan, and South Korea), usually occurring below elev. 2400 m. It is known as an edible mushroom in NE China, where locals prefer it raw rather than cooked.

Hygrophorus qinggangjun H.Y. Huang & L.P. Tang, sp. nov. (Figs. 4g–i, 5d, 6e–f, 7c, 8c).

MycoBank: MB 838039.

Diagnosis: *Hygrophorus qinggangjun* is different from other species of the *H. russula* complex in its medium-sized basidiomata (pileus 8–14 cm diam.), uplifted and wavy margin, thinner context, variable basidiospores (broad ellipsoid, ellipsoid and oblong), and so far, only known from Yunnan.

Etymology: Latin “qinggangjun” means the host plant of this mushroom, “qinggang” trees referring to oak trees in SW China.

Holotype: CHINA. Yunnan Province: Jianchuan Prefecture, Shibao Mountain, in a mixed forest with Ericaceae, Fagaceae and a few *Pinus yunnanensis*, 26° 23.73’ N, 99° 50.41’ E, elev. 2500 m, 18 August 2014, *L.P. Tang 1683* (MHKMU L.P. Tang 1683), ITS GenBank Accession No. MW290150.

Description: Basidiomata solitary to sparsely scattered on soil, medium-sized to large, fleshy, rather fragile. *Pileus* 8–14 cm diam., convex with an incurved margin when young, becoming plane with a depressed centre, margin often wavy and uplifted in age, reddish-white to pink (10A2–3), pale reddish-purple (12A5), with reddish-brown (10C7–8) scales, viscid to slimy when wet. *Context* white to pink-white (10A2), becoming darker (10A3) on exposure, 0.4–0.9 cm thick. *Lamellae* decurrent, subdistant, 60–80 pieces of complete lamellae/cap, 0.9–1.2 cm wide, pinkish (10A2–3) to reddish (10A5), short gills or lamellulae narrowed, rather fragile. *Stipe* 7–10 cm long, 1–1.7 cm diam., central to slightly eccentric, cylindrical, equal, surface pinkish (10A2–3) to reddish-purple (14A2), dark reddish-violet (10C7–8) scales; flesh firm, pinkish-white to pinkish (10A2), pale reddish-purple (10A3), becoming darker when cut or on exposure; basal mycelium (bundles of hyphae attached to the base of stipe) white. *Odour* not distinctive. *Taste* very weak.

Basidiospores [90/4/4] 6.44–9 (–9.5) × (4–) 4.4–6 (–6.5) μm, Q = (1.15–) 1.24–1.64 (–1.89), Qm = 1.46 ± 0.14, broad ellipsoid, ellipsoid, oblong, smooth under a light microscope and SEM, thin-walled, hyaline, non-amyloid, with a distinct hilar appendix. *Basidia* 43–49 × 6–9 μm, mostly 4-spored, clavate, thin-walled; sterigmata 5–10 μm in length. *Cheilocystidia* 25–40 × 3–7 μm, rare, scattered, subfusiform, narrowly clavate, spathulate, irregularly shaped, flexuous, thin-walled, colourless. *Pleurocystidia* 25–40 × 4–6 μm,
scattered, narrowly clavate, spathulate, flexuous, thin-walled, hyaline. Lamellar trama divergent, composed of short elements and long hyphae, short elements 6–20 × 3–5 μm, next to hymenium, cylindrical, long ellipsoid, pear-shaped or irregularly shaped, colourless and hyaline; long hyphae 5–20 (~28) μm diam., long ellipsoid, clavate or irregularly shaped, colourless and hyaline. Pileipellis an ixotrichoderm, consisting of narrow hyphae (2–6 μm diam.) in gluten, loosely interwoven, branched or non-branched, thin-walled. Pileal trama made up of hyphae 7–20 μm diam., thin-walled. Stipitipellis a cutis, composed of hyphae 3–6 μm diam., thin-walled, mostly arranged in parallel. Stipititrama made up of hyphae 6–18 μm diam., arranged in parallel, thin-walled. Mycelial hyphae 2–5 μm diam., smooth under a light microscope, mostly smooth and occasionally covered with a massive nipple-shaped protuberance under SEM. Clamp connections present in all tissues.

Known distribution: Yunnan Province.

Habit and habitat: Solitary or scattered in mixed forests, mainly including Ericaceae and Fagaceae, probably associated with *Quercus serrata*; elev. 2000–2780 m; in late summer and autumn (August–October).

Additional materials examined: CHINA. Yunnan Province: Chuxiong City, Nanhua Wild Mushrooms Market, elev. unknown, 5 August 2020, H.Y. Huang 724 (MHKMU H.Y. Huang 724); Jianchuan Prefecture, Shibo Mountain, in a mixed forest with Ericaceae, Fagaceae, and Pinaceae, 26° 23.73′ N, 99° 50.41′ E, elev. 2500 m, 18 August 2014, S.D. Yang 20 (MHKMU S.D. Yang 20); the same location, occurred under *Quercus* sp., probably *Q. serrata*, 26° 23.78′ N, 99° 50.32′ E, elev. 2530 m, 13 September 2019, M. Mu 436 (MHKMU M. Mu 436); the same location, in a mixed forest with Ericaceae. *Quercus* sp. and a fewPinus yunnanensis, 26° 23.67′ N, 99° 50.18′ E, elev. 2520 m, 14 September 2019, M. Mu 464 (MHKMU M. Mu 464); Kunming City, Shuanglong Town, elev. about 2000 m, 17 September 2019, X.H. Du 39 (HKAS 55,496); Lijiang City, Qihe Town, elev. 2780 m, 19 August 2010, X.T. Zhu 221 (HKAS 68,397); Weixi Prefecture, Qizong Town, elev. unknown, 19 September 2010, X.H. Wang 44 (HKAS 60,530); Weixi Prefecture, Tacheng Town, elev. unknown, 20 September 2010, X.H. Wang 127 (HKAS 60,481); the same location, elev. unknown, 15 October 2011, X.H. Wang 127 (HKAS 72,665); location unknown, elev. unknown, 1 August 2009, Q. Zhao 447.

Comments: In SW China, *H. qinggangjun* is a wild edible mushroom, also known locally as “Mitangjun” or “Qinggangjun”. Thus, there are at least two species under this common name based on our research, viz. *H. deliciosus* and *H. qinggangjun*. This mushroom is distinguished by its medium-sized basidiomata, wavy and uplifted margin, thin context (0.4–0.9 cm), broad basidia (43–49 × 6–9 μm), varied basidiospores (broad ellipsoid, ellipsoid and oblong), solitary or scattered in mixed forests, and probably in association with *Quercus serrata*. Currently, *H. qinggangjun* is known only from Yunnan Province, occurring at high elevation regions (2000–2780 m).

The morphological and phylogenetic analyses (ITS and concatenated trees) show that *H. qinggangjun* is closely related to *H. deliciosus*; the comparison between *H. deliciosus* and *H. qinggangjun* can be found in our treatment of *H. deliciosus*.

Hygrohirus russula (Schaeff. ex Fr.) Kauffman, Publications Michigan Geology Biology Survey, Biology Series 5 26: 185, 1918 (Figs. 5e and 6i–l).

The following description is mainly taken from Arnolds (1990) and Candusso (1997), combined with the field notes including macro-morphology, habit, distribution, host plants, and examination.

Description: Basidiomata solitary to sub-gregarious on soil, medium-sized, fleshy, rather fragile. *Pileus* 4–10 (~15) cm diam., hemispherical, convex, applanate, firstly almost white to pale pink with scattered pink to wine-red spots or appressed, fibrillose scales, gradually darker, becoming pinkish-red to wine-red at the centre, finally dark purplish-red, with small to large concolorous spots elsewhere, surface dry to slightly viscid. Context white, becoming pale pink to pinkish-purple when damaged, up to 2.5 cm thick. *Lamellae* adnate to short-decurrent, rather crowded to subdistant, 70–150 pieces of complete lamellae/cap, narrow, up to 0.5 cm wide, at first white to very pale pink, then spotted wine-red, brown–red or purplish-red, finally entirely dark reddish. *Stipe* 6–10 (~15) cm long, 0.8–2.5 (~4) cm diam., cylindrical, solid, dry, equal or slightly tapering towards base, white with some wine-red to purplish-red spots to almost completely brownish-purple. *Odour* absent to rather weakly unpleasant, sweetish. *Taste* mild.

Basidiospores [20/2/2] 8–10 × 5–6.5 μm, Q = 1.33–1.72, Qm = 1.55 ± 0.12, broad ellipsoid to ellipsoid, smooth under a light microscope, thin-walled, hyaline, non-amyloid, with a distinct hilar appendix. *Basidium* 55–68 (~80) × 7–9 (~10) μm, 4-spored, clavate, slender, thin-walled; sterigma 4–7 μm in length. *Cheilocystidia* 35–50 × 3–5 μm, rare, scattered, irregularly shaped, narrowly clavate, flexuous, thin-walled, colourless. *Pleurocystidia* 40–55 × 3–9 μm, scattered, irregularly shaped, narrowly clavate, flexuous, thin-walled, hyaline. Lamellar trama divergent, composed of short elements and long hyphae, short elements 15–26 × 3–6 μm, next to hymenium, cylindrical, long ellipsoid, pear-shaped or irregularly shaped, colourless and hyaline; long hyphae 3–10 (~25) μm diam., up to 70 μm long, long ellipsoid, clavate or irregularly shaped, colourless and hyaline. *Pileipellis* an ixotrichoderm, consisting of narrow hyphae 2–4 μm diam. in gluten, loosely interwoven, branched or non-branched, thin-walled. *Pileal trama* made up of hyphae 4–25 μm diam., thin-walled. Stipitipellis a cutis, composed of hyphae 2.5–4.5 μm diam.,
thin-walled, mostly arranged in parallel. **Clamp connections** present in all tissues.

Known distribution: Europe.

Habit and habitat: Solitary to sub-gregarious in mixed forests, associated with *Quercus* spp., elev. below 1100 m; in autumn to winter (September–December).

Materials examined: SPAIN. Huesca city, Javierregay, on humus under oak and *Quercus* sp., elev. 680 m, 5 December 2009, A. González & F. Prieto s. n. (AH 37,145); Madrid City, Torrelodones, in mixed forests, including *Pinus pinaster* and *Quercus ilex* subsp. *ballota*, elev. 845 m, 7 December 2000. F. Prieto s. n. (AH 19,676); the same location, in mixed forests, including *P. pinaster* and *Q. ilex* subsp. *ballota*, elev. 845 m, 1 December 2001, F. Prieto s. n. (AH 19,677).

Comments: *Hygrophorus russula* was originally described from Germany as *Agaricus russula* Schaeff. in 1774 (Schaeffer 1774; Fries 1821), but with few macrospores (4–5 μm wide), so far, and only known from Yunnan.

Materials examined: CHINA. Yunnan Province: Qujing City, Shizong Town, in broad-leaved forests mainly dominated by *Lyonia ovalifolia*, mixed with a few *Lithocarpus* sp., *Pinus yunnanensis*, *Quercus* sp. and *Rhododendron decorum*, 24°38′03″ N, 104°8′98″ E, elev. 2330 m, 12 August 2019, H.Y. Huang 322 (MHKMU H.Y. Huang 322), ITS GenBank Accession No. MW290214.

Description: Basidiomata solitary to sparsely scattered on soil, small to medium-sized, firm, fleshy. *Pileus* 4–8 cm diam., convex to hemispherical with an inrolled margin at first, expanding to plane at maturity; pale reddish-purple (12A5), dark red to reddish-brown (10C7–8), with a dark centre covered with scales. *Context* pinkish-white (10A2), becoming darker (10A3) on exposure, 0.3–0.5 cm thick. *Lamellae* adnate to slightly decurrent, subdistant, 70–95 pieces of complete lamellae/cap, 0.3–0.8 cm wide, pale pinkish (10A2), pinkish (10A3), dirty pink (10B2), staining reddish-purple (12B5) when damaged or with age; flesh initially firm, becoming soft with age, whitish to pinkish-white (10A2), becoming darker (10A3) when cut or damaged; basal mycelium (bundles of hyphae attached to the base of stipe) white. *Odour* not distinctive. *Taste* mild.

Basidiospores [80/3/3] (7–) 7.5–9.5 × 4–5 μm, Q = 1.6–2.13, Qm = 1.86 ± 0.14, ellipsoid to oblong, ovoid, smooth under a light microscope and SEM, thin-walled, hyaline, non-amyloid, with a distinct hilar appendix. *Basidia* 38–45 (–50) × 5–10 μm, mostly 4-spored, clavate, slender, thin-walled; sterigmata 4–9 μm in length. *Cheilocystidia* 30–40 × 3–6 μm, rare, scattered, subfusciform, narrowly clavate, spathulate, subcylindrical, flexuous, thin-walled, colourless. *Pleurocystidia* 43–50 × 3–7 μm, rare, scattered, subfusciform, narrowly clavate, spathulate, flexuous, thin-walled, hyaline. *Lamellar trama* divergent, composed of short elements and long hyphae, short elements 5–12 × 3–6 μm, next to hymenium, cylindrical, long ellipsoid, pear-shaped or irregularly shaped, colourless and hyaline; long hyphae 6–18 μm diam., long ellipsoid, clavate or irregularly shaped, colourless and hyaline. *Pileipellis* an ixotrichoderm, consisting of hyphae 3–5 μm diam. in gluten, loosely interwoven, branched or non-branched, thin-walled. *Pileal trama* made up of thin-walled hyphae 4–20 μm diam. *Stipitipellis* a cutis, composed of hyphae 3–5 μm diam., thin-walled, mostly arranged in parallel. *Stipititrama* made up of hyphae 5–18 μm diam., arranged in parallel, thin-walled. *Pleural hyphae* 2–5 μm diam., smooth under a light microscope, occasionally covered with a massive nipple-shaped

Hygrophorus yunnanensis H.Y. Huang & L.P. Tang, sp. nov. (Figs. 4j–l, 5f, 6g–h, 7d, 8d).

MycoBank: MB 838041.

Diagnosis: *Hygrophorus yunnanensis* is different from other species of the *H. russula* complex by its small basidiomata (*pileus* 4–8 cm diam.), thin context (≤0.7 cm), narrow basidiospores (4–5 μm wide), so far, and only known from Yunnan.

Etymology: Latin “yunnanensis” means the species from Yunnan Province.

Holotype: CHINA. Yunnan Province: Qujing City, Shizong Town, in broad-leaved forests mainly dominated by *Lyonia ovalifolia*, mixed with a few *Lithocarpus* sp., *Pinus yunnanensis*, *Quercus* sp. and *Rhododendron decorum*, 24°38′03″ N, 104°8′98″ E, elev. 2330 m, 12 August 2019, H.Y. Huang 322 (MHKMU H.Y. Huang 322), ITS GenBank Accession No. MW290214.

Description: Basidiomata solitary to sparsely scattered on soil, small to medium-sized, firm, fleshy. *Pileus* 4–8 cm diam., convex to hemispherical with an in-rolled margin at first, expanding to plane at maturity; pale reddish-purple (12A5), dark red to reddish-brown (10C7–8), with a dark centre covered with scales. *Context* pinkish-white (10A2), becoming darker (10A3) on exposure, 0.3–0.7 cm thick. *Lamellae* adnate to slightly decurrent, subdistant, 70–95 pieces of complete lamellae/cap, 0.3–0.8 cm wide, pale pinkish (10A2), pinkish (10A3), dirty pink (10B2), staining reddish-purple (12B5) when damaged or with age; flesh initially firm, becoming soft with age, whitish to pinkish-white (10A2), becoming darker (10A3) when cut or damaged; basal mycelium (bundles of hyphae attached to the base of stipe) white. *Odour* not distinctive. *Taste* mild.

Basidiospores [80/3/3] (7–) 7.5–9.5 × 4–5 μm, Q = 1.6–2.13, Qm = 1.86 ± 0.14, ellipsoid to oblong, ovoid, smooth under a light microscope and SEM, thin-walled, hyaline, non-amyloid, with a distinct hilar appendix. *Basidia* 38–45 (–50) × 5–10 μm, mostly 4-spored, clavate, slender, thin-walled; sterigmata 4–9 μm in length. *Cheilocystidia* 30–40 × 3–6 μm, rare, scattered, subfusciform, narrowly clavate, spathulate, subcylindrical, flexuous, thin-walled, colourless. *Pleurocystidia* 43–50 × 3–7 μm, rare, scattered, subfusciform, narrowly clavate, spathulate, flexuous, thin-walled, hyaline. *Lamellar trama* divergent, composed of short elements and long hyphae, short elements 5–12 × 3–6 μm, next to hymenium, cylindrical, long ellipsoid, pear-shaped or irregularly shaped, colourless and hyaline; long hyphae 6–18 μm diam., long ellipsoid, clavate or irregularly shaped, colourless and hyaline. *Pileipellis* an ixotrichoderm, consisting of hyphae 3–5 μm diam. in gluten, loosely interwoven, branched or non-branched, thin-walled. *Pileal trama* made up of thin-walled hyphae 4–20 μm diam. *Stipitipellis* a cutis, composed of hyphae 3–5 μm diam., thin-walled, mostly arranged in parallel. *Stipititrama* made up of hyphae 5–18 μm diam., arranged in parallel, thin-walled. *Pleural hyphae* 2–5 μm diam., smooth under a light microscope, occasionally covered with a massive nipple-shaped
protuberance under SEM. Clamp connections present in all tissues.

Known distribution: Yunnan Province.

Habit and habitat: Solitary to sparsely scattered in broad-leaved forests, probably associated with *Lyonia ovalifolia* and *Ternstroemia gymnanthera*, elev. 2100–2600 m; in late summer and autumn (August–October).

Additional materials examined: CHINA. Yunnan Province: Kunming City, Miaoao Temple, elev. 2100 m, 6 August 2006, Y.C. Li 688 (HKAS 50,442); Jianchuan Prefecture, Shibao Mountain, 26° 23.73′N, 99° 50.41′E, elev. 2500 m, 17 August 2014, S.D. Yang J2 (MHKMU S.D. Yang 12); the same location, in broad-leaved forests, mainly Ericaceae and Fagaceae, elev. 2590 m, 20 August 2014, J. Zhao 52 (MHKMU J. Zhao 52); the same location, in mixed forests with Ericaceae, *Quercus* sp. and a few *Pinus yunnanensis*, 26° 23.78′N, 99° 50.32′E, elev. 2530 m, 13 September 2019, M. Mu 439 (MHKMU M. Mu 439); the same location, occurred under *Ternstroemia gymnanthera*, mixed with Ericaceae (*Pieris formosa* and *Rhododendron decorum*), Fagaceae and a few *P. yunnanensis*, elev. 2530 m, 5 October 2020, H.Y. Huang 969 (MHKMU H.Y. Huang 969), *H. yunnanensis* 970 (MHKMU H.Y. Huang 970), *H. Huang 971* (MHKMU H.Y. Huang 971); Qujing City, Junzi Mountain, in broad-leaved forests mainly dominated by *Lyonia ovalifolia*, mixed with a few *Lithocarpus* sp., *P. yunnanensis*, *Quercus* sp. and *R. decorum*, 24° 38.03′N, 104° 8.98′E, elev. 2330 m, 11 August 2019, *H. Huang 313* (MHKMU H.Y. Huang 313), *H. Huang 316* (MHKMU H.Y. Huang 316), *H. Huang 321* (MHKMU H.Y. Huang 321), *T. Huang 59* (MHKMU T. Huang 59), *L.P. Tang 2751* (MHKMU L.P. Tang 2751); the same location, 24° 38.15′N, 104° 9.13′E, elev. 2350 m, 12 August 2019, *H. Huang 330* (MHKMU H.Y. Huang 330), *H. Huang 334* (MHKMU H.Y. Huang 334), *H. Huang 335* (MHKMU H.Y. Huang 335), *H. Huang 336* (MHKMU H.Y. Huang 336), *T. Huang 59* (MHKMU T. Huang 59), *L.P. Tang 2772* (MHKMU L.P. Tang 2772), *L.P. Tang 2773* (MHKMU L.P. Tang 2773); Yongping Prefecture, National Highway 320, 25° 29.71′N, 99° 39.40′E, elev. 2200 m, 30 July 2009, *L.P. Tang 1025* (HKAS 56,982); Yunlong Prefecture, Nuding Village, elev. unknown, 26 August 2011, *R. Wang 95* (HKAS 72,912).

Comments: *Hygrophorus yunnanensis* is distinctive by its small basidiomata, thin context, narrow basidiospores, occurring at high elevations (2100–2600 m), and so far restricted to Yunnan Province. This taxon is common under shrub wood, mainly *Lyonia ovalifolia* in Junzi Mountain, and occasionally occurring under *Ternstroemia gymnanthera*.

The morphological and phylogenetic analyses (TEF1 tree), *H. yunnanensis* is quite similar to *H. parvirussula*. However, *H. parvirussula* has wide basidiospores (6.9–9.0×4.6–6.9 μm, Q = 1.13–1.83, Q_m = 1.48 ± 0.23), occurring at high elevations (2500–3300 m), and probably associated with *Pieris formosa* and *Rhododendron concinnum*.

The LSU phylogenetic analyses showed that *H. yunnanensis* was sister to *H. deliciosus*. The comparison between *H. deliciosus* and *H. yunnanensis* sees our treatment of *H. deliciosus*.

Taxonomic Key to Species of Hygrophorus russula Complex.

1 Strictly North American distribution, at low elevations <500 m; context unchanged on exposure; basidiospores <3.2 μm in width............................ *H. russuliformis* 1* Asia and European distribution, at high elevations >500 m; context changed on exposure; basidiospores >3.2 μm in width...2

2 East Asian distribution; pileus >15 cm diam.; basidiospores small, 5.5–7×3.5–4.8 μm............................ *H. orientalis* 2* Narrow distribution; pileus <15 cm diam.; basidiospores slightly large..............................3

3 European distribution, at low elevations <1500 m; basidiospores large, 8–10×5–6.5 μm............................ *H. russula* 3* Narrow distribution; pileus <15 cm diam.; basidiospores slightly large..............................4

4 Pileus <10 cm diam.; associated with Fagaceae..5

4* Pileus <10 cm diam.; probably associated with Ericaceae or Theaceae...6

5 Scattered to gregarious at elevations 1900–3700 m; pileus applanate, context thick (up to 2.4 cm); basidiospores broad ellipsoid to ellipsoid, 6.44–8×4.6–6 μm, Q_m = 1.42 ± 0.12 .. *H. deliciosus* 5* Solitary or scattered at elevations 2000–2800 m; pileus wavy and uplifted, context thin (0.4–0.9 cm); varied basidiospores, 6.44–9×4.4–6 μm, Q_m = 1.46 ± 0.14.. *H. qinggangjun* 6 Occurring at elevations 2500–3300 m; basidiospores broad ellipsoid to ellipsoid, surface basillate ornamentation, 6.9–9.0×4.6–6.6 μm, Q_m = 1.48 ± 0.23.. *H. parvirussula* 6* Occurring at elevations 2100–2600 m; basidiospores narrow ellipsoid, surface smooth, 7.5–9.5×4.5 μm, Q_m = 1.86 ± 0.14.. *H. yunnanensis*

Discussion

Species delimitations of Hygrophorus russula complex.

Due to its recognisable characteristics in the field, consisting of a pale flesh pink to reddish-purple pileus, *H. russula* was once
Table 2 Comparison of the diagnostic characteristics between Hygrophorus russula complex

Species	Pileus (cm)	Lamellae	Spores (μm)	Basidia (μm)	Sapor Qm	Hosts	Comments
H. deliciosus	5–14	60–75	6.5–12	45–55	1.42	Quercus spp.	Medium-sized with pileus 5–15 cm diam.
H. qinggangjun	9–18	60–90	5.5–7	1.25–1.6	1.46	Quercus sp.	Broadly similar to H. deliciosus
H. parvirussula	6–8	60–80	6.5–9	1.48–1.6	1.57	Cyclobalanopsis	Difference in basidiospores and basidia
H. orientalis	6–8	60–90	6.5–9	1.48–1.6	1.57	Quercus mongolica	Medium-sized with pileus 5–15 cm diam.
H. yunnanensis	5–14	60–80	6.5–9	1.48–1.6	1.57	Quercus sp.	Broadly similar to H. deliciosus
H. yunnanensis	5–14	60–80	6.5–9	1.48–1.6	1.57	Quercus sp.	Broadly similar to H. deliciosus

Considered a species with a wide distribution in the Northern Hemisphere (Hong 1982; Arnolds 1990; Hesler and Smith 1963; Chen and Li 2013) and South Hemisphere according to the data from GenBank. With the application of molecular methods, seven molecularly distinct species have been revealed under this name, and supported by diagnosable criteria including morphological characters, ecological traits, and geographical distribution (see Table 2). Three species, H. orientalis, H. qinggangjun, and H. yunnanensis from China, are newly described in this study.

Morphologically, H. russula complex has similar colours (pale redish-purple, dark red, reddish-brown, to brownish-vinaceous), which are hard to identify in the field. Still, they are divergent in geographical distribution, host preferences, size of basidiomata, and microscopic characters.

Three species, H. parvirussula, H. russuliformis and H. yunnanensis, have a similar pileus less than 10 cm diam. However, H. russuliformis, so far restricted to North America, occurs under oak trees at low elevations (less than 500 m) of Florida; the context is unchanged on exposure and has narrower basidiospores measuring 8–10×2–3.2 μm (Hesler and Smith 1963). Hygrophorus parvirussula and H. yunnanensis were both found in south-western China; the context became darker on exposure, and probably associated with Ericaceae.

Regarding H. deliciosus, H. qinggangjun, and H. russula, these species are medium-sized with pileus 5–15 cm diam. However, H. russula has narrow lamellae (up to 0.5 cm wide), slightly long basidia 55–68×7–9 μm, large basidiospores (8–10×5–6.5 μm), and occurring at low elevations (<1100 m) (Arnolds 1990; Candusso 1997). Both H. deliciosus and H. qinggangjun have shorter basidia (45–55×4–7 μm; 43–49×6–9 μm), and broader basidiospores (6.44–8×4.6–6 μm, Q = 1.25–1.6, Qm = 1.42 ± 0.12; 6.44–9×4.4–6 μm, Q = 1.24–1.64, Qm = 1.46 ± 0.14), and fruiting at high elevations (>2500 m).

Hygrophorus orientalis differs from other species in the H. russula complex by its larger basidiomata (pileus up to 25 cm diam., stipe up to 15 cm long, 5 cm diam.), more dense lamellae (120–145 pieces/cap), shorter basidia (30–40×4–7 μm), smaller basidiospores (5.5–7×3.5–4.8 μm); scattered to gregarious, at times in arcs or fairy rings, probably associated with Cyclobalanopsis sp. or Quercus mongolica, wide range of elevation (750–2340 m), and extensive distribution.

Ecological traits of species in the Hygrophorus russula complex

Our data indicate that ecological traits, including its host preference, range of elevation, and distribution, are useful for separating morphologically similar species in the H. russula complex. European H. russula was probably associated with Quercus spp., likely Q. ilex in the south and Q. robur in the northern part (Arnolds 1990; Candusso 1997).
Hygrophorus russuliformis from North America occurs with oak trees in Florida (Hesler and Smith 1963). To date, there are five taxa of the H. russula complex from Yunnan, China. Their distributions show a distinct pattern, varying with the elevation gradient. Hygrophorus orientalis has a wide distribution, but in low-elevation environments. Hygrophorus qinggangjun and H. yunnanensis seem to be restricted to high elevations between 2000 and 3000 m. Hygrophorus deliciosus and H. parvirussula can be found only in the subalpine belt (above 3000 m). This distribution usually correlates with the host plant. Our field records indicate that H. yunnanensis might be associated with Lyonia ovalifolia and Ternstroemia gymnantha, which grow in forests below 2800 m, while H. deliciosus is connected to Quercus aquifolioides and H. parvirussula is likely associated with Pieris formosa and Rhododendron concinnum, both their host plants distributing at high elevations above 3000 m.

The taxonomic importance of comprehensive data in the Hygrophorus russula complex

Due to similar characteristics, it is quite difficult to identify the species complex. Thus, the application of comprehensive evidence is important for the accurate identification of this species complex. In our study, SEM characteristics are helpful to distinguish the complex species of H. russula. Hygrophorus parvirussula is characterised by bacillate ornamentation of basidiospores under SEM; the other four taxa in this complex are smooth. In fungal taxonomy, the application of characteristics of basal hyphae is rarely seen. Huang et al. (2020) firstly reported abundant morphological characters of the basal hyphae of seven species from Clavariadelphus as taxonomical evidence. In the H. russula complex, the basal hyphae also vary from smooth to a massive nipple-shaped protuberance under SEM (see Fig. 8). It indicates the basal hyphae are valuable in the classification of Hygrophorus. In terms of chemical reactions, we found that phenol can be used to distinguish the H. russula complex and H. lucorum Kalchbr. within Hygrophorus, while most species in Hygrophorus sect. Aurei (Bataille) E. Larss. yielded a negative reaction (unpublished data).

Phylogenetic tree of Hygrophorus russula complex based on TEF1 sequence data. RAXML BP values (≥ 70%) and Bayesian posterior probabilities (≥ 0.90) are shown above branches (JPG 2.55 MB)Supplementary File 3 (NXS 103 KB)Supplementary File 4 (NXS 102 KB)Supplementary File 5 (NXS 21.3 KB)Supplementary File 6 (NXS 64.0 KB)Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11557-021-01715-7.

Acknowledgements We thank the curators and collectors of AH, HKAS, HMAS, and RBGE. And we are greatly indebted to those colleagues for kindly supplying photos: Prof. Bai Wang from Changbai Mountain Academy of Sciences; Drs. Qing Cai, Qi Zhao, Yan-Jia Hao, Ting Guo, Xue-Tai Zhu, Yan-Chun Li, Zhu-Liang Yang from HKAS, and Miss Jie Zhao, Man Mu, and Shu-Da Yang from KMU. The authors appreciate Zhi-Jia Gu from HKAS who assisted in the work of the scanning electron microscope (SEM).

Author contribution All authors contributed to the study conception and design. Material preparation was performed by Hong-Yan Huang, Li-Ping Tang, Moreno Gabriel, Tie-Zhi Liu, Ting Huang, and Wen-Hao Zhang. DNA isolation, preparation for sequencing, and data analyses were performed by Hong-Yan Huang. The draft of the manuscript was written by Hong-Yan Huang, polished by Li-Ping Tang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding This work was financially supported by the National Natural Science Foundation of China (Nos. 31960007, 31560004, 31760004); Digitalisation, development and application of biotic resource (No. 202002AA100007); and the Programme Innovative Research Team in Science and Technology in Yunnan Province (No. 202005AE160004).

Data Availability The datasets generated and downloaded during the current study are available in the GenBank, http://www.ncbi.nlm.nih.gov.

References

Agerer R (2012) Asexual reproduction of Hygrophorus olivaceoclados by intracellular microsclerotia in root cells of Picea abies—a winner of ozone stress? Mycol Prog 11:425–434. https://doi.org/10.1007/s11557-011-0757-y

Arnolds E (1990) Tribus Hygrocybeae (Kühner) Bas & Arnolds. In: Bas C, Kuyper TW, Noordeloos ME, Vellinga EC (eds) Flora agaricina neerlandica, critical monographs on families of agarics and boleti occurring in the Netherlands, vol 2. AA Balkema Publishers, Rotterdam, pp 71–115

Binder M, Larsson K-H, Matheny PB, Hibbett DS (2017) Amylocor- ticiales ord. nov. and Jaapiales ord. nov.: Early diverging clades of Agaricomycetidae dominated by corticioid forms. Mycologia 102:865–880. https://doi.org/10.3852/09-288

Candusso M (1997) Hygrophorus s.l., Fungi Europaei, vol 6. Edizioni Candusso, Alassio, Italia, pp 207–211

Chen JL, Li Y (2013) The checklist of species in Hygrophoraceae from China and their distribution. Journal of Fungal Research 11:3–13, 37 [in Chinese]

Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochem Bull 19:11–15

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

Endo N, Tokoo R, Fukuda M, Yamada A (2018) Hygrophorus yakishiro sp. nov., a new vernal edible mushroom from Nagano Prefecture, Japan Mycoscience 59:449–454. https://doi.org/10.1016/j.myc.2018.03.002

Fries EM (1821) Systema Mycologicum. Vol. 1. Lundae, Sweden, pp 1–520
Gillet CC (1878) Les Champignons qui croissent en France. Description et iconographie, propriétés utiles ou vénéneuses. J.B. Baillère & fils, Paris

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analyses program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

Hesler LR, Smith H (1963) North American species of Hygrophorus. The University of Tennessee Press, Knoxville

Hongo T (1982) Hygrophoraceae of Japan. Memoirs of the Faculty of Liberal Arts and Education, Shiga University 32:85–92

Huang HY, Yang SD, Zeng NK, Zhang GL, Hu Y, Tang LP (2018) Hygrophorus parvirussula sp. nov., a new edible mushroom from southwestern China. Phytotaxa 373:139–146. https://doi.org/10.11646/phytotaxa.373.2.4

Huang HY, Zhao J, Zhang P, Ge ZW, Li X, Tang LP (2020) The genus Clavariadelphus (Clavariadelphaceae, Gomphales) in China. Mycokeys 70:89–121. https://doi.org/10.3897/mycokeys.70.54149

Jacobsson S, Larsson E (2007) Hygrophorus peniarioides, a new species identified using morphology and ITS sequence data. Mycotaxon 99:337–343

Kauffman CH (1918) The Agaricaceae of Michigan. Publications Michigan Geology Biology Survey, Biology Series 5 26. Lansing, Michigan: Wynkoop, Hallenbeck Crawford Co. 185

Kornerup A, Wanscher JH (1981) Taschenlexikon der Farben, 3rd edn. Muster-Schmidt Verlag, Göttingen

Larœre R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2016) Partition-Finder: 2 new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol 34:772–773. https://doi.org/10.1093/molbev/msw260

Larsson E, Jacobsson S (2004) Controversy over Hygrophorus cossus settled using ITS sequence data from 200-year-old type material. Mycol Res 108:781–786

Larsson E, Kleine J, Jacobsson S, Krikorev M (2018) Diversity within the Hygrophorus agathosmus group (basidiomycota, agaricales) in northern Europe. Mycol Prog 17:1293–1304. https://doi.org/10.1007/s11557-014-445-y

Larsson E, Bendiksø K (2020) Hygrophorus betulae, a new species described from subalpine birch forest in Finland. Karstenia 58:1–9. https://doi.org/10.29203/ka.2020.484

Lodge DJ, Padamsee M, Matheny PB, Aime MC, Cantrell SA, Boertman D, Kovalenko A, Vizzini A, Dentinger BTM, Kirk PM, Ainsworth AM, Moncalvo JM, Vilgalys R, Larsson E, Łękwicki R, Griffith GW, Smith ME, Norvell LL, Desjardin DE, Redhead SA, Overbeke CL, Lickie EB, Ercole B, Hughes KW, Courtecuisse R, Young A, Binder M, Minnis AM, Lindner DL, Ortiz-Santana B, Haight J, Læssøe T, Baroni TJ, Geml J, Hattori T (2014) Clavariadelphus, a new species of enzymatically amplified ribosomal DNA from several Hygrophoraceae (Agaricales). Fungal Diversity 64:1–99. https://doi.org/10.1007/s11225-013-0259-0

Marino ED (2008) Hygrophorus penarius on beech: between mutualism and parasitism? In: Marino ED, Montecchio L, Agerer R (eds) The ectomycorrhizal community structure in beech coppices of different age. Tesi di Dottorato, Università degli Studi di Padova, p 84–112

Moreau PA, Bellanger JM, Lebeuf R, Athanassiou Z, Athanasiadis A, Lambert H, Schwarz C, Larsson E, Loizides M (2018) Hidden diversity uncovered in Hygrophorus sect. Aurei (Hygrophoraceae), including the Mediterranean H. meridionalis and the north American H. boyeri, sp. nov. Fungal Biol 122:817–830. https://doi.org/10.1016/j.fmb.2018.04.009

Naseer A, Khalid AN, Healy R, Smith ME (2019) Two new species of Hygrophorus from temperate Himalayan oak forests of Pakistan. MycoKeys 56:33–47. https://doi.org/10.3897/mycokeys.56.30280

Osmundson TW, Robert VA, Schoch CL, Baker LJ, Smith A, Robich G, Miz-yan L, Garbelotto MM (2013) Filling gaps in biodiversity knowledge for macrofungi: contributions and assessment of an herbarium collection DNA barcode sequencing project. PLoS ONE 8:e62419. https://doi.org/10.1371/journal.pone.0062419

Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904. https://doi.org/10.1093/sysbio/syy032

Ronquist F, Teslenko M, Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

Schaefer JC (1774) Fungorum qui in Bavaria et Palatinatu Nascentur Icones. 58 [in Latin]

Sesi E, Antonin V, Contu M (2018) A new species of Hygrophorus, H. yagiarii sp. nov. (Hygrophoraceae) with an isolate systematic position within the genus from the Colchic part of Turkey. Turk J Bot 42:224–232. https://doi.org/10.3906/bot-1706-64

Siegel N, Schwarz C (2016) Mushrooms of the Redwood Coast. Ten Speed Press, Berkeley, pp 270–279

Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAXML Web servers. Syst Biol 57:758–771. https://doi.org/10.1080/10635150802429642

Stephenson SL, Ali MBHB, Rollins AW, Furches MS, Atherton KR (2017) Ectomycorrhizal fungi associated with American chestnut at a site in Tennessee, USA. Castanea 82:2–7. https://doi.org/10.2179/16-101

Tedesroo L, May TW, Smith ME (2010) Ectomycorrhizal life style in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycologia 20:217–263. https://doi.org/10.1007/ s00572-009-0274-x

Varga T, Krizsán K, Földi C, Dimá B, Sánchez-García M, Sánchez-Ramírez S, Szöllösi GI, Szarkándi JG, Papp V, Albert L, Andreopoulos W, Angelini C, Antonin V, Barry KW, Bougher NL, Buchanan P, Buyck B, Bense V, Catcheside P, Chovatia M, Cooper J, Dämon W, Desjardin D, Finy P, Geml J, Haridas S, Hughes K, Justo A, Karasinski D, Kautmanova I, Kiss B, Kocsubé S, Kotiranta H, LaButti KM, Lebanon LE, Liimatainen K, Lipzen A, Lukács Z, Mihaltcheva S, Morgado LN, Niskaten T, Noordeloos ME, Ohm RA, Ortiz-Santana B, Overbeke CV, Rácz N, Riley R, Savchenko A, Shiryaev A, Soop K, Spribin V, Szebenyi C, Tomovsky M, Tullloss RE, Uehling J, Grigoriev IV, Vágvölgyi C, Papp T, Martin FM, Miettinen O, Hibbett DS, Nagy LG (2019) Megaphylogeny resolves global patterns of mushroom evolution. Nat Ecol Evol 3:668–678. https://doi.org/10.1038/s41559-019-0834-1

Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246. https://doi.org/10.1128/JB.172.8.4238-4246.1990

Wang CQ, Li TH (2020) Hygrophorus deliciosus (Hygrophoraceae, Agaricales), a popular edible mushroom of the H. russula-complex from southwestern China. Phytotaxa 449:232–242. https://doi.org/10.11646/phytotaxa.449.3.3

Wang EJ, Jeon SM, Jang Y, Ka KH (2016) Mycelial growth of edible ectomycorrhizal fungi according to nitrogen sources. The Korean Journal of Mycology 44:166–170. https://doi.org/10.4489/KJM.2016.44.3.166

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenies. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds.) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.