Blockade of muscarinic acetylcholine receptors facilitates motivated behaviour and rescues a model of antipsychotic-induced amotivation

How to cite:
Hailwood, Jonathan M.; Heath, Christopher J.; Phillips, Benjamin U.; Robbins, Trevor W.; Saksida, Lisa M. and Bussey, Timothy J. (2019). Blockade of muscarinic acetylcholine receptors facilitates motivated behaviour and rescues a model of antipsychotic-induced amotivation. Neuropsychopharmacology, 44 pp. 1068–1075.

For guidance on citations see FAQs.

© [not recorded]

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1038/s41386-018-0281-8

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Blockade of muscarinic acetylcholine receptors facilitates motivated behaviour and rescues a model of antipsychotic-induced amotivation

1,6 Hailwood, Jonathan M; 2 Heath, Christopher J; 1 Phillips, Benjamin, U; 1 Robbins, Trevor W;
3 Saksida, Lisa M; 1,3 Bussey, Timothy J.

1 Department of Psychology and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK

2 School of Life, Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK

3 Molecular Medicine Research Group, Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada and The Brain and Mind Institute, Western University, London, ON, Canada

Corresponding author: Jonathan M Hailwood; email: jmh241@cam.ac.uk; postal address: Department of Psychology Downing Street, Cambridge, CB2 3EB; Telephone: +44 1223 333550; Fax: +44 1223 746033
Abstract

Disruptions to motivated behaviour are a highly prevalent and severe symptom in a number of neuropsychiatric and neurodegenerative disorders. Current treatment options for these disorders have little or no effect upon motivational impairments. We assessed the contribution of muscarinic acetylcholine receptors to motivated behaviour in mice, as a novel pharmacological target for motivational impairments. Touchscreen progressive ratio (PR) performance was facilitated by the nonselective muscarinic receptor antagonist scopolamine as well as the more subtype-selective antagonists biperiden (M1) and tropicamide (M4). However, scopolamine and tropicamide also produced increases in non-specific activity levels, whereas biperiden did not. A series of control tests suggests the effects of the mAChR antagonists were sensitive to changes in reward value and not driven by changes in satiety, motor fatigue, appetite or perseveration. Subsequently, a sub-effective dose of biperiden was able to facilitate the effects of amphetamine upon PR performance, suggesting an ability to enhance dopaminergic function. Both biperiden and scopolamine were also able to reverse a haloperidol-induced deficit in PR performance, however only biperiden was able to rescue the deficit in effort related choice (ERC) performance. Taken together, these data suggest that the M1 mAChR may be a novel target for the pharmacological enhancement of effort exertion and consequent rescue of motivational impairments. Conversely, M4 receptors may inadvertently modulate effort exertion through regulation of general locomotor activity levels.
Introduction

Successful initiation and maintenance of goal-directed motivated behaviour is crucial to everyday functioning. Impairments in motivated behaviour, or amotivation, is highly prevalent in schizophrenia [1] and neurodegenerative diseases [2]. Patients experiencing amotivation as part of their symptom profile are often those with the most reduced functional outcomes as indicated by poorer quality of life and increased caregiver burden [3,4]. However, current treatment approaches have little effect upon the symptoms of apathy [5]. Furthermore, there is some evidence that dopamine receptor antagonists, used as typical antipsychotic treatments, may exacerbate amotivation [6].

Attempts to operationalise motivation for preclinical study have divided motivated behaviour into a number of dimensions [7], which include activational processes [8,9]. Activational processes can be probed through studying the exertion of effort for appetitive reward [7]. One of the most widely used assays for studying activational motivated behaviour is the progressive ratio (PR) schedule of reinforcement [10]. PR schedules test the ability of an organism to maintain operant responding for reward under increasing work requirements. PR performance is highly dependent on intact nucleus accumbens dopamine (DA) function [11,12] and increasing DA neurotransmission through administration of psychostimulants facilitates PR performance [13]. PR performance can also be facilitated via nondopaminergic compounds including those that act upon the serotonergic and adenosinergic systems [14,15]. Studies have also investigated the behavioural pharmacology of effort related choice (ERC) behaviour [16]. ERC assays probe the ability of an organism to select between the performance of perform high-effort actions to obtain a valued reward or lower-effort actions for less valued rewards [16]. Psychostimulants and numerous other compounds have been shown to reverse pharmacologically-induced deficits in ERC performance [16,17].
Consistent with the preclinical research, the psychostimulants amphetamine and methylphenidate have been reported to have some efficacy in reducing motivational impairments in clinical populations [18,19]. However, these compounds have limited applicability in certain clinical populations due to abuse potential and possible exacerbation of psychotic symptoms [20]. Identification of compounds that indirectly modulate DA function may offer a viable alternative therapeutic approach.

A powerful modulator of DA signalling is the cholinergic system, which consists of nicotinic (nAChRs) and muscarinic (mAChRs) acetylcholine receptors. mAChRs consist of five receptor subtypes [M1-M5,21]. Numerous studies have shown that mAChRs can bidirectionally modulate DA-dependant behaviours. The behavioural effects of amphetamine are further enhanced by mAChR antagonists and attenuated by mAChR agonists [22,23]. These effects upon DA function may be modulated by the M1 receptor subtype [24,25,26].

Taken together, these studies suggest that muscarinic receptors may be a novel target for treatment of motivational-related disruptions. As antagonism of mAChRs facilitates DA function, it could be hypothesised that blockade of these receptors would facilitate effort-based behaviour. In line with this, administration of a nonselective mAChR agonist into the nucleus accumbens impairs ERC performance, through shifting behaviour to the lower-effort freely available reward option [27]. Furthermore, this shift was prevented by co-administration of the nonselective mAChR antagonist scopolamine. This study implicates muscarinic receptors in effort-based behaviour. However, it is not known if mAChR antagonists can facilitate effort-based behaviour in otherwise intact rodents. Moreover, the influence of mAChR subtypes on effort-based behaviour is also unknown.
Presently, we aimed to examine the effects of mAChR antagonism on effort exertion in mice. We therefore tested the effects of systemic administration of several muscarinic receptor antagonists on touchscreen PR performance [28,29] including the non-specific mAChR antagonist scopolamine and the preferential antagonists biperiden (M1) and tropicamide (M4) to probe the role of distinct receptor subtypes. Additionally telenzepine, a M1 antagonist that does not effectively cross the blood-brain barrier, but is still able to produce peripheral effects [30,31], was used to examine potential peripherally-mediated effects on PR performance. Subsequently the effects of biperiden and scopolamine were tested on a number of control tasks to examine the behavioural mechanisms underlying the changes in PR performance, as in previous reports [15]. Finally, we tested the effects of mAChR antagonism on a model of antipsychotic-induced amotivation [14]

Materials and Methods

Animals

Eighty male C57BL/6 mice (Charles River Laboratories, Margate, UK) were involved in this study, divided into five cohorts (n = 16 each, Table 1). Mice were 6-8 weeks old at the start of the study and group housed (4 per cage) in a temperature and light controlled facility (lights on 1900-0700). Mice were placed on a schedule of controlled feeding and maintained at no less than 85% of their free-feeding weight. Water was available *ad libitum* throughout. All behavioural testing took place 5-7 days/week during the animals’ dark phase. Two mice failed to complete the pretraining procedure and were removed from the study. Another mouse was culled due to ill-health part way through the study. All experiments were conducted in accordance with the Animals (Scientific Procedures) Act 1986 Amendment Regulations 2012 following ethical review by the University of Cambridge Animal Welfare and Ethical Review Body (AWERB).
Apparatus

All testing took place in standard mouse Bussey-Saksida touchscreen chambers (Campden Instruments Ltd, Loughborough, UK), described in detail elsewhere [28, see Supplementary Materials and Methods]. Behaviour was reinforced with strawberry milkshake (Yazoo®; Friesland Campina UK, Horsham, UK).

Progressive Ratio Procedure

The PR procedure was identical to the procedures outlined previously [28, see Supplementary Materials and Methods]. Mice were trained to respond on a linear +4 PR schedule with response requirements of 1,5,9,13,17 etc. that was reinforced with 20μL of milkshake. If no response was made to the touchscreen within 300s, sessions were terminated, otherwise sessions ended after 60 minutes.

Fixed Ratio Procedure

Fixed Ratio-5 (FR5) testing was used to test for any changes in satiety/motor output. During FR5 testing, five responses were required for each reward. Sessions were terminated at 60-minutes.

Food Consumption Procedure

The milkshake consumption test took place within the touchscreen chambers. Mice were given 60-minutes of free access to milkshake which was placed within a small bowl that was fixed to the floor of the chamber. The bowls were weighed before and after the session to determine the quantity of milkshake consumed.
Prefeeding procedure

The prefeeding procedure involved giving mice 60-minute free access to either a bowl of milkshake reinforcer (prefeed) or water (control), within the home cages, prior to PR testing. Subsequently, the bowls were removed, and the drug administered. Animals had no further access to the bowls prior to PR testing. All mice received both vehicle and drug following prefeeding with both water and milkshake (resulting in four experimental conditions per compound).

Extinction procedure

In this paradigm, the white target screen stimulus was presented; however, responding did not yield reward delivery nor the presentation of reward associated cues such as the stimulus offset tone or the sound of the milkshake pump. Sessions were terminated after 60-minutes or following 300s without any responses to the touchscreen.

Effort Related Choice

During effort related choice testing [28] two pellets of standard lab chow (approximately 5g) were weighed and scattered on the floor of each touchscreen chamber. Animals were then tested on the FR5 schedule for 60-minutes. Following testing, the remaining chow (including spillage) was weighed to calculate consumption.

Behavioural Measures

The primary outcome measure was breakpoint, defined as the number of stimulus responses emitted in the last successfully completed trial of a session. Additional parameters included post-reinforcement pause (PRP), the time between magazine exit following reward delivery and the subsequent screen target response. Additional behavioural measures were used to
examine drug-induced changes in non-specific activity [28]. The number of infra-red (IR) beam breaks made per second and the number of non-target (blank) screen touches made per second were used as measures of general locomotor activity.

Response bout analysis defined bouts as consecutive touchscreen target responses separated by no more than 5s. The mean number of responses in a bout was taken to represent a bout length. Following response bout completion, the pause until the subsequent target response was calculated. The response bout length and inter-bout pause were taken as measures of motoric integrity and motivational output respectively [32]. Only voluntarily terminated bouts were analysed and PRPs excluded from the bout analysis. Analysis of response rates involved fitting an equation to the within-session decline in the rate of responding (lever-press/sec, see Supplementary Materials and Methods). This allowed for estimation of the predicted peak response rate and decay rate parameters, providing measures of motoric integrity and the excitatory effect of reinforcers on behaviour respectively [33]. Analysis of response rates and response bouts was not performed on ERC data due to the frequent breaks in touchscreen responding when the mice were consuming lab chow. Additionally, due to the low number of responses made by a number of animals following prefeeding, analysis of response patterns was also not performed here.

Drugs

With the exception of haloperidol, all compounds were dissolved in physiological saline and administered via intraperitoneal injections at a volume of 10ml/kg, 30-minutes prior to testing. The following doses were tested: Scopolamine hydrobromide (Bio-techne, Abingdon, UK): 0.1 and 0.3mg/kg; biperiden hydrochloride (Sigma-Aldrich, Dorset, UK): 1 and 3mg/kg; telenzepine dihydrochloride (Bio-techne, Abingdon, UK): 3 and 10mg/kg; tropicamide (Bio-
techne, Abingdon, UK): 20mg/kg and amphetamine (Sigma-Aldrich, Dorset, UK): 0.1 and 1mg/kg. When applied in combination, amphetamine and biperiden were co-administered in the same syringe to reduce the number of injections needed. During the haloperidol reversal studies 0.1mg/kg haloperidol (Bio-techne, Abingdon, UK) was dissolved in 0.2% tartaric acid and administered 40-minutes prior to testing. 0.2% tartaric acid was also administered in the vehicle only condition. Scopolamine (0.3mg/kg), biperiden (3mg/kg) or saline were administered 10 minutes later. All drug conditions were administered in a pseudo-random order such that equal numbers of animals received each dose on any given test day.

Statistical analysis

Table 1 outlines the experimental procedures undertaken by each cohort of mice. All drugs were administered via within-subject designs. Statistical analyses were conducted with SPSS 23.0 (IBM Corp, Armonk, NY, US) and the R software package [34]. Graphs were produced using Prism (GraphPad, La Jolla, CA, USA) and the ggplot2 package in R [35]. Any data points that were greater than two standard deviations from the mean were removed as outliers. Repeated measures ANOVAs were used to analyse the results of all Latin square designs. When violations of sphericity were detected, the Greenhouse-Geisser correction was applied. For significant results, effect sizes were calculated as partial eta squared (η^2) values. All post hoc testing was Bonferroni corrected. Cross-over designs were analysed with paired t-tests.

Results

Scopolamine facilitates PR performance and increases nonspecific locomotor activity.

Figure 1A shows that breakpoint was significantly enhanced by scopolamine ($F(1.37,20.56) = 9.957, p<.001; \text{partial } \eta^2 = .399$). Both doses significantly increased breakpoint relative to vehicle ($p<.05$). Scopolamine did not affect PRPs ($F(1.40,21.06) = 1.331, p = .279$). Figures
1B and 1C show the effect of scopolamine on activity levels. Scopolamine increased the rate of IR beam breaks \((F(2,30) = 5.562, p < .01; \text{partial } \eta^2 = .284; \text{Figure 1B})\). 0.3mg/kg increased IR beam breaks relative to vehicle and 0.1mg/kg \((p < .05)\). Scopolamine also increased the rate of non-target responses \((F(2,30) = 10.12, p < .001; \text{partial } \eta^2 = .403; \text{Figure 1C})\). Non-target responses were elevated following 0.3mg/kg relative to both vehicle and 0.1mg/kg \((p < .01)\).

In contrast, as seen in Figure 1D, scopolamine did not affect response rates (peak response: \((F(1.33,19.89) = 1.71, p = .209)\); decay rate: \((F(2,30) = 2.671, p = .086)\)). Scopolamine also did not affect response bout length \((F(2,30) = .229, p = .796)\). There was however, a significant effect on the duration of pausing between response bouts \((F(2,30) = 4.775, p < .05; \text{partial } \eta^2 = .241)\). Pausing between bouts was significantly shorter following 0.3mg/kg scopolamine compared to the 0.1mg/kg condition \((p < .01)\). Supplementary measures are available in Table S1. These data indicate that antagonism of mAChRs can increase effort expenditure, as indexed by PR breakpoint.

Biperiden enhances PR performance without affecting general activity levels.

Figure 2A shows breakpoint was significantly increased by biperiden \((F(2,30) = 18.168, p < .001; \text{partial } \eta^2 = .548)\). 3mg/kg increased breakpoint compared to both vehicle and 1mg/kg (both \(p < .01\)). Biperiden, as shown in Figure 2B, also significantly reduced PRPs \((F(2,30) = 8.366, p < .01; \text{partial } \eta^2 = .358)\). PRPs were significantly shorter following 3mg/kg relative to both other conditions \((p < .05)\). In contrast, neither the rate of IR beam breaks \((F(2,30) = .927, p = .407)\), nor the rate of nontarget screen touches \((F(1.23, 18.48) = 1.266, p = .286)\) were significantly affected.

Biperiden also affected response rates (Figure 2C). The predicted peak response rate was not significantly affected by biperiden \((F(1.35, 20.23) = 2.05, p = .146)\). However, biperiden
significantly reduced the response decay rate ($F(2,30) = 9.576, p < .01$, partial $\eta^2 = .390$; Figure 2D). 0.3mg/kg biperiden significantly reduced decay rate, relative to the vehicle condition ($p < .01$). Biperiden did not significantly affect the mean length of completed bouts ($F(1.480,22.203) = .515, p = .551$). However, biperiden reduced the length of pausing between response bouts ($F(1.295,19.423) = 9.682, p < .01$; partial $\eta^2 = .392$; Figure 2E). 3mg/kg biperiden significantly reduced pausing between bouts relative to vehicle ($p < .01$).

Supplementary measures are available in Table S1. Taken together, biperiden facilitated a number of measures of motivated behaviour without significantly affecting measures of general activity.

Telenzepine does not affect PR performance

As a control for potential peripheral effects, the M1 receptor antagonist telenzepine, reported to have relatively poor brain penetrance [30,31], was administered prior to PR performance. As seen in Figures 2F and 2G, telenzepine affected neither breakpoint ($F(2,30) = 2.772, p = .079$) nor PRPs ($F(2,30) = .624, p = .543$). Neither the rate of IR beam breaks ($F(2,30) = 1.617, p = .215$), nor the rate of blank touches were affected ($F(2,30) = .503, p = .610$). Response patterns were also unaffected (predicted peak response: ($F(2,30) = .172, p = .843$); decay rate: ($F(1.28,19.17) = .595, p = .558$); bout length: ($F(2,30) = .432, p = .654$); pausing between bouts: ($F(1.452,20.328) = .328, p = .655$)). These data demonstrate that telenzepine has no effect on motivated behaviour.

Tropicamide facilitates PR performance and increases some measures of activity.

The effects of scopolamine on PR may also have been driven in part by the M4 receptor. Therefore, the preferential M4-receptor antagonist tropicamide was administered prior to PR testing. Tropicamide, as shown in Figure 2H, significantly increased breakpoint ($t(15) = 2.218,$
p < .05); however, there was also an increase in nontarget screen responses (t(15) = 3.153, p < .01; Figure 2I). Tropicamide did not significantly affect either the length of PRPs (t(15) = 1.011, p = .328) or the rate of IR beam breaks (t(15) = .567, p = .579). Tropicamide also had no effect on the pattern of responding (predicted peak response rate: (t(15) = .507, p = .619); decay rate: (t(15) = 1.393, p = .184); bout length: (t(15) = 1.856, p = .083); pausing between bouts; (t(15) = .228, p = .823)). Supplementary measures are available in Table S1. These results suggest that antagonism of M4 receptors may facilitate PR performance through an enhancement in non-specific activity.

Scopolamine and biperiden do not affect performance on an FR5 schedule or milkshake consumption.

Scopolamine and biperiden were tested on an FR5 schedule to detect any changes in satiety/motor fatigue that may occur within a session. [36]. Drug administration did not significantly affect either the number of trials completed (F(2,28) = 2.180, p = .132; Figure S1A). There was however, a significant effect of drug administration on the duration of the mean PRP (F(2,28) = 4.678, p < .05; partial eta squared = .250). The mean PRP was shortened following biperiden administration compared to scopolamine (p < .01), but not compared to vehicle (p = .15). There was also an effect of drug on the rate of IR beam breaks (F(2,28) = 3.920, p < .05; Figure S1B). Scopolamine again significantly increased the rate of IR beam breaks relative to vehicle (p < .05). Drug administration did not significantly affect the rate of non-target screen responses (F(2,28) = .009, p = .991). Response rates, an index of satiety [33] were also unaffected (Figure S1C). Neither the predicted peak response rate (F(2,28) = .180, p = .836;), nor the decay in response rate (F(2,28) = .958, p = .396) were affected by drug administration. The mean response bout length was not affected by drug administration (F(2,28) = .317, p = .731). However, there was a significant drug effect on the mean inter-bout
pause ($F(2,28) = 5.286, \ p < .05, \ \text{partial } \eta^2 = .274$). Biperiden significantly reduced the mean pause compared to vehicle ($p < .05$). No other comparisons were significant. Drug administration also produced no effect on 60-minute milkshake consumption ($F(2,28) = 1.388, \ p = .266; \ \text{Figure S1D}$).

Effects of biperiden and scopolamine are reduced in partially satiated mice

The effects of scopolamine and biperiden were tested following prefeeding to assess whether their effects were dependent on reinforcer value [37]. Scopolamine increased ($F(1,15) = 108.182, \ p < .001; \ \text{partial } \eta^2 = .878$) and prefeeding decreased breakpoint ($F(1,15) = 49.903, \ p < .001; \ \text{partial } \eta^2 = .769; \ \text{Figure S1E}$). There was also a significant drug x prefeeding interaction on breakpoint ($F(1,15) = 16.529, \ p < .01; \ \text{partial } \eta^2 = .524$). However, scopolamine increased breakpoint following both prefeeding with water ($p < .001$) as well as milkshake ($p < .05$). Biperiden also significantly increased breakpoint ($F(1,13) = 10.161, \ p < .01; \ \text{partial } \eta^2 = .439; \ \text{Figure S1F}$); whereas, prefeeding reduced breakpoint ($F(1,13) = 48.481, \ p < .001; \ \text{partial } \eta^2 = .789$). There was a significant biperiden x prefeeding interaction ($F(1,13) = 4.875, \ p < .05; \ \text{partial } \eta^2 = .273$). Unlike scopolamine, biperiden only significantly increased breakpoints following pre-feeding with water ($p < .01$), and not milkshake ($p = .211$). Further measures of PR performance are available in Table S2. Therefore, the effects of both drugs on breakpoints were substantially reduced following prefeeding.

Biperiden does not affect extinction

The previous results suggest biperiden enhances PR performance. It is possible that these effects may have been driven by an increase in perseverative-like responding to the touchscreen stimulus in the absence of reinforcement. Therefore, the effects of biperiden on responding were evaluated in extinction conditions under which the reinforcer is absent. One animal was
removed following an outlier analysis. Biperiden did not affect the total number of target
touches \(t(12) = 1.773, p = .102, \) Figure S1G). Neither the predicted peak response rate \(t(12)
= 1.139, p = .277\) nor the decay rate \(t(12) = 1.808, p = .096; \) Figures S1H-I) were significantly
affected by biperiden. Supplementary behavioural measures are available in Table S3

Biperiden facilitates the effects of amphetamine upon PR performance

In order to examine whether biperiden interacts with dopaminergic function we investigated
potential facilitatory effects of biperiden on PR performance in combination with the indirect
catecholamine agonist d-amphetamine. Sub-effective and effective doses of amphetamine [0.1
and 1mg/kg respectively, 28] were administered in isolation and in combination with two sub-
effective doses of biperiden (0.3 and 1mg/kg) which were also administered alone. Figure 3A
shows drug administration significantly affected breakpoint \(F(3.016,42.227) = 14.093, p < .001;
partial \(\eta^2 = .516\). 1mg/kg amphetamine increased breakpoint relative to vehicle \((p<.01)\).
In combination with the sub-effective 1mg/kg biperiden, amphetamine (1mg/kg) had an
additive effect to increase breakpoint relative to all other conditions (all \(p<.05\)). No other doses
or combination significantly affected breakpoint relative to vehicle.

Figure 3B shows that there was also an effect of drug on the rate of IR beam breaks, \(F(1.987,
27.696) = 11.337, p < .001; \) partial \(\eta^2 = .447\). Amphetamine (1mg/kg) increased beam breaks
relative to vehicle \((p< .05)\). The high dose biperiden/amphetamine combination increased beam
breaks relative to vehicle \((p<.05)\); however, this combination failed to increase the rate of beam
breaks \((p>.05)\) relative to 1mg/kg amphetamine alone. Supplementary measures are available
in Table S4.

Biperiden rescues a haloperidol induced deficit in PR and ERC performance
Biperiden, and scopolamine as a positive comparison, were tested on PR and effort-related choice (ERC) following pre-treatment with the dopamine D2 antagonist haloperidol. Figure 3C shows that during PR testing, drug administration significantly affected breakpoints ($F(3,45) = 14.680$, $p<.001$; partial $\eta^2 = .495$). Haloperidol significantly reduced breakpoint compared to vehicle ($p<.001$), whereas administration of scopolamine ($p<.05$) and biperiden ($p<.01$) successfully reversed this deficit. When tested on ERC, there was an effect of drug on the number of trials completed ($F(3,45) = 10.386$, $p<.001$; partial $\eta^2 = .409$; Figure 3D). Figure 3D shows that haloperidol significantly reduced the number of trials completed ($p<.01$). Biperiden ($p<.01$), but not scopolamine was able to increase trials completed following haloperidol. There was also an effect of drug on chow consumption ($F(3,45) = 4.861$, $p<.01$; partial $\eta^2 = .245$; Figure 3E). Both biperiden and scopolamine (both $p<.05$) reduced chow consumption following haloperidol administration. Additional measures of performance are available in Tables S5 and S6.

Discussion

Lack of motivation is a substantial clinical problem with few effective treatments. Preclinical identification and characterisation of novel mechanistic targets is a key step in the development of new therapeutic interventions. Table 2 outlines the main findings of the present experiments. Scopolamine, a nonselective mAChR antagonist facilitated PR breakpoints, but also increased measures of locomotor activity. The present results also indicate that targeting the M1 mAChR with biperiden can facilitate PR performance in the absence of changes in locomotor activity. Furthermore, this compound enhanced the behavioural consequences of amphetamine administration and attenuated the behavioural deficits induced by haloperidol on effort-based behaviour. These findings suggest that targeting the M1 receptor subtype in particular may represent a novel approach for the treatment of disrupted motivation.
PR schedules are widely used as preclinical assays of motivation. In rodents, PR schedules have previously been administered via lever or nose-poke equipped operant systems, with the touchscreen-based equivalent only recently characterised [28,33,36]. While the operant schedules themselves are equivalent, the mode of operant responding (engaging with a physical manipulanda versus a touchscreen stimulus) differs which could in turn impact performance, with increased physical response demands known to reduce operant performance [38,39]. However, in spite of less physical effort being needed to respond to a touchscreen stimulus when compared to a typical manipulanda, measures of touchscreen PR performance are consistently lower relative to lever-based systems [40]. This suggests that some non-physical aspect of effort is greater when PR involves touchscreen responding.

While the use of a touchscreen instead of a manipulanda in PR yields reduced overall performance, touchscreen and non-touchscreen PR schedules exhibit similar sensitivity for detecting changes in performance due to pharmacological manipulations or alterations in reinforcer value [38,40]. Furthermore, the present results suggest haloperidol produces a similar reduction in breakpoint (~50%) to previous lever-based reports using the same dose [41]. Together, this suggests that the touchscreen PR schedule used presently is appropriate for the measurement of effort-based behaviour.

This study also demonstrated the benefit of evaluating multiple measures of PR performance, in line with previous reports [33,42]. Although scopolamine, biperiden and tropicamide all facilitated PR breakpoint, detailed behavioural analysis revealed a number of differences in the profile of each compound. Biperiden produced relatively selective effects on motivated behaviour, increasing breakpoint and decreasing PRP. Alongside increases in activity, neither
scopolamine nor tropicamide significantly affected PRP. Similar effects were observed on response rates, where the rate of decay may reflect the excitatory influence of reinforcers on subsequent responding [33]. Only biperiden reduced the rate of decay in responding. These results suggest that biperiden increased task engagement in mice, attenuating the effects of increasing work requirements on response rates as well as pausing. In contrast, neither scopolamine nor tropicamide significantly affected response rates, suggesting the effects of these compounds may be more attributable to non-specific changes in behaviour. There were also differences observed when examining pausing prior to reinforcement. Operant responding is characterised by bouts of responding separated by brief pauses [43]. The refractory pausing between bouts provides a measure of an animal's motivational state, whereas bout length may index motoric function [32]. Such quantitative measures of PR performance are also associated with phasic dopamine transmission [44]. Biperiden significantly reduced the duration of pausing within ratios, without affecting the length of bouts, suggesting an increase in task engagement in the absence of motoric changes.

In the present study, a sub-effective dose of the M1 antagonist biperiden was able to enhance the effects of amphetamine on PR breakpoint. This suggests that the facilitation of the behavioural effects of amphetamine by nonselective mAChR antagonists in previous studies, was probably due to action at the M1 receptor [e.g. 22,45,46]. However, amphetamine also facilitates other neurotransmitter systems including serotonin and in particular noradrenaline [47,48]. Thus we used the more selective D2 receptor antagonist haloperidol to model the dopaminergic deficiency found in neuropsychiatric disorders [14,49]. It should be noted that haloperidol also acts as an antagonist on adrenergic α1 receptors [50], suggesting that an interaction with the noradrenergic system cannot be ruled out. Presently, biperiden reversed...
the deficit induced by haloperidol on both effort exertion (PR) and effort-based decision making (ERC).

Several previous reports of pharmacological enhancement of effort-based behaviour in rodents have used serotonergic and adenosinergic compounds [14,15]. A number of these drug targets have been shown to indirectly modulate dopamine function during behaviour [51,52]. Several studies have also suggested a link between acetylcholine and dopamine function [53,54]. There are also studies implicating muscarinic signalling and dopamine function [55]. The present behavioural effects of biperiden following prefeeding and under extinction conditions are different from those seen following activation of the mesolimbic dopamine system [37], suggesting the present effects of biperiden may occur through a separate pathway. However, in the absence of a direct neurochemical or electrophysiological investigation, the effects of biperiden on dopamine function are unknown.

The present findings indicate that antagonism of M1 receptors may be an effective approach to ameliorating amotivation associated with a number of disorders. Biperiden itself may be a candidate drug for this purpose as it is already approved as an antiparkinsonian treatment, as well as a treatment for the extrapyramidal side effects associated with antipsychotic medication [56]. Indeed, there are reports that biperiden may reduce negative symptoms in schizophrenia [57], although it is unclear whether this is due to effects on motivation, or a consequence of the mood-enhancing effects of biperiden [58]. However, the use of muscarinic receptor antagonists as therapeutic agents should be tempered by the findings that such compounds, including biperiden, can induce cognitive impairments across species [59,60]. It is possible that cognitive disruptions interfere with the cost-benefit processes that govern PR performance, resulting in higher breakpoints. However, if such cognitive disruption was a mediating factor then
biperiden should similarly increase responding under extinction conditions, which was not observed. Furthermore, the effective dose of biperiden employed in the present study is lower than that typically needed for significant cognitive impairments [59,61].

Motivational impairments are a particularly detrimental and pernicious symptom common to many neuropsychiatric and neurodegenerative diseases, yet no therapeutic options are currently available. The present results indicate that targeting the M1 mAChR, such as through administration of biperiden, can facilitate effort-based behaviour in mice. Furthermore, targeting the M1 receptor subtype can ameliorate the effects of a dopamine receptor antagonist on progressive ratio and effort-related choice performance and potentiate the effects of amphetamine on PR performance. Biperiden in particular may therefore represent a viable drug for the treatment of disrupted motivation.

Funding and Disclosures:

JMH is funded by a Medical Research Council CASE studentship, in collaboration with Eli Lilly and Co. TWR discloses consultancy with Cambridge Cognition, H. Lundbeck A/S, Unilever and Mundipharma and has research grants with H. Lundbeck A/S and Shionogi. LMS and TJB consult for Campden Instruments, Ltd. The other authors declare no competing interests.
References

[1] Foussias G, Agid O, Fervaha G, Remington G. Negative symptoms of schizophrenia: clinical features, relevance to real world functioning and specificity versus other CNS disorders. Eur Neuropsychopharmacol 2014; 24:693–709.

[2] Lanctôt KL, Agüera-Ortiz L, Brodaty H, Francis PT, Geda YE, Ismail Z, Marshall GA, Morthby ME, Onyike CU, Padala PR, Politis AM, Rosenberg PB, et al. Apathy associated with neurocognitive disorders: Recent progress and future directions. Alzheimer's Dement 2017; 13:84–100.

[3] Ho BC, Nopoulos P, Flaum M, Arndt S, Andreasen NC. Two-year outcome in first-episode schizophrenia: predictive value of symptoms for quality of life. Am J Psychiatry 1998; 155:1196–1201.

[4] Strauss GP, Horan WP, Kirkpatrick B, Fischer BA, Keller WR, Miski P, Buchanan RW, Green MF, Carpenter WT. Deconstructing negative symptoms of schizophrenia: avolition-apathy and diminished expression clusters predict clinical presentation and functional outcome. J Psychiatr Res 2013; 47:783–790.

[5] Fervaha G, Takeuchi H, Lee J, Foussias G, Fletcher PJ, Agid O, Remington G. Antipsychotics and amotivation. Neuropsychopharmacology 2015; 40:1539–1548.

[6] Artaloytia JF, Arango C, Lahti A, Sanz J, Pascual A, Cubero P, Prieto D, Palomo T. Negative signs and symptoms secondary to antipsychotics: a double-blind, randomized trial of a single dose of placebo, haloperidol, and risperidone in healthy volunteers. Am J Psychiatry 2006; 163:488–493.

[7] Salamone JD, Correa M. The mysterious motivational functions of mesolimbic dopamine. Neuron 2012; 76:470–485.

[8] Salamone JD, Steinpreis RE, McCullough LD, Smith P, Grebel D, Mahan K. Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology (Berl) 1991; 104:515–521.

[9] Robbins TW, Everitt BJ. Functional studies of the central catecholamines. Int Rev Neurobiol 1982; 23:303–365.

[10] Hodos W. Progressive ratio as a measure of reward strength. Science 1961; 134:943–944.

[11] Sokolowski JD, Salamone JD. The role of accumbens dopamine in lever pressing and response allocation: effects of 6-OHDA injected into core and dorsomedial shell. Pharmacol Biochem Behav 1998; 59:557–566.

[12] Aberman JE, Ward SJ, Salamone JD. Effects of dopamine antagonists and accumbens dopamine depletions on time-constrained progressive-ratio performance. Pharmacol Biochem Behav 1998; 61:341–348.

[13] Poncelet M, Chermat R, Soubrie P, Simon P. The progressive ratio schedule as a model for studying the psychomotor stimulant activity of drugs in the rat. Psychopharmacology (Berl) 1983; 80:184–189.

[14] Farrar AM, Pereira M, Velasco F, Hockemeyer J, Müller CE, Salamone JD. Adenosine A(2A) receptor antagonism reverses the effects of dopamine receptor antagonism on instrumental output and effort-related choice in the rat: implications for studies of psychomotor slowing. Psychopharmacology (Berl) 2007; 191:579–586.

[15] Bailey MR, Williamson C, Mezias C, Winiger V, Silver R, Balsam PD, Simpson EH. The effects of pharmacological modulation of the serotonin 2C receptor on goal-directed behavior in mice. Psychopharmacology (Berl) 2016; 233:615–624.

[16] Salamone JD, Correa M, Yohn S, Lopez Cruz L, San Miguel N, Alatorre L. The pharmacology of effort-related choice behavior: Dopamine, depression, and individual...
differences. Behav Processes 2016; 127:3–17.

[17] Sommer S, Danysz W, Russ H, Valastro B, Flik G, Hauber W. The dopamine reuptake inhibitor MRZ-9547 increases progressive ratio responding in rats. Int J Neuropsychopharmacol 2014; 17:2045–2056.

[18] Clark AN, Mankikar GD. d-Amphetamine in elderly patients refractory to rehabilitation procedures. J Am Geriatr Soc 1979; 27:174–177.

[19] Rosenberg PB, Lanctö t KL, Drye LT, Herrmann N, Scherer RW, Bachman DL, Mintzer JE, ADMET Investigators. Safety and efficacy of methylphenidate for apathy in Alzheimer’s disease: a randomized, placebo-controlled trial. J Clin Psychiatry 2013; 74:810–816.

[20] Lieberman JA, Kane JM, Alvir J. Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology (Berl) 1987; 91:415–433.

[21] Felder CC. Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J 1995; 9:619–625.

[22] Carlton PL. Augmentation of the behavioral effects of amphetamine by scopolamine. Psychopharmacologia 1961; 2:377–380.

[23] Kaakkola S. Effect of nicotinic and muscarinic drugs on amphetamine- and apomorphine-induced circling behaviour in rats. Acta Pharmacol Toxicol (Copenh) 1981; 48:162–167.

[24] Stanhope KJ, Mirza NR, Bickerdike MJ, Bright JL, Harrington NR, Hesselink MB, Kennett GA, Lightowler S, Sheardown MJ, Syed R, Upton RL, Wadsworth G, et al. The muscarinic receptor agonist xanomeline has an antipsychotic-like profile in the rat. J Pharmacol Exp Ther 2001; 299:782–792.

[25] Gerber DJ, Sotnikova TD, Gainetdinov RR, Huang SY, Caron MG, Tonegawa S. Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci U S A 2001; 98:15312–15317.

[26] Woolley ML, Carter HJ, Gartlon JE, Watson JM, Dawson LA. Attenuation of amphetamine-induced activity by the non-selective muscarinic receptor agonist, xanomeline, is absent in muscarinic M4 receptor knockout mice and attenuated in muscarinic M1 receptor knockout mice. Eur J Pharmacol 2009; 603:147–149.

[27] Nunes EJ, Randall PA, Santerre JL, Given AB, Sager TN, Correa M, Salamone JD. Differential effects of selective adenosine antagonists on the effort-related impairments induced by dopamine D1 and D2 antagonism. Neuroscience 2010; 170:268–280.

[28] Heath CJ, Bussey TJ, Saksida LM. Motivational assessment of mice using the touchscreen operant testing system: effects of dopaminergic drugs. Psychopharmacology (Berl) 2015; 232:4043–4057.

[29] Heath CJ, Phillips BU, Bussey TJ, Saksida LM. Measuring Motivation and Reward-Related Decision Making in the Rodent Operant Touchscreen System. Curr Protoc Neurosci 2016; 74:8.34.1-20.

[30] Ichikawa J, Chung YC, Li Z, Dai J, Meltzer HY. Cholinergic modulation of basal and amphetamine-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Brain Res 2002; 958:176–184.

[31] Pediani JD, Ward RJ, Godin AG, Marsango S, Milligan G. Dynamic Regulation of Quaternary Organization of the M1 Muscarinic Receptor by Subtype-selective Antagonist Drugs. J Biol Chem 2016; 291:13132–13146.

[32] Brackney RJ, Cheung THC, Neisewander JL, Sanabria F. The isolation of motivational, motoric, and schedule effects on operant performance: a modeling approach. J Exp Anal Behav 2011; 96:17–38.

[33] Phillips BU, Heath CJ, Ossowska Z, Bussey TJ, Saksida LM. Optimisation of
cognitive performance in rodent operant (touchscreen) testing: Evaluation and effects of reinforcer strength. Learn Behav 2017; 45:252–262.

[34] R Core Team. R: A Language and Environment for Statistical Computing 2017.

[35] Wickham H. ggplot2 - Elegant Graphics for Data Analysis . New York, NY: Springer New York; 2009.

[36] Kim EW, Phillips BU, Heath CJ, Cho SY, Kim H, Sreedharan J, Song H-T, Lee JE, Bussey TJ, Kim CH, Kim E, Saksida LM. Optimizing reproducibility of operant testing through reinforcer standardization: identification of key nutritional constituents determining reward strength in touchscreens. Mol Brain 2017; 10:31.

[37] Boekhoudt L, Wijbrans EC, Man JHK, Luijendijk MCM, de Jong JW, van der Plasse G, Vanderschuren LJMJ, Adan RAH. Enhancing excitability of dopamine neurons promotes motivational behaviour through increased action initiation. Eur Neuropsychopharmacol 2018; 28:171–184.

[38] Skjoldager P, Pierre PJ, Mittleman G. Reinforcer Magnitude and Progressive Ratio Responding in the Rat: Effects of Increased Effort, Prefeeding, and Extinction. Learn Motiv 1993; 24:303–343.

[39] Alling K, Poling A. The effects of differing response-force requirements on fixed-ratio responding of rats. J Exp Anal Behav 1995; 63:331–346.

[40] Hailwood JM, Heath CJ, Robbins TW, Saksida LM, Bussey TJ. Validation and optimisation of a touchscreen progressive ratio test of motivation in male rats. Psychopharmacology (Berl) 2018.

[41] Olarte-Sánchez CM, Valencia-Torres L, Cassaday HJ, Bradshaw CM, Szabadi E. Effects of SKF-83566 and haloperidol on performance on progressive ratio schedules maintained by sucrose and corn oil reinforcement: quantitative analysis using a new model derived from the Mathematical Principles of Reinforcement (MPR). Psychopharmacology (Berl) 2013; 230:617–630.

[42] Bailey MR, Simpson EH, Balsam PD. Neural substrates underlying effort, time, and risk-based decision making in motivated behavior. Neurobiol Learn Mem 2016; 133:233–256.

[43] Shull RL, Gaynor ST, Grimes JA. Response rate viewed as engagement bouts: effects of relative reinforcement and schedule type. J Exp Anal Behav 2001; 75:247–274.

[44] Ko D, Wanat MJ. Phasic Dopamine Transmission Reflects Initiation Vigor and Exerted Effort in an Action- and Region-Specific Manner. J Neurosci 2016; 36:2202–2211.

[45] Galambos E, Pfeifer AK, György L, Molnár J. Study on the excitation induced by amphetamine, cocaine and alpha-methyltryptamine. Psychopharmacologia 1967; 11:122–129.

[46] Barrett RJ, Leith NJ, Ray OS. A behavioral and pharmacological analysis or variables mediating active avoidance behavior in rats. J Comp Physiol Psychol 1973; 82:489–500.

[47] Kuczensis R, Segal DS. Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem 1997; 68:2032–2037.

[48] Rothman RB, Baumann MH, Dersch CM, Romero DV, Rice KC, Carroll FI, Partilla JS. Amphetamine-type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse 2000.

[49] Mott AM, Nunes EJ, Collins LE, Port RG, Sink KS, Hockemeyer J, Müller CE, Salamone JD. The adenosine A2A antagonist MSX-3 reverses the effects of the dopamine antagonist haloperidol on effort-related decision making in a T-maze cost/benefit procedure. Psychopharmacology (Berl) 2009; 204:103–112.
Minzenberg MJ, Yoon JH. An index of relative central α-adrenergic receptor antagonism by antipsychotic medications. Exp Clin Psychopharmacol 2011; 19:31–39.

Nunes EJ, Randall PA, Hart EE, Freeland C, Yohn SE, Baqi Y, Müller CE, López-Cruz L, Correa M, Salamone JD. Effort-related motivational effects of the VMAT-2 inhibitor tetrabenazine: implications for animal models of the motivational symptoms of depression. J Neurosci 2013; 33:19120–19130.

Bailey MR, Goldman O, Bello EP, Chohan MO, Jeong N, Winiger V, Chun E, Schipani E, Kalmbach A, Cheer JF, Balsam PD, Simpson EH. An Interaction between Serotonin Receptor Signaling and Dopamine Enhances Goal-Directed Vigor and Persistence in Mice. J Neurosci 2018; 38:2149–2162.

Threlfell S, Clements MA, Khodai T, Pienaar IS, Exley R, Wess J, Cragg SJ. Striatal muscarinic receptors promote activity dependence of dopamine transmission via distinct receptor subtypes on cholinergic interneurons in ventral versus dorsal striatum. J Neurosci 2010; 30:3398–3408.

Soares-Cunha C, Coimbra B, Domingues AV, Vasconcelos N, Sousa N, Rodrigues AJ. Nucleus Accumbens Microcircuit Underlying D2-MSN-Driven Increase in Motivation. Eneuro 2018; 5.

Shin JH, Adrover MF, Wess J, Alvarez VA. Muscarinic regulation of dopamine and glutamate transmission in the nucleus accumbens. Proc Natl Acad Sci U S A 2015; 112:8124–8129.

Gjerden P, Brannness JG, Slørdal L. The use and potential abuse of anticholinergic antiparkinson drugs in Norway: a pharmacoepidemiological study. Br J Clin Pharmacol 2009; 67:228–233.

Tandon R, DeQuardo JR, Goodson J, Mann NA, Greden JF. Effect of anticholinergics on positive and negative symptoms in schizophrenia. Psychopharmacol Bull 1992; 28:297–302.

Fleischhacker WW, Barnas C, Günther V, Meise U, Stuppäck C, Unterweger B. Mood-altering effects of biperiden in healthy volunteers. J Affect Disord 1987; 12:153–157.

Talpos JC, Aerts N, Fellini L, Steckler T. A touch-screen based paired-associates learning (PAL) task for the rat may provide a translatable pharmacological model of human cognitive impairment. Pharmacol Biochem Behav 2014; 122:97–106.

Sambeth A, Riedel WJ, Klinkenberg I, Kähkönen S, Blokland A. Biperiden selectively induces memory impairment in healthy volunteers: no interaction with citalopram. Psychopharmacology (Berl) 2015; 232:1887–1897.

Malikowska N, Salat K, Podkowa A. Comparison of pro-amnesic efficacy of scopolamine, biperiden, and phencyclidine by using passive avoidance task in CD-1 mice. J Pharmacol Toxicol Methods 2017; 86:76–80.
Table 1: Summary of the experimental procedures and compounds tested on each cohort of mice.

Table 2: Summary of the main behavioural effects following systemic administration of each muscarinic receptor antagonist.

Figure 1: The effects of systemic scopolamine upon PR performance. A Scopolamine significantly enhances breakpoint. Scopolamine increases measures of general activity including B the rate of IR beam breaks and C nontarget (blank) screen touches. D Scopolamine does not affect response rates. Error bars represent SEM. * p < .05; **p<.01.

Figure 2: The effects of systemic subtype selective muscarinic receptor antagonists, biperiden (M1, A-E), telenzepine (M1, F-G) and tropicamide (M4, H-I) on PR performance. A Biperiden significantly increases breakpoint. B The duration of post reinforcement pausing is reduced by biperiden administration C Biperiden significantly affects response rates. D The rate of decay in responding is significantly reduced by biperiden. E Biperiden significantly reduces the pausing between response bouts. F Telenzepine has no effect on PR breakpoints. G Telenzepine does not affect the duration of post reinforcement pausing. Tropicamide significantly increases both H breakpoint and I nontarget screen responses. Error bars represent SEM. * p < .05; **p<.01; ***p<.001.

Figure 3: Biperiden facilitates the behavioural effects of amphetamine on PR performance (A-B) and the effectiveness of scopolamine and biperiden in reversing a haloperidol-induced
deficit in PR (C) and ERC performance (D-E). A The dose of amphetamine is represented by the graph fill, whereas the dose of biperiden is indicated by the graph pattern. Biperiden facilitates the enhancement in breakpoints caused by amphetamine but does not affect breakpoint when administered in isolation. B 1mg/kg biperiden does not enhance the general effect of amphetamine on IR beam breaks. C Scopolamine and biperiden successfully reverse a haloperidol-induced deficit on PR breakpoint. D Biperiden, but not scopolamine reverses a haloperidol-induced deficit on the trials completed in an ERC task. E Both scopolamine and biperiden reduce the chow consumed during ERC testing. A-B Amph: amphetamine; Bip: biperiden; all doses in mg/kg C-E Halo: haloperidol 0.1mg/kg Scop: Scopolamine 0.3mg/kg;
Cohort	1	2	3	4	5
Number of mice	n = 16	n =16	n = 15	n = 15	n=16
Experimental procedures	Progressive ratio	Progressive ratio	Control tasks	Progressive ratio	Haloperidol Reversal
	Scopolamine	Biperiden Telenzepine Tropicamide	Fixed Ratio-5 Scopolamine Biperiden	Amphetamine x biperiden interaction	Progressive Ratio
	Prefeeding Scopolamine		Food Consumption Scopolamine Biperiden		Scopolamine Biperiden
			Prefeeding (n = 14) Biperiden		Effort-related Choice
			Extinction (n = 14) Biperiden		Scopolamine Biperiden

Page 26
Table 2

Drug	Effect on behaviour
Biperiden	Facilitates multiple measures of motivated behaviour
	Does not increase locomotor activity or interfere with satiety/appetite
	Effects are dependent on reinforcer value and do not occur in the absence of reinforcement
	Facilitates the effects of amphetamine on motivated behaviour
	Reverses the motivational deficit induced by haloperidol on PR and ERC performance
Scopolamine	Facilitates motivated behaviour; however, also increases general activity
	Does not interfere with satiety/appetitive processes
	Effects are largely dependent on reinforcer value
	Reverses the motivational deficit induced by haloperidol on PR but not on ERC performance
Tropicamide	Facilitates PR performance; however, also increases general activity
Telenzepine	No effect on motivated behaviour
Figure 1

A

B

C

D

Scopolamine (mg/kg)

Scopolamine (mg/kg)

Scopolamine (mg/kg)
Figure 3

A

B

C

D

E

Assays

**

B

Amp

Bip

0.0 0.1 1.0 0.0 0.1 1.0

0.0 0.0 0.0 0.3 1.0 0.3 1.0

Breakpoint

0.0 0.1 1.0 0.0 0.1 1.0

0.0 0.0 0.0 0.3 1.0 0.3 1.0

Breakpoint

Halo - + + +
Scop - - + -
Bip - - - +

Halo - + + +
Scop - - + -
Bip - - - +

Halo - + + +
Scop - - + -
Bip - - - +

0.0 0.1 1.0 0.0 0.1 1.0

0.0 0.0 0.0 0.3 1.0 0.3 1.0

Breakpoint

Trials Completed

Chow Consumed (g)
Supplementary Information

Materials and Methods

Apparatus

The behavioural arenas were housed within light and sound attenuating chambers, which were fitted with a fan for ventilation and to reduce background noise. Each behavioural arena consisted of a stainless-steel grating floor and trapezoidal black plastic walls opening out to a 30.73 cm (12.1-inch) touch sensitive screen at one end and a reward delivery magazine at the other. Entries into the magazine were monitored via an infrared (IR) beam. Magazines were also fitted with a light-emitting diode, that illuminated upon delivery of the liquid reward (Yazoo® strawberry milkshake; Friesland Campina UK, Horsham, UK) used in the study. IR beams were also fitted across the floor 6 cm in front of the touchscreen and 3cm from the magazine to monitor activity levels during testing. Black plastic masks consisting of five equally spaced 4cm² response apertures were placed in front of each screen. During the current study, target stimuli were only presented in the central aperture.

Behavioural Pretraining

All cohorts of mice underwent identical pretraining procedures. Prior to behavioural testing, mice were exposed to the milkshake reinforcer in their home cages, to reduce any effects of neophobia. Subsequently, mice were habituated to the testing chambers. This consisted of a 20-minute exposure session, where the touchscreens were active, but no stimuli were displayed and there were no programmed consequences of behavioural output. 200μl of milkshake was placed in each magazine prior to the habituation session. Initial operant testing began with a single screen touch training session. During this session, a white square stimulus was presented in the central response aperture for 30s. Upon stimulus offset a tone (1000ms, 3kHz) was
issued, the magazine was illuminated and 20μL of milkshake was delivered. Following reward delivery, entry into the magazine initiated a 5s inter trial interval (ITI) and extinguished the magazine light. Following the ITI the next trial began. If the mouse touched the stimulus during the 30s presentation period, the stimulus was immediately turned off and the tone and triple the usual reward (60μL of milkshake) were delivered. Each session was terminated following 30 trials.

Subsequently, animals undertook fixed-ratio (FR) training. During all subsequent training the same white square stimulus was used. Each trial commenced with the presentation of the response stimulus in the central aperture. A response to the stimulus resulted in stimulus offset, the reward tone and 20μL of milkshake being delivered to the magazine. Entry and exit from the magazine began the ITI, which was shortened to 4.5s, following which the next trial began immediately. Sessions were terminated following 30 rewards being delivered or 60 minutes elapsing. All animals were required to complete 30 trials within a 60-minute session before moving on to the next stage of training. The subsequent stage consisted of responding on a FR2 schedule. During this stage, two touches to the white square stimulus were needed for trial completion. Following the first response in each trial, the stimulus was briefly removed (500ms) and a short ‘click’ sound (10ms, 3kHz) was played. This brief offset and sound accompanied all subsequent stimulus responses. A session was terminated following 30 trials (i.e. 60 stimulus responses) or 60 minutes elapsing. Once 30 trials were completed within a 60-minute session animal moved onto FR3 training. During FR3 training, three stimulus responses were needed for reward delivery. All other session parameters remained the same as the FR2 training. As before, the criterion was the completion of 30 trials within a 60-minute session. FR3 training was followed by FR5 training, where five stimulus responses were required for reward delivery. Aside from changes in response requirements, all session parameters
remained the same. Animals were required to complete 30 trials within 60 minutes for two consecutive FR5 sessions before beginning behavioural testing.

Behavioural Measures

PR response rates were calculated for each trial by dividing the number of responses made by the time taken to complete the trial, from the first response (therefore, excluding post reinforcement pauses). The first trial was excluded as it only involved a single screen response, meaning it was not possible to calculate a response rate. The following negative exponential function was then fitted to the response rates: \(y = -a\exp(xb) \); with \(y \) being the response rate and \(x \) being the trial number. The predicted peak response rate (a) and decay rate parameter (b) were extracted and analysed for each manipulation. Response rates during the uncapped FR5 sessions were similarly calculated, however the first trial in each session was not excluded as five responses were emitted. Response rates were then fitted with the parabolic function: \(y = -b(x)^2 + a \) to calculate the predicted peak response rate (a) and decay rate parameter (b). Response rates (responses per minute) during the extinction sessions were calculated by taking the time to complete blocks of five responses. As with the PR analysis, these rates were fitted with the negative exponential function: \(y = -a\exp(xb) \), to calculate the predicted peak response (a) and the decay rate (b) for each mouse.
PR	Scopolamine	Veh	0.1mg/kg	0.3mg/kg
Reward Collection Latency	1.32 ± .04	1.33 ± .05	1.42 ± .13	
Magazine entries per second	0.02 ± .00	0.02 ± .00	**0.03 ± .00**	
No. reaching BP within 60 min	13/16	11/16	8/16	
No. Target Touches	136.19 ± 17.19	189.69 ± 29.66	305.69 ± 47.85	
Biperiden	Veh	1mg/kg	3mg/kg	
Reward Collection Latency	1.43 ± .06	1.48 ± .05	1.56 ± .09	
Magazine entries per second	0.01 ± .00	0.01 ± .00	0.02 ± .00	
No. reaching BP within 60 min	8/16	8/16	6/16	
No. Target Touches	410.13 ± 94.86	548.63 ± 65.55	864.69 ± 119.32	
Telenzepine	Veh	3mg/kg	10mg/kg	
Reward Collection Latency	1.46 ± .07	2.26 ± .56	1.49 ± .06	
Magazine entries per second	0.01 ± .00	0.02 ± .00	0.02 ± .00	
No. reaching BP within 60 min	12/16	12/16	12/16	
No. Target Touches	442.53 ± 46.78	479.20 ± 55.45	504.00 ± 56.77	
Tropicamide	Veh	20mg/kg		
Reward Collection Latency	1.35 ± .03	1.31 ± .03		
Magazine entries per second	0.02 ± .00	0.02 ± .00		
Table S1: Mean values ± SEM of reward collection latencies and rate of magazine entries during PR performance as well as the number of subjects reaching breakpoint via the 300s no response period within a 60-minute session and total target touches. Values are given for PR performance following systemic administration of Scopolamine, biperiden, telenzepine and tropicamide. *Significantly different to 0.01mg/kg of scopolamine (p < .05).
Table S2: Mean values ± SEM of PR performance following prefeeding with either water or milkshake and administration of scopolamine or biperiden. Comparisons only reported in cases of a significant drug x prefeed interaction. Scop: Scopolamine 0.3mg/kg; Bip: biperiden 3mg/kg *Significantly different from vehicle (Milkshake condition only, p < .05).

	Scopolamine	Biperiden		
PRP	Veh	Scop	Veh	Bip
Water	27.13 ± 4.62	15.80 ± 2.14	23.70 ± 4.42	18.19 ± 2.56
Milkshake	25.09 ± 6.11	21.21 ± 5.32	32.28 ± 6.92	32.39 ± 6.93
IR Beam Breaks per sec				
Water	0.03 ± .01	0.06 ± .01*	0.17 ± .03	0.20 ± .04
Milkshake	0.04 ± .01	0.03 ± .01	0.16 ± .03	0.17 ± .03
Nontarget Touches per sec				
Water	0.01 ± .00	0.02 ± .01*	0.02 ± .01	0.03 ± .01
Milkshake	0.01 ± .00	0.01 ± .00	0.01 ± .00	0.02 ± .01
Reward Collection Latencies				
Water	1.59 ± .20	1.50 ± .08	1.31 ± .07	1.30 ± .06
Milkshake	1.35 ± .04	1.69 ± .10	1.41 ± .08	1.96 ± .40
Magazine entries per sec				
Water	0.01 ± .00	0.03 ± .00	0.01 ± .00	0.01 ± .00
Milkshake	0.01 ± .00	0.02 ± .00	0.01 ± .00	0.01 ± .00
Table S3:

	Veh	Bip
IR beam Breaks per Sec	0.16 ± 0.02	0.15 ± 0.03
Nontarget touches per Sec	1.54 ± 0.36	1.65 ± 0.41
Magazine entries per sec	0.00 ± .00	0.01 ± .00
Bout Length	4.87 ± 1.11	3.70 ± 0.58
Inter Bout pause	42.31 ± 4.98	36.80 ± 3.05

Table S3: Mean values ± SEM of supplementary measures of the behavioural consequences of biperiden under extinction behaviour. There were no significant differences between drug and vehicle. Bip: biperiden 3mg/kg
	0	0.1	1	0	0	0.1	1
Amphetamine (mg/kg)							
Biperiden (mg/kg)							
PRP	39.15 ± 5.23	42.45 ± 6.06	33.34 ± 2.97	33.93 ± 3.79	27.97 ± 3.15	43.29 ± 5.41	28.68 ± 4.17
Blank Touches per Sec	.02 ± .00	.02 ± .00	.02 ± .00	.02 ± .01	.02 ± .01	.02 ± .01	.02 ± .01
Reward Coll. Latency	1.39 ± .08	1.45 ± .17	1.23 ± .04	1.44 ± .09	1.2 ± .05	1.42 ± .07	1.29 ± .04
Magazine Entries Per Sec	.01 ± .00	.01 ± .00	.01 ± .00	.01 ± .00	.02 ± .00	.01 ± .00	.02 ± .00
Predicted Peak Response Rate	313.57 ± 148.13	101.83 ± 16.51	112.27 ± 18.70	90.88 ± 13.64	112.77 ± 7.17	83.85 ± 13.35	89.36 ± 17.59
Decay Rate	.42 ± .13	.26 ± .05	.18 ± .04	.20 ± .04	.15 ± .02	.19 ± .02	.12 ± .05
Bout Length	7.81 ± 1.34	9.40 ± 2.08	13.61 ± 1.90	10.33 ± 2.40	14.75 ± 2.07	8.26 ± 1.42	14.68 ± 2.00*
Inter-bout pause	51.18 ± 4.52	42.53 ± 3.60	41.30 ± 2.92	41.04 ± 4.79	43.88 ± 3.89	48.94 ± 4.35	35.38* ± 3.64

Table S4: Effects of Amphetamine/Biperiden combinations upon PR performance. Mean values ± SEM. PRP: post reinforcement pause. * Significantly different from 0/0 condition ($p < .05$).
Table S5: Mean values ± SEM of parameters of PR performance following administration of haloperidol and reversal with scopolamine and biperiden. Hal: Haloperidol 0.1mg/kg; Scop: Scopolamine 0.3mg/kg; Bip: Biperiden 3mg/kg; # Significantly different from Hal/veh condition (p < .05); * Significantly different from Veh/Veh condition (p < .01); † Significantly greater than all other conditions (p < .05).

	Veh/Veh	Hal/Veh	Hal/Scop	Hal/Bip
PRP	22.24 ± 2.59	22.11 ± 3.49	23.36 ± 2.78	25.53 ± 3.45
IR Beam Breaks	0.14 ± .02	0.10 ± .02	0.12 ± .02	0.12 ± .02
per Sec				
Blank Touches per Sec	**0.02 ± .00**	0.01 ± .00	0.02 ± .00	**0.02 ± .00**
Reward Collection Latency	1.38 ± .06	1.67 ± .15	**1.79 ± .11**	1.57 ± .15
Magazine Entries Per Sec	0.01 ± .00	0.01 ± .00	**0.02 ± .00**	0.01 ± .00
Predicted Peak response rate	110.70 ± 23.10	901.04 ± 671.23	95.135 ± 18.23	147.19 ± 45.82
Decay Rate	0.33 ± .06	0.80 ± 0.17	0.31 ± 0.05	0.39 ± 0.09
Bout Length	4.75 ± 0.42	3.76 ± 0.35	5.48 ± 0.83	4.47 ± 0.46
Inter-bout pause	39.00 ± 2.52	44.08 ± 2.56	33.62 ± 3.36	34.30 ± 3.41
Table S6

	Veh/Veh	Hal/Veh	Hal/Scop	Hal/Bip
PRP	35.76 ± 4.71	**53.95 ± 5.19***	39.78 ± 3.83	33.45 ± 2.82
IR Beam Breaks	0.11 ± .02	0.09 ± .01	0.09 ± .01	0.11 ± .01
Blank Touches per Sec	0.02 ± .00	0.02 ± .00	0.01 ± .00	0.01 ± .00
Reward Collection Latency	1.07 ± .03	**1.22 ± .04**†	**1.40 ± .08**‡	**1.21 ± .06**§
Magazine Entries Per Sec	0.03 ± .00	0.02 ± .00†	0.02 ± .00†	0.03 ± .00

Table S6: Mean values ± SEM of measures of ERC performance following administration of haloperidol and reversal with scopolamine and biperiden. * Significantly higher than all other conditions (p < .05); # Significantly greater than Veh/Veh condition (p <.05); † Significantly lower than Veh/Veh condition (p < .01).
Figure S1: The effects of scopolamine and biperiden on FR5 (A-C) performance and free food consumption (D) as well as PR performance in prefed mice (E-F) and the effect of biperiden upon extinction behaviour (G-I). A Neither scopolamine nor biperiden significantly affect the number of FR5 trials completed. B Scopolamine but not biperiden increases the rate of IR beam breaks made during FR5 responding. C Drug administration produced no effects upon FR5 response rates. D Neither scopolamine nor biperiden effects free consumption of strawberry milkshake. E Scopolamine significantly increases breakpoint in animals prefed with both water (control) and milkshake. F Biperiden significantly increases breakpoint in animals prefed with water, but not milkshake. G Biperiden does not affect the total number of target touches during
an extinction test. **H** Biperiden does not affect the rate of responding under extinction. Biperiden also does not affect the decay in response rates during an extinction test. Error bars represent SEM. Scop: Scopolamine 0.3mg/kg; Bip: Biperiden 3mg/kg; **p<.01; ***p<.001.