Leader–follower consensus control for a nonlinear multi-agent robot system with input saturation and external disturbance

Majid Naserian, Amin Ramazani, Ali Khaki-Sedigh and Ali Moarefianpour

ABSTRACT
This paper addresses the leader–follower consensus control problem for a nonlinear multi-agent robot system with control input constraint and external disturbances. Robot system is one of the most important practical systems in the industry. Due to the presence of disturbances in most practical systems, this paper considers the issue of finite-time leader–follower consensus control of the nonlinear multi-agent robot system along with actuator saturation and bounded disturbance. The modified terminal sliding mode control method is suggested for the system which is able to guarantee the stability of the overall system and fast finite-time leader–follower consensus control. For two different scenarios, the simulation of multi-agent robot system has been performed. The results show the effectiveness of the proposed control method.

1. Introduction
Multi-agent systems has recently gotten to be an inclusive subject due to its wide requests in many areas, such as power systems, unmanned air vehicles, sensor networks, smart grids, biological systems, robotic teams, formation control, etc. (Hu et al., 2020; Hu et al., 2020; Hu et al., 2020; Li et al., 2011; Ma et al., 2015; Qin et al., 2014; Zhao et al., 2014; Zhao & Jia, 2015; Zhao & Jia, 2016). For getting an overall goal in multi-agent systems, the use of cooperative control is essential and the key idea is to design the distributed controllers on each agent by means of its local neighbouring information. That is, under a distributed local protocol, the agents can work cooperatively to achieve an overall goal. Especially, under the idea of cooperation, the agents in multi-agent systems only share information with their neighbours locally and attempt to reach an agreement to a certain degree.

Nowadays, attention to robust approaches in nonlinear, uncertain, and disturbed systems in various applications has increased dramatically (Shi et al., 2017; Wang, Zhu, et al., 2020; Wu et al., 2019; Xiong et al., 2016; Yu et al., 2020; Zhu et al., 2020). In the case of multi-agent systems, typical shared overall behaviours under cooperative control contain consensus (Chen et al., 2016; Feng et al., 2016; Hu et al., 2016; Wen et al., 2014), synchronization (Arenas et al., 2008; Lü et al., 2004; Pecora & Carroll, 1998), flocking (Olfati-Saber, 2006; Reynolds, 1987; Vicsek et al., 1995), and swarming (Yu et al., 2013), and much developments have been already realized. The consensus problem generally concerns about how a group of autonomous agents can reach to an agreement on position, velocity, or other certain quantity of criteria. Many of studied multi-agent systems are with single- or double-integrator dynamics (Meng et al., 2011; Qin et al., 2012; Wei, 2008; Wu et al., 2012; Yu et al., 2010).

In the study of consensus control, the convergence rate has been a significant topic. To be sure, this important performance index contains high interest for studying the effectiveness of a consensus protocol in the context of multi-agent systems. Most of consensus procedures concentrate on asymptotic convergence, where the settling time is unlimited. However, many applications require a high speed convergence commonly described by a finite-time control strategy (Huang et al., 2021; Wang, Huang, et al., 2020; Wang, Zhu, et al., 2020; Xiwei et al., 2009). Finite-time control allows some advantageous properties, such as good disturbance rejection and good robustness against uncertainties.

Another issue that needs to be addressed in consensus control is that in most practical control applications, such as those in robot manipulation and aerospace industry, the performance of the controller is directly related to the accuracy of the mathematical model and external
disturbances. However, it is difficult to establish an appropriate mathematical model for a large number of nonlinear systems when the systems are complex and highly coupled nonlinear with uncertainties and external disturbances (Chen et al., 2020; Wang, 1999; Zhang et al., 2019) and there are some gaps between mathematical models and actual plant dynamics.

Also, in many practical dynamic systems, physical actuators saturation on hardware indicates an inevitable constraint of the control signal magnitude. Control saturation is one of the most common non-smooth nonlinearity that should be explicitly considered in the control design. The controllers that ignore actuator limitations may give rise to undesirable inaccuracy, severely degrade the performance of system, or even damage the stability of system (Leonessa et al., 2009). Hence, the controller design subjected to the control saturation and simultaneously achieving to higher performance is a very practical problem.

Most of the existing consensus protocols have been derived when there is no leader or when the leader is static. Nevertheless, in many missions, a dynamic leader is required. Many applications may require a dynamic leader, which could be virtual for its followers. Its behaviour is independent of the other agents. The leader-following consensus problem for multi-agent systems with Lipschitz nonlinear dynamics is discussed in (Sharifi & Yazdanpanah, 2020) and there are some gaps between mathematical models and actual plant dynamics.

For preventing such problems, sliding mode control (SMC) remains to be one of the most effective approaches in settling bounded disturbances and parameter variations (Edwards & Spurgeon, 1998; Utkin, 1992; Utkin et al., 1999). Typical SMC includes linear sliding-mode (LSM) control and terminal sliding-mode (TSM) control (Feng et al., 2002; Feng et al., 2013), where the former one is asymptotically stable while the second one is finite-time stable. TSM control can provide faster convergence and higher precision control than the traditional linear sliding mode control, nevertheless, it needs that a disturbance bound to be known.

The main purpose of this paper is to investigate the problem of finite-time leader–follower consensus control of multi-agent nonlinear robot systems with saturation and external bounded disturbances. Accordingly, a new TSM control method is proposed for multi-agent robot systems, which solves the finite-time leader–follower consensus control design for networked systems in the presence of disturbance and control input constraint. The rest of this paper is set as follows. In Section 2, problem formulation is stated. In Section 3, some simulation results are used to demonstrate the effectiveness of the proposed method. Finally, the conclusion is drawn in Section 4.

2. Leader–follower consensus control formulation for a multi-agent robot system by using of terminal sliding-mode method

In this section, the structure of the terminal sliding-mode method is provided for leader–follower consensus control of the multi-agent robot system. We consider a class of multiple mechanical nonlinear systems

\[
T_τ \ddot{q}_i + C_i(q_i, \dot{q}_i)\dot{q}_i + N_i(q_i) + D_i = τ_i,
\]

where \(q_i \in \mathbb{R}^m\) is the state of the \(i\)th system, \(τ_i \in \mathbb{R}^m\) is the saturated control input vector, \(T_τ \subset \mathbb{R}^{m \times m}\) is an inertia matrix, \(C_i(q_i, \dot{q}_i)\) is the centripetal and Coriolis matrix, \(N_i(q_i)\) denotes the friction terms and \(D_i\) is disturbance. Denote \(v_i = \dot{q}_i\). System (1) can be written as

\[
\dot{q}_i = v_i
\]

\[
\dot{v}_i = f_i(q_i, v_i) + g_iu_i + \delta_i + \dot{\vartheta}_i
\]

where \(v_i \in \mathbb{R}^m\) denotes the velocity.

\[
f_i(q_i, v_i) = -T_τ^{-1}(C_i(q_i, v_i)v_i + N_i(q_i))
\]

\[
\dot{\vartheta}_i = -T_τ^{-1}D_i
\]

\[
g_i = -T_τ^{-1}
\]

Defined that the upper bound of input control is \(τ_{\text{max}}\), which is positive, \(\delta_i = u_i - τ_i\), and the saturation function
sat(\(u_i\)) is expressed as follows:

\[
\begin{align*}
 u_i &= \begin{cases}
 \tau_{\text{imax}} & u_i > \tau_{\text{imax}} \\
 u_i & |u_i| \leq \tau_{\text{imax}} \\
 -\tau_{\text{imax}} & u_i < -\tau_{\text{imax}}
 \end{cases}
\end{align*}
\]

From the description above, it is known that \(\delta_i\) is the error caused by input saturation, which is the most important parameter to solve the control input saturation problem. As adaptive method has omnipotent ability of approximation, so use it to approximate \(\delta_i\) here.

For the problem of leader–follower consensus control in multi-agent systems, two state error measures are considered for each follower agent, that is, absolute and relative state errors. The absolute error is the state error of an individual follower agent with respect to the other follower agents of the group. The absolute state errors of the \(i\)th follower agent are defined by

\[
\begin{align*}
 e_{qi} &= q_i - q_0 \\
 e_{vi} &= v_i - \dot{q}_0
\end{align*}
\]

The leader agent trajectory \(q_0\) and its derivatives are considered in a \(\Omega_0\) compact set defined by \(\Omega_0 = \{ (q_0, \dot{q}_0, \ddot{q}_0) | q_0^2 + \dot{q}_0^2 + \ddot{q}_0^2 \leq c_1 \}\), and \(c_1\) is a positive constant.

The dynamic equations for the absolute errors \(e_{qi}\) and \(e_{vi}\) can be obtained using (2) as

\[
\begin{align*}
 \dot{e}_{qi} &= e_{vi} \\
 \dot{e}_{vi} &= -\dot{q}_0 + f_i(q_i, v_i) + g_i u_i + \delta_i + \vartheta_i
\end{align*}
\]

Which can be re-expressed in the compact form as

\[
\begin{align*}
 \dot{e}_q &= e_v, \\
 \dot{e}_v &= -Q_0 + F + Gu + \delta + \vartheta,
\end{align*}
\]

where

\[
\begin{align*}
 e_q &= (e_{q1}^T, e_{q2}^T, \ldots, e_{qn}^T)^T \in \mathbb{R}^{mn} \\
 e_v &= (e_{v1}^T, e_{v2}^T, \ldots, e_{vn}^T)^T \in \mathbb{R}^{mn} \\
 F &= (f_{11}^T, f_{12}^T, \ldots, f_{1n}^T)^T \in \mathbb{R}^{mn} \\
 Q_0 &= (q_{01}^T, q_{02}^T, \ldots, q_{0n}^T)^T \in \mathbb{R}^{mn} \\
 u &= (u_{11}^T, u_{12}^T, \ldots, u_{1n}^T)^T \in \mathbb{R}^{mn} \\
 \delta &= (\delta_1^T, \delta_2^T, \ldots, \delta_n^T)^T \in \mathbb{R}^{mn} \\
 \vartheta &= (\vartheta_1^T, \vartheta_2^T, \ldots, \vartheta_n^T)^T \in \mathbb{R}^{mn} \\
 G &= \text{diag}(g_1, g_2, \ldots, g_n) \in \mathbb{R}^{(mn) \times (mn)}
\end{align*}
\]

The relative error is the state error of an individual follower agent with respect to the other follower agent in the multi-agent system. The relative state errors between the \(i(i = 1, 2, \ldots, n)\)th and \(j(j = 1, 2, \ldots, n)\)th follower agents are defined as

\[
\begin{align*}
 r_{qij} &= q_i - q_j \\
 r_{vij} &= v_i - v_j
\end{align*}
\]

Because the common desired trajectory \(q_0\) is available to only a subset of the group members and each agent in the group has access to only the information of its neighbour agents, the \(i(i = 1, 2, \ldots, n)\)th agent may not obtain the absolute state errors and all relative state errors. Considering these facts and using the weighted adjacency matrices \(A\) and \(B\), we define lumped state errors \(\alpha_{qi} \in \mathbb{R}^m\) and \(\alpha_{vi} \in \mathbb{R}^m\) including absolute and relative state errors as

\[
\begin{align*}
 \alpha_{qi} &= \sum_{j=1}^{n} a_{ij} r_{qij} + b_i e_{qi} \\
 \alpha_{vi} &= \sum_{j=1}^{n} a_{ij} r_{vij} + b_i e_{vi}
\end{align*}
\]

respectively, where \(a_{ij}\) is the element of the weighted adjacency matrix \(A\). The lumped state errors \(\alpha_{qi} \in \mathbb{R}^m\) and \(\alpha_{vi} \in \mathbb{R}^m\) are the sum of the absolute and relative state errors and only depend on the information of the neighbour agents of the \(i\)th agent. The controller for each agent is developed based on the lumped state errors \(\alpha_{qi} \in \mathbb{R}^m\) and \(\alpha_{vi} \in \mathbb{R}^m\).

In order to facilitate the subsequent theoretical analysis, the lumped state errors \(\alpha_{qi} \in \mathbb{R}^m\) and \(\alpha_{vi} \in \mathbb{R}^m\) can be re-expressed in terms of the absolute state errors \(e_{qi}\) and \(e_{vi}\) by some simple algebra transformation as following:

\[
\begin{align*}
 \alpha_{qi} &= \sum_{j=1}^{n} a_{ij} r_{qij} + b_i e_{qi} \\
 &= \sum_{j=1}^{n} l_{ij} e_{qi} + b_i e_{qi}, \\
 \alpha_{vi} &= \sum_{j=1}^{n} a_{ij} r_{vij} + b_i e_{vi} \\
 &= \sum_{j=1}^{n} l_{ij} e_{vi} + b_i e_{vi}
\end{align*}
\]

where \(l_{ij}\) is the element of the graph Laplacian matrix \(L\). Define

\[
\begin{align*}
 \alpha_q &= (\alpha_{q1}^T, \alpha_{q2}^T, \ldots, \alpha_{qn}^T)^T \in \mathbb{R}^{mn} \\
 \alpha_v &= (\alpha_{v1}^T, \alpha_{v2}^T, \ldots, \alpha_{vn}^T)^T \in \mathbb{R}^{mn}
\end{align*}
\]
And then the lumped state errors (12) can be written in terms of the aforementioned quantities as follows:

\[\alpha_q = M_1 e_q, \]
\[\alpha_v = M_1 e_v, \]

where \(M_1 = (L + B) \otimes I_m \in \mathbb{R}^{mn} \) and \(\otimes \) denotes the Kronecker product. Using (7), the dynamic equations for \(\alpha_q \) and \(\alpha_v \) are given by

\[\dot{\alpha}_q = \alpha_v \]
\[M_2 \dot{\alpha}_v = -Q_0 + F + Gu + \delta + \theta \]

Respectively, where \(M_2 = M_1^{-1} \).

The proposed fast terminal sliding manifold \(s_i \in \mathbb{R}^m (i = 1, 2, \ldots, n) \) is defined as

\[s_i = \alpha_v + \sigma \alpha_q, \]

where \(\sigma_i \) is a positive constant. The first time derivative of the sliding manifold (15) is given by

\[\dot{s}_i = \dot{\alpha}_v + \sigma \dot{\alpha}_q \]

Note that there exists no singularity problem in the preceding equation. The terminal sliding manifold given by (15) can be expressed in a compact form as

\[s = \alpha_v + \sigma \alpha_q, \]

where

\[s = (s_1^T, s_2^T, \ldots, s_n^T)^T \in \mathbb{R}^{mn} \]
\[\sigma = \text{diag} \{\sigma_1, m, \sigma_2, l_m, \ldots, \sigma_n, l_m\} \in \mathbb{R}^{(mn) \times (mn)} \]

Lemma 1 (An-Min et al., 2013)

If the sliding manifold \(\dot{s} = \dot{s} = 0 \) is reached, where \(\dot{s} = (\dot{s}_1, \ldots, \dot{s}_m, \ldots, \dot{s}_n, \ldots, \dot{s}_n) \), then the absolute state error converges to zero in finite time.

The first time derivative of the sliding manifold (17) is obtained from (16) as

\[\dot{s} = \dot{\alpha}_v + \sigma \dot{\alpha}_q \]

By premultiplying \(M_2 \) on both sides of (19) and then substituting (14) into the resulting expression, we obtain

\[M_2 \dot{s} = M_2 (\dot{\alpha}_v + \sigma \dot{\alpha}_q) = M_2 \sigma \alpha_v - Q_0 + F + Gu + \delta + \theta \]

Note that if all follower agents’ states \(q_i \) and \(v_i \) approach to the desired trajectories, then \(e_{qi} = e_{vi} = \alpha_{qi} = \alpha_{vi} = 0 \) and hence \(M_2 \sigma \alpha_v = 0 \).

The control law for the ith follower agent in the multi-agent system is now given by

\[u_i = g_i^{-1}(\tilde{f}_i(q_i, v_i) - K_i s_i - \delta_i - \psi_i), i = 1, 2, \ldots, n \]

\[u = G^{-1}(-F - K_s - \bar{\delta} - \psi), \]

where \(K_i \) is positive definite, diagonal, and constant matrix; the robust term \(\psi_i \in \mathbb{R}^m \), which is determined in the preceding equations, is used to counteract the external disturbance and the adaptive law for approximated \(\delta_i \) is obtained from (22).

\[\dot{\delta}_i = \lambda_i s_i \]

Substituting the control law (21) into the error dynamics (20) results in the following dynamic equation for the sliding manifold \(s \)

\[M_2 \dot{s} = M_2 \sigma \alpha_v - Q_0 - Ks - \bar{\delta} - \bar{\psi} + \theta \]

\[= \chi - Ks - \bar{\delta} - \bar{\psi} + \theta - Q_0, \]

where \(\chi = M_2 \sigma \alpha_v \in \mathbb{R}^{mn} \) and

\[K = \text{diag} \{K_1, K_2, \ldots, K_n\} \]
\[\bar{\delta} = \text{diag} \{\bar{\delta}_1, \bar{\delta}_2, \ldots, \bar{\delta}_n\} \]
\[\bar{\psi} = (\bar{\psi}_1^T, \bar{\psi}_2^T, \ldots, \bar{\psi}_n^T)^T \]

For a sufficiently large positive constant \(s_{\text{max}} \), we construct the following compact set

\[\Omega_s = \left\{ s | s^T s \leq \frac{2s_{\text{max}}}{\lambda_{\text{max}}(M_2)} \right\}, \]

where \(\lambda_{\text{max}}(.) \) denotes the maximum eigenvalue of a matrix. Because the sets \(\Omega_0 \) and \(\Omega_s \) are compact in \(\mathbb{R}^{3m} \) and \(\mathbb{R}^{mn} \), respectively, the variable \(\chi \) has a maximum \(\chi_M \) on the compact set \(\Omega_0 \times \Omega_s \).

Next, the robust controller \(\psi_i \) in the control law (21) is defined as (Zeng-Guang et al., 2009), (An-Min et al., 2008)

\[\psi_{ij} \equiv \kappa_j \tanh \left(\frac{mk_j \kappa_j s_{ij}}{\epsilon} \right), k_{ij} = 0.2785, j = 1, 2, \ldots, m \]

where \(\kappa_j \) is a positive constant satisfying \(\kappa_j \geq \bar{\theta}_m + \bar{x}_0, \) \(\epsilon \) is a positive scalar and \(s_{ij} = \alpha_{uj} + \sigma \alpha_{uj} \). The following inequality with respect to the robust controller \(\psi_i \) can be easily obtained from (Zeng-Guang et al., 2009), (An-Min
et al., 2008) as
\[
0 \leq s_i^T (\dot{q}_i - \ddot{q}_0) - s_i^T \psi_i \\
\leq \sum_{j=1}^{m} |s_{ij}| (\dot{q}_{Mi} + \ddot{q}_0) - \sum_{j=1}^{m} s_{ij} \psi_{ij} \leq \epsilon
\] (27)

Consider the following Lyapunov function candidate:

\[
V = \frac{1}{2} s^T M s + \sum_{i=1}^{n} \frac{1}{2\lambda_i} \delta_i^2
\] (28)

where \(\delta_i = \delta_i - \dot{\delta}_i \). The time derivative of the Lyapunov function

\[\dot{V} \leq -\sum_{j=1}^{m} |s_{ij}| (\dot{q}_{Mi} + \ddot{q}_0) - \sum_{j=1}^{m} s_{ij} \psi_{ij} \leq \epsilon \]

\[\dot{V} \leq \epsilon \]

Figure 1. States of four mechanical robots in leader following.

Figure 2. Robot 1 control signals.
function (28) along (23) yields

$$\dot{V} = s^T M_2 \dot{s} + \sum_{i=1}^{n} \frac{1}{\lambda_i} \dddot{\delta}_i = s^T \chi - s^T Ks - s^T \psi$$

$$+ s^T (\theta - Q_0) + s^T \delta - \sum_{i=1}^{n} \frac{1}{\lambda_i} \dddot{\delta}_i$$

(29)

By using (22) and (27), the following inequality

$$0 \leq s^T (\theta - Q_0) - s^T \psi = \sum_{i=1}^{n} (s_i^T (\theta_i - \tilde{q}_0) - s_i^T \psi_i) \leq n \epsilon$$

(30)

Can be obtained, and by using the well-known inequality

$$\left(\sqrt{c_2s} - \frac{\chi}{2\sqrt{c_2}} \right)^T \left(\sqrt{c_2s} - \frac{\chi}{2\sqrt{c_2}} \right) \geq 0$$

(31)

Figure 3. Robot 2 control signals.

Figure 4. Robot 3 control signals.
The following inequality
\[s^T \chi \leq c_2 s^T s + \frac{\chi M}{4c_2} \] (32)
Can be obtained, where \(c_2 \) is a positive constant satisfying \(c_2 < \lambda_\text{min}(K_1) \) and \(\lambda_\text{min}(\cdot) \) denotes the minimum eigenvalue of a matrix.

Applying inequalities (30) and (32) to (29), \(\dot{V} \) can be upper bounded by
\[\dot{V} \leq -(\lambda_\text{min}(K_1) - c_2)s^T s + c_3, \] (33)
where \(c_3 = n\epsilon + \frac{\chi^2 M}{4c_2} \) is a positive constant. Thus, \(\dot{V} \) is strictly negative outside of the following compact set \(\Omega_1 \)
\[\Omega_1 = \left\{ s(t) \mid s(t) \leq \sqrt{\frac{c_3}{\lambda_\text{min}(K_1) - c_2}} \right\} \] (34)

Figure 5. Robot 4 control signals.

Figure 6. States of four mechanical robots in leader following.
Which implies that \(s \) decreases whenever \(s \) is outside the compact set \(\Omega_1 \) and therefore, it is concluded that \(s \) is uniformly ultimately bounded.

3. Numerical results

To show the effectiveness of the presented distributed TSM control method to robust finite-time leader–follower consensus problem, the following scenarios have been done on the multi-agent system with four robots, where matrices of the robots in Equation (1) are taken as follows:

\[
T = \begin{bmatrix} t_1 & 0 \\ 0 & t_2 \end{bmatrix} \\
C = \begin{bmatrix} \cos(q_1) & c_1 \dot{q}_2 \\ c_2 \dot{q}_2 & \sin(q_2) \end{bmatrix} \\
N = \begin{bmatrix} n_1 \dot{q}_1 & 0 \\ 0 & n_2 \dot{q}_2 \end{bmatrix}
\]

(35)

The system parameters are considered as follows:

\[
t_1 = t_2 = 5 \\
c_1 = c_2 = 2 \\
n_1 = n_2 = 3
\]

(36)

The initial positions of the robots are at \((-3, 1), (-5, 0.5), (-6, -1)\) and \((-4, -0.5)\) respectively.

The control parameters are selected as follows:

\[
A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \\
B = [1, 1, 1, 1]^T \\
\tau_{\text{max}} = 20 \\
K = 4l_4 \\
\sigma = 2l_4 \\
\lambda = 0.1l_4 \\
\kappa = 0.5l_4 \\
\mu = 0.01, \epsilon = 0.01
\]

(37)

Scenario 1: without disturbance

In this scenario, no disturbance is entered into multi-agent system. The simulation results are illustrated in Figures 1–5, among which, Figure 1 shows the states of four mechanical robots in leader following, and Figures 2–5 depict the control signals. **Scenario 2: with disturbance**

In this scenario, the following disturbance is entered into multi-agent system.

\[
d_1 = 0.7\sin(0.2t) \\
d_2 = 0.8\cos(0.3t)
\]

(38)

![Figure 7. Robot 1 control signals.](image-url)
The simulation results are illustrated in Figures 6–10, among which, Figure 6 shows the states of four mechanical robots in leader following, and Figures 7–10 depict the control signals.

It is clear that the proposed control can achieve the convergence of the tracking errors to zero in finite time. These two scenarios confirm the theoretical results in previous section and it is clear that disturbance does not have much effect on the efficiency of the control method.

4. Conclusion
The most important innovation of this paper is the development and analysis of finite-time leader–follower
consensus control using the terminal sliding mode control method for a multi-agent robot system with control input saturation, disturbance and nonlinear effects. By using of Lyapunov theory and the terminal sliding mode control method ensure that all operating modes can be driven onto sliding surface and achieved desired leader–follower consensus in finite time even in the presence of control input constraint and external disturbances. Considering uncertainty, noise and operationalization and practical implementation of the proposed method is a good way for future studies in this field.

Disclosure statement
No potential conflict of interest was reported by the author(s).

ORCID
Amin Ramazani http://orcid.org/0000-0001-7901-7945

References
An-Min, Z., Krishna Dev, K., & Zeng-Guang, H. (2013). Distributed consensus control for multi-agent systems using terminal sliding mode and Chebyshev neural networks. *International Journal of Robust and Nonlinear Control, 23*(3), 334–357. https://doi.org/10.1002/rnc.1829

An-Min, Z., Zeng-Guang, H., & Min, T. (2008). Adaptive control of a class of nonlinear pure-feedback systems using fuzzy backstepping approach. *IEEE Transactions on Fuzzy Systems, 16*(4), 886–897. https://doi.org/10.1109/TFUZZ.2008.917301

Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y., & Zhou, C. (2008). Synchronization in complex networks. *Physics Reports, 469*(3), 93–153. https://doi.org/10.1016/j.physrep.2008.09.002

Chen, Y., Dong, H., Lü, J., Sun, X., & Liu, K. (2016). Robust consensus of nonlinear multiagent systems with switching topology and bounded noises. *IEEE Transactions on Cybernetics, 46*(6), 1276–1285. https://doi.org/10.1109/TCYB.2015.2448574

Chen, Z., Wang, J., Ma, K., Huang, X., & Wang, T. (2020). Fuzzy adaptive two-bits-triggered control for nonlinear uncertain system with input saturation and output constraint. *International Journal of Adaptive Control and Signal Processing, 34*(4), 543–559. https://doi.org/10.1002/acs.3098

Edwards, C., & Spurgeon, S. K. (1998). *Sliding mode control: Theory and applications*. Taylor and Francis.

Feng, Z., Hu, G., & Wen, G. (2016). Distributed consensus tracking for multiagent systems under two types of attacks. *International Journal of Robust and Nonlinear Control, 26*(5), 896–918. https://doi.org/10.1002/rnc.3342

Feng, Y., Yu, X., & Han, F. (2013). On nonsingular terminal sliding-mode control of nonlinear systems. *Automatica, 49*(6), 1715–1722. https://doi.org/10.1016/j.automatica.2013.01.051

Feng, Y., Yu, X., & Man, Z. (2002). Non-singular terminal sliding mode control of rigid manipulators. *Automatica, 38*(12), 2159–2167. https://doi.org/10.1016/S0005-1098(02)00147-4

Hu, W., Liu, L., & Feng, G. (2016). Consensus of linear multi-agent systems by distributed event-triggered strategy. *IEEE Transactions on Cybernetics, 46*(1), 148–157. https://doi.org/10.1109/TCSY.2015.2398892

Hu, J., Wang, M., Zhao, C., Pan, Q., & Du, C. (2020). Formation control and collision avoidance for multi-UAV systems based on Voronoi partition. *Science China Technological Sciences, 63*(1), 65–72. https://doi.org/10.1007/s11431-018-9449-9

Hu, J., Zhang, H., Liu, L., Zhu, X., Zhao, C., & Pan, Q. (2020). Convergent multiagent formation control with collision avoidance. *IEEE Transactions on Robotics, 36*(6), 1805–1818. https://doi.org/10.1109/TRO.2020.2998766
Hu, J. W., Zheng, B. Y., Wang, C., Zhao, C. H., Hou, X. L., Pan, Q., & Xu, Z. (2020). A survey on multi-sensor fusion based obstacle detection for intelligent ground vehicles in off-road environments. Frontiers of Information Technology & Electronic Engineering, 21(5), 675–692. https://doi.org/10.1631/FITEE.1900518

Huang, Y., Wang, J., Wang, F., & He, B. (2021). Event-triggered adaptive finite-time tracking control for full state constraints nonlinear systems with parameter uncertainties and given transient performance. ISA Transactions, 108, 131–143. https://doi.org/10.1016/j.isatra.2020.08.022

Leonessa, A., Haddad, W. M., Hayakawa, T., & Morel, Y. (2009). Optimal control of a linear uncertain system with actuator amplitude and rate saturation constraints. International Journal of Adaptive Control and Signal Processing, 23(1), 73–96. https://doi.org/10.1002/acs.1065

Li, Z., Duan, Z., Chen, G., & Huang, L. (2010). Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint. IEEE Transactions on Circuits and Systems I, 57(1), 213–224. https://doi.org/10.1109/TCSI.2009.2023937

Li, Z., Liu, X., Lin, P., & Ren, W. (2011). Consensus of linear multi-agent systems with reduced-order observer-based protocols. System Control Letters, 60(7), 510–516. https://doi.org/10.1016/j.sysconle.2011.04.008

Li, G., Wang, X., & Li, S. (2020). Finite-time consensus algorithms of leader-follower higher-order multi-agent systems with uncertain nonlinearities. Journal of the Franklin Institute, 357(16), 6861–6880. https://doi.org/10.1016/j.jfranklin.2019.12.044

Lin, P., Jia, Y., & Li, L. (2008). Distributed robust H_∞ consensus control in directed networks of agents with time-delay. System Control Letters, 57(8), 643–653. https://doi.org/10.1016/j.sysconle.2008.01.002

Liu, X., & Jia, Y. (2010). H_∞ consensus control of multi-agent systems with switching topology: A dynamic output feedback protocol. International Journal of Control, 83(3), 527–537. https://doi.org/10.1080/00207179903267039

Lü, J., Yu, X., Chen, G., & Cheng, D. (2004). Characterizing the synchronizability of small-world dynamical networks. IEEE Transactions on Circuits Systems I: Regular Papers, 51(4), 787–796. https://doi.org/10.1109/TCSI.2004.823672

Ma, Q., Lewis, F. L., & Xu, S. Y. (2015). Cooperative containment of discrete-time linear multi-agent systems. International Journal of Robust and Nonlinear Control, 25(7), 1007–1018. https://doi.org/10.1002/rnc.3124

Meng, Z., Ren, W., Cao, Y., & You, Z. (2011). Leaderless and leader-following consensus with communication and input delays under a directed network topology. IEEE Transactions on Systems, Man, Cybernetics Part B, Cybernetics, 41(1), 75–88. https://doi.org/10.1109/TSMCB.2010.2045891

Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control, 51(3), 401–420. https://doi.org/10.1109/TAC.2005.864190

Pecora, L. M., & Carroll, T. L. (1998). Master stability functions for synchronized coupled systems. Physical Review Letters, 80(10), 2109–2112. https://doi.org/10.1103/PhysRevLett.80.2109

Qin, J., Ma, Q., Shi, Y., & Wang, L. (2017). Recent advances in consensus of multi-agent systems: A brief survey. IEEE Transactions on Industrial Electronics, 64(6), 4972–4983. https://doi.org/10.1109/TIE.2016.2636810

Qin, J., Yu, C., & Gao, H. (2014). Coordination for linear multiagent systems with dynamic interaction topology in the leader-following framework. IEEE Transactions on Industrial Electronics, 61(5), 2412–2422. https://doi.org/10.1109/TIE.2013.2273480

Qin, J., Zhang, G., Zheng, W. X., & Kang, Y. (2019). Adaptive sliding mode consensus tracking for second-order nonlinear multi-agent systems with actuator faults. IEEE Transactions on Cybernetics, 49(5), 1605–1615. https://doi.org/10.1109/TCYB.2018.2805167

Qin, J., Zheng, W. X., & Gao, H. (2012). Coordination of multiple agents with double-integrator dynamics under generalized interaction topologies. IEEE Transactions on Systems, Man, Cybernetics Part B, Cybernetics, 42(1), 44–57. https://doi.org/10.1109/TSMCB.2011.2164523

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. Computers & Graphics, 21(4), 25–34. https://doi.org/10.1145/37402.37406

Sharifi, M., & Yazdanpanah, M. J. (2020). Finite time consensus of nonlinear multi-agent systems in the presence of communication time delays. European Journal of Control, 53, 10–19. https://doi.org/10.1016/ejcon.2019.10.009

Shi, K., Tang, Y., Liu, X., & Zhong, S. (2017). Secondary delay-partition approach on robust performance analysis for uncertain time-varying Lurie nonlinear control system. Optimal Control Applications and Methods, 38(6), 1208–1226. https://doi.org/10.1002/oca.2326

Su, H., Chen, M., Lam, J., & Lin, Z. (2013). Semi-global leader-following consensus of linear multi-agent systems with input saturation via low gain feedback. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(7), 1881–1889. https://doi.org/10.1109/TCSI.2012.2226490

Utkin, V. I. (1992). Sliding modes in control and optimization. Springer.

Utkin, V. I., Guldner, J., & Shi, J. (1999). Sliding mode control in electromechanical systems. Taylor and Francis.

Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 75(6), 1226–1229. https://doi.org/10.1103/PhysRevLett.75.1226

Wang, L.-X. (1999). Automatic design of fuzzy controllers. Automatica, 35(8), 1471–1475. https://doi.org/10.1016/S0005-1098(99)00044-8

Wang, J., Huang, Y., Wang, T., Zhang, C., & hui Liu, Y. (2020). Fuzzy finite-time stable compensation control for a building structural vibration system with actuator failures. Applied Soft Computing, 93, Article 106372. https://doi.org/10.1016/j.asoc.2020.106372

Wang, J., Zhu, P., He, B., Deng, G., Zhang, C., & Huang, X. (2020). An adaptive neural sliding mode control with ESO for uncertain nonlinear systems. International Journal of Control, Automation and Systems, 1–11. https://doi.org/10.1007/s12555-019-0972-x

Wei, R. (2008). On consensus algorithms for double-integrator dynamics. IEEE Transactions on Automatic Control, 53(6), 1503–1509. https://doi.org/10.1109/TAC.2008.921795

Wen, G., Duan, Z., Chen, G., & Yu, W. (2014). Consensus tracking of multi-agent systems with lipschitz-type node dynamics and switching topologies. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(2), 499–511. https://doi.org/10.1109/TCSI.2013.2268091

Wu, T., Cao, J., Xiong, L., & Zhang, H. (2019). New stabilization results for semi-Markov chaotic systems with
Wu, Z., Fang, H., & She, Y. (2012, October). Weighted average prediction for improving consensus performance of second-order delayed multi-agent systems. *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)*, 42(5), 1501–1508. https://doi.org/10.1109/TSMCB.2012.2189384

Xiong, L., Zhang, H., Li, Y., & Liu, Z. (2016). Improved stability and H_∞ performance for neutral systems with uncertain markovian jump. *Nonlinear Analysis: Hybrid Systems*, 19, 13–25. https://doi.org/10.1016/j.nahs.2015.07.005

Xu, W., Cao, J., Yu, W., & Lu, J. (2014). Leader-following consensus of non-linear multi-agent systems with jointly connected topology. *IET Control Theory and Applications*, 8(6), 432–440. https://doi.org/10.1049/iet-cta.2013.0813

Yu, W., Chen, G., Cao, M., & Kurths, J. (2010). Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics. *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)*, 40(3), 881–891. https://doi.org/10.1109/TSMCB.2009.2031624

Yu, W., Chen, G., Cao, M., Lü, J., & Zhang, H.-T. (2013). Swarming behaviors in multi-agent systems with nonlinear dynamics. *Chaos*, 23(4). Art. No. 043118. https://doi.org/10.1063/1.4829631

Yu, D., Mao, Y., Gu, B., Nojavan, S., Jermsittiparsert, K., & Nasser, M. (2020). A new LQG optimal control strategy applied on a hybrid wind turbine/solid oxide fuel cell in the presence of the interval uncertainties. *Sustainable Energy Grids and Networks*, 21, 100296. https://doi.org/10.1016/j.segan.2019.100296

Yu, W., Wang, H., Cheng, F., Yu, X., & Wen, G. (2017). Second-order consensus in multiagent systems via distributed sliding mode control. *IEEE Transactions on Cybernetics*, 47(8), 1872–1881. https://doi.org/10.1109/TCYB.2016.2623901

Zeng-Guang, H., Zou, A. M., Cheng, L., & Tan, M. (2009). Adaptive control of an electrically driven nonholonomic mobile robot via backstepping and fuzzy approach. *IEEE Transactions on Control Systems Technology*, 17(4), 803–815. https://doi.org/10.1109/TCST.2009.2012516

Zhao, L., & Jia, Y. (2015). Distributed adaptive containment control for second-order multi-agent systems via NTSM. *Journal of the Franklin Institute*, 352(11), 5327–5341. https://doi.org/10.1016/j.jfranklin.2015.09.009

Zhao, L., & Jia, Y. (2016). Neural network-based adaptive consensus tracking control for multi-agent systems under actuator faults. *International Journal of Systems Science*, 47(8), 1931–1942. https://doi.org/10.1080/00207721.2014.960906

Zhao, L., Jia, Y., & Xie, Y. (2014). Robust transcale decentralized estimation fusion for multisensor systems based on wavelet packet decomposition. *IET Control Theory and Applications*, 8(8), 585–597. https://doi.org/10.1049/iet-cta.2013.0285

Zhu, G., Wang, S., Sun, L., Ge, W., & Zhang, X. (2020). Output feedback adaptive dynamic surface sliding-mode control for quadrotor UAVs with tracking error constraints. *Complexity*, 2020. Article ID 8537198. https://doi.org/10.1155/2020/8537198