The carbon dioxide system on the Mississippi River-dominated continental shelf in the northern Gulf of Mexico: 1. Distribution and air-sea CO₂ flux

Wei-Jen Huang, Wei-Jun Cai, Yongchen Wang, Steven E. Lohrenz, and Michael C. Murrell

1. Introduction

The continental shelf accounts for about ~30% of oceanic net ecosystem production [Ducklow and McCallister, 2005] and 15–21% of the net annual carbon dioxide (CO₂) sink of the global ocean [Borges, 2011; Cai, 2011; Cai et al., 2006; Chen and Borges, 2009] even though it accounts for only 7% of the area of the sea surface. Despite continental margins’ importance in the global carbon budget and the fact that they are sensitive to impacts of both anthropogenic perturbation and climate-related changes, insufficient attention has been given to carbon cycle research in continental shelf systems [Bauer et al., 2013]. Past studies have shown substantial spatial and temporal heterogeneity of air-sea CO₂ fluxes on continental shelves that experience moderate river impacts [Jiang et al., 2008; Salisbury et al., 2008]. For continental shelves receiving large freshwater discharge and nutrient fluxes, coastal eutrophication has been shown to affect the CO₂ system [Borges and Gypens, 2010; Cai et al., 2011; Chou et al., 2011; Chen et al., 2012]. Moreover, circulation can be complex on continental shelves [Lentz and Fwings, 2012], and thus sharp variations in partial pressure of CO₂ (pCO₂) are expected in river plumes and surrounding areas due to strong gradients in biological and physical processes [Cai, 2003; Chou et al., 2013; Cooley et al., 2007; Kortzinger, 2003; Ternon et al., 2000; Tseng et al., 2011; Tsunogai et al., 1997; Zhai and Dai, 2009]. Therefore, a better understanding of CO₂ distributions and air-sea CO₂ fluxes in river-dominated continental shelves is needed to improve global carbon budgets.

The Mississippi and Atchafalaya River System is one of the world’s largest rivers, ranking sixth in freshwater discharge (18,400 m³ s⁻¹) [Milliman and Meade, 1983]. Seventy percent of the discharge is through the Mississippi River to the northern Gulf of Mexico, while the remaining ~30% is via the Atchafalaya River (Figure 1) [Walker et al., 2005]. Each river contributes similar amounts of freshwater discharge to the Louisiana shelf and adjacent areas that are the focus of this study, because all freshwater from the Atchafalaya River flows onto the shelf, but...
only about half of the freshwater discharge from the Mississippi River (approximately 35% of the total) is transported westward to the Louisiana shelf [Dinnel and Wiseman, 1986; Etter et al., 2004; Lehrter et al., 2013]. Overall, the Mississippi and Atchafalaya River System delivers 1 to 1.5 Tg (Tg = 10^{12} g) of nitrogen, about two-thirds of it as nitrate N [Goolsby et al., 2000; Lehrter et al., 2013] and ~17 Tg as bicarbonate C annually to the northern Gulf of Mexico [Raymond et al., 2008; Lohrenz et al., 2013].

The large freshwater discharge and nitrogen loading contribute to distinct river-ocean mixing dynamics that are associated with enhanced biological production, both leading to low pCO2 in the plume and the adjacent coastal system [Cooley and Yager, 2006; Salisbury et al., 2008; Cai et al., 2013; Tseng et al., 2011]. Prior studies in this region provide evidence of strong nutrient enhancement of biological production [Dagg et al., 2007; Green et al., 2008; Murrell et al., 2013; Turner and Rabalais, 2013] that contribute to strong drawdown of CO2 in the moderate salinity region coinciding with the location of maximum nutrient removal [Guo et al., 2012; Huang et al., 2012].

Previous measurements have shown a strong cross-shelf pCO2 gradient with the inner shelf being undersaturated with respect to atmospheric CO2 and the outer shelf being oversaturated [Cai, 2003; Lohrenz et al., 2013].
Cai, 2006; Lohrenz et al., 2010], along with a distinct temporal variation of air-sea CO2 fluxes near the Mississippi River delta [Lohrenz et al., 2010]. Air-sea CO2 fluxes in the Gulf of Mexico reported in “The First State of the Carbon Cycle Report (SOCCR)” [Chavez et al. 2007] were based on very limited observations and were insufficient to characterize seasonal variations of sea surface pCO_2 and to quantify the annual air-sea CO2 flux. Thus, more comprehensive field measurements with sufficient seasonal and shelf coverage are needed to more fully describe the pCO_2 variations over the northern Gulf of Mexico and to understand the role of riverine nitrogen in sea surface pCO_2 variations.

The major objectives of this study were to determine the spatial and temporal distributions of surface water pCO_2 to identify surface pCO_2 features along the salinity gradient or across the shelf, and to quantify the air-sea CO2 fluxes. The major objectives of this study were to determine the spatial and temporal distributions of surface water pCO_2 along the salinity gradient or across the shelf, and to quantify the air-sea CO2 fluxes over this study area. We also discuss the factors controlling pCO_2 and provide a surface CO2 budget for the study area. In a companion paper, we will examine surface water CO2 and oxygen dynamics.

2. Methods

2.1. Field Measurement

Data for this study were acquired from thirteen cruises conducted in the northern Gulf of Mexico (Figure 1 and Table 1). Four shelf-wide cruises (2006–2007) covered the area very likely to develop summer bottom-water hypoxia (dissolved oxygen concentration less than 2 mg L$^{-1}$) (Figure 1), similar to the region sampled during a hypoxia study in the past 30 years (http://www.gulfhypoxia.net/). A wider area across the shelf was surveyed during five cruises from 2009 to 2010 (Figure 1). Three earlier cruises (April 2006 and before) also surveyed the shelf, with a focus on the Louisiana Bight and the adjacent area immediately west of the Mississippi River bird-foot delta (Figure 1). Finally, one cruise (August 2008) surveyed the inner Louisiana shelf (Figure 1).

Throughout the course of our sampling, freshwater discharge and nitrate plus nitrite fluxes (U.S. Geological Survey, USGS data) were seasonally variable: they were generally high during spring and low during late summer and fall (Figure 2). Note that the October 2005 cruise coincided with a period of low discharge and was also about 1 month after Hurricane Katrina (23–30 August 2005) and 2 weeks after Hurricane Rita (18–26 September 2005).

Surface water pCO_2 was measured by pumping surface water continuously through an underway pCO_2 analyzer installed in the shipboard laboratory. On cruises from 2003 to 2007, the system included a gas-water equilibrator and CO2 detection via an infrared gas analyzer (LI-COR V7000) as described by Jiang et al. 2008. On cruises from 2008 to 2010, we used an upgraded system that included a Global Positioning System, a Seabird thermosalinograph (SBE-45), and a water-gas equilibrator with an

Year	Datea	Ship	Survey Regionb	Coverage Area 10^3km2	River Discharge 10^3m3 s$^{-1}$	NO$_3$ + NO$_2$ Flux 10^9 g N month$^{-1}$	Air CO2 atm
2004	9 Aug to 12 Aug	Pelican	LAB	9.2	12.9	42.5	380
2005	4 Oct to 7 Octd	Pelican	LAB	4.4	7.9	19.9	387.6
2006	27 Apr to 1 May	Pelican	LAB	7.2	17.3	96.0	375
2006	6 Jun to 11 Jun	Bold	nGOM	34.1	12.2	60.2	386
2006	6 Sep to 11 Sep	Bold	nGOM	34.7	7.5	19.7	369.5
2007	2 May to 7 May	Bold	nGOM	39.1	25.4	148	379
2007	18 Aug to 24 Aug	Bold	nGOM	41.4	12.1	31.2	384
2008	17 Jul to 20 Jul	Pelican	in-LAs	14.9	28.4	138.0	385
2009	9 Jan to 20 Jan	Cape Hatteras	nGOM	41.4	23.9	92.6	371.7
2009	20 Apr to 1 May	Cape Hatteras	nGOM	41.4	30.9	151.0	386
2009	19 Jul to 29 Jul	Cape Hatteras	nGOM	41.4	18.9	73.5	387.3
2009	28 Oct to 7 Nov	Hugh R. Sharp	nGOM	41.4	25.6	52.4	371.8
2010	9 Mar to 21 Mard	Cape Hatteras	nGOM	40.9	27.8	121.0	379

*Spring was from March to May, summer was from June to August, fall was from September to November, and winter was from December to February in this study.

*LAB: the Louisiana Bight and its adjacent area; nGOM: the northern Gulf of Mexico; in-LAs: the inner Louisiana shelf.

*River discharge and monthly NO$_3$ + NO$_2$ flux data were in Mississippi and Atchafalaya Rivers. Data from the U.S. Geological Survey (USGS) “Hypoxia in the Gulf of Mexico studies.”

*Cruise affected by weather events.
improved spray head, a temperature sensor, and a pressure sensor (Setra 270). This underway pCO₂ system (AS-P2, Apollo SciTech, USA) also had an improved water vapor trap via sequential Peltier cooling and Nafion dryers. The upgraded system yielded more reliable and consistent results and was similar to the NOAA (National Oceanic and Atmospheric Administration) system [Pierrot et al., 2009]. However, both systems had similar accuracy and precision (better than 2 ppm). Periodically, the CO₂ analyzer was calibrated against certificated CO₂ gas standards of 0, 197.5, 400.6, and 594.7, and 975.3 ppm referenced against standards traceable to those of the National Institute of Standards and Technology. Atmospheric CO₂ values were measured every 6 or 12 h on cruises from 2004 to 2007, and every 3 to 4 h during the 2008–2010 cruises. Sea surface salinity (SSS) and temperature (SST) were measured using a Seabird SBE-45 flow-through thermosalinograph from 2004 to 2010.

2.2. Air-Sea CO₂ Flux Calculation

The instrument records the mole fraction of CO₂ in the dry air flow (xCO₂), which then is converted to the pCO₂ inside the equilibrator at 100% water saturation via the equation:

\[p\text{CO}_2(\text{eq}) = x\text{CO}_2(\text{eq}) \times (P_b - P_{\text{weq}}), \]

where \(x\text{CO}_2(\text{eq})\) is the mole fraction (ppm) of CO₂ in the dried sample gas; \(P_b\) is the barometric or total pressure inside the equilibrator; and \(P_{\text{weq}}\) is the equilibrium water vapor pressure at the equilibrated temperature, \(T_{\text{eq}}\) (°C) and salinity [Weiss and Price, 1980]. The \(p\text{CO}_2(\text{eq})\) was further converted to \(p\text{CO}_2\) in water at SST [Takahashi et al., 1993] using:

\[p\text{CO}_2(\text{water}) = p\text{CO}_2(\text{eq}) \times \exp\left[0.0423 \times (\text{SST} - T_{\text{eq}})\right] \]

For data from before 2008, we estimated that the equilibrator temperature was 0.4°C lower than sea surface temperature from a comparison with water column temperature data from the ship’s CTD (conductivity, temperature, and depth) package. The atmospheric \(p\text{CO}_2\) (\(p\text{CO}_2(\text{air})\)) was corrected by the water vapor pressure with:

\[p\text{CO}_2(\text{air}) = x\text{CO}_2(\text{air}) \times (P_b - P_w) \]

where \(P_w\) is the surface seawater vapor pressure at SST and SSS [Weiss and Price, 1980].

To calculate the air-sea CO₂ exchange flux, SSS, SST, \(p\text{CO}_2(\text{water})\), and \(p\text{CO}_2(\text{air})\) were gridded at a resolution of 0.1° × 0.1° (by applying the grid data function in Matlab). The \(p\text{CO}_2(\text{air})\) value was set at a uniform value for each cruise over the Louisiana shelf from 2004 to 2007, as we have insufficient data to quantify its full spatial and temporal variability. After 2008, we used intensively measured \(p\text{CO}_2(\text{air})\) data to interpolate \(p\text{CO}_2(\text{air})\) values for each \(p\text{CO}_2(\text{water})\).
Finally, air-sea CO₂ flux (F) was calculated as:

\[
F = k \times K_0 \times \left[pCO_{2w} \right]^{\frac{1}{2}} \times \left[pCO_{2a} \right]^{\frac{1}{2}}
\]

where \(k \) is the gas transfer velocity of CO₂; \(K_0 \) is the CO₂ solubility coefficient at the ambient temperature and salinity ([Weiss, 1974]). To calculate \(k \), we adopted the updated coefficient given by Ho et al. [2006], which is very close to the commonly used coefficients given by Wanninkhof [1992] and the more recent coefficients recommended by Sweeney et al. [2007] and Wanninkhof et al. [2009] (i.e., the coefficient is 0.27, 0.31, 0.26, and 0.25, respectively, in the equation: \(k \approx a \times U_{10}^2 \), where \(a \) is the coefficient and \(U_{10} \) is the wind speed at 10 m). Monthly satellite products QuickSCAT wind data (12.5 km resolution) were adopted (from a Live Access Server provided by NOAA Coastwatch and SWFSC/Environmental Research Division, http://las.pfeg.noaa.gov/) and were interpolated to 0.1° to calculate the areal-integrated air-sea CO₂ fluxes. In addition, we followed the approach given by Jiang et al. [2008] who suggested using instantaneous wind speeds from coastal buoy stations to deal with the non-Gaussian distribution of wind speeds over a month [Wanninkhof et al., 2002]. By this approach, a nonlinearity coefficient, \(C_2 \) (roughly 1.2), was calculated from buoy wind data and the gas transfer velocity equation is expanded to \(k \approx a \times C_2 \times U_{\text{monthly}}^2 \), where \(U_{\text{monthly}} \) is the monthly average wind speed. Buoy wind data were taken from the following stations: 42362, 42364, PSTL, LUML1, FGBL1, CAPL1, 42002, 42001, 42039, 42035 in the northern Gulf of Mexico. Thus, the buoy stations provided high temporal resolution for a limited area, while satellite products provided lower temporal resolution and high spatial resolution.

The monthly mean air-sea CO₂ flux was averaged from the areal-integrated CO₂ fluxes interpolated to 0.1° × 0.1° grid. To systematically compare these monthly mean CO₂ fluxes among surveys, we designated a reference area for comparison based on the smaller area surveyed during the period between June 2006 and August 2007 (Figure 1), as the area surveyed during 2009–2010 were larger. Results from the three surveys focusing on the Louisiana Bight from 2004 to April 2006 were not used to estimate a shelf-wide CO₂ flux, but instead only the CO₂ flux for the Louisiana Bight and its adjacent areas. The inner shelf region had larger spatial variations in sea surface salinity, temperature, and \(pCO_2 \), and thus also had more highly variable CO₂ fluxes than the outer shelf. To better account for this variability, an additional inner shelf alongshore track was added in later cruises.

2.3. The Uncertainties in Air-Sea CO₂ Fluxes

As we have no precise way to assess the uncertainties of the calculated air-sea CO₂ flux, we adopt the methods described by Jiang et al. [2008] and consider three uncertainties. For the first of these, we calculated the standard deviation of the CO₂ flux using six available gas transfer velocities (including Ho et al. [2006], Liss and Merlivat [1986]; Wanninkhof [1992]; Wanninkhof and McGillis [1999]; Nightingale et al., [2000a]; Nightingale et al., [2000b]). This approach resulted in 11%–15% relative variability in monthly mean gas transfer velocity, with an average of 12%, in this study. This variation of 12% is reasonable under usual wind speed distributions, but can be as much as doubled when wind speeds are extremely high or low [Wanninkhof et al., 2006; Nightingale et al., 2009]. The second source of uncertainty was assessed as the standard deviation due to the spatial and temporal variation of atmospheric CO₂ (6 \(\mu \)atm) that was based on our measurements during 2008 and 2010. For the third of the three uncertainties considered, we determined the error associated with a small temperature difference (deltaT) between the equilibrator and surface seawater during 2006 and 2007. The above three uncertainties were then used to calculate the uncertainty of air-sea CO₂ flux for each cruise [Taylor, 1997]:

\[
\text{Uncertainty} = F \times \left[\frac{0.12^2 + (6/\left[I^{\text{CO2w}} - pCO_{2a} \right])^2}{\text{deltaT/ SST}} \right]^{0.5}
\]

Thus, we determined the average uncertainty for each cruise was in the range ± 0.05 to ± 2.98 mmol m⁻² d⁻¹ (the average is ± 1.15 mmol m⁻² d⁻¹), similar to the uncertainty estimated in the South Atlantic Bight [Jiang et al., 2008].

2.4. Data Analysis

We use two scenarios to examine mixing and biological effects on \(pCO_2 \) variations: conservative mixing (\(pCO_{2\text{Mix}} \)), and conservative mixing plus biological removal (\(pCO_{2\text{Mix} + \text{Bio}} \)). We first simulated the abiotic mixing of \(pCO_2 \) along the salinity gradient between the Mississippi River and seawater. The fraction from each
end-member was solved by equations (6) and (7) to estimate the conservative mixing values of total alkalinity (TA) and dissolved inorganic carbon (DIC) as equations (8) and (9) in one-unit salinity interval (end-members were listed in supporting information, Table S1):

\[\text{Sal} = S_R \times f_R + S_S \times f_S \]
\[\text{TAMix} = \text{TAR} \times f_R + \text{TAS} \times f_S \]
\[\text{DICMix} = \text{DICR} \times f_R + \text{DIC} \times f_S \]

where \(\text{Sal} \) is our desired salinity, \(S \) is the salinity and \(f \) is the fraction of end-members from the Mississippi River (subscripted R) and seawater (subscripted S), respectively. "Mix" represents the conservative mixing values for its affiliated parameters. These TAMix and DICMix values were converted to \(p_{\text{CO}_2} \) (\(p_{\text{CO}_2}^{\text{Mix}} \)) at the measured temperature by using CO2SYS program (from Carbon Dioxide Information Analysis Center, http://cdiac.ornl.gov/ftp/co2sys/, \(K_1 \), \(K_2 \) from Mehrbach et al. [1973] refit by Dickson and Millero [1987] were adopted). To simulate the effects of biotic activity on \(p_{\text{CO}_2} \) along the salinity gradient, we estimated the net biological \(\text{NO}_3 \) removal (\(\text{NO}_3^{\text{Bio}} \)) by the difference between the measured \(\text{NO}_3 \) data (\(\text{NO}_3 \)) during our cruises (data from Lehrter et al., [2013]) and the conservative mixing values (\(\text{NO}_3^{\text{Mix}} \)) derived from the river and ocean end-members (supporting information, Table S1):

\[\text{NO}_3^{\text{Mix}} = \text{NO}_3R \times f_R + \text{NO}_3S \times f_S \]
\[\text{NO}_3^{\text{Bio}} = \text{NO}_3^{\text{Mix}} - \text{NO}_3 \]

We converted net biological \(\text{NO}_3 \) removal to estimate TAMix + Bio by the following equation:

\[\text{TAMix} + \text{Bio} = \text{TAR} \times f_R + \text{TAS} \times f_S - \text{NO}_3^{\text{Bio}} \]

and also to estimate DIC consumption by assuming that Redfield stoichiometry [Redfield, 1958] is applicable in this river dominated shelf [Huang et al., 2012] as the following equation:

\[\text{DICMix} + \text{Bio} = \text{DICR} \times f_R + \text{DIC} \times f_S - \text{NO}_3^{\text{Bio}} \times 106/16 \]

\(\text{TAMix} + \text{Bio} \) and \(\text{DICMix} + \text{Bio} \) were converted to \(p_{\text{CO}_2} \) (\(p_{\text{CO}_2}^{\text{Mix} + \text{Bio}} \)) by using CO2SYS. Furthermore, to examine the effect of temperature, \(p_{\text{CO}_2}^{\text{Mix} + \text{Bio}} \) was modeled for both binned temperature and the seasonal average temperature along the salinity gradient. Finally, as air-sea gas exchanges also affect \(p_{\text{CO}_2} \) variation (we will discuss this effect later), this estimated biological effect is only a conservative result to demonstrate the importance of biological uptake of CO2 in determining plume \(p_{\text{CO}_2} \).

3. Results

3.1. \(p_{\text{CO}_2} \) in Lower Rivers and Bays

The Mississippi River and Atchafalaya Bay waters had characteristically highly supersaturated \(p_{\text{CO}_2} \) values ranging between 977 and 2220 \(\mu \text{atm} \) (Table 2) with noticeable seasonality, being lower in the winter and higher in the summer, with the highest value in July 2009. The \(p_{\text{CO}_2} \) values decreased rapidly from extremely high values in rivers and bays to below the atmospheric value along the river-ocean mixing gradient extending out onto the shelf. Water \(p_{\text{CO}_2} \) values in Terrebonne Bay and Calcasieu Lake, which only have limited freshwater inputs, however, were much lower than values in the two major river systems (less than 800 \(\mu \text{atm} \)) (Table 2). The lower \(p_{\text{CO}_2} \) values in these bays are likely caused by a lower turbidity and water mixing rates, allowing biological removal of \(\text{CO}_2 \) in them than the two river mouths. Furthermore, water \(p_{\text{CO}_2} \) values in Calcasieu Lake showed a larger variation (171.5 and 768.8 \(\mu \text{atm} \)) than the change in Terrebonne Bay (257–532 \(\mu \text{atm} \)) (Table 2). While these differences are interesting, we cease the discussion about them as the \(\text{CO}_2 \) exchange fluxes from these bays had minor contributions to the overall regional flux due to their small area.

3.2. The Plume Trajectory Reflected by Sea Surface Salinity

Distributions of sea surface salinity demonstrated an alongshore Mississippi-and-Atchafalaya-Rivers plume trajectory in most of our surveys (Figure 3). Such an alongshore freshwater trajectory was similar to those described in previous studies, which documented low salinities close to the Mississippi River mouth.
increasing salinities along the Louisiana coast toward Texas, and a localized region of freshwater near the Atchafalaya Bay. An exception was in October 2005 when both low and high salinities were observed in the Louisiana Bight and the adjacent area shortly after two hurricanes (Figure 3b). Another exception was in July 2009, when the freshwater plume was largely confined to the eastern Louisiana and Mississippi shelf regions (Figure 3k). In March 2010, the freshwater plume was widely dispersed, extending across the shelf southward of 28°N (Figure 3m), and low temperature waters (less than 19°C) were also observed offshore. These weather-related exceptions will be discussed later.

3.3. Distributions of Shelf \(pCO_2 \) and Air-Sea \(CO_2 \) Flux

3.3.1. \(pCO_2 \) Gradients Across Inner, Middle, and Outer Shelves

The sea surface \(pCO_2 \) distribution (Figure 4) revealed sharp gradients from inner to outer shelves. To illustrate this variation better, we considered two example transects (Figure 1): Transect B, starting from the northern Louisiana Bight along longitude 89.7°W (Figure 5a); and Transect E, from Atchafalaya Bay along longitude 91.6°W (Figure 5b). In general, both transects displayed a similar pattern across the shelf: near the coast, water \(pCO_2 \) decreased sharply from highly oversaturated to undersaturated with respect to the atmospheric \(CO_2 \) across the inner shelf, and \(pCO_2 \) increased gradually to near atmospheric values when moving toward open ocean waters. The locations of lowest \(pCO_2 \) varied among these cruises from inner shelf to middle shelf. Furthermore, higher variability in surface water \(pCO_2 \) values was observed on the inner shelf (6–200 ppm) compared to the outer shelf (6–100 ppm) for both transects (Figures 5a and 5b).

Our overall estimates of air-sea \(CO_2 \) flux further revealed that the inner shelf (where bottom depth was less than 20 m but excluding river mouths and bays) and the middle shelf (20–45 m depth) acted as atmospheric \(CO_2 \) sinks (−3.35 mmol m\(^{-2}\) d\(^{-1}\) and −2.14 mmol m\(^{-2}\) d\(^{-1}\), respectively), while the outer shelf (45–200 m) and the open gulf (depth deeper than 200 m) varied from neutral to weak sources (i.e., 0.08 mmol m\(^{-2}\) d\(^{-1}\) and 1.46 mmol m\(^{-2}\) d\(^{-1}\), respectively). The specific \(CO_2 \) fluxes for different subregions in each cruise are given in Table 3. Transects B and E illustrate the cross-shelf variation of the \(CO_2 \) flux: the inner shelf was not only an atmospheric \(CO_2 \) sink, but it also showed larger air-sea \(CO_2 \) flux variations than the outer shelf (Figures 5c and 5d).

Table 2. Surface Water \(pCO_2 \) Values on the Lower Mississippi and Atchafalaya Rivers, Terrebonne Bay and Calcasieu Lake

Year	Month	Salinity	Mean s.d.	Mean s.d.	n	
Lower Mississippi River						
2004	August	2.0	0.2	1628.3	18.0	32
2005	October	5.9	0.4	1348.8	32.3	62
2006	June	1.9	0.7	1708.6	281.4	153
2006	September	6.2	0.8	1209.8	52.9	72
2007	May	1.2	1.0	1732.9	39.2	74
2007	August	5.0	0.7	1362.7	103.6	143
2009	January	0.1	0.0	977.4	77.7	46
2009	April	0.1	0.1	1663.2	53.2	86
2009	July	1.4	0.4	2222.4	57.2	91
2009	November	0.2	0.1	1611.9	78.5	63
2010	March	0.2	0.1	1407.5	164.6	76
Atchafalaya Bay						
2009	January	0.1	0.1	1361.6	142.6	55
2009	April	1.2	1.7	1310.3	533.8	42
2009	July	0.5	0.7	2072.8	402.4	84
2009	November	0.6	0.8	1813.7	208.2	23
2010	March	0.1	0.0	1682.4	111.9	45
Terrebonne Bay						
2009	January	30.7	1.0	532.4	95.3	55
2009	April	26.1	0.6	257.3	15.0	46
2009	July	28.6	0.3	486.4	52.5	66
2009	November	27.0	1.0	314.4	29.7	44
2010	March	23.1	0.7	293.6	23.7	56
Calcasieu Lake						
2007	May	22.8	0.1	171.5	5.0	20
2007	August	17.9	0.9	768.8	264.7	228
3.3.2. Overall Spatial and Temporal Distribution

In addition to the cross-shelf variation, an important aspect of the complex spatial pCO2 variation was that the distribution of waters undersaturated in pCO2 generally mirrored the freshwater distribution on shelf-wide scales. For example, the plume trajectories were alongshore for the majority of surveys (Figures 4d, 4e, 4f, 4g, 4i, and 4j) and undersaturated pCO2 values were also observed in those regions. When the freshwater was confined to the east in July 2009, undersaturated pCO2 values were also observed on the eastern shelf but not the western shelf (Figure 4k). For the wide plume extending across the shelf in March 2010, undersaturated pCO2 values also expanded to the off-shore and open gulf (Figure 4m). Among these varied plume trajectories, there was a gradient in pCO2 values, where they increased progressively as the low-salinity plume traveled downstream to middle and to high salinities. We will discuss this pCO2 versus salinity pattern in the next section. An exception to this pattern occurred in November (Figure 4l), when pCO2 values remained close to the atmospheric level along the entire trajectory of fresh water. To sum up, three types of pCO2 spatial variation were observed, including high oversaturated values in river end-members, clear cross-shelf variations when plume trajectories were alongshore, and undersaturated values that mirrored the freshwater distribution over the shelf.

Figure 3. Sea surface salinity distributions. Contour maps are adopted to present the freshwater distribution in August 2004 (a), October 2005 (b), April 2006 (c), June 2006 (d), September 2006 (e), May 2007 (f), August 2007 (g), July 2008 (h), January 2009 (i), April 2009 (j), July 2009 (k), November 2009 (l), and March 2010 (m). The freshwater plume was usually distributed alongshore, but it was confined to the eastern shelf in July 2009, and extended to the open gulf in March 2010.

3.3.2. Overall Spatial and Temporal Distribution

In addition to the cross-shelf variation, an important aspect of the complex spatial pCO2 variation was that the distribution of waters undersaturated in pCO2 generally mirrored the freshwater distribution on shelf-wide scales. For example, the plume trajectories were alongshore for the majority of surveys (Figures 4d, 4e, 4f, 4g, 4i, and 4j) and undersaturated pCO2 values were also observed in those regions. When the freshwater was confined to the east in July 2009, undersaturated pCO2 values were also observed on the eastern shelf but not the western shelf (Figure 4k). For the wide plume extending across the shelf in March 2010, undersaturated pCO2 values also expanded to the off-shore and open gulf (Figure 4m). Among these varied plume trajectories, there was a gradient in pCO2 values, where they increased progressively as the low-salinity plume traveled downstream to middle and to high salinities. We will discuss this pCO2 versus salinity pattern in the next section. An exception to this pattern occurred in November (Figure 4l), when pCO2 values remained close to the atmospheric level along the entire trajectory of fresh water. To sum up, three types of pCO2 spatial variation were observed, including high oversaturated values in river end-members, clear cross-shelf variations when plume trajectories were alongshore, and undersaturated values that mirrored the freshwater distribution over the shelf.

Figure 3. Sea surface salinity distributions. Contour maps are adopted to present the freshwater distribution in August 2004 (a), October 2005 (b), April 2006 (c), June 2006 (d), September 2006 (e), May 2007 (f), August 2007 (g), July 2008 (h), January 2009 (i), April 2009 (j), July 2009 (k), November 2009 (l), and March 2010 (m). The freshwater plume was usually distributed alongshore, but it was confined to the eastern shelf in July 2009, and extended to the open gulf in March 2010.
Monthly averaged properties for 0.1×0.1 pixels gridded over the entire study area displayed seasonality in various environmental variables, including water temperature, wind speed, pCO_2, and air-sea CO2 flux (Figure 6). Water temperature was lower in winter and early spring, and it could be as high as 30°C in summer and fall (Figure 6a). Stronger wind speed was observed in winter and spring, and weaker wind speed was observed in summer and fall (Figure 6b). pCO_2 was generally <300 µatm during spring and summer, and it increased to oversaturation during fall (Figure 6c). Finally, this study area acted as a strong sink for atmospheric CO2 in spring, a weak sink in summer, a source in fall, and was nearly neutral in winter (Figure 6d). Specifically, the strong sink from spring to June was mainly due to the inner and middle shelf contributions (Table 3). Moreover, two extreme conditions were observed, comprising a strong CO2 source in October 2005 and a strong sink in March 2010. These unusual periods are considered further in sections 4.2 and 4.3, respectively. Overall, this study area acted as a sink of atmospheric CO2 (overall mean plus standard deviation of -0.963 ± 3.7 mmol m$^{-2}$ d$^{-1}$) and within it, the Louisiana Bight and the adjacent area acted as a particularly strong sink (-4.89 mmol m$^{-2}$ d$^{-1}$).

3.3.3. CO2 Distribution Along the Salinity Gradient
To further examine the pattern of pCO_2 variations along the plume trajectory, we describe the variation of pCO_2 along the salinity gradient. By binning pCO_2 values into salinity intervals, it became evident that pCO_2
versus salinity exhibited a concave upward curve and varied seasonally (Figure 7). In spring, low and undersaturated p_{CO_2} was observed at moderate salinities around 20–25 and gradually increased toward saturation with increasing salinity (Figure 7a). In summer, undersaturated p_{CO_2} values were observed over a wider salinity range from 9 to 31 (Figure 7b). In fall, undersaturated p_{CO_2} values were restricted to a salinity range smaller than that in spring or summer (Figure 7c). Finally, p_{CO_2} values were close to atmospheric values along the salinity gradient in winter (Figure 7d). To systematically organize the data and describe larger features, we further group p_{CO_2} and air-sea CO$_2$ fluxes by five salinity zones: $0 < S < 17$, $17 < S < 25$, $25 < S < 33$, $33 < S < 35$, and $S > 35$ for each cruise (Table 4) and for each season (Table 5). Note that whereas the low-salinity region ($0 < S < 17$) acted as a strong CO$_2$ source, it only covered a relatively small proportion of the study area and thus its contribution to the overall regional flux is small. In contrast, the two middle

![Graph showing variations of sea surface p_{CO_2} values and air-sea CO$_2$ fluxes across the shelf.](image)

Figure 5. Variations of sea surface p_{CO_2} values and air-sea CO$_2$ fluxes across the shelf. For both transects (labeled in Figure 1) B, on longitude 89.7°W (a), and E, on longitude 91.6°W (b), water p_{CO_2} showed larger variations on the inner shelf than the outer shelf during 2009 to 2010. Air-sea CO$_2$ fluxes are binned by 0.1° latitude, and error bars represent the standard deviation in each 0.1° latitude bin. Larger variations of CO$_2$ fluxes were observed on the inner shelf than on the middle, outer shelves, and the open gulf (c,d). Water p_{CO_2} was not only undersaturated on the inner shelf but also on the middle and outer shelves in March 2010 (c,d), resulting a significantly strong sink of CO$_2$ with respect to the atmosphere in the northern Gulf of Mexico.

Year	Month	Survey Area	Reference Area	Inner	Middle	Outer	Open Gulf	Louisiana Bight
2004	August	−5.9	−6.2	−6.1	−6.3	N.A.	N.A.	−5.6
2005	October	13.1	13.0	13.0	N.A.	N.A.	N.A.	10.1
2006	April	−4.5	−6.4	−8.7	−3.5	N.A.	N.A.	−6.6
2006	June	−3.2	−3.4	−6.3	−1.3	2.1	N.A.	−7.7
2006	September	−0.8	−0.9	−1.6	−0.5	1.5	N.A.	−2.0
2007	May	−8.1	−8.3	−12.8	−4.0	−2.5	N.A.	−14.3
2007	August	−2.0	−2.0	−1.8	−2.2	0.7	N.A.	−4.0
2008	July	−2.3	−2.3	−0.2	−5.3	N.A.	N.A.	−3.4
2009	January	−2.3	−2.4	−0.6	−4.0	−5.0	−10.8	−0.2
2009	April	−4.8	−6.5	−6.8	−6.6	0.1	1.3	−11.4
2009	July	0.4	1.4	1.5	1.4	1.1	0.8	−0.6
2009	November	0.2	−0.1	0.5	−0.6	−1.2	−0.6	−4.8
2010	March	−14.3	−17.7	−17.3	−18.3	−15.3	−4.1	−12.4

*CO$_2$ fluxes were calculated for various regions: for the cruise survey area, the reference area (the gray area in Figure 1), the inner shelf (bottom depth less than 20 m), the middle shelf (20 to 45 m), the outer shelf (45 to 200 m), and the open gulf (depth deeper than 200 m), and the Louisiana Bight and its adjacent area. N.A.: no available data.
4. Discussion

4.1. Factors Controlling pCO₂ Variations

From the river mouth to the inner shelf, the outer shelf, and beyond, both physical and biological conditions changed greatly. Mechanistic analysis in sections 2.4 and 3.3.3 demonstrates that biological removal and mixing were the two dominant factors influencing pCO₂ along the salinity gradient. As predicted from carbon dynamics during river-to-sea mixing, the conservative mixing lines of pCO₂ are concave upward along the salinity gradient [Cai et al., 2013] (Figure 7). Along this concave-upward curve, the pCO₂ difference between salinities 18 and 36 (salinity regions which covered the majority of this study area) was 124, 346, 185, and 117 µatm in spring, summer, fall, and winter, respectively. However, the majority of pCO₂ values calculated from conservative mixing were still much higher than observed values, implying mixing is not the only factor controlling pCO₂. The exception was in October 2005, when observed pCO₂ values were close to mixing-only simulated results (Figure 7c). We believe this represented an extreme case when the water column was well mixed following two major storm events. Simulations that included biological activity as well as mixing produced results much closer to our observed pCO₂ values (Figure 7). From salinities 18–36, the maximum pCO₂ values induced by biological removal (i.e., the difference between pCO₂Mix and pCO₂Mix + Bio at the salinity binned temperature) were 322, 527, 397, and 141 µatm in spring, summer, fall, and winter, respectively. The strong biological carbon uptake inferred from nitrate removal along the salinity gradient in pCO₂Mix + Bio was consistent with that observed during our previous studies on the Louisiana Bight and the adjacent region [Cai 2003; Guo et al., 2012; Huang et al., 2012]. While the majority of pCO₂ observations agreed with pCO₂Mix + Bio in spring, summer, and fall (Figures 7a, 7b, and 7c), a few pCO₂ observations fell midway between the mixing-only and mixing-plus-biology simulated values in fall and winter (Figures 7c and 7d). Some observed data in winter between salinities 28 and 35 also agreed with mixing-only values (Figure 7d). The above two facts led us to conclude that along salinities 18–36,
Figure 7. Observed and modeled relationships between pCO_2 and salinity in each season. The measured pCO_2 values are binned by 1-unit salinity intervals (circle) and the error bars indicate ±1 standard deviation of the point in each interval. Each plot focuses on $pCO_2 < 900$ μatm, but the inserted plots show the plots’ full scales. The comparison of mixing only (blue lines) and mixing plus biology (green lines) under the same temperature (the binned temperature in each salinity interval) suggests that biological activity is the dominant factor controlling pCO_2 while abiotic mixing could not be ignored in spring (a), summer (b), and fall (c). Mixing became important in winter at higher salinities (d). The comparison of two temperatures under mixing plus biology, i.e., the binned temperature in each 1-unit salinity interval (green lines) versus the seasonal average (red triangle markers), suggests that temperature is less important than biological and mixing processes. The observations in October 2005 (blue triangle markers in (c) affected by the remaining effects of hurricanes were close to abiotic mixing. Black lines represent the atmospheric CO2 value.
Table 4. Average pCO$_2$, Area, and CO$_2$ flux on the Louisiana Shelf During Each Cruisea

Salinity	Aug 2004	Oct 2005	Apr 2006	Jun 2006	Sep 2006	May 2007	Aug 2007	Jul 2008	Jan 2009	Apr 2009	Jul 2009	Nov 2009	Mar 2010
0 ≤ S < 17	N.A.	506.9	N.A.	305.3	297.2	316.2	616.0	286.1	375.6	465.1	440.7	431.3	427.1
17 ≤ S < 25	285.6	539.2	283.0	199.0	323.8	199.5	390.9	350.7	367.3	302.2	299.0	405.4	262.6
25 ≤ S < 33	304.3	445.6	287.7	295.4	364.6	253.0	328.1	410.1	387.2	303.3	347.5	371.0	267.4
33 ≤ S < 35	N.A.	457.4	332.3	380.6	394.6	336.7	380.8	N.A.	386.4	353.9	423.6	376.5	326.0
35 ≤ S < 37	N.A.	N.A.	373.9	423.7	402.8	364.6	N.A.	N.A.	343.9	379.6	435.8	393.3	358.8

| Area (10^3 km2) | 0 ≤ S < 17 | N.A. | 0.4 | N.A. | 0.9 | 0.5 | 1.4 | 0.3 | 4.1 | 1.4 | 2.1 | 2.1 | 2.3 | 2.8 |
|---------------------|-----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 17 ≤ S < 25 | 2.8 | 0.4 | 1.0 | 3.5 | 0.5 | 4.3 | 1.8 | 7.0 | 3.1 | 9.2 | 6.9 | 12.9 | 15.6 |
| 25 ≤ S < 33 | 7.2 | 3.5 | 3.9 | 18.4 | 27.3 | 13.3 | 28.8 | 3.7 | 21.8 | 28.4 | 54.7 | 31.6 | 53.7 |
| 33 ≤ S < 35 | 0.3 | 1.3 | 5.8 | 2.9 | 7.6 | 10.5 | N.A. | 13.8 | 9.5 | 19.9 | 18.7 | 19.9 | 19.9 |
| 35 ≤ S < 37 | N.A. | 4.5 | 8.1 | 4.8 | 13.7 | N.A. | N.A. | 63.9 | 50.4 | 16.4 | 40.6 | 12.3 |

Average CO$_2$ flux (mmol m$^{-2}$ d$^{-1}$)	0 ≤ S < 17	N.A.	24.2	N.A.	−5.9	−9.3	−8.1	27.8	−6.0	−0.3	12.7	3.4	6.8	7.3
17 ≤ S < 25	−8.4	23.0	−8.9	−10.3	−5.2	−20.4	0.8	−2.0	−1.9	−11.7	−5.2	2.5	−20.0	
25 ≤ S < 33	−4.9	10.4	−8.0	−5.1	−1.2	−13.1	−3.1	1.4	−0.2	−11.4	−1.1	−2.2	−17.9	
33 ≤ S < 35	N.A.	13.8	−3.8	0.0	1.0	−4.1	−0.2	N.A.	−4.6	3.0	−1.2	−9.1		
35 ≤ S < 37	N.A.	N.A.	−0.9	2.0	1.7	−1.8	N.A.	N.A.	−4.7	−0.8	3.8	1.5	−4.2	

aN.A.: no available data.

In the carbonate system, pCO$_2$ variation is theoretically related to variations of DIC, TA, and temperature [Sarmiento and Gruber, 2006]. To explore the role of mixing and biology, we have set our simulations at the salinity binned temperature. To explore the role of temperature, we also run the pCO$_2$Mix + Bio simulation at the seasonal average temperature (Figure 7). The maximum differences of pCO$_2$Mix + Bio between the two temperatures were only 41, 27, 16, and 64 μatm for spring, summer, fall, and winter, respectively. These pCO$_2$Mix + Bio differences due to temperature variations were much smaller than the differences due to biological uptake between pCO$_2$Mix and pCO$_2$Mix + Bio at the same temperature. The temperature effect was only notable when mixing dominated in the moderate to high salinities (27 to 36) during winter (Figure 7d). This result highlights the importance of non-temperature effects, e.g., biological activity and mixing, on pCO$_2$ variation in this river-influenced system.

Finally, air-sea CO$_2$ exchange also plays a role in determining plume pCO$_2$ values although it is generally minor. For example, in the Mississippi River plume, net community production (NCP) estimated by DIC deficit were 83 to −233 mmol m$^{-2}$ d$^{-1}$ (1 to −2.8 g C m$^{-2}$ d$^{-1}$ in salinity ranges 0–18, 275–616 mmol m$^{-2}$ d$^{-1}$ (3.3–7.4 g C m$^{-2}$ d$^{-1}$) in salinity ranges 18–27, 32–80 mmol m$^{-2}$ d$^{-1}$ (0.38–0.96 g C m$^{-2}$ d$^{-1}$) in salinity ranges 27–32, and 25–48 mmol m$^{-2}$ d$^{-1}$ (0.3–0.53 g C m$^{-2}$ d$^{-1}$) in salinity ranges 32–34.5 [Guo et al., 2012]. Mean CO$_2$ gas exchange rates in similar salinity ranges (Table 5) were only <6.2%, <2.3%, 6.8–17%, and <6.8% of these estimated NCP values, respectively. Thus, the effect of air-sea exchanges on pCO$_2$ variations was rather small in this enhanced primary production area.

4.2. Disturbance of River Plume Trajectories by Weather Events

Weather events may have a strong influence on spatial distributions of pCO$_2$ in this study area. Two weather events considered here included wind-driven shifts in plume trajectory in March 2010 and July 2009. When northerly winds and high river discharge dominated in March 2010 [Huang et al., 2013], the trajectory of the alongshore plume became wider and extended over the area between 28º N and 25º N (Figure 3m), and as a result, low pCO$_2$ values also extended to the middle and outer shelves (Figures 4m, 5a and 5b). In this case, the extensive strong CO$_2$ uptake in the middle and outer shelves encompassed areas that would be...
normally nearly net zero CO₂ uptake and resulted in a strong CO₂ sink in March 2010 than the averages along transects B and E (Figures 5c and 5d).

The plume trajectory and wind forcing in July 2009 were unusual [Zhang et al., 2012; Feng et al., 2014]. Our observations also showed high surface salinity on the western inner shelf while the low-salinity plume was confined to the eastern side (Figure 3k). Under these conditions, pCO₂ was oversaturated west of 90°W, especially on the inner shelf which typically had low pCO₂; areas east of 90°W were undersaturated, especially on the outer shelf (Figure 4k). This pattern can also be seen along the two transects in Figure 5; pCO₂ values were undersaturated in July 2009 on the outer shelf in Transect B and were oversaturated in the middle and outer shelves in Transect E. Thus, the entire shelf shifted from a normally weak CO₂ sink to a strong source in July 2009. To sum up, plume trajectory can be strongly influenced by wind forcing [Cochrane and Kelly, 1986; Schiller et al., 2011; Walker et al., 2005; Zhang et al., 2012], and it can affect the spatial distributions of primary production [Chen et al., 2000] and other biogeochemical processes [Huang et al., 2013].

4.3. Disturbance by Hurricanes

The anomalously high surface water pCO₂ values observed in October 2005 were attributed to mixing effects of hurricanes Katrina (23–30 August 2005) and Rita (18–29 September 2005), as the water column was still nearly completely mixed during the survey as indicated by CTD and DIC data (not presented). The October pCO₂ values were higher than the mean values of the September 2006 and November 2009 surveys, which were considered to represent typical fall conditions (Figure 7c). As in situ pCO₂ measurements were limited on the inner shelf during this cruise, Lohrenz et al. (2010) extrapolated them across the Louisiana Bight and its adjacent area (~9000 km²) using remote sensing techniques and estimated an air-sea CO₂ flux of 5.4 mmol m⁻² d⁻¹ (0.21 Tg C yr⁻¹). Compared to the CO₂ fluxes from nonstorm months in September 2006 and November 2009 (average of 1.79 mmol m⁻² d⁻¹ or 0.07 Tg C yr⁻¹), the higher CO₂ flux (3.61 mmol m⁻² d⁻¹ or 0.14 Tg C yr⁻¹) in October 2005 can arguably be attributed to effects of storm-enhanced terrestrial inputs and bottom sediment resuspension by hurricanes [Lohrenz et al., 2010]. In addition, winds were relatively high in October 2005 and the uncertainty of gas transfer velocity was large under high wind speeds [Wanninkhof et al., 2009], resulting in larger uncertainty in air-sea CO₂ fluxes. Nonetheless, it is apparent, and perhaps not a surprising conclusion, that hurricanes can exert dramatic changes to normal sea surface pCO₂ distribution and thus the flux of air-sea CO₂ exchange.

4.4. Conceptual Model for CO₂ Dynamics in the River Plume

We conclude this paper with a conceptual model and a summary for the surface water inorganic carbon budget and dynamics of this river plume in the northern Gulf of Mexico (Figure 8). Annually, the Mississippi and Atchafalaya Rivers exported about 17 Tg C of bicarbonate to the coastal ocean [Cai et al., 2003; Lohrenz et al., 1999]. DIC mass balance analyses also pointed to strong biological DIC removal only in the middle salinity plume (salinity 18–27) [Guo et al., 2012]. Nitrate removal along the salinity gradient also showed patterns proportional to DIC removal [Cai et al., 2003; Guo et al., 2012; Huang et al., 2012; Lehner et al., 2013], supporting our pCO₂ simulations based on nitrate plus nitrite removal in section 3.5. These middle salinity regions coincided with strong sinks of atmospheric CO₂ (6.4 mmol m⁻² d⁻¹, 190 × 10⁶ g C yr⁻¹) for waters with salinity 17–24, and 5.5 mmol m⁻² d⁻¹, 713 × 10⁶ g C yr⁻¹ for waters with salinity 25–33). Net DIC removal was close to zero at the high-salinity end of these intermediate salinity regions (S>32) [Guo et al., 2012]. In our high-salinity subregion (33 ≤ S < 35), surface waters shifted from a CO₂ sink to a near neutral status, and this subregion was a weak sink of 90 × 10⁶ g C yr⁻¹ (1.7 mmol m⁻² d⁻¹).

5. Summary

This study described spatial and seasonal variations of surface water pCO₂ in the northern Gulf of Mexico. The spatial distribution was characterized by: (1) water pCO₂ values of 1000–2000 μatm in the Mississippi...
and Atchafalaya river sources, (2) a strong cross-shelf CO₂ gradient, where the inner to middle shelf acted as a sink of atmospheric CO₂ and the outer shelf was near a neutral status, and (3) a concave upward curve of pCO₂ values versus salinity with high values at low salinities near the river sources, low at middle salinities, and increasing near to near equilibrium or slight oversaturation in surface waters at high salinities. A quantitative budget to describe the CO₂ flux along the salinity gradient was also presented. The average pCO₂ values over this study area revealed seasonality: undersaturation in spring, near atmospheric CO₂ values in summer, oversaturation in fall, and a return to near atmospheric values in winter. Overall, the northern Gulf of Mexico acted as a sink of CO₂ with respect to the atmosphere, especially strong in the Louisiana Bight.

Analysis further indicated that variations in pCO₂ distribution and air-sea CO₂ flux were strongly influenced by biological activity, and to a lesser extent mixing processes. Finally, air-sea fluxes of CO₂ were also affected by weather events, implying that future climate-related changes in meteorological forcing may alter air-sea CO₂ fluxes on river-dominated continental shelves.

References

Bauer, J. E., W.-J. Cai, P. A. Raymond, T. S. Bianchi, C. S. Hopkinson, and P. A. G. Regnier (2013), The changing carbon cycle of the coastal ocean, Nature, 504(7478), 61–70.

Borges, A. V. (2011), Present day carbon dioxide fluxes in the coastal ocean and possible feedbacks under global change, in Oceans and the atmospheric carbon content, edited by P. Duarte and J. M. Santana-Casiano, pp. 47–77, Springer, Netherlands.

Borges, A. V., and N. Gypens (2010), Carbonate chemistry in the coastal zone responds more strongly to eutrophication than to ocean acidification, Limnol. Oceanogr., 55(1), 346–353.

Cai, W.-J. (2011), Estuarine and coastal ocean carbon paradox: CO₂ sinks or sites of terrestrial carbon incineration?, Annu. Rev. Mar. Sci., 3(1), 123–145.

Cai, W.-J., M. Dai, and Y. C. Wang (2006), Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis, Geophys. Res. Lett., 33, L12603, doi:10.1029/2006GL026219.

Cai, W.-J., X. Guo, C.-T. A. Chen, M. Dai, L. Zhang, W. Zhai, S. E. Lohrenz, K. Yin, P. J. Harrison, and Y. Wang (2008), A comparative overview of weathering intensity and HCO₃⁻ flux in the world’s major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers, Cont. Shelf Res., 28(12), 1538–1549.

Cai, W.-J., et al. (2011), Acidification of subsurface coastal waters enhanced by eutrophication, Nat. Geosci., 4(11), 766–770.

Cai, W.-J., C.-T. A. Chen, A. V. Borges (2013), Carbon dioxide dynamics and fluxes in coastal waters influenced by river plumes, in Biogeochemical Dynamics at Major River-Coastal Interfaces: Linkages With Global Change, edited by T. S. Bianchi, M. A. Allison, and W.-J. Cai, Cambridge Univ. Press, N. Y.

Chavez, F.P., T. Takahashi, W.-J. Cai, G. Friederich, B. Hales, R. Wanninkhof, and R.A. Feely (2007), Coastal oceans, Chap. 15, in The First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle, Synthesis and Assessment Product 2.2, Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, edited by A.W. King, et al., 157–166. [Available at http://cdiac.ornl.gov/GOCCCR/pdf/SAP2.2_Entire_Report_March2007.pdf.]

Chen, C.-T. A., and A. V. Borges (2009), Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO₂, Deep Sea Res., Part II, 56(8–10), 578–590.

Chen, C.-T. A., T.-H. Huang, Y.-H. Fu, Y. Bai, and X. He (2012), Strong sources of CO₂ in upper estuaries become sinks of CO₂ in large river plumes, Curr. Opin. Environ. Sustain., 4(2), 179–185.
Raymond, P. A., N.-H. Oh, R. E. Turner, and W. Broussard (2008), Anthropogenically enhanced fluxes of water and carbon from the Mississippi River, Nature, 451(7177), 449–452.

Redfield, A. C. (1958), The biological control of chemical factors in the environment, Am. Sci., 46, 205–221.

Salisbury, J. E., D. Vandemark, C. W. Hunt, J. W. Campbell, W. R. McGillis, and W. H. McDowell (2008), Seasonal observations of surface waters in two Gulf of Maine estuary-plume systems: Relationships between watershed attributes, optical measurements and surface pCO2, Estuarine Coastal Shelf Sci., 77(2), 245–252.

Sarmiento, J. L., and N. Gruber (2006), Ocean Biogeochemical Dynamics, Princeton Univ. Press, N. J.

Schiller, R. V., V. H. Kourafalou, P. Hogan, and N. D. Walker (2011), The dynamics of the Mississippi River plume: Impact of topography, wind and offshore forcing on the fate of plume waters, J. Geophys. Res., 116, C06029, doi:10.1029/2010JC006883.

Sweeney, C., E. Gloor, A. R. Jacobson, R. M. Key, G. McKinley, J. L. Sarmiento, and R. Wanninkhof (2007), Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements, Global Biogeochem. Cycles, 21, GB2015, doi:10.1029/2006GB002784.

Takahashi, T., J. Olafsson, J. G. Goddard, D. W. Chipman, and S. C. Sutherland (1993), Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study, Global Biogeochem. Cycles, 7(4), 843–878.

Ternon, J. F., C. Oudot, A. Dessier, and D. Diverres (2000), A seasonal tropical sink for atmospheric CO2 in the Atlantic ocean: The role of the Amazon River discharge, Mar. Chem., 68(3), 183–201.

Taylor, J. R. (1997), An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd ed., 327 pp., Univ. Sci. Books, Sausalito, Calif.

Tseng, C.-M., K. K. Liu, G. C. Gong, P. Y. Shen, and W. J. Cai (2011), CO2 uptake in the East China Sea relying on Changjiang runoff is prone to change, Geophys. Res. Lett., 38, L24609, doi:10.1029/2011GL049774.

Tsunogai, S., S. Watanabe, J. Nakamura, T. Ono, and T. Sato (1997), A preliminary study of carbon system in the East China Sea, J. Oceanogr., 53(1), 9–17.

Turner, R. E., and N. N. Rabalais (2013), Nitrogen and phosphorus phytoplankton growth limitation in the northern Gulf of Mexico, Aquat. Microb. Ecol., 68(2), 159–169.

Walker, N. D., W. J. Wiseman, L. J. Rose, and A. Babin (2005), Effects of river discharge, wind stress, and slope eddies on circulation and the satellite-observed structure of the Mississippi River plume, J. Coastal Res., 21(6), 1228–1244.

Wanninkhof, R. (1992), Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res., 97(C5), 7373–7382.

Wanninkhof, R., and W. R. McGillis (1999), A cubic relationship between air-sea CO2 exchange and wind speed, Geophys. Res. Lett., 26(13), 1889–1892.

Wanninkhof, R., S. C. Doney, T. Takahashi, and W. R. McGillis (2002), The effect of using time-averaged winds on regional air-sea CO2 fluxes, in Gas Transfer at Water Surfaces, Geophys. Monogr. Ser., vol. 127, edited by M. A. Donelan et al., pp. 351–356, AGU, Washington, D. C.

Weiss, R. F. (1974), Carbon dioxide in water and seawater: The solubility of a non-ideal gas, Mar. Chem., 2(3), 203–215.

Weiss, R. F., and B. A. Price (1980), Nitrous oxide solubility in water and seawater, Mar. Chem., 8(4), 347–359, doi:10.1016/0304-4203(80)90024-9.

Zhai, W., and M. Dai (2009), On the seasonal variation of air-sea CO2 fluxes in the outer Changjiang (Yangtze River) Estuary, East China Sea, Mar. Chem., 117(1-4), 2–10.

Zhang, X., R. D. Hetland, M. Marta-Almeida, and S. F. DiMarco (2012), A numerical investigation of the Mississippi and Atchafalaya freshwater transport, filling and flushing times on the Texas-Louisiana Shelf, J. Geophys. Res., 117, C11009, doi:10.1029/2012JC008108.