Selective and Potent Proteomimetic Inhibitors of Intracellular Protein–Protein Interactions**

Anna Barnard, Kérya Long, Heather L. Martin, Jennifer A. Miles, Thomas A. Edwards, Darren C. Tomlinson, Andrew Macdonald,* and Andrew J. Wilson*

ange_201410810_sm_miscellaneous_information.pdf
Contents
General Procedures .. 2
Synthetic Chemistry ... 2
Cellular and Biophysical Analysis ... 9
Detailed Synthetic Procedures and Characterization .. 40
General Considerations

All chemicals and solvents were purchased and used without further purification. 1H, 13C and 2D NMR Spectra were recorded with a Bruker DRX 500 MHz or DPX 300 MHz spectrometer. 1H NMR spectra are referenced to tetramethylsilane (TMS) and chemical shifts are given as parts per million downfield from TMS. Coupling constants are reported to the nearest 0.1 Hz. Melting points were determined using a Griffin D5 variable temperature apparatus and are uncorrected. Microanalyses were obtained on a Carlo Erba Elemental Analyser MOD 1106 instrument. IR spectra were recorded with a Perkin–Elmer FTIR spectrometer and samples were analysed in the solid phase. Mass spectra (HRMS) were obtained with a Bruker maxis impact 3000 spectrometer using electrospray ionisation. LC-MS experiments were run on a Waters Micromass ZQ spectrometer. Analytical HPLC analysis was carried out on an Agilent Technologies 1260 Infinity on a gradient of 95-5% acetonitrile in water. Analytical TLC was performed on 0.2 mm silica gel 60 F254 precoated aluminium sheets (Merck) and visualised by using UV irradiation or, in the case of amine intermediates, by staining with ninhydrin solution. Flash chromatography was carried out on silica gel 60 (35–70 micron particles, FluoroChem). The convention used to assign the spectroscopic data and for naming compounds for this series of aromatic oligoamides has been described previously.$^{[1]}$ Additional side chain functionalities were assigned in the NMR as 2-3° denoting the central aromatic ring functionalised at the 3-position on an oxygen atom.

Synthetic Chemistry

Helix mimetics and associated monomer building blocks were synthesized following previously reported methodology according to Scheme S1 and is described in the following section whilst characterization is described from pg 40 and 1H NMR spectra and LC-MS analyses are provided from pg 71. Helix mimetics used in biophysical and cell based screens described in this work are given in table S1. Helix mimetics labelled with biotin or fluorescein are annotated as such and given the parent compounds number from which they were derived.
To label mimetics with a biotin probe, a synthesis of an appropriate tag was developed as illustrated in Scheme S2.

Scheme S2 Synthesis of a novel biotin azide for use in solid phase ‘click’ chemistry.

It was also necessary to obtain three additional alkyne tagged monomers (Fig. S1). These were synthesized using established methods.

Figure S1 – Structures of the alkyne-functionalised monomers used in ‘click’ chemistry reactions.
Solid-Phase Trimer Synthesis

Amino acid-loaded Wang resin (0.1 mmol) was swelled in anhydrous DMF (5 ml) 15 minutes prior to reaction. The monomers (0.5 mmol) were each dissolved in anhydrous CHCl₃ (10 ml) and pre-activated for coupling with Ghosez’s reagent (315 μl, 20% in CHCl₃, 0.48 mmol) for 1 hour at room temperature. The coupling reactions were carried out on a CEM Liberty microwave assisted automated peptide synthesiser. A small sample was removed and cleaved from the resin with TFA: CH₂Cl₂ (1:1, 1 ml) and analysed by LC-MS to confirm formation of the desired trimer; coupling reactions were assumed to have gone to completion.

‘Click’ Chemistry

The trimers on amino acid-loaded Wang resin were suspended in THF: H₂O (1:1, 1 ml) and the azide was added (1 equivalent) along with CuSO₄·5H₂O (10 mol%) and sodium ascorbate (20 mol%). The reaction mixture was stirred overnight at room temperature. The resin was then washed with H₂O (1 ml, 5 mins) and subjected to the cleavage protocol.

Cleavage

The cleavage step was carried out manually, in 1.5 ml ‘Extract-Clean’ polypropylene reservoirs fitted with 20 μm polyethylene frits (Alltech). The resin was transferred to the reservoir and washed with CH₂Cl₂ (1 ml, 5 mins) and diethyl ether (1 ml, 5 mins). A 1:1 mixture of TFA: CH₂Cl₂ was added and the mixture was stirred for 30 mins at room temperature and the contents collected and the procedure repeated. The resulting solution was concentrated affording the target compound.

Table S1 – Structures of the N-alkylated helix mimetics synthesised for screening.

Compound No.	N terminus (R₁)	Middle residue (R₂)	C terminus (R₃)	Amino Acid (R₄)
1		a	a	Gly
2	a	b	a	Gly
3	c	d	a	Gly
4	a	f	a	Gly
5	c	g	a	Gly
Compound No.	N terminus (R_1)	Middle residue (R_2)	C terminus (R_3)	Amino Acid (R_4)
-------------	---------------------	-----------------------	-------------------	-------------------
6	![c](image)	![h](image)	![a](image)	Gly
7	![c](image)	![i](image)	![a](image)	Gly
8	![c](image)	![j](image)	![a](image)	Gly
9	![c](image)	![k](image)	![a](image)	Gly
10	![c](image)	![l](image)	![a](image)	Gly
11	![c](image)	![g](image)	![m](image)	Gly
12	![i](image)	![n](image)	![a](image)	Gly
13	![f](image)	![n](image)	![a](image)	Gly
14	![g](image)	![n](image)	![a](image)	Gly
15	![c](image)	![o](image)	![a](image)	Gly
16	![c](image)	![p](image)	![a](image)	Gly
17	![c](image)	![q](image)	![a](image)	Gly
18	![c](image)	![e](image)	![m](image)	Gly
19	![c](image)	![r](image)	![a](image)	Gly
Compound No.	N terminus (R₁)	Middle residue (R₂)	C terminus (R₃)	Amino Acid (R₄)
-------------	-----------------	---------------------	----------------	----------------
20	![Image](c)	![Image](n)	![Image](p)	Gly
21	![Image](l)	![Image](e)	![Image](i)	Gly
22	![Image](s)	![Image](e)	![Image](l)	Gly
23	![Image](e)	![Image](b)	![Image](a)	Gly
24	![Image](g)	![Image](p)	![Image](m)	Gly
25	![Image](c)	![Image](c)	![Image](a)	Gly
26	![Image](c)	![Image](a)	![Image](c)	Gly
27	![Image](c)	![Image](s)	![Image](l)	Gly
28	![Image](f)	![Image](s)	![Image](l)	Gly
29	![Image](n)	![Image](n)	![Image](c)	Gly
30	![Image](f)	![Image](n)	![Image](l)	Gly
31	![Image](g)	![Image](s)	![Image](m)	Gly
32	![Image](s)	![Image](a)	![Image](c)	Gly
33	![Image](g)	![Image](g)	![Image](a)	Gly
34	![Image](g)	![Image](i)	![Image](a)	Gly
Compound No.	N terminus (R$_1$)	Middle residue (R$_2$)	C terminus (R$_3$)	Amino Acid (R$_4$)
-------------	-------------------	----------------------	------------------	------------------
35	![c](image)	![n](image)	![t](image)	Gly
36	![c](image)	![b](image)	![t](image)	Gly
37	![g](image)	![n](image)	![t](image)	Gly
38	![f](image)	![n](image)	![t](image)	Gly
39	![e](image)	![n](image)	![t](image)	Gly
40	![f](image)	![b](image)	![t](image)	Gly
41	![e](image)	![b](image)	![t](image)	Gly
42	![f](image)	![i](image)	![t](image)	Gly
43	![f](image)	![f](image)	![t](image)	Gly
44	![c](image)	![n](image)	![a](image)	Gly
45	![g](image)	![b](image)	![a](image)	Gly
46	![g](image)	![b](image)	![l](image)	Gly
47	![c](image)	![n](image)	![m](image)	Gly
48	![p](image)	![e](image)	![l](image)	Gly
49	![c](image)	![n](image)	![l](image)	Gly
Compound No.	N terminus (R₁)	Middle residue (R₂)	C terminus (R₃)	Amino Acid (R₄)
-------------	----------------	---------------------	----------------	----------------
50	![Image](image1)	![Image](image2)	![Image](image3)	Gly
51	![Image](image4)	![Image](image5)	![Image](image6)	Gly
52	![Image](image7)	![Image](image8)	![Image](image9)	Gly
53	![Image](image10)	![Image](image11)	![Image](image12)	Gly
54	![Image](image13)	![Image](image14)	![Image](image15)	Gly
55	![Image](image16)	![Image](image17)	![Image](image18)	Gly
56	![Image](image19)	![Image](image20)	![Image](image21)	Gly
57	![Image](image22)	![Image](image23)	![Image](image24)	Gly
58	![Image](image25)	![Image](image26)	![Image](image27)	Val
59	![Image](image28)	![Image](image29)	![Image](image30)	Ile
60	![Image](image31)	![Image](image32)	![Image](image33)	Leu
61	![Image](image34)	![Image](image35)	![Image](image36)	Ile
62	![Image](image37)	![Image](image38)	![Image](image39)	Gly (Val on top)
63	![Image](image40)	![Image](image41)	![Image](image42)	Ile
64	![Image](image43)	![Image](image44)	![Image](image45)	Ile
65	![Image](image46)	![Image](image47)	![Image](image48)	Val
Compound No.	N terminus (R₁)	Middle residue (R₂)	C terminus (R₃)	Amino Acid (R₄)
-------------	-----------------	---------------------	-----------------	-----------------
66	a	t	f	Val
67	a	f	a	Ile
68	r	t	a	Val
69	r	t	t	Val
70	a	t	a	Asp
71	t	s	t	Ile
72	a	r	a	Gly
73	a	a	s	Leu
74	f	N/A	a	Ile
75	a	N/A	s	Ile
76	f	N/A	a	Gly
77	a	N/A	s	Gly

Biophysical and Cellular Analyses

Protein Expression and Fluorescence Anisotropy

Expression of hDM2 and fluorescence anisotropy assays were performed as described previously. Expression of Bcl-xₗ and fluorescence anisotropy assays were performed as described previously. Expression of Mcl-1 and fluorescence anisotropy assays were performed as described previously. Direct binding assays were performed as described previously. Fluorescence anisotropy assays were performed in 384-well plates (Greiner Bio-one). Each
experiment was run in triplicate and the fluorescence anisotropy measured using a Perkin Elmer EnVisionTM 2103 MultiLabel plate reader, with excitation at 480 nm and emission at 535 nm (5 nM bandwidth). All experiments were performed in assay buffer: 40 mM phosphate buffer at pH 7.50, containing 200 mM NaCl and 0.02 mg mL\(^{-1}\) bovine serum albumin (BSA) and data analysed following previously published methods.\(^5,6\)

\(^{15}\)N HSQC NMR binding experiments

\(^{15}\)N HSQC NMR binding experiments were performed as described previously with 160 μM protein in phosphate buffer (100 mM sodium phosphate, 1 mM DTT, 2.5% glycerol and 5% DMSO).\(^6\)

Cell culture

U2OS, SJSA-1 and Saos-2 cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) and RPMI-1640 media respectively supplemented with 10% foetal bovine serum, penicillin-streptomycin and 2 mM L-glutamine.

Cell Viability

Cells were plated in 96-well plates at 10\(^4\) cells/well 24 hours before compound addition. Compounds were added as 50 μM stocks in serum-free media (Opti-MEM, 100 μl) and the cells were incubated for 18 hours. 15 μl of Dye Solution (Promega Cell Titre 96\(^\circ\)) was added and the cells were incubated for 4 hours. 100 μl of Stop Solution (Promega Cell Titre 96\(^\circ\)) was added and the solutions were mixed using a multi-channel pipette. After incubating for 1 hour the absorbance of each well was measured at 570 and 600 nm.

High Content Screening Assay

Cells were plated into 96-well plates (Viewpoint plates, Perkin Elmer, MA) at 4000 cells/well using an xrd-384 Fluid X dispenser fitted with an 8 nozzle resin dispensing cassette at 300 rpm (Fluid X Ltd, Nether Alderley, UK). Plates were allowed to equilibrate at room temperature in a hood for 1 hr then incubated for 24 hrs at 37°C and 5% CO\(_2\) before media was replaced with serum-free media (Opti-MEM) prior to compound addition. Compound stocks (10 mM in DMSO) were diluted 1:100 with Opti-MEM and added to the plated cells at final concentrations of 10 and 20 μM giving a final DMSO percentage of 0.2%. Library addition was performed using a Bravo SRT liquid handling platform (Agilent Technologies, Wokingham, UK). Plates were assayed 48 hrs after compound addition using immunofluorescent staining and high-content imaging approaches as detailed below. Compound precipitation was visually assessed on addition and at imaging. Assays were developed and validated using Nutlin 3a and ABT-737 at a variety of concentrations.

Immunofluorescent staining of assay plates was carried out as follows. Media was discarded and cells rinsed in phosphate buffered saline (PBS), before fixation in 4% paraformaldehyde (SigmaAldrich) for 15 mins. Cells were permeabilized with 0.1% Triton X-100 (VWR) in PBS for 5 mins, cells were then rinsed in PBS and blocked in 1% milk (Marvel, Premier Foods, St Albans, UK) for 5 mins before the addition of antibodies against LC3B (SF10, Enzo Life Sciences) and caspase 3 (Abcam, ab13847) diluted in 1% milk for 1 hr at room temperature. Following PBS rinses, 10
cells were incubated at room temperature for an hour in the dark with 1% milk containing goat anti-mouse AlexaFluor 568 (Molecular Probes), goat anti-rabbit AlexaFluor 633 (Molecular Probes), 1 µg/mL DAPI (Molecular Probes) and AlexaFluor-488 conjugated Phalloidin (Molecular Probes). Following a final set of PBS washes, plates were scanned and images collected with an Operetta HTS imaging system (PerkinElmer) at 20x magnification with 11 fields of view (510 x 675 µm)/well. Images were then analysed with Columbus 2.2 (PerkinElmer).

During assay development statistical analysis (Student T-tests, Mann-Whitney U tests and Spermann Rank correlation) was carried out using GraphPad Prism 6.00 software (GraphPad Software, La Jolla, CA). Screening hits were identified by Z-scores calculated using the following formula where s is the positive control and c the negative controls:

\[Z = \frac{(sample-value - \mu_c)}{\sigma_c} \]

with hits determined as an absolute Z-score of 2 or more, as this correlates to a P value of 0.045, and thus statistical significance.\(^7\) False positives were defined as any DMSO-treated well in which the absolute Z score was greater than 2 whilst false negatives were Nutlin 3a-treated wells which had an absolute Z score of less than 2 on three independent, randomly distributed test plates.

Cell Lysis and Western blotting

Cells were lysed with 100 µl of lysis buffer (50 mM Tris HCl pH 8.0, 150 mM NaCl, 1 mM EDTA and 0.5 % Nonidet P-40) and the lysate was analysed by SDS PAGE electrophoresis and probed with antibodies against p21 (C-19, Santa Cruz, sc-397), and GAPDH (6C5, Abcam, ab8245).

Biotin-tag assays

Cells were plated in 10 cm dishes 24 hours before compound addition. Cells were treated with 10 µM of the biotinylated trimers in Opti-MEM and incubated for 4 hours. Cells were lysed with 100 µl of lysis buffer (50 mM Tris HCl pH 8.0, 150 mM NaCl, 1 mM EDTA and 0.5 % Nonidet P-40). Cell lysate was incubated with Streptavidin-coated magnetic beads (Sigma Aldrich) for 2 hours at 4 °C, followed by extensive washing of the protein complexes. Complexes were denatured by SDS PAGE electrophoresis and probed with antibodies against hDM2 (C-18, Santa Cruz, sc-812), Mcl-1 (S-19, Santa Cruz, sc-819) and Bcl-X\(_L\) (H-62, Santa Cruz, sc-7195).
Figure S2 Additional HCS summary for mimetic library (a). Example images of the five compounds (10 and 20 μM) and controls of 0.2% DMSO and Nutlin-3a (2 and 5 μM) scale = 50 μm. DAPI staining is shown in the blue channel, caspase 3 is shown in red, LC3B as yellow and conjugated phalloidin shown in green.
Table S2a - Summary of the results from the high-content assays for helix mimetics 1-77. U2OS cells were treated with 2 different concentrations of the helix mimetics (10 and 20 µM) and cell number assessed.

Compound Number	Summary	10 µM	20 µM										
		1	2	3	4	1	2	3	4				
1	-	-0.09	-1.82	-5.06	-3.37	-1.92	-1.95	-2.43	-3.94				
2	20 µM, some 10 µM	-2.51	-1.28	-4.41	-3.18	-5.17	-4.79	-8.50	-8.17				
3	-	1.08	0.40	1.93	-0.53	-0.08	-0.59	0.29	-0.86				
4	Hit in all replicates	-3.92	-2.50	-5.46	-3.78	-2.34	-2.87	-5.45	-4.63				
5	-	-1.00	-1.17	-7.81	-3.93	-0.70	-1.28	-0.77	-4.18				
6	-	-0.33	-1.11	-1.90	-3.74	-1.15	-0.96	-2.15	-3.66				
7	-	-1.95	-2.25	-4.46	-2.09	-1.90	-1.28	-2.35	-1.85				
8	-	-0.95	-0.13	-3.08	-2.02	-4.27	-2.34	-5.23	-1.21				
9	-	0.54	1.90	1.03	-2.94	0.13	-1.12	-3.18	-3.52				
10	-	0.01	1.00	1.62	-0.52	-1.08	-1.93	-2.44	-2.76				
11	-	0.47	0.68	0.51	-1.32	0.54	-0.49	-0.74	-2.58				
12	-	1.25	0.92	1.48	-0.81	-0.67	-0.42	-1.10	-0.83				
13	-	-0.46	-1.11	1.44	-0.67	-2.44	-1.13	-2.88	-2.22				
14	-	-0.40	1.05	0.19	0.08	0.60	-0.71	-1.96	-2.12				
15	Hit in all replicates	-3.53	-3.00	-3.64	-2.34	-3.83	-3.03	-8.06	-4.12				
16	-	0.44	-1.32	-1.89	-2.90	-0.55	-0.71	-1.35	-2.46				
17	-	-0.34	-2.74	-2.32	-4.20	-1.17	-1.81	-3.06	-4.48				
18	-	-0.98	-1.67	-4.56	-2.56	-1.01	-1.23	-1.75	-4.85				
19	-	0.83	0.74	2.74	2.39	1.18	-0.62	-0.93	-0.76				
20	20 µM only	-1.98	-1.07	-3.41	-1.78	-4.96	-3.02	-8.56	-7.22				
21	-	0.99	0.71	-0.12	0.99	0.50	-0.50	-0.81	-0.59				
22	-	0.43	-1.48	1.72	0.49	0.15	1.07	-0.45	0.21				
23	-	-0.56	0.18	-2.54	-0.26	-5.30	-1.13	-9.07	-2.71				
24	-	0.70	-0.01	-2.42	-0.80	-0.10	-0.21	-1.51	-2.34				
25	Hit in all replicates	-2.25	-3.30	-4.79	-5.61	-2.57	-2.22	-5.16	-5.49				
26	-	1.55	-0.74	-1.04	-2.31	-0.52	-1.61	0.53	-2.96				
27	-	0.28	0.60	-0.81	-4.00	-1.55	-0.51	-3.20	-1.70				
28	20 µM only	0.40	2.04	0.69	0.79	-5.19	-2.01	-9.61	-1.99				
Compound Number	Summary	1	2	3	4	1	2	3	4				
-----------------	---------	-----	-----	-----	-----	-----	-----	-----	-----				
29	20 μM, some 10μM	-3.06	-0.99	-4.79	-1.77	-5.28	-3.34	-10.02	-7.94				
30	20 μM only	-0.03	1.50	-3.56	-0.62	-5.30	-2.30	-9.93	-5.80				
31		0.67	0.04	-2.11	-0.59	-0.36	-0.40	-2.55	-1.01				
32		1.35	0.35	-3.30	-0.73	-0.11	0.04	-0.05	-1.38				
33	20 μM, some 10μM	-1.82	-2.62	-6.17	-4.88	-1.42	-2.68	-4.37	-3.66				
34		-1.04	-0.57	0.81	-1.97	0.31	-1.30	0.31	-1.23				
35		2.82	-1.57	-0.42	-2.58	0.34	-0.49	0.61	-0.83				
36		-0.30	0.32	-1.05	-2.39	-5.08	-1.28	-9.38	-2.84				
37	20 μM, some 10μM	-2.72	0.73	0.06	0.04	-5.29	-4.38	-9.97	-6.32				
38	20 μM, some 10μM	-5.44	-1.49	-6.30	-1.70	-5.29	-3.89	-9.31	-6.30				
39	20 μM, some 10μM	-5.24	-3.58	-5.59	-1.79	-5.28	-5.17	-10.03	-9.97				
40	20 μM, some 10μM	-4.91	-1.11	-0.76	-2.29	-5.19	-3.36	-9.88	-3.63				
41	Hit in all replicates	-4.23	-4.19	-6.45	-5.30	-6.40	-6.42	-9.09	-9.05				
42	20 μM only	-0.02	0.52	0.88	-1.82	-3.17	-2.22	-3.13	-2.24				
43		-0.37	0.09	-0.27	-1.29	-3.86	-1.94	-3.61	-1.62				
44		1.41	0.10	2.02	-1.04	-0.82	-0.54	-1.71	-0.91				
45	20 μM, some 10μM	0.32	-0.50	-1.95	-2.28	-2.24	-1.52	-4.10	-3.12				
46		0.32	0.32	-2.18	-0.22	-2.73	-1.41	-5.01	-2.99				
47		0.21	-0.52	-1.72	-0.87	-1.10	-1.46	-2.01	-3.00				
48	20 μM, some 10μM	-1.75	-0.39	-6.95	-2.93	-6.40	-6.13	-8.98	-6.25				
49	20 μM only	-0.45	-1.48	-1.20	-1.09	-3.13	-3.11	-5.96	-3.04				
50		0.37	0.46	-2.53	0.29	-0.73	-0.44	-3.02	-0.98				
51	20 μM only	1.28	-0.29	-0.02	-0.33	-2.69	-4.48	-5.04	-6.24				
52		1.13	-1.42	-3.86	-2.41	-1.27	-1.90	-3.12	-2.05				
53	20 μM only	0.51	0.48	-1.81	0.87	-2.48	-2.76	-3.65	-3.15				
54	Hit in all replicates	-4.92	-3.78	-9.22	-8.22	-6.41	-6.37	-9.05	-9.03				
55		-0.14	-2.14	-2.12	-0.36	-4.23	-3.41	-4.07	-2.69				
56		1.46	0.13	1.82	-0.27	0.56	0.13	-0.99	0.47				
57		0.55	-0.30	1.87	1.06	1.33	-0.33	-0.61	-1.55				
58	Hit in all replicates	-5.97	-4.88	-11.64	-7.49	-6.39	-6.23	-9.05	-8.91				
59	20 μM, some 10μM	-3.59	-3.43	-9.27	-4.29	-6.41	-5.56	-8.75	-5.91				
Compound Number	Summary	1	2	3	4	1	2	3	4	1	2	3	4
----------------	--------------------------------	----	----	----	----	----	----	----	----	----	----	----	----
60	20 µM, some 10µM	-2.15	-1.63	-6.44	-2.55	-6.27	-5.01	-8.00	-4.82				
61	Hit in all replicates	-6.57	-6.10	-12.33	-10.37	-6.42	-6.38	-9.06	-8.99				
62		0.84	-0.16	0.42	2.28	0.29	-0.95	0.16	0.26				
63	Hit in all replicates	-6.40	-5.55	-11.73	-8.14	-6.34	-6.33	-9.02	-8.59				
64	Hit in all replicates	-6.43	-6.21	-11.44	-11.33	-6.30	-6.40	-9.07	-8.83				
65	Hit in all replicates	-6.58	-5.73	-12.35	-11.40	-6.39	-6.39	-8.96	-8.99				
66	Hit in all replicates	-6.53	-6.50	-12.25	-12.06	-6.35	-6.33	-8.93	-8.99				
67	Hit in all replicates	-5.84	-5.24	-11.16	-9.70	-6.35	-6.24	-8.93	-8.59				
68		-0.17	-0.41	-2.09	-2.82	-1.31	-1.75	-1.73	-0.42				
69	20 µM, some 10µM	-1.84	-2.38	-4.03	-2.25	-3.96	-3.12	-4.76	-3.74				
70		-0.26	-1.09	0.13	0.51	0.15	-1.28	-0.56	0.06				
71	Hit in all replicates	-6.37	-5.45	-12.17	-9.06	-6.32	-6.39	-9.01	-7.20				
72		0.38	-0.47	1.67	-0.51	0.80	-0.41	-0.58	0.49				
73	Hit in all replicates	-6.41	-4.99	-10.05	-7.26	-6.39	-6.34	-8.89	-8.50				
74	20 µM, some 10µM	-2.58	-1.79	-1.95	-2.82	-4.13	-3.94	-4.28	-4.69				
75	20 µM, some 10µM	-2.71	-0.55	-1.84	-1.31	-4.94	-5.16	-5.16	-5.19				
76		-0.45	-0.41	-1.39	-1.72	0.71	0.16	-0.09	-0.91				
77		0.16	1.07	-1.09	-0.29	0.08	0.99	-0.51	-0.98				
Table S2b - Summary of the results from the high-content assays for helix mimetics 1-77. U2OS cells were treated with 2 different concentrations of the helix mimetics (10 and 20 µM) and cells active for Caspase-3 quantified.

Compound Number	Summary	10 µM	20 µM	Z-score					
1	-	-0.24	-0.94	2.75					
2	-	-0.21	1.38	8.80					
3	-	0.26	0.84	1.19					
4	20 µM, some 10µM	2.11	4.38	-0.34					
5	-	0.47	2.59	37.37					
6	-	0.25	0.82	0.53					
7	-	-0.20	1.36	4.32					
8	-	-0.01	0.19	-1.59					
9	-	-0.63	-1.62	-1.96					
10	-	1.26	0.78	2.48					
11	-	1.73	-0.91	3.95					
12	-	3.47	2.05	-2.57					
13	-	1.89	0.35	3.46					
14	-	1.14	0.02	0.19					
15	-	-0.04	-1.49	1.32					
16	-	0.56	1.40	2.86					
17	-	-0.46	-0.93	2.31					
18	-	-0.15	0.56	3.90					
19	-	-0.18	-0.41	4.53					
20	-	6.53	0.50	3.90					
21	-	-0.71	4.31	1.29					
22	-	1.49	-0.01	1.55					
23	-	1.50	1.19	3.68					
24	-	0.11	-0.25	-0.49					
25	-	-0.66	0.09	-0.09					
26	-	-0.09	-0.82	0.59					
27	-	-0.05	-1.42	2.64					
28	-	0.84	0.37	-0.28					
Compound Number	Summary	1	2	3	4	1	2	3	4
-----------------	--------------	------	------	------	------	------	------	------	------
29	-	16.78	-0.62	6.21	1.64	28.83	6.35	-1.49	1.18
30	-	3.34	-0.44	-0.11	0.09	10.19	-0.75	8.80	-0.93
31	-	-0.02	-0.95	1.01	-1.67	0.42	-0.83	-0.91	-0.96
32	-	0.31	0.06	3.82	4.01	-0.14	0.27	-0.77	-0.83
33	-	-0.59	-0.56	3.15	-0.58	0.61	-0.75	-0.99	-1.04
34	-	0.33	-0.85	1.58	-1.80	-0.56	-0.98	-1.12	-1.22
35	-	-0.23	-0.31	1.06	-0.86	1.15	-0.88	-0.36	-0.13
36	-	0.53	-0.99	-0.50	41.98	23.62	-0.04	14.49	-0.89
37	20 μM, some 10μM	7.59	-0.29	2.22	4.56	6.54	4.89	8.49	-0.21
38	20 μM, some 10μM	3.80	2.00	3.52	39.39	1.71	5.13	-0.60	1.84
39	-	7.42	-0.48	3.78	-0.67	19.68	17.94	4.17	1.84
40	-	8.14	0.20	-2.00	3.11	21.21	-0.79	2.70	-0.97
41	-	1.91	-0.14	-1.99	0.32	20.62	-1.74	-3.00	-3.00
42	-	-0.10	-0.75	0.66	-0.29	3.92	0.63	4.66	0.42
43	-	0.46	1.08	0.62	0.55	4.42	2.86	3.76	0.96
44	-	0.69	0.67	-0.64	1.03	0.76	1.02	0.18	0.77
45	-	1.96	1.42	0.75	2.32	14.21	6.98	6.40	0.93
46	-	0.18	0.58	0.00	0.26	7.44	6.86	4.86	1.04
47	-	0.83	-1.26	1.07	-1.59	0.12	-0.70	-2.13	-1.79
48	20 μM, some 10μM	2.53	0.03	4.63	-0.91	8.20	9.28	25.62	7.38
49	-	-0.50	-1.32	-0.80	-2.13	-0.51	-0.63	0.14	-0.35
50	-	1.14	0.61	3.10	-0.69	1.62	0.78	0.05	0.65
51	20 μM, some 10μM	2.73	3.34	-0.13	0.46	24.29	20.15	13.14	6.06
52	20 μM, some 10μM	1.94	0.12	6.46	0.06	16.73	6.00	2.78	1.56
53	-	-0.08	-0.94	-1.70	-1.26	2.64	0.67	-0.96	5.72
54	20 μM, some 10μM	17.21	3.14	9.76	5.33	-1.74	-1.74	39.93	28.22
55	-	-1.32	-0.85	1.83	-1.46	9.31	1.07	2.89	-0.30
56	-	-0.09	0.76	1.18	0.62	-0.16	-0.34	-0.10	-0.68
57	-	0.86	1.51	2.21	-0.02	0.49	0.56	-0.52	-0.22
58	20 μM, some 10μM	19.43	2.31	7.47	4.14	25.09	23.30	-3.00	21.53
59	20 μM, some 10μM	16.99	7.02	-0.04	2.52	-1.74	5.04	-3.00	6.67
Compound Number	Summary	10 µM	20 µM						
-----------------	---------	-------	-------						
		1	2	3	4	1	2	3	4
60	-	1.14	-0.33	2.96	-0.33	24.44	1.12	1.46	3.06
61	20 µM, some 10µM	-2.38	5.30	111.48	16.57	-1.74	4.65	21.53	27.30
62	-	-1.28	-0.69	0.45	-0.24	0.67	0.82	1.54	1.89
63	20 µM, some 10µM	38.72	8.34	8.72	7.64	2.32	18.90	-3.00	25.62
64	20 µM, some 10µM	44.37	7.35	-0.63	14.00	25.36	-1.74	31.34	45.43
65	Hit in all replicates	9.78	8.22	31.04	5.20	38.92	20.62	21.53	39.93
66	Hit in all replicates	52.11	54.38	15.86	28.23	15.29	30.46	11.31	39.93
67	Hit in all replicates	29.77	3.05	11.82	5.74	2.73	9.44	65.69	25.62
68	-	-0.79	-0.29	1.20	0.40	0.28	-0.40	2.87	1.27
69	-	-0.24	-0.77	-1.43	-2.07	-0.65	0.48	-0.72	-0.93
70	-	-0.23	1.08	-1.51	0.10	0.50	0.26	0.19	-0.98
71	20 µM, some 10µM	42.16	5.15	17.92	6.67	4.65	14.52	-3.00	10.61
72	-	1.43	-0.16	1.68	-0.20	1.37	-0.21	0.92	-0.94
73	20 µM, some 10µM	31.07	2.62	0.82	6.30	-1.74	18.59	8.45	23.26
74	-	1.13	-0.89	-0.36	0.69	0.92	0.59	3.94	1.83
75	-	-0.39	-1.02	-1.13	-0.95	4.96	-1.37	-1.37	-1.37
76	-	-1.20	-0.86	-0.94	-1.13	-0.95	-1.37	-0.57	-1.18
77	-	0.00	-0.18	4.99	0.63	0.02	-0.71	-0.50	-0.79
Table S2c - Summary of the results from the high-content assays for helix mimetics 1-77. U2OS cells were treated with 2 different concentrations of the helix mimetics (10 and 20 µM) and autophagic cells quantified.

Compound Number	Summary	10 µM	20 µM						
		1	2	3	4	1	2	3	4
1	-	-0.11	-0.69	0.00	-0.61	0.66	-1.04	-0.23	0.17
2	20 µM, some 10µM	1.19	0.43	3.10	0.53	70.85	11.61	23.60	12.73
3	-	-0.33	-0.61	0.22	-0.12	1.42	-0.37	-0.06	-0.85
4	-	-1.63	0.32	6.92	1.60	1.02	-0.12	7.60	2.73
5	-	-0.83	0.16	5.61	1.15	0.61	4.54	0.82	5.04
6	-	-1.57	-0.34	0.17	0.13	-1.20	-0.57	-0.69	0.57
7	-	-0.93	-1.72	-0.85	-0.43	-1.47	-0.82	0.16	0.41
8	-	2.89	-0.94	-0.39	0.18	-1.89	-1.41	8.48	-0.10
9	-	-1.21	-1.47	-0.28	2.30	-1.10	-1.20	-0.97	-0.92
10	-	-1.37	-1.53	-0.54	-0.49	-0.19	2.80	3.06	7.58
11	-	-0.81	-0.65	-0.51	-0.07	-1.40	-0.70	-1.21	0.64
12	-	-1.09	-1.43	-0.38	-0.48	-1.27	-0.71	-0.48	-0.52
13	-	-1.34	-1.52	0.10	0.07	-0.89	-0.51	-1.01	-1.08
14	-	-1.13	0.05	-0.16	1.24	-1.28	-1.27	-0.72	-0.30
15	-	-1.31	-1.06	-0.85	-0.85	-1.89	-1.89	-1.88	-1.88
16	-	-1.80	-1.75	-0.44	-0.63	1.14	8.76	-1.52	3.90
17	-	-1.56	2.50	-0.85	0.18	-1.20	-1.48	-0.54	-0.76
18	-	-0.83	-1.49	-0.31	-0.63	-0.55	-1.19	-1.12	-0.08
19	-	-1.62	-1.04	-0.70	-0.41	-1.67	-1.28	-1.19	-1.54
20	-	-2.00	-1.29	0.10	-0.04	2.05	-0.01	8.30	1.40
21	-	-1.25	-1.61	-0.85	-0.36	0.10	-1.29	-0.86	-1.22
22	-	-0.61	-0.75	-0.54	-0.18	-0.84	-0.08	-1.23	-0.35
23	-	-2.00	3.30	-0.42	0.04	-1.89	-0.17	7.18	-1.03
24	-	-1.23	-0.96	0.01	-0.48	-1.34	-1.04	-0.41	0.96
25	-	-1.44	5.27	-0.85	0.37	-1.37	-1.43	0.03	0.86
26	-	-1.47	-1.54	-0.66	-0.64	-0.99	0.05	-1.88	0.77
27	-	-1.59	-1.22	-0.66	-0.10	-0.74	-0.39	-0.97	0.75
28	-	-1.40	-1.83	-0.18	-0.35	8.72	-1.46	-1.88	0.84
Compound Number	Summary	10 µM	20 µM						
-----------------	---------	-------	-------						
		1	2	3	4	1	2	3	
29	-	-1.05	-0.83	-0.30	-0.85	61.76	3.20	-1.88	3.92
30	-	-1.37	-1.29	-0.61	-0.85	47.61	-1.89	-1.88	2.52
31	-	-1.61	-0.96	-0.43	-0.48	-1.60	-1.30	-1.04	-1.53
32	-	-1.46	-1.60	0.79	-0.29	-1.06	-1.08	-0.31	-0.07
33	-	-0.95	-1.11	-0.19	-0.57	-1.89	-1.89	-1.33	-1.39
34	-	-1.29	-1.11	-0.19	-0.03	-1.89	-1.17	-0.36	-1.17
35	-	-0.89	0.78	-0.85	-0.85	-0.61	-1.29	-1.29	-0.18
36	-	-1.14	-1.19	-0.85	1.07	-1.89	-1.53	11.13	1.60
37	-	-0.80	-1.61	-0.33	-0.15	32.38	-0.37	19.79	2.29
38	-	26.37	-0.75	-0.51	-0.65	-1.89	1.13	5.96	1.43
39	-	-2.00	-0.95	-0.55	-0.65	-1.89	-1.89	-1.88	19.79
40	-	-1.07	-0.57	-0.29	-0.43	-1.89	-0.42	11.77	0.56
41	-	-3.58	-1.18	4.06	-1.14	13.33	-1.14	-2.42	-2.42
42	-	-1.36	2.76	-0.57	1.64	-0.55	-0.68	-0.70	-0.93
43	-	-1.24	-1.84	-0.85	-2.25	-0.76	-0.28	-0.55	-1.73
44	-	-2.49	0.34	-0.75	-0.72	-0.79	-0.49	-2.42	-1.17
45	-	-3.16	2.15	1.13	0.11	-0.79	-0.84	-2.42	-0.28
46	-	-2.74	-1.89	-2.21	-2.78	0.16	-0.37	-0.54	0.51
47	-	-2.72	-1.66	-2.78	-0.75	-0.24	-0.65	-0.61	-1.16
48	-	0.02	0.17	0.41	-0.93	-1.14	0.45	-2.42	34.30
49	-	-2.16	2.44	-2.25	-0.71	-0.27	-0.70	5.72	11.11
50	-	-2.32	-1.51	-2.18	-1.39	-0.88	-0.90	-1.58	-1.47
51	-	-2.84	-1.73	-2.30	-2.29	-1.01	-0.40	2.00	0.26
52	-	-2.83	-2.45	-0.05	-1.02	-0.58	-0.40	-0.28	1.21
53	-	-1.94	-1.11	-2.78	-1.45	-0.77	-0.74	-1.95	-1.56
54	-	-3.58	1.53	0.84	-1.39	-1.14	-1.14	42.03	29.91
55	-	-2.23	-0.32	-0.50	-0.83	IA*	0.13	10.30	6.37
56	-	-3.58	-1.85	-2.36	-1.33	-1.07	-0.99	-0.84	-1.61
57	-	-2.36	-0.34	-1.96	-1.04	-0.95	-0.74	-1.21	-1.40
58	-	9.74	1.43	18.25	9.01	-1.14	1.18	86.48	10.28
59	-	1.24	1.90	2.72	0.10	-1.14	1.06	-2.42	10.40
Compound Number	Summary	1	2	3	4	1	2	3	4
-----------------	------------------------	----	----	------	------	-----	-----	------	-----
60	20 µM only	-2.93	-0.65	-0.83	1.37	4.51	2.56	69.16	26.27
61	10 µM only	44.97	7.37	272.69	8.41	-1.14	-1.14	-2.42	60.33
62	20 µM, some 10 µM	-2.40	-1.31	-0.04	-1.18	-0.35	-0.70	-2.14	-2.14
63	20 µM, some 10 µM	-3.58	15.30	5.09	4.01	4.12	-1.14	-2.42	27.21
64	Hit in all replicates	24.98	44.97	8.59	38.15	9.38	13.33	68.70	15.82
65	20 µM, some 10 µM	48.43	12.60	-2.78	8.11	-1.14	8.51	14.51	64.25
66	20 µM, some 10 µM	25.55	62.62	73.96	25.65	-1.14	8.12	-2.42	-2.42
67	20 µM, some 10 µM	15.00	11.20	1.67	-0.66	-1.14	8.51	11.81	2.52
68	-	-1.77	-2.17	-1.08	-0.34	-0.86	-0.52	2.79	7.32
69	-	-2.36	-0.13	-2.78	-2.20	-0.56	0.31	5.25	3.31
70	-	-2.20	-1.99	-0.44	-1.42	-0.70	-1.04	-2.42	-1.30
71	20 µM, some 10 µM	18.83	-1.10	16.17	7.56	7.13	19.90	-2.42	11.00
72	-	-1.49	-0.25	-1.94	-0.81	-0.94	-0.74	-1.22	-1.08
73	-	9.42	3.54	-2.78	0.60	8.51	-1.14	-2.42	1.77
74	-	-0.54	0.76	2.60	3.48	4.96	-0.48	2.05	1.66
75	20 µM only	-1.95	0.23	0.80	0.18	15.96	-1.95	22.67	71.93
76	-	-1.56	-0.80	-0.01	1.23	-0.23	-0.05	-0.14	-0.88
77	-	-0.92	-0.10	24.84	-0.82	0.67	-0.61	0.02	1.34
Table S2d - Summary of the results from the high-content assays for helix mimetics 1-77. U2OS cells were treated with 2 different concentrations of the helix mimetics (10 and 20 µM) and cells with altered F-actin quantified.

Compound Number	Summary	Z-score	10 µM						
1	20 µM only	-0.16	0.71	-3.59	-0.35	-7.53	-35.01	-5.19	-2.11
2	-	-11.68	-0.06	-3.63	-0.01	-23.35	-2.97	-5.00	-0.50
3	-	-6.74	0.74	0.52	0.65	0.62	-9.38	0.68	-0.26
4	-	-4.22	0.75	0.73	0.39	-6.43	0.65	-3.01	-1.40
5	-	-3.88	0.61	-3.83	-0.07	-2.03	-1.02	0.04	-0.87
6	-	-0.17	0.63	0.17	-0.28	-0.73	-0.26	-1.23	-0.45
7	-	-2.49	0.72	-0.24	-0.61	-6.22	-3.18	-2.67	-1.03
8	20 µM, some 10µM	-4.39	0.50	-10.43	-2.60	-41.69	-4.52	-7.65	-3.00
9	-	0.56	0.72	-0.40	-0.62	-0.59	-22.21	-4.09	-1.38
10	-	-8.89	0.42	0.16	0.65	-1.04	-0.72	0.11	0.58
11	-	-3.02	0.74	0.73	0.55	0.65	0.38	0.39	-0.03
12	-	0.00	0.73	0.73	0.65	0.09	0.68	-1.30	-0.38
13	-	-2.60	0.74	0.66	0.73	-10.75	0.51	-1.46	-0.82
14	-	0.25	0.69	-0.54	0.33	-1.38	0.35	-0.33	-0.64
15	-	-1.97	0.68	-2.28	-0.15	-12.76	-1.32	-4.10	-2.14
16	20 µM, some 10µM	-0.96	0.60	-4.91	-3.19	-8.09	-11.51	-4.58	-2.66
17	-	0.54	0.55	-1.42	-0.33	-0.70	-7.56	-3.33	-2.25
18	-	-3.34	0.72	-0.38	0.73	0.24	-0.11	0.01	0.74
19	-	-0.06	0.74	0.73	0.66	0.60	0.51	0.92	0.74
20	-	-0.61	0.73	0.52	0.55	-8.79	0.68	-4.19	-2.24
21	-	0.32	0.73	0.73	0.58	-0.36	-2.87	0.66	-0.01
22	-	0.61	0.75	0.59	0.66	0.14	0.29	-0.01	-0.55
23	-	0.55	0.70	0.03	0.73	0.68	0.06	-6.97	-1.36
24	20 µM only	0.59	0.71	-1.34	-3.21	-5.67	-4.38	-4.21	-2.43
25	20 µM only	0.26	0.64	-2.56	-1.37	-7.07	-4.51	-3.68	-3.37
26	-	-0.89	0.73	-0.14	0.73	0.61	-2.06	0.43	0.96
27	-	0.52	0.75	0.73	0.59	0.68	0.50	0.68	0.68
28	-	0.75	0.74	-4.01	0.66	-13.34	0.65	-0.22	0.59
Compound Number	Summary	1	2	3	4	1	2	3	4
----------------	---------	----	----	----	----	----	----	----	----
29	-	-3.85	0.75	-0.53	0.73	-10.79	0.26	1.25	-1.68
30	-	0.34	0.75	-0.48	0.73	-5.27	-6.84	-3.46	-0.37
31	-	0.72	0.75	0.35	0.31	-1.28	-4.95	-2.61	-0.51
32	-	0.69	0.66	-5.51	-1.83	-4.71	-1.12	-4.52	-2.28
33	20 µM only	0.62	0.70	-2.91	0.48	-2.21	-3.82	-2.10	-2.22
34	-	-0.58	0.74	0.58	0.64	0.65	-0.37	-0.10	0.98
35	-	0.75	0.74	0.65	0.73	0.68	0.68	0.18	0.78
36	-	0.74	0.72	0.65	-2.03	-12.00	0.65	-5.46	0.15
37	-	-1.27	0.74	0.57	0.65	-3.44	0.38	-3.83	-0.59
38	20 µM only	-4.76	0.75	-7.62	0.55	-28.15	-7.72	-4.08	-1.00
39	-	-0.47	0.60	-3.19	-0.39	-6.46	-16.88	-0.48	-0.79
40	-	-1.56	0.54	-3.88	-4.54	-35.01	-25.54	-2.59	-6.25
41	10 µM only	-19.32	-17.27	-30.68	-22.02	0.42	0.42	2.27	2.27
42	-	0.77	0.99	0.65	0.65	-0.58	0.10	-1.52	-1.29
43	-	0.66	0.46	0.65	0.65	-2.05	-0.24	-3.10	-1.80
44	-	-0.30	-0.43	0.65	0.48	-0.02	0.09	-0.32	-0.35
45	-	0.08	-0.83	0.46	0.65	-1.32	-0.18	-1.16	-1.53
46	-	-0.39	-1.33	0.27	0.65	-1.74	-0.90	-4.87	-4.21
47	-	-3.40	-3.01	-0.28	-0.73	-0.68	-0.21	-0.33	-1.88
48	20 µM, some 10µM	-21.76	-19.09	-37.11	-26.25	-1.48	-9.44	-15.39	-16.65
49	Hit in all replicates	-7.07	-12.24	-5.93	-8.86	-7.24	-7.05	-16.46	-17.10
50	-	0.03	0.18	0.05	0.65	0.15	0.22	0.60	-1.02
51	-	0.48	-0.64	0.65	0.65	-1.11	-1.97	-2.48	-7.26
52	-	-0.94	-2.20	0.19	0.46	-0.40	-0.50	-2.73	-4.35
53	-	-3.68	-4.13	0.28	-0.10	-2.60	-0.75	-0.96	-4.19
54	10 µM only	-22.71	-22.95	-83.29	-81.02	0.42	0.42	2.27	-12.18
55	Hit in all replicates	-9.05	-11.95	-13.89	-9.45	-10.98	-7.32	-15.87	-16.35
56	-	1.11	1.04	0.65	0.65	0.42	0.39	1.67	-0.36
57	-	0.78	0.54	0.65	0.65	0.42	0.33	1.34	-1.10
58	-	-14.55	-12.05	-1.74	-3.37	0.42	-0.61	2.27	-6.24
59	20 µM, some 10µM	-16.23	-11.95	-9.36	-9.40	0.42	-6.00	-0.57	-9.32
Compound Number	Summary	1	2	3	4	1	2	3	4
-----------------	------------------------	-----	-----	-----	-----	-----	-----	-----	-----
60	Hit in all replicates	-15.72	-20.87	-27.29	-29.87	-10.87	-10.79	-11.41	-15.30
61		-10.73	-18.42	0.65	-61.39	0.42	-0.80	2.27	-15.26
62		1.15	1.05	0.50	0.65	0.41	0.27	1.11	-0.30
63		-7.61	-10.26	0.65	-0.27	-0.36	0.42	2.27	-5.18
64		-10.83	-8.78	0.65	-2.84	-1.14	0.42	2.27	-0.79
65		-4.27	-10.62	0.65	0.65	0.42	-1.01	2.27	-2.70
66		-4.92	-8.09	0.65	0.65	0.42	0.42	2.27	2.27
67	10 µM only	-19.30	-15.11	-9.98	-18.11	0.42	-0.29	-1.70	-4.08
68	Hit in all replicates	-13.61	-16.15	-10.94	-17.02	-6.20	-6.02	-12.55	-12.57
69	Hit in all replicates	-11.32	-15.05	-4.81	-13.48	-9.91	-9.78	-14.80	-13.68
70		0.90	0.81	0.65	0.65	0.34	0.22	0.01	-0.63
71		-12.18	-6.71	-5.81	-1.11	0.42	0.42	2.27	-8.45
72		0.25	0.47	0.51	0.65	0.30	0.32	0.59	-0.56
73		-10.21	-10.74	-1.83	-0.11	0.42	0.42	0.28	-5.44
74	Hit in all replicates	-13.67	-12.25	-11.87	-14.29	-30.46	-28.92	-29.76	-31.15
75	Hit in all replicates	-21.14	-6.10	-8.49	-4.25	-31.25	-31.25	-31.25	-22.75
76		0.64	0.58	-3.08	-1.25	0.87	-0.07	-0.43	0.54
77		0.98	0.90	-1.60	-0.24	0.35	0.26	0.10	0.82
Figure S3—Cell toxicity assay data for the full compound library. Compounds are added to either U2OS or SJSA-1 cells as 50 μM stocks in serum-free media. Cells are incubated for 18 hours.
Figure S4 – cell uptake studies using biotin labelled mimetics. Cells were fixed then permeabilized with 0.1% Triton X-100 (VWR) rinsed in PBS, then incubated with AlexaFluor 568.

![Image of cell uptake studies](image)

Figure S5 - Dose response curve for the inhibition of the p53/hDM2 interaction by mimetic 23 measured with fluorescence anisotropy. hDM2 and FITC-p53 were added to a dilution series of the mimetics to give final concentrations of 154.2 and 54.5 nM, respectively.
Figure S6 Dose response curve for the inhibition of the p53/hDM2 interaction by mimetics 74-77 measured with fluorescence anisotropy. hDM2 and FITC-p53 were added to a dilution series of the mimetics to give final concentrations of 154.2 and 54.5 nM, respectively.

The dimers showed interesting results in the competition assay. Three of the compounds show no inhibition up to 100 μM but one – compound 75 – disrupted the interaction with an IC$_{50}$ of 31 μM; this is not too surprising given that 75 has a naphthyl group as the C-terminal monomer but, as the isoleucine side chain might also participate in binding it is possible that the aromatic naphthyl group effectively mimics the tryptophan on p53 resulting in the observed activity. Supporting this hypothesis, dimer 77 also contains a naphthyl but was synthesized using glycine loaded Wang resin so does not possess enough side chains to mimic all of the ‘hot-spot’ residues on p53.
Figure S7 — 1H-15N HSQC of hDM2 in the absence and presence of Compound 64. Black is from the protein alone, with red showing the crosspeaks upon inclusion of Compound 64.

Figure S8 - Plot of chemical shifts perturbations of hDM2 in the presence of Compound 64. The difference in chemical shift is shown above the residue number in blue. The crosspeaks that disappear in the presence of Compound 64 are shown in red with an arbitrary value of 0.25ppm.
Figure S9 - 1H-15N HSQC of 15N hDM2 recorded in the absence (in black) and presence (in red) of Compound 67 (cross-peaks that move or change in volume are mapped onto the surface of hDM2 and shown in blue).

Figure S10 - 1H-15N HSQC of hDM2 in the absence and presence of Compound 67. Black is from the protein alone, with red showing the crosspeaks upon inclusion of Compound 67.
Figure S11 - Plot of chemical shifts perturbations of hDM2 in the presence of Compound 67. The difference in chemical shift is shown above the residue number in blue. The crosspeaks that disappear in the presence of Compound 67 are shown in red with an arbitrary value of 0.25ppm.

Figure S12 - Dose response curves for HCS (a) performed for selected helix mimetics in SJSA-1 cells and (b) performed for Nutlin-3 in U2OS cells.

Figure S13 - Densitometry analyses for p21 induction with trimers (left U2OS and right SJSA-1) and dimers (U2OS). For each gel, Image J was used to measure the intensity of the band – each band was normalized to the GAPDH control and then the entire set normalized to the DMSO control.
Figure S14 – U2OS cell line was incubated with mimetics (50 μM) or Nutlin-3 (10 μM) for 4 hours and lysates analysed by western blotting for p21 and GAPDH.

Figure S15 – Uncropped gel images from Western blotting against p21 and pull down of hDM2.
Figure S16 - 1H-15N HSQC of Mcl-1 in the absence and presence of Compound 64. Black is from the protein alone, with red showing the crosspeaks upon inclusion of Compound 64.

Figure S17 - Plot of chemical shifts perturbations of Mcl-1 in the presence of Compound 64. The difference in chemical shift is shown above the residue number in blue. The crosspeaks that disappear in the presence of Compound 64 are shown in red with an arbitrary value of 0.25ppm.
Figure S18 - 1H-15N HSQC of 15N Mcl-1 recorded in the absence (in black) and presence (in red) of 67. Crosspeaks that move or change in volume are mapped onto the surface of Mcl-1 and shown in blue.

Figure S19 - 1H-15N HSQC of Mcl-1 in the absence and presence of Compound 67. Black is from the protein alone, with red showing the crosspeaks upon inclusion of Compound 67.
Figure S20 - Plot of chemical shifts perturbations of Mcl-1 in the presence of Compound 67. The difference in chemical shift is shown above the residue number in blue. The crosspeaks that disappear in the presence of Compound 67 are shown in red with an arbitrary value of 0.25ppm.
Figure S21 – Uncropped gel images from pull down with Mcl-1 and Bcl-xL.
Compound Number	IC₅₀, μM
Biotin-8	23.2 ± 0.7
Biotin-31	8.9 ± 0.5
Biotin-48	7 ± 1
Biotin-64	12.5 ± 0.7
Biotin-67	12.1 ± 0.4

Figure S22 - Dose response curves of the inhibition of the p53/hDM2 interaction by the biotinylated library of helix mimetics measured with fluorescence anisotropy. hDM2 and FITC-p53 were added to a dilution series of the mimetics to give final concentrations of 154.2 and 54.5 nM, respectively.
Table:

Compound Number	IC$_{50}$, μM
FITC-8	34.0 ± 1.0
FITC-31	31.0 ± 5.0
FITC-48	38.0 ± 3.0
FITC-64	40.0 ± 3.0
FITC-67	35.0 ± 2.0

Figure S23 – Dose response curves for the direct binding of the FITC-labelled trimers to hDM2 measured using fluorescence anisotropy. FITC trimers were fixed at a concentration of 500 nM.
Table S2a - Summary of the results from the high-content assays for conjugated helix mimetics. U2OS cells were treated with 2 different concentrations of the helix mimetics (10 and 20 µM) and cell number assessed.

Compound Number	Summary	1	2	3	4	1	2	3	4
Biotin-8	-	0.50	1.75	-0.18	-0.59	1.89	1.48	-0.34	0.37
Biotin-31	-	0.60	1.38	0.33	-0.81	1.46	1.50	-0.04	0.06
Biotin-48	-	0.38	1.18	1.21	-0.15	1.49	**2.82**	-0.42	0.01
Biotin-64	-	-0.04	1.29	0.29	-0.36	0.86	0.84	0.00	-0.40
Biotin-67	-	-0.66	0.60	-0.06	0.37	1.37	0.12	-0.73	-0.74
FITC-8	-	-0.57	-0.56	-0.35	0.10	-0.47	**-2.16**	-1.59	-2.25
FITC-31	**20 µM, some 10µM**	-1.15	**-2.26**	-1.09	0.62	**-2.58**	**-3.40**	**-3.49**	**-3.96**
FITC-48	-	-0.30	-1.05	-0.04	0.48	-1.14	-1.50	-1.11	-1.01
FITC-64	**20 µM only**	-0.21	-0.31	-0.24	0.58	**-2.61**	**-2.88**	**-3.05**	**-2.99**
FITC-67	**20 µM only**	-0.69	-0.83	-0.78	-0.14	**-2.39**	**-2.58**	**-3.39**	**-3.37**
Table S2b - Summary of the results from the high-content assays for conjugated helix mimetics. U2OS cells were treated with 2 different concentrations of the helix mimetics (10 and 20 µM) and active for Caspase-3 quantified

Compound Number	Summary	10 µM 1	10 µM 2	10 µM 3	10 µM 4	20 µM 1	20 µM 2	20 µM 3	20 µM 4
Biotin-8	-	-1.08	1.22	-0.55	-0.48	0.71	-1.00	-1.03	-1.22
Biotin-31	-	-1.09	0.62	-0.78	-1.00	-0.39	-0.64	-0.58	-0.90
Biotin-48	-	-0.64	9.13	-0.60	-1.21	-1.25	-0.45	-0.68	-0.90
Biotin-64	-	-1.37	0.65	-0.62	-0.69	-0.29	0.26	-1.21	-1.03
Biotin-67	-	-0.65	0.04	-0.73	0.24	0.75	-1.37	-0.82	-0.64
FITC-8	-	-0.54	-0.32	0.86	0.64	24.98	1.28	3.68	2.73
FITC-31	-	0.14	1.13	1.83	6.05	30.11	5.45	8.76	0.66
FITC-48	-	0.47	0.96	1.64	10.68	10.01	0.29	0.08	-0.24
FITC-64	-	0.09	-0.22	-0.39	2.97	5.91	3.18	4.22	0.17
FITC-67	-	-0.45	-0.30	-0.63	-0.27	5.14	1.34	-0.01	3.04
Table S2c- Summary of the results from the high-content assays for conjugated helix mimetics. U2OS cells were treated with 2 different concentrations of the helix mimetics (10 and 20 µM) and autophagic cells quantified.

Compound Number	Summary	10 µM Rep 1	10 µM Rep 2	10 µM Rep 3	10 µM Rep 4	20 µM Rep 1	20 µM Rep 2	20 µM Rep 3	20 µM Rep 4
Biotin-8	Hit in all replicates	3.72	2.43	7.64	6.27	11.75	13.14	15.18	7.34
Biotin-31	20 µM, some 10µM	6.98	1.84	10.58	4.16	16.23	15.16	22.61	9.12
Biotin-48	20 µM, some 10µM	0.70	15.00	-0.22	1.71	17.00	28.16	12.94	7.99
Biotin-64	20 µM, some 10µM	1.45	2.32	2.26	3.59	13.31	17.19	5.52	3.25
Biotin-67	-	-1.95	-1.48	-0.70	-0.63	0.16	0.48	-0.51	0.53
FITC-8	Not measured	-	-	-	-	-	-	-	-
FITC-31	Not measured	-	-	-	-	-	-	-	-
FITC-48	Not measured	-	-	-	-	-	-	-	-
FITC-64	Not measured	-	-	-	-	-	-	-	-
FITC-67	Not measured	-	-	-	-	-	-	-	-
Table S2d - Summary of the results from the high-content assays for conjugated helix mimetics. U2OS cells were treated with 2 different concentrations of the helix mimetics (10 and 20 µM) and cells with altered F-actin quantified.

Compound Number	Summary	Z-score 10 µM									
		1	2	3	4	1	2	3	4		
Biotin-8	-	0.40	-0.47	0.71	0.23	-0.07	-1.48	0.75	-0.19		
Biotin-31	-	-0.48	-0.52	0.95	0.10	-0.08	-0.97	0.50	-0.87		
Biotin-48	-	0.49	-2.16	0.75	-0.09	0.69	-0.94	1.07	-0.27		
Biotin-64	-	0.62	0.01	0.76	-0.19	-1.25	-0.16	0.58	-0.05		
Biotin-67	-	0.07	1.24	1.20	0.08	-0.48	0.32	0.57	-0.94		
FITC-8	Not measured	-	-	-	-	-	-	-	-		
FITC-31	Not measured	-	-	-	-	-	-	-	-		
FITC-48	Not measured	-	-	-	-	-	-	-	-		
FITC-64	Not measured	-	-	-	-	-	-	-	-		
FITC-67	Not measured	-	-	-	-	-	-	-	-		
Synthetic Procedures and Characterisation

Monomers

Fmoc-protected monomers a, c, k, m, o, and s; e, f, g, h, l, n, q, r and t; j and u were synthesised as described previously.

4-(((9H-Fluoren-9-yl)methoxy)carbonyl)4-((trifluoromethyl)benzyl)amino)benzoic acid b

4-Aminobenzoic acid (3.00 g, 21.9 mmol), 4-trifluoromethylbenzaldehyde (3.00 mL, 21.9 mmol) and picoline-borane complex (2.57 g, 24.1 mmol) were stirred at room temperature in methanol (20 mL) for 14 hours. A white precipitate formed. The reaction mixture was filtered, and the filtrate acidified with 1N hydrochloric acid (~15 mL) to induce further precipitation. The combined precipitates were dried under high vacuum to yield 4-((4-trifluoromethyl)benzyl)amino)benzoic acid (3.91 g, 61%) as a colourless powder; \(R_f \) 0.40 (10% methanol in dichloromethane); m.p. 181–182°C; \(\delta_H \) (500 MHz, CDCl\(_3\)) 4.51 (s, 2H, H\(\alpha \)), 6.49 (d, 2H, \(J = 9.1 \) Hz, HAr2), 7.47 (d, 2H, \(J = 7.5 \) Hz, HAr3), 7.63 (d, 2H, \(J = 7.5 \) Hz, HAr2/3), 7.92 (d, 2H, \(J = 9.1 \) Hz, HAr2/3); \(\delta_C \) (125 MHz, CDCl\(_3\)) 50.19, 115.46, 121.82, 129.32, 130.51, 131.55, 133.14 (q), 135.69, 148.53, 156.98, 173.62; \(\nu_{max}/cm^{-1} \) (solid state) = 3414 (NH), ~3000 (COOH), 1690 (CO), 1120–1180 (CF\(_3\)); ESI-MS \(m/z \) 296 [M+H]+; ESI-HRMS found \(m/z \) 294.0755 [M-H]- requires 294.0747.

To a refluxing solution of 4-((4-trifluoromethyl)benzyl)amino)benzoic acid (3.91 g, 13.3 mmol) in tetrahydrofuran (60 mL) was added dropwise a solution of Fmoc-Cl (3.78 g, 14.7 mmol) in tetrahydrofuran (20 mL). The reaction mixture was stirred at reflux for 14 hours. The solvents were evaporated and the residue was crystallised (tetrahydrofuran - dichloromethane) to yield the target compound (6.50 g, 91%) as yellow crystals; \(R_f \) 0.37 (ethyl acetate - hexane 1:1); m.p. 144–145°C; (Found: C, 69.3; H, 4.3; N, 2.6; C\(_{30}\)H\(_{22}\)F\(_3\)NO\(_4\) requires: C, 69.6; H, 4.2; N, 2.7%); \(\delta_H \) (500 MHz, CDCl\(_3\)) 4.11 (t, 1H, \(J = 5.1 \) Hz, FH\(\beta \)), 4.64 (d, 2H, \(J = 5.1 \) Hz, FH\(\alpha \)), 4.82 (s, 2H, H\(\alpha \)), 7.06 (d, 2H, \(J = 8.4 \) Hz, H3), 7.14 (d, 2H, \(J = 7.9 \) Hz, HAr2/3), 7.21 (t, 2H, \(J = 7.4 \) Hz, FH\(\alpha \)), 7.30 (d, 2H, \(J = 7.4 \) Hz, FH5), 7.37 (t, 2H, \(J = 7.5 \) Hz, FH3), 7.50 (d, 2H, \(J = 7.9 \) Hz, HAr3/2), 7.69 (d, 2H, \(J = 7.5 \) Hz, FH2), 7.97 (d, 2H, \(J = 8.4 \) Hz, H2); \(\delta_C \) (125 MHz, CDCl\(_3\)) 47.58, 53.76, 67.92, 120.40, 125.09, 126.00, 126.05, 126.58, 127.45, 128.02, 128.16, 129.95 (q), 130.35, 131.54, 141.54, 141.79, 143.83, 146.75, 155.42, 171.68; \(\nu_{max}/cm^{-1} \) (solid state) = ~3000 (COOH), 1710 (CO), 1230–1120 (CF\(_3\)); ESI-MS \(m/z \) 540 [M+Na]+; ESI-HRMS found \(m/z \) 516.1428 [M-H]- requires 516.1428.

4-(((9H-Fluoren-9-yl)methoxy)carbonyl)((2-methylnaphthalen-1-yl)methyl)amino)benzoic acid d

4-Aminobenzoic acid (0.81 g, 5.9 mmol), 2-methyl-1-naphthaldehyde (1.00 g, 5.9 mmol) and picoline-borane complex (0.72 g, 6.8 mmol) were stirred at room temperature in methanol (20 mL)
4-(14 hours. A white precipitate formed. The reaction mixture was filtered, and the filtrate acidified with 1N hydrochloric acid (~10 mL) to induce further precipitation. The combined precipitates were dried under high vacuum to yield 4-(((2-methylnaphthalen-1-yl)methyl)amino)benzoic acid (1.60 g, 94%) as a colourless powder; Rf 0.65 (10% methanol in dichloromethane); m.p. 209-211 °C; δH (300 MHz, DMSO-d6) 2.52 (s, 3H, CH3), 4.61 (s, 2H, Hα), 6.55 (b r s, 1H, NH), 6.78 (d, 2H, J = 8.9 Hz, H3), 7.43 (d, 1H, J = 8.4 Hz, HAr3), 7.46-7.56 (m, 2H, HAr6-HAr7), 7.73 (d, 2H, J = 8.9 Hz, H2), 7.85 (d, 1H, J = 8.4 Hz, HAr4), 7.92 (d, 1H, J = 7.8 Hz, HAr5/8), 7.97 (d, 1H, J = 8.4 Hz, HAr8/5); δC (75 MHz, DMSO-d6) 19.92, 40.64, 111.27, 117.36, 124.04, 126.86, 128.14, 128.62, 129.43, 131.01, 131.45, 132.38, 135.37, 153.07, 153.07; νmax/cm-1 (solid state) = 3373 (NH), ~3000 (COOH), 1738 (CO); ESI-MS m/z 314 [M+Na]+; ESI-MS found m/z 314 [M+Na]+; ESI-MS HRMS found m/z 292.1332 [M+H]+ C19H18NO2 requires 292.1327.

To a refluxing solution of 4-(((2-methylnaphthalen-1-yl)methyl)amino)benzoic acid (1.60 g, 5.5 mmol) in tetrahydrofuran (10 mL) was added dropwise a solution of Fmoc-Cl (1.50 g, 5.8 mmol) in tetrahydrofuran (10 mL). The reaction mixture was stirred at reflux for 15 hours. The solvents were evaporated and the residue crystallized from a mixture of tetrahydrofuran – hexane to yield the target compound as pale yellow crystals (2.43 g, 83%); Rf 0.53 (10% methanol in dichloromethane); m.p. 183-185 °C; δH (500 MHz, CDCl3) 2.07 (s, 3H, CH3), 4.03 (t, 1H, J = 6.5 Hz, FHβ), 4.49 (d, 2H, J = 6.5 Hz, FHα), 5.38 (s, 2H, Hα), 6.70 (d, 2H, J = 8.5 Hz, H3), 7.05 (d, 1H, J = 8.5 Hz, ArCH), 7.11-7.14 (m, 4H, ArCH), 7.27-7.31 (m, 2H, ArCH), 7.41 (t, 1H, J = 7.0 Hz, FH3/4), 7.48-7.51 (m, 1H, ArCH), 7.60-7.64 (m, 3H, ArCH), 7.75 (d, 1H, J = 8.0 Hz, ArCH), 7.80 (d, 2H, J = 8.5 Hz, H2), 8.15 (d, 1H, J = 8.5 Hz, ArCH); δC (125 MHz, CDCl3) 19.97, 46.21, 47.06, 67.76, 119.87, 119.97, 123.78, 124.86, 125.02, 126.93, 127.63, 128.17, 128.55, 128.63, 128.55, 130.67, 132.44, 132.65, 135.92, 141.29, 143.60, 144.96, 155.22, 171.25; νmax/cm-1 (solid state) = ~3000 (COOH), 1738 (CO); ESI-MS m/z 536 [M+Na]+; ESI-MS HRMS found m/z 512.1879 [M-H]- C34H26NO4 requires 512.1867.

4-(((9H-Fluoren-9-yl)methoxy)carbonyl)(3-fluorobenzylamino)benzoic acid

4-Aminobenzoic acid (3.88 g, 28.3 mmol), 3-fluorobenzaldehyde (3.0 mL, 28.3 mmol) and picolineborane complex (3.33 g, 31.1 mmol) were stirred at room temperature in methanol (90 mL) for 14 hours. A white precipitate formed. The reaction mixture was filtered, and the filtrate acidified (~pH 4) with 1N hydrochloric acid then left to crystallise to yield 4-(3-fluorobenzylamino)benzoic acid (4.10 g, 59%) as colourless crystals; Rf 0.37 (40% hexane in ethyl acetate); m.p. 170-172 °C; (Found: C, 68.20; H, 4.95; N, 5.75%; C14H12FNO2 requires: C, 68.56; H, 4.93; N, 5.71%); δH (300 MHz, DMSO-d6) 4.36 (d, 2H, J = 6.1 Hz, Hα), 6.59 (d, 2H, J = 8.9 Hz, H3), 7.03-7.20 (m, 4H, NH, HAr2, HAr3, HAr5), 7.34-7.41 (m, 1H, HAr4), 7.66 (d, 2H, J = 8.9 Hz, H2); δC (75 MHz, DMSO-d6) 45.05, 111.15, 114.92, 115.20, 117.21, 128.97, 131.04, 135.51, 152.21, 167.41; νmax/cm-1 (solid state) = 3427 (NH), ~3000 (COOH),...
To a refluxing solution of 4-(3-fluorobenzylamino)benzoic acid (2.61 g, 10.6 mmol) in tetrahydrofuran (40 mL) was added dropwise a solution of Fmoc-chloride (2.89 g, 11.2 mmol) in tetrahydrofuran (10 mL). The reaction mixture was then stirred at reflux overnight. The solvents were evaporated, then the residue was purified by column chromatography (Stationary phase: silica, Mobile phase: dichloromethane–hexane 1:1 then neat dichloromethane then 3% methanol in dichloromethane) to afford the target material as a white solid (3.41 g, 69%); Rf 0.45 (7% methanol in dichloromethane); (Found: C, 73.75; H, 4.75; N, 2.95%; C29H22FNO4 requires: C, 74.51; H, 4.74; N, 3.00%); δH (300 MHz, CDCl3) 4.12 (t, 1H, J = 5.8 Hz, FHβ), 4.60 (d, 2H, J = 5.8 Hz, FHα), 4.80 (s, 2H, Hα), 6.84 (m, 2H, HAr4, HAr6), 6.93 (m, 1H, HAr5), 7.07 (d, 2H, J = 8.6 Hz, H3), 7.18-7.24 (m, 3H, HAr2, FH4), 7.29 (d, 2H, J = 7.2 Hz, H5), 7.36 (t, 2H, J = 7.5 Hz, H3), 7.70 (d, 2H, J = 7.5 Hz, H2), 7.98 (d, 2H, J = 8.6 Hz, H2); δC (125 MHz, CDCl3) 47.17, 53.29, 67.63, 114.45, 114.62, 119.97, 124.74, 126.38, 127.04, 127.74, 130.14, 130.21, 131.07, 139.70, 141.38, 143.50, 146.42, 166.07, 161.95, 163.91, 171.07; νmax/cm⁻¹ (solid state) = ~3016 (COOH), 1739 (CO), 1365 (C-N), 1216 (C-O); ESI-HRMS found m/z 244.0788 [M-H]⁻ C14H11FNO2 requires 244.0779.

4-(((9H-Fluoren-9-yl)methoxy)carbonyl)cyclohexylmethylamino)benzoic acid p

4-Aminobenzoic acid (1.50 g, 10.9 mmol), cyclohexanaldoxime (1.3 mL, 10.9 mmol) and picolineborane complex (1.35 g, 12.0 mmol) were stirred at room temperature in methanol (60 mL) for 14 hours. A white precipitate formed. The reaction mixture was filtered, and the filtrate acidified with 1N hydrochloric acid (~pH 4) to induce further precipitation. The combined precipitates were dried under high vacuum to yield 4-((cyclohexylmethylamino)benzoic acid (2.09 g, 82%) as a white powder; Rf 0.48 (40% hexane in ethyl acetate); (Found: C, 71.90; H, 8.25; N, 6.00%; C14H20NO2 requires: C, 72.07; H, 8.21; N, 6.00%); δH (500 MHz, MeOD) 1.03 (dd, 2H, J = 11.7 Hz, J = 2.6 Hz, Hy), 1.21-1.36 (m, 3H, Hδ, Hε), 1.63 (m, 1H, Hβ), 1.72 (d, 1H, J = 11.1 Hz, He'), 1.78 (d, 2H, J = 12.9 Hz, Hδ'), 1.87 (d, 2H, J = 11.7 Hz, Hε'), 3.01 (d, 2H, J = 6.8 Hz, Hα), 6.59 (d, 2H, J = 8.9 Hz, H3), 7.79 (d, 2H, J = 8.9 Hz, H2); δC (75 MHz, MeOD) 27.15, 27.71, 32.31, 38.70, 50.70, 111.98, 117.55, 132.77, 154.83, 170.87; νmax/cm⁻¹ (solid state) = 3417 (NH), ~3015 (COOH), 1738 (CO), 1365 (C-N), 1217 (C-O); ESI-MS m/z 232 [M-H]⁻ C10H18NO2 requires 234.1489. The reaction mixture was then stirred at reflux overnight. The solvents were evaporated, then the residue was purified by column chromatography (Stationary phase: silica; Mobile phase: dichloromethane–hexane 1:1 then neat dichloromethane then 3% methanol in dichloromethane) to afford the target material as a white solid (3.41 g, 69%); Rf 0.45 (7% methanol in dichloromethane); (Found: C, 73.75; H, 4.75; N, 2.95%; C29H22FNO4 requires: C, 74.51; H, 4.74; N, 3.00%); δH (300 MHz, CDCl3) 4.12 (t, 1H, J = 5.8 Hz, FHβ), 4.60 (d, 2H, J = 5.8 Hz, FHα), 4.80 (s, 2H, Hα), 6.84 (m, 2H, HAr4, HAr6), 6.93 (m, 1H, HAr5), 7.07 (d, 2H, J = 8.6 Hz, H3), 7.18-7.24 (m, 3H, HAr2, FH4), 7.29 (d, 2H, J = 7.2 Hz, H5), 7.36 (t, 2H, J = 7.5 Hz, H3), 7.70 (d, 2H, J = 7.5 Hz, H2), 7.98 (d, 2H, J = 8.6 Hz, H2); δC (125 MHz, CDCl3) 47.17, 53.29, 67.63, 114.45, 114.62, 119.97, 124.74, 126.38, 127.04, 127.74, 130.14, 130.21, 131.07, 139.70, 141.38, 143.50, 146.42, 166.07, 161.95, 163.91, 171.07; νmax/cm⁻¹ (solid state) = ~3016 (COOH), 1739 (CO), 1365 (C-N), 1217 (C-O); ESI-HRMS found m/z 466.1476 [M-H]⁻ C29H22FNO4 requires 466.1460.
Mobile phase: ethyl acetate–hexane 2-3 to neat ethyl acetate) then crystallised from dichloromethane–hexane to yield the pure target material (2.33 g, 57%) as colourless platelets; \(R_f \) 0.25 (ethyl acetate–hexane 2-3); m.p. 150-152 °C; (Found: C, 75.50; H, 6.30; N, 3.10%; \(C_{29}H_{29}NO_4 \) requires: C, 76.46; H, 6.42; N, 3.07%); \(\delta \) (500 MHz, CDCl\(_3 \)) 0.72-0.84 (m, 2H, H\(\gamma \)), 1.04-1.12 (m, 2H, J = 7.0 Hz, H\(\alpha \)), 1.52 (d, 2H, J = 12.3 Hz, H\(\delta ' \)), 1.51-1.66 (m, 3H, H\(\gamma ' \), H\(\epsilon ' \)), 3.46 (d, 2H, J = 7.0 Hz, H\(\alpha \)), 4.12 (t, 1H, J = 5.6 Hz, H\(\beta \)), 4.56 (d, 2H, J = 5.6 Hz, H\(\alpha \)), 7.15 (d, 2H, J = 8.1 Hz, H3), 7.24 (t, 2H, J = 7.4 Hz, FH4), 7.34 (d, 2H, J = 7.4 Hz, FH5), 7.38 (t, 2H, J = 7.4 Hz, FH3), 7.72 (d, 2H, J = 7.5 Hz, FH2), 8.03 (d, 2H, J = 8.1 Hz, H2); \(\delta \) (75 MHz, CDCl\(_3 \)) 25.67, 26.33, 30.47, 36.50, 47.24, 55.89, 67.04, 119.92, 124.79, 126.84, 126.92, 126.99, 127.65, 131.01, 143.71, 147.08, 155.21, 171.23; \(\nu \)\(_{\text{max}}/\text{cm}^{-1} \) (solid state) = 3426 (NH), ~3015 (COOH), 1737 (CO), 1365 (C–N), 1216 (C–O); ESI-MS found m/z 478.2007 [M+Na]\(^+\); ESI-HRMS found m/z 478.1989.

4-(((9H-fluoren-9-ylmethoxy)carbonyl)(naphthalene-2-ylmethyl)amino)-3-(prop-2-ynyloxy)benzoic acid v

4-Amino-3-(prop-2-ynyloxy)benzoic acid (1 g, 5.20 mmol), 1-naphthaldehyde (817 mg, 5.20 mmol) and picoline-borane complex (730 mg, 6.8 mmol) were stirred at room temperature in methanol (50 mL) for 14 hours. A white precipitate formed. The reaction mixture was filtered, and the filtrate acidified with 1N hydrochloric acid (~ pH 4) to induce further precipitation. The combined precipitates were dried under high vacuum to yield 4-(naphthalene-1-ylmethylamino)-3-(prop-2-ynyloxy)benzoic acid (1.16 g, 67%) as a white powder; \(R_f \) 0.60 (10% methanol in dichloromethane); (Found: C, 76.05; H, 5.15; N, 4.15%; \(C_{14}H_{19}NO_2 \) requires: C, 76.12; H, 5.17; N, 4.23%); \(\delta \) (500 MHz, CDCl\(_3 \)) 2.56 (s, 1H, CH\(_2 \)C≡CH), 4.60 (s, 2H, CH\(_2 \)naph), 4.80 (app d, 2H, J = 2 Hz, CH\(_2 \)C≡CH), 6.61 (d, 1H, J = 8 Hz, ArCH), 7.46-7.48 (m, 3H, CH naph), 7.60 (s, 1H, ArCH), 7.68 (d, 1H, J = 8 Hz, ArCH), 7.80-7.85 (m, 4H, CH naph); \(\delta \) (125 MHz, CDCl\(_3 \)) 47.51, 56.54, 76.06, 78.13, 108.95, 112.34, 116.67, 125.44, 125.92, 126.31, 126.48, 127.73, 127.79, 128.60; \(\nu _{\text{max}}/\text{cm}^{-1} \) (solid state) = 3433, 3282 (NH, OH), 2130 (C≡C), 1662 (CO); ESI-MS \(m/z \) 333.2 [M+H]\(^+\); ESI-HRMS found \(m/z \) 332.1273 [M+H]\(^+\) \(C_{21}H_{18}NO_3 \) requires 332.1281.

To a refluxing solution of 4-(naphthalene-2-ylmethylamino)-3-(prop-2-ynyloxy)benzoic acid (1.16 g, 3.5 mmol) in chloroform (50 ml) was added dropwise a solution of Fmoc-chloride (1.54 g, 5.96 mmol) in chloroform (50 ml) and the reaction mixture was stirred at reflux overnight. The solvents were evaporated, then the residue was purified by column chromatography (Stationary phase: silica; Mobile phase: chloroform–methanol 95-5) to yield the pure target material (1.03 g, 53%) as an off-white solid; \(R_f \) 0.40 (chloroform–methanol 95-5); \(\delta \) (500 MHz, CDCl\(_3 \)) 2.34 (s, 1H, CH\(_2 \)C≡CH), 4.06 (s, 1H, CHFmoc), 4.47-4.68 (m, 6H, CH\(_2 \)C≡CH, CH\(_2 \)naph, CH\(_2\) Fmoc), 6.91 (s, 1H, ArCH), 7.15 (s,
4-H, ArCH), 7.31 (s, 2H, ArCH), 7.44-7.50 (m, 3H, ArCH), 7.61-7.62 (m, 4H, ArCH), 7.74-7.84 (m, 5H, ArCH); δc (75 MHz, CDCl₃) 46.96, 56.04, 56.32, 67.67, 76.20, 77.51, 119.75, 124.89, 125.79, 125.95, 126.81, 127.48, 127.55, 127.6, 127.79, 128.07, 130.01, 132.75, 133.12, 134.66, 141.15, 143.65, 153.02, 171.30; νmax/cm⁻¹ (solid state) = 3290 (NH), ~3063 (COOH), 2893 (CH), 2124 (C≡C) 1693 (CO), 1338 (C–N), 1196 (C–O); ESI-HRMS found m/z 554.197581 [M+H]^+ C₃₆H₂₈NO₅ requires 554.196199.

4-(((9H-fluoren-9-yl)methoxy)carbonyl)(4-chlorobenzyl)amino)-3-(prop-2-ynyloxy)benzoic acid w
4-Amino-3-(prop-2-ynyloxy)benzoic acid (961 mg, 5.03 mmol), 4-chlorobenzaldehyde (707 mg, 5.03 mmol) and picoline-borane complex (700 mg, 6.54 mmol) were stirred at room temperature in methanol (50 mL) for 14 hours. A white precipitate formed. The reaction mixture was filtered, and the filtrate acidified with 1N hydrochloric acid (~pH 4) to induce further precipitation. The combined precipitates were dried under high vacuum to yield 4-(4-chlorobenzylamino)-3-(prop-2-ynyloxy)benzoic acid (1.0 g, 63%) as a white powder; Rf 0.59 (10% methanol in dichloromethane); (Found: C, 64.60; H, 4.45; N, 4.30%; C₁₄H₁₉NO₂ requires: C, 64.67; H, 4.47; N, 4.44%); δH (500 MHz, DMSO-d₆) 3.63 (app. t, 1H, J = 2.5, CH₂C≡C), 4.40 (s, 2H, CH₂naph), 4.88 (app d, 2H, J = 2.5 Hz, CH₂C=CH), 6.41 (d, 1H, J = 8.5 Hz, CHCNH), 7.33-7.39 (m, 5H, CHnaph), 7.44 (d, 1H, J = 1.5 Hz, CHCOOH); δc (75 MHz, DMSO-d₆) 44.75, 55.92, 78.47, 79.18, 108.40, 112.17, 116.90, 125.64, 128.17, 128.63, 131.07, 138.62, 142.04, 143.28, 167.28; νmax/cm⁻¹ (solid state) = 3429, 3290 (NH, OH), 2866 (C–H), 2284 (C≡C), 1666 (CO); ESI-MS m/z 316.3 [M+H]^+; ESI-HRMS found m/z 316.073756 [M+H]^+ C₁₇H₁₅ClNO₃ requires 316.073497.

1H NMR (500 MHz, CDCl₃) δ: 7.73 (s, ArCH, 1H); 7.66 (d, ArCH, J = 7.5, 3H); 7.37-7.34 (m, ArCH, 2H); 7.21-7.15 (m, ArCH, 8H); 6.89 (d, CHCNH, J = 4.5, 1H); 4.68-4.31 (m, CH₂C=CH, CH₂Ar, CH₂ Fmoc, 6H); 4.07 (s, CH Fmoc, 1H); 2.44 (s, CH₂C=CH, 1H).

To a refluxing solution of 4-(4-chlorobenzylamino)-3-(prop-2-ynyloxy)benzoic acid (979 mg, 3.11 mmol) in chloroform (30 ml) was added dropwise a solution of Fmoc-chloride (1.37 g, 5.28 mmol) in chloroform (20 ml) and the reaction mixture was stirred at reflux overnight. The solvents were evaporated, then the residue taken up in chloroform and precipitated with hexane to yield the pure target material (1.22 g, 81%) as an off-white solid; Rf 0.36 (chloroform–methanol 95:5); δH (500 MHz, CDCl₃) 2.44 (s, 1H, CH₂C=CH), 4.07 (s, 1H, CHFmoc), 4.31-4.68 (m, 6H, CH₂C=CH, CH₂naph, CH₂ Fmoc), 6.89 (d, 1H, J = 4.5 Hz, CHCNH), 7.15-7.21 (m, 8H, ArCH), 7.34-7.37 (m, 2H, ArCH), 7.66 (d, 3H, J = 7.5, ArCH), 7.73 (s, 1H, ArCH); δc (125 MHz, CDCl₃) 46.95, 52.44, 56.01, 67.54, 76.33, 119.80, 123.57, 124.85, 126.84, 127.33, 127.53, 128.45, 129.36, 130.03, 133.29, 135.58, 141.19, 143.61, 152.93,
170.92; $\nu_{\text{max}}/\text{cm}^{-1}$ (solid state) = 3292 (NH), ~3068 (COOH), 2893 (CH), 2124 (C=C) 1695 (CO), 1358 (C-N), 1195 (C-O); ESI-HRMS found m/z 538.142162 [M+H]$^+$ C$_{32}$H$_{25}$ClNO$_5$ requires 538.141577.

Trimers

Trimers 25, 26 and 72$^{[6]}$ and 6, 10, 17, 19, 38, 44, 56 and 57$^{[7]}$ were synthesised as described previously.

N-N-N-(Isobutyl-4-aminobenzoyl)-N-(4-trifluoromethyl)benzyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 1

Crude: 70% pure; isolated crude yield: 44 mg then purified by Flash chromatography (6 mg), > 90% pure by NMR; $\delta$$_{\text{H}}$ (300 MHz, MeOD) 0.94 (d, 6H, J = 6.7 Hz, 1-Hα), 0.98 (d, 6H, J = 6.6 Hz, 3-Hγ), 1.78-1.92 (m, 2H, 1-Hβ, 3-Hβ), 2.89 (d, 2H, J = 6.8 Hz, 1-Hα), 3.82 (d, 2H, J = 6.8 Hz, 3-Hα), 4.02 (s, 2H, 2-Hα), 5.13 (s, 2H, 4-Hα), 6.34 (d, 2H, J = 8.7 Hz, 2-Hβ), 6.91 (d, 2H, J = 8.4 Hz, 3-Hβ), 7.02 (d, 2H, J = 8.9 Hz, 2-Hβ), 7.17 (d, 2H, J = 8.7 Hz, 3-Hα), 7.21 (d, 2H, J = 8.9 Hz, 1-Hβ), 7.41 (d, 2H, J = 8.0 Hz, 2-HArγ), 7.57 (d, 2H, J = 8.9 Hz, 2-HArα), 7.79 (d, 2H, J = 8.7 Hz, 1-Hβ); ESI-MS found m/z 701.2 [M-H]$^-$; ESI-HRMS found m/z 701.2926 [M-H]$^-$ C$_{39}$H$_{40}$F$_3$N$_4$O$_5$ requires 701.2956.

N-N-N-(Benzy1-4-aminobenzoyl)-N-(2-methyl)naphth-1-yl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 2

> 95% pure by NMR, isolated crude yield: 70 mg; $\delta$$_{\text{H}}$ (300 MHz, MeOD) 0.90 (d, 6H, J = 6.9 Hz, 3-Hγ), 1.79 (m, 1H, 3-Hβ), 3.76 (d, 2H, J = 6.9 Hz, 3-Hα), 4.14 (s, 2H, 2-Hα), 4.32 (s, 2H, 1-Hα), 5.53 (s, 2H, 4-Hα), 6.40-6.45 (m, 4H, ArCH), 6.90 (d, 2H, J = 8.2 Hz, 3-Hβ), 6.99 (d, 2H, J = 8.2 Hz, 2-Hβ), 7.05 (d, 2H, J = 8.5 Hz, 3-Hβ), 7.15 (d, 1H, J = 8.7 Hz, 1-Hβ), 7.25 (m, 1H, ArCH), 7.29-7.31 (m, 4H, ArCH), 7.40-7.51 (m, 2H, ArCH), 7.69 (d, 1H, J = 8.9 Hz, ArCH), 7.72 (d, 2H, J = 8.3 Hz, ArCH), 7.82 (d, 1H, J = 8.0 Hz, 1-Hβ), 8.12 (d, 1H, J = 8.5 Hz, ArCH); ESI-HRMS found m/z 731.3222 [M-H]$^-$ C$_{46}$H$_{43}$N$_4$O$_5$ requires 731.3239.

N-N-N-(Phenethyl-4-aminobenzoyl)-N-chlorobenzyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 3

>90% pure by NMR, isolated crude yield: 58 mg, purified by precipitation: 12 mg; $\delta$$_{\text{H}}$ (300 MHz, MeOD) 0.94 (d, 6H, J = 6.7 Hz, 3-Hγ), 1.84 (m, 1H, 3-Hβ), 2.91 (t, 2H, J = 7.6 Hz, 1-Hβ), 3.45 (t, 2H, J = 7.6 Hz, 1-Hα), 3.82 (d, 2H, J = 7.4 Hz, 3-Hα), 4.12 (s, 2H, 2-Hα), 5.04 (s, 2H, 4-Hα), 6.53 (d, 2H, J = 8.7 Hz, 2-Hβ), 6.88 (d, 2H, J = 8.6 Hz, 3-Hβ), 7.10 (d, 2H, J = 8.8 Hz, 2-Hβ), 7.15 (d, 2H, J = 8.6 Hz, 3-Hβ),
7.16-7.21 (m, 4H, ArCH), 7.22-7.31 (m, 7H, ArCH), 7.74 (d, 2H, $J = 8.7$ Hz, ArCH); ESI-MS found m/z 717.3 [M+H]$^+$.

N-(N-(Isobutyl-4-aminobenzoyl))-N-3-fluorobenzyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 4

> 80% pure by NMR, isolated crude yield: 71 mg; δ_H (300 MHz, MeOD) 0.95 (d, 6H, $J = 6.8$ Hz, 3-Hy), 1.02 (d, 6H, $J = 6.4$ Hz, 1-Hy), 1.86 (m, 1H, 3-Hβ), 1.95 (m, 1H, 1-Hβ), 2.99 (t, 2H, $J = 7.2$ Hz, 3-Ha), 3.83 (t, 2H, $J = 7.2$ Hz, 1-Ha), 4.13 (s, 2H, 4-Ha), 5.08 (s, 2H, 4-Ha), 6.60 (d, 2H, $J = 8.3$ Hz, 2-H3), 6.90 (d, 2H, $J = 8.3$ Hz, 3-H2), 6.96-6.99 (m, 2H, ArCH), 7.02 (d, 1H, $J = 8.9$ Hz, ArCH), 7.13-7.16 (m, 4H, 2-H3), 7.18 (d, 2H, $J = 8.7$ Hz, 1-H3), 7.26 (m, 1H, ArCH), 7.75 (d, 2H, $J = 8.3$ Hz, 1-H2); ESI-HRMS found m/z 651.2960 [M-H] - C$_{38}$H$_{40}$FN$_4$O$_5$ requires 651.2988.

N-(N-(Benzyl-4-aminobenzoyl))-N-3-fluorobenzyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 5

> 80% pure by NMR, isolated crude yield: 62 mg; δ_H (300 MHz, MeOD) 0.90 (d, 6H, $J = 6.6$ Hz, 3-Hy), 1.80 (m, 1H, 3-Hβ), 3.76 (d, 2H, $J = 7.2$ Hz, 3-Ha), 4.03 (s, 2H, 2-Ha), 4.33 (s, 2H, 1-Ha), 4.98 (s, 2H, 4-Ha), 6.49 (d, 2H, $J = 8.7$ Hz, 2-H3), 6.79 (d, 2H, $J = 8.3$ Hz, 3-H2), 6.90 (d, 2H, $J = 8.5$ Hz, 2-H2), 6.92 (d, 2H, $J = 8.7$ Hz, ArCH), 7.02 (d, 2H, $J = 8.5$ Hz, ArCH), 7.07 (d, 2H, $J = 8.3$ Hz, ArCH), 7.09 (d, 2H, $J = 8.3$ Hz, ArCH), 7.13 (d, 2H, $J = 8.2$ Hz, ArCH), 7.15 (d, 2H, $J = 8.3$ Hz, ArCH), 7.22 (m, 1H, 1-HAr4), 7.26-7.30 (m, 4H, 1-HAr2,3), 7.67 (d, 2H, $J = 8.3$ Hz, 1-H2); ESI-HRMS found m/z 685.2804 [M-H] - C$_{41}$H$_{38}$FN$_4$O$_5$ requires 685.2832.

N-(N-(Benzyl-4-aminobenzoyl))-N-3-fluorobenzyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 7

> 95% pure by NMR, isolated crude yield: 68 mg; δ_H (300 MHz, MeOD) 0.95 (d, 6H, $J = 6.7$ Hz, 3-Hy), 1.84 (m, 1H, 3-Hβ), 3.82 (d, 2H, $J = 7.4$ Hz, 3-Ha), 4.07 (s, 2H, 2-Ha), 4.36 (s, 2H, 1-Ha), 5.06 (s, 2H, 4-Ha), 6.47 (d, 2H, $J = 8.8$ Hz, 2-H3), 6.88 (d, 2H, $J = 8.5$ Hz, 3-H2), 6.92-7.00 (m, 3H, 2-HAr4,5,6), 7.05 (d, 2H, $J = 8.6$ Hz, 2-H2), 7.11-7.15 (m, 4H, 3-H3, 1-H3), 7.21-7.27 (m, 2H, 1-HAr2), 7.29-7.36 (m, 3H, 1-HAr3,4), 7.34 (s, 1H, 2-HAr2), 7.75 (d, 2H, $J = 8.5$ Hz, 1-H2); ESI-HRMS found m/z 685.2849 [M-H] - C$_{41}$H$_{38}$FN$_4$O$_5$ requires 685.2832.
N-((N-(Benzyl-4-aminobenzoyl))-N-naphth-1-yl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 8

> 90% pure by NMR, isolated crude yield: 71 mg; Crude: 85% pure; δH (300 MHz, MeOD) 0.89 (d, 6H, \(J = 6.6\) Hz, 3-Hγ), 1.77 (m, 1H, 3-Hδ), 3.75 (d, 2H, \(J = 7.6\) Hz, 3-Hα), 4.10 (m, 2H, 1-Hα), 4.40 (s, 2H, 2-Hβ), 5.55 (s, 2H, 4-Hδ), 6.66 (d, 2H, \(J = 8.8\) Hz, 2-H3), 6.67 (d, 2H, \(J = 8.5\) Hz, 3-H2), 6.97 (d, 2H, \(J = 8.5\) Hz, ArCH), 7.05 (d, 2H, \(J = 8.6\) Hz, ArCH), 7.11 (d, 2H, \(J = 8.6\) Hz, ArCH), 7.16 (d, 1H, \(J = 7.0\) Hz, ArCH), 7.25-7.31 (m, 2H, ArCH), 7.33-7.35 (m, 4H, ArCH), 7.45-7.55 (m, 2H, ArCH), 7.67 (d, 2H, \(J = 8.5\) Hz, 1-H2), 7.75 (d, 1H, \(J = 8.2\) Hz, ArCH), 7.85 (dd, 1H, \(J_1 = 7.2\) Hz and \(J_2 = 1.9\) Hz, ArCH), 8.17 (d, 1H, \(J = 7.7\) Hz, ArCH); ESI-HRMS found \(m/z\) 717.3080 [M-H]− \(C_{36}H_{43}N_4O_5\) requires 717.3082.

N-((N-(Benzyl-4-aminobenzoyl))-N-3-aminopropyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 9

Purified by column chromatography, > 85% pure by NMR, isolated yield: 6%; δH (300 MHz, MeOD) 0.92-0.95 (m, 6H, 3-Hγ), 1.88 (m, 1H, 3-Hδ), 3.10 (m, 2H, 2-Hβ), 3.27(m, 2H, \(J = 6.0\) Hz, 2-Hα), 3.80-3.84 (m, 2H, 1-Hα), 4.09 (m, 4H, 3-Hα, 2-Hγ), 4.88 (s, 2H, 4-Hα, under solvent peak), 6.35 (d, 2H, \(J = 9.1\) Hz, 2-H3), 7.04 (d, 2H, \(J = 8.7\) Hz, 3-H2), 7.03 (d, 2H, \(J = 8.7\) Hz, 2-H2), 7.20-7.26 (m, 4H, 3-H3, 1-H3), 7.78 (d, 2H, \(J = 8.7\) Hz, 1-H2); ESI-MS \(m/z\) 602.4 [M+H]+; ESI-HRMS found \(m/z\) 636.3194 [M+H]+. \(C_{37}H_{43}N_4O_5\) requires 636.3180.

N-((N-(Benzyl-4-aminobenzoyl))-N-cyclopropylmethyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 10

> 90% pure by NMR, isolated crude yield: 60 mg; δH (300 MHz, MeOD) 0.01 (m, 2H, 2-Hγ/γ'), 0.35 (m, 2H, 2-Hγ/γ'), 0.92-1.00 (m, 1H, 2-Hβ), 0.96 (d, 6H, \(J = 6.7\) Hz, 3-Hγ), 1.86 (m, 1H, 3-Hβ), 3.70 (d, 2H, \(J = 7.1\) Hz, 3-Hα), 3.84 (d, 2H, \(J = 7.4\) Hz, 2-Hα), 4.05 (s, 2H, 1-Hα), 4.37 (s, 2H, 4-Hα), 6.52 (d, 2H, \(J = 8.7\) Hz, 2-H3), 6.99 (d, 2H, \(J = 8.3\) Hz, 3-H2), 7.02 (d, 2H, \(J = 8.5\) Hz, 2-H2), 7.17 (m, 4H, 3-H3, 1-H3), 7.27-7.34 (m, 5H, HAr2-4), 7.72 (d, 2H, \(J = 8.5\) Hz, 1-H2); ESI-HRMS found \(m/z\) 631.2910 [M-H]− \(C_{38}H_{39}N_4O_5\) requires 631.2926.

N-((N-(Benzyl-4-aminobenzoyl))-N-4-fluorobenzyl-4-aminobenzoyl)-N-propyl-4-aminobenzoyl)-glycine 11

> 85% pure by NMR, isolated crude yield: 64 mg; δH (500 MHz, MeOD) 1.95 (t, 3H, \(J = 7.6\) Hz, 3-Hγ), 1.63 (m, 2H, 3-Hβ), 3.91 (t, 2H, \(J = 7.6\) Hz, 3-Hα), 4.10 (s, 2H, 1-Hα), 4.41 (s, 2H, 2-Hα), 5.05 (s, 2H, 4-Hα), 6.67 (d, 2H, \(J = 7.8\) Hz, 2-H3), 6.86 (d, 2H, \(J = 8.5\) Hz, 3-H2), 6.98 (t, 2H, \(J = 8.8\) Hz, 1-HAr4), 7.12-
7.15 (m, 6H, ArCH), 7.21 (dd, 2H, J = 8.8 Hz and J = 5.4 Hz, ArCH), 7.31 (m, 1H, ArCH), 7.34-7.38 (m, 4H, ArCH), 7.73 (d, 2H, J = 8.5 Hz, 1-H2); ESI-HRMS found m/z 671.2653 [M-H]⁻ C₄₀H₃₁FN₄O₅ requires 671.2675.

N-(N-(3-Fluorobenzyl-4-aminobenzoyl)-N(3-trifluoromethyl)benzyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 12

> 85% pure by NMR, isolated crude yield: 71 mg; δH (300 MHz, MeOD) 0.95 (d, 6H, J = 6.6 Hz, 3-Hy), 1.83 (m, 1H, 3-Hβ), 3.82 (d, 2H, J = 7.4 Hz, 3-Hα), 4.14 (s, 2H, 1-Hα), 4.37 (s, 2H, 2-Hα), 5.17 (s, 2H, 4-Hα), 6.37 (d, 2H, J = 8.8 Hz, 2-H3), 6.90 (d, 2H, J = 8.2 Hz, 3-H2), 6.91 (d, 1H, J = 8.2 Hz, 1-HAr6), 7.02 (d, 2H, J = 8.8 Hz, 2-H2), 7.15 (d, 2H, J = 8.5 Hz, 3-H3), 7.16 (d, 2H, J = 8.4 Hz, 1-H3), 7.23 (d, 1H, J = 8.5 Hz, ArCH), 7.29 (m, 1H, ArCH), 7.37 (m, 1H, HAr), 7.44 (t, 1H, J = 8.0 Hz, 2-HAr5), 7.53 (d, 1H, J = 8.5 Hz, 2-HAr4), 7.60 (s, 1H, 1-HAr2), 7.72 (d, 1H, J = 8.5 Hz, ArCH), 7.73 (d, 2H, J = 8.8 Hz, 1-H2); ESI-HRMS found m/z 755.2832 [M+H]⁺ C₄₂H₃₉F₄N₄O₅ requires 755.2851.

N-(N-(4-Chlorobenzyl-4-aminobenzoyl)-N(3-trifluoromethyl)benzyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 13

> 85% pure by NMR, isolated crude yield: 67 mg; δH (300 MHz, MeOD) 0.95 (d, 6H, J = 6.9 Hz, 3-Hy), 1.84 (m, 1H, 3-Hβ), 3.83 (d, 2H, J = 7.1 Hz, 3-Hα), 4.14 (s, 2H, 1-Hα), 4.34 (s, 2H, 2-Hα), 5.18 (s, 2H, 4-Hα), 6.39 (d, 2H, J = 8.8 Hz, 2-H3), 6.90 (d, 2H, J = 8.0 Hz, 3-H2), 7.02 (d, 2H, J = 8.8 Hz, 2-H2), 7.13 (d, 2H, J = 8.5 Hz, 3-H3), 7.16 (d, 2H, J = 8.5 Hz, 1-H3), 7.28-7.32 (m, 4H, 1-HAr2,3,5,6), 7.37 (d, 1H, J = 8.2 Hz, 2-HAr6), 7.44 (t, 1H, J = 7.9 Hz, 2-HAr5), 7.53 (d, 1H, J = 8.2 Hz, 2-HAr4), 7.60 (s, 1H, 2-HAr2), 7.70 (d, 2H, J = 8.8 Hz, 1-H2); ESI-MS found m/z 772.2 [M+H]⁺. ESI-HRMS found m/z 771.2567 [M+H]⁺ C₄₀H₃₆ClF₃N₄O₅ requires 771.2555.

N-(N-(4-Fluorobenzyl-4-aminobenzoyl)-N(3-trifluoromethyl)benzyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 14

> 85% pure by NMR, isolated crude yield: 74 mg; δH (300 MHz, MeOD) 0.94 (d, 6H, J = 6.6 Hz, 3-Hy), 1.84 (m, 1H, 3-Hβ), 3.82 (d, 2H, J = 7.3 Hz, 3-Hα), 4.14 (s, 2H, 1-Hα), 4.33 (s, 2H, 2-Hα), 5.17 (s, 2H, 4-Hα), 6.41(d, 2H, J = 8.8 Hz, 2-H3), 6.87-6.92 (m, 2H, ArCH), 6.98-7.07 (m, 2H, ArCH), 7.13-7.17 (m, 4H, ArCH), 7.28 (d, 2H, J = 8.7 Hz, ArCH), 7.36 (dd, 1H, J₁ = 8.8 Hz and J₂ = 5.8 Hz, ArCH), 7.45 (d, 2H, J = 8.2 Hz, ArCH), 7.52-7.57 (m, 2H, ArCH), 7.60 (s, 1H, 2-HAr2), 7.70-7.74 (m, 2H, ArCH); ESI-HRMS found m/z 753.2734 [M-H]⁻ C₄₅H₃₄F₃N₄O₅ requires 753.2706.
N-(N-(Benzyl-4-aminobenzoyl)-N-5-bromoindol-3-yl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 15
> 85% pure by NMR, isolated crude yield: 73 mg; δH (300 MHz, MeOD) 0.93 (d, 6H, J = 6.7 Hz, 3-Hy), 1.86 (m, 1H, 3-Hβ), 3.81 (d, 2H, J = 7.4 Hz, 3-Hα), 4.07 (s, 2H, 1-Hα), 4.33 (s, 2H, 2-Hα), 5.19 (s, 2H, 4-Hα), 6.48 (d, 2H, J = 8.6 Hz, 2-H3), 6.72 (d, 2H, J = 8.4 Hz, 3-H2), 7.00-7.07 (m, 3H, ArCH), 7.10-7.18 (m, 4H, ArCH), 7.23 (d, 2H, J = 8.9 Hz, ArCH), 7.28-7.34 (m, 4H, ArCH), 7.71 (d, 2H, J = 8.5 Hz, 1-H2), 7.78 (d, 2H, J = 8.8 Hz, ArCH); ESI-HRMS found m/z 784.2137 [M-H] C43H39BrN4O5 requires 784.2140.

N-(N-(Benzyl-4-aminobenzoyl)-N-cyclohexymethyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 16
> 80% pure by NMR, isolated crude yield: 69 mg; δH (300 MHz, MeOD) 0.91 (d, 6H, J = 6.8 Hz, 3-Hy), 0.91-0.95 (m, 2H, 2-Hε), 1.06-1.11 (m, 4H, 2-Hδ,δ'), 1.56-1.66 (m, 5H, 2-Hγ,γ',β), 1.82 (m, 1H, 3-Hβ), 3.68 (d, 2H, J = 7.2 Hz, 3-Hα), 3.79 (d, 2H, J = 7.6 Hz, 2-Hα), 4.01 (s, 2H, 1-Hα), 4.34 (s, 2H, 4-Hα), 6.50 (d, 2H, J = 8.5 Hz, 2-H3), 6.91 (d, 2H, J = 8.3 Hz, 3-H2), 6.85 (d, 2H, J = 8.5 Hz, 2-H2), 7.13 (d, 2H, J = 8.3 Hz, 3-H3), 7.14 (d, 2H, J = 8.3 Hz, 1-H3), 7.22 (m, 1H, 1-HAr4), 7.26-7.31 (m, 4H, 1-HAr2,3), 7.68 (d, 2H, J = 8.5 Hz, 1-H2); ESI-HRMS found m/z 673.3419 [M-H] C41H35N4O5 requires 673.3395.

N-(N-(3-Fluorobenzyl-4-aminobenzoyl)-N-phenethyl-4-aminobenzoyl)-N-propyl-4-aminobenzoyl)-glycine 18
> 75% pure by NMR, isolated crude yield: 57 mg; δH (300 MHz, MeOD) 0.94 (t, 3H, J = 7.4 Hz, 3-Hy), 1.62 (m, 2H, 3-Hβ), 2.86 (t, 2H, J = 7.4 Hz, 3-Hα), 3.90 (t, 2H, J = 7.5 Hz, 2-Hβ), 3.99 (t, 2H, J = 7.5 Hz, 2-Hα), 4.04 (s, 2H, 1-Hα), 4.34 (s, 2H, 4-Hα), 6.43 (d, 2H, J = 8.7 Hz, 2-H3), 6.75 (d, 2H, J = 8.5 Hz, 3-H2), 6.93 (d, 2H, J = 8.7 Hz, 2-H2), 7.12-7.16 (m, 6H, ArCH), 7.22-7.26 (m, 4H, ArCH), 7.29-7.33 (m, 4H, ArCH), 7.74 (d, 2H, J = 8.7 Hz, 1-H2); ESI-HRMS found m/z 667.2893 [M-H] C41H34N4O5 requires 667.2926.

N-(N-(Benzyl-4-aminobenzoyl)-N-(3-trifluoromethyl)benzyl-4-aminobenzoyl)-N-cyclohexymethyl-4-aminobenzoyl)-glycine 20
> 90% pure by NMR, isolated crude yield: 72 mg; δH (300 MHz, MeOD) 1.04 (m, 2H, 3-Hε), 1.13-1.23 (m, 4H, 3-Hδ,δ'), 1.55 (m, 1H, 3-Hβ), 1.65-1.74 (m, 4H, 2-Hγ,γ',β), 3.83 (d, 2H, J = 7.0 Hz, 3-Hα), 4.07 (s, 2H, 1-Hα), 4.37 (s, 2H, 2-Hα), 5.14 (s, 2H, 4-Hα), 6.51 (d, 2H, J = 8.8 Hz, 2-H3), 6.88 (d, 2H, J = 8.4 Hz, 3-H2), 7.07 (d, 2H, J = 8.8 Hz, 2-H2), 7.12-7.16 (m, 4H, ArCH), 7.30-7.36 (m, 4H, ArCH), 7.41-7.46 (m, 2H, ArCH), 7.53 (d, 1H, J = 8.6 Hz, 2-HAr4), 7.59 (s, 1H, 2-HAr2), 7.72 (d, 2H, J = 8.5 Hz, 1-H2), 7.99 (s, 1H, NH); ESI-HRMS found m/z 775.3127 [M-H] C43H42F3N4O5 requires 775.3113.
\(N\)-(\(N\)-(Cyclopropylmethyl-4-aminobenzoyl)-\(N\)-phenethyl-4-aminobenzoyl)-\(N\)-3-fluorobenzyl-4-aminobenzoyl)-glycine 21

> 95% pure by NMR, isolated crude yield: 68 mg; \(\delta_n\) (300 MHz, CDCl\(_3\)) 0.39 (m, 2H, 1-H\(\gamma\)), 0.71 (m, 2H, 1-H\(\nu\)), 1.12 (m, 1H, 1-H\(\beta\)), 2.94 (t, 2H, \(J = 7.4\) Hz, 2-H\(\beta\)), 3.20 (d, 2H, \(J = 7.4\) Hz, 1-H\(\alpha\)), 4.11-4.16 (m, 4H, 2-H\(\alpha\) and 3-H\(\alpha\)), 5.13 (s, 2H, 4-H\(\alpha\)), 6.66 (d, 2H, \(J = 8.4\) Hz, 2-H3), 6.92 (d, 2H, \(J = 8.5\) Hz, 3-H2), 6.96-7.02 (m, 4H, ArCH), 7.15-7.18 (m, 4H, ArCH), 7.22-7.25 (m, 4H, ArCH), 7.27-7.29 (m, 2H, ArCH), 7.32 (d, 2H, \(J = 8.5\) Hz, 1-H3), 7.56 (d, 2H, \(J = 8.5\) Hz, 1-H2), 8.82 (t, 1H, \(J = 5.8\) Hz, Ar-NH); ESI-HRMS found \(m/z\) 697.2855 [M-H] \(\text{C}_{42}\text{H}_{38}\text{F}_{3}\text{N}_{4}\text{O}_{5}\) requires 697.2832.

\(N\)-(\(N\)-(3-Fluorobenzyl-4-aminobenzoyl)-\(N\)-phenethyl-4-aminobenzoyl)-\(N\)-cyclopropylmethyl-4-aminobenzoyl)-glycine 22

> 90% pure by NMR, isolated crude yield: 69 mg; \(\delta_n\) (300 MHz, CDCl\(_3\)) 0.19 (m, 2H, 3-H\(\gamma\)), 0.48 (m, 2H, 3-H\(\nu\)), 1.06 (m, 1H, 3-H\(\beta\)), 2.92 (t, 2H, \(J = 7.5\) Hz, 2-H\(\beta\)), 3.84 (d, 2H, \(J = 7.0\) Hz, 3-H\(\alpha\)), 4.00 (m, 2H, 1-H\(\alpha\)), 4.11 (t, 2H, \(J = 7.5\) Hz, 2-H\(\alpha\)), 4.42 (s, 2H, 4-H\(\alpha\)), 6.64 (d, 2H, \(J = 8.5\) Hz, 2-H3), 7.06 (d, 2H, \(J = 8.4\) Hz, 3-H2), 7.11-7.19 (m, 10H, ArCH), 7.24-7.28 (m, 4H, ArCH), 7.31-7.35 (m, 1H, ArCH), 7.62 (d, 2H, \(J = 8.4\) Hz, 1-H2), 8.78 (t, 1H, \(J = 4.8\) Hz, Ar-NH); ESI-HRMS found \(m/z\) 697.2859 [M-H] \(\text{C}_{42}\text{H}_{38}\text{F}_{3}\text{N}_{4}\text{O}_{5}\) requires 697.2832.

\(N\)-(\(N\)-(Phenethyl-4-aminobenzoyl)-\(N\)-(4-trifluoromethyl)benzyl-4-aminobenzoyl)-\(N\)-isobutyl-4-aminobenzoyl)-glycine 23

> 85% pure by NMR, isolated crude yield: 67 mg; \(\delta_n\) (300 MHz, MeOD) 0.94 (d, 6H, \(J = 6.7\) Hz, 3-H\(\nu\)), 1.84 (m, 1H, 3-H\(\beta\)), 2.95 (t, 2H, \(J = 7.5\) Hz, 1-H\(\beta\)), 3.45 (t, 2H, \(J = 7.5\) Hz, 1-H\(\alpha\)), 3.82 (d, 2H, \(J = 7.5\) Hz, 3-H\(\alpha\)), 4.12 (s, 2H, 2-H\(\alpha\)), 5.15 (s, 2H, 4-H\(\alpha\)), 6.69 (d, 2H, \(J = 8.6\) Hz, 2-H3), 6.92 (d, 2H, \(J = 8.5\) Hz, 3-H2), 7.14-7.19 (m, 6H, ArCH), 7.23-7.32 (m, 5H, ArCH), 7.42 (d, 2H, \(J = 8.0\) Hz, ArCH), 7.58 (d, 2H, \(J = 8.6\) Hz, ArCH), 7.73 (d, 2H, \(J = 8.6\) Hz, 1-H2); ESI-HRMS found \(m/z\) 749.2967 [M-H] \(\text{C}_{43}\text{H}_{40}\text{F}_{3}\text{N}_{4}\text{O}_{5}\) requires 749.2956.

\(N\)-(\(N\)-(4-Fluorobenzyl-4-aminobenzoyl)-\(N\)-cyclohexylmethyl-4-aminobenzoyl)-\(N\)-propyl-4-aminobenzoyl)-glycine 24

> 85% pure by NMR, isolated crude yield: 60 mg; \(\delta_n\) (300 MHz, MeOD) 0.96 (t, 3H, \(J = 7.2\) Hz, 3-H\(\nu\)), 0.96-1.04 (m, 2H, 2-He), 1.10-1.19 (m, 2H, 2-H\(\delta\)), 1.47 (m, 2H, 2-H\(\delta\')), 1.60-1.73 (m, 7H, 3H\(\beta\), 2-H\(\nu\),\(\gamma\),\(\delta\)), 3.73 (d, 2H, \(J = 7.1\) Hz, 2-H\(\alpha\)), 3.93 (t, 2H, \(J = 7.6\) Hz, 3-H\(\alpha\)), 4.06 (s, 2H, 1-H\(\alpha\)), 4.33 (s, 2H, 4-H\(\alpha\)), 6.40 (d, 2H, \(J = 8.8\) Hz, 2-H3), 6.93 (d, 2H, \(J = 8.5\) Hz, 3-H2), 6.96 (d, 2H, \(J = 8.3\) Hz, 1-HAR2), 7.02 (d, 2H, \(J = 8.8\) Hz, 2-H2), 7.18 (d, 2H, \(J = 8.2\) Hz, 1-HAR3), 7.21 (d, 2H, \(J = 8.5\) Hz, 3-H3), 7.35 (d, 2H, \(J =

52
$N\text{-}(N\text{-}(\text{N-Benzyl-4-aminobenzoyl})\text{-}N\text{-}\text{naphth-2-yl-4-aminobenzoyl})\text{-}N\text{-cyclopropylmethyl-4-aminobenzoyl})\text{-}\text{glycine 27}$

> 80% pure by NMR, isolated crude yield: 66 mg; δH (300 MHz, CDCl$_3$) 0.15 (m, 2H, 3-Hy'), 0.86 (m, 1H, 3-Hβ), 3.78 (d, 2H, J = 7.0 Hz, 3-Hα), 3.96 (d, 2H, J = 4.9 Hz, 1-Hα), 4.40 (s, 2H, 2-Hα), 5.22 (s, 2H, 4-Hα), 6.75 (d, 2H, J = 8.4 Hz, 2-H3), 6.99 (d, 2H, J = 8.2 Hz, 3-H2), 7.06-7.11 (m, 4H, ArCH), 7.24 (s, 1H, 2-HAr2), 7.34-7.37 (m, 5H, ArCH), 7.44-7.47 (m, 3H, ArCH), 7.59-7.65 (m, 3H, ArCH), 7.77 (d, 2H, J = 8.8 Hz, 1-H2), 7.74-7.81 (m, 2H, ArCH); ESI-MS found m/z 715.2929 [M-H]$^-$$^-$ C$_{46}$H$_{39}$N$_4$O$_5$ requires 715.2926.

$N\text{-}(N\text{-}(\text{4-Chlorobenzyl-4-aminobenzoyl})\text{-}N\text{-}\text{naphth-2-yl-4-aminobenzoyl})\text{-}N\text{-cyclopropylmethyl-4-aminobenzoyl})\text{-}\text{glycine 28}$

> 90% pure by NMR, isolated crude yield: 71 mg; δH (500 MHz, CDCl$_3$) 0.42 (m, 2H, 3-Hy), 0.72 (m, 2H, 3-Hy'), 0.86 (m, 1H, 3-Hβ), 3.19 (d, 2H, J = 7.4 Hz, 3-Hα), 4.09 (d, 2H, J = 5.2 Hz, 1-Hα), 5.07 (s, 2H, 2-Hα), 5.27 (s, 2H, 4-Hα), 6.81 (d, 2H, J = 8.2 Hz, 2-H3), 6.88 (d, 2H, J = 8.2 Hz, 3-H2), 7.13-7.19 (m, 4H, ArCH), 7.25 (d, 2H, J = 8.4 Hz, ArCH), 7.33-7.39 (m, 5H, ArCH), 7.45-7.48 (m, 2H, ArCH), 7.59 (d, 2H, J = 8.2 Hz, ArCH), 7.66 (s, 1H, 2-HAr2), 7.78 (d, 2H, J = 8.4 Hz, 1-H2), 7.78-7.82 (m, 1H, ArCH), 7.95 (t, 1H, J = 5.2 Hz, Ar-NH); ESI-MS found m/z 749.2560 [M-H]$^-$$^-$ C$_{46}$H$_{39}$ClN$_4$O$_5$ requires 749.2536.

$N\text{-}(N\text{-}(\text{3-Trifluoromethyl)benzyl-4-aminobenzoyl})\text{-}N\text{-}\text{naphth-2-yl-4-aminobenzoyl})\text{-}N\text{-cyclopropylmethyl-4-aminobenzoyl})\text{-}\text{glycine 29}$

> 90% pure by NMR, isolated crude yield: 83 mg; δH (300 MHz, MeOD) 4.05 (s, 2H, 3-Hα), 4.43 (s, 2H, 1-Hα), 5.14 (s, 2H, 2-Hα), 5.16 (s, 2H, 4-Hα), 6.36 (d, 2H, J = 8.8 Hz, 2-H3), 6.89 (d, 2H, J = 8.5 Hz, 3-H2), 7.00 (d, 2H, J = 8.5 Hz, 3-H3), 7.01 (d, 2H, J = 8.6 Hz, 2-H2), 7.21 (d, 2H, J = 8.5 Hz, 1-H3), 7.24-7.28 (m, 6H, ArCH), 7.37 (d, 1H, J = 7.8 Hz, ArCH), 7.42 (d, 1H, J = 7.7 Hz, ArCH), 7.46-7.51 (m, 2H, ArCH), 7.57-7.59 (m, 3H, ArCH), 7.63 (d, 2H, J = 8.6 Hz, 1-H2); ESI-MS found m/z 837.2558 [M-H]$^-$$^-$ C$_{46}$H$_{39}$F$_3$N$_4$O$_5$ requires 837.2517.

$N\text{-}(N\text{-}(\text{4-Chlorobenzyl-4-aminobenzoyl})\text{-}N\text{-}\text{naphth-2-yl-4-aminobenzoyl})\text{-}N\text{-cyclopropylmethyl-4-aminobenzoyl})\text{-}\text{glycine 30}$

> 95% pure by NMR, isolated crude yield: 73 mg; δH (300 MHz, MeOD) 0.14 (m, 2H, 3-Hy), 0.45 (m, 2H, 3-Hy'), 1.06 (m, 1H, 3-Hβ), 3.81 (d, 2H, J = 7.1 Hz, 3-Hα), 4.09 (s, 2H, 1-Hα), 4.36 (s, 2H, 2-Hα), 8.5 Hz, 1-H3), 7.76 (d, 2H, J = 8.5 Hz, 1-H2); ESI-MS found m/z 677.3129 [M-H]$^-$$^-$ C$_{46}$H$_{42}$FN$_4$O$_5$ requires 677.3145.
5.14 (s, 2H, 4-Hα), 6.45 (d, 2H, J = 8.8 Hz, 2-H3), 6.88 (d, 2H, J = 8.4 Hz, 3-H2), 7.05 (d, 2H, J = 8.8 Hz, 2-H2), 7.17 (d, 2H, J = 8.4 Hz, 3-H3), 7.19 (d, 2H, J = 8.5 Hz, 1-H3), 7.30-7.33 (m, 4H, 1-HAr2,3), 7.37 (d, 1H, J = 7.6 Hz, 2-HAr6), 7.43 (t, 1H, J = 7.6 Hz, 2-HAr5), 7.53 (d, 1H, J = 7.5 Hz, 2-HAr4), 7.59 (s, 1H, 2-HAr2), 7.73 (d, 2H, J = 8.5 Hz, 1-H2); ESI-HRMS found m/z 767.2263 [M-H] \(^{-}\) C\(_{42}\)H\(_{38}\)ClF\(_3\)N\(_6\)O\(_5\) requires 767.2254.

\(N\)-(N-\(N\)-(4-Fluorobenzyl-4-aminobenzoyl)-N-naphth-2-yl-4-aminobenzoyl)-N-propyl-4-aminobenzoyl)-glycine 31

> 90% pure by NMR, isolated crude yield: 69 mg; δ\(_{\text{H}}\) (300 MHz, MeOD) 0.91 (t, 3H, J = 7.4 Hz, 3-Hy), 1.59 (m, 2H, 3-Hβ), 3.87 (t, 2H, J = 7.5 Hz, 3-Hα), 4.09 (s, 2H, 1-Hα), 4.33 (s, 2H, 2-Hα), 5.23 (s, 2H, 4-Hα), 6.41 (d, 2H, J = 8.8 Hz, 2-H3), 6.88 (d, 2H, J = 8.5 Hz, 3-H2), 6.89 (d, 2H, J = 8.5 Hz, ArCH), 7.11 (d, 2H, J = 8.5 Hz, ArCH), 7.12 (d, 2H, J = 8.8 Hz, ArCH), 7.28 (d, 1H, J = 8.8 Hz, ArCH), 7.33-7.38 (m, 2H, ArCH), 7.42-7.47 (m, 4H, ArCH), 7.63 (d, 2H, J = 8.2 Hz, 1-H3), 7.70 (d, 1H, J = 8.5 Hz, ArCH), 7.72 (d, 1H, J = 8.5 Hz, ArCH), 7.79 (d, 2H, J = 8.2 Hz, 1-H2); ESI-HRMS found m/z 721.2843 [M-H] \(^{-}\) C\(_{44}\)H\(_{36}\)F\(_{3}\)N\(_4\)O\(_5\) requires 721.2832.

\(N\)-(N-\(N\)-(Naphth-2-yl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-N-benzyl-4-aminobenzoyl)-glycine 32

~ 70% pure by NMR, isolated crude yield: 61 mg; δ\(_{\text{H}}\) (500 MHz, DMSO-d\(_6\)) 0.77 (d, 6H, J = 5 Hz, 2-Hy), 1.66 (m, 1H, 2-Hβ), 3.60 (d, 2H, J = 5 Hz, 2-Hα), 3.88 (s, 2H, 1-Hα), 4.41 (s, 2H, 3-Hα), 5.12 (s, 2H, 4-Hα), 6.38 (d, 2H, J = 8.8 Hz, 2-H3), 6.86-6.96 (m, 4H, ArCH), 7.07 (d, 2H, J = 5 Hz, ArCH), 7.22 (d, 2H, J = 5 Hz, ArCH), 7.27-7.32 (m, 4H, ArCH), 7.45-7.49 (m, 2H, ArCH), 7.66 (d, 2H, J = 10 Hz, ArCH), 7.80-7.87 (m, 3H, ArCH), 8.87 (m, 1H, NH); ESI-MS found m/z 717.2 [M-H] \(^{-}\).

\(N\)-(N-\(N\)-(4-Fluorobenzyl-4-aminobenzoyl)-N-\(N\)-(4-fluorobenzoyl)-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 33

~ 70% pure by NMR, no identifiable impurity on LC-MS; isolated crude yield: 62 mg; δ\(_{\text{H}}\) (300 MHz, MeOD) 0.95 (d, 6H, J = 6.6 Hz, 3-Hy), 1.85 (m, 1H, 3-Hβ), 3.82 (d, 2H, J = 7.4 Hz, 3-Hα), 4.09 (s, 2H, 2-Hα), 4.36 (s, 2H, 1-Hα), 5.03 (s, 2H, 4-Hα), 6.37 (d, 2H, J = 9.0 Hz, 2-H3), 6.84 (d, 2H, J = 8.5 Hz, 3-H2), 6.95 (d, 2H, J = 8.8 Hz, ArCH), 7.01 (d, 2H, J = 8.8 Hz, ArCH), 7.01-7.06 (m, 2H, ArCH), 7.13 (d, 2H, J = 8.5 Hz, ArCH), 7.14-7.20 (m, 6H, ArCH), 7.75 (d, 2H, J = 8.5 Hz, 1-H2); ESI-MS found m/z 703.1 [M-H]; ESI-HRMS found m/z 705.2893 [M+H] \(^{+}\) C\(_{44}\)H\(_{38}\)F\(_2\)N\(_4\)O\(_5\) requires 705.2883.
N-(N-(4-Fluorobenzyl-4-aminobenzoyl)-N-(3-fluorobenzyl)-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 34

> 85% pure by NMR, no identifiable impurity on LC-MS; isolated crude yield: 63 mg; δH (300 MHz, MeOD) 0.95 (d, 6H, J = 6.6 Hz, 3-Hy), 1.84 (m, 1H, 3-Hβ), 3.83 (d, 2H, J = 7.4 Hz, 3-Hα), 4.08 (s, 2H, 2-Hα), 4.32 (s, 2H, 1-Hα), 5.06 (s, 2H, 4-Hα), 6.38 (d, 2H, J = 8.8 Hz, 2-H3), 6.87 (d, 2H, J = 8.5 Hz, 3-H2), 6.92-6.98 (m, 3H, ArCH), 7.01-7.03 (m, 4H, ArCH), 7.14 (d, 2H, J = 8.2 Hz, ArCH), 7.16 (d, 2H, J = 8.2 Hz, ArCH), 7.23 (m, 1H, ArCH), 7.33-7.37 (m, 2H, ArCH), 7.73 (d, 2H, J = 8.8 Hz, 1-H2); ESI-MS found m/z 703.1 [M-H]-; ESI-HRMS found m/z 727.2716 [M+Na]+ C41H38F2N4NaO5 requires 727.2702.

N-(N-(N-(Benzyl-4-aminobenzoyl))-N-(3-trifluoromethyl)benzyl-4-aminobenzoyl)-N-2-methylbutyl-4-aminobenzoyl)-glycine 35

> 85% pure by NMR, isolated crude yield: 71 mg; δH (300 MHz, MeOD) 0.88 (t, 3H, J = 7.4 Hz, 3-Hδ), 0.93 (d, 3H, J = 6.6 Hz, 3-Hε), 1.18 (m, 1H, 3-Hβ), 1.46 (m, 1H, 3-Hy), 1.60 (m, 1H, 3-Hy'), 3.87 (d, 2H, J = 7.4 Hz, 3-Hα), 4.07 (s, 2H, 1-Hα), 4.36 (s, 2H, 2-Hα), 5.14 (s, 2H, 4-Hα), 6.47 (d, 2H, J = 8.6 Hz, 2-H3), 6.89 (d, 2H, J = 8.5 Hz, 3-H2), 7.06 (d, 2H, J = 8.6 Hz, 2-H2), 7.14 (d, 2H, J = 8.5 Hz, 3-H3), 7.15 (d, 2H, J = 8.5 Hz, 1-H3), 7.25 (m, 1H, 1-HAr4), 7.29-7.35 (m, 4H, 1-HAr2,3), 7.37 (d, 1H, J = 8.2 Hz, 2-HAr6), 7.44 (t, 1H, J = 7.5 Hz, 2-HAr5), 7.53 (d, 1H, J = 7.4 Hz, 2-HAr4), 7.60 (s, 1H, 2-HAr2), 7.72 (d, 2H, J = 8.5 Hz, 1-H2); ESI-MS found m/z 749.2 [M-H]-; ESI-HRMS found m/z 773.2936 [M+Na]+ C40H42F3Na2O5 requires 773.2921.

N-(N-(N-(Benzyl-4-aminobenzoyl))-N-(4-trifluoromethyl)benzyl-4-aminobenzoyl)-N-2-methylbutyl-4-aminobenzoyl)-glycine 36

> 95% pure by NMR, isolated crude yield: 68 mg; δH (300 MHz, MeOD) 0.88 (t, 3H, J = 7.3 Hz, 3-Hδ), 0.93 (d, 3H, J = 6.9 Hz, 3-Hε), 1.19 (m, 1H, 3-Hβ), 1.45 (m, 1H, 3-Hy), 1.61 (m, 1H, 3-Hy'), 3.87 (d, 2H, J = 7.4 Hz, 3-Hα), 4.07 (s, 2H, 1-Hα), 4.37 (s, 2H, 2-Hα), 5.13 (s, 2H, 4-Hα), 6.47 (d, 2H, J = 8.8 Hz, 2-H3), 6.91 (d, 2H, J = 8.4 Hz, 3-H2), 7.05 (d, 2H, J = 8.8 Hz, 2-H2), 7.14 (d, 2H, J = 8.4 Hz, 3-H3), 7.16 (d, 2H, J = 8.5 Hz, 1-H3), 7.25 (m, 1H, 1-HAr4), 7.29-7.36 (m, 4H, 1-HAr2,3), 7.41 (d, 2H, J = 8.2 Hz, 2-HAr2), 7.57 (d, 2H, J = 8.2 Hz, 2-HAr4), 7.73 (d, 2H, J = 8.5 Hz, 1-H2); ESI-HRMS found m/z 751.3081 [M+H]+ C40H42F3Na2O5 requires 751.3102.

N-(N-(N-(4-Fluorobenzyl-4-aminobenzoyl))-N-(3-trifluoromethyl)benzyl-4-aminobenzoyl)-N-2-methylbutyl-4-aminobenzoyl)-glycine 37

> 95% pure by NMR, isolated crude yield: 73 mg; δH (300 MHz, MeOD) 0.88 (t, 3H, J = 7.4 Hz, 3-Hδ), 0.93 (d, 3H, J = 6.9 Hz, 3-Hε), 1.18 (m, 1H, 3-Hβ), 1.46 (m, 1H, 3-Hy), 1.59 (m, 1H, 3-Hy'), 3.87 (d, 2H, J
= 7.4 Hz, 3-Ha), 4.08 (s, 2H, 1-Ha), 4.35 (s, 2H, 2-Ha), 5.14 (s, 2H, 4-Ha), 6.45 (d, 2H, J = 8.6 Hz, 2-H3), 6.88 (d, 2H, J = 8.2 Hz, 3-H2), 7.03 (d, 2H, J = 8.6 Hz, 2-H2), 7.06 (d, 2H, J = 8.2 Hz, 3-H3), 7.15 (d, 2H, J = 8.5 Hz, ArCH), 7.16 (d, 2H, J = 8.5 Hz, ArCH), 7.36 (d, 1H, J = 8.2 Hz, 2-HAr6), 7.37 (d, 2H, J = 8.2 Hz, 1-HAr3), 7.44 (t, 1H, J = 7.7 Hz, 2-HAr5), 7.53 (d, 1H, J = 7.7 Hz, 2-HAr4), 7.60 (s, 1H, 2-HAr2), 7.72 (d, 2H, J = 8.5 Hz, 1-H2); ESI-MS found m/z 767.3 [M-H]−; ESI-HRMS found m/z 767.2872 [M-H]−

N-(N-(4-Chlorobenzyl-4-aminobenzoyl)-N-(4-trifluoromethyl)benzyl-4-aminobenzoyl)-N-(2-methylbutyl)-4-aminobenzoyl)-glycine 40

> 95% pure by NMR, isolated crude yield: 76 mg; δH (300 MHz, MeOD) 0.88 (t, 3H, J = 7.4 Hz, 3-H6), 0.93 (d, 3H, J = 6.7 Hz, 3-He), 1.19 (m, 1H, 3-Hβ), 1.46 (m, 1H, 3-Hy), 1.60 (m, 1H, 3-Hy'), 3.87 (d, 2H, J = 7.4 Hz, 3-Ha), 4.08 (s, 2H, 1-Ha), 4.35 (s, 2H, 2-Ha), 5.13 (s, 2H, 4-Ha), 6.41 (d, 2H, J = 8.7 Hz, 2-H3), 6.90 (d, 2H, J = 8.2 Hz, 3-H2), 7.03 (d, 2H, J = 8.7 Hz, 2-H2), 7.15 (d, 2H, J = 8.2 Hz, 3-H3), 7.17 (d, 2H, J = 8.5 Hz, 1-H3), 7.29-7.33 (m, 4H, 1-HAr2,3), 7.40 (d, 2H, J = 8.0 Hz, 2-HAr2), 7.57 (d, 2H, J = 8.2 Hz, 2-HAr3), 7.70 (d, 2H, J = 8.5 Hz, 1-H2); ESI-HRMS found m/z 783.2554 [M-H]− C43H39ClF3N4O5 requires 783.2567.

N-(N-(4-Chlorobenzyl-4-aminobenzoyl)-N-(4-trifluoromethyl)benzyl-4-aminobenzoyl)-N-(2-methylbutyl)-4-aminobenzoyl)-glycine 41

> 95% pure by NMR, isolated crude yield: 70 mg; δH (300 MHz, MeOD) 0.87 (t, 3H, J = 7.4 Hz, 3-H6), 0.92 (d, 3H, J = 6.6 Hz, 3-He), 1.18 (m, 1H, 3-Hβ), 1.45 (m, 1H, 3-Hy), 1.59 (m, 1H, 3-Hy'), 2.92 (t, 2H, J = 7.5 Hz, 1-Hβ), 3.39 (t, 2H, J = 7.5 Hz, 1-Hα), 3.86 (d, 2H, J = 7.4 Hz, 3-Ha), 4.11 (s, 2H, 2-Ha), 5.14 (s,
N-N-N-(4-Chlorobenzyl-4-aminobenzoyl)-N-(3-fluorobenzyl-4-aminobenzoyl)-N-2-methylbutyl-4-aminobenzoyl)-glycine 42

> 90% pure by NMR, isolated crude yield: 66 mg; δ (300 MHz, MeOD) 0.91 (t, 3H, J = 7.8 Hz, 3-Hδ), 0.93 (d, 3H, J = 6.9 Hz, 3-Hε), 1.19 (m, 1H, 3-Hβ), 1.45 (m, 1H, 3-Hγ), 1.61 (m, 1H, 3-Hγ'), 3.87 (d, 2H, J = 7.4 Hz, 3-Ha), 4.08 (s, 2H, 1-Hα), 4.33 (s, 2H, 2-Ha), 5.06 (s, 2H, 4-Ha), 6.38 (d, 2H, J = 8.5 Hz, 2-H3), 6.87 (d, 2H, J = 8.2 Hz, 3-H2), 6.93 (d, 2H, J = 7.6 Hz, ArCH), 6.97 (d, 2H, J = 8.2 Hz, ArCH), 7.02 (d, 2H, J = 8.5 Hz, ArCH), 7.14 (d, 2H, J = 8.2 Hz, ArCH), 7.15 (d, 2H, J = 8.2 Hz, ArCH), 7.25 (t, 1H, J = 7.8 Hz, 2-HAr5), 7.29 (d, 1H, J = 7.8 Hz, 2-HAr6), 7.31 (s, 1H, 2-HAr2), 7.41 (d, 1H, J = 7.7 Hz, 2-HAr4), 7.72 (d, 2H, J = 8.5 Hz, 1-H2); ESI-MS found m/z 733.4 [M-H]⁻; ESI-HRMS found m/z 733.2605 [M-H]⁻ $C_{46}H_{42}F_3N_4O_5$ requires 733.2598.

N-N-N-(4-Chlorobenzyl-4-aminobenzoyl)-N-4-chlorobenzyl-4-aminobenzoyl)-N-(2-methylbutyl-4-aminobenzoyl)-glycine 43

> 75% pure by NMR, isolated crude yield: 71 mg; δ (300 MHz, MeOD) 0.87-0.94 (m, 6H, 3-Hδ,ε), 1.19 (m, 1H, 3-Hβ), 1.44 (m, 1H, 3-Hγ), 1.60 (m, 1H, 3-Hγ'), 3.85 (d, 2H, J = 7.5 Hz, 3-Ha), 4.14 (s, 2H, 1-Ha), 4.33 (s, 2H, 2-Ha), 5.06 (s, 2H, 4-Ha), 6.37 (d, 2H, J = 8.8 Hz, 2-H3), 6.88 (d, 2H, J = 8.0 Hz, 3-H2), 7.12-7.18 (m, 6H, ArCH), 7.21-7.28 (m, 6H, ArCH), 7.29 (d, 2H, J = 8.8 Hz, ArCH), 7.72 (d, 2H, J = 8.2 Hz, 1-H2); ESI-MS found m/z 749.7 [M-H]⁻; ESI-HRMS found m/z 749.2283 [M-H]⁻ $C_{43}H_{39}ClF_2N_4O_5$ requires 749.2303.

N-N-N-(4-Fluorobenzyl-4-aminobenzoyl)-N-(4-trifluoromethyl)benzyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 45

> 90% pure by NMR, isolated crude yield: 71 mg; δ (300 MHz, MeOD) 0.94 (d, 6H, J = 6.6 Hz, 3-Hγ), 1.84 (m, 1H, 3-Hβ), 3.82 (d, 2H, J = 7.3 Hz, 3-Ha), 4.08 (s, 2H, 1-Ha), 4.36 (s, 2H, 2-Ha), 5.13 (s, 2H, 4-Ha), 6.48 (d, 2H, J = 8.8 Hz, 2-H3), 6.90 (d, 2H, J = 8.4 Hz, 3-H2), 7.02-7.08 (m, 4H, ArCH), 7.13-7.18
(m, 4H, ArCH), 7.34-7.37 (m, 2H, ArCH), 7.40 (d, 2H, J = 7.7 Hz, ArCH), 7.56 (d, 2H, J = 8.2 Hz, ArCH), 7.73 (d, 2H, J = 8.5 Hz, 1-H2); ESI-HRMS found m/z 753.2729 [M-H]\(^{-}\) C\(_{42}\)H\(_{37}\)F\(_{4}\)N\(_{4}\)O\(_{5}\) requires 753.2706.

\(N-(N-(4-Fluorobenzyl-4-aminobenzoyl)-N-(4-trifluoromethyl)benzyl-4-aminobenzoyl)-N-cyclopropylmethyl-4-aminobenzoyl)-glycine 46\)

> 90% pure by NMR, isolated crude yield: 65 mg; \(\delta\text{H} (300 \text{ MHz, MeOD}) 0.14 (m, 2H, 3-Hy'), 0.45 (m, 2H, 3-Hy'), 1.06 (m, 1H, 3-Hβ), 3.82 (d, 2H, J = 7.0 Hz, 3-Ha), 4.08 (s, 2H, 1-Hα), 4.35 (s, 2H, 2-Ha), 5.13 (s, 2H, 4-Ha), 6.45 (d, 2H, J = 8.8 Hz, 2-H3), 6.89 (d, 2H, J = 8.4 Hz, 3-H2), 7.02-7.10 (m, 4H, ArCH), 7.16-7.21 (m, 4H, 2-H2 and 3-H3), 7.34 (m, 2H, ArCH), 7.40 (d, 2H, J = 7.7 Hz, ArCH), 7.56 (d, 2H, J = 8.0 Hz, 2-HAr3), 7.75 (d, 2H, J = 8.5 Hz, 1-H2); ESI-HRMS found m/z 751.2535 [M-H]\(^{-}\) C\(_{42}\)H\(_{37}\)F\(_{4}\)N\(_{4}\)O\(_{5}\) requires 751.2549.

\(N-(N-(Benzyl-4-aminobenzoyl)-N-(3-trifluoromethyl)benzyl-4-aminobenzoyl)-N-propyl-4-aminobenzoyl)-glycine 47\)

> 90% pure by NMR, isolated crude yield: 69 mg; \(\delta\text{H} (300 \text{ MHz, MeOD}) 0.94 (t, 3H, J = 7.4 Hz, 3-Hγ), 1.61 (m, 2H, 3-Hβ), 3.89 (t, 2H, J = 7.5 Hz, 3-Ha), 4.07 (s, 2H, 1-Hα), 4.37 (s, 2H, 2-Ha), 5.14 (s, 2H, 4-Ha), 6.51 (d, 2H, J = 8.8 Hz, 2-H3), 6.87 (d, 2H, J = 8.4 Hz, 3-H2), 7.06 (d, 2H, J = 8.8 Hz, 2-H2), 7.12-7.17 (m, 6H, ArCH), 7.32-7.35 (m, 4H, ArCH), 7.43 (t, 1H, J = 7.8 Hz, 2-HAr4), 7.53 (d, 1H, J = 8.1 Hz, ArCH), 7.59 (s, 1H, 2-HAr2), 7.73 (d, 2H, J = 8.5 Hz, 1-H2); ESI-HRMS found m/z 721.2651 [M-H]\(^{-}\) C\(_{41}\)H\(_{36}\)F\(_{3}\)N\(_{4}\)O\(_{5}\) requires 721.2643.

\(N-(N-(Cyclohexylmethyl-4-aminobenzoyl)-N-naphth-2-yl-4-aminobenzoyl)-N-phenethyl-4-aminobenzoyl)-glycine 48\)

> 85% pure by NMR, isolated crude yield: 75 mg; \(\delta\text{H} (300 \text{ MHz, CDCl}_3) 1.04 (m, 2H, 1-Hε), 1.23-1.36 (m, 4H, 1-Hδ,δ'), 1.65-1.89 (m, 5H, 1-Hγ,γ',β), 2.93 (t, 2H, J = 8.2 Hz, 3-Hβ), 2.99 (d, 2H, J = 6.9 Hz, 1-Hα), 4.10 (t, 2H, J = 8.2 Hz, 3-Ha), 4.13 (s, 2H, 2-Hα), 5.25 (s, 2H, 4-Ha), 6.56 (d, 2H, J = 8.2 Hz, 2-H3), 6.91 (d, 2H, J = 8.3 Hz, 3-H2), 6.93 (d, 2H, J = 8.2 Hz, 2-H2), 7.07 (d, 2H, J = 8.3 Hz, 3-H3), 7.13 (d, 2H, J = 8.7 Hz, 1-H3), 7.16-7.20 (m, 2H, 3-HAr2), 7.21-7.28 (m, 3H, 3-HAr3,4), 7.36 (d, 1H, J = 8.2 Hz, ArCH), 7.44-7.48 (m, 2H, ArCH), 7.64 (s, 1H, 2-HAr1), 7.66 (d, 2H, J = 8.7 Hz, 1-H2), 7.73-7.83 (m, 3H, ArCH); ESI-MS found m/z 773.4 [M+H]\(^{+}\); ESI-HRMS found m/z 771.3543 [M-H]\(^{-}\) C\(_{49}\)H\(_{47}\)N\(_{4}\)O\(_{5}\) requires 771.3552.
N-(N-(Benzyl-4-aminobenzoyl)-N-(3-trifluoromethyl)benzyl-4-aminobenzoyl)-N-cyclopropylmethyl-4-aminobenzoyl)-glycine 49

> 75% pure by NMR, isolated crude yield: 70 mg; δ_H (500 MHz, CDCl_3) 0.17 (m, 2H, 3-Hy'), 1.05 (m, 1H, 3-Hβ), 3.81 (d, 2H, J = 7.1 Hz, 3-Hα), 3.99 (d, 2H, J = 4.2 Hz, 1-Hα), 4. (s, 2H, 2-Ha), 5.12 (s, 2H, 4-Ha), 6.74 (d, 2H, J = 8.2 Hz, 2-H3), 7.03 (d, 2H, J = 8.0 Hz, 3-H2), 7.12 (d, 2H, J = 8.0 Hz, ArCH), 7.14 (d, 2H, J = 8.0 Hz, ArCH), 7.25 (d, 2H, J = 8.5 Hz, ArCH), 7.34-7.37 (m, 5H, 1-HAr2-4), 7.39 (d, 2H, J = 8.0 Hz, 1-H3), 7.52 (m, 2H, ArCH), 7.60 (d, 2H, J = 8.0 Hz, 1-H2), 7.75 (m, 1H, Ar-NH); ESI-HRMS found m/z 733.2672 [M-H] C_{42}H_{48}F_{3}N_{4}O_{5} requires 733.2643.

N-(N-(N-(Phenethyl-4-aminobenzoyl))-N-3-fluorobenzyl-4-aminobenzoyl)-N2-isobutyl-4-aminobenzoyl)-glycine 50

> 80% pure by NMR, isolated crude yield: 49 mg; δ_H (300 MHz, MeOD) 0.93 (d, 6H, J = 6.6 Hz, 3-Hy), 1.78 (m, 1H, 3-Hβ), 2.83 (t, 2H, J = 7.7 Hz, 1-Hβ), 3.83 (d, 2H, J = 7.7 Hz, 3-Hα), 4.06 (t, 2H, J = 7.7 Hz, 1-Hα), 4.18 (s, 2H, 2-Ha), 5.07 (s, 2H, 4-Ha), 6.39 (d, 2H, J = 8.8 Hz, 2-H3), 6.88 (d, 2H, J = 8.2 Hz, 3-H2), 7.12 (d, 2H, J = 8.5 Hz, ArCH), 7.15 (d, 2H, J = 8.2 Hz, ArCH), 7.19 (d, 2H, J = 8.5 Hz, ArCH), 7.23-7.30 (m, 7H, ArCH), 7.71 (d, 2H, J = 8.2 Hz, 1-H2), 7.75-7.80 (m, 2H, ArCH); ESI-HRMS found m/z 699.2986 [M-H] C_{42}H_{48}F_{3}N_{4}O_{5} requires 699.2988.

N-(N-(N-(4-Chlorobenzyl-4-aminobenzoyl))-N-3-fluorobenzyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 51

> 85% pure by NMR, isolated crude yield: 61 mg; δ_H (300 MHz, MeOD) 0.95 (d, 6H, J = 5.9 Hz, 3-Hy), 1.84 (m, 1H, 3-Hβ), 3.83 (d, 2H, J = 6.9 Hz, 3-Hα), 4.08 (s, 2H, 1-Hα), 4.33 (s, 2H, 2-Ha), 5.06 (s, 2H, 4-Ha), 6.36 (d, 2H, J = 8.7 Hz, 2-H3), 6.87 (d, 2H, J = 8.7 Hz, 3-H2), 6.95 (d, 2H, J = 8.2 Hz, ArCH), 7.01 (d, 2H, J = 7.7 Hz, ArCH), 7.11-7.17 (m, 5H, ArCH), 7.23 (t, 1H, J = 7.8 Hz, 2-HAr5), 7.28-7.31 (m, 4H, 1-HAr2,3), 7.72 (d, 2H, J = 8.2 Hz, 1-H2); ESI-HRMS found m/z 719.2463 [M-H] C_{42}H_{47}ClF_{3}N_{4}O_{5} requires 719.2442.

N-(N-(N-(4-Chlorobenzyl-4-aminobenzoyl))-N-4-fluorobenzyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 52

> 85% pure by NMR, isolated crude yield: 60 mg; δ_H (300 MHz, MeOD) 0.95 (d, 6H, J = 6.1 Hz, 3-Hy), 1.85 (m, 1H, 3-Hβ), 3.83 (d, 2H, J = 7.1 Hz, 3-Hα), 4.08 (s, 2H, 1-Hα), 4.32 (s, 2H, 2-Ha), 5.03 (s, 2H, 4-Ha), 6.35 (d, 2H, J = 8.2 Hz, 2-H3), 6.83-6.88 (m, 4H, ArCH), 6.97 (d, 2H, J = 7.1 Hz, ArCH), 6.99 (d, 2H, J = 7.7 Hz, ArCH), 7.12-7.21 (m, 6H, ArCH), 7.30 (d, 2H, J = 7.0 Hz, ArCH), 7.72 (d, 2H, J = 7.1 Hz, 1-H2); ESI-HRMS found m/z 719.2432 [M-H] C_{42}H_{47}ClF_{3}N_{4}O_{5} requires 719.2442.
N-(N-(Phenethyl-4-aminobenzoyl)-N-4-fluorobenzyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 53

> 90% pure by NMR, isolated crude yield: 61 mg; δ_H (300 MHz, MeOD) 0.94 (d, 6H, J = 6.6 Hz, 3-Hy), 1.84 (m, 1H, 3-Hβ), 2.91 (t, 2H, J = 7.4 Hz, 1-Hβ), 3.39 (t, 2H, J = 7.4 Hz, 1-Hα), 3.82 (d, 2H, J = 8.5 Hz, 3-Hα), 4.11 (s, 2H, 1-Hα), 5.04 (s, 2H, 4-Hα), 6.51 (d, 2H, J = 8.8 Hz, 2-H3), 6.86 (d, 2H, J = 8.5 Hz, 3-H2), 6.98 (t, 2H, J = 8.8 Hz, ArCH), 7.08 (d, 2H, J = 8.8 Hz, 2-H2), 7.14 (d, 2H, J = 8.5 Hz, 3-H3), 7.16-7.23 (m, 5H, ArCH), 7.24-7.27 (m, 2H, ArCH), 7.29 (d, 2H, J = 8.1 Hz, 1-H3), 7.73 (d, 2H, J = 8.5 Hz, 1-H2); ESI-HRMS found m/z 699.2981 [M-H] C_{42}H_{40}F_{10}N_{6}O_{5} requires 699.2988.

N-(N-(Phenethyl-4-aminobenzoyl)-N-(2-methyl)naphth-1-yl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 54

> 95% pure by NMR, isolated crude yield: 58 mg; δ_H (300 MHz, MeOD) 0.90 (d, 6H, J = 6.6 Hz, 3-Hy), 1.79 (m, 1H, 3-Hβ), 2.89 (t, 2H, J = 7.4 Hz, 1-Hβ), 3.36 (t, 2H, J = 7.4 Hz, 1-Hα), 3.75 (d, 2H, J = 7.4 Hz, 3-Hα), 4.15 (s, 2H, 1-Hα), 5.40 (s, 2H, 4-Hα), 6.43 (d, 2H, J = 8.2 Hz, 2-H3), 6.53 (d, 2H, J = 8.5 Hz, ArCH), 6.90 (d, 2H, J = 8.2 Hz, ArCH), 7.02 (d, 2H, J = 8.8 Hz, ArCH), 7.06 (d, 2H, J = 8.8 Hz, ArCH), 7.14 (d, 1H, J = 8.5 Hz, ArCH), 7.19-7.29 (m, 5H, ArCH), 7.48 (m, 1H, ArCH), 7.69 (d, 2H, J = 8.2 Hz, ArCH), 7.73 (d, 2H, J = 8.5 Hz, ArCH), 8.13 (d, 1H, J = 8.5 Hz, ArCH); ESI-HRMS found m/z 745.3383 [M-H] C_{47}H_{46}N_{6}O_{5} requires 745.3395.

N-(N-(4-Chlorobenzyl-4-aminobenzoyl)-N-naphth-2-yl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 55

> 80% pure by NMR, isolated crude yield: 71 mg; δ_H (500 MHz, MeOD) 0.94 (d, 6H, J = 6.4 Hz, 3-Hy), 1.83 (m, 1H, 1-Hβ), 3.81 (d, 2H, J = 7.3 Hz, 3-Hα), 4.10 (s, 2H, 1-Hα), 4.35 (s, 2H, 2-Hα), 5.24 (s, 2H, 4-Hα), 6.41 (d, 2H, J = 8.7 Hz, 2-H3), 6.90 (d, 2H, J = 8.2 Hz, 3-H2), 7.06 (d, 2H, J = 8.7 Hz, 2-H2), 7.11 (d, 2H, J = 8.2 Hz, ArCH), 7.14 (d, 2H, J = 7.8 Hz, ArCH), 7.30-7.36 (m, 4H, ArCH), 7.39 (m, 1H, ArCH), 7.45 (d, 2H, J = 7.8 Hz, ArCH), 7.64 (s, 1H, 2-HAr2), 7.70 (d, 2H, J = 8.2 Hz, ArCH), 7.77 (d, 2H, J = 8.7 Hz, ArCH), 7.81 (d, 1H, J = 8.2 Hz, ArCH); ESI-HRMS found m/z 751.2664 [M-H] C_{48}H_{45}ClN_{6}O_{5} requires 751.2693.

N-(N-(Propyl-4-aminobenzoyl)-N-phenethyl-4-aminobenzoyl)-N-cyclohexylmethyl-4-aminobenzoyl)-valine 58

> 85% pure by NMR, isolated crude yield: 70 mg; δ_H (300 MHz, CDCl₃) 0.97-1.17 (m, 5H, 3-Hδ,δ′,ε,), 1.02 (d, 6H, J = 7.4 Hz, 4-Hy), 1.11 (t, 3H, J = 7.2 Hz, 1-Hy), 1.61-1.77 (m, 7H, 1-Hβ, 3-Hy,y′,β), 1.86 (m, 1H, 4-Hβ), 2.95 (m, 2H, 2-Hβ), 3.29 (t, 2H, J = 8.2 Hz, 1-Hα), 3.70 (dd, 1H, J₁ = 13.8 Hz, J₂ = 6.6 Hz, 3-
N-(N-{(Propyl-4-aminobenzoyl)}-N-cyclohexylmethyl-4-aminobenzoyl)-N-propyl-4-aminobenzoyl)-isoleucine 59

> 90% pure by NMR, isolated crude yield: 61 mg; δH (300 MHz, CDCl3) 0.93-1.05 (m, 1H, 1-Hγ, 2-Hδ,δ',ε, 3-Hγ, 4-Hγ), 1.08 (d, 3H, J = 6.9 Hz, 4-He), 1.11-1.16 (m, 2H, 2-Hγ, 2-Hβ, 2-Hβγ), 1.83 (m, 1H, 2-Hβ), 2.07 (m, 1H, 3-Hβ), 3.29 (t, 2H, J = 7.9 Hz, 3-Hα), 3.59 (dd, 1H, J1: 13.4 Hz, J2: 6.6 Hz, 2-Hα), 3.63 (m, 1H, 2-Hα'), 4.03 (m, 2H, 1-Hα), 4.47 (d, 1H, J = 6.6 Hz, 4-Hα), 6.96 (d, 2H, J = 7.2 Hz, 2-Hδ), 7.06 (d, 2H, J = 8.2 Hz, 3-Hδ), 7.07 (d, 2H, J = 7.2 Hz, 2-Hδ), 7.27 (d, 2H, J = 8.5 Hz, 3-Hγ), 7.32 (d, 2H, J = 8.3 Hz, 1-Hδ), 7.59 (d, 2H, J = 8.3 Hz, 1-Hε); ESI-MS found m/z 667.3 [M-H]-; ESI-HRMS found m/z 667.3867 [M-H]⁺ C45H51N4O5 requires 667.3865.

N-(N-{(3-Fluorobenzyl-4-aminobenzoyl)}-N-phenethyl-4-aminobenzoyl)-N-propyl-4-aminobenzoyl)-leucine 60

> 90% pure by NMR, isolated crude yield: 70 mg; δH (300 MHz, CDCl3) 0.93 (t, 3H, J = 7.4 Hz, 3-Hγ), 0.94 (d, 6H, J = 7.4 Hz, 4-Hδ), 1.55-1.72 (m, 5H, 3-Hβ, 4-Hβ,γ), 2.91 (t, 2H, J = 7.2 Hz, 2-Hβ), 3.82 (m, 1H, 3-Hα), 3.98 (t, 2H, J = 7.4 Hz, 2-Hα), 4.20 (m, 1H, 3-Hα'), 4.34 (s, 2H, 1-Hα), 4.44 (m, 1H, 4-Hα), 6.63 (d, 2H, J = 7.9 Hz, 2-Hβγ), 6.98 (d, 2H, J = 8.2 Hz, 3-Hδ), 7.10 (d, 2H, J = 7.9 Hz, 2-Hδ), 7.11 (d, 2H, J = 8.2 Hz, 3-Hδ), 7.13-7.19 (m, 7H, ArCH), 7.23 (d, 1H, J = 6.9 Hz, 1-HArδ), 7.27 (d, 2H, J = 8.1 Hz, 1-Hγ), 7.30 (m, 1H, 1-HArγ), 7.59 (d, 2H, J = 8.1 Hz, 1-Hε); ESI-MS found m/z 741.2 [M-H]-; ESI-HRMS found m/z 741.3456 [M-H]⁺ C46H46F3N4O3 requires 741.3458.

N-(N-{(2-Methylbutyl-4-aminobenzoyl)}-N-(2-methylbutyl-4-aminobenzoyl)-N-2-methylbutyl-4-aminobenzoyl)-isoleucine 61

> 95% pure by NMR, isolated crude yield: 63 mg; δH (300 MHz, MeOD) 0.71-0.81 (m, 9H, 1-Hδ, 2-Hδ, 3-Hδ, 4-Hδ), 0.83-0.89 (m, 9H, 1-Hδ, 3-Hδ), 0.91-0.95 (m, 6H, 2-Hε, 4-Hε), 1.03-1.15 (m, 3H, 1-Hγ, 1-Hβ), 1.22-1.33 (m, 2H, 2-Hγ), 1.37-1.45 (m, 4H, 4-Hγ, 2-Hβ, 3-Hβ), 1.56-1.69 (m, 1H, 4-Hβ), 2.89 (dd, 1H, J1 = 12.6 Hz and J2 = 7.4 Hz, 1-Hα), 3.02 (dd, 1H, J1 = 12.6 Hz and J2 = 7.4 Hz, 1-Hα'), 3.68 (d, 2H, J = 7.1 Hz, 3-Hα), 3.79 (d, 2H, J = 7.4 Hz, 2-Hα), 4.45 (d, 1H, J = 6.4 Hz, 4-Hα), 6.55 (d, 2H, J = 8.0 Hz, 2-Hδ), 6.91 (d, 2H, J = 8.5 Hz, 3-Hδ), 6.97 (d, 2H, J = 8.5 Hz, 2-Hδ), 7.10 (d, 2H, J = 8.5 Hz, 3-Hδ), 7.11 (d, 2H, J
Valine-N-(N-(isobutyl-4-aminobenzoyl)-N-(isobutyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine 62

> 90% pure by NMR, isolated crude yield: 62 mg; δH (300 MHz, MeOD) 0.80 (d, 6H, J = 7.1 Hz, 2-Hy), 0.87 (d, 6H, J = 7.1 Hz, 3-Hy), 0.92 (d, 6H, J = 6.6 Hz, 4-Hy), 0.96 (d, 6H, J = 6.6 Hz, 1-Hy), 1.66-1.80 (m, 2H, 2-Hβ, 3-Hβ), 1.84-1.98 (m, 2H, 1-Hβ, 4-Hβ), 3.71-3.80 (m, 4H, 3-Hα, 4-Hα), 3.83-3.86 (m, 2H, 2-Ha), 4.07-4.11 (m, 1H, 1-Ha), 4.09 (s, 2H, 5-Ha), 7.04 (d, 2H, J = 8.5 Hz, 2-H3), 7.18 (d, 2H, J = 7.9 Hz, 3-H2), 7.21 (d, 2H, J = 7.9 Hz, 3-H3), 7.25 (d, 2H, J = 8.5 Hz, 2-H2), 7.34 (d, 2H, J = 8.3 Hz, 1-H3), 7.77 (d, 2H, J = 8.3 Hz, 1-H2); ESI-MS found m/z 700.5 [M+H]+; ESI-HRMS found m/z 698.3916 [M+H]+ C40H52N4O6 requires 698.3923.

N-(N-(N-(isobutyl-4-aminobenzoyl)-N-(2-methylbutyl-4-aminobenzoyl)-N-2-methylbutyl-4-aminobenzoyl)-isoleucine 63

> 95% pure by NMR, isolated crude yield: 63 mg; δH (300 MHz, MeOD) 0.83 (t, 3H, J = 7.4 Hz, 3-Hδ), 0.87 (d, 3H, J = 6.6 Hz, 3-Hε), 0.89 (t, 3H, J = 7.4 Hz, 2-Hδ), 0.94 (d, 3H, J = 6.9 Hz, 2-Hε), 0.97 (d, 3H, J = 7.7 Hz, 4-Hε), 1.02 (d, 6H, J = 6.6 Hz, 1-Hγ), 1.03 (t, 3H, J = 6.6 Hz, 4-Hδ), 1.09-1.26 (m, 2H, 3-Hγ), 1.29-1.41 (m, 2H, 2-Hγ), 1.43-1.54 (m, 2H, 4-Hγ), 1.56-1.68 (m, 2H, 3-Hβ, 1-Hβ), 1.95 (m, 1H, 2-Hβ), 2.04 (m, 1H, 4-Hβ), 3.00 (d, 2H, J = 6.9 Hz, 1-Hα), 3.78 (d, 2H, J = 7.1 Hz, 2-Hα), 3.89 (d, 2H, J = 7.4 Hz, 3-Hα), 4.55 (d, 1H, J = 6.3 Hz, 4-Hα), 6.60 (d, 2H, J = 8.7 Hz, 2-H3), 7.01 (d, 2H, J = 8.2 Hz, 3-H2), 7.05 (d, 2H, J = 8.7 Hz, 2-H2), 7.20 (d, 2H, J = 8.2 Hz, 3-H3), 7.21 (d, 2H, J = 8.5 Hz, 1-H3), 7.74 (d, 2H, J = 8.5 Hz, 1-H2); ESI-MS found m/z 683.5 [M-H]; ESI-HRMS found m/z 683.4182 [M-H] C41H53N4O5 requires 683.4178.

N-(N-(N-(isobutyl-4-aminobenzoyl)-N-naphth-2-yl-4-aminobenzoyl)-N-2-methylbutyl-4-aminobenzoyl)-isoleucine 64

> 95% pure by NMR, isolated crude yield: 70 mg; δH (300 MHz, MeOD) 0.85 (t, 3H, J = 7.4 Hz, 3-Hδ), 0.89 (d, 3H, J = 6.9 Hz, 3-Hε), 0.98 (t, 3H, J = 7.4 Hz, 4-Hδ), 1.02 (d, 6H, J = 7.2 Hz, 1-Hγ), 1.04 (d, 3H, J = 7.4 Hz, 4-Hε), 1.15 (m, 1H, 3-Hγ), 1.30-1.47 (m, 2H, 3-Hγ′, 4-Hγ), 1.54-1.68 (m, 2H, 4-Hγ′, 1-Hβ), 1.94 (m, 1H, 3-Hβ), 2.03 (m, 1H, 4-Hβ), 2.99 (d, 2H, J = 6.9 Hz, 1-Hα), 3.84 (d, 2H, J = 7.1 Hz, 3-Hα), 4.58 (d, 1H, J = 6.3 Hz, 4-Hα), 5.24 (s, 2H, 2-Ha), 6.59 (d, 2H, J = 8.7 Hz, 2-H3), 6.90 (d, 2H, J = 8.4 Hz, 3-H2), 7.11 (d, 2H, J = 8.7 Hz, 2-H2), 7.14 (d, 2H, J = 8.4 Hz, 3-H3), 7.15 (d, 2H, J = 8.5 Hz, 1-H3), 7.36 (m, 1H, ArCH), 7.43-7.46 (m, 2H, ArCH), 7.64 (s, 1H, 3-HAr2), 7.70 (d, 2H, J = 8.5 Hz, 1-H2), 7.74-7.78
(m, 2H, ArCH), 7.81 (m, 1H, 2-ArCH); ESI-MS found m/z 755.5 [M+H]+; ESI-HRMS found m/z 753.4007 [M-H]- C_{43}H_{53}N_{5}O_{5} requires 753.4021.

\(N\)-(N-(Isobutyl-4-aminobenzoyl)-N-2-methylbutyl-4-aminobenzoyl)-N-naphth-2-yl-4-aminobenzoyl)-valine 65

> 95% pure by NMR, isolated crude yield: 73 mg; \(\delta_{H}\) (300 MHz, MeOD) 0.83 (t, 3H, \(J = 7.4\) Hz, 2-H\(\delta\)), 0.86 (d, 3H, \(J = 6.6\) Hz, 2-He), 0.99 (d, 6H, \(J = 6.7\) Hz, 1-H\(\gamma\)), 1.01 (d, 6H, \(J = 6.8\) Hz, 4-H\(\gamma\)), 1.14 (m, 1H, 2-H\(\gamma\)), 1.37 (m, 1H, 2-H\(\gamma\)'), 1.53 (m, 1H, 1-H\(\beta\)), 1.91 (m, 1H, 2-H\(\beta\)), 2.23 (m, 1H, 4-H\(\beta\)), 2.96 (d, 2H, \(J = 6.9\) Hz, 1-H\(\alpha\)), 3.76 (d, 2H, \(J = 7.2\) Hz, 2-H\(\alpha\)), 4.43 (d, 1H, \(J = 6.3\) Hz, 4-H\(\alpha\)), 5.36 (s, 2H, 3-H\(\alpha\)), 6.56 (d, 2H, \(J = 8.5\) Hz, 2-H\(\beta\)), 7.01 (d, 2H, \(J = 8.5\) Hz, 3-H\(\alpha\)), 7.04 (d, 2H, \(J = 8.5\) Hz, 2-H\(\gamma\)), 7.09 (d, 2H, \(J = 8.5\) Hz, 3-H\(\beta\)), 7.32 (d, 2H, \(J = 8.5\) Hz, 1-H\(\beta\)), 7.43-7.51 (m, 3H, ArCH), 7.63 (d, 2H, \(J = 8.5\) Hz, 1-H\(\gamma\)), 7.69 (s, 1H, ArCH), 7.76 (m, 1H, ArCH), 7.81-7.83 (m, 2H, ArCH); ESI-MS found m/z 740.1 [M-H]-; ESI-HRMS found m/z 739.3878 [M-H]- C_{46}H_{54}N_{5}O_{5} requires 739.3865.

\(N\)-(N-(Isobutyl-4-aminobenzoyl)-N-2-methylbutyl-4-aminobenzoyl)-N-4-chlorobenzyl-4-aminobenzoyl)-valine 66

> 95% pure by NMR, isolated crude yield: 69 mg; \(\delta_{H}\) (300 MHz, MeOD) 0.83 (t, 3H, \(J = 7.2\) Hz, 2-H\(\delta\)), 0.86 (d, 3H, \(J = 7.2\) Hz, 2-He), 1.01 (d, 6H, \(J = 6.9\) Hz, 1-H\(\gamma\)), 1.04 (d, 6H, \(J = 7.4\) Hz, 4-H\(\gamma\)), 1.13 (m, 1H, 2-H\(\gamma\)), 1.39 (m, 1H, 2-H\(\gamma\)'), 1.52 (m, 1H, 1-H\(\beta\)), 1.94 (m, 1H, 2-H\(\beta\)), 2.28 (m, 1H, 4-H\(\beta\)), 2.98 (d, 2H, \(J = 6.9\) Hz, 1-H\(\alpha\)), 3.78 (d, 2H, \(J = 6.9\) Hz, 2-H\(\alpha\)), 4.46 (d, 1H, \(J = 6.3\) Hz, 4-H\(\alpha\)), 5.17 (s, 2H, 3-H\(\alpha\)), 6.59 (d, 2H, \(J = 8.5\) Hz, 2-H\(\beta\)), 7.01 (d, 2H, \(J = 8.2\) Hz, 3-H\(\alpha\)), 7.03 (d, 2H, \(J = 8.5\) Hz, 2-H\(\gamma\)), 7.05 (d, 2H, \(J = 8.2\) Hz, 3-H\(\beta\)), 7.28 (d, 2H, \(J = 8.2\) Hz, 1-H\(\beta\)), 7.28-7.30 (m, 4H, 3-HAr2,3), 7.67 (d, 2H, \(J = 8.5\) Hz, 1-H\(\gamma\)); ESI-MS found m/z 724.8 [M+H]+; ESI-HRMS found m/z 723.3346 [M-H]- C_{42}H_{48}ClN_{4}O_{5} requires 723.3319.

\(N\)-(N-(Isobutyl-4-aminobenzoyl)-N-4-chlorobenzyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-isoleucine 67

> 95% pure by NMR, isolated crude yield: 61 mg; \(\delta_{H}\) (300 MHz, MeOD) 0.92 (d, 6H, \(J = 6.6\) Hz, 1-H\(\gamma\)), 0.98 (t, 3H, \(J = 7.8\) Hz, 4-H\(\delta\)), 1.01 (d, 6H, \(J = 6.9\) Hz, 3-H\(\gamma\)), 1.04 (d, 3H, \(J = 6.9\) Hz, 4-H\(\gamma\)), 1.35 (m, 1H, 1-H\(\beta\)), 1.63 (m, 1H, 3-H\(\beta\)), 1.85 (m, 1H, 4-H\(\gamma\)), 1.94 (m, 1H, 4-H\(\gamma\)'), 2.05 (m, 1H, 4-H\(\beta\)), 2.98 (d, 2H, \(J = 6.9\) Hz, 1-H\(\alpha\)), 3.82 (d, 2H, \(J = 7.4\) Hz, 3-H\(\alpha\)), 4.57 (d, 1H, \(J = 6.1\) Hz, 4-H\(\alpha\)), 5.03 (s, 2H, 2-H\(\alpha\)), 6.55 (d, 2H, \(J = 8.5\) Hz, 2-H\(\beta\)), 6.88 (d, 2H, \(J = 8.2\) Hz, 3-H\(\beta\)), 7.11 (d, 2H, \(J = 8.5\) Hz, 2-H\(\gamma\)), 7.15 (d, 2H, \(J = 8.2\) Hz, 3-H\(\beta\)), 7.17-7.20 (m, 4H, 2-HAr2,3), 7.26 (d, 2H, \(J = 8.5\) Hz, 1-H\(\beta\)), 7.74 (d, 2H, \(J = 8.5\) Hz, 1-H\(\gamma\));
ESI-MS found m/z 723.8 [M-H]; ESI-HRMS found m/z 723.3324 [M-H]⁻ C₄₂H₄₈ClN₄O₅ requires 723.3319.

\(N-(N-(\text{Carboxymethyl-4-aminobenzoyl})-N-2\text{-methylbutyl-4-aminobenzoyl})-N\text{-isobutyl-4-aminobenzoyl})\)-valine 68

> 80% pure by NMR, isolated crude yield: 56 mg; \(\delta \) (300 MHz, MeOD) 0.82 (t, 3H, J = 7.4 Hz, 2-Hδ), 0.85 (d, 3H, J = 5.9 Hz, 2-Hε), 0.96 (d, 6H, J = 6.6 Hz, 3-Hγ), 1.05 (d, 6H, J = 6.6 Hz, 4-Hγ), 1.03-1.08 (m, 2H, 2-Hγ), 1.51 (m, 1H, 2-Hβ), 1.87 (m, 1H, 3-Hβ), 2.30 (m, 1H, 4-Hβ), 3.76 (m, 2H, 2-He), 3.85 (d, 2H, J = 7.4 Hz, 3-Hα), 3.91 (s, 2H, 1-Hα), 4.52 (m, 1H, 4-Hα), 6.37 (d, 2H, J = 8.5 Hz, 2-H3), 6.98 (d, 4H, J = 8.2 Hz, 3-H2, 2-H2), 7.20 (d, 4H, J = 8.0 Hz, 3-H3, 1-H3), 7.77 (d, 2H, J = 8.5 Hz, 1-H2); ESI-HRMS found m/z 657.3280 [M-H]⁻ C₃₂H₄₆N₄O₇ requires 657.3294.

\(N-(N-(\text{Carboxymethyl-4-aminobenzoyl})-N-2\text{-methylbutyl-4-aminobenzoyl})-N-2\text{-methylbutyl-4-aminobenzoyl})\)-valine 69

> 80% pure by NMR, isolated crude yield: 52 mg; \(\delta \) (300 MHz, MeOD) 0.86 (t, 3H, J = 7.1 Hz, 2-Hδ), 0.88 (t, 3H, J = 7.1 Hz, 3-Hδ), 0.86-0.90 (m, 2H, 3-Hγ), 0.94 (d, 6H, J = 6.9 Hz, 3-He, 2-He), 1.05 (d, 6H, J = 6.3 Hz, 4-Hγ), 1.03-1.08 (m, 2H, 2-Hγ), 1.49 (m, 1H, 3-Hβ), 1.61 (m, 1H, 2-Hβ), 2.29 (m, 1H, 4-Hβ), 3.77 (m, 2H, 2-Hα), 3.82 (s, 2H, 1-Hα), 3.90 (d, 2H, J = 7.2 Hz, 3-Hα), 4.52 (m, 1H, 4-Hα), 6.35 (d, 2H, J = 8.5 Hz, 2-H3), 6.98 (d, 2H, J = 8.3 Hz, 3-H2), 7.04 (d, 2H, J = 8.5 Hz, 2-H2), 7.20 (d, 2H, J = 8.3 Hz, 3-H3), 7.21 (d, 2H, J = 8.3 Hz, 1-H3), 7.78 (d, 2H, J = 8.3 Hz, 1-H2); ESI-HRMS found m/z 671.3423 [M-H]⁻ C₃₈H₄₀N₄O₇ requires 671.3450.

\(N-(N-(\text{Isobutyl-4-aminobenzoyl})-N-(2\text{-methyl} \text{butyl-4-aminobenzoyl})-N\text{-isobutyl-4-aminobenzoyl})\)-aspartic acid 70

> 90% pure by NMR, isolated crude yield: 52 mg; \(\delta \) (300 MHz, MeOD) 0.84 (t, 3H, J = 7.4 Hz, 2-Hδ), 0.88 (d, 3H, J = 6.6 Hz, 2-He), 0.96 (d, 6H, J = 6.6 Hz, 1-Hγ), 1.04 (d, 6H, J = 6.6 Hz, 3-Hγ), 1.14 (m, 2H, 2-Hγ), 1.40 (m, 1H, 2-Hβ), 1.87 (m, 1H, 3-Hβ), 1.97 (m, 1H, 1-Hβ), 2.90 (m, 2H, 4-Hβ), 3.02 (d, 2H, J = 6.9 Hz, 2-Hα), 3.77 (d, 2H, J = 7.4 Hz, 3-Hα), 3.84 (d, 2H, J = 7.4 Hz, 1-Hα), 4.98 (m, 1H, 4-Hα), 6.65 (d, 2H, J = 8.5 Hz, 2-H3), 7.01 (d, 2H, J = 8.2 Hz, 3-H2), 7.07 (d, 2H, J = 8.5 Hz, 2-H2), 7.21 (d, 2H, J = 8.2 Hz, 3-H3), 7.22 (d, 2H, J = 8.5 Hz, 1-H3), 7.73 (d, 2H, J = 8.2 Hz, 1-H2); ESI-HRMS found m/z 671.3444 [M-H]⁻ C₃₈H₄₀N₄O₇ requires 671.3450.
N-{N-(Isobutyl-4-aminobenzoyl)-N-naphth-2-yl-4-aminobenzoyl}-isoleucine 71

> 95% pure by NMR, isolated crude yield: 71 mg; δ_H (300 MHz, MeOD) 0.91 (d, 6H, J = 6.9 Hz, 1-Hγ), 0.98 (t, 3H, J = 7.4 Hz, 4-Hδ), 1.02 (d, 6H, J = 6.9 Hz, 3-Hγ), 1.03 (d, 3H, J = 6.9 Hz, 4-Hε), 1.35 (m, 1H, 1-Hβ), 1.62 (m, 1H, 3-Hβ), 1.82 (m, 1H, 4-Hγ), 1.95 (m, 1H, 4-Hγ'), 2.04 (m, 1H, 4-Hβ), 2.99 (d, 2H, J = 6.9 Hz, 1-Hα), 3.79 (d, 2H, J = 7.4 Hz, 3-Hα), 4.58 (d, 1H, J = 6.3 Hz, 4-Hα), 5.24 (s, 2H, 2-Hα), 6.58 (d, 2H, J = 8.8 Hz, 2-H3), 6.90 (d, 2H, J = 8.5 Hz, 3-H2), 7.11 (d, 2H, J = 8.8 Hz, 2-H2), 7.15 (d, 2H, J = 8.5 Hz, 3-H3), 7.16 (d, 2H, J = 8.5 Hz, 1-H3), 7.36 (m, 1H, ArCH), 7.43-7.46 (m, 2H, ArCH), 7.63 (s, 1H, ArCH), 7.71 (d, 2H, J = 8.5 Hz, 1-H2), 7.73-7.78 (m, 2H, ArCH), 7.81 (m, 1H, ArCH); ESI-HRMS found m/z 739.3831 [M-H]^- C_{46}H_{51}N_4O_5 requires 739.3865.

N-{N-(Isobutyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl}-leucine 73

> 90% pure by NMR, isolated crude yield: 70 mg; δ_H (300 MHz, MeOD) 0.89 (d, 6H, J = 6.6 Hz, 2-Hγ), 0.95 (d, 6H, J = 6.9 Hz, 4-Hδ), 0.97 (m, 1H, 4-Hγ), 0.99 (d, 6H, J = 6.6 Hz, 1-Hγ), 1.72 (m, 2H, 4-Hβ), 1.79 (m, 1H, 2-Hβ), 1.92 (m, 1H, 1-Hβ), 2.96 (d, 2H, J = 6.9 Hz, 1-Hα), 3.73 (d, 2H, J = 7.4 Hz, 2-Hα), 4.59 (d, 1H, J = 6.9 Hz, 4-Hα), 5.35 (s, 2H, 3-Hα), 6.56 (d, 2H, J = 8.5 Hz, 2-H3), 7.02 (d, 2H, J = 8.5 Hz, 3-H2), 7.03 (d, 2H, J = 8.5 Hz, 2-H2), 7.09 (d, 2H, J = 8.8 Hz, 3-H3), 7.31 (d, 2H, J = 8.8 Hz, 1-H3), 7.43-7.51 (m, 3H, ArCH), 7.62 (d, 2H, J = 8.8 Hz, 1-H2), 7.69 (s, 1H, ArCH), 7.76 (m, 1H, ArCH), 7.83 (d, 2H, J = 8.8 Hz, ArCH); ESI-MS found m/z 741.4 [M+H]^+; ESI-HRMS found m/z 739.3875 [M-H]^- C_{46}H_{51}N_4O_5 requires 739.3865.

N-{N-(4-chlorobenzyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl}-isoleucine 74

> 90% pure by NMR, isolated crude yield: 64 mg; δ_H (500 MHz, DMSO-d_6) 0.84-0.92 (m, 12H, 2-Hγ, 3-Hδ, 3-Hε), 1.24-1.26 (m, 1H, 3-Hγ), 1.48-1.50 (m, 1H, 3-Hγ), 1.73-1.80 (m, 1H, 2-Hβ), 1.91-1.93 (m, 1H, 3-Hδ), 3.71 (d, 2H, J = 7.5 Hz, 2-Hα), 4.20 (d, 2H, J = 6 Hz, 1-Hα), 4.28 (t, 1H, J = 8 Hz, 3-Hα), 6.34 (d, 2H, J = 8.5 Hz, 1-H3), 6.34 (t, 1H, J = 6 Hz, 1-NH), 7.00 (d, 2H, J = 8.5 Hz, 1-H2), 7.16 (d, 2H, J = 8.5 Hz, 2-H3), 7.30-7.35 (m, 5H, ArCH), 7.77 (d, 2H, J = 8.5 Hz, 2-H2), 8.37 (d, 1H, J = 8 Hz, 3-NH); ESI-HRMS found m/z 572.229311 [M+Na]^+ C_{46}H_{36}ClNaN_4O_4 requires 572.228655.

N-{N-(4-chlorobenzyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl}-isoleucine 75

> 90% pure by NMR, isolated crude yield: 64 mg; δ_H (500 MHz, DMSO-d_6) 0.80-0.89 (m, 12H, 1-Hγ, 3-Hδ, 3-Hε), 1.21-1.24 (m, 1H, 3-Hγ), 1.42-1.47 (m, 1H, 3-Hγ), 1.74-1.77 (m, 1H, 1-Hβ), 1.85-1.87 (m, 1H, 3-Hβ), 2.78 (t, 2H, J = 6.6 Hz, 1-Hα), 4.22 (t, 1H, J = 8 Hz, 3-Hα), 5.28 (s, 2H, 2-Hα), 6.13 (t, 1H, J =
6 Hz, 1-NH), 6.37 (t, 1H, J = 8.5 Hz, 1-H3), 7.13-7.16 (m, 4H, 2-H3, 1-H2), 7.45-7.48 (m, 4H, ArCH), 7.68 (d, 2H, J = 8.6 Hz, 2-H2), 7.83-7.85 (m, 3H, ArCH), 8.30 (d, 1H, J = 8 Hz, 3-NH); ESI-HRMS found m/z 566.303511 [M+H]+ C35H40N3O4 requires 566.301333.

\[N-(N\text{-}(4\text{-chlorobenzyl}-4\text{-aminobenzoyl})-N\text{-isobutyl-4-aminobenzoyl})\text{-glycine 76} \]

> 90% pure by NMR, isolated crude yield: 2.5 mg; δ_{H} (500 MHz, DMSO-d_{6}) 0.93-0.94 (m, 6H, 2-Hy), 1.92-1.96 (m, 1H, 2-Hβ), 3.78-3.82 (m, 2H, 2-Hα), 4.06-4.17 (m, 2H, 3-Hα), 4.25 (s, 2H, 1-Hα), 6.34 (d, 2H, J = 8.5 Hz, 1-H3), 6.34 (d, 1H, J = 8.5 Hz, 1-NH), 6.79 (d, 1H, J = 8 Hz, 3-NH), 6.98-7.06 (m, 2H, 1-H2), 7.10-7.14 (m, 2H, 2-H3), 7.29-7.31 (m, 5H, ArCH), 7.68 (d, 2H, J = 8.5 Hz, 2-H2); ESI-HRMS found m/z 494.185673 [M+H]+ C27H29ClN3O4 requires 494.184111.

\[N-(N\text{-}(4\text{-chlorobenzyl}-4\text{-aminobenzoyl})-N\text{-isobutyl-4-aminobenzoyl})\text{-glycine 77} \]

> 90% pure by NMR, isolated crude yield: 5.8 mg; δ_{H} (500 MHz, DMSO-d_{6}) 0.94 (d, 6H, J = 6.5 Hz, 1-Hy), 1.82-1.85 (m, 1H, 1-Hβ), 2.90 (d, 2H, J = 7 Hz, 1-Hα), 4.17 (d, 1H, J = 5.5 Hz, 3-Hα), 5.30 (s, 2H, 2-Hα), 6.42 (d, 2H, J = 8.5 Hz, 1-H3), 6.66 (s, 1H, 3-NH), 7.03 (d, 2H, J = 8.5 Hz, 2-H3), 7.24 (d, 2H, J = 8.5 Hz, 1-H2), 7.42-7.47 (m, 3H, ArCH), 7.58 (d, 2H, J = 8.5 Hz, 2-H2), 7.70 (s, 1H, ArCH), 7.75-7.79 (m, 3H, ArCH); ESI-HRMS found m/z 510.240688 [M+H]+ C35H37N3O4 requires 510.238733.

\textbf{Modified Trimers}

\textbf{1-Biotin-3-azidopropylamine}

D-Biotin (1 g, 4.10 mmol) and 3-azidopropan-1-amine (1.11 g, 8.20 mmol) were dissolved in MeOH (50 ml) and DIPEA (2.85 ml, 16.39 mmol). HBTU (3.10 g, 8.20 mmol) was then added and the reaction mixture was stirred overnight at room temperature. The solvent was removed in vacuo and the residue taken up in EtOAc and filtered. The isolated precipitate was washed with EtOAc and DCM and recrystallised from MeOH affording the desired product as a white solid (248 mg, 0.81 mmol, 20 %). R_{f} 0.36 (10% methanol in dichloromethane); δ_{H} (500 MHz, MeOD) 1.42-1.46 (m, 2H, CH_{2}), 1.57-1.77 (m, 6H, CH_{2}), 2.21 (t, 2H, J = 7.25 Hz, CH_{2}CO), 2.71 (d, 1H, J = 12.5 Hz, CH_{2}S), 2.92 (dd, 1H, J = 12.5, 5 Hz, CH_{2}S), 3.18-3.22 (m, 1H, CHS), 3.25 (t, 2H, J = 6.5 Hz, CH_{2}N_{3}), 3.35 (t, 2H, J = 6.5 Hz, CH_{2}NH), 4.30-4.33 (m, 1H, CH_{2}CHNH), 4.49-4.52 (m, 1H, CHCHNH); δ_{C} (125 MHz, MeOD) 26.68, 29.26, 29.55, 31.74, 37.05, 37.51, 41.00, 48.20, 58.81, 61.38, 63.12, 165.79, 175.89; v_{max}/cm^{-1} (solid state) = 3300 (NH), 2939 (CH), 2097(N_{3}), 1646 (CO); ESI-HRMS found m/z 349.1415 [M+Na]+ C_{19}H_{22}N_{3}NaO_{3}S requires 349.1417.
Biotin-N-(N-(Benzy1-4-aminobenzoyl)-N-naphth-1-yl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine Biotin-8
> 90% pure by NMR, isolated crude yield: 48 mg; δH (500 MHz, DMSO-d6) 0.82 (d, 6H, J = 5.5 Hz, 3-Hδ), 1.24-1.31 (m, 2H, 2-3O-Hγ), 1.50-1.70 (m, 5H, 3-Hθ, 2-3O-Hζ, 2-3O-Hθ), 1.95-1.97 (m, 2H, 2-3O-Hγ), 2.08 (s, 2H, 2-3O-Hε), 2.54-2.57 (m, 1H, 2-3O-Hk), 2.73-2.81 (m, 1H, 2-3O-Hk), 3.03-3.09 (m, 4H, 2-3O-Hδ, 2-3O-Hτ), 3.65 (s, 2H, 3-Hα), 3.95 (d, 2H, J = 5 Hz, 4-Hα), 4.10-4.11 (m, 2H, 2-Hα), 4.19-4.29 (m, 4H, 1-Hα, 2-3O-Hλ, 2-3O-Hα), 4.38 (t, 2H, J = 6 Hz, 2-3O-Hβ), 4.86 (s, 1H, 1-NH), 6.28-6.38 (m, 4H, 2-H5, 2-H6, 1-H3), 6.88 (d, 2H, J = 7.5 Hz, 1-H2), 7.02-7.12 (m, 3H, ArCH), 7.21-7.33 (m, 6H, ArCH), 7.47 (s, 2H, ArCH), 7.72-7.75 (m, 3H, ArCH), 7.85-7.92 (m, 3H, ArCH), 8.13 (s, 1H, 2-3O-T), 8.85-8.86 (m, 1H, 4-NH); ESI-HRMS found m/z 1099.486619 [M+H]+ C63H76N10O8S requires 1099.485857.

Biotin-N-(N-(4-fluorobenzyl-4-aminobenzoyl)-N-naphth-2-yl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-glycine Biotin-31
> 90% pure by NMR, isolated crude yield: 33.5 mg; δH (500 MHz, DMSO-d6) 0.83 (d, 6H, J = 6.5 Hz, 3-Hδ), 1.29-1.32 (m, 2H, 2-3O-Hγ), 1.51-1.71 (m, 5H, 3-Hθ, 2-3O-Hζ, 2-3O-Hθ), 1.93 (t, 2H, J = 7 Hz, 2-3O-Hγ), 2.08 (t, 2H, J = 7 Hz, 2-3O-Hε), 2.56 (d, 1H, J = 12.5, 2-3O-H′), 2.78 (dd, 1H, J = 12.5, 5 Hz, 2-3O-Hk), 3.03-3.07 (m, 3H, 2-3O-Hδ, 2-3O-Hτ), 3.68 (d, 2H, J = 6 Hz, 3-Hα), 3.93 (d, 2H, J = 5.5 Hz, 4-Hα), 4.10-4.11 (m, 2H, 2-Hα), 4.23 (m, 3H, 2-3O-H′, 1-Hα), 4.28 (t, 1H, J = 7 Hz, 2-3O-Hλ), 4.34 (t, 2H, J = 7 Hz, 2-3O-Hβ), 4.87 (s, 1H, 1-NH), 6.28 (d, 2H, J = 8.5 Hz, 1-H3), 6.56 (d, 1H, J = 8 Hz, 2-H6), 6.65 (d, 1H, J = 8 Hz, 2-H5), 6.91 (d, 2H, J = 8.5 Hz, 1-H2), 7.10 (t, 2H, J = 8 Hz, 3-H2), 7.17 (d, 2H, J = 8 Hz, ArCH), 7.34 (dd, 2H, J = 8, 6 Hz, 3-H3), 7.42-7.44 (m, 2H, ArCH), 7.62 (s, 1H, ArCH), 7.68-7.81 (m, 5H, ArCH, NH biotin), 7.89-7.91 (m, 2H, ArCH), 7.96 (s, 1H, 2-3O-T), 8.85 (s, 1H, 4-NH); ESI-HRMS found m/z 559.243469 [2M+H]+ 2C61H75FN10O8S requires 559.241856.

Biotin-N-(N-(N-(Cyclohexylmethyl-4-aminobenzoyl)-N-naphth-2-yl-4-aminobenzoyl)-N-phenethyl-4-aminobenzoyl)-glycine Biotin-48
> 90% pure by NMR, isolated crude yield: 43.9 mg; δH (500 MHz, DMSO-d6) 0.89-0.92 (m, 2H, 1-Hε), 1.14-1.31 (m, 6H, 1-Hδ, 1-Hδ′, 2-3O-Hη), 1.51-1.75 (m, 9H, 1-Hγ, 1-Hγ′, 1-Hθ, 2-3O-Hζ, 2-3O-Hθ), 2.04 (t, 2H, J = 6.5 Hz, 2-3O-Hγ), 2.08 (t, 2H, J = 7 Hz, 2-3O-Hε), 2.55-2.89 (m, 4H, 3-Hθ, 1-Hα, 2-3O-Hk), 3.03-3.07 (m, 3H, 2-3O-Hδ, 2-3O-Hτ), 3.95-4.34 (m, 12H, 2-3O-Hα, 3-Hα, 2-Hα, 4-Hα, 2-3O-Hβ, 2-3O-Hλ), 4.90 (s, 1H, 1-NH), 6.23 (d, 2H, J = 8 Hz, 1-H3), 6.54 (d, 1H, J = 7 Hz, 2-H5), 6.67 (d, 1H, J = 7 Hz, 2-H6), 6.92 (d, 2H, J = 8 Hz, 1-H3), 7.10-7.26 (m, 8H, 3-H3, 3-H2, 3-HAr, CH naph), 7.44 (s, 2H NH biotin), 7.63-7.81 (m, 6H, ArCH), 7.89-7.93 (m, 1H, 2-3O-T), 8.87 (s, 2H, 4-NH); ESI-HRMS found m/z 1153.533652 [M+H]+ C60H73N10O8S requires 1153.532807.
Biotin-N-(N-((isobutyl-4-aminobenzoyl)-N-naphth-2-yl-4-aminobenzoyl))-N-2-methylbutyl-4-aminobenzoyl)-isoleucine Biotin-64

> 90% pure by NMR, isolated crude yield: 26.3 mg; δii (500 MHz, DMSO-d$_6$) 0.76-0.92 (m, 18H, 1-Hγ, 3-Hδ, 3-He, 4-Hδ, 4-He), 1.20-1.34 (m, 6H, 2-3-O-Hη, 3-Hγ, 4-Hγ), 1.47-1.64 (m, 5H, 3-Hθ, 2-3-O-Hζ, 2-3-O-Hθ), 1.75-1.78 (m, 2H, 1-Hθ), 1.90-1.95 (m, 3H, 2-3-O-Hγ, 4-Hβ), 2.08 (t, 2H, J = 7 Hz, 2-3-O-He), 2.56 (d, 1H, J = 12.5 Hz, 2-3-O-Hκ'), 2.77-2.81 (m, 3H, 1-Hα, 2-3-O-Hk), 3.06-3.09 (m, 3H, 2-3-O-Hδ, 2-3-O-H), 3.72 (d, 2H, 4-Hα), 4.09-4.12 (m, 1H, 2-3-O-Hλ'), 4.28 (t, 1H, J = 7 Hz, 2-3-O-Hλ), 4.33-4.38 (m, 8H, 2-3-O-Hα, 2-3-O-Hθ, 2-Hα, 3-Hα), 4.91 (s, 2H, 1-NH), 6.25 (d, 2H, J = 8 Hz, 1-H3), 6.57 (d, 1H, J = 7.5 Hz, 2-H6), 6.65 (d, 1H, J = 7.5 Hz, 2-H5), 6.92 (d, 2H, J = 8 Hz, 1-H2), 7.11-7.19 (m, 4H, ArCH), 7.42-7.45 (m, 3H, ArCH), 7.64-7.80 (m, 8H, ArCH, NH biotin, NH), 7.89-7.91 (m, 2H, 2-3-O-T, ArCH), 8.46 (d, 1H, J = 8 Hz, 4-NH); ESI-HRMS found m/z 1135.580014 [M+H]$^+$ C$_{60}$H$_{74}$N$_{10}$O$_8$S requires 1135.579757.

Biotin-N-(N-((isobutyl-4-aminobenzoyl)-N-4-fluorobenzyl-4-aminobenzoyl))-N-isobutyl-4-aminobenzoyl)-isoleucine Biotin-67

> 90% pure by NMR, isolated crude yield: 25.4 mg; δii (500 MHz, DMSO-d$_6$) 0.84-0.92 (m, 18H, 1-Hγ, 3-Hδ, 4-He), 1.24 (s, 4H, 4-Hγ, 2-3-O-Hη), 1.49-1.77 (m, 7H, 4-Hθ, 3-Hθ, 1-Hθ, 2-3-O-Hζ, 2-3-O-Hθ), 1.95-1.96 (m, 2H, 2-3-O-Hγ), 2.08 (s, 2H, 2-3-O-He), 2.56 (d, 1H, J = 12, 2-3-O-Hκ'), 2.78 (d, 2H, J = 5.5 Hz, 1-Hα, 2-3-O-Hk), 3.08 (s, 3H, 2-3-O-Hδ, 2-3-O-Hλ), 3.69 (s, 2H, 2-Hα), 4.12 (s, 2H, 3-Hα), 4.28-4.39 (m, 4H, 4-Hα, 2-3-O-Hθ, 2-3-O-Hδ), 4.93 (s, 3H, 1-NH, 2-3-O-Hα), 6.26 (d, 2H, J = 7.5 Hz, 1-H3), 6.59 (s, 2H, 2-H5, 2-H6), 6.89 (d, 2H, J = 7.5 Hz, 1-H2), 7.05 (d, 3H, J = 7.5 Hz, ArCH), 7.12 (s, 1H, 2-H2), 7.20 (d, 4H, J = 7 Hz, ArCH), 7.78-7.79 (m, 2H, ArCH), 7.80-8.04 (m, 2H, 2-3-O-T, 2-3-O-NH), 8.44-8.46 (m, 1H, 4-NH); ESI-HRMS found m/z 1105.509484 [M+H]$^+$ C$_{58}$H$_{72}$CIN$_{10}$O$_8$S requires 1105.510332.

Fluorescein-N-(N-(4-fluorobenzyl-4-aminobenzoyl)-N-naphth-2-yl-4-aminobenzoyl))-N-isobutyl-4-aminobenzoyl)-glycine FITC-31

> 90% pure by NMR, isolated crude yield: 59 mg; δii (500 MHz, DMSO-d$_6$) 0.82-0.85 (m, 6H, 3-Hγ), 1.63-1.70 (m, 2H, 3-Hθ), 2.16-2.17 (m, 2H, 2-3-O-Hγ), 3.57-3.68 (m, 4H, 3-Hα, 2-3-O-Hδ), 3.93 (d, 2H, J = 5.5 Hz, 4-Hα), 4.23 (s, 2H, 1- Hα), 4.44 (s, 2H, 2-3-O-Hθ), 4.88 (s, 1H, 1-NH), 6.29 (d, 2H, J = 8 Hz, 1-H3), 6.55-6.68 (m, 8H, 2-H6, 2-H5, 2-3-O-ArH), 6.92 (d, 2H, J = 8 Hz, 1-H2), 7.08-7.10 (m, 3H, 2-3-O-ArH, 3-H2), 7.18 (d, 2H, J = 7.5 Hz, 3-H3), 7.32-7.34 (m, 2H, ArCH), 7.42 (d, 1H, J = 8.5 Hz, ArCH), 7.63-7.79 (m, 6H, ArCH), 7.93-7.96 (m, 2H, 2-3-O-T, 2-3-O-ArH), 8.84-8.86 (s, 1H, 4-NH), 10.07-10.11 (br s, 2H, 2-3-O-NH).
Fluorescein-N-(N-(Cyclohexymethyl-4-aminobenzoyl)-N-naphth-2-yl-4-aminobenzoyl)-N-phenethyl-4-aminobenzoyl)-glycine FITC-48

> 90% pure by NMR, isolated crude yield: 44.7 mg; δH (500 MHz, DMSO-d6) 0.83-0.86 (m, 2H, 1-He), 1.12-1.22 (m, 4H, 1-H6, 1-H6'), 1.45-1.75 (m, 5H, 1-Hγ, 1-Hγ', 1-Hθ), 2.13-2.16 (m, 2H, 2-3O-Hγ), 2.81 (s, 4H, 3-Hθ, 1-Hα), 3.52-3.57 (m, 2H, 2-3O-Hδ), 3.94-3.98 (m, 8H, 2-3O-Hα, 2-Hα, 3-Hα, 4-Hα), 4.40-4.44 (m, 2H, 2-3O-Hθ), 4.88 (s, 1H, 1-NH), 6.23 (d, 2H, J = 8 Hz, 1-H3), 6.52-6.68 (m, 8H, 2-H6, 2-H5, 2-3O-ArH), 6.91 (d, 2H, J = 8 Hz, 1-H2), 6.97-7.26 (m, 12H, 3-H3, 3-H2, 3-HAr, CH naph, 2-3O-ArH), 7.41-7.45 (m, 2H, ArCH), 7.63-7.80 (m, 7H, ArCH), 7.96 (s, 1H, 2-3O-ArH), 8.23 (s, 1H, 2-3O-T, 2-3O-ArH), 8.85 (d, 1H, J = 5.5 Hz, 4-NH), 10.02-10.05 (br s, 2H, 2-3O-NH).

Fluorescein-N-(N-(Isobutyl-4-aminobenzoyl)-N-naphth-2-yl-4-aminobenzoyl)-N-2-methylbutyl-4-aminobenzoyl)-isoleucine FITC-64

> 90% pure by NMR, isolated crude yield: 51.6 mg; δH (500 MHz, DMSO-d6) 0.76-0.91 (m, 18H, 1-Hγ, 3-Hδ, 3-Hε, 4-Hδ, 4-Hε), 1.23-1.37 (m, 4H, 3-Hγ, 4-Hγ), 1.43-1.59 (m, 1H, 1-Hθ), 1.75-1.95 (m, 3H, 2-3O-Hγ, 3-Hθ), 2.14-2.16 (m, 1H, 4-Hθ), 2.78 (d, 2H, J = 6.5 Hz, 3-Hε), 3.56-3.57 (m, 2H, 2-3O-Hδ), 3.71 (s, 4H, 1-Hα, 2-Hα), 4.36-4.45 (m, 4H, 2-3O-Hδ, 4-Hα), 4.90 (s, 1H, 1-NH), 6.25 (d, 2H, J = 8 Hz, 1-H3), 6.54-6.67 (m, 8H, 2-H6, 2-H5, 2-3O-ArCH), 6.92 (d, 2H, J = 8 Hz, 1-H2), 7.10-7.19 (m, 5H, ArCH), 7.41-7.42 (m, 2H, ArCH), 7.67-7.93 (m, 7H, ArCH), 8.23 (s, 1H, 2-3O-T), 8.46 (d, 1H, J = 8 Hz, 4-NH), 10.01-10.04 (br s, 2H, 2-3O-NH).

Fluorescein-N-(N-(Isobutyl-4-aminobenzoyl)-N-4-fluorobenzyl-4-aminobenzoyl)-N-isobutyl-4-aminobenzoyl)-isoleucine FITC-67

> 90% pure by NMR, isolated crude yield: 51 mg; δH (500 MHz, DMSO-d6) 0.83-0.91 (m, 18H, 1-Hγ, 3-Hγ, 4-Hδ, 4-Hε), 1.23-1.26 (m, 2H, 4-Hγ), 1.68-1.76 (m, 2H, 1-Hθ, 4-Hθ), 1.92 (s, 1H, 4-Hθ), 2.16-2.19 (m, 2H, 2-3O-Hγ), 2.77 (d, 2H, J = 6.5 Hz, 1-Hα), 3.66-3.68 (m, 6H, 2-Hα, 3-Hα, 2-3O-Hδ), 4.33 (t, 2H, J = 8 Hz, 4-Hα), 4.43-4.50 (m, 2H, 2-3O-Hθ), 4.92 (s, 3H, 1-NH, 2-3O-Hα), 6.23 (d, 2H, J = 8.5 Hz, 1-H3), 6.52-6.66 (m, 8H, 2-H5, 2-H6, ArCH), 6.88 (d, 2H, J = 8.5 Hz, 1-H2), 7.04-7.19 (m, 9H, ArCH), 7.74-7.78 (m, 3H, ArCH), 8.22 (s, 1H, 2-3O-T), 8.42-8.43 (m, 1H, 4-NH).
NMR Spectra

1H NMR of Monomer b in DMSO-d$_6$

2H NMR of Monomer d in DMSO-d$_6$
1H NMR of Monomer i in DMSO-d$_6$

1H NMR of Monomer p in CDCl$_3$
1H NMR of Monomer v in CDCl$_3$

1H NMR of Monomer w in CDCl$_3$
1H NMR of Compound 1 in MeOD

1H NMR of Compound 2 in MeOD
1H NMR of Compound 5 in MeOD

1H NMR of Compound 7 in MeOD
1H NMR of Compound 8 in MeOD

1H NMR of Compound 9 in MeOD
1H NMR of Compound 12 in MeOD

1H NMR of Compound 13 in MeOD
1H NMR of Compound 14 in MeOD

1H NMR of Compound 15 in MeOD
1H NMR of Compound 16 in MeOD

1H NMR of Compound 18 in MeOD
1H NMR of Compound 20 in MeOD

1H NMR of Compound 21 in MeOD
1H NMR of Compound 22 in CDCl$_3$

1H NMR of Compound 23 in MeOD
1H NMR of Compound 24 in MeOD

1H NMR of Compound 27 in CDCl$_3$
1H NMR of Compound 28 in CDCl$_3$

1H NMR of Compound 29 in MeOD
1H NMR of Compound 30 in MeOD

1H NMR of Compound 31 in MeOD
1H NMR of Compound 32 in DMSO-d_6

1H NMR of Compound 33 in MeOD
1H NMR of Compound 34 in MeOD

1H NMR of Compound 35 in MeOD
1H NMR of Compound 36 in MeOD

1H NMR of Compound 37 in MeOD
1H NMR of Compound 39 in MeOD

1H NMR of Compound 40 in MeOD
1H NMR of Compound 41 in MeOD

1H NMR of Compound 42 in MeOD
1H NMR of Compound 43 in MeOD

1H NMR of Compound 45 in MeOD
1H NMR of Compound 48 in MeOD

1H NMR of Compound 49 in MeOD
1H NMR of Compound 50 in MeOD

1H NMR of Compound 51 in MeOD
\(^1\)H NMR of Compound 52 in MeOD

\(^1\)H NMR of Compound 53 in MeOD
1H NMR of Compound 54 in MeOD

1H NMR of Compound 55 in MeOD
1H NMR of Compound 58 in CDCl$_3$

1H NMR of Compound 59 in CDCl$_3$
1H NMR of Compound 60 in MeOD

1H NMR of Compound 61 in MeOD
1H NMR of Compound 62 in MeOD

1H NMR of Compound 63 in MeOD
1H NMR of Compound 66 in MeOD

1H NMR of Compound 67 in MeOD
1H NMR of Compound 70 in MeOD

1H NMR of Compound 71 in MeOD
1H NMR of Compound 73 in MeOD

1H NMR of Compound 74 in DMSO-d_6
1H NMR of Compound 75 in DMSO-d_6

1H NMR of Compound 76 in DMSO-d_6
1H NMR of Compound 77 in DMSO-d_6

Modified Trimers

1H NMR of 1-Biotin-3-azidopropylamine in MeOD
1H NMR of Biotin-8 in DMSO-d_6

1H NMR of Biotin-31 in DMSO-d_6
1H NMR of Biotin-48 in DMSO-d$_6$

1H NMR of Biotin-64 in DMSO-d$_6$
1H NMR of Biotin-67 in DMSO-d$_6$

1H NMR of FITC-31 in DMSO-d$_6$
1H NMR of FITC-48 in DMSO-d_6

1H NMR of FITC-64 in DMSO-d_6
1H NMR of FITC-67 in DMSO-d_6
LC-MS

LC-MS of Monomer b

LC-MS of Monomer d

LC-MS of Monomer i

LC-MS of Monomer p

LS-MS of Monomer v
LC-MS of Compound 35

KL4-370 cru_50607_1-E_8_D1_54376.D: UV Chromatogram, 190-650 nm

LC-MS of Compound 36

KL4-371 cru_51229_1-F_7_D1_55007.D: UV Chromatogram, 190-650 nm

LC-MS of Compound 37

KL4-372 cru_51230_1-F_8_D1_55008.D: UV Chromatogram, 190-650 nm

LC-MS of Compound 39

KL37S-6_62270_1-B_4_D1_66021.D: UV Chromatogram, 190-650 nm

LC-MS of Compound 40

KL45_101530_1-D_2_01_3850.D: UV Chromatogram, 190-650 nm
LC-MS of Compound 59

KL4-341 cru_47176_1-A.6_D1_50659.D: UV Chromatogram, 190-650 nm

LC-MS of Compound 60

KL4-342 crude_47212_1-B.7_D1_50659.D: UV Chromatogram, 190-650 nm

LC-MS of Compound 61

KL4-386 cru_51283_1-F.7_D1_55059.D: UV Chromatogram, 190-650 nm

LC-MS of Compound 62

KL5-398 cru_52612_1-A.2_D1_56440.D: UV Chromatogram, 190-650 nm

LC-MS of Compound 63

KL-B6_101975_1-A.9_01_4209.D: UV Chromatogram, 190-650 nm
LC-MS of Compound 75

LC-MS of Compound 76

LC-MS of Compound 77

Modified Trimers

LC-MS of 1-Biotin-3-azidopropylamine

LC-MS of Biotin-8
LS-MS of Biotin-31

LC-MS of Biotin-48

LC-MS of Biotin-64

LC-MS of Biotin-67

LC-MS of FITC-31
LC-MS of FITC-48

AB317_99602_1-C.5_01_2277.D: UV Chromatogram, 190-650 nm

LC-MS of FITC-64

AB275_88179_1-A.5_01_90569.D: UV Chromatogram, 190-650 nm

LC-MS of FITC-67

AB276_85191_1-D.5_01_87653.D: UV Chromatogram, 190-650 nm

References

[1] K. Long, T. A. Edwards, A. J. Wilson, *Bioorg. Med. Chem.* 2013, 21, 4034.
[2] V. Azzarito, P. Prabhakaran, A. I. Bartlett, N. S. Murphy, M. J. Hardie, C. A. Kilner, T. A. Edwards, S. L. Warriner, A. J. Wilson, *Org. Biomol. Chem.* 2012, 10, 6469.
[3] D. J. Yeo, S. L. Warriner, A. J. Wilson, *Chem. Commun.* 2013, 49, 9131.
[4] A. Barnard, K. Long, D. J. Yeo, J. M. Miles, V. Azzarito, G. M. Burslem, P. Prabhakaran, T. A. Edwards, A. J. Wilson, *Org. Biomol. Chem.* 2014.
[5] J. P. Plante, T. Burnley, B. Malkova, M. E. Webb, S. L. Warriner, T. A. Edwards, A. J. Wilson, *Chem. Commun.* 2009, 5091.
[6] F. Campbell, J. P. Plante, T. A. Edwards, S. L. Warriner, A. J. Wilson, *Org. Biomol. Chem.* 2010, 8, 2344.
[7] M.-A. Bray, A. Carpenter, in *Assay Guidance Manual*, 2012.
[8] J.-H. Zhang, T. D. Y. Chung, K. R. Oldenburg, *J. Biomol. Screen.* 1999, 4, 67.