A multidimensional version of Levin’s Secular Constant Theorem and its applications.

S.Yu. Favorov, N. Girya

Abstract

We study holomorphic almost periodic functions on a tube domain with the spectrum in a cone. We extend to this case Levin’s theorem on a connection between the Jessen function, secular constant, and the Phragmen-Lindelöf indicator. Then we obtain a multidimensional version of Picard’s theorem on exceptional values for our class.

An almost periodic function with bounded from below spectrum has some specific properties. Namely, it extends to the upper half-plane as a holomorphic almost periodic function $f$ of exponential type (H.Bohr [2]), then $\log |f|$ and the mean value of $\log |f|$ over a horizontal line (so-called Jessen’s function) are of the same growth along the imaginary positive semi-axis (B.Jessen, H.Tornehave [7] and B.Ja.Levin [9]). The last result (together with the discovered by Ph.Hartman [6], and B.Jessen, H.Tornehave [7] connection between Jessen’s function, mean motions of $\arg f(z)$, and distribution of zeros for holomorphic almost periodic functions on a strip) shows the regularity of functions from that important class.

In the end of the last century, L.I.Ronkin [11], [12], [14] created the theory of holomorphic almost periodic functions and mappings defined on tube domains of the multidimensional complex space. Introduced by him Jessen’s function of several variables plays the main role in value distribution theory for almost periodic holomorphic mappings.

Here we continue the line of investigation in [4] and [5] of the class of almost periodic functions on a tube domain with the spectrum in a cone.
Namely, we find a connection between asymptotic behavior of Jessen’s function and the polar indicator. Then we introduce a multidimensional analogue of the secular constant and study its asymptotic behavior. Also, we obtain a multidimensional version of Picard’s Theorem on exceptional values for our class.

Let us give a more detailed description of the subject.

Suppose \( f \) is a \( 2\pi \)-periodic function with the convergent Fourier series
\[
f(x) = \sum_{n \geq n_0} a_n e^{inx}, \ n_0 \leq 0, a_{n_0} \neq 0.
\]
Then \( f(z) = \sum_{n \geq n_0} a_n e^{inz}, \ z = x + iy, \)
is a natural extension of \( f(x) \) to the upper half-plane \( \mathbb{C}^+ \). Clearly, \( f(z) \) is
a holomorphic function of exponential type \( |n_0| \) without zeros in some half-plane \( y > y_0 \) and
\[
\lim_{y \to +\infty} y^{-1} \frac{1}{2\pi} \int_{-\pi}^{\pi} \log |f(x + iy)| \, dx = \lim_{y \to +\infty} y^{-1} \log |f(iy)| = -n_0.
\]

In [2] and [7], these properties were generalized to almost periodic functions \( f \) with bounded from below spectrum under the condition \( \Lambda^0 = \inf \text{sp} \ f \in \text{sp}f \). One should only replace the mean value over the period by Jessen’s function
\[
J_f(y) = \lim_{S \to \infty} \frac{1}{2S} \int_{-S}^{S} \log |f(x + iy)| \, dx;
\] (1)
the number \( n_0 \) by \( \Lambda^0 \), and make use of the Phragmen-Lindelöf Principle (see a footnote in the proof of Theorem 1).

Note that the limit in (1) exists for every holomorphic almost periodic function on a strip \( \{z = x + iy : a < y < b\} \) and the function \( J_f(y) \) is convex on \( (a, b) \). Then for all \( y \in (a, b) \), maybe with except of some countable set \( E_f \), we have
\[
J'_f(y) = -c_f(y), \tag{2}
\]
where
\[
c_f(y) = \lim_{\gamma - \beta \to \infty} \frac{\arg f(\gamma + iy) - \arg f(\beta + iy)}{\gamma - \beta}
\]
is the\textit{ mean motion}, or \textit{secular number}, of the function \( f \); here \( \arg f(x + iy) \)
is a continuous branch of the argument of \( f \) on the line \( y = \text{const} \). By

2
the way, equality (2) and the Argument principle imply that the number
$N(-S, S, y_1, y_2)$ of zeros of the function $f$ in the rectangle $\{ |x| < S, y_1 < y < y_2 \}$ has a density

$$\lim_{S \to \infty} (2S)^{-1} N(-S, S, y_1, y_2) = J'_f(y_2) - J'_f(y_1)$$  \hspace{1cm} (3)

for all $y_1, y_2 \not\in \mathcal{E}_f$. It can also be proved that $f$ has no zeros on a substrip
$\{ \alpha < y < \beta \}$ if and only if $J_f(y)$ is a linear function on the interval $(\alpha, \beta)$. In this case,

$$f(z) = e^{ic_fz + g(z)},$$

where $g(z)$ is almost periodic on the strip $\{ z = x + iy : x \in \mathbb{R}, \alpha < y < \beta \}$.

Thus, an almost periodic function $f$ with the property $-\infty < \Lambda^0 = \inf \mathcal{sp} f \in \mathcal{sp} f$ is extended to $\mathbb{C}^+$ as a holomorphic almost periodic function. Then we get

$$-\Lambda^0 = \lim_{y \to +\infty} \frac{\log |f(iy)|}{y} = \lim_{y \to +\infty} \frac{J_f(y)}{y} = \lim_{y \to +\infty} J'_f(y) = -\lim_{y \to +\infty} c_f(y)$$  \hspace{1cm} (4)

(see, for example, [7], [10]).

In the case $\Lambda^0 \not\in \mathcal{sp} f$, the function is also extended to $\mathbb{C}^+$ as a holomorphic almost periodic function; the equalities (4) are also valid, but the proof of the second equality is complicated, and this is the contents of Levin’s Secular Constant Theorem [9], [10].

Note that there exists a natural connection between the distribution of zeros of an almost periodic holomorphic function on the upper half-plane and the configuration of its spectrum:

**Theorem B** ([11]). Suppose that the spectrum $\mathcal{sp} f$ of an almost periodic function $f$ on $\mathbb{C}^+$ is bounded from below. Then

1. if $\Lambda^0 = \inf \mathcal{sp} f \geq 0$, then $f(z)$ tends to a finite limit as $y \to \infty$ on $\mathbb{C}^+$ uniformly in $x \in \mathbb{R}$,

2. if $\Lambda^0 = \inf \mathcal{sp} f < 0$ and $\Lambda^0 \in \mathcal{sp} f$, then $f(z) \to \infty$ as $y \to \infty$ on $\mathbb{C}^+$ uniformly in $x \in \mathbb{R}$.

$^1$Zeros should be counted with multiplicities
3. If \( \Lambda^0 = \inf sp f < 0 \) and \( \Lambda^0 \not\in sp f \), then the function \( f(z) \) takes every complex value on the half-plane \( y > q \geq 0 \) for each \( q < \infty \).

To discuss the multidimensional case, we need the following definitions.

Let \( z = (z_1, \ldots, z_n) \in \mathbb{C}^p \), \( z = x + iy \in \mathbb{C}^p \), \( x \in \mathbb{R}^p \), \( y \in \mathbb{R}^p \). By \( \langle x, y \rangle \) or \( \langle z, w \rangle \) denote the scalar product (or the Hermitian scalar product for \( z, w \in \mathbb{C}^p \)). By \( |.| \) denote the Euclidean norm on \( \mathbb{R}^p \) or \( \mathbb{C}^p \). Also, for \( x = (x_1, x_2, \ldots, x_p) \) put \( 'x = (x_2, \ldots, x_p) \). Further, by \( T_K \) denote a tube set

\[
T_K = \{ z = x + iy \in \mathbb{C}^p : x \in \mathbb{R}^p, y \in K \},
\]

where \( K \subset \mathbb{R}^p \) is the base of the tube set.

A vector \( \tau \in \mathbb{R}^p \) is called an \( \varepsilon \)-almost period of a function \( f(z) \) on \( T_K \) if

\[
\sup_{z \in T_K} |f(z + \tau) - f(z)| < \varepsilon.
\]

The function \( f \) is called almost periodic on \( T_K \) if for every \( \varepsilon > 0 \) there exists \( L = L(\varepsilon) \) such that every \( p \)-dimensional cube in \( \mathbb{R}^p \) with the side of length \( L \) contains at least one \( \varepsilon \)-almost period of \( f \). In particular, when \( K = \{0\} \), we get the definition of an almost periodic function on \( \mathbb{R}^p \).

A function \( f(z) \), \( z \in T_\Omega \), where \( \Omega \) is a domain in \( \mathbb{R}^p \), is called almost periodic if its restriction to \( T_K \) is an almost periodic function for every compact set \( K \subset \Omega \).

The spectrum \( sp f \) of an almost periodic function \( f(z) \) on \( T_K \) is the set of vectors \( \lambda \in \mathbb{R}^p \) such that the Fourier coefficient

\[
a_\lambda(y, f) = \lim_{S \to \infty} \frac{1}{(2S)^p} \int_{|x| < S, j = 1..p} f(x + iy)e^{-i\langle x, \lambda \rangle} dm_p(x) \tag{5}
\]

does not vanish on \( K \); here \( m_p \) is the Lebesgue measure on \( \mathbb{R}^p \). The spectrum of every almost periodic function \( f \) is at most countable, therefore we have

\[
f(x + iy) \sim \sum a_n(y)e^{i\langle x, \lambda^n \rangle},
\]

where \( \{\lambda^n\}_{n \in \mathbb{N}} = sp f \) and \( a_n(y) = a_{\lambda^n}(y, f) \). Note that for any given countable set \( \{\lambda^n\} \) the function \( \sum_{n \in \mathbb{N}} n^{-2}e^{i\langle x, \lambda^n \rangle} \) is almost periodic on \( \mathbb{R}^p \) with the spectrum \( \{\lambda^n\} \).
In [11] L.I. Ronkin introduced the notion of Jessen's function of an almost periodic holomorphic function \( f \) on \( T_\Omega \) by the formula

\[
J_f(y) = \lim_{S \to \infty} \frac{1}{(2S)^p} \int_{[-S,S]^p} \log |f(x + iy)| \text{d}m_p(t).
\]

Using the methods of the theory of distributions and special properties of zero sets for holomorphic functions, L.I.Ronkin checked that the limit exists and defines a convex function in \( y \in \Omega \). He also established the multidimensional analogue of equality (3)

\[
\lim_{S \to \infty} m_{2p-2}\{z = x + iy : x \in [-S, S]^p, y \in \omega, f(z) = 0\} = \kappa_p \mu_J(\omega),
\]

where \( \mu_J \) is the Riesz measure of \( J(y), \omega \subset \overline{\omega} \subset \Omega, \mu_J(\partial \omega) = 0 \), and the area of the zero sets is taken counting the multiplicity.

Also, in [13] L.I.Ronkin proved that the products \( b_n(y) = a_n(y)e^{\langle y, \lambda_n \rangle} \) do not depend on \( y \) for every holomorphic almost periodic function \( f(z) \) on \( T_\Omega \); in particular, the coefficient \( b_0 \) corresponding to the exponent \( \lambda = 0 \) does not depend on \( y \). In the case, the Fourier series turns into the Dirichlet series

\[
f(z) \sim \sum_{\lambda \in \mathbb{R}^p} b_n e^{i\langle z, \lambda_n \rangle}, \quad b_n \in \mathbb{C}.
\]

In [12] L.I.Ronkin obtained the following results.

**Theorem R.** Let \( f \) be a holomorphic almost periodic function on \( T_\Omega \). Then the function \( J_f(y) \) is linear on the domain \( \Omega' \subset \Omega \) if and only if the function \( f \) has no zeros in \( T_{\Omega'} \). Moreover, in this case

\[
f(z) = \exp\{i\langle c_f, z \rangle + g(z)\}, \quad z \in T_{\Omega'},
\]

where \( c_f \in \mathbb{R}^p \) and \( g(z) \) is an almost periodic function on \( T_{\Omega'} \).

In conditions of Theorem R, we have

\[
J_f(y) = -\langle c_f, y \rangle + \text{Re} b_0, \quad y \in \Omega',
\]

where \( b_0 \) is the corresponding coefficient of the Dirichlet-series expansion of the function \( g \). Therefore, the following definition seems to be natural:
**Definition.** The function $-\nabla J_f(y)$, $y \in \Omega$, is the secular vector of the almost periodic holomorphic function $f$ on $T_{\Omega}$.

In order to formulate our results, we need some definitions and notations.

A cone $\Gamma \subset \mathbb{R}^p$ is the set with the property $y \in \Gamma, t > 0 \Rightarrow ty \in \Gamma$. We will consider convex cones with non-empty interior and such that $\widehat{\Gamma} \cap (-\widehat{\Gamma}) = \{0\}$. By $\widehat{\Gamma}$ denote the conjugate cone to $\Gamma$, i.e., $\widehat{\Gamma} = \{x \in \mathbb{R}^p : \langle x, y \rangle \geq 0 \ \forall y \in \Gamma\}$; note that $\widehat{\widehat{\Gamma}} = \Gamma$. As usual, $\text{Int} A$ is the interior of the set $A$, and $H_E(x) = \sup_{\lambda \in E} \langle x, \lambda \rangle$ is the support function of the set $E \subset \mathbb{R}^p$.

Let $f$ be a holomorphic almost periodic function on a tube $T_\Gamma$ with an open cone $\Gamma$ in the base. By definition, put

$$h_f(y) = \sup_{x \in \mathbb{R}^p} \lim_{r \to \infty} \frac{\ln |f(x + i r y)|}{r}, \ y \in \Gamma.$$ 

The function $h_f$ is called the $P$-indicator of $f$ (see [14], p.245).

**Theorem A.** ([5]) Let $\Gamma$ be a closed cone in $\mathbb{R}^p$, and $f(x)$ be an almost periodic function on $\mathbb{R}^p$. Then $f$ is extended holomorphically to $T_{\text{Int} \widehat{\Gamma}}$ with the estimates

$$\exists b < \infty \ \forall \Gamma' = \overline{\Gamma'} \subset \text{Int} \widehat{\Gamma} \cup \{0\} \ \exists B(\Gamma') \ \forall z \in T_{\Gamma'} \ |f(z)| \leq B(\Gamma') e^{b|y|},$$

if and only if $\text{sp} f \subset \Lambda + \Gamma$ for some $\Lambda \in \mathbb{R}^p$. If this is the case, then $f(z)$ is almost periodic on $T_{\text{Int} \widehat{\Gamma}}$ and for all $y \in \text{Int} \widehat{\Gamma}$

$$h_f(y) = H_{\text{sp} f}(-y).$$

For almost periodic functions with bounded spectrum, equality (9) was proved in [4].

The following theorem is the main result of our paper.

**Theorem 1.** Let $\Gamma$ be a closed cone in $\mathbb{R}^p$, and $f(x)$ be an almost periodic function on $\mathbb{R}^p$ such that $f$ is extended holomorphically to $T_{\text{Int} \widehat{\Gamma}}$ with estimates (8). Then for all $y \in \text{Int} \widehat{\Gamma}$

$$\lim_{R \to \infty} \frac{J_f(Ry)}{R} = h_f(y).$$
Furthermore, the secular vector $-\nabla J_f(Ry)$ tends to $\nabla H_{spf}(-y)$ as $R \to \infty$ in the sense of distributions.

**Remark.** Since $J_f(y)$ is a convex function, we see that the secular vector is a locally integrable function on $\text{Int} \hat{\Gamma}$.

**Proof.** From the beginning assume that $y^0 = (1, 0, 0, \ldots) \in \text{Int} \hat{\Gamma}$, and we will prove (11) for $y = y^0$.

Put $F(z) = f(z)e^{i\langle z, h_f(y^0)y^0 \rangle} (\sup_{x \in \mathbb{R}^p} |f(x)|)^{-1}$, $u(z) = \log |F(z)|$. Note that $F(z)$ is an almost periodic holomorphic function on $T_{\text{Int} \hat{\Gamma}}$ and $|F(x)| \leq 1$ on $\mathbb{R}^p$. Applying the Phragmen-Lindelöf Principle on the complex one-dimensional plane $\{x + wy : w \in \mathbb{C}^+\}$, we get

$$u(x + ity) \leq h_F(y)t, \quad \forall \ z = x + iy \in T_{\text{Int} \hat{\Gamma}}, \quad t > 0. \quad (11)$$

Then

$$h_F(y) = h_f(y) - \langle y, h_f(y^0)y^0 \rangle, \quad h_F(y^0) = 0. \quad (12)$$

Take $y = y^0$ in (11). We get

$$u(z_1, 'x) \leq 0 \quad \forall \ (x_1, 'x) \in \mathbb{R}^p, \quad y_1 \geq 0. \quad (13)$$

Fix $\varepsilon > 0$. Since $\sup_{x \in \mathbb{R}^p} \lim_{r \to \infty} r^{-1}u(x + i\varepsilon y^0) = 0$, we see that for some $x^0 = x^0(\varepsilon) \in \mathbb{R}^p$, $r = r(\varepsilon) > 0$,

$$u(x^0 + i\varepsilon y^0) \geq -\varepsilon r. \quad (14)$$

Using the Poisson formula for the disc $D(x_1^0 + iR, R) = \{z_1 : |z_1 - x_1^0 - iR| < R\} \subset \mathbb{C}^+$ with $R > r$, inequality (13), and Maximum Principle for the subharmonic function $u(z_1, 'x^0)$, we obtain

$$u(x_1^0 + i\varepsilon 'x^0) \leq 0 \leq \frac{1}{2\pi} \int_0^{2\pi} u(x_1^0 + iR + Re^{i\psi}, 'x^0) \frac{R^2 - (R - r)^2}{R^2 - 2R(R - r)\cos(\pi/2 + \psi) + (R - r)^2 d\psi \quad (15)}$$

Suppose $g(z)$ is continuous on $\overline{\mathbb{C}^+}$, holomorphic on $\mathbb{C}^+$, and bounded on $\mathbb{R}$ function, which satisfies the condition $\log^+ |g(z)| = O(|z|)$ as $|z| \to \infty$; then for $z = x + iy \in \mathbb{C}^+$ we have $|g(z)| \leq \sup_{x \in \mathbb{R}} |g(x)|e^{\sigma^+ y}$, where $\sigma^+ = \lim_{y \to +\infty} y^{-1} \log |g(iy)|$ (see [8], p. 28).
\[
\leq \frac{r}{4\pi R} \int_{\pi/4}^{3\pi/4} u(x_1^0+iR+Re^{i\psi}, x_0^0) d\psi \leq r(8R)^{-1} \sup_{\psi \in [\pi/4;3\pi/4]} u(x_1^0+iR+Re^{i\psi}, x_0^0).
\]

Hence (14) implies that 
\[u(x_1^0 + iR + Re^{i\psi_0}, x_0^0) \geq -8\varepsilon R\] for some \(\psi_0 \in [\pi/4, 3\pi/4]\). The function \(u(z_1, x_0^0)\) is subharmonic in \(z_1 \in \mathbb{C}^+\). Taking into account (13) and the embeddings

\[D(x_1^0 + 2iR, R) \subset D(x_1^0 + iR + Re^{i\psi_0}, R + R/\sqrt{2}) \subset \mathbb{C}^+,
\]

we get

\[-8\varepsilon R \leq \frac{2}{\pi R^2(3 + 2\sqrt{2})} \int_{D(x_1^0 + iR + Re^{i\psi_0}, R + R/\sqrt{2})} u(z_1, x_0^0) dm_2(z_1) \]

\[< \frac{1}{3\pi R^2} \int_{D(x_1^0 + 2iR, R)} u(z_1, x_0^0) dm_2(z_1). \tag{15}\]

Remind that this inequality is valid for all \(R > r\).

Put \(u_R(z) = R^{-1} u(Rz)\). From (15) it follows that

\[\int_{D(x_1^0/R + 2i, 1)} u_R(z_1, x_0^0/R) dm_2(z_1) > -24\pi \varepsilon. \tag{16}\]

Furthermore, Theorem A implies that the function \(h_f(y)\) is continuous. Since (12), we get \(h_F(y) < \varepsilon\) for \(|y - y_0| < p\delta\) with some \(\delta = \delta(\varepsilon) \in (0, 1/(p + 2))\). If we replace in (11) \(y\) by \(y/|y|\), \(x\) by \(Rx\), and \(t\) by \(R|y|\), we obtain

\[u_R(z) = R^{-1} u(Rx + iRy) \leq \varepsilon |y| \tag{17}\]

for all \(z\) from the tube domain

\[T^\delta = \{z = x + iy : x \in \mathbb{R}^p, |y/|y| - y_0| < p\delta\}.\]

By definition, put

\[A(x^1) = D(x_1^1 + 2i, 1) \times D(x_2^1, \delta) \times D(x_3^1, \delta) \times \cdots \times D(x_p^1, \delta).\]
It can easily be checked that for all \( x^1 = (x_1^1, x^1) \in \mathbb{R}^p \) we have \( A(x^1) \subset T^\delta \). Also, we may assume that \( T^\delta \subset T_{\text{Int}} \cup \{0\} \). Then for all \( z_1 \in D(x^1_0/R + 2i, 1) \) the function \( u_R(z) \) is subharmonic in \( z_2 \in D(x^1_2, \delta), z_3 \in D(x^1_3, \delta), \ldots z_p \in D(x^1_p, \delta) \). Hence \( \text{(16)} \) implies

\[
\int_{A(x^0/R)} u_R(z) dm_{2p}(z) > -24 \delta^{2p-2} \pi^p \varepsilon. \tag{18}
\]

Suppose that for some \( \tau \in \mathbb{R}^p \) we have

\[
|F(x^0 + \tau + ir^0) - F(x^0 + ir^0)| \leq e^{-\varepsilon r} - e^{-2\varepsilon r}.
\]

Then \( |F(x^0 + \tau + ir^0)| \geq e^{-2\varepsilon r} \) and \( u(x^0 + \tau + ir^0) \geq -2\varepsilon r \). Using the latter inequality instead of \( \text{(14)} \), we obtain the relation

\[
\int_{A(x^0/R+\tau/R)} u_R(z) dm_{2p}(z) > -48 \delta^{2p-2} \pi^p \varepsilon. \tag{19}
\]

Put \( u_R^-(z) = \max\{u_R(z), 0\}, u_R^+(z) = \max\{-u_R(z), 0\} \). From \( \text{(17)} \) it follows that for all \( x^1 \in \mathbb{R}^p \) and all \( z \in A(x^1) \) we have

\[
u_R(z) < \sqrt{10} \varepsilon. \tag{20}\]

Therefore, by \( \text{(19)} \),

\[
\int_{A(x^0/R+\tau/R)} u_R^-(z) dm_{2p}(z) = \int_{A(x^0/R+\tau/R)} u_R^+(z) dm_{2p}(z) - \int_{A(x^0/R+\tau/R)} u_R(z) dm_{2p}(z) \leq 52 \delta^{2p-2} \pi^p \varepsilon. \tag{21}\]

In the sequel we need the following lemma:

**Lemma 1.** Let \( g(x) \) be an almost periodic function in \( x \in \mathbb{R}^p \). Then for any \( \eta > 0 \) there exist a real \( L = L(\eta) \) and a set \( E = E_1 \times \cdots \times E_p, E_j \in \mathbb{R} \), such that \( E_j \cap [a, a + L] \neq \emptyset \) for every \( a \in \mathbb{R}, j = 1, \ldots, p \), and each \( \tau \in E \) is an \( \eta \)-almost period of \( g \).
Proof. By Bochner’s criterium, any sequence \( t_n \in \mathbb{R} \) has a subsequence \( t_{n'} \) such that the functions \( g(x+(t_{n'},0)) \) converge uniformly in \( x \in \mathbb{R}^p \). In other words, the functions \( g(x_1+t_{n'},'x) \) converge uniformly in \( x_1 \in \mathbb{R} \) and \('x \in \mathbb{R}^p \).

By Bochner’s criterium, the function \( g(x_1,'x) \) is almost periodic in \( x_1 \in \mathbb{R} \) uniformly in \('x \in \mathbb{R}^{p-1} \). Hence there exist \( E_1 \in \mathbb{R} \) and \( L = L(\eta) \) such that \( E_1 \cap [a, a+L] \neq \emptyset \) for all \( a \in \mathbb{R} \) and

\[
|g(x_1+t,'x) - g(x,'x)| < \eta/p \quad \forall x_1 \in \mathbb{R}, \quad \forall 'x \in \mathbb{R}^{p-1}, \quad \forall t \in E_1,
\]

i.e., each \( \tau = (t',0) \) for \( t \in E_1 \) is an \( \eta/p \)-almost period of \( g(x) \). In the same way, we find \( E_2, \ldots, E_p \). It is clear that every point of \( E_1 \times \cdots \times E_p \) is an \( \eta \)-almost period of \( g \).

Take \( S < \infty \), and let \( L = L(\varepsilon, r) \) be the real from the Lemma 1. It is not hard to prove that if \( R > L/\sqrt{2} \), then there exist \( \tau_{1,1}^1, \ldots, \tau_{1,1}^{N_1} \in E_1 \), \( N_1 \leq 2\sqrt{2}S+2 \), such that

\[
\bigcup_{m=1}^{N_1} \left( \frac{x_0^0 + \tau_{1,1}^m}{R}, \frac{x_0^0 + \tau_{1,1}^m + \sqrt{2}}{2} \right) \supset [-S, S],
\]

and each point of \([-S, S]\) is contained in at most two intervals. For the same reasons, if \( R > L\sqrt{2}/\delta \), then for \( j = 2, \ldots, p \) there exist \( \tau_{1,1}^j, \ldots, \tau_{1,1}^{N_j} \in E_j \), \( N_j \leq (2\sqrt{2}S+2)/\delta \), such that

\[
\bigcup_{m=1}^{N_j} \left( \frac{x_0^0 + \tau_{1,1}^j}{R}, \frac{x_0^0 + \tau_{1,1}^j + \delta\sqrt{2}}{2} \right) \supset [-S, S].
\]

Let \( F = \{ \tau = (\tau_{1,1}^{m_1}, \ldots, \tau_{1,1}^{m_p}) : 1 \leq m_1 \leq N_1, \ldots, 1 \leq m_p \leq N_p \} \). Note that \( F \) contains at most \((2\sqrt{2}S+2)^p\delta^{1-p}\) elements. By definition, put

\[
\Pi(S, \delta) = \left\{ x + iy : x \in [-S, S]^p, |y_1-2| < \frac{1}{\sqrt{2}}, |y_j| < \frac{\delta}{\sqrt{2}}, j = 2, \ldots, p \right\}
\]

Combining (22) and (23), we get

\[
\bigcup_{\tau \in F} A \left( \frac{x_0^0 + \tau}{R} \right) \supset \Pi(S, \delta).
\]

\[3\] For almost periodic functions on \( \mathbb{R} \) see [10], Ch.VI, §1, or [3], p.14-16; the proof for the multidimensional case is similar.
Applying Lemma 1 to the function $F(x + i y)$ with $\eta = e^{-\varepsilon r} - e^{-2\varepsilon r}$ and using (21) for every $\tau \in F$, we obtain

$$\int_{\Pi(S, \delta)} u_R(z) dm_{2p}(z) \leq \sum_{\tau \in F_A(x^0 + \tau)} \int u_R(z) dm_{2p}(z) \leq 52(2\sqrt{2S + 2})^p \delta^{p-1} \pi^p \varepsilon.$$ 

Therefore, we have

$$\lim_{S \to \infty} \frac{1}{(2S)^p} \int_{\Pi(S, \delta)} u_R(z) dm_{2p}(z) \geq -52(\sqrt{2\pi})^p \delta^{p-1} \varepsilon. \quad (25)$$

It follows from the definition of Jessen’s function that

$$\lim_{S \to \infty} \frac{1}{(2S)^p} \int_{[-S, S]} u_R(x + iy) dm_p(x) = \frac{J_F(Ry)}{R}. \quad (26)$$

The functions $u_R(z)$ are uniformly bounded from above for $z \in T_\delta$. Applying the Fatou lemma to inequality (25), we get

$$\int_{\{y_1-2<\frac{\sqrt{2}}{2}, |y_2|<\frac{1}{2}, \ldots, |y_p|<\frac{1}{2}\}} J_F(Ry) dy \geq -52(\sqrt{2\pi})^p \delta^{p-1} \varepsilon R, \quad (27)$$

for all $R > R(L, \delta, r, \varepsilon)$.

To finish the proof, we need the following simple lemma.

**Lemma 2.** Let $g(t)$ be a convex negative function on $[-\alpha, \alpha]$. Then $g(0) \geq \alpha^{-1} \int_{-\alpha}^{\alpha} g(t) dt$.

**Proof.** The assertion of the Lemma follows immediately from the inequality

$$g(t) \leq g(0) \min\{1 - t/\alpha, 1 + t/\alpha\}.$$

$\square$

Note that (20) and (26) imply

$$J_F(Ry) \leq \sqrt{10}\varepsilon R \quad (28)$$
for all \( y = (y_1, \ldots, y_p), |y_1 - 2| < 1, |y_j| < \delta, j = 2, \ldots, p. \) Further, Jessen’s function \( J_F(Ry) \) is convex in \( y \) (11). Therefore the function

\[
g'(y) = \int_{|y_1-2|<1} J_F(Ry)dy_1 - 2\sqrt{5}R\varepsilon
\]

satisfies the conditions of Lemma 2 in each variable \( y_2, \ldots, y_p \) with \( \alpha = \delta/\sqrt{2}. \) Applying the lemma \( p - 1 \) times and using inequality (27), we obtain

\[
\int_{|y_1-2|<1} J_F(Ry_1,0)dy_1 \geq -40(2\pi)^p R\varepsilon.
\]

Since (13), we see that the integrand is negative. Moreover, it is convex, therefore \( J_F(Ry_1,0) \) is a monotonically decreasing function in \( y_1 \). Then we have

\[
J_F((2 - 1/\sqrt{2})Ry_1^{0}) \geq -30(2\pi)^p R\varepsilon.
\]

The inequality is valid for all \( R > R(\varepsilon) \) and \( \varepsilon > 0. \) Thus we have

\[
\lim_{R\to\infty} \frac{J_F(Ry_1^{0})}{R} = 0.
\]

Since \( J_f(y) = J_f(y) - \langle y, h_f(y^{0})y^{0} \rangle, \) we obtain (10) for \( y = y^{0}. \)

For an arbitrary \( y' \in \text{Int}\hat{\Gamma} \) consider an orthogonal operator \( A: \mathbb{R}^p \to \mathbb{R}^p \) such that \( A(y^{0}) = y'. \) Put \( f_1(z) = f(Az). \) Since \( h_{f_1}(y^{0}) = h_f(y') \) and \( J_{f_1}(y^{0}) = J_f(y'), \) we obtain (10) for \( y = y'. \)

Further, from (11) and Theorem A it follows that the function \( J_f(Ry)/R \) is bounded from above on every compact subset of \( \text{Int}\hat{\Gamma}. \) Then fix \( y^{1} \in \text{Int}\hat{\Gamma} \) and take \( s > 0 \) such that \( \{ y : |y - y^{1}| \leq s \} \subset \text{Int}\hat{\Gamma}. \) Whenever \( |y - y^{1}| < s, \) we have

\[
2J_f(Ry^{1}) \leq J_f(R(2y^{1} - y)) + J_f(Ry)
\]

and

\[
\frac{J_f(Ry)}{R} \geq 2 \inf_{R \geq 1} \left| \frac{J_f(Ry^{1})}{R} \right| - \sup_{R \geq 1} \frac{\sup_{|y - y^{1}| \leq s} \max\{J_f(Ry), 0\}}{R}.
\]
This means that the functions $J_f(Ry)/R$ are uniformly bounded from below on every compact subset of $\text{Int} \widehat{\Gamma}$. Using (10) and the Lebesgue theorem, we obtain

\[
\int \frac{J_f(Ry)}{R} \varphi(y) dm_p(y) \to \int h_f(y) \varphi(y) dm_p(y) \quad \text{as} \quad R \to \infty
\]

for every test-function $\varphi$ on $\text{Int} \widehat{\Gamma}$, i.e., (10) is valid in the sense of distributions as well. Therefore,

\[
\text{grad} J_f(Ry) \to \text{grad} h_f(y) \quad \text{as} \quad R \to \infty
\]

in the sense of distributions and Theorem A implies the last assertion of Theorem 1.

**Corollary 1.** Suppose that all conditions of Theorem 1 are fulfilled. If $H_{sp}f(y)$ is nonlinear on $(-\Gamma)$, then $f(z)$ has zeros on the set $\text{Int} T_{\Gamma \cap \{|y|>q\}}$ for each $q < \infty$.

**Proof.** Theorem A yields that the function $h_f(y)$ is nonlinear for $y \in \text{Int} \widehat{\Gamma}$. Now Theorem 1 implies that $J_f(y)$ is nonlinear on the set $\{\text{Int} \widehat{\Gamma} \cap \{|y|>q\}\}$ for each $q < \infty$. Then Theorem R implies that $f(z)$ has zeros on $\text{Int} T_{\Gamma \cap \{|y|>q\}}$.

**Applications to distribution of values.** Here we apply Theorem 1 to prove the multidimensional variant of Theorem B:

**Theorem 2.** Let $\Gamma \subset \mathbb{R}^p$ be a closed convex cone and $f(x)$ be an almost periodic function on $\mathbb{R}^p$ that has a holomorphic extension $f(z)$ to $T_{\text{Int} \widehat{\Gamma}}$ with estimates (3). Then

1. if $(sp f \setminus \{0\}) \subset \Gamma$, then $f(z)$ tends to a finite limit as $y \to \infty$, $y \in \Gamma'$, uniformly in $x \in \mathbb{R}^p$ for all $\Gamma' = \overline{\Gamma} \subset \text{Int} \widehat{\Gamma} \cup \{0\}$,

2. if $(sp f \setminus \{0\}) \subset \Lambda + \Gamma$ with some $\Lambda \in sp f \cap (-\Gamma) \setminus \{0\}$, then the function $f(z)$ tends to $\infty$ as $y \to \infty$, $y \in \Gamma'$, uniformly in $x \in \mathbb{R}^p$ for all $\Gamma' = \overline{\Gamma} \subset \text{Int} \widehat{\Gamma} \cup \{0\}$,
3. if \((\text{sp} f \setminus \{0\}) \subset \Lambda + \Gamma\) with some \(\Lambda \in (\text{sp} f \setminus \text{sp} f) \cap (\Lambda \setminus \{0\})\), then the function \(f(z)\) takes every complex value on the set \(\text{Int} T_{\Gamma \cap \{|y|>q\}}\) for each \(q < \infty\).

4. if \((\text{sp} f \setminus \{0\}) \subset \Lambda + \Gamma\) with some \(\Lambda \in \text{sp} f \setminus ((-\Gamma) \cup \Gamma)\), then the function \(f(z)\) takes every complex value, except for at most one, on the set \(\text{Int} T_{\Gamma \cap \{|y|>q\}}\) for each \(q < \infty\).

5. if \((\text{sp} f \setminus \{0\}) \not\subset \Lambda + \Gamma\) for all \(\Lambda \in \text{sp} f\) and \(\text{sp} f \not\subset \Gamma\), then the function \(f(z)\) takes every complex value on the set \(\text{Int} T_{\Gamma \cap \{|y|>q\}}\) for each \(q < \infty\).

**Remark.** It is clear that we can replace \(\text{sp} f \setminus \{0\}\) by \(\text{sp} f\) in cases 1 - 3. Therefore Theorem 2 gives, in a sense, a complete description of the value distributions for our class of almost periodic functions.

**Proof.** Case 1 was proved in [4], case 2 was proved in [5]. Reduce case 3 to one-dimensional one. Take \(y_0 \in \text{Int} \hat{\Gamma}\) such that \(\langle y_0, \lambda_k \rangle \neq \langle y_0, \lambda_m \rangle\) for all \(k \neq m\), and put \(\varphi(w) = f(wy_0), w \in \mathbb{C}\).

First, check that \(\text{sp} \varphi = \{\langle y_0, \lambda \rangle : \lambda \in \text{sp} f\}\). This is evident for finite exponential sums. In the general case, take a sequence of Bochner-Feyer exponential sums\(^4\) \(P_n(x)\), which approximates \(f(x)\) on \(\mathbb{R}\). Since \(\text{sp} P_n \subset \text{sp} f\) and \(P_n(wy_0) \to \varphi(u)\) uniformly on \(\mathbb{R}\), we see that \(\text{sp} \varphi \subset \{\langle y_0, \lambda \rangle : \lambda \in \text{sp} f\}\). On the other hand, if \(\lambda \in \text{sp} f\), then

\[
a_{\langle y_0, \lambda \rangle}(0, P_n(y_0u)) = a_{\lambda}(0, P_n) \to a_{\lambda}(0, f) \neq 0 \quad \text{as} \quad n \to \infty.
\]

Therefore, \(a_{\langle y_0, \lambda \rangle}(0, \varphi) \neq 0\) and \(\langle y_0, \lambda \rangle \in \text{sp} \varphi\).

Note that \(\langle y_0, \lambda^n \rangle \to \langle y_0, \Lambda \rangle\) as \(\lambda^n \to \Lambda, \lambda^n \in \text{sp} f\). Also, since \(y_0 \in \text{Int} \hat{\Gamma}\) and \(\lambda - \Lambda \in \Gamma\) for all \(\lambda \in \text{sp} f\), we get \(\langle y_0, \Lambda \rangle > \langle y_0, \Lambda \rangle\). Therefore, \(\inf \text{sp} \varphi = \langle y_0, \Lambda \rangle\) and \(\langle y_0, \Lambda \rangle \notin \text{sp} \varphi\). From Theorem B, i.3 it follows that \(f(z)\) takes every complex value on the set \(\{z = wy_0 : \text{Im} w > q\}\) for each \(q < \infty\).

Let us consider case 4. Let \(b_0\) be the coefficient of series \([6]\) corresponding to the exponent \(\lambda = 0\). Then for any \(A \in \mathbb{C} \setminus \{b_0\}\) each function \(f(z) - A\)

\(^4\)For almost periodic functions on \(\mathbb{R}\) see [10], Ch.VI, §1, or [3], p.38-45; consideration in the multidimensional case is similar.
has the spectrum $\text{sp} f \cup \{0\}$. Suppose that the support function $H_{\text{sp} f \cup \{0\}}(y)$ is linear on $(-\hat{\Gamma})$. Then it is not hard to prove (for example, see [3], Lemma 2) that $\text{sp} f \cup \{0\} \subset \Lambda' + \Gamma$ with some $\Lambda' \in (-\Gamma) \cap (\text{sp} f \cup \{0\})$. But this is impossible in our case. Hence, the function $H_{\text{sp} f \cup \{0\}}(y)$ is nonlinear on $(-\hat{\Gamma})$

Now Corollary 1 yields that the function $f(z) - A$ has zeros on $\text{Int} T_{\hat{\Gamma}\cap \{|y|>q\}}$ for each $q < \infty$.

Let us consider case 5. Let $b_0$ be the same as in case 4. The function $f(z) - b_0$ has the spectrum $\text{sp} f \setminus \{0\}$. Note that the support function $H_{\text{sp} f \setminus \{0\}}(y)$ is nonlinear on $(-\hat{\Gamma})$. Hence Corollary 1 implies that the function $f(z) - b_0$ has zeros on $\text{Int} T_{\hat{\Gamma}\cap \{|y|>q\}}$ for each $q < \infty$. Further, for any $A \in \mathbb{C} \setminus \{b_0\}$ the function $f(z) - A$ has the spectrum $\text{sp} f \cup \{0\}$. If the support function $H_{\text{sp} f \cup \{0\}}(y)$ is linear on $(-\hat{\Gamma})$, then $\text{sp} f \cup \{0\} \subset \Lambda' + \Gamma$ with some $\Lambda' \in (-\Gamma) \cap (\text{sp} f \cup \{0\})$. The both cases $\Lambda' = 0$ and $\Lambda' \neq 0$ contradict to the conditions of case 5. Therefore the function $f(z) - A$ has zeros on $\text{Int} T_{\hat{\Gamma}\cap \{|y|>q\}}$ for each $q < \infty$. □

References

[1] A.S. Besicovitch. *Almost periodic functions*, Cambridge University Press (1932), 237-281.

[2] H. Bohr. *Zur Theorie der Fastperiodischen Funktionen, III Teil; Dirichletentwicklung Analytischer Funktionen*, Acta math. 47, (1926), 237-281.

[3] C. Corduneanu. *Almost Periodic Functions*, Interscience Publishers, New-York – London – Sydney – Toronto, a division of John Wiley.

[4] S. Favorov, O. Udodova. *Almost periodic functions in finite-dimensional space with the spectrum in a cone*. Matematicheskaya fizika, analiz, geometriya, 2002, v. 9, No. 3, p. 456–477.

[5] S.Yu. Favorov, N.P. Girya. *The asymptotic properties of almost periodic functions*. Mat. studii, V.25, No.2 2006.–p.191-201. (Russian)

[6] Ph. Hartman *Mean motions and almost periodic functions* Trans. Amer. Math. Soc. 46, (1939), 64–81.
[7] B. Jesen, H. Tornehave. Mean motions and zeros of almost periodic functions. Acta Math. 77. (1945), 137-279.

[8] P. Koosis. The logarithmic integral. Cambridge univ.press 1988.–606p.

[9] B.Ya. Levin. On secular constant of holomorphic almost periodic function. DAN SSSR. 33 (1941).–p.182-184. (Russian)

[10] B.Ya. Levin. Distributions of Zeros of Entire Functions. Transl. of Math. Monograph, Vol.5, AMS Providence, RI, 1980.

[11] L.I. Ronkin. Jessen’s theorem for holomorphic almost periodic functions in tube domains. Sib.Math.Zhurn, V. 28, No.3, 1987.–p.199-204 (Russian)

[12] L.I. Ronkin. On a certain class of holomorphic almost periodic functions. Sib.Math.Zhurn., V.33, 1992.–p.135-141 (Russian)

[13] L.I. Ronkin. CR-functions and holomorphic almost periodic functions with entire base. Math.fizika, analiz, geometriya.-V.4, No.4 1997.–p.472-490. (Russian)

[14] L.I. Ronkin. Functions of Completely Regular Growth. Mathematics and its Appl., Soviet Ser., v. 81. Kluwer Acad. Publ., 1992.