Supplementary Information for

Functional evidence supports adaptive plant chemical defense along a geographical cline

Anurag A. Agrawal1,2∗, Laura Espinosa del Alba3, Xosé López-Goldar1, Amy P. Hastings1, Ronald A. White1, Rayko Halitschke4, Susanne Dobler5, Georg Petschenka3, Christophe Duplais6∗

*Email: agrawal@cornell.edu and c.duplais@cornell.edu

This PDF file includes:

Appendix S1
Figures S1 to S11
Tables S1 to S7
References
Appendix S1

Population genetic differentiation, isolation by distance and Q_{ST}-F_{ST} comparisons

Population differentiation F_{ST} was estimated using 925 putatively neutral SNPs obtained from 46 randomly sampled individuals from across 12 of the 24 sampled milkweed populations (2-10 individuals per population) (SNP details in ref. 1). Wright’s F-statistic F_{ST} and confidence intervals were estimated by 1,000 bootstrap simulations with resampling over loci using the program GDA (2).

In order to explore the geographical structure of the neutral differentiation among populations, population pairwise F_{ST} was estimated with Arlequin (3). Significance ($\alpha=0.05$) of the genetic distances was tested by permuting the individuals between the populations 1,000 times. Additionally, a Mantel test was performed with Genepop v. 4.7.0 (4) in order to test for isolation by distance among populations. Pairwise genetic distance ($F_{ST}/(1 - F_{ST})$ (5) and geographic distance matrices were used as input to test the null hypothesis that there is no spatial correlation between genetic samples, with 10,000 permutations of samples between geographical locations.

In order to evaluate whether neutral, directional or stabilizing selection might be contributing to the differentiation of cardenolides among milkweed populations, we estimated P_{ST} (the phenotypic analog of Q_{ST} for populations sampled in the wild) for each of the seed chemistry traits and compared them to the mean neutral F_{ST} estimated from the SNPs. We combined the approach of Brommer (6) for the estimation of P_{ST} and the parametric bootstrap method of Whitlock and Guillaume (7) (originally conceived for Q_{ST}–F_{ST}), extended to P_{ST}–F_{ST} comparisons.

First, the P_{ST} was estimated following Brommer (6):

$$P_{ST} = \frac{c \sigma_B^2}{c \sigma_B^2 + 2 \sigma_W^2}.$$

Where σ_B^2 denotes the phenotypic variance between populations and σ_W^2 denotes the phenotypic variance within populations. The scalar c expresses the proportion of the total variance that is due to additive genetic effects across population, whereas h^2 is the heritability of the trait (the proportion of phenotypic variance within populations that is due to additive genetic effects). Therefore, c/h^2 informs the differences in additive genetic variance between and within populations, which critically describes how well P_{ST} approximates Q_{ST} (6). Since both c and h^2
are unknown here, deviations of P_{ST} from neutrality for a given trait should be conservatively assessed in the range of $c < h^2$ (i.e., $c/h^2 < 1$). Because P_{ST} is an increasing function of $c h^2$, the lower the c/h^2 ratio threshold is for significant deviations of P_{ST} from neutrality, the stronger the inferences can be made regarding signatures of divergent selection between populations.

P_{ST} was estimated for each trait by using PROC MIXED in SAS v9.4, considering ‘Population’ as a random factor. Parameters σ_B^2 and σ_W^2 were obtained from ‘Population’ and residual variance components, respectively, and P_{ST} was estimated along increasing values of the c/h^2 ratio ranging from 0 to 2 by 0.1 increments (i.e., varying the relative contribution of population additive genetic variance over within-population additive variance). $P_{ST}–F_{ST}$ comparisons were conducted for each value of c/h^2 by parametric bootstrap with 10,000 simulations in SAS, following the method of Whitlock and Guillaume (7) for $Q_{ST}–F_{ST}$ comparisons. This method predicts a null distribution for $Q_{ST}–F_{ST}$ ($P_{ST}–F_{ST}$ in our case) under the null hypothesis that both the quantitative trait and neutral markers show neutral differentiation (i.e., the P_{ST} equals the F_{ST}). Traits with significantly higher P_{ST} than F_{ST} are inferred to be under spatially heterogeneous divergent selection while $P_{ST} < F_{ST}$ would be indicative of stabilizing selection, and $P_{ST} = F_{ST}$ would reflect neutral evolution of the trait (8, 9). To test for departures from the null hypothesis of neutral differentiation, we tested whether the observed $P_{ST}–F_{ST}$ difference is in the tail of the neutral null distribution. For a given c/h^2, an observed $P_{ST}–F_{ST}$ difference in the lower tail suggests spatially stabilizing selection, while a $P_{ST}–F_{ST}$ difference in the upper tail suggests spatially divergent selection on the trait. Despite known deviations of P_{ST} in comparison to Q_{ST} (6, 10), our combined approach increases the robustness of the test in wild populations by simultaneously exploring multiple scenarios of selection with variable c/h^2 ratios and controlling for biases when estimating P_{ST} through bootstrapping when Q_{ST}s are not available.
Fig. S1. Concentration pattern of specific cardenolides in *Asclepias syriaca* seeds across latitude.
Relative concentration quantified by HRMS. A quadratic model was the best fit in all cases except for reduced labriformin where a linear model was the best fit. * p< 0.05, ** p<0.01, *** p<0.001, ns = not significant.
Fig. S2. Labriformin’s putative biosynthesis in *Asclepias syriaca*.
Fig. S3 Correlation heat map of cardenolides in Asclepias syriaca seeds.
The heat map of pairwise Spearman’s correlations among the 21 cardenolides detected in A. syriaca seed samples across latitude (n=24 populations). The heat map uses the correlation matrix as clustering distance to sort by similarity of each cardenolide to the others. Blue squares indicate negative correlations and red squares indicate positive correlations (color intensity indicates the strength of the correlation coefficient). * p< 0.05, ** p<0.01, *** p<0.001. Note that Aspecioside C was not included in Fig. S1 because a few concentration values were missing (i.e., the ion adduct peak was not detectable) but had a sufficient number of values to be included here.
Fig. S4. Plot of Mantel test for isolation by distance across 12 milkweed populations. The plot shows no isolation by distance among pairs of populations (p > 0.05), where pairwise Slatkin’s genetic distance ($F_{ST}/(1-F_{ST})$) was regressed over geographic distance.
Fig. S5. Observed $P_{ST} - F_{ST}$ values.

Observed $P_{ST} - F_{ST}$ values for each trait (colored lines) and their simulated null distribution by parametric bootstrap with 10,000 simulations (dashed lines representing 2.5% and 97.5% confidence intervals) assuming neutrality, along increasing values of c/h^2 (colored dots) (i.e., relative contribution of additive variance between populations vs. additive variance within populations when estimating P_{ST}). The lower the c/h^2 ratio threshold indicates significant deviations of P_{ST} from neutrality (i.e., observed $P_{ST} - F_{ST}$ outside the inside area delimited by the dashed lines). P_{ST} for cardenolides syrioside B (9.5) and labriformin (15.9) fall in the upper tail of the neutral $P_{ST} - F_{ST}$ distribution for $c/h^2 >= 0.4$ under a conservative scenario ($c/h^2 < 1$), suggesting spatially divergent selection acting on those traits.
Fig. S6. Biotransformation of glycosylated aspecioside in *Oncopeltus fasciatus*
Fig. S7. Relative concentration of cardenolides in *Asclepias syriaca* seeds and *Oncopeltus fasciatus* in the labriformin degradation pathway

The box and whisker plots show the original and normalized concentration values. The mean concentration is indicated with a yellow diamond. * p< 0.05, ** p<0.01, *** p<0.001
Fig. S8. The effect of labriformin and its insect-modified end-products on the unadapted and monarch sodium pumps.

The difference in inhibitory impacts of the parent compound labriformin, oxidized labriformin (modified) and syriobioside A (breakdown product) on the unadapted and monarch sodium pumps. While syriobioside A is sequestered by monarchs, it is not known whether monarchs modify labriformin to oxidized labriformin. Data are presented as the molar concentration of plant toxin necessary to cause 50% inhibition of the animal enzyme, or IC$_{50}$. Higher values on the Y axis indicate that the enzyme is more tolerant to the cardenolide. Each bar represents the mean of 3-6 replicates (each based on a 6-concentration inhibition curve) ± SE.
Fig. S9. Structures of five N-containing cardenolides known in the genus *Asclepias* and the predicted structure of reduced labriformin and oxidized labriformin.

The structures of reduced labriformin and oxidized labriformin are anticipated for the first time herein and are supported by high resolution mass spectrometry and MS/MS fragmentation in positive and negative mode.
Fig. S10. MS/MS product ion mass spectrum from [M+H]^+ adduct of oxidized labriformin.
Several fragments with the same exact mass were found in the MS/MS profile of labriformin and support the proposed structure.
Fig. S11. MS/MS product ion mass spectrum from [M-H]⁻ adduct of oxidized labriformin. Several fragments with the same exact mass were found in the MS/MS profile of labriformin and support the proposed structure.
Table S1. Percentage of cardenolides in *Asclepias syriaca* seed extract.
Data were collected by HPLC-UV for total cardenolides. Compounds are ordered by their percentage of the total cardenolides. The seeds were collected in the Ithaca area.

Compound	% total
Glycosylated aspecioside	42%
Diglycosylated syriogenin	12%
Glycosylated syriobioside	11%
Syrioside B	8%
Labriformin	8%
Diglycosylated oxidized syriogenin	6%
Diglycosylated digitoxigenin	3%
Syrioside A	3%
Aspecioside A	3%
Syriobioside A	<2%
Reduced labriformin	<2%
Syriogenin	<2%
Glycosylated syriogenin A	<2%
Table S2. HRMS data of the cardenolides detected in samples.
To simplify the table, only MS data from one sample is listed for each precursor ion.

Name	Sample	Retention time (min)	Precursor ion	Observed m/z	Calculated m/z	∆m/z (ppm)	Cardenolide formula	Genin fragment (1)	Observed m/z	Calculated m/z	∆m/z (ppm)	Genin fragment ion formula
Compound 8.7 Glycosylated aspecioside	PITT	4.72	[M+H]^+	713.3379	713.3379	0.0	C_{36}H_{52}O_{15}	[M-C_{12}H_{20}O_{9}+H]^+	405.2264	405.2272	1.9	C_{23}H_{33}O_{6}^+
Compound 7.6 Diglycosylated syriogenin	OTT	4.85	[M+H]^+	699.3586	699.3586	0.0	C_{35}H_{54}O_{14}	[M-C_{12}H_{20}O_{9}+H]^+	391.2475	391.2479	1.0	C_{23}H_{33}O_{5}^+
Compound 8.3 Aspecioside A (2)	SLY	5.07	[M+H]^+	551.2851	551.2851	0.0	C_{29}H_{42}O_{10}	[M-C_{6}H_{10}O_{4}+H]^+	405.2263	405.2272	2.2	C_{23}H_{33}O_{5}^+
Compound 8.9 Glycosylated syriobiocide	SLY	5.22	[M+H]^+ (3)	727.3177	727.3172	-0.6	C_{30}H_{50}O_{16}	[M-H_{2}O-C_{12}H_{18}O_{8}+H]^+	419.2059	419.2064	1.1	C_{23}H_{31}O_{7}^+
Compound 9.3 Syriosome A	AMH	5.27	[M+NH_{4}]^+ (4)	742.3275	742.3286	-1.4	C_{35}H_{48}O_{16}	[M-2H_{2}O-C_{12}H_{18}O_{9}+H]^+	399.1801	399.1802	0.2	C_{23}H_{27}O_{6}^+
Compound 9.5 Syriosome B (5)	AMH	5.35	[M+NH_{4}]^+	742.3286	742.3286	0.0	C_{35}H_{48}O_{16}	[M-H_{2}O-C_{12}H_{18}O_{9}+H]^+	417.1895	417.1908	3.1	C_{23}H_{27}O_{7}^+
Compound 11.8 Diglycosylated oxidized syriogenin	AMH	5.84	[M+H]^+ (6)	697.3429	697.3430	0.1	C_{35}H_{52}O_{16}	[M-C_{12}H_{21}O_{5}+H]^+	389.2316	389.2323	1.7	C_{23}H_{32}O_{5}^+
Compound 12.9 Diglycosylated digitoxigenin	AMH	6.07	[M+NH_{4}]^+ (7)	700.3897	700.3897	0.0	C_{36}H_{54}O_{13}	[M-C_{12}H_{20}O_{9}+H]^+	375.2523	375.2530	1.8	C_{23}H_{33}O_{4}^+
Compound 15.9 Labriformin	OTT	6.65	[M+H]^+	618.2367	618.2367	0.0	C_{31}H_{50}NO_{10}S	[M-H_{2}O-C_{6}H_{11}NO_{3}S+H]^+	417.1905	417.1908	0.7	C_{23}H_{27}O_{7}^+
Syribioside A (8) (9)	PHOX	5.60	[M+H]^+	565.2643	565.2643	0.0	C_{29}H_{42}O_{11}	[M-H_{2}O-C_{10}H_{16}O_{5}+H]^+	419.2053	419.2064	2.6	C_{23}H_{31}O_{7}^+
Syriogenin (8)	SLY	4.84	[M+H]^+	391.2479	391.2479	0.0	C_{23}H_{34}O_{6}					
Compound	Method	R_t	m/z	Intensity	Mass (ppm)	Retention Time						
--------------------------------	--------	------	-----------	-----------	------------	----------------						
Reduced labriformin (8)	BISH	6.36	620.2524	0.0	C_{31}H_{41}NO_{10}S	401.1962						
			620.2524			401.1959						
						-0.7 C_{23}H_{29}O_{7}+						
Glycosylated syriogenin A (8)	CHILL	5.26	537.3058	0.0	C_{29}H_{44}O_{9}	391.2468						
			537.3058			391.2479						
						2.8 C_{23}H_{35}O_{5}+						
Desglucosyrioside (8)	PHOX	5.27	563.2479	-1.4	C_{29}H_{38}O_{11}	435.2017						
			563.2479			435.2013						
						0.9 C_{23}H_{31}O_{8}+						
Oxidized labriformin (8)	SB10.4	5.55	650.2252	-2.1	C_{31}H_{39}NO_{12}S	417.1913						
			650.2266			417.1908						
						1.1 C_{23}H_{29}O_{7}+						

(1) Only for glycosylated cardenolides.
(2) Isomers named aspecioside B and C were detected at retention time = 4.72 and 5.22 respectively but were not isolated.
(3) Most intense peak [M-H_{2}O+H]^+; Observed m/z = 709.3066; Calculated m/z = 709.3066.
(4) Most intense peak [M-2H_{2}O-C_{6}H_{10}O_{6}+H]^+; Observed m/z = 527.2276; Calculated m/z = 527.2276.
(5) Isomers named syrioside C and D were detected at retention time = 5.09 and 5.12 but respectively but were not isolated.
(6) Most intense peak [M-C_{12}H_{22}O_{10}+H]^+; Observed m/z = 371.2219; Calculated m/z = 371.2219.
(7) Most intense peak [M-2H_{2}O-C_{12}H_{20}O_{9}+H]^+; Observed m/z = 339.2316; Calculated m/z = 339.2319.
(8) Cardenolide detected in samples but was isolated.
(9) Isomers named syriobioside B, C, and D were detected at retention time = 5.21, 5.35, 5.53 respectively but were not isolated.
(10) An isomer named glycosylated syriogenin B was detected at retention time = 4.85 but was not isolated.

Note that over 15 isomers of labriformidin were detected in the seed extract but were not included to simplify data.
Table S3. Chemical structures of cardenolides.

Name	Cardenolide chemical structure	Name	Cardenolide chemical structure
Compound 6.7	![Glycosylated aspecioside](image)	Syriobioside A	![Glycosylated aspecioside](image)
Compound 7.6	![Diglycosylated syriogenin](image)	Syriogenin	![Syriogenin](image)
Compound 8.3	![Aspecioside A](image)	Glycosylated syriogenin A	![Glycosylated syriogenin A](image)
Compound 15.9	![Labriformin](image)	Desglucosyriside	![Desglucosyriside](image)
Reduced labriformin	![Reduced labriformin](image)	Oxidized labriformin	![Oxidized labriformin](image)

The chemical structure of compounds 8.9 (glycosylated syriobioside), 9.3-9.5 (syrioside A and B), 11.8 (diglycosylated oxidized syriogenin), and 12.9 (diglycosylated digitoxigenin) will be reported in a separate manuscript.
Table S4. Population pairwise F_{ST} among 12 milkweed populations.
Genetic distances significantly greater than zero ($p < 0.05$) are highlighted in bold.

Pop	AND	EDGE	FRED	FULK	GLX	ITH	JER	KNOX	PHIL	PHOX	SLY	URB
AND	0	0.083	0	0.063	0	0.094	0	0	0.001	0	0	0.074
EDGE	0	0.083	0	0.063	0	0.094	0	0	0.001	0	0	0.074
FRED	0.134	0.063	0	0	0.011	0.049	0.020	0	0.028	0	0	0.074
FULK	0.086	0.001	0.094	0	0	0.094	0	0	0	0	0	0.074
GLX	0.125	0.098	0.154	0.091	0	0.094	0	0	0	0	0	0.074
ITH	0.146	0.028	0.159	0.058	0.128	0.033	0	0	0	0	0	0.074
JER	0.146	0.028	0.159	0.058	0.128	0.033	0	0	0	0	0	0.074
KNOX	0.078	0.018	0.078	0.007	0.057	0.028	0	0.048	0	0	0	0.074
PHIL	0.050	0.000	0.091	0.037	0.088	-0.002	0.068	0.024	0	0	0	0.074
PHOX	0.086	0.027	0.097	0.004	0.064	-0.011	0.100	0.028	-0.001	0	0	0.074
SLY	0.123	0.093	0.172	0.118	0.171	0.083	0.105	0.090	0	0.093	0.109	0
URB	0.097	0.065	0.178	0.054	0.139	0.094	0.131	0.096	0.043	0.073	0.140	0
Table S5. The effect of four diet treatments on the growth and development of *Oncopeltus fasciatus*.

Fitness parameter	Diet	Mean	SE	Test	p-value
Mass at week 3 in mg	Control	40.00	2.29	One-way ANOVA	0.925
(n=10 replicates/diet)	Ouabain	38.74	3.30		
	Labriformin	43.32	2.65		
	Glycosylated aspecioside	41.71	2.14		
Days until adulthood	Control	22.80	0.83	Kruskal-Wallis test	0.874
(n=10 insects/diet)	Ouabain	23.30	2.02		
	Labriformin	24.11	2.08		
	Glycosylated aspecioside	23.40	1.05		
Adult length in mm	Control	9.90	0.31	One-way ANOVA	0.914
(n=10 insects/diet)	Ouabain	10.06	0.23		
	Labriformin	9.91	0.31		
	Glycosylated aspecioside	10.14	0.22		
Total eggs (n=8 pairs/diet	Control	331.14	106.09	One-way ANOVA	0.928
except control n=7)	Ouabain	341.13	59.42		
	Labriformin	294.38	39.27		
	Glycosylated aspecioside	294.38	38.24		
Hatchlings (n=8 pairs/diet	Control	92.14	38.03	One-way ANOVA	0.776
except control n=7)	Ouabain	133.88	25.88		
	Labriformin	120.13	28.09		
	Glycosylated aspecioside	120.63	20.11		
Table S6. Sequestered cardenolides (mg/g dry mass) in adult bodies of *Oncopeltus fasciatus* fed artificial diets, each spiked with one of three isolated cardenolides.

Note that *Oncopeltus fasciatus* on the control diet had one cardenolide (which may have been maternally produced or transferred (see ref. 11). Shown are mean concentrations as determined by HPLC-UV (n = 6-10). Labriformin degradation products were confirmed by mass spectrometry analysis.

Diet	Ouabain	Oxidized labriformin	Glycosylated aspecioside	Diglycosylated syriogenin	Aspecioside A	Syriobioside A	Desgluco-syrioside	labriformin
Control	-	-	-	-	-	0.17	-	-
Ouabain	1.09	-	-	-	-	-	-	-
Glycosylated aspecioside	-	-	0.07	0.12	2.44	0.04	-	-
Labriformin	-	0.03	-	0.12	0.01	0.55	-	-
Table S7. Location and key climatic variables of the 24 study populations.
Analysis of climatic correlations with latitude and longitude for these populations is provided in ref. 12.

Population	Latitude	Longitude	Mean annual precipitation (cm)	Mean annual temperature (°C)
Amherst, MA, USA	42.37526	-72.51891	118.29	8.56
Anderson, IN, USA	40.10216	-85.67869	101.14	10.78
Bedford, VS, USA	37.402891	-79.351501	113.8	13.11
Bellbrook, OH, USA	39.616902	-84.097379	100.43	11.11
Bishop, NC, USA	33.81461	-83.43533	127	16.39
Boyce, VA, USA	39.09324	-78.05992	99.31	11.67
Chapel Hill, NC, USA	35.9666	-79.094652	120.9	14.61
Edgewater, MA, USA	42.73752	-84.48381	78.51	8.11
East Lansing, MI, USA	38.889071	-76.544577	110.97	12.56
Fredericton, NB, Canada	45.96064	-66.63912	112.42	5.61
Fulks Run, VA, USA	38.65947	-78.90405	105.69	12.67
Galax, VA, USA	36.659311	-80.92991	111.51	10.22
Hanover, NH, USA	43.70247	-72.28854	98.27	7.78
Ithaca, NY, USA	42.44049	-76.49545	93.24	7.83
Jericho, VT, USA	44.50549	-72.9959	101.27	6.78
Knoxville, TN, USA	35.96054	-83.92079	135.46	14.11
Ottawa, ON, Canada	45.42146	-75.69188	91.41	6.28
Philipsburg, PA, USA	40.910518	-78.056099	113.94	10.61
Phoenixville, PA, USA	40.099968	-75.463508	111.43	11.78
Pittsburg, PA, USA	40.436315	-79.08887	95.96	10.67
Quebec City, QC, Canada	46.81274	-71.21935	123.03	4.04
Sylvania, OH, USA	41.71556	-83.705	85.17	11.89
Urbana, IL, USA	40.11727	-88.20449	104.29	10.78
Westford, VT, USA	44.61194	-73.01039	101.2	6.8
References

1. Boyle JH, et al. (2022) Temporal matches and mismatches between monarch butterfly and milkweed population changes over the past 12,000 years. *bioRxiv*: https://doi.org/10.1101/2022.02.25.481796.

2. Lewis PO & Zaykin D (2001) Genetic Data Analysis: Computer program for the analysis of allelic data. Version 1.0 (d16c). Free program distributed by the authors over the internet http://lewis.eeb.uconn.edu/lewishome/software.html.

3. Excoffier L & Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. *Molecular Ecology Resources* 10(3):564-567.

4. Rousset F (2008) A complete re-implementation of the GENEPOP software for software for teaching and research. *Molecular Ecolology Resources* 8:103-106.

5. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. *Genetics* 139(1):457-462.

6. Brommer J (2011) Whither Pst? The approximation of Qst by Pst in evolutionary and conservation biology. *J. Evol. Biol.* 24(6):1160-1168.

7. Whitlock MC & Guillaume F (2009) Testing for spatially divergent selection: comparing Qst to Fst. *Genetics* 183(3):1055-1063.

8. O'Hara R & Merila J (2005) Bias and precision in Qst estimates: problems and some solutions. *Genetics* 171(3):1331-1339.

9. Whitlock MC (2008) Evolutionary inference from Q(ST). *Mol. Ecol.* 17(8):1885-1896.

10. Leinonen T, O’HARA RB, Cano JM, & Merilä J (2008) Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. *J. Evol. Biol.* 21(1):1-17.

11. Newcombe D, Blount JD, Mitchell C, & Moore AJ (2013) Chemical egg defence in the large milkweed bug, *Oncopeltus fasciatus*, derives from maternal but not paternal diet. *Entomol. Exp. Appl.* 149(3):197-205.

12. Woods EC, Hastings AP, Turley NE, Heard SB, & Agrawal AA (2012) Adaptive geographical clines in the growth and defense of a native plant. *Ecol. Monogr.* 82(2):149-168.