The association of maternal risk factors to macrosomia in rural areas of Haryana, India: a community based study

Manisha Malik¹*, Pardeep Khanna², Ramesh Verma²

INTRODUCTION

Macrosomia affects 1-10% of all pregnancies.¹ The term macrosomia is used to describe a new born with an excessive birth weight i.e. birth weight more than 4 kg or birth weight two standard deviations above the mean birth weight of that gestational age. A diagnosis of foetal macrosomia can be made only by measuring birth weight after delivery; therefore, the condition is confirmed only retrospectively i.e. after delivery of the neonate. Factors described with foetal macrosomia include genetics such as parental height and weight; duration of gestation; presence of gestational diabetes; racial and ethnic factors.² Despite the identification and characterization of risk factors, no combination of these risk factors are known to predict macrosomia accurately. Much of the birth weight variation remains unexplained, and most macrosomic infants do not have identifiable risk factors. The macrosomia is reportedly associated with neonatal morbidity, neonatal injury, maternal injury and cesarean delivery.³ All deaths and diseases of infants during perinatal and neonatal period are strongly associated with maternal biological characteristics and with problems during pregnancy and childbirth. The present study is part of another study entitled, “a study to assess the association of maternal risk factors with fetal outcome in...
rural areas of Haryana” in which all the adverse fetal outcome were studied. The present paper was aimed at finding the prevalence of macrosomia and its relationship with maternal risk factors as it is important to study this on regional basis.

METHODS

This community-based retrospective and cross-sectional study was carried out in Community Development Block, Beri (District Jhajjar) after approval from institutional ethics committee from September 2012 to August 2013. Beri block serves as the field practice area of Department of Community Medicine, Pt. B. D. Sharma Post Graduate Institute of Medical Sciences, Rohtak. Out of the 25 subcentres, two subcentres- serve the urban population and the rest 23 subcentres cater services to rural population.

Considering the prevalence of high risk pregnancy as approximately 10% and allowable error of 20% at 95% level of significance and 90% power, the sample size was calculated using the formula (n) = Z21-α/2βp (1-p)/d2, where Z= value of area under the normal curve (1.96 for 2-sided test; 5% significance level), α= Level of significance (0.05), β = power of the study, p= prevalence (proportion- 10%), d= relative allowable error (20%) and n= sample size.3 The calculated sample size came out to be 900. Mothers who delivered in the last one year were included in the study fulfilled the inclusion criteria of permanent residents of the area for at least last one year, had ANC records at subcentres and who had given informed written consent with a literate witness thereof. Women who could not be contacted even after two home visits, women who did not give consent, multiple births like twins and Maternal death were excluded from study. A list of all the 23 rural sub-centres in the study area was obtained from the concerned Community Health Centers. All mothers who delivered in the last one year and had antenatal records were enlisted from the ANC, Birth and immunization register from subcentre. Out of enlisted mothers, 40 mothers were selected by simple random sampling from each subcentre. Though the calculated sample size was 900, a total of 920 (40×23) mothers were included in the study to make the sampling procedure more convenient. The investigator herself contacted these selected mothers at their home. All the subjects were fully informed about the purpose of the study. A written informed consent was obtained from the individual before conducting the interview. A pre-tested semi-structured interview schedule was used which included information on socio-demographic profile, past obstetrical, medical and contraceptive history, details of latest pregnancy like antenatal care visits, Iron Folic Acid tablets consumption, time of pregnancy registration and complications during pregnancy like anemia, hypertension, diabetes, etc. The detailed obstetric history, along with birth weight were recorded. The health records available with the mother were also reviewed.

Socioeconomic status of study population was assessed using Modified Uday Parikh scale for rural areas.5

Data analysis

Data collected were entered in the MS Excel spread sheet, coded appropriately. Analysis was carried out using SPSS for Windows version 20.0. Categorical data was presented as percentage (%). Pearson’s chi square test was used to evaluate differences between groups for categorized variables. In case, the expected cell count was less than 5 in >20% cells, Fisher’s Exact test was used. Binary logistic regression analysis (stepwise method) was used to evaluate the independent associations of various factors with macrosomia. All tests were performed at a 5% level significance; thus, an association was significant if the value was less than 0.05 (p<0.05).

RESULTS

In the present study, a total of 920 mothers who delivered in the last one year were included in the study. The response rate was 100%. There were 10 twin deliveries among 920 study participants which were excluded from the analysis. The study revealed that 98.9% (900 out of 910 single deliveries) of foetal outcome was in the form of live births and rests 1.1% (10) were still births. Among 900 live births, 1.3% (12) babies were overweight. The study found that the mean age of study participants was 24.4 years. Majority (96.6%) of study subjects belonged to lower socioeconomic status (middle + lower middle+ lower socioeconomic status) while higher socioeconomic status (upper-middle + upper socioeconomic status) constituted 3.4% of study subjects.

Table 1: Distribution of risk factors among mothers (N=910).

Risk factors*	Frequency	Percentage (%)
Maternal age ≤19 years	34	3.7
Maternal age ≥35 years	15	1.6
Height ≤145 cm	8	0.9
Parity ≥4	33	3.6
Previous stillbirth	25	2.7
History of ≥3 abortions	23	2.5
Foetal mal-presentation	18	2.0
Previous birth with congenital malformations	15	1.6
Anemia during pregnancy	473	52.0
Hypertension during pregnancy	44	5.0
Diabetes mellitus during pregnancy	62	6.8

*More than one risk factor may be there.
The Table 1 shows the prevalence of risk factors among mothers in the study area. The present study revealed that nearly half of the mothers were anemic during pregnancy (52.0%). The diseases like diabetes and hypertension during pregnancy with prevalence of 6.8% and 5.0% respectively were other common morbidities found among mothers. There were 3.7% teenage mothers (≤19 years) while 1.6% mothers were of advanced age (≥35 years). Mothers with parity ≥4 accounted for 3.6% of the total study subjects. The history of previous stillbirth and the history of ≥3 abortions were present in 2.7% and 2.5% of mothers respectively. Other risk factors like foetal mal-presentation, previous history of congenital malformations and height ≤145 cm were found in 2.0%, 1.6% and 0.9% respectively.

Table 2: Association of mother’s variables with overweight birth (macrosomia) (N=900).

Mother’s variables	Birth weight ≥4 kg (N=12) n (%)	Birth weight ≥4 kg (N=12) n (%)	Chi square, p value
Mother’s age ≥35 year	0 (0.0)	14 (100.0)	0.192, p=0.661
Mother’s education			
Illiterate	4 (2.6)	150 (97.4)	
Primary	2 (1.9)	103 (98.1)	
Middle	1 (0.5)	204 (99.5)	7.271, p=0.155
High	1 (0.4)	283 (99.6)	
Graduate and above	4 (2.6)	148 (97.4)	
Mother’s occupation			
Working	4 (1.8)	211 (98.1)	0.203, p=0.653
Socio-economic status			
Upper+upper middle	2 (6.9)	27 (93.1)	7.050, p=0.049
Middle+lower middle+lower	10 (1.1)	861 (98.9)	
Mother’s height ≤145 cm	1 (16.7)	5 (83.3)	10.795, p=0.078
Parity ≥4	0 (0.0)	32 (100.0)	0.448, p=1.000
Birth spacing <3 year	8 (1.3)	625 (98.7)	0.078, p=0.757
Previous history of ≥3 abortions	0 (0.0)	22 (100.0)	0.305, p=1.000
Anemia during pregnancy	4 (0.9)	461 (99.1)	1.637, p=0.201
Hypertension during pregnancy	0 (0.0)	38 (100.0)	0.536, p=0.464
Diabetes during pregnancy	6 (10.3)	52 (89.7)	38.269, p=0.000
Early registration of pregnancy	10 (1.7)	578 (98.3)	0.187, p=0.235
<4 ANC visits during pregnancy	7 (2.1)	319 (97.9)	2.574, p=0.133
IFA intake during pregnancy	2 (0.5)	413 (99.5)	3.950, p=0.048

Table 3: Independent association of variables with macrosomia (logistic regression analysis) (N=900).

Variable	aOR	Confidence interval	P value		
Diabetes during pregnancy	17.46	5.23-32.27	0.000		
Upper+upper	Middle	6.86	1.18-39.88	0.032	
Socio-economic status	IFA tablets intake	during	0.76	0.02-0.93	0.046

Table 2 depicted the association of macrosomia with maternal variables. The study found out that mothers who were in advanced age i.e. more than 35 years delivered more macrosomic babies than those mothers who were under 35 years of age. The study also found that illiterate mothers and mothers educated up to graduation and above, delivered maximum number of macrosomic babies i.e. 2.6% each. Further, it was found that mothers of higher socioeconomic group had higher occurrence of macrosomic babies than their counterparts from the lower socioeconomic group. In the present study, upper and upper middle socio-economic status mothers were found to have statistically significant relationship with occurrence of overweight at birth. However, association of macrosomia with mother’s age, education and occupation showed no statistical significance. The study reported that the diabetic mothers had significantly higher incidence of macrosomia (10.3%) as compared to non-diabetic mothers (0.7%). It was found that mothers who were non-anemic delivered more overweight babies than those mothers who were anemic. However, this association between anemia during pregnancy and overweight baby was not statistically significant (p=0.201). The study also looked into the relationship between hypertension during pregnancy and overweight birth and it was observed that there was no statistically
significant difference in occurrence of macrosomia between hypertensive and non-hypertensive mothers (p=0.464). The present study found out that mothers who consumed full course of Iron Folic Acid (IFA) tablets during antenatal period had less prevalence of macrosomia in live births as compared to mothers who did not consume the full course of IFA tablets. This relationship was found to be statistically significant (p=0.048). The present study also observed that there is no statistically significant relationship between ANC visits during pregnancy and overweight baby (p=0.133).

A step-wise logistic regression analysis was performed) (Table 3). The prevalence of overweight birth was shown to be about seventeen times more common in diabetic mothers (aOR: 17.46; CI: 5.23-32.27 p=0.000) and seven times more common in mothers who belonged to higher socio-economic status (aOR: 6.86; CI: 1.18-39.88 p=0.032). The study also revealed that consumption of full course of IFA tablets during antenatal period decreased odds of having overweight baby with odds ratio of 0.76 (CI: 0.02-0.93 p=0.046).

DISCUSSION

The present study revealed that nearly half of the mothers were anemic during pregnancy (52.0%). Similarly, NFHS-3 data revealed that 57.9% pregnant women in India and 56% in Haryana were anemic. Singh et al reported the overall prevalence of anemia as 42%. The prevalence of diabetes during pregnancy was 6.8% in our study. The prevalence of gestational diabetes has been reported to be in the range of 6.9 to 13.9%. Hypertension was found out to be 5.0% among pregnant women in the present study. Almost, similar observation (6.9%) was quoted by Bharti et al while Sachdeva et al and Zareen et al had reported it as 15% and 14.8% respectively among rural women in hospital-based studies.

The present study figured out that mothers who had advanced age i.e. more than 35 years delivered more macrosomic babies than those mothers who were below 35 years of age. Similarly, Rajae et al in their study reported that mothers aged more than 35 years had higher chances of delivering a macrosomic baby (35-39 years: 1.8% and >40 years: 1.2%) when compared to those aged less than 35 years (1.1%). Kenny et al also observed that the risk of macrosomia increased significantly with advancing maternal age.

The present study also looked into the association of mother’s education with overweight baby and found that illiterate mothers and those educated up to graduation and above, delivered maximum number of macrosomic babies i.e. 2.6% each. However, association of macrosomia with education had no statistical significance. This is in conformity with the finding of Webb that aside from the lowest category of education, a trend of higher risk of high birth weight was observed with increasing education. This study revealed that mothers of higher socio-economic group had higher occurrence of macrosomic babies than lower socio-economic group. The study observed that prevalence of macrosomia was around seven times more common in mothers who belonged to higher socio-economic status as compared to mothers of lower socio-economic status (aOR: 6.86; CI: 1.18-39.88 p=0.032). A study conducted by Webb R also reported similar findings. In addition to foetal over-nutrition as an explanation, it is also possible that there is a genetic or lifestyle pre-disposition to greater BMI, greater weight at birth and obesity throughout life in babies of mothers of higher socio-economic group. The present study reported that diabetic mothers had significantly higher incidence of macrosomia (10.3%) as compared to non-diabetic mothers (0.7%). The prevalence of overweight birth was shown to be about seventeen times more common in diabetic mothers (aOR: 17.46; CI: 5.23-32.27, p=0.000) than non-diabetic mothers. Xiong et al revealed that infants born to mothers with GDM had 1.12 higher odds of macrosomia (10.3%) as compared to non-diabetic mothers. The study observed that prevalence of macrosomia was significantly higher in mothers with GDM (16.2%) as compared to controls (5.7%) (p=0.03).

ACKNOWLEDGEMENTS

To all teachers, senior and junior residents especially Dr. Anuradha, Dr. Bharti, Dr. Sumit Chawla, Dr. Raghavendra, Dr. Meely, Dr. Manju and all field staff of Department of Community Medicine, Pt. B.D. Sharma PGIMS Rohtak (Haryana), India for their kind support.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee of Pt. B. D. Sharma University of health Sciences, Rohtak (Haryana), India

REFERENCES

1. Martin JA, Hamilton BE, Sutton PD, Ventura SJ, Menacker F, Kirmeyer S. National Vital Statistic Report Vol 55. Center for Disease Control; 2006.
2. Okun N, Verma A, Mitchell BF, Flowerdew G. Relative importance of maternal constitutional factors and glucose intolerance of pregnancy in the development of newborn macrosomia. J Matern Foetal Med. 1997;6(5):285-90.
3. Spellacy WN, Miller S, Winear A, Peterson PQ. Macrosomia—maternal characteristics and infant complications. Obstet Gynecol. 1985;66(2):158-61.
4. Reddaiyah VP, Kapoor SK. Risk approach in maternal care: how beneficial is this approach in reality? Indian J Pediatr. 1985;52:61-5.
5. Lal S, Adarsh, Pankaj. Textbook of community medicine. 2nd edition. New Delhi: CBS Publishers & Distributors; 2009.
6. National Family Health Survey-3 (NFHS -3), 2005-06: India: Volume-1. Mumbai: IIPS. 225-6.
7. Singh AK, Dabral M, Gupta SB, Srivastava A. Maternal risk factors and their effects on Pregnancy Outcome: A cross-sectional study. IJMCH. 2011;6(3):386-7.
8. Wahi P, Dogra V, Jandial K, Bhagat R, Gupta R, Gupta S, et al. Prevalence of gestational diabetes mellitus (GDM) and its outcomes in Jammu region. J Assoc Physicians India. 2011;59:227-30.
9. Rajput R, Yadav Y, Nanda S, Rajput M. Prevalence of gestational diabetes mellitus & associated risk factors at a tertiary care hospital in Haryana. Indian J Med Res. 2013;137:728-33.
10. Rajput M, Bairwa M, Rajput R. Prevalence of gestational diabetes mellitus in rural Haryana: A community-based study. Indian J Endocr Metab. 2014;18(3):350-4.
11. Mehta B, Kumar V, Chawla S, Sachdeva S, Mahopatra D. Hypertension in Pregnancy: A Community-Based Study. Indian J Community Med. 2015;40(4):273–8.
12. Zareen N, Naqvi S, Majid N, Fatima H. Perinatal outcome in high risk pregnancies. J Coll Physicians Surg Pak. 2009;19(7):432-5.
13. Sachdeva PD, Patel BG, Bhatt MV. A study of incidence and management of pregnancy induced hypertension in central Gujarat, India. Int J Univ Pharm Life Sci. 2011;1:61-70.
14. Rajaee M, Amirzadeh S, Mirbook F, Soltani MA. The Effect of Maternal Age on Pregnancy Outcome. Asian J Medi Sci. 2010;2(3):159-62.
15. Kenny LC, Lavender T, McNamee R, O'Neill SM, Mills T, Khashan AS. Advanced maternal age and adverse pregnancy outcome: evidence from a large contemporary cohort. PLoSOne. 2013;8(2):1-9.
16. Webb R. High Birth Weight and Socio-Economic Status [Dissertation]. Canterbury: University of Canterbury; 2012. Available: http://www.nzae.org.nz/wp-content/uploads/2012/06/Webb_High-Birth-Weight-and-Socio-Economic-Status.pdf. Accessed 10 March 2018.
17. Xiong X, Saunders LD, Wang FL, Demianczuk NN. Gestational diabetes mellitus: prevalence, risk factors, maternal and infant outcomes. Int J Gynaecol Obstet. 2001;75(3):221-8.
18. Lawlor DA, Fraser A, Lindsay RS, Ness A, Dabelea D, Catalano P, et al. Association of existing diabetes, gestational diabetes and glycosuria in pregnancy with macrosomia and offspring body mass index, waist and fat mass in later childhood: findings from a prospective pregnancy cohort. Diabetologia. 2010;53:89–97.

Cite this article as: Malik M, Khanna P, Verma R. The association of maternal risk factors to macrosomia in rural areas of Haryana, India: a community based study. Int J Community Med Public Health 2018;5:3842-6.