THERE IS NO UNIVERSAL PROPER METRIC SPACES FOR ASYMPTOTIC DIMENSION 1

MYKHAILO ZARICHNYI

Abstract. Answering a question of Ma, Siegert, and Dydak we show that there is no universal proper metric space for the asymptotic dimension \(n \geq 1 \).

1. Introduction

The notion of asymptotic dimension is introduced by Gromov \[4\]. A family \(\mathcal{A} \) of subsets of a metric space \(X \) is called uniformly bounded if there is \(M > 0 \) such that \(\text{diam}(A) \leq M \), for every \(A \in \mathcal{A} \). Given \(D > 0 \), we say that a family \(\mathcal{A} \) is \(D \)-discrete if \(d(A, B) = \inf \{ d(a, b) \mid a \in A, b \in B \} \geq D \) for every distinct \(A, B \in \mathcal{A} \).

We say that the asymptotic dimension of \(X \) is \(\leq n \) (written \(\text{asdim} X \leq n \)) if for every \(D > 0 \) there exists a uniformly bounded cover \(\mathcal{U} \) of \(X \) such that \(\mathcal{U} = \bigcup_{i=0}^{n} \mathcal{U}_i \), where every \(\mathcal{U}_i \), \(i = 0, 1, \ldots, n \), is \(D \)-discrete.

Universal spaces for the asymptotic dimensions \(\leq n \) (we do not provide here a precise definition) are constructed in \[2\] and \[1\].

Recall that a metric space \(X \) is proper if every closed ball in it is compact. It is proved in \[5\], Theorem 7.2 that there exists a countable proper ultrametric space \(PU \) such that any proper metric space \(X \) of asymptotic dimension 0 coarsely embeds (see the definition below) in \(PU \). In other words, there is a universal proper metric space of asymptotic dimension 0.

Note that universal spaces for asymptotic dimension are constructed in \[3, 1\].

The following problem is formulated in \[5\]: Given \(n \geq 1 \) is there a universal space in the class of proper metric spaces of asymptotic dimension at most \(n \)?

The aim of this note is to provide a negative answer.

2. Preliminaries

A metric space \(X \) is called geodesic if, for every \(x, y \in X \) there is an isometric embedding \(\alpha : [0, d(x, y)] \rightarrow X \) such that \(\alpha(0) = x \), \(\alpha(d(x, y)) = y \).

A map \(f : X \rightarrow Y \) is called asymptotically Lipschitz if there exist \(\lambda, s > 0 \) such that, for any \(x, y \in X \), \(d(f(x), f(y)) \leq \lambda d(x, y) + s \).

2020 Mathematics Subject Classification. 54E35, 54F45.
A map \(f : X \to Y \) is called coarsely uniform if there exists a non-increasing function \(\phi : \mathbb{R}_+ \to \mathbb{R}_+ \) such that \(\lim_{t \to \infty} \phi(t) = \infty \) and
\[
d_Y(f(x), f(y)) \leq \phi(d_X(x, y)), \quad x, y \in X.
\]

In [2] it is proved that any coarse uniform map defined on a geodesic metric space is asymptotically Lipschitz.

A coarse uniform map \(f : X \to Y \) is called a coarse embedding if there exists a non-increasing function \(\psi : \mathbb{R}_+ \to \mathbb{R}_+ \) such that \(\lim_{t \to \infty} \psi(t) = \infty \) and
\[
d_Y(f(x), f(y)) \geq \phi(d_X(x, y)), \quad x, y \in X.
\]

Given \(D > 0 \), we say that a subset \(A \) of a metric space \(X \) is \(D \)-discrete if \(d(x, y) \geq D \) for all \(x, y \in A \) with \(x \neq y \).

Recall that a tree is a connected graph without cycles. We regard any connected graph as a metric space endowed with the geodesic metric. Every edge is assumed to be isometric to the unit line segment.

Given a metric space \((X, d)\) and \(\alpha > 0 \), we define \(\alpha X \) to be the metric space \((X, \alpha d)\).

By \(B_r(x) \) we denote the ball of radius \(r > 0 \) centered at \(x \).

3. Result

Theorem 3.1. There is no proper metric space \(X \) with the property that every proper metric space of asymptotic dimension \(\leq 1 \) admits a coarse embedding in \(X \).

Proof. Suppose the contrary and let \(X \) be such a space. Let \(x_0 \in X \) be a base point.

For \(r > 0 \), define
\[
\Phi(r) = \max\{|A| \mid A \subset B_r(x_0) \text{ is a 1-discrete subset}\}.
\]

Because of properness of \(X \), \(\Phi(r) \) is well-defined.

For every \(n \in \mathbb{N} \), define \(\Phi_n(r) = \Phi(nr + n) \), for all \(r > 0 \). There exists a nondecreasing function \(\Psi : [0, \infty) \to [0, \infty) \) satisfying the property: \(\lim_{r \to \infty} (\Psi(r)/\Phi_n(r)) = \infty \), for any \(n \in \mathbb{N} \).

Let \(T \) be a rooted tree with the root \(t_0 \). For any \(n \in \mathbb{N} \), define \(\Xi(n) = |\{t \in T \mid d(t, t_0) = n\}| \).

For every \(n \in \mathbb{N} \), attach \(\Psi(n) \) unit segments to \(n - 1 \in \mathbb{R}_+ \) each by one of its endpoints. The obtained rooted tree (the root is \(0 \in \mathbb{R}_+ \)) is denoted by \(T_1 \). We see that \(\Xi(n) \geq \Psi(n) \).

Let \(S \) be the tree which is obtained by attaching, for any \(n \in \mathbb{N} \), a copy of \(T_n = nT_1 \) to \(n - 1 \in \mathbb{R}_+ \) by its root, which we denote by \(y_n \). Note that \(S \) is a geodesic metric space. For the sake of convenience, any point \(k \in T_n \subset S \) will be denoted by \(k_{T_n} \).

We are going to show that there is no coarse embedding of \(S \) into \(X \). Suppose the contrary, let \(f : S \to X \) be such an embedding. Since \(S \) is geodesic, the map \(f \) is asymptotically Lipschitz. Let \(\lambda, s \) be the corresponding constants from the definition of the asymptotically Lipschitz map.
Since f is a coarse embedding, there exists $k \in \mathbb{N}$ such that $d_X(f(x), f(y)) \geq 1$ whenever $d_S(x, y) \geq k$. We obtain
\[
d_X(x_0, f(nT_k)) \leq d_X(x_0, f(nT_k)) + d_X(f(0T_k), nT_k) \leq d_X(x_0, f(nT_k)) + \lambda kn + s \leq mn + m,
\]
for a constant $m \in \mathbb{N}$ large enough.

We conclude that $\Psi(n) \leq \Xi(n) \leq \Phi(mn + m)$ for all $n \in \mathbb{N}$, which contradicts to the choice of Ψ.

\[
\square
\]

4. Remarks

A metric space is said to have bounded geometry if for every $R > 0$ there exists $C < \infty$ such that every 1-discrete set contained in a ball of radius R is of cardinality at most C.

Given $n \geq 1$, is there a proper metric into which every proper metric space of bounded geometry and of asymptotic dimension at most n can be coarsely embedded?

References

[1] G. C. Bell, A. Nagórkko, A new construction of universal spaces for asymptotic dimension, Topology and its Applications Volume 160, Issue 1, Pages 159–169 (2013)
[2] A. Dranishnikov, Asymptotic topology. Uspekhi Mat. Nauk, 55 (6(336)) (2000), pp. 71–116.
[3] A. Dranishnikov, and M. Zarichnyi, Universal spaces for asymptotic dimension, Topology and its Applications, vol. 140, 203–225, 2004.
[4] M. Gromov, Asymptotic invariants for infinite groups, in Geometric Group Theory, vol. 2, 1–295, G. Niblo and M. Roller, eds., Cambridge University Press, 1993.
[5] Yuankui Ma, Jeremy Siegert, Jerzy Dydak, Coarse structure of ultrametric spaces with applications, arXiv:2203.05329

Department of Mechanics and Mathematics, Ivan Franko National University of Lviv, 1 Universytetska Str, 79000 Lviv, Ukraine

Email address: zarichnyi@yahoo.com