Neural precursor cells in the ischemic brain – integration, cellular crosstalk, and consequences for stroke recovery

Dirk M. Hermann1 *, Luca Peruzzotti-Jametti2, Jana Schlechter1, Joshua D. Bernstock2, Thorsten R. Doeppner1 and Stefano Pluchino2 *

1 Chair of Vascular Neurology, Dementia and Cognitive Health of the Elderly, Department of Neurology, University Hospital Essen, Essen, Germany
2 John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, NIHR Biomedical Research Centre, and Wellcome Trust-Medical Research
Council Stem Cell Institute, University of Cambridge, Cambridge, UK

*Correspondence: Dirk M. Hermann, Chair of Vascular Neurology, Dementia and Cognitive Health of the Elderly, Department of Neurology, University Hospital Essen, Hufelandstraße 55, D-45122 Essen, Germany
e-mail: dirk.hermann@uk-essen.de;
Stefano Pluchino, John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, NIHR Biomedical Research Centre, and Wellcome Trust-Medical Research
Council Stem Cell Institute, University of Cambridge, Robinson Way, CB2 0PY Cambridge, UK
e-mail: spp24@cam.ac.uk

INTRODUCTION

Ischemic stroke represents the most common cause of serious morbidity and the second most common cause of mortality in industrialized countries (Donnan et al., 2008). While a certain degree of spontaneous recovery of lost functions takes place in some stroke patients, the majority never regain full functional independence and ultimately suffer from a reduced quality of life (Lloyd-Jones et al., 2009). Clearly, this health burden represents a major unmet clinical need that may in part be fulfilled via a detailed understanding of the mechanisms driving neurological recovery after stroke.

In animal models, the mobilization and recruitment of NPCs from the major stem cell niches within the central nervous system after an ischemic stroke, neural precursor cells (NPCs) proliferate within major germinal niches of the brain. Endogenous NPCs subsequently migrate toward the ischemic lesion where they promote tissue remodeling and neural repair. Unfortunately, this restorative process is generally insufficient and thus unable to support a full recovery of lost neurological functions. Supported by solid experimental and preclinical data, the transplantation of exogenous NPCs has emerged as a potential tool for stroke treatment. Transplanted NPCs are thought to act mainly via trophic and immune modulatory effects, thereby complementing the restorative responses initially executed by the endogenous NPC population. Recent studies have attempted to elucidate how the therapeutic properties of transplanted NPCs vary depending on the route of transplantation. Systemic NPC delivery leads to potent immune modulatory actions, which prevent secondary neuronal degeneration, reduces glial scar formation, diminishes oxidative stress and stabilizes blood–brain barrier integrity. On the contrary, local stem cell delivery allows for the accumulation of large numbers of transplanted NPCs in the brain, thus achieving high levels of locally available tissue trophic factors, which may better induce a strong endogenous NPC proliferative response. Herein we describe the diverse capabilities of exogenous (systemically vs. locally transplanted) NPCs in enhancing the endogenous neurogenic response after stroke, and how the route of transplantation may affect migration, survival, bystander effects and integration of the cellular graft. It is the authors’ claim that understanding these aspects will be of pivotal importance in discerning how transplanted NPCs exert their therapeutic effects in stroke.

Keywords: cell therapy, neurogenesis, stroke, blood–brain barrier, brain plasticity, neuroprotection

After an ischemic stroke, neural precursor cells (NPCs) proliferate within major germinal niches of the brain. Endogenous NPCs subsequently migrate toward the ischemic lesion where they promote tissue remodeling and neural repair. Unfortunately, this restorative process is generally insufficient and thus unable to support a full recovery of lost neurological functions. Supported by solid experimental and preclinical data, the transplantation of exogenous NPCs has emerged as a potential tool for stroke treatment. Transplanted NPCs are thought to act mainly via trophic and immune modulatory effects, thereby complementing the restorative responses initially executed by the endogenous NPC population. Recent studies have attempted to elucidate how the therapeutic properties of transplanted NPCs vary depending on the route of transplantation. Systemic NPC delivery leads to potent immune modulatory actions, which prevent secondary neuronal degeneration, reduces glial scar formation, diminishes oxidative stress and stabilizes blood–brain barrier integrity. On the contrary, local stem cell delivery allows for the accumulation of large numbers of transplanted NPCs in the brain, thus achieving high levels of locally available tissue trophic factors, which may better induce a strong endogenous NPC proliferative response. Herein we describe the diverse capabilities of exogenous (systemically vs. locally transplanted) NPCs in enhancing the endogenous neurogenic response after stroke, and how the route of transplantation may affect migration, survival, bystander effects and integration of the cellular graft. It is the authors’ claim that understanding these aspects will be of pivotal importance in discerning how transplanted NPCs exert their therapeutic effects in stroke.

Keywords: cell therapy, neurogenesis, stroke, blood–brain barrier, brain plasticity, neuroprotection

Abbreviations: BDNF, brain-derived neurotrophic factor; BMP, bone morphogenetic protein; CCL, CC chemokine ligands; CSPGs, chondroitin sulfate proteoglycans; CNF1, cilary neurotrophic factor; GDNF, glial cell line-derived neurotrophic factor; HO-1, heme oxygenase 1; IFN-γ, interferon-γ; IGF1, insulin-like growth factor-1; IL, interleukin; LIF, leukemia inhibitory factor; MMPs, matrix metalloproteinases; NGF, nerve growth factor; NO, nitric oxide; NPCs, neural precursor cells; NT-3, neurotrophin-3; PGE, prostaglandin E; SDF-1α, stromal cell-derived factor-1α; SHH, sonic hedgecthog homolog; SVZ, subventricular zone; TIMPs, tissue inhibitors of metalloproteinases; TN-C, tenascin-C; TNF-α, tumor necrosis factor-α; TSP, thrombospondin; VEGF, vascular endothelial growth factor.

[1] CNS; i.e., the sub-ventricular zone (SVZ) of the lateral ventricles and the sub-granular zone of the dentate gyrus (DG)] are essential compensatory responses after an ischemic insult (Arvidsson et al., 2002). However, while it is known that endogenous NPCs do positively enhance the brain’s own restorative potential via trophic influences on the ischemic microenvironment, the overall neurogenic response after stroke is insufficient for a number of reasons, which include the limited survival of NPCs, their transient mobilization from the neurogenic niches and their incomplete integration within damaged brain circuitries (Thored et al., 2007).

The observation that NPCs can be harvested from the adult brain and used therapeutically in animal models of stroke argues in favor of the potential utility of cell-based therapies in ischemic stroke. We have shown that the injection of somatic mouse NPCs ameliorates the clinicopathological features of stroke in relevant murine models by reducing secondary neurodegeneration, decreasing glial scar formation, promoting endogenous neurogenesis and stabilizing blood–brain barrier (BBB) integrity (Bacigaluppi et al., 2009; Doeppner et al., 2012). Grafted NPCs adapt to the ischemic microenvironment and facilitate homeostasis via the secretion of numerous tissue trophic factors that have...
beneficial effects on endogenous brain cells, as well as modulatory actions on both innate and adaptive immune responses (Pluchino and Cossetti, 2013). This concept has now come to be known as functional stem cell multipotency, and it is one of the core tenets behind the use of NPC grafts in attempts to boost the recovery potential of the ischemic brain (Martino and Pluchino, 2006).

However, there remains an enormous need to understand how the complex interactions of stem cell grafts with the ischemic brain may be affected by the route and timing of cell delivery. In particular, we still have to define how NPCs should best be administered in order to enhance endogenous restorative responses that depend on (i) the homing, survival and integration of transplanted NPCs, (ii) the proliferation of the host’s endogenous NPCs, (iii) the modification of the cerebral microenvironment, and (iv) the remodeling of ischemic tissue via actions that include the modification of glial responses and the promotion of neuronal plasticity.

Herein, we summarize current knowledge with regard to how transplanted NPCs interact with host tissues, aiming to identify how exogenously delivered NPCs may eventually be used to promote neurological recovery in mouse models of ischemic stroke.

REGULATION OF ENDOGENOUS NEUROGENESIS AFTER STROKE

The SVZ is situated within the lateral walls of the lateral ventricles and is composed of four main cell types: ciliated ependymal cells (type E), slowly proliferating stem cells (type B), transient amplifying progenitors (type C) and proliferating neuroblasts (type A; Mirzadeh et al., 2008). After an ischemic stroke that involves the striatum, the number of type A and C cells in the SVZ is persistently increased, while type B and E cells undergo a period of transient proliferation (Zhang et al., 2004, 2007). Increases in mitotic activity within the SVZ appear to peak between 7 and 10 days, subsequently decrease during weeks 3–5 post-stroke, and thereafter continues at lower levels over the course of the following year (Arvidsson et al., 2002; Parent et al., 2002; Thored et al., 2006). Other studies suggest instead that microglial cells can increase neurogenesis via TNF-α/ TNF-R2 interaction or insulin-like growth factor (IGF)-1 secretion (Heldmann et al., 2005; Thored et al., 2009). These differential effects of inflammation, which appear to either support or impair the adult neurogenic response, most likely depend on the phenotype of the inflammatory cells (and their cytokine production profile; Ekdahl et al., 2009).

Since NPCs can secrete many of the factors that regulate neurogenesis (Drago et al., 2013), and are also able to beneficially modulate inflammatory responses after CNS damage (Bacigaluppi et al., 2009; Cusimano et al., 2012), the possibility of exploiting NPC transplantation in an effort to augment endogenous neurogenesis and the brain’s spontaneous reparative processes (e.g., plasticity) after stroke is readily apparent. In this review, cellular and molecular interactions of NPCs with the brain environment have been illustrated in Figure 1. Effects of exogenously delivered NPCs in experimental models of stroke have been summarized in Table 1.

EFFECTS OF TRANSPLANTED NPCs ON ENDOGENOUS NEUROGENESIS

In view of their intrinsic actions, the possibility of exploiting NPCs in an effort to augment endogenous neurogenesis has been the focus of intensive research efforts. Among the different routes of NPC delivery, there are several studies suggesting that the local (i.e., intracerebral or intracerebroventricular) administration of NPCs has the most relevant effects on endogenous neurogenesis. The local route of cell delivery indeed allows for a large number of cells to be administered, which facilitates the secretion of high concentrations of growth factors that ultimately promote the endogenous neurogenic response (Hao et al., 2014). In line with the need for an efficient accumulation of NPCs within the ischemic parenchyma, the intravenous administration of NPCs may be inferior with regard to the stimulation of neurogenesis. As such, when mouse embryonic stem (ES)-derived NPCs were transplanted 24 h after photothrombotic stroke in adult immunosuppressed rats, no effect on post-stroke neurogenesis of the SVZ was shown, and a decrease in newly generated neurons in the DG was observed (Minnerup et al., 2011).

The early transplantation of human NPCs has instead been proven highly effective in stimulating endogenous neurogenesis in rats when cells were delivered directly into the ischemic brain parenchyma. Human fetal NPCs, injected in the cortical peri-infarct tissue 24 h after permanent middle cerebral artery occlusion (MCAO) promoted cell proliferation in the SVZ (up...
FIGURE 1 | Neural precursor cell (NPC) transplantation boosts the endogenous neurogenic response after stroke. NPC proliferation within the SVZ is augmented after stroke leading to the generation of newly formed neuroblasts that migrate along vessels toward gradients of chemokines that are produced locally by glial and inflammatory cells (e.g., CCL2, SDF1-α, and EPO). The bystander effects of transplanted NPCs depend on the release of several factors (e.g., BMP, SHH, NGF, BDNF, CNTF, GDNF, NT-3, and VEGF) that can directly increase cell proliferation within the SVZ, potentiate neuroblasts migration, and augment peri-ischemic angiogenesis. Transplanted NPCs can also positively affect the differentiation of endogenous neuroblasts and plasticity within the ischemic tissue (via the secretion of NGF, BDNF, CNTF, GDNF, NT-3, MMPs, TIMPs, CSPGs, TN-C, VEGF, TSP1-2, Slit), or directly differentiate into post-mitotic neurons, astrocytes, or oligodendrocytes. Most importantly, transplanted NPCs secrete a plethora of soluble molecules that modulate the activation of host microglia/macrophages (e.g., BMP, LIF, NO, PGE, HO-1, VEGF, TN-C), thus modifying the release of inflammatory mediators that inhibit (e.g., TNF-α, IFN-γ, IL1β, IL6) or increase (e.g., TNF-α, IGF1) endogenous neurogenesis. Green dots represent mediators secreted by inflammatory cells.

to 15 days post-stroke) and increased angiogenesis in peri-infarct regions (Zhang et al., 2011). Intraparenchymal cell delivery has also yielded possible evidence of therapeutic potential when administered in the subacute and chronic phases of the stroke. A study with human fetal NPCs transplanted 2 days after MCAO showed that the intraparenchymal injection of NPCs was able to promote endogenous neurogenesis in multiple ways (Mine et al., 2013). Transplanted cells were able to induce a prolonged increase in Ki67+ proliferating cells within the SVZ, which was associated with an increase in the number of endogenous neuroblasts...
Table 1 | Effects of exogenously delivered NPCs in experimental stroke models.

Study	Experimental paradigm	Observations
Andres et al. (2011a)	Intracerebral delivery of fetal human NPCs 7 days after permanent distal MCAO combined with transient (30 min) bilateral common carotid artery occlusion in rats	Decreased homing of CCR2+/− NPCs compared with CCR2+/+ NPCs in CCL2+/− mice. Decreased homing of CCR2+/− NPCs in CCL2−/− compared with CCL2+/−/+ mice. Mice receiving CCR2+/− NPCs showed significantly better neurological recovery than animals receiving CCR2−/− NPCs.
Andres et al. (2011b)	Intracerebral delivery of fetal human NPCs 48 h after transient (30 min) proximal (intraluminal) MCAO in rats	Increased dendritic plasticity in ipsi- and contralesional cortex after NPC delivery that coincided with functional neurological recovery. Increased corticocortical, corticostriatal, corticothalamic and corticospinal axonal sprouting from the contralesional hemisphere associated with transcallosal and corticospinal axonal sprouting. Reduced brain amyloid precursor protein accumulation.
Bacigaluppi et al. (2009)	Intravenous or intracerebral delivery of adult mouse NPCs 6 h after transient (30 min) proximal (intraluminal) MCAO in mice	Improved neurological recovery after NPC delivery. Small percentage of transplanted NPCs (< 1%) accumulated in the brain, integrating mainly in the infarct boundary zone, where most of the NPCs remained undifferentiated. Reduced secondary striatal and corpus callosum atrophy associated with downregulation of markers of inflammation, glial scar formation and neuronal apoptotic death.
Darsalia et al. (2011)	Intracerebral delivery of fetal human NPCs 48 h or 6 weeks after transient (30 min) proximal MCAO in rats	Improved neuroprotection after NPC delivery. Small percentage of transplanted NPCs (< 1%) accumulated in the brain, integrating mainly in the infarct boundary zone, where most of the NPCs remained undifferentiated. Reduced secondary striatal and corpus callosum atrophy associated with downregulation of markers of inflammation, glial scar formation and neuronal apoptotic death.
Doepner et al. (2012)	Intracerebral delivery of human conditionally immortalized neural stem cells CTX0E03 4 weeks after transient (60 min)proximal (intraluminal) MCAO in rats	Increased endogenous NPC proliferation in striatum of NPC treated rats. Significant proportion of proliferative cells expressed immature neuronal marker doublecortin. Increased proliferation of CD11b−/− microglial cells in NPC treated rats.
Hassani et al. (2012)	Intravenous, intracerebral or intracerebroventricular delivery of embryonic mouse NPC 24 h after permanent distal MCAO in rats	Brain entry of NPCs with accumulation in ischemic striatum and cortex observed using all three delivery strategies, intrastratial transplants resulting in highest and intravenous transplants in lowest cell densities. Majority of cells expressing undifferentiated neuroepithelial (nestin) or neuronal (doublecortin) markers.
Jin et al. (2005)	Intracerebral delivery of fetal human NPCs 48 h after transient (30 min) proximal MCAO in T cell deficient rats	Subpopulation of NPCs exhibited differentiated neuronal phenotype at 6 and 14 weeks. Numbers of proliferating endogenous NPCs were elevated, and numbers of activated microglia/macrophages were reduced in ischemic striatum of NPC treated rats. Some grafted NPCs projected axons from striatum to globus pallidus. NPC treated rats showed improved neurological recovery.
Zhang et al. (2011)	Intracerebral delivery of fetal human NPCs 24 h after permanent distal MCAO in rats	Increased proliferation of endogenous NPCs in ipsilesional (ischemic) subventricular zone of rats receiving NPC grafts. Enhanced angiogenesis in peri-infarct cortex.

List of major studies using ischemic stroke models, in alphabetic order.
survival, migration and maturation in the striatum. This pro-
longed endogenous neurogenic response, which persisted up
to 14 weeks, was accompanied by the long-term suppression
of microglia/macrophase driven inflammatory responses (Mine
et al., 2013). Similarly, when human conditionally immortalized
NPCs (cell line CTX0E03) were transplanted in immunosup-
pressed rats 4 weeks after MCAO, the number of proliferat-
ing doublecortin (DCX)+ neuroblasts considerably increased in
the ischemic striatum (Hassani et al., 2012). Interestingly,
the authors attributed this finding to an increase (rather than a
decrease) of proliferating microglia in the striatum (Hassani et al.,
2012).

Despite these data, which highlight the promising effects of
intraparenchymal NPC delivery, comparative studies of differ-
ent routes and times of transplantation (without the use of
confounding immunosuppressive regimens) must be performed
in order to determine the optimal spatiotemporal settings that
would allow for the ideal stimulation of endogenous neuro-
genesis in stroke. Additionally, given that the neurogenic potential
of adult NPCs declines with age (Conover and Shook, 2011), the
effect of NPC transplantation in aged brains also warrants inves-
tigation. Interestingly, a recent study has shown that the local
NPC transplantation (24 h post-ischemia) is capable of simi-
lar increases in neurogenesis and angiogenesis in the ischemic
striatum of both young and aged mice (Tang et al., 2014). The
aforesaid, coupled with recent data showing increased neuroge-
genesis in the SVZ of both young and aged animals following the
local administration of human ES-derived NPCs, suggests that
the ischemic environment may effectively be modified in order to
restore deficient neurogenic responses in the aged brain as well
(Jin et al., 2011).

HOMING AND SURVIVAL OF TRANSPLANTED NPCs

In a comparative study evaluating intrastratal, intracerebroven-
tricular and intravenous NPC delivery (24 h after MCAO), the
intrastratal transplant of NPCs yielded the highest numbers of
grafted cells within the ischemic brain (Jin et al., 2005). Intracere-
broventricular transplantation into the lateral ventricle led to the
survival of less cells, yet more cells were found when compared
to intravenous NPC delivery (Jin et al., 2005). The reasons behind
these observations are manifold in nature and may be linked to
both the differential homing of grafted cells and their distinct
survival profiles within the ischemic brain.

The mechanisms that regulate the homing of transplanted cells
to the ischemic lesion are extremely similar to those that regulate
the migration from within the endogenous NPC compartment
(Jin et al., 2003; Zhang et al., 2009). Upon ischemia, EPO acti-
ates the migration from within the endogenous NPC compart-
ment to the ischemic lesion are extremely similar to those that regulate
survival profiles within the ischemic brain.

When exogenous NPCs are administered intravenously, the
crossing of the BBB involves a further degree of complexity. The
CCL2/CCR2 interaction has been demonstrated to be critical for
transendothelial recruitment of intraarterially delivered NPCs in
response to ischemic injury (Andres et al., 2011a). Stem cells in
circulation directly enter the injured brain through endothelial
rolling and adhering on cadherins (VCAM-1) and integrins that
become selectively up-regulated within the zone of ischemic
damage (Mueller et al., 2006). This phenomenon, coupled with the
disturbance of BBB integrity that occurs as a consequence of
ischemia, is responsible for the pathotropism of transplanted NPCs
for ischemic tissue that occurs after systemic delivery. Interestingly,
intravenous transplantation of NPCs has the unique advantage
of stabilizing the BBB, via mechanisms that involve a reduc-
tion of MMP9 expression and reactive oxygen species (ROS), as
we recently showed after the transplantation of adult NPCs at
6 h after transient MCAO (Doeppner et al., 2012). Despite the
fact that systemic NPC transplantation yields fewer cells in the
ischemic brain parenchyma, current evidence suggests that intra-
venous injection is clearly able to promote neuronal/glial survival
at delayed time-points (Bacigaluppi et al., 2009; Doeppner et al.,
2012). As such, while intracerebrally transplanted adult mouse
NPCs transiently improved motor coordination during the first
1–2 weeks after MCAO in mice, intravenous NPC transplan-
tation resulted in persistent motor coordination improvements
that persisted over at least 8 weeks post-stroke (Doeppner et al.,
2012).

We have previously shown that upon the intravenous trans-
plantation of adult mouse NPCs in the subacute stroke phase
(72 h post-ischemia) only a small minority of transplanted cells
(approximately 0.3% based on systematic counts) accumulate in
the brain (Bacigaluppi et al., 2009). Notably, within the first 72 h
post transplantation, intravenously injected NPCs were found
both in the ischemic and contralesional non-ischemic hemisphere
(Bacigaluppi et al., 2009). In the subsequent 7 days the NPCs in
the contralesional hemisphere disappeared, whereas those in the
ischemic hemisphere steadily increased in number in a narrow
rim around the lesion border. Given that a significant proportion
(25%) of transplanted NPCs in the mouse brain expressed the pro-
liferation marker Ki67 at 3 days post-transplantation, this selective
accumulation may be explained in part by the local proliferation
of transplanted cells.

Beyond the proliferation of grafted NPCs, their emergence
from peripheral organs (where they may have previously homed),
such as the lungs, liver and spleen (Lappalainen et al., 2008),
may also contribute to the delayed accumulation of systemically
injected cells around the stroke lesion. While the localization of
cells of a neural lineage within peripheral organs may carry health
risks related to malignant transformation, the idea that NPCs
have the capacity to exert their therapeutic efficacy via periph-
eral actions is intriguing. When fetal human NPCs were delivered
intravenously in rats submitted to collagenase-induced intracere-
bral haemorrhage (ICH), these cells were identified primarily in
secondary lymphoid organs where they induced a reduction in
the levels of inflammatory mediators and activated macrophase
numbers (Lee et al., 2008). This effect was found to be therapeu-
tically relevant as splenectomy, performed before ICH, abolished
the effects of NPC transplantation on both brain oedema and inflammatory infiltrates (Lee et al., 2008). This finding, combined with observations that transplanted NPCs can hamper the activation of myeloid dendritic cells (DCs) and restrain the expansion of antigen-specific T cells in inflammatory CNS conditions (Pluchino et al., 2005, 2009), supports the putative ability of systemically delivered NPCs in modulating important aspects of the stroke-induced activation of innate and adaptive immune responses.

It is becoming clear that the therapeutic effect of intravenous cell delivery is independent of the amount of NPCs that is achieved within the brain, while local intracerebral NPC transplantation outcomes strictly depend on the amount of NPCs that reside within the lesion site. Consequently, intracerebral transplantation of NPCs is successful only if grafted NPCs within the ischemic brain survive in adequate quantity. The major determinant of the survival of locally transplanted cells within the ischemic brain is the timing of delivery. In a recent study it has been shown that while NPC proliferation, migration, and neuronal differentiation did not differ when cells were intrastrially transplanted in the subacute (48 h) or chronic phase (6 weeks) after stroke, NPC survival was strikingly reduced following delayed cell delivery (Darsalia et al., 2011). The reasons underlying these findings are largely unknown. It is known that the majority (approximately 80%) of adult-born neurons arising from the endogenous neurogenic niche after stroke die before integrating in the ischemic tissue (Arvidsson et al., 2002), and that the inflammatory milieu plays a pivotal role in this phenomenon. As such, the treatment with anti-inflammatory agents (e.g., indomethacin or minocycline) that suppress microglial activation result in the preservation of these newly formed neurons (Hoehn et al., 2005; Liu et al., 2007). Similarly, the survival of intrastrial grafts may be strictly dependent on the local inflammatory milieu and, as such, intraparenchymal transplantation should take place before microglial cells are fully activated.

FUNCTIONAL INTEGRATION OF TRANSPLANTED NPCs

The route of NPC administration has little effect on the phenotype of cells that accumulate inside the ischemic brain, as transplanted NPCs via local or systemic routes retain a profile of characteristics that is similar to those observed in vitro prior to transplantation (Jin et al., 2005). This may either be interpreted as evidence that NPCs are able to retain their character, despite the manipulations brought about by transplantation, or that the ischemic microenvironment arrests the capacity of the transplanted NPCs to differentiate into mature neurons or glia. It has indeed been shown that when neuroinflammation predominates, transplanted cells retain an undifferentiated phenotype as a result of the release of soluble mediators (e.g., noggin) by blood-borne inflammatory cells, activated endothelial cells, and astrocytes (Pluchino et al., 2005; Martino and Pluchino, 2006). It is therefore reasonable to speculate that when inflammatory signals begin to fade, transplanted cells are subsequently enabled to differentiate into post-mitotic CNS cells.

We have shown that at 3 and 10 days post transplantation the majority of intravenously transplanted NPCs exhibit an undifferentiated phenotype, lacking lineage-specific markers such as microtubule-associated protein (MAP)-2, DCX, glial fibrillary protein (GFAP), and the oligodendroglial transcription factor (Olig)-2 (Bacigaluppi et al., 2009). Interestingly at 30 days post transplantation, when inflammation was down regulated, the number of transplanted NPCs expressing Olig2 and DCX increased (albeit to only 4.4 and 0.8%, respectively, of the total), whereas the majority of the transplanted cells still exhibited an undifferentiated morphology in the brain tissue. Understanding the mechanisms which foster graft differentiation and reduce the quantity of NPCs restricted to an undifferentiated state (once their therapeutic bystander effects have been fully exploited) is of pivotal importance for future cell-replacement therapies in stroke.

Valuable insights into the abovementioned may eventually come from the observation of the spontaneous differentiation of endogenous neuroblasts after ischemic stroke (Kernie and Parent, 2010). It has been reported that the majority of neuroblasts after ischemia give rise to striatal medium spiny neurons (Parent et al., 2002). This response can be modulated by the addition of growth factors (such as angiopoietin or EGF), which increase the number of differentiated neurons and/or drive the fating of specific neuronal subtypes (i.e., parvalbumin-expressing interneurons; Teramoto et al., 2003; Liu et al., 2009). The potential of pushing NPCs via growth factors toward specific neuronal subtypes has been exploited by a recent study on induced human pluripotent stem (iPS) cells, which were fated before local transplantation to obtain functional cortical neurons in vivo (Torrero et al., 2013). Despite major methodological advances associated with this approach, definitive proof regarding the additional value of cell fating on behavioral recovery, when compared to non-fated cellular grafts, is still lacking (Pluchino and Peruzzotti-Jametti, 2013).

Bystander Effects of Transplanted NPCs

Functional recovery of stroke-induced deficits has similarly been reported after intracerebral, intracerebroventricular, or intravenous NPC delivery (Bliss et al., 2007; Doepner et al., 2012). As already noted, the common finding to all routes of cell delivery is the undifferentiated state in which the majority of transplanted cells are found within the brain parenchyma (Jin et al., 2005). As a matter of fact, the therapeutic potential of NPCs seems to be initially independent of cell differentiation and rather relies on the multiple bystander mechanisms exerted by adult NPCs, which serve to boost restorative responses in the brain and modulate the injured microenvironment (Martino et al., 2011).

We have shown that adult mouse NPCs reduced inflammatory responses in the ischemic brain, thereby preventing delayed neuronal degeneration and brain atrophy, even when transplanted intravenously as late as 3 days post MCAO (Bacigaluppi et al., 2009). Iba-1+/MHC class II+ microglial activation was reduced upon transplantation of adult NPCs, as was GFAP+ astroglial scar formation in the infarct rim (Bacigaluppi et al., 2009). On the histochemical level, dopamine-2 receptor+, and cAMP regulated phosphoprotein (DARPP)-32+ medium spiny neurons were protected against delayed degeneration in the striatum, which is particularly sensitive to intraluminal MCAO...
Accumulation of amyloid precursor protein was reduced by ronal death and plasticity (bFGF) of glial proliferation and reactivity (gle transcript was up-regulated by adult mouse NPCs, which was intravenous transplantation of adult mouse NPCs while a sin-
versican was enhanced by human fetal NPC transplantation, as was con-
trol of axonal transport processes (Andres et al., 2011b). Dendritic branching, as evaluated by Golgi staining, was enhanced by human fetal NPC transplantation, as was contr
processes. In view that systemically administered NPCs do possess potenti
invasive procedures in the clinical setting. One might therefore consider systemic NPC transplantation, which is minimally inva-
be indeed of clinical value.

Future studies will have to clearly define the safety and efficacy of NPC transplantation after both systemic and local delivery. Such knowledge will increase our understanding of cellular therapies and in turn guide future translational strategies that are urgently needed to promote brain remodeling and repair in stroke patients.

REFERENCES

AKNOWLEDGMENTS

This work was supported by the German Research Foundation (HE3173/2-1, HE3173/2-2, and HE3173/3-1; to Dirk M. Hermann), Heinz Nixdorf Foundation (to Dirk M. Hermann) and Werner Jackstädt Foundation (to Dirk M. Hermann); as well as by grants from the National Multiple Sclerosis Society (NMSS; RG-4001-A1 to Stefano Pluchino), the Italian Multiple Sclerosis Foundation (FISM; RG 2010/R/31; to Stefano Pluchino), the Italian Ministry of Health (GR08/7; to Stefano Pluchino) the European Research Council (ERC) 2010-StG (265011-SEM_SEM; to Stefano Pluchino), the European Community (EC) 7th Framework Program (FP7/2007-2013; RG 280772-iONE; to Stefano Pluchino), The Evelyn Trust (RG69865; to Stefano Pluchino), The Bascule Charitable Trust (RG 75149; to Stefano Pluchino), and The Great Britain Sakakawa Foundation (to Stefano Pluchino).

CONCLUSION

Considering the lack of therapeutic options that promote brain remodeling and neurological recovery after stroke, there is a clear need to reevaluate therapeutic strategies and treatment modalities within the stroke field. Accumulating evidence suggests that beyond the recanalization of blood vessels (by means of thrombolytic therapies), it will not be possible to promote neuro-
recovery post-ischemia via the modulation of single targets (Hermann and Choppe, 2012).

NPCs possess unique characteristics that differ drastically from conventional therapies (namely pharmacological small molecule compounds, recombinant growth factors and/or antibody-based therapeutics). Transplanted stem cells can promote tissue regeneration by sensing diverse signals in the brain microenvironment, migrating to specific sites of damage, integrating inputs and executing complex response behaviors all aimed at the remodel-
ing/protection of injured ischemic tissue (Fischbach et al., 2013).

While the local delivery of NPCs is able to achieve high levels of protective mediators (e.g., growth factors) in the ischemic brain tissue, questions remain about the feasibility of such surgically invasive procedures in the clinical setting. One might therefore consider systemic NPC transplantation, which is minimally invasive. In view that systemically administered NPCs do possess potent anti-inflammatory effects, promote brain remodeling and induce functional neurological recovery in rodents, this option could be indeed of clinical value.

Future studies will have to clearly define the safety and efficacy of NPC transplantation after both systemic and local delivery. Such knowledge will increase our understanding of cellular therapies and in turn guide future translational strategies that are urgently needed to promote brain remodeling and repair in stroke patients.

ACKNOWLEDGMENTS

This work was supported by the German Research Foundation (HE3173/2-1, HE3173/2-2, and HE3173/3-1; to Dirk M. Hermann), Heinz Nixdorf Foundation (to Dirk M. Hermann) and Werner Jackstädt Foundation (to Dirk M. Hermann); as well as by grants from the National Multiple Sclerosis Society (NMSS; RG-4001-A1 to Stefano Pluchino), the Italian Multiple Sclerosis Foundation (FISM; RG 2010/R/31; to Stefano Pluchino), the Italian Ministry of Health (GR08/7; to Stefano Pluchino) the European Research Council (ERC) 2010-StG (265011-SEM_SEM; to Stefano Pluchino), the European Community (EC) 7th Framework Program (FP7/2007-2013; RG 280772-iONE; to Stefano Pluchino), The Evelyn Trust (RG69865; to Stefano Pluchino), The Bascule Charitable Trust (RG 75149; to Stefano Pluchino), and The Great Britain Sakakawa Foundation (to Stefano Pluchino).

REFERENCES

Andres, R. H., Choi, R., Pendharkar, A. V., Gaeta, X., Wang, N., Nathan, J. K., et al. (2011a). The CCR2/CCL2 interaction mediates the transendothelial recruitment of intravascularly delivered neural stem cells to the ischemic brain. Stroke 42, 2923–2931. doi: 10.1161/STROKEAHA.110.606368

Andres, R. H., Horie, N., Shikker, W., Keren-Gill, H., Zhan, K., Sun, G., et al. (2011b). Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain 134, 1777–1789. doi: 10.1093/brain/awr094

Androutsellis-Theotokis, A., Leker, R. R., Soldner, F., Hoeppner, D. J., Ravin, R., Poser, S. W., et al. (2006). Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442, 823–826. doi: 10.1038/nature04940

Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z., and Lindvall, O. (2002). Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970. doi: 10.1038/nm747

Bacigaluppi, M., Pluchino, S., Peruzzotti-Jametti, L., Kilic, E., Kilic, U., Salani, G., et al. (2009). Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain 132, 2239–2251. doi: 10.1093/brain/awp174

Ben-Hur, T., Ben-Menachem, O., Furer, V., Einstein, O., Mizrachi-Kol, R., and Grigoriadis, N. (2003). Effects of proinflammatory cytokines on the growth, fate, and motility of multipotent neural precursor cells. Mol. Cell. Neurosci. 24, 623–631. doi: 10.1016/S1044-7446(03)00218-5

Bliss, T., Guzman, R., Daadi, M., and Steinberg, G. K. (2007). Cell transplantation therapy for stroke. Stroke 38, 817–826. doi: 10.1161/01.STR.0000247888.25985.e2

Cacci, E., Ajmone-Cat, M. A., Anelli, T., Biagioni, S., and Minghetti, L. (2008). Molecular and motility of multipotential neural precursor cells. In vitro neuronal and glial differentiation from embryonic or adult neural precursor cells are differently affected by chronic or acute activation of microglia. Glia 56, 412–425. doi: 10.1002/glia.20616
Hermann et al. Neuronal precursors in ischemic brain

Chou, J., Harvey, B. K., Chang, C. F., Shen, H., Morales, M., and Wang, Y. (2006). Neuroregenerative effects of BMP7 after stroke in rats. J. Neurosci. 24, 21–29. doi: 10.1016/j.neuro.2005.08.015

Conover, J. C., and Shook, B. A. (2011). Aging of the subventricular zone neural stem cell niche. Aging Dis. 2, 149–163.

Cusimano, M., Bizatò, D., Brambilla, E., Donega, M., Alfaro-Cervello, C., Snider, S., et al. (2012). Transplanted neural stem/precursor cells instruct phagocytes and reduce secondary tissue damage in the injured spinal cord. Brain 135, 447–460. doi: 10.1093/brain/awq339

Darsalia, V., Allison, S. J., Cusulin, C., Monni, E., Kuzdas, D., Kallur, T., et al. (2011). Stem cell niche. Cell Stem Cell 18, 1021–1029. doi: 10.1016/j.stem.2008.06.052

Fischbach, M. A., Bluestone, J. A., and Lim, W. A. (2013). Cell-based therapeutics: the next pill of medicine. Sci. Trans. Med. 5, 797. doi: 10.1126/scitranslmed.3005568

Hao, L., Zhou, Z., Tian, H., Zhang, Y., Zhou, H., and Liu, L. (2014). Stem cell-based therapies for ischemic stroke. Biomed Res. Int. 2014, 468748. doi: 10.1153/2014/468748

Hassani, Z., O’Reilly, J., Pearse, Y., Stroemer, P., Tang, E., Sinden, J., et al. (2012). Human neural progenitor cell engraftment increases neurogenesis and microglial recruitment in the brain of rats with stroke. PLoS ONE 7:e50444. doi: 10.1371/journal.pone.0050444

Heldmann, U., Thored, P., Claasen, J. H., Arvidsson, A., Kokaia, Z., and Lindvall, O. (2005). TNF-alpha antibody infusion impairs survival of stroke-generated neuroblasts in adult rat brain. Exp. Neurol. 196, 204–208. doi: 10.1016/j.expneurol.2005.07.024

Hermann, D. M., and Chopp, M. (2012). Promoting brain remodelling and plasticity for stroke recovery: therapeutic promise and potential pitfalls of stem cell plasticity orchestrates tissue plasticity. Brain 135, 1585–1587. doi: 10.1093/brain/awr115

Martino, G., and Pluchino, S. (2006). The therapeutic potential of neural stem cells. Nat. Rev. 7, 395–406. doi: 10.1038/nrn1908

Mine, Y., Tatarishvili, I., Oki, K., Monni, E., Kokaia, Z., and Lindvall, O. (2013). Grafted human neural stem cells enhance several steps of endogenous neurogenesis and improve behavioral recovery after middle cerebral artery occlusion in rats. Neurobiol. Dis. 52, 191–203. doi: 10.1016/j.nbd.2012.12.006

Minnerup, J., Kim, J. B., Schmidt, A., Diederich, K., Bauer, H., Schilling, M., et al. (2011). Effects of neural progenitor cells on sensorimotor recovery and endogenous repair mechanisms after photothermal stroke. Stroke 42, 1757–1763. doi: 10.1161/strokeaha.110.592828

Mirzadeh, Z., Merke, F. T., Soriano-Navarro, M., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. (2008). Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3, 265–278. doi: 10.1016/j.stem.2008.07.004

Ohno, K. H., Sasaki, Y., Kitagawa, H., Sasaki, C., Zhang, W. R., Sakai, K., Shiro, Y., Wanta, H., et al. (2019). Induction of glial cell line-derived neurotrophic factor receptor proteins in cerebral cortex and striatum after permanent middle cerebral artery occlusion in rats. Brain Res. 834, 196–195. doi: 10.1006/s0006-8993(99)01563-2

Kokaia, Z., Zhao, Q., Kokaia, M., Elmer, E., Metis, M., Smith, M. L., et al. (1995). Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage. Exp. Neurol. 136, 73–88. doi: 10.1006/exnr.1995.1085

Lappalainen, R. S., Narkhiiti, S., Huhtala, T., Liimatainen, T., Suuronen, T., Narvenen, Å., et al. (2008). The SPECT imaging shows the accumulation of neural progenitor cells into internal organs after systemic administration in middle cerebral artery occlusion rats. Neurosci. Lett. 440, 246–250. doi: 10.1016/j.neulet.2008.05.090

Lee, S. T., Chu, K., Jung, K. H., Kim, S. J., Kim, D. H., Kang, K. M., et al. (2008). Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131, 616–629. doi: 10.1093/brain/awm306

Leker, R. R., Toth, Z. E., Shahar, T., Cassiani-Ingomi, R., Szalayova, I., Key, S., et al. (2009). Transforming growth factor alpha induces angiogenesis and neurogenesis following stroke. Neuroscience 163, 233–241. doi: 10.1016/j.neuroscience.2009.05.050

Liu, X. S., Chopp, M., Zhang, R. L., Hozeska-Solgot, A., Gregg, S. C., Buller, B., et al. (2009). Angiopoietin 2 mediates the differentiation and migration of neural progenitor cells in the subventricular zone after stroke. J. Biol. Chem. 284, 22680–22689. doi: 10.1074/jbc.M109.065531

Liu, Z., Fan, Y., Won, S. J., Neumann, M., Hu, D., Zhou, L., et al. (2007). Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia. Stroke 38, 146–152. doi: 10.1161/01.STR.0000251791.64910.cd

Lloyd-Jones, D., Adams, R., Carnethon, M., De Simone, G., Flegal, M. R., et al. (2009). Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119, e21–e181. doi: 10.1161/CIRCULATIONAHA.108.191261

Martino, G., Bagaluppi, M., and Peruzzotti-Jametti, L. (2011). Therapeutic stem cell plasticity orchestrates tissue plasticity. Brain 134, 1585–1587. doi: 10.1093/brain/awr115

Martino, G., and Pluchino, S. (2006). The potential therapeutic of neural stem cells. Nat. Rev. 7, 395–406. doi: 10.1038/nrn1908

Mirzadeh, Z., Merke, F. T., Soriano-Navarro, M., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. (2008). Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3, 265–278. doi: 10.1016/j.stem.2008.07.004

Neurobiol. Dis.
Pluchino, S., Zanotti, L., Brambilla, E., Rovere-Querini, P., Capobianco, A., Alfaro-Cervello, C., et al. (2009). Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function. PLoS ONE 4:e5959. doi: 10.1371/journal.pone.0005959

Pluchino, S., Zanotti, L., Rossi, B., Brambilla, E., Ottoboni, L., Salani, G., et al. (2005). Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436, 266–271. doi: 10.1038/nature03889

Robin, A. M., Zhang, Z. G., Wang, L., Zhang, R. L., Katakowski, M., Zhang, L., et al. (2006). Stromal cell-derived factor 1alpha mediates neural progenitor cell motility after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 26, 125–134. doi: 10.1038/sj.jcbfm.9600172

Schneider, A., Krueger, C., Steigleder, T., Weber, D., Pitzer, C., Laage, R., et al. (2005). The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J. Clin. Invest. 115, 2083–2098. doi: 10.1172/JCI23559

Sims, J. R., Lee, S. W., Topalkara, K., Qiu, J., Xu, J., Zhou, Z., et al. (2009). Sonic hedgehog regulates ischemia/hypoxia-induced neural progenitor cell proliferation. Stroke 40, 3618–3626. doi: 10.1161/STROKEAHA.109.561951

Sun, Y., Jin, K., Xie, L., Childs, J., Mao, X. O., Logvinova, A., et al. (2003). VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest. 111, 1843–1851. doi: 10.1172/JCI200317977

Tang, Y., Wang, J., Lin, X., Wang, L., Shao, B., Jin, K., et al. (2014). Neural stem cell protects aged rat brain from ischemia-reperfusion injury through neurogenesis and angiogenesis. J. Cereb. Blood Flow Metab. 34, 1138–1147. doi: 10.1038/jcbfm.2014.61

Teramoto, T., Qiu, J., Plumier, J. C., and Moskowitz, M. A. (2003). EGF amplifies the replacement of parvalbumin-expressing striatal interneurons after ischemia. J. Clin. Invest. 112, 1112–1122. doi: 10.1172/JCI200317170

Thoredd, P., Arvidsson, A., Cacci, E., Ahlenius, H., Kallur, T., Darsalia, V., et al. (2006). Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24, 739–747. doi: 10.1634/stemcells.2005-0281

Thoredd, P., Heldmann, U., Gomes-Leal, W., Gisler, R., Darsalia, V., Taneera, J., et al. (2009). Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia 57, 835–849. doi: 10.1002/glia.20810

Thoredd, P., Wood, J., Arvidsson, A., Cammenja, J., Kokaia, Z., and Lindvall, O. (2007). Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke 38, 3032–3039. doi: 10.1161/STROKEAHA.107.488445

Tornero, D., Wattananit, S., Gronning Madsen, M., Koch, P., Wood, J., Tatarnishvili, J., et al. (2013). Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. Brain 136, 3561–3577. doi: 10.1093/brain/awt278

Tureyen, K., Venuganti, R., Bowen, K. K., Sailor, K. A., and Dempsey, R. J. (2005). EGF and FGF-2 infusion increases post-ischemic neural progenitor cell proliferation in the adult rat brain. Neurosurgery 57, 1254–1263. doi: 10.1227/01.NEU.0000186040.96929.8A

Wang, L., Zhang, Z. G., Zhang, R. L., Gregg, S. R., Hozeska-Solgot, A., LeTourneau, Y., et al. (2006). Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J. Neurosci. 26, 5996–6003. doi: 10.1523/JNEUROSCI.5380-05.2006

Wang, X., Mao, X., Xie, L., Greenberg, D. A., and Jin, K. (2009). Involvement of Notch signaling in neurogenesis in the subventricular zone of normal and ischemic rat brain in vivo. J. Cereb. Blood Flow Metab. 29, 1644–1654. doi: 10.1038/jcbfm.2009.83

Yan, Y. P., Sailor, K. A., Lang, B. T., Park, S. W., Venuganti, R., and Dempsey, R. J. (2007). Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 27, 1213–1224. doi: 10.1038/sj.jcbfm.9600432

Zhang, P., Li, J., Liu, Y., Chen, X., Lu, H., Kang, Q., et al. (2011). Human embryonic neural stem cell transplantation increases subventricular zone cell proliferation and promotes peri-infarct angiogenesis after focal cerebral ischemia. Neuropathology 31, 384–391. doi: 10.1111/j.1440-1789.2010.01182.x

Zhang, R. L., Chopp, M., Gregg, S. R., Toh, Y., Roberts, C., Letourneau, Y., et al. (2009). Patterns and dynamics of subventricular zone neuroblast migration in the ischemic striatum of the adult mouse. J. Cereb. Blood Flow Metab. 29, 1240–1250. doi: 10.1038/jcbfm.2009.55

Zhang, R. L., Zhang, Z. G., Wang, Y., LeTourneau, Y., Liu, X. S., Zhang, X., et al. (2007). Stroke induces ependymal cell transformation into radial glia in the subventricular zone of the adult rodent brain. J. Cereb. Blood Flow Metab. 27, 1201–1212. doi: 10.1038/jcbfm.9600430

Zhang, R., Zhang, Z., Zhang, L., Robin, A., Wang, Y., et al. (2004). Stroke transiently increases subventricular zone cell division from asymmetric to symmetric and increases neuronal differentiation in the adult rat. J. Neurosci. 24, 5810–5815. doi: 10.1523/JNEUROSCI.1109-04.2004

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 15 June 2014; accepted: 01 September 2014; published online: 16 September 2014.

Citation: Hermann DM, Persuzotti-Jametti L, Schlechter J, Bernstock JD, Doeppner TR and Pluchino S (2014) Neural precursor cells in the ischemic brain – integration, cellular crosstalk, and consequences for stroke recovery. Front. Cell. Neurosci. 8:291. doi: 10.3389/fncel.2014.00291

This article was submitted to the journal Frontiers in Cellular Neuroscience.

Copyright © 2014 Hermann, Persuzotti-Jametti, Schlechter, Bernstock, Doeppner and Pluchino. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.