Protein–protein interaction studies provide evidence for electron transfer from ferredoxin to lipoic acid synthase in *Toxoplasma gondii*

Nora Frohnecke, Sandra Klein, Frank Seeber

FG16 Parasitologie, Robert Koch-Institut, 13353 Berlin, Germany

Article info

Article history:
Received 3 September 2014
Revised 13 November 2014
Accepted 14 November 2014
Available online 27 November 2014

Edited by Miguel De la Rosa

Keywords:
Lipoic acid synthesis
Ferredoxin
Plastid
Apicomplexa
Protein interactions
Two-hybrid system

Abstract

The only known redox system in the apicoplast, a plastid-like organelle of apicomplexan parasites, is ferredoxin and ferredoxin-associated reductase. Ferredoxin donates electrons to different enzymes, presumably including lipoate synthase (LipA), which is essential for fatty acid biosynthesis. We recombinantly expressed and characterized LipA from the protozoan parasite *Toxoplasma gondii*, generated LipA-specific antibodies and confirmed the apicoplast localization of LipA. Electron transfer from ferredoxin to LipA would require direct protein–protein interaction. Such a robust interaction between the two proteins was demonstrated in both yeast and bacterial two-hybrid systems. Taken together, our results provide strong evidence for a role of ferredoxin as an electron donor to LipA.

© 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. Introduction

Apicomplexa are intracellular protozoan parasites, which, like *Toxoplasma gondii*, the causative agent of human toxoplasmosis, possess a unique plastid-derived organelle called apicoplast. This non-photosynthetic secondary endosymbiont of an algal ancestor harbors several metabolic pathways, amongst which are fatty acid and isoprenoid biosynthesis [1]. Since both of these pathways in the apicoplast are of cyanobacterial ancestry and essential for the survival of the parasite, involved enzymes are of considerable interest as putative drug targets [2,3].

A protein redox system of central importance in the apicoplast consists of the small iron-sulfur cluster ([Fe-S]) containing plant-type ferredoxin (ptFd) and its associated NADPH-dependent reductase, plant-type ferredoxin-NADP⁺-reductase (ptFNR) [1,4,5]. Reduced ptFd can donate electrons via protein–protein interaction to acceptor proteins involved in various metabolic pathways [6]. In the apicoplast so far the only known ptFd-interacting protein is LytB, which catalyzes the second-last step in the synthesis of the isoprenoid precursors [7,8]. However, based on experimental work in other cellular systems it is very likely that ptFd is also an electron donor for other apicoplast-resident pathways, like [Fe-S] or fatty acid synthesis (FAS), respectively [1,4].

We previously reported the cloning of lipoate synthase (LipA in *Escherichia coli*) from *T. gondii* (TgLipA) that was targeted to the apicoplast as shown by GFP-tagging of N-terminal parts of the protein [9]. Lipoic acid (LA) is an essential co-factor for the majority of prokaryotic and eukaryotic organisms [10] since the post-translational modification of several 2-oxoacid dehydrogenase subunits with LA is instrumental for catalysis [11]. One of these enzymes is pyruvate dehydrogenase (PDH), an essential enzyme complex required for the generation of the FAS precursor acetyl-CoA also in the apicoplast [1]. To start LA synthesis an octanoyl group from octanoyl-ACP is enzymatically attached to a specific lysine side chain in what is to become a lipoylated protein. Then the insertion of two sulfur atoms into the carbon chain of the protein-bound octanoate is performed by LipA (see Fig. S1) [12,13]. A chemically similar reaction is carried out by biotin synthase [14]. Both proteins are members of the so-called “radical SAM” superfamily [15,16]. They depend on S-adenosyl methionine (SAM) for their radical-based catalysis of the different reactions, and an electron transfer system required for radical generation. All enzymes of this class are [Fe-S]-containing proteins. LipA is thought to contain two [4Fe-4S], of which one donates the two sulfurs to the octanoyl side chain during catalysis [16,17].
While it is known from bacteria that the generation of both, biotin and lipoic acid, acquire electrons from the redox protein flavodoxin [18,19], the electron donor in the apicoplast is currently not known (Apicomplexa lack flavodoxin), but the most likely candidate is the pTfd/FNR redox system [1,4].

2. Material and methods

2.1. Recombinant TgLipA expression, purification and analysis

The TgLipA-containing expression vector pS1-TgLipA as well as expression conditions have been described previously [9]. pS1-TgLipA encodes an N-terminally 6His-tagged TgLipA protein devoid of its predicted N-terminal bipartite targeting domain of 179 aa, which are sufficient to target GFP to the apicoplast [9]. To increase [Fe–S] assembly on TgLipA plasmid pMK400H lacking LipAH was co-expressed [20]. This plasmid contains the iscSUA and hscBAfx gene clusters and leads to greatly improved [Fe–S] incorporation into recombinant proteins. Purification of recombinant TgLipA by Ni–NTA affinity chromatography in 300 mM NaCl, 50 mM Na-phosphate pH 8.0, 20 mM imidazole was performed as detailed by the supplier of the resin (Qiagen) using an Äkta Puri- fier PLC system (GE Healthcare). Elution from the column was performed in the same buffer containing 250 mM imidazole. The brown eluate was subjected to gel filtration chromatography on a PD-10 column (GE Healthcare) for buffer exchange to PBS. The following procedure was based on the protocol of Thibo-deau et al. [27]. Cultures of E. coli strains containing integrated reporter and repressor constructs were grown in MOPS medium overnight at 37 °C ± IPTG induction (100 µM). 150 µl of culture or appropriate amounts with an OD600 of 0.15 (measured with a Tecan M200 Pro microplate reader) were diluted into 3 ml MOPS medium and again grown overnight at 37 °C. 2 ml of culture or appropriate amounts with an OD600 of 0.14 were harvested by centrifugation and resuspended in 100 µl MOPS medium. Cell lysis reagent (0.05 M HEPES pH 7.5, 1% Triton X-100, 0.4% Tergitol NP-9, 3.8 × 10⁻⁵ M polymyxin B) was added and incubated for 15 min at room temperature.

2.2. Yeast two-hybrid system

The yeast two-hybrid system (YTH) based on B42AD and LexA interacting domains [21] was essentially used in the same way as previously described by us for the interaction analysis of TgfD and TgFNR [22,23], following the protocols of the supplier of the YTH system (Origene), with the exception that in the respective plasmids either TgfD or TgFNR were replaced by TgLipA, which was re-cloned from pS1-TgLipA (see above) into the yeast vectors (see Suppl. Material). All newly assembled parts of the constructs were sequenced.

2.3. Bacterial reverse two-hybrid system

The bacterial reverse two-hybrid system (RTH) used is that described initially by Di Lallo et al. [24] and modified by Horswill et al. [25]. For details on construction of plasmids and strains see Fig. S2. E. coli cultures were maintained in LB broth. DNA manipulations were performed using standard techniques unless otherwise indicated, and plasmids were transformed into E. coli PIR1 cells (Invitrogen) by electroporation with a BioRad GenePulser II. All DNA sequencing was performed at the sequencing facility of the Robert Koch-Institute.

Antibiotics were provided at the following concentrations (lower for chromosomal markers): tetracycline 10 µg/ml, spectino-mycin 100 (35) µg/ml, kanamycin 50 (10) µg/ml, gentamicin 15 (5) µg/ml, ampicillin 100 (50) µg/ml. MOPS minimal medium [26] supplemented with 0.1% glucose and 0.132 mM KH₂PO₄ was used for β-galactosidase assays.

2.4. Kinetic β-galactosidase assay

The following procedure was based on the protocol of Thibodeau et al. [27]. Cultures of E. coli strains containing integrated reporter and repressor constructs were grown in MOPS medium overnight at 37 °C ± IPTG induction (100 µM). 150 µl of culture or appropriate amounts with an OD600 of 0.15 (measured with a Tecan M200 Pro microplate reader) were diluted into 3 ml MOPS medium and again grown overnight at 37 °C. 2 ml of culture or appropriate amounts with an OD600 of 0.14 were harvested by centrifugation and resuspended in 100 µl MOPS medium. Cell lysis reagent (0.05 M HEPES pH 7.5, 1% Triton X-100, 0.4% Tergitol NP-9, 3.8 × 10⁻⁵ M polymyxin B) was added and incubated for 15 min at room temperature.

15 µl of each lysate were placed as duplicates into individual wells and a mix of 135 µl Z buffer (0.06 M Na₂HPO₄·7H₂O, 0.04 M NaNH₂PO₄·H₂O, 0.01 M KCl, 0.001 M MgSO₄·7H₂O, containing 2.7 µl 2-mercaptoethanol for every 1 ml of Z buffer) and 30 µl ortho-nitrophenyl β-galactoside solution (4 mg/ml) was added. The assay was performed in the microplate reader set at 28 °C, read at 415 nm, and Miller units (MU) were calculated as described [27].

2.5. Generation of anti-TgLipA antiserum

The generation of anti-TgLipA antiserum in a rabbit was done as previously described [5] using purified recombinant protein. To obtain monospecific polyclonal antibodies the resulting serum was purified on 6His-TgLipA immobilized on a Co²⁺ TALON metal affinity resin (Clontech) as described previously [28,29]. The eluted antibodies were then stored in PBS at −20 °C.

2.7. Parasite and host cell culture and immunofluorescence assay

T. gondii transgenic strain RHβ1 expressing E. coli β-galactosi-dase [30] was maintained in confluent human foreskin fibroblasts (HFF, BJ-5ta; ATCC CRL4001) using Dulbecco’s modified Eagle’s medium with high glucose and stable glutamine (DMEM; PAA) supplemented with 10% fetal calf serum (Gibco) and antibiotics. Tachyzoites grown in HFF on coverslips in a 24 well plate for 24 h were fixed for 20 min in 4% paraformaldehyde, permeabilized 20 min with 0.25% Triton X100, and stained using the rabbit anti-LipA polycyclonal antibodies (dilution 1:30) and a Cy3-coupled secondary goat anti-rabbit antibody (Jackson ImmunoResearch, diluted 1:300). For localization of biotin-containing proteins in the parasite [31] Alexa 488-tagged streptavidin (Invitrogen, 1:5000) was used. DNA was stained with 4,6-diamidin-2-phenylindol (Sigma–Aldrich, IL, USA, 1 ng/µl). Samples were visualized using a Zeiss Axio Imager Z1/Apomote microscope. Images were acquired with a Zeiss AxioCam MRm camera using AxioVision software, and processed using equal linear adjustments for all samples. Image analysis for co-localizations were done using ImageJ 1.47 m
and plugins “Colocalization Finder” and “Blend Images” (http://imagej.nih.gov/ij/plugins/index.html).

2.8. Statistical analyses

Statistical significance of the difference between groups was calculated with Prism5 software (GraphPad), using an unpaired two-tailed t-test.

3. Results and discussion

3.1. Production and characterization of recombinant TgLipA

TgLipA was expressed in E. coli as a 6His-tagged protein. Expression was robust (ca. 3 mg/l) and yielded a dark brown cell pellet. A single round of affinity chromatography purification on Ni-NTA resin under aerobic conditions resulted in high yields of a soluble, slightly brownish protein that showed a MW of 62.6kDa on a calibrated analytical Superdex 200 gel filtration column (Fig. 1A). A second, more prominent peak of 133kDa, indicative of a dimer, as described earlier for LipA from E. coli [32,33] was also observed. Several fractions from this gel filtration column, including those from the left shoulder >133kDa, and a peak larger than 1700kDa (presumably aggregates), where analyzed by SDS–PAGE. All contained a single protein of ca. 42–43kDa, as judged by SDS–PAGE (see Fig. 1A inset), with only traces of other contaminating proteins (Fig. 1A inset). This molecular mass is in good agreement with the calculated MW of 6His-TgLipA (41.9kDa). Control experiments in a Δfxs E. coli strain ruled out that the observed 11kDa peak contains bacterial ferredoxin (data not shown). Interestingly, when we subjected TgLipA to DTT treatment prior to gel filtration and analyzed it on a Superdex 75 column to achieve better separation of protein species >70kDa we observed only a major peak at 46kDa (Fig. 1B), close to the 41.9kDa theoretical MW of TgLipA, and a minor peak at 74kDa. The 46kDa protein showed only minimal absorption at 465 nm (used to detect the presence of [2Fe-2S]2+ in monomeric E. coli LipA (EcLipA; [33]) and is thus presumably a cluster-free apo-form of TgLipA. After reconstitution of the [Fe-S] of DTT-treated TgLipA by incubation for 3 h in the presence of Na2S and FeCl3, followed by immediate gel filtration (both under aerobic conditions) peaks of 60.3 and >94kDa appeared, both with clear signals at 465 nm (Fig. 1B). The latter MW cannot be assigned correctly on this column because its optimal separation range is only up to 70kDa, but as shown on the Superdex 200 in Fig. S3, it is the dimeric form of TgLipA. Since after reconstitution the monomeric form of TgLipA is more prominent over the dimeric form we conclude that the latter predominantly contains partially or fully oxidized [Fe-S] whereas they are intact in the monomeric form. It is well described in the literature that partially iron-loaded or not fully reconstituted [Fe-S] proteins even under strictly anaerobic conditions form multimers/dimers instead of monomers [34–37].

A monomeric form of TgLipA is also consistent with the recently reported three-dimensional structure of LipA2 from the cyanobacterium Thermosynechococcus elongatus, which presents as a monomer in the crystals [17]. The described dimeric form of EcLipA [32,33] seems to be due to the exquisite lability of the [4Fe-4S] when not purified under very strict anaerobic conditions [38].

Given the high sequence identity and similarity (46% and 59.5%; Fig. S4A) in the homologous part between both proteins, including the serine that serves as a newly described ligand to the auxiliary cluster [17], we modeled the structure of TgLipA based on an alignment of aa 6–288 of T. elongatus LipA2. The result shows a high degree of structural similarity over the entire aligned sequence (Fig. S4B).

The size differences of the apo-form of TgLipA compared to the monomeric form during gel filtration is quite substantial (15–20kDa). The crystal structure of TeLipA2 shows an 18 Å deep channel into which the octanoyl moiety could be modeled, packed between SAM and the auxiliary [Fe-S] [17]. In the apo-form, when the clusters are removed, the substrate-binding channel might collapse, leading to the observed size difference. An interesting hypothesis would be that this compact form is the one recognized by the [Fe-S] synthesis/repair machinery.

However, TgLipA is also considerably longer at both termini (38 aa at the N-terminus – not considering the additional 179 aa for apicoplast targeting – and 45 aa at the C-terminus). Thus, alternatively or in addition to the explanation above the structure of these regions might contribute to the larger MW observed in gel filtration experiments. We analyzed the TgLipA sequence used ...
TgLipA is exclusively apicoplast-localized. Antibodies also decorated this organelle (Fig. 2), confirming that TgLipA is a likely acceptor for ptFd-derived electrons. It was shown previously that in Plasmodium falciparum ptFd provides electrons to the last enzyme of the apicoplast-resident isoprenoid synthesis pathway, LytB, by physical interaction [7]. To ask whether TgLipA interacts with TgFd in a cellular environment we focused on in vivo interaction experiments with the YTH system for two main reasons. Any in vitro assay for LipA requires very strict anaerobic conditions (see above), necessitating equipment available only to few specialized labs. In addition, LipA is present in cells only in minute amounts [42], making proteomic approaches with parasite material barely feasible.

Fig. 3 reports interactions as β-galactosidase (βGal) activity in Miller units (MU). As can be seen, TgLipA and TgFNR showed only little βGal activity above background, indicating no specific protein–protein interaction (PPI). In contrast, TgLipA interacted equally well with either P. falciparum or T. gondii ptFd. TgLipA interacts specifically with apicomplexan ptFd in a similar robust manner in this system when compared to the well-characterized interaction of TgFd with TgFNR, which lies in the low nanomolar range [22,23]. The interaction of a cyanobacterial ferredoxin I (PetF from T. elongatus, 55.7% identical to TgFd) and the second last enzyme of the isoprenoid synthesis pathway, GcpE, was previously also demonstrated in a YTH system [43], validating this approach for defining ptFd-interacting proteins.

3.3. TgLipA interacts with ferredoxin in a yeast two-hybrid system

Electron transfer between ptFd and any acceptor protein requires physical contact between both proteins. Consequently, interaction of ptFd with a protein can be taken as strong evidence that this protein is a likely acceptor for ptFd-derived electrons. Since the apicoplast is considered to be a reducing environment [44] we wished to verify the apparent TgLipA–TgFd interaction in the reducing cytosol of E. coli. For this we chose a bacterial reverse two-hybrid (RTH) system that is based on a chimeric operator formed by the two half sites of the phage P22 and phage 434 operators [24]. Fusion of the two short phage proteins at the N-terminus with the proteins of interest lead to a functional repressor in case the two heterologous proteins interact, rather than a transcriptional activator, as is the case in the yeast-based system. Consequently, the readout for PPI is diminished reporter activity upon expression of the protein pair (arranged in an operon driven by an IPTG-inducible lac promoter) compared to the non-induced cultures [25]. Using this RTH system we evaluated PPI of TgFd with

Fig. 2. Detection of LipA in the apicoplast of tachyzoites by immunofluorescence microscopy. (A) Tachyzoites within infected HFF-cells were decorated with polyclonal anti-TgLipA rabbit antibodies. (B) *T. gondii* possesses three biotin-containing proteins, two acetyl-CoA carboxylases, localized in the apicoplast and cytosol, respectively, and pyruvate carboxylase in the mitochondria [31]. Consequently, incubation with streptavidin-Alexa 488 reveals prominent staining of the apicoplast and additional much weaker signals in the mitochondrion. (C) DNA staining with DAPI also allows visualization of the apicoplast genome. Applying the ‘Colocalization Finder’ plugin of ImageJ on (A) with (B) results in (D), and on (A) with (C) results in (E). White pixels demonstrate that in both cases TgLipA co-localizes with the respective apicoplast markers. Merger of co-localization areas of (D) with a DIC image (F). Scale bar, 5 μm.
a further acceptor enzyme for this important redox system, and since lipoylated PDH is an essential prerequisite for fatty acid biosynthesis [45,46], disruption of ferredoxin's ability to donate electrons to LipA could be exploited as a potential intervention strategy against T. gondii. In this respect, the bacterial RTH system together with genetically encoded peptides will be a promising approach to search for such pharmacophores [25].

In plant mitochondria the interaction of biotin synthase with the mitochondrial ferredoxin reductase system has been reported [47]. Since biotin synthase and LipA share the same overall chemistry for sulfur insertion, and in plants (unlike in Apicomplexa) lipoate synthesis also occurs in the mitochondria [48] our data suggest that mitochondrial ferredoxin could also serve as electron donor for lipoate synthase.

Acknowledgements

We thank Peter Roach for providing plasmids and Ali Tavassoli and Stephen Benkovic for the components of the bacterial RTH system; Nadine Thomsen-Zieger and Kathrin Stelter for their technical expertise and Manuela Roth for help with antibody purification. We also thank Toni Aebischer and an anonymous reviewer for helpful comments. This work was partly supported by a grant (Se622/4-2) from the Deutsche Forschungsgemeinschaft.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.febslet.2014.1.020.

References

[1] Seeber, F. and Soldati-Favre, D. (2010) Metabolic pathways in the apicoplast of apicomplexa. Int. Rev. Cell. Mol. Biol. 281, 161–228.
[2] Wiesner, J. and Seeber, F. (2005) The plastid-derived organelle of protozoan human parasites as a target of established and emerging drugs. Expert Opin. Ther. Targets 9, 23–44.
[3] Botté, C.Y., Dubar, F., McFadden, G.I., Maréchal, E. and Biot, C. (2012) Plasmodium falciparum apicoplast drugs: targets or off-targets? Chem. Rev. 112, 1269–1372.
[4] Seeber, F., Aliverti, A. and Zanetti, G. (2005) The plant-type ferredoxin-NADP+-reductase/ferredoxin reductase system as a possible drug target against apicomplexan human parasites. Curr. Pharm. Des. 11, 3159–3172.
[5] Vollmer, M., Thomsen, N., Wiek, S. and Seeber, F. (2001) Apicomplexan parasites possess distinct nuclear encoded but apicoplast-localized plant-type ferredoxin-NADP+-reductase and ferredoxin. J. Biol. Chem. 276, 5483–5490.
[6] Hanke, G. and Mulo, P. (2013) Plant type ferredoxins and ferredoxin-dependent metabolism. Plant Cell Environ. 36, 1071–1084.
[7] Röhrich, R. et al. (2005) Reconstitution of an apicoplast-localised electron transfer pathway involved in the isoprenoid biosynthesis of Plasmodium falciparum. FEBS Lett. 579, 6433–6438.
[8] Wiesner, J. and Jomaa, H. (2007) Isoprenoid biosynthesis of the apicoplast as drug target. Curr. Drug Targets 8, 3–13.
[9] Thomsen-Zieger, N., Schachtner, J. and Seeber, F. (2003) Apicomplexan parasites contain a single lipoic acid synthase located in the plastid. FEBS Lett. 547, 80–86.
[10] Spalding, M.D. and Prigge, S.T. (2010) Lipoic acid metabolism in microbial pathogens. Microbiol. Mol. Biol. Rev. 74, 200–228.
[11] Perham, R.N. (2000) Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu. Rev. Biochem. 69, 961–1004.
[12] Jordan, S.W. and Cronan Jr., J.E. (1997) A new metabolic link. The acyl carrier protein of lipid synthesis donates lipoic acid to the pyruvate dehydrogenase complex in Escherichia coli and mitochondria. J. Biol. Chem. 272, 17903–17906.
[13] Zhao, X., Miller, J.R., Jiang, Y., Marletta, M.A. and Cronan, J.E. (2003) Assembly of the covalent linkage between lipoic acid and its cognate enzymes. Chem. Biol. 10, 1293–1302.
[14] Fugate, C.J. and Jarrett, J.T. (2012) Biotin synthase: Insights into radical-mediated carbon–sulfur bond formation. Biochim. Biophys. Acta 1824, 1213–1222.
[15] Dowling, D.P.D., Vey, J.L.J., Croft, A.K.A. and Drennan, C.L.C. (2012) Structural diversity in the AdoMet radical enzyme superfamily. Biochim. Biophys. Acta 1824, 1178–1195.
Lanz, N.D. and Booker, S.J. (2012) Identification and function of auxiliary iron-sulfur clusters in radical SAM enzymes. Biochim. Biophys. Acta 1824, 1196–1212.

Harmer, J. et al. (2014) Structures of lipoyl synthase reveal a compact active site for controlling sequential sulfur insertion reactions. Biochem. J. 464, 123–133.

Cicchillo, R.M., Iwig, D.F., Jones, A.D., Nesbitt, N.M., Baleau-Gogonea, C., Souder, M.G., Tu, L. and Booker, S.J. (2004) Lipoyl synthase requires two equivalents of S-adenosyl-l-methionine to synthesize one equivalent of lipic acid. Biochemistry 43, 6378–6386.

Taylor, A.M., Stoll, S., Britt, R.D. and Jarrett, J.T. (2011) Reduction of the [2Fe-25] cluster accompanies formation of the intermediate 9-mercaptopodih皮ibiiton in Escherichia coli biotin synthesis. Biochemistry 50, 7953–7963.

Kriek, M., Peters, L., Takahashi, Y. and Roach, P. (2003) Effect of iron-sulfur cluster assembly proteins on the expression of Escherichia coli lipic acid synthase. Protein Expr. Purif. 28, 241–245.

Fashena, S.J., Serebriiskii, I.G. and Golemis, E.A. (2000) LexA-based two-hybrid systems. Methods Enzymol. 328, 12–26.

Pandini, V., Caprini, G., Thomsen, N., Aliverti, A., Seeber, F. and Zanetti, G. (2002) Ferredoxin-NADP+ reductase and ferredoxin of the protozoan parasite Toxoplasma gondii interact productively in vitro and in vivo. J. Biol. Chem. 277, 375–380.

Di Lallo, G., Castagnoli, L., Ghelardini, P. and Paolozzi, L. (2001) A two-hybrid system based on chimeric operator recognition for studying protein homo/heterodimerization in Escherichia coli. Microbiology 147, 1651–1656.

Horswill, A.R., Savinov, S.N. and Benkovic, S.J. (2004) A systematic method for identifying small-molecule modulators of protein–protein interactions. Proc. Natl. Acad. Sci. U.S.A. 98, 9038–9044.

Tonkin, C.J., Roos, D.S. and McFadden, G.I. (2006) N-terminal positively charged amino acids, but not their exact position, are important for apicoplast transit peptide fidelity in Toxoplasma gondii. Mol. Biochem. Parasitol. 150, 192–200.

Rebeil, R. and Nicholson, W.L. (2001) The subunit structure and catalytic mechanism of the Bacillus subtilis DNA repair enzyme spore photoproduct lyase. Proc. Natl. Acad. Sci. U.S.A. 98, 15591–15596.

Hansen, M.K., Mendel, R.R. and Schindelin, H. (2004) Characterization of MOCS1A, an oxygen-sensitive iron-sulfur protein involved in human molybdenum cofactor biosynthesis. J. Biol. Chem. 279, 34721–34732.

Aldrovandi, P., Martinez, H.M., Sillanpää, P., Williamson, J.A. and Buttner, M.J. (2005) Evidence that the Streptomyces developmental protein WhiD, a member of the WhiB family, binds a [4Fe-4S] cluster. J. Biol. Chem. 280, 8309–8315.

Cicchillo, R.M. (2006). Characterization and mechanistic studies of Escherichia coli lipoyl synthase: a member of the “radical SAM” family of enzymes (PhD thesis). The Pennsylvania State University.

Picciocchi, A., Douce, R. and Alban, C. (2003) The plant biotin synthase. J. Biol. Chem. 277, 375–380.

Mazumdar, J., Wilson, H., Masek, K., Hunter, A. and Striepen, B. (2006) A single in vivo-selected point mutation in the WhiD, a member of the WhiB family, binds a [4Fe-4S] cluster. J. Biol. Chem. 280, 8309–8315.

Ribeiro, H., Sequeira, M., Uversky, V.N., Canard, B. and Longhi, S. (2005) Assessing protein disorder and induced folding. Proteins 62, 24–45.

Johnson, M.K., Mendel, R.R. and Schindelin, H. (2004) Characterization of Toxoplasma gondii DNA repair enzyme spore photoproduct lyase. Proc. Natl. Acad. Sci. U.S.A. 98, 9038–9043.

Fischer, R. and Cronan, J.E. (2011) Protein–protein interactions in assembly of the active spore photoproduct lyase, a DNA repair enzyme in the radical S-adenosylmethione superfamily. J. Biol. Chem. 281, 25994–26003.

Jackson, K.E. et al. (2012) Dual targeting of aminocyclic-TRNA synthetases to the apicoplast and cytosol in Plasmodium falciparum. Int. J. Parasitol. 42, 177–186.

Hassan, B.H. and Cronan, J.E. (2011) Protein–protein interactions in assembly of the active spore photoproduct lyase, a DNA repair enzyme in the radical S-adenosylmethione superfamily. J. Biol. Chem. 281, 25994–26003.

Okada, K. and Hase, T. (2005) Cyano bacterial non-merovalein pathway: (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase interacts with ferredoxin in Thermosynechococcus elongatus BP-1. J. Biol. Chem. 280, 20672–20679.

Gallagher, J.R. and Prigg, S.T. (2010) Plasmodium falciparum acetylier acryl carrier protein crystal structures in disulfide-linked and reduced states and their prevalence during blood stage growth. Proteins 78, 578–588.

Crawford, M.J., Thomsen-Zieger, N., Ray, M., Schachtert, J., Roos, D.S. and Seeber, F. (2006) Toxoplasma gondii scavenges host-derived lipic acid despite its de novo synthesis in the apicoplast. EMBO J. 25, 3214–3222.

Mazumdar, J., Wilson, H., Masek, K., Hunter, A. and Striepen, B. (2006) Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii. Proc. Natl Acad. Sci. U.S.A. 103, 13192–13197.

Picciocchi, A., Douce, R. and Alban, C. (2003) The plant biotin synthase reaction. Identification and characterization of essential mitochondrial accessory protein components. J. Biol. Chem. 278, 24966–24975.

Tang, R. and Wada, H. (2002) The biosynthetic pathway for lipic acid is present in plastids and mitochondria in Arabidopsis thaliana. FEBS Lett. 517, 110–114.