THE HÖLDER-POINCARÉ DUALITY FOR
$L_{q,p}$-COHOMOLOGY

VLADIMIR GOL’DSHITEIN AND MARC TROYANOV

Abstract. We prove the following version of Poincaré duality for reduced $L_{q,p}$-cohomology: For any $1 < q, p < \infty$, the $L_{q,p}$-cohomology of a Riemannian manifold is in duality with the interior $L_{p',q'}$-cohomology for $1/p + 1/p' = 1$, $1/q + 1/q' = 1$. This duality result is a generalization of the corresponding result for $L_p$-cohomology [9].

AMS Mathematics Subject Classification: 30C65, 58A10, 58A12, 53c

Keywords: $L_{qp}$-cohomology, Poincaré duality

1. Introduction and statement of the results

The main goal of this paper is to describe the dual space of the reduced $L_{q,p}$-cohomology of an oriented Riemannian manifold $(M, g)$.

Let us denote by $\mathcal{D}^k = C_0^\infty(M, \Lambda^k)$ the vector space of smooth differential $k$-forms with compact support in $M$ and by $L^p(M, \Lambda^k)$ the Banach space of $p$-integrable differential $k$-forms. We also consider the space $\Omega_{q,p}^k(M)$ of $q$-integrable differential $k$-forms whose weak exterior differentials are $p$-integrable

$$\Omega_{q,p}^k(M) = \left\{ \omega \in L^q(M, \Lambda^k) \mid d\omega \in L^p(M, \Lambda^{k+1}) \right\}.$$ 

We now define our basic objects of investigation.

Definition 1.1. The reduced $L_{q,p}$-cohomology of the Riemannian manifold $(M, g)$ is defined as

$$\overline{T}_{q,p}^k(M) = Z^k_p(M) / \overline{B}_{q,p}^k(M),$$

where $Z^k_p(M)$ is the set of weakly closed forms in $L^p(M, \Lambda^k)$ and $\overline{B}_{q,p}^k$ is the closure in $L^p(M, \Lambda^k)$ of the set of weakly exact forms having a $q$-integrable primitive:

$$\overline{B}_{q,p}^k = d\left(\Omega_{q,p}^{k-1}(M)\right)^{L^p(M, \Lambda^k)}.$$

(we shall use the notation $\overline{A}^E$ for the closure of the subset set $A$ in the Banach space $E$.)

Date: October 27, 2009.

This work was partially supported by Israel Scientific Foundation (Grant No 1033/07)
In the special case \( q = p \), the space defined in (1.1) is simply denoted by \( \overline{H}_p^k(M) = \overline{H}_{q,p}^k(M) \) and is called the reduced \( L_p \)-cohomology of the manifold.

The reduced \( L_{q,p} \)-cohomology is naturally a Banach space. Two closed forms \( \omega, \omega' \) in \( Z^k_p(M) \) represent the same \( L_{q,p} \)-reduced cohomology class if one can find a sequence \( \theta_j \in L^q(M, \Lambda^{k-1}) \) such that \( \| (\omega - \omega') - d\theta_j \|_{L^p(M, \Lambda^k)} \to 0 \).

The subject-matter of \( L_{q,p} \)-cohomology has been the object of a number of investigations in recent years. The paper [11] contains some foundational material and shows how Sobolev inequalities for differential forms can be interpreted in the framework of \( L_{q,p} \)-cohomology, the paper [12] gives some applications to quasi-conformal geometry and [13] relates the \( L_{q,p} \)-cohomology to more general classes of mappings. The paper [13] contains some computations for negatively curved Riemannian manifolds and the papers [22, 24] study the relation between the \( L_{q,p} \)-cohomology of a manifold and the \( L_p \)-Hodge decomposition on that manifold. In [18, 19], some computations for warped product manifolds and the general Heisenberg group are developed.

In order to describe the dual space to \( \overline{H}_{q,p}^k(M) \), we introduce another type of cohomology which we shall call the interior reduced \( L_{r,s} \)-cohomology. This cohomology captures the idea of cohomology relative to the (ideal) boundary of the manifold.

**Definition 1.2.** The interior reduced \( L_{r,s} \)-cohomology of the Riemannian manifold \((M, g)\) is the Banach space defined as

\[
\overline{H}_{r,s,0}^k(M) = Z^k_{r,s,0}(M)/\overline{dD}^{k-1},
\]

where \( \overline{dD}^{k-1} \) is the closure of \( dD^{k-1} \) in \( L^r(M, \Lambda^k) \) and \( Z^k_{r,s,0}(M) \subset \Omega^k_{r,s}(M) \) is defined as:

\[
Z^k_{r,s,0}(M) = \ker(d) \cap \overline{dD}^{k-1}\Omega^k_{r,s}.
\]

A form \( \alpha \) belongs to \( Z^k_{r,s,0}(M) \) if and only if \( \alpha \) is a weakly closed form in \( L^r(M, \Lambda^k) \) such that there exists a sequence \( \theta_j \in D^k(M) \) such that \( \theta_j \to \alpha \) in \( \Omega^k_{r,s}(M) \), i.e.

\[
\| \theta_j - \alpha \|_r \to 0 \quad \text{and} \quad \| d\theta_j \|_s \to 0.
\]

Our main result is the following

**Theorem 1.1.** Let \((M, g)\) be an oriented \( n \)-dimensional Riemannian manifold. If \( 1 < p, q < \infty \), then \( \overline{H}_{q,p}^k(M) \) is isomorphic to the dual of \( \overline{H}_{r,s,0}^{q'-k}(M) \) where \( \frac{1}{p} + \frac{1}{p'} = \frac{1}{q} + \frac{1}{q'} = 1 \). The duality is induced by the natural pairing

\[
\langle [\omega], [\varphi] \rangle = \int_M \omega \wedge \varphi.
\]
It is useful to introduce a third, auxiliary, cohomology which we called the semi-compact or the (comp, p)-cohomology of \((M, g)\). This object turns out to be more manageable than the reduced \(L_{q,p}\)-cohomology and its interior version.

**Definition 1.3.** The reduced (comp, p)-cohomology of \((M, g)\) is the Banach space defined as

\[
\overline{H}_{\text{comp}, p}^k(M) = Z_p^k(M) / dD^{k-1},
\]

where \(dD^{k-1}\) is the \(L^p\) closure of \(dD^{k-1}\).

Observe that the following inclusions hold

\[
Z_{p,q;0}^k(M) \subset Z_p^k(M) \quad \text{and} \quad dD^{k-1} \subset B_{q,p}^k.
\]

This implies that the reduced \(L_{q,p}\)-cohomology embeds in the reduced (comp, p)-cohomology and the latter is a quotient of the reduced \(L_{q,p}\)-cohomology:

\[
H_{p,q;0}^k(M) \hookrightarrow \overline{H}_{\text{comp}, p}^k(M) \quad \text{and} \quad \overline{H}_{\text{comp}, p}^k(M) \twoheadrightarrow H_{q,p}^k(M).
\]

It follows in particular that \(\dim(\overline{H}_{q,p}^k(M)) \leq \dim(\overline{H}_{\text{comp}, p}^k(M))\) for any \(q\).

We have the following duality result for the (comp, p)-cohomology.

**Theorem 1.2.** Let \((M, g)\) be an oriented \(n\)-dimensional Riemannian manifold. If \(1 < p < \infty\), then \(\overline{H}_{\text{comp}, p}^k(M)\) is isomorphic to the dual of \(\overline{H}_{\text{comp}, p'}^{n-k}(M)\) where \(\frac{1}{p} + \frac{1}{p'} = 1\). The duality is induced by the integration pairing (1.3).

We now give a sufficient condition for the reduced (comp, p)-cohomology to coincide with the reduced \(L_{q,p}\)-cohomology. Recall that a Riemannian manifold \((M, g)\) is said to be \(s\)-parabolic, \(1 \leq s \leq \infty\) if one can approximate the unity by functions with small \(s\)-energy, i.e. if there exists a sequence of smooth functions with compact support \(\{\eta_j\} \subset C_0^\infty(M)\) such that \(\eta_j \to 1\) uniformly on every compact subset of \(M\) and \(\lim_{j \to \infty} \int_M |d\eta_j|^s = 0\).

**Theorem 1.3.** Suppose that \(M\) is \(s\)-parabolic for some \(1 \leq s \leq \infty\), and assume that \(\frac{1}{s} = \frac{1}{p} - \frac{1}{q}\). Then we have

\[
\overline{H}_{q,p}^k(M) = \overline{H}_{\text{comp}, p}^k(M) \quad \text{and} \quad \overline{H}_{p,q;0}^k(M) = \overline{H}_{\text{comp}, q}^k(M).
\]

This result gives us in particular conditions under which the reduced \(L_{q,p}\)-cohomology and the interior \(L_{q,p}\)-cohomology coincide.

The case \(s = \infty\) is important, because a manifold is \(\infty\)-parabolic if and only if it is complete. It follows that for complete manifolds, we have \(\overline{H}_p^k(M) = \overline{H}_{p;0}^k(M) = \overline{H}_{\text{comp}, p}^k(M)\) and the pairing (1.3) induces a duality

\[
\overline{H}_p^k(M)' = \overline{H}_{p'}^{n-k}(M),
\]

where \(\frac{1}{p} + \frac{1}{p'} = 1\). The paper [15] contains a short proof of this special case.
Theorem 1.3 implies that if $M$ is $s$-parabolic for every $s$, then $\overline{H}^n_{q,p}(M)$ is independent of the choice of $q$ and $\overline{H}^n_{q,p;0}(M)$ is independent of the choice of $p$ provided $p \leq q$.

In the finite volume case, we have a stronger result. If $(M,g)$ is complete with finite volume, then it is $s$-parabolic for any $1 \leq s \leq \infty$. For such manifolds, we then have

$$\overline{H}^k_{q,p}(M) = \overline{H}^k_{\text{comp},p}(M) = \overline{H}^k_p(M)$$

for any $q \geq p$. Combining this result with [11, Proposition 7.1], we obtain that $\overline{H}^k_{q,p}(M) = 0$ if and only if $\overline{H}^k_p(M) = 0$ (without the restriction $q \geq p$).

The rest of the paper is organized as follows: In the next section we recall some basic notions and facts and in section 3, we prove the duality Theorem 1.2 for the $(\text{comp},p)$-cohomology. Section 4 is devoted to the proof of Theorem 1.1 and it occupies the largest part of this paper. We reformulate the problem in the convenient language of Banach complexes. This section also contains a description of the dual space of $\Omega^k_{q,p}(M)$, see Corollary 4.7. In section 5 we recall the notion of $s$-parabolic manifolds and we give a proof of Theorem 1.3. In section 6 we deduce from the main theorem a result on the Poincaré duality of the conformal cohomology and in the last section, we derive some consequences and applications of our duality theorems.

2. Some background

For any Riemannian $n$-manifold $(M,g)$, the Riemannian metric induces a norm (in fact a scalar product) on $\Lambda^k T^*_x M$ at any point $x \in M$. Using this norm, one can define the space $L^p(M, \Lambda^k)$ of measurable differential $k$-forms $\omega$ such that

$$\|\omega\|_p = \left( \int_M |\omega|^p d \text{vol}_g(x) \right)^{1/p} < \infty,$$

if $1 \leq p < \infty$ and $\|\omega\|_\infty = \text{ess-sup} |\omega| < \infty$ if $p = \infty$. If $p' = p/(p-1)$, one can define a pairing

$$\langle \ , \ \rangle : L^p(M, \Lambda^k) \times L^{p'}(M, \Lambda^{n-k}) \to \mathbb{R}$$

by integration, that is

$$\langle \omega, \varphi \rangle = \int_M \omega \wedge \varphi$$

for $\omega \in L^p(M, \Lambda^k)$ and $\varphi \in L^{p'}(M, \Lambda^{n-k})$. This is well defined because we have at (almost) every point $x \in M$

$$|\omega \wedge \varphi|_x \leq |\omega|_x |\varphi|_x,$$

and by Hölder’s inequality

$$|\langle \omega, \varphi \rangle| = \left| \int_M \omega \wedge \varphi \right| \leq \int_M |\omega| |\varphi| d\mu \leq \|\omega\|_{L^p(M, \Lambda^k)} \|\varphi\|_{L^{p'}(M, \Lambda^k)}.$$
The bilinear function $\langle \cdot, \cdot \rangle$ allows us to define for any $\varphi \in L^p(M, \Lambda^k)$ a bounded linear functional $F_\varphi(\omega) = \int_M \omega \wedge \varphi$, and the familiar Hölder duality between $p$ and $p'$ extends to differential forms, see e.g. [9]:

**Theorem 2.1.** For any $1 \leq p < \infty$ the correspondence $\varphi \to F_\varphi$ is an isometric isomorphism from the Banach spaces $L^p(M, \Lambda^{n-k})$ to the dual space of $L^p(M, \Lambda^k)$, and the duality is explicitly given by the pairing (2.1).

**Corollary 2.2.** $\mathcal{D}^k := C_0^\infty(M, \Lambda^k)$ is dense in $L^p(M, \Lambda^k)$.

**Proof.** Here is a short proof: Suppose there exists a $k$-form $\omega \in L^p(M, \Lambda^k)$ such that $\omega \notin \overline{\mathcal{D}^k}$. By the Hahn-Banach Theorem, there exists a continuous linear form $\lambda : L^p(M, \Lambda^k) \to \mathbb{R}$ such that $\lambda(\omega) \neq 0$. By the previous Theorem, there exists $\psi \in L^{p'}(M, \Lambda^{n-k})$ such that $\lambda(\theta) = \int_M \theta \wedge \psi$ for any $\theta \in L^p(M, \Lambda^k)$. In particular $\lambda(\theta) = \int_M \theta \wedge \psi = 0$ for any $\theta \in \mathcal{D}^k$. This implies that $\psi = 0$ and therefore $\lambda(\omega) = 0$. Therefore no such $\omega$ exists and we conclude that $\overline{\mathcal{D}^k} = L^p(M, \Lambda^k)$. □

We now define the notion of weak exterior differential:

**Definition 2.1.** Assume $M$ to be oriented. One says that a differential form $\theta \in L^p(M, \Lambda^{k+1})$ is the weak exterior differential of the form $\phi \in L^p(M, \Lambda^k)$ and one writes $d\phi = \theta$ if one has

$$\int_M \theta \wedge \omega = (-1)^{k+1} \int_M \phi \wedge d\omega$$

for any $\omega \in \mathcal{D}^{n-k}(M) = C_0^\infty(M, \Lambda^{n-k})$.

We then introduce the space

$$\Omega^k_{q,p}(M) = \left\{ \omega \in L^q(M, \Lambda^k) \mid d\omega \in L^p(M, \Lambda^{k+1}) \right\},$$

this is a Banach space for the graph norm

\begin{equation}
\|\omega\|_{q,p} = \|\omega\|_{L^q} + \|d\omega\|_{L^p}.
\end{equation}

The space $\Omega^k_{q,p}(M)$ is a reflexive Banach space for any $1 < q, p < \infty$, this can be proved using standard arguments of functional analysis (see e.g. [1]), but is also follows from Corollary 4.7 below.

**Lemma 2.3.** For any $1 \leq q, p < \infty$, $C^\infty(M, \Lambda^k) \cap \Omega^k_{q,p}(M)$ is dense in $\Omega^k_{q,p}(M)$.

**Proof.** This follows from the regularization theorem, see [11]. □

We now (re)define our basic ingredients, for $p, q, r \in [1, \infty]$. 
We also defined the spaces: cohomologies are then naturally defined as the following quotients of Banach

\[ \Omega_{q,r}^k(M) = \text{ker}[d : \Omega_{q,r}^{k-1}(M) \to L^r(M, \Lambda^{k+1})]. \]

\[ B_{q,p}^k(M) = \text{im}[d : \Omega_{q,p}^{k-1}(M) \to L^p(M, \Lambda^k)]. \]

\[ Z_{q,r,0}^k(M) = \text{ker}[d : \Omega_{q,r,0}^k(M) \to L^r(M, \Lambda^{k+1})]. \]

\[ B_{q,r,0}^k(M) = \text{im}[d : \Omega_{q,r,0}^{k-1}(M) \to L^p(M, \Lambda^k)]. \]

Lemma 2.4. The previously defined spaces satisfy the following properties

(i) \( Z_{p,r}^k(M) \) does not depend on \( r \) and it is is a closed subspace of \( L^p(M, \Lambda^k) \).

(ii) \( d(\mathcal{D}^{k-1}) \) is dense in \( B_{r,p,0}^k(M) \) for the \( L^p \)-topology.

Proof. (i) \( Z_{p,r}^k(M) \) is a closed subspace of \( \Omega_{p,r}^k(M) \) since it is the kernel of the bounded operator \( d \). It is also a closed subspace of \( L^p(M, \Lambda^k) \) since for any \( \alpha \in Z_{p,r}^k(M) \), we have \( ||\alpha||_{\Omega_{p,r}^k(M)} = ||\alpha||_{L^p(M, \Lambda^k)} \). Now \( Z_{p,r}^k(M) \) does not depend on \( r \) because it coincides with the space of weakly closed \( k \)-forms in \( L^p(M, \Lambda^k) \).

Statement (ii) is almost obvious, let \( \omega \in B_{r,p,0}^k(M) \). Then there exists \( \theta \in \Omega_{r,p,0}^{k-1}(M) \) such that \( d\theta = \omega \). By definition of \( \Omega_{r,p,0}^{k-1}(M) \), there exists a sequence \( \theta_j \in \mathcal{D}^{k-1} \) such that \( \lim_{j \to \infty} ||\theta - \theta_j||_{r,p} = 0 \). This means that \( \theta = \lim_{j \to \infty} \theta_j \) in \( L^r \) and \( \omega = d\theta = \lim_{j \to \infty} d\theta_j \) in \( L^p \).

The Banach space \( Z_{p,r}^k(M) \) will then simply be denoted by \( Z_p^k(M) \). We will also identify the closed subspaces \( \mathcal{B}_{r,p,0}^{k, \mathcal{D}}(M) \) and \( \overline{d(\mathcal{D}^{k-1})} \). Our reduced cohomologies are then naturally defined as the following quotients of Banach spaces:

\[ \mathcal{H}_{r,p,q,0}^k(M) = Z_{p,q,0}^k(M)/\mathcal{B}_{r,p,0}^{k, \mathcal{D}}(M), \]

\[ \mathcal{H}_{r,p,q}^k(M) = Z_{p,q}^k(M)/\overline{d(\mathcal{D}^{k-1})}(M) \]

and

\[ \mathcal{H}_{r,p,q}^k(M) = Z_{p,q}^k(M)/\overline{d(\mathcal{D}^{k-1})}(M). \]

We also defined the unReduced \( L_{r,p} \)-cohomology as

\[ \mathcal{H}_{r,p,q}^k(M) = Z_{p,q}^k(M)/\overline{d(\mathcal{D}^{k-1})}(M), \]

this is generally not a Banach space as \( \mathcal{B}_{q,r}^k(M) \subset Z_p^k(M) \) need not be a closed subspace. We may also define an unReduced interior cohomology, but this space will depend on 3 indices instead of 2:

\[ \mathcal{H}_{r,p,q}^k(M) = Z_{p,q,0}^k(M)/\mathcal{B}_{r,p,0}^{k, \mathcal{D}}(M). \]
3. The duality theorem for the (comp, p)-cohomology

In this section, we prove Theorem 1.2. The proof is based on the following lemma from functional analysis.

**Lemma 3.1.** Let \( I : X_0 \times X_1 \to \mathbb{R} \) be a duality (non degenerate pairing) between two reflexive Banach spaces. Let \( B_0, A_0, B_1, A_1 \) be linear subspaces such that

\[
B_0 \subset A_0 = B_1^\perp \subset X_0 \quad \text{and} \quad B_1 \subset A_1 = B_0^\perp \subset X_1.
\]

Then the pairing \( \mathcal{T} : \overline{\mathcal{P}}_0 \times \overline{\mathcal{P}}_1 \to \mathbb{R} \) of \( \overline{\mathcal{P}}_0 = A_0/\overline{B}_0 \) and \( \overline{\mathcal{P}}_1 = A_1/\overline{B}_1 \) is well defined and induces duality between \( \overline{\mathcal{P}}_0 \) and \( \overline{\mathcal{P}}_1 \).

Here \( B_1^\perp \) and \( B_0^\perp \) are the annihilators of \( B_1 \) and \( B_0 \) for the duality \( I \).

**Proof.** We first prove the Lemma under the assumption that \( A_0 \neq \overline{B}_0 \) and \( A_1 \neq \overline{B}_1 \). Observe that \( A_i \) is a closed subspace of the Banach spaces \( X_i \) since it is the annihilators of \( B_i \) \((i = 1, 2)\). The bounded bilinear map \( I : A_0 \times A_1 \to \mathbb{R} \) is defined by restriction and it gives rise to a well defined bounded bilinear map

\[
\mathcal{T} : A_0/\overline{B}_0 \times A_1/\overline{B}_1 \to \mathbb{R}
\]

because we have the inclusions \( B_0 \subset A_0 \subset B_1^\perp \) and \( B_1 \subset A_1 \subset B_0^\perp \). (Indeed, let \( a_0 \in A_0, \alpha_1 \in A_1, b_0 \in \overline{B}_0, b_1 \in \overline{B}_1 \). Then

\[
I(\alpha_0 + b_0, \alpha_1 + b_1) = I(\alpha_0, \alpha_1) + I(\alpha + b_0, b_1) + I(b_0, \alpha_1),
\]

by the definition of annihilators the second and third terms vanish and the duality \( \mathcal{T} \) is thus well defined.)

We show that \( \mathcal{T} \) is non degenerate: let \( a_0 \in A_0 \) be such that \([a_0] \neq 0 \in A_0/\overline{B}_0\); i.e. \( a_0 \notin \overline{B}_0 \). By Hahn-Banach theorem and the fact that \( X_1 \) is dual to \( X_0 \), there exists an element \( y \in X_1 \) such that \( I(a_0, y) \neq 0 \) and \( I(b, y) = 0 \) for all \( b \in \overline{B}_0 \). Thus \( y \in B_0^\perp = A_1 \) and we have found an element \([y] \in A_1/\overline{B}_1\) such that \( \mathcal{T}([a], [y]) \neq 0 \).

The same argument shows that for any \([\alpha] \neq 0 \in A_1/\overline{B}_1\), we can find an element \([x] \in A_0/\overline{B}_0\) such that \( \mathcal{T}([x], [\alpha]) \neq 0 \). The proof is thus complete in the case \( A_i \neq \overline{B}_i \).

If \( A_0 = \overline{B}_0 \), then we have from the hypothesis of the Lemma:

\[
\overline{B}_1 \subset A_1 = B_0^\perp = A_0^\perp = (B_1^\perp)^\perp = \overline{B}_1,
\]

and it follows that \( A_1 = \overline{B}_1 \). The argument shows in fact that

\[
A_0 = \overline{B}_0 \iff A_1 = \overline{B}_1.
\]

In that case both \( \overline{\mathcal{P}}_0 = A_0/\overline{B}_0 \) and \( \overline{\mathcal{P}}_1 = A_1/\overline{B}_1 \) are null spaces and the Lemma is trivial.

\( \square \)
Proof of Theorem 1.2 Let \( \alpha \in L^p(M, \Lambda^k) \), then by definition of the weak exterior differential, we have \( d\alpha = 0 \) if and only if
\[
\int_M \alpha \wedge d\omega = 0
\]
for any \( \omega \in \mathcal{D}^{n-k-1} \). This precisely means that \( Z^k_p(M) \subset L^p(M, \Lambda^k) \) is the annihilator of \( d\mathcal{D}^{n-k-1} \) for the integration pairing, we thus have the following relations with respect to the pairing (2.1):
\[
d\mathcal{D}^{n-k-1} \subset Z^k_p(M) = (d\mathcal{D}^{n-k-1})^\perp \subset L^p(M, \Lambda^k).
\]
Likewise, we have \( d\mathcal{D}^{n-k-1} \subset Z^{n-k}_p(M) = (d\mathcal{D}^{k-1})^\perp \subset L^p(M, \Lambda^{n-k}) \), and the previous Lemma implies that (2.1) induces a duality between \( \mathcal{H}^k_{\text{comp}, p}(M) = Z^k_p(M) / d\mathcal{D}^{k-1} \) and \( \mathcal{H}^{n-k}_{\text{comp}, p}(M) = Z^k_p(M) / d\mathcal{D}^{n-k-1} \).

\[\square\]

4. The main duality Theorem

The goal of this section is to prove Theorem 1.1. It will be convenient to use the language of Banach complexes, and for that we need to reformulate the definition of our cohomology in a new language.

4.1. The \( L_\pi \)-cohomology of \( M \). To define a Banach complex, we fix an \( (n+1) \)-tuple of real numbers
\[
\pi = \{p_0, p_1, \ldots, p_n\} \subset [1, \infty]
\]
and define
\[
\Omega^k_\pi(M) = \Omega^k_{p_k, p_{k+1}}(M).
\]
Observe that \( \Omega^n_\pi(M) = L^{p_n}(M, \Lambda^n) \) and \( \Omega^k_{p_k, p_{k+1}}(M) \) coincides with the Sobolev space \( W^{1,p}(M) \). Since the weak exterior differential is a bounded operator \( d : \Omega^k_\pi \rightarrow \Omega^{k+1}_\pi \), we have constructed a Banach complex \( \{\Omega^k_\pi(M), d\} \):
\[
0 \rightarrow \Omega^0_\pi \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{k-1}_\pi \xrightarrow{d} \Omega^k_\pi \xrightarrow{d} \cdots \xrightarrow{d} \Omega^n_\pi \rightarrow 0.
\]

Definition 4.1. The (reduced) \( L_\pi \)-cohomology of \( M \) is the (reduced) cohomology of the Banach complex \( \{\Omega^k_\pi(M), d\} \).

The \( L_\pi \)-cohomology space \( H^k_\pi(M) \) depends only on \( p_k \) and \( p_{k-1} \) and we have in fact
\[
H^k_\pi(M) = H^k_{p_{k-1}, p_k}(M) = Z^k_{p_k}(M) / B^k_{p_{k-1}, p_k}(M)
\]
and the reduced \( L_\pi \)-cohomology is
\[
\overline{H}^k_\pi(M) = \overline{H}^k_{p_{k-1}, p_k}(M) = Z^k_{p_k}(M) / \overline{B}^k_{p_{k-1}, p_k}(M).
\]
We also introduce a notion of interior \( L_\pi \)-cohomology. Let us denote by \( \Omega^0_{\pi, 0}(M) \) the closure of \( \mathcal{D}(M) \) in \( \Omega^k_\pi(M) \). This is an another Banach complex
\[
0 \rightarrow \Omega^0_{\pi, 0}(M) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^{k-1}_{\pi, 0}(M) \xrightarrow{d} \Omega^k_{\pi, 0}(M) \xrightarrow{d} \cdots \xrightarrow{d} \Omega^n_{\pi, 0} \rightarrow 0.
\]
Definition 4.2. The \textit{interior} $L_{\pi}$-cohomology of $(M, g)$ is the cohomology of this Banach complex, i.e.\[
H_k^{\pi,0}(M) = H_{pk-1, pk+1, 0}^k(M) = Z_{pk, pk+1, 0}^k(M)/B_{pk-1, pk+1, 0}^k(M)
\]
and by Lemma 2.4 the interior reduced $L_{\pi}$-cohomology is\[
H_k^{\pi,0}(M) = H_{pk, pk+1, 0}^k(M)/dD_{pk-1, pk+1, 0}(M).
\]

Definition 4.3. The \textit{dual} of the $(n+1)$-tuple $\pi = \{p_0, p_1, \ldots, p_n\} \subset [1, \infty]$ is the $(n+1)$-tuple $\pi' = \{r_0, r_1, \ldots, r_n\}$ such that $\frac{1}{r_k} + \frac{1}{p_{n-k}} = 1$.

In the sequel, we will use the notation $a < \pi < b$ or $a \leq \pi \leq b$ if these inequalities hold for all $p_0, p_1, \ldots, p_n$.

4.2. The complex of pairs of forms on $M$. Because the space $\Omega_k^\pi(M)$ is equipped with the graph norm, it is useful to investigate the structure of the space where this graph leaves, that is the following Cartesian product:

Definition 4.4. Given an $n$-dimensional Riemannian manifold $(M, g)$ and a sequence $\pi$ as in (4.1), we introduce the vector space $P^\pi_\pi(M) = L^\pi(M, \Lambda^\pi) \oplus L^\pi(M, \Lambda^{\pi+1})$.

We introduce a graduation of this vector space by defining $P_k^\pi(M) = L^\pi(M, \Lambda^k) \oplus L^\pi(M, \Lambda^{k+1})$.

Remark We have $L^\pi(M, \Lambda^{n+1}) = L^\pi(M, \Lambda^{-1}) = \{0\}$, hence $P_n^\pi(M) \cong L^0_n(M, \Lambda^0)$ and $P^{-1}_n(M) \cong L^0_0(M, \Lambda^0)$.

An element in $P_k^\pi(M)$ will be denoted as a column vector $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ with $\alpha \in L^\pi(M, \Lambda^k)$ and $\beta \in L^\pi(M, \Lambda^{k+1})$. This space is a Banach space for the norm\[
\left\| \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \right\|_{P^\pi_k(M)} = \|\alpha\|_{pk} + \|\beta\|_{pk+1},
\]
and it can be turned as a Banach complex for the “differential” $d_P : P_k^\pi \to P_{k+1}^\pi(M)$ defined by $d_P \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \beta \\ 0 \end{pmatrix}$.

Lemma 4.1. The complex $(P_k^\pi(M), d_P)$ has trivial cohomology.

Proof Suppose that $d_P \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, this means that $\beta = 0$. But then it is clear that $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \alpha \\ 0 \end{pmatrix} = d_P \begin{pmatrix} 0 \\ \alpha \end{pmatrix}$. \qed
Proposition 4.2. Let \( \pi \) be a sequence as in the Definition (4.1) and \( \pi' \) be the dual sequence. If \( M \) is oriented and \( 1 \leq \pi < \infty \), then \( \mathcal{P}_\pi^k(M) \) and \( \mathcal{P}_{\pi'}^{n-k-1}(M) \) are in duality for the following pairing

\[
(4.3) \quad \left\langle \left( \begin{array}{c} \alpha \\ \beta \end{array} \right), \left( \begin{array}{c} \varphi \\ \psi \end{array} \right) \right\rangle = \int_M ((-1)^k \alpha \wedge \psi + \beta \wedge \varphi).
\]

Proof. By Theorem 2.1, we have the following isomorphisms (in fact isometries):

\[
\left( L^p_k(M, \Lambda^k) \right)' \cong L^p_k(M, \Lambda^{n-k}), \quad \left( L^p_{k+1}(M, \Lambda^{k+1}) \right)' \cong L^p_{k+1}(M, \Lambda^{n-k-1})
\]

induced by isometrical isomorphisms. Hence

\[
\left( \mathcal{P}_\pi^k(M) \right)' = \left( L^p_k(M, \Lambda^k) \oplus L^p_{k+1}(M, \Lambda^{k+1}) \right)' = \left( \left( L^p_k(M, \Lambda^k) \right)' \oplus \left( L^p_{k+1}(M, \Lambda^{k+1}) \right)' \right) = L^p_{k+1}(M, \Lambda^{n-k-1}) \oplus L^p_k(M, \Lambda^{n-k}) = \mathcal{P}_{\pi'}^{n-k-1}(M).
\]

Lemma 4.3. The operator \( d_P : \mathcal{P}_{\pi'}^{k-1} \to \mathcal{P}_{\pi'}^k \) and \( (-1)^k d_P : \mathcal{P}_{\pi'}^{n-k-1} \to \mathcal{P}_{\pi'}^{n-k} \) are adjoint for the duality (4.3).

Proof. Let \( \left( \begin{array}{c} \alpha \\ \beta \end{array} \right) \in \mathcal{P}_{\pi'}^{k-1} \) and \( \left( \begin{array}{c} \varphi \\ \psi \end{array} \right) \in \mathcal{P}_{\pi'}^{n-k-1} \), then

\[
\left\langle d_P \left( \begin{array}{c} \alpha \\ \beta \end{array} \right), \left( \begin{array}{c} \varphi \\ \psi \end{array} \right) \right\rangle = \left\langle \left( \begin{array}{c} \beta \\ 0 \end{array} \right), \left( \begin{array}{c} \varphi \\ \psi \end{array} \right) \right\rangle = \int_M (-1)^k \beta \wedge \psi.
\]

On the other hand

\[
\left\langle \left( \begin{array}{c} \alpha \\ \beta \end{array} \right), d_P \left( \begin{array}{c} \varphi \\ \psi \end{array} \right) \right\rangle = \left\langle \left( \begin{array}{c} \alpha \\ \beta \end{array} \right), \left( \begin{array}{c} \psi \\ 0 \end{array} \right) \right\rangle = \int_M \beta \wedge \psi.
\]

4.3. The annihilator of \( \Omega_{\pi,0}^*(M) \) in \( \mathcal{P}_\pi^*(M) \). We will investigate \( \Omega_{\pi}^*(M) \) as a subspace of \( \mathcal{P}_\pi^*(M) \).

Definition 4.5. We denote by \( \Sigma_\pi^*(M) \subset \mathcal{P}_\pi^*(M) \) the set of pairs of the form \( \left( \frac{\omega}{d\omega} \right) \), where \( \omega \in \Omega_{\pi}^*(M) \). We also denote by \( \Sigma_{\pi,0}^*(M) \) the suspace of those elements \( \left( \frac{\omega}{d\omega} \right) \) such that \( \omega \in \Omega_{\pi,0}^*(M) \).

It is clear that \( \Sigma_\pi^*(M) \) and \( \Sigma_{\pi,0}^*(M) \) are closed subspaces of \( \mathcal{P}_\pi^*(M) \), they are subcomplexes and are isomorphic (as Banach complexes) to \( \Omega_{\pi,0}^*(M) \) and \( \Omega_{\pi}^*(M) \).

Lemma 4.4. The subspaces \( \Sigma_\pi^*(M) \subset \mathcal{P}_\pi^k(M) \) and \( \Sigma_{n-k}^*(M) \subset \mathcal{P}_{n-k}^*(M) \) are orthogonal for the duality pairing (4.3).
**Proof.** This is clear by the definition of weak exterior differential and the density of $D^{n-k-1}$ in $\Omega_{\pi;0}^{n-k-1}(M)$.

In fact we have a stronger result:

**Proposition 4.5.** The subspace $\Sigma_k^\pi(M)$ in $P_k^\pi(M)$ is the annihilator of $\Sigma_{n;0}^{n-k-1}(M)$:

\[
\Sigma_k^\pi(M) = (\Sigma_{n;0}^{n-k-1}(M))^\perp. \tag{4.4}
\]

We also have

\[
\Sigma_{k;0}^\pi(M) = (\Sigma_{n;0}^{n-k-1}(M))^\perp. \tag{4.5}
\]

**Proof** By density of $D^{n-k-1}$ in $\Omega_{\pi;0}^{n-k-1}(M)$, an element $(\alpha\beta)\in P_k^\pi(M)$ belongs to the annihilator of $D^{n-k-1}$ if and only if

\[
(-1)^k \int_M \alpha \wedge d\varphi + \int_M \beta \wedge \varphi = 0
\]

for any $D^{n-k-1}$, but this means by definition that $\beta = d\alpha$ in the weak sense, i.e. that $(\alpha\beta)\in \Sigma_k^\pi(M)$. Therefore

\[
\Sigma_k^\pi(M) = (D^{n-k-1})^\perp = (\Sigma_{n;0}^{n-k-1}(M))^\perp,
\]

this proves (4.4). To prove (4.5), we use the fact that $\Sigma_{n;0}^{n-k-1}(M) \subset P_{n;0}^{n-k-1}(M)$ is a closed subspace together with (4.4) and the following property of annihilator $(A^\perp)^\perp = \overline{A}$ to deduce that

\[
\Sigma_{k;0}^\pi(M) = \left(\left(\Sigma_k^\pi(M)\right)^\perp\right)^\perp = \left(\Sigma_{n;0}^{n-k}(M)\right)^\perp.
\]

\[\square\]

4.4. **The dual of $\Omega^*_\pi(M)$.** We introduce the following quotient of $P_{n;0}^*(M)$:

\[
A^*_\pi = P_{n;0}^*(M)/\Sigma_{n;0}^*(M).
\]

This space inherits a graduation from that of $P_{n;0}^*(M)$.

**Theorem 4.6.** The graded vector space $A^*_\pi$ has the following properties:

a.) $A^k_{n;\pi}$ is a Banach space for the norm

\[
\left\|\left(\varphi_\psi\right)\right\|_A = \inf\left\{\left(\left\|\varphi + \rho\right\|_{\pi_k} + \left\|\psi + d\rho\right\|_{\pi_{k+1}}\right) \mid \rho \in \Omega_{n;0}^k(M)\right\}.
\]

b.) $A^k_{n;\pi}$ is dual to $\Sigma_{n}^{n-k-1}(M)$ for the pairing given by (4.3).

c.) The differential $d_P : P_{n;\pi}^k \rightarrow P_{n;\pi}^{k+1}$ induces a differential $d_A : A^k_{n;\pi} \rightarrow A^{k+1}_{n;\pi}$ and $(A^*_\pi, d_A)$ is a Banach complex.
d.) The operator $d_{\mathcal{A}} : \mathcal{A}_{n'}^{k-1} \to \mathcal{A}_{n'}^{k}$ and $d : \Sigma_{\pi}^{n-k-1} \to \Sigma_{\pi}^{n-k}$ are adjoint (up to sign) for the duality (4.3).

**Proof.** The statement (a) is a standard fact on quotient of Banach spaces and (b) is a consequence of the orthogonality relation (4.5). The statement (c) follows directly from the fact that $\Sigma^{k}_{\pi'}$ is a subcomplex of $\mathcal{P}_{\pi'}$, i.e. $d_{\mathcal{P}}(\Sigma^{k}_{0}) \subset (\Sigma^{k+1}_{0})$. Finally, the last statement follows directly from Lemma 4.3.

**Corollary 4.7.** The dual of the space $\Omega_{\pi}^{k}(M)$ is isomorphic to the completion of $\mathcal{D}^{n-k}$ with respect to the following norm:

$$
\|\sigma\| = \inf \left\{ \left(\|p\|_{\rho_{n'-1}} + \|\sigma + d\rho\|_{\rho_{n'-k}}\right) \mid \rho \in \Omega^{n-k-1}_{\pi';0}(M) \right\}.
$$

**Proof.** We know be the Corollary 2.2 that the space $\mathcal{S}^{m} = \mathcal{D}^{m} \oplus \mathcal{D}^{m+1}$ is a dense subspace of $\mathcal{P}^{m}$. The image of $\mathcal{S}^{m}$ in $\mathcal{A}_{n'}^{m}$ is thus also dense. Observe that $(\phi_{0}) \in \mathcal{S}^{m}$ and $(\phi_{0}) = (\phi_{0}) - (d\phi) \in \mathcal{S}^{m}$ represent the same element in $\mathcal{A}_{n'}^{m}$; this implies that the map

$$
j : \mathcal{D}^{m+1} \to \mathcal{A}_{n'}^{m}, \quad j(\sigma) = \begin{pmatrix} 0 \\ \sigma \end{pmatrix}
$$

has a dense image. This map is furthermore injective, indeed, if $\sigma \in \ker j$, then $(0) = (\sigma)$ for some $\rho \in \Sigma^{m-1}_{\pi';0}(M)$, but then $\rho = 0$ and therefore $\sigma = d\rho = 0$. It follows that $\mathcal{A}_{n'}^{m}$ is the completion of $j(\mathcal{D}^{m+1})$ for the natural norm in $\mathcal{A}_{n'}^{m}$. This norm is given by

$$
\|j(\sigma)\| = \left\| \begin{pmatrix} 0 \\ \sigma \end{pmatrix} \right\|_{\mathcal{A}} = \inf \left\{ \left(\|p\|_{\rho_{n'-1}} + \|\sigma + d\rho\|_{\rho_{n'-k}}\right) \mid \rho \in \Omega^{m-1}_{\pi';0}(M) \right\}.
$$

We now deduce from statement (b) of the previous Theorem that the above completion of $\mathcal{D}^{m+1}$ is isomorphic to the dual of $\Omega^{n-1}_{\pi'}(M)$. Setting $m = n - k - 1$ completes the proof of the Corollary.

4.5. **The duality theorem in $L_{\pi}$-cohomology.** In this subsection, we prove a duality statement between the reduced $L_{\pi}$-cohomology of $M$ and the reduced interior $L_{\pi'}$-cohomology. We begin by investigating the cohomology of the Banach complex $\mathcal{A}^{*}_{n'}$. Let us define the spaces

$$
Z^{k}(\mathcal{A}^{*}_{n'}) = \ker[d_{\mathcal{A}} : \mathcal{A}^{k}_{n'} \to \mathcal{A}^{k+1}_{n'}] \quad \text{and} \quad B^{k}(\mathcal{A}^{*}_{n'}) = \im[d_{\mathcal{A}}(\mathcal{A}^{k-1}_{n'})].
$$

We also denote by $\overline{B}^{k}(\mathcal{A}^{*}_{n'})$ the closure of $B^{k}(\mathcal{A}^{*}_{n'})$. Observe that $Z^{k}(\mathcal{A}^{*}_{n'}) \subset \mathcal{A}^{*}_{n'}$ is a closed subspace and that $B^{k}(\mathcal{A}^{*}_{n'}) \subset \overline{B}^{k}(\mathcal{A}^{*}_{n'}) \subset Z^{k}(\mathcal{A}^{*}_{n'})$. The cohomology and reduced cohomology of $\mathcal{A}^{*}_{n'}$ are defined as

$$
H^{k}(\mathcal{A}^{*}_{n'}) = Z^{k}(\mathcal{A}^{*}_{n'}) / B^{k}(\mathcal{A}^{*}_{n'}) \quad \text{and} \quad \overline{H}^{k}(\mathcal{A}^{*}_{n'}) = \overline{Z}^{k}(\mathcal{A}^{*}_{n'}) / \overline{B}^{k}(\mathcal{A}^{*}_{n'}).$$
Proposition 4.8. The pairing given by (4.3) induces a duality between the reduced cohomology of $A^*_{\pi'}$ and that of $\Sigma^*_n(M)$:

$$\overline{H}^{k-1}(A^*_{\pi'}) \times \overline{H}^{n-k}(\Sigma^*_n(M)) \rightarrow \mathbb{R}.$$  

Proof. Observe first that

$$B^{k-1}(A^*_{\pi'}) \subset Z^{k-1}(A^*_{\pi'}) = (B^{n-k}(A^*_{\pi'}))^\perp \subset A^{k-1}_{\pi'}.$$  

Indeed, both inclusions are trivial and the above equality follows from the fact that $d_\Sigma$ and $d_A$ are adjoint operators.

Let us recall the (classic) argument. Fix $a \in A^{k-1}_{\pi'}$, if $a \in \ker[d_{\pi'}^{-1}]$, then $\langle a, d_\Sigma s \rangle = \pm \langle d_A a, s \rangle = 0$ for any $s \in \Sigma^{n-k-1}_n(M)$, i.e. $a \in (\text{im}[d_{\Sigma}^{n-k-1}])^\perp$. Conversely, if $a \in (\text{im}[d_{\Sigma}^{n-k-1}])^\perp$, then $\langle d_A a, s \rangle = \pm \langle a, d_\Sigma s \rangle = 0$ for any $s \in \Sigma^{n-k-1}_n(M)$ because $\Sigma^{n-k-1}_n(M)$ is dual to $A^{k-1}_{\pi'}$. This means that $d_A a = 0$.

Similarly, by Theorem 4.6 we have

$$\text{im}[d_{\Sigma}^{n-k-1}] \subset \ker[d_{\Sigma}^{n-k}] = (\text{im}[d_A^{k-2}])^\perp \subset \Sigma^{n-k}_n(M).$$

The Proposition follows now from Lemma 3.1 for $X_0 = A^{k-1}_{\pi'}$, $X_1 = \Sigma^{n-k}_n(M)$ and equations (4.7) and (4.8) since by definition we have

$$\overline{H}^{k-1}(A^*_{\pi'}) = \ker[d_{\pi'}^{-1}/\text{im}[d_{A}^{k-2}]]$$

and

$$\overline{H}^{n-k}(\Sigma^*_n(M)) = \ker[d_{\Sigma}^{n-k}/\text{im}[d_{\Sigma}^{n-k-1}]].$$

$\Box$

Proposition 4.9. The reduced and non-reduced cohomology of the Banach complex $(A^*_{\pi'}, d_A)$ is isomorphic to the interior $L_{\pi'}$-cohomology of $M$ up to a shift:

$$H^k_{\pi',0}(M) = H^{k-1}(A^*_{\pi'}) \quad \text{and} \quad \overline{H}^{k-1}(A^*_{\pi'}) = \overline{H}^{k-1}(A^*_{\pi'}).$$

These isomorphisms are induced from the map $j : Z^k_{\pi',0}(M) \rightarrow P^{k-1}_{\pi'}$ defined by $j(\beta) = \begin{pmatrix} 0 \\ \beta \end{pmatrix}$.

Because we have a short exact sequence of complexes

$$0 \rightarrow \Omega^*_{\pi',0}(M) \rightarrow P^*_{\pi'} \rightarrow A^*_{\pi'} \rightarrow 0$$

and $P^*_{\pi'}$ has trivial cohomology, the result follows from general principles (see e.g. Theorem 1b in [20]). However we give below a more informative, explicit proof.

Proof. It will be convenient to describe the cohomology $H^{k-1}(A^*_{\pi'})$ as a quotient of $P^{k-1}_{\pi'}$. An element in $A^{k-1}_{\pi'}$ is represented by an element $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \in P^{k-1}_{\pi'}$ modulo $\Sigma^{k-1}_{\pi',0}$, i.e. the equality

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \alpha + \varphi \\ \beta + d\varphi \end{pmatrix}$$

for some $\varphi \in \Omega^*_{\pi',0}(M)$. 

The pairing gives an adjoint isomorphism $\overline{H}^{k-1}(A^*_{\pi'}) \cong \text{Hom}(P^{k-1}_{\pi'}, \mathbb{R})$. 

This also gives a dual isomorphism $\overline{H}^{n-k}(\Sigma^*_n(M)) \cong \text{Hom}(P^{n-k}_{\pi'}(M), \mathbb{R})$.

Thus a natural pairing is between $H^{k-1}(A^*_{\pi'})$ and $\Sigma^{n-k}_{\pi'}$:

$$\langle \alpha, \beta \rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

for some $\varphi \in \Omega^*_{\pi',0}(M)$. 

This isomorphism gives the desired result.
holds in $A^{k-1}_{\pi'0}$ if and only if $\varphi \in \Sigma^{k-1}_{\pi'0}$.

Now $(\alpha)^{\beta}_{\beta}$ represents an element in $Z^{k-1}(A^{*}_{\pi'})$ if $dA(\alpha)^{\beta}_{\beta} = (\beta)^{0}_{0} \in \Sigma^{k}_{\pi'0}$. This means that $\beta \in \Omega^{k}_{\pi'0}(M)$ and $d\beta = 0$, i.e. $\beta \in Z^{k}_{\pi'0}(M)$, in other words we have

$$Z^{k-1}(A^{*}_{\pi'}) = \left\{ \left( \frac{\alpha}{\beta} \right) \in P^{k-1}_{\pi'} \mid \beta \in Z^{k}_{\pi'0}(M) \right\} / \Sigma^{k-1}_{\pi'0}.$$ 

Likewise, $(\alpha)^{0}_{\beta}$ represents an element in $B^{k-1}(A^{*}_{\pi'})$ if there exists $(\beta)^{\gamma}_{\delta} \in P^{k-2}_{\pi'}$ such that $(\alpha)^{\beta}_{\beta} = dA(\gamma)^{\beta}_{\delta} = (\beta)^{0}_{0}$ modulo $\Sigma^{k-1}_{\pi'0}$, and this means that $\beta = d\varphi \in B^{k}_{\pi'0}(M)$. We thus have

$$B^{k-1}(A^{*}_{\pi'}) = \left\{ \left( \frac{\alpha}{\beta} \right) \in P^{k-1}_{\pi'} \mid \beta \in B^{k}_{\pi'0}(M) \right\} / \Sigma^{k-1}_{\pi'0},$$

and, by completion

$$\overline{B}^{k-1}(A^{*}_{\pi'}) = \left\{ \left( \frac{\alpha}{\beta} \right) \in P^{k-1}_{\pi'} \mid \beta \in \overline{B}^{k}_{\pi'0}(M) \right\} / \Sigma^{k-1}_{\pi'0}.$$

The above equalities allows us to give the following explicit description of the cohomology of $A^{*}_{\pi'}$:

$$H^{k-1}(A^{*}_{\pi'}) = \left\{ \left( \frac{\alpha}{\beta} \right) \in P^{k-1}_{\pi'} \mid \beta \in Z^{k}_{\pi'0}(M) \right\} / \left\{ \left( \frac{\lambda}{\mu} \right) \in P^{k-1}_{\pi'} \mid \mu \in B^{k}_{\pi'0}(M) \right\}.$$ 

But this quotient can also be described as

$$H^{k-1}(A^{*}_{\pi'}) = \left\{ \left( \frac{0}{\beta} \right) \in P^{k-1}_{\pi'} \mid \beta \in Z^{k}_{\pi'0}(M) \right\} / \left\{ \left( \frac{0}{\mu} \right) \in P^{k-1}_{\pi'} \mid \mu \in B^{k}_{\pi'0}(M) \right\}.$$ 

In short, we have established that the embedding $j : Z^{k}_{\pi'0}(M) \to P^{k-1}_{\pi'}$ defined by $j(\beta) = (\beta)^{0}_{\beta}$ induces an algebraic isomorphism $j : H^{k}_{\pi'0}(M) \cong H^{k-1}(A^{*}_{\pi'})$. We also have

$$\overline{H}^{k-1}(A^{*}_{\pi'}) = \left\{ \left( \frac{0}{\beta} \right) \in P^{k-1}_{\pi'} \mid \beta \in Z^{k}_{\pi'0}(M) \right\} / \left\{ \left( \frac{0}{\mu} \right) \in P^{k-1}_{\pi'} \mid \mu \in \overline{B}^{k}_{\pi'0}(M) \right\}.$$ 

This quotient is equipped with its natural quotient norm and the homomorphism $j$ clearly induces an isometric isomorphism $j : \overline{H}^{k}_{\pi'0}(M) \cong \overline{H}^{k-1}(A^{*}_{\pi'})$.

From the propositions 4.9 and 4.8, we now deduce the following duality result:

**Theorem 4.10.** Let $M$ be an arbitrary smooth $n$-dimensional oriented Riemannian manifold. For any $1 < \pi < \infty$, the Banach spaces $\overline{H}^{k}_{\pi}(M)$ and $\overline{H}^{n-k}_{\pi'0}(M)$ are in duality for the pairing $\langle \beta, \omega \rangle = \int_{M} \beta \wedge \omega$. where $\beta \in Z^{k}_{\pi}(M)$ and $\omega \in Z^{n-k}_{\pi'0}(M)$.
Proof. By Propositions 4.8, we know that $\mathcal{H}^{k-1}(A^*_{\pi'})$ is isomorphic to the dual of $\mathcal{H}^{n-k}(\Sigma^*_{\pi}(M))$ for the pairing (4.3):
\[
\left\langle \begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \begin{pmatrix} \omega \\ d\omega \end{pmatrix} \right\rangle = \int_M ((-1)^k \alpha \wedge d\omega + \beta \wedge \omega).
\]

By Propositions 4.9, we have an isomorphism $\mathcal{H}^k_{\pi'}(0) \cong \mathcal{H}^{k-1}(A^*_{\pi'})$ induced by the map $\beta \mapsto (\begin{pmatrix} 0 \\ \beta \end{pmatrix})$, and we trivially have an isomorphism $\mathcal{H}^{n-k}_{\pi'}(0) \cong \mathcal{H}^{n-k}(\Sigma^*_{\pi}(M))$ given by $\omega \mapsto (\begin{pmatrix} \omega \\ 0 \end{pmatrix})$. It follows that $\mathcal{H}^k_{\pi}(M)$ and $\mathcal{H}^{n-k}_{\pi'}(0)$ are in duality for the pairing
\[
\left\langle \begin{pmatrix} 0 \\ \beta \end{pmatrix}, \begin{pmatrix} \omega \\ 0 \end{pmatrix} \right\rangle = \int_M \beta \wedge \omega.
\]

Observe that Theorem 1.1 is now also proved, since it suffices to apply the previous Theorem to any sequence $\pi = \{p_0, p_1, \cdots, p_n\} \subset (1, \infty)$ such that $q = p_{k-1}$ and $p = p_k$.

5. Parabolicity

In this section, we prove Theorem 1.3. Recall the definition of an $s$-parabolic manifold.

Definition 5.1. The Riemannian manifold $(M, g)$ is said to be $s$-parabolic, $1 \leq s \leq \infty$ if there exists a sequence of smooth functions with compact support $\{\eta_j\} \subset C_0^\infty(M)$ such that
i.) $0 \leq \eta_j \leq 1$;
ii.) $\eta_j \to 1$ uniformly on every compact subset of $M$;
iii.) $\lim_{j \to \infty} \int_M |d\eta_j|^s = 0$.

A non $s$-parabolic manifold is called $s$-hyperbolic.

It is easy to check that $M$ is $\infty$-parabolic if and only if it is complete. If the manifold is complete with finite volume, then it is $s$-parabolic for any $s \in [0, \infty]$. There are numerous characterizations of $s$-parabolicity as well as a number of geometric interpretations. See [17, 23, 10] and references therein for more on this subject.

Proposition 5.1. If $M$ is $s$-parabolic and $\frac{1}{s} = \frac{1}{p} - \frac{1}{q}$, then $\mathcal{D}^k$ is dense in $\Omega^k_{q,p}(M)$.

Proof. Let $\alpha \in \Omega^k_{q,p}(M)$. We know by Lemma 2.3 that there exists a sequence $\alpha_j \in C^\infty(M, \Lambda^k)$ converging to $\alpha$ in $\Omega^k_{q,p}(M)$. Since $M$ is $s$-parabolic, there exists a sequence $\eta_j \in C_0^\infty(M)$ satisfying the conditions (i)–(iii) above.
It is then clear that \( \beta_j = \eta_j \alpha_j \in \mathcal{D}^\ell \), and we claim that \( \beta_k \) converges to \( \alpha \) in \( \Omega_{q,p}^\ell(M) \). Indeed, we have

\[
\| \alpha - \beta_j \|_{L^q} \leq \| \alpha - \alpha_j \|_{L^q} + \| \alpha_j - \beta_j \|_{L^q}
= \| \alpha - \alpha_j \|_{L^q} + \| (1 - \eta_j) \alpha_j \|_{L^q}.
\]

Since \( \| \alpha - \alpha_j \|_{L^q} \to 0 \) by hypothesis and \( \| (1 - \eta_j) \alpha_j \|_{L^q} \to 0 \) by the Lebesgue Dominated convergence theorem, we have \( \| \alpha - \beta_j \|_{L^q} \to 0 \). We also have

\[
\| d\alpha - d\beta_j \|_{L^p} \leq \| d\alpha - d\alpha_j \|_{L^p} + \| d\alpha_j - d\beta_j \|_{L^p}
= \| d\alpha - d\alpha_j \|_{L^p} + \| (1 - \eta_j) \alpha_j \|_{L^p}
= \| d\alpha - d\alpha_j \|_{L^p} + \| (1 - \eta_j) \alpha_j \|_{L^p} + \| d(1 - \eta_j) \wedge \alpha_j \|_{L^p}.
\]

Which converges to 0. We have shown that for any \( \alpha \in \Omega_{q,p}^\ell(M) \), there exists a sequence \( \beta_j \in \mathcal{D}^\ell \) such that

\[
\lim_{j \to 0} \| \alpha - \beta_j \|_{q,p} = \| \alpha - \beta_j \|_{L^q} + \| d\alpha - d\beta_j \|_{L^p} = 0.
\]

This means that \( \mathcal{D}^\ell \subset \Omega_{q,p}^\ell(M) \) is dense.

**Proof of Theorem 1.3.** The previous Proposition implies that if \( M \) is \( s \)-parabolic for \( \frac{1}{s} = \frac{1}{p} - \frac{1}{q} \), then the set of smooth exact \( k \)-forms with compact support is dense in \( B_{q,p}^k(M) \). In particular, \( \overline{B}_{q,p}^k(M) \) is the closure of \( dD^{k-1}(M) \) in \( L^p(M, \Lambda^k) \):

\[
\overline{B}_{q,p}^k(M) = \overline{dD^{k-1}(M)}_{L^p}.
\]

Therefore

\[
\overline{H}_{q,p}^k(M) = Z_p^k(M)/\overline{B}_{q,p}^k(M) = Z_p^k(M)/\overline{dD^{k-1}(M)} = \overline{H}_{\text{comp},p}^k(M).
\]

The Proposition (5.1) also implies that any closed \( k \)-form in \( Z_q^k(M) \) can be approximated in the \( \Omega_{q,p}^k(M) \)-topology by a sequence of smooth \( k \)-forms with compact support. Hence

\[
Z_q^k(M) = \ker(d) \cap \overline{D^k(M)}_{\Omega_{q,p}^k(M)} = Z_{q,p,0}^k(M),
\]

and we have

\[
\overline{H}_{q,p,0}^k(M) = Z_{q,p,0}^k(M)/\overline{B}_{q,0}^k(M) = Z_q^k(M)/\overline{dD^{k-1}(M)} = \overline{H}_{\text{comp},Q}^k(M).
\]

The Theorem is proved.
6. The conformal cohomology

**Definition** The conformal de Rham complex of the \( n \)-dimensional Riemannian manifold \((M, g)\) is defined as

\[
\Omega^k_{\text{conf}}(M) = \{ \omega \in L^{n/k}(M, \Lambda^k) \mid d\omega \in L^{n/(k+1)}(M, \Lambda^{k+1}) \}.
\]

It is thus simply the complex \( \Omega^k_{\pi}(M) \) associated to the sequence \( \pi \) defined by \( p_k = n/k \). It is proved in [12] that \( \Omega^k_{\text{conf}}(M) \) is a differential graded Banach algebra and is invariant under quasi-conformal maps. Moreover, a homeomorphism \( f: (M, g) \rightarrow (N, h) \) between two Riemannian manifolds is a quasiconformal map if and only if the pull-back of differential forms defines an isomorphism of Banach differential algebras \( f^*: \Omega^\bullet_{\text{conf}}(N) \rightarrow \Omega^\bullet_{\text{conf}}(M) \).

The conformal sequence \( \pi = (p_k) \) defined by \( p_k = n/k \) is its own dual, because

\[
\frac{1}{p_k} + \frac{1}{p_{n-k}} = \frac{k}{n} + \frac{n-k}{n} = 1.
\]

Theorem (1.1) can thus be restated as follows in the particular case of the conformal cohomology:

**Theorem 6.1.** Let \( M \) be an oriented Riemannian manifold of dimension \( n \) and \( 2 \leq k \leq (n-2) \). Then \( \overline{H}^k_{\text{conf}}(M) \) is isomorphic to the dual of \( \overline{H}^{n-k}_{\text{conf},0}(M) \). The duality is induced by the integration pairing (1.3).

7. Applications

In this section, we give some consequences of the previously established results.

**Proposition 7.1.** If the oriented Riemannian \((M, g)\) admits an isometry \( f: M \rightarrow M \) without any bounded orbit, and \( 1 < q, p < \infty \), then \( \overline{H}^k_{q,p}(M) \) is finite dimensional if and only if \( \overline{H}^k_{q,p}(M) = 0 \). The same holds for \( \overline{H}^k_{\text{comp},p}(M) \).

Gromov made this observation for \( L^p \)-cohomology assuming \( M \) to be complete and of bounded geometry, see [16, p. 220].

**Proof.** We essentially follow Gromov’s argument. Assume that \( \overline{H}^k_{q,p}(M) \) has finite dimension \( m \), then we also have \( m = \dim(\overline{H}^{n-k}_{p',q',0}(M)) < \infty \) by Theorem 1.1. Let \( \varphi_1, \ldots, \varphi_m \in Z^{n-k}_{p',q',0}(M) \) be a set of closed forms representing a basis of \( \overline{H}^k_{p',q',0}(M) \). By the Lebesgue dominated convergence theorem, we have for any \( \omega \in Z^k_{p}(M) \)

\[
\lim_{j \to \infty} \int_M (f^j)^* \omega \wedge \varphi_i = 0
\]

for \( i = 1, \ldots, m \). This implies that \( \lim_{j \to \infty} \|(f^j)^* \omega\| = 0 \) in \( \overline{H}^k_{q,p}(M) \) but \( f \) is an isometry, therefore

\[
\|[\omega]\| = \lim_{j \to \infty} \|(f^j)^* \omega\| = 0
\]
for any element \([\omega] \in \overline{H}^k_{q,p}(M)\). The proof for \(\overline{H}^k_{\text{comp},p}(M)\) is the same.

\[\square\]

Our next result gives us an explicit criterion implying that a given cohomology class is non zero.

**Proposition 7.2.** Let \((M, g)\) be an oriented Riemannian manifold of dimension \(n\) and let \(\alpha \in Z^k_p(M)\). Then the following conditions are equivalent.

(a) \([\alpha] \neq 0\) in \(\overline{H}^k_{q,p}(M)\).

(b) There exists \(\omega \in Z^{n-k}_{\nu',q',0}(M)\) such that

\[
(7.1) \quad \int_M \alpha \wedge \omega \neq 0.
\]

(c) There exists a sequence \(\{\gamma_i\} \subset D^{n-k}\) such that

\[
\text{i) } \lim_{i \to \infty} \sup_{M} \int_M \alpha \wedge \gamma_i > 0.
\]

\[
\text{ii) } \lim_{i \to \infty} \|d\gamma_i\|_{q'} = 0 \text{ where } q' = \frac{q}{q-1}.
\]

\[
\text{iii) } \|\gamma_i\|_{p'} \text{ is a bounded sequence for } p' = \frac{p}{p-1}.
\]

**Proof.** (a) \(\Rightarrow\) (b). If \([\alpha] \neq 0\) in \(\overline{H}^k_{q,p}(M)\), then by the duality Theorem 1.1, there exists \([\omega] \in \overline{H}^k_{\nu',q',0}(M)\) such that (7.1) holds. The cohomology class \([\omega]\) is represented by an element \(\omega \in Z^{n-k}_{\nu',q',0}(M)\), which is the desired differential form.

(b) \(\Rightarrow\) (c) Let \(\omega \in Z^{n-k}_{\nu',q',0}(M)\) be an element such that (7.1) holds. By definition of \(Z^{n-k}_{\nu',q',0}(M)\), there exists a sequence \(\gamma_j \in D^k(M)\) such that \(\|\gamma_j - \omega\|_{p'} \to 0\) and \(\|d\gamma_j\|_{q'} \to 0\). This sequence clearly satisfies the conditions (i), (ii) and (iii).

The implication (c) \(\Rightarrow\) (a) has been proved in [11, sec. 8]. We repeat the proof for convenience. Suppose that \(\alpha \in \overline{B}^k_{q,p}(M)\). Then \(\alpha = \lim_{j \to \infty} d\beta_j\) for \(\beta_j \in L^q(M, \Lambda^{k-1})\) with \(d\beta_j \in L^p(M, \Lambda^k)\). We have for any \(i, j\)

\[
\int_M \gamma_i \wedge \alpha = \int_M \gamma_i \wedge d\beta_j + \int_M \gamma_i \wedge (\alpha - d\beta_j).
\]

For each \(j \in \mathbb{N}\), we can find \(i = i(j)\) large enough so that \(\|d\gamma_i(j)\|_{q'} \|\beta_j\|_q \leq 1/j\), we thus have

\[
\left|\int_M \gamma_i(j) \wedge d\beta_j\right| \leq \int_M \|d\gamma_i(j)\|_{q'} \|\beta_j\|_q \leq \frac{1}{j}.
\]

On the other hand

\[
\lim_{j \to \infty} \int_M \gamma_i(j) \wedge (\alpha - d\beta_j) = \lim_{j \to \infty} \|\gamma_i(j)\|_{p'} \|(\alpha - d\beta_j)\|_p = 0
\]

since \(\|\gamma_i(j)\|_{p'}\) is a bounded sequence and \(\|(\alpha - d\beta_j)\|_p \to 0\). It follows that

\[
\int_M \gamma_i(j) \wedge \alpha \to 0\]

in contradiction to the hypothesis.
The previous criterion is not always very practical because we cannot always produce useful closed forms with compact support. The next result is thus convenient in the case of complete manifolds.

**Corollary 7.3.** Assume that $M$ is complete. Let $\alpha \in Z^k_p(M)$, and assume that there exists a closed $(n-k)$-form $\gamma \in Z^{n-k}_{p'}(M) \cap Z^{n-k}_{q'}(M)$, where $p' = \frac{p}{p-1}$ and $q' = \frac{q}{q-1}$, such that

$$\int_M \gamma \wedge \alpha > 0,$$

then $\alpha \notin \overline{B}_{q,p}^k(M)$ where $q' = \frac{q}{q-1}$. In particular, $\overline{H}_{q,p}^k(M) \neq 0$.

This result is Proposition 8.4 from [11], an example of its usefulness can be found in that paper where it is used to prove the non vanishing of the $L_{q,p}$-cohomology of the hyperbolic plane. We give a short proof.

**Proof.** Let $\gamma$ be a differential form as in the statement, by density we may assume $\gamma$ to be smooth. Let $\{\eta_j\} \subset C^\infty_0(M)$ be a sequence of smooth function with compact support uniformly converging to 1 and such that $\|\eta_j\|_{L^\infty} \to 0$. Then the sequence $\gamma_j = \eta_j \gamma$ satisfies the condition (c) of the Proposition.

If $p = q$, then the previous condition is not only sufficient, but also necessary.

**Corollary 7.4.** Let $M$ be a complete oriented Riemannian manifold. Then an element $\alpha \in Z^k_p(M)$ is non zero in reduced $L_p$-cohomology if and only if there exists $\omega \in Z^{n-k}_{p'}(M)$ such that

$$\int_M \alpha \wedge \omega \neq 0.$$

**Proof.** This is a special case of the previous Proposition, since for complete manifolds, we have $Z_{p'}^{n-k}(M) = Z_{p',0}^{n-k}(M)$.

Based on the latter Corollary, we can prove the following vanishing result which has been first observed by Gromov, see also [21, Proposition 15].

**Proposition 7.5.** Assume that the Riemannian manifold is complete and admits a complete and proper Killing vector field $\xi$, then $\overline{H}_{\text{comp},p}^k(M) = 0$ and (therefore) $\overline{H}_{q,p}^k(M) = 0$ for any $1 < p < \infty$ and $1 \leq q < \infty$.

For instance if $N$ is a complete Riemannian manifold, then $\overline{H}_{q,p}^k(N \times \mathbb{R}) = 0$ for any $1 < p < \infty$ and $1 \leq q < \infty$. 

Remark. The hypothesis \( p \neq 1 \) is a necessary condition. For instance \( \mathcal{T}^k_{q,1}(\mathbb{R}) \neq 0 \) for any \( 1 \leq q < \infty \) (see [11, prop. 9.3]).

Proof. Because \( M \) is complete, we have \( H_{\text{comp},p}^k(M) = H_p^k(M) \). We thus only need to prove the vanishing of the \( L_p \)-cohomology of \( M \). The proof goes as follow: Because \( \xi \) is a Killing vector field, we have \( \|i_\xi \alpha\|_{L^p} \leq \|\alpha\|_{L^p} \) for any differential form \( \alpha \). Let \( f_t \) be the flow of \( \xi \). Using Cartan’s formula \( L_\xi \alpha = di_\xi \alpha + i_\xi d\alpha \), we see that for any \( \alpha \in Z^k_p(M) \) and \( \varphi \in Z^{n-k}_p(M) \) we have

\[
\frac{d}{dt} \int_M f_t^* \alpha \wedge \varphi = \int_M L_\xi \alpha \wedge \varphi = \int_M di_\xi \alpha \wedge \varphi = 0
\]

because \( [di_\xi \alpha] = 0 \) in \( H_{p}^{k-1}(M) \). On the other hand, because the flow \( f_t \) is proper, we have

\[
\lim_{t \to 0} \int_M f_t^* \alpha \wedge \varphi = 0.
\]

It follows that \( \int_M f_t^* \alpha \wedge \varphi = 0 \) for any \( \alpha \in Z^k_p(M) \) and \( \varphi \in Z^{n-k}_p(M) \) and therefore \( \mathcal{T}^k_p(M) = 0 .\)

References

[1] H. Brezis Analyse fonctionnelle, Théorie et applications. Dunod, Paris 1999.
[2] J. Conway A course in functional analysis. Second edition. Graduate Texts in Mathematics, 96. Springer-Verlag, New York, 1990
[3] G. de Rham Differentiable manifolds. Forms, currents, harmonic forms. Grundlehren der Mathematischen Wissenschaften 266. Springer-Verlag, Berlin, 1984.
[4] G. Folland Real analysis. Modern techniques and their applications, Second edition. John Wiley & Sons, Inc., New York, 1999.
[5] D. Gilbarg & N. Trudinger Elliptic partial differential equations of second order, Second edition. Grundlehren der Mathematischen Wissenschaften 224 Springer-Verlag, Berlin, 1983.
[6] V. M. Gol’dshein, Yu.G.reshetnyak. Quasiconformal Mappings and Sobolev Spaces. Kluwer Academic Publishers, Dordrecht/Boston/London, 1990.
[7] V. M. Gol’dshein, V.I. Kuz’minov, I.A.Shvedov Differential forms on Lipschitz Manifolds Siberian Math. Journal, 23, No 2 (1984).
[8] V. M. Gol’dshein, V.I. Kuz’minov, I.A.Shvedov A Property of de Rham Regularization Operators Siberian Math. Journal, 25, No 2 (1984).
[9] V. M. Gol’dshein, V.I. Kuz’minov, I.A.Shvedov Dual spaces of Spaces of Differential Forms Siberian Math. Journal, 54, No 1 (1986).
[10] V. Gol’dshein and M. Troyanov The Kelvin-Nevanlinna-Royden criterion for \( p \)-parabolicity Math. Z. 232, 607–619 (1999).
[11] V. Gol’dshein and M. Troyanov Sobolev Inequality for Differential forms and \( L_q,p \)-cohomology. Journal of Geom. Anal., 16, No 4, (2006), 597-631.
[12] V. Gol’dshein and M. Troyanov A Conformal de Rham Complex. Journal of Geom. Anal., to appear.
[13] V. Gol’dshein and M. Troyanov Distortion of Mappings and \( L_q,p \)-Cohomology V. Gol’dshein and M. Troyanov. to be published in Math. Zeitschrift (2009) doi 10.1007/s00209-008-0463-x
[14] V. Gol’dshtein and M. Troyanov emph$L_{q,p}$-Cohomology of Riemannian Manifolds with Negative Curvature V. Gol’dshtein and M. Troyanov in Sobolev Spaces in Mathematics II, V. Maz’ya (ed.), International Mathematical Series Springer (2009), pages 199-208. doi: 10.1007/978-0-387-85650-6

[15] V. Gol’dshtein and M. Troyanov A short proof of the H"older-Poincaré Duality for $L_p$-cohomology Submitted.

[16] M. Gromov, Asymptotic invariants of infinite groups. In Geometric Group Theory (G. Niblo and M. Roller, eds.), London Math. Soc. Lecture Note Ser. 182, University Press, Cambridge 1993.

[17] I. Holopainen Volume growth, Green’s functions, and parabolicity of ends. Duke Math. J. 97 (1999), no. 2, 319–346.

[18] Y. Kopylov $L_{p,q}$-cohomology and normal solvability. Arch. Math. 89, No. 1, 87-96 (2007).

[19] Y. Kopylov $L_{p,q}$-cohomology of some warped cylinders. Dokl. Math. 77, No. 2, 189-193 (2008).

[20] V.I. Kuz’minov and I.A. Shvedov, Homological aspects of the theory of Banach complexes. Sib. Math. J. 40, No.4, 754-763 (1999); translation from Sib. Mat. Zh. 40, No.4, 893-904 (1999).

[21] P. Pansu Cohomologie $L^p$ et pincement. Comment. Math. Helv. 83, No. 1, 327-357 (2008).

[22] Xiang Dong Li Sobolev Inequalities and $L_p, q$-cohomology on complete Riemannian Manifolds Journal of Geom. Anal., to appear.

[23] M. Troyanov Parabolicity of manifolds Siberian Adv. Math. 9 (1999), 125–150.

[24] M. Troyanov On the Hodge decomposition in $\mathbb{R}^n$ To appear in the Moscow Mathematical Journal.

[25] K. Yosida Functional Analysis Reprint of the sixth (1980) edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.

Vladimir Gol’d’shtein, Department of Mathematics, Ben Gurion University of the Negev, P.O.Box 653, Beer Sheva, Israel
E-mail address: vladimir@bgu.ac.il

M. Troyanov, Section de Mathmatiques, École Polytechnique Fédérale de Lausanne, 1015 Lausanne - Switzerland
E-mail address: marc.troyanov@epfl.ch