International Conference on Computational Science, ICCS 2013

The Support Vector Regression with Adaptive Norms

Chunhua Zhanga, Dewei Lia, Junyan Tanb

aInformation School, Renmin University of China, Beijing 100872, China
bCollege of Science, China Agricultural University, Beijing 100083, China

Abstract

This study proposes a new method for regression – \(l_p\)-norm support vector regression (\(l_p\) SVR). Some classical SVRs minimize the hinge loss function subject to the \(l_2\)-norm or \(l_1\)-norm penalty. These methods are non-adaptive since their penalty forms are fixed and pre-determined for any types of data. Our new model is an adaptive learning procedure with \(l_p\)-norm (0 < \(p\) < 1), where the best \(p\) is automatically chosen by data. By adjusting the parameter \(p\), \(l_p\) SVR can not only select relevant features but also improve the regression accuracy. An iterative algorithm is suggested to solve the \(l_p\) SVR efficiently. Simulations and real data applications support the effectiveness of the proposed procedure.

Keywords: Regression; Support vector machine; Norm; Feature selection;

1. Introduction

Support vector machines (SVMs), being computationally powerful tools for pattern classification and regression, have been successfully applied to a variety of real-world problems([1]-[6]). Regards to the support vector regression (SVR), some classical SVRs minimize the hinge loss function subject to the \(l_2\)-norm or \(l_1\)-norm penalty ([7]). We call them \(l_2\) SVR or \(l_1\) SVR correspondingly. These methods are non-adaptive since their penalty forms are fixed and pre-determined for any types of data.

Recently, \(l_p\)-norm (\(p \in (0, 1)\)) attracts great attention in the optimization framework, the idea that using \(l_p\)-norm can find sparse solutions is considered in [8]-[11]. Correspondingly, [12]-[17] propose \(l_p\)-norm (0 < \(p\) < 1) support vector machine for classification (\(l_p\) SVC), which replace the \(l_2\)-norm penalty by the \(l_p\)-norm (\(p \in (0, 1)\)) penalty in the objective function in the primal problem in the standard linear \(l_2\) SVC. Compared with SVC with a fixed norm, \(l_p\) SVC is desired for feature selection since it can automatically select relevant features by adjusting the parameter \(p\). However, \(l_p\) SVC is used only to solve classification problems. This motivates us to consider a new model with \(l_p\)-norm for regression problems.

This paper proposes a new method for regression – \(l_p\)-norm support vector regression (\(l_p\) SVR), which replaces \(l_2\)-norm by \(l_p\)-norm (0 < \(p\) < 1) in the classical \(l_2\) SVR. Our new model is an adaptive learning procedure with \(l_p\)-norm (0 < \(p\) < 1), where the best \(p\) is automatically chosen by data. By adjusting the parameter \(p\), \(l_p\) SVR can not only select relevant features but also improve the regression accuracy. In order to solve the non-convex problem in our model, an efficient algorithm is constructed using the successive linear approximation algorithm (SLA)([18]).
Now we describe our notation. All vectors are column vectors unless transposed to a row vector by a superscript T. For a vector x in \mathbb{R}^n, $[x]_i (i = 1, 2, \cdots, n)$ denotes the i-th component of x. $|x|$ denotes a vector in \mathbb{R}^n of absolute value of the components of x. $\|x\|_p$ denotes that $(\|x\|_1^p + \cdots + \|x\|_n^p)^{\frac{1}{p}}$. Strictly speaking, $\|x\|_p$ is not a general norm when $0 < p < 1$, but we still follow this term l_p-norm, because the norms are same except that the values of p are different. $\|x\|$ is the number of nonzero components of x. For two vectors $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$, $(x \cdot y)$ denotes the inner product of x and y.

This paper is organized as follows. In section 2, the l_p SVR is introduced. In section 3, the SLA is proposed to solve l_p SVR. In section 4, the lower bounds for the absolute value of nonzero entries in any local optimal solution is established. In section 5, numerical experiments are given to demonstrate the effectiveness of our method. We conclude this paper in section 6.

2. l_p Support Vector Regression

Suppose that the training set T is given by

$$ T = \{(x_1, y_1), \cdots, (x_l, y_l)\} \in (\mathbb{R}^m \times \mathbb{R})^l, $$

where $x_j \in \mathbb{R}^m$, $y_j \in \mathbb{R}$ ($j = 1, \cdots, l$), the linear regression problem is to find a decision function $f(x) = (w \cdot x) + b$ to derive the value of y for any x by the function $y = f(x)$.

In the classical l_2 SVR, the decision function is decided by the solution to the following optimization problem:

$$ \begin{align*}
\min_{w, b, \xi, \eta} & \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^{l} (\eta_i + \xi_i), \\
\text{s.t.} & \quad ((w \cdot x_i) + b) - y_i \leq \epsilon + \eta_i, \quad i = 1, \cdots, l, \\
& \quad y_i - ((w \cdot x_i) + b) \leq \epsilon + \xi_i, \quad i = 1, \cdots, l, \\
& \quad \xi_i, \eta_i \geq 0, \quad i = 1, \cdots, l.
\end{align*} $$

Replacing the first term $\frac{1}{2} \|w\|_2^2$ in the objective function of the above problem by $\|w\|_p^p$ ($0 < p < 1$), l_p SVR proposes the following problem:

$$ \begin{align*}
\min_{w, b, \xi, \eta} & \|w\|_p^p + C \sum_{i=1}^{l} (\eta_i + \xi_i), \\
\text{s.t.} & \quad ((w \cdot x_i) + b) - y_i \leq \epsilon + \eta_i, \quad i = 1, \cdots, l, \\
& \quad y_i - ((w \cdot x_i) + b) \leq \epsilon + \xi_i, \quad i = 1, \cdots, l, \\
& \quad \xi_i, \eta_i \geq 0, \quad i = 1, \cdots, l.
\end{align*} $$

where $C (C > 0), p (0 < p < 1)$ and $\epsilon (\epsilon > 0)$ are parameters. The algorithm of l_p SVR is described as follows:

Algorithm 1

1. Give the training set $T = \{(x_1, y_1), \cdots, (x_l, y_l)\} \in (\mathbb{R}^m \times \mathbb{R})^l$, where $x_i \in \mathbb{R}^m, y_i \in \mathbb{R}, i = 1, \cdots, l$;
2. Select proper parameters C, p, ϵ, where $C > 0, 0 < p < 1$ and $\epsilon > 0$;
3. Solve problem (6)-(9) and get the solution (w^*, b^*);
4. Select the feature set: $\{[\|w\|_i], \neq 0, (i = 1, \cdots, n)\}$;
5. Construct the decision function $y = (\tilde{w}^* \cdot x) + b^*$, where the components of \tilde{w}^* are nonzero components of w^* and the components of \tilde{x} are also corresponding to nonzero components of w^*.

3. The SLA for problem (6)-(9)

Consider the problem (6)-(9), the objective function is not differentiable, because of the absolute value in the first item. In order to make this problem smooth, we introduce the variable $v = ([v]_1, \cdots, [v]_n)^2$, and get the
following equivalent problem:

$$\begin{align*}
\min_{w,v,b,\xi,\eta} & \quad \sum_{i=1}^{n} [v_i^*]^p + C \sum_{i=1}^{l} (\eta_i + \xi_i), \\
\text{s.t.} & \quad ((w \cdot x_i) + b) - y_i \leq \epsilon + \eta_i, \quad i = 1, \ldots, l, \\
& \quad y_i - ((w \cdot x_i) + b) \leq \epsilon + \xi_i, \quad i = 1, \ldots, l, \\
& \quad \xi_i, \eta_i \geq 0, \quad i = 1, \ldots, l, \\
& \quad -\nu \leq w \leq \nu.
\end{align*}$$

(10)

When \(p \in (0, 1) \), we note that the problem (10)-(14) is differentiable, but not convex. In fact, it is the minimization of a concave objective function over a polyhedral set. Even though it is difficult to find a global solution to this problem, a fast successive linear approximation (SLA) algorithm ([18]) terminates finitely at a stationary point which satisfies the necessary optimality condition for problem (10)-(14). For convenience we state the SLA algorithm below.

Algorithm 2 (SLA for problem (10)-(14))

1. Select the proper parameters \(C > 0, 0 < p < 1, \epsilon > 0 \) and a precision \(\delta(0 < \delta \ll 1) \), start with a random \(v^0 = ([v_1^0], [v_2^0], \ldots, [v_n^0])^T \) and let \(k = 1 \);
2. Solve the following problem

$$\begin{align*}
\min_{w,v,b,\xi,\eta} & \quad \sum_{i=1}^{n} [v_{k-1}]_i^p - 1 [v_i] + C \sum_{i=1}^{l} (\eta_i + \xi_i), \\
\text{s.t.} & \quad ((w \cdot x_i) + b) - y_i \leq \epsilon + \eta_i, \quad i = 1, \ldots, l, \\
& \quad y_i - ((w \cdot x_i) + b) \leq \epsilon + \xi_i, \quad i = 1, \ldots, l, \\
& \quad \xi_i, \eta_i \geq 0, \quad i = 1, \ldots, l, \\
& \quad -\nu \leq w \leq \nu.
\end{align*}$$

(15)

where \((v^{k-1})_i^p = ([v_1^{k-1}], [v_2^{k-1}], \ldots, [v_n^{k-1}])^T \), and get its solution \((w^k, b^k, \eta^k, \xi^k, v^k)\);
3. If \(\left| \sum_{i=1}^{n} [v_{k-1}^i - [v_{k-1}^{i-1}]] + C \sum_{i=1}^{l} (\eta_i^k - \eta_i^{k-1} + \xi_i^k - \xi_i^{k-1}) \right| < \delta(0 < \delta \ll 1) \), then stop and get the solution \(w^* = w^k, b^* = b^k \); Otherwise, let \(k = k + 1 \) and go back to step 2.

4. **The lower bounds for nonzero components in solutions**

In Algorithm 1, it is easy to see that our \(l_p \) SVR can accomplish feature selection and regression simultaneously. Feature selection needs to find the nonzero components of the solution to the problem (6)-(9). However, usually the above Algorithm 2 can only provide an approximate local solution where nonzero components in the solution can not be identified theoretically. Using a similar strategy in [8], we get the following theorem 1, which can be used to identify nonzero components in any local optimal solutions to the problem (6)-(9), even though the Algorithm 2 can only find the approximate local optimal solution.

Theorem 1 For any local optimal solution \((w^*, b^*, \xi^*)\) to the problem (6)-(9), we have

$$\|w^*\|_j \geq (p/(C \sum_{i=1}^{l} |x_i|))^{1/p}, \quad j = 1, 2, \ldots, n.$$

Proof. Suppose \(\|w^*\|_0 = k, (1 < k \leq n) \), without loss of generality, let \(w^* = ([w_1^*], \ldots, [w_n^*], 0, \ldots, 0)^T \) where \([w_i^*] \neq 0, i = 1, \ldots, k \). Let \(\tilde{w}^* = ([\tilde{w}_1^*], \ldots, [\tilde{w}_n^*])^T, \quad \tilde{x}_i = ([x_1], \ldots, [x_k])^T \in R^k, i = 1, \ldots, l \), we consider a new optimization problem:

$$\begin{align*}
\min_{\tilde{w},b,\tilde{\xi},\tilde{\eta}} & \quad \|\tilde{w}\|_p^p + C \sum_{i=1}^{l} (\tilde{\eta}_i + \tilde{\xi}_i),
\end{align*}$$

(20)
where \(\hat{w} \in \mathbb{R}^k, \hat{b} \in \mathbb{R}, \hat{\eta} \in \mathbb{R}, \hat{\xi} \in \mathbb{R}^l \). Obviously, \((\hat{w}, \hat{b}, \hat{\eta}, \hat{\xi})\) is a local minimizer of problem (20)-(23). According to the KKT condition, there exist Lagrange multipliers \(\alpha^*_i, \beta^*_i (i = 1, \cdots, l) \) satisfy:

\[
p(\|\hat{w}\|^p - 1 \cdot \text{sign}(\hat{w}^*)) - \sum_{i=1}^{l} (\beta^*_i - \alpha^*_i) \hat{x}_i = 0, \tag{24}
\]

\[
0 \leq \alpha^*_i \leq C, \quad 0 \leq \beta^*_i \leq C. \tag{25}
\]

According to (24), we have

\[
p(\|\hat{w}\|^p - 1 \cdot \text{sign}(\hat{w}^*)) = \sum_{i=1}^{l} (\beta_i - \alpha_i) \hat{x}_i.
\]

Furthermore, by (25), we have

\[
p \|\hat{w}\|^p - 1 = \left| \sum_{i=1}^{l} (\beta_i - \alpha_i) \hat{x}_i \right| \leq \sum_{i=1}^{l} |\beta_i - \alpha_i| |\hat{x}_i| \leq C \sum_{i=1}^{l} |\hat{x}_i|, 0 < p < 1
\]

So, \(|\hat{w}_j|^p \geq (p/(C \sum_{i=1}^{l} |\hat{x}_i|))^{1/p} \), for \(j = 1, \cdots, n \).

According to Theorem 1, we can identify the nonzero components of the local optimal solution to (6)-(9). Based on the Algorithm 2 and Theorem 1, the new algorithm is established as follows:

Algorithm 3 \((l_p^\alpha \text{SVR})\):

1. Give the training set \(T = \{(x_i, y_i), \cdots, (x_i, y_i)\} \in (\mathbb{R}^n \times \mathbb{R})^l \), where \(x_i \in \mathbb{R}^n, y_i \in \mathbb{R}, i = 1, \cdots, l \);
2. Select proper parameters \(C, p, \epsilon \), where \(C > 0, 0 < p < 1 \);
3. Solve problem (6)-(9) by Algorithm 2 and get the solution \((w^*, b^*)\);
4. Compute \(L_j = (p/(C \sum_{i=1}^{l} |\hat{x}_i|))^{1/p}, j = 1, \cdots, n \); select the feature index set: \(F' = [\|w^*\|_i] \geq L_j, i = 1, \cdots, n \);
5. Construct the decision function \(f(x) = \text{sgn}((\hat{w}^* \cdot \hat{x}) + b^*) \), where \(\hat{w}^* \) are composed by the components in the \(F' \) of \(w^* \) and the components of \(\hat{x} \) are also corresponding to components in the feature set \(F' \) of \(w^* \).

In the following section, our experiments are conducted according to the algorithm 3.

5. **Numerical experiments**

In this section, some experiments on simulation datasets and real datasets are conducted respectively, by comparing \(l_p^\alpha \text{SVR} \) with \(l_2 \text{SVR} \), \(l_1 \text{SVR} \). Note that, the performance of each method depend on the parameters \((C, p \text{ and } \epsilon) \) in \(l_p^\alpha \text{SVR} \); \(C \) and \(\epsilon \) in \(l_2 \text{SVR} \) and \(l_1 \text{SVR} \). Therefore, these parameters should be adjusted properly. In our experiments, the best value of these parameters are chosen by five-fold cross validation. \(C \) is obtained through searching in the range \(2^{-7} - 2^{4}, p \) is chosen from 0.1 - 0.9 and \(\epsilon \) is chosen from 0.01 to 0.1.

In order to evaluate the performance of algorithms, some evaluation criteria ([19], [20]) commonly used should be introduced in the following:

\[
\text{MSE} = \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2, \quad \text{MAPE} = \frac{\sum_{i=1}^{m} \frac{|y_i - f(x_i)|}{|y_i|}}{m} \times 100\%, \quad \text{NMSR} = \frac{\sum_{i=1}^{m} (y_i - f(x_i))^2}{\sum_{i=1}^{m} (y_i - \bar{y})^2},
\]

\[
R^2 = \frac{\sum_{i=1}^{m} (f(x_i) - \bar{y})^2}{\sum_{i=1}^{m} (y_i - \bar{y})^2}, \quad r = \sqrt{\frac{(m \sum_{i=1}^{m} f(x_i)y_i - \sum_{i=1}^{m} f(x_i) \sum_{i=1}^{m} y_i)}{(m \sum_{i=1}^{m} f(x_i)^2 - (\sum_{i=1}^{m} f(x_i))^2)(m \sum_{i=1}^{m} y_i^2 - (\sum_{i=1}^{m} y_i)^2)}}
\]
where \(m \) is the number of testing samples, \(f(x_i) \) denotes the predict value of \(x_i \) and \(\bar{y} \) is the average value of \(y_1, \ldots, y_l \).

5.1. Simulation datasets

The simulation datasets are generated as follows. The inputs \(x_i \in \mathbb{R}^n \) are stochastic vectors independently generated in \([0, 1]\), and the numbers of samples and features are described in Table 1. The outputs are determined by some simple functions. For example, in dataset 1, the output \(y_i \) is given by

\[
y_i = 2[x_i]_1 + 3[x_i]_2 + 4[x_i]_3 + 0.1 \times \text{rand}(1);
\]

In dataset 2,

\[
y_i = 8[x_i]_1 - 7[x_i]_5 + 6[x_i]_9 - 5[x_i]_{13} + 4[x_i]_{20} - 3[x_i]_{31} + 2[x_i]_{45} - [x_i]_{49} + \text{rand}(1);
\]

In dataset 3,

\[
y_i = 100[x_i]_3 + 20[x_i]_{17} + 3[x_i]_{21} + 0.4[x_i]_{36} + 0.05[x_i]_{44};
\]

In dataset 4,

\[
y_i = 2[x_i]_1 + 3[x_i]_2 + 4[x_i]_3 + \text{rand}(1).
\]

The results on four datasets are illustrated in Table 2. We show the effectiveness of \(l_p \) SVR from two aspects: feature selection and regression accuracy. On the one hand, from the data in 3th column, it is easy to see that \(l_p \) SVR selects the minimal features. On the other hand, the data in 4th-8th column show that \(l_p \) SVR derives the smallest MSE, MAPE, NMSE, and the largest \(R^2 \), \(r \) among these methods in most datasets. This indicates that the statistical information in these datasets is well presented by our \(l_p \) SVR with fairly small feature sets and regression errors.

5.2. Real datasets

For further evaluation of our method, we choose four real datasets: "bodyfat", "cpusmall", "housing" and "insurance", which are commonly used in testing machine learning algorithms. More detailed description can be found in Table 3.

Table 4 lists the results of three methods on four real datasets. It can be seen that our \(l_p \) SVR can accomplish the desired feature selection and achieve the good regression accuracy. The reason maybe that it can balance these two aspects better than the other two methods by adjusting the parameter \(p \).
Table 3. Description of real datasets

Datasets	No. of samples	No. of features
bodyfat	252	14
cpusmall	500	12
housing	452	13
insurance	500	85

Table 4. Results on real datasets

Datasets	Regressor	No. of selected features	MSE	MAPE	NMSE	R^2	r
bodyfat	l_p SVR	1	0.0000	0.0017	0.0004	1.0017	0.9998
	l_2 SVR	14	0.0000	0.0016	0.0004	1.0041	0.9998
	l_1 SVR	1	0.0305	0.0981	1.1352	0.0550	0.1710
cpusmall	l_p SVR	8	0.0010	0.0124	0.1508	0.7845	0.9354
	l_2 SVR	12	0.0009	0.0122	0.1445	0.7973	0.9378
	l_1 SVR	2	0.0992	0.1625	15.4089	14.7173	0.2143
housing	l_p SVR	3	0.0097	0.0446	0.2607	0.7223	0.8607
	l_2 SVR	13	0.0097	0.0416	0.2587	0.7710	0.8641
	l_1 SVR	3	0.1372	0.2673	3.6738	3.7220	0.7769
insurance	l_p SVR	9	2.3464	0.1123	0.0141	0.9411	0.9933
	l_2 SVR	83	2.8524	0.1121	0.0172	0.9916	0.9917
	l_1 SVR	2	3.3524	0.1556	0.0198	0.9070	0.9927

6. Conclusions

For regression problems, a new model l_p SVR is proposed in this paper. The main contribution is that the desired feature selection and good regression performance are implemented simultaneously by introducing the adaptive norms – l_p-norm, where the parameter p can be chosen flexibly in (0, 1) by data. Computational comparisons between our l_p SVR and other popular methods including l_2 SVR and l_1 SVR indicate the effectiveness of our method. We believe that its good performance mainly comes from the fact that the parameter p is adjusted properly.

Acknowledgements

This work has been partially supported by grants from National Natural Science Foundation of China (No.11271361, No.11201480) and Chinese Universities Scientific Fund (No.2011JS039).

References

[1] V. Vapnik, Statistical Learning Theory, Wiley, New York (1998).
[2] Y. Tian, Y. Shi, X. Liu, Recent advances on support vector machines research, Technological and Economic Development of Economy, 2012, 18(1): 5-33.
[3] Z. Qi, Y. Tian, Y. Shi, Robust twin support vector machine for pattern classification, Pattern Recognition, 2013, 46(1): 305-316.
[4] Z. Qi, Y. Tian, Y. Shi, Laplacian twin support vector machine for semi-supervised classification, Neural Networks, 2012, 35:46-53.
[5] Z. Qi, Y. Tian, Y. Shi, Twin support vector machine with Universum data, Neural Networks, 2012, 36C:112-119.
[6] N. Deng, Y. Tian, C. Zhang, Support Vector Machines – optimization based theory, algorithms and extensions, CRC Press (2012).
[7] P. Bradley, O. Mangasarian, Feature selection via concave minimization and support vector machines, The Fifth International Conference on Machine Learning (1998), 82-90.
[8] X. Chen, F. Xu, Y. Ye, Lower bound theory of nonzero entries in solutions of l_2-l_p minimization (2009) http://www.standardford.edu/yyye/.
[9] A. Bruckstein, D. Donoho, M. Elad, From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Reviewer 51 (2009) 34-81.
[10] J. Fan, R. Li, Variabe selection via nonconcave penalized likelihood and its oracle properties, J Amer Statis Assoc 96 (2001) 1348-1360.
[11] Z. Xu, H. Zhang, Y. Wang, X. Chang, L^2 regularizer, Science in China Series F-InfSci 52 (2009) 1-9.
[12] W. Chen, Y. Tian, L_p-norm proximal support vector machine and its applications, Procedia Computer Science, ICCS 1(1) (2010) 2417-2423.
[13] Y. Tian, J. Yu, W. Chen, L_p-norm support vector machine with CCCP, In Proc. the 7th FSKD (2010) 1560-1564.
[14] J. Tian, C. Zhang, N. Deng, Cancer related gene identification via p-norm support vector machine, The 4th International Conference on Computational Systems Biology (2010) 101-108.
[15] C.Zhang, J.Tan, etc. Feature Selection in multi-instance learning, The International Symposium on Operations Research and its Applications (2010) 462-469.

[16] J.Tan, Z.Zhang, L.Zhen, C.Zhang, N.Deng. Adaptive feature selection via a new version of support vector machine. Neural Comput & Applic, (2012) doi:10.1007/s00521-012-1018-y.

[17] C.Zhang, Y.Shao, J.Tan, N.Deng. Mixed-norm linear support vector machine, Neural Comput & Applic, (2012) doi:10.1007/s00521-012-1166-0.

[18] P.Bradley, O.Mangasarian, W.Street. Feature selection via mathematical programming, INFORMS Journal on Computing (1998), doi:10.1287/ijoc.10.2.209.

[19] S.Weisberg. Applied linear regression seconded, Wiley, New York (1985).

[20] R.Staudte, S.Sheather. Robust estimation and testing: Wiley series in probability and mathematical statistics, Wiley, New York (1990).