A bioinformatics filtering strategy for identifying radiation response biomarker candidates

Jung Hun Oh
Memorial Sloan-Kettering Cancer Center

Harry P. Wong
Washington University School of Medicine in St. Louis

Xiaowei Wang
Washington University School of Medicine in St. Louis

Joseph O. Deasy
Memorial Sloan-Kettering Cancer Center

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Oh, Jung Hun; Wong, Harry P.; Wang, Xiaowei; and Deasy, Joseph O., "A bioinformatics filtering strategy for identifying radiation response biomarker candidates." *PLoS One*. 7,6. e38870. (2012). https://digitalcommons.wustl.edu/open_access_pubs/1379

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
A Bioinformatics Filtering Strategy for Identifying Radiation Response Biomarker Candidates

Jung Hun Oh1, Harry P. Wong2, Xiaowei Wang3, Joseph O. Deasy1*

1 Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America, 2 Department of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America, 3 Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America

Abstract

The number of biomarker candidates is often much larger than the number of clinical patient data points available, which motivates the use of a rational candidate variable filtering methodology. The goal of this paper is to apply such a bioinformatics filtering process to isolate a modest number (<10) of key interacting genes and their associated single nucleotide polymorphisms involved in radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers.

Introduction

In the ‘omics’ era, the number of biomarker candidates potentially available for statistical testing is often much larger than the number of patient data points. This presents a fundamental problem in biomarker research: the number of candidate genetic or epigenetic markers often overwhelms the inherent statistical power available in a clinical dataset, which usually has tens or hundreds of patient cases available rather than thousands. This statistical mismatch is typically becoming worse as more of the intracellular complexity of molecular machinery is identified. At one extreme, a genome-wide association study (GWAS) examining the correlations of millions of tag single-nucleotide polymorphisms (SNPs) to cancer treatment outcome may require a very high, and biologically unlikely, odds ratio given the number of multiple comparisons, to reach statistical significance. At the other extreme, it is clear that investigators cannot a priori identify the most important biomarker genes or SNPs for testing. These unsatisfying extreme cases motivated our search for a middle strategy that would objectively identify a modest number of promising SNPs/proteins, etc. as a cohort for testing against a given dataset. Because clinical datasets for a given endpoint are commonly of modest size (tens or hundreds, not thousands, of patients), we searched for key protein interaction networks that result in less than approximately a hundred candidate SNPs. Our methodology, of course, could be adopted to throw a wider net if much larger datasets become available. Our endpoint of interest is late toxicity following radiation therapy for cancer. Many cancer patients who receive radiation therapy suffer from acute or late side effects; the risk for experiencing these side effects is expected to have a genetic component [1]. Numerous genes participate in a cascade of events in response to radiation and the resulting DNA damage in a complex signal transduction network [2].

Recently, many studies have focused on finding radio-responsive genes at the whole genome level with gene expression microarrays. Rieger and Chu used oligonucleotide microarrays to develop a genome-wide portrait of transcriptional response to ionizing radiation (IR) and ultraviolet (UV) radiation in cell lines collected from 15 healthy individuals [3]. In another study [1] using samples extracted from cancer patients with acute radiation toxicity, Rieger et al. showed that toxicity after radiation therapy (radiotherapy) could be associated with abnormal transcriptional responses to DNA. Jen and Cheung [2] assessed transcriptional levels of genes in lymphoblastoid cells at various time points with 3 Gy and 10 Gy of ex vivo IR exposure. Following 10 Gy of IR exposure, more genes were induced, suggesting that a higher radiation dose causes a more complex response. A high percentage of significant genes were involved in cell cycle, cell death, DNA repair, DNA metabolism, and RNA processing. Eschrich et al. [4] analyzed microarray gene expression data derived from 48 human cancer cell lines and generated an interaction network using...
MetaCore software (GeneGo, Encinitas, CA) with the top 500 genes identified by linear regression analysis. Subsequently, based on 10 hub genes obtained from the network, they modeled radiosensitivity (survival fraction at 2 Gy) using a linear regression method.

Normal tissue toxicity after radiotherapy may partially be attributable to specific genetic mutations. In an effort to identify candidate polymorphisms at the SNP level involved in the cellular response to irradiation in breast and prostate cancers, Popanda et al. [5] surveyed many published studies that show associations of SNPs in candidate genes with acute or late side effects of radiotherapy. Andresen and Alsnæs [6] summarized studies published on genetic variation in normal tissue toxicity and proposed a model of allelic architecture that illustrates relative risk for genetic variants associated with normal tissue radiosensitivity.

In this study, we attempted to define an objective method for identifying key radiosensitivity genes likely to have a significant impact on clinical outcome following radiotherapy. We elected to construct a staged filter. The first step was a comprehensive literature review of radiosensitivity-related genes. These genes were then further delimited to genes responding to IR in an analysis of publicly available microarray gene expression datasets. We further focused the search on interacting networks, based on the hypothesis that good biomarkers are likely to be embedded in important pathways or networks involving multiple genes known to be important to the endpoint in question [7]. This last step may potentially add new, previously unreported targets, based on curated pathway libraries.

Materials and Methods

In summary, we used a multi-component filtering process: (1) genes associated with radiation response in the literature and (2) genes associated with radiation response in two microarray mRNA datasets. Overlapping genes from these three sources were fed into a curated protein interaction network system (MetaCore) to identify key interacting networks. The most important network was taken as our target set.

Literature Review of Radiosensitivity-related Genes

We attempted a complete literature review of all genes implicated in radiation response. Published papers were searched by using PubMed and Scopus search engines in 2010 and by following citations within the identified papers. The search strategy was based on a combination of the following search keywords: “SNPs, polymorphisms, or microsatellites” and “irradiation, radiation, or radiotherapy” and “morbidity, radiosensitivity, normal tissue, toxicity, or complications” and “siRNA, knockdown, or knockout”. Papers referred to in the original search returns, or referring to the original papers at a later date were also reviewed. This resulted in an in-depth review of around 200 published papers, and a list of 221 genes implicated in radiation response.

Microarray Gene Expression Datasets

To identify significant radio-responsive genes based on microarray gene expression profiling, we searched for all relevant, publicly available microarray datasets, resulting in locating two datasets. We analyzed GSE1977 and GSE23393, downloaded from the publicly available Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/). In GSE1977, lymphoblastoid cell lines obtained from 15 healthy individuals were established by immortalization of peripheral blood B-lymphocytes [3]. The response of numerous genes was measured by mock treatment, UV, and X-ray exposures. Cells were exposed to 5 Gy radiation doses and harvested for RNA 4 hours later. In our work, the differential between mock and X-ray cases was used. In contrast, in GSE23393 [9], blood was gathered from eight radiotherapy patients (at our institution): eight samples were collected immediately before irradiation and another eight samples were collected at 4 hours after total body irradiation with 1.25 Gy X-rays.

Preprocessing for Identification of Significant Genes

Before the microarray datasets were analyzed, gene expression values were log-base-2 transformed, followed by quantile normalization across all samples [9]. Microarray gene expression values from two different conditions (before and after exposure) were compared using a two-tailed t-test to identify differentially expressed genes (radio-responsive genes). To estimate the likelihood of identifying significant genes by chance, we computed permutation-based p-values using 10,000 permutations. Then, using Storey’s method, the false discovery rate (FDR) and q-value for each gene were calculated [10]. Significance Analysis of Microarrays (SAM) and t-test are widely used for indentifying differentially expressed genes in the analysis of microarray data [11]. We chose a permutation t-test with an assumption that the permutation t-test and SAM could yield a set of similar significant genes, as recommended by Chen et al. [11]. In this analysis, we did not use a fold change cutoff in order to avoid losing some important genes, a problem described by Larsson et al. [12].

Pathway and Process Analysis

Significant genes were identified both in the literature review and the analysis of two microarray datasets (GSE1977 and GSE23393). These genes were then entered into a manually curated pathway analysis database (MetaCore™, GeneGo, Inc., Carlsbad, California). The commercial pathway analysis system, MetaCore, computes p-values for overrepresented pathways and processes. MetaCore is based on a comprehensive manually curated attempt to capture protein interactions as networks. We used MetaCore to attempt to find the most probable interaction pathways among a set of genes uploaded by the user. Several algorithms are available to do this; we used the “Analyze network” option. If necessary, MetaCore adds appropriate genes to complete a network.

Gene Ontology Analysis

A further analysis of the resulting significant genes was performed using the Gene Ontology (GO) database (www.geneontology.org), in which genes are annotated with known molecular functions, biological processes, and cellular component locations.

Gene Ranking

In our previous work to identify blood-based protein biomarkers to predict radiation-induced pneumonitis [7], we proposed a graph-based scoring function to rank proteins in a protein–protein interaction network. The network consisted of candidate proteins we identified in mass spectrometry analysis and four previously identified (‘regularization’) biomarker proteins. Using the proposed method, we attempted to measure a ‘functional distance’ between each candidate protein and the four regularization proteins, based on the hypothesis that some proteins relevant to a specific disease exist in close proximity, in a network sense. In the current study, we modified that algorithm such that within a given protein–protein interaction network for a biological process, we
Table 1. Radio-responsive biomarkers identified by literature review and their biological processes.

Gene Symbol	Entrez Gene ID	DNA repair	Cell proliferation	Cell cycle	Apoptosis	Response to stress	Reference
ABCA1	19	v	v	v	v	v	[14]
ABL1	25	v	v	v	v	v	[4]
ACTA2	59	v	v	v	v	v	[15]
AEN	64782	v	v	v	v	v	[16]
AKR1B1	231	v	v	v	v	v	[17]
AKT1	207	v	v	v	v	v	[18]
ALAD	210	v	v	v	v	v	[19,20]
ANXA1	301	v	v	v	v	v	[21]
APOE	348	v	v	v	v	v	[22–26]
AR	367	v	v	v	v	v	[27]
ATF3	467	v	v	v	v	v	[28]
ATM	472	v	v	v	v	v	[25,26,29–43]
BAD	572	v	v	v	v	v	[44]
BAK1	578	v	v	v	v	v	[45]
BAX	581	v	v	v	v	v	[37,44–47]
BAZ1B	9031	v	v	v	v	v	[17]
BBC3	27113	v	v	v	v	v	[16,48–50]
BCL2	596	v	v	v	v	v	[37,44,46,51,52]
BCL2L1	598	v	v	v	v	v	[51]
BIRC5	332	v	v	v	v	v	[53]
BRCA1	672	v	v	v	v	v	[54–59]
BRCA2	675	v	v	v	v	v	[54–57,59,60]
BTG2	7832	v	v	v	v	v	[61]
CAT	847	v	v	v	v	v	[62]
CAV1	857	v	v	v	v	v	[63]
CCNB1	891	v	v	v	v	v	[48]
CCND1	595	v	v	v	v	v	[46]
CCNE1	898	v	v	v	v	v	[61]
CCNG1	900	v	v	v	v	v	[49]
CD24	100133941	v	v	v	v	v	[21]
CD40	958	v	v	v	v	v	[64]
CD68	968	v	v	v	v	v	[20]
CD69	969	v	v	v	v	v	[16]
CD70	970	v	v	v	v	v	[65]
CD83	9308	v	v	v	v	v	[21]
CDC20	991	v	v	v	v	v	[66]
CDC6	990	v	v	v	v	v	[61]
CDH2	1000	v	v	v	v	v	[21]
CDK1	983	v	v	v	v	v	[4,61]
CDK2	1017	v	v	v	v	v	[61]
CDKN1A	1026	v	v	v	v	v	[15,16,37,47–50,61,67,68]
CDKN2A	1029	v	v	v	v	v	[69]
CHEK1	1111	v	v	v	v	v	[70,71]
CLIC1	1192	v	v	v	v	v	[72]
CRYAB	1410	v	v	v	v	v	[21]
CSNK2A2	1459	v	v	v	v	v	[73]
CXCR4	7852	v	v	v	v	v	[15]
CYP2D6	1565	v	v	v	v	v	[74]
Table 1. Cont.

Gene Symbol	Entrez Gene ID	DNA repair	Cell proliferation	Cell cycle	Apoptosis	Response to stress	Reference
DCN	1634		v				[21]
DDB2	1643	v					[15,21]
DDR1	780						[15]
DDR2	4921	v					[15]
DDX17	10521						[17]
DRAP1	10589						[17]
DUSP8	1850						[16]
EGFR	1956	v	v	v	v		[46]
EGR1	1958	v					[16]
EGR4	1961	v					[16]
EI24	9538	v					[47]
EIF2AK3	9451	v	v				[75]
EPDR1	54749						[20]
ERBB2	2064	v	v	v	v		[46,76–78]
ERCC1	2067	v					[52]
ERCC2	2068	v	v	v	v		[36,74]
ERCC4	2072	v					[52,79]
ERCC5	2073	v	v	v			[52]
FAS	355	v					[47,80]
FASLG	356	v	v	v	v		[80]
FDXR	2232						[49,50,68]
FGF1	2246	v					[81]
FGF2	2247	v	v	v	v		[81]
GADD45A	1647	v	v	v	v		[15,16,48,49,61,67]
GBP1	2633						[21]
GDF15	9518						[15,82]
GFER	2671	v					[83]
GRAP	10750						[16]
GSTA1	2938						[62]
GSTM1	2944						[62,84]
GSTP1	2950	v					[36,62,85,86]
GSTT1	2952						[62,84]
H2AFX	3014	v	v				[41,87,88]
HDAC1	3065	v	v	v			[4,89]
HERC2	8924	v					[90]
HSP90AB1	3326	v					[91]
HSP90B1	7184	v	v				[82]
HSPB1	3315	v	v				[91,92]
HUS1	3364	v	v				[93]
ICAM2	3384						[94]
ID3	3399	v	v	v	v		[20]
IERS	51278						[95]
IFNG	3458	v	v	v	v		[16]
IGF1R	3480	v	v				[46,96]
IGFBP3	3486	v	v				[21]
IL12RB2	3595	v					[14]
IL17A	3605	v	v				[97]
ILK	3611	v	v	v	v		[98]
IRF1	3659						[4]
Gene Symbol	Entrez Gene ID	DNA repair	Cell proliferation	Cell cycle	Apoptosis	Response to stress	Reference
-------------	---------------	------------	-------------------	------------	-----------	-------------------	-----------
JUN	3725	v	v	v	v		[4,16]
KRA5	3845						[99]
LIG1	3978	v	v	v	v		[20]
LIG3	3980	v	v	v	v		[19,20]
LIG4	3981	v	v	v	v		[35,60,74,100]
LOX	4015			v	v		[21]
LSM7	51690						[17]
MAD2L2	10459	v					[19]
MAP3K7	6885	v	v	v	v		[19,20]
MC1R	4157	v	v	v	v		[101]
MCL1	4170			v			[102]
MCM2	4171	v					[61]
MDC1	9656	v	v	v	v		[33]
MDM2	4193	v	v	v	v		[16,49,52,103]
MGMT	4255	v	v	v	v		[20]
MLH1	4292	v	v	v	v		[46,74]
MMP2	4313	v					[104]
MMP9	4318	v					[105]
MPO	4353	v	v	v			[62,106]
MR1	3140						[15]
MRE11A	4361	v	v	v	v		[29]
MRPL23	6150						[17]
MSH2	4436	v	v	v	v		[46]
MTHFR	4524						[107]
MTOR	2475	v		v			[45]
MYC	4609	v	v	v			[108]
NBN	4683	v	v	v			[29,109]
NEIL1	79661	v		v			[110]
NEK2	4751	v					[111]
NFKB1	4790	v	v	v			[112]
NNMT	4837						[91]
NONO	4841	v		v			[113]
NOS3	4846	v	v	v			[62,106]
NOX4	50507	v	v	v			[114]
NUDT1	4521	v		v			[17]
OGG1	4968	v		v			[115]
PAH	5053						[20]
PAK6	56924						[116]
PARP1	142	v		v			[70,117]
PCNA	5111	v	v	v			[16,118]
PER3	8863						[20]
PHLP2	23035						[119]
PHPT1	29085						[50]
PIK3CA	5290	v					[120]
PIM2	11040	v	v	v			[52]
PLK2	10769	v					[16]
PLK3	1263						[61]
PMS2	5395	v		v	v		[46]
POLB	5423	v	v	v	v		[121]
Gene Symbol	Entrez Gene ID	DNA repair	Cell proliferation	Cell cycle	Apoptosis	Response to stress	Reference
-------------	---------------	------------	-------------------	------------	-----------	-------------------	-----------
POLQ	10721	v			v		[60]
PPA1	5464				v		[111,119]
PPM1D	8493		v	v			[15,122]
PRDX1	5052	v	v	v	v		[116]
PRDX4	10549						[123]
PRKCB	5579			v	v	v	[4]
PRKCB	5590	v		v	v	v	[52]
PRKDC	5591	v	v	v	v		[124–126]
PROCR	10544	v				v	[21]
PROM1	8842					v	[127]
PSMB4	5692		v	v	v		[17]
PSMD1	5707	v				v	[17]
PTCH1	5727	v				v	[128]
PTEF	5728	v	v	v	v		[129]
PTG52	5743	v	v	v	v	v	[46]
PTG1	9232	v		v	v	v	[19,130]
RAD21	5885	v	v	v	v	v	[30,31,43,131]
RAD23B	5887	v				v	[17]
RAD50	10111	v	v	v	v		[29,132]
RAD51	5888	v	v	v	v	v	[133]
RAD54L	8438	v		v	v		[134]
RAD9A	5883	v	v	v	v	v	[19,52]
RALBP1	10928				v		[135,136]
RELA	5970	v	v	v	v	v	[4,112]
RND1	27289					v	[16]
RRM2	6241					v	[137]
RRM2B	50484	v		v	v	v	[138]
S100A11	6282	v				v	[15]
SAG	6295					v	[139]
SART1	9092	v	v	v	v	v	[20]
SEC22B	9554					v	[17]
SEPHS1	22929					v	[140]
SERPIN1	12	v				v	[20]
SERPIN1	5054	v	v	v	v	v	[141]
SESN1	27244	v	v	v	v	v	[49,50]
SIRT1	23411	v	v	v	v	v	[142]
SMAD1	6609	v				v	[81]
SOD1	6647	v	v	v	v	v	[143]
SOD2	6648	v	v	v	v	v	[25,26,30,31,36,62,144,145]
SRC	6714					v	[146]
SRF	6722	v				v	[17]
STAT1	6772	v	v	v	v	v	[4,147]
STAT3	6774	v		v		v	[148,149]
SUMO1	7341	v		v		v	[4]
TGF1	7040	v	v	v	v	v	[25,26,30,31,36,145,150–154]
TNF	7124	v	v	v	v	v	[155]
TNFRSF10B	8795	v				v	[47]
TNFRSF1A	7132	v	v	v	v	v	[112]
TNFSF10	8743	v				v	[156]
estimate the functional distance between each protein and all the remaining proteins in the network, since all the proteins in the network are more likely to be related to one another and act together in the biological process.

To rank biomarkers, we modelled each protein–protein interaction network as a directed graph, \(G = (V, E) \), where \(V \) consists of a set of nodes (proteins) and \(E \) is the set of possible edges (protein–protein interactions) between pairs of nodes. Let \(A \) and \(B \) be two proteins in a network. We assume that there are two concepts of distance between \(A \) and \(B \): a geometrical distance that is defined in terms of the number of nodes in the shortest path between \(A \) and \(B \), as well as a virtual distance that is defined in terms of the number of publications that verify the interactions along the shortest path. Intuitively, as the number of intermediate nodes between \(A \) and \(B \) increases, the geometrical distance increases and the two proteins are less likely to be correlated. In contrast, considering virtual distance, we expect that as the number of references demonstrating a relationship between two proteins increases, they are more likely to be related. In other words, the number of references is proportional to relatedness while the number of nodes is inversely proportional.

Using a power law, we calculate two scores from \(A \) to \(B \): a reference score \(rs(A \rightarrow B) \) and a node score \(ns(A \rightarrow B) \) as follows:

\[
rs(A \rightarrow B) = \log_{10}(0.5 \times r + 1),
\]

\[
ns(A \rightarrow B) = \frac{1}{\log_{10}(n+1)}
\]

where \(r \) and \(n \) are the total number of references and nodes in the shortest path from \(A \) to \(B \). We suppose that the influence of the number of nodes is greater than that of the number of references. Therefore, as the number of intermediate nodes between any two given nodes increases, the relationship between the two nodes becomes much less likely. The score capturing the path from \(A \) to \(B \) is defined as the summation of two different scores:

![Table 1. Cont.](image-url)

Gene Symbol	Entrez Gene ID	DNA repair	Cell proliferation	Cell cycle	Apoptosis	Response to stress	Reference
TNFSF9	8744	v	v	v			[16]
TOB1	10140	v					[157]
TOP2A	7153	v		v	v		[158]
TOR1AIP1	26092						[16]
TP53	7157	v	v	v	v		[37,41,46,48]
TP63	8626	v	v	v	v		[159]
TPP2	7174						[160]
TRAF2	7186	v	v				[161]
TRAF4	9618	v	v	v			[162]
TXN	7295	v					[163]
TXNRD1	7296	v					[164]
UBB	7314	v	v	v			[165]
UHRF1	29128	v	v	v			[166]
UIMC1	51720	v	v	v			[167]
VEGFA	7422	v	v	v	v		[168]
WRN	7486	v	v	v	v		[110]
WT1	7490	v	v	v			[167]
XIAP	331	v		v	v		[49,168,169]
XPC	7508	v	v	v			[124,170]
XRCC1	7515	v	v	v			[22,23,25,26,30,31,36,43,115,144,145,150,171–175]
XRCC2	7516	v	v	v	v		[109]
XRCC3	7517	v	v	v	v		[144,145,172,174–176]
XRCC4	7518	v	v	v	v		[164]
XRCC5	7520	v	v	v	v		[52,60,172,177–179]
XRCC6	2547	v	v	v	v		[20,176,178,180,181]
DNA-PK							[52,182]
HSP70							[183]
MRN(95)							[184]
RAS							[185]

doi:10.1371/journal.pone.0038870.t001
Likewise, we also estimate a score from B to A, \(s(B \rightarrow A)\). Then, the final score, \(s(A \rightarrow B)\) between A and B, is defined as the maximal value among \(s(A \rightarrow B)\) and \(s(B \rightarrow A)\):

\[
s(A \rightarrow B) = \max\{s(A \rightarrow B), s(B \rightarrow A)\}. \tag{4}
\]

We suppose that the final score of a protein is computed by the summation of all scores between the protein and all the remaining proteins in the network. Hence, the final score of a protein \(A\) is defined by:

\[
f(s(A)) = \sum_{B \in V \setminus \{A\}} s(A \rightarrow B). \tag{5}
\]

To estimate the number of references and nodes, we employed two methods. For the number of references, we used a function in the MetaCore software that provides the number of references between two connected proteins in a network. For the number of nodes, we used the Floyd-Warshall algorithm that was originally designed to find the shortest paths between all pairs of nodes based on dynamic programming [13]. To apply this algorithm to our problem of estimating the number of nodes, we modified the original Floyd-Warshall algorithm such that an equal weight of 1 was assigned to all connected edges in a network. As a result, the

Table 2. The top ten GeneGo pathways/processes and GO processes resulting from genes identified via literature review.

Ranking	GeneGo Pathways
1	DNA damage_Role of Brca1 and Brca2 in DNA repair
2	DNA damage_ATM/ATR regulation of G1/S checkpoint
3	DNA damage_NHEJ mechanisms of DSBs repair
4	DNA damage_Brca1 as a transcription regulator
5	Signal transduction_AKT signaling
6	Some pathways of EMT in cancer cells
7	Apoptosis and survival_Ceramides signaling pathway
8	Signal transduction_AKT signaling
9	Transcription_PSJ signaling pathway
10	DNA damage_ATM/ATR regulation of G2/M checkpoint

Ranking	GeneGo Processes
1	DNA damage_Checkpoint
2	DNA damage_DBS repair
3	Cell cycle_G1-S Growth factor regulation
4	DNA damage_BER-NER repair
5	Cell cycle_Melosis
6	DNA damage_Core
7	Apoptosis_Apoptotic nucleus
8	Cell cycle_G1-S Interleukin regulation
9	Development_EMT_Regulation of epithelial-to-mesenchymal transition
10	Cell cycle_S phase

Ranking	GO Processes
1	Cellular response to stimulus
2	Cellular response to stress
3	Response to stress
4	Regulation of programmed cell death
5	Regulation of cell death
6	Regulation of apoptosis
7	Response to DNA damage stimulus
8	Response to stimulus
9	DNA repair
10	Response to organic substance

doi:10.1371/journal.pone.0038870.t002
modified algorithm generated a matrix that represents the number of nodes on the all-pairs shortest-paths in a given protein–protein interaction network.

Results
Identification of Significant Biomarkers via Literature Review

Based on the literature review, several types of biomarkers, including genes, proteins, kinases, ligands, and protein complexes were identified. To unify the biomarker terms differently used across studies, we converted all the biomarkers into their corresponding gene symbols. As a result, 221 unique genes and 4 protein complexes (DNA-PK, HSP70, MRN(95), RAS) were identified from around 200 papers that studied radiation response-related biomarkers [4,14–185]. Table 1 displays the 221 unique genes and their corresponding GO processes, including DNA repair, cell proliferation/cycle, apoptosis, RNA processing, and response to stress. It is well known that ionizing radiation causes DNA damage that activates the p53 pathway through ATM [186]. Genes that are involved in cell cycle, such as CDKN1A, GADD45A, MDM2, and CCNG1, are known to be dependent on p53 [2]. Also, other cell cycle-related genes including CCNB1 and CDC20 were identified. Among cell cycle or proliferation genes, TOB1, BTG2, and CDKN1A are anti-proliferative/checkpoint related [3]. Several genes (XPC, DDB2, PCNA, ERCC4, and NBN) are involved in DNA repair. Two major pathways to repair IR-induced DNA double-strand breaks are homologous recombination (HR; genes include XRCC2, XRCC3, MRE11A, RAD50, NBN, BRCA1, and BRCA2) and non-homologous end
joining (NHEJ; genes include LIG4, XRCC4, XRCC5, XRCC6, and DNA-PK) [3]. Some genes, including FAS, BBC3, and TNF, are involved in apoptosis [187]. BCL2 and DDR1 are anti-apoptotic.

For biological process and pathway analysis, the 221 unique genes were uploaded into the MetaCore. Figure 1 illustrates a direct interaction network generated with these genes. As shown, numerous genes are strongly connected to one another, suggesting

Figure 2. A normal quantile plot of t-scores for GSE1977. Significant genes have red circles. doi:10.1371/journal.pone.0038870.g002

Figure 3. Significant gene detection. A volcano plot that depicts the $-\log_{10}$ of q-values against log2 of fold changes for all genes in GSE1977. doi:10.1371/journal.pone.0038870.g003

Figure 4. Comparison of significant genes among three sources. A Venn diagram depicting the number of shared and unique genes among a set of genes identified by literature review and two sets of genes identified in the analysis of two gene microarray datasets. doi:10.1371/journal.pone.0038870.g004
that interacting genes are more likely to play related roles. Table 2 shows the top ten GeneGo pathways, GeneGo processes, and GO processes. As can be seen in the table, the most highly ranked pathways and processes are associated with DNA damage and repair, cell cycle, and apoptosis.

Identification of Significant Genes via Microarray Dataset Analysis

To identify significant changes in gene expression values between the two groups (before and after irradiation) in two microarray datasets, a t-test with 10,000 permutations was performed. To estimate p-values, we counted the number of permutations for each gene whose t-scores are greater than or equal to the t-score calculated with observed values. Then, the number of permutations passed the criterion was divided by the total number of permutations [188]. With an FDR of 20%, 631 probes (corresponding to 550 unique genes) were significantly identified for GSE1977. Figure 2 shows a normal quantile plot of t-scores for GSE1977. Data points of genes that are farther away from the black diagonal line are considered to be differentially expressed. Figure 3 displays a volcano plot that depicts the –log10 of q-values against log2 of fold changes for all genes. The majority of genes with an FDR of 20% changed 1.2-fold or higher. For GSE23393, with an FDR of 20%, 224 probes (corresponding to 184 unique genes) were identified (Figure S1 and Figure S2).

Overlapping Genes

To delimit our potential biomarker set, we investigated which genes are commonly or uniquely found among the set of genes identified by our literature review and two sets of genes identified in the analysis of the two gene microarray datasets, as summarized in Table 3. We further analyzed pathways and biological processes associated with the 20 genes. Table 4 shows the top ten GeneGo pathways generated by the MetaCore software (Table S1). Not surprisingly, even with the 20 genes, DNA damage/repair and apoptosis-related pathways were highly ranked.
Figure 5. The most probable interaction network when 20 genes were entered into MetaCore software. The resulting interacting network uses only 7 genes. Red, green, and gray lines indicate inhibitory, stimulatory, and unspecified interactions, respectively. doi:10.1371/journal.pone.0038870.g005

Table 5. The results of the proposed scoring function test applied to the network in Figure 5.

Ranking	Protein	Gene symbol	Score	GSE1977 p-value	GSE23393 p-value	No. of edges
1	c-Myc	MYC	113.74	0.02420	0.14898	12
2	GADD45 alpha	GADD45A	110.34	8.63E-06	0.00172	9
3	WIP1	PPM1D	108.16	0.00044	0.00310	11
4	PUMA	BCC3	102.70	0.07171	0.01019	6
5	p21	CDKN1A	100.13	0.00027	0.00367	3
6	PLK3 (CNK)	PLK3	99.70	0.00285	0.08072	4
7	XPC	XPC	85.62	0.00068	0.03330	2

doi:10.1371/journal.pone.0038870.t005
Gene Ranking and Identification of a Core Radioresponse Network

Figure 5 shows the most probable/robust single interaction network when the 20 overlapping genes were entered into the MetaCore software. Of the 20 input genes, seven genes appeared in this core radio-response network. We applied our graph-based scoring function to this network and the results are summarized in Table 5. MYC was ranked first with a score of 113.74, which had a high p-value in GSE23393 and a statistically significant p-value, yet still relatively high compared to other genes, in GSE1977. As a hub gene, MYC had the highest number of edges (n = 12) that seem to contribute to the score. Overall p-values in GSE23393 (in situ IR) are higher than those of GSE1977 (ex vivo IR). Intuitively, as the number of edges increases, the score seems to increase. However, it should be noted that although GADD45A has 9 edges, it obtained a higher score than PPM1D, which has 11 edges. This is attributed to the fact that when we calculate the score for a gene, our scoring function takes into account all network interactions and the number of references on the interactions in the network. Interestingly, CDKN1A obtained a relatively high score of 100.13, considering only 3 edges and substantially low p-values (0.00027 in GSE1977 and 0.00367 in GSE23393).

Discussion

We have demonstrated an unbiased bioinformatics filtering methodology to objectively identify a core network of key interacting genes that are important to radiation response. We hypothesized that, by combining several different types of datasets, we are increasingly likely to identify interacting genes that are particularly important to radiation response. We also hypothesize that these genes are therefore attractive candidates for biomarker testing. For example, the 7 key genes contain 89 relevant SNPs in our radiation therapy cancer dataset and we are in the process of testing late toxicity with the dataset. We make no claim that the network shown in Figure 5 dominates radiation response and do not expect that to be the case. Nevertheless, this network seems to be highly relevant to radiation response: among the 7 genes, 5 and 4 genes are involved in cell cycle control and apoptosis, respectively. More detailed information is shown in Table S2. Five of these genes, including MYC, BBC3, GADD45A, CDKN1A, and XPC belong to a list of 34 radio-responsive genes observed by Tusher et al. [187]. Moreover, this network is consistent with (though slightly different from) the programmed cell death network reported by Mousay et al. [189].

Figure 4 shows the number of genes commonly or uniquely identified among three different studies (literature review and analysis of two microarray datasets). Interestingly, relatively few genes overlapped among the three analyses. Literature coverage is expected to be incomplete regarding coverage of radiosensitivity genes. Microarray analysis is subject to high false-positive and false-negative rates [190]. Another possible reason for the small number of overlapped genes is the widely differing irradiation conditions and doses. Despite this, the biological processes and pathways generated from the 20 overlapping genes were similar to those generated from the whole literature review.

We further analyzed the 20 genes, uploading these genes into the MetaCore software. In the network of the most probable biological process shown in Figure 5, only seven out of 20 genes appeared in the network. Additional genes were automatically added to the network by MetaCore, including AKT1, RELA, BCL2L1, PTEN, CDK1, and XIAP. Note, however, that these genes were also members of the list generated by our radiation response literature review, suggesting some consistency between these sources. This also suggests a potential ability to find novel biomarker candidates through the network mapping/ranking process, though that did not occur in this case.

The graph-based scoring function proposed in our previous study [7] was modified and applied to the network shown in Figure 5. In some studies, researchers tend to regard genes with high degrees of connectivity (hub genes) as significant in an interaction network, while neglecting others [4]. While this is rational, finding hub genes based on edge connectivity considers only direct interactions between genes whereas our proposed approach takes into account all interactions in a network (that is, the entire graph structure) and the number of published references on the interactions. To measure the closeness between two proteins (say A and B), we employed two scores; a node score and a reference score. In a protein interaction network, it is obvious that as the number of internal nodes between A and B increases, these two proteins are less likely to be related with each other. In contrast, the reference score is a score calculated using the number of papers that studied on an interaction between two proteins, which can be important evidence that there is an actual relationship between the two proteins. As can be seen in Table S3, MYC was first ranked using a total score. However, BBC3 and PPM1D were first ranked using a reference score and a node score, respectively. CDKN1A, PLK3, and XPC obtained somewhat high scores considering their connectivity, suggesting that they could play important roles in this core network. We believe that the use of both scores could be more effective for ranking proteins in a protein interaction network.

Future work will test SNPs identified in this network against toxicity resulting from radiation therapy. As the number of patients available for SNP analyses increases, it may be rational to expand the number of candidate SNPs to several hundreds or more. The general methodology may be applied in many genetic/protein biomarker studies with limited patient data.

Supporting Information

Figure S1 A normal quantile plot of t-scores for GSE23393 after 10,000 permutations. (TIF)

Figure S2 Significant gene detection. A volcano plot that depicts the −log10 of q-values against log2 of fold changes for all genes in GSE23393. (TIF)

Table S1 The top ten GeneGo pathways/processes and GO processes generated by the MetaCore software when 20 overlapped genes were used. (DOC)

Table S2 Biological processes for the seven genes shown in Table 5. (DOC)

Table S3 Scores obtained using the graph-based scoring function. (DOC)

Author Contributions

Conceived and designed the experiments: JHO XW JOD. Performed the experiments: JHO HPW. Analyzed the data: JHO. Wrote the paper: JHO JOD.
24. Xiang DB, Chen ZT, Wang D, Li MX, Xie JY, et al. (2008) Chimeric
20. Suga T, Iwakawa M, Tsuji H, Ishikawa H, Oda E, et al. (2008) Influence of
19. Suga T, Ishikawa A, Kohda M, Otsuka Y, Yamada S, et al. (2007) Haplotype-
18. Toulany M, Kehlbach R, Florczak U, Sak A, Wang S, et al. (2008) Targeting of
16. Turtoi A, Schneeweiss FH (2009) Effect of (211)At alpha-particle irradiation on
15. Chiani F, Iannone C, Negri R, Paoletti D, D’Antonio M, et al. (2009)
13. Brigl B, Stru¨bing A, Wendt T, Winter A (2006) Modeling interdependencies
10. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies.
8. Templin T, Paul S, Amundson SA, Young EF, Barker CA, et al. (2011)
7. Oh JH, Craft JM, Townsend R, Deasy JO, Bradley JD, et al. (2011) A biomarker based analysis of genes associated with risk of adverse skin reactions after radiotherapy. Clin Cancer Res 15: 5008–5016.
6. Andreassen CN, Alner J, Stoerrey JB, Andreassen AK, Smith BP, Smith PJ (1979) Enhanced radiosensitivity of cultured fibroblasts from ataxia telangiectasia heterozygotes manifested by defective colony-forming ability and reduced DNA repair replication after hypoxic gamma-irradiation. Cancer Res 39: 3725–3734.
5. Meretski L, Aria A, Kim K,Wu B (2007) Crosstalk between Bax/Bak and mTOR signaling regulates radiation-induced autophagy. Autophagy 3: 142–150.
4. Chorna IV, Datsyuk LO, Datsyuk IV, Datsyuk LV, et al. (2005) Alternative of mutations in the ATM gene in breast cancer patients with severe late adverse effects after radiotherapy. Br J Cancer 76: 1546–1549.
3. Rieger KE, Chu G (2004) Portrait of transcriptional responses to ultraviolet bleed or not to bleed. A prediction based on individual gene profiling combined with dose-volume histogram shape in prostate cancer patients undergoing three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys 71: 1236–1244.
2. Andreassen CN, Alner J, Overgaard J, Herskind C, Haviland J, et al. (2005) TGFβ1 polymorphisms are associated with risk of late normal tissue complications in the breast after radiotherapy for early breast cancer. Radiother Oncol 75: 19–21.
1. Rieger KE, Hong WJ, Tusher VG, Tang J, Tilshirani R, et al. (2004) Toxicity from radiation therapy associated with abnormal transcriptional responses to DNA damage. Nat Genet 36: 6635–6646.

References

1. Rieger KE, Hong WJ, Tusher VG, Tang J, Tilshirani R, et al. (2004) Toxicity from radiation therapy associated with abnormal transcriptional responses to DNA damage. Nat Genet 36: 6635–6646.
2. Andreassen CN, Alner J, Overgaard J, Herskind C, Haviland J, et al. (2005) TGFβ1 polymorphisms are associated with risk of late normal tissue complications in the breast after radiotherapy for early breast cancer. Radiother Oncol 75: 19–21.
3. Rieger KE, Hong WJ, Tusher VG, Tang J, Tilshirani R, et al. (2004) Toxicity from radiation therapy associated with abnormal transcriptional responses to DNA damage. Nat Genet 36: 6635–6646.
Identification of Radiation Response Biomarkers

Kim DW, Seo SW, Cho SK, Chang SS, Lee HW, et al. (2007) Targeting of cell survival genes using small interfering RNAs (siRNAs) enhances radiosensitivity of Grade II chordoma cells. J Orthop Res 25: 820–828.

Guo WF, Lin RX, Huang J, Zhou Z, Yang J, et al. (2005) Identification of differentially expressed genes contributing to resistance in lung cancer cells using microarray analysis. Radiat Res 164: 27–35.

Guo WF, Lin RX, Huang J, Zhou Z, Yang J, et al. (2005) Identification of differentially expressed genes contributing to resistance in lung cancer cells using microarray analysis. Radiat Res 164: 27–35.

Shanley S, McReynolds K, Ardern-Jones A, Ahern R, Fernando I, et al. (2006) Late toxicity is not increased in BRCA1/BRCA2 mutation carriers undergoing breast radiotherapy in the United Kingdom. Clin Cancer Res 12: 7025–7032.

Fierze LJ, Swarzendruber M, Nazol SA, Olivoito I, Eisen A, et al. (2006) Effect of radiation therapy after breast-conserving treatment in women with breast and germline BRCA1/2 mutations. J Clin Oncol 24: 3360–3369.

Lu HR, Wang X, Wang Y (2006) A stronger DNA damage-induced G2 arrest prior to radiation and expression of p21WAF1 and p27kip1. Cancer Lett 220: 165–172.

Snyder AR, Morgan WF (2004) Gene expression profiling after irradiation: clues to understanding acute and persistent responses? Cancer Metastasis Rev 23: 259–268.

Taniguchi K, Momiyama N, Ueda M, Matsuyama R, Mori R, et al. (2008) Increased chromosomal radiosensitivity in women carrying BRCA1/BRCA2 mutations assessed with the G2 assay. Int J Radiat Oncol Biol Phys 76: 1399–1407.

Higgins GS, Prevo R, Lee YF, Helleday T, Muschel RJ, et al. (2010) A small molecule inhibitor QLT0267 Radiosensitizes squamous cell carcinoma cells of the head and neck. PLoS One 4: e6434.

Kim DW, Seo SW, Cho SK, Chang SS, Lee HW, et al. (2007) Targeting of cell survival genes using small interfering RNAs (siRNAs) enhances radiosensitivity of Grade II chordoma cells. J Orthop Res 25: 820–828.

Guo WF, Lin RX, Huang J, Zhou Z, Yang J, et al. (2005) Identification of differentially expressed genes contributing to resistance in lung cancer cells using microarray analysis. Radiat Res 164: 27–35.

Shanley S, McReynolds K, Ardern-Jones A, Ahern R, Fernando I, et al. (2006) Late toxicity is not increased in BRCA1/BRCA2 mutation carriers undergoing breast radiotherapy in the United Kingdom. Clin Cancer Res 12: 7025–7032.

Fierze LJ, Swarzendruber M, Nazol SA, Olivoito I, Eisen A, et al. (2006) Effect of radiation therapy after breast-conserving treatment in women with breast and germline BRCA1/2 mutations. J Clin Oncol 24: 3360–3369.

Leong T, Whitty J, Kril M, Mifsud S, Ramsay J, et al. (2000) Mutation analysis of BRCA1 and BRCA2 gene predisposition genes in radiation-induced cancer patients. Int J Radiat Oncol Biol Phys 48: 959–965.

Abbott DW, Thompson ME, Robinson-Benion C, Tomlinson G, Jensen RA, et al. (1999) BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair. J Biol Chem 274: 18821–18830.

Ernesto B, Nikolos P, Koulis G, Eleni R, Konstantinos B, et al. (2010) Increased chromosomal radiosensitivity in women carrying BRCA1/BRCA2 mutations assessed with the G2 assay. Int J Radiat Oncol Biol Phys 76: 1399–1407.

Higgins GS, Prevo R, Lee YF, Helleday T, Muschel RJ, et al. (2010) A small molecule inhibitor QLT0267 Radiosensitizes squamous cell carcinoma cells of the head and neck. PLoS One 4: e6434.

Kim DW, Seo SW, Cho SK, Chang SS, Lee HW, et al. (2007) Targeting of cell survival genes using small interfering RNAs (siRNAs) enhances radiosensitivity of Grade II chordoma cells. J Orthop Res 25: 820–828.

Guo WF, Lin RX, Huang J, Zhou Z, Yang J, et al. (2005) Identification of differentially expressed genes contributing to resistance in lung cancer cells using microarray analysis. Radiat Res 164: 27–35.

Shanley S, McReynolds K, Ardern-Jones A, Ahern R, Fernando I, et al. (2006) Late toxicity is not increased in BRCA1/BRCA2 mutation carriers undergoing breast radiotherapy in the United Kingdom. Clin Cancer Res 12: 7025–7032.

Fierze LJ, Swarzendruber M, Nazol SA, Olivoito I, Eisen A, et al. (2006) Effect of radiation therapy after breast-conserving treatment in women with breast and germline BRCA1/2 mutations. J Clin Oncol 24: 3360–3369.

Leong T, Whitty J, Kril M, Mifsud S, Ramsay J, et al. (2000) Mutation analysis of BRCA1 and BRCA2 gene predisposition genes in radiation-induced cancer patients. Int J Radiat Oncol Biol Phys 48: 959–965.

Abbott DW, Thompson ME, Robinson-Benion C, Tomlinson G, Jensen RA, et al. (1999) BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair. J Biol Chem 274: 18821–18830.

Ernesto B, Nikolos P, Koulis G, Eleni R, Konstantinos B, et al. (2010) Increased chromosomal radiosensitivity in women carrying BRCA1/BRCA2 mutations assessed with the G2 assay. Int J Radiat Oncol Biol Phys 76: 1399–1407.

Higgins GS, Prevo R, Lee YF, Helleday T, Muschel RJ, et al. (2010) A small molecule inhibitor QLT0267 Radiosensitizes squamous cell carcinoma cells of the head and neck. PLoS One 4: e6434.
104. Chetty C, Bhopathi P, Rao JS, Lakka SS (2009) Inhibition of matrix metalloproteinase-2 enhances radiosensitivity by abrogating radiation-induced FoxM1-mediated G2/M arrest in A549 lung cancer cells. Int J Cancer 124: 1460-1477.

105. Abo GO, Brown JM (2000) Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell 13: 193-205.

106. Alm J, Ambrosone CB, Kanetsky PA, Tian C, Leivert TA, et al. (2006) Polymorphisms in genes related to oxidative stress (CAT, MnSOD, MPO, and eNOS) and acute toxicities from radiation therapy following lumpectomy for breast cancer. Clin Cancer Res 12: 7063-7070.

107. Cecchin E, Agostini M, Pucciarelli S, De Paoli A, Canzonieri V, et al. (2011) Tumor response is predicted by patient genetic profile in rectal cancer patients treated with neo-adjuvant chemo-radiotherapy. Pharmacogenomics J 11: 214-226.

108. Sheen JH, Dickson RB (2002) Overexpression of c-Myc alters G(1)/S arrest following ionizing radiation. Mol Cell Biol 22: 1819-1833.

109. Popanda O, Tan XL, Ambrosone CB, Kropp S, Helmbold I, et al. (2006) Genetic polymorphisms in the DNA double-strand break repair genes XRCC3, XRCC2, and NBS1 are not associated with acute side effects of radiotherapy in breast cancer patients. Cancer Epidemiol Biomarkers Prev 15: 1048-1050.

110. Das A, Boldogh I, Lee JW, Harrigan JA, Hegde ML, et al. (2007) The human Werner syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase NEIL1. J Biol Chem 282: 25991-26002.

111. Mi J, Guo C, Brautigan DL, Larner JM (2007) Protein phosphatase-1alpha regulates centrosome splitting through Nek2. Cancer Res 67: 1082-1089.

112. Wang Y, Meng A, Lang H, Brown SA, Konopa, JL, et al. (2004) Activation of nuclear factor kappab in vivo selectively protects the murine small intestine against ionizing radiation-induced damage. Cancer Res 64: 6240-6246.

113. Li S, Kuhne WW, Kuhltry A, Hudson FZ, Ha K, et al. (2009) Involvement of p34(Cdc2) in a PSF partner protein, in DNA double-strand break repair and radiosensitivity. Nucleic Acids Res 37: 6746-6753.

114. Perk A, Aku IO, Martinelli M, Kim MH, Yu E, et al. (2010) Sustained expression of NADPH oxidase 4 by p38 MAPK-Akt signaling potentiates radiation-sensitivity in esophageal squamous cell carcinoma. Oncol Rep 18: 561-567.

115. Jia L, Yang J, Hao X, Zheng M, He H, et al. (2010) Validation of SAGE/RHG/ROC2 E3 ubiquitin ligase RBX2 as an anticancer and radiosensitizing target. Clin Cancer Res 16: 814-824.

116. Chung HJ, Yoon SI, Shin SH, Koh YA, Lee SJ, et al. (2006) p53-Mediated enhancement of radiosensitivity by seleisphosphate synthetase 1 overexpression. J Biol Chem 281: 2089-2100.

117. Milliat F, Sahuquin J, Tarlet G, Holler V, Deutsch E, et al. (2008) Essential role of plasminogen activator inhibitor type-1 in radiation enteropathy. Am J Pathol 172: 691-701.

118. Chung et al. (2009) Enhanced radiosensitivity and radiation-induced apoptosis in glioma CD133-positive cells by knockdown of Src T1 expression. Biochem Biophys Res Commun 380: 246-249.

119. Fisher Y, Rotman G, Loten S, Elron A, Shichly Y, et al. (2001) Elevated Cu/Zn SOD exacerbates radiation sensitivity and hematopoietic abnormalities of Aml deficient mice. EMBO J 20: 1358-1366.

120. Burri RJ, Stock RG, Cesaretti JA, Atencio DP, Peters S, et al. (2008) Association of single nucleotide polymorphisms in SOD2, XRCC1 and XRCC3 with the risk of radiation pneumonitis in patients with non-small-cell lung cancer treated with definitive radiotherapy. J Clin Oncol 26: 49-59.

121. Andersson CN, Ahn J, Overgaard M, Overgaard J (2003) Prediction of normal tissue radio-sensitivity from polymorphisms in candidate genes. Radiother Oncol 69: 127-135.

122. Dittmann K, Mayer G, Kehlrich R, Rodemann HP (2008) Radiation-induced cavelin-1 associated EGFR internalization is linked with nuclear EGFR transcription and activation of DNA-PK. Mol Cancer 7: 595-608.

123. Hui Z, Tretiakov M, Zhang Z, Li Y, Wang X, et al. (2009) Radiosensitization by inhibiting STAT1 in renal cell carcinoma. Int J Radiat Oncol Biol Phys 73: 288-295.

124. Boman JA, Trounsmie HQ, Wylie CD, Plants BA, Raebusch K (2009) Inhibition of STAT3 results in radiosensitization of human squamous cell carcinoma. Radiat Oncol 92: 339-344.

125. Liu X, Wang H, Lin X, Di B (2010) STAT3 blockade with siRNA enhances radiosensitivity in Hep-2 human laryngeal squamous carcinoma cells. Oncol Rep 23: 345-353.

126. Giouptopoulos G, Symonds RP, Foweraker K, Griffin M, Peat et al. (2007) The late radiotherapy normal tissue injury phenotypes of telangectasia, fibrosis and atrophy in breast cancer patients have distinct genotype-dependent causes. Br J Cancer 96: 1001-1007.

127. Meyer A, Dork T, Bogdanova N, Brinkhaus MJ, Wiese B, et al. (2009) TGFβ1 gene polymorphism Leu10Pro (c.297→C), prostate cancer incidence and quality of life in patients treated with brachytherapy. World J Urol 27: 371-377.

128. Yuan X, Xiao Z, Liu Z, Wang LE, Tucker SL, et al. (2009) Single nucleotide polymorphism at rs1982073:T869C of the TGFbeta 1 gene is associated with the risk of radiation pneumonitis in patients with non-small-cell lung cancer treated with definitive radiotherapy. J Clin Oncol 27: 3370-3378.

129. Kim DR, Laurence B, Jan VM, Wueldien D, Hubert T (2010) Association of TGFbeta1 polymorphisms involved in radiation toxicity with TGFbeta1 gene expression in vitro. Cytokine 50: 184-190.

130. Alsheikh H, Al-Hathlan H, Al-Sebaie M, Al-Rajhi N (2010) Association between normal tissue complications after radiotherapy and polymorphism in TGF81 and XRCC1 genes. Radiat Res 173: 505-510.

131. Zhang M, Qian J, Xing X, Kong FM, Zhao L, et al. (2008) Inhibition of the tumor necrosis factor-alpha pathway is radioprotective for the lung. Clin Cancer Res 14: 1686-1697.
160. Langsenlehner T, Kapp KS, Langsenlehner U (2008) TGFB1 single-nucleotide
polymorphisms in DNA repair genes XRCC1, XRCC3, and OGG1 genes and in vitro chromosomal radiosensitivity in lymphocytes. Int J Radiat Oncol Biol Phys 62: 1140–1149.

161. Yan J, Kim YS, Yang XP, Li LP, Liao G, et al. (2007) The ubiquitin-
interacting motif containing protein RAP80 interacts with BRCA1 and
reduces the radiosensitivity of cervical cancer HeLa cells to gamma-irradiation. Acta Pharmacol Sin 30: 458–466.

162. Thurfjell N, Coates PJ, Vojtesek B, Benham-Motlagh P, Eisold M, et al. (2005) Microsatellite polymorphisms in DNA repair genes XRCC1, XRCC3 and XRCC5 associated with cancer in patients of varying radiosensitivity. Somat Cell Mol Genet 21: 1607–1610.

163. Negroni A, Stronati L, Grollino MG, Barattini P, Gumiero D, et al. (2008) Down-regulation of Wilms’ tumor 1 expression in glioblastoma cells increases radiosensitivity and resistance to radiation. Antioxid Redox Signal 10: 951–960.

164. O’Malley BW, Li D, Carney J, Rhee J, Suntharalingam M (2003) Molecular
Determination of genes and microRNAs involved in the resistance to
radiotherapy. Proc Natl Acad Sci U S A 100: 12511–12516.

165. Shankar S, Singh TR, Chen X, Thakkar H, Firmin J, et al. (2004) The
sequential treatment with ionizing radiation followed by TRAIL/Apo-2L
reduces tumor growth and induces apoptosis of breast tumor xenografts in nude mice. Int J Oncol 24: 1133–1140.

166. Price EA, Bourne SL, Badrourbouse R, Lawton PA, Lamerini J, et al. (1997) Rare microsatellite polymorphisms in the DNA repair genes XRCC1, XRCC3 and XRCC5 associated with cancer in patients of varying radiosensitivity. Carcinogenesis 18: 2469–2474.

167. Jemal A, Siegel R, Ward E, Murray T, Thun M, et al. (2007) Cancer statistics 2007. CA Cancer J Clin 57: 43–66.

168. Price EA, Bourne SL, Badrourbouse R, Lawton PA, Lamerini J, et al. (1997) Rare microsatellite polymorphisms in the DNA repair genes XRCC1, XRCC3 and XRCC5 associated with cancer in patients of varying radiosensitivity. Carcinogenesis 18: 2469–2474.

169. Firat E, Tsurumi C, Gaedicke S, Huai J, Niedermann G (2009) Tripeptidyl
peptidase II plays a role in the radiation response of selected primary cell types but not based on nuclear translocation and p53 stabilization. Cancer Res 69: 3235–3241.

170. Wang R, Li B, Wang X, Lin F, Gao P, et al. (2009) Inhibiting XIAP expression and function in human cells decreases chromosomal radiosensitivity. Mutat Res 663: 40–45.