The structure of a highly conserved picocyanobacterial protein reveals a Tudor domain with an RNA binding function

Katherine M Bauer¹, Rose Dicovitsky², Maria Pellegrini², Olga Zhaxybayeva³,⁴ and Michael J Ragusa¹,²*

¹Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755; ²Department of Chemistry, Dartmouth College, Hanover NH 03755; ³Department of Biological Sciences, Dartmouth College, Hanover NH 03755; ⁴Department of Computer Science, Dartmouth College, Hanover NH 03755

Running Title: The structure of a highly conserved cyanobacterial protein

*To whom correspondence should be addressed: Michael J. Ragusa: Department of Chemistry, Dartmouth College, Hanover NH 03755; michael.j.ragusa@dartmouth.edu

Keywords: NMR spectroscopy, Prochlorococcus, Synechococcus, nucleic acid binding, Tudor domains

ABSTRACT
Cyanobacteria of the Prochlorococcus and marine Synechococcus genera are the most abundant photosynthetic microbes in the ocean. Intriguingly, the genomes of these bacteria are very divergent even within each genus, both in gene content and at the amino acid level of the encoded proteins. One striking exception to this is a 62 amino acid protein, termed Prochlorococcus/Synechococcus Hyper Conserved Protein (PSHCP). PSHCP is not only found in all sequenced Prochlorococcus and marine Synechococcus genomes but it is also nearly 100% identical in its amino acid sequence across all sampled genomes. Such universal distribution and sequence conservation suggests an essential cellular role of the encoded protein in these bacteria. However, the function of PSHCP is unknown. We used Nuclear Magnetic Resonance (NMR) spectroscopy to determine its structure. We found that 53 of the 62 amino acids in PSHCP form a Tudor domain, while the remainder of the protein is disordered. NMR titration experiments revealed that PSHCP has only a weak affinity for DNA, but an 18.5-fold higher affinity for tRNA, hinting at an involvement of PSHCP in translation. Isothermal titration calorimetry experiments further revealed that PSHCP also binds single-stranded, double-stranded and hairpin RNAs. These results provide the first insight into the structure and function of PSHCP, demonstrating that PSHCP is an RNA binding protein that can recognize a broad array of RNA molecules.

With the mean annual average of 3.6 × 10²⁷ cells, cyanobacteria from genera Prochlorococcus (1) and Synechococcus (2) numerically dominate microbial communities of the global ocean (3). Because of such abundance, these photosynthesizing bacteria are extremely important players in the global carbon cycle (3). The small genomes and limited gene content of individual Prochlorococcus and Synechococcus cells (1.6-2.9 Mb, encoding ~1700-3100 genes; (4)) are counterbalanced by a diverse collective gene pool, which in the case of Prochlorococcus is estimated to contain 80,000 genes (5,6). The genomes of Prochlorococcus and Synechococcus are also surprisingly divergent: in pairwise comparisons, the genome-wide average amino acid identity (AAI; (7)) of the encoded proteins is often below 60% even within each genus (8). Maintenance of such remarkable sequence and gene content divergence remains poorly understood (6). However, one protein-coding gene is a curious exception, with its product
showing almost 100% amino acid sequence conservation across all currently available *Prochlorococcus* and marine *Synechococcus* genomes ((9,10) and Supplementary Datasets 1 and 2). This gene encodes a 62 amino acid protein of unknown function, dubbed PSHCP for *Prochlorococcus/Synechococcus* Hyper Conserved Protein, (9,10). Although at the time of its discovery the gene encoding PSHCP was limited to the cyanobacterial clade consisting of *Prochlorococcus* and marine *Synechococcus*, sequence similarity searches now identify the PSHCP gene in genomes of freshwater *Synechococcus* (11); several *Cyanobium* spp. from both freshwater and marine environments; in cyanobacterial sponge symbiont “Candidatus Synechococcus spargarium” (12); in three species of *Paulinella*, which is a photosynthetic protist with a chromatophore thought to be derived from marine *Synechococcus* spp. (13); and in metagenomically-assembled cyanobacteria from globally distributed marine, brackish and freshwater environments. Within cyanobacteria, all characterized PSHCP-containing organisms form a clade (14) within the order *Synechococcales* (15). Hence, the PSHCP protein remains extremely conserved in a specific subgroup of cyanobacteria (Supplementary Datasets 1 and 2) but is undetectable outside of this subgroup.

The remarkable conservation of the PSHCP protein and retention of this gene even within extremely reduced chromatophore genomes (13) suggest that this protein may encode an important housekeeping function. In three examined strains of *Prochlorococcus* and marine *Synechococcus*, the gene is expressed, and its protein product is abundant (10). A large proportion of positively charged amino acids (16%) (9), a predicted isoelectric point of 11.3 (9), and the protein’s association with the ribosomal protein L2 in pull-down assays (10) prompted the hypotheses of PSHCP involvement in binding of either DNA or RNA, and its possible association with a ribosome. Yet, the amino acid sequence of PSHCP shows no significant sequence similarity to any protein domain with a known function.

To gain more insight into the possible function of PSHCP, we determined the structure of the PSHCP protein using Nuclear Magnetic Resonance (NMR) spectroscopy and investigated the protein’s interactions with nucleic acids *in vitro*.

RESULTS

The structure of PSHCP

We began by screening different constructs of PSHCP for their behavior for structure determination. An initial round of construct screening revealed that residues 57-62 could be removed without altering the overall stability of the protein. This in good agreement with disorder prediction using the IUPred server (16), which suggests that residues 57-62 are disordered. PSHCP1-56 could be easily concentrated above 1 mM making it ideal for structure determination. Secondary structure probabilities as calculated using TALOS-N (17) from 1H, 13C, 15N chemical shifts, show that the first three residues of PSHCP1-56 are disordered and that the remainder of the protein contains five β-strands (Fig. S1A). To further investigate the dynamics of PSHCP1-56, we performed a $[^1]$H-$[^15]$N heteronuclear Nuclear Overhauser Effect (NOE) experiment. In the $[^1]$H-$[^15]$N heteronuclear NOE experiment a peak intensity ratio closer to one indicates little motion of the N-H bond on the picosecond to nanosecond timescale while a smaller peak intensity ratio corresponds to more motion on this time scale and thus residues which are disordered. The $[^1]$H-$[^15]$N heteronuclear NOE data recorded on PSHCP1-56 is in good agreement with the secondary structure probabilities confirming that the structured core of the protein corresponds to residues 4-56 (Fig. S1B).

For the structure calculation of PSHCP1-56, 1195 NOE derived distance constraints and 44 dihedral angle constraints were used (Table 1). Excluding the first three amino acids, this resulted in 22.1 distance constraints per amino acid. The 20 lowest energy structures align with an average pairwise backbone RMSD of 0.72 ± 0.15 Å for residues 4-29 and 35-56 (Fig. 1A). Residues 30-34 form a flexible loop between β-strands two and three, and thus were excluded from the RMSD calculation. The overall fold of PSHCP contains five β-strands, which form a single antiparallel β-sheet with an overall barrel-like architecture (Fig. 1B and 1C). To determine if PSHCP is part of a conserved domain family, we used the Dali server
(18) to search the Protein Data Bank (PDB) for proteins with structural similarity to PSHCP. PSHCP aligns well to a number of Tudor domains including the Tudor domain from SMN (Fig. S2) (19). The highest structural similarity is to the Tudor domain from the human TDRD3 protein: the 53 amino acids of PSHCP (residues 4-56) align to it with a backbone RMSD of 1.5 Å (Fig. 2A-C). Tudor domains are small, approximately 60 amino acid long, domains containing four or five β-strands in a barrel-like fold. Most known Tudor domains are found in eukaryotes (98.97% of the InterPro records for Tudor domain), where they are often present in 2-3 adjacent copies within large, multidomain proteins (20). In contrast, full length PSHCP consists entirely of a single Tudor domain (residues 4-56).

PSHCP is unlikely to be involved in recognition of methylated proteins

The best-characterized functions of Tudor domains are to bind methylated lysine and arginine residues (20,21). This frequently results in the targeting of Tudor domain containing proteins to histones to regulate DNA damage responses and chromatin remodeling. The interaction of Tudor domains with methylated residues occurs through a conserved aromatic cage (Fig. 2D) (20,22). This aromatic cage is composed of four aromatic residues, which are individually located in β-strands one through four of the Tudor domain. However, PSHCP contains only one aromatic residue in any of the positions corresponding to the aromatic cage residues and is therefore unlikely to bind methylated amino acids (Fig. 2E).

PSHCP has a weak affinity for DNA

Tudor domains have also been shown to regulate DNA function by directly binding DNA (23,24). In PSHCP, ten of 62 amino acids are positively charged (Fig. 3A). The majority of these residues cluster in one of two locations on the surface of PSHCP, generating two distinct positively charged patches that may support DNA binding (Fig. 3B). To determine if PSHCP is able to bind to DNA, we incubated 15N-labeled PSHCP1-56 with different concentrations of a double-stranded GC-rich DNA sequence (dsGCDNA) that has been previously shown to bind the double interdigitated Tudor domain of retinoblastoma-binding protein 1 (RBBP1) (23). When titrating dsGCDNA into PSHCP seven peaks shifted in the PSHCP1-56 1H-15N HSQC spectrum, demonstrating that PSHCP1-56 can bind to DNA (Fig. 4A). As only seven peaks shifted upon DNA binding, this suggests that PSHCP1-56 does not undergo large structural changes upon DNA binding. The peaks for L14, E15, S16, G20 and V22 all shifted upon DNA binding. These five residues all sit in the loop between β-strand 1 and 2 suggesting that this region is important for DNA binding.

To determine the dissociation constant (K_d) for PSHCP1-56-DNA binding, we monitored chemical shift perturbations (CSPs) at the four residues which undergo the largest CSPs in PSHCP (E15, G20, V22, T46) over a concentration range of 50 µM to 500 µM dsGCDNA (Fig. 4B and Table 2). The calculated K_d values ranged from 121.3 to 173.3 µM with an average K_d of 140.6 µM. This data demonstrates that PSHCP has a weak affinity for double-stranded DNA, which is similar to the previously measured affinities of Tudor domains for DNA. In comparison, the double interdigitated Tudor domain of the histone binding protein RBBP1 has a K_d of 84 µM for the same DNA sequence (23).

PSHCP binds tRNA with a low micromolar affinity

While most Tudor domains that have been studied are involved in the regulation of DNA, some Tudor domains are located in RNA-binding proteins and are involved in the regulation of RNA metabolism (21,25,26). Specifically, the knotted Tudor domain from *Saccharomyces cerevisiae* Esa1 has been shown to bind oligo-RNAs (27), and more recently the Tudor domain of *Escherichia coli* ProQ was shown to interact with the small non-coding RNA SraB (28). All of this supports a broader role for Tudor domains in the regulation of nucleic acids, including through direct binding of RNA.

Intriguingly, the PSHCP gene in completely sequenced genomes of marine *Synechococcus* and *Prochlorococcus marinus* spp. is flanked on the 5’ end by a gene encoding a tryptophan tRNA and on the 3’ end by genes encoding an aspartic acid tRNA and the glutamyl-tRNA synthetase (Fig. S3 and refs. (9,10)). Additionally, in *P. marinus* str. MED4
and MIT9313 and in *Synechococcus* sp. WH8102, the PSHCP gene is sometimes co-transcribed with the Trp-tRNA gene (10). Since genes in bacteria are often clustered and co-transcribed based on their joint functionality in a process or a pathway, we hypothesized that PSHCP may interact with tRNA. To test this, we titrated a mixture of tRNA isolated from *E. coli* into 15N labeled PSHCP$_{1-56}$ and monitored CSPs in a series of 1H-15N HSQC spectra (Fig. 5A). At a 1.6:1 mixture of tRNA and PSHCP$_{1-56}$ almost every peak in the 1H-15N HSQC had broadened to the point where it was no longer visible (Fig. S4). Only five peaks did not completely broaden during the tRNA titration and these peaks corresponded to residues at the termini of PSHCP (residues 1-4 and 56). Due to the substantial broadening of the peaks in the 1H-15N HSQC we were only able to monitor CSPs for residues 2-4 which still had visible peaks after completion of the titration. Calculated K_d values for PSHCP$_{1-56}$-tRNA binding ranged from 2.9 to 10.4 µM with an average K_d of 7.6 µM (Fig. 5B and Table 3). As such, PSHCP displays an 18.5-fold higher affinity for tRNA than dsDNA, suggesting a potential role for PSHCP in protein translation.

To determine if the C-terminal tail of PSHCP (residues 57-62) plays a role in tRNA binding we repeated the HSQC titration experiment with 15N labelled PSHCP$_{1-62}$. The addition of tRNA also led to significant line broadening of the PSHCP$_{1-62}$ 1H-15N HSQC spectra (Fig. 5C). While peak broadening was similar between PSHCP$_{1-56}$ and PSHCP$_{1-62}$, clear peak shifts at the N-terminus were no longer observed. As such, we were unable to determine a K_d from these spectra.

Multiple PSHCP molecules bind to a single tRNA

To determine a K_d for both PSHCP$_{1-56}$ and PSHCP$_{1-62}$ we utilized isothermal titration calorimetry (ITC) (Fig. 6). K_d values for PSHCP$_{1-56}$ and PSHCP$_{1-62}$ binding to tRNA were 1.32 µM and 1.39 µM, respectively, suggesting that residues 57-62 do not play an important role in tRNA binding (Table 4). In addition, the stoichiometry (N) measured for these binding experiments were 0.22 and 0.17 for 1-56 and 1-62, respectively. This suggests that multiple PSHCP molecules are able to bind to a single tRNA. An N around 0.2 suggests that five PSHCP molecules may bind to a single tRNA molecule. This would result in a complex of approximately 61 kDa for PSHCP$_{1-62}$ binding to a single tRNA. This is consistent with the line broadening that was observed in the 1H-15N HSQC spectra during the titration with tRNA as line broadening can occur as a result of increasing molecular weight.

To determine if the line broadening that we observed in the 1H-15N HSQC spectra was due to the increased molecular weight from the formation of the PSHCP-tRNA complex we purified 2H 15N PSHCP$_{1-62}$. We titrated tRNA into the 2H 15N PSHCP$_{1-62}$ and recorded a series of 1H-15N TROSY spectra. If the line broadening in Figure 5 was due to the increased molecular weight from the formation of the PSHCP-tRNA complex, then the 1H-15N TROSY spectra should have less line broadening and allow for visualization of the peaks upon complex formation. Upon titrating tRNA into 2H 15N PSHCP$_{1-62}$ we observed less line broadening in the 1H-15N TROSY spectra and clear peak shifts are now visible (Fig. 7A). This result is therefore in good agreement with a model where multiple PSHCP molecules bind to a single tRNA.

Residues involved in tRNA binding

To determine which regions of PSHCP bind to tRNA, CSPs were monitored in the 1H-15N TROSY spectra for PSHCP$_{1-62}$ in the presence of 100 µM tRNA (Fig. 7B). The five largest CSPs observed were for residues E15, S16, G20, R23 and N50 (Fig. 7C). Residues E15, S16 and G20, all of which sit in the loop between β-strands 1 and 2, also shifted upon DNA binding suggesting that PSHCP utilizes similar interaction surfaces for both DNA and tRNA binding. Since our NMR experiments were performed at 50 mM NaCl we wanted to determine if PSHCP binds tRNA at higher salt concentrations which may more closely mimic physiological salt concentrations. Intracellular NaCl concentrations have not been measured for marine *Prochlorococcus* and *Synechococcus* which live in environments with high NaCl concentrations (450-700 mM NaCl). However, measurements on a variety of other cyanobacteria species revealed that these species have intracellular Na$^{+}$ concentrations ranging from 10-
80 mM when extracellular Na\(^+\) concentrations are 300-500 mM (29). In addition, higher K\(^+\) concentrations or other compatible solutes like sucrose are frequently utilized to prevent hypertonic stress (30). As such, we monitored tRNA binding to PSHCP in a buffer containing a mixture of 25 mM NaCl and 75 mM KCl using ITC (Fig. 8A and 8B). The \(K_d\) of PSHCP for tRNA was slightly reduced in this buffer to 3.93 \(\mu M\) and 3.80 \(\mu M\) for PSHCP\(_{1-56}\) and PSHCP\(_{1-62}\), respectively (Table 4).

PSHCP contains two positively charged patches on its surface (Fig. 3). Our CSP data suggest that the surface surrounding R23, including \(\beta\)-strand 2 and the loop in between \(\beta\)-strand 1 and 2, is the main interaction site for tRNA. To further test this we chose to mutate E15, S16 and R23 to alanine as these residues had the largest CSPs during the tRNA titration (Fig. 7). We also chose to mutate K30 to alanine as this residue is located in the other positively charged patch located on the opposite side of PSHCP from R23. We generated three double mutants in PSHCP\(_{1-62}\), E15R23AA, E15K30AA and S16K30AA and performed ITC experiments in buffer containing 25 mM NaCl and 75 mM KCl (Fig. 8C-E). The exothermic peaks that were previously observed for PSHCP binding to tRNA were not visible in the titrations with any of the mutant proteins suggesting that none of these proteins bind tRNA. Small endothermic peaks are visible, but these peaks are also observed when tRNA is titrated into buffer alone demonstrating that these peaks are the result of tRNA dilution and not a binding interaction (Fig. 8F). Taken together, our CSP and mutagenesis data show that E15, S16 and R23 are all important for tRNA binding.

PSHCP has a broad specificity for RNA

To determine if PSHCP binding is specific for tRNA, we initially performed competition binding experiments using ITC. In these experiments, PSHCP\(_{1-62}\) was incubated with an equimolar concentration of dsGCDNA in buffer containing 25 mM NaCl and 75 mM KCl for 30 minutes. ITC was then performed with tRNA being titrated into the mixture of PSHCP\(_{1-62}\) and dsGCDNA. In these experiments a \(K_d\) of 3.20 \(\mu M\) and an N of 0.162 was observed which is consistent with the interaction of PSHCP\(_{1-62}\) for tRNA (Fig. 9A). This demonstrates that dsGCDNA does not compete with tRNA for PSHCP binding.

To determine which structural features of the tRNA are recognized by PSHCP we generated three different RNA fragments. These fragments were single-stranded RNA (ssRNA), double-stranded RNA (dsRNA) and an RNA hairpin (hpRNA). These sequences were derived from different regions of the aspartic acid tRNA sequence which is adjacent to the PSHCP gene. PSHCP was able to bind to all three of these RNAs with \(K_d\) values ranging from 4.21 to 6.74 \(\mu M\) suggesting that PSHCP has a broad specificity for RNA (Fig. 9B-D and Table 4). In addition, the N for dsRNA and hpRNA was similar to the N for tRNA, suggesting that multiple PSHCP molecules can bind to a single dsRNA or hpRNA. In contrast, the N for PSHCP\(_{1-62}\) binding to ssRNA was 0.634 suggesting that less PSHCP molecules bind to a single ssRNA. Since PSHCP binds to dsRNA, hpRNA and ssRNA with similar affinities this suggests that PSHCP is likely recognizing the phosphodiester backbone of RNA and not any specific sequence or structure. To further test this, we performed ITC with a mixture of ATP, GTP, UTP and CTP (Fig. 9E). We found that PSHCP was unable to bind to these individual nucleotides. Taken together, our data demonstrate that PSHCP has a broad specificity for RNA.

DISCUSSION

We used NMR spectroscopy to determine the structure of the highly conserved 62 amino acid cyanobacterial protein PSHCP. PSHCP residues 4-56 contain a Tudor domain, with five \(\beta\)-strands arranged in a barrel-like architecture. The remainder of the protein is disordered. Two positively charged patches on the surface of PSHCP hinted that it may bind directly to nucleic acids. We found that PSHCP binds to a variety of RNAs with low micromolar affinities. This suggests that PSHCP may likely be involved in RNA regulation. We also found that residues 57-62 did not enhance the binding affinity of PSHCP for tRNA and it remains to be seen what role this disordered tail may have in PSHCP function.
The majority of the Tudor domains that have been studied are eukaryotic Tudor domains that regulate histone function by interacting with methylated lysine residues (20). However, there are several examples of Tudor domains that bind directly to nucleic acids instead of methylated proteins. These nucleic acid binding Tudor domains are broadly distributed from bacteria to eukaryotes, suggesting that the ancestral function of Tudor domains may be nucleic acid binding rather than protein binding. Structures of such nucleic acid binding Tudor domains have been determined for the DNA damage response protein 53BP1 from Homo sapiens (31), the histone binding protein RBBP1 from H. sapiens (23), the methyltransferase Esa1 from S. cerevisiae (27), and the RNA binding protein ProQ from E. coli (28). The Tudor domain of PSHCP shares structural similarity with the core region of these four nucleic acid binding Tudor domains (Fig. S5), but there is a surprising divergence in the mechanism of nucleic acid binding between these different Tudor domains, as detailed below.

Both 53BP1 and RBBP1 contain two adjacent Tudor domains (23,31). 53BP1 contains two sequential Tudor domains that are separated in primary sequence and do not share any secondary structure (Fig. S5A). In contrast, RBBP1 forms an interdigitated Tudor domain where some of the secondary structure of the two Tudor domains alternate in the primary sequence (Fig. S5B). In addition, the two Tudor domains of RBBP1 share 2 β-strands generating a larger rigid scaffold for DNA binding. DNA binding to either 53BP1 or RBBP1 relies on residues in both Tudor domains (31). RBBP1 contains a positively charged pocket in between the two Tudor domains that allows for DNA binding (23). This is a distinct mode of nucleic acid binding formed by the overall interdigitated structure of the two Tudor domains. PSHCP aligns well to the individual Tudor domains from these structures but does not contain an extended surface like that of 53BP1 or RBBP1 for nucleic acid binding.

Esa1 contains a knotted Tudor domain due to the presence of two additional β-strands (β0 and β6) which lie just before and just after the classical Tudor domain (Fig. S5C) (27). PSHCP aligns well to the short version of the Esa1 Tudor domain, which lacks these additional β-strands. The short version of Esa1 is incapable of binding to RNA while the knotted Tudor domains binds to poly(U) RNA with a 21.6 μM Kd in buffer containing 10 mM NaCl (27). This binding interaction has the highest affinity of any of the interactions tested. It is surprising then that PSHCP is able to bind RNA with a low micromolar affinity even though it is most similar in structure to the short version of Esa1 which is incapable of binding RNA.

The E. coli ProQ protein contains two domains, an N-terminal FinO like domain and a C-terminal Tudor domain (28). Both of the domains interact with small RNAs to facilitate binding with low nanomolar affinities (32). The primary RNA interaction region on ProQ appears to be through the FinO domain (28). However, two regions on the ProQ Tudor domain were also shown to interact with RNA. One of these regions spans β-strands 2 and 3. This region has some overlap with the primary RNA binding surface on PSHCP which also includes β-strand 2. While these Tudor domains have some common RNA binding surfaces, the location of the positively charged amino acids in these regions are in different β-strands. In PSHCP, R23 is located on β-strand 2 while in ProQ R214 is located on β-strand 3. The binding affinity of the ProQ Tudor domain for RNA has not been experimentally determined and therefore it is unclear if the ProQ Tudor domain has a similar affinity for RNA as PSHCP.

All of the discussed ‘nucleic acid binding’ Tudor domains exist as part of multidomain proteins that range in size from 232 to 1257 amino acids. The interaction of these proteins with nucleic acids often requires more than one domain for efficient binding. Since PSHCP is only 62 amino acids, it is rather remarkable that it has such a strong binding affinity for a variety of RNA molecules in such a small number of amino acids. It will be interesting to determine exactly what role the PSHCP-RNA interaction plays in a subgroup of Synechococcales and why it contains such a broad specificity for RNA. Does this broad specificity allow PSHCP to bind to a large number of different RNA targets in cells or is there a specific target that has not been identified? In pull-down assays, PSHCP was observed to be associated with the ribosomal protein L2 (10). Taken together with its RNA binding ability
reported here, it is tempting to speculate that PSHCP is part of the ribosome complex or perhaps is involved in protein translation. Such functions could explain the extraordinary amino acid conservation of the protein, as ribosomal and translational machinery proteins are among the most conserved. Further studies are needed to evaluate these hypotheses.

EXPERIMENTAL PROCEDURES
Protein Expression and Purification
PSHCP₁₋₅₆ and PSHCP₁₋₆₂ were cloned into the ligation independent cloning vector (1B) which was a gift from Scott Gradia (Addgene, 29653). Plasmids containing PSHCP were transformed into BL21 (DE3) star cells (Invitrogen, C601003). PSHCP mutants were generated using Q5 Site-Directed Mutagenesis Kit (NEB, E0554S). Cells were grown in Terrific Broth (Fisher, BP9728-2) to an optical density at 600 nm of approximately 3.0. For unlabeled protein expression was induced with 1 mM isopropylthio-β-D-galactoside (IPTG; Amresco, 97061) and cultures were grown for 18 hours at 18°C. For uniformly labelled 15N or 13N and 13C protein cells were pelleted (3,000 x g, 20 min) and resuspended in M9 minimal media comprising 3 g/L 15N ammonium chloride (Cambridge Isotope Laboratories, NLM-467-25) with 10 g/L glucose or 10 g/L 13C glucose (Cambridge Isotope Laboratories, CLM-1396-25). Expression was induced using 1 mM isopropylthio-β-D-galactoside (IPTG; Amresco, 97061) and cultures were grown for 18 hours at 18°C. Cells were harvested and stored at -80°C. Cell pellets were thawed and resuspended in 50 mM Tris, pH 8.0, 500 mM NaCl, 5 mM MgCl₂, 0.1% (v:v) Triton X-100 buffer containing protease inhibitors (Roche, 11836170001). Cells were lysed using a French Press (Thermo Electron, FA-032) and lysates were cleared by centrifugation for 50 min at 40,000 x g at 4°C. Cleared lysates were incubated with TALON resin (Clontech, 635504) which was prerequilibrated with 50 mM Tris, pH 8.0, 500 mM NaCl. Protein was eluted in buffer containing 200 mM imidazole. TEV protease was used to cleave off the hexahistidine tag. Cleaved protein was flowed over a desalting column to remove imidazole and a second purification using TALON resin was used to remove the TEV protease and any uncleaved protein. A final purification step was carried out using a HiLoad Superdex 75 PG column (GE Healthcare, 28-9893-33) equilibrated in 20 mM sodium phosphate pH 6.5 and 50mM NaCl or 25mM NaCl, 75mM KCl for nucleotide binding experiments or 20 mM sodium phosphate pH 6.5, 200 mM NaCl, and 0.2 mM tris(2-carboxyethyl)phosphine (Amresco, K831-26) for structural studies.

Deuterated Protein Expression and Purification
PSHCP₁₋₆₂(1B) was transformed into BL21 RILP cells (Agilent, 230280). For the production of deuterated, uniformly 15N-labelled protein, we followed the protocol outlined in Tugarinov et al. (33). Briefly, cells were grown in the presence of 15N ammonium chloride (Cambridge Isotope Laboratories, NLM-467-25), deuterated glucose (Cambridge Isotope Laboratories, DLM-2062-10), and deuterium oxide (Cambridge Isotope Laboratories, DLM-4-1000). Protein expression was induced with 100 µM IPTG and cultures were grown for 18 hours at 18°C. Protein was purified as in Protein Expression and Purification in 20mM sodium phosphate pH 6.5 and 50mM NaCl.

RNA Synthesis
RNA was produced by in vitro transcription (IVT) using the HiScribe T7 High Yield RNA Synthesis Kit (New England BioLabs, E2040S). DNA templates for the IVT reaction were produced by annealing complementary DNA oligos (IDT) for the T7 polymerase promoter sequence (TAATACGACTCACTATAGGG) and the appropriate RNA template. Oligos were resuspended in Annealing Buffer (10mM Tris pH 8.0, 50mM NaCl) and mixed in equimolar amounts, heated at 94°C for 2 minutes, then cooled to room temperature to achieve annealing of the two oligos. IVT reactions products were purified using the Monarch RNA Cleanup Kit (New England BioLabs, T2050S). RNA products were analyzed by A260/A280 for purity using a NanoDrop instrument.

RNAs produced were ssRNA (GGGUUGAACCUGGUA), dsRNA (GGGUAACCAGUUCAA annealed to ssRNA), and hpRNA (GGGCGCCUGUCACGCG).
NMR Spectroscopy and Structure Determination

All NMR experiments for assignment and structure determination were performed at 298 K on a 700 MHz Bruker Avance III spectrometer. The sequence-specific backbone assignment was determined using 2D [1H-13N] HSQC, 3D HNCA, 3D HN(CO)CA, 3D HNCO, 3D HN(CA)CO, 3D CBCA(CO)NH, 3D HNCACB and 3D HBHA(CBCACO)NH experiments. Aliphatic side chain assignments were determined using 3D (H)CCH-TOCSY, 3D HC(C)H-COSY, 3D HC(C)H-TOCSY, 3D H(CCCO)NH and 3D (H)CC(CO)NH experiments. Amide side chain assignments were determined using a 3D 15N-resolved NOESY. 1H chemical shifts were externally referenced to 0 ppm methyl resonance of 2,2-dimethyl-2-silapentane-5-sulfonate (DSS), whereas 13C and 15N chemical shifts were indirectly referenced according to the IUPAC recommendations (34). All NMR spectra were processed using Topspin 3.5 (Bruker). Processed spectra were analyzed using CARA (http://cara.nmr.ch/). Backbone and side chain assignments were deposited in the BMRB under accession 30559.

For structure calculation a 2D 1H-1H NOESY, 3D 15N-resolved NOESY and 3D 13C-resolved NOESY were recorded and processed using Topspin 3.5 (Bruker). UNIO was used for iterative automated NOE peak picking and NOE assignment by ATNOS/CANDID (35,36) and structure calculation with CYANA v2.1 (37,38). The 20 lowest energy structures were used for water refinement in CNS v1.3 with the RECOORD scripts (39). The quality of the final ensemble was verified using NMR-Procheck and the RMSD of these structures was determined using MolMol (40,41). The final structure was deposited in the PDB under ID 6NNB. All structure figures were generated using the PyMOL Molecular Graphics System, Version 1.8 (Schrödinger, LLC). APBS was used to generate the electrostatic surface representation of PSHCP (42).

To determine the intensity ratio of peaks from the {1H}-15N heteronuclear NOE experiment, peak intensity values were determined using CARA (http://cara.nmr.ch/). Experimental uncertainties for the {1H}-15N heteronuclear NOE experiment were determined by measuring the root-mean-square (RMS) noise of background regions in the unsaturated and saturated spectra using NMRRPipe (43) as described previously (44).

NMR Titration Experiments
dsGCDN (5′-CGC CGG CGC GCG CGG-3′) was synthesized by IDT. DNA was resuspended in 20mM sodium phosphate pH 6.5, 50 mM NaCl, heated at 100°C for 5 min and cooled at room temperature to allow for the DNA to anneal. tRNA from E. coli (Sigma R1753) was resuspended in 20 mM sodium phosphate pH 6.5, 50mM NaCl. The concentration of the E. coli tRNA was determined by running a range of concentrations of the tRNA on an agarose gel and comparing them to a standard concentration. 15N labeled PSHCP was mixed with nucleic acid samples to a final protein concentration of 50 µM. The DNA and tRNA concentrations were varied based on the overall titration. 1H-15N HSQC spectra were recorded on a Bruker Avance 600 MHz spectrometer using a 1.7 mm probe. For the TROSY titrations, 1H, 15N labeled PSHCP1,62 was mixed with tRNA and 1H-15N TROSY spectra were collected on a 700 MHz Bruker Avance III spectrometer. For these titrations, PSHCP1,62 was at a final concentration of 30 µM and tRNA was at a final concentration of 0.5, 25, 50 or 100 µM. CSP values were determined using \(\delta \Delta = \sqrt{(\delta^1H)^2 + 0.14(\delta^{15}N)^2} \). CSP data were fit using MATLAB (MathWorks) to \(f(x) = \frac{\text{CSP}_{\text{max}}^* \cdot (K_d \cdot x + P_{tot}) - \text{sqrt}(K_d \cdot x \cdot P_{tot})^2 - 4 \cdot (x \cdot P_{tot}))}{2 \cdot (P_{tot})} \) where \(P_{tot} \) is the total concentration of protein (50 µM).

Isothermal titration calorimetry

ITC was performed using a VP-ITC (Microcal). All proteins and tRNA were prepared in 20mM sodium phosphate pH 6.5, 50 mM NaCl or 20mM sodium phosphate pH 6.5, 25 mM NaCl, 75 mM KCl. Approximately 200 µM E. coli tRNA (Sigma R1753) was titrated into 20 µM PSHCP (either PSHCP1,62 or PSHCP1,56) at 24°C. tRNA concentration was determined by running a tRNA titration on a 1% agarose gel. tRNA samples were then compared to samples of known concentration. ssRNA, dsRNA, and hpRNA were produced in-house (see RNA Synthesis) in the
same buffer. These RNAs, at 200 µM, were titrated into PSHCP₁₋₆₂ at 20 µM except for the ssRNA which was at 400 µM.

For ITC competition assays, 20µM dsGCDNA was mixed with 20µM PSHCP₁₋₆₂ for 30 minutes. Subsequently, 200µM tRNA was titrated into the mixture of PSHCP₁₋₆₂ and dsGCDNA.

Data were analyzed using Origin (Microcal) to produce both ITC thermograms and binding isotherms.

Survey of PSHCP Taxonomic Distribution and Amino Acid Conservation

The amino acid sequence of the PSHCP gene from *Prochlorococcus marinus* str. MIT 9312 (RefSeq ID WP_002807701.1) was used as a query in a BLASTP search of the *nr* database via NCBI web site (accessed on September 12, 2018; BLAST v. 2.8.0+ (45); E-value cutoff 10⁻⁴).

Taxonomic distribution was examined via Taxonomy Report provided with the BLAST search results. Matches with sequences not identical to the query were retrieved and aligned in ClustalX v. 2.1 (46). Additionally, the same query sequence was used in a BLASTP search of the 703 genomes of *Prochlorococcus* and marine *Synechococcus* available via IMG/ProPortal (47). This database includes both isolates and single cell genomes, the latter ones with an average completion of 60% (47). The BLASTP 2.6.0+ search was carried out via IMG/MER web site at https://img.jgi.doe.gov/ on September 11, 2018, with E-value cutoff of 10⁻⁵. The obtained 463 PSHCP homologs were retrieved and aligned in ClustalX v. 2.1 (46). Two poor quality sequences (defined as those containing at least one X) and one partial sequence at the beginning of a short contig in an incomplete genome were removed from the alignments. Both alignments are available as Supplemental Datasets 1 and 2.
Acknowledgments
This work was supported by Dartmouth start-up funds and the National Institutes of Health awards GM113132 and GM128663 to M.J.R, and by the Simons Foundation Investigator in Mathematical Modeling of Living Systems award 327936 to O.Z. We would like to thank Amanda Cockshutt and Kaitlyn Connelly for helpful discussions.

Conflict of Interest
The authors declare they have no conflicts of interests with the contents of this article.

Author Contributions
K.M.B. and R.D. purified protein, analyzed NMR data, and collected ITC data. K.M.B. synthesized RNA. M.P. collected all of the NMR spectra. O.Z. carried out the survey of PSHCP taxonomic distribution. O.Z. and M.J.R. conceptualized the project. K.M.B., M.P., O.Z. and M.J.R. wrote and edited the manuscript.
References

1. Chisholm, S. W., Frankel, S. L., Goericke, R., Olson, R. J., Palenik, B., Waterbury, J. B., Westjohnsrud, L., and Zettler, E. R. (1992) Prochlorococcus-Marinus Nov Gen-Nov Sp - an Oxyphototrophic Marine Prokaryote Containing Divinyl Chlorophyll-a and Chlorophyll-B. Arch Microbiol 157, 297-300

2. Waterbury, J. B., Watson, S. W., Valois, F. W., and Franks, D. G. (1986) Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. in Photosynthetic Picoplankton (Platt, T., and Li, W. K. W. eds.), pp 71–120

3. Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincon, J., Zabala, L. L., Jiao, N., Karl, D. M., Li, W. K., Lomas, M. W., Veneziano, D., Vera, C. S., Vrugt, J. A., and Martiny, A. C. (2013) Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci U S A 110, 9824-9829

4. Scanlan, D. J., Ostrowski, M., Mazard, S., Dufresne, A., Garczarek, L., Hess, W. R., Post, A. F., Hagemann, M., Paulsen, I., and Partensky, F. (2009) Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73, 249-299

5. Chisholm, S. W. (2017) Prochlorococcus. Curr Biol 27, R447-R448

6. Biller, S. J., Berube, P. M., Lindell, D., and Chisholm, S. W. (2015) Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol 13, 13-27

7. Konstantinidis, K. T., and Tiedje, J. M. (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187, 6258-6264

8. Zhaxybayeva, O., Doolittle, W. F., Papke, R. T., and Gogarten, J. P. (2009) Intertwined evolutionary histories of marine Synechococcus and Prochlorococcus marinus. Genome Biol Evol 1, 325-339

9. Zhaxybayeva, O., Gogarten, J. P., and Doolittle, W. F. (2007) A hyperconserved protein in Prochlorococcus and marine Synechococcus. FEMS Microbiol Lett 274, 30-34

10. Whidden, C. E., DeZeeuw, K. G., Zorz, J. K., Joy, A. P., Barnett, D. A., Johnson, M. S., Zhaxybayeva, O., and Cockshutt, A. M. (2014) Quantitative and functional characterization of the hyper-conserved protein of Prochlorococcus and marine Synechococcus. PLoS One 9, e109327

11. Kutovaya, O. A., McKay, R. M., and Bullerjahn, G. S. (2010) Expression of hcp in freshwater Synechococcus spp., a gene encoding a hyperconserved protein in picocyanobacteria. J Basic Microbiol 50, 227-231

12. Usher, K. M., Toze, S., Fromont, J., Kuo, J., and Sutton, D. C. (2004) A new species of cyanobacterial symbiont from the marine sponge Chondrilla nucula. Symbiosis 36, 183-192

13. Nowack, E. C., Melkonian, M., and Glockner, G. (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18, 410-418

14. Dufresne, A., Garczarek, L., and Partensky, F. (2005) Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol 6, R14

15. Komarek, J., Kastovsky, J., Mares, J., and Johansen, J. R. (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86, 295-335

16. Meszaros, B., Erdos, G., and Dosztanyi, Z. (2018) IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res 46, W329-W337

17. Shen, Y., and Bax, A. (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56, 227-241

18. Holm, L., and Rosenstrom, P. (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38, W545-549

19. Selenko, P., Sprangers, R., Stier, G., Buhler, D., Fischer, U., and Sattler, M. (2001) SMN tudor domain structure and its interaction with the Sm proteins. Nat Struct Biol 8, 27-31
20. Lu, R., and Wang, G. G. (2013) Tudor: a versatile family of histone methylation 'readers'. *Trends Biochem Sci* **38**, 546-555
21. Chen, C., Nott, T. J., Jin, J., and Pawson, T. (2011) Deciphering arginine methylation: Tudor tells the tale. *Nat Rev Mol Biol* **12**, 629-642
22. Musselman, C. A., Avvakumov, N., Watanabe, R., Abraham, C. G., Lalonde, M. E., Hong, Z., Allen, C., Roy, S., Nunez, J. K., Nickoloff, J., Kulesza, C. A., Yasui, A., Cote, J., and Kutateladze, T. G. (2012) Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. *Nat Struct Mol Biol* **19**, 1266-1272
23. Gong, W. B., Wang, J. F., Perrett, S., and Feng, Y. G. (2014) Retinoblastoma-binding Protein 1 Has an Interdigitated Double Tudor Domain with DNA Binding Activity*. *J Biol Chem* **289**, 4882-4895
24. Lancelot, N., Charier, G., Couprie, J., Duband-Goulet, I., Alpha-Bazin, B., Quemeneur, E., Ma, E., Marsolier-Kergoat, M. C., Ropars, V., Charbonnier, J. B., Miron, S., Craescu, C. T., Callebaut, I., Gilquin, B., and Zinn-Justin, S. (2007) The checkpoint Saccharomyces cerevisiae Rad9 protein contains a tandem tudor domain that recognizes DNA. *Nucleic Acids Res* **35**, 5898-5912
25. Ponting, C. P. (1997) Tudor domains in proteins that interact with RNA. *Trends in Biochemical Sciences* **22**, 51-52
26. Pek, J. W., Anand, A., and Kai, T. (2012) Tudor domain proteins in development. *Development* **139**, 2255-2266
27. Shimojo, H., Sano, N., Moriwaki, Y., Okuda, M., Horikoshi, M., and Nishimura, Y. (2008) Novel structural and functional mode of a knot essential for RNA binding activity of the Esa1 presumed chromodomain. *J Mol Biol* **378**, 987-1001
28. Gonzalez, G. M., Hardwick, S. W., Maslen, S. L., Skehel, J. M., Holmqvist, E., Vogel, J., Bateman, A., Luisi, B. F., and Broadhurst, R. W. (2017) Structure of the Escherichia coli ProQ RNA-binding protein. *RNA* **23**, 696-711
29. Hagemann, M. (2011) Molecular biology of cyanobacterial salt acclimation. *FEMS Microbiol Rev* **35**, 87-123
30. Klahn, S., Steglich, C., Hess, W. R., and Hagemann, M. (2010) Glucosylglycerate: a secondary compatible solute common to marine cyanobacteria from nitrogen-poor environments. *Environ Microbiol* **12**, 83-94
31. Charier, G., Couprie, J., Alpha-Bazin, B., Meyer, V., Quemeneur, E., Guerois, R., Callebaut, I., Gilquin, B., and Zinn-Justin, S. (2004) The Tudor tandem of 53BP1: a new structural motif involved in DNA and RG-rich peptide binding. *Structure* **12**, 1551-1562
32. Smirnov, A., Wang, C., Drewry, L. L., and Vogel, J. (2017) Molecular mechanism of mRNA repression in trans by a ProQ-dependent small RNA. *EMBO J* **36**, 1029-1045
33. Tugarinov, V., Kanelis, V., and Kay, L. E. (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. *Nat Protoc* **1**, 749-754
34. Markley, J. L., Bax, A., Arata, Y., Hilbers, C. W., Kaptein, R., Sykes, B. D., Wright, P. E., and Wuthrich, K. (1998) Recommendations for the presentation of NMR structures of proteins and nucleic acids. IUPAC-IUBMB-IUPAB Inter-Union Task Group on the Standardization of Data Bases of Protein and Nucleic Acid Structures Determined by NMR Spectroscopy. *J Biomol NMR* **12**, 1-23
35. Herrmann, T., Guntert, P., and Wuthrich, K. (2002) Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. *J Biomol NMR* **24**, 171-189
36. Herrmann, T., Guntert, P., and Wuthrich, K. (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. *Journal of molecular biology* **319**, 209-227
37. Guntert, P. (2004) Automated NMR structure calculation with CYANA. *Methods in molecular biology* **278**, 353-378
38. Guntert, P., Mumenthaler, C., and Wuthrich, K. (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. *Journal of molecular biology* **273**, 283-298
39. Nederveen, A. J., Doreleijers, J. F., Vranken, W., Miller, Z., Sprok, C. A., Nabuurs, S. B., Guntert, P., Livny, M., Markley, J. L., Nilges, M., Ulrich, E. L., Kaptein, R., and Bonvin, A. M. (2005) RECOORD: a recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank. *Proteins* **59**, 662-672
40. Laskowski, R. A., Rullmann, J. A., MacArthur, M. W., Kaptein, R., and Thornton, J. M. (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. *J Biomol NMR* **8**, 477-486
41. Koradi, R., Billeter, M., and Wuthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. *J Mol Graph* **14**, 51-55, 29-32
42. Jurrus, E., Engel, D., Star, K., Monson, K., Brandi, J., Felberg, L. E., Brookes, D. H., Wilson, L., Chen, J., Liles, K., Chun, M., Li, P., Gohara, D. W., Dolinsky, T., Konecny, R., Koes, D. R., Nielsen, J. E., Head-Gordon, T., Geng, W., Krasny, R., Wei, G. W., Holst, M. J., McCammon, J. A., and Baker, N. A. (2018) Improvements to the APBS biomolecular solvation software suite. *Protein Sci* **27**, 112-128
43. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. *J Biomol NMR* **6**, 277-293
44. Farrow, N. A., Muhandiram, R., Singer, A. U., Pascal, S. M., Kay, C. M., Gish, G., Shoelson, S. E., Pawson, T., Forman-Kay, J. D., and Kay, L. E. (1994) Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. *Biochemistry* **33**, 5984-6003
45. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res* **25**, 3389-3402
46. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007) Clustal W and Clustal X version 2.0. *Bioinformatics* **23**, 2947-2948
47. Berube, P. M., Biller, S. J., Hackl, T., Hogle, S. L., Satinsky, B. M., Becker, J. W., Braakman, R., Collins, S. B., Kelly, L., Berta-Thompson, J., Coe, A., Bergauer, K., Bouman, H. A., Browning, T. J., De Corte, D., Hassler, C., Hulata, Y., Jacquot, J. E., Maas, E. W., Reinthaler, T., Sintes, E., Yokokawa, T., Lindell, D., Stepanauskas, R., and Chisholm, S. W. (2018) Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. *Sci Data* **5**, 180154
48. Stivala, A., Wybrow, M., Wirth, A., Whisstock, J. C., and Stuckey, P. J. (2011) Automatic generation of protein structure cartoons with Pro-origami. *Bioinformatics* **27**, 3315-3316
Figure 1. The structure of PSHCP. A) Ribbon diagram of PSHCP$_{1-56}$ showing the overlay of the 20 lowest energy structures. B) Topology diagram of PSHCP generated using the pro-origami webserver (48). C) Cartoon representation of PSHCP shown in two different orientations. Each β-strand in the structure is labeled and numbered. The N and C termini are also labeled.
Figure 2. PSHCP contains a Tudor domain. A) Cartoon representation of PSHCP. B) Cartoon representation of the Tudor domain from human Tudor domain-containing protein 3 (PDBID: 3PMT). C) Overlay of the structures from panels A and B. D) A close-up view of the aromatic cage from the Tudor domain of PHF1 (PDBID: 4HCZ) bound to trimethylated lysine. E) A close-up view showing the residues in PSHCP that are located in the position of the aromatic cage residues in typical Tudor domains. In panels D and E all residues that make up the aromatic cage are shown as stick representations and labeled.
Figure 3. Electrostatics of PSHCP. A) The amino acid sequence of the PSHCP from *P. marinus* strain CCMP1375. All positively charge residues are highlighted in yellow. B) Electrostatic surface representation of PSHCP shown in two orientations. The electrostatic surface was generated using APBS (42), with blue and red representing positively charged and negatively charged surfaces, respectively.
Figure 4. PSHCP weakly binds to dsGCDNA. A) 1H-15N HSQC spectra of 50 µM PSHCP$_{1-56}$ in the presence of increasing concentrations of dsGCDNA. The 1H-15N HSQC spectrum of PSHCP in the absence of dsGCDNA is shown in blue. The inset shows the chemical shift perturbation for E15 with the arrow pointing in the direction of the shift with increasing DNA concentration. B) CSP data for E15 (cyan), G20 (orange), V22 (black) and T46 (green) as a function of DNA concentration. All data points are shown as circles. The fits to the data are shown as lines of the same color as the datapoints.
Figure 5. PSHCP binding to E. coli tRNA. A) 1H-15N HSQC spectra of 50 µM PSHCP$_{1-56}$ with increasing concentrations of E. coli tRNA. The inset shows the chemical shift perturbation for L3 with the arrow showing the direction of the shift with increasing tRNA concentration. B) CSP data for E2 (cyan), L3 (orange), and D4 (grey) as a function of tRNA concentration. C) 1H-15N HSQC spectra of 50 µM PSHCP$_{1-62}$ with increasing concentrations of E. coli tRNA.
Figure 6. Residues 57-62 do not alter tRNA binding. A) ITC thermogram (top) and binding isotherm (bottom) for tRNA titrated into PSHCP1-56 in buffer containing 50 mM NaCl. B) ITC thermogram (top) and binding isotherm (bottom) for tRNA titrated into PSHCP1-62 in buffer containing 50 mM NaCl.
Figure 7. Mapping the tRNA binding interface on PSHCP. A) ^{1}H-^{15}N TROSY spectra of 30 µM ^{2}H-^{15}N PSHCP$_{1-62}$ with increasing concentrations (0.5 to 100 µM) of *E. coli* tRNA. The inset shows the chemical shift perturbation for E15 with the arrow pointing in the direction of the shift with increasing tRNA concentration. B) CSP data for PSHCP$_{1-62}$ in the presence of 100 µM tRNA. Peak assignments that could not be transferred from the PSHCP$_{1-56}$ assignment were given no CSP value. C) Cartoon representation of PSHCP showing the five residues with the highest CSPs as stick representations. Each of the five amino acids is labeled along with the N and C termini.
Figure 8. Binding site mutations on PSHCP. ITC was performed titrating tRNA into different PSHCP samples in buffer containing 25 mM NaCl and 75 mM KCl. ITC thermogram (top) and binding isotherm (bottom) for A) tRNA titrated into PSHCP₁₋₅₆, B) tRNA titrated into PSHCP₁₋₆₂, C) tRNA titrated into PSHCP₁₋₆₂ E15R23AA, D) tRNA titrated into PSHCP₁₋₆₂ E15K30AA, E) tRNA titrated into PSHCP₁₋₆₂ S16K30AA, F) tRNA titrated into buffer alone.
Figure 9. RNA binding preferences of PSHCP. ITC experiments with different RNAs being titrated into PSHCP₁₋₆₂ in buffer containing 25 mM NaCl and 75 mM KCl. ITC thermogram (top) and binding isotherm (bottom) for A) tRNA titrated into a 1:1 mixture of PSHCP₁₋₆₂ and dsGCDNA, B) ssRNA titrated into PSHCP₁₋₆₂, C) dsRNA titrated into different PSHCP₁₋₆₂, D) hpRNA titrated into PSHCP₁₋₆₂, E) a mixture of ATP, GTP, UTP and CTP titrated into PSHCP₁₋₆₂.
Table 1. Structural statistics of PSHCP$_{1-56}$

NMR distance and dihedral constraints

Distance constraints
Total NOE 1195
Intraresidue 282
Interresidue 913
Sequential (|i-j| = 1) 311
Medium range (1<|i-j|<=4) 148
Long range (|i-j|>= 5) 454

Dihedral angle constraints
φ 22
ψ 22

Structure statistics
Violations (mean ± SD)
Distance constraints (Å) 0.036 ± 0.004
Dihedral angle constraints (°) 0.028 ± 0.069

Deviations from idealized geometry (mean ± SD)
Bond lengths (Å) 0.015 ± 0.001
Bond angles (°) 1.724 ± 0.054
Improper (°) 1.731 ± 0.158

Ramachandran statistics
Most favored 82.2%
Additional allowed 16.3%
Generously allowed 1.1%
Disallowed 0.4%

Average pairwise root mean square deviation (Å)
Heavy (4-29, 35-56) 1.32 ± 0.190
Backbone (4-29, 35-56) 0.72 ± 0.150

Table 2. DNA Binding Data

Residue	Calculated K$_d$ (µM)	R2
E15	121.3	0.99837
G20	138.4	0.99680
V22	173.3	0.97596
T46	129.2	0.99165

Table 3. tRNA Binding Data

Residue	Calculated K$_d$ (µM)	R2
E2	10.4	0.99510
L3	2.9	0.97705
D4	9.4	0.98226
Table 4. ITC Data

Sample	K_d (µM)	N	ΔH ($x 10^4$ cal/mol)	ΔS (cal/mol/deg)
50 mM NaCl				
PSHCP1-56 + tRNA	1.32 ± 0.012	0.219 ± 0.142	-5.11 ± 1.13	-145 ± 38.2
PSHCP1-62 + tRNA	1.39 ± 1.08	0.172 ± 0.020	-3.60 ± 2.21	-94 ± 72.9
25 mM NaCl 75 mM KCl				
PSHCP1-56 + tRNA	3.93 ± 1.21	0.212 ± 0.077	-2.61 ± 0.699	-62.7 ± 24.5
PSHCP1-62 + tRNA	3.80 ± 0.673	0.164 ± 0.023	-3.64 ± 0.544	-97.8 ± 18.7
PSHCP1-62 + tRNA Competition	3.20 ± 0.072	0.162 ± 0.050	-2.87 ± 0.305	-71.25 ± 10.2
PSHCP1-62 + ssRNA	6.74 ± 0.289	0.634 ± 0.182	-2.01 ± 0.322	-43.8 ± 10.7
PSHCP1-62 + dsRNA	4.21 ± 0.656	0.331 ± 0.141	-5.32 ± 3.45	-154 ± 116
PSHCP1-62 + hpRNA	5.93 ± 0.397	0.192 ± 0.046	-4.74 ± 0.479	-135 ± 16.3