Abstract

Typhonium is a genus belonging to the Araceae family, native to southern Asia and Australia. In folk medicine, *Typhonium* is used for its analgesic, anti-inflammatory, anti-diarrheal, and wound-healing properties. We report a toxidrome of airway compromise due to *Typhonium trilobatum* tuber ingestion. We present an interesting case series of four patients who consumed raw tuber of *T. trilobatum* with suicidal thoughts. They exhibited a constellation of symptoms such as swelling of lips and tongue, drooling of saliva, and severe throat pain. One patient had significant upper airway edema and severe respiratory distress requiring emergency endotracheal intubation. Laboratory investigations were grossly normal in all four individuals, except for mild asymptomatic hypokalemia in one and eosinophilia in another patient. We successfully managed all our patients with repeated adrenaline nebulization, antihistamines, and steroids. *Typhonium* is believed to be a beneficial herb. Toxicity of *Typhonium* is not reported much in the literature till date. An emergency department (ED) physician should be aware of this tuber toxicity as it presents with airway compromise, which resolves over hours. The symptoms are due to the local effects of calcium oxalate crystals in the tuber. Airway management is the priority and repeated adrenaline nebulization together with supportive care is advised.

Keywords: Angioedema, Karunai-k-kilanku, *Typhonium trilobatum*, Wild tuber.

Introduction

Intentional self-harm poses a large burden in all emergency departments (EDs), with drug intoxication being common in developed countries, whereas pesticides and toxic plant ingestion in developing countries. ¹ *Typhonium trilobatum* (Bengal Arum) is a small herb seen in Assam, Bangladesh, China, India, Nepal, Sri Lanka, Thailand, and Vietnam. ² Some people use this herb as a native medicine for its anti-inflammatory, analgesic, and anti-diarrheal properties. ³ To the best of our knowledge, poisoning due to ingestion of *T. trilobatum* is not reported in the literature till date. We present the first case series of *T. trilobatum* tuber poisoning manifesting with a toxidrome of painful pricking sensation of oral cavity, swelling of lips and tongue, increased salivation, drooling of saliva, upper airway angioedema, and airway compromise.

Case Descriptions

We describe four patients who consumed raw toxic tuber (Senai kizhangu in Tamil) with suicidal intention.

Case 1

A 39-year-old man was brought to our ED, 3 hours after ingesting a raw tuber plant with suicidal intent. He had swollen lips and tongue, drooling of saliva, and also minimal breathing discomfort (Fig. 1A). He developed these symptoms within 30 minutes of ingestion. His vital signs were heart rate 120/minute, blood pressure 130/80 mm Hg, SpO₂ 98% at room air, and respiratory rate 28/minute. In view of angioedema secondary to unknown tuber poisoning, he was placed in a propped-up position with oxygen by simple face mask, and also given chlorpheniramine maleate 10 mg and hydrocortisone 100 mg intravenously. Meanwhile, endotracheal intubation was planned with rescue option being surgical airway (cricothyroidotomy), if needed. With adrenaline 5 mL (1:1,000) nebulization, he remained stable and hence intubation was deferred. With repeated adrenaline nebulization over the
next 2 hours, angioedema reduced significantly and further he did not develop any new symptoms. He received maintenance doses of chlorpheniramine maleate and hydrocortisone during hospitalization. His routine laboratory investigations were normal except for asymptomatic mild hypokalemia (2.9 mEq/L) and was discharged after 4 days.

Case 2

A 26-year-old man presented to our ED after 6 hours of consuming a wild tuber for purpose of self-harm. Initial assessment revealed a threatened airway and besides the patient was in severe respiratory distress. He was immediately shifted to the resuscitation zone and prepped for emergency endotracheal intubation. His vital signs were pulse rate 122/minute, blood pressure 122/80 mm Hg, and SpO₂ 60% at room air. His sensorium was poor (GCS E2 V2 M5) and history was negative for intoxication. Both of his lips were swollen, tongue was edematous and protruding outside the oral cavity, with continuous drooling of saliva. He began developing these symptoms within 15 minutes of ingestion. In view of anticipated difficult airway, only sedative agent was provided without any paralyzer. After injecting fentanyl 100 μg and propofol 50 mg intravenously, the airway was secured using 8.0 size endotracheal tube. He was administered chlorpheniramine maleate 10 mg iv, hydrocortisone 100 mg iv, and adrenaline 0.5 mg intramuscularly followed by repetitive doses of adrenaline nebulization. Chest examination was normal. His sensorium improved by 6 hours and was extubated in a period of 12 hours. He was continued on maintenance doses of chlorpheniramine maleate and hydrocortisone. His laboratory investigations showed neutrophilic leukocytosis (WBC: 14930 cells/cumm). He got discharged after 3 days of observation and psychiatric counseling.

Case 3

A 17-year-old male was brought to us 5 hours after intentional ingestion of a raw tuber. On arrival his airway was maintainable, and even he had similar symptoms such as swollen lips and tongue along with drooling of saliva. He complained of pin-pricking sensation over the tongue and buccal cavity as well as difficulty in swallowing owing to severe pain. All these symptoms started within 15 minutes of ingestion. He was vitally stable and routine laboratory investigations were normal. He responded well to chlorpheniramine maleate 10 mg, intravenous hydrocortisone 100 mg, and repeated adrenaline nebulization. He was discharged after 3 days of observation and psychiatric counseling.

**Retrospectively, we explored our medical records to find that eight patients had presented over a period of 2 years with history of similar wild tuber poisoning. All such individuals were adolescents and young adults hailing from same locality (Tamil Nadu) in the southern part of India. The common manifestations were upper airway compromise with angioedema, severe pain in throat, and drooling of saliva.

Due to curiosity, I (corresponding author) visited the patients’ localities to enquire about the unknown tuber. I was taken to the agricultural fields where the tuber was growing as weed alongside banana plantations (Fig. 2). The farmers said that it was difficult to restrict its growth because of the underground corm. Then I collected specimens of few herbs with tuber (Fig. 3) and met various toxicologists and phytologists. One of the phytologists performed cross-section of the tuber and identified it as *Typhonium trilobatum* belonging to the *Araceae* family. Later, we dried the tuber and sent it for phytochemical analysis. Phytochemical screening showed presence of cardiac glycosides, coumarins, saponins, and terpenoids. HPLC-UV detector for calcium oxalate content revealed 12.6 ± 0.51 mg/100 g of tuber.

Discussion

The genus *Typhonium* belongs to the *Araceae* family, which is native to southern Asia and Australia. *Typhonium trilobatum* (Bengal Arum, Lobed Leaf Typhonium) is an aroid growing in wooden areas across

Fig. 2: *Typhonium trilobatum* plant with tubers

Fig. 3: Corresponding author collected the wild tuber plants which caused the toxicity in humans
Typhonium trilobatum

Typhonium trilobatum Tuber Poisoning in Humans

India. Its local names vary; in Tamil—senai kizhangu, pitikarunai, karukaranvikilanku, and karunai-k-kilanku.

Typhonium trilobatum in Literature

The Araceae (Arum) family comprises of monocotyledonous flowering plants (aroids), which are born as inflorescence termed spadix. This family includes as many as 114 genera and 3,750 species. In folk medicine, T. trilobatum has been popular because of its analgesic, anti-inflammatory, antidiarrheal, wound-healing, and anti-ulcerogenic properties. Also it has been believed to prevent malignancies of breast, liver, and leukemia owing to its antioxidant effects.

Toxicity of Araceae Family Tubers (Flowchart 1)

Poisonous plants of Araceae family have not been studied extensively. The toxicity of Dieffenbachia species belonging to the Arum family is well explained in the literature. The key chemical constituents include saponins, cyanogenic glucosides, phenolic compounds including flavonoids, and calcium oxalate raphides being responsible for skin irritation as well as painful sensation on mucous membranes (eyes, mouth, throat). Also it has been believed to prevent against malignancies of breast, liver, and leukemia owing to its antioxidant effects.

Management of Toxicity

Gastrointestinal decontamination using activated charcoal or other methods is usually not of any significant benefit. Airway and breathing should be monitored; and in case of upper airway compromise, securing the airway is crucial. Endoscopy may be necessary in patients with oral ulcerations or dysphagia.

Antihistamines have not been of proven benefit for mucosal edema. All our patients received repeated adrenaline nebulization and they responded dramatically within hours. Emesis may require fluid resuscitation and antiemetics. Ensuring adequate hydration also hastens the renal excretion of calcium oxalate.

In case of systemic symptoms, monitoring of blood counts, serum electrolytes including calcium, and renal function is recommended. Asymptomatic hypocalcemia does not warrant treatment but in the presence of symptoms, intravenous calcium gluconate is advisable. Deteriorating renal function may demand hemodialysis in addition to supportive care.

Our case series clearly shows that T. trilobatum tuber is toxic in humans. Although this tuber toxicity is not yet reported in the literature, its harmful consequences are popular and well known to the local community. Our patients would have chosen this tuber for self-harm as it is available at ease nearby their residence.

Conclusion

An ED physician should be aware of this Typhonium tuber toxicity as it presents with airway compromise, which resolves over hours. The symptoms are due to the local effects of calcium oxalate crystals in the tuber. Airway management is the priority and repeated adrenaline nebulization together with supportive care is advised.

References

1. Eddleston M. Patterns and problems of deliberate self-poisoning in the developing world. Q J Med 2000;93(11):715–731. DOI: 10.1093/qjm/93.11.715.
2. Ghani A. Medicinal plants of Bangladesh: chemical constituents and uses. 2nd ed., Dhaka, Bangladesh: J Asiat Soc Bangladesh; 2003. pp. 31, 39-40, 418, 500-5, 580-9.
3. Ali K, Ashraf A, Biswas NN. Analgesic, anti-inflammatory and anti-diarrheal activities of ethanolic leaf extract of *Typhonium trilobatum* L. Schott. Asian Pac J Trop Biomed 2012;2(9):722–729. DOI: 10.1016/S2221-1691(12)60217-2.
4. Roy SK, Mishra PK, Nandy S, Datta R, Chakraborty B. Potential wound healing activity of the different extract of *Typhonium trilobatum* in albino rats. Asian Pac J Trop Biomed 2012(3):S1477–S1486. DOI: 10.1016/S2221-1691(12)60441-9.
5. Mohan S, Abdul AB, Wahab SIA, Al-Zubairi AS. Antibacterial and antioxidant activities of *Typhonium flagelliforme* (Lodd) Blume tuber. Am J Biochem Biotechnol 2008;4(4):402–407. DOI: 10.3844/ajbbsp.2008.402.407.
6. Alfarabi M, Rosmalawati S, Bintang M, Miftahudin, Rofa’ani E, Chaidir. Antiproliferation activity of tuber protein from *Typhonium flagelliforme* (Lord.) blumei on MCF-7 cell line. Int J Biosci 2015;6(12):52–60. DOI: 10.12692/iijb/6.12.52-60.
7. Farida YP, Wahyudi S, Wahono S, Hanafi M. Flavonoid glycoside from the ethyl acetate extract of keladitikus *Typhonium flagelliforme* (Lodd) Blume leaves. Asian J Nat Appl Sci 2012;4:16–21.
8. Hegnauer R. Araceae. Review of cyanogenesis and cyanogenic compounds. 1986; pp 581-591.
9. Franceschi VR, Nakata PA. Calcium oxalate in plants: Formation and function. Annu Rev Plant Biol 2005;56(1):41–71. DOI: 10.1146/annurev.arplant.56.032604.144106.
10. Slaughter RJ, Beasley DM, Lambie BS, Wilkins GT, Schep LJ. Poisonous plants in New Zealand: a review of those that are most commonly enquired about to the national poisons centre. NZ Med J 2012;125(1367):87–118.
11. Mrvos R, Dean BS, Krenzelok EP. Philodendron/Dieffenbachia ingestions – are they a problem. J Toxicol Clin Toxicol 1991;29(4):485–491. DOI: 10.3109/15563659109025745.
12. Gardner DG. Injury to the oral mucous-membranes caused by the common houseplant, dieffenbachia – a review. Oral Surg Oral Med Oral Pathol 1994;78(5):631–633. DOI: 10.1016/0030-4220(94)90177-5.
13. Chen CL, Fang HC, Chou KJ, Wang JS, Chung HM. Acute oxalate nephropathy after ingestion of star fruit. Am J Kidney Dis 2001;37(2):418–422. DOI: 10.1053/ajkd.2001.21333.
14. Šnajdauf J, Mixa V, Rygl M, Vyhnanek M, Morávek J, Kabelka Z. Aortoesophageal fistula – an unusual complication of esophagitis caused by dieffenbachia ingestion. J Pediatr Surg 2005;40(6):e29–e31. DOI: 10.1016/j.jpedsurg.2005.03.036.