Identification of G6PC as a potential prognostic biomarker in hepatocellular carcinoma based on bioinformatics analysis

Li Tian, MMab,c, Yong Liao, PhDabc,*

Abstract

Hepatocellular carcinoma (HCC) has high mortality and incidence rates around the world with limited therapeutic options. There is an urgent need for identification of novel therapeutic targets and biomarkers for early diagnosis and predicting patient survival with HCC.

Several studies (GSE102083, GSE29722, GSE101685, and GSE112790) from the GEO database in HCC were screened and analyzed by GEO2R, gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were conducted with the Database for Annotation, Visualization and Integrated Discovery. The protein-protein interaction network was plotted and the module analysis was performed using Search Tool for the Retrieval of Inter-acting Genes/Proteins database and Cytoscape. The expression and survival of key genes were identified using UALCAN, Kaplan–Meier Plotter and ONCOMINE online databases, and the immune infiltration level of key genes was analyzed via the Tumor Immune Estimation Resource (TIMER) database.

Through database analysis, eight key genes were finally screened out, and the expressions of cyclin-dependent kinase regulatory subunit 2 and glucose-6-phosphatase catalytic (G6PC), which were closely related to the survival of HCC patients, was detected by using UALCAN. Further analysis on the differential expression of G6PC in multiple cancerous tumors and normal tissues revealed low expression in many solid tumors by Oncomine and TIMER. In addition, Kaplan–Meier plotter and UALCAN database analysis to access diseases prognosis suggested that low expression of G6PC was significantly associated with poor overall survival in HCC patients. Finally, TIMER database analysis showed a significant negative correlation between G6PC and infiltration levels of six kinds of immune cells. The somatic copy number alterations of G6PC were associated with B cells, CD8+ T cells, CD4+ T cells, macrophages, dentritic cells and neutrophils.

These bioinformatic data identified G6PC as a potential key gene in the diagnosis and prognosis of HCC.

Abbreviations: BP = biological process, CKS2 = cyclin-dependent kinase regulatory subunit 2, COAD = colon adenocarcinoma, DAVID = Database for Annotation, Visualization, and Integrated Discovery, DEGs = differentially expressed genes, G6PC = glucose-6-phosphatase catalytic, GEO = gene expression omnibus, GEPIA = gene expression profiling interactive analysis, GO = gene ontology, HCC = hepatocellular carcinoma, KEGG = Kyoto encyclopedia of genes and genomes, KICH = kidney chromophobe, KIRC = kidney renal clear cell carcinoma, KIRP = kidney renal papillary cell carcinoma, LIHC = liver hepatocellular carcinoma, MCODE = molecular complex detection, OS = overall survival, PPI = protein-protein interaction, SCNAS = somatic copy number alterations, STAD = stomach adenocarcinoma, STRING = Search Tool for the Retrieval of Interacting Genes, TCGA = The Cancer Genome Atlas, TIMER = Tumor Immune Estimation Resource.

Keywords: bioinformatics, differentially expressed genes, glucose-6-phosphatase catalytic, hepatocellular carcinoma, prognosis

1. Introduction

The latest 2020 global cancer statistics report released by the International Agency for Research on Cancer of the World Health Organization showed that liver cancer is a major global health problem that both developing and developed countries are facing.11 Hepatocellular carcinoma (HCC) is the most common liver cancer, accounting for approximately 90% of cases.12 Local regional metastasis and recurrence are the primary causes of death in patients with HCC.11 At present, although there are a variety of treatments for HCC, such as hepatectomy, liver transplantation and molecular targeting...
2. Materials and Methods

2.1. Screening microarray datasets

GEO database (https://www.ncbi.nlm.nih.gov/geo/) stores data from second generation chips and we can retrieve some experimental sequencing data uploaded by others. We downloaded four microarray datasets (GSE102083, GSE29722, GSE101685, and GSE112790) from GEO database, including expression profiling and survival analysis. First, we selected “Multiple proteins” in the left column and entered gene names in the right column, and then picked the organism as “Homo sapiens”, choose the minimum required interaction score as “medium confidence (0.400)” and hid disconnected nodes in the network, clicked the “Export” option, downloaded the file in TSV format and imported it into Cytoscape software (version 3.7.2; https://cytoscape.org/) which is a very powerful tool for visualizing network data. Then, a plug-in in Cytoscape MCODE[28] was used to cluster the protein network to build functional modules. The default parameters are: degree cutoff = 2, node density cutoff = 0.1, node score cutoff = 0.2, k-core = 2 and max.depth = 100.

2.2. Identification of DEGs

GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/) can help us to analyze DEGs, which is an useful online software. Setting adjusted P < .05 and LogFC (Fold Change) > 1.5 or < -1.5 to define DEGs. LogFC< -1.5 was considered upregulated genes and LogFC>1.5 down-regulated genes. An online tool − Calculate and draw custom Venn diagrams (http://bioinformatics.psb.ugent.be/webtools/Venn/) was used to calculate the overlap of DEGs.

2.3. Functional enrichment analysis of DEGs

The DAVID (https://david.ncifcrf.gov/) database was employed to carry out Gene Ontology functional and Kyoto Encyclopedia of Genes and Genomes pathway analysis of DEGs, GO terms contain biological process (BP), cellular component and molecular function. KEGG[25] pathway analysis is helpful for further understanding the function of DEGs. The screening criteria were P<.01 with gene counts >10.

2.4. PPI Network Construction and module analysis

STRING/Proteins database (https://string-db.org/) is a tumor database which can compare gene expression on survival rate, we used the following databases. UALCAN (http://ualcan.path.uab.edu/) is an online website that can be used to mine and analyze cancer data, and the main source of the database is The Cancer Genome Atlas (TCGA), including expression profiling and survival analysis. First, we entered gene symbols, selected TCGA dataset, and then clicked “Expression” or “Survival” to obtain the expression level of hub genes and its effect on patient survival. P value was less than .01.

Two genes that met the above screening criteria − CKS2 and G6PC. Kaplan−Meier Plotter (http://kmplot.com/analysis/) was used to evaluate the overall survival rate of key genes. Moreover, we also performed CKS2 and G6PC correlation analysis via Gene Expression Profiling Interactive Analysis (GEPIA; http://gepia.cancer-pku.cn/). The threshold was logrank P value .01 in Kaplan−Meier Plotter and P value <.01 in GEPIA. Literature review showed that CKS2 has been proved to predict the prognosis of HCC, so next G6PC was selected to conduct further analysis. ONCOMINE (https://www.oncomine.org/) is a tumor database which can compare
gene expression between normal and cancerous tissues in different cancers. The threshold was P value <.01, fold change <1.5, and gene rank came from all. A stratified analysis of G6PC was also conducted according to patients’ gender, race and pathological stage by Kaplan–Meier Plotter (log rank P<.05).

3. Results

3.1. Screening and identification of DEGs in HCC

Details of gene expression profile datasets such as dataset ID, country, the number of tumor and normal samples, and platform information, were demonstrated in Table 1. Totally, 669 DEGs (271 upregulated genes and 398 down-regulated genes), 586 DEGs (246 upregulated genes and 340 down-regulated genes), 830 DEGs (289 upregulated genes and 541 down-regulated genes), 586 DEGs (246 upregulated genes and 340 down-regulated genes), 830 DEGs (289 upregulated genes and 541 down-regulated genes) were selected with adjusted P < .05 and |logFC| > 1.5. (B) Overlapping upregulated DEGs. (C) Overlapping downregulated DEGs. Abbreviation: DEGs = differently expressed genes.

3.2. GO and KEGG pathway analysis of DEGs

GO and KEGG pathway analysis was performed by DAVID. The results of KEGG showed that upregulated genes were mainly enriched in cell cycle, while down-regulated genes were significantly involved in metabolic pathways and retinol metabolism (Fig. 2A).

For upregulated genes, the BP included cell division and mitotic nuclear division. For down-regulated genes, the BP contained oxidation-reduction process and proteolysis (Fig. 2B). In terms of cellular components, upregulated genes were most accumulated in condensed chromosome kinetochore and chromosome, centromeric region, while down-regulated genes in organelle membrane and extracellular region (Fig. 2C). In addition, molecular function analysis indicated that upregulated genes predominantly participated in Adenosine Triphosphate (ATP) binding and protein binding, while down-regulated genes in oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen and heme binding (Fig. 2D).

3.3. Modular analysis and hub gene identification

The PPI networks of 337 common DEGs were constructed using the STRING website and then imported into Cytoscape to identify critical gene modules. It demonstrates that a total of 309 items were filtered into the PPI network, and 37 of the 309 DEGs were disconnected from the network. Ultimately, a total of 272 nodes and 3110 edges were filtered by Cytoscape software. Then we analyzed the entire PPI network using MCODE plugin and obtained 8 modules (Fig. 3). Genes with the highest MCODE score of each module were selected as the hub genes. The node color from light to dark indicates the MCODE scores are from low to high. Table 2 presented the network information related to hub genes, including degree, betweenness centrality and closeness centrality.

Validation of G6PC and CKS2 expression and survival analysis in a variety of cancers.

The UALCAN platform was applied to validate the expression level and its effect on survival rate. We verified 8 key genes by putting them on the UALCAN website and found that the expression level of CKS2 in tumor tissues was higher than that in normal tissues (P=1.62E-12). The levels of CKS2 expression were inversely correlated with survival in HCC patients, that is, the higher the expression of CKS2, the lower the survival rate was (P<.0001, Fig. 4A, B). Whereas, G6PC had lower expression in tumor specimens compared to normal or para-tumor specimens (P=1.46E-02), and the lower level of G6PC expression the lower probability of a long-term survival in patients with HCC (P=.0015, Fig. 4C, D). We also performed GEPIA to assess the correlation between CKS2 and G6PC, and found that

Table 1

Datasets ID	Country	Platform	Tumor samples	Normal samples
GSE102083	Japan	GPL570	152	14
GSE2972	Canada	GPL570	10	10
GSE101685	Taiwan	GPL570	24	8
GSE112790	Japan	GPL570	183	15

GPL = gene expression omnibus platform, GSE = gene expression omnibus series.

Figure 1. Identification of common DEGs in mRNA expression profiling datasets through Venn diagram analysis. (A) An overlap of 337 DEGs from these four datasets were selected with adjusted P<.05 and |logFC|>1.5. (B) Overlapping upregulated DEGs. (C) Overlapping downregulated DEGs. Abbreviation: DEGs=differently expressed genes.
Figure 2. Functional enrichment analysis of the overlap DEGs. (A) The KEGG pathway enrichment analysis of DEGs. (B) Enrichment of biological processes. (C) Enrichment of cellular components. (D) Enrichment of molecular functions. The screening criteria was $P<.01$ with gene counts >10. Color variable represents $-\log_{10}(P$ value), point size variable represents gene count, shape variable represents different groups, triangle represents upregulated genes, circle represents downregulated genes. Abbreviations: DEGs = differently expressed genes, Down = downregulated genes, KEGG = Kyoto encyclopedia of genes and genomes, Up = upregulated genes.

Figure 3. PPI network and MCODE modular analysis of DEGs. The PPI network of DEGs was constructed using Cytoscape software and divided into 8 modules via MCODE plugin. The node color from light to dark represents the MCODE score from low to high. (A–H) stands for module 1–module 8. Abbreviations: DEGs = differently expressed genes, MCODE = molecular complex detection, PPI = protein-protein interaction.
there was a correlation between CKS2 expression and G6PC expression \((P = .00068, R = -0.15, \text{Fig. 4E}) \). In addition, CKS2 has already been reported as a prognostic indicator in HCC, and G6PC has been validated as a prognostic biomarker in KIRC.\(^{[35,36]} \) Hence, we chose G6PC instead of CKS2 for further verification in HCC and other tumor types. We used ONCOMINE and TIMER to study the expression of G6PC across various TCGA tumors. We found that COAD (Colon adenocarcinoma), STAD (Stomach adenocarcinoma), liver hepatocellular carcinoma, and KIPAN had lower G6PC expression in both \(\text{TIMER (Fig. 5A)} \) and ONCOMINE databases (Fig. 5B, \(\text{**P < .01, ***P < .001} \)). KIPAN includes KICH (Kidney chromophobe), KIRC (Kidney renal clear cell carcinoma), and KIRP (Kidney renal papillary cell carcinoma). We then used UALCAN to evaluate the impact of G6PC expression on patients survival in these types of cancers and the result demonstrated that G6PC had lower expression in KIRC in comparison with normal specimens \((P = 3.97E-08) \), and the lower expression level was related to poor survival rate \((P < .0001, \text{Fig. 5C, D}) \). Meanwhile, Kaplan–Meier Plotter analysis demonstrates that the lower levels of G6PC expression, the poorer prognosis in patients with either liver hepatocellular carcinoma (log rank \(P = 7.3E-06 \)) or KIRC (log rank \(P = 9.3E-11 \), Fig. 5E, F).

3.4. G6PC expression predicts OS (overall survival) in patients with HCC

We did a prognosis analysis based on the expression levels of G6PC versus gender, race, and pathological stages of patients with HCC. The results showed that there were significant differences in the expression of G6PC between male \((\text{log rank } P = 2.2e-07, \text{Fig. 6A}) \) and female \((\text{log rank } P = .35, \text{Fig. 6B}) \) patients. No significant differences in G6PC expression were found between Asian \((\text{log rank } P = 6.6e-05, \text{Fig. 6C}) \) and White \((\text{log rank } P = .015, \text{Fig. 6D}) \) HCC patients. There were no significant differences in G6PC expression between stage 2 to 3 \((\text{log rank } P = .0038, \text{Fig. 6E}) \) and stage 3 to 4 \((\text{log rank } P = .01, \text{Fig. 6F}) \) HCC patients as well.

Table 2

Hub gene related network information.

Genes	MOCDE Score	Degree	Betweenness centrality	Closeness centrality
CKS2	50.78616352	59	0.00048200	0.88311688
C8B	7	8	0.0042735	0.65
CYP3A4	6	6	0.03333333	1
LPA	7	7	0.23260073	0.66666667
G6PC	6	6	0.22649573	0.61904762
SOCS2	3	3	0	1
G6F	3	3	0.25	0.8
ACADL	3	3	0.25	0.8

ACADL = Acyl-CoA dehydrogenase long chain, C8B = complement C8 beta chain, CFP = complement factor properdin, CKS2 = cyclin-dependent kinase regulatory subunit 2, CYP3A4 = cytochrome P450 family 3 subfamily A member 4, G6PC = glucose-6-phosphatase catalytic, LPA = lipoprotein(A), MCODE = molecular complex detection, SOCS2 = suppressor of cytokine signaling 2.

\(\text{Acyl-CoA dehydrogenase long chain, C8B = complement C8 beta chain, CFP = complement factor properdin, CKS2 = cyclin-depen -}

\(\text{dent kinase regulatory subunit 2, CYP3A4 = cytochrome P450 family 3 subfamily A member 4, G6PC = glucose-6-phosphatase catalytic.} \)

Figure 4. Alterations of hub gene expression and the impact on patients survival. CKS2 was highly expressed in HCC than that in normal tissues and its high expression had relation with unfavorable prognosis (A, B). While G6PC was lowly expressed in HCC compared with normal samples and its low expression had an adverse effect on patients survival (C, D). There was a connection between CKS2 expression and G6PC expression (E). Abbreviations: CKS2 = cyclin-dependent kinase regulatory subunit 2, HCC = hepatocellular carcinoma, G6PC = glucose-6-phosphatase catalytic.
3.5. G6PC expression correlates with immune infiltration in HCC

As shown in Figure 7A, G6PC expression level was positively correlated with tumor purity (partial.cor = 0.11, \(P = 4.1 \times 10^{-2} \)), while negatively correlated with infiltration of B cells (partial.cor = −0.171, \(P = 1.48 \times 10^{-3} \)), CD8+ T cells (partial.cor = −0.16, \(P = 2.95 \times 10^{-3} \)), CD4+ T cells (partial.cor = −0.16, \(P = 2.99 \times 10^{-3} \)), macrophages (partial.cor = −0.293, \(P = 3.48 \times 10^{-8} \)), neutrophils (partial.cor = −0.107, \(P = 4.71 \times 10^{-2} \)) and dendritic cells (partial.cor = −0.192, \(P = 3.73 \times 10^{-4} \)). SCNA module was used to examine the effect of different SCNAs of genes on immune cell infiltration, it revealed that among the various SCNAs, the copy number amplification was positively correlated with immune cell infiltration – the higher of copy number amplification, the stronger infiltration of B cells (\(* P < .05\)), CD8+ T cells (\(** P < .01\)), CD4+ T cells (\(*** P < .001\)), macrophages (\(* P < .05\)), neutrophils (\(*** P < .001\)), and dendritic cells (\(* P < .05\), Fig. 7B).

4. Discussion

HCC is one of the most common malignant tumors in the world, ranking second in mortality and numerous gene networks and multiple signal transduction pathways are dysregulated in HCC.[37,38] The rapid development of modern biotechnology and high-throughput sequencing technologies help people explore the mechanism of HCC pathogenesis at the molecular level, so as to further explore the occurrence and development process of HCC. However, the understanding of the biological mechanism of HCC is limited, and most of these studies are focused on a single dataset. Although HCC has different genomic characteristics, discovering the commonalities between heterogeneous genomic profiles is crucial for us to understand the development and progress of HCC. Therefore, the purpose of this study was to investigate the genes that were in common change in four HCC microarray datasets.[18] In this study, computational bioinformatics analysis was used to systematically analyze the microarray datasets between HCC and adjacent tissues. By computational analysis of the differences in genome-wide gene expression between HCC tissues and para-tumor normal tissues, a total of 337 DEGs were identified, among which 126 genes were upregulated and 211 genes were down-regulated. GO pathways of DEGs were mainly enriched in cell division, condensed chromosome kinetochore and oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen. MCODE modular analysis of DEGs authenticated 8 key genes and the expression levels of CKS2 and G6PC impacted the survival of HCC patients with statistical significance.

CKS2, officially called cyclin-dependent kinase regulatory subunit 2, also known as cell cycle regulator, is elevated in HCC.[39] CKS2 has been shown to be closely related to the progression of a variety of cancers. For example, studies have shown that expression of CKS2 is associated with poor survival in patients with tongue squamous cell carcinoma and have found that the CKS2 gene may have the potential as a biomarker for predicting the progression of superficial bladder cancer to muscle invasive cancer.[40,41] CKS2 has been confirmed as an unfavorable prognostic marker in HCC.[36,39,42] Previous reports demonstrate that overexpression of CKS2 may facilitate proliferation of HCC cells by reducing PTEN expression.[42] High expression of EGFL7 can regulate HCC cell proliferation and apoptosis through CKS2-mediated Wnt/β-catenin signaling.[43]

The G6PC gene family consists of three members: G6PC, G6PC2 and G6PC3. These genes have different tissue-specific expression patterns, and mutations in all three genes have been linked to different diseases in humans.[44] G6PC, also called Glucose-6-phosphatase catalytic subunit, multiple studies have...
Figure 6. G6PC expression predicts HCC patients OS independent on race and stage, but gender (log rank $P<.05$). There were significant differences in the expression of G6PC between male (A) and female (B) patients. No significant differences in G6PC expression were found between Asian (C) and White (D) HCC patients. There were no significant differences in G6PC expression between stage 2 to 3 (E) and stage 3 to 4 (F) HCC patients as well. Abbreviations: G6PC=glucose-6-phosphatase catalytic, HCC=hepatocellular carcinoma, OS=overall survival.

Figure 7. Correlations of GPC expression with infiltration of immune cells in LIHC. (A) G6PC expression had a positive relationship with tumor purity and a negative relationship with infiltration of immune cells such as B cells, CD4+ T cells, CD8+ T cells, macrophages, neutrophils and dentritic cells. (B) High amplification of G6PC had strong correlation with infiltration of immune cells. The box chart showed the distribution of each immune subgroup in each copy number state of LIHC (*$P<.05$, **$P<.01$, ***$P<.001$). Abbreviations: G6PC=glucose-6-phosphatase catalytic, LIHC=liver hepatocellular carcinoma.
shown that its high expression was significantly correlated with short-term recurrence and poor prognosis of ovarian cancer, and was expected to be one of the predictors of prognosis and recurrence of ovarian cancer.\[14\] Here, we found that G6PC was down-regulated in a variety of tumors including HCC and KIRC, and low G6PC expression correlated with an unfavorable prognosis in HCC and KIRC.\[15,16\] Chen et al have pointed out that G6PC can act as an independent prognostic factor, therefore, we then focused on exploring the association between G6PC and HCC. It has been shown that the expression of G6PC, which encodes the key gluconeogenesis enzyme glucogen-6-phosphatase, was significantly reduced in HCC, which was consistent with our research.\[17\] In our study, G6PC expression negatively correlated with the OS in HCC patients. Moreover, G6PC expression predicts HCC patients OS independent on race and stage, but gender. Besides, G6PC expression is significantly positively related to tumor purity. The reason is that Figure 5A showed that the expression level of G6PC in hepatoma cells is lower than that in normal hepatocytes. However, the purpose here is to illustrate the correlation of G6PC expression with immune infiltration level. Tumor purity is a major confounding factor in this analysis, since most immune cell types are negatively correlated with tumor purity. In the database of Human Protein Atlas, we found that G6PC is mainly expressed in hepatocytes, proximal enterocytes and renal tubular epithelial cells, while immune cells do not express G6PC protein under normal circumstances. Therefore, the higher the tumor purity, the higher the expression level of G6PC and the lower the level of immune infiltration. TIMER analysis also showed a negative correlation between G6PC expression and infiltration of immune cells within the tumor, such as infiltrating B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells. The result suggests that G6PC may be involved in regulating the infiltration of immune cells in tumor microenvironment. G6PC encodes the key enzyme glucose-6-phosphatase, which functions in catalyzing glucose-6-phosphate into glucose during gluconeogenesis, thus its reduced expression resulting in decreased gluconeogenesis and reduced level of glucose as well, which may eventually affect tumor cell proliferation and tumor progression.\[18\] Thus, G6PC may be used as a potential prognostic marker for HCC.

In summary, this study clarified the expression of G6PC in a variety of tumors, and its low expression was associated with poor prognosis of HCC, which may be used as a new potential prognostic marker and a potential molecular target for targeted therapy of HCC. However, this study had some limitations. First, clinical data from GEO did not apply to every sample. In addition, the microarray data were from different stages of liver cancer, and the expression levels of certain genes may not be exactly the same at different stages. Finally, the specific molecular mechanisms and biological functions of these potential candidate genes remained to be verified by further experimental studies, which could be extended to the interpretation of a variety of omics data including transcriptome, proteome, non-coding RNA, epigenome, metabolome and biological system level.

5. Conclusions
In this study, bioinformatics analysis of microarray data and literature review of HCC showed that there were interactions between core genes, G6PC may be a new biomarker for the diagnosis and prognosis of HCC, which will be conducive to an in-depth understanding of the molecular mechanism of the development of HCC.

Author contributions
Conceptualization: Li Tian and Yong Liao.
Formal analysis: Li Tian.
Investigation: Li Tian.

Methodology: Li Tian and Yong Liao.
Project administration: Yong Liao.
Software: Li Tian.
Supervision: Yong Liao.
Validation: Li Tian.
Visualization: Yong Liao.
Writing – original draft: Li Tian.
Writing – review & editing: Yong Liao and Li Tian.

References
[1] Kulik L, El-Serag HB. Epidemiology and management of hepatocellular carcinoma. Gastroenterology 2019;156:477–91.
[2] Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers 2021;7:6.
[3] Lee JH, Suh JH, Choi SY, et al. Toxicity-responsive enhancer-binding protein promotes hepatocellular carcinogenesis, recurrence and metastasis. Gut 2019;68:347–58.
[4] Brux J, Gores GJ, Mazzaferrro V. Hepatocellular carcinoma: clinical frontiers and perspectives. Gut 2014;63:844–55.
[5] Regi M, Mariotto Z, Perelli C, et al. Unexpected high rate of early tumor recurrence in patients with HCV-related HCC undergoing interferon-free therapy. J Hepatol 2016;65:719–26.
[6] Rossetto A, De Re V, Steffan A, et al. Carcino genesis and metastasis in liver: cell physiological basis. Cancers (Basel) 2019;11:1731.
[7] Kulik LM, Chokechanachaisakul A. Evaluation and management of hepatocellular carcinoma. Clin Liver Dis 2015;19:23–43.
[8] Kwon JH, Song GW, Hwang S, et al. Surgical outcomes of spontaneously ruptured hepatocellular carcinoma. J Gastrointest Surg 2021;25:941–53.
[9] Sahu SK, Chowla YK, Dhiman RK, et al. Rupture of hepatocellular carcinoma: a review of literature. J Clin Exp Hepatol 2019;9:245–56.
[10] Nakano S, Eso Y, Okada H, Takai A, Takahashi K, Seno H. Recent advances in immunotherapy for hepatocellular carcinoma. Cancers (Basel) 2012;4:775.
[11] Lang H, Heinrich S, Bartsch F, Huent F, Baumgart J, Mittler J. Surgical treatment of hepatic tumors-liver resection and transplantation. Internist (Berl) 2020;61:147–57.
[12] Liao Y. Obstacles and opportunities in the prevention and treatment of HBV-related hepatocellular carcinoma. Genes Dis 2020;7:291–8.
[13] Huang X, Liu S, Wu L, Jiang M, Hou Y. High throughput single cell RNA sequencing bioinformatics analysis and applications. Adv Exp Med Biol 2018;1068:33–43.
[14] Merrick BA, London RE, Bushel PR, Grissom SE, Paules RS. Platforms for biomarker analysis using high-throughput approaches in genomics, transcriptomics, proteomics, metabolomics, and bioinformatics. IARC Sci Publ 2011;121:42.
[15] Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets – update. Nucleic Acids Res 2013;41:D991–5.
[16] Zhao J, Guo C, Ma Z, Liu H, Yang C, Li S. Identification of a novel gene expression signature associated with overall survival in patients with lung adenocarcinoma: a comprehensive analysis based on TCGA and GEO databases. Lung Cancer 2020;149:90–6.
[17] Shen J, Yu S, Sun X, Yin M, Fei J, Zhou J. Identification of key biomarkers associated with development and prognosis in patients with ovarian carcinoma: evidence from bioinformatic analysis. J Ovarian Res 2019;12:110.
[18] Ye Z, Wang F, Yan F, et al. Bioinformatic identification of candidate biomarkers and related transcription factors in nasopharyngeal carcinoma. World J Surg Oncol 2019;17:60.
[19] Zhou L, Zhu W, Wang G, Cao X, Zhang X, Chen Q. Investigation of microRNA expression signatures in HCC via microRNA Gene Chip and bioinformatics analysis. Pathol Res Pract 2020;216:152982.
[20] Li L, Lei Q, Zhang S, Kong L, Qin B. Screening and identification of key biomarkers in hepatocellular carcinoma: Evidence from bioinformatic analysis. Oncol Rep 2017;38:2607–18.
[21] Clough E, Barrett T. The gene expression Omnibus database. Methods Mol Biol 2016;1418:93–110.
[22] Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009;37:1–13.
[23] Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44–57.
[24] Jiao X, Sherman BT, Huang da W, et al. DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 2012;28:1805–6.
[25] Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27–30.
[26] Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015;43:D447–52.
[27] Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498–504.
[28] Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003;4:2.
[29] Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017;19:649–58.
[30] Menyhárt O, Nagy Á, Győrffy B. Determining consistent prognostic biomarkers of overall survival and vascular invasion in hepatocellular carcinoma. R Soc Open Sci 2018;5:181006.
[31] Tang Z, Li C, Kang B, et al. a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 2017;45:W98–102.
[32] Rhodes DR, Kalyana-Sundaram S, Mahavisno V, et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia 2007;9:166–80.
[33] Li B, Severson E, Pignon JC, et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol 2016;17:174.
[34] Li T, Fan J, Wang B, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res 2017;77:e108–10.
[35] Chen L, Xiang Z, Chen X, Zhu X, Peng X. A seven-gene signature model predicts overall survival in kidney renal clear cell carcinoma. Hereditas 2020;157:38.
[36] Zhang J, Song Q, Liu J, Lu L, Xu Y, Zheng W. Cyclin-dependent kinase regulatory subunit 2 indicated poor prognosis and facilitated aggressive phenotype of hepatocellular carcinoma. Dis Markers 2019;2019:8964015.
[37] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209–49.
[38] Mu D, Qin F, Li B, Zhou Q. Identification of the sixth complement component as potential key genes in hepatocellular carcinoma via bioinformatics analysis. Biomed Res Int 2020;2020:7042124.
[39] Shen DY, Fang ZX, You P, et al. Clinical significance and expression of cyclin kinase subunits 1 and 2 in hepatocellular carcinoma. Liver Int 2010;30:119–25.
[40] Gao F, Li C, Zhao X, Xie J, Fang G, Li Y. CKS2 modulates cell-cycle progression of tongue squamous cell carcinoma cells partly via modulating the cellular distribution of DUTPase. J Oral Pathol Med 2021;50:175–82.
[41] Chen R, Feng C, Xu Y. Cyclin-dependent kinase-associated protein Cks2 is associated with bladder cancer progression. J Int Med Res 2011;39:533–40.
[42] Ji X, Xue Y, Wu Y, Feng F, Gao X. High-expressed CKS2 is associated with hepatocellular carcinoma cell proliferation through down-regulating PTEN. Pathol Res Pract 2018;214:436–41.
[43] Li Z, Xue TQ, Yang C, Wang YL, Zhu XL, Ni CF. EGFL7 promotes hepatocellular carcinoma cell proliferation and inhibits cell apoptosis through increasing CKS2 expression by activating Wnt/β-catenin signaling. J Cell Biochem 2018;119:10327–37.
[44] Hutton JC, O’Brien RM. Glucose-6-phosphatase catalytic subunit gene family. J Biol Chem 2009;284:29241–5.
[45] Guo T, Chen T, Gu C, Li B, Xu C. Genetic and molecular analyses reveal G6PC as a key element connecting glucose metabolism and cell cycle control in ovarian cancer. Tumour Biol 2015;36:7649–58.
[46] Xu WH, Xu Y, Tian X, et al. Large-scale transcriptome profiles reveal robust 20-signatures metabolic prediction models and novel role of G6PC in clear cell renal cell carcinoma. J Cell Mol Med 2020;24:9012–27.
[47] Wang B, Hsu SH, Frankel W, Ghoshal K, Jacob ST. Stat3-mediated activation of microRNA-23a suppresses gluconeogenesis in hepatocellular carcinoma by down-regulating glucose-6-phosphatase and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha. Hepatology 2012;56:186–97.