Right regular triples of semigroups

Csaba Tóth

Department of Algebra, Institute of Mathematics
Budapest University of Technology and Economics
1521 Budapest, P.O. Box 91, Hungary
e-mail: tcsaba94@gmail.com

Abstract

Let \(M(S; \Lambda; P) \) denote a Rees \(I \times \Lambda \) matrix semigroup without zero over a semigroup \(S \), where \(I \) is a singleton. If \(\theta_S \) denotes the kernel of the right regular representation of a semigroup \(S \), then a triple \(A, B, C \) of semigroups is said to be right regular, if there are mappings \(A \xleftarrow{P} B \xrightarrow{P'} C \) such that \(M(A; B; P)/\theta_{M(A; B; P)} \cong M(C; B; P') \). In this paper we examine right regular triples of semigroups.

Keywords: semigroup, congruence, Rees matrix semigroup

2010 Mathematics Subject Classification: 20M10, 20M30.

1 Introduction and motivation

The notion of right regular triples of semigroups is defined in [18], where a special type of Rees matrix semigroups without zero over semigroups are examined. A triple \(A, B, C \) of semigroups is said to be right regular, if there are mappings

\[
A \xleftarrow{P} B \xrightarrow{P'} C
\]

such that the factor semigroup \(M(A; B; P)/\theta_{M(A; B; P)} \) is isomorphic to the semigroup \(M(C; B; P') \), where \(\theta_{M(A; B; P)} \) is the kernel of the right regular representation of the semigroup \(M(A; B; P) \). In [18] it is proved that if \(A, B, C \) are semigroups such that \(A/\theta_A \cong B \) and \(B/\theta_B \cong C \), then the triple \(A, B, C \) is right regular. There is also an example given for a right regular triple \(A, B, C \) of semigroups such that none of the conditions \(A/\theta_A \cong B \) and \(B/\theta_B \cong C \) are fulfilled. These results motivate us to investigate right regular triples of semigroups. In this paper we examine the connection between the structure of semigroups belonging to a right regular triples of semigroups, and present quite a few examples of right regular triples of semigroups.
2 Preliminaries

By a semigroup we mean a multiplicative semigroup, that is, a nonempty set endowed with an associative multiplication.

A nonempty subset L of a semigroup S is called a left ideal of S if $SL \subseteq L$. The concept of a right ideal of a semigroup is defined analogously. A semigroup S is said to be left (resp., right) simple if S itself is the only left (resp., right) ideal of S. A semigroup S is left (resp., right) simple if and only if $Sa = S$ (resp., $aS = S$) for every $a \in S$.

A semigroup S is called left cancellative if $xa = xb$ implies $a = b$ for every $x, a, b \in S$. A left cancellative and right simple semigroup is called a right group. A semigroup satisfying the identity $ab = b$ is called a right zero semigroup. By [2, Theorem 1.27.], a semigroup is a right group if and only if it is a direct product of a group and a right zero semigroup.

In [6, Theorem 1], it is shown that a semigroup S is embedded in an idempotent-free left simple semigroup if and only if S is idempotent-free and satisfies the condition: for all $a, b, x, y \in S$, $xa = xb$ implies $ya = yb$.

Using the terminology of [15], a semigroup S satisfying this last condition is called a left equalizer simple semigroup. In other words, a semigroup S is left equalizer simple if, for arbitrary elements $a, b \in S$, the assumption that $xa = xb$ is satisfied for some $x \in S$ implies that $ya = yb$ is satisfied for all $y \in S$. By [15, Theorem 2.1], a semigroup S is left equalizer simple if and only if the factor semigroup S/θ_S is left cancellative.

A nonempty subset I of a semigroup S is called an ideal of S if I is a left ideal and a right ideal of S. A semigroup S is called simple if S itself is the only ideal of S. By [2, Lemma 2.2.], a semigroup S is simple if and only if $SaS = S$ for every $a \in S$.

Let S be a semigroup and I be an ideal of S. We say that the homomorphism $\varphi : S \to I$ is a retract homomorphism [12, Definition 1.44], if it leaves the elements of I fixed. In this case, I is called a retract ideal of S, and S is a retract extension of I by the Rees factor semigroup S/I.

A transformation ϱ of a semigroup S is called a right translation of S if $(xy)\varrho = x(y\varrho)$ is satisfied for every $x, y \in S$. For an arbitrary element a of a semigroup S, $\varrho_a : x \mapsto xa$ ($x \in S$) is a right translation of S which is called an inner right translation of S corresponding to the element a. For an arbitrary semigroup S, the mapping $\Phi_S : a \mapsto \varrho_a$ is a homomorphism of S into the semigroup of all right translations of S. The homomorphism Φ_S is called the right regular representation of S. For an arbitrary semigroup S,
let θ_S denote the kernel of Φ_S. It is clear that $(a, b) \in \theta_S$ for elements $a, b \in S$ if and only if $xa = xb$ for all $x \in S$. A semigroup S is called left reductive if θ_S is the identity relation on S. Thus θ_S is faithful if and only if S is left reductive. The congruence θ_S plays an important role in the investigation of the structure of the semigroup S. In [4], the author characterizes semigroups S for which the factor semigroup S/θ_S is a group. In [5], semigroups S are characterized for which the factor semigroup S/θ_S is a right group. In [14], Theorem 2, a construction is given which shows that every semigroup S can be obtained from the factor semigroup S/θ_S by using this construction. In [17], the authors study the probability that two elements which are selected at random with replacement from a finite semigroup have the same right matrix.

If S is a semigroup, I and Λ are nonempty sets, and P is a $\Lambda \times I$ matrix with entries $P(\lambda, i)$, then the set $\mathcal{M}(S; I, \Lambda; P)$ of all triples $(i, s, \lambda) \in I \times S \times \Lambda$ is a semigroup under the multiplication $(i, s, \lambda)(j, t, \mu) = (i, sP(\lambda, j)t, \mu)$. According to the terminology in [2, §3.1], this semigroup is called a Rees $I \times \Lambda$ matrix semigroup without zero over the semigroup S with $\Lambda \times I$ sandwich matrix P. In [18], Rees matrix semigroups $\mathcal{M}(S; I, \Lambda; P)$ without zero over semigroups S satisfying $|I| = 1$ are in the focus. In our present paper we also use such type of Rees matrix semigroups, which will be denoted by $\mathcal{M}(S; \Lambda; P)$. In this case the matrix P can be considered as a mapping of Λ into S, and so the entries of P will be denoted by $P(\lambda)$. If the element of I is denoted by 1, then the element $(1, s, \lambda)$ of $\mathcal{M}(S; \Lambda; P)$ can be considered in the form (s, λ); the operation on $\mathcal{M}(S; \Lambda; P)$ is $(s, \lambda)(t, \mu) = (sP(\lambda)t, \mu)$.

For notations and notions not defined but used in this paper, we refer the reader to books [2], [8], and [12].

3 Results

Theorem 1 If A, B, C is a right regular triple of semigroups such that A is right simple, then C is also right simple.

Proof. Assume that A, B, C is a right regular triple of semigroups. Then there are mappings $P : B \mapsto A$ and $P' : B \mapsto C$ such that

$\mathcal{M}(A; B; P)/\theta_{\mathcal{M}(A; B; P)} \cong \mathcal{M}(C; B; P')$.

Assume that A is right simple. Let $(a_1, b_1), (a_2, b_2) \in \mathcal{M}(A; B; P)$ be arbitrary elements. Since A is right simple, we have $aP(b_1)A = A$, and so there
is an element $\xi \in A$ such that $a_1P(b_1)\xi = a_2$ and

$$(a_1, b_1)(\xi, b_2) = (a_2, b_2).$$

Hence the Rees matrix semigroup $\mathcal{M}(A; B; P)$ is right simple. As every homomorphic image of a right simple semigroup is right simple, the Rees matrix semigroup $\mathcal{M}(C; B; P')$ is right simple. Let $c, \eta \in C$ be an arbitrary elements. Then, for any $b \in B$, $(c, b)\mathcal{M}(C; B; P') = \mathcal{M}(C; B; P')$, and so

$$(c, b)(u, v) = (\eta, b)$$

for some $(u, v) \in \mathcal{M}(C; B; P')$. Hence $cP'(b)u = \eta$. Thus $cC = C$ for every $c \in C$. Then C is right simple.

Theorem 2 If A, B, C is a right regular triple of semigroups such that A is a right group, then C is also a right group.

Proof. Assume that A, B, C is a right regular triple of semigroups. Then there are mappings $P : B \mapsto A$ and $P' : B \mapsto C$ such that

$$\mathcal{M}(A; B; P)/\theta_{\mathcal{M}(A; B; P)} \cong \mathcal{M}(C; B; P').$$

Assume that A is a right group, that is, right simple and left cancellative. By the proof of Theorem 1, the semigroups $\mathcal{M}(A; B; P)$ and C are right simple. Let $(a, b), (a_1, b_1), (a_2, b_2) \in \mathcal{M}(A; B; P)$ be arbitrary elements with

$$(a, b)(a_1, b_1) = (a, b)(a_2, b_2).$$

Then

$$(aP(b)a_1, b_1) = (aP(b)a_2, b_2),$$

that is,

$$aP(b)a_1 = aP(b)a_2 \quad \text{and} \quad b_1 = b_2.$$

As A is left cancellative, we get $a_1 = a_2$, and so

$$(a_1, b_1) = (a_2, b_2).$$

Hence the semigroup $\mathcal{M}(A; B; P)$ is left cancellative. As $\mathcal{M}(A; B; P)$ is also right simple, it is a right group. From the left cancellativity of $\mathcal{M}(A; B; P)$ it follows that $\theta_{\mathcal{M}(A; B; P)} = \iota_{\mathcal{M}(A; B; P)}$. Thus the semigroup $\mathcal{M}(C; B; P')$ is left cancellative. Assume $xc_1 = xc_2$ for elements $x, c_1, c_2 \in C$. Let $b \in B$
be arbitrary. As C is right simple, there are elements $u, v \in C$ such that $P(b)u = c_1$ and $P(b)v = c_2$. Thus

$$xP(b)u = xP(b)v.$$

Then, for an arbitrary $b' \in B$,

$$(x, b)(u, b') = (x, b)(v, b')$$

is satisfied in $M(C; B; P)$. As $M(C; B; P)$ is left cancellative, we get $u = v$, from which it follows that $c_1 = c_2$. Hence C is left cancellative. By the above, C is right simple. Consequently C is a right group. \qed

Theorem 3 If A, B, C is a right regular triple of semigroups such that A is simple, then C is also simple.

Proof. Assume that A, B, C is a right regular triple of semigroups. Then there are mappings $P : B \mapsto A$ and $P' : B \mapsto C$ such that

$$M(A; B; P) / \theta_{M(A; B; P)} \cong M(C; B; P').$$

Assume that A is simple. Let $(a, b), (u, v) \in M(A; B; P)$ and $z \in B$ be an arbitrary elements. Then $AP(z)aP(b)A = A$ implies that there are elements $\xi, \eta \in A$ such that $\xi P(z)aP(b)\eta = u$ and so

$$(\xi, z)(a, b)(\eta, v) = (u, v).$$

Hence the Rees matrix semigroup $M(A; B; P)$ is simple. As every homomorphic image of a simple semigroup is simple, the Rees matrix semigroup $M(C; B; P')$ is simple.

Let $c_1, c_2 \in C$ and $b_1, b_2 \in B$ be arbitrary elements. Then

$$M(C; B; P')(c_1, b_1)M(C; B; P') = M(C; B; P'),$$

and so there are elements $(x, \xi), (y, \eta) \in M(C; B; P')$ such that

$$(xP(\xi)c_1P(b_1)y, \eta) = (x, \xi)(c_1, b_1)(y, \eta) = (c_2, b_2).$$

Hence

$$xP(\xi)c_1P(b_1)y = c_2.$$

Thus

$$Cc_1C = C$$

for every $c_1 \in C$. Then C is simple. \qed

The next proposition is used in the proof of Theorem 4.
Proposition 1 Let A be a semigroup, Λ be an arbitrary nonempty set and $P : \Lambda \mapsto A$ is an arbitrary mapping. If A is left equalizer simple, then the Rees matrix semigroup $\mathcal{M}(A; \Lambda; P)$ is also left equalizer simple.

Proof. Suppose that A is a left equalizer simple semigroup, Λ is a nonempty set and $P : \Lambda \mapsto A$ is a mapping. Take $(a_1, b_1), (a_2, b_2), (a, b) \in \mathcal{M}(A; \Lambda; P)$. Suppose that

$$(a, b)(a_1, b_1) = (a, b)(a_2, b_2).$$

This means that

$$(aP(b)a_1, b_1) = (aP(b)a_2, b_2) \iff aP(b)a_1 = aP(b)a_2 \text{ and } b_1 = b_2.$$

Since A is left equalizer simple we have that, for all $x \in A$ and $y \in \Lambda :$

$$xP(y)a_1 = xP(y)a_2,$$

hence,

$$(x, y)(a_1, b_1) = (x, y)(a_2, b_2).$$

Thus, $\mathcal{M}(A; \Lambda; P)$ is a left equalizer simple semigroup.

Theorem 4 Let A, B, C be a right regular triple of semigroups such that $P' : B \mapsto C$ is surjective. If A is left equalizer simple, then C is left cancellative.

Proof. Assume that A, B, C is a right regular triple of semigroups. Then there are mappings $P : B \mapsto A$ and $P' : B \mapsto C$ such that

$$\mathcal{M}(A; \Lambda; P) / \theta_{\mathcal{M}(A; B; P)} \cong \mathcal{M}(C; B; P').$$

From Proposition 1, we have that $\mathcal{M}(A; B; P)$ is a left equalizer simple semigroup, and hence $\mathcal{M}(C; B; P')$ is left cancellative by [15, Theorem 2.1].

Now, take $x, c_1, c_2 \in C$ such that $xc_1 = xc_2$. Since P' is surjective, there exists $b \in B$ such that $P'(b) = x$. Then $P'(b)c_1 = P'(b)c_2$. Let $c \in C$ be arbitrary, then

$$(c, b)(c_1, b) = (cP'(b)c_1, b) = (cP'(b)c_2, b) = (c, b)(c_2, b).$$

Since $\mathcal{M}(C; B; P')$ is left cancellative, $(c_1, b) = (c_2, b)$, hence $c_1 = c_2$. Thus C is left cancellative.
Theorem 5 Let A, B, C be a right regular triple of semigroups such that C is left commutative. If A is left equalizer simple, then C is left cancellative.

Proof. From the proof of Theorem 4, we know that $\mathcal{M}(C; B; P')$ is left cancellative. Again, take $x, c_1, c_2 \in C$ such that $xc_1 = xc_2$. Then for arbitrary $b \in B$,

$$P'(b)x_1 = P'(b)x_2.$$

Since C is left commutative,

$$xP'(b)c_1 = xP'(b)c_2,$$

and then

$$(x, b)(c_1, b) = (x, b)(c_2, b).$$

$\mathcal{M}(C; B; P')$ is left cancellative, thus we get $c_1 = c_2$, and that C is left cancellative.

\end{proof}

Theorem 6 Let A, B, C be a right regular triple of semigroups such that $P : B \mapsto A$ is surjective. If A is left reductive, then C is also left reductive.

Proof. Assume that A, B, C is a right regular triple of semigroups. Then there are mappings $P : B \mapsto A$ and $P' : B \mapsto C$ such that

$$\mathcal{M}(A; B; P)/\theta_{\mathcal{M}(A; B; P)} \cong \mathcal{M}(C; B; P').$$

Assume, that A is a left reductive semigroup, and $(a_1, b_1), (a_2, b_2) \in \mathcal{M}(A; B; P)$ are elements such that

$$\forall(x, y) \in \mathcal{M}(A; B; P) : (x, y)(a_1, b_1) = (x, y)(a_2, b_2).$$

This means that

$$xP(y)a_1 = xP(y)a_2 \quad \text{and} \quad b_1 = b_2.$$

Since A is left reductive, we get that

$$\forall y \in B : P(y)a_1 = P(y)a_2.$$

In this case, P is a surjective mapping, hence using again that A is left reductive, we have $a_1 = a_2$. We conclude that $(a_1, b_1) = (a_2, b_2)$, and thus $\mathcal{M}(A; B; P)$ is left reductive.
We know, that if S is a left reductive semigroup, then $\theta_S = \iota_S$. This means, that $\mathcal{M}(A; B; P) \cong \mathcal{M}(C; B; P')$, hence $\mathcal{M}(C; B; P')$ is also left reductive.

Now suppose that $c_1, c_2 \in C$ are such elements, that

$$\forall c \in C : \ c c_1 = c c_2.$$

Take two elements, $(c_1, b), (c_2, b)$ from $\mathcal{M}(C; B; P')$. For arbitrary $(x, y) \in \mathcal{M}(C; B; P')$ we have:

$$(x, y)(c_1, b) = (x P'(y)c_1, b) = (x P'(y)c_2, b) = (x, y)(c_2, b).$$

In the second equality, we used the assumption that $\forall c \in C : \ c c_1 = c c_2$.

Since $\mathcal{M}(C; B; P')$ is left reductive, we have $(c_1, b) = (c_2, b)$, and thus $c_1 = c_2$.

We conclude that C is left reductive.

Let A be a semigroup and B be a nonempty set. For a mapping P of B into A, let α_P denote the following relation on A:

$$\alpha_P = \{(a_1, a_2) \in A \times A : (\forall a \in A)(\forall b \in B) \ a P(b)a_1 = a P(b)a_2\}.$$

It is clear that α_P is a right congruence on A.

Remark 1 It is clear that if P is a mapping of a semigroup B into a semigroup A such that α_P is the identity relation on A, then $\theta_{\mathcal{M}(A, B, P)}$ is the identity relation on $\mathcal{M}(A; B; P)$, and hence the triple A, B, A is right regular.

Let A, B, C be semigroups and $P : B \to A$, $P' : B \to C$ be arbitrary mappings. We shall say that the triple A, B, C is right regular with respect to the couple (P, P') if $\mathcal{M}(A; B; P)/\theta_{\mathcal{M}(A, B, P)} \cong \mathcal{M}(C; B; P')$.

Theorem 7 Let A and B be arbitrary semigroups, and P be a mapping of B into A such that α_P is a congruence on A. Then the triple $A, B, A/\alpha_P$ is right regular with respect to (P, P'), where P' is defined by $P' : b \mapsto [P(b)]_{\alpha_P}$ for every $b \in B$.

Proof. Let Φ be the mapping of the Rees matrix semigroup $M = \mathcal{M}(A; B; P)$ onto the Rees matrix semigroup $\mathcal{M}(A/\alpha_P; B; P')$ defined by

$$\Phi : (a, b) \mapsto ([a]_{\alpha_P}, b).$$
For arbitrary elements \((a_1, b_1), (a_2, b_2)\) of \(M\), we have
\[
\Phi((a_1, b_1)(a_2, b_2)) = \Phi((a_1 P(b_1)a_2, b_2)) = ([a_1 P(b_1)]_{\alpha_P}, b_2) =
\]
\[
= ([a_1]_{\alpha_P} P(b_1)[a_2]_{\alpha_P}, b_2) = ([a_1]_{\alpha_P} P'(b_1)[a_2]_{\alpha_P}, b_2) =
\]
\[
= ([a_1]_{\alpha_P}, b_1) ([a_2]_{\alpha_P}, b_2) = \Phi((a_1, b_1)) \Phi((a_2, b_2)).
\]
Hence, \(\Phi\) is a homomorphism. It is clear that \(\Phi\) is surjective. We show that the kernel \(\ker \Phi\) of \(\Phi\) is the kernel of the right regular representation of \(M\). For elements \((a_1, b_1)\) and \((a_2, b_2)\) of \(M\), the equation
\[
(a, b)(a_1, b_1) = (a, b)(a_2, b_2)
\]
is satisfied for every \(a \in A\) and every \(b \in B\) if and only if
\[
(aP(b)a_1, b_1) = (aP(b)a_2, b_2),
\]
that is
\[
\Phi((a_1, b_1)) = \Phi((a_2, b_2)).
\]
Thus, \(\ker \Phi = \theta_M\) which proves our theorem.

A semigroup satisfying the identity \(axyb = ayxb\) is called a medial semigroup. It is easy to see that if \(A\) is a medial semigroup, then, for an arbitrary semigroup \(B\) and an arbitrary mapping of \(B\) into \(A\), the right congruence \(\alpha_P\) is a congruence on \(A\). Thus we have the following corollary.

Corollary 1 Let \(A\) be a medial semigroup. Then, for an arbitrary semigroup \(B\) and an arbitrary mapping \(P\) of \(B\) into \(A\), the triple \(A, B, A/\alpha_P\) is right regular, where \(P'\) is defined in Theorem 7.

If \(\rho\) is an arbitrary congruence on a semigroup \(S\), then \(\rho^* = \{(a, b) \in S \times S : (\forall s \in S)(sa, sb) \in \rho\}\) (defined in [15]) is also a congruence on \(S\) which is called the right colon congruence of \(\rho\).

Remark 2 If \(P\) is a mapping of a nonempty set \(B\) onto a semigroup \(A\), then \(\alpha_P \supseteq \theta_A^*\). If \(P\) is surjective, then \(\alpha_P = \theta_A^*\).

Remark 2 and Theorem 7 imply the following corollary.
Corollary 2 Let \(A \) be an ideal of a semigroup \(B \) such that there is a surjective homomorphism \(P \) of \(B \) onto \(A \). Let \(P' \) denote the mapping of \(B \) onto \(A/\theta_A^* \) defined in the following way: \(P': b \mapsto [P(b)]_{\theta_A^*} \) for every \(b \in B \). Then the triple \(A, B, A/\theta_A^* \) is right regular with respect to \((P, P') \).

Since the projective homomorphism \(P_A: (a, b) \mapsto a \) of the direct product \(A \times B \) of semigroups \(A \) and \(B \) is surjective, Remark 2 and Theorem 7 imply the following corollary.

Corollary 3 For arbitrary semigroups \(A \) and \(B \), the triple \(A, A \times B, A/\theta_A^* \) is right regular with respect to the couple \((P_A, P') \), where \(P_A \) denotes the projection homomorphism \(P_A: (a, b) \mapsto a \) and \(P': A \times B \to A/\theta_A^* \) is defined by \(P': (a, b) \mapsto [a]_{\theta_A^*} \).

Theorem 8 Let \(A \) and \(B \) be arbitrary semigroups, and \(\varphi \) be a mapping of \(A \) into \(B \) such that \(\alpha_\varphi \) is a congruence on \(B \). Then the triple \(A \times B, A/\theta_A^* \times B/\alpha_\varphi \) is right regular with respect to the couple \((P_A, P') \), where \(P_A \) is defined by \(P_A: a \mapsto (a, \varphi(a)) \) and \(P' \) is defined by \(P': a \mapsto ([a]_{\theta_A^*}, [\varphi(a)]_{\alpha_\varphi}) \).

Proof. Suppose that \((((a_1, b_1), (a_2, b_2), (a_3, b_3), (a_4)) \in \theta_M, \) where \(M = \mathcal{M}(A \times B; A; P_A) \). This means that, for every \(x, x' \in A \) and \(y \in B \),

\[
((x, y), x')((a_1, b_1), (a_2, b_2), (a_3, b_3), (a_4)) \iff ((x, y), x')((a_1, b_1), (a_3, b_3), (a_4)) \iff ((x' a_1, y \varphi(x) b_1), (a_2)) = ((x' a_3, y \varphi(x') b_3), (a_4)).
\]

The equality holds if and only if

\[
x x' a_1 = x x' a_3, \quad y \varphi(x) b_1 = y \varphi(x') b_3, \quad a_2 = a_4,
\]

that is

\[
(a_1, a_3) \in \theta_A^*, \quad (b_1, b_3) \in \alpha_\varphi, \quad a_2 = a_4 \quad (1)
\]

Let \(\Phi \) be the mapping of \(\mathcal{M}(A \times B; A; P_A) \) into \(\mathcal{M}(A/\theta_A^* \times B/\alpha_\varphi; P') \) defined by \(\Phi: ((a, b), a') \mapsto ([a]_{\theta_A^*}, [b]_{\alpha_\varphi}, a') \) for every \(a, a' \in A \) and every \(b \in B \). Since

\[
\Phi(((a_1, b_1), (a_2, b_3), (a_4))) = \Phi((a_1 a_2 a_3, b_1 \varphi(a_2) b_3), (a_4)) =
\]

\[
= ([a_1 a_2 a_3]_{\theta_A^*}, [b_1 \varphi(a_2) b_3]_{\alpha_\varphi}, a_4) = ([a_1]_{\theta_A^*}, [b_1]_{\alpha_\varphi}, a_2) ([a_3]_{\theta_A^*}, [b_3]_{\alpha_\varphi}, a_4) =
\]
\[
\Phi(((a_1, b_1), (a_2)), ((a_3, b_3), (a_4)))
\]

for every \(a_1, a_2, a_3, a_4 \in A\) and \(b_1, b_3 \in B\), \(\Phi\) is a homomorphism. It is clear that \(\Phi\) is a surjective.

Since \(((a_1, b_1), (a_2)), ((a_3, b_3), (a_4)) \in \ker \Phi\) if and only if all three conditions in (1) are satisfied, we have \(\ker \Phi = \theta_M\) and this proves our theorem. \(\square\)

If \(\varphi : A \mapsto B\) defined in Theorem 8 is surjective, then \(\alpha_{\varphi} = \theta_B^*\) by Remark 2, and thus we have the following corollaries:

Corollary 4 Let \(A\) and \(B\) be semigroups, and \(\varphi\) be a surjective mapping of \(A\) onto \(B\). Then the triple \(A \times B, A/\theta_A^* \times B/\theta_B^*\) is right regular with respect to the couple \((P_A, P')\), where \(P_A\) is defined by \(P_A : a \mapsto (a, \varphi(a))\) and \(P'\) is defined by \(P' : a \mapsto ([a]_{\theta_A^*}, [\varphi(a)]_{\theta_B^*})\).

Corollary 5 Let \(A\) be a semigroup, and \(B\) be a retract ideal of \(A\). Let \(\varphi\) be a retract homomorphism of \(A\) onto \(B\). Then the triple \(A \times B, A/\theta_A^* \times B/\theta_B^*\) is right regular with respect to the couple \((P_A, P')\), where \(P_A\) is defined by \(P_A : a \mapsto (a, \varphi(a))\) and \(P'\) is defined by \(P' : a \mapsto ([a]_{\theta_A^*}, [\varphi(a)]_{\theta_B^*})\).

If \(B\) is an ideal of a semigroup \(A\) such that \(B\) is a group, then \(\varphi_B : A \mapsto B\) defined by \(\varphi_B(a) = ae\) \((a \in A)\) is a retract homomorphism of \(A\) onto \(B\), where \(e\) denotes the identity element of the group \(B\).

Corollary 6 Let \(A\) be a semigroup and \(B\) be an ideal of \(A\) such that \(B\) is a group. Then the triple \(A \times B, A/\theta_A^* \times B\) is right regular with respect to the couple \((P_A, P')\), where \(P_A\) is defined by \(P_A : a \mapsto (a, \varphi_B(a))\) and \(P'\) is defined by \(P' : a \mapsto ([a]_{\theta_A^*}, \varphi_B(a))\); here \(\varphi_B\) denotes the above surjective homomorphism of \(A\) onto \(B\).

References

[1] Ayik, H., Ruškuc, N.: Generators and relations of Rees matrix semigroups. Proceedings of the Edinburgh Mathematical Society 42, 481–495 (1999). https://doi.org/10.1017/S0013091500020472

[2] Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups I. Amer. Math. Soc. Providence R.I. (1961). https://doi.org/10.1090/surv/007.1
[3] Clifford A.H., Preston, G.B.: The Algebraic Theory of Semigroups II. Amer. Math. Soc. Providence R.I. (1967). https://doi.org/10.1090/surv/007.2

[4] J.L. Chrislock: Semigroups whose regular representation is a group. Proc. Japan Acad. 40, 799–800 (1964). https://doi.org/10.3792/pja/119552567

[5] J.L. Chrislock: Semigroups whose regular representation is a right group. Amer. Math. Monthly 74, 1097–1100 (1967). https://doi.org/10.2307/2313623

[6] P.M. Cohn: Embeddings in semigroups with one-sided division. Journal of the London Mathematical Society, 31-2 169–181 (1956). https://doi.org/10.1112/jlms/s1-31.2.169

[7] Descalco, L., Ruşkuc, N.: On automatic Rees matrix semigroups. Comm. Algebra 30, 1207–1226 (2002). https://doi.org/10.1080/00927870209342378

[8] J.M. Howie: An Introduction to Semigroup Theory. Academic Press, London (1976)

[9] Kambites, M.: The loop problem for Rees matrix semigroups. Semigroup Forum 76, 204–216 (2008). https://doi.org/10.1017/S0305004107000606

[10] Lawson, M.V.: Rees matrix semigroups. Proceedings of the Edinburgh Mathematical Society 33, 23–37 (1990). https://doi.org/10.1017/S0013091500028856

[11] McAlister, D.B.: Rees matrix covers for locally inverse semigroups. Trans. Amer. Math. Soc. 227, 27–738 (1983). https://doi.org/10.2307/1999233

[12] A. Nagy: Special Classes of Semigroups. Kluwer Academic Publishers, Dordrecht/Boston/London (2001). https://doi.org/10.1007/978-1-4757-3316-7

[13] A. Nagy: Left reductive congruences on semigroups. Semigroup Forum 87, 129–148 (2013). https://doi.org/10.1007/s00233-012-9428-9
[14] A. Nagy: Remarks on the paper "M. Kolibiar, On a construction of semigroups". Periodica Mathematica Hungarica 71, 261–264 (2015). https://doi.org/10.1007/s10998-015-0094-z

[15] A. Nagy: Left equalizer simple semigroups. Acta Mathematica Hungarica 148-2, 300–311 (2016). https://doi.org/10.1007/s10474-015-0578-6

[16] A. Nagy: A construction of left equalizer simple medial semigroups. Period. Math. Hung. (onlyne first). https://doi.org/10.1007/s10998-022-00454-w

[17] A. Nagy and Cs. Tóth: On the probability that two elements of a finite semigroup have the same right matrix. Comment.Math.Univ.Carolin. 63 (1), 21–31 (2022). https://doi.org/10.14712/1213-7243.2022.008

[18] A. Nagy and Cs. Tóth: On special Rees matrix semigroups over semigroups (preprint). https://doi.org/10.48550/arXiv.1609.09821

[19] Petrich, M.: Embedding semigroups into idempotent generated ones. Monatsh. Math. 141(4), 315—322 (2004). https://doi.org/10.1142/S1005386710000246

[20] D. Rees: On semi-groups. Proc. Cambridge Philosophical Society 36, 387-400 (1940). https://doi.org/10.1017/S0305004100017436

[21] J. B. Hickey: Semigroups under a sandwich operation. Proceedings of the Edinburgh Mathematical Society 26(3), 371-382 (1983). https://doi.org/10.1017/S0013091500004442