Araştırma Makalesi - Research Article

Co Katkılı SnO₂ Numunelerinin Sentez ve Karakterizasyonu

Tankut Ates 1*, Omer Kaygili 2, Niyazi Bulut 3, H.E. Okur 4, Serhat Keser 5, I.S. Yahia 6,7, Suleyman Koytepe 8, Turgay Seckin 9, Imren Özcan 10, Turan İnce 11

Geliş / Received: 01/04/2020 Revize / Revised: 30/04/2020 Kabul / Accepted: 08/05/2020

ÖZ

Yüksek kristalleşmeye sahip katkızı ve Co katkılı SnO₂ numuneleri başarılı bir biçimde hazırlanı. Co içeriğinin SnO₂'nin termal ve morfolojik özellikleri üzerine etkileri araştırıldı. Co ilavesiyle Kristal büyüklüğünde ve birim hücre parametrelerinde değişimler tespit edildi. Co ilavesiyle faz bileşimi değişmedi. Hem X-ışıını kırınımı hem de Fourier dönüşümü kızılötesi sonuçları her bir numune için SnO₂ fazının oluşumunu doğruladı. Üretilen numunelerin oda sıcaklıktan 900 °C'ye kadar termal kararlılığı gözlandi. Morfoloji Co içeriğinden etkilendi ve enerji dağılımlı X-ışıını sonuçları SnO₂ yapısı içerisine Co’nun nüfuz ettiğini doğruladı.

Anahtar Kelimeler - Kristal yap, Elektron mikroskobu, IR, X-ışıını difraksiyon

1* Sorumlu yazar iletişim: tankut.ates@ozal.edu.tr (https://orcid.org/0000-0002-4519-2953)
Department of Engineering Basic Sciences, Turgut Ozal University, 44210 Malatya, Turkey

2 İletişim: omerkaygili@yahoo.com (https://orcid.org/0000-0002-2321-1455)
Department of Physics, Faculty of Science, Firat University, 23119 Elazig, Turkey

3 İletişim: bulut_niyazi@yahoo.com (https://orcid.org/0000-0003-2863-7700)
Department of Physics, Faculty of Science, Firat University, 23119 Elazig, Turkey

4 İletişim: esma.okur@btu.edu.tr (https://orcid.org/0000-0003-3439-0716)
Department of Physics, Bursa Technical University, 16310 Bursa, Turkey

5 İletişim: serhatkeser@gmail.com (https://orcid.org/0000-0002-9670-1053)
Department of Chemistry, Faculty of Science, Firat University, 23119 Elazig, Turkey

6 İletişim: dr_isyahia@yahoo.com (https://orcid.org/0000-0002-9855-5033)
Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Metallurgical Lab.1. Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo, Egypt.

7 Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia.

8 İletişim: suleyman.koytepe@inonu.edu.tr (https://orcid.org/0000-0002-4788-278X)
Department of Chemistry, Faculty Science & Arts, Inonu University, 44280 Malatya, Turkey

9 İletişim: turgay.seckin@inonu.edu.tr (https://orcid.org/0000-0001-8483-7366)
Department of Chemistry, Faculty Science & Arts, Inonu University, 44280 Malatya, Turkey

10 İletişim: imrenozacan@gmail.com (https://orcid.org/0000-0002-3853-9373)
Department of Chemistry, Faculty Science & Arts, Inonu University, 44280 Malatya, Turkey

11 İletişim: trnince23@gmail.com (https://orcid.org/0000-0001-7885-1882)
Department of Physics, Faculty of Science, Firat University, 23119 Elazig, Turkey
Synthesis and Characterization of Co-Doped SnO$_2$ Samples

ABSTRACT

The un-doped and Co-doped SnO$_2$ samples having high crystallinity were successfully prepared. The effects of Co content on the structural, thermal and morphological properties of SnO$_2$ were investigated. Changes in the crystallite size and unit cell parameters were detected with adding of Co. The phase composition did not alter with the addition of Co. Both X-ray diffraction and Fourier transform infrared results confirmed the formation of the SnO$_2$ structure for each sample. The thermal stability of the as-produced samples from room temperature to 900 °C was observed. The morphology was affected by Co content, and energy dispersive X-ray results verified the introduction of Co into the SnO$_2$ structure.

Keywords- Crystal structure, Electron microscopy, IR, X-ray diffraction
I. INTRODUCTION

Metal oxide structures have been gained great importance in optoelectronic, magnetic, and sensing applications for long years [1,2]. Among these structures, tin (IV) oxide or stannic oxide (SnO$_2$) is, without a doubt, one of the most popular ones. As known, SnO$_2$ is an n-type metal oxide semiconductor, having a high carrier concentration, and has a wide optical bandgap, ranging from 3.6 to 4.0 eV, and high transmittance in the visible region [3,4]. SnO$_2$ is a very stable material both chemically and thermally [5]. SnO$_2$ has been used in the gas sensing applications (especially in the detection of the flammable, toxic and corrosive gases), lithium-ion batteries, anti-refractive coatings, transparent conducting electrodes, light-emitting diodes, solar cells, transistors, flat panel displays, catalysts, supercapacitors, memristors and so on due to its superior electrical, optical and electrochemical properties [6-16].

The previous studies show that doping of materials with foreign atoms is an effective approach to modify the structural, thermal, and morphological properties for consequent tuning of their characteristic properties [17-19]. In this context, the doping of some elements, such as Ni, B, Fe, Au, Ca, and Co, into the SnO$_2$ structure has been carried out for improving its characteristic properties. In this way, some properties, such as the gas sensing and/or lithium storage abilities, of SnO$_2$ can be controlled and improved for its further applications [20,21]. Co-doped SnO$_2$ was used as lithium-ion anode material by Ma et al. [22]. A theoretical study on the magnetic properties of Co-doped SnO$_2$ was done by Luo and Sun [23]. The effect of the surfactant of cetyltrimethylammonium bromide (CTAB) on the magnetic and optic properties of Co-doped SnO$_2$ prepared by the co-precipitation route as studied by Jiang et al. [24]. The catalytic performances of Co-doped SnO$_2$ synthesized via an eco-friendly KA oil (mixture of cyclohexanol and cyclohexanone) synthesis were investigated by Silva et al. [25].

In the present study, we aimed to synthesize the pure and Co-doped SnO$_2$ samples at various amounts (e.g., 0, 0.25, 0.50 and 1.00 at.%) and determine the effects of the Co content on the structural, thermal properties and morphology of the SnO$_2$ structure using the experimental techniques of X-ray diffraction (XRD), Fourier transform infrared (FTIR), differential thermal analysis (DTA), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX). For this purpose, with a different method than the above-mentioned ones reported in the literature, we produced four SnO$_2$ samples via using a facile wet chemical method. All the characterization results were reported in detail.

II. MATERIALS AND METHOD

All the chemicals were purchased from Sigma-Aldrich and were used without any further purification. 100 mL of (25.00-x) mmol of tin (IV) chloride pentahydrate (SnCl$_2$·5H$_2$O) and x mmol of cobalt (II) nitrate hexahydrate (Co(NO$_3$)$_2$·6H$_2$O) were dissolved in ethanol, where x is 0, 0.25, 0.50 and 1.00. Hereafter, the samples were called as the pure SnO$_2$, 0.25Co-SnO$_2$, 0.50Co-SnO$_2$ and 1.00Co-SnO$_2$, respectively. Each solution was stirred without heating for 1 h and dried in an oven at 60 °C for 70 h. The as-dried powders were calcined in an electric furnace under an ambient atmosphere at 900 °C for 2.5 h.

The characterization of the samples was carried out using X-ray diffraction (XRD, Rigaku RadB-DMAX II) analysis, Fourier transform infrared (FTIR, Perkin Elmer Spectrum One) spectroscopy, differential thermal analysis (Shimadzu DTA 50), thermogravimetric analysis (Shimadzu TGA 50), scanning electron microscopy (SEM, LEO EVO 40xVP) and energy dispersive X-ray (EDX, Röntech xflash) spectroscopy techniques.

III. RESULTS AND DISCUSSION

A. XRD Results

Fig. 1 shows the XRD patterns of the as-manufactured samples. For all the samples, the single-phase distribution of polycrystalline SnO$_2$ (JCPDS PDF No: 41-1445) structure with the tetragonal crystal system is observed. No secondary phase formation is detected with an increasing amount of Co. The peaks belonging to the planes of (110), (101), (200), (111), (211), (220), (002), (310), (112), (301), (202) and (321) were observed.
for each sample. With the addition of Co, some variations in the intensity of the as-mentioned peaks were seen, and this indicates the introduction of Co into the SnO$_2$ structure [26].

![XRD patterns of the samples](image)

The lattice parameters (a and c), unit cell volume (V) and crystallite size (D) were calculated from the following equations, respectively [27]:

$$\frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$$

(1)

$$V = a^2c$$

(2)

$$D = \frac{0.9\lambda}{\beta \cos \theta}$$

(3)

where h, k, and l are the Miller indices, d is the distance for two adjacent planes, β is the full width at half maximum (FWHM), θ is the Bragg angle and λ is the X-ray wavelength, which is equal to 0.15406 nm for CuK$_\alpha$ radiation. The significant variations in the lattice parameters, unit cell volume, and crystallite size values are clearly seen in Table 1. The changes in the peak intensities and calculated parameters may be related to the charge imbalance between Co$^{2+}$ and Sn$^{4+}$ ions and their ionic radii (0.058 nm for Co$^{2+}$ and 0.069 nm for Sn$^{4+}$) [28].
Table 1. The calculated values of the D, a, c and V for each sample.

Sample	D (nm)	a (nm)	c (nm)	V (nm3)
Pure SnO$_2$	21.80	0.473146	0.318424	0.071285
0.25Co-SnO$_2$	34.59	0.473332	0.318471	0.071351
0.50Co-SnO$_2$	30.46	0.473909	0.318878	0.071617
1.00Co-SnO$_2$	28.74	0.473666	0.318666	0.071496

B. FTIR Results

FTIR spectra of the pure and Co-doped SnO$_2$ samples are shown in Fig. 2. The as-detected bands and their assignments are given as follows: Two sharp bands observed at 463 and 604 cm$^{-1}$ are related to the vibration modes of O-Sn-O bonds belonging to the SnO$_2$ structure [29]. The as-observed bands confirm the formation of the SnO$_2$ structure for each sample.

C. Thermal Analysis Results

DTA and TGA curves of the as-obtained samples are shown in Figs. 3 and 4, respectively. From 25 to 800 °C, no peak was observed, and all the samples are thermally stable in this temperature range. In addition, the mass gain for each sample was seen in this temperature interval. The net mass gains, which are possibly due to oxidation, at 800 °C are found to be 1.03, 1.00, 1.10 and 1.38% for SnO$_2$, 0.25Co-SnO$_2$, 0.50Co-SnO$_2$ and 1.00Co-SnO$_2$, respectively (Fig. 4).
D. Morphological investigation

By investigating the SEM images of the samples shown in Fig. 5, it is seen that all the samples have porous microstructure. This can be considered as an advantageous feature, leading to a fast response and quick recovery, to the use of each sample in the gas sensing applications [30]. Furthermore, the EDX reports confirm the introduction of Co-ions into the SnO$_2$ structure.
IV. CONCLUSION

The pure and Co-doped SnO$_2$ samples with high crystallinity were easily produced at 900 °C via wet chemical synthesis. The effects of the amount of Co on the structural, thermal and morphological properties of SnO$_2$ were investigated using XRD, FTIR, DTA, TGA and SEM techniques. Last, the following results were observed. Single-phase distribution of SnO$_2$ for each sample is seen and no secondary phase formation is detected with adding of Co, but small changes in the peak intensities are observed from the XRD patterns of the as-manufactured samples. Moreover, the values of the crystallite size, lattice parameters, and volume of the unit cell are significantly affected by Co content. All the samples are thermally stable in the temperature range from 25 to 800 °C. No mass loss is observed within this temperature interval. The negligible mass gains, which are not exceeded the value of % 1.38, are detected for all the samples. The morphology is affected by Co content, and EDX data confirm the influence of Co into the SnO$_2$ structure. Additionally, the morphological observations also support that all the samples can be good nominees for gas sensing applications.
ACKNOWLEDGEMENTS

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant No. R.G.P.2/65/40. This work was also supported by the Management Unit of Scientific Research projects of Firat University (FÜBAP) (Project Number: FF.18.20).

REFERENCES

[1] Xu, L., Zeng, W., & Li, Y. (2018). Synthesis of morphology and size-controllable SnO2 hierarchical structures and their gas-sensing performance. Appl. Surf. Sci, 457, 1064–1071.

[2] Das, S., & Jayaraman, V. (2014). SnO2: A comprehensive review on structures and gas sensors. Prog. Mater. Sci., 66, 112–255.

[3] Palakawong, N., Sun, Y.Y., Thienprasert, J.T., Zhang, S., & Limpijumnong, S. (2017). Ga acceptor defects in SnO2 revisited: A hybrid functional study. Ceram. Int., 43, S364–S368.

[4] Jiang, Q., Zhang, X., & You, J. (2018). SnO2: A wonderful electron transport layer for perovskite solar cells. Small, 14, 1-14.

[5] Yu, S., Zheng, H., Li, L., & Chen, S. (2017). Highly conducting and transparent antimony doped tin oxide thin films: The role of sputtering power density. Ceram. Int., 43, 5654–5660.

[6] Manikandan, K., Dhanuskodi, S., Thomas, A.R., Maheswari, N., Muralidharan, G., & Sastikumar, D., (2016). Size–strain distribution analysis of SnO2 nanoparticles and their multifunctional applications as fiber optic gas sensors, supercapacitors and optical limiters. RSC Adv., 6, 90559–90570.

[7] Liu, D., Pan, J., Tang, J., Liu, W., Bai, S., & Luo, R., (2019). Ag decorated SnO2 nanoparticles to enhance formaldehyde sensing properties. J. Phys. Chem. Solids., 124, 36–43.

[8] Bhatnagar, M., Dhall, S., Kaushik, V., Kaushal, A., & Mehta, B.R., (2017). Improved selectivity of SnO2:C alloy nanoparticles towards H2 and ethanol reducing gases; role of SnO2:C electronic interaction, sensor. Actuat. B-Chem., 246, 336–343.

[9] Wang, H., Jiang, G., Tan, X., Liao, J., Yang, X., Yuan, R., & Chaï, Y., (2018). Simple preparation of SnO2/C nanocomposites for lithium ion battery anode. Inorg. Chem. Commun., 95, 67–72.

[10] Li, H., Su, Q., Kang, J., Huang, M., Feng, M., Feng, H., Huang, P., & Du, G., (2018). Porous SnO2 hollow microspheres as anodes for high-performance lithium ion battery. Mater. Lett., 217, 276–280.

[11] Kang, Y., Li, Z., Xu, K., He, X., Wei, S., & Cao, Y., (2019). Hollow SnO2 nanospheres with single-shelled structure and the application for supercapacitors. J. Alloys Compds., 779, 728–734.

[12] Horti, N.C., Kamatagi, M.D., Patil, N.R., Wari, M.N., & Inamdar, S.R., (2018). Photoluminescence properties of SnO2 nanoparticles: Effect of solvents. Optik, 169, 314–320.

[13] Razeghizadeh, A.R., Kazeminezhad, I., Zalaghi, L., & Rafee, V., (2018). Effects of sol concentration on the structural and optical properties of SnO2 nanoparticle. Iran. J. Chem. Chem. Eng., 37, 25-32.

[14] Razeghizadeh, A.R., Zalaghi, L., Kazeminezhad, I., & Rafee, V., (2017). Growth and optical properties investigation of pure and Al-doped SnO2 nanostructures by sol-gel method. Iran. J. Chem. Chem. Eng., 36, 1-8.

[15] Guo, J., Zhang, J., Gong, H., Ju, D., & Cao, B., (2016). Au nanoparticle-functionalized 3D SnO2 microstructures for high performance gas sensor. Sens. Actuators B-Chem., 226, 266–272.
[16] Pan, Y., Wan, T., Du, H., Qu, B., Wang, D., Ha, T.J., & Chu, D., (2018). Mimicking synaptic plasticity and learning behaviours in solution processed SnO$_2$ memristor. *J. Alloys Compd.*, 757, 496–503.

[17] Muz, İ., & Kurban, M., (2019). A comprehensive study of electronic structure and optical properties of carbon nanotubes with doped B, Al, Ga, Si, Ge, N, P and As and different diameters. *J. Alloys Compd.*, 802, 25-35.

[18] Muz, İ., Göktaş, F., & Kurban, M., (2020). 3d-transition metals (Cu, Fe, Mn, Ni and Zn)-doped pentacene π-conjugated organic molecule for photovoltaic applications: DFT and TD-DFT calculations, *Theor. Chem. Acc.*, 139, 1-8.

[19] Kurban, M., Kurban, H., & Dalkılıç, M., (2019). Controlling structural and electronic properties of ZnO NPs: Density-functional tight-binding method. *B. Int. J. Sci. and Tech. Res.*, 3, 35-39.

[20] Zhang, X., Huang, X., Zhang, X., Xia, L., Zhong, B., Zhang, T., & Wen, G., (2016). Flexible carbonized cotton covered by graphene/Co-Doped SnO$_2$ as free-standing and binder-free anode material for lithium-ion batteries. *Electrochim. Acta.*, 222, 518–527.

[21] Jiang, Z., Yin, M., & Wang, C., (2017). Facile synthesis of Ca$_{3+}$/Au Co-Doped SnO$_2$ nanofibers and their application in acetone sensor. *Mater. Lett.*, 194, 209–212.

[22] Ma, Y., Ma, Y., Ulissi, U., Ji, Y., Streb, C., Bresser, D., & Passerini, S., (2018). Influence of the doping ratio and the carbon coating content on the electrochemical performance of Co-doped SnO$_2$ for lithium-ion anodes. *Electrochim. Acta.*, 277, 100–109.

[23] Luo, M., & Sun, F., (2014). Magnetic properties of Co-doped SnO$_2$ at different carrier concentrations. *Optik*, 125, 2157–2159.

[24] Jiang, H., Liu, X.F., Zhou, Z.Y., Wu, Z.B., He, B., & Yu, R.H., (2011). The effect of surfactants on the magnetic and optical properties of Co-doped SnO$_2$ nanoparticles. *Appl. Surf. Sci.*, 258, 236–241.

[25] Silva, T.F.S., Silvestre, A.J., Rocha, B.G.M., Nunes, M.R., Monteiro, O.C., & Martins, L.M.D.R.S., (2017). Enhancing alkane oxidation using Co-doped SnO$_2$ nanoparticles as catalysts. *Catal. Commun.*, 96, 19–22.

[26] Kou, X., Wang, C, Ding, M., Feng, C., Li, X., Ma, J., Zhang, H., Sun, Y., & Lu, G., (2016). Synthesis of Co-doped SnO$_2$ nanofibers and their enhanced gas-sensing properties. *Sens. Actuator. B-Chem.*, 236, 425-432.

[27] Cullity, B.D., (1978). *Elements of X-Ray Diffraction 2nd ed.* Addison–Wesley Publishing Company, Massachusetts, 102.

[28] Zhu, S., Chen, C., & Li, Z., (2019). Magnetic enhancement and magnetic signal tunability of (Mn, Co) Co-Doped SnO$_2$ dilute magnetic semiconductor nanoparticles. *J. Magn. Magn. Mater.*, 471, 370–380.

[29] Khan, S.A., Kanwal, S., Rizwan, K., & Shahid, S., (2018). Enhanced antimicrobial, antioxidant, in vitro anticancer effects against breast cancer cell line by green synthesized un-doped SnO$_2$ and Co-doped SnO$_2$ nanoparticles from clerodendrum inerme. *Microb. Pathog.*, 125, 366–384.

[30] Shaikh, F.I., Chikhale, L.P., Patil, J.Y., Mulla, I.S., & Suryavanshi, S.S., (2017). Enhanced acetone sensing performance of nanostructured Sm$_2$O$_3$ doped SnO$_2$ thick films. *J. Rare. Earth.*, 35, 813–823.