Maconellicoccus hirsutus (Hemiptera: Pseudococcidae) in Brazil: Recent Spread, Natural Enemies, and New Hosts

Authors: David dos S. Martins, Maurício J. Fornazier, Ana Lúcia B. G. Peronti, Mark P. Culik, Carlos Alberto S. Souza, et. al.

Source: Florida Entomologist, 102(2) : 438-443
Published By: Florida Entomological Society
URL: https://doi.org/10.1653/024.102.0225
Maconellicoccus hirsutus (Hemiptera: Pseudococcidae) in Brazil: recent spread, natural enemies, and new hosts

David dos S. Martins¹, Maurício J. Fornazier²*, Ana Lúcia B. G. Peronti², Mark P. Culik³, Carlos Alberto S. Souza⁴, Renato C. Taques⁴, José S. Zanuncio Junior⁴, and Renan B. Queiroz⁴

Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae), the pink hibiscus mealybug, is an invasive pest from southern Asia or Australia that now has a worldwide distribution in tropical and subtropical regions (Sagarra & Peterkin 1999; Chong et al. 2008; García Morales et al. 2016). In the Americas, this mealybug was first detected in 1993 on the island of Grenada (Michaud & Evans 2000). It was first noted in South America in Guyana (Tambasco et al. 2000), and it now also is present in Brazil, Colombia, French Guiana, Suriname, and Venezuela (Culik et al. 2013a; García Morales et al. 2016). In Brazil, it was first detected in 2010 in the state of Roraima in northern Brazil, bordering Guyana and Venezuela (Marsaro Junior et al. 2013). By 2012, it had spread to the southern part of the state of Espírito Santo, in southeastern Brazil, about 3,400 km from Roraima (Culik et al. 2013a). Since 2010, M. hirsutus has spread to 9 other Brazilian states, including Pará (northern region) (Moraes 2016; Peres-Filho et al. 2017); Alagoas, Bahia, Maranhão, and Pernambuco (northeastern region) (Silva et al. 2013a, b; Nakayama & Vírgens Filho 2014; Oliveira et al. 2014; Souza et al. 2014; Broglio et al. 2015; Fornazier et al. 2017; Ramos et al. 2018); Mato Grosso (central-western region) (Morais et al. 2015; Peres-Filho et al. 2017); São Paulo (southeastern region) (Morais et al. 2015; Peronti et al. 2016); Rio Grande do Sul, and Santa Catarina (southern region) (Alexandre et al. 2014; Morais 2016). Based on these records, M. hirsutus was removed from the Brazilian List of Absent Quarantine Pests (A1) on 18 Dec 2013 (Brasil 2013). Maconellicoccus hirsutus is considered to be a quarantine pest, and may be a threat to agriculture in countries where it has been introduced because of its polyphagous behavior, invasiveness, and high reproductive potential (Cermeli et al. 2002; Martínez Rivero 2007). It has been reported from more than 350 species of host plants, in 222 genera and 78 botanical families, and may be a potential pest of ornamental, and timber species (Garcia Morales et al. 2016).

This note summarizes recent research on the geographical spread, host plants, and natural enemies of M. hirsutus in Brazil since its reported establishment in this country 8 years ago (Marsaro Junior et al. 2013), and its dissemination and hosts in Espírito Santo State, southeastern Brazil, which was first noted in this region in 2012 (Culik et al. 2013a). One hundred and three M. hirsutus-infested host plant samples were collected and geo-referenced (longitude, latitude) from 34 municipalities of Espírito Santo by professionals of the State Inspection Service of Agricultural and Forest Defense Institute of Espírito Santo (Idaf), the Capixaba Institute for Research and Technical Assistance and Rural Extension (Incaper), and the Executive Committee for the Planning of Cacao Crops (Ceplac/ES). Mealybug specimens were preserved in Epipendorf tubes (5 mL) with 70% alcohol, and mounted on microscope slides (Gullan 1984), with identification of the species made based on morphological characteristics of the adult female (Miller 1999; Miller et al. 2014) at the Laboratory of Entomology, Universidade Estadual Paulista “Júlio de Mesquita Filho” (FCAV/UNESP). A map with isotherms and M. hirsutus sampling points in Espírito Santo was prepared using ESRI ARCGIS 10.0, Arcmap software (ESRI 2011) and the Meteorological Information System/Incaper climatological database (Incaper 2018).

In Espírito Santo, M. hirsutus was found only in regions with annual mean temperatures from 20 to 27 °C, with 96% of M. hirsutus samples found in the isotherm 23 to 27 °C (Fig. 1). This annual mean temperature range (20 to 27 °C) is found in 87.6% of the area of the state. These results are consistent with previous research which indicates that temperatures most favorable for the development and reproduction of M. hirsutus are 25 to 27 °C, and the thermal thresholds for female development are 14.5 °C (Tm) and 29 °C (Tm) (Chong et al. 2008). In Espírito Santo, only 0.2% of its territory has annual mean temperatures below 14.5 °C, and none with annual mean temperature above 27 °C (Fig. 1). Therefore, temperatures in Espírito Santo do not represent a barrier to M. hirsutus population development.

Seventeen species of M. hirsutus host plants in 9 families were collected in Espírito Santo (Table 1). Hevea brasiliensis (Euphorbiaceae), Theobroma bicolor and T. speciosum (Malvaceae) are reported for the first time as hosts of M. hirsutus (García Morales et al. 2016). Coccoloba uvifera (Polygonaceae), Morus alba (Moraceae), Punica granatum (Lythraceae), and Talipariti tiliaeum (Malvaceae) are new M. hirsutus host records for Brazil. Abelmoschus esculentus (L.) Moench (Malvaceae), Theobroma cacao L. (Malvaceae), and Solanum americanum Mill. (Solanaceae) have been reported previously as M. hirsutus hosts in Espírito Santo (Culik et al. 2013a;
García Morales et al. 2016; Fornazier et al. 2017), and the other 13 host species found are new M. hirsutus records for this state (Table 1). Highest populations of M. hirsutus were found associated with apical buds of young plants, resulting in deformation of shoots, leaves, and fruits, and death of inflorescences. Deformation of shoots and atrophy of terminal buds associated with high infestations of this mealybug observed in this study are similar to damage by the pest described in other studies (Martínez Rivero 2007; Morais et al. 2015; Fornazier et al. 2017). Hibiscus (n = 30) and cocoa (n = 30) were the most common plants found infested by M. hirsutus, and ornamental hibiscus plants (Hibiscus rosa-sinensis L.; Malvaceae) may be the most important hosts for dissemination of this mealybug in Espírito Santo. Talipariti tiliaceum (L.) Fryxell (Malvaceae) (n = 8) (sea hibiscus) and Coccoloba uvifera (L.) Crantz (Polygonaceae) (seagrape) are other hosts that may be important species for M. hirsutus dissemination because of their use as ornamental plants. Currently Talipariti is composed of 22 taxa that are found from southeastern Asia to Central and South America. Sea hibiscus was previously described as a species of the genus Hibiscus (Malvaceae) (Fryxell 2001), and it occurs from the southern to northeastern Brazilian coast (Moraes & Magenta 2014). Seagrape (Coccoloba uvifera) is widely grown on coastal beaches throughout tropical America and the Caribbean, including southern Florida, where it is also used as a seaside hedge in commercial landscapes (Gilman & Watson 2014).

García Morales et al. 2016; Fornazier et al. 2017), and the other 13 host species found are new M. hirsutus records for this state (Table 1). Highest populations of M. hirsutus were found associated with apical buds of young plants, resulting in deformation of shoots, leaves, and fruits, and death of inflorescences. Deformation of shoots and atrophy of terminal buds associated with high infestations of this mealybug observed in this study are similar to damage by the pest described in other studies (Martínez Rivero 2007; Morais et al. 2015; Fornazier et al. 2017). Hibiscus (n = 30) and cocoa (n = 30) were the most common plants found infested by M. hirsutus, and ornamental hibiscus plants (Hibiscus rosa-sinensis L.; Malvaceae) may be the most important hosts for dissemination of this mealybug in Espírito Santo. Talipariti tiliaceum (L.) Fryxell (Malvaceae) (n = 8) (sea hibiscus) and Coccoloba uvifera (L.) Crantz (Polygonaceae) (seagrape) are other hosts that may be important species for M. hirsutus dissemination because of their use as ornamental plants. Currently Talipariti is composed of 22 taxa that are found from southeastern Asia to Central and South America. Sea hibiscus was previously described as a species of the genus Hibiscus (Malvaceae) (Fryxell 2001), and it occurs from the southern to northeastern Brazilian coast (Moraes & Magenta 2014). Seagrape (Coccoloba uvifera) is widely grown on coastal beaches throughout tropical America and the Caribbean, including southern Florida, where it is also used as a seaside hedge in commercial landscapes (Gilman & Watson 2014).

Plant species from 19 families have been reported as hosts of M. hirsutus in Brazil, including those of economic importance, such as Malvaceae (n = 7) and Fabaceae (n = 6), which are the most important host plant families in Brazil based on number of host plant species (Table 1), although Moraceae and Euphorbiaceae have the highest number of M. hirsutus host species worldwide (García Morales et al. 2016). Thirty-seven plant species are now reported as hosts of M. hirsutus in Brazil.

Although M. hirsutus has a large number of natural enemies (Culik et al. 2013b; García Morales et al. 2016), none were observed in the present study. In Brazil, Anagyrus kamali Moursi (Hymenoptera: Encyrtidae), and Gyranusoidea indica Shafee, Alam & Agarwal (Hymenoptera: Encyrtidae) are reported as parasitoids of M. hirsutus, and Chilocorus nigrita (F.), Cryptolaemus montrouzieri Mulsant, Cycloneda sanguinea (L.), Eriopis (Germar), Exoplectra sp., Harmonia axyridis (Pallas), Tenuisvalvae notata (Mulsant) (all Coleoptera: Coccinellidae), and Ceraceochrysa sp. (Neuroptera: Chrysopidae) are listed as M. hirsutus predators (Culik et al. 2013a). Anagyrus kamali and C. montrouzieri have been the most common natural enemies associated with M. hirsutus in Brazil (Marsaro Junior et al. 2013; Peronti et al. 2016; Negrini et al. 2018). However, there have been no studies in Brazil to evaluate the establishment and efficiency of these natural enemies in agroecosystems where M. hirsutus has caused damage (Morais 2016).

We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and the Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES) for financial support.
Table 1. *Maconellicoccus hirsutus* (Green) (Hemiptera: Pseudococcidae) host plants in Brazil including new records and references.

Family/host plants	Brazilian states (municipalities)	References
Anacardiaceae		
Mangifera indica L.	AL (Maceió)	Broglio et al. (2015)
Spondias lutea L.	AL (Maceió)	Broglio et al. (2015)
Spondias tuberosa Arruda	MA (Paço do Lumiar, São José de Ribamar)	Ramos et al. (2018)
Annonaceae		
Annona muricata L.***	AL (Maceió), RR (Cantá, Normandia), ES (Colatina)	Marsaro Jr. et al. (2013), Broglio et al. (2015), Negrini et al. (2018), present study
Annona squamosa L.***	MA (Paço do Lumiar, São José de Ribamar), RR (Cantá), ES (Pinheiros, Vitória)	Negrini et al. (2018), Ramos et al. (2018), present study
Euphorbiaceae		
Hevea brasiliensis (Wild. ex A. Juss.) Müll. Arg.*	ES (Linhares)	present study
Fabaceae		
Centrolobium paraxene Tul.	RR (Boa Vista)	Marsaro Jr. et al. (2013)
Erytrina variegata L.	PE (Recife)	Melo & Meunier (2017)
Glycine max (L.) Merr.	RR (Boa Vista)	Marsaro Jr. et al. (2013)
Inga edulis Mart.***	RR (Boa Vista), ES (Linhares)	Marsaro Jr. et al. (2013)
Mimosa caesalpinifolia Benth.***	BA (Jequié, Semi arid region), PE (Semi arid region), ES (Linhares, Nova Venécia, São Mateus, Vila Pavão)	Oliveira et al. (2014), Marques et al. (2017), present study
Mimosa tenuiflora (Wild.) Poir.	BA and PE (Semi arid region of Brazil)	Oliveira et al. (2014)
Lamiaceae		
Tectona grandis L.f.	MT (São José de Quatro Marcos)	Peres-Filho et al. (2017)
Lythraceae		
Punica granatum L.**	ES (Viana)	present study
Malpighiaceae		
Malpighia glabra L.	AL (Maceió)	Broglio et al. (2015)
Malpighia paniculifolia L.	MA (Paço do Lumiar, São José de Ribamar)	Ramos et al. (2018)
Malvaceae		
Abelmoschus esculentus (L.) Moench	ES (Cachoeiro de Itapemirim)	Culik et al. (2013a), present study
Hibiscus rosa-sinensis L.***	BA (Camamu, Caravelas, Eunápolis, Jequié, Ibirapuã, Itamarajú, Mucuri, Nova Vitória), MT (unidentified), RR (Boa Vista, Bonfin, Pacaraima), SC (unidentified), SP (Campinas, Jaboticabal, São Carlos), ES (Apaicu, Atlió Vivaquca, Baixo Guandu, Boa Esperança, Bom Jesus do Norte, Castelo, Colatina, Icorna, Itapemirim, Jaguaré, Linhares, Mantenópolis, Marambaia, Linhares, Nova Venécia, São Domingos do Norte, São Gabriel da Palha, São Mateus, Sorejó)	Marsaro Jr. et al. (2013), Silva et al. (2013b), Alexandre et al. (2014), Morais et al. (2015), Peronti et al. (2016), Marques et al. (2017), present study
Talinaria tilacosis (L.) Fryxell**	ES (Vitória, Vila Velha)	present study
Theobroma bicolor Humb. & Bonpl.*	ES (Linhares)	present study
Theobroma cacao L.	BA (Amélia Rodrigues, Camaçari, Camamu, Candeias, Eunápolis, Feira de Santana, Itamarajú, Jequié, Mucuri, Santo Amaro, São Francisco do Conde), ES (Aguia Branca, Atlió Vivaquca, Colatina, Guarapari, Ibirapuã, Jaguaré, João Neiva, Linhares, Nova Venécia, São Domingos do Norte, São Gabriel da Palha, São Mateus, Sooretama)	Silva et al. (2013b), Nakayama & Santos (2014), Fornazier et al. (2017), Marques et al. (2017), present study
Theobroma grandiflorum (Wild. ex Spreng.) Schum.***	AL (Maceió), MA (Paço do Lumiar, São José de Ribamar), ES (Linhares)	Broglio et al. (2015), Ramos et al. (2018), present study
Theobroma speciosum Wild. ex Spreng.*	ES (Linhares)	present study

1Names according to the Catalogue of Life (2018); 2Brazilian states: AL (Alagoas), BA (Bahia), ES (Espírito Santo), MA (Maranhão), MT (Mato Grosso), PE (Pernambuco), RR (Roraima), SC (Santa Catarina), SP (São Paulo); *new host record for *M. hirsutus* (according to García Morales et al. 2016); **new host record for *M. hirsutus* in Brazil; ***new host record for *M. hirsutus* in Espírito Santo, Brazil.
Table 1. (Continued) *Maconellicoccus hirsutus* (Green) (Hemiptera: Pseudococcidae) host plants in Brazil including new records and references.

Family/host plants	Brazilian states (municipalities)	References
Moraceae		
Morus alba L.**	ES (Linhares)	present study
Myrtaceae		
Psidium guajava L.	AL (Maceió), RR (Normandia)	Marsaro Jr. et al. (2013), Broglio et al. (2015)
Oxalidaceae		
Avrerooa carambola L.	AL (Maceió), RR (Cantá, Normandia)	Marsaro Jr. et al. (2013), Broglio et al. (2015), Negrini et al. (2018)
Polygonaceae		
Coccoloba uvifera (L.) L.**	ES (Vitória)	present study
Proteaceae		
Grevillea robusta A. Cunn. ex R. Br.	BA and PE (Semi arid region of Brazil)	Oliveira et al. (2014)
Rosaceae		
Pyrus sp.	BA and PE (Semi arid region of Brazil)	Oliveira et al. (2014)
Rubiaceae		
Coffeea conophora Pierre ex A.Froehner	BA (Mucuri)	Silva et al. (2013b)
Ixora chinensis Lam. (syn. *Ixora coccinea* Curtis)	BA (Metropolitan region oficial Salvador)	Silva et al. (2013a)
Mussaenda erythropylla Schumach. & Thonn	BA (Metropolitan official region of Salvador)	Silva et al. (2013a)
Rutaceae		
Citrus sinensis (L.) Osbeck***	RR (Normandia), ES (Alegre, Jerônimo Monteiro, João Neiva)	Marsaro Jr. et al. (2013), present study
Solanaceae		
Solanum lycopersicum L.	RR (Boa Vista)	Marsaro Jr. et al. (2013)
Solanum americanum Mill.	ES (Cachoeiro de Itapemirim)	Culik et al. (2013a), present study
Talinaceae		
Talinum paniculatum (Jacq.) Gaertn.	BA and PE (Semi arid region of Brazil)	Oliveira et al. (2014)
Vitaceae		
Vitis vinifera L.	BA and PE (Semi arid region of Brazil)	Oliveira et al. (2014)

*Names according to the Catalogue of Life (2018); Brazilian states: AL (Alagoas), BA (Bahia), ES (Espírito Santo), MA (Maranhão), MT (Mato Grosso), PE (Pernambuco), RR (Roraima), SC (Santa Catarina), SP (São Paulo); *new host record for *M. hirsutus* (according to García Morales et al. 2016); **new host record for *M. hirsutus* in Brazil; ***new host record for *M. hirsutus* in Espírito Santo, Brazil.
Summary

Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae) is an invasive and highly polyphagous pest with a worldwide distribution in tropical and subtropical regions. This study reports the geographical distribution, natural enemies, and host plant species of *M. hirsutus* in Brazil 8 years after its first report in this country. *Maconellicoccus hirsutus* is now distributed in 11 Brazilian states, in all major geographic regions of the country. Samples (n = 103) of plants infested by *M. hirsutus* were collected in the state of Espírito Santo, Brazil, with 96% of them found within the isotherm 23 to 27 °C. *Hevea brasiliensis* (Euphorbiaceae), *Theobroma bicolor* (Malvaceae), and *T. speciosum* (Malvaceae) are reported for the first time as hosts of *M. hirsutus*, and *Coccoloba uvifera* (Polygonaceae), *Morus alba* (Moraceae), *Punica granatum* (Lythraceae), and *Talipariti tilicaceum* (Malvaceae) are new hosts of *M. hirsutus* in Brazil. Thirty-seven host plant species of *M. hirsutus* are now confirmed in Brazil.

Key Words: geographical spread; *Hevea brasiliensis*; pink hibiscus mealybug; *Theobroma bicolor*; *Theobroma speciosum*

References Cited

Alexandre F, Souza GP, Ebel J, Vieira RDA, Krueger R. 2014. Levantamento de detecção da praga *Maconellicoccus hirsutus* Green (cochonilha rosada do hibisco), em cultivos urbanos de híbridos e ornamentais em Santa Catarina, pp. 156 In Anais da 5th Conferência Nacional de Defesa Agropecuária. Florianópolis, 25–28 Nov 2014. http://www.vcnda-sc.com.br/downloads/anais_V_conferencia.pdf (last accessed 17 Jan 2019).

Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Gabinete do Ministro. 2013. Instrução Normativa Nº 59, de 18 de dezembro de 2013. Diário Oficial da República Federativa do Brasil, Brasília, Distrito Federal, Brazil, 19 de dezembro de 2013.

Broglio SMF, Cordero EP, Santos JM, Micheletti LB. 2015. Registro da cochonilha rosada-do-hibisco infestando frutíferas em Maceió, Alagoas, Brasil. Revista Proteção Vegetal 22: 166–182.

Melo LL, Meunier IMJ. 2017. Evolução da arborização de acompanhamento viário em cinco bairros de Recife - PE. Revista de Geografia, Recife 34: 264–281.

Michaud JP, Evans GA. 2000. Current status of pink hibiscus mealybug in Puerto Rico including a key to parasitoid species. Florida Entomologist 83: 97–101.

Miller DR. 1999. Identification of the pink hibiscus mealybug, *Maconellicoccus hirsutus* (Green) (Hemiptera: Pseudococcidae) and its recent range expansion in South America and invasive pest management in general. Journal of Pest Science 73: 413–418.

Melo LL, Meunier IMJ. 2017. Evolução da arborização de acompanhamento viário em cinco bairros de Recife - PE. Revista de Geografia, Recife 34: 264–281.

Moraes EG. 2016. Distribuição, impactos e manejo da cochonilha-rosada, *Maconellicoccus hirsutus*, no Brasil, pp. 50 In 26th Congresso Brasileiro de Entomologia. Maceió, Alagoas, Brazil, 13–17 Mar 2016.

Morais EG, Peronti ALBG, Marsaro Júnior AL, Amaro GC. 2015. Cochonilha rosada-do-hibisco, *Maconellicoccus hirsutus* (Green) (Hemiptera: Sternorrhyncha: Pseudococcidae). Inseta Mundi 13: 189–203.

Moura ES, Rocha P, Peronti AL, Moura ES, Rocha P, Peronti AL, Gomes MI. 2016. *Maconellicoccus hirsutus* (Green) (Hemiptera: Pseudococcidae) and its recent range expansion in South America and invasive pest management in general. Journal of Pest Science 73: 413–418.

Nakayama K, Virgens Filho AC. 2014. Ocorrência da cochonilha rosada em caucais da Bahia e Espírito Santo. http://www.ceplac.gov.br/estricto/nerNotici a.asp?id=2159 (last accessed 17 Jan 2019).

Negrini M, Moraes EG, Batista JR, Chagas EA. 2018. Population fluctuations in pink hibiscus mealybug and its natural enemies in Annona squamosa (Annonaceae) in Roraima, Brazil. Acta Amazonica 48: 22–31.

Oliveira Júnior AL, Oliveira Júnior AL, Oliveira MO, Pereira VS, Freitas MTS, Oliveira JF, Aquino A. 2014. Registro de ocorrência da cochonilha rosada *Maconellicoccus hirsutus* no Semiárido Brasileiro, In 25th Congresso Brasileiro de Entomologia. Goiânia, Goiás, 14-18 Sep 2014. https://aoinfo.cnptia.embrapa.br/digital/bitstream/item/117140/1/Eudes-13-cpatsa.pdf (last accessed 17 Jan 2019).
Peres-Filho O, Ben-Dov Y, Wolff VRS, Dorval A, Souza MD. 2017. Maconellicoccus hirsutus (Green) register in teak forest stands in the Mato Grosso State, Brazil. Floresta e Ambiente 24: e20150157. doi.org/10.1590/2179-8087.015715

Peronti ALBG, Martinelli NM, Alexandrino JG, Marsaro Júnior AL, Penteado-Dias AM, Almeida LM. 2016. Natural enemies associated with Maconellicoccus hirsutus (Hemiptera: Pseudococcidae) in the state of São Paulo, Brazil. Florida Entomologist 99: 21–25.

Ramos ASJC, Peronti ALBG, Kondo T, Lemos RNS. 2018. First record of Crypticerca zeteki (Cockerell, 1914) (Monophlebidae) in Brazil and Maconellicoccus hirsutus (Green, 1908) (Pseudococcidae) in the state of Maranhão. Brazilian Journal of Biology 78: 87–90.

Sagarra LA, Peterkin DD. 1999. Invasion of the Caribbean by the hibiscus mealybug, Maconellicoccus hirsutus Green (Homoptera: Pseudococcidae). Phytoprotection 80: 103–113.

Silva SXB, Nunes MCA, Guimarães LP, Peronti ALBG, Barreto CR, Dias MCV. 2013a. Serviço de vigilância epidemiológica detecta cochonilha rosada do hibisco no estado da Bahia, Brasil, pp. 201–202 In Anais da IV Conferência Nacional de Defesa Agropecuária. Belém, Brazil, 1–4 Oct 2013. https://www.dropbox.com/sh/h94f9kli65z9aw2/AAAa9A02BAiFKXe88rgSwzEda/2013%2009%2028%20anais.pdf?dl=0 (last accessed 25 Jan 2019).

Souza CAS, Martins DS, Aguilar MAG, Siqueira PR, Neto ES. 2014. Primeira ocorrência de cochonilha-rosada [Maconellicoccus hirsutus (Green) Hemiptera: Pseudococcidae] em plantas de cacau no Brasil. In Anais do 23th Congresso Brasileiro de Fruticultura. Cuiabá, Mato Grosso, Brazil, 24–29 Aug 2014.

Tambasco FJ, Sá LAN, Nardo EAB, Tavares MT. 2000. Cochonilha rosada, Maconellicoccus hirsutus (Green): uma praga de importância quarentenária já se encontra na Guiana Inglesa. Floresta 30: 85–93.