Potential of the Compounds from Bixa orellana Purified Annatto Oil and Its Granules (Chronic®) against Dyslipidemia and Inflammatory Diseases: In Silico Studies with Geranylgeraniol and Tocotrienols

Mateus Alves Batista 1, Abrahão Victor Tavares de Lima Teixeira dos Santos 2, Luiz Fernando Moreira 2, Indira Ramos Senna Souza 3, Heitor Ribeiro da Silva 2, Arlindo César Matias Pereira 4, Lorane Izabel da Silva Hage-Melim 1 and José Carlos Tavares Carvalho 2,*

Abstract: Some significant compounds present in annatto are geranylgeraniol and tocotrienols. These compounds have beneficial effects against hyperlipidemia and chronic diseases, where oxidative stress and inflammation are present, but the exact mechanism of action of such activities is still a subject of research. This study aimed to evaluate possible mechanisms of action that could be underlying the activities of these molecules. For this, in silico approaches such as ligand topology (PASS and PreTox-II) and molecular docking with the software GOLD were used. Additionally, we screened some pharmacokinetic and toxicological parameters using the servers PreADMET, SwissADME, and SEA servers. The results corroborate the antidyslipidemia and anti-inflammatory activities of geranylgeraniol and tocotrienols. Notably, some new mechanisms of action were predicted to be potentially underlying the activities of these compounds, including inhibition of squalene monooxygenase, lanoster synthase, and phospholipase A2. These results give new insight into new mechanisms of action involved in these molecules from annatto and Chronic®.

Keywords: Bixa orellana; oil; inflammatory process; geranylgeraniol; tocotrienol

1. Introduction

Lipid disorders, such as dyslipidemia, constitute a significant concern among the overall population and researchers due to their role in hyperlipidemia, hypertension, atherosclerosis, and even insulin resistance. Such aggravation is caused by increased levels of total cholesterol and low-density lipoprotein (LDL) and decreased levels of high-density lipoprotein, which together raise the risk of cardiovascular diseases and metabolic abnormalities [1–4].

Bixa orellana is the plant species known as “annatto” and “achiote”. This species is studied for some health issues, including inflammation-related conditions and dyslipidemias [5–7]. Such health benefits can be at least partly due to the presence of tocotrienols and geranylgeraniol from its composition. Tocotrienols are unsaturated forms of vitamin E known for anti-inflammatory, antioxidant, and lipid-lowering activities, which are higher...
than those from tocopherols—their saturated counterparts, also parts of the vitamin E group [8,9]. In turn, geranylgeraniol is an intermediate in the biosynthesis of cholesterol, and it is believed to regulate the activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase negatively.

Both tocotrienols and geranylgeraniol are research subjects due to their biological activities, including cardioprotective and neuroprotective effects, hypolipidemic activity, metabolic disorder prevention, and antitumoral activity [10–12]. A fundamental approach in the process of drug discovery is pharmaceutical chemistry. A research can be more efficient through pharmaceutical chemistry by decreasing the necessary time, funds, and number of animals needed.

Some of the parameters often screened in potential new drugs through this approach are biological activity prediction, pharmacokinetic profile, and toxicological potential [13,14]. Hence, by using pharmaceutical chemistry tools, the purpose of this study was to evaluate the pharmaceutical potential of tocotrienols and geranylgeraniol for their main biological activities and possible mechanisms of action. This perspective could hint at safer medications compared with the standard ones.

2. Results and Discussion
2.1. Molecules’ Structure Obtention and Biological Activity Prediction

Tocotrienols and geranylgeraniol are molecules well described and studied in the literature [15,16]. Their structures were obtained from the PubChem database (Figure 1A) and then assessed for possible biological activities and mechanisms of action using the server PASS (prediction of activity spectra for substances) [17–20].

Figure 1. (A) Molecular structure of geranylgeraniol and tocotrienols. (B) Targets used in the docking simulation with their respective PDB ID. 1W6K: lanosterol synthase complexed with lanosterol; 6C6N: squalene monoxygenase complexed with FAD and CPMPD-4; 1HW9: HMG-CoA reductase complexed with simvastatin; 5IKQ: cyclooxygenase-2 complexed with meclofenamic acid; 5G3N: secreted phospholipase A2 complexed with the inhibitor Azd2716.
Geranylgeraniol had a high probability of activity (Pa) values (>0.7) for the following activities: mucous membrane protection (0.953), lipid metabolism regulation (0.885), TNF expression inhibitor (0.840), antilulcerative (0.770), and antineoplastic (0.743). Still notably, the hypolipidemic activity Pa was 0.686, and antihypercholesterolemic Pa was 0.570, both higher than the probability of inactivity (Pi) (0.015 for both).

Tocotrienols also had significant Pa values for lipid peroxidase inhibition (from 0.941 to 0.989), antioxidant activity (from 0.913 to 0.973), anti-inflammatory activity (from 0.813 to 0.866), antihypercholesterolemic activity (from 0.803 to 0.962), cholesterol synthesis inhibition (from 0.663 to 0.702), among other related activities (Table 1). There are some variations among the isomers, but the class consistently shows high Pa’s tendency to improve the blood lipid profile. It is important to notice that in annatto, the most abundant isomer is δ, according to some authors, which can be up to 90% of the isomer composition [21].

Table 1. Biological activity prediction of the compounds according to the PASS server.

Molecule	Pa	Pi	Activity Prediction
Geranylgeraniol	0.953	0.003	Mucous membrane protection
	0.885	0.004	Lipid metabolism regulation
	0.840	0.003	TNF inhibitor
	0.770	0.004	Antiulcerative
	0.743	0.049	Antineoplastic
	0.686	0.015	Hypolipidemic
	0.636	0.007	NF kappa B regulator
	0.643	0.024	Anti-inflammatory
	0.570	0.015	Antihypercholesterolemic
	0.549	0.005	Antioxidant
	0.538	0.03	Cholesterol antagonist
	0.498	0.019	Antineoplastic
	0.437	0.007	Cholesterol synthesis inhibitor
	0.989	0.001	Lipid peroxidase inhibitor
	0.973	0.002	Antioxidant
	0.962	0.002	Antihypercholesterolemic
	0.900	0.005	Treatment of acute neural disorders
	0.892	0.005	Cerebral anti-ischemic
	0.866	0.005	Anti-inflammatory
	0.863	0.003	Peroxidase inhibitor
	0.763	0.005	Hepatoprotector
	0.733	0.034	Mucous membrane protection
	0.713	0.008	Cholesterol antagonist
	0.702	0.001	Cholesterol synthesis inhibition
	0.685	0.003	NOS2 expression inhibition
	0.621	0.009	Antineoplastic (breast cancer)
	0.456	0.033	NF kappa B inhibitor
	0.426	0.031	Atherosclerosis treatment
Molecule	Pa	Pi	Activity Prediction
-----------------	-----	-----	--------------------------------------
Molecule	0.435	0.046	TNF inhibitor
0.397	0.044		Antipsoriasis
0.255	0.017		Phospholipase A₂ inhibition
0.957	0.002		Lipid peroxidase inhibition
0.951	0.002		Antioxidant
0.951	0.002		Antihypercholesterolemic
0.881	0.004		Hypolipidemic
0.835	0.005		Anti-inflammatory
0.812	0.005		Anticarcinogenic
0.787	0.004		Antiulcerative
0.744	0.002		NOS₂ expression inhibition
0.738	0.040		Mucous membrane protection
0.692	0.001		Cholesterol synthesis inhibition
0.714	0.026		Cerebral anti-ischemic
0.685	0.008		Hepatoprotector
0.648	0.035		Antineoplastic
0.602	0.019		Cholesterol antagonist
0.475	0.027		Antipsoriasis
0.481	0.034		TNF inhibitor
0.355	0.010		NF kappa B inhibitor
0.271	0.026		Lipoprotein disorder treatment
0.198	0.025		Phospholipase A₂ inhibition
0.977	0.002		Lipid peroxidase inhibition
0.953	0.002		Antioxidant
0.944	0.002		Antihypercholesterolemic
0.882	0.004		Hypolipidemic
0.846	0.005		Anti-inflammatory
0.811	0.005		Anticarcinogenic
0.776	0.017		Cerebral anti-ischemic
0.762	0.004		Antiulcerative
0.686	0.001		Cholesterol synthesis inhibitor
0.682	0.008		Hepatoprotector
0.719	0.008		Mucous membrane protection
0.683	0.003		NOS₂ expression inhibition
0.593	0.011		Antineoplastic (breast cancer)
0.452	0.041		TNF inhibitor
0.464	0.061		Lipid metabolism inhibitor
0.402	0.043		Antipsoriasis
0.271	0.014		NF kappa B inhibitor
0.230	0.016		Phospholipase A₂ inhibition
0.280	0.091		Atherosclerosis treatment

β-tocotrienol

γ-tocotrienol
Table 1. Cont.

Molecule	Pa	Pi	Activity Prediction
δ-tocotrienol	0.941	0.002	Lipid peroxidase inhibition
	0.913	0.003	Antioxidant
	0.813	0.006	Anti-inflammatory
	0.803	0.005	Antihypercholesterolemic
	0.791	0.008	Hypolipidemic
	0.789	0.022	Mucous membrane protection
	0.745	0.002	NOS2 expression inhibition
	0.683	0.005	Antiulcerative
	0.663	0.001	Cholesterol synthesis inhibition
	0.650	0.011	Anticarcinogenic
	0.642	0.036	Antineoplastic
	0.589	0.013	Hepatoprotector
	0.522	0.025	TNF inhibition
	0.512	0.027	Antithrombotic
	0.515	0.041	Lipid metabolism regulation
	0.458	0.03	Antipsoriasis
	0.444	0.147	Cerebral anti-ischemic
	0.385	0.007	NF kappa B inhibitor
	0.224	0.038	Lipoprotein disorder regulator
	0.201	0.024	Phospholipase A₂ inhibitor

To corroborate the results predicted by PASS, we further assessed these compounds through SEA (similarity ensemble approach) [22,23]. The outputs of this server are shown in Table 2. Geranylgeraniol had significant values (p-value < 10^{-10} or max Tanimoto coefficient (MaxTC) > 0.6) for squalene monooxygenase (p-value = 2.6×10^{-27}, MaxTC = 0.65) and lanosterol synthase (p-value = 4×10^{-19}, MaxTC = 0.40) interaction probability based on similarity with other compounds. Additionally, the server predicted significant interaction probability with phospholipase A₂ (p-value = 7.3×10^{-18}, MaxTC = 0.3). Tocotrienols had a lower degree of similarity with compounds able to interact with these targets compared with geranylgeraniol; however, the values were still in a considerable range. For squalene monooxygenase interaction, p-values ranged from 2.2×10^{-08} to 8.6×10^{-09}, and MaxTC ranged from 0.30 to 0.31; for lanosterol synthase, p-values varied from 1.2×10^{-06} to 2.0×10^{-08}, and MaxTC varied from 0.30 to 0.31. Finally, for phospholipase A₂, p-values varied from 3×10^{-09} to 6.6×10^{-09}, and MaxTC varied from 0.3 to 0.31.

Table 2. Prediction outputs of the molecules assessed with ligands from the SEA server.

Molecule	Target	p-Value	Max TC
Geranylgeraniol	Squalene monooxygenase	2.641×10^{-27}	0.65
	Lanosterol synthase	4.01×10^{-19}	0.40
	Phospholipase A₂	7.305×10^{-18}	0.31
	Protein-S-isoprenylcysteine O-methyltransferase	1.703×10^{-65}	0.53
	Geranylgeranyl pyrophosphate synthase	1.409×10^{-61}	0.50
The outputs predicted by PASS and SEA collectively point to these molecules’ tendency to improve the blood lipid profile. However, while in PASS, the most favorable results were achieved by tocotrienols, the highest similarity outputs suggesting that biological action was achieved by geranylgeraniol in SEA. In SEA, the probability of squalene monooxygenase and lanosterol synthase inhibition by tocotrienols was not negligible but was still not high enough. However, it should be kept in mind that these two mechanisms of action are not the only ones that could decrease cholesterol biosynthesis and improve
the blood lipid profile. In fact, tocotrienols have been reported to inhibit the mevalonate pathway of HMG-CoA reductase, a pivotal player in cholesterol biosynthesis [24]. While geranylgeraniol was predicted to inhibit lanosterol synthase and monooxygenase in SEA, this was not predicted by PASS. This divergence between the servers could be a negative indicator of these targets, or it could be due to differences in the servers’ training sets, which could give different outcomes.

Reports support a potential role in improving blood lipid profile by geranylgeraniol. For instance, just like tocotrienols, this molecule was shown to decrease HMG-CoA reductase activity [25,26]. Considering the role of this enzyme in cholesterol biosynthesis, this could be a mechanism in which geranylgeraniol exerts its action. Our group reported that the treatment with geranylgeraniol improved blood lipid parameters; however, the molecule was not administrated alone but with tocotrienols [8]. Altogether, the in silico prediction with its known mechanism of action justifies future studies with this molecule alone in treating blood dyslipidemia in vivo.

As mentioned previously, it is believed that this activity may be at least in part due to HMG-CoA reductase inhibition based on previous studies. However, we sought to assess whether more mechanisms were underlying such activity. Hence, molecular docking was performed with the most promising targets.

2.2. Molecular Docking

Molecular docking is a powerful tool in computation chemistry that allows researchers to assess the molecular interactions’ type and intensity between a ligand and a target biomolecule within an active site [27]. A total of five macromolecular targets acquired from PDB were used in GOLD without the cocrystalized ligands (Figure 1B). Three of them are involved in cholesterol metabolism (OSC, SQLE, and HMGR), and two are directly involved in inflammation (PLA2 and COX-2).

Lanosterol synthase (a.k.a. oxidosqualene cyclase (OSC)) is a membrane-bound protein responsible for synthesizing steroids in mammals. Its cyclization reaction forms lanosterol. Due to its role in the synthesis of steroids, this protein is considered a target to hypolipidemic drugs [28]. When complexed with OSC, lanosterol forms hydrogen bonds with the amino acid residues Trp581 and Asp455 [29].

In the docking performed with OSC, geranylgeraniol and tocotrienol had relevant interactions with the receptors’ active-site amino acid residues. The details of such interactions are shown in Table 3, including the interaction type, distances, and docking scores.

Table 3. Docking interactions of the molecules with OSC.

Molecule	Amino Acid	Ligand Atom	Category	Types	Distance (Å)	Score	
Geranylgeraniol	A:ASP455	H25	Hydrogen bond	Conventional hydrogen bond	2.08	2.65	2.81
	A:TRP581	H28	Pi-sigma	2.87			
	A:VAL236	Ligand	5.36				
	A:VAL453	C14	Hydrophobic	Alkyl	3.94	87.88	
	A:PRO337	C16	4.90				
	A:ILE338	C16	5.25				
	A:ILE524	C20	3.70				
	A:CYS233	C21	4.53				
	A:ILE524	C20	4.57				
Molecule	Amino Acid	Ligand Atom	Category	Types	Distance (Å)	Score	
----------	------------	-------------	----------------	-----------	--------------	-------	
A:TRP192					5.12		
A:TRP192		C20			5.40		
A:TRP192		C21			4.63		
A:HIS232	Ligand			Pi-alkyl	4.24		
A:PHE444		C14			4.92		
A:TYR503					4.76		
A:PHE521		C20			3.93		
A:PHE696	Ligand	C15			3.91		
A:ASP455		H39	Hydrogen bond	Conventional hydrogen bond	1.86		
A:TRP581				Pi-pi stackedPi-pi T-shaped	4.38	4.26	
A:TRP387	Ligand				5.60		
A:VAL236					5.28		
A:PRO337					5.33		
A:VAL453	C11				4.26		
A:ILE338	Ligand				5.18		
A:VAL236					5.03		
A:PRO337	C26				4.99		
A:ILE338					4.29		
A:ILE524	C30	C31			3.55		
A:TRP192		C30			5.29		
		C31					
∝-tocotrienol	ligand		Hydrophobic		4.84	108.40	
A:HIS232		C16			5.07		
	ligand				5.24		
		C26			5.31		
A:TRP387		C13			4.69		
A:PHE444		C16			4.93		
A:TYR503	Ligand				4.96		
A:PHE521		C30			4.30		
A:TRP581	Ligand	C14			4.46		
A:PHE696	ligand				4.55		
		C31			5.39		
Table 3. Cont.

Molecule	Amino Acid	Ligand Atom	Category	Types	Distance (Å)	Score
β-tocotrienol	A:ASP455	H39	Hydrogen bond	Conventional hydrogen bond	2.17	
	A:TRP581			Pi-pi stacked	4.80	
	A:VAL236				4.48	
	A:PRO337				4.72	
	A:ILE702	C20			4.41	
	A:ILE338		Ligand	Alkyl	5.15	
	A:PRO337	C25			4.40	
	A:ILE338				4.09	
	A:CYS233	C29			4.57	
	A:ILE524				3.70	
	A:TRP192	C29	Ligand		5.17	
		C30			5.46	
					5.08	
					5.26	106.85
	A:TRP230	C13	Hydrophobic		4.85	
		C29			5.01	
		C13			4.70	
	A:HIS232	Ligand			4.15	
		C25		Pi-alkyl	5.17	
	A:TRP387	C11	Ligand		5.33	
	A:PHE444	C11	Ligand		4.73	
	A:TYR503	C13	Ligand		4.59	
	A:PHE521	C30	Ligand		3.69	
	A:TRP581	C13	Ligand		4.02	
	A:TRP581	C15	Ligand		4.97	
	A:PHE696	C20	Ligand		5.19	
	A:VAL543	Ligand			3.83	
	A:ASP455	H36	Hydrogen bond	Conventional hydrogen bond	5.32	
γ-tocotrienol	A:TRP581			Pi-pi stacked	1.83	
	A:TRP581				4.31	
	A:TRP581				4.18	
	A:TRP387		Ligand	Hydrophobic	4.63	
	A:VAL236		Ligand	Alkyl	5.19	
	A:PRO337		Ligand	Alkyl	5.46	
	A:ILE338		Ligand	Alkyl	5.15	
	A:VAL236		Ligand	Alkyl	5.07	
Table 3. Cont.

Molecule	Amino Acid	Ligand Atom	Category	Types	Distance (Å)	Score
A:ILE338	C24				4.37	
A:ILE524	C24				3.63	
A:TRP192	C28				4.59	
	C29				5.20	
		Ligand			4.75	
A:HIS232	C14				5.09	
	C24			Ligand	4.95	
	C28				4.77	
A:TRP387	C30				4.90	
A:PHE444	C12				4.17	
	C14				5.14	
A:TYR503	C12			Ligand	5.01	
	C14				5.30	
A:PHE521	C28			Ligand	4.18	
	C29				3.59	
A:TRP581	C12			Ligand	4.61	
	C14				5.42	
	C29			Ligand	4.80	
A:PHE696	C14				4.34	
	C29				5.23	
A:ASP455	H36		Hydrogen bond	Conventional hydrogen bond	1.66	
A:TRP581					4.28	
A:TRP387	Ligand			Pi-pi stacked	4.15	
A:PRO337				Pi-pi T-shaped	4.80	
A:ILE338					5.00	
A:VAL236	C24				5.47	
A:PRO337					5.00	
A:ILE338	C28				4.58	
A:CYS233	C28				4.29	
				Hydrophobic	3.72	105.88
					4.78	
A:TRP192	Ligand				5.01	
A:HIS232	C12				5.31	
	C14				4.85	
A:PHE444	Ligand				4.95	
	C14				5.03	
	C29				4.48	
A:TYR503	C29				3.76	
	C29				5.22	
	C29				5.42	
In Figure 2, it is possible to observe the docking pose in two and three dimensions. It is observed that all molecules could interact with the amino acid residues Asp455 and Trp581 (hydrogen bonds), the same amino acids that can interact with the inhibitor of the enzyme Ro 48-8071, which is considered a structural base for the design of OSC inhibitors. However, the inhibitor performs hydrophobic interactions with Trp581 instead of hydrogen bonds [29].

Molecule	Amino Acid	Ligand Atom	Category	Types	Distance (Å)	Score
A:PHE521					3.92	
A:TRP581		Ligand			5.18	
A:PHE696			H55		5.18	
					4.32	

Figure 2. Cont.
Like Ro 48-8071, the molecules could also interact with the residues Trp192 and Phe521, indicating that they can potentially inhibit this enzyme. β-tocotrienol could interact with all the residues mentioned so far plus Trp230, thus performing the same interactions of Ro 48-8071.

Squalene monooxygenase (a.k.a. squalene epoxidase (SQLE)) is the second limiting enzyme in cholesterol biosynthesis accountable to catalyze the conversion of squalene to 2,3(S)-oxidosqualene using flavin adenosine dinucleotide (FAD) as a coenzyme. SQLE inhibition is considered a possible mechanism in treating hypercholesterolemia, fungal infections, and some types of cancer [30]. The docking data with SQLE are shown in Table 4, and the docking poses are depicted in Figure 3.
Inhibition is considered a possible mechanism in treating hypercholesterolemia, fungal infections, and some types of cancer [30]. The docking data with SQLE are shown in Table 4, and the docking poses are depicted in Figure 3.

Table 4. Docking interactions of the molecules with SQLE.

Molecule	Amino Acid	Ligand Atom	Category	Types	Distance (Å)	Score
Geranylgeraniol	A:GLY132	O24	Hydrogen	Bond	2.83	74.14
(74.14)	A:GLU153	H55			1.70	
	A:VAL133		Hydrophobic	Alkyl	4.06	
	A:VAL163				5.13	
	A:MET421				5.04	
α-tocotrienol	A:GLY146	O24	Hydrogen	Bond	3.03	78.60
(80.60)	A:GLU158	H55			1.73	
	A:VAL133		Hydrophobic	Alkyl	4.05	
	A:VAL163				5.13	
β-tocotrienol	A:GLY132	O24	Hydrogen	Bond	2.83	88.43
(92.56)	A:GLU153	H55			1.70	
	A:VAL133		Hydrophobic	Alkyl	4.06	
	A:VAL163				5.13	
γ-tocotrienol	A:GLY132	O24	Hydrogen	Bond	2.83	87.05
(87.05)	A:GLU153	H55			1.70	
	A:VAL133		Hydrophobic	Alkyl	4.06	

Figure 3. Two-dimensional and three-dimensional representations of the best docking poses calculated by GOLD with SQLE (PDB ID: 6C6N). Pictures produced with Discovery Studio.
Table 4. Docking interactions of the molecules with SQLE.

Molecule	Amino Acid	Ligand Atom	Category	Types	Distance (Å)	Score
Geranylgeraniol	A:GLY132	O24	Hydrogen bond	Conventional hydrogen bond	2.83	
	A:GLU153	H55			1.70	
	A:VAL133				4.06	
	A:VAL163				5.13	
	A:MET421				5.04	
	A:LEU134	C15	Hydrophobic	Alkyl	4.41	74.14
	A:VAL163	C16			4.56	
		C20			4.05	
	A:PRO415	C21			4.27	
α-tocotrienol	A:VAL133				4.33	
	A:VAL163				5.27	
	A:MET421	C11			4.42	
	A:PRO415	C13			3.96	
	A:VAL163	C14	Hydrophobic	Alkyl	3.71	80.60
	A:LEU287	C16			4.19	
	A:VAL133	C16			4.70	
	A:VAL129	C30			4.93	
	A:ILE152	C30			5.02	
	A:VAL250				4.05	
	A:ARG154	C31			4.14	
	A:VAL249				4.20	
	A:His226				4.96	
	A:VAL163				4.36	
β-tocotrienol	A:VAL133				5.10	
	A:VAL163				4.65	
	A:PRO415				5.00	
	A:PRO415				4.55	
	A:ALA424				4.92	
	A:VAL133	C13			4.72	
	A:MET421		Hydrophobic	Alkyl	3.84	
	A:VAL163	C15			4.39	
	A:PRO415	C20			5.43	92.56
	A:LEU345				4.71	
	A:PRO415				4.73	
	A:PRO415				4.76	
	A:MET388	C25			5.16	
	A:PRO415				4.75	
	A:PRO415				4.32	
	A:VAL163				4.76	
	A:MET421	C29			4.47	
	A:PRO415				4.60	
The aromatic groups of the ligand complexed with SQLE (PDB ID: 6C6N) perform nonpolar interactions with the amino acid residues Asp166, Tyr195, Ala322, Leu333, Tyr335, Pro415, Leu416, and Gly418 [30]. Of these residues, only Pro415 could interact with all the molecules tested (hydrophobic interaction) except for δ-tocotrienol. However, other interactions were observed with different amino acid residues. β-tocotrienol was the compound with more interactions with Pro415 (six hydrophobic interactions) and had the highest docking score (92.56).

It is believed that one of the main targets for the hypocholesterolemic activity of tocotrienols is HMG-CoA reductase. This enzyme catalyzes the rate-limiting step in cholesterol biosynthesis [31] and is also targeted by statins, although these molecules inhibit its activity in a different way [8]. As mentioned, there are some reports of HMGR inhibition by geranylgeraniol as well. Here we sought to discover whether the inhibition of these
molecules could involve direct binding to HMGR. The docking interactions are detailed in Table 5 and depicted in Figure 4. The results show that the molecules interacted with the amino acid residues Leu562, Leu853, Ala856, and Leu857 through hydrophobic interactions. It is observed that the highest number of interactions and docking score were obtained by γ-tocotrienol (17 interactions; 57.77 docking score), while geranylgeraniol had the lowest (12 and 51.47, respectively).

Molecule (docking score)

Molecule	2D	3D
Geranylgeraniol	(51.47)	
α-tocotrienol	(55.05)	
β-tocotrienol	(56.19)	

Figure 4. Cont.
γ-tocotrienol (57.77)

δ-tocotrienol (56.59)

Figure 4. Two-dimensional and three-dimensional representations of the best docking poses calculated by GOLD with HMG-CoA reductase. Pictures produced with Discovery Studio.

Table 5. Docking interactions of the molecules with HMG-CoA reductase.

Molecule	Amino Acid	Ligand Atom	Category	Types	Distance (Å)	Score
Geranylgeraniol	CYS561	C9	Hydrophobic	Alkyl	4.49	
	ALA564	C17			5.46	
	ALA564	C20			3.30	
	ALA564	C21			3.71	
	ALA856	C17			4.86	
	LEU853	C16			3.49	
	LEU562	C5			4.21	
	LEU562	C15			3.83	
	LEU853	C16			4.26	
	CYS561	C20			3.86	
	HIS752	C5		Pi-alkyl	4.36	51.47
	HIS752	C15			4.97	
α-tocotrienol	CYS561	C22	Hydrophobic	Alkyl	4.18	
	ALA564	C31			3.51	
	ALA856	C27			5.19	
	ALA856	C26			3.30	
Table 5. Cont.

Molecule	Amino Acid	Ligand Atom	Category	Types	Distance (Å)	Score
LEU853	LEU853	C9			5.05	
LEU857	LEU857	C13			4.29	
LEU853	LEU853	C14			4.63	
LEU857	LEU857	C17			4.30	
LEU853	LEU853	C21			3.90	
LEU853	LEU853	C26			4.73	
HIS752	HIS752	C9		Pi-alkyl	5.03	
	LEU853	C13			4.37	
	LEU853	C17			4.95	
	LEU853	C21			5.15	
β-tocotrienol	CYS561	C21			4.31	
	ALA564	C26			4.40	
	ALA564	C29			4.37	
	ALA856	C25			4.15	
	LEU853	C9		Alkyl	5.33	
	LEU853	C13		Hydrophobic	4.56	56.19
	LEU853	C16			4.20	
	LEU853	C20			4.19	
	LEU562	C20			3.92	
	ARG568	C30			3.97	
	HIS752	C9			5.32	
	HIS752	C16		Pi-alkyl	4.53	
	LEU853	C20			4.71	
	LEU853	C20			5.35	
γ-tocotrienol	CYS561	C20			4.15	
	ALA564	C25			4.97	
	ALA564	C28			4.87	
	ALA856	C24			3.34	
	ALA856	C29			3.70	
	LEU853	C9		Alkyl	3.32	
	LEU853	C12		Hydrophobic	4.68	57.77
	LEU853	C15			4.41	
	LEU853	C15			4.11	
	LEU562	C19			4.04	
	CY561	C28			3.75	
	LEU857	C30			4.24	
	HIS752	C9		Pi-alkyl	4.88	
	LEU853	C15			4.40	
	LEU853	C19			5.06	
	LEU853	Anel Ar.			5.01	
Inflammation is tightly associated with lipid and metabolic disturbances [32–34]. According to the results predicted by PASS and SEA, geranylgeraniol and tocotrienols may also decrease inflammation. In accordance with our results, it has been reported that geranylgeraniol suppresses the expression of interleukin-1 receptor-associated kinase-1 (IRAK1) and tumor necrosis factor receptor-associated factor 6 (TRAF6), consequently preventing NF-κB excessive activation in LPS-induced inflammatory response in THP-1 cells. In addition, tocotrienols are thought to exert their effects also in part by decreasing the inflammatory cascade [35–40].

Since SEA predicted the interaction of all the molecules with phospholipase A2, we performed a docking with this enzyme. We also performed docking with COX-2 because it is a common target for anti-inflammatory compounds (such as the NSAIDs).

COX-2 is an inflammatory enzyme that converts arachidonic acid into prostaglandins, such as prostaglandin H2 [41]. The docking results with COX-2 are shown in Table 6, and the docking poses are depicted in Figure 5. The structure of COX-2 was stored in PDB in a complex with meclofenamic acid, a known inhibitor of this enzyme.

Table 5. Cont.

Molecule	Amino Acid	Ligand Atom	Category	Types	Distance (Å)	Score
δ-tocotrienol	ALA564	Anel Ar.	Amide-pi stacked	4.02	56.59	
	CYS561	C15	Hydrophobic	C12	3.33	
	CYS561	C12	Hydrophobic	C12	3.32	
	ALA754	C29	Hydrophobic	C12	3.33	
	ALA856	C9	Hydrophobic	Alkyl	4.26	
	CYS561	C12	Hydrophobic	Alkyl	4.32	
	LEU853	C20	Hydrophobic	Alkyl	4.24	
	LEU562	C19	Hydrophobic	Alkyl	4.24	
	LEU853	C24	Hydrophobic	Alkyl	4.74	
	HIS752	C20	Hydrophobic	Pi-alkyl	4.27	
	CYS561	C12	Hydrophobic	Pi-alkyl	4.56	
	ALA564	Anel Ar.	Hydrophobic	4.21		
	ARG568		Hydrophobic	5.40		

Table 6. Docking interactions of the molecules with COX-2.

Molecule	Amino Acid	Ligand Atom	Category	Types	Distance (Å)	Score
Geranylgeraniol	B:SER531	O24	Hydrogen bond	Conventional hydrogen bond	2.16	
	B:VAL117				3.86	
	B:ARG121		Ligand		5.14	
	B:VAL524				4.13	
	B:ALA528	C16	Hydrophobic	Alkyl	3.99	
	B:LEU353		Hydrophobic	Alkyl	3.99	
	B:LEU532				5.04	
	B:LEU385	C14			5.05	
	B:LEU353	C15			4.18	
	B:VAL524				3.88	
Table 6. Cont.

Molecule	Amino Acid	Ligand Atom	Category	Types	Distance (Å)	Score
B:VAL350		C16			4.57	
B:LEU532					4.40	
B:VAL89					5.46	
B:LEU93		C20			4.92	
B:VAL117		C21			4.43	
B:ARG121					3.45	
B:TYR356	Ligand	C20	Pi-alkyl		5.30	5.09
B:PHE382		C20	Pi-alkyl		5.48	
B:TYR386		C14			4.31	
B:TRP388					4.91	
B:VAL524					3.65	
B:ALA528					3.85	
B:VAL117		C11			5.03	
B:VAL350		C13			3.68	
B:LEU353	Ligand				4.79	
B:VAL350		C16			5.10	
B:LEU353					4.14	
B:LEU385	C21				4.79	
B:MET523					4.91	
B:LEU535	Ligand				4.79	
B:VAL345		C26			4.76	
B:VAL350					5.09	
B:VAL229		C30	Hydrophobic		4.50	76.42
B:LEU535	Ligand				4.93	
B:PHE206		C26			4.82	
B:PHE210	Ligand				4.27	
B:TYR349	C26				4.24	
B:TYR356	C11				4.50	
B:PHE382	Ligand	C31	Pt-alkyl		4.43	
B:TYR386	Ligand	C21	Pt-alkyl		4.91	
B:TRP388					4.99	
Molecule	Amino Acid	Ligand Atom	Category	Types	Distance (Å)	Score
---------------	------------	-------------	---------------	-------------	--------------	-------
B:VAL350		Ligand			4.04	
B:ALA528					3.86	
B:VAL524		Ligand			3.84	
B:ALA528					4.58	
B:VAL524		Ligand			4.17	
B:ALA528					4.48	
B:VAL117		C11	Alkyl		5.10	
B:LEU353	Ligand				5.34	
B:VAL350		C15	Hydrophobic		4.49	
B:LEU353		C20			3.92	
B:LEU353	Ligand				4.72	
B:LEU355		C20			4.26	
B:VAL345		C25			4.39	
B:VAL350	Ligand	C20			4.95	
B:VAL229		C29			4.89	
B:PHE206	Ligand	C25			4.50	
B:PHE210	Ligand	C29			4.84	
B:PHE210		C30			3.85	
B:TYR349		C25	Pi-alkyl		4.64	
B:TYR356		C11			4.77	
B:PHE382	Ligand	C30			4.36	
B:TYR386	Ligand	C20			4.85	
B:TRP388					4.53	
B:VAL350					4.74	
B:ALA528	Ligand				3.74	
B:LEU353					4.74	
B:VAL524		Ligand			3.62	
B:ALA528		C12	Hydrophobic	Alkyl	4.85	85.12
B:VAL350	Ligand	C12			4.50	
B:LEU353	Ligand	C14			3.69	
B:VAL350	Ligand				4.81	
B:LEU353					4.19	
B:VAL350	Ligand				4.95	
B:LEU353					4.83	
B:LEU353					3.85	
Table 6. Cont.

Molecule	Amino Acid	Ligand Atom	Category	Types	Distance (Å)	Score
B:LEU385	C19				4.93	
B:LEU353	Ligand				4.36	
B:VAL345	C24				4.59	
B:VAL229	C28				4.90	
B:VAL350	C30				4.34	
B:PHE206	Ligand				4.67	
B:LEU353		C24			4.89	
B:PHE210	Ligand				4.82	
B:VAL345	C24				4.63	
B:PHE206		C29			4.55	
B:PHE210		C28			3.84	
B:PHE382	Ligand	C29			4.45	
B:LEU353		C28			4.55	
B:TYR386	Ligand	C19			4.54	
B:TRP388	C19				4.90	
B:VAL350	Ligand				4.42	
B:ALA528					4.37	
B:VAL524	Ligand				3.81	
B:ALA528	C12				3.63	
B:LEU353	Ligand				5.45	
B:VAL524	C12				4.34	
B:LEU532					4.66	
B:LEU353	Ligand				4.84	
B:VAL350	C14				4.32	
B:LEU353	C14				4.32	
B:LEU385	C19				3.75	
B:MET523					3.75	
B:LEU535	Ligand				4.74	
B:LEU385	C19				4.74	
B:VAL345	C24				4.65	
B:VAL350	C28				4.89	
B:VAL350	C24				5.08	
B:VAL229	C28				4.84	
B:LEU535	C28				4.71	
B:PHE206	Ligand				4.84	89.07
B:LEU353	Ligand	C28			5.37	

δ-tocotrienol: 89.07
Inflammation is tightly associated with lipid and metabolic disturbances \[32 – 34\]. According to the results predicted by PASS and SEA, geranylgeraniol and tocotrienols may also decrease inflammation. In accordance with our results, it has been reported that geranylgeraniol suppresses the expression of interleukin-receptor-associated kinase-1 (IRAK1) and tumor necrosis factor-receptor-associated factor 6 (TRAF6), consequently preventing NF-κB excessive activation in LPS-induced inflammatory response in THP-1 cells. In addition, tocotrienols are thought to exert their effects also in part by decreasing the inflammatory cascade \[35 – 40\]. Since SEA predicted the interaction of all the molecules with phospholipase A2, we performed a docking with this enzyme. We also performed docking with COX-2 because it is a common target for anti-inflammatory compounds (such as the NSAIDs). COX-2 is an inflammatory enzyme that converts arachidonic acid into prostaglandins, such as prostaglandin H2 \[41\]. The docking results with COX-2 are shown in Table 6, and the docking poses are depicted in Figure 5. The structure of COX-2 was stored in PDB in a complex with meclofenamic acid, a known inhibitor of this enzyme.

Table 6. Cont.

Molecule	Amino Acid	Ligand Atom	Category	Types	Distance (Å)	Score
B:PHE210		C28	Ligand		5.04	
		C29			4.26	
B:TYR349		C24			4.51	
B:PHE382		C29	Ligand		5.13	
B:TYR386		C24			4.81	
B:TRP388		C19			4.65	
B:VAL350		C24			4.52	
B:ALA528		C19			5.15	
B:LEU532		C24			4.84	
B:LEU532		C20			3.55	

![Figure 5. Cont.](Image)
The hydrogen bonds between the inhibitor’s carboxylate and the phenolic oxygen of Tyr385 and Ser530 are considered important interactions for the inhibition of this enzyme [42]. It was observed that all the structures could interact with COX-2, but none of them could interact with the amino acid residues Tyr385 and Ser530. The highest docking score was achieved by δ-tocotrienol (89.07), and the other molecules had good scores as well (>70).

Phospholipase A₂ is another enzyme involved in the inflammatory response that catalyzes the hydrolysis of two glycerophospholipids and releases two fatty acids and
lysophospholipids. The secreted PLA$_2$ is involved in the rate-limiting step of eicosanoid biosynthesis by releasing unesterified arachidonic acid from membrane phospholipids [43].

Table 7 shows all the interactions of this enzyme with geranylgeraniol and tocotrienols, and the best docking poses are depicted in Figure 6. The results show that all molecules interacted with the amino acid residue His47; except for α-tocotrienol, all molecules could interact with Cys28 as well. Most of the molecules assessed could interact with PLA$_2$’s hydrophobic pocket (Leu2, Phe5, His5, Ile9, Ala17, Ala8, Gly22), suggesting this enzyme’s potential inhibition. The highest docking score was achieved by α-tocotrienol (90.64).

Molecule	(docking score)	2D	3D
Geranylgeraniol	(80.76)	![Geranylgeraniol](#)	![Geranylgeraniol](#)
α-tocotrienol	(90.64)	![α-tocotrienol](#)	![α-tocotrienol](#)
β-tocotrienol	(86.47)	![β-tocotrienol](#)	![β-tocotrienol](#)

Figure 6. Cont.
Figure 6. Two-dimensional and three-dimensional representations of the best docking poses calculated by GOLD with PLA$_2$ (PDB ID: 5G3N). Pictures produced with Discovery Studio.

Table 7. Docking interactions of the molecules with PLA$_2$.

Molecule	Amino Acid	Ligand Atom	Category	Types	Distance (Å)	Score			
Geranylgeraniol	HIS47	O24	Hydrogen bond	Conventional hydrogen bond	1.61				
	ASP48	H55			1.97				
	ALA1	C21			3.79				
	VAL3	Ligand			4.87				
	ALA17	C15			3.70				
	LEU2	Ligand			5.21				
					4.34				
					4.89				
	CYS28	C14	Hydrophobic	Alkyl	4.24	80.76			
	CYS44				4.33				
	ILE9	C15			4.98				
		C16			3.94				
	LEU2	C20			4.71				
		C21			5.30				
	VAL3	Ligand			4.51				
	PHE5	C14		Pi-alkyl	4.84				
		C15			5.20				
					4.31				
Molecule	Amino Acid	Ligand Atom	Category	Types	Distance (Å)	Score			
----------	------------	-------------	----------	---------	--------------	-------			
HIS6	Ligand	C15			4.98				
					5.02				
PHE63	Ligand	C20			4.26				
PHE98	Ligand	C14			4.85				
ALA17	Ligand	C13			3.99				
LEU2	Ligand	C11			5.28				
ILE9	Ligand	C21	Hydrophobic	Alkyl	4.98				
LEU2	Ligand	C21			5.49				
		C26			3.95				
					4.39				
LY56	Ligand	C21			4.68				
		C30	α-tocotrienol	Hydrophobic	3.99	90.64			
PHE5	Ligand	C13			4.58				
PHE5	Ligand	C21			4.92				
HIS6	Ligand	C21			4.59				
HIS47	Ligand	C21			5.40				
		C26	β-tocotrienol	Pi-alkyl	4.84				
TYR51	Ligand	C30			4.71				
PHE98	Ligand	C21			4.78				
					4.82				
ALA18	Ligand				4.51				
					4.67				
HIS6						Pi-sigma 2.89			
ALA17	Ligand				4.15				
					5.17				
LEU2	Ligand	C11			4.76				
					5.17				
CYS28	Ligand	C20			4.68				
CYS44	Ligand	C20			4.80				
LEU2	Ligand	C25			4.90				
					4.90				
VAL30	Ligand					β-tocotrienol	Hydrophobic	5.02	86.47
PHE5	Ligand	C20				Pi-alkyl 4.80			
					4.96				
HIS6	Ligand	C11			5.03				
HIS47	Ligand	C20			5.03				
TYR51	Ligand	C30			5.06				
PHE98	Ligand	C20			5.11				
ALA18	Ligand				4.50				
Table 7. Cont.

Molecule	Amino Acid	Ligand Atom	Category	Types	Distance (Å)	Score
γ-tocotrienol	GLY29	Ligand	Amide-pi stacked	4.93	88.94	
	ALA17	C24		4.79		
	VAL30	Ligand		5.15		
	LEU2	C14		5.21		
	CYS28	C19	Alkyl	4.35		
	CYS44			4.29		
	LEU2	Ligand		3.82		
	ILE9	C24		4.82		
	LEU2	C28		5.24		
	VAL3	C29	Hydrophobic	4.61		
	PHE5	C19	Ligand	5.18		
	C24			5.39		
	HIS6	C24	Pi-alkyl	4.96		
	C29			4.33		
	HIS47	C14	Ligand	4.72		
	TYR51			4.12		
	PHE98	C19		5.09		
	VAL30	Ligand		4.31		
	LYS62			4.8		
δ-tocotrienol	ASP48	H36	Hydrogen bond	Conventional hydrogen bond	1.71	
	GLY29	Ligand	Pi-donor hydrogen bond	2.93		
	CYS28		Other	5.93		
	CYS44		Pi-sulfur	4.86		
	HIS47	C29	Pi-pi T-shaped	4.78		
	ALA17	Ligand		4.90		
	C12			4.89		
	LEU2	Ligand		4.11		
	VAL3	C24	Hydrophobic	4.23		
	LEU2	C29	Alkyl	4.79		
	VAL3	C29		4.36		

Table 7. Cont.

Molecule	Amino Acid	Ligand Atom	Category	Types	Distance (Å)	Score
PHE5	Ligand				4.52	
HIS6	C19				4.64	
HIS47	C12	Pi-alkyl			5.20	
PHE63	Ligand				4.95	
	C28				4.69	

In the docking studies, it was observed that geranylgeraniol could interact with all the targets assessed. For OSC, SQLE, and PLA₂, these interactions were similar to their corresponding crystalized inhibitors, corroborating the predictions by SEA and suggesting a potential hypocholesterolemic and anti-inflammatory activity. Tocotrienols also could interact with the assessed enzymes; notably, β-tocotrienol had an interesting interaction profile with OSC, similar to Ro 48-8071. As regards SQLE, δ-tocotrienol could not interact with the target’s active site amino acid residues, while all others could interact with Pro415, specially β-tocotrienol.

Although all molecules could interact with COX-2, none of these interactions are reported in the literature to inhibit this enzyme activity. For PLA₂, an important interaction that inhibits this enzyme is with the amino acid residues His47 and Cys28. All tocotrienols could interact with His47, and all but α-tocotrienol could interact with Cys28 as well (even though this molecule had the highest docking score).

Collectively, the docking supports the biological activity prediction. The results support the hypocholesterolemic and anti-inflammatory potential for geranylgeraniol and tocotrienols, following previous reports in the literature. Although these activities are not new for these molecules, our results suggest some potential new action mechanism that has not been reported, such as lanosterol synthase inhibition, which is different from HMG-CoA reductase inhibition.

2.3. Pharmacokinetic Property Prediction

Despite having a desired biological activity, a compound must effectively reach its therapeutic targets, and for this, the molecule must have a favorable pharmacokinetic profile (absorption, distribution, metabolism, excretion (ADME)). Nowadays, several approaches are available to predict ADME data from compounds [44]. The servers PreADMET and SwissADME were used to indicate such activities based on the compounds’ structures. The data are shown in Table 8.

Table 8. ADME prediction by PreADMET and SwissADME.

Molecule	PreADMET			SwissADME				
	%HIA	Caco-2 (nm/sec)	MDCK (nm/sec)	BBP%	BBB (Cbrb/Cbbm)	GI absorption	BBB	P-gp
Geranylgeraniol	100	37.1	62.05	100	17.58	High	No	No
α-tocotrienol	97.91	29.13	21.78	100	19.21	Low	No	Yes
β-tocotrienol	97.9	27.94	24.31	100	19.01	Low	No	Yes
γ-tocotrienol	97.9	27.94	24.31	100	18.99	Low	No	Yes
δ-tocotrienol	97.89	26.83	27.42	100	18.83	Low	No	Yes

In PreADMET outputs, %HIA represents the human intestinal absorption, which, as the name suggests, refers to the amount of the molecule that is absorbed. HIA is important because most drugs are administered orally and hence need to be absorbed in satisfactory amounts in the gastrointestinal tract [45]. The server PreADMET considers that good drug candidates should have a %HIA of at least 70%. Hence, all the molecules had a great degree of intestinal absorption with %HIA > 97%, and geranylgeraniol had 100%.
SwissADME bases the gastrointestinal absorption and blood–brain barrier permeation on a different model called BOILED-Egg (brain or intestinal estimated permeation method) [46,47]. In this distinct model, geranylgeraniol but not tocotrienols were predicted to be highly permeant to the GI tract due to their high $\text{Lop } P$.

A popular model to assess drug absorption in drug discovery is using Caco-2 or MDCK cells as test systems. PreADMET can predict the molecular permeation in these cells by comparing the molecules from those of its database. According to the server, $<4 \text{ nm/s}$ represents low permeation, values from 4 to 70 nm/s have intermediate permeation, and values above that represent high permeation. For MDCK, values below 25 represent low permeability, values from 25 to 500 represent intermediate permeation, and values above 500 represent high permeation [48,49].

All molecules assessed had intermediate absorption values in Caco-2 cells, while in MDCK, only geranylgeraniol and δ-tocotrienol had intermediate absorption values, and the others had low values. Overall, geranylgeraniol had superior results to tocotrienols. Among tocotrienols, α-tocotrienol had the highest absorption values (Table 8).

For PreADMET, good drug candidates must have $<90\%$ of blood protein binding (BPB) because the molecules should be free to be able to interact with their biological targets [50]. In our prediction, the molecules had an unfavorable BPB profile (higher than 90%). Another distribution parameter assessed was the interaction with P-glycoprotein (P-gp) calculated by SwissADME. This macromolecule is responsible for hampering the intracellular accumulation of potentially toxic compounds and removing them from the CNS through the blood–brain barrier as well [51]. The server predicted that tocotrienols could interact with these targets while geranylgeraniol could not.

Both servers give outputs about blood–brain barrier (BBB) permeation and, hence, have potential to reach the CNS. However, the results are in disagreement. According to PreADMET, compounds with $\text{Cbrain/Cblood values higher than 2.0 can cross the BBB, and all the molecules had high values, while in Swiss ADME, which uses the BOILED-Egg model, the molecules were predicted not to cross the BBB. However, these molecules probably cross the BBB according to in vivo data of tocotrienols and other vitamins E in SNC disorders [52,53]. The pharmacokinetics of tocotrienols have been reported in patients with favorable results and safety profiles [54,55].}

2.4. Toxicological Property Prediction

The toxicological prediction from geranylgeraniol and tocotrienols were assessed with PreADMET and ProTox-II. This online server is accessible and can help screen possible toxicities from compounds [56]. The prediction outputs are shown in Table 9.

Table 9. Toxicity prediction in ProTox-II.

Molecule	Toxicity Class	Predicted DL$_{50}$	Toxicity Type	Prediction	Probability
Geranylgeraniol	5	5000 mg/kg	Hepatotoxicity	Inactive	0.79
			Carcinogenicity	Inactive	0.76
			Immunotoxicity	Inactive	0.99
			Mutagenicity	Inactive	0.97
			Cytotoxicity	Inactive	0.85
α-tocotrienol	4	500 mg/kg	Hepatotoxicity	Inactive	0.93
			Carcinogenicity	Inactive	0.77
			Immunotoxicity	Inactive	0.89
			Mutagenicity	Inactive	0.92
			Cytotoxicity	Inactive	0.87
Table 9. Cont.

Molecule	Toxicity Class	Predicted DL$_{50}$	Toxicity Type	Prediction	Probability
β-tocotrienol	4	500 mg/kg	Hepatotoxicity	Inactive	0.93
			Carcinogenicity	Inactive	0.77
			Immunotoxicity	Inactive	0.79
			Mutagenicity	Inactive	0.92
			Cytotoxicity	Inactive	0.87
γ-tocotrienol	4	500 mg/kg	Hepatotoxicity	Inactive	0.93
			Carcinogenicity	Inactive	0.77
			Immunotoxicity	Inactive	0.61
			Mutagenicity	Inactive	0.92
			Cytotoxicity	Inactive	0.87
δ-tocotrienol	4	500 mg/kg	Hepatotoxicity	Inactive	0.94
			Carcinogenicity	Inactive	0.79
			Immunotoxicity	Inactive	0.93
			Mutagenicity	Inactive	0.91
			Cytotoxicity	Inactive	0.86

All the molecules were predicted to be nonmutagenic in bacteria and nonhepatotoxic, cardiotoxic, immunotoxic, or cytotoxic. The predicted median lethal doses were high, especially for geranylgeraniol. ProTox-II classifies the molecules according to the predicted toxicity from 1 to 6, in which higher values represent less toxic compounds. The highest value was achieved for geranylgeraniol (5), while tocotrienols were classified as 4.

3. Materials and Methods

3.1. Molecules Studied

This study used the major molecules found in the purified annatto oil (PAO) and its granules (Chronic®). The samples were kindly provided by Ages Bioactive Compounds Co. (São Paulo-SP, Brazil). The batch analysis certificate is described as URU200401 (12 March 2020, expiration date: 22 March 2022), composition: bixin (1.7%), tocotrienols (9.59%), and geranylgeraniol (28.32%), as described by Matias Pereira et al. [8].

All structures used were confirmed in the PubChem database (https://pubchem.ncbi.nlm.nih.gov/, accessed on 1 October 2021) (Figure 1A). The molecules were drawn using ChemDraw [56] and optimized using HyperChem through the semiempirical method RM1 [57].

3.2. Biological Activities Prediction

The prediction of biological activity was based on analysis of the structure–activity relationship of a training set using the PASS server (prediction of activity spectra for substances; http://www.pharmaexpert.ru/passonline, accessed on 1 October 2021), which can predict 4,130 biological activities in the compounds with an average accuracy of 95%. PASS is based on the naïve Bayes classifier approach and multilevel neighborhoods of atoms descriptors. The predicted activities are given as Pa (probability of being active) or Pi (probability to be inactive). Molecules with a Pa superior to 0.7 are considered promising candidates for the given activity; however, molecules with Pa > 0.4 and Pa > Pi could still be good candidates [17–20].

In addition, the SEA server (similarity ensemble approach; http://sea.bkslab.org/, accessed on 1 November 2021) was used to assess potential targets of the studied molecules. This server predicts small-molecule activity based on the macromolecular targets they...
interact with, which is inferred according to topology similarity with other molecules’ fingerprints from its database [22,23]. The server gives the \(p \)-value as similarity output representing the expected value (E-value) and the max Tanimoto coefficient (MaxTC). In a prediction, the lower the \(p \)-value, the more significant it is, evidencing that the prediction is less likely to be by chance; ideally, a prediction should be \(< 10^{-10}\) to be highly significant, while a \(p \)-value > 1 is considered insignificant. A MaxTC is considered highly significant when the value is >0.6, and insubstantial when <0.3 [22,58].

3.3. Molecular Docking

The docking was performed using the software GOLD (Genetic Optimization for Ligand Docking [59]) using biological targets acquired from Protein Data Bank [60]. A total of five targets were selected: the human lanosterol synthase (an oxidosqualene cyclase (OSC)) complexed with lanosterol, human squalene epoxidase (a.k.a. squalene monooxygenase (SQLE)) complexed with FAD and CPMPD-4, human HMG-CoA reductase (HMGR) complexed with simvastatin, secreted phospholipase A\(_2\) (sPLA\(_2\)) complexed with the inhibitor Azd2716, and human cyclooxygenase-2 (COX-2) complexed with meclofenamic acid (Figure 1B). All the cocrystallized ligands were removed to perform the docking.

Before the dockings, validation was performed for each target by calculating the root mean square deviation (RMSD), which is the root mean square distance of nonhydrogen atoms of the ligand from the crystal structure and their corresponding docked pose. All the crystallized targets had RMSD < 2 Å and considered the upper limit of satisfactory docking [61]. Other parameters assessed were the docking sphere radius and x, y, and z coordinates (Table 10).

Molecule	PDB ID	Resolution (Å)	RMSD (Å)	Docking Radius (Å)	x, y, z Coordinates
Lanosterol synthase (OSC)	1W6K	2.1	0.622	11.49	28.79, 69.02, 8.45
Squalene epoxidase (SQLE)	6C6N	2.3	1.038	15.08	−23.75, 92.76, 63.37
HMG-CoA reductase (HMGR)	1HW9	2.3	1.482	8.41	2.31, −8.29, −9.21
Cyclooxygenase-2 (COX-2)	5IKQ	2.4	0.507	8.867	16.06, 43.11, 60.99
Phospholipase A\(_2\) (sPLA\(_2\))	5G3N	1.8	0.507	9.132	7.48, 3.44, −0.16

Cocrystallized ligands, ions, and water molecules were removed from the crystallographic structures to perform the docking. Additionally, hydrogens were added to the ligands, and their atomic charge was calculated using HyperChem, as described in [62].

3.4. Pharmacokinetic Prediction

An in silico ADME (absorption, distribution, metabolism, excretion) prediction was performed using the servers PreADMET (https://preadmet.bmdrc.kr/, accessed on 1 November 2021) and SwissADME (http://www.swissadme.ch, accessed on 1 November 2021). These servers can calculate the physicochemical and pharmacokinetic properties of molecules, including human intestinal absorption, Caco-2 cell and MDCK permeability, percentage of plasma protein binding, blood–brain barrier penetration, glycoprotein P interaction, metabolism by P450 cytochromes, among others [46,48,63].

3.5. Toxicological Prediction

The toxicological prediction was performed using ProTox-II. This server can predict different toxicity parameters, such as acute toxicity, organ-specific toxicity, cytotoxicity, carcinogenicity, and immunotoxicity [64].

4. Conclusions

The biological activity results follow what is reported in the literature, mainly for the antioxidant, anti-inflammatory, and antidyslipidemia potential of geranylgeraniol and tocotrienols. The molecular docking corroborated the predicted activities of the servers.
Notably, the in silico data presented another mechanism of action that could be involved in the activity of this molecule, which is inhibition of squalene monoxygenase and lanosterol synthase, which will need to be confirmed in vitro.

These in silico data corroborate the use of these molecules against lipid disorders, coronary disease due to cholesterol accumulation, and several chronic diseases in which oxidative stress and inflammatory cascade have a role. Geranylgeraniol and tocotrienols are major molecules from *Bixa orellana* and Chronic®. The results also point to a good pharmacokinetic profile for these molecules and a good safety profile, according to previously reported experimental data.

Author Contributions: Conceptualization, J.C.T.C. and L.I.d.S.H.-M.; methodology and software, L.I.d.S.H.-M. and M.A.B.; formal analysis, M.A.B. and H.R.d.S.; resources and data curation, J.C.T.C.; writing—original draft preparation, M.A.B., A.V.T.d.L.T.d.S. and A.L.d.N.; writing—review and editing, A.C.M.P.; visualization, A.V.T.d.L.T.d.S., I.R.S.S. and L.F.M.; supervision, J.C.T.C. and L.I.d.S.H.-M.; project administration, J.C.T.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: The samples are available upon request.

References

1. Klop, B.; Elte, J.W.F.; Cabezas, M.C. Dyslipidemia in Obesity: Mechanisms and Potential Targets. *Nutrients* 2013, 5, 1218–1240. [CrossRef] [PubMed]
2. Wang, K.S.; Li, J.; Wang, Z.; Mi, C.; Ma, J.; Piao, L.X.; Xu, G.H.; Li, X.; Jin, X. Artemisinin inhibits inflammatory response via regulating NF-κB and MAPK signaling pathways. *Immunopharmacol. Immunotoxicol.* 2017, 39, 28–36. [CrossRef] [PubMed]
3. Xing, L.; Jing, L.; Tian, Y.; Yan, H.; Zhang, B.; Sun, Q.; Dai, D.; Shi, L.; Liu, D.; Yang, Z.; et al. Epidemiology of dyslipidemia and associated cardiovascular risk factors in northeastern China: A cross-sectional study. *Nutr. Metab. Cardiovasc. Dis.* 2020, 30, 2262–2270. [CrossRef] [PubMed]
4. Ke, C.; Zhu, X.; Zhang, Y.; Shen, Y. Metabolomic characterization of hypertension and dyslipidemia. *Metabolomics* 2018, 14, 117. [CrossRef] [PubMed]
5. Wong, S.K.; Chin, K.Y.; Suhaimi, F.H.; Ahmad, F.; Ima-Nirwana, S. Exploring the potential of tocotrienol from *Bixa orellana* as a single agent targeting metabolic syndrome and bone loss. *Bone* 2018, 116, 8–21. [CrossRef]
6. Pacheco, S.D.G.; Gasparin, A.T.; Jesus, C.H.A.; Sotomaier, B.B.; Ventura, A.C.S.S.B.; Redivo, D.D.B.; Cabrini, D.D.A.; Gaspari Dias, J.D.F.; Miguel, M.D.; Miguel, O.G.; et al. Antinociceptive and Anti-Inflammatory Effects of Bixin, a Carotenoid Extracted from the Seeds of *Bixa orellana*. *Planta Med.* 2019, 85, 1216–1224. [CrossRef]
7. Rivera-Madrid, R.; Aguilar-Espinosa, M.; Cárdenas-Conejo, Y.; Garza-Caligaris, L.E. Carotenoid derivates in achiote (*Bixa orellana*) seeds: Synthesis and health promoting properties. *Front. Plant Sci.* 2016, 7, 1406. [CrossRef]
8. Matias Pereira, A.C.; de Oliveira Carvalho, H.; Gonçalves, D.E.S.; Picanço, K.R.T.; de Lima Teixeira dos Santos, A.V.T.; da Silva, H.R.; Braga, F.S.; Bezerra, R.M.; de Sousa Nunes, A.; Nazima, M.T.S.T.; et al. Co-treatment of purified annatto oil (*Bixa orellana l.*) and its granules (chronic®) improves the blood lipid profile and bone protective effects of testosterone in the orchiectomy-induced osteoporosis in wistar rats. *Molecules* 2021, 26, 4720. [CrossRef]
9. Kamal-Eldin, A.; Appelqvist, L.Á. The chemistry and antioxidant properties of tocopherols and tocotrienols. *Lipids* 1996, 31, 671–701. [CrossRef]
10. Medvedev, O.; Ivanova, A.; Medvedeva, N. Biological properties of tocotrienols. *Vopr. Pitan.* 2018, 87, 5–16. [CrossRef]
11. Irwin, J.C.; Fenning, A.S.; Vella, R.K. Geranylgeraniol prevents statin-induced skeletal muscle fatigue without causing adverse effects in cardiac or vascular smooth muscle performance. *Transl. Res.* 2020, 215, 17–30. [CrossRef] [PubMed]
12. McCully, K.S. Chemical Pathology of Homocysteine VIII. Effects of Tocotrienol, Geranylgeraniol, and Squalene on Thioretinaco Ozonide, Mitochondrial Permeability, and Oxidative Phosphorylation in Arteriosclerosis, Cancer, Neurodegeneration and Aging. *Ann. Clin. Lab. Sci.* 2020, 50, 567–577.
39. Kim, Y.; Wang, W.; Okla, M.; Kang, I.; Moreau, R.; Chung, S. Suppression of NLRP3 inflammasome by γ-tocotrienol ameliorates type 2 diabetes. *J. Lipid Res.* 2016, 57, 66–76. [CrossRef]

40. Kuhad, A.; Chopra, K. Attenuation of diabetic nephropathy by tocotrienol: Involvement of NFkB signaling pathway. *Life Sci.* 2009, 84, 296–301. [CrossRef]

41. Li, S.; Jiang, M.; Wang, L.; Yu, S. Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: Recent advancement. *Biomed. Pharmacother.* 2020, 129, 110389. [CrossRef]

42. Orlando, B.J.; Malkowski, M.G. Substrate-selective Inhibition of Cyclooxygenase-2 by Fenamic Acid Derivatives Is Dependent on Nucleic Acids Res.

43. Schyman, P.; Liu, R.; Wallqvist, A. General Purpose 2D and 3D Similarity Approach to Identify hERG Blockers. [CrossRef] [PubMed]

44. Hay, M.; Thomas, D.W.; Craighead, J.L.; Economides, C.; Rosenthal, J. Clinical development success rates for investigational drugs. *Nat. Biotechnol.* 2014, 32, 40–51. [CrossRef] [PubMed]

45. Zhao, Y.H.; Le, J.; Abraham, M.H.; Hersey, A.; Eddershaw, P.J.; Luscombe, C.N.; Boutina, D.; Beck, G.; Sherborne, B.; Cooper, I.; et al. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure—Activity relationship (QSAR) with the Abraham descriptors. *J. Pharm. Sci.* 2001, 90, 749–784. [CrossRef] [PubMed]

46. Daina, A.; Michelin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. *Sci. Rep.* 2017, 7, 42717. [CrossRef]

47. Daina, A.; Zoete, V. A Boiled-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. *ChemMedChem* 2016, 11, 1117–1121. [CrossRef]

48. Nunes, A.M.V.; de Andrade, F.d.C.P.; Filgueiras, L.A.; de Carvalho Maia, O.A.; Cunha, R.L.; Rodezno, S.V.; Maia Filho, A.L.M.; de Amorim Carvalho, F.A.; Braz, D.C.; Mendes, A.N. preADMET analysis and clinical aspects of dogs treated with the Organotellurium compound RF07: A possible control for canine visceral leishmaniasis? *Environ. Toxicol. Pharmacol.* 2020, 80, 103470. [CrossRef]

49. Yamashita, S.; Konishi, K.; Yamazaki, Y.; Taki, Y.; Sakane, T.; Sezaki, H.; Furuyama, Y. New and better protocols for a short-term Caco-2 cell culture system. *J. Pharm. Sci.* 2002, 91, 669–679. [CrossRef]

50. Roman, D.L.; Roman, M.; Som, C.; Schmutz, M.; Hernandez, E.; Wick, P.; Casalini, T.; Perale, G.; Ostafe, V.; Isvoran, A. Computational Assessment of the Pharmacological Profiles of Degradation Products of Chitosan. *Front. Biogeo. Biotechnol.* 2019, 7, 214. [CrossRef]

51. Ambrogini, P.; Torquato, P.; Bartolini, D.; Albertini, M.C.; Lattanzi, D.; Di Palma, M.; Marinelli, R.; Bettì, M.; Minelli, A.; Cuppini, R.; et al. Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: The role of vitamin E. *Biochim. Biophys. Acta-Mol. Basis Dis.* 2019, 1865, 1098–1112. [CrossRef]

52. Gumprecht, E.; Rockway, S. Can ω-3 fatty acids and tocotrienol-rich vitamin E reduce symptoms of neurodevelopmental disorders? *Nutrition* 2014, 30, 733–738. [CrossRef] [PubMed]

53. Qureshi, A.A.; Khan, D.A. Pharmacokinetics and Bioavailability of Annatto δ-tocotrienol in Healthy Fed Subjects. *J. Clin. Exp. Cardiol.* 2015, 6. [CrossRef]

54. Qureshi, A.A.; Khan, D.A. Evaluation of Pharmacokinetics, and Bioavailability of Higher Doses of Tocotrienols in Healthy Fed Humans. *J. Clin. Exp. Cardiol.* 2016, 7, 434. [CrossRef] [PubMed]

55. Benitez-Cardoza, C.G.; Vique-Sánchez, J.L. Potential inhibitors of the interaction between ACE2 and SARS-CoV-2 (RBD), to develop a drug. *Life Sci.* 2020, 256, 117970. [CrossRef]

56. Evans, D.A. Die Geschichte des ChemDraw-Projekts. *Angew. Chem.* 2014, 126, 11320–11325. [CrossRef]

57. Nagamani, S.; Kesavan, C.; Muthusamy, K. Atom-based and Pharmacophore-based 3D-QSAR Studies on Vitamin D Receptor (VDR). *Comb. Chem. High Throughput Screen.* 2018, 21, 329–343. [CrossRef]

58. Schyma, P.; Liu, R.; Wallqvist, A. General Purpose 2D and 3D Similarity Approach to Identify hERG Blockers. *J. Chem. Inf. Model.* 2016, 56, 213–222. [CrossRef]

59. Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. *J. Mol. Biol.* 1997, 267, 727–748. [CrossRef]

60. Berman, H.M. The Protein Data Bank. *Nucleic Acids Res.* 2000, 28, 235–242. [CrossRef]

61. Yusuf, D.; Davis, A.M.; Kleywegt, G.J.; Schmitt, S. An Alternative Method for the Evaluation of Docking Performance: RSR vs RMSD. *J. Chem. Inf. Model.* 2008, 48, 1411–1422. [CrossRef]

62. Matias Pereira, A.C.; Sánchez-Ortiz, B.L.; de Melo, E.L.; da Silva Hage-Melim, L.I.; Borges, R.S.; Hu, X.; Carvalho, J.C.T. Perillyl alcohol decreases the frequency and severity of convulsive-like behavior in the adult zebrafish model of acute seizures. *Naunyn. Schmiedebergs Arch. Pharmacol.* 2021, 394, 1177–1190. [CrossRef] [PubMed]

63. Ruswanto; Siswando; Richa, M.; Tita, N.; Tresa, L. Molecular docking of 1-benzoyl-3-methylthiourea as anti cancer candidate and its absorption, distribution, and toxicity prediction. *J. Pharm. Sci. Res.* 2017, 9, 680–684. [CrossRef] [PubMed]

64. Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. *Nucleic Acids Res.* 2018, 46, W257–W263. [CrossRef] [PubMed]