Resource Note on Photofission of Nuclei
for ^{235}U and ^{239}Pu Detection

Michael Martin Nieto

Theoretical Division (T-8, MS-B285), Los Alamos National Laboratory,

University of California, Los Alamos, New Mexico 87545, U.S.A.

ABSTRACT

Open-source data exists, in widely scattered places, on photofission of the important nuclear isotopes ^{235}U and ^{239}Pu. This data is useful for studies aimed at detecting these materials at ports of entry. An introductory survey is given to access that data.
1 Introduction

Mindful that it is now necessary to protect against the surreptitious importation of the nuclear materials 235U and 239Pu, various schemes are being proposed to detect them at borders. An example is that of Little et al. [1]. They are studying the use of a beam of photons, with energy of say ≤ 10 MeV, to survey incoming freight and use the delayed neutrons from photofission of these nuclei as a signature of suspicious materials.

Therefore, existing data on (i) the photon cross-sections on these nuclei, (ii) photofission products, and (iii) the delayed neutron energy spectra are all of great interest. Although there exist classical, older surveys of data [2] - [5], it is important to collate more modern results.

2 Photon cross-sections on 235U and 239Pu

Modern experiments to measure the photofission cross sections for 235U and 239Pu began to produce results in 1980. The first success was by Berman’s collaboration, using 235U. The total cross section and the separate fission cross sections for 1, 2, 3 neutrons were obtained for photon energies up to 20 MeV [6]. (See especially Figure 2 of [6].) Further work was also done on the photoneutron multiplicities from monoenergetic photons from 5.5 to 18 MeV [7].

A later effort by the same collaboration produced similar results for 239Pu [8]. For example, in Figure 7 of [8] the total cross section and the separate fission cross sections for 1, 2, 3 neutrons for photon energies up to 20 MeV are given.

These and other results are compiled in the modern version of Ref. [5], the “Atlas of Photoneutron Cross Sections Obtained with Monoenergetic Photons” [9].
3 Photofission products

^{235}U: Starting in 1976 [10], a great deal of work on the photofission products of ^{235}U was done by the Belgium group in Gent, mainly in the 12-30 MeV photon energy range. There were detailed studies on the fragment mass distributions [11], the charge distributions [12], and on the isotopic and elemental yields [13]. As an example of the large amount of information in these papers, note that in table II of [13], the percentage elemental yields of Kr to Ha from ^{235}U are given. Isotopic information is also available.

More specific studies on the isomeric yield ratios for different elements were also done [14, 15].

^{239}Pu: Kinetic energy and fragment mass distributions from photofission on ^{239}Pu were also studied by the Gent group [16]. But in addition, almost simultaneously a study by a Russian group also appeared [17]. This gave element product yields from a bremsstrahlung beam of maximum energy up to 28 MeV. Both sources should be consulted.

Both ^{235}U and ^{239}Pu: Later, there were two non-western studies on both nuclei. The first, from a Japanese group [18], was interested in the transmutation of high-level radioactive waste. It used 20, 30 and 60 MeV bremsstrahlung. They found results within 10% agreement with calculated values using published photonuclear cross-section data. Another study, by a Russian group from Obminsk, used photon energies up to 11 MeV. Their study found the yields for a number of odd nuclei, including both ^{235}U and ^{239}Pu [19]. These two studies and their included references are a valuable resource to an audience that might not be acquainted with this literature.

4 Delayed neutron energy spectra

The final category of critical information deals with the delayed neutron spectra from photofissioned ^{235}U and ^{239}Pu. The literature is replete with many studies on this problem. See, e.g., Refs [20]-[25].

In addition, very recently, a program of measurements almost made to order has been
done by the French Atomic Energy Commission. They wanted to develop techniques to quantitatively assay low-level transuranics in bulk solid waste drums. This was first done by detecting on-line delayed neutron counting from incident photons with energies up to 18 MeV [26]. Soon after they did the same type of analysis, but this time with the delayed neutrons coming from the simultaneous interrogation of both photons and neutrons [27]. (They also interrogated Uranium encased in concrete [28].)

5 Comments

The literature presented here, and the literature contained therein, will serve as a background to programs like [1], which aim to study the detection of fissile materials from delayed neutrons. Data on neutron induced fission of nuclei ^{N-1}A [29]-[35] is also of interest as complementary data to the photofission of nuclei NA.

Finally, all the available information on photofission is an aid to the evaluation of what type of light source is needed in the near future to best advance the field [36].

I thank Barry Berman, Mark Chadwick, Dominic Chan, Jim Friar, Danas Ridikas, and Bill Wilson for many helpful comments. In addition, Fanny Jallu kindly provided references. This work was supported by the United States Department of Energy.

References

[1] R. C. Little, M. White, S. Frankle, M. B. Chadwick, P. Moller, W.B. Wilson, L. E. Ussery, C. A. Goulding, W. L. Meyers, K. B. Butterfield, C. I. Hollas, and C. E. Moss, “Photofission Delayed Neutron Detection of SNM: Cross Section and Simulation Capability,” Los Alamos Nonproliferation Research and Engineering project (2003).

[2] E. G. Fuller, H. M. Gerstenberg, H. Vander Molen, and T.C. Dunn, “Photonuclear Reaction Data, 1973,” NBS Special Publication 380 (US Dept. of Commerce, Washington, DC, 1973).
[3] J. T. Caldwell and E. J. Dowdy, “Experimental determination of photofission neutron multiplicities for eight isotopes in the mass range $232 \leq A \leq 239$,” Nucl. Sci. Eng. 56, 179-187 (1975).

[4] E. G. Fuller and H. M. Gerstenberg, “Photonuclear Data Index, 1973-78,” NBS Special Publication 380, Supp. 1 (US Dept. of Commerce, Washington, DC, 1978).

[5] B. L. Berman, “Atlas of Photoneutron Cross Sections Obtained with Monoenergetic Photons,” Lawrence Livermore Laboratory Preprint UCRL-78482 (1976); Supplement (1979).

[6] J. T. Caldwell, E. J. Dowdy, B. L. Berman, R. A. Alvarez, and P. Meyer, “Giant-Resonance for the Actinide Nuclei: Photo-Neutron and Photofission Cross-Sections for 235U, 236U, 238U and 232Th,” Phys. Rev. C 21, 1215-1231 (1980).

[7] J. T. Caldwell, E. J. Dowdy, R. A. Alvarez, B. L. Berman, and P. Meyer, “Experimental-Determination of Photofission Neutron Multiplicities for 235U, 236U, 238U and 232Th Using Monoenergetic Photons,” Nucl. Sci. Eng. 73, 153-163 (1980).

[8] B. L. Berman, J. T. Caldwell, E. J. Dowdy, S. S. Dietrich, P. Meyer and R. A. Alvarez, “Photofission and Photoneutron Cross Sections and Photofission Neutron Multiplicities for 238U, 234U, 237Np, and 239Pu.” Phys. Rev. C 34, 2201-2214 (1986).

[9] S. S. Dietrich and B. L. Berman, “Atlas of Photoneutron Cross Sections Obtained with Monoenergetic Photons,” Atomic Data and Nuclear Data Tables 38, 199-338 (1988).

[10] H. Thierens, D. De Frenne, E. Jacobs, A. De Clercq, P. D’hondt, and A. J. Deruytter, “Products yields for the photofission of 235U and 238U with 25 MeV Bremsstrahlung,” Phys. Rev. C 14, 1058-1067 (1976).

[11] E. Jacobs, A. De Clercq, H. Thierens, D. De Frenne, P. Dhondt, P. De Gelder, and A. J. Deruytter, “Fragment Mass and Kinetic Energy Distributions for the Photofission of
235U with 12-, 15-, 20-, 30-, and 70-MeV Bremsstrahlung,” Phys. Rev. C 24, 1795-1798 (1981).

[12] D. De Frenne, H. Thierens, B. Poot, E. Jacobs, P. De Gelder and A. De Clercq, “Charge Distributions for the photofission of 235U and 238U with 12-30 MeV Bremsstrahlung,” Phys. Rev. C 26, 1356-1368 (1982).

[13] D. De Frenne, H. Thierens, B. Poot, E. Jacobs, P. De Gelder, and A. De Clercq, “Isotopic distributions and elemental yields for the Photofission of 235,238U with 12-30 MeV bremsstrahlung,” Phys. Rev. C 29, 1908-1911 (1984).

[14] H. Thierens, B. Poot, D. De Frenne, and E. Jacobs, “Independent Isomeric Yield Ratio of 124I from the Photofission of 235 and 238,” Phys. Rev. C 25, 1546-1550 (1982).

[15] D. De Frenne, B. Poot, H. Thierens, P. De Gelder, E. Jacobs, and A. De Clercq, “Independent Isomeric Yield Ratios and Primary Angular Momenta in the Photofission of 235,238U with 12-30 MeV bremsstrahlung,” Phys. Rev. C 29, 1777-1783 (1984).

[16] H. Thierens, A. De Clercq, E. Jacobs, D. De Frenne, P. Dhondt, P. De Gelder, and A. J. Deruytter, “Kinetic Energy and Fragment Mass Distributions for 240Pu(s.f.), 239Pu(n_{th},f), and 240Pu(γ,f),” Phys. Rev. C 23, 2104-2113 (1981).

[17] M. Y. Kondrat’ko, A. V. Mosesov, K. A. Petrzhal, and O. A. Teodorovich, “Yields of Products of the Photofission of 239Pu,” Soviet Atomic Energy 50, 41-43 (1981). [Atomaya Énergiya 50, 34-36 (1981).]

[18] T. Kase, A. Yamadera, T. Nakamura, S. Shibata, and I. Fujiwara, Product Yields of 238U, 238U, 237Np and 238Pu by Photofission Reactions with 20-, 30-, and 60-MeV Bremsstrahlung,” Nucl. Sci. Eng. 111, 368-378 (1992).

[19] A. S. Soldatov and G. N. Smirinkin, “Yield and cross sections for fission of odd nuclei by γ rays with energies up to 1 MeV,” Sov. J. Nucl. Phys. 55, 1757-1765 (1992). [Yad, Fiz. 55, 3153-3168 (1992).]
[20] O. P. Nikotin and K. A. Petrzhak, “Delayed neutrons in the photofission of heavy nuclei,” Soviet Atomic Energy 20, 300-303 (1966). [Atomnaya Énergiya 20, 268-270 (1966).
]

[21] L. A. Kull et al., R. L. Bramblet, T. Gozani, and D. E. Rundquis, “Delayed neutrons from low energy photofission,” Nucl. Sci. Eng. 39, 163-169 (1970).

[22] J. T. Caldwell, E. J. Dowdy, and Gary M. Worth, “Prompt and delayed neutron yields from low energy photofission of 232Th, 235U, 238U and 239Pu,” Los Alamos report LA-UR-73-968 (1973). Presented at the IAEA Symposium on the Physics and Chemistry of Photofission, IAEA report IAEA-SM-174/100 (1974).

[23] K. Fukuda, “Delayed neutron spectrum from the photofission of uranium,” Annual report of the radiation center of Osaka Prefecture 15, 48-50 (1974).

[24] S. Iwasaki, K. Yana, S. Sato, K. Sano, M. Hagiwara, and K. Sugiyama, “Energy spectrum of delayed neutrons from photofission of 238U,” in: Proceedings of the Nuclear Cross Sections and Technology Conference, NBS Special Pub. no. 425 (Nat. Bur. Standards, Washington, DC, USA, 1975) pp. 611-614.

[25] B. M. Aleksandrov, P. P. Ganich, A. S. Krivokhatskii, V. I. Lomonosov, A. M. Parlag, E. Y. Remeta, D. I. Sikora, and S. I. Sychev, “Determination of the kinetic functions of delayed neutrons in the photofission of heavy isotopes,” Soviet Atomic Energy 44, 613-614 (1978). [Atomnaya Énergiya 44, 526-527 (1978).]

[26] A. Lyoussi, J. Romeyer-Dherbey, F. Jallu, A. Buisson, G. Nurdin, and J. Allano, “Transuranic Waste Detection by Photon Interrogation and on-line Delayed Neutron Counting,” Nucl. Instrum. Methods Phys. Res. B 160, 280-289 (2000).

[27] F. Jallu, A. Lyoussi, C. Passard, E. Payan, H. Recroix, G. Nurdin, A. Buisson, and J. Allano, “The Simultaneous Neutron and Photon Interrogation Method for Fissile and
Non-Fissile Element Separation in Radioactive Waste Drums,” Nucl. Instrum. Methods Phys. Res. B **170**, 489-500 (2000).

[28] F. Jallu, A. Lyoussi, C. Passard, E. Payan, H. Recroix, G. Nurdin, A. Buisson, and J. Allano, “Fissile and Non-Fissile Element Separation in Concrete Radioactive Waste Drums Using the SIMPHONIE Method,” Nucl. Instrum. Methods Phys. Res. B **179**, 267-278 (2001).

[29] D. Saphier, D. Ilberg, S. Shalev, and S. Yiftah, “Evaluated delayed neutron-spectra and their importance in reactor calculations,” Nucl. Sci. Eng. **62**, 660-694 (1977).

[30] G. Edwards, D. J. S. Findlay, and E. W. Lees, “Improvements in the description of the prompt neutrons emitted in fission.” Annals of Nuclear Energy **8**, 105-114 (1981).

[31] T. R. England and M. C. Brady, “Delayed neutron spectra by decay group for fissioning systems from 227Th through 255Fm,” in: Proceedings of the 1988 International Reactor Physics Conference. Vol. 3 (18-22 Sep 1988, Jackson Hole, WY, USA), Rept. No. CONF-880911–Vol.3 (American Nuclear Society, LaGrange Park, IL, USA, 1988) pp. 229-241. Los Alamos Report LA-UR-88-2140.

[32] M. C. Brady and T. R. England, “Delayed neutron data and group parameters for 43 fissioning systems.” Nucl. Sci. Eng. **103**, 129-149 (1989).

[33] P. M. Rinard, “Shuffler instruments for the nondestructive assays of fissile materials,” Los Alamos report LA-12105 (1991). See the appendix, “Delayed neutron data,” p. 63. and the references therein.

[34] H. H. Saleh, T. A. Parish, S. Raman, and N. Shinohara, “Measurements of delayed neutron decay constants and fission yields from 235U, 237Np, 241Am and 243Am,” Nucl. Sci. Eng. **125**, 51-60 (1997).

[35] D. Ridikas, D. W. Mittig, and A. C. C. Villari, “What is next after SPIRAL at GANIL?” Nuc. Phys. A **701**, 343c-347c (2002).
[36] R. F. Service, “Battle to Become the Next-Generation X-ray Source,” Science 298, 1356-1358 (2002).