Mitochondrial Genome of the Eyeworm, *Thelazia callipaeda* (Nematoda: Spirurida), as the First Representative from the Family Thelaziidae

Guo-Hua Liu¹,², Robin B. Gasser³, Domenico Otranto⁴, Min-Jun Xu¹, Ji-Long Shen³, Namitha Mohandas³, Dong-Hui Zhou¹, Xing-Quan Zhu¹,²,⁶

¹ State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, PR China, ² College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, PR China, ³ Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia, ⁴ Dipartimento di Sanità Pubblica e Zootecnia, Università degli Studi di Bari, Valenzano, Bari, Italy, ⁵ Department of Pathogen Biology, Anhui Medical University, Hefei, Anhui Province, China, ⁶ College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province, PR China

Abstract

Human thelaziosis is an underestimated parasitic disease caused by *Thelazia* species (Spirurida: Thelaziidae). The oriental eyeworm, *Thelazia callipaeda*, infects a range of mammalian definitive hosts, including canids, felids and humans. Although this zoonotic parasite is of socio-economic significance in Asian countries, its genetics, epidemiology and biology are poorly understood. Mitochondrial (mt) DNA is known to provide useful genetic markers to underpin fundamental investigations, but no mt genome had been characterized for any members of the family Thelaziidae. In the present study, we sequenced and characterized the mt genome of *T. callipaeda*. This AT-rich (74.6%) mt genome (13,668 bp) is circular and contains 12 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes, but lacks an *atp6* gene. All protein-coding genes are transcribed in the same direction; the gene order is the same as those of *Dirofilaria immitis* and *Setaria digitata* (Onchocercidae), but distinct from *Dracunculus medinensis* (Dracunculidae) and *Helicorna longissimum* (Physalopteridae). Phylogenetic analyses of the concatenated amino acid sequence data for all 12 protein-coding genes by Bayesian inference (BI) showed that *T. callipaeda* (Thelaziidae) is related to the family Onchocercidae. This is the first mt genome of any member of the family Thelaziidae and should represent a new source of genetic markers for studying the epidemiology, ecology, population genetics and systematics of this parasite of humans and other mammals.

Introduction

Thelazia callipaeda Railliet and Henry, 1910, known as the ‘oriental eye-worm’, because of its geographical distribution in Asian countries (including China, India, Japan, Korea and Thailand), is frequently reported as being responsible for thelaziosis of humans, carnivores (dogs, foxes and cats) and rabbits, causing mild to severe clinical signs (including lacrimation, epiphora, conjunctivitis, keratitis and/or sometimes corneal ulcers) [1]. Fortunately, thelaziosis can be treated effectively using anthelmintics, such as milbemycin oxime or macrocyclic lactones (e.g., moxidectin), and anti-inflammatory compounds [2–4]. Although *T. callipaeda* may seem to be of minor importance to some clinicians and scientists, human thelaziosis is highly endemic in some under-developed communities in Asia, particularly in China [3]. Clearly, scant attention has been paid to human thelaziosis, and there are difficulties in its clinical diagnosis and differentiation from allergic conjunctivitis, particularly when small numbers of adult or larval stages of *T. callipaeda* are present in the eyes of infected patients.

The transmission of human thelaziosis occurs when the intermediate host, a drosophilid fly of the genus *Phorica*, feeds on lacrimal secretions from humans and other animals, and ingests first-stage larvae (L1s) produced by adult females of *T. callipaeda*, which live together with males in the conjunctival sac. After being ingested by the fly, the *T. callipaeda* larvae migrate in the vector’s body (i.e. testis of the male) and undergo development from the L1 to the infective, third-stage larvae (L3) within 14–21 days. Following this migration, the L3s of *Thelazia* emerge from the labella of the infected fly, are deposited on the eye, as the vector feeds on lacrimal secretions, and then develop into the dioecious adult stages in the ocular cavity within ~55 days [5].

In spite of the significance of human thelaziosis, little is known about the biology and epidemiology of *T. callipaeda* and its close relatives [1,3]. This relates mainly to a lack of reliable morphological characters for their specific identification and for comparative study. Although molecular tools, employing genetic markers in short regions of nuclear ribosomal and mitochondrial (mt) DNA, have found utility for taxonomic and epidemiological studies of some
Author Summary

Human thelaziosis is an underestimated parasitic disease caused by the eyeworm *Thelazia callipaeda* (Spirurida: Thelaziidae). Although this parasite is of significance in humans in many Asian countries, its genetics, epidemiology and biology are poorly understood. Mitochondrial (mt) DNA can provide useful genetic markers for fundamental investigations, but no mt genome had been characterized for any members of the family Thelaziidae. In this study, we sequenced and characterized the mt genome of *T. callipaeda*. This circular mt genome is 13,668 bp long and contains 12 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes, but lacks an *atp8* gene. Phylogenetic analyses of the concatenated amino acid sequence data for all 12 protein-coding genes by Bayesian inference showed that *T. callipaeda* is closely related to the family Onchocercidae, consistent with previous study. This is the first mt genome of any member of the family Thelaziidae, and represents a new source of genetic markers for studies of the epidemiology, ecology, population genetics and systematics of this parasite of human and animal health significance.

Materials and Methods

Ethics statement

This study was approved by the Animal Ethics Committee of Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences [Approval No. LVRIAEC2010-008]. The dog from which the adult specimens of *T. callipaeda* were collected was handled in accordance with good animal practice (GAP) required by the Animal Ethics Procedures and Guidelines of the People’s Republic of China.

Parasites and total genomic DNA isolation

Adult specimens of *T. callipaeda* were collected from a conjunctival sac of an infected dog at a veterinary hospital in Zhanjiang, Guangdong Province, China. The worms were washed extensively in physiological saline, fixed in ethanol and then stored at −20 °C until use. Upon thawing, the anterior and posterior ends of each nematode were cut off and cleared in lactophenol for subsequent morphological identification [16]. The mid-body section of each worm was used for the isolation of total genomic DNA by small-scale sodium dodecyl-sulphate (SDS)/proteinase K digestion [17] and mini-column purification (TIANamp Genomic DNA kit). The molecular identity of each specimen was then verified by PCR-based sequencing of regions in the *cox1* and *ms* genes using an established method [18,19], and both regions had 99% identity to previously published sequences for *T. callipaeda* from China and Italy (GenBank accession nos. AM042555 and AJ544858, respectively).

Long-PCR, sequencing and annotation

Using primers (Table S1) designed to relatively conserved regions within the *cox1* and *ms* regions (see Figure 1), the complete mt genome was amplified by long-PCR as two overlapping amplicons (~5 kb and ~9 kb) from the genomic DNA from the mid-body section of a single female specimen of *T. callipaeda*. PCR was conducted in 25 μl using 2 mM MgCl2, 0.2 mM each of dNTPs, 2.5 μl 10 X Taq buffer, 2.5 μM of each primer and 0.5 μl LA Taq DNA polymerase (5 U/μl, Takara) in a thermocycler (Biometra) under the following conditions: 92 °C for 2 min (initial denaturation), then 92 °C for 10 s (denaturation), 58 °C (5 kb) or 42 °C (9 kb) for 30 s (annealing), and 60 °C for 10 min (extension) for 10 cycles, followed by 92 °C for 10 s, 58 °C (~5 kb) or 42 °C (~9 kb) for 30 s (annealing), and 60 °C for 10 min for 20 cycles, with a cycle elongation of 10 s for each cycle and a final extension at 60 °C for 10 min. Genomic DNA (30 ng in 2 μl) was added to PCR, and no-template and known-positive controls were included in each run. Amplicons were column-purified (Wizard PCR Preps, Promega). Subsequently, the amount of DNA in each purified amplicon was estimated spectrophotometrically (ND-1000 UV-VIS spectrophotometer, v.3.2.1, NanoDrop Technologies). Following an electrophoretic analysis of quality, purified amplicons were sequenced using a primer walking strategy [20]. The whole mt genome sequence (GenBank accession no. JX069968) was then assembled using the ContigExpress program of the Vector NTI software package v.6.0 (Invitrogen, Carlsbad, CA).

The mt genome was annotated using an approach similar to that of Yatawara et al. [21]. In brief, each protein-encoding mt gene was identified by local alignment comparison using amino acid sequences conceptually translated from corresponding genes from the mt genome of a reference species (i.e. *Setaria digitata*; accession number: NC_014282) [21]. The tRNA (tn) genes were identified using the program tRNAscan-SE [22] or by visual inspection [23]; rRNA (rm) genes were predicted by comparison with those of *S. digitata* [21].

Phylogenetic analysis of concatenated amino acid sequence data

The amino acid sequences conceptually translated from individual genes of the mt genome of *T. callipaeda* were concatenated. Selected for comparison were concatenated amino acid sequences predicted from published mt genomes from key nematodes representing the order Spirurida, including the superfamily Filarioidea (*Acanthocheilonema viteae* [24], *Brugia malayi* [25], *Chandlerella quasali* [24], *Dirofilaria immitis* [26], *Loa loa* [24], *Onchoerca felseni* [24], O. volvulus [27], S. digitata [21] and *Wuchereria bancrofti* [7]), the superfamily Dracunculoidea (*Dracunculus medinensis*) and the superfamily Physalopteroidea (*Helicometra*...
The gene content and arrangement are the same as those of *D. immitis* and *coding (control or AT-rich) region, but lacks an* *callipaeda* genome contains 12 protein-coding genes (accession no. JX069968) was 13,668 bp in length (Figure 1). This *callipaeda* is biased toward A and tRNA-Asp (Table 1). From 1 to 62 nt in length. The longest region is between tRNA-Pro 102 nt in 14 locations (1 to 32 nt per location) (Table 1). The mt genes of *H. longissimum* *callipaeda* 1–3, 22 trn genes, two rrn genes (rrnL and rrnS) and a non-coding (control or AT-rich) region, but lacks an atp8 gene (Table 1). The gene content and arrangement are the same as those of *D. immitis* and *S. digitata* (rearrangement markedly) and *H. longissimum* (tRNA-Met and tRNA-Val change) [13]. All genes are transcribed in the clockwise direction. ‘AT’ indicates the non-coding region. doi:10.1371/journal.pntd.0002029.g001

Results and Discussion

General features of the mt genome of *T. callipaeda*

The complete mt genome sequence of *T. callipaeda* (GenBank accession no. JX069968) was 13,668 bp in length (Figure 1). This genome contains 12 protein-coding genes (cox1–3, nad1–6, nad4L, atp6 and cyb), 22 tRNA genes, two rrn genes (rrnL and rrnS) and a non-coding (control or AT-rich) region, but lacks an atp8 gene (Table 1). The gene content and arrangement are the same as those of *D. immitis* and *S. digitata* [21,26], but distinct from those of *D. medinensis* (rearrangement markedly) and *H. longissimum* (tRNA-Met and tRNA-Val change) [13]. All genes are transcribed in the same direction. In addition, the mt genes of *T. callipaeda* overlap by 102 nt in 14 locations (1 to 32 nt per location) (Table 1). The mt genome of *T. callipaeda* has 14 intergenic regions, which range from 1 to 62 nt in length. The longest region is between tRNA-Pro and tRNA-Asp (Table 1).

The nucleotide content of the entire mt genome sequence of *T. callipaeda* is biased toward A+T (74.6%), in accordance with mt genomes of other nematodes of the order Spirurida (e.g., [21,26]) (Table 2). One non-coding region (AT-loop) (328 bp), located between cox3 and tRNA- Ala, has the highest A+T content of 79.6% (Table 2). AT- and GC-skews of the whole mt genome were calculated for *T. callipaeda* and other spirurid nematodes studied to date (see Table 3). This composition of the mt genome sequence of *T. callipaeda* was strongly skewed away from A, in favour of T (AT skew = −0.40), and the GC skew was 0.449 (Table 3). All spirurid nematodes reported to date and in the present study show strand asymmetry (GC skew between 0.354 and 0.521) (Table 3).

Protein-encoding genes

The boundaries between protein-coding genes of the mt genome of *T. callipaeda* were determined by aligning its sequence and by identifying translation initiation and termination codons with those of *H. longissimum* and *S. digitata* [13,21]. In this mt genome, all protein-coding genes had ATT, ATA and TTG as their initiation codons, and TAA or TAG as their termination codon. Incomplete termination codons (T or TA) were not identified, which is inconsistent with studies of some other nematodes, including *Anisakis simplex* (s. l.), *A. suum*, *Canoroahabditis elegans*, *S. digitata*, *Toxocara* spp. and *Trichinella spiralis* [21,33–36]. Codons composed of A and T were more frequently used in protein-coding genes, reflecting the high A+T content in the mt genome of *T. callipaeda*. The most frequently used amino acid was Phe (19.3%), followed by Leu (13.4%), Val (7.6%), Gly (7.1%) and His (6.2%) (Table 1).

Other genes

In the mt genome of *T. callipaeda*, the rrnL was located between tRNA-His and nad3, and rrnS was between nad4L and tRNA-Tyr (Table 1). The sizes of the rrnL and rrnS genes of *T. callipaeda* were 966 bp and 666 bp, respectively (Table 1). The 22 trn genes ranged from 52 to 66 bp in size. The secondary structures predicted for the latter genes were similar to those of *S. digitata* [21].

Substitution ratios

As synonymous and non-synonymous substitution rates assist in predicting evolutionary processes [37], the rate of non-synonymous substitutions (Ka), the rate of synonymous substitutions (Ks) and the Ka/Ks ratios were calculated for all 12 protein-coding genes encoded in the mt genomes of *T. callipaeda* and 11 other spirurid nematodes, including *A. viteae*, *B. malayi*, *C. quascat*, *L. loa*, *S. digitata* and *W. bancrofti* (Table 3). The Ka/Ks ratio is a measure of selective pressures acting on gene that indicates neutral mutation (ka/ks = 1), negative or purifying selection (Ka/Ks of <1), and positive or diversifying selection (Ka/Ks of >1) [38,39]. Here, nad2 showed the highest ratio, followed by nad3, while cox1 appeared to have the lowest ratio (Figure 2). Notably, the Ka/Ks ratio of eight protein-coding genes was <1 (range: 0.346 to 0.873), indicating that these genes are evolving under negative or purifying selection [40,41]. The Ka/Ks ratio of 4 protein-coding genes (nad2, nad3, nad5 and nad6) was >1 (range: 1.103 to 1.331), suggesting that these genes have evolved under positive or diversifying selection [42].

Sequence comparisons and phylogenetic relationships of *T. callipaeda* with selected members of the Spirurida

The amino acid sequences predicted from individual protein-coding mt genes of *T. callipaeda* were compared with those of 11 other spirurid nematodes (see Table 5). Pairwise comparisons of the concatenated amino acid sequences revealed identities of 40.3–91.8% among them. Based on identity, COX1 was the most conserved protein, whereas nad4L and nad5 were the least conserved (see Table 5). Phylogenetic analysis of the concatenated amino acid sequence data for all 12 mt proteins showed that *T. callipaeda* (Thelaziidae) was a sister taxon to a clade containing S.
digitata (Setariidae) and other members of the Onchocercidae, including *B. malayi* and *D. immitis*, consistent with results of a previous study [18]. Basal to these taxa were *H. longissimum* (Physalopteridae) and *D. medinensis* (Dracunculidae) (posterior probability = 1.00) (Figure 3).

Fundamental and applied implications

Although much attention has been paid to soil-transmitted helminths as pathogens because of their major socioeconomic impact on human populations [43,44], parasitic nematodes that cause relatively subtle, but chronic disease, such as members of the genus *Thelazia*, have been seriously neglected [3,45]. The main reservoirs for human thelaziosis seem to be dogs, since they often live in areas populated by a large entomo-fauna [1,46]. *T. callipaeda* is usually prevalent in dogs, cats and humans in disadvantaged, rural areas of the former Soviet Union [47] and the Asian continent, including China [48], India [49], Indonesia [50], Japan [51], Korea [52], Taiwan [53] and Thailand [54,55]. More recently, *T. callipaeda* has also been reported in Europe, with a high prevalence (60%) in dogs being recorded in some areas of Southern Italy [56]. Autochthonous cases of canine thelaziosis have also been recorded in France [57,58], Portugal [59], Spain

Gene/Region	Positions	Size (bp)	Number of aa	Ini/Ter codons	Anticodons	In
cox1	1–1647	1647	548	ATT/TAA	+7	
tRNA-Trp (W)	1656–1710	55		TCA	+8	
nad6	1743–2201	459	152	TTG/TAA	+32	
tRNA-Arg (R)	2193–2258	66		ACG	–9	
tRNA-Gin (Q)	2258–2310	53		TTG	–1	
cytb	2315–3397	1083	360	ATT/TAA	+4	
tRNA-LeuCUN (L₁)	3397–3452	55		TAG	–1	
cox3	3450–4232	783	260	ATA/TAA	–3	
Non-coding region	4233–4560	328			0	
tRNA-Ala (A)	4561–4620	60		TGC	0	
tRNA-LeuUUR (L₂)	4624–4679	56		TAA	–1	
tRNA-Asn (N)	4673–4733	61		GTT	–8	
tRNA-Met (M)	4735–4793	59		CAT	+1	
tRNA-Lys (K)	4794–4851	58		TTT	0	
nad4L	4854–5090	237	78	TTG/TAA	+2	
rrn5	5091–5756	666			0	
tRNA-Tyr (Y)	5756–5812	57		GTA	–1	
nad1	5813–6712	900	299	TTG/TAA	0	
tRNA-Phe (F)	6681–6741	61		TTG	–32	
atp6	6742–7323	582	193	ATT/TAG	0	
tRNA-Ile (I)	7325–7381	57			+1	
tRNA-Gly (G)	7383–7439	57		TCC	+1	
cox2	7443–8147	705	234	ATA/TAG	+3	
tRNA-His (H)	8138–8194	57		GTG	–10	
rrlL	8194–9159	966			–1	
nad3	9152–9487	336	111	TTG/TAG	–8	
tRNA-Cys (C)	9488–9543	56		GCA	–1	
tRNA-SerUCN (S₂)	9543–9594	52		TGA	0	
tRNA-Pro (P)	9596–9650	55		AGG	0	
tRNA-Asp (D)	9712–9767	56		GTC	+62	
tRNA-Val (V)	9769–9826	58		TAC	+11	
nad5	9825–11417	1593	530	TTG/TAG	–1	
tRNA-Glu (E)	11420–11475	56		TTC	+1	
tRNA-SerAGN (S₁)	11475–11526	52		TCT	0	
nad2	11507–12367	861	286	TTG/TAA	–20	
tRNA-Thr (T)	12375–12434	60		TGT	+6	
nad4	12429–13661	1233	410	TTG/TAG	–5	

*The inferred length of amino acid (aa) sequence of 12 protein-coding genes; Ini/Ter codons: initiation and termination codons.
Int: Intergenic nucleotides.

doi:10.1371/journal.pntd.0002029.t001

Table 1. The organization of the mitochondrial genome of *Thelazia callipaeda*.
and Switzerland [61], suggesting that the latitude range of endemicity of canine thelaziosis in Europe (between 39° and 46° N) is similar to that of Asia (between 10° and 45° N for India and Japan) [56]. Interestingly, in spite of the high prevalence of canine thelaziosis reported for southern parts of Europe [56], only a small number of human cases have yet been reported in this geographical region [45].

In the present study, the characterization of the mt genome of *T. callipaeda* provides a foundation for the improved diagnosis of human thelaziosis using molecular methods as well as future, detailed studies of the population genetics and epidemiology/ecology of this parasite in Asia. As adult and larval stages of *T. callipaeda* from the eyes of patients cannot be identified reliably by morphology to species, molecular tools, using genetic markers in the first internal transcribed spacer (ITS-1) region of nuclear rDNA and *cox*1, have been used to support clinical diagnosis and to assist in undertaking molecular epidemiological investigations of *T. callipaeda* [1,19]. Because sequence heterogeneity in ITS rDNA can be high in individual spirurid specimens (e.g., [62]), sometimes complicating sequence analyses, protein-coding mt genes appear to be better suited for such studies [19].

Having available the mt genome of *T. callipaeda* now sets the scene to develop combined DNA-based analytical and diagnostic tools, whereby mt genetic regions with differing levels of within-

Table 2. Comparison of A+T content (%) of the mitochondrial genomes of some spirurid nematodes.

Gene/region	AV	BM	CQ	DI	DM	HL	LL	OF	OV	SD	TC	WB
atp6	75.21	75.09	80.14	71.88	72.40	77.89	76.46	73.71	72.99	74.23	74.23	76.63
cox1	67.36	68.98	70.28	67.88	68.21	71.69	69.48	69.70	67.03	69.10	67.88	67.70
cox2	66.81	68.96	72.25	69.15	68.25	74.71	71.53	68.10	69.24	69.38	67.38	70.57
cox3	71.54	72.69	76.92	71.79	71.54	75.93	76.20	72.18	71.79	72.56	72.41	74.33
cytb	72.32	73.97	76.13	72.25	72.14	79.30	75.35	73.65	72.11	72.34	73.68	72.70
nad1	73.43	73.55	75.85	72.94	72.29	75.69	72.85	71.60	69.78	72.78	73.22	72.52
nad2	74.68	77.61	82.39	74.39	76.93	82.92	77.26	75.56	74.30	76.49	77.35	75.71
nad3	79.82	79.35	81.71	77.15	75.89	83.18	79.82	75.66	76.11	77.06	80.24	84.27
nad4	73.98	76.31	82.08	74.55	72.32	80.36	75.75	74.05	73.15	76.91	75.59	73.88
nad5	76.89	78.08	83.33	77.37	74.39	82.05	81.09	77.73	78.60	76.76	80.17	80.66
nad6	71.93	74.81	78.17	73.75	73.64	78.93	74.03	73.62	72.87	74.81	73.82	74.69
rrnS	67.58	69.10	72.89	69.42	70.56	75.84	74.71	74.45	75.68	75.30		
rrnL	74.68	77.61	82.39	74.39	76.93	82.92	77.26	75.56	74.30	76.49	77.35	75.71
AT-loop	79.82	79.35	81.71	77.15	75.89	83.18	79.82	75.66	76.11	77.06	80.24	84.27
Entire	73.54	75.46	77.67	74.16	72.72	79.11	75.54	74.17	73.30	75.14	74.57	74.59

Spirurid nematodes including *Thelazia callipaeda* were arranged in alphabetical order: AV: *Acanthocheilonema viteae*, BM: *Brugia malayi*, CQ: *Chandlerella quiscali*, DI: *Dirofilaria immitis*, DM: *Dracunculus medinensis*, HL: *Heliconema longissimum*, LL: *Loa loa*, OF: *Onchocerca flexuosa*, OV: *Onchocerca volvulus*, SD: *Setaria digitata*, TC: *Thelazia callipaeda*, WB: *Wuchereria bancrofti*, Entire: entire mt genome.

doi:10.1371/journal.pntd.0002029.t002

Table 3. Nucleotide composition of the mitochondrial genomes of spirurid nematodes, including that of *Thelazia callipaeda*.

Species	A	T	G	C	Whole genome sequence		
A + T%							
AT skew							
GC skew							
Acanthocheilonema viteae	19.56	53.98	19.26	7.20	73.54	–0.468	0.456
Brugia malayi	21.60	53.86	16.82	7.72	75.46	–0.428	0.371
Chandlerella quiscali	23.02	54.65	15.92	6.41	77.67	–0.407	0.426
Dirofilaria immitis	19.26	54.90	19.28	6.56	74.16	–0.481	0.492
Dracunculus medinensis	20.12	52.60	20.75	6.53	72.72	–0.447	0.521
Heliconema longissimum	26.22	52.89	14.14	6.75	79.11	–0.337	0.354
Loa loa	20.78	54.76	17.73	6.73	75.54	–0.450	0.450
Onchocerca flexuosa	20.30	53.88	18.60	7.23	74.17	–0.430	0.440
Onchocerca volvulus	19.26	54.04	19.84	6.86	73.30	–0.474	0.486
Setaria digitata	19.42	55.71	18.14	6.72	75.14	–0.483	0.459
Thelazia callipaeda	22.39	52.18	18.42	7.01	74.57	–0.40	0.449
Wuchereria bancrofti	20.14	54.45	18.20	7.21	74.59	–0.460	0.433

doi:10.1371/journal.pntd.0002029.t003
species divergence [19] might be used to explore haplotypic variation of individuals within and among *T. callipaeda* populations infecting humans and other definitive hosts as well as fly intermediate hosts, such as *Phortica variegata*. This could be done effectively using PCR-coupled mutation scanning and selective sequencing [17], already effectively applied, on a small scale, to *T. callipaeda* [19]. A previous investigation, employing *cox1* alone, showed that, despite a relatively high degree of genetic variability among specimens isolated from Asia (i.e. China and Korea), no genetic variation was detected among individual specimens from different host species (i.e. dogs, cats and foxes) and localities within Europe (i.e. France, Germany, Italy, Netherlands, and Spain) [19]. These data were supported by additional studies [58–60], suggesting a genetically homogenized population in Europe, a tighter affiliation of this nematode to intermediate hosts than to the definitive hosts, and, thus, that the distribution of the parasite might be expected to resemble that of the vector [19].

Amino acid	Codon	Number	Frequency (%)	Amino acid	Codon	Number	Frequency (%)
Phe	TTT	655	18.86	Met	ATA	79	2.27
Phe	TTC	14	0.40	Met	ATG	68	1.95
Leu	TTA	251	7.22	Thr	ACT	83	2.39
Leu	TTG	214	6.16	Thr	ACC	0	0
Ser	TCT	122	3.51	Thr	ACA	4	1.11
Ser	TCC	4	0.11	Thr	ACG	3	0.08
Ser	TCA	6	0.17	Asn	AAT	89	2.56
Ser	TCG	2	0.05	Asn	AAC	5	0.14
Tyr	TAT	179	5.15	Lys	AAA	39	1.12
Tyr	TAC	7	0.20	Lys	AAG	46	1.32
Stop	TAA	7	0.20	Ser	AGT	97	2.79
Stop	TAG	5	0.14	Ser	AGC	7	0.20
Cys	TGT	92	2.64	Ser	AGA	32	0.92
Cys	TGC	5	0.14	Ser	AGG	49	1.41
Trp	TGA	48	1.38	Val	GTT	200	5.76
Trp	TGG	34	0.97	Val	GTC	6	0.17
Leu	CTT	27	0.77	Val	GTA	29	0.83
Leu	CTC	0	0	Val	GTG	30	0.86
Leu	CTA	8	0.23	Ala	GCT	62	1.78
Leu	CTG	3	0.08	Ala	GCC	6	0.17
Pro	CCT	50	1.44	Ala	GCA	10	0.28
Pro	CCC	9	0.25	Ala	GCG	10	0.28
Pro	CCA	8	0.23	Asp	GAT	64	1.84
Pro	CGG	9	0.25	Asp	GAC	5	0.14
His	CAT	53	1.52	Glu	GAA	37	1.06
His	CAC	1	0.02	Glu	GAG	36	1.03
Gln	CAA	18	0.51	Gly	GGT	126	3.62
Gln	CAG	33	0.95	Gly	GGC	12	0.34
Arg	CGT	32	0.92	Gly	GGA	39	1.12
Arg	CGC	2	0.05	Gly	GGG	70	2.01
Arg	CGA	6	0.17	Ile	ATT	212	6.10
Arg	CGG	10	0.28	Ile	ATC	4	0.11

The total number of codons is 3,473. Stop = Stop codon.

doi:10.1371/journal.pntd.0002029.t004

![Substitution ratios in the mitochondrial genomes of spirurid nematodes.](image)

Figure 2. Substitution ratios in the mitochondrial genomes of spirurid nematodes. The rate of non-synonymous (Ka), the rate of synonymous (Ks) substitutions, and the respective ratios (Ka/Ks) for individual protein-coding genes are shown.
doi:10.1371/journal.pntd.0002029.g002
Table 5. Differences (%) in mitochondrial amino acid sequences between Thelazia callipaeda and other nematodes.

Gene	AV	BM	CQ	DI	DM	HL	LL	OF	OV	SD	WB
atp6	55.4	58.0	49.2	58.1	18.8	52.6	57.5	58.5	57.0	57.0	57.5
cox1	80.8	83.2	80.1	84.3	52.1	70.1	83.6	83.8	84.1	83.8	83.8
cox2	64.7	65.9	66.4	67.7	40.4	48.5	63.8	69.8	67.2	69.0	65.7
cox3	69.1	68.3	64.5	65.6	36.5	54.7	67.2	68.3	68.7	66.4	69.5
cyt b	71.4	72.2	73.9	73.1	50.0	67.2	75.6	75.7	76.1	77.2	73.3
nad1	62.7	66.1	66.9	64.9	46.6	54.3	67.7	68.6	66.9	64.2	64.7
nad2	58.2	60.5	52.3	57.7	37.6	39.3	57.9	57.0	57.2	60.2	58.0
nad3	45.9	44.1	43.2	40.5	29.7	41.7	44.1	45.0	45.0	42.3	46.8
nad4	65.0	67.5	65.8	63.6	46.7	57.4	67.6	67.3	68.0	68.5	67.7
nad4L	25.6	25.6	25.6	25.6	20.5	23.4	28.2	24.4	23.1	26.9	26.9
nad5	66.6	65.8	63.8	65.8	38.7	54.8	64.0	65.3	66.0	64.3	67.0
nad6	49.0	48.7	47.0	50.0	29.0	35.2	45.0	47.7	45.0	52.3	49.3

Nematodes: AV: Acanthocheilonema viteae, BM: Brugia malayi, CQ: Chandlerella quiscali, DI: Dirofilaria immitis, DM: Dracunculus medinensis, HL: Helicocerca longissimum, LL: Loa loa, SD: Setaria digitata, WB: Wuchereria bancrofti, OF: Onchocerca volvulus, OV: Onchocerca flexuosa, EmTG: entire mitochondrial genome.

doi:10.1371/journal.pntd.0002029.t005
proteomic datasets. For decades, there have been controversies surrounding the systematics of members of the Spirurida (including superfamilies Acucaridae, Aproctoidea, Dipl troturoidea, Filarioidea, Gnathostomatoidea, Habronematoidea, Physalopteroidea, Rictularioidea and Spiruroidae) [64,65]. Given the demonstrated utility of mt proteinic datasets, high phylogenetic signal and strong statistical support in trees [12,13], there is now an opportunity to test the phylogenetic relationships of a wide range of spirurid nematodes using expanded mt datasets.

Supporting Information

Table S1 Sequences of oligonucleotide primers for amplifying regions of the mitochondrial genome of *Thelazia callipaeda*. (DOCX)

Author Contributions

Conceived and designed the experiments: XQZ RBG GHL. Performed the experiments: GHL MJX. Analyzed the data: GHL RBG XQZ. Contributed reagents/materials/analysis tools: MJX JLS DHZ NM. Wrote the paper: GHL RBG DO XQZ.

References

1. Otranto D, Traversa D (2004) Molecular characterization of the first internal transcribed spacer of ribosomal DNA of the most common species of eyeworms (Thelaziaidae: Thelazia). J Parasitol 90: 185–188.
2. Biancari F, Otranto D (2005) Treatment of dog thelaziosis caused by *Thelazia callipaeda* (Spirurida, Thelaziidae) using a topical formulation of imidacloprid 10% and moxiderm 2.5%. Vet Parasitol 129: 59–93.
3. Shen J, Gasser RB, Chu D, Wang Z, Yuan X, et al. (2006) Human thelaziosis–a neglected parasitic disease of the eye. J Parasitol 92: 872–875.
4. Motta B, Schneider M, Basano FS, Nageli F, Nageli C, et al. (2012) Therapeutic efficacy of milbemycin oxime/praziquantel oral formulation (Milbemax) against *Thelazia callipaeda* in naturally infested dogs and cats. Parasit Vectors 5: 85.
5. Otranto D, Lia RP, Cantacessi C, Testini G, Troccoli A, et al. (2005) Nematode biology and larval development of *Thelazia callipaeda* (Spirurida, Thelaziidae) in the drogophile intermediate host in Europe and China. Parasitology 131: 847–855.
6. Unnasch TR, Williams SA (2000) The genomes of *Onchocerca volvulus*. Int J Parasitol 30: 543–552.
7. Ramesh A, Liu GH, Gasser RB, Su A, Nejsum P, Peng L, et al. (2012) Clear genetic variability within *Thelazia callipaeda* (Nematoda: Filarioidea): avenues for potential implications. Vet Parasitol 146: 263–270.
8. Traversa D, Costanzo F, Iorio R, Aroch I, Lavy E. (2007) Mitochondrial cytochrome c oxidase subunit 1 (cox1) gene sequence of *Spinoeca hiriphi* (Nematoda, Spirurida). *Thelazia*: avenues for potential implications. Vet Parasitol 146: 263–270.
9. Iorio R, Slapeta J, Otranto D, Paolieri B, Giangaspero A, et al. (2009) Phylogenetic relationships of *Habronema muscae* (Spirurida: Habronematidae) within the order Spirurida inferred using mitochondrial cytochrome c oxidase subunit 1 (cox1) gene analysis. Parasit Res 104: 979–986.
10. Wu SG, Wang GT, Xi BW, Xiong F, Liu T, et al. (2009) Population genetic structure of the parasitic nematode *Camallanus obtusus* inferred from DNA sequences of ITS1 rDNA and the mitochondrial CO1 gene. J Parasitol 95: 111–127.
11. Otranto D, Laprotro MS, Brianti E, Annoscia G, Parisi A, et al. (2012) The complete mitochondrial genome sequence of the filarial nematode *Wuchereria bancrofti* from three geographic isolates provides evidence of complex demographic history. Mol Biochem Parasitol 183: 32–41.
12. Traversa D, Costanzo F, Iorio R, Aroch I, Lavy E. (2007) Mitochondrial cytochrome c oxidase subunit 1 (cox1) gene sequence of *Spinoeca hiriphi* (Nematoda, Spirurida). Int J Parasitol 37: 191–203.
13. Liu GH, Gasser RB, Su A, Nejsum P, Peng L, et al. (2012) Clear genetic variability within *Thelazia callipaeda* (Nematoda: Filarioidea): avenues for potential implications. Vet Parasitol 146: 263–270.
14. Hu M, Chilton NB, Gasser RB (2002) The mitochondrial genomes of the human hookworms, *Anchlyoloe duodenale* and *Necator americanus* (Nematoda: Seemertina). Int J Parasitol 32: 145–158.
15. McNulty SN, Mullin AS, Vaughan JA, Tkach VV, Weil GJ, et al. (2012) Comparing the mitochondrial genomes of *Wolbachia*-dependent and independent filarial nematode species. BMC Genomics 13: 145.
16. Ghrer E, Wang S, Spira D, Caler E, Zhao Q, et al. (2007) Draft genome of the filarial nematode parasite *Brugia malayi*. Science 317: 1756–1760.
17. Hu M, Gasser RB, Abu EL-Osta YG, Chilton NB (2003) Structure and organization of the mitochondrial genome of the canine heartworm, *Dirofilaria immitis*. Parasitology 127: 37–51.
18. Keddie EM, Higazi T, Unnasch TR (1998) The mitochondrial genome of *Onchocerca volvulus*: sequence, structure and phylogenetic analysis. Mol Biochem Parasitol 95: 129–137.
19. Liu GH, Wu CY, Song HQ, Wei SJ, Xu MJ, et al. (2012) Comparative analyses of the complete mitochondrial genomes of *Acanthocheilonema viteae* and *Acanthocheilonema sp.* from humans and pigs. Gene 492: 110–116.
20. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.
21. Jex AR, Wasenchenbach A, Hu M, van Wyk JA, Beveridge I, et al. (2009) The mitochondrial genomes of *Anchlyoloe caninum* and *Baumonia phthioticus*-two hookworms of animal health and zoonotic importance. BMC Genomics 10: 79.
22. Liu GH, Wang SY, Huang WY, Zhao GH, Wei SJ, et al. (2012) The complete mitochondrial genome of *Galliella peria* (Gastropoda: Mollusca), an intermediate host mail of *Fasciola hepatica*. PLoS One 7: e21272.
23. Page RD (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12: 357–358.
24. Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR (1992) The mitochondrial genomes of two nematodes, *Caulobactriellus elegans* and *Acanthocheilonema viteae*. Genetics 130: 471–498.
25. Lavrov DV, Brown WM (2001) *Trichinella spiralis* mtDNA: A nematode mitochondrial genome that encodes a putative atp8 and normally structured rRNAs and has a gene arrangement relatable to those of coelomate metazoa. Genetica 107: 621–637.
26. Kim KH, Enom KS, Park JK (2006) The complete mitochondrial genome of *Ancylostoma simplex* (Ascaridida: Nematoda) and phylogenetic implications. Int J Parasitol 36: 319–329.
27. Li MW, Liu RQ, Song HQ, Wu XY, Zhu XQ (2008) The complete mitochondrial genomes of *Trichinella spiralis* for three *Trichinella* species of human and animal health significance. BMC Genomics 9: 224.
28. Yang Z, Nielsen R (2000) Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 17: 32–43.
29. Meganathan PR, Dubey B, Bater MA, Ray DA, Haque I (2011) Complete mitochondrial genome sequences of three *Cociochyla* species and their comparison within the order *Cociochylida*. Gene 478: 35–41.
30. Li H, Liu H, Shi A, Stry P, Zhou XG, et al. (2012) The complete mitochondrial genome and novel gene arrangement of the unique-headed bug *Stenopirates* sp. (Hemiptera: Empididae). PLoS One 7: e29419.
31. Roques S, Fox CJ, Villasana MI, Rico C (2006) The complete mitochondrial genome of the whiting, *Melanogrammus aeglefinus*: a detailed genomic comparison among closely related species of the Gadidae family. Gene 383: 12–23.
32. Yuan ML, Wei DD, Wang BJ, Dou W, Wang JJ (2010) The complete mitochondrial genome of the cirrus red mite *Panonychus citri* (Acari: Tetranychidae): high genome rearrangement and extremely truncated rRNAs. BMC Genomics 11: 597.
33. Jordan IK, Rogozin IB, Wolfe YI, Koonin EV (2002) Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res 12: 962–968.
34. Bethony JM, Cole RN, Guo X, Kamhawi S, Lightowlers MW, et al. (2011) Vaccines to combat the neglected tropical diseases. Immuno Rev 239: 237–270.

Mitochondrial Genome of *Thelazia callipaeda*
44. Hotez PJ, Savioli L, Fenwick A (2012) Neglected tropical diseases of the Middle East and North Africa: review of their prevalence, distribution, and opportunities for control. PLoS Negl Trop Dis 6: e1475.

45. Otranto D, Dunto M (2008) Human thelaziasis, Europe. Emerg Infect Dis 14: 647–649.

46. Sco M, Yu JR, Park HY, Hu b S, Kim SK, et al. (2002) Enzooticity of the dogs, the reservoir host of *Thelazia callipaeda*, in Korea. Korean J Parasitol 40: 101–103.

47. Miroshnichenko VA, Desiaterek MP, Novik AP, Gorbach AP, Papernova NIu (1988) [A case of ocular thelaziasis in a 3-year-old child]. Vestn Oftalmol 104: 64. [Article in Russian].

48. Chen W, Zheng J, Hou P, Li L, Hu Y (2010) A case of intraocular thelaziasis with rhegmatogenous retinal detachment. Clin Exp Ophthalm 93: 360–363.

49. Singh TS, Singh KN (1993) Ocular thelaziasis: report of two cases. Br J Ophthalmol 77: 528–529.

50. Kosin E, Kosman ML, Depary A (1989) First case of human *Thelazia* in Indonesia. Southeast Asian J Trop Med Public Health 20: 233–236.

51. Koyama Y, Ohira A, Kono T, Yoneyama T, Shiwaku K (2000) Five cases of thelaziasis. Br J Ophthalmol 84: 441.

52. Sohn WM, Na BK, Yoo JM (2011) Two cases of human thelaziasis and brief review of Korean cases. Korean J Parasitol 49: 265–271.

53. Cheung WK, Lu HJ, Liang CH, Peng ML, Lee HH (1998) Conjunctivitis caused by *Thelazia callipaeda* infection in a woman. J Formos Med Assoc 97: 425–427.

54. Bhaibulaya M, Prasertsilpa S, Vajrasthira S (1970) *Thelazia callipaeda* Radllet and Henry, 1910, in man and dog in Thailand. Am J Trop Med Hyg 19: 476–478.

55. Yospaiboon Y, Sithithavorn P, Maleewong V, Ukosanakarn U, Bhaibulaya M (1989) Ocular thelaziasis in Thailand: a case report. J Med Assoc Thai 72: 469–473.

56. Otranto D, Ferroglio E, Liu RP, Traversa D, Rossi L (2003) Current status and epidemiological observation of *Thelazia callipaeda* (Spirurida, Thelaziidae) in dogs, cats and foxes in Italy: a “coincidence” or a parasitic disease of the Old Continent? Vet Parasitol 116: 315–325.

57. Duches P, Chausieu G, Siméon LA, Cazalot G, Cantacessi C, et al. (2007) First reports of autochthonous eyeworm infection by *Thelazia callipaeda* (Spirurida, Thelaziidae) in dogs and cat from France. Vet Parasitol 149: 294–297.

58. Ruytoor P, Déan O, Pennant O, Duches P, Chermette R, et al. (2010) Ocular thelaziasis in dogs and cats. Emerg Infect Dis 16: 1943–1945.

59. Vieira L, Rodrigues FT, Costa A, Díez-Lopes D, Machado J, et al. (2012) First report of canine ocular thelaziasis by *Thelazia callipaeda* in Portugal. Parasit Vectors 5: 124.

60. Miró G, Montoya A, Hernández I, Dado D, Vázquez MV (2011) *Thelazia callipaeda*: infection in dogs: a new parasite for Spain. Parasit Vectors 4: 148.

61. Malacrida F, Hegglin D, Bacciaroni L, Otranto D, Nage F, et al. (2006) Emergence of canine ocular Thelaziasis caused by *Thelazia callipaeda* in southern Switzerland. Vet Parasitol 157: 321–327.

62. Gasser RB, LeGoff L, Petit G, Bain O (1996) Rapid delineation of closely-related filarial parasites using genetic markers in spacer rDNA. Acta Trop 62: 143–150.

63. Liu GH, Wang Y, Xu MJ, Zhou DH, Ye YG, et al. (2012) Characterization of the complete mitochondrial genomes of two whipworms *Trichuris axi* and *Trichuris discolor* (Nematoda: Trichuridae). Infect Genet Evol 12: 1055–1064.

64. De Ley P, Blaxter M (2002) Systematic position and phylogeny. In: Lee DL (ed). The Biology of Nematodes. Taylor & Francis, London and New York. pp. 1–30.

65. Nadler SA, Carreno RA, Mejía-Madrid H, Ullberg J, Pagan C, et al. (2007) Molecular phylogeny of clade III nematodes reveals multiple origins of tissue parasitism. Parasitology 134: 1421–1442.
Author/s:
Liu, G-H; Gasser, RB; Otranto, D; Xu, M-J; Shen, J-L; Mohandas, N; Zhou, D-H; Zhu, X-Q

Title:
Mitochondrial Genome of the Eyeworm, Thelazia callipaeda (Nematoda: Spirurida), as the First Representative from the Family Thelaziidae

Date:
2013-01-01

Citation:
Liu, G. -H., Gasser, R. B., Otranto, D., Xu, M. -J., Shen, J. -L., Mohandas, N., Zhou, D. -H. & Zhu, X. -Q. (2013). Mitochondrial Genome of the Eyeworm, Thelazia callipaeda (Nematoda: Spirurida), as the First Representative from the Family Thelaziidae. PLOS NEGLECTED TROPICAL DISEASES, 7 (1), https://doi.org/10.1371/journal.pntd.0002029.

Persistent Link:
http://hdl.handle.net/11343/264704

File Description:
Published version

License:
CC BY