PT652
Neuropeptide receptor genes polymorphism and sleep disorders
V.V. Gafarov, L.A. Gromova, K. I. Voevod, I.Y. Gugrilin, V.N. Maximov, A.V. Gafarov, D.O. Panov
1. FSBI Institute of Internal and Preventive Medicine

Abstract
Objective: To study the association gene of candidate NPSR1 rs324981 with sleep disorders in the open population of men 45–64 years of Novosibirsk.

Methods: The study of the association candidate gene polymorphisms with sleep disorders was carried out during the examination of a random representative sample of men 45–69 years (n = 1770). The response rate was 61%. The median age is 56.5 years. Every 12 subject was selected for genotyping (n = 147). To assess the level of sleep was used a questionnaire which was filled with self-test. Statistical analysis was performed using SPSS-11.5.

Results: The level of sleep disorders in the male population of 45–64 years was 79.9%. The frequency of homozgyous C/C genotype of neuropeptide S (gene NPSR1 rs324981) was 19.4%, T/T genotype occurs in 27.8%, C/T genotype – 52.8%.

Men dominated the T allele of -54.2%, and the C allele -45.8% growth trend found dissatisfaction with the quality of their sleep among men. Men T–allele carriers, most evaluated their sleep as “satisfactory” in 69% of cases, (χ² = 15,713 df = 8, p < 0.05).

Conclusion: Association found men carrier T - allele of neuropeptide S (gene NPSR1 rs324981), a sleep disorder. Supported by Grant of Russian Foundation for Humanities №14-06-00227/a.

PT653
Experience using suvorexant to treat delirium
Presenters: Kodo Fujiwara, Shinichi Kohata, Hidenori Sumiyoshi, Tsutomu Kataoka, Osamu Takeshita, Jun Omura, Junko Kuroda Psychiatry, Hiroshima Prefectural Hospital

Abstract
Objective: Suvorexant is a sleep aid that acts on the orexin receptor. The current study examined experience using suvorexant to treat delirium in order to determine suvorexant’s efficacy.

Subjects and Methods: Patients who received suvorexant in this Department from January to October 2015 were studied retrospectively. Privacy was considered and subjects were not individually identifiable. Patients consisted of 82 males and 77 females; most patients were in their 70s, although some were in their 80s.

Results: The most prevalent symptom (94 patients) was insomnia, followed by delirium (58 patients) and other complaints (7 patients). Suvorexant was efficacious in treating 84 patients with insomnia (69%). Of the 58 patients who exhibited delirium, most were in their 80s. Suvorexant was efficacious in treating 36 patients with delirium (78%).

Discussion: Suvorexant is a drug to treat insomnia, and there was no evidence of its efficacy in treating delirium. However, the current results revealed that suvorexant is as or more efficacious at treating delirium as it is at treating insomnia. Additional cases need to be assembled in the future to determine if suvorexant is efficacious at treating delirium.

PT654
Suvorexant induced restless legs syndrome; a case report
Tomomi Oghara, Daimei Sasayama, Shinsuke Washizuka
Shinshu University, Japan

Abstract
Natural sleep-awake cycle is regulated by serotonin, histamine, acetylcholine, and dopamine. Orexin system is believed to play a role in controlling these systems, and its dysfunction results in narcolepsy. Suvorexant is the first dual orexin receptor antagonist (DORA) to be approved for the treatment of insomnia. We describe a patient who presented with restless legs syndrome (RLS) induced by suvorexant.

The case was an 81-year-old woman who was diagnosed with depression at the age of 77. She was in remission for some years except for insomnia, which was treated with 1 mg/day of flunitrazepam, 0.25 mg/day of brotizolam and 8 mg/day of ramelteon. She had a history of severe RLS induced by 12.5 mg/day of quetiapine, which disappeared with the discontinuation of quetiapine. She complained of insomnia during hospitalization for an aortic valve replacement for severe aortic stenosis. Because the benzodiazepines did not sufficiently improve the insomnia, she was started on 15 mg/day of suvorexant. On the first night of suvorexant treatment, she was unable to sleep well due to the crawly feelings in the legs. The uncomfortable sensation disappeared the following day but reappeared at night. Suvorexant treatment was discontinued and the RLS subsequently disappeared. To our knowledge, this is the first case of restless legs syndrome induced by suvorexant.

Orexin neurons project to the entire central nervous system including locus coeruleus, laterodorsal tegmental nucleus, pedunculopontine tegmental nucleus, basal forebrain, tuberomammillary nucleus, dorsal raphe nuclei and ventral tegmental area. These brain arousal systems project to serotonin, histamine, acetylcholine, and dopamine neurons. Suvorexant treatment may have caused the imbalance of monoamines, leading to the development of RLS in this case.

PT655
The effectiveness of prolonged-release melatonin among primary insomnia patients whose sleep schedule was set
Boram Park, MD, Soyoung Youn, M.D., Suyeon Lee, M.D., Seockhoon Chung, MD, PhD
Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Abstract
Objective: Prolonged-release formulation of melatonin (PRM) is approved for insomnia patients ≥ 55 years old. Taking PRM 1–2 hours before bedtime is recommended, and a 26 – 47% response rate was reported in France and UK. Our study purpose is to investigate the effectiveness of PRM when used for insomnia patients whose sleep schedule was set.

Method: We reviewed the medical records of primary insomnia patients prescribed PRM after visiting the Psychiatry Department sleep clinic, Asan Medical Center, to obtain routinely asked information regarding sleep satisfaction, sleep-time schedule, and class and dose of sleeping pills. We selected patients who were dissatisfied with their sleep even after their sleep schedule was set before taking PRM. We analyzed satisfaction rate and treatment-emergent adverse events (TEAE) after taking PRM.
PT656
Prevalence and Clinical Correlates of Flunitrazepam-Related Complex Sleep Behaviors
Cheng-Fang Yen,1,2 Jui-Kang Tsai2
1Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan 2Department of Psychiatry, College of Medicine, and Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan

Abstract
Complex sleep behaviors (CSBs) are often associated with hypnotics use. This study aimed to investigate the prevalence and correlates of CSBs among individuals who were taking flunitrazepam from psychiatric outpatient clinics. A total of 268 participants who were administered flunitrazepam for at least 3 months were enrolled from psychiatric outpatient clinics from June 2011 to May 2012. The occurrence of CSBs, demographic characteristics, the dose and duration of flunitrazepam use, psychiatric diagnoses, physical illnesses, and alcohol drinking were collected. Logistic regression analysis was used to examine the clinical correlates of CSBs. In total, there were 66 (24.6%) participants reporting CSBs. Logistic regression analysis showed a high dose (>2 mg) of flunitrazepam (Odd Ratio [OR] = 1.978, 95% Confidence Interval [CI]: 1.066–3.671, p = .031) and alcohol use (OR = 2.034, 95% CI: 1.046–3.955, p = .036) were significantly associated the occurrence of CSBs. Sex, age, duration of flunitrazepam use, psychiatric diagnoses and physical illnesses were not significantly associated the occurrence of CSBs. CSBs should be monitored routinely in flunitrazepam users, especially among those with a high dose of flunitrazepam and alcohol drinking.

PT657
Take your sleeping pills 7 hours before your wake-up time
Soyoung Youn, M.D., Chi-Won C. Han, B.A., Boram Park, M.D., Suyeon Lee, M.D., Kikyoung Yi, M.D., Seokhoon Chung, M.D., Ph.D. Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Abstract
To examine the proper timing for taking prescribed sleeping pills. Among 26 of these patients, 22 (87%) took other sleeping pills. Mean duration of taking PRM among 24 patients who were followed was 28.0 ± 13.0 days. At study endpoint, satisfaction rate to PRM was 71% (n=17) and daytime sleepiness (n=2), headache (n=1), and dizziness (n=1) were reported as TEAE. Among 20 patients who were also prescribed other sleeping pills and followed-up, 40% (n=8) could reduce their sleeping pills dosage more than 50%.

Conclusion: We observed a 71% satisfaction rate to PRM when we prescribed it to patients who were dissatisfied with sleep even after their sleep schedule was set. TEAE were not prevalent.

Results: Among 26 patients, 22 (87%) were satisfied with their sleeping pills. Mean hypnotics administration time was significantly delayed from 9:32 pm ± 0:58 to 10:55 pm ± 0:46 (p < 0.001) and duration from pills to wake-up time (PTW) was shortened from 9.0 ± 1.1 to 7.1 ± 0.8 hours (p < 0.001). Sleep latency (p=0.023) was significantly shorted, and ISI and PSQI scores significantly improved (p<0.001). The improvements of ISI and PSQI were positively correlated with the shortened sleep latency (r=0.49, p<0.05) and PTW (r=0.54, p<0.05), respectively.

Conclusions: Advising patients to take hypnotics about 7 hours before their usual wake-up time could increase the level of satisfaction with their original medication as is. In incorporating concepts of cognitive behavioral therapy, this recommendation may serve as a simple but considerably useful guidance on the proper timing for taking prescribed sleeping pills.

Key words: hypnotics, patient satisfaction, insomnia, sleep

PT658
Neurobiological Quantification of Stress-Induced Sleep-Perturbation in Rats using in vivo Proton MR Spectroscopy and In vitro Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
Dong-Heol Woo, Jinil Kim, Sang-Tae Kim, Jae-Im Kuwon, Do-Wan Lee, Chul-Woong Woo Asan Medical Center, Republic of Korea

Abstract
Specific Objective of the Study: The aim of this study was to quantitatively assess the differences on the cerebral metabolites, and to identify the factors determining the alterations of endogenous biomolecules, on stress-induced sleep disturbance in rats using in vivo proton magnetic resonance spectroscopy (1H MRS), and in vitro liquid chromatography-tandem mass spectrometry (LC-MS/MS).

Methods used: Twenty male Sprague-Dawley rats (sham control group [CNTL]: n = 9; stress-induced sleep perturbation group [SSP]: n = 11) were used in the present study and exposed the stress-induced sleep perturbed rat model to the psychological stressor (cage exchange). After the end of the SSP modeling procedure, we carried out in vivo 1H MRS and in vitro LC-MS/MS.

Summary of results: From our results, the GABA and Gln concentrations and Gln/Glu, Gln/tCr, and GABA/Glu ratios were significantly higher in the SSP rats than in the CNTL rats. Moreover, the 5-HT concentrations were significantly lower in the SSP rats than in the CNTL rats. The pairs of biomolecular signals that

E-mail: schung@amc.seoul.kr