A NEW LAGRANGE MULTIPLIER APPROACH FOR CONSTRUCTING
STRUCTURE PRESERVING SCHEMES, I. POSITIVITY PRESERVING

QING CHENG† AND JIE SHEN†

Abstract. We propose a new Lagrange multiplier approach to construct positivity preserving schemes for parabolic type equations. The new approach introduces a space-time Lagrange multiplier to enforce the positivity with the Karush-Kuhn-Tucker (KKT) conditions. We then use a predictor-corrector approach to construct a class of positivity schemes: with a generic semi-implicit or implicit scheme as the prediction step, and the correction step, which enforces the positivity, can be implemented with negligible cost. We also present a modification which allows us to construct schemes which, in addition to positivity preserving, is also mass conserving. This new approach is not restricted to any particular spatial discretization and can be combined with various time discretization schemes. We establish stability results for our first- and second-order schemes under a general setting, and present ample numerical results to validate the new approach.

Key words. positivity preserving; mass conserving; KKT conditions; Lagrange multiplier; stability

AMS subject classifications. 65M70; 65K15; 65N22

1. Introduction. Solutions for a large class of partial differential equations (PDEs) arising from sciences and engineering applications, e.g., solutions for physical variables such as density, concentration, height, population, etc., are required to be positive. It is of critical importance that their numerical approximations preserve the positivity of these variables at the discrete level, as violation of the positivity may render the discrete problems ill posed, although the original problems are well posed.

In recent years, a large effort has been devoted to construct positivity preserving schemes for various problems. The existing approaches can be roughly classified into the following categories:

• Cut-off approach: an ad-hoc approach which simply cuts off the values outside of the desired range. This approach is perhaps used in many simulations without being explicitly mentioned, and it is recently analyzed in [22, 17] for certain class of time discretization schemes. The main advantages of the cut-off approach is (i) simple to implement, and (ii) it is able to preserve the accuracy of the underlying numerical schemes for problems with smooth solutions (cf. [17]). A disadvantage is that it does not preserve mass.

• Discrete maximum principle preserving schemes (see, for instance, [6] and the references therein): these schemes are usually based on second-order finite differences or piecewise linear finite elements so they are limited in accuracy, see however some recent work on fourth-order finite differences [18, 19] applied to second-order elliptic or parabolic equations.

• Post-processing approach: sophisticated procedures are designed in [29, 28] for hyperbolic systems: these are explicit schemes which are not quite suitable for parabolic systems.

• Convex splitting approach: for examples, see [4] for Cahn-Hilliard equations with logarithmic potential, [20, 14] for PNP and Keller-Segel equations. The drawback of this approach is that a nonlinear system has to be solved at each time step.

• Reformulation approach: reformulate the problem so that solution of the corresponding discrete problem is always positive, see, for instance, [20, 15]).

• Lagrange multiplier approach: regarding the positivity as a constraint and introducing a Lagrange multiplier to enforce the positivity constraint. This can be regarded as a special case of the constrained minimization [13]. The main difficulty of this approach is that the resulting problem is only semi-smooth which excludes the use of standard Newton method. Hence, special, and often expensive, iterative methods such as semi-smooth Newton method, have to be used [23, 26, 12].

*This work is partially supported by NSF Grant DMS-2012585 and AFOSR Grant FA9550-20-1-0309.
†Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA (cheng573@purdue.edu, shen7@purdue.edu).

arXiv:2107.00504v2 [math.NA] 8 Aug 2021
We consider in this paper a class of linear or nonlinear parabolic equations with positive solutions in the following form:

\[u_t + Lu = 0, \tag{1.1} \]

with suitable initial and boundary conditions, where \(L \) could be \(Lu = Au + f(u) \) with \(A \) being a linear or nonlinear positive operator and \(f(u) \) a semi-linear or quasi-linear operator. Consider a generic spatial discretization of (1.1):

\[\partial_t u_h + L_h u_h = 0, \tag{1.2} \]

where \(u_h \) is in certain finite dimensional approximation space \(X_h \) and \(L_h \) is a certain approximation of \(L \). In general, \(u_h \), if it exists, may not preserve positivity. Oftentimes, \(u_h \) may not preserve positivity, e.g., a direct finite elements or spectral approximation to the porous media equation \[u_t - m \nabla \cdot (u^{m-1} \nabla u) = 0 \] with \(m > 1 \) can not preserve positivity so it is not well posed. Hence, special efforts have to be devoted to construct spatial discretization such that (1.2) is positivity preserving.

Alternatively, we can introduce a Lagrange multiplier function \(\lambda_h(x,t) \) and solve the following expanded system:

\[\partial_t u_h + L_h u_h = \lambda_h, \]
\[\lambda_h \geq 0, \quad u_h \geq 0, \quad \lambda_h u_h = 0. \tag{1.3} \]

Note that the second equation in the above represents the well-known Karush-Kuhn-Tucker (KKT) conditions \[[16, 8, 10, 2] \] for constrained minimizations. In the absence of time variable, the problem (1.3) has been well studied mathematically and numerically. However, how to efficiently solve the time dependent (1.3) is a completely different issue which has not received much attention. One can of course use an implicit discretization scheme such as backward-Euler or BDF schemes so that at each time step, the nonlinear system can still be interpreted as a constrained minimization and apply a suitable iterative procedure. But since these constrained minimization problems are only semi-smooth, a delicate and costly iterative method has to be used. We refer to \[[26] \] for such an attempt with a diagonally implicit Runge-Kutta discretization.

We propose in this paper an operator splitting approach for (1.3) to construct efficient and accurate schemes for (1.3). This approach enjoys the following advantages:

- It allows us to construct positivity preserving schemes for a large class of linear or nonlinear parabolic equations with positive solutions, and the schemes can also be made mass conservative if the PDE is mass conserving;
- It can be applied directly to any finite difference discretization or other spatial discretization with a Lagrangian basis;
- It has essentially the same computational cost as the corresponding semi-implicit or implicit scheme with the same spatial discretization;
- It has good stability property: the first- and second-order versions of our scheme are proven to be unconditionally stable for a large class of problems.

Moreover, we show that schemes based on the ad-hoc cut-off approach can be interpreted as special cases of our approach. Thus, this approach allows us to construct mass conserving schemes based on the cut-off approach, and our analysis leads to new stability results for the cut-off approach. We shall apply our new schemes to a variety of problems with positive solutions, including the challenging porous media equation \[[27, 21] \] and the very challenging Lubrication equation \[[30] \].

The rest of the paper is organized as follows. In Section 2, we introduce the positivity and mass preserving schemes with Lagrange multiplier. In Section 3, we carry out stability analysis for the proposed positivity preserving schemes. In Section 4, we present numerical results for a variety of problems to validate our schemes. Some concluding remarks are given in Section 5.
2. Positivity and mass preserving schemes with Lagrange multiplier. We start with a general description of the spatial discretization, followed by the construction of positivity preserving time discretization schemes without and with mass conservation.

2.1. Spatial discretization. We now give a more precise description on the generic spatial discretization in (1.3). Let \(\Sigma_h \) be a set of mesh points or collocation points in \(\Omega \). Note that \(\Sigma_h \) should not include the points at the part of the boundary where a Dirichlet (or essential) boundary condition is prescribed, while it should include the points at the part of the boundary where a Neumann or mixed (or non-essential) boundary condition is prescribed.

We consider a Galerkin type discretization with finite-elements or spectral methods or finite-differences with summation-by-parts in a subspace \(X_h \subset X \), and define a discrete inner product, i.e. numerical integration, on \(\Sigma_h = \{z\} \) in \(\Omega \):

\[
[u, v] = \sum_{z \in \Sigma_h} \omega_z u(z)v(z),
\]

where we require that the weights \(\omega_z > 0 \). We also denote the induced norm by \(||u|| = [u, u]^\frac{1}{2} \).

For finite element methods, the sum should be understood as \(\sum_{K \in T} \sum_{z \in Z(K)} \) where \(T \) is a given triangulation. And we assume that there is a unique function \(\psi_z(x) \) in \(X_h \) satisfying \(\psi_z(z') = \delta_{zz'} \) for \(z, z' \in \Sigma_h \). Then, (1.3) is interpreted as follows: Find \(u_h \in X_h \) such that

\[
\begin{align*}
\partial_t u_h(z, t) + \mathcal{L}_h u_h(z, t) &= \lambda_h(z, t), \quad \forall z \in \Sigma_h, \\
\lambda_h(z, t) &\geq 0, \quad u_h(z, t) \geq 0, \quad \lambda_h(z, t) u_h(z, t) = 0, \quad \forall z \in \Sigma_h,
\end{align*}
\]

with the Dirichlet boundary condition to be satisfied pointwisely if the original problem includes Dirichlet boundary condition at part or all of boundary.

2.2. Time discretization. Let \(\mathcal{L}_h^n \) be an approximate operator of \(\mathcal{L} \) at \(t_n \). For examples, if \(\mathcal{L}u = -\nabla \cdot (f(u)\nabla u) \), \(\mathcal{L}_h^n \) could be a lagged linear approximation

\[
\mathcal{L}_h^n u_h^{n+1} := -\nabla \cdot (f(u_h^n)\nabla u_h^{n+1}),
\]

and for \(\mathcal{L}u = Au + f(u) \), \(\mathcal{L}_h^n \) could be a fully implicit discretization

\[
\mathcal{L}_h^n u_h^{n+1} := Au_h^{n+1} + f(u_h^{n+1}),
\]

or an implicit-explicit (IMEX) discretization,

\[
\mathcal{L}_h^n u_h^{n+1} := Au_h^{n+1} + f(u_h^n),
\]

or some other type of discretization such as the convex splitting [7] or the SAV approach [25, 5].

2.2.1. First-order operator splitting scheme. Let \(\lambda_h^0 = 0 \), for \(n \geq 0 \), we proceed as follows.

Step 1: solve \(\tilde{u}_h^{n+1} \) from

\[
\frac{\tilde{u}_h^{n+1}(z) - u_h^n(z)}{\delta t} + \mathcal{L}_h^n \tilde{u}_h^{n+1}(z) = 0, \quad \forall z \in \Sigma_h;
\]

Step 2: solve \((u_h^{n+1}, \lambda_h^{n+1}) \) from

\[
\begin{align*}
\frac{u_h^{n+1}(z) - \tilde{u}_h^{n+1}(z)}{\delta t} &= \lambda_h^{n+1}(z), \quad \forall z \in \Sigma_h, \\
\lambda_h^{n+1}(z) &\geq 0, \quad u_h^{n+1}(z) \geq 0, \quad \lambda_h^{n+1}(z) u_h^{n+1}(z) = 0, \quad \forall z \in \Sigma_h.
\end{align*}
\]

The above scheme can be viewed as an operator splitting method. The first step is just a usual time stepping scheme and can be implemented as usual. However, \(\tilde{u}_h^{n+1} \) may not be positive. In the second step, we use the KKT conditions to enforce the positivity of \(u_h^{n+1} \).
A remarkable property of (2.7) is that it can be solved pointwisely as follows:

\[
(u_h^{n+1}(z), \lambda_h^{n+1}(z)) = \begin{cases}
(\tilde{u}_h^{n+1}(z), 0) & \text{if } 0 < \tilde{u}_h^{n+1}(z) \\
(0, -\frac{\lambda_h^{n+1}(z)}{\delta t}) & \text{otherwise}
\end{cases}, \quad \forall z \in \Sigma_h.
\]

Remark 2.1. The second step in the above scheme is equivalent to the simple cut-off approach [22, 17]:

\[
u^{n+1}(z) = \begin{cases}
\tilde{u}_h^{n+1}(z) & \text{if } \tilde{u}_h^{n+1}(z) > 0 \\
0 & \text{if } \tilde{u}_h^{n+1}(z) \leq 0
\end{cases}, \quad \forall z \in \Sigma_h.
\]

Hence, the cut-off approach can also be understood from an operator splitting point of view which opens new avenue for analysis and further algorithm improvement.

2.2.2. Higher-order schemes.

We can construct higher-order schemes by using a predictor-corrector approach. More precisely, a \(k \)-th order IMEX scheme based on BDF and Adam-Bashforth can be constructed as follows:

Step 1 (prediction): solve \(\tilde{u}_h^{n+1} \) from

\[
\frac{\alpha_k \tilde{u}_h^{n+1} - A_k(u_h^n)}{\delta t} + \mathcal{L}_h \tilde{u}_h^{n+1} = B_{k-1}(\lambda_h^n);
\]

Step 2 (correction): solve \((u_h^{n+1}, \lambda_h^{n+1}) \) from

\[
\frac{\alpha_k (u_h^{n+1}(z) - \tilde{u}_h^{n+1}(z))}{\delta t} = \lambda_h^{n+1}(z) - B_{k-1}(\lambda_h^n), \quad \forall z \in \Sigma_h,
\]

\[
\lambda_h^{n+1}(z) \geq 0, \quad u_h^{n+1}(z) \geq 0, \quad \lambda_h^{n+1}(z) u_h^{n+1}(z) = 0, \quad \forall z \in \Sigma_h,
\]

where \(\alpha_k \) the operators \(A_k \) and \(B_{k-1} \) \((k = 2, 3, 4) \) are given by:

First-order:

\[
\alpha_1 = 1, \quad A_1(u_h^n) = u_h^n, \quad B_0(\lambda_h^n) = 0;
\]

Second-order:

\[
\alpha_2 = \frac{3}{2}, \quad A_2(u_h^n) = 2u_h^n - \frac{1}{2} u_h^{n-1}, \quad B_1(\lambda_h^n) = \lambda_h^n;
\]

Third-order:

\[
\alpha_3 = \frac{11}{6}, \quad A_3(u_h^n) = 3u_h^n - \frac{3}{2} u_h^{n-1} + \frac{1}{3} u_h^{n-2}, \quad B_2(\lambda_h^n) = 2\lambda_h^n - \lambda_h^{n-1}.
\]

Fourth-order:

\[
\alpha_4 = \frac{25}{12}, \quad A_4(u_h^n) = 4u_h^n - 3u_h^{n-1} + \frac{4}{3} u_h^{n-2} - \frac{1}{4} u_h^{n-3}, \quad B_3(\lambda_h^n) = 3\lambda_h^n - 3\lambda_h^{n-1} + \lambda_h^{n-2}.
\]

The formulae for \(k = 5, 6 \) can be derived similarly with Taylor expansions. For the sake of simplicity and with a slight abuse of notations, we used \(A_k(u_h^n) \) and \(B_k(u_h^n) \) to denote \(A_k(u_h^n, \cdots, u_h^{n-k+1}) \) and \(B_k(u_h^n, \cdots, u_h^{n-k+1}) \), respectively. Note that for \(k = 1 \), the above scheme is exactly (2.6)-(2.7).

The first-step is a usual \(k \)-th order IMEX scheme. The second step (2.11) can be viewed as a correction step in which \(\lambda_h^{n+1} \) is introduced to enforce the pointwise positivity of \(u_h^{n+1} \), and can be efficiently solved as follows:

\[
(u_h^{n+1}(z), \lambda_h^{n+1}(z)) = \begin{cases}
(\tilde{u}_h^{n+1}(z) - \frac{\delta t}{\alpha_k} B_{k-1}(\lambda_h^n), 0) & \text{if } 0 < \tilde{u}_h^{n+1}(z) - \frac{\delta t}{\alpha_k} B_{k-1}(\lambda_h^n) \\
(0, B_{k-1}(\lambda_h^n) - \frac{\alpha_k}{\delta t} \tilde{u}_h^{n+1}(z)) & \text{otherwise}
\end{cases}, \quad \forall z \in \Sigma_h.
\]
Hence, assuming (2.20b)
\begin{equation}
\frac{\alpha_k u_h^{n+1} - A_k(u_h^n)}{\delta t} + \mathcal{L}_h u_h^{n+1} = 0;
\end{equation}

Step 2: solve \((u_h^{n+1}, \lambda_h^{n+1})\) from
\begin{equation}
\frac{\alpha_k (u_h^{n+1}(z) - \tilde{u}_h^{n+1}(z))}{\delta t} = \lambda_h^{n+1}(z), \quad \forall z \in \Sigma_h,
\end{equation}
\begin{equation}
\lambda_h^{n+1}(z) \geq 0, \ u_h^{n+1}(z) \geq 0, \ \lambda_h^{n+1}(z) u_h^{n+1}(z) = 0, \ \forall z \in \Sigma_h.
\end{equation}

Since the second step is once again equivalent to the cut-off approach (2.9), the above scheme can be interpreted as a \(k\)-th order cut-off scheme.

2.2.3. Positivity preserving schemes with mass conservation. A drawback of the scheme (2.10)-(2.11) is that it does not preserve mass if the original equation does. For clarity, we consider first the first-order scheme (2.6)-(2.7).

Let \(< \cdot, \cdot > \) (resp. \(< \mathcal{L}_h \cdot, \cdot > \)) denotes the continuous (resp. discrete) bilinear form after proper integration by parts, e.g., if \(\mathcal{L}_h^2 u_h := - \nabla \cdot (f(u_h^1) \nabla u_h) \), then \(<\mathcal{L}_h^2 u_h, v_h > := [f(u_h^1) \nabla u_h, \nabla v_h] \). Assuming \(<\mathcal{L} u, 1 > > 0 \), we find from (1.1) that \(\partial_t(u, 1) = 0 \), i.e., the mass is conserved. But assuming \(<\mathcal{L}_h^2 v_h, 1 > = 0 \) for any \(v_h \in X_h \), we derive from (2.6)-(2.7) that
\begin{equation}
[u_h^{n+1}, 1] - [u_h^n, 1] = \delta t [\lambda_h^{n+1}, 1].
\end{equation}

Since \(\lambda_h^{n+1} \geq 0 \), we find that the mass is not conserved, in fact it is increasing with \(n \).

We present below a simple modification which enables mass conservation. More precisely, we introduce another Lagrange multiplier \(\xi_h^{n+1} \), which is independent of spatial variables, to enforce the mass conservation in the correction step.

Step 1: solve \(\tilde{u}_h^{n+1} \) from
\begin{equation}
\frac{\tilde{u}_h^{n+1}(z) - u_h^n(z)}{\delta t} + \mathcal{L}_h u_h^{n+1}(z) = 0, \ \forall z \in \Sigma_h;
\end{equation}

Step 2: solve \((u_h^{n+1}, \lambda_h^{n+1})\) from
\begin{equation}
\frac{u_h^{n+1}(z) - \tilde{u}_h^{n+1}(z)}{\delta t} = \lambda_h^{n+1}(z) + \xi_h^{n+1}, \quad \forall z \in \Sigma_h,
\end{equation}
\begin{equation}
\lambda_h^{n+1}(z) \geq 0, \ u_h^{n+1}(z) \geq 0, \ \lambda_h^{n+1}(z) u_h^{n+1}(z) = 0, \ \forall z \in \Sigma_h,
\end{equation}
\begin{equation}
[u_h^{n+1}, 1] = [u_h^n, 1].
\end{equation}

In order to solve (2.20), we rewrite (2.20a) in the following equivalent form
\begin{equation}
\frac{u_h^{n+1}(z) - (\tilde{u}_h^{n+1}(z) + \delta t \xi_h^{n+1})}{\delta t} = \lambda_h^{n+1}(z).
\end{equation}

Hence, assuming \(\xi_h^{n+1} \) is known, (2.21) and (2.20b) can be solved pointwisely as follows:
\begin{equation}
(u_h^{n+1}(z), \lambda_h^{n+1}(z)) = \begin{cases} (\tilde{u}_h^{n+1}(z) + \delta t \xi_h^{n+1}, 0) & \text{if } 0 < \tilde{u}_h^{n+1}(z) + \delta t \xi_h^{n+1}, \forall z \in \Sigma_h, \\ (0, \frac{u_h^{n+1}(z) + \delta t \xi_h^{n+1}}{\delta t}) & \text{otherwise}. \end{cases}
\end{equation}

It remains to determine \(\xi_h^{n+1} \). We find from (2.20c) and (2.21) that
\begin{equation}
[u_h^{n+1} + \delta t \xi_h^{n+1}, 1] = [u_h^n, 1] - \delta t [\lambda_h^{n+1}, 1],
\end{equation}
which, thanks to (2.22), can be rewritten as
\[
\sum_{z \in \Sigma_h \text{ s.t. } 0 < u_h^{n+1}(z) + \delta \xi_h^{n+1}} (\tilde{u}_h^{n+1}(z) + \delta t \xi_h^{n+1}) \omega_z = [u_h^n, 1].
\]
Hence, \(\xi_h^{n+1} \) is a solution to the nonlinear algebraic equation
\[
F(\xi) = \sum_{z \in \Sigma_h \text{ s.t. } 0 < u_h^{n+1}(z) + \delta \xi} (\tilde{u}_h^{n+1}(z) + \delta t \xi) \omega_z - [u_h^n, 1] = 0.
\]
Since \(F'(\xi) \) may not exist and difficult to compute if it exists, instead of the Newton iteration, we can use the following secant method:
\[
\xi_{k+1} = \xi_k - \frac{F(\xi_k)(\xi_k - \xi_{k-1})}{F(\xi_k) - F(\xi_{k-1})}.
\]
Since \(\xi_h^{n+1} \) is an approximation to zero and it will be shown below that \(\xi_h^{n+1} \leq 0 \), we can choose \(\xi_0 = 0 \) and \(\xi_1 = -O(\delta t) \). In all our experiments, (2.24) converges in a few iterations so that the cost is negligible.

Once \(\xi_h^{n+1} \) is known, we can update \((u_h^{n+1}, \lambda_h^{n+1})\) with (2.22).

Similarly, the higher-order scheme (2.10)-(2.11) can be modified to preserve mass as follows:

Step 1 (prediction): solve \(\tilde{u}_h^{n+1} \) from
\[
\alpha_k \frac{\tilde{u}_h^{n+1} - u_h^n}{\delta t} + \mathcal{L}_h \tilde{u}_h^{n+1} = B_{k-1}(\lambda_h^{n}) + B_{k-1}(\xi_h^{n}) ;
\]

Step 2 (correction): solve \((u_h^{n+1}, \lambda_h^{n+1})\) from
\[
\frac{\alpha_k (u_h^{n+1}(z) - \tilde{u}_h^{n+1}(z))}{\delta t} = \lambda_h^{n+1}(z) - B_{k-1}(\lambda_h^{n}) + \xi_h^{n+1} - B_{k-1}(\xi_h^{n}) , \quad \forall z \in \Sigma_h,
\]
\[
\lambda_h^{n+1}(z) \geq 0, u_h^{n+1}(z) \geq 0, \lambda_h^{n+1}(z)u_h^{n+1}(z) = 0, \quad \forall z \in \Sigma_h,
\]
\[
[u_h^{n+1}, 1] = [u_h^n, 1].
\]

In order to solve the above system, we denote \(\eta_h^{n+1} := \frac{\delta t}{\alpha_k} (\xi_h^{n+1} - B_{k-1}(\xi_h^{n}) - B_{k-1}(\lambda_h^{n})) \) and rewrite (2.26a) as
\[
\frac{\alpha_k (u_h^{n+1}(z) - (\tilde{u}_h^{n+1}(z) + \eta_h^{n+1}(z)))}{\delta t} = \lambda_h^{n+1}(z).
\]
Assuming \(\xi_h^{n+1} \) is known, we find from (2.26a) and (2.27) that
\[
(u_h^{n+1}(z), \lambda_h^{n+1}(z)) = \begin{cases}
(0, -\frac{\alpha_k}{\delta t} (\tilde{u}_h^{n+1}(z) + \eta_h^{n+1}(z))) & \text{if } 0 < \tilde{u}_h^{n+1}(z) + \eta_h^{n+1}, \\
(0, -\frac{\alpha_k}{\delta t} (\tilde{u}_h^{n+1}(z) + \eta_h^{n+1}(z))) & \text{otherwise}.
\end{cases}
\]

Finally, we can determine \(\xi_h^{n+1} \) by solving the nonlinear algebraic equation
\[
F(\xi_h^{n+1}) = \sum_{z \in \Sigma_h \text{ s.t. } 0 < u_h^{n+1}(z) + \eta_h^{n+1}(z)} (\tilde{u}_h^{n+1}(z) + \eta_h^{n+1}(z)) \omega_z - [u_h^n, 1] = 0.
\]

Remark 2.3. Replacing \(B_{k-1}(\lambda_h^n) \) in (2.25)-(2.26) by zero, we obtain a mass conserved kth-order cut-off scheme.
3. Stability results. We prove in this section that the first- and second-order positivity preserving schemes with or without mass conservation are dissipative and unconditionally stable if \(\langle L_h^n v_h, v_h \rangle \geq 0 \) for all \(n \).

3.1. First-order schemes. We consider first the scheme (2.6)-(2.7).

Theorem 3.1. For the scheme (2.6)-(2.7), we have

\[
\| u_h^n \|^2 + \sum_{n=0}^{m-1} \left(\| \tilde{u}^{n+1}_h - u^n_h \|^2 + \delta t^2 \| \lambda^{n+1}_h \|^2 \right) + 2 \delta t \sum_{n=0}^{m-1} \left< \mathcal{L}_h^n \tilde{u}^{n+1}_h, \tilde{u}^{n+1}_h \right> = \| u_0^n \|^2, \quad \forall m \geq 1.
\]

In particular, if for all \(n \), \(\langle L_h^n v_h, v_h \rangle \geq 0 \) for all \(v_h \in X_h \), then the scheme (2.6)-(2.7) is dissipative and unconditionally stable.

Proof. Taking the discrete inner product of (2.6) with \(2 \delta t \tilde{u}^{n+1}_h \), we obtain

\[
\| u_h^{n+1} \|^2 - \| u_h^n \|^2 + \| \tilde{u}^{n+1}_h - u^n_h \|^2 + 2 \delta t \mathcal{L}_h^n \tilde{u}^{n+1}_h, \tilde{u}^{n+1}_h > 0.
\]

We rewrite (2.7) as

\[
u^{n+1}_h(z) - \delta t \lambda^{n+1}_h(z) = \tilde{u}^{n+1}_h(z).
\]

Taking the discrete inner product of each side of the above equation with itself, thanks to the last KKT condition in (2.7), we derive

\[
\| u_h^{n+1} \|^2 + \delta t^2 \| \lambda^{n+1}_h \|^2 = \| \tilde{u}^{n+1}_h \|^2.
\]

Summing up the above with (3.2), we obtain

\[
\| u_h^{n+1} \|^2 - \| u_h^n \|^2 + \delta t \mathcal{L}_h^n \tilde{u}^{n+1}_h, \tilde{u}^{n+1}_h > 0.
\]

Summing up the above for \(n \) from 0 to \(m - 1 \), we arrive at the desired result.

Next, we consider the mass conserved scheme (2.19)-(2.20).

Theorem 3.2. For the scheme (2.19)-(2.20), if \(\langle L_h^n v_h, 1 \rangle = 0 \) for any \(v_h \in X_h \), we have

\[
\| u_h^m \|^2 + \sum_{n=0}^{m-1} \left(\| \tilde{u}^{n+1}_h - u^n_h \|^2 + \delta t^2 \| \lambda^{n+1}_h \|^2 + \| \tilde{u}^{n+1}_h - u^n_h \|^2 \right) + 2 \delta t \sum_{n=0}^{m-1} \left< \mathcal{L}_h^n \tilde{u}^{n+1}_h, \tilde{u}^{n+1}_h \right> = \| u_0^n \|^2, \quad \forall m \geq 1.
\]

In particular, if for all \(n \), \(\langle L_h^n v_h, v_h \rangle \geq 0 \) for all \(v_h \in X_h \), then the scheme (2.19)-(2.20) is dissipative and unconditionally stable.

Proof. The proof follows the same procedure as that of Theorem 3.1. Indeed, we can replace (3.3) by

\[
\| u_h^{n+1} \|^2 = \| \tilde{u}^{n+1}_h \|^2, \quad \forall z \in \Sigma_h.
\]

Taking the inner product of (3.5) with itself on both sides, we obtain

\[
\| \tilde{u}^{n+1}_h(z) \|^2 + \delta t^2 \| \lambda^{n+1}_h(z) \|^2 + \| \tilde{u}^{n+1}_h(z) \|^2 - 2 \delta t \left< u_h^{n+1}(z), \tilde{u}^{n+1}_h \right> = \| \tilde{u}^{n+1}_h(z) \|^2.
\]

Summing up (2.19) and (2.20a), we obtain

\[
\frac{1}{\delta t} \left(u_h^{n+1}(z) - u_h^n(z) \right) + \mathcal{L}_h^n \tilde{u}^{n+1}_h(z) = \lambda^{n+1}_h + \xi^{n+1}_h, \quad \forall z \in \Sigma_h.
\]
Taking the discrete inner product of (3.7) with 1 on both sides, using the fact that \(< \mathcal{L}_h^n \tilde{u}_h^{n+1}, 1 >= 0\), we obtain

\[(3.8) \quad \[\lambda_h^{n+1}, 1\] + [\xi_h^{n+1}, 1] = 0,\]

which implies that \(\xi_h^{n+1} = -\frac{\[\lambda_h^{n+1}, 1\]}{\|n\|} \leq 0\) since \(\lambda_h^{n+1} \geq 0\). Therefore,

\[-2\delta t[u_h^{n+1}(z), \xi_h^{n+1}] \geq 0.\]

Finally, summing up (3.6) with (3.2) and dropping some unnecessary terms, we arrive at the desired result.

3.2. Second-order schemes. We first consider the scheme (2.10)-(2.11) with \(k = 2\).

Theorem 3.3. For the scheme (2.10)-(2.11) with \(k = 2\), we assume that the first step is computed with the first-order scheme (2.6)-(2.7). Then, we have

\[4\|u_h^n\|^2 + \frac{4}{3} \delta t^2 \|\lambda_h^n\|^2 + \frac{4}{3} \delta t \sum_{m=0}^{n-1} < \mathcal{L}_h^{n-1,1} \tilde{u}_h^{n+1}, \tilde{u}_h^{n+1} > \leq \|2u_h^n - u_h^n\|^2 + 4\|u_h^n\|^2, \quad \forall m \geq 1.\]

In particular, if for all \(n, < \mathcal{L}_h^n v_h, v_h > \geq 0\ \forall v_h \in X_h\), then the scheme (2.10)-(2.11) with \(k = 2\) is dissipative and unconditionally stable.

Proof. Taking inner product of equation (2.10) (with \(k = 2\)) with \(4\delta t \tilde{u}_h^{n+1}\), we obtain

\[(3.9) \quad [3\tilde{u}_h^{n+1} - 4u_h^n + u_h^{n-1}, 2\tilde{u}_h^{n+1}] + 4\delta t < \mathcal{L}_h^n \tilde{u}_h^{n+1}, \tilde{u}_h^{n+1} >= 4\delta t[\lambda_h^n, \tilde{u}_h^{n+1}].\]

The term on the left can be written as

\[(3.10) \quad [3\tilde{u}_h^{n+1} - 4u_h^n + u_h^{n-1}, 2\tilde{u}_h^{n+1}] = 2[3u_h^{n+1} - 4u_h^n + u_h^{n-1}, u_h^{n+1}] + 2[3u_h^{n+1} - 4u_h^n + u_h^{n-1}, \tilde{u}_h^{n+1} - u_h^{n+1}] + 6[\tilde{u}_h^{n+1} - u_h^{n+1}, \tilde{u}_h^{n+1}].\]

For the first term on the righthand side of (3.10), we have

\[(3.11) \quad 2[3u_h^{n+1} - 4u_h^n + u_h^{n-1}, u_h^{n+1}] = \|u_h^{n+1}\|^2 - \|u_h^n\|^2 + \|2u_h^{n+1} - u_h^n\|^2 - \|2u_h^n - u_h^{n-1}\|^2 + \|u_h^{n+1}\|^2 - \|2u_h^{n+1} - u_h^n\|^2.\]

For the last term in (3.10), we have

\[(3.12) \quad 6[\tilde{u}_h^{n+1} - u_h^{n+1}, \tilde{u}_h^{n+1}] = 3(\|\tilde{u}_h^{n+1}\|^2 - \|u_h^{n+1}\|^2 + \|\tilde{u}_h^{n+1} - u_h^{n+1}\|^2).\]

And for the second term on the righthand side of (3.10). Similarly, we have

\[(3.13) \quad 2[3u_h^{n+1} - 4u_h^n + u_h^{n-1}, \tilde{u}_h^{n+1} - u_h^{n+1}] = 2[u_h^{n+1} - 2u_h^n + u_h^{n-1}, \tilde{u}_h^{n+1} - u_h^{n+1}] + 4[u_h^{n+1} - u_h^n, \tilde{u}_h^{n+1} - u_h^{n+1}].\]

By Cauchy-Schwartz inequality, the first term on the righthand side of (3.13) can be bounded by

\[(3.14) \quad 2[u_h^{n+1} - 2u_h^n + u_h^{n-1}, \tilde{u}_h^{n+1} - u_h^{n+1}] \leq \|u_h^{n+1} - 2u_h^n + u_h^{n-1}\|^2 + \|\tilde{u}_h^{n+1} - u_h^{n+1}\|^2.\]

Thanks to the KKT conditions in (2.11), we have \([u_h^{n+1}, \lambda_h^{n+1}] = [u_h^n, \lambda_h^n] = 0\ for all \(n\), so for the second term on the righthand side of (3.13), we have

\[(3.15) \quad 4[u_h^{n+1} - u_h^n, \tilde{u}_h^{n+1} - u_h^{n+1}] = \frac{8\delta t}{3}[u_h^{n+1} - u_h^n, \lambda_h^{n+1} - \lambda_h^n] = \frac{8\delta t}{3}[u_h^{n+1}, \lambda_h^{n+1}] + [u_h^n, \lambda_h^{n+1}] \geq 0.\]
Next, we rewrite (2.11) with $k = 2$ as

$$3u_{h}^{n+1} - 2\delta t\lambda_{h}^{n+1} = 3\bar{u}_{h}^{n+1} - 2\delta t\lambda_{h}^{n}.$$

(3.16)

Taking the discrete inner product of each side of the above equation with itself, since $[\lambda_{h}^{n+1}, u_{h}^{n+1}] = 0$, we derive

$$3\|u_{h}^{n+1}\|^2 + \frac{4}{3}\delta t^2\|\lambda_{h}^{n+1}\|^2 = 3\|\bar{u}_{h}^{n+1}\|^2 - 4\delta t[\bar{u}_{h}^{n+1}, \lambda_{h}^{n}] + \frac{4}{3}\delta t^2\|\lambda_{h}^{n}\|^2.$$

(3.17)

Now, summing up (3.9) with (3.17), and using (3.10) to (3.15), after dropping some unnecessary positive terms, we obtain that for $n \geq 1$,

$$4\|u_{h}^{n+1}\|^2 - \|u_{h}^{n}\|^2 + 2\|u_{h}^{n+1} - u_{h}^{n}\|^2 - 2\|2u_{h}^{n} - u_{h}^{n-1}\|^2$$

$$+ 2\|\bar{u}_{h}^{n+1} - u_{h}^{n+1}\|^2 + \frac{4}{3}\delta t(\|\lambda_{h}^{n+1}\|^2 - \|\lambda_{h}^{n}\|^2) + 4\delta t < \mathcal{L}_{h}u_{h}^{n+1}, \bar{u}_{h}^{n+1} > \leq 0.$$

(3.18)

On the other hand, since the first step is computed by using the first-order scheme, we take $n = 1$ in (3.1) to obtain

$$\|u_{h}^{1}\|^2 + \|\bar{u}_{h}^{1} - u_{h}^{0}\|^2 + 2\delta t < \mathcal{L}_{h}u_{h}^{1}, \bar{u}_{h}^{1} > + \delta t^2\|\lambda_{h}^{1}\|^2 = \|u_{h}^{0}\|^2.$$

(3.19)

Finally, summing up (3.18) from $n = 1$ to $n = m - 1$ with (3.19) multiplied by 4, we obtain, after dropping some unnecessary terms,

$$4\|u_{h}^{m}\|^2 + \frac{4}{3}\delta t^2\|\lambda_{h}^{m}\|^2 + 4\delta t \sum_{n=0}^{m-1} < \mathcal{L}_{h}^{n}\bar{u}_{h}^{n+1}, \bar{u}_{h}^{n+1} > \leq 2\|u_{h}^{1} - u_{h}^{0}\|^2 + 4\|u_{h}^{0}\|^2,$$

(3.20)

which implies the desired result.

Next, we consider the mass conserved scheme (2.25)-(2.26) with $k = 2$.

THEOREM 3.4. For the scheme (2.25)-(2.26) with $k = 2$, we assume that the first step is computed with the first-order scheme (2.19)-(2.20). Then, if $< \mathcal{L}_{h}v_{h}, 1 > = 0$ for any $v_{h} \in X_{h}$, we have

$$4\|u_{h}^{m}\|^2 + \frac{4}{3}\delta t^2\|\lambda_{h}^{m}\|^2 + \frac{4}{3}\delta t \sum_{n=0}^{m-1} < \mathcal{L}_{h}^{n}\bar{u}_{h}^{n+1}, \bar{u}_{h}^{n+1} > \leq 2\|u_{h}^{1} - u_{h}^{0}\|^2 + 4\|u_{h}^{0}\|^2, \ \forall m \geq 1.$$

(3.21)

In particular, if for all n, $< \mathcal{L}_{h}^{n}v_{h}, v_{h} > \geq 0 \ \forall v_{h} \in X_{h}$, then the scheme (2.25)-(2.26) with $k = 2$ is dissipative and unconditionally stable.

Proof. The proof is again similar to that of Theorem 3.3 so we just point out the differences below.

First, (3.9) should be replace by

$$3\bar{u}_{h}^{n+1} - 4u_{h}^{n} + u_{h}^{n-1}2\bar{u}_{h}^{n+1}] + 4\delta t < \mathcal{L}_{h}^{n}\bar{u}_{h}^{n+1}, \bar{u}_{h}^{n+1} > = 4\delta t[\lambda_{h}^{n} + \xi_{h}^{n}, \bar{u}_{h}^{n+1}].$$

(3.21)

Then (3.15) should be replaced by

$$4[u_{h}^{n+1} - u_{h}^{n}, \bar{u}_{h}^{n+1} - u_{h}^{n+1}] = -\frac{8\delta t}{3}[u_{h}^{n+1} - u_{h}^{n}, \lambda_{h}^{n+1} + \xi_{h}^{n} - (\lambda_{h}^{n} + \xi_{h}^{n})]$$

$$= -\frac{8\delta t}{3}[u_{h}^{n+1} - u_{h}^{n}, \lambda_{h}^{n+1} - \lambda_{h}^{n}] - \frac{8\delta t}{3}[u_{h}^{n+1} - u_{h}^{n}, \xi_{h}^{n+1} - \xi_{h}^{n}]$$

$$= -\frac{8\delta t}{3}[u_{h}^{n+1} - u_{h}^{n}, \lambda_{h}^{n+1} - \lambda_{h}^{n}] = \frac{8\delta t}{3}[u_{h}^{n+1}, \lambda_{h}^{n}] + [u_{h}^{n}, \lambda_{h}^{n+1}] \geq 0,$$

(3.22)
where we used the fact that
\[- \frac{8\delta t}{3} [u_{h}^{n+1} - u_{h}^{n}, \xi_{h}^{n+1} - \xi_{h}^{n}] = - \frac{8\delta t}{3} (\xi_{h}^{n+1} - \xi_{h}^{n}) (\{u_{h}^{n+1}, 1\} - \{u_{h}^{n}, 1\}) = 0.\]

Next, (3.16) should be replaced by
\[(3.23) \quad 3u_{h}^{n+1}(z) - 2\delta t(\lambda_{h}^{n+1}(z) + \xi_{h}^{n+1}) = 3\tilde{u}_{h}^{n+1}(z) - 2\delta t(\lambda_{h}(z) + \xi_{h}).\]

Taking the discrete inner product of (3.23) with itself on both sides, we obtain
\[(3.24) \quad 3\|u_{h}^{n+1}(z)\|^2 + \frac{4}{3}\delta t^2\|\lambda_{h}^{n+1}(z) + \xi_{h}^{n+1}\|^2 - 2\delta t[u_{h}^{n+1}, \lambda_{h}^{n+1} + \xi_{h}^{n+1}] = 3\|\tilde{u}_{h}^{n+1}(z)\|^2 + \frac{4}{3}\delta t^2\|\lambda_{h}(z) + \xi_{h}\|^2 - 2\delta t[\tilde{u}_{h}^{n+1}, \lambda_{h}^{n} + \xi_{h}].\]

Summing up (2.25) and (2.26a), we obtain
\[(3.25) \quad \alpha_{k}u_{h}^{n+1} - A_{k}(u_{h}^{n}) + L_{h}u_{h}^{n+1} = \lambda_{h}^{n+1} + \xi_{h}^{n+1}.\]

Taking the discrete inner product of (3.25) with 1 on both sides, using (2.26c), we obtain
\[(3.26) \quad [\lambda_{h}^{n+1} + \xi_{h}^{n+1}, 1] = [\lambda_{h}^{n+1}, 1] + [\xi_{h}^{n+1}, 1] = 0,\]

which implies \(\xi_{h}^{n+1} \leq 0\) since \(\lambda_{h}^{n+1} \geq 0\). Therefore,
\[(3.27) \quad -2\delta t[u_{h}^{n+1}, \lambda_{h}^{n+1} + \xi_{h}^{n+1}] = -2\delta t[u_{h}^{n+1}, \xi_{h}^{n+1}] \geq 0.\]

Then, summing up (3.21) with (3.24), and using (3.22) and (3.27), after dropping some unnecessary terms, we arrive at
\[(3.28) \quad 4(\|u_{h}^{n+1}\|^2 - \|u_{h}^{n}\|^2) + \|2u_{h}^{n+1} - u_{h}^{n}\|^2 - \|2u_{h}^{n} - u_{h}^{n-1}\|^2 + 2\|\tilde{u}_{h}^{n+1} - u_{h}^{n+1}\|^2 + \frac{4}{3}\delta t^2(\|\lambda_{h}^{n+1} + \xi_{h}^{n+1}\|^2 - \|\lambda_{h}^{n} + \xi_{h}\|^2) + 4\delta t < L_{h}u_{h}^{n+1}, \tilde{u}_{h}^{n+1} > \leq 0.\]

For the first step, we take \(m = 1\) in (3.4) to obtain
\[(3.29) \quad \|u_{h}^{k}\|^2 + \|\tilde{u}_{h}^{k} - u_{h}^{k}\|^2 + 2\delta t < L_{h}u_{h}^{k}, \tilde{u}_{h}^{k} > + \delta t^2\|\lambda_{h}^{k} + \xi_{h}^{k}\|^2 \leq \|u_{h}^{k}\|^2.\]

Finally, summing up (3.28) from \(n = 1\) to \(n = m - 1\) with (3.29) multiplied by 4, we obtain, after dropping some unnecessary terms,
\[4\|u_{h}^{m}\|^2 + \frac{4}{3}\delta t^2\|\lambda_{h}^{m} + \xi_{h}^{m}\|^2 + 4\delta t \sum_{n=0}^{m-1} < L_{h}u_{h}^{n+1}, \tilde{u}_{h}^{n+1} > \leq \|2u_{h}^{0} - u_{h}^{0}\|^2 + 4\|u_{h}^{0}\|^2,\]

which implies the desired result. \(\Box\)

Remark 3.1. The results in the previous theorems are derived for a general approximate operator \(L_{h}^{n}\). They imply in particular:
- If \(L_{h}^{n}\) is non-negative, e.g., as in (2.3) with application to Porous Media equation, then the first- and second-order positivity preserving schemes with Lagrange multiplier are unconditionally energy stable.
If one can show, perhaps under certain condition $\Delta t \leq c_0 h^\alpha$ with a semi-implicit discretization (where $\alpha > 0$ depending on the problem and discretization), that for the usual schemes, i.e., by setting $\lambda^n_h \equiv 0$ for all n, we have

$$
\delta t \sum_{n=1}^{m-1} < L_h^n \tilde{u}^{n+1}_h, \tilde{u}^{n+1}_h > \geq \beta \delta t \sum_{n=1}^{m-1} a_h(\tilde{u}^{n+1}_h, \tilde{u}^{n+1}_h) - C_1, \forall m \leq T/\Delta t - 1,
$$

where β is some positive constant in $[0, 1]$ and T is the final time, then we derive from the above and (3.1) that the solutions of the corresponding schemes (2.10)-(2.11) and (2.25)-(2.26) with $k = 1, 2$ are bounded in the sense that

$$
\|u^n_h\|^2 + 2\beta \delta t \sum_{n=1}^{m-1} a_h(\tilde{u}^{n+1}_h, \tilde{u}^{n+1}_h) \leq \|u^0_h\|^2 + C_1, \forall m \leq T/\Delta t - 1.
$$

Remark 3.2. We are unable to prove similar results for the schemes (2.10)-(2.11) and (2.25)-(2.26) with $k \geq 3$. The situation is similar to the pressure-correction schemes for the Navier-Stokes equations [9].

4. Numerical experiments. In this section, we carry out various numerical experiments to demonstrate the performance of proposed positivity preserving schemes. We use spectral Galerkin methods with numerical integration [24] for all cases, namely, Fourier-spectral method is used for problems with periodic boundary conditions, while a Legendre-spectral method is used for problems with Dirichlet or Neumann boundary conditions. Note that in general it is much more difficult to preserve positivity with a spectral method than with a lower-order finite element or finite difference method. Below, $h = 1/N$ where N is the number of collocation points in each direction.

4.1. Convergence rate. We first test the convergence rates in time for the positivity preserving schemes using the Allen-Cahn equation [1]

$$(4.1) \quad u_t - \Delta u + \frac{1}{\epsilon^2} u(u-1)(u - \frac{1}{2}) = 0,$$

with periodic boundary condition in $\Omega = [0, 2\pi]^2$. It is well-known that the solution will remain in $[0, 1]$ if the values of the initial condition $u(x, y, 0)$ are in $[0, 1]$. In particular, it is positivity preserving.

We choose the following initial condition

$$(4.2) \quad u(x, y, 0) = \frac{1}{2} (1 + \tanh\left(\frac{1 - \sqrt{(x - \pi)^2 + (y - \pi)^2}}{\sqrt{2\epsilon}}\right)),
$$

with $\epsilon^2 = 0.001$ and use 32^2 uniform collocation points in $[0, 2\pi]^2$, i.e., $\Sigma_h = \{x_{j,k} = (\frac{j\pi}{32}, \frac{k\pi}{32}) : j, k = 0, 1, \cdots, 31\}$. We note that with this coarse mesh, the usual semi-implicit Fourier-collocation method will produce numerical solutions with negative values, i.e., the spatial discretized problem (2.2) will lead to non zero λ_h. The spatial discretized problem is smooth in time so it can be used to test the convergence rates of the positivity preserving time discretization schemes. On the other hand, the Fourier-spectral method with 32×32 uniform collocation points is enough to provide a reasonable approximation to this problem as shown in Fig. 1. As a reference solution, we use the numerical solution computed by the scheme (2.17)-(2.18) with $k = 2$ and $\delta t = 10^{-6}$.

In Table 1, we list the L^∞ errors of numerical solution between the reference solution u^{n+1}_h obtained using the schemes (2.10)-(2.11) with $k = 1, 2$. We observe from Table 1 that the schemes (2.10)-(2.11) are indeed k-th order accurate.

4.2. Porous medium equation. In this subsection, we consider the porous medium equation (PME) ([27]):

$$(4.3) \quad u_t = \Delta u^m = m \nabla \cdot (u^{m-1} \nabla u),$$

with periodic boundary condition in $\Omega = [0, 2\pi]^2$. It is well-known that the solution will remain in $[0, 1]$ if the values of the initial condition $u(x, y, 0)$ are in $[0, 1]$. In particular, it is positivity preserving.

Remark 3.2. We are unable to prove similar results for the schemes (2.10)-(2.11) and (2.25)-(2.26) with $k \geq 3$. The situation is similar to the pressure-correction schemes for the Navier-Stokes equations [9].
with homogeneous Dirichlet boundary condition in \(\Omega = (-5,5)^d \) \((d=1,2,3)\) where \(m \geq 1 \) is a physical parameter. The porous medium equation has wide applications in various areas, including fluid dynamics, heater transfer and image processing. We observe from (4.3) that the PME is degenerate and its solution has to be positive.

We shall use the Legendre-Galerkin method with numerical integration in space. Let \(P_N \) be the set of polynomials with degree less than or equal to \(N \) in each direction, and let \(\Sigma_k \) be the set of the interior Legendre-Gauss-Lobatto points, i.e., in the one-dimensional case, \(\Sigma_k = \{x_k : k = 1,2,\cdots,N-1\} \) where \(\{x_k\} \) are the roots of \(L_N'(x) \) with \(L_N \) being the Legendre polynomial of \(N \)-th degree, and in the multi-dimensional case, \(\Sigma_k \) is obtained by the tensor product of one-dimensional set. We set \(X_h = \{v_h \in P_N : v_h|_{\partial \Omega} = 0\} \), and use the scheme (2.10)-(2.11) with \(k = 2 \) and \(L_h^n(v_h) = -\nabla \cdot (m(u^{n+1},*)^{m-1}\nabla v_h) \). For the reader’s convenience, it is explicitly described below:

Find \(u_h^{n+1} \in X_h \) such that

\[
\begin{align}
\frac{3u_h^{n+1} - 4u_h^n + u_h^{n-1}}{2\delta t} + m[(u_h^{n+1},*)^{m-1}\nabla u_h^{n+1}, \nabla v_h] = [\lambda_h^n, v_h], & \quad \forall v_h \in X_h, \\
3u_h^{n+1}(z) - 3u_h^{n+1}(z) &= \lambda_h^{n+1}(z) - \lambda_h^n(z), & \quad \forall z \in \Sigma_h, \\
\lambda_h^{n+1}(z) &\geq 0, u_h^{n+1}(z) \geq 0, & \quad \lambda_h^{n+1}(z)u_h^{n+1}(z) = 0,
\end{align}
\]

where

\[
u_h^{n+1,*} = \begin{cases} 2u_h^n - u_h^{n-1} & \text{if } u_h^n \geq u_h^{n-1}, \\ 1 & \text{if } u_h^n < u_h^{n-1}.
\end{cases}
\]

At each time step, we need to solve an elliptic equation with variable coefficients in (4.4), which
can be efficiently solved by a preconditioned conjugate gradient iteration with a constant coefficient problem as the preconditioner.

4.2.1. Comparison with a usual semi-implicit scheme. We now compare the positivity preserving scheme (4.4)-(4.6) with the corresponding usual semi-implicit scheme

\[
\frac{3u_h^{n+1} - 4u_h^n + u_h^{n-1}}{2\delta t} + m[(u_h^{n+1}, v_h) + m[(v_h^{n+1}), \nabla v_h] = 0, \quad \forall v_h \in X_h,
\]

using the exact solution of the porous medium equation (4.3) in the Barenblatt form

\[
u(x, t) = \frac{1}{t_0} \left(C - \alpha \frac{m - 1}{2m} \frac{x^2}{t_0^\alpha} \right)^{\frac{1}{m-1}},
\]

where \(f_+ = \max\{f, 0\}, \alpha = \frac{1}{m+1}, C = 1\) and \(t_0 = t + 1\). The solution is compactly supported in \((0, 1)\) with the interface moving outward in a finite speed. The initial condition for the numerical simulations is chosen as \(u(x, 0)\).

In Fig. 2, we plot the \(L^2\) errors by the usual semi-implicit scheme (4.8) and by the positivity preserving \((4.4)-(4.6)\) with \(m = 2\) and set \(\delta t = 10^{-3}\). We observe that the errors grow rapidly after a short time with \(N = 128, 256, 512\) using (4.8) since the numerical solution becomes negative at some places; while the error appears to be under control for at least up to \(T = 1\) with \(N = 1024\). On the other hand, by using \((4.4)-(4.6)\), the errors remain under control and accurate solutions are obtained for all \(N\). We observe from Fig. 2(c) that, even at \(N = 1024\), the Lagrange multiplier \(\lambda_h\) becomes non-zero in order to maintain positivity.

In Fig. 3, we consider a more challenging case with \(m = 5\) using \(\delta t = 10^{-3}\) and \(N = 1024\), and plot the numerical solution at \(T = 0.1\) using the usual semi-implicit scheme (4.8) and the positivity preserving \((4.4)-(4.6)\) in Fig. 3(a) and (b). We observe that the scheme (4.8) produces negative values near the interface while the scheme \((4.4)-(4.6)\) leads to accurate positive solutions. We also plot the Lagrange multiplier \(\lambda_h\) in Fig. 3(c) which indicates that \(\lambda_h\) becomes larger near the interface to maintain the positivity of \(u_h\).

Next we consider the 2D case with the exact solution in the Barenblatt form

\[
u(x, y, t) = \frac{1}{t_0} \left(C - \alpha \frac{m - 1}{2m} \frac{x^2}{t_0^\alpha} + \frac{y^2}{t_0^\alpha} \right)^{\frac{1}{m-1}},
\]

where \(C = 1, t_0 = t + 1\) and \(\alpha = \frac{1}{m+1}\). We set \(N = 200, \delta t = 2 \times 10^{-4}\) and consider \(m = 2, 5\). We observe from Fig. 4 that correct solutions are obtained by the positivity preserving scheme and that the values of Lagrange multiplier \(u_h\) are quite large near the interface in order to maintain the positivity of \(u_h\).

4.2.2. Effect of mass conservation. The porous media equation (4.3) with homogeneous Dirichlet boundary conditions is mass conserving. So we compare the second-order positivity conserving schemes without mass conservation and with mass conservation for the porous medium equation. The results with \(\delta t = 10^{-4}\) and \(N = 128\) are plotted in Fig. 5. We observe that the scheme with mass conservation preserves the mass and is slightly more accurate in terms of \(L^2\) error than the scheme without mass conservation whose mass is monotonically increasing. Only two iterations are needed at each time step to solve \(\xi\) using secant method from Fig. 5. We can also observe Lagrange multiplier \(\xi \leq 0\) in time interval \([0, 2]\).

4.3. Poisson-Nernst-Planck equations. We consider the following Poisson-Nernst-Planck (PNP) system [14, 11] which describes the dynamics of ion transport in ion channels:

\[
w^2 \Delta \phi = p - n, \text{in } \Omega_T := (0, T] \times \Omega.
\]

\[
p_t = \nabla \cdot (\nabla p + p \nabla \phi),
\]

\[
n_t = \nabla \cdot (\nabla n - n \nabla \phi),
\]
with initial conditions

\begin{equation}
 p(0, x) = p_0(x) \geq 0, \quad n(0, x) = n_0(x) \geq 0, \quad \text{in } \Omega,
\end{equation}

and homogeneous Neumann boundary conditions

\begin{equation}
 \frac{\partial p}{\partial n} = \frac{\partial n}{\partial n} = \frac{\partial \phi}{\partial n} = 0, \quad \text{on } \partial \Omega_T := (0, T] \times \partial \Omega.
\end{equation}

In the above, p and n are concentration of positive and negative ions with valence $+1$ and -1, respectively, ϕ is the electrical potential, and ϵ is a small positive dimensionless number representing the ratio of the Debye length to the physical characteristic length. The unknown functions p and n have to be positive for the problem to be well posed. Below we use the general approach presented in the last section to construct a positivity preserving scheme for the PNP equations. Since we need to keep both p and n positive, two Lagrange multipliers λ and η are needed. Lagrange multipliers ξ and γ are used to preserve mass.

We set $X_h = P_N \times P_N$, and $\Sigma_h = \{(x_i, x_j), 1 \leq i, j \leq N - 1\}$, where $\{x_k\}_{k=0}^N$ are the roots of $(1 - x^2)L_N(x)$ with L_N being the Legendre polynomial of N-th degree. And we use the Legendre-
Fig. 3. (a) and (b) Numerical solutions u_h at $T = 0.1$ with $m = 5$, $\delta t = 10^{-3}$, $N = 1024$ by (4.8) and by (4.4)-(4.6). (c) Lagrange multiplier λ_h and u_h by (4.4)-(4.6).

Galerkin method with numerical integration in space [24]. Then a second-order positivity preserving scheme based on the scheme (2.25)-(2.26c) with $k = 2$ is as follows: for $\forall q_h, m_h \in X_h$

\begin{align}
(4.16) & \quad \frac{3p_h^{n+1} - 4p_h^n + p_h^{n-1}}{2\delta t}, q_h] = [\nabla p_h^{n+1} + p_h^{n+1, \ast} \nabla \phi_h^{n+1, \ast}, \nabla q_h] + [\lambda_h^n + \xi_h^n, q_h], \\
(4.17) & \quad \frac{3p_h^{n+1} - \bar{p}_h^{n+1}}{2\delta t} = \lambda_h^{n+1} - \frac{\lambda_h^n + \xi_h^{n+1} - \xi_h^n}{2}, \\
(4.18) & \quad \lambda_h^{n+1} \geq 0, p_h^{n+1} \geq 0, \lambda_h^{n+1} p_h^{n+1} = 0, [p_h^{n+1}, 1] = [p_h^n, 1]; \\
(4.19) & \quad \frac{3n_h^{n+1} - 4n_h^n + n_h^{n-1}}{2\delta t}, m_h] = [\nabla n_h^{n+1} - n_h^{n+1, \ast} \nabla \phi_h^{n+1, \ast}, \nabla m_h] + [\eta_h^n + \gamma_h^n, m_h], \\
(4.20) & \quad \frac{3n_h^{n+1} - \bar{n}_h^{n+1}}{2\delta t} = \eta_h^{n+1} - \frac{\eta_h^n + \gamma_h^{n+1} - \gamma_h^n}{2}, \\
(4.21) & \quad \eta_h^{n+1} \geq 0, n_h^{n+1} \geq 0, \eta_h^{n+1} n_h^{n+1} = 0, [n_h^{n+1}, 1] = [n_h^n, 1]; \\
(4.22) & \quad \epsilon^2 [\nabla \phi_h^{n+1}, \nabla \psi_h] = [p_h^{n+1} - \eta_h^{n+1}, \psi_h], \forall \psi_h \in X_h;
\end{align}
where \(p_h^{n+1,*} = 2p_h^n - p_h^{n-1} \) and \(n_h^{n+1,*} = 2n_h^n - n_h^{n-1} \). In the above, \(p_h^{n+1} \) and \(n_h^{n+1} \) are decoupled and can be determined from (4.16)-(4.18) and (4.19)-(4.21) respectively. Once \(p_h^{n+1} \) and \(n_h^{n+1} \) are known, \(\phi_h^{n+1} \) can be obtained from (4.22). Hence, the scheme is very efficient.

We set \(\Omega = (-1,1)^2, \epsilon = 0.1 \), and use \(\delta t = 10^{-3}, N = 256 \) in the above scheme with the initial conditions:

\[
p(x, y, 0), n(x, y, 0) = \begin{cases}
1, & x^2 + y^2 \leq 0.25, \\
0, & \text{otherwise}
\end{cases}
\]

(4.23)

\[
\phi(x, y, 0) = \begin{cases}
(x - 0.5)^2(y - 0.5)^2, & x^2 + y^2 \leq 0.25, \\
0, & \text{otherwise}
\end{cases}
\]

The numerical solution at different times are plotted in Fig. 6. We observe that \(p \) and \(n \) are always non-negative. We also plot the Lagrange multipliers \(\lambda \) and \(\eta \) in Fig. 7 at time \(t = 3 \times 10^{-3} \). Since the solutions of the PNP system are smooth, the Lagrange multipliers are zero at most places, and are non-zero only at some localized boundary with quite small values.
4.4. Lubrication-type equation. As the last example, we consider the following lubrication equation
\[u_t + \nabla \cdot (f(u) \nabla \Delta u) = 0, \] (4.24)
where \(f(u) \approx u^\rho \) as \(u \to 0 \) with \(\rho \) depending on the boundary condition at the liquid solid interface: \(\rho = 3 \) for no-slip boundary condition while \(0 < \rho < 3 \) for various other boundary condition. The above equation has been used, e.g., in the study of thin liquid films and fluid interfaces by surface tension \([3]\).

Below, we consider (4.24) in \(\Omega = (-1, 1) \) and \(\Omega = (-\pi, \pi)^2 \) with periodic boundary conditions, and use a Fourier collocation method in space. Since the equation (4.24) may develop a singularity in finite time, it is a common practice to regularize it \([3, 30]\). In \([3]\), the equation is regularized by replacing \(f(u) \) with \(f_\rho(u) = \frac{u^\rho f(u)}{\rho f(u)} \) and it is shown in \([3]\) that the regularized problem is well posed for all time. On the other hand, one can also regularize the equation by requiring the solution to be bounded away from zero, namely, \(u(z) \geq \epsilon \) for a prescribed \(\epsilon \).
Hence, a second-order scheme based on (2.25)-(2.26c) with $k = 2$ is as follows:

\[
(4.25) \quad \frac{3\tilde{u}_h^{n+1}(z) - 4u_h^n(z) + u_h^{n-1}(z)}{2\delta t} + \mathcal{L}_h^n\tilde{v}_h^{n+1}(z) = \lambda_h^n(z) + \xi_h^n, \quad \forall z \in \Sigma_h,
\]
and

\[
\frac{3u_h^{n+1}(z) - 3\tilde{u}_h^{n+1}(z)}{2\delta t} = \lambda_h^{n+1}(z) - \lambda_h^n(z) + \xi_h^{n+1} - \xi_h^n, \quad \forall z \in \Sigma_h,
\]

(4.26)

\[
u_h^{n+1}(z) \geq \epsilon, \quad \lambda_h^{n+1}(z) \geq 0, \quad \lambda_h^{n+1}(u^{n+1}(z) - \epsilon) = 0, \quad \forall z \in \Sigma_h,
\]

where \(L_h\) is defined as follows depending on the type of regularization:

- \(\epsilon = 0\) and \(L_h^{n} \tilde{u}_h^{n+1} = \nabla \cdot (f(u_h^{n+1}, \cdot) \nabla \Delta \tilde{u}_h^{n+1})\) with \(u_h^{n+1}, \epsilon\) defined in (4.7).
- \(\epsilon > 0\) and \(L_h^{n} \tilde{u}_h^{n+1} = \nabla \cdot (f(u_h^{n+1}, \cdot) \nabla \Delta \tilde{u}_h^{n+1})\) with \(u_h^{n+1}, \epsilon\) defined in (4.7).

The second step (4.26) can be implemented as

(4.27)

\[
(u_h^{n+1}, \lambda_h^{n+1}) = \begin{cases}
(\tilde{u}_h^{n+1} - \frac{2}{\delta t}(\lambda_h^n - \xi_h^n + \xi_h^n), 0) & \text{if } \epsilon \leq \tilde{u}_h^{n+1} - \frac{2}{\delta t}(\lambda_h^n - \xi_h^n + \xi_h^n), \\
(\epsilon, \lambda_h^n + \xi_h^n - \xi_h^n + \frac{3}{2\delta t}(\epsilon - \tilde{u}_h^{n+1})) & \text{otherwise}.
\end{cases}
\]

We consider first the one-dimensional case with \(f(u) = u^\frac{3}{2}\) in \((-1, 1)\) with periodic boundary conditions and the initial condition

(4.28)

\[u_0(x) = 0.8 - \cos(\pi x) + 0.25 \cos(2\pi x).\]

This example has been well studied in [30], and the original equation \(f(u) = u^\frac{3}{2}\) will develop a singularity at \(t \approx 0.00074\). However, with a regularization, the solution can be continued beyond the singularity.

In Fig. 8, numerical solutions \(u\) and Lagrange multiplier \(\lambda\) are shown at different times computed by regularized positivity preserving scheme with \(N = 1000, \eta = 10^{-12}, \epsilon = 0\) and time step \(\delta t = 2 \times 10^{-8}\). Numerical solutions in Fig. 8 are indistinguishable from results computed with (4.25).

In Fig. 9(a-d), we plot the numerical solutions at different times computed with (4.25) using 1000 Fourier modes with various \(\epsilon\) and \(\delta t\). We observe that the numerical solutions are indistinguishable with \(\epsilon\) ranging from \(10^{-2}\) to \(10^{-4}\). However, as we decrease \(\epsilon\), smaller time steps has to be used. The Lagrange multiplier \(\lambda_h\) at time \(t = 0.001\) and \(t = 0.0008\) are plotted in In Fig. 9(e-f). We observe that \(\lambda_h\) becomes large near the places where the solution approaches zero.

Next, we consider an 2D example with the initial condition

(4.29)

\[u(x, y) = \begin{cases}
(x - 0.5)^2(y - 0.5)^2, & x^2 + y^2 \leq 0.25, \\
0, & \text{otherwise}
\end{cases},
\]

in the domain \((-\pi, \pi)^2\).
Numerical solutions u and Lagrange multiplier λ of postivity preserving scheme computed with $\eta = 10^{-12}$, $\epsilon = 0$ and $\delta t = 2 \times 10^{-8}$.

We first take $f(u) = u$ and use the following usual semi-implicit scheme:

$$
(4.30) \quad \frac{3u_{h}^{n+1}(z) - 4u_{h}^{n}(z) + u_{h}^{n-1}(z)}{2\delta t} + L_{h}^{n}u_{h}^{n+1}(z) = 0, \quad \forall z \in \Sigma_{h}.
$$

The scheme failed to converge with $\delta t = 10^{-5}$. However, by using the 2D version of the scheme (4.25) with $\epsilon = 0$ and 128×128 Fourier modes, correct results can be obtained with $\delta t = 10^{-5}$. In Fig. 10(a-d), we plot the initial condition and numerical solutions at $t = 0.001, 0.01, 0.1$, while we plot in Fig. 10(e-f) the Lagrange multipliers λ_{h} at $t = 0.001, 0.1$. We observe that the Lagrange multiplier takes nonzero values at a significant part of the domain which explains why the usual semi-implicit scheme failed to converge.

5. Concluding remarks. If a PDE requires its solution to be positive, a generic numerical scheme for the PDE usually cannot preserve the positivity. We presented in this paper a new approach to construct positivity preserving schemes for parabolic type equations by a simple modification to generic numerical schemes. More precisely, we introduce a space-time Lagrange multiplier function to enforce the positivity, and expand the underlying PDE using the KKT conditions. The key question is how to solve the expanded system efficiently with essentially the same cost as the generic numerical scheme.

We constructed a new class of positivity preserving schemes by using the predictor-corrector approach to the expanded system: the prediction step can be a generic semi-implicit or implicit scheme, while the correction step is used to enforce the positivity and can be implemented as a simple pointwise update with negligible cost. This new approach is not restricted to any particular spatial discretization and can be combined with various time discretization schemes. It can be applied to a large class of parabolic PDEs which require solutions to be positive. It is also non intrusive as you can easily modify your non-positivity preserving schemes for them to become positivity preserving. In addition, we also presented a modification to the above approach so that the schemes can also preserve mass if the underlying PDE is mass conserving.

An interesting and useful observation is that the ad-hoc cut-off approach can be interpreted as a special case of our predictor-corrector approach. Hence, it provides a different justification for the cut-off approach, moreover allows us to modify the cut-off approach so that it becomes mass conserving, and opens new avenue for further exploration.

We established stability results for the first- and second-order schemes based on the new approach under a general setting, and presented ample numerical experiments to validate the new approach.
\[\epsilon = 10^{-3} \quad \text{and} \quad \delta t = 10^{-6} \]

\[\epsilon = 10^{-4} \quad \text{and} \quad \delta t = 2 \times 10^{-7} \]

\[\epsilon = 10^{-2} \quad \text{and} \quad \delta t = 10^{-5} \]

\[\epsilon = 10^{-2} \quad \text{and} \quad \delta t = 10^{-4} \]

\[\epsilon = 10^{-4} \quad \text{and} \quad \delta t = 2 \times 10^{-7} \]

Fig. 9. (a)-(d): numerical solution \(u \) of positivity preserving scheme (4.25) for lubrication-type equation (4.24) in 1D at various time with different time steps and \(\epsilon \). (e)-(f): Lagrange multiplier \(\lambda \) at time \(t = 0.001 \) and \(t = 0.0008 \) using different time steps and \(\epsilon \).
Fig. 10. Numerical solutions u_h with positivity preserving scheme at $t = 0, 0.001, 0.01, 0.1$, and Lagrange multiplier λ_h at $t = 0.01, 0.1$.
Our numerical results indicate that the new approach is very effective for the variety of problems that we tested.

REFERENCES

[1] Samuel M Allen and John W Cahn. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. *Acta metallurgica*, 27(6):1085–1095, 1979.

[2] Maitine Bergounioux, Kazufumi Ito, and Karl Kunisch. Primal-dual strategy for constrained optimal control problems. *SIAM Journal on Control and Optimization*, 37(4):1176–1194, 1999.

[3] Andrea L Bertozzi and Mary Pugh. The lubrication approximation for thin viscous films: Regularity and long-time behavior of weak solutions. *Communications on pure and applied mathematics*, 49(2):85–123, 1996.

[4] Wenbin Chen, Cheng Wang, Xiaoming Wang, and Steven M Wise. Positivity-preserving, energy stable numerical schemes for the cahn-hilliard equation with logarithmic potential. *Journal of Computational Physics: X*, 3:100031, 2019.

[5] Qing Cheng, Chun Liu, and Jie Shen. Generalized sav approaches for gradient systems. *Journal of Computational and Applied Mathematics*, 394:113532, 2021.

[6] Qiang Du, Lili Ju, Xiao Li, and Zhonghua Qiao. Maximum bound principles for a class of semilinear parabolic equations and exponential time differencing schemes. *arXiv preprint arXiv:2005.11465*, 2020.

[7] C. M. Elliott and A. M. Stuart. The global dynamics of discrete semilinear parabolic equations. *SIAM J. Numer. Anal.*, 30(6):1622–1663, 1993.

[8] Francisco Facchinei and Jong-Shi Pang. *Finite-dimensional variational inequalities and complementarity problems*. Springer Science & Business Media, 2007.

[9] J.L. Guermond, P. Minev, and Jie Shen. An overview of projection methods for incompressible flows. *Comput. Methods Appl. Mech. Engrg.*, 195:6011–6045, 2006.

[10] Patrick T Harker and Jong-Shi Pang. Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications. *Mathematical programming*, 48(1):161–220, 1990.

[11] Dongdong He, Kejia Pan, and Xiaoqiang Yue. A positivity preserving and free energy dissipative difference scheme for the poisson–nernst–planck system. *Journal of Scientific Computing*, 81(1):436–458, 2019.

[12] Michael Hintermüller, Kazufumi Ito, and Karl Kunisch. The primal-dual active set strategy as a semismooth newton method. *SIAM Journal on Optimization*, 13(3):865–888, 2002.

[13] Michael Hinze, René Pinnau, Michael Ulbrich, and Stefan Ulbrich. *Optimization with PDE constraints*, volume 23. Springer Science & Business Media, 2008.

[14] Jingwei Hu and Xiaodong Huang. A fully discrete positivity-preserving and energy-dissipative finite difference scheme for poisson–nernst–planck equations. *Numerische Mathematik*, pages 1–39, 2020.

[15] Fukeng Huang and Jie Shen. Bound/positivity preserving and energy stable sav schemes for dissipative systems: applications to keller-segal and poisson-nerst-planck equations. *To appear in SIAM J. Sci. Comput.*

[16] Kazufumi Ito and Karl Kunisch. *Lagrange multiplier approach to variational problems and applications*. SIAM, 2008.

[17] Buyang Li, Jiang Yang, and Zhi Zhou. Arbitrarily high-order exponential cut-off methods for preserving maximum principle of parabolic equations. *SIAM J. Sci. Comput.*, 42(6):A3957–A3978, 2020.

[18] Hao Li, Shusen Xie, and Xiangxiong Zhang. A high order accurate bound-preserving compact finite difference scheme for scalar convection diffusion equations. *SIAM J. Numer. Anal.*, 56(6):3308–3345, 2018.

[19] Hao Li and Xiangxiong Zhang. On the monotonicity and discrete maximum principle of the finite difference implementation of C^0-Q^2 finite element method. *Numer. Math.*, 145(2):437–472, 2020.

[20] Jian-Guo Liu, Li Wang, and Zhennan Zhou. Positivity-preserving and asymptotic preserving method for 2d keller-segal equations. *Mathematics of Computation*, 87(311):1165–1189, 2018.

[21] Yuanyuan Liu, Chi-Wang Shu, and Mengping Zhang. High order finite difference weno schemes for nonlinear degenerate parabolic equations. *SIAM Journal on Scientific Computing*, 33(2):939–965, 2011.

[22] Changna Lu, Weizhang Huang, and Erik S. Van Vleck. The cutoff method for the numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and lubrication-type equations. *J. Comput. Phys.*, 242:24–36, 2013.

[23] Liquin Qi and Houyuan Jiang. Semismooth karush-kuhn-tucker equations and convergence analysis of newton and quasi-newton methods for solving these equations. *Mathematics of Operations Research*, 22(2):301–325, 1997.

[24] Jie Shen, Tao Tang, and Li-Lian Wang. *Spectral methods: algorithms, analysis and applications*, volume 41. Springer Science & Business Media, 2011.

[25] Jie Shen, Jie Xu, and Jiang Yang. A new class of efficient and robust energy stable schemes for gradient flows. *SIAM Rev.*, 61(3):474–506, 2019.

[26] Jaap JW van der Vegt, Yinhua Xia, and Yan Xu. Positivity preserving limiters for time-implicit higher order accurate discontinuous galerkin discretizations. *SIAM journal on scientific computing*, 41(3):A2037–A2063, 2019.

[27] Juan Luis Vázquez. *The porous medium equation: mathematical theory*. Oxford University Press on Demand, 2007.
[28] Xiangxiong Zhang and Chi-Wang Shu. On positivity-preserving high order discontinuous galerkin schemes for compressible euler equations on rectangular meshes. *Journal of Computational Physics*, 229(23):8918–8934, 2010.

[29] Xiangxiong Zhang and Chi-Wang Shu. Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 467(2134):2752–2776, 2011.

[30] Liya Zhornitskaya and Andrea L Bertozzi. Positivity-preserving numerical schemes for lubrication-type equations. *SIAM Journal on Numerical Analysis*, 37(2):523–555, 1999.