Elaboration of Whey Protein-Based Films in Food Products: Emphasis on the Addition of Natural Edible Bio-nanocomposites With Antioxidant and Antimicrobial Activity

Sayed Mahdi Hossaen Marashi 1,2, Mohammad Hashemi 3, Enayat Berizi 4, Mojtaba Raeisi 5 and Seyyed Mohammad Ali Noori 6,7, *

1College of Engineering, Design and Physical Sciences Michael Sterling Building (MCST 055), Brunel University London, Uxbridge, UB8 3PH, United Kingdom
2School of Physics, Engineering and Computer Science, Centre for Engineering Research, University of Hertfordshire, Hatfield AL10 9BU, United Kingdom
3Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
4Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
5Food, Drug and Natural products Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
6Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
7Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

*Corresponding author: Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Email: sma.noori@gmail.com

Received 2021 June 15; Revised 2021 July 20; Accepted 2021 August 04.

Abstract

Food spoilage is one of the major elements of food insecurity that has acquired significant attention over recent decades due to global human population growth. Several studies have investigated increasing shelf life of food products using natural and environmentally friendly compounds. Whey protein (WP) can be an important additive material because it is well-known for its high value of nutrition and well characteristics for the formation of edible films. Furthermore, natural bioactive compounds have been incorporated with WP-based films to confer their antioxidant and antimicrobial activities. Herein, nanotechnology has been effectively potentiated the antimicrobial and antioxidant properties of WP films. A wide range of bioactive agents has been embedded in the WP films, such as essential oils (EOs), TiO2, nano-clay, and even lactic acid bacteria. The current paper reviews the antioxidant and antimicrobial effects of different types of WP films and their applications in food products. This study also discussed the impact of WP films on shelf life, chemical and microbiological quality indices of meats, processed meats, poultry meat products, and fish.

Keywords: Edible Films, Whey Protein, Antioxidants, Antibacterial Agents, Nanocomposites, Phytochemicals, Active Packaging.

1. Context

Recently, green consumerism has been widely accepted, leading to the substitution of synthetic chemicals used in foods with natural compounds. It has significantly affected research studies, so that increased attention has been paid to applying natural preservative agents in foods. Various edible compounds are available for food packaging, including proteins and polysaccharides (1). Herein, many proteins have been used in food packagings, such as whey and soy protein, zein, gelatin, collagen, etc. (2). They have been used in the form of edible films to improve the shelf life and maintain the quality of various food products. Whey protein (WP) are of the best proteins used for this purpose due to its auspicious attributes. Some of the desirable features of WP-based films are being a well gas barrier and its glossy appearance, which makes them excellent for use in the food packaging industry (3). Moreover, other naturally occurring active compounds can be incorporated with WP-based films to achieve longer shelf life for foods.

Among all modern methods (4), a combination of nanotechnology and food packaging has manifested a new horizon to fulfill the production of healthy food with extended shelf life. One of the major impacts of this combination on food was yielded by the utilization of nanoscale antimicrobial and/or antioxidant agents in packaging. The application of these compounds with nanosized characteristics not only has intensified their beneficial effects but also improved their durability in food matrices (5). The potent antimicrobial and antioxidant effects of nanosized materials provided a new approach to address food quality issues as well as spoilage of food (6). This review aims to draw the attention of researchers and inspire the scien-
tific community to barge in the application of WP-based films in foods. This study has reviewed the incorporation of nanoscale bioactive agents in the films as well as considered their impacts on the quality and shelf life of foods.

2. Evidence Acquisition

2.1. WP-Based Films with Antibacterial Effects

Whey protein is of the major proteins of milk, which is a by-product in some dairy processes. It can be recovered by new methods such as ultrafiltration and has been used for various purposes like the development of active food packaging (7). Various WP films that contain antimicrobial agents have been developed. For this purpose, many bioactive agents with antibacterial activity have been added to the WP-based films, for example, essential oils (EOs), TiO$_2$, nanomaterials, etc. Antibacterial effects of these fabricated films are investigated against Gram-negative and -positive bacteria such as Escherichia coli, Pseudomonas fluorescens, Salmonella enteritidis, Listeria monocytogenes, and Staphylococcus aureus (8, 9). The antimicrobial activity of WP-based films is provided in Table 1.

Among all compounds incorporated with WP-based films, EOs are the most important antimicrobial agents, such as cinnamon or rosemary. Mohammadi et al. (11) developed a biodegradable film using WPI, chitosan nanofiber, and cinnamon essential oil. They reported that the addition of cinnamon to film significantly increased its antimicrobial activity against Gram-negative (E. coli, P. aeruginosa) and -positive (S. aureus) bacteria. In another study by Ghadetaj et al. (9), WPI and nanoemulsion Grammosciadium Ptrocarpum EO were utilized to form a film. The antimicrobial test showed that the above-mentioned film had an antibacterial effect against Gram-negative and Gram-positive bacteria, and L. monocytogenes was the most susceptible bacteria. Ghadetaj et al. (9) also analyzed the antioxidant activity of the film and demonstrated the best antioxidant effects for the film containing 1% nanoemulsion G. Ptrocarpum EO. Lavandula angustifolia EO also was added to WPI film, and its antioxidant functionalities were investigated against S. aureus, Bacillus subtilis, E. coli, and Salmonella enterica (17). The results obtained by Rashed et al. (17) study showed that fabricated film was effective on Gram-positive and -negative bacteria. However, Gram-positive bacteria were more susceptible to the mentioned film. In addition, TiO$_2$ has been used along with rosemary EO (8) and (26) Zataria multiflora EO in WP-based protein, and a summary of these studies was presented in Table 1. Other EOs and compounds that have been added to the WPI-based film (14-16, 22, 23, 25, 27) can also be found in Table 1. Overall, the addition of EOs to WP-based films grants them excellent antimicrobial effects and makes them suitable for active food packaging.

2.2. Whey Protein-Based Films with Antioxidant Activity

Whey protein-based films have been fabricated exclusively to achieve antioxidant effects. EOs and plant extracts are classified as major natural compounds (32), which are added to the whey protein-based films to increase the antioxidant activities of the bioactive compounds. The antioxidant activity of whey protein-based films is provided in Table 1. Taghavi Kevij et al.(13) used WPI and curcumin to develop a film with antioxidant effects. They reported that WPI film without curcumin showed slight antioxidant activity while adding curcumin dramatically increased (P < 0.05) the antioxidant activity of the film. Amjadi et al. (28) fabricated WPI films consisting of Citrus sinensis peel EO in the forms of emulsion and nanoemulsion that the results showed antioxidant activity of the film. Another study developed WPI/starch film embedded with rosemary and recorded antioxidant activity by DPPH analysis (31).

In addition, other natural materials originated from plants have been used to grant beneficial effects to the whey protein-based films. For instance, Sukatta et al. (19) used 3% rambutan peel extract (RPE) to fabricate a WPI/cellulose nanocrystal film with antimicrobial and antioxidant. The obtained data by the study of Sukatta et al. (19) revealed that film imparts remarkable antioxidant activity (even better than BHT and α-tocopherol) and mediocre antibacterial effects toward S. aureus. Moreover, the results of the addition of paprika extract and coconut EO (20), microparticles of lignin (29), and α-tocopherol (30) to WP-based films are outlined in Table 1.

2.3. Application of Whey Protein-Based Films in Food Models and Their Impacts on an Index of Food Quality

The most important factors affecting food quality, which are conducive to spoilage, are microbial deterioration and the oxidation process. A wide variety of antimicrobial and antioxidant agents has been added to whey protein-based films to prevent the growth of bacteria in food. These compounds can be divided into two categories of chemical and natural agents. Among natural bioactive compounds, EOs are the most frequent antimicrobial and antioxidant agents used to prevent food spoilage and pathogenic bacteria. Due to the simultaneous antimicrobial and antioxidant properties of EOs, they have been drawn much attention in research studies (33). The application of whey protein-based films in various foods is provided in Table 2.
Table 2. Application of Whey Protein-Based Films in Various Foods

Film Ingredients	Bioactive Compound	Food Model	Main Findings
WPI/cellulose nanofiber	TiO$_2$ (1% w/w) and rosemary EO (2% w/v)	Lamb meat	Antimicrobial activity toward *Enterobacteriaceae, Pseudomonas* spp, *Escherichia coli*, *Staphylococcus aureus*, *Listeria monocytogenes*, and lactic acid bacteria; Better antibacterial effect against Gram-positive bacteria; Increased shelf life from 5 days to 15 days. (34)
WPI/cellulose nanofiber	Thyme EO (20, 30, and 40%)	Ground meat	-Excellent antioxidant activity; Preserved the natural red color of meat; Prolong the shelf life (35)
WPI/alginate	L. salif cell-free supernatant (18 mg/mL)	Fresh beef slices	Antimicrobial properties against major pathogenic bacteria of beef; 2.3 log$_{10}$ CFU/g reduction for *E. coli*; 1.4 log$_{10}$ CFU/g reduction for *L. monocytogenes*; Ineffective on sensory characteristics (36)
Chitosan WP	Garlic EO (25) and nanoencapsulated garlic EO (25)	Vacuum-packed sausage	-Reduction of microbial growth (aerobic plate count, psychrophilic count, lactic acid bacteria count); Reduction of lipid oxidation; Increased shelf life; Ineffective on sensory properties (37)
WP concentrate	Origanum virens EO	Traditional Portuguese sausages (pa`nhos and alheiras)	Reduced lipid oxidation; Inhibited the microbial growth; Increased the shelf life for 15 and 20 days for alheiras and pa`nhos, respectively (38)
Cassava starch and WPI	Rambutan peel extract and cinnamon oil	Salami	-Antioxidant and antimicrobial activity of film; Delayed the microbial deterioration (39)
WPI	Oregano or clove EO	Chicken breast	-Inhibition of bacterial growth (mesophilic and psychrophilic count, *Enterobacteriaceae*, and lactic acid bacteria count); Increased the shelf life (40)
WP concentrate	Ethanolic extract of seaweed (*Fucus vesiculosus*)	Chicken breast	Lower malonaldehyde; Lower lipid oxidation; Increased shelf life (40)
WP/chitosan	Quince and cranberry juice	Turkey meat pieces	-Antimicrobial activity toward pathogenic bacteria (*E. coli, Salmonella typhimurium*, and *Campylobacter jejuni*); Reduced total bacterial count; Increased the shelf life for 6 days (42)
WPI	Nisin, grape seed extract, ethylene diamine tetraacetic acid (EDTA), and malic acid	Turkey frankfurter	-Antibacterial effects against pathogenic bacteria (*E. coli, L. monocytogenes, Salmonella typhimurium*) (43)
WPI	Tarragon EO (2.5%)	Brook trout	Lower TBARS values, indicating antioxidant effects; Lower amounts of bacteria in the total viable count, lactic acid bacteria, psychrophilic count, and H$_2$S producing bacteria, indicating antibacterial effects; 3 days of increased shelf life (44)
WP	Sodium alginate (0.5%)	Kilka	Antioxidant activity; Lower amounts of TBARS, peroxide value, free fatty acid, pH, and TVN; Antimicrobial activity (reduction of total bacterial count) (45)
WP	Anise oil (4 and 6%)	Dried *Decapterus maruadsi*	Antimicrobial and antioxidant effects; Increased shelf life from 3 to 21 days; Application of 4% anise oil in WPI film showed no undesirable effects on sensory attributes (46)
WP/pectin film	Transglutaminase	Apple, carrot, and potato	-Increased the shelf life by at least 6 days; Excellent antimicrobial and antioxidant activity (47)
WP	Olive oil	Peanut	-Increased the shelf life; Improved the sensory attributes (48)
WP/montmorillonite	Citric acid	Fresh-cut apple	Significantly increased the shelf life. (49)
Chitosan/WPI	Citric acid	Strawberries	40 and 60% increased shelf life at 20 and 5ºC. (50)

Abbreviations: WP, whey protein; WPI, whey protein isolate; EO, essential oil.
2.3.1. Meats

So far, the effects of whey protein-based films in different food products have been investigated to assess their beneficial effects on shelf life. Meat and meat products are of the most important parts of human nutrition with high nutritional contents. Despite, rapid deterioration of these foods is quite challenging since they provide an excellent environment for microbial growth (51). Usually, meats contain considerable amounts of fat that makes them susceptible to rancidity. On the other hand, meat can be contaminated with spoilage and pathogenic bacteria during slaughter (52).

Some studies have been carried out to preserve their quality and increase their shelf life by employing whey protein-based films. Alizadeh Sani et al. (34) developed a film using WPI/cellulose nanofiber incorporated with TiO$_2$ and rosemary EO and investigated its antibacterial activity as well as its effects on the shelf life of meat. The film showed a significant antibacterial effect, especially on Gram-positive bacteria. It was also associated with an increased shelf life of meat, from 6 days (control group) to 15 days. Carvalho et al. (35) focused on meat oxidation spoilage and tried to prevent lipid oxidation in ground meat using WPI/cellulose nanofiber films incorporated with thyme EO. They reported that the chosen film not only could retard the lipid oxidation of ground meat samples but also preserved its natural red color. The film can be used to increase the shelf life of meats with high lipid content. Moreover, the application of WPI films has been used not only for spoil retardation but also for the prevention of pathogenic bacteria in meat.

Other meat products, namely processed meat, have also been treated with whey protein-based film. Catarino et al. (38) developed a WP concentrate film embedded with *Origanum virens* EO to improve the physiological properties and microbial quality of two types of Portuguese sausages. Catarino et al. (38) demonstrated that WP-based film significantly reduced the lipid oxidation and microbial growth of sausage samples. In addition, the shelf life of sausages was significantly increased between 15 to 20 days. There are other studies that investigated the application of whey protein films to improve the shelf life of sausages. Esmaeili et al. (37) added garlic EO and nonencapsulated garlic EO to WP and chitosan edible film. They applied this film on the sausage to increase their shelf life during storage for 50 days. The data showed significant antimicrobial effects of fabricated films on aerobic plate count, psychrophilic count, and lactic acid bacteria count ($P < 0.05$). Thiobarbituric acid reactive substances and peroxide value analysis revealed the antioxidant activity of films. They also reported that WPI and chitosan films incorporated with nano-encapsulated garlic EO were ineffective on sensory properties of sausage samples which is important from the consumers’ acceptance aspect.

2.3.2. Poultry Meats

Poultry meats are another important meat product for human nutrition with a high rate of spoilage. Andrade et al. (41) formulated a film made of WP concentrate incorporated with ethanolic extract of seaweed (*Fucus vesiculosus* L.) and applied it to increase the shelf life of chicken breast. The results showed lower malonaldehyde content in the group treated with the chosen film, indicating lower lipid oxidation and better shelf life. Other efforts have been made to maintain the original quality of chicken stored in cold condition. Fernández-Pan et al. (40) fabricated WPI films incorporated with oregano or clove EO and investigated its effects on chicken breast samples. Both films with oregano or clove EO were effective and exhibited antibacterial effects. However, oregano EO incorporated with WPI film was stronger. Both films were effective in microbial populations and increased the shelf life of chicken samples. The beneficial effects of the application of WP-based films on other poultry meat products such as turkey frankfurter have been evaluated by Gadang et al. (43). They made a WP film incorporated with different compounds including nisin, grape seed extract, ethylenediamine tetraacetic acid, and malic acid, and assessed its antibacterial effects on turkey frankfurter inoculated with *S. typhimurium, E. coli* O157:H7, and *L. monocytogenes*. Promising bacterial results were observed for samples stored at 4°C for 28 days, and the authors suggest the application of chosen film for prevention of foodborne diseases in these types of ready-to-eat products.

2.4. Fish

Seafood and fish were of the major segments of the human diet with excellent nutritious value. These foods are economically important, and many countries and areas around the world are dependent on them. Despite that, these foods are extremely susceptible to deterioration, which causes major economic losses every year. Many approaches have been used to retard seafood spoilage and prevent economic damages such as chilling, freezing, application of preservatives, etc. Recently, WP-based films have been applied by researchers to achieve this goal. So, caciu et al. (44) formulated a film using WPI and tarragon EO and evaluated its effects on quality indices of brook trout stored at 4°C for 15 days. TBARS analysis revealed lower values for fish samples treated with the chosen film, which refers to its antioxidant activity. In addition, antimicrobial activity for the above-mentioned film was observed by microbial tests. For example, the total viable count for...
fish samples showed a significant reduction in log10 CFU/g which led to 3 days prolonged shelf life. Administration of psychrophilic count, lactic acid bacteria count, and H2S producing bacteria has resulted in similar results. Overall, the application of the WP-based film incorporated with 2.5% tarragon EO could increase the shelf life by 3 days. WP-based films have also been employed on dried fish. Matan (46) formulated a WP film incorporated with anise oil and evaluated its impact on dried Decapterus maruadsi stored at 30ºC for three weeks. Findings of the study displayed that the film containing 4 and 6% anise oil exhibited antimicrobial and antioxidant characteristics and increased the shelf life of dried fish from 3 to 21 days (concerning different chemical and microbial analysis). They also investigated the undesirable effects of the mentioned film on sensory attributes, and it turns out that incorporation of 6% anise oil in WP film caused an unpleasant impact on dried fish. Overall, the study suggested that 4% anise oil embedded with WP-based film was the best choice to simultaneously increase the shelf life and did not affect the sensory characteristics.

2.5. Fruits and Vegetables

Fruits and vegetables are perishable foods that are quite challenging for industries due to the high spoilage rate. Some studies attempted to preserve these products using WP-based films. Marquez et al. (47) developed whey protein/pectin edible films by adding transglutaminase to increase the shelf life of apple, carrot, and potato. They reported that the excellent antimicrobial and antioxidant activity of the film caused increased shelf life of these foods for at least 6 days. In another study on fresh-cut apples by Azevedo et al. (49), WP/montmorillonite films are fabricated using citric acid, and the results indicated a significant increase in the shelf life. Muley and Singhal (50) embedded citric acid into chitosan/WPI edible films and investigated their effects on the shelf life of strawberries at 20 and 5ºC. The results showed a 40 and 60% increase in the shelf life of samples for 20 and 5ºC, respectively. WP-based films could also increase the shelf life of other foods such as peanut (48), tomato (53), grapes (53), etc.

3. Conclusions

In this review, the functionality of different applications of WP-based films to increase the shelf life of various types of foods was discussed. It has been proved that WP films can retard the lipid oxidation and rancidity of foods. The antimicrobial activity of WP films could inhibit the growth of spoilage and pathogenic bacteria such as S. aureus, E. coli, S. typhimurium, etc. The potent antimicrobial and antioxidant properties of WP-based films led to the shelf-life prolongation of different food products. Although, their application in foods confronts some challenges. For example, the incorporation of some bioactive compounds with WP films affects the sensory characteristics of foods. However, nanotechnology and encapsulation of bioactive compounds almost resolved this issue. Nanotechnology also intensified the beneficial effects of WP films, namely, antioxidant and antimicrobial effects. Nanotechnology approaches were also conducive to the slow release of bioactive compounds into the food matrix, and their antioxidant and antimicrobial effects were demonstrated for more duration. Overall, few studies have investigated the effects of WP films on food, and more research is required to extend our knowledge beyond the practical application of these films in food industries. In principle, this literature review confirmed the ability of edible WP-based films incorporated with different bioactive compounds in preserving the original quality of foods and increasing their shelf life. We suggest that more studies should be carried out on food model systems to ultimately achieve the best practical results in food industries. Moreover, the application of nanotechnology for the development of WP-based films is highly recommended to achieve the best results. Novel EOs with excellent in vitro antimicrobial and antioxidant effects also can be used for incorporation with WP-based films. Herein, some limitations and challenges must be considered before the application of WP-based films on an industrial scale. For example, the appearance, permeability, mechanical strength, effect on organoleptic quality, and so on. Another important issue that must be scrutinized is the investigation of the possible toxicity of WP-based films to ensure the safety of consumers.

Footnotes

Authors’ Contribution: Sayed Mahdi Hossaeini Marashi: Developed the original idea, drafted the manuscript, revised the manuscript; Mohammad Hashemi: Drafted the manuscript, revised the manuscript; Enayat Berizi: Drafted the manuscript, approved the final manuscript; Mojtaba Raeisi: Drafted the manuscript, revised the manuscript; Seyed Mohammad Ali Noori: Developed the original idea, drafted the manuscript, approved the final manuscript.

Conflict of Interests: The authors declare no conflict of interest.

Funding/Support: This manuscript has been prepared without any grant.
References

1. Hosseini SF, Gómez-Guillén MK. A state-of-the-art review on the elaboration of fish gelatin as bioactive packaging: Special emphasis on nanotechnology-based approaches. Trends Food Sci Technol. 2018;79:125-35. doi: 10.1016/j.tifs.2018.07.022.

2. Kohui M, Prabhakaran MR, Ramkrishna S. Edible polymers: An insight into its application in food, biomedicine and cosmetics. Trends Food Sci Technol. 2020;103:248-63. doi: 10.1016/j.tifs.2020.05.025.

3. Al-Tayyar NA, Yousuf AM, Al-Hindi RR. Edible coatings and antimicrobial nanocomposites for enhancing shelf life and foodborne pathogens of fruits and vegetables: A review. Sustain Mater Technol. 2020;26:e00215. doi: 10.1002/sumat.2020.e00215.

4. Zehi ZB, Afshari A, Noori SMA, Jannat B, Hashemi M. The effects of X-ray irradiation on safety and nutritional value of food: A systematic review article. Curr Pharm Biotechnol. 2020;21(10):3819-26. doi: 10.2174/138920101666620190913184. [PubMed: 32072900].

5. Mohajer F, Khanzadi S, Keykhosravy K, Noori SMA, Azizzadeh M, Hamishehkar M. Impact of gelatin nanogel coating containing thymol and nisin on the microbial quality of rainbow trout fillets and the inoculated Listeria monocytogenes. Aquac Res. 2021;52(8):3958-65. doi: 10.1111/are.15239.

6. Alfei S, Marengo B, Zuccari G. Nanotechnology application in food packaging: A plethora of opportunities versus pending risks assessment and public concerns. Food Res Int. 2020;137:109664. doi: 10.1016/j.foodres.2020.109664. [PubMed: 32123243].

7. Ramos OL, Fernandes JC, Silva SI, Pintado ME, Malcata FX. Edible films and coatings from whey proteins: a review on formulation, and on mechanical and bioactive properties. Crit Rev Food Sci Nutr. 2012;52(6):533-52. doi: 10.1080/10408398.2010.500528. [PubMed: 22427373].

8. Alizadeh-Sani M, Khezerloou A, Ehsani A. Fabrication and characterization of the bionanocomposite film based on whey protein biopolymer loaded with TiO2 nanoparticles, cellulose nanofibers and rosemary essential oil. Ind Crops Prod. 2018;124:300-15. doi: 10.1016/j.indcrop.2018.08.001.

9. Ghdateral A, Almasi H, Mehryar L. Development and characterization of whey protein isolate active films containing of Gramnococcidioides procarpum Bioss, essential oil. Food Packag Shelf Life. 2018;16:31-40. doi: 10.1016/j.fpsl.2018.01.002.

10. Karimi N, Alizadeh A, Almasi H, Hanifian S. Preparation and characterization of whey protein isolate/polydextrose-based nanocomposite film incorporated with cellulose nanofiber and L. plantarum: A new probiotic active packaging system. IWT. 2020;121:108978. doi: 10.1016/j.jwlt.2019.108978.

11. Mohammadi M, Mirabzadeh S, Shahvalizadeh R, Hamishehkar H. Development of novel active packaging films based on whey protein isolate incorporated with chitosan nanofiber and nanoformulated cinnamon oil. Int J Biol Macromol. 2020;149:31-40. doi: 10.1016/j.ijbiomac.2020.01.083. [PubMed: 32007845].

12. Vanden Braber NL, Di Giorgio L, Aminahuel CA, Díaz Vergara LI, Jannat B, Majeed H, et al. Techno-functional properties and sustainable application of nanoparticles-based Lavandula angustifolia essential oil fabricated using unsaturated lipid-carrier and biodegradable wall material. Ind Crops Prod. 2019;136:66-76. doi: 10.1016/j.indcrop.2019.04.070.

13. Çağrı Mehmetoğlu A, Sezer E, Erol S. Development of antimicrobial whey protein-based film containing silver nanoparticles biosynthesized by Aspergillus Nig. Int J Food Sci Technol. 2020;56(2):965-73. doi: 10.1111/ijfs.14749.

14. Sukatla U, Raghaworn P, Khanoonkon N, Anongjanya P, Kongsin K, Sukuya P, Rambutan (Nephelium lappaceum) peel extract: Antimicrobial and antioxidant activities and its application as a bioactive compound in whey protein isolate film. J Songklanakarin Sci Technol. 2021.

15. Asdagh A, Karimi Sani I, Pirsa S, Amiri S, Shariatfar N, Eghbaljoo-Gharehgheshlaghi H, et al. Production and characterization of nanocomposite film based on whey protein isolated/copper oxide nanoparticles containing coconut essential oil and paprika extract. Journal of Polymers and the Environment. 2020;29(1):335-49. doi: 10.1007/s10995-020-01818-w.

16. La Storia A, Di Giuseppe FA, Volpe S, Oliviero Y, Villani F, Torrielli E. Physical properties and antimicrobial activity of bioactive film based on whey protein and Lactobacillus curvatus 54M16 producer of bacteriocins. Food Hydrocoll. 2020;101:105959. doi: 10.1016/j.foodhyd.2020.105959.

17. Al-Hadeed LT, Awadh HA, Mahmood EA, Musa BAH. Producing edible films made from whey proteins isolate incorporated with tio2: nanoparticles to studying its mechanical and antimicrobial properties. Biochem Cell Arch. 2020.

18. Çakmak H, Ozselek Y, Turan OY, Firatligil E, Kurbancioglu-Guler F. Whey protein isolate edible films incorporated with essential oils: Antimicrobial activity and barrier properties. Polym Degrad Stab. 2019;179:109285. doi: 10.1016/j.polymdegradstab.2020.109285.

19. Bleona I, Enachi E, Borda D. Thyme antimicrobial effect in edible films with high pressure thermally treated whey protein concentrate. Foods. 2020;9(7). doi: 10.3390/foods9070785. [PubMed: 32630028]. [PubMed Central: PMC7404655].

20. Sogut E. Active whey protein isolate films including bergamot oil emulsion stabilized by nanocellulose. Food Packag Shelf Life. 2020;31:100430. doi: 10.1016/j.fpsl.2020.100430.

21. Gohargani M, Lashkari H, Shirazinejad A. Study on biodegradable chitosan-whey protein-based film containing bionanocomposite TiO2 and Zataria multiflora essential oil. J Food Qual. 2020;2020:1-11. doi: 10.1080/20407007.2020.1844617.

22. Vilas Dhimal C, Pal K, Sarkar P. Synthesis, characterization, and antimicrobial efficacy of composite films from guar gum/sago starch/whey protein isolate loaded with carvacrol, cirtal and carvacrol-citral mixture. J Mater Sci Mater Med. 2019;30(10):87. doi: 10.1007/s10856-019-6137-8. [PubMed: 31624921].

23. Amjadi S, Almasi H, Ghadertaj A, Mehryar L. Whey protein isolate-based films incorporated with nanomucilages of orange peel (Citrus sinensis) essential oil: Preparation and characterization. J Food Process Preserv. 2020;44(2). doi: 10.1111/jfpp.15396.

24. Gomide RAC, Oliveira ACS, Luizatto LB, Yoshida MI, Oliveira CR, Borges SV. Biopolymeric films based on whey protein isolate/chitin nanoparticles for waste recovery. J Food Process Eng. 2020;44(3). doi: 10.1111/jfpe.15396.

25. Taghavi Kevi H, Salami M, Mohammadian M, Khodadadi M. Fabrication and investigation of physicochemical, food simulant release, and antioxidant properties of whey protein isolate-based films activated by loading with curcumin through the pH-driven method. Food Hydrocoll. 2020;103:106028. doi: 10.1016/j.foodhyd.2020.106028.

26. Kadam DM, Wang C, Wang S, Grewell D, Lamsal B, Yu C. Microstructure and antimicrobial functionality of nano-enhanced protein-based biopolymers. Trans ASABE. 2014;57(4):314-50. doi: 10.13031/trans.57.103797.

27. Lei Q, Huang ZY, Pan JZ, Rao JQ, Xun QN, Jiang S, et al. Research on antimicrobial activity and packaging performance of degradable protein films. Adv Mat Res. 2014;915-916:947-53. doi: 10.4028/www.scientific.net/AMR.915-916.947.
31. Azevedo VM, Carvalho RA, Borges SV, Claro PIC, Hasegawa FK, Yoshida MI, et al. Thermoplastic starch/whey protein isolate/rosemary essential oil nanocomposites obtained by extrusion process: Antioxidant polymers. J Appl Polym Sci. 2019;136(23):47619. doi: 10.1002/app.47609.

32. Tkaczewska J. Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings - A review. Trends Food Sci Technol. 2020;106:298–311. doi: 10.1016/j.tifs.2020.10.022.

33. Chollakup R, Pongburoos S, Boonsong W, Khanoonkon N, Kongsin K, et al. An overview on antioxidants activity of poly saccharide edible films and coatings contains essential oils and herb extracts in meat and meat products. Adv Anim Vet Sci. 2020;8(2). doi: 10.7572/journal.aves.2020/8.2.198.207.

34. Brink I, Sipailiaine A, Leskauskaitė D. Antimicrobial properties of chitosan and whey protein films applied on fresh cut turkey pieces. Int J Biol Macromol. 2019;130:810–7. doi: 10.1016/j.ijbiomac.2019.03.021. [PubMed: 30840870].

35. Carvalho RA, Santos TA, Oliveira ACS, Azevedo VM, Dias MV, Ramos EM, et al. Effects of whey protein isolate-based film incorporated with tarragon essential oil on the quality and shelf-life of refrigerated brook trout. Foods. 2020;9(2). doi: 10.3390/foods9020240. [PubMed: 33670183]. [PubMed Central: PMC7918404].

36. Brink I, Sipailiaine A, Leskauskaitė D. Antimicrobial activity of whey protein isolate coating incorporated with nisin, grape seed extract, malic acid, and EDTA on a Turkey frankfurter system. J Food Sci. 2008;73(8):M389–94. doi: 10.1111/j.1570-3841.2008.00899.x. [PubMed: 1909189].

37. Rossi Marquez G, Di Pierro P, Marinoelli L, Esposito M, Giosafatto CV, Porta R. Fresh-cut fruit and vegetable coatings by transglutaminase-crosslinked whey protein/pectin edible films. J Food Sci. 2017;82:273–80. doi: 10.1111/1541-4337.12526. [PubMed: 33325162].

38. Seyfzadeh M, Motalebi A, Kakoolaki S, Gholipour H. Chemical, microbiological and sensory evaluation of gutted kilka coated with whey protein based edible film incorporated with sodium alginate during frozen storage. Iran J Fish Sci. 2013.

39. Hossaeini Marashi SM, et al. An overview on antioxidants activity of polysaccharide edible polymers. J Appl Polym Sci. 2019;136(23):1306732. doi: 10.1002/app.1306732.

40. Fernandez-Pan I, Mendoza M, Mate JI. Whey protein isolate edible films with incorporated seaweed extract: Development, characterization, and application in fresh poultry meat. Coatings. 2021;11(2):229. doi: 10.3390/coatings11020229.

41. Dave D, Ghiy AE. Meat spoilage mechanisms and preservation techniques: A critical review. Am J Agric Biol Sci. 2011;6(4):486–510. doi: 10.3844/ajabssp.2011.486.510.

42. Odeyemi OA, Alegbeleye OO, Strateva M, Stratev D. Understanding meat spoilage mechanisms and preservation techniques: A critical review. J Food Sci. 2017;80(4):503–16. doi: 10.1111/1745-4530.2007.00165.x.

43. Socaciu MI, Fogarasi M, Simon EI, Semeniuc CA, Socaci SA, Podar AS, et al. Effects of whey protein isolate-based film incorporated with rosemary and cinnamon oil for active packaging. Compr Rev Food Sci Food Saf. 2018;17(3):306–13. doi: 10.1111/1541-4337.12528. [PubMed: 33325162].

44. Diandin I, Oliveira Junior A, Pimentel T, Hernandez N, Costa G. Edible biofilms formulated with whey proteins isolate and L. casei probiotic culture: Characterization and application in tomatoes or grapes. Chem Eng. 2019;75.
| Film Ingredients | Bioactive Compound | Method of Fabrication | Main Findings | |
|---|---|---|---|---|
| 1 | WPI/cellulose nanofibers | Rosemary EO (1.5 and 2%) and/or titanium dioxide (0.5, 1 and 1.5%) | Casting/evaporation method | Strong antibacterial effects (approximately 15 mm inhibition zone for Escherichia coli, Salmonella enteritidis, Pseudomonas fluorescens, Staphylococcus aureus, and Listeria monocytogenes), particularly against Gram-positive bacteria - Moderate antioxidant effect (Lower than butylated hydroxytoluene (BHT)) (8) |
| 2 | Cellulose nanofiber (CNF)/polydextrose/WPI | L. plantarum | Homogenization-sonication/casting | Growth inhibition of E. coli (2.6 ± 0.5 mm), S. aureus (14.0 ± 1.0 mm), and Pseudomonas aeruginosa (14.6 ± 0.5 mm) (10) |
| 3 | WPI/chitosan nanofiber | Cinnamon EO (4%) | Homogenization-sonication/casting | Antibacterial effects toward S. aureus and Gram-negative (P. aeruginosa and E. coli) bacteria (11) |
| 4 | WPI | Water soluble derivative of chitosan (1%) | Casting | Excellent antifungal effects; 100% inhibition growth of Aspergillus niger (12) |
| 5 | WPI | Curcumin (0, 0.2, 0.5, and 1.0 mg/ml) | pH-driven | Excellent antioxidant effect (11) |
| 6 | WPI | Grammosciadium Picrocropus Bioass. essential oil (0.5, 1, 1.5%) | Casting | Antibacterial effects against Gram-negative (Salmonella typhimurium, E. coli, P. aeruginosa) and a Gram-positive (L. monocytogenes) bacteria. (9) |
| 7 | WPI/corn zein protein | TiO₂/SiO₂ | Sonication/casting | Antibacterial effect against E. coli. (14) |
| 8 | WPI| Nano-TiO₂ | Casting | Antibacterial properties toward S. aureus (12.01 ± 1.01 mm) and E. coli (14.40 ± 0.77 mm) (15) |
| 9 | WPI | Nano-clays (5%) | Sonication/solution casting | Antibacterial effects against L. monocytogenes. (16) |
| 10 | WPI | Lavandula angustifolia EO (0.5, 1, 1.5, and 2%) | Homogenization-sonication/casting | Antibacterial effects toward Gram-negative and Gram-positive bacteria: S. aureus (16.17 mm), Bacillus subtilis (14.75 mm), E. coli (16.03 mm), and Salmonella enteritidis (18.98 mm) (17) |
| 11 | WPI | Silver nanoparticles (0, 0.25 and 1.25 mM) | Casting | Antimicrobial activity against yeast Wilsoplos saturnus (13.3 mm), mould Aspergillus sydowi (36.00 mm), and bacteria: S. aureus (15.00 mm), S. enteritidis, E. coli (11.3 mm), and L. monocytogenes (14.7 mm) (18) |
| 12 | WPI/cellulose nanocrystal | Rambutan peel extract (3%) | Casting | Strong antioxidant effects; Medium antibacterial effect (19) |
| 13 | WPI | Coconut EO (0, 0.4, 0.88% w/v) and paprika extract (0, 0.03, 0.06% w/v) | Homogenization-sonication/casting | Significant antioxidant properties; Antibacterial effect (20) |
| 14 | WPI/gelatin/muslin | Lb. curvatus 54M16 (4% w/v) | Casting | Significant antibacterial effects against pathogens due to the production of bacteriocin. (21) |
| 15 | WPI | TiO₂ nanoparticles (10 and 15%) | Casting | Antimicrobial effects against E. coli (20 mm), Salmonella spp (19 mm), Pseudomonas aeruginosa (18 mm), S. aureus (25 mm), Bacillus spp (22 mm), Candida albicans (23 mm), (22) |
| 16 | WPI | Lemon and bergamot EO (4.5%) | Casting | Better antimicrobial properties of bergamot EO against E. coli (21 mm) and S. aureus (20.5 mm) - Bergamot EO, also showed antifungal activity against A. niger (35 mm) (23) |
| 17 | WP concentrate | Thyme | High pressure-thermal treatment | Antimicrobial effects against Torulopsis stellata, Geotrichum candidum, and B. subtilis. (24) |
| 18 | WPI/nanocellulose | Nanomulsion of bergamot EO (5, 10, 20, 40%) | Casting | Antibacterial activity toward E. coli (21 mm), S. aureus (15 mm), L. monocytogenes (21 mm), P. aeruginosa (19.5 mm) (25) |
| 19 | WPI/chitosan | Combination of TiO₂ (1 and 25%) and ZEO | Casting | Antibacterial effects toward Gram-negative and Gram-positive bacteria: E. coli (9.5 mm), S. aureus (23.2 mm), and L. monocytogenes (8.5 mm) (26) |
| 20 | Guar gum/sago starch/WPI | Carvacrol and citral | Casting | Appropriate antibacterial effect on B. cereus and E. coli (27) |
| 21 | WPI | Citrus sinensis peel EO (2.5 and 5%) | Casting | Antioxidant properties (28) |
| | Protein | Microparticle/Component | Preparation Method | Activity/Activity toward |
|---|-----------|-------------------------|--------------------|--------------------------|
| 22 | WPI | Lignin microparticle (0, 0.25, 0.50, and 0.75% w/w) | Casting | Antioxidant activity (29) |
| 23 | WPI | Natamycin and nanoeulsion of α-tocopherol | Casting | Antioxidant activity; Antimicrobial activity toward *Penicillium chrysogenum* (288.2 mm), *C. albicans* (150.9 mm), and *Saccharomyces cerevisiae* (303.5 mm), respectively (30) |
| 24 | WPI/starch| Rosemary EO | Homogenization-sonication/casting | Antioxidant activity (31) |

Abbreviations: WP, whey protein; WPI, whey protein isolate; EO, essential oil.