Clinical analysis of peri-operative hidden blood loss of elderly patients with intertrochanteric fractures treated by unreamed proximal femoral nail anti-rotation

Bohua Li, Jun Li, Shanxi Wang & Lei Liu

The purpose of this study was to quantify the peri-operative blood loss of elderly patients with intertrochanteric fractures treated by unreamed proximal femoral nail anti-rotation (PFNA) and analyze whether the substantial hidden blood loss was induced by initial trauma or the operation. The clinical data of 123 patients with intertrochanteric fracture treated with unreamed PFNA from Jan 2013 to Apr 2017 were analyzed retrospectively. Blood routine on admission day (ADM), pre-operative day one (PRE), post-operative days one and three (POD1 and POD3) and the visible blood loss (VBL) were obtained. The total blood loss (TBL) from ADM to POD1 and POD3 were 693.5 ± 359.6 ml and 863.8 ± 429.9 ml, of which the corresponding hidden blood loss (HBL) was 86.8% and 89.4% respectively. The mean TBL and HBL from ADM to PRE (375.5 ± 242.0 ml, 375.5 ± 242.0 ml) were higher than that from PRE to POD1 (318.0 ± 183.4 ml, 226.5 ± 163.2 ml), p < 0.001 respectively. There was no significant difference between HBL from ADM to PRE and HBL from PRE to POD3 (375.5 ± 242.0 ml, 396.7 ± 254.0 ml, p = 0.361). The majority of peri-operative HBL occurred before surgery, it was mainly associated with the initial trauma rather than the operation.

With the rapid increase of the elderly population, intertrochanteric fractures have become a severe health issue. Although conservative treatment can avoid surgical trauma, patients have to stay in bed for a long time, and there is a high rate of complications such as prolonged immobilization, hypostatic pneumonia, decubitus ulcers, lower extremity deep vein thrombosis, urinary system infection, coxa adducta, and limb shortening, which may lead to high morbidity and mortality. Therefore, the surgical treatment is more preferable in most cases. Peri-operative blood loss is associated with a high mortality risk among anaemic elderly patients. However, compared with the visible blood loss, the hidden blood loss is often ignored. Several studies have proved the relation between HBL and the process of standard reaming PFNA.

We speculated that the majority of HBL occurred prior to the unreamed PFNA surgery. Thus, the aim of this study was to quantify the peri-operative blood loss especially the pre-operative part of elderly patients with intertrochanteric fractures treated by unreamed PFNA and analyze whether the substantial hidden blood loss was induced by initial trauma rather than the operation.

Materials and Methods

This retrospective study was conducted at the Department of Orthopedic Surgery at West China Hospital, Sichuan University. Before the study began, we had carefully consulted the Ethics Committee and Institutional Review Board of West China Hospital, Sichuan University. They suggested that the unreamed PFNA was a very mature treatment in our hospital, this study was a retrospective analysis of previous clinical data, it did not involve special interventions for patients, and we should carry out this study in compliance with the Helsinki Declaration and provide informed consent to patients to let them know the way their data may be used. So,
this study was approved by Ethics Committee and Institutional Review Board of West China Hospital, Sichuan University. Accordingly, written informed consent from all the participants was obtained. The clinical study was performed in accordance with the Declaration of Helsinki on ethical principles for medical research involving human subjects.

Inclusion and exclusion criteria. The inclusion criteria were patients over 65 years old with an intertrochanteric fracture, ability to walk independently without aids before fracture. The exclusion criteria included the inability to walk before injury, an American Society of Anesthesiologists (ASA) score of V, pathologic fractures or the presence of metastatic disease, polytrauma, open fractures, hematopatia, laboratory results of bleeding disorders, taking drugs like aspirin, vitamin K antagonists, platelet inhibitors that possibly impact blood coagulation, non-steroidal anti-inflammatory drugs, alcohol abuse, gastrointestinal hemorrhage, admission to hospital 12 h or more after trauma, time to surgery was more than three weeks after the trauma, chronic or acute liver diseases, organ failure diseases, deaths.

Intra- and post-operative treatment. All surgeries were performed under general anesthesia by one surgical team, the senior surgeon was experienced in dealing with intertrochanteric fractures. The technique followed standard protocols of PFNA in principle, but when the femur was exposed with the awl, the PFNA was carefully inserted without the reaming process. Drainage was placed in the incision according to the intra-operative bleeding condition and was removed 24 hours after operation in the light of the drainage condition. The total drainage of post-operation was recorded as visible blood loss (VBL). A single dose of low molecular weight heparin (LMWH; 2000 IU in 0.2 ml; Clexane, Sanofi-Aventis, France) was injected percutaneously every 24 hours after operation. The criteria for blood transfusion were an Hb level < 70 g/L or a level < 80 g/L when symptoms of anaemia present.

Data collection. The hospital records contained data on sex, age, height, weight, body mass index (BMI), admission albumin (ALB) levels, Evans-Jensen classification, injury side, injury mechanism, time from injury to operation, duration of operation, the American Society of Anesthesiologists (ASA) scores, VBL. Blood routine of different time points including haematocrit (Hct) and haemoglobin (Hb) were obtained on admission day (ADM), pre-operatively day one(PRE), post-operative days one and three (POD1 and POD3).

Blood loss calculation. VBL contained intraoperative blood loss and the volume of drainage after operation. Intraoperative visible blood loss corresponded to the amount of liquid in the suction bottle minus the amount of liquid used to flush the wound, and the total volume of blood lost in gauzes and surgical towels. The volume of drainage was obtained and measured as the post-operative visible blood loss. The transfused blood volume (BVtrans) was also recorded. TBL was calculated from the change in the Hct level and estimated patient's blood volume (PBV). According to Nadler's formula\(^\text{14}\): \(\text{TBL} = k_1 \text{height (m)}^3 + k_2 \text{weight (kg)} + k_3\). For men, \(k_1 = 0.3669\), \(k_2 = 0.03219\), and \(k_3 = 0.6041\), and for women, \(k_1 = 0.3561\), \(k_2 = 0.03308\), and \(k_3 = 0.1833\). Generally, the total red blood cell loss (TRBCL) was calculated according to the Gross formula\(^\text{15}\): \(\text{TRBCL} = \frac{\text{PBV}}{\text{Hct}_{\text{pre-operation}}} - \frac{\text{Hct}_{\text{post-operation}}}{\text{PBV}}\), \(\text{TBL} = \text{TRBCL} + \text{BVtrans}\). HBL was calculated as \(\text{HBL} = \text{TBL} - \text{VBL}\).

According to the formula above, we calculated indexes of consecutive times as follows: TRBCL, TBL, HBL, BVtrans from admission to pre-operative day one (pre), pre-operative day one to post-operative day one (pod1) and post-operative day one to three (pod3).

\[
\begin{align*}
\text{TBL}_{\text{pre}}(L) &= \frac{\text{TRBCL}_{\text{pre}}}{\text{Hct}_{\text{ADM}}} + \text{BVtrans}_{\text{pre}} \\
&= \frac{\text{PBV}^* (\text{Hct}_{\text{ADM}} - \text{Hct}_{\text{PRE}})}{\text{Hct}_{\text{ADM}}} + \text{BVtrans}_{\text{pre}} \\
&= \text{HBL}_{\text{pre}};
\end{align*}
\]

\[
\begin{align*}
\text{TBL}_{\text{pod1}}(L) &= \frac{\text{TRBCL}_{\text{pod1}}}{\text{Hct}_{\text{PRE}}} + \text{BVtrans}_{\text{pod1}} \\
&= \frac{\text{PBV}^* (\text{Hct}_{\text{PRE}} - \text{Hct}_{\text{POD1}})}{\text{Hct}_{\text{PRE}}} + \text{BVtrans}_{\text{pod1}};
\end{align*}
\]

\[
\begin{align*}
\text{TBL}_{\text{pod3}}(L) &= \frac{\text{TRBCL}_{\text{pod3}}}{\text{Hct}_{\text{POD1}}} + \text{BVtrans}_{\text{pod3}}; \\
&= \frac{\text{PBV}^* (\text{Hct}_{\text{POD1}} - \text{Hct}_{\text{POD3}})}{\text{Hct}_{\text{POD1}}} + \text{BVtrans}_{\text{pod3}}; \\
&= \text{HBL}_{\text{pod3}};
\end{align*}
\]

\[
\begin{align*}
\text{HBL}_{\text{pod1}}(L) &= \text{TBL}_{\text{pod1}} - \text{VBL}; \\
\text{TBL} and \text{HBL} from \text{PRE} to \text{POD3} were calculated as \text{TBL}_{\text{post}} and \text{HBL}_{\text{post}}.
\end{align*}
\]

\[
\begin{align*}
\text{TBL}_{\text{post}}(L) &= \text{TBL}_{\text{pod1}} + \text{TBL}_{\text{pod3}}; \\
\text{HBL}_{\text{post}}(L) &= \text{HBL}_{\text{pod1}} + \text{HBL}_{\text{pod3}};
\end{align*}
\]

TBL and HBL from ADM to POD1 and POD3 were calculated as \(\text{TBL}_{\text{all1}}, \text{TBL}_{\text{all3}}, \text{HBL}_{\text{all1}}, \text{and} \text{HBL}_{\text{all3}}\).
Statistical analysis. Statistical analyses were performed using SPSS Statistics version 24.0 software (SPSS Inc, Chicago, Illinois). Data were shown as the mean with 95% confidence intervals, and differences between different peri-operative time were analyzed using a one-way analysis of variance (ANOVA) with replicate measures. The level of significance was set at $p < 0.01$ for all statistical analysis.

Results
A total 123 patients who met the criteria were included in this study, their details were presented in Table 1. Apparently, we could find that there was a large drop in Hb of these elderly patients even before surgery (Fig. 1). We calculated details of their peri-operative blood loss to get conclusions which were described in Table 2.

Total patients number	123
Gender	
Male	53
Female	70
Age (years)	77.67 ± 9.36 (45 to 94)
BMI (kg/m²)	22.19 ± 3.21 (15.21 to 31.22)
Admission ALB (g/L)	37.8 ± 4.14 (27.70 to 48.30)
Evans-Jensen classification	
Type-I	3
Type-II	14
Type-III	31
Type-IV	46
Type-V	29
Side of injured	
Left	75
Right	48
Injury mechanism	
Fall from a stand height	113
Traffic accident	100
Time to operation (days)	6.44 ± 2.88 (2 to 14)
Operative time (min)	49.98 ± 8.60 (30 to 65)
ASA classification	
ASA I	3
ASA II	44
ASA III	76

Table 1. Details of the 123 patients with intertrochanteric fractures assessed for peri-operative blood loss.

![Figure 1. The Hb dropped from admission to post-operative day three.](image)

\[
TBL_{all1}(L) = TBL_{pre} + TBL_{pod1};
TBL_{all3}(L) = TBL_{all1} + TBL_{pod3};
HBL_{all1}(L) = HBL_{pre} + HBL_{pod1};
HBL_{all3}(L) = HBL_{all1} + HBL_{pod3};
\]
significant (p1 14.6% (18/123). Three and six patients respectively required pre- and post-operative blood transfusions due to low Hb levels. Nine
speculated the process of expanding the medullary cavity could lead to internal bleeding 11–13,16. As the elderly
tures occurred prior to surgery 17. Although Smith's study changed an angle to analyze blood loss condition before
of 168 patients, Smith et al.
were usually extended and more than 10 mm24–26, in this retrospective study, all the patients underwent a PFNA
was one of the key procedures to calculate HBL. The Hct pre-operation in previous studies were the data recorded
vs pod1; p2: p value of pre vs post; p3: p value of pod1 vs post; TBL: total blood loss; HBL: hidden blood loss.

Table 2. Peri-operative blood loss details.

Variable	pre	pod1	post
VBL(ml)	91.5 ± 54.6		
TBL(all) (ml)	693.5 ± 359.6	863.8 ± 429.9	
HBL(all) (ml)	602.0 ± 356.2	772.3 ± 424.7	
Transfusion rate (%)	14.6/(18/123)		

Table 3. Comparison of pre- and post-operative blood loss. p: p value of pre vs pod1 vs post; p1: p value of pre vs pod1; p2: p value of pre vs post; p3: p value of pod1 vs post; TBL: total blood loss; HBL: hidden blood loss.

Variable	pre	pod1	post	p	p1	p2	p3
HBL(ml)	375.5 ± 242.0	226.5 ± 163.2	396.7 ± 254.0	<0.001	<0.001	0.361	<0.001
TBL(ml)	375.5 ± 242.0	318.0 ± 183.4	488.2 ± 271.1	<0.001	0.008	<0.001	<0.001

The HBL(all) was 602.0 ± 356.2 mL, which was 86.8% of TBL(all) (693.5 ± 359.6 mL). The HBL(all) was
772.3 ± 424.7 mL, which was 89.4% of TBL(all) (863.8 ± 429.9 mL). The HBL pre was 375.5 ± 242.0 mL, which was
62.4% of HBL(all) (602.0 ± 356.2 mL) and 48.6% of HBL(all) (772.3 ± 424.7 mL). The VBL was only 91.5 ± 54.6 mL.
Three and six patients respectively required pre- and post-operative blood transfusions due to low Hb levels. Nine
patients received intra-operative blood transfusions due to low blood pressure. The blood transfusion rate was
14.6% (18/123).

The mean TBL(post) (375.5 ± 242.0 ml) were higher than TBL(pod1) (318.0 ± 183.4 ml), but it was not statistically
significant (p1 = 0.008). The mean TBL(pre) and TBL(pod1) (375.5 ± 242.0 ml; 318.0 ± 183.4 ml) were lower than
TBL(post) (488.2 ± 271.1 ml), p2 and p3 < 0.001. The mean HBL(pre) (375.5 ± 242.0 ml) were higher than HBL(pod1)
(226.5 ± 163.2 ml), p1 < 0.001. The mean HBL(post) was lower than HBL(post) (226.5 ± 163.2 ml; 396.7 ± 254.0 ml),
p3 < 0.001. Yet such differences were not detected between HBL(pre) and HBL(post) (375.5 ± 242.0 ml; 396.7 ± 254.0 ml,
p2 = 0.361) (Table 3). HBL(pre) was the major part of the peri-operative HBL.

Discussion
As is mentioned before, peri-operative blood loss has been a threaten for elderly patients. However, previous
researches were focused on blood loss during surgery and post-operative drainage which accounted for transfu-
sion requirements but ignores significant HBL during the whole peri-operative period10,16,17.

Gradually some studies analyzed the HBL and hip fractures. Foss et al. assessed 546 hip fracture patients
and hypothesized that hidden blood loss could originate from post-operative hemorrhage, anti-coagulation, and
bleeding from other sources such as the gastrointestinal tract19. Cai et al. and Yu et al. demonstrated that large
amount of post-operative hidden blood loss existed in elderly patients with intertrochanteric fractures treated by
PFNA, nevertheless, they did not pay attention to the pre-operative hidden blood loss11,12. Yang et al. proved the peri-operative hidden blood loss of elderly patients with unstable intertrochanteric fracture treated by
different intramedullary fixations, but the proportion of pre-operative HBL remains unknown15. In a retrospective study
of 168 patients, Smith et al. conjectured that a significant proportion of the hidden blood loss related to hip frac-
tures occurred prior to surgery17. Although Smith's study changed an angle to analyze blood loss condition before
surgery, the specific volume of HBL was not calculated.

On the other hand, the formula of total red blood cell loss, TRBCL (L) = PBV* (Hct(pre-operation) − Hct(post-operation)),
was one of the key procedures to calculate HBL. The Hct(pre-operation) in previous studies were the data recorded
on admission day or pre-operative day without a specific description. If the waiting time to operation was more
than a day, using the formula Hct(post-operation) minus Hct(pre-operation finally got the result of total HBL
on admission to post-operation days which was regarded as the post-operative HBL. In this study, to calculate pre-
and post-operative HBL accurately, blood routine of different time points was recorded, blood loss of different
periods were calculated respectively as mentioned before.

Current evidence-based clinical research has revealed that PFNA can minimize the risk of implant-related
complications caused by DHS and provide angular and rotational stability and better biomechanical stability than
DHS which allows early mobilization and weight bearing of osteoporotic elderly patients18–22. Whereas the rela-
tively simpler surgical procedure, shorter operative time and less intra-operative visible blood loss make it easy
to ignore the HBL23. In addition, the causes and mechanism of hidden blood loss are not yet clear, some studies
speculated the process of expanding the medullary cavity could lead to internal bleeding11–13,16. As the elderly
patients were usually accompanied with expectable senile osteoporosis and the diameter of the medullary cavity
were usually extended and more than 10 mm24–26, in this retrospective study, all the patients underwent a PFNA
surgery without a reaming process.

It is obvious that the patients had a large drop in Hb before surgery and interference factors which could result
in Hb decrease like hematopathy, laboratory results of bleeding disorders, taking drugs that possibly impact blood
coagulation, gastrointestinal hemorrhage were also excluded. We hypothesized this drop could originate from the
pre-operative HBL and attempt to quantify the HBL prior to the surgery.

This study revealed that the visible blood loss (VBL, 91.5 ± 54.6 ml) was much less than the actual peri-operative total blood loss (TBL(all), 693.5 ± 359.6 ml; TBL(allb), 863.8 ± 429.9 ml), a large amount of hidden
blood loss still existed that it was more than 80% of total blood loss and four times more than visible blood loss. But the major proportion of hidden blood loss occurred before surgery. The mean HBLpre was 375.5 ± 242.0 ml, which was significantly higher than HBLpost (226.5 ± 163.2 ml). Although HBLpost (396.7 ± 254.0 ml) was higher than HBLpre, it was not statistically significant (p = 0.04). Thus, even patients underwent the surgery, the HBL of 3 days post-operation was still no more than the pre-operative HBL. Furthermore, fracture union does not often happen soon in a few days after surgery. So, it implies that the calculated post-operative hidden blood may contain the amount caused by the initial trauma. Transfusions based on the post-operative Hb level could not only generate considerable costs, but also enhance the risk of transfusion reactions, fluid overload, and wound complications for elderly patients. Therefore, early identification and management for elderly patients with intertrochanteric fractures at risk of anaemia are essential.

There are several limitations in this study. Firstly, we didn’t compare the data of non-surgery and patients underwent reamed PFNA. On the one hand, it was difficult to obtain the complete data of patients with non-surgical treatment because clinical intertrochanteric fractures had been treated with surgery in recent years. On the other hand, the unreamed PFNA was a mature treatment in our hospital, as we found the Hb drop before surgery, we wanted to make our first step to study the HBL of different periods in these patients who underwent the unreamed PFNA surgery. Further studies with comparison about the patients of non-surgery, reamed and unreamed PFNA would be performed with a larger samples to research whether the reaming process carry a substantial HBL. Secondly, the results of the calculated values were not totally accurate. The precise calculation of blood loss depends on the accuracy of haematocrit at admission and after surgery, the accurate measurement of visible blood loss and estimated patient’s blood volume. A dehydration secondary to the initial trauma and the delayed redistribution of red blood cells due to insufficient fluid or acute blood loss can cause falsely high haematocrit values. Thirdly, the rehydration after admission may lead to an underestimation of the post-operative haematocrit values. So, the blood loss may be overstated according to the calculations. However, the formula had been applied in studies published in high-quality international journals which was confirmed reliable and practical. In further studies, we will perform a more precise recording and calculation of blood loss.

Conclusions
The majority of peri-operative HBL of elderly patients with intertrochanteric fractures treated by unreamed PFNA occurred before surgery. The peri-operative HBL was mainly associated with the initial trauma rather than the operation. When managing elderly patients with intertrochanteric fractures, it is necessary to consider the pre-operative significant blood loss and identify elderly patients at risk of anaemia so as to provide appropriate pre-operative medical management.

Data availability statement.
The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References
1. Matre, K. et al. Sliding hip screw versus IM nail in reverse oblique trochanteric and subtrochanteric fractures. A study of 2716 patients in the Norwegian Hip Fracture Register. Injury 44, 735–742, https://doi.org/10.1016/j.injury.2012.12.010 (2013).
2. Wang, J., Wei, J. & Wang, M. The risk factors of perioperative hemoglobin and hematocrit drop after intramedullary nailing treatment for intertrochanteric fracture patients. Journal of orthopaedic science: official journal of the Japanese Orthopaedic Association 20, 163–167, https://doi.org/10.1007/s12078-014-0667-3 (2015).
3. Uzoigwe, C. E. et al. Early and ultra-early surgery in hip fracture patients improves survival. Injury 44, 726–729, https://doi.org/10.1016/j.injury.2012.08.025 (2013).
4. Hoffmann, S. et al. Biomechanical evaluation of interlocking lag screw design in intramedullary nailing of unstable pterrostertrochanteric fractures. Journal of orthopaedic trauma 27, 483–490, https://doi.org/10.1097/BOT.0b013e3182154b4d (2013).
5. Takemoto, R. C., Lekic, N., Schwarzkopf, R., Kummer, F. J. & Egol, K. A. The effect of two different trochanteric nail lag-screw designs on fixation stability of four-part intertrochanteric fractures: a clinical and biomechanical study. Journal of orthopaedic science: official journal of the Japanese Orthopaedic Association 19, 112–119, https://doi.org/10.1007/s12078-013-0493-z (2014).
6. Zhang, Z. G. et al. Posterior indirect reduction and pedicle screw fixation without lamnecotomy for Denis type B thoracolumbar burst fractures with incomplete neurologic deficit. J Orthop Surg Res 10, 85, https://doi.org/10.1186/s13018-015-0227-3 (2015).
7. Hu, F., Jiang, C., Shen, J., Tang, P. & Wang, Y. Preoperative predictors for mortality following hip fracture surgery: a systematic review and meta-analysis. Injury 43, 676–685, https://doi.org/10.1016/j.injury.2011.05.017 (2012).
8. Kumar, D., Mbako, A. N., Riddick, A., Patil, S. & Williams, P. On admission haemoglobin in patients with hip fracture. Injury 42, 167–170, https://doi.org/10.1016/j.injury.2010.07.239 (2011).
9. Seyedi, H. R. et al. Prediction of mortality in hip fracture patients: role of routine blood tests. The archives of bone and joint surgery 3, 51–55 (2015).
10. Foss, N. B. & Kehlet, H. Hidden blood loss after surgery for hip fracture. J Bone Joint Surg Br 88B, 1053–1059, https://doi.org/10.1302/620X.88B8 (2006).
11. Cai, L., Wang, T., Di, L., Hu, W. & Wang, J. Comparison of intramedullary and extramedullary fixation of stable intertrochanteric fractures in the elderly: a prospective randomised controlled trial exploring hidden perioperative blood loss. BMC musculoskeletal disorders 17, 475, https://doi.org/10.1186/s12891-016-1333-z (2016).
12. Yu, W. et al. The visible and hidden blood loss of Asia proximal femoral nail anti-rotation and dynamic hip screw in the treatment of intertrochanteric fractures of elderly high-risk patients: a retrospective comparative study with a minimum 3 years of follow-up. BMC musculoskeletal disorders 17, 269, https://doi.org/10.1186/s12891-016-1143-3 (2016).
13. Yang, X., Wu, Q. & Wang, X. Investigation of perioperative hidden blood loss of unstable intertrochanteric fracture in the elderly treated with different intramedullary fixations. Injury https://doi.org/10.1016/j.injury.2017.06.017 (2017).
14. Nadler, S. B., Hidalgo, J. H. & Bloch, T. Prediction of blood volume in normal human adults. Surgery 51, 224–232 (1962).
15. Gross, J. B. Estimating allowable blood loss: corrected for dilution. Anesthesiology 50, 277–280 (1979).
16. Liu, Y., Sun, Y., Fan, L. & Hao, J. Perioperative factors associated with hidden blood loss in intertrochanteric fracture patients. Musculoskeletal surgery, https://doi.org/10.1016/j.muscl.2016.04-0447-7 (2017).
17. Smith, G. H., Tsang, J., Molyneux, S. G. & White, T. O. The hidden blood loss after hip fracture. Injury 42, 133–135, https://doi.org/10.1016/j.injury.2010.02.015 (2011).
18. Zhang, K. R. et al. Proximal Femoral Nail vs. Dynamic Hip Screw in Treatment of Intertrochanteric Fractures: A Meta-Analysis. Med Sci Monitor 20, 1628–1633 (2014).
19. Yuan, X., Yao, Q., Ni, J., Peng, L. & Yu, D. Proximal femoral nail antirotation versus dynamic hip screw for intertrochanteric fracture in elders: a meta-analysis. Zhonghua yi xue za zhi 94, 836–839 (2014).

20. Ma, K. L. et al. Proximal femoral nails antirotation, Gamma nails, and dynamic hip screws for fixation of intertrochanteric fractures of femur: A meta-analysis. Orthopaedics & traumaology, surgery & research: OTSR 100, 859–866, https://doi.org/10.1016/j.otsr.2014.07.023 (2014).

21. Li, J., Cheng, L. & Jing, J. The Asia proximal femoral nail antirotation versus the standard proximal femoral antirotation nail for unstable intertrochanteric fractures in elderly Chinese patients. Orthopaedics & traumaology, surgery & research: OTSR 101, 143–146, https://doi.org/10.1016/j.otsr.2014.12.011 (2015).

22. Shen, L., Zhang, Y., Shen, Y. & Cui, Z. Antirotation proximal femoral nail versus dynamic hip screw for intertrochanteric fractures: a meta-analysis of randomized controlled studies. Orthopaedics & traumaology, surgery & research: OTSR 99, 377–383, https://doi.org/10.1016/j.otsr.2012.12.019 (2013).

23. Li, J., Cheng, L. & Jing, J. Progress on peri-operative hidden blood loss after hip fracture. Zhongguo gu shang = China journal of orthopaedics and traumatology 27, 882–886 (2014).

24. Pi, Y., Zhao, Y., Wang, W., He, Z. & Mao, X. Measurement of proximal femoral morphology and analysis of 500 cases in Hunan Province. Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences 38, 925–930, https://doi.org/10.3969/j.issn.1672-7347.2013.09.010 (2013).

25. Takatori, Y. et al. Ten-year follow-up of a proximal circumferential porous-coated femoral prosthesis: radiographic evaluation and stability. Journal of orthopaedic science: official journal of the Japanese Orthopaedic Association 7, 68–73, https://doi.org/10.1007/s007760200011 (2002).

26. Schafer, M. L. et al. Comparison Between Amputation-Induced Demineralization and Age-Related Bone Loss Using Digital X-Ray Radiogrammetry. J Clin Densitom 15, 135–145, https://doi.org/10.1016/j.jocd.2011.08.006 (2012).

27. Lei, Y. et al. The efficacy and safety of multiple-dose intravenous tranexamic acid on blood loss following total knee arthroplasty: a randomized controlled trial. International orthopaedics, https://doi.org/10.1007/s00264-017-3519-x (2017).

Acknowledgements
This work was supported by National Natural Science Foundation of China (81472061).

Author Contributions
The authors Bohua Li and Jun li contributed equally to the article, drafting and revising the paper, data collection and analysis. Shanxi Wang, data analysis. Lei Liu, performed surgeries, responsible for approval of the submitted and final versions.

Additional Information
Competing Interests:
The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018