Temporal integration of auditory information is invariant to temporal grouping cues

Temporal integration of auditory information

Andrew S.K. Liu1, Joji Tsunada2, Joshua I. Gold3,* and Yale E. Cohen2,3,*

1Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104
2Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, PA 19104
3Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, PA 19104

DOI: 10.1523/ENEURO.0077-14.2015

Accepted: 30 March 2015

Published: 20 April 2015

Author contributions: ASKL, JT, JIG, and YEC performed research; JIG contributed unpublished analytic tools. ASKL, JIG, and YEC analyzed data. ASKL, JT, JIG, and YEC wrote paper.

Funding: NIDCD-NIH

Funding: NEI-NIH

Funding: Boca Hearing Restoration Fund

Conflict of Interest: Authors report no conflict of interest.

JIG was supported by grants from the NEI-NIH. YEC was supported by grants from the NIDCD-NIH and the Boucai Hearing Restoration Fund.

*JIG and YEC contributed equally to this work.

Correspondence should be addressed to Yale E. Cohen, PhD. Department of Otorhinolaryngology, 3400 Spruce St-5 Ravdin, Philadelphia, PA 19104, Tel: 215 898 7504, Fax: 215 898 7504; E-mail: ycohen@mail.med.upenn.edu

Cite as: eNeuro 2015; 10.1523/ENEURO.0077-14.2015

Alerts: Sign up at eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published.
Temporal integration of auditory information is invariant to temporal grouping cues
Temporal integration of auditory information is invariant to temporal grouping cues

Abbreviated title: Temporal integration of auditory information

Andrew S.K. Liu¹, Joji Tsunada², *Joshua I. Gold³, and *Yale E. Cohen²,³

¹Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104
²Department of Otorhinolaryngology² and Neuroscience³, Perelman School of Medicine, University of Pennsylvania, PA 19104

*JIG and YEC contributed equally.

Author contributions: ASKL, JT, JIG, and YEC performed research; JIG contributed unpublished analytic tools. ASKL, JIG, and YEC analyzed data. ASKL, JT, JIG, and YEC wrote paper.

Corresponding author:
Yale E. Cohen, Ph.D.
Department of Otorhinolaryngology
3400 Spruce St-5 Ravdin
Philadelphia, PA 19104
Email: ycohen@mail.med.upenn.edu

Number of Figures: 9
Number of Tables: 1
Number of Multimedia: 0
Number of words for Abstract: 150
Number of words of Significance Statement: 120
Number of words for Introduction: 532
Number of words for Discussion: 1520

Acknowledgments: We thank Heather Hersh for helpful comments on the manuscript and Adam Croom for early help in collecting the psychophysical data.

Conflict of Interest: Authors report no conflict of interest

Funding Sources: JIG was supported by grants from the NEI-NIH. YEC was supported by grants from the NIDCD-NIH and the Boucai Hearing Restoration Fund.
ABSTRACT

Auditory perception depends on the temporal structure of incoming acoustic stimuli. Here, we examined whether a temporal manipulation that affects the perceptual grouping also affects the time dependence of decisions regarding those stimuli. We designed a novel discrimination task that required human listeners to decide whether a sequence of tone bursts was increasing or decreasing in frequency. We manipulated temporal perceptual-grouping cues by changing the time interval between the tone bursts, which led to listeners hearing the sequences as a single sound for short intervals or discrete sounds for longer intervals. Despite these strong perceptual differences, this manipulation did not affect the efficiency of how auditory information was integrated over time to form a decision. Instead, the grouping manipulation affected subjects’ speed-accuracy trade-offs. These results indicate that the temporal dynamics of evidence accumulation for auditory perceptual decisions can be invariant to manipulations that affect the perceptual grouping of the evidence.
SIGNIFICANCE STATEMENT

Auditory perception depends on perceptual grouping cues, which relate to how the brain parses the auditory scene into distinct perceptual units, and auditory decisions, which relate to how the brain identifies a sound. These two processes are not independent because both rely on the temporal structure of the acoustic stimulus. However, the effects of this temporal structure on perceptual grouping and decision-making are not known. Here, we combined psychophysical testing with computational modeling to test the interaction of temporal perceptual grouping cues with the temporal processes that underlie perceptual decision-making. We found that temporal grouping cues do not affect the efficiency by which sensory evidence is accumulated to form a decision. Instead, the grouping cues modulate a subject’s speed-accuracy trade-off.
INTRODUCTION

Auditory perception depends on both perceptual grouping and decision-making. Perceptual grouping is a form of feature-based stimulus segmentation that determines whether acoustic events are grouped into a single sound or segregated into distinct sounds (Bregman, 1990). Auditory decision-making involves the brain’s interpretation of information within and across discrete stimuli to detect, discriminate, or identify their source or content.

Auditory perceptual grouping and decision-making each depend critically on the temporal structure of incoming acoustic events. For instance, when a person is walking, each step is a unique acoustic event, but our auditory system groups these events together to form a stream of “footsteps.” However, if the time between events is long, the auditory system segregates these events into unique, discrete sounds.

Decision-making can also depend on the temporal structure of a sound because decision-making is a deliberative process in which listeners often accumulate and interpret auditory information over time to form categorical judgments (Green et al., 2010; Brunton et al., 2013; Mulder et al., 2013).

Although we know that perceptual grouping can affect some forms of decision-making (Bey and McAdams, 2002; Roberts et al., 2002; Micheyl and Oxenham, 2010; Borchert et al., 2011; Thompson et al., 2011), the interplay between the temporal properties of an auditory stimulus, perceptual grouping, and decision-making is not known. We cannot infer this interplay from visual studies because analogous manipulations in the visual domain (Kiani et al., 2013) do not relate directly to auditory perceptual grouping. Further, because temporal processing is fundamentally different for audition than for vision (Bregman, 1990; Griffiths and Warren, 2004; Shinn-Cunningham, 2008; Shamma et al., 2011; Bizley and Cohen, 2013), it is reasonable to hypothesize that this interplay may be different in these two sensory systems. Thus, it remains an open and fundamental question whether and how grouping temporal information interacts with auditory grouping and decision-making.
To examine this question, we measured the performance of human subjects, who participated in a series of auditory tasks in which they reported whether a sequence of tone bursts was increasing or decreasing in frequency. Temporal information was manipulated by changing the interval between the onsets of consecutive tone bursts. This manipulation affected the subjects’ perceptual grouping of the tone-burst sequence: they heard “one sound” when the interval was short but “a series of discrete sounds” when it was long. The quality of the sensory evidence was manipulated by changing the proportion of tone bursts that linearly increased or decreased in frequency. We found that subjects accumulated sensory evidence over time to form their decisions. However, the time interval between consecutive tone bursts did not affect how this incoming stimulus was accumulated to form the decision about the change in frequency. Instead, the time between the tone bursts affected how the subjects balanced the speed and accuracy of their decisions, which fundamentally trade-off for certain decisions like this one that require incoming, noisy information to be accumulated over time (Gold and Shadlen, 2007; Bogacz et al., 2010). Specifically, for our task, longer time intervals between tone bursts (i.e., slower rates of incoming sensory information) led to a higher premium on speed at the expense of accuracy. Overall, these findings indicate that temporal manipulations that affect the perceptual grouping of sounds do not necessarily affect how information from those sounds are accumulated over time to form a decision, even when the temporal manipulations have clear effects on the trade-off between the speed and accuracy of the decision.
Materials and Methods

Prior to their participation, subjects provided informed consent. Human subjects were recruited at a location which will be identified if the article is published. All subjects (age range: 25–48) reported normal hearing; three of the subjects were authors on the study.

EXPERIMENTAL SETUP. All experimental sessions took place in a single-walled acoustic chamber (Industrial Acoustics Company) that was lined with echo-absorbing foam. Each subject was seated with his or her chin in a chin rest that was approximately two feet from a calibrated Yamaha (model MSP7) speaker. Auditory stimuli were generated using the RX6 digital-signal-processing platform (TDT Inc.). The task structure was controlled through the Snow Dots toolbox (http://code.google.com/p/snow-dots) that ran in the Matlab (The Mathworks Inc.) programming environment. Subjects indicated their responses by pressing a button on a gamepad (Microsoft Sidewinder). Tasks instructions and feedback were presented on a LCD flat panel monitor (Dell E171FP) that was placed above the speaker.

AUDITORY STIMULI. The auditory stimulus was a sequence of tone bursts (duration: 30 ms with a 5-ms cos² gate; level: 65 dB SPL). The “inter-burst” interval (IBI) was the time between the offset of one tone burst and the onset of the next tone burst (range: 10-150 ms).

At the beginning of each trial, the frequency of a sequence’s first tone burst was randomly sampled from a uniform distribution (500–3500 Hz). Next, we generated a monotonically increasing or decreasing sequence by adding or subtracting a 7.5 Hz to the previous tone-burst frequency. Finally, on a trial-by-trial basis, we perturbed the temporal order of the tone bursts. This perturbation changed the quality of the sensory evidence. In particular, for each trial, we defined a sequence’s “coherence”, which was the proportion of tone bursts in a sequence whose frequency value changed by a fixed increment, relative to the previous tone burst. If the coherence was 100%, all of the tone bursts monotonically...
increased or decreased. If the coherence was <100%, the temporal order of a subset of tone bursts was randomly shuffled. For example, if the coherence was 50%, half of the tone bursts were shuffled. If the coherence was 0%, all of the tone bursts in the sequence were shuffled.

This stimulus design ensured that the frequency range of the sequences overlapped, and that, on average, each sequence contained the same frequency values (but in a different temporal order). This procedure also minimized the possibility that subjects based their decisions on the specific frequency content of a sequence rather than its sequence direction.

Overall, each tone-burst sequence could be characterized by three parameters (Fig. 1): (a) “direction” indicated whether a sequence of tone bursts increased or decreased in frequency; (b) IBI; and (c) coherence. The values of each of these three parameters were determined on a trial-by-trial basis depending on the constraints of each auditory task; see Behavioral Tasks below.

Behavioral Tasks. Subjects participated in three versions of the discrimination task. For all three versions, subjects reported the direction (increasing or decreasing) of the tone-burst sequence and received visual feedback, via the LCD monitor, regarding their report on every trial. The time between trials was ~2 s and was independent of the subjects’ report.

Response-time (RT) task. For this task, subjects reported their perceptual decision at any time following sequence onset (Fig. 2A). They were instructed to respond as quickly as possible but not to sacrifice accuracy. We tested 6 subjects (5 male and 1 female) in 4 weekly 1.5-hour sessions. Each session contained 4 blocks of trials; a short break was provided between blocks. In each block, we varied sequence direction (increasing or decreasing), IBI (10, 60, or 150 ms), and coherence (0, 10, 25, 50, or 100%) on a trial-by-trial basis. Each combination of these sequence parameters was presented 5 times within a block for a total of 150 trials/block. The maximum RT (and, hence, maximum sequence
duration) was 5000 ms; a trial was aborted if subjects did not respond by the end of the sequence. The stimulus was terminated as soon as the subject reported the decision.

Four subjects participated in additional sessions (four blocks of trials in each of four sessions per subject) of the RT task to test for effects of changes in the speed-accuracy trade-off. For these sessions, the IBI was held constant at 60 ms, and subjects were instructed to “emphasize speed” or “emphasize accuracy” in alternating blocks. Stimulus tone-sequence direction (increasing or decreasing) and coherence (0, 10, 25, 50, or 100%) were varied on a trial-by-trial basis.

Variable-duration task. For this task, the experimenter controlled listening duration: subjects reported their direction decision following offset of the auditory sequence (Fig. 2B). Five of the 6 subjects tested in the RT task (4 male and 1 female) also participated in 6 weekly 1.5-hour sessions of the variable-duration task. On each trial, we chose the duration of the sequence by sampling from a truncated exponential distribution (rate parameter=2000 ms for all IBIs); choosing the sequence duration from this distribution minimized the possibility that subjects could anticipate the end of the sequence (Gold and Shadlen, 2003). The upper- and lower-stimulus durations were a function of IBI: for IBI=10 ms, min=160, max=1400 ms; for IBI=60 ms, min=360, max=3150 ms; and for IBI=150 ms, min=720, max=6300 ms. These limits were chosen so that each sequence, independent of IBI, contained 4–35 tone bursts. At the end of each sequence, a response cue was flashed on the LCD monitor, and subjects had 800 ms to respond. Each session contained 4 blocks of trials; a short break was provided between blocks. In each block, we varied sequence direction (increasing or decreasing), IBI (10, 60, or 150 ms), and coherence (0, 10, 25, 50, or 100%) on a trial-by-trial basis. Each combination of these sequence parameters was presented 5 times within a block, for a total of 150 trials per block.

Hybrid task. For this task, subjects participated in a version of the variable-duration task that also required them to report, on each trial, whether they heard the sequence as “one sound” or as “a series of discrete sounds” (Fig. 2C). Four of the six subjects tested in the RT task plus one new subject (3
male and 2 female) participated in 4 weekly 1.25-hour sessions of the hybrid task. Sequence duration was sampled from a truncated exponential distribution, and the limits of the stimulus durations were set to ensure that each sequence had 4–35 tone bursts. Subjects reported their two decisions during two separate 800-ms response periods. Prior to each sequence’s onset, a colored cue, which was presented on the LCD monitor, indicated the temporal order in which subjects were to report their decisions; this order alternated on a block-by-block basis.

For this task, we set both IBI and coherence to values that were centered on each subject’s psychophysical threshold. “IBI threshold” was the IBI value rated as “one sound” 50% of the time. Because the subjects’ 50%-IBI threshold varied on a day-by-day basis, we measured this threshold daily, prior to their participation in the hybrid task. IBI threshold was measured using a 1-up/1-down adaptive procedure (Treutwein, 1995; Garcia-Perez, 1998). The sequence always had 16 tone bursts and used a 50% coherence stimulus.

“Coherence threshold” was defined to be 70.7% correct performance, which corresponds to a d’ of 0.77. Because preliminary experiments indicated that coherence threshold was constant across experimental sessions, it was measured once for each subject. Coherence threshold was calculated using a 2-up/1-down adaptive procedure (Treutwein, 1995; Garcia-Perez, 1998). During this procedure, the sequence’s IBI was set to the IBI threshold.

For the hybrid task, each session contained 4 blocks of trials; a short break was provided between blocks. We varied IBI, on a trial-by-trial basis, between 3 different values: (1) IBI threshold minus 15 ms (20 trials per block), (2) IBI threshold (80 trials per block), and (3) IBI threshold plus 15 ms (20 trials per block). Coherence was set to each subject’s coherence threshold.

Fitting of Behavioral Data to Sequential-sampling Models. Behavioral data were fit to variants of sequential-sampling models related to the drift diffusion model (DDM) (Ratcliff et al., 2004; Smith and
Temporally integrating auditory information to quantify the effects of sequence coherence and IBI on the decision-making process. These models describe the process of converting incoming sensory evidence, which is represented in the brain as the noisy spiking activity of populations of relevant sensory neurons, into a decision variable that can guide behavior.

RT task. For the RT task, a key benefit of these sequential-sampling models is that they make quantitative predictions about both choice and RT as a function of the coherence of the auditory sequence. In other words, these models simultaneously fit: (1) the psychometric function, which describes accuracy versus sequence coherence, and (2) the chronometric function, which describes RT versus sequence coherence. We used several model variants:

Model variant #1: A standard, symmetric DDM in which a perceptual decision is based on an accumulation over time of noisy evidence to a fixed bound, a process that is mathematically equivalent to the one-dimensional movement of a particle undergoing Brownian motion to a boundary (Ratcliff et al., 1999; Gold and Shadlen, 2002; Shadlen et al., 2006; Eckhoff et al., 2008; Green et al., 2010; Ding and Gold, 2012; Brunton et al., 2013; Mulder et al., 2013). In brief, this version had seven free parameters: one drift rate (k) per IBI; one symmetric bound for either “increasing” or “decreasing” (+A or -A; i.e., the height of the bound was the same for both choices but with an opposite sign) choices per IBI; and a single non-decision time (TND) that accounts for sensory-processing and motor-preparation time. Drift rate governs sensitivity and is implemented in terms of the moment-by-moment sensory evidence, which has a Gaussian distribution $N(\mu,1)$ with a mean μ that scales with sequence coherence (C): $\mu = kC$. The decision variable is the temporal accumulation of this momentary sensory evidence. A decision (i.e., the subject reports that the sequence is increasing or decreasing) occurs when this decision variable reaches a decision bound (+A or -A, respectively). The decision time is operationally defined as the time between auditory-sequence onset and the cross of either bound. RT is the sum of the decision...
time and the associated non-decision time. The probability that the decision variable first crosses the +A bound is \(\frac{e^{2\mu A} - 1}{e^{2\mu A} - e^{-2\mu A}}\). The mean decision time is \(\frac{2A}{\mu} \coth(2\mu A) - \frac{A}{\mu} \coth(\mu A)\) for “increasing” choices and \(\frac{2A}{\mu} \coth(2\mu A) - \frac{A}{\mu} \coth(\mu A)\) for “decreasing” choices.

Model variant #2: a leaky accumulator, in the form of a stable Ornstein-Uhlenbeck (O-U) process (Busemeyer and Townsend, 1993; Bogacz et al., 2006) in which positive values of the leak term imply that a given decision is influenced most strongly by the most recent samples of sensory evidence. Because these processes do not have simple, exact analytic solutions for both the psychometric and chronometric functions, we conducted simulations to fit the data. For each fit, we simulated 40,000 trials per iteration, with the decision variable computed in 1-ms steps.

Model variant #3: an accumulate-to-bound model with non-leaky drift and bounds that can collapse (decrease towards zero) as a function of time within a trial (Ditterich, 2006b; Drugowitsch et al., 2012; Thura et al., 2012; Hawkins et al., In Press). The dynamics of the collapsing process were governed by a two-parameter Weibull function (Hawkins et al., In Press). These fits were also obtained using simulations, like the leaky-accumulator model, above.

All model fits were computed by first using a pattern-search algorithm to find suitable initial conditions (“patternsearch” in the Matlab programming environment) and then a gradient descent to find the best-fitting parameters (“fmincon” in Matlab) that minimized the negative log-likelihood of the data, given the model fits (Palmer et al., 2005). The likelihood function for subjects’ choices was modeled as binomial errors and the mean response times were modeled as Gaussian errors.

Variable-duration and hybrid tasks. For these tasks, the experimenter, not the subject, controlled listening duration. Therefore, we used models that had a different stopping rule than those used for the RT tasks. Specifically, these models assumed that the decision was made based on the sign of the accumulated evidence at the end of the stimulus presentation. These models included two basic parameters: (1) a coherence-scaling term (k), which governed the relationship between sequence...
coherence and the strength of the evidence to accumulate; and (2) accumulation leak (λ), which governed the efficiency of the accumulation process. We computed the probability (p) of a correct response as a function of sequence coherence (C) and listening duration (D) as:

$$p(C, D) = 0.5 \times \left(1 - (1 - L) \times \varphi \left(-kC \frac{2(a^{0.5} - 1)}{\sqrt{a(a^{0.5} + 1)}} \right) \right),$$

where φ is the normal standard cumulative distribution function.

The lapse rate (L) was set to a small value (0.01) to provide better fits (Klein, 2001; Wichmann and Hill, 2001). The models were fit using Matlab’s “fmincon” function to minimize the log-likelihood of the data, given the parameters, and assuming binomial errors.

Fitting of RT-task data to the LATER model. RT distributions from the RT task were also analyzed using the LATER (“Linear Approach to Threshold in Ergodic Rate”) model. This model assumes that RT distributions are distributed as an inverse Gaussian because they result from a process with a linear rate of rise, which are distributed across trials as a Gaussian, that triggers a movement when reaching a fixed threshold (Carpenter and Williams, 1995; Reddi et al., 2003). We used maximum-likelihood methods to fit RT distributions to a model with two free parameters that represented the mean rate-of-rise and the threshold. We tested if and how each parameter varied with IBI for each subject, direction, and stimulus coherence.

Calculating psychophysical kernels from the RT data. Finally, we calculated the subjects’ psychophysical kernels from the RT task to further support the idea that the subjects were using a process akin to bounded accumulation. The kernels were computed directly from the data by taking, from each 0% coherence trial, the mean-subtracted stimulus sequence and then computing the mean (and standard error) value of these time-dependent sequences separately for trials leading to “increasing” or “decreasing” choices. We fit these kernels to a model that sorted the 0%-coherence
trials into two categories, based on the sign of the slope of a linear regression of frequency versus burst number. We used a grid search to find the values of two parameters – one governing the number of tone bursts from stimulus onset that is used to compute the linear regression and a second that scales the stimulus-frequency values used to compute the kernel – that maximized the likelihood of obtaining the IBI-specific kernels measured from the data, given the model.

Statistical Table

Data Structure	Statistical Test	Power
a	Normal Distribution Pearson Correlation	$p<0.01$
b	Normal Distribution Likelihood-ratio test; Bonferroni corrected for three parameters	$p<0.001$
c	Normal Distribution Likelihood-ratio test; Bonferroni corrected for three parameters	$p<0.01$
d	Normal Distribution Likelihood-ratio test	$p>0.24$
e	Normal Distribution Likelihood-ratio test	$p>0.1$
f	Normality not assumed Mann-Whitney test	$p<0.01$
g	Normality not assumed Kruskal-Wallis test	$p<0.001$
h	Normal Distribution Likelihood-ratio test, Bonferroni corrected for two parameters	$p<0.01$
i	Normality not assumed Kruskal-Wallis test	$p>0.05$
j	Normal distribution Likelihood-ratio test, Bonferroni corrected for two parameters	$p<0.01$
k	Normal distribution Likelihood-ratio test	$p=0.2838$
l	Normality not assumed Kruskal-Wallis test	$p=0.011$
m	Normality not assumed Kruskal-Wallis test	$p=0.125$
n	Normal Distribution Likelihood-ratio test	$p>0.05$
o	Normality not assumed Kruskal-Wallis test	$p>0.05$
p	Normality not assumed Mann-Whitney test	$p<0.05$
q	Normal Distribution Likelihood-ratio test, Bonferroni corrected for two parameters	$p<0.01$
r	Normal Distribution Likelihood-ratio test, Bonferroni corrected for two parameters	$p<0.01$
Results

We used human psychophysics to test if and how the time course of evidence accumulation for an auditory-discrimination task was affected by a temporal manipulation that modified the perceptual grouping of the sensory evidence. The task required subjects to report whether the frequency direction of a tone-burst sequence was increasing or decreasing (Fig. 1A). Task difficulty was manipulated by controlling the coherence of the sequence, which corresponded to the fraction of tone bursts whose frequencies increased or decreased systematically (Fig. 1A-C).

The temporal manipulation was a change in the IBI of the stimulus sequence, which affected perceptual grouping. For short IBIs (<~30 ms), subjects tended to report that the sequence was “one sound”. For medium IBIs (~30-100 ms), subjects alternated trial-by-trial between reports that the sequence was “one sound” or a “series of discrete sounds”. For long IBIs (>~100 ms), subjects reliably reported that the sequence was a “series of discrete sounds” (Fig. 3). To test how this grouping manipulation affected the temporal dynamics of the perceptual decision (i.e., the frequency direction of the tone-burst sequence), we used three versions of a discrimination task: an RT task in which subjects controlled listening duration; a variable-duration task in which the experimenter controlled listening duration; and a hybrid task that combined the variable-duration task with an explicit grouping judgment about whether the sound was “one sound” or a “series of discrete sounds”. Results from each task are presented below.

RESPONSE-TIME (RT) TASK. Both accuracy and RT depended systematically on coherence and IBI. Figure 4 summarizes the behavioral performance of all six subjects. Choices tended to be more accurate and faster when stimulus coherence was high than when it was low.

Subjects’ choices were clearly based on the direction of frequency change and not simply the absolute frequency value of the sequence. Specifically, when we analyzed behavior relative to the
Temporal integration of auditory information

We also found that the relationships between choice, RT, and coherence were modulated by IBI. Longer IBIs led to shallower psychometric functions (i.e., lower sensitivity; Fig. 4A) and longer RTs (Fig. 4B). When we considered the portion of the RT that only included presentation of the tone bursts and not the silent periods by subtracting out the cumulative IBIs (which we refer to as “signal RT” and which treats the cumulative IBIs, like sensory and motor processing, as part of the non-decision time on a given trial), the effects of IBI on RT were reversed: the longest signal RTs corresponded to the shortest IBIs (Fig. 4C).

We quantified the effects of coherence and IBI on the time-dependent decision process by fitting the choice and RT data for each subject and from pooled data across subjects to several variants of models that are related to the DDM. All of the models had the same basic form. They assumed that the decision was based on the temporal accumulation of noisy evidence until reaching one of two pre-specified boundaries. The signal-to-noise ratio of this decision variable was governed by a “drift rate,” which was proportional to stimulus coherence and, in some cases, was also subject to leaky accumulation (Busemeyer and Townsend, 1993; Usher and McClelland, 2001; Tsetsos et al., 2012). Choice was governed by the identity of the reached boundary, which, in some cases, could change as a function of time within a trial to reflect an increasing “urgency” to respond (Ditterich, 2006b; Drugowitsch et al., 2012; Thura et al., 2012; Hawkins et al., In Press). RT was governed by the time to reach the boundary plus extra non-decision time. The height of the boundary governed the trade-off between speed and accuracy: higher boundaries provided longer decision times and higher accuracy, whereas lower boundaries increased speed at the expense of accuracy (Gold and Shadlen, 2007).

Because performance tended to be symmetric for the two choices (across all subjects and IBIs and using
Temporal integration of auditory information

balanced stimulus presentations, the median [inter-quartile range] absolute value of the difference in
the fraction of “increasing” versus “decreasing” choices was only 0.001 [0.000–0.004]), we used an
unbiased model with seven parameters: one non-decision time, three parameters representing drift rate
per each of the three IBI conditions, and three parameters representing the bound height per IBI.

Fits of this model to choice data and either raw or signal RTs were consistent with a decision
variable that was based on the signal portion of the stimulus sequence but not the time between bursts
(the IBI). Drift rate has units of change of standardized evidence per unit time. Therefore, converting
from raw to signal RT affects the (linear) scaling of this value, which is governed by the duty cycle
associated with the given IBI: \(\frac{b}{IBI+b} \), where \(b \) = burst duration = 30 ms. Accordingly, best-fitting
values of the DDM parameters that were fit to choices and raw RT were scaled versions of those fit to
choices and signal RTs, with the scale factors approximately equal to the IBI-specific duty cycles (slopes
of linear regressions of subject-specific signal versus raw drift rates = 0.80 [duty cycle=0.75], 0.43 [0.33],
and 0.23 [0.17] for IBI=10, 60, and 150 ms, respectively). Furthermore, best-fitting signal drift rates that
were re-scaled and expressed in units of the change in evidence per unit of raw time (i.e., multiplied by
the duty cycle) were strongly correlated with the associated, best-fitting raw drift rates across IBIs and
subjects (\(r=0.98, p<0.01^a \)). These results imply that the IBI manipulation affected only the duty-cycle-
dependent scaling of drift rates. Therefore, we used signal RTs for the model fits, which corresponded to
drift rates that had the same temporal scaling and thus could be compared directly across IBI conditions.

We found that the effects of IBI on choice and signal RT primarily reflected changes in the
decision boundary but not the drift rate (Fig. 5). The height of a symmetric, fixed decision boundary (i.e.,
the same height for both “increasing” and “decreasing” choices) declined systematically with increasing
IBI for all 6 subjects and for data combined across subjects (likelihood-ratio test comparing a seven-
parameter model with separate values of drift rate and bound height per IBI plus a non-decision time to
a five-parameter model with a single value of drift rate shared across IBIs, \(p<0.001^b \) in all cases;
Bonferroni corrected for three parameters; Fig. 5A). In contrast, drift rate depended on IBI for only 1 of the 6 subjects ($p<0.01$; Bonferroni corrected for three parameters) and not for the other subjects or combined data (Fig. 5B). These model fits were not improved by adding to the model either leaky accumulation (likelihood-ratio test, $p>0.24$ across subjects and for all data combined) or collapsing bounds (likelihood-ratio test, $p>0.1$ for five of the six subjects and for all data combined). There also was little evidence for slow errors that can be expected in models with collapsing bounds, with only 8 of 216 conditions separated by subject/coherence/IBI showing such an effect (Mann-Whitney test comparing median correct versus error RTs, $p<0.01$; (Ditterich, 2006a)). Likewise, there was little evidence for fast errors that can be expected in models with variable bounds, with only 3 conditions showing such an effect (Ratcliff and Rouder, 1998). Thus, changes in IBI, which affected perceptual grouping and the rate of arrival of decision-relevant signals, caused systematic, robust changes in the speed-accuracy trade-off governed by a fixed, time-independent bound. In contrast, the changes in IBI did not cause systematic changes in the efficiency with which sensory evidence was accumulated over time to form the decision.

These results were supported by independent analyses of the signal-RT distributions. A useful way to assess possible changes in drift rate and/or bound height in a simple accumulate-to-bound framework is using the “Linear Approach to Threshold in Ergodic Rate” (LATER) model (Carpenter and Williams, 1995; Reddi et al., 2003). According to this model, a decision variable rises linearly to a threshold (bound) in order to trigger a motor response. Assuming a fixed bound, but a noisy decision variable with a rate of rise that is normally distributed across trials, RT is distributed as an inverse Gaussian. This distribution can be plotted as a straight line on “reciprobit” axes (i.e., percent cumulative frequency on a probit scale versus the reciprocal of RT from 0%-coherence trials; Fig. 6A). Horizontal shifts of these lines imply changes in the mean rate-of-rise of the decision variable, whereas “swivels” about a fixed point at infinite RT imply changes in the bound height (Reddi et al., 2003). When we fit the
Temporal integration of auditory information

LATER model to signal-RT data separately for each subject, coherence, and IBI (correct trials only), we found that increasing IBI caused systematic decreases in the bound (Kruskal-Wallis test for H_0: equal median values per IBI, across subjects and coherences, $p<0.001^a$; 34 of 36 individual subject-coherence pairs had a significant dependence of bound height on IBI, all of which had a lower bound for the longest versus the shortest IBI, $p<0.01^b$, likelihood-ratio test, Bonferroni corrected for two parameters; Fig. 6B). In contrast, increasing IBI did not cause a systematic change in the best-fitting mean rate-of-rise (Kruskal-Wallis test $p>0.05^c$; 13 of 36 individual subject/coherence pairs had a significant dependence of rate-of-rise on IBI, of which 7 showed an increasing rate-of-rise and 6 showed a decreasing rate-of-rise; $p<0.01^d$, likelihood-ratio test, Bonferroni corrected for two parameters; Fig. 6C).

These results were also supported by correlation analyses that related choices to the noisy auditory stimulus (Knoblauch and Maloney, 2008; Murray, 2012). We computed two kernels per IBI condition, one for “increasing” choices and the other for “decreasing” choices, from the 0%-coherence trials from all six subjects. Each kernel represented the mean, within-trial time course of the mean-subtracted, stochastic auditory sequence that led to the given choice (Fig. 7). Subjects made “increasing” choices when the frequency tended to increase throughout most of the trial, with average kernels that started below the within-trial mean, then increased steadily to a peak value above the within-trial mean around the time of the median RT, then reverted back towards the mean. Likewise, subjects made “decreasing” choices on trials in which the frequency progression of the stochastic stimulus moved in the opposite direction, starting relatively high and then decreasing for much of the trial.

These kernels were consistent with a DDM-like decision process that had lower bounds for longer IBIs, corresponding to an increasing emphasis on speed at the expense of accuracy. Specifically, the choice selectivity of these kernels (i.e., the time bins in which “increasing” and “decreasing” kernels differed from each other, measured in terms of tone bursts within a stimulus sequence and thus consistent with the “signal RT” analyses described above, was longest for the shortest IBI and shortest
for the longest IBI (compare asterisks in Fig. 7A–C). We found a similar effect when using just the 60-ms IBI but providing explicit instructions to the subjects about the speed-accuracy trade-off, with relatively longer choice selectivity under an “emphasize accuracy” condition (Fig. 7D) and relatively shorter choice selectivity under an “emphasize speed” condition (Fig. 7E). These kernels were also qualitatively consistent with an evidence-accumulation process with little or no leak because choice selectivity was strongest at the beginning of a trial; if leak were present, it would tend to show up as less choice selectivity at the beginning of a trial.

To more quantitatively relate these kernels to the underlying decision process, we fit them to a simple, two-parameter model that assumed that choices were based on particular frequency progressions within the given stimulus. One parameter governed the time course of the relevant progression, which could range from just the first two bursts to the full sequence; i.e., simulated “increasing” or “decreasing” choices occurred when the slope of a linear regression of frequency versus burst number for the first \(n \) bursts in a sequence was >0 or <0, respectively. The second parameter scaled the contribution of each stimulus sequence to the final kernel, akin to the signal-to-noise ratio (SNR) of the internal stimulus representation. We found that the best-fitting value of the integration time decreased systematically with increasing IBI (and for the “emphasize speed” relative to the “emphasize accuracy” instruction), in each case closely matching the IBI-specific median RTs (compare solid and dashed vertical lines in Fig. 7). In contrast, the best-fitting scale factor did not differ as a function of IBI (likelihood-ratio test, \(p=0.2838 \)), implying a consistent SNR across conditions (like the IBI-independent drift rate in Fig. 5). Thus, like the DDM- and LATER-based analyses described above, these kernel analyses implied that the IBI manipulation affected the speed-accuracy trade-off on the RT task but not how information was accumulated over time to form the decision.

VARIABLE-DURATION TASK. Because the psychometric and chronometric data from the RT task depended on each subject’s individual speed-accuracy tradeoff, it is possible that the DDM-model fits
reflected complex interactions between the rate of sensory-evidence accumulation and bound heights
across IBI conditions (Ratcliff and Tuerlinckx, 2002). To directly test the relationship between IBI and the
rate of evidence accumulation, subjects participated in the variable-duration task. During this task, we
experimentally controlled the duration of the auditory sequence and, hence, the amount of sensory
evidence (Fig. 2B). Analogous to the RT task, we analyzed performance as a function of “signal time” to
standardize the sequence duration with respect to the rate of tone-burst presentation.

Mean performance accuracy for all five subjects improved systematically as a function of both
coherence and signal time, in a manner that was qualitatively similar for all three IBI conditions (Fig. 8A-
C). For each condition, accuracy tended to reach an upper asymptote of >99% correct in <1000 ms of
signal time for the highest coherences; accuracy rose steadily at longer listening times for lower
coherences.

We again quantified these effects by fitting the choice data to DDM-like models (Fig. 8D,E). Like
the DDM described in the RESPONSE-TIME (RT) TASK section, all of these models assumed that the decision
was based on the value of a decision variable, which represented the accumulation of noisy sensory
evidence over time. Like the RT fits, we assumed a drift rate that scaled linearly with coherence and an
accumulation process that might include a leak. However, unlike bounded diffusion in the DDM when it
was applied to RT data, these models assumed that the accumulation process continued until the
stimulus was turned off, at which point the decision was based on the current sign of the decision
variable (Gold and Shadlen, 2003; Bogacz et al., 2006). Therefore, these models did not have parameters
representing bounds or non-decision times and were fit to psychometric data only (percent correct as a
function of both coherence and listening duration).

The model-fitting results suggested only modest, if any, dependence of drift rate or leak on IBI.
Drift rate was independent of IBI for all 5 subjects and depended non-monotonically on IBI for data
combined across subjects (Fig. 8D). There was also a slight trend for the best-fitting values of drift rate
Temporal integration of auditory information to depend systematically on IBI across subjects (Kruskal-Wallis test for H_0: equal median values per IBI, across subjects, $p=0.011^1$). Accumulation leak was not significantly affected by IBI for any of the individual subjects or the data combined across subjects (Kruskal-Wallis test for H_0: equal median values per IBI, across subjects $p=0.125^2$; Fig. 8E). Thus, the subjects' decisions improved systematically as a function of the number of tone bursts but were largely independent of the time between bursts.

HYBRID TASK. To test directly the relationship between perceptual grouping and the decision process, subjects participated in the “hybrid” task, which is a variant of the variable-duration task (Fig. 2C). In this task, on each trial, tone-burst sequence was set to each subject’s coherence threshold and IBI threshold (see **Materials and Methods**). At the end of each trial, the subject gave two sequential responses to indicate: (1) perceptual grouping (i.e., “one sound” or “a series of discrete sounds”) and (2) sequence direction (i.e., “increasing” or “decreasing”). Figure 9 shows psychometric data pooled across all of the subjects, separated into trials in which the subject reported perceiving the sequence as “one sound” (Fig. 9A) or “a series of discrete sounds” (Fig. 9B). Accuracy tended to increase steadily as a function of listening duration, in a similar manner for the RT and variable-duration tasks.

To quantify these effects, we fit the data to the same models as those described for the variable-duration task but applied to “one sound” versus “discrete” conditions instead of different IBIs (Fig. 9C,D). These fits indicted that the grouping report did not have any effect on the perceptual decision. For both the drift-rate and accumulation-leak parameters, the data from individual subjects and across subjects were better fit by models that used a single parameter for all trials, as opposed to separate parameters for “one sound” and “discrete” reports (likelihood-ratio test, $p>0.05^3$). Moreover, when the data were fit separately for the two grouping reports, the resulting best-fitting values did not differ from each other across subjects (Kruskal-Wallis test for H_0: equal median values per grouping judgment, across subjects, $p>0.05^3$ for both drift and leak). Thus, the perceptual-grouping judgment did not appear to have a substantial effect on the accumulation efficiency of the sensory evidence.
We examined the relationship between auditory perceptual grouping and decision-making. Our focus was on the role of time in both processes. Specifically, does the temporal manipulation of a stream of acoustic events, which affects its perceptual grouping (Bregman, 1990), affect decisions about its identity? We found that the time interval between sequentially presented tone bursts had strong effects on whether the tone bursts were perceptually grouped as a single sound or heard as discrete sounds (Fig. 3). In contrast, this manipulation did not systematically affect how subjects accumulated information to form a decision about whether frequencies of the tone bursts were increasing or decreasing (Figs. 4-9). Thus, for this task and stimulus, the temporal accumulation of sensory evidence is invariant to the temporal intervals (gaps) between pieces of evidence that affects perceptual grouping.

The effect of time gaps on the time-course of evidence accumulation has also been studied in the visual system (Kiani et al., 2013). In that study, the accumulation of visual evidence was invariant to the temporal gap between pulses of motion evidence for a visual motion direction-discrimination task. We extended those findings by demonstrating that this accumulation invariance is accompanied by a change in the speed-accuracy trade-off that accounts for the different time intervals between the tone bursts. Our results also show that similar principles may govern the temporal dynamics of auditory and visual decisions, despite differences in how the underlying sensory mechanisms process temporal information (Carr and Friedman, 1999; Schnupp and Carr, 2009; Raposo et al., 2012). Below, we discuss the relationships between auditory perceptual grouping and decision-making and then discuss potential neural bases for our findings.

Temporal Dynamics of Auditory Perceptual Grouping and Decision-Making. Perceptual-grouping cues can affect auditory judgments (Bey and McAdams, 2002; Roberts et al., 2002; Micheyl and Oxenham, 2010; Borchert et al., 2011; Thompson et al., 2011). For example, judgments about the timing
Temporal integration of auditory information

Differences between auditory stimuli are more accurate when stimuli are grouped into the same auditory stream versus when they are segregated into different auditory streams (Roberts et al., 2002). Similarly, a listener’s ability to detect a “deviant” tone burst improves when the tone burst is segregated (e.g., by frequency) into a separate auditory stream (Rahne and Sussman, 2009; Sussman and Steinschneider, 2009). In other situations, stream segregation enhances a listener’s ability to identify a tone sequence (Bey and McAdams, 2002).

However, despite evidence for the roles of temporal cues in both auditory grouping and decision-making, little is known about how those roles interact. We addressed this issue by building upon the rich history of auditory psychophysics and quantitative modeling (Green et al., 1957; Green, 1960; Greenwood, 1961; Luce and Green, 1972; Green and Luce, 1973). Specifically, we applied sequential-sampling models, in particular the DDM, to assess how auditory information presented sequentially over time was used to form a decision about the direction of change of the stimulus frequency.

We used a series of complementary approaches to demonstrate that subjects’ decisions were consistent with a DDM-like process that accumulates sensory evidence over time. First, we fit choice and mean RT data from the RT task directly to several variants of the DDM, all of which effectively described the relationships between stimulus coherence (strength), IBI, and the subjects’ speed-accuracy trade-offs (Figs. 4 and 5) (Green and Luce, 1973; Wickelgren, 1977; Palmer et al., 2005; Ratcliff and McKoon, 2008). Second, the subjects’ full RT distributions were also consistent with a rise-to-bound process (Fig. 6), which we fit using a simplified version of DDM models (i.e., the LATER model) that assumes that the rising process is stochastic across trials (as opposed to within trials, for the DDM) and is effective at describing RT distributions across a range of conditions (Carpenter and Williams, 1995; Reddi et al., 2003). Third, analyses of our noisy auditory stimulus indicated that, at least on average, subjects were using information that extended from the beginning of the trial until around the time of the response.
Temporal integration of auditory information

(Fig. 7). That is, choice selectivity was strongest at the beginning of a trial. Fourth, performance on the variable-duration task increased systematically as a function of listening duration, in a manner consistent with the evidence-accumulation process described by the DDM (Figs. 8 and 9).

Our primary result from these analyses was that the accumulation process was invariant to the IBI manipulation. In particular, we found that there was no systematic leak associated with the accumulation process in any of the tested task conditions. Further, the psychophysical kernels were consistent with an evidence-accumulation process with little leak: choice selectivity was strongest at the beginning of a trial and not at the end (which would be expected of a leaky process; Fig. 7). Thus, decisions were consistent with a lossless form of information accumulation (Brunton et al., 2013; Kiani et al., 2013). Moreover, the rate of information accumulation—which was measured in our models as a “drift rate” and represents the average rate of change of the underlying decision variable—depended only on the coherence of the tone bursts and not the temporal gaps between them. The temporal gaps, instead, affected the speed-accuracy tradeoff of the decision (Figs. 5–7). Thus, the evidence-accumulation process was able to use the signals as they arrived, without losing information in the intervening gaps, regardless of their duration.

This result was particularly striking in light of the fact that the temporal gaps had a strong effect on the subjects’ percept of the tone-burst stimulus: short gaps gave rise to the percept of a single, grouped sound, whereas longer gaps gave rise to the percept of discrete sounds (Fig. 3). Our findings are, therefore, somewhat surprising, given that previous work has noted an interaction between perceptual grouping and auditory judgments (Bey and McAdams, 2002; Roberts et al., 2002; Micheyl and Oxenham, 2010; Borchert et al., 2011; Thompson et al., 2011). Further work is needed to fully explore these interactions and their relationship to temporal processing. For example, it might be interesting to add non-uniform temporal manipulations to each stimulus sequence (e.g., variable IBIs or
tone-burst durations) to get a better sense of how specific timing cues presented at specific times in the stimulus sequence affect both grouping and decision-making.

NEURAL BASIS. Much of auditory perceptual grouping is pre-attentive and has substantive neural signatures in the auditory midbrain and auditory cortex (Carlyon et al., 2001; Fishman et al., 2004; Micheyl et al., 2007; Sussman et al., 2007; Pressnitzer et al., 2008; Shinn-Cunningham, 2008; Winkler et al., 2009). In contrast, auditory decision-making is generally associated with neural mechanisms that are found in the ventral auditory pathway of cortex (Romanski et al., 1999; Romanski and Averbeck, 2009; Rauschecker, 2012; Bizley and Cohen, 2013). In primates, this pathway includes the core and belt fields of the auditory cortex, which project directly and indirectly to regions of the frontal lobe. Because neural activity in these regions, particularly in the belt fields, is not modulated by subjects’ choices, it is thought that this activity represents the sensory evidence used to form an auditory decision but not the decision itself (Tsunada et al., 2011; Tsunada et al., 2012; Bizley and Cohen, 2013); but see (Niwa et al., 2012; Bizley et al., 2013). In contrast, frontal-lobe activity is modulated by subjects’ choices, consistent with the notion that neural activity in this part of the brain reflects a transition from a representation of sensory evidence to a representation of choice (Binder et al., 2004; Kaiser et al., 2007; Russ et al., 2008; Lee et al., 2009). This hierarchy of information processing is qualitatively similar to that seen in the visual and somatosensory systems (Shadlen and Newsome, 1996; Parker and Newsome, 1998; Gold and Shadlen, 2001; Romo and Salinas, 2001; Romo et al., 2002; Gold and Shadlen, 2007; Hernández et al., 2009).

Thus, our results imply that frontal-mediated decision-making can temporally accumulate evidence from the auditory cortex, independent of how that evidence has been parsed into temporally continuous or distinct groups earlier in the auditory pathway. One possible explanation for our invariance to grouping is that the decision computations use information that is processed separately.
from the grouping percept. Unfortunately, whereas several studies have reported signatures of grouping
in the core auditory cortex (Fishman et al., 2004; Micheyl et al., 2005; Brosch et al., 2006; Selezneva et
al., 2006; Elhilali et al., 2009; Shamma and Micheyl, 2010; Fishman et al., 2013; Noda et al., 2013) and
representations of the grouping percept in non-core regions of the human auditory cortex (Gutschalk et
al., 2005; Gutschalk et al., 2008), neurophysiological studies elucidating where and how perceptual-
grouping cues interact with decisions have yet to be conducted. Taken together, however, these
aforementioned studies would predict that the grouping percept may be mediated in the auditory
cortex and frontal activity represents the decision process. A second alternative explanation is that the
decision process may be very flexible and able to efficiently accumulate different forms of noisy
evidence under different conditions (Brunton et al., 2013; Kaufman and Churchland, 2013). The degree
of this flexibility might depend on the type and quality of the sensory information, memory load, the
nature of the environment in which the subject is making the decisions, and other task demands.
Temporal integration of auditory information

References

Bey C, McAdams S (2002) Schema-based processing in auditory scene analysis. Percept Psychophys 64:844-854.

Binder JR, Liebenthal E, Possing ET, Medler DA, Ward BD (2004) Neural correlates of sensory and decision processes in auditory object identification. Nature neuroscience 7:295-301.

Bizley JK, Cohen YE (2013) The what, where, and how of auditory-object perception. Nat Rev Neurosci 14:693-707.

Bizley JK, Walker KM, Nodal FR, King AJ, Schnupp JW (2013) Auditory cortex represents both pitch judgments and the corresponding acoustic cues. Curr Biol 23:620-625.

Bogacz R, Wagenmakers EJ, Forstmann BU, Nieuwenhuis S (2010) The neural basis of the speed-accuracy tradeoff. Trends in neurosciences 33:10-16.

Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD (2006) The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Psychol Rev 113:700-765.

Borchert EM, Micheyl C, Oxenham AJ (2011) Perceptual grouping affects pitch judgments across time and frequency. J Exp Psychol Hum Percept Perform 37:257-269.

Bregman AS (1990) Auditory Scene Analysis. Boston, MA: MIT Press.

Brosch M, Oshurkova E, Bucks C, Scheich H (2006) Influence of tone duration and intertone interval on the discrimination of frequency contours in a macaque monkey. Neuroscience letters 406:97-101.
Temporal integration of auditory information

Brunton BW, Botvinick MM, Brody CD (2013) Rats and humans can optimally accumulate evidence for decision-making. Science 340:95-98.

Busemeyer JR, Townsend JT (1993) Decision Field Theory: A Dynamic-Cognitive Approach to Decision Making in An Uncertain Environment. Psych Rev 100:432-459.

Carlyon RP, Cusack R, Foxton JM, Robertson IH (2001) Effects of attention and unilateral neglect on auditory stream segregation. J Exp Psychol 27:115-127.

Carpenter RH, Williams ML (1995) Neural computation of log likelihood in control of saccadic eye movements. Nature 377:59-62.

Carr CE, Friedman MA (1999) Evolution of time coding systems. Neural Comput 11:1-20.

Ding L, Gold JI (2012) Separate, Causal Roles of the Caudate in Saccadic Choice and Execution in a Perceptual Decision Task. Neuron:865-874.

Ditterich J (2006a) Stochastic Models of Decisions About Motion Direction: Behavior and Physiology. Neural Networks 8:981-1012.

Ditterich J (2006b) Evidence for time-variant decision making. Eur J Neurosci 24:3628-3641.

Drugowitsch J, Moreno-Bote R, Churchland AK, Shadlen MN, Pouget A (2012) The cost of accumulating evidence in perceptual decision making. The Journal of neuroscience: the official journal of the Society for Neuroscience 32:3612-3628.

Eckhoff P, Holmes P, Law C, Connolly PM, Gold JI (2008) On diffusion processes with variable drift rates as models for decision making during learning. New J Phys 10:nihpa49499.
Temporal integration of auditory information

625 Elhilali M, Ma L, Micheyl C, Oxenham AJ, Shamma SA (2009) Temporal coherence in the perceptual organization and cortical representation of auditory scenes. Neuron 61:317-329.

627 Fishman YI, Arezzo JC, Steinschneider M (2004) Auditory stream segregation in monkey auditory cortex: effects of frequency separation, presentation rate, and tone duration. J Acoust Soc Am 116:1656-1670.

630 Fishman YI, Micheyl C, Steinschneider M (2013) Neural representation of harmonic complex tones in primary auditory cortex of the awake monkey. J Neurosci 33:10312-10323.

632 Garcia-Perez MA (1998) Forced-choice staircases with fixed step sizes: asymptotic and small-sample properties. Vision Res 38:1861-1881.

634 Gold JI, Shadlen MN (2001) Neural computations that underlie decisions about sensory stimuli. Trends Cogn Sci 5:10-16.

636 Gold JI, Shadlen MN (2002) Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron 36:299-308.

638 Gold JI, Shadlen MN (2003) The influence of behavioral context on the representation of a perceptual decision in developing oculomotor commands. The Journal of Neuroscience: the official journal of the Society for Neuroscience 23:632-651.

641 Gold JI, Shadlen MN (2007) The neural basis of decision making. Annu Rev Neurosci 30:535-574.

642 Green CS, Pouget A, Bavelier D (2010) Improved probabilistic inference as a general learning mechanism with action video games. Curr Biol 20:1573-1579.

644 Green DM (1960) Auditory detection of a noise signal. J Acoust Soc Am 32:121-131.
Temporal integration of auditory information

Green DM, Luce RD (1973) Speed-accuracy trade off in auditory detection. In: Attention and performance IV (Kornblum S, ed), pp 547-570. New York: Academic.

Green DM, Birdsall TB, Tanner WP (1957) Signal detection as a function of signal intensity and duration. J Acoust Soc Am 29:523-531.

Greenwood DD (1961) Auditory masking and the critical band. J Acoust Soc Am 33:484-502.

Griffiths TD, Warren JD (2004) What is an auditory object? Nat Rev Neurosci 5:887-892.

Gutschalk A, Micheyl C, Oxenham AJ (2008) Neural correlates of auditory perceptual awareness under informational masking. PLoS Biol 6:e138.

Gutschalk A, Micheyl C, Melcher JR, Rupp A, Scherg M, Oxenham AJ (2005) Neuromagnetic correlates of streaming in human auditory cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience 25:5382-5388.

Hawkins GE, Forstmann BU, Wagenmakers E-J, Ratcliff R, Brown SD (In Press) Revisiting the evidence for collapsing boundaries and urgency signals in perceptual decision-making. The Journal of neuroscience : the official journal of the Society for Neuroscience.

Hernández A, Nácher V, Luna R, Zainos A, Lemus L, Alvarez M, Vázquez Y, Camarillo L, Romo R (2010) Decoding a perceptual decision process across cortex. Neuron 29:300-314.

Kaiser J, Lennert T, Lutzenberger W (2007) Dynamics of oscillatory activity during auditory decision making. Cereb Cortex 17:2258-2267.

Kaufman MT, Churchland AK (2013) Cognitive neuroscience: sensory noise drives bad decisions. Nature 496:172-173.
Kiani R, Churchland AK, Shadlen MN (2013) Integration of direction cues is invariant to the temporal gap between them. The Journal of neuroscience : the official journal of the Society for Neuroscience 33:16483-16489.

Klein SA (2001) Measuring, estimating, and understanding the psychometric function: a commentary. Perception & psychophysics 63:1421-1455.

Knoblauch K, Maloney LT (2008) Estimating classification images with generalized linear and additive models. J Vis 8:10 11-19.

Lee JH, Russ BE, Orr LE, Cohen YE (2009) Prefrontal activity predicts monkeys' decisions during an auditory category task. Fron Integrative Neuroscience 3.

Luce RD, Green DM (1972) A neural timing theory for response times and the psychophysics of intensity. Psych Rev 79:14-57.

Micheyl C, Oxenham AJ (2010) Objective and subjective psychophysical measures of auditory stream integration and segregation. J Assoc Res Otolaryngol 11:709-724.

Micheyl C, Tian B, Carlyon RP, Rauschecker JP (2005) Perceptual organization of tone sequences in the auditory cortex of awake macaques. Neuron 48:139-148.

Micheyl C, Carlyon RP, Gutschalk A, Melcher JR, Oxenham AJ, Rauschecker JP, Tian B, Courtenay Wilson E (2007) The role of auditory cortex in the formation of auditory streams. Hear Res 229:116-131.

Mulder MJ, Keuken MC, van Maanen L, Boekel W, Forstmann BU, Wagenmakers EJ (2013) The speed and accuracy of perceptual decisions in a random-tone pitch task. Atten Percept Psychophys 75:1048-1058.
Temporal integration of auditory information

685 Murray RF (2012) Classification images and bubbles images in the generalized linear model. J Vis 12:2.

686 Niwa M, Johnson JS, O'Connor KN, Sutter ML (2012) Activity related to perceptual judgment and action in primary auditory cortex. J Neurosci 32:3193-3210.

687 Noda T, Kanzaki R, Takahashi H (2013) Stimulus phase locking of cortical oscillation for auditory stream segregation in rats. PLoS One 8:e83544.

688 Palmer J, Huk AC, Shadlen MN (2005) The effect of stimulus strength on the speed and accuracy of a perceptual decision. J Vis 5:376-404.

689 Parker AJ, Newsome WT (1998) Sense and the single neuron: probing the physiology of perception. Annual Review of Neuroscience 21:227-277.

690 Pressnitzer D, Sayles M, Micheyl C, Winter IM (2008) Perceptual organization of sound begins in the auditory periphery. Curr Biol 18:1124-1128.

691 Rahne T, Sussman E (2009) Neural representations of auditory input accommodate to the context in a dynamically changing acoustic environment. European J of Neurosci 29:205-211.

692 Raposo D, Sheppard JP, Schrater PR, Churchland AK (2012) Multisensory decision-making in rats and humans. The Journal of neuroscience : the official journal of the Society for Neuroscience 32:3726-3735.

693 Ratcliff R, Rouder JN (1998) Modeling Response Times for Two-Choice Decisions. Psychol Sci 9:347-356.

694 Ratcliff R, Tuerlinckx F (2002) Estimating parameters of the diffusion model: approaches to dealing with contaminant reaction times and parameter variability. Psychon Bull Rev 9:438-481.
Ratcliff R, McKoon G (2008) The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput 20:873-922.

Ratcliff R, Van Zandt T, McKoon G (1999) Connectionist and diffusion models of reaction time. Psychol Rev 106:261-300.

Ratcliff R, Gomez P, McKoon G (2004) A diffusion model account of the lexical decision task. Psychol Rev 111:159-182.

Rauschecker JP (2012) Ventral and dorsal streams in the evolution of speech and language. Front Evol Neurosci 4.

Reddi BA, Asrress KN, Carpenter RH (2003) Accuracy, information, and response time in a saccadic decision task. Journal of neurophysiology 90:3538-3546.

Roberts B, Glasberg BR, Moore BC (2002) Primitive stream segregation of tone sequences without differences in fundamental frequency or passband. J Acoust Soc Am 112:2074-2085.

Romanski LM, Averbeck BB (2009) The Primate Cortical Auditory System and Neural Representation of Conspecific Vocalizations. Annu Rev Neurosci 32:315-346.

Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, Rauschecker JP (1999) Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature neuroscience 2:1131-1136.

Romo R, Salinas E (2001) Touch and go: decision-making mechanisms in somatosensation. Annu Rev Neurosci 24:107-137.
Temporal integration of auditory information

Romo R, Hernandez A, Salinas E, Brody CD, Zainos A, Lemus L, de Lafuente V, Luna R (2002) From sensation to action. Behav Brain Res 135:105-118.

Russ BE, Orr LE, Cohen YE (2008) Prefrontal neurons predict choices during an auditory same-different task. Curr Biol 18:1483-1488.

Schnupp J, Carr CE (2009) On hearing with more than one ear: lessons from evolution. Nature neuroscience 12:692-697.

Salezneva E, Scheich H, Brosch M (2006) Dual Time Scales for Categorical Decision Making in Auditory Cortex. Curr Biol 16:2428-2433.

Shadlen MN, Newsome WT (1996) Motion perception: seeing and deciding. Proceedings of the National Academy of Sciences of the United States of America 93:628-633.

Shadlen MN, Hanks TD, Churchland A, Kiani R, Yang T (2006) The speed and accuracy of a simple perceptual decision: a mathematical primer. In: Bayesian Brain (Rao R, Pouget A, eds). Cambridge, MA: MIT Press.

Shamma S, Micheyl C (2010) Beyond the scenes of auditory perception. Curr Opin Neurobiol 20:1-6.

Shamma S, Elhilali M, Micheyl C (2011) Temporal coherence and attention in auditory scene analysis. Trends in neurosciences 34:114-123.

Shinn-Cunningham BG (2008) Object-based auditory and visual attention. Trends Cogn Sci 12:182-186.

Smith PL, Ratcliff R (2004) Psychology and neurobiology of simple decisions. Trends in neurosciences 27:161-168.
Temporal integration of auditory information

Sussman E, Steinschneider M (2009) Attention effects on auditory scene analysis in children. Neuropsychologia 47:771-785.

Sussman ES, Horvath J, Winkler I, Orr M (2007) The role of attention in the formation of auditory streams. Percept Psychophys 69:136-152.

Thompson SK, Carlyon RP, Cusack R (2011) An objective measurement of the build-up of auditory streaming and of its modulation by attention. J Exp Psychol Hum Percept Perform 37:1253-1262.

Thura D, Beauregard-Racine J, Fradet CW, Cisek P (2012) Decision making by urgency gating: theory and experimental support. Journal of neurophysiology 108:2912-2930.

Treutwein B (1995) Adaptive psychophysical procedures. Vision Res 35:2503-2522.

Tsetsos K, Chater N, Usher M (2012) Salience driven value integration explains decision biases and preference reversal. Proceedings of the National Academy of Sciences of the United States of America 109:9659-9664.

Tsunada J, Lee JH, Cohen YE (2011) Representation of speech categories in the primate auditory cortex. Journal of neurophysiology 105:2634-2646.

Tsunada J, Lee JH, Cohen YE (2012) Differential representation of auditory categories between cell classes in primate auditory cortex. J Physiol 590:3129-3139.

Usher M, McClelland JL (2001) The time course of perceptual choice: the leaky, competing accumulator model. Psychol Rev 108:550-592.

Wichmann FA, Hill NJ (2001) The psychometric function: I. Fitting, sampling, and goodness of fit. Percept Psychophys 63:1293-1313.
Temporal integration of auditory information

Wickelgren WA (1977) Speed-accuracy tradeoff and information processing dynamics. Acta Psychologica
41:67-85.

Winkler I, Denham SL, Nelken I (2009) Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends Cogn Sci 13:532-540.
Temporal integration of auditory information

Figure Legends

Figure 1: Example auditory sequences characterized in terms of coherence and different inter-burst intervals. A. Frequency direction (i.e., increasing) is easiest to discriminate when the stimulus is 100% coherent. As coherence gets smaller (60% in panel B and 0% in panel C), frequency direction becomes more ambiguous and, thus, can lead to more errors. In panels A–C, we show increasing auditory sequences. Decreasing sequences are analogous but with negative coherence values. Panel D shows a 100% coherence auditory sequence at three different IBIs: 10 ms (red), 60 ms (green), and 150 ms (blue).

Figure 2: Task design. A. For the reaction-time (RT) task, subjects indicated their choice (i.e., sequence direction) any time after onset of the sequence. B. For the variable-duration task, subjects indicated their choice after sequence offset. C. For the hybrid task, subjects indicated sequence direction and whether they heard the sequence as “one sound” or “discrete sounds” after sequence offset in separate response periods. For all three tasks, subjects were provided feedback regarding frequency direction at the end of each trial (not shown).

Figure 3: Influence of IBI on reports of perceived grouping. Subjects reported whether they perceived the stimulus as “one sound” or “discrete sounds.” A. The proportion of trials in which each subject chose “one sound” as a function of IBI. The points indicate each subject’s performance. Each curve represents a logistic function that was fit to each subject’s reports across 4 sessions. The gray line indicates 50% correct performance, which was IBI threshold.

Figure 4: Performance on the RT task. A. The fraction of trials in which subjects reported a sequence of tone bursts was “increasing” in frequency as a function of signed coherence and IBI. Positive coherence
values indicate that the sequence was increasing in frequency; negative indicates decreasing. B. The
mean RT (i.e., the time between sequence onset and button press) as a function of signed coherence
and IBI on correct trials only (and all 0% coherence trials). C. As in B, but using signal RT (i.e., RT not
including cumulative IBI). The solid curves are simultaneous fits of psychometric and chronometric data
to a DDM (see Results). The psychometric data (A) only show the fit to the signal-RT data (C). In each
panel, the points indicate performance data that was pooled across subjects. Colors represent different
IBIs, as indicated in A.

Figure 5: Parameter values from fits of the basic DDM to the RT-task data. Each panel shows best-fitting
values of bound height (A) or drift rate (B) plotted as a function of IBI for fits to data from individual
subjects (black) or combined across all subjects (red). Dark lines/symbols indicate that the model fits
were improved significantly by fitting the given parameter separately for each IBI condition (likelihood-
ratio test, p<0.01, Bonferroni corrected for three parameters).

Figure 6: LATER model fits to signal RT data. A. Distributions of signal RT from 0%-coherence trials for
one subject are plotted on a reciprocit plot: reciprocal RT versus percentage of cumulative frequency on
a probit scale (Reddi et al., 2003), separately per IBI. Best-fitting values of the bound height (B) and
mean rate-of-rise (C) of the LATER model (see Results and Materials and Methods for details) are
plotted as a function of IBI for each subject and coherence (black/gray lines and data points). The data in
black indicate that the model fits were improved significantly by fitting the given parameter separately
for each IBI condition (likelihood-ratio test, p<0.01, Bonferroni corrected for two parameters). Shaded
lines/symbols indicate that the model fits were not improved significantly. Red data points/lines
represent the median values across all conditions.
Temporal integration of auditory information

Figure 7: Psychophysical kernels. Kernels represent the average of the stimulus sequence (mean subtracted on each trial) presented on all 0%-coherence trials across subjects for “increasing” (red) and “decreasing” (blue) choices. Panels A-C show kernels computed per IBI condition, as indicated, and smoothed using a 21-sample moving mean. Panels D and E show the kernels for the 60-ms IBI condition when subjects were told to emphasize accuracy or speed, respectively. Thick/broken lines are mean and standard error, respectively. Data are aligned relative to onset of the sequence. Asterisks indicate that the “increasing” and “decreasing” kernels were significantly different from one another for a given time bin (Mann-Whitney test, \(p<0.05\), using the raw, un-smoothed kernels). Black lines indicate best-fitting simulated kernels (see text for details). Solid vertical lines indicate median RT. Dashed vertical lines indicate the end of the integration time from the best-fitting simulated kernels.

Figure 8: Performance on the variable-duration task. A-C. Psychometric data are plotted as a function of listening duration for different coherences and IBIs, as indicated. Each data point reflects mean performance for all 5 subjects as a function of coherence and signal time (plotted in 0.2 sec bins, up to 1.0 sec, but fit using unbinned data). The solid curves are fits from the best-fitting model with two parameters: drift rate and accumulation leak. D,E. Best-fitting values of drift rate (D) and accumulation leak (E) plotted as a function of IBI for fits to data from individual subjects (black) or combined across all subjects (red). Dark lines/symbols indicate that the model fits were improved significantly by fitting the given parameter separately for each IBI condition (likelihood-ratio test, \(p<0.01\), Bonferroni corrected for two parameters). Shaded lines/symbols indicate that the model fits were not improved significantly.

Figure 9: Performance on the hybrid task. A,B. Psychometric data are plotted as a function of listening duration for trials in which the subject reported that the sequence was “one sound” (A) or “a series of discrete sounds” (B). The solid curves are fits from the best-fitting model with two parameters: drift rate
and accumulation leak. C, D. Best-fitting values of drift rate (C) and accumulation leak (D) plotted as a function of perceptual grouping for fits to data from individual subjects (black) or combined across all subjects (red). The model fits were not improved by fitting the given parameter separately for each IBI condition (likelihood-ratio test, p > 0.1 in all cases, Bonferroni corrected for two parameters).
A RT task

B variable-duration task

C hybrid task
