The use of the buccal fat pad flap for oral reconstruction

Min-Keun Kim, Wonil Han and Seong-Gon Kim

Abstract

Many congenital and acquired defects occur in the maxillofacial area. The buccal fat pad flap (BFP) is a simple and reliable flap for the treatment of many of these defects because of its rich blood supply and location, which is close to the location of various intraoral defects. In this article, we have reviewed BFP and the associated anatomical background, surgical techniques, and clinical applications. The surgical procedure is simple and has shown a high success rate in various clinical applications (approximately 90%), including the closure of oroantral fistula, correction of congenital defect, treatment of jaw bone necrosis, and reconstruction of tumor defects. The control of etiologic factors, size of defect, anatomical location of defect, and general condition of patient could influence the prognosis after grafting. In conclusion, BFP is a reliable flap that can be applied to various clinical situations.

Keywords: Buccal fat pad flap, Defect, Reconstruction, Oral, Wound epithelialization

Introduction

Soft tissue coverage is an essential step for successful wound healing. Intraoral wounds have certain unique features compared to other wound sites. The soft tissue overlying the alveolar bone is relatively thin, and there is no fatty layer in the gingiva. Therefore, vascularized skin graft is too bulky in most cases, and the color of skin graft is not matched to that of the oral mucosa [1]. Free mucosal graft from the palate has a well-matched color and similar thickness to the gingiva [2]. However, the size of the palatal mucosa is limited. As the palatal mucosal graft is a free graft, it is not indicated for poorly vascularized recipient beds [2].

Intraoral soft tissue defect can be induced by various diseases or complications. Cleft palate and cleft alveolus are congenital defects that accompany bone defects [3, 4]. Oroantral fistula is often observed after tooth extraction in cases of severe sinus pneumatization [5, 6]. Tumor or trauma also shows various degrees of soft tissue defect [7, 8]. Recently, many cases of medication-induced osteonecrosis of the jaw have been reported, and these patients have denuded bone surface [9]. Although the size, location, and etiology are different from case to case, the soft tissue defect with problems in wound healing is a common feature.

Vascularized grafts may be considered as first choice of treatment in oral reconstruction, but have limitations. Patients with compromised wounds usually have poorly vascularized tissue, and patients with severe diabetes mellitus have difficulties with capillary regeneration [10]. These patients have demonstrated higher rates of postoperative infection and graft failure [10]. Patients receiving radiation therapy or chemotherapy also experience problems in wound healing [11]. Moreover, patients receiving high doses of bisphosphonate often show avascular jaw bone necrosis following oral surgery [9]. Although revision surgery is attempted for these patients, vascularized grafts are the only conventional method that have not failed [12]. However, vascularized grafts should be performed under general anesthesia and require a long operation time. Donor site morbidity and an additional scar are the disadvantages of using vascularized grafts [12].

Buccal fat pad flap (BFP) has been used for the reconstruction of maxillary defects induced by tumor since it was first reported in 1977 [13]. From then, many clinical applications of BFP have been introduced. The buccal fat pad appears 3 months in utero and continuously grows until birth [14]. There is little change in the volume of buccal fat during aging, and it is approximately 10 mL [14]. Therefore, it is a reliable flap for the reconstruction of oral
defects. Most published studies have reported a high success rate among BFP procedures due to BFP’s rich vascularity, proximity to the recipient site, low donor-site morbidity, and simple surgical procedure for grafting [15]. This review discusses the anatomical background and surgical technique of BFP. In addition, the clinical application of BFP and its results are discussed.

Review
Anatomical background and surgical technique

Anatomic background
The buccal fat pad appears at 3 months in utero and continuously grows until birth [14]. It protrudes at the anterior border of the masseter muscle and extends to the parotid duct, where it rests on the buccopharyngeal fascia, which covers the buccinator muscle [16]. There is little change in the volume of buccal fat during aging, and it is approximately 10 mL [14].

The buccal fat pad is composed of lobes and highly mobile structures (Fig. 1). It has a main body and four extensions: temporal, buccal, pterygoid, and pterygopalatine [15]. The main body is surrounded by the buccinator muscle, masseter muscle, and zygomatic arch. The main body is positioned along the posterior maxilla and covered with a thin capsule. The parotid duct pierces the buccinator at the anterior border of the buccal fat pad [16]. The average volume of the fat pad is 9.6 mL (range, 8.3–11.9 mL). The average weight of the fat pad is 9.3 g (range, 8–11.5 g).

When properly dissected, the buccal fat pad provides a 6 × 5 × 3-cm graft. The average thickness is 6 mm, and this can cover an area of 10 cm² [16, 17]. The buccal fat pad has abundant blood supplies from the maxillary artery and the superficial and deep temporal artery. There are rich capillary networks within the capsules that cover the fat pad. Arterioles enter the capsule from several directions and break up into capillary plexuses. Most of the blood from the fat pad drains into the facial vein [16]. Stensen’s duct is an adjacent anatomic structure, so it is easily encountered when extracting the buccal fat pad. Thus, surgeons should take care not to damage this apparatus.

Surgical technique
After lidocaine (1%) with 1:100,000 epinephrine is infiltrated, Stensen’s duct should be identified with a lacrimal probe before incision to avoid damaging it during the procedure. A 2–3-cm mucosal incision was made at least 2 cm below the Stensen’s duct. Two or three tagging sutures were placed at the margin of the mucoperiosteal flap to gain appropriate surgical fields. The buccinator and zygomaticus major muscles were cut, and blunt dissection was carefully performed to create sufficient openings for herniating the fat pad without injuring the capsule overlying the fat pad. After the superficial fascia of the face was cut, the fat pad herniated spontaneously (Fig. 2). The capsules overlying the fat pad should not be torn so as to maintain its volume, and the arterioles and venules overlying the fat pad should be preserved.
to maintain the rich blood supply. Tissue forceps were used for the traction of the fat pad with minimal force to avoid tearing the capsule. Pedicled buccal fat pad was sutured and positioned using absorbable suture materials with minimal tension. Making the incision at the bone is a good technique for maintaining the position of the fat pad.

Clinical application

Oroantral fistula associated with tooth extraction or dental implant removal

Oroantral fistula is the state of patent communication between the oral cavity and the maxillary sinus [5, 18]. Although it is common after a tooth or dental implant extraction, patent opening to the maxillary sinus can also be induced by a pathological condition such as osteonecrosis, cyst, or tumor, or by congenital deformity such as cleft palate. As the extent of bony defect is generally larger in pathological conditions and congenital deformities than in cases requiring a simple extraction, pathological conditions related to oroantral communications are discussed separately.

Oroantral fistula associated with extraction is mainly observed in the maxillary premolar or molar area [5]. Patients with severe sinus pneumatization are vulnerable to oroantral fistula after extraction [18, 19]. Root fracture and subsequent improper instrumentation is also a cause of oroantral fistula. Oroantral fistula can appear immediately after the removal of a tooth or dental implant and remain unhealed for over 1 month [5]. Small-sized perforations (≤2 mm) can be allowed to heal spontaneously. Persistent communications should be treated because food and fluid regurgitate into the maxillary sinus and may result in sinusitis [20, 21]. The traditional methods for treating oroantral fistula have been buccal advancement flap or rotational palatal flap. Vestibular shallowing is a drawback of the buccal advancement flap [18]. Moreover, patients with damaged gingiva or those who received a previous closure operation cannot be indicated for the buccal advancement flap [18]. However, BFP demonstrated high success rates, even in previously operated cases [19]. The surgical procedure of BFP graft for the treatment of oroantral fistula is very simple (Fig. 3).

Studies involving less than five patients were excluded from the present review. In the literature, all studies cited tooth or dental implant removal as an etiology of oroantral fistula. BFP was the only treatment used in most studies. In one study, two patients received collagen strip as an additional therapy [20]. Overall, 12 papers and a total of 319 patients were included in this review (Table 1). Reperforation after sealing the oroantral fistula was reported in 12 patients, and the overall success rate was 96.2%. The reperforation of oroantral fistula can be caused by the remaining infected tissue in the fistula area [21]. Complete removal of inflammatory tissue is an essential step for a successful operation [18]. As the vascular pedicle of the BFP is fragile, careless handling of the tissue can damage the vascular supply of the flap [18]. Other causes of failure include surgery by an inexperienced surgeon and invasive surgery [22].

Although BFP showed high success rates in sealing oroantral fistula, it could not increase bone regeneration [23]. Therefore, dental implant installation into
the reconstructed defect by BFP is not recommended. For bone regeneration, BFP should be used with proper bone graft materials.

Congenital defect
Cleft palate is a common congenital deformity [24, 25]. It is caused by incomplete fusion of the maxillary process during the developmental stage. Although many etiologic factors such as genetics and the environment have been suggested, the pathogenesis of cleft palate remains controversial [3, 4]. For the treatment of cleft palate, sealing the communication between the oral cavity and the nasal cavity is essential for successful treatment [25, 26]. Many types of flap design have been introduced for the treatment of cleft palate.

The success rate of cleft palate surgery is influenced by many factors. The main flap for the cleft palate surgery is fed by the greater palatine artery and the lesser palatine artery [24]. If the palatal defect is wide, the flap width will be narrowed. These long narrow flaps may cause problems with blood circulation, and wide expanses of exposed raw bone surface can cause extensive wound contracture after the operation [24–26]. Ischemic damage and wound contracture is the main cause of postoperative palatal fistula. The incidence of postoperative palatal fistula is reported to be 4.6–12.5% and is dependent on the degree of the tissue defect [27]. Wound contracture after operation can cause shortening of the soft palate and may result in velopharyngeal insufficiency [28].

The BFP has abundant vascular supply. The operation field for the flap generation is also adjacent to the operation field of cleft palate surgery (Fig. 4). Most cleft palate patients are children, and the BFP is particularly well developed in children. BFP can be placed on the junction between the hard palate and soft palate to prevent possible palatal fistula (Fig. 4a) [24, 25], or it can be used for covering the raw bone surface after sealing the palatal flap (Fig. 4b) [26]. BFP is particularly useful for the repair of secondary defect after cleft palate surgery [3, 4].

Few publications, other than case or technical reports, have discussed BFP’s usefulness for cleft palate surgery. Studies with less than five patients were excluded, and six papers encompassing a total of 101 patients were included (Table 2). Two of the included papers had some common data [3, 4]; therefore, the actual number of patients may be overestimated. Only a single case of postoperative fistula was reported, and it was spontaneously healed without further treatment [3]. A maximum of a 20 × 10-mm palatal defect could be covered

Table 1 Oroantral fistula treated by BFP

Number of patients	Average age (range)	Re-perforation	Ref
25	45 (35–56)	0	[5]
24	NA	0	[6]
130	39 (15–90)	9	[18]
15	37 (22–57)	1	[19]
7	33 (NA)	0	[20]
14	38 (21–56)	1	[21]
10	38 (NA)	0	[22]
9	51 (29–64)	1	[61]
56	NA (19–56)	0	[62]
12	40 (NA)	0	[63]
11	43 (24–62)	0	[64]
6	44 (32–51)	0	[65]

NA not available, Ref reference number
with BFP [3, 4]. Tongue flap or temporal fascia flap has been used to repair secondary palatal defects. However, both techniques require extensive operation time and have moderate donor site morbidity. Considering the ease of this technique and availability of BFP, it can be considered for the secondary repair of palatal fistula located at the posterior palate [3, 4]. However, with the current BFP technique, it is difficult to cover defects located at the anterior palate [4].

BFP may be used for the prevention of palatal fistula during palatoplasty [29]. It has been claimed that there is no impairment in function and growth of the palate covered with BFP compared to the use of conventional techniques [29]. However, there has been no comparative study in the function and growth of the palate after pedicled buccal fat pad application. Comparative analysis with conventional technique should be performed to validate the BFP as a preventive measure for cleft palate surgery.

Table 2 Cleft lip and alveolus treated by BFP

Number of patients	Average age (range)	Primary/secondary	Post-operative fistula	Ref
29	NA (2.5–19)	Secondary	1	[3]
20	8.9 (2.5–19)	Secondary	0	[4]
6	7.2 (2–30)	NA	0	[65]
8	28 (19–46 months)	Primary	0	[24]
14	3.2 (11–15 months)	Mixed	0	[25]
24	4.7 (6–17 months)	Mixed	0	[29]

NA not available, Ref: reference number

Osteonecrosis of the jaw bone

Osteonecrosis can result from radiation therapy during the treatment of malignancy [30] or medications, such as bisphosphonate and denosumab [9]. The main mechanism of osteonecrosis is vascular impairment and resultant hypoxia. Additional microbial invasion and dental procedures are subsequent events that lead to the progression of osteonecrosis [31]. Nonsurgical therapy for osteonecrosis consists of regular dressing and prescription of supplemental antibiotics. Because of the avascular nature of the disease, hyperbaric oxygen therapy has also been used in some studies [32]. Surgical intervention involves the complete removal of necrotic bone and subsequent reconstruction with rich vascularized tissue [30]. Microvascular reconstruction has been used for the reconstruction of osteonecrosis because of poorly vascularized tissue beds in recipient sites [33].

After excluding the papers with a small sample size (≤5), only three papers discussing osteonecrosis of the jaw bone were included in this review (Table 3). The total number of patients was 43, and 38 patients showed uneventful healing (88.4%). Two cases of 100% uneventful healing were reported, in which patients showed bone exposure during follow-up after restarting medication [9]. Unsuccessful epithelial healing on the bone is frequently observed in cases with incomplete resection of the necrotic bone [30, 34]. These cases could be treated by additional resection of sequestrum [30, 34].

Some cases of osteonecrosis are poorly responsive to conservative therapy [30, 34]. For example, the success rate of conservative therapy for osteoradionecrosis has been reported to be 37–44% [35, 36]. Patients who cannot be treated by conservative therapy should receive surgical intervention. The location and size of the osteonecrosis...
are sometimes an obstacle for reconstruction with BFP [30]. Lower reconstructive success rates have been found with advanced stages of osteoradionecrosis compared to early stages [30]. A microvascular free flap can be used for advanced stages of osteoradionecrosis [33].

Cyst or tumor
BFP has been frequently used in the successful reconstruction of intraoral defects, including those induced by benign tumors and cysts (Fig. 5). The first clinical application of BFP was for the closure of a defect in the palate induced by a tumor [13]. In Egyedi’s report [13], a split-thickness skin graft was applied on the BFP. Later, Tideman et al. [37] reported that epithelialization could be observed on the BFP without skin graft. The regenerated epithelium is parakeratinized stratified squamous epithelium and looks similar to the adjacent oral epithelium [38]. In cases of moderate-sized palatal defects, BFP allows early epithelialization without postoperative discomfort [39].

Twelve papers were included in this review after excluding the papers with a small sample size (≤5) (Table 4). The total number of patients was 202, and 180 patients showed uneventful healing (89.1%). Eighty-six defects were induced by malignant tumor, and 102 were induced by benign tumors. The anatomic location of the defect was mainly the maxilla (n = 141). Posterior mandible or buccal mucosal defects can also be restored by BFP, but a tumor-free resection margin is essential for successful treatment [40].

If there is a sound oral epithelium, BFP can be used for the coverage of autogenous free block bone graft [41, 42] or titanium mesh with particulate bone [8] on the opposite side of the sinus. As the maxillary sinus mucosa is thin and frequently removed during tumor surgery, well-vascularized BFP can be substituted for sinus mucosa to cover a bone graft [42]. When the BFP is used as a barrier for free bone graft, the incidence of infection and graft resorption may be reduced [41].

When using BFP to treat defects induced by a malignant tumor, postoperative radiation therapy should be considered. Any supplementary cancer therapy can induce bone exposure and fistula [38, 40]. As BFP can be used for the repair of bone necrosis defect, it should be spared for future use in malignant tumor patients [30]. For the reconstruction of tumor defects, excessive fat is required at times, and the patient may show limitation of mouth opening [43]. As the function of the buccal fat

Table 3 Osteonecrosis treated by BFP

Number of patients	Average age (range)	Cause	Location	Uneventful healing	Ref
23	68 (39–93)	Medication	Mx: 23	23	[9]
10	56 (24–74)	Radiation	Mx: 2, Mn: 8	6	[30]
10	73 (57–81)	Medication	Mx: 2, Mn: 8	9	[34]

Mx maxilla, Mn mandible, Ref reference number

Fig. 5 The application of the buccal fat pad flap (BFP) after tumor resection. BFP can be used with free bone graft for the reconstruction of the maxillary sinus wall.
Table 4 Cyst or tumor treated by BFP

Number of patients	Average age (range)	Cause	Location	Uneventful healing	Complication	Ref
22	67.5 (26–83)	Mal: 12, Be: 10	Mx: 14, Mn: 2, B: 4, FOM: 1, TMJ: 1	22	Inf: 2	[7]
15	27.9 (17–50)	Be: 15	Mx: 15	13	GL: 2, Bl: 1	[8]
11	34.4 (15–60)	Be: 5, C: 6	Mx: 11	8	0	[19]
11	57.6 (42–70)	Mal: 7, Be: 4	Mx: 10, B: 1	11	0	[65]
12	60.6 (32–90)	Mal: 10, Be: 1, C: 1	Mx: 4, Mn: 7, B: 1	11	Inf: 1	[37]
28	52 (9–85)	Mal: 19, Be: 8, C: 1	Mx: 22, Mm: 2, B: 1, Moc: 3	28	0	[38]
6	54.7 (41–69)	Mal: 3, Be: 3	Mx: 6	5	GL: 1	[39]
15	57.9 (34–78)	Mal: 10, Be: 5	Mx: 5, Mn: 3, B: 7	8	MOL: 7	[43]
15	NA	Mal: 15	Mx: 6, Mn: 3, B: 6	13	GL: 2	[45]
38	26 (14–54)	Be: 36, C: 2	Mx: 38	35	Fistula: 3	[41]
21	NA (28–72)	Mal: 10, Be: 11	Mx: 2, Mm: 2, B: 16, Moc: 1	20	Tumor invasion: 1	[40]
8	36.6 (20–68)	Be: 4, C: 4	Mx: 8	6	Fistula: 1, Deh: 1	[42]

Ref: reference number, Mal: malignancy, Be: benign, C: cyst, Mx: maxilla, Mn: mandible, B: buccal mucosa, MOL: mouth opening limitation, NA: not available, GL: loss of graft, Inf: infection, Bl: bleeding, Deh: dehiscence.

Table 5 Oral submucous fibrosis treated by BFP

Number of Patients	Average age (range)	Uneventful healing	Complication	Ref
25	34 (17–54)	25	0	[46]
28	NA (18–53)	28	0	[47]
10	NA	NA	NA	[48]
20	NA	19	MOL:	[49]
16	NA (20–22)	NA	NA	[50]

Compl: complications, Ref: reference number, NA: not available, MOL: mouth opening limitation.
BFP is resilient and does not have muscle [55]. BFP is stable after grafting into the temporomandibular joint and can be detected on MRI 1 year after the operation [56]. In patients receiving maxillary advancement surgery by LeFort I osteotomy, the upper lip usually loses its normal concavity [57]. To improve the upper lip profile, BFP can be used as an augmentation material [58]. Skull base defect after tumor surgery also can be repaired by BFP [58]. After parotid gland resection, BFP can be used for the prevention of Frey syndrome [59]. BFP is also used for repairing perforated maxillary sinus membrane during dental implant surgery [60].

Conclusions
Since the introduction of BFP for the reconstruction of the maxilla [13], many applications have been introduced. BFP has many advantages over other types of flaps. The surgical procedure is simple and has shown a high success rate in various applications. BFP can be used in epithelialization without additional skin graft. The rich vascularity of BFP is an advantage when it is used in a poorly vascularized recipient site. However, its size is a limitation, and repeated usage may not be possible. As the flap is fragile, damage to the vascular pedicle may result in graft loss. Removal of too much of the buccal fat pad may induce facial disfigurement or mouth opening limitation. These limitations should be considered for the clinical application of BFP.

Abbreviation
BFP: Buccal fat pad flap

Acknowledgements
This work was carried out with the support of “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01121404),” Rural Development Administration, Republic of Korea.

Authors’ contribution
KMK and KSG wrote the manuscript. HW and KSG did the critical review. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, 7 Jukhyun-gil, Gangneung 25457, Republic of Korea. 2Hany Dental Clinic, Guri, Republic of Korea.

Received: 29 December 2016 Accepted: 1 February 2017
Published online: 25 February 2017

References
1. Soutar DS, Scheker LR, Tanner NSB, McGregor IA (1983) The radial forearm flap: a versatile method for intra-oral reconstruction. Br J Plast Surg 36(1):1–8
2. Sadig W, Almas K (2004) Risk factors and management of deficient wounds in implant dentistry. Implant Dent 13(2):140–147
3. Ashitani AK, Bohulli B, Kalantar Motamedi MH, Fatemi MJ, Mohammenejad N (2011) Effectiveness of buccal fat in closing residual midpalatal and posterior palatal fistulas in patients previously treated for clefts. J Oral Maxillofac Surg 69(11):e416–e419
4. Ashitani AK, Fatemi MJ, Poohl AH, Habibi M (2011) Closure of palatal fistula with buccal fat pad flap. Int J Oral Maxillofac Surg 40(3):250–254
5. Daf ET (2016) Long-term effectiveness of the pedicled buccal fat pad in the closure of a large oroantral fistula. J Oral Maxillofac Surg 74(9):1718–1722
6. Adams T, Taub D, Rosen M (2015) Repair of oroantral communications by use of a combined surgical approach: functional endoscopic surgery and buccal advancement flap/buccal fat pad graft. J Oral Maxillofac Surg 73(8):1452–1456
7. Toshirihio Y, Nairai Y, Takamurayu Y, Yoshimura H, Tobita T, Yosho A et al (2013) Applicability of buccal fat pad grafting for oral reconstruction. Int J Oral Maxillofac Surg 42(5):604–610
8. Liu YM, Chen GF, Yan JG, Zhao SF, Zhang WM, Zhao S et al (2006) Functional reconstruction of maxilla with BFP, prefabricated titanium mesh and autologous bone grafts. Int J Oral Maxillofac Surg 35(12):1108–1113
9. Melville JC, Turscn R, Shurm JW, Young S, Hanna IA, Marx RE (2016) A technique for the treatment of oral-antral fistulas resulting from medication-related osteonecrosis of the maxilla: the combined buccal fat pad flap and radical sinusotomy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 122(3):287–291
10. El Deeb M, Roszkowski M, Eel Hakim I (1990) Tissue response to hydroxyapatite in induced diabetic and nondiabetic rats: histologic evaluation. J Oral Maxillofac Surg 48(5):476–481
11. Drake DB, Oishi SN (1995) Wound healing considerations in chemotherapy and radiation therapy. Clin Plast Surg 22(1):31–37
12. Colen SR, Shaw WW, McCarthy JG (1986) Review of the morbidity of 300 free-flap donor sites. Plast Reconstr Surg 77(6):948–953
13. Egeydi P (1977) Utilization of the buccal fat pad for closure of oro-antral and/or oro-nasal communications. J Maxillofac Surg 5(6):241–244
14. Arce K (2007) Buccal fat pad in maxillary reconstruction. Atlas Oral Maxillofac Surg Clin North Am 15(1):23–32
15. Singh J, Prasad K, Lalitha RM, Ranganath K (2010) Buccal fat pad and its applications in oral and maxillofacial surgery: a review of published literature (February) 2004 to (July) 2009. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 110(6):698–705
16. Tostevis PM, Ellis H (1995) The buccal fat pad of fat: a review. Clin Anat 8(6):403–406
17. Stuzin JM, Wagstrom L, Kawamoto HK, Baker TJ, Wolfe SA (1990) The anatomy and clinical applications of the buccal fat pad flap. Plast Reconstr Surg 85(1):29–37
18. Poetsch PW, Baumann A, Russmuerler G, Poeschl E, Klug C, Ewers R (2009) Closure of oroantral communications with Bichat’s buccal fat pad flap. J Maxillofac Surg 67(7):1460–1466
19. Alkan A, Dolanmaz D, Uzan E, Erdem E (2003) The reconstruction of oral defects with buccal fat pad flap. Swiss Med Wkly 133(33/34):465–470
20. Abad-Gallegos M, Figueiredo R, Rodriguez-Baeza A, Gay-Escoda C (2011) Use of Bichat’s buccal fat pad for the sealing of oroantral communications. A presentation of 8 cases. Med Oral Patol Oral Cir Bucal 16(2):e215–e219
21. Hanazawa Y, Itoh K, Masabshi T, Sato K (1995) Closure of oroantral communications using a pedicled buccal fat pad graft. J Oral Maxillofac Surg 53(7):771–775
22. Nezafati S, Vafai A, Ghoozadeh M (2012) Comparison of pedicled buccal fat pad flap with buccal flap closure of oro-antral communication. Int J Oral Maxillofac Surg 41(3):624–628
23. Hartam, Pal US, Mohammad S, Singh RK, Singh G, Malunjie LR (2010) Buccal fat pad versus sandwich graft for treatment of oroantral defects: a comparison. Natl J Maxillofac Surg 1(1):6–14
24. Zhang Q, Li L, Tan W, Chen L, Gao N, Bao C (2010) Application of unilateral pedicled buccal fat pad for nasal membrane closure in the bilateral complete cleft palate. J Oral Maxillofac Surg 68(8):2029–2032
25. Levy B, Kasten SJ, Buchanan SR (2009) Utilization of the buccal fat pad flap for congenital cleft palate repair. Plast Reconstr Surg 123(3):1018–1021
26. Kim YK (2001) The use of a pedicled buccal fat pad graft for bone coverage in primary palatoplasty: a case report. J Oral Maxillofac Surg 59(12):1499–1501
27. Musgrave RH, Bremer KE (1960) Complications of cleft palate surgery. Plast Reconstr Surg Transplant Bull 26:189–189
28. Khouw YL, van der Wal KG, Bartels F, van der Biezen JJ (2004) Bilateral palatal reconstruction using 2 pedicled buccal fat pads in rhinolaena aperta after extensive necrotizing tonsillitis: a case report. J Oral Maxillofac Surg 62(6):749–751
29. Gröbe A, Eichhorn W, Hakenk H, Precht C, Schmelze R, Heiland M et al (2011) The use of buccal fat pad (BFP) as a pedicled graft in cleft palate surgery. Int J Oral Maxillofac Surg 40(7):685–689
