Review On Preceding And Perspective Research In Electrochemical Discharge Machining

Lavepreet Singh (punstu@gmail.com)
Galgotias University

Original Article

Keywords: Tool electrode, Electrolytes, Electrochemical discharge machining (ECDM), Gas film formation.

Posted Date: December 8th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1113931/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture on September 14th, 2018. See the published version at https://doi.org/10.1177/0954405418798865.
Abstract

Electrochemical discharge machining is an adaptable machining measure for miniature boring, miniature finishing, and miniature cutting of an assortment of glasses, ceramics, and composites. Electrochemical discharge machining (ECDM), otherwise called flash-assisted compound etching, is a successful miniature machining measure for non-leading materials. It has appeal in Micro Electro Mechanical System (MEMS) applications. Electrochemical discharge machining has ended up being a productive miniature machining measure and altogether utilized for the machining of non-conductive materials. Electro Chemical Discharge Machining (ECDM) is a controlled metal-evacuation measure that is utilized in metal elimination through electric flash disintegration. Because of advancements in technology, the scaled-down products have gained advantages in Lab-on-a-chip devices, including micro-electromechanical frameworks. Electrochemical discharge machining has done a good job of generating miniature openings and channels on electrically non-conductive materials, and it has emerged as a potential competitor. This paper examines the state of craftsmanship in various areas of electrochemical discharge machining, including the workpiece, electrolyte, hardware terminal behavior, gas film arrangement, machining efficiency, and late hybridizations in electrochemical discharge machining. The conclusion focuses on or summarizes potential exploration trends for improving ECDM proficiency also addresses machining issues.

1. Introduction

Non-conductive materials have shown development in a variety of applications, including 'Lab-on-a-chip' devices, micro-electromechanical framework (MEMS), microreactors, biomedical applications, and so on [1]. Different techniques or interactions are used to make small products, such as miniature electrical discharge machining (M-EDM), wire electrical discharge machining (WEDM), and LASER pillar machining. These applications and interaction abilities are restricted and reliant on material properties [2-3]. The majority of such loops are limited to the workpiece's conductive concept. As a result, a machining process that can handle a variety of materials, as well as improved measurement capability, is needed. The electrochemical discharge machining (ECDM) measure is a promising field of exploration in machining of materials independent of their mechanical, warm, or synthetic properties. It is a half-breed machining measure having benefits of electrochemical machining (ECM) just as electrical discharge machining (EDM). The ECDM interaction is all the more definitely utilized for machining electrically non-conductive materials. Other progressed fabricating measures like grating water fly machining (AWJ), ultrasonic machining (USM), etc. are likewise utilized for miniature machining of hard and fragile materials [4-5].

ECDM measure joined the upsides of both EDM and ECM cycle and more suitable for machining of electrically non-conductive materials [6]. The exploration organization investigated the different spaces of ECDM measure and came out with various perspectives on sparkle age, gas film development, material evacuation component, etc. Ghosh [7] asserted that electrical flash is delivered because of exchanging wonder, not because of the breakdown of the protecting gas layer. Despite what is generally expected, Jalali et al. [8] depicted this wonder as a mixture instrument dependent on a mix of nearby warming and
compound carving. Jain et al. [9] proposed the bend discharge valve hypothesis in components of ECDM measure because of irregularity with exchanging wonder of Ghosh. They presumed that discharge attributes of ECDM measure are very like bend discharge by Paschen's bend. But, by Paschen's bend in ECDM measure, the Ghosh comprehensive discharge attributes are similar to Townsend discharge. Through various speculations/reasons on the instrument of the beginning, experts assigned ECDM measure with various names, such as electrochemical flash machining (ECSM) by Jain et al., electrochemical bend machining (ECAM) by Crichton and McGeough [10] electro disintegration machining (EEDM) by Khairy and McGeough [11] miniature electrochemical discharge machining (m-ECDM) by Langen et al. [12] and sparkle helped compound etching (SACE) by Fascio et al. [13].

The ECDM cycle is a mind-boggling metric with massive number of interaction boundaries. Machining limits, instrument material, and electrolyte characteristics are all important factors in ECDM machining accuracy. The machining boundaries include voltage, the distance between anode holes, the obligation cycle, current, extremity, and feed rate, among other things, as well as the instrument material and electrolyte properties include electrolyte type, electrolyte focus, apparatus substance, system measurement, and so on. This article intends to give a far-reaching condition of-craftsmanship writing survey in various spaces of ECDM interaction like workpiece material, electrolyte, instrument anode, and apparatus math, gas film development, and machining nature of ECDM measure (Fig.1).

2. Behavior Of Workpiece Materials During The Machining On Ecdm Process

Machine rigid, soft, non-conductive and conductive materials such as steel plates, pottery, composites, glass, and the super combination can all benefit from the process of ECDM. The writing description of different materials machined on ECDM is explained in this segment.

2.1 Ceramics and glass

Glass has distinguishing characteristics, such as compound obstruction and transparency, responsible for its use in Lab-on-a-Chip devices and micro-electromechanical systems (MEMS). In addition to these details, a few scientists defined the machining behavior of glass using ECDM over a period of time. SACE was used by Wuthrich et al. to bore miniature openings in the glass. With the addition of chemicals, a cleanser solution for electrolytes, the researchers observed improvements in gas film properties. The developers discovered that applying ultrasonic vibrations to the electrolyte in an ECDM measure enhances its machining speed, as evidenced by improved electrolyte rinsing while glass machining. In any case, the side-protected instrument cathode utilized in the experimentation decreases the overcut [14–16]. Yang et al. [17] fuse round instrument cathodes in machining of quartz by ECDM. The utilization of circular device terminals decreased the insecurities experienced in the hydrodynamic system. It propels electrolyte flushing in a hydrodynamic system in view of the low contact zone between the instrument terminal and workpiece. With a modification in the tool electrode tip with electrolyte flow process in the ECDM process, ceramics can be easily shaped.
2.2 Composites, steel and super-alloys

As previously discussed, and analyzed, ECDM is primarily used for machining nonconductive materials. The ability of ECDM to interact has enabled it to be applied to conductive materials such as super amalgams, metal grid composites, and steel. Hofy and McGeough [18] reported steel machining with wire electrochemical curve machining (WEBCAM) in 1988. They attempted to increase machining accuracy by using coaxial electrolyte flushing. Liu et al. [19] accounted for machining of metal grid composite (MMC) with the ECDM measure in 2010. During ECDM machining of MMC, they looked at the effects of current, obligation cycle, beat volume, and electrolyte fixation. The designers discovered that as the process constraints expand, the machining zone's starting rate increases. The nickel-based super-combinations are widely utilized in airplane motors because of their unrivaled mechanical and warmth safe properties [20-21]. For machining film cooling openings in super-alloys, an epic half-and-half technique, namely tube cathode quick electrochemical discharge boring (THE CDD), is adequate [22-23]. Yan et al. looked at how the inward width of a cylindrical anode affects the MRR and surface properties of super alloys [24]. Because of better flushing operation, MRR is increased under this study, as is the inward measurement of the cylindrical terminal [25].

2.3. Electrolytes

Gas film creation and compound shaping on the machining surface are dependent on the electrolytes used in the ECDM activity. Numerous researchers used various electrolytes throughout ECDM machining, including NaNO3, KOH, NaClO3, H2SO4, NaOH, NaCl, KCl, and pure water. The yield quality characteristics of machined surfaces are influenced by electrolyte characteristics such as electrical conductivity, thickness, fixation, and temperature [26-27]. Yang et al. [28] looked at the effect of various electrolyte characteristics such as electrolyte, temperature, and the ECDM measure on glass machining. They discovered the effects of acidic, nonpartisan, and basic electrolytes on the rate of machining. The acidic electrolyte, such as H2SO4 and HCl, remains unequipped for machine glass in the ECDM interaction, regardless of the age of the green sparkle. In reality, unbiased electrolytes such as KCl and NaCl produce a low machining rate with period of red flash. Be that as it may, the antacid electrolytes, for example, NaOH and KOH produce high MRR when contrasted with unbiased electrolytes. This conduct of antacid electrolyte is a direct result of the presence of OH2 particles, which advances the drawing rate in the wake of starting during the ECDM interaction. The expansion in temperature and grouping of electrolytes yields a high machining rate because of increased flash power and scratching rate.

2.4. Tool electrode behavior:

Using an ECDM measure, the analysts investigated various instrument terminal materials such as tungsten carbide, tempered steel, tungsten, copper, high carbon steel, and rapid steel throughout machining. The different metallurgical and mechanical characteristics of the apparatus cathode influence the MRR during the ECDM interaction. Due to its advantageous properties such as wear resistance, low explicit warmth limit, toughness, and high softening point, the tungsten carbide device
cathode has surpassed other device anodes in popularity. It's interesting to remember that device anodes with high warm conductivity result in the discharge system's prevailing machining execution. However, this effect is limited in the hydrodynamic system due to the upward drag force caused by liquid material [29]. SACE measure is used by Wuthrich et al. [30] to join needle form apparatus terminal in glass machining. The creators uncovered that needle shape device cathodes sped up when contrasted with round and hollow apparatus terminals. It is a result of assembled flash force at the apparatus cathode tip. Yang et al. [17] contemplated the impact of circular device terminals in ECDM measure. The ECDM interaction strengthens a new electrolyte source in the machining area by joining circular unit anodes. Because of the small contact area in between the apparatus cathode and the work material, this happened. In the ECDM method, a circular instrument anode improves the machining rate and the soundness of the gas film. The main issue at larger machining depths is ensuring proper electrolyte flow in the machining region.

2.5. Formation of the Gas film

The position of the gas film within machining area is a vital aspect of the ECDM measure that governs overcut, delimitation, and the machined surface. Electrolyte dissipation and hydrogen blend rise on the cathode surface are the basic rules that govern gas film production [31]. Due to the inadmissibility of gas film flimsiness, while machining, experts sought to monitor and settle the gas film framework with many input measure boundaries. Present thickness, wetting of hardware terminals, bubble separation rate, gas creation rate, and so on all have an effect on gas film production [32]. The gas film's strength ensures that ECDM measure is simple to use in modern machining. Yang et al. [33] looked at how the conduct of gas film arrangement changed as the surface harshness of the apparatus anode increased in the ECDM test. The researchers discovered that the surface unpleasantness of hardware cathodes has a significant impact on the wettability of hardware anodes.

2.6. Quality of Machining

With the development of the ECDM cycle, few review papers on splits, HAZ, and the surface existence of machined surfaces have been accounted. The majority of the available exploration studies, therefore, concentrated on MRR and overcut. In any case, when it comes to micromachining, HAZ, breaks, and surface efficiency are critical considerations to keep in mind [34-35].

The electrolyte and its characteristics have a significant impact on the machining aspect of machined surfaces. Nguyen et al. [36] investigated the effect of electrolyte concentration on the morphology of machined surfaces. Researchers discovered that raising the electrolyte level in the ECDM measure causes a precarious gas film and poor surface quality due to lopsided flashes.

3. Future Research Possibilities And Scope In Ecdm

This review paper reviews the work performed in various ECDM domains, as shown in Fig. 3
A significant amount of work can be done to enhance the capacity of ECDM to quantify things. The major distributions of ECDM have indeed been found to be in the region of MRR, accompanied by hybridization and machining efficiency. Fig. 4 depicts the evolution of the ECDM mechanism in different domains over the last ten years.

As discussed in past studies, a few investigations on crossover ECDM, gas film marvel, device anode shapes and nature of electrolytes have likewise been attempted. From the accessible writing, it has been presumed that the accompanying spaces of ECDM measure should be investigated at broadened length:

- Researchers finished up various thoughts on instruments starting in ECDM measure: exchanging marvel, neighborhood warming and synthetic carving, and curve discharge valve hypothesis. The creators uncovered that mixture of hydrogen rises on instrument cathode surfaces causes covering activity in exchanging views. As a result, the interaction between the system terminal surface and the electrolyte is washed out, causing the current to drop to zero after a short period of time. By using a high-speed shutter lens in the ECDM process, the various phases in the development of hydrogen bubble layers and its degradation can be analyzed in the future.
- According to the literature, drilling a void in a hydrodynamic framework results in several anomalies; hence, improvements in ECDM efficiency in a hydrodynamic framework must be investigated.
- Vibration-assisted ECDM, or vibration directed to the tool electrode and electrolyte, has been the subject of several research investigations, which increases the MRR, thus degrading the surface quality. Surface properties are more critical than MRR in miniaturized products such as MEMS and Lab-on-a-chip products. As a result, efforts must be made to optimize the impact of vibration in improving the quality characteristics of micro-products [37].
- In comparison to certain other fields, the review article reported that few studies are conducted on gas film formation. The principle behind creating gas films is not well established, so more research is needed throughout this field.
- According to the reports, the electrolyte being used in ECDM produces fumes that are extremely hazardous to human health and the atmosphere during machining. As a result, work is underway to find environmentally friendly electrolytes. With such a factor continuing, considerable effort will be required to explore this area.
- In ECDM, the certain researcher identified their findings on the development of nanoparticles through the discharge phenomena. This new application of discharge phenomena in nanoscience is still in its early stages. As a result, transforming this into industrial application necessitates a significant amount of work [38].

4. Conclusions

After exhaustive analysis in various domains of ECDM, the major conclusions are drawn and reported below:
• With the aid of an abrasive coated tool electrode, the performance quality characteristic of overcut rate decreases due to the presence of insulating abrasives on the electrode's peripheral layer.

• When a spherical tool electrode is used instead of a cylindrical, overcut decreases due to decreased contact area with the spherical tool electrode, which increased electrolyte flow.

• MRR can be improved with pounding helped ECDM, vibration-helped ECDM, borer helped ECDM, and rounded anode ECDM.

• With an expansion in warm conductivity of the hardware terminal, machining rate was expanded in the discharge system, while it showed backward drifts in the hydrodynamic design. It is a direct result of the increment in thickness of liquid material in the machining zone.

• Vibration-assisted ECDM can solve a variety of issues that arise while machining within the hydrodynamic framework.

• TWR is profoundly subject to instrument material properties like dissolving points, strength, hardness, and structure. Concerning these properties, the tungsten carbide instrument terminal accomplishes at least TWR when contrasted with other apparatus cathodes.

• The introduction of surfactants, powdered graphite, and powdered SiC to the electrolyte in the ECDM phase can indeed increase surface quality.

• Surface texturing of the tool vibration-assisted electrolyte, electrode, and adding surfactants to the electrolyte are all ways to monitor the gas film.

• Due to improved flushing operation, the flimsiness of the gas film structure encountered when machining at higher depths, hydrodynamic system, can be resolved with the assistance of titrated electrolyte, level side device terminal, and vibration-aided anode.

• The process of electrochemical discharge (ECDM) finds application in nanoscience for the processing of nanoparticles.

Declarations

Availability of data and materials: The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials mentioned in references.

Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. There are no relevant financial or non-financial competing interests to report.

Funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors

Authors' contributions: NA

Acknowledgements: The authors would like to thank Department of Mechanical Engineering, Galgotias University for the supply of reference material and use of their facilities which made this research
possible.

References

1. Haebrele S and Zengerle R. Microfluidic platforms for lab-on-a-chip applications. Lab Chip 2007; 7: 1094–1110
2. Liu Q, Zhang Q, Zhu G, et al. Effect of electrodes size on the performance of micro EDM. Mater Manuf Process 2016; 31(4): 391–396.
3. Geng X, Chi G, Wang Y, et al. Study on micro rotating structure using micro wire electrical discharge machining. Mater Manuf Process 2014; 29: 274–280.
4. Yuvraj N and Kumar MP. Multi response optimization of abrasive water jet cutting process parameters using TOPSIS approach. Mater Manuf Process 2015; 30: 882–889.
5. Cheema MS, Dvivedi A and Sharma AK. Tool wear studies in fabrication of microchannels in ultrasonic micromachining. Ultrasonics 2015; 57: 57–64.
6. Chak SK and Rao PV. Trepanning of Al2O3 by electrochemical discharge machining (ECDM) process using an abrasive electrode with pulsed DC supply. Int J Mach Tool Manu 2007; 47: 2061–2070.
7. Ghosh A. Electrochemical discharge machining: principle and possibilities. Sadhana 1997; 22(3): 435–447.
8. Jalali M, Maillard P and Wuthrich R. Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges. J Micromech Microeng 2009; 19: 045001.
9. Jain VK, Dixit PM and Pandey PM. On the analysis of electrochemical spark machining processes. Int J Mach Tool Manu 1999; 39(1): 165–186.
10. Crichton IM and Mcgeough JA. Studies of discharge mechanism in electrochemical arc machining. J Appl Electrochem 1985; 15: 113–119.
11. Khairy ABE and Mcgeough JA. Die-sinking by electroerosion-dissolution machining. CIRP Ann: Manuf Techn 1990; 39: 191–195.
12. Langen H, Breguet JM and Bleuler H. Micro electrochemical discharge machining of glass. Int J Electr Mach 1998; 3: 65–69.
13. Fascio V, Wuthrich R and Bleuler H. Spark assisted chemical engraving in the light of electrochemistry. Electrochim Acta 2004; 49: 3997–4003
14. Wuthrich R, Fascio V and Bleuler H. A stochastic model for electrode effects. Electrochim Acta 2004; 49: 4005–4010.
15. Wuthrich R, Comninellis C and Bleuler H. Bubble evolution on vertical electrodes under extreme current densities. Electrochim Acta 2005; 50: 5242–5246.
16. Wuthrich R, Hof LA, Lal A, et al. Physical principles and miniaturization of spark assisted chemical engraving (SACE). J Micromech Microeng 2005; 15: S268–S275.
17. Yang CK, Wu KL, Hung JC, et al. Enhancement of ECDM efficiency and accuracy by spherical tool electrode. Int J Mach Tool Manu 2011; 51: 528–535.
18. Hofy HE and Mcgeough JA. Evaluation of an apparatus for electrochemical arc wire-machining. J Eng Ind 1988; 110: 119–123.
19. Liu JW, Yue TM and Guo ZN. An analysis of the discharge mechanism in electrochemical discharge machining of particulate reinforced metal matrix composites. Int J Mach Tool Manu 2010; 50: 86–96.
20. Akhtar W, Sun J, Sun P, et al. Tool wear mechanism in machining of Nickel based super-alloys: a review. Front Mech Eng 2014; 9(2): 106–119.
21. Yadav US and Yadava V. Experimental investigation on electrical discharge diamond drilling of nickel-based superalloy aerospace material. Proc IMechE, Part B: J Engineering Manufacture 2017; 231(7): 1160–1168
22. Yan Z, Zhengyang X, Jun X, et al. Effect of tube electrode inner diameter on electrochemical discharge machining of nickel-based superalloy. Chinese J Aeronaut 2016; 29(4): 1103–1110.
23. Zhang Y, Xu Z, Zhu Y, et al. Effect of tube-electrode inner structure on machining performance in tube electrode high-speed electrochemical discharge drilling. J Mater Process Tech 2016; 231: 38–49.
24. Yan Z, Zhengyang X, Yun Z, et al. Machining of film cooling holes in a single-crystal superalloy by high-speed electrochemical discharge machining. Chinese J Aeronaut 2016; 29(2): 560–570.
25. Zhang Y, Xu Z, Zhu D, et al. Tube electrode high-speed electrochemical discharge drilling using low-conductivity salt solution. Int J Mach Tool Manu 2015; 92: 10–18
26. Solaiyappan A and Karuppan S. Investigation of electrochemical machining characteristics of 20MnCr5 alloy steel using potassium dichromate mixed aqueous NaCl electrolyte and optimization of process parameters. Proc IMechE, Part B: J Engineering Manufacture 2015; 229(11): 1984–1996.
27. Sabahi N, Razfar MR and Hajian M. Experimental investigation of surfactant-mixed electrolyte into electrochemical discharge machining (ECDM) process. J Mater Process Tech 2017; 250: 190–202.
28. Yang CT, Ho SS and Yan BH. Micro hole machining of borosilicate glass through electrochemical discharge machining (ECDM). Key Eng Mat 2001; 196: 149–166
29. Mousa M, Allagui A, Ng HD, et al. The effect of thermal conductivity of the tool electrode in spark-assisted chemical engraving gravity-feed micro drilling. J Micromech Microeng 2009; 19: 015010.
30. Wuthrich R, Spelter U, Wu Y, et al. A systematic characterization method for gravity-feed micro-hole drilling in glass with spark assisted chemical engraving (SACE). J Micromech Microeng 2006; 16: 1891–1896
31. Wuthrich R and Ziki JDA. Micromachining using electrochemical discharge phenomenon. 2nd ed. Oxford Elsevier
32. Vogt H and Thonstad J. Review of the cause of anode effects in aluminium electrolysis. Aluminium 2003; 79: 98–102
33. Yang CK, Cheng CP, Mai CC, et al. Effect of surface roughness of tool electrode materials in ECDM performance. Int J Mach Tool Manu 2010; 50: 1088–1096.

34. Jain VK and Chouksey AK. A comprehensive analysis of three-phase electrolyte conductivity during electrochemical micromachining/micromachining. Proc IMechE, Part B: J Engineering Manufacture. Epub ahead of print 13 February 2017. DOI: 10.1177/0954405417690558.

35. Leese R and Ivanov A. Electrochemical micromachining: review of factors affecting the process applicability in micro-manufacturing. Proc IMechE, Part B: J Engineering Manufacture 2018; 232(2): 195–207.

36. Nguyen KH, Lee PA and Kim BH. Experimental investigation of ECDM for fabricating micro structures of quartz. Int J Precis Eng Man 2015; 16(1): 5–12

37. Han MS, Min BK and Lee SJ. Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte. J Micromech Microeng 2009; 19: 065004.

38. Wuthrich R and Allagui A. Building micro and nanosystems with electrochemical discharges. Electrochimica Acta 2010; 55: 8189–8196.

Figures

![Figure 1](image-url)

Figure 1

Domains of ECDM process reviewed in this study
Figure 2

Cause and effect diagram of ECDM process.

Figure 3

Different tool electrode geometries used in ECDM process.
Figure 4

Showing the percentage of publications in different ECDM domains over the last ten years.

Figure 5

Showing different research areas for future research work in the ECDM process