Electronic Supplementary Material

Benthic-pelagic coupling in the Barents Sea: an integrated data-model framework

Felipe S. Freitas*,1,2, Katharine R. Hendry1, Sian F. Henley3, Johan C. Faust4, Allyson C. Tessin4,5, Mark A. Stevenson6, Geoffrey D. Abbott6, Christian März1, Sandra Arndt2

http://dx.doi.org/10.1098/rsta.2019.0359

1 School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol BS8 1RJ UK
2 BGeosys, Department of Earth and Environmental Sciences, CP 160/02, Université Libre de Bruxelles, 1050 Brussels, Belgium
3 School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK
4 School of Earth & Environment, University of Leeds, Leeds LS2 9JT, UK
5 Department of Geology, Kent State University, Kent, OH, 4424, USA
6 School of Natural and Environmental Sciences, Drummond Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK

* Corresponding author: felipe.salesdefreitas@bristol.ac.uk
Table S1. Reaction network implemented in the organic matter degradation model for the Barents Sea [1,2].

Reaction	Pathway
Primary redox reactions	
r_1	Aerobic respiration
r_2	Denitrification
r_3	HR Manganese reduction
r_4	HR Iron reduction
r_5	Organoclastic sulfate reduction
r_6	Methanogenesis
Secondary redox reactions	
r_7	Nitrification
r_8	Manganese reoxidation by oxygen
r_9	Iron reoxidation by HR manganese
r_{10}	Iron reoxidation by PR manganese
r_{11}	Iron reoxidation by oxygen
r_{12}	Sulfide oxidation by oxygen
r_{13}	Sulfide oxidation by HR manganese
r_{14}	Sulfide oxidation by PR manganese
r_{15}	Sulfide oxidation by HR iron
r_{16}	Sulfide oxidation by MR iron
r_{17}	Sulfide oxidation by PR iron
r_{18}	Anaerobic oxidation of methane (AOM) coupled to sulfate reduction
r_{19}	Methane oxidation by oxygen
r_{20}	Iron sulfide oxidation by oxygen
Other reactions	
r_{21}	HR Mn ageing
r_{22}	HR Fe ageing

HR (Highly Reactive); MR (Moderately Reactive); (PR) Poorly Reactive
Table S2. Stoichiometry and reaction rates implemented in the organic matter degradation model for the Barents Sea [1,2].

Stoichiometry	Reaction rate

Primary redox reactions

Reaction	Stoichiometry	Reaction rate
r1	$(CH_3O)_x(NH_3)_y(H_3PO_4)_z + (x + 2)yO_2 + (y + 2)2HCO_2 \rightarrow (x + y + 2)CO_2 + yNH_4^+ + zHPO_4^{2-} + (x + 2)y + 2)H_2O$	$r_1 = v \cdot (a + age)^{-1} \cdot CH_3O \cdot f_{o_2}$
r2	$(CH_3O)_x(NH_3)_y(H_3PO_4)_z + \left(\frac{4x+3y}{5}\right)NO_3^- + \left(\frac{4x+3y+10z}{5}\right)CO_2 + \left(\frac{4x+3y+10z}{5}\right)HCO_3^- + zHPO_4^{2-} + \left(\frac{3x+6y+10z}{5}\right)H_2O$	$r_2 = v \cdot (a + age)^{-1} \cdot CH_3O \cdot f_{NO_3}$
r3	$(CH_3O)_x(NH_3)_y(H_3PO_4)_z + 2x HR MnO_2 + (x + y + 2)CO_2 + (x + y + 2)H_2O \rightarrow 2x Mn^{2+} + (4x + y + 2)HCO_3^- + yNH_4^+ + HPO_4^{2-}$	$r_3 = v \cdot (a + age)^{-1} \cdot CH_3O \cdot f_{HR MnO_2}$
r4	$(CH_3O)_x(NH_3)_y(H_3PO_4)_z + 4x HR Fe(OH)_3 + (7x + y + 2)CO_2 + 4xFe^{2+} + (8x + y + 2)HCO_3^- + yNH_4^+ + zHPO_4^{2-} + (3x - y + 2)H_2O$	$r_4 = v \cdot (a + age)^{-1} \cdot CH_3O \cdot f_{HR Fe(OH)_3}$
r5	$(CH_3O)_x(NH_3)_y(H_3PO_4)_z + \frac{1}{2}SO_4^{2-} + (y - 2)2CO_2 + (y - 2)H_2O \rightarrow \frac{1}{2}H_2S + (x + y - 2)HCO_3^- + yNH_4^+ + zHPO_4^{2-}$	$r_5 = v \cdot (a + age)^{-1} \cdot CH_3O \cdot f_{SO_4}$
r6	$(CH_3O)_x(NH_3)_y(H_3PO_4)_z + (y - 2)H_2O \rightarrow \left(\frac{y+2}{2}\right)CO_2 + (y - 2)HCO_3^- + yNH_4^+ + zHPO_4^{2-} + \frac{1}{2}CH_4$	$r_6 = v \cdot (a + age)^{-1} \cdot CH_3O \cdot f_{CH_4}$

Secondary redox reactions

Reaction	Stoichiometry	Reaction rate
r7	$NH_4^+ + 2O_2 + 2HCO_2 \rightarrow NO_3^- + 2CO_2 + 3H_2O$	$r_7 = k_7 \cdot NH_4^+ \cdot O_2$
r8	$Mn^{2+} + 2O_2 + 2HCO_2 \rightarrow HR MnO_2 + 2CO_2 + H_2O$	$r_8 = k_8 \cdot Mn^{2+} \cdot O_2$
r9	$2Fe^{2+} + HR MnO_2 + 2HCO_2 + 2H_2O \rightarrow HR Fe(OH)_3 + Mn^{2+} + 2CO_2$	$r_9 = k_9 \cdot Fe^{2+} \cdot HR MnO_2$
r10	$2Fe^{2+} + PR MnO_2 + 2HCO_2 + 2H_2O \rightarrow HR Fe(OH)_3 + Mn^{2+} + 2CO_2$	$r_{10} = k_{10} \cdot Fe^{2+} \cdot PR MnO_2$
r11	$Fe^{2+} + 3O_2 + 2HCO_2 + 2H_2O \rightarrow HR Fe(OH)_3 + 2CO_2$	$r_{11} = k_{11} \cdot Fe^{2+} \cdot O_2$
r12	$H_2S + 2O_2 + 2HCO_2 \rightarrow SO_4^{2-} + 2CO_2 + 2H_2O$	$r_{12} = k_{12} \cdot (HS^- + H_2S) \cdot O_2$
r13	$H_2S + HR MnO_2 + 2CO_2 \rightarrow Mn^{2+} \rightarrow S_2O_3^- + 2HCO_2$	$r_{13} = k_{13} \cdot (HS^- + H_2S) \cdot HR MnO_2$
r14	$H_2S + PR MnO_2 + 2CO_2 \rightarrow Mn^{2+} \rightarrow S_2O_3^- + 2HCO_2$	$r_{14} = k_{14} \cdot (HS^- + H_2S) \cdot HR MnO_2$
r15	$H_2S + 2HR Fe(OH)_3 + 4CO_2 \rightarrow 2Fe^{2+} + S_2O_3^- + 4HCO_3^- + H_2O$	$r_{15} = k_{15} \cdot (HS^- + H_2S) \cdot HR Fe(OH)_3$
r16	$H_2S + 2MR Fe(OH)_3 + 4CO_2 \rightarrow 2Fe^{2+} + S_2O_3^- + 4HCO_3^- + H_2O$	$r_{16} = k_{16} \cdot (HS^- + H_2S) \cdot MR Fe(OH)_3$
r17	$H_2S + 2PR Fe(OH)_3 + 4CO_2 \rightarrow 2Fe^{2+} + S_2O_3^- + 4HCO_3^- + H_2O$	$r_{17} = k_{17} \cdot (HS^- + H_2S) \cdot PR Fe(OH)_3$
r18	$CH_4 + CO_2 + SO_4^{2-} \rightarrow 2HCO_3^- + H_2S$	$r_{18} = k_{18} \cdot CH_4 \cdot SO_4^{2-}$
r19	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$	$r_{19} = k_{19} \cdot CH_4 \cdot O_2$
r20	$FeS + O_2 \rightarrow Fe^{2+}SO_4^{2-}$	$r_{20} = k_{20} \cdot FeS \cdot O_2$

Other reactions

Reaction	Stoichiometry	Reaction rate
r21	$HR MnO_2 \rightarrow PR MnO_2$	$r_{21} = k_{21} \cdot HR MnO_2$
r22	$HR Fe(OH)_3 \rightarrow MR Fe(OH)_3$	$r_{22} = k_{22} \cdot HR Fe(OH)_3$
Table S3. General model parameters implemented in the organic matter degradation model for the Barents Sea.

Parameter	Unit	Value	Reference	
Transport parameters				
Length of model domain	L	cm	100	*This study*
Bioirrigation coefficient	a_ν	yr$^{-1}$	10	[2]
Bioirrigation attenuation depth	x_{ari}	cm	3.5	[2]
Oxygen molecular diffusion coeff	D_{O_2}	cm2 yr$^{-1}$	380.44	[3]
Nitrate molecular diffusion coeff	$D_{\text{NO}_3^-}$	cm2 yr$^{-1}$	394.58	[3]
Sulfate molecular diffusion coeff	$D_{\text{SO}_4^{2-}}$	cm2 yr$^{-1}$	173.92	[3]
Ammonium molecular diffusion coeff	$D_{\text{NH}_4^+}$	cm2 yr$^{-1}$	395.87	[3]
Phosphate molecular diffusion coeff	$D_{\text{PO}_4^{3-}}$	cm2 yr$^{-1}$	112.35	[3]
Manganese molecular diffusion coeff	$D_{\text{Mn}^{2+}}$	cm2 yr$^{-1}$	123.38	[3]
Iron molecular diffusion coeff	$D_{\text{Fe}^{2+}}$	cm2 yr$^{-1}$	136.24	[3]
Hydrogen sulfide molecular diffusion coeff	$D_{\text{H}_2\text{S}}$	cm2 yr$^{-1}$	331.61	[3]
Porosity	ϕ	–	Site-specific	See table S4
Bioturbation coefficient	D_{bio}	cm2 yr$^{-1}$	Site-specific	See table S4
Bioturbation depth	z_{bio}	cm	Site-specific	See table S4
Sedimentation rate	ω	cm yr$^{-1}$	Site-specific	See table S4
Reaction parameters				
Stoichiometry constants	$x/y/z$	–	106/12/1	[2]
OM Scaling parameter	v	–	variable	[4]
OM Shaping parameter	a	yr	variable	[4]
OM reactivity – multi-G	k_{MG}	yr$^{-1}$	$10^{-15} - \log(\alpha) + 2$	*This study*
OM age	age	yr	variable	[5]
Oxygen half-saturation constant	K_{O_2}	M	$8.0 \cdot 10^{-9}$	[3]
Nitrate half-saturation constant	$K_{\text{NO}_3^-}$	M	$5.0 \cdot 10^{-9}$	[3]
Manganese half-saturation constant	$K_{\text{MnO}_4^2}$	M	$5.0 \cdot 10^{-6}$	[3]
Iron half-saturation constant	$K_{\text{Fe(OH)}_3}$	M	$1.25 \cdot 10^{-3}$	[3]
Sulfate half-saturation constant	$K_{\text{SO}_4^{2-}}$	M	$1.0 \cdot 10^{-7}$	[3]
Table S4. Site-specific transport parameters adopted at each studied location along a 30°E S–N transect in the Barents Sea.

Parameter	Unit	B13	B14	B15	B16	B17	
Porosity at sediment-water interface	φ	–	0.89	0.91	0.92	0.82	0.82
Porosity at depth	φ_∞	–	0.62	0.71	0.62	0.50	0.62
Porosity attenuation	φ_ått	–	0.15	0.18	0.10	0.10	0.10
Bioturbation coefficient	D_bio [6]	cm² yr⁻¹	6.0	4.0	2.0	2.5	2.0
Bioturbation depth	z_bio [6]	cm	2	4	5	5	4
Sedimentation rate	ω [7]	cm yr⁻¹	0.05	0.05	0.06	0.05	0.05
Temperature	T [8]	ºC	1.76	1.94	−1.50	−1.45	1.75
Salinity	S [8]	–	35	35	35	35	35
Water depth	h [8]	m	355	290	330	294	291
Table S5. Site-specific reaction parameters determined in this study for each studied location along a 30°E S–N transect in the Barents Sea. Parameters correspond to reaction network outlined in Table S1 and Table S2.

Parameter	Unit	B13	B14	B15	B16	B17
\(k_7 \)	M\(^{-1}\) yr\(^{-1}\)	\(1.5 \cdot 10^7 \)	\(1.5 \cdot 10^7 \)	\(1.5 \cdot 10^{11} \)	\(1.5 \cdot 10^9 \)	\(1.5 \cdot 10^{16} \)
\(k_8 \)	M\(^{-1}\) yr\(^{-1}\)	\(2.0 \cdot 10^9 \)	\(2.0 \cdot 10^4 \)	\(2.0 \cdot 10^8 \)	\(2.0 \cdot 10^9 \)	\(2.0 \cdot 10^{10} \)
\(k_9 \)	M\(^{-1}\) yr\(^{-1}\)	\(2.0 \cdot 10^7 \)	\(2.0 \cdot 10^7 \)	\(2.0 \cdot 10^8 \)	\(2.0 \cdot 10^9 \)	\(2.0 \cdot 10^9 \)
\(k_{10} \)	M\(^{-1}\) yr\(^{-1}\)	\(2.0 \cdot 10^8 \)				
\(k_{11} \)	M\(^{-1}\) yr\(^{-1}\)	\(1.0 \cdot 10^8 \)	\(1.0 \cdot 10^9 \)			
\(k_{12} \)	M\(^{-1}\) yr\(^{-1}\)	\(1.0 \cdot 10^9 \)				
\(k_{13} \)	M\(^{-1}\) yr\(^{-1}\)	\(1.0 \cdot 10^9 \)				
\(k_{14} \)	M\(^{-1}\) yr\(^{-1}\)	\(1.0 \cdot 10^9 \)				
\(k_{15} \)	M\(^{-1}\) yr\(^{-1}\)	\(1.0 \cdot 10^9 \)				
\(k_{16} \)	M\(^{-1}\) yr\(^{-1}\)	\(1.0 \cdot 10^9 \)				
\(k_{17} \)	M\(^{-1}\) yr\(^{-1}\)	\(1.0 \cdot 10^7 \)				
\(k_{18} \)	M\(^{-1}\) yr\(^{-1}\)	\(5.0 \cdot 10^6 \)				
\(k_{19} \)	M\(^{-1}\) yr\(^{-1}\)	\(1.0 \cdot 10^{13} \)				
\(k_{20} \)	M\(^{-1}\) yr\(^{-1}\)	\(1.0 \cdot 10^9 \)				
\(k_{21} \)	M\(^{-1}\) yr\(^{-1}\)	\(6.0 \cdot 10^{-1} \)				
\(k_{22} \)	M\(^{-1}\) yr\(^{-1}\)	\(6.0 \cdot 10^{-1} \)				
Table S6. Model-derived relative contributions of each metabolic pathway to total rates of heterotrophic organic matter degradation.

Site	Aerobic respiration	Denitrification	Manganese reduction	Iron reduction	Sulfate reduction
B13	64.1	4.2	0.5	0.5	30.8
B14	52.6	8.3	7.3	3.1	28.7
B15	52.9	11.6	0.01	0.4	35.1
B16	74.6	3.8	2.9	0.4	18.2
B17	43.6	8.2	17.0	0.8	30.4
Table S7. Model-derived relative contributions of each transport pathway to total ammonium and phosphate benthic fluxes across the sediment-water interface.

Site	Diffusion	Bioturbation	Bioirrigation	Advection	Diffusion	Bioturbation	Bioirrigation	Advection
B13	59.2	1.1	39.7	<0.01	90.1	5.9	4.0	<0.01
B14	92.9	1.1	6.0	<0.01	94.3	3.9	1.8	<0.01
B15	31.2	0.2	68.6	<0.01	90.7	2.2	7.1	<0.01
B16	76.8	0.8	22.4	<0.01	93.4	3.4	3.2	<0.01
B17	82.8	0.6	16.6	<0.01	94.8	2.4	2.9	<0.01
Figure S1. Oxygen concentration profiles measured in bottom waters and sediments along the 30°E S–N transect in the Barents Sea in July 2019 (RRS James Clark Ross – JR18006) [9]. Profiles were determined in 2–3 intact cores containing visually undisturbed bottom water and surface sediments from independent megacorer deployments (coloured dots) at each station. Depth profiles measured direct from cores using a FireSting O2-Mini sensor (Pyro Science) mounted on a plastic support with a mobile arm which allowed data acquisition at 0.5–1.0 cm scale. Dashed line represents the sediment-water interface. No data available at B17 since this station was inaccessible at the time of sampling.
Figure S2. Depth evolution of heterotrophic organic matter degradation rates along the 30°E S–N transect in the Barents Sea. Rates are calculated assuming steady-state conditions and are derived from the primary redox reactions in Table S1 and S2. The top row (a–e) shows the depth profiles of total rates of degradation, and the bottom row (f–j) displays the depth evolution of relative contribution for each respiration pathway.
Table S8. Measured downcore concentration profiles used to inform the data-model fitting at site B13 (cruise JR16006 – July 2017).

Event	Depth cmbsf	Porewater	Sediment						
	NO_3^- μM	NH_4^+ μM	PO_4^{3-} μM	Mn^{2+} μM	Fe^{2+} μM	Event	Depth cmbsf	TOC (R1)	TOC (R2)
								wt%	wt%
E101	0.5	12.8	2.1	1.2	0.0	0.0	0.25	2.25	2.201
	1.5	11.9	2.3	1.3	0.0	0.0	0.75	2.061	2.002
	2.5	6.6	9.4	1.2	1.1	9.8	1.25	1.935	1.984
	4.5	0.9	30.1	1.2	1.9	56.2	1.75	1.874	
	6.5	0.6	32.6	1.1	1.3	27.8	2.5	1.829	1.946
	8.5	0.8	39.6	2.0	1.6	26.1	3.5	1.975	1.908
	10.5	1.9	24.8	1.2	2.3	26.6	4.5	1.904	
	12.5	0.7	30.5	2.6	3.4	52.8	5.5	1.898	1.917
	14.5	0.9	29.7	0.7	3.2	50.6	6.5	1.776	1.796
	16.5	1.0	31.3	0.8	3.0	48.1	7.5	1.802	1.747
	18.5	1.0	36.6	0.5	3.2	54.1	8.5	1.616	1.69
	20.5	0.6	36.7	0.4	4.0	68.7	9.5	1.525	1.432
	25.5	0.5	37.8	0.2	3.8	68.7	10.5	1.399	1.472
							11.5	1.386	1.464
E102	0.5	9.0	1.1	0.8	0.8	0.0	12.5	1.373	1.458
	1.5	6.4	9.2	1.8	10.9	45.2	13.5	1.361	1.296
	2.5	2.5	27.2	2.6	10.5	83.6	14.5	1.261	1.221
	4.5	1.7	41.3	1.2	8.8	79.1	15.5	1.257	1.237
	6.5	0.9	46.2	1.2	11.3	112.9	16.5	1.042	1.146
	8.5	1.3	40.2	2.2	12.6	113.0	17.5	1.24	1.24
	10.5	0.7	39.1	1.8	16.2	102.1	18.5	1.109	1.196
	12.5	2.0	24.7	3.0	7.3	37.9	19.5	1.212	1.208
	14.5	0.6	36.3	2.4	6.1	60.7	19.5	1.212	1.208
	16.5	0.8	36.5	2.6	5.1	43.8	19.5	1.212	1.208
	18.5	0.7	41.8	1.5	5.6	55.2	19.5	1.212	1.208
	20.5	0.5	44.9	0.4	5.3	64.4	19.5	1.212	1.208
	25.5	0.7	47.5	1.1	4.7	81.3	19.5	1.212	1.208
E104	0.5	9.3	1.9	0.8	0.9	0.0	12.5	1.212	1.208
	1.5	8.6	5.3	1.8	2.7	10.1	12.5	1.212	1.208
	2.5	4.0	12.7	1.8	3.6	17.4	12.5	1.212	1.208
	4.5	0.4	40.1	1.0	4.6	67.7	12.5	1.212	1.208
	6.5	0.7	37.4	2.3	5.2	56.1	12.5	1.212	1.208
	8.5	0.5	35.9	3.3	6.1	37.7	12.5	1.212	1.208
	10.5	0.6	38.2	4.2	6.8	39.4	12.5	1.212	1.208
	12.5	0.7	35.8	3.9	8.7	40.6	12.5	1.212	1.208
	14.5	0.5	37.3	3.9	9.0	35.4	12.5	1.212	1.208
	16.5	0.5	39.4	4.2	9.7	20.7	12.5	1.212	1.208
	18.5	0.5	39.7	4.7	6.2	30.7	12.5	1.212	1.208
	20.5	0.3	40.6	3.4	4.5	33.0	12.5	1.212	1.208
	25.5	0.7	45.1	4.1	3.5	40.3	12.5	1.212	1.208
	30.5	0.6	47.0	3.9			12.5	1.212	1.208
Table S9. Measured downcore concentration profiles used to inform the data-model fitting at site B14 (cruise JR16006 – July 2017).

Event	Depth cmbsf	\(NO_3^-\) µM	\(NH_4^+\) µM	\(PO_4^{3-}\) µM	\(Mn^{2+}\) µM	\(Fe^{2+}\) µM	Event	Depth cmbsf	\(TOC\) (R1) wt%	\(TOC\) (R2) wt%
E292	0.5	13.9	3.3	1.5	15.4		0.25	2.5	2.5	2.5
	1.5	4.6	10.3	1.2	16.9		0.75	2.3	2.4	2.4
	2.5	2.4	23.3	2.4	0.0		1.25	2.4	2.4	2.4
	4.5	2.9	22.9	1.8	0.0		1.75	2.3	2.4	2.4
	6.5	1.7	28.2	1.6	1.4		2.5	2.4		
	8.5	1.6	24.2	1.6	2.8		3.5	2.4	2.4	2.4
	10.5	1.5	22.2	1.2	2.5		4.5	2.3	2.2	2.2
	12.5	1.7	19.4	1.5	2.5		5.5	2.4	2.3	2.3
	14.5	1.5	19.8	1.9	4.6		6.5	2.2	2.1	
	16.5	1.5	19.9	2.4	2.7		7.5	2.2	2.2	
	18.5	1.6	26.2	3.2	2.2		7.5	2.2	2.2	
	20.5	2.0	33.2	3.8	1.8		9.5	2.0	2.0	
	25.5	2.0	44.0	6.4	1.4		10.5	2.1	2.0	
	30.5	2.2	48.7	7.3	1.0		11.5	2.1	2.2	
						E295	12.5	2.0	2.1	
E294	0.5	12.0	3.3	1.0	3.2	0.0	13.5	2.0	2.0	
	1.5	6.1	14.4	1.5	49.1	32.3	14.5	2.0	2.0	
	2.5	2.4	32.3	5.2	26.9	126.6	15.5	1.9		
	4.5	1.8	33.8	5.7	15.5	125.2	16.5	2.2	1.9	
	6.5	1.4	37.3	6.2	10.1	122.8	17.5	1.9	1.8	
	8.5	1.4	38.0	5.6	15.6	111.8	18.5	1.9	1.8	
	10.5	1.4	34.1	7.2	6.9	99.6	19.5	1.9		
	12.5	1.6	32.0	4.4	6.2	77.5	20.5	1.7	1.8	
	14.5	1.5	40.9	5.2	7.3	105.3	21.5	1.7	1.8	
	16.5	1.3	47.8	7.6	7.7	139.1	22.5	1.7	1.7	
	18.5	1.5	49.6	6.4	8.8	126.8	23.5	1.7	1.8	
	20.5	1.4	56.9	8.1	10.2	128.3	24.5	1.6	1.7	
	25.5	1.6	67.9	9.0	10.3	109.9	25.5	1.7	1.7	
	30.5	1.7	66.1	9.0	11.1	104.3	26.5	1.6	1.6	
						E295	27.5	1.6	1.6	
E295	0.5	12.8	5.2	1.3	1.9	0.0	28.5	1.6	1.6	
	1.5	5.3	19.6	3.2	31.6	91.8	29.5	1.7	1.7	
	2.5	2.2	25.6	5.2	24.6	108.1	30.5	1.7	1.7	
	4.5	1.6	31.6	5.9	9.6	99.8	31.5	1.6	1.6	
	6.5	1.6	26.2	3.4	5.4	62.7	32.5	1.5	1.5	
	8.5	1.5	25.4	3.2	3.1	55.9				
	10.5	1.7	25.6	2.8	2.8	41.6				
	12.5	2.1	24.2	3.4	3.7	34.0				
	14.5	1.6	28.4	4.8	2.5	38.2				
	16.5	1.6	32.3	4.9	2.4	34.8				
	18.5	1.5	37.5	6.2	3.0	41.9				
	20.5	1.7	38.2	6.2	2.9	38.7				
	25.5	1.5	46.4	7.9	3.5	46.3				
	30.5	1.5	50.2	8.4	3.2	45.2				
Table S10. Measured downcore concentration profiles used to inform the data-model fitting at site B15 (cruise JR16006 – July 2017).

Event	Depth cmbsf	Porewater NO_3^- μM	NH_4^+ μM	PO_4^{3-} μM	Mn^{2+} μM	Fe^{2+} μM	Sediment TOC (R1) wt%	TOC (R2) wt%	
E144	0.5	12.3	0.6	1.8	0.0	0.0	0.25	1.7	1.7
	1.5	14.0	0.3	1.9	0.0	0.0	1.25	1.7	1.8
	2.5	13.7	0.6	2.2	0.0	0.0	1.75	1.8	1.9
	4.5	7.5	0.2	2.1	5.2	0.0	2.5	1.8	1.8
	6.5	1.3	1.0	2.3	22.4	0.0	3.5	1.7	1.6
	8.5	1.9	3.4	3.1	33.8	0.0	4.5	1.6	1.6
	10.5	1.0	6.9	1.3	43.5	26.5	5.5	1.5	1.6
	12.5	2.1	7.6	0.8	38.8	49.1	6.5	1.5	1.6
	14.5	0.7	10.5	0.7	40.4	84.0	7.5	1.4	1.4
	16.5	1.8	13.5	0.5	45.4	106.1	8.5	1.4	1.5
	18.5	1.2	10.2	0.2	47.1	113.6	9.5	1.4	1.4
	20.5	0.8	22.2	0.8	107.6	102.5	10.5	1.3	1.3
	22.5	0.6	32.4	2.4	99.4	157.2	11.5	1.4	1.5
	25.5	0.5	35.0	1.4	106.0	168.3	12.5	1.5	1.5
	30.5	0.5	35.0	1.4	106.0	168.3	13.5	1.5	1.5
E145	0.5	11.8	0.2	1.2	0.0	0.0	14.5	1.5	1.4
	1.5	11.8	0.0	1.3	0.0	0.0	15.5	1.5	1.5
	2.5	11.3	0.1	1.7	0.0	0.0	16.5	1.5	1.5
	4.5	8.5	0.1	2.0	10.4	0.0	17.5	1.5	1.4
	6.5	3.0	1.3	1.8	41.4	0.0	18.5	1.5	1.5
	8.5	1.7	3.8	1.3	55.4	11.9	19.5	1.5	1.5
	10.5	0.6	0.5	69.2	22.1	2.0	20.5	1.4	1.4
	12.5	0.5	13.6	59.7	35.9	21.5	21.5	1.5	1.5
	14.5	0.9	15.9	66.3	48.8	22.5	23.5	1.5	1.4
	16.5	1.0	16.3	78.1	83.0	23.5	23.5	1.5	1.4
	18.5	0.5	13.6	90.4	105.0	24.5	24.5	1.4	1.4
	20.5	2.5	13.6	90.4	105.0	25.5	25.5	1.5	1.5
	22.5	2.5	13.6	90.4	105.0	28.5	28.5	1.5	1.5
	25.5	2.5	13.6	90.4	105.0	28.5	28.5	1.5	1.5
	30.5	2.5	13.6	90.4	105.0	28.5	28.5	1.5	1.5
E146	0.5	1.7	0.3	0.0	0.0	0.0	29.5	1.4	1.5
	1.5	11.7	1.1	0.9	0.0	0.0	30.5	1.5	1.4
	2.5	13.5	3.2	1.2	0.0	0.0	31.5	1.4	1.5
	4.5	11.5	3.2	1.4	22.7	0.0	32.5	1.3	1.3
	6.5	4.5	1.5	1.4	104.7	14.9	32.5	1.3	1.3
	8.5	1.7	6.3	1.6	82.2	0.0			
	10.5	1.6	9.8	1.7	98.3	0.0			
	12.5	1.9	10.0	1.8	93.1	0.0			
	14.5	0.9	15.0	1.5	91.3	0.0			
	16.5	0.8	17.8	1.1	70.1	192.9			
	18.5	0.7	14.8	0.5	74.4	134.6			
	20.5	1.2	23.4	0.3	74.3	105.8			
	22.5	1.1	26.6	0.1					
	25.5	1.2	19.7	0.2	75.1	78.2			
	30.5	1.3	38.9	0.2	75.1	78.2			
Table S11. Measured downcore concentration profiles used to inform the data-model fitting at site B16 (cruise JR16006 – July 2017).

Event	Depth cmbsf	NO_3^- µM	NH_4^+ µM	PO_4^{3-} µM	Mn^{2+} µM	Fe^{2+} µM
E183	0.5	12.1	4.2	1.2	0.0	0.0
	1.5	10.5	3.2	1.6	0.0	0.0
	2.5	7.1	5.7	1.3	7.1	0.0
	4.5	2.6	15.8	2.2	26.5	77.6
	6.5	1.7	19.8	1.6	31.0	70.2
	8.5	1.3	19.4	1.9	20.5	45.8
	10.5	1.4	20.6	1.7	19.7	51.3
	12.5	1.7	21.4	1.2	17.3	54.4
	14.5	1.8	21.8	0.9	20.1	56.7
	16.5	2.0	21.6	1.0	23.8	60.4
	18.5	1.7	23.8	0.8	22.3	64.7
	20.5	1.9	26.5	0.9	27.1	67.2
	25.5	1.5	32.9	1.1	25.2	97.6
	30.5	1.4	36.7	2.0	23.0	97.6

Event	Depth cmbsf	TOC (R1) wt%	TOC (R2) wt%
E183	0.5	13.5	1.2
	1.5	9.4	1.1
	2.5	8.4	1.1
	4.5	4.4	1.1
	6.5	1.4	1.1
	8.5	1.6	1.1
E184	10.5	1.5	1.1
	12.5	1.4	1.1
	14.5	1.4	1.1
	16.5	1.4	1.1
	18.5	1.4	1.1
	20.5	1.4	1.1
	25.5	1.4	1.1

Event	Depth cmbsf	TOC (R1) wt%	TOC (R2) wt%
E185	0.5	12.2	1.1
	1.5	8.4	1.0
	2.5	6.4	1.3
	4.5	1.8	1.2
	6.5	2.3	1.1
	8.5	1.4	1.1
E185	10.5	8.5	1.1
Table S12. Measured downcore concentration profiles used to inform the data-model fitting at site B17 (cruise JR16006 – July 2017).

Event	Depth cmbsf	Porewater	Sediment						
	NO$_3^-$ μM	NH$_4^+$ μM	PO$_4^{3-}$ μM	Mn$^{2+}$ μM	Fe$^{2+}$ μM	Event	Depth cmbsf	TOC (R1) wt%	TOC (R2) wt%
E223	0.5	12.1	0.4	0.8	0.0	0.0	0.3	1.6	1.7
	1.5	12.5	0.4	2.0	0.0	0.0	0.5	1.7	1.8
	2.5	3.3	3.9	1.9	65.4	0.0	1.3	1.6	1.7
	4.5	1.4	16.4	3.5	108.1	110.4	1.8	1.7	1.7
	6.5	0.8	23.7	1.3	118.2	182.0	2.5	1.5	1.6
	8.5	1.2	25.3	4.3	122.1	117.0	3.5	1.4	1.5
	10.5	1.2	34.9	3.8	110.7	133.5	4.5	1.4	1.4
	12.5	1.3	33.4	3.3	97.9	196.1	5.5	1.2	1.3
	14.5	0.8	32.5	1.7	77.3	152.8	6.5	1.1	1.2
	16.5	0.9	35.0	7.8	80.5	169.4	7.5	1.1	1.2
	18.5	0.8	34.8	2.1	75.6	150.8	8.5	1.1	1.1
	20.5	1.1	33.3	2.4	72.0	126.0	9.5	1.0	1.1
	25.5	1.8	35.6	1.5	68.9	99.6	10.5	1.1	1.0
	30.5	0.3	14.0	0.3	53.4	125.3	11.5	1.0	1.0
E225	0.5	11.6	1.4	1.0	0.0	0.0	13.5	1.0	1.0
	1.5	9.8	0.5	1.7	0.0	0.0	14.5	1.1	1.0
	2.5	6.3	2.8	1.6	35.9	0.0	15.5	1.1	1.2
	4.5	0.8	21.5	2.8	102.2	184.1	16.5	1.1	1.2
	6.5	0.7	29.4	6.2	107.0	189.4	17.5	1.0	1.1
	8.5	1.0	30.1	3.1	99.8	191.6	18.5	1.0	1.1
	10.5	0.7	35.1	5.6	87.2	211.9	19.5	1.0	1.0
	12.5	1.2	40.4	2.2	79.8	212.6	20.5	0.9	0.9
	14.5	0.9	41.5	3.7	80.4	200.5	21.5	0.8	0.9
	16.5	1.5	42.7	2.7	75.1	192.8	22.5	0.9	0.9
	18.5	0.9	47.0	3.6	69.7	185.8	23.5	0.9	0.9
	20.5	0.9	59.8	4.1	66.1	183.6	24.5	0.9	0.9
	25.5	0.8	51.2	4.5	63.4	172.2	25.5	0.9	0.9
	30.5	1.0	50.9	3.8	62.4	158.8	26.5	0.9	0.9
E226	0.5	11.3	0.0	0.6	0.0	0.0	28.5	0.8	0.8
	1.5	14.0	2.3	1.2	3.0	0.0	29.5	0.8	0.8
	2.5	4.7	11.8	1.3	54.8	0.0	30.5	0.8	0.8
	4.5	1.1	18.4	2.5	180.0	57.5	31.5	0.7	0.7
	6.5	0.9	32.1	5.6	151.4	187.5	32.5	0.7	0.8
	8.5	1.0	34.5	5.0	137.3	198.6	33.5	0.8	0.8
	10.5	1.2	35.4	5.9	120.9	164.3	20.5	0.8	0.8
	12.5	1.3	43.0	2.3	98.8	224.1	20.5	0.8	0.8
	14.5	1.0	45.3	3.6	96.2	208.5	18.5	0.8	0.8
	16.5	0.8	39.7	1.9	96.4	211.7	18.5	0.8	0.8
	20.5	0.8	48.6	2.7	83.5	207.1	20.5	0.8	0.8
	25.5	1.0	46.6	2.7	75.6	175.0	25.5	0.8	0.8
	30.5	1.0	59.6	2.7	68.6	152.3	30.5	0.8	0.8
References

1. Aguilera DR, Jourabchi P, Spiteri C, Regnier P. 2005 A knowledge-based reactive transport approach for the simulation of biogeochemical dynamics in Earth systems. *Geochem. Geophys. Geosystems* **6**, 1–18. (doi:10.1029/2004GC000899)

2. Thullner M, Dale AW, Regnier P. 2009 Global-scale quantification of mineralization pathways in marine sediments: A reaction-transport modeling approach. *Geochem. Geophys. Geosystems* **10**, 1–24. (doi:10.1029/2009GC002484)

3. Van Cappellen P, Wang Y. 1996 Cycling of iron and manganese in surface sediments; a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese. *Am. J. Sci.* **296**, 197–243. (doi:10.2475/ajs.296.3.197)

4. Boudreau BP, Ruddick BR. 1991 On a reactive continuum representation of organic matter diagenesis. *Am. J. Sci.* **291**, 507–538. (doi:10.2475/ajs.291.5.507)

5. Mogollón JM, Dale AW, Fossing H, Regnier P. 2012 Timescales for the development of methanogenesis and free gas layers in recently-deposited sediments of Arkona Basin (Baltic Sea). *Biogeosciences* **9**, 1915–1933. (doi:10.5194/bg-9-1915-2012)

6. Solan M, Ward ER, Wood CL, Reed AJ, Grange LJ, Godbold JA. In press. Benthic biodiversity-function relations transition across the Barents Sea Polar Front. *Phil. Trans. R. Soc. A.*

7. Zaborska A, Carroll J, Papucci C, Torricelli L, Carroll ML, Walkusz-Miotk J, Pempkowiak J. 2008 Recent sediment accumulation rates for the Western margin of the Barents Sea. *Deep Sea Res. Part II Top. Stud. Oceanogr.* **55**, 2352–2360. (doi:10.1016/j.dsr2.2008.05.026)

8. Dumont E, Brand T, Hopkins J. 2019 CTD data from NERC Changing Arctic Ocean Cruise JR16006 on the RRS James Clark Ross, Jun-August 2017. (doi:10.5285/89a3a6b8-7223-0b9c-e053-6c86abc0f15d)

9. Barnes DKA. 2019 Changing Arctic Ocean Seafloor JR18006 Cruise Report., 106.