Effect of Cytokinin Levels on Some Varieties of Wheat on Yield, Growth and YIELD COMPONENTS

Dhiaa Thalij Jassim Alzaayid\(^1\) and Rana Hashim Aloush\(^2\)

\(^{1}\)Saladin Branch of Grain Trading, Ministry of Trade, Iraq.
\(^{2}\)College of Agriculture, University of Tikrit, Iraq.

Abstract

An experiment was conducted throughout winter 2020-2021 in the experimental field of the Department of Field Crops, Tikrit University to investigate the effect of spraying cytokinin on the growth and yield of wheat bread *Triticum aestivum* L. varieties. Randomized Complete Block Design (RCBD) was used with a split-plot system and three replications. Cytokinin concentrations were 0, 100, 200 that were sprayed on two dates; during the branching stage (ZGS: 22); during the al-Battan stage (ZGS:40). Ten varieties were used included Al-Rasheed, Ibaa 99, Sham 6, Baghdad, Bohouth 22, Adana 99, Bora Italian, Sulaymaniyah 2, Al Fayyad and Al Wafiya. Nnumber of days from planting to 50% of spikes, leaf area of the flag, grain yield and biological, and protein percentage and wet gluten percentage were measured. The ten-wheat cultivars showed a significant difference in growth, yield, and quality. The Fayyad was the earliest than the other cultivars by the number of days from emergence to 50% spikes, 104.33 days, and the highest of the number of spikes per area unit, 569.22 spikes. m-2. Rashid cultivar showed the highest average of flag leaf area, 67.22 cm², and the highest average number of grains per spike,100.88 grains. Also, it gave the highest average of grain yield, 496.77 g. m-2. Sulaymaniyah 2 cultivar was the highest in the weight of 1000 grains, 51.38 g. Spraying 200 ml. L-1 cytokinin indicated a significant difference for the most of traits such as flag leaf area, 53.56 cm², the number of grains in the 78.80 grains, biological yield 452.46 g. m-1, protein percentage, 15.02%.

Keywords: Wheat cultivars, Cytokinin, Flag leaf area, Protein.

1. Introduction

Bread wheat (*Triticum aestivum* L.), which belongs to the Poaceae family, is one of the most important strategic cereal crops in the world. The wheat crop is cultivated in large areas in the world compared to other crops to constitute about 32% of the cultivated area of all crops in the world [1], as the cultivated area is estimated at 219 million hectares, as it produced 771 million tons) of wheat grain, as Iraq’s production of wheat crop in In 2018, (2.2) million tons, and it is expected that the production of the crop will increase in 2019 with an estimated amount of (5.2) million tons, as it gave an expected increase of 81.8% [2]. The crop area planted in Iraq reached 147,888 hectares for the year 2016 and an average yield of 0.826 tons. ha-1 (31). Wheat grains are a food source for more than 50% of the world's population, as well as an important source of protein by a range of (20-6%) and also provide the human body with calories (25%) (18; 8). The global production of wheat should be increased by 50% to meet the needs of the world's population [3]. For this reason, the wheat breeder must focus on using the best modern programs in cultivating the wheat crop, and this leads to the improvement of qualitative and quantitative characteristics [4].

Phytohormones are the most important endogenous substances for moderating physiological and molecular responses, a critical requirement for plant survival. Phytohormones act at their site of synthesis or elsewhere in plants following their transport [5,6]. Cytokinin plays an important role in regulating the growth of the crop and employing vital activities inside the plant to increase the yield and its components due to its importance in activating cell division [7]. Recently, it was concluded that a group of local wheat cultivars in Iraq are characterized by low content of protein and gluten, which affects their ability to manufacture bread. Functional flour is highly dependent on gluten proteins [8]. Cytokinin significantly affects the physiological activities within the plant tissues through the regulatory role that it plays in increasing the vegetative growth area of leaves and stems, as it delays aging, increases flowering and fruit set and increases its size, and increases chlorophyll biosynthesis, cell division and elongation [9,10]. The quality characteristics and composition of wheat flour protein are affected by the genetic structure and environmental conditions, that is, the different varieties of wheat and the different environmental conditions produce different quality characteristics, and that the protein content and quality is an important criterion in dividing the different varieties of wheat because of its importance in determining the function of the final product [11], and because of the lack of studies on the use of cytokinin in Iraq on wheat, this study was conducted to determine the
best concentration of cytokinin concentrations that improved the growth and yield of wheat crop of quality and high protein, in addition to knowing the best variety of wheat.

2. Materials and Methods

A field experiment was carried out during the winter season 2020-2021 in the experimental field belonging to the Department of Field Crops - College of Agriculture - Tikrit University - to know the effect of spraying with cytokinin on the productive qualities of varieties of bread wheat. Ten random samples were taken from the field soil before planting to ensure the suitability of the soil for cultivation on a Depth of 0-30 cm for laboratory analysis and knowledge of its chemical and physical properties. Laboratory analyses were carried out in the laboratories of Tikrit University. Faculty of Agriculture. The soil section and the results of the analyses were as shown in table (1) below.

Table 1. Chemical and physical properties of the experimental soil before planting.

Properties	Value	Unit
pH	7.2	
Electrical conductivity	1.681	Des-siemens per meter
Organic Matter	0.97%	g. Kg⁻¹ soil
Lime	25.6	g. Kg⁻¹ soil
Gypsum	15.05	g. Kg⁻¹ soil
Nitrogen	15.7	mg. Kg⁻¹ soil
Phosphorous	9.3	mg. Kg⁻¹ soil
Potassium	11.4	mg. Kg⁻¹ soil
Sodium	146	mg. Kg⁻¹ soil
Sand	56.4	g. Kg⁻¹ soil
Silt	29.6	g. Kg⁻¹ soil
Mud	14	g. Kg⁻¹ soil
Tissue	Sandy loam	

A randomized complete plot design (RCBD) was conducted based on a split-plot system and with three replications. The experimental land was prepared for cultivation the land was divided into three blocks, each block contains 30 experimental units with an area of 2 m², and the distance between the repetitions is 1 m. The experimental units included 4 lines with a length of 2 m and the distance between lines is 25 cm. A quantity of 160 kg. ha⁻¹ seeds were used. The field was fertilized with (DAP) at a rate of (100 kg. H⁻¹) and was added in one batch only when planting, and the experiment was also urea fertilizer (46% N) was used as a source of nitrogen at a level of (200 kg. H⁻¹) in two batches, the first at planting and the second at the beginning of the branching stage, as well as super fertilizer was added Triple phosphate (46% P₂O₅) at a rate of 100 kg P₂O₅ /ha. The seeds of wheat varieties were planted manually and on 11/20/2020, the harvesting was done manually for the crop when the plants reached the stage of full maturity. The growth regulator 6-Benzylaminopurine) was used (N-phenylnethyl-1H-purin-6-amine), the first spray was at a concentration of 100, and the second concentration was (1000 mg / 10 litres of water). The spraying process was conducted in the early morning, and the important stages of the vegetative growth of the plant were determined when spraying the foliar with growth regulators based on the scale [12].

Studied parameters

- Area of the flag leaf (cm²): The area of the flag leaf was calculated from the average of ten flag leaves of the main stems, which were randomly taken to each experimental unit.
- Number of grains/ spike-1: It was calculated manually as an average of the number of grains in ten spikes randomly taken from the harvested spikes to each experimental unit.
- Grain yield (tons H⁻¹): It was calculated the weight of grains to each experimental unit after harvesting.
- Biological yield (ton.h⁻¹): It represents the weight of the total dry matter of (heads and straw) as it was calculated based on the weight of the plants harvested to study the components of the yield and about the weight based on tons in hectares [13].
- Percentage of protein (%): The protein percentage was estimated using the Keldahel device for estimating total nitrogen to calculate the percentage of nitrogen and then the percentage of crude protein A.OAC (1980) is calculated using the following equation:

 \[
 \text{Protein percentage} = \text{nitrogen percentage} \times 5.7\%.
 \]
- The percentage of wet gluten (%): The percentage of gluten was calculated for the flour of wheat samples using the standard method AACC (1998) [14].
3. Results and Discussion

3.1. Area of the Leaves, cm²

The results of the data in Table (2) showed that there were significant differences between the varieties included in the study for the average area of the leaf, as the Al-Rasheed cultivar excelled by giving the highest average area of the leaf amounted to (67.22) cm², while the plants of the Italian cultivar Port Italian recorded the lowest average for the trait amounted to (38.44) cm², and the reason for the discrepancy in the area of the leaf between the varieties may be due to the difference like the genetic structure of the wheat variety and the extent to which it is affected by environmental factors. This was indicated by [15,16]. As for spraying with cytokinin, the results of Table (2) showed a significant increase in the characteristic of the area of the leaf when spraying cytokinin at the third concentration (200) mg / liter, it gave the highest average amounted to (53.56) cm², while the comparison treatment was the first concentration (Control) mg / liter, it gave the lowest average amounted to ((47.00) cm², and the reason may be due to the role of cytokinin in cell division and the softness of the cell wall and the ability of the cell itself to swell, which increases the plasticity of the cell wall and then the cell expansion and increase in size [17], and this result indicated by [18,19]. As for the interaction between the varieties and the concentrations of spraying with cytokinin, it had an evident effect in this trait, as the Al-Rasheed and the third spray with concentration (200) mg / liter achieved the highest value for the area of the leaf of the plant reached (70.33) cm², while Sulaymaniyah 2 cultivar with the third concentration (200) mg/L achieved the lowest value for the above characteristic which was 36.33 cm².

Table 2. The effect of cultivars and cytokinin spraying on wheat flag leaf area cm².

Verities	Cytokinin Concentrations	Mean		
	0 mg. L⁻¹	100 mg. L⁻¹	200 mg. L⁻¹	
Al Fayyad	39.33 po	47.33 lk	49.66 jk	41.77 g
Sulaymaniyah 2	41.66 o	52.00 ji	36.33 q	44.88 f
Baghdad1	44.33 n	46.66 lmn	39.00 p	62.22 b
Ibaa 99	41.66 o	51.66 ji	40.00 po	48.66 e
Bohouth 22	46.00 lmn	55.33 hg	49.66 jk	51.22 d
Adana 99	47.00 lm	44.66 mn	54.66 h	49.77 e
Al Wafiya	60.00 fe	51.00 j	57.66 fg	45.44 f
Boro Italian	61.00 de	53.66 hi	63.33 dc	38.44 h
Sham 6	65.66 bc	41.66 o	68.00 ba	54.00 c
Al-Rasheed	46.66 lmn	45.00 lmn	70.33 a	67.22 a
Concentration Mean	47.00 c	50.33 b	53.56 a	

3.2. Number of grains Spike

It was found from Table (3) that there was a significant difference between the cultivars in the number of grains in the spike, as Al-Rasheed cultivar recorded the highest average number of grains in the spike, which amounted to (100.88) grains, which differed significantly from all the cultivars included in the study, while the variety Sham 6 gave the lowest average number of grains It reached 58.33 grains, and the reason for this difference between the varieties in this trait may be attributed to the role of cytokinin in cell division and the softness of the cell wall and the ability of the cell itself to swell, which increases the plasticity of the cell wall and then the cell expansion and increase in size [17], and this result indicated by [18,19]. As for spraying with cytokinin, the results of Table (3) showed a significant increase in the character of the number of grains in the spike when spraying cytokinin at the third concentration (200) mg/litre, which gave the highest average of (78.80) grains, while in the comparison treatment, the first concentration, Control ((0 mg/litre), recorded the lowest average of (72.90) grains, and the reason for the increase in the number of grains in the spike when treating the spray may be due to the increase in the length of the spike in addition to the increase in the characteristics of vegetative growth and chlorophyll content, which reflected positively On the trait, as the products of photosynthesis increased, which affected the number of grains in the spike, and this result is consistent with the findings of [20,21]. As for the interaction between the cultivars and the concentrations of cytokinin spraying, it had a significant effect in this trait, as Al-Rasheed cultivar achieved when spraying with cytokinin the
third concentration (200) mg/litre, the highest value for the trait amounted to (104.33) grains, while the Bohouth class 22 achieved when spraying with the third concentration ((200 mg/litre, the lowest value was (55.00) tablets.

Varities	Concentrations	Mean
Al Fayyad	71.33 ln	91.66 d
Sulaymaniya 22	75.00 nk	70.66 e
Baghdad 1	77.00 ji	82.66 c
Ibbaa 99	68.33 no	87.00 b
Bohouth 22	70.33 nm	73.55 d
Adana 99	73.33 lk	64.66 f
Al Wafiya	78.33 i	88.11 b
Boro Italian	83.33 h	61.66 g
Sham 6	86.33 fg	58.33 h
Al-Rasheed	82.66 h	100.88 a
Concentration Mean	72.90 c	78.80 a

Table 3. Effect of cultivars and spraying with cytokinin on the number of grains/spike

The results of Table (4) showed that the Al-Rasheed cultivar was significantly superior by giving the highest average grain yield amounted to (496.77 g/m²), while the Italian Borro cultivar achieved the lowest average for this trait amounting to 420.55 g/m². The reason for the superiority of some varieties in this trait may be due to the ability of some genetic varieties to benefit from the products of photosynthesis, which led to the variation in most of their traits, including the trait of grain yield. These results are consistent with researchers [22-25], who found significant differences between the varieties in grain yield. As for spraying with cytokinin, the results of Table (4) showed a significant increase in the weight of grain yield when spraying cytokinin at the third concentration (200 mg/litre, which gave the highest average of (452.46) g / m², and the comparison treatment (first concentration (Control 0)) mg/litre gave the lowest average amounted to (447.36) g / m², and that this increase in yield may be due to the increase in the area of the flag leaf, the components of the yield, the number of spikes m-2 and the number of grains per spike, which led to an increase in grain yield, this result was in line with the results of [26-28]. As for the interaction between cultivars and spraying cytokinin concentrations, it had a significant effect in this trait, as the Rashid cultivar achieved the concentration The third (200 mg / l and a.k.a The highest value reached (502.33) g/m², which did not differ significantly from Sham6 cultivar in the third concentration (200) mg/litre, which gave a value of (500.00) g / m², while the cultivar Bohouth 22 gave the lowest value in the third concentration (200) mg/litre It reached (412.66) g/m². Table (4) Effect of cultivars and spraying with cytokinin on grain yield (g/m²).
on for the difference between the varieties is due to their genetic nature and extent in physiological ability to form products of photosynthesis, this result is in line with the results of [29,30].

\[\text{Table (6) showed that there was a significant effect of the varieties for this trait, as the Aba 99 variety outperformed significantly by giving it the highest average (15.72\%), while Bohouth 22 gave the lowest average (13.34\%), and the reason for the difference between the varieties is due to their genetic nature and extent in physiological ability to form products of photosynthesis, this result is in line with the results of [33,34], who found a significant difference between} \]
wheat cultivars in the protein content of their grains. As for spraying with cytokinin, the results of Table (6) showed a significant increase in The characteristic of the percentage of protein when spraying cytokinin at the third concentration (200) mg / liter gave the highest average of (15.02%), as for the comparison treatment, the first concentration (Control 0) mg / liter, it gave the lowest average of (14.56%) g_m², and the reason may be due to In increasing the ratio of protein to the role of cytokinin in increasing the speed of photosynthesis and its role in increasing the conversion of accumulated nitrogen to grains, as well as its important role in the metabolism of amino acids and then increasing proteins, this result is consistent with [35]. Cytokinin spray bag had a significant effect in this trait, as Sulaymaniyah 2 cultivar achieved when spraying with cytokinin the second concentration (100) mg / liter, the highest value of the character reached (51.86%) grain, while Baghdad 1 variety achieved when spraying with the second concentration ((100) mg / liter The lowest value was (13.13%).

Table 6. Effect of cultivars and spraying with cytokinin on the percentage of protein (%).

Verities	Concentrations			
	0 mg. L⁻¹	100 mg. L⁻¹	200 mg. L⁻¹	Mean
Al Fayyad	37.93 f	37.96 f	42.63 a	38.36 c
Sulaymaniyah 2	38.46 e	38.13 f	32.53 o	35.92 f
Baghdad 1	38.70 e	39.40 d	32.93 n	32.40 i
Ibaa 99	35.66 l	39.73 c	33.13 n	37.87 d
Bohouth 22	35.96 k	39.86 c	36.06 k	39.66 b
Adana 99	36.13 kj	34.90 m	36.43 ih	35.34 g
Al Wafiya	32.13 p	35.50 l	36.36 h	42.38 a
Boro Italian	32.43 o	35.63 l	35.70 l	32.86 h
Sham 6	32.63 o	42.10 b	36.13 kj	36.37 e
Al-Rasheed	37.53 g	42.43 a	36.36 ij	36.06 f

* Similar letters indicate no difference

3.6. Percentage of wet gluten %

The results of Table (7) showed that there was a significant effect of the varieties for this trait, as the Al-Wafiya variety outperformed by giving it the highest average for the trait amounted to (42.38%), while the Baghdad 1 variety gave the lowest average for this trait amounted to (32.40%). Perhaps the reason for the superiority of this variety is due to Variation of genotypes between the studied cultivars This result is consistent with [36], who found significant differences between wheat cultivars in the percentage of gluten in the grains. As for spraying with cytokinin, the results of Table (7) showed an increase significantly in the wet gluten ratio when spraying cytokinin at the third concentration (200) mg / liter, it gave the highest average of 36.98 % (gm_m², while the comparison treatment first concentration (Control 0)) mg / liter gave the lowest average of (36.39%) gm_m² The reason for this increase is attributed to the role of cytokinin, which increases the speed of plant photosynthesis and leads to an increase in protein, and this protein is of great importance due to its ability to give the dough the characteristics of viscoelastic, where the glutenin gives the elasticity and strength to the dough, while the claydin gives the viscoelastic character. The result was with [32]. As for the interaction between the cultivars and the concentrations of cytokinin spraying, it had a significant effect in this trait. When spraying with cytokinin, the second concentration (100) mg / liter of Al-Rashid cultivar achieved the highest value of the trait amounted to (42.43%) grain, while Mortality class when the control treatment (0 mg/L) achieved the lowest value (32.13%).
Table 7. Effect of spraying cytokinin and varieties on the percentage of wet gluten (%).

Verities	Concentrations	Mean		
	0 mg. L⁻¹	100 mg. L⁻¹	200 mg. L⁻¹	
Al Fayyad	13.73 o	15.80 ba	15.60 bdc	14.06 g
Sulaymaniyah 2	14.06 n	15.86 a	14.66 kl	14.75 e
Baghdad1	14.40 m	13.13 q	14.96 ji	15.05 d
Ibaa 99	14.40 m	13.40 p	15.26 hgf	15.30 c
Bohouth 22	14.80 kj	13.50 p	14.80 kj	13.34 h
Adana 99	15.06 hi	15.06 hi	15.06 hi	15.44 b
Al Wafiya	14.76 kj	15.56 dc	15.10 hgi	15.30 c
Boro Italian	15.10 hgi	15.70 bac	14.63 kl	14.96 d
Sham 6	15.30 egf	14.90 ji	14.30 m	14.98 d
Al-Rasheed	15.50 edc	15.40 edf	14.46 ml	14.46 f
Concentration Mean	14.56 c	14.84 b	15.02 a	

* Similar letters indicate no difference

References

[1] A.O.A.C. (1980) Official Methods of Analysis .Published by the Association of official analytical chemists (AOAC) , Washington DC. 13 th edition.
[2] AACC. (1998) Approved methods of the American Association of Cereal Chem. St.
[3] Abu AlNadr, Inas Ismail Mohamed (2019) Response of Breadwheat cultivars Triticum aestivum L. to levels of nitrogen fertilizer and irrigation under gypsum soil conditions PhD thesis, Department of Field Crops, College of Agriculture, Tikrit University.
[4] AL-Azawi, S.S.M.(2015). Effect of Water Quality and Kinetin Treatment on Growth and Catalase Activity of Maize Seedlings (Zea mays L.). Journal of Babylon University/Pure and Applied Sciences; 4(23): 1676-1685
[5] Al-Azzawi, Hussain Khudair Abbas, Mohsen Ali Ahmad Al-Janabi and Fakhruddin Abdul Qadir Siddik. 2018. Effect of different levels of nitrogen fertilizer on grain yield and its components for eight varieties of bread wheat (Triticum aestivum L.). Journal of Tikrit University of Agricultural Sciences. 18 (1): 14-27.
[6] Al-Azzawi, Hussein Khudair Abbas (2017) The effect of nitrogen fertilization on the growth, yield and some quality characteristics of cultivars of bread wheat Triticum aestivum L. PhD thesis. College of Agriculture - Tikrit University. p. 137.
[7] Al-Juthery,H.W.A. , Ali , E.H.A.M., Al-Ubori,R.N., Al-Shami,Q.N.M. and AL-Taey, D.K.A. (2020). ROLE OF FOLIAR APPLICATION OF NANO NPK, MICRO FERTILIZERS AND YEAST EXTRACT ON GROWTH AND YIELD OF WHEAT. Int. J. Agricult. Stat. Sci. Vol. 16, Supplement 1, : 1295-1300. DocID: https://connectjournals.com/03899.2020.16.1295
[8] Al-Juthery,H.W.A., Habeeb,K.H., Aluese,F.J.K., AL-Taey,D.K.A and Al-Taewa.,A.A.M. 2018 . Effect of foliar application of different sources of nano-fertilizers on growth and yield of wheat. Bioscience research , 15(4): 3988-3997.
[9] Al-Mohammadi, Mohamed Hani Mohamed 2018)) The effect of spraying date with the concentrations of the amino acid complex Nutrigreen on growth characteristics, yield, its components and quality characteristics of cultivars of Triticosecale WittmackX. Master Thesis - Tikrit University - College of Agriculture - Department of Field Crops.
[10] Al-Taey , D. K. A., Z. Z. Majid. 2018. Study Effect of Kinetin, Bio-fertilizers and Organic Matter Application in Lettuce under Salt Stress. Journal of Global Pharma Technology.10(1):148-164
[11] Al-Taey , D.K.A. and Saadoon, A.H. (2012). Effect of treatment of kinetin to reduce the salinity damage by drainage water irrigation on the growth and nitrate accumulation in the leaves of spinach, Spinacea oloracea L. Euphrates Journal of Agriculture Science. 4(4):11–24.
[12] Al-Taey , D.K.A., Mijwel A.K. and Al-Azawy S.S. 2018. Study efficiency of poultry litter and kinetin in reduced effects of saline water in Vicia faba. Research J. Pharm. and Tech. 2018; 11(1): 294-300.
[13] Al-Zank anah, Dlawer Dilshad Ali. ((2019 Effect of spraying with amino acids on the quality and baking qualities of bread wheat cultivars Triticum aestivum L.)). Master Thesis. Department of Field Crops - College of Agriculture - University of Kirkuk.
Attia, Hatem Jabbar, Faeq Tawfıq Chalabi and Abdul Karim Muhammad Ghani (2003) Using Plant Growth Regulators Technique to Modulate Growth and Increase Grain Yield for Several Varieties of Wheat. Iraqi Science Journal (3) 32: 152-145.

Bartosz, J · Hanna O · Karolina S · Andrzej B · Wachaw O · and Anna N-O (2020) Silencing of TaCKX1 Mediates Expression of Other TaCKX Genes to Increase Yield Parameters in Wheat. 21(13): 4809.

Chen, L, Zhao, J, Song, J, & Jameson, P. E. (2021). Cytokinin glucosyl transferases, key regulators of cytokinin homeostasis, have potential value for wheat improvement. Plant biotechnology journal, 19(5), 878-896.

Chipiński, R, Moskova, I, Pencheva, A, & Kocheva, K. (2021). Field priming with cytokinins enhances seed viability of wheat after low temperature storage. Plant, Soil and Environment.

Coles G.D., S.D Wrratten, and J.R Porter (2016) Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production. Peer J., Inc. 4: e2100.

Donald, C.M and J. Hamblin. (1976) The biological yield and harvest index of cereals as agronomic and plant breeding criteria Adv. In Agro 28:301-359.

FAO. (2018). Statistical yearbook 2018 World Food and Agriculture.

Hamza O.M. and D. K. A. Al-Taey. 2020. A study on the effect of glutamic acid and benzyl adenine application up on growth and yield parameters and active components of two Broccoli hybrids. Int. J. Agricult. Stat. Sci., 16, Supplement 1: 1163-1167. DocID: https://connectjournals.com/03899.2020.16.1163

Hassan, M. F., & Islam, S. S. (2021). Effect of silver nitrate and growth regulators to enhance anther culture response in wheat (Triticum aestivum L.). Heliyon, e07075.

Jilawi, Hussein Jafar Ramadan (2017) Using Transglutaminase enzyme to improve the qualities of bread produced from local wheat (Al-Rasheed variety). Master's Thesis, Department of Food Sciences - College of Agriculture - University of Baghdad.

Joshi, S., Choukimath, A., Isenegger, D., Panozzo, J., Spangenberg, G., & Kant, S. (2019). Improved wheat growth and yield by delayed leaf senescence using developmentally regulated expression of a cytokinin biosynthesis gene. Frontiers in plant science, 10, 1285.

Kettlewell, P. S.; Stephenson, D. B.; Atkinson, M. D. and Hollins, P. D. (2003) Summer rainfall and wheat grain quality: Relationships with the North Atlantic Oscillation. Weather 58:155-164.

Khalil, Muayad Khalil Clinic and Fakhruddin Abdul Qasim Muhammad Aziz Al-Jubouri (2020) The role of amino acid spraying on the yield performance of varieties of bread wheat Triticum aestivum L. at different dates. Journal of Educational and Scientific Studies - College of Education - Iraqi University Issue 15 - Volume 4 Life Sciences.

Khamdi, N., Nabipour, M., Roshanfekr, H., & Rahnama, A. (2019). Effect of seed priming and application of cytokinin and auxin on growth and grain yield of wheat (Triticum aestivum L.) under Alvaz climatic conditions. Iranian Journal of Crop Sciences, 21(1), 31-44.

Koprna, R., D. Nuria, D. Lucie and S. Lukas. 2016. Use of cytokinins as agrochemicals. Bioorganic & Medicinal chemistry 24 : 484 – 492.

Koprna, R., Humplík, J. F., Špišek, Z., Bryková, M., Zatloukal, M., Mik, V., ... & Doležal, K. (2021). Improvement of Tillering and Grain Yield by Application of Cytokinin Derivatives in Wheat and Barley. Agronomy, 11(1), 67.

Kumar, A.; Kumar, V.; Kerkhi,S.A.; Kumar,S;Chand,P; Kumar,N;Kumar,D and Kumar, M. (2014). Evaluation of heterosis for yield and yield related traits in bread wheat (Triticum aestivum L.),proe Agric.,14(1):151-159.

Ministry of Agriculture (2017) Statistical Brochure of Field Crop Plants. Department of Extension and Agricultural Economics / Agricultural Research Department. Ministry of Agriculture - Republic of Iraq.

Shourbalal S. S., Soleymani, A., & Javanmard, H. R. (2019). Shortening vernalization time in winter wheat (Triticum aestivum L.) using plant growth regulators and cold stratification. Journal of Cleaner Production, 219, 443-450.

Singh, P., O.P.Choudhary and P.Singh (2018) Performance of some wheat cultivars under saline irrigation water in field conditions. communications in soil science and plant Analysis. 49(3): 334-343.

Slama, A., Romdhane, L., M’hamed, H. C., Abodorna, A. H., Fahej, M. A. S., & Radhouane, L. (2020). Morpho-physiological and molecular responses of two Libyan bread wheat cultivars to plant growth regulators under salt stress. Italian Journal of Agronomy, 15(3).

United Nations. (2015). World Population Prospects, Department of Economic and Social Affairs, Population Division, The 2015 Revision. New York. pp.66.

Zadoks, J. C., T. T. Change, and C. F. Knozak. (1974) A decimal code for the growth states of cereals. Weed Res., 14: 415-421.