ABSTRACT

Leucaena leucocephala trees are commonly known as White Lead tree. It is native to Southern Mexico and Northern Central America and spread across many tropical and subtropical locations. It has multipurpose uses, such as generation of firewood, timber, greens, fodder, and green manure, as well as to provide shade and control soil erosion. It has been used for medicinal purposes because of possessing multiple pharmacological properties. Studies have shown the presence of various secondary metabolites such as alkaloid, cardiac glycosides, tannins, flavonoids, saponins, and glycosides in this species. In traditional medicine, it is used to control stomach ache and as contraception and abortifacient. In the present study, the global distribution, taxonomy, chemical composition, pharmacological activities, and potential uses of Leucaena leucocephala are discussed.

Keywords: Leucaena leucocephala, Medicinally, Multipurpose, Pharmacological activities, Traditional medicine

INTRODUCTION

Leucaena leucocephala (Family: Fabaceae) is a small, fast-growing tree, and has multiple common names by which it is known such as White Lead tree, White Popinac, Jambay, and Wild Tamarind [1]. It is native to Southern Mexico and Northern Central America and diffused in over 35 countries across all continents, except Antarctica (table 1) [2].

Table 1: The global distribution of Leucaena leucocephala [2]

Region	Countries
Africa	Angola, Burundi, Cape Verde Is, Cameroon, Chad, Djibouti, Egypt, Equatorial Guinea, Ethiopia, Ghana, Guinea, Guinea-Bissau, Ivory Coast, Kenya, Liberia, Malawi, Mali, Mozambique, Niger, Nigeria, Sao Tome and Principe, Senegal, Sierra Leone, Somalia, South Africa, Sudan, Tanzania, Togo, Uganda, Zaire and Zimbabwe
Asia	Bhutan, Cambodia, India, Indonesia, Iraq, Iran, Laos, Malaysia, Pakistan, Philippines, Sri Lanka, Taiwan, Thailand, Vietnam and Japan
Australasia	Australia, Papua New Guinea (New Guinea, New Britain and Bismarck Archipelago)
Caribbean	Bahamas, Bermuda, Cayman Is, Cuba, Dominican Republic, Grenada, Haiti, Jamaica, Puerto Rico
Central America	Costa Rica, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, and Panama.
Europe	Spain
Indian Ocean	Aldabra, Chagos, Archipelago, Madagascar, Mauritius, Reunion Is. (Rodrigues Is., Seychelles, and Christmas Island.
Middle East	Saudi Arabia and Yemen.
North America	United States in Arizona, Georgia, Virgin Islands, Texas, Florida and Hawaii
Pacific Ocean	Caroline outer islands (Fiji), Polynesia (Tahiti, Moorea).
South America	Argentina, Bolivia, Brazil, Chile, Colombia, Guyana, Peru, Venezuela

Leucaena originated from the Greek words “leuc,” which means “white,” and “caen,” which means “new,” referring to the whitish flowers. The species name also refers to the flowers: leucocephala from “leu,” meaning white, and “cephala,” meaning “head.” L. leucocephala was known as a miracle tree because of its worldwide success as a long-lived and highly nutritious forage tree used to produce firewood, timber, human food, green manure, shade and also to control erosion. It is estimated to cover 2-5 million ha worldwide [3-5].

Medicinally it has been used for its antimicrobial, antihelmintic, antibacterial, anti-proliferative and anti-diabetic, anticancer, cancer preventative, diuretic, anti-inflammatory, antioxidant; antitumor, antihistaminic, nematicide, pesticide, anti-androgenic, hypolipolemic, and hepatoprotective properties [6]. It spreads as a shrub or small tree growing up to 10 m in height throughout the cleared areas and forms dense thickets [7]. Leucaena species is an evergreen, drought-tolerant shrub or small tree, which grows abundantly. Some species of Leucaena can grow up to 20 m in height and those are known as the Salvadorian type. Those species are considered as weeds in many parts of the world [8]. Leucaena leaves appear similar to those of tamarind, having white flowers tinged with yellow, and having long flattened pods. Seeds are dark brown with the hard shining seed coat. It has hard heavy wood (about 800 kg/m), with a pale yellow sapwood and light reddish-brown heartwood. Bark on young branches is smooth and grey-brown, and rough with shallow, rusty orange-brown vertical fissures, and deep red inner bark [9].

Taxonomic classification

Kingdom	Plantae
Subkingdom	Tracheobionta
Superdivision	Spermatophyta
Division	Magnoliophyta
Class	Magnoliopsida
Subclass	Rosidae
Order	Fabales
Family	Fabaceae-Peа family
Genus	Leucaena
Species	Leucaena benthamiifolium
beating the dried legumes in cloth bags. Sun-dried after harvest and then threshed to release seeds by changes their color to dark brown before dehiscence. The fruits are harvested and then disperse the seeds through their fecal matters, and the seeds can then be stored as un-scarified or scarified seeds. Unscarified seeds can be stored for more than one year under dry conditions. The harvested seeds of *L. leucocephala* should be decontaminated from larvae using fumigation by exposing the seeds to 32 g/m³ methyl bromide for 2 h at 27 °C. Although seeds can be sown directly after harvest without pre-sowing treatment, the seed germination, in that scenario becomes very low. Therefore, to increase the rate of germination, one of the pre-sowing treatments such as scarification, hot water treatment and/or sulfuric acid treatment should be used. Soaking *L. leucocephala* seeds in 100 °C water for 20 s and subsequently in water at room temperature for 48 h had the highest seed germination rate, higher cumulative germination (CGP) and seedling establishment. Soaking *L. leucocephala* seeds in hot water at 80 °C for 3–4 min followed by soaking in the water at room temperature for 12 h or soaking *L. leucocephala* seeds in concentrated sulfuric acid for 15–30 min are the best pre-sowing treatments that can be used to increase the seed germination of *L. leucocephala*. However, scarification is the most effective treatment that can be used as pre-sowing inoculation of seeds as it facilitates good field establishment of nitrogen-fixing rhizobium bacteria in soil devoid of rhizobia strains.

Germination percentage of *L. leucocephala* seeds are 50% to 98% for fresh seeds [8, 19]. The complete dormancy period for scarified seeds is 6 to 10 days after sowing and for unscarified seeds are 6 to 60 days after sowing [20]. The sowing of *L. leucocephala* seeds should be on or near the soil surface, but not any deeper than 2 cm. For growth in the nursery, the growth medium should be well drained, have proper nutrients and water holding capacity, and have a pH between 5.5 and 7.5 [16]. Light shade is recommended during the seedling development and full sun thereafter [16]. In young seedlings, taproot development is rapid and seedlings reach plantable size of 20 cm height in 2 to 3 mo [16, 22]. Weeding in plantations, until the seedlings outgrow competing grasses or herbaceous competitors in plant biomass, is recommended [16]. Direct seeding by planting container seedlings, bare root seedlings and stem cuttings of 2 to 5 cm in diameter can be used as a method of plantation development [23]. It grows moderately rapid but not as fast as the giant variety for which most of the data are available [24].

Chemical composition and nutritive value

The chemical composition analysis of the leaves of *L. leucocephala* from Malaysia revealed the presence of 30 compounds: tetratetracontane, oxalic acid, allyl hexadecyl ester, squalene, Octacosane, hexatriacontane, 5-octadecene, 1-octadecyne, 3,7,11,15-tetramethyl-2-hexadec-1-ol, pentadecanoic acid, 14-methyl, methyl ester, 9,12-octadecadienoic acid, methyl ester, hexadecanoic acid, 15-methyl, methanethiol ester, 12,15-octadecadienonic acid, methyl ester and 3,7,11-tridecanetrienienitrile, 4,8,12-trimethyl, 2-dodecane, 7-hexadecene, 5-ecosenoic, 9,12,15-octadecatrienonic acid, methyl ester, 1-docosenoic, heptacosanoic acid, methyl ester, n-hexadecanoic acid, phytol and squalene [6]. The major chemical constituents of the leaves of *L. leucocephala* from Malaysia were Squalene (41.02%), Phytol (33.80%), 3, 7, 11,15-Tetramethyl-2-hexadec-1-ol (30.86%) and 3,7,11- Tridecanetrieni eni nitrile, 4,8,12-trimethyl (25.64%) [6], whereas the principal chemical constituents of the leaf extracts of the same species from Mexico were 2(R)-benzofuranone-5,6,7,7a-tetrahydro-4,4,7a-trimethyl, pentadecanoic acid-14-methyl ester, 12,15-octadecadienonic acid, methyl ester and 6,10,14-trimethyl-2-pentadecanone a ketone [25]. For whole plants of *L. leucocephala* from China the chemical composition were fcaprenol-11 (polyprenol), squalene, lupeol, sitostanol, trans-coumaric acid, cis-coumaric acid, pheophytin-a, pheophorbide a methyl ester, methyl-132-hydroxy-(132-S)-pherophorbide-b and aristophyll-C [26].

Harvested fruits and germination requirements

Leucaena leucocephala fruits are harvested from branches when they change their color to dark brown before dehiscence. The fruits are sun-dried after harvest and then threshed to release seeds by beating the dried legumes in cloth bags [16]. *L. leucocephala* seeds can then be stored as un-scarified or scarified seeds. Unscarified seeds can be stored for more than one year under dry conditions at ambient temperature and up to 5 y when stored at 2 °C to 6 °C, dried. In contrast, scarified seeds can be stored for 6 mo to a year [16, 19, 20].

The harvested seeds of *L. leucocephala* should be decontaminated from larvae using fumigation by exposing the seeds to 32 g/m³ methyl bromide for 2 h at 27 °C. Although seeds can be sown directly after harvest without pre-sowing treatment, the seed germination, in that scenario becomes very low. Therefore, to increase the rate of germination, one of the pre-sowing treatments such as scarification, hot water treatment and/or sulfuric acid treatment should be used. Soaking *L. leucocephala* seeds in 100 °C water for 20 s and subsequently in water at room temperature for 48 h had the highest seed germination rate, higher cumulative germination (CGP) and shortened period of complete dormancy (CDP), when compared to the germination rate when seeds were soaked for only 24 h or untreated seeds [21].

Soaking *L. leucocephala* seeds in hot water at 80 °C for 3–4 min followed by soaking in the water at room temperature for 12 h or soaking *L. leucocephala* seeds in concentrated sulfuric acid for 15–30 min are the best pre-sowing treatments that can be used to increase the seed germination of *L. leucocephala*. However, scarification is the most effective treatment that can be used as pre-sowing inoculation of seeds as it facilitates good field establishment of nitrogen-fixing rhizobium bacteria in soil devoid of rhizobia strains [20].
and pigs and processed as a pellet for freshwater fish. The dry matter digestibility (DMD) of L. leucocephala was 57.7% and crude protein based on the dry matter was 29.5% [28].

Forage quality of L. leucocephala is higher than other Leucaena species such as L. pallida and L. diversifolia as stated by Castillo et al. [29]. Leaves of L. leucocephala contained 6.70% moisture, 22.76% crude protein, 22.29% crude fibre, 4.60% fat, and 9.73% ash content [30]. In another study by El-Baha [31], leaves were reported to contain the highest percentage of minerals (12.5% and 14.0%), pods the highest percentage of crude protein (33.0% and 30.9%), twigs contained the highest percentage of crude fiber (31.5% and 37%) and calcium (1.9% and 2.1%), and dry seeds possessed the highest percentage of crude fat (7.2% and 10.1%) and nitrogen free extract (55.9% and 58.8%) for the 2-4-years-old plants, respectively.

Use of Leucaena leucocephala as ruminant feeds

Forage containing 40% to 60% L. leucocephala leaves gave a maximum gain in weight in rabbits, goats, sheep, and cows. Rushkin [32] reported that "L. leucocephala is palatable forage, digestible and serves to increase milk output in both the humid and the monsoonal tropics for ruminants and non-ruminants. However, when L. leucocephala is fed at levels above 7.5% (dry mass) of the diet, non-ruminants lost weight and had general health problems due to the mimosine toxicity." When using L. leucocephala leaves in a rationed manner for fattening cattle, it is equivalent to cottonseed cake [33] and superior to groundnut cake [34]. In Queensland, Australia, a very high live weight gain was recorded using L. leucocephala leaves [32, 34-35] and the same is done as well in several other places [36].

Several reports showed that L. leucocephala could be a substitute for the imported protein supplements fed to dairy cows [32]. Dairy cattle produce well when fed with L. leucocephala [32, 37]. Henke and Morita [38] reported that dairy cows produce milk with higher fat content when they are fed with L. leucocephala compared to similar cows fed on pasture and concentrates or ammoniated straw in the grass-based diet. In Australia, Hawaii and Indonesia, annual milk production of 5,000 to 9,700 L/ha was recorded [32]. Feeding cows and buffaloes on L. leucocephala foliage at 10% of their diets produce higher milk yield by 20% than that of the control group [39]. Jones [40] reported that feeding dairy cows on L. leucocephala foliage increases milk fat and protein contents and also increases milk production by 14% on average. Feeding dairy cows on grazing Brachiaria decumbens with L. leucocephala produce higher milk yield than cows fed only with grass. However, the use of L. leucocephala for cattle feedings has problems, due to mimosine toxicity. Symptoms of mimosine toxicity include infertility, decreased weight gain, goiter, cataract in young animals, and loss of hair [41]. Cattle fed completely on L. leucocephala will not die but may lose some of their coarse hairs. However, newborn calves have shown signs of enlarged thyroids, which may result in death within a few days if their mothers have signs of toxicity [42]. In addition, thyroidine levels were accounted to be higher in the group (10-month age) fed on an L. leucocephala diet [32].

Feeding rabbits on fresh or dried L. leucocephala or leaf meal improve animal performance. The inclusion of 24% to 40% of fresh L. leucocephala leaves is recommended for growing or fattening rabbits [76-81]. L. leucocephala can replace concentrate alfalfa (Medicago sativa) in the diet of rabbits [82]. L. leucocephala is more palatable than Arachis pintoi. 25% of L. leucocephala leaf meal can be included in supplementing a diet with cassava peels and Gliricidia sepium and 30% to 40% with Arachis pintoi [83]. However, when more than 10% to 15% dried L. leucocephala was included in the diet and replaced with wheat bran resulted in a decrease in growth in rabbits. [84]. 20% to 25% of fresh L. leucocephala leaves in diet resulted up to 55% mortality of female and young rabbits [85-86].

For fish, a few studies have been used with L. leucocephala leaf meal as a protein source in fish feeds and the data obtained are conflicting. Hossain et al. [87] revealed improved growth responses of Clarias gariepinus (African catfish) on diets containing 30% L. leucocephala leaf meal. Sant et al. [88] found that the slow growth rate of C. macrocephala (Asian catfish) on diets in which 30% of the fish meal was replaced by L. leucocephala leaf meal.

Leucaena leucocephala as human food

Almost every part of the L. leucocephala species is consumed as human food since the era of the Mayans [6]. In Indonesia, Thailand, and Central America, people eat the young leaves, flowers, and young pods in soups [6]. In the Philippine Islands, the young pods are cooked as a vegetable and roasted seeds are used as a substitute for coffee. The young dry seeds are popped like popcorn [6]. In Indonesia, Thailand, Mexico and Central America people also eat the young leaves, flowers, and young pods as an ingredient for soups and salads. Seeds are being considered as non-conventional sources of protein, together with other leguminous seeds [6]. In addition, it is one of the medicinal plants used to control stomach ache, as contraception and abortifacient.

Phytochemical studies

The phytochemical screening of leaf extract of L. leucocephala revealed the presence of various secondary metabolites as alkaloid, cardiac glycosides, tannins, flavonoids, saponins and Glycosides [3].

Bioactivity studies on this plant revealed its anthelmintic, antibacterial, anti-proliferative and anti diabetic activities [8]. The L. leucocephala leaves possess many biological properties such as antimicrobial, anticancer, cancer preventive, diuretic, anti-inflammatory, antioxidant; antitumor, antithrombinic, nematocide, pesticide, antiandrogenic, hypocholesterolemic and hepatoprotective (table 2) [6].
Antidiabetic activity

The seed extract from L. leucocephala leaves exhibits antidiabetic activity [90]. An aqueous extract derived from boiling the seeds of L. leucocephala is taken orally to treat type-2 (NIDDM) diabetes and is claimed to be efficacious [94]. Moreover, the seed extract from L. leucocephala inhibits the development of type-2 diabetes [92]. The seed gum used in tablet formulation and the extracts of the seeds used as anthelmintic, antidiabetic and has a broad spectrum antibacterial activity [1].

Recent studies revealed the presence of various secondary metabolites as alkaloid, cardiac glycosides, tannins, flavonoids, saponins and Glycosides. Its seeds have great medicinal properties and are used to control stomachache, as contraception and abortifacient. The seed gum used as a binder in tablet formulation and the extracts of the seeds used as anthelmintic, antidiabetic and has a broad spectrum antibacterial activity [1].

Pharmacological activities

Antioxidant activity

L. leucocephala seeds have great medicinal properties and are used to control stomachache, as contraception and abortifacient. The seed gum used as a binder in tablet formulation [6]. A sulfated glycosylated form of polysaccharides from the seeds was reported to possess significant cancer chemo-preventive and antiproliferative activities [1]. The extracts of the seeds have been reported as anthelmintic, anti-diabetic and have a broad spectrum antibacterial activity [1]. Recently, the seed oil was used in engineering as a novel bio-device useful in biomembrane modelling in lipopolysaccharide determination of drugs and xenobiotics [1]. The plant is reported to be a worm repellent.

Table 2: Phytochemical compounds identified from the L. leucocephala leaf extracts and their therapeutic Activity [6]

No	Compound	Secondary metabolite	Therapeutic activity
1	Phytol	Diterpene	Antimicrobial, anticancer, cancer preventive, diuretic, anti-inflammatory
2	Squalene	Triterpene	Antibacterial, antioxidant, antioxidant; cancer-Preventive, chemopreventive; immunostimulant, lipooxygenase-inhibitor, perfumery, pesticide, sunscreen
3	n-Hexadecanoic acid	Palmitic acid	Antioxidant, hypcholesteremic nematicide, pesticide, antiandrogenic, flavor, hemolytic, 5-alpha reductase inhibitor
4	Pentadecanoic acid, 14-methyl-, methyl ester	Palmitic acid methyl ester	Antioxidant; nematicide, pesticide, flavor, antiandrogenic
5	Hexadecanoic acid, 15-methyl-, methyl ester	Fatty acid ester	Anti-inflammatory, nematicide, pesticide, flavor, antiandrogenic
6	3,7,11,15-Tetramethyl-2-hexadec-1-ol	Terpene alcohol	Antimicrobial
7	9,12,15-Octadecatrienoic acid, methyl ester	Linolenic acid ester	Anti-inflammatory, insectifuge hypcholesteremic, cancer preventive, nematicide, hepatoprotective, insectifuge, antihaemostatic, antieczemic, antiancine, 5-alpha-reductase inhibitor, antiandrogenic, antiarthritis, anti-cancer
8	9,12-Octadecadienoic acid, methyl ester	Linolenic acid ester	Anti-inflammatory, nematicide, insectifuge hypcholesteremic, cancer preventive, hepatoprotective, antieczemic, antiancine, antiarthritis, anti-eczemic
9	Oxalic acid, allyl hexadecyl ester	Dicarboxylic acid	Acaricide, antiseptic, CNS-paralytic, fatal, hemostatic, irritant, pesticide, renotoxic, varroxicide

(Modified from Dr. Duke’s: phytochemical and ethnobotanical databases)

Antidiabetic activity

L. leucocephala leaves and seed extracts have antioxidant activity [89]. The seed gum contains a principal constituent, 2-(H)-benzofurane-5, 6, 7, 7a-tetrahydro-4, 4, 7a-trimethyl [25] and phenolic compounds and flavonoid quercitin was also isolated from the leaves extracts [90].

Antidiabetic activity

L. leucocephala has been reported to possess medicinal properties that control stomach diseases, facilitate abortion and provide contraception, and it is often used as an alternative, complementary treatment for diabetes [25]. Leaf and seed extracts also have antidiabetic activity [90]. An aqueous extract derived from its boiled seeds was taken orally to treat type-2 diabetes [92].

The seed gum used as a binder in tablet formulation and the extracts of the seeds used as anthelmintic, antidiabetic and has a broad spectrum antibacterial activity. To date, no information is available about the pharmacological activities of flower, fruit, bark, wood branch, stem and root of L. leucocephala which need further studies.

CONFLICT OF INTERESTS

Declared none

AUTHORS CONTRIBUTIONS

All the author have contributed equally

REFERENCES

1. V Meena Devi, VN Arilharan, P Nagendra Prasad. Nutritive value and potential uses of Leucaena Leucocephala as Biofuel-a mini review. Res J Pharm Biol Chem Sci 2013;4:515-21.
2. L Holm, JV Pacho, JP Herberger, DL Plucknett. A geographical atlas of world weeds. Malabar, Florida: Krieger Publishing Company; 1979.
3. J Brewbaker, CT Sorenson. New tree crops from interspecific Leucaena hybrids. In: Janick J, Simon JE. editors. Advances in new crops. Portland: Timber Press; 1990. p. 283-9.

L. leucocephala seeds have great medicinal properties and are used to control stomachache, as contraception and abortifacient. The seed gum used as a binder in tablet formulation [6]. A sulfated glycosylated form of polysaccharides from the seeds was reported to possess significant cancer chemo-preventive and antiproliferative activities [1]. The extracts of the seeds have been reported as anthelmintic, anti-diabetic and have a broad spectrum antibacterial activity [1]. Recently, the seed oil was used in engineering as a novel bio-device useful in biomembrane modelling in lipopolysaccharide determination of drugs and xenobiotics [1]. The plant is reported to be a worm repellent.

Pharmacological activities

Antioxidant activity

L. leucocephala leaf and seed extracts have antioxidant activity [89]. Leaf extracts contain, as a principal constituent, 2-(H)-benzofurane-5, 6, 7, 7a-tetrahydro-4, 4, 7a-trimethyl [25] and phenolic compounds and flavonoid quercitin was also isolated from the leaves extracts [90].

Antidiabetic activity

L. leucocephala has been reported to possess medicinal properties that control stomach diseases, facilitate abortion and provide contraception, and it is often used as an alternative, complementary treatment for diabetes [25]. Leaf and seed extracts also have antidiabetic activity [90]. An aqueous extract derived from its boiled seeds was taken orally to treat type-2 diabetes [92].
4. F Awe, AO Giwa-Ajeniya, AA Akinyemi, GNO Ezeri. Phytochemical analysis of *Acalypha wilkesiana*, *Leucaena leucocephala*, *Peperomia pellucida* and *Sena alata* leaves. Indian J Environ Sci 2013;3:2-41.4.

5. J Brewbaker, DL Pucknett, V González. Varietal variation and yield trials of *Leucaena leucocephala* (Koa Hao) in Hawaii. Hawaii Agric Exp St Res Bull 1972;166c1-29.

6. M Zayed, S Benedict. Phytochemical constituents of the leaves of *Leucaena leucocephala* from Malaysia. Int J Pharm Pharm Sci 2016;8:174-9.

7. M Takenaka, C Ripperton. *Koa haole* (*Leucaena glauca*), its establishment culture and utilization as a forage crop. Hawaii Agric Exp St Res Bull 1949;100:58.

8. NAS. Agroforestry in the West African Sahel. BOSTID, National Academy of Sciences: Washington, DC, USA; 1984.

9. C Orwa, A Mutua, R Kindt, R Jamnadass, S Anthony. Agroforestry database: a tree reference and selection guide version 4.0; 1984.

10. J Duke. Handbook of energy crops: *Leucaena leucocephala* (Lam.) de Wit. Center for New Crops and Plants Products, Purdue University, West Lafayette, IN; 1983. p. 5.

11. E Little, FH Wadsworth. Common trees of puerto rico and the Virgin Islands. Agriculture Handbook 249. U.S. Department of Agriculture, Forest Service: Washington, DC, USA; 1964.

12. T Pennington, J Sarukhan. Arboles tropicales de Mexico. Instituto Nacional de Investigaciones Forestales, Secretaria de Agricultura y Ganaderia. Mexico D.F., Mexico; 1968. p. 413.

13. R Howard. Flora of the lesser antilles, leeward and windward islands. Dicotyledoneae. Part 1. Jamaica Plain, MA: Arnold Arboretum, Harvard University; 1988. p. 4, 673.

14. H Lioger. Descriptive flora of Puerto Rico and adjacent islands. Spermatophyta. Editorial de la Universidad de Puerto Rico, Rio Piedras, PR; 1980;2:1-461.

15. W Stevens, C Ulloa, A Pool, OM Montiel. Flora de nicaragua. monograph in Economic botany. Missouri Botanical Garden, St. Louis, MO; 2001;85:945-1910.

16. R Van den Beldt, JL Brewbaker. *Leucaena*: wood production and use. Hawaii, USA: Nitrogen Fixing Tree Association; 1985. p. 50.

17. M Dijkman. *Leucaena* a promising soil erosion control plant. Econ Bot 1985;39:37-49.

18. Catie. Silvicultura de especies promisorias para producción de leña en América Central. Resultados de 5 años de investigación. Serie Tecnica Informe Tecnico 1986;86:177-200.

19. B Doguma, BT Kang, DU Okali. Factors affecting germination of *Leucaena leucocephala*. Seed Sci Tech 1986;16:489-500.

20. J Parrotta. *Leucaena leucocephala* (Lam.) de Wit. *Leucaena tanton* Res. Note ST-TTF-SM-52, New Orleans, LA, USDA Fores T Service. Southern Forest Experiment Station; 1992 p. 8.

21. M Zayed, BA Fasihuddin, W Ho, S Pang. EMS-induced mutagenesis and DNA polymorphism assessment through ISSR markers in *Neolamarckia cadamba* (kelampayan) and *Leucaena leucocephala* (petal belalang). Eur J Exp Bio 2014;4:156-63.

22. S Westwood. The optimum growing period in the nursery for five important tree species in lowland Nepal. Banko Janakari 1987;1:5-12.

23. J Francis. *Leucaena leucocephala* established by direct seeding in prepared seed lots under difficult conditions. NFTRR 1993;11:91-3.

24. NAS (National Academy of Sciences). *Leucaena*: Promising forage and tree crop for the tropics. Washington D.C. USA; 1977.

25. A Salem, MZ Salem, M Gonzalez-Ronquillo, LM Camacho, M Cipriano. Major chemical constituents of *Leucaena leucocephala* and *Salis babylonica* leaf extracts. J Trop Agric 2011;49:95-8.

26. C Chen, Y Wang. Polyprenol from the whole plants of *Leucaena leucocephala*. J Environ Prot 2010;1:70-2.

27. J Lowery. The role of *leucaena leucocephala* in animal feeding in Indonesia. Seminar Nacional Tantoro L. (BPJT) Jakarta: 1982.

28. R Wheeler, WR Chaney, KD Johnson, LG Butler. *Leucaena* forage analysis using near infrared reflectance spectroscopy. Anim Feed Sci Tech 1996;64:1-9.

29. A Castillo, OC Cuyugan, S Foarty, HM Shelhorn. Growth, psyllid resistance and forage quality of *Leucaena leucocephala*, *L. pallida*, *L. diversifolia* and the hybrid of *L. leucocephala* *L. pallida*. Trop Grassl 1997;31:188-200.

30. S Atawodi, D Mari, JC Atawodi, Y Yahaya. Assessment of *Leucaena leucocephala* leaves as a feed supplement in laying hens. Afr J Biotechnol 2008;7:317-21.

31. JG Baha, BD Thomas, C Ghatnekar, HD Deshmukh. Nutritive value of *Leucaena leucocephala* for growing bull calves. Trop Anim Health Prod 1978;10:323-41.

32. D Thomas, BL Addy. Stall-fed beef production in Malawi. Rev Trop Anim Prod 1977;13:23-30.

33. B Hulman, E Owen, T Preston. Comparison of *Leucaena leucocephala* and groundnut cake as protein sources for beef cattle fed ad libitum molasses/urea in Mauritis. Trop Anim Prod 1978;3:1-8.

34. U Ter Meulen, S Struck, F Schulke, EA El-Harith. A review on the nutritive value and toxic aspects of *Leucaena leucocephala*. Trop Anim Prod 1979;4:113-26.

35. B Sobale, ST Khartit, VL Prasad, AL Joshi, DV Rangnekar, SS Deshmukh. Nutritive value of *Leucaena leucocephala* for growing bull calves. Trop Anim Health Prod 1978;10:323-41.

36. J Flores, TH Stobbs, DJ Minson. The influence of the legume *Leucaena leucocephala* and formal-caseia on the production and composition of milk from grazing cows. J Agric Sci 1979;89:51-7.

37. L Henke, K Morita. Value of koa haole as a feed for dairy cows. Circular No. 44, University of Hawaii College of Agriculture, Honolulu, Hawaii; 1954.

38. S Ghatnekar, DG Aui, VS Kamat. Feeding *leucaena* to Mozambique tilapia and an Indian major carp. In: *IDRC 2nd Intl Workshop on leucaena Research in the Asia Pacific Region*, Singapore, IDRC 211, Unipub, New York; 1983. p. 1-63.

39. R Jones, GA Bunch. Long-term records of legume persistence and animal production from pastures based on Safari Kenya clover and *leucaena* in subtropical coastal Queensland. Tropical Grasslands 1995;29:74-80.

40. R Jones, GA Bunch. Long-term records of legume persistence and animal production from pastures based on Safari Kenya clover and *leucaena* in subtropical coastal Queensland. Tropical Grasslands 1995;29:74-80.

41. M Hegarty, PG Schinckel, RD Court. The reaction of sheep to the consumption of *Leucaena glauca* and to its toxic principle mimosine. Austr J Agric Res 1964;15:53-67.

42. N Kewalramani, RS Ramchandra, US Upadhyay, VK Gupta. Proximate composition, mimosine and mineral contents of *Leucaena* species in India. Indian J Anim Sci 1987;57:117-20.

43. J Holmes, JD Humphrey, EA Walton, JD O’Shea. Carotacts, goitre and infertility in cattle grazed on an exclusive diet of *Leucaena leucocephala*. Austr Vet J 1981;57:257-60.

44. N Tomkins, NP McMeniman, RC Daniel. Voluntary feed intake and digestibility by red deer (*Cervus elaphus*) and sheep (*Ovis aries*) of pangola grass (*Digitaria decumbens*) with or without a supplement of *leucaena* (*Leucaena leucocephala*). Small Rumin Res 1991;5:337-45.

45. I Osakwe, H Stingass. Ruminal fermentation and nutrient digestion in West African Dwarf (*WAD*) sheep fed *Leucaena leucocephala* supplemented diets. Agroforestry Sys 2006;67:129-33.

46. A Souza, GB Espindola. Effect of supplementation with *leucaena leucocephala* hay during the dry season on the ponderal development sheep. Rev Bras Zootec 1999;28:1249-4.

47. E Orden, SA Abdulrazak, EM Cruz, ME Orden, T Ichinohe, T Fujihara. *Leucaena leucocephala* and *Glycrrhiza sepiu* supplementation in sheep fed with ammonia-treated rice straw: effects on intake, digestibility, microbial protein yield and live-weight changes. Asian-Austral J Anim Sci 2000;13:1659-66.

48. F Espinoza, Y Diaz, P Argenti, H Quintana, L Leon. Use of rice straw (*Leucaena leucocephala*) on the post-weaning lamb feeding during the dry season. Rev Facultad Agronómia Universidad Zulia 2005;22:42-53.

49. L Reynolds, SO Adediran. The effects of browse supplementation on the productivity of West African Dwarf sheep over two reproductive cycles. Goat production in the...
56. D Negusse, S Teshome, T Azage. Growth rates and testicular characteristics of Ethiopian highland sheep offered chickpea haulm supplemented with incremental levels of Leucaena leucocephala. Livest Res Rural Dev 2004;6:205-19.

57. I Nasbli, BK Byebwa, ML Bonsi, DO Umeebio. Short-term effects of Leucaena leucocephala feeding on growth, reproductive characteristics and blood mineral profile of South Africa Merino rams. Indian J Anim Sci 2005;75:329-31.

58. A Selave-Villarroel, CC Cavalcanti-Neto, VJ Freitas. Effect of flushing with Leucaena (Leucaena leucocephala (Lam) de Wit) on ovulation rate in Crioulo hair tropical ewes. Rev Brasileira Repr Prod Animal 2002;26:112-4.

59. E Pamo, F Tendonkeng, JR Kana, PK Lojemy, E Tchapga, FK Fotie. Effect of different levels of supplementation with Leucaena leucocephala on weight gains of the West African Dwarf goat. Revue d’elevage Medecine Veterinaire Des Pays Tropicaux 2004;57:107-12.

60. An Akingbade, IV Nasbli, CD Morris. Reproductive performance, colostrum and milk constituents of mimosine adapted South African Nguni goats on Leucaena leucocephala- grass or natural pastures. Small Rumin Res 2004;52:253-60.

61. J Kanani, SD Lufekahl, RL Stanko. Evaluation of tropical forage legumes (Medicago sativa, Dolichos lablab, Leucaena leucocephala and Desmanthus bicornutus) for growing goats. Small Rumin Res 2006;65:1-7.

62. Babayemi, FT Ajayi, AA Tunde, MA Bakiko, AK Fajimi. Performance of African Dwarf goats fed Panicum maximum and concentrate diets supplemented with Lablab (Lablab purpureus), Leucaena (Leucaena leucocephala) and Gliricidia (Gliricidia sepium) foliage. Nigerian J Anim Prod 2006;33:102-11

63. S Odejinka. Effect of feeding varying levels of Leucaena leucocephala and Gliricidia sepium on the performance of West African Dwarf goats. Nigerian J Anim Prod 2001;28:61-4.

64. T Dutta, PK Sahoo, S Nawab, SB Rao, UB Chaudhary. Partial replacement of concentrate mixture with Leucaena leucocephala leaves in the pellet fed diets of goats. Indian J Anim Sci 2002;72:280-2.

65. A Areegbore, D Perera, MS Yahaya. Nutritive value of Batik grass (Ischamum aristatum var. indicum) supplemented with leaves of browes (Gliricidia sepium and Leucaena leucocephala) on the performance of goats. Int J Agric Biol 2004;6:134-8.

66. T Clavoer, R Razz. The performance of goats browsing Leucaena leucocephala in the semi-arid areas of northwest Venezuela. Revista Científica Facultad Ciencias Veterinarias Universidad Del Zulia 2003;13:460-3.

67. A Areegbore. Voluntary intake and digestibility of fresh, wilted and dry Leucaena (Leucaena leucocephala) at four levels to a basal diet of guinea grass (Panicum maximum). Asian-Aust J Anim Sci 2002;15:1139-46.

68. A Yami, AJ Litherland, JJ Davis, T Sahlu, R Puchala, AL Goetsch. Effects of dietary level of Leucaena leucocephala on the performance of angora and spanish doelings. Small Ruminant Res 2000;38:17-27.

69. C Rubanza, MN Shem, SS Bakengesa, T Ichinohe, T Fujihara. Reporting value of Leucaena leucocephala (Leucaena leucocephala) leaves in growing rabbits. Leucaena Res Rep 1992;13:65-7.

70. D Nieves, B Silva, O Teran, C Gonzalez. Increasing levels of Leucaena leucocephala in fattening rabbits diets. Revista Cientifica, Facultad de Ciencias Veterinaris, Universidad Del Zulia 2002;12:14-9.

71. D Adejumo. Performance and serum chemistry of rabbits fed graded levels of cassava peels, Leucaena leucocephala and Gliricidia sepium leaves based diets. Global J Pure Appl Sci 2002;8:475-9.

72. D Adejumo. Partial replacement of concentrate mixture with Leucaena leucocephala as a protein supplement for broilers. Ind Vet J 1996;73:1042-4.

73. An Okonkwo, LJ Isaac, A J Ebenso, BI Umoh, OO Usoro. Effect of roasted Leucaena leucocephala leaf meal on the performance of broiler chickens. Global J Pure Appl Sci 2002;8:475-9.

74. M Sekhar, PS Reddy, PV Reddy, A Venkataramaiah, DS Rao. Utilization of subabul (Leucaena leucocephala) leaf meal in layer rations. Ind J Anim Nutr 1998;15:3:194-7.

75. D Zongo, C Ba, O Diamba, M Coulibaly. Coloration effect of a natural source of pigment (Leucaena leucocephala) for use in poultry. Ann Zootech 1997;46:185-96.

76. M Muir, ES Massaetae. Growth response in rabbits to various levels of Leucaena leucocephala fed fresh with a wheat bran diet. Zimbabwe SocAnim Prod 1992;4:131-4.

77. C Onwuka, GO Adeljyi, WO Biobaku, IF Adu. Leucaena leucocephala leaves in rabbit diets. Leucaena Res Rep 1992;13:65-7.

78. P Rohilla, KM Bujharbarua. Effect of subabul (Leucaena leucocephala) feeding on growth and physiology of rabbits. J Hill Res 1999;12:135-7.

79. P Rohilla, KM Bujharbarua, M Kumar, G Singh. Haematological and biochemical responses of various levels of subabul (Leucaena leucocephala) leaves in growing rabbits. Ind J Anim Nutr 2000;17:28-33.

80. D Nieves, B Silva, O Teran, C Gonzalez. Increasing levels of Leucaena leucocephala in fattening rabbits diets. Revista Cientifica, Facultad de Ciencias Veterinaris, Universidad Del Zulia 2002;12:14-9.

81. D Adejumo. Performance and serum chemistry of rabbits fed graded levels of cassava peels, Leucaena leucocephala and Gliricidia sepium leaves based diets. Global J Pure Appl Sci 2002;12:171-5.

82. C Scapinello, AC Furlan, CC Jobim, HG Faria, DF Figueiredo, AB Hernandez. Nutritive value and use of Leucaena hay (Leucaena leucocephala cv. Cunningham) for growing rabbits. Acta Scientiarum 2000;22:829-33.

83. D Nieves, B Silva, O Teran, C Gonzalez, J Ly. A note on the chemical composition and feeding characteristics of diets containing Leucaena leucocephala and Anchis pinto diet for growing rabbits. Revista Livest Res Rural Dev 2004;16:419-21.

84. R Parigi-Bini, M Cnetto, N Carotta. Digestibility and nutritive value of Leucaena leucocephala in growing rabbits. 3rd World Rabbit Congress, Rome; 1984;1:399-407.

85. J Muir, ES Massaete. Growth response in rabbits to various levels of Leucaena leucocephala fed fresh with a wheat bran diet. J Zimbabwe Soc Anim Prod 1992;4:131-4.

86. M Sugur, KV Januma, TK Das, KN Mouly, KC Singh. Histological changes in muscles of broiler rabbits fed Leucaena leucocephala. Indian J Vet Anim 2001;13:83-4.

87. M Hossain, FH Shikha. Apparent protein digestibility coefficients of some low protein ingredients for African catfish, Clarias gariepinus Bangladesh J Zoo 1997;25:77-82.

88. C Santiago, AC Gonzal. Growth and reproductive performance of the Asian catfish Clarias macrocephalus (Gunther) fed artificial diets. J Appl Ichthyol 1997;13:37-40.

89. S Chowdhury and C Talubmook. Antioxidant and anti diabetic activities of leaf and seed extracts from Leucaena leucocephala
(Lam.) de Wit. In: Proceeding of NATPRO 4. Chiang Mai, Thailand; 2012. p. 356-9.
90. Adekunle, A Aderogba. Nematicidal effects of Leucaena leucocephala and Gliricidia sepium extracts on Meloidogyne incognita infecting okra. J Agric Sci 2007;52:53-63.
91. P Chowthivannakul, S Buavaroon, T Chusri. Antidiabetic and antioxidant activities of seed extract from Leucaena leucocephala (Lam.) de Wit. Agric Natural Resources; 2017. p. 1-5.
92. N Joshi, M Mahajan. Infection and diabetes. In: Pickup J C, Williams G. Eds. Textbook of Diabetes, third ed. Blackwell Science, Malden MA, USA; 2003.
93. D Syamsudin, P Simanjuntak. The effects of Leucaena leucocephala (Lmk) de Wit seeds on blood sugar levels: an experimental study. Int J Sci Res 2006;2:49-52.
94. R Syamsudin Sumarny, P Simanjuntak. Antidiabetic activity of active fractions of Leucaena leucocephala (Lmk) de Wit seeds in an experimental model. Eur J Sci Res 2010;43:384-91.
95. S Dalimarta. Ramuan tradisional untuk pengobatan diabetes melitus. Jakarta 2006. p. 3-15.
96. S Aderibigbe, OA Adetunji, MA Odeniyi. Antimicrobial and Pharmaceutical properties of the seed oil of Leucaena leucocephala (Lam.) de wit (Leguminosae). Afr J Biomed Res 2011;14:63-8.
97. S Arun Satyadev, M Viswanadha Murthy, R Saroja. Phytochemical screening and antitubercular efficacy of leaf extracts of Leucaena leucocephala. Indo-Am J Pharm Res 2015;5:1023-9.