Management of Source-Sink Balance for Maintaining Seed Vigor and Storability of Maize

1Sirinthorn Kaewchuai, 1Pitipong Thobunluepop, 1Sutkheth Nakasathien,
1Sukumarn Lertmongkol, 1Damrongvudhi Onwimol, 1Wilasinee Chitbanchong and 2Michael Bredemeier

1Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
2Forest Ecosystems Research Group, Center for Biodiversity and Sustainable Land Use (CBL) Universität Göttingen, Buesgenweg 1, D-37077 Göttingen, FRG, Germany
3Botany and Herbarium Research Group, Plant Varieties Protection Office, Department of Agriculture, Ministry of Agriculture and Cooperatives, Royal Thai Government, Bangkok, 10900, Thailand

Abstract: Defoliation was the major factor which directly affected to maize seed yield and quality basis on source-sink relationship. Thus, the objectives were to study the effect of source-sink balance management on corn seed vigor and storability and to determine the effect of defoliation treatments on maize yield, yield components and produced seed germination traits. The experiment was arranged basis on Split-Plot in Randomized Complete Block Design with four replications. Main plot was the pattern of leave cutting with 5 levels: D1 = control, (without defoliating), D2 = complete defoliation, D3 = defoliating only under the ear, D4 = remain 2 top leaves, D5 = remain ear leaf. Sup-plot was leaf cutting dates which were C1 = 7 days after silking, C2 = 10 days after silking, C3 = 13 days after silking and C4 = 16 days after silking. Complete defoliation severely reduced ear weight, row number per ear, seed number per ear and 100 - seed weight (P<5%). Defoliation treatments had much more significantly affected on produced seed germination and seed vigor traits. Leaf defoliation intensity and leaf position affected total dry matter. Conclusion, the leaf defoliation only below ears was useful for source-sink balance management, because it promoted the seed qualities and vigor following to principle of parasitic sink elimination.

Keywords: Maize, Source, Sink, Vigor and Storability

Introduction

Source capacity was determined by photosynthetic activity which related to availability of carbohydrate reserves (Uhart and Andrade, 1991). During effective grain filling period, the interaction between source capacity and sink strength (i.e., the source/sink ratio) would result in variation of final grain weight (Borrás and Otegui, 2001). Middle leaves of the stem had greater important role than the other leaves because of greater surface for light absorbing in the photosynthesis. Completely defoliation was led to minimum seeds yield because of decrease in seed weight and filled grain percent (Gifford et al., 1984). Distance of leaves and ear which participant in photosynthetic efficiency were important in a slight defoliation. Top leaves of the ear transferred about 23 to 91 percent of photosynthates to the cob and the greatest number of transferred materials belonged to the nearest leaf on top of the ear (Collantes et al., 1997). Defoliation treatments imposed when the numbers of grains had been established to reduce the source/sink ratio then results in a sharp decreasing of soluble carbohydrates in stems (Uhart and Andrade, 1995).

According to (Borrás et al., 2004), the imbalance of source/sink ratio during post-flowering could dramatically reduce final kernel weight. Restricting the source capacity during the effective grain-filling period affected Kernel Water Content (KWC) and the differently dynamics of dry matter deposition. Shortage of assimilate availability per grain (post-flowering source/sink ratio) in case that promoted by low irradiance values or defoliation might be reflected on both kernel weight and kernel composition (Borrás et al., 2002). The analysis source/sink ratio during post-flowering stage which effect on kernel weight determination would improve the understanding of the magnitude and source limitations during grain filling of maize (Borrás et al., 2009). The short period of maize leaf defoliation up to 50% did not had an adverse effect on
maize grain and yield components (van den Boogaard et al., 2001). Remove of leaves in the pollination phase decreased dry matter and grain yield of maize significantly (Borrás et al., 2004).

Seed development was the period between fertilization, maximum fresh weight accumulation and seed maturation; it began at the end of seed development and continues till harvested (Mehta et al., 1993). Optimum harvesting period at seed matured helps to obtain better seed quality and harvesting stage influenced the quality of seed which related to germination, vigor, viability and storability. Storability of seeds was a major genetically character and is influenced by pre-storage history of seed, seed maturation and environmental actors during pre/post-harvest stages (Shaheb et al., 2015). Early harvested seeds would be low seed quality caused by immature and poorly developed and poor storage compared to seed harvest at physiological maturity (Khatun et al., 2009). Storability of seeds was influenced by pre-storage history of the seeds, seed maturation and environmental factors during pre-harvest and post-harvest (Tuite and Foster, 1979).

Materials and Methods

The experiment was supported by Syngenta seed (Thailand) Co. Ltd. in research place and plant material, two experiments were conducted at the experimental field where located at U-Thong district, Suphan Buri province, Thailand. During the 2018 and 2019 growing seasons.

Plant Sampling Management and Experimental Design

In 2018, F₁ maize hybrids were planted 10 December the experiment was arranged into Split-plot in Randomized Complete Block Design with four replications.

Main-plot: The pattern of leave cutting with 5 levels were D₁ = control, (without defoliation), D₂ = complete defoliation, D₃ = defoliating leaves below the ear, D₄ = remain 2 top leaves, D₅ = remain ear leaf.

Sub-plot: Leaf cutting date with 4 levels were C₁ = 7 days after silking, C₂ = 10 days after silking, C₃ = 13 days after silking and C₄ = 16 days after silking.

In 2019, hybrids were planted 9 May in plots, again into Split-plot in Randomized Complete Block Design with four replications.

Plant materials and seed samples were F₁ hybrid maize seeds collected from parental hybrids lines for production. Plants were grown by 20x40 cm. of crop spacing. Compound fertilizer (15-15-15) at 60 kg h⁻¹, 40 kg h⁻¹ after 3-5 days of germination, 20 kg h⁻¹ after 40 days of emergence was applied for topping fertilizer single fertilizer (46-0-0) was applied as basal fertilizer amount 50 to 30 kg h⁻¹ divided at 20 days after emergence and 15 kg after h⁻¹ 40 days after emergence. Droplet irrigation was applied once a week. Weeds were controlled herbicides by spraying (2.4-D, glufosinate1.0 L h⁻¹ + fluroxypyr 0.3 L h⁻¹).

Plants were harvested when at 110 day after emergence. After each harvest, samples containing 10 ears were placed in paper bags and then taken to a hot air oven for drying at 40°C. The drying was performed until the seeds reached approximately 12% of moisture content. Seeds were stored in plastic sealed bag in 25°C. Then, seeds were sampling for seed qualities and vigor was tested at 6th month.

For the sampling, five plants were used as represent from each sampling block then separated each plant part and dried. Data collection was consisting of seed yield (gram), row number per cob, seed number per row and ear weight and 100-seed weight with remarkably that seed samples were bulk in each sampling block before the measurement.

Seed Parameters

Seeds of maternal plants were stored for 6th month then used for the seed parameters measurement, the effect of maternal environment was studied by testing seed germination traits. Seed qualities were tested following.

Determination of Germination Percentage

Germinations were carried out according to (ISTA, 2020). For each treatment, 100 seeds were germinated by using between paper techniques with four replications. The rolled papers were cultivated at room temperature (25±2°C). After the first count and final count 4 and 7 days after germination, normal, abnormal and diseased seeds were counted. Seed germination was calculated by the following formula:

\[
\text{Seed germination (\%)} = \frac{\text{No. of seeds germinated}}{\text{Total seeds}} \times 100
\]

Measurement of Root and Shoot Length

Final count, five seedlings were randomly selected as a represent for study, taking from each replicate of each treatment. The seedlings were cut into root and shoot parts and their lengths were measured as centimeter (cm).

Determination of Seed Vigor

Seedling vigor parameters were testing followed up protocols which were determined by ISTA: The Accelerated Aging test (AA) (ISTA, 2020), speed of germination (ISTA, 2020) and seedling growth rate (ISTA, 2020). These tests would predict storage and field planting potential. High humidity and high temperature stress were imposed on the seed, which was incubated for a period under these conditions, then transferred to a growth chamber to assess germination potential. Seed lots that withstand these conditions, while maintaining a
germination rate of 90% or above, are considered high
vigor (ISTA, 2020).

Speed of Germination

This parameter was calculated by the following
formula given by ISTA, (2020):

\[
\text{Speed of germination} = \frac{n1}{d1} + \frac{n2}{d2} + \frac{n3}{d3}
\]

Where:

\(n \) = Number of germinated seeds

\(d \) = Number of days

Seedling Growth Rate Test

This test was closely related to the standard germination
test and is useful to figure out field planting potential under
optimal or near ideal conditions. Seeds were planted under
optimal condition and promoted to grow for an extended
period, usually several days past the typical germination
period. The seedlings are evaluated by their growth
characteristics, such as stem length, leaf development or
root branching (ISTA, 2020).

The data were submitted to the Analysis Of Variance
(ANOVA). Using a Split plot in Randomized Complete
Block Design with 4 replications, mean comparisons were
accomplished using a Least Significant Difference (LSD)
test at the 5% level. Simple correlation analysis between the
results obtained from each test method was conducted.

Results and Discussion

Ear Weight

Completely defoliation severely reduced ear weight in
both years 2018 and 2019 (Table 1 and 4). Defoliating
leaves under of the ear had greater ear weight than
removing top leaves of the ear. Maybe it was due to that ear
leaf acted as a parasitic sink for ear growth at grain filling
period because it was in middle part of maize stem then
easily shade on it. Reduction of leaf area reduced resources
for grain filling (Koptur et al., 1996). According to leaf
cutting date, leaves cut at defoliation in 13 days after
silking (C3) showed the highest ear weight (Table 4). A
decreasing of source in the post-flowering source/sink
ratio could reduce final kernel weight dramatically
(Borrás et al., 2004). Ear weight was decreased
significantly by early defoliation treatment (13 days after
silking in both years had greater ear weight than 7 and 10
days after silking). Ear weight had shown to vary with
environmental conditions that directly affect to plant
growth and assimilate supply per kernel during the period
when plants are setting their kernels (i.e., flowering)
(Gambín et al., 2006). Differences in ear weight among
hybrids and years were mostly affected by differences in
the rate of kernel growth, as there were no differences in
the duration of grain filling (Table 1 and 4).

Row Number Per Ear and Seed Number Per Row

Completely defoliation severely decreased row number per ear and seed number per row in both years
2018 and 2019 (Table 1 and 4). Reduction of supply
assimilation by defoliations had significantly reduced row
number per ear and seed number per row. Heidari (2012)
reported, the row number per ear was harmful by complete
defoliation. Minor effect of defoliation on seed number per
row and row number per ear was due to that stem reserves
can compensate insufficient photosynthesis from leaves.
Defoliating top leaves of the ear produced lower seed
number per row than defoliating leaves below ear. Upper
leaves could be available to receive greater light than
lower leaves, so defoliation of upper leaves had more
adverse effect on seed number per row than lower leaves.
Interaction between defoliation and leaf cutting date did
significantly alter seed number per row concentration in
2018 year (Table 2). Interaction of D3 and C3 showed the
highest row number per ear which was statistically
significant (Table 5).

100-Seed Weight

The result of both years 2018 and 2019 showed, Removing all leaves severely reduced seed yield (Table 1
and 4). Defoliating leaves below the ear had greater amount
of seed yield than defoliating leaves at the top of ear (D4,
D5). It was probably due to that ear leaf in central part of
maize stem and upper leaves can shade on it, so it becomes
consumer and competes with ear for photosynthates. Lower
seed yield of complete defoliation treatment was due to
lower seed number per row and lower row number per ear.
Defoliation treatments had significantly affected on 100-
seed weight (Table 1 and 4) as same as the observed that
defoliation decreased seed weight. It seems that seed
weight is more dependent on genetic factors than
environmental factors (Heidari, 2012).

Seed Germination Percentage

D1 and D3 had higher seed germination percentage
than D2, D4 and D5 in both years 2018 and 2019 (Table
3 and 6). It might be due to that defoliation as an
environmental stress can reduce seed germination
percentage as described by (Heidari, 2012). Defoliation
of leaves top ear (D1 and D3) had no effected as great as
as a defoliation of leaves under ear (D5). The reason was
bottom leaves was currently senescent and available to
receive low light so removal of them does have great
effect on plant growth. According to leaf cutting date,
leaves cut at defoliation in 13 days after silking (C3)
showed the highest seed germination percentage (Table 6),
Table 1: Effect of defoliation patterns and leaf cutting date on total maize yield and yield components during 2018 (year 1)

Treatment	Ear weight, g/plant b	Row number per ear	Seed number per row	100 - Seed weight
Defoliation				
D1	48.50a	12.58a	14.47a	26.84a
D2	27.75b	9.96b	14.77b	10.99c
D3	48.00a	12.21a	14.34a	28.84a
D4	40.75a	12.03a	13.96a	23.27b
D5	40.00a	11.53a	12.70a	23.05b
LSD0.05	4.37	0.56	13.02	0.98
CV. (%)	9.51	1.22	28.36	19.60

Cutting date

C1	36.15b	11.15b	122.96a	23.20a
C2	39.80ab	11.55ab	107.95a	23.21a
C3	45.90a	11.65ab	122.83a	24.43a
C4	42.15ab	12.28a	114.74a	23.54a
LSD0.05	3.93	0.47	0.91	2.90
CV. (%)	7.92	0.96	22.32	6.19

a and b compared with LSD (P<0.05)

1/ D1 = control, (without leaf removal), D2 = defoliating all leaves, D3 = defoliating leaves under the ear, D4 = remain 2 top leaves, D5 = remain ear leaf

1/ C1 = 7 days after silking, C2 = 10 days after silking, C3 = 13 days after silking and C4 = 16 days after silking

Table 2: The interaction of the defoliation patterns and leaves cutting date on seed number per row during 2018 (year 1)

Defoliation	C1	C2	C3	C4
D1	14.98ab	15.43a	15.30a	12.16abcd
D2	6.25e	8.38de	9.83ced	14.61ab
D3	13.08abc	16.38a	14.00abc	13.56abc
D4	13.56abc	15.53a	12.25abcd	4.65f
D5	16.45a	13.35abc	10.50bcde	10.50bcde
LSD 0.05	2.04			
CV. (%)	4.12			

a, b, c, d, e and f compared with LSD (P<0.05)

1/ D1 = control, (without leaf removal), D2 = defoliating all leaves, D3 = defoliating leaves under the ear, D4 = remain 2 top leaves, D5 = remain ear leaf

1/ C1 = 7 days after silking, C2 = 10 days after silking, C3 = 13 days after silking and C4 = 16 days after silking

Table 3: Effect of defoliation patterns and leaf cutting date on maize seed germination traits during 2018 (year 1)

Treatment	Germination, %	Shoot length, cm	Root length, cm	Seedling growth rate	Speed of germination	AA - test germination at 6th month
Defoliation						
D1	90.78a	10.42ab	6.72b	2.15ab	22.50a	87.50ab
D2	58.25c	6.79c	8.60a	1.98c	17.51c	59.75d
D3	92.25a	11.22a	6.72b	2.21a	22.90a	90.14a
D4	80.53b	7.91cd	7.99ab	2.06bc	20.78b	80.38bc
D5	74.25b	8.75bc	7.69ab	2.14ab	20.91b	76.75c
LSD0.05	5.56	0.88	0.69	0.06	0.63	5.86
CV. (%)	24.10	1.92	1.52	0.13	1.36	12.17

Cutting date

C1	81.00a	8.25a	7.69a	2.03a	20.89a	73.20a
C2	86.00a	9.07a	7.93a	2.21a	20.63a	71.80a
C3	64.00b	9.03a	7.25a	2.06a	21.63a	83.80a
C4	78.20ab	9.72a	7.45a	2.14a	20.92a	66.40a
LSD0.05	9.29	0.73	0.54	0.09	0.59	6.42
CV. (%)	19.80	1.48	1.10	0.19	1.19	10.15

a, b, c and d compared with LSD (P<0.05)

1/ D1 = control, (without leaf removal), D2 = defoliating all leaves, D3 = defoliating leaves under the ear, D4 = remain 2 top leaves, D5 = remain ear leaf

1/ C1 = 7 days after silking, C2 = 10 days after silking, C3 = 13 days after silking and C4 = 16 days after silking
Table 4: Effect of defoliation patterns and leaf cutting date on maize yield and yield components during 2019 (year 2)

Treatment	Ear weight, g/plant b	Row number per ear	Seed number per row	100 - Seed weight
Defoliation				
D1	62.01a	11.61ab	13.18ab	26.04a
D2	29.80b	9.98d	9.99c	17.28d
D3	61.71a	12.21a	13.80a	26.20a
D4	30.80b	10.57cd	11.57bc	23.62b
D5	38.75b	11.26bc	12.78ab	22.71c
LSD0.05	7.15	0.38	0.79	0.40
CV. (%)	15.58	0.84	1.74	0.88

Cutting date

	Ear weight, g/plant b	Row number per ear	Seed number per row	100 - Seed weight
C1	38.11b	11.10a	12.54ab	22.85a
C2	43.50ab	10.85a	12.28ab	23.18a
C3	53.36a	11.66a	13.33a	23.19a
C4	43.49ab	10.88a	10.91b	23.46a
LSD0.05	4.98	0.50	1.08	0.49
CV. (%)	10.04	1.00	2.17	0.99

a and b compared with LSD (P<0.05)
\(^{1} \)D1 = control, (without leaf removal), D2 = defoliating all leaves, D3 = defoliating leaves under the ear, D4 = remain 2 top leaves, D5 = remain ear leaf.
\(^{2} \)C1 = 7 days after silking, C2 = 10 days after silking, C3 = 13 days after silking and C4 = 16 days after silking.

Table 5: The interaction of the defoliation patterns and leaves cutting date on row number per ear during 2019 (year 2)

Treatment	C1	C2	C3	C4
Defoliation				
D1	12.06abc	11.05abcd	12.02abc	11.30abcd
D2	10.33cd	10.03cde	9.24de	10.33cd
D3	11.73abc	12.65ab	13.00a	11.45abc
D4	10.78bcd	7.95e	12.46ab	11.09abcd
D5	10.60bcd	12.55ab	11.60abc	10.25abcd
LSD 0.05	1.12			
CV. (%)	2.26			

a,b,c,d and e compared with LSD (P<0.05)
\(^{1} \)D1 = control, (without leaf removal), D2 = defoliating all leaves, D3 = defoliating leaves under the ear, D4 = remain 2 top leaves, D5 = remain ear leaf.
\(^{2} \)C1 = 7 days after silking, C2 = 10 days after silking, C3 = 13 days after silking and C4 = 16 days after silking.

Table 6: Effect of defoliation patterns and leaf cutting date on maize seed germination traits during 2019 (year 2)

Treatment	Germination, %	Shoot length, cm	Root length, cm	Seedling growth rate	Speed of germination	AA - test germination at 6th month
Defoliation						
D1	89.19a	9.65ab	6.75bc	1.47a	21.90a	83.19a
D2	70.31c	6.22c	8.58a	1.23c	17.75c	64.31c
D3	91.31a	10.41a	6.52c	1.50a	22.59a	85.31a
D4	70.88c	7.23c	7.86abc	1.32bc	17.42c	64.88c
D5	76.69b	7.94bc	7.98ab	1.41ab	18.90b	70.69b
LSD0.05	1.19	0.94	0.65	0.05	0.50	1.16
CV. (%)	2.60	2.05	1.41	0.12	1.10	2.60

Cutting date

	Germination, %	Shoot length, cm	Root length, cm	Seedling growth rate	Speed of germination	AA - test germination at 6th month
C1	78.35a	7.53b	7.70a	1.29b	19.24b	72.35c
C2	79.45bc	8.44ab	7.78a	1.51a	19.61b	73.45bc
C3	80.95a	8.09ab	7.36a	1.33ab	20.36a	74.95a
C4	79.95ab	9.10a	7.30a	1.42ab	19.65b	73.95ab
LSD0.05	0.72	0.78	0.53	0.09	0.32	0.51
CV. (%)	1.45	1.54	1.08	0.19	0.65	1.05

a, b, c and d compared with LSD (P<0.05)
\(^{1} \)D1 = control, (without leaf removal), D2 = defoliating all leaves, D3 = defoliating leaves under the ear, D4 = remain 2 top leaves, D5 = remain ear leaf.
\(^{2} \)C1 = 7 days after silking, C2 = 10 days after silking, C3 = 13 days after silking and C4 = 16 days after silking.
Shoot Length and Root Length

Defoliation treatments had significantly impact on seedling shoot length and root length in both years 2018 and 2019 (Table 3 and 6). There had a negative correlation between root length reduced while shoot length, seedling growth rate and germination percent increased (Heidari, 2012).

Seed Vigor

The significantly effect of defoliation treatments on seedling weight and vigor was shown in both years 2018 and 2019 (Table 3 and 6). D3 the best increased high seedling growth rate, speed of germination and AA test germination percentage after 6th month of storage it’s not significantly different from D1. While the D2, D1 and D5 still show low seedling growth rate, speed of germination and AA test germination percentage after at 6th month of storage when compared with control which was no leaf removal (Table 3 and 6).

Defoliation leaves under ear severely (D3) increased 100 - seeds weight, seed germination percentage, speed of germination and seed vigor. This might be due to those defoliating leaves under ear acting as a parasitic or metabolic sink that competed for ear and kernel development during the grain filling period. Those leaves at below part of the maize stem and upper leaves could provided shade for the leaves in the central position (Heidari, 2012). A senescent leaf undoubtedly reduces the supply of photosynthate available for distribution to the grain developing as indicated by the decline in stem weight and carbohydrate concentration (Jones and Simmons, 1983). If the defoliation leaves under ear severely, the quantity of retransferred assimilation from stem to grain would be increased. Defoliating leaves below the ear did not significantly decrease corn yield and seed quality (Koptur, et al., 1996).

Complete defoliation (D5) caused the decreasing in yield and yield components. As same as study on grain maize showed, complete defoliation caused to diminish of the yield about 95% (Melchiori and Caviglia, 2008). Defoliation leaves on top of the ear (D4 and D2) caused more impact which decreased in the rate of grain filling because of only remained leaves were unavailable to supply enough to requirement of assimilate for plant. The effective period of grain filling had greater effect by defoliation than the rate of grain filling. The results suggest that the top leaves should be prevent for defoliate, because this treatment showed the negative effect on yield (Heidari, 2012). As reported by (Borrás et al., 2004), a decreasing of the post-flowering source/sink ratio could reduce final kernel weight dramatically. Matthews, (1973) reported large seed size could promoted the higher germination percentage (48%) while small seed size gave a lower germination percentage (46.0%) as same as the observing that germination was higher (89.6%) in large sized seeds and lower (85.2%) in small sized seeds. Storability of seeds was a major genetic characteristic and was influenced by pre-storage history of seeds, seed maturation and environmental factors during both of pre-harvest and post-harvest (Tuite and Foster, 1979).

Conclusion and Suggestions

The results of this study showed defoliating leaves under ear (D3) could maintain seed storability with high seed germination percentage and seed vigor. The result in maize seeds had the potential to grow to normal seedlings in the field condition, compared to removing the top of the ear (D4 and D5). Therefore, improving the seed quality in maize, hybrids and agronomic practices should focus to promote the post-flowering source/sink ratio. The recommendation is to study the effect of other environmental factors such as light by removing leaves under and at the top of ear on seed qualities and storability is remarkably interesting. Finally, leaf defoliation at upper of ear was more impact to all investigated characteristics as well as the results that suggested the upper leaves should not defoliate, because this treatment has negative effect on the yield.

Acknowledgment

This work was supported by Syngenta Seeds (Thailand) Co. Ltd. for the source of maize seeds. We are grateful to farmer field at U-Thong district, Suphan Buri province for place of planting. Thank you Department of Agronomy, Faculty of Agriculture, Kasetsart University for working place at Crop Physiology and Renewable Energy Crops Laboratory, Seed laboratory and Prof. Dr. Michael Bredemeier at Georg - August University of Gottingen, Germany for supporting.

References

Borrás, L., & Otegui, M. E. (2001). Maize kernel weight response to postflowering source–sink ratio. Crop Science, 41(6), 1816-1822. https://doi.org/10.2135/cropsci2001.1816
Borrás, L., Curá, J. A., & Otegui, M. E. (2002). Maize kernel composition and post-flowering source-sink ratio. Crop Science, 42(3), 781-790. https://doi.org/10.2135/cropsci2002.0781
Borrás, L., Slafer, G. A., & Otegui, M. E. (2004). Seed dry weight response to source–sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crops Research, 86(2-3), 131-146. https://doi.org/10.1016/j.fcr.2003.08.002
Borrás, L., Zinselmeier, C., Senior, M. L., Westgate, M. E., & Muszynski, M. G. (2009). Characterization of grain-filling patterns in diverse maize germplasm. Crop Science, 49(3), 999-1009. https://doi.org/10.2135/cropsci2008.08.0475
Collantes, H. G., Gianoli, E., & Niemeyer, H. M. (1997). Effect of defoliation on the patterns of allocation of a hydroxamic acid in rye (Secale cereale). Environmental and Experimental Botany, 38(3), 231-235. https://doi.org/10.1016/S0098-8472(97)00009-9

Gambín, B. L., Borrás, L., & Otegui, M. E. (2006). Source–sink relations and kernel weight differences in maize temperate hybrids. Field Crops Research, 95(2-3), 316-326. https://doi.org/10.1016/j.fcr.2005.04.002

Gifford, R. M., Thorne, J. H., Hitz, W. D., & Giaquinta, R. T. (1984). Crop productivity and photoassimilate partitioning. Science, 225, 801-808. https://science.sciencemag.org/content/225/4664/4664

Heidari, H. (2012). Effect of defoliation intensity on maize yield, yield components and seed germination. Life Science Journal, 9 (4), 1587-1590. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.448.6751&rep=rep1&type=pdf

ISTA. (2020). International rules for seed testing 2021. International Seed Testing Association. Zurich, Switzerland. https://www.seedtest.org/en/international-rules-for-seed-testing-_content---1--1083.html

Jones, R. J., & Simmons, S. R. (1983). Effect of altered source-sink ratio on growth of maize kernels. Crop Science, 23, 129-134. https://onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1983.0011183X002300010038x

Khatun, A., Kabir, G., & Bhuiyan, M. A. H. (2009). Effect of harvesting stages on the seed quality of lentil (Lens culinaris L.) during storage. Bangladesh Journal of Agricultural Research, 34(4), 565-576. https://doi.org/10.3329/bjar.v34i4.5833

Koptur, S., Smith, C. L., & Lawton, J. H. (1996). Effects of artificial defoliation on reproductive allocation in the common vetch Vicia sativa (fabaceae; papilionoideae). American Journal of Botany, 83(7), 886-889. https://doi.org/10.2307/2446265

Matthews, S. (1973). The effect of time of harvest on the viability and pre-emergence mortality in soil of pea (Pisum sativum L.) seeds. Annals of Applied Biology, 73(2), 211-219. https://doi.org/10.1111/j.1744-7348.1973.tb01327.x

Mehta, C. J., Kuhad, M. S., Sheoran, I. S., & Nandwal, A. S. (1993). Studies on seed development and germination in chickpea cultivars. Seed Research, 21(2), 89-91.

Melchiori, R. J. M., & Caviglia, O. P. (2008). Maize kernel growth and kernel water relations as affected by nitrogen supply. Field Crops Research, 108, 198-205. https://doi.org/10.1016/j.fcr.2008.05.003

Shaheb, M. R., Islam, M. N., Nessa, A., & Hossain, M. A. (2015). Effect of harvest times on the yield and seed quality of French bean. Saarc Journal of Agriculture, 13(1), 1-13. https://doi.org/10.3329/sja.v13i1.24175

Tuite, J., & Foster, G. H. (1979). Control of storage diseases of grain. Annual Review of Phytopathology, 17(1), 343-366. https://doi.org/10.1146/annurev.py.17.090179.002015

Uhart, S. A., & Andrade, F. H. (1991). Source-sink relationships in maize grown in a cool-temperate area. Agronomie, 11(10), 863-875. https://doi.org/10.1051/agro:19911004

Uhart, S. A., & Andrade, F. H. (1995). Nitrogen and carbon accumulation and remobilization during grain filling in maize under different source/sink ratios. Crop Science, 35, 183–190. https://onlinelibrary.wiley.com/doi/abs/10.2135/cropsci1995.0011183X003500010034x

van den Boogaard, R., Greven, K., & Thorup-Kristensen, K. (2001). Effects of defoliation on growth of cauliflower. Scientia Horticulturae, 91(1-2), 1-16. https://doi.org/10.1016/S0304-4238(01)00234-5