Preparation, Characterization and Evaluation of Some New Amides as Antimicrobial Agents

Sukriye Cakmak and Aysel Veyisoglu
Sinop University, Department of Medical Services and Techniques, Sinop, Turkey

ABSTRACT

The some new amide derivatives 1(a-c) and, 2d were synthesized by the two-step N-acylation of 4-nitroaniline or heterocyclic amine derivatives with acyl chlorides. All of the products were determined using 13C NMR, 1H NMR, FT-IR spectroscopies and elemental analysis. Antimicrobial activities of the molecules were evaluated against various bacterial and fungal species. The results show that the some new compounds exhibit good antibacterial and antifungal activities.

Keywords:
Amides; Secondary amides; N-acylation, Antimicrobial activity; Characterization.

INTRODUCTION

Amides are an important class of organic compounds in which a carbonyl group is connected to a nitrogen atom. These compounds and those similar possess various excellent biological activities including antibacterial, antifungal [1-6], antioxidant [7-11], insecticide [12], anticonvulsant, analgesic, and antitumor agents [13-17].

As is known, amide formation does not occur spontaneously at room temperature and for this reason, it is necessary to pre-activated the carboxylic acids such as acid chlorides. For this purpose, the corresponding amides were synthesized the pre-activation the carboxyl group using thionyl chloride. The FT-IR spectra were obtained on Bruker Vertex 80V spectrometer. The 1H NMR and 13C NMR spectra were recorded a Bruker/Biospin 400 MHz spectrometer instrument using CDCl$_3$ as solvent and TMS as internal standard. The elemental analyses were carried out on a Costech, ECS 4010 elemental analyser.

Preparation of new amide compounds 1(a-c) and 2d

The newly amide compounds 1(a-c) and 2d were prepared as a result of the two-step reaction shown in Fig. 1. In the firstly step, activation step, the acid chloride intermediate was formed by the interaction of thionyl chloride and carboxylic acid by the procedure as previously described in the literature [18]. In the second step, the acylation step: Heterocyclic amine or 4-nitroaniline derivatives (12 mmol) was dissolved in THF (6 mL) and triethylamine (8 mmol) was added dropwise. Then, to mixture was added dropwise (14 mmol) of 3-acetoxy-2-methylbenzoyl chloride or 2-thiophene carbonyl chloride in 8 mL of THF at room temperature [19]. After this mixture was allowed to stir for 14 hours at room temperature, the resulting white salt precipitate was filtered and washed several times with water. The filtrate was then precipitated with water and the obtained the white crude product was recrystallized from acetonitrile.

MATERIAL AND METHODS

Measurement and Reagent

All chemicals were purchased from Sigma-Aldrich, Merck or ABCR and directly used without further purification other than commercial thionyl chloride. It was twice distilled; colorless product of high purity was obtained (b.p. 77 °C/760 mmHg). Melting points were determined using Stuart SMP 30 apparatus. The FT-IR spectra were obtained on Bruker Vertex 80V spectrometer. The 1H NMR and 13C NMR spectra were recorded a Bruker/Biospin 400 MHz spectrometer instrument using CDCl$_3$ as solvent and TMS as internal standard. The elemental analyses were carried out on a Costech, ECS 4010 elemental analyser.
Antimicrobial activity

Four new synthesized molecules were exhibited antimicrobial activities against the following eight microorganisms including Gram-staining-positive (Bacillus subtilis ATCC 6633; Staphylococcus aureus ATCC 25923; Enterococcus faecalis ATCC 29212), Gram-staining-negative (Escherichia coli ATCC 25922; Klebsiella pneumoniae ATCC 70060; Pseudomonas aeruginosa ATCC 27853) bacteria and fungi (Aspergillus niger ATCC 16404; Candida albicans ATCC 1023). Antimicrobial activities were performed using the microdilution method (MIC) [20] by the broth microdilution method carried out in 96-well microplates. Synthesized compounds were dissolved in DMSO at the appropriate concentration. The cultures of each microorganism and 100 µL suspension of compound tested were added into the wells. The microplate with no growth of microorganism was recorded to represent the MIC enounced in µg/mL. Amoxicillin and Tetracycline were used as the reference standard for antibacterial activity while Ketoconazole was used as the reference standard for antifungal activity, the MIC value were showed in Table 5.

RESULTS AND DISCUSSION

Physical characteristics

The some physical, chemical properties, and elemental analysis results of the newly synthesized molecules are given in Tables 1 and 2.

Code	Structure	Melting point (°C)	Yield (%)
1a	![Structure](image1a.png)	123-126	62
1b	![Structure](image1b.png)	109-111	51
1c	![Structure](image1c.png)	96-98	58
2d	![Structure](image2d.png)	207-210	63

Table 1. The physical, chemical properties of prepared molecules (1a-1c) and 2d

Compound	Calculated	Experimental						
	N %	C %	H %	S %	N %	C %	H %	S %
1a	4.84	62.22	5.18	11.06	4.74	62.71	5.06	10.75
1b	9.32	59.94	3.99	10.65	8.74	60.45	3.88	10.13
1c	5.12	65.87	5.49	-	5.01	66.07	4.87	-
2d	11.28	53.18	3.22	12.89	10.84	53.33	2.89	12.11

Table 2. The results for elemental analysis of prepared compounds (1a-1c) and 2d

IR Spectra

The infrared spectrum of compound 1a displayed a significant vibrational band at 3271 cm⁻¹ for the presence of a seconder amide. The absorption for an amide carbonyl (\(-\text{NHC}=\text{O}\)) was observed at 1637 cm⁻¹ while an absorption for the carbonyl of ester was observed at 1751 cm⁻¹.
Due to resonance the aromatic ring with oxygen atom, the strong C=O stretching vibration of ester carbonyl is (~1740 cm⁻¹) higher than normal stretching vibration of ester carbonyl. The other remarkable band at around 1454 cm⁻¹ belongs to C-N stretching vibration as shown in Fig. 2. In addition, important IR absorptions of the synthesized molecules are given in the Table 3. These spectral data are consistent with similar structures given in the literature [21, 22].

NMR Spectra

In the ¹H NMR spectra of molecule 1a there are two singlets at 2.26 ppm (s, Ar-CH₃) and 2.34 ppm (s, -OCOCH₃) belong to the methyl protons on the benzene ring and methyl protons bound to ester carbonyl respectively. The characteristic NH peak for amides was observed as a singlet at 6.27 ppm (s, -NHC=O). The methylene protons in the structure of compound 1a interacted with the amide proton and were observed as a doublet at 4.79 ppm. The signals of the phenyl ring protons (H1-H3) appeared at between 7.25-6.97 ppm. Of phenyl ring protons, the H2 proton coupled to the H3 proton show a doublet and gives a triplet by coupling the H1 and the H3 as being 7.28 ppm. The signals of the thiophene protons resonated in slightly lower up-field compared to the phenyl protons. These thiophene protons, labeled as H4, H5, and H6, showed two doublets and a triple signals observed in the range of 7.11-6.95 ppm (Fig. 3). These values obtained are in consistent with similar compounds in the literature [21]. In the Table 4 are illustrated the chemical shift values of the other compounds.

¹³C NMR Spectra

The ¹³CNMR spectrum of compound 1a recorded in CDCl₃ showed 15 different carbon signals. Two of these signals belong to ester carbonyl carbon and amide carbonyl carbon, was observed at 169.3 ppm and 168.9 ppm, respectively. The phenyl ring carbons (C1-C6) were detected at 149.7, 124.4, 126.1, 123.8, 138.1 and 128.6 ppm respectively. The carbons (C7-C10) belonging to the thiophene ring were resonated at 140.5, 127.0, 126.6 and 125.4 ppm, respectively. While the methyl carbon atom attached to the ester carbonyl group was observed at 20.7 ppm, the other methyl carbon atom attached to the phenyl ring resonated at 12.9 ppm (Fig. 4) The methylene carbon atom (-CH₂-) was observed at 38.7 ppm. These chemical shift values are compatible with the literature and confirm the formation of the target molecule [21]. The carbon chemical shifts values of other synthesized molecules are illustrated in the Table 5.

Table 3. Important IR bands of synthesis compounds (cm⁻¹)

Comp.	-NH	Ar CH	Aliph CH	Amide C=O	Ester C=O	C-N	Ar-C=N	Ar-NO₂ N=O (Asym. Stretch)	Ar-NO₂ C=N (Sym. Stretch)
1a	3271	3070-3040	2970-2845	1637	1751	1454	-	-	-
1b	3244	3113-3081	2981-2934	1755	1787	1457	2229	-	-
1c	3264	3075-3012	2978-2907	1644	1744	1441	-	-	-
2d	3358	3138-3106	-	1641	1412	-	1538 (Asym.)	1322 (Sym.)	852
Antimicrobial activities

The four newly synthesized molecules were tested in vitro for antimicrobial activity against three Gram-staining-positive, three Gram-staining-negative bacterial strains and two fungi strains. While 1a and 1c compounds did not show antimicrobial activity, 2d and 1b compounds showed antimicrobial activity (Table 6). The MIC values of 2d and 1b were determined between the dose of 500–1000 μg/mL and 125–500 μg/mL, respectively, against Gram-positive, Gram-negative bacteria and fungus species. The 2d and 1b compounds showed better antimicrobial activity against S. aureus, E. faecalis, K. pneumoniae and P. aeruginosa than the Amoxicillin standard.

CONCLUSION

In this article, four new amide molecules (1a-1c) and 1d were successfully prepared by two-step synthesis reactions consisting of activation and acylation steps. The structural analysis of the obtained molecules was made using FT-IR, 1H NMR, 13C NMR, spectroscopy and elemental analyses techniques. All of the target molecules were screened for their antibacterial and antifungal activities using serial dilution technique. As a result, among tested compounds 1b and 2d were exhibited good anti-
microbial activity. This antimicrobial activity can be the directly related to the nature of the substituents on the ring of compounds 1b and 2d.

References

1. Aftab K, Aslam K, Kousar S, Nadeem, MJUH. Synthesis, characterization and biological evaluation of tryptophan based benzamide derivatives. Pakistan Journal of Pharmaceutical Sciences 29 (2) (2016) 423–428.

2. Aytemir MD, Hider RC, Erol DD, Oral M, Ekizoglu, M. Synthesis of new antimycobacterial agents; amide derivatives of pyranones and pyridinones. Turk Journal of Chemistry 27 (2003) 445–452.

3. Kabara JJ, Conley AJ, Traunt, JP. Relationship of chemical structure and antimicrobial activity of alkyl amides and amines. Antimicrobial Agents and Chemotherapy 2(6) (1972) 492–498.

4. Gore, RP. Synthesis, characterization and antimicrobial activity of N'-substituted phenyl-2-(1H-azol-1-yl) acetamides. Der Pharma Chemica 6(6) (2014) 35–38.

5. Kushwaha N, Saini RK, Kushwaha, SK. Synthesis of some amide derivatives and their biological activity. International Journal of ChemTech Research 3(1) (2011) 203–209.

6. Wu J, Kang S, Luo L, Shi Q, Ma J, Yin J, Song B, Hu D, Yang, S. Synthesis and antifungal activities of novel nicotinamide derivatives containing 1,3,4-Oxadiazole. Chemistry Central Journal 7 (2013) 64.

7. Panagiotis P, John N, Priprem A, Nakagawa K, Puthongking, NT: not tested

8. S. Cakmak and A. Veyisoglu/ Hittite J Sci Eng, 2020, (4) 345–351

9. Amoxicillin <2 >1000 >1000 32 >1000 >1000 NT NT

10. Tetracycline <2 8 8 <2 8 4 NT NT

11. Ketoconazole NT NT NT NT NT NT 1 2

Table 6. The minimum inhibition concentrations (MIC’s) of the tested molecules

Sample	Gram-staining-positive	Gram-staining-negative	Fungi						
	B. subtilis	S. aureus	E. faecalis	E. coli	K. pneumoniae	P. aeruginosa	A. niger	C. albicans	
la	-	-	-	-	-	-	-	-	-
1b	125	125	125	125	125	125	125	500	1000
lc	500	500	500	500	500	500	500	1000	1000
2d	<2	>1000	>1000	32	>1000	>1000	NT	NT	NT
Amoxicillin	<2	8	8	<2	8	4	NT	NT	NT
Tetracycline	<2	8	8	<2	8	4	NT	NT	NT
Ketoconazole	NT	NT	NT	NT	NT	NT	1	2	2
APPENDIX

Figure S1. FT-IR spectrum of compound 1b

Figure S2. 1H NMR spectrum of compound 1b in CDCl$_3$

Figure S3. 13C NMR spectrum of compound 1b in CDCl$_3$

Figure S4. FT-IR spectrum of compound 1c

Figure S5. 1H NMR spectrum of compound 1c in CDCl$_3$

Figure S6. 13C NMR spectrum of compound 1c in CDCl$_3$
Figure S7. FT-IR spectrum of compound 2d

Figure S8. 1H NMR spectrum of compound 2d in CDCl$_3$

Figure S9. 13C NMR spectrum of compound 2d in CDCl$_3$