Systematic review of neuropsychological instruments used in subthalamic nucleus deep brain stimulation in Parkinson’s disease patients

Eduarda Naidel Barboza e Barbosa¹, Helenice Charchat-Fichman²

ABSTRACT. In addition to drug treatment, surgical intervention represents an alternative to PD patients with motor deficits. The most common intervention is subthalamic nucleus deep brain stimulation (STN-DBS). It is extremely important to perform a neuropsychological assessment in patients with STN-DBS, not only to identify losses related to the disease, but also to compare influence on cognition both pre and postoperatively. Objective: the objective of this systematic review was to investigate the instruments frequently used in studies related to STN-DBS in PD patients. Methods: articles were retrieved from Medline/ Pubmed databases published in the 2007-2017 period using PRISMA criteria. Results: after analyzing 27 articles, the absence of a specific evaluation protocol for PD with STN-DBS was evident. Conclusion: non-motor symptoms are not given due importance in neuropsychological assessments. It is crucial to acknowledge that these symptoms have a major impact on the quality of life of patients. Greater engagement in assessing these aspects is required, in order to bridge the gaps in research. Key words: Parkinson’s disease, deep brain stimulation, neuropsychological instruments, neuropsychological assessment.

Parkinson’s disease (PD) is considered the second-most-common neurodegenerative disease, preceded only by Alzheimer’s disease (AD).¹² PD’s motor characteristics are much better known than its non-motor ones, but patients also have functional impairment.¹³⁻⁵ When PD was first described, cognition was believed to be preserved, but current research⁶⁷ reports cognitive decline. Besides drug treatment, surgical intervention can be
used in some cases. One of these methods is deep brain stimulation (DBS), consisting of electrical stimulation of subcortical structures. The main objective of DBS is motor control of symptoms; however, the stimulated areas are also potentially able to stimulate some cognitive functions secondarily.

Studies usually promote cognitive screening in patients to characterize the sample and identify the impairments to be analyzed. However, comparing cognitive data from different populations and based on different tests can produce conflicts in the literature, mainly because some screening instruments do not provide the sensitivity to assess cognitive functioning sufficiently, while others employ different versions of the same test or use non-standard tasks.

The objective of this review was to learn about and understand the use of some instruments used in studies of PD patients with STN-DBS and to relate these findings with the literature in general. The search included articles published between January 2007 and January 2017, based on The Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) criteria.

METHODS
The systematic review is a type of scientific study that aims to gather, critically evaluate and produce a synthesis of multiple primary studies.

Bibliographic survey
We designed a systematic review of the literature according to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) criteria. The following terms were used: “Deep Brain Stimulation”, “DBS”, “Cognitive Functions” and “Parkinson Disease” with the Boolean operator “AND”. We selected scientific papers published in English between January 2007 and January 2017, involving comparative clinical trials in humans, from the Medline/Pubmed databases. Articles published before 2007, systematic reviews, case studies, book chapters and studies using animals were excluded.

Study selection
Initially, this method retrieved 345 studies (Figure 1).

RESULTS
The final list of articles included based on the search criteria in order of year, with Objectives and Results (Table 1), a list of instruments with quantity, separated by domains (Table 2) and a list of instruments used before and after DBS implantation to assess the cognitive aspects of the patients (Table 3) are given below.

DISCUSSION
A total of 61 (sixty-one) instruments were used to evaluate different aspects of patients, including batteries, subtests, scales and tasks (Table 2). These can be ordered from the most evaluated to least used, as follows: executive functions (14), global cognitive functioning (10) and mood (10), memory (9), language (5), psychiatric symptoms (3) and sensory-motor coordination (3), patient quality of life (2) and visuoconstructive skills (2) and attention (1), perception (1) and activities of daily living (1). Early in the onset of symptoms, 24% of patients presented cognitive impairment, especially memory problems, and executive function disorders: selective attention, flexibility in reasoning and planning capacity, visuoconstructive skills and naming ability.
Table 1. List of articles included in the systematic review criteria.

Authors and name	Year	Instruments used
1 Cilia et al. Brain networks underlining verbal fluency decline during STN-DBS in Parkinson's disease: An ECD-SPECT study.	2007	Mini-Mental State Exam (MMSE), Phonemic and Semantic Verbal Fluency Tasks, Wisconsin Card Sorting Test (WCST), Raven’s Progressive Matrices (RPM)
2 Klemprivarová et al. Deep brain stimulation of the subthalamic nucleus and cognitive functions in Parkinson's disease.	2007	Mattis Dementia Rating Scale (MDRS), Wechsler Memory Scale-III (WMS), Stroop Test, VFT
3 Castelli et al. Apathy and verbal fluency in STN-stimulated PD patients.	2007	RPM, Bi-Syllabic Words Repetition test (BWR), Corsi’s Block Tapping test (CBT), WMS, Trail Making Test (TMT), Nelson Modified Card Sorting test (MCST), VFT, Beck Depression Inventory (BDI), Apathy Evaluation Scale (AES)
4 Heo et al. The effects of bilateral Subthalamic Nucleus Deep Brain Stimulation (STN-DBS) on cognition in Parkinson disease.	2008	TMT, Korean Boston Naming test (K-BNT), Rey-Kim Memory Battery, Grooved pegboard test, WCST, Stroop test, VFT, Korean Mini-Mental Status Examination (K-MMSE), BDI
5 Witt et al. Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson's disease: a randomised, multicentre study.	2008	UPDRS-I MDRS, German Rey’s Auditory Verbal Learning Test (G-RAVLT), Wechsler Adult Intelligence Scale (WAIS), Benton Visual Retention Test, Stroop test, VFT, BDI, Montgomery-Asberg Depression Rating Scale (MADRS), Beck Anxiety Inventory (BAI), Parkinson’s Disease Questionnaire (PDQ-39)
6 Alberts et al. Bilateral subthalamic stimulation impairs cognitive–motor performance in Parkinson's disease patients.	2008	N-back task, dual task
7 Lueken et al. Impaired performance on the Wisconsin Card Sorting Test under left- when compared to right-aided deep brain stimulation of the subthalamic nucleus in patients with Parkinson's disease.	2008	MMSE, WCST, German Hospital Anxiety and Depression Scale (HADS-D), German Apathy Evaluation Scale (AES) *
8 Zangaglia et al. Deep brain stimulation and cognitive functions in Parkinson’s disease: A three-year controlled study	2009	MMSE, long memory task, verbal span, digit span, CBTT, WCST, RPM, FVT
9 York et al. Relationship between neuropsychological outcome and DBS surgical trajectory and electrode location	2009	MMSE, RAVLT, VFT, MDRS, BDI, State-Trail Anxiety Inventory (STAI)
10 Williams et al. Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson's disease.	2009	UPDRS-I, PDQ-39, MDRS, Delis-Kaplan executive function system (D-KEFS), Wechsler Abbreviated Scale Intelligence (WASI)
11 Daniels et al. Risk factors for executive dysfunction after subthalamic nucleus stimulation in Parkinson’s disease	2010	MDRS, RAVLT, WAIS, BVRT, Stroop test, VFT
12 Castelli et al. Neuropsychological changes 1-year after subthalamic DBS in PD patients: A prospective controlled study	2010	RPM, Bi-Syllabic Words Repetition Test, Corsi’s Block Tapping test, Paired Associate Learning, Trail Making Test, MCST, VFT
13 Fasano et al. Motor and cognitive outcome in patients with Parkinson’s disease 8 years after subthalamic implants	2010	MMSE, Corsi’s Block Tapping Test, digit span forward, digit span backward, RAVLT, RPM, MWCST, VFT, Zung’s depression Scale, Zung’s Anxiety Scale
14 Van Wouwe et al. Deep Brain Stimulation of the Subthalamic Nucleus Improves Reward-Based Decision-Learning in Parkinson’s Disease	2011	Haruno and Kawato Task, MMSE
Table 1. List of articles included in the systematic review criteria (continuation).

Authors and name	Year	Instruments used
15 Israeli-Korn et al. Subthalamic Nucleus Deep Brain Stimulation Does Not Improve Visuo-Motor Impairment in Parkinson’s Disease	2013	MMSE, BDI, VFT, Frontal Assessment Battery (FAB), Visual Analog Mood Scale, Digit Span Forward and Digit Span Backward, Finger Tapping Test, Visual-motor Coordination Task
16 Kim et al. Initial cognitive dip after subthalamic deep brain stimulation in Parkinson disease	2013	MMSE, TMT, K-BNT, Rey-Kim Memory Battery, Stroop Test, VFT, BDI
17 Yáñez et al. Cognitive predictors of cognitive change following bilateral subthalamic nucleus deep brain stimulation in Parkinson’s disease	2014	WAIS-III, Recognition Memory Test, Birt Memory and Information Processing Battery, Graded Naming Test, Visual Object and Space Perception Battery, Hayling Sentence Completion Test, Brixton Spatial Anticipation Test, VFT
18 Asahi et al. Impact of bilateral subthalamic stimulation on motor/cognitive functions in Parkinson’s disease	2014	MMSE, Japanese Adult Reading Test (JART), Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), WAIS-Revised
19 Rizzone et al. Long-term outcome of subthalamic nucleus DBS in Parkinson’s disease: From the advanced phase towards the late stage of the disease?	2014	UPDRS-I, MMSE, RPM, Digit Span Forward, Corsi’s Block Test, MWCST, VFT, RA/LT, TMT, Paired Associated Learning, Attentive Matrices, Zung’s Depression Scale, Zung’s Anxiety Scale, BDI, State-Trait Anxiety Inventory (STA)
20 Houvenaghel et al. Reduced Verbal Fluency following Subthalamic Deep Brain Stimulation: A Frontal-Related Cognitive Deficit?	2015	MDRS, VFT, Stroop Test, TMT, MCST, MADRS, Apathy Evaluation Scale (AES)
21 Markser et al. Deep brain stimulation and cognitive decline in Parkinson’s disease: The predictive value of electroencephalography	2015	MMSE, MDRS, Dem-Tech
22 Pham et al. Self-Reported Executive Functioning in Everyday Life in Parkinson’s Disease after Three Months of Subthalamic Deep Brain Stimulation	2015	MDRS, Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A), Symptom Checklist 90 - Revised (SCL-90-R), AES
23 Tang et al. Evidence of improved immediate verbal memory and diminished category fluency following STN-DBS in Chinese-Cantonese patients with idiopathic Parkinson’s disease	2015	Montreal Cognitive Assessment Hong Kong version (HK-MoCA), Chinese Auditory Verbal Learning Test (CAVLT), BVRT, Chinese modified version of BNT, Hooper Visual Organization Test (HVOT), Stroop Test Chinese Victoria version, VFT (semantic), BDI-II, BAI
24 Tremblay et al. The effects of subthalamic deep brain stimulation on metaphor comprehension and language abilities in Parkinson’s disease	2015	MoCA, Metaphor Comprehension Task, VFT (semantic), Alternation VFT, Lexical Decision Test, Word Association Test, BDI version IA
25 Krishnan et al. The decade after subthalamic stimulation in advanced Parkinson’s disease: A balancing act.	2016	UPDRS-I, MMSE, Addenbrooke’s Cognitive Examination, BDI, Parkinson’s Disease Quality of Life (PDQ-L) Questionnaire
26 vonberg et al. Fabian. Deep Brain Stimulation of the Subthalamic Nucleus Improves Lexical Switching in Parkinson’s Disease Patients	2016	Parkinson Neuropsychometric Dementia Assessment (PANDA), German VFT
27 Ventre-Domeini et al. Distinct effects of dopamine vs STN stimulation therapies in associative learning and retention in Parkinson disease	2016	Conditional Associative Learning (CAL), Visual spatial Working Memory Task, Non-spatial Working Memory Task
Table 2. List and frequency of instruments used by domain.

Nº	Domains Assessed	Instruments	Nº of articles
1	Activities of Daily Living	UPDRS-I Non-Motor Experiences	3
2	PD Quality of Life	Parkinson’s Disease Questionnaire (PDQ-39)	2
		Parkinson’s Disease Quality of Life (PDQL)	1
3	Global Functioning	Mini-Mental State Exam (MMSE)*	14
		Mattis Dementia Rating Scale (MDRS)	8
		Raven’s Progressive Matrices (RPM)	6
		Wechsler Adult Intelligence Scale (WAIS-III)*	4
4	Psychiatric Symptoms	Montreal Cognitive Assessment (MoCA)*	2
		Addenbrooke’s Cognitive Examination	1
		Japanese Adult Reading Test (JART)	1
		Repeatable Battery for the Assessment of Neuropsychological Status (RBANS)	1
		Dem-Tech	1
		Parkinson Neuropsychometric Dementia Assessment (PANDA)	1
5	Executive Functioning	Brief Psychiatric Rating Scale (BPRS)	1
		Visual Analogue Mood Scale	1
		Symptom Checklist 90 - Revised (SCL-90-R)	1
		Verbal Fluency Tasks - Semantic*	19
		Verbal Fluency Tasks - Phonemic*	17
		Wisconsin Cards Sorting Test (WCST)*	9
		Stroop Test*	7
		Trail Making Test (TMT)*	6
		Digit Span Forward and Backward	5
		Frontal Assessment Battery (FAB)	1
		Behavior Rating Inventory of Executive Function - Adult Version (BRIEF-A)	1
		Hayling Sentence Completion Test	1
		Brixton Spatial Anticipation Test	1
		Haruno and Kawato Task (2006)**	1
		Delis-Kaplan Executive Function System (D-KEFS)	1
		N-back and dual task	1
		Visual Spatial and Non-spatial Working Memory Task	1
Table 2. List and frequency of instruments used by domain (continuation).

Nº	Domains Assessed	Instruments	Nº of articles
6	Memory	Rey’s Auditory Verbal Learning Test (RAVLT)*	6
		Corsi’s Block Tapping Test (CBTT)	5
		Paired Associate Learning (Wechsler Memory Scale)	4
		Bi-Syllabic Words Repetition test (BWR)	2
		Rey-Kim Memory Battery	2
		Recognition Memory Test	1
		Birt Memory and Information Processing Battery	1
		Long Memory Task and Verbal Span	1
		Conditional Associative Learning (CAL)**	1
7	Language	Boston Naming Test (BNT)*	3
		Graded Naming Test	1
		Metaphor Comprehension Task	1
		Lexical Decision Test	1
		Word Association Test	1
8	Attention	Attentive Matrices	1
9	Perception	Incomplete Letters and Object Decision tasks (Visual Object and Space Perception Battery)	1
10	Visuospatial Skills	Benton Visual Retention Test	3
		Hooper Visual Organization Test (HVOT)	1
11	Mood	Beck Depression Inventory (BDI)	10
		Apathy Evaluation Scale (AES)*	4
		State-Trait Anxiety Inventory (STAI)	2
		Zung’s Anxiety Scale	2
		Beck Anxiety Inventory (BAI)	2
		Zung’s Depression Scale	2
		Montgomery-Asberg Depression Rating Scale (MADRS)	2
		Hospital Anxiety and Depression Scale (HADS-D)*	1
		Snaith-Hamilton Pleasure Scale	1
		Bech-Rafaelsen Mania Scale	1
12	Sensory-Motor Coordination	Grooved Pegboard Test	1
		Visual-motor Coordination Task	1
		Finger Tapping Test	1
What justifies the most evaluated domains in the selected articles? PD patients with mild cognitive impairment (MCI), compared with PD patients without MCI, have significantly poorer performance on almost all cognitive domains: executive functions, attention, memory, and language.\(^7\) One in three patients with PD has cognitive impairment at the time of, or shortly after, diagnosis, progressively worsening or even causing dementia in the advanced stages.\(^6\) However, cognitive alterations are common even in non-PD patients.\(^10\) Cognitive impairment increases the risk of dementia, by 1.7 to 5.9, and early detection and identification of dementia risk is a major challenge due to the heterogeneity of patient profiles.\(^5\) The prevalence of dementia in PD is 24 to 31%,\(^11\) thus, evaluating the PD patient in a global and continuous way is the best path for monitoring the evolution of the effects of the disease. Comorbidity with dementia can be justified when we consider the ascending involvement of the brainstem to the cortical area. Microscopic modifications may be incorporated into its pathophysiology, including losses of neurons, gliosis, while surviving neurons may contain Lewy bodies. The loss of neurons markedly affects the substantia nigra, although it is not restricted to it. The damage also affects the aminergic nuclei of the brainstem, Meynert’s basal nucleus, hypothalamic nuclei and olfactory bulb.\(^17\) For this reason, it is essential to investigate the effects of surgery, such as STN-DBS, on the different aspects of a subject with PD.

The MMSE was the most used instrument\(^13-25\) for assessing global cognitive functioning among the selected studies. It was followed by the MDRS\(^17,24,26-31\) and RPM.\(^15,16,18,32\) The MMSE has several favorable qualities such as fast administration, easy interpretation for use during medical consultation; patient acceptability; cultural independence; and both language and education, which makes it easier to reproduce in different studies and provides similar performance among examiners. In contrast, the instrument is influenced by subjective or non-standardized application and interpretation by professionals. Screening tests, such as these, known and widely used, are highly dependent on a minimal educational level and have low sensitivity and specificity.\(^33\) Thus, an evaluation protocol containing only this instrument to evaluate global cognitive functioning would have little range in terms of the patient’s cognitive loss.

Several instruments were used to assess the EF of PD patients with STN-DBS, but the most recurrent were verbal fluency tasks, both semantic and phonemic,\(^13-14,16-18,20,21,23,26,27,29,30,32,34,35,37,38\) followed by the WCST.\(^13-16,18,23,30,32,34\) These tasks, in particular, underwent different adaptations in each article. Evaluating EFs is a major challenge, as is defining the concept. In general, it is understood as abilities that involve planning, organization, flexibility, monitoring and inhibitory control,\(^39\) presenting an adaptive value for the subject, since their performance on activities related to personal, professional and other domains also become impaired.\(^40\) Executive dysfunction is not always associated with memory, language or visuospatial skill impairment, among others, but rather a functional decline that can often be assessed based on self-report or a caregiver and/or family member informant. In patients with PD, it is a predictor of impairment, leading to ADL deficits.\(^8\)

A number of studies\(^14,16-18,21,23,27,29,32,34,35,36,41\) used 9 different types of tests to evaluate memory, predominantly

Table 3. Instruments most used pre and post-DBS.

Instruments
Parkinson’s Disease Questionnaire (PDQ-39)
Parkinson’s Disease Quality of Life (PDQL)
Mini-Mental State Exam (MMSE)*
Mattis Dementia Rating Scale (MDRS)
Raven’s Progressive Matrices (RPM)
Symptom Checklist 90 - Revised (SCL-90-R)
Verbal Fluency Tasks - Semantic*
Verbal Fluency Tasks - Phonemic*
Wisconsin Cards Sorting Test (WCST)*
Stroop Test*
Trail Making Test (TMT)*
Digit Span Forward and Backward
Rey’s Auditory Verbal Learning test (RAVLT)*
Corsi’s Block Tapping test (CBTT)
Rey-Kim Memory Battery
Boston Naming Test (BNT)*
Attentive Matrices
Incomplete Letters and Object Decision tasks
(Visual Object and Space Perception Battery)
Benton Visual Retention Test
Beck Depression Inventory (BDI)
Apathy Evaluation Scale (AES)*
State-Trait Anxiety Inventory (STAI)
Beck Anxiety Inventory (BAI)
Grooved Pegboard Test

\(^1\) See Barbosa and Charchat-Fichman

Dementia Neuropsychol 2019 June;13(2):162-171

DBS: neuropsychological evaluation

Barbosa and Charchat-Fichman

168 DBS: neuropsychological evaluation Barbosa and Charchat-Fichman
These changes can range from mild to severe, impacting various cognitive domains such as Attention, Working Memory, Executive Functioning, Language, and Visuospatial Skills. Together, these changes can become more disabling than motor deficits and may be a consequence of complications of the pharmacological treatment for the motor symptoms of the disease or as an integral part of the PD clinical manifestations.

Only 2 scales were used for assessing PD Quality of Life (QoL): PDQ-39 and PDQL. Regarding mood, several scales were used, with use of depression inventory being the most often cited. Together with the QoL scales, these instruments enable a more in-depth examination of the individual and impacts of the disease on their life.

Some of the limitations of the study were the instruments used at different stages of the studies, albeit for the inclusion and/or exclusion criteria and during the pre and post-operative evaluation of patients. Besides the large diversity of instruments, other aspects such as version, validation and cut-off points were also heterogeneous.

The instruments used before and after DBS implantation to assess the cognitive aspects of patients are shown in Table 3. Generically speaking, we could consider them as a possible battery for evaluating the effects of surgery. The literature has shown that most authors consider these instruments sufficient to identify the patient’s diagnostic profile. These aspects are extremely relevant to analyze the results of a study. Differences in each of them may engender results that differ from those expected. These changes range from severely compromised to slightly compromised. Another example is the use of tailored tasks, Verbal Fluency Tasks, Stroop Test, n-back task and dual task rather than standardized tests, such as the Wechsler Adult Intelligence Scale and Hooper Visual Organization Test.

The results of this review point to the absence of a specific assessment protocol for PD with STN-DBS, revealing extensive variability of instruments used in different studies. However, analysis of each methodology yielded a possible battery for investigating the effects of surgery based on the frequency of use of instruments in the studies. The feasibility of using this battery and its findings should be the focus of future studies to establish a standard for assessment.

Authors contributions. Eduarda Naidel Barboza e Barbosa: study concept and design, literature search, drafting and revising the manuscript; Helenice Fichman: contribution during the writing process with suggestions and corrections.
REFERENCES

1. Favao R. Aprendizagem Implicita e Doencia de Parkinson. Dissertacao de mestrado - Instituto de Biociencias da Universidade de Sao Paulo. Departamento de Fisiologia, 2007.

2. de Paixao AO, de Jesus AV, Silva FS, Messias GMS, Nunes TLGM, Nunes TLGM, Santos TB, Gomes MZ, Correia MGS. Doencia de Parkinson: Uma Perspectiva Neuropsicologica. Cadernos de Graduacao - Ciencias Biologicas e da Saude. 2016; 1(16):57-65.

3. Machado FA, Reppold CT. The effect of deep brain stimulation on motor and cognitive symptoms of Parkinson's disease - A literature review. Dement Neuropsychol. 2015;13(4):24-31.

4. Wemerick ALS. Doenca de Parkinson. Etopologia, Clinica e Terapeutica. Rev Hosp Univ Pedro Ernesto. 2013;9:10-9.

5. Heluani, AS. Cognicao, humor e atividades funcionais em pacientes com doenca de Parkinson submetidos a estimulacao cerebral profunda de forma bilateral em nuculo subtalamico. Dissertacao de mestrado - Faculdade de Medicina da Universidade de Sao Paulo, 2014.

6. Numbela C, Rowe JS, Winder-Rhodes SE, Hampshire A, Owen AM, Breen DP et al. A Neuropsychological examination of newly diagnosed Parkinson's disease: ICQ-ICD-30 study. Brain. 2016; 137:2625-31.

7. Ding W, Ding LJ, Li FF, Han Y, Mu L. Neurodegeneration and cognition in Parkinson's disease: a review. Eur Rev Med Pharmacol Sci. 2015;19:2275-81.

8. Aguilar OM, Soto CA, Esgueria M. Cambios neuropsicologicos asociados a la estimulacion cerebral profunda de manera bilaterar en el nuculo subtalamic. revision teorica. Suma Psicologica. 2011;18(2):89-98.

9. Stella F, Gobbi LTB, Gobbi S, Oliani MW, Tanaka K, Pieruccini-Faria F. Early impairment of cognitive functions in Parkinson's disease. Arq Neuropsiquiatr. 2007;65(2b):406-10.

10. Schneider JS, Sendek S, Yang C. Relationship between Motor Symptoms, Cognition, and Demographic Characteristics in Treated Mild/ Moderate Parkinson's disease. PLoS One. 2015;10(4):1-11.

11. de Oliveira MD, Machado DMS. Cognitive decline in Parkinson's disease: contributions of Neuropsychology. Rev Med Minas Gerais. 2015;24(3):349-54.

12. Lang AE, Lozano AM, Parkinson's disease. First of two parts. New England J Med. 1998;339(15):1044-53.

13. Cilia R, Sori C, Marotta G, Gaspari D, Landi A, Mariani CB, Berti R, Isaias AU, Vermeiren R, Zanette F. Deep brain stimulation and cognitive functions in Parkinson's disease: a three-year controlled study. Parkinson Relat Disord. 2007;254(9):1238-43.

14. Barbosa ENB, Charchat-Fichman H. (Advisor). Neuropsychological assessment contribuition to Mild Cognitive Impairment (MCI): methodological issues. Rio de Janeiro, 2015. 144p. MSc. Dissertation – Psychological Departament, Pontificia Universidade Catolica do Rio de Janeiro.

15. Castelli L, Zanette M, Zibetti M, Caglioni D, Mocetti T, et al. Appearance and verbal fluency in STN-stimulated PD patients. J Neurol. 2007;254(9):1238-43.

16. Pandis MO, Volkmann J, Pinski MO, Krause M, Tornion V, et al. Risk factors for executive dysfunction after subthalamic nucleus stimulation in Parkinson's disease. Mov Disord. 2010;25(11):1583-9.

17. Houtman L, Jeurjen B, Volmeina M, Esquivien T, Robert G, Périn J, et al. Reduced Verbal Fluency following Subthalamic Deep Brain Stimulation: A Frontal-Related Cognitive Deficit? PLoS One. 2015;10(10):e0140083.

18. Barone M, Connors TB, Danks AP, Konglund AE, Dietrichs E, et al. Self-Reported Executive Functioning in Everyday Life in Parkinson’s Disease after Three Months of Subthalamic Deep Brain Stimulation. Parkinsons Dis. 2015;2015:461453.

19. Lopes CA, Zanette M, Zibetti M, Caglioni D, Mocetti T, et al. Apathy and verbal fluency in STN-stimulated PD patients. J Neurol. 2007;254(9):1238-43.

20. Barone M, Connors TB, Danks AP, Konglund AE, Dietrichs E, et al. Self-Reported Executive Functioning in Everyday Life in Parkinson’s Disease after Three Months of Subthalamic Deep Brain Stimulation. Parkinsons Dis. 2015;2015:461453.
43. Poliakoff E, Smith-Spark JH. Everyday cognitive failures and memory problems in Parkinson's patients without dementia. Brain Cogn. 2008;67(3):340-50.
44. Melo LM, Barbosa ER, Caramelli P. Declínio cognitivo e demência associados à doença de Parkinson: características clínicas e tratamento. Rev Psiquiatr Clin. 2007;34(4):176-83.
45. Galhardo MMAMC, do Amaral AKFJ, Vieira ACC. Caracterização dos distúrbios cognitivos na Doença de Parkinson. Revista CEFAC. 2009;11(2):251-7.
46. Grover S, Somaiya M, Kumar S, Avasthi A. Psychiatric aspects of Parkinson's disease. J Neurosci Rural Pract. 2015;6(1):65-76.
47. Aarsland D, Larsen JP, Lim NG, Janvin C, Karlseth K, Tandberg E, Cummings JL. Range of neuropsychiatric disturbances in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2009;67:492-6.
48. Junior AS, Cabral ACJ. Alterações Psiquiátricas na Doença de Parkinson. In Forlenza, OV; Caramelli, P. Neuropsiquiatria geriátrica. São Paulo: Editora Atheneu; 2000.
49. Chrischilles EA, Rubenstein LM, Voelker MD, Wallace RB, Rodnitzky RL. Linking clinical variables to health-related quality of life in Parkinson’s disease. Parkinson Relat Disord. 2003;8:199-209.
50. De Boer AGEM, Spruijt RJ, Sprangers MAG, de Haes JCJM. Disease-specific quality of life: is it one construct? Qual Life Res. 1998;7:135-42.
51. Alberts JL, Voelcker-Rehage C, Hallahan K, Vitek M, Banzaei R, Vitek JL. Bilateral subthalamic stimulation impairs cognitive-motor performance in Parkinson’s disease patients. Brain. 2008;131(12):3348-60.