Association of plasma Aβ peptides with blood pressure in the elderly

Jean-Charles Lambert
Jean Dallongeville
Kathryn Ellis
Susanna Schraen-Maschke
James Lui

Edith Cowan University

See next page for additional authors

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks2011

Part of the Medicine and Health Sciences Commons

10.1371/journal.pone.0018536
Lambert, J., Dallongeville, J., Ellis, K., Schraen-Maschke, S., Lui, J. K., Laws, S., Dumont, J., Richard, F., Cottel, D., Berr, C., Ames, D., Masters, C., Rowe, C., Szoike, C., Tzourio, C., Dartigues, J., Buee, L., Martins, R. N., & Amouyel, P. (2011). Association of plasma Aβ peptides with blood pressure in the elderly. PLoS ONE, 6(4), e18536. Available here

This Journal Article is posted at Research Online.
https://ro.ecu.edu.au/ecuworks2011/506
Authors
Jean-Charles Lambert, Jean Dallongeville, Kathryn Ellis, Susanna Schraen-Maschke, James Lui, Simon Laws, Julie Dumont, Florence Richard, Dominique Cottel, Claudine Berr, David Ames, Colin Masters, Christopher Rowe, Cassandra Szoeke, Christophe Tzourio, Jean-Francois Dartigues, Luc Buee, Ralph Martins, and Philippe Amouyel

This journal article is available at Research Online: https://ro.ecu.edu.au/ecuworks2011/506
Association of Plasma Aß Peptides with Blood Pressure in the Elderly

Jean-Charles Lambert1,2,3*, Jean Dallongeville1,2,3, Kathryn A. Ellis4,5,6, Susanna Schraen-Maschke3,7,10, James Lui8,9, Simon Laws8,9, Julie Dumont1,2,3, Florence Richard1,2,3,10, Dominique Cottel1,2,3, Claudine Berr11, David Ames4,6, Colin L. Masters5,12, Christopher C. Rowe13, Cassandra Szeoke6,14, Christophe Tzourio15, Jean-François Dartigues16, Luc Bueé3,7,10, Ralph Martins8,9, Philippe Amouyel1,2,3,10

1 INSERM U744, Lille, France, 2 Institut Pasteur de Lille, Lille, France, 3 Université Lille Nord de France, UDSL, Lille, France, 4 Department of Psychiatry, University of Melbourne, St George's Hospital, Victoria, Australia, 5 Mental Health Research Institute, University of Melbourne, Parkville, Victoria, Australia, 6 National Ageing Research Institute, Parkville, Victoria, Australia, 7 INSERM U837, Lille, France, 8 Centre of Excellence for Alzheimer’s Disease Research and Care, Edith Cowan University, Joondalup, Western Australia, Australia, 9 Sir James McCusker Alzheimer’s Research Unit, Perth, Western Australia, Australia, 10 Centre Hospitalier Régional Universitaire, Lille, France, 11 INSERM, U888, Université de Montpellier 1, Montpellier, France, 12 Centre for Neurosciences, University of Melbourne, Parkville, Victoria, Australia, 13 Austin Health, Heidelberg, Victoria, Australia, 14 Australian Commonwealth Scientific and Research Organisation (CSIRO), Parkville, Victoria, Australia, 15 INSERM U708, Paris, France, 16 INSERM US93, Victor Segalen University, Bordeaux, France

Abstract

Background: Aß peptides are often considered as catabolic by-products of the amyloid ß protein precursor (APP), with unknown physiological functions. However, several biological properties have been tentatively attributed to these peptides, including a role in vasomotion. We assess whether plasma Aß peptide levels might be associated with systolic and diastolic blood pressure values (SBP and DBP, respectively).

Methodology/Principal Findings: Plasma Aß1-40 and Aß1-42 levels were measured using an xMAP-based assay in 1,972 individuals (none of whom were taking antihypertensive drugs) from 3 independent studies: the French population-based 3C and MONA-LISA (Lille) studies (n = 627 and n = 769, respectively) and the Australian, longitudinal AIBL study (n = 576). In the combined sample, the Aß1-42/Aß1-40 ratio was significantly and inversely associated with SBP (p = 0.03) and a similar trend was observed for DBP (p = 0.06). Using the median age (69) as a cut-off, the Aß1-42/Aß1-40 ratio was strongly associated with both SBP and DBP in elderly individuals (p = 0.002 and p = 0.03, respectively). Consistently, a high Aß1-42/Aß1-40 ratio was associated with a lower risk of hypertension in both the combined whole sample (odds ratio [OR], 0.71; 95% confidence interval [CI], 0.56-0.90) and (to an even greater extent) in the elderly subjects (OR, 0.53; 95% CI, 0.37–0.75). Lastly, all these associations appeared to be primarily driven by the level of plasma Aß1-40.

Conclusion: The plasma Aß1-42/Aß1-40 ratio is inversely associated with SBP, DBP and the risk of hypertension in elderly subjects, suggesting that Aß peptides affect blood pressure in vivo. These results may be particularly relevant in Alzheimer’s disease, in which a high Aß1-42/Aß1-40 plasma ratio is reportedly associated with a decreased risk of incident disease.

Citation: Lambert J-C, Dallongeville J, Ellis KA, Schraen-Maschke S, Lui J, et al. (2011) Association of Plasma Aß Peptides with Blood Pressure in the Elderly. PLoS ONE 6(4): e18536. doi:10.1371/journal.pone.0018536

Editor: Mike B. Gravenor, University of Swansea, United Kingdom

Received: January 5, 2011; Accepted: March 3, 2011; Published: April 15, 2011

Copyright: © 2011 Lambert et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The 3C Study was performed as part of a collaboration between the Institut National de la Santé et de la Recherche Médicale (INSERM), the Victor Segalen-Bordeaux II University and Sanofi-Synthelabo. The Fondation pour la Recherche Médicale funded the preparation and initiation of the study. The 3C Study was also funded by the Caisse Nationale Maladie des Travailleurs Salariés, Direction Générale de la Santé, MGEN, Institut de la Longévité, Agence Française de Sécurité Sanitaire des Produits de Santé, the Aquitaine and Bourgogne Regional Councils, Fondation de France and the joint French Ministry of Research/INSERM “Cohortes et collections de données biologiques” programme. Sanofi-Synthelabo provided funding for this study. Lille Genopole received an unconditional grant from Eisai. This work was additionally funded by the CNRS, the Nord Pas-de-Calais Regional Council, the European Regional Development Fund and grants from INSERM-DHOS-INCA (Project A08037ECS) and the European Community’s cNEUPRO programme (contract LSHM-CT-2007-037950). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Competing Interests: There are no patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials, as detailed online in the guide for authors. CSIRO involvement does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials.

* E-mail: jean-charles.lambert@pasteur-lille.fr

Introduction

Aß peptides are the main component of ß-amyloid deposits in the brains of Alzheimer’s disease (AD) patients. Many different cell types from the brain and the peripheral tissues produce these peptides. They are catabolic by-products of the amyloid ß protein precursor (APP) and do not have a known physiological function. However, several lines of evidence suggest that Aß peptides may have biological functions by acting as ligands for various receptors and other molecules [1–3]. The peptides are transported between tissues and across the blood brain barrier via complex trafficking pathways [4]. Lastly, at physiological concentrations, the peptides...
may possess neurotrophic [5], antioxidant [6], platelet aggregation modulation [7], antimicrobial [8] and/or vasoconstrictive properties [9].

With respect to vascular tone, Aβ peptides are produced by the vascular smooth muscular cells (SMCs) [10] involved in blood pressure (BP) control and are known to have vasoactive properties [11]. Indeed, in in vitro studies, Aβ peptides enhance constriction of isolated vessels via the release of endothelin 1 [12], a vasoactive peptide which produces smooth muscle contraction in vivo [11]. Taken as a whole, these observations suggest that the Aβ peptides may affect BP control. Interestingly, the Aβ peptides decrease cerebral blood flow and volume in rodents [13–15].

In the present study, we hypothesized that plasma Aβ peptide concentrations may be associated with variations in systolic and/or diastolic blood pressure values (SBP and DBP, respectively). To this end, we analysed a pooled analysis of 1972 individuals from three independent cohorts in which plasma Aβ1-40 and Aβ1-42 concentrations were available.

Methods

The three samples were selected according to the availability of (i) plasma Aβ concentration assays using the same method (the INNO-BIA plasma Aβ forms assay; this point is of particular importance, since the assay methodology can significantly influence interpretation of the data [16]), (ii) SBP and DBP measurements; (iii) information on demographic variables, smoking and medication use.

Populations

Written, informed consent was obtained from study participants. The study protocols for all populations were reviewed and approved by the appropriate independent ethics committees in each country. The institutional ethics committees of Austin Health, St Vincent’s Health, Hollywood Private Hospital and Edith Cowan University granted ethics approval for the AIBL study. The institutional ethics committees of the Kremlin-Bicetre Hospital granted ethics approval for the 3C study. The institutional ethics committees of the Lille Hospital granted ethics approval for the MONA-LISA study.

The 3C Study is a population-based, prospective study of the relationship between vascular factors and dementia [17]. It has been carried out in three French cities: Bordeaux (southwest France), Montpellier (southern France) and Dijon (central eastern France). A sample of non-institutionalised, over-65 subjects was randomly selected from the electoral rolls of each city between January 1999 and March 2001. In the present work, the study population was based on a sub-cohort of 1254 subjects randomly selected from the source sample totalling 8,414 individuals (i.e. a sampling ratio of 15%) stratified by centre, 5-year age class and gender. Aβ plasma concentrations were measured in the whole sample [18]. Individuals taking antihypertensive drugs were excluded from our analysis (n = 615). Individuals for whom at least one Aβ plasma concentration or co-variable measurement was missing were also excluded (n = 4), together with individuals exhibiting at least one aberrant Aβ plasma concentration measurement (n = 8). These selection steps allowed us to define a sample of 627 individuals.

The MONA-LISA (LILLE) study is an epidemiological, cross-sectional, population-based study performed in the Lille urban area in northern France. Inhabitants aged 35-74 years were randomly sampled from electoral rolls after stratification by town size, gender and 10-year age groups (n = 1,602) [19]. Only individuals older than 45 years old were selected (n = 1217) and blood samples were obtained from 1201 individuals. Our analysis excluded individuals taking antihypertensive drugs (n = 422), those for whom at least one Aβ plasma concentration, SBP, DBP or co-variable measurement was also missing (n = 7) and those exhibiting at least one aberrant Aβ plasma concentration measurement (n = 3). These selection steps allowed us to define a sample of 769 individuals.

The Australian Imaging Biomarkers and Lifestyle (AIBL) study of ageing has been described elsewhere [20]. It is a longitudinal study performed in Perth and Melbourne (Australia). A total of 1,112 volunteers constituted the AIBL inception cohort. Our analysis excluded individuals taking antihypertensive drugs (n = 375), those for whom at least one Aβ plasma concentration, SBP, DBP or co-variable measurement was also missing (n = 147) and those exhibiting at least one aberrant Aβ plasma concentration measurement (n = 14). Again, these selection steps enabled us to define a sample of 576 individuals from the AIBL cohort.

Amyloid beta peptide assay

Fasting plasma samples were collected in tubes containing sodium EDTA as an anticoagulant. Following centrifugation, plasma samples were aliquoted into polypropylene tubes, stored at -80°C and only thawed immediately prior to Aβ quantification. The plasma Aβ peptide assay was performed using the INNO-BIA plasma Aβ forms assay (Innogenetics, Ghent, Belgium) based on the multiplex xMAP technique with a LABScan-100 system (Luminex BV, The Netherlands). The 3C and MONA-LISA (LILLE) studies were analyzed in the same centre (INSERM U383, Alzheimer & Tauopathies, Lille, France).

Blood pressure measurements and co-variables

During inclusion in the 3C study, BP was measured twice after 5 minutes in the seated position by using a standard cuff placed around the right arm and an electronic monitor (OMRON M4). In the MONA-LISA (LILLE) population, SBP and DBP were measured after the subject had been seated for at least 10 min with an automatic sphygmomanometer (OMRON 705IT) and an appropriately sized cuff, with the arm at heart level. In the AIBL study, BP for each participant was measured between 8.15 am and 9.30 am and after 10 minutes in the seated position by using the Welch Allyn “DuraShock” handheld unit (DS65). If a measurement was high (>140/90) or low, the procedure was repeated after 10 minutes.

The average of two measurements (available for 84% of the study sample) was used for analysis, whenever possible. Hypertension was defined as a SBP ≥140 mm Hg or DBP ≥90 mmHg (n = 337 in the 3C sample, n = 307 in the MONA-LISA (LILLE) sample and n = 270 in the AIBL sample).

Age, centre and gender were always used as adjusting factors. Several other co-variables were also considered as potential confounders: smoking status (current or not), plasma cholesterol (total, high-density lipoprotein), creatinine levels and body mass index (BMI, as defined by the Quetelet equation).

Statistics

The data were analysed using SAS statistical software (release 9.1, SAS Institute Inc., Cary NC, USA). In each centre, each quantitative variable was transformed into a z-score (equal to (observed value minus the sample mean), divided by the sample standard deviation). The relationships between the Aβ1-40, Aβ1-42 and Aβ1-42/Aβ1-40 z-scores on one hand and the SBP or DBP z-scores on the other were assessed using a general linear model (GLM) adjusted for age, centre and gender (model 1). Analyses were subsequently adjusted for other confounders, as defined
Aß1-40 z-scores tertiles were defined and the lowest was used as a reference in a logistic regression model. Odds ratios were systematically adjusted for centre, age, gender, smoking status, total cholesterol, high-density lipoprotein, creatinine levels and BMI z-scores (model 2).

We analysed the association of Aß1-40, Aß1-42 and Aß1-42/Aß1-40 z-scores with the risk of hypertension. Aß1-40, Aß1-42 and Aß1-42/Aß1-40 z-scores tertiles were defined and the lowest was used as a reference in a logistic regression model. Odds ratios were systematically adjusted for centre, age, gender, smoking status, total cholesterol, high-density lipoprotein, creatinine levels and BMI z-scores (model 2).

Results

The characteristics of the three independent, constituent samples are presented in Table 1. There was a statistically significant, inverse association between plasma Aß1-42/Aß1-40 and SBP (p = 0.03; Table 2). A similar trend was observed for DBP (p = 0.06; Table 2). We also looked at whether or not Aß1-42/Aß1-40 was associated with the risk of hypertension. In fact, individuals in the upper Aß1-42/Aß1-40 tertile had a 1.4-fold lower risk of hypertension than subjects in the lower tertile (Table 3).

We next searched for potential interactions between age, gender and the associations described above. We observed significant interactions with age when analysing the association between SBP or the risk of hypertension and plasma Aß1-42/Aß1-40 (p = 0.02 and p = 0.04, respectively). These observations are particular relevant, since BP and plasma Aß concentrations are already known to be greater risk of suffering from hypertension (OR = 1.61, 95% CI [1.09–2.39], p = 0.01), whereas no association with the Aß1-42 z-score was found (OR = 1.03, 95% CI [0.74–1.45], p = 0.85).

Importantly, all the reported associations appeared homogeneous and in the same direction in the three samples when analysed separately (Table S1 and S2) and remained significant when pairs of populations were compared in a sensitivity analysis (data not shown).

Discussion

Here, we have shown that an elevated plasma Aß1-42/Aß1-40 ratio is significantly associated with low SBP and DBP values. In the elderly, we estimate that a 0.01 unit increment in Aß1-42/Aß1-40 was associated with a 0.29 mmHg decline in SBP and a 0.10 mmHg decline in DBP. Consistently, an elevated Aß1-42/Aß1-40 plasma ratio was also associated with a lower risk of hypertension in the elderly.

Table 2. Associations between plasma Aß peptides and SBP & DBP values.

Combined sample	Model 1	Model 2		
Aß1-40	β	p	β	p
SBP z-score	-0.006 ±0.023	0.80	-0.006 ±0.023	0.80
DBP z-score	0.011 ±0.026	0.65	0.005 ±0.023	0.83
Aß1-42	β	p	β	p
SBP z-score	-0.036 ±0.021	0.09	-0.039 ±0.021	0.10
DBP z-score	-0.021 ±0.022	0.31	-0.031 ±0.022	0.16
Aß1-42/Aß1-40	β	p	β	p
SBP z-score	-0.044 ±0.022	0.04	-0.045 ±0.021	0.03
DBP z-score	-0.037 ±0.022	0.10	-0.040 ±0.022	0.06

Data are β coefficients ± 95% CI.

Model 1: Adjusted for age, gender, centre.

Model 2: Adjusted for age, gender, centre, smoking status, total cholesterol z-score, HDL z-score, creatinine z-score and BMI z-score.

doi:10.1371/journal.pone.0018536.t002

Table 1. Baseline sociodemographic variables and potential confounding factors in the 3C, ABLI and MONA-LISA (LILLE) populations (individuals not taking antihypertensive drugs; for details, see the Materials and Methods section).

3C study (n=627)	ABLI study (n=576)	MONA-LISA study (n=769)	
Age (years)	73.1±5.3	71.6±7.8	58.1±8.2
% women	59.7%	57.8%	49.4%
Smoking (% current)	6.7%	3.0%	18.6%
Body mass index (kg/m²)	24.9±3.5	25.5±4.1	26.5±4.5
Plasma HDL cholesterol (mmol/L)	1.67±0.41	1.70±0.44	1.50±0.39
Plasma creatinine (mmol/L)	6.0±1.0	5.7±1.1	5.87±1.1
Plasma creatinine (mg/dl)	80.5±15.6	81.1±17.3	85.0±15.8
SBP (mmHg)	141.9±20.4	136.5±14.7	136.5±18.6
DBP (mmHg)	81.3±11.0	78.0±9.3	82.2±10.6
Plasma Aß1-40 (pg/ml)	227.8±48.0	153.6±40.4	205.4±42.8
Plasma Aß1-42 (pg/ml)	37.5±10.3	31.3±10.0	36.7±11.45
Plasma Aß1-42/Aß1-40	0.169±0.049	0.209±0.059	0.184±0.069

DOI:10.1371/journal.pone.0018536.t001

Blood Pressure and Plasma Aß Peptides
Importantly, the plasma Aβ1-42/Aβ1-40 ratio’s associations with SBP, DBP and hypertension appeared to be mainly driven by plasma Aβ1-40 in the oldest subjects. Our observation of an association between plasma Aβ1-40 and SBP agrees with the report of a similar trend (in a small sample) by Abdullah et al [22]. The mechanisms underlying this preferential association may be related to the Aβ1-40 peptide’s properties on vascular vessels. Earlier studies have shown that Aβ1-40 peptides can constrict cerebral blood vessels in vitro and decrease cerebral flow and cerebral blood volume in vivo [10–12], and that Aβ1-40 has greater vasoconstrictive effects on the cerebral vasculature than Aβ1-42 does [12]. Furthermore, in rodents, injection of Aβ1-40 into the tail modulates cerebral blood flow and volume, suggesting that Aβ peptides have a direct impact on blood pressure. Finally, Aβ peptides have been described to potentially modulate the vasoactivity of the rat aorta [23]. Thus, by extension our observation of an association between an elevated Aβ1-42/Aβ1-40 ratio and low SBF may be related to the properties of Aβ1-40 on vascular wall in the elderly. In vitro and in vivo experiments will be needed to underpin this epidemiological observation and to extend knowledge of the Aβ peptides’ vasoactivity from the cerebral vasculature to the vascular system as a whole. Alternatively, we cannot rule out the possibility that the plasma Aβ1-42/Aβ1-40 ratio is merely a marker of other parameters involved in BP variations or that the plasma Aβ1-42/Aβ1-40 association with BP is a consequence of BP variations by themselves. These possibilities may help explain the stronger association of the plasma Aβ1-42/Aβ1-40 ratio with SBP and DBP in the elderly individuals. Age-related arterial wall stiffening may lead indirectly to subtle changes in APP metabolism in the SMCs (one of the main non-brain cell types able to produce Aβ peptides). Again, only in vitro and in vivo experiments will be able to clarify this question.

Nonetheless, and notwithstanding the consistent effects that we have observed, our study suffered from a number of limitations. Firstly, quantification of Aβ peptides in plasma is not fully standardized and it varied from one centre to another (Table 1). Even though centre-to-centre variations are well known for quantitative variables, we cannot rule out the possible presence of assay-related of bias. Therefore, in order to minimize between-centre variability, we transformed the data in to z-scores prior to our statistical analyses. Secondly, it is still unclear whether the assay used here does indeed quantify all the various free, bound, monomeric and oligomeric forms of plasma Aβ1-40 and Aβ1-42 peptides. Accordingly, we may only have a partial picture of the Aβ1-40 and Aβ1-42 concentrations in plasma - a picture which is

Table 3. Associations between the plasma Aβ 1-42/Aβ 1-40 ratio and hypertension.

Aβ 1-42/Aβ 1-40 z-score	Risk of hypertension	1st tertile	2nd tertile	3rd tertile	p
Whole sample	1.00 (ref)	0.81	0.71	0.004	
(0.65–1.03)		(0.56–0.90)			
>69 years of age	1.00 (ref)	0.69	0.53	0.0003	
(0.49–0.98)		(0.37–0.75)			

The odds ratio (95% CI) for hypertension (n = 914) was adjusted for age, gender, centre, smoking status, total cholesterol z-score, HDL z-score, creatinine z-score and BMI z-score.

Importantly, the plasma Aβ1-42/Aβ1-40 ratio’s associations with SBP, DBP and hypertension appeared to be mainly driven by plasma Aβ1-40 in the oldest subjects. Our observation of an association between plasma Aβ1-40 and SBP agrees with the report of a similar trend (in a small sample) by Abdullah et al [22]. The mechanisms underlying this preferential association may be related to the Aβ1-40 peptide’s properties on vascular vessels. Earlier studies have shown that Aβ1-40 peptides can constrict cerebral blood vessels in vitro and decrease cerebral flow and cerebral blood volume in vivo [10–12], and that Aβ1-40 has greater vasoconstrictive effects on the cerebral vasculature than Aβ1-42 does [12]. Furthermore, in rodents, injection of Aβ1-40 into the tail modulates cerebral blood flow and volume, suggesting that Aβ peptides have a direct impact on blood pressure. Finally, Aβ peptides have been described to potentially modulate the vasoactivity of the rat aorta [23]. Thus, by extension our observation of an association between an elevated Aβ1-42/Aβ1-40 ratio and low SBF may be related to the properties of Aβ1-40 on vascular wall in the elderly. In vitro and in vivo experiments will be needed to underpin this epidemiological observation and to extend knowledge of the Aβ peptides’ vasoactivity from the cerebral vasculature to the vascular system as a whole. Alternatively, we cannot rule out the possibility that the plasma Aβ1-42/Aβ1-40 ratio is merely a marker of other parameters involved in BP variations or that the plasma Aβ1-42/Aβ1-40 association with BP is a consequence of BP variations by themselves. These possibilities may help explain the stronger association of the plasma Aβ1-42/Aβ1-40 ratio with SBP and DBP in the elderly individuals. Age-related arterial wall stiffening may lead indirectly to subtle changes in APP metabolism in the SMCs (one of the main non-brain cell types able to produce Aβ peptides). Again, only in vitro and in vivo experiments will be able to clarify this question.

Nonetheless, and notwithstanding the consistent effects that we have observed, our study suffered from a number of limitations. Firstly, quantification of Aβ peptides in plasma is not fully standardized and it varied from one centre to another (Table 1). Even though centre-to-centre variations are well known for quantitative variables, we cannot rule out the possible presence of assay-related of bias. Therefore, in order to minimize between-centre variability, we transformed the data in to z-scores prior to our statistical analyses. Secondly, it is still unclear whether the assay used here does indeed quantify all the various free, bound, monomeric and oligomeric forms of plasma Aβ1-40 and Aβ1-42 peptides. Accordingly, we may only have a partial picture of the Aβ1-40 and Aβ1-42 concentrations in plasma - a picture which is

Table 4. Associations between plasma Aβ peptides and SBP & DBP values.

≥69 years of age	Model 1		Model 2	
Aβ₁₋₄₀	ß	p	ß	p
SBP z-score	−0.046±0.030	0.12	−0.049±0.029	0.10
DBP z-score	−0.025±0.031	0.41	−0.035±0.030	0.24
Aβ₁₋₄₂	ß	p	ß	p
SBP z-score	−0.028±0.030	0.34	−0.036±0.030	0.23
DBP z-score	−0.008±0.031	0.80	−0.032±0.031	0.54
Aβ₁₋₄₂/Aβ₁₋₄₀	ß	p	ß	p
SBP z-score	+0.013±0.022	0.56	+0.006±0.022	0.78
DBP z-score	−0.010±0.024	0.67	−0.013±0.022	0.57

>69 years of age	Model 1		Model 2	
Aβ₁₋₄₀	ß	p	ß	p
SBP z-score	+0.099±0.034	0.004	+0.098±0.035	0.005
DBP z-score	+0.066±0.035	0.06	+0.066±0.035	0.07
Aβ₁₋₄₂	ß	p	ß	p
SBP z-score	−0.032±0.031	0.30	−0.039±0.031	0.21
DBP z-score	−0.028±0.031	0.38	−0.032±0.031	0.30
Aβ₁₋₄₂/Aβ₁₋₄₀	ß	p	ß	p
SBP z-score	−0.090±0.030	0.003	−0.092±0.030	0.002
DBP z-score	−0.064±0.031	0.04	−0.067±0.031	0.03

Data are ß coefficients ± 95% CI.
Model 1: Adjusted for age, gender, centre.
Model 2: Adjusted for age, gender, centre, smoking status, total cholesterol z-score, HDL z-score, creatinine z-score and BMI z-score.
doi:10.1371/journal.pone.0018536.t003
also likely to be influenced by sample conditioning, storage and analyses. In order to minimize this problem, we analysed three independent cohorts in which the same plasma Aß peptide assay method had been used. Interestingly, the assay performed in the present study uses xMAP technology to quantify several epitopes and thus several different Aß species. Furthermore, we observed a strong correlation between plasma Aß1-440 and Aß1-42 in all the populations analysed (data not shown) - indicating that the plasma Aß peptide concentrations are representative of the physiological processes leading to Aß peptide production (i.e. APP metabolism).

Furthermore, sensitivity analyses indicated that the observed results are homogeneous for the elderly individuals in the different studies and support the existence of a real impact of Aß peptides on BP values and hypertension (Tables S1 and S2).

Our data may be of particular interest in the field of dementia. On the epidemiological level, an increased risk of dementia in individuals with high BP (and especially very high SBP) has been reported [24], although there is no clear consensus to indicate that raised BP in later life is a risk factor in dementia [25-27]. Furthermore, use of antihypertensive agents was suggested to reduce the risk of dementia and cognitive decline observed in clinical trials [28]. Interestingly, we and others have observed that an elevated Aß1-42/Aß1-40 ratio is strongly associated with a decreased risk of incident Alzheimer’s disease and mixed/vascular dementia [18,29]. Consequently, we can justifiably postulate that high plasma Aß1-42/Aß1-40 may reduce and/or delay the risk of developing dementia in the elderly by decreasing SBP and lowering the risk of hypertension. Our data might be also consistent with the finding that plasma Aß1-40 is associated with microvascular brain injury in subjects with AD, mild cognitive impairment or cerebral amyloid angiopathy [30].

In conclusion, our data support the potential vasotoxic properties of the Aß peptides and suggest that the latter are able to subdue BP in the elderly. Furthermore, these observations may offer new opportunities for better understanding the vascular component of dementia in general and Alzheimer’s disease in particular.

Supporting Information

Table S1 Associations between plasma Aß peptides and SBP & DBP values in the elderly participants in the 3C (n = 445), MONA-LISA (LILLE) (n = 102) and AIBL (n = 323) studies. Adjusted for age, gender, centre, smoking status, total cholesterol z-score, HDL z-score, creatinine z-score and BMI z-score.

Table S2 Associations between plasma Aß1-42/Aß1-40 ratio and hypertension in the elderly. Odds ratio (95% CI) for hypertension in the 3C study (n = 265), in the MONA-LISA (LILLE) study (n = 50) and the AIBL study (n = 180). Adjusted for age, gender, centre (when necessary), smoking status, total cholesterol z-score, HDL z-score, creatinine z-score and BMI z-score.

Acknowledgments

We thank Amelie Labudek for her excellent technical assistance.

Author Contributions

Analyzed the data: J-CL FR. Wrote the paper: J-CL J. Dallongeville J. Dumont. Project management and design: J-CL. Phenotype collection, data management, 3C study: CB CT J-FD PA. MONA-LISA (Lille): J. Dallongeville DC PA. AIBL study: KAE DA CLM CCR CS RM. Performed the experiments, Ab ELISA: SS-M JL SL LB RM.

References

1. Le Y, Gong W, Tiffany HL, Tumanov A, Nedospasov S, et al. (2001) Amyloid β[42 activates a G-protein-coupled chemotaxant receptor, FPR-like-1. J Neurosci 21: RC123.
2. Kolodnova RP, Lefterov IM, Lefterova MI, Lazo JS (2001) Apolipoprotein A-I directly interacts with amyloid precursor protein and inhibits Aβ aggregation and toxicity. Biochemistry 40: 3553–3560.
3. Mazzuola L, Jin LW, Wolfer RL, Maeda N, Martin GM, et al. (2004) Apolipoprotein E isoforms and apolipoprotein AI protect from amyloid precursor protein carbonyl terminus–associated cytotoxicity. J Neurochem 91: 1312–1321.
4. Zlokovic BV, Yamada S, Holtzman D, Ghiso J, Frangione B (2000) Clearance of amyloid β-peptide from brain: transport or metabolism? Nat Med 6: 718–719.
5. Yankner BA, Duffy LK, Kirschen DA (1990) Neurotrophic and neuroprotective effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 250: 279–282.
6. Kontush A (2001) Alzheimer’s amyloid-beta as a preventive antioxidant for brain lipoproteins. Cell Mol Neurobiol 21: 299–315.
7. Li QX, Whyte S, Tanzer JR, Evin G, Beyreuther K, et al. (1998) Secretion of Alzheimer’s disease Abeta amyloid peptide by activated human platelets. Lab Invest 78: 461–469.
8. Socia SJ, Kirby JE, Wadzichscky JK, Tucker SM, Ingelson M, et al. (2010) The Alzheimer’s disease-associated amyloid β-protein is an antimicrobial peptide. PLoS One 5: e9505.
9. Thomas T, Thomas G, McLendon C, Sutton T, Mullan M (1996) beta-Amyloid-mediated vasoactivity and vascular endothelial damage. Nature 380: 168–171.
10. Frackowiak J, Sukontasup T, Potempska A, Mazur-Kolecka B (2004) Lysosomal deposition of Abeta in cultures of brain vascular smooth muscle cells is enhanced by iron. Brain Res 1002: 67–75.
11. Wynne B, Chiao CW, Webb RC (2009) Vascular smooth muscle cell signalling mechanisms for contraction to angiotensin II and endothelin-1. J Am Soc Hypertens 3: 84–95.
12. Crawford F, Suo Z, Fang C, Mullan M (1998) Characteristics of the in vitro vasoactivity of beta-amyloid peptides. Exp Neurol 150: 159–168.
13. Deane R, Du Yan S, Subramanyam RK, LaBree R, Jovanovic S, et al. (2003) RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nat Med 9: 907–913.
14. Luo F, Seifert TR, Eldjári R, Loebbert RW, Hrhahl VP, et al. (2006) Non-invasive characterization of beta-amyloid(1-40) vasoactivity by functional magnetic resonance imaging in mice. Neuroscience 153: 263–269.
29. Van Oijen M, Hofman A, Soares HD, Koudstaal PJ, Breteler MM (2006) Plasma Abeta(1-40) and Abeta(1-42) and the risk of dementia: a prospective case-cohort study. Lancet Neurol 5: 653–660.

30. Gurok ME, Irizarry MC, Smith EE, Raju S, Diaz-Arrastia R, et al. (2006) Plasma beta-amyloid and white matter lesions in AD, MCI, and cerebral amyloid angiopathy. Neurology 66: 23–9.