A new species of *Oligodon* Fitzinger, 1826 from the Langbian Plateau, southern Vietnam, with additional information on *Oligodon annamensis* Leviton, 1953 (Squamata: Colubridae)

Hung Ngoc Nguyen, Bang Van Tran, Linh Hoang Nguyen, Thy Neang, Platon V Yushchenko, Nikolay A Poyarkov

1. Department of Zoology, Southern Institute of Ecology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
2. School of Life Science, National Taiwan Normal University, Taipei, Taiwan
3. Wild Earth Allies, Phnom Penh, Cambodia
4. Faculty of Biology, Department of Vertebrate Zoology, Moscow State University, Moscow, Russia
5. Laboratory of Tropical Ecology, Joint Russian-Vietnamese Tropical Research and Technological Center, Hanoi, Vietnam

Corresponding Authors: Hung Ngoc Nguyen, Nikolay A Poyarkov
Email address: nguyen.hung.uns@gmail.com, n.poyarkov@gmail.com

We describe a new species of *Oligodon* from the highlands of the Langbian Plateau, southern Truong Son Mountains, Vietnam, based on morphological and molecular phylogenetic analyses. The new species, *Oligodon rostralis* sp. nov., is distinguished from its congeners by the following morphological characters: medium size in adults (male TL = 582 mm); small and broad head with long protruding snout; dorsal scale row formula 15-15-13; 167 ventrals, 47 subcaudals; single preocular, single postocular; loreal and presubocular absent; six supralabials, third and fourth entering orbit; six infralabials, anterior four contacting first pair of chin shields; internasals separate from prefrontals; nasal divided; single anterior and two posterior temporals; cloacal plate undivided; hemipenes short, bilobed, bifurcating in anterior one third of their length, extending to 8th subcaudal, lacking spines and papillae, with a prominent transverse flounces and distal calyces; six maxillary teeth, the posterior three enlarged; dorsal pattern consisting of 14+4 large dark-brown blotches and a bright-orange vertebral stripe on tail and dorsum; and ventral surfaces in life cream laterally with dark quadrangular spots; dark temporal streak present, edged with white. We also provide additional information on *O. annamensis*, including a morphological dataset of all specimens known from natural history collections and confirmation of an earlier record of *O. annamensis* from Cambodia. We also provide the first record of *O. annamensis* for Dak Lak Province. Phylogenetic analyses of mtDNA genes (3131 bp of 12S rRNA, 16S rRNA and cyt b) suggest sister relationships of *Oligodon rostralis* sp. nov. and *O. annamensis* and place them in one clade with the *O. cyclurus* and *O. taeniatus* species groups, which is concordant with previous studies on the phylogenetic relationships of *Oligodon*. Our study demonstrates
high level of herpetofaunal diversity and endemism of Langbian Plateau and further supports the importance of this area for conservation herpetofaunal diversity in Indochina.
A new species of *Oligodon* Fitzinger, 1826 from the Langbian Plateau, southern Vietnam, with additional information on *Oligodon annamensis* Leviton, 1953 (Squamata: Colubridae)

Hung Ngoc Nguyen¹,²*, Bang Van Tran¹, Linh Hoang Nguyen¹, Thy Neang³, Platon V. Yushchenko⁴, Nikolay A. Poyarkov⁴,⁵*

¹ Department of Zoology, Southern Institute of Ecology, Vietnam Academy of Science and Technology, Ho Chi Minh City, VIETNAM
² School of Life Science, National Taiwan Normal University, Taipei, TAIWAN
³ Wild Earth Allies, Phnom Penh, CAMBODIA
⁴ Faculty of Biology, Department of Vertebrate Zoology, Moscow State University, Moscow, RUSSIA
⁵ Laboratory of Tropical Ecology, Joint Russian-Vietnamese Tropical Research and Technological Center, Hanoi, VIETNAM

*corresponding authors: nguyen.hung.uns@gmail.com; n.poyarkov@gmail.com

RUNNING TITLE: New *Oligodon* from southern Vietnam

ABSTRACT

We describe a new species of *Oligodon* from the highlands of the Langbian Plateau, southern Truong Son Mountains, Vietnam, based on morphological and molecular phylogenetic analyses. The new species, *Oligodon rostralis* sp. nov. is distinguished from its congeners by the
following morphological characters: medium size in adults (male TL = 582 mm); small and
broad head with long protruding snout; dorsal scale row formula 15-15-13; 167 ventrals, 47
subcaudals; single preocular, single postocular; loreal and presubocular absent; six supralabials,
third and fourth entering orbit; six infralabials, anterior four contacting first pair of chin shields;
internasals separate from prefrontals; nasal divided; single anterior and two posterior temporals;
cloacal plate undivided; hemipenes short, bilobed, bifurcating in anterior one third of their
length, extending to 8th subcaudal, lacking spines and papillae, with a prominent transverse
flounces and distal calyces; six maxillary teeth, the posterior three enlarged; dorsal pattern
consisting of 14+4 large dark-brown blotches and a bright-orange vertebral stripe on tail and
donsum; and ventral surfaces in life cream laterally with dark quadrangular spots; dark temporal
streak present, edged with white. We also provide additional information on O. annamensis,
including a morphological dataset of all specimens known from natural history collections and
confirmation of an earlier record of O. annamensis from Cambodia. We also provide the first
record of O. annamensis for Dak Lak Province. Phylogenetic analyses of mtDNA genes (3131
bp of 12S rRNA, 16S rRNA and cyt b) suggest sister relationships of Oligodon rostralis sp. nov.
and O. annamensis and place them in one clade with the O. cyclurus and O. taeniatus species
groups, which is concordant with previous studies on the phylogenetic relationships of Oligodon.
Our study demonstrates high level of herpetofaunal diversity and endemism of Langbian Plateau
and further supports the importance of this area for conservation herpetofaunal diversity in
Indochina.

SUBJECTS: Biodiversity, Zoology
KEYWORDS: Oligodon rostralis sp. nov., Cambodia, Truong Son Mountains, Annamites, endemism, hemipenis morphology, taxonomy, distribution, morphology, mtDNA

INTRODUCTION

Located in middle of the Southeast Asian biodiversity hotspot, the Langbian Plateau is known as a local center for herpetofaunal endemism. It is inhabited by numerous species of amphibians and reptiles, many of which were only described recently (Duong et al., 2018; Nazarov et al., 2012; Poyarkov et al., 2014, 2015a, 2015b, 2017, 2019b; Stuart et al., 2011; Rowley et al., 2016; Vassilieva et al., 2014). The Kukri Snakes of the genus Oligodon Fitzinger, 1826, are one of the most speciose and taxonomically problematic colubrid snake groups distributed in South and Southeast Asia, with over 79 species described (Green et al., 2010; Wallach et al., 2014; Uetz et al., 2019). Due to their secretive behavior (Tillack & Günther, 2009), many species are known from only a few specimens or even only the holotype. Consequently, knowledge regarding Oligodon taxonomy, distribution, morphological variation and natural history is limited (Leviton 1953, 1960; Pauwels et al., 2002; David et al., 2008; Neang et al., 2012). In Vietnam 23 species of Oligodon have been recorded up to date, with six of them being country endemic, while eight species were described within the last decade (David et al., 2008, 2012; Nguyen et al., 2016, 2017; Vassilieva et al., 2013; Vassilieva, 2015). This suggests that our knowledge of Oligodon diversity in the Indochinese region is still far from complete.

One of the least known and enigmatic Oligodon species from Indochina is Oligodon annamensis Leviton, 1953, which was described based on a single female specimen collected from “Blao, Haut Donai” in the Langbian plateau (currently Bao Loc, Lam Dong Province, south...
Vietnam) (Leviton, 1953, 1960). Leviton (1953) was puzzled by the taxonomic and phylogenetic affinities of this species, and only after examining a second male specimen he assumed that *O. annamensis* might be a part of the “taeniatus–cyclurus–complex” (Leviton, 1960). The only other existing record of this species was recently published by Neang & Hun (2013), who reported a subadult specimen identified as *Oligodon annamensis* from Phnom Samkos Wildlife Sanctuary of the Cardamom Mountains in southwest Cambodia; over 600 km westwards from the type locality (Neang & Hun, 2013). However, identification of the Cambodian specimen was tentative and has not been confirmed by molecular analyses; no information on the phylogenetic position of *O. annamensis* is available until this paper.

During our recent surveys in Lam Dong and Dak Lak provinces of southern Vietnam we collected two *Oligodon* specimens superficially similar in morphology with description of *O. annamensis*. However, after a closer examination of specimens from Vietnam and Cambodia, comparison of diagnostic morphological traits and phylogenetic analyses of 3131 bp of mtDNA, we were able to identify the Dak Lak and Cambodian specimens as *O. annamensis*, while the *Oligodon* specimen from Lam Dong Province showed a unique combination of morphological characters that differ it significantly from all other *Oligodon* taxa. Furthermore, the phylogenetic analyses of mtDNA markers suggest that the Lam Dong *Oligodon* sp. represents a distinct phylogenetic lineage, not conspecific to any other *Oligodon* sequences available. Herein it is assigned to a new species, which is described below.

MATERIALS AND METHODS

Nomenclatural acts
The electronic version of this article in Portable Document Format (PDF) will represent a published work according to the International Commission on Zoological Nomenclature (ICZN), and hence the new names contained in the electronic version are effectively published under that Code from the electronic edition alone (see Articles 8.5-8.6 of the Code). This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information can be viewed through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The LSID for this publication is as follows: urn:lsid:zoobank.org:pub:51B851C2-5D34-4065-86EA-CF18DDD94419. The online version of this work is archived and available from the following digital repositories: PeerJ, PubMed Central and CLOCKSS.

Sampling. The adult male specimen of *Oligodon* sp. was collected by Bang Van Tran and Linh Hoang Nguyen during the field trip in June 2017 in Bidoup – Nui Ba National Park (hereafter NP), Lam Dong Province, Vietnam (locality 1; Figure 1). After euthanasia with 20% solution of benzocaine, the specimen was initially preserved in 95% alcohol for one day then subsequently stored in 70% alcohol. Additional specimens of *Oligodon annamensis* were collected in Chu Yang Sin NP, Dak Lak Province, southern Vietnam, by Nikolay A. Poyarkov (locality 3; Figure 1); and in Phnom Samkos Wildlife Sanctuary (hereafter WS) of the Cardamom Mountains, Pursat Province, southwest Cambodia by Seiha Hun (locality 4; Figure 1); both records made in April, 2012. Geographic position of the surveyed localities is shown in Figure 1. Because of certain morphological similarity with *Oligodon annamensis* in coloration and scalation (*Orlov et al., 2010*), we also included sequences of *O. lacroixi* in our phylogenetic analysis based on a specimen from Phu Tho Province, northern Vietnam.
Specimen collection protocols and animal operations followed the Institutional Ethical Committee of Southern Institute of Ecology, Vietnamese Academy of Science and Technology (certificate number 114/QD-STHMN of November 8, 2016).

Field work, including collection of samples and animals in the field, was authorized the Bureau of Forestry, Ministry of Agriculture and Rural Development of Vietnam (permits Nos. 170/ TCLN–BTTN of 07/02/2013; 400/TCLN-BTTN of 26/03/2014; 831/TCLN–BTTN of 05/07/2013) and Forest Protection Department of the Peoples’ Committee of Dak Lak Province (permit No. 388/SNgV-LS of 24/04/2019); the fieldwork in Bidoup – Nui Ba NP was conducted under scope of the contract between Sustainable Nature Resource Management Project (SNRM) under Japan International Cooperation Agency and Southern Institute of Ecology to perform the “Biodiversity Baseline Survey” project of September 24, 2018.

Morphological analysis. Color characters and patterns were recorded during examination of specimens in life and taken from digital images of the living specimens. Morphological characters and morphometric ratios considered to be of taxonomic importance for *Oligodon* were used for species descriptions and followed a number of recent revisions of the genus (*David et al., 2008; 2012; Leviton, 1953, 1960; Neang & Hun, 2013; Nguyen et al., 2016, 2017; Vassilieva et al., 2013; Vassilieva, 2015*). All body measurements, except body and tail lengths, were taken under a binocular microscope using digital slide-caliper to the nearest 0.1 mm. Body and tail lengths were measured to the nearest millimetre with a measuring tape. The right hemipenis was forcibly everted by using water injection prior the preservation of the specimen. Methodology of ventral and subcaudal scales counts followed *Dowling (1951).* Terminology for hemipenial structures generally followed *Smith (1943)* and *Dowling & Savage.*
(1960). Maxillary teeth of the specimens were counted by examining both maxillae, directly by pushing back the soft tissue with a needle under binocular microscope prior to preservation.

The following measurements (all in mm) and counts were taken: snout to vent length (SVL) — measured from the tip of the snout to the vent; tail length (TaL) — measured from the vent to the tip of the tail; total length (TL) — sum of SVL and TaL; relative tail length to total length (RTL) calculated as tail length to total length ratio (TaL/TL); head length (HL) from the tip of the snout to the posterior margin of the mandible; head width (HW) measured at the widest part of the head immediately posterior to the eye; head width to head length ratio (HW/HL); snout length (SnL) — distance between the tip of the snout and anterior edge of eye; eye diameter (EyeL) — maximal horizontal length of the eye; frontal scale length/width (FrL/FrW) — length and width of the frontal scale; interorbital distance (IOD) — the shortest distance between the eyes; internarial distance (IND) — distance between the nostrils; number of maxillary teeth (DEN); dorsal scale rows at neck (ASR) — number of scale rows at one head length behind the head; midbody scale rows (MSR) — number of scale rows at midbody; dorsal scale rows anterior to the vent (PSR) — number of dorsal scale rows at one head length prior to the vent; dorsal scale rows formula (DSR) — referred to as a general scale formula in the form “ASR-MSR-PSR” (for number of dorsal scale rows at neck, midbody and prior to vent, respectively); first dorsal scale reduction (RED1) — the first reduction of dorsal scale rows, corresponding to a ventral scale; ventral scales (VS) — number of scales from the second ventral scale posterior to gulars to the vent excluding cloacal plate; cloacal plate (AP) — number of terminal ventral scales immediately anterior to vent; subcaudal scales (SC) — number of paired subcaudal scales excluding the terminal scute; total belly scales (Total Sc.) — sum of ventral and subcaudal scales; supralabials (SL) — number of scales on upper lip; SL-Eye — number of SL
entering orbit; infralabials (IL) — number of scales on lower lip; infralabials contacting each other (IL-contact) — number of pairs of infralabial scales in contact; infralabials contacting the anterior chin shields (IL-CS) — infralabial scales contacting the upper chin shields; number of preocular scales (PrO); number of presubocular scales (PrsO); number of postocular scales (PtO); number of anterior temporals (Ate) — temporal scales which contact the postocular scales; number of posterior temporals (Pte) — temporal scales immediately contacting the anterior temporal scales; condition of loreal scale (LOR) — 1 – present, 0 – absent, * – vestigial; condition of nasal scale (NAS) — D – vertically divided, E – entire, PD – partially divided; hemipenis shape — (1) unforked, a single organ with no lobes at apex; (2) bilobed, organ contains two lobes at its apex; hemipenis ornamentation — notes on ornamentation of organ (i.e. spinules, calyces or flounces); presence of appendages seen in situ (papillae sensu Smith, 1943); hemipenis length — length of the everted hemipenis in mm and relative to number of subcaudal scales. Symmetric characters are given in left / right order. Other abbreviations: a.s.l.: above sea level; Div.: Division; Comm.: Commune; Dist.: District; Mt.: mountain; NP: National Park; NR: Nature Reserve; Prov.: Province; WS: Wildlife Sanctuary.

The type material was deposited in the herpetological collection of the Department of Zoology, Southern Institute of Ecology (SIEZC) in Ho Chi Minh City, Vietnam. Additional material used for comparisons is stored in the herpetological collections of Centre for Biodiversity Conservation of the Royal University of Phnom Penh, Phnom Penh, Cambodia (CBC RUPP); United States National Museum, Washington, D. C., USA (USNM); Museum National d'Histoire Naturelle, Paris, France (MNHN) and Zoological Museum of Lomonosov Moscow State University, Moscow, Russia (ZMMU).
Molecular analyses. Total genomic DNA was extracted from muscle tissue preserved in 95% ethanol using the Qiagen DNAeasy Blood & Tissue Kit following manufacturers’ protocol. We used the polymerase chain reaction (PCR) to amplify two fragments of mitochondrial DNA (hereafter mtDNA): the first fragment including partial sequences of 12S ribosomal RNA (rRNA), tRNA-Valine and 16 rRNA genes (total length up to 2035 bp) and a complete sequence of cytochrome b gene (1096 bp). Primers used for both PCR and sequencing are summarized in Table 1.

PCR protocol for 12S–16S rRNA mtDNA fragment in general followed Green et al. (2010). For both primer pairs of 12S and 16S rRNA, we used the following PCR protocol: (1) initial denaturation step at 94°C for 5 min; (2) 35 cycles of denaturation at 94°C for 1 min, annealing at 55°C for 1 min and extension at 72°C for 1 min; (3) final extension at 72°C for 10 min; and (4) cooling step at 4°C for storage.

For cytochrome b sequences (fragment up to 1096 bp) we used a modified PCR protocol of Dahn et al. (2018) with touchdown: (1) initial denaturation step at 94°C for 5 min; (2) 10 cycles of denaturation at 94°C for 1 min, annealing for 1 min with temperature decreasing from 50°C to 45°C (with cool-down at 0.5°C per each cycle) and extension at 72°C for 1 min; (3) 24 cycles of denaturation at 94°C for 1 min, annealing at 45°C for 1 min and extension at 72°C for 1 min; (4) final extension at 72°C for 10 min; and (5) cooling step at 4°C for storage.

All PCR products were sequenced in both directions by Genomics BioSci & Tech Corp. (Taipei, Taiwan). Sequences were assembled and checked using sequencher 4.9 (GeneCodes). The obtained sequences are deposited in GenBank under the accession numbers MN395601–MN395604 and MN396762–MN396765 (Table 2).
Phylogenetic analyses. The 12S–16S rRNA datasets of Green et al. (2010), Pyron et al. (2013), our newly obtained sequences and other Oligodon sequences available in GenBank were used to examine the position of the Lam Dong Oligodon sp. in the matrilineal genealogy of the genus (summarized in Table 2). In total, we analysed mtDNA sequence data for 52 specimens, including 43 samples of ca. 24 species of Oligodon, and eight outgroup sequences of other Colubrinae representatives, and sequences of Hebius vibakari (Natricinae) which were used to root the tree.

Nucleotide sequences were initially aligned in MAFFT v.6 (Katoh et al., 2002) with default parameters, and subsequently checked by eye in BioEdit 7.0.5.2 (Hall, 1999) and slightly adjusted. MODELTEST v.3.6 (Posada & Crandall, 1998) was applied to estimate optimal evolutionary models for the data set analysis. Mean uncorrected genetic distances (p-distances) were calculated in MEGA 6.0 (Tamura et al., 2013).

The matrilineal genealogy was inferred using Bayesian inference (BI) and Maximum Likelihood (ML) approaches. The best-fitting model for both BI and ML analyses for 12S–16S rRNA fragments was the GTR+G+I model as of DNA evolution suggested by the Akaike Information Criterion (AIC); for cyt b gene AIC suggested GTR+G model for first and third codon partitions, and HKY+G+I for second codon partition. BI was conducted in MrBayes 3.1.2 (Ronquist & Huelsenbeck, 2003); Metropolis-coupled Markov chain Monte Carlo (MCMCMC) analyses were performed run with one cold chain and three heated chains for twenty million generations and sampled every 2000 generations. Five independent MCMCMC run iterations were performed and 1000 trees were discarded as burn-in. The convergence of the runs were checked by exploring examining the likelihood plots in TRACER v1.6 (Rambaut et al., 2014);
the effective sample sizes (ESS) were all above 200. Nodal support was assessed by calculating posterior probabilities (BI PP).

ML was conducted using the RAxML web server (http://embnet.vital-it.ch/raxml-bb/; Kozlov et al., 2018). Confidence in nodal topology was estimated by non-parametric bootstrapping (ML BS) with 1000 pseudoreplicates (Felsenstein, 1985).

We a priori regarded tree nodes with BI PP values over 0.95 and ML BS values 75% or greater as sufficiently resolved; while BI PP values between 0.95 and 0.90 and ML BS values between 75% and 50% were regarded as tendencies. Lower values were regarded as indicating unresolved nodes (Huelsenbeck & Hillis, 1993).

RESULTS

Phylogenetic relationships of Oligodon

Sequence and statistics. The final concatenated alignment of the 12S rRNA – 16S rRNA fragment and cyt b gene sequences contained 3131 base pairs, of which, 1959 sites were conserved and 1049 sites were variable, of which 713 were found to be parsimony-informative. The transition–transversion bias (R) was estimated as 1.89. Nucleotide frequencies were 38.0% (A), 22.0% (T), 24.5% (C), and 15.4% (G) (all data given for ingroup only).

MtDNA-based genealogy. Our mtDNA-based genealogy for the genus Oligodon (Figure 2) inferred the following set of phylogenetic relationships, which is generally consistent with the results of Green et al. (2010). Several well-supported clades were recovered within Oligodon (see Figure 2):
(1) Clade 1: Indian and Sri Lankan species (*O. taeniolatus*, *O. calamarius*, *O. sublineatus*; 1.0/100; hereafter node support values are given for BI PP/ML BS, respectively); *O. arnensis* from the same region tends to group with this clade, however with no node support (0.52/-).

(2) Clade 2: Species from northern Vietnam (*O. lacroixi* and *O. eberhardtii*) (1.0/100).

(3) Clade 3: Joining the *O. cinereus* species group (Indochina and Myanmar), and some taxa from Myanmar (*O. splendidus*, *O. theobaldi*, *O. cruentatus*, *O. torquatus*, *O. planiceps*) and Philippines (*O. maculatus*) (1.0/100).

(4) Clade 4: Joining other species of *Oligodon* from Indochina and southern China, clustered in the *O. taeniatus* species group (*O. taeniatus* and *O. barroni*; 1.0/98) and the *O. cyclurus* species group (*O. cyclurus*, *O. formosanus*, *O. chinensis* and *O. ocellatus*; 1.0/98).

(5) The newly discovered *Oligodon* sp. from Bidoup – Nui Ba NP is reconstructed as a sister lineage with respect to two specimens of *O. annamensis* from Vietnam and Cambodia (1.0/100); *O. octolineatus* from Sundaland tends to group with this clade, however with no node support (0.62/-). All these species are clustered together with Clade 4 with strong support (1.0/100) (see Figure 2).

Sequence divergence. The uncorrected *p*-distances for the 16S rRNA gene fragment among and within examined *Oligodon* species are presented in Table 3. Intraspecific distances varied significantly and ranged from *p*=0% in a number of examined species to *p*=2.3% in the *O. cinereus* complex and *p*=2.8% in the *O. cyclurus* complex, what is most likely explained by incomplete taxonomy of these groups (*Green et al., 2010; David et al., 2008, 2012*); a more detailed study including toptype materials on these species complexes is required.
The interspecific genetic distances within examined *Oligodon* varied from $p=1.8\%$ (between *O. chinensis* and *O. formosanus*) to $p=8.5\%$ (between *O. maculatus* and *O. octolineatus*) (Table 3). The newly discovered *Oligodon* sp. lineage from Bidoup – Nui Ba NP is highly divergent from other congeners and is most closely related to *O. annamensis* with $p=3.3\%$ of sequence divergence in 16S rRNA gene between these taxa. This divergence value is notably higher than the genetic differentiation between many other recognized *Oligodon* species (see Table 3), thus suggesting that the divergence between *Oligodon* sp. and *O. annamensis* likely reached species status. Genetic divergence between Vietnamese and Cambodian populations of *O. annamensis* is minimal and comprised $p=0.9\%$ of substitutions (Table 3).

Systematics

Our mtDNA-genealogy of *Oligodon* demonstrated that *Oligodon* sp. from Bidoup - Nui Ba NP represents a new previously unknown lineage, sister to *O. annamensis*; both species are clustered with the *O. taeniatus* and *O. cyclurus* species groups with strong support. Though genetic divergence between Cambodian and Vietnamese populations of *O. annamensis*, separated from each other by over 600 km distance, is small ($p=0.9\%$); genetic differentiation between *Oligodon* sp. from Bidoup - Nui Ba NP and *O. annamensis* is much higher ($p=3.3\%$) and reaches species-level (see Table 3). We thus confirm the identification of the Cambodian population as *O. annamensis* (previously described by Neang and Hun 2013), and also provide a morphological analysis of all presently known specimens of *O. annamensis* (see Table 4). Our results are further corroborated by our morphological analysis (see below), which uncovered significant differences between *Oligodon* sp. from Bidoup - Nui Ba NP, *O. annamensis* and other
congeners. These results support our hypothesis that this recently discovered lineage of *Oligodon*
represents an undescribed species, which we describe below:

Oligodon rostralis sp. nov.

(Figures 3–7; Tables 4–5)

Holotype. SIEZC 20201, adult male from Bidoup – Nui Ba National Park, ca. 6 km
northwards from Da Nhím village, Da Chais Commune, Lac Duong District, Lam Dong
Province, southern Vietnam (12.1518° N, 108.5279° E; elevation 1622 m a.s.l.), collected on a
steep slope near to mountain summit in montane evergreen pine forest by Bang Van Tran and
Linh Hoang Nguyen at 23h on June 13, 2017.

Diagnosis. The new species is assigned to the genus *Oligodon* Fitzinger, 1826 on the
basis of its phylogenetic position and the following morphological attributes: posterior maxillary
teeth enlarged and compressed; head short, barely distinct from neck; eye well-developed with
round pupil; rostral enlarged; body cylindrical with smooth scales; ventrals rounded; subcaudals
paired. *Oligodon rostralis** sp. nov. is distinguished from its congeners by a combination of the
following morphological characters: medium size in adults (male TL = 582 mm); head small and
broad with long largely protruding snout; 15 dorsal scale rows at neck and midbody and 13 rows
before vent; ventrals 167, subcaudals 47 in male; single preocular, single postocular; loreal and
presubocular absent; six supralabials, third and fourth entering orbit; six infralabials, anterior
four contacting chin shields; internasals separate from prefrontals; nasal divided; single anterior
and two posterior temporals; cloacal plate undivided; comparatively short hemipenis, forked in
anterior one third of their length, extending to 8th subcaudal, lacking spines and papillae, bearing
prominent transverse flounces and distal calyces; six maxillary teeth, the posterior three being enlarged; dark temporal streak present, edged with white; 14+4 large dark-brown dorsal blotches; bright-orange vertebral stripe on tail and dorsum; and ventral surfaces in life cream with quadrangular spots.

Description of holotype. Measurements and scale counts of the holotype are presented in Table 4. Adult male of medium size (TL 582 mm), body robust and cylindrical (Figure 3); SVL 468 mm; head small, comparatively short and wide (HW/HL = 73.2%), ovoid in dorsal view, faintly distinct from the poorly defined neck; tail quite long (19.6% of total length), 114 mm in length; robust, abruptly tapering; eye small, comprising approximately 13.5% of the head length; snout long, protruding (SnL/HL ratio 43.6%); eye diameter much shorter than the distance between eye and nostril; pupil round;

Body scalation. Dorsal scales smooth, in 15-15-13 rows, scale row reduction from 15 to 13 at ventral 113; vertebral scales similar to other dorsal scales in size and shape; outermost dorsal scales slightly enlarged; 167 ventrals; cloacal plate entire; 47 subcaudals, all paired, terminal caudal scale in a shape of sharply pointed cap (Figure 3, B).

Head scalation. Details of head scalation are shown in Figure 4. From dorsal view (Figure 4, A-B), head scalation comprising single rostral, two internasals, two prefrontals, two supraoculars, single frontal, and two parietals. Rostral large, thick, wider than high, extending on to the dorsal surface of the snout, visible from above, pointed posteriorly and inserting deeply between internasals, with a deep crease ventrally, contacting nasals, internasals and first supralabial on both sides; the portion of rostral visible from above shorter than its distance from frontal; internasals sub-rectangular, in broad contact, shorter than prefrontals, each contacting rostral, prefrontal, internasal and paired nasals on both sides; prefrontals large, pentagonal, wider
than long and larger than internasals, curving dorsolaterally into loreal region, each contacting
internasal and posterior portion of nasal anteriorly, second supralabial laterally, and preocular,
supraocular and frontal posteriorly; supraoculars subrectangular, elongated, widening
posteriorly, approximately half as wide as long, contacting the orbit, preocular and postocular
laterally, prefrontal, frontal and parietal medially; frontal large, pentagonal, longer than wide,
narrowing posteriorly, posterior angle rather acute, contacting prefrontals, supraoculars and
parietals on both sides; parietals irregularly trapeziform, about 1.5 time larger than frontal,
 anteriorly contacting frontal, supraoculars and postoculars on each side, bordered posteriorly by
five small scales and laterally by the first and upper second temporals; no enlarged nuchal scales
present.

In lateral view (Figure 4, C-D), head scalation comprising a sub-rectangular nasal,
vertically divided by prominent suture and pierced by large nostril, nasal on each side contacting
rostral anteriorly, internasal and prefrontal dorsally, and first two supralabials ventrally; loreal
and presubocular scales absent; 1/1 rectangular preocular, notably higher than wide, separated
from nasal by the lateral part of the prefrontal, also contacting second and third supralabials
ventrally and supraocular dorsally; 1/1 rectangular postocular, almost equal in size to preocular,
contacting fourth and fifth supralabials ventrally, anterior temporal and parietal posteriorly and
supraocular dorsally; six supralabials: I. the smallest, in contact with nasal, II. in contact with
nasal, prefrontal and preocular, III. in contact with preocular and the orbit, IV. in contact with the
orbit and postocular, V. in contact with postocular, anterior temporal and lower posterior
temporal, VI. in contact with lower posterior temporal and scale dorsally, and with two smaller
scales posteriorly, V. and VI. strongly enlarged; supralabial scale size formula:
I<II<III=IV<V<VI; 1+2 temporals on each side, the upper ones pentagonal, elongated and
narrow, upper posterior temporal slightly larger than the anterior, the lower posterior temporal rhomboid, ca. two times smaller than the upper ones, posteriorly contacting an enlarged scale of same size.

In ventral view (Figure 4, E-F), 6/6 infralabials: I. in contact with mental anteriorly, in contact with each other medially; anterior three in contact with anterior chin shield; the fourth largest and touching posterior chin shield; mental small, triangular; 2/2 enlarged, elongated chin shields, anterior pair twice as long as the posterior pair; three small gular scales between posterior chin shields and first preventral.

Dentition. Maxillary teeth 6, curved posteriorly, smaller and shorter anteriorly; posterior three being notably enlarged, flattened and kukri-shaped.

Hemipenial morphology. Right hemipenis was everted prior to preservation and is shown in Figure 5. Hemipenis rather short, the everted organ hardly reaching 8th subcaudal; bilobed, bifurcating at distal fifth of its length; organ semi-capitate and semi-calyculate; the sulcus spermaticus is bifurcated at around the proximal one-fifth of the hemipenial body and centroleineal along both lobes (Figure 5, A). The sulcal surface of hemipenis is mostly smooth (Figure 5, A), laterally and on asulcal surface hemipenis covered with several fleshy flounces, lacking spines or papillae-like structures (Figure 5, B); distal ends of hemipenial lobes with small indistinct calyces.

Colouration (in life). Dorsal ground color (Figure 6, A) dark brownish-gray with dense white reticulation between scales; dorsal pattern consisting of 18 large irregular blackish butterfly-shaped blotches, of which 14 are located on body and 4 on tail, the distances between two blotches comprises ca. 8–10 dorsal scale lengths; a bright orange vertebral stripe running from the base of the head to the tail tip; vertebral stripe width comprising from one to three
dorsal scale rows; some dorsal scales edged with dark-brown forming an indistinct speckled or dashed pattern between blotches, lower rows of dorsal scales fringed with white. Dorsal ground color along head is grayish-brown (Figure 6, B), a butterfly-shaped marking with rusty tint with a rounded dark spot located on frontal, three separated dark-brown chevrons (one short between the eyes, forming two dark brown streaks running across the eye to the angle of the mouth; and two longer ones running from frontal postero-ventrally to neck and posteriorly to the base of the head, respectively); throat and ventral underside pale-cream laterally with alternating quadrangular black spots scattered from throat until tail (Figure 7, A); underside of tail orange-cream.

Colouration (in preservative). (Figure 3), after two years in alcohol, coloration faded but pattern remained unchanged; body brown, vertebral stripe became somewhat dark-orange and less distinct (Figure 3, A); dorsal blotches and head marking dark brown with blackish margins remained unchanged; throat, venter and tail underside cream-white, black quadrangular spots remained unchanged (Figure 3, B).

Etymology. The specific name “rostralis” is a Latin adjective in the nominative singular, masculine gender, derived from Latin words “rostrum” for “snout” or “beak” in reference to protruding snout distinctive for the new species. We suggest the following common names for the new species: “Long-snouted kukri snake” (English), “Rắn khiếm mõm dài” (Vietnamese), and “Dlinnorylyi oligodon” (Russian).

Distribution. At present the new species is known only from the type locality in Bidoup–Nui Ba NP, in the eastern part of Langbian Plateau, southern Vietnam (see Figure 1, locality 1). This montane area is characterized by high levels of local endemism (**Nazarov et al., 2012:**
further research is needed to clarify the distribution of the new species.

Habitat and natural history. The type specimen was collected on the steep slope close to the mountain summit (Figure 7), at late night (23h). The animal was found on ground in leaf litter on the edge of the mixed-pine forest (dominated by *Pinus keysia* Royle ex Gordon) and evergreen montane broadleaf forest (dominated with trees of the families Fabaceae, Fagaceae, and few large pine trees of *Pinus keysia*, with understory consisting mostly of Poaceae – different species of bamboo) (Figure 7, B). In the pine forest, understory is dominated by Fagaceae family while ground is covered mostly by grasses and receives high grazing impact by livestock from the villages nearby. In the type locality the new species was recorded in sympatry with some other species of reptiles, including *Cyrtodactylus bidoupimontis* Nazarov, Poyarkov, Orlov, Phung, Nguyen, Hoang & Ziegler, *Scincella rufocaudata* (Darevsky & Nguyen), and *Pareas hamptoni* (Boulenger).

Phylogenetic position. *Oligodon rostralis sp. nov.* is suggested as a sister species of *O. annamensis* (Figure 2), from which it is genetically divergent with p-distance 3.3% in 16S rRNA gene (Table 3). Both species are clustered together with the *O. cyclurus* and *O. taeniatus* species groups (Figure 2).

Comparisons. Morphological diagnostics of species based exclusively on hemipenial morphology is often complicated due to insufficiency of data and certain controversy in describing hemipenis character states in *Oligodon* existing in literature (*Smith, 1943; Wagner, 1975; Vassilieva, 2015*); scalation and coloration features often might be more useful for species identification (*Pauwels et al., 2002; David et al., 2008, 2012; Neang et al., 2012; Nguyen et al., 2016, 2017*). By having 15-15-13 dorsal scale rows, *Oligodon rostralis sp. nov.* can be
distinguished from other species inhabiting mainland Southeast Asia having greater number of MSR, namely all members of the *O. cyclurus* species group: *O. cyclurus* (Cantor) (19 or 21); *O. formosanus* (Günther) (19); *O. ocellatus* (Morice) (19); *O. fasciolatus* (Günther) (21 or 23); *O. kheriensis* Achraji & Ray (19); *O. juglandifer* (Wall) (19); *O. chinensis* (Günther) (17); *O. saintgironsi* David, Vogel & Pauwels (17 or 18); *O. culaochamensis* Nguyen, Nguyen, Nguyen, Phan, Jiang & Murphy (17); *O. condaoensis* Nguyen, Nguyen, Le & Murphy (17); *O. macrurus* (Angel) (17); *O. arenarius* Vassilieva (17) and *O. cattienensis* Vassilieva, Geissler, Galoyan, Poyarkov, Van Devender & Böhme (17); phylogenetic position of the latter two species is unclear.

Similarly, by having 15 MSR the new species can be diagnosed from the members of the *O. taeniatus* species group: *O. taeniatus* (Günther) (19); *O. barroni* (Smith) (17); *O. mouhoti* (Boulenger) (17); *O. pseudotaeniatus* David, Vogel & Van Rooijen (17); *O. moricei* David, Vogel & Van Rooijen (17) and *O. deuvei* David, Vogel & Van Rooijen (17).

Most members of the *O. cinereus* species group, which all are believed to have an unforked hemipenis (vs. bilobed hemipenis in the new species; see Green et al., 2010), can be also distinguished from *Oligodon rostralis* **sp. nov.** by larger MSR: *O. cinereus* (Günther) (17); *O. nagao* David, Nguyen, Nguyen, Jiang, Chen, Teynié & Ziegler (17); *O. joynsoni* (Smith) (17); *O. sai yok* Sumontha, Kunya, Dangsri & Pauwels (17); *O. huahin* Pauwels, Larsen, Suthanthangjai, David & Sumontha (17), and *O. albocinctus* (Cantor) (19 or 21); another member of the *O. cinereus* species group – *O. inornatus* (Boulenger) has 15 MSR and is compared with the new species below.

Diagnostics of *Oligodon rostralis* **sp. nov.** from other mainland Southeast Asian species of *Oligodon* with 15 or 13 dorsal scale rows appear to be the most pertinent (as the number of
MSR may vary between these two values due to the position of the dorsal scale row reduction, see David et al., 2012); it is summarized in Table 5. From most species with 15 or 13 MSR, the new species can be distinguished by absence of loreal vs. loreal present in O. eberhardtii Pellegrin; O. inornatus; O. kampucheaeensis Neang, Grismer & Daltry; O. jintakunei Pauwels, Wallach, David, Chanhome (vestigial loreal); O. planiceps (Boulenger); O. torquatus (Boulenger); O. dorsalis (Gray) and O. melaneus Wall (vestigial loreal). By presence of an entire cloacal plate Oligodon rostralis sp. nov. can be diagnosed from those species who have the cloacal plate divided, namely from O. catenatus (Blyth), O. eberhardtii, O. lacroixi Angel & Bourret, O. jintakunei, O. lungshenensis Zheng & Huang, O. ornatus Van Denburgh, O. hamptoni Boulenger, O. mcdougalli Wall, O. planiceps, O. torquatus, O. dorsalis, O. melaneus, and O. erythrorhachis Wall. By having internasals separate from prefrontals the new species can be readily diagnosed from those Oligodon species which have these scales fused, including O. catenatus, O. eberhardtii, O. lacroixi, O. jintakunei, O. brevicauda and O. hamptoni. By having a single postocular scale Oligodon rostralis sp. nov. is distinguished from those species which have two postocular scales: O. catenatus, O. lacroixi, O. inornatus, O. kampucheaeensis, O. lungshenensis, O. hamptoni, O. planiceps, O. torquatus, O. melaneus, O. brevicauda and O. erythrorhachis. The new species can be further distinguished from O. brevicauda by having a single preocular scale (vs. 2 preoculars). By having six supralabials the new species can be distinguished from Oligodon species with five (O. lacroixi, O. hamptoni, and O. planiceps), seven (O. jintakunei, O. mcdougalli, O. torquatus, O. dorsalis, O. melaneus, O. brevicauda and O. erythrorhachis), or eight (O. inornatus and O. kampucheaeensis) supralabials.

Among all congeners Oligodon rostralis sp. nov. morphologically is most similar to O. annamensis, to which this species is also most closely related phylogenetically (see Results).
However, the new species can be distinguished from males of *O. annamensis* by the following combination of morphological characters: (1) greater number of dorsal scale rows, DSR formula 15-15-13 (vs. DSR formula 13-13-13 in *O. annamensis*); (2) hemipenis bilobed, lobes bifurcating at distal third of body with flounces and lacking papillae (vs. hemipenis bilobed and elongate, lobes bifurcating proximally with papillae and transverse ridges in *O. annamensis*), (3) nasal vertically divided (vs. nasal entire in *O. annamensis*); (4) generally larger total length, 582 mm (vs. maximal total length 412 mm in *O. annamensis*); (5) generally wider head, HW/HL ratio 73.2% (vs. HW/HL ratio 53.6–56.3% in *O. annamensis* males, and 61.7% in female holotype; see Table 4); (6) generally higher number of subcaudals, 47 (vs. 30–46 in *O. annamensis*); (7) dorsal pattern consisting of large dark butterfly-shaped blotches and a light middorsal orange stripe (vs. white narrow crossbars edged with black and no middorsal stripe in *O. annamensis*); (8) ventral color in life cream-white with black quadrangular spots not forming transverse bars (vs. ventral surfaces in life bright coral-red to bright orange with black quadrangular spots forming transverse bars in *O. annamensis*) (see Tables 4 and 5). Finally, the new species is distinguished from *O. annamensis* by a significant divergence in mtDNA gene sequences (up to 3.3% of substitutions in 16S rRNA gene, see Table 3).

Additional information on *Oligodon annamensis* Leviton, 1953

Oligodon annamensis Leviton, 1953, Jour. Washington Acad. Sci., 43(12):422.

Figures 8–11; Table 4.

Holotype. USNM 90408, young female from “Blao, Haut Donai, Annam, French Indo-China” (today environs of Bao Loc, Lam Dong Prov., Vietnam), collected by E. Poilane on March 11, 1933 (Figure 8).
Referred specimens. Three male specimens, including MNHN 8815, young male from Blao, Haut Donai, Station Agricole, collected by E. Poilane on March 11, 1933 (Figure 9). MNHN 8815, young male from “Blao, Haut Donai, Station Agricole”, collected by E. Poilane on March 11, 1933 (Figure 9); ZMMU R-14304, adult male from Chu Pan Phan Mt., Chu Yang Sin NP, Khue Ngoc Dien Comm., Krong Bong Dist., Dak Lak Prov., Vietnam (12.3950° N, 108.3503° E; 1050 m a.s.l.), collected by N.A. Poyarkov on April 14, 2012, described herein (Figure 10); and CBC 01899, young male from Phnom Samkos WS, Pursat Prov., Cambodia (12.1690° N, 102.9721° E; 916 m a.s.l.), collected by Hun Seiha on April 26, 2012, 1933 (Figure 11).

Revised diagnosis. An Oligodon with medium body size in adults (adult male TL up to 412 mm); head small, comparatively narrow, snout not protruding; 13 dorsal scale rows at neck, midbody and before vent; ventrals 146–157, subcaudals 43–46 in males; ventrals 170, subcaudal 30 in female; single preocular, single postocular; loreal and presubocular absent; generally six supralabials, third and fourth entering orbit; six infralabials, anterior three or four contacting the first chin shield; internasals separate from prefrontals; nasal entire; single anterior and one or two posterior temporals; cloacal plate entire; hemipenis deeply bilobed, bearing two long and thin papillae, reaching the 20th subcaudal; 7–8 maxillary teeth; broad dark temporal streak; ground color on dorsum dark brown, 9–10+2–5 light crossbars edged with black on dorsum and tail; vertebral stripe absent; and ventral surfaces in life coral-red to orange with black transverse bars or quadrangular spots.

Variation. Morphological data of all presently known specimens of O. annamensis are summarized in Table 4; color pattern of all O. annamensis specimens is remarkably similar (Figures 8–11). The holotype of O. annamensis, USNM 90408, corresponds well to the original
description by *Leviton (1953)* (Figure 8), thus we do not provide its formal redescription. The type specimen is a female with several morphological characters different from the known male specimens (see Table 4): it has a relatively shorter tail, RTL 11.7% (vs. RTL 16.6–19.7% in three males), a greater number of ventrals, 170 (vs. 146–157 in males), and a lesser number of subcaudals, 30 (vs. 43–46 in males). The second already known specimen of *O. annamensis*, MNHN 8815, a subadult male, was described in detail by *Leviton (1960)* (Figure 9). Though in general morphology of MNHN 8815 corresponds well to the description by *Leviton (1960)*, we found several differences in scale counts: MNHN 8815 has 146 ventrals + 2 preventrals (vs. 159 ventrals, as stated by *Leviton, 1960*) (courtesy of P. David). The reasons behind such significant differences in scale counts remain unclear; this result further underlines the importance of double-checking specimens preserved in historical collections in taxonomic practice.

The newly reported specimen of *O. annamensis* from Vietnam, ZMMU R-14304, was collected from Chu Yang Sin NP in Dak Lak Province at the northern edge of Langbian Plateau (see Figure 1, locality 3). This specimen is an adult male and has the largest total length of all known *O. annamensis* specimens (412 mm); in scalation and coloration characters it agrees very well with the original description (*Leviton, 1953*) and the description of male specimen by *Leviton (1960)* (see Table 4). The tail of ZMMU R-14304 was dissected for examination of hemipenial structures; in full accordance with description by *Leviton (1960)* this specimen had deeply bilobed hemipenes each bearing two long and thin appendages seen in situ (papillae *sensu Smith, 1943*), reaching the 20th subcaudal. Coloration of ZMMU R-14304 in life is shown in Figure 10; among other features, the characteristic coral-red background coloration of the ventral surfaces and black quadrangular spots forming complete transverse bars appear to be diagnostic.
from *Oligodon rostralis* sp. nov. (vs. in life ventral surfaces cream-white, black spots do not form transverse bars in the new species).

We present additional morphological information (see Table 4) and photos in life (Figure 11) of the single known Cambodian specimen of *O. annamensis* CBC 01899 (see Figure 1, locality 4) described by *Neang & Hun* (2013). Based on relative tail length (16.6%) this specimen is identified as male. In accordance with earlier results of *Neang & Hun* (2013) it shows certain morphological differences from the Vietnamese specimens, namely: having 6/5 supralabials of which 3–4/2–3 touching the orbit (vs. 6/6 and 3–4/3–4 in Vietnamese specimens); infralabials I–III contacting chin shields (vs. I–IV in Vietnamese specimens); posterior temporal single (vs. two posterior temporals in Vietnamese specimens); ventral coloration in life orange red with black markings not forming transverse bars, see Figure 11, B (vs. coral-red belly getting lighter anteriorly; black markings form numerous transverse bars in Vietnamese specimen, see Figure 10, B).

Distribution. To date *O. annamensis* is reliably known from two provinces of southern Vietnam (Lam Dong and Dak Lak), where it was recorded in montane forests of Langbian Plateau at elevations around 1000 m a.s.l., and from similar elevations in montane forests of Phnom Samkos Mt. in the western part of the Cardamoms, Pursat, Cambodia. The record of *O. annamensis* from Dak Lak Province is a range extension and the first provincial record of this species.

Etymology. The specific name “*annamensis*” is a Latin adjective derived from “Annam”, the historical name of Truong Son Mountains and central Vietnam. Common name in English: “Leviton’s kukri snake” (English), “Rắn khiếm trùng bợ” (Vietnamese), and “Annamskiy oligodon” (Russian).
DISCUSSION

Our study reports on a new species of *Oligodon* from southern Vietnam, *Oligodon rostralis* sp. nov., and provides new data on distribution, taxonomy and phylogenetic position of *O. annamensis*, including the first life photographs of this rare species and a range extension and first provincial record of *O. annamensis* for Dak Lak Province of Vietnam. We also confirm the previous identification of a specimen from Cardamom Mountains in Cambodia (*Neang & Hun, 2013*) as *O. annamensis* based on genetic and morphological lines of evidence. Despite the observed minor morphological differences and geographic isolation, genetic differentiation between Cambodian and Vietnamese populations of *O. annamensis* is quite small and corresponds to common intraspecific levels of divergence in snakes (\(p=0.9\%\), see Table 3). Hence, *O. annamensis* has a disrupted range confined to Langbian Plateau in the east and to Cardamom Mountains in the west and separated by the Mekong River valley. Interestingly, a similar distribution pattern was recently reported for a number of lizard taxa inhabiting Indochina (e.g., *Grismer et al., 2019*, *Poyarkov et al., 2019a*), but was never recorded in Indochinese amphibians (*Geissler et al., 2015b*).

The genus *Oligodon* is traditionally classified in informal species groups on the basis of the hemipenial morphology, number of dorsal scale rows and other characters (*Smith, 1943; David et al., 2008, 2012; Vassilieva et al., 2013; Vassilieva, 2015*). The role of hemipenial morphology in delimiting clades within *Oligodon* was also partially confirmed based on phylogenetic analysis by *Green et al., (2010)*. Among the species with available data on hemipenial morphology, only the species groups of *O. taeniatus* and *O. cyclurus* have bilobed
hemipenes, while in other groups copulative organs are unilobed (Green et al., 2010). Oligodon *rostralis* sp. nov. shows a significant morphological similarity to *O. annamensis* – a species with unclear phylogenetic position. Leviton (1960), describing hemipenial morphology of the only known male specimen, showed that *O. annamensis* has deeply bilobed hemipenis with papillae, basing on what he proposed that this species may be a part of the “*taeniatus-cyclurus*-complex” (Leviton, 1953, 1960). Our observations on additional specimens of *O. annamensis* (see above) confirm the presence of deeply bifurcated hemipenes with papillae in this species. Oligodon *rostralis* sp. nov. also showed a forked hemipenis morphology, though lacking papillae. Our phylogenetic analysis suggests sister relationships between *Oligodon rostralis* sp. nov. and *O. annamensis* and places these two species in one clade with the members of the “*taeniatus-cyclurus*-complex”, therefore confirming earlier hypothesis of Leviton (1953, 1960). Finally, our phylogeny also suggests that *O. lacroixi* is a sister species of *O. eberhardti* and is not closely related to *O. annamensis* or *Oligodon rostralis* sp. nov. despite certain morphological similarity between these species (Orlov et al., 2010).

The description of *Oligodon rostralis* sp. nov. brings the number of *Oligodon* species known for Vietnam to 24, thus making the country a local center of *Oligodon* diversity in Southeast Asia. Our work provides further evidence on high herpetofaunal diversity and endemism in Langbian Plateau, which mostly has been discovered only recently (e.g. Chen et al., 2018; Duong et al., 2018; Geissler et al., 2015a, 2015b; Hartmann et al., 2013; Nazarov et al., 2012; Orlov et al., 2008, 2012, Pauwels et al., 2018; Poyarkov et al., 2014, 2015a, 2015b, 2017, 2018, 2019a, 2019b; Poyarkov & Vassilieva 2011; Rowley et al., 2010, 2011, 2016; Stuart et al., 2011; Vassilieva *et al.*, 2014). Despite the impressive increase in species discoveries in the recent years, many isolated montane areas of the Truong Son Mountains, such as the Langbian
Plateau, still remain insufficiently studied and likely cradle even more unknown biodiversity. The need for further biodiversity exploration in southern Indochina is urgent given the ongoing loss of natural habitats due to such intensifying threats as logging, agricultural pressure, road construction and other anthropogenic activities (De Koninck 1999, Laurance 2007, Meyfroidt & Lambin 2008, Kuznetsov & Kuznetsova 2011). Further studies on herpetofaunal biodiversity in this region are immediately required for elaboration of effective conservation measures.

CONCLUSIONS

Here, we present new molecular sequence data and an updated mtDNA genealogy for the genus *Oligodon*, one of the most species rich groups of Asian snakes. We confirm the presence of four main clades within the genus *Oligodon*, and for the first time report on the phylogenetic placement of several poorly known *Oligodon* species, including *O. annamensis* and *O. lacroixi*. We analyze all available collection material of *O. annamensis* from southern Vietnam and Cambodia and confirm the earlier assignation of Cambodian population from Cardamom Mountains to this species based on both morphological and molecular lines of evidence. Finally, we report on a new species of *Oligodon* from southern Vietnam, known from a single male specimen. *Oligodon rostralis* sp. nov. is distinct from all other congeners in a number of morphological diagnostic characters and is morphologically and phylogenetically most closely related to *O. annamensis*, from which it can be easily distinguished in scalation, coloration and mtDNA sequences. We analyze available morphological data on *Oligodon* species with 15 or 13 dorsal scale rows occurring in the mainland Asia, and discuss phylogenetic relationships among them. We provide further evidence for an unprecedented herpetofaunal diversity and endemism in Langbian Plateau, Southern Vietnam.
ACKNOWLEDGMENTS

The authors are grateful to Andrei N. Kuznetsov and Leonid P. Korzoun for support and organization of fieldwork. We want to thank Japan International Cooperation (JICA) for supporting the field work in Bidoup – Nui Ba National Park through the Sustainable Natural Resource Management Project (SNRM). Further, we thank the managers and staffs of Nippon Koei Co., Ltd. And Bidoup – Nui Ba National Park for their kind cooperation. We sincerely thank our Vietnamese colleagues Nguyen Dang Hoi, Hoang Minh Duc and Le Xuan Son for help and continued support. For permission to study specimens under her care we thank Valentina F. Orlova (ZMMU); Justin Lee (USNM) and Patrick David (MNHN) and Nikolai L. Orlov (ZISP) provided important information on several Oligodon specimens and useful criticism. H. N. Nguyen would like to give special thanks to his supervisor - Dr. Si-Min Lin (NTNU) for his enormous support with academic advices and funding. We are grateful to Patrick David (MNHN), Seiha Hun (Phnompenh), Justin L. Lee (USNM), Jenna L. Welch (USNM) and the National Museum of Natural History, Smithsonian Institution, for providing us photographs of Oligodon specimens. We are thankful to Gernot Vogel, Justin L. Lee, Patrick David and an anonymous reviewer for their useful comments which allowed us to significantly improve the earlier versions of the manuscript.

REFERENCES

Alencar LR, Quental TB, Graziotin FG, Alfaro ML, Martins M, Venzon M, Zaher H. 2016. Diversification in vipers: Phylogenetic relationships, time of divergence and shifts in speciation rates. Molecular Phylogenetics and Evolution 105: 50–62.
Chen JM, Poyarkov NA, Suwannapoom C, Lathrop A, Wu YH, Zhou WW, Yuan ZY, Jin JQ, Chen HM, Liu HQ, Nguyen TQ, Nguyen SN, Duong TV, Eto K, Nishikawa K, Matsui M, Orlov NL, Stuart BL, Brown RM, Rowley JJL, Murphy RW, Wang YY, Che J. 2018. Large-scale phylogenetic analyses provide insights into unrecognized diversity and historical biogeography of Asian leaf-litter frogs, genus *Leptolalax* (Anura: Megophryidae). *Molecular Phylogenetics and Evolution* 124: 162–171.

Dahn HA, Strickland JL, Osorio A, Colston TJ, Parkinson CL. 2018. Hidden diversity within the depauperate genera of the snake tribe Lampropeltini (Serpentes, Colubridae). *Molecular Phylogenetics and Evolution* 129: 214–225. DOI:10.1016/j.ympev.2018.08.018

Das I. 2010. *A field guide to the Reptiles of South-east Asia*. London: New Holland Publishers (UK), Ltd.

David P, Das I, Vogel G. 2008. A revision of the *Oligodon taeniatus* (Günther, 1861) group (Squamata: Colubridae), with the description of three new species from the Indochinese Region. *Zootaxa* 1965: 1–49.

David P, Nguyen TQ, Nguyen TT, Jiang K, Chen TB, Teynié A, Ziegler T. 2012. A new species of the genus *Oligodon* Fitzinger, 1826 (Squamata: Colubridae) from northern Vietnam, southern China and central Laos. *Zootaxa* 3498: 45–62.

De Koninck R. 1999. *Deforestation in Viet Nam*. Ottawa: International Research Centre.

Dowling HG. 1951. A proposed standard system for counting ventrals in snakes. *British Journal of Herpetology* 2: 97–99.

Dowling HG, Savage JM. 1960. A guide to the snake hemipenis: a survey of basic structure and systematic characteristics. *Zoologica* 45(1): 17–28.
Duong TV, Do DT, Ngo CD, Nguyen TQ, Poyarkov NA. 2018. A new species of the genus *Leptolalax* (Anura: Megophryidae) from southern Vietnam. *Zoological Research* **38**(3): 181–196.

Engelbrecht HM, Branch WR, Greenbaum E, Alexander GJ, Jackson K, Burger M, Conradie W, Kusama C, Zassi-Boulou AG, Tolley KA. 2019. Diversifying into the branches: species boundaries in African green and bush snakes, *Philothamnus* (Serpentes: Colubridae). *Molecular Phylogenetics and Evolution* **130**: 357–365.

Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. *Evolution* **39**: 783–791.

Figueroa A, McKelvy AD, Grismer LL, Bell CD, Lailvaux SP. 2016. A species-level phylogeny of extant snakes with description of a new Colubrid subfamily and genus. *PLoS ONE* **11**(9): e0161070.

Geissler G, Poyarkov NA, Grismer LL, Nguyen TQ, An HT, Neang T, Kupfer A, Ziegler T, Böhme W. 2015a. New *Ichthyophis* species from Indochina (Gymnophiona, Ichthyophiidae): 1. The unstriped forms with descriptions of three new species and the redescriptions of *I. acuminatus* Taylor, 1960, *I. youngorum* Taylor, 1960 and *I. laosensis* Taylor, 1969. *Organisms Diversity & Evolution* **15**(1): 143–174.

Geissler G, Poyarkov NA, Nguyen TQ, Ziegler T, Böhme W. 2015b. The Lower Mekong: an insurmountable barrier to amphibians in southern Indochina? *Biological Journal of Linnean Society* **114**(4): 905–914.

Gong SP, Auer M, Zhang YY, Zhung GF, Zeng JD. 2007. A new record of *Oligodon catenata* in Guangdong Province, China. *Chinese Journal of Zoology* **42**(6): 149–150.
Green MD, Orlov NL, Murphy RW. 2010. Toward a Phylogeny of the Kukri Snakes, genus *Oligodon*. *Asian Herpetological Research* 1(1):1–21. DOI:10.3724/SP.J.1245.2010.00001

Grismer LL, Wood PL, Quah ESH, Anuar S, Poyarkov NA, Thy N, Orlov NL, Thammachoti P. 2019. Integrative taxonomy of the Asian skinks *Sphenomorphus stellatus* (Boulenger, 1900) and *S. praesignus* (Boulenger, 1900), with the resurrection of *S. annamiticum* (Boettger, 1901), and the description of a new species from Cambodia. *Zootaxa* 4683(3): 381–411. DOI: 10.11646/zootaxa.4683.3.4

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: *Nucleic acids symposium series*. London, Information Retrieval Ltd c1979-c2000: 95–98.

Hartmann T, Geissler P, Poyarkov NA, Ihlow F, Galoyan EA, Rödder D, Böhme W. 2013. A new species of the genus *Calotes* Cuvier, 1817 (Squamata: Agamidae) from southern Vietnam. *Zootaxa* 3599(3): 246–260.

Huelsenbeck JP, Hillis DM. 1993. Success of phylogenetic methods in the four-taxon case. *Systematic Biology* 42: 247–264.

Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Research* 30: 3059–3066.

Kozlov A, Darriba D, Flouri T, Morel B, Stamatakis A. 2018. RAxML-NG: A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. *Bio Rxiv* 447110.

Kuznetsov AN, Kuznetsova SP. 2011. Chương 2. Thực vật Vườn Quốc gia Bidoup-Núi Bà [Chapter 2. Vegetation of Bidoup-Nui Ba National Park]. In: Nguyen DH, Kuznetsov AN, eds. Da danh sinh học và đặc trưng sinh thái Vườn Quốc gia Bidoup-Núi Bà. *Publishing house for Science and Technology*, 37–105. [In Vietnamese].
Laurance WF. 2007. Forest destruction in tropical Asia. *Current Science* 93(11): 1544–1550.

Leviton AE. 1953. A new snake of the genus *Oligodon* from Annam. *Journal of Washington Academy of Sciences* 43: 422–424.

Leviton AE. 1960. Notes on the second specimen of the snake *Oligodon annamensis* Leviton. *The Wasmann Journal of Biology* 18: 305–307.

Meyfroidt P, Lambin EF. 2008. Forest transition in Vietnam and its environmental impacts. *Global Change Biology* 14(6): 1319–1336. DOI:10.1111/j.1365-2486.2008.01575.x

Nazarov R, Poyarkov NA, Orlov NL, Phung TM, Nguyen TT, Hoang DM, Ziegler T. 2012. Two new cryptic species of the *Cyrtodactylus irregularis* complex (Squamata: Gekkonidae) from southern Vietnam. *Zootaxa* 3302: 1–24.

Neang T, Grismer LL, Daltry JC. 2012. A new species of kukri snake (Colubridae: *Oligodon Fitzinger 1826*) from the Phnom Samkos Wildlife Sanctuary Cardamom Mountains southwest Cambodia. *Zootaxa* 3388: 41–55.

Neang T, Hun S. 2013. First record of *Oligodon annamensis* Leviton, 1953 (Squamata: Colubridae) from the Cardamom Mountains of southwest Cambodia. *Herpetological Notes* 6: 271–273.

Nguyen SN, Nguyen LT, Nguyen VDH, Phan HT, Jiang K, Murphy RW. 2017. A new species of the genus *Oligodon* Fitzinger 1826 (Squamata: Colubridae) from Cu Lao Cham Islands central Vietnam. *Zootaxa* 4286(3): 333–346.

Nguyen SN, Nguyen VDH, Le SH, Murphy RW. 2016. A new species of kukri snake (Squamata: Colubridae: *Oligodon Fitzinger 1826*) from Con Dao Islands southern Vietnam. *Zootaxa* 4139(2): 261–273.
Orlov NL, Nguyen SN, Ho CT. 2008. Description of a new species and new records of *Rhacophorus* genus (Amphibia: Anura: Rhacophoridae) with the review of amphibians and reptiles diversity of Chu Yang Sin National Park (Dac Lac Province, Vietnam). *Russian Journal of Herpetology* 15: 67–84.

Orlov NL, Poyarkov Jr. NA, Vassilieva AB, Ananjeva NB, Nguyen TT, Sang NV, Geissler P. 2012. Taxonomic notes on rhacophorid frogs (Rhacophorinae: Rhacophoridae: Anura) of southern part of Annamite Mountains (Truong Son, Vietnam), with description of three new species. *Russian Journal of Herpetology* 19: 23–64.

Orlov NL, Ryabov SA, Nguyen TT, Nguyen TQ. 2010. Rediscovery and redescription of two rare snake species: *Oligodon lacroixi* Angel et Bourret, 1933 and *Maculophis bellus chapaensis* (Bourret 1934) [Squamata: Ophidia: Colubridae] from Fansipan Mountains northern Vietnam. *Russian Journal of Herpetology* 17(4): 310–322.

Pauwels OSG, Nazarov RA, Bobrov VV, Poyarkov NA. 2018. Taxonomic status of two populations of Bent-toed Geckos of the *Cyrtodactylus irregularis* complex (Squamata: Gekkonidae) with description of a new species from Nui Chua National Park, southern Vietnam. *Zootaxa* 4403(2): 307–335.

Pauwels OSG, Wallach V, David P, Chanhome L. 2002. A new species of *Oligodon* Fitzinger 1826 (Serpentes Colubridae) from Southern Peninsular Thailand. *The Natural History Journal of Chulalongkorn University* 2(2): 7–18.

Pellegrin J. 1910. Description d'une variété nouvelle de l'*Oligodon herberti* Boulenger, Provenant du Tonkin. *Bulletin de la Société zoologique de France* 35: 30–32. [In French].

Pham AV, Nguyen SLH, Nguyen TQ. 2014. New records of snakes (Squamata: Serpentes) from Son La Province Vietnam. *Herpetology Notes* 7: 771–777.
Posada D, Crandall KA. 1998. Modeltest: testing the model of DNA substitution. *Bioinformatics* 14: 817–818.

Poyarkov NA, Vasilieva AB. 2011. Chuong 5. Bò sát- Lưỡng cư Vườn Quốc gia Bidoup-Núi Bà [Chapter 5. Reptiles and Amphibians of Bidoup-Nui Ba National Park]. In: Nguyen DH, Kuznetsov AN, eds. *Đa dạng sinh học và đặc trưng sinh thái Vườn Quốc gia Bidoup-Núi Bà*. Publishing house for Science and Technology, 169–220. [In Vietnamese].

Poyarkov NA, Duong TV, Orlov NL, Gogoleva SS, Vasilieva AB, Nguyen LT, Nguyen VHD, Nguyen SN, Che J, Mahony S. 2017. Molecular, morphological and acoustic assessment of the genus *Ophryophryne* (Anura, Megophryidae) from Langbian Plateau, southern Vietnam, with description of a new species. *Zookeys* 672: 49–120. DOI:10.3897/zookeys.672.10624

Poyarkov NA, Kropachev II, Gogoleva SS, Orlov NL. 2018. A new species of the genus *Theloderma* Tschudi, 1838 (Amphibia, Anura, Rhacophoridae) from Tay Nguyen Plateau, central Vietnam. *Zoological Research* 38(3): 156–180.

Poyarkov NA, Orlov NL, Moiseeva AV, Pawangkhanant P, Ruangsuwan T, Vasilieva AB, Galoyan EA, Nguyen TT, Gogoleva SS. 2015b. Sorting out moss frogs: mtDNA data on taxonomic diversity and phylogenetic relationships of the Indochinese species of the genus *Theloderma* (Anura, Rhacophoridae). *Russian Journal of Herpetology* 22(4): 241–280.

Poyarkov NA, Rowley JJL, Gogoleva SS, Vasilieva AB, Galoyan EA, Orlov NL. 2015a. A new species of *Leptolalax* (Anura: Megophryidae) from the western Langbian Plateau, southern Vietnam. *Zootaxa* 3931(2): 221–252.

Poyarkov NA, Vasilieva AB, Orlov NL, Galoyan EA, Tran TAD, Le DTT, Kretova VD, Geissler P. 2014. Taxonomy and Distribution of Narrow-Mouth Frogs of the Genus
Microhyla Tschudi, 1838 (Anura: Microhylidae) from Vietnam with Descriptions of five new Species. Russian Journal of Herpetology 21: 60.

Poyarkov NA, Geissler P, Gorin VA, Dunayev EA, Hartmann T, Suwannapoom C. 2019a. Counting stripes: revision of the Lipinia vittigera complex (Reptilia, Squamata, Scincidae) with description of two new species from Indochina. Zoological Research 40(5): 358–393. DOI:10.24272/j.issn.2095-8137.2019.052.

Poyarkov NA, Nguyen TV, Orlov NL, Vogel G. 2019b. A new species of the genus Calamaria Boie, 1827 from the highlands of the Langbian Plateau, Southern Vietnam (Squamata: Colubridae). Russian Journal of Herpetology in press.

Pyron RA, Kandambi HK, Hendry CR, Pushpamal V, Burbrink FT, Somaweera R. 2013. Genus-level phylogeny of snakes reveals the origins of species richness in Sri Lanka. Molecular Phylogenetics and Evolution 66(3): 969–978.

Rambaut A, Suchard M, Xie W, Drummond A. 2014. Tracer v. 1.6. Institute of Evolutionary Biology, University of Edinburgh. Available at: http://tree.bio.ed.ac.uk/software/tracer/

Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

Rowley JJL, Le TTD, Hoang DH, Dau QV, Cao TT. 2011. Two new species of Theloderma (Anura: Rhacophoridae) from Vietnam. Zootaxa 3098: 1–20.

Rowley JJL, Le TTD, Tran TAD, Stuart BL, Hoang DH. 2010. A new tree frog of the genus Rhacophorus (Anura: Rhacophoridae) from southern Vietnam. Zootaxa 2727: 45–55.

Rowley JJL, Tran DTA, Le DTT, Dau VQ, Peloso PLV, Nguyen TQ, Hoang HD, Nguyen TT, Ziegler T. 2016. Five new, microendemic Asian Leaf-litter Frogs (Leptolalax) from the
southern Annamite mountains, Vietnam. *Zootaxa* **4085**: 63–102. DOI:10.11646/zootaxa.4085.1.3

Smith MA. 1943. *The Fauna of British India, Ceylon and Burma including the whole of the Indo-chinese Sub-Region. Reptilia and Amphibia. Vol. III — Serpentes.* London: Taylor and Francis.

Stuart BL, Rowley JJ, Tran DTA, Le DTT, Hoang HD. 2011. The *Leptobrachium* (Anura: Megophryidae) of the Langbian Plateau, southern Vietnam, with description of a new species. *Zootaxa* **40**: 25–40.

Tamar K, Smid J, Gocmen B, Meiri S, Carranza S. 2016. An integrative systematic revision and biogeography of *Rhynchocalamus* snakes (Reptilia, Colubridae) with a description of a new species from Israel. *PeerJ* **4**: e2769. DOI:10.7717/peerj.2769

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. *Molecular Biology and Evolution* **30**: 2725–2729.

Taylor EH. 1965. The serpents of Thailand and adjacent waters. *University of Kansas Science Bulletin* **45(9)**: 609–1096.

Tillack F, Günther R. 2009. Revision of the species of *Oligodon* from Sumatra and adjacent islands, with comments on the taxonomic status of *Oligodon subcarinatus* (Günther, 1872) and *Oligodon annulifer* (Boulenger, 1893) from Borneo (Reptilia, Squamata, Colubridae). *Russian Journal of Herpetology* **16 (4)**: 265–294.

Uetz P, Freed P, Hošek J. 2019. The Reptile Database. *Available at http://reptile-database.reptarium.cz/* (accessed: 25 August 2019)
Vassilieva AB, Galoyan EA, Gogoleva SS, Poyarkov NA. 2014. Two new species of Kalophrynus Tschudi, 1838 (Anura: Microhylidae) from the Annamite mountains in southern Vietnam. *Zootaxa* **3796**(3): 401–434.

Vassilieva AB, Geissler P, Galoyan EA, Poyarkov NA Jr, van Devender RW, Böhme W. 2013. A new species of Kukri Snake (*Oligodon* Fitzinger 1826: Squamata: Colubridae) from the Cat Tien National Park southern Vietnam. *Zootaxa* **3702**(3): 233–246.

Vassilieva AB. 2015. A new species of the genus *Oligodon* Fitzinger 1826 (Squamata: Colubridae) from coastal southern Vietnam. *Zootaxa* **4058**(2): 211–226.

Wagner FW. 1975. A revision of the Asian colubrid snakes *Oligodon cinereus* (Günther), *Oligodon joynsoni* (Smith), and *Oligodon cyclurus* (Cantor). Unpublished MS thesis, Baton Rouge, Louisiana State University.

Wallach V, Williams KL, Boundy J. 2014. *Snakes of the world. A catalogue of living and extinct species*. CRC Press.
Table 1 (on next page)

Primers used in this study.
Gene	Primer name	Reference	Sequence
12S rRNA	12S2LM	Green et al., 2010	5'-ACACACCCGCCGTCACCCCT-3'
	16S5H	Green et al., 2010	5'-CTACCTTTGCAACGTTAGGATACCCGGG-3'
16S rRNA	16S1LM	Green et al., 2010	5'-CCGACTGTGACCAAAAAACAT-3'
	16SH1	Green et al., 2010	5'-CTCCGGTGCTGAACATCAGCTAGG-3'
cyt b	H14910	Dahn et al., 2018	5'-GACCTGTGATMTGAAAAACAYCGTT-3'
	THRSN2	Dahn et al., 2018	5'-CTTTGTTTACAAGAATGCTTTA-3'
Table 2 (on next page)

Sequences and voucher specimens of *Oligodon* and outgroup taxa used in this study.
No.	Sample ID	Genbank AN	Species	Country	Locality	Reference
1	SIEZC 20201	MN395604; MN396765	*Oligodon rostralis* sp. nov.	Vietnam	Lam Dong Prov., Bidoup - Nui Ba NP	*this work*
2	ZMMU R-14304	MN395601; MN396762	*Oligodon annamensis*	Vietnam	Dak Lak Prov., Chu Yang Sin NP	*this work*
3	CBC 01899	MN395602; MN396763	*Oligodon annamensis*	Cambodia	Pursat Prov., Veal Veng, Samkos WS	*this work*
4	ZMMU R-13364	MN395603; MN396764	*Oligodon lacroixi*	Vietnam	Phu Tho Prov., Xuan Son NP	*this work*
5	UMMZ201913	HM591519	*Oligodon octolineatus*	Brunei	Tutong Dist., 3 km E of Tutong	Green et al. (2010)
6	ROM 35626	HM591526	*Oligodon chinensis*	Vietnam	Cao Bang Prov., Quang Thanh	Green et al. (2010)
7	ROM 30970	HM591528	*Oligodon chinensis*	Vietnam	Nghe An Prov., 24 km W of Con Cuong	Green et al. (2010)
8	ROM 34540	HM591527	*Oligodon chinensis*	Vietnam	Hai Duong Prov., Chi Linh	Green et al. (2010)
9	ROM 31032	HM591524	*Oligodon chinensis*	Vietnam	Vinh Phuc Prov., Tam Dao NP	Green et al. (2010)
10	ROM30824	HM591525	*Oligodon chinensis*	Vietnam	Tuyen Quang Prov., Pac Ban	Green et al. (2010)
11	ROM 30823	HM591529	*Oligodon formosanus*	Vietnam	Tuyen Quang Prov., Pac Ban	Green et al. (2010)
12	ROM30826	HM591530	*Oligodon formosanus*	Vietnam	Vinh Phuc Prov., Tam Dao NP	Green et al. (2010)
13	ROM30939	HM591531	*Oligodon formosanus*	Vietnam	Cao Bang Prov., Ba Be	Green et al. (2010)
14	ROM35629	HM591533	*Oligodon formosanus*	Vietnam	Cao Bang Prov., Quang Thanh	Green et al. (2010)
15	ROM35806	HM591532	*Oligodon formosanus*	Vietnam	Hai Duong Prov., Chi Linh	Green et al. (2010)
16	ROM32261	HM591534	*Oligodon ocellatus*	Vietnam	Dak Lak Prov., Yok Don NP	Green et al. (2010)
17	ROM32260	HM591521	*Oligodon taeniatus*	Vietnam	Dak Lak Prov., Yok Don NP	Green et al. (2010)
18	ROM37091	HM591522	*Oligodon taeniatus*	Vietnam	Dong Nai Prov., Cat Tien NP	Green et al. (2010)
19	ROM32464	HM591523	*Oligodon barroni*	Vietnam	Gai Lai Prov., Krong Pa	Green et al. (2010)
20	USNM520625	HM591520	*Oligodon cf. taeniatus*	Myanmar	Chatthin, 2 km WNW Chatthin WS	Green et al. (2010)
21	CAS204963	HM591535	*Oligodon cyclurus*	Myanmar	Ayeyarwady Div., Mwe Hauk	Green et al. (2010)
22	CAS215636	HM591536	*Oligodon cyclurus*	Myanmar	Sagaing Div., Alaungdaw Kathapa NP	Green et al. (2010)
23	ROM37092	HM591504	*Oligodon cinereus*	Vietnam	Dong Nai Prov., Cat Tien NP	Green et al. (2010)
24	CAS213379	HM591506	*Oligodon cf. cinereus*	Myanmar	Yangon Div., Hlaw Ga NP	Green et al. (2010)
25	CAS205028	HM591507	*Oligodon cf. cinereus*	Myanmar	Rakhine St., Rakhine Yoma Mts.	Green et al. (2010)
26	ROM32462	HM591501	*Oligodon cinereus*	Vietnam	Hai Duong Prov., Chi Linh	Green et al. (2010)
27	ROM29552	HM591502	*Oligodon cinereus*	Vietnam	Vinh Phuc Prov., Tam Dao NP	Green et al. (2010)

(Continues on next page).
No.	Sample ID	Genbank AN	Species	Country	Locality	Reference
28	ROM30969	HM591503	Oligodon cinereus	Vietnam	Nghe An Prov., 24km W of Con Cuong	Green et al. (2010)
29	CAS215261	HM591508	Oligodon cf. cinereus	Myanmar	Shan St., Kalaw	Green et al. (2010)
30	CAS204855	HM591509	Oligodon splendidus	Myanmar	Mandalay Div., Kyauk Se	Green et al. (2010)
31	USNM520626	HM591510	Oligodon splendidus	Myanmar	Chattrhin, 2 km WNW Chattrhin WS	Green et al. (2010)
32	CAS210693	HM591512	Oligodon torquatus	Myanmar	Mandalay Div., Min Gone Taung WS	Green et al. (2010)
33	CAS215976	HM591513	Oligodon torquatus	Myanmar	Mandalay Div., Min Gone Taung WS	Green et al. (2010)
34	CAS213822	HM591514	Oligodon planiceps	Myanmar	Magwe Div., Shwe Set Taw WS	Green et al. (2010)
35	CAS210710	HM591515	Oligodon theobaldi	Myanmar	Mandalay Div., Naung U	Green et al. (2010)
36	CAS213896	HM591516	Oligodon theobaldi	Myanmar	Magwe Div., Shwe Set Taw WS	Green et al. (2010)
37	CAS213271	HM591517	Oligodon cruentatus	Myanmar	Yangon Div., Hlaw Ga NP	Green et al. (2010)
38	ROM27049	HM591518	Oligodon eberhardti	Myanmar	Mandalay Div., Min Gone Taung WS	Green et al. (2010)
39	TNHC59846	HM591511	Oligodon maculatus	Myanmar	Mandalay Div., Min Gone Taung WS	Green et al. (2010)
40	RS-OC	KC347366	Oligodon calamarius	Sri Lanka	Kandy Dist.	Pyron et al. (2013)
		KC347329;				
41	RAP 504	KC347367	Oligodon sublineatus	Sri Lanka	Kandy Dist.	Pyron et al. (2013)
		KC347327;				
42	RAP 483	KC347365	Oligodon arnensis	Sri Lanka	Hambantota Dist.	Pyron et al. (2013)
		KC347330;				
43	RS 136	KC347368	Oligodon taeniolatus	Sri Lanka	Polonnaruwa Dist.	Pyron et al. (2013)

Outgroups:

No.	Sample ID	Genbank AN	Species	Country	—	Reference
44	ROM23440	KX694641	Eirenis modestus	—	—	Alencar et al. (2016)
		KX909261;				
45	SPM002589	HQ267796	Lytorhynchus diadema	—	—	Tamar et al. (2016)
46	ELI509	MH756319	Thrasops jacksonii	—	—	Engelbrecht et al. (2019)
47	KU290488	KX660250	Philothamnus irregularis	—	—	Figueroa et al. (2016)
48	—	KJ719252	Stichophanes ningshaanensis	—	—	—
	—	Oreoctophiops				
49	—	GQ181130	porphyraceus	—	—	—
50	—	KF148620	Ptyas major	—	—	—
51	—	KF148622	Lycodon rufonozatus	—	—	—
52	—	KP684155	Hebius vibakari	—	—	—
Table 3 (on next page)

Genetic differentiation of *Oligodon*.

Uncorrected p-distance (percentage) between the sequences of 16S rRNA mtDNA gene (below the diagonal), estimate errors (above the diagonal) and intraspecific genetic p-distance (on the diagonal) of *Oligodon* species included in phylogenetic analyses.
No.	Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1	*Oligodon rostralis* sp. nov.	—	0.8	1.0	0.8	1.0	0.9	0.9	1.1	1.0	1.2	1.2	1.2	1.1	1.1	1.1	1.3	1.1	1.2	1.2	1.2	1.1	
2	*O. annamensis*	3.3	0.9	1.1	0.8	1.0	0.9	1.0	1.0	1.0	1.2	1.0	1.0	1.0	0.9	1.2	1.0	1.0	1.1	1.0	1.0	1.0	
3	*O. octolineatus*	4.4	4.9	—	1.0	1.1	1.0	1.1	1.3	1.2	1.3	1.4	1.4	1.3	1.2	1.3	1.3	1.4	1.3	1.3	1.5	1.3	
4	*O. taeniatus* complex	3.9	3.7	5.5	0.0	0.7	0.8	0.8	0.6	0.9	1.0	1.1	1.1	0.9	0.9	0.9	1.1	1.1	1.0	1.1	1.1	1.1	
5	*O. barronii*	5.0	5.0	6.1	2.4	—	0.9	0.9	0.9	1.1	1.2	1.2	1.2	1.1	1.1	1.2	1.2	1.3	1.2	1.1	1.2	1.3	
6	*O. formosanus*	3.8	4.1	5.8	3.2	4.3	0.5	0.5	1.0	0.9	1.0	1.1	1.1	0.9	1.0	1.0	1.0	1.1	0.9	1.1	1.1	1.2	
7	*O. chinensis*	4.5	5.0	6.5	3.2	4.3	1.8	0.7	0.9	0.9	1.1	1.1	1.1	1.1	1.0	1.0	1.1	1.1	1.0	1.1	1.2	1.3	
8	*O. cyclurus* complex	5.8	5.1	7.1	2.9	4.7	5.4	5.5	2.8	0.9	1.0	1.1	1.1	1.0	1.0	1.0	1.1	1.1	1.1	1.1	1.2	1.2	
9	*O. ocellatus*	4.8	4.8	5.7	3.9	5.0	3.9	4.1	3.7	—	1.1	1.2	1.2	1.1	1.1	1.2	1.2	1.3	1.2	1.3	1.3	1.1	
10	*O. cinereus* complex	6.8	6.1	7.7	6.0	7.1	6.2	6.2	6.1	6.3	2.3	0.8	0.8	0.7	0.7	0.9	0.8	0.9	0.9	0.9	1.0	1.0	
11	*O. splendidus*	7.2	7.0	8.1	6.1	7.2	6.7	6.2	6.9	7.0	4.0	0.4	0.8	0.8	0.8	0.9	0.8	1.1	1.0	1.0	1.0	1.1	
12	*O. maculatus*	7.6	6.5	8.5	6.3	7.6	6.0	6.0	7.1	7.0	4.1	3.5	—	0.6	0.7	0.7	0.8	1.0	1.0	0.9	0.9	0.9	1.0
13	*O. theobaldi*	5.2	4.7	6.6	3.9	5.2	4.5	5.0	5.1	5.4	3.7	3.7	2.8	0.0	0.4	0.6	0.7	0.9	0.8	0.9	1.0	0.9	
14	*O. cruentatus*	5.9	5.4	7.2	4.6	5.9	5.1	5.6	5.6	6.1	4.3	4.4	3.5	0.7	—	0.7	0.8	1.0	0.8	1.0	0.9	1.0	
15	*O. torquatus*	6.5	5.5	8.2	5.1	6.2	5.7	6.2	6.2	6.8	4.9	5.0	4.1	2.3	2.9	1.3	0.7	1.0	0.9	0.9	1.0	0.9	
16	*O. planiceps*	6.3	6.2	7.9	5.7	6.8	5.2	5.9	6.7	6.3	5.0	5.2	4.6	2.4	3.1	3.2	—	1.1	1.0	1.0	1.0	1.2	
17	*O. eberhardtii*	6.6	5.9	7.5	6.4	7.7	6.3	6.1	6.6	6.6	5.4	6.6	5.3	4.4	5.1	5.4	6.4	—	0.7	1.1	1.0	1.2	1.0
18	*O. lacroixi*	5.2	4.8	7.0	5.0	6.3	4.4	5.2	5.9	5.9	4.9	6.3	5.4	3.3	3.9	4.7	5.2	2.2	—	0.9	1.0	1.0	0.9
19	*O. calamarius*	6.1	6.0	7.2	5.9	7.0	5.5	6.4	6.7	7.2	5.7	5.7	5.2	5.0	5.7	6.4	5.4	6.6	5.4	—	0.8	0.9	1.0
20	*O. sublineatus*	6.6	5.8	7.2	6.1	7.2	5.9	6.4	6.8	7.0	5.3	5.0	4.1	4.8	5.5	5.8	5.7	5.7	5.5	3.5	—	0.9	1.0
21	*O. taeniolatus*	6.5	6.7	7.9	6.1	7.4	6.1	6.6	7.1	7.4	5.4	5.2	4.4	3.5	4.1	5.7	5.0	6.2	5.4	3.7	3.3	—	1.1
22	*O. arnensis*	5.7	5.1	7.7	5.7	7.0	4.7	5.6	7.0	6.6	6.4	6.7	5.5	4.6	5.2	5.6	6.3	6.2	4.8	5.9	5.7	5.7	—
Table 4 (on next page)

Morphological data on *Oligodon rostralis* sp. nov. and all known specimens of *O. annamensis*.

Measurements in mm; for abbreviations see Materials and methods section. An asterisk (*) denotes the holotype of a species.
A. Measurements and scale counts.

Museum ID	Sex	SVL	TaL	TL	RTL	HL	HW	HW/HL	SnL	EyeL	FrL	FrW	IOD	IND	DEN	ASR	MSR	PSR	RED 1
SIEZC 20201*	m	468	114	582	19.6%	14.5	10.6	73.2%	6.3	2.0	5.4	4.5	6.4	3.6	6	15	15	13	113
Oligodon rostralis sp. nov.																			

Museum ID	Sex	SVL	TaL	TL	RTL	HL	HW	HW/HL	SnL	EyeL	FrL	FrW	IOD	IND	DEN	ASR	MSR	PSR	RED 1
ZMMU R-14304	m	331	81	412	19.7%	13.2	7.3	55.1%	4.2	1.8	4.0	3.4	4.8	3.6	8	13	13	13	-
CBC 01899	m	152	35	187	18.7%	9.7	5.2	53.6%	3.0	1.7	3.1	2.4	3.6	2.4	7	13	13	13	-
MNHN 8815	m	111	22	133	16.6%	8.0	4.5	56.3%	2.5	1.4	3.0	2.5	3.5	2.3	7-8	13	13	13	-
USNM 90408*	f	220	29	249	11.7%	9.4	5.8	61.7%	3.0	1.5	3.3	2.6	4.1	2.3	8	13	13	13	-

B. Scale counts.

Museum ID	VS	SC	Total Sc.	AP	LOR	SL	SL-eye	IL	NAS	IL-contact	IL-CS	PrO	PrsOc	PtO	Ate	Pte
SIEZC 20201*	167	47	214	1	0	6	3-4	6	D	1	1-4	1	0	1	1	2
Oligodon rostralis sp. nov.																

Museum ID	VS	SC	Total Sc.	AP	LOR	SL	SL-eye	IL	NAS	IL-contact	IL-CS	PrO	PrsOc	PtO	Ate	Pte
ZMMU R-14304	157	43	200	1	0	6	3-4	6	E	1	1-4	1	0	1	1	2
CBC 01899	148	46	194	1	0	6	3-4 / 2-3	6	E	1	1-3	1	0	1	1	1
MNHN 8815	146+2	46	192	1	0	6	3-4	6	E	1	1-4	1	0	1	1	2
USNM 90408*	170	30	200	1	0	6	3-4	6	E	1	1-4	1	0	1	1	2

(Continues on next page).
C. Hemipenial morphology and coloration.

Museum ID	Hemipenis status	Hemipenis shape	Hemipenis ornamentation	Hemipenis length	Body color	Color pattern	Body blotches	Tail blotches	Stripes	Venter	Reference
Oligodon rostralis sp. nov.	right everted	1/3 forked, no papillae	flounced, no spines	reaching 8th subcaudal	dorsum and tail greyish-brown	middorsal light stripe and dark blotches	18 large dark blotches	4 dark blotches	light-orange middorsal stripe with indistinct borders	venter and tail underside pale-cream, with intermittent black quadrangular spots; tail in life light orange	this paper
SIEZC 20201*	-	-	-	-	-	-	-	-	-	-	-
Oligodon annamensis	left dissected	deeply forked with 2 papillae	transverse ridges, no spines	reaching 20th subcaudal	dorsum and tail dark brown	light cross bars	10 faint white cross bars edged with black	5 beige cross bars	no	coral-red with numerous black bars and quadrangular blotches orange with sparse black subrectangular blotches white with dark quadrangular spots and bars	Neang & Hun, 2013; our data
ZMMU R-14304	-	-	-	-	-	-	-	-	-	-	-
CBC 01899	-	-	-	-	-	-	-	-	-	-	-
MNHN 8815	dissected	deeply forked with 2 papillae	transverse ridges, no spines	reaching 17th subcaudal	dorsum and tail light brown	light cross bars	10 white cross bars 2–3 scales wide	2 white cross bars on tail	no	white with dark quadrangular spots and bars	Leviton, 1960; our data
USNM 90408*	-	-	-	-	-	-	-	-	-	-	-
											Leviton, 1953; our data
Table 5 (on next page)											

Comparison of morphological characters of *Oligodon rostralis* sp. nov. with Indochinese species of *Oligodon* having 13–15 dorsal scale rows (DSR).

The characters and data for other species taken from *Das* (2010); *Gong et al.* (2007); *Leviton* (1953, 1960); *Neang et al.* (2012); *Neang & Hun* (2013); *Orlov et al.* (2010); *Pauwels et al.* (2002); *Pellegrin* (1910); *Pham et al.* (2014); *Smith* (1943); *Taylor* (1965). Abbreviations: DSR - dorsal scale rows; SL - number of supralabials; SL-E - supralabials touching the eye; IL - number of infralabials; NAS - nasal (D - divided, E - entire, PD - partially divided); InN/PF - internasal - prefrontal relationships (S - separate, F - fused); PrO - number of preoculars; PtO - number of postoculars; AP - cloacal plate (E - entire, D - divided); LOR - loreal (0 - absent, 1 - present, * - vestigial); Ate - number of anterior temporals; Pte - number of posterior temporals; VS - number of ventrals; SC - number of subcaudals; DEN - number of maxillary teeth; RTL - relative tail length (in %).
Species	DSR	SL	SL-E	IL	NAS	InN/PF	PrO	PrO	AP	LOR	Ate	Pte	VS	SC	DEN	RTL	
Oligodon rostralis sp. nov.	15-15-13	6	3-4	6	D	S	1	1	D	0	1	2	167	47	6	19.6	
Oligodon annamensis	13-13-13	6	3-4	6	E	S	1	1	D	0	1	2	148-170	30-46	7-8	11.6-19.7	
Oligodon catenatus	13-13-13	6	3-4	6	E	F	1	2	D	0	1	2	179-212	31-43	?	12.6-13.3	
Oligodon eberhardti	13-13-13	6	2-3	6	E	F	1	1	D	1	1	2	165-187	31-40	?	15.1	
Oligodon lacroixi	17-15-15	5	2-3	6	E	F	1	2	D	0	1	2	162-178	25-34	8-12	10.5-11.5	
Oligodon inornatus	15-15-15	8	4-5	8	D	S	1	2	E	1	1	2	169-174	31-43	10-11	15.5	
Oligodon kampucheaensis	15-15-15	8	4-5	8	D	S	1	2	E	1	1	2	165	39	11	15.1	
Oligodon jintakunei	15-15-15	7	3-4	7	PD	F	1	1	D	1*	1	1	189	46	6	17.5	
Oligodon lungshenensis	15-15-15	6	3-4	6	E	F	1	2	D	0	1	2	163-179	31-38	8	20.0	
Oligodon ornatus	15-15-15	6	3-4	7	E or D	S	1-2	1-2	D	0	1	2	156-182	27-44	6-8	15.6	
Oligodon hamptoni	15-15-15	5	2-3	5	E	F	1	2	D	0 or 1*	1	2	160-175	30-32	7-8	12.7	
Oligodon mcdougalli	13-13-13	7	3-4	7	?	S	?	?	?	D	0	1	2	200	39	?	?
Oligodon planiceps	13-13-13	5	3	6	E	S	1	2	D	1	1	1	132-145	22-27	10	9.6	
Oligodon torquatus	15-15-15	7	3-4	7	E	S	1	2	D	1	1	2	144-169	25-34	15-16	11.1	
Oligodon dorsalis	15-15-13	7	3-4	7	D	S	1	1	D	1	1	2	162-188	27-51	6-10	16.1-19.3	
Oligodon melaneus	15-15-15	7	3-4/4-5	7	PD	S	1	2	D	1*	1	2	152-160	39-40	7	15.0-16.6	
Oligodon brevicauda	15-15-15	7	3-4	?	D	F	2	2	?	0	1	2	158-173	25-29	7-8	9.6-11.0	
Oligodon erythrorhachis	15-15-15	7	3-4	8	E	S	1	2	D	0	1	2	154	46	7-8	16.5	

(Continues on next page).
Table

Species	Hemipenis	Dorsal pattern	Ventral pattern	Distribution	Distribution in Vietnam
Oligodon rostralis sp. nov.	1/3 forked, flounced, no spines	14+4 large dark blotches, light middorsal stripe	cream with black quadrangular spots	S Vietnam	Lam Dong
Oligodon annamensis	deeply forked, transverse ridges and papillae	10 light narrow crossbars	red with dark bars or quadrangular spots	S Vietnam, Cambodia	Lam Dong, Dak Lak
Oligodon catenatus	not forked, spinose throughout	4 longitudinal stripes	red with black quadrangular spots	S China, E India, N Myanmar, N Vietnam, Cambodia (?)	Lao Cai, Vinh Phuc, Son La
Oligodon eberharti	?	longitudinal stripes	red with dark bars or quadrangular spots	S China, N Myanmar, N Laos, N Vietnam, Cambodia (?)	Lai Chau, Lao Cai, Tuyen Quang, Cao Bang, Bac Kan, Vinh Phuc, Son La, Ha Tay
Oligodon lacroixi	not forked	4 longitudinal stripes	dark bars or spots	S China; Vietnam	Lao Cai, Phu Tho
Oligodon inornatus	not forked	uniform pale brown	uniform, no dark bars or spots	Cambodia, Thailand, Vietnam	(?)
Oligodon kampucheaeensis	deeply bifurcated	17+3 light narrow crossbars	dark quadrangular spots in posterior half	Cambodia	
Oligodon jintakanei	?	11+3 light narrow crossbars	uniform, no dark bars or spots	S Thailand	
Oligodon lungshenensis	?	4 dark longitudinal stripes, 9–12 brown crossbars	orange-red with black quadrangular spots	S China	
Oligodon ornatus	not forked, spinose throughout	7–9+2–3 dark crossbars	orange-red with black quadrangular spots	Taiwan	
Oligodon hamptoni	not forked, spinose flounces	light vertebral and two dorsolateral stripes	red with dark bars or quadrangular spots	N Myanmar	
Oligodon mcdougalli	?	black with rusty middorsal stripe	uniform black with light motting	Myanmar	
Oligodon planiceps	not forked, spinose and papillae	pale brown with dark reticulations	uniform yellow	S Myanmar	
Oligodon torquatus	not forked, no spines, with folds	4 longitudinal stripes	white, black spots posteriorly	C Myanmar	
Oligodon dorsalis	1/3 forked, flounced, basal spines	dark brown with light middorsal stripe	uniform orange or white with black quadrangular spots	NE India, N Myanmar	
Oligodon melaneus	not forked, spinose throughout	blackish-brown with speckles	uniform blue-grey	NE India	
Oligodon brevicauda	?	brown with light vertebral stripe	whitish with black quadrangular spots	S India	
Oligodon erythrorhachis	?	red vertebral stripe with many black crossbars	whitish with black quadrangular spots	NE India	
Figure 1

Known distribution of *Oligodon annamensis* Leviton, 1953 (red) and *Oligodon rostralis* sp. nov. (yellow) in Indochina.

Star and dot in the center of icon denotes type locality. Localities: (1) Bidoup-Nui Ba NP, Lam Dong Province, Vietnam (type locality of *Oligodon rostralis* sp. nov.); (2) Bao Loc (formerly “Blao, Haut Donai”), Lam Dong Province, Vietnam (type locality of *O. annamensis*); (3) Chu Yang Sin NP, Dak Lak Province, Vietnam; (4) Phnom Samkos WS, Pursat Province, Cambodia.
Manuscript to be reviewed
Figure 2

Bayesian inference tree of *Oligodon* derived from the analysis of 3131 bp of 12S rRNA, 16S rRNA and cyt b mitochondrial DNA gene sequences.

For voucher specimen information and GenBank accession numbers see Table 1. Numbers at tree nodes correspond to BI PP/ML BS support values, respectively; n-dash denotes no support. Outgroup taxa not shown. Colors of clades and locality numbers correspond to those in Figure 1.
Figure 3

Holotype of *Oligodon rostralis* sp. nov. in preservative (SIEZC 20201, male) in dorsal (A) and in ventral (B) views.

Scale bar denotes 20 mm. Photos by Bang Van Tran.
Figure 4

Drawings (A, C, E) and photos (B, D, F) showing head scalation of the holotype *Oligodon rostralis* sp. nov. in preservative (SIEZC 20201, male).

(A, B) Dorsal view; (C, D) lateral view; (E, F) ventral view. Scale bar equals 5 mm. Drawings and photos by Linh Hoang Nguyen.
Figure 5

Hemipenial morphology of *Oligodon rostralis* sp. nov. holotype in preservative (SIEZC 20201, male).

(A,C) – Drawings; (B,D) – photos; (A,B) right hemipenis in sulcal view; (C,D) right hemipenis in asulcal view. Scale bar equals 2 mm and represents photograph of hemipenis. Photos by Bang Van Tran; drawings by Platon V. Yushchenko.
Figure 6

Holotype of *Oligodon rostralis* sp. nov. in life *in situ* (SIEZC 20201, male) in dorsal (A) and in frontal (B) views.

Photos by Linh Hoang Nguyen.
Figure 7

Natural habitat of *Oligodon rostralis* sp. nov. at the type locality in pine forest dominated by *Pinus kesiya* Royle ex Gordon in Bidoup – Nui Ba NP, Lam Dong Province, Langbian Plateau, southern Vietnam.

(A) Live ventral coloration of *Oligodon rostralis* sp. nov. (SIEZC 20201, male); (B) general view of the macrohabitat (elevation 1622 m a.s.l.). Photos by Linh Hoang Nguyen.
Figure 8

Holotype of *Oligodon annamensis* Leviton, 1953 from “Blao, Haut Donai, Station Agricole” (now Bao Loc, Lam Dong Province, southern Vietnam) in preservative (USNM 90408, female).

(A) General dorsal view; (B) general ventral view; (C) dorsal, (D) ventral, and (E) lateral head views. Photos by Justin L. Lee; courtesy of National Museum of Natural History, Smithsonian Institution.
Manuscript to be reviewed
Figure 9

Specimen of *Oligodon annamensis* Leviton, 1953 from “Blao, Haut Donai, Station Agricole” (now Bao Loc, Lam Dong Province, southern Vietnam) in preservative (MNHN 8815, male).

(A) Dorsal view; (B) ventral view. Photos by Patrick David.
Figure 10

Specimen of *Oligodon annamensis* Leviton, 1953 from Chu Yang Sin NP, Dak Lak Province, southern Vietnam, in life (ZMMU R-14304, male).

(A) General dorso-lateral view; (B) general ventral view; (C) head in dorsal view; (D) head in ventral view. Photos by Nikolay A. Poyarkov.
Figure 11

Specimen of *Oligodon annamensis* Leviton, 1953 from Phnom Samkos WS, Dak Lak Pursat, Cardamom Mountains, Cambodia, in life (CBC 01899, male).

(A) Dorsal view; (B) ventral view. Photos by Hun Seiha.
Manuscript to be reviewed