Research Article

Rethinking Separable Convolutional Encoders for End-to-End Semantic Image Segmentation

Lin Wang, 1 Xingfu Wang, 1 Ammar Hawbani, 1 Yan Xiong, 1 and Xu Zhang 2

1 School of Computer Science and Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
2 National Computer Network Emergency Response Technical Center of China, Chengdu 610072, Sichuan, China

Correspondence should be addressed to Ammar Hawbani; ammande@ustc.edu.cn

Received 24 February 2021; Revised 24 March 2021; Accepted 7 April 2021; Published 17 April 2021

Academic Editor: Sang-Bing Tsai

Copyright © 2021 Lin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the development of science and technology, the middle volume and neural network in the semantic image segmentation of the codec show good development prospects. Its advantage is that it can extract richer semantic features, but this will cause high costs. In order to solve this problem, this article mainly introduces the codec based on a separable convolutional neural network for semantic image segmentation. This article proposes a codec based on a separable convolutional neural network for semantic image segmentation research methods, including the traditional convolutional neural network hierarchy into a separable convolutional neural network, which can reduce the cost of image data segmentation and improve processing efficiency. Moreover, this article builds a separable convolutional neural network codec structure and designs a semantic segmentation process, so that the codec based on a separable convolutional neural network is used for semantic image segmentation research experiments. The experimental results show that the average improvement of the dataset by the improved codec is 0.01, which proves the effectiveness of the improved SegProNet. The smaller the number of training set samples, the more obvious the performance improvement.

1. Introduction

Convolutional Neural Network (CNN) was first proposed by Hubel and Wiesel in the 1960s [1]. Because of its ability to directly input the original image for recognition without complicated image preprocessing, it has now been widely used in many applications. In the field of science, it is particularly prominent in the classification of patterns. It can learn local features autonomously, and when the input image changes and is distorted, the resulting features remain unchanged. CNN is based on the structure of the shared convolution kernel, which makes it have great advantages in processing high-dimensional images of actual size. It realizes the encapsulation of feature extraction. The user does not need to care about the specific features trained, just that they are trained well, the weight is enough, the classification effect is good, and the accuracy is high. The disadvantage is that it requires a large amount of sample data, a large amount of calculation, and adjusting parameters.

In recent years, CNNs have become the mainstream method to solve many computer vision tasks [2], such as image classification, target detection, and semantic segmentation. With the growth of the dataset size, the improvement of hardware computing power, and the introduction of a series of excellent network structures [3], the number of trainable CNNs is constantly being refreshed. Under the processing of the decomposable CNN, the computational complexity is greatly reduced.

Cho SI proposed a new image semantic segmentation method based on CNN, which first uses separable convolution and gradient to reduce computational complexity and improve image segmentation and denoising performance [4]. The proposed method converts the existing convolution filters in the traditional CNN segmentation denoiser into cascaded vertical and horizontal separable convolutions and reduces the features between these convolutions by analyzing the distribution of convolution weights and number of channels. Cho SI believed that its proposed separable
convolution with feature size shrinkage can greatly reduce the number of CNN multiplication operations while minimizing the damage to the image segmentation quality. In addition, Cho SI used the gradient of a given image as the input of the proposed separable CNN image segmenter by utilizing the relationship between the anisotropic diffusion-based segmenter and the residual CNN segmenter to improve image segmentation and the quality of the encoding [5]. This research lacks theoretical support [6]. Yeung HWF proposed an effective and efficient separable CNN model for spatial superresolution image segmentation. Specifically, the proposed model has an hourglass shape, so that feature extraction can be performed at a low-resolution level, thereby saving calculation and storage costs. In order to make full use of the four-dimensional structural information of the image data in the spatial domain and the angular domain, we suggest using four-dimensional convolution to characterize the relationship between pixels. In addition, as an approximation of four-dimensional convolution, Yeung HWF also recommended the use of space-angle separable (SAS) convolution to improve calculation and memory efficiency to extract space-angle joint features. A large number of experimental results of this experiment on 57 test images of various challenging natural scenes show that compared with the latest methods, the proposed model has significant advantages, achieving better visual quality and better retention and superresolution image structure, while the degradation of image reconstruction quality is negligible. This method is expensive to use and is not conducive to popularization [7]. Liu Z believed that the intensive calculation of high-efficiency video coding brings challenges to the codec in terms of hardware overhead and power consumption [8]. On the other hand, the limitation in codec design seriously reduces the software-oriented fast coding unit partition mode decision algorithm effectiveness. Therefore, Liu Z designed a fast algorithm based on CNN to reduce more than two partition modes in each codec to perform full-rate distortion optimization processing, thereby reducing the hardware complexity of the codec. Liu Z’s experiment used the best arithmetic representation and used TSMC’s 65 nm CMOS to develop high-speed [714 MHz under worst-case conditions (125°C, 0.9 V)] and low-cost (42.5 k gates) accelerator technology for fast algorithms. An accelerator can support HD 1080p at 55 frames per second in real-time encoding. This research process is more complicated and not practical [9].

The innovations of this article are as follows: (1) proposing a separable CNN algorithm model; (2) constructing a separable CNN codec structure; (3) designing a separable convolution image semantic segmentation process of neural network.

2. Semantic Image Segmentation Research Method Based on Separable Convolutional Neural Network Codec

2.1. Convolutional Neural Network. When the computer obtains an image, it will process the image as a two-dimensional data matrix. According to different algorithms, the feature information in the image is obtained. After a series of training and learning processes, a network structure for classification is finally obtained to judge the picture or filter out the target image [10]. The purpose of the neural network is to determine what an input represents, and CNN uses the idea of convolution to provide a method for extracting feature values [11]. CNN is a deep feedforward neural network composed of a convolutional layer, non-linear layer, pooling layer, and fully connected layer [12].

2.1.1. Convolutional Layer. The convolutional layer is the core of the network, and most calculations are performed in the convolutional layer. The feature map is generated in the convolution operation and output to the next layer for feature extraction [13]. In the convolution operation, the convolution kernel learns the best parameters for extracting features through iterations. The convolutional layer can be regarded as a feature extractor, which extracts representative features from the image through convolution operation [14]. Take a single-channel single convolution kernel as an example to illustrate the convolution operation, where I represents the input feature map, O represents the output feature map, and K represents the convolution kernel. The convolution operation can be expressed by the following formula:

\[
O(y, x) = \sum_{u=1}^{c_1} \sum_{v=1}^{c_2} K(u, v)I(y + u, x + v, i).
\]

The convolution kernel is a three-dimensional tensor, and each pixel of the feature map corresponds to a neuron [15]. Each neuron has an area of the same size as the convolution kernel in the feature map of the upper layer, which is called the neuron’s receiving field, and each neuron is connected with the neurons in the receiving field through the convolution kernel [16]. In feature mapping, neurons in the same channel share a convolution kernel, and different channels correspond to different convolution kernels [17]. The calculation process of feature mapping can be expressed by the following formula:

\[
O(y, x, j) = \sum_{i=1}^{c_1} \sum_{u=1}^{k_1} \sum_{v=1}^{k_2} K(u, v, i)I(y + u, x + v, i, j).
\]

2.1.2. Nonlinear Layer. In CNNs, the nonlinear activation function usually follows the convolution operation. The convolution operation is a linear weighted summation operation. As the depth of the CNN expands, the number of convolutional layers deepens. The nesting of linear functions has weak nonlinear expression ability. This problem can be solved well by adding a nonlinear activation function after the convolutional layer so that the network can approximate any function, and the nonlinear activation function can also speed up the network convergence efficiency [18, 19]. There are three commonly used nonlinear activation functions: Sigmoid, Tanh, and ReLu.
Sigmoid function expression is as follows:
\[f(x) = \frac{1}{1 + e^{-x}}. \]
(3)

The Tanh function expression is as follows:
\[\tanh(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}}. \]
(4)

The ReLu function expression is as follows:
\[y = \begin{cases} 0 & (x < 0), \\ x & (x \geq 0). \end{cases} \]
(5)

2.1.3. Pooling Layer. Another important operation of CNNs is called pooling, also called downsampling [20]. Pooling can reduce network parameters, reduce the resolution of feature mapping, and reduce the impact of deformation on feature mapping. Common pooling operations include average pooling and maximum pooling. Average pooling selects the average value of adjacent regions of the feature map to represent the region [21]. Maximum pooling selects the maximum value of the adjacent area of the feature map to represent the area. Due to the use of the pooling layer, the resolution of the feature plane is reduced, and the reduced resolution of the feature plane will simplify the calculation of the network and will also reduce the training parameters, thereby reducing overfitting [22]. In addition, due to the reduced resolution of the feature map, in the next convolutional layer, the receptive field corresponding to the convolution kernel will also increase [23].

2.1.4. Fully Connected Layer. Each element output by the fully connected layer is connected to the elements of all the input feature maps, so it is called the fully connected layer. The fully connected layer does not extract the features of the input like the convolutional layer and the pooling layer, and then output to the hidden; instead, the output is mapped to the sample label space, and the output of the fully connected layer is a one-dimensional vector [24]. The parameter amount of the fully connected layer is greater than the parameter amount of the convolutional layer. Generally, the fully connected layer will be used behind the convolutional layer to map the features extracted by the convolutional layer to the sample space [25].

2.1.5. Optimization. The optimization method is to calculate the minimized loss value. Given dataset D, the optimization goal is the average value of all data loss in D, that is, the average loss, taking the minimum value [26]. The following formula exists:
\[L(W) = \frac{1}{|D|} \sum_{i} f_{w}(x^{(i)}) + \lambda_{r}(W). \]
(6)

When the given dataset D is very large, the random subset N of the dataset much smaller than the whole data set is usually used instead. The following formula exists:
\[L(W) \approx \frac{1}{N} \sum_{i} f_{w}(x^{(i)}) + \lambda_{r}(W). \]
(7)

2.2. Separable Convolutional Neural Network. In order to reduce the network model and increase the calculation speed, the CNN structure needs to be further optimized [27]. The most direct method is to reduce the size of the parameters, that is, use a smaller convolution kernel and feature map to compress from the existing network model. Considering the acceleration method, the compression method mainly includes compression from the perspective of weight value and from the perspective of network architecture [28]. The standard 3D convolution is resolved into two processes: 3D depth convolution and 3D point-by-point convolution. In the 3D depth convolution stage, the convolution kernel is only calculated separately with each channel of each frame of the input sequence, and they are not combined. It is a new feature; in the three-dimensional point-by-point convolution stage, a convolution kernel of size 1 x 1 x 1 is used for convolution [29]. Thus, the calculation process has the following formula:
\[d_{ij}^{xyz} = f \left(\sum_{p=q=1}^{P=q} \sum_{m=0}^{M} W_{i, j, k}^{xyz} (x+p)(y+q)(z+k) + b_{ij} \right), \]
\[k = \text{ceil} \left(\frac{j}{m} \right), \quad h = j - k * m - 1, \]
(8)
\[I_{ij}^{xyz} = f \left(\sum_{m} W_{ij,m} d_{ij,m}^{xyz} + b_{ij} \right). \]

The calculated cost after separation is as follows:
\[D_{k} \cdot D_{k} \cdot D_{k} \cdot M \cdot D_{p} \cdot D_{p} \cdot D_{j} + D_{k} \cdot M \cdot N \cdot D_{f} \cdot D_{f} \cdot D_{f}. \]
(9)

By separating the CNN, the number of model parameters can be greatly reduced and the calculation speed can be improved. At the same time, the number of layers is doubled, which deepens the network, enhances the nonlinearity of the network, and can improve the classification effect of the network at the same time [30].

2.3. Image Semantic Segmentation. Semantic segmentation is to draw the image into meaningful areas and label the object categories represented by these areas, which visually means that the categories of different objects are processed with different colors [31]. In deep learning, data are an inseparable topic. The quality of data directly affects the results of this algorithm [32]. The collection of data also requires professionals to complete it. Since the emergence of public datasets, researchers have been short of data. The problem was solved, which also promoted the rapid development of deep learning [33]. The most commonly used public datasets for image semantic segmentation in the literature are PASCAL VOC2012, MS COCO, ADE20 K,
PASCAL Context, Cityscapes, CamVid, and SYNTHIA. In image semantic segmentation, the total number of object categories in the image is defined as \(N \), \(n_{ij} \) represents the number of pixels with actual category \(i \) and predicted category \(j \), and \(t_i \) represents the number of pixels with actual category \(i \). The evaluation index of image semantic segmentation is generally pixel accuracy rate, average accuracy, and average intersection ratio [35].

Pixel accuracy, defined as the ratio of the number of correctly classified pixels to the total number of image pixels, is the simplest metric, which measures the overall performance of pixel-level image segmentation algorithms in semantic segmentation [36]. The following formula exists:

\[
\text{Overall Acc} = \frac{\sum_{i=1}^{N} n_{ij}}{\sum_{i=1}^{N} t_i}
\]

The average accuracy is defined as the average accuracy of various categories of objects. It is a simple improvement of pixel accuracy. First, calculate the proportion of correctly classified pixels in each category by category, and then calculate the average of all categories. The average accuracy rate measures the performance of the pixel-level image segmentation algorithm for each class of segmentation effect [37]. The following formula exists:

\[
\text{Mean Acc} = \frac{\sum_{i=1}^{N} n_{ij} / t_i}{N}
\]

The average intersection ratio, defined as the ratio of the intersection and union of the segmentation result and the true value, has the advantages of simplicity and representativeness and is the most commonly used evaluation index. Most studies use the average intersection ratio to measure the semantic segmentation results [38]. The following formula exists:

\[
\text{Mean IoU} = \frac{\sum_{i=1}^{N} n_{ij} / t_i + \sum_{j=i+1}^{N} n_{ij} - n_{ij}}{N}
\]

The method part of this article uses the above method to study the experiment of semantic image segmentation based on the codec of a separable CNN. The specific process is shown in Figure 1.

3. Separable Convolutional Neural Network-Based Codec for Semantic Image Segmentation Research Experiment

3.1. Construct a Codec Structure of Separable Convolutional Neural Network

Separable convolution usually divides the convolution operation into several steps. It is usually used as a separable deep convolution in deep learning. The core idea is to divide the completed convolution operation into deep convolution and pointwise convolution. Depth convolution is different from traditional convolution. The feature map image after deep convolution has the same number of channels as the input layer. After completing this operation, a point-by-point convolution operation is needed to aggregate these features into new features. The essence of point-by-point convolution is to concentrate the feature images of the depth separable convolution in a depth direction to create a new feature.

The separable CNN is applied to the codec network structure, and the end-to-end codec network structure SegProNet is designed, which ensures the spatial semantic information of the pixels while performing feature detection and segmentation. SegProNet performs maximum pooling in the first three layers of the coding structure and performs appropriate indexing operations to achieve pixel positioning standards. The last two layers of depooling are only used for folding processing to ensure the uncertainty perception of spatial resolution and boundary contour information. Perform pixel segmentation to improve the detailed information perceived by the network and ensure the accuracy of pixel positioning prediction. Combine index and upsampling to generate sparse feature maps, and combine convolution to generate dense features. By selectively discarding pooling, the loss of spatial information is reduced while avoiding information loss caused by repeated upsampling in the original network. Semantic and location information are used to receive the number of fields, which improves boundary division, significantly reduces the number of parameters for end-to-end training, and ensures that the network can learn more abstract feature settings. By removing the convergence and relatively deep convolution, the network can extract more detailed image features while ensuring the accuracy of spatial semantic features. In order to increase the parameters caused by deleting the pool, set a narrow layer to expand the network depth and, at the same time improve, training efficiency.

The same convolution method is used to ensure that the size of the image remains unchanged before and after the image is forwarded to the decoder through the maximum pool index. The input image is uploaded in a nonlinear manner to obtain spatial semantic image information and avoid loss in the encoding process. After the maximum convergence of each layer, a batch normalization layer is added, and the numerical range after the formation of the nonlinear function is close to the standardized saturation range distribution, thereby avoiding the disappearance of the gradient.

The decoder consists of an upward sampling layer, a convolutional layer, and a pooling layer. It restores the pixel pool based on the information of the largest information pool and restores part of the scanning position upward. The encoder part also uses the same folding method [38]. For each pixel after encoding, the pixel data on different channels are combined with linear parameters without changing the topological structure and dimensional information of the original image [39], thereby expanding and deepening the network structure.

3.2. Design the Semantic Segmentation Process

To effectively perform semantic segmentation on images, there are two key points to be resolved. First, we must train the network model. Before training the network model, we should determine the type of presegmented image, then select a large
number of pictures consistent with the presegmented image type as the dataset, and make the corresponding label map so that the network model can be performed training. The second is to preprocess the input image. This article mainly denoises the image to reduce image loss. Finally, the processed image is input into the trained network model to obtain the output segmentation result.

In the problem of image segmentation and recognition, it is possible to encounter some pictures with shadows or overexposure [40]. These factors should not affect the final segmentation recognition results. Therefore, the input pictures need to be preprocessed to make the CNN model as small as possible by some unnecessary factors. The brightness, contrast, noise, and other attributes of the image have a great influence on the image. The same object has a huge difference under different brightness and contrast. The quality of the image directly has a great influence on the result of image processing. The image needs to be preprocessed before inputting the image. The main goal of image preprocessing is to reduce the useless information in the image, restore useful information, enhance the detectability of the target object, and simplify the data as much as possible, thereby enhancing the reliability of feature extraction, image segmentation, and recognition [41]. In image semantic segmentation, there will be various noises in the process of image acquisition and input. The noise in the image is useless information, so the input image will affect the result of the segmentation. In order to effectively improve the accuracy of segmentation, we need to preprocess the image, denoise the image, and keep the useful information of the image as complete as possible while denoising the image.

3.2.1. Gaussian Filtering. Gaussian filtering is to use a template to scan each pixel in the image and then use the weighted average gray value of the pixels in the neighborhood determined by the template to replace the value of the center pixel of the template. Gaussian filtering is a smooth linear filter that gives pixels different positions and weights. The pixels closer to the center have the largest weights, which can smooth the noise and save all the gray distribution characteristics in the image. Using the Gaussian filtering is suitable for processing the Gaussian noise map.

3.2.2. Median Filtering. Median filtering is a statistical sorting filter, which sorts all pixels in the neighborhood and then takes the median. This denoising method is suitable for dealing with discrete point noise.

3.2.3. P-M Equation Denoising Segmentation. The P-M equation is derived from the heat conduction equation. Its principle is similar to the Gaussian filter formula. Both are anisotropic diffusion equations. Unlike Gaussian filtering, the PM equation connects the features in the image with the diffusion process. The coefficient of directional diffusion changes with the change of the gradient value of the image, so this method can effectively remove noise and retain edge information.
The experimental part of this article proposes that the above steps are used for the codec based on a separable CNN for semantic image segmentation research experiments. The specific process is shown in Table 1.

4. Semantic Image Segmentation Based on Separable Convolutional Neural Network

4.1. Performance Comparison Analysis. The new decoder module reduces one layer compared with the original design. According to the deep network design research, reducing the number of network layers helps to reduce the instability of network training. At the same time, the number of parameters of the new decoder module is increased compared with that in the old module. The new module has more model complexity and can obtain better image feature representation, which is helpful to improve the performance of image segmentation. Since the convolution layer behind the deconvolution layer is removed in the new decoder module, the deconvolution layer can be initialized reasonably. Bilinear interpolation can play a role in upsampling, so we can use bilinear interpolation to initialize the deconvolution layer. The algorithms involved in the experiment are implemented by PyTorch, a deep learning framework. PyTorch is a toolkit maintained by Facebook’s AI research team. It uses python programming language and is a deep learning research platform that emphasizes development flexibility and code running speed. PyTorch supports GPU acceleration, which can greatly speed up computing.

In order to compare the performance of the improved CNN in image semantic segmentation, experiments were conducted on CamVid, voc2012, and Cityscapes datasets. The two networks were trained on the training set of the dataset, and the performance of the network was verified by the verification set of the dataset. The specific situation of the data is drawn into a chart, as shown in Table 2 and Figure 2.

It can be seen from the table that the improved SegProNet outperforms the original structure in three evaluation indexes: overall ACC, mean ACC, and mean IOU. Looking at the most important average intersection and merge ratio, the improved SegProNet achieves an average improvement of about 0.01 on CamVid, voc2012, and Cityscapes datasets compared with that with the original structure, which proves the effectiveness of the improved SegProNet. Among the three datasets, CamVid data set has the least number of training set samples, Cityscapes dataset has the largest number of training set samples, and the number of training set samples of voc2012 data set is between the two. Therefore, it can be seen that the smaller the number of training set samples, the better the performance of improved SegProNet, compared with that of the original codec.

4.2. Comparative Analysis of Experiments. In the image segmentation based on conditional generating countermeasure network, how to design and generate the countermeasure network, that is, the discriminant model, is one of the key algorithms. If the designed network is weak, the effect of antilearning is not obvious, which can not optimize the image semantic segmentation network. If the designed network is too strong, the training process can not converge and the training of the generation model will fail. The algorithm shows the alternate training process of image semantic segmentation network as generation model and confrontation network as discrimination model, and there are two kinds of loss functions used in the training process, one is used to train image semantic segmentation network and the other is used to train confrontation network. The datasets used in this part are CamVid dataset and Cityscapes dataset, and the Cityscapes dataset only provides the real segmentation graph of the training set and verification set, whereas the training set, verification set, and test set of the CamVid dataset provide real segmentation graph, so the test set of CamVid dataset can also be used to verify the segmentation performance of the method. The specific comparison results are drawn into charts, as shown in Tables 3–5 and Figures 3–5.

It can be seen that the improved SegProNet confrontation learning method achieves the highest performance among the three indicators on CamVid (verification set). On CamBid (test set), SegNet + confrontational learning method achieves the highest overall accuracy, and the improved SegProNet method achieves the highest average accuracy and average cross merge ratio. On Cityscapes (verification set), the improved SegProNet confrontational learning achieves the highest overall accuracy and average cross merge ratio, and the SegProNet + confrontation learning method achieves the highest average accuracy. Generally speaking, the performance of improved SegProNet + confrontation learning method is the best, while SegProNet method is the worst.

4.3. Structure Analysis of Separable Convolutional Neural Network. The advantage of stacking the feature planes extracted before and convolution feature planes as the input of the next layer network is to solve the problem that the gradient of the network features disappears after the feature planes are extracted one layer at a time. Secondly, the convolution network directly inputs the feature plane extracted from the previous part into the back-end network, which enhances the backward propagation of features, and makes more effective use of the extracted feature plane, instead of spreading down step by step like the traditional method. The establishment of links between different convolution layers and repeatable persistent blocks are the characteristics of building the generation countermeasure network model. It makes the network get better results with fewer parameters. Finally, after each convolution operation, most of them add batch normalization operation, which has been proved to play an important role in deep learning. The structure details of the generated network are shown in Table 6.

The structure details of the discrimination network are shown in Table 7.

From the data in Figure 6, it can be seen that all the steps of the network are 1; that is, the size of the image is not changed before and after convolution. In order to merge the feature images obtained before and after, the network does not carry out a pooling operation. In order to
Table 1: The experimental steps in this article.

Step	Description
1	Codec architecture based on separable convolutional neural network
2	Gaussian filtering
3	Median filtering
4	Denoising and segmentation of P-M equation

Table 2: Performance comparison before and after improvement.

Dataset	Method	Mean IoU	Mean ACC	Overall ACC
CamVid	SegProNet	0.4926	0.6129	0.8107
	Improving SegProNet	0.5013	0.6194	0.8241
	SegProNet	0.5114	0.6237	0.8134
	Improving SegProNet	0.5207	0.6321	0.8327
	SegProNet	0.5126	0.5904	0.8406
	Improving SegProNet	0.5225	0.6079	0.8671
VOC2012	SegProNet	0.5114	0.6237	0.8134
	Improving SegProNet	0.5207	0.6321	0.8327
	SegProNet	0.5126	0.5904	0.8406
	Improving SegProNet	0.5225	0.6079	0.8671
CityScapes	SegProNet	0.5126	0.5904	0.8406
	Improving SegProNet	0.5225	0.6079	0.8671

Figure 2: Performance comparison before and after improvement.

Table 3: Comparison of experimental results (CamVid validation set).

Method	Mean IoU	Mean ACC	Overall ACC
FCN-8S	0.4301	0.6307	0.8347
FCN-32S	0.4127	0.6425	0.8438
SegNet	0.3721	0.6531	0.8271
SegNet + confrontational learning	0.3927	0.6597	0.8364
SegProNet	0.5103	0.6741	0.8521
SegProNet + confrontational learning	0.5231	0.6872	0.8675
Improvement of SegProNet	0.6142	0.6927	0.8843
Improvement of SegProNet + confrontational learning	0.6247	0.7031	0.9021
Table 4: Comparative experimental results (CamVid test set).

Method	Mean IoU	Mean ACC	Overall ACC
FCN-8S	0.4137	0.6217	0.6532
FCN-32S	0.4011	0.6349	0.6417
SegNet	0.4231	0.6401	0.6628
SegNet + confrontational learning	0.4327	0.6513	0.6803
SegProNet	0.4421	0.6670	0.6947
SegProNet + confrontational learning	0.4532	0.6721	0.7081
Improvement of SegProNet	0.4670	0.6739	0.7269
Improvement of SegProNet + confrontational learning	0.5730	0.6845	0.7531

Table 5: Comparison of experimental results (Cityscapes validation set).

Method	Mean IoU	Mean ACC	Overall ACC
FCN-8S	0.4027	0.6241	0.6251
FCN-32S	0.3816	0.6373	0.6374
SegNet	0.4123	0.6570	0.6459
SegNet + confrontational learning	0.4275	0.6801	0.6581
SegProNet	0.4531	0.6931	0.6742
SegProNet + confrontational learning	0.4681	0.7044	0.6899
Improvement of SegProNet	0.5037	0.7247	0.7021
Improvement of SegProNet + confrontational learning	0.5219	0.7438	0.7208

Figure 3: Comparison of experimental results (CamVid validation set).

Figure 4: Comparative experimental results (CamVid test set).
distinguish the structural details of the network, the convolution step size is used instead of the traditional pooling operation. When the image is downsampled, the number of feature planes is increased. After 8-layer convolution, there are two full connection layers. The first full connection layer will be the eighth. The 576 feature planes of convolution output are connected to the following neurons; the second fully connected layer integrates
these neurons into one output; the last fully connected layer outputs the probability that the sample belongs to the true sample and the false sample.

5. Conclusions

With the explosive growth of image data and the continuous development of deep learning, the field of computer vision has received unprecedented attention from all walks of life. As an important part of the field of computer vision, image semantic segmentation has been paid more and more attention by industry and academia. CNN has achieved unprecedented success in the field of computer vision because of its powerful feature extraction ability. However, the semantic segmentation network based on the total convolution neural network still has some problems, such as poor segmentation effect and high model complexity. After the in-depth study on the semantic segmentation network and summing up its shortcomings, the main work of this article is to improve and optimize the semantic segmentation network to improve the effective receptive field of the network and extract the overall situation. According to the following information, the multiscale target features are integrated to improve the segmentation effect of the network for multiscale targets and an end-to-end semantic segmentation network combining global context information and multiscale spatial pooling is constructed.

In this article, we improve the design of a codec CNN structure SegProNet, which has a better segmentation effect and faster convergence speed than the classical segmentation network. Pool index and upsampling ensure pixel location and combine deep convolution and discard pooling to create dense features, supplement missing high frequency and pixel location information, and gradually deepen filter segmentation to improve timeliness. Comparing CNN with the traditional network, its learning efficiency and real-time performance are higher.

Compared with the traditional single deep learning network, this article integrates the separable CNN algorithm and image semantic segmentation algorithm into the back-end processing of the model by combining the model fusion method so as to realize the integration and coordination of the segmentation results of multiple learners and enhance the fault tolerance and universality of the algorithm. At the same time, it verifies and compares the influence of different activation functions on the network performance. The principle is analyzed deeply.

Data Availability

The data used in the study are available at the following sites: CamVid, http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/; VOC2012, http://host.robots.ox.ac.uk/pascal/VOC/voc2012/; and CityScapes, https://www.cityscapes-dataset.com.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (Nos. WK2150110007 and WK2150110012) and National Natural Science Foundation of China (Nos. 61772490, 61472382, 61472381, and 61572454).

References

[1] M. Elhoseny and K. Shankar, "Optimal bilateral filter and convolutional neural network based denoising method of medical image measurements," Measurement, vol. 143, pp. 125–135, 2019.
[2] J. Yang, C. Wang, B. Jiang, H. Song, and Q. Meng, "Visual perception enabled industry intelligence: state of the art, challenges and prospects," Institute of Electrical and Electronics Engineers Transactions on Industrial Informatics, vol. 17, no. 3, pp. 2204–2219, 2021.
[3] S. B. Tsai, W. Wu, S. Ma, C. H. Wu, and B. Zhou, "Benchmarking, knowledge inertia, and knowledge performance in different network structures," Enterprise Information Systems, vol. 2019, 2019.
[4] Y. Zhao, H. Li, S. Wan et al., "Knowledge-aided convolutional neural network for small organ segmentation," Institute of Electrical and Electronics Engineers Journal of Biomedical and Health Informatics, vol. 23, no. 4, pp. 1363–1373, 2019.
[5] S. I. Cho and S.-J. Kang, "Gradient prior-aided CNN denoiser with separable convolution-based optimization of feature dimension," Institute of Electrical and Electronics Engineers Transactions on Multimedia, vol. 21, no. 2, pp. 484–493, 2019.
[6] H. W. F. Yeung, J. Hou, X. Chen, J. Chen, Z. Chen, and Y. Y. Chung, "Light field spatial super-resolution using deep efficient spatial-angular separable convolution," Institute of Electrical and Electronics Engineers Transactions on Image Processing, vol. 28, no. 5, pp. 2319–2330, 2019.
[7] Z. Liu, X. Yu, Y. Gao, S. Chen, X. Ji, and D. Wang, "CU partition mode decision for HEVC hardwired intra encoder using convolution neural network," Institute of Electrical and Electronics Engineers Transactions on Image Processing, vol. 25, no. 11, pp. 5088–5103, 2016.
M. Elhoseny, "Multi-object detection and tracking (MODT) machine learning model for real-time video surveillance systems," Circuits, Systems, and Signal Processing, vol. 39, no. 2, pp. 611-630, 2019.

Z. He, L. Yang, S. Angizi, A. S. Rakin, and D. Fan, "Sparse BD-net," ACM Journal on Emerging Technologies in Computing Systems, vol. 16, no. 2, pp. 1-24, 2020.

J. Zhang, X. Lv, Q. Sun, Q. Zhang, X. Wei, and B. Liu, "SDResU-net: separable and dilated residual U-net for MRI brain tumor segmentation," Current Medical Imaging Formerly Current Medical Imaging Reviews, vol. 16, no. 6, pp. 720-728, 2020.

X. Zhang, Y. Zheng, W. Liu et al., "An improved architecture for urban building extraction based on depthwise separable convolution [J]," Journal of Intelligent and Fuzzy Systems, no. 11, pp. 1-9, 2020.

L. Rao, B. Zhang, and J. Zhao, "Hardware implementation of reconfigurable 1D convolution," Journal of Signal Processing Systems, vol. 82, no. 1, pp. 1-16, 2016.

X. Cheng and Z. Chen, "Video frame interpolation via deformable separable convolution," Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, pp. 10607-10614, 2020.

Y. Tang and X. Wu, "Scene text detection and segmentation based on cascaded convolution neural networks," Institute of Electrical and Electronics Engineers Transactions on Image Processing, vol. 26, no. 3, pp. 1509-1520, 2017.

K. H. Cha, L. M. Hadijissi, R. K. Samala et al., "Bladder cancer segmentation in CT for treatment response assessment: application of deep-learning convolution neural network-A pilot study," Tomography, vol. 2, no. 4, pp. 421-429, 2016.

S. Tiwari, "A blur classification approach using deep convolution neural network," International Journal of Information System Modeling and Design, vol. 11, no. 1, pp. 93-111, 2020.

Y. Nomura, I. Ida, T. Miyaji, M. Miyamoto, and M. Suga, "Structural integrity diagnosis for valve based on deep convolution neural network," Journal of the Society of Materials Science, Japan, vol. 67, no. 2, pp. 177-183, 2018.

C. Liu, X. Zhang, and Q. Hu, "Image super resolution convolution neural network acceleration algorithm," Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, vol. 41, no. 2, pp. 91-97, 2019.

S. Han, W. Lee, H. Eom, J. Kim, and C. Park, "Detection of arrhythmia using 1D convolution neural network with LSTM model," IEIE Transactions on Smart Processing & Computing, vol. 9, no. 4, pp. 261-265, 2020.

A. Raj, D. Dubey, A. Mishra, N. Chopda, N. M. Borkar, and V. S. Lande, "Convolution neural network based automatic license plate recognition system," International Journal of Computer Sciences and Engineering, vol. 7, no. 4, pp. 199-205, 2019.

R. J. Deshmukh, C. J. Awati, and A. Deshmukh, "Use of convolution neural network algorithm for implementation of an autonomous vehicle," International Journal of Scientific & Technology Research, vol. 8, no. 9, pp. 1533-1536, 2019.

H. M. F. Abu, A. Hussain, and M. F. A. Hassan, "Convolution neural network-based action recognition for fall event detection," International Journal of Advanced Trends in Computer Ence and Engineering, vol. 8, no. 1, pp. 466-470, 2019.

S. Yoo, J. Lee, and S. Y. Kim, "FFT-based GNSS signal detection scheme using convolution neural network," Journal of Institute of Control, Robotics and Systems, vol. 26, no. 3, pp. 199-206, 2020.

S. Tirpude, "Abnormal X-ray detection system using convolution neural network," International Journal of Advanced Trends in Computer Science and Engineering, vol. 9, no. 1, pp. 828-832, 2020.

Y. Liu, O. Deforges, and K. Samrouch, "LAR-LLC: a low-complexity multi-resolution lossless image codec," Institute of Electrical and Electronics Engineers Transactions on Circuits and Systems for Video Technology, vol. 26, no. 8, pp. 1490-1501, 2016.

T. Richter, J. Keinert, S. Foessel, A. Descampe, G. Rouvroy, and J.-B. Lorent, "JPEG-XTA: A high-quality mezzanine image codec for video over IP," SMPTE Motion Imaging Journal, vol. 127, no. 9, pp. 39-49, 2018.

Y. Chen, W. Zheng, W. Li, and Y. Huang, "Large group Activity security risk assessment and risk early warning based on random forest algorithm," Pattern Recognition Letters, vol. 144, 2021.

T. Chandraraju and S. Radhakrishnan, "Image encoder architecture design using dual scan based DWT with vector quantization," Materials Today: Proceedings, vol. 5, no. 1, pp. 572-577, 2018.

R. Ezhiharsi and K. Venkatalakshmi, "Low complexity orthogonal transforms for low cost image/video codec design," Journal of Computational and Theoretical Nanoscience, vol. 15, no. 3, pp. 859-865, 2018.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs," Institute of Electrical and Electronics Engineers Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834-848, 2018.

M. Seyedhosseini and T. Tasdizen, "Semantic image segmentation with contextual hierarchical models," Institute of Electrical and Electronics Engineers Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 5, pp. 951-964, 2016.

I. R. de Moura, A. S. Teles, M. Endler, L. R Coutinho, and F. J Da Silva E Silva, Highly Reliable and Low Complexity Image Compression Scheme Using Neighborhood Correlation Sequence Algorithm in WSN, IEEE Transactions on Reliability, Basel, Switzerland, In Press, 2020.

Y. Li, Y. Guo, Y. Kao, and R. He, "Image piece learning for weakly supervised semantic segmentation," Institute of Electrical and Electronics Engineers Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 4, pp. 648-659, 2017.

B. Hao and D.-S. Kang, "Research on image semantic segmentation based on FCN-VGG and pyramid pooling module," The Journal of Korean Institute of Information Technology, vol. 16, no. 7, pp. 1-8, 2018.

W. Wang, Y. Fu, F. Dong, and F. Li, "Semantic segmentation of remote sensing ship image via a convolutional neural networks model," IEI Image Processing, vol. 13, no. 6, pp. 1016-1022, 2019.

L. Zhang, Z. Sheng, Y. Li, Q. Sun, Y. Zhao, and D. Feng, "Image object detection and semantic segmentation based on convolutional neural network," Neural Computing and Applications, vol. 32, no. 7, pp. 1949-1958, 2020.

S. Cui, C. Liu, M. Chen, and S. Xiong, "Brain tumor semantic segmentation from MRI image using deep generative adversarial segmentation network," Journal of Medical Imaging and Health Informatics, vol. 9, no. 9, pp. 1913-1919, 2019.

Z. Lv, L. Qiao, J. Li, and H. Song, "Deep learning enabled security issues in the internet of things," Institute of Electrical
[39] S. Wan, Topology Hiding Routing Based on Learning with Errors, Concurrency and Computation: Practice and Experience, Dubai, UAE, 2020.

[40] X. Yuan, D. Li, D. Mohapatra, and M. Elhoseny, "Automatic removal of complex shadows from indoor videos using transfer learning and dynamic thresholding," Computers & Electrical Engineering, vol. 70, pp. 813–825, 2018.

[41] K. Shankar, M. Elhoseny, S. K. Lakshmanaprabu et al., "Optimal feature level fusion based ANFIS classifier for brain MRI image classification," Concurrency and Computation: Practice and Experience, vol. 32, no. 1, Article ID 24887, 2020.