Time-interleaving design of error-feedback sigma-delta modulators with infinite impulse response noise transfer function

Francisco Colodro | Juana María Martínez-Heredia | Jose L. Mora | Antonio Torralba

Electronic Engineering Department, Universidad de Sevilla, Escuela Superior de Ingenieros, Sevilla, Spain

Correspondence
Jose L. Mora, Electronic Engineering Department, Universidad de Sevilla, Escuela Superior de Ingenieros, Camino de los Descalzamientos s/n, 41092, Sevilla, Spain.
Email: jolarno@us.es

Funding information
Spanish Ministry of Science, Innovation and Universities, Grant/Award Number: RTI2018-099189-B-C21

1 | INTRODUCTION

Sigma-delta modulators (SDMs) are increasingly receiving attention in the implementation of modern communication standards in the design of both transmitters and receivers. Wideband software-defined transmitters require the digital-to-analogue converter (DAC) to be rated at a very high frequency [1–4]. When an SDM-based DAC is used, speed constraints of the hardware impose moderate values of the oversampling ratio (OSR) [5]. As a result, the required dynamic range (DR) can only be achieved using high-order SDMs. When the noise transfer function (NTF) is a finite impulse response (FIR) filter, high-order modulators can be stable as long as the bit number of the quantiser is equal to or larger than $L + 1$, where L is the order of the modulator [6]. On the other hand, single-bit DACs present the nice feature that they can directly drive an energy-efficient switching-mode power amplifier or the laser in a radio-over-fibre architecture [1].

Moreover, the simplicity and relaxed requirements of the single-bit DAC (where mismatch is not a concern, so complex linearisation techniques, such as dynamic element matching [5], are not necessary) facilitate the realisation of its analogue part at very high frequencies. Unfortunately, single-bit high-order SDMs are prone to instability, so for the sake of stability, the NTF must be of the infinite impulse response (IIR) type; that is,

$$NTF(z) = \left(1 - z^{-1}\right)^{L} / D(z) \quad (1)$$

where L is the order of the modulator and $D(z)$ is an L-order polynomial in z [5]. Consequently, in an error-feedback (EF) realisation (Figure 1), the loop filter is also of the IIR type:

$$H(z) = NTF(z) - 1 \left[(1 - z^{-1})^L - D(z)\right] / D(z) \quad (2)$$

In order to gain speed, different techniques for the decomposition of arbitrary-order IIR transfer functions have been proposed [7–15]. Time-interleaving (TI) has been used to
overcome or alleviate speed constraints in the implementation of SDMs [9–12]. The modulator of Figure 1, clocked at the sampling frequency f_s, is decomposed in N parallel paths clocked at the low rate f_s/N, by means of the filter bank $\mathbf{H}(z)$ shown in Figure 2 [10]. The filter bank $\mathbf{H}(z)$ can be obtained from $H(z)$ by means of type I polyphase decomposition (PD) [13]:

$$H(z) = \sum_{i=0}^{N-1} z^{-i}H_i(z^N)$$ \hspace{1cm} (3)$$

where $H_i(z)$ are the components of $H(z)$. This decomposition is straightforward for a FIR transfer function or first-order simple sections of the type $1/(1-a z^{-1})$, but it is a complex task for a general IIR transfer function like that in (2). Once the functions $H_i(z)$ are known, the filter bank can be calculated by [10, 13]:

$$H(z) = \begin{bmatrix}
H_0(z) & H_1(z) & H_2(z) & \cdots & H_{N-1}(z) \\
 z^{-1}H_{N-1}(z) & H_0(z) & H_1(z) & \cdots & H_{N-2}(z) \\
 z^{-1}H_{N-2}(z) & z^{-1}H_{N-1}(z) & H_0(z) & \cdots & H_{N-3}(z) \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 z^{-1}H_1(z) & z^{-1}H_2(z) & z^{-1}H_3(z) & \cdots & H_0(z)
\end{bmatrix} \tag{4}$$

Due to the inherent advantages of DACs based on a single-bit SDM, the performance improvement of high-order modulators, and the capability of TI architectures to increase the effective operation rate, the design of an SDM that combines these features is addressed by the authors. Although some examples can be found in the design of cascaded high-order SDMs, this is the first time, to the best knowledge of the authors, that a digital single-bit high-order EF structure with an IIR NTF has been designed. For practical reasons, in the real-world implementation of this architecture, the floating-point coefficients of filter $H(z)$ in Figure 1 must be rounded. The rounding must be carefully carried out in order to maintain the NTF zeros in their ideal position ($z = 1$). Failure to do so could lead to decreases in performance. For this purpose, a novel rounding procedure is also proposed herein. In the following section, the polyphase decomposition is reviewed. Afterwards, a third-order EF structure is developed, coefficient rounding is completed, and the resulting architecture is evaluated by simulation results.

\section{POLYPHASE DECOMPOSITION}

In order to carry out PD when the transfer function is an IIR filter, $H(z)$ should be reformulated as [14,15]

$$H(z) = \frac{Q(z)}{P(z^N)}$$ \hspace{1cm} (5)$$

where $Q(z)$ and $P(z)$ are polynomials in z. In this way, the PD of $H(z)$ results in the components

$$H_i(z) = \frac{Q_i(z)}{P(z)}$$ \hspace{1cm} (6)$$

where $Q_i(z)$ ($i = 0, 1, \ldots, N-1$) are the components of the (type I) PD of $Q(z)$ [13],

$$Q_i(z) = \sum_{k=0}^{\infty} q_{kN+i} z^{-k}$$ \hspace{1cm} (7)$$

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.pdf}
\caption{Error-feedback sigma-delta modulator architecture}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.pdf}
\caption{Time-interleaving architecture of the modulator in Figure 1. $E_i(z)$ is the error of the i-th quantiser}
\end{figure}
and \(q_k \) are the coefficients of the FIR filter \(Q(z) \); that is, \(Q(z) = \sum q_k z^{-k} \).

The reformulation can be done as follows [14]. Let

\[
p_i = r_i \exp(j\alpha_i) (i = 0, 1, ..., L - 1)
\]

be the poles of the NTF, that is, the roots of \(D(z) \), where \(r_i \) and \(z_i \) are the modulus and the phase of \(p_i \), respectively. Then,

\[
H(z) = \left[(1 - z^{-1})^L - D(z) \right] / \prod_{i=0}^{L-1} (1 - p_i z^{-1})
\]

(9)

can be derived from (2). Every denominator term can now be transformed as

\[
\frac{1}{(1 - p_i z^{-1})} = \frac{(1 - p_i^N z^{-N})}{(1 - p_i z^{-1}) (1 - p_i^N z^{-N})}
\]

(10)

where \(p_i^N \) is the \(N \)-th power of \(p_i \). The term \((1 - p_i^N z^{-N}) \) can be factorised by means of their roots \(p_{ik} \) as

\[
(1 - p_i^N z^{-N}) = \prod_{k=0}^{N-1} (1 - p_{ik} z^{-1});
\]

\[
p_{ik} = r_i \exp\left(j\alpha_i + \frac{j2\pi k}{N}\right)
\]

(11)

Note that \(p_{i0} = p_i \). Now, substituting Equation (11) in the numerator of (10), the terms \((1 - p_i z^{-1}) \) can be cancelled. As a result,

\[
\frac{1}{(1 - p_i z^{-1})} = \frac{\prod_{k=0}^{N-1} (1 - p_{ik} z^{-1})}{(1 - p_i^N z^{-N})}
\]

(12)

Finally, substituting (12) in (9), Equation (5) can be obtained, being

\[
Q(z) = \left[(1 - z^{-1})^L - D(z) \right] \prod_{i=0}^{L-1} \prod_{k=1}^{N-1} (1 - p_{ik} z^{-1})
\]

\[
P(z) = \prod_{i=0}^{L-1} (1 - p_i^N z^{-1})
\]

(13)

The polynomials in (13) can be evaluated using numerical-computing programs like Matlab®. In practice, the NTF (Butterworth, Chebyshev...) is a rational function with real coefficients, so all poles are complex conjugates except for \(L \) odd, for which there is one additional real pole. As long as \(H(z) \), obtained from (2) or (5), is also a rational function with real coefficients, in spite of the fact that the roots \(p_{ik} \) are complex numbers, the resulting coefficients of \(Q(z) \) and \(P(z) \) must be real numbers. Then, the imaginary terms are necessarily cancelled. In any case, if both polynomials are to be computed using real numbers, the expressions in (13) can be modified, as shown in Appendix I.

3 | COEFFICIENT Rounding

Let us now show an example of a third-order single-bit modulator \((L = 3) \) for the case \(N = 2 \). The NTF chosen is a Butterworth high-pass transfer function with a normalised cutoff frequency \(f_c \) (for a sampling rate \(f_s = 2 \) Hz) \(f_c \). As the cutoff frequency increases, the quantisation noise is more abruptly attenuated at low frequencies, but on the other hand, it is amplified with greater gain at high frequencies. The high-frequency noise could overload the quantiser (making the modulator more prone to instability), and the maximum achievable amplitude of the input signal would decrease [5]. The dynamic range (i.e., the difference in decibels between the maximum input amplitude and the amplitude where the signal-to-noise-and-distortion ratio—SNDR—is 0 dB) has been obtained from simulations of the EF-SDM architecture for different values of \(f_c \). The results are shown in Figure 3. The value \(f_c = 0.16 \) Hz represents a good trade-off between signal swing and modulator performance.

The transfer function poles are located in \(p_0 = 0.5914 \), and \(p_{1,2} = 0.7062 \pm j 0.3362 \). From these floating-point quantities, the derived coefficients of polynomials in (13) will be also floating-point numbers, and therefore they must be codified with a large number of bits. As a consequence, digital implementation of the resulting architecture will be extremely complex or even unfeasible at high frequencies. Some kind of rounding is necessary to derive coefficients with only a few bits different to zero so the multipliers, which implement the product of a coefficient with its corresponding signal, can be replaced by a few adders.

TI architectures are very prone to mismatch in the gain between the \(N \) parallel paths, and also to deviations in the implemented transfer functions from their theoretical expressions [10]. In an analogue realisation, mismatch can be produced by tolerances in the components (resistors, capacitors...) or by non-linear effects in the amplifiers (finite DC gain, speed limitations...). In a digital implementation, these deviations come from coefficient rounding.

Figure 4 shows the NTFs for the floating-point (ideal) and rounded coefficients. The ideal NTF is evaluated from (1) for the poles given above. The rounded-coefficient NTF is calculated from the polynomials given in (13) whose coefficients are firstly calculated in floating-point format from the poles given above and secondly rounded to 11 bits\(^1\) (the weights of the most and least significant bits being 1 and 2\(^{-10} \), respectively). Finally, the NTF is calculated as \(1 + H(z) \), where \(H(z) \) is given by (5). As expected, the ideal NTF falls at low frequencies at a rate of \(-60\) dB/dec. Unfortunately, rounding shifts the original zeros at \(z = 1 \) to the values \(z_0 = 0.9403 \), and

\(^1\)This number has been arbitrarily chosen for the sole purpose of illustrating how rounding affects the NTF.
z_{1,2} = 1.0297 \pm 0.0501. In consequence, the NTF does not asymptotically fall to \(-\infty \text{ dB}\) and remains flat about \(|1 - z_0| \times |1 - z_1|^2\) (approximately \(-50 \text{ dB}\)) at low frequencies.

To guarantee that the original zeros will remain at \(z = 1\) after rounding, we can proceed as follows. The poles of the original NTF given in (1) are rounded to the lowest possible resolution without compromising stability and performance. The new denominator of the NTF is recalculated from the rounded poles, \(p_k^{(R)}\); that is,

\[
D_R(z) = \prod_k (1 - p_k^{(R)}z^{-1}); k = 1, \ldots, L
\]

Finally, the polynomials \(Q(z)\) and \(P(z)\) are calculated from (13) using the rounded poles and \(D_R(z)\). In this way, \(H(z)\) is calculated from (5) and the NTF, which is equal to \(1 + H(z)\), is given by (1), as long as \(D(z)\) is replaced by \(D_R(z)\). As a consequence, the \(L\) zeros are maintained at \(z = 1\).

4 | SIMULATION RESULTS

Following the procedure given above, simulations show that rounded poles with only 2-bit resolution are enough to guarantee the stability and performance of the resulting TI modulator. Then, the original poles \((p_0 = 0.5914, p_{1,2} = 0.7062 \pm j 0.3362)\) are rounded to \(p_0^{(R)} = 0.5, p_{1,2}^{(R)} = 0.75 \pm j 0.25\). The polynomials in (13) can be calculated using \(p_k^{(R)}\) and \(D_R(z)\). The resulting coefficients are shown in the second column of Table 1. An additional 7-bit rounding can be done to them to obtain the third column of Table 1. Note that only the coefficients \(q_6\) and \(p_3\) are affected by this second rounding. Consequently, the maximum number of non-zero bits was limited to three, which simplifies the digital implementation of the filters.

Once \(Q(z)\) and \(P(z)\) are known, the PD of \(H(z)\) can be obtained from (6)–(7), and the filter bank components can be represented as fractional functions; that is,

\[
\bar{H}(z) = \left[H_{\bar{y}}(z) \right] = \left[\frac{N_{\bar{y}}(z)}{P(z)} \right]
\]

where

\[
\begin{align*}
N_{11}(z) &= q_2z^{-1} + q_4z^{-2} + q_6z^{-3}; & N_{22}(z) &= N_{11}(z) \\
N_{12}(z) &= q_1 + q_3z^{-1} + q_5z^{-2}; & N_{21}(z) &= z^{-1}N_{12}(z)
\end{align*}
\]

(16)

Figure 5 depicts the amplitude response of the floating-point, only pole rounding, and double-rounding implementations of the NTFs. The last two NTFs have been calculated using the coefficients given in the second and third columns, respectively, of Table 1.

$H(z)$, where $H(z)$ is given by (5), their three zeros are placed at $z = 1$ (the additional rounding hardly affects performance in this case), and there is an attenuation loss of approximately 2 dB at low frequencies compared with the ideal NTF. As shown in Figure 5, the difference between both rounded NTFs is not appreciable.

Time-domain simulations of the EF modulator (Figure 1) and its double-rounded TI (Figure 2) implementations, clocked at the rates f_i and $f_i/2$, respectively, are performed using MATLAB® & Simulink® for the third-order single-bit SDM with a cutoff normalised frequency of 0.16, which is the same used in the examples discussed previously. The original poles of the Butterworth NTF have been used for the EF modulator implementation, and the double-rounded coefficient (third column in Table 1) for that of the TI. The resulting SNDR curves are shown in Figure 6, where the noise power has been calculated in a bandwidth of $f_i/64$ (OSR = 32). Both curves match very well. The achieved DR values are 67.8 and 68.5 dB, which correspond to effective numbers of 11 and 11.12 bits for the EF and TI architectures, respectively. For sake of comparison, the second-order SDM has also been simulated with an OSR of 32 and $NTF = (1 - z^{-1})^2$. The third-order modulators outperform the second-order one by approximately 9 dB (1.5 effective bits). Finally, the power spectral densities of both third-order architectures are shown in Figure 7 for an input tone with -4 dB amplitude (full scale) and 0.0062 Hz frequency (approximately one-fifth of the signal bandwidth). The vertical dashed line marks the limit of the

Filter coefficients	2-bit pole rounding	2-bit pole and 7-bit coefficient rounding
$Q(z)$		
q_1	-1.00000000	-1.000000
q_2	-0.01100000	-0.011000
q_3	$+1.00110000$	$+1.001100$
q_4	$+0.10001100$	$+0.100011$
q_5	-0.01110000	-0.011100
q_6	-0.00110111	-0.001110
$P(z)$		
b_0	$+1.00000000$	$+1.000000$
b_1	-1.01000000	-1.010000
b_2	$+0.10100100$	$+0.101001$
b_3	-0.00011001	-0.0001110

Note: Second column: coefficients obtained from rounded poles. Third column: Coefficients of the second column with additional rounding.

Figure 5 Third-order Butterworth noise transfer functions for the ideal, 2-bit rounded poles and additional rounded coefficients (2-bit pole and 7-bit coefficient rounding) cases

Figure 6 Signal-to-noise-and-distortion ratio (SNDR) curves for the error-feedback with ideal coefficient (Figure 1) and double-rounded time-interleaving (Figure 2) architectures
signal bandwidth (0.0313 Hz). The SNDR values are 62.41 and 61.65 dB, and the spurious free dynamic range values are 74.8 and 76.8 dB, for the ideal EF and the double-rounded TI modulators, respectively.

5 | CONCLUSIONS

The transformation of an EF SDM into its TI counterpart is not a straightforward task when the NTF is of the IIR type. This kind of modulator finds application as a DAC in the transmitters of increasingly demanding communication standards. A systematic procedure for this transformation is presented here for a single-bit modulator. To reduce the complexity of digital implementation of the TI SDM, the coefficients of the transfer functions are rounded to a low resolution (so that only a few bits are different to zero). A method to reach this objective is also proposed based on pole rounding. As a result, the rounded NTF retains its zeros at z = 1. The case study selected for this analysis (the two-phase decomposition of a third-order Butterworth high-pass NTF) shows that TI modulators with an IIR NTF can be implemented with low-resolution coefficients. The method proposed here can be also applied to EF modulators with the zeros of its NTF distributed in the signal band. In this case, the results obtained with the technique proposed for rounding coefficients could cause a loss in performance, which must be carefully monitored.

ACKNOWLEDGEMENT

This project has been funded by the Spanish Ministry of Science, Innovation and Universities in the project eMIDHE (RTI2018-099189-B-C21)

ORCID

Francisco Colodro https://orcid.org/0000-0001-6108-6117
Juan Maria Martinez-Heredia https://orcid.org/0000-0002-0459-6839
Jose L. Mora https://orcid.org/0000-0002-1186-8150
Antonio Torralba https://orcid.org/0000-0001-6887-6146

REFERENCES

1. Li, H., et al.: A 21-GS/s single-bit second-order delta-sigma modulator for FPGAs. IEEE Trans. Circuits Syst. 66, 482–486 (2019). https://doi.org/10.1109/TCSII.2018.2855962
2. Bhide, A., Alvandpour, A.: An 11 GS/s 1.1 GHz bandwidth interleaved ΔΣ DAC for 60 GHz radio in 65 nm CMOS. IEEE J. Solid-State Circuits. 50(10), 2306–2318 (2015). https://doi.org/10.1109/JSSC.2015.2460375
3. Tanios, M., et al.: An FPGA-based all-digital transmitter with 9.6 GHz 2nd order time-interleaved delta-sigma modulation for 500 MHz bandwidth. In: IEEE MTT-S International Microwave Symposium Digest, pp. 149–152. Honolulu (2017)
4. Dinis, D.C., et al.: A fully parallel architecture for designing frequency-agile and real-time reconfigurable FPGA-based RF digital transmitters. IEEE Trans. Microwave Theory Tech. 66(3), 1489–1499 (2018). https://doi.org/10.1109/TMTT.2017.2764451
5. Norsworthy, S.R., Schreier, R., Temes, G.C.: Delta-Sigma Data Converters: Theory, Design and Simulation. IEEE Press, New York (1997)
APPENDIX I

Transformation of Equation (13)

If the pole \(p_i \) is real (\(\theta_i = 180^\circ \)), then it can be stated from the second equation of (11) that \(p_i \) and \(p_i N + k \) are conjugates; they can be grouped, and (12) can be expressed as

\[
\frac{1}{1 - p_i z^{-1}} = \begin{cases}
\prod_{k=1}^{(N-1)/2} \left(1 - 2 \Re \{p_i k \} z^{-1} + |p_i k|^2 z^{-2} \right); & N \text{ odd} \\
\prod_{k=1}^{(N-2)/2} \left(1 + p_i z^{-1} \right) \prod_{k=1}^{(N-1)/2} \left(1 - 2 \Re \{p_i k \} z^{-1} + |p_i k|^2 z^{-2} \right); & N \text{ even}
\end{cases}
\]

\[(1 - p_i z^{-1}) \prod_{k=1}^{(N-1)/2} \left(1 - 2 \Re \{p_i k \} z^{-1} + |p_i k|^2 z^{-2} \right); \quad N \text{ odd} \]

\[(1 + p_i z^{-1}) \prod_{k=1}^{(N-2)/2} \left(1 - 2 \Re \{p_i k \} z^{-1} + |p_i k|^2 z^{-2} \right); \quad N \text{ even} \]

(17)

where as usual, \(\Re(x) \) is the real component of \(x \), and \(|x| \), its modulus. On the other hand, if \(p_q \) and \(p_r \) are conjugates, every pole \(p_q k \) is a conjugate of \(p_r N + k \). Again, they can be grouped, and

\[
\frac{1}{1 - p_q z^{-1}} \prod_{k=1}^{N-1} \left(1 - 2 \Re \{p_q k \} z^{-1} + |p_q k|^2 z^{-2} \right) \]

\[\prod_{k=1}^{N-1} \left(1 - 2 \Re \{p_q k \} z^{-1} + |p_q k|^2 z^{-2} \right) \]

(18)

Summarising, for NTFs with real coefficients, the expressions in (17) and (18) can be substituted in (9), and \(H(z) \) can be expressed in (5) as a rational function with real coefficients.

How to cite this article: Colodro, E., et al.: Time-interleaving design of error-feedback sigma-delta modulators with infinite impulse response noise transfer function. IET Circuits Devices Syst. 15(5), 448–454 (2021). https://doi.org/10.1049/ed2.12040