Materials Research Express

PAPER
Graphene quantum dots as shallow traps in a high-k polymer matrix for bipolar resistive switching

Yiwen Liu, Yongfei Wang ∗, Xiao Li and Zhizhi Hu

Key Laboratory for Functional Material School of Chemical Engineering University of Science and Technology Liaoning 185 Qianshan Zhong Road, Anshan 114051, People’s Republic of China

∗ Authors to whom any correspondence should be addressed.

E-mail: wyf8307@ustl.edu.cn and lixiao@ustl.edu.cn

Keywords: graphene quantum dot, resistive switch, cyanoethylated pullulan (CEP), charge trapping, space-charge-limited current, non-volatile memory

Abstract
Graphene quantum dots (GQDs) have broad applications in electronic and photonic devices. As a typical zero-dimensional material, a GQD has a stronger quantum confinement effect than do two-dimensional graphene or one-dimensional graphene nanoribbons, and provide efficient charge trapping sites, which are useful in nonvolatile memory devices. Here, we report the fabrication of 30-nm-thick GQD-blended high-k polymer cyanoethylated pullulan (CEP) thin films sandwiched between an Al top electrode and an indium tin oxide (ITO) bottom electrode. Bipolar resistive switching behavior was observed with a low onset (−1.7 V) and offset (1.3 V) voltages. The resistive switching behavior originates from shallow traps that induce space-charge-limited current conduction. The morphology, crystallinity and photoluminescence of the GQDs were also studied by atomic force microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The CEP/GQD blended films may have applications in nonvolatile resistive memory devices.

Introduction
Resistive random access memory (ReRAM) has potential applications in non-volatile memory (NVM) devices. It has exceptional scalability to nanometer feature size [1], high switching endurance [2, 3], low power consumption [4] and fast operation speed of nanoseconds [5, 6], and is therefore regarded as a substitute for flash memory. Inorganic materials with high dielectric constant k such as NiO [7], TiO2 [8], HfO2 [9], which have been used as gate dielectric materials to supersed conventional silicon dioxide to achieve continuous complementary metal–oxide–semiconductor (CMOS) scaling. However, organic storage media, which usually have low fabrication cost and high mechanical flexibility, have been assessed as promising materials for application in NVM devices. Hybrid designs combing superiorities of organic and inorganic materials have been used for ReRAM applications [10, 11].

A typical polymer-based memory device consists of a nanoparticle (NP)-incorporated polymer layer sandwiched between two metal electrodes. Various metallic NPs (e.g., Au, Ag) [12] and semiconductor quantum dots (QDs) (e.g., GeSe, core–shell ZnSe/ZnS, PbS and MoS2) [13–16] have been evaluated. Compared to conventional NPs, graphene quantum dots (GQDs) have unique properties such as abundant availability, non-toxicity, high solubility, size-dependent and excitation-dependent optical response, tunable bandgap due to chemical functionalization, electrochemical properties, and charge storage capabilities [17–19], which suggest that GQDs may have application in data storage devices. As the polymer thin film matrix, several low-k polymeric materials have been applied, such as poly(methylmethacrylate) (PMMA, k∼2.3) [20, 21], polyvinylcarbazole (PVK, k∼3) [22, 23], polystyrene (PS, k∼2.5) [24, 25], poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS, k∼3) [26, 27]. However, utilization of high-k polymers for this purpose has not yet been demonstrated, which induce much improved build-in electrical field when similar thickness and voltage bias are applied [28–32].
In this paper, we use a blended thin film of GQD and a high-k polymer cyanoethylated pullulan (CEP) in an Al/GQD-CEP/ITO sandwich structure (figure 1, left). The GQD serve as shallow traps in the thin film to induce SCLC conductance. Resistive switching (RS) behavior and its mechanism are studied. The morphological properties of GQDs and the thin films are also investigated.

Experimental

Solutions were prepared in N,N-dimethylformamide (DMF) with 1 wt.% CEP (Mw ~ 489,000, Shin Etsu Chemical Co.) and with or without GQDs (synthesis process according to literature[28]). The solutions were spin-coated onto pre-cleaned indium tin oxide (ITO)-coated glass pieces at 3000 rpm for 60 s, then baked in a vacuum oven for 1 h at 80 °C. Al top electrodes were deposited by evaporation through a shadow mask to make a circular dot area of 8.02 × 10⁻³ cm².

Dielectric film thickness was measured by cutting the device with a focused ion beam (FIB) and observing the cross-section of the structure using a scanning electron microscope (SEM). The thicknesses of CEP/GQD film and the Al top contact film was about 30 nm and 100 nm, respectively. Surface morphology was studied using an Atomic Force Microscope (AFM; Dimension™ 3100 microscope, Digital Instruments). High-resolution Scanning Transmission Electron Microscope (STEM) and Transmission Electron Microscope (TEM) images with were obtained using a TEM (JEOL JEM-2100FS) located at the National Institute for Nanomaterials and Technology in Pohang, South Korea. Raman spectroscopy was performed using a confocal Raman microscope (Alpha 300R, WITEC). The electrical transport properties were tested using a probe station in an N₂-filled glove box. The current-voltage (I–V) data were collected using a Keithley 4200 semiconductor parameter analyzer.

Results and discussion

GQDs (figure 1, top right) are single- or few-layer graphene fragments with nanometer size. We used GQDs that have abundant –COOH groups on their side edges; these groups promote GQD solubility in polar solvents and
provide trap sites for charge storage and release. CEP (figure 1, bottom right) is an insulating polymer with $k \approx 19$ at 1 kHz [33], which makes it a promising candidate gate dielectric for organic field-effect transistors [34, 35]. It is usually synthesized by substituting cyanoethyl ethyl for the proton in the hydroxyl functional groups of polysaccharide. The cyanoethyl group in the side chain of the polysaccharide in CEP shows a large polarity and thus leads to a high k.

AFM images of GQDs dispersed on cleaned 300-nm SiO$_2$ coated silicon wafer were captured to image the height and roughly the size of the GQDs (figure 2(a)). The cross-sections of two typical GQDs were profiled; their estimated heights were ~1.27 nm (figure 2(b)) and ~1.49 nm (figure 2(c)), respectively. This is slightly higher than that of single-layer graphene [36], and may be due to the rough edges that have dangling functional groups.

To further investigate microstructural morphology, 100-times diluted GQD solution was dispersed onto a polycarbon-coated copper grids and vacuum pumped for 10 h at 40 °C. The GQDs had uniform size, with diameters in the range of 2–6 nm (average ~4 nm) with lattice spacing of ~0.21 nm (figure 3(a), figure S2 available online at stacks.iop.org/MRX/8/056304/mmedia). At high magnification the GQDs are approximately circular (figure 3(a)), and show clear patterns at highest magnification (figure 3(b)), which indicate that individual GQDs are highly crystalline.

Raman spectroscopy (figure 4) was used to analyze the GQDs, with chemical-vapor-deposited (CVD) graphene as a reference [37]. The CVD-grown graphene had a negligible D peak, which indicates that the graphene sheet had few defects; this sample also clear 2D peak at ~2685 cm$^{-1}$ that is caused by second-order zone boundary photons, a G peak at ca. 1590 cm$^{-1}$ that is caused by in-plane optical vibration. In contrast, in the GQD samples had abrupt D peak because of abundant functional groups and defects on the edges; due to this
variation at the edges, the 2D peak of GQDs was drastically broadened. A slight upshift in the D band of the GQD in comparison with the CVD-grown graphene reference implies p-type doping, probably by COOH and other functional groups (figure S1).

To investigate the optical properties of the GQDs, PL spectra were recorded after activation with various incident-light wavelengths (figure 5). The PL intensity peaks shifted to longer wavelengths as the excitation wavelengths were increased from 400 nm to 500 nm in 50-nm steps; this trend indicates that the as-prepared GQD exhibits excitation-dependent photoluminescence behavior, which is an important feature of many fluorescent carbon-based nanomaterials. PL intensity increased with the excitation wavelength. PL intensity is highly sensitive to various factors; mixed graphene fragments of different sizes may exhibit different excitation and emission spectra, because the gap decreases as QD size increases. The thickness of graphene layers also influences the spectroscopic properties of GQDs [38].

To investigate the electrical behavior of Al/CEP-GQD/ITO sandwiched structure (figure 6(a)), I–V plots were recorded during voltage sweep cycles between 2 V and −2 V (figure 6(b)). During the negative bias on Al top electrode sweeps from 0 V to −2 V, a sudden increase in current was observed at a voltage of approximately −1.7 V. This change indicates transition from a high resistance state (HRS) to a low resistance state (LRS); this is known as a set process. When the bias was swept back from −2 V to 0 V, the device stayed in LRS. During a positive sweep from 0 V to 2 V, an abrupt decrease in current occurs at ∼1.3 V. This change indicates that the
device switched from LRS to HRS; this is known as a reset process. The LRS was maintained as the bias returned from 2 V to 0 V. Therefore, the device displays bipolar RS characteristics with a set voltage ~ 1.3 V and a reset voltage ~ -1.7 V. These I–V plots of Al/GQD-CEP/ITO memory device demonstrate typical bipolar resistive switching behavior. The process could be repeatedly operated with negligible variation in the set and reset voltages. At a reading voltage of 0.3 V, on-off current ratio of 100 was obtained.

To investigate the resistive switching mechanism in Al/CEP-GQD/ITO sandwiched structure, the negative parts of the I–V curve were re-plotted on a double-logarithmic scale (figure 6(c)). Several models have been presented to understand the carrier transport in electrode-insulator (or semiconductor)-electrode sandwich
structure, such as Ohmic conduction, Thermionic emission, Frenkel-Poole emission, and Space-Charge-Limited Current (SCLC) conduction [39]. Each model has distinctive I–V characteristic, which can be distinguished by the isothermal I–V correlation [40], for example, $I \propto V$ for Ohmic conduction, $\ln(J/V^2) \propto V^{1/2}$ for Thermionic emission, and $\ln(J/V) \propto V^{1/2}$ for Frenkel-Poole emission. For SCLC model, there exists different stages: for trap-free SCLC, the I–V characteristic can be described by Child’s Law: $J = \varepsilon \mu V^2 / 8d^3$, where ε is the insulator dynamic permittivity, μ is the carrier mobility, and d is the insulator thickness.

Based on the fitting results, the J–V characteristics in HRS follow linear Ohmic behavior at low bias, with the addition of a quadratic term at higher bias ($I \propto aV + bV^2$), which is typical of an d insulator with shallow traps and SCLC injection [41–43]. At low applied bias, Ohm’s law dominates the I–V characteristics because the concentration of carriers injected from the electrode is negligible compared with the concentration of thermally-generated free electrons. As the applied bias increases, the number of injected carriers becomes large and they are captured by shallow charge traps in the GQD, so the current enters the shallow-trapping field region. As the applied bias is increased further, the injected carrier density becomes large enough to fill all trapping sites in GQDs, so additional injected carriers at still higher bias contribute directly to conduction, thereby resulting in a significant increase in currents, so the J–V curve follows Child’s Law ($I \propto V^2$), as shown in the high voltage HRS region (the slope is ~2.04). For LRS at low voltage, current depends linearly on voltage with a slope of ~1.02; this slope indicates that the I–V curve obeys Ohmic conduction ($I \propto V$). In summary, the carrier transport mechanism experiences the process of (1) Ohmic conduction, (2) SCLC conduction with shallow traps, (3) SCLC conduction with filled traps (4) Ohmic conduction. Thus, the bipolar switching behavior can be explained by shallow trap-controlled SCLC model due to the charge trapping/de-trapping process in this GQD-based nanocomposite.

Conclusion

Resistive switching behavior was observed in a CEP polymer/GQD blended 30-nm-thick film. This is a first evaluation of high-κ polymer cyanoethylated as the polymer matrix for resistive switching devices. GQDs with uniform size distribution provided sufficient shallow traps for nonvolatile resistive switches. The mechanism of the as-fabricated memory device originates from charge trapping and de-trapping in GQD-based nanocomposite. The morphology, crystallinity, Raman spectroscopy and photolumenecence properties of the GQDs were characterized in detail. This work may extend the application of GQDs for memristive devices.

Acknowledgments

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 21601076), the Natural Science Foundation of Liaoning Province (No. 2019-ZD-0266).

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

Yongfei Wang @ https://orcid.org/0000-0003-3369-5518

References

[1] Zhang Z P, Wu Y, Wong H S P and Wong S S 2013 Nanometer-scale HfOx RRAM IEEE Electron Dev. Lett. 34 1005–7
[2] Lee M J et al 2011 A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2+x bilayer structures Nat. Mater. 10 625–30
[3] Yang J J, Zhang M–X, Strachan J P, Miao F, Pickett M D, Kelly R D, Medeiros-Ribeiro G and Williams R S 2010 High switching endurance in TaOx memristive devices Appl. Phys. Lett. 97 232102
[4] Wu Y, Yu S M, Lee B and Wong P 2011 Low-power T/NiO/Pt resistive switching device with sub-20μA switching current and gradual resistance modulation J. Appl. Phys. 110 094104
[5] Choi B J, Torrezan A C, Norris K J, Miao F, Strachan J P, Zhang M X, Ohlberg D A A, Kobayashi N P, Yang J J and Williams R S 2013 Electrical performance and scalability of Pt dispersed SiO2 nanometallic resistance switch Nano Lett. 13 3215–7
[6] Torrezan A C, Strachan J P, Medeiros-Ribeiro G and Williams R S 2011 Sub-nanosecond switching of a tantalum oxide memristor Nanotechnology 22 485203
[7] Seo S et al 2004 Reproducible resistance switching in polycrystalline NiO films Appl. Phys. Lett. 85 5655
[8] Wang W, Fujita S and Wong S S 2009 Reset mechanism of TiOx resistance–change memory device, IEEE Electron Dev. Lett. 30 733–5
[9] Yu S M, Chen H Y, Gao B, Kang J F and Wong H S P 2013, \(\text{H}_2\text{O}_2\)-based vertical resistive switching random access memory suitable for Bit-cost-effective three-dimensional cross-point architecture ACS Nano 7 2320–5

[10] Hwang B and Lee J S 2019 Recent advances in memory devices with hybrid materials Adv. Electron. Mater. 5 1800519

[11] Shan Y, Luyu Z, Guan X, Younis A, Yuan G, Wang J, Li S and Wu T 2018 Solution-processed resistive switching memory devices based on hybrid organic–inorganic materials and composites Phys. Chem. Chem. Phys. 20 23837–46

[12] Jin Z W, Liu G and Wang J Z 2013 Organic nonvolatile resistive memory devices based on thermally deposited Au nanoparticle AIP Adv. 3052113

[13] Kannan V and Phee J K 2011 Ultra-fast switching in solution processed quantum dot based non-volatile resistive memory Appl. Phys. Lett. 99 143504

[14] Wang Z, Wang Y, Yu J, Yang J, Zhou Y, Mao J, Wang R, Zhao X, Zheng W and Han S 2020 Type-I core–shell ZnSe/ZnS quantum dot based resistive switching for implementing algorithm Nano Lett. 20 5562–9

[15] Younis A et al 2020 Enhancing resistive switching performance and ambient stability of hybrid perovskite single crystals via embedding colloidal quantum dots Adv. Funct. Mater. 30 2002948

[16] Wang D, Ji F, Chen X, Li Y, Ding B and Zhang Y 2017 Quantum conductance in MoS\(_2\) quantum dots-based nonvolatile resistive memory device Appl. Phys. Lett. 110 093501

[17] Kou J, Li F S, Chen W and Guo T L 2013 Synthesis of blue light-emitting graphene quantum dots and their application in flexible nonvolatile memory Org. Electron. 14 1447–51

[18] Obreja A C, Cristea D, Mihalache I, Radoi A, Gavrila R, Comanescu F and Kusko C 2014 Charge transport and memristive properties of graphene quantum dots embedded in poly(3-hexylthiophene) matrix Appl. Phys. Lett. 105 083303

[19] Mitchell B, Siobhan J B and Thomas N 2014 Organic nonvolatile resistive memory devices with high K dielectric Polymer 55 11 145–52

[20] Son D I, Kim T W, Shim J H, Jung J H, Lee D U, Lee J M, Park W H and Choi W K 2010 Flexible organic bistable devices based on graphene embedded in an insulating poly(methyl methacrylate) polymer layer Nano Lett. 10 2441–7

[21] Huang T S, Su Y K and Wang P C 2008 Poly(methyl methacrylate) Dielectric Material Applied in Organic Thin Film Transistors Jpn. J. Appl. Phys. 47 3185

[22] Lai P Y and Chen J S 2009 Influence of electrical field dependent depletion at metal–polymer junctions on resistive switching of poly(n-vinylcarbazole) (PVK)-based memory devices Org. Electron. 10 1590–5

[23] D’Angelo P, Barra M, Cassinese A, Maglione M G, Vacca P, Minarini C and Rubino A 2007 Electrical transport properties characterization of PVK (poly N-vinylcarbazole) for electroluminescent devices Solid-State Electron. 51 123–9

[24] Ouyang Y J, Chu C W, Szmanda C R, Ma L P and Yang Y 2004 Programmable polymer thin film and non-volatile memory device Nat. Mater. 3 918–22

[25] Jung C, Maliaik G, Aidoskist T 2007 Pentacene-based thin film transistors with titanium oxide-poly(styrene)/poly(styrene) insulator blends: High mobility on high K dielectric films Appl. Phys. Lett. 90 062111

[26] Gomes H L, Benvenho A R V, de Leeuw D M, Colle M, Stallings P, Verbakel F and Taylor D M 2008 Switching in polymeric resistance random-access memories (RARMs) Org. Electron. 9 119–28

[27] Zhang S J, Li P F, Ma T, Zhao J J, Xu Y Y, Yang F C and Xiang Y Y 2010 Polyimides derived from 2-fluorene-9,9'-bis(4-aminophenyl)-spiro (fluorene-9,9’-xanthene) Polym. Chem. 1 485–93

[28] Xu W, Guo C and Rhee S W 2013 High performance organic field-effect transistors using cyanoethyl pullulan (CEP) high-k polymer cross-linked with trimethylolpropane triglycidyl ether (TTE) at low temperatures J. Mater. Chem. C 1 3955–60

[29] Xu W and Rhee S W 2010 Organic field-effect transistors with cross-linked high-k cyanoethylated pullulan polymer as a gate insulator Org. Electron. 11 1996–1004

[30] Lopinski G, Du N, Dubey G, Lefebvre J I, Li Z, Zou S and Malenfant P 2017 Cyanoethylated pullulan as a high-k solution processable polymer gate dielectric for SWCNT TTFs Org. Electron. 42 329–36

[31] Nketaia-Yawson B and Noh Y Y 2018 Recent progress on high-capacitance polymer gate dielectrics for flexible low-voltage transistors Adv. Funct. Mater. 28 1802201

[32] Chou Y H, Chiu Y C and Chen W C 2014 High-k polymer-graphene oxide dielectrics for low-voltage flexible nonvolatile transistor memory devices Chem. Commun. 50 3217–9

[33] Tamiguchi M and Kawai T 2004 Vertical electrochemical transistor based on poly(3-hexylthiophene) and cyanoethylpullulan Appl. Phys. Lett. 85 3298

[34] Xu W and Rhee S W 2009 Low-operating voltage organic field-effect transistors with high-k cross-linked cyanoethylated pullulan gate dielectrics J. Mater. Chem. 19 5250–7

[35] Xu W, Guo C and Rhee S W 2013 High performance organic field-effect transistors using cyanoethyl pullulan (CEP) high-k polymer cross-linked with trimethylolpropane triglycidyl ether (TTE) at low temperature J. Mater. Chem. C 1 3955–60

[36] Xu W, Lim T S, Seo H K, Min S Y, Cho H, Park M H, Kim Y H and Lee T W 2014 N-doped graphene field-effect transistors with enhanced electron mobility and air-stability Small 10 1999–2005

[37] Xu W, Seo H K, Min S Y, Cho H, Lim T S, Oh C Y, Lee Y and Lee T W 2014 Rapid fabrication of desirable large-scale-aligned graphene nanoribbons by electrohydrodynamic nanowire lithography Adv. Mater. 26 3454–69

[38] Shen J H, Zhu Y H, Yang X L and Li C Z 2012 Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices Chem. Commun. 48 3686–99

[39] Ling Q D, Liaw D J, Zhu C X, Chan D S H, Kang E T and Neo K G 2008 Polymer electronic memories: materials, devices and applications Prog. Polym. Sci. 33 917–78

[40] Shang D S, Wang Q, Chen L D, Dong R, Li X M and Zhang W Q 2006 Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag/\(La_2O_3/\text{ZnO}/\text{ZnS}\)/Pt heterostructures Phys. Rev. B 73 245427

[41] Lampert M A and Mark P 1970 Current Injection in Solids (New York, NY: Academic)

[42] Beck A, Bednorz J G, Gerber C, Rossel C and Widmer D 2000 Reproducible switching effect in thin oxide films for memory applications Appl. Phys. Lett. 77 139

[43] Song S H, Jang M H, Chung J, Jin S H, Kim B H, Huh S H, Yoo S, Cho Y H and Jeon S 2014 Highly efficient light-emitting diode of graphene quantum dots fabricated from graphite intercalation compounds Adv. Opt. Mater. 2 1016–23