Beta-2 Adrenergic Receptor (ADRB2) Gene Polymorphisms and the Risk of Asthma: A Meta-Analysis of Case-Control Studies

Si-Qiao Liang*, Xiao-Li Chen†, Jing-Min Deng*, Xuan Wei, Chen Gong, Zhang-Rong Chen, Zhi-Bo Wang

Department of Respiratory Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China

Abstract

Background and Objective: A number of studies have assessed the relationship between beta-2 adrenergic receptor (ADRB2) gene polymorphisms and asthma risk. However, the results are inconsistent. A meta-analysis that focused on the association between asthma and all ADRB2 polymorphisms with at least three case-control studies was thus performed.

Methods: A literature search of the PubMed, Embase, Web of Science, CNKI, and Wangfang databases was conducted. Odds ratios with 95% confidence intervals were used to assess the strength of associations.

Results: Arg16Gly, Gln27Glu, Thr164Ile, and Arg19Cys single nucleotide polymorphisms (SNPs) were identified in 46 case-control studies. The results showed that not all of the SNPs were associated with asthma in the overall population. Significant associations were found for the Arg16Gly polymorphism in the South American population via dominant model comparison (OR = 1.754, 95% CI = 1.179–2.609, I² = 16.9%, studies = 2, case = 314, control = 237) in an analysis stratified by ethnicity. For the Gln27Glu polymorphism, a protective association was found in children via recessive model comparison (OR = 0.566, 95% CI = 0.417–0.769, I² = 0.0%, studies = 11, case = 1693, control = 502) and homozygote genotype comparison (OR = 0.610, 95% CI = 0.434–0.856, I² = 0.0%, studies = 11, case = 1693, control = 1502), and in adults via dominant model comparison (OR = 0.864, 95% CI = 0.768–0.971, I² = 46.9%, n = 18, case = 3160, control = 3433).

Conclusions: None of the ADRB2 gene polymorphisms were reproducibly associated with a risk of asthma across ethnic groups in the general population.

Introduction

Asthma, which is characterized by variable airway obstruction caused by bronchial hyper-reactivity and airway inflammation, is one of the most common chronic respiratory diseases worldwide. The prevalence of asthma varies worldwide, ranging from 0.2% in China to 21.0% in Australia [1]. Recent studies show that asthma is a genetically related disease, with heritability estimates varying between 48% and 79% [2]. An increasing number of studies are focusing on asthma genetics research. Therefore, the identification of asthma susceptibility genes contributing to asthma pathogenesis is important. Candidate-gene linkage studies, positional cloning, and genome-wide association studies (GWAS) have already identified a large number of asthma susceptibility genes, and one of these, the beta-2 adrenergic receptor (ADRB2, also known as β2-AR) gene, has been extensively studied.

The β2-AR (ADRB2), a member of the G protein-coupled receptor (GPCR) family, is abundantly expressed on bronchial smooth muscle cells, and specifically binds and is activated by a class of ligands known as catecholamines, and epinephrine in particular [3]. The activation of β2-AR can result in the expansion of the small airways, and thus β2-AR agonists are used in first-line bronchodilator therapy in asthma [4]. The β2-AR, which can directly influence the effect of beta-2 adrenergic bronchodilator, is encoded by an intronless gene located on chromosome 5q31–32 [5]. It has been reported that ADRB2 variants are associated with airway hypersensitivity, asthma severity, and the response to medications [6,7]. Several single nucleotide polymorphisms (SNPs), including Arg16Gly (A46G, rs1042713), Gln27Glu (C79G, rs1042714), and Thr164Ile (C491T, rs1800888) have been identified in the coding region of the ADRB2 gene [8]. Replacement of the base may not only alter the gene expression and function of the β2-AR, it may also alter the response to β2-AR agonist therapies and even increase the risk of asthma.

To date, various case-control studies have been conducted to investigate the relationship between ADRB2 gene polymorphisms and asthma risk in different population groups [9–13], but the results have been conflicting and inconclusive. One reason for this inconsistency may be the typically small sample size of the individual studies, which may mean that there was insufficient
ADRB2 Polymorphisms and Asthma: A Meta-Analysis

Inclusion and exclusion criteria

Studies that fulfilled the following criteria were incorporated into the meta-analysis: (1) case-control studies that evaluated the association between ADRB2 gene polymorphisms and risk of asthma; (2) the genotype distributions or allele frequency of each study was available or sufficient data could be extracted for calculating the odds ratio (OR) with 95% confidence interval (CI). For overlapping studies, the one with the most suitable data was selected. Studies were only excluded if they did not meet these inclusion criteria.

Data extraction

The basic information extracted for each study was as follows: name of first author, publication year, country and ethnicity of case control, age of case, asthma definition, sample size, and genotype frequencies in cases and controls.

Statistical analysis

Pearson’s chi-square test was performed to evaluate whether the genotype distribution deviated from Hardy-Weinberg equilibrium (HWE) in the control group. Significantly deviating samples were re-assessed by 1000 time Montecarlo permutation analysis using the freely available software at http://krunch.med.yale.edu/hwsim. The OR with 95% CI was used to assess the strength of the association between ADRB2 polymorphism and asthma risk. The pooled OR for ADRB2 polymorphisms and asthma risk was performed for four genetic model comparisons (dominant model comparison [AA+Aa vs. aa], recessive model comparison [AA vs. Aa+aa], homozygote genotype comparison [AA vs. aa] and allele comparison [A vs. a]) to estimate the risk. In the current study, the aa genotype was a wild-type, while the AA genotype was a mutant. The Q-test and F² test were used to assess the effect of heterogeneity. Heterogeneity was considered statistically significant when Q-test (P<0.10) or F²>50%. If heterogeneity was indicated, data were combined according to the random-effects model; when the Q-test (P>0.10) or F²<50%, the fixed-effect model was used. Stratified analysis was performed by 1000 time permutation HWE P-value, ethnicity and case age to further explore HWE-specific, ethnicity-specific and age-specific effects. Sensitivity analysis was conducted by sequentially excluding one study at a time to examine the effect of each study on the combined result. Potential publication bias was investigated through the funnel plot and further assessed using Egger’s test. A cumulative analysis was conducted after sorting by publication date. All statistical analyses of this meta-analysis were performed using the computer software STATA 11.0 (State Corp., College Station, TX, USA).

Results

Characteristics of included studies

After a comprehensive search of the PubMed, Embase, Web of Science, Wanfang, and CNKI databases, 1154 articles were identified, 948 of which were subsequently excluded because they were not relevant to ADRB2 polymorphisms and asthma risk. Thus, 206 relevant records were identified. Of these, 121 were excluded due to the lack of a case-control design. Of the remaining 85 articles, 26 were excluded due to overlapping data. Therefore, 59 articles were identified for further study. Of these 59 articles, four [17–20] were excluded as they were conference abstracts, seven [12,21–26] did not report useable data, and one [27] was excluded because the full text was not available. In addition, one article [28] was excluded as it was in Polish. Ultimately, 46 articles [8–11,13,29–69] met the inclusion criteria (Figure 1). The

Materials and Methods

Literature search

A literature search of the PubMed, Embase, Web of Science, Chinese National Knowledge Infrastructure (CNKI), and Wangfang databases (the last search was conducted on April 15, 2013) was conducted. The search strategy was as follows: “asthma” or “asthmatic” and “β2-adrenergic receptor” or “ADRB2” or “β2-AR” in combination with “polymorphism,” “mutation,” or “variant”. The searches were performed without restrictions with regard to publication date and language. Articles that were not published in English or Chinese were subsequently excluded.

Figure 1. Flow diagram of included/excluded studies.
doi:10.1371/journal.pone.0104488.g001
Table 1. Detailed information of each article in the meta-analysis.

First author	Year	Country	Ethnicity	Age group	Case age (year)	Control age (year)	Source of controls	Genotyping method	Cases	Control	Asthma definition
Cui LY	2007	China	Asia	Adult	21–69	22–69	Population	AS-PCR/PCR-CTPP	72	60	Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)
Ye WX	2011	China	Asia	Adult	18–57	22–60	Population	AS-PCR	31	37	Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)
Zhang XY	2008	China	Asia	Children	1–17	2–13	Population	PCR-RFLP	217	50	The guidelines of treatment for bronchial asthma in children
Wang W	2004	China	Asia	Adult	17–72	18–71	Hospital	SSP-PCR	123	89	Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)
Yang Z	2012	China	Asia	Children	7.7±2.6	7.69±2.55	Hospital	Sequencing	212	52	Guidelines of prevention and treatment of bronchial asthma in children (China)
Feng DX	2004	China	Asia	Adult	25–63	28–63	Population	AS-PCR	74	39	Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)
He XQ	2012	China	Asia	Adult	42.5±16.2	43.39±20.7	Hospital	Sequenom MassARRAY	171	148	Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)
Xie Y	2008	China	Asia	Children	5.0±2.8	5.30±3.40	Hospital	SSP-PCR	57	62	The guidelines of treatment for bronchial asthma in children
Xing J	2001	China	Asia	Adult	20–66	25–46	Population	AS-PCR	55	38	Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)
Liu L	2009	China	Asia	Adult	39.7±5.7	40.9±6.0	Population	Sequencing	120	120	Guidelines of prevention and treatment of bronchial asthma
Dai LM	2002	China	Asia	Adult	42±7	46±8	Hospital	Sequencing	87	94	-
Shi XH	2008	China	Asia	Both	14–66	18–56	Hospital	PCR-RFLP	48	48	Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)
Liao W	2001	China	Asia	Children	1.2–11.7	2.5–13.2	Population	PCR-RFLP	50	50	The Chinese Medical Association Respiratory Diseases Asthma Study Group
Tuerxun KLBN	2007	China	Asia	Adult	38.35±9.17	18–71	Population	SSP-PCR	76	89	Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)
Zheng BQ	2012	China	Asia	Children	0–14	0–14	Population	PCR-RFLP	198	110	Guidelines of prevention and treatment of bronchial asthma (Chinese Medical Association)
Birbian N	2012	Indian	Asia	Adult	38.1±16.2	41.9±166	Population	PCR-RFLP	410	414	GINA (Global Initiative for Asthma) guidelines
Isaza C	2012	Colombia	South America	Children	11.6±5.4	11.8±5.2	Students	Mini-sequencing	109	137	Standardised questionnaires with detailed questions on the occurrence and severity of symptoms of asthma
First author	Year	Country (Ethnicity)	Age group	Case age (year)	Control age (year)	Source of controls	Genotyping method	Control method	Asthma definition		
--------------	------	---------------------	-----------	----------------	-------------------	-------------------	------------------	----------------	------------------		
Kohyama K.	2011	Japan (Asia)	Adult	50.4	47.1	Hospital	Sequence-specific thermal-elution chromatography	238	Global Initiative for Asthma guidelines for diagnosis of asthma and long-term control of asthma.		
Fu WP	2011	China (Asia)	Adult	50.4	48.7	Hospital	Sequencing	135	The American Thoracic Society guidelines for the diagnosis of asthma.		
Qiu YY	2011	China (Asia)	Adult	50.4	48.7	Hospital	Sequencing	135	The American Thoracic Society guidelines for the diagnosis of asthma.		
Szczepankiewicz A	2009	Poland (Europe)	Children	6–18	10–5	Population	PCR-RFLP	113	The American Thoracic Society guidelines for the diagnosis of asthma.		
Llanes E	2009	Spain (Europe)	Adult	22.9	23–58	Population	PCR-RFLP	113	The American Thoracic Society guidelines for the diagnosis of asthma.		
Munakata M	2006	Japan (Asia)	Not available	Not available	Not available	Population	PCR-RFLP	113	The American Thoracic Society guidelines for the diagnosis of asthma.		
Tsai HJ	2006	Taiwan (Asia)	Adult	22.9	23–58	Population	PCR-RFLP	113	The American Thoracic Society guidelines for the diagnosis of asthma.		
Santillan AA	2003	Mexico (North America)	Adult	22.9	23–58	Population	PCR-RFLP	113	The American Thoracic Society guidelines for the diagnosis of asthma.		
Gao JM	2000	China (Asia)	Adult	22.9	23–58	Population	PCR-RFLP	113	The American Thoracic Society guidelines for the diagnosis of asthma.		
Holloway JW	2000	New Zealand (Oceania)	Adult	22.9	23–58	Population	PCR-RFLP	113	The American Thoracic Society guidelines for the diagnosis of asthma.		
Reihsaus E	1993	USA (Europe)	Adult	22.9	23–58	Population	PCR-RFLP	113	The American Thoracic Society guidelines for the diagnosis of asthma.		
Chiang CH	2012	China (Asia)	Adult	22.9	23–58	Population	PCR-RFLP	113	The American Thoracic Society guidelines for the diagnosis of asthma.		
Lanocca N	2012	Venezuela (South America)	Adult	22.9	23–58	Population	PCR-RFLP	113	The American Thoracic Society guidelines for the diagnosis of asthma.		
Wang JY	2009	China (Asia)	Children	22.9	23–58	Population	PCR-RFLP	113	The American Thoracic Society guidelines for the diagnosis of asthma.		
Table 1. Cont.

First author	Year	Country	Ethnicity	Age group	Case age (year)	Control age (year)	Source of controls	Genotyping method	Asthma definition
Lv J	69	China	Asia	Children	3–12	18–22	Students	PCR-RFLP	2006 Global Initiative for Asthma guideline
Binaei S	62	USA	Europe	Children	Not available	Not available	Not available	PCR-RFLP	Not available
Kotani Y	63	Japan	Asia	Adult	48.4	16.8	Not available	PCR	Not available
Weir T R	64	UK	Europe	Adult	34.3	13.8	Not available	PCR	Not available
Hakonarson H	66	Iceland	Europe	Both	12–59	13.8	Not available	PCR	Not available
Leung TF	67	China	Asia	Children	5–15	Not available	Both	PCR	Not available
Lin YC	68	China	Asia	Children	7–13	Not available	Both	PCR	Not available
Chen X	69	Taiwan	Asia	Both	Not available	Not available	Not available	PCR	Not available
Leung TF	70	Canada	North America	Children	5–15	Not available	Both	PCR	Not available
Chen X	71	China	Asia	Both	Not available	Not available	Not available	PCR	Not available

AS-PCR: Allele-specific polymerase chain reaction; PCR-RFLP: polymerase chain reaction-restriction fragment length polymorphism; SSP-PCR: sequence-specific primers-polymerase chain reaction.

For **Meta-analysis of ADRB2 polymorphisms and asthma**

For ADRB2, there was no significant association in any of the genetic model comparisons in the overall population (Figures 2 to 5). In the analysis stratified by ethnicity, a significant association was found in the South American population in the dominant model comparison ($OR = 1.754$, $95\% CI = 1.179–2.609$, $I^2 = 16.9\%$, studies $= 2$, case $= 314$, control $= 237$), but not in the other genetic comparisons or other ethnic groups. In the Chinese population, there was no significant association in any of the genetic model comparisons. The results are shown in Table 6.

Meta-analysis of Gln27Glu variants and asthma. For Gln27Glu, no evidence of an association with asthma risk was found in the overall population in any of the genetic model comparisons (Figures 6 to 9). In the analysis stratified by case age, a protective association was found in children only in the recessive model comparison ($OR = 0.566$, $95\% CI = 0.417–0.769$, $I^2 = 0.0\%$, studies $= 11$, case $= 1693$, control $= 1502$) and in adults only in the dominant model comparison ($OR = 0.610$, $95\% CI = 0.434–0.856$, $I^2 = 0.0\%$, studies $= 11$, case $= 1693$, control $= 1502$), and in adults only in the dominant model comparison ($OR = 0.864$, $95\% CI = 0.768–0.971$, $I^2 = 46.9\%$ $n = 18$, case $= 3116$, control $= 3433$). In the Chinese population, there was no significant association in any of the genetic model comparisons. The results are shown in Table 6.

Meta-analysis of Thr164Ile variants and asthma. For Thr164Ile, only four case-control studies were included, so no stratified analysis was performed. There was no evidence of an association with asthma risk in any of the genetic models in the overall population. The results are shown in Table 6.

Meta-analysis of Arg19Cys variants and asthma. For Arg19Cys, only three case-control studies provided genotype distribution data, therefore no stratified analysis was conducted. No significant association was found in the overall population in any of the genetic models. The results are shown in Table 6.

Cumulative meta-analysis

Cumulative analysis of the association between Arg16Gly and Gln27Glu polymorphisms and the risk of asthma was performed...
First author	Year	Country	Ethnicity	Age group	Case AA	Case AG	Case GG	Control AA	Control AG	Control GG	HWE(P)	HWE(P)1000 permutations					
Cui LY	2007	China	Asia	Adult	9	55	8	12	39	9	73	71	0.019	0.038			
Ye WX	2011	China	Asia	Adult	5	19	7	5	26	6	29	33	0.013	0.030			
Zhang XY	2008	China	Asia	Children	81	111	25	19	23	8	273	161	0.814	1.000			
Wang W	2004	China	Asia	Adult	48	59	16	26	54	9	155	91	0.014	0.027			
Yang Z	2012	China	Asia	Children	78	104	30	24	23	5	260	164	0.725	1.000			
Feng DX	2004	China	Asia	Adult	13	35	26	6	28	5	61	87	0.006	0.016			
He XQ	2012	China	Asia	Adult	32	130	9	50	66	32	194	148	0.249	1.000			
Xie Y	2008	China	Asia	Children	14	37	6	21	34	7	65	49	0.220	0.337			
Xing J	2001	China	Asia	Adult	9	62	29	29	55	16	80	120	0.234	0.385			
Liu L	2009	China	Asia	Adult	27	59	34	23	71	26	113	127	0.044	0.082			
Dai LM	2002	China	Asia	Adult	33	33	21	36	33	25	99	75	0.005	0.027			
Shi XH	2008	China	Asia	Both	22	19	7	10	25	13	63	33	0.751	0.774			
Liao W	2001	China	Asia	Children	12	27	11	35	46	19	51	49	0.577	0.721			
Tuexun KLBN	2007	China	Asia	Adult	13	36	27	26	54	9	62	90	0.014	0.024			
Zheng BQ	2012	China	Asia	Children	77	99	28	31	55	24	253	155	0.966	1.000			
Birbhan N	2012	India	Asia	Adult	62	199	149	48	188	178	323	497	0.878	0.933			
Isaza C	2012	Colombia	South America	Children	30	39	40	48	42	47	99	119	0.000	0.000			
Kohyama K	2011	Japan	Asia	Adult	40	160	100	15	50	35	240	360	0.677	0.856			
Fu WP	2011	China	Asia	Adult	85	88	65	106	92	67	258	218	0.000	0.000			
Qiu YY	2010	China	Asia	Adult	77	85	39	88	135	53	239	163	0.924	1.000			
Szczepankiewicz AM	2009	Polish	Europe	Children	16	48	49	26	54	41	80	146	0.304	0.449			
Llanes E	2009	Spain	Europe	Adult	17	54	37	8	25	17	88	128	0.813	1.000			
Munakata M	2006	Japan	Asia	Not available	14	21	11	23	47	30	49	43	0.580	0.771			
Tsai HJ	2006	-	African American	Both	-	-	-	-	-	285	243	162	190	-	-		
Telleria JF	2005	Spain	Europe	Both	13	43	24	17	29	18	69	91	0.454	0.674			
Bhatnagar P	2005	India	Asia	Adult	19	54	28	12	30	13	92	110	0.499	0.624			
Gao JM	2004	China	Asia	Adult	38	59	28	35	53	8	135	115	0.051	0.108			
Santillan AA	2003	Mexico	North America	Adult	56	163	84	101	318	185	275	331	0.070	0.170			
Gao GK	2000	China	Asia	Both	14	26	18	12	68	9	54	62	0.000	0.000			
Wang Z	2001	China	Asia	Adult	25	54	22	38	64	34	104	98	0.499	0.676			
Holloway JW	2000	New Zealand	Oceania	Adult	78	47	29	35	39	17	203	105	0.303	0.469			
Reinhuaus ES	1993	USA	Europe	Adult	5	19	27	7	16	33	29	73	0.042	0.174			
Neslihan Aygun Kocabas	2007	Turkish	West Asia and Southern Europe	Not available	-	-	-	-	-	91	167	108	146	-	-		
First author	Year	Country	Ethnicity	Age group	Case	Control	Case	Control	HWE(\(P\))	HWE(\(P\)) 1000 permutations							
--------------	------	---------	-----------	-----------	------	---------	------	---------	------------	---------------------------------							
Larocca N\(^6\)	2012	Venezuela	South America	Adult	30	17	58	47	18	35	77	133	112	88	0.000	0.000	
Chan IH\(^9\)	2008	China	Asia	Children	101	135	59	51	89	33	337	253	191	155	0.597	0.700	
Wang JY\(^1\)	2009	China	Asia	Children	138	207	97	173	250	87	483	401	596	424	0.837	0.674	
Lv J\(^2\)	2009	China	Asia	Children	30	76	86	46	100	46	136	248	192	192	0.564	0.725	
Binaei S\(^3\)	2003	USA	Europe	Children	7	24	7	34	67	54	38	38	135	175	0.132	0.243	
Kotani Y\(^4\)	1999	Japan	Asia	Adult	30	52	35	28	45	30	112	122	101	105	0.201	0.342	
Weir TD\(^5\)	1998	Europe	Adult	-	-	-	-	-	-	-	-	195	125	102	66	-	-
Weir TD\(^6\)	1998	Asia	Adult	-	-	-	-	-	-	-	-	13	19	62	62	-	-
Dewar JC\(^7\)	1998	UK	Europe	Adult	14	50	53	74	263	180	78	156	411	623	0.158	0.251	
Hakonarson H\(^8\)	2001	Iceland	Europe	Both	45	151	127	21	85	75	241	405	127	235	0.677	0.874	
Leung TF\(^9\)	2002	China	Asia	Children	25	38	13	22	37	11	88	64	81	59	0.483	0.675	
Lin YC\(^10\)	2003	China	Asia	Children	34	35	11	27	25	17	103	57	79	59	0.031	0.104	
Shachor J\(^11\)	2003	Israel	Asia	Both	11	38	17	26	52	35	60	72	104	122	0.433	0.531	

doi:10.1371/journal.pone.0104488.t002
Table 3. Genotype and allele distributions in the meta-analysis for Gln27Glu (rs1042714).

First author	Year	Country	Ethnicity	Age group	Case	Control	HWE(\(P\))	HWE(\(P\)) 1000 permutations
Cui LY	2007	China	Asia	Adult	52	11	9	52 4 115 29 108 12 0.000 0.024
Ye WX	2011	China	Asia	Adult	10	17	4	14 19 4 37 25 47 27 0.511 0.763
Zhang XY	2008	China	Asia	Children	54	119	44	8 24 18 227 207 40 60 1.000 1.000
Wang W	2004	China	Asia	Adult	73	33	17	52 27 10 179 67 131 47 0.038 0.153
Yang Z	2012	China	Asia	Children	183	28	1	52 0 394 30 104 0 - -
Feng DX	2004	China	Asia	Adult	25	39	10	15 20 4 89 59 50 28 0.475 0.510
Xie Y	2008	China	Asia	Children	49	5	3	51 4 103 11 106 18 0.000 0.000
Xing J	2001	China	Asia	Adult	35	58	7	23 74 3 128 72 120 80 0.000 0.000
Dai LM	2002	China	Asia	Adult	71	13	3	76 14 4 155 19 166 22 0.007 0.015
Liao W	2001	China	Asia	Children	26	20	4	52 36 12 72 28 140 60 0.153 0.327
Tuexun KLBN	2007	China	Asia	Adult	44	29	3	52 34 3 117 35 138 40 0.363 0.646
Birbian N	2012	Indian	Asia	Adult	224	146	40	203 168 43 594 226 574 254 0.350 0.465
Isaza C	2012	Colombia	South America	Children	76	29	4	103 29 5 181 37 235 39 0.120 0.322
Fu WP	2011	China	Asia	Adult	179	38	21	209 37 19 396 80 455 75 0.000 0.001
Qiu YY	2010	China	Asia	Adult	166	32	3	226 45 5 364 38 497 55 0.129 0.386
Szczepankiewicz A	2009	Polish	Europe	Children	31	58	24	39 48 36 120 106 126 120 0.015 0.540
Llanes E	2009	Spain	Europe	Adult	49	40	18	24 22 4 138 76 70 30 0.736 0.783
Munakata M	2006	Japan	Asia	Not available	39	6	1	86 14 0 84 8 186 14 0.452 1.000
Tsai HF	2005	Spain	Europe	Both	27	39	14	30 20 14 93 67 80 48 0.008 0.420
Gao JM	2004	China	Asia	Adult	46	76	3	39 56 1 168 82 134 58 0.000 0.002
Santillan AA	2003	Mexican	North America	Adult	241	53	9	385 202 17 535 71 972 236 0.117 0.248
Gao G	2000	China	Asia	Both	20	32	6	32 49 8 72 44 113 65 0.077 0.171
Wang Z	2001	China	Asia	Adult	108	19	1	113 22 1 235 21 248 24 0.950 0.303
Holloway JW	2000	New Zealand	Oceania	Adult	28	76	49	19 37 35 132 174 75 107 0.125 0.235
Reihus F	1993	USA	Europe	Adult	13	26	12	17 23 16 52 50 57 55 0.182 0.384
Chiang CH	2012	China	Asia	Adult	400	66	10	85 26 1 866 86 196 28 0.517 0.743
Larocca N	2012	Venezuela	South America	Adult	37	57	11	30 60 10 131 79 120 80 0.012 0.060
Chan IH	2008	China	Asia	Children	232	43	19	133 19 21 507 81 285 61 0.000 0.000
Wang JY	2009	China	Asia	Children	359	84	5	425 77 9 802 94 927 95 0.016 0.201
Binaei S	2003	USA	Europe	Children	23	12	2	107 36 12 58 16 250 60 0.001 0.039
Kotani Y	1999	Japan	Asia	Adult	94	23	0	89 14 0 211 23 192 14 0.459 1.000
Weir TD	1998	-	Europe	Adult	-	-	-	- 174 136 101 67 - -
Weir TD	1998	-	Asia	Adult	-	-	-	- 26 6 91 33 - -
Dewar JC	1998	UK	Europe	Adult	33	51	35	134 271 106 117 121 559 483 0.149 0.225
after sorting by publication date. As shown in Figures 10 to 13, for Arg16Gly, there was a stable trend in the estimated risk effect in the dominant model comparison from 2009 to 2012 and in the allelic comparison from 1993 to 2012. As shown in Figures 14 to 17, for Gln27Glu, there was a trend toward no significant association over time in all genetic model comparisons.

Sensitivity analysis

Sensitivity analysis was conducted by sequentially excluding individual studies to estimate the stability of the results. After sequentially excluding each study, statistically similar results were found.

Publication bias

Potential publication bias was investigated using the funnel plot and was further assessed using Egger’s test. Significant publication bias was detected for the Gln27Glu polymorphism in the dominant model comparison ($t = 2.69$, $P = 0.011$). No evidence of publication bias was found for the Arg16Gly, Thr164Ile, or Arg19Cys polymorphism in any of the genetic model comparisons. The results are shown in Table 7.

Discussion

Asthma is a well-known disease of the respiratory system that is characterized by cramps and obstruction of the small bronchus. B_2-AR binds specifically to a class of ligands that can lead to the expansion of the small airways. In the present study, the relationship between all related $ADRB2$ gene polymorphisms and the overall risk of asthma was examined. The purpose of this meta-analysis was to provide more information for asthma candidate gene research, based on the hypothesis that genetic effects vary across different ethnic cohorts.

Four $ADRB2$ polymorphisms that had been investigated in at least three case-control studies were included in the study. The results indicated that Arg16Gly, Gln27Glu, Thr164Ile, and Arg19Cys were not associated with risk of asthma in the overall population. The findings of the current study are consistent with those of Migita [14] and Contopoulos-Ioannidis [6]. Migita and his colleagues performed a meta-analysis by a random-effects model that showed a non-significant odds ratio for the Arg16Gly and the Gln27Glu polymorphism. Contopoulos-Ioannidis found that polymorphisms of $ADRB2$ are not major risk factors for the development of asthma. Cumulative analysis further confirmed that there was no significant association between the Arg16Gly polymorphism or the Gln27Glu polymorphism and the risk of asthma, showing that the variants had no effect with the accumulation of more data over time.

In the analysis stratified by case age, a protective effect for the Gln27Glu polymorphism was observed in adults in the dominant model comparison and in children in the recessive model comparison and the homozygote genotype comparison. This finding corroborates the ideas of Ammarin Thakkinstian, who suggested that the Gln/Glu and Glu/Glu genotypes could reduce the risk of asthma [15]. Besides, the pathogenesis of asthma in adults and children may differ, but the exact mechanism remains unknown and needs further detailed research.

In the analysis stratified by ethnicity, an increased risk of asthma was only seen with the Arg16Gly polymorphism in the South American population, and a protective effect was only found with the Gln27Glu polymorphism in the North American population and only in the dominant model comparison. The discrepancies in linkage disequilibrium (LD) structure in Chinese and Europeans may explain these differences; the minor allele of the $ADRB2$
Table 4. Genotype and allele distributions in the meta-analysis for Thr164Ile (rs1800888).

First author	Year	Country	Ethnicity	Age group	Case CC	Case TT	Control CC	Control TT	HWE(\(P\))	HWE(\(P\)) 1000 permutations	
Yang Z	2012	China	Asia	Children	211	1	0	52	0	0	-
Gao JM\(^{33}\)	2004	China	Asia	Adult	56	67	2	48	48	0.001	0.021
Gao GK\(^{35}\)	2000	China	Asia	Both	6	48	4	27	47	0.475	0.546
Reihsaus E\(^{36}\)	1993	USA	Europe	Adult	51	0	0	53	3	0.837	1.000

Table 5. Genotype and allele distributions in the meta-analysis for Arg19Cys (rs1042711).

First author	Year	Country	Ethnicity	Age group	Case TT	Case CT	Case CC	Control TT	Control CT	Control CC	HWE(\(P\))	HWE(\(P\)) 1000 permutations
Fu WP\(^{46}\)	2011	China	Asia	Adult	162	69	7	199	61	5	393	459 71 0.897 1.000
Qiu YY\(^{47}\)	2010	China	Asia	Adult	166	32	3	226	45	5	364	497 55 0.129 0.384
Szczepankiewicz A\(^{48}\)	2009	Polish	Europe	Children	51	41	21	57	49	17	143	163 83 0.227 0.407
Tsai HJ\(^{51}\)	2006	-	African American	Both	-	-	-	-	-	-	454	74 289 63 - -
SNP	Groups	Dominant model comparison	Recessive model comparison	Homozygote genotype comparison	Allelic comparison							
-----	--------	---------------------------	---------------------------	-----------------------------	------------------							
	OR (95%CI)	P										
Arg16Gly Total	1.069 (0.978–1.167)	0.142	1.110 (0.994–1.233)	0.08	1.274 (1.097–1.477)	0.008	1.344 (1.275–1.419)	0.000				
Adult	1.077 (0.956–1.213)	0.225	1.170 (0.942–1.454)	0.155	1.230 (0.965–1.569)	0.094	1.100 (0.939–1.260)	0.262				
Children	1.055 (0.925–1.203)	0.121	1.061 (0.798–1.410)	0.685	1.158 (0.851–1.575)	0.350	1.092 (0.930–1.282)	0.282				
Both	0.846 (0.607–1.181)	0.326	1.064 (0.617–1.833)	0.824	0.946 (0.526–1.702)	0.853	0.896 (0.704–1.203)	0.398				
Asia	1.055 (0.954–1.168)	0.297	1.122 (0.913–1.380)	0.275	1.139 (0.914–1.420)	0.247	1.074 (0.970–1.189)	0.167				
Europe	1.205 (0.910–1.596)	0.192	1.055 (0.793–1.404)	0.713	1.202 (0.881–1.640)	0.245	1.079 (0.929–1.252)	0.069				
North America	0.886 (0.618–1.270)	0.509	0.869 (0.640–1.179)	0.366	0.819 (0.540–1.241)	-	0.910 (0.748–1.107)	-				
Oceania	0.609 (0.359–1.032)	0.065	1.010 (0.520–1.962)	0.977	0.765 (0.373–1.572)	0.466	0.772 (0.352–1.710)	0.181				
China	1.093 (0.914–1.365)	0.30	1.199 (0.923–1.548)	0.62	1.290 (0.928–1.773)	0.159	1.106 (0.980–1.252)	0.015				
HWE (P < 0.05)	1.058 (0.943–1.214)	0.30	1.030 (0.819–1.283)	0.76	1.149 (0.892–1.490)	0.26	1.057 (0.853–1.309)	0.611				
HWE (P > 0.05)	1.007 (0.943–1.073)	0.83	0.995 (0.932–1.061)	0.78	1.013 (0.943–1.085)	0.92	1.023 (0.954–1.096)	0.877				
Thr164Ile Total	1.460 (0.544–3.916)	0.451	0.772 (0.089–6.684)	0.814	1.502 (0.416–5.419)	0.535	1.173 (0.383–3.573)	0.818				
Asia	1.460 (0.544–3.916)	0.451	0.772 (0.089–6.684)	0.814	1.502 (0.416–5.419)	0.535	1.173 (0.383–3.573)	0.818				
HWE (P < 0.05)	1.058 (0.943–1.214)	0.30	1.030 (0.819–1.283)	0.76	1.149 (0.892–1.490)	0.26	1.057 (0.853–1.309)	0.611				
HWE (P > 0.05)	1.007 (0.943–1.073)	0.83	0.995 (0.932–1.061)	0.78	1.013 (0.943–1.085)	0.92	1.023 (0.954–1.096)	0.877				
Figure 2. Forest plots of the association between the Arg16Gly (rs1042713) polymorphism and risk of asthma in dominant model comparison.
doi:10.1371/journal.pone.0104488.g002

Figure 3. Forest plots of the association between the Arg16Gly (rs1042713) polymorphism and risk of asthma in recessive model comparison.
doi:10.1371/journal.pone.0104488.g003
Arg16Gly (A46G, rs1042713) in the population of northern and western European ancestry (CEU) was A with a frequency of 0.358, whereas it was G with a frequency of 0.439 among the Han Chinese in Beijing (HCB). The minor allele of the ADRB2 Gln27Glu (C79G, rs1042714) was 0.467, whereas it was 0.122 in HCB. Another reason for these differences is that sample size was

Figure 4. Forest plots of the association between the Arg16Gly (rs1042713) polymorphism and risk of asthma in homozygote genotype comparison.
doi:10.1371/journal.pone.0104488.g004

Figure 5. Forest plots of the association between the Arg16Gly (rs1042713) polymorphism and risk of asthma in allele comparison.
doi:10.1371/journal.pone.0104488.g005

ADRB2 Polymorphisms and Asthma: A Meta-Analysis
PLOS ONE | www.plosone.org 13 August 2014 | Volume 9 | Issue 8 | e104488
Figure 6. Forest plots of the association between the Gln27Glu (rs1042714) polymorphism and risk of asthma in dominant model comparison.
doi:10.1371/journal.pone.0104488.g006

Figure 7. Forest plots of the association between the Gln27Glu (rs1042714) polymorphism and risk of asthma in recessive model comparison.
doi:10.1371/journal.pone.0104488.g007
small for the South American and North American populations, and therefore the current boundary result may have been unable to demonstrate that the Arg16Gly and Gln27Glu polymorphisms are associated with the risk of asthma in these populations. More studies with a larger sample size are needed. In the Chinese population, the results of the current meta-analysis showed that

Figure 8. Forest plots of the association between the Gln27Glu (rs1042714) polymorphism and risk of asthma in homozygote genotype comparison.
doi:10.1371/journal.pone.0104488.g008

Figure 9. Forest plots of the association between the Gln27Glu (rs1042714) polymorphism and risk of asthma in allele comparison.
doi:10.1371/journal.pone.0104488.g009
Figure 10. Forest plots of cumulative meta-analysis of Arg16Gly (rs1042713) in association with asthma by published year under dominant model comparison.

doi:10.1371/journal.pone.0104488.g010

Figure 11. Forest plots of cumulative meta-analysis of Arg16Gly (rs1042713) in association with asthma by published year under recessive model comparison.

doi:10.1371/journal.pone.0104488.g011
Figure 12. Forest plots of cumulative meta-analysis of Arg16Gly (rs1042713) in association with asthma by published year under homozygote genotype comparison.
doi:10.1371/journal.pone.0104488.g012

Figure 13. Forest plots of cumulative meta-analysis of Arg16Gly (rs1042713) in association with asthma by published year under allele comparison.
doi:10.1371/journal.pone.0104488.g013
ADRB2 Polymorphisms and Asthma: A Meta-Analysis

Figure 14. Forest plots of cumulative meta-analysis of Gln27Glu (rs1042714) in association with asthma by published year dominant model comparison.
doi:10.1371/journal.pone.0104488.g014

Figure 15. Forest plots of cumulative meta-analysis of Gln27Glu (rs1042714) in association with asthma by published year recessive model comparison.
doi:10.1371/journal.pone.0104488.g015
Study ID	OR (95% CI)
Nollhaus E (1993)	1.00 (0.86, 1.17)
Weis T (1988)	1.17 (0.86, 1.59)
Weis T (1990)	1.18 (0.84, 1.63)
Chen C (1990)	1.13 (0.80, 1.59)
Kolcan T (1995)	1.20 (0.87, 1.62)
Gas G (2000)	1.12 (0.84, 1.51)
Holloway NR (2002)	1.00 (0.82, 1.22)
Li C (2000)	1.04 (0.83, 1.32)
Liu L (2001)	1.03 (0.80, 1.33)
Wang J (2001)	1.03 (0.80, 1.35)
Rijkeboom H (2001)	1.03 (0.80, 1.35)
Dai LM (2002)	1.05 (0.80, 1.35)
Lee YG (2002)	1.03 (0.80, 1.35)
Skrinar J (2000)	1.03 (0.80, 1.35)
Wang J (2004)	1.05 (0.80, 1.35)
Feng DG (2004)	1.03 (0.80, 1.35)
Gao JN (2004)	1.02 (0.80, 1.35)
Teller Ya J (2000)	1.02 (0.80, 1.35)
Murakami M (2004)	1.02 (0.80, 1.35)
Chen H (2008)	1.02 (0.80, 1.35)
Siccioppi A (2008)	1.02 (0.80, 1.35)
Xie F (2008)	1.02 (0.80, 1.35)
Zhang YX (2008)	1.02 (0.80, 1.35)
Zhu X (2008)	1.02 (0.80, 1.35)
Zhang CH (2011)	1.02 (0.80, 1.35)
Larnaca N (2012)	1.02 (0.80, 1.35)

Figure 16. Forest plots of cumulative meta-analysis of Gln27Glu (rs1042714) in association with asthma by published year under homozygote genotype comparison.
doi:10.1371/journal.pone.0104488.g016

Study ID	OR (95% CI)
Nollhaus E (1993)	0.98 (0.75, 1.31)
Weis T (1988)	1.35 (0.78, 2.30)
Weis T (1990)	1.02 (0.68, 1.52)
Chen C (1990)	1.20 (0.70, 2.02)
Kolcan T (1995)	1.18 (0.70, 1.92)
Gas G (2000)	1.12 (0.70, 1.79)
Holloway NR (2002)	1.12 (0.70, 1.79)
Li C (2000)	1.00 (0.75, 1.34)
Liu L (2001)	0.98 (0.75, 1.37)
Wang J (2001)	1.00 (0.75, 1.34)
Rijkeboom H (2001)	1.00 (0.75, 1.34)
Dai LM (2002)	1.00 (0.75, 1.34)
Lee YG (2002)	1.00 (0.75, 1.34)
Skrinar J (2000)	1.00 (0.75, 1.34)
Wang J (2004)	1.00 (0.75, 1.34)
Feng DG (2004)	1.00 (0.75, 1.34)
Gao JN (2004)	1.00 (0.75, 1.34)
Teller Ya J (2000)	1.00 (0.75, 1.34)
Murakami M (2004)	1.00 (0.75, 1.34)
Chen H (2008)	1.00 (0.75, 1.34)
Siccioppi A (2008)	1.00 (0.75, 1.34)
Xie F (2008)	1.00 (0.75, 1.34)
Zhang YX (2008)	1.00 (0.75, 1.34)
Zhu X (2008)	1.00 (0.75, 1.34)
Zhang CH (2011)	1.00 (0.75, 1.34)
Larnaca N (2012)	1.00 (0.75, 1.34)

Figure 17. Forest plots of cumulative meta-analysis of Gln27Glu (rs1042714) in association with asthma by published year under allele comparison.
doi:10.1371/journal.pone.0104488.g017
there was no significant association with the risk of asthma with either the Arg16Gly polymorphism or the Gln27Glu polymorphism in any of the genetic model comparisons, supporting Ni Suiqin’s [16] conclusion.

In the analysis stratified by HWE according to the P-value for the Arg16Gly and Gln27Glu polymorphisms, a significant association was found in the recessive model comparison and the homozygote genotype comparison for Arg16Gly in the group with $P<0.05$, but not in the group with $P>0.05$. For Gln27Glu, a significant association was found in the dominant model comparison in the group with $P>0.05$. These results therefore need to be interpreted with caution. There are several possible explanations as to why the control group population was not in HWE. First, the population was not characterized by random mating. Second, the locus under consideration exhibited an inconstant fluctuating mutation rate. Third, there was selection for a particular phenotype. Fourth, the population was not sufficiently large or non-random. Fifth, there had been a change in the population structure during the period of study due to migration.

No significant association with the risk of asthma was found for the Thr164Ile and Arg19Cys polymorphisms. Thus, the Thr164Ile and Arg19Cys polymorphisms may not be involved in the pathogenesis of asthma. Further research is needed because, as only four case-controls were included in the study, there might not be sufficient statistical evidence to clarify the association between the Thr164Ile and Arg19Cys polymorphisms and the risk of asthma.

$ADRB2$ is located on chromosome 5q31–32, encodes 413 amino acids, and is an intronless gene [5]. According to the SNPper database, there are more than 100 SNPs in the promoter region, five SNPs in the 5’UTR region and 18 SNPs in the coding region of the gene. The mutation of the two most important SNPs, Arg16Gly and Gln27Glu, which are located at nucleotide positions 46 and 79 of the coding region of the $ADRB2$ gene, respectively, can cause changes in the amino acid sequence. The altered amino acid sequence can lead to down-regulation of the β2-AR and may cause the desensitization of related reactions [70]. Thr164Ile is also located in the coding region of the $ADRB2$ gene; a base change from C to T can lead to a change in amino acid from threonine (Thr) to isoleucine (Ile). The missense polymorphisms of Arg16Gly, Gln27Glu, and Thr164Ile may lead to functional changes in $ADRB2$. Most of the studies relating to $ADRB2$ and asthma risk have focused on coding region polymorphisms. In recent years, studies on $ADRB2$ have not been confined to coding region polymorphisms alone, as more and more studies have begun to pay attention to promoter region polymorphisms. Arg19Cys is located in the 5’ leader region that harbors an open reading frame (ORF) in the promoter region of the $ADRB2$ gene; a base change from T to C leads to a change in amino acid from arginine (Arg) to cysteine (Cys). Recent in vivo and in vitro research has demonstrated that this change can impede the translation of $ADRB2$ mRNA, and thus can regulate cellular expression of the receptor [71]. Further studies are therefore required to assess whether the SNPs in $ADRB2$ alter signal regulation, gene expression, or the function of its product or not.

There are certain inevitable limitations to the current meta-analysis. First, all available literature should be included in the meta-analysis, but we only included literature published in English and Chinese, thus neglecting studies published in other languages. In addition, most of the included studies just focus on Chinese and Asian, which may result in an inability to detect modest association due to lack of power because of underreporting/lower incidence of asthma in these populations. Second, most original literature only

SNP	Study number (n)	Dominant model comparison	Recessive model comparison	Allele comparison			
		t	P	t	P	t	P
Arg16Gly (rs1042713)	45	1.02	0.315	1.12	0.475	0.72	0.475
Gln27Glu (rs1042714)	37	2.69	0.011	0.71	0.496	0.79	0.579
Thr164Ile (rs1800888)	4	-0.37	0.71	-0.78	0.596	-0.78	0.596
Arg19Cys (rs1042711)	4	2.01	0.294	2.01	0.294	2.01	0.294

Table 7. Publication bias results of Egger’s test
SNP

Arg16Gly (rs1042713)
Gln27Glu (rs1042714)
Thr164Ile (rs1800888)
Arg19Cys (rs1042711)

doi:10.1371/journal.pone.0104488.t007
provides a generic asthma definition, and does not describe asthma phenotype(s) and environmental factors in detail, so we cannot supply this information. Third, several studies were not included because they did not provide sufficient data for statistical analysis, which may have biased the result. Fourth, publication bias was only detected for the Gln27Glu polymorphism in the dominant model comparison (t = 2.69, P = 0.011), but not in the other three genetic model comparisons. In fact, positive results or results with “expected” findings are more likely to be published. Publication bias may lead to a false positive result. We detected significant publication bias for the Gln27Glu polymorphism in the dominant model, so the results need to be interpreted with caution. Fifth, moderate heterogeneity was found in some genetic models for the Arg16Gly polymorphism. Because no information was available other than the factors we performed a stratified analysis, and thus we were unable to use meta-regression to explore other possible sources of between-group heterogeneity. Furthermore, the result of the sensitivity analysis was stable. Therefore, the heterogeneity seemed to have no effect on the results, suggesting their reliability.

In conclusion, the current meta-analysis suggests that the Arg16Gly, Gln27Glu, Thr164Ile, and Arg19Cys polymorphisms may not be involved in the risk of asthma in the overall population of the Chinese population. Well-designed, high-quality studies with a larger sample size and various ethnicities should be conducted to confirm these results.

Supporting Information
Checklist S1 PRISMA checklist. (DOC)

Author Contributions
Conceived and designed the experiments: SQ. Performed the experiments: CG. Analyzed the data: ZW. Contributed reagents/materials/analysis tools: SQ. Wrote the paper: SQ. XLC.
38. Liu L, Fang LZ, Dai LM (2009) Combination Effect of Gene Polymorphisms in 16 Position of β2-adrenergic Receptor and Cigarette Smoking on Asthma in Chinese Han Individuals. Medical Recapitulate 15: 4.

39. Dai LM, Wang JL, Zhang YF, Li W, Zhao ZH, et al. (2002) Association of beta2 receptor gene polymorphisms with lung function in asthmatic patients. Chinese Journal of Tuberculosis and Respiratory Diseases 25: 2.

40. Dai XH, Zhou JP (2008) Association of IL-13 and beta2 receptor gene polymorphisms with asthma. Shandong Medical Journal 46: 3.

41. Liao W, Li WM, Zhao CM, Guang LX, Yin XJ, et al. (2001) Preliminary Study on the relationship between β2-adrenergic receptors genetic polymorphisms and asthma in children of Han nationality of Chongqing. Journal of Third Military Medical University 23: 908–911.

42. Tsuernun KLIN, Shabiti YHLM, Wang W, Wulfer HMTL (2007) Study on the β2AR polymorphism in asthmatic abnormal black savda patients. Journal of Xinjiang Medical University 30: 945–948.

43. Zheng BQ, Wang GL, Yang S, Lu YJ, Liu RJ, et al. (2012) [Study of genetic susceptibility in 198 children with asthma]. Zhongguo Dang Dai Er Ke Za Zhi 14: 811–814.

44. Birbain N, Singh J, Jindal SK, Singh N (2012) Association of beta(2)-adrenergic receptor polymorphisms with asthma in a North Indian population. Lung 190: 497–504.

45. Isaza C, Sepulveda-Arias JC, Aguado BI, Arciniegas W, Henao J, et al. (2012) Beta(2)-adrenoreceptor polymorphisms in asthmatic and non-asthmatic schoolchildren from Colombia and their relationship to treatment response. Pediatric Pulmonology 47: 848–855.

46. Fu WP, Zhao ZH, Zhong L, Sun C, Fang LZ, et al. (2011) Relationship between polymorphisms in the 5'-leader cistron, positions 16 and 27 of the adrenergic beta2 receptor gene and asthma in a Han population from southwest China. Respiratory 16: 1221–1227.

47. Qiu YY, Zhang XL, Qin Y, Yin KS, Zhang DP (2010) Beta2-adrenergic receptor haplotype/polymorphisms and asthma susceptibility and clinical phenotype in a Chinese Han population. Allergy Asthma Proc 31: 91–97.

48. Szczerpankiewicz A, Brzobozowicz A, Sobkowiak P, Kramer L, Popiel A (2009) Role of ADRB2 gene polymorphism in asthma and response to beta(2)-agonists in Polish children. J Appl Genet 50: 273–281.

49. Llanes E, Quircele J, Lopez E, Sastre B, Chacartegui M, et al. (2009) Analysis of polymorphisms in olive pollen allergy: IL13, IL4RA, IL5 and ADRB2 genes. Int Arch Allergy Immunol 148: 229–238.

50. Munakata M, Harada Y, Ishida T, Saito J, Nagabukuro A, et al. (2006) Molecular-based haplotype analysis of the beta 2-adrenergic receptor gene (ADRB2) in Japanese asthmatic and non-asthmatic subjects. Allergol Int 55: 191–198.

51. Tsai HJ, Shaiki N, Kho JY, Battle N, Narpi M, et al. (2006) Beta 2-adrenergic receptor polymorphisms: pharmacogenetic response to bronchodilator among African American asthmatics. Hum Genet 119: 547–557.

52. Telleria JJ, Blanco-Quiros A, Munton S, Antonio Garrote J, Arranz E, et al. (2006) Tachyphylaxis to beta2-agonists in Spanish asthmatic patients could be modulated by beta2-adrenoreceptor gene polymorphisms. Respir Med 100: 1072–1078.

53. Bhatnagar P, Gupta S, Guleria R, Kukreti R (2005) beta2-Adrenergic receptor polymorphisms and asthma in children of Chinese Han Individuals. Medical Recapitulate 15: 4.

54. Santillan AA, Camargo CA Jr, Ramirez-Rivera A, Delgado-Enciso I, Rojas-Martinez A, et al. (2003) Association between beta2/adrenoceptor polymorphisms and asthma diagnosis among Mexican adults. J Allergy Clin Immunol 112: 1095–1100.

55. Gao G, Wang S, Zhang J (2000) [Study on beta 2 adrenergic receptor genetic polymorphisms in asthmatics in the people of the Han nationality of northern China]. Zhonghua Jie He Hu Xi Za Zhi 23: 93–97.

56. Wang Z, Chen C, Niu T, Wu D, Yang J, et al. (2001) Association of asthma with beta 2-adrenergic receptor gene polymorphism and cigarette smoking. Am J Respir Crit Care Med 163: 1404–1409.

57. Holloway JW, Dunbar PR, Riley GA, Sawyer GM, Fitzharris PF, et al. (2000) Association of beta2-adrenergic receptor polymorphisms with severe asthma. Am J Respir Cell Mol Biol 8: 334–339.

58. Reihana E, Inmis M, MacInyre N, Liggett SB (1993) Mutations in the gene encoding for the beta 2-adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol 8: 334–339.

59. Kalaor NA, Kaymak C, Aydogan N, Oztema D, Karazay AE (2007) Investigation of the beta 2-adrenoreceptor (ADRB2) +3 and glutathione S-transferase P1 (GSTP1) gene polymorphisms in Turkish asthma patients. Toxicology Letters 172: S164–S165.

60. Larocco N, Moreno D, Garzonella JV, Velasquez O, Martin-Rejo J, et al. (2012) Beta 2 adrenergic receptor polymorphisms, at codons 16 and 27, and bronchodilator responses in adult Venezuelan asthmatic patients. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 157: 374–378.

61. Wang JY, Liao YH, Wu YJ, Hsiao YH, Wu LS (2009) An association study of 13 SNPs from seven candidate genes and a preliminary study for genetic testing by multiple variants in Taiwanese population. J Clin Immunol 29: 205–209.

62. Binaer S, Christensen M, Murphy C, Zhang Q, Quinney M (2003) Beta2-adrenergic receptor polymorphisms in children with status asthmaticus. Chest 123: 975S.

63. Kotani Y, Nishimura Y, Maeda H, Yokoyama M (1999) Beta2-adrenergic receptor polymorphisms affect airway responsiveness to salbutamol in asthmatics. J Asthma 36: 583–590.

64. Weir TD, Maltek N, Sandforl AJ, Bai TR, Awadh N, et al. (1998) Beta 2-adrenergic receptor haplotypes in mild, moderate and fatal/near fatal asthma. Am J Respir Crit Care Med 158: 787–791.

65. Devar JC, Wheatley AP, Juniper EF, Britton J, et al. (1998) Beta2-adrenergic receptor polymorphisms are in linkage disequilibrium, but are not associated with asthma in an adult population. Clin Exp Allergy 28: 442–448.

66. Hakonarson H, Bjornsdottir US, Ostermann E, Arnaud J, Adalsteinsondi AE, et al. (2003) Allelic frequencies and patterns of single-nucleotide polymorphisms in candidate genes for asthma and atopy in Iceland. Am J Respir Crit Care Med 160: 2046–2044.

67. Leung TF, Tang NL, Chan IH, Li AM, Ha G, et al. (2002) Distribution in allele frequencies of predisposition-to-atopy genotypes in Chinese children. Pediatr Pulmonology 34: 419–424.

68. Lin YC, Lu CC, Shen CY, Lei HY, Guo YL, et al. (2003) Roles of genotypes of beta(2)-adrenergic receptor polymorphisms in children with atopy and atopy in China. Zhonghua Jie He Hu Xi Za Zhi 23: 93–97.

69. Green SA, Turki J, Bejarano P, Hall IP, Liggett SB (1995) Influence of beta 2-adrenergic receptor polymorphisms on beta(2)-adrenoceptor expression and function in human airway smooth muscle cells. Am J Respir Cell Mol Biol 13: 25–33.

70. Parola AL, Kobylka RK (1994) The peptide product of a 5' leader cistron in the beta 2 adrenergic receptor mRNA inhibits receptor synthesis. J Biol Chem 269: 4497–4505.