Design and Development of Understructure Platform for Two-Seater Micro Electric Vehicle (MEV)

Tajul Adli Abdul Razak, Mohd Aizat Zawani Mohd Rosli, Muhamad Husaini Abu Bakar, Mohd Shahril Nizam Mohamed Soid, Nurhuda Binti Ismail, Pranesh Krishnan

Abstract: An understructure platform is also called underbody platform where is a platform that can be divided into three sections which are the rear section that is designed support for the steering system. The mid-section is the main structure of the vehicle that will be a structure protected the battery of the EV and also support the full weight of the passenger and some other components. The rear component is the support for the drivetrain system.

Keywords: platform, understructure.

I. INTRODUCTION

A automotive chassis is an integral part of any vehicle. The chassis supports the body and other parts of the automobile as a framework. Also, the chassis needs to be adequately firm to survive the shock, distortion, vibration, and other stresses. Along with strength, an essential consideration in chassis design for better handling features is to have acceptable bending stiffness. Hence, extreme stress, extreme deflection and equilateral stress, are essential criteria for the chassis design. In this paper, the optimization of the automotive chassis with restrictions of extreme shear stress, equivalent stress and deflection of chassis under maximum load. Chassis is a structural system which can be quickly investigated using the finite element techniques. For weight reduction, a sensitivity study is conducted. Hence, a proper finite element model (FEM) of the chassis is established. FEA is done on the modelled chassis using the Solidwork Simulation.

An EV has to overcome resistances related to the motor itself. Vehicle protection is also extended by using diminishing usual car weight, keeping a low middle of gravity, and warranting that the batteries are mounted away from crash regions. The size and network of the battery modules will be calculated in particular for the Micro-EV so that they may additionally be without problems positioned inside the BBF. This final year project is about designing an understructure platform that will be used as the main structure of a contextual designed EV. This EV will be a micro-size EV or micro-urban EV. The EV characteristic itself that has its travel distance dependent on the motor size and battery capacity. This study only focusses on the understructure platform. The understructure will be the main structure of Body-on-Frame vehicle type. This BOF vehicle is suitable for a vehicle with being analysed the same system but a different body design. For example, a lorry uses a backbone type of chassis, but for an EV understructure, the structure must be designed strong enough to provide safety to the passenger and also protect the battery itself. The battery was placed in the mid-section to protect the battery from front impact and rear impact. The side structure of the vehicle must be strong enough to protect the vehicle from the side impact. To increase the efficiency of an EV, the vehicle itself must be lighter. The design of the understructure will be minimized without affecting the strength of the structure. The material selection is essential because the weight of the structure will be the most critical criteria affecting EV efficiency.

II. METHODOLOGY

The design process will be using Solid work software, and the final design will be analyzed for structural analysis. The design process of this EV starts with designing the necessary structure to get a desirable design.
The design process starts with the basic design of the ladder chassis structure to get the suitable design based on static structural Analysis. The size and dimension were based on conceptual design.

III. RESULT AND DISCUSSION

A final design has been produced, and the design is analysed for its structural strength. A 1000N of force were applied to the front, side and rear structure for the analysis to determine the maximum stress and strain applied to the structure. The material used for this analysis is Alloy Steel.
Table- 1: Properties of the material used for analysis

Property	Unit	Value
Elastic modulus	N/m²	2.10E+11
Poisson’s Ratio	N/A	0.28
Shear modulus	N/m²	7.90E+10
Mass Density	Kg/m³	7700
Tensile Strength	N/m²	723825600
Yield Strength	N/m²	620411000
Thermal expansion coefficient	/K	1.30E-0.5
Thermal conductivity	W/(m.K)	50
Specific heat	J/(kg.K)	460

Based on the result, the maximum stress of the structure is 1.03x106 N/m², and the yield strength was 2.757x107 N/m²

Mass properties of a structure

- Mass = 5766634.02 grams
- Volume = 5530003794.09 mm³
- Surface area = 55524789.36 mm²
- Center of mass: (millimetres)
 - X = 1052.55
 - Y = 1037.49
 - Z = 671.72

Based on the design study, three materials with 1000N force were applied to the structure, and the results are shown above: Max stress 1.03e+06 N/m² can be applied to the structure before it starts to deform

Displacement

The displacement of the chassis and position of extreme displacement is revealed in Figure 7. The magnitude of maximum displacement is in millimetre (mm).

Fig. 6. Front-impact deformation

Fig. 7. Maximum displacement 0.7498mm

Fig. 8. Maximum displacement of 1.504mm
Fig. 9. The maximum displacement of 0.7442mm

Table- II: Properties of the material used for analysis

Parameter	Scenario o 1	Scenario o 2	Scenario o 3
Mass 1	8541.1	8541.3	438445
Stress 1	54.217	55.798	66.603
Displacement 1	2.50E-07	0.3613	0.17656
Centre of Mass X1	1017.8	1017.8	1017.8
Centre of Mass Y1	548.72	548.72	548.72
Strain 1	0	0	0
Minimum factor of Safety 1	7.3777	6.6310	9.31523
Frequency 1	1.26E+05	131.79	165.042

The table above shows the result obtained from the design study with different material. Based on the results we can see that carbon fibre is the most suitable material for the structure this is because as we know that Composite materials demonstrate low von misses stress as associated with structural Alloy-Steel. At the natural frequency at which extreme deformation occurs upon the chassis frame, where the density of the composite material is very low. This helps to lower the weight of chassis frame and contribute to the increased effectiveness of the automobile. The Pure CP-Ti have exposed a bit high deformation compared to steel. This change is due to low stiffness; however, when the thickness of the epoxy glass chassis frame is increased, the deformation lowers. A composite material is expensive compared to other metal used in vehicle chassis frame which leads to new price on the consumer. Wherever the cost is not a factor; composite materials are the best alternative for the automobile and chassis frame. The results of the harmonic investigation give a clear sign that the extreme stress made in steel and the composite material has the lowest stress-induced.

IV. CONCLUSION

As a conclusion, this project was completed whereby meeting the objectives stated before. Firstly, to construct a 3D design of understructure platform based on the conceptual vehicle design. The new design of the platform was minimised to a smaller size to reduce the weight of the platform without affecting the safety, which is the strength of the structure. The analysis using SolidWorks was to analyse stress distribution using Finite Element Analysis on the understructure platform, where stress concentration area was focused and minimise during the fabrication process in the future. The analysis done is to determine the weak location of the structure, and thus design improvement can be made before the fabrication process starts. This method can avoid problems from happening and can reduce the total waste cost of the structural repair process. According to the result, the selection of the material is essential to increase the efficiency of the electric vehicle.

ACKNOWLEDGMENT

The author would like to thank Mr Tajul Adli Bin Abdul Bakar, the project supervisor for their valuable information, advice and positive feedback. His parents, Mohd Rosli and Siti Maryam for being supportive and their encouragement, support and attention throughout this venture helped to complete this project. Special thanks go to Universiti Kuala Lumpur Malaysian Spanish Institute for providing all the facilities and resources for this research. Last but not least, an appreciation to all the friends who have helped at various occasion, directly or indirectly in completing this project.

REFERENCES

1. Shimizu, H., Harada, J., Bland, C, Kawakami, K., & Chan, L. (1997). Advanced concepts in electric vehicle design. IEEE Transactions on Industrial Electronics, 44(1).
2. Aerni, J. G., Radcliffe, C. J., & Martin, J. L. (1995). Design and Analysis of a Hybrid Electric Vehicle Chassis. SAE Technical Paper Series. doi:10.4271/950179.
3. Kerler, M., Burda, P., Baumann, M., & Lienkamp, M. (2014). A concept of a high-energy, low-voltage EV battery pack. 2014 IEEE International Electric Vehicle Conference (IEVC). doi:10.1109/iev.2014.7056185.
4. Solving the Range Challenge? Range Needs versus Range Preferences for Battery Electric Vehicles with Range Extender Thomas Frankel, Tina Schneidereit, Madlen Günther, Josef F. Krems,(corresponding author) Technische Universität Chemnitz, Department of Psychology, D-09107 Chemnitz, Germany.
5. Mrzuzek, M., Gajdáš, I., Kučera, L., & Barta, D. (2016). Analysis of Parameters Influencing Electric Vehicle Range. Procedia Engineering,134, 165-174. doi:10.1016/j.proeng.2016.01.056.
6. Vandana, R., & Fernandes, B. G. (2010). Optimal sizing of the motor — Battery system for in-wheel electric vehicles. IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society. doi:10.1109/iecon.2010.5675157
7. Al-Zaher, A., & Elmaraghy, W. (2014). Design Method of Underbody Platform Automotive Framing Systems. Procedia CIRP, 17, 380-385. doi:10.1016/j.procir.2014.03.116.
8. Tafifik, A. Z., Rashid, N., Ian, M., Faruq, M., & Zahir, M. (2014). Electric car chassis design and analysis by using CATIA V5 R19. IOSR Journal of Mechanical and Civil Engineering,11(4), 56-69. doi:10.9790/1684-11435669.
9. Mat, M. H., & Ghani, A. R. (2012). Design and Analysis of ‘Eco’ Car Chassis. Procedia Engineering,41, 1756-1760. doi:10.1016/j.proeng.2012.07.379.
10. Balch, R., Burke, A., & Frank, A. (n.d.). The effect of battery pack technology and size choices on hybrid electric vehicle performance and fuel economy. Sixteenth Annual Battery Conference on Applications and Advances. Proceedings of the Conference (Cat. No.01TH8533). doi:10.1109/bca.2001.905096.
11. Kim, D., Shin, K., Kim, Y., & Chron, J. (2010). Integrated Design of In-Wheel Motor System on Rear Wheels for Small Electric Vehicle. World Electric Vehicle Journal,4(3), 597-602. doi:10.3390/wev4030597.
12. Fotouhi, A., Auger, D. J., Cleaver, T., Shateri, N., Propp, K., & Longo, S. (2016). Influence of battery capacity on the performance of an electric vehicle fleet. 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA). doi:10.1109/icrera.2016.7884471

13. Istiyanto, J., Sumarsono, D. A., Utomo, M. S., Kiswanto, G., Baskoro, A. S., & Supriadi, S. (2013). Development of platform structure as protection to lithium batteries in the electric vehicle during crash impact. 2013 Joint International Conference on Rural Information & Communication Technology and Electric-Vehicle Technology (rICT & ICeV-T). doi:10.1109/rict-icevt.2013.6741552.

AUTHORS PROFILE

Tajul Adli Abdul Razak has been working in the automotive industry for 12 years and began working his career in academia as a lecturer since 2015. His teaching interests include ergonomics, Computer-Aided Design, Computer-Aided Engineering, failure of design, fatigue, fracture mechanics, assembly mechanics and Computer Fluid Dynamics. He has worked with several automotive major players, including the Lotus Engineering Malaysia, Lotus Engineering Shanghai and UMW Toyota mainly in automotive design engineering.
Email: tajuladli@unikl.edu.my

Mohd Aizat Zawani Mohd Rosli is an undergraduate student in Universiti Kuala Lumpur Malaysian Spanish Institute. She is a Final Year student of Bachelor of Engineering Technology (Hons.) in Mechanical Design.
Email: maizat.rosli@s.unikl.edu.my

Muhamad Husaini Abu Bakar is Director for System engineering and Energy Laboratory and Head of Research and Innovation Section at the Universiti Kuala Lumpur – Malaysian Spanish Institute, Malaysia. Having obtained a Bachelor Degree in Manufacturing Engineering with Management at the Universiti Sains Malaysia (2007), Malaysia, he spent the time from 2007–2012 at the Underwater Robotic Research Group, Universiti Sains Malaysia as a research engineer and awarded Master of Science in advance manufacturing from Universiti Sains Malaysia in 2011. Since 2012 he work as lecturer at Universiti Kuala Lumpur – Malaysian Spanish Institute and obtain his Doctor of Philosophy in Advanced Manufacturing from Universiti Sains Malaysia in 2017. His research interests are related to smart manufacturing, energy, and atomistic modelling.
Email: muhamadhusaini@unikl.edu.my

Shahril Nizam Mohamed Soid hold a PhD in Mechanical Engineering from Universiti Sains Malaysia with research in Internal Combustion Engine. As a Deputy Dean in academic, his area of expertise is Energy Studies with sub-expert in Renewable Energy, Engine Performance and Engine Modelling. He has published significant number of articles in reputed conferences and high impact factor journals.
Email: shahrilnizam@unikl.edu.my

Nurhuda Binti Ismail completed her Master from Universiti Tun Hussein Onn, Malaysia in the year 2005 and highly interested in research on the Highway and Environmental engineering. She is currently a lecturer at Politeknik Tunank Sultanbah Bahiyah, Kulim, Kedah, Malaysia.
Email: nurhuda@ptsb.edu.my

Dr Pranesh Krishnan is working as a Post-Doctoral Researcher with Intelligent Automotive Systems Research Cluster, Universiti Kuala Lumpur Malaysian Spanish Institute since 2018. He completed his PhD and MS degrees at Universiti Malaysia Perlis, Malaysia. He has published over 25 articles in reputed conferences and high impact factor journals. His research interests include signal processing, machine learning, drowsiness research, and wearable sensors.
Email: pranesh@unikl.edu.my