Air Pollution (Particulate Matter) Exposure and Associations with Depression, Anxiety, Bipolar, Psychosis and Suicide Risk: A Systematic Review and Meta-Analysis

Isobel Braithwaite,1,2 Shuo Zhang,3 James B. Kirkbride,2 David P. J. Osborn,2,4 and Joseph F. Hayes2,4

1Institute for Health Informatics, University College London, London, UK
2Division of Psychiatry, University College London, London, UK
3Health Services and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, Kings’ College London, London, UK
4Camden and Islington National Health Service Foundation Trust, London, UK

BACKGROUND: Particulate air pollution’s physical health effects are well known, but associations between particulate matter (PM) exposure and mental illness have not yet been established. However, there is increasing interest in emerging evidence supporting a possible etiological link.

OBJECTIVES: This systematic review aims to provide a comprehensive overview and synthesis of the epidemiological literature to date by investigating quantitative associations between PM and multiple adverse mental health outcomes (depression, anxiety, bipolar disorder, psychosis, or suicide).

METHODS: We undertook a systematic review and meta-analysis. We searched Medline, PsychINFO, and EMBASE from January 1974 to September 2017 for English-language human observational studies reporting quantitative associations between exposure to PM <1.0 μm in aerodynamic diameter (PM2.5) and PM <2.5 and <10 μm in aerodynamic diameter (PM2.5 and PM10, respectively) and the above psychiatric outcomes. We extracted data, appraised study quality using a published quality assessment tool, summarized methodological approaches, and conducted meta-analyses where appropriate.

RESULTS: Of 1,826 citations identified, 22 met our overall inclusion criteria, and we included 9 in our primary meta-analyses. In our meta-analysis of associations between long-term (>6 months) PM2.5 exposure and depression (n = 5 studies), the pooled odds ratio was 1.102 per 10-μg/m3 PM2.5 increase (95% CI: 1.023, 1.189; I² = 0.00%). Two of the included studies investigating associations between long-term PM2.5 exposure and anxiety also reported statistically significant positive associations, and we found a statistically significant association between short-term PM10 exposure and suicide in meta-analysis at a 0-2 d cumulative exposure lag.

DISCUSSION: Our findings support the hypothesis of an association between long-term PM2.5 exposure and depression, as well as supporting hypotheses of possible associations between long-term PM2.5 exposure and anxiety and between short-term PM10 exposure and suicide. The limited literature and methodological challenges in this field, including heterogeneous outcome definitions, exposure assessment, and residual confounding, suggest further high-quality studies are warranted to investigate potentially causal associations between air pollution and poor mental health. https://doi.org/10.1289/EHP4595

Introduction

Mental illness is a major and fast-growing cause of morbidity worldwide (Vigo et al. 2016). At the same time, ambient air pollution causes approximately 3 million premature deaths globally per year (WHO 2016). Both problems disproportionately affect deprived groups (Fone and Dunstan 2006; Jerrett 2009) and can show marked urban–rural differences (Kovess-Masféty et al. 2005; Strosnider et al. 2017).

Air pollution contains many individual pollutants, including particulate matter (PM), gaseous pollutants and metallic and organic compounds. In this systematic review, we have focused on PM—itself a complex, heterogeneous mixture—because it is responsible for the largest proportion of air pollution’s physical health impacts (WHO 2016) and there is mounting evidence for tenable mechanisms by which it might affect risk of multiple mental health outcomes. Inflammation involving the central nervous system (CNS; neuroinflammation), has been implicated as having an important role in the pathophysiology of both depression (Liu et al. 2012) and psychosis (Barron et al. 2017). Hypothalamo–pituitary–adrenal (HPA) axis dysregulation has also been implicated in depression (Lopez-Duran et al. 2009). The plausibility of these as potential etiological pathways between PM exposure and such outcomes is backed up by evidence from animal and human studies into the pathophysiological effects of PM exposure. For example, PM exposure has been shown to be associated with markers of neuroinflammation such as glial activation and oxidative stress in humans (e.g., Block and Calderón-Garcidueñas 2009; Calderón-Garcidueñas et al. 2004; Block et al. 2012) and rodents (e.g., Levesque et al. 2011; Fonken et al. 2011); with changes in brain structure, as shown in humans (e.g., Calderón-Garcidueñas et al. 2008) and animals (e.g., Fonken et al. 2011); and with increased stress hormone (cortisol) production (e.g., Li et al. 2017).

There is also emerging evidence to suggest that PM may adversely affect cognitive development (Zhang et al. 2018), cognitive performance (Clifford et al. 2016; Freire et al. 2010), and dementia risk (Chen et al. 2017) as well as stress and psychological well-being (e.g., Mehta et al. 2015; Orru et al. 2016). Taken together, these findings demonstrate the wide-ranging impacts of PM on brain health and functioning and may support the hypothesis of an association with clinically relevant mental health outcomes.

Prior to our systematic review, we searched the Cochrane Library, PROSPERO, and PubMed for previous or in-progress reviews of air pollution and mental health outcomes. Previous reviews have focused more specifically on cognitive outcomes (Guxens and Sunyer 2012; Trzivian et al. 2015) or pollutants other than PM (Lundberg 1996). Attahmed et al. (2017) reviewed the association between psychosis and a wide range of pollutants. In addition to evidence for associations with exposure to heavy metals, they identified four studies investigating associations with PM exposure and concluded that it “appear[s] to play an influential role” in schizophrenia. However, several of the individual reports identified are exploratory in nature and study quality was not assessed.
Our aim was to build on the work reported in the above reviews and provide a comprehensive overview of the epidemiological evidence, from human observational studies, for associations between PM exposure and depression, anxiety, bipolar disorder, psychosis, and suicide, using meta-analysis where appropriate. We also set out to appraise the quality of this evidence, highlighting key gaps and limitations in the current research. These aims are particularly relevant and timely given that some of the previously conducted reviews adopted a narrower scope regarding the outcomes and/or time-frames included and because additional studies have since been published.

Methods

Systematic Review and Selection Criteria

We carried out a systematic review and meta-analysis to assess the evidence from human observational studies for associations between PM and adverse mental health outcomes in adults. We excluded experimental or laboratory-based study designs given that these can only offer limited evidence of causal effects on clinically relevant mental health outcomes. We registered the protocol with PROSPERO (registration identification CRD42017074598). Protocol development and reporting were guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist and flow diagram (Moher et al. 2009).

Inclusion and exclusion criteria, grouped according to the population–exposure–comparator–outcome (PECO) framework (Morgan et al. 2018), were as follows. We required studies to meet all of the following criteria to be eligible for inclusion:

- **Population**—studies including adults (≥18 years of age).
- **Exposures**—studies of outdoor PM <2.5 μm in aerodynamic diameter (PM2.5), <10 μm in aerodynamic diameter (PM10), and <1 μm in aerodynamic diameter (ultrafine particles, or UFPs), collectively termed PM.
- **Comparators**—observational studies reporting comparative effect estimates (i.e., comparing risk between individuals exposed to different levels of PM or different exposures within individuals at different time points).
- **Outcomes**—studies reporting incident or prevalent depression, anxiety, bipolar disorder, or psychosis, including validated symptom-based measures using screening or diagnostic instruments, and clinician diagnoses (recorded or self-reported), emergency department (ED)/clinic attendance or hospitalization for psychiatric disorders, and attempted or completed suicide as outcomes.
- **English-language full-text available.**

We excluded studies meeting the following descriptions:

- **Population**—studies restricted to children and pregnant women or individuals with chronic diseases (although we considered studies which included such populations in subgroup analyses eligible).
- **Exposures**—studies using only a proxy measure of PM, such as distance from a major road, road density, or traffic intensity or solid air-suspended particles (rather than measurements of PM2.5, PM10, or UFP concentrations); studies investigating indoor or cigarette-related air pollution; and studies of occupational air pollution exposure (e.g., firefighters).
- **Comparators**—studies without comparison between higher and lower levels of PM exposure.
- **Outcomes**—studies without an assessed outcome meeting the above criteria (e.g., studies that used measures of stress/psychological distress and studies that used medication prescribing data as their only outcome). We excluded studies using only unvalidated symptom-based measures for outcome assessment from the primary meta-analyses, although not from sensitivity analyses.

Search Terms and Sources

We searched the Medline, PsycINFO, and EMBASE databases from 1 January 1974 (the start date of the EMBASE database) to 20 September 2017 via the OVID platform. We mapped search terms to each index using keywords for air pollution, particulate matter, PM10, PM2.5, and ultrafine particles, psychiatric disorders, depression, anxiety, bipolar, psychosis, suicide, and related terms (see Table S1). We checked reference lists and review papers identified for additional relevant citations.

Study Selection

Two authors (I.B. and S.Z.) separately screened all retrieved citations’ titles and abstracts, and reviewed all studies deemed potentially relevant in full. Selection decisions were made independently using the prespecified criteria above, tracked using a spreadsheet, and disagreements resolved through discussion.

Data Extraction

I.B. and S.Z. extracted data from eligible studies using a standardized pre-piloted template, covering the following information for each citation: study design, case definition, data source(s), study location, age range, sex (if only one), population at risk, number of cases/outcomes, follow-up time (where applicable), baseline PM concentration (in micrograms per cubic meter), exposure lags investigated, and a summary of overall findings [including direction and statistical significance of adjusted associations, such as risk, odds, or hazard ratios (RRs, ORs, and HRs, respectively)]. Where results were reported only at selected lags, only in stratified analyses, or only in graphical form, we requested unpublished results from authors by email. We also extracted covariates adjusted for in the main adjusted models of each study, which are listed in Table S2.

Studies of Short- and Long-Term Associations

Within the air pollution epidemiological literature more widely, there does not appear to be a consensus definition regarding the threshold distinguishing short- from long-term air pollution exposure. Short-term exposure generally refers to mean exposure over periods of hours, days, or weeks (which should also be measured immediately or only a short time prior to outcome assessment; i.e., at a short lag), often assessed through time-series or case-crossover study designs. Long-term exposure generally refers to mean exposure over a period of years and, in some studies, of several months, typically assessed through cohort, cross-sectional, or case–control study designs (e.g., WHO 2013; Cai et al. 2016). For this analysis, we grouped studies based on the duration of exposure assessment (short- and long-term). We defined studies investigating short-term exposure as those using measured or modeled exposure values for periods shorter than 6 months, as an intermediate threshold between the time periods typically considered short-term (days or weeks) and long-term (≥1 y). We also required that the exposure assessment period finish within the 6 months prior to outcome assessment, in line with other reviews (e.g., Cai et al. 2016). Long-term exposure was operationalized as measured or modeled mean exposure values covering a time period equal to or longer than 6 months.

Short-term time-series, case-crossover, and hierarchical cluster analysis study designs used one or both of two types of exposure lag periods (cumulative and single lags); the term lag 0-2 (or
equivalent) is used to denote the lagged cumulative exposure (i.e., the moving average of daily mean concentration on Day 0 (day of outcome), Day \(-1\) (day before outcome), and Day \(-2\) (two days before outcome), and so forth). Lag 2 (or equivalent terms) denotes the single-day mean exposure concentration 2 d before the outcome.

Study Quality Assessment

We assessed study quality using the validated Effective Public Health Practice Project (EPHPP) Quality Assessment Tool for Quantitative Studies (MERST 2010; Armijo-Olivo et al. 2012; Thomas et al. 2004), which was developed by the McMaster Evidence Review and Synthesis Centre for evaluating public health research across heterogeneous study designs, including observational studies. Quality assessment scores were not used to restrict inclusion in meta-analysis but, rather, for the readers’ reference. I.B. and S.Z. assigned quality ratings for each component according to the EPHPP Quality Assessment Tool and guidance within the associated EPHPP Tool Dictionary (available online at https://merst.ca/ephpp/ and https://merst.ca/wp-content/uploads/2018/02/quality-assessment-dictionary_2017.pdf, respectively). I.B. and S.Z. discussed individual component ratings to reach an agreed rating, and where disagreements arose, these studies were discussed with J.F.H. to determine final ratings. We assigned overall ratings according to the EPHPP guidance (those with one rating of poor were assigned an overall rating of fair, and those with two or more, an overall rating of poor).

We assessed selection bias, study design, confounders, blinding, data collection methods (outcome assessment), withdrawals and drop-outs (in longitudinal designs), and intervention/exposure integrity and analyses and assigned an overall rating for all but the last two. Table S3 provides a list of the questions within each component and summary descriptors for how each was allocated.

We extended the list of study designs assigned a moderate rating from those in the EPHPP Tool Dictionary roadmap to include time-series analysis, case-crossover, and hierarchical cluster analysis, provided they used bidirectional referent period selection (as per Carracedo-Martínez et al. 2010). Cross-sectional studies of long-term exposure using an exposure period overlapping with or after outcome assessment were rated poor on study design, whereas cross-sectional studies of long-term exposure using PM values corresponding to a period prior to the outcome assessment period were rated moderate.

In assessing confounding risk, we did not assess the likelihood of differences by intervention (exposure) status given that PM exposure is continuous and we assumed all studies to be at risk of confounding. To assign a rating, we estimated the approximate proportion of relevant confounders controlled (through design or analysis) as follows. We deemed studies comparing risk between individuals to be vulnerable primarily to confounding by socioeconomic status/deprivation, lifestyle factors, health status, and urbanity and considered those that controlled for age, sex, urbanity, multiple relevant lifestyle factors, and for multiple indicators of socioeconomic status (e.g., education, income/household income, area-level measures of deprivation) to have controlled for >80% of (most) relevant confounders; the rating threshold termed good. However, other potentially important confounders (such as noise exposure and access to green space) may not have been controlled for; we judged their (combined) effect as likely to represent <20% of overall relevant confounders. Some adjustment for socioeconomic status and urbanity was required as a minimum for a (between-individual) study to be considered moderate quality with respect to confounding. We considered case-only designs, such as case-crossover analyses, which compare risk within each individual at different points in time, prone mainly to confounding by time-varying covariates (e.g., meteorological factors, seasonal variation, and day-of-the-week effects), and the risk of confounding was appraised accordingly.

Meta-Analysis and Standardization of Results

In addition to the eligibility criteria noted for inclusion in the systematic review, we conducted meta-analyses only when three or more eligible studies investigated associations between the same PM fraction and same outcome, analyzed dichotomous and continuous outcomes separately, and considered only results unstratified by season. We meta-analyzed the adjusted results of studies of associations with long-term PM exposure together, using the most similar time lags available in the primary meta-analysis, and without combining associations of PM exposure with incidence and prevalence in the same (primary) meta-analysis. We meta-analyzed studies of short-term exposure only at the same exposure lag, treating single and cumulative lags separately. Given the overlap between cumulative and single-day lags, we judged meta-regression not to be conceptually appropriate.

We did not use the overall EPHPP study quality ratings to determine eligibility for inclusion in meta-analyses; however, we required studies to have adjusted for a minimal set of confounders to be eligible for meta-analysis (primary or sensitivity analyses) and always used the results from the most comprehensively adjusted model. For studies of long-term exposure, we required adjustment for urbanicity and socioeconomic status or deprivations as a minimum for inclusion in meta-analysis. For studies of short-term exposure, we required adjustment for day of the week and temperature as a minimum.

We considered only results from whole-year analyses for inclusion, both because analyses stratified by season used heterogeneous seasonal cutoffs and because there is currently not sufficient evidence of seasonal effect modification of a putative association with PM to justify stratified analyses. For our primary meta-analysis we required the measures effect to be the same or to be convertible. This meant we did not meta-analyze studies reporting HRs alongside ORs or RRs. We assessed the impact of excluding these results in sensitivity analysis.

We conducted three primary meta-analyses: long-term PM\(_{2.5}\) and depression risk; long-term PM\(_{10}\) and depression risk, and short-term PM\(_{10}\) and suicide risk (at two lag periods of 0-1 and 0-2 d).

We used DerSimonian-Laird random-effects meta-analysis (DerSimonian and Laird 1986), using the metan function in STATA, because of the heterogeneity in study populations, outcomes, definitions, and prevalence. We produced forest and funnel plots, and conducted all statistical analyses using STATA (version 14.0; Stata Corporation). Assuming a log-linear exposure–response relationship, we standardized ORs, RRs, and HRs for a 10 \(\mu g/m^3\) PM increment—where expressed per 5 \(\mu g/m^3\) PM increment, for example—for before meta-analysis. To standardize these results, we used the formula \(OR_0 = e^{(\ln(OR) \times (\Delta))}\) (substituting RR or HR as applicable), where \(\Delta\) is the increment of PM exposure (5 \(\mu g/m^3\) in this example) for which \(OR_0\) is presented in the original study (Cohen et al. 2004).

Sensitivity Analyses

We used sensitivity meta-analysis to explore the effect of the following changes on the results of meta-analyses of associations between depression and long-term PM\(_{2.5}\) exposure (1a–c), and between depression and long-term PM\(_{10}\) exposure (2a–b),

- Including HRs in meta-analysis with ORs (i.e., assuming equivalence)
- Including studies excluded from the primary meta-analysis on the basis of the outcome definitions used, for PM\(_{2.5}\)
• Including the same studies as the primary meta-analysis using alternative exposure time periods for studies which used more than one (PM\(_{2.5}\) only)
• Including the same studies as the primary meta-analysis but using the alternative exposure assessment model in studies using two models (PM\(_{10}\) only)
• Including the studies excluded from the primary meta-analysis on the basis of their outcome definitions, for PM\(_{10}\) (as per 1b).

Assessment of Variability and Publication Bias
We assessed heterogeneity between meta-analyzed studies using forest plots (given the relatively small number of studies included, this approach was considered more appropriate than Cochran’s \(Q\)) and assessed the percentage of between-study variation due to heterogeneity rather than within-study error with the \(I^2\) statistic; we also calculated \(p\)-values for a chi-square test of heterogeneity. We analyzed funnel plots visually for evidence of publication bias and conducted Egger’s regression test.

Illustrative Population Attributable Fraction Estimates
Where meta-analyses of associations with long-term exposure yielded statistically significant summary estimates, we estimated illustrative population attributable fractions (PAFs) for two separate exposure scenarios (UK cities and global). For this purpose, we assumed causality (while noting that this has not been proven), equivalence between ORs and RRs (the rare outcome assumption), and a log-linear exposure–response function (i.e., that relative risk remains constant per unit increase in exposure, at all concentrations). The latter assumption is frequently adopted in air pollution epidemiology in relation to physical health outcomes (e.g., Daniels et al. 2000).

We estimated PAFs by assuming 100% exposure prevalence at population-weighted mean PM exposure levels, using published population-weighted exposure estimates for UK urban (EC 2017) and global (Brauer et al. 2016) populations (12.8 \(\mu\)g/m\(^3\) and 43.9 \(\mu\)g/m\(^3\), respectively). The counterfactual scenarios we used were those of population-weighted average exposure being reduced to the World Health Organization’s (WHO) recommended limit for annual mean PM\(_{2.5}\) (10.0 \(\mu\)g/m\(^3\)) for UK cities (Krzyzanowski and Cohen 2008), and to the European Union’s (EU) less stringent recommended limit value (25.0 \(\mu\)g/m\(^3\)) for the global scenario (EC 2015).

To calculate PAFs, we adapted the following formula used by the WHO (2016):

\[
PAF = \frac{\sum_{i=1}^{n} P_i \cdot (RR - 1)}{\sum_{i=1}^{n} P_I (RR - 1) + 1},
\]

where \(i\) is the level of PM\(_{2.5}\) in micrograms per cubic meter, \(P_i\) is the percentage of the population exposed to that level of air pollution, and \(RR\) is the relative risk (compared with the counterfactual scenario; see below). Assuming uniform and ubiquitous exposure at a specified mean level, based on a population-weighted exposure estimate, this simplifies to

\[
PAF = \frac{1.00(10/R - 1)}{1.00(10/R - 1) + 1}.
\]

For this purpose, we treated pooled ORs obtained from meta-analysis as equivalent to RRs, and estimated the RR under the current relative to counterfactual PM\(_{2.5}\) exposure scenarios outlined above as

\[
RR = OR_{10}^{(PM_{2.5}\text{ current} - PM_{2.5}\text{counterfactual})},
\]

where \(OR_{10}\) denotes the OR per 10-\(\mu\)g/m\(^3\) increment in PM\(_{2.5}\) exposure used. Calculations are detailed in Table S4.

Results
The study selection process is summarized in Figure 1. We identified 25 eligible studies (from 22 citations, 1 of which included four data sets combined in one paper as a meta-analysis (Zijlema et al. 2016) (Tables 1–3) from 1,829 citations screened; most investigated outcomes were related to depression, suicide, or ED/hospital attendance.

Two studies (Power et al. 2015; Pun et al. 2017) included both short- and long-term exposure lags; 14 studies assessed associations with short-term exposure only, and 9 assessed associations with long-term exposure only. One study (Wang et al. 2014) categorized with studies of short-term PM exposure in our review also studied longer-term exposure; however, we excluded these analyses because they used road proximity rather than PM exposure.

Sample size ranged from 958 to 69,966 in studies including both cases and noncases (e.g., cohort and cross-sectional studies). Those adopting case-only study designs included between 1,546 and 118,602 individuals. Two studies (Kiourmoutzoglou et al. 2017; Power et al. 2015) included only women, and 5 (Kiourmoutzoglou et al. 2017; Power et al. 2015; Pun et al. 2017; Lim et al. 2012; Wang et al. 2014) included only older adults, with a range of age cutoffs. The most common study locations were Asia and North America; 14 were restricted to urban populations. Most studies identified were relatively recent, with only 8 published before 2015. Six of these used case-only study designs, whereas a higher proportion published since then adopted cross-sectional or cohort designs.

Tables 1–3 summarize the key data extracted from included studies, divided according to the exposure timeframe, and Figure 2 summarizes study quality, outcomes studied, and inclusion in meta-analyses. Associations (ORs/RRs/HRs) are presented per 10-\(\mu\)g/m\(^3\) increment unless otherwise specified. Table S2 details the covariates included by each study in their primary adjusted models (although it is worth noting that case-only designs also adjust for all time-invariant confounders; i.e., those for which an individual’s exposure remains constant over the timeframes studied—by design).

Study Quality
Study quality varied substantially (Figure 2). Overall, we rated quality more highly in studies of short- than long-term exposure, partly due to the case-only designs’ advantages regarding confounder adjustment—given that many important confounders (such as individual socioeconomic status, physical activity, smoking status, and area-level deprivation), do not vary over short timeframes when individuals act as their own controls—along with their narrower epidemiological scope (given that they can only compare transient, acute effects rather than provide evidence about the etiology of more chronic exposure–outcome relationships). We rated many studies fair or poor regarding selection bias because few selection strategies ensured that participants were very likely to be representative of the target population, and some reported participation rates <60% at enrollment, as in Zijlema et al. 2016 (Substudies A and C; LifeLines and HUNT, respectively), or did not report this (e.g., Kim and Kim 2017; Zijlema et al. 2016 (Substudy B; KORA), Wang et al. 2014).
We rated four of the studies of long-term PM exposure [Zijlema et al. 2016 (Substudies A–C; LifeLines, KORA, and HUNT) and Vert et al. 2017] as poor overall due to two or more poor component ratings. It should be noted that some studies were rated moderate overall according to EPHPP guidance, within which a poor global rating was assigned to studies with two or more poor component ratings, despite potentially significant weaknesses in a specific area, if they did not have two poor scores. For example, we rated both the KORA and FINRISK studies [Substudies B and D in the meta-analysis by Zijlema et al. (2016)] poor on study design because in both cases exposure assessment was based on models created using monitoring data collected significantly after clinical outcomes were assessed, although using concurrent address data.

Studies investigating associations between long-term PM exposure and mental health outcomes (which tend to compare exposure differences between individuals) are primarily susceptible to confounding by time-invariant confounders that may co-vary with both air pollution and mental health. Some studies failed to control for confounders that we considered likely to be particularly important (e.g., socioeconomic status/deprivation, urbanity), as in the HUNT subcohort in Zijlema et al. (2016), which included neither of these, or did so only partially (e.g., Kim and Kim 2017; Vert et al. 2017). By contrast, several other studies controlled for socioeconomic status reasonably comprehensively (e.g., Kim et al. 2016; Kioumourtzoglou et al. 2017; Lin et al. 2017a; Pun et al. 2017; Power et al. 2015). Some other potentially influential confounders were rarely included in analyses; for example, no included study adjusted for access to green space and only the substudies by Zijlema et al. (2016) included noise. However, the results of these sub-studies had very wide confidence intervals (CIs), in analyses with and without adjustment for noise exposure, which the authors noted could have been due to model overfitting and comparatively low exposure variability.

Although relatively robust to time-invariant confounders, case-only studies (which compare changes in risk associated with short-term exposure within the included individuals, who all experience the outcome of interest over the study period) remain susceptible to time-varying confounders such as temperature (Page et al. 2007; Peng et al. 2017) and seasonal and long-term trends (Carracedo-Martínez et al. 2010). These were generally well controlled (see Table S3 for covariates adjusted for), leading to most case-only studies being assigned a confounding rating of
Table 1. Summary of observational studies of long-term exposure to particulate air pollution (exposure assessment periods of ≥6 months duration) and adult mental health outcomes published between 1 January 1974 and 20 September 2017.

| Reference | Study design | Case definition | Outcome data source | Study location | Age (y) | Population at risk | Cases or outcome events (n) | Follow-up time (years of outcome assessment) | Baseline PM concentrations (µg/m³) | Exposure assessment periods(s) | Summary of overall findings: direction and significance of adjusted associations |
|-------------------------------|--------------|-----------------|---------------------|----------------|---------|-------------------|----------------------------|---------------------------------|---------------------------------|--|
| Kim et al. 2016 | OC | Depression incidence - first recorded diagnosis of major depression (ICD-10 codes F32.x) with an antidepressant prescription | National Health Insurance Database | Seoul, Republic of Korea | 15–79 | 27,270 | 973 | 3 y (2008–2010) | PM₂.₅: 26.7 (2007–2010 average) | Annual mean level of PM₁₀ in 2007, 4-y mean PM₂.₅ (2007–2010); 12-month moving average of PM₂.₅ until an event or censor (during 2007–2010) | Associations at all exposure periods investigated all positive and significant (fully adjusted model). HR = 1.47 (95% CI: 1.14, 1.90) per 10-µg/m³ increase in 12-month PM₂.₅ (moving average over 1 y before outcome) |
| Kim and Kim 2017 | C-S | Depressive experience (Yes response to binary question), detailed here, and self-rated stress (not eligible for this review) | Survey with questionnaire (cross-sectional) | 25 districts in Seoul, Republic of Korea | ≥19 | 23,139 | 1,675 | | PM₁₀: 44.6 | Annual mean level of PM₁₀ in 2013 | Depression experience: N-S association with 1-y PM₁₀: OR = 1.10 (95% CI: 0.98, 1.05) per 10-µg/m³ increase in PM₁₀ in 2013 N-S associations with diagnosis and first reported antidepressant use combined (the authors’ primary outcome definition): HR = 1.08 (95% CI: 0.97, 1.20) and with diagnosis: HR = 0.98 (95% CI: 0.84, 1.15) |
| Kioumourtzoglou et al. 2017 | OC | Depression incidence - first self-report of either a physician diagnosis of depression or antidepressant medication use | Written questionnaire (within Nurses’ Health Study) | USA | 50–75° | 41,844 | 5,003 | 14 y (1996–2008) | 1-, 2-, and 5-y mean PM₂.₅ prior to outcome assessment | Adjusted OR for association with 3-y PM₂.₅: 1.10 (95% CI: 1.02, 1.19) per 10-µg/m³ PM₂.₅ Adjusted OR for association with 2-y PM₂.₅: 1.06 (95% CI: 1.01, 1.12) |
| Lin et al. 2017a | CS | Depression prevalence - any of: a) depressive symptoms within the past year, b) meeting diagnostic criteria for research, or c) having received depression-related health care | Survey with questionnaire (questions from CIDI, WMH Survey version) | China, Ghana, India, Mexico, Russia, South Africa | >18 | 41,785 | 3,189 | | Mean PM₂.₅: 23.75 | 3-y moving average mean PM₂.₅ prior to survey (SAGE Wave 1, conducted from 2007 to 2010 across 6 countries (Lin et al. 2017b) | Positive, significant association between depression and ambient PM₂.₅. Adjusted OR for association with 2-y PM₂.₅: 1.10 (95% CI: 1.02, 1.19) per 10-µg/m³ PM₂.₅ |
| Vert et al. 2017 | C-S | 4 separate outcomes - self-reported history of depression or anxiety disorder, benzodiazepine or antidepressant use | Survey with face-to-face interviews | Barcelona, Spain | 45–74 | 958 | | Self-reported depression: 13; self-reported anxiety: 21 | Median PM₂.₅: 16.3; Median PM₁₀: 37.7 | 2009 modeled values (from ESCAPE), using 2013–2014 address data | Positive, significant association between self-reported depression and both PM fractions: OR = 6.52 (95% CI: 1.82, 23.35) per 10-µg/m³ PM₁₀, OR = 4.38 (95% CI: 1.70, 11.30) per 5-µg/m³ PM₂.₅. Positive, N-S associations between self-reported anxiety and both PM fractions: OR = 1.33 (95% CI: 0.48, 3.68) per 10-µg/m³ PM₁₀, OR = 1.49 (95% CI: 0.62, 3.58) per 5-µg/m³ PM₂.₅ |
Table 1. (Continued.)

Reference	Study design	Case definition	Outcome data source	Study location	Age (y)	Population at risk	Cases or outcome events (n)	Follow-up time (years of outcome assessment)	Baseline PM concentrations (µg/m³)	Exposure assessment period(s)	Summary of overall findings: direction and significance of adjusted associations		
Zijlema et al. 2016													
A (LifeLines)	C-S	Depressive symptoms - MINI diagnostic interview (≥5 symptoms; ≥1 key symptom)	Standardized face-to-face interviews	4 European cohorts: 3 Northern provinces (Netherlands)	≥18	70,928 total; 32,145	681 (2.1%)	N/A	PM₁₀: 23.95; PM₂₅: 15.4 (medians)	ESCAPE (2009–2010); EU-wide (2007)	Positive, N-S association for PM₂₅: OR = 1.04 (95% CI: 0.32, 3.40) per 5-µg/m³ PM₂₅. Negative, N-S association for PM₁₀ (ESCAPE): OR = 0.43 (95% CI: 0.07, 2.62) per 10-µg/m³ PM₁₀. Negative, N-S association for PM₁₀ (EU-wide): OR = 2.89 (95% CI: 1.43, 5.85) per 10-µg/m³ PM₁₀		
B (KORA)	C-S	Depressive symptoms - PHQ-9 diagnostic interview version (≥5 symptoms; ≥1 key symptom)	Standardized face-to-face interviews	Augsburg area, Germany	≥18	5,314	87 (1.6%)	N/A	Outcome data: 2004–2005, 2006–2008	ESCAPE (2008–2009); EU-wide (2005–2007 average)	Positive, N-S association for PM₂₅: OR = 1.06 (95% CI: 0.25, 4.51) per 5-µg/m³ PM₂₅. Negative, N-S association for PM₁₀ (ESCAPE): OR = 0.81 (95% CI: 0.31, 2.13) per 10-µg/m³ PM₁₀. Negative, N-S association for PM₁₀ (EU-wide): OR = 0.48 (95% CI: 0.06, 3.91) per 10-µg/m³ PM₁₀		
C (HUNT)	C-S	Depressive symptoms - score of ≥10 on HADS-D questionnaire	Self-administered written questionnaire	Nord-Trøndelag area, Norway	≥18	32,102	1,226 (3.8%)	N/A	Outcome data: 2006–2008	Median PM₁₀: 11.0	EU-wide (2006–2007 average)	No main adjusted model results (alternative confounder model used not adjusted for education, household income, or urbanicity). Results of minimal confounder model for PM₁₀ (EU-wide): OR = 0.38 (95% CI: 0.21, 0.68) per 10-µg/m³ PM₁₀. Positive, N-S associations for both PM₁₀ and PM₂₅: OR = 1.39 (95% CI: 0.64, 3.05) per 5-µg/m³ PM₁₀ and PM₂₅: OR = 1.08 (95% CI: 0.50, 2.33) per 10-µg/m³ PM₁₀	
D (FINRISK)	C-S	Depressive symptoms - score of ≥21 on CESD questionnaire	Self-administered written questionnaire	Helsinki, Vantaa, Turku (Finland)	≥18	1,367	155 (11.3%)	N/A	Outcome data: 2007	Not stated	ESCAPE (2010–2011)		

Note: CESD-R, Centre for Epidemiologic Studies Depression scale (Revised); CIDI, Composite International Diagnostic Interview; C-S, cross-sectional; GAD, generalized anxiety disorder; HADS, Hospital Anxiety and Depression Scale; HR, hazard ratio; ICD, International Classification of Diseases; MDD, major depressive disorder; MINI, Mini-International Neuropsychiatric Interview; N-S, nonsignificant; OC, observational cohort; OR, odds ratio; PHQ-9, Patient Health Questionnaire-9; PM₁₀, particulate matter of <10 µm in aerodynamic diameter; PM₂₅, particulate matter of <2.5 µm in aerodynamic diameter; PYAR, person-years at risk; Sz, schizophrenia; WMH Survey, World Mental Health Survey.

Mean PM values are given except where otherwise stated.

Significance refers to statistical significance at the 95% level.
Summary of observational studies of associations between long- and short-term exposure (exposure assessment periods of \(\geq 6\) and <6 months duration) to particulate air pollution and adult mental health outcomes published between 1 January 1974 and 20 September 2017.

Study	Reference	Case definition	Exposure assessment period (months)	Follow-up time (years)	Outcome	Population at risk	Cases or outcomes	Study design	Study location	Outcome data	Reference study	Note
Pun et al. 2017	Power et al. 2015	Moderate-to-severe depressive symptoms (CESD-11, HADS)	PM2.5, 1-month exposure	10.818	Depressive symptoms	71,271 total: 70,958 women, 2,313 men	1,433 with depressive symptoms	Case-control	USA	Written questionnaire	N-S, nonsignificant; CESD-11, Centre for Epidemiologic Studies Depression scale (11-item version); HADS, Hospital Anxiety and Depression Scale; ICD, International Classification of Diseases; N-S, nonsignificant; NSHAP, National Social Life, Health and Aging Project; OC, observational cohort; OR, odds ratio; PM10, particulate matter of <10 g/m³; PM2.5, particulate matter of <2.5 g/m³.	Power et al. 2015

Depression

Two eligible cohort studies (Kim et al. 2016; Kioumourtzoglou et al. 2017) and seven cross-sectional studies, including four sub-studies from Zijlema et al.’s paper (Kim and Kim 2017; Lin et al. 2017a; Pun et al. 2017; Vert et al. 2017; Zijlema et al. 2016) (Substudies A–D) looked at associations between long-term PM2.5 exposure and depression.

Outcomes included depression incidence (Kim et al. 2016; Kioumourtzoglou et al. 2017) and prevalence—based on either score on a screening instrument indicating moderate-to-severe depressive symptoms [Pun et al. 2017; Zijlema et al. 2016 (Substudies C and D)], or meeting diagnostic criteria on a validated diagnostic instrument [Zijlema et al. 2016 (Substudies A and B)]. Another study (Lin et al. 2017a) used the validated World Mental Health Survey version of the Composite International Diagnostic Interview (WMH-CIDI) and defined depression as any of the following: depressive symptoms within the past year, meeting diagnostic criteria for research (based on WMH-CIDI), and/or having received depression-related health care. This study partially involved self-report of diagnosis or health care utilization; however, we rated outcome assessment moderate because this self-reported outcome data was used alongside a valid and reliable instrument.

Of the seven cross-sectional studies, five (Lin et al. 2017a; Zijlema et al. 2016 (Substudies A, B and D); Pun et al. 2017) met criteria for inclusion in the primary meta-analysis of associations between long-term PM2.5 exposure and depression. Results of the sensitivity meta-analyses are shown in Table 4 and the reasons for exclusion of other studies from the meta-analyses are detailed in Table S5.

Long-term PM2.5 and depression

In meta-analysis, the pooled OR for the association between long-term PM2.5 exposure and depression prevalence (Figure 3; \(n = 5\) studies) was 1.102 per 10 \(\mu g/m^3\) (95% CI: 1.023, 1.189; \(p = 0.011\)), indicating that higher PM2.5 exposure is associated with higher odds of depression. The \(I^2\) statistic was 0.00%, suggesting low statistical heterogeneity among the included studies. Evidence of publication bias was not evident in the funnel plot (Figure 4A), and this was further supported by the results of Egger’s regression test for small-study effects (\(H_0 = 0\) small-study effects; \(p = 0.311\)).

We conducted a sensitivity meta-analysis (Table 4, Row 1a) in which we also included HRs for PM2.5 exposure from the two observational cohort studies, the first of which found statistically significant positive associations with incidence of recorded depression diagnoses (Kim et al. 2016) and another that did not find a statistically significant association with self-report of diagnosis (Kioumourtzoglou et al. 2017). This gave a similar pooled
Table 3. Summary of observational studies of short-term exposure to particulate air pollution (exposure assessment periods of <6 months duration) and adult mental health outcomes published between 1 January 1974 and 20 September 2017.

Reference	Study design	Case definition	Outcome data source	Study location	Age (y)	Population at risk	Cases or outcome events (n)	Duration (y)	Baseline PM concentrations (µg/m³)	Exposure assessment duration or lag (d)	Summary of overall findings—direction and significance of adjusted associations
Bakian et al. 2015	CCO	All registered suicide deaths	Mortality data, Office of the Medical Examiner	Salt Lake County, Utah, USA	All ages	N/A (case-only)	1,546	11 (2000-2010)	PM₁₀: 1059–11.38; PM₂₅: 32.21–33.21	Single lags: 0, 1, 2, 3; Cumulative lags: 0-4, 0-2, 0-3	Positive, significant association with PM₁₀ at lag 2 (unstratified by sex), and lag 3 in males. Positive, N-S increases for PM₂₅ at all lags except lag 0. N-S association with PM₁₀ across the whole year. Positive, significant association in summer.
Casas et al. 2017	CCO	All registered suicide deaths (ICD-10 codes X00-X84 (intentional self harm—90% of cases) or codes Y10-Y34 (event of undetermined intent))	National Belgian Population Register	Belgium	All ages	N/A (case-only)	21,231	10 (2002-2011)	PM₁₀ (event days): 29.0	Cumulative lags: 0-1, 0-2, 0-3, 0-5, 0-6 d	N-S association with PM₁₀ across the whole year. Positive, significant association in summer.
Kim et al. 2020	CCO	All registered suicide deaths (confirmed date of death/ date of hospital attendance if dead on arrival)	National Statistical Office database	All ages	N/A (case-only)	4,341	1 (2004)	PM₁₀: 50.85; PM₂₅: 29.9	Single lags: 0, 1, 2, 3, 4, 5, 6, 7 d; Cumulative lags: 0-1, 0-2, 0-3, 0-4, 0-5, 0-6, 0-7 d	Significant positive association at lags 0-1 and 0-2, otherwise positive but N-S, except at lag days 5, 6, 7 (negative, N-S)	
Lin et al. 2016	CCO	All registered suicide deaths (ICD 10:360-84)	Guangzhou CDCP mortality register	Guangzhou, China	All ages	N/A (case-only)	1,550	10 (2003-2012)	PM₁₀: 79.6	Same day (0); Cumulative lags: 0-1, 0-2, 0-3, 0-4, 0-5 d	N-S association with PM₁₀ at all lags studied, no consistent direction of effect observed.
Ng et al. 2016	CCO	All registered suicide deaths (ICD-10 codes X00-X84)	National mortality register	Tokyo, Japan	All ages	N/A (case-only)	29,939	11	PM₁₀: 18.66–19.66	Same day (0); Cumulative lags: 0-1, 0-2, 0-3, 0-4, 0-5 d	N-S associations with PM₁₀ at all lags studied, no consistent direction of effect observed.
Kim et al. 2015	Time-series	All registered suicide deaths (ICD-10 codes X00-X84)	National mortality register	Republic of Korea	All ages	N/A (case-only)	Mean rate: 29.1 per 100,000 PYAR	6 (2006–2011)	PM₁₀: 51.63	Lagged weekly, not cumulative (single weekly lags 0-6)	Positive, significant association at lags 0, 2, 3, 4, strongest at 4 weeks. N-S associations at 1, 5, and 6 weeks.
Szydzikowicz et al. 2010	CCO and HCA	ED visits coded as suicide attempt/death or mental health (separately); trauma referrals excluded as not accepted by this hospital	ED attendance data	Vancouver, Canada	All ages	N/A (case-only)	1,005 suicide attempts/death; 9,358 mental health ED visits	4.2 (1 January 1999-28 February 2003)	PM₁₀: 25.8; PM₂₅: 8.6	Daily mean values and 1- and 2-d lagged values	Positive, N-S results for PM₁₀ and PM₂₅ in whole-year analyses, largest effect estimates at lags 1 and 2. Significant positive associations noted in cold season only. Results for mental health not reported.
Gao et al. 2017	Time-series	Psychiatric hospital admissions for any mental/behavioral disorder (ICD-10 codes F00-F99); also stratified by diagnosis (schizophrenia and mood disorders)	ED attendance data	Beijing, China	All ages	N/A (case-only)	13,291 total; 4,529 schizophrenia; 7,290 mood disorders	3	PM₁₀: 120.0; PM₂₅: 88.8	Single-day lags: 0, 1, 2, 3, 4, 5; Cumulative lags 0-2, 0-4, 0-6	Positive, significant associations with unstratified admissions and schizophrenia; N-S for mood disorders PM₁₀; Positive, significant associations with total, mood disorder and schizophrenia admissions.
Reference	Study design	Case definition	Outcome data source	Study location	Age (y)	Population at risk	Cases or outcome events (n)	Duration	Baseline PM concentrations (μg/m³)	Exposure assessment duration or lag[a]	Summary of overall findings—direction and significance of adjusted associations
-------------------	--------------	--	--	------------------------	---------	--------------------	-------------------------------	--------------	-----------------------------------	--	--
Cho et al. 2014	CCO	All ED attendances for depressive episode	National Health Insurance program data	Seoul, Republic of Korea	All ages	N/A (case-only)	4,985	4 y (2005–2009)	PM₁₀: 54.15	Single-day lags: 0, 1, 2, 3 d	Positive and significant in same-day model (lag 0), only significant for participants with any of the 5 comorbidities included at cumulative lag 0–3.
Szyszkowicz 2007	HCA	All ED visits for depression (ICD-9 rubric 311)	ED attendance data	Edmonton, Canada	All ages	N/A (case-only)	15,556	10 y (1992–2002)	PM₁₀: 22.6, PM₂₅: 8.5	Single-day lags: 0 (same day), 1 and 2 d lags	Positive, significant association across whole year, positive associations at lags 0 and 1, negative at 2, all N-S. Results for most lags presented graphically only.
Szyszkowicz et al. 2009	HCA	ED visits for depression (ICD-9 rubric 309.2; 311) in Edmonton	ED attendance data	6 cities in Canada	All ages	N/A (case-only)	27,047	Average of 6 y at each study site (sum total across sites equivalent to 37.5 y)	PM₁₀: 19.4, PM₂₅: 8.3	Single-day lags: 0 (same day), 1 and 2 d lags	Unstratified by season: PM₁₀ (lag 0): Positive, significant association. PM₂₅ (lag 0): Positive, N-S association. N-S associations at 1- and 2-d lags.
Szyszkowicz et al. 2016	CCO	ED visits for depression (all visits coded as F32 or F33, although described as mild and recurrent depression; all mental and behavioral disorders (all ICD-10 codes with F- prefix))	National Ambulatory Care Reporting System	9 urban areas in Ontario, Canada	All ages	N/A (case-only)	118,602	7.5 y (April 2004–December 2011)	Mean PM₂₅ not presented; range = 5.3–9.8	Cumulative lags: 0, 0–1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 d	PM₂₅, depression (ICD-10 codes F32–F33): Pooled, whole year estimates (presented only stratified by sex); positive at lags 0–5, 7–8 for males and females at 0 and 2–7. Mostly N-S; significant at lag 3 in males. Results for analyses of all mental and behavioral disorders not reported.
Table 3. (Continued.)

Reference	Study design	Case definition	Outcome data source	Study location	Age (y)	Population at risk	Cases or outcome events (n)	Duration	Baseline PM concentrations (µg/m³)	Exposure assessment duration or lag	Summary of overall findings—direction and significance of adjusted associations
Lim et al. 2012	Panel study	Depressive symptoms - SGDS-K score (continuous)	Face-to-face interviews with questionnaire	Seoul, Republic of Korea	60–87	560; results for 537	N/A	3 discrete follow-up periods over 3 y	PM₁₀: 43.7	Same day (0), cumulative lags: 0-2, 0-5, 0-7, 0-14, 0-21, 0-28 d	
Wang et al. 2014	Panel study, nested within OC	Depressive symptoms (CESD-R ≥ 16)	Face-to-face interview with questionnaire	Boston, USA	≥65	732	62 (8.5%)	3 y	PM₂₅: 8.6	Cumulative lags: 0-1, 0-2, 0-3, 0-5, 0-7, and 0-14 d. Also long-term exposure using proximity to main road; this analysis was not eligible (hence listed as short-term only).	

Note: Where follow-up time is presented in days in the primary source, we converted this to years by dividing by 365 d/y. CCO, case-crossover; CESD(-R), Centre for Epidemiologic Studies Depression scale (-Revised); ED, emergency department; HCA, hierarchical cluster analysis; HR, hazard ratio; ICD, International Classification of Diseases; MDD, major depressive disorder; N-S, nonsignificant; OR, odds ratio; PM₁₀, particulate matter of <10 µm in aerodynamic diameter; PM₂₅, particulate matter of <2.5 µm in aerodynamic diameter; PYAR, person-years at risk; RR, relative risk; SGDS-K, Korean Geriatric Depression Scale-Short Form score; WMH Survey, World Mental Health Survey.

- Mean PM values are given except where otherwise stated.
- Lags refer to mean exposure over the specified period relative to the point of outcome assessment, such that single lag 2 denotes exposure 2 d prior to outcome assessment, whereas cumulative lag 0-2 denotes exposure on the day of outcome assessment as well as on the preceding 2 d, and so forth.
- Significance refers to statistical significance at the 95% level.
- Positive scores on SGDS-K were inverted by Lim et al. (2012) so that higher overall scores indicate greater severity.
Figure 2. Summary of results of quality assessment of studies of particulate air pollution and adult mental health outcomes considered eligible for inclusion in this review, outcomes assessed, and overview of inclusion in meta-analyses. Quality was assessed using the Effective Public Health Practice Project (EPHPP) Quality Assessment Tool for Quantitative Studies (MERST 2010; Armijo-Olivo et al. 2012; Thomas et al. 2004), which was developed for evaluating public health research across heterogeneous study designs. We extended the list of study designs assigned a fair rating beyond those listed in the EPHPP Tool Dictionary. We rated all time-series analyses, case-crossover, and hierarchical cluster analyses as fair quality, provided case-crossover studies used bidirectional referent period selection. We rated all cross-sectional studies of associations with long-term PM exposure that used measured or modeled PM values from a period prior to (and not overlapping with) outcome assessment as fair to reflect the relative strength of these studies compared with typical cross-sectional studies with simultaneous exposure and outcome assessment; we rated those using an exposure period overlapping with or after outcome assessment as poor for study quality. We assigned overall ratings according to the EPHPP guidance (those with one poor rating were assigned an overall rating of fair; those with two or more, an overall rating of poor). See Table S3 for further information on the allocation of quality ratings for individual quality components. In the middle set of columns, the outcomes studied (indicated via tick marks) refer to any outcome related to the specified mental health outcome or diagnosis, such as physician diagnosis, meeting a specified threshold on a diagnostic scale, measures of symptom severity, hospital or ED attendance, and in the case of suicide, suicide attempts, ideation, or suicide death. Inclusion in primary meta-analyses (Figures 3, 5, and 6 and funnel plots in Figure 4) is indicated via tick marks in the right-hand set of columns; the numbers and letters of the sensitivity meta-analyses indicated via an S correspond to those detailed in Table 4. Note: ED, emergency department; L-T, long term (≥6 months) PM exposure; L-T, long term (≥6 months) PM exposure; N/A, not applicable; PM, particulate matter; PM$_{10}$, particulate matter of <10 μm in aerodynamic diameter; PM$_{2.5}$, particulate matter of <2.5 μm in aerodynamic diameter; S-T, short term (<6 months) PM exposure (exposure assessment period <6 months).

Authors and year	Selection bias	Study design	Confounding	Blinding	Outcome assessment	Withdrawals/drop-outs	Overall Rating	Depression	Anxiety	Psychosis	Suicide/ suicidal ideation	L-T PM$_{10}$ depression	L-T PM$_{10}$ suicide	S-T PM$_{10}$ suicide	S-T PM$_{10}$ suicide
LONG-TERM															
Kim, J. and Kim, H. 2017	2	2	2	2	1	3	2	✓	✓	S2b					
Kim, K.N. et al 2016	2	2	2	2	1	1	2	✓	✓	S1a					
Kioumourtzoglou et al 2017	2	2	2	2	1	3	2	✓	✓	S1a					
Lin et al 2017	1	1	1	1	1	1	1	✓	✓						
Zijlema et al 2016a	3	4	4	4	1	2	4	✓	✓	✓	✓				
Zijlema et al 2016b	3	4	4	4	1	2	4	✓	✓	✓	✓				
Zijlema et al 2016c	3	4	4	4	1	2	4	✓	✓	✓	✓				
Zijlema et al 2016d	3	2	2	2	1	2	3	✓	✓	✓	✓				
Vert et al 2017	3	2	2	2	1	2	3	✓	✓	✓	✓				
LONG- & SHORT-TERM															
Power et al 2015	2	2	2	2	1	1	2	✓	✓	✓					
Pun et al 2017	2	2	2	2	1	1	2	✓	✓	✓					
SHORT-TERM															
Bakian et al 2015	-	2	2	2	1	2	2	✓	✓	✓					
Casas et al 2017	-	2	2	2	1	2	2	✓	✓	✓					
Cho et al 2014	-	2	2	2	1	2	2	✓	✓	✓					
Gao et al 2017	-	2	2	2	1	2	2	✓	✓	✓					
Kim, C. et al 2010	-	2	2	2	1	2	2	✓	✓	✓					
Kim, Y. et al 2015	-	2	2	2	1	2	2	✓	✓	✓					
Lim et al 2012	-	2	2	2	1	2	2	✓	✓	✓					
Lin et al 2017a	3	2	2	2	1	2	3	✓	✓	✓					
Ng et al 2016	-	2	2	2	1	2	2	✓	✓	✓					
Szyszkiowicz et al 2007	-	2	2	2	1	2	2	✓	✓	✓					
Szyszkiowicz et al 2009	-	2	2	2	1	2	2	✓	✓	✓					
Szyszkiowicz et al 2010	-	2	2	2	1	2	2	✓	✓	✓					
Szyszkiowicz et al 2016	-	2	2	2	1	2	2	✓	✓	✓					
Wang et al 2014	3	2	2	2	1	2	2	✓	✓	✓					

Key: 1 - Good, 2 - Fair, 3 - Weak, N/A
✓ - Included in (primary) meta-analysis for this exposure-outcome combination

Outcome (or related outcome e.g. ED attendances, symptoms) studied

Environmental Health Perspectives 126002-12
127(12) December 2019
estimated effect size but a wider confidence interval (OR = 1.113; 95% CI: 1.003, 1.234; \(p = 0.043 \)) and evidence of somewhat greater between-study heterogeneity; \(I^2 \) was slightly increased at 20.4%. Another PM\textsubscript{2.5} sensitivity meta-analysis (Table 4, Row 1b) showed that including a study (Vert et al. 2017) that used self-reported depression and included a select population who were screened at study enrollment to ensure that they did not have major depressive disorder (potentially biasing this study) resulted in a less precise statistically nonsignificant pooled estimate and increased heterogeneity compared with the primary PM\textsubscript{2.5} depression meta-analysis (OR = 1.259; 95% CI: 0.874, 1.813; \(p = 0.217 \); \(I^2 = 45.8\% \)). Vert et al. (2017) found a positive OR of 4.38 per 5-\textmu g/m3 PM\textsubscript{2.5} (95% CI: 1.70, 11.30). In a third sensitivity meta-analysis (Table 4, Row 1c), changing the exposure time period from which we selected results from Pun et al. (2017) did not significantly change the pooled effect estimate or increase heterogeneity [pooled OR = 1.11 (95% CI: 1.031, 1.198; \(p = 0.006 \); \(I^2 = 0.00\% \)].

Long-term PM\textsubscript{10} and depression. As Figure 5 shows, the overall (pooled) result for the primary PM\textsubscript{10} meta-analysis (n = 3 studies; all from Zijlema et al. 2016) was not statistically significant at the conventional 5% level and showed no clear association. The pooled OR we found was 0.891 (95% CI: 0.504, 1.577) per 10 \textmu g/m3 PM\textsubscript{10}; \(p = 0.692 \) and \(I^2 = 0.00\% \) (heterogeneity = 0.638), again representing low heterogeneity. The funnel plot for this meta-analysis is shown in Figure 4B. In Egger’s regression test for small-study effects, \(p = 0.128 \), suggesting no clear evidence of publication bias (but given the \(p < 0.10 \) threshold recommended by Egger et al. (1997), it cannot be definitively excluded). Zijlema et al. (2016) used two PM\textsubscript{10} exposure models; we included results based on the European Study of Cohorts for Air Pollution Effects (ESCAPE) study (rather than EU-wide) land-use regression model exposure estimates in this primary PM\textsubscript{10} meta-analysis because these were described as region-specific estimates based on intensive monitoring campaigns and local predictors (e.g., traffic counts), and we judged them as likely to be more accurate and to capture a greater degree of air pollution variability in the study location than the EU-wide model.

In a sensitivity analysis of the PM\textsubscript{10} meta-analysis, we tested the impact of using EU-wide PM\textsubscript{10} land-use regression model results for the two eligible Zijlema et al. (2016) subsudies for which these were available (LifeLines/Substudy A, where the corresponding main model OR was higher, and statistically significant; and KORA/Substudy B, in which it was lower, than the corresponding ESCAPE model results). We also sensitivity analyzed the impact of including two studies that we had excluded from the primary meta-analysis due to the unvalidated outcome definitions used (Vert et al. 2017; Kim and Kim 2017) and the exclusion of individuals with diagnosed depression at baseline by Vert et al. (2017). Vert et al. (2017) found a large statistically significant association between PM\textsubscript{10} and self-reported depression disorders, with a wide confidence interval (OR = 6.52; 95% CI: 1.82, 23.35), whereas Kim and Kim (2017) did not find a statistically significant association between PM\textsubscript{10} and depressive symptoms (OR = 1.01; 95% CI: 0.98, 1.05). Table 4 (Rows 2a,b) shows results of these sensitivity meta-analyses. We obtained positive but statistically nonsignificant pooled estimates with wide confidence intervals and moderate between-study heterogeneity in both sensitivity analyses (\(I^2 \) values of 59.4% and 57.1%, respectively).

The HUNT substudy from Zijlema et al. (2016; Substudy C) was excluded from the PM\textsubscript{10}-depression meta-analysis and sensitivity analyses because it lacked the requisite minimal confounder set of indicators of urbanicity and socioeconomic status/deprivation. The extended confounder model for this study was adjusted...
Anxiety

Two studies (Power et al. 2015; Pun et al. 2017) investigated anxiety using validated screening instruments and both individually found statistically significant positive associations between PM2.5 exposure and risk of anxiety symptoms above a threshold that was considered clinically relevant. Another study (Vert et al. 2017) included self-reported anxiety as an outcome but was excluded from primary meta-analyses (see Table S5 for details). We therefore did not conduct meta-analysis because there were too few eligible studies.

Pun et al. (2017) found generally stronger associations between PM2.5 and moderate-to-severe anxiety symptoms (operationalized as a Hospital Anxiety and Depression Score-A (HADS-A) score ≥8) than did Power et al. (2015) using a cutoff of 6 or more points on the less commonly used Crown-Crisp Index (CCI) phobic anxiety subscale, although both were significant at a range of cumulative lags. Pun et al. (2017) reported adjusted ORs of 1.39 (95% CI: 1.15, 1.69) and 1.34 (95% CI: 1.12, 1.61) per 5-μg/m3 PM2.5 increment over 1- and 4-year cumulative lags, respectively, whereas Power et al. reported adjusted ORs per 10-μg/m3 increment of PM2.5 of 1.15 (95% CI: 1.06, 1.25) for a 1-year cumulative lag and 1.09 (95% CI: 1.01, 1.18) for cumulative exposure over the 15 y before outcome assessment in 2004 (average PM2.5 at participants’ recorded residential address from 1988 to 2003). The CCI subscale has been validated as differentiating anxiety and phobias from depression and healthy controls (Crown and Crisp 1966; Mavissakalian and Michelson 1981), and the cutoff adopted was based on previous evidence that this represents a clinically important threshold (Okereke et al. 2012; McGrath et al. 2004); however, CCI scores may measure a different form of anxiety from HADS-A.

Other Outcomes

We did not identify any eligible studies investigating associations between long-term PM2.5 or PM10 exposure and bipolar disorder (or manifestations thereof including mania). We also did not find any study associations between long-term PM2.5 or PM10 exposure and psychosis or suicide which met our inclusion criteria.

Population Attributable Fraction Estimates

We estimated illustrative PAFs for two scenarios (UK cities and global) based on the pooled estimate from our meta-analysis of associations between long-term PM2.5 exposure and depression, assuming causality and a log-linear exposure–response function (calculations detailed in Table S4). However, it should be noted the observed relationship may be due to bias and/or confounding rather than a causal association.

This analysis suggested that if urban UK population-weighted PM2.5 exposure (12.8 μg/m3 in 2014) were reduced to the WHO’s recommended annual maximum (10.0 μg/m3) (Krzyzanowski and Cohen 2008), city-dwelling UK citizens’ depression risk could, potentially, be reduced by approximately 2.5% (95% CI: 0.58, 4.34%). If global mean population-weighted PM2.5 exposure (43.9 μg/m3) were reduced to a population-weighted mean PM2.5 exposure of 25.0 μg/m3 (the current EU-recommended limit), depression risk could be reduced by up to 15.2% (95% CI: 3.85, 25.9%).
Studies of Associations with Short-Term PM Exposure (Exposure Lags <6 Months)

Sixteen studies investigated short-term associations between PM and eligible psychiatric outcomes (Tables 2 and 3 list study citations and data extracted). Twelve used case-only designs (e.g., case-crossover and time-series analysis), which are well suited for studying acute effects. Eleven investigated short-term associations between any eligible mental health outcome and PM$_{2.5}$ and 13 investigated associations of eligible outcomes with PM$_{10}$ (six analyzed both); 1 (Wang et al. 2014) also investigated associations with UFP exposure.

Suicide (Attempted or Completed)

Six studies (Bakian et al. 2015; Casas et al. 2017; C Kim et al. 2010; Y Kim et al. 2015; Lin et al. 2016; Ng et al. 2016) investigated associations between short-term PM exposure and risk of completed suicide (using mortality register data), and one study investigated associations with suicide attempt or ideation (Szyszkwicz et al. 2010). The results of a majority of eligible studies investigating short-term associations with risk of completed suicide and PM$_{10}$ exposure indicated a positive association, with a statistically significant pooled result from primary meta-analysis at lag 0-2 d.

Only two studies investigated associations between completed suicide and PM$_{2.5}$ at any lags, so meta-analysis of associations between PM$_{2.5}$ and completed suicide was not possible. We were only able to meta-analyze studies of associations between PM$_{10}$ and completed suicide at lags 0-1 d ($n = 3$) and 0-2 d ($n = 4$) because fewer than three studies included all other time lags studied. All studies considered eligible for inclusion in these meta-analyses reported relative risks, except for Lin et al.
Figure 5. Forest plot of meta-analysis of associations between long-term (≥6-months) PM$_{10}$ exposure and depression risk ($n=3$ studies). Results of meta-analysis are shown as pooled effect estimates of the OR of depression per 10 μg/m3 (95% CIs). The dashed vertical line indicates the overall effect estimate derived from DerSimonian-Laird random effects meta-analysis, and the blue diamond indicates the 95% CI of the overall (pooled) effect estimate. The horizontal lines indicate the 95% CI around each study’s central estimate for the adjusted OR (shown with a closed circle); the arrowhead at the end of the line for Zijlema et al. 2016, Substudy A (LifeLines) indicates that the true end of this line is not shown (for scale reasons) and the lower 95% CI is farther from the central estimate. The percentage weights are weightings assigned to individual studies’ results in the DerSimonian-Laird random effects meta-analysis, and the sizes of the shaded squares around each effect estimate are scaled according to these relative weightings. The p-value of 0.638 shown at the bottom left is derived from a test of the null hypothesis of heterogeneity (Cochran’s Q). Covariates adjusted for by individual studies are detailed in Table S2. Note: CI, confidence interval; OR, odds ratio; PM$_{10}$, particulate matter of <10 μm in aerodynamic diameter.

(2016), who reported odds ratios; we considered the odds ratios from Lin et al. (2016) equivalent to relative risks on the basis of the rare outcome assumption, so we reported pooled effect size estimates as relative risks. Results are shown in Figure 6. Pooled effect estimates per 10-μg/m3 PM$_{10}$ increment were nonsignificant at lag 0-1 d (RR = 1.01, 95% CI: 0.99, 1.03; $I^2 = 44.6\%$) but statistically significant at the 95% level at lag 0-2 d, with RR = 1.02 (95% CI: 1.00, 1.03; $p = 0.031$; $I^2 = 45.3\%$). I^2 was 44.6% and 43.5% in these meta-analyses, respectively, representing moderate between-study heterogeneity. Funnel plots of the 0-1 and 0-2 d lag meta-analyses are shown in Figure 4C and D, respectively; Egger’s test of small study effects ($H_0 = no\ small-study\ effects$) produced results of $p = 0.779$ and $p = 0.413$ at lags 0-1 and 0-2, respectively.

A majority of the associations with completed suicide reported by individual studies were positive at a range of short-term lags, particularly for PM$_{10}$, although not all were statistically significant. Only the study by Ng et al. (2016) reported no consistent direction of association. Although most of these studies focused on lag periods of <1 week, Kim et al. (2015) also found statistically significant associations between short-term PM$_{10}$ concentrations and the nationwide weekly suicide rate at 2-, 3-, and 4-week lags, including a 3.6% increase (95% CI: 1.5, 5.7%) per 37.8-μg/m3 PM$_{10}$ increment at a 4-week (single week) lag, but they found no statistically significant association at either the 5- or 6-week time lags studied.

In addition, Szyzkowicz et al. (2010) defined all ED visits coded as suicide attempt or ideation as cases and observed positive but nonsignificant associations for PM$_{10}$ and PM$_{2.5}$, However, unstratified results were presented only graphically; we requested numerical results, but these were not received and so could not be included in the meta-analyses.

Depressive Episode Exacerbation and Depressive Symptom Severity

Seven studies investigated associations between short-term PM$_{10}$ or PM$_{2.5}$ exposure and outcomes such as ED attendance for depressive episodes (Cho et al. 2014; Szyzkowicz 2007; Szyzkowicz et al. 2009, 2016) or depressive symptoms (Lim et al. 2012; Pun et al. 2017; Wang et al. 2014). Short-term increases in PM exposure appear to be positively associated with depression-related ED attendance risk, whereas the evidence regarding associations between short-term PM exposure and depressive symptom severity is more mixed; we did not conduct meta-analysis of results for these outcomes. We did not undertake meta-analysis of associations of short-term PM exposure with these outcomes due to the heterogeneity of the time lags analyzed and a lack of numeric reporting of unstratified results in two studies of ED attendances, meaning that—for each lag considered—there were fewer than three studies using the same exposure lags. Most of the above studies found positive associations with PM exposure at some of the exposure lags studied, with the exception of Wang et al. (2014).

Cho et al. (2014) observed statistically significant positive associations of PM$_{10}$ exposure with ED attendance for depression at five of the six lags studied, whereas two studies (Szyzkowicz 2007; Szyzkowicz et al. 2009) both reported statistically significant positive associations between PM$_{10}$ and ED attendance for depression at some lags but were excluded from the meta-analysis (see Table S5 for details). Szyzkowicz et al. (2016) found whole-year associations between depression-related ED attendances and PM$_{2.5}$ that were positive (ORs >1) at a majority of the single-day lags, from 0 to 8 d (8 and 7 of the 9 lags studied, for males and females, respectively). However, they were only statistically significant in males at

Environmental Health Perspectives

126002-16

127(12) December 2019
lag 3 d (OR = 1.023 per 7.12 μg/m³; 95% CI: 1.001, 1.045); results unstratified by sex were not reported.

Pun et al. (2017) found positive associations between PM$_{2.5}$ exposure and symptoms indicative of depression [operationalized as Centre for Epidemiologic Studies Depression (CESD)-11 score ≥9] at cumulative 7- and 30-day lags, with ORs of 1.08 (95% CI: 1.00, 1.16) and 1.16 (95% CI: 1.05, 1.29) per 5-μg/m³ increase in PM$_{2.5}$ exposure, respectively. Wang et al. (2014) reported a significant negative association of 0-14 d cumulatively lagged PM$_{2.5}$ with the odds of a CESD Scale-Revised (CESD-R) score ≥16 (OR = 0.67; 95% CI: 0.46, 0.98 per 3.4-μg/m³ increase in PM$_{2.5}$). Lim et al. (2012) reported an increase in an elderly population’s mean score on the Korean Geriatric Depression Scale-Short Form (Bae and Cho 2004) of 17.0% (95% CI: 4.9, 30.5%) per 24.2-μg/m³ increase in 0-3 d PM$_{10}$.

Anxiety Symptom Severity

The studies by Pun et al. (2017) and Power et al. (2015) both reported statistically significant associations between short-term PM$_{2.5}$ exposure and anxiety symptoms, in addition to the associations between long-term PM$_{2.5}$ exposure and anxiety discussed above. Pun et al. (2017) reported adjusted ORs of 1.14 (95% CI: 1.05, 1.24) and 1.31 (95% CI: 1.20, 1.51) per 5-μg/m³ increase at 7- and 30-d cumulative lags, respectively, whereas Power et al. (2015), using the Crown-Crisp Index Phobic Anxiety Subscale, reported ORs of 1.12 per 10 μg/m³ (95% CI: 1.06, 1.19) at a 0- to 1-month cumulative lag; 1.13 per 10-μg/m³ increase (95% CI: 1.06, 1.21) at a 0- to 3-month cumulative lag, and 1.14 per 10 μg/m³ (95% CI: 1.05, 1.23) at a 0- to 6-month cumulative lag. We did not conduct meta-analysis because only these two studies investigated this outcome.

Other Outcomes

No studies specifically investigated associations between PM and bipolar disorder. Gao et al. (2017) found associations of borderline statistical significance between PM$_{10}$ and hospital admissions for all mood disorders (combined) of a 0.36% increase per 10-μg/m³ increase (95% CI: 0.06, 0.66%) at a 5-d single lag and statistically significant positive associations between PM$_{10}$ and hospital admissions for schizophrenia, which appeared strongest at a 0-6 d cumulative lag with a 1.38% increase per 10-μg/m³ increase (95% CI: 0.52, 2.23%).

Discussion

Our systematic review identified a statistically significant association between long-term PM$_{2.5}$ exposure and depression risk in our primary meta-analysis, which remained in two of three sensitivity analyses, whereas our primary and sensitivity meta-analyses of long-term PM$_{10}$ exposure and depression risk did not find any statistically significant association. Meta-analysis of studies reporting associations between short-term PM$_{10}$ exposure and completed suicide found a RR of 1.02 (95% CI: 1.00, 1.03) at a cumulative 0-2 d lag; the association at a 0-1 d lag was not statistically significant.
The more limited evidence available for anxiety suggests a possible association with increased PM exposure at both shorter- and long-term exposure timescales, although only two eligible studies (Power et al. 2015; Pun et al. 2017) investigated this. The effect sizes observed in the studies of associations between long-term PM2.5 exposure and depression and anxiety identified by our review are similar in magnitude to those observed for some physical health consequences of chronic air pollution exposure. For example, a 10-µg/m3 increase in long-term average PM2.5 exposure appears to be associated with an approximately 10% increase in all-cause mortality (Brook et al. 2010).

We also observed an association between short-term PM10 exposure and suicide risk at a 0-2 d cumulative time lag in meta-analysis, which was statistically significant at the 95% level. There is also some evidence to suggest an association between short-term PM2.5 or PM10 exposure and depression-related ED visits from individual studies, with several identifying statistically significant associations with ED attendances or depressive symptoms at some of the exposure lags studied, although their statistical significance may be affected by multiple comparisons. The smaller effect sizes observed in relation to short-term exposure relative to the larger magnitude of associations with long-term exposure are consistent with the results of studies of PM’s physical health effects. In the review by Pope and Dockery (2006) of meta-analyses and multicity studies, a 10-µg/m3 increase in mean daily PM2.5 exposure was found to increase daily cardiovascular mortality risk by approximately 1.0%.

We identified no studies of associations with bipolar disorder and only one eligible study (Gao et al. 2017) of associations between PM and psychosis risk. That study found associations of borderline statistical significance between short-term PM exposure and inpatient admissions for mood disorders or schizophrenia. We excluded two studies of associations between short-term PM concentrations and psychosis from this review; the study by Lary et al. (2015) of ED admissions for schizophrenia reported only the strength of correlations with specific schizophrenia diagnostic categories, rather than comparative effect estimates, whereas the study by Tong et al. (2016) operationalized psychosis diseases as International Classification of Diseases (ICD)-10 codes F00–F99 (organic mental disorders; i.e., including psychiatric disorders with known biological causes such as brain tumors), and psychosis morbidity was undefined. In relation to associations between long-term PM exposure and psychosis risk, the two studies identified used proximity to a major road as a proxy for PM exposure, which did not meet inclusion criteria; we therefore excluded these studies from our review. An exploratory study by Pedersen et al. (2004) identified a possible association with psychosis based on proximity to a major road, although a subsequent study by Pedersen and Mortensen (2006) did not replicate this finding.

The estimated PAFs presented for PM2.5 exposure and depression are intended to illustrate the disease burden that might be attributable to the association between long-term PM2.5 exposure and depression observed in our meta-analysis if this relationship were established as causal and independent of the influence of potential confounding factors. These PAF estimates illustrate that this burden could—potentially—be similar in magnitude to some of air pollution’s physical health effects (e.g., Burnett et al. 2014). However, such causality has not been established, and our meta-analysis is subject to several limitations, so they should be interpreted as illustrative estimates of the potential attributable burden should this association be further substantiated in future, not as representing the actual burden.

Strengths and Limitations

A key strength of this review is the comprehensive, systematic approach, with the protocol specified a priori, and searches conducted by two authors. We also used standardized data extraction and quality assessment procedures.

Our review covers a broader range of mental health outcomes than most previous reviews in this area, and we identified a moderate number of studies for some outcomes, enabling meta-analyses. However, we were only able to undertake three meta-analyses, together covering two of the five eligible outcomes, owing to the small numbers of studies with comparable exposure-outcome combinations for other mental health outcomes and incomplete reporting in two studies (Szszhowski 2007; Szszhowski et al. 2009). Our review includes 20 studies (including the 4 within Zijlema et al. 2016) that have been published since the search by Tzivian et al. (2015) of the literature up to November 2013. One further study of associations with psychosis, published since the review by Attademo et al. (2017), was identified (Gao et al. 2017).

An important corollary of the typically small individual-level effect sizes of changes in PM exposure in relation to physical health outcomes (per 10-µg/m3 increment) is that very large sample sizes may be needed to detect such effects if the same applies for mental health. This is particularly relevant where adjusting for a large number of confounders and in settings where pollutant levels and variability are comparatively low, as in Europe or the United States. As a result, it is likely that some included studies were underpowered to detect a putative effect on the outcomes studied (particularly because power calculations require prior assumptions about likely effect size), making the use of meta-analysis particularly valuable.

The distinction made between short- and long-term exposures on the basis of a 6-month cutoff is somewhat arbitrary, but this did not significantly influence the meta-analytic results. Only one study (Power et al. 2015) used exposure assessment periods of between 2 and 11 months’ duration (3 and 6 months), and this study could not be included in the meta-analysis in any case due to the small number of eligible studies of this outcome (anxiety).

We did not detect evidence of publication bias but recognize that our review was restricted to published research in English-language journals. We also acknowledge the limitations of visual assessment of funnel plots for publication bias and that the power of statistical tests for small-sample effects such as Egger’s test is low when analyzing only a small number of studies, as here. Heterogeneity in both methods and outcome definitions is reflected in our use of random-effects meta-analysis but may limit the generalizability of the results obtained, particularly given the limited number of studies we were able to include and the heterogeneity of study populations and settings.

The low I² value obtained in our primary meta-analysis of the association between long-term PM2.5 and depression suggests that statistical heterogeneity of study results was not significant; this was the case in two of the three sensitivity meta-analyses conducted. This increases our confidence in the appropriateness of pooling these studies and in the result of this meta-analysis; however, it is subject to other limitations discussed below, including possible residual confounding. In addition, although more statistically powerful than Cochran’s Q, I² has low power and can be biased as a test for heterogeneity in small meta-analyses (von Hippel 2015). I² was higher in Sensitivity Analysis 1b, which included a study (Vert et al. 2017) that we considered at high risk of bias due to the overly restrictive eligibility criteria of the wider cohort study within which this study was nested (excluding participants with major depressive disorder at study enrollment). The suicide meta-analysis is perhaps less likely to be affected by heterogeneous
outcome definitions than our depression meta-analysis, although some outcome misclassifications are possible. However, we observed greater statistical heterogeneity in the meta-analyses of PM10 and suicide risk (at 0-1 and 0-2 d) than with both meta-analyses of long-term PM exposure and depression, reducing our confidence in the results of this meta-analysis. We hypothesize that this may reflect differences between countries in the likelihood of outcome misclassification with respect to suicide; however, there are multiple possible explanations.

Ratings for several of the EPHP quality criteria require a degree of judgment; for example, validity and reliability are not binary constructs so the component scores allocated for data collection methods necessarily reflect the authors’ subjective assessment. Estimating whether a study has controlled for less or more than 80% (or 60%) of relevant confounders is similarly challenging and inherently somewhat subjective, particularly given incomplete scientific knowledge about causal relationships between some potential confounders, PM, and the different outcomes assessed. We took the view that studies could meet this threshold without adjustment for noise exposure, but it is possible that future studies will show noise to be a more significant risk factor for outcomes such as depression, anxiety, or suicide than is currently recognized. Because we did not restrict inclusion in meta-analysis based on EPHP ratings, the tool’s arbitrary quantification of confounding does not affect our metaanalytic results. However, due to limitations in the EPHP tool’s process for determining overall ratings and the small numbers of studies identified, our ability to explore the effect of variation in study quality on the meta-analytic results was limited.

The EPHP tool is also not specifically designed for quality assessment of environmental epidemiology studies and therefore does not facilitate in-depth critical appraisal of air pollution exposure assessment methods. Nevertheless, there does not appear to be a more robust quality assessment tool applicable to a range of study designs.

Our findings are also affected by the limitations of the included studies, and particularly by the risk of residual and unmeasured confounding. Even in generally well-controlled studies of long-term exposure, such as those by Lin et al. (2017a). Pun et al. (2017), and Kiousmourtzoglou et al. (2017), some degree of residual confounding due to socioeconomic status is likely. Noise exposure, particularly from traffic noise, is an important potential confounder, particularly for studies of long-term PM exposure because it is moderately spatially correlated with air pollution (Allen et al. 2009) and has been linked to psychological effects (Tzivian et al. 2015), including through sleep disturbance (e.g., Basner and McGuire 2018) and annoyance (e.g., Guski et al. 2017). Among the studies we identified, noise was only adjusted for in the four studies meta-analyzed by Zijlema et al. (2016). We acknowledge that adjustment for such collinear factors is difficult and can produce unstable parameter estimates, which may at least partially underlie the significantly wider confidence intervals reported by Zijlema et al. (2016) than in other included studies with comparable sample sizes. There is also a possibility that noise might act as an effect modifier of the relationship between PM and some psychiatric outcomes; however, this was not investigated by any eligible studies.

Green space is another possible confounder of a relationship between PM and at least some mental health outcomes given that they can directly improve air quality (Escobedo et al. 2011) and may reduce depression risk and improve mental health overall (Gascon et al. 2015; Cohen-Cline et al. 2015); however, it was not simultaneously adjusted for by any of the studies we identified.

However, several case-only studies with good time-varying confounder adjustment (as well as good adjustment for time-invariant confounders, by design) identified statistically significant associations between short-term PM exposure and suicide (C Kim et al. 2010; Y Kim et al. 2015) and psychiatric admissions (Gao et al. 2017), providing a further line of evidence from a different study design, over shorter timescales, that PM exposure may alter psychological outcomes.

Another limitation of many included studies is that few adjusted for other air pollutants that are often spatiotemporally correlated with PM (and therefore inhaled alongside it) and which may also have physiological effects, including neuroinflammation. Most studies constructed only single-pollutant models, meaning that they could not exclude either confounding or effect modification by other pollutants such as sulfur, ozone, or nitrogen oxides. It was beyond the scope of our review to include all of the major air pollutants, although some studies met our inclusion criteria considered exposure to multiple air pollutants and found statistically significant associations with ozone (e.g., Lim et al. 2012; SzyszkoTic et al. 2016).

Biases in routine data—for example regarding underreporting of suicide, case ascertainment in emergency departments, or approximating outcome incidence with hospital attendance—may further limit some studies’ generalizability. The accuracy of register-based mortality data is affected by cultural and health system-related factors, as Afshari (2017) discussed in relation to the study by Lin et al. (2016), in which underreporting of suicide appears pronounced. Nevertheless, routine data sets often represent the most complete data available, and although associations with registered suicides may not generalize fully to unregistered suicides, differential case ascertainment (with respect to PM exposure) appears unlikely.

Exposure misclassification is a common problem in air pollution epidemiology (e.g., Zeger et al. 2000), and a weakness of some studies included in our review is in the timing of exposure assessment. In particular, Zijlema et al.’s (2016) KORA and FINRISK substudies (B and D) assessed outcomes before the intensive monitoring campaigns used in developing the ESCAPE exposure model, which undermines the accuracy of exposure assessment, limits the strength of this evidence regarding a temporal relationship, and makes it unclear which exposure–response relationship could not exclude either confounding or effect modification by other pollutants such as sulfur, ozone, or nitrogen oxides. It was beyond the scope of our review to include all of the major air pollutants, although some studies met our inclusion criteria considered exposure to multiple air pollutants and found statistically significant associations with ozone (e.g., Lim et al. 2012; SzyszkoTic et al. 2016).

Biases in routine data—for example regarding underreporting of suicide, case ascertainment in emergency departments, or approximating outcome incidence with hospital attendance—may further limit some studies’ generalizability. The accuracy of register-based mortality data is affected by cultural and health system-related factors, as Afshari (2017) discussed in relation to the study by Lin et al. (2016), in which underreporting of suicide appears pronounced. Nevertheless, routine data sets often represent the most complete data available, and although associations with registered suicides may not generalize fully to unregistered suicides, differential case ascertainment (with respect to PM exposure) appears unlikely.

Exposure misclassification is a common problem in air pollution epidemiology (e.g., Zeger et al. 2000), and a weakness of some studies included in our review is in the timing of exposure assessment. In particular, Zijlema et al.’s (2016) KORA and FINRISK substudies (B and D) assessed outcomes before the intensive monitoring campaigns used in developing the ESCAPE exposure model, which undermines the accuracy of exposure assessment, limits the strength of this evidence regarding a temporal relationship, and makes it unclear which exposure–response relationship could not exclude either confounding or effect modification by other pollutants such as sulfur, ozone, or nitrogen oxides. It was beyond the scope of our review to include all of the major air pollutants, although some studies met our inclusion criteria considered exposure to multiple air pollutants and found statistically significant associations with ozone (e.g., Lim et al. 2012; SzyszkoTic et al. 2016).

Biases in routine data—for example regarding underreporting of suicide, case ascertainment in emergency departments, or approximating outcome incidence with hospital attendance—may further limit some studies’ generalizability. The accuracy of register-based mortality data is affected by cultural and health system-related factors, as Afshari (2017) discussed in relation to the study by Lin et al. (2016), in which underreporting of suicide appears pronounced. Nevertheless, routine data sets often represent the most complete data available, and although associations with registered suicides may not generalize fully to unregistered suicides, differential case ascertainment (with respect to PM exposure) appears unlikely.

Exposure misclassification is a common problem in air pollution epidemiology (e.g., Zeger et al. 2000), and a weakness of some studies included in our review is in the timing of exposure assessment. In particular, Zijlema et al.’s (2016) KORA and FINRISK substudies (B and D) assessed outcomes before the intensive monitoring campaigns used in developing the ESCAPE exposure model, which undermines the accuracy of exposure assessment, limits the strength of this evidence regarding a temporal relationship, and makes it unclear which exposure–response relationship could not exclude either confounding or effect modification by other pollutants such as sulfur, ozone, or nitrogen oxides. It was beyond the scope of our review to include all of the major air pollutants, although some studies met our inclusion criteria considered exposure to multiple air pollutants and found statistically significant associations with ozone (e.g., Lim et al. 2012; SzyszkoTic et al. 2016).
genotype (e.g., Morales et al. 2009; Vrijheid et al. 2012). Lin et al. (2017a) also identified between-country differences in exposure–response functions. Furthermore, physical comorbidities may both confound and/or mediate the associations observed, for example, through inflammation (Berk et al. 2013; Dantzer et al. 2008) or psychological effects of physical symptoms (Voll-Aanerud et al. 2008). Some included studies observed stronger associations among individuals with chronic illnesses (Cho et al. 2014; C Kim et al. 2010; KN Kim et al. 2016; Pun et al. 2017), although two (Kioumourtzoglou et al. 2017; Lim et al. 2012) investigated this but did not find a difference.

Potential Biological Mechanisms

There is good evidence from human and animal studies that PM exposure induces oxidative and nitrosative stress and systemic and neuroinflammation (Block and Calderón-Garcidueñas 2009; Levesque et al. 2011) as well as being directly neurotoxic and associated with structural brain changes (e.g., Block et al. 2012; Calderón-Garcidueñas et al. 2004, 2015). It has also been found to affect stress hormone production (e.g., Li et al. 2017). A range of biological mechanisms, with these being among the most likely candidates, may underlie a putative association between PM and mental health outcomes.

Neuroinflammation appears to play an important role in both depression (Liu et al. 2012; Dantzer et al. 2008) and psychosis (Barron et al. 2017), and this may be involved in both shorter-term as well as more chronic effects of air pollution on mental health, as compared with neurotoxicity and changes in brain structure, which by their nature are more likely to be involved in chronic effects and which may be particularly important in relation to exposures in early life and adolescence. Inflammation and oxidative and nitrosative stress have been hypothesized as potential mediating pathways for other risk factors for depression, including psychosocial stressors, physical inactivity, obesity, and lack of sleep, and there is evidence from administration of cytokine infusions and antidepressants’ effects, for example, that the relationship goes beyond simple correlation (see Berk et al. 2013).

Allen et al. (2014) found that early exposure of mice to concentrated UFPs resulted in changes in CNS neurotransmitter levels and glial activation, whereas Fonken et al. (2011) found that PM2.5-exposed mice displayed more depressive-like responses and higher pro-inflammatory cytokines than mice exposed to filtered air. Calderón-Garcidueñas et al. (2008) found an increased prevalence of prefrontal white matter lesions on brain magnetic resonance imaging (MRI) scans among children from a highly polluted area of Mexico City compared with children from a rural area, mirroring comparative MRI findings in young dogs. On histological examination, dogs exposed to high pollution were also found to have ultrafine PM deposition, gliosis, and vascular pathology associated with neuroinflammation. These may indicate mechanisms relevant to mental health impacts; for example, Chai et al. (2011) described differences in prefrontal cortex functional connectivity in patients with schizophrenia and bipolar compared with controls, whereas Frodl et al. (2010) found reduced prefrontal volume to be associated with depression duration.

Disruption of the HPA axis—which regulates the body’s stress responses through the production of hormones such as cortisol—has emerged as a potentially important etiological factor in anxiety and depression (e.g., Zorn et al. 2017; Lopez-Duran et al. 2009). Supporting the possibility that PM exposure may act through this pathway, a robust association between indoor air pollution exposure and participants’ serum cortisol levels was reported in Li et al. (2017)’s randomized double-blind crossover trial using indoor air purifiers.

Implications for Future Research and Policy

We suggest that a combination of the biological mechanisms discussed above are likely to be involved in mediating any effects of PM on mental health, if a causal association exists. However, at present, the precise pathways involved, and their relative importance across different timeframes and psychiatric conditions, are not well established. Further primary research—for example through animal studies, use of quasi-experimental or, where these can be conducted ethically, experimental studies involving humans, and the integration of toxicological and epidemiological methods in the same studies, is also needed to help further clarify the mechanisms involved. Future studies should also seek to build on current evidence by better addressing key potential environmental confounders such as traffic noise, access to green space, socioeconomic status, and chronic health conditions.

Mental health outcomes below a clinical threshold, such as stress and subjective well-being, were beyond the scope of our review but may have a comparable or even greater population health impact than diagnosable mental disorders. An innovative recent study by Zheng et al. (2019) analyzed 210 million geotagged tweets from the social media platform Sina Weibo; they found a statistically significant negative association between PM2.5 and the expressed happiness in the tweets’ content; moreover, this association persisted when analyzing only exogenous PM2.5 variation (pollution from neighboring cities), mitigating the risk of confounding by local factors such as noise or congestion. The use of such innovative study designs is likely to be crucial in answering as-yet unanswered questions about air pollution’s mental health effects, including around causality.

The generalizability of our findings is restricted by methodological limitations in individual studies, methodological heterogeneity, the relatively small number of studies, and the possibility of publication bias. In view of these limitations and the potentially significant mental health risks that may be posed by PM exposure, particularly over the longer term, further high-quality studies are warranted to more fully investigate the exposure–response relationships and mechanisms involved. In particular, larger-scale longitudinal studies using validated outcome measures, representative samples, and improved adjustment for area-level confounders such as noise and green space are needed to further interrogate the nature and potential causality of the associations observed.

Our results appear to support the hypothesis of an association with multiple adverse mental health outcomes, most clearly depression, for which we observed a statistically significant positive association in meta-analysis (pooled OR = 1.10; 95% CI: 1.02, 1.19) per 10-μg/m³ PM2.5 increment. The possibility of causal associations between air pollution and adverse mental health outcomes raises equity concerns given that deprivation is known to adversely affect mental health (e.g., Fone and Dunstan 2006), whereas poorer areas often have more polluted air (Jerrett 2009). There are, nevertheless, valuable opportunities to reduce the burden of both mental and physical ill health and health inequalities simultaneously through well-designed policies to improve air quality, such as by promoting active travel and urban green spaces, which also have psychological benefits (Gascon et al. 2015; Woodcock et al. 2009).

Acknowledgments

The research question was proposed by I.B. and the protocol developed jointly by all authors. I.B. conducted pilot literature searches and I.B. and S.Z. both conducted the literature search and applied the selection criteria independently, and both I.B. and S.Z. extracted data. I.B. and S.Z. rated study quality and discussed rating decisions with J.H., and I.B. conducted data
Fone DL, Dunstan F. 2006. Mental health, places and people: a multi-level analysis of economic inactivity and social deprivation. Health Place 12(3):332–344, PMID: 16480898, https://doi.org/10.1016/j.healthplace.2005.02.002.

Fonken LK, Xu X, Weil ZM, Chen G, Sun Q, Rajagopalan S, et al. 2011. Air pollution impairs cognition, provokes depressive-like behaviors and alters hippocampal cytokine expression and morphology. Mol Psychiatry 16(10):987–995, PMID: 21727897, https://doi.org/10.1038/mp.2011.76.

Freire C, Ramos R, Puertas R, Lopez-Espinosa M-J, Julev J, Aguilar et al. 2010. Association of traffic-related air pollution with cognitive development in children. J Epidemiol Community Health 64(2):221–228, PMID: 19767078, https://doi.org/10.1136/jech.2008.084574.

Frodl T, Reinhold E, Koutoulieris N, Reiser M, Meisenzahl EM. 2010. Interaction of stress hormones with environmental factors and child autism: a case control study in Tianjin, China. Biomed Environ Sci 28(9):482–500, PMID: 26964251, https://doi.org/10.3967/bes2015.090.

Gao Q, XU Q, Guo X, Fan H, Zhu H. 2017. Particulate matter air pollution associated with hospital admissions for mental disorders: a time-series study in Beijing, China. Eur Psychiatry 44:48–55, PMID: 28590111, https://doi.org/10.1016/j.eurpsy.2017.02.049.

Gascón M, Triguero-Mas M, Martínez D, Vázquez J, Plasència A, et al. 2011. Global geographies of injustice in traffic-related air pollution exposure. Environ Health Insights 5(suppl 1):13, https://doi.org/10.1186/1756-0803-5-S1-13.

Gao L, Xi DQ, Wu J, Han Y, Dai W, Su YY, et al. 2015. Association between prenatal environmental factors and child autism: a case control study in Tianjin, China. Biomed Environ Sci 28(9):482–500, PMID: 26964251, https://doi.org/10.3967/bes2015.090.

Jerrett M, Burnett RT, Ma R, Pope CA III, Krewski D, Newbold KB, et al. 2005. Long-term exposure to traffic-related air pollution and mortality in Los Angeles, California. Environ Health Perspect 113(9):913–918, PMID: 16120872, https://doi.org/10.1289/ehp.7901.

Liu H, Guo Y, Kowal P, Airhihenbuwa CD, Qi Q, Zheng Y, et al. 2017a. Exposure to air pollution and tobacco smoking and their combined effects on depression in six low- and middle-income countries. Br J Psychiatry 211(1):157–162, PMID: 28798051, https://doi.org/10.1192/bjp.bp.117.202235.

Lin H, Guo Y, Zheng Y, Zhao X, Cao Z, Rigdon SE, et al. 2017b. Exposure to ambient PM2.5 associated with overall and domain-specific disability among adults in six low- and middle-income countries. Environ Int 104:69–75, PMID: 28453972, https://doi.org/10.1016/j.envint.2017.04.004.

Liu Y, Ho RM-C, Mak A. 2012. Interleukin I (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J Affect Disord 139(3):230–239, PMID: 21872339, https://doi.org/10.1016/j.jad.2011.08.003.

Lopez-Duran NL, Kovacs M, George CJ. 2009. Hypothalamic–pituitary–adrenal axis dysregulation in depressed children and adolescents: a meta-analysis. Psychoneuroendocrinology 34(9):1272–1283, PMID: 19405681, https://doi.org/10.1016/j.psyneuen.2009.03.016.

Lundberg A. 2016. Psychiatric aspects of air pollution. Otologygond Head Neck Surg 151(4):227–231, PMID: 26137729, https://doi.org/10.1016/j.username.2016.04.002.

Mavissakalian M, Michelson L. 1981. The Middlesex Hospital Questionnaire: a validity study with American psychiatric-patients. Br J Psychiatry 139:336–340, PMID: 228/6543, https://doi.org/10.1192/bjp.139.4.336.

McBride M, Krecovich I, Ashenbercher C, Atam DG, Hunter DJ, De Vivo I. 2004. Association between catechol-O-methyltransferase and phobic anxiety. Am J Psychiatry 161(10):1703–1705, PMID: 15373664, https://doi.org/10.1176/appi.ajp.161.10.1703.

Mehta AJ, Kubzansky LD, Coubal BA, Kroog L, Kroustakis P, Sparrow DA, et al. 2015. Associations between air pollution and perceived stress: the Veterans Administration Normative Aging Study. Environ Health 14:10, PMID: 25627872, https://doi.org/10.1186/s12940-015-0198-6.

MERST (McMaster Evidence Review and Synthesis Team). 2010. Effective Public Health Practice Project (EPHPP). https://merst.ca/ephpp/ [accessed 10 September 2018].

Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097, PMID:19621072, https://doi.org/10.1371/journal.pmed.1000097.

Morales E, Julev J, Torrent M, de Cid R, Guxens M, Bustamante M, et al. 2009. Association of early-life exposure to household gas appliances and indoor nitrogen dioxide with cognition and attention behavior in preschoolers. Am J Epidemiol 169(11):1327–1336, PMID: 19399695, https://doi.org/10.1093/aje/kwp067.

Moran RL, Whaley P, Thayer KA, Schiifenn AMH. 2018. Identifying the PEDO: a framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environ Int 121(Pt 2):227–233, PMID:30166055, https://doi.org/10.1016/j.envint.2018.07.015.

Ng CFS, Sticklek A, Konishi S, Watanabe C. 2016. Ambient air pollution and suicide in South Korea: a nationwide study. PLoS One 10(2):e0133657, PMID:26289023, https://doi.org/10.1371/journal.pone.0133657.

Okeke CI, Prescott J, Wong YT, Han J, Rextone KD, De Vivo I. 2012. High phobic anxiety is related to lower telomere length in women. PLoS One 7(10):e40516, PMID:22081910, https://doi.org/10.1371/journal.pone.0040516.

Oru K, Oru H, Maasikmets M, Hendrikson R, Ainsaar M. 2016. Well-being and environmental quality: does pollution affect life satisfaction? Q Life Res 25(6):2009–2017, PMID:27129131, https://doi.org/10.1007/s11136-015-1104-6.

Pease VL, Fedoroff M, Power MC, Hart JE, Okeke CI, Coubal BA, Laden F, et al. 2017. The association between air pollution and onset of depression among middle-aged and older women. Am J Epidemiol 185(9):801–809, PMID: 28369173, https://doi.org/10.1093/aje/kwv163.

Kovess-Masféty V, Alonso J, de Graaf R, Demyttenaere K. 2005. A European approach to rural–urban differences in mental health: the ESEMeD 2000 comparative study. Can J Psychiatry 50(14):926–936, PMID: 16442622, https://doi.org/10.1177/0706743705050140.

Krzyzanowski M, Cohen A. 2008. Update of WHO air quality guidelines. J Air ATMOS Health 1(1):7–13, https://doi.org/10.1189/688-000-008-9.

Lary DJ, Lary T, Sattler B. 2015. Using machine learning to estimate global PM2.5 for environmental health studies. Environ Health Insights 9(suppl 1):1141–52, PMID: 26003525, https://doi.org/10.1155/2015/114047.

Levesque S, Surace MJ, McDonald J, Block ML. 2011. Air pollution & the brain: subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J Neuroinflammation 8:105, PMID: 21864400, https://doi.org/10.1186/1742-2094-8-105.

Li R, Li R, Chen R, Yang Z, Yang Z, et al. 2017. Particulate matter exposure and stress hormone levels: a randomized, double-blind, crossover trial of air purification. Circulation 138(7):618–627, PMID: 28081144, https://doi.org/10.1161/CIRCULATIONAHA.116.026796.
prevail anxiety: observational cohort study. BMJ 356:h1111, PMID: 25810495, https://doi.org/10.1136/bmj.h1111.

Pun VC, Manjourides J, Suh H. 2017. Association of ambient air pollution with depressive and anxiety symptoms in older adults: results from the NSHIP study. Environ Health Perspect 125(3):342–348, PMID: 27517677, https://doi.org/10.1289/EHP494.

Strosnider H, Kennedy C, Monti M, Yip F. 2017. Rural and urban differences in air quality, 2008–2012, and community drinking water quality, 2010–2015—United States. MMWR Surveill Summ 66(13):1–10, PMID: 28640797, https://doi.org/10.15585/mmwr.ss6613a1.

Szyszkowicz M. 2007. Air pollution and emergency department visits for depression in Edmonton, Canada. Int J Occup Med Environ Health 20(3):241–245, PMID: 17932013, https://doi.org/10.2478/v10001-007-0024-2.

Szyszkowicz M, Kousha T, Kingsbury M, Colman I. 2016. Air pollution and emergency department visits for depression: a multicity case-crossover study. Environ Health Insights 10:155–161, PMID: 27597809, https://doi.org/10.4137/EHI.S40493.

Szyszkowicz M, Rowe BH, Colman I. 2009. Air pollution and daily emergency department visits for depression. Int J Occup Med Environ Health 22(4):355–362, PMID: 20197262, https://doi.org/10.2478/v10001-009-0031-6.

Szyszkowicz M, Willey JB, Graffstein E, Rowe BH, Colman I. 2010. Air pollution and emergency department visits for suicide attempts in Vancouver, Canada. Environ Health Insights 4:79–86, PMID: 21079694, https://doi.org/10.4137/EHI.S5962.

Thomas BH, Ciliska D, Dobbins M, Micucci S. 2004. A process for systematically reviewing the literature: providing the research evidence for public health nursing interventions. Worldviews Evid Based Nurs 1(3):176–184, PMID: 17163895, https://doi.org/10.1111/j.1524-475X.2004.00406.x.

Tong L, Li K, Zhou Q. 2016. Season, sex and age as modifiers in the association of psycho-somatic morbidity with air pollutants: a rising problem in a Chinese metropolis. Sci Total Environment 541:928–933, PMID: 26457738, https://doi.org/10.1016/j.scitotenv.2015.09.066.

Tzivian L, Winkler A, Dlugaj M, Schikowski T, Vossoughi M, Fuks K, et al. 2015. Effect of long-term outdoor air pollution and noise on cognitive and psychological functions in adults. Int J Hyg Environ Health 218(1):1–11, PMID: 25424804, https://doi.org/10.1016/j.ijheh.2014.08.002.

Veltri C, Sánchez-Benavides G, Martinez D, Gotzens X, Gramunt N, Cirach M, et al. 2017. Effect of long-term exposure to air pollution on anxiety and depression in adults: a cross-sectional study. Int J Hyg Environ Health 220(6):1074–1080, PMID: 28705430, https://doi.org/10.1016/j.ijheh.2017.06.009.

Vigo D, Thornicroft G, Atun R. 2016. Estimating the true global burden of mental illness. Lancet Psychiatry 3(2):171–178, PMID: 26851330, https://doi.org/10.1016/S2215-0366(15)00565-2.

Voll-Aanerud M, Eagan TM, Wentzel-Larsen T, Gulevik A, Bakke PS. 2008. Respiratory symptoms, COPD severity, and health related quality of life in a general population sample. Respir Med 102(3):399–406, PMID: 18061422, https://doi.org/10.1016/j.rmed.2007.10.012.

von Hippel PT. 2015. The heterogeneity statistic I² can be biased in small meta-analyses. BMC Med Res Methodol 15(1):35, PMID: 25880999, https://doi.org/10.1186/s12974-015-0024-z.

Vrijheid M, Martinez D, Aguilera I, Bustamante M, Ballester F, Estarlich M, et al. 2012. Indoor air pollution from gas cooking and infant neurodevelopment. Epidemiology 23(1):23–32, PMID: 22042993, https://doi.org/10.1097/ EDE.0b013e31823a4023.

Wang Y, Eliot MN, Koutrakis P, Gryparis A, Schwartz JD, Coull BA, et al. 2014. Ambient air pollution and depressive symptoms in older adults: results from the MOBILIZE Boston study. Environ Health Perspect 122(6):555–558, PMID: 24610154, https://doi.org/10.1289/ehp.1205909.

Weisskopf MG, Kiousmourtzoglou MA, Roberts AL. 2015. Air pollution and autism spectrum disorders: causal or confounded? Curr Environ Health Rep 2(4):430–439, PMID: 26399256, https://doi.org/10.1007/s40572-015-0073-9.

WHO (World Health Organization). 2012. Health Effects of Particulate Matter: Policy Implications for Countries in Eastern Europe, Caucasus and Central Asia. Geneva, Switzerland: WHO. http://www.euro.who.int/__data/assets/pdf_file/0008/189051/Health-effects-of-particulate-matter-final-Eng.pdf [accessed November 2019].

WHO. 2016. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. Geneva, Switzerland: WHO. https://apps.who.int/iris/bitstream/handle/10665/250141/9789241511353-eng.pdf [accessed 11 November 2017].

Woodcock J, Edwards P, Tonne C, Armstrong BG, Ashish G, Banister D, et al. 2009. Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet 374(9705):1930–1943, PMID: 19942277, https://doi.org/10.1016/S0140-6736(09)67174-1.

Zeger SL, Thomas D, Dominici F, Samet JM, Schwartz J, Dockery D, et al. 2000. Exposure measurement error in time-series studies of air pollution: concepts and consequences. Environ Health Perspect 108(S):419–426, PMID: 10811568, https://doi.org/10.1289/ehp.00108419.

Zhang X, Chen Z, Zhang X. 2018. The impact of exposure to air pollution on cognitive performance. Proc Natl Acad Sci USA 115(37):9193–9197, PMID: 30160383, https://doi.org/10.1073/pnas.1804741115.

Zheng S, Wang J, Sun C, Zhang X, Kahn ME. 2019. Air pollution lowers Chinese land transport. Lancet 374(9705):1930–1943, PMID: 19942277, https://doi.org/10.1289/ehp.1205909.

WHO. 2013. Health effects of particulate matter. Geneva, Switzerland: WHO. https://apps.who.int/iris/bitstream/handle/10665/250141/9789241511353-eng.pdf [accessed 11 November 2017].

Zijlema WL, Wolf K, Emeny R, Ladwig KH, Peters A, Kongsgård H, et al. 2016. The heterogeneity statistic I² can be biased in small meta-analyses. B...