Deciphering of a Putative GPER Recognition Domain in ERα and ERα36

Alexandre Acramel1,2 and Yves Jacquot1*

1 CITCoM laboratory, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8038, Institut National de la Santé et de la Recherche Médicale (INSERM) U1268, Faculty of Pharmacy of Paris, Université Paris Cité, Paris, France, 2 Department of Pharmacy, Institut Curie, Paris, France

Keywords: GPER, ERα, ERα36, binding domain, breast cancer

INTRODUCTION

Twenty-five years ago, a class A (rhodopsin-like) G protein-coupled receptor (GPCR) was reported to participate in the rapid physiological responses to the mammalian steroid hormone 17β-estradiol (E2). Initially found in human B cells (1), it was further identified in breast carcinoma cells (2). As no endogenous ligand was identified, this membrane receptor was called GPR30, following the numbering system of orphan receptors. In 2005, two independent groups demonstrated an E2 interaction with GPR30 characterized by a Kd value in the nanomolar range (3, 4). Thus, it was renamed GPER for G protein-coupled estrogen receptor. The GPER structure differing strongly from the canonical estrogen receptors ERα and β and the 46 kDa ERα truncated isoform (ERα46), impassioned debates focusing on its intracellular localization, its exact role regarding nuclear and membrane signaling pathways and its physical interaction with ERα were carried out (5, 6). Shortly afterwards, a direct interaction of GPER with activated ERα and the epidermal growth factor receptor (EGFR), which both support transactivation, was evidenced through biochemical methods (7–9).

GPER participating in breast cancer development including triple negative breast cancer (TNBC) and in tamoxifen resistance (10–12), it would be interesting to define the ERα region involved in ERα/GPER interaction. Such a finding could lead to innovative therapeutic strategies targeting aggressive breast tumors. Based on recently published data, we report here a putative GPER-binding domain located in the hinge region of ERα and also found in the 36 kDa ERα truncated isoform (ERα36).

DECIPHERING OF AN ERα AND ERα36 PLATFORM PUTATIVELY INVOLVED IN GPER INTERACTION

ERα and ERα36 Sequence Alignment

The ERα and ERα36 primary structures contain the short sequence PLMIKRSKKNSLALSLT, which corresponds to the residues 295-311 and 123-139, respectively (13, 14). In the context of ERα, this sequence is not only targeted by post-translational modifications, but is also partially structured into polyproline II, a conformational state usually found in interaction modules (14). Moreover, it
overhangs a type II β turn (sequence RVPGFVD, residues 363-369, helix H4 of ERα), whose orientation depends strongly on the bound ligand, as shown in Figure 1 (14). Accordingly, it binds the ubiquitin ligase E6AP (15) and Ca$^{2+}$-calmodulin (16). Thus, this region is important for the recruitment of proteins and the control of transcription.

Identification From the ERα and ERα36 Primary Sequences of the First Peptidic GPER Modulator

The peptide ERα17p, which corresponds to the aforementioned 295-311 and 123-139 fragments of ERα and ERα36, respectively, interacts with Ca$^{2+}$-calmodulin (17), Hsp70 (18) and ERα, itself (19). As its antiproliferative activity is observed not only in ERα-positive but also in ERα-negative breast cancer cells, a role of GPER should be suspected (20, 21). By using a fluorescein-labeled version of ERα17p combined with a specific GPER immunohistochemical staining approach, a co-localization has been shown at the cytoplasmic membrane, suggesting a direct interaction between ERα17p and GPER (22). Following in silico studies, the ERα17p sequence seems to interact with the same GPER binding site as conventional ligands (22). The role of GPER in the mechanism of action of ERα17p is confirmed by the inhibition of the ERα17p-mediated antiproliferative action by the selective GPER antagonist G-36 (22). ERα17p behaves as a GPER inverse agonist, as usually found with intrinsically activated GPCRs. It induces a proteasome-dependent decrease of GPER, which is followed by a decrease of pEGFR, pERK1/2 and of the amount of c-fos (22). Finally, we have demonstrated that G-15, another selective GPER antagonist, was able to inhibit the anti-hyperalgesic and anti-inflammatory actions induced by ERα17p, in vivo (23).

Altogether, these results reveal not only that the 295-311 and 123-139 regions of ERα and ERα36, respectively, interfere with GPER, but also that these two regions could constitute a putative GPER-interacting platform.

![Diagram](https://via.placeholder.com/150)

FIGURE 1 | (A) The full-length ERα (ERα66) and the ERα36 isoform are schematized by boxes. The A/B domains contain the transactivation function AF1, the C domain corresponds to the DNA-binding domain (DBD), the D domain corresponds to the hinge region and the E/F domains contain the ligand-binding domain (LBD) and the transactivation function AF2. The putative GPER-binding site overlaps the C-terminus of the D domain and the N-terminus of the E/F domains. (B) The suspected GPER-binding domain in ERα, according to ERα/ligand crystal structures, in the presence of 4-hydroxytamoxifen (PDB code: 1ERT) and (C) raloxifen (PDB code: 1GWQ). Ligands are drawn in cyan. The part of the 295-311 sequence available in PDB structures is in purple. In pink, the aspartic acid 351, with which interacts the basic chain of 4-hydroxytamoxifen. In gold, the cystein 447, which is palmitoylated prior to membrane targeting, and the serine 518, which participates in the stabilization of the ligand within the ligand-binding pocket. In green, the side chain of the Arg-363 of the type II β-turn (R363VPGFVD369). In yellow, the coactivatory motif LxxLL. The regions of interest are visualized by using Connolly surface. In red (ribbon): the helix H3. Drawings have been performed on a Silicon Graphics O2 workstation using the Insight II software package (version 98.0, Accelrys, Inc, San Diego). Due to the presence of a proteolytic site in the 295-311 sequence of ERα, only the region 305-311 is available.
DISCUSSION

Additionally to EGFR, a direct interaction between GPER and ERα has been evidenced by using co-immunoprecipitation (8). As this interaction is enhanced by E2 and prevented by fulvestrant (ICI 182,780), a ligand-dependent process seems likely. Fulvestrant being a GPER agonist (7) and an ERα antagonist (24), a mechanism depending on ERα should be stressed. By using immunohistochemistry in human primary monocytes expressing ERα36, an E2-independent physical interaction between ERα36 and GPER has been evidenced (25). The absence of E2 effects may result, in this context, from the lack of AF2 domain in ERα36 and, consequently, from a lack of E2 interaction (9, 26). However and as E2 participates in ERα36 signaling, the involvement of GPER as an alternative E2-interacting target is not excluded.

In connection with previous results, we have attempted to identify a GPER-binding surface in ERα and ERα36. The approach consisting in exploring interaction patterns of a pharmacologically active peptide issued from a disordered or folded protein domain is often linked to protein-protein recognition (27, 28). Accordingly, data reported above with the folded protein domain is often linked to protein-protein approach consisting in exploring interaction patterns of a domain (25). The absence of E2 effects may result, in this context, from the lack of AF2 domain in ERα36 and, consequently, from a lack of E2 interaction (9, 26). However and as E2 participates in ERα36 signaling, the involvement of GPER as an alternative E2-interacting target is not excluded.

5. Langer G, Bader B, Meoli L, Insensie J, Delbeck M, Noppinger PR, et al. A Mitogen-Activated Protein Kinase Inhibitor Sited in the Cell Membrane: Therapeutic Coupling to Protein-Coupled Receptor 30 Expression Is Up-Regulated by EGF and TGFβ in Estrogen Receptor α-Positive Cancer Cells. Mol Endocrinol (2009) 23:1815–26. doi: 10.1210/me.2009-0120

6. Romano SN, Gorduck DA. Crossstalk Between Nuclear and G Protein-Coupled Estrogen Receptors. Gen Comp Endocrinol (2018) 261:190–7. doi: 10.1016/j.ygcen.2017.04.013

7. Mo Z, Liu M, Yang F, Luo H, Li Z, Tu G, et al. GPR30 as an Initiator of Tamoxifen Resistance in Hormone-Dependent Breast Cancer. Breast Cancer Res (2013) 15:R114. doi: 10.1186/bcr3581

8. Molina L, Figueroa CD, Bhoola KD, Ehrenfeld P. GPER-1/GPR30 a Novel Estrogen Receptor Situated in the Cell Membrane: Therapeutic Coupling to Breast Cancer. Exp Opin Ther Targets (2017) 21:755–66. doi: 10.1080/14728222.2017.1330264

9. Hsu LH, Chu NM, Lin YF, Kao SH. G-Protein Coupled Estrogen Receptor in Breast Cancer. Int J Med Sci (2019) 20:306. doi: 10.3390/ijms20020306

10. Wang ZYW, Zhang XT, Shen P, Loggie BW, Chang YC, Deuel TF. Identification, Cloning, and Expression of Human Estrogen Receptor-α36, a Novel Variant of Human Estrogen Receptor-α66. Biochem Biophys Res Commun (2005) 336:1023–7. doi: 10.1016/j.bbrc.2005.08.226

11. Jacquot Y, Gallo D, Leclercq G. Estrogen Receptor Alpha — Identification by a Modeling Approach of a Potential Polyproline II Recognizing Domain Within the AF-2 Region of the Receptor That Would Play a Role of Prime Importance in its Mechanism of Action. J Steroid Biochem Mol Biol (2007) 104:1–10. doi: 10.1016/j.jsbmb.2006.10.008

12. Li L, Li Z, Howley PM, Sacks DB. E6AP and Calmodulin Reciprocally Mediate Cloning, and Expression of Human Estrogen Receptor-α36, a Novel Variant of Human Estrogen Receptor-α66. Biochem Biophys Res Commun (2005) 336:1023–7. doi: 10.1016/j.bbrc.2005.08.226

13. Wang ZYW, Zhang XT, Shen P, Loggie BW, Chang YC, Deuel TF. Identification, Cloning, and Expression of Human Estrogen Receptor-α36, a Novel Variant of Human Estrogen Receptor-α66. Biochem Biophys Res Commun (2005) 336:1023–7. doi: 10.1016/j.bbrc.2005.08.226

14. Jacquot Y, Gallo D, Leclercq G. Estrogen Receptor Alpha — Identification by a Modeling Approach of a Potential Polyproline II Recognizing Domain Within the AF-2 Region of the Receptor That Would Play a Role of Prime Importance in its Mechanism of Action. J Steroid Biochem Mol Biol (2007) 104:1–10. doi: 10.1016/j.jsbmb.2006.10.008

15. Li L, Li Z, Howley PM, Sacks DB. E6AP and Calmodulin Reciprocally Mediate Cloning, and Expression of Human Estrogen Receptor-α36, a Novel Variant of Human Estrogen Receptor-α66. Biochem Biophys Res Commun (2005) 336:1023–7. doi: 10.1016/j.bbrc.2005.08.226

16. Gallo D, Jacquemotte F, Cleeren A, Laïos I, Hadiy S, Rowlands MG, et al. Calmodulin-Independent, Agonistic Properties of a Peptide Containing
Acramel and Jacquot

GPER Recognition by Estrogen Receptors

Kampa M, Pelekanou V, Gallo D, Notas G, Troullinaki M, Pediaditakis I, et al. (2012). Trophic Effect in MCF-7 Cells of ERT17p, a Peptide Corresponding to a Platform Regulatory Motif of the Estrogen Receptor α — Underlying Mechanisms. J Steroid Biochem Mol Biol (2008) 109:138-49. doi: 10.1016/j.jsbmb.2007.12.012

Gallo D, Jacquot Y, Cleeren A, Jacquemotte F, Laïos I, Laurent G, et al. (2012). The Molecular Basis of Agonistic Activity of ERT17p, a Synthetic Peptide Corresponding to A Sequence Located at the N-Terminal Part of the Estrogen Receptor α Ligand-Binding Domain. Lett Drug Design Discovery (2007) 4:346–55. doi: 10.2174/157018007780867807

Pelekanou V, Kampa M, Kiagiadaki F, Deli A, Theodoropoulos P, Agrogiannis G, et al. (2016). Estrogen Anti-Inflammatory Activity on Human Monocytes is Mediated Through Cross-Talk Between Estrogen Receptor ERαα and GPR30/GPER1. J Leuk Biol (2016) 99:333–47. doi: 10.1189/jlb.3A0914-430RR

Lin AHY, Li RWS, Ho EYW, Leung GPH, Leung SWS, Vanhoutte PM, et al. (2013). Differential Ligand Binding Affinities of Human Estrogen Receptor-α Isoforms. PLoS One (2013) 8:e63199. doi: 10.1371/journal.pone.0063199

Cunningham AD, Qvit N, Mochly-Rosen D. Peptides and Peptidomimetics as Regulators of Protein-Protein Interactions. Curr Opin Struct Biol (2017) 44:59–66. doi: 10.1016/j.sbi.2016.12.009

Wang X, Ni D, Liu Y, Lu S. Rational Design of Peptide-Based Inhibitors Disrupting Protein-Protein Interactions. Front Chem (Lausanne) (2021) 9:682675. doi: 10.3389/fchem.2021.682675

Zhang XT, Ding L, Kang LG, Wang ZY. Estrogen Receptor-Alpha 36 Mediates Mitogenic Antiestrogen Signaling in ER-Negative Breast Cancer Cells. PLoS One (2012) 7:e30174. doi: 10.1371/journal.pone.0030174

Miki Y, Iwabuchi E, Ono K, Sasano H, Ito K. Exploring Protein-Protein Interaction in the Study of Hormone-Dependent Cancers. Int J Mol Sci (2018) 19:3173. doi: 10.3390/ijms19103173

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Acramel and Jacquot. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.