Thermal rectification of a single-wall carbon nanotube: a molecular dynamics study

Azadeh Saeedi 1, Farrokh Yousefi 1, Saeed Khadesadr 3 and M. Ebrahim Foulaadvand 1,2

1 Department of Physics, University of Zanjan, P. O. Box 313, Zanjan, Iran
2 School of Nano-science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Teheran, Iran
3 Department of Physics, Tarbiyat Moddares University, P. O. Box 14115-111, Teheran, Iran

(Dated: September 19, 2014)

We have investigated the thermal rectification phenomenon in a single-wall mass graded carbon nanotube by molecular dynamics simulation. Second generation Brenner potential has been used to model the inter atomic carbon interaction. Fixed boundary condition has been taken into account. We compare our findings to a previous study by Alaghemandi et al 18 which has been done with a different potential and boundary condition. The dependence of the rectification factor R on temperature, nanotube diameter and length as well as mass gradient are obtained. It is shown that by increasing the temperature, the rectification decreases whereas by increasing the other parameters namely the mass gradient, diameter and the tube length it increases.

PACS numbers:

I. INTRODUCTION

Rectification is a transport process that takes place faster in one direction than in the opposite one. This phenomenon has attracted much attention in recent years [1]. In electronics this phenomenon has been used extensively in ubiquitous devices such as diodes and electric rectifiers [2,3]. The phenomenon of rectification is not restricted to electronic flow. In 1970 it was experimentally shown that rectification can occur in thermal current. For detailed review on thermal rectification in solid state physics see [4]. Recently the process of thermal rectification of heat flow has been detected in nano-sized materials. It has been empirically shown that externally mass-loaded carbon and boron nitride nanotubes are capable of exhibiting thermal rectification [5]. The empirical findings of Chang et al have stimulated the interest of theoreticians on the issue of thermal rectifica-

ation [6]. Thermal property of nanoscale materials is also important both for fundamental physical theory as well as for applications [7]. In recent years, different carbon nanotubes (CNT) [4,5,10] and Graphene Nano Ribbon (GNR) [11,13] structures have been proposed as candidates for thermal rectifiers [14]. These nano-sized carbon-based materials would have deep implications in thermal energy control such as on-chip cooling, high efficiency energy conversion and other phononics applications. Li and co-workers could theoretically show that thermal rectification appears in a one-dimensional (1D) chain with non linear interaction among the masses [14] and also in a mass-graded monoatomic chain interacting through the Fermi-Pasta-Ulam (FPU) potential [15,16]. The anharmonicity is the key feature which leads the thermal rectification in these one dimensional model systems. In fact the overlap of the vibrational spectra at the two ends of the chain is the reason for the existence of the thermal rectification. Recently Alaghemandi et al have executed extensive simulation and have shown that mass graded single-walled carbon nanotubes (SWCNTs) exhibit thermal rectification [17,18]. They have studied the dependence of rectification on the tube diameter, length, mass gradient and temperature. According to their results, rectification magnitude increases with increasing the CNT diameter as well as the mass gradient. Moreover, they showed that the rectification magnitude decreases when the temperature is enhanced. They have used reverse non-equilibrium molecular dynamics [20]. The interaction potential between carbon atoms is adopted from a mechanical viewpoint and includes radial harmonic, angular and torsion terms [21]. In this paper we study the thermal rectification of a SWCNT with the reactive empirical bond order (REBO) interaction potential [22] between carbon atoms and find the differences/similarities of our results with those found by Alaghamandi et al.

II. METHODOLOGY

We have used classical non equilibrium molecular dynamics (NEMD) simulation to calculate the thermal conductivity of an armchair single-wall carbon nanotube (SWCNT). The interaction between two carbon atoms C-C is modelled by the second-generation reactive empirical bond order (REBO) potential [22]. Simulations were performed using the LAMMPS package [23]. The velocity Verlet method was employed to integrate the equations of motion with a time step of one femto second. First, the entire nanotube is coupled to a Nosé-Hoover thermostat at temperature T and MD is performed to equilibrate and relax the system for 1 ns. After equilibrium, we fix the atoms of one unit cell (two rings) of carbon atoms from each end of the CNT. The third unit cell from each end is coupled to a Nose-Hoover thermostat. The second unit cell is not connected to a thermostat in order to suppress the phonon reflection from edges. The hot (cold) reservoir temperature is set to $T + \Delta T$ ($T - \Delta T$) respectively. In our simulations we have taken $\Delta T = 10 K$. See figure (1) for illustration.

We then perform a run for 10 ns. As a result of cou-
FIG. 1: Single-walled carbon nanotube under fixed boundary condition. Two layers (black atoms) from each side are kept fixed during the simulation. Blue (red) atoms are connected to the low (high) temperature thermostat. All the other atoms are simulated in the NVE ensemble. Dark purple indicates high mass region.

pling the system ends to thermostats with different temperatures, a temperature gradient emerges and a heat flux is established along the CNT axis. After the system reaches steady state, the thermal conductivity K of the CNT along its axis is evaluated according to the Fourier law

$$Q = -K \frac{dT}{dz}$$

where $\frac{dT}{dz}$ is the temperature gradient along the CNT axis and the brackets denote time average of thermal flux.

We remark that the instantaneous heat flux $Q(t)$ is found from the following relation:

$$Q(t) = \frac{d}{dt} \sum_i r_i(t) \epsilon_i(t)$$

where $\epsilon_i(t) = \frac{p_i^2}{2m} + \frac{1}{2} \sum_{j \neq i} V(r_i, r_j)$ is the instant total energy of particle i. In computation, people normally do not directly proceed with (2). Instead, they compute the heat flux in a different manner. The heat flux is taken as the work done by the thermostat on the system. In the Nosé-Hoover thermostat [24] the equation of motion for particle i becomes:

$$\dot{p}_i = -\xi p_i + F_i$$

where F_i is the systematic force exerted on particle i. The heat bath acts on the particle with a force $-\xi p_i$, thus the input power of the heat bath to the system is $-\xi \frac{p_i \cdot \dot{p}_i}{m}$, which can also be regarded as the thermal current associated to particle i. Summation over i gives:

$$Q(t) = \sum_i -\xi \frac{p_i \cdot \dot{p}_i}{m}$$

Coming back to (1) the temperature gradient is found by applying a linear fit to the temperature of the intermediate slabs. The ratio in Eq. (1) produces a reasonable value provided that the system is fully equilibrated and the simulation is sampled over a sufficiently long time. It has been theoretically shown that implementation of a non uniform mass distribution with a mass gradient α along the axis of CNT renders possible thermal rectification [17, 18]. The mass of carbon atoms is assumed to increase with a gradient $\alpha = \frac{dm}{dz}$ along the CNT axis. This increase mimics the effect of mass grading by deposition of heavy molecules such as C_9H_{16}Pt on the CNT [5]. The left end of the CNT is set at $z = 0$. We have performed extensive MD simulations to see the differences/similarities with the results of Alaghemandi et al [18]. The main differences between our model and reference [17] are as follows: the interatomic potential in Ref. [18] is adopted from a continuum mechanics whereas we have used REBO. Second, they used periodic boundary condition but we have used fixed boundary condition. We remark that in experiments performed to measure the thermal conductivity of CNTs, both ends of the CNT is quite kept fixed (suspended actually over a trench) on a substrate [25–29] therefore the fixed boundary condition is more compatible with experiment. Third, they used reverse NEMD for establishing a thermal current but in our model two thermostats do the task. The thermal rectification factor R is defined as:

$$R = \frac{K_{H \rightarrow L} - K_{L \rightarrow H}}{K_{L \rightarrow H}} \times 100$$

Note $K_{H \rightarrow L}$ stands for the thermal conductivity of the system when heat flows from the high-mass region to the low-mass region. Visa versa applies to $K_{L \rightarrow H}$.

III. RESULTS

In this section we present our simulation results. Figure (2) shows the rectification factor R versus temperature for a CNT of length $L = 100$ nm for two values
of chiral indices \((n, m)\) i.e.; \((5, 5)\) and \((10, 10)\) which correspond to diameters \(d = 0.677\ nm\) and \(d = 1.354\ nm\) respectively. By increasing the temperature, the modulus of \(R\) decreases towards zero. For low temperatures, \(R\) becomes as large as \(-31\)%.

By increasing the temperature, the modulus of \(R\) decreases towards zero. For low temperatures, \(R\) becomes as large as \(-31\)%.

In figure (3) we have shown the temperature dependence of \(R\) for a \((10, 10)\) armchair CNT for various lengths from \(L = 10\ nm\) to \(L = 100\ nm\). The overall behaviour is similar to figure (2). The magnitude of \(R\) decreases with temperature. The larger the tube length the larger the magnitude of \(R\).

It would be interesting to see how the rectification factor changes with the variation of mass gradient \(\alpha\). Figure (4) exhibits this dependence for \((5, 5)\) and \((10, 10)\) CNTs having a length \(L = 100\ nm\). The temperature has been \(T = 300\ K\). You can see that by increasing \(\alpha\) the rectification factor \(R\) increases in magnitude. It goes as high as twenty four percent for a 100 nm CNT. Moreover, for a fixed length when the diameter increases the rectification factor \(R\) becomes larger in magnitude.

Our last figure shows the diameter dependence of the rectification factor \(R\). Figure (6) depicts this behaviour.

IV. SUMMARY AND CONCLUSION

Thermal rectification in a single-wall mass graded carbon nanotube is investigated by molecular dynamics simulation. We compare our findings to a previous study by Alaghemandi et al. [18] which has been done with a different potential and boundary condition. The dependence
of the rectification factor R on temperature, nanotube diameter and length as well as mass gradient are obtained. It is shown that by increasing the temperature, the rectification decreases whereas by increasing the other parameters it increases in magnitude. Our results are qualitatively in agreement with reference [18]. However, there are notable differences between these two works. Particularly in our findings the magnitude of rectification factor is larger than those obtained in [18]. We speculate the type of boundary condition and phonon scattering from boundaries affects the problem. Nevertheless, the interatomic potential can play a role for such difference.

V. ACKNOWLEDGEMENT

We greatly appreciate the grid centre of the Institute of fundamental research in basic sciences (IPM) for providing us computation facilities. In particular Mr S. Saadatmand, Mr Karimi and Miss Zehnal Pour. We are thankful to Mohammad Alaghemandi from technical Darmstadt university, Dr. Ali Naji and Dr. Reza Asgari from IPM, Dr. Mehdi Vaez Alei from Tehran university and Dr. Ali Rajapour from Qazvin university for fruitful help. MEF is thankful Amir-o Do’leh from Zanjan university and Mehdi sibil from IPM for useful help.

[1] N. A. Roberts and D. G. Walker, Int. J. Therm. Sci. 50, 648 (2011).
[2] K. Balcerak and T. Tyc, Phys. Status Solidi A 47, K125 (1978).
[3] A. Jeżowski and J. Rafałowicz, Phys. Status Solidi A 47, 229 (1978).
[4] C. Dames, ASME J. Heat Transfer 131, 061301 (2009).
[5] C. W. Chang, D. Okawa, A. Majumdar and A. Zettl, Science 314, 1121 (2006).
[6] D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin and S. R. Phillpot, J. Appl. Physics, 92, number 2, 793 (2003).
[7] G. Wu and B. Li, Phys. Rev. B 76, 085424 (2007).
[8] N. Yang, G. Zhang and B. Li, Appl. Phys. Lett. 93, 243111 (2008).
[9] N. Yang, G. Zhang and B. Li, ibid. 93, 243111 (2008).
[10] K. Takahashi, M. Inoue, and Y. Ito, Jap. J. Appl. Phys. 49, 02BD12 (2010).
[11] J. Hu, X. Ruan and Y. P. Chen, Nano Lett. 9, 2730 (2009).
[12] N. Yang, G. Zhang and B. Li, Appl. Phys. Lett. 95, 033107 (2009).
[13] J. W. Jiang, J. S. Wang, and B. Li, Europhys. Lett. 89, 46005 (2010).
[14] B. Li, L. Wang and G. Casati, Phys. Rev. Lett. 90, 184301 (2004).
[15] N. Yang, N. Li, L. Wang and B. Li, Phys. Rev. B 76, 020301 (2007).

[16] B. W. Li, J. Wang, L. Wang and G. Zhang, Chaos 15, 015121 (2005).

[17] M. Alaghemandi, E. Algaer, M. C. Böhm and F. Müller-Plathe, Nanotechnology 20, 115704 (2009).

[18] M. Alaghemandi, F. Leroy, E. Algaer, M. C. Böhm and F. Müller-Plathe Nanotechnology 21, 075704 (2010).

[19] M. Alaghemandi, F. Leroy, F. Müller-Plathe and M. C. Böhm, Phys. Rev. B 81, 125410 (2010).

[20] F. Müller-Plathe J. Chem. Phys. 106, 6082 (1997).

[21] C. Y. Li and T. W. Chou, Int. J. Solids Struct. 40, 2487 (2003).

[22] D. W. Brenner, O. A. Shenderova, J. A. Harroson, S. I. Stuart, B. Ni and S. Sinnott, J. Phys. Cond. Mat. 14, 783 (2002).

[23] S. Plimpton, J. Comp. Phys. 117, 1 (1995).

[24] S. Nose, J. Chem. Phys. 81, 511 (1984); W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

[25] C. Yu, L. Shi, Z. Yao, D. Li and A. Majumdar, Nano Letters 5 No. 9, 1842 (2005).

[26] T. Y. Choi, D. Poulikakos, J. Tharian and U. Sennhauser, Nano Letters 6 No. 8, 1589 (2006).

[27] Q. Li, C. Liu, X. Wang and S. Fan, Nanotechnology 20, 145702 (2009).

[28] I-K Hsu, R. Kumar, A. Bushmaker, S. B. Cronin, M. T. Pettes, L. Shi, T. Brintlinger, M. S. Fuhrer and J. Cumings, Appl. Phys. Lett. 92, 063119 (2008).

[29] E. Pop, D. Mann, Q. Wang, K. Goodson and H. Dai, Nano Letters 6 No. 1, 96 (2006).

[30] Thermal conductivity, theory, properties and applications., edited by Terry. M. Tritt, Kluwer Academic/Plenum Publishers (2004).