Sustained response to imatinib in patient with extraskeletal myxoid chondrosarcoma and novel KIT mutation

Brooke Jennings 1,2, John Rieth,2,3 Travis Snyders,3 Mohammed Milhem3

SUMMARY
A 55-year-old woman presented with a 3-month history of right groin swelling, discomfort and impaired mobility. On examination, a palpable mass was noted both to the right of midline in the lower abdomen and in the right groin. MRI of the pelvis showed two masses involving the anterior abdominal wall and right groin, as well as lymph node involvement. CT imaging revealed multiple bilateral pulmonary metastases. Pathology demonstrated a myxohyaline stroma morphology. Tumour was also notable for NR4A3 gene region rearrangement and mutation in KIT exon 11 at position c.1669 T>G. Based on these findings, she was diagnosed with extraskeletal myxoid chondrosarcoma (EMC). The patient has been on imatinib, a tyrosine kinase inhibitor with activity against KIT, for 3 years with stable disease. Metastatic EMC is generally treated with surgical resection and perioperative radiation therapy with adjuvant chemotherapy and is associated with poor prognosis.

BACKGROUND
Extraskeletal myxoid chondrosarcoma (EMC) is a rare soft-tissue sarcoma (STS) subtype that contains myxoid matrix located in soft tissues, typically occurring near the proximal end of long bones.1 The cellular lineage of EMC continues to be an issue of debate. Despite its name, the tumour is not considered a subtype of chondrosarcoma, as hyaline cartilaginous neoplastic tissue is not always present.2 EMC tumours can present variably on imaging, with a majority demonstrating a low-density mass with calcification on CT with mild or no enhancement.2 These tumours usually present in patients over 40 years of age and are more common in males than females, with one study identifying a distribution of 64% males, and 84% of patients diagnosed after the age of 39.3 The lower extremity is the most common primary tumour site, with is negative for malignancy of any kind.

INVESTIGATIONS
MRI of the pelvis identified a 6.8×4.3 × 2 cm mass of the midline anterior abdominal wall, a 2.3×2.2 cm mass of the right groin, and two right pelvic lymph nodes. CT imaging revealed multiple bilateral pulmonary metastases.

A partial excisional biopsy of the groin mass was performed, and pathology demonstrated primarily epithelioid cells in nests, cords and sheets in a myxohyaline stroma, as shown in figure 1. An array of immunohistochemical stains was performed on the tumour, including PD-L1, pan-cytokeratin AE1/AE3, OSCAR, CK7, CK20, TTF-1 and S100 protein, which were negative. In situ hybridisation was notable for NR4A3 gene region rearrangement. Together, these findings were consistent with high-grade extraskeletal myxoid chondrosarcoma. Interestingly, the cancer mutation analysis was notable for the missense variant c.1669 T>G in KIT exon 11, never before seen in EMC. Germline mutation analysis was conducted on a blood sample, and the novel KIT mutation was not present, indicating a somatic mutation. One other case reported in the literature demonstrated a deletion in-frame...
The patient presented here has been on imatinib for 3 years and ineffective for treatment.11 Suggest that cytotoxic chemotherapy, including doxorubicin, is available specifically focused on EMC, although previous studies shown efficacy in GIST and chronic myeloid leukaemia.18 19 Against KIT, PDGFRA and other tyrosine kinases. Imatinib has function mutation in exon 11 has never before reported in extraskeletal myxoid chondrosarcomas.14 Gain-of-function mutations in KIT have also been found in melanoma and acute myelogenous leukaemia.15–17 This patient demonstrated the missense mutation in KIT exon 11 at position c.1669 T>G, she was subsequently treated with imatinib, a tyrosine kinase inhibitor with activity against KIT.

OUTCOME AND FOLLOW-UP
Her disease has been stable for 3 years on continued therapy with minimal gastrointestinal side effects.

DISCUSSION
STS account for 1% of newly diagnosed cancers in adults, with EMC being a rare subtype within this group. Doxorubicin with or without ifosfamide has remained the first-line therapy treatment of metastatic STS.13 Due to the rarity, limited research is available specifically focused on EMC, although previous studies suggest that cytotoxic chemotherapy, including doxorubicin, is ineffective for treatment.11

This patient demonstrated the missense mutation in KIT exon 11 at position c.1669 T>G, never before reported in EMC. KIT, a proto-oncogene, is known to play an important role in cell proliferation, differentiation, migration and apoptosis. The 1669 T>G mutation is predicted to cause a tryptophan to glycine substitution at the position 557, resulting in a gain-of-function mutation in KIT.14 Gain-of-function mutations in KIT are primarily associated with gastrointestinal stromal tumours (GIST) but have also been found in melanoma and acute myelogenous leukaemia.15–17 Imatinib is tyrosine kinase competitive inhibitor with activity against KIT, PDGFRA and other tyrosine kinases. Imatinib has shown efficacy in GIST and chronic myeloid leukaemia.18 19 The patient presented here has been on imatinib for 3 years and continues to have stable disease.

Learning points

► Extraskeletal myxoid chondrosarcomas are extremely rare, with diagnosis relying on pathological, immunohistochemical and molecular evaluation.

► The c.1669 T>G mutation in KIT exon 11 has never before reported in extraskeletal myxoid chondrosarcomas.

► Imatinib provided a strong and sustained treatment response, indicating a possible treatment option for any cancers containing a KIT mutation regardless of known association.

REFERENCES
1 Zaki M, Laszewski P, Robinette N, et al. Unresectable extraskeletal myxoid chondrosarcoma of the neck: early tumor response to chemoradiotherapy. Curr Oncol 2015;22:432.
2 Zhang L, Wang R, Xu R, et al. Extraskeletal myxoid chondrosarcoma: a comparative study of imaging and pathology. Biomed Res Int 2018;2018:1–9.
3 Wagner MJ, Chau B, Loggers ET, et al. Long-term outcomes for extraskeletal myxoid chondrosarcoma: a SEER database analysis. Cancer Epidemiol Biomarkers Prev 2020;29:2351–7.
4 Fiechtl U, Tops BB, Verdijk MAJ, et al. NTRK3 rearrangement reliably distinguishes between the clinicopathologically overlapping entities myxopapillary ependymoma of soft tissue and cellular extraskeletal myxoid chondrosarcoma. Virchows Arch 2012;460:621–8.
5 Benini S, Cocchi S, Gambini G, et al. Diagnostic utility of molecular investigation in extraskeletal myxoid chondrosarcoma. J Mol Diagn 2014;16:314–23.
6 Davis EL, Wu YM, Robinson D, et al. Next generation sequencing of extraskeletal myxoid chondrosarcoma. Oncotarget 2017;8:21770–7.
7 Hisaoka M, Ishida T, Imamura T, et al. TFG is a novel fusion partner of NOR1 in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer 2004;40:325–8.
8 Utzmöller M, Indri V, Astolfi A, et al. Identification of an actionable mutation of kit in a case of extraskeletal myxoid chondrosarcoma. Int J Mol Sci 2018;19:1855.
9 O’Sullivan B, Davis AM, Turcotte R, et al. Preoperative versus postoperative radiotherapy in soft-tissue sarcoma of the limbs: a randomised trial. Lancet 2002;359:2235–41.
10 Rosenbaum SA, Tepper J, Glattstein E, et al. The treatment of soft-tissue sarcomas of the extremities: prospective randomized evaluations of (1) limb-sparing surgery plus radiation therapy compared with amputation and (2) the role of adjuvant chemotherapy. Ann Surg 1982;196:305–15.
11 Drilon AD, Popat S, Bhusar G, et al. Extraskeletal myxoid chondrosarcoma: a retrospective review from 2 referral centers emphasizing long-term outcomes with surgery and chemotherapy. Cancer 2008;113:3364–71.
12 Stacciotti S, Pantaleo MA, Astolfi A, et al. Activity of sunitinib in extraskeletal myxoid chondrosarcoma. Eur J Cancer 2014;50:1657–64.
13 Borden EC, Amato DA, Rosenbaum C, et al. Randomized comparison of three adriamycin regimens for metastatic soft tissue sarcomas. J Clin Oncol 1987;5:840–50.
14 Nakahara M, Isozaki K, Hirota S, et al. A novel gain-of-function mutation of c-kit gene in gastrointestinal stromal tumors. Gastroenterology 2004;126:621–8.
15 Miettinen M, Lasota J. Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol 2006;23:70–83.
16 Gong HZ, Zheng HY, Li J. The clinical significance of kit mutations in melanoma: a meta-analysis. Melanoma Res 2018;28:259–70.
17 Ayatollahi H, Shahi A, Sadeghian MH, et al. Prognostic importance of c-kit mutations in core binding factor acute myeloid leukaemia: a systematic review. Hematol Oncol Stem Cell Ther 2017;10:1–7.
18 Blankie CD, Demetri GD, von Mehren M, et al. Long-term results from a randomized phase II trial of standard-versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumours expressing kit. J Clin Oncol 2008;26:620–5.
19 Hochhaus A, Larson RA, Guilhot F, et al. Long-Term outcomes of imatinib treatment for chronic myeloid leukaemia. N Engl J Med 2017;376:917–27.
