Pediatric care provided by pediatricians, infectious disease specialists, primary care physicians, and specialists in other fields, including nephrologists, can offer a comprehensive care plan for HIV-infected children. Early intervention and timely management can help prevent progression to chronic kidney disease (CKD) [6]. These factors combine to predispose HIV patients to renal disease from all of the common non-HIV-related causes, such as hypertension and diabetes. Also of note is that hepatitis C co-infection is associated with higher rates of both AKI and CKD [7].

There is a wide spectrum of renal disease in HIV, but most causes fit into three categories: HIV infection related, HIV treatment related, or non-HIV related. HIV infection related is defined as disease that is a direct result of the viral infection, including HIV-associated nephropathy (HIVAN), HIV immune complex disease (HIVICK), and HIV thrombotic microangiopathy (HIV-TMA). HIV treatment related causes include the nephrotoxic side effects of antiretrovirals and antimicrobials. Non-HIV related causes must always be considered once HIV infection related and treatment related causes are ruled out, with the understanding that all renal disease in an HIV patient is not necessarily related to the virus and/or its treatment.

HIVAN is the result of viral infection and replication within the kidney. Collapsing focal segmental glomerulosclerosis (FSGS) and tubulointerstitial disease are seen on biopsy [8]. Classically, it presents with heavy proteinuria, a rapid decline in GFR, and a rapid progression to ESRD. There are 800 to 900 ESRD due to HIVAN new cases of per year in the US [9]. One recent study showed biopsy-proven HIVAN to have a 70% progression to ESRD [10]. HIVAN is seen primarily in African American patients with advanced HIV. 90% of the ESRD due to HIVAN in the US is in African Americans [9]. The genetic predisposition may be due to a single nucleotide polymorphism in Apolipoprotein L1, that is seen in West African descendants [11]. The primary treatment for HIVAN is antiretroviral therapy, and the IDSA recognizes it as an indication for starting antiretroviral therapy [5]. The incidence of HIVAN has decreased since the widespread use of antiretroviral therapy. One biopsy series showed a HIVAN prevalence of 80% on kidney biopsies in 1997,

Potential mechanisms for HIV as a risk factor for AKI/CKD include direct toxicity of the virus, nephrotoxic medications (including some antiretrovirals and antimicrobials), and frequent/severe infections that occur as a result of the immunocompromised state. It is important to note that subclinical kidney disease is likely to be present even if there are not yet changes in clinical markers of kidney function. An autopsy study of HIV patients showed histologic changes in the kidney prior to overt clinical

CKD [6]. These factors combine to predispose HIV patients to renal disease from all of the common non-HIV-related causes, such as hypertension and diabetes. Also of note is that hepatitis C co-infection is associated with higher rates of both AKI and CKD [7].

There is a wide spectrum of renal disease in HIV, but most causes fit into three categories: HIV infection related, HIV treatment related, or non-HIV related. HIV infection related is defined as disease that is a direct result of the viral infection, including HIV-associated nephropathy (HIVAN), HIV immune complex disease (HIVICK), and HIV thrombotic microangiopathy (HIV-TMA). HIV treatment related causes include the nephrotoxic side effects of antiretrovirals and antimicrobials. Non-HIV related causes must always be considered once HIV infection related and treatment related causes are ruled out, with the understanding that all renal disease in an HIV patient is not necessarily related to the virus and/or its treatment.

HIVAN is the result of viral infection and replication within the kidney. Collapsing focal segmental glomerulosclerosis (FSGS) and tubulointerstitial disease are seen on biopsy [8]. Classically, it presents with heavy proteinuria, a rapid decline in GFR, and a rapid progression to ESRD. There are 800 to 900 ESRD due to HIVAN new cases of per year in the US [9]. One recent study showed biopsy-proven HIVAN to have a 70% progression to ESRD [10]. HIVAN is seen primarily in African American patients with advanced HIV. 90% of the ESRD due to HIVAN in the US is in African Americans [9]. The genetic predisposition may be due to a single nucleotide polymorphism in Apolipoprotein L1, that is seen in West African descendants [11]. The primary treatment for HIVAN is antiretroviral therapy, and the IDSA recognizes it as an indication for starting antiretroviral therapy [5]. The incidence of HIVAN has decreased since the widespread use of antiretroviral therapy. One biopsy series showed a HIVAN prevalence of 80% on kidney biopsies in 1997,
which declined to a prevalence of 20% on kidney biopsies in 2004 [12]. More of the non-HIVAN biopsies showed non-collapsing FSGS, which some believe to represent partially treated HIVAN. These patients present with milder proteinuria and a less severe decrease in GFR [13]. Another hypothesis is that these patients may be predisposed to classic FSGS because of similar genetic predisposition in African Americans. Once HIVAN is diagnosed in a patient not already on antiretroviral therapy, it has been shown to respond to the initiation of antiretroviral therapy [10]. Other specific treatments have been studied for HIVAN, including ACE inhibitors and steroids, however a 2013 Cochrane Review did not find sufficient evidence to make recommendations for either [14]. IDSA guidelines recommend starting ACE inhibitors if HIVAN is suspected, or if there is significant albuminuria [5]. The KDIGO glomerulonephritis guidelines do not make any recommendation for or against ACE inhibitors in these patients [15]. The IDSA guidelines also recommend considering steroids [5], while the KDIGO guidelines make no specific recommendation [15]. The few studies on steroids for HIVAN were done in the era before antiretroviral therapy and included small numbers of patients, though they did show some benefit. They used around 60mg per day of prednisone and showed no increased incidence of opportunistic infections [16], though one did show an increase in avascular necrosis [17]. Despite this, the difficulty of extrapolating this data to the antiretroviral era has led to steroids not being standard of care in these patients.

HIV immune complex disease is defined as any immune complex disease found on biopsy in the setting of HIV. The etiology of HIVICK is unclear, though some believe it to be caused by anti-HIV antibodies promoting immune complex formation. A recent biopsy series showed the most common finding of HIVICK as being post-infectious glomerulonephritis. The next most common was “lupus-like” glomerulonephritis, which was defined as the “full house” of immune complex deposition, with negative lupus serologies. The other cases showed IgA nephropathy, membranoproliferative glomerulonephritis, membranous nephritis, or glomerulonephritis not otherwise specified [10]. Compared to HIVAN, patients with HIVICK present with less proteinuria, more variable renal dysfunction, less fulminating decrease in GFR and less progression to ESRD. Additionally, patients tend to be less immunocompromised at diagnosis. The rate of progression to ESRD was 32% in one study of biopsy-proven cases, and the initiation of antiretroviral therapy after diagnosis of HIVICK was not shown to improve outcomes [10]. No specific treatment that has been shown effective for HIVICK, though the standard specific treatments for the immune complex diseases (i.e. if they were diagnosed outside of the setting of HIV), should be considered.

HIV thrombotic microangiopathy is thrombotic microangiopathy (TMA) thought to be triggered by viral injury to the endothelium. It is seen in advanced HIV and has become less common since the widespread use of antiretroviral therapy [18]. The presentation is similar to TMA in other settings. There is no specific treatment, other than initiation of antiretroviral therapy, and the consideration of standard treatments for thrombotic microangiopathy.

Non-nucleoside reverse transcriptase inhibitors (i.e. efavirenz, etravirine) are generally not nephrotoxic. Nucleoside reverse transcriptase inhibitors (i.e. zidovudine, lamivudine, abacavir, emtricitabine, stavudine, didanosine) are uncommonly nephrotoxic, however they can cause Type B lactic acidosis (highest risk for stavudine and didanosine [19]).

Nucleotide reverse transcriptase inhibitors (i.e. tenofovir) are commonly nephrotoxic. Adefovir and cidofovir are also nucleotide reverse transcriptase inhibitors, however they are not approved for HIV, but are used for hepatitis B and CMV, respectively, and have the same side effect profile. Nucleotide reverse transcriptase inhibitors cause proximal tubular injury/ Fanconi Syndrome and/or nephrogenic diabetes insipidus. Tubular injury can be monitored by watching for glycosuria without elevated blood glucose, FE-Phos> 20%, and/or FE-ureic acid >20% [5]. Tenofovir deserves special mention, because it is probably the most commonly used nephrotoxic HIV medication. The incidence of AKI due specifically to tenofovir is difficult to determine, however, a recent meta-analysis showed an average decrease in GFR of 3.92 mL/min, over prolonged periods of followup [20]. There can be increased risk of tenofovir toxicity when it is combined with atazanavir, amprenavir, or ritonavir-boosted protease inhibitors [21, 22, 23]. IDSA guidelines recommend avoiding tenofovir in patients with a GFR < 60 mL/min, and recommend discontinuing tenofovir if the GFR decreases by 25% once started [5]. Dolutegravir + abacavir/ lamivudine is a first-line regimen that can be used if tenofovir is being avoided [24].

Protease inhibitors (i.e. indinavir, atazanavir) are commonly nephrotoxic, with mechanisms including crystalluria, kidney stones, tubular obstruction, and/or chronic tubulointerstitial nephritis. These occurred frequently enough with indinavir that it is no longer commonly used. Atazanavir is commonly used, however, and is also associated with significant risk of CKD [25]. Of note, atazanavir can interfere with the metabolism of beta blockers and non-dihydropyridine calcium channel blockers, which could cause hypotension and result in AKI from hemodynamics.

Rilpivirine (non-nucleoside reverse transcriptase inhibitor), cobicistat (boosting agent), and dolutegravir (integrase inhibitor) are all capable of causing a trimethoprim-like increase in creatinine, which is due to decreased tubular secretion of creatinine, and is not an indicator of a true decrease in GFR [26, 27, 28].

HIV does not change the indications for kidney biopsy. A 2005 biopsy series showed that nephrotic-range proteinuria and low CD4 count could not be used to predict HIVAN. Only 53% of the patients had HIVAN on the biopsy, and 33% of the patients with CD4 count less than 200 did not have HIVAN [29]. HIV patients have also been shown to not have an increased risk of complications from kidney biopsy [30].

While the rates of ESRD from HIVAN are lower since the introduction of antiretroviral therapy, the increase in life-span attributed to antiretroviral therapy has led to more ESRD from non-HIV-related causes. 1.5% of dialysis patients in the United States have HIV [31], and 91% of them are African Americans [9]. In general, HIV patients on dialysis are managed no differently than other dialysis patients, and they are candidates for both hemodialysis and peritoneal dialysis.

Though a relatively new, kidney transplant is a viable option for HIV patients. IDSA guidelines recommend that HIV patients with ESRD be evaluated for kidney transplant [5]. Most of
Observations on a cohort of HIV-infected patients undergoing native renal biopsy. Am J Nephrol 28(3): 478-486.

[13]. Ross MJ (2014) Advances in the pathogenesis of HIV-associated kidney diseases. Kidney Int 86(2): 266-274.

[14]. Yahaya I, Ushman OA, Ushman MM (2013) Interventions for HIV-associated nephropathy. Cochrane Database Syst Rev 1: CD007183.

[15]. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group (2012) KDIGO Clinical Practice Guideline for Glomerulonephritis. Kidney Int 82(3): 2042-2058.

[16]. Eustace JA, Nuernberger E, Choi M, Scheel PJ Jr, Moore R, et al. (2000) Cohort study of the treatment of severe HIV-associated nephropathy with corticosteroids. Kidney Int 58(3): 1253-1260.

[17]. Glesby MJ, Grobe DR, Vaamonde CM (2001) Osteonecrosis in patients infected with human immunodeficiency virus: a case-control study. J Infect Dis 183(4): 519-523.

[18]. Gervasoni C, Ridolfo AL, Vaccarezza M, Paravincini C, Vago L, et al. (2002) Thrombotic microangiopathy in patients with acquired immunodeficiency syndrome before and during the era of introduction of highly active antiretroviral therapy. Clin Infect Dis 35(12): 1534-1540.

[19]. Lactic Acidosis International Study Group (2007) Risk factors for lactic acidosis and severe hyperlactatemia in HIV-1 infected adults exposed to antiretroviral therapy. AIDS 21: 2455-2464.

[20]. Cooper RD, Wiesheu N, Smith M, Keiser P, Naicker S, et al. (2010) Systematic review and meta-analysis: renal safety of tenofovir disoproxil fumarate in HIV-infected patients. Clin Infect Dis 51(9): 496-505.

[21]. Zimmerman AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, et al. (2006) Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions. Clin Infect Dis 42(2): 283-290.

[22]. Crane HM, Keshetbaum B, Harrington RD, Kitahara MM (2007) Amphotericin and didanosine are associated with declining kidney function among patients receiving tenofovir. AIDS 21(11): 1431-1439.

[23]. Goicoechea M, Liu S, Best B, Sun J, Jain S, et al. (2008) Greater tenofovir-associated renal function decline with protease inhibitor-based versus nonnucleoside reverse-transcriptase-inhibitor-based therapy. J Infect Dis 197(1): 102-108.

[24]. Department of Health and Human Services. Guidelines for the use of antiretroviral agents in HIV-1 infected adults and adolescents. 2016. Available at: http://aidsoinfo.nih.gov/guidelines/html/1-adult-and-adolescent-treatment-guidelines/0.

[25]. Mocroff A, Kirk O, Reese P, Dr Wit S, Sellaclisk D, Benimovski M, Gartel J, Phillips AN, Ledergerber B, Lundgren JD. Estimated glomerular filtration rate, chronic kidney disease and antiretroviral drug use in HIV-positive patients. AIDS 2010; 24: 1667-78.

[26]. Cohen CJ, Andrade-Villanueva J, Ciotet B, Fourier J, Johnson MA, et al. (2011) Rilpivirine versus efavirenz with two background nucleoside or nucleotide reverse transcriptase inhibitors in treatment-naïve adults infected with HIV-1 (THYRFE): a phase 3, randomised, non-inferiority trial. Lancet 378(9787): 229-237.

[27]. German P, Liu HC, Szwarcberg J, Hepner M, Andrews J, et al. (2012) Effect of cobicistat on glomerular filtration rate in subjects with normal and impaired renal function. J Acquir Immune Defic Syndr 61(3): 33-40.

[28]. Koteff J, Borland J, Chen S, Song I, Peppercorn A, et al. (2013) A phase 1b study to evaluate the effect of dolutegravir on renal function via measurement of inulin and para-aminohippurate clearance in healthy subjects. Br J Clin Pharmacol 75(4): 990-996.

[29]. Arta MG, Choi MJ, Longenecker JC, Haymart M, Wu J, et al. (2005) Neprhotic range proteinuria and CD4 count as noninvasive indicators of HIV-associated nephropathy. Am J Med 118(11): 1288.

[30]. Tabatabai S, Sperati CJ, Arta MG, Jainka J, Ruxbury C, et al. (2009) Prediction of complication after percutaneous ultrason-guided kidney biopsy in HIV-infected individuals: possible role of hepatitis C and HIV co-infection. Clin J Am Soc Nephrol 4(11): 1766-1773.

[31]. Finelli L, Miller JT, Tokars JJ, Alter MJ, Arduinio MJ (2005) National surveillance of dialysis-associated diseases in the United States, 2002. Semin Dial 18(1): 52-61.

[32]. Stock PG, Barin B, Murphy B, Hanto D, Diego JM, et al. (2010) Outcomes of iohexol and para-aminohippurate clearance in healthy subjects. Br J Clin Pharmacol 75(4): 990-996.

[33]. Eustace JA, Nuernberger E, Choi M, Scheel PJ Jr, Moore R, et al. (2000) Cohort study of the treatment of severe HIV-associated nephropathy with corticosteroids. Kidney Int 58(3): 1253-1260.

[34]. Eron JJ, Young B, Cooper DA, Youle M, Dejesus E, et al. (2010) Switch to a raltegravir-based regimen versus continuation of a lopinavir-ritonavir-based regimen in stable HIV-infected patients with suppressed viroemia (SWITCHMMRk 1 and 2): two multicentre, double-blind, randomised controlled trials. Lancet 375(9712): 396-407.