Sensitivity of Calcification to Thermal Stress Varies among Genera of Massive Reef-Building Corals

Juan P. Carricart-Ganivet1,2*, Nancy Cabanillas-Terán2, Israel Cruz-Ortega1, Paul Blanchon1

1 Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México, 2 Unidad Chetumal, El Colegio de la Frontera Sur, Chetumal, Quintana Roo, México

Abstract

Reductions in calcification in reef-building corals occur when thermal conditions are suboptimal, but it is unclear how they vary between genera in response to the same thermal stress event. Using densitometry techniques, we investigate reductions in the calcification rate of massive Porites spp. from the Great Barrier Reef (GBR), and P. astreoides, Montastraea faveolata, and M. franksi from the Mesoamerican Barrier Reef (MBR), and correlate them to thermal stress associated with ocean warming. Results show that Porites spp. are more sensitive to increasing temperature than Montastraea, with calcification rates decreasing by 0.40 g cm⁻² year⁻¹ in Porites spp. and 0.12 g cm⁻² year⁻¹ in Montastraea spp. for each 1°C increase. Under similar warming trends, the predicted calcification rates at 2100 are close to zero in Porites spp. and reduced by 40% in Montastraea spp. However, these predictions do not account for ocean acidification. Although yearly mean aragonite saturation (Ωar) at MBR sites has recently decreased, only P. astreoides at Chichorro showed a reduction in calcification. In corals at the other sites calcification did not change, indicating there was no widespread effect of Ωar changes on coral calcification rate in the MBR. Even in the absence of ocean acidification, differential reductions in calcification between Porites spp. and Montastraea spp. associated with warming might be expected to have significant ecological repercussions. For instance, Porites spp. invest increased calcification in extension, and under warming scenarios it may reduce their ability to compete for space. As a consequence, shifts in taxonomic composition would be expected in Indo-Pacific reefs with uncertain repercussions for biodiversity. By contrast, Montastraea spp. use their increased calcification resources to construct denser skeletons. Reductions in calcification would therefore make them more susceptible to both physical and biological breakdown, seriously affecting ecosystem function in Atlantic reefs.

Introduction

Skeletal calcification in scleractinian corals generates large amounts of calcium carbonate substrate and offsets the physical and biological erosion of reefs [1,2]. Calcification is an energy-consuming physiological process, and maximum rates occur when environmental conditions are optimal for skeletal growth [3-6]. As a consequence, calcification rate imparts information about a coral’s environmental history [7,8]. Although there are several environmental variables which affect coral calcification rates, such as light [9,10], carbonate saturation state [11], water turbidity [12,13], wave exposure [14] and reproduction rate [15], temperature has been shown to be particularly important. For example, during the annual seasonal cycle, the calcification rate increases as temperature increases, until it reaches a maximum in midsummer, after which it declines as temperature decreases [4,16]. This produces the density-banding pattern in massive corals (somewhat analogous to tree-rings) that was first observed by Kenton and coworkers [17]. In addition, where reefs develop down a gradient in sea surface temperature (SST), the rate of coral calcification increases as SST increases [18,19]. Lastly, short- and long-term experiments on corals adapted to a specific SST regime have shown that as temperature increases, coral calcification rate increases to a maximum and declines thereafter [20-23].

Reductions in calcification rates also occur when thermal conditions are suboptimal [24], and there have been several recent reports of a link between thermal stress and skeletal growth reductions in massive reef-building corals [25-30]. Such reports have mainly focused on the reconstruction of pre-Industrial SST, or on possible future scenarios for reduced coral skeletal growth due to ocean warming. But it is not yet clear how calcification rates vary between genera in response to the same thermal stress event. This question has important implications in light of future global warming scenarios because differential reduction in calcification between genera could potentially disrupt community structure, particularly if the affected genera are major reef-building species. Here we delineate the sensitivities of two major reef-building coral genera to thermal stress by examining recent historical variation in calcification rates in massive Porites from the Great Barrier Reef (GBR) and in massive P. astreoides, Montastraea faveolata, and M. franksi from the Mesoamerican Barrier Reef (MBR).

Results

For all species in all reefs, calcification rate is negatively correlated with annual average SST (Fig. 1). In Montastraea spp. the calcification-rate slopes as a function of temperature are
significantly lower than those of *Porites* spp. (*F*-test, *P*<0.05 in all cases). In addition, different species of *Porites* between the two regions show no significant differences in slope (*F*-test, *P*>0.05) suggesting this genus has a uniform response to thermal stress. The same is also true for *Montastraea* species in the MBR (*F*-test, *P*>0.05), although mean calcification rate in *M. franksi* was significantly lower in Mahahual (0.83 g cm\(^{-2}\) year\(^{-1}\)) than in *M. faveolata* in Mahahual and Chinchorro Bank (0.96 g cm\(^{-2}\) year\(^{-1}\) and 0.97 g cm\(^{-2}\) year\(^{-1}\), respectively) (One-way ANOVA, Tukey’s HSD, *P*<0.0001, *F*= 48.24). For *Porites* spp. the calcification rate decreases by 0.40 g cm\(^{-2}\) year\(^{-1}\) for each 1°C increase in temperature, whereas in *Montastraea* spp. the decrease is only 0.12 g cm\(^{-2}\) year\(^{-1}\) (Fig. 1). Intercepts indicate calcification would cease at 30.0°C in *Porites* spp., whereas for *Montastraea* spp. zero calcification is projected to occur at 35.0°C.

In Rib Reef, SST registered an increase trend of 0.4°C (*R*= 0.66, *P*<0.01), from 1989 to 2002, equivalent to 2.9°C per century. Over this 13-year interval, calcification rate in massive *Porites* spp. registered a reduced trend, decreasing around 20% (*R* = −0.76, *P*<0.01; Table 1). In the MBR, at Chinchorro Bank, SST also registered an increase of 0.6°C (*R* = 0.77, *P*<0.0001), from 1985 to 2009, equivalent to 2.4°C per century. Over this 24-year interval, *M. faveolata* also registered a reduction of approximately 20% in calcification rate (*R* = −0.55, *P*<0.001). By contrast, *P. astreoides* at Chinchorro suffered a 30% reduction in calcification (*R* = −75, *P*<0.006) over a shorter 12-year interval, between 1998 and 2009 (Table 1). In Mahahual, however, no yearly SST trend was detected and mean calcification rates of *P. astreoides* and *Montastraea* species did not register a reduction during the analyzed time lines (1996 to 2006 and 1977 to 2003, respectively; Table 1).

Warming-model predictions of reduced calcification indicate that rates in massive *Porites* spp. from the GBR would be close to zero by 2100. Whereas, in the MBR, calcification rates in *P.*

Table 1. Correlation coefficients (CC) for sea surface temperatures (SST) as well as calcification rates for the coral species at the sampled reefs as a function of time (asterisks indicate significant correlations, *P*<0.05).

Sampled reef, SST and species	CC	Time line
Rib Reef, Central Great Barrier Reef Australia		
SST	0.66*	1989–2002
Calcification rate for massive *Porites*	−0.76*	1989–2002
Mahahual Reef, Mesoamerican Barrier Reef System		
SST	−0.20	1977–2006
Calcification rate for *Porites astreoides*	−0.51	1996–2006
Calcification rate for *Montastraea faveolata*	−0.14	1977–2003
Calcification rate for *Montastraea franksi*	0.35	1977–2003
Chinchorro Bank, Mesoamerican Barrier Reef System		
SST	0.77*	1985–2009
Calcification rate for *Porites astreoides*	−0.75*	1998–2009
Calcification rate for *Montastraea faveolata*	−0.53*	1985–2009

Figure 1. Mean annual calcification rates as a function of average annual sea surface temperature. In massive *Porites* spp. from Rib Reef, central Great Barrier Reef Australia (black), *Montastraea faveolata* from Mahahual (dark blue) and Chinchorro Bank, (red), Mesoamerican Barrier Reef System, *M. franksi* from Mahahual (orange), and *Porites astreoides* from Mahahual (light blue) and Chinchorro Bank (purple). CR = calcification rate, SST = sea surface temperature.

doi:10.1371/journal.pone.0032859.g001
would be close to zero by 2060 and only be reduced around 40% by 2100 in *Montastraea* spp. (Fig. 2).

Around Mahahual and Chinchorro Bank yearly mean Ω_{ar} indicate a significant decrease from 2003 to 2010 (Fig. S1). *Porites astreoides* growing at Chinchorro Bank showed a significant increase of calcification rate associated with increasing Ω_{ar}. In contrast, calcification rate in *M. faveolata* in Chinchorro Bank and *P. astreoides* in Mahahual showed no significant correlation with Ω_{ar} (Table S1).

Discussion

Our comparison of the historical reduction in calcification rate between *Porites* spp. and *Montastraea* spp. to thermal stress during the three last decades, shows that *Porites* spp. are more sensitive to temperature increase than *Montastraea* spp. (Fig. 1). This differential sensitivity is clear at Chinchorro Bank, where calcification rate in *P. astreoides* is reduced 30% in comparison with *M. faveolata* (20%) in a 12-year shorter time interval. The reduction in calcification rate for massive *Porites* spp. in Rib Reef (20%, from 1989 to 2002) is similar to that reported by Cooper and coworkers [26] for this genus in two GBR inshore locations (21%, from 1983 to 2003). Later, De’ath and coworkers [27] also reported similar reductions for massive *Porites* spp. in several locations along the GBR. These authors suggested that the causes for this reduction are probably large-scale in extent and unprecedented within the past 400 years. By contrast, Lough and Barnes [31] reported a positive correlation between SST and calcification rate of massive *Porites* spp. growing in the GBR from 1906 to 1982. Thus, it is reasonable to presume that the negative impacts on calcification rate due to ocean-warming-induced thermal stress started in the 1980’s on the GBR.

Although our analyzed time periods are too brief to exclude the effects of decadal-scale weather variability, the observed SST trends in Rib Reef and Chinchorro Bank are consistent with the warming predicted by most climate-change models [32,33]. Associated with this warming, coral calcification rates in Rib Reef and Chinchorro Bank showed significant reductions (Table 1). Thermal sensitivity has been highlighted as the “Achilles’ heel” of reef-building corals, and increases in SST above their upper thermal limit can have negative physiological consequences on energetic reserves [34] and tissue biomass [35]. The fact that in Mahahual, SST and calcification rate of *P. astreoides* and *Montastraea* spp. showed no tendency through time, and that calcification rates of these species were negatively correlated with SST, implies that in recent decades coral species there have been exposed to frequent, intense, but short-lived thermal stress events. For example, although thermal stress does not necessarily need to cause coral bleaching (i.e., whitening of corals due to loss of symbiotic algae and/or their pigments) in order to reduce calcification [25], short-lived reductions in calcification have been reported for several reef-building corals following thermal-induced bleaching events [13,36–38]. Bleaching events are expected to occur when the current SST reaches 1°C over the maximum monthly mean SST [39], and in the last decades extensive bleaching events occurred along the MBR [40].

The higher sensitivity of *Porites* spp. calcification to temperature increase is reflected in the warming-model predictions of reduced calcification. *Porites* spp. in the GBR and *P. astreoides* in the MBR are projected to cease calcification at the end of the century, whereas calcification of *Montastraea* spp. in the MBR will be reduced by only 40%. (Fig. 2). It is worth mentioning that these predictions ignore coral mortality, and the negative effects on coral calcification rate caused by bleaching events and other stressors. Furthermore, massive *Porites* spp. and *Montastraea* spp. are major reef-building corals in the Indo-Pacific and Atlantic oceans [41–43], and differential reductions in calcification as a result of thermal stress associated with warming in these oceans, might be expected to have significant ecological repercussions. One specific example of this involves growth strategies: *Porites* spp. invest their energy in growing faster and reduced calcification therefore translates into a decrease in extension rate rather than a decrease in density [18,44]. By contrast, *Montastraea* spp. very their skeletal density to maintain extension rate, and reductions in calcification therefore result in decreased skeletal density [7,19]. Any reduction in the extension rate of *Porites* spp. may reduce their ability to compete for space within a reef, whereas reductions in density in *Montastraea* spp. would increase their susceptibility to both physical and biological breakdown.

Corals provide the primary framework of a reef [45], and this forms the structural basis of the large biological diversity associated with them [46–48]. Therefore, along with other differential stressors at the genus level, such as bleaching and disease [49,50], the deleterious impact of ocean warming on the skeletal growth strategies of major reef-building corals could potentially disrupt community structure in both Indo-Pacific and Atlantic reef systems. In much of the Indo-Pacific, massive *Porites* spp. are common and a reduction in their ability to compete for space could easily be compensated for by a shift in taxonomic composition [51], although this might have uncertain repercussions for biodiversity. Further, in areas of reduced coral diversity, such as the east Pacific, where massive *Porites* spp. play a high significant ecological role [52], reductions in their calcification rate might have more serious repercussions. In the Atlantic the major reef-building genera are branching *Acropora* and massive *Montastraea*. As a consequence, particularly in light of the Caribbean-wide decline in *Acropora palmata* and *A. cervicornis* that began in the mid-1980’s, and the flattening of reefs that followed [53–55], anything that impacts the calcification rate of *Montastraea* spp. could seriously affect ecosystem function. Moreover, *P. astreoides* is becoming increasingly dominant on Caribbean reefs [56,57] and the rapid reduction of its calcification rate could have far more serious repercussions.

Finally, a reduction in aragonite saturation state (Ω_{ar}), due to elevated pCO_2 associated with global warming, has also been highlighted as a stressor that negatively affects coral calcification [58–60]. It has been shown recently that the calcification response to changing Ω_{ar} among individual coral species is highly variable and often nonlinear, and that there could be additional factors contributing to the variation in calcification between reefs that might offset and subsequently mask the effects of decreasing Ω_{ar} [60]. We were unable to explore such potential variation with our current Ω_{ar} data set due to limitations in Ω_{ar} resolution and accuracy prior to 2003. In addition, our calcification rate data corresponding to the usable Ω_{ar} data of 2003–2010 is not available for all species at all sites (see materials and methods). Nonetheless, our results so far suggest that there is no effect of changes on Ω_{ar} on coral calcification rate in the Mexican Caribbean. This is supported by the fact that, even where there is a historical decrease of Ω_{ar} around Mahahual and Chinchorro Bank, only *P. astreoides* growing at Chinchorro Bank showed a significant positive correlation with Ω_{ar}. Furthermore, at Mahahual no species experienced historical reduction of calcification rates. However, future work is needed to determine if there is an additional effect of Ω_{ar} over and above that of temperature, in order to improve predictions of how reef ecosystems will respond to forecasted Ω_{ar} decreases.
Figure 2. Modeled sea surface temperature and decreasing calcification rates for massive *Porites* spp. and *Montastraea* spp. from 1980 to 2100. (A) Modeled yearly mean sea surface temperature (SST) for the central Great Barrier Reef (purple line) and the Caribbean (black line) from 1980 to 2100. Modeled SST data are from Figures 10C and 8C in [32], respectively. (B) Modeled yearly mean relative calcification rate from 1980 to 2100 for massive *Porites* spp. (red line) in the Great Barrier Reef and *P. astreoides* (orange line), and *Montastraea* spp. (blue line) in the Mesoamerican Barrier Reef System. Yearly mean calcification rate data were generated with the regression lines of the relationship between calcification rate and SST (Figure 1) for massive *Porites* spp. growing in Rib Reef and *P. astreoides*, and *Montastraea faveolata* growing in Chinchorro Bank, using the modeled yearly mean SST presented in figure 2A. Red, orange and blue circles are the historical relative calcification rates of massive *Porites* spp. in Rib Reef and of *P. astreoides*, and *M. faveolata* in Chinchorro Bank, respectively.

doi:10.1371/journal.pone.0032859.g002
Materials and Methods

Study sites

Samples were collected in three reef locations (Fig. 3): 1) Rib Reef, on the central GBR, Australia, is a 4 km² mid-shelf reef located 56 km offshore (~18°29'51"S; 146°53'5"E); 2) Mahahual Reef (~18°43'N; 87°41'W), a fringing reef that occurs on the south-east coast of the Yucatán Peninsula; and 3) Chinchorro Bank (~18°23'53"N; ~87°14'27"W), an isolated platform, 48 km long and 18 km at its widest part, with a lagoon area >500 km², located 27 km east of Mahahual, in the Mexican Caribbean. Both Mahahual and Chinchorro Bank form part of the MBR. The permits to collect the samples were provided in Australia by the Great Barrier Reef Marine Park Authority (GBRMPA), and in Mexico by the Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA).

Coral collection

At Rib Reef, nine colonies of *Porites lutea*, two of *P. australensis* and one of *P. mayeri*, all between 110 and 210 mm in height and growing between 3- and 10 m depth, were collected in December 2002 [61]. Lough and coworkers [62] found that annual calcification rate of these three species is not statistically different. It was therefore considered reasonable to combine calcification rate data for these three species. At Mahahual Reef, seven colonies of *P. astreoides*, all ~200 mm in height, were collected in September 2007; three cores of *Montastraea faveolata*, and three of *M. franksi* were collected in April 2006, all of them growing in ~3 m of water. At Chinchorro Bank, four colonies of *P. astreoides*, all ~200 mm in height, and eight cores of *M. faveolata*, were collected in March 2010: all living coral colonies were growing in ~3 m of water. Colonies of massive *Porites* spp. from Rib Reef and *P. astreoides* from the two locations in the Mexican Caribbean were...
collected with hammer and chisel, and all Montastraea spp. cores were drilled along the main growth axis of the coral (i.e., one core drilled from one colony), by a diver using a rotary pneumatic hand drill fitted with a 3-cm-diameter, 38-cm-long diamond-bit core barrel.

Calcareous rate data

A rock saw equipped with a diamond-tipped blade was used to cut a ~7-mm-thick axial slice from each coral colony and core. All slices were air-dried and X-radiographed. Bulk density series along the main growth axis were obtained using direct gamma (Am241) densitometry of skeletal slices [63] for GBR massive Porites spp. [61], and densitometry from digitized images of X-radiographs [64] for Montastraea spp. and P. astreoides. In such density series (bulk density; g cm$^{-3}$), extension rate (linear growth rate; cm year$^{-1}$) was measured from successive density minima in all Porites specimens [61,65,66], and from successive density maxima in Montastraea specimens [16]. Then, in all specimens, annual calcification rate was calculated as the product of the annual extension rate and the average density of skeleton deposited in making that extension (gCaCO$_3$ cm$^{-2}$ year$^{-1}$ = cm year$^{-1}$ · gCaCO$_3$ cm$^{-2}$) [16]. Mean annual calcification rates were obtained by averaging annual values from each year, between colonies of the same species collected in the same reef location (Table S2).

Sea surface temperature (SST)

Annual mean SSTs for each sampling locality were obtained from the Hadley Centre Sea Ice and SST (HadISST) data set produced by the United Kingdom Meteorological Office. These data are monthly averages of SST measurements taken from the Met Office Marine Data Bank (MDB), which also includes data received through the Global Telecommunications System (GTS) from 1982 onwards. In order to enhance data coverage where there are no MDB data, the HadISST data set uses monthly median SSTs for 1871 to 1995 available from the Comprehensive Ocean-Atmosphere Data Set (COADS) (see [67] for a more extensive discussion on HadISST data set precision and uncertainty).

Aragonite saturation state (Ω_{ar})

Associated with Mahahual and Chinchorro Bank, yearly mean Ω_{ar} from 2003 to 2010, were calculated using the Ocean Acidification Product Suite (v0.5), produced by the National Oceanic and Atmospheric Administration Coral Reef Watch (see Material and methods). (TIF)

Table S1 Correlation coefficients between aragonite saturation state (Ω_{ar}) and calcification rate of M. faveolata and P. astreoides growing in Chinchorro Bank and Mahahual, Mesoamerican Barrier Reef (asterisk indicate significant correlations, $P=0.01$). (DOC)

Table S2 Mean annual calcification rates and their standard deviation by reef location and species collected. In parenthesis is the number of annual bands averaged in each case. (DOC)

Acknowledgments

We thank R. Herrera-Pavón and A.U. Beltrán-Torres for help with fieldwork. O. Hoegh-Guldberg facilitated the data sets of SST predictions used in his 1999 models [32]. D. Gledhill provided Ω_{ar} data set for Mahahual and Chinchorro Bank. Special thanks to the staff of Chinchorro Bank Biosphere Reserve for the facilities provided during the fieldwork.

Author Contributions

Conceived and designed the experiments: JPCG. Performed the experiments: JPCG NCT ICO PB. Analyzed the data: JPCG NCT ICO PB. Wrote the paper: JPCG NCT PB.
Coral Calcification Sensitivity to Thermal Stress

5. Colombo-Pallotta M, Rodríguez-Román A, Iglesia-Piñero R (2010) Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs 29: 899–907.

6. Done TJ (1998) Coral bleaching: environmental controls on growth. In: Hoegh-Guldberg O, et al., editors. Global coral bleaching: effects of temperature, light, and sediment regime. Limnol Oceanogr 52: 751–766.

7. Porter JW, Sinisalo MA, Sillanpää M, Hellebrandt K (2002) Coral bleaching in the tropics: physiological and stable isotope responses. Proc Nat Acad Sci 99: 16725–16729.

8. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, et al. (2007) Coral reefs under rapid climate change and ocean acidification. Science 318: 1737–1742.

9. IPCC (2007). In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, et al., editors. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge Univ Press. 906 p.

10. Anthony KRN, Connolly SR, Hoegh-Guldberg O (2007) Bleaching, energetics, and coral mortality risk: Effects of temperature, light, and sediment regime. Limnol Oceanogr 52: 751–766.

11. Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr 45: 677–685.

12. Porter JW, Sinisalo MA, Sillanpää M, Hellebrandt K (2002) Coral bleaching in the tropics: physiological and stable isotope responses. Proc Nat Acad Sci 99: 16725–16729.

13. Suzuki A, Gagan MK, Fabricius KE, Ishida J, Yukino I, et al. (2003) Skeletal isotope microprofiles of growth perturbations in Porites corals during the 1997–1998 global mass bleaching event. Coral Reefs 22: 357–369.

14. NOAA website. Available from: http://www.nodc.noaa.gov/mło/ocen/coral_ bleaching.html. Accessed 2001 Dec 7.

15. Goreau TF (1959). The ecology of Jamaican coral reefs I. Species composition and zonation. Ecology 40: 67–89.

16. Potts DC, Done TJ, Ishida J, Fabricius KE (1998) Dominance of a coral community by the genus Porites (Scleractinia), Mar Ecol Prog Ser 23: 79–84.

17. Veron JEN (2000) Corals of the world. Australian Institute of Marine and Science and GRR Qld Pty Ltd.

18. Lough JM (2000) Coral calcification from skeletal records revisited. Mar Ecol Prog Ser 237: 257–264.

19. Coffin T (1972) Fossilization of Bermuda patch reefs. Science 178: 1280–1282.

20. Davies PJ (1985) Reef growth. In: Barnes DJ, editors. Perspectives on coral reefs. Clarendon, Oxford, p. 69–89.

21. Smith SV (1983) Coral reef calcification. In: Barnes DJ, editors. Perspectives on coral reefs Clarendon, Oxford, p. 249–247.

22. Richter C, Wium-Madsen R, Hurlbert A, Kottler I, Badin MJ (2001) Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413: 726–730.

23. Loya Y, Sasaki K, Yamazato K, Nakano Y, Sumbali H, et al. (2001) Coral bleaching: the winners and the losers. Ecol Lett 4: 122–131.

24. Créquer A, Weil E (2009) Spatial variability in distribution and prevalence of Caribbean scleractinian coral and octocoral diseases. II. General-level analysis. Prog Oceanogr 83: 209–222.

25. Cécarelli DM, Richard, ZT, Prattchets, MS, Cottavonic (2011) Rapid increase in coral cover on an isolated coral reef, the Ashmore Reef National Reserve, north-western Australia. Mar Freshwater Res 62: 1214–1220.

26. Gilmour PW, Veron JEN, Wellington GM (1996) Clipper Reef (eastern Pacific): oceanography, geomorphology, reef-building coral ecology and biogeochemistry. Coral Reefs 15: 71–99.

27. Arronson RR, Pecht WF (2001) White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460: 25–38.

28. Gardner TA, Saint CM, Gill JA, Grant A, Wartman AR (2003) Long-term regions-wide declines in Caribbean corals. Science 301: 938–960.

29. Alcala-Filip L, Duby NK, JA, Côté SM, Wartman AR (2000) Flatening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc R Soc B 276: 3019–3025.

30. Green DH, Edmunds PJ, Carpenter RC (2006) Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover. Mar Ecol Prog Ser 359: 1–10.

31. Yee LR, Mummy PJ (2011) Climate change induces demographic resistance to forest disturbances in Caribbean red mangroves. Proc Nat Acad Sci 108: 19762–19766.

32. Alcaraz-Frankignoulle J, Bourje R, Simonne L, Suddle R, Water WM (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Global Planet Change 18: 37–46.

33. Lough JM, Barnes DJ, Branch DL, Vevers RJ, Weatherall AL (2009) Projecting future coral reefs under rapid warming. Mar Ecol Prog Ser 393: 1–15.

34. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333: 418–422.

35. Carriker-Gant J-P, Lough JM, Barnes DJ (2007) Growth and luminance characteristics in skeletons of massive Porites from a depth gradient in the central Great Barrier Reef. J Exp Mar Biol Ecol 331: 27–36.

36. Lough JM, Barnes DJ, Beveressen TJ, Tobin SJ, Tobin S (1998) Variability in growth characteristics of massive Porites on the Great Barrier reef. Technical Report No. 28, CRC Reef Research Center, Townsville. 95 p.

37. Chalker BE, Barnes DJ (1990) Gamma deniotomy for the measurement of skeletal density. Coral Reefs 9: 11–23.

38. Carriker-Gant J-P, Barnes DJ (2007) Deniotomy from digitized images of X-ray radiographs: Methodology for measurement of coral skeletal density. J Exp Mar Biol Ecol 344: 67–72.

39. Lough JM, Barnes DJ (1992) Comparisons of skeletal density variations in Porites from the Central Great Barrier Reef. J Exp Mar Biol Ecol 155: 1–25.

40. Elizalde-Redon EM, Horta-Puga G, Gonzalez-Diaz P, Carriker-Gant J-P (2010) Growth characteristics of the reef-building coral Porites astreoides under different environmental conditions in the Western Atlantic. Coral Reefs 29: 607–614.
67. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, et al. (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geoph Res 108: 4407. doi:10.1029/2002JD002670.

68. Gledhill DK, Wanninkhof R, Millero FJ, Eakin M (2008) Ocean acidification of the Greater Caribbean Region 1996–2006. J Geoph Res 113: C10031. doi:10.1029/2007JC004629.65.