Bone mesenchymal stem cells co-expressing VEGF and BMP-6 genes to combat avascular necrosis of the femoral head

HONGXING LIAO1,2, ZHIXIONG ZHONG3, ZHANLIANG LIU1, LIANGPING LI2, ZEMIN LING2 and XUENONG ZOU2

1Department of Orthopedics, Meizhou People's Hospital, Meizhou, Guangdong 514000; 2Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080; 3Department of Cardiovascular Medicine, Meizhou People's Hospital, Meizhou, Guangdong 514000, P.R. China

Received July 21, 2017; Accepted November 3, 2017

DOI: 10.3892/etm.2017.5455

Abstract. The aim of the present study was to investigate the potential of bone mesenchymal stem cells (BMSCs) treated with a combination of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-6 (BMP-6) genes for the treatment of avascular necrosis of the femoral head (ANFH). Rat BMSCs were isolated and purified using a density gradient centrifugation method. The purity and characteristics of the BMSCs were detected by cell surface antigens identification using flow cytometry. The experimental groups were administered with one of the following adeno-associated virus (AAV) vector constructs: AAV-green fluorescent protein (AAV-GFP), AAV-BMP-6, AAV-VEGF or AAV-VEGF-BMP-6. The expression of VEGF and BMP-6 was detected by reverse transcription-quantitative polymerase chain reaction, western blotting and ELISA assays. The effects of VEGF and BMP-6 on BMSCs were evaluated by angiogenic and osteogenic assays. The transfected BMSCs were combined with a biometric synthetic scaffold poly lactide-co-glycolide (PLAGA) and they were then subcutaneously implanted into nude mice. After four weeks, the implants were analyzed with histology and subsequent immunostaining to evaluate the effects of BMSCs on blood vessel and bone formation in vivo. In the AAV-VEGF-BMP-6 group, the expression levels of VEGF and BMP-6 were significantly increased and human umbilical vein endothelial cells tube formation was significantly enhanced compared with other groups. Capillaries and bone formation in the AAV-VEGF-BMP-6 group was significantly higher compared with the other groups. The results of the present study suggest that BMSCs expressing both VEGF and BMP-6 induce an increase in blood vessels and bone formation, which provides theoretical support for ANFH gene therapy.

Introduction

In China, the number of patients with avascular necrosis of the femoral head (ANFH) is estimated to be between 5 and 7 million and there are 100,000-150,000 new cases each year (1). At present, gene therapy is a large area of ANFH research (2). Basic fibroblast growth factor (bFGF), transforming growth factor-β (TGF-β), bone morphogenetic proteins (BMPs), and vascular endothelial growth factor (VEGF) all serve important roles in the development of applicable gene therapies, in particular BMPs and VEGF (3-5). Bone morphogenetic proteins (BMPs) are signal molecules that promote bone regeneration (6-8). As important members of the TGF-β superfamily, BMPs have effects on the stimulation of osteoblast differentiation (9,10) and this process involves the differentiation of progenitor cells into chondrocytes and osteoblasts, endochondral ossification and new bone formation (11). Studies have revealed that BMP-2, BMP-4, BMP-6, BMP-7 and BMP-9 are crucial for bone formation (12-15). Furthermore, a number of studies have suggested that BMP-6 is the most potent osteoinductive BMP and has greater potential for bone regeneration than BMP-2 and BMP-4 (16-18). Angiogenesis is the most basic physiological process in bone repair (19); furthermore, VEGF, which is expressed by endothelial cells, is one of the most important cytokines in angiogenesis (20) and is associated with all steps of bone formation, including mesenchymal condensation, cartilage formation, cartilage resorption and blood vessel invasion (21,22). It has been indicated that BMPs stimulate angiogenesis via the osteoblast production of VEGF-A, which plays an important role in bone formation and angiogenesis by acting as a chemotactant (23). A number of studies have attempted to determine the effects of combining VEGF with BMP in order to encourage bone formation. One such study reported that

Keywords: vascular endothelial growth factor, bone morphogenetic protein-6, bone mesenchymal stem cells, avascular necrosis of the femoral head

Correspondence to: Dr Xuenong Zou, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou, Guangdong 510080, P.R. China
E-mail: xznong@hotmail.com

Dr Zhixiong Zhong, Department of Cardiovascular Medicine, Meizhou People's Hospital, 63 Huangtang Road, Meizhou, Guangdong 514000, P.R. China
E-mail: mzdrzhi@163.com
the combination of VEGF and BMP-4 enhances bone formation (24,25). Another revealed that, when combined, VEGF and BMP-2 are effective in stimulating bone regeneration (26). In addition, the co-administration of VEGF and BMP-4 has been reported to induce osteogenesis more effectively than VEGF and BMP-2 (27). These studies have focused on the delivery of BMP-2 and BMP-4 in conjunction with VEGF. However, to the best of our knowledge, few studies have focused on the effects of the combination of VEGF and BMP-6 on bone repair.

In the present study, adeno-associated viruses (AAV) co-expressing VEGF and BMP-6 were constructed to investigate the potential of bone mesenchymal stem cells (BMSCs) treated with a combination of VEGF and BMP-6 genes for the treatment of ANFH.

Materials and methods

Ethics statement. The animal study was approved by the First Affiliated Hospital of Sun Yat-sen University (Guangzhou, China).

Isolation, culture, and verification of rat BMSCs. A total of 20 healthy 3-4 weeks specific pathogen free grade Sprague Dawley rats (weighing 100-120 g, 10 males and 10 females) were purchased from the Animal Center of Sun Yat-sen University (Guangzhou, China). The rats were housed in an environment of 25±5˚C with 35±5% humidity and a standard 12 h light/dark cycle and ad libitum access to food and water. After three days, the rats were sacrificed by intraperitoneal injection of 300 mg/kg pentobarbital, soaked in 75% ethanol for 10 min and then the ribia and femora were isolated under sterile condition. BMSCs were obtained from the ribia and femora of the rats following sacrifice. Density gradient centrifugation and adherent screening were used to isolate BMSCs as previously described (28). In short, the ribia and femora were flushed with low glucose Dulbecco's modified Eagle's medium (L-DMEM, GE Healthcare Life Sciences, Logan, UT, USA) to harvest the BMSCs, which were cultured in L-DMEM supplemented with 10% fetal bovine serum (FBS, Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) and 20 mg/ml penicillin-streptomycin (Gibco; Thermo Fisher Scientific, Inc.). Cells were subsequently incubated with 5% CO₂ at 37˚C for 7 days and split, following which cells at the fourth passage were used for the following experiments. The obtained cells were added into Percoll separation solution (Sigma Aldrich: Merck KGaA, Darmstadt, Germany) with a density of 1.073 g/ml and centrifuged at 4,000 x g for 25 min at 20˚C. The cells were further resuspended in complete medium containing 90% L-DMEM, 10% FBS, 100 µl/ml penicillin and 100 µl/ml streptomycin (Gibco; Thermo Fisher Scientific, Inc.) and incubated at 37˚C in a 5% CO₂ supplemented incubator (Thermo Fisher Scientific, Company, USA). Cell surface antigens were used to identify BMSC characteristics via flow cytometry. Briefly, cells were collected and washed twice with PBS (Gibco; Thermo Fisher Scientific, Inc.) and then incubated with 0.5% BSA blocking buffer in 1x PBS (Thermo Fisher Scientific, Inc.) for 30 min at 4˚C. Following washing with PBS, cells were immunofluorescently stained with fluorochrome-conjugated antibodies specific to the cell surface antigens cluster of differentiation CD90 (cat no. ab225; 1:200, Abcam, Cambridge, UK), CD29 (cat no. bs-20631R; 1:200; Bioss, Beijing, China), CD44 (cat no. bs-0521R; 1:200, Bioss), CD11 (cat no. bs-2508R; 1:200; Bioss), CD45 (cat no. bs-0522R; 1:200; Bioss) and CD34 (cat no. ab81289; 1:200, Abcam) at 4˚C for 30 min. Flow cytometry was performed on a FACScanto II flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA) using FACSDiva software (BD Biosciences) and the data was analyzed by FlowJo software version 10.06 (Tree Star, Inc., Ashland, OR, USA). Each surface antigen assay was performed in triplicate.

Adeno-associated virus type 2 (AAV) vector production and infection in vitro. The recombinant vector was packaged by the adeno-associated virus (AAV) Helper-Free System (Hanbio Biotechnology Co., Ltd, Shanghai, China). The internal ribosome entry site (IRES) fragment was incorporated into the plasmid AAV multiple cloning site (pAAV MCS) (Hanbio Biotechnology Co., Ltd) and sub-cloned into two multiple cloning sites (Hanbio Biotechnology Co., Ltd). Next, VEGF and BMP-6 primers were designed by Primer Premier 5 software (Premier Biosoft Inc., Palo Alto, CA, USA) and synthesized by Sangon Biotech Company (Shanghai, China), then VEGF and BMP-6 were inserted into the upstream and downstream MCS, respectively. The bicistronic frame was 2.5 kb in length, which is within the vector capacity. The recombinant (r)AAV-VEGF-IRES-BMP-6 (AAV-VEGF-BMP-6), rAAV-VEGF-green fluorescent protein (GFP) (AAV-VEFG), rAAV-BMP-6-GFP (AAV-BMP-6), and rAAV-IRES-GFP (AAV-GFP) vectors were co-transfected into AAV-293 cells (Forevergen, Guangzhou, China) with the plasmid (p)AAV-helper and pAAV-RC (carrying AAV-2 replication and capsid genes) using the calcium phosphate method by adding CaCl₂, according to the manufacturer's instructions (Invitrogen; Thermo Fisher Scientific, Inc.). A primary virus stock was collected 72 h following transfection and chloroform/PEG8000 protocols as previously described (29) were used to concentrate and purify the primary virus stock. In order to achieve the greatest cytopathogenic effect, infection efficiency and cost of the virus, it was determined that 5x10⁷ viral particle/cell was the best multiplication of infection (MOI) for infecting rat BMSCs (30). The BMSCs (2x10⁶/ml) were seeded onto 96-well plates and incubated for 30 min at 37˚C in an atmosphere containing 5% CO₂. BMSCs were subsequently transfected with AAV-GFP, AAV-VEGF, AAV-BMP-6, or AAV-VEGF-BMP-6 vectors at the optimum MOI using lipofectamine 2000 (Invitrogen; Thermo Fisher Scientific, Inc.). After 48 h, samples were collected for subsequent experimentation.

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Total RNA from BMSCs infected with the AAV-GFP, AAV-VEGF, AAV-BMP-6 or AAV-VEGF-BMP-6 viruses was extracted using TRIzol Reagent (Invitrogen; Thermo Fisher Scientific, Inc.) according to the manufacturer's protocol and reverse transcribed to cDNA with Super Script TM III Reverse Transcriptase (Invitrogen; Thermo Fisher Scientific, Inc.). The target genes were analyzed using a Takara SYBR® Green I qPCR kit (Takara Bio, Inc. Otsu, Japan) performed on the ABI 7500 system (Applied Biosystems; Thermo Fisher Scientific, Inc.) using the following thermocycling conditions: 94˚C for 3 min, 35 cycles at 94˚C for 30 sec, 55˚C for 30 sec, and 72˚C for 45 sec. The primers used were as follows: GAPDH, forward 5'-CCTCGTCTCATAAGACAG
ATGGT-3' and reverse 5'-GGGTAGATGCTACTGGAACA
TG-3'; BMP6, forward 5'-ACAGCATACATGGCTTCC-3'
and reverse 5'-CTCCCCGTCTTACAGGTA-3'; VEGF,
forward 5'-TTGCTGCTCTAATCCAC-3' and reverse 5'-AT
GTTTCTCCGCTCTG-3'; osteocalcin (OCN), forward
5'-CTCTGCTCTGTGACCTCAG-3' and reverse 5'-GA
GCTGCTGATGACTCCAC-3'; runt-related transcription
factor 2 (RUNX2), forward 5'-GAACTCTTGGCCTGCC
GCT-3' and reverse 5'-GATGATGACCTGCACTCTG-3';
akaline phosphatase (AKP), forward 5'-CTGGTGGAAGA
GGCGCAATT-3' and reverse 5'-ATGTGAAGACGTGGG
AATGGT-3'. The relative mRNA expression was calculated
using the 2^ΔΔCq method (31).

ELISA. A total of 500 µl from each culture supernatant
was harvested from the AAV-GFP, AAV-VEGF, AAV-BMP-6
and AAV-VEGF-BMP-6 transfection groups. VEGF and
BMP-6 levels in the culture medium were examined using
ELISA kits (Rat VEGF ELISA kit, cat no. RRV00, R&D
Systems, Minneapolis, MN, USA; and Rat VEGF-6 ELISA
kit, cat no. MBS704699, MyBioSource, San Diego, CA, USA)
following manufacturer's protocol. The absorbance was
determined at 450 nm using a microplate reader (Multiskan
Go; Thermo Fisher Scientific, Inc.). The concentrations of VEGF
and BMP-6 were determined by comparing the absorbance
with those of the standards.

Western blotting. For protein extraction, cells were lysed in cell
lysis buffer containing 140 mM NaCl, 10 mM Tris-HCl, 1% Triton
X-100, 1 mM ECTA and 1X protease inhibitor cocktail (Gibco;
Thermo Fisher Scientific, Inc.). The protein concentration was
determined using the BCA assay. A total of 20 µg protein was
loaded per lane and separated on 12% SDS-PAGE gels. Proteins
were subsequently transferred to polyvinylidene difluoride
membranes, which were blocked with 5% non-fat dry milk for
1 h at room temperature and incubated overnight at 4°C with
the following primary antibodies: Anti-GAPDH (cat no. sc-25778;
1:2,000) anti-BMP6 (cat no. sc-7406; 1:100; both Santa Cruz
Biotechnology, Inc.) and anti-VEGF (cat no. ab105219; 1:1,000;
Abcam). They were subsequently incubated with an anti-goat
horseradish peroxidase (HRP)-conjugated secondary antibody
(cat no. sc-2004, 1:1,000, Santa Cruz Biotechnology, Inc.) at 4°C
for overnight, and detected with an enhanced chemilumines-
cence detection kit (EMD Millipore, Billerica, MA, USA).

Angiogenic assay in vitro. The basement membrane Matrigel
matrix (BD Biosciences) was incubated at 37°C for 30 min in
a 24-well plate following dilution with serum-free medium.
When solidification occurred, human umbilical vein epithelial
cells (HUVECs; 5x10^4 cells/well; (Forevergen) were seeded
on each PLAGA scaffold. A total of 12 6 weeks old nude mice (weighing
22-25 g; 6 males and 6 females) were purchased from the Animal
Center of Sun Yat-sen University (Guangzhou, China). The rats
were housed in an environment of 25±5°C with 35±5% humidity
and a standard 12 h light/dark cycle and ad libitum
feeding. All animal experiments were approved by the Animal
Ethics Committee of the Guangzhou to be used for research.

Histological analysis of in vivo bone formation. Slides were
washed in xylene twice for 10 min each in order to remove
the paraffin. A graded series of ethanol solutions, including
100, 95, and 70% ethanol were used for dehydration.
The sections were washed twice in deionized water for 5 min
each. Tissues were fixed in 4% paraformaldehyde at 4°C for
overnight, embedded in paraffin, sliced into sections 4 mm
thick and stained with haematoxylin and eosin (H&E) at room
temperature for 15 min. For Von Kossa staining, sections
were stained with 5% CO2 at 37°C for 30 min. During the
second week, the mineralization effects were detected by
Von Kossa staining, alizarin red staining (ARS), and AKP
staining. For AKP staining, cells were washed with PBS,
fixed with 4% paraformaldehyde at 4°C overnight and stained
with AKP solution at room temperature for 10 min (Beyotime
Institute of Biotechnology). Images of mineral nodules were
captured from three random fields under a light microscope
(magnification, x200) and subsequently analyzed with Image
Plus 6.0 (Media Cybernetics, Inc.). For ARS staining, ARS
was prepared in double distilled H2O and the pH was adjusted
to 4.1 using 10% (v/v) ammonium hydroxide. Sections were
fixed in 70% ethanol at room temperature for 10 min and then
stained with 40 mM ARS for 5 min at room temperature.
Calcium deposition was assessed by eluting ARS staining with
distilled water including 10% acetic acid and 20% methanol.
The absorbance of supernatants was measured at 405 nm.

In vitro cell seeding on poly lactide-co-glycolide (PLAGA)
scaffolds. The biomimetic synthetic PLAGA scaffolds were
sterilized using 70% ethanol for 1 h and rinsed three times in
PBS. PLAGA scaffolds were then exposed to ultraviolet light
for 24 h and treated with PC-2000 plasma cleaner (South Bay
Technology, Inc., San Clemente, CA, USA) to enhance cell
attachment. Finally, the cells (1.67x10^5/ml) were seeded on each
PLAGA scaffold. A total of 12 6 weeks old nude mice (weighing
22-25 g; 6 males and 6 females) were purchased from the Animal
Center of Sun Yat-sen University (Guangzhou, China). The rats
were housed in an environment of 25±5°C with 35±5% humidity
and a standard 12 h light/dark cycle and ad libitum
access to food and water. After one day, the PLAGA scaffolds were implanted
subcutaneously into the nude mice (n=3 per group). Implants
were retrieved following 2 or 3 weeks, embedded in paraffin,
sectioned into 5 mm slices and mounted onto glass slides.

Histological analysis of in vivo bone formation. Slides were
washed in xylene twice for 10 min each in order to remove
the paraffin. A graded series of ethanol solutions, including
100, 95, and 70% ethanol were used for dehydration.
The sections were washed twice in deionized water for 5 min
each. Tissues were fixed in 4% paraformaldehyde at 4°C for
overnight, embedded in paraffin, sliced into sections 4 mm
thick and stained with haematoxylin and eosin (H&E) at room
temperature for 15 min. For Von Kossa staining, sections
were stained with von Kossa stain at room temperature for
20 min to examine calcium deposition. In addition, immuno-
histochemistry was used to examine the expression of VEGF
and BMP-6 in implants. Fixed tissues were deparaffinized,
incubated in citrate buffer at room temperature for 10 min and subsequently
incubated with the primary antibodies, including
anti-BMP6 antibody (cat no. ab155963; 1:200; Abcam) and
anti-VEGF antibody (cat no. ab81289; 1:200; Abcam) overnight
at 4°C, followed by biotinylated goat anti-mouse immuno-
globulin G secondary antibodies (cat no. BA1300; 1:500,
BD Biosciences) and treated with streptavidin-horseradish
peroxidase (BD Biosciences). Tissues were then treated with

Osteogenic assay in vitro. Following transfection with
AAV-GFP, AAV-VEGF, AAV-BMP-6 or AAV-VEGF-BMP-6,
BMSCs were cultured in L-DMEM supplemented with 10%
FBS containing 20 mg/ml penicillin-streptomycin in an
atmosphere containing 5% CO2 at 37°C for 30 min. During the
second week, the mineralization effects were detected by
Von Kossa staining, alizarin red staining (ARS), and AKP
staining. For AKP staining, cells were washed with PBS,
fixed with 4% paraformaldehyde at 4°C overnight and stained
with AKP solution at room temperature for 10 min (Beyotime
Institute of Biotechnology). Images of mineral nodules were
captured from three random fields under a light microscope
(magnification, x200) and subsequently analyzed with Image
Plus 6.0 (Media Cybernetics, Inc.). For ARS staining, ARS
was prepared in double distilled H2O and the pH was adjusted
to 4.1 using 10% (v/v) ammonium hydroxide. Sections were
fixed in 70% ethanol at room temperature for 10 min and then
stained with 40 mM ARS for 5 min at room temperature.
Calcium deposition was assessed by eluting ARS staining with
distilled water including 10% acetic acid and 20% methanol.
The absorbance of supernatants was measured at 405 nm.
3,3'-diaminobenzidine substrate and hematoxylin for 15 min at room temperature. The data was detected using ImageJ software 4.8 (National Institutes of Health, Bethesda, MA, USA).

Analysis of blood vessel formation. Formalin-fixed paraffin-embedded tissue sections were immunostained for smooth muscle α-actin in order to detect blood vessel formation. Following washing in PBS containing 0.1% (wt/vol) saponin and 2% (wt/vol) bovine serum albumin (Gibco; Thermo Fisher Scientific, Inc.), CD34 was quantified by immunohistochemistry in order to detect the number of capillaries. The sections were labeled for CD34 with CY3-conjugated monoclonal anti-CD34 antibody (cat no ab81289; 1:200; Abcam) and incubated overnight at 4˚C. Images of tissue sections were subsequently acquired under a light microscope (magnification, x200) and captured using an Olympus MicroFire color digital camera and PictureFrame image acquisition software 2.0 (Optronics, Goleta, CA, USA). Histological sections were then examined to quantify the blood vessel density on the scaffolds (four sections per sample). Blood vessels were manually counted on the total scaffold and a circular luminal structure was taken to indicate a blood vessel.

Statistical analysis. Data were analyzed with the Student’s t-test and one way analysis of variance followed by a Tukey’s post hoc test using SPSS 19.0 software (IBM Corp., Armonk, NY, USA). Each experiment was repeated at least three times. All results were summarized and are presented as means ± standard deviation. P<0.05 was considered to indicate a statistically significant difference.

Results

Cell verification. The expression of cell surface antigens CD29, CD90, CD44, CD45, CD11 and CD34 were 97.7, 99.2, 99.0, 2.26, 8.53 and 2.3% positive, respectively (Fig. 1). The cells were demonstrated to high-express CD29, CD90 and CD44, whereas CD45, CD11 and CD34 were low-expressed, indicating that the cells were BMSCs rather than hematopoietic cells.

Expression of VEGF and BMP-6. The relative mRNA expression of BMP-6, VEGF, OCN, RUNX2 and AKP was quantified in the BMSCs 6 weeks post-transfection. VEGF mRNA expression in the AA V-VEGF-BMP-6 and AA V-VEGF groups was significantly higher compared with the AA V-GFP group (P<0.05, Fig. 2A). In addition, BMP-6 mRNA expression in the AA V-VEGF-BMP-6 (P<0.01) and AA V-BMP-6 (P<0.05) groups were significantly higher compared with the AA V-GFP group (Fig. 2A). The expression levels of OCN, RUNX2 and AKP mRNA were all upregulated in the AA V-BMP-6 and AA V-VEGF-BMP-6 groups compared with the AA V-GFP group (*P<0.05, **P<0.01, Fig. 2A); Western blotting revealed a similar pattern for VEGF and BMP-6 protein expression levels, The expression of BMP6 protein was significantly increased in the AA V-VEGF-BMP-6 group (P<0.01) and AA V-BMP-6 group (P<0.05) when compared with the AA V-GFP group (Fig. 2B and C). In addition, VEGF expression was significantly higher in the AA V-VEGF-BMP-6 and AA V-VEGF-BMP6 groups compared with the AA V-GFP group (both P<0.05, Fig. 2B and C). ELISA was performed to confirm VEGF and BMP-6 expression. The results revealed that VEGF and BMP-6 were expressed in all groups. And BMP6 production increased in the AA V-BMP6 and AA V-VEGF-BMP-6 groups compared with the AA V-GFP group (P<0.05, P<0.01, Fig. 2D); however, BMP6 production in the AA V-VEGF-BMP6 group was marked greater than that in AA V-BMP-6 group (P<0.05, Fig. 2D), which suggests that VEGF-BMP6 co-expression promotes the secretion of BMP6. Similarly, VEGF production in the AA V-VEGF and AA V-VEGF-BMP6 groups was significantly increased compared with the AA V-GFP group (Fig. 2E).

Figure 1. Representative expression of BMSC surface markers CD29, CD90, CD44, CD45, CD11 and CD34 as analyzed by flow cytometry. BMSCs were observed to hyperexpress CD29 (97.7%), CD90 (99.2%) and CD44 (99.0%), whereas CD45 (2.26%), CD11 (8.53%) and CD34 (2.3%) were hypoxpressed. BMSC, bone mesenchymal stem cell; CD, cluster of differentiation; FL-1, fluorescence-1.

LIAO et al: BMCs CO-EXPRESSING VEGF AND BMP-6 TO COMBAT ANFH
Biological activity of VEGF and BMP6 in vitro. VEGF secreted from BMSCs in the AAV-VEGF-BMP-6 group enhanced HUVEC proliferation and tube formation in comparison with the other groups (Fig. 3A). Tube formation was significantly increased in the AAV-VEGF-BMP-6 and AAV-VEGF groups compared with the AAV-GFP group (P<0.05, P<0.01, Fig. 3B). The mineralization effects of BMP-6 were detected using alizarin red, AKP and Von Kossa staining (Fig. 4). The intensity of staining was markedly increased in the AAV-VEGF-BMP-6 group compared with all other groups, these results indicated that co-expressing the VEGF and BMP-6 in BMSCs could enhanced HUVEC tube formation and increased osteogenic ability.

Histological assessment. Histological analysis with H&E and Von Kossa staining was used to detect bone vessel and bone formation in vivo. H&E staining analysis revealed that maximum bone formation was achieved in PLAGA implants with BMSCs transfected with VEGF and BMP-6. The greatest number of tubes and strongest capillary integrity were observed in BMSCs transfected with VEGF and BMP-6, with a significant increase in capillaries compared with the AAV-GFP group (P<0.05; Fig. 5). The expression of VEGF and BMP-6 in PLAGA implants was examined and it was observed that VEGF and BMP-6 expression was markedly increased in the implants that carried BMSC cells expressing VEGF and BMP-6 compared with the other groups (Fig. 6). Histological analysis with Von Kossa staining was consistent with the H&E staining results. Furthermore, cellularity and mineral deposition in the AAV-VEGF-BMP-6 implants was markedly increased compared with all other groups (Fig. 6). In order to further assess the effect of VEGF delivery on angiogenesis, immunostaining for CD34 was used to detect the number of capillaries. The results were consistent in indicating that scaffolds containing BMSCs transfected with VEGF and BMP-6 generated the largest number of blood vessels.

Discussion
With the rapid development of gene therapy, it is being increasingly recognized as a potential novel therapeutic option for the treatment of ANFH (2). Neovascularization and bone
LIAO et al.: BMCs CO-EXPRESSING VEGF AND BMP-6 TO COMBAT ANFH

The functions of VEGF and BMP have been extensively studied (32). The AAV vector is an attractive non-pathogenic human viral vector with low immunogenicity (33). It is efficient for gene transduction in vitro and for local injection in vivo in the presence of a helper virus, for example adenovirus or herpes virus (34,35). In the present study, therefore, AAV was used to transfer and correctly express the target gene.

Angiogenesis and osteogenesis are critical for bone regeneration and are associated with a number of cytokines, including

Figure 3. VEGF/BMP-6 stimulated angiogenesis as determined by tube formation of HUVECs in vitro. (A) Representative images (magnification, x200; Scale bar, 100 µm) and (B) quantification of tube formation. Scale bar, 100 µm. *P<0.05 vs. AAV-GFP group and **P<0.01 vs. AAV-GFP group. AAV, adeno-associated virus; GFP, green fluorescent protein; VEGF, vascular endothelial growth factor; BMP, bone morphogenetic protein.

Figure 4. The mineralization effects of VEGF and BMP-6 on BMSCs. Representative images of ARS staining, AKP staining, and Von Kossa staining in the four groups. The mineralization of ARS staining is seen as mineralized nodules. The mineralization of BMSCs stained using the AKP and Von Kossa methods is represented by black dots. Scale bar, 100 µm. ARS, alizarin red staining; AKP, alkaline phosphatase; AAV, adeno-associated virus; GFP, green fluorescent protein; VEGF, vascular endothelial growth factor; BMP, bone morphogenetic protein; BMSCs, bone mesenchymal stem cells.
bFGF, TGF-β, BMPs, and VEGF (4,36). The effects of VEGF and BMPs on the process of bone formation have already been extensively studied (37,38). VEGF is important in angiogenesis and is able to induce angiopoiesis by promoting the division and growth of vascular endothelial cells (7,39). In addition to its effects in angiogenesis, several studies have reported

Figure 5. H&E staining of BMSCs implanted into PLAGA. (A) H&E staining of AAV-GFP, AAV-BMP-6, AAV-VEGF and AAV-VEGF-BMP-6 groups was performed to detect in vivo blood vessel formation. Blood vessels were identified by the presence of a luminal structure, and the arrows point to the blood vessels. Scale bar, 100 µm. (B) The number of capillaries in the four groups was quantified. *P<0.05 vs. AAV-GFP group. PLAGA, poly lactide-co-glycolide; H&E, hematoxylin and eosin; AAV, adeno-associated virus; GFP, green fluorescent protein; VEGF, vascular endothelial growth factor; BMP, bone morpho-genetic protein.

Figure 6. Immunohistochemical staining analysis was used to detect the expression of VEGF, BMP-6 mineral deposition and angiogenesis in PLAGA implants. CD34 was quantified, in order to detect the number of capillaries. Scale bar, 100 µm. PLAGA, poly lactide-co-glycolide; aav, adeno-associated virus; GFP, green fluorescent protein; VEGF, vascular endothelial growth factor; BMP, bone morphogenetic protein; CD34, cluster of differentiation 34.
that VEGF also serves an important role in osteogenesis by interacting with BMPs (40,41). It was therefore hypothesized that VEGF may exhibit distinct effects when combined with different BMPs. Several studies have shown that the VEGF and BMP-7 proteins expressed by the rAAV-human (h)VEGF-IRES-hBMP-7 vector enhanced angiogenesis and bone regeneration both in vitro and in vivo (30,42). In addition, recent studies have reported that BMP-6 and BMP-9 exhibited the most potent osteogenic activity (43,44), and that BMP-6 encourages the differentiation of human stromal cells to osteoblasts (45). Consequently, the combined effects of VEGF and BMP-6 were assessed in the present study. Angiogenic and osteogenic assays were used to identify the biological effects of VEGF and BMP-6 in vitro and in vivo.

The present study demonstrated that the expression of VEGF and BMP-6 was increased in the AAV-VEGF-BMP-6 group in vitro compared with all other groups. VEGF secreted by BMSCs in the AAV-VEGF-BMP-6 group enhanced HUVEC tube formation. Similarly, the osteogenic ability of BMP-6 in the AAV-VEGF-BMP-6 group was significantly higher compared with the other three groups, as demonstrated by alizarin red, AKP and von Kossa staining. These results indicate that the vector co-expressing VEGF and BMP-6 enhanced bone repair and regeneration in vitro. The results in this study are in accord with those of a previous study (46).

BMSCs are a type of multipotent mesenchymal stem cell found in bone marrow (47). They have a high capacity for self-renewal and the potential to differentiate into several cell types, and so have long been considered a source of cells for bone tissue engineering (47). Surface antigen detection using flow cytometry is the gold standard for cell verification; in the present study, CD29, CD90, CD44, CD11 and CD34 were selected as target cell surface antigens based on previous literature (48,49). The results revealed the hyperexpression of CD29, CD90 and CD44, as well as hypoexpression of CD45, CD11 and CD34, suggesting a high BMSC purity. PLGA is a biomedical polymer that has been safely used as an implant material for several decades, including in bone tissue development (50). Prior to transplantation, PLGA was fabricated into a highly porous 3D scaffold upon which BMSCs could be seeded with high efficiency (51). According to Roedersheimer et al (36) and Cui et al (46), VEGF and BMP-6 interact directly at the molecular level or act via their signaling pathways to indirectly enhance bone formation by increasing vascular formation. The increased bone growth and angiogenesis in subcutaneously implanted PLGA scaffolds was in accordance with the in vitro results.

In conclusion, co-expression of VEGF and BMP-6 in BMSCs enhanced angiogenesis and bone regeneration in vitro and in vivo. This demonstrates that BMSCs expressing both VEGF and BMP-6 are responsible for increased numbers of blood vessels and increased bone formation, which provides theoretical support for their use in ANFH gene therapy.

Acknowledgements

The present study was supported by the Natural Science Foundation of Guangdong Province, China (grant no. 2014A030307006), the National Natural Science Foundation of China (grant no. 31430030) and the Medical Scientific Research Foundation of Guangdong Province, China (grant no. A2017306).

References

1. Chamberlain JR, Schwarz U, Wang PR, Hirata RK, Hankenson KD, Fidler ID, Underwood RA, Schmid S, Tsokos M, Byers PH and Russell DW: Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science 303: 1198-1201, 2004.
2. Yang C, Yang S, Du J, Li J, Xu W and Xiong Y: Experimental study of vascular endothelial growth factor gene therapy for avascular necrosis of the femoral head. J Huazhong Univ Sci Technol Med Sci 23: 297-299, 316, 2003.
3. Wilson CG, Martin-Saavedra FM, Villaoboa N and Franceschi RT: Advanced BMP gene therapies for temporal and spatial control of bone regeneration. J Dent Res 92: 409-417, 2013.
4. Kuhl SU, Zhu Y, Li J, Tsai KJ, Fei Q, Hutton WC and Yoon ST: Can TGF-betal and rhBMP-2 act in synergy to transform bone marrow stem cells to discogenic-type cells? Acta Neurochir (Wien) 150: 1073-1079, 2008.
5. Evans CH and Huard J: Gene therapy approaches to regenerating the musculoskeletal system. Nat Rev Rheumatol 11: 234-242, 2015.
6. Herberg S, Susin C, Felaez M, Howie RN, Moreno de Freitas R, Lee J, Gray JJ Jr, Johnson MH, Elsalanty ME, Hamrick MW, et al: Low-dose bone morphogenetic protein-2/stromal cell-derived factor-1α cotherapy induces bone regeneration in critical-size rat calvarial defects. Tissue Eng Part A 20: 1444-1453, 2014.
7. White AP, Vaccaro AR, Hall JA, Whang PG, Friel BC and McKee MD: Clinical applications of BMP-7/OP-1 in fractures, nonunions and spinal fusion. Int Orthop 31: 735-741, 2007.
8. La WG, Jin M, Park S, Yoon HH, Jeong GJ, Bhang SH, Park H, Char K and Kim BS: Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration. Int J Nanomed 9 (Suppl 1): S107-S116, 2014.
9. Wang YJ, Chen S, Deng C, Li F, Wang Y, Hu X, Shi F and Dong N: MicroRNA-204 Targets Runx2 to Attenuate BMP-2‑induced osteoblastic differentiation of human aortic valve interstitial cells. J Cardiovasc Pharmacol 66: 63-71, 2015.
10. Mundy C, Gannon M and Popoff SN: Connective tissue growth factor (CTGF/CCN2) negatively regulates BMP-2 induced osteoblast differentiation and signaling. J Cell Physiol 229: 672-681, 2014.
11. Hanada K, Solchaga LA, Caplan AI, Hering TM, Goldberg VM, Yoo JU and Johnstone B: BMP-2 induction and TGF-β1 modulation of rat periskeletal cell chondrogenesis. J Cell Biochem 81: 284-294, 2001.
12. Wang L, Park P, La Marca F, Than KD and Lin CY: BMP-2 inhibits tumor-initiating ability in human renal cancer stem cells and induces bone formation. J Cancer Res Clin Oncol 141: 1013-1024, 2015.
13. Dohin B, Dahant-Oriel N, Fassier F and Hamdy R: Enhancement of difficult nonunion in children with osteogenic protein-1 (OP-1): Early experience. Clin Orthop Relat Res 467: 3320-3328, 2009.
14. Takahashi T, Hatakeyama S and Machida T: Ductal adenocarcinoma of the pancreas with psammomatous calcification: Report of a case with immunohistochemical study for bone morphogenic protein. Pathol Int 61: 603-607, 2011.
15. Rahnam MS, Akhtar N, Jamil HM, Banik RS and Asaduzzaman SM: TGF-β/BMP signaling and other molecular events: Regulation of osteoblastogenesis and bone formation. Bone Res 3: 15005, 2015.
16. Scharpenecker M, van Dinther M, Liu Z, van Bezooyen RL, Zhao Q, Pukac L, Löwik CW and Ten Dijke P: BMP-9 signaling via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120: 964-972, 2007.
17. Simic P, Culej B, Orlic I, Grgurevic L, Draca N, Spaventi R and Vukicevic S: Systemically administered bone morphogenetic protein-6 restores bones in aged osteoarthritic rats by increasing bone formation and suppressing bone resorption. J Biol Chem 281: 25509-25521, 2006.
18. Miura H, Yoshida T, Tawakoki W, Wallii I, Oh A, Su S, Da X, Zarrini P, Cook-Wiens G, Gazit D and Gazit Z: BMP-6 is more efficient in bone formation than BMP-2 when overexpressed in mesenchymal stem cells. Gene Ther 20: 370-377, 2013.
19. Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoefel J, Cleland JL, Daugherty A, et al: Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 99: 9656-9661, 2002.
20. Moens S, Goveia J, Stapor PC, Cantelmo AR and Carmeliet P: The multifaceted activity of VEGF in angiogenesis: Implications for therapy responses. Cytokine Growth Factor Rev 25: 473-482, 2014.
21. Gerber HP, Yu TH, Ryan AM, Kowalski J, Werb Z and Ferrara N: VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 6: 624-628, 1999.
22. Ferrara N: VEGF-A: A critical regulator of blood vessel growth. Eur Cytokine Netw 20: 158-163, 2009.
23. Joensuu K, Uusitalo L, Alm JJ, Aro HT, Hentunen TA and Heino TJ: Enhanced osteoblastic differentiation and bone formation in co-culture of human bone marrow mesenchymal stromal cells and peripheral blood mononuclear cells with exogenous VEGF. Orthop Traumatol Surg Res 101: 381-386, 2015.
24. Ramazanoglu M, Lutz R, Rusche P, Trabzon L, Kose GT, Prechtl C and Schellmann M: Bone response to delivery of BMP-2 and VEGF: An immunohistochemical study. J Craniomaxillofac Surg 41: 826-835, 2013.
25. Zhang W, Zhu C, Wu Y, Ye D, Wang S, Zou D, Zhang X, Kaplan DL and Jiang X: VEGF and BMP-2 promote bone regeneration by facilitating bone marrow stem cell homing and differentiation. Eur Cells Mater 27: 1-12, 2014.
26. Kempen DH, Lu L, Heijink A, Heffernan TE, Creemers LB, Maran A, Yaszenski MJ and Dhert WJ: Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. Biomaterials 30: 2816-2825, 2009.
27. Peng H, Li CJ, Dighe AS, Balian G and Cui Q: Differentiation of human bone marrow mesenchymal stromal cells and size-sieved stem cells from human bone marrow into osteoprogenitor cells. Growth Factors 28: 306-317, 2010.
28. Liu Z, Salmon RM, Upton PD, Morrell NW and Li W: Regulation of bone morphogenetic protein 9 (BMP9) by redox-dependent proteolysis. J Biol Chem 289: 31150-31159, 2014.
29. Friedman MS, LW and Hakenson KD: Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein-6. J Cell Biochem 98: 538-554, 2006.
30. Cui F, Wang X, Liu X, Dighe AS, Balian G and Cui Q: VEGF and BMP-6 enhance bone formation mediated by cloned mouse osteoprogenitor cells. Growth Factors 28: 306-317, 2010.
31. Derubeis AR and Cancedda R: Bone marrow stromal cells (BMSCs) in bone engineering: Limitations and recent advances. Ann Biomed Eng 32: 160-165, 2004.
32. Xiong J, Menicanin D, Zilim PS, Marino V, Bartold PM and Gronthos S: Investigation of the cell surface proteome of human periodontal ligament stem cells. Stem Cells Int 2016: 1947157, 2016.
33. Hung SC, Chen CJ, Hsieh SL, Li H, Ma HL and Lo WH: Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells 20: 249-258, 2002.
34. Bongio M, van den Buecken JJJP, Leeuwenburgh SCG and Jansen JA: Development of bone substitute materials: From ‘biocompatible’ to ‘instructive’. J Mater Chem 20: 8747-8759, 2010.
35. Nuuroho RWN, Odelius K, Hoglund A and Albertsson AC: Highlighting the importance of surface grafting in combination with a Layer-by-Layer approach for fabricating advanced 3D Poly(L-lactide) microspheres scaffolds. Chem Mater 28: 3298-3307, 2016.
36. Madhu V, Li CJ, Dighe AS, Balian G and Cui Q: BMP-non-responsive Sca1+CD73+CD44+ mouse bone marrow derived osteoprogenitor cells respond to combination of VEGF and BMP-6 to display enhanced osteoblastic differentiation and ectopic bone formation. PLoS One 9: e103060, 2014.
37. Fiedler J, Leucht F, Waltenberger J, Dehio C and Brenner RE: VEGF-A and PIGF-1 stimulate chemotactic migration of human mesenchymal progenitor cells. Biochem Biophys Res Commun 334: 561-568, 2005.