Vanishing of the Bare Coupling in Four Dimensions

V. Eliasa,b,1 and D.G.C. McKeonb,c,2

a Perimeter Institute for Theoretical Physics, 35 King Street North, Waterloo, Ontario N2J 2W9 CANADA

b Department of Applied Mathematics, The University of Western Ontario, London, Ontario N6A 5B7 CANADA

c Department of Mathematical Physics, National University of Ireland, Galway, IRELAND

\textbf{Abstract}

We examine two restructurings of the series relationship between the bare and renormalized coupling constant in dimensional regularization. In one of these restructurings, we are able to demonstrate via all-orders summation of leading and successive $\epsilon = 0$ (dimensionality = 4) poles that the bare coupling vanishes in the dimension-4 limit.

\footnotesize
1Electronic address: velias@uwo.ca

2Electronic address: dgmckeo2@uwo.ca
In the context of dimensional regularization [1] with minimal subtraction, the bare \((g_B)\) and renormalized \((g)\) coupling constants are related by a series of the form [2, 3]

\[
g_B = \mu^\epsilon g \left[1 + a_{1,1}g^2/\epsilon + a_{2,1}g^4/\epsilon^2 + a_{3,1}g^6/\epsilon + a_{3,2}g^6/\epsilon^2 + a_{3,3}g^6/\epsilon^3 + \ldots \right]
\]

\[
= \mu^\epsilon \sum_{\ell=0}^{\infty} \sum_{k=\ell}^{\infty} a_{k,\ell} g^{2k+1} \epsilon^{-\ell},
\]

where \(a_{k,0} \equiv \delta_{k,0}\) and \(\epsilon \equiv 2 - n/2\) in \(n\) dimensions. This double summation is meaningful provided \(g\) is sufficiently small and provided \(\epsilon^{-1}\) is finite. On the basis of eq. (1), however it is generally held that the bare coupling becomes infinite in the 4-dimensional limit (i.e. \(g_B \to \infty\) as \(\epsilon \to 0\)). We argue in this note that renormalization group (RG) methods may be used to show \(\lim_{n \to 4} g_B = 0\), a result consistent with asymptotic-freedom expectations in which the bare coupling is the renormalized coupling in the infinite cut-off limit.

We begin first by noting that the series (1) may be reorganized as follows:

\[
g_B = \mu^\epsilon g \sum_{n=0}^{\infty} g^{2n} S_n \left(g^2/\epsilon \right)
\]

where the functions \(S_n(u)\) have power series expansions

\[
S_n(u) \equiv \sum_{m=n}^{\infty} a_{m,m-n} u^{m-n}.
\]

In particular, the summation over leading order poles is just

\[
S_0 \left(g^2/\epsilon \right) = a_{0,0} + a_{1,1} g^2/\epsilon + a_{2,2} \left(g^2/\epsilon \right)^2 + \ldots,
\]

and that over next-to-leading poles is

\[
gS_1 \left(g^2/\epsilon \right) = a_{1,0} g + a_{2,1} g^3/\epsilon + a_{3,2} g^5/\epsilon^2 + \ldots.
\]

Explicit summation of the series \(S_n(u)\) is possible given full knowledge of the \(\beta\)-function characterising the scale dependence of the coupling constant \(g\). Since \(g_B\) is independent of
the mass-scale μ introduced for dimensional consistency [i.e. the action $\int d^nx \times \mathcal{L}$ must be dimensionless], we find that in n-dimensions [3]

$$
\mu \frac{dg_B}{d\mu} = 0 = \left(\mu \frac{\partial}{\partial \mu} + \tilde{\beta}(g) \frac{\partial}{\partial g} \right) g_B \\
= \epsilon g_B + \left(-\epsilon + \sum_{n=1}^{\infty} b_{2n+1} g^{2n} \right) g \frac{dg_B}{dg}
$$

(6)

where $\tilde{\beta}(g)(= -\epsilon g + \beta(g))$ turns into the usual β function series in the limit $\epsilon \to 0$:

$$
\mu \frac{dg}{d\mu} \equiv \tilde{\beta}(g) \longrightarrow \sum_{n=1}^{\infty} b_{2n+1} g^{2n+1}.
$$

(7)

Upon substituting eq. (1) into eq. (6), we find that

$$
0 = \sum_{n=1}^{\infty} \left(\frac{1}{\epsilon} \right)^{n-1} \sum_{m=n}^{\infty} (-2m)a_{m,n} g^{2m+1} \\
+ \sum_{\ell=0}^{\infty} \left(\frac{1}{\epsilon} \right)^{\ell} \sum_{p=\ell}^{\infty} (2p+1)a_{p,\ell} \sum_{q=1}^{\infty} b_{2q+1} g^{2(p+q)+1}.
$$

(8)

Such a relationship between β-function coefficients and coefficients of poles in eq. (1) has been noted by 't Hooft [2] and by Collins and Macfarlane [3]. In eq. (8), the aggregate coefficient of $g^{2\ell+1}(1/\epsilon)^{\ell-1}$ is just

$$
-2\ell a_{\ell,\ell} + b_3(2\ell - 1)a_{\ell-1,\ell-1} = 0, \ \ell \geq 1.
$$

(9)

Ordinarily, one would use this equation to obtain b_3 from the calculated value of $a_{1,1}$ ($a_{0,0} = 1$, and $b_3 = 2a_{1,1}$). However, we see that this recursion relation also determines all coefficients $a_{m,m}$ within the summation (4) over leading-order poles. Similarly, the aggregate coefficient of $g^{2\ell+1}(1/\epsilon)^{\ell-2}$ within eq. (8),

$$
-2\ell a_{\ell,\ell-1} + b_3(2\ell - 1)a_{\ell-1,\ell-2} + b_5(2\ell - 3)a_{\ell-2,\ell-2} = 0, \ \ell \geq 2,
$$

(10)

not only implies $b_5 = +4a_{2,1}$, ($a_{1,0} = 0$), but also determines all coefficients $a_{m,m-1}$ within the summation (5) of next-to-leading-order poles. Indeed, the aggregate coefficient of $g^{2\ell+1}(1/\epsilon)^{\ell-k}$
within eq. (8),

\[
-2\ell a_{\ell,\ell-k+1} + \sum_{q=1}^{k} b_{2q+1}(2\ell - 2q + 1)a_{\ell-q,\ell-k} = 0, \quad \ell \geq k \geq 1
\]

(11)
serves as a recursion relation for the evaluation of \(S_{k-1}(u)\), as defined by the summation (3).

To evaluate explicitly the summations \(S_n\) within eq. (2), we begin by multiplying the recursion relation (9) by \(u^{\ell-1}\) and summing from \(\ell = 1\) to infinity:

\[
0 = -2 \sum_{\ell=1}^{\infty} \ell a_{\ell,\ell} u^{\ell-1} + b_3 \sum_{\ell=1}^{\infty} (2\ell - 1)a_{\ell-1,\ell-1} u^{\ell-1} \\
= -2 \frac{dS_0(u)}{du} + 2b_3 u \frac{dS_0(u)}{du} + b_3 S_0(u).
\]

(12)
The final line of eq. (12) is obtained using the definition (4) for \(S_0(u)\). Moreover, we see from eq. (4) that \(S_0(0) = a_{0,0} = 1\), in which case the solution to the separable first-order differential equation (12) is just

\[
S_0(u) = (1 - b_3 u)^{-1/2}.
\]

(13)
Similarly, we can obtain a differential equation for \(S_1(u)\) by multiplying the recursion relation (10) by \(u^{\ell-2}\) and then summing from \(\ell = 2\) to \(\infty\). One easily finds from the definitions (3) of \(S_0\) and \(S_1\) that

\[
2 (1 - b_3 u) \frac{dS_1}{du} + \left(\frac{2}{u} - 3b_3 \right) S_1 \\
= b_5 \left[2u \frac{dS_0}{du} + S_0 \right]
\]

(14)
where \(S_0(u)\) is given by (13), and where \(S_1(0) = a_{1,0} = 0\). Upon making a change in variable to

\[
w = 1 - b_3 u,
\]

(15)
one finds after a little algebra that

\[
\frac{dS_1}{dw} + \frac{(1 - 3w)}{2w(1 - w)} S_1 = -\frac{b_5}{2b_3} w^{-5/2},
\]

(16)
with initial condition \(S_1|_{w=1} = S_1|_{u=0} = 0 \). The solution of this differential equation is

\[
S_1[w(u)] = -\frac{b_5}{2b_3w^{1/2}(w-1)} \left(\log w + \frac{1}{w} - 1 \right).
\]

(17)

It is worthwhile to note that

\[
S_0 = w^{-1/2}
\]

(18)

and that as \(w \to \infty \),

\[
S_1 \to -\frac{b_5}{2b_3}w^{-3/2} \log(w).
\]

(19)

For an asymptotically-free theory \((b_3 < 0)\), the \(w \to \infty \) limit corresponds to the limit \(\epsilon \to 0^+ \) when \(u = g^2/\epsilon \). Thus the restriction \(w = 1 - b_3g^2/\epsilon > 0 \) on the domain of eq. (17) as a real function necessarily implies for asymptotically free theories that the dimensionality \(n = 4 - 2\epsilon \) approaches four from below.

Consider now the general relation (11), where the index \(k \) is taken to be greater than or equal to 2. If we multiply Eq. (11) by \(u^{\ell-k} \) and then sum from \(\ell = k \) to \(\infty \), we obtain the following differential equation via the definition (3):

\[
0 = -2 \sum_{\ell=k}^{\infty} \left[(\ell - k + 1) + (k - 1) \right] a_{\ell,\ell-k+1} u^{\ell-k} + \sum_{q=1}^{k} b_{2q+1} \sum_{\ell=k}^{\infty} \left[2(\ell - k) + 2(k - q) + 1 \right] a_{\ell-q,\ell-k} u^{\ell-k}
\]

\[
= -2 \frac{dS_{k-1}}{du} - \frac{2(k-1)}{u} S_{k-1} + \sum_{q=1}^{k} b_{2q+1} \left[2u \frac{dS_{k-q}}{du} + (2(k-q) + 1)S_{k-q} \right].
\]

(20)

By letting \(k - 1 \to k \) and then making use of the change-of-variable (15), we obtain the following differential equation for \(S_k[w] \) with \(k \geq 2 \):

\[
\frac{dS_k}{dw} + \left[\frac{(2k+1)w - 1}{2w(w-1)} \right] S_k
\]

\[
= -\frac{b_{2k+3}}{2b_3} w^{-5/2} - \frac{1}{2b_3} \sum_{n=1}^{k-1} \frac{b_{2n+3}}{w} \left[2(w - 1) \frac{dS_{k-n}}{dw} + (2k - 2n + 1)S_{k-n} \right].
\]

(21)

The first term on the right hand side of eq. (21) is obtained making explicit use of the expression (18) for \(S_0 \). Note that if \(k \geq 1 \), \(S_k(u = 0) = S_k[w = 1] = 0 \). Since \(S_0 \) and \(S_1 \)
are already known, one may solve the \(k = 2 \) case of eq. (21) for \(S_2 \), then use this solution within the \(k = 3 \) version of eq. (21) to solve for \(S_3 \), etc., so as to obtain all \(S_k \) explicitly.\(^1\) Given knowledge of \(\{S_{k-1}, S_{k-2}, \ldots, S_0\} \), one finds the solution to the differential equation (21) for \(S_k \) to be

\[
S_k[w] = -\frac{1}{2b_3} \int_1^w dr r^{1/2} (r - 1)^k \left[\sum_{n=1}^{k} \frac{b_{2n+3}}{r} \left[2(r - 1) \frac{d}{dr} + 2(k - n) + 1 \right] S_{k-n}[r] \right] \frac{w^{1/2}}{w^{1/2}(w - 1)^k}.
\]

(22)

We note from eqs. (17) and (18) that

\[
\frac{1}{r} \left[2(r - 1) \frac{d}{dr} + 1 \right] S_0[r] = r^{-5/2}
\]

(23)

\[
\frac{1}{r} \left[2(r - 1) \frac{d}{dr} + 3 \right] S_1[r] = -\frac{b_5}{b_3} \left(r^{-5/2} + \mathcal{O}(r^{-7/2}) \right).
\]

(24)

Consequently, one easily finds from eq. (22) that in the large \(w \) limit

\[
S_2 \sim w^{-3/2}.
\]

(25)

Upon substituting this behaviour into Eq. (22) for the \(k = 3 \) case, we then find that as \(w \to \infty \), \(S_3 \sim w^{-3/2} \), in which case successive iterations of Eq. (22) in the large \(w \) limit necessarily reproduce this asymptotic behaviour, regardless of the index \(k \):

\[
S_k[w] \sim w^{-3/2}, \quad k \geq 2.
\]

(26)

We then see from eqs. (18), (19) and (26) that for all \(k \),

\[
\lim_{\epsilon \to 0} S_k \left(\frac{g^2}{\epsilon} \right) = \lim_{w \to \infty} S_k[w] = 0,
\]

(27)

which implies via eq. (2) that

\[
\lim_{\epsilon \to 0} g_B = 0.
\]

(28)

\(^1\) Such an iteration of solutions is possible only if all coefficients \(b_{2n+3} = 2(n+1)a_{n+1,1} \) are already known.
Recall in a cut-off regularization scheme that one defines the bare coupling \(g_B \) to be the infinite cut-off limit of the renormalized coupling \(g_R \):

\[
g_B = \lim_{\Lambda \to \infty} g_R(\Lambda) = 0. \tag{29}
\]

The result (28) confirms for asymptotically free theories that the infinite cut-off limit in four dimensions and the \(n = 4 \) limit within dimensional regularization are consistent.\(^2\) Moreover, we note that the results (18), (19) and (26), which lead to Eq. (28), are not contingent upon the sign of \(b_3 \); the bare coupling constant is seen to vanish in the four-dimensional limit even if the theory is not asymptotically free (\(\epsilon \to 0^- \)). Thus, the infinities which occur order-by-order in an expansion such as (1) disappear upon all-orders summation of the \(S_n(g^2/\epsilon) \) sub-series (3) within the reorganized expansion (2).\(^3\)

Finally, we note that the series (1) may be reorganized into a power series in \(\epsilon^{-1} \),

\[
g_B = \mu^\epsilon \sum_{k=0}^{\infty} B_k(g) \epsilon^{-k}, \tag{30}
\]

where

\[
B_0(g) = g, \tag{31}
\]

\[
B_k(g) = \sum_{\ell=k}^{\infty} a_{\ell,k} g^{2\ell+1}, \quad k \geq 1. \tag{32}
\]

\(^2\)We are grateful to V. A. Miransky for pointing out that the result (29) is formally correct for non-asymptotically-free theories (\(b_3 > 0 \)) as well. To one-loop order \(g^2_R(\Lambda) = g^2_R(\mu_0) / \left[1 - 2b_3 g^2_R(\mu_0) \log(\Lambda/\mu_0) \right] \). If \(b_3 > 0 \), \(g^2_R(\Lambda) \) still goes to zero as \(\Lambda \to \infty \). However, such large-\(\Lambda \) behaviour is on the unphysical \((g^2_R(\Lambda) < 0) \) side of this expression’s Landau pole. Consequently, the infinite cut off limit is inappropriate for non-asymptotically free theories, as discussed in ref. [4]. An alternate discussion of how the bare coupling behaves in \(\phi^4_4 \) theory appears in ref. [9].

\(^3\)The use of RG-invariance to obtain such all-orders summations has been applied to other perturbative processes [5].
The RG-invariance of g_B to changes in μ may be utilised to determine the coefficients $B_k(g)$ explicitly. The requirement that

$$0 = \mu \frac{dg_B}{d\mu} = \mu^\epsilon \left[\epsilon B_0 + \sum_{k=1}^{\infty} B_k(g) \epsilon^{1-k} \right. + \left. \bar{\beta}(g) \sum_{k=0}^{\infty} \frac{dB_k}{dg} \epsilon^{-k} \right], \quad (33)$$

with $B_0 = g$ and $\bar{\beta}(g) = -\epsilon g + \beta(g)$, as before, leads to a differential recursion relation [6]

$$\left(\frac{d}{dg} - \frac{1}{g} \right) B_{k+1}(g) = \frac{1}{g} \beta(g) \frac{dB_k}{dg}. \quad (34)$$

Noting from eqs. (31) and (32) that $B_k(0) = 0$, we solve eq. (34) to obtain

$$B_{k+1}(g) = g \int_0^g \frac{\beta(s) B_k'(s)}{s^2} ds, \quad (35)$$

where $\beta(s) = \sum_{n=1}^{\infty} b_{2n+1} s^{2n+1}$ as before. We then find from eqs. (31) and (35) that

$$B_1(g) = \sum_{n=1}^{\infty} b_{2n+1} g^{2n+1}/2n, \quad (36)$$

$$B_2(g) = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \frac{b_{2n+1} b_{2k+1}(2k+1)}{4k(n+k)} g^{2(n+k+1)} = \frac{3b_5^2 g^5}{8} + \frac{11b_3 b_5 g^7}{24} + \left(\frac{8b_3 b_7}{3} + \frac{5b_5^2}{4} \right) \frac{g^9}{8} + \ldots, \quad (37)$$

$$B_3(g) = \frac{5b_5^2 g^7}{16} + \frac{7b_3 b_5 g^9}{12} + \ldots. \quad (38)$$

Of course, the process of iterating eq. (35) can be repeated to obtain $B_k(g)$ for arbitrarily large k, assuming as before that all β-function coefficients b_{2n+1} are known. For example, the β-function for $N = 1$ supersymmetric Yang-Mills theory can be extracted to all orders via imposition of the Adler-Bardeen theorem on the anomaly supermultiplet [7], or via instanton calculus methods [8]; however, eq. (31) may no longer be valid since minimal subtraction is not explicit in either of these approaches. Alternatively, one can show via eq. (36) that terms of order ϵ^{-1} in eq. (1) are sufficient in themselves to determine $\beta(g)$ [see footnote 1], or even that β-function coefficients $b_{2\ell+1}$ can be extracted via Eq. (37) provided g_B is known to order $g^{2\ell+3}/\epsilon^2$.

8
Acknowledgements

We are grateful for discussions with M. Davison, V. A. Miransky and P. J. Sullivan, and for financial support from the Natural Sciences and Engineering Research Council of Canada.

References

[1] G. ’t Hooft and M. Veltman, Nucl. Phys. B 44 (1972) 189; J. F. Ashmore, Nuovo Cim. Lett. 4 (1972) 289; C. G. Bollini and J. J. Giambiagi, Nuovo Cim. B 12 (1972) 20.

[2] G. ’t Hooft, Nucl. Phys. B 61 (1973) 455.

[3] J. C. Collins and A. J. Macfarlane, Phys. Rev. D 10 (1974) 1201.

[4] V. B. Berestetskii, E. M. Lifshitz and L. P. Pitaevskii, Quantum Electrodynamics: L. D. Landau and E. M. Lifshitz Course of Theoretical Physics Volume 4 (Pegamon Press, Oxford, U.K., 1982) pp. 601-603.

[5] M. R. Ahmady et al., Phys. Rev. D 66 (2002) 014010.

[6] R. Coquereaux, Annals of Physics 125 (1980) 401; P. Raymond Field Theory, A Modern Primer (2nd edition), eq. 4.6.14 (Addison Wesley, Redwood CA, 1990); T. P. Cheng and L. F. Li, Gauge Theory of Elementary Particles eq. 3.88 (Oxford University Press, Oxford 1982).

[7] D. R. T. Jones, Phys. Lett. B 123 (1983) 45; V. Elias, J. Phys. G 27 (2001) 217.

[8] V. Novikov, M. Shifman, A. I. Vainshtein and V. Zakharov, Nucl. Phys. B 229 (1983) 381.
[9] M. Consoli and P. M. Stevenson, Mod. Phys. Lett. A 11 (1996) 2511; also V. Branchina, P. Castorina, M. Consoli and D. Zappalà, Phys. Rev. D 42 (1990) 3587.