Abstract. In this paper, we show that for every $N \in \mathbb{N}$, isometric N-Jordan operators on Hilbert spaces are power regular. Moreover, the only normaloid or 2-isometric, N-Jordan operators are isometries.

1. Introduction and preliminaries

Let \mathcal{H} be a Hilbert space and $B(\mathcal{H})$ stands for the space of all bounded linear operators on \mathcal{H}. An operator T in $B(\mathcal{H})$ is called an isometric N-Jordan operator if $T = A + Q$ where A is an isometry, Q is a nilpotent operator of order N, that is, $Q^N = 0$ but $Q^{N-1} \neq 0$, and $AQ = QA$. Note that the notions of isometric 1-Jordan and isometry coincide. The dynamic and spectral properties of N-Jordan operators have been studied in [7]. It follows from Proposition 1.1 of [7] that these operators are injective. We note that for an N-Jordan operator T, T^*T is invertible. Indeed, Corollary 1.2 of [7] states that the operator T is bounded below, and so for every $h \in \mathcal{H}$,

$$\|T^*Th\| \geq |\langle T^*Th, h \rangle| = \|Th\|^2 \geq c\|h\|^2$$

for some $c > 0$, which implies that T^*T is also bounded below. Thus, T^*T is surjective, and so is invertible. It is easy to see that if A is a unitary operator then

$$(T^*T)^{-1} = 3I - 3TT^* + T^2T^*.$$
For a positive integer \(m \) an operator \(S \in B(\mathcal{H}) \) is an \(m \)-isometry if

\[
\sum_{k=0}^{m} (-1)^{m-k} \binom{m}{k} S^* S^k = 0.
\]

The operator \(S \) is called a strict \(m \)-isometry if it is \(m \)-isometry but not an \(m - 1 \)-isometry. It is proved in [3] that every isometric \(N \)-Jordan operator is a strict \((2N - 1) \)-isometry. Moreover, it is shown in [2] that if \(A \) is an \(m \)-isometry then \(A + Q \) is a \((2N - m - 2) \)-isometry. Recently, such operators have been considered by several authors; for example, see [4, 6].

2. Main results

Recall that an operator \(S \) in \(B(\mathcal{H}) \) is power regular if \(\lim_{n \to \infty} \| S^n h \|^{\frac{1}{n}} \) exists for every \(h \in \mathcal{H} \). It is known that compact operators, normal operators and decomposable operators are power regular (see [1] and references therein). It is important in operator theory that which operators are power regular. Indeed, in this case for each \(h \in \mathcal{H} \), the spectral radius of the restriction of the operator \(S \) to the subspace \(\bigvee_{n=0}^\infty \{ S^n h \} \) is in the closed interval \([a, r(S)]\), where \(a = \lim_{n \to \infty} \| S^n h \|^{\frac{1}{n}} \) and \(r(S) \) is the spectral radius of \(S \). In this section, we will show that if \(T = A + Q \) is an isometric \(N \)-Jordan operator then

\[
\lim_{n \to \infty} \frac{\| T^n \|}{n^{N-1}} = \frac{\| Q^{N-1} \|}{(N-1)!};
\]

in particular, \(T \) is power regular. Also, we see that if \(T \) is normaloid or 2-isometry then it is an isometry. It is proved in [7] that the eigenvectors of an isometric \(N \)-Jordan operator corresponding to distinct eigenvalues are orthogonal. In the next proposition, we generalize this result to distinct approximate eigenvalues. As usual, \(\sigma_{ap}(T) \) denotes the approximate point spectrum of an operator \(T \). Besides, in what follows \(\langle \cdot, \cdot \rangle \) denotes the inner product of the Hilbert space \(\mathcal{H} \).

Theorem 2.1. If \(\lambda \) and \(\mu \) are distinct approximate eigenvalues of an isometric \(N \)-Jordan operator \(T = A + Q \), and \((x_n)_n, (y_n)_n \) are sequences of unit vectors such that \((T - \lambda)x_n \to 0 \) and \((T - \mu)y_n \to 0 \), then \(\langle x_n, y_n \rangle \to 0 \).

Proof. First note that by induction, for each positive integer \(k \),

\[
\lim_{n \to \infty} (T^k - \lambda^k)x_n = 0;
\]
which in turn implies that \(\lim_{n \to \infty} \| T^k x_n \| = |\lambda|^k \). By Proposition 1 of [7], \(\sigma_{ap}(T) = \sigma_{ap}(A) \) and so \(|\lambda| = 1 \). Therefore, since \(A \) is isometric, for every integer \(k \) we have

\[
\lim_{n \to \infty} \left\| \sum_{i=0}^{N-1} \binom{k}{i} Q^i A^{N-1-i} x_n \right\| = 1. \tag{1}
\]

Consequently,

\[
\lim_{n \to \infty} \left\| \sum_{i=0}^{N-2} \binom{k}{i} Q^{i+1} A^{N-2-i} x_n \right\| = \lim_{n \to \infty} \left\| \sum_{i=0}^{N-1} \binom{k+1}{i} Q^i A^{N-1-i} x_n - \sum_{i=0}^{N-1} \binom{k}{i} Q^i A^{N-1-i} x_n \right\| \leq 2.
\]

In the next step we get

\[
\lim_{n \to \infty} \left\| \sum_{i=0}^{N-3} \binom{k+2}{i} Q^{i+2} A^{N-3-i} x_n \right\| \leq 2^2.
\]

Continuing this process, in the last step we obtain

\[
\lim_{n \to \infty} \| Q^{N-2} A x_n + kQ^{N-1} x_n \| \leq 2^{N-2}.
\]

Therefore,

\[
\limsup_{n \to \infty} \| Q^{N-1} x_n \| \leq \frac{2^{N-2} + \| Q^{N-2} \|}{k},
\]

for every positive integer \(k \). Thus, \(\lim_{n \to \infty} \| Q^{N-1} x_n \| = 0 \). On the other hand, by (1)

\[
\limsup_{n \to \infty} \left\| \sum_{i=0}^{N-2} \binom{k}{i} Q^i A^{N-2-i} x_n \right\| = \limsup_{n \to \infty} \left\| \sum_{i=0}^{N-1} \binom{k}{i} Q^i A^{N-1-i} x_n - \binom{k}{N-1} Q^{N-1} x_n \right\| \leq \limsup_{n \to \infty} \left\| \sum_{i=0}^{N-1} \binom{k}{i} Q^i A^{N-1-i} x_n \right\| + \limsup_{n \to \infty} \left(\binom{k}{N-1} \right) \left\| Q^{N-1} x_n \right\| = 1;
\]

moreover,

\[
\liminf_{n \to \infty} \left\| \sum_{i=0}^{N-2} \binom{k}{i} Q^i A^{N-2-i} x_n \right\| = \liminf_{n \to \infty} \left\| \sum_{i=0}^{N-1} \binom{k}{i} Q^i A^{N-1-i} x_n - \binom{k}{N-1} Q^{N-1} x_n \right\|
\]
\[\geq \lim_{n \to \infty} \left\| \sum_{i=0}^{N-1} \binom{k}{i} Q^i A^{N-1-i} x_n \right\| - \limsup_{n \to \infty} \left(\frac{k}{N-1} \right) \left\| Q^{N-1} x_n \right\| = 1. \]

Hence
\[\lim_{n \to \infty} \left\| \sum_{i=0}^{N-2} \binom{k}{i} Q^i A^{N-2-i} x_n \right\| = 1. \]

The same argument shows that \(\lim_{n \to \infty} \| Q^{N-2} x_n \| = 0 \), and by continuing this process we get
\[\lim_{n \to \infty} \| Q^{N-2} x_n \| = 0 \]

which implies that \(\lim_{n \to \infty} (A - \lambda)x_n = 0 \). Similarly, \(\lim_{n \to \infty} (A - \mu)y_n = 0 \). Thus Cauchy-Schwarz inequality shows that
\[0 = \lim_{n \to \infty} \langle (A^* A - I) x_n, y_n \rangle = (\lambda \mu - 1) \lim_{n \to \infty} \langle x_n, y_n \rangle, \]

hence \(\lim_{n \to \infty} \langle x_n, y_n \rangle = 0 \).

Theorem 2.2. If \(T = A + Q \) is an isometric \(N \)-Jordan operator, then
\[\lim_{n \to \infty} \frac{\| T^n \|}{n^{N-1}} = \frac{\| Q^{N-1} \|}{(N-1)!}. \]

Proof. An application of the polar identity shows that if \(h_1, h_2, ..., h_{N-1} \) are in \(\mathcal{H} \), then \(\left\| \sum_{i=0}^{N-1} \binom{n}{i} h_i \right\|^2 \) is a polynomial in \(n \) of degree at most \((N-1)^2\). So for every \(h \in \mathcal{H} \) and \(n \geq 1 \),
\[\| T^n h \|^2 = \left\| \sum_{i=0}^{N-1} \binom{n}{i} A^{N-1-i} Q^i h \right\|^2 = \sum_{i=0}^{(N-1)^2-1} a_i n^i + \left(\frac{n}{N-1} \right)^2 \| Q^{N-1} h \|^2 \]

for some coefficients \(a_i \), \(1 \leq i \leq (N-1)^2 - 1 \). Thus,
\[\left| \frac{\| T^n h \|^2}{\left(\frac{n}{N-1} \right)^2} - \| Q^{N-1} h \|^2 \right| = \left| \frac{\sum_{i=0}^{(N-1)^2-1} a_i n^i}{\left(\frac{n}{N-1} \right)^2} \right| \]

which converges uniformly to zero on \(S = \{ h : \| h \| \leq 1 \} \) because there is a positive constant \(c \) such that \(|a_i| \leq c \) for all \(h \in S \) and \(i = 0, 1, ..., (N-1)^2 - 1 \).
1)² − 1. It follows that
\[\lim_{n \to \infty} \frac{\|T^n\|^2}{(nN-1)^2} = \lim_{n \to \infty} \sup_{\|h\| \leq 1} \frac{\|T^n h\|^2}{(nN-1)^2} = \sup_{\|h\| \leq 1} \lim_{n \to \infty} \frac{\|T^n h\|^2}{(nN-1)^2} = \sup_{\|h\| \leq 1} \|Q^{N-1} h\|^2 = \|Q^{N-1}\|^2. \]

Consequently,
\[\lim_{n \to \infty} \frac{\|T^n\|}{n^{N-1}} = \frac{\|Q^{N-1}\|}{(N-1)!}. \]

\[\square \]

Corollary 2.3. Every isometric N-Jordan operator $T = A + Q$ is power regular. Moreover, for every nonzero $h \in \mathcal{H}$, the spectral radius of the restriction of the operator T to the subspace $\bigvee_{n=0}^\infty \{T^n h\}$ which is denoted by $r_h(T)$ is 1.

Proof. As we have observed in the proof of the above theorem, for every $h \in \mathcal{H}$
\[\lim_{n \to \infty} \frac{\|T^n h\|}{(nN-1)} = \|Q^{N-1} h\|. \]

Hence, $\lim_{n \to \infty} \|T^n h\|^{\frac{1}{n}}$ is 0 or 1. Moreover, by the spectral radius formula, for every operator S in $B(\mathcal{H})$, $r(S) = \lim_{n \to \infty} \|S^n\|^\frac{1}{n}$ hence for every nonzero $h \in \mathcal{H}$
\[\lim_{n \to \infty} \|T^n h\|^{\frac{1}{n}} \leq r_h(T) \leq r(T). \]

On the other hand it follows from Proposition 1.1 of [7] that $r(T) = 1$ thus $r_h(T) = 1$.

\[\square \]

Corollary 2.4. Suppose that $T = A + Q$ is an isometric N-Jordan operator such that A is invertible. Then $T(\ker Q^{N-1}) = \ker Q^{N-1}$.

Proof. First note that since $TQ = QT$ we have $T(\ker Q^{N-1}) \subseteq \ker Q^{N-1}$. Moreover, by Proposition 1.1 of [7] the operator T is invertible; so for every $h \in \ker Q^{N-1}$ there exists $g \in \mathcal{H}$ such that $h = Tg$. Thus,
\[\frac{\|T^n g\|}{n^{N-1}} = \frac{\|T^{n-1} h\|}{n^{N-1}} \leq \|T^{-1}\| \frac{\|T^n h\|}{n^{N-1}}. \]
By the proof of the previous theorem,
\[\lim_{n \to \infty} \frac{\|T^n h\|}{n^{N-1}} = \frac{\|Q^{N-1} h\|}{(N-1)!} = 0 \]
which implies that
\[\frac{\|Q^{N-1} g\|}{(N-1)!} = \lim_{n \to \infty} \frac{\|T^n g\|}{n^{N-1}} = 0. \]
Hence, \(\ker Q^{N-1} \subseteq T(\ker Q^{N-1}) \).

In the sequel, we will show that the only isometric \(N \)-Jordan normaloid or 2-isometric operators are isometries. Note that an operator \(S \) is normaloid if \(r(S) = \|S\| \).

Proposition 2.5. Suppose that the operator \(T = A + Q \) is an isometric \(N \)-Jordan operator. If \(T \) is normaloid or 2-isometry then \(N = 1 \).

Proof. If \(T \) is normaloid by Proposition 1.1 of [7], \(r(T) = r(A) = 1 \) which implies that \(\|T\| = 1 \). Hence \(T \) is a power bounded operator. Now, Proposition 1.6 of [7] says that \(N = 1 \). Now suppose that \(T \) is a 2-isometry and \(N > 1 \). We observe that

\[
0 = \sum_{k=0}^{2} (-1)^k \binom{2}{k} (A^* + Q^*)^k (A + Q)^k
\]
\[
= A^2Q^2 + 2Q^*Q + 2A^*Q^*Q^2 + Q'^2A^2 + 2Q^*AQ + Q'^2Q^2.
\]

For the simplicity call the last statement \(\Delta \). Thus,
\[
0 = Q^{N-2} \Delta Q^{N-2} = 2Q^{N-1}Q^{N-1}
\]
which implies that \(Q^{N-1} = 0 \). Thus, we get a contradiction.

Recall that an operator \(S \) in \(B(H) \) is \(k \)-paranormal, if \(\|S^{k+1} h\| \geq \|Sh\|^{k+1} \) and is \(* \)-paranormal if \(\|S^2 h\| \geq \|S' h\|^2 \) for all unit vectors \(h \). These operators are normaloid (see [5]). Thus, as a corollary of the preceding proposition the only isometric \(N \)-Jordan, \(k \)-paranormal or \(* \)-paranormal operators are isometries.

The commutativity of \(A \) and \(Q \) is essential in the preceding proposition as the following example shows.

Example 2.6. Define the operators \(A \) and \(Q \) on \(l^2(\mathbb{C}) \) by \(A(\alpha_1, \alpha_2, \cdots) = (0, \alpha_1, \alpha_2, \cdots) \) and \(Q(\alpha_1, \alpha_2, \cdots) = (0, -2\alpha_1, 0, 0, \cdots) \). Observe that \(Q^2 = 0, Q \neq 0 \) and \(A \) is normaloid but \(AQ \neq QA \).
We note that if $T = A + Q$ is an isometric N-Jordan m-isometry with $m \geq 3$, then N is not necessarily 1. Indeed, let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $Q = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Then it is easy to see that $T = A + Q$ is a 3-isometry on the space $\mathbb{C} \oplus \mathbb{C}$, $Q^2 = 0$ and $AQ = QA$.

References

[1] A. Atzmon, Power regular operators, Trans. Amer. Math. Soc., 347(1995), 3101-3109.
[2] T. Bermúdez, A. Martionón, V. Müller, J. A. Noda, Perturbation of m-isometries by nilpotent operators, Abstract and Applied Analysis, 2014; Article ID 745479, 6 pages.
[3] T. Bermúdez, A. Martionón, J. A. Noda, An isometry plus a nilpotent is an m-isometry. Applications, J. Math. Anal. Appl., 407(2013), 505-512.
[4] G. Gu and M. Stankus, Some results on higher order isometries and symmetries: products and sums with a nilpotent operator, Linear Algebra Appl. 469(2015), 500-509.
[5] C. S. Kubrusly, B. P. Duggal, A note on k-paranormal operators, Operators and Matrices 4(2010), 213-223.
[6] T. Le, Algebraic properties of operators roots of polynomials, J. Math. Anal. Appl. 421(2015) 1238-1246.
[7] S. Yarmahmoodi, K. Hedayatian, B. Yousefi, Supercyclicity and hypercyclicity of an isometry plus a nilpotent, Abstract and Applied Analysis, 2011; Article ID 686832, 11 pages.

Karim Hedayatian
Department of Mathematics, College of Sciences, Shiraz University, Shiraz 7146713565, Iran
hedayati@shirazu.ac.ir(khedayatian@gmail.com)

Saeed Yarmahmoodi
Department of Mathematics, Marvdasht University, Islamic Azad University, Fars, Iran
saedyarmahmoodi@gmail.com