New Geometrical Model of Woven Fabric Taking into Account the Change of Its Form, Size and Lateral Bending

DOI: 10.5604/01.3001.0014.6076

Abstract

This paper presents a technique for the construction of a thread 3D model for a fabric element based on previously obtained data on the calculation of a thread profile in the form of the piecewise continuous function. The primary parameters of the structure can be obtained using the methods described, for example, in the work [18-19]. Then it is necessary to simulate the 3D structure of the thread in the fabric.

Thread base form simulation

This paper proposes the use of direct simulation of the thread surface in a fabric based on the piecewise linear representation of functions, which was described in paper [15]. Such an approach allows not only to exclude thread “interpenetration”, but also to take into account the thread bending in several planes when simulating, as well as the change in the cross-sectional form of threads caused by their deformation at intersections, which is associated with their unevenness.

With an accurate 3D model of the thread, it is possible to model complex phenomena, such as the recovery behaviour of fabrics [16] and the influence of weft density on fabric dynamic thickness under tensile forces [17].

Introduction

Three-dimensional fabric simulation allows to understand the fabric structure, which is especially important when designing complex structure fabrics (multilayered fabrics, fabrics with variable density of threads etc.). The structure parameters which are difficult to calculate using standard techniques (pore volume, contact area between threads etc.) can be calculated with the help of mathematical models describing the fabric three-dimensional structure. The fabric 3D models can be used to calculate forces and deformations arising in the fabric with the help of finite-element simulation programs in various specialised software complexes, for example, ANSYS, LS-DYNA, ABAQUS, NASTRAN etc. The structure parameters which are difficult to calculate using standard techniques, e.g., the pore volume and contact area between threads can be calculated with the help of describing the fabric three-dimensional structure.

Key words: fabric, 3D simulation, warp, filling, bending waves’ height, fabric structure.

The traditional approach to thread simulation in a fabric structure is to calculate the middle line, and then the section curve sweeps along the yarn path to form sets of section planes [5]. The axial line or its part can be depicted as a sinusoid [6-8], as well as other trigonometric functions [9]. Also, the thread form can be specified in the form of splines [10-14]. The disadvantage of such approaches is the effect of thread “interpenetration” in the fabric due to approximations in the geometric models. For this, the authors suggest using a special mechanism for the elimination of such a phenomenon, which complicates the algorithm for the construction of a three-dimensional model.

This paper proposes the use of direct simulation of the thread surface in a fabric based on the piecewise linear representation of functions, which was described in paper [15]. Such an approach allows not only to exclude thread “interpenetration”, but also to take into account the thread bending in several planes when simulating, as well as the change in the cross-sectional form of threads caused by their deformation at intersections, which is associated with their unevenness.

Equation (1).

$$d \cdot x + \frac{b + b_1}{2}, \quad if \quad \frac{x_1 + x_3}{2} < x \leq \frac{x_2 + x_4}{2}$$

$$- (d_y + d_y' \cdot \sqrt{1 - \frac{(x - l_y)^2}{(d_y + d_y')^2} + E}, \quad if \quad \frac{x_2 + x_4}{2} < x \leq l_y$$

$$\left\{ \begin{array}{l}
\left(\frac{d_{yy} + d_{yy}'}{2} \right) \cdot \sqrt{1 - \frac{x^2}{\left(\frac{d_{yy} + d_{yy}'}{2} \right)^2} + H}, \quad if \quad 0 < x \leq \frac{x_1 + x_2}{2}
\end{array} \right.$$
profile. Then, if the thread cross-section is an ellipse, Equation (1) can be written.

Where, d_{yw} – weft vertical diameter; d_{xw} – weft horizontal diameter; d_{w} – warp diameter; H – transverse centre of the first weft thread; E – transverse centre of the second weft thread; l_y – distance between weft threads; x_p, x_2, x_3, x_4 – coordinates for the tangency points of the straight lines and curves describing the upper and lower limits of the thread profiles (the x-axis); b, b_1 – terms in the equation of the straight line connecting the curves that describe the limits of the thread profile in the fabric; d – slope of the straight line connecting the curves that describe the limits of the thread profile in the fabric.

Then, assuming that the thread takes the form of a curved elliptical cylinder (a closed cylindrical surface with any base can be used), we obtain the function $G_r(x, y)$ expressing the upper volumetric (in “xyz” coordinates) part of the thread form, see Equation (2).

Equation (2), where, $j_r(x)$ – function describing the top of the thread profile; $f(x)$ – function describing the middle line of the thread (with a bending in one plane); r – half of the warp horizontal diameter.

The lower part of the thread surface $G_n(x, y)$ is presented by Equation (3).

Equation (3), where, $j_n(x)$ – function describing the lower part of the thread profile in space.

The parameters of the middle thread line are not necessary to be calculated, and then the upper and lower volume parts of the thread profile can be expressed as Equations (4) and (5).

There is an example of function parameter calculation for the construction of the main thread three-dimensional model for linen fabric, a prototype of a plain structure at one bending interval. The fabric is characterised by the following parameters: weft density – 150 threads/10 cm, warp density – 170 threads/10 cm, fabric warp and weft diameters with regard to deformation – 0.274 mm vertically and 0.372 mm horizontally, height of the bending warp wave – 0.448 mm.

Piecewise continuous function describing the upper limits of the thread profile in the fabric [16], see Equation (6).

The three-dimensional model of this area can be expressed by the functions given as Equations (8) and (9).

Figure 1 shows two surfaces constructed by Equations (8) and (9) taking into account the results of Equations (6) and (7), describing the thread structure in the fabric at the bending interval.

A set of surfaces to describe the structure of a fabric in a three-dimensional form can be built with the help of this technique. An example of such a construction is shown in Figure 2. The primary parameters of the structure were calculated with the models described in work [18]. It can also be presented as a function of the number of fibres in the yarn cross-section and the packing density of fibres.

![Figure 1. Thread three-dimensional model for a fabric element.](image)

Piecewise continuous function describing the lower limits of the thread profile in the fabric, see Equation (7).

Equations (2), (3), (4), (5), (6), (7), (8) and (9).
Simulation of the thread form with variable parameters

The effect of thread horizontal diameters increasing at the point of contact with the opposite thread system can be described by simulating the thread form in the fabric.

We introduce a parameter that determines the change in size of the thread cross-section in the horizontal direction \(r_n \) along the length of the simulation sample:

\[
r_n = f_1(X_n)
\]

(10)

Where, \(f_1(X_n) \) – functional dependence relating the coordinate along the length of the bending thread and the cross-sectional size of the thread in the horizontal direction.

It may happen that the cross-section’s form changes along the length of the bending thread, i.e. at the contact point of the threads, it resembles the form of an ellipse more, and it tends to take a form close to a “stadium” or “oval” in the gap between threads. The equation of the reference section can be presented by an equation based on the ellipse equation and adding the degree \(LL \) to the argument:

\[
y(x) = w \sqrt{1 - \frac{(x-v)^2}{r^2}}
\]

(11)

Where, \(w \) – vertical ellipse semiaxis; \(v \) – ellipse centre coordinate; \(r \) – horizontal ellipse semiaxis.

Where, the \(LL = 1 \) section has the form of an ellipse; when \(LL \) increases, the section form becomes more like a “stadium” and later like a rectangle (Figure 3).

The various cross-sectional forms of the thread can be obtained using Equation (11). To do this, we set the argument \(LL_n \) as varying along the length of the simulated thread sample in the fabric:

\[
LL_n = f_2(X_n)
\]

(12)

Where, \(f_2(X_n) \) – functional dependence relating the coordinate along the length of the bending thread and the section form.

The smooth junctions from one form to another can be set with the help of the various algorithms.

To reflect the lateral bending of the thread in the fabric, we introduce the additional dependence \(f_3(X_n) \).

The following variables must be specified for the function parametric definition that describes the three-dimensional model of yarn in a fabric: \(X_n, Y_{n,m}, Z_{n,m} \) (n and m – the current number of the segment by which we divide the simulated yarn segment horizontally and vertically).

\[
X_n = l_0 \cdot \frac{n}{N}
\]

(13)

Where, \(l_0 \) – simulated element length along the “X” axis; \(N \) – number of split intervals.

Then,

\[
Y_{n,m} = f(X_n) - r_n - \frac{zmr}{N}
\]

(14)

Then, the general equation of the surface in a parametric form that describes the

![Figure 2. Fabric 3D model: a) cotton fabric of plain structure with variable density, b) carbon fabric with twill structure.](image)

![Figure 3. Thread cross-section form: a) LL = 1, b) LL = 2, c) LL = 3, d) LL = 6.](image)
lower part of the thread ($Z_{n,m}$) in the fabric, taking into account lateral bending as well as changes in cross-sectional sizes and the form of the thread in the length, is given as Equation (15).

For the upper part ($ZV_{n,m}$) the equation is written as Equation (16).

In the case of cross-sectional forms other than the ellipse, Equations (1), (6) and (7) are different.

Equations (15) and (16) can be presented in an explicit form. For example, the general surface equations of the yarn lower part in an explicit form are given as Equation (17).

Assuming that the piecewise continuous function consists of two curves ($y_1(x)$, $y_2(x)$) and a straight line that connects them ($y = kx + b$), then the slope of the tangent (k) to the curves is determined as the derivative of function y_1 or y_2 at the tangency points, i.e.:

$$k = y'_1(x_1), \quad k = y'_2(x_2) \quad (18)$$

Where, x_1 – x-coordinate of the first tangency point; x_2 – x-coordinate of the second tangency point.

To find parameters x_1, x_2, k & b that define the piecewise continuous function, there is a system of Equations (19):

$$\begin{align*}
y'_1(x_1) &= y'_2(x_2) \\
y'_1(x_1) \cdot x_1 + b &= y'_1(x_2) \\
y'_2(x_2) \cdot x_2 + b &= y'_2(x_2)
\end{align*} \quad (19)$$

The numerical solution of this system can be implemented by various software tools. After system solution (19), the pivotal points and equation of the straight line are determined.

Based on Equations (13)-(16), taking into account the values contained therein, an algorithm for the construction of a fabric three-dimensional model was developed and implemented in a software form. The simulation results are presented in Figures 4 and 5.

The thread three-dimensional model for the fabric taking into account lateral bending and changes in the form of the thread in the length is presented in Figure 4.

The thread three-dimensional model for the fabric with the change in the size of the cross-section is presented in Figure 5.

Conclusions

The results obtained allow to state that the technique developed for fabric simulation creates models taking into account most of the characteristics of thread behaviour in fabric. The further development of this direction is the simulation of changes in the form and size of threads associated with their unevenness. In this case, the use of data on defect distribution in the yarn of different raw materials and varieties is possible.

Several types of equations are developed – in parametric and explicit form. Each form may have its own advantages in some cases. In our opinion, the piecewise
function together with the equation in the explicit form allows to eliminate interpenetration between yarns in fabric as well as to simplify the model and conduct direct calculations of the coordinates of surface points.

Acknowledgements
This work was supported by the Ministry of Education, project No. 11.9627.2017/8.9, and was funded by RFBR according to research project No. 18-48-44002.

References
1. Barbero EJ, Trovillion J, Mayugo JA, Sikkel KK. Finite Element Modeling of Plain Weave Fabrics from Photomicrograph Measurements. Composite Structures 2006; 73: 41-52.
2. Hivet G, Boisse P. Consistent 3D Geometrical Model of Fabric Elementary Cell. Application to a Meshing Preprocessor for 3D Finite Element Analysis. Finite Elements in Analysis and Design 2005; 42: 25-42.
3. Xu H-Y, Jiang J-H, Chen N-L, Lin F-B, Shao H-Q. Finite Element Modeling for the Uni-Axial Tensile Behaviour of Metallic Warp-Knitted Fabric. FIBRES & TEXTILES in Eastern Europe 2018; 26, 2(128): 86-89. DOI: 10.5604/01.3001.0013.4467.
4. Sherburn M, Long A, Jones A, Crookston J, Brown L. Prediction of Textile Geometry Using an Energy Minimization Approach. Journal of Industrial Textiles 2012; 41, 4: 345-369.
5. Zhang A, Li X, Sha S, Jiang G. Warp-Knitted Fabrics Simulation Using Cardinal Spline and Recursive Rotation Frame. Journal of Engineered Fibers and Fabrics 2017; 12, 3: 29-38.
6. Barburski M, Masajits J. Modelling of the Change in Structure of Woven Fabric under Mechanical Loading. FIBRES & TEXTILES in Eastern Europe 2009; 17, 1(72): 39-44.
7. Szablewaski P.; Numerical Modelling of Geometrical Parameters of Textile Composites. FIBRES & TEXTILES in Eastern Europe 2008; 16, 6(71): 49-52.
8. Başer G. Modelling of Complex Fabric Structures by Methods of Computer Simulation. Journal of Textiles and Engineer 2015; 2, 22(98).
9. Kurbak A, Ekmen O. Basic Studies for Modeling Complex Weft Knitted Fabric Structures Part I: A Geometrical Model for Widthwise Curling of Plain Knitted Fabrics. Textile Research Journal 2008; 78, 3: 198-208.
10. Lomov SV, Gusakov A V, Huysmans G, Prodomou A, Verpoest I. Textile Geometry Preprocessor for Meso-Mechanical Models of Woven Composites. Composite Science and Technology 2000; 60: 2083-2095.
11. Lomov SV. Hierarchy of Textile Structures and Architecture of Fabrics Geometric Models. Textile Research Journal 2001; 71, 6: 534-543.
12. Guo K, Wang X, Wu Z, et al. Modelling and Simulation of Weft Knitted Fabric Based on Ball B-Spline Curves and Ho-oke’s Law/2015 International Conference on Cyber worlds (CW). IEEE, 2015: 86-89.
13. Zhang L-Z, Jiang G-M, Xiao X-G, Cong H-L. Three-dimensional Computer Simulation of Warp Knitted Spacer Fabric. FIBRES & TEXTILES in Eastern Europe 2012; 20, 3(02): 56-60.
14. Benetskaya VV, Seliverstov VYu, Kisel’ev AM, Rudovsky PN, Kiselyev MV. Modelling of Fabrics Structure. Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Tekhnologiya Tekstil’noi Promyshlennosti 2013; 3: 23-28.
15. Peirce FT. The Geometry of Cloth Structure. Journal of the Textile Institute 1937; 28: 3: 45-96.
16. Abtew MA, Loghin C, Cristian I, Bous-su F Bruniaux P, Chen Y, Wang L. Mouldability and its Recovery Properties of 2D Plain Woven P-aramid Fabric for Soft Body Armour Applications. FIBRES & TEXTILES in Eastern Europe 2019; 27, 6(138): 54-62. DOI: 10.5604/01.3001.0013.4468.
17. Penava Ž, Penava DŠ, Knežić Ž. Determination of the Impact of Weft Density on Fabric Dynamic Thickness under Tensile Forces. FIBRES & TEXTILES in Eastern Europe 2019; 27, 6(138): 46-53. DOI: 10.5604/01.3001.0013.4467.
18. Grechukhin AP, Seliverstov VYu. Mathematical Model of Plain Weave Fabric at Various Stages of Formation. FIBRES & TEXTILES in Eastern Europe 2014; 22, 5(107): 43-48.
19. Grechukhin AP, Seliverstov VYu, Rudovsky PN. The Method of Determination of Yarn Bending Rigidity and Friction Factor During Interaction of Fibers. The Journal of The Textile Institute 2017; 2067-2072 | Received 15 Jul 2015, Accepted 24 Mar 2017, Published online: 11 Apr 2017, DOI 10.1080/00405000.2017.1312676.