Research Article

Expression and Clinical Trends of Pct Combined with Lactate Clearance in Sepsis

Shigang Li, Zhe Chen, and Weifeng Yan

Beijing Haidian Hospital, Beijing 100080, China

Correspondence should be addressed to Shigang Li; lsg98106@163.com

Received 11 March 2022; Revised 27 April 2022; Accepted 5 May 2022; Published 30 May 2022

Academic Editor: Zhaoqi Dong

Copyright © 2022 Shigang Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. To study the expression and clinical trend of procalcitonin (Pct) + lactate clearance in sepsis. Methods. A total of 63 septic shock patients enrolled in our hospital from March 2018 to March 2021 were recruited as group A, and the 87 septic patients admitted during the same period were recruited as group B. The Pct, lactic acid, and lactate clearance were compared between the two groups. Results. The Pct and lactic acid in group A were higher than those in group B at the time of diagnosis, 1 d, 2 d, and 3 d after treatment, but the lactate clearance rate at 1 d, 2 d, and 3 d after treatment was lower than that in group B (P < 0.05). The Pct and lactate at the time of diagnosis, 1 d, 2 d, and 3 d after treatment in the good prognosis group were lower than those in the poor prognosis group, but the lactate clearance rate at 1 d, 2 d, and 3 d after treatment was higher than that in the poor prognosis group (P < 0.05). Disease severity and prognosis were positively correlated with Pct and lactate, but negatively correlated with lactate clearance rate (P < 0.05). Conclusions. Pct and lactate clearance rate might serve as accurate predictors of the severity of sepsis and prognosis. It merits promotion in clinical setting.

1. Introduction

Sepsis, as a common clinical systemic inflammatory response syndrome, is one of the acute and critical illnesses. It is often triggered by the damaged circulatory system caused by infections, resulting in hypoperfusion of tissues and multiple organ failure. Septic shock is a common and severe type of sepsis that complicates with circulatory and cell metabolism disorders. Delayed detection and treatment might lead to life-threatening conditions [1, 2]. Statistics show that the septic shock-related death is up to 30–70% [3]. Hence, it is of great significance to seek an effective means to assess the severity and prognosis of the disease. Despite the wide use of the sequential organ failure assessment (SOFA) in clinical evaluation, its application is restricted due to multiple scoring items, time-consuming properties, and susceptibility to subjective factors. A cascade of evidence has confirmed that inflammatory markers such as procalcitonin (Pct), lactate, and lactate clearance rate are linked to the disease, and their levels reflect the patient’s tissue perfusion and infection, yet its underlying mechanism is poorly understood by now [4, 5]. According to the Chinese Sepsis Guidelines in 2014, sepsis is categorized into sepsis, severe sepsis, and septic shock according to the severity of the disease [6]. The guidelines recommend the use of Pct, C-reactive protein, IL-6, and other inflammatory factors as markers of disease progression in patients with sepsis. Blood lactate is a product of glucose metabolism, and its subsequent metabolism is highly dependent on oxygen. If the tissue perfusion is low and oxygen supply is insufficient, its metabolic efficiency will be seriously affected [7]. In patients with sepsis, due to the systemic inflammatory response, the direct response indicators of the severity of the disease are closely related to the level of tissue perfusion and oxygen supply [8]. Armed with this knowledge, blood lactate, and Pct were used as markers for the evaluation of the condition and prognosis of patients with sepsis in the present study, and their feasibility was analyzed from the trend. Herein, this study was conducted to investigate the expression and clinical trends of Pct combined with lactate clearance in sepsis.
2. Materials and Methods

2.1. Baseline Data. A total of 63 septic shock patients enrolled in our hospital from March 2018 to March 2021 were selected as group A, and the 87 septic patients admitted during the same period were recruited as group B. Group A had 33 males and 30 females, aged 36–74 years, with an average age of (51.26 ± 3.28) years; group B had 46 males and 41 females, aged 34–72 years, with an average age of (51.77 ± 3.51) years. The baseline data in the two groups were well balanced.

2.2. Inclusion and Exclusion Criteria

2.2.1. Inclusion Criteria. Inclusion criteria were as follows: (1) patients who met the diagnosis criteria in the Chinese Guidelines for Emergency Treatment of Sepsis/Septic Shock [6]; patients who presented with fever or hypothermia, increased heart rate, shortness of breath, poor mental status, hyperglycemia, inflammatory markers, hemodynamic changes, organ failure, hypotension or (and) lactate clearance >1 mmol/L or (and) adequate fluid resuscitation, urine output ≥0.5 ml/(kg·h) for at least 2 hours, or (and) acute lung injury not caused by pneumonia and PaO2/FiO2 < 250 mmHg, or (and) acute lung injury due to pneumonia and PaO2/FiO2 < 200 mmHg, or (and) serum creatinine level >176.8 μmol/L, or (and) bilirubin >34.2 μmol/L, or (and) platelet count <100 × 10⁹/L or (and) coagulation disorder, etc. and confirmed by examinations; (2) patients who signed informed consent, and the study was approved by the Ethics Committee of Beijing Haidian Hospital, No.HD7703; and (3) patients who had complete medical records and did not withdraw from the trial midway.

2.2.2. Exclusion Criteria. Exclusion criteria were as follows: (1) patients with neurological diseases, malignant tumors, hematological diseases, and urinary system diseases; (2) the survival was less than 2 weeks; and (3) nervous system diseases, etc., that affected the assessment of prognosis.

2.3. Methods. The cubital venous blood (4 ml) was drawn in the morning, centrifuged at 4000 r/min for 10 min, isolated, and stored at −20°C for testing. A chemiluminescence analyzer (German Brahms company, LuematLB-9507) and supporting reagents were used to measure Pct in strict accordance with the instructions; a blood gas analyzer (Siemens RAPIDPoint 500) was used to measure lactate strictly in accordance with the enzyme electrode method; lactate clearance rate = (lactate at diagnosis – lactate after treatment)/lactate at diagnosis * 100.00%.

After diagnosis, both groups received targeted anti-infection, fluid resuscitation, anticoagulation, mechanical ventilation, vasoactive drugs, renal replacement, and other treatments.

2.4. Support Treatment. The Chinese medicine Fusu Decoction (provided by Beijing Haidian Hospital preparation room, 0.4 g/capsule) was given for support treatment, 4 capsules each time, orally or by nasal feeding after dissolving in cold water, 3 times a day; the drug composition is American ginseng, astragalus, raw rhubarb, gypsum, Ophiopogon japonicus, salvia, red peony, etc.

2.5. Outcomes

(1) The Pct and lactate at diagnosis, 1 d, 2 d, and 3 d after treatment, and the lactate clearance rate at 1 d, 2 d, and 3 d after treatment in groups A and B were compared.

(2) 150 patients were followed up, of whom 133 survivors were classified as the good prognosis group, and the other 17 deceased patients were classified as the poor prognosis group. Lactic acid and lactate clearance at 1 d, 2 d, and 3 d after treatment were compared.

(3) Pearson analysis was performed to analyze the correlation between Pct, lactate, lactate clearance rate, and disease severity and prognosis.

2.6. Statistical Analysis. Data were expressed as the mean ± standard deviation and cases (%). Statistical analysis was performed using SPSS 22.0 (IBM, Armonk, NY, USA). Differences between groups were compared using Student’s t-test and chi-square tests, and Pearson analysis was performed to analyze the correlation. A P value < 0.05 was considered statistically significant.

3. Results

3.1. The Pct, Lactate, and Lactate Clearance Rates of the Two Groups at Different Times. The Pct and lactate acid in group A were higher than those in group B at the time of diagnosis, 1 d, 2 d, and 3 d after treatment, but the lactate clearance rate at 1 d, 2 d, and 3 d after treatment was lower than that in group B (P < 0.05) (see Table 1).

3.2. The Pct, Lactate, and Lactate Clearance in Patients with Different Prognosis. The Pct and lactate at the time of diagnosis, 1 d, 2 d, and 3 d after treatment in the good prognosis group were lower than those in the poor prognosis group, but the lactate clearance rate at 1 d, 2 d, and 3 d after treatment was higher than that in the poor prognosis group (P < 0.05) (see Table 2).

3.3. Correlation of Pct, Lactate, and Lactate Clearance Rate with Disease Severity and Prognosis. Disease severity and prognosis were positively correlated with Pct and lactate, but negatively correlated with lactate clearance rate (P < 0.05) (see Table 3).

4. Discussion

Recent years witnessed a stubbornly high prevalence and fatality rate of sepsis worldwide, with the global figure exceeding 19 million per year, and the death toll of 5.3 million
Groups	Pct (ng/ml)	Lactate (mmol/L)	Lactate clearance rates (%)									
	At diagnosis	1d after treatment	2d after treatment	3d after treatment	At diagnosis	1d after treatment	2d after treatment	3d after treatment	At diagnosis	1d after treatment	2d after treatment	3d after treatment
Group A (n=63)	3.12 ± 1.03	3.47 ± 1.14	3.88 ± 1.23	3.40 ± 1.13	3.26 ± 1.07	3.20 ± 1.05	6.35 ± 2.10	8.87 ± 2.94	10.24 ± 3.40			
	4.10 ± 1.35	3.74 ± 1.23	3.88 ± 1.23	3.40 ± 1.13	3.26 ± 1.07	3.20 ± 1.05	6.35 ± 2.10	8.87 ± 2.94	10.24 ± 3.40			
	3.88 ± 1.23	3.40 ± 1.13	3.26 ± 1.07	3.20 ± 1.05	6.35 ± 2.10	8.87 ± 2.94	10.24 ± 3.40	12.14 ± 3.40	15.89 ± 5.26			
t	3.233	4.157	5.813	9.355	9.970	10.073	10.310	6.293	3.067			
P	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001			
Groups	Pct (ng/ml)	Lactate (mmol/L)	Lactate clearance (%)									
-----------------------------	-------------	-------------------	-----------------------									
	At diagnosis	1 d after treatment	2 d after treatment	3 d after treatment	At diagnosis	1 d after treatment	2 d after treatment	3 d after treatment	1 d after treatment	2 d after treatment	3 d after treatment	
Good prognosis group (n = 133)	2.38 ± 0.78	2.17 ± 0.70	2.03 ± 0.66	1.94 ± 0.62	3.06 ± 1.01	3.02 ± 0.96	2.95 ± 0.93	2.80 ± 0.91	7.03 ± 2.30	9.58 ± 3.13	10.97 ± 3.64	
Poor prognosis group (n = 17)	3.95 ± 1.30	9.69 ± 3.22	3.55 ± 1.13	4.07 ± 1.33	3.65 ± 1.20	3.70 ± 1.22	3.84 ± 1.27	3.72 ± 1.22	−1.35 ± 0.44	−3.52 ± 1.16	−4.06 ± 1.35	
t	7.157	23.391	8.133	11.316	2.219	2.663	3.553	3.766	14.945	7.894	7.740	
P	0.001	0.001	0.001	0.001	0.028	0.009	0.001	0.001	0.001	0.001	0.001	
T able 3: Correlation between Pct, lactate, lactate clearance rate, and disease severity and prognosis.

Disease severity	Prognosis			
	r	P	r	P
Pct	0.698	0.005	0.763	0.002
Lactate	0.724	0.011	0.801	0.014
Lactate clearance rate	−0.559	0.003	−0.725	0.010

[7]. If timely diagnosis and treatment were not provided, the disease would progress even to shock that is a life-threatening condition. Therefore, clinical endeavors are urgent to enhance diagnosis and treatment of diseases by seeking more convenient, faster, and more accurate indicators [8, 9].

Pct, an immunoregulatory protein, is a common indicator for severe infection and is of tremendous significance in evaluating the outcome of infection; lactate, as a compound, plays a role in various physiological mechanisms and is strongly related to inflammatory responses [10]. However, there are few reports on the correlation between Pct and lactate clearance rate and diseases. This study showed that the Pct and lactic acid in group A were higher than those in group B at the time of diagnosis, 1 d, 2 d, and 3 d after treatment, but the lactate clearance rate at 1 d, 2 d, and 3 d after treatment was lower than that in group B. The Pct and lactate at the time of diagnosis, 1 d, 2 d, and 3 d after treatment in the good prognosis group were lower than those in the poor prognosis group, but the lactate clearance rate at 1 d, 2 d, and 3 d after treatment was higher than that in the poor prognosis group. Disease severity and prognosis were positively correlated with Pct and lactate but negatively correlated with lactate clearance rate. All these suggest that with the aggravation of the disease, the Pct level of patients increases, and the lactate clearance rate decreases. In addition, compared with the dead patients, the Pct of the survivors is lower and the lactate clearance rate is higher, suggesting that the Pct and lactate clearance rate might be a key indicator for evaluating disease severity and prognosis. Due to hypoxia and tissue hypoperfusion in patients with sepsis, the anaerobic glycolysis of glucose increases and the production of lactic acid increases significantly. When lactic acid exceeds 2 mmol/L, it goes beyond the liver’s clearance capacity, which can cause lactic acid accumulation and hyperlactatemia that are important indicators of hypoxia and shock; when it exceeds 4 mmol/L, the mortality rate of patients with sepsis is significantly increased [10, 11]. Therefore, dynamic monitoring of blood lactate level and calculation of lactate clearance rate are of great significance for evaluating the severity of the disease and judging the prognosis.

As previously noted, lactic acid is a product of glucose metabolism, and the lactic acid secreted by glucose metabolism can be decomposed into other substances in sufficient oxygen supply conditions, so the lactic acid level is relatively low under normal circumstances [11–13]. Once acute and critical illness-related hypoxia occurs, pyruvate after glucose metabolism could hardly complete the metabolic process due to hypoxia. Lactic acid accordingly accumulates in the body and increases the risk of lactic acidosis, and the lactate clearance rate indicates the oxygen supply and consumption of the body [14–16]. Pct, a precursor of calcitonin, is composed of multiple amino acids and tends to increase once exposed to bacterial infection and is correlated with the severity of the disease. Hence its expression reflects the infection status [17, 18]. Moreover, the traditional Chinese medicine compound preparation for the treatment of sepsis-Fusude decoction in the present study is mainly composed of American ginseng, Astragalus, Ophiopogon japonicus, Scrophulariaceae, gypsum, Anemarrhena, licorice, Coptis chinensis, buffalo horn, Salvia miltiorrhiza, red peony root, rehmannia glutinosa, forsythia, pale bamboo leaves, and rhubarb. The combination of various medicines can clear the unhealthy qi and restore yin and yang dynamic balance.

5. Conclusion

Pct and lactate clearance rate can accurately predict the severity of sepsis and evaluate the prognosis. It merits promotion in clinical setting.

Data Availability

The datasets used during the present study are available from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

References

[1] K. Miyamoto, T. Nakashima, N. Shima et al., “Effect of dexmedetomidine on lactate clearance in patients with septic shock: a subanalysis of a multicenter randomized controlled trial,” Shock, vol. 50, no. 2, pp. 162–166, 2018.
[2] F. Jiang and L. Zhou, “The value of procalcitonin, blood lactic acid and lactic acid clearance rate for disease assessment and prognosis prediction in patients with sepsis,” China Journal of Health Inspection, vol. 31, no. 15, pp. 1881–1884, 2021.
[3] C. Wang, L. Tang, and H. Xu, “Dynamic changes of plasma procalcitonin and lactate concentrations in elderly patients with sepsis and their prognostic significance,” Tongji University Journal (Medical Edition), vol. 39, no. 1, pp. 89–93, 2018.
[4] C. An, X. Ze, and S. Tang, “Evaluation value of NT-proBNP, CRP, PCT in the condition and prognosis of patients with sepsis and septic shock,” China Medical Records, vol. 21, no. 4, pp. 98–102, 2020.
[5] E.W. Covington, S. Eure, D. Carroll, and C. Freeman, “Impact of procalcitonin monitoring on duration of antibiotics in patients with sepsis and/or pneumonia in a community hospital setting,” Journal of Pharmacy Technology: Official Publication of the Association of Pharmacy Technicians, vol. 34, no. 3, pp. 109–116, 2018.
[6] Emergency Physician Branch of Chinese Medical Doctor Association, “Shock and sepsis professional committee of Chinese research hospital association. guidelines for emergency treatment of sepsis/septic shock in China (2018),” Infection, Inflammation, Repair, vol. 20, no. 1, pp. 3–22, 2019.
[7] J. Heng and D. Wu, “Analysis of the prognostic value of HBP, NT-proBNP combined with SOFA score in predicting septic shock,” Chinese Journal of Emergency Resuscitation and Disaster Medicine, vol. 16, no. 9, pp. 1020–1023, 2021.

[8] Y. Yin, B. Dong, and L. Jiang, “Procalcitonin combined with blood lactate level predicts the prognosis of patients with septic shock,” Chinese Journal of Infection and Chemotherapy, vol. 19, no. 6, pp. 600–604, 2019.

[9] A. Yang and L. Zhao, “Relationship between blood red blood cell distribution width and lactate level and prognosis in elderly patients with septic shock,” Chinese Journal of Gerontology, vol. 39, no. 20, pp. 5038–5041, 2019.

[10] K. E. DeSear, P. Thompson-Leduc, T. C. Van Schoonveld et al., “Decreased antibiotic exposure using a procalcitonin protocol for respiratory infections and sepsis in US community hospitals (procommunity),” Current Medical Research and Opinion, vol. 37, no. 5, pp. 727–733, 2021.

[11] B. Yue, “Application of venous-arterial carbon dioxide partial pressure difference combined with lactate clearance in volume monitoring of patients with septic shock,” Journal of Practical Medicine, vol. 37, no. 10, pp. 1322–1327, 2021.

[12] S. Gao, Y. Wu, and M. Gao, “The evaluation value of blood lactate and lactate clearance rate in the prognosis of patients with severe sepsis,” Hainan Medicine, vol. 29, no. 12, pp. 1642–1644, 2018.

[13] X. Li, Y. Liu, and Y. Lv, “Lactate clearance rate, red blood cell distribution width and blood lactate level in patients with sepsis and their relationship with prognosis,” China Modern Medical Journal, vol. 30, no. 12, pp. 22–26, 2020.

[14] I. Ilias, S. Apollonatou, D. A. Vassiliadi et al., “Adipose tissue lactate clearance but not blood lactate clearance is associated with clinical outcome in sepsis or septic shock during the post-resuscitation period,” Metabolites, vol. 8, no. 2, p. 28, 2018.

[15] C. Sun, W. Jingjing, and Z. Jin, “The value of serum calcium level combined with procalcitonin clearance rate on short-term prognosis of ICU patients with septic shock,” Journal of Practical Medicine, vol. 37, no. 7, pp. 899–902, 2021.

[16] M. Zhao and M. Duan, “The clinical significance of combined detection of blood lactate and lactate clearance and procalcitonin in the assessment of disease severity and prognosis in patients with sepsis,” China Critical Care Medicine, vol. 32, no. 4, pp. 449–453, 2020.

[17] N. Cui, H. Zhang, Z. Chen, and Z. Yu, “Prognostic significance of PCT and CRP evaluation for adult ICU patients with sepsis and septic shock: retrospective analysis of 59 cases,” Journal of International Medical Research, vol. 47, no. 4, pp. 1573–1579, 2019.

[18] D. Wu, S. Wang, and J. Zhou, “The relationship between blood lactate, red blood cell distribution width and clinical prognosis in elderly patients with septic shock,” Laboratory Medicine, vol. 36, no. 9, pp. 929–931, 2021.