Variation of Foliar Calcium and Magnesium in Six Fern Species at Different Elevations

L Salazar1, M Páez-Vacas1, M Kessler2, J Kluge3 and J Homeier4

1 Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias del Medio Ambiente, Universidad Tecnológica Indoamérica, Machala y Sabanilla, Quito, Ecuador
2 Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
3 Faculty of Geography Philipps University of Marburg, Deutschhausstrasse 10, 35032 Marburg, Germany
4 Albrecht-von-Haller-Institute of Plant Sciences, Georg August University Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany

*Email: laurasalazar@uti.edu.ec

Abstract. Several efforts have been made to understand nutrient ecology worldwide. However, Ca and Mg have received less attention, despite their function in important biological processes of plants, such as growth and photosynthesis. Few studies focus on fern nutrient ecology of foliar Ca and Mg. Moreover, none has investigated the variation of these elements along elevational gradients. Herein, we analysed if there were differences of the foliar Ca and Mg contents at each elevation. We found significant differences at the interspecific and intraspecific level variation of foliar Ca and Mg contents at each elevation. In terms of the relationship between elevation and nutrient content, we found that two species showed contrasting trends of foliar Ca with elevation. Content of Ca decreased with elevation in Adiantum humile, while it increased in Maxonia apiifolia. Regarding Mg, it decreased with elevation in Adiantum humile, Thelypteris biformata and Maxonia apiifolia. However, these results were not statistically supported. An exhaustive sampling effort will provide insight on variation of foliar Ca and Mg along tropical elevation gradients and the factors influencing patterns of variation.

1. Introduction
Ferns are widely distributed globally, but their diversity peak is found in humid tropical regions [1]. Most studies on ferns in elevational gradients are focused on studying the distribution of species, diversity patterns and the causes of these [2-4]. In contrast, the nutrient ecology of ferns along elevational gradients has received little attention. There are two studies, but they are concentrated in foliar contents of carbon (C), nitrogen (N), and phosphorus (P) [5,6]. Wegner et al. [5] found that foliar C:N of fern communities decreased with elevation. However, at the specific level, when two species of the genus Elaphoglossum were analyzed, they did not show any pattern with elevation [5]. This lack of pattern in foliar C:N with elevation was also found in epiphytic ferns [6]. Regarding P, Cardelús and

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd
Mack [6] found the lack of pattern with elevation, but tree ferns displayed highest values than epiphyte ferns.

Patterns of variation in concentration of Ca and Mg have received less attention and no studies on these elements were found in elevational gradients. Ca is known to be involved in plant growth and developmental processes [7]. While Mg plays an important role in the photosynthesis process since it regulates the activity of key photosynthetic enzymes [8]. Amatangelo and Vitousek [9] compared the difference of foliar Ca and Mg concentrations between ferns and woody dicots in several soil types and found that ferns have lower concentration of Ca, but Mg concentrations are similar. Funk and colleagues [10] studied the role of Ca in transpiration rate, cation exchange capacity, and leaching loss in co-occurring ferns and angiosperm. They found no difference in transpiration rates and leaching loss between the two group of plants, but cation exchange capacity is not relative between ferns and angiosperms.

Due to the lack of information on the foliar Ca and Mg contents in ferns along elevational gradients, herein we evaluated six species of ferns to determine if there are differences of the foliar Ca and Mg contents between species and different elevations.

2. Material and Methods

2.1. Study Area

We sampled 8 sites located every 500 m along a tropical elevation gradient in Ecuador, from lowland forests at 400 m to forest patches close to the timberline at 4000 m asl. (Figure 1). Temperature regularly declines with elevation; the lapse rate was found to be 0.56°C per 100m elevational distance [11]. Humidity Index has a unimodal relation with elevation and the highest values of precipitation are found at 2000 m [11].

At each elevation, we sampled 3 plots of 400 m², with a total of 24 plots. We collected species separately for terrestrial and epiphytic ferns as described in Salazar et al. (2015) [11]. All species were deposited at the herbarium of the Pontificia Universidad Católica del Ecuador (QCA).

2.2. Selection of Species and Leaf Collections

We found a total of 91 species of terrestrial ferns. However, for this work, we chose the species present in at least three elevations. The six species with these characteristics are shown in the Table 1. For the chemical analyzes of the foliar Ca and Mg of each species, we collected at least one leaf per species at every elevation. The chemical analyses were performed in the laboratory at the University of Göttingen.

Figure 1. Map of the study area. Positions of all sites along the elevational gradient are indicated with green stars.
Table 1. Species of terrestrial ferns recorded in at least three elevations, detailed in the second column.

Species	Elevation (m asl)
Adiantum humile	1500, 1000, 500
Cyathea tortuosa	2500, 2000, 1000, 500
Cyclodium meniscioides	1500, 1000, 500
Danaea moritziana	2500, 2000, 1500
Maxonia apiifolia	2000, 1500, 1000
Thelypteris bifformata	2000, 1500, 1000

2.3. Statistical Analyses
The relationships between foliar Ca and Mg contents and elevation were analyzed using ANOVA and linear regressions. All statistical analyses and graphics were carried out with the software environment R (version 4.0.2, R Core Team, 2020).

3. Results and Discussions

3.1. Variation of Foliar Ca and Mg
We found interspecific and intraspecific variation of foliar Ca and Mg contents at each elevation (ANOVA for foliar Ca content, F = 2.728, p = 0.0484, for foliar Mg content, F= 5.16, p= 0.00276). This variation has also been reported in other studies [9,10]. However, it is necessary an exhaustive sampling to reach stronger conclusions. The values of foliar Ca and Mg are detailed in the Table 2.

Table 2. Values of foliar Ca and Mg of the six species at each elevation.

Elevation (m a.s.l.)	Species	Foliar Ca mg/g	Foliar Mg mg/g
1500	Adiantum humile	1.05891862	1.74786507
1500	Adiantum humile	2.39702106	2.01104746
1500	Adiantum humile	0.80795839	1.07138998
1000	Adiantum humile	0.73366302	0.88927031
500	Adiantum humile	6.07394006	3.26477101
2500	Cyathea tortuosa	2.46572699	2.02948454
2500	Cyathea tortuosa	1.40729444	1.46154618
2000	Cyathea tortuosa	4.38467148	4.02908137
2000	Cyathea tortuosa	6.32438879	4.60959073
2000	Cyathea tortuosa	2.95832211	3.18503064
2000	Cyathea tortuosa	3.48140585	3.09545778
1000	Cyathea tortuosa	3.32524119	2.23372312
1000	Cyathea tortuosa	2.33007346	2.36771954
1000	Cyathea tortuosa	2.2254804	1.67648292
1000	Cyathea tortuosa	2.42166055	1.54681039
1000	Cyathea tortuosa	1.84872609	1.57580737
500	Cyathea tortuosa	1.94389674	2.15456601
500	Cyclodium meniscioides	2.13794253	
1000	Cyclodium meniscioides	0.0070038	1.85268411
1500	Cyclodium meniscioides	6.17547017	2.33268806
3.2. Variation of Foliar Ca and Mg at the Different Elevations

Our linear regressions analyses revealed that no species present a significant relationship between elevation and foliar Ca and Mg content. This might be due to small sample sizes, and/or that the species are not widely distributed along the elevation gradient. The latter would show that although Ca and Mg are important elements for growth [7,8], it does not influence the distribution of these species. Therefore, other factors such as temperature or humidity might be more prominent in determining the distribution of the species in the altitudinal gradient [11].

Nonetheless, we found contrasting trends in different species regarding the foliar contents of Ca and Mg along elevation. Foliar Ca contents showed a positive trend with elevation in only two species, although with opposite direction: *Adiantum humile* and *Maxonia apiifolia* (Figure 2a, 2d). In *Adiantum humile*, concentration of foliar Ca decreased with elevation ($p = 0.12$, adjusted $R^2 = 0.59$), whereas in *Maxonia apiifolia*, it increased with elevation ($p = 0.36$, adjusted $R^2 = 0.27$). We did not observe any trends in *Cyathea tortuosa*, *Danaea moritziana* and *Thelypteris biformata* (Figure 2b, 2c, 2d). Regarding foliar Mg contents, we observed a negative trend with elevation in two species: *Adiantum humile* and *Thelypteris biformata* ($p = 0.28$, adjusted $R^2 = 0.36$ for *A. humile*; $p = 0.4$, adjusted $R^2 = 0.6$ for *T. biformata*; Figure 2a). We found a positive relation with elevation in *Maxonia apiifolia* ($p = 0.27$, adjusted $R^2 = 0.36$; Figure 3e, 3f). No trends were observed in *Cyathea tortuosa*, *Cyclodium meniscioides* or *Danaea moritziana* (Figures 3b, 3c, 3d).

Elevation	Species	Ca Concentration	Mg Concentration
1500	*Cyclodium meniscioides*	0.66693191	3.50155633
2500	*Danaea moritziana*	3.3337622	2.4362301
2000	*Danaea moritziana*	1.9498227	1.97793159
2000	*Danaea moritziana*	7.59616001	5.21692282
1500	*Danaea moritziana*	3.3337622	2.4362301
1500	*Danaea moritziana*	1.9498227	1.97793159
1500	*Danaea moritziana*	1.9498227	1.97793159
2000	*Danaea moritziana*	1.9498227	1.97793159
2000	*Maxonia apiifolia*	5.05312263	5.91451378
2000	*Maxonia apiifolia*	0.25588898	2.4731991
1500	*Maxonia apiifolia*	1.84117246	4.14308842
1500	*Maxonia apiifolia*	1.18746498	3.90335824
1000	*Maxonia apiifolia*	0.06801711	1.26950231
2000	*Thelypteris biformata*	4.14738146	1.82839331
1500	*Thelypteris biformata*	2.96566111	1.71265563
1000	*Thelypteris biformata*	4.58240968	2.60212816
Figure 2. Variation of foliar Calcium of 5 species of ferns between different elevational levels.

Figure 3. Variation of foliar Magnesium of 6 species of ferns between different elevational levels.
4. Conclusions
To our knowledge, this is the first study to evaluate foliar Ca and Mg of tropical fern species along an elevational gradient. We found differences in the foliar content of this elements within and between species at different elevations. Although, we found interesting trends of variation along elevation in the studied species, these were not significant. We consider that a greater sampling effort, especially of the species that showed an apparent trend with elevation will provide more robust insights on how it varies across elevations. Furthermore, it would be also interesting to study the relation between growth of several species of ferns with the content of foliar Ca and Mg, and the availability of Ca and Mg in the soil.

Acknowledgments
We thank D. Torres, L. Cotugno, R. Güdel, E. Gortaire, W. Santillán, W. Pérez and people from the local communities for their valuable help, support, and enthusiasm during the fieldtrips. We thank institutional support of Ministerio del Ambiente y Agua of Ecuador (MAAE).

References
[1] Given D R 1993 Changing aspects of endemism and endangerment in Pteridophyta Journal of Biogeography 1993 293-302
[2] Bhattarai K R, Vetaas O R, and Grytnes J A 2004 Fern species richness along a central Himalayan elevational gradient, Nepal Journal of Biogeography, 31(3) 389-400
[3] Kessler M, Kluge J, Hemp A, and Ohlemüller R 2011 A global comparative analysis of elevational species richness patterns of ferns Global Ecology and Biogeography 20(6) 868-880
[4] Watkins Jr J E, Cardelús C, Colwell R K, and Moran R C 2006 Species richness and distribution of ferns along an elevational gradient in Costa Rica American Journal of Botany 93(1) 73-83
[5] Wegner C, Wunderlich M, Kessler M, and Schawe M 2003 Foliar C: N Ratio of Ferns along an Andean Elevational Gradient1 Biotropica 35(4) 486-490
[6] Cardelús C L, and Mack M C 2010 The nutrient status of epiphytes and their host trees along an elevational gradient in Costa Rica Plant Ecology 207(1) 25-37
[7] Huang D, Gong X, Liu Y, Zeng G, Lai C, Bashir H, and Wan J 2017 Effects of calcium at toxic concentrations of cadmium in plants Planta 245(5) 863-873
[8] Shaul O 2002 Magnesium transport and function in plants: the tip of the iceberg Biometals 15(3) 307-321
[9] Amatangelo K L, and Vitousek P M 2008 Stoichiometry of ferns in Hawaii: Implications for nutrient cycling Oecologia 157(4) 619-627
[10] Funk J L, and Amatangelo K L 2013 Physiological mechanisms drive differing foliar calcium content in ferns and angiosperms Oecologia 173(1) 23-32
[11] Salazar L, Homeier J, Kessler M, Abrahamczyk S, Lehnert M, Krömer T, and Kluge J 2015 Diversity patterns of ferns along elevational gradients in Andean tropical forests Plant Ecology & Diversity 8(1) 13-24