Asymptotic properties of the derivative of self-intersection local time of fractional Brownian motion

ARTURO JARAMILLO AND DAVID NUALART∗
Department of Mathematics
The University of Kansas
Lawrence, Kansas, 66045

Abstract
Let \(\{ B_t \}_{t \geq 0} \) be a fractional Brownian motion with Hurst parameter \(\frac{2}{3} < H < 1 \). We prove that the approximation of the derivative of self-intersection local time, defined as

\[
\alpha_\varepsilon = \int_0^T \int_0^t p_\varepsilon'(B_t - B_s)dsdt,
\]

where \(p_\varepsilon(x) \) is the heat kernel, satisfies a central limit theorem when renormalized by \(\varepsilon^{\frac{3}{2} - \frac{1}{2H}} \). We prove as well that for \(q \geq 2 \), the \(q \)-th chaotic component of \(\alpha_\varepsilon \) converges in \(L^2 \) when \(\frac{2}{3} < H < \frac{3}{4} \), and satisfies a central limit theorem when renormalized by a multiplicative factor \(\varepsilon^{1 - \frac{3}{4q}} \) in the case \(\frac{3}{4} < H < \frac{4}{3q-2} \).

Keywords: Fractional Brownian motion, self-intersection local time, Wiener chaos expansion, central limit theorem.
Mathematical Subject Classification: 60G22, 60F05.

1 Introduction
Let \(B = \{ B_t \}_{t \geq 0} \) be a one-dimensional fractional Brownian motion of Hurst parameter \(H \in (0, 1) \). Fix \(T > 0 \). The self-intersection local time of \(B \), formally defined by

\[
I(y) := \int_0^T \int_0^t \delta(B_t - B_s - y)dsdt,
\]

was first studied by Rosen in [11] in the planar case and it was further investigated using techniques from Malliavin calculus by Hu and Nualart in [5]. In particular, in [5] it is proved that for a \(d \)-dimensional fractional Brownian motion, \(I(0) \) exists in \(L^2 \) whenever the Hurst parameter \(H \) satisfies \(H < \frac{1}{d} \).

∗D. Nualart is supported by the NSF grant DMS1512891 and the ARO grant FED0070445
Motivated by spatial integrals with respect to local time, developed by Rogers and Walsh in [10], Rosen introduced in [12] a formal derivative of $I(y)$, in the one-dimensional Brownian case, denoted by

$$\alpha(y) := d\frac{I}{dy}(y) = - \int_0^T \int_0^t \delta'(B_t - B_s - y)dsdt.$$

The random variable $\alpha := \alpha(0)$ is called the derivative of the self-intersection local time at zero, and is equal to the limit in L^2 of

$$\alpha_\varepsilon := \int_0^T \int_0^t \rho_\varepsilon'(B_t - B_s)dsdt, \quad (1.1)$$

where $\rho_\varepsilon(x) := (2\pi\varepsilon)^{-\frac{1}{2}} e^{-x^2/2\varepsilon}$. This random variable was subsequently used by Hu and Nualart [9], to study the asymptotic properties of the third spatial moment of the Brownian local time. In [8], Markowsky gave an alternative proof the existence of such limit by using Wiener chaos expansion.

Jung and Markowsky extended this result in [7] to the case $0 < H < \frac{2}{3}$ and conjectured that for the case $H > \frac{2}{3}$, $\varepsilon^{-\gamma(H)}\alpha_\varepsilon$ converges in law to a Gaussian distribution for some suitable constant $\gamma(H) > 0$, and at the critical point $H = \frac{2}{3}$, the variable $\lim_{\varepsilon \to 0} (1/\varepsilon)^{-\gamma} \alpha_\varepsilon$ converges in law to a Gaussian distribution for some $\gamma > 0$.

Let $\mathcal{N}(0, \gamma)$ denote a centered Gaussian random variable with variance γ. The primary goal of this paper is to analyze the behavior of the law of α_ε as $\varepsilon \to 0$, when $\frac{2}{3} < H < 1$. We will prove that when $\frac{2}{3} < H < 1$,

$$\varepsilon^{\frac{3}{2} - \frac{1}{3}H} \alpha_\varepsilon \xrightarrow{\text{Law}} \mathcal{N}(0, \sigma^2), \quad \text{when} \quad \varepsilon \to 0,$$

for some constant σ^2 that will be specified later (see Theorem 4.1). Moreover, we will prove that for every $q \geq 2$ and $\frac{2}{3} < H < \frac{2}{3} + \frac{q-3}{q-2}$, $\lim_{\varepsilon \to 0} J_q[\alpha_\varepsilon]$ exists in L^2, where J_q denotes the projection on the q-th Wiener chaos (see Theorem 4.2), while in the case $\frac{2}{3} < H < \frac{q-3}{q-2}$, the chaotic components $J_q[\alpha_\varepsilon]$ of α_ε satisfy

$$\varepsilon^{1 - \frac{1}{3q}} J_q[\alpha_\varepsilon] \xrightarrow{\text{Law}} \mathcal{N}(0, \sigma^2_q), \quad \text{when} \quad \varepsilon \to 0,$$

for some constant σ^2_q that will be specified latter (see Theorem 4.3). The proof of the central limit theorem for $\varepsilon^{\frac{3}{2} - \frac{1}{3}H} \alpha_\varepsilon$ follows easily from estimations of the L^2-norm of the chaotic components of α_ε, while the proof of the central limit theorem for $\varepsilon^{1 - \frac{1}{3q}} J_q[\alpha_\varepsilon]$ relies on the multivariate version of the fourth moment theorem (see [3, 9]), as well as the a continuos version of the Breuer-Major theorem (11) proved in [2]. The behavior of α_ε in the critical case $H = \frac{2}{3}$, and the behavior of $J_q[\alpha_\varepsilon]$ in the critical cases $H = \frac{2}{3}$, $H = \frac{3}{4}$ and $H = \frac{4q-3}{4q-2}$ seems more involved and will not be discussed in this paper.

It is surprising to remark that the limit behavior of the chaotic components of α_ε is different from that of the whole sequence. This phenomenon was observed, for instance, in the central limit theorem for the second spatial moment of Brownian local
time increments (see [4]). However, in this case the limit of the whole sequence is a mixture of Gaussian distributions, whereas in the present paper the normalization of \(\alpha_\varepsilon \) converges to a Gaussian law. In our case, the projection on the first chaos of \(\alpha_\varepsilon \) is the leading term and is responsible for the Gaussian limit of the whole sequence.

The paper is organized as follows. In Section 2 we present some preliminary results on the fractional Brownian motion and the chaotic decomposition of \(\alpha_\varepsilon \). In Section 3 we compute the asymptotic behavior of the variances of the normalizations of the chaotic components of \(\alpha_\varepsilon \) as \(\varepsilon \to 0 \). The asymptotic behavior of the law of \(\alpha_\varepsilon \) and its chaotic components is presented in section 4. Finally, some technical lemmas are proved in Section 5.

2 Preliminaries

2.1 Fractional Brownian motion

Throughout the paper, \(B = \{B_t\}_{t \geq 0} \) will denote a fractional Brownian motion with Hurst parameter \(H \in (0,1) \), defined on a probability space \((\Omega, \mathcal{F}, \mathbb{P})\). That is, \(B \) is a centered Gaussian process with covariance function

\[
\mathbb{E}[B_t B_s] = \frac{1}{2} (t^{2H} + s^{2H} - |t - s|^{2H}).
\]

We will denote by \(\mathcal{H} \) the Hilbert space obtained by taking the completion of the space of step functions endowed with the inner product

\[
\langle 1_{[a,b]}, 1_{[c,d]} \rangle \mathcal{H} := \mathbb{E}[(B_b - B_a)(B_d - B_c)].
\]

The mapping \(1_{[0,t]} \mapsto B_t \) can be extended to a linear isometry between \(\mathcal{H} \) and a Gaussian subspace of \(L^2(\Omega, \mathcal{F}, \mathbb{P}) \). We will denote by \(B(h) \) the image of \(h \in \mathcal{H} \) by this isometry. For any integer \(q \in \mathbb{N} \), we denote by \(\mathcal{H}^\otimes q \) and \(\mathcal{H}^\circ q \) the \(q \)th tensor product of \(\mathcal{H} \), and the \(q \)th symmetric tensor product of \(\mathcal{H} \), respectively. The \(q \)th Wiener chaos of \(L^2(\Omega, \mathcal{F}, \mathbb{P}) \), denoted by \(\mathcal{H}_q \), is the closed subspace of \(L^2(\Omega, \mathcal{F}, \mathbb{P}) \) generated by the variables \(\{H_q(B(h)), h \in \mathcal{H}, \|h\|_\mathcal{H} = 1\} \), where \(H_q \) is the \(q \)th Hermite polynomial, defined by

\[
H_q(x) := (-1)^q e^{x^2} \frac{d^q}{dx^q} e^{-x^2}.
\]

The mapping \(I_q(h^\otimes q) = H_q(B(h)) \) provides a linear isometry between \(\mathcal{H}^\otimes q \) (equipped with the norm \(\sqrt{q} \|\cdot\|_\mathcal{H}^\otimes q \)) and \(\mathcal{H}_q \) (equipped with the \(L^2 \)-norm).

2.2 Chaos decomposition for \(\alpha_\varepsilon \)

Proceeding as in [7] (also see [5]), we can determine the chaos decomposition of the random variable \(\alpha_\varepsilon \) defined in (1.1) as follows. First we write

\[
\alpha_\varepsilon = \int_0^T \int_0^t \alpha_{\varepsilon,s,t} ds dt,
\]

(2.1)
where $\alpha_{\varepsilon,s,t} := p'(B_t - B_s)$. We know that
\[
\alpha_{\varepsilon,s,t} = \sum_{q=1}^{\infty} I_{2q-1} (f_{2q-1,\varepsilon,s,t}),
\]
where
\[
f_{2q-1,\varepsilon,s,t}(x_1, \ldots, x_{2q-1}) := (-1)^q \beta_q (\varepsilon + (t - s)^2 H)^{-\frac{1}{2}} \prod_{j=1}^{2q-1} \mathbb{1}_{[a,t]}(x_j),
\]
and
\[
\beta_q := \frac{1}{2^{q-\frac{1}{2}} (q-1)! \sqrt{\pi}}
\]
As a consequence, the random variable α_{ε} has the chaos decomposition
\[
\alpha_{\varepsilon} = \sum_{q=1}^{\infty} I_{2q-1}(f_{2q-1,\varepsilon}),
\]
where
\[
f_{2q-1,\varepsilon}(x_1, \ldots, x_{2q-1}) := \int_{\mathcal{R}} f_{2q-1,\varepsilon,s,t}(x_1, \ldots, x_{2q-1}) ds dt,
\]
and
\[
\mathcal{R} := \{(s, t) \in \mathbb{R}_+^2 \mid s \leq t \leq T\}.
\]
Let $T, \varepsilon > 0$, $\frac{2}{3} < H < 1$, and $q \in \mathbb{N}$ be fixed. Our first goal is to find the behavior as $\varepsilon \to 0$ of the variances of α_{ε} and $I_{2q-1}(f_{2q-1,\varepsilon})$. Before addressing this problem, we will introduce some notation. First notice that
\[
\mathbb{E} \left[I_{2q-1}(f_{2q-1,\varepsilon})^2 \right] = (2q - 1)! \| f_{2q-1,\varepsilon} \|^2_{\mathcal{S}^{(2q-1)}}
\]
\[
= (2q - 1)! \left\langle \int_{\mathcal{R}} f_{2q-1,\varepsilon,s_1,t_1} ds_1 dt_1, \int_{\mathcal{R}} f_{2q-1,\varepsilon,s_2,t_2} ds_2 dt_2 \right\rangle_{\mathcal{S}^{(2q-1)}}
\]
\[
= 2(2q - 1)! \int_{\mathcal{S}} \left(f_{2q-1,\varepsilon,s_1,t_1}, f_{2q-1,\varepsilon,s_2,t_2} \right)_{\mathcal{S}^{(2q-1)}} ds_1 ds_2 dt_1 dt_2,
\]
where the set \mathcal{S} is defined by
\[
\mathcal{S} := \{(s_1, s_2, t_1, t_2) \in [0, T]^4 \mid s_1 \leq t_1, \ s_2 \leq t_2, \ \text{and} \ s_1 \leq s_2\}.
\]
We can write the set \mathcal{S} as the union of the sets $\mathcal{S}_1, \mathcal{S}_2, \mathcal{S}_3$ defined by
\[
\mathcal{S}_1 := \{(s_1, s_2, t_1, t_2) \in [0, T]^4 \mid s_1 \leq s_2 \leq t_1 \leq t_2\},
\]
\[
\mathcal{S}_2 := \{(s_1, s_2, t_1, t_2) \in [0, T]^4 \mid s_1 \leq s_2 \leq t_2 \leq t_1\},
\]
\[
\mathcal{S}_3 := \{(s_1, s_2, t_1, t_2) \in [0, T]^4 \mid s_1 \leq t_1 \leq s_2 \leq t_2\}.
\]
Then, by (2.1),

\[\mathbb{E}[\alpha_{\varepsilon}]^2 = \mathbb{E} \left[\left(\int_{\mathbb{R}} \alpha_{\varepsilon,s,t} dsdt \right)^2 \right] = 2 \int_{\mathcal{S}} \mathbb{E} \left[\alpha_{\varepsilon,s_1,t_1} \alpha_{\varepsilon,s_2,t_2} \right] ds_1 ds_2 dt_1 dt_2 = V_i(\varepsilon) + V_2(\varepsilon) + V_3(\varepsilon), \]

where

\[V_i(\varepsilon) := 2 \int_{\mathcal{S}} \mathbb{E} \left[\alpha_{\varepsilon,s_1,t_1} \alpha_{\varepsilon,s_2,t_2} \right] ds_1 ds_2 dt_1 dt_2, \quad i = 1, 2, 3. \] (2.13)

Similarly, from (2.6) and (2.8), taking \(\varepsilon = 1 \), we get

\[\mathbb{E} \left[I_1 (f_{1,\varepsilon})^2 \right] = V_i^{(1)}(\varepsilon) + V_2^{(1)}(\varepsilon) + V_3^{(1)}(\varepsilon), \]

where

\[V_i^{(1)}(\varepsilon) := 2 \int_{\mathcal{S}} \langle f_{1,\varepsilon,s_1,t_1}, f_{1,\varepsilon,s_2,t_2} \rangle_{\mathcal{H}} ds_1 ds_2 dt_1 dt_2, \quad i = 1, 2, 3. \] (2.14)

As a consequence of (2.13) and (2.15), to determine the behavior of the variances of \(\alpha_{\varepsilon} \) and \(I_1 (f_{1,\varepsilon}) \) as \(\varepsilon \to 0 \), it suffices to determine the behavior of \(V_i(\varepsilon) \) and \(V_i^{(1)}(\varepsilon) \) respectively, for \(i = 1, 2, 3 \).

In order to describe the terms \(\langle f_{2q-1,\varepsilon,s_1,t_1}, f_{2q-1,\varepsilon,s_2,t_2} \rangle_{\mathcal{H}^{(2q-1)}} \), we will introduce the following notation. For every \(x, u_1, u_2 > 0 \) define

\[\mu(x, u_1, u_2) := \mathbb{E} \left[B_{u_1}(B_{x+u_2} - B_x) \right]. \] (2.17)

We can easily prove that for every \(s_1, s_2, t_1, t_2 \geq 0 \), such that \(s_1 \leq t_1, s_2 \leq t_2 \) and \(s_1 \leq s_2 \),

\[\mathbb{E} \left[(B_{t_1} - B_{s_1})(B_{t_2} - B_{s_2}) \right] = \mu(s_2 - s_1, t_1 - s_1, t_2 - s_2). \] (2.18)

Using (2.13) and (2.18), for every \(0 \leq s_1 \leq t_1, 0 \leq s_2 \leq t_2 \) such that \(s_1 \leq s_2 \), we can write

\[
\langle f_{2q-1,\varepsilon,s_1,t_1}, f_{2q-1,\varepsilon,s_2,t_2} \rangle_{\mathcal{H}^{(2q-1)}} = \beta^2_q(\varepsilon + (t_1 - s_1)^{2H})^{-\frac{1}{2} - q}(\varepsilon + (t_2 - s_2)^{2H})^{-\frac{1}{2} - q} \\
\times \mu(s_2 - s_1, t_1 - s_1, t_2 - s_2) \\
= \beta^2_q(\varepsilon + (t_1 - s_1)^{2H})^{-\frac{1}{2} - q}(\varepsilon + (t_2 - s_2)^{2H})^{-\frac{1}{2} - q} \\
\times \mu(s_2 - s_1, t_1 - s_1, t_2 - s_2)^{2q-1}.
\]

Therefore,

\[\langle f_{2q-1,\varepsilon,s_1,t_1}, f_{2q-1,\varepsilon,s_2,t_2} \rangle_{\mathcal{H}^{(2q-1)}} = \beta^2_q C^{(q)}_{\varepsilon,s_2-s_1}(t_1 - s_1, t_2 - s_2), \] (2.19)
where \(G_{\varepsilon,x}^{(q)}(u_1, u_2)\) is defined by
\[
G_{\varepsilon,x}^{(q)}(u_1, u_2) := (\varepsilon + u_1^{2H})^{-\frac{1}{2}-q} (\varepsilon + u_2^{2H})^{-\frac{1}{2}-q} \mu(x, u_1, u_2)^{2q-1}. \tag{2.20}
\]

Next we present some useful properties of the functions \(\mu(x, u_1, u_2)\) and \(G_{\varepsilon,x}^{(q)}(u_1, u_2)\). Taking into account that \(H > \frac{2}{3}\), we can write the covariance of \(B\) as
\[
\mathbb{E}[B_t B_s] = H(2H - 1) \int_0^t \int_0^s |v_1 - v_2|^{2H-2} dv_1 dv_2. \tag{2.21}
\]

In particular, this leads to
\[
\mu(x, u_1, u_2) = H(2H - 1) \int_0^{u_1} \int_x^{x+u_2} |v_2 - v_1|^{2H-2} dv_1 dv_2, \tag{2.22}
\]
which implies
\[
G_{\varepsilon,x}^{(q)}(u_1, u_2) \geq 0 \quad \text{for every } \varepsilon \geq 0. \tag{2.23}
\]

Using the chaos decomposition (2.22), as well as (2.19) and (2.23), we can check that for \(i = 1, 2, 3\), the terms \(V_i(\varepsilon), V_i^{(1)}(\varepsilon)\), defined by (2.14), (2.16), satisfy
\[
0 \leq V_i^{(1)}(\varepsilon) \leq V_i(\varepsilon). \tag{2.24}
\]

Further properties for the function \(G_{\varepsilon,x}^{(q)}(u_1, u_2)\) are described in the following lemma.

Lemma 2.1. Let \(G_{\varepsilon,x}^{(q)}(u_1, u_2)\) be defined by (2.20). There exists a constant \(K > 0\), depending on \(H\) and \(q\), such that for all \(x > 0\), and \(0 < v_1 \leq w_1\), \(0 < v_2 \leq w_2\) satisfying \(|v_i - w_i| \leq 1\),
\[
G_{\varepsilon,x}^{(q)}(v_1, v_2) \leq KG_{\varepsilon,x}^{(q)}(w_1, w_2).
\]

Proof. From (2.22) it follows that
\[
\mu(x, v_1, v_2) \leq \mu(x, w_1, w_2).
\]

As a consequence,
\[
G_{1,x}^{(q)}(v_1, v_2) = (1 + v_1^{2H})^{-\frac{1}{2}-q} (1 + v_2^{2H})^{-\frac{1}{2}-q} \mu(x, v_1, v_2)^{2q-1} \\
\leq (1 + v_1^{2H})^{-\frac{1}{2}-q} (1 + v_2^{2H})^{-\frac{1}{2}-q} \mu(x, w_1, w_2)^{2q-1} \\
= G_{1,x}^{(q)}(w_1, w_2) \left(\frac{(1 + v_1^{2H})(1 + v_2^{2H})}{(1 + v_1^{2H})(1 + v_2^{2H})} \right)^{q+\frac{1}{2}}.
\]

Using condition \(|v_i - w_i| \leq 1\), \(i = 1, 2\), we get
\[
G_{1,x}^{(q)}(v_1, v_2) \leq G_{1,x}^{(q)}(w_1, w_2) \left(\frac{(1 + (v_1 + 1)2H)(1 + (v_2 + 1)2H)}{(1 + v_1^{2H})(1 + v_2^{2H})} \right)^{q+\frac{1}{2}}. \tag{2.25}
\]

The second factor in the right-hand side of (2.25) is uniformly bounded for \(v_1, v_2 \geq 0\), which implies the desired result. \(\square\)
3 Behavior of the variances of α_ε and its chaotic components

The behavior of the variance of α_ε is described in the following lemma.

Lemma 3.1. Let $T > 0$ and $\frac{2}{3} < H < 1$ be fixed. Then,
\[
\lim_{\varepsilon \to 0} \varepsilon^{3 - \frac{2}{H}} \mathbb{E} \left[\alpha_\varepsilon^2 \right] = \sigma^2,
\]
where σ^2 is defined by
\[
\sigma^2 := \frac{T^{2H}(2H - 1)}{4H \pi} B \left(\frac{1}{H}, \frac{3H - 2}{2H} \right)^2 B(2, 2H - 1),
\]
and $B(\cdot, \cdot)$ denotes the Beta function.

Proof. From (2.13) we have
\[
\varepsilon^{3 - \frac{2}{H}} \mathbb{E} \left[\alpha_\varepsilon^2 \right] = \varepsilon^{3 - \frac{2}{H}} V_1(\varepsilon) + \varepsilon^{3 - \frac{2}{H}} V_2(\varepsilon) + \varepsilon^{3 - \frac{2}{H}} V_3(\varepsilon),
\]
where $V_1(\varepsilon)$, $V_2(\varepsilon)$ and $V_3(\varepsilon)$ are defined by (2.14). By Lemmas 5.3 and 5.4 we have $\lim_{\varepsilon \to 0} \varepsilon^{3 - \frac{2}{H}} V_1(\varepsilon) = 0$ and $\varepsilon^{3 - \frac{2}{H}} V_2(\varepsilon) = 0$, respectively. In addition, from Lemma 5.6 we have $\lim_{\varepsilon \to 0} \varepsilon^{3 - \frac{2}{H}} V_3(\varepsilon) = \sigma^2$, where σ^2 is defined by (3.2). This completes the proof of equation (3.1).

The behavior of the variance of the first chaotic component of α_ε is described by the following lemma.

Lemma 3.2. Let $T > 0$ be fixed. Define $f_{1, \varepsilon}$ as in equation (2.6). Then, for every $\frac{2}{3} < H < 1$, we have
\[
\lim_{\varepsilon \to 0} \varepsilon^{3 - \frac{2}{H}} \mathbb{E} \left[I_1(f_{1, \varepsilon})^2 \right] = \sigma^2,
\]
where σ^2 is given by (3.2).

Proof. From (2.15) we have
\[
\varepsilon^{3 - \frac{2}{H}} \mathbb{E} \left[I_1(f_{1, \varepsilon})^2 \right] = \varepsilon^{3 - \frac{2}{H}} V_1^{(1)}(\varepsilon) + \varepsilon^{3 - \frac{2}{H}} V_2^{(1)}(\varepsilon) + \varepsilon^{3 - \frac{2}{H}} V_3^{(1)}(\varepsilon),
\]
where $V_1^{(1)}(\varepsilon)$, $V_2^{(1)}(\varepsilon)$ and $V_3^{(1)}(\varepsilon)$ are defined by (2.16). By Lemmas 5.3 and 5.4 we have $\lim_{\varepsilon \to 0} \varepsilon^{3 - \frac{2}{H}} V_1^{(1)}(\varepsilon) = 0$ and $\varepsilon^{3 - \frac{2}{H}} V_2^{(1)}(\varepsilon) = 0$, respectively. Consequently, by (2.24) we get $\lim_{\varepsilon \to 0} \varepsilon^{3 - \frac{2}{H}} V_1^{(1)}(\varepsilon) = 0$ and $\lim_{\varepsilon \to 0} \varepsilon^{3 - \frac{2}{H}} V_2^{(1)}(\varepsilon) = 0$. In addition, from Lemma 5.7 the term $V_3^{(1)}(\varepsilon)$ satisfies $\lim_{\varepsilon \to 0} \varepsilon^{3 - \frac{2}{H}} V_3^{(1)}(\varepsilon) = \sigma^2$, where σ^2 is given by (3.2). This completes the proof of equation (3.3).

The behavior of the variance of the chaotic components of α_ε of order greater or equal to two and is described by the following lemma.
Lemma 3.3. Let $T, \varepsilon > 0$, $\frac{2}{3} < H < 1$ and $q \in \mathbb{N}$, $q \geq 2$ be fixed. Define $\beta_q, f_{2q-1, \varepsilon}$, and $G_{1,x}^{(q)}(u_1, u_2)$ by (2.24), (2.6) and (2.20) respectively. Then,

1. If $\frac{2}{3} < H < \frac{4q-3}{4q-2}$, then

$$
\lim_{\varepsilon \to 0} \varepsilon^2 \frac{2}{4q-3} \mathbb{E} \left[I_{2q-1}(f_{2q-1, \varepsilon})^2 \right] = \sigma_q^2,
$$

where σ_q^2 is a finite constant given by

$$
\sigma_q^2 := 2(2q - 1)! \beta_q^2 T \int_{\mathbb{R}_+^3} G_{1,x}^{(q)}(u_1, u_2) \, dx \, du_1 \, du_2.
$$

2. In the case $\frac{2}{3} < H < \frac{3}{4}$, then

$$
\lim_{\varepsilon \to 0} \mathbb{E} \left[I_{2q-1}(f_{2q-1, \varepsilon})^2 \right] = \overline{\sigma}_q^2,
$$

where $\overline{\sigma}_q^2$ is a finite constant given by

$$
\overline{\sigma}_q^2 := 2(2q - 1)! \beta_q^2 \int_{S} G_{0,s_2-s_1}^{(q)}(t_1 - s_1, t_2 - s_2) \, ds_1 \, ds_2 \, dt_1 \, dt_2,
$$

and S is defined by (2.9).

Proof. First we prove (3.4) in the case $\frac{3}{4} < H < \frac{4q-3}{4q-2}$. By (2.8) and (2.19),

$$
\varepsilon^2 \frac{2}{4q-3} \mathbb{E} \left[I_{2q-1}(f_{2q-1, \varepsilon})^2 \right] = 2(2q - 1)! \beta_q^2 \varepsilon^2 \frac{2}{4q-3} \int_{S} G_{\varepsilon,s_2-s_1}^{(q)}(t_1 - s_1, t_2 - s_2) \, ds_1 \, ds_2 \, dt_1 \, dt_2,
$$

where S is defined by (2.9). Therefore, changing the coordinates (s_1, s_2, t_1, t_2) by $(\varepsilon^{-\frac{1}{4q-3}} s_1, x := \varepsilon^{-\frac{1}{4q-3}} (s_2 - s_1), u_1 := \varepsilon^{-\frac{1}{4q-3}} (t_1 - s_1), u_2 := \varepsilon^{-\frac{1}{4q-3}} (t_2 - s_2))$, we get

$$
\varepsilon^2 \frac{2}{4q-3} \mathbb{E} \left[I_{2q-1}(f_{2q-1, \varepsilon})^2 \right] = 2(2q - 1)! \beta_q^2 \varepsilon \frac{2}{4q-3} \int_{\mathbb{R}_+^4} \mathbb{1}_{(0, \varepsilon^{-\frac{1}{4q-3}} T)}(s_1 + u_1)
$$

$$
\times \mathbb{1}_{(0, \varepsilon^{-\frac{1}{4q-3}} T)}(s_1 + x + u_2) G_{1,x}^{(q)}(u_1, u_2) \, ds_1 \, dx \, du_1 \, du_2.
$$

Integrating with respect to the variable s_1 we get

$$
\varepsilon^2 \frac{2}{4q-3} \mathbb{E} \left[I_{2q-1}(f_{2q-1, \varepsilon})^2 \right] = 2(2q - 1)! \beta_q^2 \varepsilon \frac{2}{4q-3} \int_{\mathbb{R}_+^4} (T - \varepsilon \frac{1}{4q-3} (u_1 \vee (x + u_2))) \mathbb{1}_{(0, \varepsilon^{-\frac{1}{4q-3}} T)}(u_1)
$$

$$
\times \mathbb{1}_{(0, \varepsilon^{-\frac{1}{4q-3}} T)}(s_1 + x + u_2) G_{1,x}^{(q)}(u_1, u_2) \, ds_1 \, dx \, du_1 \, du_2.
$$

From (2.23) we deduce that the integrand in the right-hand side of (3.8) is positive and increasing as ε decreases to zero. Therefore, applying the monotone convergence theorem in relation (3.8) we obtain (3.4). The constant σ_q^2 is finite by Lemma 5.9.
To prove relation (3.6), notice that equations (2.8) and (2.19) imply that
\[
\mathbb{E} \left[I_{2q-1}(f_{2q-1, \varepsilon})^2 \right] = 2(2q - 1)! \beta_q^2 \int S G_{t_1, \varepsilon}^q(t_1 - s_1, t_2 - s_2) ds_1 ds_2 dt_1 dt_2. \tag{3.9}
\]
Relation (3.6) follows by applying the monotone convergence theorem to (3.9). To prove that \(\sigma^2 \) is finite we change the coordinates \((s_1, s_2, t_1, t_2)\) by \((s_1, x := s_2 - s_1, u_1 := t_1 - s_1, u_2 := t_2 - s_2)\) in the integral of the right-hand side of (3.7), to get
\[
\int S G^q_{t_1, \varepsilon}(s_1, s_2, t_1, t_2) ds_1 ds_2 dt_1 dt_2 \leq \int_{[0,T]^4} G^q_{0, x}(u_1, u_2) ds_1 dx du_1 du_2
\]
\[
= T \int_{[0,T]^3} G^q_{0, x}(u_1, u_2) dx du_1 du_2.
\]
The latter integral is finite by Lemma 5.9. Therefore, the constant \(\sigma^2 \) is finite.

\section{Limit behavior of \(\alpha_\varepsilon \) and \(I_{2q-1}(f_{2q-1, \varepsilon}) \)}

The next result is a central limit theorem for \(\alpha_\varepsilon \) in case \(\frac{2}{3} < H < 1 \).

\textbf{Theorem 4.1.} Let \(T, \varepsilon > 0 \) and \(\frac{2}{3} < H < 1 \) be fixed. Then
\[
\varepsilon^{\frac{3}{2} - \frac{1}{H}} \alpha_\varepsilon \xrightarrow{\text{Law}} \mathcal{N}(0, \sigma^2), \quad \text{when } \varepsilon \to 0, \tag{4.1}
\]
where \(\sigma^2 \) is defined by (3.2).

\textbf{Proof.} Let \(f_{2q-1, \varepsilon} \) be defined by (2.6). By equation (2.5),
\[
\varepsilon^{\frac{3}{2} - \frac{1}{H}} \alpha_\varepsilon = \varepsilon^{\frac{3}{2} - \frac{1}{H}} I_1(f_{1, \varepsilon}) + \varepsilon^{\frac{3}{2} - \frac{1}{H}} \sum_{q=2}^{\infty} I_{2q-1}(f_{2q-1, \varepsilon}).
\]
By Lemma 3.2, the variance of \(\varepsilon^{\frac{3}{2} - \frac{1}{H}} I_1(f_{1, \varepsilon}) \) converges to \(\sigma^2 \), where \(\sigma^2 \) is defined by (3.2). In addition, combining Lemmas 3.1 and 3.2, it follows that the term
\[
\varepsilon^{\frac{3}{2} - \frac{1}{H}} \sum_{q=2}^{\infty} I_{2q-1}(f_{2q-1, \varepsilon})
\]
converges to zero in \(L^2 \). Then (4.1) follows from the fact that \(\varepsilon^{\frac{3}{2} - \frac{1}{H}} I_1(f_{1, \varepsilon}) \) is Gaussian and its variance converges to \(\sigma^2 \). \qed

In the next result we describe the asymptotic behavior of the chaotic components of \(\alpha_\varepsilon \) in the case \(\frac{2}{3} < H < 1 \).

\textbf{Theorem 4.2.} Let \(T, \varepsilon > 0 \) and \(q \in \mathbb{N}, q \geq 2 \) be fixed. Define \(f_{2q-1, \varepsilon} \) by (2.6). If \(\frac{2}{3} < H < \frac{3}{4} \), then \(I_{2q-1}(f_{2q-1, \varepsilon}) \) converges in \(L^2 \) when \(\varepsilon \to 0 \).
Proof. Define $f_{2q-1,\varepsilon,s,t}$ by (2.3). For every $\varepsilon, \eta > 0$ we have
\[
\mathbb{E}\left[(I_{2q-1}(f_{2q-1,\varepsilon}) - I_{2q-1}(f_{2q-1,\eta}))^2\right] = \mathbb{E}\left[I_{2q-1}(f_{2q-1,\varepsilon})^2\right] + \mathbb{E}\left[I_{2q-1}(f_{2q-1,\eta})^2\right] - 2\mathbb{E}\left[I_{2q-1}(f_{2q-1,\varepsilon})I_{2q-1}(f_{2q-1,\eta})\right].
\]
Define R and S by (2.7) and (2.9), respectively. Then we have
\[
\mathbb{E}\left[I_{2q-1}(f_{2q-1,\varepsilon})I_{2q-1}(f_{2q-1,\eta})\right] = (2q-1)\int f_{2q-1,\varepsilon,S,T}d\mathbb{R},
\]
where
\[
\mathbb{E}\left[I_{2q-1}(f_{2q-1,\varepsilon})I_{2q-1}(f_{2q-1,\eta})\right] = (2q-1)\int G_{\varepsilon,\eta}(t_1 - s_1, t_2 - s_2)d\mathbb{S}d\mathbb{T}dt.
\]
Substituting (2.19) into (4.2), yields
\[
\mathbb{E}\left[I_{2q-1}(f_{2q-1,\varepsilon})I_{2q-1}(f_{2q-1,\eta})\right] = 2(2q-1)!\beta_q^2 \int G_{\varepsilon,\eta}(t_1 - s_1, t_2 - s_2)d\mathbb{S}d\mathbb{T}dt,
\]
where $G_{\varepsilon,\eta}(u_1, u_2)$ is defined by (2.20). Since $G_{\varepsilon,\eta}(u_1, u_2)$ is nonnegative (see equation (2.23)), the integral in the right-hand side of the previous identity is positive and decreasing in the variables ε, η. Hence, by the monotone convergence theorem, as $\varepsilon, \eta \to 0$, the terms $\mathbb{E}\left[I_{2q-1}(f_{2q-1,\varepsilon})I_{2q-1}(f_{2q-1,\eta})\right]$, $\mathbb{E}\left[I_{2q-1}(f_{2q-1,\eta})^2\right]$ and $\mathbb{E}\left[I_{2q-1}(f_{2q-1,\eta})^2\right]$ converge to
\[
2(2q-1)!\beta_q^2 \int G_{\varepsilon,\eta}(t_1 - s_1, t_2 - s_2)d\mathbb{S}d\mathbb{T}dt.
\]
The previous quantity is finite thanks to Lemma 3.3. From the previous analysis we conclude that the sequence $\{I_{2q-1}(f_{2q-1,\varepsilon})\}_{\varepsilon \in \mathbb{N}}$ is Cauchy in L^2, for any sequence $\{\varepsilon_n\}_{n \in \mathbb{N}} \subset (0,1]$ such that $\varepsilon_n \to 0$ as $n \to \infty$, which implies the desired result.

The next result is a central limit theorem for $I_{2q-1}(f_{2q-1,\varepsilon})$ in the case $\frac{3}{4} < H < \frac{4q-3}{4q-2}$.

Theorem 4.3. Let $T, \varepsilon > 0$ and $q \in \mathbb{N}$, $q \geq 2$ be fixed. Define $f_{2q-1,\varepsilon}$ by (2.6). Then, for every $\frac{3}{4} < H < \frac{4q-3}{4q-2}$ we have
\[
\varepsilon^{1-rac{3}{4H}} I_{2q-1}(f_{2q-1,\varepsilon}) \xrightarrow{\text{Law}} N(0, \sigma_q^2), \quad \text{when } \varepsilon \to 0,
\]
where σ_q^2 is the finite constant defined by (3.5).

Proof. Define $f_{2q-1,\varepsilon,s,t}$, for $0 \leq s \leq t$, by (2.3) and R by (2.7). By (2.6),
\[
\varepsilon^{1-rac{3}{4H}} I_{2q-1}(f_{2q-1,\varepsilon}) = (-1)^q\varepsilon^{1-rac{3}{4H}} \int R \beta_q(\varepsilon + (t-s)^{2H})^{\frac{1}{2}-q} I_{2q-1}\left(\frac{1}{4}\right) \text{d}sdt.
\]
Then, using the self-similarity of the fractional Brownian motion we get
\[\varepsilon^{-\frac{3}{2H}} I_{2q-1}(f_{2q-1,\varepsilon}) \]
\[\xrightarrow{\text{Law}} (-1)^q \varepsilon^{-\frac{3}{2H}} \int_{\mathbb{R}} \beta_q(\varepsilon + (t-s)^{2H})^{-\frac{1}{2}-q} I_{2q-1} \left(\left(\sqrt{\varepsilon} \mathbb{1}_{\varepsilon^{-\frac{1}{2H}}[s,t]} \right)^{\otimes(2q-1)} \right) \, ds \, dt. \]

Therefore, changing the coordinates \((s, t)\) by \((\varepsilon^{-\frac{1}{2H}} s, \varepsilon^{-\frac{1}{2H}} t)\) we get
\[\varepsilon^{-\frac{3}{2H}} I_{2q-1}(f_{2q-1,\varepsilon}) \]
\[\xrightarrow{\text{Law}} (-1)^q \varepsilon^{-\frac{3}{2H}} \int_{\varepsilon^{-\frac{1}{2H}} \mathbb{R}} \beta_q(1 + (t-s)^{2H})^{-\frac{1}{2}-q} I_{2q-1} \left(\mathbb{1}_{[s,t]}^{\otimes(2q-1)} \right) \, ds \, dt \]
\[= \varepsilon^{-\frac{3}{2H}} \int_{\varepsilon^{-\frac{1}{2H}} \mathbb{R}} I_{2q-1}(f_{2q-1,1,s,t}) \, ds \, dt. \] (4.5)

Changing the coordinates \((s, t)\) by \((s, u := t - s)\) in (4.5), and defining \(N := \varepsilon^{-\frac{1}{2H}}\), we obtain
\[\varepsilon^{-\frac{3}{2H}} I_{2q-1}(f_{2q-1,\varepsilon}) \xrightarrow{\text{Law}} \frac{1}{\sqrt{N}} \int_{0}^{NT} \int_{0}^{NT-s} I_{2q-1}(f_{2q-1,1,s,s+u}) \, du \, ds. \] (4.6)

From (4.6) it follows that the convergence (4.3) is equivalent to
\[\frac{1}{\sqrt{N}} \int_{0}^{NT} \int_{0}^{NT-s} I_{2q-1}(f_{2q-1,1,s,s+u}) \, du \, ds \xrightarrow{\text{Law}} \mathcal{N}(0, \sigma_q^2), \quad \text{as} \quad N \to \infty. \] (4.7)

The proof of (4.7) will be done in several steps.

Step I

Define the random variable
\[Y_N := \frac{1}{\sqrt{N}} \int_{0}^{NT} \int_{NT-s}^{\infty} I_{2q-1}(f_{2q-1,1,s,s+u}) \, du \, ds. \]

First we show that \(Y_N\) converges to zero in \(L^2\) as \(N \to \infty\). Notice that
\[
\mathbb{E}\left[Y_N^2\right] = \frac{2}{N} \int_{0}^{NT} \int_{0}^{NT} \int_{NT-s}^{\infty} \int_{NT-s_1}^{\infty} \mathbb{1}_{\{s_1 \leq s_2\}} \times \mathbb{E}\left[I_{2q-1}\left(f_{2q-1,1,s_1,s_1+u_1}\right) I_{2q-1}\left(f_{2q-1,1,s_2,s_2+u_2}\right)\right] \, du_1 \, du_2 \, ds_1 \, ds_2
\]
\[= \frac{2(2q-1)!}{N} \int_{0}^{NT} \int_{0}^{NT} \int_{NT-s_2}^{\infty} \int_{NT-s_1}^{\infty} \mathbb{1}_{\{s_1 \leq s_2\}} \times \left(f_{2q-1,1,s_1,s_1+u_1}, f_{2q-1,1,s_2,s_2+u_2}\right)^{\otimes(2q-1)} \, du_1 \, du_2 \, ds_1 \, ds_2. \] (4.8)
Define the function \(G^{(q)}_{1,x}(v_1, v_2) \), \(x, v_1, v_2 \geq 0 \), as in (2.20). Substituting equation (2.19) in (1.8), and changing the order of integration, we get

\[
\mathbb{E}[Y^2_N] = \frac{2 (2q - 1)! \beta^2}{N} \int_0^\infty \int_0^\infty \int_0^{NT} \int_0^{NT} G^{(q)}_{1,x}(u_1, u_2) ds_1 ds_2 du_1 du_2.
\]

Changing the coordinates \((s_1, s_2, u_1, u_2)\) by \((s_1, x \equiv s_2 - s_1, u_1, u_2)\) in the right hand side of (4.9), we get

\[
\mathbb{E}[Y^2_N] \leq 2 (2q - 1)! \beta^2 \int_\mathbb{R}_+ \int_0^{NT} G^{(q)}_{1,x}(u_1, u_2) ds_1 dx du_1 du_2.
\]

and then integrating the \(s_1\) variable,

\[
\mathbb{E}[Y^2_N] \leq 2 (2q - 1)! \beta^2 \int_\mathbb{R}_+ \left(T - \frac{0 \vee (NT - u_1)}{N} \right) G^{(q)}_{1,x}(u_1, u_2) dx du_1 du_2. \tag{4.10}
\]

The integrand in (4.10) converges to zero pointwise, and is dominated by the function

\[
2 (2q - 1)! \beta^2 T G^{(q)}_{1,x}(u_1, u_2).
\]

By condition \(H < \frac{4q^3 - 3}{4q^2 - 2} \) and Lemma 5.8, the function \(G^{(q)}_{1,x}(u_1, u_2) \) is integrable in \(\mathbb{R}_+^2 \). Hence, applying the dominated convergence theorem to (4.10), we obtain \(\mathbb{E}[Y^2_N] \to 0 \), as \(N \to \infty \) as required.

Step II

Since \(Y_N \to 0 \) in \(L^2 \) as \(N \to \infty \), to prove the convergence (4.7) it suffices to show that the random variable

\[
J_{2q-1,N} := \frac{1}{\sqrt{N}} \int_0^{NT} I_{2q-1} \left(f_{2q-1,1,s,s+u} \right) du ds,
\]

converges in law to a Gaussian distribution with variance \(\sigma_q^2 \) as \(N \to \infty \). For \(M \in \mathbb{N}, M \geq 1 \) fixed, consider the following Riemann sum approximation for \(J_{2q-1,N} \)

\[
\tilde{J}_{2q-1,M,N} := \frac{1}{2^M} \sum_{k=2}^{M^2} \frac{1}{\sqrt{N}} \int_0^{NT} I_{2q-1} \left(f_{2q-1,1,s,s+u(k)} \right) ds,
\]

where \(u(k) := \frac{k}{2^M}, \) for \(k = 2, \ldots, M^2 \). We will prove that \(\tilde{J}_{2q-1,M,N} \to J_{2q-1,N} \) in \(L^2 \) as \(M \to \infty \) uniformly in \(N > 1 \), and \(\tilde{J}_{2q-1,M,N} \to \mathcal{N}(0, \tilde{\sigma}_q^2 \alpha_{q,M}) \) as \(N \to \infty \) for some constant \(\tilde{\sigma}_q \alpha_{q,M} \) satisfying \(\tilde{\sigma}_q \alpha_{q,M} \to \sigma_q^2 \) as \(M \to \infty \). The result will then follow by a standard approximation argument. We will separate the argument in the following steps.
Step III

Next we prove that prove that \(\tilde{J}_{2q-1,M,N} \to J_{2q-1,N} \) in \(L^2 \) as \(M \to \infty \) uniformly in \(N > 1 \), namely,

\[
\lim_{M \to \infty} \sup_{N > 1} \left\| J_{2q-1,N} - \tilde{J}_{2q-1,M,N} \right\|_{L^2} = 0. \tag{4.11}
\]

For \(M \in \mathbb{N} \) fixed, we decompose the term \(J_{2q-1,N} \) as

\[J_{2q-1,N} = J_{2q-1,N}^{(1)} + J_{2q-1,N}^{(2)}, \tag{4.12} \]

where

\[
J_{2q-1,M,N}^{(1)} := \frac{1}{\sqrt{N}} \int_0^{NT} \int_{2-M}^M (f_{2q-1,1,s,s+u}) \, du \tag{4.13}
\]

and

\[
J_{2q-1,M,N}^{(2)} := \frac{1}{\sqrt{N}} \int_0^{NT} \int_0^\infty 1_{(0,2^{-M}) \cup (M,\infty)}(u) f_{2q-1,1,s,s+u) \, du. \tag{4.14}
\]

From (4.12) we deduce that relation (4.11) is equivalent to

\[
\lim_{M \to \infty} \sup_{N > 1} \left\| J_{2q-1,N}^{(1)} - \tilde{J}_{2q-1,M,N} \right\|_{L^2} = 0,
\]

provided that

\[
\lim_{M \to \infty} \sup_{N > 1} \left\| J_{2q-1,N}^{(2)} \right\|_{L^2} = 0. \tag{4.15}
\]

To prove (4.14) we proceed as follows. First we write

\[
\left\| J_{2q-1,M,N}^{(2)} \right\|_{L^2}^2 = \frac{2(2q-1)!}{N} \int_{\mathbb{R}^2} \int_{[0,NT]^2} 1_{(0,2^{-M}) \cup (M,\infty)}(u_1) 1_{(0,2^{-M}) \cup (M,\infty)}(u_2) \times 1\{s_1 \leq s_2\} \langle f_{2q-1,1,s_1+u_1}, f_{2q-1,1,s_2,s_2+u_2} \rangle_{S^0(2q-1)} \, ds_1 ds_2 du_1 du_2. \tag{4.16}
\]

Let \(G_{1,v}(v_1, v_2), x, v_1, v_2 \in \mathbb{R}_+ \) be defined by (2.20). Applying identity (2.19) in (4.15), and then changing the coordinates \((s_1, s_2, u_1, u_2) \) by \((s_1, x := s_2 - s_1, u_1, u_2) \) in (4.15), we get

\[
\left\| J_{2q-1,M,N}^{(2)} \right\|_{L^2}^2 \leq \frac{2(2q-1)! \beta_2^2}{N} \int_{\mathbb{R}^4} \int_0^{NT} 1_{(0,2^{-M}) \cup (M,\infty)}(u_1) \times 1_{(0,2^{-M}) \cup (M,\infty)}(u_2) G_{1,x}(u_1, u_2) \, ds_1 dx du_1 du_2. \tag{4.17}
\]
Integrating the variable s_1 in (4.10) we obtain
\[
\left\| J_{2q-1,M,N}^{(2)} \right\|_{L^2}^2 \leq 2T(2q-1)! \beta_q^2 \int_{\mathbb{R}_+^3} \mathbb{I}_{(0,2^{-M})\cup(M,\infty)}(u_2) \times \mathbb{I}_{(0,2^{-M})\cup(M,\infty)}(u_2) G_{1,x}^{(q)}(u_1, u_2) dx du_1 du_2.
\] (4.17)

The integrand is dominated by the function $2(2q-1)! \beta_q^2 T G_{1,x}^{(q)}(u_1, u_2)$, which is integrable by the condition $H < \frac{2q-3}{4q-2}$, and Lemma 5.8. Hence, applying the dominated convergence theorem to (4.17), we get (4.14).

To prove (4.13) we proceed as follows. For $k = 2, \ldots, M2^M$ define the interval $I_k := (\frac{k-1}{2^M}, \frac{k}{2^M}]$. Notice that $J_{2q-1,M,N}^{(1)}$ and $\tilde{J}_{2q-1,M,N}$ can be written, respectively, as
\[
J_{2q-1,M,N}^{(1)} = \frac{1}{\sqrt{N}} \int_0^{NT} \int_{\mathbb{R}_+^M} I_{2q-1} (f_{2q-1,1,s,s+u}) \mathbb{I}_{I_k}(u) duds,
\] (4.18)

and
\[
\tilde{J}_{2q-1,M,N} = \frac{1}{\sqrt{N}} \int_0^{NT} \int_{\mathbb{R}_+^M} I_{2q-1} (f_{2q-1,1,s,s+u(k)}) \mathbb{I}_{I_k}(u) duds.
\] (4.19)

Applying (2.19), we can prove that
\[
\left\| J_{2q-1,M,N}^{(1)} - \tilde{J}_{2q-1,M,N} \right\|_{L^2}^2 = \frac{2(2q-1)! \beta_q^2}{N} \int_{\mathbb{R}_+^3} \int_{[0,NT]^2} \sum_{k_1,k_2=2}^{M2^M} \mathbb{I}_{I_{k_1}}(u_1) \mathbb{I}_{I_{k_2}}(u_2) \times \mathbb{I}_{(s_1 \leq s_2)} \Theta_{k_1,k_2}^{(q)} (s_2 - s_1, u_1, u_2) ds_1 ds_2 du_1 du_2,
\] (4.20)

where the function $\Theta_{k_1,k_2}^{(q)}$ is defined by
\[
\Theta_{k_1,k_2}^{(q)}(x, u_1, u_2) := \left(G_{1,x}^{(q)}(u_1, u_2) - G_{1,x}^{(q)}(u(k_1), u_2) - G_{1,x}^{(q)}(u(1), u(k_2)) + G_{1,x}^{(q)}(u(k_1), u(k_2)) \right).
\]

Changing the coordinates (s_1, s_2, u_1, u_2) by $(s_1, x := s_2 - s_1, u_1, u_2)$, and then integrating the s_1 variable in (4.20), we obtain
\[
\left\| J_{2q-1,M,N}^{(1)} - \tilde{J}_{2q-1,M,N} \right\|_{L^2}^2 = \frac{2(2q-1)! \beta_q^2}{N} \int_{\mathbb{R}_+^3} \int_0^{NT} \sum_{k_1,k_2=2}^{M2^M} \mathbb{I}_{I_{k_1}}(u_1) \mathbb{I}_{I_{k_2}}(u_2) \times \left(T - \frac{x}{N} \right) \Theta_{k_1,k_2}^{(q)}(x, u_1, u_2) dx du_1 du_2.
\]
As a consequence,
$$\left\| J_{2q-1,M,N}^{(1)} - \tilde{J}_{2q-1,M,N} \right\|_{L^2}^2 \leq 2(2q - 1)! \beta_2^2 T \int_{\mathbb{R}^3_+} \sum_{k_1,k_2=2}^{M^2} \mathbb{1}_{I_{k_1}}(u_1) \mathbb{1}_{I_{k_2}}(u_2) \times \Theta_{k_1,k_2}^{(q)}(x,u_1,u_2) \, dx \, du_1 \, du_2.$$

By the continuity of $G_{1,x}(u_1,u_2)$, the term
$$\sum_{k_1,k_2=2}^{M^2} \mathbb{1}_{I_{k_1}}(u_1) \mathbb{1}_{I_{k_2}}(u_2) \Theta_{k_1,k_2}^{(q)}(x,u_1,u_2)$$
converges to zero as $M \to \infty$. Next we prove that this term is dominated by an integrable function. Let $u_1 \in I_{k_1}, u_2 \in I_{k_2}$ be fixed. Notice that $u_i, u(k_i) \leq u_i + 2^{-M} \leq u_i + 1$ for $i = 1, 2$. Hence, applying Lemma 2.1, we deduce that the terms $G_{1,x}^{(q)}(u_1,u_2), G_{1,x}^{(q)}(u(k_1),u(k_2))$ and $G_{1,x}^{(q)}(u(k_1), u(k_2))$ are bounded by $K G_{1,x}^{(q)}(u_1+1,u_2+1)$, for some constant $K > 0$ only depending on H and q. As a consequence,
$$\sum_{k_1,k_2=2}^{M^2} \mathbb{1}_{I_{k_1}}(u_1) \mathbb{1}_{I_{k_2}}(u_2) \Theta_{k_1,k_2}^{(q)}(x,u_1,u_2) \leq 4K G_{1,x}^{(q)}(u_1+1,u_2+1),$$
for some constant K only depending on H and q. Therefore, the right-hand side of the previous identity is integrable over $x, u_1, u_2 > 0$ due to Lemma 5.8 since
$$\int_{\mathbb{R}^3_+} G_{1,x}^{(q)}(u_1+1,u_2+1) \, dx \, du_1 \, du_2 = \int_{[1,\infty)^2} G_{1,x}^{(q)}(u_1,u_2) \, dx \, du_1 \, du_2$$
$$\leq \int_{\mathbb{R}^3_+} G_{1,x}^{(q)}(u_1,u_2) \, dx \, du_1 \, du_2 < \infty. \quad (4.21)$$

This finishes the proof of (4.13).

Step IV

Next we prove that
$$\lim_{N \to \infty} \mathbb{E} \left[\tilde{J}_{2q-1,M,N}^2 \right] = \tilde{\sigma}_{q,M}^2, \quad (4.22)$$
where $\tilde{\sigma}_{q,M}^2$ is the finite constant defined by
$$\tilde{\sigma}_{q,M}^2 := (2q - 1)! \beta_2^2 2^{1-2M} T \sum_{k_1,k_2=2}^{M^2} \int_0^\infty G_{1,x}^{(q)}(u(k_1), u(k_2)) \, dx. \quad (4.23)$$

In addition, we will prove that $\tilde{\sigma}_{q,M}^2$ satisfies
$$\lim_{M \to \infty} \tilde{\sigma}_{q,M}^2 = \sigma_q^2, \quad (4.24)$$
where σ^2_q is defined by (3.5). In order to prove (4.22) and (4.24) we proceed as follows. From (4.19), we can prove that

$$
\mathbb{E} \left[J_{2q-1,M,N}^2 \right] = \int_{\mathbb{R}^3} Q_{M,N}(x, u_1, u_2) dx \, du_1 \, du_2,
$$

where

$$
Q_{M,N}(x, u_1, u_2) := 2(2q - 1)! \, \beta^2_q T \sum_{k_1, k_2 = 2}^{M2^M} \left(T - \frac{x}{N} \right) \, G^{(q)}_{1,x}(u(k_1), u(k_2)) \mathbb{1}_{I_{k_1}}(u_1) \mathbb{1}_{I_{k_2}}(u_2).
$$

Notice that $Q_{M,N}$ satisfies

$$
\lim_{N \to \infty} Q_{M,N}(x, u_1, u_2) = Q_M(x, u_1, u_2), \tag{4.25}
$$

where Q_M is defined by

$$
Q_M(x, u_1, u_2) := 2(2q - 1)! \beta^2_q T \sum_{k_1, k_2 = 2}^{M2^M} \left(T - \frac{x}{N} \right) \, G^{(q)}_{1,x}(u(k_1), u(k_2)) \mathbb{1}_{I_{k_1}}(u_1) \mathbb{1}_{I_{k_2}}(u_2).
$$

In turn, Q_M satisfies

$$
\lim_{M \to \infty} Q_M(x, u_1, u_2) = Q(x, u_1, u_2), \tag{4.26}
$$

where Q is defined by

$$
Q(x, u_1, u_2) := 2(2q - 1)! \beta^2_q T G^{(q)}_{1,x}(u_1, u_2).
$$

Let $x > 0$ and $2 \leq k_1, k_2 \leq M2^M$ be fixed, and take $u_i \in I_{k_i}$, $i = 1, 2$. Since $u(k_i) \leq u_i + 2^{-M} \leq u_i + 1$, by Lemma 2.1 there exists a constant $K > 0$, only depending on q and H, such that

$$
G^{(q)}_{1,x}(u(k_1), u(k_2)) \leq KG^{(q)}_{1,x}(u_1 + 1, u_2 + 1),
$$

As a consequence, there exists a constant K only depending on q, H and T such that

$$
Q_{M,N}(x, u_1, u_2) \leq KG^{(q)}_{1,x}(u_1 + 1, u_2 + 1), \tag{4.27}
$$

and, hence,

$$
Q_M(x, u_1, u_2) \leq KG^{(q)}_{1,x}(u_1 + 1, u_2 + 1). \tag{4.28}
$$
The function \(G_{1,x}^{(q)}(u_1 + 1, u_2 + 1) \) is integrable with respect to the variables \(x, u_1, u_2 > 0 \) thanks to (4.21). Hence, taking into account (4.25) and (4.26), as well as the estimates (4.27) and (4.28), we can apply the dominated convergence theorem twice, to obtain

\[
\lim_{M \to \infty} \lim_{N \to \infty} E\left[J_{2q-1,M,N}^2\right] = \lim_{M \to \infty} \int_{\mathbb{R}_+^3} Q_M(x, u_1, u_2) dx du_1 du_2 = \int_{\mathbb{R}_+^3} Q(x, u_1, u_2) dx du_1 du_2. \tag{4.29}
\]

Equations (4.22) and (4.24) then follow from (4.29).

Step V

Next we prove the convergence in law of \(J_{2q-1,N} \) to a Gaussian random variable with variance \(\sigma_q^2 \), which we will denote by \(\mathcal{N}(0, \sigma_q^2) \). Let \(y \in \mathbb{R} \) be fixed. Notice that

\[
|\mathbb{P}[J_{2q-1,N} \leq y] - \mathbb{P}[\mathcal{N}(0, \sigma_q^2) \leq y]| \leq \sup_{N>1} |\mathbb{P}[J_{2q-1,N} \leq y] - \mathbb{P}[\tilde{J}_{2q-1,M,N} \leq y]|
+ |\mathbb{P}[\tilde{J}_{2q-1,M,N} \leq y] - \mathbb{P}[\mathcal{N}(0, \sigma_{q,M}^2) \leq y]|
+ |\mathbb{P}[\mathcal{N}(0, \sigma_{q,M}^2) \leq y] - \mathbb{P}[\mathcal{N}(0, \sigma_q^2) \leq y]|. \tag{4.30}
\]

Therefore, if we prove that for \(M > 0 \) fixed

\[
\tilde{J}_{2q-1,M,N} \xrightarrow{Law} \mathcal{N}(0, \sigma_{q,M}^2) \quad \text{as} \quad N \to \infty, \tag{4.31}
\]

then from (4.30) we get

\[
\limsup_{N \to \infty} |\mathbb{P}[J_{2q-1,N} \leq y] - \mathbb{P}[\mathcal{N}(0, \sigma_q^2) \leq y]| \leq \sup_{N>1} |\mathbb{P}[J_{2q-1,N} \leq y] - \mathbb{P}[\tilde{J}_{2q-1,M,N} \leq y]|
+ |\mathbb{P}[\tilde{J}_{2q-1,M,N} \leq y] - \mathbb{P}[\mathcal{N}(0, \sigma_{q,M}^2) \leq y]|
+ |\mathbb{P}[\mathcal{N}(0, \sigma_{q,M}^2) \leq y] - \mathbb{P}[\mathcal{N}(0, \sigma_q^2) \leq y]|, \tag{4.32}
\]

and hence, from relations (4.11), (4.24) and (4.32), we conclude that

\[
\limsup_{N \to \infty} |\mathbb{P}[J_{2q-1,N}^2 \leq y] - \mathbb{P}[\mathcal{N}(0, \sigma_q^2) \leq y]| = 0, \tag{4.33}
\]

and the proof will then be complete. Therefore, it suffices to show (4.31) for \(M \) fixed. To prove this first we show that the random vector

\[
Z^{(N)} = \left(Z^{(N)}_{k,N} \right)_{k=2}^{M^2} = \left(\frac{1}{\sqrt{N}} \int_0^{NT} J_{2q-1} f_{2q-1,1,s,s+u(k)} ds \right)_{k=2}^{M^2}
\]

converges to a multivariate Gaussian distribution. By the Peccati-Tudor criterion (see [2]), it suffices to prove that the components of the vector \(Z^{(N)} \) converge to a Gaussian distribution, and the covariance matrix of \(Z^{(N)} \) is convergent.
In order to prove that the covariance matrix of $Z^{(N)}$ is convergent we proceed as follows. First, for $2 \leq j, k \leq M 2^M$, we write

$$
E \left[Z_k^{(N)} Z_j^{(N)} \right] = \frac{1}{N} \int_{[0,NT]^2} E \left[I_{2q-1} \left(f_{2q-1,1,s_1,s_1+u(k)} \right) I_{2q-1} \left(f_{2q-1,1,s_2,s_2+u(j)} \right) \right] ds_1 ds_2.
$$

Then, using (2.19) we get

$$
E \left[Z_k^{(N)} Z_j^{(N)} \right] = \frac{(2q - 1)! \beta_q^2}{N} \int_{[0,NT]^2} G_{1,s_2-s_1}^{(q)}(u(k), u(j)) ds_1 ds_2,
$$

where in the last equality we used the notation $G_{1,y}(v_1, v_2) := G_{1,y}(v_2, v_1)$, for $y, v_1, v_2 > 0$. Changing the coordinates (s_1, s_2) by $(s_1, x := s_2 - s_1)$ in relation (4.34) and integrating the s_1, yields

$$
E \left[Z_k^{(N)} Z_j^{(N)} \right] = (2q - 1)! \beta_q^2 \int_{-NT}^{NT} \left(T - \frac{|x|}{N} \right) G_{1,x}^{(q)}(u(k), u(j)) dx.
$$

Finally, applying the monotone convergence theorem in (4.35), we get

$$
\lim_{N \to \infty} E \left[Z_k^{(N)} Z_j^{(N)} \right] = (2q - 1)! \beta_q^2 T \int_{\mathbb{R}} G_{1,x}^{(q)}(u(k), u(j)) dx,
$$

which is clearly finite. Thus, we have proved that the covariance matrix of $Z^{(N)}$ converges to the matrix $\Sigma = (\Sigma_{k,j})_{2 \leq k, j \leq M 2^M}$, where

$$
\Sigma_{k,j} := T(2q - 1)! \beta_q^2 \int_{\mathbb{R}} G_{1,x}^{(q)}(u(k), u(j)) dx.
$$

Next, for $2 \leq k \leq M 2^M$ fixed, we prove the convergence of $Z_k^{(N)}$ to a Gaussian law. By (2.3),

$$
Z_k^{(N)} = \frac{C_{q,k}}{\sqrt{N}} \int_0^{NT} I_{2q-1} \left(\frac{1}{s_1 \wedge s_2 + u_k} \right) ds,
$$

where $C_{q,k} = (-1)^q \beta_q (1 + u_k^{2H})^{-\frac{1}{2}}$. Hence, by the self-similarity of the fractional Brownian motion we can write

$$
Z_k^{(N)} \overset{\text{Law}}{=} \frac{C_{q,k}}{\sqrt{N}} \int_0^{NT} I_{2q-1} \left(\left(u_k^H \mathbb{1}_{[\frac{r}{N}]} \right)^{\otimes (2q-1)} \right) ds.
$$

Making the change of variables $r := \frac{s_1 + s_2}{N u_k}$ in the right hand side of (4.36), we get

$$
Z_k^{(N)} \overset{\text{Law}}{=} \frac{C_{q,k}}{\sqrt{N}} \int_0^{\frac{2q}{N u_k}} I_{2q-1} \left(\left(u_k^H \mathbb{1}_{[\frac{r}{N}]} \right)^{\otimes (2q-1)} \right) dr
$$

$$
= C_{q,k} u_k^{H(q-1)+1} \sqrt{N} \int_0^{\frac{2q}{N u_k}} H_{2q-1} \left(N^H (B_{r+\frac{1}{N}} - B_r) \right) dr.
$$

(4.37)
where H_{2q-1} denotes the Hermite polynomial of degree $2q - 1$. The convergence in law of the right-hand side of (4.37) to a centered Gaussian distribution as $N \to \infty$ is proven in [2], equation (1.3). As a consequence, the components of $Z^{(N)}$ converge to a Gaussian random variable as $N \to \infty$. Therefore, by the Peccati-Tudor criterion, $Z^{(N)}$ converges in law to a centered Gaussian distribution with covariance Σ. Hence,

$$\tilde{J}_{2q-1,M,N} = \frac{1}{2^{2M}} \sum_{k=2}^{M^2} Z_k^{(N)} \xrightarrow{\text{Law}} N \left(0, \frac{1}{2^{2M}} \sum_{j,k=2}^{M^2} \Sigma_{k,j} \right) \quad \text{as } N \to \infty. \quad (4.38)$$

The convergence (4.31) follows from (4.38) by using the fact that

$$\frac{1}{2^{2M}} \sum_{k,j=2}^{M^2} \Sigma_{k,j} = T(2q - 1)! \beta_q 2^{-2M} \sum_{j,k=2}^{M^2} \int_{\mathbb{R}} G_{1,q}(u(k), u(j)) dx = \tilde{\sigma}_{q,M}.$$

The proof is now complete. \qed

5 Technical lemmas

In this section we prove several technical results that were used to determine the asymptotic behavior of the variance of $I_{2q-1}(f_{2q-1}, \varepsilon)$ and α_ε. In Lemma 5.1 we provide an alternative expression for the terms $V_i(\varepsilon), i = 1, 2, 3$ defined in (2.14). In Lemma 5.2 we prove some useful bounds that we will use later to estimate the covariance of $p_\varepsilon(B_{t_1} - B_{s_1})$ and $p_\varepsilon(B_{t_2} - B_{s_2}), s_1 \leq t_1, s_2 \leq t_2$ and $s_1 \leq s_2$. In Lemmas 5.3 and 5.4 we estimate the order of $V_1(\varepsilon)$ and $V_3(\varepsilon)$ when ε is small, while in Lemmas 5.6 and 5.7 we determine the exact behavior of $V_3(\varepsilon)$ and $V_3^{(1)}(\varepsilon)$ as $\varepsilon \to 0$. Finally, we prove Lemmas 5.9 and 5.8, which were used in Lemma 3.3 to determine the behavior of the variance of $I_{2q-1}(f_{2q-1}, \varepsilon)$ for $q \geq 2$.

In what follows, I will denote the identity matrix of dimension 2. In addition, for every square matrix A of dimension 2, we will denote by $|A|$ its determinant.

Lemma 5.1. Let $\varepsilon > 0$ be fixed. Define S_1, S_2, S_3 by (2.10), (2.11), (2.12) respectively, and $V_1(\varepsilon), V_2(\varepsilon), V_3(\varepsilon)$ by (2.14). Then, for $i = 1, 2, 3$, we have

$$V_i(\varepsilon) = \frac{1}{\pi} \int_{S_i} |\varepsilon I + \Sigma|^{-\frac{3}{2}} \Sigma_{1,2} ds_1 ds_2 dt_1 dt_2, \quad (5.1)$$

where $\Sigma = (\Sigma_{i,j})_{i,j=1,2}$ is the covariance matrix of $(B_{t_1} - B_{s_1}, B_{t_2} - B_{s_2})$.

Proof. Let (X, Y) be a jointly Gaussian vector with mean zero, covariance $\Sigma = (\Sigma_{i,j})_{i,j=1,2}$, and density $f_\Sigma(x, y)$. First we prove that for every $\theta > 0$,

$$\mathbb{E} [XY p_\theta(X)p_\theta(Y)] = (2\pi)^{-1} \theta^2 |\theta I + \Sigma|^{-\frac{3}{2}} \Sigma_{1,2}. \quad (5.2)$$
To prove this, notice that

\[\mathbb{E} \left[XY \rho_0(X) \rho_0(Y) \right] = \int_{\mathbb{R}^2} xy \rho_0(x) \rho_0(y) f_{\Sigma}(x, y) \, dx \, dy \]

\[= (2\pi)^{-2} \theta^{-1} |\Sigma|^{-\frac{1}{2}} \int_{\mathbb{R}^2} xy \exp \left\{ -\frac{1}{2} (x, y) \left(\theta^{-1} I + \Sigma^{-1} \right) (x, y)^T \right\} \, dx \, dy \]

\[= (2\pi)^{-1} \theta^{-1} |\Sigma|^{-\frac{1}{2}} |\theta^{-1} I + \Sigma^{-1}|^{-\frac{1}{2}} \int_{\mathbb{R}^2} xy \, f_{\tilde{\Sigma}}(x, y) \, dx \, dy, \quad (5.3) \]

where \(\tilde{\Sigma} := (\theta^{-1} I + \Sigma^{-1})^{-1} \) and \(f_{\tilde{\Sigma}}(x, y) \) denotes the density of a Gaussian vector with mean zero and covariance \(\tilde{\Sigma} \). Clearly, \(\theta^{-1} |\Sigma|^{-\frac{1}{2}} |\theta^{-1} I + \tilde{\Sigma}^{-1}|^{-\frac{1}{2}} = |\theta I + \Sigma|^{-\frac{1}{2}} \). Then, substituting this identity in (5.3), we get

\[\mathbb{E} \left[XY \rho_0(X) \rho_0(Y) \right] = (2\pi)^{-1} |\theta I + \Sigma|^{-\frac{1}{2}} \int_{\mathbb{R}^2} xy \, f_{\tilde{\Sigma}}(x, y) \, dx \, dy \]

\[= (2\pi)^{-1} |\theta I + \Sigma|^{-\frac{1}{2}} \tilde{\Sigma}_{1,2}. \]

Taking into account that \(\tilde{\Sigma}_{1,2} \) is given by

\[\tilde{\Sigma}_{1,2} = \theta^2 |\theta I + \Sigma|^{-1} \Sigma_{1,2}, \]

we conclude that

\[\mathbb{E} \left[XY \rho_0(X) \rho_0(Y) \right] = (2\pi)^{-1} \theta^2 |\theta I d + \Sigma|^{-\frac{3}{2}} \Sigma_{1,2}, \]

as required. From (5.2), we can write

\[V_t(\varepsilon) = 2 \int_{S_i} \mathbb{E} \left[p_\varepsilon(B_t_1 - B_s_1) p_\varepsilon(B_t_2 - B_s_2) \right] \, ds_1 ds_2 dt_1 dt_2 \]

\[= 2 \int_{S_i} \mathbb{E} \left[(B_t_1 - B_s_1)(B_t_2 - B_s_2) p_\varepsilon(B_t_1 - B_s_1) p_\varepsilon(B_t_2 - B_s_2) \right] \, ds_1 ds_2 dt_1 dt_2 \]

\[= \frac{1}{\pi} \int_{S_i} |\varepsilon I + \Sigma|^{-\frac{3}{2}} \Sigma_{1,2} \, ds_1 ds_2 dt_1 dt_2. \]

This finishes the proof of (5.1). \(\square \)

Lemma 5.2. Let \(s_1, s_2, t_1, t_2 \in \mathbb{R}_+ \) be such that \(s_1 \leq s_2 \), and \(s_i \leq t_i \) for \(i = 1, 2 \). Denote by \(\Sigma \) the covariance matrix of \((B_{t_1} - B_{s_1}, B_{t_2} - B_{s_2}) \). Then, if \(s_1 < s_2 < t_2 < t_1 \), or \(s_1 < t_1 < s_2 < t_2 \), there exists \(0 < \delta < 1 \) such that

\[|\Sigma| \geq \delta (t_1 - s_1)^{2H} (t_2 - s_2)^{2H}. \quad (5.4) \]

In addition, if \(s_1 < s_2 < t_2 < t_1 \), then there exists \(0 < \delta < 1 \) such that

\[|\Sigma| \geq \delta ((a + b)^{2H} c^{2H} + (b + c)^{2H} a^{2H}), \quad (5.5) \]

where \(a := s_2 - s_1, \ b := t_1 - s_2, \) and \(c := t_2 - t_1. \)
Proof. The result follows from the local non-determinism property of the fractional Brownian motion (see [5], Lemma 9).

Lemma 5.3. Let \(\varepsilon > 0 \) and define \(V_1(\varepsilon) \) by (2.14). Then, for every \(\frac{2}{3} < H < 1 \) we have

\[
\lim_{\varepsilon \to 0} \varepsilon^{3 - \frac{2}{H}} V_1(\varepsilon) = 0. \tag{5.6}
\]

Proof. Changing the coordinates \((s_1, s_2, t_1, t_2)\) by \((s_1, a := s_2 - s_1, b := t_1 - s_2, c := t_2 - t_1)\) in (5.1), we get

\[
V_1(\varepsilon) \leq \frac{1}{\pi} \int_{[0,T]^4} |\varepsilon I + \Sigma|^{-\frac{3}{2}} \Sigma_{1,2} ds_1 da db dc, \tag{5.7}
\]

where \(\Sigma \) denotes the covariance matrix of \((B_{a+b}, B_{a+b+c} - B_a)\), namely,

\[
\Sigma_{1,1} = (a + b)^{2H}, \tag{5.8}
\]

\[
\Sigma_{2,2} = (c + b)^{2H}, \tag{5.9}
\]

\[
\Sigma_{1,2} = \frac{1}{2} ((a + b + c)^{2H} + b^{2H} - c^{2H} - a^{2H}). \tag{5.10}
\]

Integrating the \(s_1 \) variable in (5.7) we obtain

\[
V_1(\varepsilon) \leq T \cdot \frac{1}{\pi} \int_{[0,T]^3} |\varepsilon I + \Sigma|^{-\frac{3}{2}} \Sigma_{1,2} da db dc. \tag{5.11}
\]

Next we bound the right-hand side of (5.11). Applying (5.5), (5.8), (5.9) and (5.10), we get

\[
|\varepsilon I + \Sigma| = (\varepsilon + \Sigma_{1,1})(\varepsilon + \Sigma_{2,2}) - \Sigma_{1,2}^2 = \varepsilon^2 + \varepsilon \Sigma_{1,1} + \varepsilon \Sigma_{2,2} + |\Sigma| \\
\geq \delta (\varepsilon^2 + \varepsilon(a + b)^{2H} + \varepsilon(b + c)^{2H} + (a + b)^{2H}e^{2H} + (b + c)^{2H}a^{2H}), \tag{5.12}
\]

for some \(\delta > 0 \) only depending on \(H \). Using the inequality \(\Sigma_{1,2} \leq (a + b)^H(b + c)^H \), as well as (5.11) and (5.12), we deduce that there exists a constant \(K \) only depending on \(T, H \) such that

\[
V_1(\varepsilon) \leq K \int_{[0,T]^3} \frac{(a + b)^H(b + c)^H}{\Theta_\varepsilon(a, b, c)^{\frac{3}{2}}} da db dc, \tag{5.13}
\]

where the function \(\Theta_\varepsilon \) is defined by

\[
\Theta_\varepsilon(a, b, c) := \varepsilon^2 + \varepsilon(a + b)^{2H} + \varepsilon(b + c)^{2H} + c^{2H}(a + b)^{2H} + a^{2H}(b + c)^{2H}. \tag{5.14}
\]

By the arithmetic mean-geometric mean inequality, we have

\[
\frac{1}{2} ((a + b)^{2H} + (b + c)^{2H}) \geq (a + b)^H(b + c)^H,
\]

21
and
\[\frac{1}{2} (c^2 H (a + b)^2 + a^2 H (b + c)^2 H) \geq (a + b)^H (b + c)^H (ac)^H. \]

Consequently,
\[\Theta \geq 2(a + b)^H (b + c)^H (\varepsilon + (ac)^H). \]

Therefore, by (5.13) there exists a constant \(K > 0 \) only depending on \(T \) and \(H \) such that
\[V_1(\varepsilon) \leq K \int_{[0,T]^3} (a + b)^{-H/2} (b + c)^{-H/2} (\varepsilon + (ac)^H)^{-3/2} dadbdc \]
\[\leq K \int_{[0,T]^3} b^{-H} (\varepsilon + (ac)^H)^{-3/2} dadbdc. \]

Let \(0 < y < \frac{3H}{2} - 1 \) be fixed, and define \(\gamma := \frac{2y}{3H} + 1 - \frac{2}{3H} \). By the weighted arithmetic mean-geometric mean inequality, we have
\[\gamma \varepsilon + (1 - \gamma)(ac)^H \geq \varepsilon \gamma (ac)^{(1 - \gamma)H}. \]

Hence, by (5.15), we get
\[\varepsilon^3 - \frac{2}{3} V_1(\varepsilon) \leq K \varepsilon^3 - \frac{2}{3} \int_{[0,T]^3} b^{-H} (ac)^{-\frac{3}{2}(1 - \gamma)H} dadbdc \]
\[= K \varepsilon^3 - \frac{1}{3} \pi \left(\int_{0}^{T} b^{-H} db \right) \left(\int_{[0,T]^2} (ac)^{-1 + y} dadbdc \right). \]

This implies that (5.16) holds and the proof of the lemma is complete. \(\square \)

Lemma 5.4. Let \(\varepsilon > 0 \) be fixed. Define \(V_2(\varepsilon) \) by (2.14). Then, for every \(\frac{2}{3} < H < 1 \),
\[\lim_{\varepsilon \to 0} \varepsilon^3 - \frac{2}{3} V_2(\varepsilon) = 0. \]

Proof. Changing the coordinates \((s_1, s_2, t_1, t_2)\) by \((s_1, a := s_2 - s_1, b := t_2 - s_2, t_1 - t_2)\) in (5.1) for \(i = 2 \), and integrating \(s_1 \), we obtain, as before
\[V_2(\varepsilon) \leq \frac{T}{\pi} \int_{[0,T]^3} |\varepsilon I + \Sigma|^{-\frac{3}{2}} \Sigma_{1,2} dadbdc, \]

where the matrix \(\Sigma \) is given by
\[\Sigma_{1,1} = (a + b + c)^{2H}, \]
\[\Sigma_{2,2} = b^{2H}, \]
\[\Sigma_{1,2} = \frac{1}{2}((a + b)^{2H} + (b + c)^{2H} - c^{2H} - a^{2H}). \]
Using relation (5.11) in Lemma 5.2 as well as (5.18), (5.19) and (5.20), we get
\[|\varepsilon I + \Sigma| = (\varepsilon + \Sigma_{1,1})(\varepsilon + \Sigma_{2,2}) - \Sigma_{1,2} = \varepsilon^2 + \varepsilon(\Sigma_{1,1} + \Sigma_{2,2}) + |\Sigma| \geq \varepsilon^2 + \varepsilon((a + b + c)^{2H} + b^{2H}) + \delta(a + b + c)^{2H}b^{2H}. \]
(5.21)

From (5.17) and (5.21) we deduce that there exists a constant \(K > 0 \), only depending on \(T \) and \(H \), such that
\[V_2(\varepsilon) \leq K \int_{[0,T]^3} \frac{\Sigma_{1,2}}{(\varepsilon^2 + \varepsilon(b^{2H} + (a + b + c)^{2H}) + b^{2H}(a + b + c)^{2H})^{\frac{3}{2}}} dadbdc. \]
(5.22)

The term \(\Sigma_{1,2} \) can be written as
\[\Sigma_{1,2} = \frac{1}{2}((a + b)^{2H} + (b + c)^{2H} - a^{2H} - c^{2H}) = Hb \int_0^1 ((a + bv)^{2H-1} + (c + bv)^{2H-1}) dv, \]
which implies
\[\Sigma_{1,2} \leq 2Hb(a + b + c)^{2H-1}. \]
(5.23)

From (5.22) and (5.23), we deduce that there exists a constant \(K > 0 \) only depending on \(T \) and \(H \), such that
\[V_2(\varepsilon) \leq K \int_{[0,T]^3} \frac{b(a + b + c)^{2H-1}}{(\varepsilon^2 + \varepsilon(b^{2H} + (a + b + c)^{2H}) + b^{2H}(a + b + c)^{2H})^{\frac{3}{2}}} dadbdc. \]
(5.24)

Therefore, using the inequality
\[(\varepsilon^2 + \varepsilon(b^{2H} + (a + b + c)^{2H}) + b^{2H}(a + b + c)^{2H})^{\frac{3}{2}} \geq (\varepsilon(a + b + c)^{2H} + b^H(a + b + c)^{2H})^\frac{3}{2}, \]
we get
\[V_2(\varepsilon) \leq K \int_{[0,T]^3} (a + b + c)^{-(H+1)} b(\varepsilon + b^H)^{-\frac{3}{2}} dadbdc \leq K \left(\int_{[0,T]^2} (a + c)^{-(H+1)} dadc \right) \left(\int_0^T b(\varepsilon + b^H)^{-\frac{3}{2}} db \right). \]
(5.25)

The term \((a + c)^{-(H+1)}\) is clearly integrable over the region \(0 \leq a, c \leq T \). To bound the integral over \(0 \leq b \leq T \) of \(b(\varepsilon + b^H)^{-\frac{3}{2}} \) we proceed as follows. Define \(y := H - \frac{2}{3} \). Notice that \(0 < y < 1 \) due to the condition \(\frac{2}{3} < H < 1 \). Therefore, by the weighted arithmetic mean-geometric mean inequality, we have
\[y\varepsilon + (1 - y) b^{2H} \geq \varepsilon^y b^{2H(1-y)}. \]
(5.26)
From (5.25) and (5.26), it follows that there exists a constant $K > 0$, only depending on H and T, such that
\[
\varepsilon^3 \frac{2}{\pi} V_2(\varepsilon) \leq K \varepsilon^3 \frac{2}{\pi} \int_0^T b^{1-3H(1-y)} db \\
= K \varepsilon^3 \frac{2}{\pi} \int_0^T b^{3H-2} db.
\] (5.27)

The integral in the right-hand side of (5.27) is finite thanks to the condition $H > \frac{2}{3}$. Relation (5.16) then follows by taking limit as $\varepsilon \to 0$ in (5.27).

Lemma 5.5. Let c, β, α and γ be real numbers such that $c, \beta > 0$, $\alpha > -1$ and $1 + \alpha + \gamma \beta < 0$. Then we have
\[
\int_0^\infty a^\alpha (c + a^\beta)^\gamma da = \beta^{-1} c^{\frac{\alpha + 1 + \beta \gamma}{\beta}} B \left(\frac{\alpha + 1}{\beta}, -\frac{1 + \alpha + \gamma \beta}{\beta} \right),
\] (5.28)
where $B(\cdot, \cdot)$ denotes the Beta function.

Proof. Making the change of variables $x = a^\beta$ in the left-hand side of (5.28) we obtain
\[
\int_0^\infty a^\alpha (c + a^\beta)^\gamma da = \beta^{-1} \int_0^\infty x^{\frac{\alpha + 1 - \beta}{\beta}} (c + x)^\gamma dx.
\] (5.29)

Hence, making the change of variables $a = \frac{x^\beta}{c}$ in the right hand side of (5.29) we get
\[
\int_0^\infty a^\alpha (c + a^\beta)^\gamma da = \beta^{-1} c^{\frac{\alpha + 1 + \beta \gamma}{\beta}} \int_0^\infty a^{\frac{\alpha + 1 - \beta}{\beta}} (1 + a)^\gamma da.
\] (5.30)

Finally, the change of variables $x = \frac{a^\beta}{1 + a}$ in the right hand side of (5.30) leads to
\[
\int_0^\infty a^\alpha (c + a^\beta)^\gamma da = \beta^{-1} c^{\frac{\alpha + 1 + \beta \gamma}{\beta}} \int_0^1 x^{\frac{\alpha + 1 - \beta}{\beta}} (1 - x)^{\frac{\beta + 1 + \alpha + \gamma \beta}{\beta}} dx,
\] (5.31)
which implies the desired result.

Lemma 5.6. Let $\varepsilon, T > 0$, and define $V_3(\varepsilon)$ by (2.14). Then, for every $\frac{2}{3} < H < 1$ we have
\[
\lim_{\varepsilon \to 0} \varepsilon^3 \frac{2}{\pi} V_3(\varepsilon) = \sigma^2,
\] (5.32)
where σ^2 is given by (3.2).

Proof. Changing the coordinates (x, u_1, u_2) by $(a := u_1, b := x - u_1, c := u_2)$ in (5.1) for $i = 3$, we obtain
\[
V_3(\varepsilon) = \frac{1}{\pi} \int_{[0,T]^3} 1_{(0,T)}(a + b + c)(T - (a + b + c)) |\varepsilon I + \Sigma|^{-\frac{3}{2}} \Sigma_{1,2} dadbdc,
\] (5.33)
where the matrix Σ is given by
\[
\Sigma_{1,1} = a^{2H}, \\
\Sigma_{2,2} = c^{2H}, \\
\Sigma_{1,2} = \frac{1}{2}((a + b + c)^{2H} + b^{2H} - (b + c)^{2H} - (a + b)^{2H}).
\]
We can easily check, as before, that
\[
\mu = \frac{\varepsilon I + \Sigma}{\sqrt{B}D}
\]
We show that
\[
\lim_{\varepsilon \to 0} \frac{\varepsilon^{3-\frac{2}{H}} V_3(\varepsilon)}{\pi} = \int_{\mathbb{R}_+^3} 1_{(0,T)}(b) \frac{H(2H - 1)(T - b) ac b^{2H - 2}}{(1 + a^{2H} + c^{2H} + a^{2H} c^{2H})^2} dv_1 dv_2
\]
which implies
\[
\Psi_\varepsilon(a, b, c) = \frac{H(2H - 1)(T - b) ac b^{2H - 2}}{(1 + a^{2H} + c^{2H} + a^{2H} c^{2H})^2} \\
= (T - b) b^{2H - 2} ac (1 + a^{2H})^{-\frac{3}{2}} (1 + c^{2H})^{-\frac{3}{2}}.
\]
Therefore, provided we show that $1_{(0,T)}(\varepsilon^{\frac{1}{2H}}(a + c) + b)\Psi_\varepsilon(a, b, c)$ is dominated by a function integrable in \mathbb{R}_+^3, we obtain the following identity by applying the dominated convergence theorem in (5.35)
\[
\lim_{\varepsilon \to 0} \frac{\varepsilon^{3-\frac{2}{H}} V_3(\varepsilon)}{\pi} = \frac{H(2H - 1)}{\pi} \int_{\mathbb{R}_+^3} 1_{(0,T)}(b) \frac{H(2H - 1)(T - b) b^{2H - 2} ac ((1 + a^{2H})(1 + c^{2H}))^{-\frac{3}{2}}}{\pi} dv_1 dv_2.
\]
Making the change of variables $x = \frac{b}{\varepsilon}$, and using Lemma 5.5 we obtain (5.32). Next we show that $1_{(0,T)}(\varepsilon^{\frac{1}{2H}}(a + c) + b)\Psi_{3,0,\varepsilon}(a, b, c)$ is dominated by a function integrable
Lemma 5.7. Let $T, \varepsilon > 0$ be fixed. Define $V_3^{(1)}(\varepsilon)$ by (2.16). Then, for every $\frac{2}{3} < H < 1$ it holds
\[\lim_{\varepsilon \to 0} \varepsilon^{3-\frac{2}{H}} V_3^{(1)}(\varepsilon) = \sigma^2, \]
where σ^2 is given by (5.2).

Proof. By (2.16) and (2.19),
\[V_3^{(1)}(\varepsilon) = (2q - 1)! \beta_3^2 \int_{S_3} G_3^{(q)}(t_1 - s_1, t_2 - s_2), \]
where S_3 is defined by (2.12). Changing the coordinates (s_1, s_2, t_1, t_2) by $(a := t_1 - s_1, b := s_2 - t_1, c := t_2 - s_2)$ in (5.39), and using (2.20), we obtain
\[V_3^{(1)}(\varepsilon) = \frac{1}{\pi} \int_{\mathbb{R}^3_+} \int_0^T (a + b + c) \left(\varepsilon + a^{2H} \right)^{-\frac{2}{H}} \left(\varepsilon + c^{2H} \right)^{-\frac{2}{H}} \mu(a + b, a, c) da db dc. \]

Next, using the identity
\[\mu(x + y, x, z) = H(2H - 1) x z \int_{[0, 1]^2} (y + x v_1 + z v_2)^{2H-2} dv_1 dv_2, \]
we get
\[\varepsilon^{3-\frac{2}{H}} V_3^{(1)}(\varepsilon) = \frac{H(2H - 1)}{\pi} \int_0^T \int_{\mathbb{R}^3_+} \int_{[0, 1]^2} \left| \varepsilon + a^{2H} \right|^{\frac{2}{H}} \left| \varepsilon + c^{2H} \right|^{\frac{2}{H}} \mu(a + b, a, c) (a + c)(T - b - \varepsilon \sqrt{\frac{1}{\pi}} (a + c)) \]
\[\times (1 + a^{2H})^{-\frac{2}{H}} (1 + c^{2H})^{-\frac{2}{H}} ac(b + \varepsilon \sqrt{\frac{1}{\pi}} (av_1 + cv_2))^{2H-2} dv_1 dv_2 db dc. \]
Notice that the argument of the integral in the right-hand side of (5.41) is dominated by the function
\[
\Theta(a, b, c, v_1, v_2) := \frac{TH(2H - 1)}{\pi} (1 + a^{2H})^{-\frac{3}{2}} (1 + c^{2H})^{-\frac{3}{2}} abc^{2H - 2}.
\]
The integral \(\int_0^T \int_{[0,1]^2} \Theta(a, b, c, v_1, v_2) dv_1 dv_2 dacdb\) is finite thanks to condition \(H > \frac{2}{3}\). Therefore, applying the dominated convergence theorem to (5.41), we get
\[
\lim_{\varepsilon \to 0} \varepsilon^3 \pi V_3^{(1)}(\varepsilon) = \frac{H(2H - 1)}{\pi} \int_0^T \int_{\mathbb{R}_+^3} (T - b)(1 + a^{2H})^{-\frac{3}{2}} (1 + c^{2H})^{-\frac{3}{2}} abc^{2H - 2} dacdb.
\]
Making the change of variables \(x = \frac{b}{T}\), and using Lemma 5.5 we obtain (5.38).

Lemma 5.8. Let \(T, \varepsilon > 0\) and \(q \in \mathbb{N}\), \(q \geq 2\) be fixed. Define \(G_{1,x}^{(q)}(u_1, u_2)\) by (2.20). Then, for every \(\frac{3}{q} < H < \frac{4q - 3}{4q - 2}\), it holds that
\[
\int_{\mathbb{R}_+^3} G_{1,x}^{(q)}(u_1, u_2) dx du_1 du_2 < \infty. \tag{5.42}
\]

Proof. Let \(T, \varepsilon > 0\), and \(q \in \mathbb{N}\) be fixed, and define the sets
\[
\mathcal{T}_1 := \{(x, u_1, u_2) \in \mathbb{R}_+^3 \mid u_1 - x \geq 0, \ x + u_2 - u_1 \geq 0\},
\]
\[
\mathcal{T}_2 := \{(x, u_1, u_2) \in \mathbb{R}_+^3 \mid u_1 - u_2 \geq 0\},
\]
\[
\mathcal{T}_3 := \{(x, u_1, u_2) \in \mathbb{R}_+^3 \mid x - u_1 \geq 0\}.
\]
Since \(\mathbb{R}_+^3 = \mathcal{T}_1 \cup \mathcal{T}_2 \cup \mathcal{T}_3\), it suffices to prove that \(G_{1,x}^{(q)}(u_1, u_2)\) is integrable in \(\mathcal{T}_i\), for \(i = 1, 2, 3\).

To prove the integrability of \(G_{1,x}^{(q)}(u_1, u_2)\) in \(\mathcal{T}_1\) we change the coordinates \((x, u_1, u_2)\) by \((a := x, b := u_1 - x, c := x + u_2 - u_1)\). Then,
\[
\int_{\mathcal{T}_1} G_{1,x}^{(q)}(u_1, u_2) dx du_1 du_2 = \int_{\mathbb{R}_+^3} G_{1,a}^{(q)}(a + b, b + c) dacdbdc. \tag{5.43}
\]
Next we prove that the right hand of (5.43) is finite. Notice that
\[
G_{1,a}^{(q)}(a + b, b + c) = (1 + (a + b)^{2H})^{-\frac{1}{2}q}(1 + (b + c)^{2H})^{-\frac{1}{2}q}\mu(a, a + b, b + c)^{2q-1}.
\]
By the Cauchy-Schwarz inequality, we get \(\mu(a, a + b, b + c) \leq (a + b)^H(b + c)^H\), and consequently,
\[
G_{1,a}^{(q)}(a + b, b + c) \leq (1 + (a + b)^{2H})^{-1}(1 + (b + c)^{2H})^{-1}.
\]
27
Hence, using the inequalities $\frac{2}{3}a + \frac{1}{3}b \geq a^\frac{2}{3}b^\frac{1}{3}$ and $\frac{2}{3}c + \frac{1}{3}b \geq c^\frac{2}{3}b^\frac{1}{3}$, we deduce that there exists a constant K only depending on T and H such that the following bounds hold

$$G^{(q)}_{1,a}(a + b, b + c) \leq K(abc)^{-\frac{2H}{3}}$$

if $a, b, c \geq 1$,

$$G^{(q)}_{1,a}(a + b, b + c) \leq K(1 + b^{2H})^{-1}(1 + c^{2H})^{-1}$$

if $a \leq 1$,

$$G^{(q)}_{1,a}(a + b, b + c) \leq K(1 + b^{2H})^{-1}(1 + a^{2H})^{-1}$$

if $c \leq 1$,

$$G^{(q)}_{1,a}(a + b, b + c) \leq K(1 + a^{2H})^{-1}(1 + c^{2H})^{-1}$$

if $b \leq 1$.

Using the previous bounds, as well as condition $H > \frac{3}{4}$, we deduce that $G^{(q)}_{1,a}(a + b, b + c)$ is integrable in the variables $a, b, c \geq 0$.

To prove the integrability of $G^{(q)}_{1,x}(u_1, u_2)$ in T_2 we change the coordinates (x, u_1, u_2) by $(a := x, b := u_2, c := u_1 - x - u_2)$. Then,

$$\int_{T_2} G^{(q)}_{1,x}(u_1, u_2) dx du_1 du_2 = \int_{\mathbb{R}^3_+} G^{(q)}_{1,a}(b, a + b + c) dadbdc.$$

Next we prove that $G^{(q)}_{1,a}(a + b, b + c)$ is integrable in the variables $a, b, c \geq 0$. Using inequality $\mu(a, a + b + c, b) \leq (a + b + c)^H b^H$, as well as the condition $q \geq 2$, we obtain

$$G^{(q)}_{1,a}(a + b, b + c) = (1 + (a + b + c)^{2H})^{-\frac{q}{2}}(1 + b^{2H})^{-\frac{q}{2}}(1 + c^{2H})^{-\frac{q}{2}} \mu(x, a + b + c, b)^3$$

$$\times \left(\frac{\mu(a, a + b + c, b)}{\sqrt{(1 + b^{2H})(1 + (a + b + c)^{2H})}}\right)^{2(a-2)}$$

$$\leq (1 \vee a \vee b \vee c)^{-5H}(1 \vee b)^{-5H} \mu(a, a + b + c, b)^3.$$ \hspace{1cm} (5.44)

Similarly, using $q \geq 1$ we can prove that

$$G^{(q)}_{1,a}(b, a + b + c) \leq (1 \vee a \vee b \vee c)^{-2H}(1 \vee b)^{-2H}.$$ \hspace{1cm} (5.45)

In addition, using the representation

$$\mu(a, a + b + c, b) = \frac{1}{2}((a + b)^{2H} + (b + c)^{2H} - a^{2H} - c^{2H})$$

$$= Hb \int_0^1 ((a + bu)^{2H-1} + (c + bu)^{2H-1}) du,$$

we deduce that there exist constants K, K' only depending on H such that

$$\mu(a, a + b + c, b) 1_{(0,a \land c)}(b) \leq K 1_{(0,a \land c)}(b)b((a + b)^{2H-1} + (c + b)^{2H-1})$$

$$\leq K' 1_{(0,a \land c)}(b)b(a \lor c)^{2H-1}$$

$$\leq K'(1 \lor b)(1 \lor a \lor c)^{2H-1}.$$ \hspace{1cm} (5.46)
Using (5.49), we deduce that there exists a constant $K > 0$ such that

$$G_{1,a}^{(q)}(b, a + b + c) \mathbb{1}_{(0,a \land c)}(b) \leq K \mathbb{1}_{(0,a \land c)}(b)(1 \lor a \lor b \lor c)^{-5H}(1 \lor b)^{-5H+3}(1 \lor a \lor c)^{6H-3} \leq K(1 \lor a \lor c)^{H-3}(1 \lor b)^{-5H+3}.$$

Using the previous inequality, as well as the condition $H > \frac{5}{4}$, we deduce that $G_{1,a}^{(q)}(b, a + b + c)$ is integrable in $\{(a, b, c) \in \mathbb{R}^3_+ \mid b \leq a \land c\}$. In addition, from (5.45) we obtain

$$G_{1,a}^{(q)}(b, a + b + c) \mathbb{1}_{(0,a \land c)}(a) \leq (1 \lor b)^{-2H}(1 \lor b \lor c)^{-2H}.$$

Therefore, using condition $H > \frac{3}{4}$, we deduce that $G_{1,a}^{(q)}(b, a + b + c)$ is integrable in $\{(a, b, c) \in \mathbb{R}^3_+ \mid a \leq b \land c\}$. By symmetry $G_{1,a}^{(q)}(b, a + b + c)$ is integrable in $\{(a, b, c) \in \mathbb{R}^3_+ \mid c \leq a \land b\}$. From the previous analysis we conclude that $G_{1,x}^{(q)}(u_1, u_2)$ is integrable in \mathcal{T}_2.

To prove the integrability of $G_{1,x}^{(q)}(u_1, u_2)$ in \mathcal{T}_3, we change the coordinates (x, u_1, u_2) by $(a := u_1, b := x - u_1, c := u_2)$. Then,

$$\int_{\mathcal{T}_3} G_{1,x}^{(q)}(u_1, u_2)dxdu_1du_2 = \int_{\mathbb{R}^3_+} G_{1,a+b}^{(q)}(a, c)dadbc.$$

To bound $G_{1,a+b}^{(q)}(a, c)$ we proceed as follows. Using inequality $\mu(a + b, a, c) \leq a^H e^H$, we deduce that

$$G_{1,a+b}^{(q)}(a, c) \leq (1 + a^{2H})^{-1}(1 + e^{2H})^{-1} \leq (1 \lor a)^{-2H}(1 \lor c)^{-2H}.$$

As a consequence, $G_{1,a+b}^{(q)}(a, c)$ is integrable in $\{(a, b, c) \in \mathbb{R}^3_+ \mid b \leq 1\}$. In addition, from relation

$$\mu(x + y, x, z) = H(2H - 1)xyz \int_{[0,1]^2} (y + xv_1 + zv_2)^{2H-2}dv_1dv_2,$$

we can prove that

$$\mu(x + y, x, z) \leq H(2H - 1)xyz^{2H-2}.$$

Using (5.49), we deduce that there exists a constant $K > 0$, only depending on H and q, such that

$$G_{1,a+b}^{(q)}(a, c) \leq K ((1 + a^{2H}) (1 + e^{2H}))^{-\frac{1}{2}-q} (ac)^{2q-1} (2q-1)(H-1) \leq K ((1 \lor a) (1 \lor c))^{-H-2qH+2q-1} b^2(2q-1)(H-1).$$
Taking into account that $H < \frac{4q-3}{4q-2}$, we get $2(2q-1)(H-1) < -1$, and hence

$$\int_{1 \vee a \vee c}^{\infty} G^{(q)}_{1,a+b}(a,c)db \leq K \left(((1 \lor a) (1 \lor c))^{-H-2qH+2q-1}(1 \lor a \lor c)^{2(2q-1)(H-1)+1} \right)$$

$$\leq K (1 \lor a)^{-2H+\frac{1}{2}} (1 \lor c)^{-2H+\frac{1}{2}}, \quad (5.50)$$

where in the last inequality we used the relation

$$(1 \lor a \lor c)^{2(2q-1)(H-1)+1} \leq (1 \lor a)^{(2q-1)(H-1)+\frac{1}{2}} (1 \lor c)^{(2q-1)(H-1)+\frac{1}{2}}.$$

Using relation (5.50) as well as condition $H > \frac{3}{4}$, we conclude that $G^{(q)}_{1,a+b}(a,c)$ is integrable in $\{(a,b,c) \in \mathbb{R}^3_+ \mid 1 \lor a \lor c \leq b\}$. In addition, from (5.48) we obtain

$$\mu(x + y, x, z) \leq H(2H - 1)xz \int_{[0,1]^2} (xv_1 + zv_2)^{2H-2}dv_1dv_2$$

$$\leq H(2H - 1)xz \int_0^1 ((x \lor z)w)^{2H-2}dw$$

$$= Hxz(x \lor z)^{2H-2} = H(x \land z)(x \lor z)^{2H-1}.$$

Hence, there exist constants $K, \tilde{K} \geq 0$ such that

$$G^{(q)}_{1,a+b}(a,c)1_{(a \land c, a \lor c)}(b)$$

$$= \left((1 + a^{2H}) (1 + c^{2H}) \right)^{-\frac{3}{2} - q} \mu(a + b, a, c)^{2q-1}$$

$$\leq K \left(((1 \lor a) (1 \lor c))^{-H-2qH} (a \lor c)^{2q-1} (a \lor c)^{(2q-1)(2H-1)} \right)$$

$$\leq K \left(((1 \lor a) (1 \lor c))^{-H-2qH} (1 \lor (a \land c))^{2q-1} (1 \lor a \lor c)^{(2q-1)(2H-1)} \right)$$

$$= K (1 \lor (a \land c))^{-H(2q+1)+2q-1} (1 \lor a \lor c)^{-3H-2q+2qH+1}. \quad (5.51)$$

Using relation (5.51) as well as condition $H > \frac{3}{4}$, we obtain that $G^{(q)}_{1,a+b}(a,c)$ is integrable in the region $\{(a,b,c) \in \mathbb{R}^3_+ \mid a \land c \leq b \leq a \lor c\}$. Finally, applying (5.47) we can prove that $G^{(q)}_{1,a+b}(a,c)$ is integrable in $\{(a,b,c) \in \mathbb{R}^3_+ \mid b \leq a \land c\}$. From the previous analysis we conclude that $G^{(q)}_{1,a+b}(a,c)$ is integrable in the variables $a, b, c \geq 0$, which in turn implies that $G^{(q)}_{1,a+b}(u_1, u_2)$ is integrable in T_3 as required.

\[\square \]

Lemma 5.9. Let $T, \varepsilon > 0$ and $q \in \mathbb{N}$, $q \geq 2$ be fixed, and define $G^{(q)}_{0,x}(u_1, u_2)$ by (2.20). Then, for every $\frac{2}{3} < H < \frac{3}{4}$, we have

$$\int_{[0,T]^3} G^{(q)}_{0,x}(u_1, u_2) dx du_1 du_2 < \infty.$$
Proof. Let $T, \varepsilon > 0$, and $q \in \mathbb{N}$, and define the sets

\[
\tilde{T}_i := \{(x, u_1, u_2) \in [0, T]^3 \mid u_1 - x \geq 0, \ x + u_2 - u_1 \geq 0\},
\tilde{T}_2 := \{(x, u_1, u_2) \in [0, T]^3 \mid u_1 - x - u_2 \geq 0\},
\tilde{T}_3 := \{(x, u_1, u_2) \in [0, T]^3 \mid x - u_1 \geq 0\}.
\]

Since $[0, T]^3 = \tilde{T}_1 \cup \tilde{T}_2 \cup \tilde{T}_3$, it suffices to check the integrability of $G_{0,x}^{(q)}(u_1, u_2)$ in \tilde{T}_i, for $i = 1, 2, 3$. To prove integrability in \tilde{T}_1 we make change the coordinates (x, u_1, u_2) by $(a := x, b := u_1 - x, c := x + u_2 - u_1)$. Then,

\[
\int_{\tilde{T}_1} G_{0,x}^{(q)}(u_1, u_2) \, dx \, du_1 \, du_2 \leq \int_{[0,T]^3} G_{0,a}^{(q)}(a + b + c) \, da \, db \, dc.
\]

By the inequality $\mu(a, a + b, b + c) \leq (a + b)^H (b + c)^H$, we can write

\[
G_{0,a}^{(q)}(a + b, b + c) \leq (a + b)^{-2H} (b + c)^{-2H}.
\]

Therefore, using $\frac{2a}{3} + \frac{b}{3} \geq \frac{3}{2}b^\frac{1}{H}$ and $\frac{2c}{3} + \frac{b}{3} \geq \frac{9}{4}b^\frac{1}{H}$, as well as (5.52), we deduce that there exists a universal constant K such that

\[
G_{0,a}^{(q)}(a + b, b + c) \leq K(abc)^{-\frac{4H}{3}}.
\]

The right hand side in the previous inequality is integrable in $[0, T]^3$ thanks to the condition $H < \frac{3}{4}$. Therefore, $G_{0,x}^{(q)}(u_1, u_2)$ is integrable in \tilde{T}_1.

To prove the integrability of $G_{0,x}^{(q)}(u_1, u_2)$ in \tilde{T}_2 we change the coordinates (x, u_1, u_2) by $(a := x, b := u_2, c := u_1 - x - u_2)$. Then,

\[
\int_{\tilde{T}_2} G_{0,x}^{(q)}(u_1, u_2) \, dx \, du_1 \, du_2 \leq \int_{[0,T]^3} G_{0,a}^{(q)}(b + a + c) \, da \, db \, dc.
\]

In order to bound the term $G_{0,a}^{(q)}(b + a + c)$ we proceed as follows. Applying the inequality $\mu(a, a + b + c, b) \leq (a + b + c)^H b^H$, as well as the condition $q \geq 2$, we obtain

\[
G_{0,a}^{(q)}(b + a + c) = (a + b + c)^{-5H} b^{-5H} \mu(a, a + b + c, b)^3 \\
\times \left(\frac{\mu(b, a + b + c, b)}{b^H (a + b + b)^H} \right)^{2(q-2)} \\
\leq (a + b + c)^{-5H} b^{-5H} \mu(a, a + b + c, b)^3.
\]

(5.53)

On the other hand, by the relation

\[
\mu(a, a + b + c, b) = \frac{1}{2} \left((a + b)^{2H} + (b + c)^{2H} - a^{2H} - c^{2H} \right) \\
= Hb \int_{0}^{1} ((a + bw)^{2H-1} + (c + bw)^{2H-1}) \, dw,
\]

31
we deduce that there exists a constant \(K > 0 \) such that

\[
\mu(a, a + b + c, b) \leq 1_{(0, a \wedge c)}(b) H b \int_0^1 \left((a + bw)^{2H-1} + (c + bw)^{2H-1} \right) dw
= Kb(a \vee c)^{2H-1}.
\] (5.54)

Using (5.53) and (5.54) we get

\[
G^{(q)}_{0,a}(b, a + b + c) \leq Kb^{-5H+3}(a + b + c)^{-5H}(a \vee c)^{6H-3}
\leq Kb^{-5H+3}(a \vee c)^{H-3}.
\] (5.55)

From (5.55) as well as the condition \(H < \frac{3}{4} \), we deduce that \(G^{(q)}_{0,a}(b, a + b + c) \) is integrable in \(\{(a, b, c) \in [0, T]^3 \mid b \leq a \wedge c\} \). In addition, using the relation \(\mu(a, a + b + c, b) \leq (a + b + c)^{H} b^{H} \), we can prove that

\[
G^{(q)}_{0,a} (b, a + b + c) \leq b^{-2H} c^{-2H}.
\]

Therefore, by the condition \(H < \frac{3}{4} \), we deduce that \(G^{(q)}_{0,a}(b, a + b + c) \) is integrable in \(\{(a, b, c) \in [0, T]^3 \mid a \leq b \wedge c\} \). Similarly, we can prove that

\[
G^{(q)}_{0,a} (b, a + b + c) \leq b^{-2H} a^{-2H},
\]

and hence, since \(H < \frac{3}{4} \) we conclude that \(G^{(q)}_{0,a}(b, a + b + c) \) is integrable in \(\{(a, b, c) \in [0, T]^3 \mid c \leq b \wedge a\} \). From the analysis we conclude that \(G^{(q)}_{0,a}(b, a + b + c) \) is integrable in \([0, T]^3\).

To prove the integrability of \(G^{(q)}(u_1, u_2) \) in \(\tilde{T}_3 \) we change the coordinates \((x, u_1, u_2)\) by \((a := u_1, b := x - u_1, c := u_2)\) to get

\[
\int_{\tilde{T}_3} G^{(q)}_{0,x}(u_1, u_2) dx du_1 du_2 \leq \int_{[0,T]^3} G^{(q)}_{0,a+b}(a, c) da db dc.
\]

In order to bound the term \(G^{(q)}_{0,a+b}(a, c) \) we proceed as follows. From relation

\[
\mu(x + y, x, z) = H(2H - 1) x z \int_{[0,1]^2} (y + xv_1 + zv_2)^{2H-2} dv_1 dv_2,
\] (5.56)

we can deduce that

\[
\mu(x + y, x, z) \leq H(2H - 1) x y^{2H-2}.
\]

Hence, since

\[
G^{(q)}_{0,a+b}(a, c) = a^{-2H-2qH} c^{-2H-2qH} \mu(a + b, a, c)^{2q-1},
\] (5.57)
we deduce that there exists a constant $K > 0$ only depending on H such that

$$G_{0,a+b}^{(q)}(a,c)1_{(a \land c, a \lor c)}(b) \leq a^{-H-2qH+2q-1}c^{-H-2qH+2q-1}b^{2(2q-1)(H-1)}1_{(a \land c, a \lor c)}(b).$$

(5.58)

Since $q \geq 2$, we have that $H < \frac{3}{2} < \frac{3}{5} \leq \frac{2q}{1+2q}$. As a consequence, from (5.58) we deduce that $G_{0,a+b}^{(q)}(a,c)$ is integrable in $\{(a,b,c) \in \mathbb{R}^3_+ \mid b \geq a, c\}$. In addition, by (5.56) we get

$$\mu(x+y,x,z) \leq H(2H-1)xyz \int_{[0,1]^2} ((x \land z)w_1)^{2H-2}dw_1dw_2$$

$$= Hxyz(x \lor z)^{2H-2} = H(x \land z)(x \lor z)^{2H-1}.$$ (5.59)

Therefore, there exists constant $K \geq 0$ such that

$$G_{0,a+b}^{(q)}(a,c)1_{(a \land c, a \lor c)}(b) \leq K(a \land c)^{-H(2q+1)+2q-1}(a \lor c)^{-3H-2q+2qH+1}1_{(a \land c, a \lor c)}(b).$$

(5.59)

From (5.59), and $H < \frac{3}{4} < \frac{3}{5} \leq \frac{2q}{1+2q}$, it follows that $G_{0,a+b}^{(q)}(a,c)$ is integrable in $\{(a,b,c) \in [0,T]^3 \mid a \land c \leq b \leq a \lor c\}$. Finally, by inequalities $\mu \leq a^{HcH}$ and (5.57), we get

$$G_{0,a+b}^{(q)}(a,c)1_{(0,a \land c)}(b) \leq a^{-2H}c^{-2H}.$$ (5.60)

Using (5.60) as well as condition $H < \frac{3}{4}$, we deduce that $G_{0,a+b}^{(q)}(a,c)$ is integrable in $\{(a,b,c) \in [0,T]^3 \mid b \leq a \land c\}$. From the previous analysis it follows that $G_{0,x}^{(q)}(u_1,u_2)$ is integrable in \tilde{T} as required.

References

[1] Breuer, P. and Major, P. Central limit theorems for nonlinear functionals of Gaussian fields. *J. Multivariate Anal.* 13 (1983), 425–441.

[2] Darses, S., Nourdin I. and Nualart, D. Limit theorems for nonlinear functionals of Volterra processes via white noise analysis. *Bernoulli* 16 (2010), 1262–1293.

[3] Nualart, D. and Peccati, G. Central limit theorems for sequences of multiple stochastic integrals. *Ann. Probab.* 33 (2005), 177–193.

[4] Deya, A., Nualart, D. and Tindel, S. On L^2 modulus of continuity of Brownian local times and Riesz potentials. *Ann. Probab.* 43 (2015), 1493–1534.

[5] Hu, Y. and Nualart, D. Renormalized self-intersection local time for fractional Brownian motion. *Ann. Probab.* 33 (2005), 948–983.

[6] Hu, Y. and Nualart, D. Central limit theorem for the third moment in space of the Brownian local time increments. *Electron. Commun. Probab.* 15 (2010), 396–410.
[7] Jung, P. and Markowsky, G. On the Tanaka formula for the derivative of self-intersection local time of fractional Brownian motion. *Stochastic Process. Appl.* 124 (2014), 3846–3868.

[8] Markowsky, G. The derivative of the intersection local time of Brownian motion through Wiener chaos. *Séminaire de Probabilités XLIV.* 2046 (2012), 141–148.

[9] Peccati, G. and Tudor, C Gaussian limits for vector-valued multiple stochastic integrals. *Séminaire de Probabilités XXXVIII.* 1857 (2005), 247–262.

[10] Rogers, L.C.G. and Walsh, J.B. Local time and stochastic area integrals. *Ann. Probab.* 19 (1991), 457–482.

[11] Rosen, J. The intersection local time of fractional Brownian motion in the plane. *J. Multivar. Anal.* 23 (1987), 37–46.

[12] Rosen, J. Derivatives of self-intersection local times. *Lecture Notes in Math.* 1857 (2005), 263–281.