Regulation mechanisms in spatial stochastic
development models

Dmitri Finkelshtein* Yuri Kondratiev†

Abstract

The aim of this paper is to analyze different regulation mechanisms
in spatial continuous stochastic development models. We describe the
density behavior for models with global mortality and local establish-
ment rates. We prove that the local self-regulation via a competition
mechanism (density dependent mortality) may suppress a unbounded
growth of the averaged density if the competition kernel is superstable.

Key words. Continuous systems, spatial birth-and-death processes, correlation
functions, establishment, density dependent mortality, development models

AMS subject classification (2000). 82C22; 60K35; 82C21

1 Introduction

We will discuss some classes on interacting particle systems (IPS) located in
the Euclidean space \(\mathbb{R}^d \). The phase space of such system is the configuration
space \(\Gamma = \Gamma(\mathbb{R}^d) \) on \(\mathbb{R}^d \). By definition, each configuration \(\gamma \in \Gamma \) is a locally
finite subset \(\gamma \subset \mathbb{R}^d \). So, due to the standard terminology, we will deal
with continuous systems. Random evolutions of IPS are given by Markov
processes on \(\Gamma \). Between all such processes, one may distinguish a subclass
of so-called spatial birth-and-death Markov processes. In these processes
points of a randomly evolving configuration appear and disappear due to a

*Institute of Mathematics, National Academy of Sciences of Ukraine, 01601, Kyiv,
Ukraine (fdl@imath.kiev.ua).
†Fakultät für Mathematik, Universität Bielefeld, 33615 Bielefeld, Germany
(kondrat@mathematik.uni-bielefeld.de).
Markov rule (see (3.1) below). Particular types of spatial birth-and-death processes are motivated by several applications. For example, Glauber type dynamics for classical continuous gases belongs to this class [1], [13]. Another very essential source of such processes is given by individual based models in spatial ecology or agent based models in socio-economic systems, see, e.g., [4] and the references therein. In any case, a concrete form of birth and death rates in the stochastic dynamics should reflect a microscopic structure of the system under consideration.

To describe the problem we are going to analyze, let us start with the simplest case of a pure birth stochastic Markov process. In this process, new points appear in the configuration independently of existing points and locations of these new points are uniformly distributed in the space. A possible interpretation of such random evolution is related to an independent creation of identical economic units in the space without any influence of their spatial locations. We will call this process the free stochastic development model. Another motivation to study such stochastic evolutions comes from applications of the free development dynamics to generalized mutation-selection models in mathematical genetics. In these models a configuration describes locations of mutations inside of a genom and new mutations spontaneously appear and are equally distributed in the genom, see [22], [16], [8]. Obviously, this process is monotonically growing and it is easy to show that the density of particles in such a system will linearly grows in time. We would like to answer the following question: How may global regulations and local interactions change the asymptotic behavior of the system? More precisely, we will consider three particular cases of stochastic development models including:

(i) A global regulation via a mortality rate that prescribes to particles (economic units) random life times (exponentially i.i.d. with a parameter $m > 0$). This case corresponds to the well-known Surgailis independent birth-and-death Markov processes on Γ, see, e.g., [23], [24], [14]. In the framework of mathematical physics, it is just Glauber dynamics for classical free gas.

(ii) An establishment effect. In this case, the distribution of the position of a new particle depends on the local structure of the configuration. Newborn units will appear with small intensity in densely occupied regions. We will see that the establishment itself is not enough to prevent the growth of the density in the system. In fact, the establishment effects slower (logarithmic) growth contrary to the linear growth in the free model.

(iii) A self-regulation via competition. The competition is reflected in a
density dependent mortality. The latter means that the mortality rate for each unit depends on the local structure of the configuration around this unit. The mortality rate enters into the model as a relative energy of a particle inside the configuration corresponding to a competition potential. The described competition mechanism provides only a local regulation of dense regions inside a configuration. Nevertheless, Theorem 4.2 shows a global bound for the averaged density of the stochastic development process. Note that for the proof of this result we use an assumption of positive definiteness (and, as a consequence, superstability) of the competition potential in the form stated in [10]. Therefore, the main result concerning the competition case may be read as follows: a properly organized competition in the stochastic development systems produces a self-regulation for the density of units.

Let us stress an essential point concerning the main aim of this paper. At present, we have quite restrictive conditions for the existence of general spatial birth-and-death processes, see e.g. [6]. In many applications we need a weaker information. Namely, we are interested in the existence of Markov functions corresponding to given birth and death rates and a certain class of initial distributions on Γ. These Markov functions and their one-dimensional distributions are enough to describe the time evolution of initial states of systems and to analyze asymptotic properties of stochastic dynamics (invariant states, ergodicity etc.). In the case of infinite particle systems, the concept of Markov functions is strictly weaker than that of Markov processes, and for particular models considered below there exist constructive methods which solve the existence problem, see [4], [6], [10] and [12]. But the main aim of our analysis is to obtain an a priori information about the time-space behavior of such important characteristics of these processes as correlations functions of their one-dimensional distributions which are probability measures on Γ. In particular, we are interested in the behavior of the particle density in course of the stochastic evolution. A constructive possibility to obtain some a priori bounds on characteristics of Markov dynamics may be also realized in other interesting IPS. As an example, we can mention the Dieckmann–Law model in spatial ecology where the existence problem remains open but conditions for explosion and non-explosion are stated in terms of the parameters of the model in [3]. Moreover, analogously to the well-known situation in the PDE theory, a priori bounds may play a crucial role in the study of the existence problem.
2 General facts and notations

Let $\mathcal{B}(\mathbb{R}^d)$ be the family of all Borel sets in \mathbb{R}^d and $\mathcal{B}_b(\mathbb{R}^d)$ denotes the system of all bounded sets from $\mathcal{B}(\mathbb{R}^d)$.

The space of n-point configuration is

$$\Gamma_0^{(n)} = \Gamma_0^{(n)}_{\eta;\mathbb{R}^d} := \left\{ \eta \subset \mathbb{R}^d \mid |\eta| = n \right\}, \quad n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\},$$

where $|A|$ denotes the cardinality of the set A. The space $\Gamma^{(n)}_\Lambda := \Gamma_0^{(n)}_{\Lambda}$ for $\Lambda \in \mathcal{B}_b(\mathbb{R}^d)$ is defined analogously to the space $\Gamma_0^{(n)}$. As a set, $\Gamma_0^{(n)}$ is equivalent to the symmetrization of

$$\tilde{\mathbb{R}^d}^n = \left\{ (x_1, \ldots, x_n) \in (\mathbb{R}^d)^n \mid x_k \neq x_l \text{ if } k \neq l \right\},$$

i.e. $\tilde{\mathbb{R}^d}^n / S_n$, where S_n is the permutation group over $\{1, \ldots, n\}$. Hence one can introduce the corresponding topology and Borel σ-algebra, which we denote by $O(\Gamma_0^{(n)})$ and $\mathcal{B}(\Gamma_0^{(n)})$, respectively. Also one can define a measure $m^{(n)}$ as an image of the product of Lebesgue measures $dm(x) = dx$ on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$.

The space of finite configurations

$$\Gamma_0 := \bigcup_{n \in \mathbb{N}_0} \Gamma_0^{(n)}$$

is equipped with the topology which has structure of disjoint union. Therefore, one can define the corresponding Borel σ-algebra $\mathcal{B}(\Gamma_0)$.

A set $B \in \mathcal{B}(\Gamma_0)$ is called bounded if there exists $\Lambda \in \mathcal{B}_b(\mathbb{R}^d)$ and $N \in \mathbb{N}$ such that $B \subset \bigcup_{n=0}^{N} \Gamma_0^{(n)}_{\Lambda}$. The Lebesgue—Poisson measure λ_z on Γ_0 is defined as

$$\lambda_z := \sum_{n=0}^{\infty} \frac{z^n}{n!} m^{(n)}.$$

Here $z > 0$ is the so-called activity parameter. The restriction of λ_z to Γ_Λ will be also denoted by λ_z. We denote $\lambda := \lambda_1$.

The configuration space

$$\Gamma := \left\{ \gamma \subset \mathbb{R}^d \mid |\gamma \cap \Lambda| < \infty, \text{ for all } \Lambda \in \mathcal{B}_b(\mathbb{R}^d) \right\}$$
is equipped with the vague topology. It is a Polish space (see, e.g., [9]). The corresponding Borel σ-algebra $B(\Gamma)$ is defined as the smallest σ-algebra for which all mappings $N_\Lambda : \Gamma \to \mathbb{N}_0$, $N_\Lambda(\gamma) := |\gamma \cap \Lambda|$ are measurable, i.e.,

$$B(\Gamma) = \sigma \left(N_\Lambda : \Lambda \in \mathcal{B}_b(\mathbb{R}^d) \right).$$

One can also show that Γ is the projective limit of the spaces $\{ \Gamma_\Lambda \}_{\Lambda \in \mathcal{B}_b(\mathbb{R}^d)}$ w.r.t. the projections $p_\Lambda : \Gamma \to \Gamma_\Lambda$, $p_\Lambda(\gamma) := \gamma_\Lambda$, $\Lambda \in \mathcal{B}_b(\mathbb{R}^d)$.

The Poisson measure π_z on $(\Gamma, B(\Gamma))$ is given as the projective limit of the family of measures $\{ \pi^\Lambda_z \}_{\Lambda \in \mathcal{B}_b(\mathbb{R}^d)}$, where π^Λ_z is the measure on Γ_Λ defined by $\pi^\Lambda_z := e^{-z m(\Lambda)} \lambda_z$.

We will use the following classes of functions: $L^0_{ls}(\Gamma_0)$ is the set of all measurable functions on Γ_0 which have a local support, i.e. $G \in L^0_{ls}(\Gamma_0)$ if there exists $\Lambda \in \mathcal{B}_b(\mathbb{R}^d)$ such that $G |_{\Gamma_0 \setminus \Gamma_\Lambda} = 0$; $B_{lm}(\Gamma_0)$ is the set of bounded measurable functions with bounded support, i.e. $G |_{\Gamma_0 \setminus B} = 0$ for some bounded $B \in \mathcal{B}(\Gamma_0)$.

On Γ we consider the set of cylinder functions $\mathcal{F} L^0(\Gamma)$, i.e. the set of all measurable functions G on $(\Gamma, B(\Gamma))$ which are measurable w.r.t. $\mathcal{B}_\Lambda(\Gamma)$ for some $\Lambda \in \mathcal{B}_b(\mathbb{R}^d)$. These functions are characterized by the following relation: $F(\gamma) = F |_{\Gamma_\Lambda} (\gamma_\Lambda)$.

The following mapping between functions on Γ_0, e.g. $L^0_{ls}(\Gamma_0)$, and functions on Γ, e.g. $\mathcal{F} L^0(\Gamma)$, plays the key role in our further considerations:

$$KG(\gamma) := \sum_{\eta \subset \gamma} G(\eta), \quad \gamma \in \Gamma, \quad (2.1)$$

where $G \in L^0_{ls}(\Gamma_0)$, see e.g. [7, 17, 18]. The summation in the latter expression is taken over all finite subconfigurations of γ, which is denoted by the symbol $\eta \subset \gamma$. The mapping K is linear, positivity preserving, and invertible, with

$$K^{-1} F(\eta) := \sum_{\xi \subset \eta} (-1)^{|\eta \setminus \xi|} F(\xi), \quad \eta \in \Gamma_0. \quad (2.2)$$

Let $\mathcal{M}_{lm}^1(\Gamma)$ be the set of all probability measures μ on $(\Gamma, B(\Gamma))$ which have finite local moments of all orders, i.e. $\int_{\Gamma} |\gamma_\Lambda|^n \mu(d\gamma) < +\infty$ for all $\Lambda \in \mathcal{B}_b(\mathbb{R}^d)$ and $n \in \mathbb{N}_0$. A measure ρ on $(\Gamma_0, \mathcal{B}(\Gamma_0))$ is called locally finite iff $\rho(A) < \infty$ for all bounded sets A from $\mathcal{B}(\Gamma_0)$. The set of such measures is denoted by $\mathcal{M}_{lf}(\Gamma_0)$.

Regulation mechanisms in spatial stochastic development models
One can define a transform $K^* : \mathcal{M}_{1}^{1}(\Gamma) \to \mathcal{M}_{1}(\Gamma_0)$, which is dual to the K-transform, i.e., for every $\mu \in \mathcal{M}_{1}^{1}(\Gamma)$, $G \in \mathcal{B}_{ba}(\Gamma_0)$ we have

$$\int_{\Gamma} KG(\gamma) \mu(d\gamma) = \int_{\Gamma_0} G(\eta) (K^* \mu)(d\eta).$$

The measure $\rho_\mu := K^* \mu$ is called the correlation measure of μ.

As shown in [7] for $\mu \in \mathcal{M}_{1}^{1}(\Gamma)$ and any $G \in L^1(\Gamma_0, \rho_\mu)$ the series (2.1) is μ-a.s. absolutely convergent. Furthermore, $KG \in L^1(\Gamma, \mu)$ and

$$\int_{\Gamma_0} G(\eta) \rho_\mu(d\eta) = \int_{\Gamma} (KG)(\gamma) \mu(d\gamma). \quad (2.3)$$

A measure $\mu \in \mathcal{M}_{1}^{1}(\Gamma)$ is called locally absolutely continuous w.r.t. $\pi_\Lambda := \mu \circ p_{\Lambda}^{-1}$ is absolutely continuous with respect to π_{Λ}^1 for all $\Lambda \in \mathcal{B}_{r}(\mathbb{R}^d)$. In this case $\rho_\mu := K^* \mu$ is absolutely continuous w.r.t λ. We define correlation functional $k_\mu : \Gamma_0 \to \mathbb{R}_+$ corresponding to the measure μ as the Radon—Nikodym derivative:

$$k_\mu(\eta) := \frac{d\rho_\mu}{d\lambda}(\eta), \quad \eta \in \Gamma_0.$$

The correlation functional k_μ may be considered as the system of correlation functions corresponding to the restrictions $k_\mu |_{\Gamma_n}$. These functions are defined as following

$$k_\mu^{(n)} : (\mathbb{R}^d)^n \longrightarrow \mathbb{R}_+ \quad (2.4)$$

$$k_\mu^{(n)}(x_1, \ldots, x_n) := \begin{cases} k_\mu(\{x_1, \ldots, x_n\}), & \text{if } (x_1, \ldots, x_n) \in (\mathbb{R}^d)^n \\ 0, & \text{otherwise} \end{cases}$$

and they are well known in statistical physics, see e.g [20], [21]. In applications a specially important role play correlation functions of the first and second orders: $k^{(1)}(x)$ and $k^{(2)}(x, y)$. These functions describe, respectively, the density of particles and pair correlations.

A measure $\mu \in \mathcal{M}_{1}^{1}(\Gamma)$ is called translation invariant if it is invariant with respect to shifts of configurations $\Gamma \ni \gamma \mapsto \{x + a \mid x \in \gamma\} \in \Gamma$ for any $a \in \mathbb{R}^d$. The first-order correlation function of such measure doesn’t depend on the space coordinate: $k^{(1)}(x) \equiv k^{(1)}_\mu$; and the second-order correlation function depends on difference of coordinates: $k^{(2)}_\mu(x, y) = k^{(2)}_\mu(x - y)$.

3 Stochastic development models

Spatial birth-and-death processes describe dynamics of configurations in \mathbb{R}^d when particles (agents, companies, economic units) disappear (die) from configurations and, on the other hand, some new particles appear (born) somewhere in the space. The generator of spatial birth-and-death dynamics is heuristically given on measurable functions $F : \Gamma \to \mathbb{R}$ by

$$(LF)(\gamma) = \sum_{x \in \gamma} d(x, \gamma \setminus x) [F(\gamma \setminus x) - F(\gamma)] + \int_{\mathbb{R}^d} b(x, \gamma) [F(\gamma \cup x) - F(\gamma)] dx,$$ \hspace{1cm} (3.1)

where $d, b : \mathbb{R}^d \times \Gamma \to [0, \infty]$ are measurable rates of death and birth respectively. Of course, these rates should be finite for a.a. $\gamma \in \Gamma$ with respect to a proper measure. Suppose that, additionally, $b(\cdot, \gamma) \in L^1_{\text{loc}}(\mathbb{R}^d)$ for a.a. $\gamma \in \Gamma$. Then this operator is well-defined at least on $\mathcal{F}L^0(\Gamma)$. Indeed, for $F \in \mathcal{F}L^0(\Gamma)$

$$F(\gamma \setminus x) - F(\gamma) = F(\gamma \cup x) - F(\gamma) = 0, \quad x \in \Lambda^c := \mathbb{R}^d \setminus \Lambda,$$

and the both terms of (3.1) are finite.

Note that if L is a generator of such process (even if we know that this process exists) then for the study of properties of the corresponding stochastic dynamics we need some information about the semigroup associated with L. This semigroup determines a solution to the Kolmogorov equation which has the following form:

$$\frac{dF_t}{dt} = LF_t, \quad F_t \big|_{t=0} = F_0.$$ \hspace{1cm} (3.2)

In various applications the evolution of the corresponding correlation functions (or measures) helps already to understand the behavior of the process. The evolution of the correlation functions of the process is related to the evolution of states of the system. The latter evolution is given as a solution to the dual Kolmogorov equation:

$$\frac{d\mu_t}{dt} = L^* \mu_t, \quad \mu_t \big|_{t=0} = \mu_0,$$ \hspace{1cm} (3.3)

where L^* is the adjoint operator to L on $\mathcal{M}^1_{\text{fm}}(\Gamma)$, provided, of course, that it exists.
Using explicit form of \hat{L} we derive the evolution equation for *quasi-observables* (functions on Γ_0) corresponding to the Kolmogorov equation (3.2). It has the following form

$$\frac{dG_t}{dt} = \hat{L}G_t, \quad G_t \big|_{t=0} = G_0.$$ (3.4)

Then in the way analogous to those in which the equation (3.3) was determined for (3.2), we get an evolution equation for the correlation functions corresponding to the equation (3.4):

$$\frac{dk_t}{dt} = \hat{L}^*k_t, \quad k_t \big|_{t=0} = k_0.$$ (3.5)

The generator \hat{L}^* here is the dual to \hat{L} w.r.t. the duality given by the following expression:

$$\langle \langle G, k \rangle \rangle = \int_{\Gamma_0} G \cdot k \, d\lambda.$$ (3.6)

Free development model A simplest model in considered framework is a model of free development when particles (identical economic units) are born independently without any influence of existing ones. An interpretation is that a "decision" about appearing of a new company is produced outside of the system and it is not motivated by the situation inside of the system. Moreover, in this simplest model particles (units) will not die (will not become bankrupts).

The formal pre-generator of the Markov dynamics that describes such model is the following:

$$(L_\sigma F)(\gamma) = \sigma \int_{\mathbb{R}^d} [F(\gamma \cup x) - F(\gamma)] \, dx,$$

where $\sigma > 0$ is the intensity rate of new units creation.

It is easy to see that the operator L_σ is well defined, for example, on the set $\mathcal{F}L^0(\Gamma)$. The corresponding Markov process exists due to, e.g., [6]. Using results from [5], we obtain

$$(\hat{L}_\sigma G)(\eta) = \sigma \int_{\mathbb{R}^d} G(\eta \cup x) \, dx.$$ (3.7)
and
\[
(\hat{L}^*_\sigma k) (\eta) = \sigma \sum_{x \in \eta} k(\eta \setminus x).
\] (3.8)

Immediately from (3.8) and (3.5) (see also [2]) we conclude that the density of the free development model has the form
\[
k^{(1)}_t(x) = k^{(1)}_0(x) + \sigma t.
\]

Therefore, the density has linear growth in time. To prevent this growth we need to modify the generator introducing some regulation mechanisms in the model.

Development model with global regulation Below we consider a model with a global regulation reflected in the death rate by an assumption about a finite life time for economic units. More precisely, we assume that each point of the configuration has exponentially distributed (with some positive parameter \(m\)) random life time and these random times are independent. Hence, a death (bankruptcy) appears as a random event equally distributed for all economic units independently of their space locations.

A pre-generator describing such process has the following form:
\[
(L_{\sigma,m}F)(\gamma) = m \sum_{x \in \gamma} [F(\gamma \setminus x) - F(\gamma)] + \sigma \int_{\mathbb{R}^d} [F(\gamma \cup x) - F(\gamma)] \, dx.
\]

Note that the expression for \(L_{\sigma,m}\) coincides with the one for the generator of so-called Surgailis process (see [23], [24], [14]). Again, using results from [5], we obtain
\[
(\hat{L}_{\sigma,m}G) (\eta) = -m|\eta|G(\eta) + \sigma \int_{\mathbb{R}^d} G(\eta \cup x) \, dx,
\] (3.9)
\[
(\hat{L}^*_{\sigma,m}k) (\eta) = -m|\eta|k(\eta) + \sigma \sum_{x \in \eta} k(\eta \setminus x). \]
(3.10)

The considered stochastic dynamics has a unique invariant measure which is the Poisson measure on \(\Gamma\) with constant intensity \(\frac{\sigma}{m}\).

Using (3.10) (see also [2]) one can obtain a precise expression for the density of the process:
\[
k^{(1)}_t(y) = e^{-tm}k^{(1)}_0(y) + \frac{\sigma}{m} (1 - e^{-tm}).
\]
Therefore, for an initial state with bounded density any positive global regulation rate m gives time-space bounded density which converges uniformly in space to the limiting Poisson density. (For properties of higher order correlation functions see [2].)

Establishment effects in the development model As we pointed out before, in the free development model an appearing of a new unit on the market and its location are independent of the presented configuration of the system. A reasonable generalization of this model is such that the newborn unit prefers to choose a location with smaller density of already existing units. The latter may be considered as higher probability to survive in less occupied regions. The corresponding term which decreases the birth rate of the generator in densely populated areas is called the establishment term.

We consider the special case when this rate has exponential form, but our considerations may be extended to more general establishment rates.

Let $0 \leq \phi \in L^1(\mathbb{R}^d)$, $\phi(-x) = \phi(x)$, $x \in \mathbb{R}^d$, and

$$(L_\phi F) (\gamma) = \int_{\mathbb{R}^d} \exp\left\{ - \sum_{y \in \gamma} \phi(x-y) \right\} \left[F(\gamma \cup x) - F(\gamma) \right] dx.$$

We suppose that there exist the dynamics of measures μ_t and let k_t will be corresponding correlation functions. Actually, the existence of a Markov process for considered case may be obtained from [6]. Using for any $\varphi \in C_0(\mathbb{R}^d)$ the equality

$$\frac{\partial}{\partial t} \int_{\mathbb{R}^d} k_t^{(1)}(x) \varphi(x) dx = \frac{\partial}{\partial t} \int_{\Gamma} \langle \varphi, \gamma \rangle d\mu_t(\gamma) = \int_{\Gamma} L_\phi \langle \varphi, \gamma \rangle d\mu_t(\gamma)$$

we obtain, by Jensen’s inequality,

$$\frac{\partial}{\partial t} k_t^{(1)}(x) = \int_{\Gamma} \exp\left\{ - \sum_{y \in \gamma} \phi(x-y) \right\} d\mu_t(\gamma) \geq \exp \left(- \int_{\Gamma} \sum_{y \in \gamma} \phi(x-y) d\mu_t(\gamma) \right) = \exp \left(- \int_{\mathbb{R}^d} \phi(x-y) k_t^{(1)}(y) dy \right).$$

In the translation invariant case we obtain

$$\frac{d}{dt} k_t^{(1)} \geq \exp \left(- \langle \phi \rangle k_t^{(1)} \right).$$
Regulation mechanisms in spatial stochastic development models

where $\langle \phi \rangle = \int_{\mathbb{R}^d} \phi(x) \, dx$. Hence, if g_t is a positive solution of the equation

$$\frac{d}{dt} g_t = e^{-(\langle \phi \rangle)g_t},$$

then $k_0^{(1)} \geq g_0$ implies $k_t^{(1)} \geq g_t$.

One has

$$e^{(\langle \phi \rangle)g_t} dg_t = dt$$

$$\frac{1}{\langle \phi \rangle} e^{(\langle \phi \rangle)g_t} = t + \frac{C}{\langle \phi \rangle}$$

$$g_t = \frac{1}{\langle \phi \rangle} \ln (\langle \phi \rangle t + C), \quad C > 1$$

$$g_0 = \frac{1}{\langle \phi \rangle} \ln C.$$

Putting for any $k_0^{(1)}$ the initial value $g_0 = k_0^{(1)}$ we obtain that

$$k_t^{(1)} \geq \frac{1}{\langle \phi \rangle} \ln \left(\langle \phi \rangle t + \exp \left\{ k_0^{(1)} \langle \phi \rangle \right\} \right).$$

Therefore, the establishment term cannot prevent unboundedness of density. We may expect only essentially slower growth due to the establishment effect.

Remark 3.1. Of course, if we consider two regulation mechanisms, namely, the global regulation and the establishment together, then the first-order correlation function will be also bounded (more precisely, all correlation functions will have sub-Poissonian bounds, cf. [2]). Moreover, in this case the operator

$$(L_G F)(\gamma) = m \sum_{x \in \gamma} [F(\gamma \setminus x) - F(\gamma)]$$

$$+ \sigma \int_{\mathbb{R}^d} \left[F(\gamma \cup x) - F(\gamma) \right] \exp \left\{ - \sum_{y \in \gamma} \phi(x - y) \right\} \, dx$$

is the generator of so-called Glauber dynamics for a classical gas model (see, e.g., [11], [10]). If ϕ has some additional properties such that there exists Gibbs measure with this potential, then such measure will be invariant (and even symmetrizing one) for the generator L_G. On the other hand, known properties of the corresponding Markov dynamics imply that corresponding correlation functions satisfied so-called generalized Ruelle bounds (see [10] for details).
4 Stochastic development models with competitions

In the previous section we considered, in particular, global (outward) regulation in the model. As we see, such regulation may prevent unbounded (linear) growth (in time) of the density of our system. In this section we consider the case of a local regulation which appear due to the competition between elements (units) of the system. A pre-generator which describes such model has the following form:

\[
(L_{a,\sigma}F)(\gamma) = \sum_{x \in \gamma} \left(\sum_{y \in \gamma \setminus x} a(x - y) \right) \left[F(\gamma \setminus x) - F(\gamma) \right] + \sigma \int_{\mathbb{R}^d} [F(\gamma \cup x) - F(\gamma)] \, dx.
\]

Here \(0 \leq a \in L^1(\mathbb{R}^d)\) is an even function s.t.

\[
\langle a \rangle := \int_{\mathbb{R}^d} a(x) \, dx > 0.
\]

The question about existence of a process with the generator \(L_{a,\sigma}\) we will not discuss in this paper. We just assume that there exist the dynamics of measures \(\mu_t\) and let \(k_t\) will be the corresponding correlation functional.

Using results from [5] we obtain that

\[
(\hat{L}_{a,\sigma}G)(\eta) = -2E_a(\eta)G(\eta) - \sum_{x \in \eta} \left(\sum_{y \in \eta \setminus x} a(x - y) \right)G(\eta \setminus x)
+ \sigma \int_{\mathbb{R}^d} G(\eta \cup x) \, dx
\]

and

\[
(\hat{L}_{a,\sigma}^*k)(\eta) = -2E_a(\eta)k(\eta) - \int_{\mathbb{R}^d} \sum_{y \in \eta} a(x - y)k(\eta \cup x) \, dx
+ \sigma \sum_{x \in \gamma} k(\eta \setminus x),
\]
where we used the following notations for the energy functional corresponding to the pair potential $a(\cdot)$:

$$E_a(\eta) = \sum_{\{x,y\} \subset \eta} a(x - y), \quad \eta \in \Gamma_0.$$

It is easy to see that the Cauchy problems (3.4) and (3.5) for quasi-observables and correlation functions respectively have a form of hierarchical chains and, therefore, can not be solved explicitly. The latter is a common problem in the study of stochastic dynamics of IPS. In several particular models such as Glauber type dynamics in continuum [12], [10] or some spatial ecological models [4] this difficulty may be overcame via a proper perturbation theory techniques. As a result, in the mentioned works we have existence results for corresponding evolational equations together with certain a-priori bound for the solutions. Note that the perturbation techniques needs, in any case, a presence in the system a small parameter. In the considered model such parameter is clearly absent. Nevertheless, one can try to find estimate for the correlation functions. Actually, in the presented below approach we will use the explicit form of the Markov generator to obtain an a-priori bound on the density of the system.

We will say that a sequence $\{\Lambda_k, k \in \mathbb{N}\}$ of open bounded subsets of \mathbb{R}^d is of F-type if $\bigcup_{k \in \mathbb{N}} \Lambda_k = \mathbb{R}^d$, $\Lambda_k \subset \Lambda_{k+1}$, $k \in \mathbb{N}$ and there exists $F > 0$ such that for any $h \in (0; 1)$ and for any $k \in \mathbb{N}$

$$s(\Lambda_k, h) := \frac{|\Lambda_k(h) \setminus \Lambda_k|}{|\Lambda_k|} \leq F,$$

where

$$\Lambda_k(h) := \left\{ x : \inf_{y \in \Lambda_k} |x - y| < h \right\}.$$

A simple example of F-type sequence is the sequence of balls $\Lambda_k = B(0, k)$ with center at origin and radius $k \in \mathbb{N}$. Indeed, for any $h < 1$

$$s(\Lambda_k, h) = \frac{|\Lambda_k(h) \setminus \Lambda_k|}{|\Lambda_k|} - 1 = \frac{(R + h)^d}{R^d} - 1 = \left(1 + \frac{h}{R}\right)^d - 1 < 2^d - 1.$$

For any $\Lambda \in B_c(\mathbb{R}^d)$ we will call the average density of the our system the following object

$$\rho^\Lambda_t := \frac{1}{|\Lambda|} \int_{\Lambda} k_t^{(1)}(x) dx,$$
where \(k_t^{(1)} \) is the first-order correlation functions (density) at moment \(t \geq 0 \).

Lemma 4.1. Suppose that the function \(a \) is continuous and positive definite and the sequence \(\{ \Lambda_k, k \in \mathbb{N} \} \) is F-type. Then there exists \(c > 0 \) such that for any open \(\Lambda \in \{ \Lambda_k, k \in \mathbb{N} \} \)

\[
2E_a(\eta) \geq c \frac{|\eta|^2}{|\Lambda|}, \quad \eta \in \Gamma_\Lambda.
\]

Proof. In [19], it was shown that for any continuous positive definite function \(a \) the energy \(E_a \) is superstable, namely, for any open \(\Lambda \subset \mathbb{R}^d \) and for any \(\eta := \{ x_i \}_{i=1}^n \subset \Lambda \) the following inequality holds

\[
2E_a(\eta) \geq n^2 \frac{[\langle a \rangle - \delta(h)]^2}{|\Lambda| \left[\langle a \rangle + \delta(h) + \sigma(\Lambda, h) \langle a \rangle \right]},
\]

where

\[
\delta(h) = 2 \int_{|x|>h} a(x) \, dx \geq 0.
\]

Therefore, for any \(\Lambda \in \{ \Lambda_k, k \in \mathbb{N} \} \)

\[
2E_a(\eta) \geq n^2 \frac{[\langle a \rangle - \delta(h)]^2}{|\Lambda| \left[\delta(h) + (F+1) \langle a \rangle \right]} =: n^2 \frac{c}{|\Lambda|},
\]

Let \(h \in (0; 1) \) be such that

\[
\langle a \rangle - \delta(h) = \int_{|x|\leq h} a(x) \, dx - \int_{|x|>h} a(x) \, dx \neq 0
\]

(we may always choose such \(h \) since the first integral is an increasing function of \(h \) and the second one is a decreasing function). Stress that \(c > 0 \) and doesn’t depend on \(\Lambda \). \(\square \)

Theorem 4.2. Suppose that the function \(a \) is continuous and positive definite and the sequence \(\{ \Lambda_k, k \in \mathbb{N} \} \) is F-type; let \(c \) be as in Lemma 4.1. Suppose also that there exists \(D > \sqrt{\frac{\sigma}{c}} \) such that \(\rho_0^{\Lambda_k} \leq D, k \in \mathbb{N} \). Then for any \(t > 0, k \in \mathbb{N} \)

\[
\rho_t^{\Lambda_k} \leq D.
\]
Proof. Note that for $F(\gamma) = \langle \varphi, \gamma \rangle$, $\gamma \in \Gamma$, $\varphi \in C_0(\mathbb{R}^d)$ we have

$$(L_{a,\sigma}F)(\gamma) = -\sum_{x \in \gamma} \left(\sum_{y \in \gamma \setminus x} a(x-y) \right) \varphi(x) + \sigma \int_{\mathbb{R}^d} \varphi(x) \, dx.$$

Let $\varphi(x) = \mathbb{1}_\Lambda(x)$, $\Lambda \in \{\Lambda_k, k \in \mathbb{N}\}$. Then $F(\gamma) = |\gamma_{\Lambda}|$ and

$$(L_{a,\sigma}F)(\gamma) = -\sum_{x \in \gamma} \left(\sum_{y \in \gamma \setminus x} a(x-y) \right) \mathbb{1}_\Lambda(x) + \sigma |\Lambda|$$

$$= -\sum_{x \in \gamma_{\Lambda}} \left(\sum_{y \in \gamma_{\Lambda} \setminus x} a(x-y) \right) + \sigma |\Lambda|$$

$$\leq -\sum_{x \in \gamma_{\Lambda}} \left(\sum_{y \in \gamma_{\Lambda} \setminus x} a(x-y) \right) + \sigma |\Lambda|$$

$$= -2E_a(\gamma_{\Lambda}) + \sigma |\Lambda| \leq -\frac{c}{|\Lambda|} |\gamma_{\Lambda}|^2 + \sigma |\Lambda|.$$

Let us set

$$n_t^\Lambda := \int_{\Gamma} |\gamma_{\Lambda}| \mu_t(\gamma) = \int_{\Gamma} \langle \mathbb{1}_\Lambda, \gamma \rangle \mu_t(\gamma)$$

$$= \int_{\mathbb{R}^d} \mathbb{1}_\Lambda(x) k_t^{(1)}(x) \, dx = \int_\Lambda k_t^{(1)}(x) \, dx = |\Lambda| \rho_t^\Lambda.$$

Then using Holder inequality

$$\frac{d}{dt} n_t^\Lambda = \int_{\Gamma} L_{a,\sigma} |\gamma_{\Lambda}| \mu_t(\gamma) \leq \int_{\Gamma} \left(\sigma |\Lambda| - \frac{c}{|\Lambda|} |\gamma_{\Lambda}|^2 \right) \mu_t(\gamma)$$

$$= \sigma |\Lambda| - \frac{c}{|\Lambda|} \int_{\Gamma} |\gamma_{\Lambda}|^2 \mu_t(\gamma) \leq \sigma |\Lambda| - \frac{c}{|\Lambda|} \left(\int_{\Gamma} |\gamma_{\Lambda}| \mu_t(\gamma) \right)^2$$

$$= \sigma |\Lambda| - \frac{c}{|\Lambda|} (n_t^\Lambda)^2.$$

As a result,

$$\frac{d}{dt} \rho_t^\Lambda \leq \sigma - c (\rho_t^\Lambda)^2.$$
Therefore, if we consider the positive solutions of the Cauchy problem

\[
\begin{aligned}
\frac{d}{dt} g(t) &= \sigma - c g^2(t) \\
g(0) &= g_0
\end{aligned}
\] \tag{4.2}

with proper \(g_0 > 0 \) and if \(\rho_0^\Lambda \leq g_0 \) then \(\rho_t^\Lambda \leq g(t), \ t > 0 \). Solving (4.2) we obtain

\[
\ln \left| \sqrt{c} g(t) + \sqrt{\sigma} \right| - \ln \tilde{C} = 2\sqrt{c\sigma} t, \quad \tilde{C} > 0;
\]

\[
g(t) = \frac{Ce^{2\sqrt{c\sigma} t} \sqrt{\sigma} + \sqrt{\sigma}}{Ce^{2\sqrt{c\sigma} t} \sqrt{c} - \sqrt{c}} = \sqrt{\frac{\sigma}{c}} \left(1 + \frac{2}{C e^{2\sqrt{c\sigma} t} - 1} \right), \quad C \in \mathbb{R}.
\]

Then

\[
g(0) = \sqrt{\frac{\sigma}{c}} \left(1 + \frac{2}{C - 1} \right), \quad C \in \mathbb{R}.
\]

Let \(g_0 = D \geq \rho_0^\Lambda \). Then since \(D > \sqrt{\frac{\sigma}{c}} \) we have

\[
C = \frac{2}{D \sqrt{\frac{c}{\sigma}} - 1} + 1 > 1
\]

and

\[
Ce^{2\sqrt{c\sigma} t} - 1 \geq C - 1 = \frac{2}{D \sqrt{\frac{c}{\sigma}} - 1} > 0.
\]

As a result,

\[
\rho_t^\Lambda \leq g(t) \leq \sqrt{\frac{\sigma}{c}} \left(1 + \frac{2}{C - 1} \right) = D
\]

for any \(t > 0 \) and for any \(\Lambda \in \{\Lambda_k, k \in \mathbb{N}\} \). The statement is proved. \(\square \)

Corollary 4.3. Under conditions of Theorem 4.2 in the translation invariant case we have that \(k_0^{(1)} \leq D \) implies \(k_t^{(1)} \leq D \).

At the end we consider a simple estimate for the second-order correlation function. Let us suppose that

\[
a(u) > 0, \quad u \in \mathbb{R}^d.
\]
Then in the translation invariant case the following estimate holds

\[k_t^{(2)}(u) \leq e^{-2a(u)t}k_0^{(2)}(u) + 2\sigma \int_0^t e^{-2a(u)(t-\tau)}k_{1\tau}^{(1)}d\tau \]

\[\leq e^{-2a(u)t}k_0^{(2)}(u) + 2\sigma D \int_0^t e^{-2a(u)(t-\tau)}d\tau \]

\[= e^{-2a(u)t}k_0^{(2)}(u) + \frac{\sigma D}{a(u)}(1 - e^{-2a(u)t}) \]

We have two possible estimates

\[k_t^{(2)}(x-y) \leq e^{-2a(x-y)t}k_0^{(2)}(x-y) + \frac{\sigma D}{a(x-y)}(1 - e^{-2a(x-y)t}) \] (4.3)

and

\[k_t^{(2)}(x-y) \leq e^{-2a(x-y)t}k_0^{(2)}(x-y) + C\sigma Dt. \] (4.4)

Acknowledgments. The financial support of DFG through the SFB 701 (Bielefeld University) and German-Ukrainian Project 436 UKR 113/94 is gratefully acknowledged. This work was partially supported by FCT, POCI2010, FEDER.

References

[1] L. Bertini, N. Cancrini, F. Cesì, The spectral gap for a Glauber-type dynamics in a continuous gas, Ann. de l’inst. H. Poincaré (B) Prob. et Stat., 38, no. 1 (2002), pp. 91–108.

[2] D. L. Finkelshtein, Yu. G. Kondratiev, Non-equilibrium dynamics of the economic development model, In preparation.

[3] D. L. Finkelshtein, Yu. G. Kondratiev, Dynamical self-regulation in spatial population models in continuum, In preparation.

[4] D. L. Finkelshtein, Yu. G. Kondratiev, O. Kutovyi, Individual based model with competition in spatial ecology, http://arxiv.org/abs/0803.3565 Submitted to: SIAM Journal on Mathematical Analysis.
[5] D. L. Finkelshtein, Yu. G. Kondratiev, and M. J. Oliveira, Markov evolutions and hierarchical equations in the continuum I. One-component systems, http://arxiv.org/abs/0707.0619. Submitted to: Journal of Evolution Equations.

[6] N. L. Garcia, T. G. Kurtz, Spatial birth and death processes as solutions of stochastic equations, Alea 1, (2006), pp. 281–303.

[7] Yu. G. Kondratiev and T. Kuna, Harmonic analysis on configuration space. I. General theory, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 5, no. 2 (2002), pp. 201-233.

[8] Yu. G. Kondratiev, T. Kuna, and N. Ohlerich, Selection-mutation balance models with epistatic selection, to appear in: Condensed Matter Physics.

[9] Yu. G. Kondratiev and O. V. Kutoviy, On the metrical properties of the configuration space, Math. Nachr., 279, no. 7 (2006), pp. 774-783.

[10] Yu. Kondratiev, O. Kutoviy, and E. Zhizhina, Nonequilibrium Glauber-type dynamics in continuum, J. Math. Phys., 47(11):113501, 2006.

[11] Yu. Kondratiev and E. Lytvynov, Glauber dynamics of continuous particle systems, Ann. Inst. H. Poincaré Probab. Statist., 41 (2005), pp. 685–702.

[12] Yu. G. Kondratiev, O. V. Kutoviy, and R. A. Minlos, On non-equilibrium stochastic dynamics for interacting particle systems in continuum, Journal of Functional Analysis, 255 (1), 2008, pp. 200–227.

[13] Yu. G. Kondratiev and E. Lytvynov, Glauber dynamics of continuous particle systems, Ann. Inst. H. Poincare, Ser. A, Probab. Statist. 41 (2005), pp. 685–702.

[14] Yu. G. Kondratiev, E. Lytvynov, M. Röckner, Nonequilibrium stochastic dynamics in continuum: The free case. To
appear in: Proceedings of the International Conference on Infinite Particle Systems, 8-11 October 2006, Kazimierz Dolny, Poland.

[15] Yu. G. Kondratiev, R. Minlos, and E. Zhizhina, One-particle subspaces of the generator of Glauber dynamics of continuous particle systems, Rev. Math. Phys., 16, no. 9 (2004), pp. 1–42.

[16] Yu. G. Kondratiev, R. A. Minlos, and S. Pirogov, Generalized mutation-selection model with epistatics, Preprint, 2007.

[17] A. Lenard, States of classical statistical mechanical systems of infinitely many particles. I, Arch. Rational Mech. Anal., 59 (1975), pp. 219-239.

[18] A. Lenard, States of classical statistical mechanical systems of infinitely many particles. II, Arch. Rational Mech. Anal., 59 (1975), pp. 241-256.

[19] J. T. Lewis, J. V. Pulè, and P. de Smedt, The superstability of pair-potential of positive type, J. of Stat. Physics, nos. 3/4, 35 (1984), pp. 381–385.

[20] D. Ruelle, Statistical Mechanics (New York, Benjamin, 1969).

[21] D. Ruelle, Superstable interactions in classical statistical mechanics, Commun. Math. Phys., 18 (1970) 127–159.

[22] D. Steinsaltz, S. N. Evans, and K. W. Wachrner, A generalized model of mutation-selection balance with applications to aging, Adv. Appl. Math., 35, no. 1 (2005), pp. 16–33.

[23] D. Surgailis, On Poisson multiple stochastic integrals and associated equilibrium Markov processes. In: Theory and application of random fields (Bangalore, 1982), pp. 233–248, Lecture Notes in Control and Inform. Sci., Vol. 49, Springer, Berlin (1983).

[24] D. Surgailis, On multiple Poisson stochastic integrals and associated Markov semigroups. Probability and mathematical statistics. Vol. 3, Fasc. 2 (1984), pp. 217–239.