Parameter Optimization and Finite Element Simulation of the Inclined Microperforated Panel Absorber

Haiqin Duan¹, Xinmin Shen¹,*, Enshuai Wang¹, Xiaonan Zhang¹, Qin Yin¹

¹College of Field Engineering, Army Engineering University of PLA, No. 1 Haifu Street, Nanjing, Jiangsu 210007, P. R. China.
Email: shenxmjflgdx2014@163.com

Abstract. Microperforated panel absorber was widely used in the fields of noise reduction and sound absorption, because it had the extraordinary advantages. As deformation of the standard microperforated panel, inclined microperforated panel absorber was proposed and investigated in this research. The theoretical sound absorption model of the inclined microperforated panel absorber was constructed on the basement of the Maa's theory according to the electro-acoustic theory. Structural parameters of the inclined microperforated panel absorber were optimized on the basement of the constructed theoretical sound absorption model through the cuckoo search algorithm. The finite element simulation model of the inclined microperforated panel absorber with optimal parameters was built in the virtual acoustic laboratory, which could be considered as an effective method to measure and check the sound absorption performance of the inclined microperforated panel absorber. Through the theoretical modeling, parameter optimization, and finite element simulation, sound absorption performance of the inclined microperforated panel absorber was improved, which could be propitious to promote its practical applications in the fields of noise reduction and sound absorption.

1. Introduction
Microperforated panel absorber was widely used in the fields of noise reduction and sound absorption, because it had the extraordinary advantages, such as low fabrication cost, wide sound absorption width, and high sound absorption efficiency [1-4]. As the deformation of the standard microperforated panel, inclined microperforated panel absorber was proposed and investigated in this research, which aimed to improve sound absorption performance of the inclined microperforated panel absorber and promote its practical application in the prevention and control of noise pollution [5, 6].

Firstly, the theoretical sound absorption model of the inclined microperforated panel absorber was constructed on the basement of the Maa's theory [7, 8] according to the electro-acoustic theory [9, 10]. Secondly, structural parameters of the inclined microperforated panel absorber were optimized on the basement of the constructed theoretical sound absorption model through the cuckoo search algorithm [11, 12]. Finally, the finite element simulation of the inclined microperforated panel absorber with the optimal parameters was conducted in the virtual acoustic laboratory, which could be considered as an effective method to measure and check sound absorption performance of the inclined microperforated panel absorber [13, 14]. Through this theoretical modeling, parameter optimization, and finite element simulation, sound absorption performance of the inclined microperforated panel absorber was studied, which aimed to improve its sound absorption property and promote its application.
2. Theoretical modeling

Schematic diagram of the inclined microperforated panel absorber used in this study and its equivalent microperforated panel absorber is shown in the Figure 1. Cavity length of the inclined microperforated panel absorber was in a linear relationship. Therefore, in the right equivalent microperforated panel absorber in the Figure 1, change of the cavity length for each sound absorption element was linear, and the equivalent microperforated panel absorber could be considered as the parallel connection of each single sound absorption element. Through calculating the acoustic impedance of each single sound absorption element based on the Maa’s theory, theoretical sound absorption coefficient of the inclined microperforated panel absorber could be achieved according to the electro-acoustic theory.

![Figure 1. Schematic diagram of the inclined microperforated panel absorber and its equivalent.](image)

Acoustic impedance of the inclined microperforated panel absorber could be obtained by the Eq. (1). Here, n is number of the perforated holes; x is tolerance of the neighboring perforated holes, which can be obtained by the Eq. (2); D_1 and D_n were the minimum value and maximum value of the cavity length respectively; r is the acoustic impedance, which could be obtained through the Eq. (3); m is the acoustic reactance, which could be achieved by the Eq. (4); ω is the acoustic angular frequency, which could be calculated by the Eq. (5), and here f is the sound frequency in Hz.

\[
Z = \left(\frac{1}{r + j\omega m \cot \omega D_1/c} + \frac{1}{r + j\omega m \cot \omega (D_1+x)/c} + \ldots \right)^{-1}
\]

(1)

\[
x = \frac{D_n-D_1}{n}
\]

(2)

\[
r = \frac{0.147 t}{d^2} k_r
\]

(3)

\[
m = 1.847 \frac{fc}{p} k_m
\]

(4)

\[
\omega = 2\pi f
\]

(5)

In the Eqs. (3) and (4), t is thickness of the panel; d is diameter of the microperforated holes; p is the perforation rate; k_r is the acoustic impedance ratio; k_m is the acoustic reactance ratio.

3. Parameter optimization

When thickness of the panel, diameter of the microperforated holes, distance between the neighboring holes, maximum cavity length was 0.5mm, 0.5mm, 3mm, and 150mm respectively, inclination angle
of the inclined microperforated panel absorber was optimized through the cuckoo search algorithm, as shown in Figure 2. Meanwhile, the investigated frequency ranges were 100-500Hz, 100-600Hz, 100-700Hz, 100-800Hz, 100-900Hz, 100-1000Hz, 100-1100Hz, 100-1200Hz, 100-1300Hz, and 100-1500Hz, respectively. Through the optimization of the inclination angle, the optimal inclined microperforated panel absorber was obtained, which aimed to improve its sound absorption property.

Figure 2. Optimization of the inclined microperforated panel absorber by the cuckoo search algorithm.

The optimal inclination angles obtained by the cuckoo search algorithm were summarized in the Table 1, and their values were 0, 0, 1.69°, 18.84°, 30.01°, 37.22°, 42.04°, 45.3°, 47.54°, 48.96°, 49.94° corresponding to the investigated objective frequency ranges of 100-500Hz, 100-600Hz, 100-700Hz, 100-800Hz, 100-900Hz, 100-1000Hz, 100-1100Hz, 100-1200Hz, 100-1300Hz, 100-1400Hz, and 100-1500Hz, respectively. Meanwhile, the average sound absorption coefficients of the optimal inclined microperforated panel absorber were 0.5876, 0.6193, 0.6219, 0.6125, 0.6004, 0.5859, 0.5695, 0.5522, 0.5367, 0.5268, and 0.5213, which improved 0.00%, 0.00%, 0.03%, 1.39%, 4.76%, 10.05%, 17.21%, 23.12%, 17.62%, 7.49%, and 1.64% relative to the original standard microperforated panel absorber. It was interesting to note that increase of the improvement rate was not kept linear with the increase of the objective frequency range, and it could reach its maximum 23.12% when the objective frequency range was 100-1200Hz, which was favorable to provide the effective guidance for application of the inclined microperforated panel absorber.

Table 1. Comparisons of theoretical sound absorption performance of the inclined microperforated panel absorber with that of the referenced standard microperforated panel absorber.

Frequency range	Optimal inclined angle	Average sound absorption coefficient	
	The inclined one	The standard one	
100-500	0	0.5876	0.5876
100-600	0	0.6193	0.6193
100-700	1.69	0.6219	0.6217
100-800	18.84	0.6125	0.6041
100-900	30.01	0.6004	0.5731
Comparisons of theoretical sound absorption coefficient of the optimized inclined microperforated panel absorber with that of the original standard microperforated panel absorber were shown in Figure 3. It could be found when the objective frequency range was 100-500Hz, 100-600Hz, and 100-700Hz, sound absorption coefficients of the optimized inclined microperforated panel absorber had almost no difference with those of original standard microperforated panel absorber, which were consistent with the results in the Table 1. When the objective frequency range was 100-1200Hz, distance between the optimized inclined microperforated panel absorber and original microperforated panel absorber gained its maximum, which was consistent with the data in the Table 1.

Frequency Range	Absorption Coefficient	Theoretical	Simulation
100-1000	37.22	0.5859	0.5324
100-1100	42.04	0.5695	0.4859
100-1200	45.3	0.5522	0.4485
100-1300	47.54	0.5367	0.4563
100-1400	48.96	0.5268	0.4901
100-1500	49.94	0.5213	0.5129

Figure 3. Comparisons of sound absorption coefficient of the optimized inclined microperforated panel absorber with that of the original standard microperforated panel absorber.

4. Finite element simulation

Finite element simulation model of the investigated microperforated panel absorber was constructed, as shown in the Figure 4. Comparisons of theoretical sound absorption coefficient of the investigated microperforated panel absorber with the simulation results were summarized in Figure 5, which could prove effectiveness and accuracy of the parameter optimization results.
Figure 4. Finite element simulation model of the investigated microperforated panel absorber.

Figure 5. Comparisons of theoretical sound absorption coefficient of the investigated microperforated panel absorber with the simulation results for different objective frequency range.

5. Conclusions
Parameters optimization and finite element simulation of the inclined microperforated panel absorber was conducted in this study. Through the theoretical modeling, parameter optimization, and the finite
element simulation, sound absorption performance of the inclined microperforated panel absorber was improved, which was propitious to promote its practical application in the fields of noise reduction and sound absorption.

Acknowledgments
This work was supported by Natural Science Foundation of Jiangsu Province (No. BK20201336).

References
[1] Yang X C, Shen X M, Duan H Q, Yang F, Zhang X N, Pan M, Yin Q 2020 Improving and Optimizing Sound Absorption Performance of Polyurethane Foam by Prepositive Microperforated Poly(methyl Methacrylate) Panel Applied Sciences 10(6) 2103.
[2] Shen X M, Bai P F, Yang X C, Zhang X N, To S 2019 Low-frequency sound absorption by optimal combination structure of porous metal and microperforated panel Applied Sciences 9(7) 1507.
[3] Yang X C, Chen L, Shen X M, Bai P F, To S, Zhang X N, Li Z Z 2019 Optimization of geometric parameters of the standardized multilayer microperforated panel with finite dimension Noise Control Engineering Journal 67(3) 197-209.
[4] Duan H Q, Shen X M, Yang F, Bai P F, Lou X F, Li Z Z 2019 Parameter Optimization for Composite Structures of Microperforated Panel and Porous Metal for Optimal Sound Absorption Performance Applied Sciences 9(22) 4798.
[5] Yang X C, Shen X M, Duan H Q, Zhang X N, Yin Q 2020 Identification of Acoustic Characteristic Parameters and Improvement of Sound Absorption Performance for Porous Metal Metals 10(3) 340.
[6] Bai P F, Yang X C, Shen X M, Zhang X N, Li Z Z, Yin Q, Jiang G L, Yang F 2019 Sound absorption performance of the acoustic absorber fabricated by compression and microperforation of the porous metal Materials & Design 167 107637.
[7] Yang X C, Bai P F, Shen X M, To S, Chen L, Zhang X N, Yin Q 2019 Optimal design and experimental validation of sound absorbing multilayer microperforated panel with constraint conditions Applied Acoustics 146 334-344.
[8] Yang F, Shen X M, Bai P F, Zhang X N, Li Z Z, Yin Q 2019 Optimization and Validation of Sound Absorption Performance of 10-layer Gradient Compressed Porous Metal Metals 9(5) 588.
[9] Yang X C, Shen X M, Bai P F, He X H, Zhang X N, Li Z Z, Chen L, Yin Q 2019 Preparation and characterization of gradient compressed porous metal for high-efficiency and thin-thickness acoustic absorber Materials 12(9) 1413.
[10] Bai P F, Shen X M, Zhang X N, Yang X C, Yin Q, Liu A X 2018 Influences of compression ratio on sound absorption performance of porous nickel-iron alloy Metals 8(7) 539.
[11] Yang X C, Bai P F, Shen X M, Zhang X N, Zhu J W, Yin Q, Peng K 2019 Theoretical Modeling and Experimental Validation of Sound-Absorbing Coefficient of Porous Iron Journal of Porous Media 22(2) 225-241.
[12] Shen X M, Bai P F, Chen L, To S, Yang F, Zhang X N, Yin Q 2020 Development of thin sound absorber by parameter optimization of multilayer compressed porous metal with rear cavity Applied Acoustics 159 107071.
[13] Duan H Q, Shen X M, Yin Q, Yang F, Bai P F, Zhang X N, Pan M 2020 Modeling and optimization of sound absorption coefficient of microperforated compressed porous metal panel absorber Applied Acoustics 166 107322.
[14] Yang X C, Peng K, Shen X M, Zhang X N, Bai P F, Xu P J 2017 Geometrical and dimensional optimization of sound absorbing porous copper with cavity Materials & Design 131 297-306.