1. Introduction

Aeolian processes of transporting sand and dust while blown by the wind is a powerful erosive force that forms dunes, sand ripples, and fills up the atmosphere with suspended aerosols of dust particles that get spread by the winds over huge distances (Lancaster, 2009). The areas where large-scale Aeolian processes develop regularly, especially in the autumn-winter period when the wind is blowing from the northeast, are the western parts of Sahara desert (El-Djuf, Akshar and Trarza) sand dunes located in Mauritania. At many radar images of this region, an enormously intensive and highly-directional backscattering of radio waves from the sand surface was discovered which could not have been explained within the boundaries of traditional concepts of the mechanism of such scattering (Ivanov et al., 2015; Ivanov et al., 2016; Ivanov et al., 2016; Ivanov et al., 2018). In this paper we analyze the peculiarities of the effect of the near-surface wind on anomalously highly-directional backscattering of radio waves. This very noticeable influence identified from radar based studies of Aeolian processes of sand and dust transport in desert regions that can be efficiently used for remote determination of the parameters of such Aeolian transport processes.

2. Spatial variations of the near-surface wind and their effect on the anomalously highly-directional backscattering of radio waves

Let us consider a pair of radar images of sandy ridges of the same site of the erg Amatlich beds near the village of Akzhuzht in Mauritania obtained in the high spatial resolution mode (~ 12 m) by the Envisat SAR. Fig. 1 shows the SAR image of this region obtained on December 21, 2004. The direction of the near-surface wind at the time of the survey (Archive data, 2003) was heading from northeast to southwest. In the lower right corner of the image, an enlarged image of the analyzed area is shown. The three-dimensional conversion image of it is shown in Fig. 2 (X and Y axes represent the distances along the surface, and Z-axis — the backscattering coefficient). Similarly, Fig. 3 and 4 show SAR images of the same area of the sandy ridges of the erg Amatlich obtained on February 18, 2004 and the three-dimensional representation of the SAR image of selected area respectively. The direction of the near-surface wind at the time of survey (Archive data, 2003) was heading from southwest to northeast. Fig. 5 shows the optical image of selected section of sand ridges. The figures in all the images indicate: 1 — crest of the sandy ridge, 2 — top of the large dune, 3 — south-west slope of the ridge, 4 — northeast slope of the ridge.
The analysis of the pair of these images convincingly indicates that irrespective to the direction of the wind, the intensity of the scattering of radio waves on the leeward slope of the sandy ridge exceeds by more than 12–15 dB the scattering intensity from the slope located in the area of the “wind shadow”. This illustrates the direct impact of the near-surface wind on the backscattering of radio waves that gets manifested in the Aeolian transport process of sand and dust in desert regions.

3. Effect of near-surface wind on electric field near sandy surface

Crucial impact in the ionization of the near-surface atmosphere layer of the formation of anomalously highly-directional backscattering of radio waves in the Aeolian processes of sand and dust transporting (Ivanov et al., 2015; Ivanov et al., 2016; Ivanov et al., 2016; Ivanov et al., 2018) is produced by strong
electric fields generated as a consequence of movements and collisions of grains of sand (Kok, 2008; Stow, 1969; Namikas, 2003). In Fig. 6 (Kok, 2009), the experimental results for measuring the electric field strength at various altitudes above the surface during the Aeolian transport of sand and dust are presented. It is clearly seen that the field strength increases with decreasing the altitude very steeply, so reaching (in case of sandstorms) values of 160–250 kV/m measured at altitudes of about 1.5–2 cm from the surface. These strong fields ensure the fact that the bulk of the transferred sand is depressed against the surface. According to model (Kok, 2008; Zheng, 2013) and experimental data (Namikas, 2003, Greeley; 1996), about 50% of the sand mass is transported in the layer 3–4 cm above the surface. It is also noted in (Namikas, 2003) that at field intensities of 160–250 kV/m in the transported sand and dust mass (during sand storms), the powerful lightning discharges are regularly observed. And it is emphasized that the nature of this phenomenon is not entirely understandable, since the measured field strengths do not reach the value of the breakdown voltage for clean air (1.25 kV/mm). The very air-sand-dust mixture behaves like an ionized medium — a dusty plasma. Thus, the inhomogeneous spatial distribution of the electric charge with the surface density σ_surf over the sand grains surface relative to the observation angle θ_surf:

$$ A = \frac{20}{9} \sigma_\text{surf} k D \left[\frac{\varepsilon_r - \varepsilon_i}{\varepsilon_r + 2\varepsilon_i} \right]^2 + \frac{90}{\varepsilon_r} D k E \Omega \left[\frac{\varepsilon_r - \varepsilon_i}{\varepsilon_r + 2\varepsilon_i} \right]^2 + \frac{7.5}{9} k D \left[\frac{1}{\varepsilon_r E} \right] \sin \theta \frac{\Omega}{\varepsilon_r} \frac{1}{\varepsilon_r E} \left(1 - \cos \theta_\text{surf} \right) \varepsilon_r.$$

where $-\varepsilon_\text{surf}$ is the conductivity of air, $-\varepsilon_\text{surf}$ is the surface conductivity of grains of sand, $-\varepsilon_\text{surf}$ is the conductivity of grains of sand relative to air, $-\varepsilon_\text{surf}$ is the total electric charge of the grains of sand, $-\varepsilon_\text{surf}$ is the density of grains of sand, E_surf is the radiation field strength.

At the same time, the experimental results (Mohd Taufik, 2014) convincingly show that, when irradiating the plasma formations with radio emission at a frequency equal to or exceeding the natural plasma frequency, it behaves as a partially scattering dielectric medium with losses (Fig. 7). The sand-dust mixture exposed to microwave irradiation behaves in the similar way while being under the influence of a strong electric field.

4. Effect of the near-surface wind velocity on the intensity of anomalously highly-directional backscattering of radio waves during the Aeolian transport of sand and dust

Determination of intensity dependency of the anomalously highly-directional backscattering of radio waves during the Aeolian process of sand and dust mixture transporting was carried out based on the archived radar images obtained by the Envisat-1 satellite. The images were provided by ESA within the project ID: C1F.30193. Selection of the images was held with the help of EOLI-SA online catalog while taking into account meteorological data on the direction and velocity of near-surface wind (Taufic). The images were also calibrated by ESS (effective scattering surface), tied to the map, and thematically processed by the normally applied software freely distributed by ESA for image processing purposes: NEST 4B.1.0 and NEST 5.1.

In order to determine the maximum values of the scattering intensity, the graphs were plotted in the way similar to (Ivanov et al., 2015; Ivanov et al., 2016; Ivanov et al., 2016; Ivanov et al., 2018) for dependencies of the backscattering coefficient σ_surf on the angle of local irradiation θ along the sections of the fragments of the most homogeneous parts of the radar images of the surface on which the effects of anomalously highly directed backscattering of radio waves are observed. The maximum values of θ_surf were chosen in the range of incidence angles of radio waves: $\theta = 31^\circ$–32°. Fig. 8a shows the fragment of SAR image of Tzarza desert area (Envisat-1 ASA_GM1_1P, 2012-01-12), and Fig. 8b shows...
the corresponding graphs of dependencies of the backscattering coefficient σ from the local irradiation angle θ along the sections of the fragments. The cross-sections are made along the most uniform regions of the surface reflected at the image where the effects of anomalously highly-directional backscattering of radio waves are visible. The more dense black color refers to the average of the dependences of $\sigma(\theta)$.

Fig. 8. a — fragment of SAR image of Trarza desert area (Envisat-1 ASA_GM1_1P, 2012-01-02), b — respective graphs of dependencies of σ from local irradiation angle θ along the fragments sections. The cross-sections are made along the most uniform regions of the surface reflected at the image where the effects of anomalously highly-directed backscattering of radio waves are visible. The more dense black color refers to the average of the dependences of $\sigma(\theta)$.

Fig. 9 depicts the dependency of maximum values of ESS coefficients (σ_0) from the averaged (within ±1 m/s) near-surface wind speed values given to the height of 1 m above the surface at the radar images of desert area surface in Western Sahara Desert (El-Djouf, Akshar and Trarza) located in Mauritania. The graphs are extracted for the image regions that exhibited effects of anomalously highly-directional backscattering of radio waves (irradiated in the direction opposite to the blowing direction of the near-surface wind).

It is clearly seen that the intensity of backscattering increases steeply at speeds of near-surface wind of 2 m/s and higher. At the high wind speeds, the strong dependency of the scattering towards the sandy surface in the direction coinciding (in horizontal plane) with the wind blowing direction, the manifestations of anomalously highly-directional backscattering of radio waves were not observed. The value of σ_0 did not exceed — 23 dB.

5. Conclusions

The article studies the experimental results of persistent multi-year (2004–2012) observations of desert regions of El-Djouf, Akshar and Trarza in Mauritania by the means of space-borne SAR Envisat-1. The research is aimed at identifying the specifics of the near-surface wind impact at anomalously highly-directional backscattering of radio waves in radar based registration of Aeolian processes of transporting sand and dust in desert areas. The observational data with high spatial resolution gives strong evidences that the spatial distribution of the maximum values of intensities of the backscattered radio waves directly correlates with the spatial distribution of the near-surface winds. The intensity of the backscattered radio waves (when irradiated along the direction of near-surface wind blowing) steeply increases with the near-surface wind speed starting from the speeds of 2 m/s (normalized to height of 1 m above the surface). At high wind speeds, the stable dependency of the backscattered intensity from the wind speed is confirmed. This, in turn, opens the way for development of techniques for remote parameters estimation of Aeolian processes of transporting sand and dust based on space-borne radar imaging. When in radar remote sensing, a sandy surface gets illuminated in direction coinciding with the wind blowing direction, no anomalously highly-directional backscattering of radio waves could have been observed.

The work was carried out within the framework of the project with ESA ID: C1F30193.

References

Archive data of the meteorological website. (2003). Retrieved from http://www.wetter3.de/Archiv/index.html.

Greeley, R., Blumberg, D. G., Williams, S. H. (1996) Field measurements of the flux and speed of wind-blown sand. *Sedimentology*, 43(1), 41–52.

Haddad, S., Salman, M. J. H., Jha, R. K. (1983). Effects of Dust Sandstorms on Some Aspects of Microwave Propagation. Proc. URSI Commission F Symposium, Louvain-la-Neuve: ESA publication. 194, 153–161.

Ivanov, V. K., Matveyev, A. Ya., Tsymbal, V. N., Yatsevich, S. Ye. and Bychkov, D. M. (2015). Radar investigations of the aeolian sand
и песчаных ветров в дюнах и зондах.

Kosmicheskie radiolokatsionnye sposterezhennya vniviu priprovychennogo vetra na anomalyu vuzkostropovanie rozsiasyaaniya radiolokatora pri elevomomu transportirovanii puskhu i pilu u pestatelnykh oblastyah

D. M. Bychkov, V. K. Ivanov, O. Y. Matveev, V. M. Cymbal, S. E. Yeievich. Instytut radiofiziki ta elektroniki im. A. Ya. Usinko NAI Ukrainy. Ak. Proskury 12, 61085, Har’kiv, Ukraina.

Boevye protsessy transportirovaniya puskhu i pilu formirovuyut povruchni velikikh territorii i zavantažuyut atmosferu suspenziami avrofolami, òto roznosiyutsya vigtami na velikih vriedan. Priznosit’ atmosfernoy pilu v navkolinshchemu seredovishche planeti ydeется одним из faktorov, что влияют на температуру i klimatichnye umovi prostych regioh Zemli. V xod prats analizirueg inaktnosti efekt anomalyu vuzkostropovanie (zvortonogo roznosianiya radiolokator) pri radiolokaciynomu dистанционному zondirovaniyu (i diapazon zonalnych kuit’ podpozreni na povruchnu = 31°–32°). V te same v cikle v virede pod-po znost’ dany ustojstvenoy osobennosti vniviu prirovychennogo vetra na efektivnosti rozsiasyaaniya, òto ydeется одним из faktorov, влияющих на klimatichnye umovy obshchikh regioh Zemli.

Kosmicheskoye radiolokatsionnoe nabлюдanie vozvdeistviya priprovychennogo vetra na anomalyu vuzkostropovanie rsiasyaaniya radiolokatora pri elevomomu transportirovanii puskhu i pilu u pestatelnykh oblastyah

D. M. Bichakov, V. K. Ivanov, O. Y. Matveev, V. M. Cymbal, S. E. Yeievich. Institute of Radiophysics and Electronics, Ivanivka, Ukraine.

Boevye protsessy transportirovaniya puskhu i pilu formirovuyut povruchni velikikh territorii i zavantažuyut atmosferu suspenziami avrofolami, òto roznosiyutsya vigtami na velikih vriedan. Priznosit’ atmosfernoy pilu v navkolinshchemu seredovishche planeti ydeется одним из faktorov, что влияют на температуру i klimatichnye umovi prostych regioh Zemli. V xod prats analizirueg inaktnosti efekt anomalyu vuzkostropovanie (zvortonogo roznosianiya radiolokator) pri radiolokaciynomu dистанционному zondirovaniyu (i diapazon zonalnych kuit’ podpozreni na povruchnu = 31°–32°). V te same v cikle v virede pod-po znost’ dany ustojstvenoy osobennosti vniviu prirovychennogo vetra na efektivnosti rozsiasyaaniya, òto ydeется одним из faktorov, влияющих на klimatichnye umovy obshchikh regioh Zemli.