Review Article

Checklists of Parasites of Farm Fishes of Babylon Province, Iraq

Furhan T. Mhaisen and Abdul-Razzak L. Al-Rubaie

1 Tegnervägen 6B, 641 36 Katrineholm, Sweden
2 Department of Biological Control Technology, Al-Musaib Technical College, Al-Furat Al-Awsat Technical University, Al-Musaib, Iraq

Correspondence should be addressed to Furhan T. Mhaisen; mhaisenft@yahoo.co.uk

Received 31 October 2015; Accepted 21 April 2016

Copyright © 2016 F. T. Mhaisen and A.-R. L. Al-Rubaie. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Literature reviews of all references concerning the parasitic fauna of fishes in fish farms of Babylon province, middle of Iraq, showed that a total of 92 valid parasite species are so far known from the common carp (Cyprinus carpio), the grass carp (Ctenopharyngodon idella), and the silver carp (Hypophthalmichthys molitrix) as well as from three freshwater fish species (Carassius auratus, Liza abu, and Heteropneustes fossilis) which were found in some fish farms of the same province. The parasitic fauna included one mastigophoran, three apicomplexans, 13 ciliophorans, five myxozoans, five trematodes, 45 monogeneans, five cestodes, three nematodes, two acanthocephalans, nine arthropods, and one mollusc. The common carp was found to harbour 81 species of parasites, the grass carp 30 species, the silver carp 28 species, L. abu 13 species, C. auratus one species, and H. fossilis one species. A host-parasite list for each fish species was also provided.

1. Introduction

Although fish farming in Iraq started in 1955 with a small pond in Al-Zaafaraniya, south of Baghdad city [1], an advance was achieved in fish farming industry in Iraq during the seventies and early eighties of the last century when many fish farms were established especially in the middle of Iraq [2]. However, such achievement was hindered due to consequences of the war situations during 1980–1988 and 1991 as well as the economic sanction imposed by the UN against Iraq on August 6, 1990. During the last few years, a great advance was achieved in fish farming in general and fish cages in particular due to the increasing demand on fish protein as well as the increasing investment in fish-culture industry in most provinces of Iraq. According to the statistics, a total of 441 working fish farms are scattered in Iraq [3]. Of these farms, a total of 72 working fish farms are situated in Babylon province alone with a water area of 44.5% of the total water area of fish farms in Iraq.

Under extensive fish culture and inadequate administrative and control measures, fish farms are vulnerable to great hazards due to the infection with parasites and other disease agents [2, 4, 5]. Many parasite species can easily spread among fishes suffering from crowd and bad managements, especially those parasites with direct life cycles [6].

In connection with the parasites of cultured fishes of Babylon province, Mhaisen et al. [7] surveyed the literature on the parasitic fauna of fishes of Al-Furat Fish Farm (previously known as Babylon Fish Farm), which is the biggest fish farm in Babylon province, and showed that the parasitic fauna of fishes of that farm included 60 valid parasite species (10 protozoans, three myxozoans, one trematode, 29 monogeneans, five cestodes, three nematodes, two acanthocephalans, six crustaceans, and one mollusc larva). In addition, some investigations on other fish farms in Babylon province were done. Such data are scattered in different local journals, unpublished theses, and few other sources. Therefore, the present paper was aimed at gathering data from the literature concerning all fish farms of Babylon province and providing a list of parasite species according to their major groups as well as a host-parasite list for cultured fishes of these farms and some other fish species found in such farms. Such parasite list will help owners of fish farms and fish veterinarians to know what sort of parasites are found in their fish farms, which will help them later in taking appropriate measures for their control.
2. Sources and Methods

A total of 50 references (33 published articles, 12 unpublished theses, two unpublished reports, one book, one conference abstract, and one review article) dealing with the parasites of farm fishes of Babylon province were used to prepare the present paper. Data from such references was gathered to provide host-parasite and parasite-host lists. The systematic account of these parasites is based on some electronic sites [8–12] as well as some taxonomic references [13–16].

The index-catalogue of parasites and disease agents of fishes of Iraq [17] was used to indicate the total number of fish hosts harbouring each parasite species in the whole waters of Iraq.

3. Parasitological Investigations Achieved on Fish Farms of Babylon Province

Few fish farms in Babylon province were surveyed for some parasitic infections. Fishes from Al-Furat Fish Farm received the greatest attention in this respect. So far 25 chronologically arranged references [18–42] were concerned with the parasitic fauna of Al-Furat Fish Farm. Only seven references [43–49] were concerned with the parasitic fauna of Al-Shark Al-Awsat Fish Farm. The literature concerned with fish parasites of other farms in Babylon province included those from Al-Latifiya Fish Farm [6, 50–52]; Al-Bajaa Fish Farm [26]; Abdul-Razzak Al-Janabi Fish Farm; Fawzi Al-Janabi Fish Farm and Ali Al-Hayali Fish Farm [53]; three fish farms at Al-Iskandariya district: Abdul-Hadi Al-Matloob Fish Farm, Hussain Al-Gaiem Fish Farm, and Maki Chinak Fish Farm [54]; Technical Institute of Al-Musaib Fish Farm [55]; and Al-Manahil (Al-Bilad) Fish Farm at Al-Iskandariya district [56]. In addition, surveys were done from some unnamed fish ponds such as those at Al-Mahaweel district [57], Al-Musaib district [58], Al-Iskandariya district [59], and Sadat Al-Hindiya district [60] as well as some other unnamed farms in the province [61–65].

4. Results and Discussion

Surveying the literature concerning the parasites so far recorded from fish farms of Babylon province showed the presence of 92 parasite species. These parasites included one mastigophoran, three apicomplexans, 13 ciliophorans, five myxozoans, five trematodes, 45 monogeneans, five cestodes, three nematodes, two acanthocephalans, nine arthropods, and one mollusc. The common carp was found to harbour 81 species of parasites, the grass carp 30 species, the silver carp 28 species, L. abu 13 species, C. auratus one species, and H. fossilis one species. The layout and names of the major taxonomic groups (phyla and classes) followed a checklist of an FAO Fisheries Technical Paper [66]. These major groups represent the concerned phyla of the parasites, but due to the great numbers of parasite species of the phylum Platyhelminthes, its three classes (Trematoda, Monogenea, and Cestoda) were applied in addition to their phylum.

5. Major Groups of Parasitic Fauna: Parasite-Host List

The parasite-host list is arranged in the major groups (phyla or classes) of parasitic fauna according to Kirjušina and Vismanis [66]. For each major group, a list of species together with their hosts and concerned references is given. To economize space, names of fish farms are not given here as they can be easily detected from the previous subtitle “Parasitological Investigations Achieved on Fish Farms of Babylon Province.” Also the systematic account of all major groups is given down to the specific name of all parasites. For each parasite species, all records in farm fishes in Babylon province are given together with the first record of each concerned parasite in Iraq as well as the present number of all hosts so far known in Iraq for each concerned species based on the index-catalogue of parasites and disease agents of fishes of Iraq [17].

5.1. Phylum Mastigophora. The phylum Mastigophora is represented in farm fishes of Babylon province with only one parasite species of the genus Ichthyobodo. The systematic account of this parasite, followed by parasite-host list, is given here.

Phylum Mastigophora

Class Kinetoplastidea

Order Kinetoplastida

Family Bodonidae

Ichthyobodo necator (Henneguy, 1884)

Pinto, 1928

Ichthyobodo necator (Henneguy, 1884) Pinto, 1928, was erroneously reported as Costia necatrix from the skin and gills of C. carpio [27]. The first record of C. necatrix in Iraq was from body surface of H. fossilis from Al-Ashar Canal at Basrah [67]. Seven fish host species are so far known for this parasite (as C. necatrix) in Iraq [17].

5.2. Phylum Apicomplexa. The phylum Apicomplexa, which is known as phylum Myzozoa according to WoRMS [12], is represented in farm fishes of Babylon province with three species; two of them belonged to the genus Eimeria and one unspecified species to the genus Haemogregarina.

Phylum Apicomplexa

Class Sporozoa

Order Eucoccidiorida

Family Eimeriidae

Eimeria dogieli (Dogiel, 1948) Pellerdy, 1963

Eimeria mylopharyngodoni Chen, 1956

Family Haemogregarinidae

Haemogregarina sp.
Eimeria dogielii (Dogiel, 1948) Pellerdy, 1963, was recorded from the intestine of C. carpio [27]. So far, this is the only record of E. dogielii from fishes of Iraq [17].

Eimeria mylopharyngodoni Chen, 1956, was recorded from C. carpio [49]. The specific name was misspelled as mylopharyngodon and no authority, site of infection, parasite description, and illustration were given for this parasite by Hussain et al. [49]. So this record is considered as questionable especially if we take in consideration that Hussain et al. [49] examined C. carpio externally while E. mylopharyngodoni is known to infect intestine, kidneys, and liver of fishes [68]. This is the only record of E. mylopharyngodoni from fishes of Iraq [17].

Haemogregarina sp. was found on gills of C. carpio [49]. In Iraq, three species of Haemogregarina were so far recorded from blood of three fish species in Basrah province only [17]. So we think that the record of Haemogregarina sp. from gills of C. carpio by Hussain et al. [49] with neither description nor a good illustration is considered as questionable.

5.3. Phylum Ciliophora. The phylum Ciliophora is represented in farm fishes of Babylon province with 13 species, three of which belonged to the genera Chilodonella, Ichthyophthirius, and Tripartiella, five to the genus Apiosoma, and four to the genus Trichodina in addition to unspecified species of the genus Trichodina.

Phylum Ciliophora

Class Kinetophragminophorea

Order Cyrtophorida

Family Chilodonellidae

Chilodonella cyprini (Moroff, 1902) Fouquet, 1876

Class Oligohymenophorea

Order Hymenostomatida

Family Ichthyophthiriiidae

Ichthyophthirius multifiliis Fouquet, 1876

Order Petrochida

Family Epistylididae

Apiosoma amoebae (Grenfell, 1887) Lom, 1966

Apiosoma cylindriformis (Chen, 1955) was reported for the first time in Iraq from skin, buccal cavity, and gills of C. idella [20, 24, 27], skin, fins, buccal cavity, and gills of C. carpio [27], and skin and gills of H. molitrix [20, 24, 51]. The first record of I. multifiliis in Iraq was from the skin and gills of Chelon subviridis (reported as Mugil dussumieri) from Tigris River near Baghdad [70]. So far this parasite has 35 fish host species in Iraq [17].

Apiosoma amoebae (Grenfell, 1887) Lom, 1966, was reported from skin, buccal cavity, and gills of C. idella [20, 24, 27], skin and buccal cavity of C. carpio [27, 55], and skin and buccal cavity of H. molitrix [20, 27]. It is appropriate to mention here that A. amoebae was recorded as Glossatella amoebae [27, 55]. The first record of A. amoebae in Iraq was from the skin, buccal cavity, and gills of C. idella from Babylon Fish Farm [20]. So far this parasite has five fish host species in Iraq [17].

Apiosoma cylindriformis (Chen, 1955) was reported from gills of C. idella [20, 24, 27], buccal cavity and gills of C. carpio [27], and gills of H. molitrix [20, 21, 27], Al-Zubaidy [27] reported A. cylindriformis as Glossatella cylindriformis. The first record of A. cylindriformis in Iraq was from gills of C. idella and H. molitrix from Babylon Fish Farm [20]. So far, A. cylindriformis has seven fish host species in Iraq [17].

Apiosoma minuta (Chen, 1961) Lom, 1966, was recorded from skin of C. carpio [45, 47]. This was its first record in Iraq. So far, A. minuta has two fish host species in Iraq as it was recently recorded from Luciobarbus xanthopterus by Al-Salmay [71].

Apiosoma piscicola Blanchard, 1885, was recorded from skin, buccal cavity, and gills of C. idella [27, 51], skin, buccal cavity, and gills of C. carpio [27, 29, 51, 55], and buccal cavity and gills of H. molitrix [20, 21, 27, 29]. It is appropriate to mention here that A. piscicola was recorded as Glossatella piscicola [27]. A. piscicola was recorded for the first time in Iraq from skin, buccal cavity, and gills of C. idella, C. carpio and H. molitrix from Al-Suwaiera and Al-Latifya Fish Farms [51]. So far, this parasite has ten fish host species in Iraq [17].

Apiosoma poteriormis (Timofeev, 1962) Lom, 1966, was recorded from skin and gills of C. idella [20, 24, 27] and buccal cavity and gills of C. carpio [27]. It is appropriate to mention here that A. poteriormis was recorded as Glossatella poteriormis by Al-Zubaidy [27]. A. poteriormis was recorded for the first time in Iraq from gills of C. idella from Babylon Fish Farm [20]. So far, this parasite has three fish host species in Iraq [17].
Trichodina cottidarium Dogiel, 1948, was recorded from skin and gills of C. carpio [45, 47, 49, 54, 59, 60] and skin and gills of H. molitrix [45, 47]. T. cottidarium was recorded for the first time in Iraq from gills of C. carpio from a manmade lake at Baghdad city [72]. So far, this parasite has 13 fish host species in Iraq [17].

Trichodina domerguei (Wallengren, 1897) was recorded from skin, fins, buccal cavity, and gills of C. idella [24, 27, 29, 43, 51, 56], skin, fins, buccal cavity, and gills of C. carpio [25, 27, 29, 30, 35, 43, 51, 53, 55, 56, 59], skin, buccal cavity, and gills of H. molitrix [20, 27, 51], and skin and gills of L. abu [23, 56]. The first record of T. domerguei in Iraq was from skin, fins, and gills of eight freshwater fish species from Tigris River, Al-Tharthar Lake, and fish markets in Baghdad city [73]. So far, T. domerguei has 39 host species in Iraq [17] and, therefore, it is the most prevalent ciliate species among fishes of Iraq.

Trichodina gracilis Polyanskii, 1955, was recorded from skin of C. carpio [45, 47]. This was its first record in Iraq. So far, it has three fish host species in Iraq [17].

Trichodina nigra Lom, 1960, was recorded from skin and gills of the three carp species: C. idella [29], C. carpio [27, 29, 35, 49, 55, 59, 60], and H. molitrix [27, 29]. The first record of T. nigra in Iraq was from skin and gills of C. carpio and gills of H. molitrix from Babylon Fish Farm [27]. So far, T. nigra has nine host species in Iraq [17].

Unidentified specimen of Trichodina was recorded from L. abu [50] with no mention to site of infection. In addition to 24 recognized Trichodina species so far recorded from fishes of Iraq, some unidentified species of Trichodina were so far recorded from six fish species [17].

Tripartiella amurensis (Chan, 1961) was recorded from skin of C. carpio [45, 47]. This was its first record in Iraq. No more records are so far known for T. amurensis in Iraq [17].

5.4. Phylum Myxozoa. The phylum Myxozoa is represented in farm fishes of Babylon province with five species; two species belonged to the genera Apharynocytreidae and Ascocotyloidea and three species to the genus Myxobolus.

Phylum Myxozoa

Class Myxospora

Order Bivalvulida

Family Sphaerosporidae
Myxobolus legeri (Cépède, 1905)

Family Myxobolidae
Myxobolus dogieli Bykhovskaya-Pavlovskaya & Bykhovski, 1940
Myxobolus muelleri Bütscigli, 1882
Myxobolus oviformis Thélohan, 1892
Myxobolus pfeifferi Thélohan, 1895

Myxobolus legeri (Cépède, 1905), erroneously reported as Myxobolus legeri, with no given authority, description, and illustration, was recorded from skin and gills of C. carpio [54]. This was the only record of M. legeri in Iraq [17].

Myxobolus dogieli Bykhovskaya-Pavlovskaya & Bykhovski, 1940, was recorded from kidneys and gallbladder of L. abu [56]. The first record of M. dogieli in Iraq was mainly from the external surface of heart, liver, and ovaries of L. abu from Tigris River at Baiji town [74]. So far, M. dogieli has nine host species in Iraq [17].

Myxobolus muelleri Bütscigli, 1882, was recorded from intestine and liver of C. carpio [27] with the specific name spelled as müleri. The first record of M. muelleri in Iraq was from gills of Luciobarbus xanthopterus, reported as B. xanthopterus [70]. So far, M. muelleri has eight host species in Iraq [17].

Myxobolus oviformis Thélohan, 1892, was recorded from skin, intestine, and kidneys of C. carpio [27, 54, 59]. The first report of M. oviformis in Iraq was from gill arches and heart of four fish species [70]. So far, M. oviformis has 20 fish host species in Iraq [17].

Myxobolus pfeifferi Thélohan, 1895, was recorded from gills, intestine, liver, kidneys, and gallbladder of C. idella [29], gills, gallbladder, intestine, kidneys, and liver of C. carpio [25, 27, 29, 53, 59], gills, liver, and intestine of H. molitrix [27, 29], and gills, intestinal wall, and gonads of L. abu [23]. The first report of M. pfeifferi in Iraq was from gills of Acanthobrama marmida from Tigris River at Mosul city [75]. So far, M. pfeifferi is the prevalent myxozoan among fishes of Iraq as it has 35 fish host species [17].

5.5. Phylum Platyhelminthes: Class Trematoda. The class Trematoda of the phylum Platyhelminthes is represented in farm fishes of Babylon province with five species; two species belonged to the genera Apharynocytreidae and Ascocotyloidea and three species to the genus Diplostomum.

Phylum Platyhelminthes

Class Trematoda

Order Diplostomida

Family Strigeidae
Apharyngostrigea cornu (Zeder, 1800)

Family Diplostomidae
Diplostomum indicatum (Guberlet, 1923) Hughes, 1929
Diplostomum paraspathaceum Schigin, 1965
Diplostomum spathaceum (Rudolphi, 1819) Olsson, 1876

Order Plagiorchiida

Family Heterophyidae
Ascocotyle coleostoma (Looss, 1896) Looss, 1899

Apharyngostrigea cornu (Zeder, 1800) was recorded as metacercaria from mesentery, coelom and liver of C. carpio [52]. This was its first report in Iraq. No more records are so far known on the occurrence of A. cornu from fishes of Iraq [17]. The adult worm of this parasite was detected from the...
intestine of the purple heron *Ardea purpurea* in Bahr Al-Najaf Depression [76].

Ascocotyle coleostoma (Looss, 1896) Looss, 1899, was recorded as metacercaria from gills of *H. fossilis* [56]. This parasite was reported for the first time in Iraq from gills of *H. fossilis* and *L. abu* from Diyala River [77]. *A. coleostoma* has so far 34 fish host species in Iraq [17]. The adult worm of *A. coleostoma* was detected from the grey heron *A. cinerea* in Babylon (now Al-Furat) Fish Farm [78].

Diplostomum indistinctum (Guberlet, 1923) Hughes, 1929, was recorded as metacercaria from eyes of *C. idella* [43]. The first occurrence of metacercariae of *D. indistinctum* was from eyes of *Luciobarbus esocinus*, reported as *B. esocinus* from fish market in Mosul city [79]. No more records are so far known for this parasite from fishes of Iraq [17].

Diplostomum paraspathaceum Schigin, 1965, was recorded as metacercaria from eyes of both *C. idella* [43] and *C. carpio* [43]. This was its first record in Iraq. No more hosts are so far known for this parasite in Iraq [17].

Diplostomum spathaceum (Rudolphi, 1819) Olsson, 1876, was recorded as metacercaria from eyes of the three carp species: *C. idella* [43, 56], *C. carpio* [29, 43], and *H. molitrix* [43, 56]. The first occurrence of metacercariae of *D. spathaceum* was from eyes of *C. luteus*, reported as *B. luteus*, *Cyprinion macrostomum*, and *C. carpio* from Dokan Lake [80]. Thirty-four hosts are so far known for this parasite in fishes of Iraq [17]. Metacercariae of *Diplostomum* spp. are responsible for worm cataract which causes fish blindness [81]. Adult worms of this parasite were found in the intestine of some fish-eating birds such as the silver gull *Larus argentatus* in Bahr Al-Najaf Depression [76].

5.6. Phylum Platyhelminthes: Class Monogenea. The class Monogenea of the phylum Platyhelminthes is represented in farm fishes of Babylon province with 45 species: 12 species of the genus *Gyrodactylus*, 26 species of *Dactylogyridae*, and one species of each of the genera *Pseudocolpenteron*, *Diplozoon*, *Eudiplozoon*, *Paradiplozoon*, and *Microcotyle* in addition to some unidentified species of *Dactylogyridae* and *Diplozoon*. It is appropriate to mention here that this group is considered as Monogenea by some electronic sites [9–12] but as Monogenoidea in some references [14, 66].

Phylum Platyhelminthes

Class Monogenea

Order Gyrodactyliidea

Family Gyrodactyliidae

Gyrodactylus baicalensis Bogolepova, 1950

Gyrodactylus ctenopharyngodontis Ling in Gusev, 1952

Gyrodactylus elegans von Nordmann, 1832

Gyrodactylus kherulensis Ergens, 1974

Gyrodactylus macracanthus Hukuda, 1940

Gyrodactylus malmbergi Ergens, 1961

Gyrodactylus markevitschi Kulakovsky, 1952

Gyrodactylus medius Kathariner, 1895

Gyrodactylus menschikowi Gvosdev, 1950

Gyrodactylus salaris Malmberg, 1957

Gyrodactylus sprostonae Ling, 1962

Gyrodactylus vicinus Bychowsky, 1957

Order Dactylogyridae

Family Dactylogyridae

Dactylogyrus achmerowi Gusev, 1955

Dactylogyrus amurenensis Akhmerov, 1952

Dactylogyrus anchusoratus (Dujardin, 1845) Wagener, 1857

Dactylogyrus arcuatus Yamaguti, 1942

Dactylogyrus barbiodes Gusev, Ali, Abdul-Ameer, Amin & Molnár, 1993

Dactylogyrus cornu Linstow, 1878

Dactylogyrus crassus Kulwiec, 1927

Dactylogyrus ctenopharyngodonis Achmerow, 1952

Dactylogyrus dogieli Gusev, 1953

Dactylogyrus ergensi Molnár, 1964

Dactylogyrus extensus Mueller & Van Cleave, 1932

Dactylogyrus gobii Gvosdev, 1950

Dactylogyrus hypophthalmichthys Akhmerov, 1952

Dactylogyrus inexpectatus Izumov, in Gusev, 1955

Dactylogyrus jamansajensis Osmanov, 1958

Dactylogyrus lamellatus Akhmerov, 1952

Dactylogyrus latituba Gusev, 1955

Dactylogyrus lopuchinae Jukhimenko, 1981

Dactylogyrus minutus Kulwiec, 1927

Dactylogyrus navicularis A. Gusev, 1955

Dactylogyrus phoxini Malevitskaia, 1949

Dactylogyrus propinquus Bychowsky, 1931

Dactylogyrus sahuensis Ling in Chen et al., 1973

Dactylogyrus simplex Bychowsky, 1936

Dactylogyrus skrabini Akhmerov, 1954

Dactylogyrus vastator Nybelin, 1924

Dactylogyrus spp.

Pseudocolpenteron pavlovskii Bychowsky & Gusev, 1955

Order Mazocraeidea

Family Diplozoidae

Diplozoon paradoxum Nordmann, 1832
Diplozoon sp.
Eudiplozoon nipponicum (Goto, 1891)
Paradiplozoon barbi (Reichenbach-Klinke, 1951)
Family Microcotylidae
Microcotyle donavini van Beneden & Hesse, 1863

Gyrodactylus baicalensis Bogolepova, 1950, was recorded from skin, fins, and gills of C. carpio [25, 27, 29, 52]. The first report of G. baicalensis in Iraq was from skin, buccal cavity, and gills of C. carpio from Al-Suwaira and Al-Latifiya Fish Farms [52]. So far, G. baicalensis has eight fish host species in Iraq [17].

Gyrodactylus ctenopharngodontis Ling in Gusev, 1952, was recorded from skin, fins, buccal cavity, and gills of C. idella [24, 27]. The first report of G. ctenopharngodontis in Iraq was from gills of C. idella from Babylon Fish Farm [24]. No more hosts are so far recorded for this parasite in Iraq [17].

Gyrodactylus elegans von Nordmann, 1832, was recorded from skin, buccal cavity, and gills of both C. idella [27, 29, 52] and C. carpio [25-27, 29, 30, 32, 33, 43, 50, 52, 53, 55, 56, 60] as well as from gills of H. molitrix [29] and from L. abu [50] with no mention to site of infection. The first report of G. elegans in Iraq was from C. carpio from Al-Zaafaranai Fish Farm and L. abu from Al-Latifiya Fish Farm [50]. So far, G. elegans has 23 fish host species in Iraq [17].

Gyrodactylus kherulensis Ergens, 1974, was recorded from skin and gills of C. idella [27] and skin, fins, and gills of C. carpio [18, 27]. The first report of G. kherulensis in Iraq was from gills of C. carpio from Babylon Fish Farm [18]. So far, G. kherulensis has four fish host species in Iraq [17].

Gyrodactylus macracanthus Hukuda, 1940 (reported as G. paralatus Gusev, 1955), was recorded from skin and gills of C. carpio [27] and skin, fins, and buccal cavity of H. molitrix [27]. This was its first report in Iraq. Later on, it was reported from both hosts [82] as G. paralatus also. According to Gusev and Pugachev et al. [14], G. paralatus is a synonym of G. macracanthus. No more hosts are so far known for G. macracanthus or its synonym G. paralatus from fishes of Iraq [17].

Gyrodactylus malmbergi Ergens, 1961, was recorded from skin, fins, and gills of C. carpio [27] and from skin and gills of H. molitrix [27]. This was its first report in Iraq and no more hosts are so far known for G. malmbergi from fishes of Iraq [17].

Gyrodactylus markevitschi Kulakovskaya, 1952, was recorded from skin and gills of C. carpio [27, 45, 47, 60]. The first report of this parasite in Iraq was from gills of Capoeta trutta (reported as Varicorhinus trutta) from Tigris River at Baiji town [74]. So far, G. markevitschi has six host species in Iraq [17].

Gyrodactylus medius Katharinen, 1895, was recorded from skin and fins of C. carpio [27]. This was its first report in Iraq. The year of authority of this parasite was erroneously given as 1893 instead of 1895 by Al-Zubaidy [27] as well as by three other references according to Mhaisen and Abdul-Ameer [15]. Also the authorship of this parasite was given as Katheriner instead of Kathariner according to MonoDB [10].

Gyrodactylus menschikowi Gvosdev, 1950, was recorded from skin and gills of C. carpio [60]. The first report of this parasite in Iraq was from gills and skin of C. carpio and skin, fins, and gills of L. abu both from Hilla River [84]. So far, no more hosts for this parasite are known in Iraq [17].

Gyrodactylus salaris Malmberg, 1957, was recorded from skin and gills of C. carpio [27, 29]. The first report of this parasite in Iraq was from gills and skin of C. carpio from Al-Furat Fish Farm [27]. The year of authority of this parasite was reported as 1956 instead of 1957 by Al-Zubaidy [27] and Al-Jadoaa [29]. No more hosts for this parasite are so far known in Iraq [17].

Gyrodactylus sprostonae Ling, 1962, was recorded from skin and fins of C. carpio [27]. This was its first report in Iraq. Now, this parasite has seven host species in Iraq [17].

Gyrodactylus vicinus Bychowsky, 1957, was recorded from skin, fins, and gills of C. carpio [27, 35]. The first report of this parasite in Iraq was from skin, fins, and gills of C. carpio from Al-Furat Fish Farm [27]. Now, it has three host species in Iraq [17].

Finally, the unidentified Gyrodactylus species reported from C. carpio [34, 38] were the same 11 species which had been recorded in Al-Zubaidy [27]. In Iraq, so far 15 fish host species were reported for some unspecified Gyrodactylus species [17].

Dactylogyrus achmerowi Gusev, 1955, was recorded from gills of C. carpio [19, 27, 29, 30, 32, 33, 36, 54, 55, 60]. The first report of D. achmerowi in Iraq was from gills of C. carpio from Al-Wahda Fish Hatchery at Al-Suwaira and Babylon Fish Farm [19]. Now, it has 11 host species in Iraq [17].

Dactylogyrus amurenensis Akhmerov, 1952, was recorded from gills of C. carpio [55]. This was its first report in Iraq. However, neither description and measurements nor illustration was given. So far, this parasite has two host species in Iraq [17].

Dactylogyrus anchoratus (Dujardin, 1845) Wagener, 1857, was recorded from gills of C. carpio [45, 47]. The first report and description of D. anchoratus in Iraq were from gills of C. carpio from Tigris River at Al-Zaafaranai [85, 86]. Now, it has seven fish host species in Iraq [17].

Dactylogyrus arcuatus Yamaguti, 1942, was recorded from gills of C. idella [29] and skin, buccal cavity, and gills of C. carpio [25, 27, 35, 36, 49, 52, 55, 59, 60]. The first report of D. arcuatus in Iraq was from skin, buccal cavity, and gills of C. carpio from Al-Suwaira and Al-Latifiya Fish Farms [52]. Now, it has seven fish host species in Iraq [17].

Dactylogyrus barbioides Gusev, Ali, Abdul-Ameer, Amin & Molnár, 1993, was recorded from gills of C. carpio [60]. D. barbioides was described as a new species from gills of Barbus grypus from Tigris River near Baiji town [87]. Now, it has three fish host species in Iraq [17].

Dactylogyrus cornu Linstow, 1878, was recorded from gills of C. carpio [27, 59]. D. cornu was recorded for the first time in Iraq from gills of five fish species from Diyala River [88]. So far, it has 13 fish host species in Iraq [17].

Dactylogyrus crassus Kulwiec, 1927, was recorded from gills of C. carpio [45, 47, 55, 60]. D. crassus was recorded for...
the first time in Iraq from gills of C. carpio from Al-Shark Al-Awsat Fish Farm [45]. It is appropriate to mention here that the specific name crassus was misspelled as carassus by Al-Rubeaie et al. [55]. No more hosts are so far known for this parasite in Iraq [17].

Dactylogyrus ctenopharyngodonis Achmerow, 1952, was recorded from gills of C. idella from Al-Shark-Al-Awsat Fish Farm [43]. This is the only report on the occurrence of D. ctenopharyngodonis in fishes of Iraq [17].

Dactylogyrus dogiele Gusev, 1953, was recorded from gills of C. carpio in fish cages and an earthen pond in Sadat Al-Hindiyah [60]. The first report of D. dogiele was from five fish species from Euphrates River at Al-Musaih city [89] and its full description and illustration were published later by Al-Sa’adi et al. [90]. Six host species are so far known for D. dogiele in Iraq [17].

Dactylogyrus ergensi Molnár, 1964, was recorded from gills of C. carpio from Al-Furat Fish Farm [27]. This was its first report in Iraq. No more hosts were reported for D. ergensi in Iraq [17].

Dactylogyrus extensus Mueller & Van Cleave, 1932, was recorded from gills of C. idella [29], buccal cavity and gills of C. carpio [25, 27, 29, 30, 32, 33, 36, 43, 45, 47, 52, 54, 55, 59, 60], and gills of H. molitrix [29, 45, 47]. The first report of D. extensus in Iraq was from the buccal cavity and gills of C. carpio from Al-Suwaira and Al-Latifiya Fish Farms [52]. D. solidus which was also recorded from the same host by Salih et al. [52] as well as by Mhaisen & Abul-Eis [25] and Al-Rubaie et al. [55] is considered as a synonym of D. extensus according to Gibson et al. [13]. D. extensus and its synonym D. solidus have so far 17 fish host species in Iraq [17].

Dactylogyrus gobii Gvosdeyv, 1950, was recorded from skin and gills of C. carpio [45, 47, 60]. D. gobii was recorded for the first time in Iraq from gills of C. carpio from Al-Shark-Al-Awsat Fish Farm [45]. Now, it has three host species in Iraq [17].

Dactylogyrus hypophthalmichthys Akhmerov, 1952, was recorded from skin, buccal cavity, and gills of H. molitrix [21, 27, 43, 45, 47, 52, 56]. It is reliable to state here that D. hypophthalmichthys was reported as Neodactylogyrus hypophthalmichthys by Asmar et al. [56]. The first report of D. hypophthalmichthys in Iraq was from the buccal cavity and gills of H. molitrix from Al-Suwaira and Al-Latifiya Fish Farms [52]. H. molitrix is the only host so far known for D. hypophthalmichthys in Iraq [17].

Dactylogyrus inexpectatus Izjumova, in Gusev, 1955, was recorded from skin and gills of C. idella [27, 29, 52], gills of C. carpio [27, 29], and gills of H. molitrix [29]. The first report of D. inexpectatus in Iraq was from skin and gills of C. idella from Al-Suwaira and Al-Latifiya Fish Farms [52]. Now, it has five host species in Iraq [17].

Dactylogyrus jamansajensis Osmanov, 1958, was recorded from gills of C. carpio [45, 47]. The first report of D. jamansajensis in Iraq was from gills of C. luteus from manmade lakes, north of Baghdad [91]. Now, it has five host species in Iraq [17].

Dactylogyrus lamellatus Akhmerov, 1952, was recorded from skin, fins, buccal cavity, and gills of C. idella [24, 27, 43, 52, 56] and gills of C. carpio [27]. The first report of D. lamellatus in Iraq was from the skin, buccal cavity, and gills of C. idella from Al-Suwaira and Al-Latifiya Fish Farms [52]. Now, it has three host species in Iraq [17].

Dactylogyrus latitubus Gusev, 1955, was recorded from gills of both C. idella [27] and C. carpio [25, 27] as well as from the buccal cavity and gills of H. molitrix [27]. The first report of D. latitubus in Iraq was from gills of C. luteus from manmade lakes, north of Baghdad [91]. Now, it has four host species in Iraq [17].

Dactylogyrus lopuchinae Jukhimenko, 1981, was recorded from gills of C. carpio [45, 47, 54]. D. lopuchinae was recorded for the first time in Iraq from gills of C. carpio from Al-Shark-Al-Awsat Fish Farm [45]. No more hosts are so far known for this parasite in Iraq [17].

Dactylogyrus minutus Kulwiec, 1927, was recorded from skin, fins, and gills of C. carpio [27, 30, 32, 33, 45, 47, 55, 56, 59, 60]. The first report on this parasite in Iraq was from gills of C. carpio from Tigris River at Al-Zaaefaraniya, south of Baghdad, and Al-Qadisia Dam Lake [85], while its description and illustration were given later by Mhaisen et al. [86]. So far, D. minutus has 12 fish species in Iraq [17].

Dactylogyrus navicularis A. Gusev, 1955, was recorded from skin, buccal cavity, and gills of C. carpio [27, 35, 60]. The first report of D. navicularis in Iraq was from the buccal cavity, fins, and gills of C. carpio from Al-Furat Fish Farm [27]. C. carpio is the only host so far known for D. navicularis in Iraq [17].

Dactylogyrus phoxini Malevitskaia, 1949, was recorded from skin and gills of C. carpio [45, 47, 60]. The first report of D. phoxini in Iraq was in June 1995 from gills of C. carpio from Tigris River at Al-Zaaefaraniya but the report was published later by Balasem et al. [92]. This parasite has so far only two host species in Iraq [17].

Dactylogyrus propinquus Bychowsky, 1931, was recorded from gills of C. carpio [27, 35, 49]. The first report of D. propinquus in Iraq was from gills of C. carpio from Al-Furat Fish Farm [27]. C. carpio is the only host so far known for D. propinquus in Iraq [17].

Dactylogyrus sahuensis Ling in Chen et al., 1973, was recorded from fins and gills of C. carpio [27]. The first report of D. sahuensis in Iraq was from fins and gills of C. carpio from Al-Furat Fish Farm [27]. C. carpio is the only host so far known for D. sahuensis in Iraq [17].

Dactylogyrus simplex Bychowsky, 1936, was recorded from C. carpio [49] with no mention to site of infection. The first report of D. simplex in Iraq was from gills of C. carpio from the new fish farm of the Fish Research Center at Al-Zaaefaraniya [93]. D. simplex has so far three host species in Iraq [17].

Dactylogyrus skrjabini Akhmerov, 1954, was recorded from buccal cavity and gills of C. carpio [27, 45, 47] and buccal cavity and gills of H. molitrix [21, 27, 52]. The first report of D. skrjabini in Iraq was from buccal cavity and gills of H. molitrix from Al-Suwaira and Al-Latifiya Fish Farms [52]. Now, D. skrjabini has six host species in Iraq [17].

Dactylogyrus vastator Nybelin, 1924, was recorded from gills of C. idella [27] and skin and gills of C. carpio [26, 27, 30, 32, 33, 35, 36, 43, 49, 52, 53, 56, 59, 60, 64]. The first report of D. vastator from Iraq was from skin and gills of C. macrostomum
from Tigris River at Baghdad [94]. So far, *D. vastator* was reported from 33 fish host species from north, middle, and south of Iraq [17].

Unidentified *Dactylogyrus* species were recorded from skin and gills of *C. idella* [56] and from skin, buccal cavity, and gills of *C. carpio* [34, 38, 56]. Some of these specimens were larval stages [56], while the unidentified *Dactylogyrus* species of Al-Zubaidy et al. [34, 38] were the same 15 species which were recorded in Al-Zubaidy [27]. In Iraq, so far nine fish host species were reported for some unspecified *Dactylogyrus* species [17].

Pseudocolpenteron pavlovskii Bychowsky & Gussev, 1955, was recorded from fins and gills of *C. carpio* [25, 27, 45, 47] and gills of *H. molitrix* [27]. The first report of *P. pavlovskii* from Iraq was from skin and gills of *C. carpio* from Babylon Fish Farm [25]. This species has so far only two host species in Iraq [17].

Diplozoon paradoxum Nordmann, 1832, was recorded from gills of *C. carpio* [60]. This parasite was reported for the first time in Iraq from gills of *Carasobarbus luteus*, reported as *Barbus luteus*, from Al-Husainia creek, Karbala province [95]. Now, it has five fish hosts in Iraq [17].

Unidentified *Diplozoon* species were recorded from gills of *C. carpio* [43]. Some other unidentified *Diplozoon* species occurred as larvae in 12 fish host species in Iraq [17].

Eudiplozoon nipponicum (Goto, 1891) was recorded from gills of *C. carpio* [60]. This parasite was recorded for the first time in Iraq from gills of *C. carpio* from a manmade lake in Baghdad [96] as *Diplozoon nipponicum* but then it was reported by its valid name *E. nipponicum* by all subsequent researchers. So far, three host species are known for *E. nipponicum* in Iraq [17].

Paradiplozoon barbi (Reichenbach-Klinke, 1951) was recorded from gills of *C. carpio* [27] as *Diplozoon barbi*. This parasite was reported for the first time in Iraq from gills of *Chondrostoma nasus, C. regium*, and *C. carpio* from Tigris River at Baghdad [97] as *Diplozoon barbi*. Also, all the subsequent records in the Iraqi literature, except the checklists of Mhaisen and Abdul-Ameer [16], referred to this parasite as *D. barbi*. According to Khotenovsky [98], *D. barbi* is a synonym of *P. barbi*. Eight host species are so far known for this parasite in Iraq [17].

Microcotyle donavini van Beneden & Hesse, 1863, was recorded from gills of *L. abu* from Babylon Fish Farm [22]. This was its first report in Iraq. Ten host species are so far known for *M. donavini* in Iraq [17].

5.7. *Phylum Platyhelminthes: Class Cestoda*. The class Cestoda of the phylum Platyhelminthes is represented in farm fishes of Babylon province with five species: one species of each of the genera *Bothriocephalus*, *Ligula*, and *Neogryporhynchus* as well as two species of *Proteocephalus*.

Phylum Platyhelminthes

Class Cestoda

Order Bothriocephalidea

Family Bothriocephalidae

Bothriocephalus acheilognathi Yamaguti, 1934

Order Diphyllobothriidea

Family Diphyllobothriidae

Ligula intestinalis (L., 1758) Bloch, 1782

Order Proteocephalidea

Family Proteocephalidae

Proteocephalus osculatus (Goeze, 1782) Nybelin, 1942

Proteocephalus torulosus (Batsch, 1786) Nufer, 1905

Order Cyclophyllidea

Family Dilepididae

Neogryporhynchus cheilancristrotus (Wedl, 1855) Baer & Bona, 1960

Bothriocephalus acheilognathi Yamaguti, 1934, was recorded from the intestine of both *C. idella* [24, 56] and *C. carpio* [25–27, 52, 53, 62]. It is appropriate to mention here that this worm was reported by its synonym *B. opsarichthydis* by Salih et al. [52] and Al-Zubaidy [27]. The first report of *B. acheilognathi* in Iraq was from the intestine of *C. carpio* from different fish farms near Baghdad [99]. Two other species of *Bothriocephalus*, *B. gowkongensis* Yeh, 1955, and *B. opsarichthydis* Yamaguti, 1934, were also reported from Iraq [17]. According to Molnár [100], both these species are considered as synonyms of *B. acheilognathi*. At the present time, *B. acheilognathi* and both of its above-named synonyms has so far a total of 21 host species in Iraq [17].

Ligula intestinalis (L., 1758) Bloch, 1782, was recorded from the body cavity of both *C. idella* [24, 27, 29] and *C. carpio* [27]. *L. intestinalis* was reported for the first time in Iraq as a pierocercoid from the body cavity of *Leuciscus vorax* (reported as *A. vorax*) from Shatt Al-Arab River [101]. So far, this species has 13 fish host species in Iraq [17]. In Iraq, the adult stage of *L. intestinalis* was reported from the intestine of the moorhen *Gallinula chloropus* chloropus from around Baghdad [102].

Proteocephalus osculatus (Goeze, 1782) Nybelin, 1942, was recorded from the intestine of *C. carpio* [27]. The first report of this parasite in Iraq was from the intestine of *L. vorax* (reported as *A. vorax*) from Al-Tharthar Lake [103]. So far, this species has eight fish host species in Iraq [17].

Proteocephalus torulosus (Batsch, 1786) Nufer, 1905, was recorded from intestine of *C. carpio* [27]. The first report of this parasite in Iraq was from the intestine of *C. carpio* from a fish farm near Baghdad city [99]. So far, this species has two fish host species in Iraq [17].

Neogryporhynchus cheilancristrotus (Wedl, 1855) Baer & Bona, 1960, was recorded from the intestine of *C. carpio* by Al-Zubaidy [27] as *Gryporhynchus cheilancristrotus*. The first report of *N. cheilancristrotus* in Iraq was from the intestine of *L. abu* from Diyala River [104]. So far, this species has four fish host species in Iraq [17].
5.8. Phylum Nematoda. The phylum Nematoda is represented in farm fishes of Babylon province with three species: unidentified larval species of the genus Contracaecum as well as one species of each of the genera Cucullanus and Rhabdochona.

Phylum Nematoda

Class Secernentea

Order Ascaridida
Family Anisakidae
Contracaecum spp.
Family Cucullanidae
Cucullanus cyprini Yamaguti, 1941

Order Spirurida
Family Rhabdochonidae
Rhabdochona hellichi (Sr´amek, 1901)

Unidentified larval species of Contracaecum was recorded from the intestinal wall, body cavity, liver, spleen, heart, and gonads of C. carpio [27, 29] and intestinal wall of L. Abu [22, 37, 42]. The first report of Contracaecum spp. larvae in Iraq was from the body cavity and different viscera of 10 fish species from different inland waters of Iraq [70]. Contracaecum spp. larvae have so far 40 fish host species in Iraq [17]. Adult worms of Contracaecum spp. were detected from six species of aquatic birds in Iraq, Egretta alba, Ardeola ralloides, Botaurus stellaris, Ardea purpurea, and Ceryle rudis, from Bahr Al-Najaf Depression [76].

Cucullanus cyprini Yamaguti, 1941, was recorded from the intestine of C. carpio [27]. The first report of this parasite in Iraq was from the intestine of Alburnus caeruleus and Luciobarbus xanthopterus (reported as B. xanthopterus) from Al-Tharthar Lake [103]. So far, this species has 15 fish host species in Iraq [17].

Rhabdochona hellichi (Sr´amek, 1901), erroneously reported as R. bellichi, was recorded from intestine of the three carp species: C. idella [29], C. carpio [29], and H. molitrix [29]. Ali et al. [105] reported this parasite (also erroneously as R. bellichi) from the intestine and coelom of L. xanhopterus (reported as B. xanhopterus), H. fossilis, and Mystus pelusi (reported as M. halepensis). Eight fish species are so far known for this parasite in Iraq [17].

5.9. Phylum Acanthocephala. The phylum Acanthocephala is represented in farm fishes of Babylon province with two valid species of the genus Neoechinorhynchus.

Phylum Acanthocephala

Class Eoacanthocephala

Order Neoechinorhynchida
Family Neoechinorhynchidae
Neoechinorhynchus iraqensis Amin, Al-Sady, Mhaisen & Bassat, 2001

Neoechinorhynchus rutili (Müller, 1780) Hamann, 1892

Neoechinorhynchus iraqensis Amin, Al-Sady, Mhaisen & Bassat, 2001, was recorded from intestine of both C. carpio [27] and L. Abu [22, 50]. It is appropriate to mention here that this species was reported as N. agilis from C. carpio and L. Abu by Al-Zubaidy [27] and Ali et al. [22], respectively. N. agilis is a misidentification of N. iraqensis [106]. The first report of N. iraqensis was as species de novo from the intestine of L. Abu from the Euphrates River at Al-Fallujah region [107], while its description was given later by Amin et al. [108]. N. iraqensis and the misidentified N. agilis have so far 24 fish host species in Iraq [17].

Neoechinorhynchus rutili (Müller, 1780) Hamann, 1892, was recorded from the intestine of the three carp species: C. idella [29], C. carpio [27, 29], and H. molitrix [29]. N. rutili was firstly recorded by Herzog [70] from L. xanhopterus (reported as B. xanhopterus) from Tigris and Diyala rivers near Baghdad and from L. Abu (reported as Mugil abu) from Citscher Oasis near Al-Fallujah. N. rutili has so far 16 fish host species in Iraq [17].

5.10. Phylum Arthropoda: Subphylum Crustacea. The subphylum Crustacea of the phylum Arthropoda is represented in farm fishes of Babylon province with nine species: one species of each of the genera Argulus, Dermoergasilus, Parergasilus, Lamproglena, and Lernaea and three species of Ergasilus in addition to unidentified species of Ergasilus.

Phylum Arthropoda

Subphylum Crustacea

Class Maxillopoda

Order Arguloida
Family Argulidae
Argulus foliaceus (L., 1758)

Order Cyclopoida
Family Ergasilidae
Dermoergasilus varicoleus Ho, Jayarajan & Radhakrishnan, 1992
Ergasilus barbi Rahemo, 1982
Ergasilus moselensis Rahemo, 1982
Ergasilus sieboldii von Nordmann, 1832
Ergasilus sp.
Paraergasilus inflatus Ho, Khames & Mhaisen, 1996
Family Lernaeidae
Lamproglena pulchella von Nordmann, 1832
Lernaea cyprinacea L., 1758

Argulus foliaceus (L., 1758) was recorded from gills of the three carp species: C. idella [27], C. carpio [25, 27], and H. molitrix [27] as well as from fins of C. auratus [58]. A. foliaceus was reported for the first time in Iraq [70] from skin of C. carpio from Al-Zaafaraniya Fish-Culture Station and
C. luteus (reported as B. luteus) from Al-Habbaniyah Lake [70]. A. foliaceus has so far 16 fish host species in Iraq [17].

Dermoergasilus varicoleus Ho, Jayarajan & Radhakrishnan, 1992, was recorded from gills of L. abu [31, 40]. This crustacean was reported for the first time in Iraq from gills of L. abu from Shatt Al-Arab River [109]. D. varicoleus has so far nine fish host species in Iraq [17].

Ergasilus barbi Rahemo, 1982, was recorded from gills of L. abu [46]. This crustacean was first detected from gills of B. grypus from Tigris River at Mosul city by Fattohy [75] and its full description as a new species was achieved by Rahemo [110]. E. barbi has so far 13 fish host species in Iraq [17].

Ergasilus mosulensis Rahemo, 1982, was recorded from gills of the three carp species, C. idella [27, 29], C. carpio [27, 29, 51, 55], and H. molitrix [27] as well as gills of L. abu [46]. This crustacean was firstly detected from gills of L. abu from Tigris River at Mosul city by Fattohy [75] and its full description as a new species was achieved by Rahemo [110]. E. mosulensis has so far 23 fish host species in Iraq [17].

Ergasilus sieboldi von Nordmann, 1832, was recorded from gills, buccal cavity, and skin of the three carp species: C. idella [27, 29], C. carpio [25, 27, 29, 51, 55], and H. molitrix [27, 29, 56]. The first report of E. sieboldi in Iraq was from gills of L. vorax (reported as A. vorax) from Al-Habbaniyah Lake [70]. E. sieboldi has so far 26 fish host species in Iraq [17].

Ergasilus sp. was recorded from L. abu [50] with no mention to site of infection. In addition to 11 species of Ergasilus so far recorded from fishes of Iraq, some specimens of unidentified Ergasilus species were also recorded from 12 fish species in Iraq [17].

Paraergasilus inflatus Ho, Khamees & Mhaisen, 1996, was recorded from gills, buccal cavity, and skin of the three carp species: C. idella [27, 29], C. carpio [25, 27, 29, 51, 55], and H. molitrix [27, 29, 56]. The first report of P. inflatus in Iraq was from gills of L. vorax (reported as A. vorax) from Al-Habbaniyah Lake [70]. P. inflatus has so far 30 fish host species in Iraq [17].

Lamproglena pulchella von Nordmann, 1832, was recorded from gills of C. carpio [27]. The first report of L. pulchella in Iraq was from gills of Chondrostoma regium and Capoeta trutta (reported as Varicorhinus trutta) from Tigris River at Mosul city [112]. L. pulchella has so far 19 fish host species in Iraq [17].

Lernaeacra carpini L., 1758, was recorded from skin, fins, and gills of the three carp species, C. idella [24, 27–29, 43, 51], C. carpio [6, 25–31, 39, 41, 43, 44, 48, 51, 53–55, 57, 61, 63], and H. molitrix [21, 27–29, 43], as well as from gills of L. abu [23]. The first report of the anchor worm L. carpini in Iraq was from skin, fins, buccal cavity, pharyngeal cavity, gills, and anus of seven freshwater fish species from Al-Zaafaraniya Fish-Culture Station [113]. L. carpini is the commonest crustacean among fishes of Iraq as it has so far 30 fish host species in Iraq [17].

5.11. Phylum Mollusca. The phylum Mollusca is represented in farm fishes of Babylon province with only one parasite species of the genus Unio. The systematic account of this parasite, followed by parasite-host list, is given here.

Phylum Mollusca

Class Bivalvia

Order Unionoida

Family Unionidae

Unio pictorum (Linnaeus, 1758)

Unio pictorum (Linnaeus, 1758) was recorded from gills of both C. carpio [27, 29] and H. molitrix [27]. The first report of the glochidial larvae of U. pictorum in Iraq was from gills of eight freshwater fish species from Diyala River [104]. It is appropriate to mention here that the authority of U. pictorum was erroneously stated as Zhadin, 1938, in all the Iraqi literature except Al-Salmany [71]. U. pictorum has so far 24 fish host species in Iraq [17].

6. Host-Parasite List

The following host-parasite list for fish parasites in fish farms of Babylon province is compiled. For each host, the scientific names of all recorded parasites are alphabetically enlisted under their major parasitic groups. To economize space, references of previous records for each parasite species are not given here. These can be obtained from the account of each concerned parasite species in the part of major groups of parasitic fauna within the results and discussion part.

6.1. Cyprinus carpio Linnaeus, 1758

Mastigophora: Ichthyobodo necator.
Apicomplexa: Eimeria dogieli, E. mylopharyngodoni, and Haemogregarina sp.
Ciliophora: Apharyngostrigea cornu, T. nigra, and A. cylindriformis
Trematoda: Aphanistostrigea cornu, Diplodistomum paraspathaceum, and D. spathaceum.
Monogenea: Dactylogyrus achmerowi, D. amurenensis, D. anchoratus, D. arcuatus, D. barbioides, D. cornu, D. crassus, D. dogieli, D. ergensi, D. extensus, D. gobii, D. inexpectatus, D. jamansajensis, D. lamellatus, D. latituba, D. lopuchinae, D. minutus, D. navicularis, D. phoxini, D. propinquus, D. sahuensis, D. simplex, D. skrjabini, D. vastator, Dactylogyrus spp., Diplodooon paradoxxum, Diplodooon sp., Eudiplodooon nipponicum, Gyrodactylus baikalensis, G. elegans, G. kherulensis, G. macracanthus, G. malmbergi, G. markewitschi, G. medius, G. menschikowi, G. salaris, G. sprostonae, G. vicinus, Paradiplodoo sp., and Pseudacolpenteron pavlovskii.
6.2. *Ctenopharyngodon idella* (Valenciennes, 1844)

Ciliophora: *Apisoma* amoebae, *A. cylindriliformis*, *A. piscicola*, *A. poteriformis*, *Chilodonella* cyprini, *Ichthyophthirius multifiliis*, *Trichodina* domerguei, and *T. nigra*.

Myxozoa: *Myxobolus* pfeifferi.

Trematoda: *Diplostomum paraspathaceum* and *D. spathaceum*.

Monogenea: *Dactylogyrus* arcuatus, *D. ctenopharyngodonis*is, *D. extensus*, *D. inexpectatus*, *D. latituba*, *D. vastator*, *Dactylogyrus* sp., *Gyrodactylus* ctenopharyngodontis, *G. elegans*, and *G. kherulensis*.

Cestoda: *Bothriocephalus achoelognathi* and *Ligula intestinalis*.

Nematoda: *Rhabdodona hellichi*.

Acanthocephala: *Neoechinorhynchus iraqensis*.

Crustacea: *Argulus foliaceus*, *Ergasilus mosulensis*, *E. sieboldi*, and *Lernaea cyprinacea*.

Mollusca: *Unio pictorum*.

6.3. *Hypophthalmichthys molitrix* (Valenciennes, 1844)

Ciliophora: *Apisoma amoebae*, *A. cylindriliformis*, *A. piscicola*, *Chilodonella* cyprini, *Ichthyophthirius multifiliis*, *Trichodina* domerguei, and *T. nigra*.

Myxozoa: *Myxobolus* pfeifferi.

Trematoda: *Diplostomum indistinctum* and *D. spathaceum*.

Monogenea: *Dactylogyrus* extensus, *D. hypophthalmichthys*, *D. inexpectatus*, *D. latituba*, *D. skrjabini*, *Gyrodactylus* elegans, *G. macracanthus*, *G. malmbergi*, and *Pseudacolpenteron pavlovskii*.

Nematoda: *Rhabdodona hellichi*.

Acanthocephala: *Neoechinorhynchus rutili*.

Crustacea: *Argulus foliaceus*, *Ergasilus mosulensis*, *E. sieboldi*, *Lernaea cyprinacea*, and *Parergasilus inflatus*.

Mollusca: *Unio pictorum*.

6.4. *Carassius auratus* (Linnaeus, 1758)

Crustacea: *Argulus foliaceus*.

6.5. *Heteropneustes fossilis* (Bloch, 1794)

Trematoda: *Ascocotyle coleostoma*.

6.6. *Liza abu* (Heckel, 1843)

Ciliophora: *Trichodina domerguei* and *Trichodina sp*.

Myxozoa: *Myxobolus dogieli* and *M. pfeifferi*.

Monogenea: *Gyrodactylus elegans* and *Microcotyle donavini*.

Nematoda: *Contracaecum sp.*.

Acanthocephala: *Neoechinorhynchus iraqensis*.

Crustacea: *Dermoergasilus varicoles*, *Ergasilus barbi*, *E. mosulensis*, *Ergasilus sp.*, and *Lernaea cyprinacea*.

Competing Interests

The authors declare that there are not any competing interests related to the publication of this paper.

References

[1] M. I. Al-Hamed, “Carp culture in Iraq,” *Iraqi Journal of Agriculture Research*, vol. 1, no. 2, pp. 14–23, 1960.

[2] F. T. Mhaisen, “A review on the parasites and diseases in fishes of ponds and farms of Iraq,” *Iraqi Journal of Veterinary Science*, vol. 6, no. 2, pp. 20–28, 1993.

[3] Ministry of Agriculture, *Statistical Data on Fish Farms in Different Provinces of Iraq up to 31 December 2014*, Ministry of Agriculture, Baghdad, Iraq, 2014.

[4] F. T. Mhaisen, “The role of wild fishes in fish farms of Iraq from parasitological and pathological points of view,” *Iraqi Journal of Veterinary Medicine*, vol. 17, pp. 126–136, 1993.

[5] F. T. Mhaisen, “Natural enemies of farm fishes with special emphasis on fish farms of Iraq,” *Al-Tharwa Al-Samakia (Fisheries)*, vol. 14, pp. 92–98, 1996.

[6] F. T. Mhaisen, *Diseases and Parasites of Fishes*, Basrah University Press, 1983.

[7] F. T. Mhaisen, K. S. Al-Niaeeem, and A. B. Al-Zubahy, “Literature review on fish parasites of Al-Furat Fish Farm, Babylon province, Iraq,” *Iraqi Journal of Aquaculture*, vol. 9, no. 1, pp. 95–122, 2012.

[8] EOL Encyclopedia of Life On-Line Database, 2015, http://www.eol.org.

[9] ITIS Integrated Taxonomic Information System On-Line Database, 2015, http://www.itis.gov.

[10] MonoDB Web-Host for the Monogenea, 2015, http://www.monodb.org/.

[11] PESI Pan-European Species Dictionaries Infrastructure, 2015, http://www.eu-nomen.eu/portal/webservices.php.

[12] WoRMS World Register of Marine Species, 2015, http://www.marinespecies.org.
[13] D. I. Gibson, T. A. Timofoeva, and P. I. Gerasev, "A catalogue of the nominal species of the monogenean genus Dactylogyrosis Diesing, 1850 and their host genera," Systematic Parasitology, vol. 35, no. 1, pp. 3–48, 1996.

[14] O. N. Pugachev, P. I. Gerasev, A. V. Gussev, R. Ergens, and I. Khotenowsky, Eds., Guide to Monogenoidea of Freshwater Fish of Palaearctic and Amur Regions, Edizioni Ledizioni Ledi, Milano, Italy, 2009.

[15] F. T. Mhaisen and K. N. Abdul-Ameer, "Checklists of Gyrodactylyus species (Monogenea) from fishes of Iraq," Basrah Journal of Agriculture Science, vol. 26, no. 1, pp. 8–25, 2013.

[16] F. T. Mhaisen and K. N. Abdul-Ameer, "Checklists of diplozoid species (Monogenea) from fishes of Iraq," Bulletin of Iraq Natural History Museum, vol. 13, no. 2, pp. 95–111, 2014.

[17] F. T. Mhaisen, "Index-catalogue of parasites and disease agents of fishes of Iraq," 2015.

[18] N. M. Ali, F. T. Mhaisen, E. S. Abul-Eis, and L. S. Kadim, "First occurrence of the monogenean trematode Gyrodactylus kherulensis Ergens, 1974 in Iraq on the gills of the common carp Cyprinus carpio," Journal of Biological Science Research, vol. 19, no. 3, pp. 659–664, 1998.

[19] F. T. Mhaisen, N. M. Ali, E. S. Abul-Eis, and L. S. Kadim, "First record of Dactylogyrosis acheronii Hussev, 1955 with an identification key for the dactylogyrids of fishes of Iraq," Journal of Biological Science Research, vol. 19, pp. 887–900, 2018.

[20] N. M. Ali, F. T. Mhaisen, and E. S. Abul-Eis, "Three stalked ciliates (Scyphidia: Peritrichia) new to the parasitic fauna of the fishes of Iraq," in Proceedings of the Fifth Scientific Research Council, vol. 5, pp. 218–224, 1989.

[21] N. M. Ali, F. T. Mhaisen, E. S. Abul-Eis, and L. S. Kadim, "Parasites of the silver carp Hypophthalmichthys molitrix, from Babylon Fish Farm, Hilla, Iraq," Rivista di Idrobiologia, vol. 28, no. 1–2, pp. 151–154, 1989.

[22] N. M. Ali, F. T. Mhaisen, E. S. Abul-Eis, and L. S. Kadim, "Helminth parasites of the mugilid fish Liza abu (Heckel) inhabiting Babylon Fish Farm, Hilla, Iraq," in Proceedings of the Fifth Scientific Research Council, vol. 5, pp. 225–233, 1989.

[23] F. T. Mhaisen, N. M. Ali, E. S. Abul-Eis, and L. S. Kadim, "Protozoan and crustacean parasites of the mugilid fish Liza abu (Heckel) inhabiting Babylon Fish Farm, Hilla, Iraq," Journal of Biological Science Research, vol. 20, no. 3, pp. 517–525, 1989.

[24] F. T. Mhaisen, N. M. Ali, E. S. Abul-Eis, and L. S. Kadim, "Parasitological investigation on the grass carp Ctenopharyngodon idella of Babylon Fish Farm, Hilla, Iraq," Iraqi Journal of Biological Sciences, vol. 10, no. 1, pp. 89–96, 1990.

[25] F. T. Mhaisen and E. S. Abul-Eis, "Parasites of the common carp (Cyprinus carpio) in Babylon Fish Farm, Hilla, Iraq, cited in F. T. Mhaisen, N. R. Khamees and S. A. M. Al-Daraji, Parasites and disease agents of carp in Iraq: a check-list," Basrah Journal of Agriculture Science, vol. 4, no. 1, pp. 133–139, 1991.

[26] F. T. Mhaisen, A. N. Balasem, G. H. Al-Khateeb, S. M. J. Al-Shaikh, and J. M. Al-Jawda, "Survey of parasites of farm fishes in three provinces in mid-Iraq," Al-Tharwa Al-Samakia, vol. 13, pp. 84–87, 1993.

[27] A. B. Al-Zubaidy, "Studies on the parasitic fauna of carp in Al-Furat Fish Farm, Babylon province, Iraq [Ph.D. thesis], University of Babylon, 1998.

[28] F. H. A. Al-Dulaimi, Distribution of infection with Lernaea cyprinacea L. in carp and its control by using some plant extracts [M.S. thesis], University of Babylon, 2002.

[29] N. A. A. Al-Jadoa, The parasitic infections and pathological changes of some local and cultured fishes from Al-Qadisiya and Babylon provinces [Ph.D. thesis], Al-Qadisiya University, 2002.

[30] N. A. Al-Zamily, Efficiency of some plant extracts in eradication of monogenean trematodes parasitizing skin and gills of the common carp (Cyprinus carpio L.) [M.S. thesis], University of Baghdad, 2002.

[31] R. A. Kadim, Investigation of crustacean parasites on some species of fishes in Al-Furat Fish Farm and Al-Mahaweel Drainage Collector in Babylon province [M.S. thesis], University of Babylon, 2003.

[32] F. T. Mhaisen, M. T. Al-Kaisy, and N. A. Al-Zamily, "Effect of the water extracts of red pepper and coloconly in treating the common carp infected with skin and gill trematodes," Iraqi Journal of Science and Technology, vol. 2, no. 2, pp. 5–14, 2005.

[33] N. A. Al-Zamily, F. F. Mhaisen, and M. T. Al-Kaisy, "Efficiency of the water extract of pomegranate fruit shells in treating the common carp infected with skin and gill trematodes," Ibn Al-Haitham Journal for Pure and Applied Science, vol. 19, no. 4, pp. 1–12, 2006.

[34] A. B. Al-Zubaidy, F. S. Al-Zubadi, and F. T. Mhaisen, "Treatment of the common carp (Cyprinus carpio) infected with monogenean trematodes by using some plant extracts," Journal of Um Salama for Science, vol. 4, no. 1, pp. 22–27, 2007.

[35] S. M. A. Al-Haider, Studying the biotic and abiotic factors affecting in survival rate of larvae and fingerling rearing ponds at Al-Furat Company-Babilon [M.S. thesis], Foundation of Technical Education, Baghdad, Iraq, 2008.

[36] G. B. Al-Oumasi, A study on carp infection dynamics by worm (Dactylogyrosis) in Al-Furat Fish Farm, Al-Qadisiya Journal of Pure Science, vol. 13, no. 2, pp. 8–13, 2008.

[37] A. B. Al-Zubaidy, Prevalence and densities of Contracaccum sp. larvae in Liza abu (Heckel, 1843) from different Iraqi water bodies, Journal of King Abdulaziz University, Marine Science, vol. 20, pp. 3–17, 2009.

[38] A. B. Al-Zubaidy, F. T. Mhaisen, and F. S. Al-Zubaidi, "Study on the parasitic fauna of carp in Al-Furat Fish Farm, Iraq: I treatment of the common carp (Cyprinus carpio) infected with monogenetic trematodes by using some plant extracts," Journal of King Abdulaziz University, Marine Science, vol. 20, pp. 155–170, 2009.

[39] R. A. Kadhim, Resistance of common carp fishes Cyprinus carpio (L.) to reinfection by anchor worm Lernaea cyprinacea (L.)," Al-Qadisiyah Journal of Science, vol. 14, no. 3, pp. 49–58, 2009.

[40] R. A. Kadim and A. B. Al-Zubaidy, "Treatment of Liza abu infected with the parasitic crustacean Dermoergasius varicoleus by using boiling water extracts of Artemisia herba-alba (L.) and Petroselinum crispum (Mill.)," Journal of Babylon University, Pure Science, vol. 17, no. 2, pp. 518–528, 2009.

[41] R. A. Kadim and A. B. Al-Zubaidy, "The pathological effects of the anchor worm Lernaea cyprinacea L. on the common carp Cyprinus carpio L.," Journal of Babylon University, Pure Science, vol. 17, no. 3, pp. 929–935, 2009.

[42] A. B. Al-Zubaidy, Studies on the food, size and endoparasites of Liza abu from river and farm in Babylon, middle of Iraq," in press.

[43] S. K. Muhammed, An external and eye parasite survey for carp fishes in Al-Eskandaryia region (Babylon) [M.S. thesis], University of Baghdad, 2000.
A. N. Yaseen, F. T. Mhaisen, and M. T. Al-Kaisey, “Effect of H. T. Hussain, E. H. Howaidi, T. S. Naif, K. R. Abd, and H. T. Hussain, F. T. Mhaisen, and A. L. Al-Rubaie, “Ectoparasitic infection of the common carp... Pond at Al-Saddah/Babylon province [M. Tech. Thesis], Foundation of Technical Education, Baghdad, Iraq, 2013.

H. M. J. Al-Sardee, Effect of quicklime on common carp infected with Lernaea cyprinacea L. [M. S. Thesis], University of Baghdad, 1992.

S. M. J. Al-Shaikh, “Study of some important and common fish diseases in Iraq and methods of their control and prevention,” in Proceedings of the Joint Symposium of the Arab Union of Fish Producers and Arab Union Councils of Scientific Research, pp. 133–137, Baghdad, Iraq, December 1993.

S. M. J. Al-Shaikh and H. M. J. Al-Sardee, “Gross pathological and histological changes in infection with the anchor worm and its treatment with quicklime,” Al-Tharwa Al-Samukia (Fisheries), vol. 13, pp. 95–97, 1993.

S. M. J. Al-Shaikh, “Pathogenesis and treatment of Monogenea (Dactylogyrus) in fishes,” Veterinaririan, vol. 9, no. 3, pp. 213–217, 1999.

A. L. Al-Rubaie, “Efficiency of propolis on ciliate protozoan parasite Ichthyophthirius multifilis of Cyprinus carpio,” Euphrates Journal of Agriculture Science, vol. 1, no. 3, pp. 54–60, 2009.

M. Kirjusina and K. Vismans, “Checklist of the parasites of fishes of Latvia,” FAO Fisheries Technical Report 369/3, FAO, 2007.

M. N. Bhatti, “A note on the occurrence of costiasis disease in the stinging catfish, Heteropneustes fossilis (Bloch) from Basrah waters,” Arab Gulf, vol. 11, no. 1, p. 216, 1979.

D. W. Duszynski, L. Couch, and S. J. Upton, Coccidia (Eimeridae) of Cypriniformes (Cyprinids), 2015, http://www.k-state.edu/parasitology/worldcoccidia/FISHBIB.

N. M. Ali, N. E. Salih, and K. N. Abdul-Ameer, “Protozoa and Crustacea infesting three species of carp raised in ponds in Iraq,” Journal of Biological Science Research, vol. 18, no. 3, pp. 204–219, 2007.

A. N. Yaseen, F. T. Mhaisen, and M. T. Al-Kaisey, “Effect of aqueous and alcoholic extracts of leaves of henna Lawsonia inermis in treating the common carp Cyprinus carpio L. infected with the anchor worm, Lernaea cyprinacea,” Iraqi Journal of Agriculture, vol. 14, no. 5, pp. 150–156, 2009.

H. T. Hussain, E. H. Howaidi, T. S. Naif, K. R. Abd, and M. H. Takheal, “Study the relationship between the length of the fish and the incidence external parasites of common carp Cyprinus carpio in the Al-Shark Al-Awsat Fish Farm in Babylon province,” Journal of Al-Qadisiyah for Pure Science, vol. 18, no. 1, pp. 1–6, 2013.

M. D. Ali and F. Shaaban, “Some species of parasites of freshwater fish raised in ponds and in Tigris-Al-Tharthar canal region,” in Proceedings of the 7th Scientific Conference of the Iraqi Veterinary Medical Association, pp. 44–46, Mosul, Iraq, October 1984.

N. M. Ali, N. E. Salih, and K. N. Abdul-Ameer, “Protozoa and Crustacea infesting three species of carp raised in ponds in Iraq,” Journal of Biological Science Research, vol. 19, no. 2, pp. 387–394, 1988.

N. E. Salih, N. M. Ali, and K. N. Abdul-Ameer, “Helminthic fauna of three species of carp raised in ponds in Iraq,” Journal of Biological Science Research, vol. 19, no. 2, pp. 369–386, 1988.

F. T. Mhaisen, A. N. Balasem, G. H. Al-Khateeb, S. M. J. Al-Shaikh, J. M. Al-Jawda, and S. M. Haaiawi, “Survey of parasites of three fish farms at Al-Latifiya, south Baghdad,” Marina Mesopotamica, vol. 8, no. 2, pp. 218–224, 1993.

H. T. Hussain, E. H. Hwaidi, H. H. Elewi, and H. M. AbdAli, “Survey of ectoparasitic infections on the common carp Cyprinus carpio in three fish farms at Al-Eskandriya, Babylon province,” Scientific Journal of University of Kerbala, vol. 9, no. 1, pp. 126–131, 2011.

A. L. Al-Rubaie, H. T. Hussain, and K. N. Abdul-Ameer, “The external parasites of the common carp (Cyprinus carpio) in Technical Institute of Al-Mussayab Fish Farm,” Journal of Biology, University, Science, vol. 14, no. 3, pp. 46–50, 2007.

K. R. Asmar, A. N. Balasem, J. M. Al-Jawda, A. J. Hummadi, and T. K. Adday, “Study of the parasitic infections in some fish farms,” Report 7050-PO 152-2001, 2001.

A. A. E. Al-Jubory, Influence of fertilizing the ponds of Cyprinus carpio on the infection with Lernaea cyprinacea (Higher Dipl. thesis), Foundation of Technical Education, Baghdad, Iraq, 2009.

F. H. A. Al-Dulaimi, “Infection with a fish louse Argulus foliaceus L. in a goldfish (Carassius auratus) at earthen pond and aquarium fish in Babylon province, Iraq,” Journal of Babylon University, Pure Science, vol. 18, no. 2, pp. 468–473, 2010.

H. T. Hussain, T. S. Naief, and E. H. Hwaidi, “Comparative study of external parasitic infection in the common carp (Cyprinus carpio) bred in monoculture and polyculture,” Scientific Journal of University of Kerbala, vol. 9, no. 4, pp. 64–71, 2011.

N. M. T. Al-Taie, Study of some of the environmental aspects for a group of the external parasitic animals for common carp Cyprinus carpio L. in cages and pond at Al-Saddah/Babylon province [M. Tech. Thesis], Foundation of Technical Education, Baghdad, Iraq, 2013.

H. M. J. Al-Sardee, Effect of quicklime on common carp infected with Lernaea cyprinacea L. [M. S. Thesis], University of Baghdad, 1992.

S. M. J. Al-Shaikh, “Study of some important and common fish diseases in Iraq and methods of their control and prevention,” in Proceedings of the Joint Symposium of the Arab Union of Fish Producers and Arab Union Councils of Scientific Research, pp. 133–137, Baghdad, Iraq, December 1993.

S. M. J. Al-Shaikh and H. M. J. Al-Sardee, “Gross pathological and histological changes in infection with the anchor worm and its treatment with quicklime,” Al-Tharwa Al-Samukia (Fisheries), vol. 13, pp. 95–97, 1993.

S. M. J. Al-Shaikh, “Pathogenesis and treatment of Monogenea (Dactylogyrus) in fishes,” Veterinaririan, vol. 9, no. 3, pp. 213–217, 1999.

A. L. Al-Rubaie, “Efficiency of propolis on ciliate protozoan parasite Ichthyophthirius multifilis of Cyprinus carpio,” Euphrates Journal of Agriculture Science, vol. 1, no. 3, pp. 54–60, 2009.

M. Kirjusina and K. Vismans, “Checklist of the parasites of fishes of Latvia,” FAO Fisheries Technical Report 369/3, FAO, 2007.

M. N. Bhatti, “A note on the occurrence of costiasis disease in the stinging catfish, Heteropneustes fossilis (Bloch) from Basrah waters,” Arab Gulf, vol. 11, no. 1, p. 216, 1979.

D. W. Duszynski, L. Couch, and S. J. Upton, Coccidia (Eimeridae) of Cypriniformes (Cyprinids), 2015, http://www.k-state.edu/parasitology/worldcoccidia/FISHBIB.

N. M. Ali, N. E. Salih, and K. N. Abdul-Ameer, “Parasitic fauna of some freshwater fishes from Tigris River, Baghdad, Iraq: I. Protozoa,” Journal of Biological Science Research, vol. 18, no. 2, pp. 11–17, 1987.

P. H. Herzog, “Untersuchungen über die parasiten der süßwasserfische des Irak,” Archivar für Fischereiwissenschaften, vol. 20, no. 2-3, pp. 132–147, 1969.

S. O. K. Al-Salmany, Parasitic infection of some fish species from Euphrates River at Al-Quim city, Anbar province [M. S. Thesis], University of Tikrit, 2015.

K. N. Abdul-Ameer, “The first record of the ciliated protozoan Trichodina coddaturum in Iraq on the gills of the common carp Cyprinus carpio,” Ibn Al-Haitham Journal for Pure and Applied Science, vol. 17, no. 3, pp. 1–6, 2004.

M. Shamussuddin, I. A. Nader, and M. J. Al-Azzawi, “Parasites of common fishes from Iraq with special reference to larval form of Contracaecum (Nematoda: Heterochelidae),” Bulletin of the Biological Research Centre, Baghdad, vol. 5, pp. 66–78, 1971.

K. N. Abdul-Ameer, Study of the parasites of freshwater fishes from Tigris River in Salah Al-Dien province, Iraq [M. S. Thesis], University of Baghdad, 1989.

Z. I. Fattoohy, Studies on the parasites of certain teleostean fishes from the River Tigris, Mosul, Iraq [M. S. Thesis], University of Mosul, 1975.
[76] H. M. H. Al-Awadi, F. T. Mhaisen, and F. F. Al-Joborae, "Helmint parasitic fauna of aquatic birds in Bahr Al-Najaf depression, mid Iraq," Bulletin of Iraq Natural History Museum, vol. 11, no. 2, pp. 7–15, 2010.

[77] N. M. Ali, A. R. Al-Jafery, and K. N. Abdul-Ameer, "New records of three digenetic trematodes on some freshwater fishes from Diyala River, Iraq," in Proceedings of the Fourth Scientific Conference, Scientific Research Council, vol. 5, pp. 10–19, 1986.

[78] F. T. Mhaisen and E. S. Abul-Eis, "Parasitic helminths of eight species of aquatic birds in Babylon Fish Farm, Hilla, Iraq," Zoology in the Middle East, vol. 7, pp. 115–120, 1992.

[79] T. I. Al-Alousi, S. M. J. Al-Shaikh, and N. R. Abdul-Rahman, "Incidence of metacercariae of Diplodostomum Nordmann, 1832 in Iraqi freshwater fish," Journal of Veterinary Parasitology, vol. 2, no. 1, p. 75, 1988.

[80] S. M. A. Abdullah, Survey of the parasites of fishes of Dokan Lake [M.S. thesis], University of Salahaddin, 1990.

[81] F. T. Mhaisen, "Worm cataract in freshwater fishes of Iraq," in Proceedings of the Abstracts of the 14th Scientific Conference of the Iraqi Biological Society, Najaf, Iraq, March 1997.

[82] F. T. Mhaisen and E. S. Abul-Eis, "Parasitic fauna of some freshwater fishes from Darbandikhan Lake, north of Iraq," Journal of Dohuk University, vol. 8, no. 1, pp. 29–35, 2005.

[83] A. V. Gussev, "Parasitic metazoans: class Monogenea," in Key to the Parasites of Freshwater Fish, O. N. Bauer, Ed., vol. 2 of Fauna of the USSR, pp. 1–424, Nauka, St. Petersburg, Russia, 1985.

[84] A. A. J. Al-Saadi, "First record of three monogenean parasites species from Iraqi freshwater fishes," Journal of King Abdulaziz University, Marine Sciences, vol. 13, no. 1, pp. 83–94, 2008.

[85] F. T. Mhaisen, A. N. Balasem, G. H. Al-Khateeb, and K. R. Asmar, "Recording of five monogenean trematodes for the first time from fishes of Iraq," in Proceedings of the Abstracts of the 14th Scientific Conference of the Iraqi Biological Society, Najaf, Iraq, March 1997.

[86] F. T. Mhaisen, A. N. Balasem, G. H. Al-Khateeb, and K. R. Asmar, "Recording of five monogenean trematodes for the first time from fishes of Iraq," Bulletin of Iraq Natural History Museum, vol. 10, no. 1, pp. 31–38, 2003.

[87] A. V. Gussev, N. M. Ali, K. N. Abd-Al-Ameer, S. M. Amin, and K. Molnár, "New and known species of Dactylogyrus Diesing, 1850 (Monogenea, Dactylogyridae) from cyprinid fishes of the River Tigris, Iraq." Systematic Parasitology, vol. 25, no. 3, pp. 229–237, 1993.

[88] N. M. Ali, A. R. Al-Jafery, and K. N. Abd-Al-Ameer, "New records of three monogenean trematodes on some freshwater fishes from Diyala River, Iraq," Journal of Biological Science Research, vol. 17, no. 2, pp. 253–266, 1986.

[89] B. A.-H. E. Al-Sa’adi, The parasitic fauna of fishes of Euphrates River: applied study in Al-Musab city [M. Tech. thesis], Foundation of Technical Education, Baghdad, Iraq, 2007.

[90] B. A. Al-Sa’adi, F. T. Mhaisen, and A.-R. L. Al-Rubaie, "The first record of two monogeneans: Dactylogyrus dogielii Gussev, 1953 and Octomacrum europaeum Roman & Bykhovskii, 1956 from fishes of Iraq," Basra Journal of Agriculture Science, vol. 26, no. 1, pp. 1–7, 2013.

[91] N. M. Ali, E. S. Abul-Eis, and K. N. Abdul-Ameer, "On the occurrence of fish parasites raised in mamnade lakes," in Proceedings of the 6th Conference of the European Ichthyologists, Budapest, Hungary, August 1988.

[92] A. N. Balasem, F. T. Mhaisen, K. R. Asmar, J. M. Al-Jawda, and T. K. Adday, "Record of two species of the monogenean trematodes genus Dactylogyrus for the first time in Iraq on gills of the cyprinid fish Alburnus caeruleus," Bulletin of Iraq Natural History Museum, vol. 10, no. 4, pp. 11–16, 2009.

[93] A. A. Sadek, Ectoparasites of the common carp (Cyprinus carpio L.) fingerlings intensively stocked during autumn and winter [M.S. thesis], University of Baghdad, 1999.

[94] N. M. Ali, N. E. Salih, and K. N. Abdul-Ameer, "Parasitic fauna of some freshwater fishes from Tigris River, Baghdad, Iraq: II: Trematoda," Journal of Biological Science Research, vol. 18, no. 2, pp. 19–27, 1987.

[95] A. A. J. Al-Saadi, Ecology and taxonomy of parasites of some fishes and biology of Liza abu from Al-Hasanin creek in Karbala province [Ph.D. thesis], University of Baghdad, 2007.

[96] F. S. Al-Nasiri, "First occurrence of the monogenean trematode Diplozoon nipponicum Goto, 1891 in Iraq from common carp Cyprinus carpio (Pisces)," Iraqi Journal of Agriculture, vol. 8, no. 6, pp. 95–99, 2003.

[97] A.-R. A.-M. Rasheed, "First record of Diplozoon barbi Reichenbach-Klinke, 1951 from some freshwater fishes from Tigris River, Baghdad, Iraq," Dirasat, vol. 2, no. 3, pp. 5–15, 1989.

[98] I. A. Khotenovsky, Monogenea: Suborder Octomacrinea Khotenovsky, vol. 13 of Fauna of the USSR, Nauka, St. Petersburg, Russia, 1985.

[99] K. A. Khalifa, "Occurrence of parasitic infections in Iraqi fish ponds," in Proceedings of the Abstracts of 2nd Scientific Conference, p. 333, Arab Biological Union, Fés, Morocco, March 1982.

[100] K. Molnár, "On the synonyms of Bothriocheneus achellognathi Yamaguti," Parasitologica Hungarica, vol. 10, pp. 61–62, 1977.

[101] Z. I. Al-Hasani, "Occurrence of two known helminthic parasites in two vertebrate hosts collected from Basrah, Iraq," Dirasat, vol. 12, no. 7, p. 25, 1985.

[102] M. K. Mohammad, A. A. Al-Moussawi, and M. K. Jasim, "The parasitic fauna of the moorhen Gallinula chloropus chloropus L. in the Middle of Iraq," Bulletin of Iraq Natural History Museum, vol. 9, no. 4, pp. 41–49, 2002.

[103] A. A. J. Al-Saadi, A survey of alimentary canal helminths of some species of fishes from Tharthar Lake [M.S. thesis], University of Baghdad, 1986.

[104] N. M. Ali, A. R. Al-Jafery, and K. N. Abd-Al-Ameer, "Parasitic fauna of freshwater fishes from Diyala River, Iraq," Journal of Biological Science Research, vol. 18, no. 1, pp. 163–181, 1987.

[105] N. M. Ali, N. E. Salih, and K. N. Abdul-Ameer, "Parasitic fauna of some freshwater fishes from Tigris River, Baghdad, Iraq: IV: Nematoda," Journal of Biological Science Research, vol. 18, no. 3, pp. 35–45, 1987.

[106] F. T. Mhaisen, "Literature review and check lists of acanthocephalans of fishes of Iraq," Al-Mustansiriya Journal of Science, vol. 13, no. 1, pp. 13–25, 2002.

[107] R. S. Al-Sady, Description of a new species of Acanthocephala (Neoechinorhynchus iraqensis) and some ecological aspects of its infection to the mugilid fish Liza abu from Al-Faluja region, Al-Anbar province with observations on the experimental infection [M.S. thesis], University of Baghdad, 2000.

[108] O. M. Amin, R. S. S. Al-Sady, F. T. Mhaisen, and S. F. Bassat, "Neoechinorhynchus iraqensis sp. n. (Acanthocephala: Neoechinorhynchidae) from the freshwater mullet, Liza abu (Heckel), in Iraq," Comparative Parasitology, vol. 68, no. 1, pp. 108–111, 2001.

[109] N. R. Khamees and F. T. Mhaisen, "Two copepod crustaceans as additional species to the parasitic fauna of fishes of Iraq," Basrah Journal of Science, vol. 13, no. 1, pp. 49–56, 1995.
[110] Z. I. F. Rahemo, “Two new species of Ergasilus (Copepoda: Cyclopoida) from the gills of two Iraqi freshwater fishes,” Bulletin of Basrah Natural History Museum, vol. 5, pp. 39–59, 1982.

[111] J.-S. Ho, N. R. Khamees, and F. T. Mhaisen, “Ergasilid copepods (Poecilostomatoida) parasitic on the mullet Liza abu in Iraq, with the description of a new species of Paraergasilus Markovitch, 1937,” Systematic Parasitology, vol. 33, no. 2, pp. 79–87, 1996.

[112] Z. I. F. Rahemo, “Recording of two new hosts of Lamproglena pulchella Nordmann, 1832 (Crustacea: Decapoda) in Iraq,” Iraqi Journal of Biological Sciences, vol. 5, no. 1, pp. 82–83, 1977.

[113] M. I. Al-Hamed and L. Hermiz, “Experiments on the control of anchor worm (Lernaeacypriacea),” Aquaculture, vol. 2, no. 1, pp. 45–51, 1973.