The Super Proton Synchrotron (SPS) covers one of the most interesting regions of the QCD phase diagram ($T - \mu_B$). On the one hand there are indications that the energy threshold for deconfinement is reached already at low SPS energies. On the other hand theoretical calculations locate the QCD critical end-point at energies accessible at the SPS. In this paper the NA49 signatures of the onset of deconfinement are presented. Results are shown on pion production, the kaon to pion ratio, slopes of transverse mass spectra ("temperature"), and event-by-event particle ratio fluctuations versus collision energy, for central $Pb + Pb$ interactions. Next we show possible indications of the critical point in event-by-event mean transverse momentum and multiplicity fluctuations. Finally we discuss the future ion program of the NA61/SHINE experiment (energy scan with light ions).
The NA49 Collaboration:

T. Anticic, B. Baatar, D. Barna, J. Bartke, L. Betev, H. Bialkowska, C. Blume, B. Boimska, D. Barna, J. Bracinik, P. Bunčić, V. Cerny, P. Christakoglou, P. Chung, O. Chvala, J.G. Cramer, P. Csató, P. Dinkelaker, V. Eckardt, Z. Fodor, P. Foka, V. Friese, J. Gál, M. Gaździcki, V. Genchev, E. Gładysz, K. Grebieszkow, S. Hegyi, C. Höhne, K. Kadija, A. Karev, D. Kikola, V.I. Kolesnikov, E. Kornas, R. Korus, M. Kowalski, M. Kreps, A. Laszlo, R. Lacey, M. van Leeuwen, P. Lévi, L. Litov, B. Lungwitz, M. Mackowiak, M. Makariev, A.I. Malakhov, M. Mateev, G.L. Melkumov, A. Mischke, M. Mitrovski, J. Molnár, St. Mrówczyński, V. Nicolic, G. Pália, A.D. Panagiotou, D. Panayotov, A. Petridis, W. Peryt, M. Pikna, J. Pluta, D. Prindle, F. Pühlhofer, R. Renfordt, C. Roland, G. Roland, M. Rybczyński, A. Rybicki, A. Sandoval, N. Schmitz, T. Schnuser, P. Seyboth, F. Siklér, B. Sitar, E. Skrzypczak, M. Slodkowski, G. Stefanek, R. Stock, C. Strabel, H. Ströbele, T. Susa, I. Szentpétery, J. Szilki, M. Szuba, P. Szymanski, V. Trubnikov, M. Utvic, D. Varga, M. Vassiliou, G.I. Veres, G. Vesztergombi, D. Vranić, Z. Włodarczyk, A. Wojtaszek-Szwarc, I.K. Yoo.

1NIKHEF, Amsterdam, Netherlands.
2Department of Physics, University of Athens, Athens, Greece.
3Comenius University, Bratislava, Slovakia.
4KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
5MIT, Cambridge, USA.
6Institute of Nuclear Physics, Cracow, Poland.
7Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany.
8Joint Institute for Nuclear Research, Dubna, Russia.
9Fachbereich Physik der Universität, Frankfurt, Germany.
10CERN, Geneva, Switzerland.
11Institute of Physics, Jan Kochanowski University, Kielce, Poland.
12Fachbereich Physik der Universität, Marburg, Germany.
13Max-Planck-Institut für Physik, Munich, Germany.
14Institute of Particle and Nuclear Physics, Charles University, Prague, Czech Republic.
15Department of Physics, Pusan National University, Pusan, Republic of Korea.
16Nuclear Physics Laboratory, University of Washington, Seattle, WA, USA.
17Atomic Physics Department, Sofia University St. Kliment Ohridski, Sofia, Bulgaria.
18Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria.
The NA61/SHINE Collaboration:

N. Abgrall22, A. Aduszkiewicz23, B. Andrieu11, T. Anticic13, N. Antoniou18, J. Argyriades22, A. G. Asryan15, B. Baatar9, A. Blondel22, J. Blumer5, M. Bogus24, L. Boldizsar10, A. Bravar22, J. Brzychczyk8, A. Bubak12, S. A. Bunyatov9, T. Cetner24, K.-U. Choi12, P. Christakoglou18, P. Chung16, J. Cleymans1, N. Davis18, D. A. Derkach15, F. Diakonos18, W. Dominik23, J. Dumarchez11, R. Engel5, A. Ereditato20, G. A. Feofilov15, Z. Fodor10, A. Ferrero22, M. Ga´ zdzicki21, M. Golubeva6, K. Grebieszkow24, A. Grzeszczuk12, F. Guber6, T. Hasegawa7, A. Haungs5, S. Igolkin15, A. S. Ivanov15, A. Ivashkin6, K. Kadilja13, A. Kapoyannis18, N. Katrynska8, D. Kielczewska23, D. Kikola24, M. Kirejczyk23, J. Kisiel12, T. Kobayashi7, V. I. Kolesnikov9, D. Kolev4, R. S. Kolevatov15, V. P. Kondratiev15, S. Kowalski12, A. Kurepin6, R. Lacey16, A. Laszlo10, V. V. Lyubushkin9, M. Mackowiak24, Z. Majka8, A. I. Malakhov9, A. Marchioni2, A. Marcinek8, I. Maris5, T. Matulewicz23, V. Matveev6, G. L. Melkumov9, A. Meregaglia2, M. Messina20, P. Mijakowski14, M. Mitrovski21, T. Montaruli18, St. Mrówczyński17, S. Murphy22, T. Nakadaira7, P. A. Naumenko15, V. Nikolic13, K. Nishikawa7, T. Palczewski14, G. Palla10, A. D. Panagiotou18, W. Pery24, R. Planeta8, J. Pluta24, B. A. Popov9, M. Posiadala23, P. Przewlocki14, W. Rauch3, M. Ravonel22, R. Renfordt21, A. Robert11, D. Röhrich19, E. Rondio14, B. Rossi20, M. Roth5, A. Rubbia2, M. Rybczynski17, A. Sadovsky6, K. Sakashita7, T. Schuster21, T. Sekiguchi7, P. Seyboth17, M. Shibata7, A. N. Sissakin9, E. Skrzypczak23, M. Slodkowski24, A. S. Sorin9, P. Staszek8, G. Stefanek17, J. Stepaniak14, C. Strabel2, H. Stroebele21, T. Susa13, I. Szentpetery10, M. Szuba24, M. Tada7, A. Taranenko16, R. Tsenov4, R. Ulrich5, M. Unger5, M. Vassiliou18, V. V. Vechernin15, G. Vesztergombi10, Z. Wlodarczyk17, A. Wojtaszek17, W. Zipper12

1Department of Chemistry, Stony Brook Univ. (SUNYSB), Stony Brook, USA.
2Institute for Nuclear Studies, Warsaw, Poland.
3Institute for Experimental Physics, University of Warsaw, Warsaw, Poland.
4Faculty of Physics, Warsaw University of Technology, Warsaw, Poland.
5Rudjer Boskovic Institute, Zagreb, Croatia.
∗deceased

The NA61/SHINE Collaboration:

N. Abgrall22, A. Aduszkiewicz23, B. Andrieu11, T. Anticic13, N. Antoniou18, J. Argyriades22, A. G. Asryan15, B. Baatar9, A. Blondel22, J. Blumer5, M. Bogus24, L. Boldizsar10, A. Bravar22, J. Brzychczyk8, A. Bubak12, S. A. Bunyatov9, T. Cetner24, K.-U. Choi12, P. Christakoglou18, P. Chung16, J. Cleymans1, N. Davis18, D. A. Derkach15, F. Diakonos18, W. Dominik23, J. Dumarchez11, R. Engel5, A. Ereditato20, G. A. Feofilov15, Z. Fodor10, A. Ferrero22, M. Ga´ zdzicki21, M. Golubeva6, K. Grebieszkow24, A. Grzeszczuk12, F. Guber6, T. Hasegawa7, A. Haungs5, S. Igolkin15, A. S. Ivanov15, A. Ivashkin6, K. Kadilja13, A. Kapoyannis18, N. Katrynska8, D. Kielczewska23, D. Kikola24, M. Kirejczyk23, J. Kisiel12, T. Kobayashi7, V. I. Kolesnikov9, D. Kolev4, R. S. Kolevatov15, V. P. Kondratiev15, S. Kowalski12, A. Kurepin6, R. Lacey16, A. Laszlo10, V. V. Lyubushkin9, M. Mackowiak24, Z. Majka8, A. I. Malakhov9, A. Marchioni2, A. Marcinek8, I. Maris5, T. Matulewicz23, V. Matveev6, G. L. Melkumov9, A. Meregaglia2, M. Messina20, P. Mijakowski14, M. Mitrovski21, T. Montaruli18, St. Mrówczyński17, S. Murphy22, T. Nakadaira7, P. A. Naumenko15, V. Nikolic13, K. Nishikawa7, T. Palczewski14, G. Palla10, A. D. Panagiotou18, W. Pery24, R. Planeta8, J. Pluta24, B. A. Popov9, M. Posiadala23, P. Przewlocki14, W. Rauch3, M. Ravonel22, R. Renfordt21, A. Robert11, D. Röhrich19, E. Rondio14, B. Rossi20, M. Roth5, A. Rubbia2, M. Rybczynski17, A. Sadovsky6, K. Sakashita7, T. Schuster21, T. Sekiguchi7, P. Seyboth17, M. Shibata7, A. N. Sissakin9, E. Skrzypczak23, M. Slodkowski24, A. S. Sorin9, P. Staszek8, G. Stefanek17, J. Stepaniak14, C. Strabel2, H. Stroebele21, T. Susa13, I. Szentpetery10, M. Szuba24, M. Tada7, A. Taranenko16, R. Tsenov4, R. Ulrich5, M. Unger5, M. Vassiliou18, V. V. Vechernin15, G. Vesztergombi10, Z. Wlodarczyk17, A. Wojtaszek17, W. Zipper12

1Cape Town University, Cape Town, South Africa
2ETH, Zurich, Switzerland
3Fachhochschule Frankfurt, Frankfurt, Germany
4Faculty of Physics, University of Sofia, Sofia, Bulgaria
5Forschungszentrum Karlsruhe, Karlsruhe, Germany
6Institute for Nuclear Research, Moscow, Russia
1. Introduction

It is a well established fact that matter exists in different states. For strongly interacting matter at least three are expected: normal nuclear matter (liquid), hadron gas (HG), and a system of deconfined quarks and gluons (eventually the quark-gluon plasma). One of the most important goals of high-energy heavy-ion collisions is to establish the phase diagram of strongly interacting matter by finding the possible phase boundaries and critical points. In principle, we want to produce the quark-gluon plasma (QGP) and analyze its properties and the transition between QGP and HG.

The phase diagram of strongly interacting matter (Fig. 1) is most often presented in terms of temperature T and baryochemical potential μ_B. It is believed that for large values of μ_B the phase transition is of the first order (gray band) and for low μ_B values a rapid but continuous transition (crossover). A critical point of second order (CP) separates those two regions. The open points in Fig. 1 are hypothetical locations reached by the high-density matter droplet after dissipation of the energy of the incident nucleons from where the evolution of the expanding and cooling fireball starts. The closed symbols are chemical freezout points [1] (chemical composition fixed, the end of inelastic interactions). The fireball then expands further until thermal (kinetic) freeze-out takes place (particle momenta are fixed).
The Super Proton Synchrotron (SPS) covers one of the most interesting regions of the QCD phase diagram \((T - \mu_B)\). On the one hand it is expected that the energy threshold for deconfinement is reached already at low SPS energies (see the open point hitting the transition line in Fig. 1). On the other hand lattice QCD calculations locate the critical point of strongly interacting matter in the SPS energy range [2].

2. NA49 experiment

NA49 [3], operating in 1994-2002, was one of the fixed target heavy-ion experiments at the CERN SPS. The main components of the detector were four large volume time projection chambers (TPC). The Vertex TPCs (VTPC-1 and VTPC-2), were located in the magnetic field of two superconducting dipole magnets. Two other TPCs (MTPC-L and MTPC-R) were positioned downstream of the magnets symmetrically to the beam line. The NA49 TPCs allowed precise measurements of particle momenta \(p\) with a resolution of \(\sigma(p)/p^2 \approx (0.3 - 7) \cdot 10^{-4} \text{ (GeV/c)}^{-1}\). A precise measurement of specific energy loss \((dE/dx)\) in the region of relativistic rise was possible in the TPCs. Time of Flight (TOF) walls supplemented particle identification close to mid-rapidity. The typical \(dE/dx\) resolution was \(\sigma(dE/dx)/(dE/dx) \approx 0.04\), the typical ToF resolution \(\sigma(ToF) \approx 60\) ps, and invariant mass resolution (for identification of particles via decay topology) was \(\sigma(m_{inv}) \approx 5\) MeV. The centrality of nuclear collisions was selected via measurement of the energy of the projectile spectator nucleons in the Forward Calorimeter. The NA49 acceptance covers the forward hemisphere, but because of the symmetry of nucleus+nucleus \((A + A)\) collisions this nevertheless allows to extract \(4\pi\) integrated multiplicities.

3. NA49 evidence for the Onset of Deconfinement

3.1. Kink, horn, step and SMES

In 2002 the NA49 experiment completed the SPS energy scan of central \(Pb + Pb\) collisions. This program was originally motivated by predictions...
of the Statistical Model of the Early Stage (SMES) [4] assuming that the energy threshold for deconfinement (the lowest energy sufficient to create a partonic system) is located at low SPS energies. Several structures were expected within SMES: the kink in pion production (due to increased entropy production), the horn in the strangeness to entropy ratio, and the step in the inverse slope parameter of transverse momentum spectra (constant temperature and pressure in a mixed phase).

Figure [2] shows production of charged pions (the total entropy is carried mainly by pions \(\langle \pi \rangle = 1.5(\langle \pi^+ \rangle + \langle \pi^- \rangle) \)) normalized to the number of wounded nucleons versus Fermi variable \(F (F \approx (s_{NN})^{1/4}) \).

In SMES, this ratio is proportional to the effective number of degrees of freedom (\(NDF \)) to the power of 1/4. For central \(A + A \) collisions (\(Pb + Pb \) for SPS or \(Au + Au \) for AGS and RHIC) a change of slope around 30A GeV is visible (slope in \(A + A \) increases from \(\approx 1 \) (AGS) to \(\approx 1.3 \) (top SPS+RHIC) - consistent with increase by a factor of 3 in \(NDF \)). Such an increase is not observed for \(p + p(\bar{p}) \) reactions. The increase in \(NDF \), when going from hadron gas to QGP, may be interpreted as a consequence of the activation of partonic degrees of freedom.

Figure [3] (left) presents the \(\langle K^+ \rangle/\langle \pi^+ \rangle \) ratio in full phase space (4\(\pi \)) versus energy. In SMES, the ratio is proportional to strangeness/entropy densities. Results for \(A + A \) are very different from the results for \(p + p \) and show a sharp peak in \(\langle K^+ \rangle/\langle \pi^+ \rangle \) at 30A GeV. This peak is even more pronounced at mid-rapidity (see [4]). Recently, these intriguing NA49 results on pion and kaon yields (at mid-rapidity) were confirmed at \(\sqrt{s_{NN}} = 9.2 \text{ GeV} \) and 19.6 GeV by the STAR experiment [6]. The string hadronic models (curves in Fig. 3 (left)) do not reproduce the data. The hadron gas model (HGM) [7] using a parameterization of the energy dependence \(T_{ch} \) and \(\mu_B \) based on fits to hadron yields produces a broad maximum in the \(\langle K^+ \rangle/\langle \pi^+ \rangle \) ratio as a consequence of saturating \(T_{ch} \) and decreasing \(\mu_B \) with

1 In SMES the total entropy and the total strangeness are the same before and after hadronization (the entropy cannot decrease during the transition from QGP to hadron gas), therefore pions measure the early stage entropy.
increasing energy (limiting temperature reached somewhere at the SPS). However, this version of the model overestimates the relative kaon yields from 30A GeV on. The latest extension of the HGM [8] yields and improves fit of the energy dependence $\langle K^+ \rangle / \langle \pi^+ \rangle$ by inclusion of controversial σ state and unmeasured resonances above 3 GeV in the model hadron spectrum (see conference slides or [8]).

The measure which much better reflects the total strangeness to entropy ratio in the SPS energy range is $E_s = (\langle K \rangle + \langle \Lambda \rangle) / \langle \pi \rangle$, proposed in Ref. [4], and calculated from $\pi, K,$ and Λ yields in 4π acceptance. The E_s ratio can be directly and quantitatively compared to SMES predictions. Figure 3 (right) shows a distinct peak in E_s at 30A GeV. This behavior is described (predicted) only by the model assuming a phase transition (i.e. SMES), where the maximum, called 'horn', is the result of the decrease of strangeness carrier masses in the QGP ($m_s < m_{\Lambda,K,...}$) and the change in the number of degrees of freedom when reaching the deconfined state.

Figure 4 presents inverse slope parameters (T) of transverse mass spectra of positively and negatively charged kaons. For $A + A$ data one can see a strong rise at AGS, plateau at SPS, and rise towards RHIC energies. Such structure is not observed for $p+p$ collisions. The plateau is consistent with constant temperature and pressure in the mixed phase (latent heat) [10]. In fact, this structure strongly resembles the behavior of water, where a plateau can be observed in the temperature when heat is added. Models without phase transition do not reproduce the $A + A$ data, but a hydrodynamical model incorporating a deconfinement phase transition at SPS.
energies [11] describes the results in Fig. 4 quite well. The step-like feature is also present in the energy dependence of $m_T - m$ of protons and pions (see conference slides or [5]).

Fig. 4. Energy dependence of the inverse slope parameter T of the transverse mass spectra of K^+ and K^- mesons [5].

3.2. Event-by-event particle ratio fluctuations

Hadron ratios characterize the chemical composition of the fireball and are not affected by hadronic re-interaction when looking at conserved quantities such as baryon number, strangeness. We expect a change of particle (e.g. strangeness) production properties close to the phase transition. In principle, two distinct event classes (with/without QGP) or the mixed phase (coexistence region of hadronic and partonic matter for 1st order phase transition) may be reflected in larger event-by-event fluctuations.

The NA49 experiment used σ_{dyn} [12] to quantify event-by-event particle ratio fluctuations. σ_{dyn} measures the difference between widths of particle ratio distributions for data and for artificially produced mixed events, where only statistical fluctuations are present. Figure 5 (left) shows that the dynamical fluctuations in the K/π ratio are positive. One observes a steep rise towards low SPS energies but no significant change from top SPS to RHIC energies. The rise towards low energies is not reproduced by the UrQMD transport model (there is no significant acceptance dependence). The HSD transport model catches the trend but overpredicts the data at high SPS energies. Dynamical fluctuations of the K/p ratio (Fig. 5 (right)) exhibit two sign changes: a positive plateau at RHIC energies changes to a negative plateau at higher SPS energies, followed by a jump to positive value at the lowest SPS energy (20A GeV). High energy SPS and RHIC data are reproduced by the UrQMD model, however the jump at 20A GeV is not
described (this jump between SPS and RHIC is not due to acceptance). The values of dynamical event-by-event fluctuations of the p/π ratio (see conference slides or [12]) are negative (both at SPS and at RHIC energies) and can be reproduced by the UrQMD model (understood in terms of baryon resonance decays) in the SPS energy range.

![Fig. 5. Energy dependence of dynamical K/π (left) and K/p (right) fluctuations for 3.5% most central Pb+Pb (NA49) and for Au+Au interactions (STAR) [12].](image)

4. NA49 indications for the Critical Point

Lattice QCD calculations locate the QCD critical point at energies accessible at the CERN SPS [2]. In ”normal” liquids (including water) the critical point can be rather easily detected via the critical opalescence phenomenon (scattering of light on critical long wavelength density fluctuations). Over the past years several experimental observables were proposed to look for the CP in heavy ion collisions. Among them are fluctuations of mean transverse momentum and multiplicity [13], pion pair (sigma mode) intermittency, elliptic flow of baryons and mesons, and transverse mass spectra of baryons and anti-baryons [14]. One should also note that for strongly interacting matter the maximum effect of the CP is expected when the freeze-out happens near

![Fig. 6. Chemical freeze-out points in NA49 (squares) and those expected in NA61 (circles). See the text for details.](image)
the critical point.

The position of the chemical freeze-out point in the \((T - \mu_B)\) diagram can be varied by changing the energy and the size of the colliding system as presented in Fig. 6. Therefore we analyzed in NA49 the energy dependence of the proposed CP sensitive observables for central \(Pb + Pb\) collisions (beam energies 20\(A\)-158\(A\) GeV), and their system size dependence \((p + p, C + C, Si + Si, and ~Pb + Pb)\) at the highest SPS energy. Figure 6 shows \(CP_1\) and \(CP_2\) that were considered in NA49 as possible locations of the critical point: \(CP_1\) with \(\mu_B\) from lattice QCD calculations [2] and \(T\) on the empirical freeze-out line; \(CP_2\) as the chemical freeze-out point of \(p + p\) reactions at 158\(A\) GeV (assuming that this freeze-out point may be located on the phase transition line).

4.1. Average \(p_T\) and multiplicity fluctuations

At the critical point enlarged fluctuations of multiplicity and mean transverse momentum are expected [13]. In NA49 we used the \(\Phi_{p_T}\) fluctuation measure [15,16] and the scaled variance \(\omega\) of multiplicity distribution [17,18] to study \(p_T\) and \(N\) fluctuations, respectively. For a system of independently emitted particles (no inter-particle correlations) \(\Phi_{p_T}\) is equal to zero. For a Poisson multiplicity distribution \(\omega\) equals 1. If \(A + A\) reactions are a superposition of independent \(N + N\) collisions then \(\Phi_{p_T}(A + A) = \Phi_{p_T}(N + N)\), whereas \(\omega(A + A) = \omega(N + N) + \langle n \rangle \omega_{part}\), where \(\langle n \rangle\) is the mean multiplicity of hadrons from a single \(N + N\) collisions and \(\omega_{part}\) represents fluctuations in \(N_{part}\). The above equations suggest that while \(\Phi_{p_T}\) is independent of \(N_{part}\) fluctuations, \(\omega\) is strongly dependent on them. In the NA49 fixed target experiment \(N_{proj}\) can be fixed (spectator energy measured by the Forward Calorimeter), whereas \(N_{targ}\) cannot be measured. It was shown [19] that fluctuations of \(N_{proj}\) can be suppressed only by selection of very central collisions. Therefore multiplicity fluctuations are presented \((\omega)\) for very central (1\%) collisions.

Figures 7, 8, 9, and 10 present energy \((\mu_B)\) dependence and system size \((T_{chem})\) dependence of \(\Phi_{p_T}\) and \(\omega\). The chemical freeze-out parameters, \(T_{chem}(A, \sqrt{s_{NN}})\) and \(\mu_B(A, \sqrt{s_{NN}})\) were taken from fits with the hadron gas model [1] to particle yields. The lines correspond to predictions for \(CP_1\) and \(CP_2\) (Fig. 6) with estimated magnitude of the effects for \(\Phi_{p_T}\) and \(\omega\) at \(CP_1\) and \(CP_2\) taken from Ref. [13,21] assuming correlation lengths \(\xi\) decreasing monotonically with decreasing system size: a) \(\xi(Pb+Pb) = 6\) fm and \(\xi(p+p) = 2\) fm (dashed lines) or b) \(\xi(Pb+Pb) = 3\) fm and \(\xi(p+p) = 1\) fm (solid lines). The expected magnitudes include NA49 corrections.

3 All \(\Phi_{p_T}\) and \(\omega\) values presented here are obtained in the forward-rapidity region and in a limited azimuthal angle acceptance (see corresponding papers for details).
due to limited rapidity range (forward-rapidity) and limited azimuthal angle acceptance. The width of the enhancement in the \((T, \mu_B)\) plane due to the CP is based on Ref. \[22\] and taken as \(\sigma(\mu_B) \approx 30\) MeV and \(\sigma(T) \approx 10\) MeV.

Fig. 7. Energy dependence of \(\Phi_{pT}\) for 7.2% most central \(Pb + Pb\) collisions \[16\]. Lines correspond to \(CP_1\) predictions (see text); their base-lines are the mean \(\Phi_{pT}\) values for 5 energies.

Fig. 8. Energy dependence of \(\omega\) for 1% most central \(Pb + Pb\) collisions \[18\]. Lines correspond to \(CP_1\) predictions (see text); their base-lines are the mean \(\omega\) values for 5 energies.

Figures 7 and 8 show no significant energy dependence of \(p_T\) and multiplicity fluctuations at SPS energies. Thus the results do not provide evidence for critical point fluctuations, but a narrower \(\mu_B\) scan would be desirable. Figures 9 and 10 present the system size dependence and show a maximum of \(\Phi_{pT}\) and \(\omega\) for \(C + C\) and \(Si + Si\) interactions at the top SPS energy. The peak is two times higher for all charged than for negatively charged particles as expected for the critical point \[13\]. Both figures suggest that the NA49 data are consistent with the \(CP_2\) predictions.
It was expected that fluctuations due to the CP originate mainly from low p_T pions [13]. Therefore, in the NA49 analysis of Φ_{p_T} the standard p_T range (0.005 < p_T < 1.5 GeV/c) was divided into two separate p_T regions: 0.5 < p_T < 1.5 GeV/c and 0.005 < p_T < 0.5 GeV/c. Indeed, the high p_T region shows fluctuations consistent with zero (see conference slides or Ref. [23]) and correlations are observed predominantly at low p_T (Fig. 11). However, in the low p_T region, data do not show a maximum, but a continuous rise towards $Pb + Pb$ collisions. The origin of this behavior is currently being analyzed (short range correlations are considered).
5. Summary of NA49 results and NA61/SHINE project

The NA49 experiment obtained numerous interesting results related to both the onset of deconfinement and to the critical point. Indications for the onset of deconfinement are seen in the energy dependence of the pion yield per wounded nucleon N_W (kink), of the $\langle K^+ \rangle / \langle \pi^+ \rangle$ ratio and E_s (horn), and of the mean transverse mass or inverse slope parameters of m_T spectra (step) in central $Pb + Pb$ collisions at lower SPS energies ($30A$ GeV). The results are not reproduced by hadron-string models (RQMD, UrQMD, HSD). Extension of the HGM fits the trend of the $\langle K^+ \rangle / \langle \pi^+ \rangle$ ratio but relies on unmeasured hadronic states and educated-guess assumptions on the branching ratios. Also the energy dependence of event-by-event hadron ratio fluctuations shows interesting effects in the lower SPS energy range (increase of $\sigma_{\text{dyn}}(K/\pi)$ and sign change of $\sigma_{\text{dyn}}(K/p)$), but their relation to the onset of deconfinement is not clear. Other (not shown) observables were examined for signatures of the onset of deconfinement: a minimum of sound velocity at low SPS energies as expected for a 1$^{\text{st}}$ order phase transition [24], azimuthal correlations and disappearance of near-side correlations [25]. An additional energy and system-size scan is important to search for the onset of deconfinement in collisions of light nuclei. This is the purpose of the NA61/SHINE experiment [26] at the CERN SPS.

NA49 also searched for indications of the critical point. There are no indications of the CP in the energy dependence of multiplicity and mean p_T fluctuations in central $Pb + Pb$ collisions. Other (not shown) observables were studied: ratios of the anti-baryon/baryon transverse mass spectra and elliptic flow v_2. Neither shows indications of CP [14]. However, the system size dependence of mean p_T and multiplicity fluctuations at $158A$ GeV shows a maximum in the complete p_T range (consistent with CP_2 predictions) and an increase from $p + p$ up to $Pb + Pb$ collisions in the low p_T region. The low p_T region will be carefully analyzed for the effects of short range correlations.
on Φ_{p_T} and ω. A detailed energy and system-size scan is necessary to establish the existence of the critical point. Therefore, the CP search will be continued by the NA61/SHINE experiment.

The NA61/SHINE experiment (Fig. 12) is the successor of NA49. The main detector components are inherited from NA49. Several upgrades were already completed or are planned in the future: a) in 2007 a forward ToF wall was constructed to extend ToF acceptance for particles with $p < 3$ GeV/c, b) in 2008 the TPC read-out and Data Acquisition system were upgraded to increase the event recording rate by a factor of ≈ 10, c) in 2011 the NA49 Forward Calorimeter will be replaced by the Projectile Spectator Detector (PSD) with a five times better resolution. This excellent resolution (about one nucleon in the studied energy range) is crucial especially for the analysis of multiplicity fluctuations.

In the NA61/SHINE experiment hadron production in $p + p$, $p + A$, $h + A$, and $A + A$ reactions at various energies will be analyzed. A broad experimental program is planned: search for the critical point, study of the properties of the onset of deconfinement, high p_T physics (energy dependence of the nuclear modification factor), and analysis of hadron spectra for the T2K neutrino experiment and for the Pierre Auger Observatory and KASCADE cosmic-ray experiments. Within the NA61/SHINE ion program we plan, for the first time in history, to perform a 2D scan with system size and energy. The future data on $p + p$ (2009-2010; data taking in progress), $^{11}B + ^{12}C$ (2010-2013), $^{40}Ar + ^{40}Ca$ (2012), and $^{129}Xe + ^{139}La$ (2014) will allow to cover a broad range of the phase diagram (see Fig. 6). With these data we will be able to:

4) SHINE – SPS Heavy Ion and Neutrino Experiment
1. Study the properties of the onset of deconfinement. In principle one can search for the onset of the 'horn', 'kink', 'step' in collisions of light nuclei (the structures observed for \(Pb + Pb/Au + Au \) should vanish with decreasing system size)

2. Search for the critical point. An increase of the critical point signal, the so-called hill of fluctuations, is expected for systems freezing-out near the critical point. Therefore non-monotonic dependence of the CP signal on control parameters (energy, centrality, ion size) can help to locate the critical point.

The NA61 program will be complemented by the efforts of other international and national laboratories, BNL RHIC (5 < \(\sqrt{s_{NN}} \) < 39 GeV), JINR NICA (3 < \(\sqrt{s_{NN}} \) < 9 GeV), GSI SIS-100(300) (2.3 < \(\sqrt{s_{NN}} \) < 8.5 GeV) and by the heavy ion program at the CERN LHC (\(\sqrt{s_{NN}} = 5500 \) GeV and \(\sqrt{s} = 14000 \) GeV for \(p+p \)).

Acknowledgements (NA49): This work was supported by the US Department of Energy Grant DE-FG03-97ER41020/A000, the Bundesministerium fur Bildung und Forschung, Germany, the Virtual Institute VI-146 of Helmholtz Gemeinschaft, Germany, the Polish Ministry of Science and Higher Education (1 P03B 006 30, 1 P03B 127 30, 0297/B/H03/2007/33, N N202 078735), the Hungarian Scientific Research Foundation (T032648, T032293, T043514), the Hungarian National Science Foundation, OTKA, (F034707), the Korea Research Foundation (KRF-2007-313-C00175), the Bulgarian National Science Fund (Ph-09/05), the Croatian Ministry of Science, Education and Sport (Project 098-0982887-2878) and Stichting FOM, the Netherlands.

Acknowledgements (NA61/SHINE): This work was supported by the Hungarian Scientific Research Fund (OTKA 68506), the Polish Ministry of Science and Higher Education (N N202 3956 33), the Federal Agency of Education of the Ministry of Education and Science of the Russian Federation (grant RNP 2.2.2.1547) and the Russian Foundation for Basic Research (grants 08-02-00018 and 09-02-00664), the Ministry of Education, Culture, Sports, Science and Technology, Japan, Grant-in-Aid for Scientific Research (18071005, 19034011, 19740162), Swiss Nationalfonds Foundation 200020-117913/1 and ETH Research Grant TH-01 07-3.

Katarzyna Grebieszkow would like to thank the organizers of XXXI Mazurian Conference on Physics for inviting her and giving the opportunity to present the NA49 results and the NA61/SHINE plans.
REFERENCES

[1] F. Beccatini, J. Manninen, M. Gazdzicki, \textit{Phys. Rev.} \textbf{C73} (2006) 044905.
[2] Z. Fodor and S. D. Katz, \textit{JHEP} \textbf{0404} (2004) 050.
[3] S. Afanasiev et al. (NA49 Collab.), \textit{Nucl. Instrum. Meth.} \textbf{A430} (1999) 210.
[4] M. Gazdzicki, M. Gorenstein, \textit{Acta Phys. Polon.} \textbf{B30} (1999) 2705.
[5] C. Alt et al. (NA49 Collab.), \textit{Phys. Rev.} \textbf{C77} (2008) 024903.
[6] L. Kumar et al. (STAR Collab.), \textit{arXiv:0812.4099}.
[7] A. Andronic, P. Braun-Munzinger, J. Stachel, \textit{Nucl. Phys.} \textbf{A772} (2006) 167.
[8] A. Andronic, P. Braun-Munzinger, J. Stachel, \textit{Acta Phys. Polon.} \textbf{B40} (2009) 1005.
[9] C. Amsler et al. (Particle Data Group), \textit{Phys. Lett.} \textbf{B667} (2008) 1.
[10] M. Gorenstein et al., \textit{Phys. Lett.} \textbf{B567} (2003) 175.
[11] Y. Hama et al., \textit{Braz. J. Phys.} \textbf{34} (2004) 322.
[12] T. Schuster et al. (NA49 Collab.), \textit{PoS} \textbf{CPOD2009} (2009) 029, and references therein.
[13] M. Stephanov, K. Rajagopal, E. V. Shuryak, \textit{Phys. Rev.} \textbf{D60} (1999) 114028.
[14] K. Grebieszkow et al. (NA49 Collab.), \textit{arXiv:0907.4101} and references therein.
[15] T. Anticic et al. (NA49 Collab.), \textit{Phys. Rev.} \textbf{C70} (2004) 034902.
[16] T. Anticic et al. (NA49 Collab.), \textit{Phys. Rev.} \textbf{C79} (2009) 044904.
[17] C. Alt et al. (NA49 Collab.), \textit{Phys. Rev.} \textbf{C75} (2007) 064904.
[18] C. Alt et al. (NA49 Collab.), \textit{Phys. Rev.} \textbf{C78} (2008), 034914.
[19] V. Konchakovski et al., \textit{Phys. Rev.} \textbf{C73} (2006) 034902, and priv. comm.
[20] B. Lungwitz, PhD thesis (2008), \url{https://edms.cern.ch/document/989055/1}
[21] M. Stephanov, private communication.
[22] Y. Hatta, T. Ikeda, \textit{Phys. Rev.} \textbf{D67} (2003) 014028.
[23] K. Grebieszkow et al. (NA49 and NA61 Collab.), \textit{arXiv}0909.0485.
[24] V. Friese et al. (NA49 Collab.), \textit{arXiv:0908.2720}
[25] M. Szuba et al. (NA49 Collab.), \textit{arXiv:0907.4403}
[26] \url{https://na61.web.cern.ch/na61/xc/index.html}