Supplementary Note 1

SQUEEZE results for these two compounds are as follows:\(^1\)

(1) \textbf{Dy}_{30}

\begin{verbatim}
loop_
 _platon_squeeze_void_nr
 _platon_squeeze_void_average_x
 _platon_squeeze_void_average_y
 _platon_squeeze_void_average_z
 _platon_squeeze_void_volume
 _platon_squeeze_void_count_electrons
 _platon_squeeze_void_content

	x	y	z	nr	electrons
1	0.000	0.000	-0.001	25717	2394"
2	0.612	0.144	0.179	15	3"
3	0.532	0.144	0.679	15	3"
4	0.478	0.198	0.093	13	3"
5	0.720	0.198	0.593	13	3"
6	0.801	0.280	0.093	13	3"
7	0.478	0.280	0.593	13	3"
8	0.667	0.333	0.135	51	6"
9	0.667	0.333	0.635	51	6"
10	0.532	0.388	0.179	15	3"
11	0.856	0.388	0.679	15	3"
12	0.856	0.468	0.179	15	3"
13	0.612	0.468	0.679	15	3"
14	0.198	0.478	0.407	13	3"
15	0.280	0.478	0.907	13	3"
16	0.720	0.522	0.093	13	3"
17	0.801	0.522	0.593	13	3"
18	0.388	0.532	0.321	15	3"
19	0.144	0.532	0.821	15	3"
20	0.144	0.612	0.321	15	3"
21	0.468	0.612	0.821	15	3"
22	0.333	0.667	0.365	51	6"
23	0.333	0.667	0.865	51	6"
24	0.522	0.720	0.407	13	3"
25	0.198	0.720	0.907	13	3"
26	0.280	0.801	0.407	13	3"
\end{verbatim}
That is, SQUEEZE gives 2490 electrons/unit cell for the voids, and each formula unit has 2490/4 = 622 electrons (since Z = 4). It is well known that 1 H₂O molecule contains 10 electrons, 1 CH₃CN molecule contains 22 electrons, and a CH₃OH molecule contains 18 electrons. Further combined with elemental analysis and thermogravimetric analysis results (Figure S2a), the molecular formula of Dy₃₀ is calculated to be [Dy₃₀(H₂L¹)₁₂(OAc)₃₀(OH)₄(H₂O)₁₂]·2OH·10H₂O·12CH₃OH·13CH₃CN.

(2) Dy₆₀

Supplementary Figure 1 Synthetic route of H₆L¹.
Supplementary Figure 2 Synthesis of the cage-shaped clusters Dy$_{30}$ and Dy$_{60}$. Under Bu$_4$NOH conditions, Dy$_{60}$ is finally obtained; under LiOH conditions, Dy$_{30}$ is finally obtained.

Supplementary Figure 3 a) The bond distances of Dy⋯Dy in Dy$_{60}$ core; b) the coordination mode for Dy$_{60}$; c) the bond distances of Dy⋯Dy in Dy$_{30}$ core.
Supplementary Figure 4 Structural figure of Dy₆₀ with probability ellipsoids.

Supplementary Figure 5 Structural figure of Dy₃₀ with probability ellipsoids.
Supplementary Note 2

Thermal analysis. TG data were collected on a Labsys evo TG thermal analyzer under a purge gas of dry nitrogen flowing at 20 mL·min⁻¹ and with a heating rate of 5 °C·min⁻¹ in the temperature region of 35–1000 °C. Dy₃₀ and Dy₆₀ showed remarkable weight loss as the temperature increased from ambient temperature (Supplementary Figure 6). The weight loss of Dy₃₀ at 35-80 °C underwent a slow weight loss of 12.03% (calcd 8.53%), which corresponds to the release of thirteen free acetonitrile molecules, twelve free methanol molecules and twelve free water molecules (two waters were from two free hydroxide ion). The second weight loss of 13.78% (calcd 13.54%) in the temperature range of 340–577 °C which could be attributed to the elimination of thirty-six CH₃CO (coming from coordinated acetate radical) and fourteen waters (rooting in twelve coordinated waters and four coordinated hydroxide ion). And the skeleton of Dy₃₀ began to collapse at 340 °C. The weight loss of Dy₆₀ (4.93%; calcd 2.36%) occurred at 35–63 °C, which corresponds to the loss of six free water molecules, seven free acetonitrile molecules and six free methanol molecules. The skeleton of Dy₆₀ began to collapse at temperatures beyond 164 °C.

![Supplementary Figure 6](image)

Supplementary Figure 6 The TG curves of Dy₃₀ (a) and Dy₆₀ (b) under heating in flowing N₂ at 5 °C·min⁻¹ over the temperature range of 35-1000 °C.

Supplementary Note 3

To confirm whether the crystal structures are truly representative of the bulk materials, PXRD experiments were carried out for complex. The PXRD experimental and computer-simulated patterns of the corresponding complex are shown in Supplementary Figure 7. They show that the synthesized bulk materials and the measured single crystals are the similar due to efflorescence of crystals in air.
Supplementary Figure 7 Powdered X-ray diffraction (PXRD) patterns for Dy_{30} and Dy_{60}.
\[
[\text{Dy}_2(\text{H}_2\text{L})_3(\text{OAc})_2(\text{O})(\text{CH}_3\text{CN})]\quad [\text{Dy}_2(\text{H}_2\text{L})_3(\text{OAc})_2(\text{OH})_2(\text{CH}_3\text{CN})]^{3+} \quad \text{(cal. 1513.01)}
\quad [\text{Dy}_2(\text{H}_2\text{L})_3(\text{OAc})_2(\text{OH})_2(\text{CH}_3\text{OH})_2(\text{H}_2\text{O})_3]^{3+} \quad \text{(cal. 1564.03)}
\quad [\text{Dy}_2(\text{H}_2\text{L})_3(\text{OAc})_2(\text{OH})_2(\text{H}_2\text{O})_3]^{3+} \quad \text{(cal. 1613.08)}
\]

\[
[\text{Dy}_2(\text{H}_2\text{L})_2(\text{OAc})_2(\text{OH})_2(\text{H})_2(\text{H}_2\text{O})_3]^{2+} \quad \text{(cal. 2031.83)}
\quad [\text{Dy}_2(\text{H}_2\text{L})_2(\text{OAc})_2(\text{CH}_3\text{OH})_2(\text{H}_2\text{O})_3]^{2+} \quad \text{(cal. 2092.86)}
\quad [\text{Dy}_2(\text{H}_2\text{L})_2(\text{OAc})_2(\text{OH})_2(\text{H}_2\text{O})_3]^{2+} \quad \text{(cal. 2166.10)}
\]

\[\square = \text{Dy}_{30}(\text{H}_2\text{L})_{12}(\text{OAc})_{30}(\text{OH})_{4}\]

1: \[\square \quad (\text{CH}_3\text{OH})_2(\text{H}_2\text{O})_{15}^{3+} \quad \text{(cal. 3944.30)}\]
2: \[\square \quad (\text{CH}_3\text{OH})_2(\text{H}_2\text{O})_{15}^{3+} \quad \text{(cal. 3968.63)}\]
3: \[\square \quad (\text{CH}_3\text{OH})_2(\text{H}_2\text{O})_{15}^{3+} \quad \text{(cal. 3990.00)}\]
4: \[\square \quad (\text{OH})(\text{H}_2\text{O})_{20}^{2+} \quad \text{(cal. 5884.42)}\]
5: \[\square \quad (\text{OH})(\text{H}_2\text{O})_{20}^{2+} \quad \text{(cal. 5925.45)}\]
6: \[\square \quad (\text{OH})(\text{CH}_3\text{OH})_2(\text{H}_2\text{O})_{10}^{2+} \quad \text{(cal. 5953.45)}\]
Supplementary Figure 8 The superposed simulated and observed spectra of several species in the time-dependent HRESI-MS of Dy₆₀ (cation mode).

Supplementary Figure 9 Time-dependent HRESI-MS spectra of Dy₆₀ in negative mode.
Supplementary Figure 10 The superposed simulated and observed spectra of several species in the time-dependent HRESI-MS of Dy$_{60}$ (negative mode).
Supplementary Figure 11 The superposed simulated and observed spectra of several species in the time-dependent HRESI-MS of Dy_{30} (positive mode).
Supplementary Figure 12 Time-dependent HRESI-MS spectra of Dy$_{30}$ in negative mode.

Supplementary Figure 13 The superposed simulated and observed spectra of several species in the time-dependent HRESI-MS of Dy$_{30}$ (negative mode).
Supplementary Figure 14 Cationic HRESI-MS spectra of Dy$_{30}$.

Supplementary Figure 15 Cationic HRESI-MS spectra of Dy$_{60}$.
Supplementary Figure 16 Temperature dependence of $\chi_m T$ for Dy$_{30}$ (a) and Dy$_{60}$ (b).

Supplementary Figure 17 M vs. H plots for Dy$_{30}$ (a) and Dy$_{60}$ (b).

Supplementary Figure 18 Temperature-dependent in-phase (χ') and out-of phase (χ'') ac susceptibilities under 0 Oe dc field for Dy$_{30}$ (a) and Dy$_{60}$ (b).
Supplementary Figure 19 Frequency-dependent in-phase (χ') and out-of phase (χ'') ac susceptibilities under 0 Oe dc fields for Dy$_{30}$ (a and b) and Cole–Cole plots (c) under 0 Oe at different temperatures with the solid lines guiding for eyes and representing the best fitting, respectively. The ln(\tau/s) versus T^{-1} curves of Dy$_{30}$ (d) with the fit to the Arrhenius equation represented by solid lines.
Supplementary Figure 20 Frequency-dependent in-phase (χ') and out-of phase (χ'') ac susceptibilities under 0 Oe dc fields for Dy$_{60}$ (a and b) and Cole–Cole plots (c) under 0 Oe at different temperatures with the solid lines guiding for eyes and representing the best fitting, respectively. The ln(τ/s) versus T^{-1} curves of Dy$_{60}$ (d) with the fit to the Arrhenius equation represented by solid lines.
Supplementary Figure 21 Loop plots for Dy_{30} (a) and Dy_{60} (b).

Supplementary Table 1 43 examples of high-nuclear lanthanide clusters are known with nuclearity ≥ 10 was queried using Scifinder until 15 Oct. 2019. The number of genuine high-nuclear lanthanide clusters may be varied because of the term “high-nuclear lanthanide clusters” was not used in some papers.

No	Complex	Ref.
1	[Ln_{14}(CO_3)_{18}(ccmn)_{6}(OH)(H_2O)_{6}(phen)_{13}(NO_3)_{5}] \cdot (CO_3)_{2.5} \cdot (phen)_{0.5} (Ln_{14})	2
2	[Ln_{24}(DMC)_{36}(\mu_4-CO_3)_{18}(\mu_4-H_2O)_{2}] (Ln_{24})	3, 4
3	{{[CO_3]_2[@Ln_{37}(H_3)_{36}(CH_3COO)]_{21}(CO_3)_{12}(\mu_4-OH)_{41}(\mu_4-H_2O)_{5}(H_2O)_{40}] \cdot (ClO_4)_{21} \cdot 100(H_2O)} (Ln_{37})	5
4	{[Er_{60}(L-thre)_{34}(\mu_6-CO_3)_{36}(\mu_6-OH)_{36}(\mu_6-O)_{2}(H_2O)_{16}] \cdot Br_{12} \cdot (ClO_4)_{18} \cdot 40(H_2O) (Ln_{60})	6
5	{[Dy_{72}(mda)_{24}(mdah)_{16}(OH)]_{120}(NO_3)_{16} \cdot (NO_3)_{8} (Ln_{72})	7
6	{[Gd_{38}(\mu-O)(\mu_6-CiO_4)_{6}(\mu_6-OH)_{42}(CAA)_{137}(H_2O)_{36}(EtOH)_{6}] \cdot (ClO_4)_{10} \cdot (OH)_{17} \cdot 14DMSO \cdot 13H_2O (Ln_{38})	8
7	{[Gd_{48}(\mu-O)(\mu_6-OH)_{84}(CAA)_{36}(NO_3)_{6}(H_2O)_{24}(EtOH)_{13}(NO_3)Cl_2 \cdot Cl_3 (Ln_{48})	9
8	{[Ln_{114}(ClO_4)_{8}(CH_3COO)_{36}(\mu_6-OH)_{168}(\mu_4-O)_{30}(H_2O)_{112}] \cdot (ClO_4)_{22} (Ln_{104})	9
9	{[Ln_{36}(NA)_{36}(OH)_{49}(O)_{6}(NO_3)_{6}(N_3)_{3}(H_2O)_{20}Cl_2 \cdot 28H_2O} (Ln_{36})	10
10	{[Cl_2 \cdot (NO_3)]@[Er_{48}(NA)_{44}(OH)_{90}(N_3)(H_2O)_{24}]_{11} (Ln_{48})	11
11	{K_2[H_2(CN)_{2}](\mu-OH)_{84}(\mu_4-OH)(\mu_4-O)_{2}(OAc)_{4}(H_2O)_{14}(CO_3)Br_{2} (Ln_{48})	12
12	{[ClO_4]@[Ln_{27}(\mu_6-OH)_{32}(CO_3)_{8}(CH_3CH_2COO)_{20}(H_2O)_{40}] \cdot (ClO_4)_{12} \cdot (H_2O)_{50} (Ln_{27})	13
13	{[Ln_{15}(\mu_5-OH)_{20}(\mu_5-X)]^{2+} (Ln_{15})	14, 15
14	{[Dy_{18}(1-3H)_{1}(1-2H)_{11}(CH_3CO_2)_{16}(OH)_{26}(H_2O)_{30}] (Ln_{19})	16
15	{Ln_{14}(\mu-OH)_{2}(\mu_3-OH)_{16}(\mu_4-OH)_{2} \cdot (\eta^2-acac)_{6}(\eta^2-acac)_{16} (Ln_{14})	17
16	{H_{18}[Ln_{14}(\mu-OH)_{2}(\mu_3-OH)_{16}(\eta^2-O-N-C_6H_4-O)_{16}(\mu_4-O)_{2}(\mu_5-O)]_{18} (Ln_{14})	18
17	{Ln_{14}(\mu-OH)_{2}(\mu_3-OH)_{16}(\eta^2-O-N-C_6H_4-O)_{16}(\mu_4-O)_{2}(\mu_5-O)]_{18} (Ln_{14})	19
18	{H_{26}[Ln_{28}(CH_3COO)_{4}(CO_3)_{10}(OH)_{26}(H_2O)_{18}] \cdot 20H_2O (Ln_{26})	20
19	{[Dy_{26}(\mu-OH)_{20}(\mu_3-O)_{6}(NO_3)_{6}]^{36+} (Ln_{26})	21
Supplementary Table 2 Crystallographic data of the complexes Dy$_{30}$ and Dy$_{60}$.

Complexes	Dy$_{30}$	Dy$_{60}$						
Formula	C$_{338}$H$_{389}$N$_{86}$O$_{172}$	C$_{618}$H$_{615}$N$_{151}$O$_{309}$						
Formula weight	13269.17	24851.33						
T (K)	153	293(2)						
Crystal system	Trigonal	Triclinic						
Space group	P-3c1	P-1						
a (Å)	36.51215(17)	22.0753(2)						
b (Å)	36.51215(17)	43.9055(4)						
m/z	Fragment	Relative Intensity						
------	---	--------------------						
		0min	30min	1 h	2 h	3 h	12 h	48 h
447.54	[Dy₂(H₄L¹)](OAc)(CH₃OH)(CH₃OH)(H₂O)₃²⁺ (cal. 447.54)	0.004	0.893	0.952	0.703	0.385	0	0
468.54	[Dy₂(H₄L¹)](OAc)₂(CH₃OH)₂(H₂O)₂²⁺ (cal. 454.54)	0.103	0.663	0.684	0.105	0	0	0
491.56	[Dy₂(H₄L¹)](OAc)₂(CH₃OH)₂(H₂O)₂²⁺ (cal. 491.56)	0.378	0.897	0.632	0.279	0.303	0	0
558.07	[Dy(H₄L¹)]⁺ (cal. 558.07)	0.298	0.922	0.721	0.219	0.005	0	0
622.12	[Dy(H₄L¹)](CH₃OH)₂⁺ (cal. 622.12)	0.287	0.729	0.964	0.904	0.617	0.005	0
663.15	[Dy(H₄L¹)](CH₃OH)₂(CH₃CN)²⁺ (cal. 663.15)	0.287	0.729	0.964	0.904	0.617	0.005	0
704.17	[Dy(H₄L¹)](CH₃O)(CH₃OH)₂(CH₃CN)⁻ (cal. 704.17)	0.901	0.863	0.583	0.117	0.008	0	0
798.53	[Dy₄(H₄L¹)]⁴⁺(CH₃OH)₄(H₂O)₄²⁺ (cal. 798.53)	0.092	0.729	0.964	0.904	0.617	0.005	0
882.07	[Dy₂(H₄L¹)](OAc)(CH₃OH)₂(CH₃CN)⁻ (cal. 882.07)	0.092	0.729	0.964	0.904	0.617	0.005	0

Supplementary Table 3 Major species assigned in the Time-dependent HRESI-MS of Dy₆₀ in positive mode.

\[aR_1 = \sum |F_o - F_c| / \sum |F_o|, \quad bwR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2]^{1/2} \]
	Formula																	
942.09	[Dy(H$_2$L1)(OAc)$_2$(CH$_3$OH)$_2$(CH$_3$CN)]$^+$	0.086	0.582	0.806	0.722	0.471	0	0										
983.12	[Dy(H$_2$L2)(OAc)$_3$(CH$_3$OH)$_2$(CH$_3$CN)$_2$]	0.041	0.513	0.767	0.710	0.385	0	0										
1085.98	[Dy(H$_2$L1)(OAc)$_2$(OH)$_2$(H$_2$O)$_3$]	0.064	0.484	0.853	1	0.683	0.017	0										
1133.03	[Dy(L1)(OAc)$_2$(CH$_3$OH)$_3$(CH$_3$CN)]$^+$	0.082	0.408	0.795	0.901	0.699	0.027	0										
1275.08	[Dy(H$_2$L1)(OAc)$_3$(CH$_3$OH)$_3$(CH$_3$CN)$_2$]	0.018	0.383	0.738	0.885	0.589	0.052	0										
1362.15	[Dy(H$_2$L1)(OAc)$_3$(CH$_3$OH)$_3$(H$_2$O)$_3$(CH$_3$ CN)$_2$]	0.073	0.401	0.722	0.900	0.716	0.094	0										
1457.96	[Dy$_2$(H$_2$L1)(OAc)$_3$(O)(H$_2$O)$_4$(CH$_3$OH)$_2$]	0.001	0.183	0.581	0.884	1	0.299	0										
1513.01	[Dy$_2$(H$_2$L1)(OAc)$_3$(O)(CH$_3$CN)(CH$_3$OH) z(H$_2$O)$_3$]	0.002	0.216	0.538	0.826	0.898	0.238	0										
1564.02	[Dy$_2$(H$_2$L2)(OAc)$_2$(OH)$_2$(CH$_3$OH)$_2$(H$_2$O)$_3$]	0	0.173	0.474	0.762	0.798	0.187	0										
1613.08	[Dy$_2$(H$_2$L2)(OAc)$_3$(O)(CH$_3$OH)$_2$(CH$_3$CN) (H$_2$O)$_3$]	0.015	0.152	0.430	0.803	0.728	0.201	0										
2031.03	[Dy$_2$(H$_2$L2)(OAc)$_3$(O)(H$_2$O)$_4$(CH$_3$OH)$_2$]	0	0.093	0.285	0.716	0.906	0.722	0.009										
2092.06	[Dy$_2$(H$_2$L2)(OAc)$_3$(CH$_3$OH)(H$_2$O)$_3$]	0	0.068	0.239	0.757	0.884	0.663	0										
2166.10	[Dy$_2$(H$_2$L2)(OAc)$_3$(CH$_3$OH)$_2$(H$_2$O)$_3$]	0	0.079	0.264	0.698	0.897	0.603	0.007										
3944.29	[Dy$_{2+}$(H$_2$L3)$_2$(OAc)$_3$(OH)$_2$(H$_2$O)(CH$_3$ OH)$_3$]	0	0	0.002	0.146	0.327	0.761	0.761										
3968.64	[Dy$_{2+}$(H$_2$L3)$_2$(OAc)$_3$(OH)$_2$(H$_2$O)(CH$_3$ OH)$_3$]	0	0	0.002	0.192	0.429	1	1										
3989.99	[Dy$_{2+}$(H$_2$L3)$_2$(OAc)$_3$(OH)$_2$(H$_2$O)(CH$_3$ OH)$_3$]	0	0	0.002	0.097	0.210	0.502	0.501										
5884.44	[Dy$_{2+}$(H$_2$L3)$_2$(OAc)$_3$(CH$_3$OH)$_3$(H$_2$O)$_2$]	0	0	0.002	0.160	0.355	0.840	0.867										
5921.95	[Dy$_{2+}$(H$_2$L3)$_2$(OAc)$_3$(CH$_3$OH)$_3$(H$_2$O)$_2$]	0	0	0.002	0.178	0.394	0.932	0.962										
5953.46	[Dy$_{2+}$(H$_2$L3)$_2$(OAc)$_3$(CH$_3$OH)$_3$(H$_2$O)$_2$]	0	0	0.001	0.091	0.203	0.480	0.496										
6017.50	[Dy$_{2+}$(H$_2$L3)$_2$(OAc)$_2$(OH)$_2$(H$_2$O)$_5$(CH$_3$OH)$_3$(H$_2$O)$_2$]	0	0	0	0	0.096	0.213	0.227										
6037.02	[Dy$_{2+}$(H$_2$L3)$_2$(OAc)$_2$(OH)$_2$(H$_2$O)$_5$(CH$_3$OH)$_3$(H$_2$O)$_2$]	0	0	0	0	0.099	0.218	0.233										
Supplementary Table 4 Major species assigned in the time-dependent HRESI-MS of Dy₃₀ in positive mode.

m/z	Fragment	Relative Intensity
440.54	[Dyₓ(H₂L¹)₂(0Ac)(CH₂O)(H₂O)₂]⁴⁺ (cal. 440.53)	0.127 0.739 0.915 0.628 0.282 0 0
454.53	[Dyₓ(H₂L¹)(OAc)₂(H₂O)⁴]²⁺ (cal. 454.54)	0.119 0.656 0.852 0.743 0.302 0 0
576.07	[Dy(H₂L¹)]⁺(H₂O)²⁺ (cal. 576.08)	1 0.905 0.789 0.547 0.272 0 0
626.12	[Dy(H₂L¹)(CH₃OH)](H₂O)₂⁺ (cal. 626.12)	0.973 0.965 0.752 0.496 0.201 0 0
658.15	[Dy(H₂L¹)](CH₃OH)(H₂O)²⁺ (cal. 658.14)	0.952 0.895 0.717 0.540 0.237 0.001 0
708.17	[Dy(H₂L¹)](CH₃O)(CH₃OH)(H₂O)₂⁺ (cal. 708.18)	0.874 0.876 0.639 0.508 0.316 0.002 0
877.07	[Dyₓ(H₂L¹)OAc)(CH₂O)(H₂O)₂⁺ (cal. 877.07)	0.163 0.795 0.897 0.698 0.415 0 0
937.09	[Dyₓ(H₂L¹)(OAc)₂(CH₂OH)(H₂O)₂⁺ (cal. 937.10)	0.284 1 0.905 0.532 0.183 0 0
1010.14	[LiDyₓ(H₂L¹)(OAc)₂(OH)(CH₃OH)(H₂O)]⁺ (cal. 1010.14)	0.116 0.803 0.785 0.499 0.176 0 0
1082.98	[Dyₓ(H₂L¹)(OAc)₂(OH)(CH₂O)(H₂O)]⁺ (cal. 1082.98)	0 0.574 1 0.926 0.635 0.002 0
1131.02	[Dyₓ(L¹)(OAc)₂(0Ac)(OH)(CH₂O)²⁺ (cal. 1131.01)	0 0.529 0.864 0.941 0.597 0.005 0
1212.60	[LiDyₓ(H₃L¹)(OAc)₃(OH)(CH₃OH)(H₂O)₂⁺ (cal. 1212.06)	0 0.473 0.806 0.861 0.784 0.078 0
1241.07	[LiDyₓ(H₂L¹)(OAc)₄(OH)(CH₂O)(H₂O)]⁺ (cal. 1241.06)	0 0.394 0.683 0.510 0.328 0 0
1286.05	[LiDyₓ(H₂L¹)(OAc)₅(OH)(CH₂O)(H₂O)]⁺ (cal. 1286.06)	0.003 0.355 0.687 0.725 0.462 0 0
1460.98	[LiDyₓ(H₂L¹)(OAc)₆(OH)(CH₂O)]⁺ (cal. 1460.99)	0 0.381 0.764 1 0.861 0.188 0
1528.02	[LiDyₓ(H₂L¹)(OAc)₇(OH)(CH₂O)(H₂O)]⁺ (cal. 1528.03)	0 0.279 0.654 0.903 0.748 0 0
Table 5 ICP result of Dy₃₀.

Element	Content / (µg / µg)	Percentage by weight/%						
	1	2	3	average	1	2	3	average
Dy	98.460	66.228	75.001	79.896	38.76	37.21	39.68	38.55

Table 6 ICP result of Dy₆₀.

Element	Content / (µg / µg)	Percentage by weight/%						
	1	2	3	average	1	2	3	average
Dy	74.932	83.414	66.907	75.084	32.72	35.64	35.97	34.77

Supplementary References

[1] Liu, M. et al. Calixarene-Based Nanoscale Coordination Cages. Angew. Chem. Int. Ed. 51, 1585–1588 (2012).

[2] Chesman, A. S. R. et al. Tetradecanuclear polycarbonatolanthanoid clusters: Diverse coordination modes of carbonate providing access to novel core geometries. Dalton Trans. 41, 10903–10909 (2012).

[3] Chang, L.-X. et al. A 24-Gd nanocapsule with a large magnetocaloric effect. Chem. Commun. 49,
1055-1057 (2013).
[4] Li, W.; Xiong, G. Elongated Wells–Dawson type 24-nuclear lanthanide clusters: Luminescence and magnetic properties. Inorg. Chem. Commun. 59, 1–4 (2015).
[5] Zhou, Y. et al. Three Giant Lanthanide Clusters Ln37 (Ln = Gd, Tb, and Eu) Featuring A Double-Cage Structure. Inorg. Chem. 56, 2037–2041 (2017).
[6] Kong, X.-J. et al. A Chiral 60-Metal Sodalite Cage Featuring 24 Vertex-Sharing [Er4(μ3-OH)4] Cubanes. J. Am. Chem. Soc. 131, 6918–6919 (2009).
[7] Qin, L. et al. A “Molecular Water Pipe”: A Giant Tubular Cluster {Dy72} Exhibits Fast Proton Transport and Slow Magnetic Relaxation. Adv. Mater. 28, 10772-10779 (2016).
[8] Guo, F.-S. et al. Anion-Templated Assembly and Magnetocaloric Properties of a Nanoscale {Gd38} Cage versus a (Gd48) Barrel. Chem. Eur. J. 19, 14876–14885 (2013).
[9] Peng, J.-B. et al. Beauty, Symmetry, and Magnetocaloric Effect-Four-Shell Keplerates with 104 Lanthanide Atoms. J. Am. Chem. Soc. 136, 17938–17941 (2014).
[10] Wu, M. et al. Two polymeric 36-metal pure lanthanide nanosize clusters. Chem. Sci. 4, 3104–3109 (2013).
[11] Wu, M. et al. Polymeric double-anion templated Er48 nanotubes. Chem. Commun. 50, 1113–1115 (2014).
[12] Chen, L. et al. A novel 2-D coordination polymer constructed from high-nuclearity waist drum-like pure Ho48 clusters. Chem. Commun. 49, 9728–9730 (2013).
[13] Zheng, X.-Y. et al. Mixed-anion templated cage-like lanthanide clusters: Gd27 and Dy27. Inorg. Chem. Front. 3, 320–325 (2016).
[14] Wang, R.; Zheng, Z.; Jin, T.; Staples, R. J. Coordination Chemistry of Lanthanides at “High” pH: Synthesis and Structure of the Pentadecanuclear Complex of Europium(III) with Tyrosine. Angew. Chem. Int. Ed. 38, 1813–1815 (1999).
[15] Wang, R. et al. Halide-Templated Assembly of Polynuclear Lanthanide-Hydroxo Complexes. Inorg. Chem. 41, 278–286 (2002).
[16] D’Alessio, D. et al. Lanthanoid “Bottlebrush” Clusters: Remarkably Elongated Metal–Oxo Core Structures with Controllable Lengths. J. Am. Chem. Soc. 136, 15122–15125 (2014).
[17] Wang, R.; Song, D.; Wang, S. Toward constructing nanoscale hydroxo–lanthanide clusters: syntheses and characterizations of novel tetradecanuclear hydroxo–lanthanide clusters. Chem. Commun. 368–369 (2002).
[18] Bürgstein, M. R.; Gamer, M. T.; Roesky, P. W. Nitrophenolate as a Building Block for Lanthanide Chains, Layers, and Clusters. J. Am. Chem. Soc. 126, 5213–5218 (2004).
[19] Li, X.-L. et al. Two chiral tetradecanuclear hydroxo-lanthanide clusters with luminescent and magnetic properties. CrystEngComm. 13, 3643–3645 (2011).
[20] Chen, L. et al. Hydrothermal synthesis, structure, and properties of two new nanosized Ln26 (Ln = Ho, Er) clusters. J. Coord. Chem. 65, 958–968 (2012).
[21] Gu, X.; Xue, D. Surface Modification of High-Nuclearity Lanthanide Clusters: Two Tetramers Constructed by Cage-Shaped {Dy28} Clusters and Isonicotinate Linkers. Inorg. Chem. 46, 3212–3216 (2007).
[22] Liu, S. J. et al. An Unprecedented Decanuclear GdIII Cluster for Magnetic Refrigeration. Inorg. Chem. 52, 9163–9165 (2013).
[23] Langley, S. K. et al. Trinuclear, octanuclear and decanuclear dysprosium(III) complexes: Synthesis, structural and magnetic studies. Polyhedron. 64, 255–261 (2013).
[24] Su, K. et al. Synthesis and characterization of decanuclear Ln(III) cluster of mixed calix[8]arene-phosphonate ligands (Ln = Pr, Nd). *Inorg. Chem. Commun.* **54**, 34–37 (2015).

[25] Hussain, F.; Patzke, G. R. Self-assembly of dilacunary building blocks into high-nuclear \([\text{Ln}_{16}\text{As}_{16}\text{W}_{164}\text{O}_{576}(\text{OH})_{8}(\text{H}_{2}\text{O})_{42}]^{80-}\) (Ln = Eu\(^{III}\), Gd\(^{III}\), Tb\(^{III}\), Dy\(^{III}\), and Ho\(^{III}\)) polyoxotungstates. *CrystEngComm.* **13**, 530–536 (2011).

[26] Li, Z. et al. Four-Shell Polyoxometalates Featuring High-Nuclearity Ln\(_{26}\) Clusters: Structural Transformations of Nanoclusters into Frameworks Triggered by Transition-Metal Ions. *Angew. Chem. Int. Ed.* **56**, 2664–2669 (2017).

[27] Zhao, L.; Xue, S.; Tang, J. A Dodecanuclear Dysprosium Wheel Assembled by Six Vertex-Sharing Dy\(_3\) Triangles Exhibiting Slow Magnetic Relaxation. *Inorg. Chem.* **51**, 5994–5996 (2012).

[28] Miao, Y.-L. et al. Two novel Dy\(_3\) and Dy\(_{11}\) clusters with cubane \([\text{Dy}_4(\mu_2-\text{OH})_4]^{8+}\) units exhibiting slow magnetic relaxation behavior. *Dalton Trans.* **40**, 10229–10236 (2011).

[29] Luo, X.-M. et al. Exploring the Performance Improvement of Magnetocaloric Effect Based Gd-Exclusive Cluster Gd\(_{60}\). *J. Am. Chem. Soc.* **140**, 11219–11222 (2018).

[30] Dinca, A. S. et al. Aggregation of \([\text{Ln}^{III}_{12}]\) clusters by the dianion of 3-formylsaicylic acid. Synthesis, crystal structures, magnetic and luminescence properties. *Dalton Trans.* **48**, 1700–1708 (2019).

[31] Piquer, L. R. et al. Hysteresis enhancement on a hybrid Dy(III) single molecule magnet/iron oxide nanoparticle system. *Inorg. Chem. Front.* **6**, 705–714 (2019).

[32] Ma, X.-F. et al. Formation of nanocluster \([\text{Dy}_{12}]\) containing Dy-exclusive vertex-sharing \([\text{Dy}_4(\mu_2-\text{OH})_4]\) cubanes via simultaneous multitemplate guided and step-by-step assembly. *Dalton Trans.* **48**, 11338–11344 (2019).

[33] Li, X.-Y. et al. A Giant Dy\(_{76}\) Cluster: A Fused Bi-Nanopillar Structural Model for Lanthanide Clusters. *Angew. Chem. Int. Ed.* **58**, 10184–10188 (2019).

[34] Wang, K. et al. A single-stranded \({\text{Gd}}_{18}\) nanowheel with a symmetric polydentate diacylethrazone ligand. *Chem. Commun.* **52**, 8297–8300 (2016).

[35] Wang, K. et al. Diacylethrazone-assembled \({\text{Ln}}_{11}\) nanoclusters featuring a “double-boats conformation” topo-logy: synthesis, structures and magnetism. *Dalton Trans.* **47**, 2337–2343 (2018).

[36] Zhou, Y.-Y. et al. New Family of Octagonal-Prismatic Lanthanide Coordination Cages Assembled from Unique Ln\(_{17}\) Clusters and Simple Cliplike Dicarboxylate Ligands. *Inorg. Chem.* **55**, 2037–2047 (2016).

[37] Biswas, S. et al. Homometallic Dy\(^{III}\) Complexes of Varying Nuclearity from 2 to 21: Synthesis, Structure, and Magnetism. *Chem. Eur. J.* **23**, 5154–5170 (2017).

[38] Westin, L. G.; Kritikos, M.; Caneschi, A. Self assembly, structure and properties of the decanuclear lanthanide ring complex, \(\text{Dy}_{10}(\text{OC}_2\text{H}_4\text{OCH}_3)_3\). *Chem. Commun.* 1012–1013 (2003).

[39] Ke, H. et al. A Dy\(_{16}\) Cluster Incorporates Two Sets of Vertex-Sharing Dy\(_3\) Triangles. *Chem. Eur. J.* **15**, 10335–10338 (2009).

[40] Miao, Y.-L. et al. Chloride templated formation of \(\{\text{Dy}_{12}(\text{OH})_{16}\}_{30}\) cluster core incorporating 1,10-phenanthroline-2,9-dicarboxylate. *CrystEngComm.* **13**, 3345–3348 (2011).

[41] Tian, H.; Bao, S.-S.; Zheng, L.-M. Cyclic single-molecule magnets: from the odd-numbered heptanuclear to a dimer of heptanuclear dysprosium clusters. *Chem. Commun.* **52**, 2314–2317 (2016).

[42] Thielemann, D. T. et al. Peptoid-Ligated Pentadecanuclear Yttrium and Dysprosium Hydroxy Clusters. *Chem. Eur. J.* **21**, 2813–2820 (2015).

[43] Richardson, P. et al. \([\text{Ln}_{16}]\) complexes (Ln = Gd\(^{III}\), Dy\(^{III}\)): molecular analogues of natural minerals
such as hydrotalcite. *Dalton Trans.* **47**, 12847–12851 (2018).

[44] Lin, W.-Q. et al. Lanthanide Oxide Clusters: From Tetrahedral $[\text{Dy}_4(\mu_4-O)]^{10+}$ to Supertetrahedral $[\text{Ln}_{20}(\mu_4-O)_{11}]^{38+}$ ($\text{Ln} = \text{Tb}, \text{Dy}, \text{Ho}, \text{Er}$). *Chem. Eur. J.* **19**, 12254–12258 (2013).

[45] Tian, H. et al. Reversible ON–OFF switching of single-molecule-magnetism associated with single-crystal-to-single-crystal structural transformation of a decanuclear dysprosium phosphonate. *Chem. Sci.* **9**, 6424–6433 (2018).