ON THE AXIOM OF SPHERES IN KÄHLER GEOMETRY

O. T. Kassabov

(Submitted by Academician B. Petkanchin on November 25, 1981)

1. Introduction. Let M be a $2m$-dimensional Kähler manifold with a Riemannian metric g and a complex structure J. Let R, S and $\tau(R)$ denote the curvature tensor, the Ricci tensor and the scalar curvature of M, respectively. The Bochner curvature tensor B is defined by

$$B(X,Y,Z,U) = R(X,Y,Z,U) - \frac{1}{2(m+2)} \{ g(X,U)S(Y,Z) - g(X,Z)S(Y,U) + g(Y,U)S(X,Z) + g(X,JU)S(Y,JZ) - g(X,JZ)S(Y,JU) + g(Y,JZ)S(X,JU) - g(Y,JU)S(X,JZ) - 2g(X,JY)S(Z,JU) - 2g(Z,JU)S(X,JY) \}$$

Let N be an n-dimensional submanifold of M. The second fundamental form α of the immersion is defined by $\alpha(X,Y) = \tilde{\nabla}_X Y - \nabla_X Y$ for $X, Y \in \mathfrak{X}(N)$, where $\tilde{\nabla}$ (resp. ∇) is the covariant differentiations on M (resp. N). The submanifold N is said to be totally umbilical, if $\alpha(X,Y) = g(X,Y)H$, H being the mean curvature vector of N in M, i.e. $H = (1/n)\text{trace} \alpha$. Let ξ be a vector field normal to N. Then the Weingarten formula is

$$\tilde{\nabla}_X \xi = -A_\xi X + D_X \xi,$$

where $-A_\xi X$ (respectively, $D_X \xi$) denotes the tangential (resp. the normal) component of $\tilde{\nabla}_X \xi$. The vector field ξ is said to be parallel, if $D_X \xi = 0$ for each $X \in \mathfrak{X}(N)$.

The equation of Codazzi is given by

$$\{ R(X,Y)Z \}^\perp = (\tilde{\nabla}_X \alpha)(Y,Z) - (\tilde{\nabla}_Y \alpha)(X,Z),$$

where $\{ R(X,Y)Z \}^\perp$ denotes the normal component of $R(X,Y)Z$ and

$$(\tilde{\nabla}_X \alpha)(Y,Z) = D_X \alpha(Y,Z) - \alpha(\nabla_X Y, Z) - \alpha(Y, \nabla_X Z).$$

By an n-plane in $T_p(M)$ we mean an n-dimensional linear subspace of $T_p(M)$. An n-plane π is said to be holomorphic (resp. antiholomorphic) if $\pi = J\pi$ (resp. $\pi \perp J\pi$).
A $2m$-dimensional Kähler manifold M is said to satisfy the axiom of holomorphic (resp. antiholomorphic) $2n$-spheres (resp. n-spheres), where n is a fixed integer, $1 \leq n \leq m$, if for each point $p \in M$ and for any $2n$-dimensional holomorphic (resp. n-dimensional antiholomorphic) plane π in $T_p(M)$ there exists a totally umbilical submanifold N of M with a parallel mean curvature vector, such that $p \in N$ and $T_pN = \pi$.

As was proved in [2], if a $2m$-dimensional Kähler manifold M satisfies the axiom of holomorphic $2n$-spheres for some n, $1 \leq n < m$ or the axiom of antiholomorphic n-spheres for some n, $1 < n \leq m$, then M is of constant holomorphic sectional curvature.

We shall prove the following theorems:

Theorem 1. Let M be a $2m$-dimensional Kähler manifold, $m > 2$, and let n be a fixed integer, $2 \leq n < m$. If for each point $p \in M$ and for any holomorphic $2n$-plane π in $T_p(M)$ there exists a totally umbilical submanifold N of M, such that $p \in N$ and $T_pN = \pi$, then M is of constant holomorphic sectional curvature.

Theorem 2. Let M be a $2m$-dimensional Kähler manifold, $m > 2$, and let n be a fixed integer, $2 < n \leq m$. If for each point $p \in M$ and for any antiholomorphic n-plane π in $T_p(M)$ there exists a totally umbilical submanifold N of M, such that $p \in N$ and $T_pN = \pi$, then M is of constant holomorphic sectional curvature.

2. A Lemma and Proofs of the Theorems. As is known, a $2m$-dimensional Kähler manifold M has vanishing Bochner curvature tensor, iff for each point p of M the sum $\sum_{i=1}^{m} R(e_i, Je_i, Je_i, e_i)$ is independent of the orthonormal basis $\{e_i, Je_i; i = 1, ..., m\}$ of $T_p(M)$ [5]. Hence it is not difficult to prove the following

Lemma. A Kähler manifold M of dimension $2m \geq 6$ has a vanishing Bochner curvature tensor, iff for each point $p \in M$ and for all unit vectors $x, y, z \in T_p(M)$ which span an antiholomorphic 3-plane

$$R(x, Jx, y, z) = 2R(x, y, Jx, z)$$

holds good.

Let N be a totally umbilical submanifold of M. Then Codazzi’s equation reduces to

$$\{R(X, Y)Z\}^\perp = g(Y, Z)D_XH - g(X, Z)D_YH .$$

Now we can proceed to prove Theorem 1. For a point $p \in M$ we take arbitrary unit vectors $x, y, z \in T_p(M)$ which span an antiholomorphic 3-plane. Let N be a totally umbilical submanifold of M such that $p \in N$, $x, y, Jx, Jy \in T_p(N)$ and $z \perp T_p(N)$. Then, from (2.1) we obtain

$$R(x, Jx, y, z) = 0 ,$$

$$R(x, y, Jx, z) = 0$$
and, according to the Lemma, M has vanishing Bochner curvature tensor. Hence

$$R(X, Y, Z, U) = \frac{1}{4(m+2)} \{g(X, U)S(Y, Z)$$
$$- g(X, Z)S(Y, U) + g(Y, Z)S(X, U) - g(Y, U)S(X, Z)$$
$$+ g(X, JU)S(Y, JZ) - g(X, JZ)S(Y, JU) + g(Y, JZ)S(X, JU)$$
$$- g(Y, JU)S(X, JZ) - 2g(X, JY)S(Z, JU) - 2g(Z, JU)S(X, JY)\}$$

From (2.2) and (2.3)

$$S(y, z) = 0$$

for all $y, z \in T_p(M)$ with $g(y, z) = g(y, Jz) = 0$ and for each point $p \in M$. Consequently, M is an Einsteinian manifold and because of $B = 0$ M is of constant holomorphic sectional curvature.

The proof of Theorem 2 is similar.

Remark 1. If M is a Kähler manifold of constant holomorphic sectional curvature, then every totally umbilical submanifold of M has parallel mean curvature vector, see [3].

Remark 2. It is known that any $2m$-dimensional Kähler manifold of constant holomorphic sectional curvature satisfies the axiom of holomorphic $2n$-spheres and the axiom of antiholomorphic n-spheres for each n, $1 \leq n \leq m$, see e.g. [3].

Remark 3. For a Riemannian manifold the condition analogous to that in Theorem 1 or Theorem 2 is equivalent to the requirement that the manifold has vanishing Weil curvature tensor, see [1].

Institute of Mathematics
Bulgarian Academy of Sciences
PO Box 373
1090 Sofia, Bulgaria

References

[1] J. Schouten. Ricci-Calculus. Springer-Verlag. Berlin, 1954.
[2] S. Goldberg, E. Moskal. Kodai Math. Sem. Rep. **27**, 1976, 188.
[3] B.-Y. Chen, K. Ogiue. Michigan Math. J. **21**, 1974, 225.
[4] K. Nomizu. J. Differ. Geom. **8**, 1973, 335.
[5] G. Stanoilov. Pure and Appl. Math. Sci. **5**, 1977, 7.