On a Univalent Class Involving Differential Subordinations with Applications

R.W. Ibrahim and M. Darus
Faculty of Sciences and Technology, School of Mathematical Sciences, University Kebangsaan Malaysia, Malaysia

Abstract:

Problem statement: By means of the Hadamard product (or convolution), new class of analytic functions was formed. This class was motivated by many authors. **Approach:** By using the concept of the subordination and superordination, we define certain differential inequalities and first order differential subordinations. **Results:** As their applications, we obtain some sufficient conditions for univalence which generalize and refine some previous results. Sandwich theorem is also obtained. **Conclusion:** Therefore, we posed a new class of analytic functions which generalized some well known subclasses. This class involves the \(E(\Phi, \Psi) \) family of functions.

Key words: Convex functions, close-to-convex functions, differential subordination, superordination, unit disk, sandwich theorem, hadamard product, dziok-srivastava linear operator, differential sandwich

INTRODUCTION

Let \(H \) be the class of functions analytic in the unit disk \(U = \{ z : |z| < 1 \} \) and for \(a \in \mathbb{C} \) (set of complex numbers) and \(n \in \mathbb{N} \) (set of natural numbers), let \(H[a,n] \) be the subclass of \(H \) consisting of functions of the form \(f(z) = a_0 + a_1z + a_2z^2 + \cdots \). Let \(A \) be the class of functions \(F, \) analytic in \(U \) and normalized by the conditions \(f(0) = f'(0) - 1 = 0 \). Given two functions \(f, g \in A \), \(f(z) = z + \sum_{n=1}^{\infty} a_n z^n \) and \(g(z) = z + \sum_{n=1}^{\infty} b_n z^n \), their convolution or Hadamard product \(f(z) * g(z) \) is defined by:

\[
f(z) * g(z) = z + \sum_{n=1}^{\infty} (a_n b_n) z^n, \quad z \in U.
\]

Let \(F \) be analytic in \(U \), \(g \) analytic and univalent in \(U \) and \(f(0) = g(0) \). Then, by the symbol \(f(z) \sim g(z) \) (\(f \) subordinate to \(g \)) in \(U \), we shall mean \(f(U) \subseteq g(U) \).

Let \(\Phi : \mathbb{C}^2 \rightarrow \mathbb{C} \) and let \(h \) be univalent in \(U \). If \(p \) is analytic in \(U \) and satisfies the differential subordination \(\varphi(p(z)), zp'(z) \prec h(z) \) then \(p \) is called a solution of the differential subordination. The univalent function \(q \) is called a dominant of the solutions of the differential subordination, if \(p \prec q \). If \(p \) and \(\varphi(p(z)), zp'(z) \) are univalent in \(U \) and satisfy the differential superordination \(h(z) \prec \varphi(p(z)), zp'(z) \), then \(P \) is called a solution of the differential superordination. An analytic function \(q \) is called subordinant of the solution of the differential superordination if \(q \prec p \).

Juneja defined the family \(E(\Phi, \Psi) \), so that:

\[
\frac{|f(z) \Phi(z) - 1|}{|f(z) \Psi(z)|} > 0, \quad z \in U
\]

where:

\[
\Phi(z) = z + \sum_{n=1}^{\infty} \phi_n z^n
\]

\[
\Psi(z) = z + \sum_{n=1}^{\infty} \psi_n z^n
\]

are analytic in \(U \) with the conditions

\[
\phi_n \geq 0, \psi_n \geq 0, \phi_n \geq \psi_n \quad \text{for} \quad n \geq 2
\]

\[
f(z) \sim \Psi(z) = 0.
\]

This type of class was motivated by many authors namely (Lewandowski et al., 1976; Kumar et al., 1995; Kwon, 2007; Ravichandran et al., 2002; Obradović and Joshi, 1998; Joshi et al., 1998; Singh and Gupta, 1996; Xu and Yang, 2005). Note that this family was then extended and studied in the work due to Ibrahim and Darus.
MATERIALS AND METHODS

In the present study, we consider a new class \(H(\alpha, \lambda, \delta; \Phi(z); \Psi(z)) \) as follows Eq. 1:

\[
\frac{z(f(z) \Phi(z))'}{f(z) \Phi(z)} \left(1 - \alpha \frac{z(f(z) \Phi(z))'}{f(z) \Psi(z)} \right) + \alpha (1 + \frac{\lambda z(f(z) \Phi(z))'}{(f(z) \Phi(z))'} - \frac{\lambda z(f(z) \Psi(z))'}{(f(z) \Psi(z))'}) < F(z),
\]

where \(\alpha \in [0,1], \lambda, \delta \in \mathbb{R} \) and \(F \) is the conformal mapping of the unit disk \(U \) with \(F(0) = 1 \).

Remark 1: As special cases of the class \(H(\alpha, \lambda, \delta; \Phi(z); \Psi(z)) \) are the following well known classes: \(H(1, \lambda, 0; z) \) (Lewandowski et al., 1976) (Xu and Yang, 2005). Also this class reduces to the classes of starlike functions, convex functions and close-to-convex functions for various \(\Phi \) and \(\psi \).

In order to obtain our results, we need the following lemmas.

Lemma 1: Miler and Mocanu (2000). Let \(q(z) \) be univalent in the unit disk \(U \) and \(\theta \) and \(\phi \) be analytic in a domain \(D \) containing \(q(U) \) with \(\phi(w) \neq 0 \) when \(w \in q(U) \). Set:

\[
Q(z) := zq(z)q(z), h(z) := q(z) + Q(z).
\]

Suppose that:

\(Q(z) \) is starlike univalent in \(U \)

\[
\Re \left[\frac{zh(z)}{Q(z)} \right] > 0 \quad \text{for} \quad z \in U.
\]

If:

\[
\theta(p(z)) + \phi(p(z)) < \theta(q(z)) + zq'(z)\phi(q(z))
\]

then \(p(z) \prec q(z) \) and \(q(z) \) is the best dominant.

Definition 1: (Miller and Mocanu, 2003) Denote by \(Q \) the set of all functions \(f(z) \) that are analytic and injective on \(\overline{U - E(f)} \) where \(E(f) := \{ \zeta \in \partial U : \lim_{z \to \zeta} f(z) = \infty \} \) and are such that \(f'(\zeta) \neq 0 \) for \(\zeta \in \partial U - E(f) \).

Lemma 2: Bulboaca (2002). Let \(q(z) \) be convex univalent in the unit disk \(U \) and \(\theta \) and \(\phi \) be analytic in a domain \(D \) containing \(q(U) \) Suppose that:

\[
zq'(z)\phi(q(z)) \quad \text{is starlike univalent in} \quad U
\]

\[
\Re \left[\frac{9(q(z))}{\phi(q(z))} \right] > 0 \quad \text{for} \quad z \in U.
\]

If \(p(z) \in H[q(0), 1] \cap Q \) with \(p(U) \subseteq D \) and \(\theta(p(z)) + \phi(p(z)) \) is univalent in \(U \) and

\[
\Re \left[\frac{9(q(z)) + zq'(z)\phi(q(z))}{\phi(p(z))} \right]
\]

then \(q(z) \prec p(z) \) and \(q(z) \) is the best subordinant.

RESULTS AND DISCUSSION

In this section, we prove a subordination theorem by using Lemma 1 and as applications of this result, we find the sufficient conditions for \(f \in A \) to be univalent.

Theorem 1: Let \(q, q(z) \neq 0 \) be a univalent function in \(U \) and \(g(z) \neq 0 \) be analytic in \(C \) such that for nonnegative real numbers \(\mu \) and \(\nu \) Eq. 2:

\[
\Re \left[1 + \frac{zq'(z)}{q(z)} \right] > 0 \quad \text{for} \quad z \in U.
\]

If \(p(z) \neq 0 \) satisfies the differential subordination:

\[
\Re \left[\frac{9[p(z)]}{\phi[q(z)]} \right] > 0 \quad \text{for} \quad z \in U
\]

then \(p(z) \prec q(z) \) and \(q(z) \) is the best dominant.

Proof: Define the functions \(\theta \) and \(\phi \) as follows:

\[
\theta(w(z)) := \mu w(z) g(z) \quad \text{and} \quad \phi(w(z)) := \frac{vg(z)}{w(z)}
\]

Obviously, the functions \(\theta \) and \(\phi \) are analytic in domain \(D = C \setminus \{0\} \) and \(\phi(w) \neq 0 \) in \(D \) Now, denote the functions \(Q \) and \(h \) as follows:

\[
Q(z) := zq'(z)\phi(q(z)) = vg(z),
\]

\[
h(z) := \theta(q(z)) + Q(z) = \mu q(z) g(z) + vg(z)\frac{zq'(z)}{q(z)}.
\]

Then in view of condition (2), we obtain \(Q \) is
starlike in U and $\Re [\frac{z^r(z)}{Q(z)}] > 0$ for $z \in U$. Furthermore, in view of condition (3) we have:

$$0(p(z)) + z^r(p(z)) \Re (p(z)) < 0, q(z) \Re (q(z)).$$

Therefore, the proof follows from Lemma 1. By letting $\mu = 1, v = \alpha, g(z) := \frac{z^r(z)}{\Phi(z)}$ and $p = \frac{z^r(z)}{f(z)}$ in Theorem 1 we have:

Corollary 1: Let $q, q(z) \neq 0$ be a univalent function in U and $\frac{z^r(z)}{\Phi(z)} \neq 0$ be analytic in U satisfy (2). If Eq. 4:

$$\frac{z^r(z)}{f(z)} \neq 0, z \in U \text{ and}$$

$$\frac{z^r(z)}{\Phi(z)} \left[(1 - \alpha) \frac{z^r(z)}{f(z)} + \alpha(1 + \frac{z^r(z)}{f(z)})\right] = \frac{z^r(z)}{\Phi(z)} - \alpha q(z) + q(z),$$

then $\frac{z^r(z)}{f(z)} \prec q$ and q is the best dominant.

By setting $\mu = 1 - \alpha, v = \alpha, g(z) := 1$ and $p = \frac{z^r(z)}{f(z)}$ in Theorem 2 we obtain the following result which can be found in (Singh et al., 2009), Theorem 3.2:

Corollary 2: Let $q, q(z) \neq 0$ be a univalent function in U. If $\frac{z^r(z)}{f(z)} \neq 0, z \in U$ and Eq. 5:

$$(1 - 2\alpha) \frac{z^r(z)}{f(z)} + \alpha(1 + \frac{z^r(z)}{f(z)})$$

$$< (1 - \alpha) q(z) + \alpha q(z),$$

then $\frac{z^r(z)}{f(z)} \prec q$ and q is the best dominant.

By assuming $\mu = 1 - \alpha, v = \alpha, g(z) := 1$ and $p(z) = \frac{z^r(z)}{\Phi(f(z))}$ in Theorem 2 we obtain the following result which can be found in (Singh et al., 2009) Theorem 3.3.

Corollary 3: Let $q, q(z) \neq 0$ be a univalent function in U. If $\frac{z^r(z)}{\Phi(f(z))} \neq 0, z \in U$ and

$$(1 - \alpha) \frac{z^r(z)}{\Phi(f(z))} + \alpha(1 + \frac{z^r(z)}{f(z)}) - \frac{z^r(z)}{\Phi(f(z))},$$

then $\frac{z^r(z)}{\Phi(f(z))} \prec q$ and q is the best dominant Eq. 6.

Finally, by assuming:

$$\mu = 1 - \alpha, v = \alpha, g(z) = p(z) = \frac{z^r(z) \Phi(f(z))}{f(z) \Psi(z)}$$

in Theorem 1 we obtain the following result:

Corollary 4: Let $q, q(z) \neq 0$ be a univalent function in U and $\frac{z^r(f(z) \Phi(f(z))'}{f(z) \Psi(z)} \neq 0$ be analytic in U satisfy (2). If the subordination Eq. 7:

$$\frac{z^r(f(z) \Phi(f(z))'}{f(z) \Psi(z)} - (1 - \alpha) \frac{z^r(f(z) \Phi(f(z))'}{f(z) \Psi(z)}$$

$$+ \alpha(1 + \frac{z^r(f(z) \Phi(f(z))'}{f(z) \Phi(f(z))'} - \frac{z^r(f(z) \Psi(z))'}{f(z) \Psi(z)})$$

$$< (1 - \alpha) q(z) + \alpha q(z),$$

holds then $\frac{z^r(f(z) \Phi(f(z))'}{f(z) \Psi(z)} \prec q$ and q is the best dominant.

Note that Corollary 4, gives sufficient conditions for functions $f \in A$ to be in the class $H(\alpha, 1, 1, (z); (z))$.

An application of Theorem 1, next result shows the sufficient conditions for functions $f \in A$ to be in the class $H(\alpha, \lambda, \delta, (z); (z))$. By assuming $\mu = \alpha$ and $v := 1 - \alpha$, we have the following result:

Theorem 2: Let $f \in A$ and $q, q(z) \neq 0$ be a univalent function in U. Assume that $p(z) := \frac{z^r(f(z) \Phi(f(z))'}{f(z) \Psi(z)} \neq 0$ is analytic in U satisfies (2-3) for some $g \in H(\alpha, \lambda, \delta, (z); (z))$.

Sandwich Theorem: By employing the concept of the superordination (Lemma 2), we pose the sandwich
Theorem 3: Let \(q(z) \) be convex univalent in the unit disk \(U \). Suppose that \(g \) is an analytic in the unit disk such that

\[
vg(z) \frac{zq'(z)}{q(z)} \text{ is starlike univalent in } U \text{ and }
\]

\[
\frac{\mu}{\nu} \Re \{q(z)q'(z)\} > 0 \text{ for } z \in U.
\]

If \(p(z) \in H[q(0),1] \cap Q \), with \(p(U) \subseteq D \) and \(g(z)[\mu p(z) + \nu \frac{zq'(z)}{p(z)}] \text{ is univalent in } U \) and

\[
g(z)[\mu q(z) + \nu \frac{zq'(z)}{q(z)}] \prec g(z)[\mu p(z) + \nu \frac{zq'(z)}{p(z)}]
\]

then \(q(z) \prec p(z) \) and \(q(z) \) is the best subordinate.

Proof: Define the functions \(\theta \) and \(\phi \) as follows:

\[
\theta(w(z)) := w(z)g(z) \quad \text{and} \quad \phi(w(z)) := \frac{vg(z)}{w(z)}.
\]

Obviously, the functions \(\theta \) and \(\phi \) are analytic in domain \(D = \mathbb{C} \setminus \{0\} \) and \(\phi(w) \neq 0 \) in \(D \) hence the assumptions of Lemma 2 are satisfied.

Combining Theorem 1 and Theorem 3 we get the following sandwich theorem:

Theorem 4: Let \(q_1(z), q_2 \neq 0 \) be convex and univalent in \(U \) respectively. Suppose that \(g \) is an analytic in \(U \) such that Eq. 8:

\[
vg(z) \frac{zq_1'(z)}{q_1(z)} \text{ is starlike univalent in } U \text{ and }
\]

\[
\frac{\mu}{\nu} \Re \{q_1(z)q_1'(z)\} > 0 \text{ for } z \in U \text{ and }
\]

\[
\Re \{1 + \frac{zq_1^2(z)}{q_1(z)} \frac{zq_2(z)}{q_2(z)}\} > \max \left\{ \frac{1}{\nu} p(q_1(z), \frac{zq_1'(z)}{q_1(z)}, \frac{zq_2(z)}{q_2(z)} + \nu \frac{zq_2(z)}{q_2(z)} \right\}.
\]

If \(p(z) \neq 0 \in H[q(0),1] \cap Q \),

With:

\[
p(U) \subseteq D
\]

And:

\[
g(z)[\mu p(z) + \nu \frac{zq_1'(z)}{p(z)}] \text{ is univalent in } U \text{ and }
\]

\[
g(z)[\mu q_1(z) + \nu \frac{zq_1'(z)}{q_1(z)}] \prec g(z)[\mu p(z) + \nu \frac{zq_1'(z)}{p(z)}]
\]

Then:

\[
q_1(z) \prec p(z) \prec q_2(z), \quad (z \in U)
\]

and \(q_1(z), q_2(z) \) are the best subordinant and the best dominant respectively.

By letting \(p(z) := \frac{z\phi'(z)}{\phi(z)} \) in Theorem 4, we have

Corollary 5: Let the conditions of Theorem 4 on the functions \(q_1 \) and \(q_2 \) hold. If for \(f \in A \)

\[
\frac{z\phi'(z)}{\phi(z)} \neq 0 \in H[q(0),1] \cap Q,
\]

With:

\[
\frac{z\phi'(z)}{\phi(z)}(U) \subseteq D
\]

And:

\[
g(z)[(\mu - \nu) \frac{z\phi'(z)}{\phi(z)} + \nu(1 + \frac{z\phi''(z)}{\phi(z)})]
\]

Is univalent in \(U \) and:

\[
g(z)[\mu q_1(z) + \nu \frac{zq_1'(z)}{q_1(z)}]
\]

\[
\prec g(z)[(\mu - \nu) \frac{z\phi'(z)}{\phi(z)} + \nu(1 + \frac{z\phi''(z)}{\phi(z)})]
\]

Then Eq. 9:

\[
q_1(z) \prec \frac{z\phi'(z)}{\phi(z)} \prec q_2(z), \quad (z \in U)
\]
And $q_1(z), q_2(z)$ are the best subordinant and the best dominant respectively.

Note that (Ali et al., 2004) have used the results of (Bulboac, 2002) and obtained sufficient conditions for certain normalized analytic functions $f(z)$ to satisfy (9).

By assuming $p(z) := \frac{f(z)}{zf'(z)}$ in Theorem 4, we obtain

Corollary 6: Let the conditions of Theorem 4 on the functions q_1 and q_2 hold. If for $f \in A$

$$\frac{f(z)}{zf'(z)} \neq 0 \in H[q(0),1] \cap Q,$$

With:

$$\left(\frac{f(z)}{zf'(z)}\right)(U) \subseteq D$$

And:

$$g(z)[\mu z^2 f'(z) + \nu \frac{zf''(z)}{f'(z)} + 2 - 2 \frac{zf'(z)}{f(z)}]$$

is univalent in U and

$$g(z)[\mu q_1(z) + \nu \frac{zq_1'(z)}{q_1(z)}] \prec g(z)[\mu q_2(z) + \nu \frac{zq_2'(z)}{q_2(z)}]$$

Then Eq. 10:

$$q_1(z) \prec \frac{z^2 f'(z)}{f^2(z)} < q_2(z), \quad (z \in U) \quad (10)$$

and $q_1(z), q_2(z)$ are the best subordinant and the best dominant respectively.

Note that (Shanmugam et al., 2006) posed sufficient conditions for certain normalized analytic functions $f(z)$ to satisfy (10).

Again by considering $p(z) := \frac{z^2 f'(z)}{f^2(z)}$ in Theorem 4, we find

Corollary 7: Let the conditions of Theorem 4 on the functions q_1 and q_2 hold. If for $f \in A$

$$\frac{z^2 f'(z)}{f^2(z)} \neq 0 \in H[q(0),1] \cap Q,$$

With:

$$\left(\frac{z^2 f'(z)}{f^2(z)}\right)(U) \subseteq D$$

And:

$$g(z)[\mu z^2 f'(z) + \nu \frac{zf''(z)}{f'(z)} + 2 - 2 \frac{zf'(z)}{f(z)}]$$

is univalent in U and

$$g(z)[\mu q_1(z) + \nu \frac{zq_1'(z)}{q_1(z)}] \prec g(z)[\mu q_2(z) + \nu \frac{zq_2'(z)}{q_2(z)}]$$

Then Eq. 11:

$$q_1(z) \prec \frac{z^2 f'(z)}{f^2(z)} < q_2(z), \quad (z \in U) \quad (11)$$

And $q_1(z), q_2(z)$ are the best subordinant and the best dominant respectively.

Note that (Shanmugam et al., 2006) estimated sufficient conditions for certain normalized analytic functions $f(z)$ to satisfy (11).

Furthermore, by letting $p(z) := \frac{z(f*g)'(z)}{\Phi(f*g)(z)}$ in Theorem 4, we pose

Corollary 8: Let the conditions of Theorem 4 on the functions q_1 and q_2 hold. If for $f \in A$

$$\frac{z(f*g)'(z)}{\Phi(f*g)(z)} \neq 0 \in H[q(0),1] \cap Q,$$

With:

$$\left(\frac{z(f*g)'(z)}{\Phi(f*g)(z)}\right)(U) \subseteq D$$
And:
\[g(z)[\mu\frac{zf’(z)}{\Phi(f’(z))} + \nu\frac{z\Phi’(f’(z))}{\Phi(f’(z))}] \]

is univalent in \(U \) and:
\[g(z)[\mu q_1(z) + \nu\frac{zq_1(z)}{q_2(z)}] \]

Then Eq. 12:
\[q_1(z) < \frac{zf’(z)}{\Phi(f’(z))} < q_2(z), \quad (z \in U) \]

(12)

and \(q_1(z), q_2(z) \) are the best subordinant and the best dominant respectively.

Note that (Shanmugam et al., 2007) posed sufficient conditions for certain normalized analytic functions \(f(z) \) to satisfy (12).

Finally, by setting \(p(z) := \frac{H_m^{l}[\alpha][f(z)]}{z} \phi \), where \(f \in A \) and \(H_m^{l}[\alpha] \) is the Dziok-Srivastava linear operator (Dziok and Srivastava, 2003), in Theorem 4, we have:

Corollary 9: Let the conditions of Theorem 4 on the functions \(q_1 \) and \(q_2 \) hold. If for \(f \in A \),
\[\frac{H_m^{l}[\alpha][f(z)]}{z} \phi \neq 0 \in \chi[q(0),1] \cap \chi, \]

With:
\[\frac{H_m^{l}[\alpha][f(z)]}{z} \phi (U) \subseteq D \]

And:
\[g(z)[\mu\frac{H_m^{l}[\alpha][f(z)]}{z} \phi - \nu\delta z(\frac{z}{H_m^{l}[\alpha][f(z)]} - 1)] \]

is univalent in \(U \) and:
\[g(z)[\mu q_1(z) + \nu\frac{zq_1(z)}{q_2(z)}] \]

Then Eq. 13.
\[q_1(z) < \frac{H_m^{l}[\alpha][f(z)]}{z} \phi < q_2(z), \quad (z \in U) \]

(13)

and \(q_1(z), q_2(z) \) are the best subordinant and the best dominant respectively.

Note that (Murugusundaramoorthy and Magesh, 2006) introduced sufficient conditions for certain normalized analytic functions \(f(z) \) to satisfy (13).

Corollary 10: Let the assumptions of Theorem 4 on the function:
\[p(z) := \frac{zf’(z) + \Phi(z)}{f(z) + \Psi(z)} \]

holds. Then:
\[q_1(z) < \frac{zf’(z) + \Phi(z)}{f(z) + \Psi(z)} < q_2(z), \quad (z \in U) \]

and \(q_1(z), q_2(z) \) are the best subordinant and the best dominant respectively.

CONCLUSION

We conclude that a new class of analytic functions has been introduced and this class generalizes some well-known subclasses. This class also involves the \(E(\Phi, \Psi) \) family of functions and consequently, we can replace these functions by any well-known linear operators, differential or integral operators such as...
Carlson - Shaffer linear operator, Ruscheweyh differential operator, Salagean differential operator, Noor integral operator, Breaz and Guney integral operator and other generalizations. Some other work can also be found in the articles written by (Shaqsi and Darus, 2008) (Ibrahim and Darus, 2008; 2010; Al-Refai and Darus, 2009a; Al-Refai and Darus, 2009b; Al-Shaqsi et al., 2010; Darus et al., 2009).

ACKNOWLEDGEMENT

This study is partially supported by UKM-ST-06-FRGS0244- 2010, MOHE Malaysia.

REFERENCES

Ali, R.M., V. Ravichandran, M.H. Khan and K.G. Subramanian, 2004. Differential sandwich theorems for certain analytic functions. Far East J. Math. Sci., 15: 87-94.

Al-Refai, O. and M. Darus, 2009a. Main differential sandwich theorem with some applications. Lobachevskii J. Math. 30: 1-11. DOI: 10.1134/S1995080209010016

Al-Refai, O. and M. Darus, 2009b. On new bijective convolution operator act for analytic functions. J. Math. Stat., 5: 77-87. DOI: 10.3844/jmssp.2009.77.87

Al-Shaqsi, K., M. Darus and O.A. Fadipe-Joseph, 2010. A new subclass of salagean-type harmonic univalent functions. Abst. Applied Anal., 2010: 1-12. DOI: 10.1155/2010/821531

Bulboaca, T., 2002. Classes of first-order differential superordinations, Demo. Math., 35: 287-292.

Dziok, J. and H.M. Srivastava, 2003. Certain subclasses of analytic functions associated with the generalized hypergeometric function. Integral Transforms Spec. Funct., 14: 7-18. DOI: 10.1080/10652460304543

Ibrahim, R.W. and M. Darus, 2010. On certain classes of multivalent analytic functions. J. Math. Stat., 6: 271-275. DOI: 10.3844/jmssp.2010.271.275

Ibrahim, R.W. and M. Darus, 2008. On sandwich theorems of analytic functions involving noor integral operator. J. Math. Stat., 4: 32-36. DOI: 10.3844/jmssp.2008.32.36

Kwon, O.S., 2007. Sufficient conditions for starlikeness and strongly-starlikeness. Commun. Korean. Math. Soc., 22: 19-26. DOI: 10.4134/CKMS.2007.22.1.018

Lewandowski, Z., S. Miller and E. Zlotkiewicz, 1976. Generating functions for some classes of univalent functions. Proc. Amer. Math. Soc., 56: 111-117. DOI: 10.1090/S0002-9939-1976-0399438-7

Miller, S.S. and P.T. Mocanu, 2003. Subordinants of differential superordinations. Complex Vari. Elliptic Eq.: Int. J., 48: 815-826. DOI: 10.1080/02781070310001599322.

Mohammed, A., M. Darus and D. Breaz, 2009. Fractional calculus for certain integral operator involving logarithmic coefficients. J. Math. Stat., 5: 118-122. DOI: 10.3844/jmssp.2009.118.122

Murugusundaramoorthy, G. and N. Magesh, 2006. Differential subordinations and superordinations for analytic functions defined by the dziok-srivastava linear operator, J. Inequal. Pure Appl. Math., http://www.emis.ams.org/journals/JIPAM/images/092_06_JIPAM/092_06_www.pdf

Obradović, M. and S.B. Joshi, 1998. On certain classes of strongly starlike functions, Taiwanese. J. Math., 2: 297-302.

Ravichandran, V., C. Selvaraj and R. Rajalakshmi, 2002. Sufficient conditions for starlike functions of order \(\alpha \). J. Inequal. Pure Appl. Math., 3: 1-6.

Shanmugam, T.N., S. Sivasubramanian and M. Darus, 2007. Subordination and superordination for \(\Phi - \) like functions. J. Inequal. Pure Appl. Math., http://193.190.6.5/journals/JIPAM/images/175_06_JIPAM/175_06_www.pdf

Shanmugam, T.N., S. Sivasubramanian and H.M. Srivastava, 2006. Differential sandwich theorems for certain subclasses of analytic functions involving multiplier transformations. J. Integral Trans. Spec. Fun., 17: 889-899. DOI: 10.1080/10652460600926915

Singh, S. and S. Gupta, 1996. A differential subordination and starlikeness of analytic functions. Appl. Math. lett., 19: 618-627. DOI: 10.1016/J.AML.2005.08.012

Singh, S., S. Gupta and R. Singh, 2009. An extension of the region of variability of a subclass of univalent functions, J. Inequal. Pure and Appl. Math., http://www.emis.ams.org/journals/JIPAM/images/122_09_JIPAM/122_09_www.pdf

Xu, N. and D. Yang, 2005. Some criteria for starlikeness and strongly starlikeness, Bull. Korean Math. Soc., 42: 579-590. DOI: 10.4134/BKMS.2005.42.3.579