The Rock-Eval Pyrolysis and Hydrocarbon Generation Kinetic of Four Coal Samples from Different Areas, China

Yu Sun1,2, Xiaodong Fu3,4, Lingling Liao1, Yunpeng Wang1*

1 State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 PetroChina Hangzhou Research Institute of Geology, Hangzhou 310023, China
4 Key Laboratory of Carbonate Reservoirs, CNPC, Hangzhou 310023, China

Corresponding author e-mail: wangyp@gig.ac.cn

Abstract. Rock-Eval pyrolysis and hydrocarbon generation kinetic are effective and extensive methods to evaluate source rock. In this study, we chose four coal samples from different areas in China including Fuxing, Guangyuan, Fushun and Taiyuanzu. The results show that Fushun has the highest hydrocarbon generation capacity (399-427mg/g), the lowest dominant activation energy (47Kcal/mol) and frequency factor (1.32*10^{12}/s), which has the highest transformation ratio at different heating rates. It is easy to evaluate the hydrocarbon potential of Fushun. But Fuxing, Guangyuan and Taiyuanzu have different frequency factors and activation energies. In the multiple frequency factors (MFF) model, it is difficult to evaluate hydrocarbon potential by activation energies when frequency factors are different. This study evaluates hydrocarbon potential by comparing transformation ratio at universal and geological heating rate. This is because transformation ratio is a comprehensive result of frequency factor and activation energy. In addition, different heating rates affect the hydrocarbon generation rate of coal samples, the hydrocarbon generation rate is positive with heating rates. For example, the hydrocarbon generation rate of Fushun at 5, 25℃/min are 0.0013 and 0.0051 mg/g.s^{-1}. And the temperature difference (ΔT) of main hydrocarbon generation period heated at 3℃/my and 5,15,25℃/min are different, which are 21-52 and 53-99℃.

1. Introduction
Coal is significant source rock, and has good potential of hydrocarbon generation. Rock-eval pyrolysis and hydrocarbon generation kinetic are prevailing methods to evaluate the resource potential of source rock. Rock-eval pyrolysis results can determine the hydrocarbon capacity and kerogen type of coal samples[1, 2]. Kinetic can describe the process of hydrocarbon generation with a mathematical mode[3-5]. Kinetic parameters come from rock-eval pyrolysis experiment in open system, which can be extrapolated to geological condition[6]. In this study, we compare the hydrocarbon generation characteristics of four coal samples in the laboratorial and geological condition. The results will provide data for the exploration in Fuxing, Guangyuan, Fushun and Taiyuanzu areas.

2. Sample information
As shown in table 1, the HI range of M-FS, M-TYZ, M-FX and M-GY samples are 399-427, 197-205, 113-130 and 107-112 mg/g, respectively. The Tmax range of four samples are 425-446℃. Figure 1 shows that Kerogen type of M-FS(II1), M-TYZ(II2), M-FX and M-GY(III). M-FS sample has the...
highest capacity of hydrocarbon generation, which is almost four times than M-FX and M-GY samples.

Table 1. The Rock-eval data of four samples.

Sample ID	S1(mg/g)	S2(mg/g)	S3(mg/g)	Tmax(℃)	TOC(%)	HI(mg/g)	OI(mg/g)
M-GY-1	1.01	76.89	7.1	446	71.92	107	9.87
M-GY-2	1.01	77.37	7.7	439	70.75	109	10.88
M-GY-3	1.09	80.3	7.08	442	71.97	112	9.84
M-FX-1	0.71	73.04	5.71	433	56.08	130	10.18
M-FX-2	0.5	64.92	8.49	426	56.13	116	15.13
M-FX-3	0.65	69.58	5.68	433	61.35	113	9.26
M-FS-1	6.05	286.01	7.68	428	66.99	427	11.46
M-FS-2	4.4	253.11	5.28	429	63.39	399	8.33
M-FS-3	4.95	278.27	7.2	427	66.32	420	10.86
M-TYZ-1	3.28	141.63	4.0	427	71.91	197	5.56
M-TYZ-2	3.9	139.95	4.12	425	68.27	205	6.03
M-TYZ-3	3.34	129.12	4.6	430	64.32	201	7.15

Figure 1. The kerogen type of four samples in HI-Tmax diagram.

3. Experiment method

3.1. pyrolysis
Rock-eval 6 is widely used to gain pyrolysis data including total organic content(TOC), thermo-vaporized free hydrocarbon(S1), pyrolysis hydrocarbon from cracking of organic matter(S2), carbon dioxide organic source(S3) and temperature of peak S2 maximum(Tmax)[1]. The kinetic results of single heating rate pyrolysis experiments are inconsistent with results from multiple-heating rate experiments[7]. In this study, each sample was divided into three parallel groups and performed pyrolysis experiment at 5, 15, 25℃/min, respectively. Thus, accidental errors brought by single heating rate experiment can be avoided.

3.2. kinetic model
The laboratory artificially maturate organic matter in source rock samples and this process can be described by kinetic model based on a series of independent first-order reactions[8]. The kinetic can be approximately described by the Arrhenius equation[6, 9]. In the equation 1, t is time, T is temperature, xi is the residual potential of oil and gas formation associated to reaction i, R is the molar gas constant and A is the frequency factor while Ei is the assumed activation energies[3, 6].

\[
dx_i/dt = -A_i \exp(-E_i/RT), \quad i=1\ldots N \quad \text{(Equation 1)}
\]
Kinetics parameters from the laboratory can be extrapolated to the geological condition[6]. Kinetic can be used to compute hydrocarbon yield, generation rates and the transformation ratio in the petroleum system[7].

![Figure 2. Hydrocarbon generation rate and transformation ratio of four samples at 5, 15, 25°C/min.](image)

Sample ID	Heating rate(°C/min)	T_{start} (°C)	T_{end} (°C)	ΔT (°C)
M-FS	5	406	459	53
	15	428	482	54
	25	438	494	56
M-GY	5	432	522	90
	15	449	544	95
	25	458	554	96
M-FX	5	420	513	93
	15	440	536	96
	25	450	549	99
M-TYZ	5	409	481	72
	15	428	504	76
	25	438	514	76

4. Results and discussion

4.1 Hydrocarbon generation characteristics
As shown in the figure 2, M-FS has the highest hydrocarbon (HC) generation rate at 5, 15 and 25°C/min heating rates, which is 0.0013, 0.0032 and 0.0051 mg/g.s⁻¹, respectively. The rate at 25 °C/min is near five times to the rate at 5°C/min. Therefore, HC generation rates are positive with heating rates. M-FX and M-GY always have similar HC generation rates, which are the lowest rate among four samples. The transformation ratio of four samples have same characteristic at different heating rates. TR from high to low are M-FS, M-TYZ, M-FX and M-GY samples before reaction ending.

In this study, we divided transformation ratio between 20% and 80% as main hydrocarbon generation period (MHGP). For each sample, the starting and ending temperature of MHGP at 5°C/min is smaller than 15 and 25°C/min. And the temperature difference(ΔT) between starting and ending temperature is near constant at three heating rates (Table 2). This is because the temperature and reaction time complement each other. The smaller heating rate means more heating time, which is consistent with equation 1 that the increase of time(t) leads the decrease of temperature(T) while other parameters are constant, such as xi, A, E and R. And the MHGP means Δxi is constant for 60%, which means ΔT is also constant. Hence, different heating rates would not change ΔT.

4.2 Hydrocarbon generation kinetic
The kinetic models with a discrete distribution of activation energies have two kinds: single frequency factor (SFF) model and multiple frequency factors (MFF) model[10]. SFF model has a universal frequency factor, and allow scholars to easily compare the kinetic difference of all samples. MFF model has different frequency factors, which is difficult to compare the difference. This is the reason many scholars take SFF model to evaluate source rock. But the SFF model underestimates the hydrocarbon generation potentials of some organic matter with lower and higher activation energies[10, 11]. MFF model can avoid that situation[10]. Hence, this study used MFF model. As shown in the figure 3, the frequency factor of M-FS, M-TYZ, M-GY and M-FX samples are 1.32*10^{12}/s, 1.41*10^{13}/s, 6.94*10^{14}/s, 4.96*10^{12}/s, respectively. And the activation energy range is 40-63, 42-65, 49-73 and 41-65Kcal/mol, respectively. The activation energy distribution of M-FS is very concentrated, and has only one dominant activation energy (47kcal/mol). In contrast, the activation energy distribution of M-GY and M-FX are very dispersed, and both have three dominant activation energy (56, 58, 60Kcal/mol and 48, 49, 50Kcal/mol). The dominant activation energy of M-GY is higher than M-FX, and the frequency factor of M-GY (6.94*10^{14}/s) is bigger than M-FX (4.96*10^{12}/s). Transformation ratio as a comprehensive result of frequency factor and energy, can reflect the difference of kinetic parameters in MFF model. As shown in the figure 2, the transformation ratio of M-GY is always lower than M-FX at different heating rates. M-FS has the highest transformation ratio.

4.3 Application to geological condition

The laboratory kinetic parameters can be extrapolated to geological heating rate[6]. We chose 3°C/ky (million years) as a universal and geological rate. After temperature reaches 250°C, four samples gradually reach ultimate yield. Although M-GY has highest frequency factor (6.94*10^{14}/s), the transformation ratio of M-GY is lowest (94.64%) while other samples have almost same transformation ratio (98.71-99.94%) at 250°C. The dominant activation energy of M-GY is highest (56, 58, 60Kcal/mol), and activation energy may have bigger influence to transformation ratio than frequency factor. The starting and ending temperature of main hydrocarbon generation period of M-FS, M-TYZ, M-FX and M-GY, are 112-133, 125-162, 123-174 and 152-204°C, respectively (Table 3). Table2 and Table 3 show that the temperature difference (ΔT) of main hydrocarbon generation period heated at 3°C/ky and 5,15,25°C/min are different, which are 21-52 and 53-99°C.

Sample ID	Heating rate(°C/ky)	T_{start} (°C)	T_{end} (°C)	ΔT (°C)
M-FS	3	112	133	21
M-GY	3	151	203	52
M-FX	3	123	174	51
M-TYZ	3	123	162	39

5. Conclusions

In this study, we compared the hydrocarbon generation characteristics of four coal samples from Fuxing, Guangyuan, Fushun and Taiyuanzu. Four samples have different frequency factors and
activation energies. It is difficult to compare the hydrocarbon potential by activation energies when frequency factors are different. Especially, samples only have high frequency factor or low dominant activation energy. The transformation ratio is a comprehensive result of frequency factor and activation energy, which can reflect the hydrocarbon potential of different samples at universal heating rate. Fushun sample has the lowest dominate activation energy (47 kcal/mol) and lowest frequency factor (1.32×10^{12}/s), which has the highest transformation ratio at different heating rates. In contrast, Guangyuan sample has the highest frequency factor (6.94×10^{14}/s) and the highest domain activation energy (56, 58, 60Kcal/mol), which has the lowest transformation ratio at different heating rates. In the geological condition, Fushun has highest transformation ratio. Although Taiyuanzu and Fuxing have different frequency factors and activation energies, the transformation ratio of Taiyuanzu and Fuxing are near. Therefore, comparing transformation ratio at geological temperature can evaluate the hydrocarbon potential of samples in the multiple frequency factors (MFF) model.

In addition, different heating rates will affect the hydrocarbon generation rate of coal samples, the hydrocarbon generation rate is positive with heating rates. The temperature difference (ΔT) of main hydrocarbon generation period heated at 3°C/my is smaller than that heated at 5,15,25 °C/min.

Acknowledgments
The authors appreciate the 10th AAAPG conference. This work was funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA14010103) and the National Natural Science Foundation of China (41702151).

References
[1] Behar F, Beaumont V and Penteado H L D B 2006 Rock-Eval 6 Technology: Performances and Developments Oil & Gas Science & Technology 56 111-34
[2] Huang D F 1984 Terrestrial organic matter evolution and hydrocarbon generation mechanism Petroleum industry press
[3] Burnham A K and Braun R L 1999 Global kinetic analysis of complex materials Energy Fuels 13 1-22
[4] Burnham A K and Sweeney J J 1989 A CHEMICAL KINETIC-MODEL OF VITRINITE MATURATION AND REFLECTANCE Geochimica Et Cosmochimica Acta 53 2649-57
[5] Burnham A K 2000 Computational aspects of kinetic analysis. Part D: The ICTAC kinetics project - multi-thermal-history model-fitting methods and their relation to isoconversional methods Thermochim. Acta 355 165-70
[6] Ungerer P and Pelet R 1987 EXTRAPOLATION OF THE KINETICS OF OIL AND GAS-FORMATION FROM LABORATORY EXPERIMENTS TO SEDIMENTARY BASINS Nature 327 52-4
[7] Peters K E, Burnham A K and Walters C C 2015 Petroleum generation kinetics: Single versus multiple heating-ramp open-system pyrolysis AAPG Bull. 99 591-616
[8] Braun R L and Burnham A K 1987 ANALYSIS OF CHEMICAL-REACTION KINETICS USING A DISTRIBUTION OF ACTIVATION-ENERGIES AND SIMPLER MODELS Energy Fuels 1 153-61
[9] Tissot B P, Pelet R and Ungerer P 1987 THERMAL HISTORY OF SEDIMENTARY BASINS, MATURATION INDEXES, AND KINETICS OF OIL AND GAS GENERATION AAPG Bull.-Am. Assoc. Petr. Geol. 71 1445-66
[10] Wang M, Lu S F and Xue H T 2011 Kinetic simulation of hydrocarbon generation from lacustrine type I kerogen from the Songliao Basin: Model comparison and geological application Mar. Pet. Geol. 28 1714-26
[11] Dieckmann V 2005 Modelling petroleum formation from heterogeneous source rocks: the influence of frequency factors on activation energy distribution and geological prediction Mar. Pet. Geol. 22 375-90