IMPACT OF CLIMATIC VARIATIONS ON THE FLOWERING PHENOLOGY OF PLANT SPECIES IN JHELM DISTRICT, PUNJAB, PAKISTAN

MAJEED, M.1 – BHATTI, K. H.1 – AMIAD, M. S.2*

1Department of Botany, University of Gujrat, Hafiz Hayat Campus, Gujrat, Punjab, Pakistan
2Department of Botany, Women University of Azad Jammu and Kashmir, 12500 Bagh, Pakistan

*Corresponding author
e-mail: malikshoaib1165@yahoo.com; phone: +92-345-381-2987

(Received 14th Feb 2021; accepted 14th May 2021)

Abstract. District Jhelum is located in the extremely diverse province of Punjab, Pakistan, and flowering event in plants is always influenced by the environment. This study was conducted during 2018 to 2020 to investigate the climatic effects on flowering cycle of plants. The main focus of the study was to find out the particular association between flowering phenology of plants and climatic variables. Month-wise phenological response of plants was recorded during frequent field visits at multiple representative microhabitats. The response data is saved as binary data matrix, and mean monthly climatic data is obtained through remote sensing, and analysed by using multivariate analyses like canonical correspondence analysis, hierarchical classification and pseudo-canonical correlation. CCA and Hierarchical classification were applied to assess the importance climatic variations towards the flowering phenological response and potential groups respectively. A total of 404 plant species of 223 genera belonging to 75 plant families were examined. Majority of plant species were found in flowering during the month of March (174 spp.) followed by April (159 spp.) and August (158 spp.), similarly, Summer was the leading season (208 spp.) followed by Monsoon (203 spp.), Spring (181 spp.) and Autumn (157 spp.). CCA results depicted that total variations in the flowering phenology response data were 3.45084, and about 45.6% were explained by the explanatory climatic variables. Wind speed, mean monthly maximum temperature and soil moisture were detected as most influential drivers of flowering phenology in the study area. The current study will be useful for researchers as a major source of knowledge for the conservation of valuable species. Such type of attempts will be supportive to explore the phenological response of plants in various habitats such as forest, hilly, riverine, desert and range lands flora in their future projects.

Keywords: phenological response, hierarchical classification, canonical correspondence analysis

Introduction

The word “phenology” stands for the life history of plants (Vashistha et al., 2009). To record phenological response at local and regional scale some modeling tools and remote sensing play significant role (Neil and Wu, 2006). Phenology of plants is recorded through observation during ecological explorations to estimate month wise or season wise data including the last stage of appearance (Meier et al., 2007; Menzel et al., 2006). During documentation of ground truth data, various climatic variables were recorded for comparative data analysis (Badeck et al., 2004). In an ecosystem clear effects of climatic variables on phenological response were determined (Kolb et al., 2007). Climatic and phenological relations were documented by many research studies (Petry et al., 2016). Phenology and climatic conditions are linked to multiple scales (Bertin, 2008), environmental variables can affect the functional aspects of plants in any ecosystem (Parmesan, 2006; Calinger et al., 2013) resulting in close relationships among plant pollinators and plant species (Forrest, 2015; Kharouba and Vellend, 2015), and also among migratory birds and plants (Both et al., 2006). In life of plants, some unpredicted
circumstances can affect the flowering event such as extreme temperature, day length and humidity, and studies documenting the influence of current climate on phenological events become extremely important because researchers already predicted a remarkable potential change in future climate. The presence or absence of biotic factors such as, grazers and insect pollinators and abiotic factors such as temperature, day length, and rainfall which influence the pattern of phenology (Thomson, 2010).

Various research studies resulted that temperature had significant effect on Phenology of plant species. But it was noted that temperature and phenological effect was not uniform in the World. The reason depicted that there was fluctuation in temperatures from different regions. Each species showed particular effect of temperature on phenology. So, the effect of temperature varied from species to species. In different regions of the World, with altitudinal variations, temperature played a basic role in different phenological response (Luo et al., 2007) (Holway and Ward, 1965; Shen et al., 2015; Luo et al., 2007) (Mooney and Billings, 1960). At different stages of phenology, the plants showed variable response at various temperature (Vashistha et al., 2009). International Panel on Climate Change, stated that a global rise of 0.74 °C in surface temperature results in environmental changes including less snow cover, rise in glacier melting, rise in sea level and variations in environmental temperature, rainfall and wind speed (Change, 2007).

In various regions of the World, climatic variations affected phenological responses greatly. The major climatic factors which influence the phenological pattern among various species are temperature, soil moisture, precipitation and rainfall (Chambers et al., 2013; Liu et al., 2016a, b; Inouye, 2008; Wolkovich and Cleland, 2011; Sun et al., 2015; Shen et al., 2016; Buyantuyev and Wu, 2012; Piao et al., 2019; Ma et al., 2013; Yu et al., 2003; Zhang et al., 2018; Visser et al., 2010; Richardson et al., 2013; Badeck et al., 2004; Zalamea and González, 2008). Globally, various seasons also play an important role in the phenology of plant species (Piao et al., 2019; Wolkovich and Cleland, 2011; Mittermeier et al., 2019; Gordo and Sanz, 2005; Morisette et al., 2009; Chambers et al., 2013; Yang et al., 2017).

Many studies resulted that temperature directly had direct influence on the phenological response among various plants species (Piao et al., 2019; Cleland et al., 2007; Cornelius et al., 2013; Prevéy et al., 2017; Crabbe et al., 2016; Shen et al., 2011; Keenan et al., 2020). Whereas, seasonal environmental variations showed a clear association to flowering period of plants. While phenological period, during life cycle of plants, represent prominent association with temperature. Moreover, in some cases, humidity, soil moisture, soil composition and soil texture influence the plant phenology (Cleverly et al., 2016; Francioli et al., 2018; Nandintsetseg and Shinoda, 2011; Peña-Barragán et al., 2011; Bodin and Morlat, 2006). Soil showed a major effect on the life cycle of plants. Many studies from different regions of the World, revealed the influence of soil factors on phenological pattern of plant species (Pausas and Austin, 2001; Okusanya et al., 2016; Anderson et al., 2012; Tadey, 2020; Tooko and Battey, 2010; Staehlin and Fant, 2015; Hulme, 2011; Cleland, 2007; Godoy et al., 2009; Neil et al., 2010; Lesica and Kittelson, 2010; Khanduri et al., 2008; Chen et al., 2020; Wolkovich and Cleland, 2014; McEwan et al., 2011; Matthews and Mazer, 2016).

The effect of climate and phenological response among large number of plants species was investigated in different geographical regions (Menzel et al., 2006; Parmesan, 2006; Parmesan and Yohe, 2003). Phenological response during spring season were recorded from many decades (Chambers et al., 2013; Schwartz et al., 2013; Ge et al., 2015), while phenological stages were not reported exactly (Menzel et al., 2006; Gill et al., 2015). From terrestrial ecosystems, flowering patterns of plant which played a significant role as
biological factor are influenced by climate variations (Rosenzweig et al., 2007; Khan et al., 2018; Wang et al., 2018). It is resulted that species with progress in phenology with the rise in temperature will have better chances of survival. Such types of species represented maximum number of flowers, biomass production and vegetation cover. On the other hand, species which do not respond to climate variation faced hazard with short growth period as compared to active competitors (Cleland et al., 2012). As, such types of plant species not responding to temperature changes are facing a rapid decline in their abundance during the previous 150 years (Willis et al., 2008). Many ecologists reported the impact of topography, anthropogenic and climatic changes and possible causes upon various plant species (Khan et al., 2019a, b).

Ecologists should focus on durable and long lasting programming of existing natural resources to assess biodiversity of rich flora from unexplored regions by using multivariate analyses as comprising ordination techniques and hierarchical classification (Khan et al., 2019a, b). Moreover, the district Jhelum, Punjab, Pakistan was still unexplored, mainly relating to plant species indicating phenology and its patterns. As a result, the first ever comprehensive research was conducted to explore the unexplained aims which were

a. to explore the flowering response of angiosperms during the year in different seasons and monthly base
b. to discover the effect of climatic factors on phenological response of the plant species.

The current attempt will convey effective ecological knowledge to the researchers, range land managers, foresters, botanists and ecologists in future studies but also provide many valuable plant species grouping with the phenological response.

Materials and methods

Study area

District Jhelum from Pakistan is located towards North of the river Jhelum and bounded by district Rawalpindi in the North, Sargodha and Gujrat districts lies in the South, Azad Kashmir is situated East, and district Chakwal is located West (Mushtaq et al., 2011; Shah et al., 2013; Majeed et al., 2021). Total population of the district Jhelum is 1.223 million, 71% population lives in rural areas while the remaining 29% population lives in urban area (Altaf et al., 2018). The climatic condition showed that the district is semi-arid, warm subtropical region and is categorized by warm summer and severe winters. Jhelum is a semi-mountainous range, mean annual rainfall is 880 mm per annum while annually temperature in average is 23.6 °C. Jhelum river is compromise up to 247, 102 acres of main land of plains on the other hand 41,207 acres is covered by hills (Figs. 1 and 2). The second largest salt mine of the world (Khewra) is in Jhelum which covers an area of 2268 acres (Shah et al., 2013; Hamidov et al., 2016). People of district Jhelum have their diverse mode of life span, culture, traditions, beliefs and have been using indigenous plants for various purposes (Iqbal et al., 2011). The ethnic groups of the area showed a strong linkage with wild plants of cultural and medicinal significance (Majeed et al., 2020).

Floristic and phenological data collection

The research area was floristically explored 2018-2020 (3 years) to record plant species. The main focus was to record the phenological response to climatic changes with reference
to season and monthly basis. The collected specimens of plant species were tagged with voucher number, pressed, fully dried and finally mounted on the International standard sized sheets of herbarium, following the identification by applying Flora of Pakistan (URL: http://www.efloras.org/) and cross matched with floristic literature (Qureshi et al., 2011; Ali and Nasir, 1989; Ali and Qaiser, 1995). Afterward the initial possible identification of specimens, presently established binomials of each plant species and the family names were copied from the plant list ver. 1.1 (URL: http://www.theplantlist.org/) (TPL, 2013), as proposed by (Khan et al., 2016), to evade any taxonomic mistakes and misperception linked to ordering and placement. Further information comprising local names (Cain and Castro, 1960), were also documented. Frequent field visits were conducted to note phenology and to collect the plant samples from study sites. To record phenological responses of plant species, 171 altitudinal transects (Grids 5×5 km²) containing 513 samples and 1539 sub-plots were studied by applying stratified random vegetation sampling method. Sub-plots (quadrates) size was 10×10 m for tree layer, 5×5 m for shrub layer and 1×1 m for herbaceous layer (herbs and grasses). The completely prepared voucher specimens were placed in the herbarium of the Department of Botany, University of Gujrat, Punjab, Pakistan for future reference and record. Phenological response of each reported plant species was found out by using the given equation:

$$SFR \% = \frac{\text{Species recorded during flowering in a month}}{\text{Total plant species documented in study area}} \times 100$$

where: SFR is monthly-based species flowering phenological response. Likewise, the monthly-based response is used to determine the seasonal based flowering response for each plant species, and this classification include winter season (November to February), spring (March to April), summer (May to August), monsoon (July to September), and autumn season (September to October). While family importance value (FIV) was calculated with given equation:

$$FIV \% = \frac{\text{Species belong to plant family}}{\text{total plant species reported in study area}} \times 100$$

Climate data collection

In the study area, the climate conditions vary both in temporal and spatial scales. The climate data including environmental precipitation, maximum and minimum temperature, humidity, soil moisture, wind speed, and downward short and long wave radiations (2010-2019 = 10 years) of the study area (Jhelum) was developed from the United States National Centers for Environmental Prediction (US-NCEP), Climate Forecast System Reanalysis (CFSR) by applying climate engine, (https://app.climateengine.org/). The temperature data source was CFSv2 19200 m (1/5-deg) daily reanalysis dataset (NOAA) (Table 2).

Statistical analyses

The reported data of phenological response was put in Microsoft excel spreadsheet (plant species vs month-seasons), binary data matrix. Phenology of plant species was recorded monthly. Climatic and phenological data was calculated and linked to remote sensing data created with R statistical package (Ilyas et al., 2013), to produce pairwise correlation, distribution and scatterplots (Khan et al., 2015, 2018). Hierarchical clustering tree for months and seasons (Distance; Correlation, Linkage; Ward) was established and the
package was named as “pvclust” with R statistical package (Team, 2014). CCA was applied by using Canoco software (Ter Braak and Šmilauer, 2012), to find out the impact of climatic factors to show variations in the data for binary response (Khan et al., 2018).

Figure 1. Map of the study area representing the points of quadrates at different elevations in the district of Jhelum

Figure 2. Landscape representing richness of flora of the study area (a) forest (b) first author identifying plant species (c) view of salt range (d) view of hilly vegetation
Results

The record of phenology period of each plant species is a fundamental and important element of such explorations. Reproductive phenological response is permanently interrelated to unique set of climatic variables of any area, thus, assessment of essential climatic factors are needed to lean any potential future climate variation influences.

Floristic classification

A total of 404 plant species were explored including vascular plants belonging to Angiosperms (402 species (99.5%)), Gymnosperms (1 species (0.45%)) and non-vascular Pteridophytes (1 species (1.33%)) including 223 genera and 75 families. Angiosperms were further classified as dicot including 328 species (81.19%), 177 (79.37%) genera and 63 families (84%) while monocot comprised of 74 species (18.32%), 44 (19.73%) genera and 10 families (13.33%) (Table 1). The leading plant family was Poaceae (59 spp., 14.6%), followed by Leguminosae (57 spp., 14.11%), Amaranthaceae (27 spp., 6.68%) and Solanaceae (19 spp., 4.7%) (Fig. 3), while the leading genus was Euphorbia (10 spp., 2.48%), followed by Brassica (7 spp., 1.783%), Heliotropium, Acacia, Solanum (6 spp., 1.49% each.) (Fig. 4).

Table 1. Summary of floristic composition in Jhelum district, Punjab, Pakistan

Phyto-Taxa	Families	Genera	Species
Pteridophytes	1 (1.33%)	1 (0.45%)	1 (0.25%)
Gymnosperms	1 (1.33%)	1 (0.45%)	1 (0.25%)
Angiosperms	73 (97.33%)	221 (99.1%)	402 (99.5%)
Monocots	10 (13.33%)	44 (19.73%)	74 (18.32%)
Dicots	63 (84%)	177 (79.37%)	328 (81.19%)
Total	75 (100%)	223 (100%)	404 (100%)

Figure 3. Graph depicting the leading plant families in the study area
With respect to the diverse microhabitats, grassland showed the maximum number of 283 species (70.05% of overall flora), followed by 281 road side species (69.55%), 228 forest species (55.44%) and 223 arable land species (55.2%), rest of micro-habitat resulted waste places with 216 species (53.47%), hilly slope with 209 species (51.73%), shady places with 184 species (45.54%), graveyard with 174 species (43.07), wet land with 129 (31.93%), dry land with 122 species (30.2%), scrubland and home garden, both with 110 species (27.23%), sandy places with 92 species (22.77%) and mountain summits with 34 species (8.2%). An overall habit-wise arrangement of the documented plant species showed four groups. Maximum number of herbs involved 246 species (60.89%), followed by grasses with 59 species (14.6%), shrubs with 50 species (12.38%) and trees with 49 species (12.13%) (Fig. 5).

![Figure 4](image1.png)

Figure 4. Graph depicting the leading plant genera in the study area

![Figure 5](image2.png)

Figure 5. A graph depicting the results of grouping of vascular plant species into different habitat and micro-habitat categories
Flowering phenology and classification

The reproductive phenological response recorded and showed that maximum flowering stage of plant species was during months of March, April and August (174 spp., 43.07%, 159 spp., 39.36% and 158 spp., 39.11%). The minimum phenological response was noted in the month of January and December (5 spp., 1.24%) and November (7 spp., 1.73%) (Fig. 6).

![Graphical representation of temporal variations in the flowering phenology of the vascular plant species](image)

Figure 6. Graphical representation of temporal variations in the flowering phenology of the vascular plant species

The reproductive phenology response resulted that the majority of the plant species go through their reproductive phase during March, April, August and September months in a year, while, November to January is not a favored time to arrive into effective reproductive phonological phase due to ecological fluctuations. As far as the beginning time for species phenological response is depicted, most of the plant species started the flowering period in the months of February (32 spp., 7.92%), May (18 spp., 4.45%), June (45 spp., 11.14%) and July (55 spp., 13.61%). While, decline in flowering response with reduced number of plant species occurred in the month of October in 16 spp., 3.96%) (Fig. 7).

Leading reproductive phenological response results were shown in the summer by 208 species (51.49%) followed by Monsoon with 203 species (50.25%), during Spring with 181 species (44.8%) and Autumn with 157 species (38.86%). The least phenological response was recorded during Winter in 42 species (10.4%) (Fig. 8).

Ordination analysis

With reference to ordination analysis, detrended correspondence analysis (DCA), a unimodal unconstrained model (where as climatic factors were applied for supplementary variables) was designated to pursue the gradient length in the binary compositional phenological response data. The results of presented analysis represented that the gradient length in the response data was above 3 SD (standard deviation of species turnover) for
the first two DCA axes. Moreover, the response data was binary (1/0), by concluding data on the basis of the given two observations, a constrained uni-modal ordination model such as CCA was used to find out the type variables in the phenological response data described by the recorded predictions, and sort of importance order.

Figure 7. Correlation plot of months and seasons based on their flowering phenology response

Figure 8. Hierarchical clustering tree of Months and seasons (Distance: Correlation, Linkage: Ward) with AU/BP% values based on their flowering phenology response
The results of Pearson’s correlation and its significance showed that overall plant species found in flowering phenological phase in different months is strongly correlated \((r > 0.8)\) with mean monthly values of five different climatic variables. These include mean soil moisture \((r = 0.65)\), followed by precipitation variable that was found moderately positively correlated \((r = 0.62)\), mean specific humidity \((r = 0.60)\), long wave radiations \((r = 0.52)\), shortwave radiations \((r = 0.49)\), mean minimum temperature \((r = 0.46)\), mean maximum temperature \((r = 0.40)\), and similarly, a strong negative correlation was observed with wind speed \((r = 0.36)\) in the study area (Figs. 9 and 10).

Figure 9. Graph representing correlation significance. (The distribution of each variable is shown on the diagonal. On the bottom of the diagonal the bivariate scatter plots with a fitted line, and ellipses are presented, while on the top of the diagonal the value of the correlation plus the significance level as stars. Each significance level is linked to a symbol: \(p\)-values \((0, 0.001, 0.01, 0.05, 0.1, 1)\) < \(\leq\) symbols (“***”, “**”, “*”, “.”, “")

The results showed the interlink age of response (months and seasons) and descriptive (climatic) data. Multi-nonlinearity among climatic variations were determined on the observations within variables of inflation factor (VIFs) assessment of every climatic factors, and a threshold value of < 5 is designated to eliminate the extremely collinear descriptive variations. The ultimate CCA model was included of four types of predictions such as minimum temperature, wind speed, and soil moisture (25 cm below the soil surface) (Fig. 11). A total Variations of 3.45084 was noted in the reproductive phenology response data, about 58.85% variations were described by the descriptive variables, and the modified explained variations were 84.68%. The first two CCA axes cumulatively explained about 45.6% variations (Table 2). A significantly higher pseudo-canonical correlation \((r > 0.8)\) value was recorded for the first three CCA axes which show that the
nominated predictions were significant factors, and there is no single significant climatic gradient relatively all the four were significant in one way or another (Table 3).

Figure 10. Hierarchical clustering tree of climate and species flowering response variables (Distance: Correlation, Linkage: Ward) with AU/BP% values (n = 17)

Figure 11. Canonical correspondence analysis biplot depicting the interrelationships of climate and flowering phenological samples (months and seasons) in the study area

Table 2. CCA summary table

Statistic	Axis 1	Axis 2
Eigenvalues	0.9252	0.406
Explained variation (cumulative)	26.81	38.58
Pseudo-canonical correlation	0.9797	0.8384
Explained fitted variation (cumulative)	58.85	84.68
Total variations	3.45084	
Sum of canonical eigenvalues	1.57358304	
Explained variation %	45.6	
Unexplained variation %	54.4	
Table 3. Canonical correspondence analysis numerical results showing the order of importance of studied climatic variables (p-values were corrected by using False Discovery Rate method)

Variable	Explains %	pseudo-F	P	P(adj)
Wind speed (M/Sec)	24.7	4.9	0.002	0.0032
Min. temperature °C	24.3	4.8	0.002	0.0032
Downward long wave radiation (W/M²)	23.4	4.6	0.002	0.0032
Max. temperature °C	22.3	4.3	0.002	0.0032
Specific humidity (g/kg)	21.2	4	0.002	0.0032
Downward shortwave radiation (W/M²)	15.7	2.8	0.004	0.00533
Precipitation (mm)	10.2	1.7	0.056	0.064
Soil moisture (5 cm; in fraction)	7.6	1.2	0.234	0.234

2. Conditional term effects:

Variable	Explains %	pseudo-F	P	P(adj)
Wind speed (M/Sec)	24.7	4.9	0.002	0.003
Max. temperature °C	13.3	3	0.002	0.003
Soil moisture (5 cm; in fraction)	7.5	1.8	0.045	0.05

Discussion

Floristic classification and its importance

The study area District Jhelum, Punjab, Pakistan contains hills, Jhelum river flows through it, mostly forest cover, scrub lands, range lands and little part of salt range. The area is unique due to versatile geography, variable ecology and rich soil composition. It was observed that the district contains maximum vegetation cover, species richness and floristic diversity. The conducted study aimed to document the floristic composition of the study area along with diverse features counting flowering phenology and reproductive phenological response of the vascular and non-vascular plant species with respect to basic climatic variables.

In the study area, a total of 401 vascular and 1 non-vascular plant species were recorded. The obtained results of family importance value showed that the leading plant family was Poaceae with 59 species followed by Leguminosae (57 spp.), Amaranthaceae (27 spp.) and Solanaceae (19 sp.) while the leading genus was Euphorbia (10 spp.), followed by Brassica (7 spp.), and Heliotropium, Acacia, and Solanum (6 spp. each). The conducted study was similar to the floristic composition of Muzaffarabad district, Azad Jammu and Kashmir, Pakistan published by Khan et al., 2015, who explored that the leading plant family was Compositae (69 spp.), followed by Poaceae (57 spp.), Leguminosae (54 spp.), Lamiaceae (42 spp.) and Rosaceae (29 spp.); whereas the prominent genus was Euphorbia (10 spp.), followed by Cyperus, Ficus, Geranium and Prunus (7 spp. each). Identical discoveries with floristic composition of Qalagai hills, Kabal valley Swat directed by Ilyas et al., 2013, the Poaceae (22 sp.) was the leading plant family followed by Compositae (16 spp.) and Lamiaceae (14 spp.). In the parallel style Shaheen et al., 2015 quantified 65 plant species of 26 families from western Himalayan subtropical forest stands of Kashmir in which Poaceae (8 spp.) was the prominent family followed by Compositae (6 spp.) and Lamiaceae (2 spp.) was typically equivalent to the presented discoveries. Comparable outcomes from Shahbaz Garhi, district Mardan, Pakistan by Khan et al., 2014, showed Poaceae (15 pp.) as the prominent...
family followed by Compositae (14 spp.). The identical survey was documented from district Bagh of Azad Jammu and Kashmir by Tanvir et al., 2014 and reported Poaceae (42 spp.) as the leading plant family followed by Compositae (11 spp.). Khan et al., 2015 recorded Poaceae (54 spp.) as the leading family followed by Compositae (33 spp.) and Lamiaceae (23 spp.), and closely match with this study. Khan et al., 2017 described same findings that Poaceae was the prominent family comprised of 20 species followed by Lamiaceae (16 spp.) and Compositae (14 spp.), from Swat Ranizai, district Malakand, Khyber Pakhtunkhwa, Pakistan. Poaceae and Compositae are leading due to widespread ecological amplitude with diverse habitats (Ibrahim et al., 2019).

Traditional uses of 149 species belonging to 60 genera and 16 tribes of 5 sub families of Poaceae were recorded by Majeed et al., 2020, from Punjab Province, Pakistan. Hussain, 2009 documented 120 plant species belonging to 46 families, and detected Poaceae as the leading family with 14 plant species also match with this study. Similar results were presented by Shaheen et al., 2014, from Santh Saroola Kotli Sattian, Rawalpindi, Pakistan, who recorded 106 species, Poaceae family was dominant with 21 spp., followed by Asteraceae (19 spp.), Fabaceae (15 spp.), Euphorbiaceae, Lamiaceae (7 spp., each). Umair et al., 2019 recorded similar results, as 129 plant species belonging to 59 families were examined and Poaceae with 13 plants species was the leading family, from Chenab riverine area, Punjab province Pakistan. Amjad et al., 2016 presented similar results from Nikyal valley, Azad Jammu and Kashmir, Pakistan, who recorded 110 species belonging to 51 families and 98 genera. Poaceae (18 spp.) was the leading family followed by Asteraceae (10 spp.), Lamiaceae (8 spp.) and Fabaceae (7 spp.). Zahoor et al., 2017 investigated 96 plants belonging to 34 families from district Sheikhupura, province Punjab, Pakistan and Poaceae was the dominant family with 16 spp. followed by Fabaceae 15 spp. results were similar to the present study. Plant species of the Poaceae family are not only used as fodder and forage but also contribute substantially to the treatment of various health disorders, particularly in livestock (Majeed et al., 2020).

Climatic determinants of flowering phenology

The flowering response results indicated that majority of plant species flowered during the months of March (43.07%), followed by April (39.36%) and August (39.11%). The minimum phenological response was noted in the month of January (1.24%), December (1.24%) and November (1.73%).

The timing of flowering response as presented above was found highly correlated with the climatic variations (like temperature and monsoon rainfall) of the study area. A constrained unimodal ordination such as CCA was applied to check three predictors including minimum temperature, humidity, and soil moisture (25 cm below the soil surface).

According to the results of conditional (unique) term effect testing, mean maximum temperature was shown as a significant factor of the phenological response followed by soil moisture and wind speed. The majority of plant species are found in flowering stage during July and August months in the Western Himalayan regions of India and Pakistan (Vashistha et al., 2009; Khan et al., 2018), and strikingly match with our findings.

Likewise, the importance of temperature to the plants phenological responses, our results are similar as stated in several explorations (Badeck et al., 2004; Ahas and Aasa, 2006; Estrella and Menzel, 2006; Peñuelas et al., 2009) mostly in higher altitudinal areas of the World.
Minimum temperature was recorded as significant as maximum temperature in the research area similar to Khan et al., 2018. Furthermore, rainfall was discovered as another main element of the phenological response (Pearson, 2019), the similar influence of rainfall on both spring and fall flowering events was reported from Southeastern United State of America. Our results match with Heydel et al., 2015; and Khan et al., 2018, that is maximum flowering species were recorded during four months (March, April, August, September) due to favorable climatic conditions. Whereas minimum flowering species were documented during three months (January, November and December) due to severe climatic conditions. Many explorations showed that in hilly areas, maximum flowering species were noted due to optimum climatic variables to support the phenomenon (Yadav and Yadav, 2008; Tooke, 2010). So it was assessed that months of May, June and July are appropriate regarding day length and temperature. The highest phenological response of plant species during months of March, April, August and September which can also be linked with maximum rainfall in these months (Summer and monsoon seasons) resulting in higher soil moisture. While, rare plant species were also found in flowering stage in November to January (in winters) due to severity in environmental conditions during mentioned months. Climatic variations might be harmful in general but mainly useful to rare and widespread plant species of this versatile, unique but delicate ecosystem of Jhelum district, Punjab, Pakistan.

Conclusions and recommendations

The research area district Jhelum resulted higher degree of plant species richness features of mostly diverse and rich flora in Punjab, Pakistan. The leading plant family was Poaceae followed by Leguminosae, Amaranthaceae, Solanaceae while the leading genus was Euphorbia followed by Brassica, Heliotropium, Acacia, Solanum, which proposed that the research area is under heavy anthropogenic pressure and harbors unique climatic environments. As concerned with the reproductive phenological response of the plant species, minimum temperature, wind speed, precipitation and specific humidity are the significant climatic determinants. The study resulted that the temperature is the leading effective feature observing the phenology of the plant species. It was estimated that increase or decrease in temperature showed specific association with pattern of phenology. Response of phenology also showed month and season wise correlation. Suddenly increase in temperature might be dangerous mainly to threatened and widespread flora of the area. The study area needs active supervision and protection strategies done with the participation of the indigenous population. The floristic study and phenology of plant species was explored for the first time. Consequently, the current research serves valuable information in future botanical investigation, and for plant reserve managing and preservation effort in the area. Future research studies should be linked to measurement of continuing climate variations. Under changing climatic conditions, the spread of invasive alien plant species is needed to be controlled to save the ecological niche of indigenous wild flora in the area.

Acknowledgments. This research work is part of the PhD thesis of the first author. Special thanks are due to all study participants of the different local groups who generously shared their knowledge about local names of wild plant species.

Conflict of interests. The authors declare that they have no conflict of interests.
REFERENCES

[1] Ahas, R., Aasa, A. (2006): The effects of climate change on the phenology of selected Estonian plant, bird and fish populations. – International Journal of Biometeorology 51(1): 17-26.
[2] Ali, S. I., Nasir, Y. J. (1989): Flora of Pakistan (fascicle series) – Islamabad, Karachi.
[3] Ali, S. I., Qaiser, M. (1995): Flora of Pakistan (fascicles series) – Islamabad, Karachi.
[4] Altarf, M., Umair, M., Abbasi, A. R., Muhammad, N., Abbasi, A. M. (2018): Ethnomedicinal applications of animal species by the local communities of Punjab, Pakistan. – Journal of Ethnobiology and Ethnomedicine 14(1): 55.
[5] Amber, K., Khan, K. R., Shah, A. H., Farooq, M., Lodhi, M. H., Shah, G. M. (2019): A comprehensive survey of floristic diversity evaluating the role of institutional gardening in conservation of plant biodiversity. – International Journal of Biosciences 14(3): 325-339.
[6] Amjad, M. S., Arshad, M., Sadaf, H. M., Akrim, F., Arshad, A. (2016): Floristic composition, biological spectrum and conservation status of the vegetation in Nikyal valley, Azad Jammu and Kashmir. – Asian Pacific Journal of Tropical Disease 6(1): 63-69.
[7] Anderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I., Mitchell-Olde, T. (2012): Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. – Proceedings of the Royal Society B: Biological Sciences 279(1743): 3843-3852.
[8] Badeck, F. W., Bondeau, A., Bötter, K., Doktor, D., Lucht, W., Schaber, J., Sitch, S. (2004): Responses of spring phenology to climate change. – New Phytologist 162(2): 295-309.
[9] Bertin, R. I. (2008): Plant phenology and distribution in relation to recent climate change. – The Journal of the Torrey Botanical Society 135(1): 126-146.
[10] Bodin, F., Morlat, R. (2006): Characterization of viticultural terroirs using a simple field model based on soil depth I. Validation of the water supply regime, phenology and vine vigour, in the Anjou vineyard (France). – Plant and Soil 281(1-2): 37-54.
[11] Both, C., Bouwhuys, S., Lessells, C. M., Visser, M. E. (2006): Climate change and population declines in a long-distance migratory bird. – Nature 441(7089): 81-83.
[12] Buyantuyev, A., Wu, J. (2012): Urbanization diversifies land surface phenology in arid environments: interactions among vegetation, climatic variation, and land use pattern in the Phoenix metropolitan region, USA. – Landscape and Urban Planning 105(1-2): 149-159.
[13] Cain, S. A., Castro, G. D. O. (1960): Manual of Vegetation Analysis. – Harper, New York.
[14] Calinger, K. M., Quenborough, S., Curtis, P. S. (2013): Herbarium specimens reveal the footprint of climate change on flowering trends across north-central North America. – Ecology Letters 16(8): 1037-1044.
[15] Chambers, L. E., Altvegg, R., Barbraud, C., Barnard, P., Beaumont, L. J., Crawford, R. J., Durant, J. M., Hughes, L., Keatley, M. R., Low, M., Morellato, P. C. (2013): Phenological changes in the southern hemisphere. – PloS One 8(10): 75514.
[16] Change, I. P. O. C. (2007): Climate change 2007: the physical science basis. – Agenda 6(07): 333.
[17] Chen, J., Luo, Y., Chen, Y., Felton, A. J., Hopping, K. A., Wang, R. W., Niu, S., Cheng, X., Zhang, Y., Cao, J., Olesen, J. E. (2020): Plants with lengthened phenophases increase their dominance under warming in an alpine plant community. – Science of the Total Environment: 138891.
[18] Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A., Schwartz, M. D. (2007): Shifting plant phenology in response to global change. – Trends in Ecology & Evolution 22(7): 357-365.
[19] Cleland, E. E., Allen, J. M., Crimmins, T. M., Dunne, J. A., Pau, S., Travers, S. E., Zavaleta, E. S., Wolkovich, E. M. (2012): Phenological tracking enables positive species responses to climate change. – Ecology 93(8): 1765-1771.
[20] Cleverly, J., Eamus, D., Coupe, N. R., Chen, C., Maes, W., Li, L., Faux, R., Santini, N. S., Rumman, R., Yu, Q., Huete, A. (2016): Soil moisture controls on phenology and productivity in a semi-arid critical zone. – Science of the Total Environment 568: 1227-1237.

[21] Cornelius, C., Estrella, N., Franz, H., Menzel, A. (2013): Linking altitudinal gradients and temperature responses of plant phenology in the Bavarian Alps. – Plant Biology 15: 57-69.

[22] Crabbe, R. A., Dash, J., Rodriguez-Galiano, V. F., Janous, D., Pavelka, M., Marek, M. V. (2016): Extreme warm temperatures alter forest phenology and productivity in Europe. – Science of the Total Environment 563: 486-495.

[23] Estrella, N., Menzel, A. (2006): Responses of leaf colouring in four deciduous tree species to climate and weather in Germany. – Climate Research 32(3): 253-267.

[24] Forrest, J. R. (2015): Plant–pollinator interactions and phenological change: what can we learn about climate impacts from experiments and observations? – Oikos 124(1): 4-13.

[25] Francioli, D., Schulz, E., Buscot, F., Reitz, T. (2018): Dynamics of soil bacterial communities over a vegetation season relate to both soil nutrient status and plant growth phenology. – Microbial Ecology 75(1): 216-227.

[26] Ge, Q., Wang, H., Rutishauser, T., Dai, J. (2015): Phenological response to climate change in China: a meta-analysis. – Global Change Biology 21(1): 265-274.

[27] Gill, A. L., Gallinat, A. S., Sanders-DeMott, R., Rigden, A. J., Short Gianotti, D. J., Mantooth, J. A., Templer, P. H. (2015): Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of autumn phenology studies. – Annals of Botany 116(6): 875-888.

[28] Godoy, O., Richardson, D. M., Valladares, F., Castro-Diez, P. (2009): Flowering phenology of invasive alien plant species compared with native species in three Mediterranean-type ecosystems. – Annals of Botany 103(3): 485-494.

[29] Gordo, O., Sanz, J. J. (2005): Phenology and climate change: a long-term study in a Mediterranean locality. – Oecologia 146(3): 484-495.

[30] Hamidov, A., Helming, K., Balla, D. (2016): Impact of agricultural land use in Central Asia: a review. – Agronomy for Sustainable Development 36(1): 6.

[31] Heydel, F., Cunze, S., Bernhardt-Römermann, M., Tackenberg, O. (2015): Seasonal synchronization of seed release phenology promotes long-distance seed dispersal by wind for tree species with medium wind dispersal potential. – Journal of Vegetation Science 26(6): 1090-1101.

[32] Holway, J. G., Ward, R. T. (1965): Phenology of alpine plants in northern Colorado. – Ecology 46(1-2): 73-83.

[33] Hulme, P. E. (2011): Contrasting impacts of climate-driven flowering phenology on changes in alien and native plant species distributions. – New Phytologist 189(1): 272-281.

[34] Hussain, T. (2009): A floristic description of flora and ethnobotany of Samahni Valley (AK), Pakistan. – Ethnobotanical Leaflets (7): 6.

[35] Ibrahim, M., Nauman Khan, M., Ali, S., Razzaq, A., Zaman, A., Iqbal, M. (2019): Floristic Composition and Species Diversity of Plant Resources of Rural Area “Takht Bhai” District Mardan, Khyber Pakhtunkhwa, Pakistan. – Medicinal Aromatic Plants (Los Angeles) 8(338): 2167-0412.

[36] Ilyas, M., Qureshi, R., Shinwari, Z. K., Arshad, M., Mirza, S. N. (2013): Some ethnoecological aspects of the plants of Qalagai Hills, Kabal Valley, Swat, Pakistan. – International Journal of Agriculture and Biology (Pakistan) 15(5): 1560-8530.

[37] Inouye, D. W. (2008): Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. – Ecology 89(2): 353-362.

[38] Iqbal, H., Sher, Z., Khan, Z. U. (2011): Medicinal plants from salt range Pind Dadan Khan, district Jhelum, Punjab, Pakistan. – Journal of Medicinal Plants Research 5(11): 2157-2168.

[39] Keenan, T. F., Richardson, A. D., Hufkens, K. (2020): On quantifying the apparent temperature sensitivity of plant phenology. – New Phytologist 225(2): 1033-1040.
[40] Khan, M., Hussain, F. and Musharaf, S. (2014): Floristic composition and ecological characteristics of Shahbaz Garhi, District Mardan, Pakistan. – Global Journal of Science Frontier Research 1: 7-17.

[41] Khan, A. M., Qureshi, R., Qaseem, M. F., Munir, M., Ilyas, M., Saqib, Z. (2015): Floristic checklist of district Kotli, Azad Jammu & Kashmir. – Pakistan Journal of Botany 47(5): 1957-1968.

[42] Khan, A. M., Qureshi, R., Qaseem, M. F., Ahmad, W., Saqib, Z., Habib, T. (2016): Status of basic taxonomic skills in botanical articles related to Azad Jammu and Kashmir, Pakistan: a review. – Journal of Bioresource Management 3(3): 22-54.

[43] Khan, A., Khan, N., Ali, K., Rahman, I. U. (2017): An assessment of the floristic diversity, life-forms and biological spectrum of vegetation in Swat Ranizai, District Malakand, Khyber Pakhtunkhwa, Pakistan. – Science Technology Development 36(2): 61-78.

[44] Khan, A. M., Qureshi, R., Arshad, M., Mirza, S. N. (2018): Climatic and flowering phenological relationships of western Himalayan flora of Muzaffarabad district, Azad Jammu and Kashmir, Pakistan. – Pakistan Journal Botany 50(3): 1093-1112.

[45] Khan, A. M., Qureshi, R., Saqib, Z. (2019a): Multivariate analyses of the vegetation of the western Himalayan forests of Muzaffarabad district, Azad Jammu and Kashmir, Pakistan. – Ecological Indicators 104: 723-736. https://doi.org/10.1016/j.ecolind.2019.05.048

[46] Khan, A. M., Qureshi, R., Saqib, Z., Munir, M., Shaheen, H., Habib, T., Dar, M. E. I. U., Fatimah, H., Afza, R., Hussain, M. (2019b): A first ever detailed ecological exploration of the western Himalayan forests of Sudhan Gali and Ganga Summit, Azad Jammu and Kashmir, Pakistan. – Applied Ecology and Environmental Research 17(6): 15477-15505.

[47] Khanduri, V. P., Sharma, C. M. and Singh, S. P. (2008): The effects of climate change on plant phenology. – The Environmentalist 28(2): 143-147.

[48] Kharouba, H. M. and Vellend, M. (2015): Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight. – Journal of Animal Ecology 84(5): 1311-1321.

[49] Kolb, A., Ehrlen, J., Eriksson, O. (2007): Ecological and evolutionary consequences of spatial and temporal variation in pre-dispersal seed predation. – Perspectives in Plant Ecology, Evolution and Systematics 9(2): 79-100.

[50] Lesica, P. and Kittelson, P. M. (2010): Precipitation and temperature are associated with advanced flowering phenology in a semi-arid grassland. – Journal of Arid Environments 74(9): 1013-1017.

[51] Liu, Q., Fu, Y. H., Zeng, Z., Huang, M., Li, X., Piao, S. (2016a): Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. – Global Change Biology 22(2): 644-655.

[52] Liu, Q., Fu, Y. H., Zhu, Z., Liu, Y., Liu, Z., Huang, M., Janssens, I. A., Piao, S. (2016b): Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. – Global Change Biology 22(11): 3702-3711.

[53] Luo, Z., Sun, O. J., Ge, Q., Xu, W., Zheng, J. (2007): Phenological responses of plants to climate change in an urban environment. – Ecological Research 22(3): 507-514.

[54] Ma, X., Hue, A., Yu, Q., Coupe, N. R., Davies, K., Broich, M., Ratana, P., Beringer, J., Hutley, L. B., Cleverly, J., Boullain, N. (2013): Spatial patterns and temporal dynamics in savanna vegetation phenology across the North Australian Tropical Transect. – Remote Sensing of Environment 139: 97-115.

[55] Majeed, M., Bhatti, K. H., Amjad, M. S., Abbasi, A. M., Bussmann, R. W., Nawaz, F., Rashid, A., Mehmood, A., Mahmood, M., Khan, W. M., Ahmad, K. S. (2020): Ethnoveterinary uses of Poaceae in Punjab, Pakistan. – PLoS One 15(11): 0241705.

[56] Majeed, M., Bhatti, K. H., Pieroni, A., Søukand, R., Bussmann, R. W., Khan, A. M., Chaudhari, S. K., Aziz, M. A., Amjad, M. S. (2021). Gathered Wild Food Plants among Diverse Religious Groups in Jhelum District, Punjab, Pakistan. – Foods 10(3): 594.
[57] Matthews, E. R., Mazer, S. J. (2016): Historical changes in flowering phenology are governed by temperature × precipitation interactions in a widespread perennial herb in western North America. – New Phytologist 210(1): 157-167.

[58] McEwan, R. W., Brecha, R. J., Geiger, D. R., John, G. P. (2011): Flowering phenology change and climate warming in southwestern Ohio. – Plant Ecology 212(1): 55-61.

[59] Meier, N., Rutishauser, T., Pfister, C., Wanner, H., Luterbacher, J. (2007): Grape harvest dates as a proxy for Swiss April to August temperature reconstructions back to AD 1480. – Geophysical Research Letters 34(20).

[60] Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Kübler, K., Bissolli, P., Bráslavská, O. G., Briede, A., Chmielewski, F. M. (2006): European phenological response to climate change matches the warming pattern. – Global Change Biology 12(10): 1969-1976.

[61] Mittermeier, J. C., Roll, U., Matthews, T. J., Grenyer, R. (2019): A season for all things: phenological imprints in Wikipedia usage and their relevance to conservation. – PLoS Biology 17(3): 3000146.

[62] Morisette, J. T., Richardson, A. D., Knapp, A. K., Fisher, J. I., Graham, E. A., Abatzoglou, J., Wilson, B. E., Breshears, D. D., Henebry, G. M., Hanes, J. M., Liang, L. (2009): Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century. – Frontiers in Ecology and the Environment 7(5): 253-260.

[63] Mukul, S. A., Uddin, M. B., Tito, M. R. (2007): Medicinal plant diversity and local healthcare among the people living in and around a conservation area of Northern Bangladesh. – International Journal of Forest Usufructs Management 8(2): 50-63.

[64] Musthag, M. U., Gull, S., Shad, M. A., Akram, J. (2011): Socio-demographic correlates of the health-seeking behaviours in two districts of Pakistan’s Punjab province. – JPMA-Journal of the Pakistan Medical Association 61(12): 1205.

[65] Nandintsetseg, B., Shinoda, M. (2011): Seasonal change of soil moisture in Mongolia: its climatology and modelling. – International Journal of Climatology 31(8): 1143-1152.

[66] Neil, K., Wu, J. (2006): Effects of urbanization on plant flowering phenology: a review. – Urban Ecosystems 9(3): 243-257.

[67] Neil, K. L., Landrum, L., Wu, J. (2010): Effects of urbanization on flowering phenology in the metropolitan phoenix region of USA: findings from herbarium records. – Journal of Arid Environments 74(4): 440-444.

[68] Okusanya, O. T., Shonubi, O. O., Bello, O., Bamidele, J. F. (2016): Variation in flowering phenology of Cassia fistula Linn. Population in Ota, Ogun state, Nigeria. – Ife Journal of Science 18(4): 887-894.

[69] Parmesan, C. (2006): Ecological and evolutionary responses to recent climate change. – Annual Review of Ecology, Evolution, and Systematics 37: 637-669.

[70] Parmesan, C., Yohe, G. (2003): A globally coherent fingerprint of climate change impacts across natural systems. – Nature 421(6918): 37-42.

[71] Pausas, J. G., Austin, M. P. (2001): Patterns of plant species richness in relation to different environments: an appraisal. – Journal of Vegetation Science 12(2): 153-166.

[72] Pearson, K. D. (2019): Spring-and fall-flowering species show diverging phenological responses to climate in the Southeast USA. – International Journal of Biometeorology 63(4): 481-492.

[73] Peña-Barragáñ, J. M., Ngugi, M. K., Plant, R. E., Six, J. (2011): Object-based crop identification using multiple vegetation indices, textural features and crop phenology. – Remote Sensing of Environment 115(6): 1301-1316.

[74] Peñuelas, J., Filella, I., Zhang, X., Llorens, L., Ogaya, R., Lloret, F., Comas, P., Estiarte, M., Terradas, J. (2004): Complex spatiotemporal phenological shifts as a response to rainfall changes. – New Phytologist 161(3): 837-846.

[75] Petry, W. K., Soule, J. D., Iler, A. M., Chicas-Mosier, A., Inouye, D. W., Miller, T. E., Mooney, K. A. (2016): Sex-specific responses to climate change in plants alter population sex ratio and performance. – Science 353(6294): 69-71.
[76] Piao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., Liu, L., Lian, X., Shen, M., Zhu, X. (2019): Plant phenology and global climate change: current progresses and challenges. – Global Change Biology 25(6): 1922-1940.

[77] Prevéy, J., Vellend, M., Rüger, N., Hollister, R. D., Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Clark, K., Cooper, E. J., Elberling, B., Fosaa, A. M. (2017): Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. – Global Change Biology 23(7): 2660-2671.

[78] Qureshi, R., Maqsood, M., Arshad, M., Chaudhry, A. K. (2011): Ethnomedicinal uses of plants by the people of Kadhi areas of Khushab, Punjab, Pakistan. – Pakistan Journal of Botany 43(1): 121-133.

[79] R-Core-Team (2014): R: a language and environment for statistical computing. – R Foundation for Statistical Computing 2014, Vienna, Austria. http://www.Rproject.org/.

[80] Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., Toomey, M. (2013): Climate change, phenology, and phenologic control of vegetation feedbacks to the climate system. – Agricultural and Forest Meteorology 169: 156-173.

[81] Rosenzweig, C., Casassa, G., Karoly, D. J., Ineson, A., Liu, C., Menzel, A., Rawlins, S., Root, T. L., Seguin, B., Tryjanowski, P., Parry, M. L. (2007): Assessment of Observed Changes and Responses in Natural and Managed Systems. – In: Parry, M. L. et al. (eds.) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp. 79-131.

[82] Schwartz, M. D., Ault, T. R., Betancourt, J. L. (2013): Spring onset variations and trends in the continental United States: past and regional assessment using temperature-based indices. – International Journal of Climatology 33(13): 2917-2922.

[83] Shah, G. U. D., Bhatti, M. N., Ifikhar, M., Qureshi, M. I., Zaman, K. (2013): Implementation of technology acceptance model in e-learning environment in rural and urban areas of Pakistan. – World Applied Sciences Journal 27(1): 1495-1507.

[84] Shaheen, H., Qureshi, R., Iqbal, S., Qasem, M. F. (2014): Seasonal availability and palatability of native flora of Santh Saroola Kotli Sattian, Rawalpindi, Pakistan. – African Journal of Plant Science 8(2): 92-102.

[85] Shaheen, H., Malik, N. M., Dar, M. E. U. I. (2015): Species composition and community structure of subtropical forest stands in western Himalayan foothills of Kashmir. – Pakistan Journal of Botany 47(6): 2151-2160.

[86] Shen, M., Tang, Y., Chen, J., Zhu, X., Zheng, Y. (2011): Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. – Agricultural and Forest Meteorology 151(12): 1711-1722.

[87] Shen, M., Piao, S., Dorji, T., Liu, Q., Cong, N., Chen, X., An, S., Wang, S., Wang, T., Zhang, G. (2015): Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. – National Science Review 2(4): 454-467.

[88] Shen, M., Piao, S., Chen, X., An, S., Fu, Y. H., Wang, S., ... Janssens, I. A. (2016): Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau. – Global Change Biology 22(9): 3057-3066.

[89] Staehlin, B. M., Fant, J. B. (2015): Climate change impacts on seedling establishment for a threatened endemic thistle, Cirsium pitcheri. – The American Midland Naturalist 173(1): 47-60.

[90] Sun, W., Song, X., Mu, X., Gao, P., Wang, F., Zhao, G. (2015): Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. – Agricultural and Forest Meteorology 209: 87-99.

[91] Tadey, M. (2020): Reshaping phenology: grazing has stronger effects than climate on flowering and fruiting phenology in desert plants. – Perspectives in Plant Ecology, Evolution and Systematics 42: 125501.
[92] Tanvir, M., Murtaza, G., Ahmad, K. S., Salman, M. (2014): Floral diversity of District Bagh, Azad Jammu and Kashmir Pakistan. – Universal Journal of Plant Science 2(1): 1-13.

[93] Ter Braak, C. J. F., Šmilauer, P. (2012): Canoco 5, Windows Release (5.00). Software for Mutivariate Data Exploration, Testing, and Summarization. – Biometrics, Plant Research International, Wageningen.

[94] Thomson, J. D. (2010): Flowering phenology, fruiting success and progressive deterioration of pollination in an early-flowering geophyte. – Philosophical Transactions of the Royal Society B: Biological Sciences 365(1555): 3187-3199.

[95] Tooke, F., Battey, N. H. (2010): Temperate flowering phenology. – Journal of Experimental Botany 61(11): 2853-2862.

[96] TPL (2013): Onward (continuously updated), The Plant List, Version1.1. – http://www.theplantlist.org/ (accessed 15/04/2020).

[97]Umair, M., Altaf, M., Bussmann, R. W., Abbasi, A. M. (2019): Ethnomedicinal uses of the local flora in Chenab riverine area, Punjab province Pakistan. – Journal of Ethnobiology and Ethnomedicine 15(1): 7.

[98] Vashistha, R. K., Rawat, N., Chaturvedi, A. K., Nauniyal, B. P., Prasad, P., Nauniyal, M. C. (2009): An exploration on the phenology of different growth forms of an alpine expanse of North-West Himalaya, India. – New York Science Journal 2(6): 29-41.

[99] Willis, C. G., Ruhfel, B., Primack, R. B., Miller-Rushing, A. J., Davis, C. C. (2008): Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. – Proceedings of the National Academy of Sciences 105(44): 17029-17033.

[100] Wolfovich, E. M., Cleland, E. E. (2011): The phenology of plant invasions: a community ecology perspective. – Frontiers in Ecology and the Environment 9(5): 287-294.

[101] Wolfovich, E. M., Cleland, E. E. (2014): Phenological niches and the future of invaded ecosystems with climate change. – AoB Plants: 6.

[102] Yadav, R. K., Yadav, A. S. (2008): Phenology of selected woody species in a tropical dry deciduous forest in Rajasthan, India. – Tropical Ecology 49(1): 25.

[103] Yang, B., He, M., Shishov, V., Tychkov, I., Vaganov, E., Rossi, S., Ljungqvist, F. C., Bräuning, A., Grießinger, J. (2017): New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. – Proceedings of the National Academy of Sciences 114(27): 6966-6971.

[104] Yu, F., Price, K. P., Ellis, J., Shi, P. (2003): Response of seasonal vegetation development to climatic variations in eastern central Asia. – Remote Sensing of Environment 87(1): 42-54.

[105] Zalamea, M., González, G. (2008): Leaffall phenology in a subtropical wet forest in Puerto Rico: from species to community patterns. – Biotropica 40(3): 295-304.

[106] Zhang, Q., Kong, D., Shi, P., Singh, V. P., Sun, P. (2018): Vegetation phenology on the Qinghai-Tibetan Plateau and its response to climate change (1982-2013). – Agricultural and Forest Meteorology 248: 408-417.
Table A1. Temporal (2010-2019) variations in the climatic data (Mean ± SD (Min-Max)) of district Jhelum, Punjab, Pakistan

Months	Min Temp	Max Temp	Precipitation	Wind speed	Specific humidity	Soil moisture	D-Shortwave-Rad	D-Longwave-Rad
January (2010-2019)	5.24±0.81	18±1.75	47.74±54.85	2.49±0.17	4.07±0.91	0.24±0.04	137.35±17.72	285.19±10.4
February (2010-2019)	7.32±1.15	19.3±2.44	113.9±72.6	2.66±0.18	5.83±0.81	0.3±0.04	156.06±20.95	306.07±8.92
March (2010-2019)	11.36±1.31	25.3±2.86	117.59±96.88	2.62±0.16	7.2±1.13	0.29±0.06	215.35±19.93	328.84±7.66
April (2010-2019)	16.49±1.03	31.99±2.7	104.04±55.5	2.58±0.31	8.21±1.2	0.26±0.05	268.88±16.83	357.86±5.73
May (2010-2019)	21.48±0.87	38.79±1.74	56.02±40.76	2.51±0.26	7.59±1.13	0.21±0.04	307.76±10.62	381.49±7.98
June (2010-2019)	25.49±0.89	42.06±1.44	51.78±49.11	2.19±0.12	9.38±2.08	0.19±0.03	308.9±10.75	411.44±9.36
July (2010-2019)	26.53±0.73	38.17±2.01	233.75±131.86	2.16±0.19	16.48±1.63	0.28±0.04	273.07±10.52	436.86±3.65
August (2010-2019)	24.82±0.59	35.46±2.3	310.41±198	1.83±0.17	18.04±1.76	0.32±0.05	261.09±13.48	427.21±4.01
September (2010-2019)	21.76±0.75	34.28±2.27	144.67±128.34	1.63±0.16	14.17±2.32	0.3±0.06	240.94±12.69	397.08±8.21
October (2010-2019)	16.28±0.67	31.32±2.14	26.71±22.77	1.88±0.15	7.58±1.98	0.33±0.06	208.42±6.36	345.61±6.99
November (2010-2019)	11.26±0.52	25.01±2.14	17.43±25.19	2.49±0.21	4.68±1.08	0.21±0.06	154.49±13.02	307.63±7.75
December (2010-2019)	6.79±0.99	20.34±2.96	13.85±16.82	2.6±0.24	3.4±0.89	0.2±0.05	135.96±6.53	280.97±6.64

Source: The climate data about precipitation, maximum and minimum temperature, specific humidity, soil moisture, wind speed, and downward short and longwave radiations (2010-2019 = 10 years) of the study area (Jhelum) was acquired from United States National Centers for Environmental Prediction (US-NCEP) Climate Forecast System Reanalysis (CFSR) by using climate engine (https://app.climateengine.org/). The data source was CFSv2 19200 m (1/5-deg) daily reanalysis dataset (NOAA).
Table A2. Detailed attributes of the floristic elements of Jhelum district, Punjab, Pakistan

Family	No.	Species	V/No.	Local name	Habit*	Micro-habitats**	Phenology
Pteridophytes and their related species							
1. Pteridaceae	1	Adiantum capillus-veneris L.	621/MM/2020	Sarraj	H	AL,FO,GR,HS,RS,SP,SL,WP	August-September
2. Ephedraceae	2	Ephedra ciliata Fisch. & C.A.Mey.	880/MM/2020	Phog	S	DL,FO,GR,HS,RS,SP,SL,WP	March-April
3. Araceae	3	Colocasia esculenta (L.) Schott	897/MM/2020	Arvi	H	AL,FO,GR,HS,RS,SL,SH,WP	June-July
4. Arecaceae	4	Phoenix dactylifera L.	515/MM/2020	Water Cabbage	H	AL,DL,GR,RS,HS,SP,SL,WP,WP	August-September
5. Asparagaceae	5	Phoenix dactylifera L.	501/MM/2020	Khajoop	T	AL,DL,GR,RS,HS,SL,WP,WP	February-March
6. Cannaceae	6	Agave americana L.	675/MM/2020	Desi kwargandal	S	AL,DL,FO,GR,RS,SP,WP,WP	August-September
7. Commelinaceae	7	Canna indica L.	867/MM/2020	Ratta phool	H	AL,FO,GR,RS,SL,SH,WP	March-April
8. Cyperaceae	8	Commelina benghalensis L.	795/MM/2020	Kani	H	FO,GR,HS,RS,SL,SH,WP,WP,WP	August-September
9. Juncaceae	9	Cyperus distichus L.	776/MM/2020	Chota dheela	H	AL,FO,GR,HS,RS,SL,SH,WP,WP	August-September
10. Poaceae	10	Cyperus distichus L.	573/MM/2020	Murak ghoo	H	AL,FO,GR,HS,RS,SP,SL,WP,WP	August-September
	11	Cyperus distichus Retz.	815/MM/2020	Chita dheela	H	AL,FO,GR,HS,RS,SL,SH,WP,WP	August-September
	12	Cyperus distichus Retz.	663/MM/2020	Murak ghoo	H	AL,FO,GR,HS,RS,SL,SH,WP,WP	August-September
	13	Juncus articulatus L.	546/MM/2020	Dheela	H	FO,GR,HS,WP,WP,WP	August-September
	14	Athlida mutica L.	668/MM/2020	Tachali	G	AL,DL,FO,GR,RS,SP,WP,WP	August-September
	15	Aristida abnormis Chiov.	810/MM/2020	Bara Lumb	G	DL,GR,SP,SH,WP,WP	August-September
	16	Aristida abnormis Chiov.	608/MM/2020	Chita Lumb	G	DL,GR,SP,SH,WP,WP	August-September
	17	Aristida abnormis Chiov.	562/MM/2020	Lumb	G	DL,GR,SP,SH,WP,WP	August-September
	18	Aristida abnormis Chiov.	875/MM/2020	Naru ghoo	G	GR,WP,WP,WP	August-September
	19	Aristida abnormis Chiov.	653/MM/2020	Jai	G	AL,DL,GR,RS,SP,WP	March-April
	20	Bothriochloa bladhii (Retz.) S.T.Blake	696/MM/2020	Palwan ghoo	G	AL,GR,HS,RS,SH,WP,WP,WP	August-September
	21	Brachiaria deflexa (Schumach.) C.E.Hubb. ex Robyns	632/MM/2020	Moti ghoo	G	AL,GR,HS,RS,SH,WP,WP,WP	August-September
	22	Brachiaria distachya (L.) Stapf	622/MM/2020	Seer ghoo	G	AL,GR,HS,RS,SH,WP,WP,WP	August-September
	23	Brachiaria ramosa (L.) Stapf	820/MM/2020	Chota kmadi	G	AL,DL,FO,GR,HS,RS,SH,WP,WP	August-September
	24	Brachiaria ramosa (L.) Stapf	654/MM/2020	Para ghoo	G	AL,DL,FO,GR,RS,SH,WP,WP,WP	August-September
	25	Cenchrus bispinosus Roxb.	692/MM/2020	Chita Dhaman	G	AL,DL,FO,GR,RS,SP,WP,WP	August-September
	26	Cenchrus ciliata L.	734/MM/2020	Kala Dhaman	G	DL,FO,GR,RS,SP,WP	August-September
	27	Cenchrus ciliata L.	870/MM/2020	Kali Dhamani	G	DL,FO,GR,RS,SP,WP	August-September
Family	No.	Species	V/No.	Local name	Habit*	Micro-habitats**	Phenology
--------	-----	---------	-------	------------	--------	-----------------	-----------
	28	Cenchrus setiger Vahl	704/MM/2020	Kala Dhamani	G	DL, FO, GL, RS, SP, WP	August-September
	29	Chrysopogon sphenodactylus Trin.	586/MM/2020	Jangi jai	G	DL, FO, GL, RS, SP, WP	August-September
	30	Chrysopogon australis (Boiss.) Stapf	528/MM/2020	Chitta Dhaman	G	DL, FO, GL, HS, RS, SP, WP	August-September
	31	Cynodon dactylis (L.) Pers.	839/MM/2020	Lamb ghaa	G	DL, GR, RS, SP, WP	August-September
	32	Chusia saxatilis (Retz.) Trin. ex Steud.	660/MM/2020	Khabbal ghaa	G	AL, DL, FO, GL, GR, HS, HG, MS, RS, SP, SL, SH, WP	August-September
	33	Dactylis glomerata var. tritici (Retz.) Trin.	559/MM/2020	Khar Madana	G	AL, DL, GL, GR, RS, SP, SL, SH, WP, WL	August-September
	34	Desmostachya bipinnata (L.) Stapf	735/MM/2020	Khussa Daban	G	DL, GL, GR, SP, WP	August-September
	35	Dichanthium annulatum (Forrsk.) Stapf	845/MM/2020	Murgha ghaa	G	AL, FO, GL, GR, HS, HG, RS, SL, SH, WP, WL	August-September
	36	Digitaria sanguinalis (L.) Scop.	661/MM/2020	Chota ghaa	G	AL, FO, GL, HS, HG, RS, SH, WP, WL	August-September
	37	Digitaria decumbens (L.) Link	538/MM/2020	Toota ghaa	G	AL, FO, GL, RS, SL, SH, WP, WL	August-September
	38	Echinochloa crus-galli (L.) P.Beauv.	614/MM/2020	Jungli chawla	G	AL, FO, GL, HS, HG, RS, SL, SH, WP, WL	August-September
	39	Echinochloa crus-galli (L.) P.Beauv.	731/MM/2020	Sanwari	G	AL, FO, GL, GR, RS, SL, SH, WP, WL, WL	August-September
	40	Echinochloa crus-galli (L.) P.Beauv.	671/MM/2020	Chawla sari	G	FO, GL, RS, SL, SH, WP, WL	August-September
	41	Eleusine indica (L.) Gaertn.	822/MM/2020	Nika mithana	G	AL, FO, GL, HS, RS, SP, WP, WL	August-September
	42	Eragrostis cilianensis (All.) Janch.	889/MM/2020	Chitti pholi ghaa	G	FO, GL, HS, RS, SL, SH, WP, WL	August-September
	43	Eragrostis cilianensis (L.) R.Br.	789/MM/2020	Makni ghaa	G	AL, FO, GL, HS, SL, SH, WP, WL	August-September
	44	Hordeum vulgare L.	858/MM/2020	Jao	G	AL, DL, RS	February-March
	45	Imperata cylindrica (L.) Raeusch.	775/MM/2020	Baggi sari	G	WL	August-September
	46	Oryza sativa L.	529/MM/2020	Tara ghaa	G	DL, HS, RS, SP	August-September
	47	Panicum antidotale Retz.	804/MM/2020	Monji, Chawal	G	AL, WL	September-October
	48	Panicum miliaceum L.	508/MM/2020	Bara chawala	G	HS, RS, WL	August-September
	49	Panicum miliaceum L.	524/MM/2020	Bansi ghaa	G	GL, RS, SL, WP, WL	August-September
	50	Panicum repens L.	771/MM/2020	Moti khabal	G	AL, GL, GR, HS, RS, WP, WL	August-September
	51	Panicum virgatum Retz.	807/MM/2020	Garam	G	DL, GL	August-September
	52	Pennisetum divaricatum (Forrsk. ex J.F.Gmel.) Henrard	637/MM/2020	Desi Garam	G	DL, GL	August-September
	53	Pennisetum orientale Rich.	541/MM/2020	Chita ghaa	G	AL, GL, HS, RS, WL	August-September
	54	Pennisetum glaucum (L.) R.Br.	852/MM/2020	Bajra	G	AL, DL	June-July
	55	Phalaris minor Retz.	784/MM/2020	Dumbi sitti	G	AL, GL, RS, WP, WL	March-April
	56	Phragmites communis (Retz.) Trin. ex Steud.	540/MM/2020	Naru	G	RS, WL	August-September
	57	Poa annua L.	652/MM/2020	Jangi Jai	G	AL, HS, RS, WP, WL	March-April
	58	Poa pratensis L.	557/MM/2020	Sanwak	G	AL, GL, HS, WP, WL	August-September
	59	Polypogon fugax Nees ex Steud.	895/MM/2020	Daddi ghaa	G	AL, GL, GR, HS, RS, SH, WP, WL	August-September
Family	No.	Species	V/No.	Local name	Habit*	Micro-habitats**	Phenology
-----------------	-----	----------------------------------	---------	------------	--------	------------------	--------------------
Angiosperms	60	Saccharum bengalense Retz.	582/MM/2020	Kana, Sarkanda	G	FO,GL,GR,HS,RS,SP,SL,WP,WL	August-September
	61	Saccharum spontaneum L.	626/MM/2020	Kana	G	DL,FO,GL,GR,HS,RS,SP,SL,WP,WL	August-September
	62	Saccharum officinarum L.	558/MM/2020	Ganna phool	G	AL,	October-November
	63	Setaria intermedia Roem. & Schult.	710/MM/2020	Choti Chawly	G	AL,HS,RS,SH,WP,WL	August-September
	64	Setaria italica (L.) P.Beauv.	824/MM/2020	Kangni ghaa	G	AL,GL,GR,WP,WL	August-September
	65	Setaria pumila (Poir.) Roem. & Schult.	651/MM/2020	Ban kangni	G	AL,FO,GL,RS,WL	August-September
	66	Setaria verticillata (L.) P.Beauv.	898/MM/2020	Baja ghaa	G	AL,DL,GL,GR,RS,SH,WP,WL	August-September
	67	Setaria viridis (L.) P.Beauv.	854/MM/2020	Lumba Kangni ghaa	G	AL,DL,GL,GR,RS,WP,WL	August-September
	68	Sorghum bicolor (L.) Moench	601/MM/2020	Jowar, milo	G	AL,GL,RS,WP,WL	June-July
	69	Sorghum halepense (L.) Pers.	548/MM/2020	Knadi ghaa, Baru	G	AL,GL,HS,RS,WL	August-September
	70	Stipagrostis plumosa Mutro ex T.Anderson	657/MM/2020	Bhalu ghaa	G	AL,GL,HS,WP,WL	August-September
	71	Triticum aestivum L.	876/MM/2020	Kanak, Gandum	G	AL,HS,SP	February-March
	72	Zea mays L.	803/MM/2020	Makai	G	AL,GL,HS,RS,WL	June-July
Typhaceae	73	Typha domingensis Pers.	506/MM/2020	Konder	H	WL	October-November
	74	Typha elephantinum Roxb.	884/MM/2020	Kondar	H	WL	August-September
Xanthorrhoeaceae	75	Aloe vera (L.) Burm.f.	894/MM/2020	Kawar gandal	H	AL,DL,FO,GR,HG	August-September
	76	Asphodelus tenuifolius Cav.	585/MM/2020	Piazi	H	AL,FO,GL,GR,RS,SP,SL,SH,WP,WL	February-March

Angiosperms (Dicots)

Acanthaceae	77	Dicliptera bupleuroides Nees	881/MM/2020	Rewari	H	AL,DL,FO,GL,GR,RS,SH,WP	March-April
	78	Dicliptera verticillata (Forssk.) C.Chr.	590/MM/2020	Jannni booti	H	DL,FO,GL,GR,HS,SP,SL,WP,WL	February-April
	79	Justicia adhatoda L.	574/MM/2020	Baijkr	S	DL,FO,GL,GR,HS,MS,RS,SL	February-March
Aizoaceae	80	Trianthema portulacastrum L.	525/MM/2020	Jangh Sanwak	H	AL,DL,FO,GL,GR,HS,SH,WP,WL	June-July
	81	Trianthema triquetra Rottler & Wild.	570/MM/2020	Choti alwati	H	DL,FO,GL,GR,HS,MS,SP,SL,WP	June-July
	82	Zaleya pentandra (L.) C.Jeffrey	715/MM/2020	Ratti Hazar dani	H	AL,FO,GL,GR,RS,SL,SH,WL	August-September
Amaranthaceae	83	Aschieranthes aspera L.	802/MM/2020	Puth kanda	H	AL,DL,FO,GL,GR,RS,WP,WL	August-September
	84	Achyranthes bidentata Blume	512/MM/2020	Puth kanda	H	AL,DL,FO,GL,GR,RS	August-September
	85	Aerva javanica (Burm.f.) Juss. ex Schlcht.	544/MM/2020	Niko boi	H	DL,FO,GL,HS,SP,SL,WP	February-April
	86	Aerva lanata (L.) Juss.	688/MM/2020	Boi	H	DL,FO,GL,GR,HS,SP,SL,WP	May-July
	87	Alternanthera paronychoides A.St.-Hil.	724/MM/2020	Chitti pholi	H	DL,FO,GL,GR,HS,MS,SP	August-September
	88	Alternanthera pungens Kunth	706/MM/2020	Khaki, Bhakrra	H	FO,GL,HS,RS,SL,SH,WP,WL	March-April
	89	Alternanthera sessilis (L.) R.Br. ex DC.	509/MM/2020	Ponoi booti	H	FO,GL,HS,SL,SH,WP,WL	September-October
	90	Amaranthus deflexus L.	542/MM/2020	Jangli Tandla	H	AL,FO,GL,HS,SH,WP	August-September
No.	Family	Species	V/No.	Local name	Habit*	Micro-habitats**	Phenology
91	Amaryllidaceae	Amaranthus graecizans L.	634/MM/2020	Pohli	H	FO,GL,HS,RS,SL,SH,WP	August-September
92	Amaryllidaceae	Amaranthus retroflexus L.	673/MM/2020	Aam bathoo	H	FO,GL,GR,HS,RS,SL,SH,WP	March-April
93	Amaryllidaceae	Amaranthus spinosus L.	787/MM/2020	Konjel	H	FO,GL,HS,RS,SL,SH,WP	March-April
94	Amaryllidaceae	Amaranthus viridis L.	878/MM/2020	Tandla	H	AL,GL,HS,RS,SL,SH,WP	August-September
95	Arjeplex aucheri Moq.	Arjeplex aucheri Moq.	678/MM/2020	Loni jhari	S	DL,FO,GL,GR,HS,SL,SH,WP	July-August
96	Arjeplex aucheri Moq.	Arjeplex aucheri Moq.	736/MM/2020	Loni booti	H	FO,GL,HS,RS,WP,SL,WP	August-September
97	Arjeplex aucheri Moq.	Arjeplex aucheri Moq.	551/MM/2020	Lani jhari	H	DL,FO,GL,GR,RS,SP,SL,SH	May-July
98	Arjeplex aucheri Moq.	Arjeplex aucheri Moq.	825/MM/2020	Chotti lani	H	DL,FO,GL,GR,RS,SH,WP	March-April
99	Betula vulgaris L.	Betula vulgaris L.	744/MM/2020	Chaukandar	H	AL,GL,GS,RS	March-April
100	Chenopodium album L.	Chenopodium album L.	748/MM/2020	Bathoo	H	AL,FO,GL,GR,HS,RS,SL,WP	March-April
101	Chenopodium album L.	Chenopodium album L.	552/MM/2020	Jangli Bathoo	H	DL,FO,GL,GR,HS,RS,SH	March-April
102	Chenopodium album L.	Chenopodium album L.	805/MM/2020	Karwa bathoo	H	FO,GL,GR,HS,RS,SL	March-April
103	Chenopodium album L.	Chenopodium album L.	887/MM/2020	Ratta Bathoo	H	FO,GL,GR,HS,RS,SH,WP	March-April
104	Chenopodium album L.	Chenopodium album L.	611/MM/2020	Chitta bathoo	H	AL,DL,RS	March-April
105	Digera muricata (L.) Mart.	Digera muricata (L.) Mart.	694/MM/2020	Tandla saag	H	FO,GL,GR,HS,RS,WP,SL,WP	August-September
106	Dysphania ambrosioides (L.) Mosyakin & Clements	Dysphania ambrosioides (L.) Mosyakin & Clements	856/MM/2020	Desi Bathoo	H	AL,DL,FO,GL,GR,HS,RS,SL,SH,WP	August-September
107	Spinacia oleracea L.	Spinacia oleracea L.	823/MM/2020	Pallak	H	AL,GL,GS,RS,SH	March-April
108	Suaeda aemunina (C.A.Mey.) Moq.	Suaeda aemunina (C.A.Mey.) Moq.	583/MM/2020	Smandri booti	H	DL,FO,GL,GR,HS,RS,SP,SH	August-September
109	Suaeda vermiculata Forsk. ex J.F.Gmel.	Suaeda vermiculata Forsk. ex J.F.Gmel.	799/MM/2020	Lani booti	S	FO,GL,GR,HS,RS,SL,SH,WP	March-April
110	Allium cepa L.	Allium cepa L.	602/MM/2020	Ganda	H	RS	March-April
111	Allium sativum L.	Allium sativum L.	684/MM/2020	Thoom	H	AL,GL,GS,RS,SH	March-April
112	Mangifera indica L.	Mangifera indica L.	580/MM/2020	Aam	T	AL,GL,GS,SH	May-June
113	Polyalthia longifolia (Sonn.) Thwaites	Polyalthia longifolia (Sonn.) Thwaites	677/MM/2020	Ultra ashoq	T	HG,RS	April-June
114	Centella asiatica (L.) Urb.	Centella asiatica (L.) Urb.	893/MM/2020	Chattri	H	DL,GL,GR,HS,SH,WP	June-August
115	Coriandrum sativum L.	Coriandrum sativum L.	513/MM/2020	Dhanya	H	AL,GL,GS,RS	March-April
116	Daucus carota L.	Daucus carota L.	843/MM/2020	Gajhar	H	AL,GL,GS,RS,SH,WP	March-April
117	Foeniculum vulgare Mill.	Foeniculum vulgare Mill.	517/MM/2020	Sounf	H	AL,GL,GS,RS	March-April
118	Blytia spiralis (Forssk.) D.V.Field & J.R.I.Wood	Blytia spiralis (Forssk.) D.V.Field & J.R.I.Wood	598/MM/2020	Wal-tara	H	FO,HS,SH,WP	March-April
119	Calodromus procera (Aiton) Dryand.	Calodromus procera (Aiton) Dryand.	640/MM/2020	Ak	S	DL,FO,GL,GR,HS,SP,SH,WP	March-April
120	Calodromus gigantea (L.) Dryand.	Calodromus gigantea (L.) Dryand.	565/MM/2020	Bara ak	S	DL,FO,GL,GR,HS,SP,SH,WP	March-April
121	Cassabla thevetia (L.) Lippold	Cassabla thevetia (L.) Lippold	793/MM/2020	Peeli kanier	T	AL,GL,GS,RS	March-April
122	Leptadenia pyrotechnica (Forssk.) Decne.	Leptadenia pyrotechnica (Forssk.) Decne.	883/MM/2020	Khap	S	DL,FO,GL,GR,RS,SP,WP	September-October
No.	Family	Species	V/No.	Local name	Habit*	Micro-habits**	Phenology
-----	----------------	----------------------------------	----------------	------------	--------	---------------	----------------
123	Berberidaceae	Nerium oleander L.	658/MM/2020	Kanair	S	HG,RS	July-August
124		Pentatropis capensis (L.) Bullock	853/MM/2020	Tara lee	H	FO,GL,GR,HS,RS,SL,SH,WP	March-April
125		Pergalaria daemia (Forssk.) Chiov.	774/MM/2020	Sapni vail	H	FO,GR,HS,RS,SH,WP	February-April
126		Pergalaria tomentosus L.	606/MM/2020	Jangli Sapni vail	H	FO,HS,RS,SH,WP,VL	February-April
127	Bignoniaceae	Rhaya stricta Decne.	672/MM/2020	Wltyi Ak	S	DL,FO,GL,GR,HS,RS,SP,SL,SH,WP	August-September
128		Tylphora hisuta Wight	563/MM/2020	Panjni jhari	S	AL,GL,HS,RS	May-July
21	Berberidaceae	Berberis lyicum Royle.	840/MM/2020	Sambulu	T	AL,GL,RS	March-April
22	Bignoniaceae	Tecoma stans (L.) Juss. ex Kunth	806/MM/2020	Peeli jhari	S	HG,RS	August-September
		Cordia myxa L.	535/MM/2020	Lasura	T	AL,GL,RS	March-April
131	Boraginaceae	Cordia dichotoma G.Forst.	518/MM/2020	Lasuree	T	AL,GL,HS,RS	March-April
132		Heliotropium acheri DC.	871/MM/2020	Tara booti	H	DL,FO,GR,HS,RS,SP,SL	March-April
133		Heliotropium crispum Desf.	682/MM/2020	Chitti choli	H	DL,FO,GR,HS,RS,SP,SL,SH,WP	August-September
134		Heliotropium curassavicum L.	507/MM/2020	Lani pata	H	DL,FO,GR,HS,RS,SP,SL,SH,WP	March-April
135		Heliotropium europaeum L.	616/MM/2020	Uth chaaro, Hathi sundi	H	DL,FO,GR,HS,RS,SP,SL,SH,WP	August-September
136		Heliotropium striogus Wild.	756/MM/2020	Chita koka	H	DL,FO,GR,RS,SP,SL,SH,WP	March-April
137		Heliotropium supinum L.	533/MM/2020	Choti boi	H	DL,FO,GR,RS,SP,SL,WP	March-April
138	23. Boraginaceae	Brassica nigra (L.) K.Koch	792/MM/2020	Kala saroon, Kala rayea	H	AL,GL	March-April
139		Brassica oleracea L.	770/MM/2020	Band ghobi	H	AL,GL,HS	February-March
140		Brassica deflexa Boiss.	782/MM/2020	Peela saroon	H	AL,DL,FO,GR,HS,HS,MS,RS,SP,SL,SH,WP,WP,	March-April
141		Brassica juncea (L.) Czem.	674/MM/2020	Peela raya	H	AL,GL	March-April
142		Brassica napuz L.	629/MM/2020	Shaljam	H	AL,GL,HS	February-March
143		Brassica rapi L.	619/MM/2020	Peeli rayi	H	AL,GL	February-March
144		Brassica tournefortii Gouan	828/MM/2020	Sirmi	H	AL,GL	February-March
145	24. Brassicaceae	Capella bursa-pastoris (L.) Medik.	760/MM/2020	Misch booti	H	FO,GR,HS,MS,RS,SH,WP,WP,	August-September
146		Eruca vesicaria (L.) Cav.	751/MM/2020	Tara Meera, Osoon rayea	H	AL,FO,GR,HS,MS,RS,SL,SH,WP,WP,	March-April
147		Lepidium apetalum Wild.	505/MM/2020	Jangli Khoaob kalan	H	FO,GR,HS,MS,SH,WP,WP,	July-August
148		Lepidium didymum L.	703/MM/2020	Chatri booti	H	AL,FO,GR,HS,MS,SL,SH,WP,WP,	March-April
149		Lepidium aucheri Boiss.	873/MM/2020	Choti Lami	H	FO,GR,GR,HS,MS,SL,SH,WP,WP,	April-May
150		Lepidium sativum L.	813/MM/2020	Bag bhari	H	HS,RS,SH	March-April
151		Malcolmia africana (L.) R.Br.	780/MM/2020	Chiti phuli	H	DL,FO,GR,MS,RS,SH,WP,WP,	March-April
152		Raphanus raphanistrum L.	664/MM/2020	Mongrae	H	AL,GL,HS	February-April
Family	No.	Species	V/No.	Local name	Habit*	Micro-habitats**	Phenology
---------------	-----	---------------------------------	----------	------------------	--------	------------------	--------------------
Caryophyllaceae	29	Cleome viscosa L.	578/MM/2020	Zari boodi	H	FO,GL,GR,RS,SH,WP,WL	March-April
		Stellaria media (L.) Vill.	796/MM/2020	Chitti boodi	H	AL,FO,GL,GR,HS,MS,RS,SL,SH,WP	March-April
		Stellaria persica Boiss.	511/MM/2020	Sitara boodi	H	AL,FO,GL,GR,HS,RS,SL,SH,WP	July-August
		Stellaria decumbens Edgew.	587/MM/2020	Chitti cona	H	FO	July-August
		Stellaria monosperma Buch. -Ham. ex D. Don	716/MM/2020	Ghul boodi	H	FO,GL,GR,RS,SL,SH,WP, WL	July-August
		Cleome viscosa L.	578/MM/2020	Zari boodi	H	FO,GL,GR,RS,SH,WP, WL	March-April
		Carthamus oxyacanthus M.Bieb.	863/MM/2020	Pholi, Kandyiary	H	DL,FO,GL,GR,HS,RS,SP,SL,WP	August-September
		Cirsium arvense (L.) Scop.	761/MM/2020	Kandyiary	H	DL,FO,GL,GR,HS,SP,SH,WP	March-April
		Cirsium falconeri (Hook.f.) Petr.	720/MM/2020	Jhalar Kandyiary	H	DL,FO,GL,RS,SP,SH,WP	September-October
Compositae	30	Echinops echinatus Roxb.	566/MM/2020	Out-kara	H	DL,FO,GL,GR,HS,RS,SP,SL,SH	March-April
		Eclipta prostrata (L.) L.	847/MM/2020	Bhanger	H	AL,FO,GL,GR,RS,SH,WP, WL	March-April
		Erigeron aegyptiacus L.	757/MM/2020	Jangi Genda Phool	H	AL,FO,GL,GR,RS,SP,SH	September-October
		Erigeron bonariensis L.	872/MM/2020	Dodi boodi	H	DL,FO,GR,HS,RS,SH, WL	March-April
		Erigeron canadensis L.	605/MM/2020	Konjel pholi	H	DL,FO,GL,GR,RS,SH, WL	October-November
		Lactuca serriola L.	609/MM/2020	Bhatal	H	AL,FO,GL,GR,HS,RS,SH,WP, WL	March-April
		Launaea nudicaulis (L.) Hook.f.	861/MM/2020	Dodak, Duddikal	H	AL,FO,GL,GR,RS,SH	March-April
		Launaea procumbens (Roxb.) Ramayya & Rajagop.	821/MM/2020	Dodak, Bhathala	H	AL,FO,GL,GR,RS,SH,WP, WL	March-April
		Parthenium hysterophorus L.	670/MM/2020	Koka booti	H	AL,DL,FO,GL,GR,RS,SH, WP, WL	March-April
		Sillybum Marianum (L.) Gaerth.	553/MM/2020	Ount Katara	H	DL,GR,RS,SL,SH,WP	March-April
		Sonchus arvensis L.	623/MM/2020	Peeli Bhattal	H	AL,GR,HS,RS,SL,SH,WP	March-April
		Sonchus asper (L.) Hill	666/MM/2020	Bhattal	H	DL,FO,GL,GR,RS,SL,SH	March-April
		Sonchus oleraceus (L.) L.	713/MM/2020	Peeli dodhak	H	AL,FO,GL,GR,RS,SH	March-April
		Tagetes erecta L.	830/MM/2020	Peela Genda	H	HG,RS,SH	July-September
		Xanthium strumarium L.	764/MM/2020	Puth kanda	H	AL,DL,FO,GL,GR,HS,RS,SH,WP, WL	March-April
		Convvolulus arvensis L.	728/MM/2020	Lelli	H	AL,FO,GL,GR,RS,SH, WL	March-April
		Convvolulus prostratus Forsk.	785/MM/2020	Lehi, Vanvaihre	H	AL,FO,GL,GR,RS,SH, WL	February-April
		Convvolulus linatus L.	888/MM/2020	Waja vail	H	AL,FO,GL,GR,RS,SP,SH, WL	March-April
Family	No.	Species	V/No.	Local name	Habit*	Micro-habits**	Phenology
----------	-----	---------------------------------------	-------	------------------	--------	-------------------	----------------
34. Euphorbiaceae							
209		Euphorbia cyathophora Murray	848/MM/2020	Pathar chat	S	HG,RS,SH	March-April
210		Euphorbia helioscopi L.	892/MM/2020	Choti chatri	H	AL,FO,GL,GR,RS,SH,WP,HL	March-April
211		Euphorbia birta L.	801/MM/2020	Lal dhadi	H	AL,FO,GL,GR,HS,MS,RS,SL,SH,WP,HL	March-April
212		Euphorbia indica Lam.	837/MM/2020	Dudi kalan	H	AL,FO,GL,GR,HS,WS,WP,HL	March-April
213		Euphorbia prostrata Aiton	648/MM/2020	Choti it-sit	H	AL,DL,GL,GR,HS,RS,SH,WP	June-July
214		Euphorbia thymifolia L.	819/MM/2020	It-sit	H	AL,DL,FO,GL,GR,HS,RS,SH,WP	June-July
215		Euphorbia densa Schrenk	584/MM/2020	Dhodak	H	AL,DL,FO,GL,GR,RS,SH,WP,HL	June-July
216		Euphorbia granulata Forssk.	874/MM/2020	Ltari booti	H	DL,FO,GL,GR,HS,MS,SP,SL,WP	August-September
217		Euphorbia prolifera Buch.-Ham. ex D.Don	561/MM/2020	Pholi booti	H	DL,FO,GL,GR,HS,MS,RS,SP,SL	April-May
33. Cucurbitaceae							
186		Cucurbita reflexa Roxb.	811/MM/2020	Ashik bail , Ambar bail	H	AL,DL,FO,GR,HS,RS,SL,SH,WP,WL	December-January
187		Ipomoea alba L.	534/MM/2020	Sawer pholi	H	AL,GL,HG,RS,SH,WL	March-April
188		Ipomoea carnea Jacq.	729/MM/2020	Gul e abbasi S	AL,RS,WS	August-September	
189		Ipomoea pes-tigris L.	903/MM/2020	Chitti chatri	H	AL,DL,GL,GR,HS,RS,SH,WP,HL	August-September
190		Ipomoea aquatica Forssk.	896/MM/2020	Jungli vail	H	AL,FO,GL,GR,RS,SH,WL	February-April
191		Ipomoea cairica (L.) Sweet	604/MM/2020	Jungli lehli	H	AL,FO,GL,GR,HS,RS,SL,SH,WP,HL	July-August
192		Benincasa hispida	730/MM/2020	Bari Khakhri	H	AL,GL,HG	June-July
193		Citrullus colocynthis (L.) Schrad.	638/MM/2020	Tumma	H	AL,DL,FO,GL,GR,HS,RS,SP,SL,SH,WP	May-June
194		Citrullus lanatus (Thunb.) Cogn.	755/MM/2020	Dwana, Turbooz	H	AL,GL,HG	July-August
195		Cucumis sativus L.	635/MM/2020	Khera	H	AL,GL,HG	June-July
196		Cucumis melo L.	527/MM/2020	Khakhi	H	AL,GL,HG	June-July
197		Cucurbita moschata Duchesne	718/MM/2020	Paitha	H	AL,GL,HG	June-July
198		Cucurbita maxima Duchesne	702/MM/2020	Ghea	H	AL,GL,HG	June-July
199		Cucurbita pepo L.	709/MM/2020	Kaddu	H	AL,GL,HG	June-July
200		Luffa acantangula (L.) Roxb.	624/MM/2020	Kali Toori	H	AL,GL,HG	June-July
201		Luffa cylindrica (L.) M.Roem.	522/MM/2020	Ghea toori	H	AL,GL,HG	June-July
202		Momordica balsamina L.	712/MM/2020	Jungli krala	H	AL,GL,HG	May-June
203		Praeictrullus listolusus (Stocks) Pangalo	809/MM/2020	Tinda	H	AL,GL,HG	June-July
204		Chrozophora tinctoria (L.) A.Juss.	850/MM/2020	Chitti Boi	H	DL,FO,GR,HS,RS,SP,SL,WP	May-June
205		Chrozophora oblongifolia (Delile) A.Juss. ex Spreng.	781/MM/2020	Khuri	H	DL,FO,GR,HS,SP,WP	August-September
206		Chrozophora pilcata (Vahl) A.Juss. ex Spreng.	656/MM/2020	Chitti booti	H	DL,FO,GL,GR,HS,SP,WP	August-September
207		Chrozophora sabulosa Kar. & Kir.	687/MM/2020	Giri booti	H	DL,FO,GL,GR,HS,RS,SP,WP	August-September
208		Croton bonplandianus Baill.	762/MM/2020	Kala bhangra	H	FO,GL,GR,HS,RS,SH,WP,WL	March-April

DOI: http://dx.doi.org/10.15666/aeet/1905_33433376
© 2021, AŁOKI Kft., Budapest, Hungary
Family	No.	Species	V/No.	Local name	Habit*	Micro-habitats**	Phenology
35. Fabaceae	220	*Quercus incana* Bartram	617/MM/2020	Shah baloot	T	AL,DL,FO,GL,GR,HS,SL,SP,SL,WP	August-September
36. Geraniaceae	221	*Geranium rotundifolium* L.	722/MM/2020	Bouni booti	H	AL,FO,GL,GR,RS,SH,WP,SL,WP	March-April
36. Geraniaceae	222	*Geranium lambertii* Sweet	545/MM/2020	Tara booti	H	FO,GL,RS,SH,WP,SL,WP	March-April
36. Geraniaceae	223	*Geranium pratense* L.	707/MM/2020	Asmani pholi	H	AL,FO,GR,GR,HS,SH,SL,WP	March-April
37. Gisekiaceae	224	*Geranium pusillum* L.	862/MM/2020	Gana booti	H	FO,GR,GR,HS,RS,SL,WP	August-September
38. Lamiaceae	225	*Giseckia pharaoaceoides* L.	644/MM/2020	Balu ka sag	H	AL,FO,GL,GR,RS,SP,SL,WP	July-August
38. Lamiaceae	226	*Anisomeles indica* (L.) Kuntze	794/MM/2020	Janni booti	H	FO,GR,RS,SH,WP	May-April
38. Lamiaceae	227	*Mentha longifolia* (L.) L.	698/MM/2020	Jangli poodina	H	FO,GL,HS,SL,SH,SL,WP	May-June
38. Lamiaceae	228	*Mentha arvensis* L.	693/MM/2020	Poodina	H	AL,GR,HS	March-April
38. Lamiaceae	229	*Mentha pulegium* L.	659/MM/2020	Janni poodina	H	AL,FO,GR,GR,HS,SH,SL,WP	March-April
38. Lamiaceae	230	*Mentha royleana* Wall. ex Benth.	631/MM/2020	Chatta poodina	H	AL,FO,GL,GR,HS,SL,WP	March-April
38. Lamiaceae	231	*Mentha spicata* L.	503/MM/2020	Podina	H	FO,GL,HS,SH,SL,WP	March-April
38. Lamiaceae	232	*Ocimum americanum* L.	890/MM/2020	Danadar booti	H	FO,GR,RS,SL,SH,WP	August-September
38. Lamiaceae	233	*Ocimum basilicum* L.	737/MM/2020	Niazhbo	S	HG,SH	August-September
38. Lamiaceae	234	*Salvia argytopica* L.	705/MM/2020	Ksaro	H	FO,GR,RS,SP,SL,SH,WP	August-September
38. Lamiaceae	235	*Salvia morescoftiana* Wall. ex Benth.	530/MM/2020	Lapra	H	FO,GR,RS,SL,SH,WP	August-September
38. Lamiaceae	236	*Salvia nubicola* Wall. ex Sweet	841/MM/2020	Hernar	H	FO,GR,RS,SH,WP,SL,WP	August-September
39. Leguminoseae	237	*Acacia farnesiana* (L.) Willd.	851/MM/2020	Kabli kikar	T	DL,FO,GR,HS,WP	August-September
39. Leguminoseae	238	*Acacia nilotica* (L.) Delile	783/MM/2020	Kikar	T	DL,FO,GL,RS,SP,WP	August-September
39. Leguminoseae	239	*Acacia catechu* (L.f.) Willd.	514/MM/2020	Wada kiker	T	DL,FO,GR,RS,WP	August-September
39. Leguminoseae	240	*Acacia modesta* Wall.	827/MM/2020	Pholai kiker	T	DL,FO,GR,SP,WP	March-April
39. Leguminoseae	241	*Acacia senegal* (L.) Willd.	618/MM/2020	Wilayt kiker	T	FO,GL,HS,GR,WP	August-September
39. Leguminoseae	242	*Acacia torta* (Roxb.) Craib	831/MM/2020	Jungli kiker	S	DL,FO,GL,HS,RS	August-September
39. Leguminoseae	243	*Albizia procera* (Roxb.) Benth.	630/MM/2020	Chita Sharin	T	AL,DL,GL,GR,HS,RS,SP	August-September
39. Leguminoseae	244	*Albizia lebbeck* (L.) Benth.	597/MM/2020	Shareen	T	AL,FO,GL,GR,HS,RS,WP	August-September
39. Leguminoseae	245	*Alhagi maurorum* Medik.	610/MM/2020	Kandera	S	DL,FO,GL,GR,HS	August-September
39. Leguminoseae	246	*Arachis hypogaea* L.	877/MM/2020	Moong phali	H	AL,DL,GL,SP	August-September
39. Leguminoseae	247	*Astragalus palocentros* Fisch.	882/MM/2020	Jangli jantri	H	HS	August-September
39. Leguminoseae	248	*Bauhinia variegata* L.	685/MM/2020	Kachnar	T	AL,GR,GR,HS	March-April
39. Leguminoseae	249	*Butea monosperma* (Lam.) Taub.	772/MM/2020	Wlayt sumbal	T	RS	March-April
No.	Species	V/No.	Local name	Habit*	Micro-habitats**	Phenology	
-----	---------	-------	------------	--------	-----------------	-----------	
250	*Cassia fistula* L.	846/MM/2020	Girdi nalli, Amaltas	T	AL,GL,HG,RS	March-April	
251	*Cicer arietinum* L.	577/MM/2020	Choly, chany	H	AL,DL,SP	February-March	
252	*Dalbergia sissoo* DC.	695/MM/2020	Tahli	T	AL,DL,FO,GR,HS,RS,SP,SH,WP,WL	April-May	
253	*Indigofera linifolia* (L.f.) Retz.	714/MM/2020	Lal dani	H	DL,FO,GR,HS,RS,SP,SL,SH,WP	March-April	
254	*Indigofera arabaica* Jaub. & Spach	646/MM/2020	Gulabi pholi	H	DL,FO,GR,HS,RS,SP,SL,WP	March-April	
255	*Indigofera sesiliflora* DC.	759/MM/2020	Shareni booti	H	DL,FO,GR,HS,RS,SL,WP	March-April	
256	*Indigofera tinctoria* L.	849/MM/2020	Neeli jhari	S	DL,FO,GR,HS,RS,SL,WP	November-December	
257	*Indigofera trita* L.	680/MM/2020	Lal pholi	H	AL,FO,GR,RS,SH,WP,WL	February-March	
258	*Lathyrus aphaica* L.	844/MM/2020	Jangli mattar	H	AL,FO,GR,RS,SH,WP,WL	September-October	
259	*Lathyrus sativus* L.	572/MM/2020	Jangli matri	H	AL,FO,GR,HS,RS,WP,WL	March-April	
260	*Lathyrus pratensis* L.	818/MM/2020	Peeli vail	H	AL,FO,GR,HS,RS,WP,WL	March-April	
261	*Lens culinaris* Medik.	516/MM/2020	Dal masoor	H	AL,GR,HG	February-March	
262	*Leucaena leucocephala* (Lam.) de Wit	550/MM/2020	Desi shareen	T	AL,GR,HS,HG,RS,WP	March-April	
263	*Medicago sativa* L.	662/MM/2020	Lucen, Losan	H	AL,GL	June-July	
264	*Melilotus indicus* (L.) Ali.	754/MM/2020	Senji	H	AL,GR,RS,SH,WP,WL	March-April	
265	*Melilotus officinalis* (L.) Pall.	600/MM/2020	Chitti Sinje	H	AL,GR,RS,SH,WP,WL	March-April	
266	*Melilotus messenianus* (L.) All.	790/MM/2020	Patro	H	AL,GR,RS,WP,WL	March-April	
267	*Parkinsonia aculeata* L.	667/MM/2020	Angrezi kikar	T	DL,FO,GR,RS,SP,WP	August-September	
268	*Pisum sativum* L.	711/MM/2020	Mattar	H	AL,GL	September-October	
269	*Pongamia pinnata* (L.) Pierre	592/MM/2020	Sukh chain	T	AL,GL,HR	August-September	
270	*Prosopis cineraria* (L.) Druce	745/MM/2020	Jand	T	DL,FO,GR,RS,SP,SL,WP	August-September	
271	*Prosopis glandulosa* Torr.	886/MM/2020	Wlayti kikar	T	DL,FO,GR,HS,RS,SP,SL	August-September	
272	*Prosopis juliflora* (Sw.) DC.	547/MM/2020	Phari kikar	T	AL,FO,GR,HS,RS,WP	August-September	
273	*Rhynchosia capitata* (Roth) DC.	686/MM/2020	Rawan	H	AL,GR,HG	March-April	
274	*Rhynchosia minima* (L.) DC.	855/MM/2020	Jangli Rawan	H	AL,FO,HS,HG,RS,WP,WL	March-April	
275	*Senna occidentalis* (L.) Link	576/MM/2020	Jangli arwan	H	AL,FO,HS,HG,RS,WP,WL	March-April	
276	*Senna tora* (L.) Roxb.	766/MM/2020	Jantar	H	AL,GL	March-April	
277	*Sesbania sesban* (L.) Merr.	581/MM/2020	Wlayti shareen	T	FO,HS,HG,RS,WP	August-September	
278	*Sesbania canecolor* J.B.Gillett	620/MM/2020	Jungli shareen	S	FO,HS,HG,RS	August-September	
279	*Sesbania grandiflora* (L.) Pers.	607/MM/2020	Majandri	T	FO,HS,HG,RS	November-December	
280	*Tamarindus indica* L.	798/MM/2020	Imli	T	AL,GR,HS	December-January	
281	*Trifolium resupinatum* L.	788/MM/2020	Barsan	H	AL,GL	March-April	
No.	Family	Species	V/No.	Local name	Habit*	Micro-habitats**	Phenology
-----	------------	--	--------------	--------------------	--------	------------------	-----------------
282	31. Trifolium alexandrinum L.	717/MM/2020	Chita Shatala	H	AL,GL	March-April	
283	31. Trifolium pratense L.	556/MM/2020	Gulabi Shatala	H	AL,GL	March-April	
284	31. Trifolium repens L.	579/MM/2020	Shatala	H	AL,GL	February-March	
285	31. Trigonella anguina Delile	568/MM/2020	Jangli meethere	H	AL,DL,FO,GL,GR,HS,RS,SH,WP,WL	March-April	
286	31. Trigonella coriiculata Sibth. & Sm.	615/MM/2020	Meethere	H	AL,GL	March-April	
287	31. Trigonella foenum-graecum L.	901/MM/2020	Methra	H	AL,HG	March-April	
288	31. Vicia sativa L.	767/MM/2020	Jangli Rewari	H	AL,FO,GL,HS,SL,SH,WP,WL	March-April	
289	31. Vicia bakeri Ali.	549/MM/2020	Daturi	H	AL,FO,GL,HS,RS,SH,WP,WL	August-September	
290	31. Vicia faba L.	725/MM/2020	Lobia	H	AL,GL,HG	December-January	
291	31. Vigna mungo (L.) Hepper	777/MM/2020	Mang dal	H	AL,GL,HG	February-March	
292	31. Vigna trilobata (L.) Verdc.	832/MM/2020	Rawan dal	H	AL,GL,HG	February-March	
293	31. Vigna unguiculata (L.) Walp.	560/MM/2020	Lobia	H	AL,HG	February-March	
294	31. Linum usitatissimum L.	857/MM/2020	Alsi	H	AL,HG	June-July	
295	31. Ammannia bicucullata L.	613/MM/2020	Ratta krond	H	AL,DL,FO,GL,HS,RS,SL,WP,WL	August-September	
296	31. Ammannia auriculata Wild.	536/MM/2020	Kandi booti	H	AL,DL,FO,GL,GR,HS,RS,SL,SH,WP	August-September	
297	31. Ammannia verticillata (Arn.) Lam.	902/MM/2020	Nevi kandi	H	AL,DL,FO,GL,GR,HS,RS,WP,WL	August-September	
298	31. Lawsonia inermis L.	833/MM/2020	Mehdni	H	AL,GL,HG	March-April	
299	31. Abelmoschus esculentus L. Moench	567/MM/2020	Bhindi	H	AL,HG	June-July	
300	31. Abutilon indicum (L.) Sweet	588/MM/2020	Peela crown	H	FO,GR,HS,RS,SL,SH,WP	March-April	
301	31. Abutilon theophrasti Medik.	543/MM/2020	Janghi Peela crown	H	FO,GR,HS,RS,SL,WP	March-April	
302	31. Abutilon grandifolium (Wild.) Sweet	765/MM/2020	Gidhar booti	S	FO,GR,HS,RS,SL,WP	July-August	
303	31. Abutilon hirtum (Lam.) Sweet	800/MM/2020	Peeli booti	H	FO,RS,SL,WP	March-April	
304	31. Bombax ceiba L.	786/MM/2020	Simbal	T	AL,GL,GR,RS	February-March	
305	31. Corchorus depressus (L.) Stocks	591/MM/2020	Bahu-phali	H	DL,GR,HS,MS,SP,SL	March-April	
306	31. Grewia asiatica L.	721/MM/2020	Falsa	S	AL,GL,HG,RS	February-March	
307	31. Malva neglecta Wallr.	665/MM/2020	Sitara Sunchal	H	AL,DL,FO,GL,GR,RS,SH,WP,WL	March-April	
308	31. Malva parviflora L.	510/MM/2020	Sunchal	H	AL,DL,FO,GL,GR,HS,RS,WP,WL	March-April	
309	31. Malva sylvestris L.	564/MM/2020	Jamni phool	H	HG,RS,SH	April-May	
310	31. Malva verticillata L.	885/MM/2020	Kandi Sunchal	H	AL,GL,GR,RS,SH,WP,WL	March-April	
311	31. Malvastrum coromandelianum (L.) Gareke	642/MM/2020	Khati booti, Peeli booti	H	DL,FO,GL,GR,HS,MS,RS,SL,SH,WP	October-November	
312	31. Sida spinosa L.	719/MM/2020	Jungle maithi	H	FO,GL,GR,HS,MS,RS,SH,WP	March-April	
313	31. Martynia annua L.	575/MM/2020	Gulabi kona	H	FO,GL,GR,HS,MS,RS,SL,SH,WP,WL	March-April	
## Family	No.	Species	V/No.	Local name	Habit*	Micro-habitats**	Phenology
44. **Meliaceae** | 314 | *Azadirachta indica* A.Juss. | 633/MM/2020 | Neem | T | AL,GL,HG,RS | July-August |
| 315 | *Melia azedarach* L. | 864/MM/2020 | Dharaik | T | AL,GL,HG,RS | August-September |
45. **Menispermaceae** | 316 | *Tinospora sinensis* (Lour.) Merr. | 639/MM/2020 | Glow | S | AL,GL,HG | April-May |
| 317 | *Broussonetia papyrifera* (L.) L'Her. ex Vent. | 817/MM/2020 | Gul too | T | HG,RS | March-April |
| 318 | *Ficus benghalensis* L. | 593/MM/2020 | Desi bohar | T | AL,GL,HG,RS | March-April |
| 319 | *Ficus carica* L. | 749/MM/2020 | Anjeer | T | AL,GL,HG,RS | May-June |
| 320 | *Ficus religiosa* L. | 791/MM/2020 | Peepal | T | AL,GL,HG,RS | August-September |
| 321 | *Ficus palmta Forsk.* | 879/MM/2020 | Desi Anjeer | T | AL,GL,HG,RS | May-June |
| 322 | *Ficus sarmentosa* Buch.-Ham. ex Sm. | 521/MM/2020 | Wlayti bohar | T | AL,GL,RS | August-September |
| 323 | *Morus alba* L. | 866/MM/2020 | Safaid too | T | AL,GL,HG,RS | March-April |
| 324 | *Morus nigra* L. | 625/MM/2020 | Kala too | T | AL,GL,HG,RS | March-April |
46. **Moraceae** | 325 | *Moringa oleifera* Lam. | 700/MM/2020 | Sohanjana | T | AL,GL,HG,RS | February-March |
| 326 | *Musa × paradisiaca* L. | 645/MM/2020 | Keela | H | AL,GL,HG,WL | March-April |
49. **Myrtaceae** | 327 | *Callistemon lanceolatus* (Sm.) Sweet | 643/MM/2020 | Bottle burch | T | HG,RS | March-April |
| 328 | *Eucalyptus globulus* Labill. | 554/MM/2020 | Saieda too | T | AL,GL,GR,RS,WL | August-September |
| 329 | *Psidium guajava* L. | 859/MM/2020 | Amrood | S | AL,GL,HG | January-February |
| 330 | *Syzgium cumini* (L.) Skeels | 808/MM/2020 | Kala jaman | T | AL,GL,HG,RS | August-September |
50. **Nitrariaceae** | 331 | *Peganum harmala* L. | 701/MM/2020 | Harmal booti | H | DL,FO,GR,HS,MS,RS,SP | March-April |
| 332 | *Boerhavia diffusa* L. | 504/MM/2020 | Nevi booti | H | AL,FO,GR,HS,RS,SL,SH,WP | July-August |
| 333 | *Boerhavia procumbens* Banks ex Roxb. | 649/MM/2020 | Isit | H | FO,GR,HS,RS,WP | June-July |
| 334 | *Boerhavia repens* L. | 816/MM/2020 | Looni booti | H | AL,FO,GR,HS,RS,SH,WP | August-September |
| 335 | *Bougainvillea glabra* Choisy | 520/MM/2020 | Rangli bail | S | HG,RS | August-September |
| 336 | *Bougainvillea spectabilis* Willd. | 723/MM/2020 | Bugal bail | S | HG,RS | August-September |
| 337 | *Mirabilis jalapa* L. | 526/MM/2020 | Gul-e-Asar | H | HG,RS | August-September |
51. **Nyctaginaceae** | 338 | *Jasminum grandiflorum* L. | 594/MM/2020 | Chambeli | S | AL,HG | July-September |
| 339 | *Jasminum sambac* (L.) Aiton | 641/MM/2020 | Motiya | S | AL,HG | July-September |
| 340 | *Olea ferruginea* Wall. ex Aitch. | 746/MM/2020 | Kao | S | AL | August-September |
53. **Oxalidaceae** | 341 | *Oxalis corniculata* L. | 732/MM/2020 | Peeli booti, Choti lonak | H | AL,FO,GR,HS,RS,SH,WP,WL | February-March |
54. **Papaveraceae** | 342 | *Fumaria indica* (Hausskn.) Pugsley | 537/MM/2020 | Papra | H | AL,GL,HS,RS,SH,WP | March-April |
| 343 | *Fumaria vaillantii* Loeisel. | 899/MM/2020 | Shatra papra | H | AL,GL,HS,RS,SH,WP | March-April |
55. **Pedaliaceae** | 344 | *Sesamum indicum* L. | 835/MM/2020 | Tilt | H | AL | March-April |
| 345 | *Mazus pumilus* (Burm.f.) Steenis | 691/MM/2020 | Chita phel | H | FO,GR,HS,RS,SH,WL | March-April |
| Family | No. | Species | V/No. | Local name | Habit* | Micro-habitats** | Phenology |
|----------------------|-----|--|-------|-----------------|--------|-----------------|-------------------------|
| 57. Plantaginaceae | 346 | Veronica anagallis-aquatica L. | 834/MM/2020 | Hazar booti | H | AL,FO,GL,HS,RS,SH,WP | March-April |
| 347 | Persicaria glabra (Wild.) M.Gómez | 523/MM/2020 | Hazar dani | H | AL,FO,GL,HS,RS,SP,SH,WP | September-October |
| 348 | Polygonum plebeium R. Br. | 531/MM/2020 | Droomk, Gorakh pan | H | AL,FO,GL,GR,HS,MS,RS,SL,SH,WP,WL | March-April |
| 349 | Rumex crispus L. | 650/MM/2020 | Lonak | H | AL,FO,GL,HS,RS,SL,SH,WP,WL | March-April |
| 350 | Rumex dentatus L. | 812/MM/2020 | Khatkal | H | AL,FO,GL,HS,RS,SL,SH,WP,WL | March-April |
| 351 | Rumex patientia L. | 860/MM/2020 | Khatkal | H | AL,FO,GL,GR,HS,MS,RS,SH,WP,WL | March-April |
| 58. Polygonaceae | 352 | Portulaca grandiflora Hook. | 763/MM/2020 | Kufa | H | DL,FO,GL,GR,HS,RS,SP,SL | August-September |
| 353 | Portulaca oleracea L. | 865/MM/2020 | Kufa lonak | H | FO,GL,HS,RS,SH,WP, WL | August-September |
| 354 | Portulaca pilosa L. | 829/MM/2020 | Lorni booti | H | FO,GL,HS,MS,RS,SH | August-September |
| 355 | Portulaca quadrifida L. | 753/MM/2020 | Lornak booti | H | FO,GL,GR,HS,MS,RS,SH,WP, WL | August-September |
| 59. Portulacaceae | 356 | Anagallis arvensis L. | 900/MM/2020 | Neeli booti, Bili booti | H | AL,FO,GL,GR,HS,MS,RS,SH,WP | March-April |
| 357 | Nigella sativa L. | 740/MM/2020 | Kalwanji | H | AL,HO | March-April |
| 358 | Ranunculus muricatus L. | 773/MM/2020 | Chambeli booti | H | FO,GL,SH,WP | March-April |
| 359 | Ranunculus sceleratus L. | 571/MM/2020 | Jal Dhania | H | FO,GL,GR,HS,RS,SL,SH | February-March |
| 360 | Ranunculus arvensis L. | 739/MM/2020 | Peela phola | H | DL,GL,HS,SP,SH,WP | March-April |
| 361 | Ranunculus nutans C.A.Mey. | 697/MM/2020 | Peela tara | H | FO,GL,GR,HS,SP,SH | August-September |
| 362 | Ranunculus repens L. | 738/MM/2020 | Peela Gullab | H | GL,GR,HS,RS,SH,WP | June-July |
| 60. Primulaceae | 363 | Ziziphus jujuba Mill. | 726/MM/2020 | Bari | T | DL,FO,GL,GR,HS,GR,RS,SP | August-September |
| 364 | Ziziphus nummularia (Burm.f.) Wight & Arn. | 612/MM/2020 | Jangi bari | T | FO,GL,HS,RS,SP | August-September |
| 61. Ranunculaceae | 365 | Rosa indica L. | 814/MM/2020 | Gulaab | S | HG,RS | March-April |
| 366 | Galium aparine L. | 589/MM/2020 | Wannwar booti | H | AL,FO,GL,GR,HS,RS,SL,WP, WL | June-July |
| 62. Rhamnaceae | 367 | Citrus limon (L.) Osbeck | 869/MM/2020 | Nimbo | S | AL,HO | March-April |
| 368 | Citrus reticulata Blanco | 836/MM/2020 | Kino malta | S | AL,HO | September-October |
| 369 | Citrus sinensis (L.) Osbeck | 743/MM/2020 | Musmi malta | S | AL,HO | September-October |
| 63. Rosaceae | 370 | Populus alba L. | 778/MM/2020 | Sufa emotions | T | AL,HO | February-March |
| 371 | Salix alba L. | 599/MM/2020 | Desi bohoer | T | AL,GL,GR,HG,RS | February-April |
| 64. Rubiaceae | 372 | Salvadoria oleoides Decne. | 690/MM/2020 | Jali, Van | T | DL,FO,GR,HS,SP,WP | August-September |
| 373 | Salvadoria persica L. | 747/MM/2020 | Pelo | S | DL,GR,RS,SP,SL,WP | August-September |
| 65. Rutaceae | 374 | Dodonaea viscosa (L.) Jacq. | 768/MM/2020 | Sanatha | S | FO,GR,HS,MS,RS,SL,SH,WP | March-April |
| 375 | Verbasum thapsus L. | 891/MM/2020 | Gidhar tambaku | H | FO,GR,HS,SP,SH | March-April |
| 376 | Capsicum annuum L. | 742/MM/2020 | Shimla mirech | H | AL,GL,HG | June-July |
| 66. Salicaceae | 377 | Cestrum nocturnum L. | 838/MM/2020 | Rat ki rani | S | HG,RS | March-April |
| Family | No. | Species | V/No. | Local name | Habit* | Micro-habitats** | Phenology |
|-------------------|-----|-------------------------------------|-------|------------------|--------|-----------------|------------------|
| 378 | 519/MM/2020 | Withania somnifera | Siah dhaoota | H | FO, GL, HS, MS, RS, SH, WP | August-September |
| 379 | 626/MM/2020 | Hyoscyamus niger | Khoob kalan | H | GL, HS, RS, SH, WP | March-April |
| 380 | 627/MM/2020 | Tamarix aphylla | Jangli dhaoota | S | FO, GL, HS, MS, RS, SP, SL, SH, WP, WL | June-July |
| 381 | 502/MM/2020 | Solanum tuberosum | Jungli berry | H | FO, GL, HS, SL, WP | August-September |
| 382 | 636/MM/2020 | Solanum americanum | Kainch Manch, Makao | H | AL, FO, GL, HS, RS, SH, WP | June-July |
| 383 | 727/MM/2020 | Solanum incanum | Jangli baingan, Mahokari | S | FO, GL, HS, SH, WP | June-July |
| 384 | 761/MM/2020 | Solanum melongena | Baingan | H | AL, HG | June-July |
| 385 | 758/MM/2020 | Solanum surattense | Choti Kandhari | H | DL, FO, GR, HS, MS, RS, SP, SL | October-November |
| 386 | 596/MM/2020 | Solanum tuberosum | Allo | H | AL, HG | January-February |
| 387 | 555/MM/2020 | Withania somnifera | Aksn, Jangli panair, Akeri | H | DL, FO, GR, HS, RS, SP, SL, WP | March-April |
| 388 | 741/MM/2020 | Withania coagulans | Jangly chana | S | DL, FO, GL, SP, SH | March-April |
| 389 | 868/MM/2020 | Tamarix aphylla | Khagal | T | DL, FO, GL, RS, WP | March-April |
| 390 | 708/MM/2020 | Lantana camara | Khagal, Rukh | S | DL, FO, GL, RS, SP, SL, WP | August-September |
| 391 | 797/MM/2020 | Lantana indica | Chitti rangli | S | FO, GL, HS, RS | August-September |
| 392 | 595/MM/2020 | Physlial nodiflora | Bukand booti | H | FO, GL, MS, SH, WP, WL | August-September |
| 393 | 01/MM/2020 | Verbena officinalis | Chandni, Sindhu podina | H | FO, GL, HS, MS, SL, SH, WL | August-September |
| 394 | 647/MM/2020 | Viola pilosa | Lillio | H | FO, GL, HS, WL | April-May |
| 395 | 655/MM/2020 | Vitex vinifera | Angoor | S | AL, HG | June-July |
| 396 | 842/MM/2020 | Fagonia indica | Jawah booti | S | DL, FO, GR, HS, RS, SP, SL | July-August |
| 397 | 539/MM/2020 | Tribulus terrestris | Bhahira | H | DL, FO, GL, HS, MS, RS, SP, SL, SH, WP | August-September |

*; H: Herbs; S: Shrubs; T: Tree; G: Grass; **; AL: Arable Land; DL: Dry Land; FO: Forest; GL: Grassland; GR: Graveyard; HS: Hilly Slopes; HG: Home Gardens; MS: Mountain Summits; RS: Roadside; SP: Sandy Places; SL: Scrubland; SH: Shady Places; WP: Waste Places; WL: Wet Land