Original Paper

Ethnobotanical Survey and Habitat Mapping of Medicinal Plants and Its Implication on Conservation Management in Rural Kwara Communities

Oluwasogo A. Olalubi¹*, Gabriel Salako², Abdulfatai T. Ajiboye³, Oluwasegun T. Adetunde⁴ & Kabir O. Olorede⁵

¹ Department of Public Health, Kwara State University, Nigeria
² Department of Environmental Management & Toxicology, Kwara State University, Nigeria
³ Department of Chemical, Geological and Physical Sciences, Chemistry Unit, Kwara State University, Nigeria
⁴ Department of Geography and Environmental Management, University of Ilorin, Nigeria
⁵ Department of Statistics and Mathematical Sciences, Kwara State University, Nigeria

* Corresponding author: Oluwasogo.Olalubi@kwasu.edu.ng; olalubisogo@gmail.com

Received: April 6, 2021 Accepted: April 20, 2021 Online Published: April 24, 2021
doi:10.22158/rhs.v6n2p39 URL: http://dx.doi.org/10.22158/rhs.v6n2p39

Abstract

Background: In Nigeria, medicinal plants are now being threatened due to increased urbanization, land clearing for farming and over-harvesting from their natural habitats. As such, if such trends continue, some of these medicinal plants might increasingly become not available and in the extreme circumstance be faced with extinction.

Methods: An epidemiological descriptive field survey that employed a carefully-structured, closed-ended, interviewer-administered, paper-based questionnaire designed to capture information on the use of medicinal plants as antimalarial and for management of other associated illnesses. We also employed Global Positioning System (Garmin etrex 75) to captures the geo-coordinates of previously identified medicinal plants across the footpath transect at 20 m intervals. A total of twenty-one (21) medicinal plant species were surveyed across five communities with varying numbers per locations.

Results: Out of the nine (9) identified traditional healers across the communities, all claimed to have used at least one or combinations of these plants for treatment of malaria. An image classification performed through land cover land use map of the study area revealed six classes: swamp /water bodies, river valley, savanna woodland, degraded woodland, grassland and settlements cluster. Most
threatened species such as Aristolochia ringes, Mucuna prurins, Azadirachta indica, Kigelia africana, Citrus limon, Ludwigia suffruticosa, Parkia biglobosa, and Picralima nitida are those found in Malete KWASU campus axis in the degraded woodland and settlement cluster classes. This is due to the high level of forest destruction in the area as a result of growing student population and massive constructions of students’ hostel. We reported that about 60% of original plant cover has been lost between 2005 and 2015. It was observed that availability of surface water bodies played a crucial role in influencing the distribution of identified medicinal plants. The nearest neighbour analysis gave a nearest neighbour index of 0.695 at p=0.000003 and z-score of -4.70314. This shows that the observed random distribution of medicinal plants in the study area was statistically significant. It has been observed that random patterns are usually associated with natural occurrences. The random spatial pattern confirms that these plants have not yet been affected by anthropogenic activities and hence need to be conserved there in the wild.

Conclusion: There is need to leverage on conservation of medicinal plants for treating malaria in their natural habitats. Also, the need to ensure sustainable harvesting and other socio-ecological process to ensure these are not threatened to the extreme case of extinction in these communities. In the view of the above, we recommend that KWASU-Malete campus axis be monitored, proper urban planning initiatives implemented and ensure cultivation and preservation of these plants are incorporated into the greening efforts of the Kwara state government in this area.

Keywords
Medicinal Plants, Ethnobotanical Survey, Questionnaire, Global Positioning System, Traditional Healers, Rural, Kwara State

1. Introduction
Medicinal as well as aromatic plants are seen globally as raw materials in the pharmaceutical and traditional health sectors (Phondani, Maikhuri, & Saxena, 2014). It has been observed that over 85% of traditional herbal medications globally are derived from medicinal plants (Phondani, Maikhuri, & Saxena, 2014). Such is seen in the Indian pharmaceutical sector where out of the 280 medicinal plants being used, 175 are found in the Indian Himalayan Region (Kumar, 2015). Studies from Iran showed that there are 8,000 medicinal plants growing in the wild and Geographical Information System (GIS) has been leveraged upon to map these to strengthen operationalization of policies and plans towards improving livelihoods for rural communities (Mashayekhan, Reza, Jidian, Jalilvand, Gholami, & Teimouri, 2016). Most of these medicinal plants are now being threatened due to urbanization, land clearing for farming and overharvesting from their natural habitats. As such, if such trends continue, some of these medicinal plants might increasingly become not available and in the extreme circumstance be faced with extinction. Nonetheless, best practices on cultivation, and sustainable harvesting could be leveraged on as strategies for sustainable livelihood in rural communities. Some countries like Canada have already commenced commercial cultivation of high value medicinal plants in British Columbia.
under the Medicinal Plant Project (Chowdhury, Koike, Muhammed, Halim, Saha, & Kobayashi, 2009). This study attempted to present systematic biodiversity, ethno-botanical survey and geospatial analysis of indigenous medicinal plant species used for management of malaria and other associated illnesses and its implication on conservation management in rural Kwara State, Nigeria.

2. Methods

2.1 Study Area

Our study area is located in Moro local government area (LGA) of Kwara state, Nigeria. Kwara state is located in the Derived Savannah zone of North-Central Nigeria. It comprises the sample settlements of Malete-Okte, Gbugudu, Malete-Kwasu campus, 2 km south of Yeregi, cluster of settlements around Apodu and Alapo axis. The climate and occupational activities in the area are described in Olalubi et al. (2020). Being rural communities the landscape provides good habitat for several medicinal plants which are harvested by the local for alternative health care delivery and services. However, the establishment of Kwara State University (KWASU) in 2009 at Malete has not only altered the population structure of the area but also the composition and quantity of plant diversity.

![Map of Study Area and Medicinal Plant Species Distribution](image_url)
2.2 Field Survey

Field survey was carried out by the team of researchers and 2 local assistants from the communities along the footpath transect at 20 m intervals using Global Positioning System (Garmin etrex 75) to captures the geo-coordinates of sampled villages and previously identified medicinal plants. A total of twenty-one (21) medicinal plant species were surveyed across five communities with varying numbers per locations. Simultaneously, an in-depth verbal interview was conducted with nine (9) head of traditional healers and home-made herbal medicine users by team members and covered by University relations media department. Also, a mixed, paper-based, structured, interviewer-administered, questionnaire made up of both open-ended (qualitative and exploratory) questions and standardized closed-ended part provides quantitative data. It was designed to capture information on the use of medicinal plants as antimalarial and management of other associated illnesses, plant materials used in isolation or combination for malaria management and most effective medicinal plant used for treatment of acute, uncomplicated and severe malaria across the study settlements.

2.3 GIS Operation for Land Cover Mapping

We subset the geographic extent of the study area using both the settlement point data and the administrative shape file at ward level in ArcGIS 10.2 (Figure 1). The 2019 Sentinel satellite images of the Ilorin-Igbeti scenes at 20 m spatial resolution was obtained and downloaded from web portal of Copernicus project (https://scihub.copernicus.eu). Raster processing was performed by cropping the study area extent from the larger satellite images. Image enhancement and band combinations were performed to extract land cover features such as vegetation water bodies and settlements. All the satellite images were co-registered to the same study area shape file to give similar spatial dimension. As shown in Figures 2 and 3, vegetation index analysis was performed using soil adjusted vegetation index (SAVI) as proposed by Huete (1988) to distinguish gradient of plant cover and minimize the effect of soil background on vegetation signal in the landscape. We set our soil adjustment L factor to 0.5 given the semi forest nature of the study area. SAVI is mathematically denoted as

$$\text{SAVI} = \frac{\text{nir} - \text{red}}{(\text{nir} + \text{red} + L)}$$

Where

- nir = near-infrared band
- red = visible red band
- L = soil adjustment factor
Figure 2. Study Area Overlaid on Composite Sentinel Images
The Nearest Neighbour Analysis was carried out to determine the spatial pattern of observed medicinal plants in the study area. NNA is a statistical model used to determine the probability of finding a point within a radius around one point follows a Poisson distribution when sampled from a population of points on a plane (Clark & Evans, 1954). It is indexed from 0 being clustered to 1 being random and 2.15 being regular in spatial pattern.

\[
R_n = \frac{\bar{X}(Obs)}{\alpha \sqrt{\frac{a}{n}}}
\]

Where

- \(R_n \) = Nearest neighbour value
- \(\bar{X}(Obs) \) = mean observed nearest neighbour distance
- \(a \) = area under study
- \(n \) = total number of points

Figure 3. Soil Adjusted Vegetation Index
2.4 Collection and Identification of Plants Specimens

A series of field trips were conducted to collect specimens of the reported plants from the natural vegetation with the help of some traditional healers / home-made herbal medicine users recruited as respondents. Identification and scientific authentication of the sampled plants and generation of voucher specimen number was done at the Department of Forest Conservation and Protection, Forestry Research Institute of Nigeria, Jericho, Ibadan. The online plant diversity resources further confirmed the identity of the surveyed plants. The Voucher specimens were collected, pressed and deposited in the herbarium of Kwara State University, Malete, Nigeria.

2.5 Statistical Analysis

Each study questionnaire involved seventy-six constructs/variables on the entire subject matter. Among these variables, fifty-one (51) are quantitative variables while the remaining twenty-five (25) constitute qualitative variables. For the nine respondents, the study involved a total of 459 observations from qualitative variables among which 42 were missing due to non-responses. We completed cases for the data by automatically replacing the missing entries in a reliable data-adaptive way using multivariate imputation by chained equation technique, package of the version 3.6.1 of the R software for statistical computing and graphics (R Core Team, 2019).
2.6 Ethical Clearance
All aspects of the study were approved by Kwara State University Research Committee and Ethical Review Board. Verbal and written Informed consent was obtained from the traditional healers used as respondents through community leaders and magajis’. They were assured of voluntary participation, confidentiality of their responses and the opportunity to withdraw at any time without prejudice in line with the Helsinki Declaration was emphasized (World Medical Association, 2001).

3. Results
The study found twenty-one (21) different ethno-medicinal plants used in different forms for management of malaria and other associated allied illnesses in the rural communities (Table 1).

Table 1. Novel Medicinal Plants Usage by Settlements across Study Area

S/No	Specie Name	Local / Yoruba Name	Common / English Name	Family Name	Settlemnt	Voucher ID No	Morphology, Part Used / Status	Medicinal Use(s)	Usage & Dosage
1	Antidesma velutinum L.	Aro-dudu	Antidesma	Euphorbiaceae	Okete	FHI 112959	Climber grown to a tree, leaf, Yellowish green in colour. Stem bark and Green leaf used	Malaria	Use along with ewe aafe, soak and boil to steam together, inhale the steam, drink in the morning and evening (5mls-10mls) and bath when warm, three times over three days.
2	Cedrela odorata L.	Ewe-gbogi	Cedar Wood	Meliaceae	Yeregi	FHI 112960	Green, leaf	Malaria, measles	Boil with ewe-roodorodo and water, baths and drink twice daily. For measles, Pound or impulzerized with ripe banana, poured inside a fairly big covered plastic with red palm oil. Cream the child every night over three days. It could be used to treat measles in children.
No.	Species	Common Names	Family	Common Names	FHI Code	Uses			
-----	---------	--------------	--------	--------------	----------	------			
3	Capsicum annuum L.	Ewe-rodo	Solanaceae	Yeregi	Green, leaf	FHI 112958	Malaria, Vitamin C, stimulant		
4	Tithonia diversifolia L.	Ewe-Jogbo	Asteraceae	Alapo	Green, leaf	FHI 112957	Malaria, Yellow fever		
		Tree marigold					Boil with ewe-gbogi and water, baths and drink twice daily		
							Bitter in taste due to presence of alkaloids, combine with dry banana leaves, boiled together to steam, inhale the steam, drink 5-10mls twice daily, morning and evening over three days. Bath with the concoction once daily over three days.		
5	Ficus thoningii Blume	Ewe-Oda niki	Moraceae	Alapo	Root, stem	FHI 112956	Malaria, fever, hepatitis, diarrhoea, urinary schistosomiasis, urinary tract infections, diabetes mellitus, gonorrhoea, respiratory infection		
		Blume			bark, green leaf		Blend the leaf with banana fruit, add red palm oil, keep under the sun for 3 hours to achieve homogenicity. Rub on the body once daily for 5 days.		
6	Solanum torvum Sw.	Ewe-Ele gun / Ewe Egun Onitan meta	Solanaceae	Alapo	Green, leaf	FHI 112955	Malaria, cough, fever		
		Turkey berry					For cough, weigh the Leave, add odan opupu leaves. Wrap ewe elegun with ewe odan opupu and tied with rope, bury it in hot ash for 5mins, after which the steamed content is removed, pressed to extract the juice. One		
Teaspoon is consumed once daily either morning, afternoon or evening.

For malaria: weigh the plant, squeeze, filter, add common salt, sodium chloride, drink thrice (morning, afternoon and evening) for a day.

No.	Plant Name	Common Name	Family	Local Name	heals		
7	*Petiveria allicea* L.	Ewe-Awogba	Phytolaccaceae	Okete	FHI 112954		
					Malaria,		
					Cancer and		
					Gonorrhea		
					For		
					malaria,		
					the powdery		
					form (10mg)		
					is consumed		
					with pap.		
					it can also		
					be taken with		
					water.		
8	*Spondias monbin* L.	Iyeyeode	Anacardaceae	Okete	FHI 112921		
					Yellowish		
					Green, leaf		
					and Bark		
					Malaria,		
					Cancer,		
					Measles		
					For		
					gonorrhea		
					(atosi),		
					grind to		
					powder, dry		
					and sieve and		
					pulverized		
					further		
					For malaria,		
					the powdery		
					form (10mg)		
					is consumed		
					with pap.		
					it can also		
					be taken with		
					water.		
9	*Byrsocarpus coccineus* Schumach	Owo	Connaraceae	Gbugud	FHI 112950		
					Herbaceous		
					plant		
					Green, leaf		
					Malaria,		
					Measles		
					For		
					gonorrhea		
					(atosi),		
					grind to		
					powder, dry		
					and sieve and		
					pulverized		
					further		
					For malaria,		
					the powdery		
					form (10mg)		
					is consumed		
					with pap.		
					it can also		
					be taken with		
					water.		
10	*Zea mays* L.	Ewe	Poaceae	Gbugud	FHI 112920		
					Herbaceous		
					plant		
					Green, leaf		
					Malaria,		
					gall bladder		
					For		
					Maalaria,		
					the leave		
					together,		
					sieve and		
No.	Plant Name	Common Name	Family	Herb Part Used	Disease	Preparation Method	
-----	------------	-------------	--------	----------------	---------	--------------------	
11	*Mitragyna inermis*	Ewe Otoko	African linden	Alapoi	Green, leaf, bark	Malaria, gonorrhea, dysentery, pile	For malaria, boil and drink three times a day and bath once daily. For pile, impulverized with water, sieve, filter and drink the filtrate three times a day.
12	*Piper guineense*	Iyere	African locust beans	Malete	Green, Root, seed & leaf	Malaria	Mix together, sieve, pour inside ragolis bottle. Drink one cup once daily for 3 days.
13	*Picralima nitida*	Abere	Spanish needles	Malete	Green, Root, seed & leaf	Malaria, abdominal disorders	Extremely bitter, mix together with water, sieves, and pour inside ragolis bottle. Drink one cup once daily for 3 days.
14	*Vernonia amgdalina*	Ewuro	Water primrose	Malete	Green, leaf	Malaria, wound, fever and pile	Freshly pulverized with water and filtered. Add common salt (NaCl) to filtrate and drink three times, morning, afternoon and evening in a day.
15	*Citrus limon* (L) Buru F.	Osan-laimu	Lemon	Malete	Green leaf, Unripe Lemon Seed and Juice	Malaria, cold, stomach ache	Half cup twice daily, morning and evening.
16	*Kigelia Africana* (Lam) Benth	Pandoro	Sausage tree	Malete	Bark	Malaria, kidney disorder	Cut the bark into pieces, mixed together with palm wine, left over for two (2) days.
17	*Azadirachta indica* A. Juss.	Dongo-yaro	Neem tree	Malete	Root	Malaria, ring worm, syphilis	Wash with water, cut into tiny pieces, soaked
No	Plant Name	Part Used	Preparation	Pharmacological Use			
----	--------------------------------	-----------	---	--------------------------------------			
18	*Mucuna pruriens* (L) DC. Ewe	Green leaf	Cut into tiny pieces, macerate with water and salt, sieve, and pour inside	Malaria, skin diseases, diuretics.			
	Stinging bean		a Ragolis bottle. Drink one (1) cup, once daily for 3 days.				
19	*Aristolochia ringens* Vahl	Root	Mix together, sieve, pour inside ragolis bottle. Drink one cup once daily	Malaria, Typhoid, Antidote			
	Akogun Snake work		for 3 days.				
20	*Alstonia boonei* De Wild	Bark	Pulverize the fresh bark along with edible locust bean seed, dry in sunlight,	Malaria			
	Epo Aganwo		sieved and packed. Use in 100mg of the powdery form with a cup of water or				
	Alstonia, pattern wood, stool		pap. It could be tablet or capsulated. It can be used as analgesic.				
	wood						
21	*Chromolaena odorata* (L) R.M.	Green leaf	Boil water till warm. Squeeze the leave inside warm water. Sieve / filter,	Malaria, dysentary, diarrhoea.			
	King Ewe Akintola Siam weed		drink three times a day over three days.				

NB: FHI=Forest Herbarium Ibadan

Source: Author (2021)

All the ethno-medicinal plant experts (traditional healers) included as respondents in the study were married males aged 50 year and above. Majority of the respondents have primary school level education as presented (Table 2).
Table 2. Educational Level of Respondents

Educational Status	Frequency	Percent
Primary	8	88.9
Others	1	11.1
Total	9	100.0

Common illnesses identified include malaria, typhoid fever, skin rashes, cough, diarrhea, cholera, measles, convulsion, diuretics and others in the settlements. However, data evidence revealed that all (100%) of the respondents are aware of malaria in their practice and experience with ethno-medicinal plants and herbs. Data evidences also showed that majority of the traditional healers combine the identified medicinal plants in the treatment of malaria as presented (Table 3).

Table 3. Plant Materials Used in Isolation or Combination for Malaria Management

Responses	Frequency	Percent
Yes	7	77.8
No	2	22.2
Total	9	100.0

Some of the combinations therapies are presented in table 3 while those acclaimed to be most effective for treatment of both acute uncomplicated and severe malaria are listed in Table 4 respectively.

Table 4. Medicinal Plant Used as Combination Therapies for Acute Uncomplicated and Severe Malaria

S/No	Local / Yoruba Name	English / Specie Name	Usage and Dosages
1	Ewe-Gbogi + Ewe- Rodo Rodo	Cedrela odorata Leaves + Capsisum annuum L. (Bell Pepper) Leaves	Boil both leaves together in water, baths and drink twice daily
2	Ewe Odan Eki + Unripe Banana fruit	Ficus thoningii + Musa spp	Boil the leaf, macerate with unripe banana fruit and potassium permanganate, dissolves in palm oil, poured inside bottle, place under the sun and shake vigorously. Then rub once on the body of the child. Two (2) teaspoon of the concoction is consumed twice daily. The patient sweats after five (5) minutes of administration, as an indicator of efficacy of the herb.
3	Epo Aganwo + Locust Bean seed	Astonia borni + Parkia biglobosa (Jacq.) G.Don	The bark of Astonia borni is cut into pieces, boiled to steam. The seed of
S/No	Local / Yoruba Name	English / Specie Name	Usage and Dosage
------	---------------------	----------------------	------------------
1	Aro Dudu	Antidesma velatinum L.	Macerate and Boil the leaf in water to steam, allow to cool, baths and drink. Drink one (1) cup twice daily for three (3) days.
2	Ewe Okobo	Mitragyna inermis (African linden)	The leaves are macerated with water, add salt, filter and drink. Drink one (1) cup once daily for 3 days.
3	Ewe-Odan eki	Ficus thoningii blume (Strangler fig, common wild fig, bark-cloth fig)	Boil the leaf, macerate with unripe banana fruit and potassium permanganate, dissolves in palm oil, poured inside bottle, place under the sun and shake vigorously. Then rub as cream once on the body of the child. Two (2) teaspoon of the concoction is consumed twice daily. The patient sweats after five (5) minutes of administration, as an indicator of efficacy of the herb. It is also effective for the treatment of diarrhea, dysentery and vomiting. *Ficus* specie plant could also be used singly to treat malaria without combining it with other plants
4	Ewe-Gbogi + Ewe- Rodo Rodo	Cedrela odorata + Capsicum annuum L. (Bell Pepper)	Macerate and Boil both leaves together in water, baths and drink. Drink one (1) cup twice daily for three (3) days.
5	Ewe Iyeye-Ode	Spondias mombin (Hog plum)	Macerate and Boil the leaf in water to steam, allow cooling, baths and drink. Drink one (1) cup twice daily for three (3) days.

Source: Author (2021)
Six classes of land use land cover (LULC) were identified as follows: Water bodies, river valley, savanna woodland, degraded woodland, grassland and settlements cluster with the associated medicinal plants (Table 6).

Table 6. Observed Medicinal Plants Distribution Based on LULC

S/No	Settlements	Land cover categories	Associated medicinal plants
1	Apodu	Swamp/wetland	Citrus lemon
2	Alapo	River valley	*Mitragyna inermis, Solanum torvum Sw, Ficus thoningii Blume, Tithonia diversifolia Chromolaena odorata*
3	Yeregi, Gbugudu	Savanna woodland	*Antidesma velutinum, Capsisum anum, Cedrela odorata, Byrsocarpus coccineus Schumach*
4	Malete, Okete	Degraded woodland	*Kigelia Africana, Spondia mombin L, Azadirachta Indica*
5	Central Malete	Savanna Grassland	*Vernonia amgdalina, Azadirachta Indica*
6	Malete, KWASU Settlement cluster / Openland	Azadirachta Indica	

Source: Author (2021)

4. Discussion

Most threatened species such as *Aristolochia ringes, Mucuna pruriens, Azadirachta indica, Kigelia africana, Citrus limon, Ludwiga suffruticosa, Parkia biglobosa,* and *Picralima nitida* are those found in Malete, KWASU campus axis in the degraded woodland and settlement cluster classes. This is due to the high level of forest destruction in the area as a result of growing student population and massive constructions of students’ hostel. This area showing the LULC results (Figure 4) was reported to have lost about 60% of its original plant cover between 2005 and 2015 (Suleiman, Sawyerr, Adio, & Salako, 2018). It was observed that availability of surface water bodies played a crucial role in influencing the distribution of identified medicinal plants as shown in Figure 4. The nearest neighbour analysis gave a nearest neighbour index of 0.695 at p=0.000003 and z-score of -4.70314. This shows that the observed random distribution of medicinal plants in the study area was statistically significant. It has been observed that random patterns are usually associated with natural occurrences (Garcia-Baquero & Crujeiras, 2015). This further support the aim of this study which seeks to leverage conservation of medicinal plants for treating malaria in their natural habitats. The random spatial pattern confirms that these plants have not yet been affected by anthropogenic activities and hence they need to be conserved there in the wild.

5. Conclusion

Out of the nine identified traditional healers in the community, all nine claimed to have used at least one or some in combinations of these plants for treatment of malaria. It could be seen that all identified species of medicinal plants when mapped had statistically random distribution proving their growth being in the wild and being influenced by nature. With increasing reliance on traditional medicine,
there is a need to ensure sustainable harvesting and other socio-ecological process to ensure these are not threatened to the extreme case of extinction in these communities. Urbanization due to increasing sphere of influence of KWASU in the area should also be monitored and proper urban planning initiatives incorporated to ensure cultivation of these plants are incorporated into the greening efforts of the Kwara state government in this area.

Competing interests
No conflict of interest associated with this work.

Funding
We acknowledge funding support from The Tertiary Education (Tetfund) Institution Research Grant through award No: KWASUIBR /CSP/250918/VOL5/TETFUND/0065

Contribution of Authors
We declare that this work was done by the authors named in this article and all liabilities pertaining to claims relating to the content of this article will be borne by the authors.

Acknowledgements
The author acknowledges Mr Akinniyi Samuel Odewo, Department of Forest Conservation and Protection, Forestry Research Institute of Nigeria, Jericho, Ibadan for taxonomic plant identification, scientific authentication and generation of voucher specimen number. We also appreciated (Late) Mrs Romoke Suleiman for assistance in the use of Global Positioning System (Garmin etrex 75) to captures the geo-coordinates of sampled settlements.

References
Chowdhury, M. S., Koike, M., Muhammed, N., Halim, M. A., Saha, N., & Kobayashi, H. (2009). Use of plants in healthcare: A traditional ethno-medicinal practice in rural areas of Southeastern Bangladesh. *International Journal of Biodiversity Science and Management*, 5(1), 41-51. https://doi.org/10.1080/17451590902771342

Clark, P. J., & Evans, F. C. (1954). Distance to nearest neighbour as a measure of spatial relationships in populations. *ECOLOGY*, 35(4), 445-453. https://doi.org/10.2307/1931034

Garcia-Baquero, G., & Crujeiras, R. M. (2015). Can environmental constraints determine random patterns of plant species co-occurrence? *Ecology and Evolution*, 5(5), 1088-1099. https://doi.org/10.1002/ece3.1349

Huete, A. R. (1988). A Soil-Adjusted Vegetation Index (SAVI). *Remote Sensing and the Environment*, 25, 53-70. https://doi.org/10.1016/0034-4257(88)90106-X

Kumar, M. (2015). *Rural Communities and Ethno Medicinal Plants, Uses and their Conservation Med Aromat Plants.*

Mashayekhan, A., Reza, M., Jidian, P., Jalilvand, H., Gholami, M. R., & Teimouri, M. S. (2016). Economic importance and GIS mapping of medicinal plants in Iran: Case study of Darkesh. *Journal of Applied Science and Environmental Management*, 20(3), 646-650.
https://doi.org/10.4314/jasem.v20i3.19
Oluwasogo, A. Olalubi, Gabriel Salako, Oluwasegun T. Adetunde Henry O. Sawyerr, M. Ajao, & Ernest Tambo. (2020). Geospatial Modeled Analysis and Laboratory Based Technology for Determination of Malaria Risk and Burden in a Rural Community. *International Journal of Tropical Disease & Health, 41*(8), 59-71. https://doi.org/10.9734/ijtdh/2020/v41i830312
Phondani, P. C., Maikhuri, R. K., & Saxena, K. G. (2014). The efficacy of herbal system of medicine in the context of allopathic system in Indian Central Himalaya. *J Herbal Med.*, 4, 147-158. https://doi.org/10.1016/j.hermed.2014.05.004
R Core Team. (2019). *R: A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/
Suleiman, R. M., Sawyerr, H. O., Adio, A., & Salako, G. (2018). Spatial variation in diversity of woody vegetation species within Kwara State University Malete campus, Kwara, Nigeria. *International Journal of Biodiversity and Conservation, 10*(10), 419-431. https://doi.org/10.5897/IJBC2018.1185
World Medical Association. (2001). World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research involving human subjects. *Bulletin of the World Health Organization, 79*, 373-374.

Appendices

Novel Medicinal Plants for management of malaria and other concomitant illnesses by settlement across study zones

Appendix 1: *Antidesma velutinum* L.
Ewe-Aro dudu from Okete settlement
Appendix 2: *Spondias mombin* L.
Iyeye Ode Plant from Okete settlement

Appendix 3: *Byrsocarpus coccineus* Schumach
Owo Ataba / Owo-Ile plant from Gbugudu settlement
Appendix 4: *Zea mays* L.
Maize leaves from Gbugudu settlement

Appendix 5: *Cedrela odorata* L.
Ewe gbogi leaves from Yeregi settlement
Appendix 6: Capsicum annuum L
Ewe-rodo rodo from Yeregi settlement

Appendix 7: Tithonia diversifolia L.
Ewe-Jogbo from Alapo settlement