INTRODUCTION

Henoch-Schönlein purpura (HSP) is the most common childhood primary systemic small vessel vasculitis, mediated by immunoglobulin A (IgA)-immune complex depositions, with an incidence of 10–20/100,000.[1] HSP is a multisystemic disease characterized by palpable purpura, abdominal pain, and joint and renal involvement.[2,3] Most of children have a self-limited disease, but severe intestinal bleeding, leukocytoclasia and also in the long term severe nephrotic–nephritic syndrome are predictable.[4,5] People in all ages can suffer from the disease, but the figure is highest in children below 10 years.[4,6] The incidence has been reported in Asian and Caucasian more than Black population,[1,3,4] and boys are affected more than girls in a 2:1.2 ratio.[1,5,7] Although the etiology of HSP is not exactly understood,[5,8] several infective pathogens, drugs, and certain toxins can trigger the disease.[1,3] Furthermore, genetic polymorphisms in cytokines and cell adhesion molecules involved in inflammatory responses are considered as potential causes of disease.[1,9,10]

Among these genetic factors, human leukocyte antigen (HLA) and particularly HLA-DRB1 – encoding the most prevalent beta subunit of HLA-DR – due to its central role in the immune system by presenting peptides derived from extracellular proteins is the principal candidate for increasing incidence of many autoimmune diseases; hence, its association with HSP has been investigated and reported in the literatures.[11-13]

Differences and similarities in the frequency of certain HLA alleles have been observed in previous reports and the results of such studies vary depending on the ethnic
group studies.[5,8,9] Some of these reports have shown the association of HLA-DRB1 with HSP.[8,14-18]

To date, there have been no reports supporting a consistent relationship between HSP and HLA-DRB1 in Iranian pediatric patients. Therefore, the current study aimed to assess the association of HLA-DRB1 alleles with HSP in Iranian children.

MATERIALS AND METHODS

From September 2013 to October 2014, thirty patients with HSP who attended outpatient clinic or accepted to Mofid Children Hospital were recruited for the present study. At diagnostic time, they were between 2 and 13 years old with a mean age of 6.4 years (standard deviation [SD] = 3.06). Their disease was diagnosed by a pediatric rheumatologist, based on new classification by final European League Against Rheumatism/Paediatic Rheumatology International Trials Organisation/Paediatic Rheumatology European Society criteria for HSP and classification definition, which indicate that at least one of the following four criteria should be present: diffuse abdominal pain, any biopsy showing predominant IgA deposition, arthritis or arthralgia, and renal involvement (any hematuria ± proteinuria) in the presence of palpable purpura which was a mandatory criterion [Table 1].[10] For control group, 35 genetically unrelated healthy adult individuals who had no history of autoimmune disease voluntarily participated in the study. The study had ethical approval from the local Ethics Committee of Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, and oral or written informed consent was obtained from all participants or their caretakers.

DNA isolation was performed by chloroform procedure[31] from leukocytes of peripheral blood collected (2 ml) with ethylenediaminetetraacetic acid and kept at −20°C. The concentration and purity of DNA were measured by NanoDrop (Thermo Scientific, USA). We used HLA-DRB1 typing by polymerase chain reaction with sequence-specific primer (PCR-SSP).[32] A total of nine sequence-specific oligonucleotide primers were used to identify seven types of HLA-DRB1, and for positive control, two β-actin primers were used in every reaction. In amplification by PCR, total volume of 20 µl master mix was used for each 0.2 ml PCR tubes which involved: 2 µl PCR buffer 10X (500 mM KCl, 100 mM Tris-HCl, pH 8.8, 0.1% Tween-20, and 15 mM MgCl₂, BIORON, Germany), 0.25 µl Taq DNA polymerase (BIORON, Germany), 0.5 µl MgCl₂ 100 mM (BIORON, Germany), 0.7 µl dNTP 4 × 10 mM (Pars tous, Iran), primer (variable), genomic DNA (variable), and ddH₂O (variable). We also used prepared master mix (ampliqon Denmark Taq DNA polymerase 2X master mix red) in the total volume of 20 µl. PCR was performed with a palm cycler thermocycler (Genetix Biotech Asia (P) Ltd., India). The operation performed in four thermal cycler programs is shown in Table 2.

The PCR product resolved by electrophoresis 1.5% agarose gel (0.5X TBE for 45 min) while the gel was stained with Green Viewer before getting cold and visualized and photographed by Gel documentation (UVItec, UK) [Figure 1].

Statistical analyses

Statistically significant difference in the frequency of HLA alleles between HSP patients and healthy controls was determined by the Chi-square test. The statistically significant difference between allele frequencies for the studied polymorphisms and clinical signs was examined by Fisher’s exact test using IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp; Released 2013. P < 0.05 was considerate statistically significant, and also odds ratios (ORs) with 95% confidence intervals (CIs) were calculated.

RESULTS

Thirty pediatric patients (20 boys and 10 girls) with a mean age of 6.4 (SD = 3.06) and 35 adult controls throughout Iran were involved in investigation. The ratio of boys to girls was 2:1. All patients suffered from palpable purpura and amount of joint involvement, abdominal pain, and kidney involvement was 82.75%, 72.41%, and 10.34%, respectively. Other features such as urogenital, neurological, cardiopulmonary, and high blood pressure were seen in varying ranges of 3.44 in one case to 20.68 in six cases. A clinical scoring system consisted of the sum of three distinct scores for joint, gastrointestinal (GI), and renal involvements was used to assess disease severity. The severity of the disease was determined as low score and high score, if the clinical score was <4 and ≥4, respectively. The clinical features are shown in Table 1.[33]

Seven alleles of HLA-DRB1 were studied among Iranian children patients. Among them, HLA-DRB1*01 and HLA-DRB1*11 were higher in patients than controls, 90%
and 83% versus 54.2% and 60.0%, respectively ($P = 0.002, \text{OR} = 7.579, \text{CI} = 1.934–29.697$ and $P = 0.039, \text{OR} = 3.333, \text{CI} = 1.030–10.788$). Other allelic groups showed no significant difference between two groups. In the present study, HLA-DRB1*09 was the most common allele found in both case and control groups. The result is shown in Table 3. There was no significant difference observed between HLA-DRB1*01 and HLA-DRB1*11 alleles in patients and the severity of the disease, $P = 0.429$ and $P = 0.783$ respectively.

DISCUSSION

HSP is the most common systemic vasculitis which affects small vessels in children and rarely but with higher severity occurs in adults. It is reported that both environmental and genetic factors play a part in disease pathogenesis. Although the pathogenesis is poorly understood,[1,20] due to inflammations in small blood vessels and capillaries, the most likely candidates are IgA1 glycosylation, polymorphism in cytokines, and cell adhesion molecules.[1,9,21,22] Furthermore, the major histocompatibility complex (MHC) Class II genes have shown the most convincing genetic correlations with HSP and have been studied in different other autoimmune diseases such as systemic lupus erythematosus, Kawasaki, endometriosis, juvenile idiopathic arthritis (JIA), and Behçet’s and Graves' disease (GD).[13,22-29]

Identification of genetic polymorphisms associated with an increased risk of HSP would provide important information in understanding the mechanisms of disease and the ability to predict individuals who are at higher risk. The results may lead to improvements in clinical outcomes for patients including early diagnosis, design of new treatments, improvement of the long-term prognosis, especially in those with severe symptoms, and estimation of disease recurrence.[3,8,14]

HLA typing for HLA-DRB1 alleles was done by PCR-SSP, stipulated by Olerup and Zetterquist in 1992.[20] Several studies on the correlation between HLA-DRB1 alleles and HSP have shown similar results in different countries. HLA-DRB1*11 in India ($P = 0.006$), Turkey ($P = 0.03$), and Italy ($P = 0.007$); HLA-DRB1*01 in Italy ($P = 0.007$), Northwest Spain ($P = 0.013$), and Spanish Caucasian ($P < 0.001$); and HLA-DRB1*14 in Turkey ($P = 0.035$) have shown positive correlation with disease, whereas HLA-DRB1*07 in Italy ($P = 0.002$) and Northwest Spain ($P = 0.014$),

Table 2: Polymerase chain reaction primers for amplification of HLA-DRB1

Alleles	Primers	Sequences (5’-3’)	Fragment length	Denaturing	Annealing	Extension
*01	Forward	TTCTTGAGCCGCTAAGTTTG	261	95	62 (reduced 0.5° for 1 4 cycle)	72
*07	Forward	AGTCTCTGGAAGAAGCTCCT	206	95	62	72
*04	Forward	GATCTCTGAGCCGCTAAGTTTG	263	94	62	72
*09	Forward	GGACGAGCGGCTGCGGTATC	222	94	62	72
*13/*14	Forward	GATCTCTGAGCTCCTGCT	263	94	62	72
*08	Forward	GATCTCTGAGCTCCTGCT	254	94	63	72
For all except *11 and *13	Reverse	CCCTGTCGTGAAAGCTCCT	179	95	59	72
*11	Forward	AGCTTCTGGAGTACTCCTCAG	131	94	62	72
*11	Reverse	CTGCTGTTCCGACTCCCT	173	94	63	72
*13	Forward	AGCTTCTGGAGTACTCCTCAG	173	94	63	72
*13	Reverse	GATCTCTGAGCTCCTGCT	173	94	63	72

Table 3: Distribution of HLA-DRB1 allele frequency in Henoch-Schönlein purpura patients and control groups

Allele frequency	Control group (%)	Case group (%)	P	OR	95% CI
HLA-DRB1*01**	19 (54.3)	27 (90.0)	0.002*	7.579	1.934–29.697
HLA-DRB1*04*	13 (37.1)	13 (43.3)	0.612	1.294	0.478–3.503
HLA-DRB1*07	26 (74.3)	27 (90.0)	0.104	3.115	0.758–12.802
HLA-DRB1*08	13 (37.1)	15 (50.0)	0.297	1.692	0.628–4.559
HLA-DRB1*11**	21 (60.0)	25 (83.3)	0.039*	3.333	1.030–10.788
HLA-DRB1*13	14 (40.0)	17 (56.7)	0.180	1.962	0.729–5.275
HLA-DRB1*09	32 (91.4)	29 (96.7)	0.381	2.719	0.268–27.618

Notes: OR=Odd ratio; CI=Confidence interval; *P < 0.05 was considered statistically significant.

**The HLA-DRB1*01 and HLA-DRB1*11 alleles were significantly associated with HSP.

Figure 1: HLA-DRB1*11 polymerase chain reaction gel electrophoresis result.
Neg = Negative control; P = Positive control; S = Specific bond

Figure 1: HLA-DRB1*11 polymerase chain reaction gel electrophoresis result.
Neg = Negative control; P = Positive control; S = Specific bond
HLA-DRB1*03 in Spanish Caucasian (P < 0.01) and HLA-DRB1*10, and HLA-DRB1*17 in Turkey (P = 0.035 and P = 0.018), respectively, have had protective role. In these studies, the role of HLA types and severity of symptoms were also investigated. In India, HLA-DRB1*11 increased in patients with kidney and GI involvement (P = 0.004 and P = 0.003), respectively, and in Turkish patients with joint involvement and nephrotic proteinuria HLA-DRB1*11 and HLA-DRB1*13 (P = 0.025 and P = 0.025), respectively, have shown a significant association. HLA-DRB1*14 strongly has been found reduced in HSP patients with joint manifestations in Turkey population (P = 0.001).[8,14-18]

Our study was the first investigation on polymorphisms of HLA-DRB1 alleles in Iranian children with HSP. The results of positively susceptible alleles were consistent with previous studies. Like Italy population, we found a significant correlation between HLA-DRB1*01 and HLA-DRB1*11 with HSP. HLA-DRB1*11 is reported to have a significant association with HSP except in Northwest Spain and Spanish Caucasian. In our investigation, like what has been reported in India, and unlike other studies, we did not found any protected alleles.

Compared with other autoimmune and multifactorial disorders, HLA-DRB1*01 has shown correlation with GD among North American Caucasian, HLA-DRB1*11 with JIA and Kawasaki in Finnish and Korean population, respectively, and both of these polymorphisms among Iranian population, which shows the possibility of their role in the onset of autoimmune diseases.[26,27,29,30]

Before concluding, we would like to mention some limitations of the present study. There is no doubt that small sample size of patients can be the major one. For more accurate result, the size of both groups should be extended in next studies among Iranian pediatrics. In addition, we did not identify suballeles which is highly recommended for future studies.

CONCLUSIONS

In the first study of correlation between HLA-DRB1 in Iranian children patient with HSP, we found out that HLA-DRB1*01 and HLA-DRB1*11 increase susceptibility to HSP, although no significant association of correlated alleles and disease severity was seen.

Acknowledgments

The authors highly appreciate the clinics of Digestion and Rheumatology of Mofid Children’s Hospital for their assistance for providing samples and blood donors and their parents for participating in this study.

Financial support and sponsorship

This study was financially supported by a grant from Shahid Beheshti University, vice-presidency for research and technology.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Jauhola O. Henoch-Schönlein Purpura in Children. Finland, Oulu: University of Oulu; 2012.
2. Lorber M. Henoch-Schoenlein purpura. In: Shoenfeld Y, Cervera R, Gershwin ME, editors. Diagnostic Criteria in Autoimmune Diseases. Totowa, NJ: Humana Press; 2008. p. 133-6.
3. Ronkainen J. Henoch-Schönlein Purpura in Children: Long-Term Outcome and Treatment. Oulu: University of Oulu; 2005.
4. He X, Yu C, Zhao P, Ding Y, Liang X, Zhao Y, et al. The genetics of Henoch-Schönlein purpura: A systematic review and meta-analysis. Rheumatol Int 2013;33:1387-95.
5. Schmitt R. Studies of the Pathogenesis of IgA Nephropathy and Henoch-Schönlein Purpura, with Special Reference to Streptococcus pyogenes Infections and Complement Sweden. Lund University; 2012.
6. Reamy BV, Williams PM, Lindsay TJ. Henoch-Schönlein purpura. Am Fam Physician 2009;80:697-704.
7. Tizard EJ, Hamilton-Ayres MJ. Henoch Schonlein purpura. Arch Dis Child Educ Pract Ed 2008;93:1-8.
8. Soylemezoglu O, Peru H, Gonen S, Cetinyurek A, Ozkaya O, Bakkaloglu S, et al. CTLA-4 +49 A/G genotype and HLA-DRB1 polymorphisms in Turkish patients with Henoch-Schönlein purpura. Pediatr Nephrol 2008;23:1239-44.
9. Eleftheriou D, Brogan PA. The molecular biology and treatment of systemic vasculitis in children. In: Homeister WJ, Willis SM, editors. Molecular and Translational Vascular Medicine. Totowa, NJ: Humana Press; 2012. p. 35-70.
10. He X, Lu H, Kang S, Luan J, Liu Z, Yin W, et al. MEFV E148Q polymorphism is associated with Henoch-Schönlein purpura in Chinese children. Pediatr Nephrol 2010;25:2077-82.
11. Kilili-Pstrusinska K. Paediatric Henoch-Schönlein purpura – Immunological and clinical aspects for a family doctor. Int Rev Allergol Clin Immunol 2012;18:41-5.
12. HLA-DRB1 Major Histocompatibility Complex, Class II, DR Beta 1 [Homo sapiens (human)]; Gene ID: 3123; Available from: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=DetailsSearch&Term=3123. [Last accessed on 2018 Mar 18].
13. Ishii K, Takakuwa K, Mitsui T, Tanaka K. Studies on the human leukocyte antigen-DR in patients with endometriosis: Genotyping of HLA-DRB1 alleles. Hum Reprod 2002;17:560-3.
14. Soylemezoglu O, Peru H, Gonen S, Cetinyurek A, Buyan N. HLA-DRB1 alleles and Henoch-Schönlein purpura: Susceptibility and severity of disease. J Rheumatol 2008;35:1165-8.
15. Amoli MM, Thomson W, Hajeer AH, Calviño MC, Garcia-Porrúa C, Ollier WE, et al. HLA-DRB1*01 association with Henoch-Schönlein purpura in patients from Northwest Spain. J Rheumatol 2001;28:1266-70.
16. Amoroso A, Berrino M, Canale L, Coppo R, Cornaglia M, Guerrera S, et al. Immunogenetics of Henoch-Schoenlein disease. Eur J Immunogenet 1997;24:323-33.
17. Aggarwal R, Gupta A, Nari J, Nanda N, Salaria M, Suri D, et al. Genetic susceptibility of Henoch-Schönlein purpura in children. Mol Cytogenet 2014;7:1.
18. López-Meijas R, Genne F, Pérez BS, Castañeda S, Ortego-Centeno N, Llorca J, et al. HLA-DRB1 association with Henoch-Schönlein
purpura. Arthritis Rheumatol 2014;67: 823-7.
19. Ozen S, Pistorio A, Iusan SM, Bakkaloglu A, Herlin T, Brik R, et al. EULAR/PRINTO/PRES criteria for Henoch-Schölein purpura, childhood polyarthritis nodosa, childhood wegener granulomatosis and childhood takayasu arteritis: Ankara 2008. Part II: Final classification criteria. Ann Rheum Dis 2010;69:798-806.
20. Olerup O, Zetterquist H. HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: An alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 1992;39:225-35.
21. He X, Zhao P, Kang S, Ding Y, Luan J, Liu Z, et al. CIGALT1 polymorphisms are associated with Henoch-Schölein purpura nephritis. Pediatr Nephrol 2012;27:1505-9.
22. Saulsbury FT. Henoch-Schönlein purpura. Curr Opin Rheumatol 2010;22:598-602.
23. Morris DL, Taylor KE, Fernando MM, Nittitham J, Alarcón-Riquelme ME, Barcellos LF, et al. Unraveling multiple MHC gene associations with systemic lupus erythematosus: Model choice indicates a role for HLA alleles and non-HLA genes in Europeans. Am J Hum Genet 2012;91:778-93.
24. Azizah MR, Ainol SS, Kong NC, Normaznah Y, Rahim MN. HLA antigens in Malay patients with systemic lupus erythematosus: Association with clinical and autoantibody expression. Korean J Intern Med 2001;16:123-31.
25. Rezaieyazdi Z, Tavakkol-Afshari J, Esmaili E, Orouji E, Pezeshkpour F, Khodadoost M, et al. Association of HLA-DQB1 allelic sequence variation with susceptibility to systemic lupus erythematosus. Iran J Allergy Asthma Immunol 2008;7:91-5.
26. Ali SM, Mahnaz S, Mahmood T. Rapid genomic DNA extraction (RGDE). Forensic Sci Int 2008;1:63-5.
27. Runstadler JA, Säilä H, Savolainen A, Leirisalo-Repo M, Aho K, Tuomilehto-Wolf E, et al. Analysis of MHC region genetics in finnish patients with juvenile idiopathic arthritis: Evidence for different locus-specific effects in polyclarticular vs. pauciarticular subsets and a shared DRB1 epitope. Genes Immun 2003;4:326-35.
28. Kurata R, Yonezawa T, Inoko H. Association analysis of the polymorphism of human leukocyte antigen-A, -B and -E gene with Behcet’s disease in Japanese cohort using sequencing-based typing method. MOJ Immunol 2014;1:00013.
29. Chen QY, Huang W, She JX, Baxter F, Volpe R, Maclaren NK, et al. HLA-DRB1*08, DRB1*03/DRB3*0101, and DRB3*0202 are susceptibility genes for Graves’ disease in North American Caucasians, whereas DRB1*07 is protective. J Clin Endocrinol Metab 1999;84:3182-6.
30. Farivar S, Dehghan Terezjani M, Shiri R. Association of HLA-DRB1 alleles in juvenile-onset Systemic Lupus Erythematosus (SLE) in Iranian children. Int J Pediatr 2015;3:555-60.