GRADIENT AND STABILITY ESTIMATES OF HEAT KERNELS FOR FRACTIONAL POWERS OF ELLIPTIC OPERATOR

YONG CHEN, YAOZHONG HU, AND ZHI WANG

Abstract. Gradient and stability type estimates of heat kernel associated with fractional power of a uniformly elliptic operator are obtained. L^p-operator norm of semigroups associated with fractional power of two uniformly elliptic operators are also obtained.

Keywords. Gradient Estimates, Stability, Subordination, Fractional Powers.

MSC(2010): 60J35, 47D07.

1. Introduction and main conclusions

Let D be a domain in \mathbb{R}^d and let $a : \mathbb{R}^d \to \mathbb{R}^{d^2}$ be a matrix valued function with C^3 or measurable entries. The operator $H = \nabla (a(x) \nabla)$ generated a semigroup P_t which is given by $P_t f(x) = \int_{\mathbb{R}^d} p_t(x, y) f(y) dy$. Heat kernel, gradient and stability estimates associated with this semigroup are well-studied (see [2], [3], [10]). In this paper we are concerned with the similar estimates for the semigroup generated by the fractional powers of H, namely, $Q_t = e^{-t (-H)^{\alpha}}$, where $\alpha \in (0, 1)$ will be fixed throughout this paper. Our motivation is recent works on fractional diffusion in random environment (see [1], [6] and references therein) arisen from super and sub diffusion in random environment. However, we shall deal with this problem in separate project.

First let us recall a result. Using the classical Bromwich contour integral, Pollard in [7] obtained the following formula for the inverse Laplace transform of the function e^{-u^α}.

\[e^{-u^\alpha} = \int_{0}^{\infty} e^{-us} g(\alpha, s) ds, \quad u \geq 0. \] (1.1)

where

\[g(\alpha, s) = \frac{1}{\pi} \int_{0}^{\infty} e^{-su} e^{-u^\alpha \cos \pi \alpha \sin (u^\alpha \sin \pi \alpha)} du, \quad s \geq 0. \] (1.2)

is a probability density function of $s \geq 0$. This class of density functions $g(\alpha, s)$ is called strictly α-stable law which plays important role in the theory of probability.

Denote

\[\lambda_t(ds) = g_t(\alpha, s) ds := t^{-1/\alpha} g(\alpha, t^{-\frac{1}{\alpha}}s) ds. \] (1.3)

Then

\[e^{-u^\alpha t} = e^{-(ut^{1/\alpha})^\alpha} = \int_{0}^{\infty} e^{-ut^{1/\alpha} s} g(\alpha, s) ds = \int_{0}^{\infty} e^{-us} g_t(\alpha, s) ds \]
From this identity we can define the semigroup \(Q_t = e^{-t(-H)_{\alpha}} \) associated with \((-H)_{\alpha}\) as

\[
Q_t f(x) = \int_0^\infty P_s f(x) \lambda_s (ds) = \int_0^\infty P_s f(x) g_s(\alpha, s) ds, \quad f \in B. \tag{1.4}
\]

Then, \(\{Q_t, t \geq 0\} \) is also a strong continuous contraction semigroup on \(B \) and its infinitesimal generator satisfies that

\[
-(H)_{\alpha} f = M f = \int_0^\infty (P_s f - f) \rho(ds) = \frac{\alpha}{\Gamma(1 - \alpha)} \int_0^\infty \frac{P_s f - f}{s^{1+\alpha}} ds, \quad f \in D(L).
\]

Moreover, \(D(H) \) is a core of \(M \) which means that \(D(H) \subset D(M) \) and the closure of \(M|_{D(H)} \), the restriction of \(M \) to \(D(H) \), equals \(M \). In fact, \(H \) can be replaced by a more general operator.

The main results of the present paper are gradient and stability estimates of the heat kernels associated with the fractional power for uniformly elliptic operators.

Theorem 1.1. Suppose that \(D \) is a bounded \(C^2 \) domain in \(\mathbb{R}^d \) and \(H = \nabla (a(x) \nabla) \) on \(D \) where the matrix \(a(x) \) has \(C^2 \), \(\beta \in (0, 1) \) entries, and there exists a constant \(\lambda > 1 \) such that \(\lambda^{-1} \text{Id}_d \leq a(x) \leq \lambda \text{Id}_d \). Then the heat kernel \(q(t, x, y) \) of the fractional power of \(H \), i.e., \(M = -(H)_{\alpha} \), exists and has the following gradient estimates:

\[
|\nabla_q q(t,x,y)| \leq c_1 \left(t^{-\frac{d+1}{2\alpha}} \wedge \frac{t}{|x-y|^{d+1+2\alpha}} \right), \quad \forall (t,x,y) \in (0,\infty) \times D \times D, \tag{1.5}
\]

where \(c_1 = c_1(D, d, \alpha, \beta) \) is a strictly positive constant.

Theorem 1.2. Suppose that \(D = \mathbb{R}^d \) and \(H = \nabla (a(x) \nabla) \), \(\tilde{H} = \nabla (\tilde{a}(x) \nabla) \) on \(D \) with measurable coefficients. If there exists a constant \(\lambda > 1 \) such that \(\lambda^{-1} \text{Id}_d \leq a(x) \leq \lambda \text{Id}_d \) and \(\lambda^{-1} \text{Id}_d \leq \tilde{a}(x) \leq \lambda \text{Id}_d \), then their subordinated semigroups \(\{Q_t\}, \{\tilde{Q}_t\} \) and the corresponding heat kernels \(q(t,x,y), \tilde{q}(t,x,y) \) satisfy the following stability estimate: there exist bounded, continuous functions \(F_1(t,z), F_2(t,z) \) on \((0,\infty) \times (0,\infty) \) with \(\lim_{z \to 0} F_i(t,z) = 0, i = 1,2 \) for each \(t > 0 \),

\[
\|Q_t - \tilde{Q}_t\|_p \leq F_1(t, \|a - \tilde{a}\|_{L^p_{loc}}), \quad \forall p \in [0,\infty] \tag{1.6}
\]

\[
|q(t, x, y) - \tilde{q}(t, x, y)| \leq F_2(t, \|a - \tilde{a}\|_{L^p_{loc}}). \tag{1.7}
\]

where

\[
\|a - \tilde{a}\|_{L^2_{loc}} = \sup_{k \in \mathbb{Z}^d} \sum_{i,j=1}^d |a_{ij} - \tilde{a}_{ij}|_{L^2(D_k)},
\]

\[
D_k = \left\{ x \in \mathbb{R}^d : |x - k| < 2\sqrt{d} \right\}.
\]

See below (2.15) and (2.14) for the explicit expression of the functions \(F_1(t,z), F_2(t,z) \).

Remark 1.3. Similarly, we can show that the inequality (1.6) is still valid for \(D \) is a bounded \(C^1 \)-smooth domain in \(\mathbb{R}^d \).
2. Proof of the main theorems

2.1. Preliminaries: Heat kernel of the subordination semigroup. The asymptotic behaviors of \(g(\alpha, s) \) when \(s \to 0 \) and when \(s \to \infty \) have been known. See for example [8] Equality (14.35) for \(s \to 0 \) and Equality (14.37) for \(s \to \infty \). For the convenience of readers we recall these asymptotic formulae in following proposition.

Proposition 2.1. The function \(g(\alpha, s) \) has the following asymptotic formulae:

\[
g(\alpha, s) \sim Ks^{-\frac{2\alpha}{d+2\alpha}} \exp(-As^{-\frac{\alpha}{d}}), \quad \text{for} \quad s \to 0+, \quad (2.1)
g(\alpha, s) \sim B s^{-1-\alpha}, \quad \text{for} \quad s \to \infty. \quad (2.2)
\]

where \(A, K \) and \(B \) are constants only depending on \(\alpha \).

It is known that if \(\{P_t\} \) has a positive kernel then so does \(\{Q_t\} \), see for example Lemma 3.4.1 of [3] and Lemma 5.4 of [5]. We restate it as the following proposition.

Proposition 2.2. Suppose that \(D = \mathbb{R}^d \) and \(H = \nabla (a(x) \nabla) \), \(\tilde{H} = \nabla (\tilde{a}(x) \nabla) \) on \(D \) with measurable coefficients and suppose there exists a constant \(\lambda \geq 1 \) such that \(\lambda^{-1} \text{id}_d \leq a(x) \leq \lambda \text{id}_d \) and \(\lambda^{-1} \text{id}_d \leq \tilde{a}(x) \leq \lambda \text{id}_d \). Then \(\{Q_t\} \) also has a positive kernel \(q(t, x, y) \) on \((0, \infty) \times D \times D \) such that

\[
q(t, x, y) = \int_0^\infty p(s, x, y) \lambda_t(ds) = \int_0^\infty p(t^{\frac{1}{\alpha}} s, x, y) g(\alpha, s) ds. \quad (2.3)
\]

Proof. Since \(p(t, x, y) \) is the positive kernel of \(\{P_t\} \), it follows from Eq.(1.4)

\[
q(t, x, y) = \int_0^\infty p(s, x, y) \lambda_t(ds) \\
= t^{-\frac{1}{\alpha}} \int_0^\infty p(s, x, y) g(\alpha, t^{-\frac{1}{\alpha}} s) ds \quad \text{(by Eq.(1.3))} \\
= \int_0^\infty p(t^{\frac{1}{\alpha}} s', x, y) g(\alpha, s') ds'.
\]

This completes the proof. \(\square \)

As a direct corollary of the above two propositions, we have the following results.

Theorem 2.3. Suppose that \(D \) is a domain in \(\mathbb{R}^d \) and \(H = \nabla (a(x) \nabla) \) on \(D \) with measurable coefficients. If there exists a constant \(\lambda \geq 1 \) such that \(\lambda^{-1} \text{id}_d \leq a(x) \leq \lambda \text{id}_d \), then the heat kernel \(q(t, x, y) \) of the fractional power of \(H \), i.e., \(\mathcal{M} = (-H)^{\alpha} \), has the following Nash’s Hölder estimates: there are constants \(c = c(d, \lambda, \alpha) > 1 \) and \(\gamma = \gamma(d, \lambda) \in (0, 1) \) such that

\[
\begin{align*}
&\left\{ \frac{1}{c} (t^{\frac{\alpha}{d}} \wedge \frac{t}{|y-x|^{d+2\alpha}}) \leq q(t, x, y) \leq c(t^{\frac{\alpha}{d}} \wedge \frac{t}{|y-x|^{d+2\alpha}}) \right. \\
&\left| q(t, x, y) - q(t, x_1, y_1) \right| \leq ct^{\frac{2d\gamma}{d+2\gamma}} \left(|x-x_1| \vee |y-y_1| \right)^\gamma,
\end{align*}
\]

for all \(t > 0 \) and \((x, y), (x_1, y_1) \in D \times D \).
Proof. The first result is already known, see [5, Lemma 5.4]. It is a consequence of (2.3) and the following estimates
\[
\frac{1}{M} t^{-\frac{d}{2}} \exp \left\{ -\frac{M |y-x|^2}{t} \right\} \leq p(t, x, y) \leq Mt^{-\frac{d}{2}} \exp \left\{ -\frac{|y|^2}{Mt} \right\}.
\] (2.6)

The second inequality follows from Eq.(1.3) of [2]. We shall not provide details since it will be similar to the proof that we present below. □

2.2. Proof of the main theorems. Theorem 1.1 is a corollary of the following proposition.

Proposition 2.4. Suppose that \(D \) is a domain in \(\mathbb{R}^d \). If there are two constants \(M > 0 \) and \(\ell \geq 0 \) such that \(|\nabla_x p(t, x, y)| \) has an upper bound
\[
|\nabla_x p(t, x, y)| \leq Mt^{-\frac{d}{2}} \exp \left\{ -\frac{|y-x|^2}{Mt} \right\}, \quad \forall (t, x, y) \in (0, \infty) \times D \times D,
\] (2.7)
then there is a strictly positive constant \(c_1 = c_1(M, \ell, \alpha) \) such that
\[
|\nabla_x q(t, x, y)| \leq c_1 \left(t^{-\frac{d}{2}} \wedge \frac{t}{|x-y|^{d+2\alpha}} \right), \quad \forall (t, x, y) \in (0, \infty) \times D \times D.
\] (2.8)

Proof. We shall divide the proof into several steps. The idea is similar to the proof of Lemma 5.4 of [5].

Step 1. It follows from Lebesgue’s dominated theorem that condition (2.7) implies that one can take the derivative under the integral sign in Eq.(2.3), i.e.,
\[
\nabla_x q(t, x, y) = \int_0^\infty \nabla_x p(t, x, y) g(\alpha, s) ds.
\]
Hence inequality (2.7) imply that for all \((t, x, y) \in (0, \infty) \times D \times D, \)
\[
|\nabla_x q(t, x, y)| \leq \int_0^\infty \left| \nabla_x p(t, x, y) \right| g(\alpha, s) ds
\leq Mt^{-\frac{d}{2}} \int_0^\infty s^{-\frac{d}{2}} \exp \left\{ -\frac{|y-x|^2}{Mt^2} \right\} g(\alpha, s) ds.
\] (2.9)
Since the exponential function in the above integrand is less than one, we have that
\[
\int_0^\infty s^{-\frac{d}{2}} \exp \left\{ -\frac{|x-y|^2}{Mt^2} \right\} g(\alpha, s) ds \leq \int_0^\infty s^{-\frac{d}{2}} g(\alpha, s) ds
\leq \int_0^1 s^{-\frac{d}{2}} g(\alpha, s) ds + 1
\]
since \(g(\alpha, s) \) is positive and \(\int_0^\infty g(\alpha, s) ds = 1 \). Using the asymptotic formula Eq.(2.1) we also see that \(\int_0^1 s^{-\frac{d}{2}} g(\alpha, s) ds \) is finite. Thus we have
\[
|\nabla_x q(t, x, y)| \leq Mt^{-\frac{d}{2}}
\] (2.10)

Step 2. It is easy to see from Eqs (2.1)-(2.2) that there exists a constant \(\tilde{c} := \tilde{c}(\alpha) > 0 \) such that
\[
g(\alpha, s) \leq \tilde{c} s^{-1-\alpha}, \quad \forall s \in [0, \infty).
\] (2.11)
Substituting this inequality into Eq. (2.9), we obtain that
\[
|\nabla_x q(t, x, y)| \leq \tilde{c} M^{-\frac{\alpha}{2}} \int_0^\infty s^{-\frac{\alpha}{2} - 1 - \alpha} \exp \left\{ - \frac{|x - y|^2}{M t s} \right\} ds \\
= \tilde{c} M^{-\frac{\alpha}{2}} \int_0^\infty r^{\frac{\alpha}{2} + 1} \exp \left\{ - \frac{|x - y|^2}{M t r} \right\} dr \quad (\text{let } r = \frac{1}{s}) \\
= \tilde{c} \frac{\Gamma(\alpha + \frac{\alpha}{2})}{t} \frac{Mt}{(|x - y|^2 / M t^{\frac{\alpha}{2}})^{\alpha + \frac{\alpha}{2}}} \\
= \tilde{c} \frac{t}{|x - y|^{\alpha + 2\alpha}},
\tag{2.12}
\]
where \(\Gamma(\cdot)\) is the Gamma function. By putting the inequalities (2.10) and (2.12) together, we obtain the desired gradient estimate (2.8).

\[\square\]

Proof of Theorem 1.1. For the uniformly elliptic operator \(H\), it is known that its kernel has the following gradient estimate, see for example [1] or [2],
\[
|\nabla_x p(t, x, y)| \leq M^{-\frac{\alpha}{2}} \exp \left\{ - \frac{|x - y|^2}{M t} \right\}, \quad \forall (t, x, y) \in (0, \infty) \times D \times D.
\]
Hence it follows from Proposition 2.4 that Theorem 1.1 holds.

\[\square\]

Proof of Theorem 1.2. We shall divide the proof into several steps.

Step 1. Proposition 2.4 can be rewritten as the following: for a positive function \(f(t, x, y)\), if there are two constants \(M > 0\) and \(\ell \geq 0\) such that \(f(t, x, y)\) has an upper bound
\[
f(t, x, y) \leq M t^{-\frac{\alpha}{2}} \exp \left\{ - \frac{|x - y|^2}{M t} \right\}, \quad \forall (t, x, y) \in (0, \infty) \times D \times D,
\]
then there is a strictly positive constant \(c_1 = c_1(M, \ell, \alpha)\) such that
\[
\int_0^\infty f(t^{\frac{\alpha}{2}} s, x, y) g(\alpha, s) ds \leq c_1 \left(t^{-\frac{\alpha}{2}} \wedge \frac{t}{|x - y|^{\alpha + 2\alpha}} \right), \quad \forall (t, x, y) \in (0, \infty) \times D \times D. \tag{2.13}
\]
It follows form Theorem 1.2 of [2] that
\[
|p(t, x, y) - \tilde{p}(t, x, y)| \leq c' t^{-\frac{\alpha}{2}} \exp \left\{ - \frac{|x - y|^2}{ct} \right\} \left(t \wedge 1 \right)^{-\gamma} \|a - \tilde{a}\|_{L^2_{loc}}^\delta \\
\leq c' t^{-\frac{\alpha}{2}} \exp \left\{ - \frac{|x - y|^2}{ct} \right\} \left(t^{-\gamma} + 1 \right) \|a - \tilde{a}\|_{L^2_{loc}}^\delta,
\]
where \(c > 0, c' > 1, \gamma \in (0, 1), \delta \in (0, 1)\) depend only on \(d\) and \(\lambda\). Hence it follows from (2.3) and the inequality (2.13) that
\[
|q(t, x, y) - \tilde{q}(t, x, y)| \leq \int_0^\infty \left| p(t^{\frac{\alpha}{2}} s, x, y) - \tilde{p}(t^{\frac{\alpha}{2}} s, x, y) \right| g(\alpha, s) ds \\
\leq \tilde{c} \|a - \tilde{a}\|_{L^2_{loc}}^\delta \left[t^{-\frac{\alpha}{2}} \wedge \frac{t}{|x - y|^{\alpha + 2\alpha}} + t^{-\gamma} \wedge \frac{t}{|x - y|^{\alpha + 2\alpha}} \right].
\]
On the other hand, the first inequality in Theorem 2.3 gives the following bound:

$$|q(t, x, y) - \tilde{q}(t, x, y)| \leq c_1 \left(t^{-\frac{d}{2}} \wedge \frac{t}{|x-y|^{d+2\alpha}} \right), \quad \forall (t, x, y) \in (0, \infty) \times D \times D,$$

where $c_1 = c_1(d, \lambda, \alpha)$ is a constant.

Combining the above two bounds together, we prove (2.14) with the choice

$$F_2(t, z) = c \left(t^{-\frac{d}{2}} \wedge \frac{t}{|x-y|^{d+2\alpha}} \right) \min \left\{ 1, t^{-\frac{d}{2}} \wedge |x-y|^{-2\alpha} z^\delta \right\}. \quad (2.14)$$

Step 2. It follows from (1.4) that

$$Q_t f(x) - \tilde{Q}_t f(x) = \int_0^\infty (P_s f(x) - \tilde{P}_s f(x)) g_s(\alpha, s) ds.$$

Thus it follows from Minkowski’s integral inequality that for any $p \in [0, \infty],

$$\|Q_t - \tilde{Q}_t\|_p \leq \int_0^\infty \|P_s - \tilde{P}_s\|_p g_s(\alpha, s) ds.$$

It follows from Theorem 1.1 of [2] that

$$\|P_t - \tilde{P}_t\|_p \leq c' \cdot (t \wedge 1)^{-\gamma} \|a - \tilde{a}\|_{L^\infty_{loc}}^\delta \leq c' \cdot (t^{-\gamma} + 1) \|a - \tilde{a}\|_{L^\infty_{loc}}^\delta.$$

Hence we have that

$$\|Q_t - \tilde{Q}_t\|_p \leq c' \cdot \|a - \tilde{a}\|_{L^\infty_{loc}}^\delta \int_0^\infty \left((t^{-\gamma} + 1) g(\alpha, s) ds \right)$$

$$\leq \tilde{c} \cdot \|a - \tilde{a}\|_{L^\infty_{loc}}^\delta \left(1 + t^{-\frac{d}{2}} \right).$$

Since Q_t is also a contraction semigroup, we prove (1.6) by the choice

$$F_1(t, z) = \min \left\{ 2, c(1 + t^{-\frac{d}{2}}) z^\delta \right\}. \quad (2.15)$$

This completes the proof of Theorem 2. \qed

Acknowledgements: Y. Chen is supported by China Scholarship Council (201608430079) and Hubei Provincial NSFC (2016CFB526); Y. Hu is partially supported by Simons Foundation (209206); Z. Wang is supported by Mathematical Tianyuan Foundation of China (11526117) and Zhejiang Provincial NSFC (LQ16A010006).

References

[1] Chen L.; Hu G.; Hu Y. and Huang J. Space-time fractional diffusions in Gaussian noisy environment. Stochastics 89 (2017), no. 1, 171-206.
[2] Chen Z.Q; Qian Z.M.; Hu Y.Z. and Zheng W.A. Stability and approximations of symmetric diffusion semigroups and kernels. J. Funct. Anal. 152 (1998), no. 1, 255-280.
[3] Davies E. B. Heat kernels and spectral theory. Cambridge Tracts in Mathematics, 92. Cambridge University Press, Cambridge, 1990.
[4] Friedman A. Partial differential equations of parabolic type. Prentice-Hall, Inc., Englewood Cliffs, N.J. 1964
[5] Grigor’yan A. Heat kernels and function theory on metric measure spaces. Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 143-172, Contemp. Math., 338, Amer. Math. Soc., Providence, RI, 2003.
[6] Hu G. and Hu Y. Fractional diffusion in Gaussian noisy environment. Mathematics 2015, 3, 131-152; doi:10.3390/math3020131.

[7] Pollard H. The representation of e^{-x^2} as a Laplace integral. Bull. Amer. Math. Soc. 52, 908-910. (1946).

[8] Sato K. I. Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, 68. Cambridge University Press, Cambridge, 2013.

[9] Schilling R. L.; Song R.M. and Vondraček Z. Bernstein functions. Theory and applications, Second edition. De Gruyter Studies in Mathematics, 37. Walter de Gruyter & Co., Berlin, 2012.

[10] Stroock D. W. Diffusion semigroups corresponding to uniformly elliptic divergence form operators. Séminaire de Probabilités, XXII, 316-347, Lecture Notes in Math., 1321, Springer, Berlin, 1988.

[11] Zhang Q. A Harnack inequality for the equation $\nabla(a\nabla u) + b\nabla u = 0$, when $|b| \in K_{n+1}$. Manuscripta Math. 89 (1996), no.1, 61-77.

[12] Zhang Q. S. Gaussian bounds for the fundamental solutions of $\nabla(A\nabla u) + B\nabla u - u_t = 0$. Manuscripta Math. 93 (1997), no.3, 381-390.

[13] Zolotarev V. M. One-dimensional stable distributions, Translations of Mathematical Monographs, 65. American Mathematical Society, Providence, RI, 1986.

School of Mathematics, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
E-mail address: zhishi@pku.org.cn; chenyong77@gmail.com

Department of Mathematics, the University of Kansas, Lawrence, 66045, Kansas, USA
E-mail address: yhu@ku.edu

School of Sciences, Ningbo University of Technology, Ningbo 315211, Zhejiang, China
E-mail address: wangzhi1006@hotmail.com