Molecular Characterization of Bacterial Phylogenetic and Functional Groups at Terrebonne Bay along the Coastline of the Gulf of Mexico

Ola A Olapade*

Department of Biology and the Center for Sustainability and the Environment, Albion College, 611 East Porter Street, Albion, MI 49224, USA

Abstract

The detection and quantification of bacterial phylogenetic and functional groups as well as community diversity at the site of the Deepwater Horizon oil spill in Terrebonne Bay along the Gulf of Mexico were carried out using nucleic acid staining, Fluorescence in situ Hybridization (FISH) and 16S rRNA gene cloning and sequencing approaches. Results from the 16S rRNA gene clone library analysis revealed high occurrences of bacterial members belonging to the Cyanobacteria (28%), β-Proteobacteria (21%), Bacteroidetes (17%), Actinobacteria (12%) and the α-Proteobacteria (10%). Particularly, bacterial members identified within the clone library as belonging to the β-Proteobacteria subclass were mostly hydrocarbon degraders, including Methylibium petroliirphum, Burkholderia cepacia, Hydrogenophaga taeniospiralis and Methylobacillus flagellatus. Simultaneous analyses of both planktonic and benthic bacterial communities by FISH revealed the numerical dominance of members of the type I Methanotrophic Bacteria (MB) over the type II populations. The results from the study clearly reveal a shift in the bacterial community structure and composition in response to the tragic methane and crude oil discharges from the Deepwater Horizon rig along the Gulf of Mexico.

Keywords: 16S rRNA gene; Fluorescence in situ hybridization; Pollution; Coastal marine

Introduction

The diversity and global distributions of bacterial populations within indigenous microbial assemblages in marine environments have been well documented because of their significant ecological importance within various milieus [1-8]. For instance, there is currently ample and incontrovertible evidence that bacterial assemblages within coastal marine milieus do not only rapidly respond to oil spills, but also contribute their wide arrays of hydrocarbon degrading capabilities to the effective bioremediation of oil residues in contaminated environments [9-11]. Given the presence of diverse degradative genes needed for in situ clean up of complex hydrocarbon pollutants, accurate delineation of in situ microbial assemblages is therefore paramount in order to effectively understand the overall dynamics of microbial response and biodegradation process in oil polluted sites. Even more so that it is common knowledge that microbial assemblages are influenced by various controlling factors, including pollutant type and bioavailability, nutrient dynamics as well as continuous fluxes in site-specific hydrodynamic conditions within marine environments [12-15].

This study elucidated in situ microbial compositions in response to the tragic crude oil and methane discharges that resulted due to the severance of the Deep water Horizon rig from its well offshore on the Gulf of Mexico (GOM) in 2010. This tragic pollution event ultimately released approximately 1.3 X 10^{15} moles of methane and 205 million gallons (i.e.780,000 m^3) of crude oil into surrounding environments of affected GOM sites [14]. Shortly after the incidence, the widespread dispersal of hydrocarbon plume was linked to the stimulation of indigenous bacterial populations, especially the γ-Proteobacteria members known to be closely associated with petroleum degradation [15,16]. Furthermore, these studies also found strong correlations between the occurances of several hydrocarbon-degrading genes and various components of the hydrocarbon plume at the GOM sites examined.

Therefore, combinations of 16S ribosomal RNA gene sequencing, nucleic acid staining and fluorescence in situ hybridization (FISH) analyses were employed to qualitatively and quantitatively examine the phylogenetic composition and community diversity within the bacterioplankton assemblages at one of the most contaminated coastal location along the Gulf of Mexico. Quantitative analysis by FISH was particularly employed to target bacterial phyla with hydrocarbon-utilizing capabilities, including two subclasses (i.e. α- and γ-) of Proteobacteria and members of the methanotrophs (i.e. type I and II), since methane was documented as the most abundant hydrocarbon released into the GOM sites during the spill [15]. Generally, the methanotrophs are bacterial groups capable of both aerobic and anaerobic methane oxidation and belong mainly to either the α-Proteobacteria (type II methanotrophs) or the γ-Proteobacteria (type I methanotrophs) as well as some acidophilic members of the Verrucomicrobiae [17,18]. However, several other recent studies have also documented widespread anaerobic methane oxidation among diverse groups and consortia of marine microbial populations [18-22]. In this study, Terrebonne Bay in southern Louisiana was selected as the study site, based on the extent of the Deepwater Horizon oil spill at this particular milieu, combined with several past ecological antecedents and the direct connection of this coastal region to the Mississippi River [23].

*Corresponding author: Ola A Olapade, Department of Biology and the Center for Sustainability and the Environment, Albion College, 611 East Porter Street, Albion, MI 49224, USA; Tel: 517-629-0296; Fax: 517-629-0264; E-mail: oolapade@albion.edu

Received May 01, 2013; Accepted June 20, 2013; Published June 27, 2013

Citation: Olapade OA (2013) Molecular Characterization of Bacterial Phylogenetic and Functional Groups at Terrebonne Bay along the Coastline of the Gulf of Mexico. J Pet Environ Biotechnol 4: 144. doi:10.4172/2157-7463.1000144

Copyright: © 2013 Olapade OA. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Materials and Methods

Description of study sites and sample collection

Water and sediment samples were collected in triplicates at three separate locations along the coastline of the Gulf of Mexico on July 19th, 2011, specifically at Terrebonne Bay (29.14134°, -90.56258°) in southern Louisiana (USA) as previously described [7]. Subsamples were later removed from each sample and preserved in 8% (w/v) paraformaldehyde and 1X phosphate-buffered saline solution for nucleic acid (4°, 6°-diamidino-2-phenylindole (DAPI) staining and FISH analyses. During sampling, various water characteristics including temperature, pH, conductivity, oxidation-reduction potential were measured using the YSI model 556 MPS multi-probe system (YSI Incorporated, USA).

DNA extraction, PCR and clone sequencing

Approximately 500 mL of water samples were filtered through sterile, 47 mm, 0.2 um pore-size filters before storing at -80°C until processed. Total DNA was later extracted from the preserved filters using FastDNA SPIN Extraction Kit (MP Biomedicals, Solon, OH, USA) and eluted in 50 ul of sterile deionized water. PCR amplification was then carried out on the extracted and pooled DNA from the replicate samples by targeting the almost full-length 16S rRNA gene with the universal bacterial primer pair 8F (5° AGA GTT TGA TCC TGG CTC AG 3°) and 1492R (5°GGT TAC CTT GTT ACG ACT T3°) as previously described [7]. The amplified PCR products were then confirmed on agarose gel and purified with a QIAquick PCR purification kit (QIAGEN, Valencia, CA) before subsequently utilized for cloning and sequencing. Clone libraries were constructed using the TOPO TA cloning kit (Invitrogen, Carslbad, CA). Colony PCR was used in screening transformed cells with vector-specific primers [24] and size of products verified by agarose gel electrophoresis.

Phylogenetic and diversity analysis

A total of 83 clones were successfully sequenced and analyzed using the Sequencer program (version 4.5; Gene Codes Co., Ann Arbor, MI). They were then compared with previously published GenBank sequences using the BLAST system [25] in order to determine their close relatives. Alignment and other manual editing were carried out with ClustalW [26]. The clones were then classified into 66 Operational Taxonomic Units (OTUs) using sequence identity values ranging from ≥ 98% to 100%. The OTUs were analyzed for species richness, Shannon Taxonomic Units (OTUs) using sequence identity values ranging from 0.8% to 95%. The percent representations by the different OTUs detected within the clone library constructed after comparing to their closest relatives in the NCBI database are presented in Table 2.

Bacterial enumeration

Direct Counts (DAPI Staining): Total bacterial numbers in the preserved samples were determined by concentrating onto 0.2 µm pore-size black polycarbonate filters (Poretics, Livermore, CA) and staining with DAPI solution for 5 minutes. Filters were rinsed with sterile water and then mounted onto glass slides with Type FF immersion oil [30]. Bacterial cells in 10 separate fields were then counted using an epifluorescence microscope.

Fluorescence In Situ Hybridization: FISH analyses were used to determine the abundance of different bacterial phylogenetic groups as described in Lomans et al. [31] and Mills et al. [32]. Briefly, bacterial cells in the preserved water samples were concentrated onto 0.2 µm pore-size anodisc or polycarbonate filters (Whatman, Maidstone, UK), and then rinsed with deionized water, treated with 1 mL 0.1% Nonidet P-40 (Sigma Aldrich, St. Louis, MO). 40 µL of Texas red-labeled probe (Sigma Genosys, The Woodlands, TX; [5 ng/µL final concentration]) dissolved in hybridization buffer (6X standard saline citrate [SSC], 0.02 M TRIZMA base at pH7.0, 0.1% sodium dodecyl sulfate [SDS], 0.01% polyadenylic acid, and 30% formamide) were then added to the filters before incubating for 4 h at the appropriate temperature (Table 1). After the incubation, filters were washed twice with 400 µL of wash buffer (0.9 M NaCl, 0.02 M Tris-pH7, 0.1% SDS) and incubated with 80 µL of wash buffer for 10 minutes at the hybridization temperature. The filters were then rinsed twice with 400 µL sterile deionized water before they were mounted on glass slides with immersion oil. Cells that hybridized to each probe were enumerated using the epifluorescence microscopy by counting at least 300 fields on triplicate slides.

Nucleotide sequence accession numbers

Nucleotide gene sequences obtained were already submitted to DDBJ/GenBank/EMBL under accession numbers AB691143 to AB691225.

Results

Environmental variables at study site

Mean values for the various water characteristics that were measured in triplicates at the study sites are: temperature (30.74°C), pH (7.85), dissolved oxygen (109.8%), conductivity (14.27mS/cm) and oxidation-reduction potential (10.87 mV).

Clone library composition and community diversity assessment

Analysis of the 83 16S ribosomal RNA gene sequences revealed eight distinct phylogenetic groups, including bacterial members belonging to the Cyanobacteria, four subclasses (i.e. α-, β-, γ-, δ-) of the Proteobacteria, Bacteroidetes, Actinobacteria, and the Firmicutes (Figure 1). Overall, members of the Cyanobacteria, accounted for the highest clone representation with 28%, followed by the β-Proteobacteria (20.5%), Bacteroidetes (17%) and Actinobacteria (12%). The percent representations by the different OTUs detected within the clone library constructed after comparing to their closest relatives in the NCBI database are presented in Table 2.

Probe	Taxa	Sequence (5'-3')	Hybridizing Temp (°C)	Reference
EUB338	Domain Bacteria	GCTGCCCTCCCGTAGGAGT	48	Amann et al. [46]
ALF1b	α-proteobacteria	CGTTCCG (C/T)TCGAGCCAG	54	Amann et al. [47]
GAM42a	γ-proteobacteria	GCCCTCCACACATCGT	57	Manz et al. [48]
SRB385	Sulfate-Reducing-Bacteria	CGCGCTGCTCGCTGCAGG	53	Amann et al. [46]
β-AO233	Ammonia-oxidizing-Bacteria	AGCTAATACGRCATCGG	44	Stephen et al. [49]
M-450	Type I Methanotrophs	ATCCAGTGACCTGCTATTC	46	Eller et al. [4]
M-84	Type II Methanotrophs	CCCAATCGTGACGGCGCCGA	46	Eller et al. [4]

Table 1: Oligonucleotide sequences, target and hybridization conditions for probes used in this study.
Among the *Proteobacteria*, members of the β-Proteobacteria subclass dominated especially including several hydrocarbon-utilizing bacterial species as *Methylibium petroleiphilum*, *Burkholderia cedaria* and *Methylphilus methylotrophus*. Conversely, bacterial members of the α-Proteobacterial subclass accounted for only 9.6% of the total clone library composition including species of *Oceanicola pacificus* and *Shinella zoogloeoides* belonging to the pyrene and pyridine-degrading consortia. Clones belonging to the γ- and δ-Proteobacteria accounted for only 3.6% and 6.0% of total populations, respectively, including species such as *Hydrocarboniphaga effusa* and *Desulfobula fastidiosa*.

Results from the various diversity measures analyzed revealed high bacterial diversity within the bacterioplankton assemblage at the bay site examined. Specifically, the Simpson’s (Reciprocal) index was the number calculated to be 217.3 and 4.06 for the Chao 1 estimate of species richness and the Shannon Weiner Index, respectively. Rarefaction analysis revealed that the amounts of clones sequenced and screened are probably not sufficient for the estimation of the bacterial diversity within the clone libraries (Figure 2).

Abundances of bacterial phylogenetic and functional groups

Numbers of total bacteria within the bacterioplankton and benthic assemblages averaged about 3.5 x 10^7/mL and 1.5 x 10^8/g, respectively. While, Domain Bacteria occurrence accounted for between 11% and 20% of total bacterial counts in the water and sediment at average abundance of 4.0 x 10^7/mL and 3.0 x 10^8/g respectively (Figure 3a and 3b). When two subclasses (i.e. α- and γ-) of the Proteobacteria were enumerated, their numbers were comparable between both the bacterioplankton and benthic assemblages, although members of α-Proteobacteria were found to be numerically more dominant within both habitats at the bay site (Figure 4a and 4b).

The occurrences of both type I and II methanotrophic functional bacterial populations followed the same trend and on average were at least one order of magnitude higher within the sediment than in the bacterioplankton communities (Figure 4a and 4b). Comparatively, the type I group were more numerically dominant than the type II, in both water and sediment samples examined. In contrast, the abundances of the other two functional groups examined i.e., the sulfate-reducing and the ammonia-oxidizing bacterial populations differed in their pattern of occurrences within both the bacterioplankton and benthic assemblages. Specifically, numbers of AO233-hybridized cells were found to be higher than those detected with the SRB385 probe in the sediment; conversely, the entire opposite in occurrence was the case for both populations enumerated in the water samples (Figure 4a and 4b).

Discussion

In this study, by applying combinations of several culture-independent (i.e. nucleic acid staining, fluorescence *in situ* hybridization

Closest Phylogenetic Taxa from NCBI	GenBank Acc.	Abundance	
A	Cyanobacteria		
1	Uncultured Cyanobacterium	H0242211	1/1.20
2	Uncultured Cyanobacterium	JF966676	1/1.20
3	Uncultured Cyanobacterium	EU930687	1/1.20
4	Uncultured Cyanobacterium	AM690936	6/7.23
5	Uncultured Cyanobacterium	AB491631	2/2.41
6	Uncultured Cyanobacterium	FJ352328	1/1.20
7	Uncultured Cyanobacterium	GQ349130	1/1.20
8	Uncultured Cyanobacterium	FM995186	1/1.20
9	Uncultured Cyanobacterium	KC545747	1/1.20
10	Uncultured Cyanobacterium	FJ763779	1/1.20
11	Uncultured Cyanobacterium	EU780238	1/1.20
12	Uncultured Cyanobacterium	JF966674	1/1.20
13	Uncultured Cyanobacterium	EU800916	1/1.20
14	Uncultured Cyanobacterium	HM057705	1/1.20
15	Uncultured Cyanobacterium	AM259752	1/1.20
16	Uncultured Cyanobacterium	HQ914635	1/1.20
17	Uncultured Cyanobacterium	GU574287	1/1.20
B	Alphaproteobacteria		
18	Rhodobacter veidkampii	NR043405	1/1.20
19	Shinella zoogloeoides	NR041341	1/1.20
20	Shinella zoogloeoides	NR041342	1/1.20
21	Rhodoplanes serenus	NR040936	1/1.20
22	Andersenella baltica	NR042626	2/2.41
23	Skermanella aerolata	NR043929	1/1.20
24	Oceanicola pacificus	NR043915	1/1.20
C	Betaproteobacteria		
25	Methylibium petroleiphilum	NR041768	1/1.20
26	Burkholderia ginsengisol	NR041288	1/1.20
27	Massilia lutea	NR043310	2/2.41
28	Burkholderia cedaria	NR041719	1/1.20
29	Methylibium methylotrophus	NR041257	1/1.20
30	Denitratisoma oestradiolicum	NR043249	2/2.41
31	Burkholderia endofungorum	NR042584	1/1.20
32	Massilia dura	NR043307	1/1.20
33	Methylbacillus flagellatus	NR043691	1/1.20
34	Hydrogenophaga pseudoflavaf	NR028717	1/1.20
35	Azoarcus buckelii	NR027190	1/1.20
36	Methylbacillus flagellatus	NR043691	1/1.20
37	Hydrogenophaga taeniospiralis	NR028716	1/1.20
38	Burkholderia cepacia	NR041719	1/1.20
39	Methylbacillus flagellatus	NR043691	1/1.20
D	Gammaproteobacteria		
40	Thioalkalivibrio denitrificans	NR028745	1/1.20
41	Singlegarnononas varicoloris	NR042175	1/1.20
42	Hydrocarboniphaga effusa	NR029102	1/1.20
E	Deltaproteobacteria		
43	Desulfobula fastidiosa	NR025746	1/1.20
44	Desulfovomus bakii	NR026175	1/1.20
45	Geobacter thiogenes	NR028775	1/1.20
46	Desulfuromonas alcaliphilus	NR043709	1/1.20
47	Desulfuromas bakii	NR026175	1/1.20

Figure 1: Percent distribution of major bacterial phylogenetic groups based on 16S rRNA gene sequences from the coastal bacterioplankton assemblages in Terrebonne Bay along the Gulf of Mexico.
phylogenetic groups probably further validate the suggestion that the phyla with hydrocarbon-degrading abilities were relatively more stimulated and supported by the oil plume at these GOM locations [14,33,15].

Generally, variations of sequences belonging to globally distributed bacterial taxa are typically found within microbial communities in coastal marine environments [34,2,5]. However, in this study the relatively high occurrence of \(\beta\)-Proteobacteria found is quite suggestive of the oil plume influence, especially given the relatively rare occurrence of this particular taxa in marine milieu as compared to freshwater environments [28,7,8]. Moreover, the bacterial members identified as belonging to the \(\beta\)-Proteobacteria subclass within the clone library were mostly hydrocarbon (e.g., methane) degraders, including \textit{Methyllobium petroleiphilum}, \textit{Burkholderia cepacia}, \textit{Hydrogenophaga taeniospiralis} and \textit{Methylobacillus flagellates} species [35-37].

Furthermore, bacterial members of the \(\delta\)-Proteobacteria and the \textit{Firmicutes} that represented about 6% and 3% of total clone populations comprised of several species such as \textit{Desulfofaba fastidiosa}, \textit{Desulfuromusa bakii} and \textit{Parasporobacterium paucivorans} which are capable of utilizing various crude-oil derived compounds including methyloxylated aromatics, propionate and sulfur [38-40]. Typically, majority of bacterial species belonging to these two taxa are reportedly associated with soil and sediment in coastal marine environments especially during tidal events [1,7]. Therefore, the presence of high numbers of hydrocarbon-utilizing bacterial phylotypes in this study within the bacterioplankton communities strongly suggest a possible change in the physiological and metabolic profiles of some of the taxa in response to the available hydrocarbon substrates.

The relatively high representations by the \(\alpha\)-Proteobacteria (10%) and the Bacteroidetes (17%) were not at all surprising and further

![Figure 2: Percent abundance of different OTUs presented by genus from Terrebone Bay along the Gulf of Mexico.](image)

![Figure 3: Numbers of total bacteria (as determined by DAPI staining) and domain bacteria (determined by FISH) in the coastal bacterioplankton assemblages in Terrebonne Bay along the Gulf of Mexico. Values represent mean ± 1 SE (n = 3).](image)

\textbf{Table 2: Percent occurrences of bacterial phylogenetic groups in the bacterioplankton assemblage at Terrebonne Bay along the Gulf of Mexico.}

Number	Tag	Genus/Species	Accession Number	Percentage
48	F	Anaeroarcus burkinensis	NR025298	1/1.20
49	F	Parapiriformibacterium paucivorans	NR025390	1/1.20
50	F	Thernimina carboxydiaphila	NR043010	1/1.20
51	G	Flavobacterium ginsengisi	NR041500	2/2.41
52	G	Flavobacterium sp	NR040990	5/6.02
53	G	Flavobacterium sp	NR040990	1/1.20
54	G	Pseudomonas aurantici	NR041534	2/2.41
55	G	Roseobacteraceae mycolicaceae	NR041514	1/1.20
56	G	Lysinibacillus caseinolyticus	NR041043	1/1.20
57	G	Fluvicola taffensis	NR041911	1/1.20
58	G	Haliscomenobacter hydrogenis	NR042316	1/1.20
59	H	Streptomyces hebeiensis	NR029091	1/1.20
60	H	Ferrovibrio acidiphilum	NR041768	1/1.20
61	H	Ilumato bacterium fluminis	NR041653	1/1.20
62	H	Ferrovibrio acidiphilum	NR041798	2/2.41
63	H	Streptomyces hebeiensis	NR029091	1/1.20
64	H	Ilumato bacterium fluminis	NR041653	1/1.20
65	H	Kitasatospora saccharophila	NR041538	1/1.20
66	H	Patulibacter minatonensis	NR041254	1/1.20

\(a = \text{total of 83 clones}\)
In conclusion, the results from both FISH and 16S rRNA gene clone sequences clearly reflect the subsequent shift in the bacterial community structure and composition at Terrebonne Bay in southern Louisiana in response to the tragic methane and crude oil discharges from the Deepwater Horizon rig along the Gulf of Mexico. This obvious shift in bacterial community diversity to mostly hydrocarbon-degrading phylogenotypes at the GOM site examined, further highlights both the ecological importance as well as various degradative potentials of autochthonous bacterial assemblages within contaminated coastal marine milieus.

Acknowledgements

The study was supported mostly by the Albion College Hewlett-Mellon Faculty Development Funds. Sincere thanks to Lori Duff, Freyja Davis, Dave Carey and Kurt Hellman for various support during the study period.

References

1. Chauhan A, Cherrier J, Williams HN (2009) Impact of sideways and bottom-up control factors on bacterial community succession over a tidal cycle. Proc Natl Acad Sci USA 106: 4301-4306.

2. Cottrell MT, Kirchan DL (2000) Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl Environ Microbiol 66: 5116-5122.

3. Giovannoni SJ, Rappé M (2000) Evolution, diversity and molecular ecology of marine prokaryotes. In: Microbial ecology of the oceans DL Kirchman Wiley-Liss, New York USA.

4. Eiler G, Stubner S, Frenzel P (2001) Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescence in situ hybridisation. FEBS Microbial Lett 198: 91-97.

5. Giovannoni SJ, Stirling U (2005) Molecular diversity and ecology of microbial plankton. Nature 437: 343-348.

6. Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, et al. (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330: 204-208.

7. Olapade OA (2010) Molecular analyses of the diversity in marine bacterioplankton assemblages along the coastline of the northeastern Gulf of Mexico. Can J Microbiol 56: 853-863.

8. Rappé MS, Verin K, Giovannoni SJ (2000) Phylogenetic comparisons of a coastal bacterioplankton community with its counterparts in open ocean and freshwater systems. FEBS Microbial Ecol 33: 219-232.

9. James R Bragg, Roger C Prince, James Harner E, Ronald M Atlas (1994) Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368: 413-418.

10. Röling WF, Milner MG, Jones DM, Fratepietro F, Swannell RP, et al. (2004) Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microb 70: 2803-2813.

11. Swannell RPJ, Mitchell D, Lethbridge G, Jones D, Heath D, et al. (1999) A Field Demonstration of the Efficacy of Bioremediation to Treat Oiled Shorelines Following the Sea Empress Incident. Environ Technol 20: 863-873.

12. Atlas RM, Bartha R (1972) Degradation and mineralization of petroleum in sea water: limitation by nitrogen and phosphorous. Biotechnol Bioeng 14: 309-318.

13. Olapade OA (2012) Diet fluctuations in the abundance and community diversity of coastal bacterioplankton assemblages over a tidal cycle. Microb Ecol 63: 96-102.

14. Valentine DL, Kessler JD, Redmond MC, Mendes SD, Heintz MB, et al. (2010) Petroleum respiration jumps-start microbial response to a deep oil spill. Science 330: 208-211.

15. Koskla JE, Prakash O, Overholt WA, Green SJ, Freyer G, et al. (2011)
Hydrocarbon-degrading bacteria and the bacterial community response in gulf of Mexico beach sands impacted by the deepwater horizon oil spill. Appl Environ Microbiol 77: 7962-7974.

16. Holmes AJ, Roslev P, McDonald IR, Iversen N, Henriksen K, et al. (1999) Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl Environ Microbiol 65: 3312-3318.

17. Tavormina PL, Ussler W 3rd, Orphan VJ (2008) Planктонic and sediment-associated aerobic methanotrophs in two seep systems along the North American margin. Appl Environ Microbiol 74: 3985-3995.

18. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, et al. (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407: 623-626.

19. Dunfield PF, Yurev A, Senin P, Smirnova AV, Stott MB, et al. (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450: 879-882.

20. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, et al. (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464: 543-548.

21. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60: 439-471.

22. Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, et al. (2012) Zero-valent sulphur is a key Intermediate in marine methanotization. Nature 491: 541-546.

23. Penland S, Sutter JR, and McBride RA (1987) Delta plain development and sea level history in Terrebonne coastal region, Louisiana. In: Kraus NC Coastal Sediments 87. American Society of Civil Engineers, NewYork 1689-1704.

24. Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101: 20-78.

25. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402.

26. Perrière G, Gouy M (1996) WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78: 364-369.

27. Chao A (1984) Nonparametric Estimation of the Number of Classes in a Population. Scand J Statist 11: 265-270.

28. Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43: 783-791.

29. Schloss PD, Handelsman J (2006) Introducing SONS, a tool for operational taxonomic unit-based comparisons of microbial community memberships and structures. Appl Environ Microbiol 72: 6773-6779.

30. Porter KG, Feig YS (1980) The Use of DAPI for Identifying and Counting Microorganisms. Limnol Oceanogr 25: 943-948.

31. Chao A (1984) Nonparametric Estimation of the Number of Classes in a Population. Scand J Statist 11: 265-270.

32. Mills HJ, Hunter E, Humphrys M, Kerkhof L, McGuinness L, et al. (2008) Characterization of nitrifying, denitrifying, and overall bacterial communities in permeable marine sediments of the northeastern Gulf of Mexico. Appl Environ Microbiol 74: 4440-4443.

33. Kessler JD, Valentine DL, Redmond MC, Du M, Chan EW, et al. (2011) A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico. Science 331: 312-315.

34. Britschgi TB, Giovannoni SJ (1991) Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl Environ Microbiol 57: 1707-1713.

35. Chiotisodova L, Lapidus A, Han C, Goodwin L, Saunders L, et al. (2007) Genome of Methylobacillus flagellatus, molecular basis for obligate methylotrophy, and polyphyletic origin of methylotrophy. J Bacteriol 189: 4020-4027.

36. Lambro AJ, Patel TR (2008) Isolation and characterization of a biphenyl-utilizing psychrotrophic bacterium, Hydrogenophaga taenioprimalis IA3-A, that cometabolize dichlorophenyls and polychlorinated biphenyl congeners in Aroclor 1221. J Basic Microbiol 48: 94-107.

37. Nakatsu CH, Hristova K, Hanada S, Meng YF, Hanson JR, et al. (2006) Methylibium petroleiphilum gen. nov., sp. nov., a novel methyl tert-butyl ether-degrading methylotroph of the Betaproteobacteria. Int J Syst Evol Microbiol 56: 983-989.

38. Abildgaard L, Ramsing NB, Finster K (2004) Characterization of the marine propionate-degrading, sulfate-reducing bacterium Desulfofaba fastidiosa sp. nov. and reclassification of Desulfumusa hansenii as Desulfufoaba hansenii comb. nov. Int J Syst Evol Microbiol 54: 393-399.

39. Werner Liesack, Kai Finster (1994) Phylogenetic Analysis of Five Strains of Gram-Negative, Obligately Anaerobic, Sulfur-Reducing Bacteria and Description of Desulfuromusa gen. nov., Including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov. Int J Syst Bacteriol 44: 753-758.

40. Gonzalez JM, Moran MA (1997) Numerical dominance of a group of marine bacteria in the alpha-subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol 63: 4237-4242.

41. Bai Y, Sun Q, Zhao C, Wen D, Tang X (2009) Aerobic degradation of pyridine by a new bacterial strain, Shinella zoogloeoidea BC026. J Ind Microbiol Biotechnol 36: 1391-1400.

42. Cottrell MT, Kirchman DL (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66: 1692-1697.

43. Ronald S Oremland, Charles W Culbertson (1992) Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor. Nature 356 421-423.

44. McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74: 1305-1315.

45. Phillips CJ, Smith Z, Embly TM, Prosser JI (1999) Phylogenetic differences between particle-associated and planktonic ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the NorthWestern Mediterranean Sea. Appl Environ Microbiol 65: 779-786.

46. Amann RI, Krumholz L, Stahl DA (1990) Fluorescent oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172: 762-770.

47. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 412-423.

48. Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH (1992) Phylogenetic oligodeoxynucleotide Probes for the Major Subclasses of Proteobacteria: Problems and Solutions. Syst Appl Microbiol 15: 593-600.

49. Stephen JR, Kowalchuk GA, Bruns MAV, McCaig AE, Phillips CJ, et al. (1998) Analysis of ubroup Proteobacterial Ammonia Oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl Environ Microbiol 64: 2958-2965.