Evolution beyond nature’s laws

Running title: Evolution beyond nature’s laws

Kai Xu

Fisheries College, Jimei University, Xiamen, 361021, China

Correspondence: kaixu@jmu.edu.cn

Abstract

The theory of evolution by natural selection cannot be used to evaluate the truth value of the following proposition: Through evolution, there exists at least one species that can adapt to any one given environment. To address this issue, this study attempted to define evolution from the perspective of the eternal laws of nature. This study roughly classified life activities into molecular, cellular, individual, ecological, and biogeochemical (atomic) levels according to scale and complexity, and selected typical life phenomena from each level to analyze the relationship between nature’s laws and evolution. Then, we proposed that evolution beyond nature’s laws occurs when life can better use, hide, and/or resist the laws. In this way, organisms can improve their competitive abilities under certain conditions, and then new orders or laws can emerge. This also ensures that each law only controls some properties of life. This study found
that organisms significantly influence themselves in all five levels of life activities, and
the whole biosphere can be considered as a huge and evolution-driven feedback loop.
Life can carry more laws than non-living matter, but the carrying capacity is limited.
Therefore, this study’s findings suggest that evolution makes life subject to more of
nature’s laws until the highest carrying capacity is reached.

Keywords: Environment, Evolution, Feedback, Life, Natural selection theory, Nature’s
Laws.
1. The upper limits of life

Organisms survive by acquiring energy and matter, which means that organisms must compete with each other in a complex and changing environment with limited resources. The winners of the competition are organisms that can obtain enough resources for survival and reproduction under specific environmental conditions. There are several mechanisms that can alter the competitive ability (i.e., lead to variation, such as mutation, genetic recombination, and gene flow) and provide raw materials for natural selection (Urry et al., 2017).

To explore the formation mechanisms behind the rich and colorful array of species, Charles Darwin and D’Arcy Thompson focused their attention on the biological changes and eternal laws of nature, respectively. Darwin’s nature selection theory is the core mechanism of modern evolutionary theory and is widely known as a general principle of biological changes. Natural selection is a filter that favors genetic changes that provide some advantages under certain environmental conditions, and this theory can explain why some species can adapt to their environment. Thompson, a master of the first principle, emphasized the importance of unchangeable laws from the point of view of mathematics and physics (Thompson, 1942). That is, as long as life exists in a physical world, it must obey the mathematical and physical laws. Both Darwin’s and Thompson’s opinions have received abundant support, which means that neither opinion is comprehensive. In addition, the emergence of new orders or laws is a common phenomenon for both living
and non-living matter (Anderson, 1972), but the relationship between the evolution of life and the laws of nature remains unclear.

Natural selection theory cannot be used to evaluate the truth value of the following proposition: Through evolution, there exists at least one species that can adapt to any one given environment. Thus, we cannot infer the upper limits of life through this theory. To address this issue, we attempted to establish a general theoretical framework by integrating the opinions of Darwin and Thompson. Recent studies have shown that the two dimensional (2D) biological polygon network obeys five mathematical laws but uses oriented cell division to hide the effect of one of these laws on cell size (Xu, 2019a, b, 2021; Xu et al., 2017). Thus, the fact that an organism obeys a certain law does not mean that the law must be manifested in the characteristics of life. Inspired by this notion, we analyzed the relationship between evolution and nature’s laws, and proposed the concept that evolution beyond nature’s laws occurs when life can better use, hide, and/or resist the laws.

1. Five levels of life activities

From atomic to geochemical scales, interactions between the environment and organisms are shaping the entire Earth's biosphere, and we humans play an increasingly important role in these interactions. Thus, understanding evolution requires seeing the big picture. In this study, we roughly classified life activities into molecular, cellular, individual,
ecological, and biogeochemical (atomic) levels according to scales and complexity (Fig. 1), and selected typical life phenomena from each level to analyze the relationship between nature’s laws and evolution. This study found that new orders or laws not only emerged in evolution from simple to complex, but also in the development of multi-celled organisms (Fig. 2). This is consistent with Anderson’s (Anderson, 1972) opinion. Although the biological mechanisms behind the phenomena need further in-depth study, the associated mathematical and/or physical laws have been well investigated in previous studies. Below, the relationship between life phenomena and associated laws is discussed.

Figure 1 Feedback is everywhere in all five levels of life activities. From atomic to biogeochemical levels, life activities are increasing in spatial-temporal scale and
complexity. Biogeochemistry is concerned with the collective effects of life activities at the atomic level.

1.1 Molecular level: biochemical reactions

One of the most famous physical laws in life science is the second law of thermodynamics. At least 200 years ago, scientists already realized that this law was insufficient or inappropriate to explain life phenomena (Thompson, 1942). The entropy or disorder of non-living matter tends to increase according to the second law of thermodynamics. However, both the evolution and development of life have led to the accumulation of highly ordered macromolecules, thus decreasing entropy. About 80 years ago, physicist Schrödinger pointed out that metabolism helps life resist the second law of thermodynamics (Schrodinger, 1944). However, the detailed metabolic mechanisms of how life resists this law remain unclear.

The metabolism is a self-reproducing and self-accelerating network of biochemical reactions, but it needs to be fed with matter and energy. In theory, all chemical reactions are reversible; that is, products in one direction become reactants in the opposite direction. Under given conditions, the direction in which a certain reaction is energetically possible is not determined by life itself but must obey the laws of thermodynamics (Urry et al., 2017). Whether the reaction will actually occur or not and the reaction rate are not determined by the laws of thermodynamics but can be largely controlled by life itself.
Two methods, spatial-temporal separation and acceleration, are used to gradually and effectively produce desired chemicals.

Spatial-temporal separation is used to place the right amount of chemicals at the right time and position. The formation of the cell membrane is a sign of the emergence of primitive life, which can be regarded as the oldest version of spatial-temporal separation. As the physical boundary of the cell, membranes not only prevent the free diffusion of chemicals across the membrane but also provide a specific and stable physical, chemical, and biological environment. For eukaryotes, the cell is further compartmentalized to separate the structures with different functions, and compartmentalized structure, such as vacuoles, can switch their functions under different situations (Urry et al., 2017). In addition, there are serious conflicts between many key metabolic pathways, for example, respiration and the toxic effects of oxygen on biological macromolecules and related metabolic pathways, competition between photorespiration and photosynthesis in photoautotrophs, and the paradox between water loss and CO$_2$ uptake through stomata in crassulacean acid metabolism plants (Benzie, 2000; Falkowski and Raven, 2013; Li, 2016; Urry et al., 2017). These conflicts are partly eliminated by spatial and/or temporal separations.

Spatial-temporal separation only ensure that the desired products will be produced by metabolism, while the production rate is speed up by enzymes. The enzymes are macromolecules that act as catalysts, accelerating chemical reaction by lowering the
energy barrier and showing the same effect on the rate of reversible reactions in both directions (Urry et al., 2017). Generally, enzymes can increase the rate of chemical reactions by at least five orders of magnitude (Nelson and Cox, 2017), and then the turnover rate of energy and matter is accelerated by enzymes. This is an important advantage for competition, and it is believed that the chemical reactions in all living things are catalyzed by enzymes (Urry et al., 2017). Thus, enzymes accelerate the cycling of energy and matter in the biosphere. For example, photosynthesis, in which enzymes are involved, plays an important role in the global carbon cycle and can potentially be used to maintain atmospheric CO₂ concentration (Falkowski and Raven, 2013; Li, 2016).

In summary, spatial-temporal separation and acceleration ensure the accumulation of highly ordered macromolecules, and are the metabolic mechanisms that resist the second law of thermodynamics.

Figure 2 Typical laws that emerge at different levels of life activity. (1) Biochemical
reactions obey the laws of thermodynamics and are accelerated by enzymes. (2) Protoplasts tend to be spherical because they are governed by the Young–Laplace equation, but most cells are non-spherical under real conditions. (3) Epithelium is a 2D space-filling structure composed of polygonal cells, and its topological features can be described by Euler’s law. (4) The neighboring relationship between cells can be described by Aboav–Weaire’s law. (5) According to Lewis’s law, the size of an n-edged cell tends to increase with n. (6) Division is used to hide the effect of the von Neumann–Mullins law on cell size. (7) The topological features of an early embryo, a three-dimensional (3D) space-filling structure composed of polyhedral cells, can be described by 3D Euler’s law. (8) The abundance of wild species follows Damuth’s rule, while the biomass of humans and livestock is unusually high among mammals. (9) Both the metabolic rate of organisms and the development of human civilization can be predicted by the allometric relationship, but the allometric exponents are significant different. Overall, the emergence of these laws suggests that life has evolved beyond the second law of thermodynamics.

1.2 Cellular level: shape of protoplast

Life is an open system that exchanges energy and matter with the environment. More importantly, these exchanges take place under the control of life through complex structures and metabolism (Urry et al., 2017). It is believed that single-celled organisms that are fully enclosed by membranes are the simplest forms of life known to be able to
survive independently. The cell membrane forms a selective barrier that controls not only which chemical can cross the membrane but also the rate of crossing (Urry et al., 2017). Therefore, it is widely accepted that the most basic structure of a biological open system is the cell membrane, and the shape of the membrane plays an important role in metabolism. Thompson commented that the form of an object is a “diagram of forces” (Thompson, 1942). In this way, cell shape is the manifestation of mechanical properties as well as a dynamic consequence of the internal and external forces of the cell. In addition, there are feedback regulations between metabolism, cell shape, and mechanical properties (Si et al., 2015; Ursell et al., 2014).

Surface tension tends to make the bubble spherical according to the Young–Laplace equation. For a given volume, the surface area of spheres is minimal, which not only saves the cost on the boundary but also minimizes the surface energy. For these reasons, the protoplasts of onions become spherical once the rigid cell walls are removed (Taiz and Zeiger, 2010). Surface tension also contributes to the formation of spherical lipid droplets covered by a single layer of membrane (Ben M'barek et al., 2017). The simplest artificial single-celled organism, JCVI-syn3.0, contains less than 500 genes and is also almost spherical in shape (Pelletier et al., 2021). However, the shape of single-celled organisms is highly variable. For example, several dominant phytoplankton species, including diatoms and dinoflagellates, are non-spherical (Sun and Liu, 2003; Thompson, 1942). In this case, the Young–Laplace equation is no longer the main force controlling
cell shape.

We can derive the mechanisms of shape transformation simply from the following first principle: The first step must be to break the influence of surface tension on the cell membrane, which is simple for today’s organisms but a huge step forward for the weak primitive membrane-bearing organism. The cytoskeleton is a network of protein polymers that govern the shape and mechanical stability of the cell (Ingber et al., 2014). All three domains of life, including Bacteria, Archaea, and Eukarya, use cytoskeletons to help maintain cell shape (Wickstead and Gull, 2011). These studies suggested that the cytoskeleton is used to break the effect of surface tension on the cell shape.

2.3 Individual level: space filling

According to the geometric complexity of cell arrangement in life cycle, this study divided organisms into four categories: zero- (0D), one- (1D), two- (2D), and three- (3D) dimensional organisms. A 0D organism is a single cell. The remaining three are multi-celled organisms and can be considered as a set of cells arranged into 1D, 2D, and 3D structures. From a life-cycle perspective, high-dimensional organisms generally develop from a single cell and may experiences the 1D and/or 2D stage before reaching the highest complexity. Besides, parts of a high-dimensional organism can be regarded as low-dimensional structures. A well-known example is the epithelium, a 2D membranous structure consisting of one or more layers of cells that cover most internal and external
surfaces of a multi-celled organism and its organs.

Just like the cell membrane of a cell, the epithelium separates the organism or the organs from the external environment, controls the exchanges of energy and matter, protects internal cells, and is the first and main barrier preventing microbial invasion. Thus, the epithelial cells need to be in close contact with each other, leaving no gaps. Each epithelial cell can be simplified as a convex polygon, where every three polygonal cells meet at a vertex. Then, the epithelium can be considered as a 2D polygonal network. Such trivalent 2D structures are found everywhere in nature, from the atomic to astronomic scales (Xu, 2021). The geometric and topological dynamics of non-living trivalent 2D structures can be described by four laws: Euler’s law, Lewis’s law, Aboav–Weaire’s law, and the von Neumann–Mullins law (Stavans, 1993; Weaire and Rivier, 1984; Xu, 2021).

As a master rule, Euler’s law not only describes the topological relationships between the number of cells, edges, and vertices of trivalent 2D structures, but also applies to any kind of 2D space-filling structures. According to Lewis’s law, the cell size increases with the number of edges. Aboav–Weaire’s law tell us that cells with few edges tend to neighbor cells with many edges, and verse visa. The change rate of cell size can be described by the von Neumann–Mullins law. These laws show a deep connection between the global and local structures and are related to the conserved distribution of the number of cell edges (Xu, 2021). The original idea of Lewis’s law and Aboav–Weaire’s
law can be traced back to the first edition of Thompson’s *On Growth and Form* (Thompson, 1917).

The 2D soap froths are one of the most intensively studied non-living trivalent 2D structures, and therefore we compared them with living 2D structures. Based on previous studies, we concluded that as the complexity of cell arrangement in biological structures increases, the above four laws are broken one by one and may manifest in new aspects of life activities. Cell size variation in 2D froth structures depends on the number of cell edges, whereas that in living 2D structures is independent of the number of edges (Glazier and Weaire, 1992; Xu, 2021). This difference occurs because the cell size of living 2D structures is mainly controlled by division, a topological process, rather than by the von Neumann–Mullins law (Xu, 2021). A recent simulation study suggested that relaxation drives the geometrical and topological dynamics of trivalent 2D structures, and the von Neumann–Mullins law is one of the consequences of relaxation (Xu, 2021). Another consequence of relaxation is that the intracellular angles are concentrated around 120°, which is consistent with the observations of 2D soap froths and living 2D structures *Pyropia* thalli (Stavans and Glazier, 1989; Xu, 2021; Xu et al., 2017). Interestingly, the relaxation follows only one simple mathematical rule: the central angle between two adjacent vertices of an n-edged regular polygon is $2\pi/n$ (Xu, 2021). Thus, the living 2D structure takes advantage of the mathematical rule but hides one of its consequences, namely the von Neumann–Mullins law.
Nearly a century ago, the epidermal pavement cells of plant leaves already attracted much attention owing to their sinuous cell wall. Thompson commented that this phenomena is not easy to explain (Thompson, 1942) because he did not realize that life can evolve beyond nature’s laws rather than simply following them. Here is a simple explanation. In the initial stage of development, walled cells can be simplified as convex polygons. Later, cells stop dividing and start expanding and can end up with a size more than 100 times the original (Sapala et al., 2018). This will increase the internal pressure of the epidermal cell, leading to high mechanical stress on the cell wall. To relieve the mechanical stress, the cell wall is bent by the cytoskeleton (Smith and Oppenheimer, 2005). Theoretically, the deformation of the cell wall does not influence the edge number of cells; then, Aboav–Weaire’s law is not affected. If the changes in cell size and the deformation of cell wall are uniform, then Lewis’s law will be preserved. However, based on observations of the pavement cells of Arabidopsis leaves, both Aboav–Weaire’s law and Lewis’s law were broken (Carter et al., 2017). This deviation may have occurred because of the asynchronous development of cells, as small convex cells can usually be observed coexisting with large pavement cells on the surface of the leaves.

Oriented cell division is essential for morphogenesis of multi-celled organisms, while cell proliferation and tissue stress are linked by mechanical feedback loops (Godard and Heisenberg, 2019). For 1D and 2D biological structures, the direction of
cell division is perpendicular to the direction of cell proliferation. As for 3D biological structure filling with polyhedral cells, the division can happen at any direction. The 2D version of Euler’s law is mathematically a specific case of the 3D version, but in biology, they need to be executed by different mechanisms. Moreover, in the 3D condition, Euler’s law is not sufficient in identifying whether a polyhedron is sealed or not (Grünaub and Motzkin, 1963; Thompson, 1942). This is a serious problem for the study of 3D space filling. We should learn from nature, as some organisms evolved exquisite and robust mechanisms to follow the 3D Euler’s law, for example, the coccolithophore *Emiliania huxleyi* (named after Darwin’s bulldog, Thomas Huxley), the radiolarias *Didymocyrtils*, and *Pantanellium* (Xu et al., 2018; Yoshino et al., 2019; Yoshino et al., 2015; Young et al., 2003).

The early embryo can be considered as a 3D space-filling structure composed of convex polyhedral cells, which means it obeys 3D Euler’s law. The most attractive cells in animals are neurons, which are the basis of consciousness. The unique shape of neurons makes the human nervous system not a 3D structure filled with polyhedral cells, but essentially a network of countless connected neurons. In this case, Euler’s law can be used to describe the topological properties of neural networks (Santos et al., 2019). Human fusiform HeLa cells and astrocytes can be converted into functional neurons, and related technologies are expected to be used for the treatment of nervous system diseases (Qian et al., 2020; Xue et al., 2013). These analyses and experimental studies
suggested that the evolution of animal consciousness is based on the breakthrough and advanced application of the laws of nature. In addition to the Euler characteristic, another topological invariant, the Betti number, has been used to analyze the topological phase transition of the brain neural network (Santos et al., 2019).

2.4 Ecological level: size and abundance

About 80% of the Earth’s biomass is plants, mainly terrestrial trees (Bar-On et al., 2018). Bacteria are the second major biomass component, accounting for about 15% of global biomass. Given the huge size difference between bacteria and trees, it is not surprising that the number of bacteria is estimated to be more than 10^{15} times that of trees (Bar-On et al., 2018). This is consistent with a previous study that used a power law known as Damuth’s rule to describe the relationship between the size and abundance of photoautotrophs, including marine phytoplankton and terrestrial plants (Belgrano et al., 2002). According to this law, the abundance of organisms decreases with increasing size. Damuth’s rule has also been found in many other organisms, such as animals and bacteria, although the scaling exponent may differ owing to taxonomic and/or environmental differences (Gjoni and Glazier, 2020).

Based on Damuth’s rule, if the variation of the Earth’s surface environment is neglectable, then the distribution of different-sized organisms should remain relatively stable. However, the biomass of mammals at present is about four times that before
human civilization (Bar-On et al., 2018). There are two reasons for this: the biomass of wild mammals has decreased by about 80% owing to the development of human civilization; at present, the biomass of both humans and livestock is more than 10 times the biomass of wild mammals (Bar-On et al., 2018). The increase in mammalian biomass is not due to the fourfold increase of resources on the Earth’s surface, but rather due to the increasing ability of humans to obtain and utilize resources. These data suggest that humans do not obey Damuth’s rule when considering species abundance.

Similar power-law relations, such as Zipf’s law and the Pareto principle, are reflected in many aspects of human civilization and nature, including the distribution of firms, wealth, income, words, cities, species abundance, sand, and meteorites (Lü et al., 2010; Su, 2018; West, 2017). According to Zipf’s law, if words are ranked in descending order of frequency, frequency is linearly related to the inverse of the rank (Zipf, 1949). A recent study analyzed eight datasets of wild species from 11 taxonomic groups and found that species abundance followed Zipf’s law (Su, 2018). In addition, Zipf’s law could also be used to describe the distribution of about 30,000 natural cities, and the exponent did not change over the years 1992, 2001, and 2010 (Jiang et al., 2015). The study findings indicate that cities, as markers of human civilization, follow Zipf’s law.

2.5 Biogeochemical (Atomic) level: size and metabolic rate

Under the action of physical forces, fundamental particles form chemical elements, which
are then organized to form stars (Li, 2016; Schlesinger and Bernhardt, 2020; Viola, 1990). Additionally, the motion and evolution of stars and various matter are also controlled by the physical forces. As one of the four fundamental forces of nature, gravity is one of the main drivers that determine the distribution of elements on the earth, especially as it enriches five of the six essential life elements, namely carbon (C), hydrogen (H), nitrogen (N), oxygen (O), and sulfur (S), on the earth’s surface (Li, 2016; Schlesinger and Bernhardt, 2020). This is the atomic basis for the emergence and continuation of life.

All living organisms need to exchange energy and chemical matter with the external environment. Six essential elements, C, H, N, O, phosphorus (P), and S, account for more than 95% of the biomass on the Earth (Li, 2016; Schlesinger and Bernhardt, 2020). All organisms, including microorganisms, plants, and animals, have a similar elemental composition. Therefore, this elemental preference is a general phenomenon, indicating that organisms compete mainly for the above six elements. Elemental preference is also reflected in the carbon isotopes. Owing to minor chemical and physical differences, lighter carbon isotopes are much more likely to be fixed by photosynthesis, which results in lower $^{13}\text{C}/^{12}\text{C}$ ratios in photoautotrophs than in the atmosphere (Craig, 1953; Farquhar et al., 1989). Fossil fuels, the remains of ancient organisms (mainly plants) from about 300 million years ago, have a $^{13}\text{C}/^{12}\text{C}$ ratio similar to those of modern plants (Craig, 1953). This proves that the elemental preference of life has been present for about 300 million years. The collective effects of life activities at the atomic level are becoming
an increasingly important driver of the large-scale cycling of life elements. This phenomenon is a hot topic for biogeochemical research. In addition, organisms can influence themselves in all five levels of life activities through global and local cycles of elements. Thus, the biosphere can be considered as a huge feedback loop.

Julian Huxley (grandson of Thomas Huxley) and Max Kleiber summarized an empirical power law, the allometric relationship, to describe the relationships between individual size and metabolic rate (Brown et al., 2004; Huxley, 1932; Kleiber, 1932). Huxley’s idea was strongly influenced by Thompson’s work, and he expressed his respect for Thompson in the title page and preface of his book (Huxley, 1932). This law has been reexamined and confirmed across a mass range of more than 25 orders of magnitude, and the exponent is in the range of 0–1 (Brown et al., 2004; West, 2017). According to this law, the metabolic rate per individual tends to increase with increasing biomass; but the metabolic rate normalized by biomass tends to decrease, indicating a decrease in metabolic efficiency. The allometric relationship of metabolism can be used to explain why both marine phytoplankton and terrestrial plants contribute about 50% of global net primary production, although the former accounts for only about 0.2% of the latter’s biomass (Allen et al., 2005; Field et al., 1998).

Recently, the allometric relationship has also been observed in many aspects of human civilization; for example, economic growth rates, crime rates, patent rights, and even walking speed all scale with the population of a city (West, 2017). When this law is
applied to quantify the development of human civilization, the exponent becomes larger than 1, indicating that the efficiency of human society increases with size. This explains why over the past several thousand years, more people have moved to cities, and cities have grown larger. The allometric exponent suggests that human civilization is accelerating. A landmark event occurred in 2020: human-made mass surpassed all living biomass (Elhacham et al., 2020). This will have a significant impact on global biogeochemistry and human civilization, but we still know little about it. Interestingly, based on the above studies (Brown et al., 2004; West, 2017), we know that although both human metabolism and human civilization obey the allometric relationship, the exponents are significantly different.

Figure 3 Organisms and the environment form an evolution-driven feedback system. Both organisms and non-living things are subject to specific laws of nature (including
some laws in common), and each law controls only some of their properties. Life can evolve beyond nature’s laws rather than simply following them, so evolution is the basis for the emergence of new orders or laws.

3 Conclusion

Natural selection theory cannot be used to infer the upper limits of life. The key to address this issue is to elucidate the relationship between nature’s laws and evolution. Thus, this study analyzed typical life phenomena from the molecular to the biogeochemical (atomic) levels and proposed the concept that evolution beyond nature’s laws occur when life can better use, hide, and/or resist the laws. In this way, organisms can improve their competitive abilities, and then new orders or laws can emerge. Our concept defines evolution from the perspective of nature’s eternal laws and can inspire future research.

This study also established a feedback model to explain the relationships between nature’s laws, the environment, and organisms (Fig. 3). The key points of our model are: 1. Both living and non-living matters are subject to specific laws of nature, and each law controls only some of their properties. 2. Life can evolve beyond nature’s laws rather than simply following them, and this is one of the major differences between living and non-living matter. 3. Being alive is a state in which life competes for resources, and evolution improves competitive abilities under certain conditions. 4. Evolution is the
basis for the emergence of new orders or laws. 5. Evolution drives the feedback system. Feedback regulation can be found everywhere in all five levels of life activities, and the whole biosphere can be considered as a huge feedback loop (Figs. 1 & 3). The accelerated development of human civilization (West, 2017) indicates that the feedback loop is running faster.

Many scientists, including Schrödinger, believe that there were undiscovered universal laws of physics in life (Schrodinger, 1944). However, about 80 years later, no such laws have been found. The known laws may be sufficient to explain what life is and why it evolves. The other significant difference between living and non-living things comes from the fact that life can carry more laws and that the laws are combined and presented in more complex ways (Fig. 2). However, some environmental conditions and associated laws shape life in an exclusive way, for example, to adapt to flying, running and swimming, animal bodies have evolved distinctly different geometric and physical features. This suggests that the carrying capacity is not limited. Therefore, evolution makes life subject to more of nature’s laws until the highest carrying capacity is reached.

Funding

This work was supported by the National Key Research and Development Program of China (2018YFD0900702).
Conflicts of interest

The author reports no potential conflicts of interest.

References

Allen, A.P., Gillooly, J.F., Brown, J.H., 2005. Linking the global carbon cycle to individual metabolism. Functional Ecology 19, 202-213.
Anderson, P.W., 1972. More is different. Science 177, 393-396.
Bar-On, Y.M., Phillips, R., Milo, R., 2018. The biomass distribution on Earth. Proc Natl Acad Sci U S A.
Belgrano, A., Allen, A.P., Enquist, B.J., Gillooly, J.F., 2002. Allometric scaling of maximum population density: a common rule for marine phytoplankton and terrestrial plants. Ecology letter 5, 611-613.
Ben M’barek, K., Ajjaji, D., Chorlay, A., Vanni, S., Foret, L., Thiam, A.R., 2017. ER membrane phospholipids and surface tension control cellular lipid droplet formation. Dev Cell 41, 591-604 e597.
Benzie, I., 2000. Evolution of antioxidant defence mechanisms. European Journal of Nutrition 39, 53.
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M., West, G.B., 2004. Toward a metabolic theory of ecology. Ecology 85, 1771-1789.
Carter, R., Sanchez-Corrales, Y.E., Hartley, M., Grieneisen, V.A., Maree, A.F.M., 2017. Pavement cells and the topology puzzle. Development 144, 4386-4397.
Craig, H., 1953. The geochemistry of the stable carbon isotopes. Geochimica et Cosmochimica Acta 3, 53-92.
Elhacham, E., Ben-Uri, L., Grozovski, J., Bar-On, Y.M., Milo, R., 2020. Global human-made mass exceeds all living biomass. Nature 588, 442-444.
Falkowski, P.G., Raven, J.A., 2013. Aquatic photosynthesis. Princeton University Press.
Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40, 503-537.
Field, C.B., Behrenfeld, M.J., Randerson, J.T., Falkowski, P., 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237-240.
Gjoni, V., Glazier, D.S., 2020. A perspective on body size and abundance relationships across ecological communities. Biology (Basel) 9.
Glazier, J.A., Weaire, D., 1992. The kinetics of cellular patterns. Journal of Physics: Condensed Matter 4, 1867-1894.
Godard, B.G., Heisenberg, C.P., 2019. Cell division and tissue mechanics. Curr Opin Cell Biol 60, 114-120.
Grünbaum, B., Motzkin, T.S., 1963. The number of hexagons and the simplicity of geodesics on certain polyhedra. Can. J. Math. 15, 744-751.
Huxley, J.S., 1932. Problems of relative growth, Methuen, London, UK.
Ingber, D.E., Wang, N., Stamenovic, D., 2014. Tensegrity, cellular biophysics, and the mechanics of living systems. Rep Prog Phys 77, 046603.
Jiang, B., Yin, J., Liu, Q., 2015. Zipf's law for all the natural cities around the world. International Journal of Geographical Information Science 29, 498-522.
Kleiber, M., 1932. Body size and metabolism. Hilgardia 6, 315-332.
Li, C., 2016. Biogeochemistry : scientific basis and modeling approach. Tsinghua University Press, Beijing.
Lü, L., Zhang, Z.K., Zhou, T., 2010. Zipf's law leads to Heaps' law: analyzing their relation in finite-size systems. Plos One 5, e14139.
Nelson, D.L., Cox, M.M., 2017. Lehninger Principles of Biochemistry 7th eds. WH Freeman and Company.
Pelletier, J.F., Sun, L., Wise, K.S., Assad-Garcia, N., Strychalski, E.A., 2021. Genetic requirements for cell division in a genomically minimal cell. Cell.
Qian, H., Kang, X., Hu, J., Zhang, D., Liang, Z., Meng, F., Zhang, X., Xue, Y., Maimon, R., Dowdy, S.F., Devaraj, N.K., Zhou, Z., Mobley, W.C., Cleveland, D.W., Fu, X.D., 2020. Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature 582, 550-556.
Santos, F.A.N., Raposo, E.P., Coutinho-Filho, M.D., Copelli, M., Stam, C.J., Douw, L., 2019. Topological phase transitions in functional brain networks. Phys Rev E 100, 032414.
Sapala, Runions, Routier-Kierzkowska, AL, Gupta, D., Hong, Hofhuis, Verger, Mosca, CB, 2018. Why plants make puzzle cells, and how their shape emerges. ELIFE.
Schlesinger, W.H., Bernhardt, E.S., 2020. Biogeochemistry : an analysis of global change. Elsevier.
Schroderinger, E., 1944. What is life? . Cambridge University Press, Cambridge, UK.
Si, F., Li, B., Margolin, W., Sun, S.X., 2015. Bacterial growth and form under mechanical compression. Sci Rep 5, 11367.
Smith, L.G., Oppenheimer, D.G., 2005. Spatial control of cell expansion by the plant cytoskeleton. Annu Rev Cell Dev Biol 21, 271-295.
Stavans, J., 1993. The evolution of cellular structures. Reports on Progress in Physics 56, 733-789.
Stavans, J., Glazier, J.A., 1989. Soap froth revisited: Dynamic scaling in the two-dimensional froth. Phys Rev Lett 62, 1318-1321.
Su, Q., 2018. A general pattern of the species abundance distribution. PeerJ 6, e5928.
Sun, J., Liu, D., 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25, 1331-1346.
Taiz, L., Zeiger, E., 2010. Plant physiology. 5th. Sinauer Associates, Sundeland, Massachusetts.
Thompson, D.A.W., 1917. On growth and form. Cambridge University Press, Cambridge, UK.
Thompson, D.A.W., 1942. On growth and form. Cambridge University Press, Cambridge, UK.
Urry, L.A., Cain, M.L., Wasserman, S.A., Minorsky, P.V., Reece, J.B., 2017. Campbell biology. Pearson Education, Incorporated.
Ursell, T.S., Nguyen, J., Monds, R.D., Colavin, A., Billings, G., Ouzounov, N., Gitai, Z., Shaevitz, J.W., Huang, K.C., 2014. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proc Natl Acad Sci U S A 111, E1025-1034.
Viola, V.E., 1990. Formation of the chemical elements and the evolution of our universe. Journal of
Chemical Education 67, 723.
Weaire, D., Rivier, N., 1984. Soap, cells and statistics—random patterns in two dimensions. Contemporary Physics 25, 59-99.
West, G.B., 2017. Scale: the universal laws of growth, innovation, sustainability, and the pace of life in organisms, cities, economies, and companies. Penguin, New York, USA.
Wickstead, B., Gull, K., 2011. The evolution of the cytoskeleton. J Cell Biol 194, 513-525.
Xu, K., 2019a. Ellipse packing in two-dimensional cell tessellation: a theoretical explanation for Lewis’s law and Aboav-Weaire’s law. PeerJ 7, e6933.
Xu, K., 2019b. Geometric formulas of Lewis’s law and Aboav-Weaire’s law in two dimensions based on ellipse packing. Philosophical Magazine Letters 99, 317-325.
Xu, K., 2021. A geometry-based relaxation algorithm for equilibrating a trivalent polygonal network in two dimensions and its implications. Philosophical Magazine 101, 1632-1653.
Xu, K., Hutchins, D., Gao, K., 2018. Coccolith arrangement follows Eulerian mathematics in the coccolithophore Emiliania huxleyi. PeerJ 6, e4608.
Xu, K., Xu, Y., Ji, D., Chen, T., Chen, C., Xie, C., 2017. Cells tile a flat plane by controlling geometries during morphogenesis of Pyropia thalli. PeerJ 5, e3314.
Xue, Y., Ouyang, K., Huang, J., Zhou, Y., Ouyang, H., Li, H., Wang, G., Wu, Q., Wei, C., Bi, Y., 2013. Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuit. Cell.
Yoshino, T., Matsuoka, A., Kishimoto, N., 2019. Geometrical properties of skeletal structures of Radiolarian genus Didymocyrtis. Image Analysis & Stereology, 237-244.
Yoshino, T., Matsuoka, A., Kurihara, T., Ishida, N., Kishimoto, N., Kimoto, K., Matsuura, S., 2015. Polyhedron geometry of skeletons of Mesozoic radiolarian Pantanellium. Revue de Micropaléontologie 58, 51-56.
Young, J.R., Geisen, M., Cros, L., Kleijn, A., Probert, I., Sprengel, C., Ostergaard, J., 2003. A guide to extant coccolithophore taxonomy. J Nannoplankton Res. 1, 1-125.
Zipf, G.K., 1949. Human behavior and the principle of least effort: an introduction to human ecology. Addison-Wesly, Cambridge, UK.