Prompt gamma-ray burst emission from gradual energy dissipation

Dimitrios Giannios

Max Planck Institute for Astrophysics, Box 1317, D-85741 Garching, Germany
Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544, USA
E-mail: giannios@astro.princeton.edu

Abstract. I describe the main aspects of a model for the gamma-ray burst (GRB) emission in which energy is dissipated gradually in a Poynting-flux-dominated flow. In this picture, the energy of the radiating particles is determined by heating and cooling balance. Detailed radiative transfer calculations show that, at Thomson optical depths of order of unity, the dominant radiative process is inverse Compton scattering. Synchrotron-self-absorbed emission and inverse Compton dominate in the Thomson thin parts of the flow. The electrons stay thermal throughout the dissipation region because of Coulomb collisions (Thomson thick part of the flow) and exchange of synchrotron photons (Thomson thin part). The resulting spectrum naturally explains the observed sub-MeV break of the GRB emission and the spectral slopes above and below the break. In this model, the Amati relation indicates a tendency for the more luminous bursts to have more energy per baryon. If this tendency also holds for individual GRB pulses, the model predicts the observed narrowing of the width of pulses with increasing photon energy. The model also predicts that the γ-ray power-law tail has a high-energy cutoff typically in the ~GeV energy range that should be observable with FERMI. A prompt emission component in the optical and UV is predicted to be associated with the GeV emission.

1. Introduction

The GRB emission is the likely result of internal energy release in an ultrarelativistic flow. The dissipative and radiative mechanisms for the GRB largely remain uncertain. A popular model for the energy dissipation invokes internal shocks in an unsteady flow (Paczynski & Xu 1994; Rees & Mészáros 1994). An alternative proposal is magnetic dissipation (Thompson 1994; Spruit et al. 2001) in a strongly magnetized flow (Usov 1992).

Internal shocks are efficient in dissipating a large fraction of the kinetic energy of the flow provided that it is highly variable, i.e., composed of distinct ejection events with strong variation in their bulk Lorentz factor γ (e.g. Kobayashi et al. 1997). Energy is dissipated by the shocks at the location of the collision of the shells. Particles are assumed to be accelerated on a very short timescale at the shock front to ultrarelativistic speeds and non-thermal distributions. Subsequently, they radiate a fraction of the dissipated energy via synchrotron and inverse Compton processes. The relevant radiative mechanisms and the emitted spectra depend, to a large extent, on the shock microphysics and the corresponding Thomson optical depth of the flow at the radius of the collision.

On the other hand, the energy dissipation that powers the GRB emission may be gradual and distributed over a large part of the volume of the flow. The energy of the radiating particles is
determined by the heating/cooling equilibrium (slow heating model; Ghisellini & Celotti 1999; Stern & Poutanen 2004). Such an energy balance is expected to lead to sub-relativistic or mildly relativistic temperatures in the flow. Magnetic dissipation in a strongly magnetized flow can provide a possible physical setup where gradual dissipation is realized. As shown in Drenkhahn (2002) and Drenkhahn & Spruit (2002; hereafter DS02), dissipation though reconnection takes place over several decades in radius; typically in both Thomson thick and thin conditions. Dissipation in the reconnection model is responsible for both the acceleration of the flow and the prompt emission.

In this talk, I summarize our work on the spectral and temporal properties predicted by the reconnection model in the context of GRB flows (Giannios 2006; Giannios & Spruit 2007; Giannios 2008; hereafter G06, GS07, and G08 respectively). The detailed Monte Carlo calculations have shown that, due to the released energy, the flow develops a hot photosphere with comoving electron temperatures of tens of keV. Upscattering of photons that are produced deeper in the flow by those hot electrons leads to a powerful photospheric emission; it accounts for \(\sim 3\% - 30\% \) of the luminosity of the flow. The resulting \(\sim 1 \text{ MeV} \) peak followed by a flat high-energy power-law emission.

Dissipation of magnetic energy and associated emission typically continues in the Thomson thin region of the flow as well. Because of the strong magnetic fields and the mildly relativistic electrons, synchrotron self absorption results in efficient energy exchange of the electrons, keeping their distribution thermal (Ghisellini et al. 1998). Under these conditions, synchrotron-self-absorbed (SSA) emission is an important radiative mechanism in addition to inverse Compton dominating the observed emission in the soft X-rays and softer bands.

The efficient thermalization of the emitting particles throughout the flow reduces the dependence of the model on the, poorly understood, mechanisms of particle acceleration that operate in magnetic reconnection. The model is defined by just 3 main parameters (luminosity, baryon loading and a reconnection-rate parameter). In contrast to the internal shock model, no quantities have to added to parameterize the particle distributions and the amplification of magnetic fields; the field strength is an integral part of the reconnection model. In the following, I summarize how this emitted spectrum is computed in G06, GS07, G08.

2. Magnetic reconnection versus internal shocks

The internal shock model for the GRB emission invokes high variability in the bulk Lorentz factor of the flow that leads to internal collisions. The location where the collision of two shells takes place depends on their initial separation and bulk Lorentz factors. These collisions can dissipate a substantial fraction of the kinetic energy of the flow. Internal shocks are assumed to lead to particle acceleration and magnetic field amplification at the shock front. If electrons receive a large fraction of the dissipated energy then they are accelerated to ultrarelativistic speeds. They cool down radiatively by synchrotron and inverse Compton mechanisms. The resulting spectrum and the relevant radiative mechanisms depend on details of the distribution of the accelerated particles, the magnetic field strength and the Thomson optical depth of the flow at the location of the collision. If the collision of two shells takes place at the Thomson thin region, as needed to explain the typical variability properties of the GRB lightcurves (Daigne & Mochkovitch 1998; Nakar & Piran 2002; Mimica et al. 2005), synchrotron self Compton is likely the most promising radiative mechanism (Rees & Mészáros 1994; Katz 1994; Tavani 1996). In this picture optically thin synchrotron emission dominates the observed hard X-rays, \(~\text{MeV}~\) spectrum. Despite its attractive features, the synchrotron model has theoretical and observational difficulties (as discussed, for example, in Ghirlanda et al. 2003). If, on the other hand, the collisions take place close to the Thomson photosphere, Compton scattering is the dominant radiative mechanism that shapes the spectrum and results in very different emission (Mészáros & Rees 2000).
As an alternative to internal shocks, magnetic dissipation can power the prompt emission provided that the flow is launched Poynting-flux dominated (or with a substantial fraction of its energy in the form of Poynting flux). Magnetic dissipation through, for example, reconnection can release energy smoothly in a large fraction of the volume of the flow. This energy release can take place while the flow expands over several decades in radius (DS02). The energy of the radiating particles is determined by balancing heating and radiative (or adiabatic) cooling at each radius. In this case the slow heating picture described by Ghisellini & Celotti (1999) takes place. The electrons are subrelativistic or mildly relativistic and their synchrotron emission is self absorbed. In a strongly magnetized flow, such SSA emission guarantees efficient energy exchange and thermalization of the electrons on a very short timescale (Ghisellini et al. 1998). The resulting emission does not depend on details of particle acceleration and magnetic field amplification that one faces in internal shock models. The model is defined by just the luminosity, the baryon loading and the reconnection-rate parameter of the flow. This contributes significantly to the predictive power of the magnetic reconnection model. The total observed flux is the integrated emission from the different parts of the flow in which dissipation of energy takes place. It contains both photospheric (Thompson 1994; Stern 1999; G06; GS07) and Thomson thin components (Stern & Poutanen 2004; G08).

2.1. Implications from the observed GRB variability

One additional difference of the internal shock and the magnetic reconnection model is connected to implications from the observed variability of the lightcurves. Internal shocks are efficient only in variable flows. Variability and dissipation are, a priori, unrelated in the magnetic reconnection model in which dissipation takes place, even in a steady outflow. On the other hand, the observed lightcurves are often highly variable showing that the flow does evidently evolve during a GRB. In the context of the reconnection model, the observed variability reflects changes in the luminosity and baryon loading of the flow during the burst. As shown in GS07, the flow can be treated as quasi-stationary for all but the shortest (msec) time scales observed in a burst, the variation of spectral properties during a burst directly reflects variations in the central engine. This is in contrast to models in which the prompt radiation is produced at much larger distances from the source, such as external shock models. It is also in contrast with the internal shock model, since the internal evolution of the flow between the source and the level where radiation is emitted is a key ingredient in this model. Deducing properties of the central engine from observed burst properties is thus a much more direct prospect in the magnetic dissipation model.

2.1.1. Central engine: the stronger the cleaner

A interesting deduction for the central engine is that the luminosity of the flow L correlates with the baryon loading $\eta \propto L^{-0.6-0.7}$ in different bursts and during the evolution of the bursts (GS07). If this $L - \eta$ correlation holds, then the so-called Amati relation (Amati et al. 2002; Amati 2006) and the energy dependence of the width of pulses in a burst (e.g. Fenimore et al. 1995) can be naturally understood.

2.1.2. Reported constraints of the emission radius of the GRB

The \simMeV emission in this model mainly comes from moderate Thomson optical depths. The corresponding distance from the source is of order $r_{\text{MeV}} \sim 10^{12}$ cm. On the other hand, studies that attribute the steep decay of the prompt emission (that may last for tens of minutes after the burst) to the “high latitude” emission (Kumar & Panaitescu 2000), favor a much larger emission radius of $r_{\text{MeV}} \gtrsim 10^{15}$ cm (Lazzati & Begelman 2006; Lyutikov 2006; Kumar et al. 2007). There is evidence, however, that the decay lightcurves do not follow the spectra-temporal signatures of high-latitude emission in the majority of the bursts, making this interpretation questionable (O’Brien et al. 2006).

The “high latitude” emission is not relevant in determining the decaying part of the lightcurve in the reconnection model. Any high latitude emission lasts for $t \sim r_{\text{MeV}} \theta^2/c \sim 1$ sec (assuming...
$\theta \sim 0.1$). In this model, the decay part is “just” a reflection of the decreasing luminosity of the flow at the end of the burst. The steep decay reflects changes in the flow in the radial direction and is not result of off-axis emission.

3. Energy release because of magnetic reconnection
Magnetic dissipation can take place gradually in the GRB flow. The rate at which energy is dissipated as a function of radius depends on the magnetic field geometry and the exact mechanism through which magnetic energy dissipates. If the flow is launched with field of large scale, energy dissipation can be a result of global MHD instabilities (such as current-driven instabilities; e.g., Lyutikov & Blandford 2003; Giannios & Spruit 2006). On the other hand, if the flow contains reversing magnetic fields of sufficiently small scale, dissipation can take place directly through reconnection (Drenkhahn 2002; DS02; Thompson 2006). Here, I focus on the reconnection model, which makes clear prediction for the energy dissipation as function of radius; essential for the radiative transfer calculations presented here. Though the results presented here are directly applicable to the DS02 model, qualitatively similar results are expected from other gradual, magnetic dissipation models.

3.1. The reconnection model
An important physical quantity in the reconnection model is the ratio σ_0 of the Poynting flux to kinetic energy flux at the Alfvén radius r_0. It parameterizes the baryon loading of the flow η and determines the terminal bulk Lorentz factor of the flow $\gamma_\infty \sim \eta \simeq \sigma_0^{3/2}$. The flow must start Poynting-flux dominated with $\sigma_0 > \sim 30$ for it to be accelerated to ultrarelativistic speeds with $\gamma_\infty \gtrsim 100$ that are relevant for GRB flows.

In the reconnection model, the magnetic field in the flow changes polarity on a scale λ as in the oblique rotator model for pulsar winds where $\lambda \simeq 2\pi c/\Omega$, where Ω is the angular frequency of the rotator (Coroniti 1990; Lyubarsky & Kirk 2001; DS02; Kirk & Skjæraasen 2003). The rate of magnetic reconnection DS02 model is parameterized through the velocity v_r with which magnetic fields of opposite direction merge. The v_r is assumed to scale with the Alfvén speed, v_A, i.e. $v_r = \varepsilon v_A$. A nominal value used for ε is 0.1 (see Lyubarsky 2005). For the flows with $\sigma_0 \gg 1$ that are of interest here, the energy density of the magnetic field is larger than the rest mass energy density, hence $v_A \approx c$, and the reconnection takes place with subrelativistic speeds.

3.1.1. Properties of the flow In the reconnection model, magnetic dissipation takes place all the way from the initial radius r_0 till the saturation radius r_s. Part of the dissipated energy (approximately half) is directly used to accelerate the flow. The acceleration of the flow is gradual following the $\gamma \sim r^{1/3}$ scaling as function of radius in the regime $r_0 \ll r \ll r_s$. To first order approximation, no further acceleration takes place beyond the saturation radius (DS02)

$$
\gamma = \gamma_\infty \left(\frac{r}{r_s} \right)^{1/3} = 148 \frac{1}{\varepsilon \Omega} \sigma_0^{1/2} \frac{1}{3}, \quad \text{for} \quad r < r_s,
$$

$$
\gamma = \gamma_\infty = \sigma_0^{3/2}, \quad \text{for} \quad r \geq r_s,
$$

while the saturation radius is

$$
r_s = \frac{\pi c \gamma_\infty^2}{3\varepsilon \Omega}; \quad \text{or} \quad r_{s,11} = 310 \frac{\sigma_0^{3/2}}{(\varepsilon \Omega)^{3/2}}.
$$

The notation $A = 10^7 A_A$ is used; the ‘reference values’ of the model parameters are $\sigma_0 = 100$, $\varepsilon = 0.1$, $\Omega = 10^4 \text{rad}\cdot\text{s}^{-1}$. The product of ε and Ω parameterizes the reconnection rate. The physical quantities of the flow depend on this product.
In the steady, spherical flow under consideration the comoving number density can be written as

\[n' = \frac{L}{r^2 \sigma_0^{3/2} \gamma m_p c^3}, \]

where \(L \) is the luminosity per steradian of the GRB flow. The reference value used is \(L = 10^{52} \text{ erg s}^{-1} \cdot \text{sterad}^{-1} \). (In this form the expression can be compared with the fireball model, where the baryon loading parameter \(\eta \) replaces the factor \(\sigma_0^{3/2} \)).

The expression (1) is deviating from the exact numerical solution presented in Drenkhahn (2002) at \(r > r_s \). The reason is that the dissipation does not stop abruptly at \(r_s \) but there is modest energy release at a slower rate at larger radii. Though, not important for the global energetics, the remaining dissipation at the radii \(r > r_s \) results in synchrotron emission that dominates the observed radiation in soft bands (such as optical and near ultra violet). This emission is mainly a result of the large emitting surface at these outer parts of the flow. I take into account the residual dissipation, so that to correctly describe the soft emission.

The comoving magnetic field strength \(B' \) below the saturation radius is given by setting \(L \approx L_p = r^2 B'^2 \gamma^2 c^3/4\pi \) and solving for \(B' \):

\[B' = \left(\frac{4\pi L}{c^3 \gamma^2} \right)^{1/2} \text{ for } r < r_s. \]

The rate of energy density release in a comoving frame can be found by the following considerations. The time scale over which the magnetic field decays is that of advection of magnetic field of opposite polarity to the reconnection area. The reconnection speed is \(v_r = \varepsilon v_A \simeq \varepsilon c \), while the magnetic field changes polarity over a comoving length scale \(\lambda' = 2\pi \gamma c/\Omega \). The decay timescale for the magnetic field, therefore, is

\[t_{\text{dec}} = \frac{\lambda'}{v_r} = \frac{2\pi \gamma}{\varepsilon \Omega}. \]

Using the last expression and Eqs. (1) and (4), the rate of dissipation of magnetic energy density in the comoving frame is

\[P_{\text{diss}} = \frac{(B')^2/8\pi}{t_{\text{dec}}/2} = \frac{\varepsilon \Omega L}{2\pi c^3 \gamma^3} \text{ for } r < r_s. \]

The bulk Lorentz factor \(\gamma \), the density \(n' \), the magnetic field strength \(B' \) and rate of dissipation of magnetic energy density \(P_{\text{diss}} \) of the flow as functions of radius are the quantities needed for the study of the resulting emission.

4. Emission

If all the energy is dissipated at large optical depths, adiabatic expansion converts most of this energy into kinetic at the expense of radiation. Then one essentially deals with a fireball. Gradual dissipation heats the flow continuously and maintains a substantial fraction of the energy in the form of radiation. This radiation is released at the photosphere of the flow. If dissipation takes place further out in the flow it can result in additional emission coming from the Thomson thin region. The total flux received by the observer is the integrated emission from the different parts of the flow where dissipation takes place.

In the case of magnetic dissipation (as well as for other dissipative mechanisms), the fate of the released energy is rather uncertain. An interesting possibility is that dissipation leads to MHD turbulence where particle acceleration can take place by scattering of photons by Alfvén
waves (Thompson 1994). On the other hand, the magnetic energy can directly be dissipated to the particles in the flow, most likely to the electrons due to their higher mobility. Following G06, GS07 we assume that a fraction f_e of order of unity of the dissipated energy heats up the electrons. For the results presented here we set $f_e = 0.5$.

The resulting emission does not depend only on the amounts of energy released but also on the distribution of the emitting particles. I assume that the electron distribution is thermal throughout the region where dissipation takes place. As I discuss in more detail below, the thermalization of the electrons is result of Coulomb collisions in the inner parts of the flow and of exchange of synchrotron photons at the outer parts. I first summarize the results of G06, GS07 on the photospheric emission from the reconnection model and then turn to the study of the Thomson thin emission (G08).

4.1. Moderate optical depths

In addition to the saturation radius r_s, another characteristic radius of the flow is the Thomson photosphere. The radius of the Thomson thick-thin transition is found by setting $\tau = 1$ in Eq. (7) and solving for r_{ph}:

$$r_{ph,11} = 6 \frac{L_{52}^{3/5}}{(\varepsilon \Omega)^{2/5}} \sigma_{0,2}^{3/2}.$$ \hspace{1cm} (7)

In deriving these expressions, we have assumed that $r_{ph} < r_s$. A similar calculation gives the radius of the photosphere in the $r_{ph} > r_s$ case.

One can check that for a large parameter space relevant for GRB flows, $r_{ph} < r_s$ which means that dissipation proceeds throughout the photospheric region. In terms of the physical properties of the flow, there is a critical value of the magnetization $\sigma_{0,cr}$, for which $r_{ph} = r_s$. For $\sigma_0 > \sigma_{0,cr}$, $r_{ph} < r_s$. Using Eqs. (7) and (2) one finds

$$\sigma_{0,cr} = 42(L_{52}(\varepsilon \Omega)_3)^{2/15}.$$ \hspace{1cm} (8)

The critical baryon loading depends weakly on the parameters of the flow: $\eta_{cr} = \sigma_{0,cr}^{3/2} = 270(L_{52}(\varepsilon \Omega)_3)^{1/5}$.

For $\sigma_0 \ll \sigma_{0,cr}$ dissipation ceases deep in the flow (at high optical depths). For $\sigma_0 \gg \sigma_{0,cr}$, dissipation takes place in both Thomson thick and thin conditions with most of the energy released in the outer parts of the flow. Particles and radiation are found to be in thermal equilibrium deep in the flow. There, the comoving temperature T_{th} of the flow is calculated, under the assumption of complete thermalization, by integrating the energy released at different radii in the flow and taking into account adiabatic cooling. Due to the dominance of scattering, the details of radiative transfer become important already at fairly large optical depth in the flow. Equilibrium between radiation and matter holds only at Thomson depths greater than about 50. At smaller optical depths the electron distribution stays thermalized, but is out of equilibrium with the photon field. More discussion on the processes that lead to thermalization of the electron distribution is presented in the next section. Compton scattering of the photons is treated in detail in this region with Monte Carlo Comptonization simulations (G06; GS07). In this region synchrotron emission is negligible since it is strongly self absorbed. Energy dissipation at moderate and low optical depths is shown to lead to emission that has a highly non-thermal appearance.

4.2. The Thomson thin region

When dissipation continues at the optically thin parts of the flow the electron temperature becomes of the order of the electron rest mass. At those temperatures, synchrotron self
Compton emission has important effect on the emitted spectrum (see also Stern & Poutanen 2004). Furthermore, SSA affects the electron distribution in the flow. It is shown in Ghisellini et al. (1998) that electrons with energy of the order of their rest mass can thermalize on a few synchrotron cooling times (as defined for thin synchrotron emission) by emitting and absorbing synchrotron photons. In the magnetically dominated flow under consideration, the thermalization of the electrons takes place on a timescale shorter than the heating/cooling one. One can, therefore, assume that the electrons are approximately thermal when calculating their emission.

One should keep in mind, however, that thermalization of the particles is not achieved if the dissipated energy accelerates a small fraction of the particles in the flow. In this case, particles can be accelerated to relativistic speeds and cool efficiently through optically thin synchrotron emission. In this case, synchrotron self absorption is not an efficient thermalization mechanism. This case has been investigated in Giannios & Spruit (2005). Here, I assume that the dissipated energy is distributed among a large fraction of the particles and hence thermalization is achieved in the electron distribution.

4.2.1. The synchrotron emission

The electron temperature becomes mildly relativistic at small optical depths \(\tau \sim 0.1 \). It increases further at larger radii resulting in substantial synchrotron emission. The synchrotron-self-absorbed emission from mildly relativistic plasma has a characteristic spectrum that consists by a Rayleigh-Jeans part up to the so-called turnover frequency \(\nu_t \) where the optical depth due to synchrotron absorption of the flow becomes unity. Most of the energy is emitted at the turnover frequency. At higher frequencies, the spectrum is very steep following the exponentially decaying tail of the synchrotron thin emission. The typical model parameters and radii \(r \sim r_s \), the turnover frequency is \(\nu_t \sim 10^3 \nu_c \) which results in \(\nu_{\text{obs}} = \gamma_{\infty} \nu_t/(1+z) \lesssim 1 \text{ keV} \) (\(z \) is the redshift of the burst). The synchrotron-self-absorbed emission appears mainly in the soft X-rays and softer bands (G08).

The procedure for the numerical radiative transfer calculation is the following. I make a choice for the temperature profile as function of radius of the electron temperature in the flow. Analytical estimates provide a good initial guess. The radiative transfer in the flow is studied using the Monte Carlo Comptonization code described in G06. The calculation includes the thermal radiation field carried with the flow which is injected in the inner numerical boundary at the “equilibrium” radius where radiation and particles drop out of equilibrium. At larger radii the synchrotron emitted flux is also included. Both sources of photons are propagated through the medium and their scattering by electrons is followed. The code calculates the spectrum and the radius-dependent cooling rate of the electrons. Cooling because of inverse Compton, synchrotron emission and adiabatic expansion is taken into account. The adiabatic cooling becomes important at high optical depths and at the very outer parts of the flow where the expansion timescale \(r/\gamma c \) is shorter than the radiative cooling one. The outer boundary of the calculations is set at large enough radius so that it does not have an effect on the computed spectra. I iterate the electron temperature until the cooling rate matches the heating rate predicted by the model reasonably well at all radii.

5. Resulting spectra

In the illustrative case of Fig. 1, I set \(\sigma_0 = 70 \) (which corresponds to flow with baryon loading \(\eta \sim \sigma_0^{3/2} \sim 600 \)) and the rest of the parameters to their reference values. Spectra are plotted in the central engine frame. The dotted line shows the input thermal radiation at the “equilibrium radius” which is the inner boundary of the computed domain. The thermal flux is advected with the flow and constitutes a large fraction of the seed photons to be Comptonized further out in the flow.
Figure 1. Shape of the photon spectrum at different Thomson optical depths) in the flow. The spectrum is shown in the central engine frame. The dotted line stands for the spectrum at the radius where radiation and electrons decouple. The photospheric emission is shown with the dashed line. The bulk of the MeV emission comes from this region. The overall spectrum (solid line) includes the emission from the Thomson thin region of the flow. Synchrotron-self-absorbed emission from this region dominates the spectrum below ~ 10 keV. Inverse Compton leads to a flat γ-ray tail up to ~ 1 GeV.

The appearance of the photon spectrum at radius which corresponds to optical depth $\tau = 0.1$ is shown with dashed line. This radius is the outer boundary used in most of the calculations of G06, GS07. One can clearly see the effect of inverse Compton scattering to the spectrum. The peak of the $E \cdot f(E)$ spectrum increases slightly and the spectrum becomes broader. An important feature is the high-energy tail that is result of unsaturated Comptonization at $\tau \lesssim 1$. Note also a second peak at ~ 1 keV. This is result of synchrotron emission with the turnover frequency being ~ 1 keV (in the central engine frame). This component is still weak at $\tau = 0.1$ and has not been included in the calculations of G06, GS07.

The total spectrum is shown with solid line. This includes the emission from the whole volume of the flow where there is dissipation taking place. The overall emission spectrum is much broader. It is characterized by a break at ~ 1 MeV followed by a flat spectrum with photon-number index $\Gamma \simeq -2$ (where $dN/dE \sim E^\Gamma$), close to the typically observed one. The hard γ-ray tail is extending up to ~ 1 GeV which corresponds to the Lorentz boosted temperature of the flow at its outer layers (where it reaches its maximum values). Comparing the spectrum
at $\tau = 0.1$ and the total one, it is clear that Comptonization proceeds throughout the Thomson thin region strengthening the hard γ-ray component.

An important feature of the emitted spectrum is the powerful component that appears in the soft X-rays and softer bands. This comes from synchrotron-self-absorbed emission. SSA dominates by many orders of magnitude the ultra violet and optical emission. The softer emission originates from the Thomson thin part of the flow that is characterized by the higher electron temperatures and larger emitting surface (see also Stern & Poutanen 2004). This emission is very weak in models where dissipation takes place only below or around the Thomson photospheric region (see, e.g., Mészáros & Rees 2000; Pe’er et al. 2006; Ioka et al. 2007).

As a result of the synchrotron-self-Compton component, the spectrum below the MeV peak softens. The spectrum can be well fitted with a power-law in the $30 - 300$ keV energy range with photon-number index of $\Gamma \simeq -1.2$ which very close to the one typically observed (e.g. Preece et al. 1998).

The SSA emission spectrum hardens considerably in the ultra violet. At lower energies the Rayleigh-Jeans limit is gradually approached. The location of the hardening is determined by the radius where adiabatic expansion starts to dominate the cooling of the electrons. In this example adiabatic expansion dominates at $r \gtrsim r_{\text{ad}} \sim 5 \cdot 10^{14}$ cm. The optical and near UV emission is delayed w.r.t. the \sim MeV emission by $\delta t \sim r_{\text{ad}}/\gamma_{\infty}^2 c \sim 0.05$ s. Radiation in these bands reaches the observer with small but maybe detectable lags.

The relative strength of the synchrotron-self-Compton (SSC) component depends on the fraction of energy dissipated in the Thomson thin region of the flow. For $\sigma_0 \gg \sigma_{0,\text{cr}}$ most of the energy is dissipated in the Thomson thin region. Correspondingly the SSC component is pronounced. This is evident in Fig. 2 where the spectrum is shown for different values of σ_0 (the rest of the parameters are kept in their reference values). For $\sigma_0 = 40$, dissipation stops close to the photosphere of the flow. The SSA component is almost absent and the emission above the thermal peak at ~ 1 MeV relatively weak. In more baryon loaded models the emission is quasi-thermal since dissipation stops at high Thomson depths.

With increasing σ_0 both the SSA and inverse Compton components become relatively more powerful. The thermal peak is followed by a flat γ-ray emission that extends up to \simGeV. Most of the models show a high energy cutoff in this energy range. This cutoff corresponds to the highest energies to which photons are upscattered. It is determined by the Lorentz boosted electron temperature at $r \sim r_s$. The spectral slope below the ~ 1 MeV break becomes softer with increasing σ_0. The photon-number index in the $30 - 300$ keV energy band varies in the range $-1.2 \lesssim \Gamma \lesssim -0.4$ in agreement to that typically observed (e.g. Preece et al. 1998). The high σ_0 models have powerful optical and near ultra violet emission. The flux $f(E)$ that is emitted in these bands is similar to the X-rays one. The optical spectrum is hard with photon number index $0 \lesssim \Gamma \lesssim +1$.

Varying the baryon loading of the flow has moderate effect in the emission in the BATSE energy range but profound implications in other bands. The model predicts that flows with low baryon loading (i.e. high σ_0) have powerful optical, UV and GeV emission. More on the comparison of the model with observations is presented in the next section.

5.1. Application to observations

The prompt GRB emission has been typically observed in the hard X-rays up to ~ 1 MeV γ-rays. The spectrum in this energy range shows a characteristic sub-MeV break followed by a flat power-law γ-ray tail (e.g. Band et al. 1993). Below the break the spectrum has typical photon number index of $\Gamma \sim -1$ although much harder spectra have also been observed\(^1\). The observed

\(^1\) These hard spectra cannot be explained by the thin synchrotron model (e.g. Ghirlanda, Celotti & Ghisellini 2003).
Figure 2. Resulting spectrum (in the central engine frame) for different baryon loadings of the flow. From bottom to top the curves correspond to magnetization $\sigma_0 = 40, 50, 60, 70, 100$ (or corresponding baryon loading $\eta \approx 250, 350, 460, 590, 1000$) respectively. The high σ_0 flows are characterized broader spectra. The model predicts that bright prompt optical and UV emission is accompanied by powerful \simGeV emission. For bright optical emission, the optical spectrum is expected to be hard.

sub-MeV break and the spectral slopes above and below the break are naturally explained by the gradual dissipation model discussed here. Furthermore, the model makes specific predictions on the prompt emission from the optical to GeV; bands that are currently accessible to observations. The model predicts that the flat γ-ray tail extends up to a cutoff that typically appears at \simGeV. It also predicts the prompt optical and UV emission. For low baryon loading, the emission in these bands is powerful with energy flux $f(E)$ similar to that of X-rays. The optical emission is characterized by a hard spectrum. Optically bright bursts have powerful GeV emission and softer spectra below the ~ 1 MeV break.

In recent years, several observations in softer bands have been made simultaneously with the prompt GRB emission. The Swift satellite has observed the prompt emission in the X-rays and ultra violet (e.g. Page et al. 2007) and robotic telescopes in the optical and infra red (e.g. Akerlof 1999; Vestrad 2005; Blake 2005; Boër et al. 2006; Vestrand et al. 2006; Klotz et al. 2006). Furthermore, FERMI is expected to probe the emission from GRBs up to ~ 100 GeV.

Here, I compare the model to the very well sampled prompt emission of GRB 061121. This burst has been observed from optical to ~ 1 MeV (Page et al. 2007). The prompt emission
Figure 3. Comparison of the model to multi frequency observations of GRB 061121 (see Fig. 11 in Page et al. 2007). The circles stand for the observations of epoch I (just before the main pulse of the burst) and the stars for those of epoch II (during the pulse). Observations are blue-shifted by 1+z to the burst rest frame (z = 1.131 for GRB 061121). The solid and dashed curves show spectra for two different sets of the parameters of the flow that illustrate that the model can account for the broad-band prompt spectra.

has been followed with XRT and UVOT on board to Swift and in the optical with ROTSE simultaneously to γ-ray observations with BAT and Konus-Wind. There are two time resolved spectra just before and during the main pulse of the prompt emission that appears ~ 75 sec after the onset of the burst. The pulse is clear in the lightcurves in all observed energy bands. The correlation between the different bands indicates that the optical, UV and X-ray and γ-ray components have common origin (i.e. they are connected to the prompt GRB). This is unlike cases where the optical lightcurves are not tracing the γ-rays (e.g. Akerlof 1999; Boër et al. 2006; Klotz et al. 2006) suggestive of a different physical origin with respect to that of the prompt emission.

In Fig. 3, the data shown with circles refer to the pre-spike emission (epoch I in the Page et al. 2007 terminology) and the stars to the peak observed luminosity of the burst (epoch II). The data span approximately 6 orders of magnitude in frequency from the optical to ~ 1 MeV. Overplotted are the spectral predictions of the model for two different sets of parameters. The two models (not meant to be detailed fits) are reproducing the observations quite closely.

Note that for a given observed luminosity, the baryon loading is essentially the only free
parameter of the model. This can be constrained by the ratio of the ~ 1 MeV-to-optical flux. Additional constraints can come from observations of the prompt emission in harder bands. In this respect FERMI observations in the \simGeV range are going to be of particular importance. The high luminosity model (that describes the epoch II observations) is characterized by higher σ_0 with respect to the lower luminosity one. This is in qualitative agreement with the baryon loading-luminosity correlation during the evolution of the burst needed to explain observed energy-dependent properties of the GRB pulses in the context of the reconnection model (for details see sect. 4 in GS07). However since GS07 do not consider the Thomson thin emission in the calculations, the quantitative results of section 4 in GS07 have to be revisited.

Likewise, the model can be applied to the famous “naked eye” GRB 080319B. GRB 080319B is very luminous in the γ-ray band, exhibiting powerful optical emission that appears to loosely follow the γ-ray lightcurve. The optical emission is well above the extrapolation of the X-ray spectrum (arguing against the synchrotron interpretation of the MeV emission). In the context of the reconnection model, the very bright optical emission of the burst can be understood as coming from a very “clean” (high-η) and luminous flow. I estimate that for $\eta \sim 3000$, $L \sim 10^{54}$ erg/sec/sterad the model can explain the basic features of both the optical luminosity and γ-ray emission and peak energy of the spectrum of the burst. A weak point of the model is that it predicts that this high-η flow should have a rather flat spectrum with photon-number index $\Gamma \sim -2$ above the \simMeV break, in contrast to the observed spectrum which is very steep with photon-number index $\Gamma \sim -3.6$ (Racusin et al. 2008).

6. Concluding

As an alternative to internal shocks, magnetic dissipation in a strongly magnetized flow can power the GRB (Thompson 1994). Magnetic dissipation may lead to gradual release of energy over a wide range of radii (e.g. Drenkhahn 2002; DS02). It typically proceeds in both Thomson thick and thin regions of the flow. The released energy can be distributed to a large fraction of the particles of the flow leading to the slow heating scenario for the GRB emission (Ghisellini & Celotti 1999; Stern & Poutanen 2004). The emitting particles (i.e. electrons) are heated up to mildly relativistic speeds. Because of the strong magnetic fields exchange of synchrotron photons provides an efficient mechanism for the thermalization of the electron distribution (Ghisellini et al. 1998). Since the emitting particles are thermal the resulting emission does not depend sensitively on poorly understood physics of particle acceleration in magnetic reconnection. The model is defined by just the luminosity of the flow, its baryon loading and a reconnection-rate parameter and makes direct and stable predictions for the electromagnetic spectrum.

The radiative transfer study was made with Monte Carlo simulations. Those calculations have shown that the flow is characterized by powerful photospheric emission with most of the energy appearing in the hard X-rays and ~ 1 MeV γ-rays. This emission is the result of photons, produced deep into the flow, that are inverse Compton scattered by sub-relativistic electrons at Thomson optical depths of order of unity. Energy released at large radii leads to mildly relativistic electrons that cool down though emitting synchrotron radiation and inverse Compton scattering soft photons. SSA emission dominates the observed radiation in the soft X-ray and softer bands. Inverse Compton in the Thomson thin region leads to a flat high-energy spectrum that extends up to GeV energies.

The resulting spectra from the radiative transfer calculations naturally explain the observed sub-MeV break of the GRB emission and the spectral slopes below and above the break with photon-number index $\Gamma \sim -1$ and $\Gamma \sim -2$ respectively (Band et al. 1993). Furthermore, the model makes rather robust predictions for the emission in other energy bands. The flat γ-ray spectrum is expected to show a cutoff in the \simGeV energy range that should be observable with FERMI. The optical and ultra violet emission can be powerful and the optical spectrum hard with photon number index $0 \lesssim \Gamma \lesssim 1$. Bright prompt optical emission is predicted to be
accompanied by powerful \(\sim\) GeV emission and rather soft spectra below the sub-MeV break.

Comparison with multi-frequency observations of the the prompt emission from GRB 061121 that span from the optical to the \(\sim\) MeV range (Page et al. 2007) supports the model. The model can also explain the optical luminosity and \(\gamma\)-ray emission and peak energy of the spectrum of the “naked eye” GRB 080319B. A weak point of the model is that it predicts a rather flat spectrum above the MeV break with photon-number index \(\Gamma \approx -2\), in contrast to the observed spectrum which has a photon-number index of \(\Gamma \approx -3.6\) (Racusin et al. 2008).

In this model, the observed variability is direct manifestation of modulations of the luminosity (and baryon loading) of the GRB flow. An interesting deduction for the central engine is that the luminosity of the flow \(L\) correlates with the baryon loading \(\eta \propto L^{\sim0.6-0.7}\) in different bursts and during the evolution of a single burst (GS07). If the \(L - \eta\) correlation holds, then the so-called Amati relation (Amati et al. 2002; Amati 2006) and the energy dependence of the width of pulses in a burst (e.g. Fenimore et al. 1995) can be naturally understood.

The \(\sim\)MeV emission in this model mainly comes from moderate Thomson optical depths with corresponding distance from the source of order \(r_{\text{MeV}} \sim 10^{12}\) cm. On the other hand, studies that attribute the steep decay of the prompt emission (that may last for tens of minutes after the burst) to the “high latitude” emission (Kumar & Panaitescu 2000), favor a much larger emission radius of \(r_{\text{MeV}} \gtrsim 10^{15}\) cm (Lazzati & Begelman 2006; Lyutikov 2006; Kumar et al. 2007). The “high latitude” emission is not relevant in determining the decaying part of the lightcurve in the reconnection model which typically lasts for a few seconds. In this model, the steep decaying part is reflection of the turning-off of the burst and not off-axis emission. The model in principle allows for steeper decline of the prompt emission (due to rapid turn off of the central engine), than that predicted from high-latitude emission models.

Acknowledgments
I thank Henk Spruit for stimulating discussions throughout the development of this work. I acknowledge support from the Lyman Spitzer Jr. Fellowship awarded by the Department of Astrophysical Sciences at Princeton University.

References
Akerlof C, et al. 1999 Nature \textbf{398} 400
Amati L, et al. 2002 Astron. Astroph. \textbf{390} 81
Amati L 2006 Month. Not. Roy. Astron. Soc. \textbf{372} 233
Band D, et al. 1993 Astrophys. J. \textbf{413} 281
Blake C H, et al. 2005 Nature \textbf{435} 181
Boër M, Atteia J L, Damerdji Y, Gendre B, Klotz A and Stratta G 2006 Astrophys. J. \textbf{638} L71
Coroniti F V 1990 Astrophys. J. \textbf{349} 538
Daigne F and Mochkovitch R 1998 Month. Not. Roy. Astron. Soc. \textbf{296} 275
Drenkhahn G 2002 Astron. Astroph. \textbf{387} 714
Drenkhahn G and Spruit H C 2002 Astron. Astroph. \textbf{391} 1141 (DS02)
Fenimore E E, in ‘t Zand J J M, Norris J P, Bonnell J T and Nemiroff R J 1995 Astrophys. J. \textbf{448} L101
Ghirlanda G, Celotti A and Ghisellini G 2003 Astron. Astroph. \textbf{406} 879
Ghisellini G, Haardt F and Svensson R 1998 Month. Not. Roy. Astron. Soc. \textbf{297} 348
Ghisellini G and Celotti A 1999 Astron. Astroph. Suppl. \textbf{138} 527
Giannios D 2006 Astron. Astroph. \textbf{457} 763 (G06)
Giannios D and Spruit H C 2005 Astron. Astroph. \textbf{430} 1
Giannios D and Spruit H C 2006 Astron. Astroph. \textbf{450} 887
Giannios D and Spruit H C 2007 Astron. Astroph. \textbf{469} 1 (GS07)
Giannios D 2008 Astron. Astroph. \textbf{480} 305 (G08)
Ioka K, Murase K, Toma K, Nagataki S and Nakamura T 2007 Astrophys. J. \textbf{670} L77
Katz J I 1994 Astrophys. J. \textbf{432} L107
Kirk J G and Skjæraasen O 2003 Astrophys. J. \textbf{591} 366
Klotz A, Gendre B, Stratta, G, Atteia, J L, Boër M Malacrino F, Damerdji Y and Behrend R 2006 Astron. Astroph. \textbf{451} L39
Kobayashi S, Piran T and Sari, R 1997 Astrophys. J. 490 92
Kumar P and Panaitescu, A 2000 Astrophys. J. 541 L51
Kumar P, et al. 2007 Month. Not. Roy. Astron. Soc. 376 L57
Lazzati D and Begelman M C 2006 Astrophys. J. 641 972
Lyubarsky Y E 2005, Month. Not. Roy. Astron. Soc. 358 113
Lyubarsky Y and Kirk J G 2001 Astrophys. J. 547 437
Lyutikov M and Blandford R 2003 ArXiv e-prints, arXiv:astro-ph/0312347
Lyutikov M 2006 Month. Not. Roy. Astron. Soc. 369 L5
Mahadevan R, Narayan R and Yi I 1996 Astrophys. J. 465 327
Mészáros P and Rees M J 2000 Astrophys. J. 530 292
Mimica P, Aloy M A, Müller E and Brinkmann W 2005 Astron. Astroph. 441 103
Nakar E and Piran T 2002 Astrophys. J. 572 L139
O’Brien P T, et al. 2006 Astrophys. J. 647 1213
Page K L, et al. 2007 Astrophys. J. 663 1125
Paczynski B and Xu G 1994 Astrophys. J. 427 708
Pe’er A, Mészáros P and Rees M J 2006 Astrophys. J. 642 995
Petrosian V 1981 Astrophys. J. 251 727
Preece R D, et al. 1998 Astrophys. J. 506 L23
Racusin J L, et al. 2008 Nature 455 183
Rees M J and Mészáros P 1994 Astrophys. J. 430 L93
Spruit H C, Daigne F. and Drenkhahn G 2001 Astron. Astroph. 369 694
Stern B 1999, in ASP Conf. Ser. 161, High Energy Processes in Accreting Black Holes, ed. J. Poutanen, & R. Svensson (ASP San Francisco) 277
Stern B E and Poutanen J 2004 Month. Not. Roy. Astron. Soc. 352 L35
Tavani M 1996 Astrophys. J. 466 768
Thompson C 1994 Month. Not. Roy. Astron. Soc. 270 480
Thompson C 2006 Astrophys. J. 651 333
Usos V V 1992 Nature 357 472
Vestrand W T, et al. 2005 Nature 435 178
Vestrand W T, et al. 2006 Nature 442 172