Convergence of Kähler-Ricci flow on lower dimensional algebraic manifolds of general type

Gang Tian
Beijing University and Princeton University
Zhenlei Zhang†
Capital Normal University

Abstract
In this paper, we prove that the L^4-norm of Ricci curvature is uniformly bounded along a Kähler-Ricci flow on any minimal algebraic manifold. As an application, we show that on any minimal algebraic manifold M of general type and with dimension $n \leq 3$, any solution of the normalized Kähler-Ricci flow converges to the unique singular Kähler-Einstein metric on the canonical model of M in the Cheeger-Gromov topology.

1 Introduction
The purpose of this note is to prove the following

Theorem 1.1. Let M be a smooth minimal model of general type with dimension $n \leq 3$ and $\omega(t)$ be a solution to the normalized Kähler-Ricci flow

$$\frac{\partial}{\partial t} \omega = -\text{Ric} - \omega. \tag{1.1}$$

Then $(M, \omega(t))$ converges in the Cheeger-Gromov sense to the unique singular Kähler-Einstein metric on the canonical model of M.

Here, by a smooth minimal model, we mean an algebraic manifold M with nef canonical bundle K_M. The theorem should remain true in higher dimensional case; cf. Conjecture 4.1 in [27]. Assuming the uniform bound of Ricci curvature, the conjecture is confirmed by Guo [18]. On the other hand, it has been known since Tsuji [32] and Tian-Zhang [31] the convergence of the Kähler-Ricci flow in the current sense and the smooth convergence on the ample locus of the canonical class.

Applying the L^2 bound of Riemannian curvature (cf. Section 3) and Kähler-Einstein condition, we can say more about the limit singular space M_∞. When $n = 2$, by a

‡Supported partially by NSF and NSFC grants. Email: tian@math.princeton.edu

†Supported partially by NSFC 11431009 and Chinese Scholarship Council. Email: zhleigo@aliyun.com
classical argument of removing isolated singularities following Anderson [1], Bando-Kasue-Nakajima [4] and Tian [29], we can show that the limit is a smooth Kähler-Einstein orbifold with finite orbifold points. When \(n = 3 \), by the argument of Cheeger-Colding-Tian [11] or Cheeger [7], we have that the 2-dimensional Hausdorff measure of the singular set is finite. Moreover, it follows from the parabolic version of the partial \(C^0 \)-estimate (see [30]) that the limit \(M_\infty \) is a normal variety and there is a natural holomorphic map from \(M \) onto \(M_\infty \). This actually implies that \(M_\infty \) is the canonical model of \(M \).

The proof of our theorem relies on a uniform \(L^4 \) bound of Ricci curvature under the Kähler-Ricci flow on a smooth minimal model together with the diameter boundedness of the limit singular Kähler-Einstein space (in the case of general type) proved by Song [26]. From these we derive a uniform local noncollapsing estimate of Kähler-Ricci flow on a minimal model of general type and the Gromov-Hausdorff convergence follows.

In Section 2, we present a short discussion on manifolds with integral bounded Ricci curvature, with emphasis on a uniform local noncollapsing estimate which is essential in extending the regularity theory of Cheeger-Condong and Cheeger-Colding-Tian. Then, in Section 3, we give a proof of our theorem by establishing a uniform \(L^4 \) Ricci curvature estimate under the Kähler-Ricci flow.

After we completed the first draft of this paper, we learned that Guo-Song-Weinkove obtained a different proof for the 2-dimensional case of Theorem 1.1 (see [19]).

2 Manifolds with \(L^p \) bounded Ricci curvature

We recall the relative volume comparison formula relative to the \(L^p \) Ricci curvature, \(p \) bigger than half dimension, which is due to Petersen-Wei [21]. It implies a uniform local noncollapsing property for the Kähler-Ricci flow on lower dimensional minimal models of general type. We will use this to prove the convergence of Kähler-Ricci flow on such manifolds.

Let \((M, g)\) be a complete Riemannian manifold of (real) dimension \(m \). For any \(\kappa \in \mathbb{R} \) denote by \(B^\kappa_r \) a metric ball of radius \(r \) in the space form of dimension \(m \) with sectional curvature \(\kappa \) and by \(\text{vol}(B^\kappa_r) \) its volume. Then we have

\[
\frac{d}{dr} \left(\frac{\text{vol}(B_r(x))}{\text{vol}(B^\kappa_r)} \right)^{\frac{1}{p}} \leq \frac{C r^{2p}}{\text{vol}(B^\kappa_r)} \left(\int_{B_r(x)} |(\text{Ric}-(m-1)\Lambda g)_-|^p \, dv \right)^{\frac{1}{p}},
\]

where we define

\[
(\text{Ric}-(m-1)\Lambda g)_- = \max_{|v|=1} \left(0, -\text{Ric}(v,v) + (m-1)\Lambda\right)
\]

pointwisely. In particular, for any \(r_2 > r_1 > 0 \),

\[
\left(\frac{\text{vol}(B_{r_2}(x))}{\text{vol}(B^\kappa_{r_2})} \right)^{\frac{1}{p}} - \left(\frac{\text{vol}(B_{r_1}(x))}{\text{vol}(B^\kappa_{r_1})} \right)^{\frac{1}{p}} \leq C \left(\int_{B_{r_2}(x)} |(\text{Ric}-(m-1)\Lambda g)_-|^p \, dv \right)^{\frac{1}{p}}.
\]
Then, by letting \(r_1 \to 0 \) it gives, for any \(r > 0 \),

\[
\frac{\text{vol}(B_r(x))}{\text{vol}(B_1^\Lambda)} \leq 1 + C \int_{B_r(x)} |(\text{Ric} - (m - 1)\Lambda g)|^p dv.
\] (2.3)

The following corollary gives a kind of uniform local noncollapsing property on manifolds with integral Ricci curvature bound; see [22] and [16] for similar volume doubling estimates.

Corollary 2.2. For any \(\Lambda < 0 \) and \(p > \frac{m}{2} \), there exists \(\varepsilon = \varepsilon(m, p, \Lambda) > 0 \) such that the following holds. Fix a base point \(x_0 \in M \). For any \(x \in M \) with \(\text{dist}(x_0, x) = d \), if

\[
\frac{1}{\text{vol}(B_1(x_0))} \int_{B_{2d+1}(x_0)} |(\text{Ric} - (m - 1)\Lambda g)|^p dv \leq \frac{\varepsilon}{\text{vol}(B_{d+1}^\Lambda)},
\] (2.4)

then,

\[
\frac{\text{vol}(B_r(x))}{r^m} \geq \frac{\text{vol}(B_1(x_0))}{2 \text{vol}(B_{d+1}^\Lambda)}, \quad \forall r \leq 1.
\] (2.5)

Proof. By (2.2), for any \(r \leq 1 \),

\[
\left(\frac{\text{vol}(B_r(x))}{\text{vol}(B_r^\Lambda)} \right)^{\frac{1}{2p}} \geq \left(\frac{\text{vol}(B_{d+1}(x))}{\text{vol}(B_{d+1}^\Lambda)} \right)^{\frac{1}{2p}} - C \left(\int_{B_{d+1}(x)} |(\text{Ric} - (m - 1)\Lambda g)|^p dv \right)^{\frac{1}{2p}}
\]

\[
\geq \left(\frac{\text{vol}(B_1(x_0))}{\text{vol}(B_{d+1}^\Lambda)} \right)^{\frac{1}{2p}} - C \left(\int_{B_{2d+1}(x_0)} |(\text{Ric} - (m - 1)\Lambda g)|^p dv \right)^{\frac{1}{2p}}.
\]

where \(C = C(m, p, \Lambda) \). If (2.4) holds for some \(\varepsilon = \varepsilon(m, p, \Lambda) \) sufficiently small, then

\[
\left(\frac{\text{vol}(B_r(x))}{\text{vol}(B_r^\Lambda)} \right)^{\frac{1}{2p}} \geq \frac{1}{2^{2p}} \left(\frac{\text{vol}(B_1(x_0))}{\text{vol}(B_{d+1}^\Lambda)} \right)^{\frac{1}{2p}},
\]

which is exactly the estimate (2.5).

The lemma suggests a condition for Gromov-Hausdorff convergence. Suppose we have a sequence of complete Riemannian manifolds \((M_i, g_i)\) of dimension \(m \) such that

\[
\int_M |(\text{Ric}_{g_i} - (m - 1)\Lambda g_i)|^p dv_{g_i} \to 0
\] (2.6)

for some \(p > \frac{m}{2} \), \(\Lambda > 0 \), and

\[
\text{vol}_{g_i}(B_1(x_i)) \geq v
\] (2.7)

uniformly for some \(v > 0 \) and \(x_i \in M_i \), then along a subsequence, the manifolds \((M_i, g_i)\) are uniformly locally noncollapsing on \(B_r(x_i) \) for any fixed \(r > 0 \). Thus, we can apply Gromov precompactness theorem to get a noncollapsing limit of \((M_i, g_i, x_i)\) in the Gromov-Hausdorff topology. Furthermore, as showed in [30], one can extend the regularity theory
of Colding [12], Cheeger-Colding [8, 9], Cheeger-Colding-Tian [11] and Colding-Naber [13] in this setting. If in addition we replace (2.6) by
\[\int_M |\text{Ric}_{g_i} - (m-1)\Lambda g_i|^p dv_{g_i} \to 0, \] (2.8)
then Anderson’s harmonic radius estimate [2] can also be applied. In summation, we can follow the arguments in [22] and [30] to prove

Theorem 2.3. Let \((M_i, g_i)\) be a sequence of Riemannian manifolds satisfying (2.7) and (2.8) for some \(p > \frac{m}{2}\) and \(\Lambda, v > 0\). Then, passing to a subsequence if necessary, \((M_i, g_i, x_i)\) converges in the Cheeger-Gromov sense to a limit length space \((M_\infty, d_\infty, x_\infty)\) such that

1. for any \(r > 0\) and \(y_i \in M_i\) with \(y_i \to y_\infty \in M_\infty\) we have
 \[\text{vol}(B_r(y_i) \to \mathcal{H}^m(B_r(y_\infty))), \] (2.9)
 where \(\mathcal{H}^m\) denotes the \(m\)-dimensional Hausdorff measure;
2. \(M_\infty = R \cup S\) such that \(S\) is a closed set of codimension \(\geq 2\) and \(R\) is convex in \(M_\infty\);
 \(R\) consists of points whose tangent cones are \(\mathbb{R}^m\);
3. the convergence on \(R\) takes place in the \(C^\alpha\) topology for any \(0 < \alpha < 2 - \frac{m}{p}\);
4. the tangent of any \(y \in M_\infty\) is a metric cone which splits off lines isometrically; the tangent cone has the same properties presented in (2) and (3);
5. the singular set of \(S\) has codimension \(\geq 4\) if each \(M_i\) is Kählerian.

3 Kähler-Ricci flow on minimal models

3.1 \(L^4\) bound of Ricci curvature under Kähler-Ricci flow on minimal models

Let \(M\) be a smooth minimal model. If the Kodaira dimension equals 0, the manifold is Calabi-Yau and any Kähler-Ricci flow on \(M\) converges smoothly to a Ricci flat metric [6]. We assume from now on that the Kodaira dimension of \(M\) is positive. Then we consider the normalized Kähler-Ricci flow
\[\frac{\partial}{\partial t}\omega(t) = -\text{Ric}_\omega(t) - \omega(t), \omega(0) = \omega_0. \] (3.1)
It is well-known that the solution exists for all time \(t \in [0, \infty)\) [31].

We shall prove the following theorem.

Theorem 3.1. Suppose \(M\) has positive Kodaira dimension and \(K_M\) is semi-ample. Then there is a constant \(C\) depending on \(\omega_0\) such that
\[\int_t^{t+1} \int_M |\text{Ric}_{\omega(s)}|^{\frac{4}{n}} \omega(s)^n ds \leq C, \forall t \in [0, \infty). \] (3.2)
Moreover, for any $0 < p < 4$ we have
\[
\int_t^{t+1} \int_M |\text{Ric}_{\omega(s)} + \omega(s)|^{p} \omega(s) ds \to 0, \text{ as } t \to \infty. \quad (3.3)
\]

We start with some general set-up following [28]. Since K_M is semi-ample, a basis of $H^0(M; K_M^\ell)$ for some large ℓ gives rise to a holomorphic map
\[
\pi : M \to \mathbb{C}P^N, N = \dim H^0(M; K_M^\ell) - 1. \quad (3.4)
\]
Let ω_{FS} be the Fubini-Study metric on $\mathbb{C}P^N$ and put
\[
\chi = \frac{1}{\ell} \pi^* \omega_{FS} \in \mathcal{K}_M. \quad (3.5)
\]
Choose a smooth volume form Ω such that $\text{Ric}(\Omega) = -\chi$. Put
\[
\hat{\omega}_t = e^{-t} \omega_0 + (1 - e^{-t}) \chi.
\]
It represents a Kähler metric in the class $[\omega(t)]$ and write
\[
\omega(t) = \hat{\omega}_t + \sqrt{-1} \partial \bar{\partial} \varphi(t)
\]
for a family of smooth functions $\varphi(t)$. Then the Kähler-Ricci flow (3.1) is equivalent to
\[
\frac{\partial \varphi}{\partial t} = \log \frac{e^{(n-k)t}(\hat{\omega}_t + \sqrt{-1} \partial \bar{\partial} \varphi)^n}{\Omega} - \varphi. \quad (3.7)
\]

Lemma 3.2 ([28]). There exists $C_i = C_i(\omega_0, \chi), i = 1, 2$, such that
\[
\|\varphi(t)\|_{C^0} + \|\varphi'(t)\|_{C^0} \leq C_1, \forall t \geq 0 \quad (3.8)
\]
and
\[
\chi \leq C_2 \omega(t), \forall t \geq 0. \quad (3.9)
\]
Let $u = \varphi + \varphi'$ for any time t.

Lemma 3.3 ([28]). There exists $C_3 = C_3(\omega_0, \chi)$ such that
\[
\|\nabla u(t)\|_{C^0} + \|\Delta u(t)\|_{C^0} \leq C_3, \forall t \geq 0. \quad (3.10)
\]

When the manifold is of general type, these estimates are proved in [35]. We also observe that, from (3.7),
\[
\text{Ric}_{\omega(t)} + \sqrt{-1} \partial \bar{\partial} u(t) = -\chi. \quad (3.11)
\]
So, by the uniform bound of χ in terms of $\omega(t)$, to prove the L^4 bound of Ricci curvature, it suffices to show
\[
\int_t^{t+1} \int_M |\partial \bar{\partial} u(s)|^4 \omega(s) ds \leq C_4, \forall t \geq 0
\]
for some C_4 independent of t. We follow the line in [30] to prove this estimate.

As in [30] we let ∇ and $\bar{\nabla}$ denote the $(1,0)$ and $(0,1)$ part of the Levi-Civita connection of $\omega(t)$. Then, by the calculations in [30], we have the following lemmas
Lemma 3.4. There exists $C_5 = C_5(\omega_0, \chi)$ such that
\[
\int_M \left(|\nabla \nabla u|^2 + |\nabla u|^2 + |\text{Ric}|^2 + |\text{Rm}|^2 \right) \omega^n \leq C_5, \forall t \geq 0. \tag{3.13}
\]

Lemma 3.5 ([30]). There exists a universal constant $C_6 = C_6(n)$ such that
\[
\int_M |\nabla \nabla u|^4 \leq C_6 \int_M |\nabla u|^2 \left(|\nabla \nabla u|^2 + |\nabla u|^2 \right); \tag{3.14}
\]
\[
\int_M \left(|\nabla \nabla u|^2 + |\nabla u|^2 \right) \leq C_6 \int_M \left(|\nabla u|^2 + |\nabla u|^2 \cdot |\text{Rm}|^2 \right). \tag{3.15}
\]

The estimates in the last lemma are general facts which remain hold for any smooth function.

The following theorem gives the required estimate (3.2).

Theorem 3.6. There exists $C_7 = C_7(\omega_0, \chi)$ such that
\[
\int_t^{t+1} \int_M \left(|\nabla \nabla u|^4 + |\nabla \nabla u|^2 + |\nabla \nabla u|^2 \right) \leq C_7, \forall t \geq 0. \tag{3.16}
\]

Proof. By the previous two lemmas we are sufficient to prove a uniform L^2 bound of $\nabla \Delta u$.

Recall the evolution of Δu, cf. (3.22) in [28],
\[
\frac{\partial}{\partial t} \Delta u = \Delta \Delta u + \Delta u + \langle \text{Ric}, \partial \bar{\partial} u \rangle_\omega + \Delta \left(\text{tr}_\omega \chi \right).
\]

Thus,
\[
\frac{\partial}{\partial t} (\Delta u)^2 = \Delta (\Delta u)^2 - 2 |\nabla \Delta u|^2 + 2 (\Delta u)^2 + 2 \Delta u \langle \text{Ric}, \partial \bar{\partial} u \rangle_\omega + 2 \Delta u \Delta \left(\text{tr}_\omega \chi \right). \tag{3.17}
\]

Integrating over the manifolds gives
\[
\int_M |\nabla \Delta u|^2 \leq \int_M \left((\Delta u)^2 + |\Delta u| |\text{Ric}| |\nabla \nabla u| - \nabla_i \Delta u \nabla_i \left(\text{tr}_\omega \chi \right) - \frac{1}{2} \frac{\partial}{\partial t} (\Delta u)^2 \right)
\]
\[
\leq \int_M \left(\frac{1}{2} |\nabla \Delta u|^2 + (\Delta u)^2 + (\Delta u)^2 |\text{Ric}|^2 + |\nabla \nabla u|^2 + 2 |\nabla \left(\text{tr}_\omega \chi \right)|^2 \right)
\]
\[
- \frac{1}{2} \int_M (\Delta u)^2 (s + n) - \frac{1}{2} \frac{d}{dt} \int_M (\Delta u)^2.
\]

Applying the uniform bound of Δu and above lemma, we get
\[
\int_M |\nabla \Delta u|^2 \leq C \int_M (1 + |\nabla (\text{tr}_\omega \chi)|^2) - \frac{d}{dt} \int_M (\Delta u)^2.
\]

Integrating over the time interval we have
\[
\int_t^{t+1} \int_M |\nabla \Delta u|^2 \leq C \int_t^{t+1} \int_M (1 + |\nabla (\text{tr}_\omega \chi)|^2) + C, \forall t \geq 0. \tag{3.18}
\]
The term $|\nabla (\text{tr}_\omega \chi)|^2$ can be estimated through the Schwarz lemma. Recall the following formula
\[
\Delta (\text{tr}_\omega \chi) \geq -|\text{Ric}| \text{tr}_\omega \chi - C(\text{tr}_\omega \chi)^2 + \frac{|\nabla (\text{tr}_\omega \chi)|^2}{\text{tr}_\omega \chi} \tag{3.19}
\]
where C is a universal constant given by the upper bound of the bisectional curvature of ω_{FS} on $\mathbb{C}P^n$. Because $0 \leq \text{tr}_\omega \chi \leq C$ under the flow, we have
\[
|\nabla (\text{tr}_\omega \chi)|^2 \leq C(\Delta (\text{tr}_\omega \chi) + |\text{Ric}| + C).
\]
Thus,
\[
\int_M |\nabla (\text{tr}_\omega \chi)|^2 \leq C \int_M (1 + |\text{Ric}|) \leq C
\]
uniformly. Substituting into (3.18) we get the desired estimate. \(\square\)

To prove (3.3) we use the L^2 estimate to traceless Ricci curvature following the calculation by Y. Zhang [34].

Lemma 3.7. Under the Kähler-Ricci flow,
\[
\int_t^{t+1} \int_M |\text{Ric}_{\omega(s)} + \omega(s)|^2 \omega(s)^n ds \to 0, \text{ as } t \to \infty. \tag{3.20}
\]

Proof. Recall the evolution of scalar curvature $R = \text{tr}_\omega \text{Ric}$, cf. [34],
\[
\frac{\partial}{\partial t} R = \Delta R + |\text{Ric}|^2 + R = \Delta R + |\text{Ric} + \omega|^2 - (R + n).
\]
The maximum principle shows that $\bar{R} = \inf R$ satisfies $\frac{d}{dt} \bar{R} \geq -(\bar{R} + n)$, which implies immediately
\[
\bar{R}(t) + n \geq e^{-t} \min (\bar{R}(0) + n, 0) \geq -Ce^{-t} \tag{3.21}
\]
for some $C = C(\omega_0) > 0$. Then,
\[
\int |\text{Ric} + \omega|^2 \omega^n = \int \left(\frac{\partial}{\partial t} R + R + n \right) \omega^n
\]
\[
= \frac{d}{dt} \int R \omega^n + \int (R + n)(R + 1) \omega^n
\]
\[
= \frac{d}{dt} \int R \omega^n + \int (R + n + Ce^{-t})(R + 1) \omega^n - Ce^{-t} \int (R + 1) \omega^n
\]
\[
\leq \frac{d}{dt} \int R \omega^n + C \int (R + n) \omega^n + Ce^{-t}
\]
where we used the uniform bound of scalar curvature and volume of $\omega(t)$. The integration of $R + n$ can be computed as
\[
\int (R + n) \omega^n = n \int (\text{Ric} + \omega) \wedge \omega^{n-1} = n \int (-\chi + \hat{\omega}) \wedge \hat{\omega}^{n-1} = ne^{-t} \int (\omega_0 - \chi) \wedge \hat{\omega}^{n-1}.
\]
Thus, \(\int (R + n)\omega^n \leq Ce^{-t} \). Then we have
\[
\int_0^\infty \int_M |\text{Ric} + \omega|^2 \omega(t)^n dt \leq \lim_{t \to \infty} \int R(t) \omega(t)^n - \int R(0) \omega_0^n + C \leq C.
\]
The lemma is proved by this estimate.

The estimate (3.3) when \(2 \leq p < 4 \) then is a direct consequence of the Hölder inequality
\[
\int_t^{t+1} \int_M |\text{Ric} + \omega|^p \leq \left(\int_t^{t+1} \int_M |\text{Ric} + \omega|^4 \right)^{\frac{p-2}{4}} \left(\int_t^{t+1} \int_M |\text{Ric} + \omega|^2 \right)^{\frac{4-p}{4}}.
\]
When \(0 < p < 2 \) the estimate (3.3) is obvious.

Remark 3.8. M. Simon presented in [25] an \(L^4 \) Ricci curvature estimate under Ricci flow on a four-manifold. Combined with the Kähler condition, his arguments can be adapted to give an alternative proof of our estimate. Another related integral bound of curvature can be found in [3].

3.2 Cheeger-Gromov convergence

When the manifold \(M \) is of general type, the Kähler-Ricci flow (3.1) should converge in the Gromov-Hausdorff topology to a singular Kähler-Einstein metric on the canonical model; cf. Conjecture 4.1 in [27]. In this subsection we confirm this convergence without any curvature assumption in the case of the dimension less than or equal to 3.

Recall the holomorphic map \(\pi : M \to \mathbb{C}P^N \) by a basis of \(H^0(M; K_\ell M) \) for some large \(\ell \). Its image \(M_{can} = \pi(M) \) is called the canonical model of \(M \). Let \(E \subset M \) be the exceptional locus of \(\pi \). Then we have

Theorem 3.9 (31, 26). Let \(M \) be a smooth minimal model of general type and \(\omega(t) \) be any solution to the Kähler-Ricci flow (3.1). Then,

1. \(\omega(t) \) converges in the current sense to a Kähler-Einstein metric \(\omega_\infty \), the convergence takes place smoothly outside the exceptional locus \(E \);
2. the metric completion of \((M \setminus E, \omega_\infty) \) is homeomorphic to \(M_{can} \), so it is compact.

Remark 3.10. It is known that the exceptional locus \(E \) coincides with the non-ample or non-Kähler locus of the canonical class; cf. [31] and [14].

Suppose \(\dim \mathbb{C}M \leq 3 \). Let \(t_i \to \infty \) be a sequence of times such that
\[
\int_M |\text{Ric}_{\omega(t_i)} + \omega(t_i)|\tilde{\omega}(t_i)^n \to 0, \quad i \to \infty.
\]
Choose a regular point \(x_0 \in M \setminus E \). The volume of the unit ball \(\text{vol}(B_1(\omega(t_i)) (x_0)) \) has a uniform lower bound. By the \(L^p \) extension of Cheeger-Colding-Tian theory, Theorem 2.3, we may assume that \((M, \omega(t_i), x_0) \) converges in the Cheeger-Gromov sense to a limit metric space \((M_\infty, d_\infty, x_\infty) \). Since the metric \(\omega(t) \) converges smoothly on \(M \setminus E \), we may view \((M \setminus E, \omega_\infty) \) as a subset of \((M_\infty, d_\infty) \) through a locally isometric embedding.

Let \(M_\infty = \mathcal{R} \cup \mathcal{S} \) the regular/singular decomposition of \(M_\infty \).
Lemma 3.11. Suppose $x \in \mathcal{R}$, $0 < \alpha < 2 - \frac{4n}{\ell}$. There exists $r = r(x) > 0$ such that any $x_i \in M$ converging to x has a holomorphic coordinate (z^1, \cdots, z^n) on $B_{r,\omega(t_i)}(x_i)$ which satisfies
\[
\frac{1}{2} \leq (g_{k\bar{\ell}}) \leq 2, \|g_{k\bar{\ell}}\|_{C^\alpha} \leq 2
\]
where $g_{k\bar{\ell}} = \omega(t_i)(\frac{\partial}{\partial z^k}, \frac{\partial}{\partial \bar{\zeta}^\ell})$.

Proof. The existence of holomorphic coordinates is well-known. It can be constructed by a slight modification of the local harmonic coordinates. We include a short proof for the reader's convenience. First of all, by the C^α convergence on \mathcal{R}, there is a sequence of harmonic coordinate $v_i = (v_i^1, \cdots, v_i^{2n})$ on $B_{r,\omega(t_i)}(x_i)$ for some $r > 0$ independent of i such that
\[
\frac{3}{4} \leq (h_{pq}) \leq \frac{4}{3} \text{ and } r^{-\alpha}\|h_{pq}\|_{C^\alpha} \leq \frac{4}{3},
\]
where $h_{pq} = g_i(\frac{\partial}{\partial v_i^p}, \frac{\partial}{\partial v_i^q})$, g_i is the Kähler metric of $\omega(t_i)$, and \[22\]
\[
\int_{B_{r,\omega(t_i)}(x_i)} |(\frac{\partial}{\partial \bar{\zeta}^p}, \frac{\partial}{\partial v^q}) - \delta_{pq}| \omega(t_i)^n \to 0, \text{ as } i \to \infty.
\]
Moreover, since each $\omega(t_i)$ is Kähler, we may assume that
\[
\int_{B_{r,\omega(t_i)}(x_i)} |(\frac{\partial}{\partial \bar{\zeta}^p}, \frac{\partial}{\partial v^q}) - \delta_{pq}| \omega(t_i)^n \to 0, \text{ as } i \to \infty,
\]
for any $1 \leq p, q \leq n$, where J is the complex structure of M; see \[11\] Section 9 for a discussion. Then we choose a pseudoconvex domain $B_{\frac{9}{10}r,\omega(t_i)}(x_i) \subset \Omega_i \subset B_{r,\omega(t_i)}(x_i)$ and solve the $\bar{\partial}$ equation in Ω_i:
\[
\bar{\partial}f_i^p = \bar{\partial}(v_i^p + \sqrt{-1}v^{n+p}), \quad p = 1, \cdots, n.
\]
The domain can be chosen as the Euclidean ball in the local coordinate. The equation has solution satisfying the L^2 estimate \[24\] Theorem 4.3.4
\[
\int_{B_{\frac{9}{10}r,\omega(t_i)}(x_i)} |f_i^p|^2 \omega(t_i)^n \leq Cr^2 \int_{B_{r,\omega(t_i)}(x_i)} |\bar{\partial}(v_i^p + \sqrt{-1}v^{n+p})|^2 \omega(t_i)^n
\]
for a universal constant C. This implies $\int_{B_{\frac{9}{10}r,\omega(t_i)}(x_i)} |f_i^p|^2 \omega(t_i)^n \to 0$ for all $1 \leq p \leq n$. Then applying the elliptic regularity to $\triangle\omega(t_i)f_i^p = 0$ we get
\[
\sup_{B_{\frac{9}{10}r,\omega(t_i)}(x_i)} (|\partial f_i^p| + |\bar{\partial}f_i^p|) \to 0, \forall 1 \leq p \leq n.
\]
In particular, the function $w_i^p = \nu^p + \sqrt{-1}v^{n+p} - f_i^p$, $1 \leq p \leq n$, gives rise to the desired holomorphic coordinate on $B_{\frac{9}{10}r,\omega(t_i)}(x_i)$ whenever i is large enough.

Lemma 3.12. $M_\infty \setminus (M \setminus E)$ is a closed subset of M_∞ with Hausdorff codimension ≥ 2.

9
Proof. Notice that $M \setminus E \subset \mathcal{R}$, $M_{\infty} \setminus (M \setminus E) = \mathcal{S} \cup (\mathcal{R} \setminus (M \setminus E))$ where $\text{Codim} \mathcal{S} \geq 4$ by Theorem 2.3 (5). Therefore, it suffices to show that $\text{Codim} (\mathcal{R} \setminus (M \setminus E)) \geq 2$.

For any $x \in \mathcal{R} \setminus (M \setminus E)$ there exists a sequence of points $x_i \in E$ which converges to x. By above lemma, there exists local holomorphic coordinate in $B_{r,\omega(t_i)}(x_i)$ for some $r = r(x) > 0$ independent of i with required C^α estimate. The intersection $E \cap B_{r,\omega(t_i)}(x_i)$ is a local subvariety with finite volume, so passing to a subsequence, $E \cap B_{r,\omega(t_i)}(x_i)$ converges to a limit analytical set $E_\infty \subset B_{r,\omega_\infty}(x)$. Thus, $\mathcal{R} \setminus (M \setminus E)$ is an analytical set, $\text{Codim} (\mathcal{R} \setminus (M \setminus E)) \geq 2$ as desired.

Lemma 3.13. (M_{∞}, d_{∞}) is isometric to the metric completion of $(M \setminus E, \omega_\infty)$.

Proof. The lemma follows from the fact that $\text{Codim} (\mathcal{R} \setminus (M \setminus E)) \geq 2$ and the local isoperimetric constant estimate; see [10] or [23] for details. For the estimate of local isoperimetric constant, one can apply the same argument as Croke [15] by using the volume comparison of geodesic balls by Petersen-Wei (cf. [30] Corollary 2.4) or (2.3)).

By the compactness of the limit space by Song [26], see Theorem 3.9 (2) above, the diameters of the sequence $(M, \omega(t_i))$ are uniformly bounded.

Lemma 3.14. The Kähler-Ricci flow $\omega(t)$ is uniformly noncollapsing in the sense that: there exists $\kappa = \kappa(n, \omega_0) > 0$ such that

$$\text{vol}_{\omega(t)} (B_{r,\omega(t)}(x)) \geq \kappa r^{2n}, \forall x \in M, r \leq 1. \quad (3.23)$$

Proof. The lemma follows from Perelman’s noncollapsing estimate to Ricci flow [20] together with the scalar curvature estimate by Z. Zhang [35]. Suppose that

$$r_i^{-2n} \text{vol}_{\omega(t_i)} (B_{r,\omega(t_i)}(x_i)) \to 0 \quad (3.24)$$

for a sequence of times $t_i \to \infty$ and $x_i \in M, r_i \leq 1$. Choose $t_i' \in [t_i - 2, t_i - 1]$ such that (3.22) hold at t_i'. Then by above lemma we have $(M, \omega(t_i'))$ converges in the Gromov-Hausdorff topology to the unique limit (M_{∞}, d_{∞}). In particular we have

$$R(\omega(t_i')) \leq C, \text{diam}(M, \omega(t_i')) \leq C, C_S (M, \omega(t_i')) \leq C$$

for some C independent of i, where R is the scalar curvature, C_S is the Sobolev constant.

Let $\tilde{\omega}_i(\bar{t}) = (1 + \bar{t})\omega(t_i' + \log(1 + \bar{t}))$ be the solution to the Ricci flow

$$\frac{\partial}{\partial \bar{t}} \tilde{\omega}_i = -\text{Ric}(\tilde{\omega}_i), \tilde{\omega}_i(0) = \omega(t_i') \quad (3.25)$$

Under this rescalings, the metric $\omega(t_i) = (1 + \bar{t}_i)^{-1}\tilde{\omega}_i(\bar{t}_i)$ for some $\bar{t}_i \in [e - 1, e^2 - 1]$ and $B_{r,\omega(t_i)}(x_i) = B_{\tilde{r}_i,\tilde{\omega}(\tilde{t}_i)}(x_i)$ for some $\tilde{r}_i \leq e$. Recall the μ functional of Perelman [20]

$$\mu(g, \tau) = \inf_M \left[\tau (R + |\nabla f|^2) + f - 2n \right] (4\pi\tau)^{-n} e^{-f} dv_g$$

for any Riemannian metric g and $\tau > 0$, where the infimum is taken over all $f \in C^\infty(M; \mathbb{R})$ with restriction $\int_M (4\pi\tau)^{-n} e^{-f} dv_g = 1$. The condition (3.24) implies that $\mu(\tilde{\omega}_i(\bar{t}_i), \bar{t}_i^2) \to
−∞ as i → ∞; see [20, Section 4.1]. Then Perelman’s monotonicity formula shows
µ(˜ω_i(0), ˜t_i + ˜r_i^2) → −∞ as i → ∞, where ˜t_i + ˜r_i^2 ∈ [e^{−1}, 2e^{2} − 1]. But this can never
happen because of the lower estimate of µ (cf. the estimate in [36]):

\[\mu(\tilde{\omega}_i(0), \tau) \geq \tau \inf_{\tilde{\omega}_i(0)} R(\tilde{\omega}_i(0)) - \frac{n}{2} \ln \tau - n \ln CS(\tilde{\omega}_i(0)) - C(n), \forall \tau \geq \frac{n}{8}. \] (3.26)

So (3.24) can not hold, the lemma is proved.

The global Cheeger-Gromov convergence is a direct corollary of the following proposition.

Proposition 3.15. For any sequence \(t_j \to \infty \), \((M, \omega_{t_j})\) converges along a subsequence in
the Cheeger-Gromov sense to the limit \((M_{\infty}, d_{\infty})\).

Proof. By the regularity of manifolds with \(L^p \) bounded Ricci curvature, Theorem 2.3, and
the uniform \(L^p \) estimate of Ricci curvature under the Kähler-Ricci flow, (3.2) and (3.3),
we can find another sequence of times \(t'_j \) such that

\[t_j - \varepsilon_j \leq t'_j \leq t_j \]

where \(\varepsilon_j \to 0 \) as \(j \to \infty \), and

\[(M, \omega_{t'_j}) \xrightarrow{d_G} (M_{\infty}, d_{\infty}) \]

along a subsequence. On the other hand, by Gromov precompactness theorem [17] together
with the local noncollapsing estimate (3.23), after passing to a subsequence, the manifolds
\((M, \omega(t_j))\) also converge in the Gromov-Hausdorff topology to a compact limit

\[(M, \omega(t_j)) \xrightarrow{d_G} (M'_\infty, d'_{\infty}). \]

It is remained to show that \((M'_\infty, d'_{\infty})\) is isometric to \((M_{\infty}, d_{\infty})\). Actually we have

Claim 3.16. There is a sequence of positive numbers \(\delta_j \to 0 \) as \(j \to \infty \) such that the
identity map defines a \(\delta_j \)-Gromov-Hausdorff approximation from \((M, \omega(t'_j))\) to \((M, \omega(t_j))\).

Proof of the Claim. Recall that by the smooth convergence of \(\omega(t) \) on \(M \setminus E \) and uniform
volume noncollapsing (3.23) we have for any \(\delta > 0 \) one compact subset \(K \subset M \setminus E \) and
\(\epsilon > 0 \), \(j_0 \gg 1 \) such that

\[\epsilon \leq \inf_{t} \text{dist}_{\omega(t)}(K, E) \leq \sup_{t} \sup_{x \in E} \text{dist}_{\omega(t)}(x, K) \leq \delta, \] (3.27)

and,

\[\text{vol}_{\omega(t)}(M \setminus K) \leq \delta, \forall t \geq t_{j_0}. \] (3.28)

The later can be seen by simply the derivative estimate to volume

\[\frac{d}{dt} \int_{M \setminus K} \omega(t)^n = - \int_{M \setminus K} (\inf R + n)\omega(t)^n \leq C(\omega_0)e^{-t} \int_{M \setminus K} \omega(t)^n \]
connecting which gives the upper estimate to the distance distortion
\[\varepsilon \]
intersect the \(M \) a natural isomorphism from
\[M \]
normal projective variety. On the other hand, using the Kähler-Ricci flow, we can produce \(j \) whenever \(1 \) such that
\[H \]
the above result by J. Song. This can be done by choosing a family of orthonormal basis \(\gamma \) whenever \(j \) such that \(H \) is large enough such that
\[K \]
Moreover, by the convexity of the regular set \(M \setminus E \) in \(M_{\infty} \) we may assume in addition that any minimal geodesic in \((M, \omega(t)) \) with endpoints in \(K \) does not intersect the \(\varepsilon \) neighborhood of \(E \). Also observe that there exists \(C = C(\varepsilon) \) independent of \(j \) such that
\[\| \text{Ric}(\omega(t)) \|(x) \leq C, \forall \text{dist}_{\omega(t)}(x, E) \geq \frac{\varepsilon}{2}. \quad (3.29) \]
Then, by the derivative estimate to distance function, cf. Lemma 8.3 in \([20]\),
\[\frac{d}{dt} \text{dist}_{\omega(t)}(x, y) \geq -2(2n - 1)(C\varepsilon + \varepsilon^{-1}), \forall x, y \in K. \]
Thus, we obtain the distance lower variation estimate
\[\text{dist}_{\omega(t_j)}(x, y) \geq \text{dist}_{\omega(t_j')}(x, y) - 2(2n - 1)(C\varepsilon + \varepsilon^{-1})\varepsilon_j \geq \text{dist}_{\omega(t_j')}(x, y) - \sqrt{\varepsilon_j} \]
whenever \(j \) is large enough. On the other hand, let \(\gamma \) be any minimal geodesic in \((M, \omega(t_j')) \) connecting \(x, y \in K \). By assumption \(\text{dist}_{\omega(t)}(\gamma, E) \geq \varepsilon \) for any \(t \), so
\[\frac{d}{dt} \int_{\gamma} |\dot{\gamma}| ds \leq \int_{\gamma} |\text{Ric} + \omega||\dot{\gamma}| ds \leq (C + n) \int_{\gamma} |\dot{\gamma}| ds \]
which gives the upper estimate to the distance distortion
\[\text{dist}_{\omega(t_j)}(x, y) \leq e^{(C+n)\varepsilon_j} \text{dist}_{\omega(t_j')}(x, y) \leq \text{dist}_{\omega(t_j)}(x, y) + \sqrt{\varepsilon_j} \]
whenever \(j \) is large enough. Finally, \((3.27)\) shows that \(K \) is \(\delta \) dense in any \((M, \omega(t))\). Combining with the upper and lower distance variation estimate we get that the identity map defines an \(\delta \)-Gromov-Hausdorff approximation between \((M, \omega(t_j))\) and \((M, \omega(t_j'))\) whenever \(j \) is large enough such that \(\sqrt{\varepsilon_j} \leq \delta \). The claim is proved.

Proposition \(3.15\) follows directly from the Claim.

We end the paper with a brief discussion about the algebraic structure of \(M_{\infty} \). By Song’s work \([20]\), the limit space \(M_{\infty} \) coincides with the canonical model \(M_{can} \), so it is a normal projective variety. On the other hand, using the Kähler-Ricci flow, we can produce a natural isomorphism from \(M_{\infty} \) to \(M_{can} \) through holomorphic sections of \(K_M^\ell \) for some \(\ell \gg 1 \) such that \(K_M^\ell \) is base point free, and consequently, give an alternative proof of the above result by J. Song. This can be done by choosing a family of orthonormal basis of \(H^0(M, K_M^\ell) \) with respect to the Hermitian metric \(h(t) = \omega(t)^{-n\ell} \), say \(\{s_i, t\}_{i=0}^{N_\ell} \) where \(N_\ell = \dim H^0(M; K_M^\ell) - 1 \), which satisfies the ODE system
\[\frac{\partial}{\partial t} s_{i, t} = \sum_j b_{ij}(t)s_{j, t}. \quad (3.30) \]
In order to preserve the orthonormal property we choose
\[b_{ij} = \overline{b_{ji}} = -\frac{\ell - 1}{2} \int_M (R + n)\langle s_i, s_j \rangle h(t)^n. \quad (3.31) \]
Lemma 3.17. There exists $C = C(\omega_0, \ell)$ such that
\[|b_{ij}| \leq Ce^{-t}. \]

Proof. First of all we notice that the section $s_{i,t}$ admits a uniform L^∞ bound. This can be seen by the uniform equivalence of the Hermitian metric $h(t) = e^{-\ell u(t)}\Omega^{-t}$, the volume form $\omega(t)^n = e^{u(t)}\Omega$ and the L^∞ estimate of holomorphic sections at time $t = 0$. Here we used the uniform C^0 estimate of $u (3.8)$. Then we can estimate the integration as in the proof of Lemma 3.7, by \(R + n \geq -Ce^{-t} \) and \(\int (R + n)\omega^n \leq Ce^{-t}, \)
\[|b_{ij}| \leq C \int |R + n|\omega^n \leq C \int (R + n + Ce^{-t})\omega^n + Ce^{-t} \leq Ce^{-t} \]
where $C = C(\omega_0, \ell)$. \qed

Suppose $s_{i,t} = \sum_j a_{ij}(t)s_{j,0}$ and denote by $A(t) = (a_{ij}(t))$ a Hermitian matrix, then $A(t) = e^{\int_0^t B(s)ds}$ where $B(t) = (b_{ij}(t))$. Thus the sections $\{s_{i,t}\}_{i=0}^{N_\ell}$ converge to a set of holomorphic sections $\{s_{i,\infty}\}_{i=0}^{N_\ell}$ which forms another basis of $H^0(M; K_M^\ell)$. It induces a morphism
\[\Phi : M \to M_{can} \subset \mathbb{C}P^{N_\ell}. \]
On the other hand, we also have a uniform gradient estimate to each $s = s_{i,0}$, cf. [26],
\[|\nabla^h(t)s|_{h(t)\otimes\omega(t)} = |\nabla^{\Omega^{-t}}s + \partial u \otimes s|_{h(t)\otimes\omega(t)} \leq C|\nabla^{\Omega^{-t}}s|_{\Omega^{-t}\otimes\chi} + C|\partial u|_{\omega(t)}|s|_{\Omega^{-t}} \leq C \]
where we used the uniform C^1 estimate of u and $\chi \leq C\omega(t)$, this leads to a convergence of $\{s_{i,t}\}_{i=0}^{N_\ell}$ under the Cheeger-Gromov convergence, so $\{s_{i,\infty}\}_{i=0}^{N_\ell}$ can also be seen as a set of holomorphic sections of $K_M^{\ell\infty}$. It is obvious that $\{s_{i,\infty}\}_{i=0}^{N_\ell}$ is base point free on M_{∞}, so it defines a map
\[\Phi_{\infty} : M_{\infty} \to \mathbb{C}P^{N_\ell}. \]
Finally, through construction of local peak sections, up to rising a power of ℓ, the map Φ_{∞} separates points of M_{∞}, so it defines a homeomorphism.

References

[1] M. Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, J. Amer. Math. Soc. 2 (1989), 455-490.

[2] M. Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math., 102 (1990), 429-445.

[3] R. H. Bamler and Q. S. Zhang, Heat kernel and curvature bounds in Ricci flows with bounded scalar curvature, [arXiv:1501.02191v2]

[4] S. Bando, A. Kasue and H. Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math. 97 (1989), no. 2, 313C349.
[5] A. L. Besse, Einstein manifolds, Springer-Verlag Berlin Herdelberg GmbH

[6] H.D. Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math., 81 (1985), 359-372.

[7] J. Cheeger, Integral bounds on curvature, elliptic estimates and rectifiability of singular sets, Geom. Funct. Anal., 13 (2003), 20-72.

[8] J. Cheeger and T. H. Colding, Lower bounds on the Ricci curvature and the almost rigidity of warped products, Ann. Math., 144 (1996), 189-237.

[9] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature bounded below I, J. Diff. Geom., 46 (1997), 406-480.

[10] J. Cheeger and T. H. Colding, On the structure of spaces with Ricci curvature bounded below II, J. Diff. Geom., 54 (2000), 13-35.

[11] J. Cheeger, T. H. Colding and G. Tian, On the singularities of spaces with bounded Ricci curvature, Geom. Funct. Anal., 12 (2002), 873-914.

[12] T. H. Colding, Ricci curvature and volume convergece, Ann. of Math., 145 (1997), 477-501.

[13] T. H. Colding and A. Naber, Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications, Ann. of Math., 176 (2012), 1173-1229.

[14] T. C. Collins and V. Tosatti, Kähler currents and null loci, [arXiv:1304.5216v5]

[15] C. B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Éc. Norm. Sup. Paris, 13 (1980), 419-435.

[16] X.Z. Dai and G.F. Wei, Comparison geometry for Ricci curvature, preprint.

[17] M. Gromov, Metric structures for Riemannian and non-Riemannian spaces. With appendices by M. Katz, P. Pansu and S. Semmes. Translated from the French by Sean Michael Bates. Birkhäuser Boston, Inc., Boston, MA, 2007.

[18] B. Guo, On the Kähler Ricci flow on projective manifolds of general type, [arXiv:1501.04239]

[19] B. Guo, J. song and B. Weinkovw, Geometric convergence of the Kähler-Ricci flow on complex surfaces of general type, [arXiv:1505.00705]

[20] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, [arXiv:math.DG/0211159]

[21] P. Petersen and G.F. Wei, Relative volume comparison with integral curvature bounds, Geom. Funct. Anal., 7 (1997), 1031-1045.

[22] P. Petersen and G.F. Wei, Analysis and geometry on manifolds with integral Ricci curvature bounds, II, Trans. AMS., 353 (2001), 457-478.
[23] X.C. Rong and Y.G. Zhang, *Continuity of extremal transitions and flops for Calabi-Yau manifolds*, J. Diff. Geom., 89 (2011), 233-269.

[24] S.C. Chen and M.C. Shaw, *Partial differential equations in several complex variables*, Amer. Math. Soc., Providence, RI; Intern. Press, Boston, MA, 2001.

[25] M. Simon, *Some integral curvature estimates for the Ricci flow in four dimensions*, arXiv:1514.02623v1

[26] J. Song, *Riemannian geometry of Kähler-Einstein currents*, arXiv:1404.0445

[27] J. Song, *Riemannian geometry of Kähler-Einstein currents II: an analytic proof of Kawamata’s base point free theorem*, arXiv:1409.8374

[28] J. Song and G. Tian, *Bounding scalar curvature for global solutions of the Kähler-Ricci flow*, arXiv:1111.5681v1

[29] G. Tian, *On Calabi’s conjecture for complex surfaces with positive first Chern class*. Invent. Math., 101, (1990), 101-172.

[30] G. Tian and Z.L. Zhang, *Regularity of Kähler-Ricci flows on Fano manifolds*, arXiv:1310.5897

[31] G. Tian and Z. Zhang, *On the Kähler-Ricci flow on projective manifolds of general type*, Chinese Ann. Math. Ser. B, 27 (2006), 179-192.

[32] H. Tsuji, *Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type*, Math. Ann., 281 (1988), 123-133.

[33] Q.S. Zhang, *A uniform Sobolev inequality under Ricci flow*, Inter. math. Res. Notices, 2007.

[34] Y.G. Zhang, *Miyaoka-Yau inequality for minimal projective manifolds of general type*, Proc. Amer. Math. Soc. 137 (2009), no. 8, 2749C2754.

[35] Z. Zhang, *Scalar curvature bound for Kähler-Ricci flows over minimal manifolds of general type*, Int. Math. Res. Not., 2009, 3901-3912.

[36] Z.L. Zhang, *Compact blow-up limits of finite time singularities of Ricci flow are shrinking Ricci solitons*, C. R. Acad. Sci. Paris, Ser. I 345 (2007), 503-506.