Combining Controlled Atmosphere Storage and Ethanol Vapors to Control Superficial Scald of Apple

C. Chervin, J. Raynal, N. André, and A. Bonneau
Ecole Nationale Supérieure Agronomique de Toulouse, BP 107, 31326 Castanet, France

P. Westercamp
Centre Technique Interprofessionnel des Fruits et Légumes (CTIFL) et Centre d’Expérimentation Fruits et Légumes (CEFEL), 49 Chemin des Rives, 82000 Montauban, France

Abstract. The effects of ethanol vapors, controlled atmosphere (CA) storage, and a combination of both on superficial scald development on ‘Granny Smith’ apples (Malus domestica Borkh.) are reported. The major result was that ethanol vapors, applied in cold storage, prevented scald development over a week at 20 °C in apples that had been CA-stored for 4 months, then left for 1 month in cold air storage. Interrupting CA storage aimed to reproduce industry practices when fruit in part of storage rooms has to be sold and the remaining fruit is held in air for later sale. The estimated cost and further development of this method are discussed.

Diphenylamine (DPA) and ethoxyquin treatments to alleviate superficial scald are not permitted by certain importing countries. Ethanol vapor treatment on ‘Granny Smith’ apples has shown promising results in reducing scald (Ghahramani and Scott, 1998; Scott et al., 1995, Wang and Dilley, 1996). Controlled atmosphere (CA) storage can also reduce scald (Chen et al., 1985; Little et al., 1982), and initial low O₂ storage may reduce scald, partly through stimulation of ethanol production by the fruit (Little et al., 1982; Wang and Dilley, 2000). Here we report the combined effects of ethanol and CA (2 kPa O₂ + 1 kPa CO₂). The gas levels in CA are close to industry standards.

Materials and Methods

Fruit was picked early in the season (6 Oct. 1999) from a local orchard (Montauban, in southwestern France). Fruit diameter was >80 mm, with firmness at 69 N and starch index at 1 on a 10-point scale, where 1 = 0% starch and 10 = 0% starch. Fruit was cooled over-night and kept at 1 °C for a week before being exposed to ethanol vapors. The experiment was run in 660-L cabinets, which were flushed with air or N₂ to control the atmosphere when necessary. Eight boxes (12 kg of fruit/box) were placed in each of four cabinets in a cold room held at 1 °C, and the following treatments were applied: air (control); air + ethanol; CA; and CA + ethanol. Ethanol vapors (8 g kg⁻¹ of fruit) were delivered by placing trays containing ethanol-soaked vermiculite among the fruit to control evaporation as described by Scott et al. (1995). We used this amount because the cabinet headspace was larger (~85% of total volume) than that in the bags used in previous experiments (~60% of total volume), in which 3 g kg⁻¹ gave good scald control (Ghahramani and Scott, 1998). To avoid loss of ethanol during CA, ethanol was applied by remote opening of the lid of the tray of vermiculite after the initial N₂ flush. The headspace ethanol concentration was measured with a Dräger pump (model “Accuro”; Lübeck, Germany), using Dräger tubes (ref. “alcohol 25/a”). Ethanol concentration, averaged for both cabinets, reached 300 ± 100 µL·L⁻¹ in the headspace within the first week of treatment and then declined linearly to 50 µL·L⁻¹ over 8 weeks. Two boxes of fruit per treatment were withdrawn after each storage period, and the apples were placed at 20 °C for 7 d to allow scald to develop. Scald severity was rated using three replicates of 15 fruit, each randomly chosen from each set of two boxes, and a 4-point scale described previously (Watkins et al., 1995). Two-way ANOVA was performed on ethanol and atmosphere data for each storage time (SigmaStat 2.0; SPSS, Chicago).

Table 1. Superficial scald development in ‘Granny Smith’ apples as a function of four storage regimes at 1 °C, followed by 1 week at 20 °C. Scores for scald were: 0 = 0%; 1 = 1% to 10%; 2 = 11% to 33%; 3 = 34% to 66%; and 4 = 67% to 100%. Controlled atmosphere (CA) was ended after 4 months and fruit were transferred to air for an additional month. Results represent means for three replicates of 15 fruit each.

Storage time (months)	Score for scald	Interaction CA × ethanol				
	Air	Air + ethanol	CA	CA + ethanol	CA	CA + ethanol
3	2.25 a²	1.68 b	0.03 c	0.03 c	*	
5	2.05 a	2.03 a	0.00 b	0.00 b	ns	
7	2.47 a	2.30 b	1.33 c	0.05 d	***	

*Mean separation within rows by Tukey’s test, P ≤ 0.05.

a, **b**Nonsignificant or significant at P ≤ 0.05 or 0.001, respectively.
Possible advantages of the ethanol treatment would be that it: does not corrode metallic parts; could be used in organic production; requires no additional handling or drenching; and results in fewer problems with rotting due to contaminated drenching mixes, and with disposal of these mixes. Possible disadvantages would be: taxes; fire hazard (ethanol is flammable above 3.5% in air above 13 °C); conversion of red pigments in apple to a purple/brown at high doses, although this may be reversible (R. Holmes, personal communication); off-flavor at high doses; and prohibited use of ethanol on food in some countries. Adding a denaturant could avoid the taxes applied to ethanol used in beverages (K. Scott, personal communication). Use of initial low O₂ stress (Little et al., 1982; Wang and Dilley, 2000) may be more economical than ethanol vapor treatment for storage operations having adequate O₂ control.

Literature Cited.
Chen, P.M., K.L. Olsen, and M. Meheriuk. 1985. Effect of low-oxygen atmosphere on storage scald and quality preservation of ’Delicious’ apples. J. Amer. Soc. Hort. Sci. 110:16–20.
Ghahramani, F. and K.J. Scott. 1998. The action of ethanol in controlling superficial scald of apples. Austral. J. Agr. Res. 49:199–205.
Little, C.R., J.D. Faragher, and H.J. Taylor. 1982. Effects of initial low oxygen stress treatments in low oxygen storage of ’Granny Smith’ apples. J. Amer. Soc. Hort. Sci. 107:320–323.
Scott, K.J., C. Yuen, and F. Ghahramani. 1995. Ethanol vapour—A new anti-scald treatment for apples. Postharvest Biol. Technol. 6:201–208.
Wang, Z. and D.R. Dilley. 1996. Ethanol vapor treatment: A new alternative approach to control superficial scald of apples. Proc. Michigan State Hort. Soc. 126:35–40.
Wang, Z. and D.R. Dilley. 2000. Initial low oxygen stress controls superficial scald. Postharvest Biol. Technol. 18:201–213.
Watkins, C.B., W.J. Bramlage, and B.A. Cregoe. 1995. Superficial scald of ’Granny Smith’ apples is expressed as a typical chilling injury. J. Amer. Soc. Hort. Sci. 120:88–94.
Westercamp, P., C. Chervin, and J. Raynal. 2000. Utilisation en post-récolte des vapeurs d’éthanol. Infos-CTIFL 165:34–36.