Numerical modal analysis of a 850 KW wind turbine steel tower

Fateh Ferroudji¹,²

¹ Unité de Recherche en Energies Renouvelables en Milieu Saharien, URERMS, Centre de Développement des Energies Renouvelables, CDER, 01000, Adrar, Algeria
² Laboratoire de Mécanique des Structures et Matériaux, Université Batna de 2, Batna, Algeria

Received: January 07, 2020 ● Accepted: August 07, 2020

ABSTRACT

The study deals with the numerical analysis aspects that are necessary for identifying of modal parameters of the tower structure as the most important part of the horizontal axis wind turbine, which are basic for the dynamic response analysis. In the present study, the modal behavior of an actual 55-m-high steel tower of 850 KW wind turbine (GAMESA G52/850 model) is investigated by using three-dimensional (3D) Finite Element (FE) method. The model was used to identify natural frequencies, their corresponding mode shapes and mass participation ratios, and the suggestions to avoid resonance for tower structure under the action wind. The results indicate that there is a very good agreement with the fundamental vibration theory of Euler-Bernoulli beam with lamped masse in bending vibration modes. When the rotor of the wind turbine runs at the speed of less than or equal to 25.9 rpm it will not have resonant problems (stiff–stiff tower design). Furthermore, in case the rotor runs at the speed of between 25.9 and 30.8 rpm, the adequate controller is necessary in order to avoid the corresponding resonant susceptible area of the tower structure (soft–stiff tower design).

KEYWORDS

wind turbine tower, modal analysis, natural frequencies, mode shapes, finite element method, mass participation ratio

1. INTRODUCTION

In the world today, wind energy sector has been the fastest growing phenomenon in the sphere of renewable energy. Wind power can definitely play a significant role for guaranteeing a sustainable future, with the addition of 52 GW in 2017, an annual growth rate of approximately 11% [1, 2]. According to the Algerian government, the new and renewable energy strategy in Algeria (since 2011) aims to install 22,000 MW of generated energy from renewable sources by 2030 (37 % out of the total generated energy). Wind energy constitutes the second axis of development after solar energy with an electricity production of about 5010 MW (approximately 23%) [3, 4]. Algeria ranks at the lowest in the global installed wind energy capacity table in the Africa. The first and only one wind farm with generating capacity of 10.2 MW (consists 12 GAMESA G52-850 kW wind turbine) was installed in June 2014 by the national company Sonelgaz at Kabertene in Adrar province, which is situated in the southwestern part of the country (Fig. 1). This site is the most convenient place for wind farm installation because it is the windiest zone in Algeria with the annual average wind speed of about 6.3 m/s [5, 6].

Wind turbines are continuously subjected to varying dynamic (wind, sand, temperature variations, etc.) and gravitational loads [7]. As a result of these loads the wind turbine undergoes deformations and rigid body motions. The first can be divided into two types, a dynamic response and a quasi-static. The dynamic response of a wind turbine may be characterized by its modal parameters (natural frequencies, damping characteristics and mode shapes) [8, 9]. Modal analysis has the ability to determine these parameters allowing the tracking of small changes in
2. WIND TURBINE TOWER DESCRIPTION

The wind turbine GAMESA G52/850 KW is 3-bladed, horizontal-axis wind turbine with a 52 m rotor diameter (Fig. 1a). The tower is a free standing tube steel structure varying its diameter (conical) and thickness along the height. It is manufactured in three hollow sections (total height of 55 m) with circular flanges at either end, and bolted together in order to enable transportation and assembling on the site, as shown in Fig. 1b. The structure also includes an opening of the door at the base. The tower is conical to increase its strength, durability and to save material. The shell thickness of structure varies between 18 mm at the base and 10 mm at the top. Computer Aided Design (CAD) software, namely, SolidWorks (version 2016) was used in order to create a 3D full-scale model for the tower structure as seen in Fig. 2. The main parameters of the wind turbine are tabulated in Table 1.

3. FEM-SIMULATIONS

Numerical modeling and simulation for engineering systems has grown rapidly as a result of the advent and the development of computer technologies. The wind turbines are complex structures in design and dynamic behavior, demand detailed FEs modeling [39–41]. There are many software commercial packages based on FE method available on the market that meet the simulation requirements, SolidWorks, Ansys and Abaqus. The detailed 3D FE model of the tower structure is modeled by using SolidWorks Simulation software [42].

Since the tower has many complex parts, it is necessary to simplify its structure for establishment of the 3D FE model and for reducing calculation time. The simplified principles cover ignoring the bolts, ladder, power cable, and other small parts. The whole tower structure is made from Steel (AINS 1020 Steel, cold rolled) with the following material properties: $E = 2.05 \times 10^{11}$ N/m2 yield stress, $\nu = 0.29$ Poisson’s ratio, $\rho = 7870$ kg/m3 mass density and $S_y = 350 \times 10^6$ N/m2 limit stress. These properties are given as input to the SolidWorks. Boundary conditions of the tower model, all degree of freedoms (DoFs) are constrained (fixed) at its bottom, bolted connections between the flanges and the friction between the circular flanges were replaced by suitable connections (bolt connector and Bonded Contact respectively) and no others loads are...
applied except for the structure’s own weight because it can cause significant effects on the modal properties. Modal analysis assumes that the structure vibrates in the absence of any damping and excitation [42]. For the best balanced accuracy and efficiency in numerical simulations, generating a high-quality mesh is very important implications in design analysis. The model was meshed with tetrahedral solid elements (with 10-DoFs per element) because it is suitable for complex and bulky models [31]. The resultant mesh of the tower model after the sweep and different localized refinements made in areas of interest are shown in Fig. 3, which consisted of 189,612 physical nodes and 95,320 elements for a total 566,706 DoFs. As the tower model has a large number of DoFs, an iterative solver, namely, FFEPlus (Fourier Finite-Element Plus) was used for the numerical solution. A workstation (using 12 processor (INTEL (R); Core (TM) i7-4770 k; 16.0 Go; 3.5 GHz) at Renewable Energy Research Unit in Saharan Medium (URER/MS) was used for running the SolidWorks Simulation software.

Free analysis is the first step for the structure dynamic analysis to determine the natural frequencies and with them mode shapes (Eigen-modes) of a structure under evaluation, in order to determine if any of the frequencies of the several possible modes of vibration coincide with the frequency of the cyclic external (wind) loads. The matrix equations of motion associated with free vibration (in the absence of damping and external excitation) of the tower structure obtained by the FE method can be expressed in form as [43, 44]:

Table 1. Main parameters of the Gamesa G52/850 reference model [37, 38]

Item	Sub item	Value	Unit
Tower	Height	55	m
	Base wall thickness	18	mm
	Top wall thickness	10	mm
Rotor	Number of blades	3	
	Rotor diameter	52	m
	Rotor speed	14.6–30.8	rpm
	Swept area	2,124	m²
	Blade length	25.3	m
Wind speeds	Cut-in wind speed	4	m/s
	Rated wind speed	16	m/s
	Cut-off wind speed	25	m/s
	Survival static wind	70	m/s
Weights	Nacelle	23	ton
	Tower	62	ton
	Rotor + hub	10	ton
	Total	80	ton

Fig. 2. (a) SolidWorks-generated full model of wind turbine Gamesa G52/850 KW; (b) steel tower structure

Fig. 3. FEM mesh for tower model
Fig. 4. Modal shapes of the wind turbine tower structure; (a) The first mode, (b) The second mode, (c) The third mode, (d) The fourth mode, (e) The fifth mode, (f) The sixth mode
\[\text{M}u + \text{K}u = 0 \]
where the matrices \(\text{M} \) and \(\text{K} \) are the global mass and the structural stiffness matrices, respectively. By searching the solutions \(u(x, t) \) in the form \(u(x, t) = \phi(u) e^{i\omega t} \), then, Eq. (1) may be expressed as:

\[(-\omega^2 \text{M} + \text{K}) \phi = 0 \]

where \(\phi(u) \) \(\omega \) is the circular frequency (rad/s) and \(\phi \) is the mode shape. The characteristic Equation (2) is:

\[|\text{K} - \omega^2 \text{M}| = 0 \]

Solutions of the determinant (3) are called the normal modes (\(n \) positive real roots). For each normal mode there is an associated frequency \(\omega \) (corresponding to the eigenvalue \(\omega \)) given by \(\omega = 2\pi f \).

4. RESULTS AND DISCUSSION

Natural frequencies are important results and always of concern when designing tower structure, as well as other high structures. The tower structure has several various modes of natural vibration frequencies, but for the case of a typical modern wind turbine the interest mode is the first since it should not be completely within the excitation frequency range of the turbine (to avoid resonance), with a safety distance of \(-15\%\) and \(+10\%\) \[45, 46\]. The frequency range from the rotational frequency of the rotor corresponds to 1P (operating frequency; the lower limit) plus 10% and blade passing corresponds to 3P (the upper limit) for three bladed rotor reduced 15% \[32, 47\]. For the performance dynamic, there are three different tower structure designs: (i) a soft–stiff (economical design) means that the natural frequency is below the 3P and above the 1P, (ii) a soft–soft (very flexible) refers to that the natural frequency of the tower being lower than the 1P, and (iii) a stiff–stiff (uneconomical design) represents where the natural frequency lies higher than 3P \[48, 49\].

4.1. Mode Shapes and Natural Frequencies

The first six modal shapes of the tower structure are shown in Fig. 4. The most significant dynamic properties of the complete tower structure can be seen from this figure. It will be remarked that the elastic strain of the tower has generally appeared in the top. This is due to the structure being discontinuous in this area. The results show that the 1st and 4th vibration modes are bending deformation along the X-direction in phase or in phase opposition in the YZ plane,
the 2nd and 3rd modes are bending deformation along the Z-direction in phase or in phase opposition in the XY plane, and the 5th and 6th modes are torsional around the Y-axis. This is in good agreement with the fundamental vibration theory of Euler-Bernoulli beam with lumped masses in bending vibration modes [50].
The first 10 sorted natural frequencies for tower structure and their corresponding mode shapes are tabulated in Table 2. As shown, the first 10th lowest natural frequencies of the tower structure are ranging from 1.297 to 14.636 Hz and it is distributed evenly on each order. The natural frequency of 1st and 2nd, 3rd and 4th, 5th and 6th, 8th and 9th are close to each other, respectively. That is because the tower structure is with the axial-symmetrical structure, so the vibration mode shape is also symmetrical, which is consistent with the mechanical structure.

The rotor speed of the wind turbine studied (GAMESA G52/850KW) in this paper lies between 14.6 and 30.8 rpm [38]. This means that the corresponding rotational frequency \(n = f \times 60 \) lies between 0.243 and 0.513 Hz, and the blade passing frequency between \(n = f \times 20 \) 0.729 and 1.539 Hz. According to [32, 36] in the wind turbine industry, a ±1% safety distance should be considered to avoid resonance problem. So, the admissible range of frequencies lies between 0.267 and 1.308 Hz for the rotor speed of 14.6–30.8 rpm. Obviously, the 1st natural frequency of the tower is 1.297 (Table 2), so the corresponding rotor speed is 29.5 rpm. Which indicates when the rotor of the wind turbine runs at the speed of less than or equal to 25.9 rpm it will not have resonant problems and the tower is a stiff-stiff tower design. Furthermore, when the rotor runs at the speed above 25.9 rpm (up to 30.8 rpm), the 1st natural frequency is not close to the corresponding 1P and 3P (the resonance problem does happen in the tower structure) and the tower is a soft-stiff tower design. However, the adequate controller is necessary in order to avoid the corresponding resonant susceptible area of the tower structure.

4.2. Mass participation ratio

The mass participation ratio (MPR) represents a modal contribution for a specific mode and DoF in structures when subjected to force excitation. The MPR is the percentage of the part of structure mass in a specific direction to the total mass without considering stiffness. The MPRs are given by [51, 52]:

\[
X_{\text{mass}} = \sum_{n=1}^{N} \frac{p_{nx}^2}{m_x}, \quad Y_{\text{mass}} = \sum_{n=1}^{N} \frac{p_{ny}^2}{m_y}, \quad Z_{\text{mass}} = \sum_{n=1}^{N} \frac{p_{nz}^2}{m_z} \tag{4}
\]

where \(X, Y \) and \(Z \) are the principal directions of the structure, \(N \) is the number of the modes, \(m_x, m_y \) and \(m_z \) is the mass in its direction and \(p \) is the vibration mode taken under consideration. Several FE Codes require that a minimum 90 percent of the total structure mass in the calculation of response for each principal direction of the participating mass can be considered enough to capture the dominant dynamic response of the structure [9, 53]. In this study, it would require the calculation of 50 modes to obtain the 90% mass participation.

In order to facilitate visualization, only the MPRs for the first 10 modes found in the structure are presented in Fig. 5 and Table 3, the modes with highest MPR in each direction are shown in bold face. These modes are presented in Fig. 6. It can be seen in Table 3, that many modes have little or no mass participation. When the MPRs of 1st, 4th, and 10th modes are considered, it appears that the Z-directions are most critical, the tower structure shows total bending along Z-direction under dynamic load. In the case of 2nd, 3rd, and 9th modes, the tower structure shows total bending along X-direction and in all the modes although the Y-direction values seem zero. The dominant behavior of the tower structure is bending.

5. CONCLUSION

In this present work, the modal behavior of the full-scale actual 55-m-high steel tower of 850 KW wind turbine (GAMESA G52/850) was investigated under the action of wind. A 3D FE model to perform numerical analysis using SolidWorks Simulation computational program. Initially, the vibration of the tower structure was studied to calculate the natural frequencies and their corresponding modes shapes of the structure. There was a very good agreement with the fundamental vibration theory of Euler-Bernoulli beam with lumped masses in bending vibration modes. In the case when the rotor of the wind turbine runs at a speed of less than or equal to 25.9 rpm it will not have resonant problems and the tower is a stiff-stiff tower design. Furthermore, in the case when the rotor runs at the speed of between 25.9 and 30.8 rpm, the adequate controller is necessary in order to avoid the corresponding resonant susceptible area of the tower structure, as the first natural frequency is not close to the corresponding 1P and 3P and the tower is a soft-stiff tower design. Future research work and investigation will be based on the development of buckling and fatigue (service life of the system) analyses.

REFERENCES

[1] H. J. Wagner and J. Mathur, Introduction to Wind Energy Systems, Berlin, Springer, 2018.
[2] S. Mathew and G. S. Philip, Advances in Wind Energy Conversion Technology, Berlin, Springer, 2011.
[3] S. M. Boudia, A. Benmansour, and M. A. Tabet Hellal, "Wind resource assessment in Algeria,” Sustain. Cities Soc., vol. 22, pp. 171–83, 2016.
[4] Renewable Energy and Energy Efficiency Algerian Program, 2016. https://www.energy.gov.dz/francais/uploads/2016/Projets_du_Secteur/Programme_EnR_2016/Plaquette_PENEREE_2016_EN.pdf.
[5] A. Mezidi, O. Guerri, S. M. Boudia, and K. Mohammedi, “Influence of wind data temporal variation in wind resource assessment, two case studies in the southern part of Algeria,” Energy Sourc. Part A: Recovery Utilization Environ. Effects, 2019, https://doi.org/10.1080/15567036.2019.1587063.
[6] H. D. Nediari, S. K. Haddouche, A. Balebouane, and O. Guerri, “Optimal windy sites in Algeria: Potential and perspectives,” Energy, vol. 147, pp. 1240–55, 2018.
J. Zhao and L. Zhang, “Design and static structural analysis of a 2.5 kW combined Darrieus-Savonius wind turbine,” Int. J. Eng. Res. Afr., vol. 30, pp. 94–9, 2017.

A. Cizikova, K. Monkova, J. Markovic, and J. Ciencala, “Numerical and experimental modal analysis of gear wheel,” MM Sci. J. November, pp. 1232–6, 2016, https://doi.org/10.17973/MMSJ.2016_11_201654.

F. Ferroudji, T. Outtas, and C. Khelifi, “Structural dynamics analysis of three-dimensional biaxial sun-tracking system structure determined by numerical modal analysis,” J. Solar Energ. Trans. ASME, vol. 140, no. 3, pp. 31004–11, 2018.

S. Miao, A. Knobbe, E. Koenders, and C. Bosma, “Analysis of traffic effects on a Dutch highway bridge,” in IABSE Symposium, 2013.

O. Salawu, “Detection of structural damage through changes in frequency: a review,” Eng. Structures, vol. 19, no. 9, pp. 718–23, 1995.

J. Zhao and L. Zhang, “Structural damage identification based on the modal data change,” Int. J. Eng. Manufacturing, vol. 2, pp. 59–66, 2012.

Kabertene Wind Farm (Algeria), 2017. Retrieved from https://www.thewindpower.net/windfarm_en_17053_kabertene.php.

N. Stavridou, E. Koltsakis, and C. Baniotopoulos, “Structural analysis and optimal design of steel lattice wind turbine towers,” Proc. Inst. Civil Eng. – Struct. Build., vol. 0, pp. 1–43, 2019.

F. Karpat, “A virtual tool for minimum cost design of a wind turbine tower with ring stiffeners,” Energies, vol. 6, no. 8, pp. 3822–40, 2013.

K. S. A. Kandil, G. N Saudi, B. A. A Eltaly, and M. M. Abo El-khier, “Seismic response of a full-scale wind turbine tower using experimental and numerical modal analysis,” Int. J. Adv. Struct. Eng., vol. 8, pp. 337–49, 2016.

R. S. Jackson and R. Amano, “Experimental study and simulation of a small-scale horizontal-Axis wind turbine,” ASME J. Energ. Resour. Technol., vol. 139, no. 5, p. 051207, 2017.

W. C. Wang, W. T. Chong, and T. H. Chao, “Performance analysis of a cross-axis wind turbine from wind tunnel experiments,” J. Wind Eng. Ind. Aerodyn., vol. 174, pp. 312–29, 2018.

A. Vergaerde, T. D. Troyer, L. Standaert, et al., “Experimental validation of the power enhancement of a pair of vertical-axis wind turbines,” Renew. Energ., vol. 146, pp. 181–7, 2020.

N. Amahjour and A. Khamlchi, “Computational fluid dynamics analysis of the effect of topographic obstacles on extractable power by horizontal axis wind turbines,” Int. Rev. Appl. Sci. Eng., vol. 7, no. 2, pp. 85–94, 2016.

J. Thé and H. Yu, “A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods,” Energy, vol. 138, no. 1, pp. 257–89, 2017.

M. Zheng, L. Zhang, H. P. Teng, J. Hu, and M. L. Hu, “Power efficiency of multi-blade drag typed VAWT by CFD simulation,” Int. Rev. Appl. Sci. Eng., vol. 9, no. 1, pp. 25–9, 2018.

S. Ke, W. Yu, T. Wang, and Y. Ge, “Aerodynamic performance and wind-induced effect of large-scale wind turbine system under yaw and wind-rain combination action,” Renew. Energ., vol. 136, pp. 235–53, 2019.

J. He, X. Jin, S. Xie, et al., “CFD modeling of varying complexity for aerodynamic analysis of H-vertical axis wind turbines,” Renew. Energ., vol. 145, pp. 2658–70, 2020.

A. Staino and B. Basu, “Dynamics and control of vibrations in wind turbines with variable rotor speed,” Eng. Struct., vol. 56, pp. 58–67, 2013.

D. Ju and Q. Sun, “Modeling of a wind turbine rotor blade system,” ASME J. Vibration Acoust., vol. 139, no. 5, p. 051013, 2017.

Z. Wang, A. Suiker, H. Hofmeyer, T. van Hooff, and B. Blocken, “Coupled aero-structural shape and topology optimization of HAWT rotor blades,” in Abstract from 13th World Congress of Structural and Multidisciplinary Optimization, Beijing, China, 2019, pp. 185–185.

E. M. Fagan, M. Flanagan, S. B. Leen, T. Flanagan, A. Doyle, and J. Goggin, “Physical experimental static testing and structural design optimisation for a composite wind turbine blade,” Compos. Struct., vol. 164, pp. 90–103, 2017.

D. G. Choi, C. H. Kwak, S. Y. Lee, J. S. Bae, and H. G. Lee, “Structural design and analyses of a fabric-covered wind turbine blade,” Adv. Compos. Mater., vol. 28, no. 6, pp. 607–23, 2019.

F. Ferroudji and C. Khelifi, “Structural strength analysis and fabrication of a straight blade of an H-Darrieus wind turbine,” J. Appl. Comput. Mech., 2020, https://doi.org/10.22055/jacm.2020.31452.1876.

A. S. Sirqueira, P. C. G. S. Vellasco, J. G. S. Silva, et al., “Computational modelling of the static and dynamic behaviour of wind turbine tower structures,” in CST 2008: The Ninth International Conference on Computational Structures Technology, Athens, Greece, Sep. 2–5, vol. 1, Stirlingshire, Civil-Comp Press, 2008, pp. 1–13.

C. Von der Haar and S. Marx, “Design aspects of concrete towers for wind turbines,” J. South Afr. Inst. Civil Eng., vol. 57, no. 4, pp. 30–7, 2015.

M. H. Wang and M. Ran, “Optimization design of prestressed concrete wind turbine tower,” Sci. China Technol. Sci., vol. 57, no. 2, pp. 414–22, 2014.

J. G. S. Da Silva and B. A. S. Oliveira, “Evaluation of the non-deterministic dynamic response of three-dimensional wind turbine steel towers,” Wind Eng., vol. 42, pp. 364–77, 2018.

M. Zayed, A. Elgamal, G. Saudi, A. K. A. el-aal, and K. El-Zahaby, “Response of A 850 KW wind turbine including soil-structure interaction during seismic excitation,” in Dynamic Soil-Structure Interaction for Sustainable Infrastructures. GeoMEast 2018. Sustainable Civil Infrastructures, D. Choudhury, K. El-Zahaby, and I. Idriiss, Eds., Cham, Springer, 2019.

F. Ferroudji, L. Saihi, and K. Roummani, “Numerical simulations on static and dynamic response of full-scale mast structures for H-darrieus wind turbine,” Wind Eng., pp. 1–16, 2020, https://doi.org/10.1177/0309524X20917318.

Gamesa Company, Manual Gamesa G52-850 KW, Pamplona, Spain, Gamesa Company, Poligono Industrial Agustinos, 2007.

F. J. Buendia, A. V. Rodríguez, E. G. Lázaro, J. A. Fuentes, and A.M. García, “Validation of a mechanical model for fault ride-through: application to a Gamesa G52 commercial wind turbine,” IEEE Trans. Energ. Convers., vol. 28, no. 3, pp. 707–15, 2013.

A. A. Shabana, Computational Dynamics, 3rd ed., UK, Wiley, 2010.

A. Kaveh, Computational Structural Analysis and Finite Element methods, Berlin, Springer, 2014.

F. Ferroudji, T. Outtas, C. Khelifi, and R. Mansouri, “Large-scale dual axis sun tracking system modeling and static analysis by FEM,” Int. J. Mech. Mechatron. Eng. IJMME-IJENS, vol. 14, no. 4, pp. 92–7, 2014.
[42] SolidWorks, 2016, SolidWorks Corporation, 300 Baker Avenue, Concord, MA 01742. Available at: http://www.solidworks.com/.

[43] F. Ferroudji, C. Khelifi, and F. Meguellati, “Modal analysis of a small H-Darrieus wind turbine based on 3D CAD, FEA,” *Int. J. Renew. Energ. Res.*, vol. 6, no. 2, pp. 637–43, 2016.

[44] W Rücker, *Modal Analysis, Handbook of Technical Diagnostics*, Springer, 2013.

[45] A. Girard and N. Roy, *Structural Dynamics in Industry*, UK, Wiley, 2008.

[46] C. Rebelo, A. Moura, H Gervásio, M. Veljkovic, and L. Simões da Silva, “Comparative life cycle assessment of tubular wind towers and foundations – part 1: structural design,” *Eng. Struct.*, vol. 74, pp. 283–91, 2014.

[47] R. Harte and GPAG Van Zijl, “Structural stability of concrete wind turbines and solar chimney towers exposed to dynamic wind action,” *J. Wind Eng. Ind. Aerodyn.*, vol. 95, pp. 1079–96, 2007.

[48] H Söker, “Loads on wind turbine blades,” in *Advances in Wind Turbine Blade Design and Materials*, UK, Woodhead Publishing, 2013, pp. 29–58.

[49] Y. Hu, C. Baiotopoulos, and J. Yang, “Effect of internal stiffening rings and wall thickness on the structural response of steel wind turbine towers,” *Eng. Struct.*, vol. 81, pp. 148–61, 2014.

[50] F. Ferroudji, L. Saihi, and K. Roummani, “Finite element modeling and analysis for modal investigation of a blade H-type Darrieus rotor,” in *Artificial Intelligence and renewables towards an Energy Transition, ICAIRES 2020. Lecture Notes in Networks and Systems*, vol. 174, M. Hatti, Ed., 2020, pp. 416–22. https://doi.org/10.1007/978-3-030-63846-7_39.

[51] P. M. Kurowski, *Vibration Analysis with SolidWorks Simulation 2016*, Mission, KS, SDC Publications 2016, 2016.

[52] R. L. Mayes, T. F. Schoenherr, J. Blecke, and D. P. Rohe, “Efficient method of measuring effective mass of a system,” in *Topics in Experimental Dynamic Substructuring (Conference Proceedings of the Society for Experimental Mechanics Series*, vol. 2, New York, Springer, 2014, pp. 313–20.

[53] E. L. Wilson, *Three-dimensional Static and Dynamic Analysis of Structures*, California, USA, 3rd Computers and Structures, Inc, 2002.

Open Access. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium for non-commercial purposes, provided the original author and source are credited, a link to the CC License is provided, and changes – if any – are indicated.