False discovery rate control with multivariate p-values

Zhiyi Chi
Department of Statistics
University of Connecticut
215 Glenbrook Road, U-4120
Storrs, CT 06269
e-mail: zchi@stat.uconn.edu

Abstract: Multivariate statistics are often available as well as necessary in hypothesis tests. We study how to use such statistics to control not only false discovery rate (FDR) but also positive FDR (pFDR) with good power. We show that FDR can be controlled through nested regions of multivariate p-values of test statistics. If the distributions of the test statistics are known, then the regions can be constructed explicitly to achieve FDR control with maximum power among procedures satisfying certain conditions. On the other hand, our focus is where the distributions are only partially known. Under certain conditions, a type of nested regions are proposed and shown to attain (p)FDR control with asymptotically maximum power as the pFDR control level approaches its attainable limit. The procedure based on the nested regions is compared with those based on other nested regions that are easier to construct as well as those based on more straightforward combinations of the test statistics.

AMS 2000 subject classifications: Primary 62G10, 62H15; secondary 62G20.

Keywords and phrases: Multiple hypothesis testing, pFDR.

Received November 2007.

1. Introduction

In multiple hypothesis tests, it is common to evaluate nulls with univariate statistics. This especially has been the case for tests based on FDR control [2, 12, 13, 16, 20, 22, 23]. On the other hand, for hypotheses on high dimensional data, such as those in classification or recognition for complex signals, multivariate statistics in general are prerequisite for satisfactory results [1, 6, 24]. Such hypotheses each involves a sample of random vectors, from which a multivariate statistic is derived to capture critical features of the sample. Given the conceptual appeal of FDR control, it is natural to ask how it can be achieved using multivariate statistics.

The FDR of a multiple testing procedure is defined as $E[V/(R \vee 1)]$, where R is the number of rejected nulls and V that of rejected true nulls [2]. In addition to FDR, power and pFDR [20] are two important measures to assess the
performance of a procedure. Recall that
\[
\text{power} = E \left[\frac{R - V}{(n - N) \vee 1} \right], \quad \text{pFDR} = E \left[\frac{V}{R \mid R > 0} \right],
\]
where \(n \) is the number of nulls, and \(N \) that of true nulls. The importance of power is well appreciated in the FDR literature [2, 13, 14, 20, 22]. In contrast, the issue of pFDR seems more subtle. Oftentimes, as follow-up actions can ensue only after some rejections are made, pFDR is more relevant than FDR. However, unlike FDR, in general pFDR is not necessarily controllable at a desirable level, say below 0.4. The reason is that in many cases, test statistics cannot provide strong enough evidence to assess the nulls, especially when the data distribution is only partially known and the number of observations for each null is small. The controllability of pFDR can strongly affect power. For the well-known Benjamini-Hochberg (BH) procedure [2], if its FDR control parameter is below the minimum attainable pFDR, then its power tends to 0 as \(n \to \infty \) [7]. In light of this, power and pFDR should be considered together when designing testing procedures.

A direct way to improve power and pFDR control is to collect more observations for each null. However, this may not be feasible due to constraints on resources. On the other hand, if the observations can be viewed from different aspects each containing some unique information, then the aspects may be exploited together to yield more substantive evidence.

The approach of the paper is to first establish FDR control based on multivariate \(p \)-values, and then evaluate power and pFDR control. Among procedures that attain the same pFDR, the one with the highest power is preferred. Section 2 sets up notations and recalls known results. It then gives an example to illustrate when multivariate \(p \)-values may be useful for pFDR control. Section 3 presents a general FDR controlling procedure which uses an arbitrary family of nested regions in the domain of \(p \)-values. Then, it shows that if the data distribution under true nulls and that under false nulls are both known, then the nested regions can be chosen in such a way that the procedure has the maximum power among those with the same pFDR while satisfying certain consistency conditions. However, since full knowledge about data distributions is usually unavailable, the emphasis of the section is FDR control based on nested regions that approximate the optimal regions. Under certain conditions, the approximating regions are ellipsoids under an \(L^\varepsilon \)-norm, where \(\varepsilon > 0 \) in general is a non-integer.

Section 4 analyzes the power of the procedure based on the approximating regions. It shows that under certain conditions, the power is asymptotically maximized as the pFDR tends to the minimum attainable level. The procedure is compared with several others, including those that work “directly” on test statistics instead of \(p \)-values, for example, procedures that rejects nulls with large \(L^a \)-norms of the test statistics. It will be seen that only for \(a < 0 \), the “direct” procedures may attain the same pFDR as the procedure based on the approximating regions. The section also considers a procedure based on nested rectangle regions in the domain of \(p \)-values and shows that it has the same level
of pFDR control as the one based on the approximating regions. Although less powerful, the procedure is simpler to compute.

Section 5 considers examples of t and F statistics. Section 6 reports a simulation study on the procedures considered in previous sections. Section 7 concludes with some remarks. Most of the technical details are collected in the Appendix.

2. Preliminaries

2.1. Notation

Denote by K the dimension of a multivariate p-value. Points in \mathbb{R}^K will be taken as column vectors. With a little abuse of notation, for $f: A \to \mathbb{R}$ with $A \subset \mathbb{R}^K$, $\sup f$ will denote the essential supremum of f, i.e. $\inf\{a: \ell(f^{-1}(a, \infty)) = 0\}$, where $\ell(\cdot)$ is the Lebesgue measure. If $\xi_{i1}, \ldots, \xi_{iK}$ are marginal or conditional p-values under a null H_i, then $\xi_i = (\xi_{i1}, \ldots, \xi_{iK})'$ will be referred to as a multivariate p-value associated with H_i. The discussion is under a random effects model as follows [10, 13]. Denoting by $\theta \in (0, 1)$ the proportion of false nulls and $\theta_i = 1$ if H_i is false,

\begin{equation}
(\theta_i, \xi_i) \text{ are i.i.d. such that } \theta_i \sim \text{Bernoulli}(a) \text{ and given } \theta_i = 0, \xi_{i1}, \ldots, \xi_{iK} \text{ are i.i.d. } \sim \text{Unif}(0, 1), \text{ given } \theta_i = 1, \xi_i \sim G \text{ with density } g.
\end{equation}

The density of ξ_i is then $1 - a + ag$. The assumption that $\xi_{i1}, \ldots, \xi_{iK}$ are independent under true H_i should be checked carefully. Generally speaking, it should be problem-dependent to design test statistics with independent p-values [5]. One situation in which independence may arise is where multiple data sets on the same nulls are collected independently following different protocols, e.g., with different experiment designs being used or different physical attributes being recorded. In this situation, observations in different data sets may not follow the same distributions, and hence cannot be combined into larger i.i.d. samples. Nevertheless, the p-values derived respectively from them can be combined into multivariate p-values with independent coordinates.

Recall that, for univariate p-values ξ_1, \ldots, ξ_n, given FDR control parameter $\alpha \in (0, 1)$, the BH procedure rejects H_i with

$$\xi_i \leq \tau = \sup \left\{ t \in [0, 1]: \frac{t}{\alpha} \leq \frac{R(t) \vee 1}{n} \right\}, \quad R(t) = \# \{ i : \xi_i \leq t \}.$$

Under the random effects model (2.1), the FDR actually realized by the BH procedure is $(1 - \alpha)\alpha$ [3, 11, 22], implying that the FDR can be arbitrarily small. On the other hand, the “local FDR” associated with each H_i is [10]

$$P(\theta_i = 0 | \xi_i) = \frac{1 - a}{1 - a + ag(\xi_i)} \geq \frac{1 - a}{1 - a + a \sup g}.$$

It is not hard to see that the inequality applies to multivariate p-values as well. Then, following [8], the next result can be established.
Proposition 2.1. Under (2.1), for any multiple testing procedure,
\[\text{pFDR} \geq (1 - a)\alpha_*, \quad \text{where} \quad \alpha_* = \frac{1}{1 - a + a\sup g}. \] (2.2)

Oftentimes, as \(\sup g < \infty \), the pFDR is bounded from 0. In particular, if \(a \) is small while \(\sup g \) is only moderately large, the minimum attainable pFDR can be undesirably large. This is the basis of the next example.

2.2. An example

To further illustrate the role multivariate statistics may have for pFDR control, consider tests on \(H_i : \mu_i = (\mu_{X,i}, \mu_{Y,i}) = 0 \) for \(N(\mu_i, \Sigma_i) \). Suppose for each \(H_i \), a sample of \(k \) i.i.d. \((X_{ij}, Y_{ij}) \sim N(\mu_i, \Sigma_i)\) is collected. If it is known that \(\Sigma_i \equiv \text{diag}(1, 1) \) and under false \(H_i \), \(\mu_{X,i} = \mu_{Y,i} = 1 \), then by Neyman-Pearson lemma, among procedures using fixed thresholding, the uniformly most powerful one is to reject \(H_i \) if and only if \(\bar{X}_i + \bar{Y}_i \) is greater than a suitable threshold value, where \(\bar{X}_i = (1/k) \sum_j X_{ij} \) and likewise for \(\bar{Y}_i \). That is to say, in this case univariate statistics are the best choice.

However, in most cases in practice, complete knowledge on data distributions is unavailable. If both \(\Sigma_i \) and \(\mu_i \) under \(H_i \) are unknown, then \(\bar{X}_i + \bar{Y}_i \) cannot be used as test statistics and \(t \) statistics are called for. Imagine a data analyst has computed the \(t \) statistics of \(\bar{X}_{ij} \) and those of \(\bar{Y}_{ij} \) for each \(H_i \), denoted \(t_{X,i} \) and \(t_{Y,i} \), respectively. While FDR control can be done with either \(t_{X,i} \) or \(t_{Y,i} \), the issue here is pFDR control.

Suppose the number of nulls is large and due to constraints on resources, \(k = 9 \) for each \(H_i \). Suppose the data analyst knows that for each \(H_i \), \(\Sigma_i \) is diagonal and that for false \(H_i \), \(\mu_{X,i} > 0 \) and \(\mu_{Y,i} > 0 \). However, he does not know that for false \(H_i \), \(\mu_{X,i}/\sigma_{X,i} = .5 \) and \(\mu_{Y,i}/\sigma_{Y,i} = .4 \), where \(\sigma_{X,i}^2 \) and \(\sigma_{Y,i}^2 \) are the diagonal entries of \(\Sigma_i \). If the fraction of false nulls is 5%, then, by using \(t_{X,i} \) alone, the minimum attainable pFDR is \(\approx .289 \) and, by using \(t_{Y,i} \) alone, the bound is even higher (\(\approx .447 \)). The lower bounds are a consequence of Proposition 2.1. No procedure that only uses \(t_{X,i} \) or \(t_{Y,i} \) can get a pFDR lower than the bounds.

One way to attain lower pFDR is to increase \(k \), which may require significantly more resources. When resources are limited, a sensible solution is to exploit both \(t_{X,i} \) and \(t_{Y,i} \) or, equivalently, their marginal \(p \)-values. This then raises the question of pFDR control using multivariate \(p \)-values.

3. FDR control using nested regions of \(p \)-values

3.1. General description

Let \(\{D_t, 0 \leq t \leq 1\} \) be a family of Borel sets in \([0, 1]^K\) such that
\[D_1 = [0, 1]^K, \quad \ell(D_t) = t, \quad D_s \subset D_t, \quad 0 \leq s < t \leq 1 \]
\(\{D_t\} \) is right-continuous, i.e., \(D_t = \cap_{s > t} D_s, \quad t \in [0, 1) \). (3.1)
The most familiar sets satisfying (3.1) are perhaps $D_t = [0, t]$. Let ξ_1, \ldots, ξ_n be the p-values associated with H_1, \ldots, H_n. Define

$$R(t) = \sum_{i=1}^{n} 1 \{\xi_i \in D_t\}, \quad V(t) = \sum_{i=1}^{n} (1 - \theta_i) 1 \{\xi_i \in D_t\}.$$

Description Given FDR control parameter $\alpha \in (0, 1)$, reject H_i if and only if $\xi_i \in D_{\tau}$, where $\tau = \sup \left\{ t \in [0, 1] : \frac{t}{\alpha} \leq \frac{R(t) \vee 1}{n} \right\}$.

Theorem 3.1. For procedure (3.2), $\text{FDR} = (1 - a)\alpha$.

Proof. Since D_t is right-continuous, $\xi_i \in D_t \iff s_i \leq t$, where

$$s_i = \inf \{ t \in [0, 1] : \xi_i \in D_t \}.$$ (3.3)

Therefore, procedure (3.2) rejects the same set of nulls as the BH procedure applied to s_1, \ldots, s_n does. By $\ell(D_t) = t$, $s_i \sim \text{Unif}(0, 1)$ under true H_i and hence s_i are univariate p-values. Theorem 3.1 then follows from [22].

In general, a nested family of Borel sets in $[0, 1]^K$ can often be parameterized so that procedure (3.2) is applicable to them.

Proposition 3.1. Let $\{\Gamma_u, u \in I\}$ be a family of Borel sets in $[0, 1]^K$, where I is an interval in \mathbb{R}, such that $\Gamma_u \subseteq \Gamma_v$ for $u < v$ and $\{\Gamma_u\}$ is right-continuous. Suppose $h(u) := \ell(\Gamma_u)$ is continuous and strictly increasing with $\inf h = 0$ and $\sup h = 1$. For $t \in (0, 1)$, define $D_t = \Gamma_{h^{-1}(t)}$. Also define $D_0 = \cap \Gamma_u$ and $D_1 = [0, 1]^K$. Then procedure (3.2) based on D_t attains $\text{FDR} = (1 - a)\alpha$.

As $\ell(D_t) = t$, D_t will be referred to as the regularization of Γ_u. Since nested regions naturally occur as decision regions in hypothesis tests, as seen below, by regularization, a test can turn into a FDR controlling procedure.

Example 3.1. (a) Suppose a test rejects a null if and only if $\min \xi_k \leq u$, where $\xi = (\xi_1, \ldots, \xi_K)'$ is the associated p-value and u a threshold value. The corresponding rejection region is $\Gamma_u = \{ \mathbf{x} \in [0, 1]^K : \min \mathbf{x}_k \leq u \}$. Then $\{\Gamma_u, u \in [0, 1]\}$ is an increasing family of sets. Since $h(u) = 1 - (1 - u)^K$, procedure (3.2) applies to $D_t = \Gamma_{h^{-1}(t)}$ with $h^{-1}(t) = 1 - (1 - t)^{1/K}$. Note that, in the Šidák procedure, when K hypotheses are tested simultaneously, $h^{-1}(t)$ is the significance level for each hypothesis in order to attain familywise significance level t.

(b) Suppose a test rejects a null if and only if $\prod \xi_k \leq u$, where $u > 0$ is a threshold value. The corresponding rejection region is $\Gamma_u = \{ \mathbf{x} \in [0, 1]^K : \prod \mathbf{x}_k \leq u \}$. For $K = 2$, $h(u) = u(1 + \ln u)^{-1}$. In general, $h(u) = P(\prod U_k \leq u)$, with U_k i.i.d. $\sim \text{Unif}(0, 1)$. Since $-\ln U_k$ has density $e^{-x} 1 \{ x > 0 \}$, $h(u) = 1 - F_K(-\ln u)$, where F_K is the Gamma distribution with K degrees of freedom and scale parameter 1.
For \(\{D_t, 0 \leq t \leq 1\} \) having a regular representation, procedure (3.2) has an equivalent description more amenable to numerical evaluation. Suppose there is a function \(0 \leq J \leq 1 \), such that \(D_t = \{x \in [0, 1]^K : J(x) \leq t\} \). It is easy to see \(D_1 = [0, 1]^K \) and \(D_t \) is right-continuous for \(t \in [0, 1] \). Since \(s_i = \inf\{t \in [0, 1] : J(\xi_i) \leq t\} = J(\xi_i) \), the next description obtains.

Equivalent Description Given FDR control level parameter \(\alpha \in (0, 1) \),

apply the BH procedure to \(s_i = J(\xi_i) \).

That is, sort \(s_1, \ldots, s_n \) into \(s_{(1)} \leq s_{(2)} \leq \cdots \leq s_{(n)} \). Define \(s(0) = 0 \) and set \(l = \max\{k \geq 0 : s_{(k)}/\alpha \leq k/n\} \). Then reject \(H_i \) if \(s_i \leq s_{(l)} \). \(\square \)

Example 3.1 (continued)

(a) Since \(h(u) = 1 - (1 - u)^K \) is strictly increasing, \(h^{-1} \) and \(D_t = \{x \in [0, 1]^K : \min x_k \leq h^{-1}(t)\} = \{x \in [0, 1]^K : h(\min x_k) \leq t\} \). Therefore \(J(x) = 1 - (1 - \min x_k)^K \).

(b) In this case \(D_t = \{x \in [0, 1]^K : h(\prod x_k) \leq t\} \), where \(h(u) = 1 - F_K(-\ln u) \). Then \(J(x) = 1 - F_K(-\sum \ln x_k) \). For \(K = 2 \), since \(h(u) = u(1 + \ln u^{-1}) \), \(J(x, y) = xy[1 - \ln x - \ln y] \).

3.2. Regions with maximum power under consistency condition

If the distribution under true nulls and that under false nulls are known, then, in light of Neyman-Pearson lemma, it is natural to ask if FDR can be controlled with maximum possible power using the likelihood ratios of the test statistics. Some works have been done on this idea [18, 21]. We next show that the idea is correct under certain conditions and can be realized by procedure (3.2) with an appropriate nested family \(\{D_t, t \in [0, 1]\} \subset [0, 1]^K \).

Let \(X = (X_1, \ldots, X_K)' \in \mathbb{R}^K \) be a test statistic. Suppose that under true nulls, \(X \sim Q_0 \) with density \(q_0 \) and under false nulls, \(X \sim Q_1 \) with density \(q_1 \). Our construction of \(D_t \) is based on a familiar transformation of \(X \) into multivariate p-values. Denote by \(f_k(x_1, \ldots, x_k) \) the marginal density of \(X_1, \ldots, X_k \) under \(Q_0 \). Clearly \(q_0 = f_K \).

Lemma 3.1. Let \(\phi(x) = (\phi_1(x), \ldots, \phi_K(x))', \ x \in \mathbb{R}^K \), such that

\[
\phi_1(x) = Q_0(X_1 \leq x_1), \quad \phi_k(x) = Q_0(X_k \leq x_k | X_s = x_s, \ s < k), \quad k > 1.
\]

Let \(\xi = \phi(X) \), i.e., \(\xi_1 \) is the p-value of \(X_1 \) and for \(k > 1 \), \(\xi_k \) is the conditional p-value of \(X_k \). Suppose i) \(\text{sppt}(q_1) \subset \text{sppt}(q_0) \), where \(\text{sppt}(q) := \{x : q(x) > 0\} \), ii) all \(f_k \) are continuous and iii) \(q_1 \) is continuous on \(\text{sppt}(q_0) \). Then 1) \(\phi : \text{sppt}(q_0) \rightarrow [0, 1]^K \) is continuous and 1-to-1; 2) under true nulls, \(\xi_1, \ldots, \xi_K \) are i.i.d. \(\sim \text{Unif}(0, 1) \); and 3) under false nulls, \(\xi \) has a continuous density \(g(x) := q_1(\phi^{-1}(x))/q_0(\phi^{-1}(x)) \) on \(E := \phi(\text{sppt}(q_0)) \), which is open with \(\ell([0, 1] \setminus E) = 1 \).
Condition i) is not restrictive because hypothesis testing is trivial when \(X = x \in \text{sppt}(q_1) \setminus \text{sppt}(q_0) \) (cf. [18]). Conditions ii) and iii) are used to make sure all the transformations involved on \(X \) are still well-defined random variables. Under these conditions, any rule based on the likelihood ratio of \(X \) has an equivalent based on \(g(\xi) \). In the rest of the section, we will only consider tests on \(p \)-values.

A multiple testing procedure can be regarded as a deterministic or random function \(\delta \) that maps each data point to an \(n \)-tuple \((\delta_1, \ldots, \delta_n)\) with \(\delta_i = 1 \{H_i \text{ is rejected}\} \). In our setup, the data point is an \(n \)-tuple \((\xi_1, \ldots, \xi_n)\) jointly distributed with \(\theta = (\theta_1, \ldots, \theta_n) \). We need two conditions on \(\delta \).

(A) For \(n \geq 1 \), \(\delta \) and \(\theta \) are independent conditional on \(\xi_1, \ldots, \xi_n \), i.e.,

\[
P(\delta = a | \xi_1, \ldots, \xi_n, \theta = b) = P(\delta = a | \xi_1, \ldots, \xi_n), \quad a, b \in \{0, 1\}^n.
\]

Most multiple testing procedures are deterministic functions of test statistics and therefore satisfy condition (A). The condition means that the observed test statistics contain all the available information on \(\theta \); if there is any prior knowledge on \(\theta \), it has already been fully incorporated into \(\xi \) and hence any randomness introduced into \(\delta \) is a “pure guess”.

The second condition imposes some consistency on \(\delta \). For an \(n \)-tuple \(S = (x_1, \ldots, x_n) \) with \(x_i \in [0, 1]^K \), denote \(R(S; \delta) = \sum_{i=1}^{n} \delta_i(S) \) and \(\hat{F}(x; S) \) the empirical distribution function

\[
\hat{F}(x; S) = \# \{ i : x_{ik} \leq x_k, \ k = 1, \ldots, K \} / n.
\]

(B) For any sequence of \(n_k \)-tuples \(S_k \) with \(n_k \to \infty \), if \(\hat{F}(x; S_k) \) converges in the sense that \(\sup_x |\hat{F}(x; S_k) - F(x)| \to 0 \) for a distribution function \(F \), then \(R(S_k; \delta) / n_k \) converges in probability.

Basically, the condition requires that, when \(\delta \) is applied to samples with similar empirical distributions, it should reject similar fractions of nulls from them. Loosely speaking, that means as far as the fraction of rejected nulls is concerned, \(\delta \) has to “stick to” a single way of testing, rather than alternate between different ways for different data sets.

For \(0 \leq u < \infty \), define

\[
\Gamma_u = \{ x \in [0, 1]^K : g(x) \geq u \}. \tag{3.5}
\]

Although \(\{ \Gamma_u \} \) is decreasing instead of increasing, its regularization can be made increasing. Let \(h(u) = \ell(\Gamma_u) \). Then \(h \) is decreasing, \(h(0) = 1 \) and \(h(u) \to 0 \) as \(u \to \infty \). Define \(h^*(t) = \inf \{ u \geq 0 : h(u) \leq t \} \).

Proposition 3.2. Suppose conditions i)–iii) in Lemma 3.1 are satisfied and \(h \) is continuous. Then \(D_t = \Gamma_{h^*(t)} \) satisfies (3.1). Let \(\alpha \in (0, 1) \). Then, among procedures that satisfy conditions (A) and (B) and attain \(\text{FDR} \leq (1 - a)\alpha \), procedure (3.2) with \(D_t \) belongs to those which asymptotically have the maximum power as \(n \to \infty \). Furthermore, the following statements on the procedure hold:
1) it always rejects the same set of nulls as the BH procedure does when applied to \(p_i = h(g(\xi_i)), i = 1, \ldots, n \); 2) for \(\alpha > \alpha_s \), the power is asymptotically positive and \(\text{pFDR} \to \text{FDR} = (1 - a)\alpha \); and 3) for \(\alpha < \alpha_s \), the power is asymptotically 0 and \(\text{pFDR} \to (1 - a)\alpha_s \).

Example 3.2. To illustrate that in general condition (B) is needed in Proposition 3.2, let \(K = 1 \). First consider the case where the \(p \)-values \(\xi_1, \ldots, \xi_n \) are i.i.d. \(\sim F(t) = (1 - a)t + aG(t) \in C^{(1)}([0, 1]) \) such that \(t/F(t) \) is strictly increasing and \(G(t) \) is linear on \([t_1, t_2]\), where \(0 < t_1 < t_2 < 1 \). It is easy to see that \(t/F(t) \) is strictly concave on \([t_1, t_2]\). Given \(c \in (0, 1) \), consider the following randomized procedure. Draw \(U \sim \text{Unif}(0, 1) \). If \(U > c \), reject and only reject nulls with \(\xi_i \in [0, t_1] \); otherwise, reject and only reject nulls with \(\xi_i \in [0, t_2] \). As \(n \to \infty \), the empirical distribution of \(\xi_i \) converges to \(F \). However, conditional on \(U > c \), \(R_n/n \to F(t_1) \), while conditional on \(U < c \), \(R_n/n \to F(t_2) \). Therefore, the procedure satisfies condition (A) but not (B). It can be seen that \(\text{pFDR} \to (1 - a)\alpha \) with \(\alpha = (1 - c)t_1/F(t_1) + cG(t_2) \) and power \(\to (1 - c)G(t_1) + cG(t_2) = G(t_c) \), with \(t_c = (1 - c)t_1 + ct_2 \).

Consider the BH procedure when it is applied to \(\xi_1, \ldots, \xi_n \) with control parameter \(\alpha \). Since \(1/F'(0) < \alpha < 1 \), by [12], the procedure asymptotically has power \(G(t^*) \), where \(t^* \in (0, 1) \) such that \(t^*/F(t^*) = \alpha \). Since \(t/F(t) \) is strictly increasing, \(t_1 < t^* < t_2 \). On the other hand, since \(t/F(t) \) is strictly concave on \([t_1, t_2]\), \(t_c/F(t_c) > \alpha \). As a result, \(t_c > t^* \). Therefore, asymptotically, although the BH procedure has the same \(\text{pFDR} \) level as the randomized procedure, it is strictly less powerful.

Finally, given \(c \in (0, 1) \), by small variation to \(G \) on \([t_1, t_2]\), one can construct \(G \) which is smooth and strictly concave, such that the above conclusions still hold. By Proposition 3.2, the most powerful procedure (3.2) satisfying condition (B) in this case is the BH procedure and hence is strictly less powerful than the randomized procedure at the same \(\text{pFDR} \) level.

As noted in a discussion in [4], by either accepting all nulls with probability \(1 - \alpha \) or rejecting all of them with probability \(\alpha \), it is guaranteed that \(\text{FDR} \leq \alpha \); however, the \(\text{FDR} \) attained in this way is useless, because it cannot say how well one can learn from the data being analyzed. Without some coherence of a procedure, one can hardly make a sensible evaluation of its performance in a particular instance based on a measure defined as a long term average, as the measure incorporates not only the way of testing chosen for the data at hand, but also others that are potentially very different. The same comments apply to \(\text{pFDR} \) as well. Condition (B) aims to impose some coherence, which is possible if the data follows the law of large numbers. This is similar to the ergodicity assumption, whereby long term average can be approximated by an average over a single large sample.

The construction in this section requires full knowledge of the density \(g \), which is often unavaiable. However, if \(g \) is known to possess some regularities, then it is possible to apply procedure (3.2) to regular shaped \(D_n \) with reasonable power. This possibility is explored next.
3.3. Nonconstant approximation of lowest order

In many cases, the following is true for the distribution \(G \) of \(p \)-values under false nulls:

\[
G \text{ has density } g \in C([0,1]^K) \text{ with } g(x) < g(0) < \infty \text{ for all } x \neq 0. \tag{3.6}
\]

Under (3.6), smaller \(p \)-values are stronger evidence against nulls, nevertheless the strength is bounded. By Proposition 2.1, the minimum attainable pFDR is \((1-a)\alpha^*\), where \(\alpha^* \) is now equal to \(1/[1-a+ag(0)] \). Following Taylor’s expansion, suppose for some \(\gamma_k > 0 \) and \(\varepsilon > 0 \),

\[
g(x) = g(0)(1 - \gamma' x^\varepsilon + r(x)) \quad \text{with} \quad r(x) = o(|x|^{-\varepsilon}) \quad \text{as} \quad |x| \to 0, \tag{3.7}
\]

where \(x^\varepsilon \) denotes \((x_1^\varepsilon, \ldots, x_K^\varepsilon)'\). It is perhaps desirable and expected to be true that \(\varepsilon \) is a positive integer. However, under regular conditions, this usually is not the case. As will be seen in Section 5, for the upper-tail \(p \)-values associated with \(t \) or \(F \) statistics, \(\varepsilon \) usually is a fraction of 1. More generally,

\[g(x) = g(0)(1 - \sum \gamma_k x_k^\varepsilon) + o(\sum x_k^\varepsilon) \quad \text{with} \quad \varepsilon_k > 0 \quad \text{possibly different.} \]

However, for simplicity, this case will not be discussed.

Rewrite the region in (3.5) as \(\{ x \in [0,1]^K : g(x) \geq g(0)(1-u) \} \). For \(0 < u \ll 1 \), the region is approximately \(\{ x \in [0,1]^K : \gamma' x^\varepsilon \leq u \} \), suggesting that the latter may be used in procedure (3.4) with reasonable power. In general, for \(\nu = (\nu_1, \ldots, \nu_K)' \) with \(\nu_k \geq 0 \) and \(\sum \nu_k > 0 \), define \(\Gamma_u \) as

\[
\Gamma_u(\nu) = \{ x \in [0,1]^K : \nu' x^\varepsilon \leq u \}. \tag{3.8}
\]

Then by procedure (3.4), the following procedure obtains.

Control based on regions (3.8) Given FDR control parameter \(\alpha \in (0,1) \),

apply the BH procedure to \(s_i = h(\nu' \xi_i; \nu) \), where \(h(u; \nu) = \ell(\Gamma_u(\nu)) = \int_0^1 \cdots \int_0^1 1 \left\{ \sum \nu_k x_k^\varepsilon \leq u \right\} dx. \tag{3.9} \)

Procedure (3.9) is “scale invariant” in \(\nu \), i.e., the set of nulls rejected by using \(\Gamma_u(c\nu) \) is the same for \(c > 0 \). If \(K = 1 \), then the procedure is simply the BH procedure and the parameter \(\nu = \nu_1 \) has no effect on its performance. However, when \(K > 1 \), the power of procedure (3.9) depends on \(\nu \). To analyze the power, denote

\[V_\varepsilon = \int_0^1 \cdots \int_0^1 1 \left\{ \sum x_k^\varepsilon \leq 1 \right\} dx. \]

The next lemma will be used.
Lemma 3.2. Given $\nu = (\nu_1, \ldots, \nu_K)'$ with $\nu_k > 0$, let $\bar{\nu}$ be the geometric mean of ν_k, i.e., $\bar{\nu} = (\nu_1 \cdots \nu_K)^{1/K}$. Then for $0 < u \leq \min \nu_k$,

$$h(u; \nu) = V_\nu \left(\frac{u}{\bar{\nu}} \right)^{K/\varepsilon},$$

(3.10)

$$\int_{\Gamma_u(\nu)} x_k^\nu d\mathbf{x} = \frac{V_\nu}{K + \varepsilon \nu_k} \left(\frac{u}{\bar{\nu}} \right)^{K/\varepsilon + 1}, \quad k = 1, \ldots, K.$$

(3.11)

Furthermore, as $u \downarrow 0$,

$$\int_{\Gamma_u(\nu)} g = g(0) V_\nu \left(1 - \frac{u}{K + \varepsilon} \sum \gamma_k \left(\frac{u}{\bar{\nu}} \right)^{K/\varepsilon} + o(u^{K/\varepsilon + 1}).

(3.12)

3.4. Special cases

In most cases, $h(u; \nu)$ is complicated to evaluate. There are two cases that allow tractable numerical evaluation of $h(u; \nu)$. The first case is $K = 2$. Suppose $\nu_2 \geq \nu_1 > 0$. For $u \geq \nu_1 + \nu_2$, it is clear $h(u; \nu) = 1$. Then $h(u; \nu) = 1$ for $0 < u < \nu_1 + \nu_2$,

$$h(u; \nu) = \left[\left(\frac{u - \nu^*}{\nu_*} \right) \vee 0 \right]^{1/\varepsilon} + \frac{\Gamma(1/\varepsilon)^2}{\varepsilon \Gamma(2/\varepsilon)} \left(\frac{u}{\bar{\nu}} \right)^{2/\varepsilon} + \left(\frac{F \left(\frac{\nu_*}{u}; 1 - \frac{1}{\varepsilon}, 1 + \frac{1}{\varepsilon} \right) - F \left(1 - \frac{\nu^*}{u}; 1 - \frac{1}{\varepsilon}, 1 + \frac{1}{\varepsilon} \right) }{2} \right),$$

(3.13)

where $\nu_* = \min(\nu_1, \nu_2)$, $\nu^* = \max(\nu_1, \nu_2)$ and $F(x; a, b)$ is the Beta distribution with parameters a and b. See Appendix A.1 for a proof of (3.13).

The second case is $\nu_1 = \cdots = \nu_K$ and $\varepsilon = 1$, where $h(u; \nu)$ can be evaluated by recursion. Due to scale invariance, let $\nu_k = 1$. Then

$$h_K(u) := h(u; 1, \ldots, 1) = \int_0^1 \cdots \int_0^1 1 \left\{ \sum x_k \leq u \right\} d\mathbf{x}$$

is piecewise polynomial, such that $h_K(u) = h_{K,|u|}(\{u\})$, where $|u|$ is the largest integer no greater than u, $\{u\} = u - |u|$, and

$$h_{K,i}(t) := h_K(t + i) = \sum_{k=0}^K A_K(i, k) t^k, \quad t \in [0, 1).$$

(3.14)

Since $h_{K,i}(t) \equiv 1$, $h_{K,0}(t) = t^K/K!$ and, for $i = 1, \ldots, K - 1$,

$$h_{K,i}(t) = \int_0^t h_{K-1,i}(t-x) dx + \int_t^1 h_{K-1}(t-x) dx$$

$$= \int_0^t h_{K-1,i}(t-x) dx + \int_t^1 h_{K-1,i-1}(1 + t - x) dx$$

$$= \int_0^t h_{K-1,i}(x) dx + \int_t^1 h_{K-1,i-1}(x).$$
It follows that for \(i = 1, \ldots, K - 1 \) and \(k = 1, \ldots, K \),
\[
\begin{cases}
A_K(0, 0) = \cdots = A_K(0, K - 1) = 0, & A_K(0, K) = 1/K!
\sum_{k=0}^{K-1} A_{K-1}(i-1, k)/(k+1),
A_K(i, k) = \frac{[A_{K-1}(i, k-1) - A_{K-1}(i-1, k-1)]/k}{K}.
A_K(K, 0) = 1, & A_K(K, k) = 0.
\end{cases}
\]

(3.15)

By \(h_1(u) = u \), the initial conditions are \(A_1(0, 0) = 0, A_1(0, 1) = 1 \). These relations together with (3.14) can be used to compute \(h_K(u) \).

4. Analysis of power

Recall that power = \(E[\frac{R - V(n - N)}{\min(0,1)}] \), with \(n \) the number of nulls and \(N \) that of true nulls. As our focus is the case \(n \gg 1 \), we shall consider the limit \(\text{Pow}(\alpha) \) of power at pFDR level \((1 - \alpha) \alpha \) as \(n \to \infty \). In general, closed form formulas for \(\text{Pow}(\alpha) \) are not available. To get a handle on \(\text{Pow}(\alpha) \), our approach is to look at how fast it drops to 0 as \(\alpha \downarrow \alpha^* \), by approximating \(\text{Pow}(\alpha) \) as a linear combination of \((\alpha - \alpha^*)^a \), \(a \in [0, \infty] \), or for that matter, \(G(D_t) \) as a linear combination of \(t^a \), with \(D_t \) a family of nested regions used by procedure (3.2). Thus, the analysis is essentially a type of Taylor’s expansion, which can provide useful qualitative information for comparing powers of different procedures.

Our analysis will only yield approximations of low orders. It remains to be seen how high order approximations can be obtained. In order to apply the results in section 3, we shall assume

\(g \) satisfies (3.6) and (3.7) such that \(\ell(\Gamma_u) \) is continuous

where \(\Gamma_u \) is defined in (3.5).

4.1. Dependence on parameter values

For \(\alpha \) close to \(\alpha^* \), the dependency of the power of procedure (3.9) on \(\nu \) can be characterized as follows.

Proposition 4.1. Fix \(\nu_k > 0 \). Then for procedure (3.9), the minimum attainable pFDR is \((1 - a)\alpha^* \) and

\[
\text{Pow}(\alpha) \sim g(0)V \left(\frac{K + \varepsilon}{\alpha a^2 g(0)} \right)^{K/\varepsilon} \left(\frac{\sum \tilde{\nu} \gamma_k}{\gamma \nu_k} \right)^{(\alpha - \alpha^*)^{K/\varepsilon}} \quad \text{as } \alpha \downarrow \alpha^*.\]

(4.1)

Due to the scale invariance of procedure (3.9), let \(\nu_1 \cdots \nu_K = \gamma_1 \cdots \gamma_K \). Let \(\lambda_k = \gamma_k/\nu_k \). Then \(\sum \tilde{\nu} \gamma_k/\gamma \nu_k = \gamma \sum \lambda_k \), which is minimized under the constraint \(\lambda_1 \cdots \lambda_K = 1 \) if and only if \(\lambda_k \equiv 1 \). It follows that as \(\alpha \downarrow \alpha^* \), \(\text{Pow}(\alpha) \) asymptotically is maximized if \(\nu = \gamma \) and

\[
\sup_{\nu} \text{Pow}(\alpha) \sim g(0)V \left[\frac{1 + \varepsilon/K}{\alpha a^2 g(0)\gamma} \right]^{K/\varepsilon} \left(\frac{\alpha - \alpha^*}{\varepsilon} \right)^{(\alpha - \alpha^*)^{K/\varepsilon}}.
\]
Recall that procedure (3.2) based on the regions in (3.5) has the maximum power for $\alpha > \alpha_*$ among procedures satisfying conditions (A) and (B). The next result says that, at $\nu = \gamma$, procedure (3.9) and this procedure are asymptotically equivalent, i.e., as $\alpha \downarrow \alpha_*$, they not only have about the same power, but also reject about the same sets of nulls.

Proposition 4.2. For $\alpha > \alpha_*$, let $\text{Pow}_\nu(\alpha)$ be the limit of power of procedure (3.2) based on (3.5), and $\text{Pow}(\alpha)$ that of procedure (3.9) with $\nu = \gamma$. Then $\text{Pow}_\nu(\alpha)/\text{Pow}(\alpha) \to 1$, as $\alpha \downarrow \alpha_*$.

Moreover, let \mathcal{V}_α and \mathcal{D}_α be the sets of true nulls and false nulls, respectively, that are rejected by the first procedure and \mathcal{V} and \mathcal{D} those by the second one. Let $r_D(\alpha)$ be the in-probability limit of $|\mathcal{D}_\alpha \triangle \mathcal{D}|/|\mathcal{D}_\alpha \cap \mathcal{D}|$ and $r_V(\alpha)$ that of $|\mathcal{V}_\alpha \triangle \mathcal{V}|/|\mathcal{V}_\alpha \cap \mathcal{V}|$ as $n \to \infty$. Then $r_D(\alpha) \to 0$ and $r_V(\alpha) \to 0$ as $\alpha \downarrow \alpha_*$.

4.2. Other types of nested regions

In order to compare the power of procedure (3.9) and that of procedure (3.2) based on other types of nested regions, the following comparison lemma will be used, which says that if a nested family of regions can “round up” more false nulls, then procedure (3.2) based on the regions has more power.

Lemma 4.1. Let $\{D_{it}\}$, $i = 1, 2$, be two families of Borel sets satisfying (3.1). Suppose $G(D_{it})$ are continuous in t and there is $T \in (0, 1)$, such that for $0 < t \leq T$, $G(D_{it}) < G(D_{2t})$. Given $\alpha \in (\alpha_*, 1)$, for the procedure based on D_{it}, let τ_i be defined as in (3.2). Assume that as $n \to \infty$, $\tau_i \overset{P}{\to} t_i^* \in (0, T)$. Then $\text{Pow}_1(\alpha) < \text{Pow}_2(\alpha)$.

To start with, for $\Gamma_u(\nu)$ in (3.8), by (3.10), the regularization is $D_t = \Gamma_{u(t)}(\nu)$ with $u(t) = \bar{\nu}(t/V_\nu)^{\gamma/K}$. If $0 < t \ll 1$. Then by (3.12),

$$G(D_t) = g(0) \left[1 - \frac{(t/V_\nu)^{\gamma/K}}{K + \varepsilon} \sum_k \frac{\gamma_k}{\nu_k} t + o(t^{\gamma/K + 1}), \right. \text{ as } t \to 0. \tag{4.2}$$

Example 4.1. A common rule is to reject a null if and only if $z = \prod \xi_k$ is small. The rejection regions are $\Gamma_u = \{x \in [0, 1]^K : \prod x_k \leq u\}$. We next show that for $\alpha \approx \alpha_*$, procedure (3.2) based on Γ_u' has strictly less power than procedure (3.9) for any ν with $\nu_1 \cdots \nu_K > 0$. Roughly, the reason is that, for $u \ll 1$, most of Γ_u' is spread around the boundary surfaces $x_k = 0$ where the density of false nulls is lower than that around 0.

First consider $K = 2$. By Example 3.1(b), the regularization of Γ_u' is $D_{2t} = \{(x, y) \in [0, 1]^2 : xy \leq h^{-1}(t)\}$ with $h(u) = u(1 + \ln u^{-1})$. Denote the regularization for $\Gamma_u(\nu)$ by D_{2t}. As $\alpha \downarrow \alpha_*$, $t_i^* \to 0$. Thus, by Lemma 4.1, in order to compare the powers for $\alpha \approx \alpha_*$, it is enough to compare $G(D_{1t})$ and $G(D_{2t})$ for $t \ll 1$. Recall $\int_{D_{it}} dx dy = t$. Fix $a_i \in (0, \gamma_i)$ and $\eta > 0$ such that...
$g(x, y) < g(0)(1 - a_1x^e - a_2y^e)$ for $x, y \in [0, \eta]$. By $G(D_{1t}) = \int_{D_{1t}} g$,

$$G(D_{1t}) \leq g(0) \left[\int_{D_{1t}} dx \, dy - \int_{x^0 < x, y < q_0} (a_1x^e + a_2y^e) \, dx \, dy \right] = g(0) [t - (a_1 + a_2)\eta^e h^{-1}(t)/\varepsilon] + O(h^{-1}(t)^{1+\varepsilon}) \quad \text{as } t \to 0.$$

By (4.2), $G(D_{2t}) = g(0)[t - C t^{1+\varepsilon/2}] + o(t^{1+\varepsilon/2})$ with $C > 0$ a constant. Since $h^{-1}(t)/t^{\varepsilon/2+1} \to \infty$ as $t \to 0$, $G(D_{1t}) < G(D_{2t})$ for $t \ll 1$. Thus by Lemma 4.1, $\text{Pow}_1(\alpha) < \text{Pow}_2(\alpha)$ for $\alpha \approx \alpha_*$. Furthermore, the next result implies $\text{Pow}_1(\alpha) = o(\text{Pow}_2(\alpha))$ as $\alpha \downarrow \alpha_*$.

Proposition 4.3. Under the setup in Lemma 4.1, let D_{2t} be the regularization of the regions $\Gamma_u(\nu)$ in (3.8). If $t_1^* \to 0$ as $\alpha \to \alpha_*$ and

$$D_{1t} \downarrow \{0\} \quad \text{and} \quad \frac{g(0)t - G(D_{1t})}{g(0)t - G(D_{2t})} \to M \in [1, \infty] \quad \text{as } t \to 0,$$

then $\text{Pow}_1(\alpha)/\text{Pow}_2(\alpha) \to (1/M)^{K/\varepsilon}$ as $\alpha \downarrow \alpha_*$.

The case $K > 2$ can be treated likewise; see Appendix A.2.

Example 4.2. Normal quantile transformations of p-values have been used as a convenient representation of data in multiple testing [9]. Denote $\Phi(x) = P(Z \geq x)$ with $Z \sim N(0, 1)$. Let $w_k > 0$, $k = 1, \ldots, K$. Consider the rule that rejects a null if any only if $Q(\xi) = \sum_k w_k \Phi^{-1}(\xi_k)$ is large. The corresponding rejection regions are $\Gamma_u = \{x \in [0, 1]^K : Q(x) \geq u\}$. As $\Phi(\xi) \sim N(0, 1)$ for $\xi \sim \text{Unif}(0, 1)$,

$$\ell(\Gamma_u) = P \left(\sum_{k=1}^K w_k \Phi^{-1}(\xi_k) \geq u \right) = P \left(\sum_{k=1}^K w_k Z_k \geq u \right) = \Phi(u/w) \quad \xi_i \text{ i.i.d. } \sim \text{Unif}(0, 1) \quad Z_i \text{ i.i.d. } \sim N(0, 1),$$

where $w = \sqrt{\sum_k w_k}$. Then the regularization of Γ_u is $D_{1t} = \{x \in [0, 1]^K : Q(x) \geq w \Phi^{-1}(t)\}$. In Appendix A.2, it is shown that

$$\lim_{t \downarrow 0} \frac{\ln[g(0)t - G(D_{1t})]}{\ln t} \leq b := \left[1 - \frac{\varepsilon}{(1 + \varepsilon)K} \right]^{-1}. \quad (4.3)$$

On the other hand, with D_{2t} as in Example 4.1,

$$\lim_{t \downarrow 0} \frac{\ln[g(0)t - G(D_{2t})]}{\ln t} = 1 + \varepsilon/K.$$

For $K > 1$, $b < 1 + \varepsilon/K$. As a result, $g(0)t - G(D_{1t}) \to \infty$ as $t \downarrow 0$. It then follows from Proposition 4.3 that $\text{Pow}_1(\alpha) = o(\text{Pow}_2(\alpha))$ as $\alpha \downarrow \alpha_*$. \qed
Example 4.3 (Nested rectangle regions). An easy way to get nested regions is as follows. Let \(0 \leq f_k(t) \leq 1\) be nondecreasing continuous functions on \([0, 1]\), such that \(\prod f_k(t) = t\) and \(f_k(t) \to 0\) as \(t \to 0\). Let
\[
D_{11} = [0, f_1(t)] \times \cdots \times [0, f_K(t)] = \{ x \in [0, 1]^K : f_k^*(x_k) \leq t, \text{ all } k \},
\] (4.4)
where \(f_k^*(x) = \sup \{ u : f_k(u) < x \} \). Now procedure (3.4) is the BH procedure applied to \(s_i = J(\xi_i) := \max_k f_k^*(\xi_{ik})\). By Appendix A.2,
\[
G(D_{11}) = g(0) \left(1 - \frac{1}{1+\varepsilon} \sum \gamma_k f_k(t)^{\varepsilon} \right) t + o \left(t \sum f_k(t)^{\varepsilon} \right) \quad \text{as } t \downarrow 0. \tag{4.5}
\]
Among all \(f_k\) with \(\prod f_k(t) = t\), \((\tilde{\gamma}/\gamma_k)^{1/\varepsilon} t^{1/K}\) minimize \(\sum \gamma_k f_k(t)^{\varepsilon}\). Thus the maximum of \(G(D_{11})\) is \(g(0)[1 - \tilde{\gamma} K t^{\varepsilon}/K/(1+\varepsilon)]t + o(t^{1+\varepsilon/K})\).

Let \(D_{21}\) be the regularization for \(\Gamma_u(\nu)\). For \(K = 1\), \(D_{11} = D_{21}\). For \(K > 1\), by (4.2), \(G(D_{21})\) is asymptotically maximized with value \(g(0)[1 - \tilde{\gamma} KL t^{\varepsilon}/K]t\) if \(\nu = \tilde{\gamma}\), where \(L = (1/V_\varepsilon)^{2/K}/(K+\varepsilon)\). By Appendix A.3, \(L < 1/(1+\varepsilon)\) for \(K \geq 2\). Thus, for \(\alpha \approx \alpha^*_u\), the maximum power of procedure (3.2) based on \(D_{11}\) is strictly less than the one based on \(D_{21}\). By Proposition 4.3,
\[
\frac{\text{Pow}_1(\alpha)}{\text{Pow}_2(\alpha)} \to \frac{1}{V_\varepsilon} \left(\frac{1+\varepsilon}{K+\varepsilon} \right)^{K/\varepsilon} \in (0, 1), \quad \text{as } \alpha \downarrow \alpha^*_u. \tag{4.6}
\]
Therefore, the power by using the rectangles is of the same order as that by using \(\Gamma_u(\nu)\), albeit lower.

Procedure (3.2) based on rectangles has some advantages, even though the power is not maximum. First, rectangles are much easier to construct than the regularization of \(\Gamma_u(\nu)\). Second, for \(g\) satisfying (3.7), there is no need to know \(\varepsilon\). Indeed, it suffices to try \(f_k(t) = c_k t^{1/K}\) with \(\prod c_k = 1\). By (3.4), the next procedure obtains.

Control based on rectangles. Given FDR control parameter \(\alpha \in (0, 1)\),

\[
\text{apply the BH procedure to } s_i = \left[\max_k \frac{\xi_{ik}}{c_k} \right]^K, \tag{4.7}
\]
where \(c_k > 0\) satisfy \(c_1 \cdots c_K = 1\).

By Appendix A.2, for procedure (4.6),
\[
\text{Pow}(\alpha) \sim g(0) \left(\frac{1+\varepsilon}{\alpha \alpha^*_u g(0)} \right)^{K/\varepsilon} \left(\alpha - \alpha^*_u \right)^{K/\varepsilon} \quad \text{as } \alpha \downarrow \alpha^*_u. \tag{4.8}
\]
In particular, if \(c_k = (\tilde{\gamma}/\gamma_k)^{1/\varepsilon}\), the power is asymptotically maximized.

Now suppose \(\xi_{ik}\) are upper-tail probabilities of test statistics \(X_{ik}\) and \(f_k(t) = t^{1/K}\). Then procedure (4.6) rejects \(H_i\) if and only if \(p_{ik} \leq \tau^{1/K}\) for all \(k\), where \(\tau\) is random. If \(\tau\) is small, then procedure (4.6) may be viewed as one that rejects \(H_i\) with large \(\min_k X_{ik}\), which makes it seem unnatural as \(\max_k X_{ik}\) is more often used in testing. However, it will be seen in Example 4.4 that procedures based on \(\max_k X_{ik}\) in general cannot attain the same level of pFDR control as procedure (4.6).
4.3. Direct combination of test statistics

Procedure (3.9) requires p-values of test statistics. Oftentimes, procedures that only use simple combinations of test statistics seem more desirable because they do not have to evaluate p-values. However, as seen next, in many cases such procedures cannot attain pFDR control levels as low as procedure (3.9), and hence have strictly less power at low pFDR control levels.

We only consider test statistics $X_i = (X_{i1}, \ldots, X_{iK})$ with X_{ik} being independent under false H_i as well as under true H_i. Let X_{ik} follow F_{0k} under true H_i and F_k under false H_i and suppose F_{0k} and F_k have continuous densities f_{0k} and f_k respectively, such that $(0, \infty) \subset \text{sppt}(f_k) \subset \text{sppt}(f_{0k})$. Denote $r_k(x) = f_k(x)/f_{0k}(x)$ with $0/0$ set to 0, and suppose

$$r_k(x) \text{ is strictly increasing on sppt}(f_k) \text{ but } \rho_k := \lim_{x \to \infty} r_k(x) < \infty, \quad (4.8)$$

i.e., for each X_{ik}, larger values are stronger evidence against H_i, however, the strength is bounded. Notice that, under (4.8), $\rho_k > \int r_k(x)f_{0k}(x)\,dx = \int f_k(x)\,dx = 1.$

Let ξ_{ik} be the upper-tail p-value of X_{ik}. Then $\xi_{ik} = F_{0k}(X_{ik}) = 1 - F_{0k}(X_{ik})$. Under false H_i, $\xi_{ik} \sim G_k(u) = 1 - F_k(F_{0k}^{-1}(1 - u))$ with density

$$g_k(u) = \frac{f_k(\phi_k(u))}{f_{0k}(\phi_k(u))}, \text{ where } \phi_k(u) = F_{0k}^{-1}(1 - u). \quad (4.9)$$

Then $\xi_i \sim G(x) = \prod G_k(x_k)$ with density $g(x) = \prod g_k(x_k)$. By (4.8) and (4.9), g_k are strictly decreasing and $g_k(0) = \rho_k \in (1, \infty)$. Then $g(0) = \prod \rho_k = \sup g$ and (3.6) is satisfied. If

$$g_k(u) = g_k(0)[1 - \gamma_k u^r + o(u^r)], \text{ as } u \downarrow 0, \ k = 1, \ldots, K, \quad (4.10)$$

then $g(x)$ satisfies (3.7) and so by Propositions 4.1, the minimum attainable pFDR level for procedure (3.9) is $(1 - a)\alpha_*$, with $\alpha_* = 1/(1 - a + ag(0))$. In the following examples, we shall assume (4.10) holds.

Example 4.4. One common combination of X_{ik} is $M_i = \max_k X_{ik}$. Under true H_i, $M_i \sim \prod F_{0k}$ and, under false H_i, $M_i \sim \prod F_k$. By only using M_i, the minimum attainable pFDR is $(1 - a)/(1 - a + aL)$, where

$$L = \sup_x \frac{\sum_k f_k(x)\prod_{j \neq k} F_j(x)}{\sum_k f_{0k}(x)\prod_{j \neq k} F_{0j}(x)}.$$

In Appendix A.2, it is shown that $L < g(0)$. Thus $(1 - a)/(1 - a + aL) > (1 - a)\alpha_*$. For procedures that reject H_i if and only if M_i is large enough, say, $M_i \geq T$, where $T \gg 1$ is a fixed threshold value, the minimum attainable pFDR can be even higher. Indeed, now pFDR $\geq (1 - a)/(1 - a + aL')$, where

$$L' = \sup_{x \geq T} \frac{1 - \prod_k F_k(x)}{1 - \prod_k F_{0k}(x)} = (1 + \eta_T) \sup_{x \geq T} \frac{\sum_k F_k(x)}{\sum_k F_{0k}(x)} \leq (1 + \eta_T) \max_k \rho_k, \quad \text{with } \eta_T \to 0 \text{ as } T \to \infty.$$
Since \(\max_k \rho_k \) can be much smaller than \(g(0) = \prod_k \rho_k \), the minimum pFDR can be significantly higher than \((1 - \alpha)\alpha_*\).

Example 4.5. Another common combination of \(X_{ik} \) is \(M_i = \sum_k c_k X_{ik} \), where \(c_k > 0 \), such that \(H_i \) is rejected if and only if \(M_i \) is large enough. Without loss of generality, let \(K = 2 \) and \(c_k = 1 \). Suppose \(f_{0k}(x) \sim x^{-s_k} \) and \(f_k(x) \sim \rho_k x^{-s_k} \) as \(x \to \infty \) with \(s_k > 1 \). Then \(g(0) = \rho_1 \rho_2 \). Under true \(H_i \), the density of \(M_i \) is \(\int_0^T f_{01}(t) f_{02}(x-t) \, dt \) and, under false \(H_i \), it is \(\int_0^T f_1(t) f_2(x-t) \, dt \). Then the minimum attainable pFDR by only using \(M_i \) is \((1 - a)/(1 - a + aL)\), where

\[
L = \sup_{x \geq T} r(x), \quad r(x) := \frac{\int_0^x f_1(t) f_2(x-t) \, dt}{\int_0^x f_{01}(t) f_{02}(x-t) \, dt},
\]

with \(T > 0 \) a threshold value. In Appendix A.2, it is shown that \(L < g(0) \). As a result, the minimum attainable pFDR is strictly greater than \((1 - a)\alpha_*\).

The same conclusion holds if \(M_i \) is a weighted \(L^q \)-norm of \(X_i \) with \(q > 0 \), i.e., \(M_i = (\sum_k c_k X_{ik}^q)^{1/q} \). To see this, let \(c_k = 1 \). Under true \(H_i \), \(X_{ik}^q \sim G_{0k}(x) = F_{0k}(x^{1/q}) \), and under false \(H_i \), \(X_{ik}^q \sim G_k(x) = F_k(x^{1/q}) \). Then \(G_{0k}(x) \sim (1/q)x^{-t_k} \) and \(G_k(x) \sim (\rho_k/q)x^{-t_k} \), where \(t_k = (s_k - 1)/q + 1 \). Then the argument for \(\sum_k X_{ik} \) can be applied to \(G_{0k} \) and \(G_k \).

Example 4.6. Under the same conditions as in Example 4.5, assume further that \(f_{0k}(x)/f_{0k}(x) = \rho_k[1 - D_k x^{-d_k} + o(x^{-d_k})] \), with \(D_k \neq 0 \) and \(d_k > 0 \). Note that \(D_k > 0 \). It follows that as \(x_1, \ldots, x_K \to \infty \),

\[
\prod \frac{f_k(x_k)}{f_{0k}(x_k)} = \left[1 - (1 + o(1)) \sum D_k x_k^{-d_k} \right] \times \prod \rho_k.
\]

Therefore, in order to attain pFDR = \((1 - a)\alpha\) with \(\alpha \equiv \alpha_* \), a null \(H_i \) should be rejected if and only if \(v_i := \sum D_k x_k^{-d_k} \) is small. In particular, if \(d_k = d \), then \(v_i^{-1/d} \) is a weighted \(L^{-d} \)-norm of \(X_i \) and hence \(H_i \) is rejected if and only if the norm is large.

Indeed, letting \(\xi_{ik} \) be the upper \(p \)-value of \(X_{ik} \), by the derivations in next section, \(v_i = \sum [1 + o_k(\xi_{ik})] \nu_k \xi_{ik}^{d_k} \), where \(\nu_k = D_k (s_k - 1)^{s_k} \), \(\xi_{ik} = d_k/(s_k - 1) \) and \(o_k(u) \to 0 \) as \(u \to 0 \). Consequently, if \(\epsilon_k \equiv \epsilon \), then the above procedure can be formulated as one based on \(\xi_i \), such that the associated rejection regions are approximately \(\Gamma_\alpha(\nu) \) in (3.9) when contracting to 0. Provided the regularizations of the rejection regions are readily available, they can be used in procedure (3.2) for FDR control as well, with approximately the same power as procedure (3.9) as \(\alpha \downarrow \alpha_* \).

5. Examples of special distributions

We next show \(t \) and \(F \) distributions satisfy (3.6) and (3.7). To this end, some general formulas are needed. Suppose \(X_1, \ldots, X_K \) are test statistics that are independent not only under true nulls but also under false nulls. Let \(F_{0k} \) and
f_{0k} be the marginal distribution and density of X_k under a true null, and F_k and f_k those under a false null.

Suppose that, for some positive constants a, b, c_k, d_k and r_k, $1 \leq k \leq K$,

$$
f_{0k}(x) \sim ac_kx^{-a-1}
$$

$$
f_k(x) = \frac{f_k(x)}{f_{0k}(x)} = r_k - d_kx^{-b} + o(x^{-b}), \quad \text{as } x \to \infty.
$$

Then, as $u \downarrow 0$, $\psi_k(u) := F_{0k}^{-1}(1 - u) \sim (c_k/u)^{1/a}$. Let ξ_k be the upper-tail p-value of X_k and $g_k(u)$ its density. By (4.9) and (5.2), as $u \downarrow 0$,

$$
g_k(u) = r_k - d_k\psi_k(u)^{-b} + o(\psi_k(u)^{-b}) = r_k - c_k^{-b/a} d_k u^{b/a} + o(u^{b/a}),
$$

implying $g_k(0) = r_k$. By independence, ξ has density $g(u) = \prod g_k(u_k)$ which satisfies (3.6) and (3.7). Moreover, the parameters in (3.7) are

$$
\varepsilon = b/a, \quad g(0) = r_1 \cdots r_K, \quad \gamma_k = c_k^{-2} d_k/r_k.
$$

Note that for $F_{0k} = N(0, \sigma^2)$ and $F_k = N(\mu, \sigma^2)$, where $\mu > 0$ and σ is known, (5.3) does not hold, as sup $g_k = \sup f_k/f_{0k} = \infty$. For simplicity, we next only consider $K = 1$ and omit the index k.

5.1. t distribution

Let $F = t_{p, \delta}$, the noncentral t distribution with p dfs and noncentrality parameter $\delta \geq 0$ and $F_0 = t_p = t_{p,0}$. The density of $t_{p, \delta}$ is

$$
t_{p, \delta}(x) = \frac{Ae^{-\delta^2/2}}{(p + x^2)^{(p+1)/2}} \sum_{k=0}^{\infty} C_k(\sqrt{2}\delta)^k \left(\frac{x^2}{p + x^2}\right)^{k/2},
$$

where $A = \frac{\mu^{p/2}\Gamma((p + 1)/2)}{\sqrt{\pi\Gamma(p/2)}}$, $C_k = \frac{1}{k!}\Gamma\left(\frac{p + 1 + k}{2}\right) / \Gamma\left(\frac{p + 1}{2}\right)$.

By $C_0 = 1$, $t_p(x) = AC_0(p + x^2)^{-(p+1)/2} \sim A x^{-p-1}$ as $x \to \infty$. Let $z = 1 - x/\sqrt{p + x^2}$. Then $z \sim (p/2)x^{-2}$ and

$$
\frac{t_{p, \delta}(x)}{t_p(x)} = e^{-\delta^2/2} \sum_{k=0}^{\infty} C_k(\sqrt{2}\delta)^k (1 - z)^k
$$

$$
= e^{-\delta^2/2} \left[\sum_{k=0}^{\infty} C_k(\sqrt{2}\delta)^k - \frac{p}{2x^2} \sum_{k=1}^{\infty} kC_k(\sqrt{2}\delta)^k \right] + o(z).
$$

Consequently, in (5.1) and (5.2), $a = p$, $b = 2$, $c = A/p$, $d = e^{-\delta^2/2} \frac{p}{2} \sum_{k=1}^{\infty} kC_k(\sqrt{2}\delta)^k < \infty$, $r = e^{-\delta^2/2} \sum_{k=0}^{\infty} C_k(\sqrt{2}\delta)^k < \infty$.
Then by (5.4),
\[
\varepsilon = \frac{b}{a} = \frac{2}{p}, \quad \gamma = \frac{1}{2} \left[\frac{p\sqrt{\pi} \Gamma(p/2)}{\Gamma((p+1)/2)} \right]^{2/p} \sum_{k=1}^{\infty} k C_k (\sqrt{2}\delta)^k / \sum_{k=0}^{\infty} C_k (\sqrt{2}\delta)^k .
\]

Clearly, for \(p > 2 \), \(\varepsilon \) is a fraction of 1.

5.2. F distribution

Let \(F = F_{p,q,\delta} \), the noncentral \(F \) distribution with \((p,q) \) df's and noncentrality parameter \(\delta \geq 0 \) and \(F_0 = F_{p,q} = F_{p,q,0} \). Letting \(\rho = p/q \) and \(z = 1/(1 + \rho x) \), \(F_{p,q,\delta} \) has density

\[
f_{p,q,\delta}(x) = \frac{e^{-\delta/2}}{x} (1 - z)^{p/2} z^{q/2} \sum_{k=0}^{\infty} \frac{(\delta/2)^k (1 - z)^k}{k! B(p/2 + k, q/2)} ,
\]

where \(B(x,y) = \Gamma(x)\Gamma(y)/\Gamma(x+y) \). The density of \(F_{p,q} \) is \(f_{p,q}(x) = f_{p,q,0}(x) \).

As \(x \to \infty \), \(z \sim (1/\rho)x^{-1} \). It follows that

\[
f_{p,q}(x) = \frac{1}{B(p/2, q/2)x} (1 - z)^{p/2} z^{q/2} \sim \frac{\rho^{-q/2}}{B(p/2, q/2)} x^{-q/2-1} ,
\]

\[
\frac{f_{p,q,\delta}(x)}{f_{p,q}(x)} = e^{-\delta/2} \sum_{k=0}^{\infty} \frac{C_{p,q,k}}{k!} \left(\frac{\delta}{2} \right)^k (1 - z)^k
\]

\[
= e^{-\delta/2} \left[\sum_{k=0}^{\infty} \frac{C_{p,q,k}}{k!} \left(\frac{\delta}{2} \right)^k - \frac{1}{\rho x} \sum_{k=1}^{\infty} \frac{C_{p,q,k}}{(k-1)!} \left(\frac{\delta}{2} \right)^k \right] + o(z),
\]

where \(C_{p,q,k} = \frac{B(p/2, q/2)}{B(p/2 + k, q/2)} \).

Thus in (5.1) and (5.2),

\[
a = q/2, \quad b = 1, \quad c = \frac{2\rho^{-q/2}}{qB(p/2, q/2)} = \frac{\rho^{-q/2}}{B(p/2, q/2 + 1)}
\]

\[
d = \frac{e^{-\delta/2}}{\rho} \sum_{k=1}^{\infty} \frac{C_{p,q,k}}{(k-1)!} \left(\frac{\delta}{2} \right)^k < \infty, \quad r = e^{-\delta/2} \sum_{k=0}^{\infty} \frac{C_{p,q,k}}{k!} \left(\frac{\delta}{2} \right)^k < \infty
\]

and by (5.4), \(\varepsilon = b/a = 2/q \),

\[
\gamma = \left[B \left(\frac{p}{2}, \frac{q}{2} + 1 \right) \right]^{2/q} \sum_{k=1}^{\infty} \frac{C_{p,q,k}(\delta/2)^k}{(k-1)!} / \sum_{k=0}^{\infty} \frac{C_{p,q,k}(\delta/2)^k}{k!} .
\]

Clearly, for \(q > 2 \), \(\varepsilon \) is a fraction of 1.
6. Numerical study

We report a simulation study on the procedures described in previous sections. The simulations are implemented in R language [17]. We focus on testing mean vectors of multivariate normals with only partial knowledge about their variances. Model (2.1) is used to sample H_1, \ldots, H_n, such that H_i is “$\mu_i = 0$ in $N(\mu_i, \Sigma_i)$” and $1\{H_i \text{ is true}\} \sim \text{Bernoulli}(a)$ with $a = .05$ or $.02$, where $\mu_i \in \mathbb{R}^K$. We mimic the situation where the only available information is 1) under true H_i, Σ_i is diagonal and 2) under false H_i, all the coordinates of μ_i are positive. Since Σ_i are not necessarily the same for different H_i and there is no knowledge on their relations whatsoever, Σ_i cannot be estimated by pooling the observations. Since Σ_i are unknown and the values of μ_i under false H_i are also unknown, the tests have to rely on t-statistics. In the simulations, for each H_i, an i.i.d. sample $X_{i1}, \ldots, X_{i df+1} \sim N(\mu_i, \Sigma_i)$ is drawn and the test statistic is computed as $(T_{i1}, \ldots, T_{ik})'$, where $T_{ik} = \sqrt{df+1} \bar{X}_{ik}/S_{ik}$, with \bar{X}_{ik} and S_{ik} the mean and standard deviation of the k-th coordinates of X_{ij}. It follows that for true H_i, $T_{ik} \sim t_n$ and for false H_i, $T_{ik} \sim t_{df+1}\sqrt{df+1} \bar{X}_{ik}/S_{ik}$, where μ_{ik} is the k-th coordinate of μ_i and σ_{ik} the k-th diagonal entry of Σ_i. The corresponding p-value is $\xi_i = (\xi_{i1}, \ldots, \xi_{ik})'$, with ξ_{ik} the marginal upper-tail p-values of T_{ik} under t_n.

6.1. Bivariate p-values

In this part, we compare procedures (3.9) and (4.6). Throughout, $K = 2$ and FDR control parameter $\alpha = .15$. For true H_i, $N(\mu_i, \Sigma_i) = N(0, I_K)$ and for false H_i, $N(\mu_i, \Sigma_i) = N(\mu, \Sigma(r))$, where the diagonal entries of $\Sigma(r)$ are equal to 1 and off-diagonal entries equal to $2r/(1+r^2)$. For $r = 0$, the coordinates of ξ_i are independent under false H_i. To examine the effect of dependency between the coordinates of ξ_i under false H_i, we also simulate with $r = \pm 1/5$. Each simulation makes 2000 runs, each run tests 5000 nulls. The (p)FDR and power are computed as Monte Carlo averages of the runs.

We conduct 3 groups of simulations, corresponding to $(\mu, n) = (.6, 2.8), (.5, .5), (2, 2)$, respectively (Table 1). In each group, procedures (3.9) and (4.6) are implemented for 6 pairs of a and $\Sigma(r)$, with $a = .05, .02$ and $r = 0, \pm 1/5$. For the pairs with $r = 0$, $\alpha_s = 1/[1-a+aq(0)]$ is calculated using (5.4) and the results in Section 5.1. The value of α_s as well as those of $\varepsilon = 2/n$.

μ, df	$\alpha_s, \alpha_{s+1}, \alpha_{s+2}$ $(a = .05, .02)$	γ	ε	
1 (.6, 2), 8	$9.57 \times 10^{-5}, .18, .47$	$2.31 \times 10^{-2}, .36, .69$	(5.82, 3.51)	1/4
2 (.5, .5), 8	$9.05 \times 10^{-5}, .30, .30$	$2.23 \times 10^{-2}, .52, .52$	(46.81, 46.81)	1/4
3 (2, 2), 2	$2.88 \times 10^{-2}, .44, .44$	$6.90 \times 10^{-2}, .67, .67$	(27.69, 27.69)	1

Table 1
Parameters of the simulations in Section 6.1. The values of α_s, γ and $\varepsilon = 2/df$ are computed for the case where the coordinates of p-value are independent.
\(\gamma_1 \) and \(\gamma_2 \) are given in Table 1. As is seen, for all the pairs \(\alpha = .15 > \alpha_s \), so pFDR = \((1 - a)\alpha\) is attainable by the procedures. On the other hand, if only the \(i \)th \((i = 1, 2)\) coordinate of the \(p \)-value is used, pFDR = \((1 - a)\alpha\) is not attainable because in this case the minimum attainable pFDR is \((1 - a)\alpha_{si} \) with \(\alpha_{si} > .15 \).

For \(r = 0 \) and \(\alpha \approx \alpha_s \), by Proposition 4.1 and (4.7), procedures (3.9) and (4.6) approximately reach their respective maximum power at pFDR level \((1 - a)\alpha\) if \(\nu_k = \gamma_k \) in (3.9) and \(c_k = c_k^{(0)} := (\gamma/\gamma_k)^{1/\varepsilon} \) in (4.6). To see how the powers depend on \(\nu_k \) and \(c_k \) for \(\alpha = .15 \), the procedures are tested with

\[
\begin{align*}
\nu &= (\nu_1, \nu_2) = (s^{\varepsilon}\gamma_1, \gamma_2/s^{\varepsilon}) \quad \text{for procedure (3.9)}, \\
c &= (c_1, c_2) = (sc_1^{(0)}, c_2^{(0)}/s) \quad \text{for procedure (4.6)},
\end{align*}
\]

where \(s > 0 \) is a tuning parameter. The reason why \(s^{\varepsilon} \) instead of \(s \) is used for \(\nu \) will be seen later. For \(r = \pm1/5 \), the procedures are tested with the same sets of values \(\nu \) and \(c \) as well. For groups 1 and 2, (3.13) is used to calculate \(h(u; \nu) \) for procedure (3.9). For group 3, as \(\varepsilon = 1 \), (3.15) is used.

The plots of power and (p)FDR vs \(\log_2 s \) are shown in Figures 1–3 and labeled with “e” and “r” for procedures (3.9) and (4.6), respectively. The label “e” refers to “ellipsoid”, due to the similarity of the nested regions in procedure (3.9) to Euclidean ellipsoids. For most of the plots, \(a = .05 \). The results for \(a = .02 \) are qualitatively the same, except that the power is lower and the pFDR is harder to control. For illustration, Figure 1 includes the plots of power and (p)FDR for \((\mu, \text{df}) = (.6, .2, 8), r = 0 \) and \(a = .02 \).

The results show that for \(\alpha \) significantly greater than \(\alpha_s \), the power may still exhibit patterns similar to that for \(\alpha \approx \alpha_s \). First, by Proposition 4.1 and (4.7), for \(\alpha \approx \alpha_s \), the maximum power of procedure (3.9) is strictly greater than that of (4.7). The left panels of Figures 1–3 show that this remains to be the case for \(\alpha = .15 \). Second, for \(\nu \) and \(c \) as in (6.1), as \(\alpha \approx \alpha_s \), for both procedures, the power is approximately proportional to \((s^{\varepsilon} + 1/s^{\varepsilon})^{-K/\varepsilon} \). As a result, the power curves of the procedures should be approximately symmetric, decreasing in \(|\log_2 s| \) and parallel to each other. This holds quite well for \(\alpha = .15 \), except for the plots for procedure (4.6) in Figure 1, which exhibit moderate asymmetry that may be attributable to the unequal marginal distributions of the coordinates of the \(p \)-values.

In (6.1), it is necessary to use \(s^{\varepsilon} \) to tune \(\nu \) in order to get a power curve parallel to the one for procedure (4.6). For \(t \) distributions with df > 2, \(\varepsilon < 1 \), suggesting that procedure (3.9) is more sensitive to the change in \(\nu \) than procedure (4.6) is to the change in \(c \). However, since \(\varepsilon \) is known, as the results show, the sensitivity is easy to address. For df = 2, \(\varepsilon = 1 \) and hence the power of procedure (3.9) is uniformly greater than that of procedure (4.6) (Figure 3).

The results also demonstrate the difference between pFDR and FDR. In the simulations, the FDR remains constant. However, as power decreases, the pFDR increases, sometimes quite rapidly. Unless power is high enough, the pFDR is strictly greater than the FDR. Note that this observation is made when the number of tested nulls is 5000. In theory, if power is positive, then pFDR → FDR.
Fig 1. Power and (p)FDR vs log s for procedures (3.9) and (4.6): group 1 (cf. Section 6.1). Rows 1-3, $a = .05, r = 0, 1/2, -1/2$. Row 4, $a = .02, r = 0$.

Z. Chi/FDR with multivariate p-values
as the number of nulls tends to ∞. The observed discrepancy between the pFDR and FDR is due to the fact that the number of nulls is not large enough for the asymptotic to take effect.

Finally, as seen from Figures 1 and 2, statistical dependency between the coordinates of the test statistics may have significant influence on power and pFDR control. Nevertheless, the modality and symmetry of the power curves are quite stable. Furthermore, the effects of correlations are not obvious in Figure 3, where $\varepsilon = 1$ and the joint distribution of the p-values is symmetric. This apparent stability remains to be explained.
6.2. Comparison with other procedures

In this part, we take $K \geq 2$ and compare procedures (3.9) and (4.6) with the methods in Examples 4.1, 4.4 and 4.5. The first method rejects H_i with small $\prod_k \xi_{ik}$, the second one rejects H_i with large $\max_k T_{ik}$ and the third one rejects H_i with large $\sum_k T_{ik}$. We refer to the methods as “by-product”, “by-max” and “by-sum”, respectively.

The basic setup in this part is as follows. For true H_i, $N(\mu_i, \Sigma_i) = N(0, I_K)$ and for false H_i, $N(\mu_i, \Sigma_i) = N(\mu, \Sigma(r))$, where $\Sigma(r) = [1 + (K - 1)r^2]^{-1} M' M$ with $M_{jk} = 1 \{j = k\} + 1 \{j \neq k\} r$. The diagonal entries of $\Sigma(r)$ are therefore 1.

As in Section 6.1, FDR control parameter $\alpha = .15$, $a = .05, .02$ and $r = 0, \pm 1/5$.
We conduct 7 groups of simulations with the values of \((\mu, n)\) given in Table 2. Each simulation makes 3000 runs, each run tests 6000 nulls. The \((p)\text{FDR}\) and power are computed as Monte Carlo averages of the runs.

For \(K > 2\), unless \(\varepsilon = 1\), the evaluation of \(h(u; \nu)\) in procedure (3.9) is rather difficult. To get around this problem, by (3.10), we approximate the procedure by replacing \(h(u; \nu)\) with \(V_\varepsilon(u/\bar{\nu})^{K/\varepsilon}\) for all \(u \in [0, 1]\). A more difficult issue is how to compare the procedures and the methods. One idea is to compare their powers at the same pFDR level \((1 - a)\alpha\). However, by Examples 4.1, 4.4 and 4.5, for the values of \((\mu, df)\) in Table 2, except for the 7th one, no method attains pFDR < \(\alpha = .15\). For this reason, we choose to examine the \((p)\text{FDR}\) levels of the methods when they have the same power as either procedure at pFDR level \((1 - a)\alpha\). The steps are as follows. Take the by-product method and procedure (3.9) for example. Suppose the latter rejects \(D\) false nulls when applied to \(\xi_\mu\). If \(D > 0\), then sort \(\prod_k \xi_{ik}\) in increasing order, keep rejecting the sorted nulls, starting from the first one, until \(D\) false nulls are rejected; if \(D = 0\), then reject no null. In this way, the number of rejected true nulls of the by-product method is minimized while the number of rejected false nulls is the same as procedure (3.9).

In each group, for each combination of \(a\) and \(\Sigma(r)\), procedures (3.9) and (4.6) are simulated with \(\nu_k = \gamma_k\) and \(c_k = (\tilde{\gamma}/\gamma_k)^{1/\varepsilon}\), which are approximately the parameter values yielding maximum power for \(\alpha \approx \alpha_*\). For each procedure, the by-product, by-max and by-sum methods are compared to it in the way described above. The results are reported in Tables 3–6. In groups 1–6, procedure (3.9) has more power than (4.6), often with a large margin. In all the cases where both procedures are able to control the pFDR around \((1 - a)\alpha\), the methods have substantially higher FDR and pFDR when their powers are matched to that of procedure (3.9) or (4.6). The results show that the methods either cannot control the pFDR at the level of \((1 - a)\alpha\) (which is indeed the case) or, alternatively, they can only control the pFDR with much lower power than procedures (3.9) and (4.6).

Unlike groups 1–6, in group 7, each coordinate of the vector of \(t\)-statistics provides strong evidence to identify false nulls. By only using the 1st or 3rd coordinate, the minimum attainable pFDR is \(2.4 \times 10^{-5}\) for \(a = .05\) and \(6 \times 10^{-5}\).
Simulation results for groups 1 and 2 described in Section 6.2. In each group, the results are organized according to $r = 0, 1/5, -1/5$. The numbers in the rows for the “by-product” method are its FDR and pFDR as its power is pegged to procedure (3.9) or (4.6). The numbers in the rows for the “by-sum” and “by-max” methods are likewise.

Group 1	$a = .05$	$a = .02$
Power	.223	.155
	7.70 x 10^{-2}	5.49 x 10^{-2}
FDR, pFDR	.141, .141	.142, .142
By-product	.250, .250	.204, .204
By-sum	.307, .307	.283, .283
By-max	.654, .654	.633, .633
Power	.351	.316
	.210	.181
FDR, pFDR	.142, .142	.142, .142
By-product	.297, .297	.264, .264
By-sum	.333, .333	.310, .310
By-max	.721, .721	.709, .709
Power	.461 x 10^{-2}	3.12 x 10^{-2}
	1.10 x 10^{-2}	9.28 x 10^{-3}
FDR, pFDR	.143, .156	.148, .165
By-product	.194, .213	.174, .197
By-sum	.296, .326	.284, .321
By-max	.721, .721	.709, .709
Power	.486	.329
	.268	.173
FDR, pFDR	.142, .142	.143, .143
By-product	.337, .337	.242, .242
By-sum	.538, .538	.520, .520
By-max	.809, .809	.792, .792
Power	.580	.539
	.457	.412
FDR, pFDR	.142, .142	.142, .142
By-product	.441, .441	.389, .389
By-sum	.588, .588	.567, .567
By-max	.852, .852	.845, .845
Power	.316	.138
	3.91 x 10^{-2}	2.78 x 10^{-2}
FDR, pFDR	.143, .143	.142, .143
By-product	.291, .291	.221, .223
By-sum	.546, .546	.568, .572
By-max	.785, .785	.763, .767

for $a = .02$, and by only using the 2nd coordinate, the value is even lower. As Table 6 shows, procedures (3.9) and (4.6) identify all the false nulls. Since almost all the p-values of false nulls are smaller than those of true nulls, due to how the by-product method is implemented, it rejects very few true nulls and hence has near-zero (p)FDR. The same is true for the other two methods. The pFDR of procedure (3.9) is significantly lower than $(1 - a)\alpha$, because the approximation we use for $h(u; \nu)$, i.e. $V_\epsilon(u/\bar{\nu})^{K/\epsilon}$, is strictly greater than $h(u; \nu)$.
Table 4
Simulation results for groups 3 and 4 described in Section 6.2.

Group	Proc. (3.9)	Proc. (4.6)	Proc. (3.9)	Proc. (4.6)
Power	.272	.197	.105	.144
FDR, pFDR	.142, .142	.143, .143	.149, .149	.144, .144
By-product	.328, .328	.279, .279	.344, .363	.303, .330
By-sum	.570, .570	.572, .572	.733, .775	.713, .776
By-max	.789, .789	.781, .781	.833, .880	.892, .873
Power	.444	.409	.291	.257
FDR, pFDR	.142, .142	.142, .142	.149, .149	.150, .150
By-product	.404, .404	.368, .368	.455, .455	.416, .416
By-sum	.584, .584	.573, .573	.749, .749	.745, .745
By-max	.829, .829	.824, .824	.913, .913	.901, .910
Power	.444	.409	.291	.257
FDR, pFDR	.142, .142	.142, .142	.149, .149	.150, .150
By-product	.404, .404	.368, .368	.455, .455	.416, .416
By-sum	.584, .584	.573, .573	.749, .749	.745, .745
By-max	.829, .829	.824, .824	.913, .913	.901, .910

Finally, in order to see how procedures (3.9) and (4.6) perform when the parameters ν and c are not set to their respective asymptotically optimal values, we simulate groups 1 and 2 again, with $\nu = c = (1, 1, \ldots, 1)$. As Table 7 shows, across the simulations, for each procedure, the power is lower than in Table 3 but not dramatically while the (p)FDR is quite stable. The (p)FDR levels of the other 3 methods tend to be lower than in Table 3. As in group 7, this can be explained by how the methods are implemented.
Table 5
Simulation results for groups 5 and 6 described in Section 6.2.

Group 5	Proc. (3.9)	Proc. (4.6)	Proc. (3.9)	Proc. (4.6)	
Power	a = .05	.772	.733	.372	.342
FDR, pFDR	.143, .143	.143, .143	.149, .149	.148, .148	
By-product	.267, .267	.246, .246	.280, .281	.271, .271	
By-sum	.387, .387	.373, .373	.529, .530	.527, .528	
By-max	.585, .585	.570, .570	.697, .698	.691, .692	
Power	a = .02	.773	.755	.432	.411
FDR, pFDR	.142, .142	.143, .143	.149, .149	.148, .148	
By-product	.283, .283	.272, .272	.295, .295	.288, .288	
By-sum	.403, .403	.395, .395	.535, .536	.532, .533	
By-max	.607, .607	.599, .599	.716, .717	.712, .712	

Group 6

Proc. (3.9)	Proc. (4.6)	Proc. (3.9)	Proc. (4.6)		
Power	a = .05	.776	.722	.497	.447
FDR, pFDR	.143, .143	.143, .143	.146, .146	.147, .147	
By-product	.239, .239	.207, .207	.259, .259	.237, .237	
By-sum	.295, .295	.269, .269	.391, .391	.377, .377	
By-max	.540, .540	.513, .513	.654, .654	.639, .639	
Power	a = .02	.771	.747	.538	.510
FDR, pFDR	.142, .142	.142, .142	.148, .148	.149, .149	
By-product	.258, .258	.240, .240	.278, .278	.263, .263	
By-sum	.315, .315	.301, .301	.410, .410	.399, .399	
By-max	.571, .571	.557, .557	.685, .685	.676, .676	
Power	a = .02	.773	.711	.476	.425
FDR, pFDR	.143, .143	.143, .143	.148, .148	.148, .148	
By-product	.233, .233	.200, .200	.257, .257	.235, .235	
By-sum	.288, .288	.262, .262	.388, .388	.375, .375	
By-max	.530, .530	.501, .501	.646, .646	.631, .631	

7. Discussion

7.1. Role of p-values

We have followed the tradition of using p-values for hypothesis testing. The general procedure in the work, i.e., (3.2), utilizes the fact that the p-value of a continuous multivariate statistic can be defined in such a way that its coordinates are i.i.d. $\sim \text{Unif}(0, 1)$. The interpretation of p-value as a measure on how “rare” or “suspicious” an observation looks is irrelevant, even though in many cases smaller p-values are indeed more likely to be associated with false nulls.
Thus, in this work, p-values serve as a mechanism to “flatten” the probability landscape of true nulls and hence facilitates exploring subtle differences between true and false nulls.

Since what essentially matters to procedure (3.2) is nested events with specific probabilities, it can be easily modified to directly handle test statistics instead of their p-values. Indeed, in (3.2), $D_t \in [0,1]^K$ can be replaced with nested E_t in the domain of the test statistics, such that $P(E_t) = t$ under true nulls. Analysis on the power of the modification might yield some useful insight. For example, weighted L^2 norms are commonly used as criterion for acceptance/rejection. However, as shown in Examples 4.5 and 4.6, in more challenging cases, one may need to consider L^p norms with $p < 0$. On the other hand, the modification does not simplify the testing problem, as probabilities still have to be evaluated. Nevertheless, as remarked next, the notion of using nested regions in spaces other than $[0,1]^K$ is useful.

7.2. Incorporating discrete components

Often times, test statistics have nontrivial discrete components. For example, test statistics for different nulls may have different dimensions or degrees of freedom. In this case, the discrete component may be expressed as a scalar. However, if the test statistics are multivariate but only partially observed, then the discrete component in general have to be set-valued accounting for observed coordinates. Procedure (3.2) can be modified as follows. Suppose Z is the discrete component of test statistic T such that for any z, the conditional distribution of T given $Z = z$ has a density and is $K(z)$ dimensional. Then, in

Group 7	$\alpha = .05$	$\alpha = .02$		
	Proc. (3.9)	Proc. (4.6)	Proc. (3.9)	Proc. (4.6)
Power	1	1	1	1
FDR, pFDR	.103, .103	.142, .142	.118, .118	.146, .146
By-product	0, –	–	0, –	–
By-sum	1.2×10^{-6}, –	–	5.0×10^{-6}, –	–
By-max	3.1×10^{-3}, –	–	5.4×10^{-3}, –	–
Power	1	1	1	1
FDR, pFDR	.103, .103	.143, .143	.118, .118	.148, .148
By-product	1.2×10^{-6}, –	–	0, –	–
By-sum	3.6×10^{-6}, –	–	1.3×10^{-5}, –	–
By-max	5.7×10^{-3}, –	–	9.6×10^{-3}, –	–
Power	1	1	1	1
FDR, pFDR	.103, .103	.143, .143	.119, .119	.148, .148
By-product	0, –	–	0, –	–
By-sum	0, –	–	2.7×10^{-6}, –	–
By-max	2.9×10^{-3}, –	–	4.9×10^{-3}, –	–
Table 7
Simulation results for groups 1 and 2. The setting is similar to that in Table 3, except that \(\nu \) in (3.9) and \(c \) in (4.6) are set equal to \((1,1,\ldots,1)\) instead of according to \(\gamma \).

Group 1	Proc. (3.9)	Proc. (4.6)	Proc. (3.9)	Proc. (4.6)
Power	.206	.138	6.94 \times 10^{-2}	4.88 \times 10^{-2}
FDR, pFDR	.143, .143	.143, .143	.146, .159	.144, .163
By-product	.240, .240	.191, .191	.236, .257	.203, .231
By-sum	.302, .302	.278, .278	.405, .411	.378, .430
By-max	.650, .650	.626, .627	.700, .762	.657, .746
Power	.340	.293	.199	.166
FDR, pFDR	.143, .143	.143, .143	.147, .147	.146, .146
By-product	.286, .286	.242, .242	.315, .315	.271, .272
By-sum	.326, .326	.296, .296	.443, .443	.419, .420
By-max	.717, .717	.701, .701	.835, .835	.823, .824

Power	3.78 \times 10^{-2}	2.55 \times 10^{-2}	1.06 \times 10^{-2}	8.55 \times 10^{-3}
FDR, pFDR	.140, .155	.142, .166	.146, .279	.144, .289
By-product	.175, .196	.154, .182	.107, .227	.108, .247
By-sum	.284, .318	.267, .316	.210, .446	.196, .448
By-max	.495, .554	.453, .537	.313, .666	.286, .654

Group 2	Proc. (3.9)	Proc. (4.6)	Proc. (3.9)	Proc. (4.6)
Power	.458	.300	.248	.155
FDR, pFDR	.142, .142	.142, .142	.147, .147	.148, .148
By-product	.317, .317	.226, .226	.378, .378	.296, .297
By-sum	.533, .533	.519, .519	.734, .734	.739, .741
By-max	.806, .806	.788, .788	.901, .901	.889, .892
Power	.562	.508	.441	.388
FDR, pFDR	.142, .142	.142, .142	.145, .145	.145, .145
By-product	.420, .420	.353, .353	.483, .483	.412, .412
By-sum	.581, .581	.554, .554	.738, .738	.723, .723
By-max	.850, .850	.840, .840	.925, .925	.920, .920

(3.2), redefine \(D_t \) as a nested subsets in the disjoint union of \([0,1]^{K(z)}\), such that \(\sum 2 \ell(D_t \cap [0,1]^{K(z)}) p_z = t \), where \(p_z \) is the probability of \(Z = z \) under true nulls. The analysis in previous sections still works and requires no substantial extra changes.

An apparently simpler alternative is to conduct separate tests on statistics with different values of the discrete components. This alternative fails to take into account the distribution of the discrete components and hence may have lower power.
7.3. Power optimization

When the distribution under false nulls is only partially known, it can be a difficult issue how to attain maximum power. To see this better, consider testing the null \(\mu = 0 \) for \(\mathcal{N}(\mu, I) \) based on a single observation \(X \). As the variance is known to be \(I \), the most powerful test statistic would be \(\nu'X \), provided that the true value \(\nu \) of \(\mu \) under false nulls is known. However, when \(\nu \) is unknown, unless there is strong evidence on its whereabouts, one has to search in a large region of \(\nu \) to improve the power, which becomes more difficult as the dimension of \(\nu \) gets higher.

One way to improve power is to restrict the search to parametric families of nested regions. This is the approach taken in Section 3.3. If the parameter involved is of high dimension, some type of stochastic optimization [19] may be needed. On the other hand, regions that attain maximum power may consist of several disconnected regions, which makes it difficult to use a single parametric family of nested regions to approximate them. An alternative way therefore is to try different families of nested regions at different locations in the domain of \(p \)-values and combine the results appropriately [7].

Appendix

In this section, we shall denote \(I = [0,1]^K \).

A.1. Theoretical details for Section 3

Proof of Proposition 3.1. Since \(D_0 = \emptyset \) and \(D_1 = I \), it suffices to show that \(D_t, t \in (0,1) \) satisfy (3.1). Observe that \(h^{-1} \) is continuous and strictly increasing on \((0,1)\). Then, as \(\Gamma_u \) is right-continuous, \(D_t \) is right-continuous. It is clear that \(D_t \) is increasing and \(\ell(D_t) = \ell(\Gamma_{h^*(t)}) = h(h^*(t)) = t. \)

Proof of Lemma 3.1. 1) The following “sandwiched convergence” is needed: if \(0 \leq a_n(x) \leq b_n(x) \) such that \(a_n(x) \to a(x), b_n(x) \to b(x) \) a.e. and \(\int b_n \to \int b < \infty \), then \(\int a_n \to \int a \). For each \(k \), denote by \(g(x_1, \ldots, x_k) \)

\[
\int_{-\infty}^{x_k} f_k(x_1, \ldots, x_{k-1}, z) \, dz = \int f_k(x_1, \ldots, x_{k-1}, z) \mathbf{1} \{ z \leq x_k \} \, dz.
\]

The function in the second integral is dominated by \(f_k(x_1, \ldots, x_{k-1}, z) \). If \((x_1, \ldots, x_k) \to (y_1, \ldots, y_k) \), then, by the continuity of \(f_k \) and \(f_{k-1} \),

\[
\int f_k(x_1, \ldots, x_{k-1}, z) \, dz = f_{k-1}(x_1, \ldots, x_{k-1}) \to \int f_k(y_1, \ldots, y_{k-1}, z) \, dz.
\]
By the sandwiched convergence, \(g(x_1, \ldots, x_k) \to g(y_1, \ldots, y_k) \). Thus, \(g \) is continuous. As \(\phi_k(x) = g(x_1, \ldots, x_k)/f_{k-1}(x_1, \ldots, x_{k-1}) \) for \(x \in \text{sppt}(q_0) \), \(\phi_k(x) \) is continuous in \(\text{sppt}(q_0) \). Therefore, \(\phi \in C(\text{sppt}(q_0)) \).

Let \(x, y \in \text{sppt}(q_0) \). Suppose \(x \neq y \) such that \(x_i = y_i \) for \(i < k \) and \(x_k < y_k \). Then \(\phi_k(x) \leq \phi_k(y) \). Assume equality holds. Then

\[
0 = [\phi_k(y) - \phi_k(x)]f_{k-1}(x_1, \ldots, x_{k-1}) \\
= \int \cdots \int_{x_k} q_0(x_1, \ldots, x_{k-1}, z, u_{k+1}, \ldots, u_K) \, dz \, du_{k+1} \cdots du_K.
\]

Since \(q_0 \) is continuous, the above formula implies \(q_0(x_1, \ldots, x_{k-1}, z, u_{k+1}, \ldots, u_K) = 0 \) for \(z \in [x_k, y_k] \) and \(u_{k+1}, \ldots, u_K \in \mathbb{R} \), in particular, \(q_0(x) = q_0(y) = 0 \). The contradiction implies \(\phi_k(x) < \phi_k(y) \) and so \(\phi(x) \neq \phi(y) \).

2) Let \(X \sim Q_0 \). Then \(P(X \in \text{sppt}(q_0)) = 1 \). Since \(\phi \in C(\text{sppt}(q_0)) \), \(\xi = \phi(X) \) is a well-defined random variable. For \(x \in \text{sppt}(q_0) \), by 1), conditional on \(X_i = x_i \), \(i < k \), \(X_k \) has a continuous distribution and hence \(\xi_k \sim \text{Unif}(0, 1) \). Since the conditional distribution of \(\xi_k \) is the same regardless of \(x_1, \ldots, x_{k-1} \), \(\xi_k \) is independent of \(X_1, \ldots, X_{k-1} \) and thus independent of \(\xi_1, \ldots, \xi_{k-1} \). This gives \(\xi \sim \text{Unif}(I) \).

3) Let \(X \sim Q_1 \). As in 2), \(\xi = \phi(X) \) is a well-defined random variable. Denote \(r = q_1/q_0 \). For \(t \in \mathbb{R}^K \),

\[
E[e^{it\xi}] = E_{Q_0} \left[e^{it\xi} r(X) \right] = E_{Q_0} \left[e^{it\xi} r(\phi^{-1}(\xi)) \right],
\]

where the first equality holds since \(\text{sppt}(q_1) \subset \text{sppt}(q_0) \) and \(r(X) \) is a well-defined random variable due to \(r \in C(\text{sppt}(q_0)) \). Since \(\phi \) is 1-to-1 and continuous on \(\text{sppt}(q_0) \), \(E := \phi(\text{sppt}(q_0)) \) is open and \(\phi^{-1} \in C(E) \) [15]. As \(I = E_0(\xi \not\in E) = 0 \), \(r(\phi^{-1}(x)) \) is Borel measurable on \(I \) and by 2), the last expectation equals \(\int_I e^{it\xi} r(\phi^{-1}(x)) \, dx \). Thus, the characteristic function of \(\xi \) under \(Q_1 \) is the same as that of a random variable with density \(r(\phi^{-1}(u)) \), \(u \in I \). Since \(r(\phi^{-1}(u)) \in C(E) \), this proves 3).

\(\square \)

To show Proposition 3.2, we need a few preliminary results. Recall \(p_i = h(g(\xi_i)) \).

Lemma A.1.1. Let \(h \) be continuous. Then 1) \(p_i \leq t \iff \xi_i \in D_i \) and 2) under the assumptions of Lemma 3.1,

\[
P(p_i \leq t) = \begin{cases}
 t & \text{if } H_i \text{ is true} \\
 G(D_i) & \text{if } H_i \text{ is false}
\end{cases}, \quad t \in [0, 1],
\]

and \(G(D_i) \) is strictly concave.

Proof. It can be seen that \(p_i \) is a well-defined random variable and for \(t \in [0, 1] \),

\[
h(\xi_i(t)) = t.
\]

Then \(p_i \leq t \iff g(\xi_i) \geq h(t) \iff \xi_i \in D_i \). Under true \(H_i \),

\[
P(p_i \leq t) = t \text{. Under false } H_i, P(p_i \leq t) = \int_{D_i} g = G(D_i).
\]

Given
0 \leq t_1 < t_2 < t_3 \leq 1$, let $u_k = h^*(t_k)$. By the continuity of h, $t_k = h(u_k)$ and $u_1 > u_2 > u_3$. As $D_{t_k} = \Gamma_{u_k}$,

$$r_k := \frac{G(D_{t_{k+1}}) - G(D_{t_k})}{t_{k+1} - t_k} = \frac{1}{h(u_{k+1}) - h(u_k)} \int_{\Gamma_{u_{k+1}} \setminus \Gamma_{u_k}} g(x) \, dx.$$

Since $h(u_k) = \ell(\Gamma_{u_k})$ and $g(x) \in (u_{k+1}, u_k]$ on $\Gamma_{u_{k+1}} \setminus \Gamma_{u_k}$, $u_{k+1} < r_k \leq u_k$. As a result, $r_1 > r_2$. Therefore, the distribution of p_i is strictly concave. \qed

Lemma A.1.2. Let η_1, \ldots, η_n be independent Bernoulli random variables such that $p_i = P(\eta_i = 1)$ are decreasing. Let $S = \eta_1 + \cdots + \eta_n$. Then $E[\eta_i/(S \vee 1)]$ is decreasing.

Proof. Let $i < j$. Then η_i, η_j and $X = S - \eta_i - \eta_j$ are independent, giving

$$E \left[\frac{\eta_i}{S \vee 1} \right] = p_i E \left[\frac{1}{1 + \eta_j + X} \right], \quad E \left[\frac{\eta_j}{S \vee 1} \right] = p_j E \left[\frac{1}{1 + \eta_i + X} \right].$$

Since $p_i \geq p_j$, $(1 + \eta_j + X)^{-1}$ stochastically dominates $(1 + \eta_i + X)^{-1}$. Therefore, $p_i E[(1 + \eta_i + X)^{-1}] \geq p_j E[(1 + \eta_j + X)^{-1}]$. \qed

Lemma A.1.3. Let $s_n, \eta_1, \ldots, \eta_n \in [0, 1]$ be jointly distributed, such that $s_n \overset{P}{\rightarrow} s \in [0, 1]$ as $n \to \infty$ and η_i are i.i.d. $\sim F$. Let F_n be the empirical distribution of η_1, \ldots, η_n. If F is continuous and strictly increasing on $[0, 1]$, then $F_n^*(s_n) \overset{P}{\rightarrow} F^*(s)$.

Proof. Recall $\sup |F_n - F| \overset{P}{\rightarrow} 0$. Let $x_n = F_n^*(s_n)$ and $x = F^*(s)$. Since F is continuous, $s = F(x)$. Suppose $x \in (0, 1)$. Given $\epsilon \in (0, x)$, by $F_n(x - \epsilon) < s_n$, $\{x_n > x + 2\epsilon\} \subset \{s_n > F_n(x + \epsilon)\}$. By $s_n \overset{P}{\rightarrow} s = F(x)$ and $F_n(x + \epsilon) \overset{P}{\rightarrow} F(x + \epsilon) > F(x)$, $P\{x_n > x + 2\epsilon\} \to 0$. On the other hand, $\{x_n < x - \epsilon\} \subset \{s_n \leq F_n(x - \epsilon)\}$. By $F_n(x - \epsilon) \overset{P}{\rightarrow} F(x - \epsilon) < F(x)$, $P\{x_n < x - \epsilon\} \to 0$. Therefore, $x_n \overset{P}{\rightarrow} 0$. The case where $x = 0$ or 1 is similarly proved. \qed

Proof of Proposition 3.2. First, since $h \in C$ is decreasing, $\cap_{s > t} D_s = \cap_{s > t} \Gamma_{h^*(s)} = \cap_{s > t} \{g(x) \geq h^*(s)\} = \cap_{s > t} \{h(g(x)) \leq s\} = \{h(g(x)) \leq t\} = \{g(x) \geq h^*(t)\} = D_t$, proving the right-continuity of D_t. By the continuity of h, $\ell(D_t) = \ell(\Gamma_{h^*(t)}) = h(h^*(t)) = t$. The rest of (3.1) is easy to check.

Denote by N the number of true nulls, and for any given procedure, denote by R and V the numbers of rejected nulls and rejected true nulls, respectively. We shall show i) procedure (3.2) with D_t satisfies conditions (A) and (B) and attains $\text{FDR} = (1 - a)\alpha$; ii) the search for procedures with maximum power can be restricted to those that reject and only reject nulls with largest $g(\xi_i)$; and iii) for such a procedure, R/n converges in probability to a nonrandom number. From these results, the proof will follow without much difficulty.
i) By Lemma A.1.1 1), procedure (3.2) with $D_{t} = \Gamma_{h^{*}(t)}$ is the same as the BH procedure applied to p_{1}, \ldots, p_{n}. Therefore, statement 1) holds and $\text{FDR} = (1 - a)\alpha$ [2, 22]. Since the set of rejected nulls is uniquely determined by ξ_{1}, \ldots, ξ_{n}, the procedure satisfies condition (A).

Recall $\alpha_{*} = 1/(1 - a + a \sup \varrho)$. By Lemma A.1.1 2), $F(t) = (1 - a)t + aG(D_{t})$ is strictly concave. Then

$$\alpha_{*} = \lim_{u \to \sup \varrho} \frac{1}{1 - a + aG(\Gamma_{u})/\ell(\Gamma_{u})} = \frac{1}{F'(0)}.$$

For $\alpha \in (\alpha_{*}, 1)$, $t/\alpha = F(t)$ has a unique positive solution $t_{*} \in (0, 1)$. Since p_{i} are i.i.d. $\sim F$, by [12], for τ in (3.2), $\tau \overset{P}{\to} t_{*}$ as $n \to \infty$ and procedure (3.2) asymptotically has the same power as the one that rejects H_{i} with $p_{i} \leq t_{*}$. By the law of large numbers, $R/n \overset{P}{\to} F(t_{*})$. On the other hand, for $\alpha < \alpha_{*}$, by [7], $R/n \overset{P}{\to} 0$. In either case, condition (B) is satisfied.

ii) Given $\xi_{1}, \ldots, \xi_{n}, \theta_{1}, \ldots, \theta_{n}$ are independent Bernoulli variables with

$$r_{i} := P(\theta_{i} = 1 | \xi_{1}, \ldots, \xi_{n}) = \frac{ag(\xi_{i})}{1 - a + ag(\xi_{i})}.$$

Sort r_{i} into $r_{(1)} \geq r_{(2)} \geq \ldots \geq r_{(n)}$. Let ϱ be a procedure satisfying condition (A). Then $R = \sum_{i=1}^{n} \delta_{i}$ and $V = \sum_{i=1}^{n} (1 - \theta_{i})\delta_{i}$. By condition (A), θ_{i} is conditionally independent of (δ_{i}, R) given ξ_{1}, \ldots, ξ_{n}. Then

$$E[V | \xi_{1}, \ldots, \xi_{n}, R] = \sum_{i=1}^{n} E[(1 - \theta_{i})\delta_{i} | \xi_{1}, \ldots, \xi_{n}, R]$$

$$= \sum_{i=1}^{n} (1 - r_{i})E[\delta_{i} | \xi_{1}, \ldots, \xi_{n}, R] \geq \sum_{i=1}^{R} (1 - r_{(i)}),$$

where the last inequality is due to $R = \sum_{i=1}^{n} \delta_{i}$. Then

$$\text{FDR} = E \left[\frac{E[V | \xi_{1}, \ldots, \xi_{n}, R]}{R \lor 1} \right] \geq E \left[\frac{1}{R \lor 1} \sum_{i=1}^{R} (1 - r_{(i)}) \right]$$

with equality being true if rejected nulls are exactly those with the R largest r_{i}.

On the other hand, since $N = \sum_{i=1}^{n} \theta_{i}$, by Lemma A.1.2,

$$E \left[\frac{R - V}{N \lor 1} \right] = \sum_{i=1}^{n} E \left[\frac{\theta_{i} \delta_{i}}{N \lor 1} \right]$$

$$= \sum_{i=1}^{n} E \left[\frac{\theta_{i}}{N \lor 1} \right] E[\delta_{i} | \xi_{1}, \ldots, \xi_{n}, R]$$

$$\leq \sum_{i=1}^{R} E \left[\frac{\theta_{(i)}}{N \lor 1} \right]$$

$$ \leq \sum_{i=1}^{R} E \left[\frac{\theta_{(i)}}{N \lor 1} \right]$$
where \(\theta_{(i)} \) corresponds to the null with the \(i \)th largest \(r_i \). Then

\[
\text{power} \leq E \left[\sum_{i=1}^{R} E \left[\frac{\theta_{(i)}}{N \vee 1} \xi_1, \ldots, \xi_n \right] \right].
\]

Note that \(r_i \geq r_j \iff g(\xi_i) \geq g(\xi_j) \iff p_i \leq p_j \). Construct procedure \(\delta' \) which first applies \(\delta \) and then, provided \(\delta \) rejects \(R \) nulls, rejects nulls with the \(R \) smallest \(p_i \) instead. It follows that 1) if \(\delta \) has FDR \(\leq (1 - \alpha) \alpha \), then so does \(\delta' \); 2) \(\delta' \) is at least as powerful as \(\delta \); 3) if \(\delta \) satisfies condition (A), then, as the second step of \(\delta' \) is uniquely determined by \(\xi_1, \ldots, \xi_n \), \(\delta' \) satisfies condition (A) as well; and 4) since \(\delta \) and \(\delta' \) reject the same number of nulls, if one satisfied condition (B), the other does as well.

iii) Let \(\delta \) satisfy conditions (A), (B) and attain maximum power asymptotically while having FDR \(\leq (1 - \alpha) \alpha \). As \(n \rightarrow \infty \), the empirical distribution of \(\xi_1, \ldots, \xi_n \) converges to the distribution that has density \(1 - a + ag(x) \). By condition (B), \(R/n \overset{p}{\rightarrow} \) some \(t_\alpha \in [0, 1] \). Let \(F_n \) be the empirical distribution of \(p_i \). Then \(F_n \overset{p}{\rightarrow} F \). Since \(F \) is strictly concave and continuous, \(F \) is strictly increasing. By Lemma A.1.3, \(F_n^*(R/n) \overset{p}{\rightarrow} F^*(s) \). Since \(\delta \) rejects and only rejects nulls with \(p_i \leq F_n^*(R/n) \), \(\delta \) is asymptotically equivalent to a procedure which rejects and only rejects nulls with \(p_i \leq t_\alpha = F^*(s) \). If \(t_\alpha > 0 \), by the law of large numbers and dominate convergence, as \(n \rightarrow \infty \),

\[
\text{FDR} = (1 + o(1))E \left[\frac{\# \{i : p_i \leq t_\alpha, \theta_i = 0 \}}{\# \{i : p_i \leq t_\alpha \} \vee 1} \right] \rightarrow \frac{(1 - \alpha)t_\alpha}{F(t_\alpha)},
\]

\[
\text{power} = (1 + o(1)) E \left[\frac{\# \{i : p_i \leq t_\alpha, \theta_i = 1 \}}{\# \{i : \theta_i \leq t_\alpha \} \vee 1} \right] \rightarrow G(D_{t_\alpha}).
\]

In order to attain maximum power while maintaining FDR \(\leq (1 - \alpha) \alpha \), \(t_\alpha \) has to be the largest value of \(t \) satisfying \(t/F(t) \leq \alpha \). It is easy to see that for \(\alpha \in (\alpha_*, 1) \), \(t_\alpha \) is the unique positive solution of \(t/\alpha = F(t) \). Combined with part i) of the proof, this shows procedure (3.2) with \(D_i = G_{k^*}^t(i) \) can be taken as \(\delta \). Furthermore, in this case, power \(\rightarrow G(D_{t_\alpha}) > 0 \) and since \(P(R > 0) \rightarrow 1 \), pFDR \(\rightarrow (1 + o(1))(1 - \alpha) \alpha \). Thus 2) is proved.

On the other hand, for \(\alpha < \alpha_* \), no \(t > 0 \) satisfies \(t/F(t) \leq \alpha \). As a result, \(t_\alpha = 0 \). Thus, the power of \(\delta \) is asymptotically 0 and procedure (3.2) with \(D_i \) again can be taken as \(\delta \). Furthermore, by [7], the procedure has pFDR \(\rightarrow (1 - \alpha)\alpha_* \). This proves 3).

\[\square\]

Proof of Lemma 3.2. By change of variable \(x_k = (u/v_k)^{1/\varepsilon} z_k \), for \(0 < u \leq \min v_k \),

\[
h(u; \nu) = \int I \{ \nu' x^\varepsilon \leq u \} \, dx = \int I \{ \sum z_k^\varepsilon \leq 1 \} \prod \left(\frac{u}{v_k} \right)^{1/\varepsilon} \, dz,
\]
which yields (3.10). Likewise,
\[
\int_{I} x_k^\top 1\{u'x^\varepsilon \leq u\} \, dx = \frac{\nu}{\nu_k} \left(\frac{u}{\nu}\right)^{K/\varepsilon + 1} \int_{I} z_k^\top 1\left\{\sum z_k^\varepsilon \leq 1\right\} \, dz.
\]
By symmetry,
\[
\int_{I} z_k^\top 1\left\{\sum z_k^\varepsilon \leq 1\right\} \, dz = \frac{1}{R} \int_{I} \left(\sum z_k^\varepsilon \right) 1\left\{\sum z_k^\varepsilon \leq 1\right\} \, dz.
\]
By symmetry, \(V_\varepsilon(u) := \ell(\{z \in \mathbb{R}^K : z_k \geq 0, \sum z_k^\varepsilon \leq u\}) = V_\varepsilon u^{K/\varepsilon}\) and change of measure, the right hand side equals \((1/K) \int_{0}^{1} t \, dV_\varepsilon(t) = V_\varepsilon/(K+\varepsilon) \). It is then easy to get (3.11). Finally, by (3.7),
\[
\int_{\Gamma_u(\nu)} g = g(0) \left(h(u; \nu) - \sum \gamma_k \int_{\Gamma_u(\nu)} x_k^\top dx \right) + g(0) \int_{\Gamma_u(\nu)} r.
\]
As \(u \to 0\), \(\sup_{\Gamma_u(\nu)} |x| \to 0\), implying \(r(x)/|x|^\varepsilon \to 0\) uniformly on \(\Gamma_u(\nu)\), and by (3.11), \(\int_{\Gamma_u(\nu)} r = o(u^{K/\varepsilon + 1})\), which together with (3.10) yields (3.12).

Proof of (3.13). Let \(\nu_1 < \nu_2\) without loss of generality. For \(0 < u < \nu_1 + \nu_2\), \(h(u; \nu)\) is equal to
\[
\int_{0}^{1} 1\{\nu_1 x^\varepsilon \leq u - \nu_2\} \, dx + \int_{0}^{1} 1\{u - \nu_2 < \nu_1 x^\varepsilon \leq u\} \left(\frac{u - \nu_1 x^\varepsilon}{\nu_2}\right)^{1/\varepsilon} \, dx.
\]
The first integral on the right hand side equals \([u - \nu_2]/\nu_1\] if \(u \geq \nu_2\) and 0 otherwise. By variable substitution \(z = \nu_1 x^\varepsilon/\nu_2\), the second integral equals
\[
\frac{1}{\varepsilon} \left(\frac{u^2}{\nu_1 \nu_2}\right)^{1/\varepsilon} \int_{0}^{\nu_1/\nu_2} 1\{1 - \frac{\nu_2}{u} < z \leq 1\} z^{1/\varepsilon - 1}(1-z)^{1/\varepsilon} \, dz
\]
\[
= \frac{\Gamma(1/\varepsilon)^2}{2\varepsilon \Gamma(2/\varepsilon)} \left(\frac{u^2}{\nu_1 \nu_2}\right)^{1/\varepsilon} \left[F\left(\frac{\nu_1}{u} \wedge 1\right) - F\left(\left(1 - \frac{\nu_2}{u}\right) \vee 0\right) \right],
\]
where \(F\) is the Beta distribution function with parameters \(1/\varepsilon\) and \(1/\varepsilon + 1\). Since \(F(x \wedge 1) = F(x)\) and \(F(x \vee 0) = F(x)\), this yields the proof. □

A.2. Theoretical details for Section 4

Proof of Proposition 4.1. Denote \(h(u) = h(u; \nu)\) and \(D_i\) the regularization of \(\Gamma_u(\nu)\) defined in (3.8). Let \(Z_i = \nu'\xi_i^\varepsilon\). Under true \(H_i\), since \(\xi_i \sim \text{Unif}(I)\), \(P(Z_i \leq u) = h(u)\). Since \(h\) is continuous, \(h(Z_i) \sim \text{Unif}(0, 1)\). On the other hand, under false \(H_i\), \(P(h(Z_i) \leq t) = P(\nu'\xi_i^\varepsilon \leq h^*(t)) = G(\Gamma_{h^*(t)}(\nu)) = G(D_i)\), so by (4.2), the density of \(h(Z_i)\) at 0 is \(g(0)\). Because procedure (3.9) is the BH procedure applied to \(h(Z_i)\), it follows that its minimum attainable pFDR is \((1 - a)\alpha_s\).
To get (4.1), let $F(t) = (1 - a)t + aG(D_t)$ and t_* the maximum solution to $F(t) = t/\alpha$. Then

$$G(D_{t_*}) = \left(\frac{1}{\alpha a} - \frac{1}{a} + 1\right) t_* = \left(\frac{1}{\alpha a} - \frac{1}{\alpha_s a} + g(0)\right) t_*.$$

Replacing the left hand side by (4.2), it is seen that as $\alpha \downarrow \alpha_*$,

$$\frac{(t/V_\varepsilon)^{\varepsilon/K}}{K + \varepsilon} \sum \frac{\gamma_k}{\nu_k} \sim \frac{\alpha - \alpha_*}{aa_*^2 g(0)} \implies t_* \sim V_\varepsilon \left(\frac{K + \varepsilon}{aa_*^2 g(0)} \right) \sum \frac{\bar{\nu}_k}{\nu_k} \left(\alpha - \alpha_*\right)^{K/\varepsilon}.$$

Clearly, as $\alpha \downarrow \alpha_*$, $t_* \rightarrow 0$. If $G(D_t)$ is strictly concave, then by [12], $\text{Pow}(\alpha) = G(D_{t_*}) \sim g(0)t_*$, which, combined with the asymptotic of t_*, proves (4.1). However, it is not clear whether $G(D_t)$ is strictly concave in general. To get around the problem, we use the following argument. Let τ_0 be defined as in (3.2), where n is the total number of nulls. The goal is to show that, given $0 < \eta < 1$, as $0 < \alpha - \alpha_* \ll 1$,

$$P((1 - \eta)t_* < \tau_0 < (1 + \eta)t_*) \rightarrow 1, \quad \text{as } n \rightarrow \infty. \quad (A.1)$$

If this holds, then it is easy to see that $G(D_{(1-\eta)t_*}) \leq \text{Pow}(\alpha) \leq G(D_{(1+\eta)t_*})$. As $G(D_{(1+\eta)t_*}) \sim (1 \pm \eta) g(0)t_*$ and η is arbitrary, (4.1) then follows.

The remaining part of the proof is for (A.1). By (4.2),

$$\frac{F(t)}{t} = 1 - a + \frac{aG(D_t)}{t} = \frac{1}{\alpha_*} - Ct^{\varepsilon/K} + o(t^{\varepsilon/K}), \quad \text{as } t \rightarrow 0,$$

where $C > 0$ is a constant. By this expansion, there is $0 < \delta \ll 1$, such that

$$\inf_{s \leq (1-\eta)t_*} \frac{F(s)}{s} > \frac{F(t)}{t}, \quad \sup_{(1+\eta)t_* \leq s \leq \delta} \frac{F(s)}{s} < \frac{F(t)}{t}, \quad \text{for } 0 < t < \delta.$$

By $g \in C(I)$ and $g(x) < g(0)$ for $x \neq 0$, for $t > 0$, $G(D_t)/t < g(0)$, yielding $F(t)/t < 1/\alpha_*$. Thus, for $0 < \alpha - \alpha_* \ll 1$, $\sup_{t \geq \delta} F(t)/t > 1/\alpha$. On the other hand, $t_* \in (0, \delta)$. Consequently,

$$\inf_{s \leq (1-\eta)t_*} \frac{F(s)}{s} > \frac{1}{\alpha_*}, \quad \sup_{(1+\eta)t_* \leq s \leq 1} \frac{F(s)}{s} < \frac{1}{\alpha}.$$

Because the empirical distribution of $h(Z_i)$ converges to F in probability, the above inequalities imply (A.1).

Corollary A.2.1. For procedure (3.4) using $\Gamma_a(\nu)$, H_i is rejected if and only if $\nu^T \xi_i^T \leq \zeta$, where $\zeta = \zeta_n$ is a random variable such that given $0 < \eta \ll 1$, for $0 < \alpha - \alpha_* \ll 1$, $P(|\zeta - v_*| \leq \eta v_*) \rightarrow 1$ as $n \rightarrow \infty$, where

$$v_* \sim C(\nu)(\alpha - \alpha_*), \quad \text{with } C(\nu) = \frac{K + \varepsilon}{aa_*^2 g(0)} \sum \frac{\gamma_k}{\nu_k}. \quad (A.2)$$
Proof. Let \(\zeta = h^*(\tau) \), where \(h(u) = h(u; \nu) \) and \(\tau \) is as in the proof of Proposition 4.1. Then \(H_t \) is rejected \(\iff h\left(\nu \xi^*_t\right) \leq \tau \iff \nu \xi^*_t \leq \zeta \). Let \(v_* = h^*(t_*) \). Since \(h^*(t) = \nu(t/V^*y/K) \) for \(0 < t \ll 1 \), the result follows from the asymptotics of \(\tau \) and \(t_* \).

Proof of Proposition 4.2. For ease of notation, integration over \(\mathbf{x} \) will be implicitly restricted in \(I \). First consider Pow\(_\alpha\)(\(\alpha \)) of procedure (3.2) using \(D_t = \Gamma_{h^*(t)} \), where \(\Gamma_{u} = \{ \mathbf{x} \in I : g(\mathbf{x}) \geq u \} \) and \(h(u) = \ell(\Gamma_u) \). By Lemma A.1.1, \(G(D_t) \) is strictly concave. Then by [12], Pow\(_\alpha\)(\(\alpha \)) = \(G(\Gamma_{u_*}) \), where \(u_* = h(t_*) \), with \(t_* \) the unique positive solution to \((1 - a)t + aG(D_t) = t/\alpha \). Therefore,

\[
(1 - a)\ell(\Gamma_{u_*}) + aG(\Gamma_{u_*}) = \ell(\Gamma_{u_*})/\alpha.
\]

Using (A.3) followed by \(\alpha_* = 1/(1 - a + ag(0)) \),

\[
a g(0) \int_{\Gamma_{u_*}} [\gamma' x^\varepsilon - r(\mathbf{x})] \, d\mathbf{x} = [1 - a + ag(0) - 1/\alpha] \int_{\Gamma_{u_*}} d\mathbf{x}
\]

\[
= \frac{\alpha - \alpha_*}{\alpha \alpha_*} \int_{\Gamma_{u_*}} d\mathbf{x}.
\]

Fix \(\eta > 0 \). For \(\alpha > \alpha_* \), denote

\[v = v(\alpha) = 1 - u_*/g(0), \quad \lambda = \alpha - \alpha_* \]

Then \(\Gamma_{u_*} = \{ \mathbf{x} \in I : \gamma' x^\varepsilon - r(\mathbf{x}) \leq v \} \) and \(v \downarrow 0 \) as \(\alpha \downarrow \alpha_* \). By \(\gamma_K > 0 \) and \(r(\mathbf{x}) = o(|\mathbf{x}|^\varepsilon) \), for \(0 < \alpha - \alpha_* \ll 1 \), \(\gamma' x^\varepsilon \leq (1 + \eta)v \) and \(|r(\mathbf{x})| \leq \eta \gamma' x^\varepsilon \) on \(\Gamma_{u_*} \). Together with (A.4) and (A.5), this gives

\[
(1 + \eta)ag(0) \int_{\gamma' x^\varepsilon \leq (1 + \eta)v} \gamma' x^\varepsilon \, d\mathbf{x} \geq \frac{\lambda}{\alpha \alpha_*} \int_{\gamma' x^\varepsilon \leq (1 - \eta)v} d\mathbf{x},
\]

\[
(1 - \eta)ag(0) \int_{\gamma' x^\varepsilon \leq (1 - \eta)v} \gamma' x^\varepsilon \, d\mathbf{x} \leq \frac{\lambda}{\alpha \alpha_*} \int_{\gamma' x^\varepsilon \leq (1 + \eta)v} \gamma' x^\varepsilon \, d\mathbf{x}.
\]

By Lemma 3.2, the inequalities imply

\[
a(1 + \eta)^{K/\varepsilon}Kv\frac{1}{K + \varepsilon} \geq \frac{\lambda}{\alpha \alpha_*} g(0), \quad a(1 - \eta)^{K/\varepsilon}Kv\frac{1}{K + \varepsilon} \leq \frac{\lambda}{\alpha \alpha_*} g(0).
\]

Since \(\eta \) is arbitrary, it follows that

\[
v \sim \frac{(K + \varepsilon)\lambda}{K\alpha \alpha_* g(0)}, \quad \text{as } \alpha \downarrow \alpha_*.
\]

Comparing with (A.2), \(v \sim C(\gamma)\lambda \).

Applying (A.3) followed by (3.10),

\[
\text{Pow}_{\alpha}(\alpha) = \left(\frac{1}{\alpha \alpha_*} - \frac{1}{\alpha} + 1 \right) \int_{\gamma' x^\varepsilon - r(\mathbf{x}) \leq v} d\mathbf{x}
\]

\[
\sim g(0) \int_{\gamma' x^\varepsilon \leq C(\gamma)\lambda} d\mathbf{x} \sim g(0)V^* \left[\frac{1}{\nu K \alpha \alpha_* g(0)} \right]^{K/\varepsilon}.
\]
On the other hand, by Proposition 4.1, Pow(α) has the same asymptotic. Then Pow(α)/Pow(α) → 1.

Let $\eta = C(\gamma)(\alpha - \alpha_*)$. The above argument shows that, for procedure (3.2) based on Γ_u, if $0 < \alpha - \alpha_* \ll 1$, then H_i is rejected if only if $\gamma_i^{\varepsilon_i} - r(\xi_i) \leq \zeta_0$, where $\zeta_0 = \zeta_{\alpha,n}$ is a random variable satisfying $P(|\zeta - \theta| \leq \eta \theta) \rightarrow 1$ as $n \rightarrow \infty$. On the other hand, by Corollary A.2.1, for procedure (3.9) based on $\Gamma_u(\gamma)$, H_i is rejected if and only if $\gamma_i^{\varepsilon_i} \leq \zeta$, where ζ satisfies $P(|\zeta - \theta| \leq \eta \theta) \rightarrow 1$ as $n \rightarrow \infty$.

Recall $\mathcal{V}_o = \{\text{true } H_i : \gamma_i^{\varepsilon_i} - r(\xi_i) \leq \zeta_0\}$ and $\mathcal{V} = \{\text{true } H_i : \gamma_i^{\varepsilon_i} \leq \zeta\}$. Since $r(x) = o(\gamma_i x^\varepsilon)$, by the asymptotics of ζ_0 and ζ, given $0 < \eta \ll 1$, as $0 < \alpha - \alpha_* \ll 1$,

$$P(\{\text{true } H_i : \gamma_i^{\varepsilon_i} \leq (1 - \eta) \theta\} \subset \mathcal{V}_o \cap \mathcal{V}) \rightarrow 1$$

$$P(\mathcal{V}_o \Delta \mathcal{V} \subset \{\text{true } H_i : (1 - \eta) \theta < \gamma_i^{\varepsilon_i} \leq (1 + \eta) \theta\}) \rightarrow 1.$$

It follows that

$$r_V(\alpha) \leq \int_{(1-\eta)\theta \leq \gamma_i x^\varepsilon \leq (1+\eta)\theta} \frac{dx}{\int_{\gamma_i x^\varepsilon \leq (1-\eta)\theta} dx} = 1 - \left(\frac{1 + \eta}{1 - \eta}\right)^{K/\varepsilon}.$$

As η is arbitrary, this gives $r_V(\alpha) \rightarrow 0$ as $\alpha \downarrow \alpha_*$. Likewise, $r_D(\alpha) \rightarrow 0$. \hfill \square

Proof of Lemma 4.1. By the assumptions of the lemma and [12],

$$\text{Pow}_i(\alpha) = G(D_{\alpha i^*}),$$

where $i^* = \sup \{t : (1 - \alpha) t + a G(D_{\alpha t}) \geq t / \alpha \}$

and furthermore, $t_i^* < T$. Since $G(D_{1\alpha}) < G(D_{2\alpha})$ for $t < T$ and both are continuous, it is seen that $t_1^* < t_2^*$. On the other hand,

$$G(D_{\alpha i^*}) = \left(\frac{1}{\alpha} - \frac{1}{\alpha} + 1\right) t_i^* \sim g(0) t_i^*, \quad \text{as } \alpha \rightarrow \alpha_*.$$

As a result, Pow$_1(\alpha) <$ Pow$_2(\alpha)$. \hfill \square

Proof of Proposition 4.3. By (A.8),

$$t_2^* = t_1^* = G(D_{\alpha i^*}) = \frac{\text{Pow}_1(\alpha)}{\text{Pow}_2(\alpha)} \implies t_2^* = \frac{g(0) t_1^* - G(D_{1\alpha t})}{g(0) t_2^* - G(D_{2\alpha t})}.$$

Suppose $M < \infty$. Then by the last equality and (4.2), as $\alpha \downarrow \alpha_*$,

$$t_1^* t_2^* \sim M \times \frac{g(0) t_1^* - G(D_{2\alpha t})}{g(0) t_2^* - G(D_{2\alpha t})} \sim M \left(\frac{t_1^*}{t_2^*}\right)^{1/K + 1},$$

giving $t_1^* t_2^* \sim (1/M)^{K/\varepsilon}$ and the proof. The case $M = \infty$ is likewise. \hfill \square
Proof for Example 4.1 (Case $K > 2$). Define D_{1t} and D_{2t} as in the case $K = 2$. Fix $\eta > 0$ and $a_k \in (0, \gamma_k)$, so that $g(x) < g(0)(1 - \sum a_k x_k^2)$ on $[0, \eta]^K$. Then

$$G(D_{1t}) \leq g(0) \left[t - \sum_{k=1}^{K} a_k \int_{x_k \in (0, \eta)} x_k^2 \, dx \right]$$

where $s = \exp(-F_{K-1}(1-t))$, with F_K the Gamma distribution function with K degrees of freedom and scale parameter 1. We need to evaluate

$$\int_{x_1, \ldots, x_K \leq s}^{\infty} x_k^2 \, dx = \eta^{K+2} \int_{x_1, \ldots, x_K \leq r}^{\infty} x_k^2 \, dx = \eta^{K+2} E[U^* 1 \{ UV \leq r \}],$$

where $r = s/\eta^K$, $U \sim \text{Unif}(0,1)$ and V are independent, and V is the product of U_1, \ldots, U_{K-1} i.i.d. $\sim \text{Unif}(0,1)$. By transformation $X = -\ln U$ and $Z = -\ln V$, the expectation equals

$$A(r) := \int_0^{-\ln r} e^{-1+e(-\ln r-x)} [1 - F_{K-1}(x)] \, dx + \int_{-\ln r}^{\infty} e^{(-1+e)x} \, dx$$

Recall that for $n \geq 1$, as $x \to \infty$,

$$1 - F_n(x) \sim x^{n-1} e^{-x} / (n-1)! \quad (A.9)$$

As $t \to 0$, $s \to 0$ and hence $r \to 0$, yielding

$$A(r) \sim \frac{r^{1+e}}{(K-2)!} \int_0^{-\ln r} x^{K-2} e^{ex} \, dx + r^{1+e} \sim \frac{r(\ln r^{-1})^{K-2}}{(K-2)!}.$$

So for $t \ll 1$, $G(D_{1t}) \leq g(0)[t - C s(\ln s)^{K-2}]$, where $C > 0$ is a constant. On the other hand, by (4.2), $G(D_{2t}) \geq g(0)[t - C' t^{1+e/K}]$, where $C' > 0$ is another constant. By (A.9), for some constants $c_1, c_2 > 0$,

$$\frac{s(\ln s^{-1})^{K-2}}{t^{1+e/K}} = \frac{s(\ln s^{-1})^{K-2}}{(1 - F_K(-\ln s))^{1+e/K}} \approx \frac{c_1}{s^{e/K}(-\ln s)^{c_2}} \to \infty.$$

As a result, for $t \ll 1$, $G(D_{1t}) < G(D_{2t})$.

Proof for Example 4.2. Recall $\Phi^{-1}(s) \sim \sqrt{2 \log(1/s)}$ as $s \downarrow 0$. Let $s_k = w_k / w$. Given $c > 1$ and $a_k \in (0, \gamma_k)$, there is $0 < \eta \ll 1$, such that 1) $g(x) < g(0)(1 - a'x)$ for $x \in (0, \eta)^K$ and 2) letting

$$B_t := \left\{ x \in (0, \eta)^K : \sum_k s_k \sqrt{\log(1/x_{k})} \geq c \sqrt{\log(1/t)} \right\},$$

for $0 < t \ll 1$, $B_t \subset (0, \eta)^K \cap D_{1t}$. Then

$$G(D_{1t}) \leq g(0) \left[\int_{D_{1t}} \, dx - \int_{B_t} a' \, dx \right] = g(0) \left[t - \sum_{k=1}^{K} a_k \int_{B_t} x_k^2 \, dx \right].$$
Let \(x_k = t^{y_k} \) and \(\delta_t = \ln \eta/\ln t \). For each \(j = 1, \ldots, K \),
\[
\int_{B_t} x_j^c \, dx = |\ln t|^K \int_{y_k \in (\delta_t, \infty)} e^{(y_1 + \cdots + y_K + \epsilon y_j) \ln t} \, dy_j.
\]
As \(t \downarrow 0 \), \(\ln t \to -\infty \) and \(\delta_t \downarrow 0 \). So by \(\sum s_i^2 = 1 \),
\[
\frac{1}{\ln t} \ln \int_{B_t} x_j^c \, dx - \inf_{y_k \geq \epsilon} [y_1 + \cdots + y_K + \epsilon y_j] = c^2 \left[1 - \frac{\varrho s_j^2}{1 + \epsilon} \right]^{-1}
\]
and hence
\[
\lim_{t \downarrow 0} \frac{\ln [g(0)t - G(D_{tt})]}{\ln t} \leq \lim_{t \downarrow 0} \frac{1}{\ln t} \ln \left(\sum_k d_k \int_{B_t} x_k^c \, dx \right)
= \min_{k} \lim_{t \downarrow 0} \frac{1}{\ln t} \ln \left(\int_{B_t} x_k^c \, dx \right) = c^2 \left[1 - \frac{\varrho s_k^2}{1 + \epsilon} \min_{k} \right]^{-1}.
\]
Since \(c > 1 \) is arbitrary and \(\min_k s_k^2 \leq 1/K \), (4.3) then follows. \(\Box \)

Proof of Equations (4.5) and (4.7). By (4.4), as \(t \downarrow 0 \),
\[
G(D_{tt}) = g(0) \int_{0 \leq x_k \leq f_k(t)} (1 - \gamma \epsilon x + r(x)) \, dx
= g(0) \left(t - \frac{1 + o(1)}{1 + \epsilon} \sum_k \gamma_k f_k(t)^{1+\epsilon} \prod_{i \neq k} f_i(t) \right).
\]
Since \(\prod f_k(t) = t \), (4.5) then follows.

Let \(f_k(t) = c_k t^{1/K} \). By (A.7), (A.8) and (4.5), \(\text{Pow}(\alpha) \sim g(0) t^* \) as \(\alpha \to \alpha_* \), where \(t^* > 0 \) is the solution to
\[
1 - a + ag(0) \left(1 - \frac{1}{1 + \epsilon} \sum_k c_k^\epsilon t^{\epsilon/K} \right) = 1/\alpha.
\]
Since \(1/\alpha_* = 1 - a + ag(0) \),
\[
t^{\epsilon/K}_{*} = \frac{1 + \epsilon}{ag(0)} \left(\frac{1}{\alpha_*} - \frac{1}{\alpha} \right)/\sum_k c_k^\epsilon \sim \frac{1 + \epsilon}{ag(0)} \left(\frac{1}{\alpha_*} - \frac{1}{\alpha} \right) \left(\alpha - \alpha_* \right).
\]
It is then easy to see (4.7) holds. \(\Box \)

Proof for Example 4.4. We need to show \(L < g(0) = \prod_k \rho_k \), where
\[
L = \sup_x \sum_k f_k(x) \prod_{j \neq k} F_j(x) \leq \max_k \sup_x f_k(x) \prod_{j \neq k} F_{0j}(x) \leq \max_k \sup_x f_{0k}(x) \prod_{j \neq k} F_{0j}(x)
\]
Let $\psi_k = F_k/F_0$. By $F_k(x) = \int_0^x r_k(t)f_0(x) dt$ and the assumption (4.8) on r_k, for any finite c, $\sup_{x< c} \psi_k(x) < \rho_k$. Since $\psi_k(x)$ is continuous and tends to 1 as $x \to \infty$, it follows that $\sup_x \psi_k(x) < \rho_k$. Then for each $k,$

$$
\sup_x \frac{f_k(x) \prod_{j \neq k} F_j(x)}{f_0(x) \prod_{j \neq k} F_0_j(x)} = \sup_x r_k(x) \prod_{j \neq k} \psi_j(x) < \prod \rho_k = g(0).
$$

Thus $L < g(0)$. \qed

Proof for Example 4.5. We need to show $L := \sup_{x \geq T} r(x) < g(0) = \rho_1 \rho_2$ for $T > 0$, where

$$
r(x) := \frac{\int_0^x f_1(t) f_2(x - t) dt}{\int_0^x f_0(t) f_0(x - t) dt}.
$$

As $f_k(x) < \rho_k f_0(x)$ for any $x > 0$ with $f_k(x) > 0$, it is seen $r(x) < g(0)$ for any $x > 0$. It remains to be shown $r(\infty) < g(0)$. Once this is done, by the continuity of $r(x)$ on $(0, \infty)$, $L < g(0)$. Given $c, \lambda \in (0, 1)$,

$$
I := \int_0^x f_0(t) f_0(x - t) dt = I_1 + I_2
$$

where I_1 is the integral over $[0, cx]$ and I_2 over $[cx, x]$. As $x \gg 1$, for $t \in [0, cx], \lambda x^{-s_2} \leq f_0(x - t) \leq \lambda^{-1}(1 - c)^{-s_2} x^{-s_2}$. Then

$$
\lambda x^{-s_2} \int_0^{cx} f_0(t) dt \leq I_1 \leq \lambda^{-1}(1 - c)^{-s_2} x^{-s_2} \int_0^{cx} f_0(t) dt.
$$

Similarly, by using $f_0(x) \sim x^{-s_2}$,

$$
\lambda x^{-s_1} \int_{cx}^x f_0(x - t) dt \leq I_2 \leq \lambda^{-1} c^{-s_1} x^{-s_1} \int_{cx}^x f_0(x - t) dt
$$

As $x \to \infty$, $\int_0^{cx} f_0(t) \to 1$ and $\int_{cx}^x f_0(x - t) dt = \int_0^{(1-c)x} f_0(t) \to 1$. Therefore, if $s_1 > s_2$, then $I_2 = o(I_1)$ and hence $I \sim I_1$. Since c and λ are arbitrary, $I \sim x^{-s_2}$. Likewise

$$
J := \int_0^x f_1(t) f_2(x - t) dt \sim \rho_2 x^{-s_2},
$$

and hence $r(x) \to \rho_2$. Similarly, if $s_1 < s_2$, then $r(x) \to \rho_1$. If $s_1 = s_2$, write $I = I_1 + I_2 + I_3$, where the integrals I_1 are over $[0, cx], [cx, (1-c)x]$ and $[(1-c)x, x]$ respectively, with $0 < c \ll 1$. Following argument similar to the above, $I_1 \sim x^{-s_1}$ while $I_2 = O(x^{-2s_1})$. Then $I \sim 2x^{-s_1}$. Likewise, $J \sim (\rho_1 + \rho_2)x^{-s_1}$. Thus $r(x) \to (\rho_1 + \rho_2)/2$. In any case, $r(\infty) < g(0)$. \qed
A.3. Some facts about V_ε

Let $V_{\varepsilon,K}(u) = \int_0^1 \cdots \int_0^1 1 \{ \sum x_k^\varepsilon \leq u \} \, dx$ and $V_{\varepsilon,K} = V_{\varepsilon,K}(1)$. It is not hard to see that $V_{\varepsilon,K}(u) = u^{K/\varepsilon} V_{\varepsilon,K}$ for $u \in [0,1]$. It can be shown that

$$V_{\varepsilon,K} = \frac{(1/\varepsilon)^{(K-1)} \Gamma(1/\varepsilon)^K}{K \Gamma(K/\varepsilon)}, \quad K = 1, 2, \ldots. \quad (A.10)$$

This is clear for $K = 1$. For $K > 1$, by first integrating x_1, \ldots, x_{K-1},

$$V_{\varepsilon,K} = \int_0^1 V_{\varepsilon,K-1}(1 - x_K^\varepsilon) \, dx_K = V_{\varepsilon,K-1} \int_0^1 (1 - x_K^\varepsilon)^{(K-1)/\varepsilon} \, dx$$

$$= V_{\varepsilon,K-1} \times \frac{1}{\varepsilon} \int_0^1 t^{1/\varepsilon-1}(1-t)^{(K-1)/\varepsilon} \, dt$$

$$= V_{\varepsilon,K-1} \times \frac{(K-1)\Gamma(1/\varepsilon)\Gamma((K-1)/\varepsilon)}{\varepsilon K \Gamma(K/\varepsilon)}.$$

Then (A.10) follows by induction.

Finally, in Example 4.3, it is claimed that $(1/V_{\varepsilon,K})^{1/K} < 1/(1+\varepsilon)$ for $K > 1$. To show this, write $t = 1/\varepsilon$ and $H(t) = \ln[\Gamma(t)/(1+t)^t]$. Then by (A.10), the above inequality is equivalent to $K H(t) \geq H(Kt), K > 1$. It is not hard to get $\lim_{t \to 0^+} H(t) = 0$. Therefore, if one can show $H(t)$ is concave for $t > 0$, then the desired inequality is obtained. Now

$$H''(t) = (\ln \Gamma(t))'' - \frac{1}{t^2} - \frac{1}{(1+t)^2} - \frac{1}{1+t}.$$

It is known that $(\ln \Gamma(t))'' = \sum_{k=0}^{\infty} (k + t)^{-2}, t > 0$. Since $1/(k+t)^2 < 1/(k-1+t) - 1/(k+t)$ for $k \geq 2$, then it is seen that $H''(t) < 0$ for $t > 0$ and hence $H(t)$ is strictly concave.

References

[1] AMIT, Y. AND GEMAN, D. (1997). Shape quantization and recognition with randomized trees. Neural Computation 9, 7, 1545–1588.
[2] BENJAMINI, Y. AND HOCHBERG, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 1, 289–300. MR1325392
[3] BENJAMINI, Y. AND YEKUTIELI, D. (2001). The control of the false discovery rate in multiple testing under dependency. Ann. Statist. 29, 4, 1165–1188. MR1869245
[4] BENJAMINI, Y. AND YEKUTIELI, D. (2005). False discovery rate-adjusted multiple confidence intervals for selected parameters. J. Amer. Statist. Assoc. 100, 469, 71–93. With comments and a rejoinder by the authors. MR2156820
Z. Chi/FDR with multivariate p-values

[5] Blanchard, G. and Geman, D. (2005). Hierarchical testing designs for pattern recognition. *Ann. Statist.* **33**, 3, 1155–1202. MR2195632

[6] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). *Classification and regression trees*. Wadsworth Statistics/Probability Series. Wadsworth Advanced Books and Software, Belmont, CA. MR0726392

[7] Chi, Z. (2007). On the performance of FDR control: constraints and a partial solution. *Ann. Statist.* **35**, 4, 1409–1431. MR2351091

[8] Chi, Z. and Tan, Z. (2008). Positive false discovery proportions: Intrinsic bounds and adaptive control. *Statistica Sinica* **18**, 3, to appear.

[9] Efron, B. (2004). Large-scale simultaneous hypothesis testing: the choice of a null hypothesis. *J. Amer. Statist. Assoc.* **99**, 465 (Mar.), 96–104. MR2054289

[10] Efron, B., Tibshirani, R., Storey, J. D., and Tusher, V. G. (2001). Empirical Bayes analysis of a microarray experiment. *J. Amer. Statist. Assoc.* **96**, 456, 1151–1160. MR1946571

[11] Finner, H. and Roters, M. (2001). On the false discovery rate and expected type I errors. *Biometr. J.* **43**, 985–1005. MR1878272

[12] Genovese, C. and Wasserman, L. (2002). Operating characteristics and extensions of the false discovery rate procedure. *J. R. Stat. Soc. Ser. B Stat. Methodol.* **64**, 3, 499–517. MR1924303

[13] Genovese, C. and Wasserman, L. (2004). A stochastic process approach to false discovery control. *Ann. Statist.* **32**, 3, 1035–1061. MR2065197

[14] Meinshausen, N. and Rice, J. (2006). Estimating the proportion of false null hypotheses among a large number of independently tested hypotheses. *Ann. Statist.* **34**, 1, 373–393. MR2275246

[15] Munkres, J. R. (1984). *Elements of algebraic topology*. Addison-Wesley Publishing Company, Menlo Park, CA. MR0755006

[16] Perone Pacifico, M., Genovese, C., Verdinelli, I., and Wasserman, L. (2004). False discovery control for random fields. *J. Amer. Statist. Assoc.* **99**, 468, 1002–1014. MR2109490

[17] R Development Core Team. (2005). *R: A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

[18] Signorovitch, J. E. (2006). Multiple testing with an empirical alternative hypothesis. Tech. Rep. 60, Harvard University Biostatistics Working Paper Series, Boston.

[19] Spall, J. C. (2003). *Introduction to stochastic search and optimization*. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ. Estimation, simulation, and control. MR1968388

[20] Storey, J. D. (2002). A direct approach to false discovery rates. *J. R. Stat. Soc. Ser. B Stat. Methodol.* **64**, 3, 479–498. MR1924302

[21] Storey, J. D. (2007). The optimal discovery procedure: a new approach to simultaneous significance testing. *J. R. Stat. Soc. Ser. B Stat. Methodol.* **69**, 1, 1–22. MR2323757
[22] Storey, J. D., Taylor, J. E., and Siegmund, D. (2004). Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. *J. R. Stat. Soc. Ser. B Stat. Methodol.* **66**, 1, 187–205. MR2035766

[23] van der Laan, M. J., Dudoit, S., and Pollard, K. S. (2004). Augmentation procedures for control of the generalized family-wise error rate and tail probabilities for the proportion of false positives. *Stat. Appl. Genet. Mol. Biol.* **3**, Art. 15, 27 pp. (electronic). MR2101464

[24] Vapnik, V. N. (2000). *The nature of statistical learning theory*, Second ed. Statistics for Engineering and Information Science. Springer-Verlag, New York. MR1719582