Direct evidence for an expanded circulation area of the recently identified Balkan virus (Sandfly fever Naples virus species) in several countries of the Balkan archipelago

Nazli Ayhan¹, Bulent Alten², Vladimir Ivovic³, Vit Dvořák⁴, Franjo Martinkovic⁵, Jasmin Omeragic⁶, Jovana Stefanovska⁷, Dusan Petric⁸, Slavica Vaselek⁸, Devrim Baymak⁹, Ozge E. Kasap², Petr Volf⁴ and Remi N. Charrel¹*

Abstract

Background: Recently, Balkan virus (BALKV, family Phenuiviridae, genus Phlebovirus) was discovered in sand flies collected in Albania and genetically characterised as a member of the Sandfly fever Naples species complex. To gain knowledge concerning the geographical area where exposure to BALKV exists, entomological surveys were conducted in 2014 and 2015, in Croatia, Bosnia and Herzegovina (BH), Kosovo, Republic of Macedonia and Serbia.

Results: A total of 2830 sand flies were trapped during 2014 and 2015 campaigns, and organised as 263 pools. BALKV RNA was detected in four pools from Croatia and in one pool from BH. Phylogenetic relationships were examined using sequences in the S and L RNA segments. Study of the diversity between BALKV sequences from Albania, Croatia and BH showed that Albanian sequences were the most divergent (9–11% [NP]) from the others and that Croatian and BH sequences were grouped (0.9–5.4% [NP]; 0.7–5% [L]). The sand fly infection rate of BALKV was 0.26% in BH and 0.27% in Croatia. Identification of the species content of pools using cox1 and cytb partial regions showed that the five BALKV positive pools contained Phlebotomus neglectus DNA; in four pools, P. neglectus was the unique species, whereas P. tobbi DNA was also detected in one pool.

Conclusions: We report here (i) the first direct evidence that the Balkan virus initially described in coastal Albania has a much wider dissemination area than originally believed, (ii) two real-time RT-PCR assays that may be useful for further screening of patients presenting with fever of unknown origin that may be caused by Balkan virus infection, (iii) entomological results suggesting that Balkan virus is likely transmitted by Phlebotomus neglectus, and possibly other sand fly species of the subgenus Larroussius. So far, BALKV has been detected only in sand flies. Whether BALKV can cause disease in humans is unknown and remains to be investigated.

Keywords: Bunyaviridae, Phlebovirus, Arbovirus, Toscana virus, Meningitis, Fever, Sand fly, Phlebotomus, Phylogeny, Emergence

* Correspondence: remi.charrel@univ-amu.fr
¹UMR “Emergence des Pathologies Virales (EPV: Aix-Marseille Univ – IRD 190 – Inserm 1207 – EHESS – IHU Méditerranée Infection), Marseille, France
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Phleboviruses (family Phenuiviridae) are arthropod-borne viruses transmitted by mosquitoes, ticks and sand flies to vertebrate hosts [1]. Several phleboviruses belong to the Sandfly fever Naples species complex (which include at least two human pathogens, namely Toscana virus causing neurological infections and Naples virus causing incapacitating febrile illness) [2]. In the Old World, sand fly-borne phleboviruses are transmitted by Phlebotomus spp. and Sergentomyia spp. and show a wide distribution in all countries of the Mediterranean basin [2], http://ecdc.europa.eu/en/healthtopics/vectors/
vector-maps/Pages/VBORNET_maps_sandflies.aspx. During the last decade, several new phleboviruses were discovered in Mediterranean countries either in sand flies [3–9] or clinical samples [10]. Each was genetically related to any of the three following groups (based on antigenic relationships): Sandfly fever Naples species, Salehabad and Sandfly fever Sicilian/Corfou virus group. In the Balkans, the current knowledge on circulating phleboviruses is limited. Recently, the Balkan virus (BALKV) was discovered in sand flies collected in Albania and genetically characterised as a member of the Sandfly fever Naples species complex [11]. Two specific quantitative real-time RT-PCR assays were designed to screen entomological specimens collected in the surrounding countries, i.e. Croatia, Bosnia and Herzegovina (BH), Kosovo, Republic of Macedonia (RoM), and Serbia, to gain knowledge concerning the geographical area where exposure to BALKV exists.

Methods

Sand flies were collected in the field in 2014; 10 stations in Kosovo and 8 stations in Serbia, in 2015; 5 stations in Croatia, 6 stations in BH, 5 stations in RoM, 1 station in Montenegro and 1 station in Serbia (Table 1) using a previously described method [11]. Traps were placed near animals with the consent of the owners. BALKV RNA was detected using 2 SYBR Green real-time RT-PCR specific assays targeting the polymerase gene (BALKV-L-F; 5′-CTD ATY AGY TGC TGC TAC AAT G-3′, BALKV-L-R; 5′-CCA TAA CCA AGA TAY TCA T-3′) and the nucleoprotein gene (BALKV-S-F; 5′-AGA GTR TCT GCA GCC TTT GTT CC-3′, BALKV-S-R; 5′-CAG CTA TCT CAT TAG GYT GT-3′). The cycling program consisted of 50 °C for 30 min and 95 °C for 15 min, followed by 40 cycles at 94 °C for 15 s, 60 °C for 30 s, and 72 °C for 45 s, with a final melting curve step at 95 °C for 1 min, 60 °C 30 s and 95 °C for 30 s. Melting curves for positives were at 75 °C for the polymerase assay and 79.5 °C for the nucleoprotein test.

Phylogenetic relationships were reconstructed using sequences of the S and L RNA segments. Positive samples were PCR-amplified targeting a portion of the polymerase [12] and the nucleoprotein genes [13, 14] (two systems producing overlapping sequences which were concatenated before analysis). Sand fly species identification within positive pools was performed using as previously described cytochrome c oxidase subunit 1 (cox1) and cytochrome b (cytb) barcoding gene regions followed by NGS sequencing.

Fig. 2 Phylogeny of the Balkan virus and closely related phleboviruses using partial nucleotide sequences of the nucleoprotein gene (572 nt). Neighbor-joining analysis (Kimura 2-parameter model) was performed using MEGA6, with 1000 bootstrap replicates.
of the corresponding PCR products [11]. A 50 μl-volume of BALKV positive pools was inoculated onto Vero cells for attempting virus isolation [7, 9].

Results

In 2014 a total of 270 and 53 sand flies were collected from Kosovo and Serbia, respectively. In 2015, 453, 386, 37, 602 and 29 sand flies were trapped in Croatia, BH, Montenegro, RoM and Serbia, respectively (Table 1). BALKV RNA was detected in 4 pools from Croatia (3 collected in Vidonje [C41, C50, C51 at 42.98244N, 17.64294E (240 m)], 1 in Duba [C13 at 42.60032N, 18.33946E (475 m)]) and in 1 pool from BH in Sovici (B1 at 43.408240N, 17.329175E, 283 m) (Table 1, Fig. 1).

Although not quantitative, the low C_t values observed with the polymerase gene (C_t range 19.9–24.4) and the nucleoprotein gene (C_t range 19.8–32.8) SYBR Green real-time RT-PCR was indicative of high viral load in the positive pools. Phylogeny was reconstructed by using sequences in the S and L RNA segments that were 572 nt (Fig. 2) and 525 nt long, respectively (Fig. 3). Identical groupings were observed using both markers. BALKV formed a homogenous cluster with common ancestor supported by high bootstrap value. BALKV was included in the subgroup I of the Sandfly fever Naples species complex together with SFNV, Tehran, Zerdali and Fermo viruses.

For pool B1, failure to obtain a positive PCR with Nphlebo primers led us to sequence the 136 bp SYBR Green RT-qPCR product for genetic and phylogenetic analysis. Study of the diversity between BALKV sequences from Albania, Croatia and BH showed that (i) Albanian sequences were the most divergent (9–11% [NP]) from the others, and (ii) that Croatian and BH sequences were grouped (0.9–5.4% [NP]; 0.7–5% [L]) (GenBank: KY662227–KY662287).

Identification of the sand fly species contained in the BALKV-positive pools detected Phlebotomus neglectus sequences in all five pools; P. neglectus was the unique species in four pools, whereas P. tobbi DNA was present in 1 pool from Croatia (Table 2).

Discussion

The Balkan Peninsula is the region where sand fly fever was first described at the end of the nineteenth century in BH [15, 16]. Subsequent studies provided direct and indirect evidence for the presence of viruses belonging to the SFNV in BH [17–21]. In Croatia, antibodies against SFNV were found in human populations, with highest rates (up to 53.9%) observed on islands and in coastal regions [18, 22–27]. BALKV belongs to the Sandfly fever Naples species complex where it is most closely to Fermo, SFNV YU 8–76, Zerdali and Tehran viruses isolated in Italy, Serbia, Turkey and Iran which are
grouped in the subgroup I [6, 9, 19, 28] (Figs. 2, 3). BALKV was first detected from two sand fly pools from Albania, Kruje region [11]. Here, we demonstrated that BALKV has a much larger circulation area that seems to be confined to the Adriatic coast of the Balkan Peninsula. This merits further confirmation through similar studies conducted north and south of the current study area (Fig. 1).

To our knowledge, BALKV is the first phlebovirus to be genetically identified in BH. Assuming that each positive pool contained one infected sand fly only, the sand fly infection rate of BALKV is 0.26% in BH and 0.27% in Croatia; which is higher than Zerdali virus (0.035%) and similar to Fermo virus (0.20%) [6, 9]. Identification of the species content of pools using *cox1* and *cytb* showed that *P. neglectus* is the only species to be found in all BALKV RNA positive pools; indicating that this species might be the vector of BALKV. Interestingly, *P. neglectus* belongs to subgenus *Larroussius*, similar to *P. tobbi* which seems to be a typical vector for Zerdali virus, another member of the *Sandfly fever Naples species* [9]. Together, these data support the hypothesis that *Larroussius* sand flies are typical vectors of the members of this virus group.

Conclusions

We report here (i) the first direct evidence that Balkan virus initially described in Coastal Albania has a much wider dissemination area than originally believed, (ii) two real-time RT-PCR assays that may be useful for further screening of patients presenting with fever of unknown origin that may be caused by Balkan virus infection, (iii) entomologic results suggesting that Balkan virus is likely transmitted by *Phlebotomus neglectus*, and possibly other sand fly species of the subgenus *Larroussius*. So far, BALKV has been detected only in sand flies. Whether BALKV can cause disease in humans is unknown and remains to be investigated.

Abbreviations

BALKV: Balkan virus; BH: Bosnia and Herzegovina; L: Large RNA segment; NGS: Next generation sequencing; NP: Nucleoprotein; RoM: Republic of Macedonia; RT-PCR: Reverse transcriptase polymerase chain reaction; S: Small RNA segment

Acknowledgements

The authors wish to thank Karine Almani for excellent technical assistance. The work of RNC was done under the frame of EurNegVec (TD1303) COST Action. NA is a PhD student supported by a grant from Fondation Mediterranee Infection.

Funding

This work was supported by funds received from (i) VectorNet, a European network for sharing data on the geographic distribution of arthropod vectors, transmitting human and animal disease agents (Contract OC/EFSA/AHAW/2013/02-FWC1) funded by the European Food Safety Authority (EFSA) and the European Centre for Disease Prevention and Control (ECDC) (http://ecdc.europa.eu/en/healthtopics/vectors/VectorNet/Pages/VectorNet.aspx), (ii) the European Virus Archive goes Global (EVAg) project in the European Union’s Horizon 2020 research and innovation programme under grant agreement No 653316 (http://global.european-virus-archive.com/). Nazli Ayhan is a PhD student supported by a grant from Fondation Mediterranee Infection. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials

Sequences generated in this study are available in the GenBank database under the accession numbers KY662276–KY662287.

Authors’ contributions

NA participated in field work, performed PCR and sequencing, and wrote the original MS; BA, VI, FM, JO, JS, DP, DB and PV organized and participated in the field work; VD set-up of PCR-based NGS identification of sand flies; SV participated to field work, performed PCR-based NGS identification; RNC analysed results, and coordinated the lab work. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Traps were placed near animals with the consent of the owners.

Table 2

Details of the Balkan virus positive pools with sandfly species identification using cytochrome b and cox1 sequences

Trapping locality	Pool code	Sand fly species	Gene	Reads	No. of sand flies	Gender	Collection date	Altitude (m)
Bosnia and Herzegovina	Sovici	P. neglectus	cytb	1427	27	male	06/07/2015	283
			cox1	4257				
Croatia	Duba	P. tobbi	cytb	1211	20	male	13/07/2015	475
			cox1	546				
		P. neglectus	cytb	967				
			cox1	7351				
	Vidonje	P. neglectus	cytb	950	20	female	16/07/2015	240
			cox1	8182				
	Vidonje	P. neglectus	cytb	1834	20	female (bf)	16/07/2015	240
			cox1	5302				
	Vidonje	P. neglectus	cytb	3143	20	female	16/07/2015	240
			cox1	22,867				
Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1UMR “Emergence des Pathologies Virales” (EPV: Aix-Marseille Univ – IRD) 190 – Inserm 1207 – EHESS – IHU Méditerranée Infection), Marseille, France.
2Faculty of Science, Department of Biology, Ecology Division, VERG Labs, Hacettepe University, Beytepe, Ankara, Turkey. 3Faculty of Primorska, FAMNIT, Koper, Slovenia. 4Faculty of Science, Department of Parasitology, Charles University, Prague, Czech Republic. 5Faculty of Veterinary Medicine, Department of Parasitology and Parasitic Diseases with Clinics, University of Zagreb, Zagreb, Croatia. 6Department of Parasitology, Veterinary Faculty of Sarajevo, Zmaja od Bosne 90, 71000 Sarajevo, Bosnia and Herzegovina. 7Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, Zvornik, Bosnia and Herzegovina. 8Faculty of Agriculture, Laboratory for Medical and Veterinary Entomology, University of Novi Sad, Novi Sad, Serbia. 9National Institute of Public Health, Pristina, Kosovo.

Received: 3 March 2017 Accepted: 15 August 2017

References
1. Depaquit J, Grandadam M, Fouque F, Andry PE, Peyrefitte C. Arthropod-borne viruses transmitted by phlebotomine sand flies in Europe: a review. Euro Surveill. 2010;15(10):19507.
2. Alkan C, Bichaud L, de Lamballerie X, Alten B, Gould EA, Charrel RN. Sandfly-borne phleboviruses of Eurasia and Africa: epidemiology, genetic diversity, geographic range, control measures. Antivir Res. 2013;100(1):54–74.
3. Charrel RN, Moureau G, Temmam S, Irii A, Marty P, Parola P, et al. Massilia virus, a novel Phlebovirus (Bunyaviridae) isolated from sandflies in the Mediterranean. Vector Borne Zoonotic Dis. 2009;9(5):519–30.
4. Zhioua E, Moureau G, Chelbi I, Ninove L, Bichaud L, Derbali M, et al. Isolation, genetic characterization, and seroprevalence of Adana virus, a novel phlebovirus isolated from sandflies collected in Tunisia. J Gen Virol. 2010;91(1):1275–83.
5. Papa A, Veido E, Bino S. A novel phlebovirus in Albanian sandflies. Clin Microbiol Infect. 2011;17(4):585–7.
6. Remoli ME, Fortuna C, Marchi A, Bucci P, Argentini C, Bongiorno G, et al. Viral isolates of a novel putative phlebovirus in the Marche Region of Italy. Am J Trop Med Hyg. 2014;90(4):760–3.
7. Alkan C, Alvassouf S, Piorowski G, Bichaud L, Tiezcan S, Dincer E, et al. Isolation, genetic characterization, and seroprevalence of Adana virus, a novel phlebovirus belonging to the Sandfly virus complex, in Turkey. J Virol. 2015;89(9):4080–91.
8. Amaro F, Hanke D, Zé-Zé L, Alves MJ, Becker SC, Hóper D. Genetic characterization of Arribada virus, a novel phlebovirus isolated in South Portugal. Virus Res. 2016;214:19–25.
9. Alkan C, Erizoš Kasap O, Alten B, de Lamballerie X, Charrel RN. Sand fly-borne phlebovirus isolations from Turkey: new insight into the sandfly fever Sicilian and sandy fever Naples species. PLoS Negl Trop Dis. 2016;10(3):e0004519.
10. Anagnostou V, Pardalos G, Athanasiou-Metaxa M, Papa A. Novel phlebovirus in a female child, Greece. Emerg Infect Dis. 2011;17(5):940–1.
11. Ayanh N, Velo E, de Lamballerie X, Kota M, Kadriaj P, Otzel Y, et al. Detection of Leishmania infantum and a novel phlebovirus (Balkan Virus) from sand flies in Albania. Vector Borne Zoonotic Dis. 2016;16(12):802–6.
12. Sánchez-Seco MP, Echevarría JM, Hernández L, Estévée D, Navarro-Marí JM, Tenorio A. Detection and Identification of Toscana and other phleboviruses by RT-nested-PCR assays with degenerated primers. J Med Virol. 2003;71(1):140–9.
13. Charrel RN, Irii A, Temmam S, Dehury P, Toga I, Duman H, et al. Cocirculation of 2 genotypes of Toscana virus, southeastern France. Emerg Infect Dis. 2007;13(3):465–8.
14. Lambert AJ, Lanciotto RS. Consensus amplification and novel multiplex sequencing method for 5 segment species identification of 47 viruses of the Orthobunyavirus, Phlebovirus, and Nairoivirus genera of the family Bunyaviridae. J Clin Microbiol. 2009;47(8):2398–404.
15. Pick A. Zur Pathologie und Therapie einer eigentümlichen endemischen Krankheitsform, Wien Med Wschr. 1886;31:141–5.
16. Pick A. Beiträge zur Pathologie und Therapie einer eigentümlichen Krankheitsform (Gastro-enteritis climatica). Prager Med Wschr. 1887;12:364.
17. Terzin AL, Matuka S, Fornarazic MR, Hlača DM. Antibodies against some arboviruses and against the Bedsonia antigen in sera of men, sheep and cattle in Bosnia and Herzegovina. Acta Medica Yugoslavica. 1962; 16(3–4):301–17.
18. Vesenjak-Hirjan J. Arboviruses in Yugoslavia. In: Vesenjak-Hirjan J, editor. Arboviruses in the Mediterranean countries. Stuttgart-New York: Gustav Fischer Verlag; 1980. p. 165–77.
19. Gligic A, Miširović Z, Tesh RB, Travassos da Rosa A, Ziković V. First isolations of Naples sandfly fever virus in Yugoslavia. Mikrobiologija. 1982;19:167–75.
20. Hukić M, Salmoivić-Besić I. Sandfly-Pappataci fever in Bosnia and Herzegovina: the new-old disease. Bosn J Basic Med Sci. 2009;9(1):39–43.
21. Hukić M, Numanović F, Sinić M, Moro A, Dervović E, Jakovec S, Besić I. Surveillance of wildlife zoonotic diseases in the Balkans Region. Med Glas (Zenica). 2010;7(2):96–105.
22. Tesh RB, Saidi S, Gajdsmovsk SJ, Rodhain F, Vesenjak-Hirjan J. Serological studies on the epidemiology of sandfly fever in the old world. Bull World Health Organ. 1976;54(6):663–74.
23. Vesenjak-Hirjan J, Punda-Polić V, Dobe Mi. Geographical distribution of arboviruses in Yugoslavia. J Hyg Epidemiol Microbiol Immunol. 1991;35(2):129–40.
24. Borcić B, Punda V. Sandfly fever epidemiology in Croatia. Acta Med Iugosl. 1987;41(2):89–97.
25. Punda-Polić V, Calisher CH, Vesenjak-Hirjan J. Neutralizing antibodies for sandfly fever Naples virus in human sera on the island of Mljet. Acta Med Iugosl. 1990;44(1):15–20.
26. Punda-Polić V, Mohar B, Duh D, Bradić N, Korva M, Fajs L, et al. Evidence of an autochthonous Toscana virus strain in Croatia. J Clin Virol. 2012;55(1):4–7.
27. Punda-Polić V, Jerončič A, Mohar B, Šilko KK. Prevalence of Toscana virus antibodies in residents of Croatia. Clin Microbiol Infect. 2012;18(6):E200–3.
28. Karabatsos N. Supplement to International Catalogue of Arboviruses including certain other viruses of vertebrates. Am J Trop Med Hyg. 1978;27:372.