Herbal and alternative medicine: the impact on anesthesia

JM Dippenaar**

* Department of Maxillo-Facial-Oral Surgery, Oral and Dental Hospital, University of Pretoria, Pretoria, South Africa

**Corresponding author, email: tinus.dippenaar@up.ac.za

The use of herbal and alternative therapies is increasing all over the developed as well as the developing world. As pharmacological data on drug interactions involving herbal therapies becomes available, it is important to be familiar with the challenges that concomitant use of these medications may present within the peri-operative period. This review aims to shed light on the more commonly used herbal drugs, and to discuss drug interactions and complications that may be expected in their use.

Keywords: anaesthesia, drug interactions, herbal medicine

The use of herbal therapies is fast becoming widespread in both developed as well as developing countries. These “natural” therapies are considered beneficial, but more often than not their adverse effects and potential interaction with other drugs are not appreciated. Surveys in many developed countries have shown that the incidence of herbal medicine use ranges from 12% of the population in Australia to 37% in the USA. In South Africa it is estimated that as much as 27% of the population use traditional medicines since the setting is South Africa.

A distinction needs to be made between herbal, alternative and traditional medicines since the setting is South Africa.

Herbal therapies are defined as plant-derived products that are indicated for medicinal or health purposes. Herbal therapies have been part of human existence since the beginning of time. They span the spectrum from home-brewed teas prepared from collected leaves and herbs to products with official approved status granted by drug-regulating authorities.

More than 122 distinct plant derived chemical entities with pharmacological action are known. About 25% of drugs listed in the pharmacopoeias of developed countries were isolated from plant origin, while another 25% are modifications of molecules first found in plants.

A recent survey suggests that as much as 51% of patients use herbal medication in the two weeks preceding surgery. Of the drugs reported, 27% altered clotting, 30% had direct influence on cardiac rhythm, rate, blood pressure or serum electrolytes, and 20% would increase sedation.

The use of herbal medicines becomes problematic in the peri-operative setting for a number of reasons:

Disclosure of use to health care practitioner

- Herbal medicines are perceived as “natural” and therefore safe, and more than 70% of patients do not voluntarily disclose the use of these drugs to their physicians. Inadequate knowledge of this nature may prove detrimental to peri-operative outcome.

- Physicians may not be familiar with the mechanism of action of a specific herb, and may well underestimate the clinical effect of the drug.

The influence on pharmacokinetics and –dynamics

- The degree of alteration in pharmacodynamics and –kinetics of concomitantly administered drugs are often unknown, making prediction of clinical and side effects impossible. Induction and inhibition of both hepatic and intestinal drug metabolising enzymes have been suggested in numerous studies.

- Oral administration of herbs may alter gastric pH and motility and accelerate or impair drug delivery to the duodenum. Enterocytes are the first barrier that has to be crossed for absorption. These cells express high levels of CYP3A4 and P-glycoprotein, and the interplay of these are needed to determine bioavailability of many drugs. Modulation of these factors will determine enhanced or reduced bioavailability of co-administered substances.

- Of concern to the anaesthetist is the effects these medications may have on hepatic metabolism. St John’s wort is known to induce the CYP3A4 enzyme system, accelerating the metabolism of certain drugs such as amitriptyline. Other herbal drugs compete for the same cytochrome pathway as commonly used anaesthetic agents (e.g. echinacea competes with lignocaine for clearance via the CYP3A4 system). This may slow down clearance of the anaesthetic drug, predisposing the patient to toxic effects because of elevated plasma concentrations.

- Drug interactions between herbal medicines and conventional drugs are often not appreciated. Examples include St John’s wort and monoamine oxidase inhibitor interaction precipitating serotonin syndrome, or the additive effect on platelets that garlic and the nonsteroidal anti-inflammatory drugs have. This is dangerous especially when the conventional drug has a narrow therapeutic index (e.g. ginseng and warfarin), and relatively small alterations in concentration may have profound clinical consequences.

- The nett result of interaction may not be predictable because interaction may take the form of synergism, antagonism, inhibition or even acceleration of metabolism of either product. This will lead to pharmacological chaos.

The risk of systemic toxicity

- Another sinister complication refers to the ability of a herbal drug to enhance the organ toxicity of a concomitantly
administered drug. A herb such as echinacea increases the hepatotoxicity of drugs such as methotrexate and anabolic steroids,20 while halothane will elicit severe dysrhythmias when the patient has been using ephedra.21 Contaminants found in samples of herbal medication of questionable origin may include herbicides, pesticides, radio-isotopes, heavy metals and plant derived toxins, all adding to a confusing clinical picture when the patient become ill because of use of these drugs.22

Multiple adverse effects

- Adverse events may include increased bleeding, cardiovascular complications, prolonged sedation, suppression of the central nervous system, and liver or renal dysfunction with derangement of drug metabolism and elimination.23
- Adverse effects presenting peri-operatively due to the use of herbal medications may not be considered until late in the event process. And even when herbal therapies are considered in the aetiology of an adverse event, the response to standard emergency therapy (cardiovascular support drugs or haemostatic agents) may not be as expected.24
- Many herbal substances may have multiple actions on one physiological system – for example, decreased activation of clotting by inhibition of von Willebrand factor, and decreased platelet aggregation due to glycoprotein receptor interference – or, conversely, act on more than one system simultaneously, such as effects on both the cardiac contractility and haemostasis.

Manufacturing standards and regulatory challenges

- Because of poor regulation of herbal medicine manufacture, true content of different preparations vary greatly between different manufacturers.25,26 Therefore estimation of total daily dose consumed is often very difficult to calculate.
- A single herb usually contains a number of bioactive components, each of which may contribute in varying degrees to the observed pharmacological effect and interactions. This, in turn, leads to difficulties in predicting and explaining possible mechanisms for herb–drug interactions.27
- Most clinical trials on the efficacy of herbal medication are of limited value because of poor study design, small sample size and poor quality control.28
- Legislation prohibits manufacturers of herbal medication claiming clinical indications for their products. However, they are not prohibited from stating physiological effects for herbal drugs.29 Unfortunately, this leads to biased reporting where positive effects are overemphasised, while side effects are underreported and sometimes not even mentioned, perpetuating the notion that these drugs are safe, and their use has no negative consequences.

The systemic effects of herbal medication

An overview of clinical effects that commonly used herbal preparations have on different physiological systems is presented in Table 1.

Many plants are used in blood-related therapies, including as blood tonics, to prevent excessive bleeding and as wound dressings. The safety and efficacy of these therapies are not always scientifically defined, and as such may be associated with increased peri-operative blood loss.30 The key is to understand whether the preparations have a direct effect on the coagulation system, or if disruption is due to drug interaction.

The main direct effect centres on decreased platelet activation and aggregation. Mechanisms to explain disaggregation include:

- Microtubule stabilization31
- Increased membrane fluidity
- Reduced tyrosine phosphorylation limiting calcium mobilization, arachidonic acid liberation32
- Decreased / inhibited activation of tissue factor,33 thrombin,34 plasminogen activator phospholipases, thromboxane A₂,35 Co-enzyme A and HMG CoA reductase36
- Potentiation of heparin co-factor II37
- Increased fibrinolysis38

Recent literature reviews have attributed adverse coagulation effects due to drug–herb interaction in a number of specific herbal remedies.41,42 The interaction of these preparations with warfarin especially seems to be of significance because of the narrow therapeutic index of warfarin. Of specific concern to the anaesthetist is the interaction between aloe vera and Sevoflurane.43,44

Herbal drugs and the heart

Although epidemiological data support the cardiovascular benefits afforded by antioxidants and flavonoids45 present in many herbal preparations, clinical trials with purified, single compound material have yet to show any benefit.46 In fact, botanical preparations are many times more likely to induce adverse cardiovascular effects including arrhythmias, hypertension47 and sympathomimetic effects.48 Reports of interference with coagulation, platelet activity and drug metabolism (especially where drugs with narrow therapeutic windows are used) exist almost exclusively as case reports, and it is well known that adverse events of this nature is vastly underreported.49 Further effects include direct inhibition of contractility, interference with conduction (prolonged QT interval), additive effects to cardiac drugs used (especially cardiac glycosides) and vasoconstriction or –dilatation.50 All of these may cause severe intra-operative complications.

Central nervous system effects of herbal preparations

Many herbal preparations are indicated for their sedating and anti-depressive effects.51,52 Since their effects are mediated by GABA receptor activation or by serotonin re-uptake inhibition (amongst other mechanisms), there is great potential for interaction with anaesthetic agents.53 Apart from prolonged sedation or the risk of serotonin syndrome, some of these drugs may also precipitate seizures54 (due to direct inhibition of anti-convulsive therapy, accelerated anti-convulsive metabolism, or additive excitatory effects with mood stabilizers like trazodone, buspirone and fluoxetine). L-Dopa efficacy may be compromised, resulting in worsening symptoms of Parkinsonism.55

Hepatic effects of herbal medicines

As many as 60 herbal preparations are known to cause derangement of hepatic function.56 This does not include hepatic damage attributed to contaminants, impurities, misidentified herbs and solvents used in extraction of the active ingredients. Herbal therapies may alter drug metabolism by the influence they exert on the glucuronidation process, the cytochrome p450 (CYP) and other hepatic enzyme systems. CYP inhibition will decrease
Name	Indications	Active constituents	Drug interactions
Aloe vera (Aloe vera)	Oral – laxatives, topical – creams	Polysaccharides, Acetylated mannan	Additive to sevoflurane effect on platelets - inhibition of GPIIb/IIIa receptors on platelet - inhibition of GPIA interaction with intercanalicular system
		Inhibits arachidonic acid synthesis	Poor platelet plug formation – increased risk of haemorrhage
Chamomile, German (Matricaria recutita)	Restlessness, insomnia, gastrointestinal upset	Azulenone constituents, Sesquiterpene, biscoumarin and coumarin constituents	Central nervous system depressants (e.g. opioids, benzodiazepines) – increased sedation
			Warfarin, aspirin and NSAIDs – increased risk of bleeding from presence of coumarin in chamomile
Echinacea (Echinacea angustifolia, E. purpurea, E. pallida)	Oral – prevent and treat common cold and upper respiratory tract infections, immunostimulant, topical – wound healing, burns, abscesses, eczema, herpes simplex virus	Chicoric, echinacosides, polysaccharides, polyacetylenic compounds, ketoalkynes, ketoalkynes	Immunosuppressants (e.g. cyclosporine, prednisone, azathioprine) – decreased immunosuppressant effects due to possible immunostimulation
			Hepatotoxic agents (e.g. acetaminophen, methotrexate, amiodarone) – additive hepatotoxicity resulting from glutathione depletion
Evening primrose oil (Oenothera biennis)	Premenstrual syndrome (PMS), menopausal symptoms, atopic eczema, rheumatoid arthritis, Raynaud's syndrome, multiple sclerosis, hypercholesterolemia, diabetic neuropathy	Gamma-linolenic acid (GLA) – rapidly metabolized to Dihomogammalolinolenic acid (DGLA), Linoleic acid	Anticonvulsants – risk of seizure
			Anticoagulants and antiplatelet agents – increased risk of bleeding
			Anaesthetics – risk of seizure
			Phenothiazines – report of seizures with concomitant use
Feverfew (Tanacetum parthenium)	Oral – prevent migraine used for fever, arthritis, tinnitus and vertigo, topical – toothache and insect bites	Parthenolide – a sesquiterpene lactone	Anticoagulants, antiplatelet agents, and NSAIDs – inhibition of platelet aggregation and risk of bleeding
Garlic (Allium sativum)	Hypertension, hyperlipidemia, coronary heart disease, bacterial and fungal infections, prevention of atherosclerosis	Powdered extract – 1.3% alliin, Fresh garlic contains 1% alliin, alliin, and other organosulfur constituents	Protease inhibitors – decreased levels - treatment failure, risk of viral resistance
			Non-nucleoside reverse transcriptase inhibitors (NNRTI) – decrease serum levels - treatment failure, risk of viral resistance
			Cyclosporine – decrease levels, risk of transplant rejection
			Anticoagulants and antiplatelet agents – increased risk of bleeding
			Insulin and antihyperglycemics – enhanced hypoglycaemic action
			Oral contraceptives – possible contraceptive failure
Ginger (Zingiber officinale)	Nausea, arthritis	Gingerols, Gingerdione, Galanolactone, Zingerone	Antacids, H2 antagonists, proton pump inhibitors – ginger increases stomach acid while these medications suppress it
			Anticoagulants, antiplatelet medications, NSAIDs – increased risk of bleeding
			Sedatives, barbiturates, benzodiazepines, alcohol – enhanced effect
			Blood pressure medications – ginger alters blood pressure and interferes with therapy
			Cardiac glycosides – inotropic effect; can alter contractility
			Diabetes medications – additive hypoglycaemic effect
Ginseng (Panax quinquefolius)	Oral – memory loss, Alzheimer’s disease, circulatory disorders, intermittent claudication and tinnitus, topical – frostbite and wound dressings	Terpene lactones, Ginkgo flavone glycosides, Isoharrymetin, quercitin, kaempferol, and proanthocyanidins	Thiazide diuretics – increased blood pressure
			Anticoagulants, antiplatelet agents, NSAIDs – increased risk of bleeding
			Buspirone and fluoxetine – possibility of hypomania
			Trazadone – associated with coma
			Insulin – altered insulin secretion, leading to altered blood glucose levels
			Anticonvulsants – decreased efficacy
			Mild inhibitor of CYP3A
Kava (Piper methysticum)	Oral – anxiety, insomnia, restlessness, muscle pain, headaches, topical – wound healing	Kava lactones and -pyrones, Kawaiin, dihydrokawaiin, Methysticin, dihydromethysticin, Vangonin	Benzodiazepines – increased lethargy and disorientation
			Levodopa – decreased effectiveness
			CNS depressants, alcohol – additive drowsiness, and depression of motor reflexes

(Continued)
metabolism of competing drugs dependant on the specific enzyme, whereas induction of the CYP enzyme will accelerate metabolism in a similar fashion (e.g. St John's wort and amitrypteline57). Some therapies (on their own or additive to other hepatotoxins) may cause direct hepatocellular damage,58 while others are known to protect against hepatotoxicity by inhibiting enzymes responsible for metabolizing a compound into a toxic metabolite (garlic protecting against paracetamol toxicity).59

Herbal effects on the immune system

Many so called immune boosters have yet to be proven effective in clinical trials. Most of these drugs only decrease the severity of the symptoms, but do not in fact alter the duration of the disease.60 Important to note is that these drugs interact with immune modulating agents in a way that poses significant danger to the patient.61 Alteration in CYP metabolism lead may to a decrease in the efficacy of immunosuppressant drugs like cyclosporine (narrow therapeutic window), increasing the risk for rejection in organ transplant patients.62,63 Furthermore, a herb such as garlic decrease the bioavailability of anti-retroviral drugs such as sequinavir and ritonavir, thus rendering therapy ineffective and increasing the risk of viral resistance.10

Endocrine and electrolyte effects of herbal preparations

The effects on the endocrine system are varied and specific to relevant herbs,16 and include hyper- and hypoglycaemia,64 oral contraception failure with some preparations,65 impaired corticosteroid synthesis66 and hypokalaemia.67

References

1. Hodges PJ, Kam PCA. The peri-operative implications of herbal medicines. Anaesthesia. 2002;57:889–99. http://dx.doi.org/10.1001/jama.280.18.1569
2. Drew AK, Myers SP. Safety issues in herbal medicine: implications for the health professionals. Med J Aust. 1997;166:538–41.
3. Brevoort P. The booming US botanical market: a new overview. Herbalgram. 1998;44:33–46.
4. Mander M, Ntuli L, Diederichs N, et al. Economics of the traditional medicines in South Africa. Cape Town: WOCMAP IV World Conference on Medicinal and Aromatic Compounds; 2008 [cited 2014 Jun 10]. Available from: http://www.hst.org.za/uploads/files/chap13
5. Eisenberg DM, Davis RB, Ettner SL, et al. Trends in alternative medicine use in the United States, 1990–1997. JAMA. 1998;280:1569–75. http://dx.doi.org/10.1001/jama.280.18.1569
6. Mander M, Ntuli L, Diederichs N, et al. Economics of the traditional medicine trade in South Africa. Cape Town: WOCMAP IV World Conference on Medicinal and Aromatic Compounds; 2008 [cited 2014 Jun 10]. Available from: http://www.hst.org.za/uploads/files/chap13
7. Richter M. Traditional medicines and traditional healers in South Africa. Cape Town: Treatment Action Campaign; 2003 [cited 2014 Jun 10]. Available from: http://www.tac.org.za/Documents/ResearchPapers/Traditional_Medicine_briefing.pdf
8. Peltzer K, Friend-du Preez N, Ramlagan S. Use of traditional complementary and alternative medicine for HIV patients in

Name	Indications	Active constituents	Drug interactions
Liquorice (Glycyrrhiza glabra)	Oral – ulcers, chronic gastritis, arthritis, inflammation and bronchitis	Glycyrrhizin, Glycyrrhetic acid (Potent inhibitor of 11-β dehydrogenase – increased cortisol non-competitive drug effect – Conn syndrome picture)	Corticosteroids – prolonged duration of effect
St John's wort (Hypericum perforatum)	Oral – mild to moderate depression, anxiety, exhaustion, menopause related mood disturbances, muscle pain, fatigue, insomnia and viral infections	Hypericin, hyperforin, adhyperforin, and pseudo-hypericin	Digoxin – increased risk of toxicity resulting from potassium depletion
Valerian (Valeriana officinalis)	Insomnia	Valepotriates, berneol, valeric acid, valerenone, and kessyl glycol	Barbiturates, benzodiazepines, and alcohol – increased CNS depression and side effects

Notes: CNS: central nervous system, NSAID: nonsteroidal anti-inflammatory drug
Kim Zulu-Natal, South Africa. BMC Public Health. 2008;8:255–69. http://dx.doi.org/10.1186/1471-2458-8-255

Batem, J. Chapman RD, Simpson D. Possible toxicity of herbal remedies. Scott Med J. 1998;43:7–15.

Chidic EJ, Kaddoum RN, Fuleihan MF. Mandragora. Anesth Analg. 2012;115:1437–41. http://dx.doi.org/10.1213/ane.0b013e318259e4dd

Helmetes L. How herbal products increase surgical risks. Nursing. 2007;37(9):24–5.

Eisenberg DM, Kessler RC, Foster C, et al. Unconventional medicine in the United States – prevalence, costs, and patterns of use. N Engl J Med. 1993;328:246–52. http://dx.doi.org/10.1056/NEJM199302283280406

Wilkinson GR. The effects of diet, aging and disease-states on presystemic elimination and oral drug bioavailability in humans. Adv Drug Deliv Rev. 1997;27(2–3):129–59. http://dx.doi.org/10.1016/S0169-409X(97)00040-9

Iannidies C. Pharmacokinetic interactions between herbal remedies and medicinal drugs. Xenobiotica. 2002;32(6):451–78. http://dx.doi.org/10.1080/0049825020124147

Walter-Sack I, Klotz U. Influence of diet and nutritional status on drug metabolism. Clin Pharmacokinet. 1996;31:47–64. http://dx.doi.org/10.2165/00002517-199631010-00004

Zhou SF, Gao YH, Jiang W, et al. Interactions of herbs with cytochrome p450. Drug Metab Rev. 2002;34(3):95–98. http://dx.doi.org/10.1016/S0169-409X(01)00058-7

Chidiac EJ, Kaddoum RN, Fuleihan MF. Mandragora. Anesth Analg. 2002;94:163–70. http://dx.doi.org/10.1095/0003-4819-135-8_Part_1-200110160-00010

Pawlaczyk J, Czerwiński L, Karśka J, et al. An acidic glycoconjugate from Lythrum salicaria L. with controversial effects on haemostasis. J Ethnopharmacol. 2010;131:63–9. http://dx.doi.org/10.1016/j.jep.2010.06.001

Cordier W, Steenkamp V. Herbal remedies affecting coagulation: a review. Pharm Biol. 2012;50(4):443–52.

Nurtjahja-Tjandrajinta E, Ammit AJ, Roufogalis BD. Effective anti-platelet and COX-1 enzyme inhibitors from pungent constituents of ginger. Thromb Res. 2005;112:259–65. http://dx.doi.org/10.1016/j.thromres.2003.09.009

Lee A, Chui PT, Aun CS, et al. Possible interaction between sevoflurane and Aloe vera. Ann Pharmacother. 2004;47:1650–4.

Steenkamp V, Stewart MJ. Medicinal applications and toxicological activities of aloe products. Pharm Pharmacol. 2007;45(5):411–20. http://dx.doi.org/10.1080/13880200701215307

Cook NC, Samman S. Flavonoids–chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem. 1996;7:66–76. http://dx.doi.org/10.1016/0955-2863(95)00168-9

Howard BV, Kritchevsky D. Phytochemicals and cardiovascular disease: a statement for healthcare professionals from the American heart association. Circulation. 1997;95:2591–3. http://dx.doi.org/10.1161/01.CIR.95.11.2591

Siegel RK, Ginseng abuse syndrome. JAMA. 1979;241:1614–5. http://dx.doi.org/10.1001/jama.1979.0392041046024

Lei X-L, Chiu GCY. Cardiovascular pharmacology of panax notoginseng (Burk) F.H. Chen and Salvia Miltiorrhiza. Arch Pharm Res. 2013;19(1):8–13. http://dx.doi.org/10.1007/s40263-013-0044-3

Sarris J, Mcintyre E, Camfield DA. Plant-based medicines for anxiety disorders, part 1. CNS Drugs. 2013;27:207–19. http://dx.doi.org/10.1007/s40263-013-0044-3

Sarris J, Mcintyre E, Camfield DA. Plant-based medicines for anxiety disorders, part 2: a review of clinical studies with supporting preclinical evidence. CNS Drugs. 2013;27:301–19. http://dx.doi.org/10.1007/s40263-013-0059-9

Lantz MS, Buchalter E, Giambranco V. St. John’s wort and antidepressant drug interactions in the elderly. J Geriatr Psychiatr Neurol. 1999;12(1):7–10. http://dx.doi.org/10.1097/00004819-199911010-00010

Ernst E, Pittler MH. Herbal medicine. Med Clin North Am. 2002;86:7:557–78. http://dx.doi.org/10.1016/S0025-7125(03)00077-4

Schelosky L, Raffaale C, Jendroska K, et al. Kava and dopamine antagonism. J Neurol Neurosurg Psychiatry. 1995;58(5):639–40. http://dx.doi.org/10.1136/jnnp.58.5.639

Tischke R, Frenzel CL, Schulze J, et al. Herbal hepatotoxicity: challenges and pitfalls of causality assessment methods. World J Gastroenterol. 2013;19(19):2864–82.

Venkataraman L, Koltke LL, Greenblatt DJ. Nortriptyline E-10-hydroxylation in vitro is mediated by human CYP2D6 (high affinity)
and CYP3A4 (low affinity): implications for interactions with enzyme-inducing drugs. J Clin Pharmacol. 1999;39(6):567–77. http://dx.doi.org/10.1177/009127099922008173
56. Caldwell SH, Feeley JW, Wieboldt TF, et al. Acute hepatitis with use of over-the-counter herbal remedies. Va Med Q. 1994;121:31–3.
57. Lin MC, Wang EJ, Patten C, et al. Protective effect of diallyl sulfone against acetaminophen-induced hepatotoxicity in mice. J Biochem Toxicol. 1996;11(1):11–20. http://dx.doi.org/10.1002/(ISSN)1522-7146
58. Taylor JA, Weber W, Standish L, et al. Efficacy and safety of echinacea in treating upper respiratory tract infections in children. JAMA. 2003;290:2824–30. http://dx.doi.org/10.1001/jama.290.21.2824
59. Barone GW, Gurley BJ, Ketel BL, et al. Drug interaction between St John’s wort and cyclosporine. Ann Pharmacother. 2000;34(9):1013–6. http://dx.doi.org/10.1345/aph.10088
60. Akhlaghi F, Trull AK. Distribution of cyclosporin in organ recipients. Clin Pharmacokinet. 2002;41(9):615–37. http://dx.doi.org/10.2165/00003088-200241090-00001
61. Mai I, Kruger H, Budde K, et al. Hazardous pharmacokinetic interaction of Saint John’s wort (Hypericum perforatum) with the immunosuppressant cyclosporin. Int J Clin Pharmacol Ther. 2000;38(10):500–2. http://dx.doi.org/10.5414/CPP38500
62. Kudolo GB. The effect of 3-month ingestion of Ginkgo biloba extract (EGb 761) on pancreatic β-cell function in response to glucose loading in individuals with non-insulin-dependent diabetes mellitus. J Clin Pharmacol. 2001;41(6):600–11. http://dx.doi.org/10.1177/00912700122010483
63. Schwarz UI, Buschel B, Kirch W. Unwanted pregnancy on self-medication with St John’s wort despite hormonal contraception. Br J Clin Pharmacol. 2003;55(2):112–3.
64. Homma M, Oka K, Ikeshima K, et al. Different effects of traditional Chinese medicines containing similar herbal constituents on prednisolone pharmacokinetics. J Pharm Pharmacol. 1995;47(8):687–92. http://dx.doi.org/10.1111/j.1369-7045.1995.tb04138.x
65. Elinav E, Chajek-Shaul T. Licorice consumption causing severe hypokalemic paralysis. Mayo Clin Proc. 2003;78(6):767–8. http://dx.doi.org/10.4065/78.6.767
66. Kleinschmidt S, Rump G, Kotter J. Herbal medications. Der Anaesthesist. 2007;56:1257–66. http://dx.doi.org/10.1007/s00101-007-1264-z
67. Posadzki P, Watson L, Ernst E. Herb–drug interactions: an overview of systematic reviews. Br J Clin Pharmacol. 2012;75(3):603–18.
68. Kostka-Rokosz MD, Vibbard KJ, Dvorkin L, Couris RR. Selected herbal therapies. Nutr Today. 2004;40:17–28.

Received: 23-4-2014 Accepted: 11-08-2014