Artemisinin protects against sepsis-associated encephalopathy by activating the AMPK axis in the microglia

CURRENT STATUS: UNDER REVISION

![Journal of Neuroinflammation](https://doi.org/10.1186/s12974-020-01592-w)

Shao-Peng Lin
Second Affiliated Hospital of Guangzhou Medical College
Corresponding Author
ORCiD: 0000-0002-8488-8398

Jue-Xian Wei
the second affiliated hospital of Guangzhou medical university

Shan Ye
the second affiliated hospital of Guangzhou medical university

Jiasong Hu
the second affiliated hospital of Guangzhou medical university

Jingyi Bu
the second affiliated hospital of Guangzhou medical university

Lidong Zhu
the second affiliated hospital of Guangzhou medical university

Qi Li
the second affiliated hospital of Guangzhou medical university

Haojun Liao
the second affiliated hospital of Guangzhou medical university

Yi Wu
the second affiliated hospital of Guangzhou medical university

Pei-Yi Lin
the second affiliated hospital of Guangzhou medical university

Sheng-Qiang Chen
East Region Military Command General Hospital

Xiao-Hui Chen
the second affiliated hospital of Guangzhou medical university
Abstract

Background and purpose: Artemisinin has been in use as an anti-malarial drug for almost half a century in the world. There is growing evidence that artemisinin also possesses potent anti-inflammatory and immunoregulatory properties. However, the efficacy of artemisinin treatment in sepsis-associated encephalopathy (SAE) remains unknown. Here, we evaluate the possible protective effects and explore the underlying mechanism of action of artemisinin on SAE.

Methods: Male C57BL/6 mice were pretreated with either vehicle or artemisinin, and then injected with LPS to establish an animal model of SAE. The cognitive function was then assessed using the Morris water maze. Neuronal damage and neuroinflammation in the hippocampus were evaluated by immunohistochemical analysis. Additionally, the protective mechanism of artemisinin was determined in vitro.

Results: The results showed that artemisinin preconditioning attenuated LPS-induced cognitive impairment, neural damage, and microglial activation in the mouse brain. Luminex liquid chip revealed that artemisinin could inhibit the pro-inflammatory cytokines and chemokines induced by LPS in the BV2 microglia cells. Meanwhile, artemisinin suppressed the migratory ability of BV2 cells. Western blot demonstrated that artemisinin promoted adenosine monophosphate-activated protein kinase α1 (AMPKα1) expression and suppressed nuclear translocation of NF-κB. Furthermore, knock-down of AMPKα1 markedly abolished the anti-inflammatory effects of artemisinin when exposed to LPS.

Conclusion: Artemisinin is a potential therapeutic agent for SAE, and its effect was probably mediated by the activation of AMPKα1 signalling pathway in microglia.

Introduction

Sepsis-associated encephalopathy (SAE) refers to cerebral nervous system dysfunction
During sepsis[1]. Among the sepsis-induced systemic damage, SAE is one of the more severe clinical manifestation. It manifests as a rapid decline in cognitive functions and memory, even leading to coma [2]. Anti-infection and supportive therapy are the major treatments used in the clinical treatment of SAE[3]. Until now the pathogenesis of SAE has not been fully elucidated, and there is no effective treatment for SAE[4]. Research suggests that SAE could result in a permanent neurocognitive dysfunction even after the patient has recovered from sepsis [2].

Since the discovery of artemisinin in the 1970s, artemisinin and its derivatives (artemisinins) have been used as first-line antimalarial drugs and saved millions of malarial patients worldwide[5, 6]. In recent years, considerable efforts have been made to explore the unique chemical and pharmacological properties of this remarkable phytochemical. Growing evidence reveals that artemisinin also possesses potent anti-inflammatory, anti-tumour, and anti-fibrosis properties[7–10]. We recently reported that artemisinin protects neuronal HT–22 cells from oxidative injury by activating the Akt pathway[11]. This suggests that artemisinin has a potential therapeutic effect on nervous system diseases. However, the role of artemisinin in neuroinflammation and cognitive dysfunction associated with SAE remains unknown. In the present study, we evaluated the in vivo and invitro therapeutic effects of artemisinin on neuroinflammation and cognitive dysfunction associated with SAE. We further characterised the possible regulation and the protective mechanism of action of artemisinin.

Materials And Methods

2.1 Experimental animals

Male C57BL/6 mice (wt.15–20g, certificate no. SCXK2018–0002) were purchased from the Guangdong Laboratory Animal Central (Guangzhou, China) and housed under standard conditions. These mice were fed a standard laboratory diet. The animals were randomly
divided into the following three groups: Sham group, LPS group and LPS + ART group. Mice received the artemisinin (Sigma Aldrich, MO, USA) and LPS (Sigma Aldrich, MO, USA) intraperitoneal injection as shown in Fig. 1E. Artemisinin was dissolved in DMSO. The dose to be administered for artemisinin (30mg/kg per day) and LPS (750μg/kg per day) was chosen based on previous studies[12–14]. The study protocol was approved by the Ethics Committee of the Second Affiliated Hospital of Guangzhou Medical University (Permit No. 2016-102) and all procedures were carried out according to the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, USA[15].

2.2 Morris water maze

To evaluate cognitive disorder and the therapeutic effects of artemisinin in mice, the Morris water maze (MWM) test was conducted as described previously [14, 16]. First, the mice were trained to find a hidden platform in the maze within 60s. If the mice failed to find the platform within 60s, it was guided to the platform and allowed to stay on it for 10s. The positioning navigation experiment was conducted after five days of LPS injection and the escape latency was recorded. On the 6th day of LPS injection, the space exploration experiment was performed where in the platform was removed from the pool. All mice were monitored for 60s to observe the average swimming speed, distance of swimming and the percentage of total time in the targeted quadrant. Data were analysed using SMART 3.0 software designed for the MWM test (Harvard Apparatus Technology Co, Ltd., USA).

2.3 Tissue preparation and histological analysis

After the MWM test, mice were euthanised and transcardially perfused with phosphate-buffered saline (PBS), followed by a solution containing 4% paraformaldehyde. Sections of hippocampal tissue from the brain were prepared and fixed in 4% paraformaldehyde solution overnight. After being dehydrated in ethanol, the tissues were embedded in
paraffin and cut into 4 µm sections. Paraffin-embedded sections of the brain tissue were
deparaffinised in xylene and rehydrated through descending grades of ethanol (Tianjin
Sheng Winton Chemical Co., Ltd., Tianjin, China). Sections were then stained with
haematoxylin and examined under a light microscope (Nikon Technology Co, Ltd., Japan).
The number of hippocampal Cornu Ammonis 1 (CA1) pyramidal neurons per mm² was used
to calculate the neuronal density.

2.4 Immunofluorescence histochemistry

After deparaffinization and rehydration, the slide was immersed in the EDTA antigen
retrieval buffer and heated for antigen retrieval. The sections were blocked with 3% BSA
for 30 min at room temperature, and then incubated with the primary antibody for ionised
calcium binding adaptor molecule-1 (Iba-1, Abcam, Cambridge, UK. ab5076, 1:200),
followed by fluorescent secondary antibodies. They were also incubated with DAPI solution
at room temperature for 10 min to visualise the nucleus. The sections were imaged with a
fluorescent microscope (Axio Observer Z1; Carl Zeiss AG, Germany). Red fluorescence was
considered as an indicator of Iba-1 positivity.

2.5 Cell culture

BV2 microglial cells were cultured in DMEM (Thermo Fisher Scientific, MA, USA)
supplemented with 10% FBS (Thermo Fisher Scientific, MA, USA), 0.5% penicillin, and 0.5%
streptomycin (Thermo Fisher Scientific, MA, USA) at 37°C with a humidified atmosphere of
5% CO2 and 95% air. BV2 cells were then divided into three groups: control group, LPS
group (treated with 100 ng/mL of LPS for 12 hours), and LPS+ART group (pretreated with
40 mM of artemisinin for 2 hours and then co-treated with 100 ng/mL of LPS for another 12
hours).

2.6 Luminex liquid chip

After treatment with LPS, the culture media of BV2 cells was collected and centrifuged for
20 min at a speed of 2000 rpm/min to obtain the cell supernatant. To evaluate the potential therapeutic target of artemisinin, liquid chip technology was applied to detect the expression levels of cytokines in BV2 cell supernatants. Luminex®xMAP®-based MILLIPLEX® MAP mouse high sensitivity T cell magnetic bead panel (Cat. # MHSTCMAG-70KPBK) was used to simultaneously measure 18 cytokines in the BV2 cell supernatants according to the manufacturer’s recommendation (Millipore, Billerica, MA, USA). The 18 cytokines included IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12, IL-13, IL-17A, granulocyte-macrophage colony-stimulating factor (GM-CSF), IFN-γ, chemokine (C-X-C motif) ligand 5 (LIX), keratinocyte chemoattractant (KC), monocyte chemoattractant protein (MCP-1), macrophage inflammatory protein 2 (MIP-2) and TNF-α. Luminex 200™ (Luminex Corp., Austin, TX) was used for measurements, and xPONENT® (Luminex Corp., Austin, TX) was used for data analysis.

2.7 ELISA

The expression levels of IL-6 and TNF-α in the cell supernatants were measured using ELISA kits (Dakewei Bio-engineering Co., Ltd, Shenzhen, China) according to the manufacturer’s instructions. The optical density values were measured at 450 nm by the microplate reader within 5 min, and standard curves were plotted[17]. Both standards and samples were measured in triplicate.

2.8 Quantitative RT-PCR

The mRNA expression for IL-6 and TNF-α was determined by qRT-PCR as described previously[18]. Briefly, total RNA was isolated using the TRIzol® reagent (Invitrogen, USA) according to the manufacturer’s protocol. Total RNA was reverse transcribed to synthesise cDNA using SuperScript III Reverse Transcription Kit (Invitrogen, USA). qRT-PCR was conducted using SYBR Green qPCR SuperMix (Invitrogen, USA) in the ViiA™ 7 Real-time PCR
System (Applied Biosystems, USA). IL-6 was determined using 5′-
CACATGTTCTCTGGGAAATCG–3′ forward and 5′- TTGTATCTCTGGGAAATCGTTGGTT-3′ reverse primers. TNF-α was determined using 5′-GCCACCACGCTCTGTCTAC-3′ forward and 5′-GGGTCTGGGCCATAGAACTGAT-3′ reverse primers. β-actin was determined using 5′-GTACCACCATGTACCAGGC–3′ forward and 5′-AACGCAGCTCAGTAACAGTCC–3′ reverse primers. Results were analysed using the 2^ΔΔC_{t} method.

2.9 Western blot analysis

Western blot analysis was performed on cell lysates according to standard protocols as described previously[11]. Briefly, the total protein of the cells was extracted with radio-immunoprecipitation assay (RIPA) lysis buffer (Kaiji Company, Shen Zhen, China) containing the complete protease inhibitor mixture and protein phosphatase inhibitor (Kaiji Company, Shen Zhen, China). Protein samples were separated by SDS-PAGE and transferred to polyvinylidene difluoride (PVDF) membranes. We then incubated the membrane with the diluted primary antibodies against AMPKα1 (Cell Signaling Technology Inc., Danvers, USA. cst 2795s, 1:1000), p-AMPKα1 (Cell Signaling Technology Inc., Danvers, USA. cst 4185s, 1:1000), inducible nitric oxide synthase (iNOS. Cell Signaling Technology Inc., Danvers, USA. cst 13120s, 1:1000), IL-6 (Cell Signaling Technology Inc., Danvers, USA. cst 12912, 1:1000), TNF-α (Abcam, Cambridge, UK. ab1793, 1:1000) and β-actin (Cell Signaling Technology Inc., Danvers, USA. cst 4970s, 1:1000) overnight at 4 °C. The following day, diluted secondary antibodies were used to detect the corresponding primary antibodies. The relative expression level of proteins was analysed using Image-Pro Plus (IPP) 6.0 (Media Cybernetics Inc., Bethesda, MD, USA).

2.10 Wound healing assay

For the migration assay, BV2 microglial cells were seeded in 6-well plates and cultured until the formation of a 90% confluent monolayer. A linear wound was made by scratching
the cell monolayer of BV2 cells with a sterile 200 μL pipette tip. After washing with PBS to remove the cell fragments, the cells were incubated in a medium without FBS. The areas of the wound and cell migration were photographed by a phase-contrast microscope at 0h and 12h after wounding. All images were analysed by IPP.

2.11 Transwell

A total of 100,000 BV2 cells were seeded in FBS-free DMEM media in the upper chamber of a transwell insert (Corning Incorporated, NY, USA). The lower chamber was filled with DMEM media supplemented with 10% FBS. After 12h of incubation, the cells in the upper chamber were removed, and the cells that had invaded the membrane were fixed with 4% paraformaldehyde and stained with crystal violet for 20 min. Five randomly selected fields were captured with an optical microscope and the number of invading cells was counted.

2.12 Small interfering RNA (siRNA) transfection

AMPKα1 targeting siRNA for use in the BV2 cell lines was synthesised by Gene Pharma Company (Gene Pharma, China). The sequence of the specific AMPKα1 siRNA was 5′-GCAUAUGCUGCAGGUAGAUTT-3′. The sequence of scrambled control siRNA was 5′-UUCUCCGAACGUGUCACGUTT-3′. Cells were transfected with AMPKα1 siRNA (si-AMPKα1) or scrambled control siRNA (si-NC) 8h prior to further experimentation using Lipofectamine iMAX (Invitrogen, USA) according to the manufacturer’s instructions.

2.13 Immunocytochemistry staining

Cells were fixed in BD Cytofix/Cytoperm solution (BD Biosciences, NJ, USA) and permeabilised with 0.1% Triton-X. The cells were incubated overnight with primary antibody for nuclear factor kappa B (NF-κB. Cell Signaling Technology Inc., Danvers, USA. cst 3039s, 1:500) followed by labelling with FITC goat anti-rabbit IgG (Wuhan Servicebio Technology Co., Ltd, Wuhan, China. 1:400). Later the cells were incubated with 0.5 mg/mL DAPI for staining the nuclei. Images were obtained using a fluorescence microscope. To
analyse the ratio of nuclear and cytoplasmic immune fluorescence of NF-κB, the percentage of cells showing high fluorescence in different areas of a cell (either nucleus or cytoplasm) was counted. A total of 200 cells were counted per group. Densitometry analysis of the nuclear translocation of NF-κB was expressed as a percentage of total cells.

2.14 Statistical analysis

The experimental results were expressed as mean±SD. Statistical analysis was performed with GraphPad Prism 7.0 software (San Diego, CA, USA) using one-way ANOVA followed by Tukey’s post-hoc analysis. A value of p less than 0.05 was considered as statistically significant.

2.15 Materials

BV2 microglial cells were purchased from Guangzhou Jennio Biotech Co., Ltd (Guangzhou, China). Artemisinin (purity > 98%), LPS and DMSO were from Sigma Aldrich (MO, USA). TNF-α (ab1793) antibody was purchased from Abcam (Cambridge, UK). AMPKα1 (cst 2795s), p-AMPKα1 (cst 4185s), iNOS (cst 13120s), IL-6 (cst 12912), NF-κB (cst 3039s), and β-actin (cst 4970s) antibodies were purchased from Cell Signaling Technology Inc (Danvers, USA). TNF-α and IL-6 ELISA kits were purchased from Dakewei Bio-engineering Co., Ltd (Shenzhen, China).

Results

3.1 Artemisinin ameliorated neuronal cell death and improved cognitive impairment in LPS-induced murine neuroinflammatory model

Morris water maze training was applied to assess the efficacy of artemisinin treatment in LPS-induced cognitive impairment. Five days after systemic injection of LPS, a positioning navigation experiment was performed to observe the cognitive function of mice. As shown in Fig.1A and B, compared to sham group, mice exposed to LPS exhibited a significantly
prolonged escape latency to find the platform, while those pretreated with artemisinin exhibited a shorter escape latency \((p<0.05)\). On the 6th day, the space exploration experiment was performed in the absence of the platform. Our data demonstrated that the percentage of total time in the targeted quadrant was significantly reduced in the LPS-challenged group compared with the sham group, while mice in the artemisinin-pretreated group spent significantly more time in the targeted quadrant than the LPS-challenged group \((p<0.05)\). There was no significant difference between the three groups of mice with regard to the average speed nor the distance travelled in the space exploration test \((p>0.05)\). These findings suggest that artemisinin could improve LPS-induced memory and cognitive impairment.

The hippocampus is closely related to cognitive and memory function. To determine whether artemisinin could affect neuronal survival in the hippocampal region and improve cognition, we performed haematoxylin staining of the hippocampus. It was found that LPS induced a significant reduction in the number of hippocampal CA1 neurons. Notably, artemisinin pretreatment could ameliorate the neuronal cell death in the CA1 region significantly \((\text{Fig. 1C, D})\). Meanwhile, Iba-1 immunoreactive microglia was abundant in the hippocampus of the LPS group. Artemisinin administration induced a dramatic decrease in Iba-1 positive cells in the hippocampal region \((\text{Fig. 2})\). This data demonstrated that artemisinin could ameliorate the hippocampal neuron cell death and improve cognitive impairment caused by LPS via suppressing microglial activation.

3.2 Artemisinin regulated the inflammatory profile and inhibited migratory ability of BV2 microglia

Microglial cell activation and proliferation precedes the onset of CNS injury\([19]\). Activated microglia produce a wide range of pro-inflammatory mediators. To investigate the effects of artemisinin on LPS-activated BV2 microglia, liquid chip was employed to determine the
level of inflammatory cytokines in the supernatant of BV2 cells. We observed a marked release of pro-inflammation cytokines (TNF-α, IL-6) and chemokines (LIX, MCP-1, MIP-2) following 12 hours of LPS stimulation, which was however abolished by artemisinin treatment (Fig.3A). The reliability of the liquid chip results was validated by ELISA analysis of IL-6 and TNF-α (Fig.3D-E). Furthermore, mRNA and protein expression were confirmed with qRT-PCR and western blot, respectively. Our data showed significant increase in mRNA expression of IL-6 and TNF-α in the LPS-activated group, which was markedly inhibited by artemisinin (Fig.4A, B). Similarly, western blot confirmed that artemisinin treatment significantly inhibited the protein expression of IL-6 and TNF-α after LPS stimulation (Fig.4 C, D). To observe the effect of artemisinin on microglial cell motility, both wound-healing assay and transwell chamber were employed. Compared with normal control, LPS stimulation efficiently enhanced the migratory ability of BV2 cells. However, such an effect was diminished in the presence of artemisinin (Fig.5). The above findings indicate that artemisinin could reduce the production of pro-inflammatory cytokines and microglial proliferation.

3.3 AMPKα1 pathway is involved in the anti-inflammatory effect of artemisinin

We next investigated whether the AMPKα1 pathway was involved in the anti-inflammatory effect of artemisinin. Preliminary western blot demonstrated that artemisinin could activate AMPKα1 in a dose-dependent manner (Fig.6A). We further discovered that activation of AMPKα1 by artemisinin significantly attenuates LPS-induced inflammatory pathways in BV2 cells. Firstly, immunofluorescence analysis revealed that LPS stimulated nuclear translocation of NF-κB, whereas pretreatment with artemisinin markedly decreased the nuclear translocation of NF-κB (Fig. 6C and D). Western blot analysis showed that the LPS-induced up-regulation of iNOS, IL-6, and TNF-α expression was also reversed by artemisinin pretreatment (Fig.6B). These results further suggest that
activation of AMPKα1 by artemisinin significantly attenuated the activation of NF-κB inflammatory pathway induced by LPS.

The essential role of AMPKα1 activation in the anti-inflammatory effect of artemisinin was confirmed using si-RNA specific to AMPKα1. As shown in Fig.7A, immune blotting showed excellent knock-down efficiency of si-RNA specific to AMPKα1. We observed that artemisinin inhibited the LPS-induced increase in TNF-α production, but this effect was significantly reduced after transfection with AMPKα1 siRNA (Fig. 7B and C). Therefore, the results suggest that artemisinin attenuated the LPS-induced inflammation by activation of AMPKα1.

Discussion

In our study, artemisinin exhibited powerful anti-inflammatory and neuroprotective activities in the SAE model. This protection was mediated by the activation of AMPKα1 signalling in the microglia (Fig.8).

Cognitive impairment is an essential manifestation of SAE[3]. Unfortunately, the treatment outcomes remain unsatisfactory. Many patients continue to have cognitive dysfunction after the sepsis has healed[2]. The cognitive impairment of SAE was caused by the immune response to bacterial LPS or other endotoxic components of bacteria without a direct central nervous system infection[20]. Therefore, we chose systemic LPS-injection to induce the experimental SAE and relevant experiments were conducted using this model. Our results have shown that artemisinin could improve the cognitive function in SAE mice in the Morris water maze test. Artemisinin preconditioned mice exhibited better spatial learning-memory than the LPS-challenged group. It has been reported that artemisinin B, one of the compounds isolated from Artemisia annuaL., improves spatial memory in the water maze test in a mouse model of dementia [21]. This study provides preliminary evidence for the neuroprotective effect of artemisinins against neurodegenerative
diseases. Our results showed that artemisinin could improve cognitive dysfunction in the SAE mice model and further illustrate the effects of artemisinin on neurological disorders. A previous clinical study of brain tissue has found an association between activation of microglia and sepsis[22]. Excessive activation of microglia has been demonstrated as one of the main mechanisms of pathogenesis in SAE[4, 23]. Activation of microglia releases multiple inflammatory factors resulting in hippocampal neuronal damage which ultimately leads to cognitive dysfunction[21]. Therefore, suppression of microglial activation has therapeutic potential in the treatment of SAE[24, 25]. Pathological changes in the hippocampus were measured to detect neuronal survival and microglial activation in our study. Our results showed that artemisinin inhibited LPS-induced activation of microglia and neuronal death in the hippocampal CA1 region. Taken together, this study demonstrates that artemisinin could restore hippocampus-mediated cognition by inhibiting the microglial cell activation and neuronal death in the CA1 region.

To further evaluate the potential pharmacological mechanism of artemisinin in microglia, liquid chip technology was applied to detect the expression levels of cytokines in the BV2 cell supernatants. We observed a marked release of pro-inflammatory cytokines (TNF-α, IL-6) following LPS stimulation for 12 hours, which was abolished by artemisinin treatment. Previous in-vitro experiments have also shown that artemisinins can inhibit the TNF-α and IL-6 release from LPS stimulated BV2 cells[26], which is in accordance with our result. Neuroinflammation, mainly characterised by the activation of microglial cells and the massive production of pro-inflammatory cytokines is found to be involved in SAE[27, 28]. Excessive neuroinflammation would cause neuronal damage and cognitive impairment by causing an over-production of pro-inflammatory cytokines[29–31]. Inhibition of over-activated microglia appears to be a potential therapeutic strategy in SAE[23]. Based on our study, it can be concluded that artemisinins have appreciable anti-inflammatory
effects and thus decrease the toxic effects of pro-inflammatory cytokines on neurons. The liquid chip also revealed that artemisinin inhibited the chemokines (LIX, MCP-1 and MIP-2) which were induced by LPS stimulation. Chemokines are crucial factors for an early inflammatory response that evoke migration of the microglial cells[32]. Microglial cells migrate to the site of injury or lesion, and play a pivotal role in the occurrence, and development of inflammation[33]. In this study, immunofluorescence of Iba-1, wound healing assay and transwell migration assay were performed to test whether artemisinin could reduce the migratory capacity of microglia cells. The immunofluorescence test for Iba-1 showed that artemisinin significantly inhibited LPS-induced migration of microglia in the brain. Wound healing assay and transwell migration assay also revealed that artemisinin inhibited the migratory ability of BV2 microglia. Our data suggests that the anti-inflammatory effect of artemisinin might be exerted by suppressing microglial cell motility via inhibition of chemokine activity.

To further elucidate the mechanism of the anti-inflammatory and neuroprotective effects of artemisinin, we assessed its effect on the AMPK signalling pathway. AMPK is a highly conserved serine/threonine protein kinase present in eukaryotic cells[34, 35]. AMPK participates in multiple biological processes by modulating cellular energy homeostasis. It has become an attractive drug target for diabetes, stroke, and tumour [36]. Recent studies found that AMPK is also involved in inflammatory response through regulation of NF-κB signalling pathway[37]. It has been reported that phosphorylated-AMPK inhibits the activation of NF-κB and decreases the production of IL-6, TNF-α and IL-1β[38-41]. These results suggest that AMPK phosphorylation may also serve as an important therapeutic target for inflammation [34, 42]. However, whether artemisinin inhibits neuroinflammation through the AMPK/NF-κB pathway remains unexplored. Firstly, our study demonstrated that artemisinin could activate the AMPK in a dose-dependent manner in microglia cells.
Furthermore, pretreatment with artemisinin markedly decreased the nuclear translocation of NF-κB in BV2 cells. PCR, western Blot and ELISA analysis showed that LPS-induced up-regulation of IL-6, and TNF-α mRNA, and both proteins were also reversed by artemisinin pretreatment. Therefore, the present study suggests that artemisinin increased the expression of AMPK and blocked the nuclear translocation of NF-κB where it can initiate transcription by binding to gene promoter elements of IL-6 and TNF-α. These results suggest that the AMPK/NF-κB pathway is involved in the anti-inflammatory activity of artemisinin in neuroinflammation. Previous research has shown that artemisinin could regulate AMPK pathway, hence it is an attractive drug target for cancer and oxidative stress injury[43, 44]. We demonstrate for the first time in the current study that AMPK pathway can be the therapeutic target of artemisinin for the treatment of neuroinflammation.

Conclusion

In summary, our data has proved for the first time that artemisinin inhibits hippocampal neuronal death and cognitive impairment by inhibiting microglial activation in the in-vivo model of SAE. In addition, it was found that artemisinin significantly increased the AMPKα1 to inhibit LPS-induced neuroinflammatory response in BV2 microglial cells. Our finding indicate that artemisinin may be a potential therapeutic agent in SAE.

Abbreviations

SAE, sepsis-associated encephalopathy; LPS, Lipopolysaccharides; AMPK, AMP-Activated Protein Kinases; MWM, Morris water maze; CA1, Cornu Ammonis 1; CNS, central nervous system.

Declarations

- Ethical Approval and Consent to participate
The studies were approved by the Ethics Committee of the Second Affiliated Hospital of Guangzhou Medical University.

- Consent for publication

Not applicable

- Availability of supporting data

All data supporting the conclusions of this study are presented in the manuscript.

- Competing interests

All authors declare that there are no conflicts of interest.

- Funding

This work was partly supported by the National Natural Science Foundation of China (grant No.81641088), the Natural Science Foundation of Guangdong Province (grant No.2016A030310267), the Science and Technology Planning Project of Guangdong Province (grant No.2015A030302091), the Science and Technology Planning Project of Guangzhou (grant No.201607010160), the Nature Science Foundation in Guangzhou Medical University (grant No.2015C14), the Key Medical Disciplines and Specialities Program of Guangzhou(2017-2019).

- Authors’ contributions

X.-H. C., P.-Y. L and S.-P. L. designed the experiments. J.-X. W., J. H., J. B., L. Z., Q.L, H.L, Y.W, and S.-Q. C. conducted the experiments. S.-P. L. and S. Y. wrote the manuscript. All the authors analyzed the data, revised the manuscript, and approved the final manuscript.

- Acknowledgements

Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University has provided us with some experimental instruments.

References

1. Zhang LN, Wang XT, Ai YH, Guo QL, Huang L, Liu ZY, Yao B: *Epidemiological features and
risk factors of sepsis-associated encephalopathy in intensive care unit patients: 2008-2011. Chin Med J (Engl) 2012, 125:828-831.

2.Widmann CN, Heneka MT: Long-term cerebral consequences of sepsis. Lancet Neurol 2014, 13:630-636.

3.Stubbs DJ, Yamamoto AK, Menon DK: Imaging in sepsis-associated encephalopathy—insights and opportunities. Nat Rev Neurol 2013, 9:551-561.

4.Sonneville R, de Montmollin E, Poujade J, Garrouste-Orgeas M, Souweine B, Darmon M, Mariotte E, Argaud L, Barbier F, Goldgran-Toledano D, et al: Potentially modifiable factors contributing to sepsis-associated encephalopathy. Intensive Care Med 2017, 43:1075-1084.

5.Tu Y: Artemisinin-A Gift from Traditional Chinese Medicine to the World (Nobel Lecture). Angew Chem Int Ed Engl 2016, 55:10210-10226.

6.Miller LH, Su X: Artemisinin: discovery from the Chinese herbal garden. Cell 2011, 146:855-858.

7.Das AK: Anticancer Effect of AntiMalarial Artemisinin Compounds. Ann Med Health Sci Res 2015, 5:93-102.

8.Chen W, Li FF, Li C, Sui JK, Meng QF, Li XL, Li H, Li CH, Li YB: Artemisinin ameliorates the symptoms of experimental autoimmune myasthenia gravis by regulating the balance of TH1 cells, TH17 cells and Treg cells. J Biol Regul Homeost Agents 2018, 32:1217-1223.

9.Tilaoui M, Mouse HA, Jaafari A, Zyad A: Differential effect of artemisinin against cancer cell lines. Nat Prod Bioprospect 2014, 4:189-196.

10.Liu X, Lu J, Liao Y, Liu S, Chen Y, He R, Men L, Lu C, Chen Z, Li S, et al: Dihydroartemisinin attenuates lipopolysaccharide-induced acute kidney injury by inhibiting inflammation and oxidative stress. Biomed Pharmacother 2019, 117:109070.

11.Lin SP, Li W, Winters A, Liu R, Yang SH: Artemisinin Prevents Glutamate-Induced
Neuronal Cell Death Via Akt Pathway Activation. Front Cell Neurosci 2018, 12:108.

12. Yao Y, Guo Q, Cao Y, Qiu Y, Tan R, Yu Z, Zhou Y, Lu N: Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-beta signaling in breast cancer. J Exp Clin Cancer Res 2018, 37:282.

13. Xie LH, Li Q, Zhang J, Weina PJ: Pharmacokinetics, tissue distribution and mass balance of radiolabeled dihydroartemisinin in male rats. Malar J 2009, 8:112.

14. Liu W, Huang S, Li Y, Zhang K, Zheng X: Suppressive effect of glycyrrhizic acid against lipopolysaccharide-induced neuroinflammation and cognitive impairment in C57 mice via toll-like receptor 4 signaling pathway. Food Nutr Res 2019, 63.

15. National Research Council (U.S.). Committee for the Update of the Guide for the Care and Use of Laboratory Animals., Institute for Laboratory Animal Research (U.S.), National Academies Press (U.S.): Guide for the care and use of laboratory animals. 8th edn. Washington, D.C.: National Academies Press; 2011.

16. Zhao J, Bi W, Xiao S, Lan X, Cheng X, Zhang J, Lu D, Wei W, Wang Y, Li H, et al: Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep 2019, 9:5790.

17. Lin SP, Ye S, Chen XH, Jiang HL, Mao HF, Chen MT, Ma QJ, Long Y, Fan Y, Lin PY: Increased expression of microRNA-21 in peripheral blood mediates the down-regulation of IFN-gamma and increases the prevalence of stroke-associated infection. J Neurol Sci 2016, 366:235–239.

18. Lin SP, Ye S, Long Y, Fan Y, Mao HF, Chen MT, Ma QJ: Circular RNA expression alterations are involved in OGD/R-induced neuron injury. Biochem Biophys Res Commun 2016, 471:52–56.

19. Ponomarev ED, Shriver LP, Maresz K, Dittel BN: Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res 2005, 81:374–389.
20. Schedlowski M, Engler H, Grigoleit JS: Endotoxin-induced experimental systemic inflammation in humans: a model to disentangle immune-to-brain communication. Brain Behav Immun 2014, 35:1-8.

21. Qiang W, Cai W, Yang Q, Yang L, Dai Y, Zhao Z, Yin J, Li Y, Li Q, Wang Y, et al: Artemisinin B Improves Learning and Memory Impairment in AD Dementia Mice by Suppressing Neuroinflammation. Neuroscience 2018, 395:1-12.

22. Lemstra AW, Groen in’t Woud JC, Hoozemans JJ, van Haastert ES, Rozemuller AJ, Eikelenboom P, van Gool WA: Microglia activation in sepsis: a case-control study. J Neuroinflammation 2007, 4:4.

23. Pan C, Si Y, Meng Q, Jing L, Chen L, Zhang Y, Bao H: Suppression of the RAC1/MLK3/p38 Signaling Pathway by beta-Elemene Alleviates Sepsis-Associated Encephalopathy in Mice. Front Neurosci 2019, 13:358.

24. Beggs S, Salter MW: SnapShot: Microglia in Disease. Cell 2016, 165:1294-1294 e1291.

25. Sui DM, Xie Q, Yi WJ, Gupta S, Yu XY, Li JB, Wang J, Wang JF, Deng XM: Resveratrol Protects against Sepsis-Associated Encephalopathy and Inhibits the NLRP3/IL-1beta Axis in Microglia. Mediators Inflamm 2016, 2016:1045657.

26. Zhu C, Xiong Z, Chen X, Peng F, Hu X, Chen Y, Wang Q: Artemisinin attenuates lipopolysaccharide-stimulated proinflammatory responses by inhibiting NF-kappaB pathway in microglia cells. PLoS One 2012, 7:e35125.

27. Block ML, Calderon-Garciduenas L: Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci 2009, 32:506-516.

28. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, et al: Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015, 14:388-405.

29. Xanthos DN, Sandkuhler J: Neurogenic neuroinflammation: inflammatory CNS reactions
in response to neuronal activity. Nat Rev Neurosci 2014, 15:43-53.

30. Tang Y, Le W: Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Mol Neurobiol 2016, 53:1181-1194.

31. Wang YW, Zhou Q, Zhang X, Qian QQ, Xu JW, Ni PF, Qian YN: Mild endoplasmic reticulum stress ameliorates lipopolysaccharide-induced neuroinflammation and cognitive impairment via regulation of microglial polarization. J Neuroinflammation 2017, 14:233.

32. Piao HZ, Choi IY, Park JS, Kim HS, Cheong JH, Son KH, Jeon SJ, Ko KH, Kim WK: Wogonin inhibits microglial cell migration via suppression of nuclear factor-kappa B activity. Int Immunopharmacol 2008, 8:1658-1662.

33. Fang Y, Wang J, Yao L, Li C, Wang J, Liu Y, Tao X, Sun H, Liao H: The adhesion and migration of microglia to beta-amyloid (Abeta) is decreased with aging and inhibited by Nogo/NgR pathway. J Neuroinflammation 2018, 15:210.

34. Lin SC, Hardie DG: AMPK: Sensing Glucose as well as Cellular Energy Status. Cell Metab 2018, 27:299-313.

35. Garcia D, Shaw RJ: AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Mol Cell 2017, 66:789-800.

36. Jiang T, Yu JT, Zhu XC, Wang HF, Tan MS, Cao L, Zhang QQ, Gao L, Shi JQ, Zhang YD, Tan L: Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy. Br J Pharmacol 2014, 171:3146-3157.

37. Jian M, Kwan JS, Bunting M, Ng RC, Chan KH: Adiponectin suppresses amyloid-beta oligomer (AbetaO)-induced inflammatory response of microglia via AdipoR1-AMPK-NF-kappaB signaling pathway. J Neuroinflammation 2019, 16:110.

38. Cacicedo JM, Yagihashi N, Keaney JF, Jr., Ruderman NB, Ido Y: AMPK inhibits fatty acid-induced increases in NF-kappaB transactivation in cultured human umbilical vein
endothelial cells. Biochem Biophys Res Commun 2004, 324:1204-1209.

39. Thirupathi A, de Souza CT: Multi-regulatory network of ROS: the interconnection of ROS, PGC-1 alpha, and AMPK-SIRT1 during exercise. J Physiol Biochem 2017, 73:487-494.

40. Afonina IS, Zhong Z, Karin M, Beyaert R: Limiting inflammation-the negative regulation of NF-kappaB and the NLRP3 inflammasome. Nat Immunol 2017, 18:861-869.

41. Salt I P, Palmer TM: Exploiting the anti-inflammatory effects of AMP-activated protein kinase activation. Expert Opin Investig Drugs 2012, 21:1155-1167.

42. O'Neill LA, Hardie DG: Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature 2013, 493:346-355.

43. Cheng C, Wang T, Song Z, Peng L, Gao M, Hermine O, Rousseaux S, Khochbin S, Mi JQ, Wang J: Induction of autophagy and autophagy-dependent apoptosis in diffuse large B-cell lymphoma by a new antimalarial artemisinin derivative, SM1044. Cancer Med 2018, 7:380-396.

44. Zhao X, Fang J, Li S, Gaur U, Xing X, Wang H, Zheng W: Artemisinin Attenuated Hydrogen Peroxide (H2O2)-Induced Oxidative Injury in SH-SY5Y and Hippocampal Neurons via the Activation of AMPK Pathway. Int J Mol Sci 2019, 20.

Figures
Figure 1

Artemisinin ameliorated neuronal cell death and improved cognitive impairment in LPS-induced murine neuroinflammatory model. (A) Representative swim paths obtained in the Morris water maze test. (B) Analysis of data obtained in the Morris water maze test. (C) Immunohistochemical staining was used to detect neuronal survival in the CA1 area of the hippocampus. Magnification: 400×. (D) Quantitative analysis of data from C. (E) Timeline of the in vivo experimental treatments. * p<0.05 versus Sham group mice. # p<0.05 versus LPS-treated mice.
Figure 2
Artemisinin attenuated LPS-induced microglial activation in the hippocampus. (A) Immunofluorescence staining of Iba-1. Magnification: 50 or 200×. (B) Quantitative analysis of data from A. * p<0.05 versus Sham group mice. # p<0.05 versus LPS-treated mice.

Figure 3
Artemisinin attenuated LPS-induced microglial activation in the hippocampus. (A) Immunofluorescence staining of Iba-1. Magnification: 50 or 200×. (B) Quantitative analysis of data from A. * p<0.05 versus Sham group mice. # p<0.05 versus LPS-treated mice.
Artemisinin preconditioning reduced LPS-induced upregulation of mRNA and protein expression of IL-6 and TNF-α. (A) The fold changes of IL-6 estimated by qRT-PCR. (B) The fold changes of TNF-α estimated by qRT-PCR. (C) The level of IL-6 protein detected by western blotting. (D) The levels of TNF-α protein detected by western blotting. * p<0.05 versus control group. # p<0.05 versus LPS-treated group.
Figure 5

Artemisinin inhibited the migratory ability of BV2 microglia. (A) Wound healing assay. (B) Relative cell migration area 12 hours after wounding. (C) Transwell chamber migration of BV2 microglial cells. Magnification: 100 or 200×. (D) The relative migratory cells in the lower chamber. * p<0.05 versus control group. # p<0.05 versus LPS-treated group.
Artemisinin activates AMPKα1 and suppresses the inflammatory response in BV2 cells. (A) Western blots showed that treatment with artemisinin increased the phosphorylation of AMPKα1. (B) Protein levels of AMPKα1, iNOS, IL-6 and TNF-α were detected by western blotting. (C) Immunocytochemical staining of NF-κB. Scale bars=50 μm. (D) Quantitative analysis of data from G. *p<0.05 versus control group. # p<0.05 versus LPS-treated group.
The anti-inflammatory effect of artemisinin in LPS-stimulated BV2-microglia was blocked by siRNA specific to AMPKα1. (A) Efficiency of AMPKα1 knock-down by using siRNA in BV2 cells. *P<0.05 versus siNC group. (B) TNF-α protein levels after siRNA treatment in BV2 cells. (C) TNF-α production after siRNA treatment in BV2 cells. * p<0.05 versus control group. # p<0.05 versus LPS-treated group. & p<0.05 versus LPS+ART group.
A model illustrating the mechanism of artemisinin in the treatment of SAE.