Kidney oxygenation under pressure

van der Bel, R.

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
Other

Citation for published version (APA):
van der Bel, R. (2017). Kidney oxygenation under pressure.
Chapter 3

Part A

Blood pressure increase during oxygen supplementation in chronic kidney disease patients is mediated by vasoconstriction independent of baroreflex function

René van der Bel, Müşerref Çalışkan, Robert A. van Hulst, Johnnes J. van Lieshout, Erik S.G. Stroes, C.T. Paul Krediet

*Frontiers in Physiology 2017; 8:186.*

This paper was awarded the *Award for Outstanding Scientific Presentation* at the ERA-EDTA conference in Vienna 2016
ABSTRACT

Renal hypoxia is thought to be an important pathophysiological factor in the progression of chronic kidney disease (CKD) and the associated hypertension. In a previous study among CKD patients, supplementation with 100% oxygen reduced sympathetic nerve activity (SNA) and lowered blood pressure (BP). We aimed to assess the underlying haemodynamic modulation and hypothesized a decreased systemic vascular resistance (SVR).

To that end, 19 CKD patients were studied during 15-minute intervals of increasing partial oxygen pressure (ppO₂) from room air (0.21 ATA) to 1.0 ATA and further up to 2.4 ATA, while continuously measuring finger arterial blood pressure (Finapres). Off-line, we derived indexes of SVR, cardiac output (CO) and baroreflex sensitivity from the continuous BP recordings (Modelflow).

During oxygen supplementation, systolic and diastolic BP both increased dose-dependently from 128±24 and 72±19 mmHg respectively at baseline to 141±23 (p<0.001) and 80±21 mmHg (p<0.001) at 1.0ATA oxygen. Comparing baseline and 1.0 ATA oxygen, SVR increased from 1440±546 to 1745±710 dyn·s/cm² (p=0.009), heart rate decreased from 60±8 to 58±6 bpm (p<0.001) and CO from 5.0±1.3 to 4.6±1.1 L/min (p=0.02). Baroreflex sensitivity remained unchanged (13±13 to 15±12 ms/mmHg). These blood pressure effects were absent in a negative control group of eight young healthy subjects.

We conclude that oxygen supplementation in CKD patients causes a non-baroreflex mediated increased in SVR and blood pressure.
INTRODUCTION

Hypertension is a hallmark of chronic kidney disease (CKD). There is substantial evidence that this can be attributed to increased sympathetic nerve activity (SNA) $^{1-4}$. The mechanisms underlying increased SNA in CKD are not completely understood. Several studies have reported an attenuation of SNA and blood pressure (BP) following bilateral nephrectomy $^{5-7}$. This has founded the concept that the trigger of the enhanced central sympathetic outflow in CKD patients resides in the affected kidneys itself. Deterioration of renal oxygenation by altered renal perfusion and increased metabolic demand has been postulated as a common factor in the progression of CKD $^{8,9}$ and nephrogenic sympathetic hyperactivity and hypertension $^{1,10,11}$.

In this respect, altered renal chemo-receptor activation in CKD has been studied by various groups $^{12-14}$. Of special interest is a study by Hering et al., who exposed CKD patients (mean serum creatinine 5.5±0.3 mg/dl) to 100% oxygen over a non-rebreathing mask for 15 minutes. This resulted in a 30% reduction in SNA accompanied by a lower pulse pressure $^{13}$. This response was absent in healthy controls and non-CKD patient populations $^{15,16}$. Therefore, the observed effects on sympathetic nerve activity and BP were attributed to CKD-specific hypoxia-mediated renal chemo-reflex deactivation. Additional support for the existence of a kidney-derived chemo-reflex, were the observations in non-CKD sympathetically hyperactive patient groups not showing such a response $^{17,18}$. Thus, the haemodynamic response to oxygen supplementation appears to be uniquely different in CKD patients.

Ever since, it has been assumed that the underlying mechanism of the BP effects of oxygen supplementation in CKD patients is mediated by a decrease in sympathetic outflow leading to a reduction in systemic vascular resistance $^{19}$. However, so far this has never been substantiated. Therefore, we set out to revisit and further explore the concept that systemic hyperoxia suppresses vasoconstrictor activity and BP in CKD patients. Our aim was to elaborate on the haemodynamic mechanisms underlying the BP changes as previously reported by others. We hypothesized: (1) that the previously observed decrease in BP is the effect of a decrease in (sympathetically mediated) systemic vascular resistance (SVR), and (2) that this effect is related to the amount of oxygen provided in a dose-dependent fashion.

MATERIALS AND METHODS

Participants
We studied 19 CKD patients (14 males, 5 women; age 62 ± 10 years, BMI 25.7 ± 3.7 kg/m², eGFR 23.6 ± 7.2 mL/min/1.73m²). Of all patients, values of haemoglobin and proteinuria
were available from clinical routine testing within 3 months before the study. Baseline characteristics, including medication use and disease background are given in Table 1. To verify the known hemodynamic effects of hyperoxia and thereby the accuracy of our methods, we also included a group of eight young healthy subjects (6 male and 2 female, mean age 26 ± 3 years, BMI 23.1 ± 2.7 kg/m²). The study was carried out in accordance with the Declaration of Helsinki of the World Medical Association (2013). The Medical Ethics Review Committee of the Academic Medical Center (University of Amsterdam, Amsterdam, The Netherlands) approved the study protocol. Before inclusion all participants provided written informed consent.

**Normobaric challenge**

After an initial baseline measurement of 15 minutes room air (RA), a non-rebreathing mask was positioned over nose and mouth. Blood pressure measurement (see below) was continued while room air, partial pressure of oxygen (ppO₂) 0.21 ATA, was provided over the mask
Haemodynamics during hyperoxia in CKD

Chapter 3

Figure 1. Normobaric oxygen supplementation protocol. Room air (RA) and oxygen at different concentrations (21%, 50% or 100%) were provided for 15 minutes each. Measurements were performed at atmospheric pressure, i.e. 1 atmosphere absolute (ATA). At atmospheric pressure a partial oxygen pressure (ppO₂) of 1.0 ATA is reached, when 100% oxygen is provided.

At 15 L/min for another 15 minutes. Thereafter the ppO₂ in the breathing gas was increased to 50% O₂ (ppO₂ 0.5 ATA) and 100% O₂ (ppO₂ 1.0 ATA) respectively again for 15 minutes at each dose (Fig. 1). The oxygen dose was regulated using an air-oxygen blender (Precision Medical Inc., Northampton, USA). Patients were blinded to the dosage and were not aware when the oxygen dose was altered. Measurements were performed in a quiet room with the temperature controlled at 22°C. During all measurements, participants remained quietly in the supine position. Patients receiving angiotensin-converting-enzyme (ACE) inhibitors and/or angiotensin II receptor blockers (ARBs) had postponed the intake of these medications until after the study visit.

Hyperbaric challenge

In another session, subjects were exposed to hyperbaric oxygen in a hyperbaric chamber. Again, during all measurements patients assumed a supine position. Continuous blood pressure was recorded while breathing room air (RA) at atmospheric pressure (ppO₂ 0.21 ATA), under hyperbaric conditions at 2.4 ATA (ppO₂ 0.5 ATA) and at 2.4 ATA during 100% oxygen supplementation (ppO₂ 2.4 ATA, Fig. 2).
Continuous blood pressure measurements and analysis

During all sessions, continuous blood pressure was measured using finger arterial photoplethysmography (Portapres™, Finapres Medical Systems, Amsterdam, The Netherlands). The device has been validated for use in CKD patients 20. The appropriate size finger cuff was positioned around the mid-phalanx of the left middle finger for all recordings and passively positioned at heart level. The system had been adapted for use under hyperbaric conditions as previously reported in detail, part B of this chapter 21.

The finger arterial pressure signal was recorded at 100 Hz and analysed off-line using the Modelflow algorithm (Beatscope® version 1.1a, Finapres Medical Systems, Amsterdam, The Netherlands). This algorithm provides a validated beat-to-beat estimate of left ventricular stroke volume (SV), based on a nonlinear 3-element model of the input impedance of the aorta 22. Mean arterial pressure (MAP) was the integral over one heart beat and the heart rate (HR) was the inverse of the pulse interval. Cardiac output (CO) was SV times HR. SVR was MAP divided by CO, in dyn·sec/cm⁵. Pulse pressure (PP) was systolic BP (SBP) minus diastolic BP (DBP). All hemodynamic parameters were derived from the last minute of the measurements at baseline and at each oxygen dose. Time domain cross-correlation baroreflex sensitivity (xBRS) was calculated from the same intervals as the other parameters, using dedicated software (WinXBRS 2, BMEye, Amsterdam, The Netherlands) 23. The xBRS was computed using beat-to-beat SBP and R–R interval, in a sliding 10 s window. Each instance that a correlation with a significance level of p ≤ 0.01 was found the xBRS value was recorded.
Statistical analysis
Normal distribution of the data was verified using Levine’s test and data are presented as mean ± standard deviation, unless otherwise indicated. The within group responses to increasing ppO₂ were assessed using general linear modelling. P-values <0.05 were considered significant.

RESULTS

Normobaric oxygen challenge (CKD patients)
SBP and DBP both increased with increasing oxygen supplementation from 128±24/72±19 to 141±23/80±21 mmHg systolic/diastolic at a ppO₂ of 1.0 ATA, F(3,18) = 12.6, p <0.001 for SBP and F(3,18) = 8.8, p <0.001 for DBP (Fig. 3A and B). The pulse pressure increased as well, from 55±13 to 61±11 mmHg (F(3,18) = 5.8, p = 0.002, Fig. 3D). HR (60±8 bpm at baseline; 58±6 bpm at 1.0 ATA ppO₂, F(3,18) = 25.1, p <0.001) and CO (5.0±1.3 L/min at baseline; 4.6±1.1 L/min at 1.0 ATA ppO₂, F(3,18) = 3.6, p = 0.02) decreased during oxygen supplementation (Fig. 3E and G). SVR increased from 1440±546 to 1745±710 dyn·sec/cm², (F(3,18) = 4.3, p = 0.009, Fig. 3F). xBRS remained unchanged with 13±13 ms/mmHg at baseline and 15±12 ms/mmHg at 1.0 ATA ppO₂ (F(3,7) = 0.647; p = 0.59, Fig. 3H).

Hyperbaric oxygen challenge (CKD patients)
Due to the results of oxygen supplementation under normobaric conditions, the hyperbaric experiments were suspended for ethical reasons after studying four patients (and not carried out in the control subjects). When changing from a normobaric (1 ATA) to a hyperbaric condition (2.4 ATA, Fig. 4), SBP and DBP where121±17/70±16 at baseline and 146±18/84±11 mmHg systolic/diastolic at a ppO₂ of 2.4 ATA (Fig. 4A and B). Pulse pressure was 51±9 at baseline and 62±13 mmHg at 2.4 ATA ppO₂ (Fig. 4D). HR was 64±9 bpm at baseline and 60±8 bpm at 2.4 ATA ppO₂ and CO was 4.2±1.3 L/min at baseline and 3.6±0.4 L/min at 2.4 ATA ppO₂ (Fig. 4E and G). No further increase in SVR was observed during hyperbaric oxygen supplementation (Fig. 4F). Changes in SBP did not correlate with eGFR (R = 0.013).

Control subjects
During the normobaric oxygen challenge in the control group, SVR increased significantly from 903 at baseline to 985 dyn·sec/cm² at a ppO₂ of 1.0 ATA, F(3,7) = 11.6; p <0.001 (Fig. 3F). SBP (F(3,7) = 2.60; p = 0.08), DBP (F(3,7) = 1.33; p = 0.29), MAP (F(3,7) = 1.28; p = 0.31) and PP (F(3,7) = 2.07; p = 0.13), did not change (Fig. 3A-D), HR (F(3,7) = 13.0; p <0.001) and CO (F(3,7) = 6.73; p = 0.002) decreased with oxygen supplementation (Fig. 3E and G). xBRS remained unchanged (F(3,7) = 0.884; p = 0.47, Fig. 3H).
Figure 3 Hemodynamic response to normobaric oxygen supplementation, for the patient (solid bars) and the young healthy controls (open bars). All graphs depict absolute mean ± SD at each condition: room air (RA), 21% oxygen over a non-rebreathing mask (ppO2 0.21 ATA), 50% oxygen (ppO2 0.5 ATA) and 100% oxygen (ppO2 1.0 ATA). Averages over the last minute of each condition for: A systolic blood pressure; B diastolic blood pressure; C mean arterial pressure (MAP); D pulse pressure (PP); E heart rate (HR); F systemic vascular resistance (SVR); G cardiac output (CO); H baroreflex sensitivity (xBRS). Designation of significant responses to oxygen supplementation in patients * and in controls †.
Figure 4 Hemodynamic response to hyperbaric oxygen supplementation. All graphs depict absolute mean ± SD at each condition: room air (RA), hyperbaric RA (ppO₂ 0.5 ATA) and hyperbaric oxygen (ppO₂ 2.4 ATA). Averages over the last minute of blood pressure registration at each condition of: A systolic blood pressure; B diastolic blood pressure; C mean arterial pressure (MAP); D pulse pressure (PP); E heart rate (HR); F systemic vascular resistance (SVR); G cardiac output (CO); H baroreflex sensitivity (xBRS).


Chapter 3

DISCUSSION

The findings of this study can be summarized as follows: 1) Oxygen supplementation causes a dose-dependent blood pressure increase among CKD patients. 2) This blood pressure increase is caused by an SVR increase. 3) The simultaneous HR decrease with unchanged baroreflex sensitivity indicates that the SVR increase is caused by a direct vascular effect of the increased plasma ppO₂ rather than a response of the baroreflex.

Our results seem to contradict previous findings in CKD patients 12-14. Hering et al. found that in a similar experiment, exposing CKD patients to 100% oxygen resulted in a 30% reduction in muscle sympathetic nerve activity 13, whereas we find an increased systemic vasoconstriction. Upon closer inspection, their SNA decrease was accompanied by a slight increase in diastolic blood pressure – similar to what we found – which was not elaborated upon further. Instead, the analysis focussed on a decreased pulse pressure. However, this rise in diastolic blood pressure may be the key to explaining the decreased SNA during oxygen supplementation in CKD patients. Therefore, we need to consider the haemodynamic effects of hyperoxia in health with regard to baroreflex function.

In healthy humans, oxygen supplementation induces hyperoxic vasoconstriction as observed in our controls and previously reported data 24,25. This response is due to (1) the direct vasoconstrictive effect of plasma pO₂ itself and (2) its ability to simultaneously hinder vasodilatation by reducing nitric oxide (NO) bioavailability 24,25. In contrast to sympathetically mediated vasoconstriction, hyperoxic vasoconstriction acts independent of baroreflex function 26,27. CKD patients have an intact arterial baroreflex system 28, therefore modulation of the baroreflex leads to changes in HR and sympathetic activation to occur simultaneously and in the same direction, i.e. HR increase and sympathetic vasoconstriction versus HR decrease and sympathetic decrease (leading to vasodilation). However, in our experiment vasoconstriction is observed with a simultaneous decrease in HR during oxygen supplementation. This is indicative of a deactivating signal to the cardiac baroreflex, resulting in a reduction in HR. Based on the coupling of sympathetic activity and HR, this explains the decrease in sympathetic activity while diastolic blood pressure increases due to direct oxygen driven and non-baroreflex mediated vasoconstriction 13.

To explain the blood pressure increase that we observed in CKD patients, we consider the ability of hyperoxia to decrease vasodilatory capacity by reducing NO bioavailability. Reduced NO bioavailability in CKD patients (similar to diabetic and hypertension patients 29) may impede the attenuation of the hemodynamic effects of hyperoxic vasoconstriction 30,31. Therefore, our data are most consistent with inadequate attenuation of hyperoxic vasoconstriction in patients with CKD-related endothelial dysfunction.
Thus, it appears that the hemodynamic response to hyperoxia is not uniquely affected in CKD patients. Instead, it seems that hyperoxic vasoconstriction induces an increase in blood pressure, leading to baroreflex deactivation with a reduction in systemic sympathetic tone. Our data (and in hindsight those from Hering et al.) do not support nor exclude the existence of a CKD-kidney specific hypoxic triggering of (either renal or extra-renal) chemo receptors. The overwhelming effects of oxygen on systemic vasoconstriction render the experimental set-up unsuitable to detect any possible subtle effects of kidney specific oxygenation on sympathetic outflow.

A possible clinical implication of these results is that oxygen supplementation might act as a cardiovascular stressor in CKD patients. Interestingly, this is in line with observations that oxygen supplementation in selected clinical patients is associated with worse outcome\textsuperscript{15,16}. Additionally, our study provides some more explanation on the lack of efficacy of catheter based renal denervation. The presumed decrease in SNA and blood pressure by oxygen supplementation in CKD patients was one of the founding principles of the pathophysiological rationale for renal sympathetic denervation\textsuperscript{32,33}. Eventually, renal sympathetic denervation showed not to have any effect on blood pressure, and specifically not in CKD patients\textsuperscript{34}. Our data question part of the founding rationale for renal sympathetic denervation.

Our study has several methodological limitations that merit discussion. First, patients continued the use of anti-hypertensive medication during the study. For ethical reasons these medications could not be fully withdrawn and was a compromise between taking out possible interfering factors versus patient risk. Our considerations were as follows: because of the specific effects on renal hemodynamics and oxygenation ACE inhibitors and ARB’s were stopped, as other antihypertensive drugs have a less (if any) pronounced effect on RAAS activity or intrarenal oxygen delivery. However, this may only have blunted the hemodynamic effects and thereby would not have affected our eventual conclusions, especially since patients acted as their own control. The same holds for the heterogeneous distributed baseline parameters (e.g. eGFR, smoking status, haemoglobin level) in our relatively small patient group. Secondly, we did not assess changes in CO\textsubscript{2} partial pressure during oxygen supplementation. However, this has previously been shown not to be influenced by oxygen supplementation\textsuperscript{26}. Also, the group of young healthy controls was not selected to be age matched, because it intended to verify the accuracy of our method. Others have reported upon the effects of hyperoxia in healthy elderly subjects previously\textsuperscript{26,29}. Lastly, the observers were not blinded but this was corrected by standardizing the time frame selection for analysis.
CONCLUSIONS

We have shown that oxygen supplementation in CKD patients increases blood pressure in a dose dependent fashion. This response is mediated by an increase in SVR, likely as the result of hyperoxic vasoconstriction independent of baroreflex function.

FUNDING

This project was funded by the Dutch Kidney Foundation (Project KJPB 12.029 to PK). PK is supported by the Netherlands Organization for Health Research and Development (ZonMw, Clinical Fellowship 40007039712461).
REFERENCES

1. Converse RL, Jr., Jacobsen TN, Toto RD, et al. Sympathetic overactivity in patients with chronic renal failure. *N Engl J Med*. 1992;327(27):1912-1918.
2. Koomans HA, Blankenstein PJ, Joles JA. Sympathetic hyperactivity in chronic renal failure: a wake-up call. *J Am Soc Nephrol*. 2004;15(3):524-537.
3. Neumann J, Lichtenberg G, Klein II, et al. Sympathetic hyperactivity in chronic kidney disease: pathogenesis, clinical relevance, and treatment. *Kidney Int*. 2004;65(5):1568-1576.
4. Herzog CA, Mangrum JM, Passman R. Sudden cardiac death and dialysis patients. *Semin Dial*. 2008;21(4):300-307.
5. Gawish AE, Donia F, Fathi T, et al. It takes time after bilateral nephrectomy for better control of resistant hypertension in renal transplant patients. *Transplant Proc*. 2010;42(5):1682-1684.
6. Gets RT, Hazlett SM, Sharma SB, et al. Regression of left ventricular hypertrophy after bilateral nephrectomy. *Nephrol Dial Transplant*. 2006;21(4):1089-1091.
7. Medina A, Bell PR, Briggs JD, et al. Changes of blood pressure, renin, and angiotensin after bilateral nephrectomy in patients with chronic renal failure. *Br Med J*. 1972;4(5842):694-696.
8. Eckardt KU, Bernhardt WM, Weidemann A, et al. Role of hypoxia in the pathogenesis of renal disease. *Kidney Int Suppl*. 2005(99):S46-S51.
9. Evans RG, Ince C, Joles JA, et al. Haemodynamic influences on kidney oxygenation: clinical implications of integrative physiology. *Clin Exp Pharmacol Physiol*. 2013;40(2):106-122.
10. Hausberg M. Sympathetic Nerve Activity in End-Stage Renal Disease. *Circulation*. 2002;106(15):1974-1979.
11. Siddiqi L, Joles JA, Grassi G, et al. Is kidney ischemia the central mechanism in parallel activation of the renin and sympathetic system? *J Hypertens*. 2009;27(7):1341-1349.
12. Park J, Campese VM, Middlekauff HR. Exercise pressor reflex in humans with end-stage renal disease. *Am J Physiol Regul Integr Comp Physiol*. 2008;295(4):R1188-R1194.
13. Hering D, Zdrojewski Z, Krol E, et al. Tonic chemoreflex activation contributes to the elevated muscle sympathetic nerve activity in patients with chronic renal failure. *J Hypertens*. 2007;25(1):157-161.
14. Hausberg M, Grassi G. Mechanisms of sympathetic overactivity in patients with chronic renal failure: a role for chemoreflex activation? *J Hypertens*. 2007;25(1):47-49.
15. Kones R. Oxygen therapy for acute myocardial infarction-then and now. A century of uncertainty. *The American journal of medicine*. 2011;124(11):1000-1005.
16. Stub D, Smith K, Bernard S, et al. Air Versus Oxygen in ST-Segment-Elevation Myocardial Infarction. *Circulation*. 2015;131(24):2143-2150.
17. Thomson AJ, Webb DJ, Maxwell SR, et al. Oxygen therapy in acute medical care. *BMJ*. 2002;324(7351):1406-1407.
18. Ganz W, Donoso R, Marcus H, et al. Coronary hemodynamics and myocardial oxygen metabolism during oxygen breathing in patients with and without coronary artery disease. *Circulation*. 1972;45(4):763-768.
19. Thukkani AK, Bhatt DL. Renal denervation therapy for hypertension. *Circulation*. 2013;128(20):2251-2254.
20. Imholz BP, Wieling W, Van Montfrans GA, et al. Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. *Cardiovasc Res*. 1998;38(3):605-616.
21. van der Bel R, Siggers BC, van Houwelingen MJ, et al. A modified device for continuous non-invasive blood pressure measurements in humans under hyperbaric and/or oxygen-enriched conditions. *Diving Hyperb Med*. 2016;46(1).
22. Jellema WT, Wesseling KH, Groeneveld AB, et al. Continuous cardiac output in septic shock by simulating a model of the aortic input impedance: a comparison with bolus injection thermodilution. *Anesthesiology.* 1999;90(5):1317-1328.

23. Westerhof BE, Gisolf J, Stok WJ, et al. Time-domain cross-correlation baroreflex sensitivity: performance on the EUROBAVAR data set. *Journal of Hypertension.* 2004;22(7):1371-1380.

24. Gill AL, Bell CN. Hyperbaric oxygen: its uses, mechanisms of action and outcomes. *QJM.* 2004;97(7):385-395.

25. Waring WS, Thomson AJ, Adwani SH, et al. Cardiovascular effects of acute oxygen administration in healthy adults. *J Cardiovasc Pharmacol.* 2003;42(2):245-250.

26. Whalen RE, Saltzman HA, Holloway DH, Jr., et al. CARDIOVASCULAR AND BLOOD GAS RESPONSES TO HYPERBARIC OXYGENATION. *Am J Cardiol.* 1965;15:638-646.

27. Villanucci S, Di Marzio GE, Scholl M, et al. CARDIOVASCULAR CHANGES INDUCED BY HYPERBARIC OXYGEN THERAPY. *Undersea Biomed Res.* 1990;17 (Suppl. 1):117.

28. Eckberg DL, Sleight P. Human baroreflexes in health and disease. Vol 43: Oxford University Press; 1992.

29. Al-Waili NS, Butler GJ, Beale J, et al. Influences of hyperbaric oxygen on blood pressure, heart rate and blood glucose levels in patients with diabetes mellitus and hypertension. *Arch Med Res.* 2006;37(8):991-997.

30. Martens CR, Edwards DG. Peripheral vascular dysfunction in chronic kidney disease. *Cardiol Res Pract.* 2011;2011:267257.

31. Endemann DH, Schiffrin EL. Endothelial dysfunction. *J Am Soc Nephrol.* 2004;15(8):1983-1992.

32. Schlaich MP, Krum H, Sobotka PA, et al. Renal denervation and hypertension. *Am J Hypertens.* 2011;24(6):635-642.

33. Davis MI, Filion KB, Zhang D, et al. Effectiveness of renal denervation therapy for resistant hypertension: a systematic review and meta-analysis. *J Am Coll Cardiol.* 2013;62(3):231-241.

34. Bhatt DL, Kandzari DE, O’Neill WW, et al. A controlled trial of renal denervation for resistant hypertension. *N Engl J Med.* 2014;370(15):1393-1401.