Benzofuran Synthesis through Iodocyclization Reactions: Recent Advances

Abstract

Recent advancements (2014-17) in the benzofuran synthesis through iodocyclization have been summarized. The successful use of various iodinating agents, bases, additives etc. make iodocyclization a versatile and efficient methodology. The methodology has been applied for the synthesis of more complex benzofuran derivatives, and may open interesting avenues in the area of heterocyclic chemistry.

Keywords: Annulations; Alkyne; Benzofuran; Iodocyclization; Heterocycle

Introduction

Benz[b]furan is a privileged heterocyclic scaffold. Several compounds containing this scaffold have interesting biological activities, such as anti-cancer, anti-viral, anti-inflammatory, etc. [1] Few derivatives are even used as commercial drugs, such as Amiodarone [2], or investigational drugs, such as Bufuralol, [3] etc. (Figure 1).

Discussion

Okitsu et al. [11] recently reported a versatile synthesis of benzo[b]furans through iodocyclization of the ethoxyethyl ether-substituted alkynes (Scheme 1) [11]. The reactions get completed within three seconds at room temperature and the corresponding benzofuran derivatives were obtained in high yields (84%-100%) under mild conditions. The authors demonstrated that the choice of bis(2,4,6-collidine)iodonium hexafluorophosphate [(coll)IPF₆] as the iodinating agent was necessary for the success of the reaction. Also, the ethoxyethyl ether group acted as a protecting group as well as a good leaving group.

The authors used a similar and previously reported methodology [12] for the synthesis (Scheme 2) of an antiarrhythmic agent Dronedarone (marketed as Multaq® from Sanofi-Aventis) [13].

Wang et al. [14] developed a novel and straightforward way for the preparation of 3-trifluoromethylbenzofurans [14]. The methodology involves a two-step, one-pot tandem iodocyclization and trifluoromethylation reaction and affords the 3-trifluoromethylbenzofurans in moderate to excellent yields (Scheme 3).
Danilkina et al. [15] reported an efficient strategy for the synthesis of asymmetrically substituted enediyynes fused to benzofuran, and other important heterocycles (Scheme 4) [15]. The authors also demonstrated the extension of the methodology for the synthesis of fused macrocycles of indole derivatives.

Jung et al. [20] recently reported an efficient synthetic approach to polysubstituted benzofurans where 2-methoxyquinone was used as a benzofuran backbone. The starting quinols were reduced to the phenols, the -OH group was protected and these substrates were further subjected to iodocyclization conditions affording the corresponding benzofurans (Scheme 7) [20].

Raminelli et al. [21] recently reported an interesting methodology for synthesizing diiodo-functionalized benzo[b]

Li et al. [16] demonstrated that a variety of 3-iodobenzofuran derivatives can be conveniently prepared from the corresponding 2-alkynlyphenols through Ph₃P-catalyzed iodocyclization in the presence of N-iodosuccinimide (NIS) [16]. This protocol provides a quick access to and 3-iodobenzofuran derivatives in good to excellent yields under mild conditions (Scheme 5).

Using the iodocyclization methodology (Scheme 6) [17,18]. He et al. [19] designed and synthesized a 45-compound library of multi-substituted benzofurans, and using a high-throughput, cell-based HCV luciferase reporter assay studied its anti-hepatitis C virus (HCV) activity [19]. The optimization of the scaffold resulted in the identification of several potent inhibitors (EC₅₀ < 100 nM) of HCV with low cytotoxicity (CC₅₀ > 25 μM), and good selectivity (selectivity index = CC₅₀/EC₅₀, > 371-fold).
The reaction involves the iodocyclization of alkynylated 2-iodoanisoles using I\(_2\) in the presence of sodium bicarbonate as base (Scheme 8). The resulting products containing two C-I bonds offer opportunities for further diversification of this important scaffold.

Conclusion

Thus, the iodocyclization strategy presents an efficient approach for the synthesis of diverse benzo [\(b\)] furan derivatives. The choice of reagents, fast and high yielding reactions combined with the functional group tolerance make it a strategy of choice for many heterocyclic chemists. Further advances in this area of research are expected.

Acknowledgement

The author thanks Delhi Technological University for the resources provided for the completion of this work.

Conflict of Interest

There is no conflict of interest.

References

1. Khanam H, Shamsuzzaman (2015) Bioactive Benzo[\(b\)]furan Derivatives: A Review. Eur J Med Chem 97: 483-504.
2. Siddoway LA (2003) Amiodarone: Guidelines for Use and Monitoring. Am Fam Physician 68(11): 2189-2196.
3. Narimatsu S, Takemi C, Kuramoto D, Tsuzuki D, Hichiyama H, et al. (2003) Stereoselectivity in the Oxidation of Bufuralol, a Chiral Substrate, by Human Cytochrome P450s. Chirality 15(4): 333-339.
4. Abu-Hashem AA, Hussein HR, Aly AS, Gouda MA (2014) Synthesis of Benzo[\(b\)]furan Derivatives via Different Methods. Synth Commun 44(16): 2285-2312.
5. Wu XF, Li Y (2017) Transition Metal-Catalyzed Benzo[\(b\)]furan Synthesis. Elsevier, Amsterdam, Netherlands, pp. 1-71.
6. Godoi B, Schumacher RF, Zeni G (2011) Synthesis of Heterocycles via Electrophilic Cyclization of Alkynes Containing Heteroatom. Chem Rev 111(4): 2937-2980.
7. Gabriele B, Mancuso R, Larock RC (2014) Recent Advances in the Synthesis of Iodoheterocycles via Iodocyclization of Functionalized Alkynes.Curr Org Chem 18(3): 341-350.
8. Mehta S, Waldo JP, Larock RC (2009) Competition Studies in Alkyne Electrophilic Cyclization Reactions. J Org Chem 74(3): 1141-1147.
9. Mehta S, Waldo JP, Neuenwander B, Lushington GH, Larock RC (2013) Solution-Phase Parallel Synthesis of a Multisubstituted Cyclic Imidate Library. ACS Comb Sci 15(5): 247-254.
10. Huang Q, Rui EY, Cobbs M, Dinh DM, Guakayan HL, et al. (2015) Design, Synthesis, and Evaluation of NO-Donor Containing Carboxylic Acid Hydrazide Inhibitors to Lower Intraocular Pressure. J Med Chem 58(6): 2821-2833.
11. Okitsu T, Nakata K, Nishigaki K, Michioka N, Karatani M, et al. (2014) Iodocyclization of Ethoxycarbonyl Ethers to Ynamides: An Immediate Construction to Benzo[\(b\)]furans. J Org Chem 79(12): 5914-5920.
12. Okitsu T, Nakazawa D, Taniguchi R, Wada A (2008) Iodocyclization of Ethoxycarbonyl Ethers to Alkyne: A Broadly Applicable Synthesis of 3-Iodo[\(b\)]furans. Org Lett 10(21): 4967-4970.
13. Okitsu T, Ogasahara M, Wada A (2016) Convergent Synthesis of Dronedarone, an Antiarrhythmic Agent. Chem Pharm Bull (Tokyo) 64(8): 1149-1153.
14. Wang WH, Hu B, Deng CL, Zhang XG (2014) One-Pot Synthesis of 3-Trifluoromethylbenzo[\(b\)]furans via Tandem Iodocyclization and Trifluoromethylation of 2-Alkynylanisoles. Tet Lett 55(8): 1501-1503.
15. Danilkina NA, Kulyashova AE, Khlebnikov AF, Bräse S, Balova IA (2014) Electrophilic Cyclization of Aryldiacetylenes in the Synthesis of Functionalized Enediyynes Fused to a Heterocyclic Core. J Org Chem 79(19): 9018-9045.
16. Li YL, Li J, Yu SN, Wang JB, Yu YM, et al. (2015) A Concise Approach for the Synthesis of 3-Iodoindoles and 3-Iodobenzo[\(b\)]furans via Ph,P-Catalyzed Iodocyclization. Tetrahedron 71(43): 8271-8277.
17. Yue Y, Yao T, Larock RC (2005) Synthesis of 2,3-Disubstituted Benzo[\(b\)]furans via Palladium-Catalyzed Cyclization of O-Iodoanisoles and Terminal Alkynes. Followed by Electrophilic Cyclization. J Org Chem 70(25): 10292-10296.
18. Cho CH, Neuenwander B, Lushington GH, Larock RC (2008) Parallel Synthesis of a Multi-Substituted Benzo[\(b\)]furan Library. J Comb Chem 10(6): 941-947.
19. He S, Jain P, Lin B, Ferrer M, Hu Z, et al. (2015) High-Throughput Screening, Discovery, and Optimization to Develop a Benzo[\(b\)]furan of Hepatitis C Virus Inhibitors. ACS Comb Sci 17(10): 641-652.
20. Jung Y, Kim I (2016) Chemoselective Reduction of Quinols as an Alternative to Sonogashira Coupling. Synthesis of Polysubstituted Benzo[\(b\)]furans. Org Biomol Chem 14(44): 10454-10472.
21. Frota C, Rossini AFC, Casagrande GA, Pizzuti L, Ramenelli C (2017) Synthesis of Diiodo-Functionalized Benzo[\(b\)]furans via Electrophilic Iodocyclization. J Braz Chem Soc 28(10): 2038-2044.