Automata as p-Adic Dynamical Systems

Livat B. Tyapaev

e-mail: TiapaevLB@info.sgu.ru

National Research Saratov State University

Abstract

The automaton transformation of infinite words over alphabet $\mathbb{F}_p = \{0, 1, \ldots, p-1\}$, where p is a prime number, coincide with the continuous transformation (with respect to the p-adic metric) of a ring \mathbb{Z}_p of p-adic integers. The objects of the study are non-Archimedean dynamical systems generated by automata mappings on the space \mathbb{Z}_p. Measure-preservation (with the respect to the Haar measure) and ergodicity of such dynamical systems plays an important role in cryptography (e.g. for pseudo-random generators and stream cyphers design). The possibility to use p-adic methods and geometrical images of automata allows to characterize of a transitive (or, ergodic) automata. We investigate a measure-preserving and ergodic mappings associated with synchronous and asynchronous automata. We have got criterion of measure-preservation for an n-unit delay mappings associated with asynchronous automata. Moreover, we have got a sufficient condition of ergodicity of such mappings.

Key words: p-adic integers, automata, transitivity, geometrical images of automata, p-adic dynamical systems, n-unit delay mappings, measure-preserving maps, ergodic maps.

1 Introduction

Speaking about a (synchronous) automaton \mathfrak{A}, we always understand the letter-to-letter transducer (not necessarily with a finite number of states) with fixed initial state. Input and output alphabets $\mathbb{F}_p = \{0, 1, \ldots, p-1\}$ of an automaton consist of p symbols, where p is a prime number. The automaton naturally defines the mapping of the set \mathbb{Z}_p of all (one-sided) infinite sequences in \mathbb{Z}_p. As is known, such maps are called deterministic functions (or, automata functions). The set \mathbb{Z}_p is naturally endowed with the structure of the ring of a p-adic integers, i.e. turn into the metric space by specifying the metric $|a - b|_p$, $a, b \in \mathbb{Z}_p$, where $| \cdot |_p$ is the p-adic (that is, non-Archimedean) norm. All deterministic functions $f : \mathbb{Z}_p \to \mathbb{Z}_p$ satisfy the p-adic Lipschitz condition with constant 1, i.e. $|f(a) - f(b)|_p \leq |a - b|_p$ for all $a, b \in \mathbb{Z}_p$, see [1]. In particular, all deterministic functions are continuous with respect to the p-adic metric. For example, all functions defined by polynomials with p-adic integers coefficients (in particular, rational integers) are deterministic. Note, that in the case of $p = 2$, the standard processor commands, such as AND, OR, XOR, NOT, etc. naturally extend to functions from $\mathbb{Z}_2 \times \mathbb{Z}_2$ in \mathbb{Z}_2. Hence, in particular, it follows that all functions obtained with the compositions of arithmetic and coordinate-wise logical operations of the processor can be considered as 2-adic deterministic functions. By
the above, p-adic analysis can prove to be a very effective “analytical” tool for research the properties of deterministic functions and the behavior of automata.

\section{Transitivity of automata}

We consider only automata, where every state s from the set \mathcal{S} of all internal states of an automaton is accessible from the initial state s_0, that is, the automaton will pass from s_0 to s by reading of some finite input word. Every automaton \mathfrak{A} defines a family of automata \mathfrak{A}_s, where \mathfrak{A}_s differs from \mathfrak{A} only in that it has a different initial state, s instead of s_0. An automaton \mathfrak{A} is said to be \textit{transitive} (or, \textit{ergodic}) if the family of deterministic functions defined by the family of automata \mathfrak{A}_s, $s \in \mathcal{S}$ is transitive on every set $\mathbb{Z}/p^n\mathbb{Z}$ for all $n = 1, 2, \ldots$ (that is, for all finite words u and v of the same length there exists an automaton \mathfrak{A}_s that transforms u into v). We associate the automaton \mathfrak{A} with the closure $\mathcal{E}_\mathfrak{A}$ of all points of the form $(\frac{c}{p^m}, \frac{d}{p^n}) \in [0, 1] \times [0, 1]$ in the topology of the Euclidean plane, where u is the input word of length n, and v is the corresponding output word, $n = 1, 2, \ldots$. The set $\mathcal{E}_\mathfrak{A}$ is measurable with respect to the Lebesgue measure λ. The following “law 0-1” holds: \textit{for any automaton \mathfrak{A}, $\lambda(\mathcal{E}_\mathfrak{A}) = 0$ or $\lambda(\mathcal{E}_\mathfrak{A}) = 1$. Moreover, $\lambda(\mathcal{E}_\mathfrak{A}) = 1$ if and only if \mathfrak{A} is transitive, see [1].}

Let us enumerate symbols α_i of the alphabet \mathbb{F}_p by natural numbers $c(\alpha_i) \in \{1, 2, \ldots p\}$, and we associate with the word $u = \alpha_{k-1} \ldots \alpha_1 \alpha_0$ over the alphabet \mathbb{F}_p the rational number $\overline{u} = c(\alpha_0)+c(\alpha_1)\cdot(p+1)^{-1}+\ldots+c(\alpha_{k-1})\cdot(p+1)^{-(k-1)}$. We consider all points of the Euclidean square $[1, p+1] \times [1, p+1] \subset \mathbb{R}^2$ of the form $(\overline{u}, f(\overline{u}))$, where u runs through all finite words over \mathbb{F}_p. The set of these points $\Omega(\mathfrak{A})$ is called a \textit{geometrical image} (or, \textit{graph}) of an automaton \mathfrak{A}, see [4] [5]. For every state $s \in \mathcal{S}$ of an automaton \mathfrak{A} we associate a map $R_s: \mathbb{F}_p \to \mathbb{F}_p$ that transforms input symbol into output symbol. If we consider an automaton \mathfrak{A} and the family $\{R_s: s \in \mathcal{S}\}$, then a correspondence for every state $s \in \mathcal{S}$ of a some map R_s creates a new automaton \mathcal{B} (and a set $K(\mathfrak{A})$ of an automata that is constructed this way). \textit{Then automaton \mathfrak{A} is transitive if and only if there exists the automaton $\mathcal{B} \in K(\mathfrak{A})$ and such a geometrical images $\Omega(\mathfrak{A})$, $\Omega(\mathcal{B})$, that are affine equivalents} [6] [8].

\section{Dynamical systems}

A \textit{dynamical system} on a measurable space \mathcal{S} is understood as a triple (\mathcal{S}, μ, f), where \mathcal{S} is a set endowed with a measure μ, and $f: \mathcal{S} \to \mathcal{S}$ is a measurable function. A dynamical system is also topological since configuration space \mathcal{S} are not only measurable space but also metric space, and corresponding transformation f are not only measurable but also continuous.

We consider a p-adic dynamical system (\mathbb{Z}_p, μ_p, f) [2]. The space \mathbb{Z}_p is equipped with a natural probability measure, namely, the Haar measure μ_p normalized so that $\mu_p(\mathbb{Z}_p) = 1$. Balls $B_{p^{-k}}(a)$ of nonzero radii constitute the base of the corresponding σ-algebra of measurable subsets, $\mu_p(B_{p^{-k}}(a)) = p^{-k}$.
A measurable mapping \(f: \mathbb{Z}_p \to \mathbb{Z}_p \) is called measure-preserving if \(\mu_p(f^{-1}(S)) = \mu_p(S) \) for each measurable subset \(S \subseteq \mathbb{Z}_p \). A measure-preserving map \(f \) is said to be ergodic if for each measurable subset \(S \) such that \(f^{-1}(S) = S \) holds either \(\mu_p(S) = 1 \) or \(\mu_p(S) = 0 \); so ergodicity of the map \(f \) just means that \(f \) has no proper invariant subsets; that is, invariant subsets whose measure is neither 0 nor 1.

We can consider an automaton function \(f: \mathbb{Z}_p \to \mathbb{Z}_p \) as an algebraic dynamical system on a measurable and a metric space \(\mathbb{Z}_p \) of \(p \)-adic integers, which, actually, is a profinite algebra with the structure of an inverse limit: The ring \(\mathbb{Z}_p \) is an inverse limit of residue rings \(\mathbb{Z}/p^k\mathbb{Z} \), \(k = 1, 2, 3 \ldots \). As any profinite algebra can be endowed with a metric and a measure, it is reasonable to ask what continuous with respect to the metric transformations are measure-preserving or ergodic with respect to the mentioned measure. Besides, the same question can be asked in the case of mappings for asynchronous automata.

4 Measure-preserving and ergodic an \(n \)-unit delay mappings

We assume that an asynchronous automaton (letter-to-word transducer) \(C \) works in a framework of discrete time steps. The transducer reads one symbol at a time, changing its internal state and outputting a finite sequence of symbols at each step. Asynchronous transducers are a natural generalizations of synchronous transducers, which are required to output exactly one symbol for every symbol read. A mapping \(f_C: \mathbb{Z}_p \to \mathbb{Z}_p \) is called \(n \)-unit delay whenever given an asynchronous automaton \(C \) translated infinite input string \(\alpha = \ldots \alpha_n\alpha_{n-1} \ldots \alpha_1\alpha_0 \) (viewed as \(p \)-adic integer) into infinite output string \(\beta = \ldots \beta_{n+1}\beta_n \) (viewed as \(p \)-adic integer). An \(n \)-unit delay transducer produces the some output \(n \) times unit later. Note that usually the term \(n \)-unit delay is used in a narrower meaning, cf. [3] when \(n \)-unit delay transducer is defined by finite automaton, that produces no output for the first \(n \) times slots; after that, the automaton outputs the incoming words without changes. An \(n \)-unit delay mapping \(f_C: \mathbb{Z}_p \to \mathbb{Z}_p \) is continuous on \(\mathbb{Z}_p \) [8].

Let \(F_k \) be a reduction of function \(f \) modulo \(p^\alpha k \mathbb{Z} \) on the elements of the ring \(\mathbb{Z}/p^\alpha k \mathbb{Z} \) for \(k = 2, 3, \ldots \). The following criterion of measure-preservation for \(n \)-unit delay mappings is valid: An \(n \)-unit delay mapping \(f: \mathbb{Z}_p \to \mathbb{Z}_p \) preserves the measure if and only if the number \(\# F_k^{-1}(x) \) of \(F_k \)-pre-images of the point \(x \in \mathbb{Z}/p^\alpha k \mathbb{Z} \) is equal \(p^\alpha \), \(k = 2, 3, \ldots \) [7, 8].

A point \(x_0 \in \mathbb{Z}_p \) is said to be a periodic point if there exists \(r \in \mathbb{N} \) such that \(f^r(x_0) = x_0 \). The least \(r \) with this property is called the length of period of \(x_0 \). If \(x_0 \) has period \(r \), it is called an \(r \)-periodic point. The orbit of a \(r \)-periodic point \(x_0 \) is \(\{x_0, x_1, \ldots, x_{r-1}\} \), where \(x_j = f^j(x_0), 0 \leq j \leq r - 1 \). This orbit is called an \(r \)-cycle. Let \(\gamma(k) \) be an \(r(k) \)-cycle \(\{x_0, x_1, \ldots, x_{r(k)-1}\} \), where

\[
x_j = (f \mod p^k)^j(x_0),
\]
\[0 \leq j \leq r(k) - 1, \ k = 1, 2, 3, \ldots\] The following condition of ergodicity holds: A measure-preserving an \(n\)-unit delay mapping \(f: \mathbb{Z}_p \rightarrow \mathbb{Z}_p\) is ergodic if \(\gamma(k)\) is an unique cycle, for all \(k \in \mathbb{N}\) [9].

References

[1] V. Anashin and A. Khrennikov, *Applied Algebraic Dynamics*, de Gruyter Expositions in Mathematics (de Gruyter GmbH & Co., Berlin–N.Y., 2009).

[2] V. Anashin, “Ergodic transformations in the space of \(p\)-adic integers,” Proc. Int. Conf. on \(p\)-adic Mathematical Physics, AIP Conference Proceedings 826, 3–24 (2006).

[3] R. I. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanskii, “Automata, dynamical systems, and groups,” Proc. Steklov Math. Inst. 231, 128–203 (2000).

[4] L. B. Tyapaev, “The geometrical model of behavior of automata and their indistinguishability,” Mathematics, Mechanics 1, 139-143 (1999) [in Russian].

[5] L. B. Tyapaev, “Solving some problems of automata behaviour analysis,” Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform. 6:1-2, 121-133 (2006).

[6] L. B. Tyapaev, “Transitive families of automata mappings,” in *Proceedings of the 9th International Conference on Discrete Models in the Theory of Control Systems* (May 20-22 2015, Moscow), eds. V. B. Alekseev, D. S. Romanov, B. R. Danilov, 244-247 (Lomonosov Moscow State University, Maks Press, 2015) [in Russian].

[7] L.B. Tyapaev, “Measure-preserving and ergodic asynchronous automata mappings,” in *Proceedings of the 12th International Workshop on Discrete Mathematics and its Applications* (June 20-26 2016, Moscow), edited by O.M. Kasim-Zade, 398-400 (published by Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 2016) [in Russian].

[8] L.B. Tyapaev, “Transitive families and measure-preserving an \(n\)-unit delay mappings,” in *Proceedings of the International Conference on Computer Science and Information Technologies* (June 30-July 2 2016, Saratov), 425-429 (Publishing Center Nauka, Saratov, 2016).

[9] L.B. Tyapaev, “Ergodic automata mappings with delay,” in *Proceedings of the International Conference on Problems of theoretical cybernetics* (June 19-23 2017, Penza), edited by Yu. I. Zhuravlev, 242-244, (Moscow, Maks Press, 2017) [in Russian].