Abstract

We give a new proof of the fact that Milnor-Witt K-theory has geometric transfers. The proof yields to a simplification of Morel’s conjecture about transfers on contracted homotopy sheaves.

Keywords — Cycle modules, Milnor-Witt K-theory, Chow-Witt groups, A1-homotopy

MSC — 14C17, 14C35, 11E81

Contents

1 Introduction 2
1.1 Current work 2
1.2 Outline of the chapter 2

2 Transfers on Milnor-Witt K-theory 3
2.1 On p-primary fields 3
2.2 Transfers on Milnor-Witt K-theory 4
1 Introduction

1.1 Current work

In [Mor12 Chapter 3], Morel introduced the Milnor-Witt K-theory of a field. Following ideas of Bass and Tate [BT73], one can define geometric transfer maps

\[\text{Tr}_{x_1, \ldots, x_r/E} = \text{Tr}_{x_r/E(x_1, \ldots, x_{r-1})} \circ \cdots \circ \text{Tr}_{x_1/E} : K^\text{MW}_{x}(E(x_1, \ldots, x_r), \omega_{E(x_1, \ldots, x_r)/E}) \to K^\text{MW}_{x}(E) \]

on \(K^\text{MW} \) for finite extensions \(E(x_1, \ldots, x_r)/E \). Morel proved in [Mor12 Chapter 4] that any homotopy sheaves of the form \(M_{-1} \) admit such transfers and that they are functorial. In particular, this applies to Milnor-Witt K-theory.

In this article, we give an alternative proof of this result:

Theorem 1 (Theorem 2.2.5). The transfers maps

\[\text{Tr}_{x_1, \ldots, x_r/E} : K^\text{MW}_{x}(E(x_1, \ldots, x_r), \omega_{E(x_1, \ldots, x_r)/E}) \to K^\text{MW}_{x}(E) \]

do not depend on the choice of the generating system \((x_1, \ldots, x_r)\).

The idea is to reduce to the case of \(p \)-primary fields (see Definition 2.1.3) then study the transfers manually, as Kato originally did for Milnor K-theory (see [GS17] for a modern exposition). More elementary, the proof does not apply in full generality to the case of contracted homotopy sheaves \(M_{-1} \). However, we obtain as a corollary a reduction of Morel’s conjecture [Fel20 Conjecture 4.1.13].

Theorem 2 (Theorem 2.2.17). In order to prove that a contracted homotopy sheaf \(M_{-1} \) has functorial transfers, it suffices to consider the case of \(p \)-primary fields (where \(p \) is a prime number).

1.2 Outline of the chapter

In Subsection 2.1, we recall the basic properties of some fields that we call \(p \)-primary fields. For \(p \) a prime number, a \(p \)-primary field has no nontrivial finite extension prime to \(p \) (see Definition 2.1.3).

In Subsection 2.2, we prove that Milnor-Witt K-theory admit transfer maps that are functorial. The proof is similar to the original proof of Kato for Milnor K-theory (see [GS17]): we reduce to the case of \(p \)-primary fields then study the transfers manually.

Notation

Throughout the paper, we fix a (commutative) field \(k \) and we assume moreover that \(k \) is perfect (of arbitrary characteristic).

By a field \(E \) over \(k \), we mean a finitely generated extension of fields \(E/k \).

Let \(f : X \to Y \) be a morphism of schemes. Denote by \(L_f \) (or \(L_{X/Y} \)) the virtual vector bundle over \(Y \) associated with the cotangent complex of \(f \), and by \(\omega_f \) (or \(\omega_{X/Y} \)) its determinant. Recall that if \(p : X \to Y \) is a smooth morphism, then \(L_p \) is (isomorphic to) \(T_p = \Omega_{X/Y} \) the space of (Kähler) differentials. If \(i : Z \to X \) is a regular closed immersion, then \(L_i \) is the normal cone \(-N_ZX \). If \(f \) is the composite \(Y \xrightarrow{i} \mathbb{P}^n_X \xrightarrow{p} X \) with \(p \) and \(i \) as previously (in other words, if \(f \) is lci projective), then \(L_f \) is isomorphic to the virtual tangent bundle \(i^*T_{\mathbb{P}^n/X} - N_Y(\mathbb{P}^n_X) \).

Let \(X \) be a scheme and \(x \in X \) a point, we denote by \(L_x = (m_x/m_x^2)^\vee \) and \(\omega_x \) its determinant. Similarly, let \(v \) a discrete valuation on a field, we denote by \(\omega_v \) the line bundle \((m_v/m_v^2)^\vee \).

Let \(E \) be a field (over \(k \)) and \(v \) a valuation on \(E \). We will always assume that \(v \) is discrete. We denote by \(\mathcal{O}_v \) its valuation ring, by \(m_v \) its maximal ideal and by \(\kappa(v) \) its residue class field. We consider only valuations of geometric type, that is we assume: \(k \subset \mathcal{O}_v \), the residue field \(\kappa(v) \) is finitely generated over \(k \) and satisfies \(\text{tr.deg}_{k}(\kappa(v)) + 1 = \text{tr.deg}_{k}(E) \).
Let E be a field. We denote by $\text{GW}(E)$ the Grothendieck-Witt ring of symmetric bilinear forms on E. For any $a \in E^*$, we denote by $\langle a \rangle$ the class of the symmetric bilinear form on E defined by $(X,Y) \mapsto aXY$ and, for any natural number n, we put $n_ε = \sum_{i=1}^{n} (-1)^{i-1}$.

To any natural number n, we can associate an element in $\text{GW}(E)$ denoted by $n_ε = \sum_{i=1}^{n} (-1)^{i-1}$. Recall that, if n and m are two natural numbers, then $(nm)_ε = n_εm_ε$.

Acknowledgement

I deeply thank my two PhD advisors Frédéric Déglise and Jean Fasel. This work received support from the French "Investissements d'Avenir" program, project ISITE-BFC (contract ANR-IS-IDEX-OOOB).

2 Transfers on Milnor-Witt K-theory

2.1 On p-primary fields

We recall some facts about fields (See [Sha82, §1] and [BT73, Section 5]). Let E be a field and p a prime number. Fix a separable closure E_s of E and consider the set of all sub-extensions of E_s that contain E and that can be realized as a union of finite prime-to-p extensions of E. Zorn’s lemma implies that this set contains a maximal element $E_{(p)}$ for the inclusion.

Proposition 2.1.1. If F is a finite extension of E contained in $E_{(p)}$, then its degree $[F : E]$ is prime to p.

Proof. Write $F = E(x_1, \ldots, x_r)$ with $x_i \in F$. Each x_i is contained in a prime-to-p extension of E hence a degree prime to p.

Proposition 2.1.2. If F is a finite extension of $E_{(p)}$, then its degree $[F : E_{(p)}]$ is equal to p^n for some natural number n.

Proof. Let x be any element in F and denote by P_x its irreducible polynomial over $E_{(p)}$. We prove that its degree is a power of p. All the coefficients lie in a finite prime-to-p extension of E. If the degree of x over $E_{(p)}$ is prime to p, then $E_{(p)}(x)$, which is a nontrivial extension of $E_{(p)}$, contradicts the maximality of $E_{(p)}$. Write p^nm the degree of x over $E_{(p)}$ with $n,m \geq 1$ and $(n,p) = 1$. Let F_N be the normal closure of F in E_s; it is a Galois extension of $E_{(p)}$ whose degree over $E_{(p)}$ is divisible by p^nm. If $n \neq 1$, then a Sylow p-subgroup $S(p)$ of $\text{Gal}(F_N/E_{(p)})$ is a nontrivial proper subgroup and the fixed field $F_N^{S(p)}$ is a nontrivial prime-to-p extension of $E_{(p)}$, which is absurd. Thus $n = 1$ and the result follows.

The previous result leads to the following definition.

Definition 2.1.3. A field that has no nontrivial finite extension prime to p is called p-primary.

Proposition 2.1.4. Let F be a nontrivial finite extension of $E_{(p)}$ contained in E_s and let p^n be the degree $[F : E_{(p)}]$. Then there is a tower of fields

$$E_{(p)} = F_1 \subset F_2 \subset \cdots \subset F_n = F$$

such that $[F_i : F_{i-1}] = p$.

Proof. We prove the result by induction on n. We need to find a subfield K of F whose degree over $E_{(p)}$ is p^{n-1}. The group $G = \text{Gal}(E_s/E_{(p)})$ is a pro-p-group since all finite extensions of $E_{(p)}$ contained in E_s are p-power extensions. Galois theory implies that E is the fixed subfield of a subgroup H of G with $[G : H] = p^n$. We will find a subgroup H_1, such that $H \subset H_1 \subset G$ and $[G : H_1] = p^{n-1}$. Letting $K = E_s^{H_1}$, we will get the desired subfield K.

3
The group H is subgroup of G of finite index hence is open. By the class equation, it also follows that H has only a finite number of conjugates in G. Let $H' = \cap_{x \in G} x^{-1} H x$, then H' is an open normal subgroup of G containing H. The group G/H' is a finite p-group containing H/H'. By the Sylow theorems, we can find H_1, normal in G, with $H \subset H_1 \subset G$ and $[G : H_1] = p^{n-1}$. This ends to proof. □

Similarly, we obtain the following result.

Lemma 2.1.5. Let p be a prime number and E a p-primary field. Let F/E be a finite extension.

1. The field F inherits the property of having no nontrivial finite extension of degree prime to p.

2. If $F \neq E$, then there exists a subfield $E' \subset F'$ such that F'/E is a normal extension of degree p.

2.2 Transfers on Milnor-Witt K-theory

We refer to [Mor12 §3] or [Fel18 §1] for the definitions and basic properties regarding Milnor-Witt K-theory. Recall the definition of transfers on Milnor-Witt K-theory, this follows from the original definition of Bass-Tate (see [BT73], see also [GS17]).

Theorem 2.2.1 (Homotopy invariance). Let F be a field and $F(t)$ the field of rational fractions with coefficients in F in one variable t. We have a split short exact sequence

$$0 \to \mathbb{K}^{MW}_*(F) \xrightarrow{i_*} \mathbb{K}^{MW}_*(F(t)) \xrightarrow{d_*} \bigoplus_{x \in (\mathbb{A}^1_k)^{\text{t}}(1)} \mathbb{K}^{MW}_*(\kappa(x), \omega_x) \to 0$$

where $d = \bigoplus_{x \in (\mathbb{A}^1_k)^{\text{t}}(1)} \partial_x$ is the usual differential.

Proof. See [Mor12 Theorem 5.38]. □

2.2.2. Let $\varphi : E \to F$ be a monogenic finite field extension and choose $x \in F$ such that $F = E(x)$. The homotopy exact sequence implies that for any $\beta \in \mathbb{K}^{MW}_*(E, \omega_{E/k})$ there exists $\gamma \in \mathbb{K}^{MW}_*(E(t), \omega_{E(t)/k})$ with the property that $d(\gamma) = \beta$. Now the valuation at ∞ yields a morphism

$$\partial_{\infty} : \mathbb{K}^{MW}_{n+1}((E(t), \omega_{E(t)/k}) \to \mathbb{K}^{MW}_*(E, \omega_{E/k})$$

which vanishes on the image of i_*. We denote by $\varphi^*(\beta)$ or by $\text{Tr}_{x/E}(\beta)$ the element $-\partial_{\infty}(\gamma)$; it does not depend on the choice of γ. This defines a group morphism

$$\text{Tr}_{x/E} : \mathbb{K}^{MW}_*(E(x), \omega_{F/k}) \to \mathbb{K}^{MW}_*(E, \omega_{E/k})$$

called the transfer map and also denoted by $\text{Tr}_{x/E}$. The following result completely characterizes the transfer maps.

Lemma 2.2.3. Keeping the previous notations, let

$$d = (\bigoplus_x d_x) \oplus d_{\infty} : \mathbb{K}^{MW}_{n+1}(E(t), \omega_{F(t)/k}) \to (\bigoplus_x \mathbb{K}^{MW}_*(E(x), \omega_{E(x)/k}) \oplus \mathbb{K}^{MW}_*(E, \omega_{E/k})$$

be the total twisted residue morphism (where x runs through the set of monic irreducible polynomials in $E(t)$). Then, the transfer maps $\text{Tr}_{x/E}$ are the unique morphisms such that $\sum_x \langle \text{Tr}_{x/E} \circ d_x \rangle + d_{\infty} = 0$.

Proof. Straightforward (see [Mor12 §4.2]). □

1In fact, Morel does not use twisted sheaves but chooses a canonical generator for each ω_x instead, which is equivalent.
Definition 2.2.4. Let $F = E(x_1, x_2, \ldots, x_r)$ be a finite extension of a field E and consider the chain of subfields

$$E \subset E(x_1) \subset E(x_1, x_2) \subset \cdots \subset E(x_1, \ldots, x_r) = F.$$

Define by induction:

$$\text{Tr}_{x_1, \ldots, x_r/E} = \text{Tr}_{x_r/E(x_1, \ldots, x_{r-1})} \circ \cdots \circ \text{Tr}_{x_2/E(x_1)} \circ \text{Tr}_{x_1/E}$$

We give an elementary proof of the fact that the definition does not depend on the choice of the factorization (see [Mor12, Theorem 4.27] for the original proof):

Theorem 2.2.5. The maps $\text{Tr}_{x_1, \ldots, x_r/E} : \mathbf{K}^*_MW(F) \rightarrow \mathbf{K}^*_MW(E)$ do not depend on the choice of the generating system (x_1, \ldots, x_r).

We begin with a series of lemmas aimed at reducing the theorem to the case of p-primary fields.

Lemma 2.2.6. Let $F = E(x)/E$ be a simple extension of degree n of characteristic zero fields and consider the transfer map $\text{Tr}_{F/E} : \text{GW}(F) \rightarrow \text{GW}(E)$. If n is odd, then

$$\text{Tr}_{F/E}(1) = n_x.$$

If n is even, then

$$\text{Tr}_{F/E}(1) = (n-1)x + \langle -N_{F/E}(x) \rangle.$$

where $N_{F/E}(x)$ is the classical norm of $x \in F^\times$.

Proof. See [Lam05, VII.2.2].

Lemma 2.2.7. Let F/E be a finite extension of degree n of characteristic zero fields and consider the transfer map $\text{Tr}_{F/E} : \text{GW}(F) \rightarrow \text{GW}(E)$. If n is odd, then

$$\text{Tr}_{F/E}(1) = n_x.$$

If n is even, then there exist $a_1, \ldots, a_n \in E^\times$ such that

$$\text{Tr}_{F/E}(1) = \sum_i (a_i).$$

Proof. When the extension is simple, this is Lemma 2.2.6. We conclude by induction on the number of generators.

Lemma 2.2.8. Let E be a field of characteristic $p > 0$. Let $\alpha \in \text{GW}(E)$ be an element in the kernel of the rank morphism $\text{GW}(E) \rightarrow \mathbb{Z}$. Then α is nilpotent in $\text{GW}(E)$.

Proof. (See [MILZ16, Lemma B.4]) As the set of nilpotent elements in the commutative ring $\text{GW}(E)$ is an ideal, we may assume $\alpha = \langle t \rangle = 1$ where $t \in E^\times$. We have $(1 + \alpha)^2 = \langle t^2 \rangle = 1$, so that $\alpha^2 = -2\alpha$. By induction, we get $\alpha^n = (-2)^{n-1}\alpha$ for $n \geq 1$: we have to show that α is annihilated by a power of two. If $p = 2$, $2\alpha = 0$ holds (see [Mor12, Lemma 3.9]), i.e. $\alpha^2 = 0$. Now we assume $p \geq 3$ so that there is no danger thinking in terms of usual quadratic forms. We first consider $\mu := \langle -1 \rangle + 1 \in \text{GW}(F_p)$. The quadratic form $-x^2 - y^2$ over F_p represents 1 (see [Ser77, Proposition 4.4IV.1.7]) so that $\langle -1 \rangle + 1 = (1 + 1) \in \text{GW}(F_p)$, i.e. $2\mu = 0 \in \text{GW}(F_p)$, which gives $\mu^2 = 0$. Let $t \in E^\times$ be any nonzero element in an extension E of F_p. The quadratic form $q(x, y) := x^2 - y^2 = (x + y)(x - y)$ represents t (this is $q((1 + t)/2, (1 - t)/2)$), which easily implies that $\langle 1 \rangle + \langle -1 \rangle = \langle t \rangle + \langle -t \rangle$. This is equivalent to saying $(2 + \mu)\alpha = 0 \in \text{GW}(E)$. It follows that $4\alpha = (2 - \mu)(2 + \mu)\alpha = 0$, and then $\alpha^3 = 0$.

Lemma 2.2.9. Consider two finite extensions F/E and L/E of coprime degrees n and m, respectively. Let $x \in \mathbf{K}^*_MW(E)$ such that $\text{res}_{F/E}(x) = 0 = \text{res}_{L/E}(x)$. Then $x = 0$.

Proof. Applying the transfer map to \(\text{res}_{F/E}(x) \) and \(\text{res}_{L/E}(x) \), we see that \(x \) is killed by \(\text{Tr}_{F/E}(1) \) and \(\text{Tr}_{L/E}(1) \). In characteristic zero, up to swapping \(n \) and \(m \), we may assume that \(n \) is odd, hence \(\text{Tr}_{F/E}(1) = n \) and \(\text{Tr}_{L/E}(1) = \sum_i (a_i) \) for some \(a_1, \ldots, a_m \in E^\times \). Write \(n = 2^r + 1 \). There exist \(a, b \in \mathbb{Z} \) such that \(an + bm = r \) since \(n \) and \(m \) are coprime. Recall that the hyperbolic form \(h = 1 + (-1) \) satisfies \((a_i)h = h \) for any \(i \) (see [Mor12, Lemma 3.7]). Hence \(rh = (an + b \sum_i (a_i))h \) and \(1 = n - rh = (1 - ah) \text{Tr}_{F/E}(1) - bh \text{Tr}_{L/E}(1) \) kills \(x \).

In characteristic \(p > 0 \), there exist two nilpotent \(\alpha \) and \(\alpha' \) in \(\text{GW}(E) \) such that \(\text{Tr}_{F/E}(1) = \alpha + \alpha' \) and \(\text{Tr}_{L/E}(1) = m + \alpha' \), according to Lemma 2.2.8. Hence for a natural number \(s \) large enough, the element \(x \) is killed by the coprime numbers \(\alpha^s \) and \(\alpha'^s \) so that \(x = 0 \).

Lemma 2.2.10. Let \(E \) be a field of characteristic \(p > 0 \). Let \(F_1, \ldots, F_n \) be finite extensions of coprime degrees \(d_1, \ldots, d_n \). Let \(\delta \in K^\text{MW}_*(E) \) be an element such that \(\text{res}_{F_i/E}(\delta) = 0 \) for any \(i \). Then, \(\delta \) is zero.

Proof. In zero characteristic, this follows as in Lemma 2.2.9. Assume the characteristic of \(E \) to be nonzero. Let \(1 \leq i \leq n \), the projection formula proves that \(\delta \) is killed by \(\text{Tr}_{F_i/E}(1) \). Thus, according to Lemma 2.2.8, there exist a nilpotent element \(a_i \) in \(\text{GW}(E) \) such that \(d_i + a_i \) kills \(\delta \). Since the degrees \(d_i \) are coprime, a Bezout combination yields a nilpotent element \(\alpha' \) in \(\text{GW}(E) \) such that \(1 + \alpha' \) kills \(\delta \). Finally, we can find a natural number \(n \) large enough such that \(\delta = 1 + (\alpha')^n \cdot \delta = (1 + \alpha')^n \cdot \delta = 0 \).

Lemma 2.2.11. Let \(F/E \) be a field extension and \(w \) be a valuation on \(F \) which restricts to a non trivial valuation \(v \) on \(E \) with ramification \(e \). We have a commutative square

\[
\begin{array}{ccc}
K^\text{MW}_*(E) & \xrightarrow{\partial_v} & K^\text{MW}_{*-1}(\kappa(v), \omega_v) \\
\text{res}_{F/E} & \downarrow & \text{res}_{F/E} \\
K^\text{MW}_*(F) & \xrightarrow{\partial_w} & K^\text{MW}_{*-1}(\kappa(w), \omega_w)
\end{array}
\]

where \(e_v = \sum_{i=1}^{\epsilon} (-1)^{i-1} \).

Proof. See [Mor12, Lemma 3.19].

Lemma 2.2.12. Let \(F/E \) be a field extension and \(x \in (\mathbb{A}^1_E)_{(1)} \) a closed point. Then the following diagram

\[
\begin{array}{ccc}
K^\text{MW}_*(E(x), \omega_{E(x)/k}) & \xrightarrow{\text{Tr}_{E/E}} & K^\text{MW}_*(E, \omega_{E/k}) \\
\oplus_v \text{res}_{F(y)/E(x)} & \downarrow & \text{res}_{F/E} \\
\bigoplus_y \text{res}_{F(y)/E(x)} K^\text{MW}_*(F(y), \omega_{F(y)/k}) & \xrightarrow{\sum_v e_y \cdot \text{Tr}_{E/F}} & K^\text{MW}_*(F, \omega_{E/F})
\end{array}
\]

is commutative, where the notation \(y \mapsto x \) stands for the closed points of \(\mathbb{A}^1_E \) lying above \(x \), and \(e_{y,x} = \sum_{i=1}^{\epsilon} (-1)^{i-1} \) is the quadratic form associated to the ramification index of the valuation \(v_y \) extending \(v_x \) to \(F(t) \).

Proof. According to Lemma 2.2.11, the following diagram

\[
\begin{array}{ccc}
K^\text{MW}_*(E(t)) & \xrightarrow{\partial_e} & K^\text{MW}_{*-1}(E(x), \omega_x) \\
\oplus_v \text{res}_{F(y)/E(x)} & \downarrow & \bigoplus_y e_y \cdot \text{res}_{F(y)/E(x)} \\
K^\text{MW}_*(F(t)) & \xrightarrow{\oplus_v \partial_y} & \bigoplus_y \text{res}_{F(y)/E(x)} K^\text{MW}_{*-1}(F(y), \omega_y)
\end{array}
\]

is commutative hence so does the diagram.
where \(\rho_x \) is the canonical splitting (see Theorem 2.2.1). Then, we conclude according to the definition of the Bass-Tate transfer maps 2.2.2.

Remark 2.2.13. The multiplicities \(e_y \) appearing in the previous lemma are equal to

\[[E(x) : E]_i/[F(y) : F]_i \]

where \([E(x) : E]_i\) is the inseparable degree.

Theorem 2.2.14 (Strong R1c). Let \(E \) be a field, \(F/E \) a finite field extension and \(L/E \) an arbitrary field extension. Write \(F = E(x_1, \ldots, x_r) \) with \(x_i \in F \), \(R = F \otimes E L \) and \(\psi_p : R \to R/p \) the natural projection defined for any \(p \in \Spec(R) \). Then the diagram

\[
\begin{array}{ccc}
\bigoplus_{p \in \Spec(R)} K^\MW_i(F/p, \omega_{F/k}) & \xrightarrow{\text{Tr}_{x_1,\ldots,x_r/E}} & K^\MW_i(E, \omega_{E/k}) \\
\otimes p \text{res}(R/p)/F & & \text{res}_L/E \\
\end{array}
\]

is commutative where \(m_p \) the length of the localized ring \(R_p \).

Proof. We prove the theorem by induction. For \(r = 1 \), this is Lemma 2.2.12. Write \(E(x_1) \otimes F L = \prod_i R_{ij} \) for some Artin local \(L \)-algebras \(R_{ij} \), and decompose the finite dimensional \(L \)-algebra \(F \otimes_{E(x_1)} R_{ij} \) as \(F \otimes_{E(x_1)} R_{ij} = \prod_i R_{ij} \) for some local \(L \)-algebras \(R_{ij} \). We have \(F \otimes_{E(x_1)} L \simeq \prod_i R_{ij} \). Denote by \(L_{ij} \) (resp. \(L_{ij} \)) the residue fields of the Artin local \(L \)-algebras \(R_{ij} \) (resp. \(R_{ij} \)), and \(m_j \) (resp. \(m_{ij} \)) for their geometric multiplicity. We can conclude as the following diagram commutes

\[
\begin{array}{cccc}
M_{-1}(F, \omega_{F/k}) & \xrightarrow{\text{Tr}_{x_1,\ldots,x_r/E}} & M_{-1}(E(x_1), \omega_{E(x_1)/k}) & \xrightarrow{\text{Tr}_{x_1/E}} & M_{-1}(E, \omega_{E/k}) \\
\otimes_{i,j} \text{res}_{L_{ij}/E} & & \otimes_{i,j} \text{res}_{L_{ij}/E} & & \text{res}_{L_{ij}/E} \\
\bigoplus_{i,j} M_{-1}(L_{ij}, \omega_{L_{ij}/k}) & \xrightarrow{\sum_{i,j}(m_{ij}) \text{Tr}_{\omega_{ij}(x_1),\ldots,\omega_{ij}(x_r)/L}} & \bigoplus_{i,j} M_{-1}(L_{ij}, \omega_{L_{ij}/k}) & \xrightarrow{\sum_{i,j}(m_{ij}) \text{Tr}_{\omega_{ij}(x_1)/L}} & M_{-1}(L, \omega_{L/k}) \\
\end{array}
\]

since both squares are commutative by the inductive hypothesis and the multiplicity formula \((mn)_e = m_en_e \) for any natural numbers \(m, n \).
of F. Let $\alpha \in M_{-1}(F)$ and denote by δ the element $\text{Tr}_{x_1 \ldots x_r/E}(\alpha) - \text{Tr}_{y_1 \ldots y_r/E}(\alpha)$. Fix p a prime number and let L be a maximal prime to p extension of E (L has no nontrivial finite extension of degree prime to p). With the notation of Theorem \[2.2.14\] the map $\sum_{m_p} (m_p) \cdot \text{Tr}_{y_{p(x_1)} \ldots y_{p(x_r)}/L}$ does not depend on the choice of x_i according to the assumption. Hence $\text{res}_{L/E}(\delta) = 0$ and we can find a finite extension L_p/E of degree prime to p such that $\text{res}_{L_p/E}(\delta) = 0$. Since this is true for all prime number p, we see that the assumption of Lemma \[2.2.11\] are satisfied. Thus $\delta = 0$ and the theorem is proved.

Remark 2.2.16. More generally, one may replace K^{MW}_* by any contracted homotopy sheaf M_{-1} and apply the proof verbatim. In particular, we have the following simplification of Morel’s conjecture [Fe20, Conjecture 4.1.13].

Theorem 2.2.17. In order to prove that a contracted homotopy sheaf M_{-1} has functorial transfers, it suffices to consider the case of p-primary fields (where p is a prime number).

Proposition 2.2.18 (Bass-Tate-Morel Lemma). Let $F(x)$ be a monogenous extension of F. Then $K^{\text{MW}}_*(F(x))$ is generated as a left $K^{\text{MW}}_*(F)$-module by elements of the form

$$\eta^m \cdot [p_1(x), p_2(x), \ldots, p_n(x)]$$

where the p_i are monic irreducible polynomials of $F[t]$ satisfying

$$\deg(p_1) < \deg(p_2) < \cdots < \deg(p_n) \leq d - 1$$

where d is the degree of the extension $F(x)/F$.

Proof. Straightforward computations (see also [Mor12 Lemma 3.25.1]).

Corollary 2.2.19. Let F/E be a finite field extension and assume one of the following conditions holds:

- F/E is a quadratic extension,
- F/E is a prime degree p extension and E has no nontrivial extension of degree prime to p.

Then $K^{\text{MW}}_*(F)$ is generated as a left $K^{\text{MW}}_*(E)$-module by F^\times.

Proof. In both cases, the extension F/E is simple and the only monic irreducible polynomial in $E[t]$ of degree strictly smaller than $[F : E]$ are the polynomials of degree 1. We conclude by Proposition \[2.2.18\] and the fact that we fix a prime number p and E a p-primary field.

Proposition 2.2.20. Let $F = E(x)$ be a monogenous extension of E of degree p. Then the transfers $\text{Tr}_{x/E} : K^{\text{MW}}_*(E(x), \omega_{E(x)/k}) \to K^{\text{MW}}_*(E, \omega_{E/k})$ do not depend on the choice of x.

Proof. According to Lemma \[2.2.19\] the group $K^{\text{MW}}_*(F, \omega_{F/k})$ is generated by products of the form $\text{res}_{F/E}(\alpha) \cdot [\beta]$ with $\alpha \in K^{\text{MW}}_*(E, \omega_{E/k})$ and $\beta \in F^\times$. The projection formula yields

$$\text{Tr}_{x/E}(\text{res}_{F/E}(\alpha) \cdot [\beta]) = \alpha \cdot \text{Tr}_{F/E}([\beta])$$

which does not depend on a x (see [Fas19 §1]).

2.2.21. We may now use the notation $\text{Tr}_{F/E} : K^{\text{MW}}_*(F, \omega_{F/k}) \to K^{\text{MW}}_*(E, \omega_{E/k})$ for extensions of prime degree p.

Proposition 2.2.22. Let F be a field complete with respect to a discrete valuation v, and F'/F a normal extension of degree p. Denote by v' the unique extension of v to F'. Then the diagram
Proof. See [Mor12, Remark 5.20].

Corollary 2.2.23. Let F/E be a normal extension of degree p and let $x \in (\mathbb{A}^1_E)$. Then the diagram

\[
\begin{array}{ccc}
\mathbf{K}_*^{MW}(F', \omega_{F'/k}) & \xrightarrow{\delta_y} & \mathbf{K}_*^{MW}(\kappa(v'), \omega_{\kappa(v')}) \\
\bigoplus_{y \rightarrow x} & & \\
\mathbf{K}_*^{MW}(F) & \xrightarrow{\partial_x} & \mathbf{K}_*^{MW}(\kappa(v))
\end{array}
\]

is commutative.

Proof. Denote by \hat{E}_x (resp. \hat{F}_y) the completions of $E(t)$ (resp. $F(t)$) with respect to the valuations defined by x (resp. y). Consider the following diagram

\[
\begin{array}{ccc}
\mathbf{K}_*^{MW}(F(t), \omega_{F(t)/k}) & \xrightarrow{\delta_y} & \bigoplus_{y \rightarrow x} \mathbf{K}_*^{MW}(\hat{E}_x, \omega_{\hat{E}_x/k}) \\
\bigoplus_{y \rightarrow x} & & \\
\mathbf{K}_*^{MW}(E(t), \omega_{E(t)/k}) & \xrightarrow{\partial_x} & \mathbf{K}_*^{MW}(\hat{F}_y, \omega_{\hat{F}_y/k})
\end{array}
\]

The left-hand square is commutative according to Theorem 2.2.14. The right-hand square commute according to Proposition 2.2.22. Hence the corollary.

Lemma 2.2.24. Let L/E be a normal extension of degree p, and let $E(a)/E$ be a monogenous finite extension. Assume that L and $E(a)$ are both subfields of some algebraic extension of E, and denote by $L(a)$ their composite. Then the following diagram

\[
\begin{array}{ccc}
\mathbf{K}_*^{MW}(L(a), \omega_{L(a)/k}) & \xrightarrow{\delta_y} & \mathbf{K}_*^{MW}(L, \omega_{L/k}) \\
\bigoplus_{y \rightarrow x} & & \\
\mathbf{K}_*^{MW}(E(a), \omega_{E(a)/k}) & \xrightarrow{\partial_x} & \mathbf{K}_*^{MW}(E, \omega_{E/k})
\end{array}
\]

is commutative.

Proof. Let x (resp. y_0) be the closed point of \mathbb{A}^1_E (resp. \mathbb{A}^1_L) defined by the minimal polynomial of a over E (resp. L). Given $a \in \mathbf{K}_*^{MW}(L(a), \omega_{L(a)/k})$, we have $\text{Tr}_{a/L}(\alpha) = -\partial_{\alpha}(\beta)$ for some $\beta \in \mathbf{K}_*^{MW}(L(t), \omega_{L(t)/k})$ satisfying $\partial_\alpha(\beta) = \alpha$ and $\partial_\beta = 0$ for $y \neq y_0$. By Corollary 2.2.23

\[
\partial_x(\text{Tr}_{L(t)/E(t)}(\beta)) = \sum_{y \rightarrow x} \text{Tr}_{\kappa(y)/\kappa(x)}(\partial_\beta(\beta)) = \text{Tr}_{\kappa(y)/\kappa(x)}(\alpha),
\]

and, similarly, $\partial_{x'}(\text{Tr}_{L(t)/E(t)}(\beta)) = 0$ for $x \neq x'$. Hence by definition of the transfer map $\text{Tr}_{a/E}$ we have

\[
\text{Tr}_{a/E}(\text{Tr}_{L(a)/E(a)}(\alpha)) = -\partial_{\alpha}(\text{Tr}_{L(t)/E(t)}(\beta)).
\]
Moreover, since the only point of \mathbb{P}^1 above ∞ is ∞, another application of Corollary 2.2.23 gives
\[
\partial_\infty(\text{Tr}_{L(t)/E(t)}(\beta)) = \text{Tr}_{L/E}(\partial_\infty(\beta)).
\]
Hence the result.
\[
\text{Tr}_{a/E}(\text{Tr}_{L(a)/E(a)}(\alpha)) = -\text{Tr}_{L/E}(\partial_\infty(\beta)) = \text{Tr}_{L/E}(\text{Tr}_{a/E}(\alpha)).
\]

Proof of Theorem 2.2.5. We keep the previous notations. We already know that it suffices to treat the case when E has no nontrivial extension of degree prime to p. Let p^m be the degree of the extension F/E. We prove the result by induction on m. The case $m = 1$ follows from Proposition 2.2.21

Consider two decompositions
\[
E \subset E(x_1) \subset E(x_1, x_2) \subset \cdots \subset E(x_1, \ldots, x_r) = F.
\]
and
\[
E \subset E(y_1) \subset E(y_1, y_2) \subset \cdots \subset E(y_1, \ldots, y_s) = F.
\]
of F. By Lemma 2.2.4, the extension $E(x_1)/E$ contains a normal subfield $E(x_1')$ of degree p over E. Applying Lemma 2.2.21 with $a = x_1$ and $L = E(x_1')$ yields $\text{Tr}_{x_1/E} = \text{Tr}_{x_1/E} \circ \text{Tr}_{x_1/E(x_1')}$. Hence, without loss of generality, we may assume that $x_1 = x_1'$ and, similarly, $[E(y_1) : E] = p$. Write F_0 for the composite of the fields $E(x_1)$ and $E(y_1)$ in F and write $F = F_0(z_1, \ldots, z_i)$ with $z_i \in F$. The fields $E(x_1)$ and $E(y_1)$ have no nontrivial prime to p extension, thus we may conclude by the induction hypothesis that the triangles
\[
\begin{array}{ccc}
K^\ast_{\text{MW}}(F, \omega_{F/k}) & \xrightarrow{\text{Tr}_{x_2, \ldots, x_r/E(x_1)}} & K^\ast_{\text{MW}}(E(x_1), \omega_{E(x_1)/k}) \\
\text{Tr}_{x_1, \ldots, x_r/F_0} & & \text{Tr}_{F_0/E(x_1)} \\
K^\ast_{\text{MW}}(F_0, \omega_{F_0/k})
\end{array}
\]
and
\[
\begin{array}{ccc}
K^\ast_{\text{MW}}(F, \omega_{F/k}) & \xrightarrow{\text{Tr}_{y_2, \ldots, y_s/E(y_1)}} & K^\ast_{\text{MW}}(E(y_1), \omega_{E(y_1)/k}) \\
\text{Tr}_{y_1, \ldots, y_s/F_0} & & \text{Tr}_{F_0/E(y_1)} \\
K^\ast_{\text{MW}}(F_0, \omega_{F_0/k})
\end{array}
\]
are commutative.

Moreover, Lemma 2.2.24 for $a = x_1$ and $L = E(y_1)$ implies that the following diagram
\[
\begin{array}{ccc}
K^\ast_{\text{MW}}(F_0, \omega_{F_0/k}) & \xrightarrow{\text{Tr}_{F_0/E(y_1)}} & K^\ast_{\text{MW}}(E(x_1), \omega_{E(x_1)/k}) \\
\text{Tr}_{F_0/E(x_1)} & & \text{Tr}_{x_1/E} \\
K^\ast_{\text{MW}}(E(y_1), \omega_{E(y_1)/k}) & \xrightarrow{\text{Tr}_{y_1/E}} & K^\ast_{\text{MW}}(E, \omega_{E/k})
\end{array}
\]
is commutative. Putting everything together, we conclude that $\text{Tr}_{x_1, \ldots, x_r/E} = \text{Tr}_{y_1, \ldots, y_s/E}$.\hfill \square
References

[BT73] H. Bass and J. Tate. The Milnor ring of a global field. Algebr. K-Theory II, Proc. Conf. Battelle Inst. 1972, Lect. Notes Math. 342, 349-446 (1973), 1973.

[Fas19] J. Fasel. Lectures on Chow-Witt groups. arXiv:1911.08152, 2019.

[Fel18] N. Feld. Milnor-Witt cycle modules. (English) Zbl 07173201 J. Pure Appl. Algebra 224, No. 7, Article ID 106298, 44 p. (2020), arXiv:1811.12163v3, 2018.

[Fel20] N. Feld. MW-homotopy sheaves and Morel generalized transfers. arXiv:2007.15069, 2020.

[GS17] P. Gille and T. Szamuely. Central simple algebras and Galois cohomology. 2nd revised and updated edition., volume 165. Cambridge: Cambridge University Press, 2nd revised and updated edition edition, 2017.

[Lam05] T. Y. Lam. Introduction to quadratic forms over fields., volume 67. Providence, RI: American Mathematical Society (AMS), 2005.

[MLZ16] Y. Yang M. Levine and G. Zhao. Algebraic elliptic cohomology theory and flops i. arXiv:1311.2159v3, 2016.

[Mor12] F. Morel. A^1-algebraic topology over a field., volume 2052. Berlin: Springer, 2012.

[Ser77] J.-P. Serre. Cours d’arithmétique. 2me ed. Le Mathematicien. Paris: Presses Universitaires de France. 188 p. (1977), 1977.

[Sha82] J. Shapiro. Transfer in Galois cohomology commutes with transfer in the Milnor ring. J. Pure Appl. Algebra, 23:97–108, 1982.