CRTC1/MAML2 directs a PGC-1α-IGF-1 circuit that confers vulnerability to PPARγ inhibition

Highlights

- CRTC1-MAML2-fusion-positive salivary mucoepidermoid carcinomas (MECs) express IGF-1
- CRTC1-MAML2 coordinates IGF-1 expression via aberrant PGC-1α4 splice variant expression
- PGC-1α4 regulates IGF-1 in a PPARγ-dependent manner in CRTC1-MAML2-positive MECs
- IGF-1R and PPARγ inhibitors reduce growth and survival of CRTC1-MAML2-positive MECs

Authors

Adele M. Musicant, Kshitij Parag-Sharma, Weida Gong, ..., Colin A. Flaveny, David N. Hayes, Antonio L. Amelio

Correspondence

antonio_amelio@unc.edu

In brief

Musicant et al. demonstrate that the CRTC1-MAML2 gene fusion aberrantly regulates expression of the minor splice variant PGC-1α4, which in turn coactivates PPARγ to induce IGF-1 expression. This synthetic signal circuit establishes pro-growth and pro-survival signaling in mucoepidermoid carcinomas, sensitizing tumors to drugs that disable IGF-1 signaling by targeting PPARγ.

Musicant et al., 2021, Cell Reports 34, 108768

February 23, 2021 © 2021 The Author(s).

https://doi.org/10.1016/j.celrep.2021.108768
CRTC1/MAML2 directs a PGC-1α-IGF-1 circuit that confers vulnerability to PPARγ inhibition

Adele M. Musicant,1 Kshitij Parag-Sharma,2 Weida Gong,3 Monideepa Sengupta,4 Arindam Chatterjee,5 Erin C. Henry,6 Yi-Hsuan Tsai,7 Michele C. Hayward,1 Siddharth Sheth,3 Renee Betancourt,8 Trevor G. Hackman,10 Ricardo J. Padilla,11 Joel S. Parker,7,12 Jimena Giudice,13,14 Colin A. Flaveny,5 David N. Hayes,7,15 and Antonio L. Amelio6,13,16,17,18,*

1Graduate Curriculum in Genetics and Molecular Biology, Biological and Biomedical Sciences Program, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
2Graduate Curriculum in Cell Biology and Physiology, Biological and Biomedical Sciences Program, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
3Bioinformatics Core, Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
4Graduate Curriculum in Pharmacological and Physiological Sciences, School of Medicine, Saint Louis University, Saint Louis, MO, USA
5Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, Saint Louis, MO, USA
6Division of Oral and Craniofacial Health Sciences, UNC Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
7Lineberger Comprehensive Cancer Center, Cancer Genetics Program, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
8Division of Hematology/Oncology, Department of Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
9Department of Pathology and Laboratory Medicine, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
10Department of Otolaryngology/Head and Neck Surgery, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
11Department of Genetics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
12Department of Cell Biology and Physiology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
13McAllister Heart Institute, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
14Department of Medical Oncology, University of Tennessee Health Sciences West Cancer Center, Memphis, TN, USA
15Biomedical Research Imaging Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
16Lineberger Comprehensive Cancer Center, Cancer Cell Biology Program, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
17Lead contact
*Correspondence: antonio_amelio@unc.edu

https://doi.org/10.1016/j.celrep.2021.108768

SUMMARY

Mucoepidermoid carcinoma (MEC) is a life-threatening salivary gland cancer that is driven primarily by a transcriptional coactivator fusion composed of cyclic AMP-regulated transcriptional coactivator 1 (CRTC1) and mastermind-like 2 (MAML2). The mechanisms by which the chimeric CRTC1/MAML2 (C1/M2) oncoprotein rewire gene expression programs that promote tumorigenesis remain poorly understood. Here, we show that C1/M2 induces transcriptional activation of the non-canonical peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) splice variant PGC-1α4, which regulates peroxisome proliferator-activated receptor gamma (PPARγ)-mediated insulin-like growth factor 1 (IGF-1) expression. This mitogenic transcriptional circuitry is consistent across cell lines and primary tumors. C1/M2-positive tumors exhibit IGF-1 pathway activation, and small-molecule drug screens reveal that tumor cells harboring the fusion gene are selectively sensitive to IGF-1 receptor (IGF-1R) inhibition. Furthermore, this dependence on autocrine regulation of IGF-1 transcription renders MEC cells susceptible to PPARγ inhibition with inverse agonists. These results yield insights into the aberrant coregulatory functions of C1/M2 and identify a specific vulnerability that can be exploited for precision therapy.

INTRODUCTION

Transcriptional coregulators (coactivators and corepressors) regulate gene expression primarily by acting as bridges between DNA-bound transcription factors and basic transcriptional machinery (Rosenfeld et al., 2006). Chromosomal translocations that create oncogenic fusion genes involving transcriptional coregulators are predicted to cause profound changes to normal
developmental, homeostatic, and/or cellular identity programs in cancer (Lee and Young, 2013; Mitelman et al., 2019; Rabbits, 1994; Tuna et al., 2019).

Mucopidermoid carcinoma (MEC) is the most common salivary gland malignancy, and patients with advanced recurrent or metastatic tumors often suffer from unresectable, lethal disease marked by a 5-year survival rate of <40% (Bell and Hanna, 2012; El-Naggar et al., 2017; McHugh et al., 2012). Salivary MEC tumors can arise within the major or minor salivary glands and are characterized by significant intra-tumoral cellular heterogeneity fueled by cancer stem cells (CSCs) that give rise to multiple cell types, including epidermoid, mucus, and intermediate cells (Adams et al., 2015; Seethala et al., 2010; Stewart et al., 1945; Volkmann, 1895). The intermediate cells represent a poorly differentiated, proliferative cell type thought to give rise to the terminally differentiated epidermoid and mucus cell populations. Furthermore, the relative proportion of intermediate cells increases in high-grade tumors and correlates with poor prognosis (Batsakis, 1980). Transcriptional programs that control cellular identity and support tumor cell functions can directly influence tumor grade and therefore disease progression. Genomic characterization of salivary MEC tumors implicates either recurrent t(11;19) chromosomal translocation, resulting in fusion of two transcriptional coactivators—cyclic AMP (cAMP)-regulated transcriptional coactivator 1 (CRTC1) and mastermind-like 2 (MAML2)—to generate the oncogenic coactivator fusion CRTC1/MAML2 (C1/M2; fusion-positive MEC), or mutations in the tumor suppressor p53 (fusion-negative MEC) (El-Naggar et al., 1996; Kang et al., 2017; Tonon et al., 2003; Wang et al., 2017). Most MEC cases are fusion positive (50%–85%) (O’Neill, 2009), and these tumors harbor a strikingly low somatic mutational burden, indicating that C1/M2 fusion is the primary oncogenic driver event. Numerous other examples exist of cancers driven primarily by gene fusions in the absence of high mutational burden (Gao et al., 2018; Kadoch and Crabtree, 2013; Missiaglia et al., 2012; Riggi et al., 2014). Although surgical resection is often sufficient to treat patients with low-grade, fusion-positive tumors, some patients expressing C1/M2 develop recurrent, chemoradiation-resistant, high-grade tumors (Chen et al., 2007; Seethala and Chiosea, 2016; Warner et al., 2013). This underscores the critical need to develop targeted therapeutic strategies for this subset of salivary MEC patients.

Molecular properties of the chimeric oncprotein C1/M2 have been extensively characterized and reveal that the t(11;19) chromosomal translocation fuses the coiled-coil domain of CRTC1, which promotes binding to the transcription factor cAMP-response element binding protein (CREB), with the strong transcriptional activation domain of MAML2 (Coxon et al., 2005; Wu et al., 2005). Consequently, C1/M2 functions as a rogue co-activator of CREB; however, it also displays gain-of-function interactions with and activation of the master transcription factor and proto-oncogene MYC (Amelio et al., 2014). Notably, C1/M2 is localized to the nucleus, where it binds to CREB in a Ser133 phosphorylation-independent manner yet retains the ability to recruit CBP/p300 through the MAML2 transcriptional domain, bypassing the need for traditional cAMP signaling inputs (Conkright et al., 2003; Wu et al., 2005). Unfortunately, the absence of ligand binding sites on these transcription factors renders them impractical targets for developing selective inhibitors. Thus, efforts have been directed toward defining the downstream pathways reprogrammed by C1/M2. Although candidate CREB and MYC target genes have been identified (Amelio et al., 2014; Chen et al., 2015), the subordinate transcriptional pathways dysregulated by aberrant activation of these transcription factors remain poorly defined.

Here, we performed transcriptomic profiling of fusion-positive salivary MEC tumors and report that C1/M2 initiates a transcriptional cascade that eventuates with upregulation of the potent growth hormone insulin-like growth factor (IGF) 1 via induction of a peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) alternative splice variant, PGC-1α 4. This has functional consequences for the growth, survival, and oncogenic transformation of salivary gland precursors. Elucidating this pathway establishes a molecular basis for the unique capacity of the C1/M2 coactivator fusion to control complex and extensive transcriptional networks beyond CREB and MYC, providing evidence of a role for the PGC-1α 4 splice variant in human cancer pathogenesis. Integrating drug screening and mechanistic data exposed multiple biologic nodes of drug sensitivity, revealing a C1/M2-positive, MEC subtype-selective therapeutic vulnerability to peroxisome proliferator-activated receptor gamma (PPARγ) inhibition.

RESULTS

Activation of IGF-1 signaling is a hallmark of C1/M2-positive salivary MEC

IGF-1 receptor (IGF-1R) overexpression and/or ligand-induced activation of downstream signaling occurs in many cancers and is often required by oncogenes to promote transformation and malignancy (Pollak, 2008). Our previous work investigating the pathobiology of C1/M2-positive MEC revealed that several genes involved in anabolic, pro-growth receptor tyrosine kinase (RTK) pathways, including IGF-1R signaling, are induced by the C1/M2 fusion oncogene (Amelio et al., 2014). Here, we confirmed that IGF-1 is upregulated >100-fold upon ectopic induction of C1/M2 expression (Table S1). Given the importance of IGF-1 in tumor cell growth and survival (Pollak, 2008; Yu and Rohan, 2000) and in salivary gland growth and development (Amano and Iseki, 1993; Kerr et al., 1995; Ryan et al., 1992; Werner and Katz, 2004), we hypothesized that IGF-1R signaling plays a key role in salivary MEC tumorigenesis. To validate the clinical relevance of this finding, we first obtained a cohort of 18 human primary salivary MEC samples from the surgical pathology department at University of North Carolina (UNC) Hospitals (Chapel Hill, NC) and assessed C1/M2 status (Figure 1A). In accordance with previous reports (Birkeland et al., 2017), we found that 10 of these samples (56%) were C1/M2 positive. Next, we performed RNA sequencing on all MEC samples (fusion positive and negative) to identify differentially expressed genes (DEGs) relative to six normal salivary gland controls (Table S2). Unbiased and unsupervised hierarchical clustering revealed that C1/M2-positive tumors constitute a gene expression subtype distinct from C1/M2-negative tumors (Figure S1A). This finding is in agreement with recent studies that suggested that C1/M2-positive and C1/M2-negative MEC are two distinct tumor types driven by distinct signaling mechanisms (Kang et al., 2017;
Wang et al., (2017). We identified IGF-1 among 3,971 upregulated genes that are significantly differentially expressed (fold change > 2 and padj < 0.05) in C1/M2-positive tumors relative to normal salivary glands (Figure 1B; Table S3). Gene set enrichment analysis (GSEA) of curated gene lists within the Molecular Signatures Database (MSigDB) revealed that IGF signaling pathways rank among the top signatures associated with C1/M2-positive tumors (Figure S1B). Thus, we generated a refined gene list (Musicant_MEC_CRTC1-MAML2_IGF1) by curating IGF-1 pathway-related genes with a fold change > 2 (padj < 0.05) that reflect a gene signature specific to C1/M2-positive MEC tumors (Figures 1C and 1D; Table S4). We then evaluated the ability of our curated Musicant_MEC_CRTC1-MAML2_IGF1 gene set to distinguish C1/M2-positive MEC tumors (Figures 1C and 1D; Table S4). Importantly, we examined gene expression in these MEC cases by qPCR and found that the C1/M2 copy number is significantly correlated (r² = 0.7251; p < 0.0001) with IGF-1 expression (Figure 1E). These results demonstrate that C1/M2-positive MEC is characterized by increased IGF-1 expression and suggest an important role for IGF-1R signaling in this MEC tumor subtype.

C1/M2-positive MEC tumor cell lines display selective molecular sensitivities to targeted IGF-1R inhibition

To investigate the role of constitutive IGF-1 expression and downstream signaling in C1/M2-positive MEC cells, we obtained a panel of five MEC (H292, H3118, HMC1, HMC3A, and HMC3B) and three epidermoid (A253, A388, and A431) cell lines. We first confirmed that all MEC cell lines are positive for expression of the C1/M2 fusion transcript and that all epidermoid carcinoma cell lines are fusion negative (Figure 2A). Furthermore, all C1/M2-positive MEC cell lines display robust IGF-1 expression relative to C1/M2-negative cell lines, and this increased IGF-1 expression significantly correlates (r² = 0.8664; p = 0.0008) with C1/M2 expression in fusion-positive MEC cells (Figures 2B and S2A). Finally, histologic analysis of tumor xenografts confirms that C1/M2-positive salivary MEC cell lines generate significant intra-tumoral cellular heterogeneity, which mimics the mucus, epidermoid, and intermediate cell types characteristic of human salivary MEC, demonstrating that these cell lines are capable of forming representative MEC tumors in vivo (Behboudi et al., 2006; Bell and Hanna, 2012; Warner et al., 2013). In contrast, fusion-negative epidermoid carcinoma cells generate xenografts...
tumors with typical solid epidermoid morphology (Figures 2C and S2B). Immunohistochemical staining demonstrated that C1/M2-positive tumors are associated with increased IGF-1 production \textit{in vivo} (Figures 2C and S2B). To test whether C1/M2-positive MEC cells depend on IGF-1 signaling, we performed an unbiased small-molecule drug screen focused on RTK inhibitors (RTKi) at concentrations ranging from 10 nM to 10 \textmu M in all five C1/M2-positive cell lines relative to a fusion-negative control cell line (Figure 2D, left). Calculation of the Z' factor demonstrated robust assay quality such that the distribution between positive (bortezomib) and negative (DMSO) controls indicates a low likelihood of false-positive hits (Z' > 0.75) (Figure S3A). Multiple independent inhibitors targeting IGF-1R and epidermal growth factor receptor (EGFR) emerged as significant hits (p > 3 SD) in this screen (Figure 2D, right). EGFR has been explored as a therapeutic target, though with limited clinical success (Chen et al., 2015), and its emergence as a significant hit validated the robustness of our screen results. Compared with the non-MEC fusion-negative control cells, IGF-1R inhibitors (IGF-1Ri) induced selective and robust cell death in all C1/M2-positive cell lines (Figures 2E, S3B, and S3C), indicating the relative importance of IGF-1/IGF-1R signaling in C1/M2-positive MEC. Dose titrations of two separate IGF-1Ri, BMS-754807 and picropodophyllin (PPP), confirmed that the C1/M2-positive cell lines are sensitive to IGF-1R inhibition, with IC\textsubscript{50} values in the low nanomolar range (Figure 2F; Table 1).

IGF-1R signaling is critical for C1/M2-positive MEC tumor cell growth and survival

We next wanted to examine the functional role of IGF-1R signaling on human C1/M2-positive MEC cell growth and survival via pharmacologic inhibition and/or genetic knockdown (validated in Figures 3A, S4A, and S4B). Live-cell, kinetic proliferation assays revealed that wild-type HMC3A cells reach 50% confluence after 28 h (G0/G1 = 28 h), but pharmacologic
inhibition of IGF-1R with PPP significantly increases this time to confluence (p < 0.05) relative to control (Figure 3B). To test whether blocking IGF-1R impairs the tumorigenic potential of MEC cells to grow as clonogenic colonies ex vivo, C1/M2-positive cells were plated at low density and observed for colony formation. We found that both PPP and BMS-754807 markedly blunted the clonogenic potential of several independent MEC cell lines relative to vehicle-treated cells (Figures 3C and S4C). Several recent studies have documented the existence of CSC subpopulations within various head and neck cancers, including salivary MEC, and these CSCs are associated with malignant potential (Adams et al., 2015; Curtarelli et al., 2018; Keysar et al., 2016). Because tumor spheroids are uniquely enriched for CSCs, we also quantified the efficacy of PPP on 3D tumor spheroid formation in Matrigel and found that sustained IGF-1R inhibition (7 days) significantly blocks (p < 0.0001) MEC 3D sphere formation (Figures 3D and 3E). Finally, we investigated the mechanism underlying the observed decrease in proliferation and tumorigenic potential and found that PPP stimulates a significant dose-dependent increase (p < 0.001) in apoptosis compared with vehicle-treated cells (Figure 3F).

C1/M2 establishes a synthetic PGC-1α4 circuit that regulates IGF-1 expression in MEC tumor cells

To determine the mechanism by which C1/M2 regulates IGF-1 expression in MEC cells, we used our engineered C1/M2-inducible stable cell line (doxycycline-regulated HEK293-CMV TetoC1/M2) (Amello et al., 2014) (Figure S5A). Overexpression of C1/M2 in this cell line significantly increased IGF-1 expression at both transcription and protein levels (Figures 4A, 4B, S5B, and S5C). C1/M2 coactivates the transcription factor CREB, which in turn binds to specific DNA sequences called cAMP-response elements (CREs). Examination of IGF-1 promoter sequences revealed a non-canonical CRE site, indicating that C1/M2 could possibly drive IGF-1 signaling through direct upregulation of IGF-1 transcription. However, chromatin immunoprecipitation (ChIP) assays failed to identify C1/M2 enrichment at the IGF-1 promoter relative to the control canonical CREB target gene NR4A2 (Figure 4C).

We previously showed that CREB regulates stress-inducible expression of a PPARγ coactivator 1α splice variant (PGC-1α4) transcribed from an upstream (~13 kbp) distal promoter of the PGC-1α locus (Bruno et al., 2014), which in turn selectively regulates IGF-1 expression (Rusas et al., 2012). Thus, we performed ChIP assays and identified C1/M2 enrichment specifically at this distal PGC-1α promoter (Figure 4G). Moreover, luciferase reporter assays confirmed that C1/M2 activates the distal CRE-containing PGC-1α promoter, but not the proximal promoter (Figure 4D), suggesting that C1/M2 may indirectly regulate IGF-1 expression by controlling PGC-1α4 expression in MEC cells. We next performed short hairpin RNA (shRNA)-mediated knockdowns and found that PGC-1α4 levels are dramatically reduced similar to control NR4A2, confirming that C1/M2 directly upregulates PGC-1α4 transcription (Figures 4E and S5D). Expression of inducible dominant-negative CREB (A-CREB) in a stable MEC cell line (HMC3A PGKTetoOn3G TRE3GS4-CREBA) also blocked PGC-1α4 expression, supporting the role of CREB-dependent regulation of the PGC-1α distal promoter by C1/M2 (Figure S5E). To examine the kinetics of this expression circuit more closely, we performed a time course experiment in C1/M2-inducible stable cells and found that PGC-1α4 transcripts peak at 24 h (~12 h after C1/M2 induction), whereas IGF-1 transcripts begin to rise ~24–36 h but peak 48 h after C1/M2 induction and 24 h after PGC-1α4 upregulation (Figure 4F). Notably, compared with the other PGC-1α transcripts peak at 24 h (~12 h after C1/M2 induction), whereas IGF-1 transcripts begin to rise ~24–36 h but peak 48 h after C1/M2 induction and 24 h after PGC-1α4 upregulation (Figure 4F). Notably, compared with the other PGC-1α transcripts peak at 24 h (~12 h after C1/M2 induction), whereas IGF-1 transcripts begin to rise ~24–36 h but peak 48 h after C1/M2 induction and 24 h after PGC-1α4 upregulation (Figure 4F). Notably, compared with the other PGC-1α isoforms, C1/M2-positive MEC cell lines are all characterized by robust expression of PGC-1α4 relative to C1/M2-negative cell lines (Figures 4G and S5F). To validate that PGC-1α4 is responsible for inducing IGF-1 expression, we engineered MEC cell lines with an inducible CRISPR interference (dCas9-KRAB; CRISPRi) system (Gilbert et al., 2013). Unique gRNAs that repress expression of all PGC-1α isoforms or that selectively repress only PGC-1α1 revealed that the canonical PGC-1α1 variant has no effect on IGF-1 regulation. In contrast, repressing transcription of all isoforms caused a significant decrease (p < 0.0001) in IGF-1 expression (Figures 4H and S5G), further indicating that PGC-1α4 regulates IGF-1. To confirm that this non-canonical PGC-1α4 isoform is responsible for promoting IGF-1 transcription, we generated a PGC-1α4-inducible stable cell line (doxycycline-regulated HEK293-PGKTetoOn3G TRE3GS4-PGC-1α4, validated in Figure S5H) and confirmed that selective overexpression of the PGC-1α4 splice variant is sufficient to upregulate IGF-1 expression, thus acting as the intermediate

Table 1. Calculated IC₅₀ of IGF-1Ri and PPARγ inverse agonists on the viability of C1/M2-fusion-positive and C1/M2-fusion-negative cancer cell lines

Fusion status	Cancer cell line	Tissue	BMS-754807 IC₅₀ (μM)	PPP IC₅₀ (μM)	SR-10221 IC₅₀ (μM)	SR-2595 IC₅₀ (μM)	T0070907 IC₅₀ (μM)
C1/M2-negative non-MEC	A-253	salivary gland	58.9 ± 2.7	0.719 ± 0.224	ND	ND	ND
UM-HMC-1	salivary gland	0.213 ± 0.047	0.066 ± 0.083	114.5 ± 38.4	40.1 ± 16.1	328.1 ± 36.3	
UM-HMC-3A	salivary gland	0.148 ± 0.057	0.211 ± 0.111	72.7 ± 17.4	50.2 ± 22.0	222.7 ± 12.8	
C1/M2-positive MEC	UM-HMC-3B	salivary gland	0.088 ± 0.019	0.216 ± 0.108	148.4 ± 30.7	78.6 ± 34.6	329.7 ± 19.0
NCI-H292	lung	ND	ND	ND	76.6 ± 2.1	ND	ND
NCI-H3118	salivary gland	ND	0.489 ± 0.075	98.5 ± 12.6	ND	ND	

Cell viability was assessed by ATPlite assay, and IC₅₀ values were calculated in GraphPad Prism using a non-linear curve fit (log[agonist] versus response, four parameter-variable slope).

aReported IC₅₀ values (in micromolars) are reflective of the average of three biologic replicates (mean ± SEM).

bND, not determined.
Figure 3. Inhibition of IGF-1R blocks MEC cell growth and induces apoptosis

(A) Left, western blot showing expression of total and phosphorylated (Tyr1135) IGF-1R protein in HMC1 cells treated with BMS-754807 or PPP. The blot is representative of three independent biologic replicates. Right, quantification of phosphorylated (Tyr1135) IGF-1R protein levels. Band intensities were normalized to β-actin and to total IGF-1R and are shown as the fold change in phosphorylated band intensity relative to the untreated condition. Data are presented as the mean ± SEM (n = 3 biologic replicates; one-way ANOVA with Holm-Sidak post hoc test; ns, not significant; *p < 0.05).

(B) Cell proliferation assay showing relative confluency of HMC3A cells treated with DMSO or PPP. GC50 values for each condition are shown in hours and indicate the time required for cells to reach 50% confluency. ND, not determined. The experiment was performed in biologic triplicate (n = 4 technical replicates per experiment) with one representative experiment shown (mean ± SEM; Benjamini-Hochberg pairwise comparisons; **p < 0.01, ***p < 0.001). Data were collected using the InCucyte live-cell imager; see STAR methods for details.

(C) Number of colonies formed by HMC3A cells treated with DMSO or PPP. A colony is defined as a cluster of ≥50 cells. Representative images of wells treated with DMSO and PPP (IC50 concentration) are shown to the left. Data are presented as the mean ± SEM (n = 3 biologic replicates; Student’s t test; ****p < 0.0001). See Table 1 for a summary of the IC50 values.

(D) Representative images of HMC3A tumorspheres on day 1 (top) and 7 days after treatment with DMSO (vehicle control) or increasing concentrations of PPP. (E) Tumorsphere formation in HMC3A cells treated with DMSO or increasing concentrations of PPP. The percent change in the tumorsphere area is calculated as [TumorAreaDay7]/[TumorAreaDay1] × 100. >50 individual tumorspheres per condition were tracked for each experiment. Data are presented as the mean ± SEM (n = 3 biologic replicates; Student’s t test; ****p < 0.0001).

(legend continued on next page)
Figure 4. C1/M2 induces expression of the PGC-1α4 alternative splice variant, leading to IGF-1 upregulation

(A) Quantitative real-time PCR analysis of IGF-1 mRNA levels in C1/M2-inducible cells (doxycycline-regulated HEK293-CMV^tetO^CMVTetRTetOC1/M2) treated with and without 1 μg/mL of doxycycline. Relative fold expression is shown normalized to RPL23 mRNA levels. Data are presented as the mean ± SEM (n = 3 biologic replicates, 4 technical replicates each; Student’s t test; ***p < 0.001).

(B) AlphaLISA-based analysis of secreted IGF-1 in media from C1/M2-inducible cells (HEK293-CMV^tetO^CMVTetRTetOC1/M2) with and without 1 μg/mL doxycycline treatment. Data are presented as the mean ± SEM (n = 3 biologic replicates; Student’s t test; ***p = 0.003).

(C) Chromatin immunoprecipitation analysis of FLAG-C1/M2 promoter occupancy in C1/M2-inducible cells (HEK293-CMV^tetO^CMVTetRTetOC1/M2). Data are expressed as promoter occupancy in doxycycline-treated cells normalized to promoter occupancy in vehicle-treated cells. GAPDH and NR4A2 promoters were used as negative and positive controls, respectively. Data are presented as the mean ± SEM (n = 3 biologic replicates; Student’s t test; ***p < 0.001, **p < 0.01).

(D) Luciferase assay measuring activation of the distal and proximal PGC-1α promoters in C1/M2-inducible cells (HEK293-CMV^tetO^CMVTetRTetOC1/M2) with and without 1 μg/mL doxycycline treatment. Data are presented as the mean ± SEM (n = 3 biologic replicates, 4 technical replicates each; Student’s t test; ***p < 0.001).

(E) Quantitative real-time PCR analysis of PGC-1α4 mRNA levels in HMC3A cells with and without shRNA-mediated C1/M2 knockdown. Relative fold expression is shown normalized to RPL23 mRNA and to the mock transduced condition. shNS, non-specific shRNA; shMAML2_#1 and shMAML2_#3, shRNAs targeting C1/M2 and MAML2. Data are presented as the mean ± SEM (n = 3 biologic replicates, 4 technical replicates each; Student’s t test; ***p < 0.001).

(F) Temporal analysis of C1/M2, PGC-1α4, and IGF-1 expression kinetics in C1/M2-inducible cells (HEK293-CMV^tetO^CMVTetRTetOC1/M2) treated with 1 μg/mL of doxycycline for 0–48 h. C1/M2 and PGC-1α4 expression is indicated on the left y axis, whereas IGF-1 expression is indicated on the right y axis. Relative fold expression is shown normalized to RPL23 mRNA levels. Data are presented as the mean ± SEM (n = 3 biologic replicates; Student’s t test; ***p < 0.001). (G) Quantitative real-time PCR analysis of PGC-1α4 expression in C1/M2-positive and C1/M2-negative cell lines. Cell lines are listed along the x axis, with C1/M2 status indicated below in gray (negative) or red (positive). Relative fold expression is shown normalized to RPL23 mRNA levels. Data are presented as the mean ± SEM (n = 3 biologic replicates, 4 technical replicates each; Student’s t test; **p < 0.01, ***p < 0.001).

(H and I) Quantitative real-time PCR analysis of IGF-1 mRNA levels in HMC3A cells transduced with unique gRNAs targeting the PGC-1α1 isoform only (PGC-1α1 sgRNA) or all PGC-1α isoforms (Pan-PGC-1α sgRNA) (H). Quantitative real-time PCR analysis of PGC-1α4 and IGF-1 mRNA expression in PGC-1α4-inducible cells (doxycycline-regulated HEK293-PGA^tetOn3GTRE3GSPGC-1α4) treated with 1 μg/mL of doxycycline for 0–48 h (I). Relative fold expression is shown normalized to RPL23 mRNA levels. Data are presented as the mean ± SEM (n = 3 biologic replicates, 4 technical replicates each; Student’s t test; **p < 0.01, ***p < 0.001).

See also Figure S5.

(F) Apoptosis levels (measured as the percentage of cleaved caspase-3/7) in HMC3A cells treated with DMSO or PPP. Data were collected via flow cytometry and normalized to a non-stained control for each condition. Data are presented as the mean ± SEM (n = 3 biologic replicates; Student’s t test; **p ≤ 0.01).

See also Figure S4.

The PGC-1α4 coregulator activates PPARY-dependent transcription of IGF-1 in C1/M2-positive MEC tumor cells

PGC-1α is a coactivator that binds to the transcription factor PPARY to exert its effects on transcription of metabolic target genes (Semple et al., 2006; Sonoda et al., 2008). Strikingly, to C1/M2 (Figure 4I). Finally, shRNA-mediated knockdown of PGC-1α4, as well as other components within this signaling circuit (IGF-1R and C1/M2), significantly blunts proliferation of C1/M2-positive MEC cells (Figure S5I), confirming that PGC-1α4 is both necessary and sufficient for activating the IGF-1 signaling circuit in fusion-positive MEC.
analysis of the IGF-1 locus identified three canonical PPARγ response element (PPRE) binding motifs (Figure S6A). To test whether PGC-1α coactivates PPARγ to modulate IGF-1 transcription, we first confirmed that overexpression of C1/M2 induces transcription of an IGF-1 promoter-driven luciferase reporter comparable to levels of induction observed with a PPRE-driven luciferase reporter (Figures S5B and S6C). Importantly, functional characterization revealed that both the PPRE and the IGF-1 promoter-driven luciferase reporter constructs are responsive to the PPARγ agonist GW1929, indicating that the cloned IGF-1 promoter fragment includes the PPRE motifs that recruit PPARγ (Figure S6D). Therefore, we tested whether the PPARγ inverse agonist SR10221, which functions to recruit transcriptional corepressors to PPARγ that repress target gene transcription, is effective at inhibiting IGF-1 expression. Treatment with SR10221 effectively downregulated PPARγ-mediated transcriptional activity of the IGF-1-luciferase reporter in a dose-dependent manner to below basal levels comparable to those observed with the PPRE-luciferase reporter (Figure 5A). Similarly, shRNA-mediated knockdown of PPARγ resulted in a robust decrease in IGF-1 expression (Figure S6E) and potent induction of apoptosis, as evidenced by significant increases (p < 0.05) in caspase-3/7 activation (Figure S6F). This indicates that the PGC-1α:PPARγ circuit controls IGF-1 expression and suggests that drugs targeting PPARγ may provide therapeutic benefit against C1/M2-positive salivary MEC.

PPARγ inverse agonists suppress C1/M2-positive MEC tumor growth

To investigate the functional role of PPARγ dependency on MEC cell growth and survival, we tested the effects of several PPARγ inverse agonists in our panel of C1/M2-positive MEC cell lines. First, to determine their potential as anti-MEC agents, we assessed the effect of three inverse agonists (SR10221, SR2595, and T0070907) on cancer cell viability using the full panel of C1/M2-positive MEC cell lines (Figure 5B; Table 1). Dose titration of these compounds revealed that SR10221 potently reduced cancer cell viability at low micromolar concentrations in HMC3A cells (Table 1). Furthermore, treatment with SR10221 or SR2595 decreased expression of IGF-1, as well as the canonical PPARγ target genes PGK1 and PKM2, in C1/M2-positive MEC cells (Figures 5C and 5D). Treatment of C1/M2-positive cell lines with sublethal doses of SR10221 (½ IC50) significantly decreased proliferation, 2D colony formation, and 3D tumor spheroid growth (Figures 5E, 5F, 5G, and 5H). Moreover, this decreased growth and tumorigenic potential coincided with potent induction of apoptosis, as evidenced by significant increases in caspase-3/7 activation (Figure 5H).

To determine the efficacy of PPARγ inverse agonists in vivo, we first tested the potency of SR10221 in subcutaneous HMC3A tumor xenograft models labeled with our LumiFluor bioluminescent reporter (Schaub et al., 2015). Tumor xenografts were allowed to grow to a palpable size (~50 mm3), and animals were randomized into two cohorts. These cohorts then received intra-peritoneal (i.p.) administration of 20 mg/kg of SR10221 or vehicle control once daily for three weeks, which resulted in the significant inhibition (p < 0.0001) of HMC3A tumor xenograft growth (Figures 6A and 6B). Similarly, we tested the in vivo potency of SR2595, because it displays superior pharmacokinetic properties, although we administered SR2595 at 60 mg/kg, because SR10221 was shown to possess ~2- to 3-fold greater potency in vitro (Marciano et al., 2015). Treatment with SR2595 at this concentration was generally well tolerated without body weight loss (Figure 6D) but significantly blocked the growth of C1/M2-positive MEC tumor xenografts (Figures 6C and 6E-6G). Collectively, these results suggest that inhibition of IGF-1 signaling using PPARγ inverse agonists alone or in combination with IGF-1Ri may be a viable therapeutic strategy for the targeted treatment of C1/M2-positive MEC.

DISCUSSION

Recurrent chromosomal translocations that generate gene fusions have long been known to have the potential to function as cancer drivers (Rabbits, 1994, 2009; Rowley, 2001). However, the advent of fusion detection algorithms applied to “omics”-level data not only has enabled the discovery of additional gene fusions composed of splicing factors, signal transduction proteins, transcription factors, and/or transcriptional coregulators (Fernandez-Cuesta et al., 2015; Jang et al., 2020; Kumar-Sinha et al., 2015) but has also aided in elucidating the direct functional consequences of these fusions on cellular processes such as signaling and gene expression (Latsyheva et al., 2016; Lee and Young, 2013). These aberrant processes are frequently unique to distinct gene fusions and characteristic of specific cancer subtypes (Fishbein et al., 2017; Gao et al., 2018). C1/M2 represents one such recurrent gene fusion composed of two transcriptional coactivators that is pathognomonic for MEC (O’Neill, 2009; Tonon et al., 2003). Here, we report that the C1/M2 fusion oncogene directs profound reprogramming of transcriptional networks and establishes a synthetic IGF-1 signal circuit through aberrant expression of an alternative PGC-1α splice variant in salivary MEC.

Despite being the most common salivary gland malignancy, MECs are relatively rare compared with other head and neck cancers; consequently, the pathobiology of C1/M2 remains poorly understood. Although it is clear that patients with advanced-stage and/or high-grade tumors display significantly worse overall survival (Chen et al., 2013), the prognostic value of fusion status has been challenged (Seethala and Chiosea, 2016). Most MEC patients are treated with surgical excision, which is sometimes accompanied by adjuvant radiotherapy (Nance et al., 2008). Unfortunately, resistance to chemotherapies and a lack of targeted therapies for recurrent/metastatic disease pose significant challenges to treating patients with aggressive MEC tumors. For example, studies have indicated that paclitaxel, trastuzumab, or RTKi may be viable treatments for fusion-positive MEC; however, preliminary results show only modest responses to these treatments (Coca-Pelaz et al., 2015; McHugh et al., 2012) emphasizing the need for the perfor-
made designing small molecules that can effectively target transcription factors a major challenge (Bishop et al., 2019; Chen and Koehler, 2020; Wachtel and Schäfer, 2018). In addition, two recent genomics studies revealed that C1/M2 is the primary oncogenic driver in most salivary MECs and that these fusion-positive cases lack other cooperating mutations that

Figure 5. Inhibition of IGF-1 expression with PPARγ inverse agonists blocks MEC cell growth and induces apoptosis

made designing small molecules that can effectively target transcription factors a major challenge (Bishop et al., 2019; Chen and Koehler, 2020; Wachtel and Schäfer, 2018). In addition, two recent genomics studies revealed that C1/M2 is the primary oncogenic driver in most salivary MECs and that these fusion-positive cases lack other cooperating mutations that
occasionally serve as actionable targets in other cancers (Kang et al., 2017; Wang et al., 2017). In this study, we set out to identify significantly altered and clinically relevant target genes and pathways downstream of C1/M2 that can be exploited to develop novel therapeutic approaches to treat patients with MEC. Using transcriptomic profiling, we show that C1/M2 expression is correlated with increased IGF-1 expression and pathway activation in salivary MEC. Autocrine and paracrine activation of the IGF-1 pathway is known to promote growth and survival of multiple tumor types (Pollak, 2008; Yu and Rohan, 2000). Notably, endocrine IGF-1 signaling is broadly involved in normal tissue growth and development through stimulation of IGF-1R and has been shown to play critical roles in regulating salivary gland growth and development and in stimulating regeneration following injury (Amano and Iseki, 1993; Kerr et al., 1995; Ryan et al., 1992; Werner and Katz, 2004), thus supporting an important role for aberrant IGF-1 expression in salivary tumor development.

Through bioinformatics analyses and unbiased small-molecule drug screening, we were successful in pinpointing IGF-1R as an actionable target in salivary MEC, suggesting that treatments directed against IGF-1R may provide therapeutic benefit. However, despite early excitement surrounding the potential utility of these treatments for many cancers (Gualberto and Pollak, 2009), targeting the IGF axis has yielded disappointing results in clinical trials (Chen and Sharon, 2013; Denduluri et al., 2015). Thus, the potential utility of anti-IGF-1R antibodies and small-molecule drug inhibitors, alone or combined with other therapeutic modalities, is being investigated as a viable alternative approach. Therefore, we also sought to explore the underlying mechanism governing IGF-1 activation by C1/M2 in salivary MEC and identified unexpected rewiring of this growth factor signal circuit coordinated by aberrant expression of an alternatively spliced target gene of C1/M2-CREB, PGC-1α.

PGC-1α has been shown to exert oncogenenic activity (Frattini et al., 2018) or tumor-suppressive activity (Torrano et al., 2016), depending on cell type and context-dependent metabolic cues (Mastropasqua et al., 2018; Sancho et al., 2015; Xing et al., 2017). The PGC-1α family of transcriptional coactivators is composed of an expanding list of transcript isoforms generated by multiple promoters and alternative pre-mRNA splicing, and the resulting protein variants are known to display unique functional properties (Martinez-Redondo et al., 2015, 2016). Most current literature focuses on the role of the major PGC-1α transcript, PGC-1α1, in various cancers, including melanoma (Luo et al., 2016, 2020; Vazquez et al., 2013) and prostate cancer (Torrano et al., 2016; Valcarcel-Jimenez et al., 2019; Wallace and Metallo, 2016). However, rare, alternatively spliced transcripts such as PGC-1α2 are emerging as key players in multiple cancer types and thus represent an attractive target for pharmacologic intervention (Kimes et al., 2014; Oltean and Bates, 2014; Wang and Lee, 2018; Zhang and Manley, 2013). To date, the specific role of these PGC-1α variants in cancer has remained elusive. We demonstrate that the C1/M2 fusion selectively induces CREB-dependent expression of PGC-1α2, which we and others have shown is associated with IGF-1 expression in anabolic skeletal muscle (Bruno et al., 2014; Ruas et al., 2012; Tasoulas et al., 2018).
et al., 2019). We confirm here that C1/M2 directs similar anabolic pro-growth and pro-survival signaling partly by coordinating this autocrine PGC-1α-IGF-1 signal circuit in fusion-positive salivary MEC.

A model that may explain the transcriptional and pre-mRNA splicing effects of C1/M2 on PGC-1α is that C1/M2 acquires a strong transcriptional activation domain from MAML2 and retains the CREB binding domain of CRTC1; however, the splicing domain normally present in full-length CRTC1 is deleted (Ameillo et al., 2009; Tasoulas et al., 2019). Importantly, PGC-1α retains the activation domain common to other PGC-1α isoforms, which mediates binding to nuclear hormone receptor transcription factors such as PPARγ (Li et al., 2008; Martinez-Redondo et al., 2015; Sonoda et al., 2008). Similar to PGC-1α, dichotomous roles for PPARγ have been described, with evidence pointing to oncogenic activity in some cancers but tumor-suppressor actions in other cancers. This is supported by data using PPARγ agonists or antagonists, respectively (Goldstein et al., 2017; Kardos et al., 2016; Khandekar et al., 2018; Zou et al., 2019). We demonstrate here that PGC-1α upregulates IGF-1 in a PPARγ-dependent manner in C1/M2-positive salivary MEC, which sensitizes these tumor cells to treatment with PPARγ inverse agonists. Given the limitations of anti-IGF-1R monotherapy, the identification of PPARγ inverse agonists as potential therapeutics for the treatment of MEC is particularly exciting. However, a limitation of this study is that therapeutic effects achieved with the PPARγ inverse agonists SR10221 and SR2595 were in the low micromolar range, although functional ligand binding and induced PPARγ conformational changes are possible in the nanomolar range (Marciano et al., 2015; Shang et al., 2020). These differences in the inverse agonist concentrations required to achieve corepressor-dependent PPARγ repression may result from higher binding affinity of the PGC-1α variant with PPARγ and/or increased levels of competing endogenous ligands (e.g., esterified lipids) in salivary MEC cells. Our bioinformatic analyses revealed that several metabolic pathways with the potential to directly influence endogenous ligand levels, including lipid biosynthesis and modification pathways, are significantly elevated in C1/M2-positive salivary MEC (Table S2). An important caveat to our study is that C1/M2 seems to have wide-ranging effects on multiple genes involved in pro-tumorigenic pathways. Although we demonstrate here that targeting PGC-1α-IGF-1 signaling using PPARγ inverse agonists effectively reduces MEC cell growth and proliferation, it is likely that the emergence of compensatory mechanisms during prolonged treatment will necessitate the use of combinatorial therapies in clinical studies.

In summary, our study identifies the C1/M2 fusion oncogene as a master regulator of pro-tumorigenic transcriptional networks partly via a PPARγ-dependent PGC-1α-IGF-1 signaling circuit. Therefore, elucidation of the C1/M2-regulated PGC-1α-IGF-1-dependent transcriptional program may open new avenues for the identification of other pathways that can be exploited to stratify patients suitable for precision therapies. Our findings establish that targeting this synthetic signaling circuit via IGF-1R inhibition or PPARγ inverse agonism, individually or in combination, is a potential therapeutic option for patients with C1/M2-positive salivary MEC.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **RESOURCE AVAILABILITY**
 - Lead contact
 - Materials availability
 - Data and code availability
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - Clinical samples
 - Xenograft models
 - Cell lines
- **METHOD DETAILS**
 - Clinical RNA isolation
 - RNA-seq
 - Bioinformatics
 - RTKi drug screen
 - Virus production and transduction
 - Cell viability
 - Cell proliferation assays (Cytation 5)
 - Cell proliferation assays (Incucyte Zoom)
 - Western blotting
 - 2D colony formation
 - 3D tumor spheroid formation
 - Caspase 3/7 apoptosis assay
 - Chromatin immunoprecipitation (ChIP) assay
 - Luciferase reporter assay
 - Bioluminescence imaging
 - Histology and immunohistochemistry
 - Plasmids
 - sgRNA design and cloning
 - PCR and qPCR
- **QUANTIFICATION AND STATISTICAL ANALYSIS**

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.celrep.2021.108768.

ACKNOWLEDGMENTS

The authors thank Gary Johnson and Brian Golitz for technical support in performing the small-molecule drug screen. We also thank Al Baldwin, Gaoran Gupta, Wendell Yarbrough, and members of the Amelio lab for helpful discussions, suggestions, and/or scientific review of this manuscript and Naim Rashid in the UNC Lineberger Biostatistics Core for statistical consultation. The graphical abstract was created with BioRender. The UNC Lineberger Animal Studies, Animal Histopathology, Small Animal Imaging, Flow Cytometry, Office of Genomics Research, Translational Genomics Lab, Translational Pathology Lab, High Throughput Sequencing Facility, Biostatistics, and Bioinformatics Cores are supported in part by the NCI Center Core Support Grant P30-CA016806 to the UNC Lineberger Comprehensive Cancer Center. The UNC Flow Cytometry Core Facility is also supported by the North Carolina Biotech (NCBT) Center Institutional Support Grant 2012-IDG-1006. The Translational Pathology Lab is also supported by NIH U54-CA156733, NIEHS P30-EOS01026, and NCBT 2015-IDG-1007. This work was supported in part by NIH/NCI T32-GM007092 and NIH NIDCR F31-DE027282 training grants (to A.M.M.), NIH/NIHMS R01-GM130868 and the American Heart Association 19CDA34660248 (to J.G.), Head and Neck Cancer Fund (to T.G.H. and...
D.N.H.), UNC Translational Team Science Award (TSA; to T.G.H. and A.L.A.), University Cancer Research Fund (UCRF; to A.L.A.), and NIH/NCI Howard Temin Pathway to Independence Award in Cancer Research R00-CA157954 (to A.L.A.).

AUTHOR CONTRIBUTIONS
Conception and design, A.M.M., K.P.-S., and A.L.A.; development of methodology, A.M.M., K.P.-S., W.G., A.C., C.A.F., D.N.H., and A.L.A.; acquisition of data (provided animals, acquired and managed patient data, provided facilities, etc.), A.M.M., K.P.-S., W.G., M.S., A.C., E.C.H., Y.-H.T., M.C.H., S.S., R.B., T.G.H., R.J.P., C.A.F., and A.L.A.; analysis and interpretation of data (e.g., statistical analysis, biostatistics, and computational analysis), A.M.M., K.P.-S., Y.-H.T., J.S.P., J.G., C.A.F., D.N.H., and A.L.A.; writing of the manuscript, A.M.M. and A.L.A.; review and/or revision of the manuscript, A.M.M., K.P.-S., W.G., Y.-H.T., T.G.H., J.S.P., J.G., C.A.F., D.N.H., and A.L.A.; administrative, technical, or material support (i.e., reporting or organizing data and constructing databases), A.C., E.C.H., M.C.H., R.B., and J.S.P.; study supervision, J.S.P., C.A.F., D.N.H., and A.L.A.

DECLARATION OF INTERESTS
A.L.A. is a GAB member and paid consultant for LG Chem Life Sciences Innovation Center.

Received: June 19, 2020
Revised: November 22, 2020
Accepted: January 27, 2021
Published: February 23, 2021

REFERENCES
Adams, A., Warner, K., Pearson, A.T., Zhang, Z., Kim, H.S., Mochizuki, D., Bansur, G., Helman, J., Mantesso, A., Castilho, R.M., et al. (2015). ALDH1A1 and CD44 are independently expressed in human salivary gland carcinomas. Oncotarget 6, 26633–26650.
Ahn, S., Olive, M., Aggarwal, S., Krylov, D., Ginty, D.D., and Vinson, C. (1998). CREB co-activators selectively direct alternative splicing or transcriptional activation. EMBO J. 17, 2733–2747.
Amelio, A.L., Caputi, M., and Conkright, M.D. (2009). Bipartite functions of the CREB co-activators selectively direct alternative splicing or transcriptional activation. EMBO J. 28, 2733–2747.
Amelio, A.L., Fallahi, M., Schaub, F.X., Zhang, M., Lawani, M.B., Alperstein, A.S., Southern, M.R., Young, B.M., Wu, L., Zajac-Kaye, M., et al. (2014). MECT1-MAML2 gain-of-function interactions with MYC create a gene signature predictive of cancers with CREB-MYC involvement. Proc. Natl. Acad. Sci. USA 111, E3260–E3268.
Batsakis, J.G. (1980). Salivary gland neoplasia: an outcome of modified morphogenesis and cytodifferentiation. Oral Surg. Oral Med. Oral Pathol. 49, 229–232.
Behboudi, A., Enlund, F., Winnes, M., Andrien, Y., Nordkvist, A., Leivo, I., Flaegberg, E., Mäkitie, A., Grenman, R., et al. (2006). Molecular classification of mucoepidermoid carcinomas—prognostic significance of the MECT1-MAML2 fusion oncogene. Genes Chromosomes Cancer 45, 470–481.
Bell, D., and Hanna, E.Y. (2012). Salivary gland cancers: biology and molecular targets for therapy. Curr. Oncol. Rep. 14, 166–174.
Bevill, S.M., Oliveira-Quintero, J.F., Siciak, N., Goitl, B.T., Singh, D., Beltran, A.S., Rashid, N.U., Stuhlmiller, T.J., Hale, A., Moorman, N.J., et al. (2019). GSK2801, a BA22/BRD9 Bromodomain Inhibitor, Synergizes with BET Inhibitors to Induce Apoptosis in Triple-Negative Breast Cancer. Mol. Cancer Res. 17, 1503–1518.
Birkeland, A.C., Fotin, S.K., Michmerhuizen, N.L., Hoesli, R.C., Rosko, A.J., Byrd, S., Yanik, M., Nör, J.E., Bradford, C.R., Prince, M.E., et al. (2017). Correlation of Crct1/3-Maml2 fusion status, grade and survival in mucoepidermoid carcinoma. Oral Oncol. 68, 5–8.
Bishop, T.R., Zhang, Y., and Erb, M.A. (2019). Pharmacological Modulation of Transcriptional Coregulators in Cancer. Trends Pharmacol. Sci. 40, 388–402.
Bruno, N.E., Kelly, K.A., Hawkins, R., Bramah-Lawani, M., Amelio, A.L., Nwachukwu, J.C., Nettles, K.W., and Conkright, M.D. (2014). CREB coactivators direct anabolic responses and enhance performance of skeletal muscle. EMBO J. 33, 1027–1043.
Chen, A., and Koehler, A.N. (2020). Transcription Factor Inhibition: Lessons Learned and Emerging Targets. Trends Mol. Med. 26, 508–518.
Chen, H.X., and Sharon, E. (2013). IGF-1R as an anti-cancer target—trials and tribulations. Chin. J. Cancer 32, 242–252.
Chen, A.M., Granchi, P.J., Garcia, J., Bucci, M.K., Fu, K.K., and Eisele, D.W. (2007). Local-regional recurrence after surgery without postoperative irradiation for carcinomas of the major salivary glands: implications for adjuvant therapy. Int. J. Radiat. Oncol. Biol. Phys. 67, 982–987.
Chen, A.M., Lau, V.H., Farwell, D.G., Luu, Q., and Donald, P.J. (2013). Mucoepidermoid carcinoma of the parotid gland treated by surgery and postoperative radiation therapy: Clinicopathologic correlates of outcome. Laryngoscope 123, 3049–3055.
Chen, Z., Chen, J., Gu, Y., Hu, C., Li, J.-L., Lin, S., Shen, H., Cao, C., Gao, R., Li, J., et al. (2014). Abrantly activated AREG-EGFR signaling is required for the growth and survival of CRTC1-MAML2 fusion-positive mucoepidermoid carcinoma cells. Oncogene 33, 3869–3877.
Chen, J., Li, J.-L., Chen, Z., Griffin, J.D., and Wu, L. (2015). Gene expression profiling analysis of CRTC1-MAML2 fusion oncogene-induced transcriptional program in human mucoepidermoid carcinoma cells. BMC Cancer 15, 803.
Coca-Pelaz, A., Rodrigo, J.P., Triantafyllou, A., Hunt, J.L., Rinaldo, A., Strojan, P., Haigentz, M., Jr., Mendenhall, W.M., Takes, R.P., Vander Poorten, V., et al. (2015). Salivary mucoepidermoid carcinoma revisited. Eur. Arch. Otorhinolaryngol. 272, 799–819.
Conkright, M.D., Canettieri, G., Sreeraton, R., Guzman, E., Miraglia, L., Hogenesch, J.B., and Montminy, M. (2003). TORCs: transducers of regulated CREB activity. Mol. Cell 12, 413–423.
Coxon, A., Rozenblum, E., Park, Y.-S., Joshi, N., Tsurutani, J., Dennis, P.A., Kirsch, I.R., and Kaye, F.J. (2005). Mect1-Maml2 fusion oncogene linked to the aberrant activation of cyclic AMP/CREB regulated genes. Cancer Res. 65, 7137–7144.
Curtarelli, R.B., Gonçalves, J.M., Dos Santos, L.G.P., Savi, M.G., Nores, J.E., Maes, M., and Rodríguez Cordeiro, M.M. (2018). Expression of Can-C in activation of CREB regulated genes. Cancer Res. 78, 7077–7088.
Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.
El-Naggar, A.K., Lovell, M., Killary, A.M., Clayman, G.M., Nör, J.E., Mezzomo, L.A.M., and Rodrigues Cordeiro, M.M. (2018). Expression of Cancer Stem Cell Biomarkers in Human Head and Neck Carcinomas: a Systematic Review. Stem Cell Rev. Rep. 14, 769–784.
Denduluri, S.K., Idowu, O., Wang, Z., Liao, Z., Yan, Z., Mohammed, M.K., Ye, J., Wei, Q., Wang, J., Zhao, L., and Luu, H.H. (2015). Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes Dis. 2, 13–25.
El-Naggar, A.K., Lovell, M., Killary, A.M., Clayman, G.M., and Batsakis, J.G. (1996). A mucoepidermoid carcinoma of minor salivary gland with t(11;19)(q21;p13.1) as the only karyotypic abnormality. Cancer Genet. Cytogenet. 86, 982–987.
Fernandez-Cuesta, L., Sun, R., Menon, R., George, J., Lorenz, M., Meza-Zepeda, L.A., Peifer, M., Plenkew, D., Heuckmann, J.M., Leenders, F., et al. (2015). Identification of novel fusion genes in lung cancer using breakpoint assembly of transcriptome sequencing data. Genome Biol. 16, 7–11.
Fishbein, L., Leshchiner, I., Walter, V., Danilova, L., Robertson, A.G., Johnson, A.R., Lichtenberg, T.M., Murray, B.A., Ghayee, H.K., Else, T., et al.; Cancer
Genome Atlas Research Network (2017). Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell 37, 181–193.

Frattini, V., Pagnotta, S.M., Tala, Fan, J.J., Russo, M.V., Lee, S.B., Garofano, L., Zhang, J., Shi, P., Lewis, G., et al. (2018). A metabolic function of FGFR3-TACC3 gene fusions in cancer. Nature 553, 222–227.

Fulco, C.P., Munschauer, M., Anyoha, R., Munson, G., Grossman, S.R., Perez, E.M., Kane, M., Cieply, B., Lander, E.S., and Engreitz, J.M. (2016). Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science 354, 769–773.

Gao, Q., Liang, W.-W., Foltz, S.M., Mutharasu, G., Jayasinghe, R.G., Cao, S., Liao, W.-W., Reynolds, S.M., Wyczalkowski, M.A., Yao, L., et al.; Fusion Analysis Working Group; Cancer Genome Atlas Research Network (2018). Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. Cell Rep. 23, 227–238.

Gilbert, L.A., Larson, M.H., Morsut, L., Liu, Z., Brar, G.A., Torres, S.E., Stern-Ginossar, N., Brandman, O., Whitehead, E.H., Doudna, J.A., et al. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451.

Goldstein, J.T., Berger, A.C., Shih, J., Duke, F.F., Furst, L., Kwaitkowski, D.J., Cherniack, A.D., Meyerson, M., and Stratheange, C.A. (2017). Genomic activation of PPARg reveals a candidate therapeutic target in bladder cancer. Cancer Res. 77, 6987–6998.

Gu, Z., Ellis, R., and Schlesner, M. (2016). Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849.

Gualberto, A., and Pollak, M. (2009). Emerging role of insulin-like growth factor receptor inhibitors in oncology: early clinical trial results and future directions. Oncogene 28, 3009–3021.

Jang, Y.E., Jang, I., Kim, S., Cho, S., Kim, D., Kim, K., Kim, J., Hwang, J., Kim, S., Kim, J., et al. (2020). ChimerDB 4.0: an updated and expanded database of fusion genes. Nucleic Acids Res. 48 (D1), D817–D824.

Kadoch, C., and Crabtree, G.R. (2013). Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell 153, 71–85.

Kang, H., Tan, M., Bishop, J.A., Jones, S., Sausen, M., Ha, P.K., and Agrawal, N. (2017). Whole-Exome Sequencing of Salivary Gland Mucoepidermoid Carcinoma. Clin. Cancer Res. 23, 283–288.

Kardos, J., Chai, S., Mose, L.E., Selitsky, S.R., Krishnan, B., Saito, R., Iglesia, M.D., Milowisky, M.I., Parker, J.S., Kim, W.Y., et al. (2016). Claudin-low bladder tumors are immune infiltrated and actively immune suppressed. JCI Insight 1, e55902.

Kerr, M., Lee, A., Wang, P.L., Purushotham, K.R., Chegini, N., Yamamoto, H., and Humphreys-Beher, M.G. (1995). Detection of insulin and insulin-like growth factors I and II in saliva and potential synthesis in the salivary glands of mice. Effects of type 1 diabetes mellitus. Biochem. Pharmacol. 49, 1521–1531.

Keyser, S.B., Le, P.N., Miller, B., Jackson, B.C., Eagles, J.R., Nieto, C., Kim, J., Tang, B., Glogowski, M.J., Morton, J.J., et al. (2016). Regulation of Head and Neck Squamous Cancer Stem Cells by PI3K and SOX2. J. Natl. Cancer Inst. 109, djv189.

Khendekar, M.J., Banks, A.S., Laznik-Bogoslavski, D., White, J.P., Choi, J.H., Kazak, L., Lo, J.C., Cohen, P., Wong, K.-K., Kamenecka, T.M., et al. (2018). Noncanonical agonist PPARα ligands modulate the response to DNA damage and sensitize cancer cells to cytotoxic chemotherapy. Proc. Natl. Acad. Sci. USA 115, 561–566.

Kim, J.B., Wright, H.M., Wright, M., and Spiegelman, B.M. (1998). ADD1/ SREBP1 activates PPARgamma through the production of endogenous ligand. Proc. Natl. Acad. Sci. USA 95, 4333–4337.

Kimes, P.K., Cabanski, C.R., Wilkerson, M.D., Zhao, N., Johnson, A.R., Perou, C.M., Makowski, L., Maher, C.A., Liu, Y., Marron, J.S., and Hayes, D.N. (2014). SigFuge: single gene clustering of RNA-seq reveals differential isoform usage among cancer samples. Nucleic Acids Res. 42, 6113.
O'Neill, I.D. (2009). t(11;19) translocation and CRTC1-MAML2 fusion oncogene in mucoepidermoid carcinoma. Oral Oncol. 45, 2–9.

Oltean, S., and Bates, D.O. (2014). Hallmarks of alternative splicing in cancer. Oncogene 33, S311–S318.

Paterno, R., Duggal, G., Love, M.J., Iizuka, C.R., and Kingsford, C. (2017). Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419.

Pollak, M. (2008). Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 8, 915–928.

Rabbitts, T.H. (1994). Chromosomal translocations in human cancer. Nature 372, 143–149.

Rabbitts, T.H. (2009). Commonality but diversity in cancer gene fusions. Cell 137, 391–395.

Riggi, N., Knoechel, B., Gillespie, S.M., Rheinbay, E., Boulay, G., Suvà, M.L., Rossetti, N.E., Boonseng, W.E., Oksuz, O., Cook, E.B., et al. (2014). EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell 26, 668–681.

Rosénfeld, M.G., Lunyak, V.V., and Glass, C.K. (2006). Sensors and signals as a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 20, 1405–1428.

Rowley, J.D. (2001). Chromosome translocations: dangerous liaisons revisited. Nat. Rev. Cancer 1, 245–250.

Ruas, J.L., White, J.P., Rao, R.R., Kleiner, S., Brannan, K.T., Harrison, B.C., Greene, N.P., Wu, J., Estall, J.L., Irving, B.A., et al. (2012). A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151, 1319–1331.

Ryan, J., Mantle, T., McQuaid, S., and Costigan, D.C. (1992). Salivary insulin-like growth factor-I originates from local synthesis. J. Endocrinol. 135, 85–90.

Sancho, P., Burgos-Ramos, E., Tavera, A., Bou Kheir, T., Jagust, P., Schoenhals, M., Barneda, D., Sellers, K., Campos-Olivas, R., Grafa, O., et al. (2015). MYC/POC-1α Balance Determines the Metabolic Phenotype and Plasticity of Pancreatic Cancer Stem Cells. Cell Metab. 22, 590–605.

Schaub, F.X., Reza, M.S., Flaveny, C.A., Li, W., Musicant, A.M., Hoxha, S., Guo, M., Cleveland, J.L., and Amelio, A.L. (2015). Fluorophore-NanoLuc BRET Reporters Enable Sensitive In Vivo Optical Imaging and Flow Cytometry for Monitoring Tumorigenesis. Cancer Res. 75, 5032–5033.

Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675.

Seethala, R.R., and Choisea, S.I. (2016). MAML2 Status in Mucoepidermoid Carcinoma Can No Longer Be Considered a Prognostic Marker. Am. J. Surg. Pathol. 40, 1151–1153.

Seethala, R.R., Dacic, S., Cieply, K., Kelly, L.M., and Nikiforova, M.N. (2010). A reappraisal of the MECT1/MAML2 translocation in salivary mucoepidermoid carcinoma. Oral Oncol. 45, 748–753.

Siegal, R.S., Moisan, S.A., Moisan, J., Brust, R., Bass, J., Nicholas, A., Solt, L.A., Griffin, P.R., and Kojetin, D.J. (2020). A molecular switch regulating transcriptional repression and activation of PPARγ. Nat. Commun. 11, 956.

Sonoda, J., Pei, L., and Evans, R.M. (2008). Nuclear receptors: Decoding the coactivator/corepressor/epigenetic code for integrating signal-dependent and non-signal-dependent programs of transcriptional response. Genes Dev. 20, 1405–1428.

Toniolo, G., Modi, S., Wu, L., Kubo, A., Coxon, A.B., Komiyama, T., O’Neill, K., Stover, K., El-Naggar, A., Griffin, J.D., et al. (2003). t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nat. Genet. 33, 208–213.

Torrado, V., Valcarcel-Jimenez, L., Cortazar, A.R., Liu, X., Urosevic, J., Castillo-Martin, M., Fernandez-Ruiz, S., Morciano, G., Caro-Maldonado, A., Guiu, M., et al. (2016). The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nat. Cell Biol. 18, 645–656.

Tuna, M., Amos, C.I., and Mills, G.B. (2019). Molecular mechanisms and pathobiology of oncogenic fusion transcripts in epithelial tumors. Oncotarget 10, 2095–2111.

Valcarcel-Jimenez, L., Macchia, A., Crossos-Molisit, E., Schaub-Cleriqué, A., Camacho, L., Martin-Martín, N., Cigcina, P., Viera-Bardón, C., Fernández-Ruiz, S., Rodriguez-Hernandez, I., et al. (2019). PGC1α Suppresses Prostate Cancer Cell Invasion through ERα Transcriptional Control. Cancer Res. 79, 6153–6165.

Vazquez, F., Lim, J.-H., Chin, H., Bhalla, K., Girr, G., Pierce, K., Clish, C.B., Granter, S.R., Wiltulin, H.R., Spiegelman, B.M., and Puigserver, P. (2013). PGC1α expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23, 287–301.

Volkmann, R. (1895). Uber endotheliale Geschwülste, zugleich ein Beitrag zu den Speicheldrüseng- und Gaumentumoren. Deutsche Zeitschrift für Chirurgie 41, 1–180.

Wachtel, M., and Schäfer, B.W. (2018). PAX3-FOX01: Zooming in on an “undruggable” target. Semin. Cancer Biol. 50, 115–123.

Wallace, M., and Mettallo, C.M. (2016). PGC1α drives a metabolic block on prostate cancer progression. Nat. Cell Biol. 18, 589–590.

Wang, B.-D., and Lee, N.H. (2018). Aberrant RNA Splicing in Cancer and Drug Resistance. Cancers (Basel) 10, 458.

Wang, K., McDermott, J.D., Schrook, A.B., Elvin, J.A., Gay, L., Karam, S.D., Rabin, D., Somerset, H., Ali, S.M., Ross, J.S., and Bowles, D.W. (2017). Comprehensive genomic profiling of salivary mucoepidermoid carcinomas reveals frequent BAP1, P1K3CA, and other actionable genomic alterations. Ann. Oncol. 28, 748–753.

Warner, K.A., Adams, A., Bernardi, L., Nor, C., Finkel, K.A., Zhang, Z., McLean, S.A., Helman, J., Wolf, G.T., Divi, V., et al. (2013). Characterization of tumorogenic cell lines from the recurrence and lymph node metastasis of a salivary mucoepidermoid carcinoma. Oral Oncol. 49, 1059–1066.

Werner, H., and Katz, J. (2004). The emerging role of the insulin-like growth factor in oral biology. J. Dent. Res. 83, 832–836.

Wu, L., Liu, J., Gao, P., Nakamura, M., Cao, Y., Shen, H., and Griffin, J.D. (2005). Transforming activity of MECT1-MAML2 fusion oncogene is mediated by constitutive CREB activation. EMBO J. 24, 2391–2402.

Xing, F., Luan, Y., Cai, J., Wu, S., Mai, J., Gu, J., Zhang, H., Li, K., Lin, Y., Xiao, X., et al. (2017). The Anti-Warburg Effect Elicited by the cAMP-PGC1α Pathway Drives Differentiation of Glioblastoma Cells Into Astrocytes. Cell Rep. 18, 468–481.

Young, L., Sung, J., Stacey, G., and Masters, J.R. (2010). Detection of Mycoplasma in cell cultures. Nat. Protoc. 5, 929–934.

Yu, H., and Rohan, T. (2000). Role of the insulin-like growth factor family in cancer development and progression. J. Natl. Cancer Inst. 92, 1472–1489.

Zhang, J., and Manley, J.L. (1999). A Simple Statistical Assessment of the Significance of Microarray Data. Nat. Genet. 26, 149–154.

Zou, Y., Watters, A., Cheng, N., Perry, C.E., Xu, K., Alica, G.M., Parris, J.L.D., Baraban, E., Ray, P., Nayak, A., et al. (2019). Polysaturated Fatty Acids from Astrocyes Activate PPARγ Signaling in Cancer Cells to Promote Brain Metastasis. Cancer Discov. 9, 1720–1735.
STAR METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Rabbit anti-IGF1	Abcam	Cat #ab9572, RRID:AB_308724
(0.2 µg/mL western		
blot (1:300		
immunohistochemistry)		
Rabbit anti-IGF-1R	Cell Signaling	Cat #3018S, RRID:AB_560943
(1:2500)		
Rabbit anti-phospho-	Cell Signaling	Cat #3918S, RRID:AB_10548764
IGF-1R[Thr1135]		
(1:1000)		
Rabbit anti-PPARγ	Abcam	Cat #209350
(1:1000)		
Mouse anti-β-actin	Sigma-Aldrich	Cat #A3854, RRID:AB_262011
(1:5000)		
Mouse anti-α-tubulin	Sigma-Aldrich	Cat #T6074, RRID:AB_477582
(1:5000)		
Mouse HRP-conjugated	Sigma-Aldrich	Cat #A8592, RRID:AB_439702
anti-FLAG (1:5000)		
Goat HRP-conjugated	Fisher	Cat #31342, RRID:AB_228302
anti-mouse (1:5000)		
Donkey HRP-conjugated	Fisher	Cat #31458, RRID:AB_228213
anti-rabbit (1:5000)		
Mouse anti-Flag M2	Sigma-Aldrich	Cat #F1804, RRID:AB_262044
(1.5 µg/mL)		
Bacterial and virus strains		
DH5α E. coli	Zymo Research	Cat #T3007
Stbl3 E. coli	ThermoFisher Scientific	Cat #C737303
Biological samples		
Healthy adult salivary gland tissue	University of North Carolina at Chapel Hill and UNC Hospitals Surgical Pathology	N/A
Salivary mucoepidermoid carcinoma (MEC) tumor tissue	University of North Carolina at Chapel Hill and UNC Hospitals Surgical Pathology	N/A
Chemicals, peptides, and recombinant proteins		
SR10221	This paper	N/A
SR2595	This paper and Sigma-Aldrich	Cat #SML2037
T0070907	Fisher	Cat #50-136-3114
BMS-754807	Sigma-Aldrich	Cat #BM0003
PPP	Santa Cruz	Cat #SC-204008
GW1929	Sigma-Aldrich	Cat #5668
Cell Titer Glo 2.0	Promega	Cat #G9243
cOmplete, EDTA-free Protease Inhibitor Cocktail	Roche	Cat #04693132001
PhosSTOP phosphatase inhibitor	Roche	Cat #10917400
Matrigel	Fisher	Cat #ICB4023A
Doxycycline	Sigma-Aldrich	Cat #D9891
Lipofectamine	Invitrogen	Cat #50470
Critical commercial assays		
Nucleospin RNA kit	Macherey-Nagel	Cat #740955
NucleoSpin Gel and PCR Cleanup Kit	Macherey-Nagel	Cat #740609
Maxwell 16 LEV RNA FFPE Kit	Promega	Cat #AS1260
TruSeq Stranded Total RNA Library Prep Gold Kit	Illumina	Cat #20020599
iScript cDNA synthesis kit	Bio-Rad	Cat #170-8890
SuperScript IV Reverse Transcriptase	Invitrogen	Cat #18090050
FastStart Universal SYBR Green Master (Rox) Mix	Roche	Cat #04913850001

(Continued on next page)
REAGENT or RESOURCE SOURCE IDENTIFIER

REAGENT or RESOURCE	SOURCE	IDENTIFIER
CellEvent Caspase 3/7 Green Flow Cytometry Assay Kit	Fisher	Cat #C10427
ATPlite Luminescence Assay System	PerkinElmer	Cat #6016949
Dual-Glo Luciferase Assay System	Promega	Cat #E2920
Bright-Glo Luciferase Assay System	Promega	Cat #E264B
Nano-Glo Luciferase Assay System	Promega	Cat #N1120
ImmPRESS HRP Horse Anti-Rabbit IgG Polymer Detection Kit	Vector Labs	MP-7401

Deposited data

Analyzed RNA-seq data

Available upon request

Experimental models: cell lines

A253	Gift from Stuart Aaronsen and Bernard Weissman (UNC-CH, Chapel Hill, NC)	RRID: CVCL_1060
A388	Gift from Stuart Aaronsen and Bernard Weissman (UNC-CH, Chapel Hill, NC)	RRID: CVCL_1063
A431	Gift from Stuart Aaronsen and Bernard Weissman (UNC-CH, Chapel Hill, NC)	RRID: CVCL_0037
NCI-H292	Gift from Dr. Frederic Kaye (University of Florida, Gainesville, FL)	RRID: CVCL_0455
NCI-H3118	Gift from Dr. Frederic Kaye (University of Florida, Gainesville, FL)	RRID: CVCL_A464
UM-HMC-1	Gift from Dr. Jacques Nör (University of Michigan, Ann Arbor, MI)	RRID: CVCL_Y473
UM-HMC-3A	Gift from Dr. Jacques Nör (University of Michigan, Ann Arbor, MI)	RRID: CVCL_Y471
UM-HMC-3B	Gift from Dr. Jacques Nör (University of Michigan, Ann Arbor, MI)	RRID: CVCL_Y472
HEK293A	ThermoFisher Scientific	Cat #R70507
HEK293-CMV_TetRTetO_{C1/M2}	This paper	N/A
HEK293-PGK_{TetOn3G}TRE3GS_{PGC-1α}	This paper	N/A
HMC3A-PGK_{TetOn3G}TRE3GS_{0Cas9-KRAB-IRES-BFP}	This paper	N/A
Lenti X-293T	Takara	Cat #632180

Experimental models: organisms/strains

Mouse: Nu/Nu

Jackson Laboratory

Stock# 002019

Oligonucleotides

MAML2-specific reverse primer, see Table S6	This paper	N/A
Primers for mycoplasma detection, see Table S6	Young et al., 2010	N/A
Oligo d(T)20 primer	Invitrogen	Cat #100023441
Primers for qPCR gene expression analysis, see Table S6	This paper	N/A
Primers for chromatin IP, see Table S6	This paper	N/A

Recombinant DNA

pRetroX-Tight-MCS_PGK-GpNLuc	Schaub et al., 2015	Addgene plasmid #70185
PGC-1α Distal Luciferase	This paper	Addgene plasmid #154260
PGC-1α Proximal Luciferase	This paper	Addgene plasmid #154259
pGL4.15 [Luc2p/Hygro] IGF-1 Promoter 1	This paper	Addgene plasmid #154261
pGL3-Enhancer_IGF-1 Promoter 1	This paper	Addgene plasmid #154266

(Continued on next page)
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Antonio L. Amelio (antonio_amelio@unc.edu).

Materials availability
The plasmids generated in this study have been deposited with Addgene. Cell lines generated in this study are available upon request via a material transfer agreement (MTA).

Continued

REAGENT or RESOURCE	SOURCE	IDENTIFIER
pGL4.15 [Luc2p/Hygro] IGF-1 Promoter 2	This paper	Addgene plasmid #154262
pGL3-Enhancer, IGF-1 Promoter 2	This paper	Addgene plasmid #154267
pRetroX_Tight_ACREB_PGK-tadTomato	This paper	Addgene plasmid #154264
pTRE3G_FLAG-CRTC1/MAML2_P GK-GpNLuc	This paper	Addgene plasmid #154265
pLV-Tight-PGCv4-mCherry:T2A:Hygro	This paper	Addgene plasmid #154263
pFLAG-CMV-2_CRTC1/MAML2	Tonon et al., 2003	N/A
pLKO.1_shScramble	Chen et al., 2014	N/A
pLKO.1_shMAML2_1	Chen et al., 2014	N/A
pLKO.1_shMAML2_3	Chen et al., 2014	N/A
pLMN UltramiR-E shIGF1R_#1	transOMICS Technologies	Cat #ULTRA-3308043
pLMN UltramiR-E shIGF1R_#2	transOMICS Technologies	Cat #ULTRA-3443222
pLMN UltramiR-E shPPARGC1A_1	transOMICS Technologies	Cat #ULTRA-3197172
pLMN UltramiR-E shPPARGC1A_2	transOMICS Technologies	Cat #ULTRA-3197171
MISSION® shRNA shPPARG_#1	Sigma-Aldrich	Cat #SHCLNG-TRCN0000355926
MISSION® shRNA shPPARG_#2	Sigma-Aldrich	Cat #SHCLNG-TRCN0000001673
MISSION® shRNA shPPARG_#3	Sigma-Aldrich	Cat #SHCLNG-TRCN0000001674
PPRex3-TK-Luc	Kim et al., 1998	Addgene plasmid #1015
dCas9-KRAB-ires-BFP	Fulco et al., 2016	Addgene plasmid #85449
pgRNA-CKB	Mandegar et al., 2016	Addgene plasmid #73501
pSico_U6-Pan-PGC1a sgPGC	This paper	Addgene plasmid #165426
pSico_U6-PGC1a1 sgPGC	This paper	Addgene plasmid #165425

Software and algorithms

SOFTWARE AND ALGORITHMS
STAR (version 2.4.2)
Salmon (version 0.1.19)
DESeq2 (version 1.24.0)
Gene Set Enrichment Analysis
ComplexHeatmap (version 2.0.0)
GraphPad Prism 6
Gen5 (version 2.09)
ImageJ
R (version 3.1.2)

Other

RESOURCE	SOURCE	
Protein G SureBeads	Bio-Rad	Cat #1614821
Data and code availability
The datasets supporting the current study have not been deposited in a public repository because the Institutional Review Board (IRB) protocols supporting this work are secondary analyses IRBs for use of surgical archives without consent, but the datasets are hosted by the UNC Lineberger Bioinformatics Core and are available from the corresponding author on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical samples
All research involving human tumor tissues was reviewed and approved by The University of North Carolina at Chapel Hill Institutional Review Board under IRB protocols 15-1604 and 17-2947. Tissues from these de-identified clinical subjects were identified from chart review and archived FFPE salivary MEC (n = 18; 10 females and 8 males, average age of 49.6 years) or normal salivary gland (n = 6) tissue samples stored at room temperature less than ten years before blocks were sectioned and RNA isolation performed. For all cases, multiple H&E slides were reviewed by a pathologist and sections with tumor were selected for inclusion in the study. Adjacent serial unstained sections were then macrodissected and tumor material submitted for RNA extraction.

Xenograft models
All animal studies were reviewed and approved by The University of North Carolina at Chapel Hill Institutional Animal Care and Use Committee under IACUC protocol 17-202. Male 6–8 week old athymic nude mice (Nu/Nu) were obtained from the Animal Studies Core at the University of North Carolina at Chapel Hill and housed in facilities run by the Division of Comparative Medicine at the University of North Carolina (Chapel Hill, NC, USA). For all xenograft studies, mice were subcutaneously injected with 1x10^6 UM-HMC-3A cells resuspended in 50% HBSS and 50% Matrigel. When the average tumor size reached a palpable size (~50 mm^3), animals were randomized into two groups (Vehicle and SR10221 or SR2595) so that the average tumor size in each group was approximately equal. The vehicle group was intraperitoneally (i.p.) injected daily with 250 ul of a 10% DMSO, 10% Tween-80, 80% PBS solution. Drug-treated animals were i.p. injected daily with a 10% DMSO, 10% Tween-80, 80% PBS solution containing either 20 mg/kg SR10221 (see Methods S1 for synthesis and purification details) or 60 mg/kg SR2595 (Sigma-Aldrich #SML2037) based on an average mouse weight of 25 g. Caliper measurements were collected every 2 days and bioluminescent imaging (BLI) was performed every 5 days throughout the course of the study.

Cell lines
UM-HMC-1 (HMC1), UM-HMC-3A (HMC3A), and UM-HMC-3B (HMC3B) cells (Warner et al., 2013) were kindly provided by Dr. Jacques Nör (University of Michigan, Ann Arbor, MI, USA). NCI-H292 (H292) and NCI-H3118 (H3118) cells (Tonon et al., 2003) were generously provided by Dr. Frederic Kaye (University of Florida, Gainesville, FL, USA); A253, A388, and A431 cells were kindly provided by Dr. Bernard Weissman (University of North Carolina, Chapel Hill, NC, USA). HMC1 (source: male, salivary gland mucoepidermoid carcinoma (MEC)), HMC3A (source: female, hard palate MEC), and HMC3B (source: female, lymph node metastasis of hard palate MEC) parenteral and stably transduced lines were cultured in DMEM medium (GIBCO #11965-118) supplemented with 10% FBS, 1X GlutaMAX, and 1X PSG. H292 (source: female, lung MEG) cells were cultured in RPMI-1640 medium (Life Tech #11875119) supplemented with 10% FBS, 1X GlutaMAX (Life Tech #35050051), 1X NEAA (GIBCO #11140050), 1X NaPyr (Life Tech #11360070), and 1X PSG. HEK293A, HEK293-CMV^Rfp/Tet^C1/M2 (Amelio et al., 2014), HEK293-^PGK^Peho^TRE3GS^PGK^Peho^Tet^C1/M2, Lenti X-293T (viral packaging cell line; Takara #632180), H3118 (source: female, parotid gland MEC), A388 (source: male, squamous cell carcinoma (SCC)), and A431 (source: female, vulvar SCC) cells were cultured in DMEM supplemented with 10% FBS, 1X GlutaMAX, and 1X PSG. A253 (source: male, salivary gland SCC) cells were cultured in McCoy’s 5A medium (Life Tech #11600108) supplemented with 10% FBS, 1X GlutaMAX, and 1X PSG. Cells were passaged using TrypLE (GIBCO #126004013) every 2-3 days or when they reached 90% confluence. All cells were maintained in a 37°C, 5% CO2 atmosphere. All cell lines were confirmed mycoplasma-free by PCR as previously described (Young et al., 2010) and using mycoplasma detection primers (see Table S6).

METHOD DETAILS

Clinical RNA isolation
Formalin-fixed paraffin-embedded (FFPE) tissue samples were sent to the UNC Lineberger Comprehensive Cancer Center Translational Genomics Lab (TGL) for RNA isolation using the Maxwell 16 MDx Instrument (Promega #AS3000) and the Maxwell 16 LEV RNA FFPE Kit (Promega AS1260) according to the manufacturer’s protocol (Promega #9FB167). Pathology review of a hematoxylin and eosin (H&E) stained slide was used to guide macro-dissection of unstained slides to enrich for tumor RNA. Total RNA quality was measured using a NanoDrop spectrophotometer (Thermo Scientific ND-2000C) and a TapeStation 4200 (Agilent G2991AA). Total RNA concentration was quantified using a Qubit 3.0 fluorometer (Life Technologies Q33216).
RNA-seq
Total RNA sequencing libraries were prepared at TGL using a Bravo Automated Liquid-Handling Platform (Agilent G5562A) and the TruSeq Stranded Total RNA Library Prep Gold Kit (Illumina 20020599) according to the manufacturer’s protocol (Illumina 1000000040499). RNaseq library quality and quantity were measured using a TapeStation 4200 (Agilent G2991AA), pooled at equal molar ratios, and denatured according to the manufacturer’s protocol (Illumina 15050107). Sequencing was performed at the High Throughput Sequencing Facility (HTSF) at UNC Chapel Hill. Two RNA-seq libraries were sequenced per lane on a HiSeq2500 (Illumina SY–401–2501) with 2x50 bp paired-end configuration according to the manufacturer’s protocol (Illumina 15035786).

Bioinformatics
RNaseq data analyses were performed with FASTQ files aligned to the GRCh38 human genome (GRCh38.d1.vd1.fa) using STAR Bioinformatics

RTKi drug screen
Compound screening was performed as previously described (Buvitu et al., 2019; Lipner et al., 2020). Briefly, drug screening was performed in a 384 well plate format, in duplicate. Cells were seeded in 45 μL of full culture media; A253 (1000 cells/well), H292 (600 cells/well) H3118 (7000 cells/well), HMC1 (500 cells/well), HMC3A (500 cells/well) and HMC3B (700 cells/well). Cells were seeded in 384-well plates using a BioTek microplate dispenser. Cells were allowed to adhere overnight, following which they were treated with 176 individual drugs at 6 doses (10 nM, 100 nM, 300 nM, 1 μM, 3 μM and 10 μM) using a Beckman Coulter Biomek FX Automated Liquid Handling instrument. Each plate also included 1 μM Bortezomib and 1% DMSO as positive and negative controls for growth inhibition, respectively. Furthermore, a full 384 well plate with 1% DMSO treatment was also seeded per cell line and was used to confirm minimal well-location associated intra-plate variability. 72 hr post drug addition, cells were lysed and cell viability was measured using Cell Titer Glo 2.0 (Promega #G9243) according to the manufacturer’s instructions. Luminescence was measured using a PERStar FS instrument and growth inhibition was calculated relative to DMSO-treated wells. Z’ scores were calculated as previously described (Zhang et al., 1999). The 1 μM Bortezomib (positive; 0% viability) and 1% DMSO (negative; 100% viability)-treated cells were used to calculate the dynamic range and screen variability/reliability (Z’ score). A Z’ score of > 0.75 was obtained for all cell lines tested. The 3SD/SSD cutoffs were calculated based on the variability observed in the 1% DMSO-negative control plates/wells.

Virus production and transduction
Lentiviral or retroviral expression plasmids were co-transfected with VSV-G envelope plasmid and either δ8.2 gag/pol (lentivirus) or pMD (retrovirus) helper plasmids into Lenti X-293T cells seeded in 10 cm tissue culture dishes. Transfections were performed using 1 mg/mL Polyethyleneimine (PEI) Transfection Reagent (VWR #BT129700). Briefly, 1.5 μg VSV-G, 5 μg δ8.2 or pMD, and 6 μg lentiviral or retroviral plasmid were brought to 500 μL OptiMEM (LifeTech #1158021) and vortexed briefly. In a separate tube, 25 μL PEI (2 μL PEI/μg DNA) was added to 475 μL OptiMEM and vortexed briefly. Both solutions were incubated at room temperature for 5 min, then combined and incubated for an additional 20 min at room temperature. This mixture was then added dropwise to the seeded Lenti X-293T cells. The next day, cell culture media was replaced with DMEM supplemented with 1X NaPyr, 10 mM HEPES, 1X GlutaMAX, and 1X PSG (no FBS). Two days later, media was collected and filtered through a 0.45 μm PVDF membrane and then viral particles were concentrated via ultracentrifugation (100,000 g for 2 hr at 4°C) into a sucrose cushion. Concentrated virus was resuspended in cold PBS and either stored at –80°C or used immediately for transduction.

To generate stable cells, various cell lines were seeded at 50% confluency in 12-well plates. Concentrated virus and 4 μg/mL polybrene were added directly to cells and then plates were centrifuged at 1200 g for 90 min at 30°C. To generate stable LumIFluor-over-expressing MEC cells, HMC3A cells were transduced with concentrated lentivirus expressing our GpNLuc reporter (Schaub et al., 2015) and selected with puromycin for at least 10 days prior to use in experiments. To generate shRNA-expressing cells, parental HMC3A or HMC3A-PGK-GpNLuc cells were transduced with concentrated shRNA-expressing retro- or lentivirus expressing the shRNA of interest. Proliferation assays, quantitative real-time PCR, and western blotting were performed on polyclonal cell populations within 14 days of transduction for all shRNA knockdown experiments. To generate cells that express the PGC-1α splice variant, HEK293A cells were first transduced with a concentrated lentivirus that expresses TetOn3G and stable cells selected with
puromycin. Subsequently, these HEK293-PGKTetOn3G stables were transduced with a concentrated lentivirus that expresses PGC-1α upon tetracycline/doxycycline administration and the resulting HEK293-PGKTetOn3G – T3RE3GP-1α stables were selected with hygromycin for at least 10 days prior to use in experiments. To generate MEC cells with inducible dominant-negative CREB (dnCREB; A-CREB), HMC3A cells were first transduced with a concentrated lentivirus that expresses TetOn3G and stable cells were selected with puromycin. These HMC3A-PGKTetOn3G stables were transduced with a concentrated retrovirus that expresses A-CREB (Ahn et al., 1998) upon tetracycline/doxycycline administration, and the resulting HMC3A-PGKTetOn3G – TetOn3GP-1α stables were selected by fluorescence activated cell sorting (FACS) by gating for tdTomato-positive cells. To generate MEC cells with inducible dCas9 expression, HMC3A cells were first transduced with a concentrated lentivirus that expresses TetOn3G and stable cells were selected with puromycin. These HMC3A-PGKTetOn3G stables were transduced with a concentrated lentivirus encoding the doxycycline induced dCas9-KRAB-IRES-BFP cassette (Addgene #85449) (Fulco et al., 2016). To select for positively transduced cells, 1 μg/mL doxycycline was applied to the cells for 72 hours and then BFP-positive cells were selected by FACS. Finally, the HMC3A-PGKTetOn3G – TRE3GdCas9-KRAB-IRES-BFP cells were transduced with a lentivirus constitutively expressing the respective PGC-1α sgRNA, a blasticidin resistance cassette, and a 2xNLS-mKate2 fluorescent reporter. Cells were selected with blasticidin for at least 7 days and successful selection was confirmed via nuclear mKate2 fluorescence signal.

Cell viability

HMC1, HMC3A, or HMC3B cells were seeded in 96-well clear-bottom, white-walled plates (Corning #3917) at 15,000 cells/well. The next day, media was replaced with 200 μL fresh media containing either vehicle (DMSO) or increasing concentrations of drug (BMS-754807 (Sigma-Aldrich #BM0003), PPP (Santa Cruz #SC-20408), SR10221 (see Methods S1 for synthesis and purification details), SR2595 (Sigma-Aldrich #SML2037), or T0070907 (Fisher #NC1015539); final concentration 1% DMSO). 72 hr later, the amount of ATP (a proxy for cell viability) in each well was measured using the ATPlite Luminescence Assay System (PerkinElmer #6016949) according to the manufacturer’s instructions. Briefly, plates were removed from the cell culture incubator and equilibrated for 30 min at room temperature in the dark. Then, media was aspirated from each well and 100 μL reconstituted ATPlite 1-step reagent was added to each well. Plates were shaken for 2 min (425 rpm, 3 mm orbit) in a Cytation 5 plate reader (BioTek Instruments, Inc.) and then ATP levels were quantified by measuring total luminescence. IC\textsubscript{50} values were calculated in GraphPad Prism (GraphPad, San Diego, CA, USA) using a non-linear curve fit (log[agonist] versus response, four parameter-variable slope). All assays were performed in biologic triplicate with three technical replicates for each condition. Figure panels show one representative experiment (including three technical replicates each). IC\textsubscript{50} values presented in Table 1 were calculated using the results from all three biologic replicates.

Cell proliferation assays (Cytation 5)

HMC3A-PGKGpNLuc cells (either non-transduced or transduced with shRNAs targeting PGC-1α, IGF-1R, or MAML2) were seeded in 12-well plates at 200,000 cells/well. The next day, media was replaced with 200 μL fresh media containing either vehicle (DMSO) or increasing concentrations of drug (BMS-754807 (Sigma-Aldrich #BM0003), PPP (Santa Cruz #SC-20408), SR10221 (see Methods S1 for synthesis and purification details), SR2595 (Sigma-Aldrich #SML2037), or T0070907 (Fisher #NC1015539); final concentration 1% DMSO). 72 hr later, the amount of ATP (a proxy for cell viability) in each well was measured using the ATPlite Luminescence Assay System (PerkinElmer #6016949) according to the manufacturer’s instructions. Briefly, plates were removed from the cell culture incubator and equilibrated for 30 min at room temperature in the dark. Then, media was aspirated from each well and 100 μL reconstituted ATPlite 1-step reagent was added to each well. Plates were shaken for 2 min (425 rpm, 3 mm orbit) in a Cytation 5 plate reader (BioTek Instruments, Inc.) and then ATP levels were quantified by measuring total luminescence. IC\textsubscript{50} values were calculated in GraphPad Prism (GraphPad, San Diego, CA, USA) using a non-linear curve fit (log[agonist] versus response, four parameter-variable slope). All assays were performed in biologic triplicate with three technical replicates for each condition. Figure panels show one representative experiment (including three technical replicates each). IC\textsubscript{50} values presented in Table 1 were calculated using the results from all three biologic replicates.

Cell proliferation assays (IncuCyte Zoom)

HMC3A cells were seeded in 48-well plates at 15,000 cells/well. The next day, media was replaced with fresh media containing either vehicle (1% DMSO) or the indicated concentration of PPP (Santa Cruz #SC-20408) or SR10221. Then, plates were imaged at 0, 4, 8, 24, 28, 32, and 48 hr following the media change. Five separate fields of view were imaged for each well at 4X magnification using a Bio-Rad Trans-Blot Turbo system set at 1.3 Amps (constant) and 25 V for each imaging time point. Between each imaging time point, plates were returned to the cell culture incubator. To determine cell confluence, a primary mask was applied to each fluorescent image using the recommended parameters set out in the BioTek Technical Note “Measuring Confluence Using High Contrast Brightfield” (https://www.biotek.com/resources/technical-notes/measuring-confluence-using-high-contrast-brightfield/). Confluence measurements from multiple fields of view in a single well were used as technical replicates. Each assay was performed in biologic triplicate.

Western blotting

Whole cell lysates were prepared in buffer containing 5% glycerol (Sigma-Aldrich #G5516), 25 mM Tris (pH 7.4; Fisher #BMA51237), 150 mM NaCl (Fisher #BMA51202), 1 mM EDTA (Sigma-Aldrich #E7889), and 1% NP-40 (Fisher #50-147-289) supplemented with protease inhibitors (cOmplete, EDTA-free Protease Inhibitor Cocktail, Roche #04693132001) and phosphatase inhibitors (PhosSTOP, Roche #10917400). Lysates (30-50 mg) were loaded onto mini-10% tris-glycine polyacrylamide gels and proteins were separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Proteins were transferred to a 0.45 μm nitrocellulose membrane (Fisher #0088018) using a Bio-Rad Trans-Blot Turbo system set at 1.3 Amps (constant) and 25 V for 30 min. Membranes were blocked for 1 hr in room temperature in TBS-T + 5% bovine serum albumin (BSA; Sigma #A2153) and then incubated overnight at 4°C with primary antibodies: IGF-1 (0.2 μg/mL; Abcam #ab9572), IGF-1R (1:2500; Cell Signaling #3018S), phosphorylated IGF-1R (Tyr1135; 1:1000; Cell Signaling #3918S), PPARγ (1:100; Abcam #209350), actin (1:5000; Sigma #A3854), tubulin (1:5000; Sigma #T6074), or Flag (1:5000; Sigma #A8592) diluted in TBS-T + 5% BSA. Following primary antibody
incubation, membranes were washed and probed with Horseradish peroxidase (HRP)-conjugated goat anti-mouse (1:5000; Thermo Fisher #31432) or donkey anti-rabbit (1:5000; Thermo Fisher #31458) secondary antibodies diluted in TBS-T supplemented with 5% BSA for 1-2 hr at room temperature. Blots were imaged using Clarity ECL (Bio-Rad #170-5060) and ImageQuant LHS4000 (GE).

2D colony formation
HMC1, HMC3A, and HMC3B cells were seeded in 24-well plates at 800, 600, and 1400 cells/well, respectively. The next day, media was replaced with 500 µL fresh media containing either vehicle (DMSO) or the indicated concentration of drug (BMS-754807 (Sigma-Aldrich #BM0003), PPP (Santa Cruz #SC-204008), SR10221, SR2595 (Sigma-Aldrich #SML2037), or T0070907 (Fisher #NC1015539); final concentration 1% DMSO). Seven days later, media was removed from all wells and cells were fixed in 10% buffered formalin (Fisher #SF994) for 5 min at room temperature. Wells were washed once in ddH2O and then stained in 0.05% crystal violet (Sigma-Aldrich #C6158) for 30 min at room temperature. Wells were then washed an additional 3 times in ddH2O to remove any unbound stain and allowed to dry at room temperature overnight. Once dry, individual wells were imaged at 4X magnification on a BioTek Cytation 5 plate reader (BioTek Instruments, Inc.) and images were stitched using the Gen5 software (v2.09; BioTek Instruments, Inc.) using the default parameters. Colony numbers were quantified manually in ImageJ (Schneider et al., 2012), where a colony is defined as a cluster of at least 50 individual cells.

3D tumor spheroid formation
Individual wells of a 48-well plate were coated with 100 µL of a 25% Matrigel (Fisher #CB4023A) solution diluted in cold 1X DPBS. The plate was spun in a Thermo Scientific Sorvall LYNX 4000 centrifuge at 4°C for 10 min at 2000 g to ensure even distribution across the well surface. The plate was then placed in a 37°C incubator for 1 hr to allow the Matrigel “bed” to completely polymerize. Next, excess DPBS was gently aspirated from the wells and 2000 HMC3A cells resuspended in 100 µL media were added to each well. The plate was centrifuged at 4°C for 5 min at 2000 g to embed the cells into the Matrigel. The plate was returned to the incubator for an additional hour to allow for cell adhesion to the Matrigel. After 1 hr, excess media was carefully aspirated and 50 µL undiluted Matrigel was gently added to each well on top of the cells. The plate was again returned to the incubator for 1 hr to allow for Matrigel polymerization. Finally, 500 µL media (containing either drug or vehicle at a final concentration of 1% DMSO) was added to each well. Every 24 hr, wells were imaged at 4X magnification on a BioTek Cytation 5 plate reader (BioTek Instruments, Inc.) and images were stitched using the Gen5 software (v2.09; BioTek Instruments, Inc.) using the default parameters. Tumor sphere area was manually measured in ImageJ using the ROI area measurement tool. A minimum of 50 individual tumorspheres were quantified for each condition in each experiment.

Caspase 3/7 apoptosis assay
For drug treatment assays, HMC3A cells were seeded in 6-well plates at 350,000 cells/well. The next day, media was replaced with 2 mL fresh media containing either vehicle (DMSO) or the indicated concentration of drug (PPP (Santa Cruz #SC-204008) or SR10221; final concentration 1% DMSO). For shRNA assays, HMC3A cells stably transduced with shNS (control) or shPPARγ were seeded in 6-well plates at 350,000 cells/well. At the indicated time point (either post-treatment (PPP/SR10221) or post-seeding (shRNAs)), cells were trypsinized, spun down, and resuspended in 1 mL 1X DPBS supplemented with 1X Glutamax (Life Tech #35050061) and 10% FBS (Atlanta Biologicals #S11550). Apoptotic cells were visualized using the CellEvent Caspase 3/7 Green Flow Cytometry Assay Kit (ThermoFisher #C10427) according to the manufacturer’s instructions. Briefly, 1 µL CellEvent Caspase 3/7 Green Detection Reagent was added per 1 mL of resuspended cells. This mixture was gently vortexed and incubated at 37°C for 25 min. Next, 1 µL SYTOX AAdvanced Dead Cell Stain was added per 1 mL of resuspended cells. This mixture was gently vortexed and incubated at 37°C for an additional 5 min. Samples were analyzed via flow cytometry on a BD Accuri C6 instrument. An aliquot of unstained cells from each condition was reserved as a control to generate gates.

Chromatin immunoprecipitation (ChIP) assay
HEK293-CMV^{Flt4Tet}TetO^{Cre/M2} cells (Amelio et al., 2014) were seeded in 15 cm tissue culture dishes in either plain growth medium or growth medium containing 1 µg/mL doxycycline (Sigma-Aldrich #D9891). After 48 hr, formaldehyde (Fisher #BP531) was added dropwise to each plate to 1% final concentration. Plates were incubated at room temperature for 10 min and then crosslinking was stopped by adding glycine (Fisher #BP381-1) to a final concentration of 120 mM and incubating for an additional 5 min. Cells were then transferred to a tube, pelleted at 4°C, and washed twice with cold 1X DPBS. Finally, washed cells were resuspended in 1X DPBS supplemented with protease inhibitors (Complete, EDTA-free Protease Inhibitor Cocktail, Roche #04693132001) to a concentration of 5x10⁶ cells/mL and stored at −80°C in aliquots of 1 mL until lysis. For lysis, individual cell aliquots were pelleted, resuspended in 200 uL SDS lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl, pH 8.1) supplemented with protease inhibitors, and rocked at 4°C for at least 20 min. Next, 800 uL ChIP dilution buffer was added and aliquots were immersed in a 100% ethanol ice bath (~11 to ~7°C) and sheared (2 Amp for 5 s) using a sonicator (Osonica #Q700A) equipped with a microtip sonic dismembrator (Model 505, Fisher #4418). A fraction of this sheared sample was reserved as a Pre-IP control. To the rest of the sample, 1 µg anti-Flag M2 antibody (Sigma #F1804) was added and samples were rocked at 4°C overnight. Antibody-chromatin complexes were isolated by rocking with Protein G SureBeads (BioRad #1614821) at 4°C for 4 hr. Beads were washed once each in low salt buffer (0.1% SDS, 1% Triton X-100, 2mM EDTA, 20 mM Tris-HCl, 15 mM NaCl), high salt buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl, 15 mM NaCl), and incubated at 37°C overnight. Washing was repeated 4 times. Beads were resuspended in 1X DPBS supplemented with protease inhibitors, and boiled at 90°C for 5 min. Supernatant was removed and protein-DNA complexes were extracted with phenol:chloroform:isoamyl alcohol (25:24:1) and precipitated with ethanol. DNA was resuspended in 1X Tris-EDTA buffer and quantified using Qubit fluorometer (Thermo Fisher). DNA was PCR amplified for ChIP-qPCR using the following conditions: 10 min at 95°C, followed by 15 cycles of 30 s at 95°C, 30 s at 55°C, and 30 s at 72°C. The PCR products were run on a 2% agarose gel. The DNA band was visualized using Gel Doc (BioRad) and quantified using ImageJ software.
Tris-HCl, 500 mM NaCl), and LiCl buffer (250 mM L-ic, 1% NP-40, 1% Deoxycholate, 1mM EDTA, 10 mM Tris-HCl, pH 8.1) and then twice in TE buffer (1.2 mM EDTA, 10 mM Tris-HCl, pH 8.1). Samples were eluted twice with pre-heated (55°C) elution buffer for 15 min at room temperature with shaking. Cross-links were reversed by adding NaCl to 200 mM and incubating for at least 4 hr at 65°C. Samples were treated for 30 min at 37°C with RNase A at 8 μg/ml final concentration. Finally, samples were treated with Proteinase K solution (10 μg/mL, 0.5M EDTA, 10 μg/mL Tritis, 1 μg/mL proteinase K (LifeTech #AM2546) for a 50 μL sample) for 1 hr at 50°C and then DNA was purified using the NucleoSpin Gel and PCR Cleanup Kit (Macherey-Nagel #740609,250). Occupancy of target proteins of interest within the promoter regions was assessed by qPCR (Table S6).

Luciferase reporter assay
HEK293-CMVβGalTetOC1/M2 cells were seeded in 24-well plates at 100,000 cells/well. The next day, transfected each well with 500 ng of either PGC-1α proximal promoter or PGC-1α distal promoter driven luciferase reporter using Lipofectamine (Invitrogen #50470) according to the manufacturer’s protocol and using a DNA:lipid ratio of 1:2. The next day, media was replaced with 1 mL fresh media with or without 1 μg/mL doxycycline (Sigma-Aldrich #D9891). After 24 hr, media was removed from all wells and 100 μL 1% Triton X-100 was added to each well. Plates were rocked for 15 min at room temperature. 50 μL of the supernatant from each well was transferred to a white, opaque 96-well plate, and 50 μL Bright-Glo Luciferase Assay Buffer (Promega #E264B) was added to each well. Total luminescence was quantified immediately on a BioTek Cytation 5 plate reader (BioTek Instruments, Inc.). For the dose-response luciferase reporter assays, HEK293 cells were reverse transduced with 3xPPRE promoter or IGF1-P2 promoter driven luciferase reporters using Lipofectamine 2000 Transfection Reagent (Invitrogen #11668019) in 96-well plates at a density of 2X104 cells/well. Forty-eight hours post-transfection, cells were treated with either vehicle (DMSO) or the PPARγ ligands GW1929 (Sigma-Aldrich #M668), SR2595 or SR10221 at the indicated concentrations. 24 hr after treatment, cells were lysed, and luciferase activity was quantified using the Dual-Glo Luciferase Assay System (Promega #E2920). Luminescence was measured using Synergy Neo microplate reader (BioTek). Values were normalized using Renilla expression.

Bioluminescence imaging
Bioluminescent-fluorescent BRET signal was measured non-invasively as previously described (Schaub et al., 2015) with minor modifications. Briefly, animals were i.p. injected with 250 μL (1:20 dilution, ~500 μg/kg) Nano-Glo Luciferase Assay Substrate (Promega, #N1120) in sterile PBS. Isoflurane-anesthetized animals were then imaged using an AMI Optical Imaging System (Spectral Instruments Imaging, Inc.) 5 min after injection. Images were captured using open filter and acquisition times of 5 min or less at the indicated settings. Data were analyzed using Aura imaging software (v2.2.0.0).

Histology and immunohistochemistry
All animals showing xenograft tumors > 2 cm³ or other signs of distress were euthanized and subjected to full necropsy. For histological analysis, xenograft tumors were fixed in 10% neutral buffered formalin for approximately 1 week at room temperature. Following fixation, tissues were processed on an ASP6025 automated tissue processor (Leica Biosystems) and embedded in paraffin wax. Blocks were sectioned at 4-6 μm, mounted on glass slides, and FFPE tissue sections were deparaffinized prior to Hematoxylin and eosin (H&E) or mucicarmine staining. Immunohistochemistry was performed on the Discovery Ultra (Ventana Medical Systems) using manufacturers reagents on 4 μm sections. For anti-IGF-1 immunohistochemistry, anti-rabbit IGF-1 (Abcam #ab9572) was pre-treated using Discovery PSS Diluent (cat. #: 760-212). Antigen retrieval was performed using Ventana’s CC1 (pH 8.5) for 64 min at 90°C. The slides were given a hydrogen peroxide block for 8 min at room temperature and then incubated in the primary antibody diluent (1:100) for 1 hr at room temperature, followed by anti-Rabbit HRP secondary antibody (Vector Labs #MP-7401) for 32 min at room temperature. The slides were then treated with DAB and counterstained with Hematoxylin II for 12 min and then Bluing Reagent for 4 min.

Plasmids
The PGC-1α promoter constructs were generated by cloning the ~500 to +52 bp of either the proximal or distal human PGC-1α promoter sequences via 5′ Nhel and 3′ HindIII into the pGL4.15 luciferase reporter (Promega, #E6701). The human IGF-1 promoter constructs were generated by cloning either a 2079 bp region encompassing the P1 promoter or a 1547 bp region encompassing the P2 promoter via 5′ BglII and 3′ HindIII into either the pGL4.15 (Promega, #E6701) or the pGL3-Enhancer luciferase reporter (Promega, #E1771). The A-CREB (Ahn et al., 1998) dominant negative CREB cDNA was directionally cloned via 5′ NotI and 3′ MluI restriction enzyme sites into this pTRE3G-MCS-GpNLuc vector. The pTRE3G-MCS_PGK-GpNLuc construct was generated by directional subcloning the TRE3G promoter in its place. Subsequently, a N-terminal FLAG-tagged C1/M2 cDNA was directionally cloned via 5′ NotI and 3′ MluI restriction enzyme sites into this pTRE3G-MCS-GpNLuc vector. The pLV-TRE3G_PGC1α/s-MCherry-T2A:Hygro construct was custom synthesized (Cyagen Bioscience) to contain the human PPARGC1A variant 4 splice isoform (PGC-1α) downstream of the TetO response element promoter for tet/dox inducible expression. The pFLAG-CMV-2_CRTC1/MAML2 (Tono et al., 2003) construct was a gift from Frederic Kaye, the pLKO.1 shNS and shMAML2 (Chen et al., 2014) shRNA constructs were gifts from Lizi Wu, the pLMN UltramiR-E shIGF1R (ULTRA-3308043 and ULTRA-344322) and shPPARGC1A (ULTRA-3197172 and ULTRA-3197171) constructs were from...
transOMICS Technologies, and the PPRE x3-TK-Luc (Kim et al., 1998) construct was a gift from Bruce Spiegelman. PPARβ knockdown constructs were purchased from Sigma-Aldrich (#SHCLNG-TRCN0000355926, #SHCLNG-TRCN0000001673, and #SHCLNG-TRCN0000001674). All plasmids were amplified and purified from either DH5α (Zymo Research #T3007) or Stbl3 (ThermoFisher Scientific #C737303) E. coli strains.

sgRNA design and cloning

sgRNAs targeting the PGC-1α Proximal or Distal promoters were designed using the CRISPR-ERA resource (http://crispr-era.stanford.edu/).

The PGC-1α proximal promoter sequence was used as the query for generating sgRNAs targeting the PGC-1α 1 isoform (GenBank: NM_013261.5):

```
AGCAAAAAAAAAAAAAAAAAAAAAAAAAGCCCCGTTTGCGCTTTCAAACACTCCCTCAATGAGAAAATGTCTCATAAAAATGCATCATGTGATAAGCTCTTGCTTTAGTCCCAAACTGAGCTTGAGTCCACTTGGAGATCTTAGAATTAAAAAGATTGCAGGGGATTTTGGTTATTATATGGCCAGGGCTCCGTTTAGAGTCTGTGGCATTCAAAGCTGGCTTTAATCACAGCATGATGCTTGAAGCCTCCAAAAGTCTAAGTCTAAGTGTTTCCTTTCTTTCTTTCTTTTTCTTTTTTTTTTTTTTTAAAGCGTTACTTCACTGAAGCAGAGGGCTGCCTTTGAGTGACGTCACGAGTTAGAGCAGCAAGCTGCACAGGGGAAGGGAGGCTGGGTGAGTGACAGCCCAGCCTACTTTTTAATA
```

The PGC-1α distal promoter sequence was used as the query for generating sgRNAs targeting the PGC-1α 4 isoform (JQ772118.1):

```
TAATAACAGGGGACAAAGGGTGAAATAATCCAGTAAAGTTTTGAGCAGCCACTTGACAACGTATTCCAAATAAATGAGAGGAGGAAAACCCTAGTCTACCAACTGGGCAACAAACAGAGCTCTCTACACTCTTTGATCTATATACCCAGGGCTCCGTTTAGAGTCTGTGGCATTCAAAGCTGGCTTTAATCACAGCATGATGCTTGAAGCCTCCAAAAGTCTAAGTCTAAGTGTTTCCTTTCTTTCTTTCTTTTTCTTTTTTTTTTTTTTTAAAGCGTTACTTCACTGAAGCAGAGGGCTGCCTTTGAGTGACGTCACGAGTTAGAGCAGCAAGCTGCACAGGGGAAGGGAGGCTGGGTGAGTGACAGCCCAGCCTACTTTTTAATA
```

The pgRNA-CKB vector (Addgene #73501) (Mandegar et al., 2016) was used to constitutively express the target guide RNAs. sgRNAs were cloned into the pgRNA-CKB vector using previously published methods (Gilbert et al., 2013). Briefly, the pgRNA-CKB backbone was digested with Esp3I (NEB #R0734) and dephosphorylated using recombinant Shrimp Alkaline Phosphatase. The required sgRNAs were synthesized (Eton Biosciences, Inc) as oligonucleotides with Esp3I compatible overhangs (Table S6). Oligonucleotides were phosphorylated using T4 Poly Nucleotide Kinase (NEB #M0201) and annealed by adding 50 mM sodium chloride to the phosphorylated oligo reaction, denaturing the oligo mix via boiling (95°C for 10 min), and performing an extended, slow cooling (~0.1°C/sec). 100 ng of the digested/dephosphorylated pgRNA-CKB backbone was ligated overnight with 1 µL of the 0.1 mM phosphorylated/annealed guide RNA using T4 DNA ligase. All sgRNA constructs were sequence verified (Eton Biosciences, Inc) using the primer listed in Table S6. Validation of isoform-specific knockdown revealed that one sgRNA construct (pSico_U6-Pan-PGC1a sgPGC) repressed expression of all PGC-1α isoforms, while another sgRNA construct, (pSico_U6-PGC1a1 sgPGC) selectively repressed expression of the major isoform (PGC-1α1).

PCR and qPCR

For cell lines and fresh-frozen tissues, gene expression was measured by extracting RNA using a Nucleospin RNA kit (Machery-Nagel #740955) according to the manufacturer’s instructions. cDNA was synthesized from 1 µg of RNA using iScript cDNA synthesis kit (Bio-Rad #170-8890). For human tissues, RNA was extracted using the Maxwell 16 MDx Instrument (Promega #AS3000) and the Maxwell 16 LEV RNA FFPE Kit (Promega #AS1260) according to the manufacturer’s protocol (Promega #9FB167). cDNA was made from 1-4 µg of RNA using SuperScript IV Reverse Transcriptase (Invitrogen #18090050) with dNTPs (NEB #N0446S), RNase inhibitor (Applied Biosystems #N808-0119), 25 µM oligo d(T)20 primer (Invitrogen #10023441) and 25 µM MAML2-specific reverse primer (Table S6). C1/M2 copy number was determined by establishing standard curves with 100 to 1x10⁶ copies of FLAG-C1/M2 plasmid. Relative gene expression of target genes was determined using the 2^-ΔΔCt method and normalized to human RPL23 expression. qPCR was performed using FastStart Universal SYBR Green Master (Roche #04913850001) with 1/50 (tissue) or 1/100 (cells) volume of the cDNA iScript reaction, and 0.25 µM of primers (Table S6).

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical tests were executed using GraphPad Prism software or the statistical software R (version 3.1.2). Differences between variables were assessed by 2-tailed Student’s t test, one-way ANOVA with Holm-Sidak post hoc test, or Wilcoxon rank sum tests, where appropriate. For proliferation assays, pairwise comparisons were performed by Benjamini-Hochberg analysis. Data are expressed as mean ± SEM, P values were considered less than statistically significant (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
CRTC1/MAML2 directs a PGC-1α-IGF-1 circuit that confers vulnerability to PPARγ inhibition

Adele M. Musicant, Kshitij Parag-Sharma, Weida Gong, Monideepa Sengupta, Arindam Chatterjee, Erin C. Henry, Yi-Hsuan Tsai, Michele C. Hayward, Siddharth Sheth, Renee Betancourt, Trevor G. Hackman, Ricardo J. Padilla, Joel S. Parker, Jimena Giudice, Colin A. Flaveny, David N. Hayes, and Antonio L. Amelio
Figure S1. Bioinformatics analyses reveal that IGF-PI3K signaling is deregulated in C1/M2 fusion positive salivary MEC tumors, Related to Figure 1.

(A) Heat map showing unsupervised clustering of the top 1500 most variable genes between MEC and normal salivary gland samples. Normal (e.g. N #1, N #2) and tumor (e.g. Case #1, Case #7) samples are indicated at the top of the heat map in black and green, respectively. C1/M2 fusion status is indicated in blue and grey.

(B) Gene set enrichment analysis (GSEA) of IGF-related pathways. Circle sizes in the bubble plot indicate the proportion of genes within each pathway that are statistically significant (adjusted p-value <0.05). Grey bubbles indicate q-value ≥0.05 and red bubbles indicate q-value <0.05.

(C) left, Gene set enrichment plot for genes in the GSEA Molecular Signatures Database (MSigDB) GNF2_IGF1 dataset in fusion-positive MEC and normal salivary gland samples. right, Violin plot showing mean VST counts of genes in the GNF2_IGF1 gene list in fusion-positive MEC, fusion-negative MEC, and normal salivary gland samples.

(D) Gene set enrichment plot for IGF1-related genes in our curated Musicant_MEC_CRTC1-MAML2_IGF1 gene set in fusion-positive MEC and normal salivary gland samples.
Figure S2

A

\[r^2 = 0.8664 \]
\[p = 0.0008 \]

B

A253 HMC1 HMC3A HMC3B

H&E

Mucicarmine

IGF-1 IHC

C1/M2 (Ct)

IGF-1 (Ct)

30 32 34 36 38 40

30 32 34 36 38 40

r = 0.8664

p = 0.0008

Negative Positive
Figure S2. Validation of IGF-1 expression in C1/M2 fusion positive salivary MEC cell lines compared to fusion negative cell lines, Related to Figure 2.

(A) Comparison of C1/M2 and IGF-1 C_T values in qPCR data from cell lines. C1/M2-negative cell lines are indicated in grey and C1/M2-positive cell lines are indicated in red. The fitted regression (solid) line demonstrates that the expression levels of the two genes are correlated ($r^2 = 0.8664$, $p = 0.0008$). 95% confidence intervals are indicated by curved dashed lines. Gene expression data is the average of at least 3 independent experiments.

(B) Histologic and immunohistochemical analysis of C1/M2-positive and C1/M2-negative xenografts. Representative xenograft sections were formalin fixed, embedded, and H&E stained (top; magnification: 200x; scale bar: 100 µm), revealing epidermoid cells in C1/M2-negative xenografts and epidermoid, mucus, and intermediate cells in the C1/M2-positive xenografts. Mucicarmine staining (middle; magnification: 400x; scale bar: 100 µm) revealed mucus cells (indicated by yellow arrows) in C1/M2-positive xenografts. IHC staining for IGF-1 (bottom; magnification: 200x; scale bar: 100 µm) demonstrated that IGF-1 expression is increased in C1/M2-positive xenografts relative to C1/M2-negative xenografts.
Figure S3
Figure S3. Small molecule drug screen overview, Related to Figure 2.

(A) Analysis of drug screen robustness based on a Z'-factor analysis. Data points in red indicate viability of cells treated with positive control (1 µM Bortezomib-100% cell death) and data points in blue indicate viability of cells treated with negative control (DMSO-0% cell death). Cell lines are listed along the x-axis, with fusion status (C1/M2-positive or -negative) indicated below in grey (negative) or red (positive). Z'-factor >0.75 confirms a robust dynamic range of drug effects indicating good drug screen reliability.

(B) Waterfall plots depicting the effect of individual candidate drugs in C1/M2-positive cell lines (colored points) relative to the effect of the same drug in the C1/M2-negative control cell line (A253). Points above the dashed line indicate that the tested drug is more effective in the C1/M2-positive line, while points below the dashed line indicate that the tested drug is more effective in A253 (C1/M2-negative) cells. Several IGF-1R inhibitors (BMS-754807, NVP-AEW541, and GSK1838705A) are more effective in C1/M2-positive cell lines (>50%); the relative effects of these inhibitors in each cell line are denoted with the indicated symbols.

(C) Relative viability scores for each individual drug per cell line are shown as heatmaps. Scores were normalized to the respective DMSO conditions for each cell line, and drugs were ordered based on their efficacy against A253 fusion negative salivary epidermoid carcinoma cells. 0 = no effect relative to DMSO, 1.0 = 100% cell death, and a negative score = increased growth.
Figure S4

A
Fold Expression (Relative to shNS)

shRNA	NS	#1	#2
IGF-1R shRNA			

B
Fold Change (Relative to shNS)

shRNA	NS	#1	#2
IGF-1R shRNA			

C
Colony Number (Relative to DMSO)

Compound	HMC1	HMC3A	HMC3B
DMSO			
BMS-754807 IC₅₀	*	*	**
BMS-754807 IC₅₀			
BMS-754807 IC₅₀			

* Indicates significant difference compared to DMSO
** Indicates very significant difference compared to DMSO
Figure S4. Drug screen validation of IGF-1R inhibition by genetic and pharmacologic approaches, Related to Figure 3.

(A) Quantitative real-time PCR analysis of IGF-1R mRNA levels in cells transduced with lentiviruses expressing either a non-specific shRNA (shNS) or two different shRNAs targeting IGF-1R (shIGF-1R_#1 and shIGF-1R_#2). Relative fold expression is shown normalized to RPL23 mRNA levels. Data are presented as the mean ± SEM (n = 3 biological replicates with 3 technical replicates each; Student’s t-test; **p ≤ 0.01).

(B) Left, Western blot demonstrating relative knockdown of IGF-1Rβ protein levels with shIGF1R_#1 and shIGF1R_#2 relative to control shRNA (shNS). Blot is representative of three independent biological replicates. Right, Quantification of IGF-1R protein levels in shIGF1R samples. Band intensities were normalized to β-actin and are shown as the fold change in band intensity relative to the shNS condition. Data are presented as the mean ± SEM (n = 3 biological replicates; Student’s t-test; **p ≤ 0.01).

(C) Number of colonies formed by HMC1 (left), HMC3A (center), and HMC3B (right) cells treated with DMSO or BMS-754807 at ½ IC_{50} concentration or IC_{50} concentration (see Table 1 for IC_{50} values). A colony is defined as a cluster of ≥50 cells. Data are presented as the mean ± SEM (n = 3 biological replicates; Student’s t-test; *p ≤ 0.05, **p ≤ 0.01).
Figure S5. C1/M2 Regulates IGF-1 Transcription Through PGC1α4-PPARγ, Related to Figure 4.

(A) Quantitative real-time PCR analysis of C1/M2 mRNA levels in C1/M2-inducible cells (doxycycline-regulated HEK293-CMVTetRTetOC1/M2 cells) treated with and without 1 μg/mL doxycycline. Relative fold expression is shown normalized to RPL23 mRNA levels. Data are presented as the mean ± SEM (n = 3 biological replicates with 3 technical replicates each; Student’s t-test; ****p < 0.0001).

(B) Western blotting analysis of IGF-1 and tubulin protein expression levels in HEK293-CMVTetRTetOC1/M2 cells treated with and without 1 μg/mL doxycycline.

(C) Left, Schematic depicting the AlphaLISA assay. Donor and acceptor beads each carry an antibody that detects the analyte of interest. Donor beads can be excited by light at 680 nm and can then convert molecular oxygen to its excited state. Acceptor beads can utilize the excited oxygen molecule to emit light at 615 nm. The transfer of this excited molecular oxygen can only occur when donor and acceptor beads are brought into close proximity through mutual binding of the analyte. Thus, quantification of light at 615 nm allows for the indirect quantification of analyte levels. Right, Standard curve showing the relationship between AlphaLISA signal and IGF-1 protein concentration.

(D) Quantitative real-time PCR analysis of C1/M2 (left) and NR4A2 (right) mRNA levels in HMC3A cells transduced with a non-specific shRNA (shNS) or two different shRNAs targeting C1/M2 (shMAML2_#1 and shMAML2_#2). Relative fold expression is shown normalized to RPL23 mRNA levels. Data are presented as the mean ± SEM (n = 3 biological replicates with 3 technical replicates each; Student’s t-test; ns = not significant, *p ≤ 0.05, **p ≤ 0.01).

(E) Quantitative real-time PCR analysis of PGC-1α4 mRNA levels in HMC3A-PGKTetOn3GTRE3GdnCREB cells treated with and without 1 μg/mL doxycycline. Relative fold
expression is shown normalized to RPL23 mRNA levels. Data are presented as the mean ± SEM (n = 3 biological replicates with 3 technical replicates each; Student’s t-test; ***p < 0.001).

(F) Quantitative real-time PCR analysis of PGC-1α1, PGC-1α2, PGC-1α3, and PGC-1α4 mRNA levels in C1/M2-positive and C1/M2-negative cell lines. Cell lines are listed along the x-axis, with fusion status (C1/M2-positive or -negative) indicated below. Relative fold expression is shown normalized to RPL23 mRNA levels. Data are presented as the mean ± SEM (n = 3 biological replicates with 3 technical replicates each).

(G) Quantitative real-time PCR analysis of PGC-1α1 and PGC-1α4 mRNA levels in HMC3A cells transduced with unique gRNAs targeting the canonical PGC-1α1 transcript only or all PGC-1α isoforms. Relative fold expression is shown normalized to RPL23 mRNA levels. Data are presented as the mean ± SEM (n = 3 biological replicates with 3 technical replicates each; Student’s t-test; *p < 0.05, **p < 0.01).

(H) Left, Quantitative real-time PCR analysis of PGC-1α4 mRNA levels in HEK293-PGK_{TetOn3G}TRE3GS_{PGC-1α4} cells treated with increasing concentrations of doxycycline for 24 hr. Relative fold expression is shown normalized to RPL23 mRNA levels. Data are presented as the mean ± SEM (n = 3 biological replicates with 3 technical replicates each; Student’s t-test; ****p < 0.0001). Right, Western blot showing Flag-PGC-1α4 and tubulin protein expression levels in HEK293-PGK_{TetOn3G}TRE3GS_{PGC-1α4} cells treated with increasing concentrations of doxycycline for 24 hr. Data shown are representative of 3 independent biological replicates.

(I) Cell proliferation assay showing relative confluency of HMC3A cells with and without shRNA-mediated knockdown of PGC-1α (left), IGF-1R (center), or C1/M2 (right). Time to 50% confluence is shown by dashed lines. shNS = non-specific shRNA; shPGC-1α_#1 and _#2 = shRNAs targeting PGC-1α; shIGF-1R_#1 and _#2 = shRNAs targeting IGF-1R;
shMAML2_#3 = shRNA targeting C1/M2 and MAML2. Experiment was performed in biologic triplicate (n = 3 technical replicates per experiment) with one representative experiment shown (mean ± SEM; Benjamini-Hochberg pairwise comparisons; *p ≤ 0.05, ****p < 0.0001). Data collected using BioTek Cytation 5 plate reader; see Methods for details.
Figure S6
Figure S6. Validation of PPARγ-dependent IGF-1 transcriptional activation by a C1/M2-mediated PGC1α4 circuit, Related to Figure 5.

(A) Schematic of the human IGF-1 gene locus, highlighting the P2 promoter (located upstream of the second exon) as well as several PPARγ binding motifs (PPARG motifs) located within this promoter region.

(B) Light output generated by an IGF-1 P2 promoter-driven luciferase reporter in C1/M2-inducible cells (doxycycline-regulated HEK293-CMVTetRTetOC1/M2 cells) treated with and without 1 µg/mL doxycycline treatment. Data are presented as the mean ± SEM (n = 3 biological replicates with 3 technical replicates each; Student’s t-test; *p ≤ 0.05, **p ≤ 0.01, ***p < 0.001).

(C) Light output generated by a PPARγ-response element (PPRE)-driven luciferase reporter in HEK293-CMVTetRTetOC1/M2 cells with and without 1 µg/mL doxycycline treatment. Data are presented as the mean ± SEM (n = 3 biological replicates with 3 technical replicates each; Student’s t-test; *p ≤ 0.05).

(D) PPARγ-response element (PPRE)-driven (left) and IGF-1 promoter-driven (right) luciferase reporter assay showing activation of basal activity of endogenously expressed PPARγ in HEK293-CMVTetRTetOC1/M2 cells. Cells were treated with increasing concentrations of the PPARγ agonist GW1929 for 24 hr prior to measuring luciferase activity. Experiment was performed in biologic triplicate (n = 3 technical replicates per experiment) with one representative experiment shown (mean ± SEM).

(E) Left, Western blot demonstrating knockdown of PPARγ protein levels using three separate PPARγ-targeted shRNAs (#1, #2, and #3) relative to a control shRNA (shNS). IGF-1 levels were also detected and were observed to decrease upon PPARγ knockdown. Blots are representative of three independent biological replicates. Right, Quantification of PPARγ and IGF-1 protein levels in PPARγ knockdown samples. Band intensities were normalized...
to β-actin and are shown as the fold change in band intensity relative to the shNS-treated condition. Data are presented as the mean ± SEM (n = 3 biological replicates; Student’s t-test; **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001).

(F) Apoptosis levels (measured as % cleaved Caspase 3/7) in HMC1 and HMC3A cells transduced with three separate PPARγ-targeted shRNAs (#1, #2, and #3) or a control shRNA (shNS). 48 hr after transduction, data was collected via flow cytometry and normalized to a non-stained control for each condition. Data are presented as the mean ± SEM (n = 3 biological replicates; Student’s t-test; *p ≤ 0.05).

(G) Number of colonies formed by HMC3A and HMC3B cells treated with DMSO or SR10221 at ½ IC₅₀ concentration or IC₅₀ concentration (see Table 1 for IC₅₀ values). A colony is defined as a cluster of ≥50 cells. Data are presented as the mean ± SEM (n = 3 biological replicates with 3 technical replicates each; Student’s t-test; ND = not detected, *p ≤ 0.05, ***p ≤ 0.001).
Methods S1. PPARγ inverse agonist synthesis and purification. Related to STAR Methods.

Figure M1. Synthesis and purification scheme for SR10221 and SR2595. Related to Table 1 and Figures 5, 6, and S6.

Figure M2. (R)-N-((S)-1-(4-(tert-butyl)phenyl)ethyl)-2-methylpropane-2-sulfonamide (6): To a solution of 4-t-butylbenzaldehyde (1.03mL, 6.16mmol) in THF (50mL) (R)-2-methylpropane-2-sulfonamide (0.747g, 6.16mmol) was added. Titanium (IV) isopropoxide (9mL, 30.8mmol) was added dropwise to this solution and stirred for 20 h. It was then quenched with saturated solution of ammonium chloride and diluted with ethyl acetate. The mixture was filtered through a bed of celite and washed with ethyl acetate. The filtrate was separated in layers and the organic phases were combined and extracted with saturated solution of brine. It was then dried over anhydrous sodium sulfate, filtered and evaporated to dryness to obtain the imine as light yellow oil (1.54g). The imine showed 95% purity and used as is without any purification for the next step of reaction.
Methylmagnesium bromide (3.9mL, 3.0M in diethyl ether) was added drop-wise to a solution of the crude imine (1.54g, 5.8mmol) in THF (50mL) at -50°C and the reaction was allowed to warm up to the room temperature for 18 h. It was then quenched with saturated brine and diluted with ethyl acetate. The organic phases were separated and dried over anhydrous sodium sulfate, filtered and evaporated to dryness. The crude residue was purified by chromatography on silica gel (Ethyl acetate/hexane) to obtain the title compound in 61% yield (1g).

1H NMR (400 MHz, DMSO-d6) δ ppm 1.11 (s, 9 H) 1.26 (s, 9 H) 1.43 (d, J=6.60 Hz, 3 H) 4.30 - 4.40 (m, 1 H) 5.26 (d, J=5.14 Hz, 1 H) 7.21 - 7.27 (m, 2 H) 7.29 - 7.38 (m, 2 H). ESI-MS (m/z) 282.1 [M+H]+.

Figure M3. (S)-1-(4-(tert-butyl)phenyl)ethanaminiumchloride (7):
To a solution of (R)-N-((S)-1-(4-(tert-butyl)phenyl)ethyl)-2-methylpropane-2-sulfonamide 1g, 3.55mmol) in methanol (2mL) HCl solution (2mL, 4M in dioxane) was added and the reaction was monitored by looking at the disappearance of the starting material using LC-MS. When the starting material was all consumed, the reaction mixture was concentrated in vacuo. The crude residue was triturated in diethyl ether to get the title compound in 92% yield (0.7g).

1H NMR (400 MHz, DMSO-d6) δ ppm 1.28 (d, J=0.73 Hz, 9 H) 1.48 (d, J=6.85 Hz, 3 H) 4.34 (q, J=6.44 Hz, 1 H) 7.34 - 7.50 (m, 4 H) 8.25 (br. s, 3 H). ESI-MS (m/z) 161.1 [M+H-NH3]+.

Figure M4. Methyl (S)-2-(2-chloro-5-methylphenoxy)propanoate (3):
To a solution of 2-chloro-5-methylphenol (0.5g, 3.5mmol) in anhydrous THF (20mL) at 0°C was added triphenylphosphine (1.38g, 5.25mmol) and methyl (R)-2-hydroxypropanoate 0.365g, 3.7mmol). Then diisopropyl azodicarboxylate (1.06g, 5.25mmol) was added drop-wise to the reaction at 0°C and stirred for 20 h. The solvent was removed and the crude was purified by chromatography on silica gel (Ethyl acetate/hexane) to obtain the title compound in 65% yield (0.525g).

1H NMR (400 MHz, CHLOROFORM-d) δ ppm 1.68 (s, 3 H) 2.30 (s, 3 H) 3.78 (s, 3 H) 4.76 (d, J=6.85 Hz, 1 H) 6.68 (s, 1 H) 6.71 - 6.80 (m, 1 H) 7.24 (d, J=8.07 Hz, 1 H). ESI-MS (m/z) 229.1 [M+H]+.

Figure M5. Methyl (S)-2-(5-(bromomethyl)-2-chlorophenoxy)propanoate (4):
To methyl (S)-2-(2-chloro-5-methylphenoxy)propanoate (0.55g, 2.4mmol) in dichloroethane (20mL) was added N-bromosuccinimide (0.428g, 2.4mmol) and azobisisobutyronitrile (0.039g, 0.24mmol). The mixture was refluxed for 2 h, cooled to room temperature and was concentrated...
in vacuo. The crude residue was purified by chromatography on silica gel (Ethyl acetate/hexane) to obtain the title compound in 78% yield (0.545g).

1H NMR (400 MHz, CHLOROFORM-d) δ ppm 1.68 - 1.72 (m, 3 H) 3.79 (d, J=0.98 Hz, 3 H) 4.42 (d, J=1.71 Hz, 2 H) 4.80 (d, J=6.85 Hz, 1 H) 6.88 (d, J=1.71 Hz, 1 H) 6.94 - 7.00 (m, 1 H) 7.34 (dd, J=8.07, 0.98 Hz, 1 H). ESI-MS (m/z) 306.1, 308.1 [M+H]+.

Figure M6. 1-(tert-butoxycarbonyl)-2,3-dimethyl-1H-indole-5-carboxylic acid (8):
To a solution of 2,3-dimethyl-1H-indole-5-carboxylic acid (1.5g, 7.9mmol) in THF (50mL) was added di-tert-butyl dicarbonate (2.1g, 9.5mmol) and 4-(dimethylamino)pyridine (0.096g, 0.79mmol). The mixture was stirred for 20 h. It was then diluted with saturated ammonium chloride and ethyl acetate. The combined organic layers were separated and extracted with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The crude residue was purified by chromatography on silica gel (Ethyl acetate/hexane) to obtain the title compound in 79% yield (1.8g).

1H NMR (400 MHz, DMSO-d6) δ ppm 1.65 (s, 9 H) 2.24 (s, 3 H) 2.52 (s, 3 H) 8.03 (d, J=8.80 Hz, 1 H) 8.21 (d, J=9.05 Hz, 1 H) 8.29 (s, 1 H). ESI-MS (m/z) 190.1 [M+H-100]+.

Figure M7. tert-Butyl-(S)-5-((1-(4-(tert-butyl)phenyl)ethyl)carbamoyl)-2,3-dimethyl-1H-indole-1-carboxylate (9):
To a mixture of 1-(tert-butoxycarbonyl)-2,3-dimethyl-1H-indole-5-carboxylic acid (0.2g, 0.69mmol) and (S)-1-(4-(tert-butyl)phenyl)ethanaminiumchloride (0.178g, 0.83mmol) in dimethylformamide (5mL) was added N,N-diisopropylethylamine (360 L, 2.07mmol) and O-(benzotriazol-1yl)-N,N,N',N'-tetramethyluronium tetrafluroborate (0.222g, 0.69mmol) and the mixture was stirred for 20 h. It was then diluted with saturated solution of sodium bicarbonate and ethyl acetate. The combined organic layers were separated and extracted with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The crude residue was purified by chromatography on silica gel (Ethyl acetate/hexane) to obtain the title compound in 87% yield (0.269g).

1H NMR (400 MHz, DMSO-d6) δ ppm 1.28 (s, 9 H) 1.49 (d, J=7.09 Hz, 3 H) 1.63 (s, 9 H) 2.21 (d, J=0.73 Hz, 3 H) 5.08 - 5.25 (m, 1 H) 7.28 - 7.39 (m, 4 H) 7.80 (dd, J=8.68, 1.83 Hz, 1 H) 7.96 - 8.09 (m, 2 H) 8.73 (d, J=8.07 Hz, 1 H). ESI-MS (m/z) 349.1 [M+H-100]+.
Figure M8. (S)-N-(1-(4-(tert-butyl)phenyl)ethyl)-2,3-dimethyl-1H-indole-5-carboxamide (10):

To a mixture of tert-Butyl-(S)-5-((1-(4-(tert-butyl)phenyl)ethyl)carbamoyl)-2,3-dimethyl-1H-indole-1-carboxylate (0.24g, 0.53mmol) in dichloromethane (5mL) was added trifluoroacetic acid (0.5mL) at 0°C and the mixture was stirred for 0.5 h. It was then concentrated in vacuo, diluted with saturated solution of sodium bicarbonate and ethyl acetate. The combined organic layers were separated and extracted with saturated brine, dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The crude residue was triturated in diethyl ether to get the title compound in 99% yield (0.7g) in 90% purity. The free base was used as is without any purification for the next step of reaction. ESI-MS (m/z) 349.1 [M+H]+.
Figure M9. (S)-4'-((5-((1-(4-(tert-butyl)phenyl)ethyl)carbamoyl)-2,3-dimethyl-1H-indol-1-yl)methyl)-[1,1'-biphenyl]-2-carboxylic acid (1):

To a solution of (S)-N-(1-(4-(tert-butyl)phenyl)ethyl)-2,3-dimethyl-1H-indole-5-carboxamide (0.05g, 0.14mmol) and tert-butyl 4'-[(bromomethyl)-[1,1'-biphenyl]-2-carboxylate (0.059g, 0.228mmol) in anhydrous dimethylformamide (2mL) at 0°C was added sodium hydride (0.007g, 0.228mmol) and the mixture was stirred for 0.5 h. It was then quenched with methanol and concentrated in vacuo. The crude was then taken in dichloro methane (2mL) and trifluoroacetic acid (0.25mL) was added and stirred for 0.5 h. The mixture was concentrated in vacuo and the crude residue was purified by reversed phase chromatography (water/acetonitrile) to obtain the title compound in 41% yield (0.032g).

1H NMR (400 MHz, DMSO) δ 8.59 (d, J = 8.1 Hz, 1H), 8.10 (s, 1H), 7.69 (d, J = 7.7 Hz, 1H), 7.64 (d, J = 8.6 Hz, 1H), 7.54 (t, J = 7.0 Hz, 1H), 7.44 (dd, J = 15.1, 8.0 Hz, 2H), 7.33 (d, J = 6.8 Hz, 4H), 7.25 (d, J = 8.1 Hz, 2H), 7.00 (d, J = 8.1 Hz, 2H), 5.47 (s, 2H), 5.17 (dd, J = 14.8, 7.3 Hz, 1H), 2.32 (s, 3H), 2.28 (s, 3H), 1.49 (d, J = 7.0 Hz, 3H), 1.27 (s, 9H). ESI-MS (m/z) 559.1 [M + H]^+.

Figure M10. Representative SR2595 NMR spectra.
SR 10221

Figure M11. (S)-2-(5-(((S)-1-(4-(tert-butyl)phenyl)ethyl)carbamoyl)-2,3-dimethyl-1H-indol-1-yl)methyl)-2-chlorophenoxy)propanoic acid (2):

To a solution of (S)-N-(1-(4-(tert-butyl)phenyl)ethyl)-2,3-dimethyl-1H-indole-5-carboxamide (0.05g, 0.14mmol) and methyl (S)-2-(5-(bromomethyl)-2-chlorophenoxy)propanoate (0.053g, 0.228mmol) in anhydrous dimethylformamide (2mL) at 0°C was added sodium hydride (0.007g, 0.228mmol) and the mixture was stirred for 0.5 h. It was then quenched with methanol and concentrated in vacuo. The crude was then taken in aqueous lithium hydroxide solution (2mL) and methanol (0.25mL) was added and stirred for 0.5 h. The mixture was concentrated in vacuo and the crude residue was purified by reversed phase chromatography (water/acetonitrile) to obtain the title compound in 38% yield (0.030g).

1H NMR (400 MHz, DMSO) δ 8.57 (d, J = 8.1 Hz, 1H), 8.08 (d, J = 1.4 Hz, 1H), 7.62 (dd, J = 8.6, 1.6 Hz, 1H), 7.37 (d, J = 8.7 Hz, 1H), 7.34 (s, 3H), 7.30 (d, J = 1.6 Hz, 1H), 6.37 (d, J = 8.2 Hz, 1H), 5.37 (s, 2H), 5.18 (p, J = 7.2 Hz, 1H), 4.78 (q, J = 6.8 Hz, 1H), 2.27 (d, J = 5.0 Hz, 6H), 1.50 (dd, J = 9.8, 6.9 Hz, 6H), 1.27 (s, 9H). ESI-MS (m/z) 562.1 [M + H]$^+$.

Figure M12. Representative SR10221 NMR spectra.