HYPERGEOMETRIC EXPRESSIONS OF L-VALUES FOR A
BORWEINS THETA PRODUCT OF WEIGHT 3

RYOJUN ITO

Abstract. In this paper, we consider a modular form of weight 3, which is
a product of the Borweins theta series, and express its L-values at $s = 1, 2$
and 3 in terms of special values of Kampé de Fériet hypergeometric functions,
which are two-variable generalization of generalized hypergeometric functions.

1. Introduction and Main Results

For a modular form f of weight k with q-expansion $f(q) = \sum_{n=0}^{\infty} a_n q^n$ ($q = e^{2\pi i \tau}$,
$\text{Im}(\tau) > 0$), its L-function $L(f, s)$ is defined by

$$L(f, s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}, \quad \text{Re}(s) > k + 1.$$

The function $L(f, s)$ has meromorphic continuation to the whole complex plane
with a possible simple pole at $s = k$ when the Fricke involution image f^\sharp of f
is also a modular form. Furthermore, if $f^\sharp(0) = 0$, then $L(f, s)$ is entire (cf. [17]).
In this paper, we consider the case when $f(q)$ is a product of the Borweins theta
series [4, 5]

$$a(q) := \sum_{m,n \in \mathbb{Z}} q^{m^2+mn+n^2},$$
$$b(q) := \sum_{m,n \in \mathbb{Z}} \omega^{m-n} q^{m^2+mn+n^2},$$
$$c(q) := \sum_{m,n \in \mathbb{Z}} q^{(m+\frac{1}{3})^2+(m+\frac{1}{3})(n+\frac{1}{3})+(n+\frac{1}{3})^2},$$

which are modular forms of weight 1. Here ω denotes a primitive cube root of unity.
These are cubic analogues of the Jacobi theta series and satisfy the cubic identity
[4, (2.3)]

$$a^3(q) = b^3(q) + c^3(q).$$

In 2010s, it was proved that some L-values for certain modular forms can be
expressed in terms of special values of generalized hypergeometric functions

$$A+1 F_A \left[\begin{array}{c} a_1, a_2, \ldots, a_{A+1} \\ a'_1, \ldots, a'_A \end{array} \middle| x \right] := \sum_{n=0}^{\infty} \frac{(a_1)_n (a_2)_n \cdots (a_{A+1})_n}{(a'_1)_n \cdots (a'_A)_n} \frac{x^n}{(1)_n}.$$
and, their two-variable generalization, Kampé de Fériet hypergeometric functions [1, 19]

\[
\begin{align*}
F_{A:B:C}^{A':B':C'}(a_1, \ldots, a_A, b_1, \ldots, b_B, c_1, \ldots, c_C; a'_1, \ldots, a'_{A'}, b'_1, \ldots, b'_{B'}, c'_1, \ldots, c'_{C'}) & x, y
\end{align*}
\]

where \(a_i, a'_i, b_i, b'_i, c_i, c'_i\) are complex parameters with \(a'_i, b'_i, c'_i \not\in \mathbb{Z}_{\leq 0}\), and \((a)_n := \Gamma(a + n)/\Gamma(a)\) denotes the Pochhammer symbol. We list some known cases.

1. For some theta products \(f(q)\) of weight 2, Otsubo [12] expressed \(L(f, 2)\) in terms of \(3F_2(1)\) via regulators.
2. Rogers [13], Rogers-Zudilin [15], Zudilin [20] and the author [8] expressed \(L(f, 2)\) for some theta products \(f(q)\) of weight 2 in terms of \(3F_2(1)\) by an analytic method. Furthermore, for the Jacobi theta product which corresponds to the elliptic curve of conductor 32, Zudilin [20] expressed \(L(f, 3)\) in terms of \(4F_3(1)\).
3. For some quotients \(f(q)\) of the Dedekind eta function \(\eta(q) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n)\) of weight 3 (resp. 4, 5), Rogers-Wan-Zucker [14] expressed \(L(f, 2)\) (resp. \(L(f, 3), L(f, 4)\)) in terms of special values of the gamma function or generalized hypergeometric functions by an analytic method. The author [9] expressed \(L(f, 1)\) (hence the values \(L(f^3, 2)\) by the functional equation) for some theta products \(f(q)\) of weight 3 in terms of \(3F_2(1)\) by the Rogers-Zudilin method.
4. Samart [16] expressed \(L(f, 3)\) for some eta quotients \(f(q)\) of weight 3 in terms of \(5F_3(1)\) via Mahler measures.
5. The author [10] expressed \(L(f, 3)\) and \(L(f, 4)\) for some Jacobi theta products \(f(q)\) of weight 3 in terms of \(F_{1:1:B:1:C}^{1:1:B+1:C+1}(1, 1)\) by the Rogers-Zudilin method.
6. For certain binary theta series \(f\) of odd weight \(k \geq 3\), Osburn and Straub [11] expressed \(L(f, k - 1)\) in terms of special values of the gamma function by an analytic method.

In this paper, we consider the Borweins theta product of weight 3

\[
f(q) := \frac{1}{3} b^2(q) c(q^3),
\]

which satisfies the condition \(f^2(0) = 0\) (so \(L(f, s)\) is entire), and express its \(L\)-values \(L(f, 1), L(f, 2)\) and \(L(f, 3)\) in terms of special values of Kampé de Fériet hypergeometric functions.

The main result is the following.
Theorem 1. We have the following hypergeometric expressions:

\[
\begin{align*}
(1.1) \quad L(f, 1) &= \frac{1}{27} F_{1;1;1}^{1;2;2} \left[\begin{array}{c} 1, \frac{4}{3}, \frac{1}{3} ; 2, 1 \end{array} \right] 1, 1 \right), \\
(1.2) \quad L(f, 2) &= \frac{4\pi}{81\sqrt{3}} \left(F_{1;1;1}^{1;2;2} \left[\begin{array}{c} 1, \frac{4}{3}, \frac{1}{3} ; 2, 1 \end{array} \right] 1, 1 \right) - \frac{1}{4} F_{1;1;1}^{1;2;2} \left[\begin{array}{c} 2, \frac{2}{3} ; 3, \frac{3}{3} ; 1 \end{array} \right] 1, 1 \right), \\
L(f, 3) &= \frac{2\pi^2}{27} \left(F_{1;1;1}^{1;2;2} \left[\begin{array}{c} 1, \frac{4}{3}, \frac{1}{3} ; 2, 1 \end{array} \right] 1, 1 \right) - \frac{1}{4} F_{1;1;1}^{1;2;2} \left[\begin{array}{c} 2, \frac{2}{3} ; 3, \frac{3}{3} ; 1 \end{array} \right] 1, 1 \right) \\
&\quad + \frac{1}{27} F_{1;1;1}^{1;3;2} \left[\begin{array}{c} 1, \frac{4}{3}, \frac{1}{3} ; 2, 2, 1 \end{array} \right] 1, 1 \right) - \frac{2}{27} F_{1;1;1}^{1;3;2} \left[\begin{array}{c} 1, \frac{4}{3}, \frac{1}{3} ; 2, 2, 1 \end{array} \right] 1, 1 \right).
\end{align*}
\]

Note that the double series \(F_{A,B+1:C+1}^{A:B:C} (x, y) \) converges absolutely on \(|x| \leq 1\) and \(|y| \leq 1\) when the parameters satisfy the three conditions [7]

\[
\Re \left(\sum_{i=1}^{A} a'_i + \sum_{i=1}^{B} b'_i - \sum_{i=1}^{A} a_i - \sum_{i=1}^{B+1} b_i \right) > 0, \\
\Re \left(\sum_{i=1}^{A} a'_i + \sum_{i=1}^{C} c'_i - \sum_{i=1}^{A} a_i - \sum_{i=1}^{C+1} c_i \right) > 0, \\
\Re \left(\sum_{i=1}^{A} a'_i + \sum_{i=1}^{B} b'_i + \sum_{i=1}^{C} c'_i - \sum_{i=1}^{A} a_i - \sum_{i=1}^{B+1} b_i - \sum_{i=1}^{C+1} c_i \right) > 0.
\]

To prove the main result, we use the Rogers-Zudilin method. Its strategy is as follows. We start with the Mellin transformation of \(f(q) \): For \(n \in \mathbb{Z}_{\geq 1} \),

\[
L(f, n) = \frac{(-1)^{n-1}}{3(n-1)!} \int_0^1 b^3(q) c(q^3) (\log q)^{n-1} \frac{dq}{q^1}.
\]

Set \(\alpha = c^3(q)/a^3(q) \). Note that we have \(1 - \alpha = b^3(q)/a^3(q) \) by the cubic identity. The key formulas to give a hypergeometric expression of \(L(f, n) \) are the following:

\[
a(q) = 2 F_1 \left[\begin{array}{c} 1, \frac{2}{3} \end{array} \right] \left[\begin{array}{c} \alpha \end{array} \right], \quad a^2(q) \frac{dq}{q} = \frac{d\alpha}{\alpha(1-\alpha)}.
\]

The former is [3, p.97, (2.26)], and the latter follows from the former and [2, p.87, Entry 30]. By these transformation formulas and some computations, we can reduce (1.4) to an integral of the form

\[
\int_0^1 P(\alpha) A_{B+1} F_{A} \left[\begin{array}{c} a_1, a_2, \ldots, a_{A+1} \end{array} \right] \left[\begin{array}{c} a'_1, \ldots, a'_A \end{array} \right] 2 F_1 \left[\begin{array}{c} \frac{1}{3}, \frac{2}{3} \end{array} \right] \left[\begin{array}{c} \alpha \end{array} \right] \frac{d\alpha}{\alpha(1-\alpha)}.
\]

Here \(P(\alpha) \) denotes a polynomial in \(\alpha^k (1-\alpha)^l \) for various \(k \) and \(l \). Then the formulas are obtained by the integral expression

\[
\Gamma(\alpha) \Gamma(a') - \Gamma(a') \int_0^1 b_{B+1} \left[\begin{array}{c} b_1, \ldots, b_{B+1}, c_1, \ldots, c_{C+1} \end{array} \right] \left[\begin{array}{c} a, \ldots, a \end{array} \right] x, y
\]

\[
= \int_0^1 a^1 (1-t)^{a'-a} \int_{B+C} \left[\begin{array}{c} b_1, \ldots, b_{B+1} \end{array} \right] \left[\begin{array}{c} x, y \end{array} \right] \frac{dt}{(1-t)}
\]

which easily follows from the series expansion of \(m+1 F_m(x) \) and termwise integration.
2. Proof

First, we show (1.1). We have [5, (2.1)]

\[c(q^3) = \frac{a(q) - b(q)}{3}, \]

hence

\[
L(f, 1) = \frac{1}{3} \int_0^1 b^2(q)c(q^3) \frac{dq}{q} = \frac{1}{9} \int_0^1 b^2(q)(a(q) - b(q)) \frac{dq}{q}.
\]

By the transformation formulas (1.5), the integral above becomes

\[
\frac{1}{9} \int_0^1 (1 - \alpha)^{\frac{2}{3}} (1 - (1 - \alpha)^{\frac{2}{3}}) \frac{d\alpha}{\alpha} - 1 \left(\frac{1 - \alpha}{\alpha} \right) \frac{d\alpha}{\alpha}.
\]

If we use

\[
(1 - x)^{-a} - 1 = ax_2F_1 \left[\frac{1, a + 1}{2} \right] x,
\]

which follows from (1 - x)^{-a} = 1F_0 \left[\frac{a}{x} \right], then we obtain, by (1.6),

\[
\frac{1}{9} \int_0^1 (1 - \alpha)^{\frac{2}{3}} (1 - (1 - \alpha)^{\frac{2}{3}}) \frac{d\alpha}{\alpha} = \frac{1}{27} \int_0^1 \alpha(1 - \alpha) \frac{d\alpha}{\alpha}.
\]

Next, we show (1.2). By applying (1.4) to \(n = 2 \) and changing the variable \(q = e^{-2\pi u} \), we have

\[
L(f, 2) = \frac{4\pi^2}{3} \int_0^{\infty} b^2(e^{-2\pi u})c(e^{-6\pi u}) u du.
\]

If we use the involution formula

\[
b(e^{-2\pi u}) = \frac{1}{\sqrt{3u}} c(e^{-\frac{2\pi}{3u}}),
\]

which follows from \(b(q) = \eta^3(q)/\eta(q^3) \), \(c(q) = 3\eta^3(q^3)/\eta(q) \) and an involution formula of \(\eta(q) \), then we obtain

\[
L(f, 2) = \frac{4\pi^2}{27\sqrt{3}} \int_0^{\infty} c^2(e^{-\frac{2\pi}{3u}})b(e^{-\frac{2\pi}{9u}}) \frac{d\alpha}{u^2}.
\]

By the variable transformations \(u \rightarrow 1/u, q = e^{-2\pi u} \) and \(q \rightarrow q^3 \), the integral above becomes

\[
\frac{2\pi}{3\sqrt{3}} \int_0^1 c^2(q^3)b(q) \frac{dq}{q}.
\]
Applying (2.1) and the transformation formulas (1.5), we obtain

\[
L(f, 2) = \frac{2\pi}{27\sqrt{3}} \int_0^1 b(q)(a(q) - b(q))^2 dq \\
= \frac{2\pi}{27\sqrt{3}} \int_0^1 (1 - \alpha)^{\frac{1}{3}} (1 - (1 - \alpha)^{\frac{1}{3}})^2 \frac{1}{\alpha(1 - \alpha)} d\alpha \\
= \frac{2\pi}{27\sqrt{3}} \int_0^1 \left((1 - \alpha)^{-\frac{2}{3}} - 2(1 - \alpha)^{-\frac{1}{3}} + 1 \right) \frac{1}{\alpha(1 - \alpha)} d\alpha.
\]

We have

\[
(1 - \alpha)^{-\frac{2}{3}} - 2(1 - \alpha)^{-\frac{1}{3}} + 1 = \frac{2}{3} \alpha \left(2F_1 \left[\frac{5}{3}, 1 \left| 1 \right| \alpha \right] - 2F_1 \left[\frac{4}{3}, 1 \left| 1 \right| \alpha \right] \right),
\]

by (2.2), hence the formula follows from (1.6).

Finally, we prove (1.3). If we apply (1.4) to \(n = 3 \) and change the variable \(q = e^{-2\pi u} \), we have

\[
L(f, 3) = \frac{4\pi^3}{3} \int_0^\infty b^3(e^{-2\pi u})c(e^{-6\pi u})u^2 du \\
= \frac{4\pi^3}{3\sqrt{3}} \int_0^\infty b(e^{-2\pi u})c(e^{-6\pi u}) \cdot c(e^{-\frac{2\pi u}{3}}) u^2 du.
\]

Here we used the involution formula (2.3) for the last equality. We know the following Lambert series expansions [6, Theorem 3.19, (3.36)] and [15, (23)]:

\[
c(q) = 3 \sum_{r,s=1}^{\infty} \chi_{-3}(r) \left(q^{\frac{r}{3}} - q^{r*} \right),
\]

(2.4)

\[
b(q)c(q^3) = 3 \sum_{n,k=1}^{\infty} \chi_{-3}(nk)kq^{nk},
\]

where \(\chi_{-3} \) denotes the primitive Dirichlet character of conductor 3. By these series expansions and the variable transformation \(u \mapsto su/k \), the integral above becomes

\[
4\sqrt{3}\pi^3 \int_0^\infty \left(\sum_{n,s=1}^{\infty} \chi_{-3}(n)s^2 e^{-2\pi uns} \right) \left(\sum_{k,r=1}^{\infty} \chi_{-3}(kr) \frac{1}{k} \left(e^{-\frac{2\pi kr}{9u}} - e^{-\frac{2\pi kr}{3u}} \right) \right) u du.
\]

The first series is the Borweins theta product [6, Theorem 3.35]:

\[
c^3(q) = 27 \sum_{n,s=1}^{\infty} \chi_{-3}(n)s^2 q^{ns},
\]

which implies

\[
L(f, 3) = \frac{4\pi^3}{9\sqrt{3}} \int_0^\infty c^3(e^{-2\pi u}) \sum_{k,r=1}^{\infty} \chi_{-3}(kr) \frac{1}{k} \left(e^{-\frac{2\pi kr}{9u}} - e^{-\frac{2\pi kr}{3u}} \right) u du.
\]

Using (2.3) and changing the variables \(u \mapsto 1/u, q = e^{-2\pi u} \) and \(q \mapsto q^3 \), we obtain

\[
L(f, 3) = \frac{2\pi^2}{27} \int_0^1 b^3(q) \sum_{k,r=1}^{\infty} \chi_{-3}(kr) \frac{1}{k} \left(q^{\frac{r}{3}} - q^{kr} \right) dq.
\]
By Lemma 2 (below) and the transformation formulas (1.5), the integral above becomes

\[
\frac{2\pi^2}{27} \int_0^1 (1 - \alpha) \left(\frac{1}{3} \alpha \frac{1}{2} F_1 \left[\frac{1}{3}, 1 \bigg| \frac{1}{3} \alpha \right] - \frac{1}{6} \alpha \frac{2}{3} F_1 \left[\frac{2}{3}, 1 \bigg| \frac{2}{3} \alpha \right] \right. \\
+ \left. \frac{\alpha}{27} \frac{1}{2} F_2 \left[1, 1, \frac{4}{3} \bigg| \frac{2}{3} \alpha \right] - 2\alpha \frac{1}{27} \frac{1}{2} F_2 \left[1, 1, \frac{5}{3} \bigg| \frac{2}{3} \alpha \right] \right) \frac{d\alpha}{\alpha(1 - \alpha)}.
\]

Then the formula follows from (1.6). \qed

Lemma 2.

\[
\sum_{k,r=1}^{\infty} \chi_{-3}(kr) \left(\frac{1}{3} q^{kr} - q^{kr} \right) = \frac{1}{3} \alpha \frac{1}{2} F_1 \left[\frac{1}{3}, 1 \bigg| \frac{1}{3} \alpha \right] - \frac{1}{6} \alpha \frac{2}{3} F_1 \left[\frac{2}{3}, 1 \bigg| \frac{2}{3} \alpha \right] \\
+ \frac{\alpha}{27} \frac{1}{2} F_2 \left[1, 1, \frac{4}{3} \bigg| \frac{2}{3} \alpha \right] - 2\alpha \frac{1}{27} \frac{1}{2} F_2 \left[1, 1, \frac{5}{3} \bigg| \frac{2}{3} \alpha \right].
\]

Proof. Denote the left hand side by \(E_0(q) \). Then, by (2.4),

\[
q \frac{d}{dq} E_0(q) = \sum_{k,r=1}^{\infty} \chi_{-3}(kr) \left(\frac{1}{3} q^{kr} - q^{kr} \right) = \frac{1}{9} b(q^x) c(q) - \frac{1}{3} b(q) c(q^3) \\
= \frac{1}{9} (a(q) c(q) - c^2(q) - a(q) b(q) + b^2(q)).
\]

Here, for the last equality, we used (2.1) and

\[
b(q^x) = a(q) - c(q),
\]

which follows from [5, Lemma 2.1 (ii), (iii)]. Hence, by the transformation formulas (1.5), we have

\[
E_0(q) = \frac{1}{9} \int_0^q \left(a(q) c(q) - c^2(q) - a(q) b(q) + b^2(q) \right) \frac{dq}{q} \\
= \frac{1}{9} \int_0^\alpha \left(\alpha^x - \alpha^{3x} - (1 - \alpha)^x + (1 - \alpha)^{3x} \right) \frac{d\alpha}{\alpha(1 - \alpha)} \\
\left(= \frac{1}{9} \int_0^\alpha \left(x^x - x^{3x} - (1 - x)^x + (1 - x)^{3x} \right) \frac{dx}{x(1 - x)} \right).
\]

We divide the integral above into the three integrals

\[(2.5) \quad \int_0^\alpha \frac{dx}{x(1 - x)},\]

\[(2.6) \quad \int_0^\alpha \frac{dx}{x(1 - x)},\]

\[(2.7) \quad \int_0^\alpha \left((1 - x)^x - (1 - x)^{3x} \right) \frac{dx}{x(1 - x)},\]
and show that each integral can be written as hypergeometric functions. First we compute (2.5). If we change the variable \(x \mapsto \alpha x \), then
\[
\int_0^\alpha \frac{x^{\frac{1}{3}}}{x(1-x)} \, dx = \alpha^{\frac{1}{3}} \int_0^{\alpha \frac{1}{3}} \frac{x^{\frac{1}{3}}}{x(1-\alpha x)} \, dx
\]
\[
= \alpha^{\frac{1}{3}} \int_0^1 x^{\frac{1}{3}}(1-x)(1-\alpha x)^{-1} \, dx \quad \frac{dx}{x(1-x)}
\]
\[
= \alpha^{\frac{1}{3}} \frac{\Gamma \left(\frac{1}{3} \right) \Gamma \left(1 \right)}{\Gamma \left(\frac{4}{3} \right)} \, F_1 \left[\left. \frac{2}{3},1 \right| \alpha \right] = 3 \alpha^{\frac{1}{3}} F_1 \left[\left. \frac{2}{3},1 \right| \alpha \right].
\]
Here we used the integral expression of generalized hypergeometric functions [18, p.108, (4.1.2)]
\[
\Gamma(a_1) \Gamma(a_1' - a_1) \frac{1}{A+1} \left. A \right|_{A} \left. F_A \right|_{A} \left[\left. a_1, a_2, \ldots, a_{A+1} \right| \begin{array}{c} a_1', \ldots, a_A' \end{array} \right] x
\]
\[
= \int_0^1 x^{a_1'}(1-x)^{a_1'-a_1} A \left. F_{A-1} \right|_{A} \left[\left. a_2, \ldots, a_{A+1} \right| \begin{array}{c} a_1', \ldots, a_A' \end{array} \right] x \, \frac{dx}{(1-x)}. \tag{2.8}
\]
for the last equality. By similar computations, one can show that (2.6) coincides with
\[
\frac{3}{2} \alpha^{\frac{1}{3}} F_1 \left[\left. \frac{2}{3},1 \right| \alpha \right].
\]
Finally, by (2.2), the variable transformation \(x \mapsto \alpha x \) and (2.8), the integral (2.7) becomes
\[
\int_0^\alpha \left((1-x)^{-\frac{1}{3}} - (1-x)^{-\frac{1}{3}} \right) \frac{dx}{x}
\]
\[
= \int_0^\alpha \left(\frac{2}{3} x \, F_1 \left[\left. 1,\frac{5}{2} \right| x \right] - \frac{1}{3} x \, F_1 \left[\left. 1,\frac{4}{2} \right| x \right] \right) \frac{dx}{x}
\]
\[
= \frac{\alpha}{3} \int_0^1 x(1-x) \left(2 \, F_1 \left[\left. 1,\frac{5}{2} \right| \alpha x \right] - 2 \, F_1 \left[\left. 1,\frac{4}{2} \right| \alpha x \right] \right) \, \frac{dx}{(1-x)}
\]
\[
= \frac{2\alpha}{3} F_2 \left[\left. 1,1,\frac{5}{2} \right| 2,2,2 \right] \alpha - \frac{\alpha}{3} F_2 \left[\left. 1,1,\frac{5}{4} \right| 2,2,2 \right] \alpha
\].
This proves the lemma. \(\square \)

Acknowledgment

I would like to thank Noriyuki Otsubo for helpful comments on a draft version of this paper. I also would like to thank Robert Osburn for letting me know the paper [11].

References

[1] P. Appell, J. Kampé de Fériet, Fonctions hypergéométriques et hypersphériques; Polynômes d’Hermité, Gauthier-Villars, Paris, 1926.
[2] B. C. Berndt, Ramanujan’s Notebooks, part II, Springer, New York, NY, 1989.
[3] B. C. Berndt, Ramanujan’s Notebooks, part V, Springer, New York, NY, 1998.
[4] J. M. Borwein, P. B. Borwein, A cubic counterpart of Jacobi’s identity and the AGM, Trans. Am. Math. Soc. 323, 1991, 691-701.
[5] J. M. Borwein, P. B. Borwein, F.G. Garvan, Some cubic modular identities of Ramanujan, Trans. Am. Math. Soc. 343, 1994, 35-47.
[6] S. Cooper, \textit{Ramanujan’s theta functions}, Springer, 2017.
[7] N. T. Hài, O. I. Marichev, H. M. Srivastava, \textit{A note on the convergence of certain families of multiple hypergeometric series}, Journal of Mathematical Analysis and Applications 164, 1992, 104-115.
[8] R. Ito, \textit{The Beilinson conjectures for CM elliptic curves via hypergeometric functions}, Ramanujan J 45, 2018, 433-449.
[9] R. Ito, \textit{The special values of L-functions at s = 1 of theta products of weight 3}, Research in Number Theory 5, 2019, 1-8.
[10] R. Ito, \textit{On special values at integers of L-functions of Jacobi theta products of weight 3}, Ramanujan J 57, 2022, 153-163.
[11] R. Osburn and A. Straub, \textit{Interpolated sequences and critical L-values of modular forms}, Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory, Texts & Monographs in Symbolic Computation, 2019, 327-349.
[12] N. Otsubo, \textit{Certain values of Hecke L-functions and generalized hypergeometric functions}, J.Number Theory 131, 2011, 648-660.
[13] M. Rogers, \textit{Boyd’s conjectures for elliptic curves of conductor 11, 19, 39, 48 and 80}, unpublished notes, 2010.
[14] M. Rogers, J.G. Wan, I.J. Zucker, \textit{Moments of elliptic integrals and critical L-values}, Ramanujan J. 37, 2015, 113-130.
[15] M. Rogers, W. Zudilin, \textit{From L-series of elliptic curves to Mahler measures}, Compositio Math. 148, 2012, 385-414.
[16] D. Samart, \textit{Three-variable Mahler measures and special values of modular and Dirichlet L-series}, Ramanujan J. 32, 2013, 245-268.
[17] G. Shimura, \textit{Elementary Dirichlet Series and Modular Forms}, Springer, 2007.
[18] L. J. Slater, \textit{Generalized Hypergeometric Functions}, Cambridge University Press, 1966.
[19] H. M. Srivastava, P. W. Karlsson, \textit{Multiple Gaussian Hypergeometric Series}, Mathematics and Its Applications, Ellis Horwood, Chichester; Halsted Press (John Wiley & Sons), New York, 1985.
[20] W. Zudilin, \textit{Period(d)ness of L-Values}, Number Theory and Related Fields, Springer Proceedings in Mathematics and Statistics vol. 43, 2013, 381-395.