Doubting Nongenotoxic Mechanisms of Renal Cancer: Comparing Apples and Oranges in the a2u-Globulin Hypothesis

Doubting accepted mechanisms in biology is not wrong per se, especially as the contrary would be the death blow to any form of advancement in research; however, doubting without good reason will consume precious energy and resources that could be spent on more fruitful and certainly more pressing matters in biological research.

Contrary to good judgment, it appears that some individuals believe that any biological mechanism, however meticulously established and proven with hard data and despite being commonly accepted, should be doubted when the mechanism in question tends to reduce the conception of risk associated with chemicals. This doubt, however, does not appear to stem from hard factual data contradicting the mechanism, but rather from misinterpretation of available data and, in some instances, from the misquotation of the original investigators’ conclusions.

One recent example for doubting established and meticulously proven biological mechanisms is the ongoing discussion of the validity of the a2u-globulin-associated male rat-specific mechanism of renal cancer induction and its ramifications for human health risk assessment. A unique database (certainly in its size and detail when compared to other databases with similar importance for human health concerns) on practically all aspects of this mechanism has been established by numerous scientists from many different unaffiliated laboratories, repeated scientific discussion sessions, several thorough reviews (1–8), and a workshop specifically devised to query all aspects of the data that support the mechanism in question (9). Despite this, some scientists, in an unfathomable quest to differ, choose to ignore the obvious and continue to doubt the validity of this mechanism by throwing up new hypotheses (10) or interpretations of the present data (11). Such maneuvering is all the more reproachable as it is not constructive to risk assessment; it does not help to further the understanding of the currently accepted mechanisms; and foremost, the authors of such devil’s-advocate papers have never presented new experimental data to support any of their new insights. In an effort to critically address some of the alternative hypotheses and interpretations presented by James Huff (11) in relation to the a2u-globulin mechanism, John Ashby, in a letter in Environmental Health Perspectives (12), asked Huff to reten from generalized statements and to “identify the chemicals to which he referred and present the relevant data for them in a focused paper.”

Huff, in a reply in the same issue of EHP, rose to the occasion and tried to cement some of his statements and interpretations by specifically naming the chemicals (13). I feel that I must reply to the statements made by Huff in his letter. In order to facilitate the understanding of the following paragraphs, it is necessary for the reader to have insight into the current hypothesis of the etiology of a2u-globulin nephropathy and associated male rat renal tumors as well as the supporting mechanistic data.

Briefly, male rats as well as female rats, but not mice, hamsters, guinea pigs, rabbits, dogs, nonhuman primates, or humans synthesize low molecular weight proteins (approximately 18,000–20,000 daltons) called a2u-globulins (also known as A2u in earlier days). Synthesis of a2u-globulin is reported for female and male rats in the salivary, lachrymal, preputial, meiobian, and perianal glands (14,15). The hormonal regulation of a2u-globulin synthesis in each of these tissues is unique and, most importantly, not sex specific in the lachrimal, salivary, and preputial glands (15,16). These a2u-globulin isoforms are electroethoretically distinct from the major urinary protein, namely the hepatic form of a2u-globulin with a molecular weight of 18,700 daltons which is exclusively synthesized by male rats. The a2u-globulin forms synthesized in small amounts by female rats are also excreted via the urine. However, these forms of a2u-globulin show distinct differences to the male rat forms of a2u-globulin, whether of nonhepatic or hepatic origin, suggesting that they are encoded by different genes (17).

The synthesis and high rate of excretion of the hepatic form of a2u-globulin, the affinity of some chemicals and/or their metabolites for binding to a2u-globulin, and the reduced enzymatic breakdown of the chemical–a2u-globulin complex in lysosomes of the proximal tubule epithelial cells (18) lead to an accumulation of these protein–chemical complexes in the renal cortex of male rats. Subchronic and chronic administration of chemicals was demonstrated to be mandatory for the development of nephrotoxicity and the formation of renal epithelial cell tumors in male rats (2–5). The renal tumors were demonstrated to evolve from a constantly elevated rate of proximal tubule epithelial cell proliferation resulting from the chemical–a2u-globulin complex-induced cell necrosis and subsequent cell regeneration (19–21). Due to the species- and sex-specific synthesis of this low molecular weight protein, nephrotoxic and kidney tumors are found in exposed male rats but not in female rats, a2u-globulin-deficient NBR male rats (21,22), either sex of mice, guinea pigs, rabbits, dogs, or nonhuman primates (7).

Although humans and other species synthesize and excrete low molecular weight proteins via the urine, no interactions of these proteins with chemicals, shown to induce protein-mediated nephrotoxicity in the male rat, are observed (23,24). As a result of a joint effort of basic research conducted in both academic and industrial laboratories, the nongenotoxic mechanism underlying the genesis of these male rat-specific renal epithelial tumors is among the best characterized to date. Based on a 2-year review of this data set, the EPA ruled that the renal tumors detected in male rats following 2-year administration of nongenotoxic nephrotoxic–inducing compounds, such as unleaded gasoline or the orange juice component d-limonene, are of little relevance for human cancer risk assessment.

The EPA ruling on the a2u-globulin mechanism and the associated simplifications and better understanding of at least one small part of the otherwise highly enigmatic processes involved in the etiology of cancer has apparently driven James Huff to question the mechanism described above by providing examples of so-called exceptions and discrepancies to the presently accepted mechanism as well as to make unfounded and scientifically unsound statements. For example, to show the weakness of the a2u-globulin mechanism hypothesis when it comes to extrapolating to the human situation, Huff states the following:

Importantly, two additional chemicals presumed to involve a2u-kidney tumors (and thus are regarded by some as irrelevant to humans) have now been shown to be associ- ated with kidney cancers in humans—gasoline (25,26) and trichloroethylene (27,28).

The studies on gasoline that Huff cited in the above context are epidemiological studies. This type of study looks at statistical associations between the increased occurrence of a disease and the exposure to gasoline (leaded gasoline). The weakness of such studies is that causal relationships and mechanisms can rarely be established as would be possible in highly specific animal studies, whereas their advantage lies in the fact that the endpoint of interest, tumors in humans, is inspected directly. However, the mere association of chemical exposure with increased occurrence of disease does not prove that there is a biological relationship. Most of the
epidemiological studies performed on gasoline and the occurrence of human renal cancer have an additional important weakness in that they have not quantitatively assessed the actual exposure to volatile hydrocarbons. In addition, the studies were conducted with reference to leaded gasoline, thus adding the confounding factor of lead exposure, which is known to induce renal cancer in animal studies. Furthermore, in many studies, exposure assessment did not go beyond ascertaining that an individual had been employed by a petroleum company or in a refinery. Two of the studies (25,29) indicate a small increase in relative risk for kidney cancer in subgroups exposed to gasoline. However, in the studies by McLaughlin and co-workers (29,30) the most consistent association with renal cancer was found to be cigarette smoking, while in a subsequent more detailed analysis (31), no overall association was observed between renal cell cancer and employment in a range of occupations with potential exposure to petroleum products.

Siemiatycki et al. (25), a study specifically cited by Huff, looked at the risk for renal cancer in persons exposed to gasoline as well as jet fuel. No statistically significant risk for renal cancer was found for gasoline.

The only study reporting an elevated risk and an exposure–response relationship between kidney cancer and exposure to gasoline is the one published recently by Partanen et al. (26). These authors reviewed 672 cases of renal cell adenoma as a case–control study. Owing to poor participation, only 338 sets of cases and controls were ultimately included for analysis, thereby limiting the interpretability of the findings. Long job histories were collected and translated into indicators of industry, occupation, and estimated occupational exposure. An elevated risk for kidney cancer was found to be associated with a history of white-collar occupations; the printing industry; the chemical industry; the manufacture of metal products; mail, telephone, and telegraph services; and iron and metal work. An elevated risk was associated with exposure to gasoline, and an exposure–response relationship was observed for increasing exposure to gasoline. However, a major confounding factor in this risk estimation was that the gasoline used in Finland, especially during the time relevant for exposure of the study group (1920–1968), contained copious amounts of tetraethyl-lead. The exposure to lead was associated with an increased risk for renal epithelial cell cancer, as was also confirmed by animal studies with lead acetate (32).

The association of renal cancer in humans with exposure to gasoline is most likely related to the tetraethyl-lead content of the gasoline and not to the gasoline (volatile hydrocarbons) itself, as was also clearly pointed out by Partanen et al. (26). Therefore, the statement by Huff, that “gasoline had been shown to be associated with kidney cancer in humans” is a misrepresentation of the scientific facts.

With regard to trichloroethylene, Huff admits that it does not induce the α2u-globulin-associated nephropathy; therefore, this example is irrelevant and a misrepresentation of facts. Huff tries to back his statement by adding that a chemically similar compound (perchloroethylene), which appears to be linked (no proven causality) with human renal cancer, was demonstrated to induce α2u-globulin nephropathy and renal tumors in male rats. To substantiate this statement, he quotes Melnick (10), a paper that does not provide new data but selectively quotes Green et al. on perchloroethylene (33). Green et al. (33) clearly state that the tumors observed in the male rat kidney appear to be related to a combination of at least two mechanisms: genotoxicity from the β-lyase pathway and the α2u-globulin mechanism. However, Green et al. (33) also found that even the genotoxic mechanism is also species and sex specific and is of little relevance to humans. Such synergy between a genotoxic agent (initiator) and a promoting influence (in this case the α2u-globulin mechanism via enhanced cell proliferation) is well established not only in renal carcinogenesis. That is exactly why the EPA, in its ruling, restricted the relevance of the α2u-globulin mechanism in conjunction with renal tumors occurring only in male rats to nongenotoxic chemicals. This emphasizes that we cannot define a compound as either being an α2u-globulin nephropathy inducer or not; we have to understand the etiology of the tumors induced by a given chemical to detect whether only one or several mechanisms are involved in its genesis.

Thus, neither the epidemiological studies on leaded gasoline nor any of the polychlorinated aliphatics cited by Huff lend themselves to questioning the α2u-globulin mechanism. The available human epidemiological studies and the animal experimental studies were misinterpreted and misrepresented by Huff. This distorts the factual content of the data presented and the ramifications of these facts for human health.

Some of the other chemicals Huff mentioned as being examples that contest the α2u-globulin mechanism were gabapentin, linclide, decalin, trimethylpentane (unleaded gasoline), dimethyl methylphosphonate, t-butyl alcohol, and hexachlorobenzene. I will not discuss all of the chemicals in detail, although none of them are examples that would contest the α2u-globulin mediated mechanism. Instead, I would like to point out some important facts that Huff overlooked. The five examples selected for discussion are representative.

As pointed out by Huff, gabapentin induces an accumulation of α2u-globulin in the proximal tubule epithelial cells of male rats and, after prolonged administration (up to 2, 7, and 14 days) and application of 2,000 mg/kg body weight (bw), even produces some cell necrosis and cell shedding (34). No increase in renal cancer was observed after 2 years of gabapentin administration (34). However, what Huff did not find necessary to point out is that, in all cases where chemicals induced α2u-globulin nephropathy and renal tumors, increased amounts of proteinaceous intratubular casts, especially at the cortico-medullary junction, and, consequently, increased cell regeneration were observed (20,21,35,36). Indeed, chronic increased cell regeneration is the hallmark of chemically induced renal tumors via the α2u-globulin mechanism (I). The question then arises whether the prolonged gabapentin administration induced increased numbers of proteinaceous intratubular casts, especially at the cortico-medullary junction, and consequently enhanced rates of cell regeneration. A closer look at the paper of Dominick et al. on gabapentin (34) clearly indicates that no dose response was observed in the number of casts or in the severity of renal tubular regeneration at 13 weeks of exposure (doses up to 3,000 mg/kg bw). This data clearly indicates that the severity of α2u-globulin accumulation and subsequent cell necrosis and proliferative regeneration was not high enough to allow for formation of renal tumors within the 2 years of gabapentin exposure. Dominick et al. (34) also found foci of atypical hyperplasia in kidneys of male rats treated with 1,000 and 2,000 mg/kg bw at termination of the 2-year bioassay. Atypical tubules and atypical hyperplasia have been recognized as precursors of renal adenoma and carcinoma (19–21,32). The reported number of atypical foci was extremely low in the Dominick et al. study (34). In summary, the present database on gabapentin does not prove the α2u-globulin-associated mechanism of renal carcinogenesis, but rather demonstrates that chemicals that cause α2u-globulin-mediated renal cancer must bind to α2u-globulin with high affinity to produce chronic elevated cell necrosis and subsequent cell regeneration. Indeed, this view is also shared by Dominick et al. (34) who specifically stated in their paper that this study suggests that proximal tubular epithelial injury and regeneration that occur in this [α2u-globulin] nephropathy may need to reach a critical threshold to effectively promote renal neoplasia.
The second compound that Huff mentioned as being one of the compounds that does not induce renal tumors in male rats, despite being a typical α2u-globulin compound is lindane. It is indeed true that lindane and its metabolites can bind to α2u-globulin and induce the associated nephropathy in male rats during acute exposures (37). Lindane (and/or its metabolites) has been shown in the 2-year carcinogenicity bioassay to increase the incidence of benign and malignant neoplasms in endocrine organs (pituitary, adrenal, and thyroid) of both sexes; however, a high incidence of ovarian carcinoma was also noted (38). Moreover, male rats treated with lindane at 32 and 64 mg/kg bw for 2 years presented with severe testicular atrophy. It is thus quite reasonable to assume that the testosterone level in these rats, as a consequence of testicular atrophy, was low. However, testosterone is extremely important for maintaining a high level of liver-derived α2u-globulin, which will be outlined below. Indeed the male rat major urinary protein (the hepatic form of α2u-globulin) is encoded by a family of 25–30 copies of highly homologous (less than 5% divergence in the nucleic acid sequence) genes within the haploid genome, each made up of 7 exons and clustered on chromosome 5 (39,40). The expression of this α2u-globulin gene family is regulated by a complex interaction of testosterone, glucocorticoids, insulin, growth hormone, and thyroid hormone (41). The synthesis of hepatic α2u-globulin is under androgenic control, as evidenced by changes in androgen sensitivity and androgenic induction of α2u-globulin synthesis, which begins at puberty (approximately 40 days in rats), peaks at about 80 days, and then steadily declines in expression level only to cease at senescence (i.e., 750–800 days of age) (42). The maturational rise in α2u-globulin synthesis and its decline during senescence are associated with corresponding changes in the expression of the androgen receptor gene in the liver and thus with changes in the steady-state level of the α2u-globulin mRNA (42). Transcriptional activation of the α2u-globulin gene coincides with its attachment to the nuclear matrix, while conversely, senescent-associated transcriptional inactivation is accompanied by matrix detachment of this gene (40).

Estrogenic steroids are very effective repressors of α2u-globulin synthesis (43). Indeed, estrogen receptor complexes were shown to bind to the promoter region of the α2u-globulin genes (44) and were thus able to repress the expression of these genes. It is thus not surprising that female rats, with their inherently high levels of estrogen, do not synthesize hepatic α2u-globulin or its corresponding mRNA, despite having the entire complement of hepatic α2u-globulin genes (16,45,46). Ovariectomized female rats have a very low background level of α2u-globulin mRNA (47), and ovariectomy in conjunction with androgen treatment of female rats results in an increase of α2u-globulin mRNA as well as protein product (45,48).

Male rats after puberty, on the other hand, were shown to have high levels of estrogen sulfotransferase, an enzyme able to inactivate estrogen activity and thus maintain androgen sensitivity of the male rat liver during the peak phase of α2u-globulin synthesis (49).

Based on the assumption that high levels of α2u-globulin could not have been maintained in male rats treated with high doses of lindane in the 2-year bioassay, due to testicular atrophy and thus a lack of testosterone, it becomes obvious why renal tumors did not develop in lindane-treated male rats. Lindane, therefore, is not a compound that would question the α2u-globulin-mediated mechanism of male rat renal tumors as Huff believes, but rather it supports the mechanism.

The question that remains is why lindane was reported to induce α2u-globulin nephropathy. Indeed, α2u-globulin nephropathy was observed in male rats treated with lindane 10 mg/kg bw day for 5 days (37). The levels of α2u-globulin and the resistance to lysosomal breakdown of the α2u-globulin–lindane complex was high enough that this nephropathy could be observed under acute exposure. In contrast, no hyaline droplets, nephropathy, or renal casts were observed in the rats dosed with 32 and 64 mg/kg bw for 2 years in the cancer bioassay (38).

With regard to risk assessment, lindane could have been not regulated under EPA’s ruling on α2u-globulin nephropathy-inducing compounds, based on the fact that no renal tumors were detected in male rats and that tumors in other organs in both male and female rats were induced in the 2-year bioassay. Lindane, however, may well be an example of the problems associated with the maximum-tolerated-dose (MTD) approach in the 2-year cancer bioassays. It is indeed conceivable that male rats would have developed renal tumors in the 2-year bioassay if the chronic dose had been at a concentration that would not have induced testicular atrophy and thus not have impeded testosterone production. In conclusion, lindane does not provide a good example to substantiate theories, but rather it exemplifies how a lack of understanding of mechanisms can lead to misconceptions.

The latter statement also holds true for decalin. Indeed, Huff states that decalin is probably the first chemical for which no empirical connection could be made between induced hyaline droplet-α2u-globulin nephropathy syndrome and cancer of the renal epithelial cells.

Huff cites Gaworski et al. (50), who quite clearly demonstrate all classical symptoms of an α2u-globulin-mediated mechanism; this 90-day study could not have promoted the necessary number of preneoplastic lesions that would have progressed to veritable tumors within the 19-month post-exposure observation period. Indeed, the α2u-globulin-mediated mechanism of renal tumor induction is a pure promotional process. Thus, a chronic stimulus (chronic cell necrosis and subsequent chronic cell regeneration) is necessary for a low induced incidence of renal tumors to be observed at the end of a 2-year bioassay. Furthermore, the promotional effect of the α2u-globulin mechanism is weak, leading to low renal tumor incidences in 2-year rat bioassays (up to 25%) (51), while other presumably nongenotoxic compounds, e.g., ochratoxin A, lead to high renal tumor incidences (up to 87%) in both sexes of rats (52).

Therefore, Huff’s statement that:

"at the end of the post-exposure period, male rats exhibited dose-related chronic progressive necrosis with accentuated tubular degeneration, medullary mineralization, and papillary hyperplasia; however, no tumor of the kidney was reported for male rats or for any other sex–species-exposure group"

is incorrect. Indeed, mentioning chronic progressive necrosis and tubular degeneration in conjunction with decalin treatment is misleading in this context. These symptoms are characteristic for aging rats (53), but can be exaggerated in a dose-related fashion following exposure to chemicals (19). However, there is no distinct association or causality between the occurrence lesions of chronic progressive necrosis (also known as chronic progressive nephropathy) and the etiology of α2u-globulin–chemical complex-mediated renal tumors. Therefore, insinuating that in the case of decalin, despite the presence of chronic progressive necrosis, no tumors related to α2u-globulin were observed is a misconception that unnecessarily leads to misunderstandings. Unfortunately no 2-year cancer bioassay has been conducted to date on decalin. It is hoped that, as Huff pointed out, the NTP will conduct a 2-year bioassay with decalin using F344 and the α2u-globulin-deficient NBR rats in the near future. I am quite confident that this study, as many others
before, will substantiate the currently accepted mechanism.

The last two compounds that are worth discussing are trimethylpentane and hexachlorobenzene. Trimethylpentane (TMP) was demonstrated to bind to α2u-globulin (54–57) and to induce α2u-globulin nephropathy in male rats (36,58). Prolonged treatment of male rats with TMP exacerbates the nephropathy and increases regenerative cell proliferation in a dose-dependent manner (36,59,60). NBR rats lacking α2u-globulin do not produce protein accumulation or nephropathy following treatment with TMP (22). TMP was also demonstrated to be a renal tumor promoter (via the α2u-globulin-mediated mechanism) in a classic initiation–promotion study by Short et al. (19). This fact stands out against Huff's statement that TMP had been demonstrated not to induce renal tumors in a 2-year study. The literature cited, which back the α2u-globulin-mediated mechanism, appeared in peer-reviewed journals and thus were open for scientific scrutiny. On the contrary, Huff's statement is backed by a personal communication on a bioassay of which the experimental conditions and the actual resulting data are not available; these studies by the Institut Ramazzini have not been duplicated by another laboratory using a different strain of rats, whereas the studies supporting the α2u-globulin-mediated mechanism have been reproduced in various laboratories. In this, Huff does not seem to be carefully weighing the evidence.

Hexachlorobenzene (HCB) was shown to induce α2u-globulin nephropathy in male rats but not in female rats, even when treated for 50 days at the highest dose (61). The statement by Huff that "hexachlorobenzene (HCB) is an example of a chemical that induces the α2u-globulin nephropathy syndrome in male and female Sprague-Dawley rats..." (61) is a misrepresentation of facts. Female rats do not present with the α2u-globulin nephropathy syndrome in any case so far discussed. Furthermore, female rats did not present with any form of renal pathology, of whatever etiology, in the 50-day study by Bouthiller (61). It is true, however, that both sexes of rats treated with HCB presented with hepatomas (male, 11/56; female, 35/56), hepatocellular carcinomas (male, 4/56; female, 48/56), bile duct adenomas (male, 2/56; female, 29/56), and renal adenomas (male, 42/56; female, 15/56). The incidences of renal adenomas were decisively higher in male than in female rats. The overt increase in liver carcinomas and bile duct tumors in both sexes of Sprague Dawley rats indicates that several mechanisms are involved in the etiology of liver, bile duct, and renal tumors, one of them most likely being a genotoxic mechanism. Hexachlorobenzene, therefore, is not an example that would contest the α2u-globulin hypothesis. Huff states that "HCB is the first chemical identified that exhibits the [α2u-globulin] nephropathy sequela, and induces renal cell tumors in both genders of rats." This statement is a misconception and misrepresentation of facts. In this context, it is also wrong and misleading of Huff to insinuate that HCB would have been regulated under the EPA ruling discussed here. Indeed, the EPA ruling on α2u-globulin-inducing compounds clearly concerns compounds only that 1) are nongenotoxic; 2) produce renal tumors in male rats and in no other sex, species, or organ; and 3) induce the α2u-globulin nephropathy syndrome. Hexachlorobenzene does not fulfill two of the above categories and should therefore not be given as an example in this context.

In conclusion, I would like to emphasize that one needs at least as excellent a database to disprove a currently accepted mechanism as was used to establish the mechanism in the first place. Questioning for queries sake is not helpful, but is rather hindering to those scientists that excel in distinguishing those mechanisms that are relevant to humans and can be predicted via animal experimentation from those that are specific to the surrogate animals only. In his letter in Environmental Health Perspectives, James Huff was clearly not able to disprove the currently accepted mechanism. I challenge him to produce some experimental data to substantiate his hypothesis.

Daniel R. Dietrich
University of Konstanz
Environmental Toxicology Laboratory
Konstanz, Germany

REFERENCES

1. Dietrich DR. Alpha 2u-globulin: species- and sex-specific protein synthesis and excretion, association with chemically induced renal toxicity and neoplasia in the male rat, and relevance in human cancer risk assessment. Rev Biochem Toxicol 11:115–180 (1995).
2. Swenberg JA, Short B, Borgoff S, Strasser J, Charbonneau M. The comparative pathology of alpha 2u-globulin nephropathy. Toxicol Appl Pharmacol 97:35–47 (1989).
3. Swenberg JA. Risk assessment of chemicals causing alpha 2u-globulin nephropathy [editorial]. Regul Toxicol Pharmacol 13:1–2 (1991).
4. Lehman-McKeeman LD, Rivera-Torres M, Caudill L. Lysosomal degradation of alpha 2u-globulin and alpha 2u-globulin-xenobiotic conjugates. Toxicol Appl Pharmacol 103:539–548 (1990).
5. Borgoff SJ, Short BG, Swenberg JA. Biochemical mechanisms and pathobiology of alpha 2u-globulin nephropathy. Annu Rev Pharmacol Toxicol 30:349–367 (1990).
6. Alden CL. Male rat specific alpha 2u-globulin nephropathy and renal tumorigenesis. In: Nephrotoxicity. In: Vito to In Vivo. Animals to Man (Bach PH, Lock EA, eds). New York: Plenum Press, 1989:535–541.
7. Alden CL. A review of unique male rat hydrocarbon nephropathy. Toxicol Pathol 14:109–111 (1986).
8. Hard GC, Rodgers IS, Baetcke KP, Richards WL, McGaughy RE, Valovic LR. Validation of chemicals that cause accumulation of α2u-globulin, hyaline droplet nephropathy, and tubule neoplasia in the kidneys of male rats. Environ Health Perspect 99:313–349 (1993).
9. Forum E-RA. Alpha-2u-Globulin: Association with Chemically Induced Renal Toxicity and Neoplasia in the Male Rat. EPA/6253/91019F. Washington, DC U.S. Environmental Protection Agency, 1991.
10. Melnick RL. An alternative hypothesis on the role of chemically induced protein droplet (alpha 2u-globulin) nephropathy in renal carcinogenesis. Regul Toxicol Pharmacol 16:111–125 (1992).
11. Huff J. Mechanisms, chemical carcinogenesis, and risk assessment: cell proliferation and cancer. Am J Ind Med 27:293–300 (1995).
12. Ashby J. α2u-Globulin nephropathy in white ravens. Environ Health Perspect 104:1264 (1996).
13. Huff J. Response: α2u-globulin nephropathy, posed mechanisms, and white ravens. Environ Health Perspect 104:1264–1267 (1996).
14. Mancini MA, Majumdar D, Chatterjee B, Roy AK. Alpha 2u-globulin in modified sebaceous glands with pheromonal functions: localization of the protein and its mRNA in preputial, meibomian, and perianal glands. J Histochem Cytochem 37:149–157 (1989).
15. Murty CV, Sarkar FH, Mancini MA, Roy AK. Sex-independent synthesis of alpha 2u-globulin and its messenger ribonucleic acid in the rat preputial gland: biochemical and immunocytochemical analyses. Endocrinology 121:1000–1005 (1987).
16. Maclnnes JI, Nozik ES, Kurtz DT. Tissue-specific expression of the rat alpha 2u-globulin gene family. Mol Cell Biol 6:3563–3567 (1986).
17. Vandoren G, Mertens B, Heyns W, Van Baelen H, Rombauts W, Verhoeven G. Different forms of alpha 2u globulin in male and female rat urine. Eur J Biochem 134:175–181 (1983).
18. Lehman-McKeeman LD, Rivera-Torres M, Caudill L. Lysosomal degradation of alpha 2u-globulin and alpha 2u-globulin-xenobiotic conjugates. Toxicol Appl Pharmacol 103:539–548 (1990).
19. Short BG, Steighagen WH, Swenberg JA. Promoting effects of unleaded gasoline and 2,2,4-trimethylpentane on the development of atypical cell foci and renal tubular cell tumors in rats exposed to N-Nitro-N-hydroxyethylnitrosamine. Cancer Res 49:6360–6378 (1989).
20. Dietrich DR, Swenberg JA. Alpha2u-globulin is necessary for d1monogene induction of male rat kidney tumors. Toxicologist 11:1296 (1991).
21. Dietrich DR, Swenberg JA. Preneoplastic lesions in rodent kidney induced spontaneously or by non-genotoxic agents: predictive nature and comparison to lesions induced by genotoxic carcinogens. Mutat Res 248:239–260 (1991).

Environmental Health Perspectives • Volume 105, Number 9, September 1997

901
22. Dietrich DR, Swenberg JA. NCI-Black-Reiter (NBR) male rats fail to develop renal disease following exposure to agents that induce alpha-2-globulin (alpha 2u) nepheapthry. Fundam Appl Toxicol 16:749-762 (1991).

23. Lehman-McKeeman LD, Caudill D. Biochemical basis for mouse resistance to hyaline droplet nephropathy: Lack of relevance of the alpha2u-globulin protein superfamily in this male rat specific syndrome. Toxicol Appl Pharmacol 112:214-221 (1992).

24. Lehman-McKeeman LD, Caudill D. Alpha2u-globulin is the only member of the lipocalin protein family that binds to hyaline droplet inducing agents. Toxicol Appl Pharmacol 116:170-176 (1992).

25. Siemiatycki J, Dewar R, Nadon L, Gerin M, Richardson L, Wacholder S. Associations between several sites of cancer and twelve petroleum-derived liquids. Results from a case-control study in Montreal. Scand J Work Environ Health 13:493-504 (1987).

26. Parra-T Veikilia P, Hernberg S, Kauppinen T, Moneta G. Renal cell cancer and occupational exposure to chemical agents. Scand J Work Environ Health 12:241-249 (1986).

27. Henschler D, Vannvakas S, Lammt M, Dekant W, Kraus B, Thomas B, Ulm K. Increased incidence of renal cell tumors in a cohort of cardboardworkers exposed to trichloroethene. Arch Toxicol 69:291-299 (1995).

28. Henschler D, Vannvakas S, Lammt M, Dekant W, Kraus B, Thomas B, Ulm K. Increased incidence of renal cell tumors in a cohort of cardboardworkers exposed to trichloroethylene. Arch Toxicol 70:131-133 (1996).

29. McLaughlin JK. Risk factors from a population-based case-control study of renal cancer. In: Advances in Modern Environmental Toxicology. Renal Effects of Petroleum Hydrocarbons, Vol 7 (Mehlman MA, Hemstreet GP, Thorne J, Weaver NK, eds). Princeton, NJ:Princeton Scientific Publishers, 1984:227-244.

30. McLaughlin JK, Schuman LM. Epidemiology of renal cell carcinoma. Rev Cancer Epidemiol 2:170-210 (1983).

31. McLaughlin JK, Blot WJ, Miel HS, Stewart PA, Venable FS, Fraumeni JF. Petroleum-related employment and renal cancer. J Occup Med 27:672-674 (1985).

32. Dietrich DR, Swenberg JA. Renal carcinogenesis. In: Toxicology of the Kidney (Hook JB, Goldstein RS, eds). New York:Raven Press, 1993:495-537.

33. Green T, Odum J, Nash JA, Foster JR, Perich C. Hematopoietic-induced rat kidney tumors: an investigation of the mechanisms involved and their relevance to humans. Toxicol Appl Pharmacol 103:77-89 (1990).

34. Dominick MA, Robertson DG, Bleavins MR, Sigler RE, Bobrowski WF, Gough AW. Alpha 2u-globulin nephropathy without nephrocarcinogenesis in male Wistar rats administered 1-aminomethyl)cyclohexanecarboxylic acid. Toxicol Appl Pharmacol 111:375-387 (1991).

35. Short BG, Burnett VL, Swenberg JA. Histopathology and cell proliferation induced by alpha-2u-globulin in the male rat kidney. Toxicol Pathol 14:194-203 (1986).

36. Short BG, Burnett VL, Cox MG, Bus JS, Swenberg JA. Site-specific renal cytotoxicity and cell proliferation in male rats exposed to petroleum hydrocarbons. Lab Invest 57:564-577 (1987).

37. Dietrich DR, Swenberg JA. Lindane induces nephropathy and renal accumulation of alpha 2u-globulin in male but not in female Fischer 344 rats or male NBR rats. Toxicol Lett 53:179-181 (1990).

38. Reuber MD. Carcinogenicity of lindane. Environ Health Perspect 19:460-481 (1979).

39. Dolan KP, Untruman R, McLaughlin M, Nakahi H, Lynch KR, Feigelson P. The structure and expression of very closely related members of the alpha 2u globulin gene family. J Biol Chem 257:15327-15334 (1982).

40. Chatterjee B, Roy AK. Changes in hepatic androgen sensitivity and gene expression during aging. J Steroid Biochem Mol Biol 37:437-445 (1990).

41. Murty CV, Mancini MA, Chatterjee B, Roy AK. Changes in transcriptional activity and matrix association of alpha 2-globulin gene family in the rat liver during maturation and aging. Biochim Biophys Acta 949:27-34 (1988).

42. Song CS, Rao TR, Demyan WF, Mancini MA, Chatterjee B, Roy AK. Androgen receptor messenger ribonucleic acid (mRNA) in the rat liver: changes in mRNA levels during maturation, aging, and calorie restriction. Endocrinology 128:349-356 (1991).

43. Roy AK, McMinn DM, Biwas NM. Estrogenic inhibition of the hepatic synthesis of alpha 2 globulin in the rat. Endocrinology 97:1505-1508 (1975).

44. Van Dijck P, Verhoeven G. Interaction of estrogen receptor complexes with the promoter region of genes that are negatively regulated by estrogens: the alpha 2-globulins. Biochem Biophys Res Commun 182:174-181 (1992).

45. Sippel AE, Feigelson P, Roy A. Hormonal regulation of the hepatic messenger RNA levels for alpha 2u globulin. Biochemistry 14:825-829 (1975).

46. Sippel AE, Kurzt DT, Morris HP, Feigelson P. Comparison of in vivo translational rates and messenger RNA levels of alpha 2u globulin in rat liver and Morris hepatoma 5123 D. Cancer Res 36:3588-3593 (1976).

47. Chatterjee B, Hopkins J, Dutchak D, Roy AK. Superinduction of alpha2u-globulin by actinomycin D: evidence for drug-mediated increase in A2u mRNA. Proc Nat Acad Sci USA 76:1833-1837 (1979).

48. Roy AK, Neuhau OW. Androgenic control of a sex-dependent protein in the rat. Nature 214:618-620 (1967).

49. Mancini MA, Song CS, Rao TR, Chatterjee B, Roy AK. Spatio-temporal expression of estrogen sulfotransferase within hepatic lobule of male rats: implication of in situ estrogen inactivation in androgen action. Endocrinology 131:1541-1546 (1992).

50. Gawonki CL, Haun CC, MacEwen JD, Vernot EH, Brunner RH, Amster RL, Cowan MJ Jr. A 90-day vapor inhalation toxicity study of decalin. Fundam Appl Toxicol 5:785-793 (1985).

51. NTP. Toxicology and Carcinogenesis Studies of d-Limonene (CAS No. 5989-27-5) in F344/N Rats and B6C3F1 Mice (Gavage Studies). TR-347. Research Triangle Park, NC:Toxicology Program, 1990.

52. NTP. Toxicology in the male rat kidney. Toxicol Pathol 14:194-203 (1986).

53. Montgomery CA, Seely JC. Kidney. In: Pathology of the Fischer Rat (Boorman GA, Eustis SL, Elwell MR, Montgomery CA, MacKenzie WF, eds). San Diego:Academic Press, 1990:127-153.

54. Borghoff SJ, Lagarde WH. Assessment of binding of 2,4,4-trimethyl-2-pentanol to low-molecular-weight proteins isolated from kidneys of male rats and humans. Toxicol Appl Pharmacol 119:228-235 (1993).

55. Borghoff SJ, Strasser JJ, Charbonneau M, Swenberg JA. Analysis of 2,4,4-trimethyl-2-pentanol (TMP-OH) binding to male rat kidney o2u-globulin (A2u) and other proteins. Toxicologist 8:315 (1988).

56. Borghoff SJ, Upson PB, Swenberg JA. Characteristics of 2,4,4-trimethyl-2-pentanol (TM-P0H) binding to A2u-globulin and other compounds that cause protein droplet nephropathy. Toxicologist 9:79 (1989).

57. Lock EA, Charbonne M, Strasser J, Swenberg JA, Bus JS. 2,2,4-Trimethylpentane-induced nephrotoxicity. II. The reversible binding of a TMP metabolite to a renal protein fraction containing alpha 2-globulin. Toxicol Appl Pharmacol 91:182-192 (1987).

58. Charbonneau M, Lock EA, Strasser J, Cox MG, Turner MJ, Bus JS. 2,2,4-Trimethylpentane-induced nephrotoxicity. I. Metabolic disposition of TMP in male and female Fischer 344 rats. Toxicol Appl Pharmacol 91:171-181 (1987).

59. Short BG, Burnett VL, Swenberg JA. Elevated proliferation of proximal tubule cells and localization of accumulated alpha 2u-globulin in F344 rats during chronic exposure to unleaded gasoline or 2,2,4-trimethylpentane. Toxicol Appl Pharmacol 101:414-431 (1989).

60. Borghoff SJ, Youtsey NL, Swenberg JA. A comparison of European high test gasoline and PS-6 unleaded gasoline in their abilities to induce alpha2-globulin nephropathy and renal cell proliferation. Toxicol Lett 63:21-33 (1992).

61. Bourhillier L, Greisen E, Brodeur J, Vialu C, Charbonneau M. Male rat specific nephrotoxicity resulting from subchronic administration of hexachlorobenzene. Toxicol Appl Pharmacol 110:315-326 (1991).

62. Ertuk E, Lambrecht RW, Peters HA, Cripps DJ, Gocmen A, Morris CR, Bryan GT. Oncogenicity of hexachlorobenzene. In: Hexachlorobenzene: Proceedings of an International Symposium (Morris CR, Cabral JR, eds). IARC Scientific Publications No 77. Lyon:International Agency for Research on Cancer, 1986:417-423.