Clinically relevant drug interactions with multikinase inhibitors: a review

Koen G. A. M. Hussaarts, G. D. Marijn Veerman, Frank G. A. Jansman, Teun van Gelder, Ron H. J. Mathijsjen and Roelof W. F. van Leeuwen

Abstract: Multikinase inhibitors (MKIs), including the tyrosine kinase inhibitors (TKIs), have rapidly become an established factor in daily (hemato-)oncology practice. Although the oral route of administration offers improved flexibility and convenience for the patient, challenges arise in the use of MKIs. As MKIs are prescribed extensively, patients are at increased risk for (severe) drug–drug interactions (DDIs). As a result of these DDIs, plasma pharmacokinetics of MKIs may vary significantly, thereby leading to high interpatient variability and subsequent risk for increased toxicity or a diminished therapeutic outcome. Most clinically relevant DDIs with MKIs concern altered absorption and metabolism. The absorption of MKIs may be decreased by concomitant use of gastric acid-suppressive agents (e.g. proton pump inhibitors) as many kinase inhibitors show pH-dependent solubility. In addition, DDIs concerning drug (uptake and efflux) transporters may be of significant clinical relevance during MKI therapy. Furthermore, since many MKIs are substrates for cytochrome P450 isoenzymes (CYPs), induction or inhibition with strong CYP inhibitors or inducers may lead to significant alterations in MKI exposure. In conclusion, DDIs are of major concern during MKI therapy and need to be monitored closely in clinical practice. Based on the current knowledge and available literature, practical recommendations for management of these DDIs in clinical practice are presented in this review.

Keywords: cytochrome P450 enzyme, drug–drug interaction, drug transporters, gastric acid suppression, metabolism, multikinase inhibitor

Received: 14 August 2018; revised manuscript accepted: 17 October 2018.

Introduction

Although cancer is still the leading cause of death among men and women worldwide, novel treatment options are rapidly evolving. In order to improve treatment efficacy and minimize toxicity more specific targets have been identified. One of the most promising classes of targeted anticancer agents are the multikinase inhibitors (MKIs), including the tyrosine kinase inhibitors (TKIs). MKIs target specific tyrosine kinases within the tumor cell, where they play a key role in signal transduction, gene transcription, and DNA synthesis.\(^1\) MKIs like osimertinib (for lung cancer) and cabozantinib (for kidney cancer) rapidly gained a place in standard of care treatment for multiple or new indications [e.g. regorafenib in primary liver cancer, after earlier approvals for gastrointestinal stromal tumor (GIST) and colorectal cancer].

MKIs include both small molecule MKIs and large molecule MKIs. In this review we will solely focus on the small molecule MKIs. Small molecule MKIs are administered orally, which gives them a clear advantage over conventional chemotherapy in terms of flexibility and patient convenience. Many MKIs show a narrow therapeutic window, whereas intra- and interpatient exposure is highly variable and multifactorial.\(^2\) \(^3\) \(^4\) Also factors like food, beverages, lifestyle, and pharmacogenetic polymorphisms may alter MKI bioavailability significantly.\(^5\) For example, as MKIs are predominately metabolized through phase I (e.g. CYP enzymes) or phase II enzymes...
Therapeutic Advances in Medical Oncology 11

(e.g. UPD-glucuronyltransferases) or almost exclusively by phase II enzymes (e.g. in the case of afatinib), this makes them highly prone for drug–drug interactions (DDIs) involving drug metabolism. Moreover, since cancer patients often use multiple drugs concomitantly with their anticancer therapy, they are even more at risk for DDIs, compared with other patient groups.

DDIs can be classified as pharmacodynamic or pharmacokinetic. Pharmacokinetic DDIs are defined as drug interactions regarding drug absorption, metabolism, distribution and elimination leading to altered plasma concentrations of a drug and possible unfavorable outcomes (e.g. increased toxicity and reduced treatment efficacy). A pharmacodynamic interaction is the altered response in terms of toxicity and efficacy when two or more drugs affect similar molecular targets (e.g. membrane receptors). Pharmacodynamic DDIs can be additive, antagonistic or synergistic. For instance, epidermal growth factor receptor (EGFR) kinase inhibitors often show synergistic antitumor effects when combined with chemotherapy.

Both the United States Food and Drug Administration (US FDA) and the European Medicines Agency (EMA) present guidelines for the interpretation of DDIs. However, because of discrepancies between recommendations, currently no clear general consensus for the management of DDIs is available. Therefore, the management of DDIs is challenging for clinicians and the need for a general consensus is urgent.

This review article presents an overview of known pharmacokinetic DDIs regarding orally taken MKIs currently approved by the US FDA and EMA. Moreover, if possible, practical recommendations are given for the management of DDIs during MKI therapy in clinical practice.

Methods
We conducted a search in PubMed and the Embase databases for English language studies published until 2 July 2018 for randomized clinical trials, observational studies, and reviews about US FDA and EMA-approved MKIs. We used the following search MESH terms: ‘(Drug interactions) OR (Drug combination) AND (Drug name)’. In Embase, we used ‘clinical studies’, ‘humans’ and ‘only in English’ as additional search limits. The search results were manually screened for relevance. In addition, all MKI (US FDA and EMA) assessment reports were screened on the latest updates regarding DDIs in the scientific updates available at the EMA and US FDA website until 2 July 2018. We included clinical drug–drug interaction studies in human and preclinical pharmacokinetic studies investigating possible interactions. We excluded studies which did not focus on pharmacokinetics or drug interactions. Clinical relevance of the interaction was scored on the basis of the US FDA-classification of the effect of drug interactions and the level of available evidence as a ‘major’, ‘moderate’ or ‘minor’ interaction. If there was no clinical pharmacokinetic study performed, the interaction potential was estimated on the basis of the inhibitory concentration or pKa and the advice in the assessment reports.

Absorption

Intragastric pH
The absorption of MKIs can be significantly affected by altered intragastric pH. When intragastric pH is elevated (e.g. due to proton pump inhibitors; PPIs), the MKI solubility, bioavailability, and eventually treatment efficacy may be significantly influenced (Figure 1). The impact of this ‘pH effect’ is highly variable per MKI and the clinical relevance of the DDI between MKIs and acid-suppressive agents (e.g. PPIs, H₂-antagonists and antacids) must be assessed on an individual basis. A complete overview can be found in Table 1.

Indecisive guidelines and the fact that 20–30% of all cancer patients have an indication for the use of acid-suppressive agents (ASAs) complicate the management of this DDI. The general consensus is, if possible, to avoid the combination between MKIs and ASAs. However, if there is a distinct indication for an ASA (e.g. Barrett’s esophagus), a clear and practical advice to manage the DDI between MKIs and ASAs must be assessed on an individual basis. A complete overview can be found in Table 1.

This review article presents an overview of known pharmacokinetic DDIs regarding orally taken MKIs currently approved by the US FDA and EMA. Moreover, if possible, practical recommendations are given for the management of DDIs during MKI therapy in clinical practice.

In this review article, we present an overview of known pharmacokinetic DDIs regarding orally taken MKIs currently approved by the US FDA and EMA. Moreover, if possible, practical recommendations are given for the management of DDIs during MKI therapy in clinical practice.
and thus with a great impact of the ‘pH effect’ as mentioned in Figure 1 and Table 1.

MKIs and PPIs. Since PPIs do not elevate intragastric pH over the full 24 h-range, a window of relatively low intragastric pH may be used to manage the DDI.\(^{38}\) If there is a hard indication for PPI use, MKIs should be taken at least 2 h before the PPI in the morning in a once-daily regimen, since MKIs can be absorbed completely within this window.\(^{13,38}\) Another possibility is to administer a MKI with an acidic beverage such as cola (pH = 2.5) to manage the DDI, since the acidic beverage temporarily decreases stomach pH resulting in better MKI solubility and absorption.\(^{23}\) Furthermore, the influence of other acidic beverages [e.g. sprite (pH = 3.4) or orange juice (pH = 3.3)] on the absorption of MKIs has not been studied yet.

MKIs and H\(_2\)-antagonists. Since most H\(_2\)-antagonists show a short plasma half-life and are administered in a twice daily regimen (e.g. ranitidine), MKIs should be taken at least 2 h before or 10 h after the H\(_2\)-antagonist intake according to US FDA and EMA guidelines.\(^{14,15}\)

Management MKIs and antacids. Antacids are relatively short-acting agents (e.g. magnesium hydroxide). MKIs should be administered at least 2 h before, or 4 h after antacid intake, to manage this DDI.\(^{14,15}\)

Drug transporters and intestinal enzymes

As mentioned previously, MKI absorption is a multifactorial process mediated and affected by passive diffusion, active transport through multiple drug transporters, and intestinal metabolism.\(^{7}\) The activity of these drug transporters and intestinal enzymes may significantly influence MKI bioavailability.

Drug transporters are located throughout the body, especially in the gut, bile ducts, kidneys and the blood–brain barrier (Figure 2).\(^{39}\) The US FDA states: ‘membrane transporters can have clinically relevant effects on the pharmacokinetics and pharmacodynamics of a drug in various organs and tissues by controlling its absorption, distribution, and elimination. In contrast to drug metabolizing enzymes that are largely expressed in the liver and
MKI (year of marketing approval)	Acid-suppressive compound	Decrease in C_{max}	Decrease in AUC	Clinical relevance	Recommendations	References
Afatinib (2013)	Not reported yet [a clinical trial is currently ongoing (NTR: 6652)]	NA	NA	Minor	Based on pKa a nonclinically relevant interaction is expected.	EMA; US FDA
Alectinib (2017)	Esomeprazole at least one hour before a regular breakfast for 5 days. Alectinib was administered 30 min after breakfast	16%	22%	Minor	Although the effects are minimal preferably avoid the use of acid-suppressive agents. Otherwise apply separate administration times or consider short-acting antacids.	EMA; US FDA; Morcos and colleagues
Axitinib (2012)	Rabeprazole 20 mg for 5 consecutive days 3 h prior to axitinib intake	42%	5%	Minor	No interventions needed. Concomitant acid suppression can be used safely.	EMA; US FDA; Rugo and colleagues
Bosutinib (2013)	Lansoprazole 60 mg/day for 2 consecutive days	46%	26%	Minor	Avoid the use of acid-suppressive agents. Otherwise apply separate administration times or consider short-acting antacids.	EMA; US FDA; Abbas and colleagues
Cabozantinib (2016)	Esomeprazole 40 mg delayed release capsule for 6 days 1 h before cabozantinib intake	10%	9%	Minor	No interventions needed. Concomitant acid suppression can be used safely.	EMA; US FDA; Nguyen and colleagues
Ceritinib (2015)	Esomeprazole 40 mg for 6 consecutive days 1 h before ceritinib intake	79% (healthy subjects) 25% (patients) 76% (healthy subjects) 30% (patients)	Moderate	Avoid the use of acid-suppressive agents. Otherwise separate administration times. Antacids might be used 4 h before or 2 h after ceritinib intake or H$_2$-antagonists can be used 10 h before or 2 h after ceritinib intake.	EMA; US FDA; Lau and colleagues	
Cobimetinib (2015)	Rabeprazole 20 mg for 5 days prior to cobimetinib administration in a fasted and nonfasted state. In the fasted state concomitantly with cobimetinib and 1 h before cobimetinib in the nonfasted state	14% in the nonfasted state	<11%	Minor	No interventions needed. Concomitant acid suppression can be used safely.	EMA; US FDA; Musib and colleagues
MKI (year of marketing approval)	Acid-suppressive compound	Decrease in C_{max}	Decrease in AUC	Clinical relevance	Recommendations	References
---------------------------------	---------------------------	-----------------------------	-----------------	-------------------	----------------	------------
Crizotinib (2012)	Esomeprazole 40 mg for 5 days concomitant with crizotinib	0%	10%	Minor	No interventions needed. Concomitant acid suppression can be used safely.	EMA; US FDA
Dabrafenib (2013)	Rabeprazole 40 mg for 4 consecutive days concomitant with dabrafenib	12%	3%	Minor	No interventions needed. Concomitant acid suppression is considered safe.	EMA; US FDA
Dasatinib (2006)	Omeprazole 40 mg for 4 consecutive days with dasatinib Maalox 30 ml concomitantly with dasatinib Maalox 30 ml 2 h before dasatinib Famotidine 40 mg 10 h before dasatinib	42%	43%	Moderate	Avoid the use of acid-suppressive agents. Otherwise apply separate administration times. H_2-antagonists can be used 2 h after dasatinib intake. Antacids can be used 2 h before or after dasatinib intake.	EMA; US FDA; Eley and colleagues
Erlotinib (2005)	Omeprazole 40 mg for 7 consecutive days with erlotinib Ranitidine 300 mg once daily concomitantly with erlotinib Ranitidine 150 mg twice daily concomitantly with erlotinib	61%	46%	Moderate	Avoid the use of acid-suppressive agents. Otherwise apply separate administration times. Or H_2-antagonist should be used 2 h after erlotinib intake. Antacids can be used 4 h before or 2 h after erlotinib intake. Furthermore cola may increase erlotinib absorption.	EMA; US FDA; van Leeuwen and colleagues; Kletzl and colleagues
Gefitinib (2009)	Ranitidine 450 mg twice daily 1 day before gefitinib intake	71%	47%	Moderate	Avoid the use of acid-suppressive agents. Otherwise apply separate administration times. Antacids may be used 2 h before or after gefitinib intake.	EMA; US FDA; Yokota and colleagues
Ibrutinib (2014)	Omeprazole 40 mg for 5 days in a fasted condition 2 h before ibrutinib intake	63%	nonsignificant difference	Minor	No interventions needed. Concomitant acid suppression can be used safely.	EMA; US FDA; de Jong and colleagues
Imatinib (2001)	Omeprazole 40 mg for 5 consecutive days 15 min before imatinib intake	3%	7%	Minor	No interventions needed. Concomitant acid suppression can be used safely.	EMA; US FDA; Sparano and colleagues; Egorin and colleagues
MKI (year of marketing approval)	Acid-suppressive compound	Decrease in C_{max}	Decrease in AUC	Clinical relevance	Recommendations	References
--------------------------------	---------------------------	-----------------------------	---------------	-----------------	----------------	------------
Lapatinib (2008)	Esomeprazole 40 mg for 7 consecutive days in the evening (12 h before lapatinib intake)	NA	26%	Minor	Avoid the use of acid-suppressive agents. Otherwise apply separate administration times. Antacids may be used 2 h before or after lapatinib intake.	EMA; US FDA
Lenvatinib (2015)	H2-blockers, antacids, PPIs not further specified in a PBPK analysis	nonsignificant difference	nonsignificant difference	Minor	No clinical studies, but concomitant use with acid-suppressive therapy is considered safe due to a PBPK analysis.	EMA; US FDA
Nilotinib (2007)	Esomeprazole 40 mg for 5 consecutive days 1 h before nilotinib intake	27%	34%	Minor	Avoid the use of acid-suppressive agents. Otherwise apply separate administration times. Antacids may be used 2 h before or after nilotinib intake or H2-antagonists can be used 10 h before or 2 h after nilotinib intake.	EMA; US FDA; Yin and colleagues
Nintedanib (2015)	No clinical study	NA	NA	Moderate	No clinical studies available, however nintedanib bioavailability decreases rapidly with increasing pH so a gastric acid-suppressive drug is likely to give a DDI.	EMA; US FDA
Osimertinib (2016)	Omeprazole 40 mg in a fasted state for 5 consecutive days	2%	7%	Minor	No interventions needed. Concomitant acid suppression can be used safely.	EMA; US FDA
Pazopanib (2010)	Esomeprazole 40 mg for 5 consecutive days	42%	40%	Minor	Pazopanib should be taken at least 2 h before or 10 h after a dose of an H2-antagonist. Antacids can be used 4 h before or 2 h after pazopanib intake. PPIs should be administered concomitantly with pazopanib in the evening.	EMA; US FDA; Tan and colleagues
MKI (year of marketing approval)	Acid-suppressive compound	Decrease in C_{max}	Decrease in AUC	Clinical relevance	Recommendations	References
-------------------------------	---------------------------	-----------------------------	----------------	-------------------	----------------	------------
Ponatinib [2013]	Lansoprazole 60 mg for 2 consecutive days concomitantly with ponatinib	25%	1%	Minor	No interventions needed. Concomitant acid-suppressive therapy is considered safe.	EMA; US FDA; Narasimhan and colleagues
Regorafenib [2013]	Esomeprazole 40 mg for 5 consecutive days 3 h before and concomitantly with regorafenib. A clinical study was recently finished [De Man et al; Clin Pharmacol Ther in press.]	NA	NA	Minor	No clinical studies available. However regorafenib is considered to be safe since regorafenib pKa is high.	EMA; US FDA15
Ruxolitinib [2012]	No clinical study	NA	NA	Minor	No clinical studies available. Concomitant acid-suppressive therapy is considered safe, since pKa of ruxolitinib is high.	EMA; US FDA15
Sorafenib [2006]	Omeprazole 40 mg for 5 consecutive days	no significant difference	no significant difference	Minor	No interventions needed. Concomitant acid-suppressive therapy is considered safe.	EMA; US FDA15
Sunitinib [2006]	No clinical study	NA	NA	Minor	Sunitinib shows high solubility and therefore concomitant acid-suppressive therapy is considered safe. However survival seems to be lower in patients using ASA.	EMA; US FDA; Olivier and colleagues
Tivozanib [2017]	No clinical study	NA	NA	Moderate	No clinical studies available. However adverse event rate was higher in PPI users, which suggests higher tivozanib plasma levels due to a DDI.	EMA; US FDA15
Table 1. (Continued)

MKI (year of marketing approval)	Acid-suppressive compound	Decrease in C_{max}	Decrease in AUC	Clinical relevance	Recommendations	References
Trametinib (2014)	No clinical study	NA	NA	Minor	Trametinib shows consistent solubility over all pH values. Therefore, concomitant acid-suppressive therapy is considered safe.	EMA; US FDA
Vandetanib (2012)	Omeprazole 40 mg for 5 days concomitantly 150 mg ranitidine for 5 days concomitantly with vandetanib	15%	6%	Minor	No interventions needed. Concomitant acid-suppressive therapy is considered safe.	EMA; US FDA; Johansson and colleagues
Vemurafenib (2012)	No clinical study	NA	NA	Minor	No interventions needed. Concomitant acid-suppressive therapy is considered safe.	EMA; US FDA

Clinical relevance is scored by means of the US FDA Clinical Drug Interaction Studies, Study Design, Data Analysis, and Clinical Implications Guidance for Industry as a guideline as Major (AUC increase \geq80%), Moderate (AUC increase \geq50–<80%), Minor (AUC increase \geq20–<50%) and by taking into account the performed study and the available evidence regarding pKa and the available assessment report. AUC, area under the curve; DDI, drug–drug interaction; EMA, European Medicines Agency; MKI, multikinase inhibitor; NA, not applicable/unknown; PBPK, physiologically based pharmacokinetic model; PPI, proton pump inhibitor; US FDA, United States Food and Drug Administration.
Therefore, the effect of a DDI considering drug transporters may be of greater clinical relevance than is assumed so far.

Furthermore, efflux drug transporters like P-glycoprotein, or P-gp (ATP-binding cassette subfamily B member 1, ABCB1) and also breast cancer resistance protein (BCRP; ATP-binding cassette subfamily G member 2, ABCG2) may play a crucial role in drug absorption and enterohepatic recirculation. Enterohepatic recirculation is the process in which foreign chemicals are absorbed
into the portal blood stream and metabolized by hepatocytes, secreted into the bile and eventually are reabsorbed after secretion of bile in the gut lumen. In this multi-step process drug transporters like P-gp and BCRP play a significant role. Other drug efflux transporters that may influence MKI bioavailability are the multidrug resistance protein subfamily (ATP-binding cassette subfamily C member 1 to 12, ABCC1 to 12, like MRP1) and the multi-antimicrobial extrusion protein (MATE), while several uptake transporters may be involved as well [e.g. organic anion transporting peptides (OATPs), organic anion transporters (OATs), and organic cation transporters (OCTs), see Figure 2].

Many drugs are known P-gp inhibitors (e.g. verapamil) or act as a strong P-gp-inducer (e.g. rifampicin). Drugs like cyclosporine, an inhibitor of several OATPs (e.g. OATP1B1 and BCRP) and cimetidine (OCT2 inhibitor) may influence other drug transporters as well. For example, nintedanib showed a decrease in both area under the curve (AUC) and maximum concentration (Cmax) when co-administered with rifampicin. Since nintedanib is almost exclusively metabolized by phase II enzymes, this effect on AUC and Cmax is most likely due to P-gp induction. In general the use of strong P-gp or BCRP inhibitors or inducers is discouraged when MKIs are substrates for these transporters. Furthermore, many MKIs show inhibition of several drug transporters by themselves (Table 2).

In intestinal metabolism, MKIs are predominately metabolized by CYP enzymes into either active or inactive metabolites. For some MKIs, like nintedanib, phase II metabolism through UDP-glycosyltransferases (UGTs), glutathione S-transferases and sulfotransferases (SULTs) is dominant in their metabolism. Inhibition or induction of these phase I and II enzymes by co-administered medication may lead to either (severe) toxicity or loss of effective MKI therapy, respectively.

As DDIs with strong CYP3A4 inhibitors and inducers (e.g. ketoconazole and rifampicin, respectively) play a significant role in MKI therapy, they are usually well described and clear recommendations for the management of these DDIs are presented in the assessment report. There are many (strong) inducers or inhibitors of CYP enzymes for which a complete overview can be found at the FDA and EMA websites. Moreover, some MKIs (e.g. imatinib, pazopanib) also displayed inhibitory or inducing activity by themselves. The general advice is to avoid coadministered medication with strong inhibitors or inducers of CYP enzymes. If this is not possible, a MKI dose...
Table 2. DDIs with drug transporters.

MKI	Substrate	Inhibits	C_{max}	AUC	Clinical implications	Interaction potential	References
Afatinib	P-gp, BCRP	in vitro	Ritonavir: 38% increase	Ritonavir: 48%	For strong P-gp and BCRP inhibitors (e.g. ritonavir, cyclosporine) use staggered dosing, preferably 6 h or 12 h apart from afatinib. When afatinib is administered with a strong P-gp inducer (e.g. rifampicin) increase the afatinib dose with 10 mg with close monitoring of side effects. For substrates of P-gp and BCRP close monitoring of side effects is recommended.	Moderate	EMA;14 US FDA;15 Wind and colleagues43
			Rifampicin: 22% decrease	increase			
Alectinib	M4 is a P-gp substrate	in vitro	P-gp, BCRP	NA	When alectinib is co-administered with P-gp or BCRP substrates appropriate monitoring of side effects of these substrates is recommended.	Minor	EMA;14 US FDA;15 Morcos and colleagues44
				NA			
Axitinib	P-gp, BCRP	in vitro	P-gp, BCRP	NA	appropriate monitoring of side effects is recommended when axitinib is used with P-gp and BCRP substrates or inhibitors and inducers.	Minor	EMA;14 US FDA15
				NA			
Bosutinib	P-gp	in vitro	P-gp, BCRP, OCT1	NA	Clinical relevant interactions with drug transporters are not likely to appear.	Minor	EMA;14 US FDA;15 Abbas and colleagues;18 Hsyu and colleagues45
			dabigatran (P-gp substrate): no effect	dabigatran pharmacokinetics			
Cabozantinib	MRP2	in vitro	P-gp, BCRP, MATE1, MATE2	NA	Appropriate monitoring is recommended when using substrates of P-gp of BCRP. Interactions with MATE1-2 in clinically relevant concentrations are unlikely. If necessary, a 20 mg dose alteration may be applied. Close monitoring of side effects is warranted when administered with strong MRP2 inhibitors (e.g. cyclosporine).	Moderate	EMA;14 US FDA15
				NA			

(Continued)
MKI	Substrate	Inhibits	C_{max}	AUC	Clinical implications	Interaction potential	References	
Ceritinib	P-gp	P-gp, BCRP	NA	NA	Concomitant administration with strong inducers or inhibitors of P-gp must be avoided since plasma concentration of ceritinib might be altered. Close monitoring of side effects is warranted when administered with P-gp or BCRP substrates. However CYP DDIs are of greater influence.	Minor, since interactions regarding CYP enzymes are of greater clinical importance	EMA; US FDA	
Cobimetinib	P-gp	in vitro: BCRP, OATP1B1, OATP1B3, OCT1	NA	NA	Concomitant administration with strong P-gp inducers or inhibitors must be avoided. Appropriate monitoring is recommended when using BCRP, OATP1B1, OATP1B3, OCT1 substrates.	Moderate	EMA; US FDA; Musib and colleagues	
Crizotinib	P-gp	in vitro: P-gp, OCT1, OCT2	NA	NA	Appropriate monitoring of side effects is recommended when using concomitant P-gp substrates, inhibitors and inducers. Furthermore, close monitoring is recommended when using P-gp, OCT1, OCT2 substrates.	Minor, since CYP interactions are of greater clinical importance	EMA; US FDA	
Dabrafenib	P-gp, BCRP	in vitro: OATP1B1, OATP1B3, BCRP	Rosuvastatin: 160% increase	Rosuvastatin: 7% increase	Dabrafenib is not likely to have a clinically relevant interaction with OATP1B1, OATP1B3 and BCRP. Concomitant use with substrates of these transporters is considered safe. The influence of P-gp and BCRP inhibitors or inducers is considered to be small since the bioavailability of dabrafenib is high (95%), therefore only limited pharmacokinetic effects can be expected.	Minor	EMA; US FDA	
Dasatinib	P-gp, BCRP	NA	NA	NA	Concomitant administration with strong inducers or inhibitors of P-gp and BCRP must be avoided or side effects must be monitored closely when administered with strong inhibitors.	Minor	EMA; US FDA; Haouala and colleagues	
Table 2. (Continued)

MKI	Substrate	Inhibits	C_{max}	AUC	Clinical implications	Interaction potential	References
Erlotinib	P-gp, BCRP	in vitro: OCT2, OAT3	NA	NA	Concomitant administration with strong inducers or inhibitors of P-gp or BCRP must be avoided since an altered plasma concentration is possible. Administration with OCT2 and OAT3 substrates should be avoided.	Moderate	EMA;¹⁴ US FDA;¹⁵ Marchetti and colleagues;⁴⁷ Sprowl and colleagues;⁴⁹ Elmeliegy and colleagues⁵⁰
Gefitinib	P-gp, BCRP	in vitro: BCRP, P-gp	NA	In vitro Irinotecan: AUC irinotecan 63% increase	Concomitant administration with P-gp and BCRP substrates should be avoided. BCRP inhibition is 10-fold stronger than P-gp inhibition. So especially be careful when gefitinib is combined with BCRP substrates. Avoid the use of strong BCRP or P-gp inhibitors or inducers since gefitinib plasma concentration may be altered.	Moderate	EMA;¹⁴ US FDA;¹⁵ Stewart and colleagues⁵⁰
Ibrutinib	NA	in vitro: P-gp, BCRP	NA	NA	When P-gp or BCRP substrates are used, they should be taken at least 6 h before or after ibrutinib intake. Inhibitors or inducers of transporters are not likely to result in clinically meaningful changes in ibrutinib pharmacokinetics and can be used concomitantly.	Minor	EMA;¹⁴ US FDA;¹⁵ de Jong and colleagues⁵¹
Imatinib	P-gp, BCRP	in vitro: BCRP	NA	NA	A clinical relevant interaction with P-gp or BCRP inhibitors or inducers may be possible. Close monitoring of substrate specific side effects is advised when used concomitantly with BCRP substrates. Although the interaction potential is considered to be low.	Minor	EMA;¹⁴ US FDA;¹⁵ Eechoute and colleagues⁵²
Lapatinib	P-gp, BCRP, OATP1B1	in vitro: P-gp, BCRP, Digoxin (P-gp substrate): 100% increase (digoxin)	Digoxin (P-gp substrate): 60–80% increase (digoxin)	Lapatinib is highly susceptible for interactions regarding drug transporters. When using P-gp, BCRP, OATP1B1 substrates close monitoring of side effects is recommended. The use of strong P-gp and BCRP inhibitors or inducers should be avoided.	Major	EMA;¹⁴ US FDA;¹⁵ Koch and colleagues⁵³	
MKI	Substrate	Inhibits	C_{max}	AUC	Clinical implications	Interaction potential	References
------------	-----------	---------------------------	------------------	--------------	---	-----------------------	----------------------------
Lenvatinib	P-gp, BCRP, MDR1	in vitro: P-gp, BCRP, OATP1B3	Ketoconazole: 19% increase single-dose rifampicin: 33% increase	Ketoconazole: 15% increase single-dose rifampicin: 31% increase	Clinical relevant interactions with strong inhibitors or inducers of P-gp, BCRP are not likely to appear, but close monitoring for lenvatinib specific side effects is recommended. Concomitant administration with P-gp, BCRP and OATP1B3 substrates should be avoided.	Minor	EMA;14 US FDA;15 Shumaker and colleagues 54,55
Nilotinib	P-gp, BCRP	in vitro: P-gp, BCRP	NA	Imatinib (CYP3A4/P-gp inhibitor): nilotinib AUC increased with 18–40%	Concomitant administration with strong P-gp or BCRP inducers or inhibitors must be avoided since an altered plasma concentration is possible otherwise side effects should be monitored closely.	Minor	EMA;14 US FDA;15 Lemos and colleagues56
Nintedanib	P-gp	in vitro: P-gp, OCT1, BCRP	Ketoconazole: 83% increase Rifampicin: 60% decrease	Ketoconazole: 61% increase Rifampicin: 50% decrease	when administered with strong P-gp inhibitors a 100mg step-wise dose reduction must be considered. The duration of therapy with strong inducers must be minimized since inadequate plasma levels of nintedanib might occur. Concomitant administration with P-gp, BCRP and OCT1 substrates should be avoided.	Major	EMA;14 US FDA15
Osimertinib	P-gp, BCRP	in vitro: P-gp, BCRP	Rosuvastatin (BCRP substrate): 72% increase	Rosuvastatin (BCRP substrate): 35% increase	Concomitant administration with strong P-gp and BCRP inducers or inhibitors must be avoided since an altered plasma concentration is likely. When co-administered with BCRP or P-gp substrates close monitoring of side effects is recommended.	Minor	EMA;14 US FDA15
Pazopanib	P-gp, BCRP	in vitro: OATP1B1, P-gp, BCRP	Lapatinib (P-gp and BCRP inhibitor) 60% increase	Lapatinib (P-gp and BCRP inhibitor): 50% increase	Co-administration with strong P-gp or BCRP inhibitors must be avoided. Close monitoring of side effects is advised when used concomitantly with P-gp or BCRP substrates.	Moderate	EMA;14 US FDA15
Table 2. (Continued)

MKI	Substrate	Inhibits	C_{max}	AUC	Clinical implications	Interaction potential	References
Ponatinib	P-gp, BCRP	*in vitro*: P-gp, BCRP	NA	NA	Appropriate monitoring is recommended when co-administered with P-gp or BCRP substrates. Also, the use of strong inhibitors or inducers of P-gp, BCRP must be avoided, although DDI potential is considered to be low since ponatinib is only a weak substrate for P-gp and BCRP.	Minor	EMA; FDA¹⁴ US FDA¹⁵
Regorafenib	P-gp, BCRP	*in vitro*: BCRP regorafenib has no effect on digoxin AUC	Rosuvastatin (BCRP substrate): 360% increase	Rosuvastatin (BCRP substrate): 280% increase	BCRP substrates should be used with caution. When administered with strong inhibitors or inducers of P-gp and BCRP close observation of side effects is warranted.	Major	EMA; FDA¹⁴ US FDA¹⁵
Ruxolitinib	NA	*in vitro*: P-gp, BCRP	NA	NA	When ruxolitinib is administered with P-gp or BCRP substrates close monitoring of side effects is advised for these substrates. DDI potential can be minimized if time between administration is kept apart as long as possible.	Minor	EMA; FDA¹⁴ US FDA¹⁵
Sorafenib	P-gp, OATP1B1, OATP1B3, MRP2-3	P-gp	NA	NA	Concomitant administration with strong inhibitors or inducers of P-gp, OATP1B1, OATP1B3 and MRP2-3 should be avoided. Administration with P-gp substrates should be done with caution.	Moderate	EMA; FDA;¹ Bins and colleagues⁵⁷
Sunitinib	P-gp	*in vitro*: P-gp, BCRP co-administration with gefitinib (BCRP inhibitor) did not result in significant AUC changes of sunitinib	NA	NA	Appropriate monitoring is recommended when co-administered with P-gp or BCRP substrates. Also, the use of strong inhibitors or inducers of P-gp must be avoided.	Minor	EMA; FDA¹⁴ US FDA¹⁵
Tivozanib	NA	*in vitro*: BCRP	NA	NA	Co-administration with BCRP substrates must be avoided or side effects must be monitored closely.	Minor	EMA; FDA¹⁴ US FDA¹⁵

(Continued)
MKI Substrate Inhibits C\textsubscript{max} AUC Clinical implications Interaction potential References

Trametinib P-gp \textit{in vitro}: P-gp, BCRP, OAT1, OAT3, OATP1B1, OATP1B3, OATP2B1, OCT2, and MATE1 NA NA Co-administration of strong inhibitors or inducers of P-gp must be avoided. When P-gp, BCRP, OAT1, OAT3, OATP1B1, OATP1B3, OCT2 and MATE1 substrates are used, staggered dosing must be applied (at least 2 h apart) to minimize DDI risk. However, based on the low dose and low clinical systemic exposure relative to the \textit{in vitro} inhibition or induction potential this is not expected to be of \textit{in vivo} significance. Minor EMA14 US FDA15

Vandetanib NA \textit{in vitro}: P-gp, BCRP, OCT2 Metformin (OCT-2 substrate) increased with 50\% Digoxin (P-gp substrate) increased with 29\% Metformin (OCT-2 substrate) increased with 74\% Digoxin (P-gp substrate) increased with 23\% Co-administration with P-gp, BCRP, OCT2 substrates must be avoided and side effects must be monitored closely. Concomitant intake with strong inhibitors or inducers of drug transporters is safe. Moderate EMA14 US FDA15 Johansson and colleagues35

Vemurafenib P-gp, BCRP \textit{in vitro}: P-gp, BCRP Digoxin (P-gp substrate) increased 50\% Digoxin (P-gp substrate) increased 80\% Concomitant administration with strong inhibitors or inducers of P-gp and BCRP should be avoided. Appropriate monitoring is recommended when co-administered with P-gp or BCRP substrates. Major EMA14 US FDA15 Zhang and colleagues59

Clinical relevance is scored by means of the US FDA Clinical Drug Interaction Studies, Study Design, Data Analysis, and Clinical Implications Guidance for Industry as a guideline as major (AUC increase $\geq 80\%$), moderate (AUC increase ≥ 50 to $< 80\%$), minor (AUC increase ≥ 20 to $< 50\%$) taken into account the available evidence for both change in AUC of MKI and change in AUC for transporter substrates, since there is no separate scoring system for drug transporter interactions. If there was no clinical evidence, clinical relevance was estimated on the basis of available evidence regarding inhibitory concentrations and the assessment report. Interaction potential was then scored as minor or at most moderate.

Strong drug transporter inhibitors: P-gp: amiodarone, carvedilol, clarithromycin, dronedarone, itraconazole, lapatinib, lopinavir, propafenone, quinine, ranolazine, ritonavir, saquinavir, telaprevir, tipranavir and ritonavir, verapamil. BCRP: curcumin, cyclosporine, eltrombopag OATP1B1/OATP1B3: atazanavir, ritonavir, clarithromycin, cyclosporine, erythromycin, gemfibrozil, lopinavir, rifampin [single dose], simprevir OAT1/OAT3: p-aminohippuric acid [PAH], probenecid, teriflunomide, MATE1/MATE2-K: cimetidine, dolutegravir, isavuconazole, ranolazine, trimethoprim, vandetanib strong drug transporter inducers: P-gp: rifampicin, carbamazepine, phenytion, St. John’s wort, ritonavir.10,41,58

AUC, area under the curve; BCRP, breast cancer resistance protein (ABCG2); DDI, drug–drug interaction; EMA, European Medicines Agency; MATE, multi-an antimicrobial extrusion protein; MKI, multikinase inhibitor; MRP, multidrug resistance associated protein; NA, not applicable or only preclinical data available; OAT, organic anion transporters; OATP, organic anion transporting peptides; OCT, organic cation transporters; P-gp, P-glycoprotein (ABCB1); US FDA, United States Food and Drug Administration.
adjustment, based on the advice given in the assessment report is recommended. For strong inducers a gradual dose escalation of the prescribed dose is advised with close monitoring of MKI-specific side effects. For an overview of clinically relevant DDIs and for practical recommendations see Table 3.14,15,41,43,44,67-69,71–93

Interactions with novel MKIs

In the last decade there has been a significant increase in the development of and treatment with MKIs resulting in more than a doubling of registered MKIs in the past 5 years. Earlier, we described the DDIs with MKIs which were approved before 1 August 2013.6 Here, we give an extensive overview of the DDI potential and management of the novel MKIs, which have been approved after August 2013. A complete overview including all (new and older) MKIs is presented in Tables 1–3.

Afatinib. Afatinib is used in the treatment of non-small cell lung cancer (NSCLC). It is a substrate of P-gp and BCRP and is mainly metabolized through enzyme-catalyzed Michael adduct formation (phase II) and only in a minor extent to phase I enzymes like CYP3A4 and FMO (2%).14,15 Concomitant administration with ritonavir (a P-gp inhibitor) showed a 48% increase in AUC and 39% increase in Cmax.43 Treatment with a potent P-gp inducer (rifampicin) prior to single-dose afatinib showed a moderate effect on both afatinib AUC and Cmax (34% and 22% decrease respectively).43 When afatinib is administered with strong P-gp and BCRP inhibitors, staggered dosing may be used, preferably 6 h or 12 h apart from afatinib intake. When afatinib is administered with strong P-gp inducers the dose may be increased with 10 mg with close monitoring of side effects. Administration with strong CYP inducers or inhibitors is considered safe, since no CYP enzymes are involved in afatinib metabolism. Furthermore in vitro studies showed afatinib itself to be an inhibitor of P-gp and BCRP, so close monitoring of side effects when administered with substrates for these transporters with a narrow therapeutic window is recommended.14,15

Alectinib. The anaplastic lymphoma kinase (ALK) inhibitor alectinib is used in the treatment of metastatic lung cancer. Alectinib as well as its M4 metabolite are considered equally active. Alectinib is primary metabolized by CYP3A4.14,15 Co-administration with the strong CYP3A4 inhibitor posaconazole resulted in a 75% increase of AUC, while co-administration with rifampicin led to a 73% decrease in alectinib AUC.44 Since alectinib and M4 are equally active, a dose modification is not necessary (unless patients experience a significant increase in toxicity) when alectinib is administered with strong inhibitors or inducers of CYP3A4. Since alectinib is a P-gp and BCRP inhibitor, close monitoring of side effects of these substrates is recommended, especially for drugs with a narrow therapeutic window (e.g. digoxin).

Bosutinib. Bosutinib is used in the treatment of chronic myeloid leukemia (CML). Although bosutinib is a P-gp substrate and inhibitor, DDIs are not likely to appear, since clinical studies demonstrated no significant effect on dabigatran (P-gp substrate) or bosutinib (when administered with the P-gp inhibitor lansoprazole) pharmacokinetics.18,45 Therefore no bosutinib dose reductions are necessary, when administered with strong P-gp inducers or inhibitors. Bosutinib is mainly metabolized through CYP3A4 and co-administration with the strong inhibitor ketoconazole resulted in 420% increase in Cmax and 760% increase in AUC.74 Administration with rifampicin showed a significant 86% reduction in Cmax and a 92% decrease in AUC of bosutinib. Administration with the moderate inhibitor aprepitant also showed an increase in AUC and Cmax.73 In conclusion; strong inhibitors or inducers of CYP3A4 must be avoided or a gradual 20% dose reduction should be applied, when co-administered with strong inhibitors of CYP3A4. Increasing the bosutinib dose is not useful, when co-administered with strong CYP3A4 inducers, since a maximal tolerated bosutinib dose of 600 mg is often not sufficient to compensate for the relatively large loss of exposure.14,15

Cabozantinib. Cabozantinib is used in the treatment of medullary thyroid carcinoma and renal cell carcinoma (RCC). Since cabozantinib is a P-gp and BCRP inhibitor, close monitoring of side effects of substrates with a narrow therapeutic window is recommended when co-administered with cabozantinib.14,15 A study with ketoconazole and rifampicin showed a significant change in AUC (38% increase and 77% decrease, respectively).75 There was no significant effect of cabozantinib on rosiglitazone (a CYP2C8 substrate) plasma pharmacokinetics, indicating no inhibitory effect on CYP2C8 in contrast to the in vitro data.75 The product label recommends minimizing the risk of a
Table 3. DDIs regarding drug metabolism.

MKI	Major CYP	Minor CYPs and others	Inhibitory activity	Inducing activity	Inhibitory compound	Inducing compound	Change in C_{max}	Change in AUC	Clinical recommendations	Clinical relevance	References
Afatinib	mainly due to non-enzyme-catalyzed Michael adduct formation	FMO3, CYP3A4	NA	NA	ritonavir	38% increase	48% increase	No DDI is expected, combination with CYP inducers or inhibitors is considered safe. The effect is most likely through P-gp induction and inhibition.	Minor	EMA; US FDA; Wind and colleagues	
Alectinib	CYP3A4	CYP2C8, CYP3A5	There was no influence on midazolam (CYP3A4 substrate) pharmacokinetics	CYP1A2, CYP2B6, CYP3A4	Posaconazole	18% increase	79% increase	Since alectinib metabolites are equally effective as alectinib strong inhibitors or inducers of CYP3A4 can be safely combined with close monitoring of side effects from alectinib.	Minor	EMA; US FDA; Morcos and colleagues	
Axitinib	CYP3A4	CYP3A5, CYP1A2, CYP2C19, UGT1A1	UGT1A6, UGT1A7, UGT1A9, CYP1A2	NA	ketoconazole	50% increase	104% increase	50% dose reduction of axitinib is recommended when concomitantly used with strong inhibitors of CYP3A4 and slow dose escalation is advised for strong inducers of CYP3A4. Smoking is not allowed since it might alter CYP1A2 metabolism.	Moderate	EMA; US FDA; Pithavala and colleagues	
Bosutinib	CYP3A4	Mono-oxygenase enzymes (FMO)	NA	NA	ketoconazole, aprepitant (moderate CYP3A4 inhibitor)	420% increase	760% increase	Avoid strong and moderate CYP3A4 inhibitors or inducers. Otherwise stop bosutinib treatment or reduce bosutinib dose by 20%. Dose escalation is often not useful since adequate plasma levels are not reached with a maximum dose of 600 mg qd.	Major	EMA; US FDA; Hsyu and colleagues; Abbas and colleagues	
Cabozantinib	CYP3A4	CYP2C9	CYP2C9, CYP3A, CYP2C19 (in vitro)	NA	ketoconazole	no significant difference	no significant difference	(Chronic) co-administration of strong inhibitors and inducers of CYP3A4 must be avoided. If necessary, a 20mg dose alteration may be applied. For CYP2C9, CYP2C19 or CYP3A4 substrates with a narrow therapeutic window close monitoring of side effects is recommended, however the inhibitory and inducing potential of cabozantinib is likely to be low.	Moderate	EMA; US FDA; Nguyen and colleagues	
MKI	Major CYP	Minor CYPs and others	Inhibitory activity	Inducing activity	Inhibitory compound	Inducing compound	Change in C_{max}	Change in AUC	Clinical recommendations	Clinical relevance	References
-----	------------	-----------------------	---------------------	------------------	-------------------	------------------	-----------------	---------------	--------------------------	-----------------	------------
Ceritinib	CYP3A4	NA	CYP3A4, CYP2C9, CYP2A6, CYP2E1 (in vitro)	CYP3A4	ketoconazole	20% increase	190% increase	A 30% dose reduction may be applied when ceritinib is administered with strong inhibitors of CYP3A4. Concomitant use of strong inducers should be avoided. When administered with CYP2C9, CYP2A6, CYP2E1 or CYP3A4 substrates close monitoring of side effects is recommended.	Moderate	EMA;14 US FDA15	
Cobimetinib	CYP3A4	CYP2C19, CYP2D6, UGT2B7	Dextromethorphan (CYP2D6 substrate) and midazolam exposure was not altered by cobimetinib.	CYP1A2 (in vitro)	itraconazole	220% increase	570% increase	Avoid the (chronic) use of strong CYP3A4 inhibitors or inducers. If treatment is necessary monitoring of side effects must be applied and the use must be limited. Also, a 20 mg dose adjustment may be made. Concomitant administration with CYP1A2 substrates must be avoided or side effects must be monitored closely.	Major	EMA;14 US FDA;15 Budha and colleagues76	
Crizotinib	CYP3A4	CYP3A5, CYP2B1, CYP2C9, CYP2D6	CYP3A4, CYP2B6, UGT1A1, UGT2B7	Midazolam AUC increased with 270%	UGT1A1, CYP2B6, CYP2C8, CYP2C9	ketoconazole	40% increase	220% increase	Avoid the (chronic) use of strong CYP3A4 inhibitors or inducers. If treatment is necessary monitoring of side effects is recommended. When administered with CYP3A4, UGT1A1, UGT2B7, CYP2C8, CYP2C9 or CYP2B6 substrates close monitoring is recommended.	Major	EMA;14 US FDA;15 Xu and colleagues77
Dabrafenib	CYP2C8	CYP3A4	CYP1A2, CYP2D6	R-warfarin (CYP2C19 substrate) AUC decreased with 33% and C_{max} increased with 19%	S-warfarin (CYP2C9 substrate) AUC increased with 37% and C_{max} increased with 17%	ketoconazole gemfibrozil	33% increase no significant difference	71% increase 47% increase	Avoid the (chronic) use of strong CYP3A4 and CYP2C9 inhibitors or inducers. If there is a hard indication for the use of strong inhibitors or inducers, the duration of use must be limited. When used with CYP3A4, CYP1A2, CYP2B6, CYP2C9 and CYP2C19 substrates side effects must be monitored closely, especially in the first 3 days of use.	Minor	EMA;14 US FDA;15 Suttle and colleagues76

Table 3. (Continued)
Table 3. (Continued)

MKI	Major CYP	Minor CYPs and others	Inhibitory activity	Inducing activity	Inhibitory compound	Inducing compound	Change in C_{max}	Change in AUC	Clinical recommendations	Clinical relevance	References
Dasatinib	CYP3A4	FM0, UGT	CYP2C8, CYP3A4	simvastatin (CYP3A4 substrate) AUC increased with 20% and 37% respectively.	Ketoconazole		384% increase	256% increase	Avoid strong CYP3A4 inducers or inhibitors. When administered with strong inhibitors, dasatinib dose must be reduced with 20–40 mg. When administered with strong inducers, a dose escalation must be applied with close monitoring of side effects. When administered with CYP2C8 or CYP3A4 substrates close monitoring of side effects is recommended.	Major	EMA;14 US FDA;15 Johnson and colleagues9
Erlotinib	CYP3A4	CYP1A2, CYP1A1, CYP1B1, CYP3A5	CYP1A1, CYP3A4, CYP2C8 and UGT1A1	Midazolam AUC decreased with 24% Paclitaxel (CYP2C8) AUC was unchanged	Ketoconazole	Ciprofloxacin (CYP1A2 inhibitor)	69% increase No significant difference	86% increase 39% increase	When strong CYP3A4, CYP1A2 inducers are used dose increase up to 300 mg is advised with monitoring of side effects. For strong inhibitors a 50 mg dose reduction is recommended. Use of CYP1A2 inducers or inhibitors (e.g. smoking) is discouraged. When administered with CYP3A4, CYP1A1, and UGT1A1 substrates close monitoring of side effects is recommended.	Moderate	EMA;14 US FDA;15 Hamilton and colleagues10
Gefitinib	CYP3A4	CYP3A5, CYP2C19	CYP2D6	Metoprolol (a CYP2D6 substrate) AUC increased with 35%	Ketoconazole		61% increase	78% increase	Dose reduction is not necessary, when combined with strong CYP3A4 inhibitors, since gefitinib has a good tolerability profile. The use of strong CYP3A4 inducers needs to be avoided. When combined with CYP2D6 or CYP2C19 substrates close monitoring of side effects is recommended.	Major	EMA;14 US FDA;15 Swaisland and colleagues81
Ibrutinib	CYP3A4	CYP2D6	CYP3A4	CYP2B6	Ketoconazole grapefruit juice erythromycin voriconazole	Ketoconazole grapefruit juice erythromycin voriconazole	2800% increase 250% increase 240% increase 570% increase	2300% increase 120% increase 200% increase 470% increase	If the use of strong CYP3A4 inhibitors is necessary reduce ibrutinib dose to 140 mg or temporarily (<7 days) stop ibrutinib therapy. For moderate inhibitors reduce ibrutinib dose to 280 mg. Minimize the time of use for strong inducers of CYP3A4. Strong inhibitors or inducers of CYP2D6 must be used with caution.	Major	EMA;14 US FDA;15 de Jong and colleagues82

References:
14. EMA; 15. US FDA; 81. Swaisland and colleagues; 82. de Jong and colleagues.
Table 3. (Continued)

MKI	Major CYP	Minor CYPs and others	Inhibitory activity	Inducing activity	Inhibitory compound	Inducing compound	Change in C_{max}	Change in AUC	Clinical recommendations	Clinical relevance	References
Imatinib	CYP3A4	CYP3A5, CYP1A2, CYP2D6, CYP2C9, CYP2C19	CYP2C9, CYP3A4/CYP2B8 substrate	Concentration raised with 26% during imatinib therapy, midazolam (CYP3A4 substrate) AUC increased with 3%; simvastatin (CYP3A4 substrate) AUC increased with 26%	Ketoconazole	26% increase	40% increase	No intervention is needed for strong CYP3A4 inhibitors but monitoring for side effects is recommended and duration of strong CYP3A4 inhibitor compounds needs to be minimized. For CYP3A4 inducers a 50% imatinib dose increase may be applied. Also, close monitoring is recommended for concomitant use of CYP3A4, CYP2C9 and CYP2B6 substrates with narrow therapeutic windows.	Moderate	EMA; US FDA; Wang and colleagues; O'Brien and colleagues; Atiq and colleagues	
Lapatinib	CYP3A4	CYP3A4, CYP3A5, CYP1A2, CYP2D6, CYP2C8, CYP2C9, CYP2C19		Midazolam (CYP3A4 substrate) AUC increased with 5%; paclitaxel (CYP2C8 substrate) AUC increased with 37% concomitant with pazopanib	Ketoconazole	114% increase	257% increase	For strong inhibitors lapatinib dose must be lowered to 500 mg. For strong inducers a gradual increase of lapatinib dose must be administered with close monitoring of side effects. When administered with CYP3A4 or CYP2C8 substrates close monitoring of side effects is recommended.	Moderate	EMA; US FDA; Tan and colleagues; Koch and colleagues	
Lenvatinib	Oxidase by aldehyde oxidase and conjugation by glutathione	CYP3A4			Ketoconazole	19% increase	15% increase	Lenvatinib administration with CYP3A4 inducers or inhibitors is considered safe.	Minor	EMA; US FDA	
Nilotinib	CYP3A4	CYP2C8, CYP1A1, CYP1A2, CYP1B1	CYP2D6, CYP2C9, CYP3A4, CYP2C8, UGT1A1 (in vitro)		Ketoconazole	84% increase	201% increase	For strong CYP3A4 inhibitors nilotinib dose must be lowered to 400 mg once daily. For strong inducers nilotinib dose must be gradually increased depending on toxic side effects. When administered with CYP2D6, CYP2C8 or CYP3A4, CYP2C9, UGT1A1 substrates close monitoring of side effects is recommended.	Major	EMA; US FDA; Zhang and colleagues	

(Continued)
MKI	Major CYP	Minor CYPs and others	Inhibitory activity	Inducing activity	Inhibitory compound	Inducing compound	Change in C_max	Change in AUC	Clinical recommendations	Clinical relevance	References	
Nintedanib	Hydrolysis due to esterases	UGT1A1, UGT1A2, UGT1A8, UGT1A10, CYP's (5%)	NA	NA	ketoconazole	rifampicin	83% increase	61% increase	Nintedanib co-administration with strong CYP inducers or inhibitors is considered safe since only a small part is metabolized by CYP enzymes and the interaction is more likely through P-gp inhibition or induction.	Minor	EMA; US FDA; Tan and colleagues	
Osimertinib	CYP3A4	CYP3A5, CYP1A2, CYP2A6, CYP2C9, CYP2E1	CYP1A2, CYP2C8, UGT1A1 (in vitro)	CYP3A4, CYP1A2	simvastatin	itraconazole	20% decrease	24% increase	Administration with strong inhibitors of CYP3A4 is considered safe. Strong inducers of CYP3A4 must be used with caution and the duration must be minimized. When administered with CYP3A4/CYP3A5, CYP1A2, CYP2C8 and UGT1A1 substrates close monitoring of side effects is recommended.	Moderate	EMA; US FDA; Vishwanathan and colleagues; Harvey and colleagues	
Pazopanib	CYP3A4	CYP1A2, CYP2C8	in vitro: CYP3A4, CYP2B6, CYP2C8, CYP2D6, CYP2E1, UGT1A1	midazolam	ketoconazole	rifampicin	73% decrease	78% decrease	When a strong CYP3A4 inhibitor is administered a 50% pazopanib dose reduction may be applied for strong inducers. Duration of therapy must be limited. Close observations for CYP2D6, CYP2E1, UGT1A1 and CYP3A4 substrates with narrow therapeutic windows must be applied when co-administered with pazopanib.	Minor	EMA; US FDA; Tan and colleagues	
MKI	Major CYP	Minor CYPs and others	Inhibitory activity	Inducing activity	Inhibitory compound	Inducing compound	Change in C_{max}	Change in AUC	Clinical recommendations	Clinical relevance	References	
-----	------------	-----------------------	--------------------	------------------	---------------------	------------------	-------------------	----------------	-------------------------	------------------	------------	
Ponatinib	CYP3A4	CYP2D6, CYP2C8, CYP3A5	NA	NA	ketoconazole	47% increase	78% increase	When administered with strong CYP3A4 inhibitors a dose reduction to 30 mg may be administered. The co-administration of strong inducers should be avoided or therapy duration should be minimized.	Moderate	EMA; US FDA; Narasimhan and colleagues		
Regorafenib	CYP3A4	UGT1A9	in vitro: UGT1A1, UGT1A9, CYP2C8, CYP2B6, CYP2C9, CYP2C19, CYP3A4	Irinotecan metabolite (SN-38) (substrate of UGT1A1)	NA	ketoconazole	40% increase	33% increase	Co-administration with strong inhibitors or inducers of CYP3A4 and UGT1A9 should be avoided. Influence on regorafenib plasma levels is relatively small. Regorafenib dose must be gradually increased when administered with strong CYP3A4 inhibitors and close monitoring of side effect with a 40 mg dose escalation may be applied when administered with strong CYP3A4 inducers and the use must be minimized. Toxicity must be monitored for UGT1A1, UGT1A9, CYP2C8, CYP2C9, CYP2C19 or CYP3A4 substrates; however, pharmacokinetic data did not result in clinically meaningful interactions.	Moderate	EMA; US FDA	
Ruxolitinib	CYP3A4	CYP2C9	Intestinal CYP3A4	NA	ketoconazole	33% increase	8% increase	91% increase	27% increase	When administered with strong inhibitors of CYP3A4 and CYP2C9 a 50% dose reduction may be applied if there is relevant toxicity. For moderate inhibitors a dose reduction is not necessary. For strong CYP3A4 and CYP2C9 inducers the use must be minimized.	Moderate	EMA; US FDA; Shi and colleagues

(Continued)
MKI	Major CYP	Minor CYPs and others	Inhibitory activity	Inducing activity	Inhibitory compound	Inducing compound	Change in C_{max}	Change in AUC	Clinical recommendations	Clinical relevance	References	
Sorafenib	CYP3A4	UGT1A9	UGT1A9, UGT1A1	Administration with cyclophosphamide (a CYP2B6 substrate), warfarin, midazolam, dextromethorphan, omeprazole or paclitaxel did not result in any significant changes in AUC of these substrates.	ketoconazole	26% increase	11% increase	Sorafenib administration with strong inhibitors or inducers of CYP3A4 is considered safe. For UGT1A1 and UGT1A9 substrates specific side effects should be closely monitored. The use of strong UGT1A9 inhibitors or inducers should be avoided.	Minor	EMA¹⁴, US FDA¹⁵		
Sunitinib	CYP3A4	CYP1A2	NA	ketoconazole	49% increase	51% increase	Dose reduction is advised when co-administered with strong CYP3A4 inhibitors to a minimum of 37.5 mg for GIST and metastatic renal cell carcinoma or 25 mg for neuro-endocrine tumors based on monitoring of tolerability. For strong CYP3A4 inducers an increase in 12.5 mg increments may be applied with monitoring of tolerability.	Minor	EMA¹⁴, US FDA¹⁵			
Tivozanib	CYP3A4	UGT1A1, CYP1A1	CYP2B6, CYP2C8	ketoconazole	3% decrease	5% increase	Administration with strong inhibitors of CYP3A4 is considered safe. The use of strong CYP3A4 inducers must be minimized. Also, close monitoring of side effects is recommended when administered with CYP2B6 or CYP2C8 substrates.	Moderate	EMA¹⁴, US FDA¹⁵, Cottereau and colleagues¹⁶			
MKI	Major CYP	Minor CYPs and others	Inhibitory activity	Inducing activity	Inhibitory compound	Inducing compound	Change in \(C_{\text{max}}\)	Change in AUC	Clinical recommendations	Clinical relevance	References	
-----	-----------	-----------------------	---------------------	------------------	--------------------	------------------	----------------	-------------	-------------------------	------------------	-----------	
Trametinib	Deacetylation and glucuronidation	CYP3A4	CYP2C8, CYP2C9, CYP2C19 (in vitro)	No studies available	NA	NA	Administration with strong inhibitors or inducers of CYP enzymes is considered safe since primary metabolism is not due to metabolism. DDI potential is likely to be low.	Minor	EMA; US FDA15			
Vandetanib	CYP3A4	FMO1, FMO3	CYP2D6	CYP1A2, CYP2C8, CYP2C9, CYP3A4	Midazolam	AUC did not change	Itraconazole	4% decrease	9% increase	Administration with strong inhibitors of CYP3A4 is considered safe. Concomitant administration with strong inducers must be avoided or dose may be gradually increased. When administered with substrates for CYP2D6, CYP1A2, CYP2C9 and CYP3A4 close monitoring of side effects is recommended.	Minor	EMA; US FDA; Martin and colleagues92
Vemurafenib	CYP3A4	UGT	in vitro: CYP1A2, CYP2C8, CYP2C9	150% increase in caffeine (CYP1A2 substrate) exposure was seen; Warfarin (CYP2C9 substrate) exposure increased with 18%	CYP3A4, CYP2B6	Midazolam AUC decreased with 32%	no completed clinical study	NA	NA	The influence of CYP3A4 or UGT inhibitors or inducers is considered minimal. When administered with CYP1A2, CYP2C8, CYP2C9, CYP3A4 or CYP2B6 substrates close monitoring of side effects is recommended.	Minor	EMA; US FDA15

Clinical relevance is scored by means of the US FDA Clinical Drug Interaction Studies, Study Design, Data Analysis, and Clinical Implications Guidance for Industry, for inducers as major (AUC decrease ? 80%), moderate (AUC decrease > 20 to < 50%) or unknown and for inhibitors as major (AUC increase > 400%), moderate (AUC increase > 100 to 400%), minor (AUC increase > 25 to < 100%) or unknown as on the basis of the available evidence regarding inhibitory concentrations and the assessment report. Clinical relevance was scored on the basis of the highest score. Major CYP inhibitors: CYP1A2: Ciprofloxacin, enoxacin, fluvoxamine, zafirlukast; CYP2C8: clopidogrel, gemfibrozil; CYP2C9: fluconazole CYP2C19: fluconazole, fluoxetine, fluvoxamine, ticlopidine; CYP2D6: bupropion, fluoxetine, paroxetine, quinidine, terbinafine, cinacalcet CYP3A4: boceprevir, cobcinivir, conivaptan, daspravir, elvitegravir, ritonavir, grapefruit juice, indinavir, itraconazole, ketoconazole, lopinavir, paritaprevir, posaconazole, vincsir, saquinavir, telaprevir, tigantavir, troleandomycin, voriconazole, clarithromycin, diltiazem, efalzodine, nefazodone, netarinavir, itraconazole, ketoconazole; Major CYP inducers: CYP2B6: carbamazepine, CYP2C9: carbaizepine, enzalutamide, rifampin, ronavir CYP3A4: carbamazepine, enzalutamide, mitotane, phenytoin, rifampin, St. Johnswort, grapefruit juice; AUC, area under the curve; CYP, cytochrome P450 iso-enzyme; DDI, drug–drug interaction; EMA, European Medicines Agency; FMO, flavin-containing monoxygenase; GIST, gastrointestinal stromal tumor; MKI, multikinase inhibitor; NA, not applicable/not available; PBPK, physiologically based pharmacokinetic; UGT, UDP-glucuronosyltransferase; US FDA, United States Food and Drug Administration.
DDI by avoiding co-administration with strong inducers or inhibitors of CYP3A4. If necessary, a dose adjustment (decrease or increase) of 20 mg following a step-by-step approach may be warranted.

Ceritinib. Ceritinib is used in the treatment of ALK-positive NSCLC. Ceritinib is a substrate and inhibitor for P-gp. Furthermore, ceritinib is mainly metabolized by CYP3A4. Treatment with ketoconazole resulted in 190% and 20% increase in ceritinib AUC and C\textsubscript{max}, respectively.14,15 Co-administration with rifampicin showed a 70% and 44% decrease in AUC and C\textsubscript{max}, respectively.14,15 If concomitant administration with strong inhibitors of CYP3A4 is unavoidable a dose reduction by one third of the initial dose is necessary (rounded to units of 150 mg). For strong CYP3A4 inducers gradual dose escalation is possible with close monitoring of MKI-specific side effects.

Cobimetinib. Cobimetinib is a BRAF inhibitor used in the treatment of melanoma. It is a substrate for P-gp and inhibits BCRP, OATP1B1, OATP1B3, and OCT1.14,15 Therefore, close monitoring of side effects is warranted when cobimetinib is administered with BCRP (e.g. rosuvastatin), OATP1B1, OATP1B3 (e.g. atorvastatin) or OCT1 substrates (metformin) with a narrow therapeutic window. Cobimetinib is primarily metabolized by CYP3A4 and UGT2B7. When co-administered with itraconazole 570% and 220% increase in AUC and C\textsubscript{max} was seen, respectively.14,15 A physiologically based pharmacokinetic (PBPK) model demonstrated rifampicin to decrease cobimetinib AUC by 83% and C\textsubscript{max} by 63%.76 So, the co-administration with strong inhibitors or inducers of CYP3A4 and P-gp must be avoided. However, rabeprazole (a P-gp inhibitor) showed no effects on the pharmacokinetics of cobimetinib.21 If concomitant use of cobimetinib and strong CYP3A4 inhibitors is unavoidable, the cobimetinib dose should be decreased with 20 mg (33%) following a step-by-step approach. Furthermore, since cobimetinib is a CYP1A2 inhibitor, concomitant use with CYP1A2 substrates (e.g. haloperidol) may lead to altered plasma concentrations of these substrates.14,15

Dabrafenib. Dabrafenib is a BRAF inhibitor used in the treatment of advanced melanoma and NSCLC. Dabrafenib was shown to be a substrate for P-gp and BCRP. Since the bioavailability of dabrafenib is high (95%), only limited pharmacokinetic effects can be expected with inhibitors and inducers of these drug transporters. Dabrafenib is metabolized by both CYP3A4 (24%) and CYP2C8 (67%). Administration of dabrafenib with ketoconazole, gemfibrozil (a CYP2C8 inhibitor), and rifampicin showed significant changes in AUC, however these effects were mostly relatively small.14,15 Furthermore, dabrafenib is known to auto-induce CYP3A4 mediated metabolism.14,15 In conclusion, concomitant administration with strong CYP3A4 and CYP2C8 inhibitors or inducers must be avoided. Furthermore, a study with warfarin showed a 37% and 33% decrease in AUC and an 18% and 19% decrease in C\textsubscript{max} for S-warfarin (a CYP2C9 substrate) and R-warfarin (a CYP3A4/CYP1A2 substrate), respectively.78 Therefore, dabrafenib is characterized as a moderate CYP3A4 inducer and a weak CYP2C9 inducer and as a result concomitant use of substrates for these enzymes must be avoided.78

Ibrutinib. Ibrutinib is used as treatment for chronic lymphatic leukemia (CLL) and mantle cell lymphoma. Ibrutinib is an inhibitor of P-gp and BCRP.14,15 Ibrutinib is mainly metabolized by CYP3A4. Ketoconazole gave 2800% and 2300% increase in C\textsubscript{max} and AUC respectively.14,15,51 Furthermore concomitant administration with rifampicin showed 92% and 90% decrease in C\textsubscript{max} and AUC respectively.14,15 Administration with a moderate inhibitor of CYP3A4 (e.g. erythromycin) led to 240% and 200% increase in C\textsubscript{max} and AUC respectively.14,15,82 Overall concomitant administration with strong CYP3A4 inhibitors or inducers must be avoided. If ibrutinib is administered with moderate and strong CYP3A4 inhibitors the ibrutinib dose should be reduced to 280 mg and 140 mg respectively. When ibrutinib is administered with substrates of P-gp and BCRP monitoring of side effects of these substrates is warranted. When toxicity appears the dose of these substrates may be decreased.

Lenvatinib. Lenvatinib is used in the treatment of RCC and advanced thyroid carcinoma. It was shown to be a MDR1 substrate, a P-gp and BCRP substrate and inhibitor and an OATP1B3 inhibitor in vitro.14,15 When lenvatinib is administered with ketoconazole or rifampicin, only marginal changes in AUC and C\textsubscript{max} were observed.34,55 Since lenvatinib is mainly metabolized through several phase II mechanisms (e.g. aldehyde oxidase and glutathione conjugation) into less active metabolites and only for a small part by CYP3A4, these changes were most likely due to an
interaction with P-gp.14,15 Lenvatinib has an overall low DDI potential and dose modifications are currently not considered necessary.

\textit{Nintedanib}. Nintedanib is used in the treatment of NSCLC. It is a substrate and weak inhibitor of P-gp.14,15,94 When nintedanib is administered with a strong P-gp inhibitor, a 100 mg (25\%) step-wise daily dose reduction must be considered with close monitoring of side effects. Use of strong P-gp inducers must be avoided, since nintedanib plasma concentrations may decrease. Nintedanib is mainly metabolized due to hydrolysis by esterases and glucuronidated by UGT with only a minor involvement of CYP enzymes (CYP3A4; 5\%).14,15 Administration with ketoconazole resulted in 61\% and 83\% increase in AUC and C_{max} respectively and administration with rifampicin demonstrated a decrease in AUC of 50\% and 60\% of C_{max} respectively.42 These differences were probably due to a DDI with P-gp. Therefore, concomitant administration with strong inhibitors or inducers of CYP3A4 is considered safe.

\textit{Osimertinib}. Osimertinib is used in the treatment of NSCLC.14,15 Osimertinib is a substrate and inhibitor for P-gp and BCRP.14,15 A study with rosuvastatin (a sensitive BCRP substrate) showed an increase in AUC and C_{max} of 35\% and 72\% of rosuvastatin respectively.87 Osimertinib is mainly metabolized by CYP3A4 and CYP3A5, but only rifampicin resulted in a significant change in both AUC and C_{max} in contrast to itraconazole.86 A study with simvastatin (a CYP3A4 substrate) resulted in a slight decrease in AUC and C_{max} of simvastatin of 9\% and 23\%, but these changes are not considered to be of clinical significance.87 In conclusion only strong CYP3A4 inducers must be used with caution and close monitoring of side effects of osimertinib is warranted.

\textit{Ponatinib}. Ponatinib is used in the treatment of CML and Acute lymphatic leukemia (ALL). Ponatinib is a substrate and inhibitor of P-gp and BCRP.14,15 Therefore, concomitant use of ponatinib with strong inhibitors or inducers of these transporters should be avoided. Ponatinib is mainly metabolized into nonactive metabolites by CYP3A4 and to a lesser extent by CYP2D6, CYP2C8 and CYP3A5.14,15 A study with concomitant ketoconazole administration showed an increase in C_{max} of 47\% and 78\% in AUC of ponatinib.88 Multiple dosing of rifampicin demonstrated a decrease in AUC and C_{max} of 42\% and 62\% respectively.89 As a consequence, concomitant administration with inhibitors of CYP3A4 and P-gp should be avoided or a dose reduction to 30mg should be applied when administered concomitantly. Moreover, the use of strong CYP3A4 or P-gp inducers must be avoided or duration must be minimized, since ponatinib exposure may change.

\textit{Tivozanib}. Tivozanib is used in the treatment of RCC. Tivozanib is an inhibitor of BCRP and is metabolized by multiple liver enzymes, including CYP3A4, CYP1A1 and several UGT1A enzymes (e.g. UGT1A1, UGT1A3 and UGT1A7).14,15 A study with rifampicin showed a 52\% decrease in tivozanib AUC. Therefore, the administration with strong CYP3A4 inducers should be avoided. A dose escalation is not necessary since the effect on tivozanib exposure is relatively small. Ketoconazole did not result in significant changes in tivozanib exposure.14,15,91 Administration with strong CYP3A4 inhibitors is therefore considered safe. Furthermore, the concomitant administration with strong UGT inhibitors or inducers (e.g. probenecid or ibuprofen) should be avoided since tivozanib plasma concentrations potentially may change.

\textit{Trametinib}. Trametinib is used in the treatment of melanoma and NSCLC. It is a known inhibitor of P-gp, BCRP, OAT1, OAT3, OATP1B1, OATP1B3, OAT2B1, OCT2 and MATE1 and a substrate for P-gp.14,15 As a result, the use of strong inhibitors or inducers of P-gp (e.g. ketoconazole) must be avoided. Trametinib is metabolized through deacetylation, oxidation and glucuronidation pathways.14,15 No drug interaction studies are available to date, however since trametinib is not dependent on CYP isoenzymes, no DDIs with CYPs are to be expected.

\textbf{DDI studies with longer available MKIs}

In recent years several new studies have been published that investigated DDIs with longer available MKIs. Most of these studies are listed in Tables 1–3. There are only a few clinical DDI studies concerning drug transporters, since most studies mainly focus on CYP interactions. A phase I study investigated the combination of gefitinib and irinotecan and found an increase in SN-38 (the active irinotecan metabolite) and irinotecan plasma exposure, attributed to an enhanced BCRP activity in the gut.50 Moreover, in patients using sorafenib with rifampicin, the concentration of the metabolite sorafenib-glucuronide increased, suggesting inhibition of
OATP1B1 by rifampicin and confirms sorafenib as an OATP1B1 substrate.57

Several new studies investigated possible DDIs regarding drug metabolism. For a complete overview see Table 3. For example: imatinib co-administration caused a 26% increase in cyclosporine (CYP3A4 and CYP2C8 substrate) plasma levels, explained by CYP3A4 inhibition by imatinib.69 In addition, lapatinib and pazopanib demonstrated an increase of 23% and 26% in paclitaxel AUC respectively, suggesting inhibition of CYP2C8 by these MKIs.83,95 Furthermore, regorafenib significantly increased the exposure to irinotecan and its active metabolite SN-38 due to UGT1A1 inhibition.96,97

Although most MKIs are metabolized through CYP enzymes it becomes more apparent that MKI metabolism is multifactorial and the inhibition and induction of other pathways (such as drug transporters) may also significantly influence MKI exposure. More research is needed to fully assess the DDI potential of these new pathways and their clinical relevance.

Discussion

Many MKIs have a narrow therapeutic window, with a clear relation between exposure and response on one hand and toxicity on the other.98 For example, sunitinib and pazopanib show increasing severe toxicity with raising plasma concentration, leading to dose reductions and discontinuation of treatment in many patients.99,100 Meanwhile, a threshold for efficacy for these drugs is seen.98-100 Therefore, it is important to provide the right dose for the individual patient, in order to optimize treatment efficacy and minimize toxicity. To accomplish this, there is a shifting paradigm towards personalized dosing in oncology practice.5 Along with other factors, DDIs are key factors influencing MKI exposure and subsequent clinical outcome. In addition, cancer patients are at greater risk for DDIs.7 Therefore, a structured medication review for clinically relevant DDIs should take place on a regular basis.

To create a solid base for medication review, more DDI studies are strongly needed and results should be weighed on their clinical relevance. Specific and practical guidelines must be developed to guide clinicians and pharmacists in the management of DDIs in clinical practice. A practical way to reach this goal is by establishing clinical expert groups for consensus-based evaluation of clinical significance and management of the DDIs.101

ASAs may strongly decrease MKI bioavailability. Since there is no clear general consensus on the management of this DDI we presented a practical advice for all ASAs. However, another problem is that there is no standard design for clinical DDI research with ASAs. Ideally, drug exposure should be compared in a crossover design between MKI monotherapy and during co-administration of the strongest ASA [e.g. the PPI esomeprazole (40 mg)] 3 h prior to MKI administration, since maximum intragastric pH elevating effect of this PPI is reached after this time period.38 In that case, when no effects are seen, a DDI between MKIs and PPIs can be ruled out. When a significant DDI with H2-antagonists and antacids is expected, a corresponding treatment arm may be added. A more standardized study design of these ASA-DDI studies may provide a solid basis for practical management of this DDI, since study results could more easily be interpreted and compared between different MKIs.

Drug transporters are located throughout the body and thus potentially influence pharmacokinetics on multiple levels.39 To date, insufficient attention has been given to the clinical relevance of these DDIs concerning drug transporters. Unfortunately, there is a lack of clinical studies investigating this type of DDI. Furthermore, many registration studies use ketoconazole or rifampicin as an inhibitor or inducer of CYP3A4, but these drugs are also strong inhibitors or inducers of P-gp. As a result, the P-gp effect may be underestimated or overestimated in the assessment reports. More research is needed to fully assess the DDI potential concerning drug transporters.

In contrast, DDIs with drug transporters may also be used for beneficial purposes. For instance, inhibition of certain drug transporters (e.g. P-gp) in the blood–brain barrier might theoretically lead to altered blood–brain barrier penetration, which may result in better brain (metastasis) penetration of a MKI, for example, osimertinib.102 In addition, Zimmerman and colleagues demonstrated a protective effect on hand-foot skin reaction in mice, a frequently seen side effect of sorafenib, when sorafenib was concomitantly taken with the OAT6 inhibitor probenecid.103
Furthermore erlotinib may reduce cisplatin toxicity (e.g. nephrotoxicity and ototoxicity) through OCT2 inhibition. Such potentially useful applications of DDIs between MKIs and drug transporters need to be further explored, and may in the future result in more effective MKI therapy.

In current DDI research there is a trend towards a model-based DDI prediction, like the PBPK-models. PBPK-models are multi-compartmental (often represented as single organs or tissues) models which use (in vitro) pharmacokinetic data and human physiologically-dependent system parameters to predict DDIs with a mathematical model. A disadvantage of PBPK modeling is the lack of sufficient in vivo data that adds to the uncertainty in the predictions of the PBPK model. Also, the lack of knowledge regarding multifactorial physiologic changes in, for instance, enzyme and transporter expression and activity might be a possible confounding factor. Despite the evident benefits of PBPK modeling in current DDI research, confirmatory evidence from clinical trials in humans is needed to assess a good predicting model.

Another novel approach in oncology in managing DDIs is therapeutic drug monitoring (TDM). For many MKIs there is a clear relationship between exposure, toxicity and treatment efficacy (e.g. imatinib, pazopanib and sunitinib). For some MKIs TDM could be an alternative way to manage DDIs in MKI therapy, where dose adjustments can be made if plasma levels are outside the therapeutic range. Furthermore, TDM has the advantage of monitoring MKI treatment, continuously over a longer time period which may result in better therapy efficacy. However, further research is needed to confirm the clinical relevance of TDM as a tool in DDI management.

In conclusion, most MKIs are highly prone to cause DDIs. Drugs that elevate intragastric pH, strong inhibitors or inducers of CYP enzymes and drug transporters can result in clinically relevant changes in MKI exposure. For many DDIs the only evidence for a potential DDI comes from in vitro data or is predicted based on PBPK modeling. Without clinical data it is difficult to determine the exact clinical relevance of these possible DDIs. In this review, we present practical recommendations for management of MKI interactions in clinical practice. Acknowledging these DDIs by clinicians may eventually result in a more personalized and effective treatment with MKIs.

Acknowledgements
We thank Egied C.C.M. Simons (Erasmus Medical Center, The Netherlands) for the graphic design of the figures.

Funding
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Conflict of interest statement
The authors declare that there is no conflict of interest.

References
1. Krause DS and Van Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med 2005; 353: 172–187.
2. Yu H, Steeghs N, Nijenhuis CM, et al. Practical guidelines for therapeutic drug monitoring of anticancer tyrosine kinase inhibitors: focus on the pharmacokinetic targets. Clin Pharmacokinet 2014; 53: 305–325.
3. Shah DR, Shah RR and Morganroth J. Tyrosine kinase inhibitors: their on-target toxicities as potential indicators of efficacy. Drug Saf 2013; 36: 413–426.
4. Chatelut E, Bruno R and Ratain MJ. Intraindividual pharmacokinetic variability: focus on small-molecule kinase inhibitors. Clin Pharmacol Ther 2018; 103: 956–958.
5. Mathijssen RH, Sparreboom A and Verweij J. Determining the optimal dose in the development of anticancer agents. Nat Rev Clin Oncol 2014; 11: 272–281.
6. van Leeuwen RW, van Gelder T, Mathijssen RH, et al. Drug–drug interactions with tyrosine-kinase inhibitors: a clinical perspective. Lancet Oncol 2014; 15: e315–e326.
7. van Leeuwen RW, Bundel DH, Neef C, et al. Prevalence of potential drug–drug interactions in cancer patients treated with oral anticancer drugs. Br J Cancer 2013; 108: 1071–1078.
8. Scripture CD and Figg WD. Drug interactions in cancer therapy. Nat Rev Cancer 2006; 6: 546–558.
9. Visentin M, Biason P and Toffoli G. Drug interactions among the epidermal growth factor receptor inhibitors, other biologics and cytotoxic agents. Pharmacol Ther 2010; 128: 82–90.
10. Food and Drug Administration. Clinical drug interaction studies — study design, data analysis,
11. Budha NR, Frymoyer A, Smelick GS, et al. Drug absorption interactions between oral targeted anticancer agents and PPIs: is pH-dependent solubility the Achilles heel of targeted therapy? *Clin Pharmacol Ther* 2012; 92: 203–213.

12. Tang W, Tomkinson H and Masson E. Effect of sustained elevated gastric pH levels on gefitinib exposure. *Clin Pharmacol Drug Dev* 2017; 6: 517–523.

13. van Leeuwen RWF, Jansman FGA, Hunfeld NG, et al. Tyrosine kinase inhibitors and proton pump inhibitors: an evaluation of treatment options. *Clin Pharmacokinet* 2017; 56: 683–638.

14. European Medicines Agency. *European public assessment reports assessment history and product information*. https://www.ema.europa.eu/ (accessed September 2017–July 2018).

15. U.S. Food and Drug Administration. *Product reviews and labels*. https://www.fda.gov/Drugs/default.htm (accessed September 2017–July 2018).

16. Morcos PN, Guerini E, Parrott N, et al. Effect of food and esomeprazole on the pharmacokinetics of alectinib, a highly selective ALK inhibitor, in healthy subjects. *Clin Pharmacol Drug Dev* 2017; 6: 388–397.

17. Rugo HS, Herbst RS, Liu G, et al. Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results. *J Clin Oncol* 2005; 23: 5474–5483.

18. Abbas R, Leister C and Sonnichsen D. A clinical study to examine the potential effect of lansoprazole on the pharmacokinetics of bosutinib when administered concomitantly to healthy subjects. *Clin Drug Invest* 2013; 33: 589–595.

19. Nguyen L, Holland J, Mamelok R, et al. Evaluation of the effect of food and gastric pH on the single-dose pharmacokinetics of cabozantinib in healthy adult subjects. *J Clin Pharmacol* 2015; 55: 1293–1302.

20. Lau YY, Gu W, Lin T, et al. Assessment of drug–drug interaction potential between ceritinib and proton pump inhibitors in healthy subjects and in patients with ALK-positive non-small cell lung cancer. *Cancer Chemother Pharmacol* 2017; 79: 1119–1128.

21. Musib L, Choo E, Deng Y, et al. Absolute bioavailability and effect of formulation change, food, or elevated pH with rabeprazole on cobimetinib absorption in healthy subjects. *Mol Pharm* 2013; 10: 4046–4054.

22. Eley T, Luo FR, Agrawal S, et al. Phase I study of the effect of gastric acid pH modulators on the bioavailability of oral dasatinib in healthy subjects. *J Clin Pharmacol* 2009; 49: 700–709.

23. van Leeuwen RWF, Peric R, Hassaerts KGAM, et al. Influence of the acidic beverage cola on the absorption of erlotinib in patients with non-small-cell lung cancer. *J Clin Oncol* 2016; 34: 1309–1314.

24. Kletzl H, Giraudon M, Ducray PS, et al. Effect of gastric pH on erlotinib pharmacokinetics in healthy individuals: omeprazole and ranitidine. *Anticancer Drugs* 2015; 26: 565–572.

25. Yokota H, Sato K, Okuda Y, et al. Effects of histamine 2-receptor antagonists and proton pump inhibitors on the pharmacokinetics of gefitinib in patients with non-small-cell lung cancer. *Clin Lung Cancer* 2017; 18: e433–e439.

26. de Jong J, Haddish-Berhane N, Hellemans P, et al. The pH-altering agent omeprazole affects rate but not the extent of ibrutinib exposure. *Cancer Chemother Pharmacol*. Epub ahead of print 7 June 2018. DOI:10.1007/s00280-018-3613-9.

27. Sparano BA, Egorin MJ, Parise RA, et al. Effect of antacid on imatinib absorption. *Cancer Chemother Pharmacol* 2009; 63: 525–528.

28. Egorin MJ, Shah DD, Christner SM, et al. Effect of a proton pump inhibitor on the pharmacokinetics of imatinib. *Br J Clin Pharmacol* 2009; 68: 370–374.

29. Yin OQ, Bedoucha V, McCulloch T, et al. Effects of famotidine or an antacid preparation on the pharmacokinetics of nilotinib in healthy volunteers. *Cancer Chemother Pharmacol* 2013; 71: 219–226.

30. Yin OQP, Gallagher N, Fischer D, et al. Effect of the proton pump inhibitor esomeprazole on the oral absorption and pharmacokinetics of nilotinib. *J Clin Pharmacol* 2010; 50: 960–967.

31. Yin OQ, Giles FJ, Baccarani M, et al. Concurrent use of proton pump inhibitors or H2 blockers did not adversely affect nilotinib efficacy in patients with chronic myeloid leukemia. *Cancer Chemother Pharmacol* 2012; 70: 345–350.

32. Tan AR, Gibbon DG, Stein MN, et al. Effects of ketoconazole and esomeprazole on the pharmacokinetics of pazopanib in patients with solid tumors. *Cancer Chemother Pharmacol* 2013; 71: 1635–1643.

33. Narasimhan NI, Dorer DJ, Davis J, et al. Evaluation of the effect of multiple doses of
lansoprazole on the pharmacokinetics and safety of ponatinib in healthy subjects. Clin Drug Investig 2014; 34: 723–729.

34. Olivier M, Romain C, Angelo P, et al. Impact of proton pump inhibitors (PPIs) on sunitinib (SU) pharmacokinetics (PK) and activity in GIST patients (pts). J Clin Oncol 2018; 36(Suppl.15): 11538.

35. Johansson S, Read J, Oliver S, et al. Pharmacokinetic evaluations of the co-administrations of vandetanib and metformin, digoxin, midazolam, omeprazole or ranitidine. Clin Pharmacokin 2014; 53: 837–847.

36. Smelick GS, Heffron TP, Chu L, et al. Prevalence of acid-reducing agents (ARA) in cancer populations and ARA drug–drug interaction potential for molecular targeted agents in clinical development. Mol Pharm 2013; 10: 4055–4062.

37. Malfertheiner P, Kandulski A and Venerito M. Effects of ketoconazole and rifampicin on the pharmacokinetics of lenvatinib (E7080) in healthy participants. Clin Pharmacol Drug Dev 2015; 4: 155–160.

38. Hunfeld NG, Touw DJ, Mathot RA, et al. A comparison of the acid-inhibitory effects of esomeprazole and pantoprazole in relation to pharmacokinetics and CYP2C19 polymorphism. Aliment Pharmacol Ther 2010; 31: 150–159.

39. Nigam SK. What do drug transporters really do? Nat Rev Drug Discov 2015; 14: 29–44.

40. Roberts MS, Magnusson BM, Burczynski FJ, et al. Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet 2002; 41: 751–790.

41. U.S. Food and Drug Administration. Drug development and drug interactions. U.S. Food and Drug Administration, 2018. https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm080499.htm (accessed January–June 2018).

42. Luedtke D, Marzin K, Jungnik A, et al. Effects of ketoconazole and rifampicin on the pharmacokinetics of nintedanib in healthy subjects. Eur J Drug Metab Pharmacokinet 2018; 43: 533–541.

43. Wind S, Giessmann T, Jungnik A, et al. Pharmacokinetic drug interactions of afatinib with rifampicin and ritonavir. Clin Drug Invest 2014; 34: 173–182.

44. Morcos PN, Cleary Y, Guerini E, et al. Clinical drug–drug interactions through cytochrome P450 3A (CYP3A) for the selective ALK inhibitor alectinib. Clin Pharmacol Drug Dev 2017; 6: 280–291.

45. Hsyu P-H, Pignataro DS and Matschke K. Effect of bosutinib on the absorption of dabigatran etexilate mesylate, a P-glycoprotein substrate, in healthy subjects. Eur J Clin Pharmacol 2017; 73: 57–63.

46. Haouala A, Widmer N, Duchosal MA, et al. Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood 2011; 117: e75–e87.

47. Marchetti S, de Vries NA, Buckle T, et al. Effect of the ATP-binding cassette drug transporters ABCB1, ABCG2, and ABCC2 on erlotinib hydrochloride (Tarceva) disposition in in vitro and in vivo pharmacokinetic studies employing Bcrp1-/-/Mdr1a/a-/- (triple-knockout) and wild-type mice. Mol Cancer Ther 2008; 7: 2280–2287.

48. Sprowl JA, Mathijssen RH and Sparreboom A. Can erlotinib ameliorate cisplatin-induced toxicities? J Clin Oncol 2013; 31: 3442–3443.

49. Elmeliegy MA, Carcaboso AM, Tagen M, et al. Role of ATP-binding cassette and solute carrier transporters in erlotinib CNS penetration and intracellular accumulation. Clin Cancer Res 2011; 17: 89–99.

50. Stewart CF, Leggas M, Schuetz JD, et al. Gefitinib enhances the antitumor activity and oral bioavailability of irinotecan in mice. Cancer Res 2004; 64: 7491–7499.

51. de Jong J, Skee D, Murphy J, et al. Effect of CYP3A perpetrators on irbutinib exposure in healthy participants. Pharmacol Res Perspect 2015; 3: e00156.

52. Eechoute K, Sparreboom A, Burger H, et al. Drug transporters and imatinib treatment: implications for clinical practice. Clin Cancer Res 2011; 17: 406–415.

53. Koch KM, Smith DA, Botbyl J, et al. Effect of lapatinib on oral digoxin absorption in patients. Clin Pharmacol Drug Dev 2015; 4: 449–453.

54. Shumaker R, Aluri J, Fan J, et al. Effects of ketoconazole on the pharmacokinetics of lenvatinib (E7080) in healthy participants. Clin Pharmacol Drug Dev 2015; 4: 155–160.

55. Shumaker RC, Aluri J, Fan J, et al. Effect of rifampicin on the pharmacokinetics of lenvatinib in healthy adults. Clin Drug Investig 2014; 34: 651–659.

56. Lemos C, Jansen G and Peters GJ. Drug transporters: recent advances concerning BCRP and tyrosine kinase inhibitors. Br J Cancer 2008; 98: 857–862.
57. Bins S, van Doorn L, Phelps MA, et al. Influence of OATP1B1 function on the disposition of sorafenib-beta-D-glucuronide. Clin Transl Sci 2017; 10: 271–279.

58. Konig J, Muller F and Fromm MF. Transporters and drug–drug interactions: important determinants of drug disposition and effects. Pharmacol Rev 2013; 65: 944–966.

59. Zhang W, McIntyre C, Kuhn M, et al. Effect of vemurafenib on the pharmacokinetics of a single dose of digoxin in patients with BRAF(V600) mutation-positive metastatic malignancy. J Clin Pharmacol. Epub ahead of print 12 April 2018. DOI:10.1002/jcph.1111.

60. Tiwari AK, Sodani K, Dai CL, et al. Nilotinib potentiates anticancer drug sensitivity in murine ABCB1-, ABCG2-, and ABCC10-multidrug resistance xenograft models. Cancer Lett 2013; 328: 307–317.

61. White DL, Saunders VA, Quinn SR, et al. Imatinib increases the intracellular concentration of nilotinib, which may explain the observed synergy between these drugs. Blood 2007; 109: 3609–3610.

62. Veronese ML, Gillen LP, Burke JP, et al. Exposure-dependent inhibition of intestinal and hepatic CYP3A4 in vivo by grapefruit juice. J Clin Pharmacol 2003; 43: 831–839.

63. van Erp NP, Baker SD, Zandvliet AS, et al. Marginal increase of sunitinib exposure by grapefruit juice. Cancer Chemother Pharmacol 2011; 67: 695–703.

64. Jancova P, Anzenbacher P and Anzenbacherova E. Phase II drug metabolizing enzymes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2010; 154: 103–116.

65. Teo YL, Ho HK and Chan A. Metabolism-related pharmacokinetic drug–drug interactions with tyrosine kinase inhibitors: current understanding, challenges and recommendations. Br J Clin Pharmacol 2015; 79: 241–253.

66. European Medicines Agency. Clinical efficacy and safety: clinical pharmacology and pharmacokinetics, http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/general/general_content_000370.jspmid=WC0b01ac0580032ec5 Published: 30 June 2017 (accessed January–June 2018).

67. Wang Y, Zhou L, Dutrex C, et al. Effects of imatinib (Glivec) on the pharmacokinetics of metoprolol, a CYP2D6 substrate, in Chinese patients with chronic myelogenous leukaemia. Br J Clin Pharmacol 2008; 65: 885–892.

68. O’Brien SG, Meinhardt P, Bond E, et al. Effects of imatinib mesylate (STI571, Glivec) on the pharmacokinetics of simvastatin, a cytochrome p450 3A4 substrate, in patients with chronic myeloid leukaemia. Br J Cancer 2003; 89: 1855–1859.

69. Atiq F, Broers AEC, Andrews LM, et al. A clinically relevant pharmacokinetic interaction between cyclosporine and imatinib. Eur J Clin Pharmacol 2016; 72: 719–723.

70. Hamberg P, Mathijsen RH, de Bruijn P, et al. Impact of pazopanib on docetaxel exposure: results of a phase I combination study with two different docetaxel schedules. Cancer Chemother Pharmacol 2015; 75: 365–371.

71. Pithavala YK, Tortorici M, Toh M, et al. Effect of rifampin on the pharmacokinetics of Axitinib (AG-013736) in Japanese and Caucasian healthy volunteers. Cancer Chemother Pharmacol 2010; 65: 563–570.

72. Pithavala YK, Tong W, Mount J, et al. Effect of ketoconazole on the pharmacokinetics of axitinib in healthy volunteers. Int J Clin Pharmacol 2012; 30: 273–281.

73. Hsyu P-H, Pignataro DS and Matschke K. Effect of aprepitant, a moderate CYP3A4 inhibitor, on bosutinib exposure in healthy subjects. Eur J Clin Pharmacol 2017; 73: 49–56.

74. Abbas R, Hug BA, Leister C, et al. Effect of ketoconazole on the pharmacokinetics of oral bosutinib in healthy subjects. J Clin Pharmacol 2011; 51: 1721–1727.

75. Nguyen L, Holland J, Miles D, et al. Pharmacokinetic (PK) drug interaction studies of cabozantinib: effect of CYP3A inducer rifampin and inhibitor ketoconazole on cabozantinib plasma PK and effect of cabozantinib on CYP2C8 probe substrate rosiglitazone plasma PK. J Clin Pharmacol 2015; 55: 1012–1023.

76. Budha NR, Ji T, Musib L, et al. Evaluation of cytochrome P450 3A4-mediated drug–drug interaction potential for cobimetinib using physiologically based pharmacokinetic modeling and simulation. Clin Pharmacokinet 2016; 55: 1435–1445.

77. Xu H, O’Gorman M, Tan W, et al. The effects of ketoconazole and rifampin on the single-dose pharmacokinetics of crizotinib in healthy subjects. Eur J Clin Pharmacol 2015; 71: 1441–1449.

78. Suttle AB, Grossmann KF, Ouellet D, et al. Assessment of the drug interaction potential and single- and repeat-dose pharmacokinetics of the BRAF inhibitor dabrafenib. J Clin Pharmacol 2015; 55: 392–400.
79. Johnson FM, Agrawal S, Burris H, et al. Phase 1 pharmacokinetic and drug interaction study of dasatinib in patients with advanced solid tumors. *Cancer* 2010; 116: 1582–1591.

80. Hamilton M, Wolf JL, Drolet DW, et al. The effect of rifampicin, a prototypical CYP3A4 inducer, on erlotinib pharmacokinetics in healthy subjects. *Cancer Chemother Pharmacol* 2014; 73: 613–621.

81. Swaisland HC, Ranson M, Smith RP, et al. Pharmacokinetic drug interactions of gefitinib with rifampicin, itraconazole and metoprolol. *Clin Pharmacokinet* 2005; 44: 1067–1081.

82. de Jong J, Hellemans P, De Wilde S, et al. A drug–drug interaction study of ibritunib with moderate/strong CYP3A inhibitors in patients with B-cell malignancies. *Leuk Lymphoma*. Epub ahead of print 30 May 2018. DOI: 10.1080/10428194.2018.1460474.

83. Tan AR, Dowlati A, Stein MN, et al. Phase I study of weekly paclitaxel in combination with pazopanib and lapatinib in advanced solid malignancies. *Br J Cancer* 2014; 110: 2647–2654.

84. Koch KM, Dees EC, Coker SA, et al. The effects of lapatinib on CYP3A metabolism of midazolam in patients with advanced cancer. *Cancer Chemother Pharmacol* 2017; 80: 1141–1146.

85. Zhang H, Sheng J, Ko JH, et al. Inhibitory effect of single and repeated doses of nilotinib on the pharmacokinetics of CYP3A substrate midazolam. *J Clin Pharmacol* 2015; 55: 401–408.

86. Vishwanathan K, Dickinson PA, So K, et al. The effect of itraconazole and rifampicin on the pharmacokinetics of osimertinib. *Br J Clin Pharmacol* 2018; 84: 1156–1169.

87. Harvey RD, Isambert N, Rafii S, et al. Effect of multiple-dose osimertinib (AZD9291) on the pharmacokinetics (PK) of simvastatin and rosuvastatin. *J Clin Oncol* 2016; 34(15 Suppl.): e14098.

88. Narasimhan NI, Dorer DJ, Niland K, et al. Effects of ketoconazole on the pharmacokinetics of ponatinib in healthy subjects. *J Clin Pharmacol* 2013; 53: 974–981.

89. Narasimhan NI, Dorer DJ, Davis J, et al. Evaluation of the effect of multiple doses of rifampin on the pharmacokinetics and safety of ponatinib in healthy subjects. *Clin Pharmacol Drug Dev* 2015; 4: 354–360.

90. Shi JG, Chen X, Emm T, et al. The effect of CYP3A4 inhibition or induction on the pharmacokinetics and pharmacodynamics of orally administered ruxolitinib (INCB018424 phosphate) in healthy volunteers. *J Clin Pharmacol* 2012; 52: 809–818.

91. Cotreau MM, Siebers NM, Miller J, et al. Effects of ketoconazole or rifampin on the pharmacokinetics of tivozanib hydrochloride, a vascular endothelial growth factor receptor tyrosine kinase inhibitor. *Clin Pharmacol Drug Dev* 2015; 4: 137–142.

92. Martin P, Oliver S, Robertson J, et al. Pharmacokinetic drug interactions with vandetanib during coadministration with rifampicin or itraconazole. *Drugs R D* 2011; 11: 37–51.

93. The trustees of the Indiana University. Flockhart Table™. *Drug interactions*. Indiana University, School of Medicine, Department of Medicine, https://drug-interactions.medicine.iu.edu/Main-Table.aspx Publication date latest version: 12 April 2018 (accessed January–June 2018).

94. Xiang Q-F, Wang F, Su X-D, et al. Effect of BIBF 1120 on reversal of ABCB1-mediated multidrug resistance. *Cell Oncol (Dordr)* 2011; 34: 33–44.

95. Inoue K, Kuroi K, Shimizu S, et al. Safety, pharmacokinetics and efficacy findings in an open-label, single-arm study of weekly paclitaxel plus lapatinib as first-line therapy for Japanese women with HER2-positive metastatic breast cancer. *Int J Clin Oncol* 2015; 20: 1102–1109.

96. Schultheis B, Folprecht G, Kuhlmann J, et al. Regorafenib in combination with FOLFOX or FOLFIRI as first- or second-line treatment of colorectal cancer: results of a multicenter, phase Ib study. *Ann Oncol* 2013; 24: 1560–1567.

97. de Man FM, Goey AKL, van Schaik RHN, et al. Individualization of irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. *Clin Pharmacokinet* 2018; 57: 1229–1254.

98. Verheijen RB, Yu H, Schellens JHM, et al. Practical recommendations for therapeutic drug monitoring of kinase inhibitors in oncology. *Clin Pharmacol Ther* 2017; 102: 765–776.

99. Teo YL, Chue XP, Chau NM, et al. Association of drug exposure with toxicity and clinical response in metastatic renal cell carcinoma patients receiving an attenuated dosing regimen of sunitinib. *Target Oncol* 2015; 10: 429–437.

100. Suttle AB, Ball HA, Molimard M, et al. Relationships between pazopanib exposure and clinical safety and efficacy in patients with advanced renal cell carcinoma. *Br J Cancer* 2014; 111: 1909–1916.
101. Jansman FG, Reyners AK, van Roon EN, et al. Consensus-based evaluation of clinical significance and management of anticancer drug interactions. *Clin Ther* 2011; 33: 305–314.

102. Deeken JF and Loscher W. The blood–brain barrier and cancer: transporters, treatment, and Trojan horses. *Clin Cancer Res* 2007; 13: 1663–1674.

103. Zimmerman EI, Gibson AA, Hu S, et al. Multikinase inhibitors induce cutaneous toxicity through OAT6-mediated uptake and MAP3K7-driven cell death. *Cancer Res* 2016; 76: 117–126.

104. Sager JE, Yu J, Ragueneau-Majlessi I, et al. Physiologically Based Pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification. *Drug Metab Dispos* 2015; 43: 1823–1837.

105. Zhuang X and Lu C. PBPK modeling and simulation in drug research and development. *Acta Pharm Sin B* 2016; 6: 430–440.

106. Espie P, Tytgat D, Sargentini-Maier ML, et al. Physiologically based pharmacokinetics (PBPK). *Drug Metab Rev* 2009; 41: 391–407.

107. Lankheet NA, Kloth JS, Gadella-van Hooijdonk CG, et al. Pharmacokinetically guided sunitinib dosing: a feasibility study in patients with advanced solid tumours. *Br J Cancer* 2014; 110: 2441–2449.