Giardia duodenalis is a worldwide protozoa known causing diarrhea in all vertebrates, humans among these. Homologous recombination is a mechanism that provides genomic stability. Two putative recombinases were identified in G. duodenalis genome: GdDMC1A and GdDMC1B. In this article, we describe the identification of conserved domains in GdDMC1A and GdDMC1B, such as: DNA binding domains (Helix-turn-helix motif, loops 1 and 2) and an ATPcap and Walker A and B motifs associated with ATP binding and hydrolysis, phylogenetic analyses among assemblages and three-dimensional structure modeling of these recombinases using bioinformatics tools. Also, experimental data is described about LD50 determination for ionizing radiation in trophozoites of G. duodenalis. Additionally, as recombinases, GdDMC1A and GdDMC1B were used to rescue a defective Saccharomyces cerevisiae Δ rad51 strain under genotoxic conditions and data is described. The data described here are related to the research article entitled “Characterization of recombinase DMC1B and its functional role as Rad51 in DNA damage repair in Giardia duodenalis trophozoites” (Torres-Huerta et al.,) [1].

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Biology
More specific subject area	Recombinases GdDMC1A and GdDMC1B bioinformatics analyses
Type of data	Table, image, graph
How data was acquired	*In silico* analyses: Clustal W program was used to carry out protein sequence alignments http://clustalw.ddbj.nig.ac.jp/index.php?lang=en; ESPript server http://espript.ibcp.fr/ESPript/ESPript/ was used to make Structure-based protein alignments; I-TASSER server http://zhanglab.ccmb.med.umich.edu/I-TASSER/ was used for modeling protein structures. Other specific methods required are also indicated in figure legends.
Data format	Analyzed
Experimental factors	LD50 for ionizing radiation was calculated with *G. duodenalis* trophozoites
Experimental features	Rescue of a DNA repair defective (Δ rad51) *Saccharomyces cerevisiae* strain under DNA damage by expressing either GdDMC1A or GdDMC1B
10^5 trophozoites were exposed to different doses of ionizing radiation and plotted to calculate LD50	
Serial dilutions of a *Saccharomyces cerevisiae* (wt, defective strain, defective strain transformed with either GdDMC1A or GdDMC1B bearing plasmid) in liquid culture were spotted on hydroxyurea plates or UV-treated in minimal media plates.	
Data source location	Genetics and Molecular Biology Department. Centro de Investigación y Estudios Avanzados del I. P. N., Mexico
Data accessibility	Data is within this article and available via the following links: GdDMC1A from WB (A) strain http://www.ncbi.nlm.nih.gov/protein/XP_001709425.1, GdDMC1B from WB (A) strain http://www.ncbi.nlm.nih.gov/protein/XP_001710001.1; GdDMC1A from A2 http://www.ncbi.nlm.nih.gov/protein/ESU39783.1 GdDMC1B from A2 http://www.ncbi.nlm.nih.gov/protein/ESU39512.1; GdDMC1A from B (B-GS) http://www.ncbi.nlm.nih.gov/protein/EET00637.1, GdDMC1B from B (B-GS) http://www.ncbi.nlm.nih.gov/protein/EES98708.1; GdDMC1A from B (B-GSB) http://www.ncbi.nlm.nih.gov/protein/ESU44340.1, GdDMC1B from B (B-GSB) http://www.ncbi.nlm.nih.gov/protein/ESU42868.1; GdDMC1A from E http://www.ncbi.nlm.nih.gov/protein/EFO62265.1 and GdDMC1B from E http://www.ncbi.nlm.nih.gov/protein/EFO64232.1

Value of the data

- Bioinformatics tools allow to identify conserved domains and/or function in recombinases GdDMC1A and GdDMC1B.
- Structure-based protein alignment allows to identify conserved domains/functions in recombinases GdDMC1A and GdDMC1B with respect to other recombinases.
- Phylogenetic analyses allow to cluster these recombinases with other organisms to determine whether they are closely related.
- Comparative modeling analysis between predicted structure of GdDMC1A and GdDMC1B can identify differences in protein structure and make some predictions.
1. Data

Recombinases GdDMC1A and GdDMC1B amino acid sequences were compared with recombinases from other organisms (Structure-based sequence alignments) and phylogenetic reconstructions and 3D modeling were made to identify similarity (Figs. 1–3). Also, GdDMC1A and GdDMC1B protein sequences from other assemblages within *Giardia duodenalis* were identified.
Fig. 3. Comparison between Giardia recombinases (GdDMC1A and GdDMC1B) and other proteins that have been crystallized previously. The structures used were ScRad51 from Saccharomyces cerevisiae (1szpA), MvRadA from Methanococcus voltae (1xu4A), MmRadA from Methanococcus maripaludis (3etlA) and PfRadA from Pyrococcus furiosus (1pznA). GdDMC1A is shown in cyan and GdDMC1B in the darker blue. The other proteins are in light brown. Images were obtained by Chimera 1.1 software.
Table 1
Data of recombinases from different assemblages of *Giardia duodenalis*. In the sequence name the first letter (A, A2, B, E) indicates the assemblage, after the hyphen the isolate of *Giardia* is shown and the last number 1 or 2 corresponds to proteins GdDMC1A or GdDMC1B respectively.

Sequence name	Protein	Assemblage	Strain	Size (aa)	Genbank
A-WB_1	DMC1A	A	WB C6	389	XP_001709425.1
A-WB_2	DMC1B	A	WB	368	XP_001710001.1
A2-DH_1	DMC1A	A2	DH	407	ESU39783.1
A2-DH_2	DMC1B	A2	DH	399	ESU39512.1
B-GS_1	DMC1A	B	GS/M clone H7	370	EET00637.1
B-GS_2	DMC1B	B	GS/M clone H7	368	EES98708.1
B-GSB_1	DMC1A	B	GS_B_0226	370	ESU44340.1
B-GSB_2	DMC1B	B	GS_B_0226	407	ESU42868.1
E-P15_1	DMC1A	E	P15	389	EFO62265.1
E-P15_2	DMC1B	E	P15	368	EFO64232.1

(Table 1) and compared among them (Figs. 4 and 5). Finally, GdDMC1A and GdDMC1B were expressed in a rad51 defective yeast strain (Fig. 6) and LD50 using ionizing radiation was calculated in *G. duodenalis* trophozoites (Fig. 7).

2. Experimental design, materials and methods

Bioinformatic tools (Structure-based sequence alignments and phylogenetic reconstructions) were used to create Figs. 1–5. Fig. 6 shows transforming a rad51 defective *Saccharomyces cerevisiae* strain with either GdDMC1A or GdDMC1B containing plasmids looking for a rescue phenotype under DNA damaging conditions and Fig. 7 is generated by determining LD50 at 12, 32 y 48 h after ionizing radiation exposure in *G. duodenalis*. This experimental design was used only for this work.
Fig. 4. Alignment of GdDMC1A and GdDMC1B (indicated in the name for each sequence as 1 or 2 respectively) from different assemblages of *Giardia duodenalis* based on secondary structure of ScRad51 (1SZP). Sequences used are described in Table 1. Colors are as indicated in Fig. 1. This Structure-based protein sequence alignment was performed with ESPript program [5].
Fig. 5. Evolutionary relationships of GdDMC1A and GdDMC1B among assemblages of Giardia duodenalis. The evolutionary history was inferred using the Neighbor-Joining method [2]. The optimal tree with the sum of branch length = 0.52279652 is shown. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Poisson correction method [3] and are in the units of the number of amino acid substitutions per site. The analysis involved 10 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 348 positions in the final dataset. Evolutionary analyses were conducted as previously described [4]. As in Table 1, 1 refers to A and 2 refers to B.

Fig. 6. rGdDMC1A and rGdDMC1B do not complement a rad51 defective Saccharomyces cerevisiae. GdDMC1A and GdDMC1B were cloned in pRS316 vector, then they were transfected into a Δrad51 Saccharomyces cerevisiae. The ability to rescue Rad51 mutation in transfected yeast was evaluated. DNA was damaged with genotoxic agents (25 mM hydroxyurea and 50 J/m² UV light). Serial dilutions were spotted into YPD plates containing the genotoxic agent and yeast growth was observed. A wild type (WT, 3595) strain was used to compare with its corresponding Δrad51 strain and the transfected yeasts with Giardial recombinases. As a positive control ScRad51 was used to complement Δrad51.
Acknowledgments

This research was supported by CONACyT, Mexico (Grant no. 82622). Ana Laura Torres Huerta was supported by a doctoral Grant from the National Council of Science and Technology, CONACyT (207433).

Transparency document. Supporting material

Transparency data associated with this article can be found in the online version at: http://dx.doi.org/10.1016/j.dib.2016.08.031.

References

[1] A.L. Torres-Huerta, R.M. Martínez-Miguel, M.L. Bazán-Tejeda, R.M. Bermúdez-Cruz, Characterization of recombinase DMC1B and its functional role as Rad51 in DNA damage repair in *Giardia duodenalis* trophozoites, Biochimie 127 (2016) 173–186.

[2] N. Saitou, M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol. 4 (1987) 406–425.

[3] E. Zuckerkandl, L. Pauling, Evolutionary divergence and convergence in proteins, in: V. Bryson, H.J. Vogel (Eds.), Evolving Genes and Proteins, Academic Press, New York, 1965, pp. 97–166.

[4] K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar, MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol. 30 (2013) 2725–2729.

[5] P. Gouet, X. Robert, E. Courcelle, ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins, Nucleic Acids Res. 31 (2003) 3320–3323.