Experimental study on end milling parameters of Ti6Al4V Titanium superalloy in different cutting environment

S Vignesh¹ and U Mohammed Iqbal²*

¹Department of Mechanical Engineering, SRM Institute of Science & Technology, Vadapalani campus, Chennai, Tamilnadu, India
²Department of Mechanical Engineering, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamilnadu, India

E mail id: mohammeu@srmist.edu.in

Abstract. Machining of super alloys becomes highly demanded in aerospace industries. Titanium alloys tend to fall under the above category due to its density ratio and high strength. Machining under dry conditions and conventional coolants were performing better under normal conditions. Also, disposal of contaminant coolants created a necessity to find an alternate to it. Cryogenic coolant is a recent sustainable green machining process which is considered as one of the efficient process to replace conventional coolants. In the study, Liquid nitrogen (cryogenic coolant) was utilized as a cryogenic coolant to endmill the Ti6Al4V titanium superalloy at varying investigative parameters depth of cut, feed rate and speed of spindle. This study was also focused on comparing cryogenic coolant with dry machining by measuring its surface integrity. Cryogenic milling has given beneficial results when compared to dry milling. Taguchi L9 technique was utilized for experiment design and corresponding ANOVA was done to find the most influencing parameter and optimized values. At higher speeds and feed rate (i.e.,5000 rpm and 0.6 mm/min) around 15% improvement was found in cryogenic milling when compared to dry milling. In environment and health of worker or machinist point of view, cryogenic machining leads to clean and green manufacturing without compromising the quality of output.

1. Introduction

Quality is a key word across all manufacturing process. In machining industry, quality of output is measured by the surface finish, better machining conditions and reduced tool wear. One good technique for providing better machining conditions is choosing a right coolant for the process.

Conventional coolants require a replacement as it depletes raw materials, creates environmental pollution, and increased machining cost. Many replacements are being researched by the machinists in which one of the efficient and user-friendly technique is cryogenic coolants. Cryogenics are minus degree gases which provides safe, non-toxic and green surrounding during machining. It also enhances surface integrity by providing better cooling and lubrication. It eliminates the secondary cooling process which is an advantage in cryogenic machining, as minus degree gases [1].
Pereira et al. evaluated the tool life improvement of 60% and better surface finish while using cryogenic CO$_2$[2]. Few research works explored the capability of cryogenic coolants in machining and found improvements in surface integrity, life of tool, material removal rate [3-4]. Usage of cryogenic coolants like Carbon di-oxide (CO$_2$) and Liquid Nitrogen (LN$_2$) has shown better rate of heat removal from machining area and thermal softening reduction of machining tools and inserts [5]. The heat absorption rate and layer formation of LN$_2$ provides good lubrication and cooling effect. Few works suggested that cryogenic coolant method as the efficient cooling method in the machining region due to its light density and spreading ability [6]. Titanium Ti-6Al-4V due to durability, it finds applications in making of aero and aerospace parts, parts of racing cars, marine applications and parts of gas turbines. Though widely used, being a hard-to-cut material its hardness, high temperature strength retention, machining at higher speed and feed rates becomes difficult [7-9]. Few previous researchers have intended to identify the optimum and better milling conditions for machining Ti-6Al-4V alloy. Kaynak, Y et al. [10] has stated that a very few amounts of research works have been studied to identify the performance of LN$_2$ cryogenic coolant on machining conditions of super alloys. Few suggestions from above literatures were identified as research gaps. Experimentally identifying the effects on important parameters like surface roughness, tool wear in super alloys is one of the major gaps.

This research work tends to fill the gap identified, making a comparative study in different cutting environment between no-coolant(dry) environment and cryogenic coolant (LN$_2$) in determining the optimal milling conditions for titanium Ti-6Al-4V super alloy.

2. Experiment

2.1. Material

Ti-6Al-4V rectangular bar of 100mm X 20 mm X 20 mm was taken in this study. Composition of chemicals to understand the alloy presence was studied and reported in Table 1.

Elements	Ti	Al	V	Fe	C
%	88.59	6.70	4.36	0.163	0.128

The milling tool used here is Trio solid carbide endmill cutter of 8mm diameter and 4 flutes. The tool has hardness of 54HRC for providing superior cutting for machining superalloy.

2.2. Properties of Cryogenic coolant used

The temperature at which the Liquid nitrogen was taken for the study was -165°C. The liquid dewar flask was used here as shown in fig.1 for better insulation.
Figure 1. Liquid dewar flask containing LN$_2$ for maintaining the temperature at -165°C.

The properties of LN$_2$ is given in table 2. They have high expansion ratio which helps in better spread-ability while passing it in the machining area [11]. Also, when exposed to higher temperatures they turn into gas rapidly. If the expansion ratio is low the volume will be expanded and in turn increases its pressure.

Cryogen	Boiling point at 1 atm $^\circ$C ($^\circ$F)	Pressure maintained inside the flask in Psi	Density of LN$_2$ cryogen, g/L	Gas Density of LN$_2$ cryogen (at 30$^\circ$C), g/L	Expansion ratio of LN$_2$ cryogen	Type
LN$_2$	-197$^\circ$C (-321)	492	808	2.25	710	Inert

A special delivery was designed shown in fig. 2 for delivering the cryogenic coolant from the dewar flask. This delivery system helps to maintain and regulate the pressure. Also, a small insulation was provided on the pipe for avoiding escape of gases due to convection into the environment. The pipe also carries a flow control valve attached to a pressure gauge.
2.3. Parameters and their levels considered for the study

Generally, end milling depends on the controlled conditions like speed, feedrate and depth. Patil et.al. [12] and many other researchers have suggested the optimized levels for the controlled parameters. The fixation of levels was done based on tool and machine standards. Table 3 shown for the selected parameters level.

Conditions	Units	Levels
Speed of spindle (N)	rpm	4000
		4500
		5000
Feed rate (f)	mm/rev	0.2
		0.4
		0.6
Depth of cut(dc)	mm	0.5
		0.75
		1

2.4. Experimental design

Taguchi technique was used here to ensure the variability of minimum experiments and for fixing the efficient experimental trial runs. The orthogonal array (L9) from taguchi technique were used here which has 8 degrees of freedom (DoF) and to examine the least trial runs. The experiments formed by Taguchi L9 which is shown in Table 4.

Trial No.	N (rpm)	f (mm/rev)	dc (mm)
1	4000	0.2	0.5
2	4000	0.4	0.75
3	4000	0.6	1
4	4500	0.2	0.75
5	4500	0.4	1
6	4500	0.6	0.5
7	5000	0.2	1
3. Results and Discussion

The experimented values for both dry and LN$_2$ and obtained results for surface roughness

3.1. Surface Roughness

The computed values of the surface roughness of the experimental trials as shown in Table 5.

Exp. No	N (rpm)	f (mm/rev)	dc (mm)	Ra μm, Dry	Ra μm, LN$_2$
1	4000	0.2	0.5	0.31	0.35
2	4000	0.4	0.75	0.41	0.44
3	4000	0.6	1	0.25	0.24
4	4500	0.2	0.75	0.48	0.37
5	4500	0.4	1	0.30	0.25
6	4500	0.6	0.5	0.42	0.48
7	5000	0.2	1	0.56	0.30
8	5000	0.4	0.5	0.31	0.23
9	5000	0.6	0.75	0.30	0.25

Surface roughness of the experimented specimens was measured on basis of ISO 1302 standards, cut-off length of 0.25mm, length of sampling of 0.8mm, LC of 1micron and average of 3 readings were taken which is given the above table. The analysis done using taguchi technique is discussed below. Table 6 shows SN ratio response values for dry condition. MINITAB17 version was utilized to plot the responses.

Level	N (rpm)	f (mm/rev)	dc (mm)
1	10.242	7.100	11.295
2	8.095	11.549	9.140
3	11.692	11.380	9.595
Delta	3.597	4.450	2.154
Rank	2	1	3
The feed rate is found to be more influential since the delta value is found to be high. The delta value is calculated based on difference S/N values obtained from chosen levels. In dry machining, the contact between tool and workpiece is very high since there is no external lubricating medium except the atmospheric air. So, convention of heat becomes stagnant which in turn affects the surface finish. This goes well with the previous research work [13] where in dry machining feed rate is influential.

Figure 3 shows the main effect plots for dry machined parameters. In which the peak points being the optimistic parameters. Table 7 shows the optimum machining parameters for dry machining. Confirmation test were done and the obtained optimum conditions and shown in same table. The variation is around 5% which is negligible.

![Main Effects Plot for SN ratios](image)

Figure 3. Main effect plot for SN ratio Vs Input parameters in dry environment.

Table 7. Optimum machining factors of dry machining.

N (rpm)	f (mm/rev)	dc (mm)	Ra (µm)	Ra obtained from confirmation experiment (µm)	% of deviation
4000	0.4	1	0.5824	0.6628	-5%

Table 8 shows SN ratio response table using cryogenic coolants. It is identified that most vital parameter is feedrate. The reason can be attributed to tool-workpiece interface at higher speeds which is a general concept. Figure 4 shows the SEM image of machined surface at dry cutting environment for the above optimized experiment.
Figure 4. Surface profile of dry-machined specimen.

Table 8. SN ratio response table while using cryogenic coolant LN₂.

Level	N (rpm)	F (mm/rev)	dc (mm)
1	60.41	56.21	58.22
2	61.43	62.23	61.74
3	62.35	65.75	64.24
Delta	1.94	9.54	6.02
Rank	3	1	2
Table 9 shows the optimum machining parameters for cryogenic LN$_2$ machining. Confirmation tests were performed and the obtained optimum conditions and shown in same table. The variation is around 3% which is highly negligible.

Table 9. Optimum machining parameters for LN$_2$ machining.

N (rpm)	f (mm/rev)	dc (mm)	Ra (µm)	Ra’ obtained from confirmation experiment (µm)	% of deviation
500	0.6	1	0.1976	0.2536	-3%

The above results adapt well with previous results obtained by Kramar et al. [14] studied the machining factors of hard to machine material and the result states that there is a change in surface integrity at high feeds [15]. Figure 6 shows the SEM image of the above optimized experiment. This specimen carries lesser tool-stripe marks across the machining area when compared to dry machining. This may be attributed to the better cooling and spreadability of cryo layer between tool-workpiece interface.
Figure 6. Surface profile of cryo-machined specimen.

Dilip et al. [16] has studied the feedrate influence when cutting a super alloy in similar LN2 coolant and LN2 shows good performance in high spindle speed and feedrate owing to its spread-ability during milling. Further, when comparing the optimized parameters of dry and LN2 condition, Taguchi predicted that the cryogenic condition may provide lower surface finish at higher speed and feedrate. We confirmed the above prediction by performing the confirmation experiment and found to be valid. Cryogenic machining outperformed dry condition in a large deviation as shown in table 7 and table 9.

3.2. ANOVA plot for Ra in both conditions
ANOVA calculates percentage response magnitude and experimentally analyzed variance. Table 10, Table 11 shows the contribution of factors by evaluating its variance. The control factors P-magnitude implies a 95% confidence. The feedrate establishes as a most significant factor with F-value of 32.54.

Sources/parameters	DoF	Adj -SoS	Adj M-Sq	F-Val	P-Val
N (rpm)	2	0.868	0.443	21.36	0.237
f (mm/rev)	2	0.193	0.126	32.54	0.782
dc (mm)	2	0.623	0.153	28.91	0.136
Error of experiment	2	0.356	0.162		
Total value	8	2.030			

Table 11. Summarization of model plotted of Ra in dry cutting condition.

Std. R	R²	Adjusted R²	Predicted R²
179.757	65.66%	63.19%	62.24%

The significance of 62.24% implies that the factors taken are influencing in this work. This is agreeing well with the previous works done [6-7] predicted the key machining parameters. Table 12 and Table 13 shows the plotted values of ANOVA and summary model.
One of the conditions feedrate carries a F-value of 63.37 shown in Table 12, proves itself as the most significant factor, other parameters were found to be insignificant. Previous research works [14-15] suggested the cryogenic coolant has an advantage in BUE formation resistance at high speeds and better spreadability and light density, this works well in this study. The contribution in LN₂ coolant condition is feedrate with beyond 60% contribution above other parameters. The obtained result matches well with previous work [16-18]. In ANOVA, R² is found to be greater than 80%. The obtained results indicate the significance of parameters.

4. Conclusion

The experimental results and analysis and optimization are reported here to investigate the performance measures of Dry cutting and Cryo-LN₂-coolant on output machining integrity characteristics in endmilling of Ti-6Al-4V titanium superalloy are presented below

(i). For Dry condition:
- The factor which is most influencing for obtaining minimum Surface roughness is feedrate and it influences around 60% in this study
- The minimum Ra value is obtained at speed of spindle = 4000rpm, Feedrate =0.4mm/rev dₜ=1 mm which achieves surface roughness around 0.6628 µm

(ii). For LN₂ cryogenic environment:
- The factor which is most influencing for obtaining minimum Ra is feed rate contributing to Surface roughness around 65%.
- The minimum surface roughness is obtained at a speed of spindle= 5000 rpm, feedrate 0.6 mm/rev and depth-of-cut of 1 mm which achieves surface roughness around 0.1976 µm.

(iii). Though Dry machining has major advantage of cost-cut during machining, cryogenic works well at higher speed of spindle and feedrate providing better surface finish and surface integrity.

(iv). Overall, feedrate is most influencing parameter and cryogenic coolant is eco-friendly when equated with conventional coolants.
5. References

[1] I S Jawahir, D A Puleob and J Schoopa 2016 Cryogenic machining of biomedical implant materials for improved functional performance, life and sustainability Science Direct Procedia CIRP 46 7 – 14

[2] O Pereira, A Rodriguez and Barrerio 2016 Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304 Journal of cleaner Production 139 440-449

[3] Shane Y Hong, Irel Markus, Woo-Cheol Jeong 2001 New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V International Journal of Machine Tools & Manufacture 41 2245–60

[4] Domenico Umbrello, Fabrizio Micari and Jawahir 2001 The effects of cryogenic cooling on surface integrity in hard machining: A comparison with dry machining CIRP ANNALS 61 103-106

[5] Ranajit Ghosh, Zhienniew Zurechi and John H.Frey Cryogenic 2003 Machining With Brittle Tools and Effects on Tool Life International Mechanical Engineering Congress and Exposition 853-865

[6] Ezugwu E O 2005 Key improvements in the machining of difficult-to-cut aerospace superalloys International Journal of Machine Tools & Manufacture 45 1353-67

[7] Stoic A, Lucic M and Kopac J 2006 Evaluation of the stability during hard turning Journal of Mechanica Engineering 52 723-37

[8] B C Routara A Bandopadhyay and P Sahoo 2009 Roughness modelling and optimization in CNC end milling using response surface method: effect of Workpiece material variation Int J Adv Manuf Technol. 40 1166– 80

[9] Shokrani A, V Dhokia, and S T Newman 2016 Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti–6Al–4V titanium alloy Journal of Manufacturing Processes 21 172-179.

[10] Kaynak Y, T Lu and I Jawahir 2014 Cryogenic Machining-Induced Surface Integrity: A Review and Comparison with Dry, MQL, and Flood-Cooled Machining Machining Science and Technology 18 49-198

[11] B Sidda Reddy, J Suresh Kumar and K Vijaya Kumar Reddy 2011 Optimization of surface roughness in CNC end milling using response surface methodology and genetic algorithm international Journal of Engineering, Science and Technology 3 102-108.

[12] Patil Shivraj Nagnath, Pimpal Gaonkar D.S and Ade Santosh Luxman Rao 2013 Optimization of process parameters in CNC turning machine 10th IRAJ International Conference,Tirupati

[13] Mozammel Mia, Nikhil Ranjan Dhar 2017 Optimization of surface roughness and cutting temperature in high pressure coolant-assisted hard turning using Taguchi Method International Journal of manufacturing Technology

[14] Kramar D and Kopac J 2009 The high-performance manufacturing aspect of hard-to-machine materials Journal of Advances in Production Engineering & Management (APEM) 2 3-14

[15] G Tigere, U Mohammed Iqbal and S Vignesh 2019 Comparative Study of Different Coolants in End Milling of OHNS Using Minimum Quantity Lubrication Technique Journal of Applied Science and Engineering 22 93-101

[16] B Dilip Jerold and M Pradeep Kumar 2012 Experimental comparison of carbon-dioxide and liquid nitrogen cryogenic coolants in turning of AISI 1045 steel Cryogenics 52 569–574

[17] S Vignesh and U Mohammed Iqbal 2019 Experimental Investigation on Machining Parameters of Hastelloy C276 Under Different Cryogenic Environment

[18] M. S. Shunmugam and M. Kanthababu (eds.) 2019 Advances in Forming, Machining and Automation Lecture Notes on Multidisciplinary Industrial Engineering 20 261-275
[19] Paul S, Dhar N R and Chattopadhyay AB 2001 Beneficial effects of cryogenic cooling over dry and wet machining on tool wear and surface finish in turning AISI 1060 steel J. Material Processing Technology 116 44–8