Lint Quality as Influenced by of Time of Planting in Bt cotton (Gossypium hirsutum L.) Cultivars in TBP Irrigation Command

Vinayak Hosamani1*, B.M. Chittapur2, Mallikarjun3, A.S. Halepyati4, Satyanarayana Rao5, M.B. Patil6, N.L. Rajesh7 and Venkatesh Hosamani8

1P2 BSF, Nagenahally, Kunigal, Central Silk Board, Bangalore/ UAS, Raichur, Karnataka, India
2Directorate of Extension, University of Agricultural Sciences, Raichur, Karnataka, India
3e-SAP, Project, University of Agricultural Sciences, Raichur, Karnataka, India
4University of Agricultural Sciences, Raichur, Karnataka, India
5Research Institute on Organic Farming, MARS. UAS, Raichur, Karnataka, India
6AEEC, Koppal, UAS, Raichur, Karnataka, India
7(SS&AC), COA, UAS, Raichur, Karnataka, India
8Entomology, COH, Munirabad-Koppal, Karnataka, India

*Corresponding author

Field experiments were conducted at College of Agriculture Farm, Raichur during kharif 2014-15 and 2015-16 to study the interaction between commercial Bt cultivars (Bindas, Bunny, ATM and Dr. Brent) and planting time (II fortnight of June, and I and II fortnights of July and August) on crop performance. Results revealed significantly higher fibre fineness (37.1) fibre length (mm) (37.1), Uniformity ratio (%) (50.06%), lint index (8.65), seed index (10.49g), maturity ratio (0.86), bundle strength (30.0 g tex−1) and ginning percentage (38.9) on pooled basis recorded with early sowing in June particularly with cv. Bindas compared to delayed sowings with same or different cultivars.

Keywords
Bt cotton, Date of sowing, Quality

Introduction

Cotton (Gossypium spp.), ‘the king of fibers’ also popularly known as ‘the white gold’ enjoys a pre-eminent position amongst cash crops in the world and in India as well. It is the nature’s most precious gift to the mankind, contributed by the genus Gossypium to clothe the people all over the world. Four out of the 50 recognized Gossypium species in the world viz., G. arboreum, G. herbaceum, G. hirsutum and G. barbadense are cultivated for natural fibre, and India is the only country in the world where all the four species and some of their hybrid derivatives are commercially grown. In fact, the Indian sub-continent has a long history of cultivating traditional varieties and hybrids of cotton. Productivity of cotton can be considerably improved by cultivation of Bt cotton hybrids with suitable sowing time.
Time of sowing affects plant growth and fruiting through its effects on the microclimate of the crop. Lint yield is a product of number of mature bolls produced/unit area. Late sowing resulted in decrease in opened bolls, increased pest attack and reduction in yield. Early sowing of the crop helped in the timely sowing of the succeeding *rabi* crops. Planting time differs from place to place for obtaining higher yields. In Haryana, sowing is recommended in the month of April to mid-May. The *Bt* cotton hybrids are comparatively fast growing and gave better yields even under late sown conditions. However, little research work has been carried out under Haryana conditions, on suitability of *Bt* cotton hybrids under different sowing dates. Keeping the above aspects, the present investigation was planned to study the performance of different *Bt* cotton hybrids (*Gossypium hirsutum* L.) under varying dates of sowing. Proper sowing time plays pivotal role in yield potential; similarly, proper nitrogen dose is essential for optimum growth and yield. To examine the productivity of four cotton cultivars under two different sowing dates. To evaluate the differences in the yield and yield components of different cotton cultivars with different sowing dates

Materials and Methods

Investigations were carried out at Agricultural College Farm, University of Agricultural Sciences, Raichur, Karnataka falling under Tunga Bhadra Project irrigation command under deep black soil under irrigation. The experiment was laid out using Split plot design consisting of five main plot treatments (sowing date: D1- Second fortnight of June, D2- First fortnight of July, D3- Second fortnight of July, D4- First fortnight of August, and D5- Second fortnight of August) and four sub plot treatments (cotton cultivars: G1- Bindas, G2- Bunny-Bt, G3- ATM and G4- Dr. Brent) with three replications. The recommended dose of fertilizers 150: 75:75 kg ha\(^{-1}\) N, P\(_2\)O\(_5\) and K\(_2\)O were applied during both the years. Important growth and yield parameters were monitored and the data were subjected to statistical analysis (Gomez and Gomez, 1984). The means were compared using Duncan’s Multiple Range Test (DMRT) using SPSS 16.0 version at P = 0.05

Results and Discussion

Fibre fineness was significantly influenced due to sowing dates, cultivars and their interactions during both the years and on pooled basis (Table 1-4). Early sowing during II fortnight of June (D\(_1\)) consistently recorded significantly higher fineness (4.79 on pooled basis) among all and the values decreased steadily with delay in sowing wherein the last sowing during II fortnight of August (D\(_5\)) recorded significantly lower finene\(_ss\) (3.92 on pooled basis) while others had intermediary values. Variations among cultivars were significant during second year and in pooled mean. Cv. Bindas (G\(_1\)) recorded significantly higher fineness (4.47) among all, while other cultivars were at par and differed significantly from the former (G\(_1\)). Fibre fineness was higher with early sowing irrespective of cultivars used and it slowly decreased with delay in sowing up to August end. Among all treatment combination cv Bindas sown during II fortnight of June (D\(_1\)G\(_1\)) (4.87 on pooled basis) was superior in fibre fineness while cvs. Dr Brent and ATM sown during II fortnight of August (D\(_5\)G\(_4\) and D\(_5\)G\(_3\)) recorded significantly lower fibre fineness (3.81 and 3.84, respectively on pooled basis).

Fibre length differed significantly due to different sowing dates, cultivars and their interactions (Table 1-4). Among different dates of sowing, significantly higher fibre length (36.9 on pooled basis) was recorded with second fortnight of June (D\(_1\)) during both the years and on the pooled basis. Fibre length
(mm) decreased with the delayed sowing times and recorded the lowest length (27.7 on pooled basis) with the last sowing during II fortnight of August (D₅). Effect of genotypes revealed significant variation only during second year wherein cv. Bindas (V₁) fared superior (33.4) while cv. Bunny Bt (V₂) had lower fibre length among all. Fibre length was higher with early sowing irrespective of cultivars used and it slowly decreased with delay in sowing up to August end. Among all the treatment combinations cv. Bindas sown during II fortnight of June (D₁G₁) (37.1 on pooled basis) was superior in fibre length and crop sown during I fortnight of July was on par irrespective of cultivars used, while cvs. Bunny Bt, Dr Brent and ATM sown during II fortnight of August (D₅G₂₋₄) recorded significantly lower fibre length (27.1 to 27.5 on pooled basis). Other treatment combinations had intermediary values.

Lint indices varied significantly due to sowing dates, cultivars and their interactions during both the years and on pooled basis (Table 1-4). Among the dates of sowing, significantly higher lint index was recorded with early sowing during II fortnight of June (D₁) (8.51 on pooled basis) followed closely by I fortnight of July (D₂) which was on par, then on the values decreased with the delayed sowing and recorded the lowest lint index (5.29 on pooled basis) with the last sowing during II second fortnight of August (D₅). Among the genotypes, cv. Bindas (G₁) consistently recorded higher lint index (7.64 on pooled basis) followed by cv. ATM (G₃) while cv. Bunny Bt (G₂) and Dr Brent (G₄) were on par with each other and recorded lower lint indices (7.23 and 7.24, respectively on pooled basis) among all. Among the treatment combinations, irrespective of cultivars first sowing during II fortnight of June (D₁G₁₋₄) recorded significantly higher lint indices; cv. Bindas topping all (8.65 on pooled basis), second sowing during I fortnight of July (D₂G₁₋₄) had comparable values, and then on the values decreased appreciably with considerably low values with last sowing during II fortnight of August (4.86 and 4.95, respectively with cvs. Dr Brent and Bunny Bt on pooled basis), while crop sown during I fortnight of August fared a lot better.

Sowing dates, cultivars and their interactions resulted in significant variations in seed indices during both the years and on pooled basis (Table 1-4).
Table 1 Fibre fineness and Fibre length (mm) of cotton as influenced by time of Planting and genotypes

Treatments	Fibre fineness	Fibre length (mm)	Yield kg ha⁻¹				
	2014-15	2015-16	Pooled	2014-15	2015-16	Pooled	Pooled
Plant time							
D₁	4.76 e	4.82 a	4.79 a	35.8 a	38.0 a	36.9 a	38.37
D₂	4.53 b	4.62 b	4.58 b	33.8 ba	35.8 a	34.8 c	33.92
D₃	4.34 c	4.39 c	4.37 c	32.5 bc	34.3 c	33.4 c	27.11
D₄	4.15 e	4.20 d	4.18 d	30.6 c	31.9 d	31.2 d	2015 d
D₅	3.93 d	3.91 e	3.92 e	26.9 d	28.4 e	27.7 e	982 e
S.Em⁺	0.06	0.03	0.02	0.66	0.30	0.10	71
Genotypes							
G₁	4.46 a	4.48 a	4.47 a	32.4 a	34.3 a	33.4 a	2873 a
G₂	4.34 a	4.39 a	4.36 a	31.8 a	33.3 a	32.5 a	2280 d
G₃	4.29 a	4.36 a	4.33 a	31.8 a	33.6 a	32.7 a	2673 c
G₄	4.28 a	4.33 a	4.31 a	31.7 a	33.5 c	32.6 a	2517 b
S.Em⁺	0.06	0.02	0.01	0.62	0.10	0.01	43
D x G							
D₁G₁	4.85 a	4.89 a	4.87 a	35.9 a	38.2 a	37.1 a	4173 a
D₁G₂	4.74 b	4.81 b	4.78 b	35.7 a	37.9 a	36.8 a	3692 a
D₁G₃	4.72 b	4.79 b	4.76 b	35.7 a	38.0 a	36.9 a	3784 b
D₁G₄	4.73 b	4.79 b	4.76 b	35.7 a	38.0 a	36.8 a	3692 b
D₂G₁	4.66 a	4.74 b	4.70 b	34.1 a	36.2 a	35.1 a	3595 c
D₂G₂	4.54 a	4.59 e	4.57 ed	33.8 a	35.6 b	34.7 b	3335 d
D₂G₃	4.51 ed	4.59 c	4.55 bc	33.7 a	35.8 a	34.7 b	3364 e
D₂G₄	4.42 b	4.55 e	4.49 ad	33.5 b	35.6 b	34.6 bc	3276 d
D₃G₁	4.41 b	4.50 e	4.46 ac	33.4 a	35.1 c	34.3 c	3113 e
D₃G₂	4.32 c	4.33 ed	4.32 ed	32.3 a	33.9 d	33.1 c	1810 f
D₃G₃	4.31 ed	4.38 ed	4.34 ed	32.3 a	34.1 d	33.2 c	3205 ed
D₃G₄	4.32 c	4.35 e	4.34 ed	32.2 a	34.0 de	33.1 d	2718 f
D₄G₁	4.24 e	4.28 eg	4.26 eg	31.2 b	32.6 e	31.9 d	2202 g
D₄G₂	4.12 eg	4.21 fg	4.17 fg	30.4 b	31.5 f	30.9 d	1728 h
D₄G₃	4.11 eg	4.19 bg	4.15 bg	30.4 b	31.9 f	31.2 d	2073 e
D₄G₄	4.13 eg	4.13 bh	4.13 bh	30.3 b	31.6 c	31.0 d	2058 e
D₅G₁	4.12 eg	3.99 eg	4.06 eg	27.7 c	29.5 e	28.6 e	1286 f
D₅G₂	3.97 eg	3.99 h	3.98 h	26.6 c	27.6 b	27.1 e	856 f
D₅G₃	3.82 eg	3.85 l	3.84 l	26.6 e	28.4 b	27.5 e	946 f
D₅G₄	3.80 f	3.82 j	3.81 j	26.6 e	28.2 b	27.4 e	841 l
S.Em⁺	0.13	0.05	0.03	1.37	0.30	0.20	113

*Means with same letters do not differ significantly under DMRT

Main plot treatments: Time of planting (D)
- D₁: Second fortnight of June
- D₂: First fortnight of July
- D₃: Second fortnight of July
- D₄: First fortnight of August
- D₅: Second fortnight of August

Sub plot treatments: Genotypes (G)
- G₁: Bindas
- G₂: Buni-Bt
- G₃: ATM
- G₄: Dr. Brent
Table 2 Uniformity ratio (%) and Lint index of cotton as influenced by time of Planting and genotypes

Plant time	Uniformity ratio (%)	Lint index				
	2014-15	2015-16	Pooled	2014-15	2015-16	Pooled
D1	49.2	50.3	49.8	8.37	8.65	8.51
D2	47.2	48.3	47.7	8.30	8.39	8.35
D3	46.4	47.0	46.7	7.54	7.65	7.59
D4	45.6	46.0	45.8	7.05	7.24	7.14
D5	44.8	45.3	45.1	5.04	5.53	5.29
S.Em±	0.65	0.31	0.39	0.12	0.16	0.08
Genotypes						
G1	47.3	48.1	47.7	7.52	7.77	7.64
G2	46.5	47.1	46.8	7.16	7.31	7.23
G3	46.5	47.3	46.9	7.22	7.56	7.39
G4	46.3	47.1	46.7	7.16	7.32	7.24
S.Em±	0.58	0.10	0.30	0.08	0.07	0.03
D x G						
D1G1	50.2	51.1	50.6	8.47	8.82	8.65
D1G2	48.9	50.0	49.5	8.36	8.58	8.47
D1G3	48.9	50.1	49.5	8.33	8.62	8.47
D1G4	48.9	50.0	49.4	8.32	8.57	8.45
D2G1	47.7	49.1	48.4	8.30	8.56	8.47
D2G2	47.1	47.9	47.5	8.27	8.32	8.30
D2G3	47.2	48.3	47.7	8.28	8.35	8.32
D2G4	46.8	47.8	47.3	8.27	8.32	8.30
D3G1	47.4	48.1	47.8	7.67	7.77	7.72
D3G2	46.1	46.5	46.3	7.47	7.56	7.51
D3G3	46.2	46.9	46.5	7.51	7.65	7.58
D3G4	45.8	46.5	46.2	7.49	7.63	7.56
D4G1	45.7	46.3	46.0	7.36	7.50	7.43
D4G2	45.6	45.9	45.8	6.90	6.96	6.93
D4G3	45.7	46.1	45.9	6.99	7.35	7.17
D4G4	45.6	45.9	45.7	6.95	7.13	7.04
D5G1	45.5	46.0	45.7	5.68	6.19	5.94
D5G2	44.6	45.0	44.8	4.76	5.13	4.95
D5G3	44.7	45.3	45.0	4.95	5.83	5.39
D5G4	44.6	45.1	44.8	4.77	4.95	4.86
S.Em±	1.29	0.30	0.80	0.20	0.21	0.10

*Means with same letters do not differ significantly under DMRT

Main plot treatments: Time of planting (D) Sub plot treatments: Genotypes (G)
D1: Second fortnight of June G1: Bindas
D2: First fortnight of July G2: Bunny-Bt
D3: Second fortnight of July G3: ATM
D4: First fortnight of August G4: Dr. Brent
D5: Second fortnight of August

4102
Table 3 Seed index (g) and Maturity ratio of cotton as influenced by time of Planting and genotypes

Treatments	Seed index (g)	Maturity ratio				
	2014-15	2015-16	Pooled	2014-15	2015-16	Pooled
Plant time						
D1	10.43 \(^{a}\)	10.46 \(^{a}\)	10.37 \(^{a}\)	0.82 \(^{a}\)	0.87 \(^{a}\)	0.84 \(^{a}\)
D2	9.71 \(^{b}\)	9.79 \(^{b}\)	9.68 \(^{b}\)	0.81 \(^{a}\)	0.83 \(^{b}\)	0.82 \(^{b}\)
D3	9.36 \(^{c}\)	9.33 \(^{c}\)	9.30 \(^{c}\)	0.76 \(^{b}\)	0.78 \(^{c}\)	0.77 \(^{c}\)
D4	9.03 \(^{c}\)	8.96 \(^{d}\)	8.89 \(^{d}\)	0.70 \(^{c}\)	0.73 \(^{d}\)	0.72 \(^{d}\)
D5	8.07 \(^{d}\)	8.17 \(^{e}\)	8.08 \(^{e}\)	0.65 \(^{d}\)	0.68 \(^{e}\)	0.66 \(^{e}\)
S.Em\(^{\dagger}\)	0.11	0.07	0.06	0.01	0.02	0.01
Genotypes						
G1	9.46 \(^{a}\)	9.52 \(^{a}\)	9.37 \(^{a}\)	0.76 \(^{a}\)	0.80 \(^{a}\)	0.78 \(^{a}\)
G2	9.31 \(^{a}\)	9.28 \(^{b}\)	9.31 \(^{b}\)	0.73 \(^{b}\)	0.76 \(^{c}\)	0.75 \(^{b}\)
G3	9.29 \(^{a}\)	9.31 \(^{b}\)	9.27 \(^{b}\)	0.74 \(^{a}\)	0.78 \(^{b}\)	0.76 \(^{b}\)
G4	9.22 \(^{a}\)	9.25 \(^{b}\)	8.31 \(^{b}\)	0.75 \(^{a}\)	0.77 \(^{b}\)	0.76 \(^{b}\)
S.Em\(^{\dagger}\)	0.14	0.02	0.06	0.01	0.003	0.006
D x G						
D1G1	10.56 \(^{a}\)	10.62 \(^{a}\)	10.49 \(^{a}\)	0.83 \(^{a}\)	0.88 \(^{a}\)	0.86 \(^{a}\)
D1G2	10.47 \(^{b}\)	10.42 \(^{c}\)	10.49 \(^{a}\)	0.82 \(^{a}\)	0.86 \(^{b}\)	0.84 \(^{b}\)
D1G3	10.47 \(^{b}\)	10.51 \(^{b}\)	10.38 \(^{a}\)	0.82 \(^{a}\)	0.87 \(^{a}\)	0.84 \(^{a}\)
D1G4	10.22 \(^{b}\)	10.30 \(^{c}\)	10.11 \(^{b}\)	0.82 \(^{a}\)	0.86 \(^{b}\)	0.84 \(^{b}\)
D2G1	9.94 \(^{d}\)	10.01 \(^{d}\)	9.85 \(^{e}\)	0.81 \(^{a}\)	0.84 \(^{d}\)	0.83 \(^{b}\)
D2G2	9.72 \(^{d}\)	9.76 \(^{e}\)	9.73 \(^{d}\)	0.80 \(^{b}\)	0.81 \(^{b}\)	0.81 \(^{b}\)
D2G3	9.65 \(^{d}\)	9.75 \(^{e}\)	9.64 \(^{b}\)	0.81 \(^{b}\)	0.83 \(^{d}\)	0.82 \(^{b}\)
D2G4	9.54 \(^{d}\)	9.64 \(^{e}\)	9.52 \(^{d}\)	0.81 \(^{b}\)	0.83 \(^{d}\)	0.82 \(^{b}\)
D3G1	9.47 \(^{d}\)	9.49 \(^{f}\)	9.32 \(^{d}\)	0.78 \(^{b}\)	0.80 \(^{f}\)	0.79 \(^{b}\)
D3G2	9.29 \(^{d}\)	9.18 \(^{h}\)	9.31 \(^{f}\)	0.74 \(^{d}\)	0.76 \(^{b}\)	0.75 \(^{ed}\)
D3G3	9.35 \(^{d}\)	9.34 \(^{g}\)	9.32 \(^{d}\)	0.75 \(^{b}\)	0.77 \(^{g}\)	0.76 \(^{ed}\)
D3G4	9.34 \(^{d}\)	9.29 \(^{g}\)	9.25 \(^{d}\)	0.75 \(^{d}\)	0.77 \(^{g}\)	0.76 \(^{ed}\)
D4G1	9.17 \(^{d}\)	9.16 \(^{h}\)	9.07 \(^{f}\)	0.72 \(^{b}\)	0.75 \(^{h}\)	0.73 \(^{f}\)
D4G2	9.03 \(^{d}\)	8.96 \(^{h}\)	8.93 \(^{f}\)	0.69 \(^{b}\)	0.72 \(^{h}\)	0.70 \(^{gf}\)
D4G3	8.95 \(^{d}\)	8.84 \(^{i}\)	8.92 \(^{f}\)	0.70 \(^{ed}\)	0.73 \(^{i}\)	0.72 \(^{gf}\)
D4G4	8.97 \(^{d}\)	8.89 \(^{i}\)	8.66 \(^{f}\)	0.70 \(^{ed}\)	0.73 \(^{j}\)	0.71 \(^{gf}\)
D1G1	8.17 \(^{ee}\)	8.34 \(^{i}\)	8.13 \(^{g}\)	0.68 \(^{gf}\)	0.71 \(^{k}\)	0.69 \(^{hgf}\)
D1G2	8.05 \(^{e}\)	8.09 \(^{j}\)	8.09 \(^{g}\)	0.62 \(^{h}\)	0.65 \(^{m}\)	0.64 \(^{l}\)
D1G3	8.03 \(^{e}\)	8.12 \(^{k}\)	8.07 \(^{f}\)	0.64 \(^{gh}\)	0.68 \(^{l}\)	0.66 \(^{ji}\)
D1G4	8.05 \(^{e}\)	8.11 \(^{k}\)	8.03 \(^{f}\)	0.65 \(^{ghf}\)	0.68 \(^{l}\)	0.66 \(^{hj}\)
S.Em\(^{\dagger}\)	0.29	0.08	0.13	0.02	0.01	0.01

*Means with same letters do not differ significantly under DMRT

Main plot treatments: Time of planting (D)
- D1: Second fortnight of June
- D2: First fortnight of July
- D3: Second fortnight of July
- D4: First fortnight of August
- D5: Second fortnight of August

Sub plot treatments: Genotypes (G)
- G1: Bindas
- G2: Bunny-Bt
- G3: ATM
- G4: Dr. Brent

4103
Table 4 Bundle strength (g/tex) and ginning percentage of cotton as influenced by time of Planting and genotypes

Treatments	Bundle strength (g/tex)	Ginning percentage				
Plant time	2014-15	2015-16	Pooled	2014-15	2015-16	Pooled
D1	29.1^a	30.3^a	29.7^a	38.7^a	38.3^a	38.5^a
D2	28.1^b	28.8^b	28.4^b	37.5^{ba}	37.1^b	37.3^b
D3	27.1^c	27.6^c	27.4^c	35.5^b	35.4^c	35.4^c
D4	24.8^e	25.3^d	25.0^d	32.3^c	32.1^d	32.2^d
D5	23.0^d	23.2^e	23.1^e	30.7^c	31.4^d	31.1^e
S.Em^{±±}	0.2	0.2	0.10	0.65	0.20	0.20
Genotypes						
G1	26.8^a	27.6^a	27.2^a	35.3^a	35.4^a	35.3^a
G2	26.2^{bc}	26.7^a	26.5^b	34.7^a	34.5^c	34.6^b
G3	26.3^{ba}	27.0^a	26.7^a	34.9^a	34.9^b	34.9^b
G4	26.3^c	26.9^a	26.6^d	34.9^a	34.8^b	34.8^{bc}
S.Em^{±±}	0.2	0.08	0.04	0.58	0.10	0.16
D x G						
D1G1	29.3^a	30.6^a	30.0^a	39.0^a	38.8^a	38.9^a
D1G2	29.0^c	30.2^a	29.6^a	38.5^a	38.0^b	38.3^c
D1G3	29.1^a	30.2^a	29.6^a	38.7^a	38.2^b	38.5^a
D1G4	29.0^a	30.1^a	29.6^a	38.6^a	38.2^b	38.4^a
D2G1	28.2^a	29.3^b	28.7^b	37.9^a	37.5^e	37.7^e
D2G2	28.0^a	28.5^b	28.2^b	37.2^a	36.8^d	37.0^b
D2G3	28.1^a	28.9^b	28.5^b	37.4^a	37.2^d	37.3^b
D2G4	28.0^a	28.7^b	28.3^b	37.4^a	37.1^d	37.2^b
D3G1	28.0^c	28.5^b	28.2^b	35.8^{ba}	35.7^e	35.8^{bc}
D3G2	26.8^b	27.2^c	27.0^c	35.2^{bc}	35.1^f	35.2^c
D3G3	26.9^b	27.5^c	27.2^c	35.4^{bac}	35.4^{de}	35.4^{bc}
D3G4	26.8^b	27.4^c	27.1^c	35.6^{ba}	35.2^f	35.4^{bc}
D4G1	25.0^c	25.7^{bc}	25.3^c	32.7^d	32.7^g	32.7^d
D4G2	24.6^c	24.7^d	24.7^c	32.1^{dc}	31.7^{ih}	31.9^{ed}
D4G3	24.8^c	25.3^c	25.1^c	32.2^{dc}	32.0^h	32.1^{ed}
D4G4	24.7^c	25.3^c	25.0^c	32.4^d	32.0^h	32.2^{ed}
D5G1	23.7^d	23.9^e	23.8^{ae}	31.3^{dc}	32.0^h	31.7^{ed}
D5G2	22.8^d	22.9^e	22.8^d	30.3^d	30.8^l	30.5^e
D5G3	22.8^d	22.9^e	22.9^d	30.7^d	31.6^{lh}	31.2^{ed}
D5G4	22.9^d	22.9^e	22.9^d	30.6^d	31.3^l	30.9^{ed}
S.Em^{±±}	0.4	0.3	0.13	1.3	0.30	0.40

*Means with same letters do not differ significantly under DMRT

Main plot treatments: Time of planting (D)	**Sub plot treatments: Genotypes (G)**
D1: Second fortnight of June | G1: Bindas
D2: First fortnight of July | G2: Bunny-Bt
D3: Second fortnight of July | G3: ATM
D4: First fortnight of August | G4: Dr. Brent
D5: Second fortnight of August |

4104
Among the dates of sowing, significantly higher seed index (10.37 on pooled basis) was recorded with early sowing during II fortnight of June (D1) followed by I fortnight of July (D2), and the values decreased with further delay in sowing and recorded the lowest seed index (8.08 on pooled basis) with the last sowing during II second fortnight of August (D3). Among the genotypes, cv. Bindas (G1) consistently recorded higher seed index (9.37 on pooled basis) followed by cvs. ATM, Bunny Bt (G2) and Dr Brent (G4) were on par with each other and recorded next higher indices (8.31 to 9.31 on pooled basis) among all. Among the treatment combinations, irrespective of cultivars first sowing during II fortnight of June (D1G1-4) recorded significantly higher seed indices; cv. Bindas and Bunny Bt faring well (10.49 each on pooled basis). Thereafter seed indices decreased appreciably with considerably low values with last sowing during II fortnight of August (8.03 and 8.09, respectively with cvs. Dr Brent (D5G4) and Bunny Bt (D5G2) on pooled basis), while other combinations fared moderate values occupying middle space.

Production interventions in the form of sowing dates, cultivars and their interactions resulted in significant variations in maturity ratio during both years and on pooled basis (Table 1-4). Among the dates of sowing, significantly higher maturity ratio was recorded consistently with early sowing during II fortnight of June (D1) (0.84 on pooled basis) followed by I fortnight of July (D2), and the values decreased with further delay in sowing and recorded the lowest maturity ratio (0.66 on pooled basis) with the last sowing during II fortnight of August (D3). Among the genotypes, cv. Bindas (G1) consistently recorded higher maturity ratio (0.78 on pooled basis), while others fared on par with each other and stood next in the order (cvs. ATM, Bunny Bt and Dr Brent with values ranging from 0.75 to 0.76). Among the treatment combinations, irrespective of cultivars first sowing during II fortnight of June (D1G1-4) recorded significantly higher maturity ratio; cv. Bindas faring well (0.86 on pooled basis) and I fortnight of July (D2G1-4) and cv. Bindas (D3G1) sown during II fortnight of July were at par. Thereafter, maturity ratio decreased with considerably low values with the last sowing during II fortnight of August, cv, Bunny Bt (D5G2) recorded the lowest (0.64 on pooled basis), while other combinations fared moderate and occupied middle space.

Bundle strength differed significantly due to sowing dates, cultivars and their interactions during both years and on pooled basis (Table 1-4). Among the different dates of sowing significantly higher bundle strength (29.7 on pooled basis) was recorded with II fortnight of June (D1). Bundle strength decreased gradually with the delayed sowing and recorded the lowest seed index with the last sowing during II fortnight of August (D5) (23.1 on pooled basis). Other sowing dates occupied middle space. Cv. Bindas (G1) consistently recorded higher bundle strength (27.2 on pooled basis) followed by cv. ATM which was on par while cvs. Bunny Bt (G2) and Dr Brent (G4) fared at par with comparable values (26.5 and 26.6, respectively on pooled basis) among the cultivars and stood next in the order. Among the treatment combinations, irrespective of cultivars early sowing during II fortnight of June (D1G1-4) had significantly higher bundle strength; cv. Bindas faring better (30.0 on pooled basis), followed by those sown during I fortnight of July (D2G1-4). With further delay in sowing bundle strength decreased gradually and recorded significantly lower values with last sown crop during II fortnight of August (D5G1-4) where all cultivars fared on par with each other (22.8 to 23.8 on pooled basis). Other combinations had moderate values and fared in between.
During both the years of experimentation and on pooled basis ginning percentage varied significantly due to sowing dates, cultivars and their interactions (Table 1-4). Among the different dates of sowing, significantly higher ginning percentage (38.5 on pooled basis) was recorded with II fortnight of June (D1). Ginning percentage decreased gradually with the delayed sowing and recorded the lowest ginning percentage (31.1 on pooled basis) with the last sowing during II fortnight of August (D5). Other sowing dates occupied middle space. Among cultivars, cv. Bindas (G1) consistently recorded higher ginning percentage (35.3 on pooled basis); other cultivars were at par with one another and stood next in the order. Among the treatment combinations, irrespective of cultivars early sowing during II fortnight of June (D1G1-4) had significantly higher ginning percentage; cv. Bindas faring better (38.9 on pooled basis), followed by those sown during I fortnight of July (D2G1-4) and cv Bindas sown during II fortnight of July (D3G1) which were on par with first sown crop. With further delay in sowing ginning percentage decreased gradually and recorded significantly lower values with last sown crop during II fortnight of August (D5G1-4) when all cultivars fared on par with each other (30.5 to 31.7 on pooled basis).

Lint quality and other quality parameters were superior with early date of sowing irrespective of the genotypes (Table 1-4). In the investigation higher fibre fineness (4.87 on pooled basis), fibre length (37.1 on pooled basis), uniformity ratio (50.6), lint index (8.65 on pooled basis), seed index (10.49 on pooled basis), maturity ratio (10.49 on pooled basis), bundle strength (30.0 on pooled basis) and ginning percentage (38.9 on pooled basis) were obtained with cv. Bindas sown during II fortnight of June (D1G1). Similarly, El-Debaby et al., (1995) and Khalid Usman et al., (2016) reported higher fibre length with early sowing. The results are also parallel with the findings of Arshad et al., (2007) and Baloch et al., (2001) who reported that late planting reduced fibre strength. Similarly, Elayan et al., (2015) reported higher seed index and stable length with early planting of cotton.

Micronaire indicates an indirect measure of cotton fibre gravimetric fineness (mass per unit length) and is significantly influenced by sowing dates, genotypes and their interactions (Khalid Usman et al., 2016). Deho et al., (2012) reported that micronaire value was lower (more fine fibre) with early sowing in April compared to May sowing having higher micronaire value. While, lowest quality parameters were recorded with late sown crop irrespective of genotypes. Moreover, late sown cotton may reach maturity late in the season and practically farmers harvest immature cotton that contributes to lower fibre strength, nep formation and poor dye uptake (Bradow and Bauer, 1997). Further, fibre uniformity is a measure of the fibre length distribution in a sample. A low uniformity index value indicates that there are shorter fibres (< 12.7 mm in length) in a sample than one with a high fibre uniformity for cotton of the same upper half mean length. Similar to present findings, El-Zik et al., (2000) reported that late sowing in the season adversely affected uniformity ratio. Baloch et al., (2001) also communicated analogous results that late sowing of cotton resulted in lower uniformity ratio of cotton. Thus present investigation indicates that fibre uniformity is affected both by sowing date as well as genotypic material; however, the later one seems to have more impact on fibre uniformity. Bednarz et al., (2005) reported that uniformity was a genetically controlled character which could be improved by selection. Seed index is an important component of seed cotton yield and is expressed as the weight of 100 seeds. The
decrease in the seed index in later sowing dates might be attributed to the poor development of seeds and bolls under delayed sowing conditions due to unfavourable temperature resulting in reduction in boll weight.

References

Arshad, M., Wajid, A. Maqsood, M. Hussain, K. Aslam M. and Ibrahim, M., 2007, Response of growth, yield and quality of different cotton cultivars to sowing dates. Pak. J. Agri. Sci., 44(2): 208-212.

Baloch, M., S.H. Ghaloo and A.A. Rajper. 2002. Are cotton fiber characters under influence of planting dates? Life Sci. Int. J., 1(1): 1-5.

Bednarz, C.W., Shurley, W.D. and Anthony. W.S., 2005, Yield, quality, and profitability of cotton produced at varying plant densities. Agron. J., 97: 235-240.

Elayan, E. D., Sohair, Abdalla, A. M. A. and Abdel Gawad, 2015, Effect of delaying planting date on yield, fiber and yarn quality properties in some cultivars and promising crosses of Egyptian cotton. American-Eurasian J. Agric. Environ. Sci., 15(5): 754-763.

El-Debaby, A. S, Hammam G. Y, Nagib, M. A., 1995, Effect of planting dates, N and P application levels on growth characters of Giza 80 cotton cultivar. Annals Agric. Sci. Moshtohor, 33: 441-54.

Khalid Usman, Ayatullah, T., Niamatullah Khan and Sohrab Khan, 2016, Genotype-by-sowing date interaction effects on cotton yield and quality in irrigated condition of Dera ismail khan, Pakistan. Pak. J. Bot., 48(5): 1933-1944.

How to cite this article:

Vinayak Hosamani, B.M. Chittapur, Mallikarjun, A.S. Halepyati, Satyanarayana Rao, M.B. Patil, N.L. Rajesh and Venkatesh Hosamani. 2018. Lint Quality as Influenced by of Time of Planting in Bt Cotton (Gossypium hirsutum L.) Cultivars in TBP Irrigation Command. Int.J.Curr.Microbiol.App.Sci. 7(08): 4098-4107. doi: https://doi.org/10.20546/ijcmas.2018.708.426