Composing bidirectional programs monadically*

Li-yao Xia¹, Dominic Orchard², and Meng Wang³

¹ University of Pennsylvania
² University of Kent
³ University of Bristol

Abstract. Software frequently converts data from one representation to another and vice versa. Naïvely specifying both conversion directions separately is error prone and introduces conceptual duplication. Instead, bidirectional programming techniques allow programs to be written which can be interpreted in both directions. However, these techniques often employ unfamiliar programming idioms via restricted, specialised combinator libraries. Instead, we introduce a framework for composing bidirectional programs monadically, enabling bidirectional programming with familiar abstractions in functional languages such as Haskell. We demonstrate the generality of our approach applied to parsers/printers, lenses, and generators/predicates. We show how to leverage compositionality and equational reasoning for the verification of round-tripping properties for such monadic bidirectional programs.

1 Introduction

A bidirectional transformation (BX) is a pair of mutually related mappings between source and target data objects. A well-known example solves the view-update problem [2] from relational database design. A view is a derived database table, computed from concrete source tables by a query. The problem is to map an update of the view back to a corresponding update on the source tables. This is captured by a bidirectional transformation. The bidirectional pattern is found in a broad range of applications, including parsing [30, 17], refactoring [31], code generation [27, 21], and model transformation [32] and XML transformation [25].

When programming a bidirectional transformation, one can separately construct the forwards and backwards functions. However, this approach duplicates effort, is prone to error, and causes subsequent maintenance issues. These problems can be avoided by using specialised programming languages that generate both directions from a single definition [13, 33, 16], a discipline known as bidirectional programming.

The most well-known language family for BX programming is lenses [13]. A lens captures transformations between sources S and views V via a pair of functions get : S → V and put : V → S → S. The get function extracts a view from a source and put takes an updated view and a source as inputs to produce an updated source. The asymmetrical nature of get and put makes it possible for put to recover some of the source data that is not present in the view. In other words, get does not have to be injective to have a corresponding put.

*Published in the proceedings of ESOP 2019. This version includes the appendices.
Bidirectional transformations typically respect round-tripping laws, capturing the extent to which the transformations preserve information between the two data representations. For example, well-behaved lenses \cite{5,13} should satisfy:

\[
\text{put (get } s) \ s = s \quad \text{get (put } v \ s) = v
\]

Lens languages are typically designed to enforce these properties. This focus on unconditional correctness inevitably leads to reduced practicality in programming: lens combinators are often stylised and disconnected from established programming idioms. In this paper, we instead focus on expressing bidirectional programs directly, using monads as an interface for sequential composition.

Monads are a popular pattern \cite{35} (especially in Haskell) which combinator libraries in other domains routinely exploit. Introducing monadic composition to BX programming significantly expands the expressiveness of BX languages and opens up a route for programmers to explore the connection between BX programming and mainstream uni-directional programming. Moreover, it appears that many applications of bidirectional transformations (e.g., parsers and printers \cite{17}) do not share the lens get/put pattern, and as a result have not been sufficiently explored. However, monadic composition is known to be an effective way to construct at least one direction of such transformations (e.g., parsers).

Contributions In this paper, we deliberately avoid the well-tried approach of specialised lens languages, instead exploring a novel point in the BX design space based on monadic programming, naturally reusing host language constructs. We revisit lenses, and two more bidirectional patterns, demonstrating how they can be subject to monadic programming. By being uncompromising about the monad interface, we expose the essential ideas behind our framework whilst maximising its utility. The trade off with our approach is that we can no longer enforce correctness in the same way as conventional lenses: our interface does not rule out all non-round-tripping BXs. We tackle this issue by proposing a new compositional reasoning framework that is flexible enough to characterise a variety of round-tripping properties, and simplifies the necessary reasoning.

Specifically, we make the following contributions:

- We describe a method to enable monadic composition for bidirectional programs (Section 3). Our approach is based on a construction which generates a monadic profunctor, parameterised by two application-specific monads which are used to generate the forward and backward directions.

- To demonstrate the flexibility of our approach, we apply the above method to three different problem domains: parsers/printers (Section 4), lenses (Section 5), and generators/predicates for structured data (Section 6). While the first two are well-explored areas in the bidirectional programming literature, the third one is a completely new application domain.

- We present a scalable reasoning framework, capturing notions of compositionality for bidirectional properties (Section 4). We define classes of round-tripping properties inherent to bidirectionalism, which can be verified by following simple criteria. These principles are demonstrated with our three exam-
examples. We include some proofs for illustration in the paper. The supplementary material [12] contains machine-checked Coq proofs for the main theorems.

- We have implemented these ideas as Haskell libraries [12], with two wrappers around `attoparsec` for parsers and printers, and `QuickCheck` for generators and predicates, showing the viability of our approach for real programs.

We use Haskell for concrete examples, but the programming patterns can be easily expressed in many functional languages. We use the Haskell notation of assigning type signatures to expressions via an infix double colon “::”.

1.1 Further Examples of BX

We introduced lenses briefly above. We now introduce the other two examples used in this paper: parsers/printers and generators/predicates.

Parsing and printing Programming language tools (such as interpreters, compilers, and refactoring tools) typically require two intimately linked components: parsers and printers, respectively mapping from source code to ASTs and back. A simple implementation of these two functions can be given with types:

```haskell
parser :: String → AST
printer :: AST → String
```

Parsers and printers are rarely actual inverses to each other, but instead typically exhibit a variant of round-tripping such as:

```haskell
parser ∘ printer ∘ parser ≡ parser  \quad printer ∘ parser ∘ printer ≡ printer
```

The left equation describes the common situation that parsing discards information about source code, such as whitespace, so that printing the resulting AST does not recover the original source. However, printing retains enough information such that parsing the printed output yields an AST which is equivalent to the AST from parsing the original source. The right equation describes the dual: printing may map different ASTs to the same string. For example, printed code `1 + 2 + 3` might be produced by left- and right-associated syntax trees.

For particular AST subsets, printing and parsing may actually be left- or right-inverses to each other. Other characterisations are also possible, e.g., with equivalence classes of ASTs (accounting for reassociations). Alternatively, parsers and printers may satisfy properties about the interaction of partially-parsed inputs with the printer and parser, e.g., if `parser :: String → (AST, String)`:

```haskell
(let (x, s') = parser s in parser ((printer x) ++ s')) \equiv parser s
```

Thus, parsing and printing follows a pattern of inverse-like functions which does not fit the lens paradigm. The pattern resembles lenses between a source (source code) and view (ASTs), but with a compositional notion for the source and partial “gets” which consume some of the source, leaving a remainder.

Writing parsers and printers by hand is often tedious due to the redundancy implied by their inverse-like relation. Thus, various approaches have been proposed for reducing the effort of writing parsers/printers by generating both from a common definition [30, 17, 19].
Generating and checking Property-based testing (e.g., QuickCheck) expresses program properties as executable predicates. For instance, the following property checks that an insertion function `insert`, given a sorted list — as checked by the predicate `isSorted :: [Int] → Bool` — produces another sorted list. The combinator \(\implies \) represents implication for properties.

\[
\begin{align*}
\text{propInsert} &:: \text{Int} \to [\text{Int}] \to \text{Property} \\
\text{propInsert} \text{ val list} = \text{isSorted list} \implies \text{isSorted (insert val list)}
\end{align*}
\]

To test this property, a testing framework generates random inputs for `val` and `list`. The implementation of \(\implies \) applied here first checks whether `list` is sorted, and if it is, checks that `insert val list` is sorted as well. This process is repeated with further random inputs until either a counterexample is found or a pre determined number of test cases pass.

However, this naïve method is inefficient: many properties such as `propInsert` have preconditions which are satisfied by an extremely small fraction of inputs. In this case, the ratio of sorted lists among lists of length `n` is inversely proportional to \(n! \), so most generated inputs will be discarded for not satisfying the `isSorted` precondition. Such tests give no information about the validity of the predicate being tested and thus are prohibitively inefficient.

When too many inputs are being discarded, the user must instead supply the framework with custom generators of values satisfying the precondition: \(\text{genSorted} :: \text{Gen [Int]} \).

One can expect two complementary properties of such a generator. A generator is sound with respect to the predicate `isSorted` if it generates only values satisfying `isSorted`; soundness means that no tests are discarded, hence the tested property is better exercised. A generator is complete with respect to `isSorted` if it can generate all satisfying values; completeness ensures the correctness of testing a property with `isSorted` as a precondition, in the sense that if there is a counterexample, it will be eventually generated. In this setting of testing, completeness, which affects the potential adequacy of testing, is arguably more important than soundness, which affects only efficiency.

It is clear that generators and predicates are closely related, forming a pattern similar to that of bidirectional transformations. Given that good generators are usually difficult to construct, the ability to extract both from a common specification with bidirectional programming is a very attractive alternative.

Roadmap We begin by outlining a concrete example of our monadic approach via parsers and printers (Section 2), before explaining the general approach of using monadic profunctors to structure bidirectional programs (Section 3). Section 4 then presents a compositional reasoning framework for monadic bidirectional programs, with varying degrees of strength adapted to different round-tripping properties. We then replay the developments of the earlier sections to define lenses as well as generators and predicates in Sections 5 and 6.
2 Monadic bidirectional programming

A bidirectional parser, or biparser, combines both a parsing direction and printing direction. Our first novelty here is to express biparsers monadically.

In code samples, we use the Haskell pun of naming variables after their types, e.g., a variable of some abstract type \(v \) will also be called \(v \). Similarly, for some type constructor \(m \), a variable of type \(m v \) will be called \(mv \). A function \(u \to m v \) (a Kleisli arrow for a monad \(m \)) will be called \(kv \).

Monadic parsers The following data type provides the standard way to describe parsers of values of type \(v \) which may consume only part of the input string:

```haskell
data Parser v = Parser { parse :: String \to \( v, String \) }
```

It is well-known that such parsers are monadic, i.e., they have a notion of monadic sequential composition embodied by the interface:

```haskell
instance Monad Parser where
  (>>=) :: Parser v \to (v \to Parser w) \to Parser w
  return :: v \to Parser v
```

The sequential composition operator \((>>=)\), called bind, describes the scheme of constructing a parser by sequentially composing two sub-parsers where the second depends on the output of the first; a parser of \(w \) values is made up of a parser of \(v \) and a parser of \(w \) that depends on the previously parsed \(v \). Indeed, this is the implementation given to the monadic interface:

```haskell
pv >>= kw = Parser (\s \to let (v, s’) = parse pv s in parse (kw v) s’)
return v = Parser (\s \to (v, s))
```

Bind first runs the parser \(pv \) on an input string \(s \), resulting in a value \(v \) which is used to create the parser \(kw v \), which is in turn run on the remaining input \(s’ \) to produce parsed values of type \(w \). The \(return \) operation creates a trivial parser for any value \(v \) which does not consume any input but simply produces \(v \).

In practice, parsers composed with \((>>=)\) often have a relationship between the output types of the two operands: usually that the former “contains” the latter in some sense. For example, we might parse an expression and compose this with a parser for statements, where statements contain expressions. This relationship will be useful later when we consider printers.

As a shorthand, we can discard the remaining unparsed string of a parser using projection, giving a helper function \(parser \) which provides two complementary (bi-directional) transformations:

```haskell
parser :: Biparser v \to (String \to v)
printer :: Biparser v \to (v \to String)
```

However, this type of printer \(v \to String \) (shown also in Section 1.1) cannot form a monad because it is contravariant in its type parameter \(v \). Concretely, we cannot implement the bind \((>>=)\) operator for values with types of this form:
-- Failed attempt
bind :: (v → String) → (v → (w → String)) → (w → String)
bind pv kw = \w → let v = (??) in pv v ++ kw v w

We are stuck trying to fill the hole (??) as there is no way to get a value of type v to pass as an argument to pv (first printer) and kw (second printer which depends on a v). Subsequently, we cannot construct a monadic biparser by simply taking a product of the parser monad and v → String and leveraging the result that the product of two monads is a monad.

But what if the type variables of bind were related by containment, such that v is contained within w and thus we have a projection w → v? We could use this projection to fill the hole in the failed attempt above, defining a bind-like operator:

bind' :: (w → v) → (v → String) → (v → (w → String)) → (w → String)
bind' from pv kw = \w → let v = from w in pv v ++ kw v w

This is closer to the monadic form, where from :: w → v resolves the difficulty of contravariance by “contextualizing” the printers. Thus, the first printer is no longer just “a printer of v”, but “a printer of v extracted from w”. In the context of constructing a bidirectional parser, having such a function to hand is not an unrealistic expectation: recall that when we compose two parsers, typically the values of the first parser for v are contained within the values returned by the second parser for w, thus a notion of projection can be defined and used here to recover a v in order to build the corresponding printer compositionally.

Of course, this is still not a monad. However, it suggests a way to generate a monadic form by putting the printer and the contextualizing projection together, (w → v, v → String) and fusing them into (w → (v, String)). This has the advantage of removing the contravariant occurrence of v, yielding a data type:

data Printer w v = Printer { print :: w → (v, String) }

If we fix the first parameter type w, then the type Printer w of printers for w values is indeed monadic, combining a reader monad (for some global read-only parameter of type w) and a writer monad (for strings), with implementation:

instance Monad (Printer w) where
 return :: v → Printer w v
 return = \w → Printer (_ → (v, ""))

 (>>=) :: Printer w v → (v → Printer w t) → Printer w t
 pv >>= kt = Printer (\w → let (v, s) = print pv w (t, s') = print (kt v) w in (t, s ++ s'))

The printer return v ignores its input and prints nothing. For bind, an input w is shared by both printers and the resulting strings are concatenated.

We can adapt the contextualisation of a printer by the following operation which amounts to pre-composition, witnessing the fact that Printer is a contravariant functor in its first parameter:

comap :: (w → w') → Printer w' v → Printer w v
comap from (Printer f) = Printer (f ∘ from)
2.1 Monadic biparsers

So far so good: we now have a monadic notion of printers. However, our goal is to combine parsers and printers in a single type. Since we have two monads, we use the standard result that a product of monads is a monad, defining biparsers:

```haskell
data Biparser u v = Biparser { parse :: String -> (v, String), print :: u -> (v, String) }
```

By pairing parsers and printers we have to unify their covariant parameters. When both the type parameters of `Biparser` are the same it is easy to interpret this type: a biparser `Biparser v v` is a parser from strings to `v` values and printer from `v` values to strings. We refer to biparsers of this type as aligned biparsers. What about when the type parameters differ? A biparser of type `Biparser u v` provides a parser from strings to `v` values and a printer from `u` values to strings, but where the printers can compute `v` values from `u` values, i.e., `u` is some common broader representation which contains relevant `v`-typed subcomponents. A biparser `Biparser u v` can be thought of as printing a certain subtree `v` from the broader representation of a syntax tree `u`.

The corresponding monad for `Biparser` is the product of the previous two monad definitions for `Parser` and `Printer`, allowing both to be composed sequentially at the same time. To avoid duplication we elide the definition here which is shown in full in Appendix A.

We can also lift the previous notion of `comap` from printers to biparsers, which gives us a way to contextualize a printer:

```haskell
comap :: (u -> u') -> Biparser u' v -> Biparser u v
comap f (Biparser parse print) = Biparser parse (print . f)
```

```haskell
upon :: Biparser u' v -> (u -> u') -> Biparser u v
upon = flip comap
```

In the rest of this section, we use the alias “upon” for `comap` with flipped parameters where we read `p `upon` subpart` as applying the printer of `p :: Biparser u' v` on a subpart of an input of type `u` calculated by `subpart :: u -> u'`, thus yielding a biparser of type `Biparser u v`.

An example biparser Let us write a biparser, `string :: Biparser String String`, for strings which are prefixed by their length and a space. For example, the following unit tests should be true:

```haskell
test1 = parse string "6␣lambda␣calculus" == ("lambda", "␣calculus")
test2 = print string "SKI" == ("SKI", "3_SKI")
```

We start by defining a primitive biparser of single characters as:

```haskell
char :: Biparser Char Char
char = Biparser (λ (c : s) -> (c, s)) (λ c -> (c, [c]))
```

A character is parsed by deconstructing the source string into its head and tail. For brevity, we do not handle the failure associated with an empty string. A character `c` is printed as its single-letter string (a singleton list) paired with `c`.

7
Next, we define a biparser \texttt{int} for an integer followed by a single space. An auxiliary biparser \texttt{digits} (on the right) parses an integer one digit at a time into a string. Note that in Haskell, the \texttt{do}-notation statement \texttt{"d ← char ‘upon’ head" desugars to \texttt{char ‘upon’ head >>= λ d → ..."} which uses (\texttt{>>=}) and a function binding \(d\) in the scope of the rest of the desugared block.

\begin{verbatim}
int :: Biparser Int Int
int = do
ds ← digits 'upon' printedInt
return (read ds)
where

printedInt n = show n ++ "␣"

digits :: Biparser String String
digits = do
d ← char 'upon' head
if isDigit d then do
 digits ← digits 'upon' tail
 return (d : digits)
else if d == ' ' then
 return "␣"
else error "Expected digit or space"
\end{verbatim}

On the right, \texttt{digits} extracts a \texttt{String} consisting of digits followed by a single space. As a parser, it parses a character (\texttt{char ‘upon’ head}); if it is a digit then it continues parsing recursively (\texttt{digits ‘upon’ tail}) appending the first character to the result (\texttt{d : digits}). Otherwise, if the parsed character is a space the parser returns \texttt{"␣"}. As a printer, \texttt{digits} expects a non-empty string of the same format; ‘upon’ head extracts the first character of the input, then \texttt{char} prints it and returns it back as \texttt{d}; if it is a digit, then ‘upon’ tail extracts the rest of the input to print recursively. If the character is a space, the printer returns a space and terminates; otherwise (not digit or space) the printer throws an error.

On the left, the biparser \texttt{int} uses \texttt{read} to convert an input string of digits (parsed by \texttt{digits}) into an integer, and \texttt{printedInt} to convert an integer to an output string printed by \texttt{digits}. A safer implementation could return the \texttt{Maybe} type when parsing but we keep things simple here for now.

After parsing an integer \(n\), we can parse the string following it by iterating \(n\) times the biparser \texttt{char}. This is captured by the \texttt{replicateBiparser} combinator below, defined recursively like \texttt{digits} but with the termination condition given by an external parameter. To iterate \(n\) times a biparser \texttt{pv}: if \(n == 0\), there is nothing to do and we return the empty list; otherwise for \(n > 0\), we run \texttt{pv} once to get the head \(v\), and recursively iterate \(n-1\) times to get the tail \(vs\).

Note that although not reflected in its type, \texttt{replicateBiparser \(n\)} \texttt{pv} expects, as a printer, a list \(l\) of length \(n\): if \(n == 0\), there is nothing to print; if \(n > 0\), ‘upon’ head extracts the head of \(l\) to print it with \texttt{pv}, and ‘upon’ tail extracts its tail, of length \(n-1\), to print it recursively.

\begin{verbatim}
replicateBiparser :: Int → Biparser u v → Biparser [u] [v]
replicateBiparser 0 pv = return []
replicateBiparser n pv = do
 v ← pv ‘upon’ head
 vs ← (replicateBiparser (n - 1) pv) ‘upon’ tail
 return (v : vs)
\end{verbatim}

(akin to \texttt{replicateM} from Haskell’s standard library). We can now fulfil our task:

\begin{verbatim}
string :: Biparser String String
string = int ‘upon’ length >>= λn → replicateBiparser n char
\end{verbatim}
Interestingly, if we erase applications of \(\text{upon} \), i.e., we substitute every expression of the form \(py \ `\text{upon}` f \) with \(py \) and ignore the second parameter of the types, we obtain what is essentially the definition of a parser in an idiomatic style for monadic parsing. This is because \(`\text{upon}` f \) is the identity on the parser component of \(\text{Biparser} \). Thus the biparser code closely resembles standard, idiomatic monadic parser code but with “annotations” via \(\text{upon} \) expressing how to apply the backwards direction of printing to subparts of the parsed string.

Despite its simplicity, the syntax of length-prefixed strings is notably context-sensitive. Thus the example makes crucial use of the monadic interface for bidirectional programming: a value (the length) must first be extracted to dynamically delimit the string that is parsed next. Context-sensitivity is standard for parser combinators in contrast with parser generators, e.g., Yacc, and applicative parsers, which are mostly restricted to context-free languages. By our monadic BX approach, we can now bring this power to bear on bidirectional parsing.

3 A unifying structure: monadic profunctors

The biparser examples of the previous section were enabled by both the monadic structure of \(\text{Biparser} \) and the \(\text{comap} \) operation (also called \(\text{upon} \), with flipped arguments). We describe a type as being a \textit{monadic profunctor} when it has both a monadic structure and a \textit{comap} operation (subject to some equations). The notion of a monadic profunctor is general, but it characterises a key class of structures for bidirectional programs, which we explain here. Furthermore, we show a construction of monadic profunctors from pairs of monads which elicits the necessary structure for monadic bidirectional programming in the style of the previous section.

\textit{Profunctors} In Section 2.1, biparsers were defined by a data type with two type parameters (\(\text{Biparser} u v \)) which is functorial and monadic in the second parameter and \textit{contravariantly} functorial in the first parameter (provided by the \(\text{comap} \) operation). In standard terminology, a two-parameter type \(p \) which is functorial in both its type parameters is called a \textit{bifunctor}. In Haskell, the term \textit{profunctor} has come to mean any bifunctor which is contravariant in the first type parameter and covariant in the second. This differs slightly from the standard category theory terminology where a profunctor is a bifunctor \(F : D^\text{op} \times C \rightarrow \text{Set} \). This corresponds to the Haskell community’s use of the term “profunctor” if we treat Haskell in an idealised way as the category of sets.

We adopt this programming-oriented terminology, capturing the \textit{comap} operation via a class \texttt{Profunctor}. In the preceding section, some uses of \textit{comap} involved a partial function, e.g., \textit{comap head}. We make the possibility of partiality explicit via the \texttt{Maybe} type, yielding the following definition.

\textbf{Definition 1.} A binary data type is a \textbf{profunctor} if it is a contravariant functor in its first parameter and covariant functor in its second, with the operation:

\url{http://hackage.haskell.org/package/profunctors/docs/Data-Profunctor.html}
The constraint `forallF` captures a universally quantified constraint: for all types `u` then `p u` has an instance of the `Functor` class.

The requirement for `comap` to take partial functions is in response to the frequent need to restrict the domain of bidirectional transformations. In combinator-based approaches, combinators typically constrain bidirectional programs to be bijections, enforcing domain restrictions by construction. Our more flexible approach requires a way to include such restrictions explicitly, hence `comap`.

Since the contravariant part of the bifunctor applies to functions of type `u → Maybe u'`, the categorical analogy here is more precisely a profunctor `F`: `C^{op} × C → Set` where `C` is the Kleisli category of the partiality (`Maybe`) monad.

Definition 2. A monadic profunctor is a profunctor `p` (in the sense of Definition 1) such that `p u` is a monad for all `u`. In terms of type class constraints, this means there is an instance of `Profunctor p` and for all `u` there is a `Monad (p u)` instance. Thus, we represent monadic profunctors by the following empty class (which inherits all its methods from its superclasses):

```haskell
class (Profunctor p, forallF Monad p) ⇒ Profmonad p
```

Monadic profunctors must obey the following laws about the interaction between profunctor and monad operations:

- `comap f (return y) = return y`
- `comap f (py >>= kz) = comap f py >>= (λ y → comap f (kz y))`

(for all `f :: u → Maybe v`, `py :: p v y`, `kz :: y → p v z`). These laws are equivalent to saying that `comap` lifts (partial) functions into monad morphisms. In Haskell, these laws are obtained for free by parametricity. This means that every contravariant functor and monad is in fact a monadic profunctor, thus the following universal instance is lawful:

```haskell
instance (Profunctor p, forallF Monad p) ⇒ Profmonad p
```

Corollary 1. Biparsers form a monadic profunctor as there is an instance of `Monad (P u)` and `Profunctor p` satisfying the requisite laws.

Lastly, we introduce a useful piece of terminology (mentioned in the previous section on biparsers) for describing values of a profunctor of a particular form:

Definition 3. A value `p :: P u v` of a profunctor `P` is called **aligned** if `u = v`.

As of GHC 8.6, the `QuantifiedConstraints` extension allows universal quantification in constraints, written as `forall u. Functor (p u)`, but for simplicity we use the constraint constructor `forallF` from the `constraints` package: http://hackage.haskell.org/package/constraints
3.1 Constructing monadic profunctors

Our examples (parsers/printers, lenses, and generators/predicates) share monadic profunctors as an abstraction, making it possible to write different kinds of bidirectional transformations monadically. Underlying these definitions of monadic profunctors is a common structure, which we explain here using biparsers, and which will be replayed in Section 5 for lenses and Section 6 for bigenerators.

There are two simple ways in which a covariant functor \(m \) (resp. a monad) gives rise to a profunctor (resp. a monadic profunctor). The first is by constructing a profunctor in which the contravariant parameter is discarded, i.e., \(p \ u \ v = m \ v \); the second is as a function type from the contravariant parameter \(u \) to \(m \ v \), i.e., \(p \ u \ v = u \rightarrow m \ v \). These are standard mathematical constructions, and the latter appears in the Haskell profunctors package with the name Star.

Our core construction is based on these two ways of creating a profunctor, which we call \(\text{Fwd} \) and \(\text{Bwd} \) respectively:

```haskell
data Fwd m u v = Fwd { unFwd :: m v } -- ignore contrv. parameter

data Bwd m u v = Bwd { unBwd :: u -> m v } -- maps from contrv. parameter
```

The naming reflects the idea that these two constructions will together capture a bidirectional transformation and are related by domain-specific round-tripping properties in our framework. Both \(\text{Fwd} \) and \(\text{Bwd} \) map any functor into a profunctor by the following type class instances:

```haskell
instance Functor m => Functor (Fwd m u) where
    fmap f (Fwd x) = Fwd (fmap f x)

instance Functor m => Profunctor (Fwd m) where
    comap f (Fwd x) = Fwd x

instance Functor m => Functor (Bwd m u) where
    fmap f (Bwd x) = Bwd ((fmap f) o x)

instance (Monad m, MonadPartial m) => Profunctor (Bwd m) where
    comap f (Bwd x) = Bwd ((toFailure o f) >>= x)
```

There is an additional constraint here for \(\text{Bwd} \), enforcing that the monad \(m \) is a member of the \text{MonadPartial} class which we define as:

```haskell
class MonadPartial m where toFailure :: Maybe a -> m a
```

This provides an interface for monads which can internalise a notion of failure, as captured at the top-level by \text{Maybe} in \text{comap}.

Furthermore, \(\text{Fwd} \) and \(\text{Bwd} \) both map any monad into a monadic profunctor:

```haskell
instance Monad m => Monad (Fwd m u) where
    return x = Fwd (return x)
    Fwd py >>= kz = Fwd (py >>= unFwd o kz)

instance Monad m => Monad (Bwd m u) where
    return x = Bwd (\_ -> return x)
    Bwd my >>= kz = Bwd (\(\lambda u \rightarrow my u >>= (\lambda y \rightarrow unBwd (kz y) u))
```

The product of two monadic profunctors is also a monadic profunctor. This follows from the fact that the product of two monads is a monad and the product of two contravariant functors is a contravariant functor.
data (:*::) p q u v = (:*:) { pfst :: p u v, psnd :: q u v }

instance (Monad (p u), Monad (q u)) ⇒ Monad ((p :*: q) u) where
 return y = return y :*: return y
 py :*: qy >>= kz = (py >>= pfst ◦ kz) :*: (qy >>= psnd ◦ kz)

instance (ForallF Functor (p :*: q), Profunctor p, Profunctor q) ⇒ Profunctor (p :*: q) where
 comap f (py :*: qy) = comap f py :*: comap f qy

3.2 Deriving biparsers as monadic profunctor pairs

We can redefine biparsers in terms of the above data types, their instances, and
two standard monads, the state and writer monads:

 type State s a = s → (a, s)
 type WriterT w m a = m (a, w)
 type Biparser = Fwd (State String) :*: Bwd (WriterT Maybe String)

The backward direction composes the writer monad with the Maybe monad using
WriterT (the writer monad transformer, equivalent to composing two monads
with a distributive law). Thus the backwards component of Biparser corresponds
to printers (which may fail) and the forwards component to parsers:

Bwd (WriterT Maybe String) u v ≅ u → Maybe (v, String)
Fwd (State String) u v ≅ String → (v, String)

For the above code to work in Haskell, the State and WriterT types need to be
defined via either a data type or newtype in order to allow type class instances on
partially applied type constructors. We abuse the notation here for simplicity but
define smart constructors and deconstructors for the actual implementation.5

parse :: Biparser u v → (String → (v, String))
print :: Biparser u v → (u → Maybe (v, String))
mkBp :: (String → (v, String)) → (u → Maybe (v, String)) → Biparser u v

The monadic profunctor definition for biparsers now comes for free from the
constructions in Section 3.1 along with the following instance of MonadPartial for
the writer monad transformer with the Maybe monad:

instance Monoid w ⇒ MonadPartial (WriterT w Maybe) where
 toFailure Nothing = WriterT Nothing
 toFailure (Just a) = WriterT (Just (a, mempty))

In a similar manner, we will use this monadic profunctor construction to define
monadic bidirectional transformations for lenses (§5) and bigenerators (§6).

The example biparsers from Section 2.1 can be easily redefined using the
structure here. For example, the primitive biparser char becomes:

char :: Biparser Char Char
char = mkBP (λ (c : s) → (c, s)) (λ c → Just (c, [c]))

5 Smart constructors (and dually smart deconstructors) are just functions that hide
boilerplate code for constructing and deconstructing data types.
Codec library

The codec library provides a general type for bidirectional programming isomorphic to our composite type \(\text{Fwd}\ r :* : \text{Bwd}\ w \):

\[
\text{data Codec } r \ w \ c \ a = \text{Codec} \{ \text{codecIn} :: r \ a, \text{codecOut} :: c \to w \ a \}
\]

Though the original codec library was developed independently, its current form is a result of this work. In particular, we contributed to the package by generalising its original type \(\text{codecOut} :: c \to w () \) to the one above, and provided Monad and Profunctor instances to support monadic bidirectional programming with codecs.

4 Reasoning about bidirectionality

So far we have seen how the monadic profunctor structure provides a way to define biparsers using familiar operations and syntax: monads and do-notation. This structuring allows both the forwards and backwards components of a biperator to be defined simultaneously in a single compact definition.

This section studies the interaction of monadic profunctors with the round-tripping laws that relate the two components of a bidirectional program. For every bidirectional transformation we can define dual properties: backward round tripping (going backwards-then-forwards) and forward round tripping (going forwards-then-backwards). In each BX domain, such properties also capture additional domain-specific information flow inherent to the transformations. We use biparsers as the running example. We then apply the same principles to our other examples in Sections 5 and 6. For brevity, we use Bp as an alias for Biparser.

Definition 4. A biparser \(p :: \text{Bp} \ u \ u \) is backward round tripping if for all \(x :: u \) and \(s, s' :: \text{String} \) then (recalling that \(\text{print p} :: u \to \text{Maybe} (v, \text{String}) \)):

\[
fmap \text{snd} (\text{print p} x) = \text{Just } s \implies \text{parse p} (s ++ s') = (x, s').
\]

That is, if a biparser \(p \) when used as a printer (going backwards) on an input value \(x \) produces a string \(s \), then using \(p \) as a parser on a string with prefix \(s \) and suffix \(s' \) yields the original input value \(x \) and the remaining input \(s' \).

Note that backward round tripping is defined for aligned biparsers (of type \(\text{Bp} \ u \ u \)) since the same value \(x \) is used as both the input of the printer (typed by the first type parameter of \(\text{Bp} \)) and as the expected output of the parser (typed by the second type parameter of \(\text{Bp} \)).

The dual property is forward round tripping: a source string \(s \) is parsed (going forwards) into some value \(x \) which when printed produces the initial source \(s \):

Definition 5. A biparser \(p :: \text{Bp} \ u \ u \) is forward round tripping if for every \(x :: u \) and \(s :: \text{String} \) we have that:

\[
\text{parse p} s = (x, "") \implies \text{fmap} \text{snd} (\text{print p} x) = \text{Just } s
\]

Proposition 1 The biparser char :: \(\text{Bp} \ \text{Char} \ \text{Char} \) (§3.2) is both backward and forward round tripping. Proof by expanding definitions and algebraic reasoning.
Note, in some applications, forward round tripping is too strong. Here it requires that every printed value corresponds to at most one source string. This is often not the case as ASTs typically discard formatting and comments so that pretty-printed code is lexically different to the original source. However, different notions of equality enable more reasonable forward round-tripping properties.

Although one can check round-tripping properties of biparsers by expanding their definitions and the underlying monadic profunctor operations, a more scalable approach is provided if a round-tripping property is compositional with respect to the monadic profunctor operations, i.e., if these operations preserve the property. Compositional properties are easier to enforce and check since only the individual atomic components need round-tripping proofs. Such properties are then guaranteed “by construction” for programs built from those components.

4.1 Compositional properties of monadic bidirectional programming

Let us first formalize compositionality as follows. A property R over a monadic profunctor P is a family of subsets R^u_v of $P^{u v}$ indexed by types u and v.

Definition 6. A property R over a monadic profunctor P is compositional if the monadic profunctor operations are closed over R, i.e., the following conditions hold for all types u, v, w:

1. For all $x :: v$, $(\mathrm{return} \ x) \in R^u_v$ (comp-return)
2. For all $p :: P^{u v}$ and $k :: v \to P^{u w}$,

 \[p \in R^u_v \land (\forall v. (k v) \in R^u_w) \implies (p >>= k) \in R^u_w \]
 (comp-bind)
3. For all $p :: P^{u' v}$ and $f :: u \to \mathrm{Maybe} \ u'$,

 \[p \in R^u_{u'} \implies (\mathrm{comap} f \ p) \in R^u_v \]
 (comp-comap)

Unfortunately for biparsers, forward and backward round tripping as defined above are not compositional: return is not backward round tripping and $\gg=$ does not preserve forward round tripping. Furthermore, these two properties are restricted to biparsers of type $\mathbb{B}^{u u}$ (i.e., aligned biparsers) but compositionality requires that the two type parameters of the monadic profunctor can differ in the case of comap and $\gg=$. This suggests that we need to look for more general properties that capture the full gamut of possible biparsers.

We first focus on backward round tripping. Informally, backward round tripping states that if you print (going backwards) and parse the resulting output (going forwards) then you get back the initial value. However, in a general bi-pARSER $p :: \mathbb{B}^{u u}$, the input type of the printer u differs from the output type of the parser v, so we cannot compare them. But our intent for printers is that what we actually print is a fragment of u, a fragment which is given as the output of the printer. By thus comparing the outputs of both the parser and printer, we obtain the following variant of backward round tripping:

Definition 7. A biparser $p :: \mathbb{B}^{u u}$ is weak backward round tripping if for all $x :: u$, $y :: v$, and s, $s' :: \text{String}$ then:

\[\text{print} \ p \ x = \text{Just} \ (y, s) \implies \text{parse} \ p \ (s ++ s') = (y, s') \]
Removing backward round tripping’s restriction to aligned biparsers and using the result $y :: v$ of the printer gives us a property that is compositional:

Proposition 2. Weak backward round tripping of biparsers is compositional.

Proposition 3. The primitive biparser char is weak backward round tripping.

Corollary 2. Propositions 2 & 3 imply string is weak backward round tripping.

This property is “weak” as it does not constrain the relationship between the input u of the printer and its output v. In fact, there is no hope for a compositional property to do so: the monadic profunctor combinators do not enforce a relationship between them. However, we can regain compositionality for the stronger backward round-tripping property by combining the weak compositional property with an additional non-compositional property on the relationship between the printer’s input and output. This relationship is represented by the function that results from ignoring the printed string, which amounts to removing the main effect of the printer. Thus we call this operation a *purification*:

$$\text{purify} :: \forall u \, v. \, \mathcal{B} p \, u \, v \to u \to \text{Maybe } v$$

$$\text{purify } p \, u = \text{fmap } \text{fst} (\text{print } p \, u)$$

Ultimately, when a biparser is aligned ($p :: \mathcal{B} p \, u \, u$) we want an input to the printer to be returned in its output, i.e., $\text{purify } p$ should equal $\lambda x \to \text{Just } x$. If this is the case, we recover the original backward round tripping property:

Theorem 1. If $p :: \mathcal{P} \, u \, u$ is weak backward round tripping, and for all $x :: u$. $\text{purify } p \, x = \text{Just } x$, then p is backward round tripping.

Thus, for any biparser p, we can get backward round tripping by proving that its atomic subcomponents are weak backward round tripping, and proving that $\text{purify } p \, x = \text{Just } x$. The interesting aspect of the purification condition here is that it renders irrelevant the domain-specific effects of the biparser, i.e., those related to manipulating source strings. This considerably simplifies any proof. Furthermore, the definition of purify is a *monadic profunctor homomorphism* which provides a set of equations that can be used to expedite the reasoning.

Definition 8. A *monadic profunctor homomorphism* between monadic profunctors \mathcal{P} and \mathcal{Q} is a polymorphic function $\text{proj} :: \mathcal{P} \, u \, v \to \mathcal{Q} \, u \, v$ such that:

$$\text{proj } (\text{comap}_P \, f \, p) \equiv \text{comap}_Q \, f \, (\text{proj } p)$$

$$\text{proj } (p \gg= _, k) \equiv (\text{proj } p) \gg= Q \, (\lambda x \to \text{proj } (k \, x))$$

$$\text{proj } (\text{return}_P \, x) \equiv \text{return}_Q \, x$$

Proposition 4. The $\text{purify} :: \mathcal{B} p \, u \, v \to u \to \text{Maybe } v$ operation for biparsers (above) is a monadic profunctor homomorphism between $\mathcal{B} p$ and the monadic profunctor $\mathcal{P}artialFun \, u \, v = u \to \text{Maybe } v$.

Corollary 3. (of Theorem 1 with Corollary 2 and Proposition 4) The biparser string is backward round tripping.
Proof. First prove (in Appendix [B]) the following properties of biparsers \(\text{char} \), \(\text{int} \), and \(\text{replicatedBp} :: \text{Int} \to \text{Bp} \) \(u \to \text{Bp} \) \([u] \to [v]\) (writing \(\text{proj} \) for \(\text{purify} \)):

\[
\begin{align*}
\text{proj \ char \ } n & \equiv \text{Just } n \quad (4.1) \\
\text{proj \ int \ } n & \equiv \text{Just } n \quad (4.2) \\
\text{proj \ (replicateBp \ (length \ xs) \ p) \ xs} & \equiv \text{mapM \ (proj \ p) \ xs} \quad (4.3)
\end{align*}
\]

From these and the homomorphism properties we can prove \(\text{proj \ string} = \text{Just} \):

\[
\begin{align*}
\text{proj \ string \ } xs & \\
& \equiv \text{proj \ (comap \ length \ \text{int} \gg= \lambda n \to \text{replicateBp \ n \ \text{char}) \ } xs \\
& \equiv \text{proj \ (comap \ length \ (proj \ \text{int}) \gg= \lambda n \to \text{proj \ (replicateBp \ n \ \text{char})} \ } xs \\
& \equiv \text{proj \ (comap \ length \ \text{Just} \gg= \lambda n \to \text{proj \ (replicateBp \ n \ \text{char})} \ } xs \\
& \equiv \text{proj \ (replicateBp \ (length \ xs) \ \text{char}) \ } xs \\
& \equiv \text{mapM \ (proj \ \text{char}) \ } xs \\
& \equiv \text{mapM \ \text{Just \ } xs} \\
& \equiv \text{Just \ } xs \\
\end{align*}
\]

Combining \(\text{proj \ string} = \text{Just} \) with Corollary [2] (string is weak backward round tripping) enables Theorem [1] proving that string is backward round tripping.

The other two core examples in this paper also permit a definition of \(\text{purify} \). We capture the general pattern as follows:

Definition 9. A purifiable monadic profunctor is a monadic profunctor \(P \) with a homomorphism \(\text{proj} \) from \(P \) to the monadic profunctor of partial functions \(- \to \text{Maybe -}\). We say that \(\text{proj} \ p \) is the pure projection of \(p \).

Definition 10. A pure projection \(\text{proj} \ p :: u \to \text{Maybe} \ v \) is called the identity projection when \(\text{proj} \ p \ x = \text{Just \ } x \) for all \(x :: u \).

Here and in Sections [5] and [6] identity projections enable compositional round-tripping properties to be derived from more general non-compositional properties, as seen above for backward round tripping of biparsers.

We have neglected forward round tripping, which is not compositional, not even in a weakened form. However, we can generalise compositionality with conditions related to injectivity, enabling a generalisation of forward round tripping. We call the generalised meta-property quasicompositionality.

4.2 Quasicompositionality for monadic profunctors

An injective function \(f : A \to B \) is a function for which there exists a left inverse \(f^{-1} : B \to A \), i.e., where \(f^{-1} \circ f = \text{id} \). We can see this pair of functions as a simple kind of bidirectional program, with a forward round-tripping property (assuming \(f \) is the forwards direction). We can lift the notion of injectivity to the monadic profunctor setting and capture forward round-tripping properties that are preserved by the monadic profunctor operations, given some additional injectivity-like restriction. We first formalise the notion of an injective arrow.

Informally, an injective arrow \(k :: v \to m \ w \) produces an output from which the input can be recalculated:
Definition 11. Let \(m \) be a monad. A function \(k :: v \to m w \) is an \textit{injective arrow} if there exists \(k' :: w \to v \) (the \textit{left arrow inverse} of \(k \)) such that for all \(x :: v \):

\[
k x >>= \lambda y \to \text{return} \ (x, y) \equiv k x >>= \lambda y \to \text{return} \ (k' y, y)
\]

Next, we define \textit{quasicompositionality} which extends the compositionality meta-property with the requirement for \(>>= \) to be applied to injective arrows:

Definition 12. Let \(P \) be a monadic profunctor. A property \(R_{u v} \subseteq P u v \) indexed by types \(u \) and \(v \) is \textit{quasicompositional} if the following holds

1. For all \(x :: v \), \((\text{return} \ x) \in R_{u v} \) \quad \text{(qcomp-return)}
2. For all \(p :: P u v \), \(k :: v \to P u w \), if \(k \) is an injective arrow, \(p \in R_{u v} \land (\forall v. \ (k v) \in R_u^w) \implies (p >>= k) \in R_w^u \) \quad \text{(qcomp-bind)}
3. For all \(p :: P u' v \), \(f :: u \to \text{Maybe} \ u' \), \(p \in R_{u' v} \land \implies (\text{comap} \ f \ p) \in R_u^w \) \quad \text{(qcomp-comap)}

We now formulate a weakening of forward round tripping. As with weak backward round tripping, we rely on the idea that the printer \textit{outputs} both a string and the value that was printed, so that we need to compare the outputs of both the parser and the printer, as opposed to comparing the output of the parser with the input of the printer as in (strong) forward round tripping. If running the parser component of a biparser on a string \(s_01 \) yields a value \(y \) and a remaining string \(s_1 \), and the printer outputs that same value \(y \) along with a string \(s_0 \), then \(s_0 \) is the prefix of \(s_01 \) that was consumed by the parser, i.e., \(s_01 = s_0 \cdot s_1 \).

Definition 13. A biparser \(p :: Bp u v \) is \textit{weak forward round tripping} if for all \(x :: u \), \(y :: v \), and \(s_0, s_1, s_01 :: \text{String} \) then:

\[
\text{parse} \ p \ s_01 = (y, s_1) \ \land \ \text{print} \ p \ x = \text{Just} \ (y, s_0) \implies s_01 = s_0 \cdot s_1
\]

Proposition 5. Weak forward round tripping is quasicompositional.

\textit{Proof.} We sketch the \textit{qcomp-bind} case, where \(p = (m >>= k) \) for some \(m \) and \(k \) that are weak forward round tripping. From \(\text{parse} \ (m >>= k) \ s_01 = (y, s_1) \), it follows that there exists \(z, s \) such that \(\text{parse} \ m \ s_01 = (z, s) \) and \(\text{parse} \ (k z) \ s = (y, s_1) \).

Similarly \(\text{print} \ (m >>= k) \ x = \text{Just} \ (y, s_0) \) implies there exists \(z', s' \) such that \(\text{print} \ m \ x = \text{Just} \ (z', s') \) and \(\text{print} \ (k z') \ x = \text{Just} \ (y, s_1') \) and \(s_0 = s' \cdot s_1' \).

Because \(k \) is an injective arrow, we have \(z = z' \) (see appendix). We then use the assumption that \(m \) and \(k \) are weak forward round tripping on \(m \) and on \(k a \), and deduce that \(s_01 = s' \cdot s \) and \(s = s_1' \cdot s_1 \) therefore \(s_01 = s_0 \cdot s_1 \).

Proposition 6. The \textit{char} biparser is weak forward round tripping.

\textit{Corollary 4.} Propositions 5 and 6 imply that \textit{string} is weak forward round tripping if we restrict the parser to inputs whose digits do not contain redundant leading zeros.
Proof. All of the right operands of >>= in the definition of string are injective arrows, apart from \(\lambda ds \to \text{return} \) (read \(ds \)) at the end of the auxiliary int biparser. Indeed, the read function is not injective since multiple strings may parse to the same integer: \(\text{read} \ "0" = \text{read} \ "00" = 0 \). But the pre-condition to the proposition (no redundant leading zero digits) restricts the input strings so that read is injective. The rest of the proof is a corollary of Propositions 5 and 6.

Thus, quasicompositionality gives us scalable reasoning for weak forward round tripping, which is by construction for biparsers: we just need to prove this property for individual atomic biparsers. Similarly to backward round tripping, we can prove forward round tripping by combining weak forward round tripping with the identity projection property:

Theorem 2. If \(p :: \mathbb{P} u u \) is weak forward round-tripping, and for all \(x :: u \), \(\text{purify} \ p \ x = \text{Just} \ x \), then \(p \) is forward round tripping.

Corollary 5. The biparser string is forward round tripping by the above theorem (with identity projection shown in the proof of Corollary 3) and Corollary 4.

In summary, for any BX we can consider two round-tripping properties: forwards-then-backwards and backwards-then-forwards, called just forward and backward here respectively. Whilst combinator-based approaches can guarantee round-tripping by construction, we have made a trade-off to get greater expressivity in the monadic approach. However, we regain the ability to reason about bidirectional transformations in a manageable, scalable way if round-tripping properties are compositional. Unfortunately, due to the monadic profunctor structuring, this tends not to be the case. Instead, weakened round-tripping properties can be compositional or quasicompositional (adding injectivity). In such cases, we recover the stronger property by proving a simple property on aligned transformations: that the backwards direction faithfully reproduces its input as its output (identity projection). Appendix C compares this reasoning approach to a proof of backwards round tripping for separately implemented parsers and printers (not using our combined monadic approach).

5 Monadic bidirectional programming for lenses

Lenses are a common object of study in bidirectional programming, comprising a pair of functions \(\text{get} : S \to V, \text{put} : V \to S \to S \) satisfying well-behaved lens laws shown in Section 1. Previously, when considering the monadic structure of parsers and printers, the starting point was that parsers already have a well-known monadic structure. The challenge came in finding a reasonable monadic characterisation for printers that was compatible with the parser monad. In the end, this construction was expressed by a product of two monadic profunctors \(\text{Fwd} \ m \) and \(\text{Bwd} \ n \) for monads \(m \) and \(n \). For lenses we are in the same position: the forwards direction (get) is already a monad—the reader monad. The backwards direction put is not a monad since it is contravariant in its parameter; the same situation as printers. We can apply the same approach of “monadisation” used for parsers and printers, giving the following new data type for lenses:
data L s u v = L { get :: s → v, put :: u → s → (v, s) }

The result of put is paired with a covariant parameter v (the result type of get) in the same way as monadic printers. Instead of mapping a view and a source to a source, put now maps values of a different type u, which we call a pre-view, along with a source s into a pair of a view v and source s. This definition can be structured as a monadic profunctor via a pair of Fwd and Bwd constructions:

type L s = (Fwd (Reader s)) :*: (Bwd (State s))

Thus by the results of Section 54, we now have a monadic profunctor characterisation of lenses that allows us to compose lenses via the monadic interface.

Ideally, get and put should be total, but this is impossible without a way to restrict the domains. In particular, there is the known problem of “duplication” 22, where source data may appear more than once in the view, and a necessary condition for put to be well-behaved is that the duplicates remain equal amid view updates. This problem is inherent to all bidirectional transformations, and bidirectional languages have to rule out inconsistent updates of duplicates either statically 13 or dynamically 22. To remedy this, we capture both partiality of get and a predicate on sources in put for additional dynamic checking. This is provided by the following Fwd and Bwd monadic profunctors:

type ReaderT r m a = r → m a
type StateT s m a = s → m (a, s)
type WriterT w m a = m (a, w)

type L s = (Fwd (ReaderT s Maybe)) :*: (Bwd (StateT s (WriterT (s → Bool) Maybe)))

-- Smart deconstructors:
get :: L s u v → (s → Maybe v)
put :: L s u v → (u → s → Maybe ((v, s), s → Bool))

Going forwards, getting a view v from a source s may fail if there is no view for the current source. Going backwards, putting a pre-view u updates some source s (via the state transformer StateT s), but with some further structure returned, provided by WriterT (s → Bool) Maybe (similar to the writer transformer used for biparsers, § 3.2, p. 12). The Maybe here captures the possibility that put can fail. The WriterT (s → Bool) structure provides a predicate which detects the “duplication” issue mentioned earlier. Informally, the predicate can be used to check that previously modified locations in the source are not modified again. For example, if a lens has a source made up of a bit vector, and a put sets bit i to 1, then the returned predicate will return True for all bit vectors where bit i is 1, and False otherwise. This predicate can then be used to test whether further put operations on the source have modified bit i.

Similarly to biparsers, a pre-view u can be understood as containing the view v that is to be merged with the source, and which is returned with the updated source. Ultimately, we wish to form lenses of matching input and output types (i.e. L s v v) satisfying the standard lens well-behavedness laws, modulo explicit
management of partiality via Maybe and testing for conflicts via the predicate:

\[
\text{put } l \ x \ s = \text{Just } ((_, s'), \ p') \land p' \ s' \implies \text{get } l \ s' = \text{Just } x \quad \text{(L-PutGet)}
\]

\[
\text{get } l \ s = \text{Just } x \implies \text{put } l \ x \ s = \text{Just } ((_, s), \ _) \quad \text{(L-GetPut)}
\]

\text{L-PutGet} and \text{L-GetPut} are backward and forward round tripping respectively.

Some lenses, such as the later example, are not defined for all views. In that case we may say that the lens is backward/forward round tripping in some subset \(P \subseteq u \) when the above properties only hold when \(x \) is an element of \(P \).

For every source type \(s \), the lens type \(L \ s \) is automatically a monadic profunctor by its definition as the pairing of \(\text{Fwd} \) and \(\text{Bwd} \) (Section 3.1), and the following instance of \text{MonadPartial} for handling failure and instance of \text{Monoid} to satisfy the requirements of the writer monad:

\[
\text{instance MonadPartial } (\text{StateT } s (\text{WriterT } (s \rightarrow \text{Bool}) \text{Maybe})) \text{ where}
\]

\[
\text{toFailure Nothing} = \text{StateT } (\lambda_ \rightarrow \text{WriterT } \text{Nothing})
\]

\[
\text{toFailure } (\text{Just } x) = \text{StateT } (\lambda s \rightarrow \text{WriterT } (\text{Just } (x , s), \text{mempty}))
\]

\text{instance Monoid } (s \rightarrow \text{Bool}) \text{ where}

\[
\text{mempty} = \lambda_ \rightarrow \text{True}
\]

\[
\text{mappend } h j = \lambda s0 \rightarrow h s0 \land j s0
\]

A simple lens example operates on key-value maps. For keys of type \(\text{Key} \) and values of type \(\text{Value} \), we have the following source type and a simple lens:

\[
\text{type } \text{Src} = \text{Map } \text{Key } \text{Value}
\]

\[
\text{atKey} :: \text{Key} \rightarrow L \text{Src Value Value} \quad -- \text{Key-focused lens}
\]

\[
\text{atKey } k = \text{mkLens } (\text{lookup } k)
\]

\[\quad (\lambda v \rightarrow \lambda m \rightarrow \text{Just } ((v, \text{insert } k \ v \ m), \lambda m' \rightarrow \text{lookup } k \ m' == \text{Just } v))\]

The get component of the \text{atKey} lens does a lookup of the key \(k \) in a map, producing \text{Maybe} of a value. The put component inserts a value for key \(k \). When the key already exists, put overwrites its associated value.

Due to our approach, multiple calls to \text{atKey} can be composed monadically, giving a lens that gets/sets multiple key-value pairs at once. The list of keys and the list of values are passed separately, and are expected to be the same length.

\[
\text{atKeys} :: [\text{Key}] \rightarrow L \text{Src } [\text{Value}] \ [\text{Value}]
\]

\[
\text{atKeys } [] = \text{return } []
\]

\[
\text{atKeys } (k : ks) = \text{do}
\]

\[
\quad x \leftarrow \text{comap headM } (\text{atKey } k) \quad -- \text{headM } :: [a] \rightarrow \text{Maybe } a
\]

\[
\quad xs \leftarrow \text{comap tailM } (\text{atKeys } ks) \quad -- \text{tailM } :: [a] \rightarrow \text{Maybe } [a]
\]

\[
\text{return } (x : xs)
\]

We refer interested readers to our implementation \[12\] for more examples, including further examples involving trees.

Round tripping We apply the reasoning framework of Section 4 taking the standard lens laws as the starting point (neither of which are compositional).

We first weaken backward round tripping to be compositional. Informally, the property expresses the idea, that if we put some value \(x \) in a source \(s \), resulting in
a source s', then what we get from s' is x. However two important changes are needed to adapt to our generalised type of lenses and to ensure compositionality. First, the value x that was put is now to be found in the output of put, whereas there is no way to constrain the input of put because its type v is abstract. Second, by sequentially composing lenses such as in $l >>= k$, the output source s' of $\text{put } l$ will be further modified by $\text{put } (k x)$, so this round-tripping property must constrain all potential modifications of s'. In fact, the predicate p ensures exactly that the view $\text{get } l$ has not changed and is still x. It is not even necessary to refer to s', which is just one source for which we expect p to be True.

Definition 14. A lens $l :: L s u v$ is weak backward round tripping if for all $x :: u$, $y :: v$, for all sources s, s', and for all $p :: s \to Bool$, we have:

\[
\text{put } l x s = \text{Just } ((y, _), p) \land p s' \implies \text{get } l s' = \text{Just } y
\]

Theorem 3. Weak backward round tripping is a compositional property.

Again, we complement this weakened version of round tripping with the notion of purification.

Proposition 7. Our lens type L is a purifiable monadic profunctor (Definition 9), with a family of pure projections $\text{proj } s$ indexed by a source s, defined:

\[
\text{proj } s :: s \to L s u v \to (u \to \text{Maybe } v)
\]

\[
\text{proj } s = \lambda l u \to \text{fmap } (\text{fst} \circ \text{fst}) \text{ (put } l u s)
\]

Theorem 4 If a lens $l :: L s u u$ is weak backward round tripping and has identity projections on some subset $P \subseteq u$ (i.e., for all s, x then $x \in P \implies \text{proj } s l x = \text{Just } x$) then l is also backward round tripping on all $x \in P$.

To demonstrate, we apply this result to $\text{atKeys} :: [\text{Key}] \to L \text{Src } [\text{Value}] [\text{Value}]$.

Proposition 8 The lens $\text{atKey } k$ is weak backward round tripping.

Proposition 9 The lens $\text{atKey } k$ has identity projection: $\text{proj } z (\text{atKey } k) = \text{Just}$.

Our lens $\text{atKeys } ks$ is therefore weak backward round tripping by construction. We now interpret/purify $\text{atKeys } ks$ as a partial function, which is actually the identity function when restricted to lists of the same length as ks.

Proposition 10 For all $vs :: [\text{Value}]$ such that $\text{length } vs = \text{length } ks$, and for all $s :: \text{Src}$ then $\text{proj } s (\text{atKeys } ks) vs = \text{Just } vs$.

Corollary 6. By the above results, $\text{atKeys } ks :: L \text{Src } [\text{Value}] [\text{Value}]$ for all ks is backward round tripping on lists of length $\text{length } ks$.

The other direction, forward round tripping, follows a similar story. We first restate it as a quasicompositional property.

Definition 15. A lens $l :: L s u v$ is weak forward round tripping if for all $x :: u$, $y :: v$, for all sources s, s', and for all $p :: s \to Bool$, we have:

\[
\text{get } l s = \text{Just } y \land \text{put } l x s = \text{Just } ((y', _), _) \implies s = s'
\]
Theorem 5. Weak forward round tripping is a quasicompositional property. Along with identity projection, this gives the original forward L-GetPut property.

Theorem 6 If a lens \(l \) is weak forward round tripping and has identity projections on some subset \(P \) (i.e., for all \(s, x \) then \(x \in P \Rightarrow \text{proj } s \ l \ x = \text{Just } x \)) then \(l \) is also forward round tripping on \(P \).

We can thus apply this result to our example (details omitted).

Proposition 11. For all \(ks \), the lens atKeys \(ks :: \text{L} \text{Src } [\text{Value}] [\text{Value}] \) is forward round tripping on lists of length \(\text{length } ks \).

6 Monadic bidirectional programming for generators

Lastly, we capture the novel notion of bidirectional generators (bigenersators) extending random generators in property-based testing frameworks like QuickCheck [10] to a bidirectional setting. The forwards direction generates values conforming to a specification; the backwards direction checks whether values conform to a predicate. We capture the two together via our monadic profunctor pair as:

```
type G = (Fwd Gen) :*: (Bwd Maybe)
-- ... with deconstructors and constructors
generate :: G u v \rightarrow Gen v -- forward direction
check :: G u v \rightarrow u \rightarrow Maybe v -- backward direction
mkG :: Gen v \rightarrow (u \rightarrow Maybe v) \rightarrow G u v
```

The forwards direction of a bigenerator is a generator, while the backwards direction is a partial function \(u \rightarrow \text{Maybe } v \). A value \(G u v \) represents a subset of \(v \), where generate is a generator of values in that subset and check maps pre-views \(u \) to members of the generated subset. In the backwards direction, check \(g \) defines a predicate on \(u \), which is true if and only if check \(g u \) is Just of some value. The function toPredicate extracts this predicate from the backward direction:

```
toPredicate :: G u v \rightarrow u \rightarrow Bool
toPredicate g x = case check g x of Just _ \rightarrow True; Nothing \rightarrow False
```

The bigenerator type \(G \) is automatically a monadic profunctor due to our construction (§3). Thus, monad and profunctor instances come for free, modulo (un)wrapping of constructors and given a trivial instance of MonadPartial:

```
instance MonadPartial Maybe where toFailure = id
```

Due to space limitations, we refer readers to Appendix E for an example of a compositionally-defined bigenerator that produces binary search trees.

Round tripping A random generator can be interpreted as the set of values it may generate, while a predicate represents the set of values satisfying it. For a bigenerator \(g \), we write \(x \in \text{generate } g \) when \(x \) is a possible output of the generator. The generator of a bigenerator \(g \) should match its predicate toPredicate \(g \). This requirement equates to round-tripping properties: a bigenerator is sound if every
value which it can generate satisfies the predicate (forward round tripping); a bigenerator is complete if every value which satisfies the predicate can be generated (backward round tripping). Completeness is often more important than soundness in testing because unsound tests can be filtered out by the predicate, but completeness determines the potential adequacy of testing.

Definition 16. A bigenerator \(g :: G u u \) is complete (backward round tripping) when \(\text{toPredicate} \ g \ x = \text{True} \) implies \(x \in \text{generate} \ g \).

Definition 17. A bigenerator \(g :: G u u \) is sound (forward round tripping) if for all \(x :: u \), \(x \in \text{generate} \ g \) implies that \(\text{toPredicate} \ g \ x = \text{True} \).

Similarly to backward round tripping of biparsers and lenses, completeness can be split into a compositional weak completeness and a purifiable property.

As before, the compositional weakening of completeness relates the forward and backward components by their outputs, which have the same type.

Definition 18. A bigenerator \(g :: G u v \) is weak-complete when \(\text{check} \ g \ x = \text{Just} \ y =\Rightarrow y \in \text{generate} \ g \).

Theorem 7. Weak completeness is compositional.

In a separate step, we connect the input of the backward direction, i.e., the checker, by reasoning directly about its pure projection (via a more general form of identity projection) which is defined to be the checker itself:

Theorem 8. A bigenerator \(g :: G u u \) is complete if it is weak-complete and its checker satisfies a pure projection property: \(\text{check} \ g \ x = \text{Just} \ x' =\Rightarrow x = x' \).

Thus to prove completeness of a bigenerator \(g :: G u u \), we first have weak-completeness by construction, and we can then show that \(\text{check} \ g \) is a restriction of the identity function, interpreting all bigenerators simply as partial functions.

Considering the other direction, soundness, there is unfortunately no decomposition into a quasicompositional property and a property on pure projections. To see why, let \(\text{bool} \) be a random uniform bigenerator of booleans, then consider for example, \(\text{comap isTrue bool} \) and \(\text{comap isTrue (return True)} \), where \(\text{isTrue True} = \text{Just True} \) and \(\text{isTrue False} = \text{Nothing} \). Both satisfy any quasicompositional property satisfied by \(\text{bool} \), and both have the same pure projection \(\text{isTrue} \), and yet the former is unsound—it can generate \(\text{False} \), which is rejected by \(\text{isTrue} \)—while the latter is sound. This is not a problem in practice, as unsoundness, especially in small scale, is inconsequential in testing. But it does raise an intellectual challenge and an interesting point in the design space, where ease of reasoning has been traded for greater expressivity in the monadic approach.

7 Discussion and Related Work

Bidirectional transformations are a widely applicable technique used in many domains \[11\]. Among language-based solutions, the lens framework is most influential \[13, 3, 4, 14, 29, 24\]. Broadly speaking, combinators are used as programming constructs with which complex lenses are created by combining simpler ones. The combinators preserve round tripping, and therefore the resulting
programs are correct by construction. A problem with lens languages is that they tend to be disconnected from more general programming. Lenses can only be constructed by very specialised combinators and are not subject to existing abstraction mechanisms. Our approach allows bidirectional transformations to be built using standard components of functional programming, and gives a reasoning framework for studying compositionality of round-tripping properties.

The framework of applicative lenses \[18\] uses a function representation of lenses to lift the point-free restriction of the combinator-based languages, and enables bidirectional programming with explicit recursion and pattern matching. Note that the use of “applicative” in applicative lenses refers to the transitional sense of programming with λ-abstractions and functional applications, which is not directly related to applicative functors. In a subsequent work, the authors developed a language known as HOBiT \[20\], which went further in featuring proper binding of variables. Despite the success in supporting λ-abstractions and function applications in programming bidirectional transformations, none of the languages have explored advanced patterns such as monadic programming.

The work on monadic lenses \[1\] investigates lenses with effects. For instance, a “put” could require additional input to resolve conflicts. Representing effects with monads helps reformulate the laws of round-tripping. In contrast, we made the type of lenses itself a monad, and showed how they can be composed monadically. Our method is applicable to monadic lenses, yielding what one might call monadic monadic lenses: monadically composable lenses with monadic effects. We conjecture that laws for monadic lenses can be adapted to this setting with similar compositionality properties, reusing our reasoning framework.

Other work leverages profunctors for bidirectionality. Notably, a Profunctor optic \[26\] between a source type s and a view type v is a function of type $p \, v \, v \rightarrow p \, s \, s$, for an abstract profunctor p. Profunctor optics and our monadic profunctors offer orthogonal composition patterns: profunctor optics can be composed “vertically” using function composition, whereas monadic profunctor composition is “horizontal” providing sequential composition. In both cases, composition in the other direction can only be obtained by breaking the abstraction.

It is folklore in the Haskell community that profunctors can be combined with applicative functors \[22\]. The pattern is sometimes called a monoidal profunctor. The codec library \[8\] mentioned in Section \[9\] prominently features two applications of this applicative programming style: binary serialisation (a form of parsing/printing) and conversion to and from JSON structures (analogous to lenses above). Opaleye \[28\], an EDSL of SQL queries for Postgres databases, uses an interface of monoidal profunctors to implement generic operations such as transformations between Haskell datatypes and database queries and responses.

Our framework adapts gracefully to applicative programming, a restricted form of monadic programming. By separating the input type from the output type, we can reuse the existing interface of applicative functors without modification. Besides our generalisation to monads, purification and verifying round-tripping properties via (quasi)compositionality are novel in our framework.
Rendel and Ostermann proposed an interface for programming parsers and printers together [30], but they were unable to reuse the existing structure of Functor, Applicative and Alternative classes (because of the need to handle types that are both covariant and contravariant), and had to reproduce the entire hierarchy separately. In contrast, our approach reuses the standard type class hierarchy, further extending the expressive power of bidirectional programming in Haskell. FliPpr [17, 19] is an invertible language that generates a parser from a definition of a pretty printer. In this paper, our biparser definitions are more similar to those of parsers than printers. This makes sense as it has been established that many parsers are monadic. Similar to the case of HOBiT, there is no discussion of monadic programming in the FliPpr work.

Previous approaches to unifying random generators and predicates mostly focused on deriving generators from predicates. One general technique evaluates predicates lazily to drive generation (random or enumerative) [7, 9], but one loses control over the resulting distribution of generated values. Luck [15] is a domain-specific language blending narrowing and constraint solving to specify generators as predicates with user-provided annotations to control the probability distribution. In contrast, our programs can be viewed as generators annotated with left inverses with which to derive predicates. This reversed perspective comes with trade-offs: high-level properties would be more naturally expressed in a declarative language of predicates, whereas it is a priori more convenient to implement complex generation strategies in a specialised framework for random generators.

Conclusions This paper advances the expressive power of bidirectional programming; we showed that the classic bidirectional patterns of parsers/printers and lenses can be restructured in terms of monadic profunctors to provide sequential composition, with associated reasoning techniques. This opens up a new area in the design of embedded domain-specific languages for BX programming, that does not restrict programmers to stylised interfaces. Our example of bigenerators broadened the scope of BX programming from transformations (converting between two data representations) to non-transformational applications.

To demonstrate the applicability of our approach to real code, we have developed two bidirectional libraries [12], one extending the attoparsec monadic parser combinator library to biparsers and one extending QuickCheck to bigenerators. One area for further work is studying biparsers with lookahead. Currently lookahead can be expressed in our extended attoparsec, but understanding its interaction with (quasi)compositional round-tripping is further work.

However, this is not the final word on sequentially composable BX programs. In all three applications, round-tripping properties are similarly split into weak round tripping, which is weaker than the original property but compositional, and purifiable, which is equationally friendly. An open question is whether an underlying structure can be formalised, perhaps based on an adjunction model, that captures bidirectionality even more concretely than monadic profunctors.

Acknowledgments We thank the anonymous reviewers for their helpful comments. The second author was supported partly by EPSRC grant EP/M026124/1.
Bibliography

[1] Faris Abou-Saleh, James Cheney, Jeremy Gibbons, James McKinna, and Perdita Stevens. Reflections on Monadic Lenses, pages 1–31. Springer International Publishing, Cham, 2016.

[2] François Bancilhon and Nicolas Spyrratos. Update semantics of relational views. ACM Trans. Database Syst., 6(4):557–575, 1981.

[3] Davi M. J. Barbosa, Julien Cretin, Nate Foster, Michael Greenberg, and Benjamin C. Pierce. Matching lenses: alignment and view update. In International Conference on Functional Programming (ICFP), pages 193–204. ACM, 2010.

[4] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre Pilkiewicz, and Alan Schmitt. Boomerang: resourceful lenses for string data. In Symposium on Principles of Programming Languages (POPL), pages 407–419. ACM, 2008.

[5] Aaron Bohannon, Benjamin C. Pierce, and Jeffrey A. Vaughan. Relational lenses: a language for updatable views. In Symposium on Principles of Database Systems (PODS), pages 338–347. ACM, 2006.

[6] Gert-Jan Bottu, Georgios Karachalias, Tom Schrijvers, Bruno C. d. S. Oliveira, and Philip Wadler. Quantified class constraints. In International Symposium on Haskell (Haskell), pages 148–161. ACM, 2017.

[7] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Automated testing based on java predicates. In International Symposium on Software Testing and Analysis (ISSTA), pages 123–133. ACM, 2002.

[8] Patrick Chilton. codec library. https://hackage.haskell.org/package/codec.

[9] Koen Claessen, Jonas Duregård, and Michal H. Palka. Generating constrained random data with uniform distribution. Journal of Functional Programming, 25, 2015.

[10] Koen Claessen and John Hughes. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. In International Conference on Functional Programming (ICFP), pages 268–279. ACM, 2000.

[11] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy Schürr, and James F. Terwilliger. Bidirectional transformations: A cross-discipline perspective. In International Conference on Theory and Practice of Model Transformations (ICMT), pages 260–283. Springer Berlin Heidelberg, 2009.

[12] Xia et al. Further implementations, November 2018. https://github.com/Lysxia/profunctor-monad

[13] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt. Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem. ACM Trans. Program. Lang. Syst., 29(3), 2007.

[14] Nate Foster, Kazutaka Matsuda, and Janis Voigtländer. Three complementary approaches to bidirectional programming. In SSGIP, pages 1–46, 2010.
[15] Leonidas Lampropoulos, Diane Gallois-Wong, Catalin Hritcu, John Hughes, Benjamin C. Pierce, and Li-yao Xia. Beginner’s luck: a language for property-based generators. In *Symposium on Principles of Programming Languages (POPL)*, pages 114–129. ACM, 2017.

[16] Kazutaka Matsuda, Zhenjiang Hu, Keisuke Nakano, Makoto Hamana, and Masato Takeichi. Bidirectionalization transformation based on automatic derivation of view complement functions. In *International Conference on Functional Programming (ICFP)*, pages 47–58. ACM, 2007.

[17] Kazutaka Matsuda and Meng Wang. FliPpr: A Prettier Invertible Printing System. In *European Symposium on Programming (ESOP)*, pages 101–120. Springer, 2013.

[18] Kazutaka Matsuda and Meng Wang. Applicative bidirectional programming with lenses. In *International Conference on Functional Programming (ICFP)*, pages 62–74. ACM, 2015.

[19] Kazutaka Matsuda and Meng Wang. Embedding Invertible Languages with Binders: A Case of the FliPpr Language. In *International Symposium on Haskell (Haskell)*, pages 158–171. ACM, 2018.

[20] Kazutaka Matsuda and Meng Wang. HOBiT: Programming Lenses Without Using Lens Combinators. In *European Symposium on Programming (ESOP)*. Springer International Publishing, 2018.

[21] Mikaël Mayer, Viktor Kuncak, and Ravi Chugh. Bidirectional evaluation with direct manipulation. *Proc. ACM Program. Lang.*, 2(OOPSLA):127:1–127:28, October 2018.

[22] Conor McBride and Ross Paterson. Applicative programming with effects. *J. Funct. Program.*, 18(1):1–13, 2008.

[23] Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An algebraic approach to bi-directional updating. In *Programming Languages and Systems*, pages 2–20. Springer Berlin Heidelberg, 2004.

[24] Hugo Pacheco, Zhenjiang Hu, and Sebastian Fischer. Monadic combinators for "putback" style bidirectional programming. In *Workshop on Partial Evaluation and Program Manipulation (PEPM)*, pages 39–50. ACM, 2014.

[25] Hugo Pacheco, Tao Zan, and Zhenjiang Hu. BiFluX: A bidirectional functional update language for XML. In *International Symposium on Principles and Practice of Declarative Programming (PPDP)*. ACM, 2014.

[26] Matthew Pickering, Jeremy Gibbons, and Nicolas Wu. Profunctor optics: Modular data accessors. *The Art, Science, and Engineering of Programming*, 1(2), 2017.

[27] Justin Pombrio and Shriram Krishnamurthi. Resugaring: Lifting evaluation sequences through syntactic sugar. In *Programming Language Design and Implementation (PLDI)*. ACM, 2014.

[28] Purely Agile. opaleye library. https://hackage.haskell.org/package/opaleye

[29] Raghu Rajkumar, Sam Lindley, Nate Foster, and James Cheney. Lenses for web data. International Workshop on Bidirectional Transformations (BX), 2013.

[30] Tillmann Rendel and Klaus Ostermann. Invertible syntax descriptions: unifying parsing and pretty-printing. In *International Symposium on Haskell (Haskell)*, pages 1–12, 2010.
A Further code

Complete Monad instance for biparsers The instance is the straightforward product of the monad instances for *Parser* and *Printer*, where the two parts remain independent:

```haskell
instance Monad (Biparser u) where
  return :: v → Biparser u v
  return v = Biparser (λs → (v, s)) (λ_ → (v, ""))

  (>>=) :: Biparser u v → (v → Biparser u w) → Biparser u w
  pu >>= kw = Biparser parse' print'
  where
    parse' s = let (v, s') = parse pu s in parse (kw v) s'
    print' u = let (v, s) = print pu u
              in (w, s') = print (kw v) u in (w, s ++ s')
```

B Proofs for compositional reasoning

The supplementary Coq proofs formalise many results of Section 4. We include some results here as hand-proofs for human consumption.

Proposition 1 The biparser `char :: Bp Char Char` (§3.2) is both backward and forward round tripping. Proof by expanding definitions and algebraic reasoning.

Proof. Expanding the definitions, for backward round tripping:

\[
\text{fmap \textit{snd}} (\text{print } p x) = \text{Just } [\textit{c}], \text{ then parse } p ([\textit{c}] + +s') = (\textit{c}, s') \quad (\text{QED}).
\]

For forward round tripping, `parse p s = (x, "")` means that `s` must be `[x]`, then: `fmap \textit{snd} (\text{print } p x) = \text{Just } [x] \quad (\text{QED}).`

Proposition 12. The return operation for the *Biparser* monadic profunctor is not backward round tripping, but it is weak backward round tripping.

Proof. Let `x, y :: u` and `s, s' :: String:`
(Proof that it is not backwards round tripping)

\[
\text{fmap ~snd} \ (\text{print} \ (\text{return} \ y) \ x) \\
\equiv \text{fmap ~snd} \ ((\lambda __ \rightarrow \text{Just} \ (y, "")) \ x) \\
\equiv \text{fmap ~snd} \ \text{Just} \ (y, "") \\
\equiv \text{Just} \\
\]

Thus \(s == "" \). Now we must prove the consequent of backwards round tripping, but it turns out to be false:

\[
\text{parse} \ (\text{return} \ y) \ ("" ++ s') \\
\equiv \ (\lambda _s \rightarrow (y, s)) \ s' \\
\equiv \ (y, s') \\
\neq \ (x, s') \\
\]

Thus, \text{return} is not backwards round tripping.

(Proof that it is weak backwards tripping)

\[
\text{print} \ (\text{return} \ y) \ x \\
\equiv \ (\lambda __ \rightarrow \text{Just} \ (y, "")) \ x \\
\equiv \text{Just} \ (y, "") \\
\]

Thus \(s == "" \). Now we must prove the consequent of weak backwards round tripping:

\[
\text{parse} \ (\text{return} \ y) \ ("" ++ s') \\
\equiv \ (\lambda _s \rightarrow (y, s)) \ s' \\
\equiv \ (y, s') \\
\]

Proposition 2 Weak backward round tripping of biparsers is compositional.

\begin{proof}
\text{Case return. Shown above.}

\text{Case } (\gg=(\).

\text{let} \ (sp, v) = \text{print} \ p \ u \\
\quad (sk, w) = \text{print} \ (k \ v) \ u \\
\text{print} \ (p \gg=(k) \ u = (sp ++ sk, w) \quad \text{-- by definition} \\
\text{parse} \ p \ (sp ++ sk ++ s') = (v, sk ++ s') \quad \text{-- by weak round tripping of } p \\
\text{parse} \ (k \ v) \ sk = (w, s') \quad \text{-- by weak round tripping of } k

\text{Case } \text{comap: trivial.}
\end{proof}

Theorem 1 If \(p :: P \ u \ u \) is weak backward round tripping, and for all \(x :: u \). \text{purify} \ p \ x = \text{Just} \ x, then \(p \) is backward round tripping.

\begin{proof}
The definition of \text{purify} \ p \ x = \text{fmap} \ \text{fst} \ (\text{print} \ p \ x) \text{ when combined with the property} \text{purify} \ p \ x = \text{Just} \ x, \text{and the antecedent of backward round tripping} (\text{fmap} \ \text{snd} \ (\text{print} \ p \ x) = \text{Just} \ s), \text{imply that} \text{print} \ p \ x = \text{Just} \ (x, s). \text{This satisfies the antecedent of weak backward round tripping, thus we can conclude} \text{parse} \ p \ (s ++ s') = (x, s'), \text{and thus backward round tripping holds for } p.
\end{proof}
In Section 4.1 in the proof of Corollary 3, we used three intermediate results about char, int and replicateP, namely:

\[
\begin{align*}
\text{proj char } n &\equiv \text{Just } n \quad \text{(4.1)} \\
\text{proj int } n &\equiv \text{Just } n \quad \text{(4.2)} \\
\text{proj (replicateBiparser (length xs) p) xs} &\equiv \text{mapM (proj p) xs} \quad \text{(4.3)}
\end{align*}
\]

The first two are straightforward from their definitions. Let us take a closer look at the latter, equation 4.3.

As a printer, replicateBiparser (length xs) applies the printer p to every element of the input list xs, and if we ignore the output string with proj, that yields mapM (proj p) xs. When p is aligned and has proj p = Just, as was the case in the proof of Corollary 3 then all applications in the list succeed and return a Just value, so mapM (proj p) xs as a whole succeeds and returns the whole list of results. Therefore, replicateBiparser (length xs) p xs = Just xs.

Proposition 5 Weak forward round tripping is quasicompositional.

Proof. (Provides some additional details from that shown in the main body of the paper). We sketch the `qcomp-bind` case, where \(p = (m >>= k) \) for some m and k that are weak forward roundtripping.

From \(parse (m >>= k) s01 = (y, s1) \), it follows that there exists \(z, s \) such that \(parse m s01 = (z, s) \) and \(parse (k z) s = (y, s1) \). Similarly, the second conjunct print \((m >>= k) x = \text{Just } (y, s0) \) implies there exists \(z', s0' \) such that print \(m z = \text{Just } (z', s0') \) and print \((k z') x = \text{Just } (y, s1') \) and \(s0 = s0' ++ s1' \).

Because \(k \) is an injective arrow, we have \(z = z' \). This comes from the following: Recall we have: \(parse (k z) s = (y, s1) \) and print \((k z') x = \text{Just } (y, s1') \) Let \(k' \) be the left arrow inverse of \(k \), then (from Definition 11):

\[
(k z >>= \lambda y \rightarrow \text{return } (z, y)) = (k z >>= \lambda y \rightarrow \text{return } (k' y, y))
\]

(and similarly with \(z' \)). Plugging both sides into “parse _ s” and “print _ x” respectively, then using the fact that print and parse are monad morphisms, followed by the above two equations, we get:

\[
\begin{align*}
\text{parse } (...) s &= ((z, y), s1) = ((k' y, y), s1) \\
\text{print } (...) x &= \text{Just } ((z', y), s1') = \text{Just } ((k' y, y), s1')
\end{align*}
\]

So \(z = k' y = z' \).

We then use the assumption that \(m \) and \(k \) are weak forward roundtripping on \(m \) and on \(k a \), and deduce that \(s01 = s0' ++ s \) and \(s = s1' ++ s1 \). Therefore \(s01 = s0' ++ (s1' ++ s1) \) which reassociates to \(s01 = (s0' ++ s1') ++ s1 \) which equals \(s01 = s0 ++ s1 \) (since \(s0 = s0' ++ s1' \), shown above).

C For comparison: separately defined parser and printer and round-tripping proof

The following provides a comparison between the monadic profunctor biparser of Section 2 and the alternative without our approach: having to write two separate
definitions of a parser and a printer. With these examples we also compare our reasoning approach of Section 4 with having to manually prove roundtripping on the separated definitions.

The main points of the comparison are:

– This parser has the same structure as the biparser in Section 2, only without any upon annotations.
– The standalone printer for this example is extremely simple.
– The auxiliary lemmas for parseInt, parseDigits, and replicateM correspond to the round tripping properties of their bidirectional counterparts (int, digits, and replicateBiparser).
– These lemmas must all manipulate source strings explicitly, whereas our framework uses compositionality to handle those details.

C.1 Parser monad

```
newtype Parser a = Parser { runParser :: String → (a, String) }

instance Monad Parser where
  return x = Parser (λs → (x, s))
  p >>= k = Parser (λs →
                  let (y, s′) = runParser p s in
                  runParser (k y) s′)

parseChar :: Parser Char
parseChar = Parser (λ(c : s) → (c, s))
```

C.2 String parser

```
parseDigits :: Parser String
parseDigits = do
  d ← parseChar
  if isDigit d then do
    digits ← parseDigits
    return (d : digits)
  else if d == ' ' then
    return ""
  else
    error "Expected digit or space."

parseInt :: Parser Int
parseInt = do
  ds ← parseDigits
  return (readInt ds)

parseString :: Parser String
parseString = do
  n ← parseInt
```
replicateM n parseChar

replicateM :: Int \rightarrow Parser a \rightarrow Parser [a]
replicateM 0 _ = return []
replicateM n p = do
 x <- p
 xs <- replicateM (n - 1) p
 return (x : xs)

C.3 String printer

type Printer a = a \rightarrow String

printString :: Printer String
printString s = showInt (length s) ++ "␣" ++ s

C.4 Backwards round tripping

Theorem 9. For any string s: runParser parseString (printString s) = (s, ")

Proof. By equational reasoning.

runParser (parseInt >>= \n \rightarrow replicateM n parseChar)
 (showInt (length s) ++ "␣" ++ s)
 {- Lemma (parseInt) -}
 = runParser (replicateM (length s) parseChar) s
 {- Lemma (replicateM) -}
 = (s, "")

Auxiliary lemmas

Lemma 1 (parseInt) For any nonnegative integer n, and any string s,

runParser parseInt (showInt n ++ "␣" ++ s) = (n, s)

Proof. By equational reasoning.

runParser (parseDigits >>= \ds \rightarrow return (readInt ds))
 (showInt n ++ "␣" ++ s)
 {- Lemma (parseDigits), assuming (showInt n) is a string of digits -}
 = (readInt (showInt n), s)
 {- Assuming readInt is a one-sided inverse of showInt -}
 = (n, s)

Lemma 2 (parseDigits) For any string of digits ds, and any string s,

runParser parseDigits (ds ++ "␣" ++ s) = (ds, s)

Proof. By equational reasoning, and by induction on ds.

 - Case ds = "":

32
runParser (parseChar >>= \d \rightarrow if d \ldots) ("␣" ++ s)
{- Definition of parseChar, d = ' ' -}
= runParser (return "") s
= ("", s)

- Case ds = (d1:ds1), d1 is a digit:
runParser (parseChar >>= \d \rightarrow if d \ldots) (d1 : ds1 ++ "␣" ++ s)
{- Definition of parseChar, d = d1 -}
= runParser (parseDigits >>= \digits \rightarrow return (d1 : digits)) (ds1 ++ "␣" ++ s)
{- Induction hypothesis on ds1 -}
= (d1 : ds1, s)

Lemma 3 (replicateM) For any string s,
runParser (replicateM (length s) parseChar) s = (s, "")

Proof. By equational reasoning, and by induction on ds.
- Case s = ":
runParser (return "") "" = ("", "")
- Case s = (c1:s1):
runParser (char >>= \c \rightarrow replicateM (length s1) parseChar >>= \s \rightarrow
return (c : s))
(c1 : s1)
{- Definition of parseChar -}
= runParser (replicateM (length s1) parseChar >>= \s \rightarrow
return (c1 : s))
{- Induction hypothesis on s1 -}
= runParser (return (c1 : s1)) ""
= (c1 : s1, ")"

D Lenses

Theorem 4 If a lens \(l :: \mathbb{L} s \ u u \) is weak backward round tripping and has identity projections on some subset \(P \subseteq u \) (i.e., for all \(s, x \) then \(x \in P \Rightarrow proj s 1 x = Just x \)) then \(l \) is also backward round tripping on all \(x \in P \).

Proof. Assume the antecedent of backward roundtripping:
\[put l x s = Just ((y, s'), p') \land p' s' = True \]
The goal is to prove \(get l s' = Just x \).

By the identity projection premise we have that \(proj s 1 x = Just x \) for all \(s \). Recall the definition of \(proj \) for lenses:
\[proj s 1 = \lambda u \rightarrow fmap (fst \circ fst) (put l u s) \]
Combining this with assumption on \(\text{put} \) and identity project we see that:

\[
\text{put} \text{l x s} = \text{Just} \ ((x, s'), p')
\]

We can thus instantiate weak backward round tripping to get the desired goal:

\[
\text{get l s'} = \text{Just} \ x
\]

Proposition 8 The lens \(\text{atKey} \ k \) is weak backward round tripping.

Proof. Recall \(\text{atKey} :: \text{L} \ \text{Src} \ \text{Value} \ \text{Value} \). Assuming the antecedent of backward round-tripping, we get the following information:

\[
\text{put} \ \text{l x (atKey k)} \ m = \text{Just} \ ((x, \text{insert k x m}), \lambda \text{m'} \to \text{lookup k m'} == \text{Just} \ x) \\\n(\lambda \text{m'} \to \text{lookup k m'} == \text{Just} \ x) \ s' = \text{True}
\]

We then need to prove \(\text{get l s'} = \text{Just} \ x \). By the definition of \(\text{get} \):

\[
\text{get} \ (\text{atKey k}) \ s' = \text{lookup k s'}
\]

By the second conjunct of the antecedent we know \(\text{lookup k s'} = \text{Just} \ x \), giving the required consequent.

Proposition 9 The lens \(\text{atKey} \ k \) has identity projection: \(\text{proj z (atKey k)} = \text{Just} \).

Proof. For all \(s :: s \), following the definition we get:

\[
\text{proj s (atKey k)} \equiv \lambda u \to \text{fmap} \ (\text{fst} \circ \text{fst}) \ (\text{put} \ (\text{atKey k}) \ u \ s) \\
\equiv \lambda u \to \text{fmap} \ (\text{fst} \circ \text{fst}) \ (\text{Just} \ ((u, ...), ...)) \\
\equiv \lambda u \to \text{Just} \ u
\]

D.1 Further example: Lenses Over Trees

Our lens structuring provides the following two smart deconstructors and one smart constructor:

\[
\text{get} :: \text{L} \ s \ u \ v \to (s \to \text{Maybe} \ v) \\
\text{put} :: \text{L} \ s \ u \ v \to (u \to s \to \text{Maybe} \ ((v, s), s \to \text{Bool})) \\
\text{mkLens} :: (s \to \text{Maybe} \ v) \to (u \to s \to \text{Maybe} \ ((v, s), s \to \text{Bool})) \to \text{L} \ s \ u \ v
\]

As an example of programming with monadic lenses, we consider lenses over the following data type of binary trees labeled by integers.

\[
\text{data} \ \text{Tree} = \text{Leaf} | \text{Node} \ \text{Tree} \ \text{Int} \ \text{Tree} \ \text{deriving Eq}
\]

In this example, our aim is to build a lens whose forward direction gets the right spine of the tree as a list of integers. The backwards direction will then allow a tree to be updated with a new right spine (represent as a list of integers), which may produce a larger source tree.
We start by defining the classical lens combinator. Given a lens \(\text{lt} \) to view \(s \) as \(t \), and a lens \(\text{ly} \) to view \(t \) as \(u \), the combinator \((\gggg)\) creates a lens to view \(s \) as \(u \). We illustrate and explain the composition on the right.

\[
(\gggg) :: \text{L } s \text{ t t } \rightarrow \text{L } t \text{ u u } \rightarrow \text{L } s \text{ u u }
\]

\[\text{lt} \gggg \text{ly} = \text{mkLens get' put' where}
\]
\[\text{get'} :: s \rightarrow \text{Maybe u}
\]
\[\text{get'} s = \text{get lt s }>>>\text{ get ly}
\]
\[\text{put'} :: u \rightarrow s \rightarrow
\]
\[\text{Maybe ((u, s), s \rightarrow \text{Bool})}
\]
\[\text{put'} xu s =
\]
\[\text{case get lt s of}
\]
\[\text{Nothing } \rightarrow \text{Nothing}
\]
\[\text{Just t } \rightarrow \text{do}
\]
\[((y, xt), q') \leftarrow \text{put ly xu t}
\]
\[((_, s'), p') \leftarrow \text{put lt xt s}
\]
\[\text{if q' xt then Just ((y, s'), p')}
\]
\[\text{else Nothing}
\]

Illustration of the composition of lenses in \((\gggg)\):

\[\begin{array}{c}
\text{S} \\
\text{get lt} \\
\text{put lt xt}
\end{array}
\begin{array}{c}
\text{t} \\
\text{put ly xu}
\end{array}
\]

For individual lenses, the put action takes the source as its last parameter (shown above the lower arrows here). In the case of the composite lens, put’ has a source of type \(s \), thus we need to create an intermediate source of type \(t \) in order to use put ly. This intermediate source is provided by first using get lt s.

In the last three lines of putter in \((\gggg)\), in order for the composite backwards direction to succeed, the returned intermediate store \(xt \) must be consistent (free of conflict) as checked by \(q' \times xt \).

We define two primitive lenses: rootL and rightL for the root and right child of a tree:

\[
\text{rootL} :: \text{L } \text{Tree (Maybe Int) (Maybe Int)}
\]

\[
\text{rootL = mkLens getter putter where}
\]
\[\text{getter (Node } _ n _) = \text{Just (Just n)}
\]
\[\text{getter Leaf } = \text{Just Nothing}
\]
\[\text{putter n' t } = \text{Just ((n', t'), p)}
\]
\[\text{where}
\]
\[t' = \text{case (t, n') of}
\]
\[\text{(_, Nothing)} \rightarrow \text{Leaf}
\]
\[\text{(Leaf, Just n)} \rightarrow \text{Node Leaf n Leaf}
\]
\[\text{(Node l _ r, Just n)} \rightarrow \text{Node l n r}
\]
\[p t'' = \text{getter t' == getter t''}
\]

\[
\text{rightL} :: \text{L } \text{Tree Tree Tree}
\]

\[
\text{rightL = mkLens getter putter where}
\]
\[\text{getter (Node } _ r _) = \text{Just } r
\]
\[\text{getter } _ = \text{Nothing}
\]
\[\text{putter r Leaf } = \text{Nothing}
\]
\[\text{putter r (Node l n _)} = \text{Just}
\]
\[((r, \text{Node l n } r),
\]
\[\lambda t' \rightarrow \text{Just r == getter t'}
\]

The rootL lens accesses the label at the root if it is a Node, otherwise returning Nothing. Note that Maybe type used here is different to use the of Maybe inside the definition of L: internally L uses Maybe to represent failure, here at the top-level we are using it to merely indicate presence of absence of a label.
The second lens rightL accesses the right child of a tree which can however fail if the source tree is a Leaf rather than a Node.

Both lenses provide put operations which return predicates that check that the view of a store is equal to the view of the store updated by the put.

We compose these two primitive lenses monadically to define the spineL lens to view and update the right spine of a tree:

```haskell
spineL :: l Tree [Int] [Int]
spineL = do
  hd ← comap (Just ◦ safeHead) rootL
  case hd of
    Nothing → return []
    Just n → do
      tl ← comap safeTail (rightL >>> spineL)
      return (n : tl)
```

Auxiliary functions safeHead and safeTail are defined:

```haskell
safeHead :: [a] → Maybe a
safeHead (a : _) = Just a
safeHead [] = Nothing

safeTail :: [a] → Maybe [a]
safeTail (_ : as) = Just as
safeTail [] = Nothing
```

As a get, it first views the root of the source tree through rootL as hd, and whether it recurse or not depends on whether it is a node (with label n) or a leaf, using rightL to shift the context. As a put, it updates the root using the head of the list, which is returned as the view hd, and continues with the same logic. To illustrate the action of this lens, consider a tree:

```haskell
t0 = Node (Node Leaf 0 Leaf) 1 (Node Leaf 2 Leaf)
```

Getting the right spine (get spineL t0) yields the list [1, 2]. The tree spine can be updated to [3, 4, 5] yielding the following tree:

```haskell
fmap fst (put spineL [3, 4, 5] t0)
  = Just ([3, 4, 5], Node (Node Leaf 0 Leaf) 3 (Node Leaf 4 (Node Leaf 5 Leaf)))
```

E Generators

This appendix section provides additional code examples for our notion of bi-generators (bidirectional generators) extending random generators in property-based testing frameworks like QuickCheck \cite{QuickCheck} to a bidirectional setting.

We assume given a Gen monad of random generators (e.g. as defined in the QuickCheck library for Haskell) and two primitive generators: genBool :: Double → Gen Bool generates a random boolean according to a Bernoulli distribution with a given parameter \(p \in [0,1] \); choose :: (Int, Int) → Gen Int generates a random integer uniformly in a given inclusive range [min, max].
Generators for binary search trees

We consider again the type of trees from the previous section. A binary search tree (BST) is a tree whose nodes are in sorted order. Inductively, a BST is either a Leaf, or some Node l n r where l and r are both binary search trees, nodes in l have smaller values than n, and nodes in r have greater values than n.

As a working example, we are given some function insert :: Tree → Int → Tree which inserts an integer in a BST. We want to test the invariant that BSTs are mapped to BSTs, by generating a BST and an integer to apply the insert function, and check that the output is also a BST.

With the gen monad, we can write a simple generator of BSTs recursively: given some bounds on the values of the nodes, if the bounds describe a nonempty interval, we flip a coin to decide whether to generate a leaf or a node, and if it is a node, we recursively generate binary search trees, following the inductive definition above. We can similarly write a checker for binary search trees as a predicate.

Bigenerator

A generator of values v and a predicate on v (modelled by v → Bool) together define a bidirectional generator with the same preview and view type, provided here by a smart constructor: mkAlignedG:

mkAlignedG :: Gen v → (v → Bool) → G v v
mkAlignedG gen check = mkG gen (λy → if check y then Just y else Nothing)

Recall from Section 6 that a bigenerator can be mapped to a predicate via toPredicate:

toPredicate :: G u v → u → Bool
toPredicate g x = isJust (check g x) where
 isJust (Just _) = True
 isJust Nothing = False

We wrap two generator primitives as bool and inRange. As predicates, bool makes no assertion, inRange checks that the input integer is within the given range.

bool :: Double → G Bool Bool
inRange :: (Int, Int) → G Int Int

We consider again a type of labelled trees, with some field accessors. On the bottom right, leaf is a simple bigenerator for leaves.
data Tree = Leaf | Node Tree Int Tree

nodeValue :: Tree → Maybe Int
nodeValue (Node _ n _) = Just n
nodeValue _ = Nothing

nodeLeft, nodeRight :: Tree → Maybe Tree
nodeLeft (Node l _ _) = Just l
nodeLeft _ = Nothing
nodeRight (Node _ _ r) = Just r
nodeRight _ = Nothing

isLeaf :: Tree → Bool
isLeaf Leaf = True
isLeaf (Node _ _ _) = False

leaf :: G Tree Tree
leaf = mkAlignedG (return Leaf) isLeaf

We then define a specification of binary search trees (bst below). A corresponding generator and predicate are extracted on the right from this bigenerator:

bst :: (Int, Int) → G Tree Tree
bst (min, max) | min > max = leaf
bst (min, max) = do
 isLeaf' ← comap (Just ∘ isLeaf) (bool 0.5)
 if isLeaf' then return Leaf
 else do
 n ← comap nodeValue (inRange (min, max))
 l ← comap nodeLeft (bst (min, n - 1))
 r ← comap nodeRight (bst (n + 1, max))
 return (Node l n r)

genBST :: Gen Tree
genBST = generate (bst (0, 20))

checkBST :: Tree → Bool
checkBST = toPredicate (bst (0, 20))

As a predicate, bst first checks whether the root is a leaf (isLeaf); returning a boolean allows us to reuse the same case expression as for the generator. If it is a node, we check that the value is within the given range and then recursively check the subtrees.