Highly Diastereoselective Synthesis of Tetrahydroquinoline Derivatives via [4 + 2] Annulation of Ortho-Tosylaminophenyl-Substituted Para-Quinone Methides and Cyanoalkenes

Taiwei Dong1*, Peifeng Wei1, Min Li1, Feng Gao1 and Yuan Qin2*

1College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China, 2State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, China

As a privileged structural motif, tetrahydroquinoline skeletons widely exist in biologically active natural products and pharmaceuticals. In this protocol, a highly diastereoselective [4 + 2] annulation of ortho-tosylaminophenyl-substituted p-QMs and cyanoalkenes to construct tetrahydroquinoline derivatives has been successfully achieved. This strategy proceeds efficiently under mild condition, offering straightforward route to a variety of 4-aryl-substituted tetrahydroquinolines with high yields, excellent diastereoselectivities, broad functional group tolerance as well as gram-scale capacity. Moreover, a one-pot reaction sequence utilizing in situ generated p-QMs under the similar condition to build tetrahydroquinoline framework is smoothly conducted with good reaction performance as well as step and atom economy.

Keywords: tetrahydroquinolines, p-quinone methides, multi-substituted alkenes, Aza-Michael, 1, 6-conjugate addition

INTRODUCTION

As privileged structural motifs, nitrogen-containing heterocycles widely exist in biologically active natural products and pharmaceuticals (Nooolvi et al., 2011; Solomon and Lee, 2011; Afzal et al., 2015; Murlykina et al., 2018; Harikandei et al., 2019; Staskiewicz et al., 2021). Among them, 4-phenyl-substituted tetrahydroquinolines are of great importance owing to their wide range of applications in medicinal chemistry, exhibiting antitumor and antibacterial properties (Figure 1). For example, 4-phenylquinolin-2 (1H)-one I shows potential as a specific allosteric inhibitor of Akt (Huang et al., 2017). Compound II has been designed as novel anticancer agents that induce apoptosis with cell cycle arrest at G2/M phase (Chen et al., 2013). As a rationally developed antitumoral agent, compound III displays excellent bioactivity to kill parasite 14DM (Kraus et al., 2009). Known as a novel synthetic molecule, compound IV exhibits antitumoral and antiplasmodial activities (Vladimir et al., 2010). The well-designed compound V owns good antibacterial activity against microorganisms of Escherichia coli (Ramesh et al., 2009). Peniprequinolone VI, isolated from Penicillium sp. FKI-2140, demonstrates impressive insecticidal activity (Uchida et al., 2006). Thus, considering the significant research value of...
tetrahydroquinolines derivatives in medicinal chemistry, the development of efficient and facile methods to build these valuable skeletons is highly demanded.

Owing to the remarkable chemical reactivity comprising reactive carbonyl and olefinic moieties, p-quinone methides (p-QMs) have been considered versatile building blocks in organic synthesis (Toteva and Richard, 2011; Parra and Tortosa, 2015; Chauhan et al., 2017; Lima et al., 2020; Wang J.-Y. et al., 2020). Inspired by the seminal works of Fan and Jorgensen (Chu et al., 2013; Caruana et al., 2014), numerous of methods utilizing p-QMs as vinylogous Michael acceptors have been successfully developed through 1,6-conjugate addition and annulation reactions (Lou et al., 2015; Wang et al., 2015; Deng et al., 2016; Dong et al., 2016; He et al., 2016; Li et al., 2016; Ma et al., 2016; Zhang et al., 2016; Roiser and Waser, 2017; Zhang et al., 2017). Recently, Enders and co-workers first demonstrated the potential of ortho-hydroxyphenyl-substituted p-QMs in [4 + 2] cyclization reaction (Zhao et al., 2016), which subsequently enables the extensively investigation of [4 + 1] (Chen et al., 2018; Liu L. et al., 2018; Xiong et al., 2018; Zhi et al., 2018; Zhou et al., 2018; Lu et al., 2019; Tan et al., 2019) [4 + 2] (Jiang X. L. et al., 2018; Mei et al., 2018; Zhang et al., 2018; Yang et al., 2019; Zhang et al., 2019; Huang et al., 2020; Roy et al., 2020; Tan et al., 2020; You et al., 2020) and [4 + 3] (Jiang F. et al., 2018; Li et al., 2018; Liu
Q. et al., 2018; Chen et al., 2019) annulations by various research groups. Although great progress has been witnessed in this field, the employment of \(p \)-QMs substrates in the construction of heterocyclic frameworks, especially nitrogen-containing heterocyclic frameworks, still remains underdeveloped (Scheme 1A). Very recently, the group of Hu and Zhao pioneered the design of in situ generated \(\text{ortho} \)-tosylaminophenyl-substituted \(p \)-QMs and transformations of this class of substrates in \([4 + 1]\) (Wang et al., 2019; Wang et al., 2020a) and \([4 + 2]\) (Wang et al., 2018; Si et al., 2020) annulation reactions, providing a straightforward access to construct valuable tetrahydroquinoline and 2,3-dihydroindole derivatives, respectively (Scheme 1B). Those transformations avoid the utilization of presynthesized \(p \)-QMs, which greatly enhance the step and atom economy of this strategy. To date, currently limited reports almost concentrate on applications between \(\text{ortho} \)-tosylaminophenyl-substituted \(p \)-QMs and disubstituted alkenes. However, rare explorations regarding multifunctional alkenes like tri- or tetra-substituted alkenes, which contain large steric hindrance or relatively poor reactivity, have been successfully achieved so far (Wang et al., 2020b). Hence, to address the aforementioned challenges, we herein reported a highly diastereoselective \([4 + 2]\) annulation of \(\text{ortho} \)-tosylaminophenyl-substituted \(p \)-QMs and cyanoalkenes for the efficient synthesis of 4-aryl-substituted tetrahydroquinolines under mild conditions. This reaction features high yield (up to 96% yield), excellent diastereoselectivities (>20:1 dr), broad functional group tolerance as well as gram-scale capacity (Scheme 1C).

RESULTS AND DISCUSSION

To verify the feasibility of our protocol, a serial of reaction parameters was investigated to explore the best condition for the \([4 + 2]\) annulation. Initially, we established the model reaction using \(\text{ortho} \)-tosylaminophenyl-\(p \)-QMs \(1a \) and \(\text{ortho} \)-tosylaminophenyl-substituted \(p \)-QMs 1 and transformations of this class of substrates in \([4 + 1]\) (Wang et al., 2019; Wang et al., 2020a) and \([4 + 2]\) (Wang et al., 2018; Si et al., 2020) annulation reactions, providing a straightforward access to construct valuable tetrahydroquinoline and 2,3-dihydroindole derivatives, respectively (Scheme 1B). To our delight, with the help of \(\text{Cs}_2\text{CO}_3 \) as base, the desired product 3a was successfully obtained in DCM at room temperature in 80% yield with excellent diastereoselectivity of >20:1 (Table 1, entry 1). Encouraged by this promising result, different bases were systematically evaluated, and we found that \(\text{Na}_2\text{CO}_3 \), pyrrolidine, and triethylamine (TEA) were inefficient for this reaction compared to \(\text{Cs}_2\text{CO}_3 \) (entries 2–4). Delightfully, the organic base 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU) was beneficial to this transformation, generating product 3a in 89% yield (entry 5). Then, we switched attention to solvents screening

Entry	Base	Solvent	Yield (%)
1	\(\text{Cs}_2\text{CO}_3 \)	DCM	80
2	\(\text{Na}_2\text{CO}_3 \)	DCM	<10
3	Pyrrolidine	DCM	59
4	TEA	DCM	74
5	DBU	DCM	89
6	DBU	MeCN	80
7	DBU	THF	82
8	DBU	Toluene	96
9	DBU	Ethyl Acetate	91
10	DBU	1,4-Dioxane	84
11	DBU	Toluene	96
12	DBU	Toluene	93
13	DBU	Toluene	96
14	DBU	Toluene	90
15	DBU	Toluene	89
16	DBU	Toluene	86

Unless otherwise noted, all reactions were conducted with 1a (0.1 mmol), 2a (0.12 mmol), and base (0.02 mmol) in anhydrous solvent (2 ml) at room temperature for 1 h.

\(\text{dr} > 20:1 \).

The reaction was performed at 0°C for 3 h.

0.15 mmol 2a was added.

0.15 mmol 1a was added.

0.01 mmol base was added.

0.01 mmol base was added at the temperature of 80°C.

4-aryl-substituted tetrahydroquinolines under mild conditions. This reaction features high yield (up to 96% yield), excellent diastereoselectivities (>20:1 dr), broad functional group tolerance as well as gram-scale capacity (Scheme 1C).
to further improve reaction efficiency (entries 6–10), and the toluene serving as reaction mediate performed best with up to 96% yield (entry 8). After the confirmation of the optimized base and solvent, the factors of temperature and substrate ratio in this base-mediated catalyst-free protocol was subsequently investigated, and it was found that none of improvement of reaction efficiency was observed when applying other temperature or substrate ratio (entries 11–14). Furthermore, we found that reducing the DBU loading to 0.01 mmol and raising the reaction temperature led to slight decrease in yield with prolonged reaction time (entries 15–16).

With the optimal reaction conditions in hand (Table 1, entry 8), we started to explore the substrate scope of this [4 + 2] annulation reaction (Scheme 2). Firstly, the scope of the α, a-dicyanoalkenes part was examined, and we were pleased to find that this protocol tolerated a wide range of α, a-dicyanoalkenes 2, which could readily react with 1a to afford 3a–3u in 55–96% yields. In detail, the α, a-dicyanoalkenes 2 bearing electron-withdrawing (F, Cl, Br, I, ethynyl) and electron-donating (Me, MeO) groups at the phenyl ring could be efficiently converted into the desired products 3a–3n in 62–96% yields (Scheme 2, line 1). The relative configuration of 3a (CCDC 2100705) was determined by X-ray crystallographic analysis, and the relative configurations of other products three were tentatively assigned by analogy. Besides, the α, a-dicyanoalkenes 2 containing challenging disubstituted groups. Were also available, giving the corresponding products 3o–3r in consistent high yields (Scheme 2, line 1). Moreover, aromatic series (naphthyl, furyl, and thienyl) could also participate in this [4 + 2] annulation sequence to provide expected products 3s, 3t and 3u in 79, 55 and 65% yields, respectively (Scheme 2, line 2). Subsequently, several ortho-tosylaminophenyl-p-QMs 1 were investigated to further verify the generality of this method. The results indicated that electronic-withdrawing substituents on the phenyl ring of substrate 1 showed rare affection on efficiency, delivering target products 3v and 3w in 79, 55 and 65% yields, respectively (Scheme 2, line 2). Changing the type of protecting group still resulted in desire compound 3x with excellent reaction performance (Scheme 2, line 2). However, the unavailability of dimethyl substituted substrate failed to provide the expected product 3y. To evaluate the general utility and robustness of this protocol, we also
conducted the gram-scale reaction under the standard condition, and the target product 3a could be smoothly isolated in 93% yield.

To enrich the diversification of this protocol towards functionalized tetrahydroquinoline derivatives, we established the verification with represented substrates 2 (Scheme 3). Fixed different electronic properties groups (such as nitro, benzoxyl and COOEt groups) on the position of \(R^2 \) and/or \(R^3 \), all reaction could move forward the production of compounds 3z-3bb under optimal condition in 42, 90 and 92% yields, respectively (Scheme 3A). However, substrate containing two ester groups could not offer the target product 3cc under this condition. The relative configuration of 3aa (CCDC 2100706) was determined by X-ray crystallographic analysis, and the relative configurations of 3z–3bb were tentatively assigned by analogy. Moreover, we attempted to construct valuable spirocyclic frameworks employing tetra-substituted substrates four and six within the established condition, and successfully obtained desirable products five and seven in 90 and 62% yields, respectively (Scheme 3B). Regrettably, we failed to accurately assign the relative configuration of compound 5 and 7 with limited information (for details please see ESI). In order to further explore the robustness of this methodology, a preliminary attempt of one-pot synthesis of functionalized tetrahydroquinoline compound starting from precursor 1a was successfully conducted, producing target molecule 3a in 63% yield (Scheme 3C, Wang et al., 2018).

Meanwhile, the successful transformation of reducing cyan group into primary amine delivered the valuable product 8 with good reaction performance and undefined-relative confor-mation (for details please see ESI), which may show the potential application in medicinal chemistry (Scheme 4, right column). However, the removal of para-toluene sulfonamide and di-tertiary butyl groups failed to provide the expected products 9 and 10 (Scheme 4, left column).
CONCLUSION

In conclusion, we have developed a DBU-mediated catalyst-free [4 + 2] annulation between ortho-tosylaminophenyl-substituted p-QMs and cyanoalkenes for synthesis of valuable tetrahydroquinoline derivatives through an aza-Michael/1,6-conjugate addition sequence. This protocol features broad tolerance and diversification on substrates, offering straightforward route to various of 4-aryl-substituted tetrahydroquinolines with high yields, excellent diastereoselectivities as well as gram-scale capacity. Moreover, a one-pot reaction sequence utilizing in situ generated p-QMs under the similar condition to build tetrahydroquinoline framework is smoothly conducted with good reaction performance as well as step and atom economy. Further studies on the bioactivity of those promising tetrahydroquinolines will be reported in due course.

Experiment

General Information

NMR data were obtained for 1H at 400 MHz and for 13C at 100 MHz, or for 1H at 600 MHz and for 13C at 150 MHz. Chemical shifts were reported in parts per million (ppm) using tetramethyl silane as internal standard with solvent resonance in CDCl$_3$. UV detection was performed at 254 nm. ESI-HRMS spectra were measured with a Q-TOF instrument. Column chromatography was performed on a silica gel (200–300 mesh) using an eluent of ethyl acetate and petroleum ether. TLC was performed on glass-backed silica plates; products were visualized using UV light. Melting points were determined on a Mel-Temp apparatus. All reagents and solvents were obtained from commercial sources and used without further purification. Substrates 1 and precursor 1a were prepared according to the literature procedures (Wang et al., 2018; Wang J.-Y. et al., 2020).

Substrates 2 (Ghosh et al., 2021) and other cyanoalkenes (Fioravanti et al., 2012; Doncke et al., 2015; Zhu et al., 2017; Chen et al., 2021) were prepared through the Knoevenagel reactions, and all substrates can be stored at 4°C for 25 days without decomposition.

General procedure for the synthesis of 3: The reaction was carried out with 1 (0.1 mmol), 2 (0.12 mmol) and DBU (0.02 mmol) in anhydrous toluene (2 ml) at room temperature for 1 h. Upon the consumption of substrate 1 (monitored by TLC), the residue was directly purified by flash column chromatography (PE/EA = 20:1 to 10:1) to provide the desired product 3. The one-pot synthesis of product 3a was conducted in similar manner and MnO$_2$ (5.0 eq.) was added as oxidant in the reaction.

4-(3,5-di-tert-butyl-4-hydroxy phenyl)-2-phenyl-1-tosyl-1,4-dihydroquinoline-3,3(2H)-dicarbonitrile (3a). Compound 3a was synthesized in a manner of the general procedure for the synthesis of 3. Yield 96%, white powder solid, >20:1 dr, m. p. 215–216°C. 1H NMR (600 MHz, CDCl$_3$) δ ppm 7.94 (dd, J = 7.8, 1.2 Hz, 1H), 7.92–7.87 (m, 1H), 7.63–7.57 (m, 2H), 7.57–7.52 (m, 2H), 7.49–7.37 (m, 5H), 7.32–7.28 (m, 2H), 6.84 (d, J = 7.8 Hz, 1H), 6.34 (s, 1H), 5.79 (s, 1H), 5.34 (s, 1H), 3.17 (s, 1H), 2.45 (s, 3H), 1.39 (s, 18H). 13C NMR (150 MHz, CDCl$_3$) δ ppm 158.9, 153.5, 143.8, 135.6, 134.4, 133.61, 133.59, 132.4, 129.7, 128.9, 128.7, 128.6, 128.5, 128.0, 127.4, 126.9, 126.5, 126.4, 126.2, 121.2, 112.7, 111.4, 66.3, 49.9, 49.8, 30.6, 29.1, 20.7. HRMS (ESI): m/z [M + Na]$^+$ calcd for C$_{38}$H$_{39}$N$_3$NaO$_3$S$: 640.2610; found 640.2614.

2-(2-chlorophenyl)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-1-tosyl-1,4-dihydroquinoline-3,3(2H)-dicarbonitrile (3b). Compound 3b was synthesized in a manner of the general procedure for the synthesis of 3. Yield 91%, white powder solid, >20:1 dr, m. p. 254–255°C. 1H NMR (400 MHz, CDCl$_3$) δ ppm 7.88 (d, J = 8.0 Hz, 1H), 7.59–7.54 (m, 2H), 7.53–7.46 (m,
2-(bromophenyl)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-1-tosyl-1,4-dihydroquinoline-3,3(2H)-dicarbonitrile (3c). Compound 3c was synthesized in a manner of the general procedure for the synthesis of 3. Yield 71%, white powder solid, >20:1 dr, m. p. 241–242 °C. 1H NMR (400 MHz, CDCl3) δ ppm 7.87 (d, J = 8.4 Hz, 1H), 7.66 (dd, J = 8.0, 1.2 Hz, 1H), 7.57–7.53 (m, 2H), 7.51–7.49 (m, 2H), 7.42–7.37 (m, 2H), 7.34–7.30 (m, 3H), 7.26 (td, J = 8.0, 2.0 Hz, 1H), 6.89 (d, J = 7.6 Hz, 1H), 6.34 (s, 1H), 6.33 (s, 2H), 5.34 (s, 1H), 3.08 (s, 1H), 2.47 (s, 3H), 1.40 (s, 18H). 13C NMR (100 MHz, CDCl3) δ ppm 154.6, 145.0, 136.7, 132.6, 134.2, 133.2, 131.1, 130.9, 130.7, 129.8, 128.5, 128.0, 127.9, 124.0, 123.3, 122.4, 118.2, 112.8, 112.1, 63.8, 51.7, 49.3, 34.3, 30.2, 21.8. HRMS (ESI): m/z [M + Na]+ calcd for C38H38ClN3O3S+: 674.2220; found 674.2215.

2-(iodophenyl)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-1-tosyl-1,4-dihydroquinoline-3,3(2H)-dicarbonitrile (3d). Compound 3d was synthesized in a manner of the general procedure for the synthesis of 3. Yield 77%, white powder solid, >20:1 dr, m. p. 247–248°C. 1H NMR (400 MHz, CDCl3) δ ppm 7.95 (d, J = 8.0, 1.2 Hz, 1H), 7.87 (dd, J = 8.1, 1.2 Hz, 1H), 7.67–7.48 (m, 4H), 7.46–7.38 (m, 2H), 7.34 (d, J = 8.0 Hz, 3H), 7.09 (td, J = 7.6, 1.6 Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 6.33 (s, 1H), 6.15 (s, 1H), 5.33 (s, 1H), 3.06 (s, 1H), 2.47 (s, 3H), 1.40 (s, 18H). 13C NMR (100 MHz, CDCl3) δ ppm 154.6, 145.0, 140.3, 139.2, 136.7, 135.7, 134.2, 133.2, 131.0, 130.4, 130.0, 129.8, 128.8, 128.5, 127.9, 127.7, 127.5, 122.1, 118.2, 112.1, 99.4, 67.5, 51.6, 49.4, 34.3, 30.2, 21.8. HRMS (ESI): m/z [M + Na]+ calcd for C38H38I3N3O3S+: 766.1576; found 766.1585.

2-(fluorophenyl)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-1-tosyl-1,4-dihydroquinoline-3,3(2H)-dicarbonitrile (3e). Compound 3e was synthesized in a manner of the general procedure for the synthesis of 3. Yield 89%, white powder solid, >20:1 dr, m. p. 215–216°C. 1H NMR (400 MHz, CDCl3) δ ppm 7.96 (d, J = 8.0 Hz, 1H), 7.55 (td, J = 7.6, 1.2 Hz, 1H), 7.47–7.38 (m, 5H), 7.34–7.30 (m, 4H), 7.18–7.05 (m, 1H), 6.86 (d, J = 8.0 Hz, 1H), 6.34 (s, 1H), 5.79 (s, 1H), 5.35 (s, 1H), 3.13 (s, 1H), 2.45 (s, 3H), 1.40 (s, 18H). 13C NMR (100 MHz, CDCl3) δ ppm 164.1 (d, JCF = 246.7 Hz), 154.6, 145.1, 139.2 (d, JCF = 6.8 Hz), 136.8, 135.1, 134.4, 133.2, 130.8 (d, JCF = 8.1 Hz), 130.0, 129.9, 128.4, 128.1, 127.6, 127.4, 123.0, 122.9 (d, JCF = 3.1 Hz), 116.8 (d, JCF = 21.1 Hz), 114.6 (d, JCF = 23.1 Hz), 113.6, 112.2, 66.7, 50.9, 50.5, 34.3, 30.2, 21.8. HRMS (ESI): m/z [M + Na]+ calcd for C38H38F3N3O3S+: 658.2512; found 658.2512.

2-(bromophenyl)-4-(3,5-di-tert-butyl-1,4-dihydroxy-phenyl)-1-tosyl-1,4-dihydroquinoline-3,3(2H)-dicarbonitrile (3f). Compound 3f was synthesized in a manner of the general procedure for the synthesis of 3. Yield 93%, white powder solid, >20:1 dr, m. p. 223–224°C. 1H NMR (400 MHz, CDCl3) δ ppm 7.94 (dd, J = 8.0, 1.2 Hz, 1H), 7.70 (d, J = 2.0 Hz, 1H), 7.64–7.47 (m, 3H), 7.42 (dd, J = 6.4, 1.6 Hz, 3H), 7.37–7.28 (m, 4H), 6.85 (dd, J = 7.6 Hz, 1H), 6.34 (s, 1H), 5.72 (s, 1H), 5.35 (s, 1H), 3.13 (s, 1H), 2.45 (s, 3H), 1.40 (s, 18H). 13C NMR (100 MHz, CDCl3) δ ppm 154.6, 145.1, 137.2, 136.8, 135.2, 134.4, 133.2, 130.0, 129.8, 128.4, 128.7, 127.6, 127.4, 123.5, 122.1, 113.5, 112.3, 82.9, 78.4, 67.0, 51.0, 50.5, 34.5, 30.2, 21.8. HRMS (ESI): m/z [M + Na]+ calcd for C38H38Br3N3O3S+: 718.1715; found 718.1720.

2-(4-chlorophenyl)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-1-tosyl-1,4-dihydroquinoline-3,3(2H)-dicarbonitrile (3g). Compound 3g was synthesized in a manner of the general procedure for the synthesis of 3. Yield 95%, white powder solid, >20:1 dr, m. p. 217–218°C. 1H NMR (400 MHz, CDCl3) δ ppm 7.93 (d, J = 8.0 Hz, 1H), 7.63–7.51 (m, 3H), 7.42 (dd, J = 8.4, 3.6 Hz, 5H), 7.30 (t, J = 7.6 Hz, 3H), 6.84 (d, J = 7.6 Hz, 1H), 6.34 (s, 1H), 5.74 (s, 1H), 5.35 (s, 1H), 3.13 (s, 1H), 2.45 (s, 3H), 1.40 (s, 18H). 13C NMR (100 MHz, CDCl3) δ ppm 171.2, 154.6, 145.1, 136.8, 135.6, 135.3, 135.2, 133.4, 133.2, 130.0, 129.9, 129.3, 128.7, 128.3, 128.1, 127.6, 124.9, 123.9, 122.1, 113.5, 112.3, 66.8, 50.6, 34.5, 30.2, 21.8. HRMS (ESI): m/z [M + Na]+ calcd for C38H38Br3N3O3S+: 674.2220; found 674.2223.
\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\ ppm\) 154.6, 144.8, 136.6, 136.0, 135.6, 135.2, 134.9, 133.3, 130.9, 129.9, 129.7, 129.3, 129.0, 128.1, 127.8, 127.5, 127.3, 126.5, 122.2, 113.3, 112.9, 77.3, 77.0, 76.7, 62.1, 51.6, 50.0, 34.7, 30.2, 21.8, 21.7, 19.5. HRMS (ESI): m/z [M + Na\(^+\)] calcd for C\(_{39}\)H\(_{41}\)N\(_3\)NaO\(_3\)S\(_2\): 700.2821; found 700.2828.

3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(2,4-dichlorophenyl)-1-tosyl-1,4-dihydroquinoline-3,3(2H)-dicarboxirile (3o). Compound 3o was synthesized in a manner of the general procedure for the synthesis of 3. Yield 91\%, white powder solid, \(>20:1\) dr, m. p. 250–251°C. \(^{13}\)C NMR (400 MHz, CDCl\(_3\)) \(\delta\ ppm\) 79.1 (dd, \(J = 8.0, 1.2\) Hz, 1H), 7.57 (td, \(J = 7.6, 2.1\) Hz, 1H), 7.50 (dd, \(J = 8.7, 2.1\) Hz, 1H), 7.49 (d, \(J = 8.8\) Hz, 1H), 7.46 (d, \(J = 8.4\) Hz, 2H), 7.42 (d, \(J = 8.8\) Hz, 2H), 7.35–7.30 (m, 4H), 6.90 (d, \(J = 6.7\) Hz, 1H), 6.34 (s, 1H), 6.27 (s, 1H), 5.35 (s, 1H), 3.04 (s, 1H), 2.5 (s, 2H), 1.4 (s, 18H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\ ppm\) 154.7, 154.5, 154.4, 147.7, 147.6, 136.3, 136.0, 135.5, 132.8, 130.4, 130.0, 129.5, 128.9, 128.0, 127.9, 127.6, 127.4, 126.2, 122.1, 121.0, 114.3, 113.2, 110.5, 60.6, 55.0, 51.1, 50.1, 34.6, 30.2, 21.8. HRMS (ESI): m/z [M + Na\(^+\)] calcd for C\(_{39}\)H\(_{41}\)N\(_3\)NaO\(_3\)S\(_2\): 670.2715; found 670.2718.

3-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-(p-tolyl)-1-tosyl-1,4-dihydroquinoline-3,3(2H)-dicarboxirile (3l). Compound 3l was synthesized in a manner of the general procedure for the synthesis of 3. Yield 91\%, white powder solid, \(>20:1\) dr, m. p. 206–210°C. \(^{13}\)C NMR (400 MHz, CDCl\(_3\)) \(\delta\ ppm\) 79.1 (dd, \(J = 8.0, 1.2\) Hz, 1H), 7.50 (t, \(J = 7.8\) Hz, 1H), 7.48–7.24 (m, 5H), 7.16 (d, \(J = 8.4\) Hz, 2H), 6.75 (d, \(J = 7.6\) Hz, 1H), 6.26 (s, 1H), 5.67 (s, 1H), 3.27 (s, 1H), 3.29 (s, 1H), 1.6 (m, 5H), 1.3 (s, 1H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\ ppm\) 157.4, 154.7, 146.1, 145.1, 136.6, 136.5, 136.4, 136.0, 136.0, 133.5, 131.8, 131.5, 131.0, 130.1, 129.9, 129.4, 129.3, 128.2, 127.7, 127.4, 127.2, 124.3, 121.3, 113.9, 121.0, 62.5, 50.7, 47.1, 34.7, 34.2, 30.3, 20.1, 21.8. HRMS (ESI): m/z [M + Na\(^+\)] calcd for C\(_{38}\)H\(_{37}\)Cl\(_2\)N\(_3\)NaO\(_3\)S\(_2\): 692.2131; found 692.2136.

3-(3,5-di-tert-butyl-4-hydroxyphenyl)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-1-tosyl-1,4-dihydroquinoline-3,3(2H)-dicarboxirile (3q). Compound 3q was synthesized in a manner of the general procedure for the synthesis of 3. Yield 89\%, white powder solid, \(>20:1\) dr, m. p. 206–232°C. \(^{13}\)C NMR (400 MHz, CDCl\(_3\)) \(\delta\ ppm\) 79.1 (dd, \(J = 8.0\) Hz, 1H), 7.45 (t, \(J = 7.8\) Hz, 1H), 7.43–7.24 (m, 5H), 7.0 (d, \(J = 8.4\) Hz, 2H), 6.75 (d, \(J = 7.7\) Hz, 1H), 6.26 (s, 1H), 5.67 (s, 1H), 5.25 (s, 1H), 3.07 (s, 1H), 2.37 (s, 1H), 1.3 (s, 1H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\ ppm\) 154.5, 145.2, 136.6, 135.7, 135.4, 133.8, 133.4, 129.9, 129.7, 128.4, 127.9, 127.5, 127.4, 127.1, 124.0, 122.4, 113.7, 112.6, 67.3, 50.9, 50.9, 34.4, 30.2, 21.7, 21.3. HRMS (ESI): m/z [M + Na\(^+\)] calcd for C\(_{39}\)H\(_{41}\)N\(_3\)NaO\(_3\)S\(_2\): 654.2766; found 654.2762.
6-chloro-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-phenyl-1-tosyl-1,4-dihydroquinoline-3,3(2H)-dicarbonitrile (3w). Compound 3w was synthesized in a manner of the general procedure for the synthesis of 3. Yield 87%, white powder solid, >20:1 dr, m. p. 250–251°C. 1H NMR (400 MHz, CDCl3) δ ppm 7.88 (d, J = 8.8 Hz, 1H), 7.62–7.53 (m, 2H), 7.51 (dd, J = 8.4, 2.4 Hz, 1H), 7.50–7.36 (m, 6H), 7.34–7.32 (m, 2H), 6.87 (d, J = 2.4 Hz, 1H), 6.34 (s, 1H), 5.77 (s, 1H), 5.38 (s, 1H), 3.12 (s, 1H), 2.47 (s, 1H), 1.41 (s, 18H). 13C NMR (100 MHz, CDCl3) δ ppm 154.8, 145.2, 136.9, 136.3, 135.0, 134.4, 132.9, 130.8, 130.1, 129.9, 127.9, 127.1, 127.4, 127.2, 121.8, 112.1, 113.4, 112.2, 67.2, 50.9, 50.7, 34.3, 30.2, 21.8. HRMS (ESI): m/z [M + Na]+ calcd for C35H35BrN3O5S2: 718.1715; found 718.1721.

20:1 dr, m. p. 255–256°C. 1H NMR (400 MHz, CDCl3) δ ppm 7.79 (d, J = 8.0 Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.51 (dd, J = 8.2, 2.4 Hz, 1H), 7.51–7.45 (m, 2H), 7.41–7.29 (m, 6H), 7.26 (d, J = 8.0 Hz, 2H), 6.96 (s, 1H), 6.28 (s, 1H), 5.69 (s, 1H), 5.31 (s, 1H), 3.04 (s, 1H), 2.39 (s, 3H), 1.33 (s, 18H). 13C NMR (100 MHz, CDCl3) δ ppm 154.9, 145.2, 136.9, 136.3, 135.1, 134.6, 134.4, 132.9, 130.8, 130.1, 129.9, 127.9, 127.1, 127.4, 127.2, 121.8, 112.1, 113.4, 112.2, 67.2, 50.9, 50.7, 34.3, 30.2, 21.8. HRMS (ESI): m/z [M + Na]+ calcd for C35H35BrN3O5S2: 718.1715; found 718.1721.

20:1 dr, m. p. 255–256°C. 1H NMR (400 MHz, CDCl3) δ ppm 7.79 (d, J = 8.0 Hz, 1H), 7.58 (d, J = 7.8 Hz, 1H), 7.51 (dd, J = 8.2, 2.4 Hz, 1H), 7.51–7.45 (m, 2H), 7.41–7.29 (m, 6H), 7.26 (d, J = 8.0 Hz, 2H), 6.96 (s, 1H), 6.28 (s, 1H), 5.69 (s, 1H), 5.31 (s, 1H), 3.04 (s, 1H), 2.39 (s, 3H), 1.33 (s, 18H). 13C NMR (100 MHz, CDCl3) δ ppm 154.9, 145.2, 136.9, 136.3, 135.1, 134.6, 134.4, 132.9, 130.8, 130.1, 129.9, 127.9, 127.1, 127.4, 127.2, 121.8, 112.1, 113.4, 112.2, 67.2, 50.9, 50.7, 34.3, 30.2, 21.8. HRMS (ESI): m/z [M + Na]+ calcd for C35H35BrN3O5S2: 718.1715; found 718.1721.
Compound 3bb was synthesized in a manner of the general procedure for the synthesis of 3. Yield 92%, white powder solid, >20:1 dr, m. p. 166–167°C. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.92 (d, J = 7.8 Hz, 1H), 7.56 (d, J = 8.4 Hz, 2H), 7.45 (t, J = 7.8 Hz, 1H), 7.31–7.20 (m, 8H), 7.15 (s, 1H), 6.95 (d, J = 8.4 Hz, 1H), 6.56 (s, 2H), 5.20 (s, 1H), 3.35 (dd, J = 10.8, 7.2 Hz, 1H), 3.28 (s, 1H), 3.18 (dd, J = 10.8, 7.2 Hz, 1H), 2.39 (s, 3H), 1.34 (s, 18H), 0.56 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ ppm 163.7, 153.9, 144.3, 139.4, 136.1, 135.9, 135.6, 134.9, 129.8, 128.4, 128.1, 127.7, 127.5, 124.7, 126.9, 123.2, 126.0, 106.0, 65.4, 62.2, 52.8, 34.3, 30.3, 21.9, 12.9. HRMS (ESI): m/z [M + Na]⁺ calcd for C₃₉H₄₄N₂NaO₇S⁺: 707.2767; found 707.2772.

Compound 5 was synthesized in a similar manner of the general procedure for the synthesis of 3. Yield 62%, red powder (7). Compound 7 was synthesized in a similar manner of the general procedure for the synthesis of 3. Yield 89%, white powder solid, >20:1 dr, m. p. 235°C. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.11 (d, J = 7.8 Hz, 1H), 6.94 (d, J = 7.6 Hz, 1H), 5.38 (s, 1H), 5.04 (d, 1H), 2.40 (s, 9H), 1.45 (s, 9H), 1.38 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.1, 154.1, 148.7, 139.0, 138.9, 137.4, 137.2, 136.9, 136.4, 135.8, 130.1, 129.3, 128.0, 128.4, 124.4, 127.4, 124.3, 123.9, 123.3, 119.5, 110.5, 110.3, 68.7, 47.4, 45.6, 34.7, 34.4, 30.3, 21.7. HRMS (ESI): m/z [M + Na]⁺ calcd for C₄₉H₄₇N₂NaO₇S⁺: 694.2352; found 694.2359.

Compound 7 was synthesized in a similar manner of the general procedure for the synthesis of 3. Yield 62%, red powder solid, >20:1 dr, m. p. 201–202°C. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.11 (d, J = 7.8 Hz, 1H), 7.63 (d, J = 8.4 Hz, 2H), 7.47 (dd, J = 7.8, 1.8 Hz, 1H), 7.36–7.30 (m, 1H), 7.30–7.26 (m, 1H), 7.19 (d, J = 8.4 Hz, 2H), 7.16 (dd, J = 7.8, 1.8 Hz, 1H), 7.13 (dd, J = 7.8, 1.2 Hz, 1H), 7.06 (td, J = 7.8, 1.2 Hz, 1H), 6.82 (m, 2H), 6.76 (s, 1H), 6.52 (s, 1H), 6.37 (d, J = 8.4 Hz, 1H), 5.32 (s, 1H), 2.36 (s, 3H), 1.33 (s, 18H). ¹³C NMR (100 MHz, CDCl₃) δ ppm 163.2, 154.1, 148.7, 146.0, 144.2, 137.1, 136.9, 136.7, 135.0, 131.4, 129.9, 129.6, 128.9, 127.1, 126.8, 126.6, 125.0, 124.5, 123.8, 118.6, 113.0, 112.4, 110.7, 82.9, 55.7, 34.5, 30.2, 21.7. HRMS (ESI): m/z [M + Na]⁺ calcd for C₄₀H₄₉N₂NaO₇S⁺: 681.2511; found 681.2514.

Procedure for the synthesis of 8: The reaction was carried out with 1a (0.1 mmol), NaBH₄ (10.0 eq.) in anhydrous MeOH (2 ml) at room temperature for several hours. The reaction mixture was quenched with aqueous NaHCO₃, and extraction was carried out with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and concentrated. The residue was directly purified by flash column chromatography (PE/EA = 10:1 to 8:1) to provide the desired product 8.

3-(aminomethyl)-4-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-phenyl-1-tosyl-1,2,3,4-tetrahydro-3'H-spiro[indene-2,2'-quinoline]-3',3'-dicarbonitrile (8). Yield 72%, white powder solid, 10:1 dr, m. p. 235–236°C. ¹H NMR (600 MHz, CDCl₃) δ ppm 7.82 (dd, J = 8.4, 1.0 Hz, 1H), 7.38 (d, J = 8.4 Hz, 3H), 7.35 (d, J = 7.2 Hz, 3H), 7.28 (t, J = 7.8 Hz, 2H), 7.26–7.19 (m, 2H), 7.13 (d, J = 7.8 Hz, 2H), 6.65 (d, J = 7.8 Hz, 1H), 5.80 (s, 1H), 5.19 (s, 1H), 2.82 (s, 1H), 2.58 (dd, J = 28.8 Hz, 13.8 Hz, 2H), 2.33 (s, 3H), 1.31 (s, 18H), 0.78 (s, 2H). ¹³C NMR (150 MHz, CDCl₃) δ ppm 153.8, 143.9, 139.5, 137.1, 136.7, 136.1, 135.7, 129.3, 128.4, 128.3, 128.2, 127.9, 127.8, 127.2, 126.8, 124.4, 120.2, 62.9, 56.6, 47.0, 43.6, 34.5, 30.4, 21.8. HRMS (ESI): m/z [M + H]⁺ calcd for C₄₉H₄₉N₂O₇S⁺: 622.3103; found 622.3107.

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2021.764866/full#supplementary-material.
Si, W., Xu, F., Liu, Z., Song, R., and Lv, J. (2020). High Diastereoselective [4 + 2] Annulation of γ,δ-unsaturated α-keto Esters and P-Quinone Methides: Approach to Poly-substituted 4-aryl Chromans and Tetrahydroquinolines. *Tetrahedron Lett.* 61, 152171. doi:10.1016/j.tetlet.2020.152171

Staskiewicz, A., Ledwo, P., Rovero, P., Papini, A. M., and Latajka, R. (2021). Triazole-Modified Peptidomimetics: An Opportunity for Drug Discovery and Development. *Front. Chem.* 9. doi:10.3389/chem.2021.674705

Tan, J.-P., Yu, P., Wu, J.-H., Chen, Y., Pan, J., Jiang, C., et al. (2019). Bifunctional Phosphonium Salt Directed Enantioselective Formal [4 + 1] Annulation of Hydroxyl-Substituted Para-Quinone Methides with α-Halogenated Ketones. *Org. Lett.* 21, 7298–7302. doi:10.1021/acs.orglett.9b02560

Tan, J. P., Zhang, H., Jiang, Z., Chen, Y., Ren, X., Jiang, C., et al. (2020). Enantioselective Construction of Spiro[chroman-thiazolones]: Bifunctional Phosphonium Salt-Catalyzed [2+4] Annulation between 5-Alkenyl Thiazolones and Ortho-Hydroxyphenyl-Substituted Para-Quinone Methides. *Adv. Synth. Catal.* 362, 1058–1063. doi:10.1002/adsc.201901413

Toteva, M. M., and Richard, J. P. (2011). “The Generation and Reactions of Quinone Methides,” in Advances in Physical Organic Chemistry. Editor J. P. Richard (Academic Press), 39–91. doi:10.1016/B978-0-12-386047-7.00002-3

Uchida, R., Imasato, R., Tomoda, H., and Ōmura, S. (2006). Yaequinolones, New Insecticidal Antibiotics Produced by Penicillium Sp. *FK1-2140*. *J. Antibiot.* 59, 652–658. doi:10.1093/ja/ja066.87

V. Kouznetsov, V., R. Merchan Arenas, D., Arvelo, F., S. Bello Forero, J., Sojo, F., Wang, Z., Wong, Y.F., and Sun, J. (2015). Catalytic Asymmetric 1,6-Conjugate Addition Ofpara-Quinone Methides: Formation of All-Carbon Quaternary Stereocenters. *Angew. Chem. Int. Ed.* 54, 1351–1354. doi:10.1002/anie.201409188

Wang, J., Tian, X., Zhang, J., Li, J., Wan, C., Lei, Y., and Wu, G. (2020). Para-Quinone Methides of In Situ Generated Ortho-Quinone Methides for the Synthesis of Poly-substituted Chromanes. *Chem. Commun.* 56, 439–442. doi:10.1039/C9CC08316B

Zhang, J. R., Jin, H. S., Wang, R. B., and Zhao, L. M. (2019). Synthesis of 2,4-Diaryl-1,3-benzoxazines via FeCl3-Catalyzed Annulation of ortho-Hydroxyphenyl-Substituted para-Quinone Methides with Imidates. *Adv. Synth. Catal.* 361, 4811–4816. doi:10.1002/adsc.201900842

Zhang, X.-Z., Deng, Y.-H., Fan, K.-J., Yan, X., Yu, K.-Y., Wang, F.-X., et al. (2017). Tandem Spirocyclopropanation/Rearrangement Reaction of Vinyl P-Quinone Methides with Sulfonium Salts: Synthesis of Spirocyclopentenyl P-Dienones. *Org. Lett.* 19, 1752–1755. doi:10.1021/acs.orglett.7b03516

Zhang, X.-Z., Du, J.-Y., Deng, Y.-H., Chu, W.-D., Yan, X., Yu, K.-Y., et al. (2016). Spirocyclopropanation Reaction of Para-Quinone Methides with Sulfonium Salts: The Synthesis of Spirocyclopentenyl Para-Dienones. *J. Org. Chem.* 81, 2598–2606. doi:10.1021/acs.joc.5b02725

Zhang, Z.-P., Chen, L., Li, X., and Cheng, J.-P. (2018). Organocatalytic Asymmetric Sequential 1,6-Addition/Acetalization of 1-Oxotetralin-2-carbaldehyde to Ortho-Hydroxyphenyl-Substituted Para-Quinone Methides for Synthesis of Spiro-3,4-dihydropyrimidinones. *J. Org. Chem.* 83, 2714–2724. doi:10.1021/acs.joc.7b03177

Zhao, K., Zhi, Y., Shu, T., Valkonen, A., Rissanen, K., and Enders, D. (2016). Organocatalytic Domino Oxa-Michael-1,6-Addition Reactions: Asymmetric Synthesis of Chromans Bearing Oxindole Scaffolds. *Angew. Chem. Int. Ed.* 55, 12104–12108. doi:10.1002/anie.201606947

Zhi, Y., Zhao, K., von Essen, C., Rissanen, K., and Enders, D. (2018). Synthesis of Trans-disubstituted-2,3-dihydrobenzoazapyrans by a Formal [4 + 1] Annulation between Para-Quinone Methides and Sulfonyl Salts. *J. Org. Chem.* 83, 1348–1351. doi:10.1021/acs.orglett.9b00808

Zhou, J., Xian, X., Xu, J.-M., and Zhou, H. (2018). Facile Synthesis of 3-aryl 2,3-dihydrobenzoazapyrans via Novel Domino 1,6-addition/O-Aklylation Reactions of Para-Quinone Methides. *Tetrahedron* 74, 1492–1496. doi:10.1016/j.tet.2018.02.008

Zhu, L., Yan, P., Zhang, L., Chen, Z., Zeng, X., and Zhong, G. (2017). TiCl4/DMAP Mediated Z-Selective Knovenagel Condensation of Isatin with Nitrocetates and Related Compounds. *RSC Adv.* 7, 51352–51358. doi:10.1039/C7RA09951G

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Dong, Wei, Li, Gao and Qiu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided that the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.