The Effect of Lime, Irrigation-water Source, and Water-soluble Fertilizer on Root-zone pH, Electrical Conductivity, and Macronutrient Management of Container Root Media with Impatiens

William R. Argo¹ and John A. Biernbaum²

Department of Horticulture, Michigan State University, East Lansing, MI 48824-1325

Additional index words. calcium, magnesium, peat, phosphorus, tissue analysis, soilless root media, subirrigation, soluble salts, sulfate

Abstract. Hybrid impatiens (Impatiens Wallerana Hook. F.) were planted in a peat-based medium containing two dolomitic liming materials (1.8 kg Ca(OH)₂•Mg(OH)₂/m³ or 8.4 kg CaCO₃•MgCO₃/m³) and subirrigated for 17 weeks using four irrigation-water sources (IWSs) with varied bicarbonate alkalinity, Ca²⁺, Mg²⁺, and SO₄-S content and three water-soluble fertilizers (WSFs) that contained (in mg) 200N–20P–200K/liter but a variable NH₄ : NO₃ ratio, Ca²⁺, Mg²⁺, and SO₄-S content. The factorial arrangement of the IWS and WSF resulted in a range of Ca²⁺, Mg²⁺, and SO₄-S concentrations varying by a factor of 10. After 8 weeks, medium pH ranged from 4.5 to 8.5. The maximum critical medium pH for PO₄-P uptake was 7.4 to 7.7, which probably was due to a change in most of the water-soluble P to the less-available HPO₄²⁻ form. Lime type did not affect the long-term increase in medium pH, Ca²⁺, and Mg²⁺ concentrations with nutrient solutions containing low NH₄ :N and high Ca²⁺ and Mg²⁺. The carbonate limed buffered the medium pH and Ca²⁺ and Mg²⁺ concentrations with nutrient solutions containing high NH₄ :N and low Ca²⁺ and Mg²⁺ compared to that measured with the hydrated lime. With both lime types, there was a linear increase in tissue Ca and Mg as the applied concentrations of the various nutrient solutions increased from 18 to 210 mg Ca²⁺/liter and 7 to 90 mg Mg²⁺/liter. The relationship was similar for both lime types up to week 8, after which tissue Ca and Mg decreased more rapidly with the hydrated lime and low solution Ca²⁺ and Mg²⁺ compared to that of the same carbonate lime treatments. The minimum critical SO₄-S concentration in the applied nutrient solution for plant uptake was 30 to 40 mg S/liter. Below this concentration, tissue S decreased rapidly; above, there was little effect on tissue S.

A number of factors, which include lime, the irrigation-water source (IWS), water-soluble fertilizer (WSF), and plant growth, interact to affect the management of pH and nutrient concentrations in container root media throughout crop production. However, not all factors affect medium pH and macronutrient management simultaneously. A better understanding of how these factors interact is necessary to improve the recommendations for pH and nutrient management of container-grown crops over a wide range of conditions.

Lime is added to a soilless root medium to neutralize acidity and increase the pH to an acceptable level for plant growth. Incorporating sufficient lime into a soilless root medium to obtain an initial pH range of 5.5 to 6.4 is recommended (Nelson, 1991; Peterson, 1981; Warncke and Krauskopf, 1983). The amount of liming material required to obtain an equilibrium pH of 6 in the root medium depends on the equilibration rate and particle size (Argo and Biernbaum, 1996; Chapin, 1980; Gibaly and Axley, 1955; Schollenberger and Salter, 1943; Sheldrake, 1980; Williams et al., 1988b) as well as the surface area of the liming material (Parfitt and Ellis, 1966). There is some information about the time required for the lime to reach a stable pH in soilless medium (Argo and Biernbaum, 1996; Williams et al., 1988b), the effect of water alkalinity in conjunction with lime in unplanted pots (Williams et al., 1988a), and the water-soluble Ca²⁺ and Mg²⁺ concentrations that can be expected from the incorporation of dolomitic lime into a soilless medium (Argo and Biernbaum, 1996; Warncke and Krauskopf, 1983). However, it has been suggested that not all the incorporated liming material may have reacted upon reaching equilibrium (Argo and Biernbaum, 1996). The significance of residual or unreacted lime on the long-term pH or water-soluble Ca²⁺ and Mg²⁺ buffering capacity in soilless media containing plants has not been quantified.

Several studies have been conducted to quantify the nutrient content of different sources of irrigation water in the United States. Ludwig and Peterson (1984) found that throughout the United States, titratable alkalinity ranged from 2 to 575 mg CaCO₃/liter (average 147 mg·liter⁻¹); electrical conductivity (EC), from 0 to 6.5 dS·m⁻¹ (average 0.5 dS·m⁻¹); Ca²⁺, from 0 to 440 mg·liter⁻¹ (average 60 mg·liter⁻¹); Mg²⁺, from 0 to 300 mg/liter (average 20 mg·liter⁻¹); and Na⁺, from 0 to 1150 mg·liter⁻¹ (average 35 mg·liter⁻¹), based on 687 water samples from the greenhouse industry. Reddy et al. (1994) found that only 11% of the IWSs tested contained sufficient concentrations of SO₄-S (30 mg·liter⁻¹) recommended for plant growth in container culture.

Different IWS require different types of management (Bunt, 1988; Nelson, 1991; Vetanovetz and Hulme, 1991). Irrigation water containing large amounts of bicarbonate alkalinity (>250 mg CaCO₃/liter) commonly are treated by adding strong mineral acid (HNO₃, H₂SO₄, or H₃PO₄). Researchers recommend adding suffi-
cien
c
t
c
The type of WSF applied to a root medium affects pH and nutrient concentrations two ways: directly, by nutrients applied to the root medium, and indirectly, by acidification of the rhizosphere pH. Fertilization with NO$_3$–N causes the medium pH to increase because of OH$^-$ or HCO$_3^-$ secretion associated with balancing ion uptake. In comparison, fertilization with NH$_4$+–N causes the medium pH to decrease because of H$^+$ secretion during root uptake and nitrification of the NH$_4$+–N to the NO$_3$–N form, which also releases H$^+$ (Barker and Mills, 1980; Bunt, 1988; Hawkes et al., 1985; Marschner, 1986; Nelson, 1991; Vetanovetz and Hulme, 1991).

Many commercially available WSFs contain a high percentage of NH$_4$+–N and PO$_4$–P but little Mg$^{2+}$ and no Ca$^{2+}$ [examples: Peter’s 21-7-7 Acid Special, 100% NH$_4$+–N, 0.05% Mg$^{2+}$, 0% Ca$^{2+}$; Peter’s 20–20–20 General Purpose, 72% NH$_4$+–N, 0.05% Mg$^{2+}$, 0% Ca$^{2+}$; Peter’s 20–10–20 Peatlite Special, 40% NH$_4$+–N, 0.05% Mg$^{2+}$, 0% Ca$^{2+}$ (Peter’s Fertilizer; Scotts, Marysville, Ohio)]. Because of the high NH$_4$+–N content, the reaction produced by these WSFs are acidic [21–7–7 = 780 kg acidity/1000 kg, 20–20–20 = 300 kg acidity/1000 kg, 20–10–20 = 210 kg acidity/1000 kg (Peter’s Fertilizer)]. In comparison, WSF that produce neutral or basic reactions in the root medium are typically low in NH$_4$+–N and PO$_4$–P but high in Ca$^{2+}$ and NO$_3$–N (examples: Peter’s 19–0–16 Western Greenhouse Formula, 24% NH$_4$+–N, 6.5% Ca$^{2+}$, 15 kg acidity/1000 kg; Excel 15–5–15, 28% NH$_4$+–N, 12% Ca$^{2+}$, 68 kg basicity/1000 kg; Peter’s 15–0–15 Dark Weather Special, 13% NH$_4$+–N, 14% Ca$^{2+}$, 210 kg basicity/1000 kg).

Emphasis needs to be placed on designing a WSF program for container plant production based on a given medium and IWS (Biernbaum, 1992; Vetanovetz and Knauss, 1988). However, these proposed strategies have not been tested under controlled conditions. The objectives of this experiment were to determine how lime, IWS, and WSF interact to affect the management of root-medium pH and medium and shoot-tissue macronutrient concentrations over time.

Materials and Methods

The experiment included 24 treatments composed of two types of lime, four types of IWSs, and three types of WSFs combined in a 2 × 4 × 3 factorial arrangement. At each sampling date, four pots from each treatment (two pots from each of two greenhouse sections) were sampled. Replication was made between greenhouse sections, while the two pots taken from the same greenhouse section were treated as subsamples for the statistical analysis.

Soil test data were analyzed using SAS’s analysis of variance (ANOVA) procedures (SAS Institute, Cary, N.C.) as a 2 × 4 × 3 split-plot factorial with lime as the main plot and the other factors as subplots at each sampling date. Medium EC and nutrient concentration data were transformed to log(observed + 1) for the ANOVA because of differences in sample variance between treatments. Time was not included in the ANOVA because sample variance changed over time.

Because of the factorial arrangement of the experiment, a range of Ca$^{2+}$, Mg$^{2+}$, and SO$_4$–S concentrations in the nutrient solutions, as well as a range of medium pH values were obtained with the different treatments. Relationships were developed between the concentration of Ca$^{2+}$ and Mg$^{2+}$ in the applied nutrient solutions and tissue Ca and Mg using SAS’s linear regression procedure (REG). Relationships also were developed between the concentration of SO$_4$–S in the nutrient solutions and the tissue S and root-medium pH and tissue P using the intersecting straight line model proposed by Anderson and Nelson (1975) with multiphase functions proposed by Fisher (1995). The functions used were

\[
X_{\text{intersection}} = \frac{(I_2 - I_1)/(S_1 - S_2)}{I_1 - I_2}
\]

If: \(X < X_{\text{intersection}} \), then, \(Y = S_1X + I_1 \)

If: \(X > X_{\text{intersection}} \), then, \(Y = S_2X + I_2 \)

where the X value is either SO$_4$–S concentration in mg liter$^{-1}$ or root medium pH, Y is tissue S or P in percent of total dry mass, \(X_{\text{intersection}} \) is the intersection point of the two lines where the Y values are equal and was calculated using Eq. [1], and S and I are the slope and y-intercept of Eqs. [2] and [3], respectively. Initial estimates for the parameters were obtained from a graph of the observed data. Estimates for \(S_1, I_1, S_2, \) and \(I_2 \) based on either the applied SO$_4$–S or root-medium pH, were obtained using SAS’s nonlinear regression procedure (NLIN).

Lime. The two liming materials varied in reactivity and incorporation rate. A microfine dolomitic hydrated lime [97% Ca(OH)$_2$•MgO, National Lime and Stone, Findlay, Ohio] in which 92% of the material passed through a 45-µm (no. 325) screen was incorporated at 1.5 kg·m$^{-3}$. At this incorporation rate, the hydrated lime added 0.5 kg Ca$^{2+}$, 0.3 kg Mg$^{2+}$, and the equivalent of 2.6 kg CaCO$_3$/m3 to the root medium. A superfine dolomitic carbonate lime (99.5% CaCO$_3$•MgCO$_3$, National Lime and Stone) in which 65% of the material passed through a 75-µm (#200) screen was incorporated at 8.4 kg·m$^{-3}$. At this incorporation rate, the carbonate lime added 1.8 kg Ca$^{2+}$, 1.1 kg Mg$^{2+}$, and the equivalent of 9.1 kg CaCO$_3$/m3 to the root medium. The root medium used was (by volume) 70% Canadian sphagnum peat (Fisons professional black bale peat, Sun Gro Horticulture, Bellevue, Wash.) with long fibers and little dust (Von Post scale 1–2; Puustjärvi and Robertson, 1975), and 30% perlite. A preplant nutrient charge (PNC) consisting of 0.6 kg each of Ca(NO$_3$)$_2$, KNO$_3$, triple superphosphate (0N–19.8P–0K), and gypsum: 0.3 kg MgSO$_4$; 0.07 kg fritted trace elements (FITE 555, Scotts, Marysville, Ohio); and 0.2 liters of a wetting agent (Aquagro 2000 L, Aquatrols, Pennsylvania, N.J.) per m3 of medium, in addition to the lime, were added at mixing. Sufficient RO water was added at mixing to bring the moisture content of the medium to 40% to 50% of container capacity, and the medium was allowed to equilibrate for three days before planting. At planting, the hydrated lime treatments had a pH of 6.1, an EC of 2.3 dS·m$^{-1}$, and 220 NO$_3$–N, 14 NH$_4$–N, 40 PO$_4$–P, 200 K$^+$, 250 Ca$^{2+}$, 185 Mg$^{2+}$, and 110 SO$_4$–S (mg·liter$^{-1}$); while the carbonate lime treatments had a pH of 5.5, an EC of 2.6 dS·m$^{-1}$, and 220 NO$_3$–N, 13 NH$_4$–N, 53 PO$_4$–P, 215 K$^+$, 230 Ca$^{2+}$, 160 Mg$^{2+}$, and 95 SO$_4$–S (mg·liter$^{-1}$), based on the saturated-medium extract (SME) method (Warncke and Krauskopf, 1983).

IWS. The four IWSs varied in EC, Ca$^{2+}$, Mg$^{2+}$, Na$^+$, SO$_4$–S concentration, and alkalinity content. The high-alkali water source (well water) had a pH of 7.8, an EC of 0.6 dS·m$^{-1}$; 105 Ca$^{2+}$, 35 Mg$^{2+}$, 12 Na$^+$, 23 SO$_4$–S (mg·liter$^{-1}$); and a titratable alkalinity to pH 4.5 (Chau, 1984) of 320 mg CaCO$_3$/liter. The low-alkali water source was RO purified well water, which had a pH of 5.5, an EC of 0.1 dS·m$^{-1}$; 20 Ca$^{2+}$, 7 Mg$^{2+}$, 23 Na$^+$, 1 SO$_4$–S (mg·liter$^{-1}$); and a titratable alkalinity to pH 4.5 of <20 mg CaCO$_3$/liter. The third type of water (acidified water) was produced by adding H$_2$SO$_4$ (93%) to the well water and had a pH of 5.8, an EC of 0.7

443J. AMER. SOC. HORT. SCI. 121(3):442–452. 1996.
The type of reaction produced by the WSF was calculated, with values for the reaction produced by the individual salts obtained from Hawkes et al. (1985) and Young and Johnson (1982) multiplied by the percentage that each salt contributed to the total WSF weight. The value obtained for each WSF was used as an estimate of the type (either acidic or basic) and strength (in kg/1000 kg of fertilizer) of reaction produced. Based on these calculations, WSF 1 (acidic WSF) had an acidity of 199 kg/1000 kg, WSF 2 (neutral WSF) had a basicity of 8 kg/1000 kg, and WSF 3 (basic WSF) had a basicity of 175 kg/1000 kg.

Plant culture. The experiment was conducted starting 15 Feb. 1994 at Michigan State Univ., East Lansing, in two well-ventilated glass greenhouse sections with constant air circulation and cement floors. One hybrid impatiens plug (‘Super Elfin Violet’) from a size 512 plug tray was planted into a 9-cm-tall × 12.5-cm-wide (0.75-liter) plastic pot containing medium with one of the two lime types. Twenty-five pots containing medium with each lime type were placed on one of twelve flood subirrigation bench sections in each of the two greenhouses. Both lime types were placed on the same bench section.

Plants on each bench section were irrigated as needed. The time to irrigate was determined gravimetrically when the average mass of six randomly selected pots containing plants and medium (three from each lime treatment) reached a target weight based on a loss of 40% to 50% of the available water. The same six pots were checked daily for the target weight, and when it was reached, nutrient solutions were applied. During an irrigation, benches were filled from a 70-liter reservoir for 2 min to a maximum depth of 2.5 cm and drained in 6 min to the same reservoir. The difference between the mass of the pots before and after the irrigation was the amount of water absorbed by the medium. The amount of nutrients applied per pot was calculated as the sum of the absorbed nutrient

Table 1. Cumulative water, Ca\(^{2+}\), Mg\(^{2+}\), and SO\(_4\)-S applied with the various irrigation-water source (IWS) and water-soluble fertilizer (WSF) treatments after 17 weeks. The initial nutrient content of the root medium was not included in the values reported below but was 0.7 g Ca\(^{2+}\), 0.3 g Mg\(^{2+}\), and 0.1 g SO\(_4\)-S per pot with the hydrated lime treatments and 1.5 g Ca\(^{2+}\), 0.8 g Mg\(^{2+}\), and 0.1 g SO\(_4\)-S per pot with the carbonate lime treatment. Data are the mean of six pots. Statistical analysis indicates a three-way interaction with >0.01 significance for all four variables measured.

IWS	Applied water (liters)	Ca\(^{2+}\) (g/pot)	Mg\(^{2+}\) (g/pot)	SO\(_4\)-S (g/pot)	Carbonate lime
Well	Acidic	7.8	0.8	0.3	8.1
Well	Neutral	7.7	1.3	0.5	7.4
Well	Basic	7.2	1.6	0.6	7.6
Acidified	Acidic	8.3	0.8	0.3	8.0
Acidified	Neutral	7.8	1.2	0.5	7.5
Well + RO	Acidic	8.7	0.5	0.1	8.1
Well + RO	Neutral	8.4	0.9	0.3	8.1
Well + RO	Basic	8.2	1.4	0.5	8.2
RO	Acidic	8.9	0.2	0.1	7.8
RO	Neutral	8.4	0.6	0.3	8.2
RO	Basic	7.8	1.0	0.5	7.8

\(^3\text{RO} = \text{reverse osmosis.}\)
solution multiplied by the concentration applied for each irrigation. The nutrient solutions in the 70-liter reservoirs were emptied and prepared fresh weekly.

Root media were sampled initially and collected from four pots (two per treatment from each bench section) at 1, 4, 8, 12, and 17 weeks after planting. All the medium was removed from each pot and separated horizontally into two samples, one containing the top 2.5 cm (top layer), and the other containing the remaining medium from the pot (root zone). Nutrients contained in each media sample were tested using the SME method with RO purified water as the extractant (Warncke, 1986). Only EC was measured in the top layer sample, while pH, EC, NO₃⁻-N and NH₄⁺-N, PO₄-P, K⁺, Ca²⁺, Mg²⁺, and SO₄-S were measured in the root zone sample. Medium pH was determined by inserting the pH electrode directly into the saturated medium before extraction, and EC and macronutrients were measured in the extracted solution. Medium EC was determined with a platinum electrode at a standard 25°C. Nitrate N (Diamond, 1986a), NH₄⁺-N (Diamond, 1986b), PO₄-P (Bloxham, 1990), Mg²⁺ (magnesium blue, Technicon Instruments, Tarrytown, N.Y.), and SO₄-S (McKnight, 1991) were determined colorimetrically. Medium K⁺ and Ca²⁺ were determined by the Michigan State Univ. Soil and Nutrient Testing Laboratory using emission spectroscopy.

Shoot fresh and dry weight and tissue nutrient analysis were determined for four plants per treatment at 4, 8, 12, and 17 weeks after planting. At week 4, the entire plant was used in the sample. For the remaining plants, all shoots were pinched back, leaving one internode per stem and four to six stems per plant. At all subsequent sampling dates, only growth after the previous pinch was sampled, and the remaining plants were cut back to the week 4 pinch level. Shoot N and S were determined by column chromatography, and shoot P, K, Ca, and Mg were determined by plasma emission spectroscopy (Fafard Analytical Laboratory, Athens, Ga.).

Results and Discussion

Plant growth. In general, the experimental treatments affected shoot growth of impatiens minimally (Fig. 1). The average dry mass of the stem below the pinched material was 1.9 g at the end of the experiment (data not shown). Averaged over all treatments, a total of 17.5 g of shoot dry mass was produced over the 17 weeks of the experiment.

In many experiments, plant shoot tissue is sampled sequentially over time or at the end of the experiment (Adams et al.; 1978; Argo and Biernbaum, 1994; Argo and Biernbaum, 1996, Yelanich, 1995; Yelanich and Biernbaum, 1993). Determining changes in nutrient availability over time is difficult because the nutrient content of the shoot tissue represent the sum of the conditions under which the growth occurred. Cutting the plants back at 4-week intervals left minimal shoot tissue that could be used as a nutrient reservoir for mobile macronutrients (N, P, K, Mg) while sampling only the new growth tested the ability of the plants to take up mobile and immobile macronutrients (Ca, S) over the 4-week period. Therefore, there should have been a better correlation between the availability of nutrients in the root medium and tissue nutrient concentrations over the 4-week period than if the plants were allowed to grow from planting until the sampling date, as typically has been done.

Water and fertilizer applications. The volume of nutrient solutions applied ranged from 7.2 to 8.9 liters/pot over the 17 weeks of
Table 2. Degrees of freedom (df), F values (A), levels of significance (B), and mean square from error a and b (MSEa or b) from the analysis of variance for the log(observed + 1) transformed root-medium pH, electrical conductivity (EC), PO₄-P, Ca²⁺, Mg²⁺, and SO₄-S concentrations at 1, 4, 8, 12, and 17 weeks after planting.

	Week 1	Week 4	Week 8	Week 12	Week 17	
	df	A	B	A	B	
pH	Lime (L)	1	14.7	NS	0.4	NS
	MSEa	1	0.0002	0.0005	0.0001	0.0001
	IWS	3	13.1 ***	33.6 ***	81.1 ***	40.9 ***
	L × IWS	3	2.5 NS	0.5 NS	6.8 ***	2.7 NS
	WSF	2	10.5 ***	7.9 ***	155.7 ***	170.6 ***
	L × WSF	2	0.1 NS	1.0 NS	6.3 ***	3.7 *
	IWS × WSF	6	1.4 NS	2.1 NS	4.5 *	4.4 ***
	L × IWS × WSF	6	2.1 NS	0.2 NS	0.9 NS	0.9 NS
MSEb	70	0.0003	0.0003	0.0004	0.0009	0.0005

EC	Lime (L)	1	15.2	NS	0.2	NS
	MSEa	1	0.0001	0.0018	0.0027	0.0007
	IWS	3	24.2 ***	16.4 ***	35.9 ***	28.1 ***
	L × IWS	3	0.8 NS	0.1 NS	1.4 NS	0.5 NS
	WSF	2	21.2 ***	13.3 ***	27.9 **	26.4 ***
	L × WSF	2	0.7 NS	0.4 NS	1.4 NS	3.0 NS
	IWS × WSF	6	2.5 NS	2.0 NS	1.7 NS	0.3 NS
	L × IWS × WSF	6	0.9 NS	1.8 NS	2.1 NS	0.7 NS
MSEb	70	0.0011	0.0014	0.0010	0.0018	0.0019

P	Lime (L)	1	1633.6 *	97.9 NS	30.6 NS	0.4 NS
	MSEa	1	0.0004	0.0018	0.0008	0.0018
	IWS	3	48.1 ***	27.2 ***	94.8 ***	118.7 ***
	L × IWS	3	3.9 **	1.6 NS	0.6 NS	0.3 NS
	WSF	2	1.0 NS	29.6 ***	167.6 ***	303.2 ***
	L × WSF	2	4.5 **	0.0 NS	0.7 NS	1.5 NS
	IWS × WSF	6	8.9 ***	9.6 ***	33.1 ***	56.4 ***
	L × IWS × WSF	6	1.0 NS	0.6 NS	1.2 NS	1.3 NS
MSEb	70	0.0013	0.0041	0.0036	0.0042	0.0138

Ca	Lime (L)	1	34.6	NS	0.6	NS
	MSEa	1	0.0003	0.0027	0.0022	0.0048
	IWS	3	5.2 **	21.9 ***	88.1 ***	56.9 ***
	L × IWS	3	0.5 NS	1.6 NS	3.2 NS	2.9 NS
	WSF	2	13.7 ***	60.3 *** **61.3	30.9 ***	90.6 ***
	L × WSF	2	2.2 NS	0.0 NS	2.2 NS	3.5 NS
	IWS × WSF	6	8.9 ***	9.6 ***	33.1 ***	56.4 ***
	L × IWS × WSF	6	1.0 NS	0.6 NS	1.2 NS	1.3 NS
MSEb	70	0.0138	0.0071	0.0041	0.0081	0.0052

Mg	Lime (L)	1	18.6	NS	1.0 NS	13.4 NS
	MSEa	1	0.0006	0.0100	0.0037	0.0004
	IWS	3	11.7 ***	18.5 ***	38.1 ***	114.2 ***
	L × IWS	3	1.4 NS	5.8 *	5.5 *	17.8 ***
	WSF	2	26.0 ***	80.5 *	49.2 *	117.9 ***
	L × WSF	2	0.4 NS	3.8 NS	0.5 NS	21.8 ***
	IWS × WSF	6	1.5 NS	1.8 NS	2.8 NS	8.9 ***
	L × IWS × WSF	6	1.1 NS	6.1 **	4.2 *	2.9 **
MSEb	70	0.0199	0.0172	0.0249	0.0151	0.0098

S	Lime (L)	1	8.2	NS	53.2 NS	0.4 NS
	MSEa	1	0.0023	0.0001	0.0004	0.0023
	IWS	3	133.7 ***	404.6 ***	366.3 ***	177.8 ***
	L × IWS	3	0.4 NS	1.9 NS	0.5 NS	1.3 NS
	WSF	2	56.5 ***	594.0 ***	199.8 ***	112.1 ***
	L × WSF	2	3.2	0.9 NS	1.0 NS	0.6 NS
	IWS × WSF	6	5.1	21.1 ***	27.0 ***	9.8 ***
	L × IWS × WSF	6	0.5 NS	0.3 NS	1.2 NS	0.7 NS
MSEb	70	0.0054	0.0029	0.0043	0.0080	0.0040

2 Irrigation-water source.
3 Water-soluble fertilizer.
NS, *, **, *** Nonsignificant or significant at $P \leq 0.05$, 0.01, or 0.001, respectively.
remained unreacted at the week 4 analysis. pH, about 6 kg of the carbonate lime/m^3 of medium, or 4.5 g/pot, equivalents of lime were required to obtain the same root-medium material probably had reacted by week 4. Assuming that similar nature and small particle size of the hydrated lime, most of the lime treatments (Fig. 2, Table 2). Because of the highly reactive throughout the experiment was 0.9 g Ca\(^{2+}\)/pot. The minimum amount of Ca\(^{2+}\) applied to a single treatment trations at levels recommended by Fortney and Wolf (1981) for and PNC fertilizers. and the carbonate lime treatments received 1.5 g Ca\(^{2+}\), 0.8 g Mg\(^{2+}\), 1). In addition to the nutrient solutions applied, hydrated lime incorporation initially with the PNC fertilizers. In comparison, the amount applied was similar and ranged from 1.5 to 1.8 g N, 0.15 to 0.20 g PO\(_4\)-P, and 1.5 to 1.8 g K\(^+\) per pot (data not shown). In addition, 0.1 g N, 0.1 g PO\(_4\)-P, and 0.2 g K\(^+\) per pot were incorporated initially with the PNC fertilizers. In comparison, the concentrations of Ca\(^{2+}\), Mg\(^{2+}\), and SO\(_4\)-S in the nutrient solutions varied by a factor of about 10. The amount applied ranged from 0.2 to 1.6 g Ca\(^{2+}\), 0.1 to 0.7 g Mg\(^{2+}\), and 0.1 to 1.2 g SO\(_4\)-S per pot (Table 1). In addition to the nutrient solutions applied, hydrated lime treatments received 0.7 g Ca\(^{2+}\), 0.3 g Mg\(^{2+}\), and 0.1 g SO\(_4\)-S per pot, and the carbonate lime treatments received 1.5 g Ca\(^{2+}\), 0.8 g Mg\(^{2+}\), and 0.1 g SO\(_4\)-S per pot with the initial incorporation of the lime and PNC fertilizers. Based on the mass of shoot tissue produced, sufficient nutrients were applied to all treatments to maintain tissue nutrient concentrations at levels recommended by Fortney and Wolf (1981) for floriculture crops. For example, a constant 2% tissue Ca content would have required about 0.35 g Ca\(^{2+}\)/pot from the root media. The minimum amount of Ca\(^{2+}\) applied to a single treatment throughout the experiment was 0.9 g Ca\(^{2+}\)/pot. Root-zone pH. By week 4, root-medium pH was similar for both lime treatments (Fig. 2, Table 2). Because of the highly reactive nature and small particle size of the hydrated lime, most of the material probably had reacted by week 4. Assuming that similar equivalents of lime were required to obtain the same root-medium pH, about 6 kg of the carbonate lime/m^3 of medium, or 4.5 g/pot, remained unreacted at the week 4 analysis. After 8 weeks, the root-zone pH ranged from 4.5 to 8.5 within the experiment (Table 1). The volume of water applied to the impatiens in this experiment was similar to that required by other species for their normal production schedule (Argo and Biernbaum, 1994; Argo and Biernbaum, 1995b; Yelianich, 1995; Yelianich and Biernbaum, 1993). Because the N–P–K concentrations in the WSFs were constant, the amount applied was similar and ranged from 1.5 to 1.8 g N, 0.15 to 0.20 g PO\(_4\)-P, and 1.5 to 1.8 g K\(^+\) per pot (data not shown). By week 4, root-medium pH was similar for both lime treatments (Fig. 2, Table 2). Over the remaining 9 weeks of the experiment, root-zone pH was unaffected by lime type with Ca\(^{2+}\) concentrations in the nutrient solution >150 mg-liter\(^{-1}\) and root-medium pH >6.4 (Fig. 2, Table 2). In comparison, the root-medium pH was higher in the carbonate lime treatments than in the hydrated lime treatments with Ca\(^{2+}\) concentrations in the nutrient solution <150 mg-liter\(^{-1}\) and root-medium pH <6.0. The largest difference was measured in the RO water/neutral WSF treatment in which the carbonate lime treatment maintained a root-medium pH of 6.1, 5.9, and 5.8; the hydrated lime treatment, 5.1, 4.6, and 4.6 at weeks 8, 12, and 17, respectively. These values indicate that there were considerable amounts of unreacted carbonate lime in the root medium at week 4, which greatly increased the pH buffering capacity of the root medium under acidifying conditions. The effect of the WSF reaction on root-medium pH also depended on the alkalinity of the IWS. In general, IWSs with similar alkalinity levels had a similar root-medium pH throughout the experiment (Fig. 2, Table 2). The root-medium pH range obtained with well water was larger than that with RO water. Thus, if general guidelines for using WSFs to manage pH in container media are to be based on the reaction produced, the bicarbonate alkaline concentration of the IWS and the presence or absence of residual lime must be taken into account. If low quantities of residual lime are present and the alkalinity is at or below the 120 mg CaCO\(_3\)/liter recommended by Bunt (1988), then the amount of NH\(_3\)-N in the WSF must be decreased below 25% to prevent medium pH from falling below recommended acceptable levels. EC. With all treatments, there was a rapid decrease in root-zone EC as well as the concentration of all macronutrients tested (N, P, K, Ca, Mg, S) between planting (average EC = 2.5 dS·m\(^{-1}\)) and week 1 (average EC = 0.9 dS·m\(^{-1}\)) (Fig. 2), with a corresponding decrease in the nutrient concentration measured in the top 2.5 cm of root medium within the pot (average EC = 4.7 dS·m\(^{-1}\)) (data not shown). These data indicate that the initial nutrient concentration represents a highly soluble fraction and is not representative of the

\[
\begin{align*}
\text{Table 3. Parameters of nonlinear regression analysis from fitting Eqs. [1], [2], and [3] (see text) to percent P in tissue, based on root-medium pH at 8, 12, and 17 weeks after planting. I and S are the intercept and slope for Eqs. [2] and [3], respectively. The number of observations per sampling date was 48 at week 4 and 96 thereafter. Data from the lime treatments were used in the same analysis and are presented in Fig. 3. The analysis of the week 4 data was not included because of nonsignificance.}
\end{align*}
\]

Parameter	Week 8	Week 12	Week 17	Units
Intercept (I\(_1\))	1.31 ± 0.10*	1.25 ± 0.11	1.21 ± 0.14	Dry mass (%)
Slope (S\(_1\))	-0.08 ± 0.02	-0.06 ± 0.2	-0.07 ± 0.02	Dry mass (%)/1 pH unit
Intercept (I\(_2\))	3.61 ± 0.74	5.13 ± 1.19	4.58 ± 0.88	Dry mass (%)
Slope (S\(_2\))	-0.38 ± 0.09	-0.65 ± 0.14	-0.52 ± 0.11	Dry mass (%)/1 pH unit

\(\times\) Ninety-five percent confidence intervals were calculated as the parameter standard error \(^{*}t_{0.025,n}\) distribution.

J. AMER. SOC. HORT. SCI. 121(3):442–452. 1996.
long-term nutrient buffering capacity of the root medium, conclusions similar to those of Argo and Biernbaum (1996) with blended PNC materials in short-term (14-day) experiments.

The stratification of fertilizer salts may be caused by evaporation from the root-medium surface (Argo and Biernbaum, 1994, 1995, 1996) or a water front moving into the root medium with each irrigation (Yelanich, 1995). After week 4, the root-zone EC increased for the remainder of the experiment (Fig. 2, Table 2). By the end of the experiment, the EC of the top 2.5 cm of root medium ranged from 30 to 40 dS·m⁻¹ compared to 1 to 2.5 dS·m⁻¹ for the remaining root medium within the same pot as measured with the SME.

EC is a measure of the total salt concentration in the root medium (Warncke and Krauskopf, 1983). The effect of the treatments on root-zone EC was based on a combination of the IWS and WSF EC. For example, with the acidified water, root-zone EC ranged from 1.8 to 2.4 dS·m⁻¹ with the different types of WSFs. The root-zone EC of the RO water treatments averaged 0.5 dS·m⁻¹ lower than that of the acidified water treatments from week 8 until the end of the experiment. When comparing WSF across IWS, the basic fertilizer/acidified water treatment had a root-zone EC 1.3 dS·m⁻¹ higher than the acidic fertilizer/RO water by the end of the experiment. It is important to note that the concentration of N and K in the applied nutrient solutions were similar for all treatments and the range of treatments affected root-medium K minimally, and tissue N and K concentrations were in the acceptable plant-growth range recommended by Fortney and Wolf (1981) (data not shown). In order to fine tune general guidelines for N and K nutrition in container media based on EC, the EC of the nutrient solution must be considered.

Phosphorus. The constant application of 20 mg PO₄-P/liter resulted in water-soluble PO₄-P medium concentrations ranging from 3 to 25 mg PO₄-P/liter by the end of the experiment (Fig. 2). In general, the higher the root-medium pH, the lower the root-medium PO₄-P concentration. In mineral soils fertilized with P, calcium phosphates (dicalcium phosphate and dicalcium phosphate dihydrate) initially control PO₄-P solubility at high pH (>7.0) and Al and Fe phosphates control PO₄-P solubility at low pH (Lindsay and Moreno, 1960). In acidic organic soils and soilless root media, which tend to contain naturally low amounts of Al and Fe, P does not precipitate at low pH but does at high pH (Lucas and Davis, 1961; Peterson, 1981; Yeager and Barrett, 1985). Thus, the reduction in the concentration of water-soluble PO₄-P at the higher pH range probably was due, at least initially, to precipitation of P as dicalcium phosphate or dicalcium phosphate dihydrate.

Lucas and Davis (1961) and Peterson (1981) concluded that the optimal pH for PO₄-P nutrition was 5.5 in media without soil, because above this pH, water-soluble PO₄-P concentrations began to decrease. In comparison, Adams et al. (1978) found that the P content of lettuce leaves was unaffected by medium pH up to 6.5,

![Table 4. Parameters of linear regression analysis for tissue Ca, based on the applied concentration of Ca²⁺ in the nutrient solution.](image)

The number of observations per lime treatment was 24 at week 4 and 48 thereafter. Data are means of four samples at each date.

Table 4. Parameters of linear regression analysis for tissue Ca, based on the applied concentration of Ca²⁺ in the nutrient solution.

Week	Units	
4	Dry mass (%)	
8	1.06 ± 0.18^a	
12	1.06 ± 0.14	
17	1.01 ± 0.16	
	0.59 ± 0.15	Dry mass (%)/mg·liter⁻¹
4	0.006 ± 0.001	
8	0.006 ± 0.001	
12	0.008 ± 0.001	
17	0.009 ± 0.001	
	0.009 ± 0.001	Dry mass (%)
4	1.08 ± 0.25	
8	1.10 ± 0.20	
12	1.48 ± 0.15	
17	1.47 ± 0.13	
	1.47 ± 0.13	Dry mass (%)/mg·liter⁻¹
4	0.005 ± 0.001	
8	0.006 ± 0.001	
12	0.006 ± 0.001	
17	0.004 ± 0.001	
	0.004 ± 0.001	Data are means of four samples at each date.

Note: Ninety-five percent confidence intervals were calculated as the parameter standard error *t_{0.025,n} distribution.

![Fig. 4. The effect of applied Ca²⁺ concentration on the tissue Ca of impatiens at 4, 8, 12, and 17 weeks after planting. Individual treatments are acidic water-soluble fertilizer (WSF) (● and ○), neutral WSF (■ and □), and basic WSF (▲ and ▼).](image)
even though the concentration of water-soluble PO₄-P measured in the medium was 38% of that measured at pH 5.5. In this experiment, when root-medium pH was plotted against tissue P concentration, a maximum critical root-medium pH for PO₄-P nutrition was 7.5, 7.7, and 7.4 at weeks 8, 12, and 17, respectively (Fig. 3, Table 3). Below this root-medium pH, tissue P increased at 0.06% to 0.08% of the total dry mass per 1 pH unit decrease, and above the critical pH, tissue P decreased at 0.38% to 0.65% of the total dry mass per 1 pH unit increase (Table 3).

The form of water-soluble PO₄-P is important for uptake into the roots and depends on the root-medium pH. In the root-medium pH range of this experiment (4.5 to 8.5), the two forms present are H₂PO₄⁻ and HPO₄²⁻ with an equilibrium constant of 7.2. The H₂PO₄⁻ form of water-soluble P is 10 times more available to the plant than the HPO₄²⁻ form (Bunt, 1988). At a medium pH >7.2, a majority of the water-soluble P is in the less-available HPO₄²⁻ form that resulted in the larger reduction in tissue P than at a medium pH <7.2, at which a majority of the measured P is in the more-available H₂PO₄⁻ form. Thus, while the concentration of water-soluble PO₄-P in the root medium decreased with increasing pH, the effect on tissue P was minimal until the form of the water-soluble PO₄-P changed to a less-available form.

Calcium. After week 1, root-medium Ca²⁺ concentrations increased for the remainder of the experiment, but the increase depended on all three factors tested (Fig. 2, Table 2). In general, the higher the concentration of Ca²⁺ in the nutrient solution, the higher the water-soluble Ca²⁺ concentration in the root medium over the remaining 16 weeks of the experiment. The presence of the carbonate lime also increased water-soluble Ca²⁺ compared to that of the hydrated lime treatments, but the average difference was small (20 mg Ca²⁺/liter) and probably was due to the reaction of the acidic or neutral WSF with residual carbonate lime in the medium.

There was a poor relationship between water-soluble Ca²⁺ concentrations in the root medium and tissue Ca (data not shown). The root-medium Ca²⁺ concentrations measured at weeks 4, 8, 12, and 17 are the maximum concentrations from the previous 4-week period and therefore do not represent the average conditions from which plant growth and Ca uptake occurred. In comparison, the range of Ca²⁺ concentrations in the various nutrient solutions produced from the factorial combinations of IWS and WSF remained constant over time, and there was a relationship between the applied Ca²⁺ concentration in the nutrient solution and tissue Ca.

With both lime types, there was a linear increase in tissue Ca as the applied concentrations increased from 18 to 210 mg Ca²⁺/liter with the IWS and WSF combinations (Fig. 4, Table 4). The intercept value reflects the Ca²⁺ buffering capacity of the medium if no Ca²⁺ were applied in the fertilizer solution. The relationship was similar for both lime types up to week 8 (0.2% increase in tissue Ca per 40 mg·liter⁻¹ increase in applied Ca²⁺ concentration).

Fig. 5. The effect of applied Mg²⁺ concentration on the tissue Mg of impatiens at 4, 8, 12, and 17 weeks after planting. Individual treatments are acidic water-soluble fertilizer (WSF) (● and ○), neutral WSF (■ and □), and basic WSF (▲ and ▼). The solid line (---) represents the predicted tissue Mg concentration based on linear regression analysis and the dotted line (...) represents the minimum recommended tissue Mg concentration. R² values were calculated as 1-SSresidual/SScorrected total, and remaining statistical analyses of the individual parameters are presented in Table 5. Data are means of four samples at each date.
with a minimum tissue concentration of 1.0% to 1.1%), after which
tissue Ca decreased faster with the hydrated lime and low-solution
Ca2+ compared to that of the carbonate lime treatments. The
reduction in the intercept of the hydrated lime treatments by weeks
12 and 17 indicates a reduction in the Ca2+ buffering capacity of
the medium compared to that of the carbonate lime treatments. Using
Eq. [1], similar tissue Ca concentrations could be obtained, inde-
 dependent of the lime type, with the addition of >180 mg Ca2+/liter in
the nutrient solution throughout the experiment. In addition, these
results indicate that the ionic composition and N form of the WSF
had little effect on Ca uptake. Instead, the main factor controlling
Ca uptake above the minimum buffering capacity of the medium
was bulk nutrient solution Ca2+ concentration as influenced by the
IWS and WSF.

One possibility for the larger reduction in tissue Ca with the
hydrated lime treatments compared to that of the carbonate lime
treatments was that Ca2+ availability was reduced at low pH, as
indicated by Peterson (1981). Plants grown in media containing
the hydrated lime and irrigated with RO water containing either
acidic or neutral WSF had a similar root-medium pH throughout
the experiment (Fig. 4). Thus, low pH did not, in itself, reduce Ca2+
uptake. Instead, the main factor controlling Ca uptake above the minimum buffering capacity of the medium
was bulk nutrient solution Ca2+ concentration as influenced by the
IWS and WSF.

Table 6. Parameters of nonlinear regression analysis from fitting Eqs. [1], [2], and [3] (see text) to percent S in tissue, based on the
concentration of SO4-S in the nutrient solution at 4, 8, 12, and 17 weeks after planting. The number of observations per sampling
date was 48 at week 4 and 96 thereafter. Data from the lime treatments were used in the same analysis and are presented in Fig. 6. Data are means of four samples at
each date.

Estimated parameters	Week 4	Week 8	Week 12	Week 17	Units	
Intercept (I2)	0.69 ± 0.04	0.58 ± 0.05	0.66 ± 0.05	0.68 ± 0.06	Dry mass (%)	
Slope (S2)	0.006 ± 0.002	0.012 ± 0.003	0.015 ± 0.004	0.012 ± 0.003	Dry mass (%)/mg·liter–1	
Intercept (I1)	0.42 ± 0.11	0.25 ± 0.06	0.22 ± 0.08	0.28 ± 0.07	Dry mass (%)	
Slope (S1)	0.000 ± 0.001	0.002 ± 0.001	0.002 ± 0.001	0.001 ± 0.001	Dry mass (%)/mg·liter–1	
Calculated parameters	Xinterception	41	32	32	38	mg·liter–1

Ninety-five percent confidence intervals were calculated as the parameter standard error *t*0.025,n distribution.

Sulfate. IWS and WSF were the main factors affecting root-
medium SO4-S concentrations (Fig. 2, Table 2). In general, the higher the concentration of Mg2+ in the
nutrient solution, the higher the water-soluble Mg2+ concentration
in the root medium over the remaining 16 weeks of the experiment.
The presence of the carbonate lime increased water-soluble Mg2+
compared to that of the hydrated lime treatments, but the difference
was small (15 mg Mg2+/liter), and probably was due to the reaction
of the acidic fertilizer with the carbonate lime.

With both lime types, there was a linear increase in tissue Mg
as the applied concentrations increased from 5 to 80 mg Mg2+/liter
with the various nutrient solutions (Fig. 5, Table 5). The intercept
value reflects the Mg2+ buffering capacity of the medium if no Mg2+
were applied in the fertilizer solution. The relationship was similar
for both lime types up to week 8, after which tissue Mg decreased
with the hydrated lime and low-solution Mg2+, while with the
carbonate lime treatments, there was little decrease in tissue Mg
with decreasing concentrations of applied Mg2+ (0.05% increase in
tissue Mg per 25 mg·liter–1 increase in applied Mg2+ concentration).
From Eq. [1], similar tissue Mg concentrations were obtained,
independent of the lime type, with the addition of >60 mg Mg2+/liter in
the nutrient solution for the duration of the experiment. These results indicate that the ionic composition and N form
of the WSF had minimal effect on Mg uptake. The main factor
controlling Mg uptake above the minimum buffering capacity of the medium
was bulk nutrient solution Mg2+ concentration, as influenced by the IWS and WSF.

Magnesium. As with Ca2+, root-medium Mg2+ concentrations increased from week 1 to the
end of the experiment, and the increase depended on all three factors tested (Fig. 2,
Table 2). In general, the higher the concentration of Mg2+ in the
nutrient solution, the higher the water-soluble Mg2+ concentration
in the root medium over the remaining 16 weeks of the experiment.
The presence of the carbonate lime increased water-soluble Mg2+
compared to that of the hydrated lime treatments, but the difference
was small (15 mg Mg2+/liter), and probably was due to the reaction
of the acidic fertilizer with the carbonate lime.
root medium, indicating that gypsum and MgSO$_4$ initially incorporated with the PNC had minimal persistence in the root zone. However, with the lowest applied SO$_4$-S concentration (3 mg SO$_4$-S/liter), root-zone SO$_4$-S concentrations were maintained at 15 mg SO$_4$-S/liter and may represent the base buffering capacity of the root medium, residual gypsum, or movement of SO$_4$-S back into the root zone from high concentration at the root-medium surface.

There was a minimal increase in tissue S with increasing concentration of applied SO$_4$-S above 30 to 40 mg S/liter (Fig. 6, Table 6). Above this concentration, tissue S increased at 0.0% to 0.05% of dry mass per 30 mg liter$^{-1}$ increase in the applied SO$_4$-S concentration. Below this minimum critical concentration, tissue S decreased at 0.2% to 0.5% of dry mass per 30 mg liter$^{-1}$ decrease in the applied SO$_4$-S concentration. This minimum critical concentration of 30 to 40 mg S/liter corresponds to the 30 mg S/liter recommended by Reddy et al. (1994) for container plant production. In addition, the larger reduction in tissue S at the week 4 analysis (below 40 mg S/liter in the applied solution) adds further evidence that a large percentage of the gypsum or MgSO$_4$ did not persist in the root zone, as suggested in this experiment and by Argo and Biernbaum (1996) and root-medium Ca$^{2+}$ and tissue concentrations. Reddy et al. (1994) found that 11% of the IWS tested, based on a survey of water samples, contained >30 mg S/liter. Since many blended WSF do not contain SO$_4$-S (Peter’s Fertilizers, 1981), additional SO$_4$-S may need to be added as a water-soluble source, as suggested by Reddy and Madore (1995).

Root-medium SO$_4$-S concentrations up to 150 mg S/liter and applied concentration up to 130 mg S/liter did not cause a significant decrease in tissue Ca concentrations (plant tissue Ca average with acidified water = 1.9%, 2.0%, 2.4%, and 2.1%; and with well water = 1.8%, 1.9%, 2.3%, and 2.0% at weeks 4, 8, 12, and 17, respectively). Although Ca$^{2+}$ and SO$_4$-S will form soluble ion complexes in solution (Lindsay, 1979), which may reduce plant availability, under the conditions of the experiment, enough of the water-soluble Ca$^{2+}$ remained in the root medium in the free ion form to not inhibit plant uptake.

Root-medium buffering capacity. The pH and nutrient buffering capacity of peat often are associated with the cation exchange capacity (CEC) that is due to the pH-dependent exchange of cations with H$^+$ ions from organic acid functional groups on the peat particles (Helling et al., 1964). For example, at a pH of 3.7, 4.5, 5.5, and 7.8, acid sphagnum peat is 100%, 50%, 30%, and 0% H$^+$ saturated, respectively (Lucas et al., 1975; Puustjarvi and Robertson, 1975). Thus, the actual buffering capacity over the pH range in this experiment probably represents a fraction of the total CEC.

This experiment demonstrated that a large difference in pH and nutrient buffering capacity could be obtained with the same root medium by using two liming materials with different reaction rates and amounts of unreacted material remaining in the medium at equilibrium. Perhaps differences in the pH and nutrient buffering capacity observed in commercial media may be attributed to differences in the type and amount of liming material used rather than CEC (C. Bethke, Michigan Peat, Houston, Texas, personal communications).

** Macronutrient management.** The primary macronutrients (N, P, K) typically are contained in WSFs. Nitrogen and K can be managed based on the EC of the nutrient solution. If PO$_4$-P is present in the WSF, it also can be managed acceptably via EC if the root-medium pH is <7.3 to 7.5.

The secondary macronutrients (Ca, Mg, and S) frequently are ignored because the carriers (lime, gypsum, and MgSO$_4$) are incorporated in relatively large amounts with the PNC fertilizers and may buffer the root media for a long period (Bunt, 1988; Nelson, 1991). Gypsum and MgSO$_4$ do not persist in the root zone of subirrigated pots and probably can be removed by top-watering methods with leaching or mist propagation. Dolomitic carbonate lime buffered the root medium for Ca$^{2+}$ and Mg$^{2+}$, but long-term reliance on residual lime may be risky, because the amount of material present or its persistence in the medium cannot be determined with the SME analysis.

An alternative method for managing secondary macronutrients may be to ignore the material incorporated with the PNC and lime in the medium and apply nutrient-solution Ca$^{2+}$, Mg$^{2+}$, and SO$_4$-S based on the sum of those ions from both the IWS and WSF, as suggested by Biernbaum (1992) and Vetanovetz and Knauss (1988). According to the results from this experiment, the concentrations of Ca$^{2+}$, Mg$^{2+}$, and SO$_4$-S that should be applied in the nutrient solution on a constant basis are 160 mg Ca$^{2+}$/liter, 50 mg Mg$^{2+}$/liter, and 30 mg SO$_4$-S/liter.

There are two main sources of Mg$^{2+}$ for WSFs, MgSO$_4$ and Mg(NO$_3$)$_2$. If MgSO$_4$ is used for the Mg$^{2+}$ source, adequate concentrations of SO$_4$-S also will be applied. However, there is only one source of highly soluble Ca$^{2+}$ typically used in WSF, Ca(NO$_3$)$_2$. Therefore, the recommendations for Ca$^{2+}$ supplied by the nutrient solution also will have a direct effect on NH$_4$-N content in the WSF and on root-medium pH management. This type of secondary macronutrient management should result in acceptable Ca$^{2+}$ concentrations for plant uptake, a medium pH maintained at a level much closer to the recommended 5.8 to 6.4 range (Warncke and Krauskopf, 1983), and the conservation of any residual liming material.

Calcium and PO$_4$-P can be mixed together in high concentrations, such as in a fertilizer stock tank, only if the pH <2.0 (R. Vetanovetz, Scotts, personal communication), while Ca$^{2+}$ and SO$_4$-S cannot be combined in a stock tank without subsequent precipitation. Multiple injectors may be required for this type of secondary macronutrient management. Other options for applying Ca$^{2+}$ include investigating the use of CaCl$_2$ or chelated Ca if a high percentage of NH$_4$-N and Ca$^{2+}$ is desired in the WSF.

Conclusion

Impatiens are highly tolerant of a wide range of growth conditions. Because of the similarity in the shoot dry mass accumulation between treatments, the relationships that were developed between the applied nutrient concentration or medium pH and the tissue nutrient concentration were not confounded because of differences in plant growth. These relationships also may be valid for other species used in container-plant production. However, the minimum critical tissue-nutrient concentrations that cause a reduction in growth may be species dependent (Dole and Wilkins, 1988). If other species were grown under the same conditions as those found in this experiment, it is possible that a limitation in growth caused by a nutrient deficiency or toxicity would have occurred.

In the production of container-grown crops, it is no longer acceptable to manage the pH and macronutrient concentrations in the root medium and plant tissue with high WSF concentrations and high leaching rates (Biernbaum, 1992). Irrigation systems that minimize or eliminate water and fertilizer runoff into the environment currently exist. Optimizing the pH and nutrient management of low- or nonleaching irrigation systems requires an understanding of how factors such as lime, IWS, and WSF interact during production. Additional research is needed to determine if recommendations for pH and macronutrient management must be refined further to include differences in root media and or plant species.
Literature Cited

Adams, P., C.J. Graves, and G.W. Winsor. 1978. Some responses of lettuce, grown in beds of peat, to nitrogen, potassium, magnesium, and molybdenum. J. Hort. Sci. 53:275–281.

Anderson, R.L. and L.A. Nelson. 1975. A family of models involving intersecting straight lines and concomitant experimental designs useful in evaluating response to fertilizer nutrients. Biometrics 31:303–318.

Argo, W.R. and J.A. Biernbaum. 1994. Irrigation requirements, root-medium pH, and nutrient concentrations of Easter lilies grown in five peat-based media with and without an evaporation barrier. J. Amer. Soc. Hort. Sci. 119:1151–1156.

Argo, W.R. and J.A. Biernbaum. 1995. Root-medium nutrient levels and irrigation requirements of poinsettias grown in five root media. HortScience 30:535–538.

Argo, W.R. and J.A. Biernbaum. 1996. Availability and persistence of macronutrients from lime and preplant nutrient charge fertilizers in peat-based root media. J. Amer. Soc. Hort. Sci. (In press.)

Barker, A.V. and H.A. Mills. 1980. Ammonium and nitrate nutrition of horticultural crops. Hort. Rev. 2:395–423.

Biernbaum, J.A. 1992. Root-zone management of greenhouse container-grown crops to control water and fertilizer use. HorticTechnology 2:127–132.

Bloxham, A. 1990. Orthophosphate in surface waters. QuikChem method no. 10-115-01-1-O. Lachat Instruments, Milwaukee, Wis.

Bunt, A.C. 1988. Media and mixes for container-grown plants. Unwin Hyman, London.

Chapin, J.K. 1980. The effect of fineness in limestone on the pH of 50:50 peat-vermiculite mix. Benchmarks 1(7):7.

Chau, A.S.Y. 1984. Water and salt, p. 617–638. In: S. Williams (ed.). Official methods of analysis of the association of official analytical chemists. Assn. of Official Anal. Chemists, Arlington, Virginia.

Diamond, D. 1986a. Nitrate + nitrite in soil extracts. QuikChem method no. 12-107-04-1-B. Lachat Instruments, Milwaukee, Wis.

Diamond, D. 1986b. Ammonia in soil extracts. QuikChem method no. 12-107-06-2-A. Lachat Instruments, Milwaukee, Wis.

Dole, J.M. and H.F. Wilkins. 1988. Tissue testing of selected floricultural pot crops. Minnesota State Flo. Bul. 37(5):13–15.

Fisher, P.R. 1995. Prediction and control of stem elongation and flowering in poinsettia and Easter lily. PhD diss., Michigan State Univ., East Lansing.

Fortney, W.R. and T.K. Wolf. 1981. Determining nutritional status: Plant analysis. Pennsylvania Flower Grower’s Bul. 331:1, 5–11.

Gibaly, H.E. and J.H. Axley. 1955. A chemical method for the rating of agricultural limestones used as soil amendments. Soil Sci. Soc. Amer. Proc. 20:301–302.

Hawkes, G.R., D.B. Campbell, A.E. Ludwick, R.M. Millaway, and R.M. Thorup (eds.). 1985. Fertilizers: A source of plant nutrients, p. 83–110. In: Western fertilizer handbook. 7th ed. Interstate, Danville, Ill.

Helling, C.S., G. Chesters, and R.B. Corey. 1964. Contribution of organic soils and availabilities of 12 plant nutrients. Soil Sci. 92:171–182. Linda, R.E. 1979. Chemical equilibrium in soils. Wiley, New York.

Lindsay, W.L. and E.C. Moreno. 1960. Phosphate phase equilibrium in soils. Soil Sci. Soc. Amer. Proc. 24:177–182.

Lucas, R.E. and J.F. Davis. 1961. Relationships between pH values of organic soils and availabilities of 12 plant nutrients. Soil Sci. 92:171–182. Lucas, R.E., P.E. Rieke, J.C. Shickluna, and A. Cole. 1975. Lime and fertilizer requirements for peats, p. 51–70. In: D.W. Robinson and J.G.D. Lamb (eds.). Peat in horticulture. Academic Press, London.

Ludwig, L.S. and J.C. Peterson. 1984. An assessment of the chemical properties of water from floriculture industry firms throughout Ohio and the United States. HortScience 19:521. (Abstr.)

Marschner, H. 1986. Mineral nutrition of higher plants. Academic Press, London.

McKnight, R. 1991. Sulfate: Turbidimetric method with soil extracts. QuikChem method no. 12-116-10-1-C. Lachat Instruments, Milwaukee, Wis.

Nelson, P.V. 1991. Greenhouse operations and management. 4th ed. Prentice Hall, Englewood Cliffs, N.J.

Parfitt, R.L. and B.G. Ellis. 1966. Studies on Michigan agricultural limestones. Michigan Agr. Expt. Sta. Quarterly Bul. 49(2):12–23.

Peter’s Fertilizers. 1981. Fertilizer sales manual. Scotts, Marysville, Ohio.

Peterson, J.C. 1981. Modify your pH perspective. Florist’s Rev. 169(4386):34–35, 92–93.

Puustjarvi, V. and R.A. Robertson. 1975. Physical and chemical properties, p. 23–38. In: D.W. Robinson and J.G.D. Lamb (eds.). Peat in horticulture. Academic Press, London.

Reddy, S.K. and M.A. Madore. 1995. Is there enough sulfur in your water? GrowerTalks 58(8):92.

Reddy, S.K., M.A. Madore, and P.A. King. 1994. Survey of sulfur levels in greenhouse irrigation waters. HortScience 29:503. (Abstr.)

Schollenberger, C.J. and R.M. Salter. 1943. A chart for evaluating agricultural limestone. J. Amer. Soc. Agron. 35:955–966.

Sheldrake, R. 1980. Lime source and quantity study on peat–vermiculite–dolomitic limestone. Michigan Agr. Expt. Sta. Circular Bul. 166:3–10.

Vetanovetz, R. and R. Hulme. 1991. Tested your water alkalinity lately? Greenhouse Manager 9(10):48–50.

Vetanovetz, R.P. and J.F. Knauss. 1988. Water quality. Greenhouse Manager 6(12):64–72.

Warncke, D.D. 1986. Analyzing greenhouse growth media by the saturation extraction method. HortScience 21:223–225.

Warncke, D. and D. Krauskopf. 1983. Greenhouse media: Testing and nutrition guidelines. Michigan State Univ. Ext. Bul. E-1736.

Williams, B.J., J.C. Peterson, and J.D. Utzinger. 1988a. Effects of dolomitic lime and alkali water in sphagnum peat-based container growing media. HortScience 23:168–169.

Williams, B.J., J.C. Peterson, and J.D. Utzinger. 1988b. Liming reactions in sphagnum peat-based growing media. J. Amer. Soc. Hort. Sci. 113:210–214.

Yeager, T.H. and J.E. Barrett. 1985. Phosphorus and sulphur leaching in sphagnum peat-based growing media. J. Amer. Soc. Hort. Sci. 110:210–214.

Yeager, T.H. and J.E. Barrett. 1985. Phosphorus and sulphur leaching from an incubated superphosphate-amended container medium. HortScience 20:671–672.

Yelianich, M.V. 1995. Modeling the concentration of nitrogen in the root zone of container-grown chrysanthemums. PhD diss., Michigan State Univ., East Lansing.

Yelianich, M.V. and J.A. Biernbaum. 1993. Root-medium nutrient concentration and growth of poinsettia at three fertilizer concentrations and four leaching fractions. J. Amer. Soc. Hort. Sci. 118:771–776.

Young, R. and F.J. Johnson. 1982. Fertilizer products, p. 45–68. In: The floriculture handbook. Fertilizer Inst., Washington, D.C.