Title: Synthetic Photoelectrochemistry

Authors: Joshua Philip Barham and Burkhard König

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201913767
Angew. Chem. 10.1002/ange.201913767

Link to VoR: http://dx.doi.org/10.1002/anie.201913767
http://dx.doi.org/10.1002/ange.201913767
Synthetic Photoelectrochemistry

Joshua P. Barham* and Burkhard König

To the memory of Dieter Enders
Abstract: Photoredox Catalysis (PRC) and Synthetic Organic Electrochemistry (SOE) are often considered competing technologies in organic synthesis. Their fusion has been largely overlooked. We review state-of-the-art synthetic organic photoelectrochemistry, grouping examples into three categories: 1) electrochemically-mediated PhotoRedox Catalysis (e-PRC), 2) decoupled PhotoElectroChemistry (dPEC) and 3) interfacial PhotoElectroChemistry (iPEC). Such synergies prove beneficial not only for synthetic ‘greenness’ and chemical selectivity, but also in the accumulation of energy for accessing super-oxidizing or reducing single-electron-transfer (SET) agents. Opportunities and challenges in this emerging and exciting field are discussed.

1. Introduction

Chemical synthesis by visible light is the fundamental process for biological photosynthesis on Earth. However, CO₂ and H₂O, and most organic molecules, do not absorb visible but ultraviolet light. Nature’s solution is chlorophyll, a colored pigment, which absorbs visible light energy to drive the process. Researchers have made efforts toward artificial photosynthesis with visible light ever since Giacomo Ciancian’s vision in the turn of the 20th Century (1912). Mimicking the concept of nature, but stripping down the complexity of interconnected photosystems into defined single-molecule photocatalysts, researchers found that transition metal complexes such as bipyridyl complexes of RuII and IrIV can harvest visible light photons to become powerful excited-state SET agents for redox processes, and enjoy sufficiently long lifetimes (700-1100 ns) to undergo diffusion-controlled redox events. Initial reports came as early as the 1980s and the field of ‘visible light PhotoRedox Catalysis (PRC)’ erupted in the turn of the 21st Century. Seminal papers demonstrated the synthetic applications of RuII and IrIII bipyridyl complexes, which are rendered powerful SET redox agents upon photoexcitation.

With sustainability and cost at the forefront of minds in academia and chemical industry, researchers were quick to challenge the presence of rare mid-row transition metals with examples of organophotocatalysts such as Eosin Y, Rose Bengal and acridinium salts, as noted in seminal papers and reviews. Recently, the use of more sustainable transition metal-based coordination compounds such as those of iron, nickel and copper, whose excited state lifetimes are much shorter to render their application more challenging, are starting to receive attention.

PRC is attractive for a variety of reasons reviewed elsewhere, but arguably the biggest advantage is that use of visible light precludes direct excitation of substrates (leading to difficult to control high energy pathways and decomposition), selectively transferring energy to the photocatalyst chromophore. Another vehicle for SET chemistry which is undergoing a ‘renaissance’ in recent years is synthetic organic electrochemistry (SOE). The application of electrical current to organic synthesis dates back as far as the Faraday and Kolbe electrolysis reactions from the 1830s to 1840s, far earlier than Ciancian’s vision for artificial photosynthesis. Efforts of several academicians in the last two decades have brought SOE to the fore in organic chemistry. SOE is advantageous for several reasons that are well-documented, but arguably the biggest advantage of SOE is the ability to dial in any potential and the ‘redox window’ is in theory only limited by the tolerance of the reaction solvent.

1.1. Visible light Photoredox Catalysis: the limits

A fundamental problem in visible light PRC is that the energy of processes is constrained by the energy of visible light photons: 400 - 700 nm (∼1.8-3.1 eV). Inevitably, not all of this energy is accessible to the photocatalyst; losses occur due to intersystem crossing and non-radiative pathways, which can account for up to 0.6 eV, in the case of RuII complexes. Ultimately, the energy available to a photocatalyst from excitation by a visible light photon is typically insufficient for challenging chemical transformations such as the conversion of CO₂ and H₂O into glucose and water, or the direct SET activation of many moieties of interest to organic chemists. For example, SET oxidations of hydrocarbon C-H bonds, electron-neutral organic π-systems, carbonyl groups and ethers require potentials of +2.4-3.5 V vs. SCE, while reductions of aromatic π-systems, aryl chlorides and silyl halides require potentials of -2.6-3.4 V vs. SCE. In order to engage challenging moieties visible light PRC has so far relied on tricks that circumvent direct SET activation. For C-H or carbonyl activations, these can include: 1) in situ generated radical or radical ions that undergo hydrogen atom transfer (HAT) chemistry, 2) excited states that directly engage in HAT chemistry, 3) Proton-coupled electron transfer (PCET)

Nature’s solution to the ‘energy problem’ is to accumulate the energies of multiple photons. Mimicry of such a technique has proven elusive to researchers until recent years. The concept of consecutive photoelectron transfer (conPET) was disclosed by König using a perylene diimide or RhB as the organophotocatalyst, which allows reactions to proceed at milder potential and ohmic drop.

1.2. Synthetic Organic Electrochemistry: the limits

A fundamental problem in SOE is that conductivity of organic solvents is typically low (compared to aqueous systems). A high ‘ohmic drop’ exists between the two separated electrodes, necessitating high cell potentials for useful reaction conversions. Such potentials may be high enough to encourage unselective, deleterious redox processes when applied to the organic substrate of interest. The cell potential is the sum of electrode potential and ohmic drop. By employing a high concentration of supporting electrolyte (such as n-Bu₄NPF₆), the solution conductivity can be increased and ohmic drop decreased, however the amphiphatic electrolyte is generally (not always) difficult to separate from the desired product(s) after the reaction. A different strategy, which allows reactions to proceed at milder electrode potentials, is ‘Mediated’ electrolysis or ‘redox catalysis’. Here, a mediator transports holes or electrons to/from the electrode surface from/to the substrate. However, the redox power of mediators is constrained to the redox potential of their radical ion or their ion forms
2. Photoelectrochemical Organic Synthesis

Visible light PRC and SOE have enjoyed a dramatic rise in popularity in the last decade, partly due to the drive toward green chemistry and sustainability but fundamentally due to their use as single electron transfer (SET) methods for straightforward access to organic free radicals that can be used in synthesis. In terms of their ability to perform redox chemistry, PRC and SOE are often thought of as competing technologies and their fusion has so far been largely overlooked (Figure 1). This review explores synthetic photoelectrochemistry as the next evolutionary stage of PRC and SOE. State-of-the-art examples are presented. For the purposes of this review, we separate the examples into i) electrochemically-mediated PhotoRedox Catalysis (e-PRC), where the electrochemical and photochemical components have interdependent roles providing an explicit benefit within the chemical process ii) decoupled PhotoElectroChemistry (dPEC), where electrochemical and photochemical components have separate, discrete roles and iii) interfacial PhotoElectroChemistry where reactions occur at photoelectrode surfaces. In this review, we focus only on the use of organic substrates and exclude the photoelectrochemical splitting of water solar fuel production.

2.1. Electrochemically-mediated PhotoRedox Catalysis (e-PRC)

2.1.1. Photoexcitation of electrochemically-generated ions

One fundamental, exciting branch of e-PRC is the photoexcitation of electrochemically-generated ions. Here, a base redox energy level is provided by electrochemistry (e.g. a radical anion). Then, redox energy is provided from photoexcitation to generate super-redox agents in a transient fashion (Figure 2). Because the mediator is regenerated and accumulates both electrons and photons to overcome the activation energy barrier, the term ‘photoelectrocatalyst’ (PECat) can be coined. Considering the molecular orbital transitions of 9,10-dicyanoanthracene (DCA) as an example of a recently reported18 reducing PECat, the LUMO (v2) of DCA is first populated with an electron by cathodic current, thus becoming SOMO-2 (v2) of *DCA•−. Photoexcitation promotes an electron from the HOMO-1 (v1) to the SOMO-2 (v2), thus effecting ‘SOMO-HOMO inversion’.38 This also occurs in the complementary scenario with PTZ as an oxidizing PECat;35a the removal of an electron by anodic current turns HOMO-4 into SOMO-4. An electron is then promoted from MO-1 to SOMO-4 by 514 nm light.40 In both cases, the PECat is a doublet excited state.

Figure 1. A) PhotoRedox Catalysis (PRC) and Synthetic Organic Electrochemistry (SOE) comparison; B) Types and benefits of synthetic photoelectrocatalysis.

Figure 2. A) Conceptual redox energy level diagram for the photoexcitation of electrochemically-generated ions in e-PRC; B) SOMO-HOMO inversion concept for two example PhotoElectroCatalysts (PECats).
REVIEW

Joshua P. Barham was born in Watford, U.K. He received his industry-based PhD in 2017 under the supervision of Prof. John A. Murphy at the University of Strathclyde and Dr. Matthew P. John at GSK, U.K. His postdoctoral studies with Prof. Yasuo Nokrake and Prof. Yoshitaka Ramashima at AIST and the University of Shizuoka, Japan, specialized in photoredox catalysis and microwave flow chemistry. In 2019, he was awarded a Sofia-Kovalevskaia Award from the Alexander von Humboldt foundation to lead an independent research group at the University of Regensburg, investigating photo-, electro-, photoelectro- and flow chemistry in organic synthesis.

Burkhard König was born in Wiesbaden, Germany. He obtained his PhD in 1991 from the University of Hamburg and pursued postdoctoral studies with Prof. M. A. Bennett, Research School of Chemistry, Australian National University, Canberra, and Prof. B. M. Trost, Stanford University. He became full professor of organic chemistry at the University of Regensburg in 1999. His current research interests revolve around the application of visible light chemical photocatalysis towards organic synthesis.

The combination of photochemistry with electrochemistry within the context of organic synthesis was first disclosed by Moutet and Reverdy, who photoexcited electrochemically generated radicals. Visible light photoexcitation (>400 nm) of the phenothiazine (PTZ) radical cation, generated electrochemically by controlled potential (E_{1/2} (PTZ) = +0.79 V vs. SCE), leads to oxidation of DPE and regeneration of phenothiazine (Figure 3A). DPE radical cation undergoes [4+2]-cyloaddition or 1,2-addition to a second molecule of DPE, ultimately furnishing 1 or 2 upon further oxidation/reaction with H₂O. No reaction of DPE with PTZ⁻ occurred in the dark.

A few years later, Moutet and Reverdy reported that the generated DPE radical cation (PTZ) radicals and their photoexcitation with UV light (366 nm) enabled oxidation of benzyl alcohol 3 to benzaldehyde 4 (Figure 3B). Interestingly, the oxidation of substituted benzyl alcohols 1-phenylethanol or benzhydrol did not lead to the corresponding ketones, rather the symmetrical ethers. Here, e-PRC is tentatively written because not enough details (yields, conversion) are reported to determine if PTZ is catalytic in the first example. Whilst the second example could be considered the first report of e-PRC, the process took place with only ca. three turnovers and the yield was not reported.

Following these and other early reports (generally investigated in an analytical/fundamental context), photoredox catalysis in organic synthesis did not receive attention until very recent years. This naturally follows on from the resurgence of SET chemistry in organic synthesis thanks to PRC and SOE, which have been popularized in the last decade.

In terms of SET oxidation, among the most powerful photoredox catalysts are the acridinium salts (Mes-Acr⁺) developed by Fukuzumi. Seminal papers by Nieszewicz employed these organophotocatalysts in the oxidation of alkenes to radical cations, which could be intercepted by nucleophiles in an ‘anti-Markovnikov’-type reaction. Moreover, direct oxidation of arenes was achieved and their nucleophilic trapping with heterocyclic nucleophiles gave rise to a Pd-free Buchwald-Hartwig-type reaction. However, the former reaction was limited to styrenes or highly electron-rich (trisubstituted) alkenes with a tethered nucleophile. The latter was limited to electron-rich arenes (anisoles), because the redox potentials of mono- (disubstituted) alkenes (E_{1/2} = +2.37 V vs. SCE) and of benzene (+2.48 V vs. SCE) lie beyond the redox potential of the acridinium excited state (+2.06 V vs. SCE).

One way that researchers overcame this limitation was by employing DDQ, which forms a very powerful excited triplet state (>3.18 V vs. SCE) that can engage unactivated or electron-deficient arenes. Photocatalytically generated arene radical cations can be intercepted by nucleophiles such as 5 to give aminated arenes such as 6 as demonstrated by König (Figure...
and seminal e-PRC example, Lambert reported the oxidation of unactivated arenes and their coupling with heterocyclic amines (Figure 5).39 Under anodic oxidation at a fixed potential (+1.50 V vs. SCE), colourless trisaminocyclopropenium cation (TAC+) was oxidized to its dication radical (TAC2+; $E_{1/2} = 1.26$ V vs. SCE), which is strongly coloured. Excitation of TAC2+ with visible light (ca. 600 nm) provided the superoxidant TAC2• (TAC•2−; $E_{1/2} = +3.33$ V vs. SCE) which could oxidize unactivated arenes to their radical cations. The remarkable potential of TAC2• was rationalized by time-dependent density functional theory (TD-DFT) calculations, which revealed a SOMO–HOMO level inversion leaving a low-lying hole in the HOMO.

Ethyl 1H-pyrazole-4-carboxylate 13 undergoes nucleophilic addition to the benzene radical cation generating (upon loss of a proton) an aryl radical. Oxidation of the aryl radical, either by TAC2• or by the carbon (felt) anode, followed by loss of a proton, furnishes product 14. Proton reduction is proposed as the corresponding cathodic half reaction, since gas bubbles were observed. Control reactions confirmed that no reaction occurred without light, current or TAC photoelectrocatalyst. For comparison, direct electrolysis was performed at fixed potential (+3.0 V vs. SCE) and gave polymeric material, exemplifying the advantage of the mild conditions of e-PRC. The reaction tolerated benzene and even chloroarenes to give products 15-16 albeit in modest yield. Substituted triazoles, benzotriazoles and purines were successful partners, affording products such as 17-18. No oxidation of aldehyde, ketone or ester-bearing pyrazoles was observed. The expansion of scope to unactivated or electron-deficient arenes represents a key advantage over Nicewicz’s original report.10d

In a complementary fashion, cathodic current can be used to generate radical anions photoexcited to generate superreductants. Lambert and Lin reported the reduction of electron-rich chloroarenes by e-PRC using photoexcited electrogenerated dicyanoanthracene radical anions.

In an elegant and seminal e-PRC example, Lambert reported the oxidation of unactivated arenes and their coupling with heterocyclic amines (Figure 5).39 Under anodic oxidation at a fixed potential (+1.50 V vs. SCE), colourless trisaminocyclopropenium cation (TAC+) was oxidized to its dication radical (TAC2+; $E_{1/2} = 1.26$ V vs. SCE), which is strongly coloured. Excitation of TAC2+ with visible light (ca. 600 nm) provided the superoxidant TAC2• (TAC•2−; $E_{1/2} = +3.33$ V vs. SCE) which could oxidize unactivated arenes to their radical cations. The remarkable potential of TAC2• was rationalized by time-dependent density functional theory (TD-DFT) calculations, which revealed a SOMO–HOMO level inversion leaving a low-lying hole in the HOMO.

Ethyl 1H-pyrazole-4-carboxylate 13 undergoes nucleophilic addition to the benzene radical cation generating (upon loss of a proton) an aryl radical. Oxidation of the aryl radical, either by TAC2• or by the carbon (felt) anode, followed by loss of a proton, furnishes product 14. Proton reduction is proposed as the corresponding cathodic half reaction, since gas bubbles were observed. Control reactions confirmed that no reaction occurred without light, current or TAC photoelectrocatalyst. For comparison, direct electrolysis was performed at fixed potential (+3.0 V vs. SCE) and gave polymeric material, exemplifying the advantage of the mild conditions of e-PRC. The reaction tolerated benzene and even chloroarenes to give products 15-16 albeit in modest yield. Substituted triazoles, benzotriazoles and purines were successful partners, affording products such as 17-18. No oxidation of aldehyde, ketone or ester-bearing pyrazoles was observed. The expansion of scope to unactivated or electron-deficient arenes represents a key advantage over Nicewicz’s original report.10d

In a complementary fashion, cathodic current can be used to generate radical anions photoexcited to generate superreductants. Lambert and Lin reported the reduction of electron-rich chloroarenes by e-PRC using photoexcited electrogenerated dicyanoanthracene radical anions.
chlo- and bromoarenes as 19 using photoexcited 9,10-dicyanodithiacene radical anion ("DCA"),31 itself generated by cathodic reduction of DCA by the porous carbon anode (Figure 6). The extraordinarily high reduction potential of -3.2 V vs. SCE is proposed to arise from a SOMO-HOMO level inversion and a highly unstable filled anti-bonding orbital, as confirmed by TD-DFT calculations.32 The generated aryldihalide radical anions fragment to afford halide anions and aryl radicals; the latter of which were successfully trapped with Bpin3, Sn2Mes or heteroarenes to give products such as 21-24. Oxidation of sacrificial Zn anode was proposed as the corresponding half reaction. The method provides a key advantage when considering that Pd-catalyzed functionalizations used to achieve similar products suffer when coupling partners contain Lewis basic groups (such as the precursor to 23) that alter the course of catalysis via coordination.

2.1.2. Replacing sacrificial redox agents with current

Although the former sub-section likely represents a more fundamental and potentially ground-breaking advantage of e-PRC in organic synthesis, replacement of sacrificial redox agents is another very important aspect offered by e-PRC that appeals to a sustainability and industrial perspective (Figure 7). Xu reported the C-H alkylation of heteroarenes with trifluoroborates under e-PRC (Figure 8).47 Photoexcited 9-methyl-10-methylacridinium (Mes-Acr*) is a potent oxidant (E'hox = +2.06 V vs. SCE) capable of SET oxidation of isopropyl trifluoroborate 26 (E'ox = ca. +1.50 V vs. SCE)48 to its 2° alkyl radical. The alkyl radical adds to the protonated quinoline 25-H+ in a Minisci-type manner which, followed by loss of a proton and SET oxidation (either by ground state Mes-Acr*; E'hox = -0.57 V vs. SCE or by the anode) affords product 27.

The Mes-Acr* is regenerated by anodic oxidation of Mes-Acr* by a reticulated vitreous carbon (RVC) anode. A wide substrate scope of heteroarenes were employed, including isoquinolines, phenanthridines, phthalazines, benzothiazoles, acridines and purines, affording products such as 28-31. The reaction conditions tolerated 2° and 3° amines as well as 2° alcohols and alkynes, which would all be prone to oxidation under direct electrolysis at high potentials. Lambert reported S-AR reactions of unactivated aryl fluorides under e-PRC (Figure 9).49 Here, photoexcited 2,3-dichloro-5,6-dicyanoquinone (DDQ) was sufficiently oxidizing (E'hox = +3.18 V vs. SCE) to engage chlorofluoroarenes such as 32 in SET oxidation. In terms of heteroarene partner, the substrate scope was similar to the previous report involving photoexcited dication *TAC=5. Heteroarenes bearing aldehydes and esters were tolerated, affording products such as 35-36. Alcohols such as ethanol and acetel-protected galactose, as well as tert-butyl carbamate, were also well-tolerated as nucleophiles (products 37-38). Redox potentials for oxidation of polyhalogenated benzenes are unavailable in the literature likely because they exceed the redox potential window of the solvent. It is interesting that although *TAC=5 (E'hox = +3.33 V vs. SCE) is a more potent oxidant than *DDQ; it afforded a lower yield of 34. This suggests that matching of redox potentials is not always a reliable predictor of successful SET chemistry and that other factors such as precomplexation of mediator with substrate (Section 3.3), might be important. Elsewhere, oxidation of unactivated alcohols was recently achieved under e-PRC using riboflavin tetraacetate as a photocatalyst and thiourea as a HAT co-catalyst.50 Here, the role of anodic current was to regenerate riboflavin from its dihydroquinine form.

Figure 8. A) S-AR reactions of unactivated aryl fluorides at ambient temperature and without base under e-PRC; B) Proposed mechanism; C) Example scope.
2.2. Decoupled PhotoElectroChemistry (dPEC)

Sheffold reported a photoelectrochemical 1,4-addition of acyl groups to α,β-unsaturated carbonyl compounds (Figure 10).51 Cathodic current reduced Vitamin B\textsubscript{12}a (CoIII) or a CoII macrocyclic complex 42 to give CoI complex 43, which reacted with anhydride 39. Photochemical cleavage of the CoIII-C bond of 44 presumably afforded an acyl radical 45, primed for 1,4-addition to 40 to give 46. The authors claimed that HAT from the solvent to 46 yielded product 41. SET reductions of 45 (to give an acyl anion primed for 1,4-addition) or 46, followed by proton transfer from the solvent, could not be ruled out. The authors did not specify the anodic half-reaction or anode materials. Here, photochemistry and electrochemistry handled discrete processes, representing the first example of decoupled PhotoElectroChemistry (dPEC).52 Near-UV photochemistry cleaved the N-I bond while anodic potential oxidized iodide to molecular iodine (the cathodic reaction involved reduction of protons to hydrogen). The reaction successfully engaged both activated (benzylic or adjacent to a heteroatom) and unactivated C(sp3)-H bonds (products 49-50).

As well as the HLF reactions of N-alkylsulfonamides to afford pyrrolidines, 2,2,2-trichloroacetimidates (and benzimidates) were employed to afford oxazolines (products 51-52). Various heterocycle-bearing substrates were tolerated despite the anodic potential and in situ-generated molecular iodine. Acid hydrolysis of the oxazolines gave rise to pharmaceutically valuable (protected) 1,2-amino alcohols (product 53). This work follows on from electrochemical HLF reactions reported by Muñiz,53 yet exhibits a key advantage in its use of low anodic potentials required to oxidize iodide to molecular iodine. Such potentials are less positive than the redox potentials of electron-rich arenes and other functional groups and thus the mild conditions allow excellent redox chemoselectivity. Stahl demonstrated52 that previously reported electron transfer/proton transfer/electron transfer (ET-PT-ET),54 proton-coupled electron transfer (PCET),55 and bromide-mediated electrochemical HLF reactions55 all failed to convert 47 into product 48, instead yielding a complex mixture of products.

![Figure 7. Comparison of net-oxidative PRC and e-PRC using anodic current for electrocycling of the photocatalytic cycle.](image)

![Figure 10. A) Photoelectrochemical 1,4-addition of acyl groups under dPEC; B) Proposed mechanism.](image)

![Figure 11. A) Hofmann-Löffler-Freytag amination of C(sp3)-H bonds under dPEC; B) Proposed mechanism; C) Example scope.](image)
2.3. Interfacial PhotoElectroChemistry (IPEC)

In interfacial PhotoElectroChemistry (IPEC), a photoelectrode has a band gap corresponding to the energy of visible light photons, such that irradiation gives rise to an applied potential for redox processes. For photoanodes, irradiation promotes an electron from the valence band to the conductive band, generating a hole that is used for oxidation chemistry (Figure 12).56 Hu, Grätzel and co-workers recently reported the use of a photoelectrochemical cell in organic synthesis as an example of interfacial PhotoElectroChemistry (iPEC).57 After setting the photoelectrochemical cell at a fixed potential (+1.13 V vs. SCE), a hematite (α-Fe$_2$O$_3$) photoanode was irradiated by blue LEDs and was rendered highly oxidizing (valence band = +2.30 V vs. SCE). Anisole was oxidized to its radical cation, primed to nucleophilic attack by a range of aromatic heterocycles (such as S4) in an overall $\mathrm{C-H}$ amination of electron-rich arenes to furnish products such as S5-S9 (Figure 13). In the absence of light, higher applied potentials (+1.93 V vs. SCE) were required to access the desired chemistry and in decreased yield. Direct electrolysis with a conductive glassy carbon (dark) electrode (+1.73 V vs. SCE) gave poorer yields and side products that were absent when the PEC and light was used.

The arene scope being limited to electron-rich arenes, mirroring the original amination report of Nicewicz,58 is unsurprising considering the hematite band gap (2.3 V vs. SCE) is similar to the redox potential of NHS^- ($E_{\text{red}} = +2.06$ V vs. SCE). Although the ortho:-para- (o:p) selectivity is markedly different between the two reports,59,60 the authors attribute this to the hexafluoroisopropanol solvent creating a π bonding network that favours substitution at the ortho-position, rather than to the fundamental photoelectrochemical process which they propose proceeds through the same intermediates. One possibility not yet considered is that precomplexation of acridinium photocatalyst and anisole (Section 3.3), or precomplexation of the anisole with the photoanode may encourage stereoelectronic effects that bias the selectivity.

Several reports of oxidation of simple organic molecules by IPEC exist, for example alcohol oxidations.61 However, such reports generally occur in aqueous solvent systems and certain photoanode materials are known to undergo photocorrosion in aqueous solvent systems.62 Sammis, Berlinguette and co-workers reported oxidations of tetralin (60), benzyl alcohol (3) and cyclohexene (62) in MeCN with IPEC using a BiVO$_4$ photoanode and a 100 W Xe lamp fitted with an AM1.5G filter as simulated sunlight, to give products 61, 4 and 63, respectively (Figure 14).63 N-hydroxyxuccinimide (NHS) was employed as a soluble, transparent hole-transfer mediator61 between the photoanode and the substrates. For oxidations of 60 and 62, it was necessary to employ BuOOH as the external oxygen source. The same oxidations could be achieved under electrochemical potential only ($E_{\text{cell}} = +1.8$ V vs. Ag/AgCl) with a glassy carbon anode/cathode, leading the authors to assume this potential matched the pseudo standard potential of NHS. However, the authors noted that their iPEC method, which operates at 1.0 V lower potential than the electrochemical cell, expects energy savings of 60%. Although product yields were modest, the authors noted that the ability to perform organic synthesis at a solar-to-electric efficiency ($\eta = 1.3\%$), close to that of traditional photoelectrochemical water oxidation ($\eta = 1.7\%$), is important due to the higher value of the organic products.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure12.png}
\caption{Schematic of a photoanode used for oxidation of organic compounds. RHE, Relative Hydrogen Electrode; E_{an}, applied potential; E_F, Fermi level; CB, conduction band; VB, valence band.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure13.png}
\caption{A) IPEC C-H amination of electron-rich arenes by a hematite photoanode; B) Proposed mechanism; C) Example scope.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure14.png}
\caption{A) IPEC oxidation of simple oxidation of organic compounds by a BiVO$_4$ photoanode; B) Proposed mechanism; C) Benzyl alcohol IPEC oxidation; D) Cyclohexene IPEC oxidation.}
\end{figure}
Related to this report is the iPEC C-H oxidation of cyclohexane by a WO
3 photoanode62 and the iPEC oxidation of benzylic alcohols by a BiVO4/WO3 photoanode66 reported by Sayama, which both showed a drastic decrease in the applied potentials required for oxidation in the presence of light. Sayama further employed the BiVO4/WO3 photoanode in iPEC oxidative dimethoxylation of furan 64 mediated by bromide ions (Figure 15). In the first step, oxidation of bromide anions by the photoanode afforded a pool of bromine cations. After 5 C of charge was passed and furan in MeOH was added, the dimethoxydolated product 65 was obtained in very good yield.

All these reports exemplify the advantage of iPEC in leveraging the energy of visible light to offset the high applied potentials otherwise needed, thus affording better selectivity and energy efficiency in chemical redox processes.67,68,69 The initial modification of the electrode via light energy, followed by energy top-up via applied potential, is conceptually almost the reverse of e-PRCs photoexcitation of electrochemically-generated ions. The advantage of iPEC is that it does not rely on generation of a chromophore in solution and can directly engage the energy of visible light to offset the high applied potentials otherwise needed, thus affording better selectivity and energy efficiency in chemical redox processes.67,68,69,70 Related to this report is the iPEC oxidative dimethoxylation of furan mediated by bromide ions (Figure 15). In the first step, oxidation of bromide anions by the photoanode afforded a pool of bromine cations. After 5 C of charge was passed and furan in MeOH was added, the dimethoxydolated product 65 was obtained in very good yield.

3. Future Opportunities and Challenges

3.1. Practical execution and experimental rigor

So far, synthetic photoelectrochemistry examples herein have been conducted in custom-built (transparent) electrochemical reaction vessels. These generally fall into two categories (Figure 16): a) an undivided glass ‘pot cell’ / ‘beaker cell’ / undivided glass voltammetry setup,36,47,53,58,61,62 or b) a divided glass ‘H’-type cell with a glass or membrane fril.39,49,52,63 These are all standard academic reactors used for SOE,66 which can be easily irradiated with visible light. It is widely accepted that one of the drivers behind the ‘renaisances’ of PRC and SOE in the last decade is the availability of reactor equipment. Indeed, visible light photoredox and synthetic organic electrochemical batch reactors have now been standardized and some are commercially available,67,68,69 addressing the long-standing plague of practical irreproducibility in both fields. The design of suitable and standardized synthetic photoelectrochemical equipment will carry its own set of challenges, but fortunately, photoelectrochemical cells that have been developed for hydrogen production, such as the ‘Cappicino’ PEC cell (EPFL, Switzerland),70 the ‘PortoCell’ (UPorto)71 and designs by Redoxme AB72 could be readily adapted for synthetic applications in organic solvents. Another challenge is the need for more rigorous control experiments (in absence of either light, applied potential, or PECat) to ensure that both photochemical and electrochemical components are necessary and beneficial to the reaction.

3.2. Flow photoelectrochemistry

Both PRC and SOE suffer upon scaling up in batch mode due to the physical constraints governing transfer of photons to or electrons to/from the reaction. The relationship between absorbance A, extinction coefficient e, path length l and molar concentration C is given by the Beer-Lambert law (Eqn. 1). Rearrangement to Eqn. 2 shows the exponential relationship between transmitted intensity I and absorbance A, which highlights the fundamental challenge faced by scale-up of photochemical processes. General theory predicts that for a typical 50.0 mM reaction with photocatalyst loading of 1 mol% (0.5 mM) and ε = 11280 M⁻¹ cm⁻¹ (452 nm absorption band of Ru(bpy)_3Cl_2), 90% of the light is absorbed by l = 0.2 cm from the reactor surface.73 This tiny path length highlights the importance of surface-area-to-volume (SAV) ratio in photochemical processes.

\[
A = \log_{10} \frac{I_0}{I} = eltc
\]

\[
I = I_0 e^{-el} = I_0 e^{-elc}
\]
reaction of volume V is given by Eqn. 4. This demonstrates the key importance of efficient mixing (increasing k_m) and largest possible electrode SAVR.

$$I_{cell} = nFAD_{M}c$$

$$X = 1 - \exp(-\frac{\Delta E_{R}}{V})$$

Continuous Flow (CF) is a globally recognized technology within chemical industries and academia that is especially useful in photochemistry and electrochemistry because the flow of reaction mixture through small-diameter (μm–mm) channels 1) allows shorter path lengths for light transmission, 2) minimizes separation of electrodes (‘ohmic drop’), allowing wasteful electrolytes to be eliminated or decreased, 3) enhances mixing or user-control over mixing by laminar or turbulent flow regimes, 4) increases SAVR. Indeed, CF has even enabled multigram to kilogram scale photochemical and SOE operations. Just as CF has enabled PRC and SOE separately, it is expected to be an enabling platform for synthetic photoelectrochemistry.

Several reports of flow photoelectrochemistry exist so far focussing on simple chemical transformations. Behn and co-workers reported the oxidation of formic acid to CO$_2$ by a photoanode in CF. A thin film of reaction mixture was flown over a fluorine-doped tin oxide (FTO)/TiO$_2$ photoanode under irradiation from a Hg(Xe) (200 W) lamp (Figure 17). Such a configuration is suitable for certain chemical transformations, but may not be suitable for organic reactions, as it would allow wasteful electrolytes to be eliminated or decreased, 3) enhances mixing or user-control over mixing by laminar or turbulent flow regimes, 4) increases SAVR. Indeed, CF has even enabled multigram to kilogram scale photochemical and SOE operations. Just as CF has enabled PRC and SOE separately, it is expected to be an enabling platform for synthetic photoelectrochemistry.

3.3. Precomplexation and redox processes beyond the electrochemical solvent window

Electrogenerated and photoexcited PECats (*PTZ*, *DCA*, *TAC*) discussed herein (Section 2.1.1) are rare, doublet excited states. The ultrashort lifetime of doublet excited states (fs to ps) is shorter than the timeframe for diffusion control and should prohibit outer-sphere SET events. Whilst the mechanisms of such excited state processes are still unclear, precomplexation is likely responsible for ultrafast quenching (inner-sphere SET) of PECats and successful reactions. For example, **-Cl stacking to generate a precomplex, which is photoexcited has been proposed to explain reactions involving excited perylene diimide radical anions and arennes. Such a phenomenon may likewise rationalize Lambert’s e-PRC oxidation of unactivated arennes by *TAC* as a PECat (Figure 19).

The elucidation of such precomplexation mechanisms presents a challenge and demands the use of advanced spectroscopic, spectroelectrochemical and theoretical (computational) tools. The ability to generate super oxidants and super reductants in situ and within close proximity to the substrate of interest (via PECat substrate precomplexation) may allow redox processes to take place at potentials beyond those available from PRC and beyond those normally tolerable by the organic solvent in which the reaction takes place (Figure 20). Thereby, e-PRC may allow a ‘realm’ for extremely challenging SET processes such as direct oxidations of carboxyls, sulfoxides, fluorinated aromatics and hydrocarbons. Direct reductions of amides, ethers, Si-X bonds (X = Cl, F, O-SiR$_3$, O-R), sulfoxides and sulfides may be possible. The potentials that would be required in such scenarios by SoE would no doubt lead to decomposition/poor chemoselectivity. Finally, a notable challenge is the inability to measure redox potentials of substrates that lie beyond the redox window of the solvent. Here, computational methods to estimate redox potentials may prove useful.

![Figure 17. Continuous flow photoelectrochemical formic acid oxidation to CO$_2$.](image_url)

![Figure 18. Conceptual photoelectrochemical flow reactor.](image_url)

![Figure 19. Herein proposed precomplexation of radical dication TAC$^{+}$, photoreaction and quenching via ultrafast inner-sphere SET.](image_url)
4. Summary and Outlook

Synthetic Photoelectrochemistry is a swiftly emerging research field following renaissances in its respective parent technologies, photoredox catalysis (PRC) and synthetic organic electrochemistry (SOE) that have taken place over the last decade. To simplify the technology for users, this review sets precedent for grouping historic and recent reports into three categories of photoelectrochemistry: electrochemically-mediated PhotoRedox Catalysis (e-PRC), decoupled PhotoElectroChemistry (dPEC) and interfacial PhotoElectroChemistry (iPEC). The fundamental advantages that derive from the fusion of PRC and SOE are expected to: 1) broaden the accessible ‘redox window’ of SET chemistry, 2) enable milder conditions that allow greater functional group tolerance and chemoselectivity, and 3) increases energy savings and atom economy. Practical challenges in execution of synthetic photoelectrochemistry could be addressed by an equipment and expertise interface with research fields of photoelectrochemical cells for water splitting and photovoltaic cells, while flow chemistry is expected to offer significant benefits to the transmission of light/electrons. Further understanding of PECat-substrate precomplexation is of critical importance, with potential to leverage it to increase kinetics of SET processes as well as to control redox chemoselectivity.
Acknowledgements

J.P.B. acknowledges funding provided by the Alexander von Humboldt Foundation within the framework of the Sofia Kovalevskaja Award endowed by the German Federal Ministry of Education and Research, to support future research endeavors into photoelectrochemistry. B.K. acknowledges financial support from the German Science Foundation (DFG: KO 1537/18-1) and funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 741623).

Keywords: photoelectrochemistry • electrochemistry • photoredox catalysis • mediator • photoelectrode

1. G. Ciamici, Science 1912, 36, 385-394.
2. For selected reviews, see: a) C. Prieto, D. Ranick, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322-5363; b) M. Shaw, J. TWilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81, 6896-6926.
3. a) D. M. Hedstrand, W. M. Kruszinna, R. M. Hogg, Tetrahedron Lett. 1978, 19, 1255-1258; b) C. Pac, M. Iham, M. Yasuda, M. Iyauchi, F. Haraki, J. Am. Chem. Soc. 1981, 203, 6495-6497; c) K. Hirakawa, S. Fukuzumi, T. Tanaka, J. Am. Chem. Soc., Perkin Trans. 2, 1984, 1705-1709; d) H. Cano-Yelo, A. Deronzier, Tetrahedron Lett. 1984, 25, 5517-5520.
4. a) D. M. Hedstrand, W. M. Kruszinna, R. M. Hogg, Tetrahedron Lett. 1978, 19, 1255-1258; b) C. Pac, M. Iham, M. Yasuda, M. Iyauchi, F. Haraki, J. Am. Chem. Soc. 1981, 203, 6495-6497; c) K. Hirakawa, S. Fukuzumi, T. Tanaka, J. Am. Chem. Soc., Perkin Trans. 2, 1984, 1705-1709; d) H. Cano-Yelo, A. Deronzier, Tetrahedron Lett. 1984, 25, 5517-5520.
5. a) D. M. Hedstrand, W. M. Kruszinna, R. M. Hogg, Tetrahedron Lett. 1978, 19, 1255-1258; b) C. Pac, M. Iham, M. Yasuda, M. Iyauchi, F. Haraki, J. Am. Chem. Soc. 1981, 203, 6495-6497; c) K. Hirakawa, S. Fukuzumi, T. Tanaka, J. Am. Chem. Soc., Perkin Trans. 2, 1984, 1705-1709; d) H. Cano-Yelo, A. Deronzier, Tetrahedron Lett. 1984, 25, 5517-5520.
6. a) D. M. Hedstrand, W. M. Kruszinna, R. M. Hogg, Tetrahedron Lett. 1978, 19, 1255-1258; b) C. Pac, M. Iham, M. Yasuda, M. Iyauchi, F. Haraki, J. Am. Chem. Soc. 1981, 203, 6495-6497; c) K. Hirakawa, S. Fukuzumi, T. Tanaka, J. Am. Chem. Soc., Perkin Trans. 2, 1984, 1705-1709; d) H. Cano-Yelo, A. Deronzier, Tetrahedron Lett. 1984, 25, 5517-5520.
7. a) D. M. Hedstrand, W. M. Kruszinna, R. M. Hogg, Tetrahedron Lett. 1978, 19, 1255-1258; b) C. Pac, M. Iham, M. Yasuda, M. Iyauchi, F. Haraki, J. Am. Chem. Soc. 1981, 203, 6495-6497; c) K. Hirakawa, S. Fukuzumi, T. Tanaka, J. Am. Chem. Soc., Perkin Trans. 2, 1984, 1705-1709; d) H. Cano-Yelo, A. Deronzier, Tetrahedron Lett. 1984, 25, 5517-5520.
8. a) D. M. Hedstrand, W. M. Kruszinna, R. M. Hogg, Tetrahedron Lett. 1978, 19, 1255-1258; b) C. Pac, M. Iham, M. Yasuda, M. Iyauchi, F. Haraki, J. Am. Chem. Soc. 1981, 203, 6495-6497; c) K. Hirakawa, S. Fukuzumi, T. Tanaka, J. Am. Chem. Soc., Perkin Trans. 2, 1984, 1705-1709; d) H. Cano-Yelo, A. Deronzier, Tetrahedron Lett. 1984, 25, 5517-5520.
9. a) D. M. Hedstrand, W. M. Kruszinna, R. M. Hogg, Tetrahedron Lett. 1978, 19, 1255-1258; b) C. Pac, M. Iham, M. Yasuda, M. Iyauchi, F. Haraki, J. Am. Chem. Soc. 1981, 203, 6495-6497; c) K. Hirakawa, S. Fukuzumi, T. Tanaka, J. Am. Chem. Soc., Perkin Trans. 2, 1984, 1705-1709; d) H. Cano-Yelo, A. Deronzier, Tetrahedron Lett. 1984, 25, 5517-5520.
10. a) D. M. Hedstrand, W. M. Kruszinna, R. M. Hogg, Tetrahedron Lett. 1978, 19, 1255-1258; b) C. Pac, M. Iham, M. Yasuda, M. Iyauchi, F. Haraki, J. Am. Chem. Soc. 1981, 203, 6495-6497; c) K. Hirakawa, S. Fukuzumi, T. Tanaka, J. Am. Chem. Soc., Perkin Trans. 2, 1984, 1705-1709; d) H. Cano-Yelo, A. Deronzier, Tetrahedron Lett. 1984, 25, 5517-5520.
11. Selected examples: a) M. Pitsch, S. Paria, T. Matsuno, H. Isobe, O. Reiser, Chem.-Eur. J. 2012, 18, 7326-7340; b) A. Gualandi, M. Marchini, L. Mengozzi, M. Natali, M. Lucarini, P. Ceroni, P. Ceroni, ACS Catal. 2015, 5, 5975-5981; c) S. Gazi, W. K. H. Ng, R. Ganguly, A. M. P. Moeljadi, H. Hirao, H. S., S. Sci. Chem. 2015, 6, 2018-7312; d) S. M. Stevenson, M. P. Shores, E. M. Ferreira, Angew. Chem. 2015, 127, 6606-6610; Angew. Chem. Int. Ed. 2015, 54, 6506-6510; e) L. A. Buldt, X. Guo, A. Preisimone, D. W. Angew. Chem. 2015, 127, 6513-6517; f) M. Gröbel, I. Bosque, T. Bach, C. R. Hess, Chem. Sci. 2018, 9, 3313-3317.
12. Selected examples: a) T. P. Yoon, M. A. I. Schiz, J. Du, Nature Chem. 2010, 2, 527-532; b) D. M. Schüff, T. P. Yoon, Science 2014, 343(6174), 1239176.
13. a) D. M. Schüff, T. P. Yoon, Science 2014, 343(6174), 1239176.
14. a) D. M. Schüff, T. P. Yoon, Science 2014, 343(6174), 1239176.
15. a) D. M. Schüff, T. P. Yoon, Science 2014, 343(6174), 1239176.
16. a) D. M. Schüff, T. P. Yoon, Science 2014, 343(6174), 1239176.
17. a) D. M. Schüff, T. P. Yoon, Science 2014, 343(6174), 1239176.
Entry for the Table of Contents (Please choose one layout)

Layout 1:

REVIEW

Text for Table of Contents

((Insert TOC Graphic here))

Layout 2:

REVIEW

Synthetic Photoelectrochemistry

Joshua P. Barham* and Burkhard König

Page No. – Page No.

Synthetic Photoelectrochemistry

Text for Table of Contents: “Electrifying Photochemistry”