Supporting Information

Water-soluble and fluorescence adjustable copolymers containing a hydrochromic dye: synthesis, characterization and properties

Le Jua,b, Tianyou Qina, Ting Zhangc, Peng Wanga, Lan Sheng*a and Sean Xiao-An Zhangb,c

aCollege of Chemistry, Jilin University, Changchun, 130012, China.

E-mail: shengl17@jlu.edu.cn; Fax: +86-431-85153812

bDepartment of Chemistry and Pharmacy, Zhuhai College of Jilin University, Zhuhai, 519041, China.

cState Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
Table of Contents

1. NMR and IR spectra of AM-Rh and poly(AM-Rh, co NIPAM)s (Figure S1 – S4)

2. Test and calculation of molar absorption coefficient of AM-Rh (Figure S5)

3. GPC raw data (Figure S6)

4. The contrast between halochromism of AM-Rh and hydrochromism (Figure S7, S8)

5. The solubility of P0 in binary solvents of DMF-H2O (Figure S9, S10)

6. Halochromism of P1/100 and hydrochromic of AM-Rh in binary solvents of DMF-H2O (Figure S11, S12)

7. Halochromism and florescence of AM-Rh in DMF (Figure S13)

8. Hydrochromism and florescence of NH2-Rh in binary solvents of DMF-H2O (Figure S14)

9. Florescence of AM-Rh in binary solvents of DMF-H2O (Figure S15)

10. Florescence of AM-Rh vary with temperature (Figure S16)
1. NMR and IR spectra of AM-Rh and poly(AM-Rh_x co NIPAM_y)s

Figure S1. ¹H NMR and ¹³C NMR of AM-Rh.

Figure S2. Infrared spectrum of P0, AM-Rh, P1/50 and mixture of P0 & AM-Rh.
Figure S3. 1H NMR spectrums of P1/50, P1/100, P1/200, P1/345, P0.

Figure S4 Schematic diagram for calculating values of x, y, and x / y.
2. Test and calculation of molar absorption coefficient of AM-Rh

Figure S5. a) The UV-Vis spectra of AM-Rh in methol with concentration ranging from 1×10^{-6} mol L$^{-1}$ to 2×10^{-5} mol L$^{-1}$. b) Absorbance values plotted against concentration in MeOH, molar absorption coefficient (ε) of AM-Rh was calculated as 111850 L mol$^{-1}$ cm$^{-1}$.

3. GPC raw data

Figure S6. The raw GPC data of polymer.
4. The contrast between halochromism of AM-Rh and hydrochromism

Figure S7. The UV-Vis spectra of AM-Rh (C = 1 × 10^{-5} mol L^{-1}) in DMF with gradually adding CF_{3}COOH.

Figure S8. Normalized UV-Vis spectra of the solution of P1/100 (0.2 mg / mL) in water and in DMF with addition of CF_{3}COOH.
5. The solubility of P0 in DMF-H2O mixed systems

Figure S9. The UV-Vis spectra of the solution of P0 (0.2 mg / mL) in variable mixtures of DMF and water with increasing percentage of water by volume from 0 to 90% at 25 °C.

Figure S10. Photographs of P0 (0.2 mg / mL) in variable mixtures of DMF and water with increasing percentage of water by volume from 0 to 90% at 25 °C.
6. Halochromism of P1/100 and hydrochromic of AM-Rh in mixtures of DMF-H$_2$O

Figure S11. The UV-Vis spectra of P1/100 (0.2 mg / ml) in DMF with adding CF$_3$COOH.

Figure S12. a) UV-Vis spectra of the solution of AM-Rh (C = 1 × 10$^{-5}$ mol L$^{-1}$) in variable mixtures of DMF and water with increasing percentage of water by volume from 0 to 90%. b) The corresponding photographs of AM-Rh in different water contents.
7. Halochromism and florescence of AM-Rh in DMF with adding CF₃COOH

Figure S13. a) The UV-Vis spectra of AM-Rh (C = 1 × 10⁻⁵ mol L⁻¹) in DMF before (gray) and after (magenta) adding CF₃COOH. b) Fluorescence of AM-Rh (C = 1 × 10⁻⁵ mol L⁻¹) in DMF before (gray) and after (orange) adding CF₃COOH (λ_{ex} = 530 nm; slit width: 3, 1.5).

8. Hydrochromic and florescence of NH₂-Rh in mixtures of DMF-H₂O

Figure S14. a) UV-vis spectra of the solution of NH₂-Rh (C = 1 × 10⁻⁵ mol L⁻¹) in variable mixtures of DMF and water with increasing percentage of water by volume from 0 to 90%. b) The fluorescence spectra of the solution of NH₂-Rh in variable mixtures of DMF and water with increasing percentage of water by volume from 0 to 90% at 25 °C (C = 1 × 10⁻⁵ mol L⁻¹, λ_{ex} = 530 nm; slit width: 3, 1.5).
9. Fluorescence of AM-Rh in mixtures of DMF-H₂O

Figure S15. a) The fluorescence spectra of the solution of AM-Rh in variable mixtures of DMF and water with increasing percentage of water by volume from 0 to 90% at 25 °C (C = 1 × 10⁻⁵ mol L⁻¹, λₑₓ = 530 nm; slit width: 3, 1.5). b) The corresponding fluorescence photographs of AM-Rh in different water contents.

10. Fluorescence of AM-Rh vary with temperature

Figure S16. a) The fluorescence spectra of the solution of AM-Rh (C = 1 × 10⁻⁵ mol L⁻¹) in H₂O with varying temperature from 15 to 55 °C (λₑₓ = 530 nm; slit width: 3, 1.5). b) Fluorescence changes of AM-Rh (C = 1 × 10⁻⁵ mol L⁻¹) in H₂O with varying temperature from 15 to 55 °C.