INTRODUCTION

The global burden of illness from CSOM involves 65-330 million individuals with draining ear. 60% of whom 39-700 million suffer from significant hearing impairment. CSOM accounts for 28000 deaths and a disease burden of over 2 million DALYs. Over 90% of the burden is borne by countries in the South-east Asia and western pacific region, Africa and several ethnic minorities in Pacific rim (Chronic supplicative otitis media Burden of illness and Management Options). In India chronic supplicative otitis media is one of the most common condition met with in the Ear, Nose &Throat outpatient department. CSOM is still major cause of acquired hearing impairment in children especially in developing countries, Prevalence surveys, which vary widely in disease definitely. The incidence of chronic supplicative otitis media is a condition characterized by inflammation of middle ear affecting tympanic membrane, middle ear mucosa and other middle ear structures. To isolate, identify and characterize the fungal organisms and to detect the antifungal susceptibility pattern of the isolates by using conventional microbiological methods from specimens of clinically proved cases of chronic supplicative otitis media. Two hundred and forty five patients with CSOM were studied. Swabs were collected from each patient and cultured for bacteria and fungus. Standard methods for isolation and identification of bacteria and fungus were followed. Antibiotic susceptibility testing was done by Kirby-Bauer’s disc diffusion method. Antifungal susceptibility testing was done by Disc Diffusion and Microbroth Dilution method. Out of the 245 samples studied for bacterial and fungal isolates, 225 samples showed growth of pathogens, 20 samples did not show any growth, 201 samples showed bacterial growth, The most predominant organism was Staphylococcus aureus, 24 samples showed fungal growth, Aspergillus sps being the predominant isolate. Antifungal susceptibility testing was also performed with discs fluconazole (10mcg) and itraconazole (10mcg) 23 isolates showed sensitivity to both and one resistant isolate was subjected to Minimum inhibitory concentration by Microbroth dilution method. Patients would be benefitted by accurate diagnosis of type of infection and the appropriate drug that will be sensitive for the infection can be administered to them.
media is higher in developing countries especially among low socio-economic society because of malnutrition, overcrowding, poor hygiene, inadequate health care, and recurrent upper respiratory tract infection (Prakash et al., 2013).

Microorganisms found in chronic discharge differ from those found in acute suppurative otitis media. The commonest organisms isolated are Pseudomonas aeruginosa, Proteus species (P. mirabilis and P. vulgaris) and Staphylococcus aureus. These organisms are most likely to gain access to the middle ear from the external auditory canal through the tympanic membrane defect. Other organisms found less commonly in chronically discharging ears include Escherichia coli, Streptococcus pneumoniae, Diphtheroids, Klebsiella species and the anaerobic Bacteroides species (Tony wright et al., 2005).

Aspergillus is a saprophytic mold and is one of the primary colonizers of the manmade substrata. Its rapid growth and production of a large number of small, dry, easily aerosolized conidia make it a significant contaminant with regards to air quality and potential human exposure-related illness. Aspergilli are common in airborne dust, and their growth is aided by cerumen and the slightly acidic pH of the ear canal (Talwar et al., 1988).

This study is carried out to make accurate diagnosis with the type of fungal infection and the appropriate drug showing sensitivity could be administered to them.

Materials and Methods

This study was done over a period of one year from April 2015 to April 2016, 245 samples were collected from patients attending the Department of Otorhinolaryngology, Saveetha Medical college and hospital, Thandalam, Kanchipuram district Tamil Nadu.

All the Ear swab samples of patients diagnosed with tubotympanic type of CSOM sent by the ENT department will be received at the Microbiology Laboratory.

They were processed for fungal examination using 10% KOH mount and Microscopic examination then further inoculated on fungal media for Isolation of fungus such as Sabouraud’s dextrose agar and chrome agar. It was incubated at 27° C and 37° C for 2–14 days.

The growth was identified based on their morphological and cultural characteristics and microscopic examination was done using lactophenol blue staining technique.

All yeast isolates were subcultured on CHROM agar (HiMedia) and incubated at 37° C for 24 hours and the species were identified by type and colour of the colonies on CHROM agar media where C.albicans showed bluish green and C.tropicalis showed dark blue gray centre with pink halos.

All the moulds were subjected to slide culture method. Colonies were identified according to standard mycological methods and identified as Aspergillus species.

Antifungal susceptibility testing for yeasts was done on Muller Hinton Agar supplemented with glucose and methylene blue with the itraconazole and fluconazole disc as per the reference CLSI M27- A3 and the moulds were tested by CLSI M8-A2 EUCAST Reference method guidelines.

Results and Discussion

Among the 245 samples studied for bacterial and fungal isolates, 225 samples showed
growth of pathogens, 20 samples did not show any growth. Among 201 samples showed bacterial growth, the most predominant organism was *Staphylococcus aureus*, 24 samples showed fungal growth as shown in Figure no. 1. There was a predominance of males (91.6666%) over females (8.333%).

Of the 24 fungal culture positive cases, the predominantly isolated fungi were *Aspergillus* species. Among the *Aspergillus*, the predominant species were *Aspergillus niger* (15 isolates) and *Aspergillus flavus* (5 isolates). *Candida albicans* (2 isolates) and *Candida tropicalis* (2 isolates) were the commonly isolated species of *Candida* and *Candida* species as shown in figure no.1 and table no 1.

Antifungal susceptibility testing was performed with discs fluconazole (10mcg) and itraconazole (10mcg) 23 isolates showed sensitivity to both as shown in Figure no 3 (a-d). The resistant strain was subjected to MIC with microbroth as shown in the figure no 4. Susceptibility MIC with microbroth dilution method with both the drugs ranged between (0.12– 1) and MIC$_{50}$ - 0.5 and MIC$_{90}$ - 1 as shown in figure 5.

In the past, there were controversies regarding the existence of fungal etiology in CSOM but now it is considered to be a definitive clinical entity and an increasing problem as the incidence of the mycotic infections and the diversity of pathogenic fungi have increased dramatically in the recent years due to continuously increasing number of immunocompromised patients (Viswanatha et al., 2011). Among the fungal etiology in CSOM, the most commonly isolated organisms are *Aspergillus* species and *Candida* species (Ibekwe et al., 1997). In our study, *Aspergillus* species comprised of (83.3%) of the total fungal isolates, whereas (16.6%) of the isolates were *Candida* species. A study by Talwar et al., from India reported higher isolation rate of *Aspergillus* species (60.2%) as compared to *Candida* species (17.6%).

Fig.1 Distribution of CSOM Samples

Table.1 Distribution of the Aspergillus and Candida species

Fungal Isolates	Total
Aspergillus niger	15 (62.5%)
Aspergillus flavus	5 (20.8%)
Candida albicans	2 (8.3%)
Candida tropicalis	2 (8.3%)
Fig. 2 Distribution of fungal isolates

Fig. 3 3 (a), (b), (c) and (d) Antifungal susceptibility by Disc Diffusion Method

(a) Sensitive strain of Aspergillus niger

(b) Sensitive strain of Aspergillus flavus

(c) Sensitive strain of Candida spp
(d) Resistant strain of *Aspergillus niger*

Fig. 4 Minimum inhibitory concentration by microbroth dilution method

Fig. 5 Distribution of Minimum Inhibitory concentration range
A recent study by Aneja et al., from India reported Aspergillus in 86.8% of patients with A. niger (39.8%) and A. flavus (16.6%) to be the most common species which is almost similar to this study. In our study majority of the patients were in second and third decades of life. There was a predominance of males (91.6666%) over females (8.333%) which is almost similar to a study done in Uttarakhand by Jugal et al., showed presominance of males (59.03%) and females (40.9%) (Juyal et al., 2014).

Patel et al., have reported that Azole group showed sensitive among C. albicans and sensitive among C. tropicalis to fluconazole which is almost similar to our study. The limitation of the study is that a large number of isolates are required to find out the frequency of itraconazole resistance for Aspergillus spp. Although some studies do suggest that Aspergillus spp can be resistant to itraconazole. Large number of isolates are required for significant results.

The distribution of fungi is not only affected geographically but also changes with time and season. In the present study, higher incidence of the fungal infections was seen during the rainy season followed by summer season. This could be attributed to the hot and humid climate and the presence of dust in the environment which facilitates the fungal growth.

Prevalence of fungal infections of the ear during moist and humid conditions has been reported previously by several authors (7th Annual workshop on basic and molecular Diagnostics in mycology; Ozcan et al., 2003).

In conclusion, chronic otitis media is an important cause of morbidity in very large group of Indian population in the form of preventable hearing loss. This morbidity is severe as duration of disease progresses.

From this study, patients would be benefited by accurate diagnosis and the appropriate drug that will be sensitive for the infection can be administered to them.

References

Aneja, K.R., Sharma, C., Joshi, R. 2010. Fungal infection of the ear: A common problem in the north eastern part of Haryana. Int. J. Pediatr. Otorhinolaryngol., 74: 604-7.

Chronic suppurative otitis media Burden of illness and Management Options. 2004. Child and Adolescent Health and Development Prevention of Blindness and Deafness, World Health Organization Geneva, Switzerland, 3-10.

Fasunla, J., Ibekwe, T., Onakoya, P. 2005. Otomycosis in western Nigeria. Mycoses, 1: 67-7 18.

Frisvad, J., Thrane, U. 2000. Mycotoxin production by common filamentous fungi. In: Samson RA, Hoekstra ES, editors. Introduction to Food and Airborne Fungi. 6th ed. Utrecht, Netherlands: Centraalbureau Voor Schimmelcultures, p. 321-31.

Ibekwe, A.O., al Shareef, Z., Benayam ,A. 1997. Anaerobes and fungi in chronic suppurative otitis media. Ann Otol Rhinol Laryngol., 106: 649-52.

Jadhav, V.J., Pal, M., Mishra, G.S. 2003. Etiological significance of Candida albicans in otitis externa. Mycopathologia, 156: 313-5.

Juyaal, D., Negi, V., Sharma, M., Adekhandi, S., Prakash, R., Sharma, N. 2014. Significance of fungal flora in chronic suppurative otitis media. Ann. Trop. Med. Public Health, 7: 120-3.

Kumar, A. 2005. Fungal spectrum in otomycosis patients. J. Sci., 7: 152-5.

Mugliston, T., O'Donoghue, G. 1985. Otomycosis - A continuing problem. J.
Laryngol. Otol., 9: 327-33.
Ozcan, K.M., Ozcan, M., Karaarslan, A., Karaarslan, F. 2003. Otomycosis in Turkey: Predisposing factors, aetiology and therapy. J. Laryngol. Otol., 117: 39-42.
Pradhan, B., Tuladhar, N.R., Amatya, R.M. 2003. Prevalence of otomycosis in outpatient department of otolaryngology in Tribhuvan University Teaching Hospital, Kathmandu, Nepal. Ann. Otol. Rhinol. Laryngol., 112: 384-7.
Prakash, R., Juyal, D., Negi, V., Pal, S., Adekhandi, S., Sharma, et al. 2013. Microbiology of chronic suppurative otitis media in a tertiary care setup in Uttarakhnd state, India. North Am. J. Med. Sci., 5: 282-7.
Rutt, A.L., Sataloff, R.T. Aspergillus otomycosis in an immunocompromised patient. Ear Nose Throat J., 87: 622-3.
Sanjana, R.K., Singh, Y.I., Reddy, N.S. 2011. Aerobic bacteriology of chronic suppurative otitis media, J. Col. Med. Sci., 7 (2), 1-8.
Strauss, M., Fine, E.1991. Aspergillus otomastoiditis in acquired immunodeficiency syndrome. Am. J. Otol., 12: 49-53.
Talwar, P., Chakrabarti, A., Kaur, P., Pahwa, R.K., Mittal, A., Mehra YN. Fungal infections of ear with special reference to chronic suppurative otitis media. Mycopathologia, 104: 47-50.
Tony wright and Harold Ludman. Disease of the Ear, sixth Edition 2005, 330-333.
Viswanatha, B., Naseeruddin, K. 2011. Fungal infections of the ear in immunocompromised host: A review. Mediterr. J. Hematol. Infect. Dis., 3: e2011003.

How to cite this article:
Vrutika V. Gandhi, P. Neelu Sree and M. Kalyani. 2016. A Study on Etiological Agents with Special Reference to Fungal Isolates causing Chronic Suppurative Otitis Media in a Tertiary Care Hospital. Int.J.Curr.Microbiol.App.Sci. 5(11): 508-514.
doi: http://dx.doi.org/10.20546/ijcmas.2016.511.059