Panibacillus sp. strain JCM 10914 is a xylanolytic alkaliphile isolated from the gut of a soil-feeding termite. Its draft genome sequence revealed various genes for hydrolytic enzymes and will facilitate studies on adaptation to the highly alkaline gut environment and its role in digesting soil organic matter in the gut.
4. Thongaram T, Kosono S, Ohkuma M, Hongoh Y, Kitada M, Yoshinaka Y, Trakulnaleamsai S, Noparatnaraporn N, Kudo T. 2003. Gut of higher termites as a niche for alkaliphiles as shown by culture-based and culture-independent studies. Microbes Environ. 18:152–159. http://dx.doi.org/10.1264/jsme2.18.152.

5. Brune A, Ohkuma M. 2011. Role of the termite gut microbiota in symbiotic digestion, p 439–475. In Bignell DE, Roisin Y, Lo N (ed), Biology of termites: a modern synthesis. Springer-Verlag, Dordrecht, the Netherlands.

6. Aziz RK, Bartels D, Best AA, DeJongh M, Díaz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil IK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. http://dx.doi.org/10.1186/1471-2164-9-75.

7. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 2009. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37:D233–D238. http://dx.doi.org/10.1093/nar/gkn663.

8. Horikoshi K. 1999. Alkaliphiles: some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. 63:735–750.