Exploratory Neural Relation Classification for Domain Knowledge Acquisition

Yan Fan, Chengyu Wang, Xiaofeng He

School of Computer Science and Software Engineering
East China Normal University
Shanghai, China
Outline

- Introduction
- Related Work
- Proposed Approach
- Experiments
- Conclusion
Relation Extraction

• **Relation extraction**
 – Structures the information from the Web by annotating the plain text with entities and their relations
 • E.g., “Inception is directed by Christopher Nolan.”
 entity₁ relation entity₂

• **Relation classification**
 – Formulates relation extraction as a classification problem
 • E.g., (Inception, Christopher Nolan) should be classified as the relation “directed by”, instead of “played by”.
Domain Knowledge Acquisition

• **Knowledge graph**
 – Relation extraction is a key technique in constructing knowledge graphs.

• **Challenges for domain knowledge graph**
 – *Long-tail domain entities*: Most domain entities which follow long-tail distribution, leading to the **context sparsity problem** for pattern-based methods.
 – *Incomplete predefined relations*: Since predefined relations are limited, unlabeled entity pairs may be **wrongly forced into existing relation labels**.
Dynamic Structured Neural Network for Exploratory Relation Classification

• **Goal**
 1. Classifies entity pairs into a finite pre-defined relations
 2. Discovers new relations and instances from plain texts with high confidence

• **Method**
 – **Context sparsity problem**: A *distributional embedding* layer is introduced to encode corpus-level semantic features of domain entities.
 – **Limited label assignment**: A *clustering method* is proposed to generate new relations from unlabeled data which can not be classified to be any existing relations.
Outline

- Introduction
- Related Work
- Proposed Approach
- Experiments
- Conclusion
Relation Classification Approaches

- **Traditional approaches**
 - Feature-based: applies textual analysis
 - N-grams, POS tagging, NER, dependency parsing
 - Kernel-based: similarity metric in higher dimensional space
 - Kernel functions are applied to strings, word sequences, parsing trees
 - Requires **empirical features** or well-designed **kernel functions**

- **Deep learning models**
 - Distributional representation: word embeddings
 - Neural network models:
 - CNN: extracts features with local information
 - RNN: captures long-term dependency on the sequence
 - Automatically extracts features
Relation Discovery Approaches

• **Open relation extraction**
 – automatically discovers relations from large-scale corpus with limited seed instances or patterns without predefined types
 – Representative systems: TextRunner, ReVerb, OLLIE
 – Inapplicable to domain knowledge due to data sparsity problem

• **Clustering-based approaches**
 – Predefined K: Standard KMeans
 – Automatically learned K: Non-parametric Bayesian models
 • Chinese restaurant process (CRP), distance dependent CRP (ddCRP)
Outline

• Introduction
• Related Work
• Proposed Approach
• Experiments
• Conclusion
Task Definition

• **Notations**

 – Labeled entity pair set $X^l = \{(e_1, e_2)\}$ and their labels Y^l
 – Unlabeled entity pair set $X^u = \{(e_1, e_2)\}$

• **Exploratory relation classification (ERC)**

 – Trains a model to predict the relations for entity pairs in X^u
 with $K + n$ output labels, where K denotes the number of
 pre-defined relations in Y^l, and n is the number of newly
 discovered relations.
General Framework

Algorithm 1 ERC Training Process

Step	Description
Input:	Labeled data X^l and Y^l, unlabeled data X^u
Output:	Expanded relation set R_{new}
1	while no new relations can be discovered do
2	// Base neural network training
3	Train base neural network N_t with X^l and Y^l
4	// Relation discovery
5	Generate candidate clusters $\{C_1, \ldots, C_m\}$ for X^u
6	Pick the best cluster C^* from $\{C_1, \ldots, C_m\}$
7	Update relation set $R_{new} = R_{new} \cup \{C^*\}$
8	// Relation prediction
9	Predict confident labels for unlabeled data X^u on R_{new}
10	end while
11	return R_{new}
Base Neural Network Training

- **Syntactic contexts via LSTM**
 - Nodes on the root augmented dependency path (RADP)
 - E.g. [Inception, directed, Christopher Nolan]
 - Node representation
 - \{word embedding, POS tag, dependency relation, relational direction\}
 - E.g. \{Inception, nnp, nsubjpass, <-\}

- **Lexical contexts via CNN**
 - Word embeddings of sliding window of n-grams around entities

- **Semantic contexts**
 - Word embeddings of two tagged entities
Chinese Restaurant Process (CRP)

- **Goal**
 - Groups customers into random tables where they sit

- **Distribution over table assignment**

\[
\Pr(z_i = p \mid \vec{z}_{-i}, \alpha) \propto \begin{cases}
N_p & \text{if } p \leq K \\
\alpha & \text{if } p = K + 1
\end{cases}
\]

- \(N_p\): number of customers sitting at table \(p\)
- \(z_i\): index of the table where the \(i\)-th customer sits
- \(\vec{z}_{-i}\): indices of tables for customers except for the \(i\)-th customer
- \(\alpha\): scaling parameter for a new table
- \(K\): number of occupied tables
Similarity Sensitive Chinese Restaurant Process (ssCRP)

- **Idea**
 - Exploits similarities between customers
 - Turns the problem to customer assignment

- **Distribution over customer assignment**

\[
\Pr(c_i = j \mid \eta) \propto \begin{cases}
\alpha & \text{if } j \text{ is customer } i \text{ itself} \\
g(s_{ij}) & \text{if } j \text{ is an upcoming customer} \\
g(s_{ij})(1 + \beta \lg N_p) & \text{if } j \text{ is averaged from table } p
\end{cases}
\]

- \(s_{ij} \): similarity score between the \(i \)-th and \(j \)-th customer
- \(g(x) \): similarity function to magnify input differences
- \(\beta \): the parameter balancing the weight of table size
- \(\eta = \{S, N_p, \alpha, \beta\} \): set of hyperparameters
Illustration of ssCRP

Step 1: set fixed tables (result of the base neural network)

Step 2: draw customer assignments for multiple times

Step 3: generate tables

Step 4: pick the best table

Step 5: map the table to a relation
Relation Prediction

- **Idea**
 - Populates small clusters generated via ssCRP
 - Enriches existing relations with more instances

- **Prediction criteria**
 - Distribution over $K + l$ relations for entity pair (e_1, e_2):
 $$[\Pr(r_1|e_1, e_2), \ldots, \Pr(r_{K+l}|e_1, e_2)]$$
 - “Max-secondMax” value for “near uniform” criteria:
 $$\text{conf}(e_1, e_2) = \frac{\max([\Pr(r_1|e_1, e_2), \ldots, \Pr(r_{K+l}|e_1, e_2)])}{\text{secondMax}([\Pr(r_1|e_1, e_2), \ldots, \Pr(r_{K+l}|e_1, e_2)])}$$
Outline

• Introduction
• Related Work
• Proposed Approach
• Experiments
• Conclusion
Experimental Data

- **Text corpus**
 - Text contents from 37,746 pages of entertainment domain in Chinese Wikipedia

- **Statistics**
 - Training & Validation & Testing:
 - 3480 instances on 4 predefined relations from (Fan et al., 2017)
 - Unlabeled:
 - 3161 entity pairs which share joint occurrence in the sentences

Predefined relations	Directing	Singing	Starring	Spouse
# Instances	633	648	1609	590
Evaluation of Relation Classification

- **Comparative study**
 - We compare our method to CNN-based and RNN-based models, and experiment with different feature sets to verify their significance.

Classifier	Feature set	F1 (%)
logistic regression/SVM	entity pairs (add)	77.3/ 77.4
	entity pairs (sub)	75.9/ 80.8
	entity pairs (concat)	89.0/ 87.5
	syntactic units, entity pairs (concat)	84.9/ 82.5
	context words, entity pairs (concat)	87.6/ 86.6
	syntactic units, context words	89.2/ 87.8
	syntactic units, context words, entity pairs (concat)	89.9/ 88.0
Shwartz et al. (Shwartz et al., 2016)	shortest dependency path, entity pairs	65.3
Zeng et al. (Zeng et al., 2014)	context words, entity pairs	81.5
RNN+E	syntactic units, entity pairs (concat)	66.8
CNN+E	context words, entity pairs (concat)	91.4
Full implementation	syntactic units, context words, entity pairs (concat)	92.2
Evaluation of Relation Discovery

- **Pairwise experiment**
 - We manually construct a testing set by sampling pairs of instances \((x_i, x_j)\) from unlabeled data where \(x = (e_1, e_2)\).

\[
\text{Precision} = \frac{|\{(x_i, x_j) \in D | v_{i,j} = 1 \land v_{i,j}' = 1\}|}{|\{(x_i, x_j) \in D | v_{i,j}' = 1\}|}
\]

\[
\text{Recall} = \frac{|\{(x_i, x_j) \in D | v_{i,j} = 1 \land v_{i,j}' = 1\}|}{|\{(x_i, x_j) \in D | v_{i,j} = 1\}|}
\]

- \(v_{i,j} \in \{1,0\}\) for the ground truth, \(v_{i,j}' \in \{1,0\}\) for the clustering result
Evaluation of Relation Discovery

- **Newly discovered relations**
 - 6 new relations are generated, covering 96.4% unlabeled data

Relation name	# Instances	Relation name	# Instances
Group members	1328	Belong to the country	956
Family members	355	Series works	247
Employed by	144	Produced by	18

- **Top-k precision**
 - We heuristically choose $k = 0.4$ because the precision drops relatively faster when k is larger than this setting.
Outline

- Introduction
- Related Work
- Proposed Approach
- Experiments
- Conclusion
Conclusion

• Exploratory relation classification
 – Problem: assign labels for unlabeled entity pairs to both pre-defined and unknown relations
 – Iterative process:
 • an integrated base neural network for relation classification
 • a similarity-based clustering algorithm ssCRP to generate new relations
 • constrained relation prediction process to populate new relations
 – Experiments: on Chinese Wikipedia entertainment domain, with base neural network achieving 0.92 F1-score, and 6 new relations generated with 0.75 F1-score.
Thanks!