RESEARCH ARTICLE

THE EFFECTIVENESS OF EMERGENCY CERVICAL CERCLAGE AND VAGINAL PROGESTERONE IN MANAGEMENT OF SECOND TRIMESTER MISCARRIAGE

Dr. Ibtessam Saad Hassanin and Dr. Azhar Schett
1. MBBCH-Tanta University, Egypt MD-Ain Shams University,Egypt Gyne Specialist Prime Hospital, Dubai, UAE.
2. MBCHB-HIGH DIPLOMA OG.-GBOG Consultant Obs&gynecology. HOD of Prime Hospital Gyn Department, Dubai, UAE.

Abstract
Cervical incompetence is an important contributor to pre-term birth and second trimester pregnancy loss. It is defined as the inability to support a full-term pregnancy because of a functional or structural defect of the cervix [1]. The typical symptoms of cervical incompetence include history of recurrent mid-trimester losses or pre-term birth and painless cervical dilatation in the absence of contractions or intrauterine infections. Labor is often short and the premature fetus is born alive. It is reported that the rate of cervical incompetence is between 0.1% and 2%, and is estimated to account for 15% of the recurrent pregnancy losses between 16 and 28 weeks [2]. In cases with cervical incompetence, mechanical support of a weak cervix is thought to be the main factor required to prolong the pregnancy. Cervical cerclage has been used to treat cervical incompetence for more than 50 years, since it was first described by Shirodkar [3] and later modified by McDonald [4]. Emergency cervical cerclage has been used as a salvage procedure in women with cervical dilatation and bulging fetal membranes in mid-trimester, in an attempt to prolong the pregnancy to a viable gestation. However, emergency cervical cerclage is likely to increase the risk of infection, due to increased exposure of the fetal membranes to vaginal commensals. Emergency cervical cerclage is effective in prolonging pregnancy and improving neonatal outcome in women with cervical incompetence. It should be considered a viable option for women with a dilated cervix in mid-trimester.

Introduction:
The effectiveness of emergency cerclage: Some obstetricians believe that once cervical dilatation has occurred, infections, uterine contractions, or rupture of the membranes often follow, leading to a poor outcome after emergency cerclage [15,16]. In some developed countries, it is not recommended to perform emergent cervical cerclage beyond the limit of fetal viability (≥24 weeks), because the potential for harm probably outweighs the potential benefit [1]. Although the treatment of neonates in China had improved dramatically over the past few years [17], infants born before 28 weeks of gestation only have a survival rate of <50%, and more than half of the
surviving infants are moderately to severely handicapped [18–20]. In the urgent situation of bulging membranes, emergency cervical cerclage may be the only hope for prolonging gestation until fetal viability is reached.

The safety of emergency cerclage:
Exposure of the fetal membranes to vaginal bacteria may increase the risk of chorioamnionitis, intraamniotic infection, hematosepsis of mother, or even maternal death because of severe infection.

Prophylactic broad-spectrum antibiotics has to be given before, during, and after the cerclage and regularly monitoring inflammatory markers may reduce the incidence of infection.

Bulging membranes into the cervix, avoiding inadequate placement of the cerclage in a superficial portion of the cervix, and the risk of iatrogenic rupture of the membranes during the operative procedure make emergency cerclage difficult for surgeons and poses challenges such as uterine contraction, laceration of the cervix, or even hysterorrhexis after cerclage.

However, aggressive tocolysis may lead to another problem. Atosiban, an oxytocin antagonist, has been shown to inhibit preterm uterine contractions effectively in placebo-controlled clinical trials without causing any significant cardiovascular, pulmonary, or central nervous system adverse effects.

Deep venous thrombosis (DVT), a blood clot forming in a deep vein, is another maternal complication after emergency cerclage. The factors that increase risk for DVT on cerclage patients are hypercoagulable state of pregnancy and prolonged bed rest.

Discussion:-
Several factors are closely related to pregnancy outcomes. Namouz and Gupta [31,32] reported that predictors of poor outcome were prolapsed membranes, evidence of intra-amniotic or systemic infection, symptomatic presentation, and cervical dilatation greater than 3 cm.

Fortner et al. [33] reported that women who receive an emergency cerclage are more likely to deliver at an earlier gestational age when the cervical dilation is ≥2 cm at the time of procedure. This may be due to the increased exposure of fetal membranes to vaginal bacteria and because women with bulging membranes are more susceptible to infection. Moreover, the procedure is associated with more challenges as the degree of cervical dilation becomes greater. It is reported that women with cervical dilation of ≥2 cm at cerclage placement were more likely to have an intracervical Foley balloon catheter utilized for membrane reduction during the procedure.

It has been reported that in women with emergency cerclage, delivery <32 weeks was significantly more common in women with symptoms (vaginal bleeding, discharge, or pelvic pressure sensation) [34].

Vaginal Progesterone:
Pharmacology, mode of action, pharmacokinetics:
Progesterone is a naturally occurring steroid hormone produced by the adrenals, gonads, nervous system, and placenta in pregnancy. It is a derivative of cholesterol. Cholesterol is converted into pregnenolone by enzyme cytochrome P450, and pregnenolone is converted to progesterone by 3β-hydroxy-steroid dehydrogenase/Δ5, Δ4 isomerase in the smooth endoplasmic reticulum.32 Progesterone exerts its modulatory effects on target organs via intracellular receptor isoforms A (94 kDa) and B (116 kDa).36 The receptors are expressed by a single gene on chromosome 11q22–q23 but have separate translational start sites and promoters. Progesterone actions via membrane-based nongenomic receptors have also been illustrated.37 In therapeutics, progesterone is available in its natural form or synthetic form. Even though both forms are used for similar purposes, they are not chemically identical and their effect on target organs may not be similar.35,36

The natural progesterone is chemically identical to the ovarian progesterone and synthesized from Mexican yams or soybean extracts or animal sources. Its micronization decreases particle size, increases surface area, and thus improves absorption. This results in exponential rise in bioavailability with decreased metabolic and vascular side effects.38 The vaginal route further adds advantages to this form by rapid absorption and avoiding the first-pass hepatic metabolism, resulting in sustained plasma concentrations, and high bioavailability especially locally in the most desired target organ, the uterus. This has been termed as the ‘first uterine pass effect’ as progestational effects.
on the endometrium are seen despite low plasma levels suggesting direct transit of vaginal progesterone into the uterus.39,40 In addition to the above advantages, vaginal route possibly is the preferred mode of administration as the pain associated with oil-based intramuscular (IM) injections, bad taste associated with intranasal route, poor absorption and higher doses with oral route, conflicting evidence and variable effects with transdermal route, and inconvenience with the intravenous or rectal routes is avoided.

Progesterone derives its name from ‘progestational steroid hormone’ due to its primary function of preparing and maintaining the uterine bed for conception.41 Its benefits in decreasing early pregnancy loss via providing luteal support, both in women with threatened abortion and those undergoing artificial reproduction cycles, has led to its widespread use in the first trimester.42,43 Its role in the 2nd and 3rd trimesters of pregnancy is less clear, but its effects on the uterus (myometrium and cervix) form a biological plausible reason for its role in prevention of sPTB. Progesterone inhibits production of stimulatory prostaglandins (PG) and expression of contraction-associated protein genes in the myometrium.41 Clinically, this correlates with its mild tocolytic effects and significantly decreased spontaneous uterine contractions in women receiving progesterone compared to control groups.44 However, this has not translated into a clinical success as a stand-alone tocolytic, but progesterone possibly could have adjunctive role in decreasing sPTB in women with threatened or established preterm labor.

Our Case Scenario:
37 years old pregnant lady P1+0, with history of extreme preterm at 27 weeks delivery in her first pregnancy 17 years ago, presented to emergency with pregnancy 19w+2d with sever labor pains and ex dilation with amniotic fluid sac at vagina, emergency ultrasound confirm breech presentation with dilated cervix 2.22 cm, plus huge size uterine fibroid at anterior uterine wall 8.65x7.77 cm with cystic degeneration, placenta was anterior wall above the dilated cervix.

Patient admitted and kept in trendelenberge position and iv hydration with analgesic for 24 hours, reassessment done, still dilated cervix but fetal parts regret to the lower uterine segment, high risk consent for cervical cerclage signed by Patient after detailed counselling about benefits, risks and failure rate of emergency cerclage.

Emergency cerclage done under spinal anaesthesia, patient kept under observation 24 hours, proluton depot 250 mg im stat given, duphaston 10 mg pot id, endometrin 100 mg pv bd started.

Ultrasound repeated 24 hours after cerclage finding was: still baby breech 19w+4d, cervix closed by merseline tape, cervical length was 3.22 cm, EFW was 264 gm. Patient discharged home with same medications, asymptomatic.

Follow up after one week, patient has epigastric pain and intermittent abdominal pain, nausea and reflux due to excess progesterone, oral, im weekly and vaginal bd.

Ultrasound done: fetus was cephalic 21w+5d, cervix closed, 1.13 cm long, fibroid was 8.45x7.49 cm.

Plane was to continue only on vaginal progesterone 100 mg pv bd and good hydration, follow up every 2 weeks.

Patient was complaint on her ANC visits, after 2 weeks, asymptomatic, no pain, no nausea, no vaginal discharge, GBS done at 35 weeks, it was negative.

At 36w+3d, patient start leaking, emergency removal of cerclage, followed by spontaneous delivery of late preterm male baby weight 2.3 kg.

Baby kept indoor with mother, no NICU, start breast feeding within one hour of delivery, discharged home with mother.

The illustrated ultrasound photos document:
1. 1-At time of emergency admission, 19w+2d GA, with dilated cervix and af sac at vagina with breech presentation.
2. 2-anterior uterine wall fibroid with cystic degeneration, 8.65x7.77 cm
3. 3-At GA 19W+4D after cerclage, cervix closed.
4. 4-At GA 21W+5D, Cervix closed, fetus cephalic.
GA:19W+2D. CERVIX DILATED, BREECH
ANTERIOR UTERINE WALL FIBROID WITH CYSTIC DEGENERATION
Conclusion:
Emergency cerclage is effective method to prevent second trimester abortion and preterm labor.

Vaginal progesterone improves the outcome of emergency cervical cerclage at second trimester abortion, even with presence of other risk factors like degenerated big uterine fibroid.

GIT symptoms, vaginal discharge was not associated with use of vaginal progesterone 100 mg pv bd.

References:
1. American College of Obstetricians and Gynecologists. ACOG Practice Bulletin. Cervical insufficiency. Obstet Gynecol. 2003;102:1091–99.
2. Debbs RH, Chen J. Contemporary use of cerclage in pregnancy. Clin Obstet Gynecol. 2009;52(4):597–610.
3. Shirodkar VN. A new method of operative treatment for habitual abortion in the second trimester of pregnancy. Antiseptic. 1955;52:299.
4. McDonald IA. Suture of the cervix for inevitable miscarriage. J Obstet Gynaecol Br Emp. 1957;64:346–50.
5. Seravalli V, Potti S, Berghella V. Risk of intrapartum cervical lacerations in women with cerclage. J Matern Fetal Neonatal Med. 2013;26(3):294–98.
6. Alfirevic Z, Owen J, Carreras Moratonas E, et al. Vaginal progesterone, cerclage or cervical pessary for preventing preterm birth in asymptomatic singleton pregnant women with a history of preterm birth and a sonographic short cervix. Ultrasound Obstet Gynecol. 2013;41(2):146–51.
7. Rand L, Norwitz ER. Current controversies in cervical cerclage. Semin Perinatol. 2003;27(1):73–85.
8. Matijevic R, Olujic B, Tumbri J, Kurjak A. Cervical incompetence: the use of selective and emergency cerclage. J Perinat Med. 2001;29:31–35.
9. Odibo AO, Berghella V, To MS, et al. Shirodkar versus McDonald cerclage for the prevention of preterm birth in women with short cervical length. Am J Obstet Gynecol. 2007;234(1):55–60.
10. Debby A, Sadan O, Glezerman M, Golan A. Favorable outcome following emergency second trimester cerclage. Int J Gynaecol Obstet. 2007;96(1):16–19.
11. Celen S, Simsek Y, Ozyer S, et al. Effectiveness of emergency cervical cerclage in patients with cervical dilation in the second trimester. ClinExpObstet Gynecol. 2011;38(2):131–33.
12. Gundabattula SR, Marakani LR, Dasari S, et al. Outcomes of pregnancy in women who had rescue cerclage for cervical insufficiency: a single-center retrospective study. J Obstet Gynaecol Res. 2013;39(8):1293–300.
13. Cavus Y, Uysal A, Balsak D, et al. Emergency cervical cerclage: effect on pregnancy outcome and mode of delivery. J Matern Fetal Neonatal Med. 2014;27(1):80–83.
14. Keeler SM, Kiefer D, Rochon M, et al. A randomized trial of cerclage vs. 17-alpha-hydroxyprogesterone caproate for treatment of short cervix. J Perinat Med. 2009;37(5):473–79.
15. Treadwell MC, Bronsteen RA, Bottoms SF. Prognostic factors and complication rates for cervical cerclage: a review of 482 cases. Am J Obstet Gynecol. 1991;165(3):555–58.
16. Lisonkova S, Sabr Y, Joseph KS. Diagnosis of subclinical amniotic fluid infection prior to rescue cerclage using gram stain and glucose tests: an individual patient meta-analysis. J Obstet Gynaecol Can. 2014;36(2):116–22.
17. Chen C, Zhang QS. Advances in medical care for extremely low birth weight infants worldwide. Chinese Journal of Contemporary Pediatrics. 2013;15(8):703–7.
18. Chen AC, Chung MY, Chang JH, Lin HC. Pathogenesis implication for necrotizing enterocolitis prevention in preterm very-low-birth-weight infants. J PediatrGastroenterolNutr. 2014;58(1):7–11.
19. Jiang ZD, Chen C. Impaired neural conduction in the auditory brainstem of high-risk very preterm infants. Clin Neurophysiol. 2014;125(6):1231–27.
20. Liu F, Zhao Q, Shao Y. Severe brain damage in premature infants associated with postnatal infection. Minerva Med. 2013;104(3):349–55.
21. Karau PB, Mutwiri MG, Ogeng’o JA, Karau GM. Use of cervical cerclage as a treatment option for cervical incompetence: patient characteristics, presentation and management over a 9 year period in a Kenyan centre. Afr J Reprod Health. 2013;17(1):169–73.
22. Gundabattula SR, Marakani LR, Dasari S, et al. Outcomes of pregnancy in women who had rescue cerclage for cervical insufficiency: a single-center retrospective study. J Obstet Gynaecol Res. 2013;39(8):1293–300.
23. Gündüz İ, İşçi H, Aydinli K. Results of midtrimester emergency cerclage. J Reprod Med. 2013;58(3–4):143–48.
24. Abu Hashim H, Al-Inany H, Kilani Z. A review of the contemporary evidence on rescue cervical cerclage. Int J Gynaecol Obstet. 2014;124(3):198–203.
25. Aoki S, Ohnuma E, Kurasawa K, et al. Emergency cerclage versus expectant management for prolapsed fetal membranes: a retrospective, comparative study. J Obstet Gynaecol Res. 2014;40(2):381–86.
26. Stupin JH, David M, Siedentopf JP, Dudenhausen JW. Emergency cerclage versus bed rest for amniotic sac prolapse before 27 gestational weeks. A retrospective, comparative study of 161 women. Eur J Obstet Gynecol Reprod Biol. 2008;139(1):32–37.
27. Abo-Yaqoub S, Mohammed AB, Saleh H. The effect of second trimester emergency cervical cerclage on perinatal outcome. J Matern Fetal Neonatal Med. 2012;25(9):1746–49.
28. Althuisius SM, Dekker GA, Hummel P, van Geijn HP. Cervical incompetence prevention randomized cerclage trial. Cervical incompetence prevention randomized cerclage trial: emergency cerclage with bed rest versus bed rest alone. Am J Obstet Gynecol. 2003;189(4):907–10.
29. Goodwin TM, Paul R, Silver H, et al. The effect of the oxytocin antagonist atosiban on preterm uterine activity in the human. Am J Obstet Gynecol. 1994;170:474–78.
30. Moutquin JM, Sherman D, Cohen H, et al. Double-blind, randomized, controlled trial of atosiban and ritodrine in the treatment of preterm labor: a multicenter effectiveness and safety study. Am J Obstet Gynecol. 2000;182(5):1191–99.
31. Namouz S, Porat S, Okun N, et al. Emergency cerclage: literature review. Obstet Gynecol Surv. 2013;68(5):379–88.
32. Gupta M, Emary K, Impely L. Emergency cervical cerclage: predictors of success. J Matern Fetal Neonatal Med. 2010;23:670–74.
33. Fortner KB, Fitzpatrick CB, Grotegut CA, et al. Cervical dilation as a predictor of pregnancy outcome following emergency cerclage. J Matern Fetal Neonatal Med. 2012;25(10):1884–88.
34. Tezcan B, Hezelgrave N, Shennan A. The role of cervical ultrasound screening in determining the timing of emergency cerclage. J Obstet Gynaecol. 2012;32(5):444–46.
35. Owen J, Hankins G, Iams JD, et al. Multicenter randomized trial of cerclage for preterm birth prevention in high-risk women with shortened midtrimester cervical length. Am J Obstet Gynecol. 2009;201:375. e1–e8. 36. Schumacher M, Sitruk-Ware R, De Nicola AF. Progesterone and progestins: neuroprotection and myelin repair. Curr Opin Pharmacol. 2008;8:740–746.
36. Goletiani NV, Keith DR, Gorsky SJ. Progesterone: Review of safety for clinical studies. Exper Clin Psychopharmacol. 2007;15:427–444.
37. Xu H, Gonzalez JM, Ofori E, Elovitz MA. Preventing cervical ripening: the primary mechanism by which progestational agents prevent preterm birth? Am J Obstet Gynecol. 2008;198:314. e1–314. e8.
38. de Lignieres B. Oral micronized progesterone. Clin Ther. 1999;21:41–60. discussion 1–2.
39. Cicinelli E, de Ziegler D, Bulletti C, Matteo MG, Schonauer LM, Galantino P. Direct transport of progesterone from vagina to uterus. Obstet Gynecol. 2000;95:403–406.
40. Fanchin RM, De Ziegler DM, Bergeron CP, Righini CM, Torrisi CM, Frydman RM. Transvaginal administration of progesterone. Obstet Gynecol. 1997;90:396–401
41. Sfakianaki AK, Norwitz ER. Mechanisms of progesterone action in inhibiting prematurity. J Matern Fetal Neonatal Med. 2006;19:763–772.
42. Daya S. Luteal support: progestogens for pregnancy protection. Maturitas. 2009;65(Suppl 1):S29–S34.
43. Wahabi HA, Abed Althagafi NF, Elawad M, Al Zeidan RA. Progestogen for treating threatened miscarriage. Cochrane Database Syst Rev. 2011;12:CD005943.