THE PERIODIC PLATEAU PROBLEM AND ITS APPLICATION

JAIGYOUNG CHOE

Abstract. Given a noncompact disconnected complete periodic curve Γ with no self intersection in \mathbb{R}^3, it is proved that there exists a noncompact simply connected periodic minimal surface spanning Γ. As an application it is shown that for any tetrahedron T with dihedral angles $\leq 90^\circ$ there exist four embedded minimal annuli in T which are perpendicular to ∂T along their boundary. It is also proved that every Platonic solid of \mathbb{R}^3 contains five types of free boundary embedded minimal surfaces of genus zero.

Keywords: Plateau problem, periodic, minimal surface, free boundary, Platonic solid
MSC: 53A10, 49Q05

1. INTRODUCTION

The famous problem of finding a surface of least area spanning a given Jordan curve, called the Plateau problem, was settled by Douglas and Radó independently in 1931. Since then many questions have been raised about the Douglas-Radó solution: the uniqueness, the embeddedness, the topology of the solution and the number of solutions.

In this paper we are concerned with the Plateau problem for a noncompact disconnected complete curve $\Gamma \subset \mathbb{R}^3$ which is periodic. Γ is said to be periodic if Γ has a fundamental piece $\bar{\gamma}$ in a convex polyhedron U and Γ is the infinite union of the congruent copies of $\bar{\gamma}$ obtained in a periodic way. In particular, Γ is helically periodic if it is the union of images of $\bar{\gamma}$ under the cyclic group $\langle \sigma \rangle$ generated by a screw motion σ. Γ is translationally periodic if it is invariant under the cyclic group $\langle \tau \rangle$ generated by a translation τ. Γ is rotationally periodic if the congruent copies of $\bar{\gamma}$ are obtained by repeatedly extending $\bar{\gamma}$ through 180°-rotations about the lines connecting each pair of endpoints of $\bar{\gamma}$. Γ is reflectively periodic if the congruent copies of $\bar{\gamma}$ are obtained by infinitely extending $\bar{\gamma}$ by the reflections across the planar faces of ∂U (see Figure 1). The extensions by screw motions, translations, rotations and reflections are to be performed infinitely until Γ becomes complete.

We prove that for every complete noncompact disconnected periodic curve Γ in \mathbb{R}^3 there exists a noncompact simply connected minimal surface $\Sigma \subset \mathbb{R}^3$ spanning Γ such that Σ inherits the periodicity of Γ (Theorem 2.2). Furthermore, in case Γ consists of the x_3-axis and a complete connected translationally periodic curve γ_1 winding around the x_3-axis such that a fundamental piece of γ_1 admits a one-to-one orthogonal projection onto a convex closed curve in the x_1x_2-plane, we can show that Σ is unique and embedded (Theorem 3.1).

Date: (arXiv) April 19, 2021. (Revised) April 26, 2021.
Supported in part by NRF-2018R1A2B6004262.
These two theorems have an interesting application. Smyth [8] showed that given a tetrahedron T, there exist three embedded minimal disks in T which meet ∂T orthogonally along their boundary. From T Smyth considered a quadrilateral Γ whose edges are perpendicular to the faces of T. Γ bounds a unique minimal graph Σ. He then showed that the conjugate minimal surface of Σ is the desired minimal surface in T.

In this paper we will first see that the tetrahedron T gives rise to a noncompact, disconnected, translationally periodic, piecewise linear curve Γ such that the edges (=line segments) of a fundamental piece $\bar{\gamma}$ of Γ are perpendicular to the faces of T. In fact, $\bar{\gamma}$ has two components $\bar{\gamma}_0, \bar{\gamma}_1$, where $\bar{\gamma}_0$ has only one edge and $\bar{\gamma}_1$ has 3 edges. So one of the two components of Γ is a straight line ℓ. By Theorem 2.2 Γ bounds a noncompact simply connected translationally periodic minimal surface Σ. Let Σ^* be its conjugate minimal surface. In Theorem 5.1 we will prove that if ℓ is properly chosen relative to $\bar{\gamma}_1$ then Σ^* is a minimal annulus in T which is perpendicular to ∂T (see Figure 2). One boundary component of Σ^* is a convex closed curve lying in one face of T and the other component traces along the remaining three faces. Since there are four lines perpendicular to a face of T we conclude that there exist
four free boundary minimal annuli in T if the dihedral angles of T are $\leq 90^\circ$. If at least one dihedral angle of T is $> 90^\circ$, there exist four minimal annuli which are not necessarily inside T but still perpendicular to the planes containing the faces of T along their boundary.

In general, one cannot generalize Theorem 5.1 to construct a free boundary minimal annulus in a polyhedron other than a tetrahedron. However, in case P_y is a right pyramid with a regular polygonal base B and apex p (i.e., $P_y = p \times B$, the cone), we can show the existence of a free boundary minimal annulus Σ^* in P_y such that one boundary component of Σ^* is in B and the other component in $p \times \partial B$ winding around p (Theorem 6.1). Consequently, it is proved that every Platonic solid P_s bounded by regular n-gons contains five types of free boundary embedded minimal surfaces $\Sigma_1, \ldots, \Sigma_5$ of genus 0. Three of them, $\Sigma_1, \Sigma_2, \Sigma_3$, intersect each face of P_s along $1, n, 2n$ convex closed congruent curves, respectively. Σ_4 intersects every edge of P_s, while Σ_5 surrounds every vertex of P_s (Corollary 6.2; see Figure 3). As a matter of fact, if P_s is the cube, Σ_1 is the well-known Schwarz P-surface, Σ_4 is Neovius’ surface and Σ_5 is Schoen’s I-WP surface. Finally, if P_r is a right pyramid whose base is a rhombus, a free boundary minimal annulus in P_r can be similarly constructed (Corollary 6.3).

2. **Periodic Plateau problem**

A Jordan curve is simple and closed. So it has no self-intersection and is homeomorphic to a circle. If a simple curve $\Gamma \subset \mathbb{R}^3$ is not closed but homeomorphic to
and has infinite length, one cannot in general find a minimal surface spanning \(\Gamma \). However, if there exists a surface of finite area spanning \(\Gamma \), one can easily show the existence of a minimal surface spanning \(\Gamma \). The same is true if \(\Gamma \) is the union of simple open curves of infinite lengths bounding a surface of finite area. In case \(\Gamma \) cannot bound a surface of finite area, one needs to impose extra conditions on \(\Gamma \) to get a minimal surface spanning \(\Gamma \). In this section we will see that the periodicity of \(\Gamma \) is a sufficient condition for this purpose.

Definition 2.1. Let \(\Gamma \subset \mathbb{R}^3 \) be the union of complete open rectifiable curves \(\gamma_1, \gamma_2, \gamma_3, \ldots \) and let \(U \) be a convex polyhedral domain in \(\mathbb{R}^3 \). \(\Gamma \) is said to be **periodic** if \(\Gamma \) is the infinite union of the congruent copies of \(\bar{\gamma} := \Gamma \cap U \). \(\bar{\gamma} \) is called a **fundamental piece** of \(\Gamma \).

a) Suppose \(\Gamma \) is homeomorphic to two parallel lines. \(\Gamma \) is **translationally periodic** if it is the union of translated fundamental pieces \(\tau^n(\bar{\gamma}) \) for the cyclic group \(\langle \tau \rangle \) generated by a parallel translation \(\tau \). \(\Gamma \) is invariant under \(\langle \tau \rangle \). Moreover, \(\Gamma \) is **helically periodic** if it is the union of \(\sigma^n(\bar{\gamma}) \) for the cyclic group \(\langle \sigma \rangle \) generated by a screw motion \(\sigma \). Assume that the screw motion \(\sigma \) is the rotation about the \(x_3 \)-axis by angle \(\beta \) composed with the translation by \(e \), that is,

\[
\sigma(r \cos \theta, r \sin \theta, x_3) = (r \cos(\theta + \beta), r \sin(\theta + \beta), x_3 + e).
\]

Every translationally periodic \(\Gamma \) can be said to be helically periodic as well with respect to \(\sigma \) for \(\beta = 0 \).

b) Suppose the fundamental piece \(\bar{\gamma} \) has at least two components. \(\Gamma \) is said to be **rotationally periodic** (or **oddly periodic**) if the congruent copies of \(\bar{\gamma} \) in \(\Gamma \) are obtained by indefinitely extending \(\bar{\gamma} \) through 180°-rotations about the lines connecting each pair of endpoints of \(\bar{\gamma} \). On the other hand, \(\Gamma \) is **reflectively periodic** (or **evenly periodic**) if the congruent copies of \(\bar{\gamma} \) are obtained by indefinitely extending \(\bar{\gamma} \) by the reflection across the planar faces of \(\partial U \).

\(\Gamma \) is complete because translations, screw motions, rotations and reflections are performed infinitely.

Theorem 2.2. Let \(\Gamma \subset \mathbb{R}^3 \) be the union of complete pairwise disjoint simple curves \(\gamma_1, \gamma_2, \gamma_3, \ldots \) of infinite lengths. Suppose \(\Gamma \) is periodic and its fundamental piece is a finite union of simple curves. Then there exists a periodic simply connected minimal surface \(\Sigma \) spanning \(\Gamma \). \(\Sigma \) inherits the periodicity of \(\Gamma \) and its fundamental region has least area among the fundamental regions of all the periodic simply connected surfaces spanning \(\Gamma \).

Proof. Let’s first prove the theorem when \(\Gamma \) is helically periodic. We assume that \(\Gamma \) is invariant under the \(\sigma \) defined by (2.1). We may further assume that \(\sigma \) maps the fundamental piece \(\bar{\gamma} \) of \(\Gamma \) to its adjoining piece, that is, \(\bar{\gamma} \) is connected to \(\sigma(\bar{\gamma}) \) through their common endpoints. \(\Gamma \) uniquely determines the angle \(\beta > 0 \) of (2.1), which we call the **period** of \(\Gamma \). \(\hat{\Sigma} \) is a fundamental region of \(\Sigma \) if and only if

\[
\Sigma = \bigcup_{k \in \mathbb{Z}} \sigma^k(\hat{\Sigma}) \text{ and } \hat{\Sigma} \cap \sigma(\hat{\Sigma}) = \emptyset.
\]

Definition 2.3. To each complete helically periodic curve \(\Gamma \) we associate the class \(C_{a, \Gamma} \) of admissible maps \(\varphi \) from the infinite strip \(I_a := [0, a] \times \mathbb{R} \) to \(\mathbb{R}^3 \) with the following properties:

(1) \(\varphi \) is a piecewise \(C^1 \) immersion in the interior of \(I_a \) and is continuous in \(I_a \);
(2) \(\varphi(x, y + k\beta) = \sigma^k(\varphi(x, y)), \quad (x, y) \in I_a, \ k : \text{integer}, \ \beta : \text{fixed} > 0; \)

(3) \(\varphi \) restricted to \(\{0, a\} \times (0, \beta) \) is a monotone map onto a fundamental piece \(\tilde{\gamma} \) of \(\Gamma \), i.e., \(\tilde{\gamma} \) is traversed once by \(\varphi((0, a) \times (0, \beta)) \) although we allow arcs of \(\{0, a\} \times (0, \beta) \) to map onto single points of \(\tilde{\gamma} \).

To normalize \(C_{a, \Gamma} \) let’s assume that \(\varphi(0, 0) = p \) for a fixed point \(p \) of \(\tilde{\gamma} \). \(\varphi \) is said to be invariant under the screw motion \(\sigma \) with period \(\beta \) if \(\varphi \) satisfies property (2).

Define the area functional \(A \) on \(C_{a, \Gamma} \) by

\[
A(\varphi) = \int_{[0, a] \times [0, \beta]} |\varphi_x \wedge \varphi_y| \, dx \, dy
\]

and the Dirichlet integral \(D(\varphi) \) of \(\varphi \in C_{a, \Gamma} \) by

\[
D(\varphi) = \int_{[0, a] \times [0, \beta]} |\nabla \varphi|^2 \, dx \, dy.
\]

Since

\[
|\varphi_x \wedge \varphi_y| \leq \frac{1}{2} \left(|\varphi_x|^2 + |\varphi_y|^2 \right)
\]

we have

\[(2.2) \quad A(\varphi) \leq \frac{1}{2} D(\varphi), \quad \varphi \in C_{a, \Gamma}\]

where equality holds if and only if \(\varphi \) is almost conformal. In order to obtain the equality case, we need to prove the existence of periodic isothermal coordinates invariant under \(\sigma \) on the surface \(\varphi(I_a) \).

Proposition 2.4. For any \(\varphi \in C_{a, \Gamma} \) there exists a periodic homeomorphism \(H : I_a \to I_b := [0, b] \times \mathbb{R} \) such that \(H^{-1} \) has period \(\beta \) and the reparametrized map \(\varphi \circ H^{-1} : I_b \to \varphi(I_a) \) is a conformal map in \(C_{b, \Gamma} \).

Proof. Let \(N \) be the annulus obtained from \([0, a] \times [0, \beta] \) by identifying the two line segments \([0, a] \times \{0, \beta\} \). Let \(g \) be the metric on \(N \) which is pulled back by \(\varphi \) from the metric of \(\varphi(I_a) \). \(g \) is well-defined since \(\varphi \) is invariant under the screw motion \(\sigma \) determined by \(\Gamma \). Let’s consider the Dirichlet problem on \((N, g)\) for constant \(b > 0 \):

\[
\Delta u = 0, \quad u = 0 \text{ on } \{0\} \times [0, \beta], \quad u = b \text{ on } \{a\} \times [0, \beta].
\]

There exists a unique solution \(u = h_b \) to this problem. The harmonic function \(h_b \) has a conjugate harmonic function \(h_b^* \) which is multi-valued on \((N, g)\). But \(h_b^* \) is well-defined on its universal cover \(\tilde{N} = I_a \). Let \(\tau(b) > 0 \) be the period of \(h_b^* \) on \(N \). \(\tau(b) \) is an increasing function which varies from 0 to \(\infty \) as \(b \) does so. Hence there exists \(\tilde{b} > 0 \) such that \(\tau(\tilde{b}) = \beta \). Note that \(h_{\tilde{b}} \) can also be lifted to \(h_b \) on \(I_a \). Then the map \(H : I_a \to I_b \) defined by \(H(q) = (h_{\tilde{b}}(q), h_{\tilde{b}}^*(q)) \) is a periodic homeomorphism and yields a conformal map \(\varphi \circ H^{-1} : I_b \to \varphi(I_a) \). Note that \(H^{-1} \) has period \(\beta \) and \(\varphi \circ H^{-1} \) is invariant under the screw motion \(\sigma \). This completes the proof of the proposition.

In order to prove the existence of an area-minimizing surface spanning \(\Gamma \), let’s define

\[
a_{\Gamma} = \inf_{\varphi \in C_{a, \Gamma}, \ a > 0} A(\varphi) \quad \text{and} \quad d_{\Gamma} = \inf_{\varphi \in C_{a, \Gamma}, \ a > 0} D(\varphi).
\]
Then by (2.2) and the existence of the isothermal coordinates we have
\[a_\Gamma = \frac{1}{2} d_\Gamma. \]

Therefore
\[D(\psi) = d_\Gamma \text{ for some } \psi \in C_{a,\Gamma} \iff A(\psi) = a_\Gamma \text{ and } \psi \text{ is almost conformal.} \]

Thus, to solve the periodic Plateau problem it suffices to find \(a > 0 \) and a map \(\psi \in C_{a,\Gamma} \) which minimizes the Dirichlet integral \(D(\varphi) \) on \([0, a] \times [0, \beta] \) among all \(\varphi \) in \(C_{a,\Gamma} \) and all \(a > 0 \). First we shall fix \(a > 0 \) and apply the periodic Dirichlet principle on \(C_{a,\Gamma} \) as follows.

Lemma 2.5. For each admissible map \(\varphi \) in \(C_{a,\Gamma} \) there exists a unique harmonic admissible map \(\psi \in C_{a,\Gamma} \) with \(\psi|_{\partial I_a} = \varphi|_{\partial I_a} \). Moreover, \(D(\psi) \leq D(\varphi) \).

Proof. Let \(x, y \) be the Euclidean coordinates of \(\mathbb{R}^2 \) and set \(t = x + iy \). Define
\[f_1(t) = e^{\pi i t/a}, \quad f_2(z) = \frac{iz + 1}{z + i}. \]

Then \(z = f_1(t) \) maps the infinite vertical strip \(I_a \) one-to-one onto the upper half plane \(\{ \text{Im } z \geq 0 \} \setminus \{0\} \) and \(w = f_2(z) \) maps \(\{ \text{Im } z \geq 0 \} \setminus \{0\} \) one-to-one onto the unit disk \(\{ |w| \leq 1 \} \setminus \{ i, -i \} \). Furthermore, we see that \(f_2(f_1(\partial I_a)) = \{ |w| = 1 \} \setminus \{ i, -i \} \).

Let’s consider the vector-valued Dirichlet problem for \(u = (u_1, u_2, u_3) \) in \(D := \{ w : |w| < 1 \} \):
\[\Delta u = 0 \text{ in } D, \quad u = \varphi \circ f_1^{-1} \circ f_2^{-1} \text{ on } \partial D, \quad \varphi = (\varphi_1, \varphi_2, \varphi_3). \]

Since \(\varphi \) satisfies \(\varphi(x, y + k\beta) = \sigma^k(\varphi(x, y)) \) for the screw motion \(\sigma \) defined by (2.1), we see that \(\varphi_1, \varphi_2 \) are bounded and
\[\varphi_3(x, y + k\beta) = \varphi_3(x, y) + ke. \]

The Dirichlet problem (2.3) has a unique bounded solution for \(u_1, u_2 \) because of the boundedness of \(\varphi_1, \varphi_2 \). Even though \(\varphi_3 \) is unbounded, by (2.4) \(\varphi_3 - \frac{e}{\beta} y \) is bounded and periodic in \(I_a \). So if the Dirichlet problem
\[\Delta v = 0 \text{ in } I_a, \quad v = \varphi_3 - \frac{e}{\beta} y \text{ on } \partial I_a \]
has a bounded solution, it must be unique and periodic. To find its bounded solution, we convert it to a new Dirichlet problem on \(D \):
\[\Delta w = 0 \text{ in } D, \quad w = (\varphi_3 - \frac{e}{\beta} y) \circ f_1^{-1} \circ f_2^{-1} \text{ on } \partial D. \]

The boundedness of \((\varphi_3 - \frac{e}{\beta} y) \circ f_1^{-1} \circ f_2^{-1} \) gives the existence of a unique bounded solution \(w = \tilde{h}_3 \) to (2.6). As \(\frac{e}{\beta} y \circ f_1^{-1} \circ f_2^{-1} \) is harmonic in \(D \), it is easy to see that \(u_3 := \tilde{h}_3 + \frac{e}{\beta} y \circ f_1^{-1} \circ f_2^{-1} \) is the third component of a desired solution to (2.3).

Pulling back \((u_1, u_2, u_3)\) by \(f_2 \circ f_1 \) to \(I_a \), one can obtain a harmonic map \(\psi : I_a \to \mathbb{R}^3 \) having the same boundary value as \(\varphi \) on \(\partial I_a \). We now show that \(\psi \) is invariant under the screw motion \(\sigma \), in other words,
\[\psi(x, y + \beta) = \sigma(\psi(x, y)). \]

Let \(h_1, h_2, h_3 : I_a \to \mathbb{R} \) be the harmonic components of \(\psi \), that is,
\[\psi(x, y) = (h_1(x, y), h_2(x, y), h_3(x, y)). \]
(One easily sees that $h_3 = \tilde{h}_3 \circ f_2 \circ f_1 + \frac{e}{\beta} y$.) Define

$$\psi_A (x, y) = \psi (x, y + \beta)$$

and

$$\psi_B (x, y) = \sigma (\psi (x, y))$$

Since $\tilde{h}_3 \circ f_2 \circ f_1$ is periodic with period β, we have

$$h_3 (x, y + \beta) = h_3 (x, y) + e.$$

So the third component of $\psi_A (x, y)$ equals that of $\psi_B (x, y)$. On the other hand,

$$\psi_B (x, y) = (\cos \beta h_1 (x, y) - \sin \beta h_2 (x, y), \sin \beta h_1 (x, y) + \cos \beta h_2 (x, y), h_3 (x, y) + e).$$

Hence ψ_A, ψ_B are harmonic maps. As h_1, h_2 are bounded, so is $\psi_A - \psi_B$. Since $\sigma (\Gamma) = \Gamma$, $\psi_A - \psi_B$ vanishes on ∂I_a. Then $(\psi_A - \psi_B) \circ f_1^{-1} \circ f_2^{-1}$ is a bounded harmonic map vanishing on ∂D and so $\psi_A - \psi_B \equiv 0$. Therefore ψ is invariant under σ. It follows that ψ is a unique admissible harmonic map in $C_{a, \Gamma}$ having the same boundary values as φ.

Set $\Phi = \varphi - \psi$. Then Φ is also invariant under σ and hence

$$D (\varphi) = D (\Phi) + D (\psi) + 2 D (\Phi, \psi)$$

where

$$D (\Phi, \psi) = \int \int_{[0, a] \times [0, \beta]} \left(\frac{\partial \Phi}{\partial x}, \frac{\partial \psi}{\partial x} \right) + \left(\frac{\partial \Phi}{\partial y}, \frac{\partial \psi}{\partial y} \right) dxdy.$$

Green’s identity implies that

$$D (\Phi, \psi) = \int_{\partial ([0, a] \times [0, \beta])} \langle \Phi, \frac{\partial \psi}{\partial \nu} \rangle ds - \int \int_{[0, a] \times [0, \beta]} \langle \Phi, \Delta \psi \rangle dxdy,$$

where ν is the outward unit normal to $\partial ([0, a] \times [0, \beta])$. But

$$\Phi = 0 \text{ on } \{0, a\} \times [0, \beta] \text{ and } \frac{\partial \psi}{\partial \nu} \bigg|_{[0, a] \times \{\beta\}} = - \frac{\partial \psi}{\partial \nu} \bigg|_{[0, a] \times \{0\}}$$

because of the invariance of ψ under σ. Hence $D (\Phi, \psi) = 0$. It then follows that

$$D (\psi) \leq D (\varphi),$$

which completes the proof of the lemma.\qed

Define

$$d_{a, \Gamma} = \inf_{\varphi \in C_{a, \Gamma}} D (\varphi).$$

We claim here that $d_{a, \Gamma}$ goes to infinity as $a \to \infty$ and as $a \to 0$.

$$D (\varphi) \geq \int_0^a \int_0^\beta |\varphi_y|^2 dxdy = \int_0^a \int_0^\beta \sum_{i=1}^3 \left(\frac{\partial \varphi_i}{\partial y} \right)^2 dxdy$$

$$\geq \frac{1}{\beta} \int_0^a \left(\int_0^\beta \frac{\partial \varphi_3}{\partial y} dy \right)^2 dx = \frac{1}{\beta} \int_0^a (\varphi_3 (x, \beta) - \varphi_3 (x, 0))^2 dx$$

$$= \frac{ae^2}{\beta}.$$
So \(\lim_{a \to \infty} d_{a,\Gamma} = \infty\). On the other hand,

\[
D(\varphi) \geq \int_0^\beta \int_0^a |\varphi_x|^2 \, dx \, dy = \int_0^\beta \int_0^a \left(\sum_{i=1}^3 \left(\frac{\partial \varphi_i}{\partial x}\right)^2\right) \, dx \, dy
\]

\[
\geq \frac{1}{a} \int_0^\beta \sum_{i=1}^3 \left(\int_0^a \frac{\partial \varphi_i}{\partial x} \, dx\right)^2 \, dy = \frac{1}{a} \int_0^\beta \sum_{i=1}^3 (\varphi_i(a,y) - \varphi_i(0,y))^2 \, dy
\]

\[
\geq \frac{\beta d^2}{a},
\]

where \(d\) is the distance between the two components \(\gamma_0, \gamma_1\) of \(\Gamma\) which are written as \(\gamma_0 = \varphi(\{0\} \times \mathbb{R}), \gamma_1 = \varphi(\{a\} \times \mathbb{R})\). Hence \(\lim_{a \to 0} d_{a,\Gamma} = \infty\) as well.

Therefore we can conclude that there exists a positive constant \(\bar{a}\) such that

\[
d_{\Gamma} = d_{a,\Gamma}.
\]

To finish the proof of Theorem 2.2 we need the following.

Lemma 2.6. Let \(M\) be a constant \(> d_{\Gamma}\). Then for any \(a > 0\) the family of functions

\[
\mathcal{F}_a = \{\varphi|_{\partial I_a} : \varphi \in C_{a,\Gamma}, \ D(\varphi) \leq M\}
\]

is compact in the topology of uniform convergence.

Proof. For each \(z \in \partial I_a\) and each \(r > 0\), define \(C_r\) to be the intersection of \(I_a\) with the circle of radius \(r\) centered at \(z\), and denote by \(s\) the arc length parameter of \(C_r\). Choose any \(\varphi \in C_{a,\Gamma}\) with \(D(\varphi) \leq M\). For \(0 < \delta < \min(1, a^2)\), consider the integral

\[
K := \int_0^{\sqrt{\delta}} \int_{C_r} |\varphi_s|^2 \, ds \, dr \leq D(\varphi) \leq M.
\]

One can see that

\[
K = \int_0^{\sqrt{\delta}} f(r) \, d(\log r), \quad f(r) := r \int_{C_r} |\varphi_s|^2 \, ds.
\]

By the mean value theorem there exists \(\rho\) with \(\delta \leq \rho \leq \sqrt{\delta}\) such that

\[
K = f(\rho) \int_0^{\sqrt{\delta}} d(\log r) = \frac{1}{2} f(\rho) \log(\frac{1}{\delta}).
\]

Hence

\[
\int_{C_\rho} |\varphi_s|^2 \, ds \leq \frac{2M}{\rho \log(\frac{1}{\delta})}.
\]

Denote the length of the curve \(\varphi(C_r)\) by \(L(\varphi(C_r))\). Then \(L(\varphi(C_\rho)) = \int_{C_\rho} |\varphi_s| \, ds\) and from the Cauchy-Schwarz inequality it follows that

\[
L(\varphi(C_\rho))^2 \leq \frac{2\pi M}{\log(\frac{1}{\delta})}.
\]

Given a number \(\epsilon > 0\), by the compactness of \(\Gamma/\langle \sigma \rangle\) we see that there exists \(d > 0\) such that for any \(p, p'\) in \(\Gamma\) with \(0 < |pp'| < d\), the diameter of the bounded component of \(\Gamma \setminus \{p, p'\}\) is smaller than \(\epsilon\). Choose \(\delta < \min(1, a^2)\) such that \(\frac{2\pi M}{\log(\frac{1}{\delta})} < d^2\). Then for any \(z \in \partial I_a\), there exists a number \(\rho\) with \(\delta < \rho < \sqrt{\delta}\) such that by (2.7), \(L(\varphi(C_\rho)) < d\). Let \(E_z\) be the interval in \(\partial I_a\) between \(z_1\) and \(z_2\), the two endpoints of \(C_\rho\). Then \(|\varphi(z_1)\varphi(z_2)| < d\) and hence the diameter of \(\varphi(E_z)\) is smaller.
is translationally periodic as well. Since ψ completes the proof of Theorem 2.2 when Γ is helically periodic and therefore when it

Consequently, $Harnack's principle gives

Then $Harnack's principle gives

While a helically periodic Γ has only two components, the fundamental piece

Let U be a convex polyhedral domain in \mathbb{R}^3 and $\bar{\gamma} := \Gamma \cap U$ a fundamental piece of Γ. While a helically periodic Γ has only two components, the fundamental piece
γ of a rotationally (or reflectively) periodic Γ may have more than two components. Let γ1, γ2, γ3, . . . , γn be the components of γ. For i = 1, . . . , n, let pi1, pi2 be the endpoints of γi. Reordering i = 1, . . . , n if necessary, we may assume that the line segment $\overline{p_i1p_{i+1}2}$ is in a planar face of U connecting γ_i to γ_{i+1} and that $\Gamma_0 := \gamma_1 \cup \cdots \gamma_n \cup \overline{p_11p_22} \cup \overline{p_22p_33} \cup \cdots \cup \overline{p_{n-1}n_p} \cup \overline{p_nnp_11}$ is a Jordan curve in $U \cup \partial U$. There exists a Douglas solution Σ_a spanning Γ_0. If Γ is rotationally periodic, Γ can be recaptured by indefinitely rotating $\gamma_1 . . . , \gamma_n$ 180° around $\overline{p_11p_22}, . . . , \overline{p_nnp_11}$ and around the corresponding line segments in the adjacent polyhedra. If we perform the same indefinite rotations on Σ_a as we obtain Γ from $\gamma_1 . . . , \gamma_n$, then Σ_a gives rise to a rotationally periodic minimal surface Σ spanning Γ, as desired.

Suppose Γ is reflectively periodic with fundamental piece $\bar{\gamma}$ in U. By the theorem of existence of minimizers for the free boundary problem (see Section 5.3 of [1]) there exists a minimal surface Σ_b of least area in U such that $\partial \Sigma_b \setminus \partial U = \bar{\gamma}$ and Σ_b is perpendicular to ∂U along $\partial \Sigma_b \cap \partial U$. Apply the same indefinite reflections to Σ_b as we do to γ to get Γ. Then we can obtain a reflectively periodic minimal surface Σ spanning Γ, as desired.

Remark 2.7. (a) One can similarly consider a disjoint union Γ of complete simple curves in the hyperbolic space H^3 and in the sphere S^3. Γ can be compact in S^3. One easily sees that Theorem 2.2 still holds for Γ in H^3 and in S^3.

(b) A periodic minimal surface (and its boundary) may be partly rotationally periodic and partly reflectively periodic.

(c) A helically periodic Σ spanning Γ with invariance group $\langle \sigma \rangle$ gives rise to the quotient surface $\Sigma/\langle \sigma \rangle$ and the quotient boundary $\Gamma/\langle \sigma \rangle$.

3. Uniqueness and Embeddedness

Under what condition can Γ guarantee the uniqueness and embeddedness of the periodic Plateau solution Σ? For the Douglas solution with Jordan curve Γ Nitsche [4] and Ekholm-White-Wienholtz [2] proved the uniqueness and the embeddedness, respectively, if the total curvature of $\Gamma \leq 4\pi$. But even before Douglas, Radó [6] showed that the Dirichlet solution of the minimal surface equation for any continuous boundary data over the boundary of a convex domain in R^2 exists as a graph, which is obviously unique and embedded. In the same spirit, we have a partial answer for our periodic Plateau problem as follows.

Theorem 3.1. Let γ_0 be the x_3-axis and γ_1 a complete connected curve winding around γ_0. Define $\Gamma = \gamma_0 \cup \gamma_1$ and let τ be a vertical translation by γ. If Γ is translationally periodic with respect to τ and a fundamental piece of γ_1 admits a one-to-one orthogonal projection onto a convex closed curve in the x_1x_2-plane, then the translationally periodic minimal surface Σ spanning Γ has the following properties:

(a) The Gaussian curvature of Σ is negative at any point $p \in \gamma_0$;

(b) Σ is embedded and its fundamental region (not including γ_0) is a graph over its projection onto the x_1x_2-plane;

(c) Σ is unique.

Proof. (a) γ_0 is parametrized by x_3. At any point $p(x_3)$ of γ_0, Σ has a tangent half plane $Q_{p(x_3)}$. In a neighborhood of $p(x_3)$, Σ is divided by $Q_{p(x_3)}$, like a half pie, into $m(\geq 2)$ regions (see Figure 4). Define $\theta(x_3)$ to be the angle between $Q_{p(x_3)}$ and the positive x_1-axis. $\theta(x_3)$ is a well-defined analytic function satisfying $\theta(x_3 + \varepsilon) = \theta(x_3) + 2\pi$. It is known (to be proved shortly) that
Figure 4. Intersection with the tangent half plane

\[(3.1)\quad m = 2 \text{ at } p(x_3) \iff K(x_3) < 0 \iff \theta'(x_3) \neq 0,\]

where \(K(x_3)\) is the Gaussian curvature of \(\Sigma\) at \(p(x_3)\).

We claim that \(m \equiv 2\) on \(\gamma_0\). Suppose \(m \geq 3\) at \(p(x_3)\) so that \(Q_{p(x_3)} \cap \Sigma \setminus \gamma_0\) is the union of at least two analytic curves \(C_1, C_2, \ldots, C_k\) emanating from \(p(x_3)\).

Since \(Q_{p(x_3)}\) intersects \(\gamma_1\), at least one of \(C_1, C_2, \ldots, C_k\) should reach \(\gamma_1\). So we have two possibilities: either (i) only one of them, say \(C_1\), reaches \(\gamma_1\), or (ii) two of them, say \(C_1, C_2\), reach \(\gamma_1\) (see Figure 4). In the first case, since \(C_2\) is disjoint from \(\gamma_1\) and translationally periodic, it cannot be unbounded and should be in a fundamental region of \(\Sigma\). Hence \(C_2\) comes back to \(\gamma_0\). \(C_2\) and \(\gamma_0\) should then bound a domain \(D \subset \Sigma\) with \(\partial D \subset Q_{p(x_3)}\) as \(\Sigma\) is simply connected. But this contradicts the maximum principle because \(D\) has a point which attains the maximum distance from \(Q_{p(x_3)}\). In case of (ii), set \(C_1 \cap \gamma_1 = \{q_1\}\) and \(C_2 \cap \gamma_1 = \{q_2\}\). Denote by \(\pi\) the projection onto the \(x_1x_2\)-plane. Due to the convexity of \(\pi(\gamma_1)\), \(Q_{p(x_3)}\) intersects any fundamental piece of \(\gamma_1\) only at one point. Therefore \(\{q_1, q_2\}\) should be the boundary of a fundamental piece of \(\gamma_1\). Hence \(\tau(q_1) = q_2\), interchanging \(q_1\) and \(q_2\) if necessary. So the two curves \(\tau(C_1)\) and \(C_2\) meet at \(q_2\). Then \(\tau(C_1), C_2\) and \(\gamma_0\) bound a domain \(D \subset \Sigma\). Again \(\partial D\) is a subset of \(Q_{p(x_3)}\), which is a contradiction to the maximum principle. Therefore \(m \equiv 2\) on \(\gamma_0\), as claimed.

To give a proof of the equivalences (3.1), let’s view \(\Sigma\) in a neighborhood of \(p \in \gamma_0\) as a graph over \(Q_p\), the tangent half plane of \(\Sigma\) at \(p\). Introduce \(x, y, z\) as the coordinates of \(\mathbb{R}^3\) such that \(z \equiv 0\) on \(Q_p\), \(x \equiv 0\) on \(\gamma_0\) and \(p = (0, 0, 0)\). Then \(\Sigma\) is the graph of an analytic function \(z = f(x, y)\) and the lowest order term of its Taylor series is \(f_m(x, y) = c_m \text{Im}(x + iy)^m, m \geq 2\), when \(m\) is an even integer and \(f_m(x, y) = c_m \text{Re}(x + iy)^m\) when \(m\) is odd. It follows that \(\Sigma\) is divided by \(Q_p\) into \(m\) regions in a neighborhood of \(p\) and that \(K(p) = 0\) if \(m \geq 3\) and \(K(p) < 0\) if \(m = 2\), which is the first equivalence in (3.1). Hence \(K < 0\) on \(\gamma_0\) by the claim above and this proves (a). The second equivalence follows from the expression for the Gaussian curvature in terms of the Weierstrass data on \(\Sigma\), a 1-form \(fdz\) and the Gauss map \(g\):

\[(3.2)\quad K = -\frac{16|g'|^2}{|f|^2(1 + |g|^2)^2}.\]
(b) First we show that $\Sigma \setminus \gamma_0$ has no vertical tangent plane. Suppose not; let q be an interior point of Σ at which the tangent plane P is vertical. Remember that $\pi(\gamma_1)$ is convex. Hence P intersects γ_1 only at two points in its fundamental piece. $P \cap \Sigma$ is locally the union of at least four curves C_1, \ldots, C_k, $k \geq 4$, emanating from q, and two of them should reach γ_1. If we assume only four curves emanate from q in $P \cap \Sigma$, two of them will reach γ_1 and then either the remaining two will reach γ_0 or they will be connected to each other by the translation τ as in Figure 5: (i) C_1, C_2 will intersect γ_1 and C_3, C_4 will intersect γ_0; (ii) C_1, C_2 will intersect γ_1 and C_3, C_4 will be disjoint from $\gamma_0 \cup \gamma_1$ so that C_4 will be connected to $\tau(C_3)$. In case of (i), $C_3 \cup C_4 \cup \gamma_0$ will bound a domain $D \subset \Sigma$. But this is a contradiction to the maximum principle since $\partial D \subset P$. In case of (ii), γ_0 is disjoint from P. Then γ_0 and $P \cap \Sigma$ bound an infinite strip $S \subset \Sigma$ lying on one side of P. Since $S/\langle \tau \rangle$ is compact, there exists a point $p \in S$ which has the maximum distance from P among all points of S. γ_0 is a constant distance away from P and the inward unit conormals to γ_0 on Σ wind around it once in its fundamental piece. So there is a point in γ_0 at which the inward unit conormal to γ_0 points away from P. Then in that direction the distance from P increases, hence p_S is not a point of γ_0 but an interior point of S. However, this contradicts the maximum principle. Consequently, no tangent plane to Σ can be vertical at any point of Σ_0. Even if $P \cap \Sigma$ consists of six curves or more, the same argument works.

We now show that the interior of Σ does not intersect γ_0. Let $\psi : [0, \bar{a}] \times \mathbb{R} \to \mathbb{R}^3$ be the periodically area minimizing conformal harmonic map such that $\psi([0, \bar{a}] \times \mathbb{R}) = \Sigma$, $\psi(\{0\} \times \mathbb{R}) = \gamma_0$ and $\psi(\{\bar{a}\} \times \mathbb{R}) = \gamma_1$. Suppose there exists an interior point $p \in (0, \bar{a}] \times \mathbb{R}$ such that Σ intersects γ_0 at $\psi(p)$. Define $f(q) = x_1(q)^2 + x_2(q)^2$ for $q \in \Sigma$. Let F be the family of all arcs on Σ connecting γ_0 to $\psi(p)$. Let’s find a saddle point in Σ for the function f. Define

$$A = \min_{\alpha \in F} \max_{q \in \alpha} f(q).$$

Clearly there exists a saddle point q_0 in Σ such that $f(q_0) = A$. Suppose $A = 0$. Then there is an arc $\bar{\alpha} \subset [0, \bar{a}] \times \mathbb{R}$ connecting $\{0\} \times \mathbb{R}$ to p such that $f \equiv 0$ on $\psi(\bar{\alpha})$. Since Σ is periodically area minimizing, it has no interior branch point. Neither does Σ have a boundary branch point on γ_0. Hence ψ is an immersion on $[0, \bar{a}] \times \mathbb{R}$. But ψ maps $\{0\} \times \mathbb{R} \cup \bar{\alpha}$ onto γ_0 if $f \equiv 0$ on $\psi(\bar{\alpha})$. This is not possible for the
immersion ψ. Hence A cannot be equal to 0. Since $\nabla f = 0$ at q_0, the tangent plane to Σ at q_0 is parallel to γ_0 and hence it must be vertical. This is a contradiction. Therefore the interior of Σ does not intersect γ_0.

Henceforth we show that $\hat{\Sigma} \setminus \gamma_0$ is a graph over the x_1x_2-plane, where $\hat{\Sigma}$ is a fundamental region of Σ. By (a) we know that $m \equiv 2$ on γ_0. Hence, given a vertical half plane Q emanating from γ_0 and a suitably chosen fundamental region $\hat{\Sigma}$ of Σ, $Q \cap \hat{\Sigma} \setminus \gamma_0$ is a single smooth curve joining γ_0 to γ_1. Since the interior of Σ does not intersect γ_0, the projection map $\pi|_{Q} : \hat{\Sigma} \setminus \gamma_0$ is one-to-one near γ_0. As $\pi(\gamma_1)$ is convex and $\pi|_{\Sigma \setminus \gamma_1}$ is one-to-one, hence $\pi(\Sigma)$ lies inside $\pi(\gamma_1)$ and $\pi|_{\Sigma}$ is one-to-one near γ_1.

Suppose the curve $Q \cap \hat{\Sigma} \setminus \gamma_0$ contains a point p at which its tangent line is vertical. Then the tangent plane to Σ at p is also vertical, which is a contradiction. Hence $Q \cap \hat{\Sigma} \setminus \gamma_0$ admits a one-to-one projection into $\pi(Q)$ for all Q. It follows that $\hat{\Sigma} \setminus \gamma_0$ is a 2-dimensional graph over $\pi(\Sigma \setminus \gamma_0)$. Hence Σ is embedded.

(c) Suppose there exist two periodic Plateau solutions Σ_1, Σ_2 spanning Γ. Assume that their fundamental regions $\hat{\Sigma}_1, \hat{\Sigma}_2$ are the graphs of analytic functions $f_1, f_2 : D \subset x_1x_2$-plane $\rightarrow \mathbb{R}$, $D := \pi(\hat{\Sigma}_1 \setminus \gamma_0) = \pi(\hat{\Sigma}_2 \setminus \gamma_0)$. Assume also that $f_1 \geq f_2$.

If there exists an interior point $p \in D$ such that $(f_1 - f_2)(p) = \max_{q \in D}(f_1 - f_2)(q)$, we have a contradiction to the maximum principle. Hence $f_1 - f_2$ has no interior maximum in D. Since $f_1 - f_2 \equiv 0$ on $\pi(\gamma_1)$, it can have a maximum only at $\pi(\gamma_0) = (0, 0)$. However, the maximum is attained anglewise as follows. Let $M = \sup_{\eta \in D}(f_1 - f_2)(q)$. Given a half plane Q emanating from γ_0, let $M_Q = \sup_{\eta \in Q \cap D}(f_1 - f_2)(q)$. Then $M = \max Q M_Q$. Hence there exists a half plane Q emanating from γ_0 such that

$$M = \lim_{q \in \ell, q \to (0,0)} (f_1 - f_2)(q), \text{ where } \ell = Q \cap D.$$

Then the parallel translate of Σ_2 by M, denoted as $\Sigma_2 + M$, still contains γ_0 as Σ_1 does, lies on one side of Σ_1 (above Σ_1) and is tangent to Σ_1 at $x_3 = q_1 := \lim_{q \in \ell, q \to (0,0)} f_1(q)$. Hence by the boundary maximum principle (boundary point lemma), $f_2 + M \equiv f_1$, that is, $\Sigma_2 + M = \Sigma_1$. Since $\Sigma_2 + M$ spans $\Gamma + M$ and Σ_1 does Γ, M must equal 0 and thus follows the uniqueness of Σ. \hfill \Box

4. Smyth’s Theorem

It was H.A. Schwarz [7] who first constructed a triply periodic minimal surface in \mathbb{R}^3. He started from a regular tetrahedron, four edges of which forms a Jordan curve, which in turn generates a unique minimal disk. Schwarz found this surface using specific Weierstrass data. By applying his reflection principle he was able to extend the minimal disk across its linear boundary to obtain the D-surface. Then Schwarz introduced its conjugate surface, which he called the P-surface. This surface is embedded and triply periodic just like the D-surface. Moreover, part of it is a free boundary minimal surface in a cube.

It is interesting to notice that both D-surface and P-surface have fundamental regions which are free boundary minimal disks in two specific tetrahedra, respectively. However, this is not an accident; B. Smyth [8] showed surprisingly that any tetrahedron contains as many as three free boundary minimal disks. In the remainder of the paper we are interested in applying Smyth’s method to the periodic Plateau solutions. To do so, we shall first review Smyth’s theorem in this section.
Given a tetrahedron T in \mathbb{R}^3, let F_1, F_2, F_3, F_4 be its faces and $\nu_1, \nu_2, \nu_3, \nu_4$ the outward unit normals to the faces, respectively. Then any three of $\nu_1, \nu_2, \nu_3, \nu_4$ are linearly independent but all four of them are not. Hence there should exist positive numbers c_1, c_2, c_3, c_4 such that
\begin{equation}
(4.1) \quad c_1 \nu_1 + c_2 \nu_2 + c_3 \nu_3 + c_4 \nu_4 = 0.
\end{equation}
In fact, we may assume
\begin{equation}
(4.2) \quad c_i = \text{Area}(F_i), \quad i = 1, 2, 3, 4.
\end{equation}
This is due to the divergence theorem applied on the domain T to the gradients of the harmonic functions x_1, x_2, x_3, the Euclidean coordinates of \mathbb{R}^3.

By (4.1) we see that there exists an oriented skew quadrilateral Γ whose edges (as vectors) are $c_1 \nu_1, c_2 \nu_2, c_3 \nu_3, c_4 \nu_4$. The Jordan curve Γ bounds a unique minimal disk Σ, which is the image $X(D)$ of a conformal harmonic map $X := (x_1, x_2, x_3)$. It is well known that x_1, x_2, x_3 are also harmonic on Σ. Hence there exist their conjugate harmonic functions x_1^*, x_2^*, x_3^* on Σ. Then $X^* := (x_1^*, x_2^*, x_3^*)$ defines a conformal harmonic map from D onto Σ^* in \mathbb{R}^3. $X^* \circ X^{-1} : \Sigma \to \Sigma^*$ is a local isometry because of the Cauchy-Riemann equations. Therefore Σ^* is a minimal surface locally isometric to Σ.

Let $y_i = b^1_i x_1 + b^2_i x_2 + b^3_i x_3$ be a linear function in \mathbb{R}^3 such that $\nabla y_i = c_i \nu_i$, $i = 1, 2, 3, 4$. Then y_i is constant (= d_i) on the face F_i. Suppose u, v are isothermal coordinates on Σ such that v is constant along the edge $c_2 \nu_2$. Then $dX(\frac{\partial}{\partial v})$ is perpendicular to the vector $c_2 \nu_2$ on the edge $c_2 \nu_2$. Hence $\frac{\partial y_i}{\partial u} = 0$, and by Cauchy-Riemann $\frac{\partial y_i}{\partial u} = 0$ on $c_2 \nu_2$ as well, where $y_i := b^1_i x_1^* + b^2_i x_2^* + b^3_i x_3^*$. Therefore y_i^* is constant along the edge $c_2 \nu_2$, meaning that the image $X^*(c_i \nu_i)$ lies on the plane $\{y_i^* = d_i^*\}$ for some constant d_i^*.

Then $dX(\frac{\partial}{\partial u})$ is parallel to ∇y_i along the edge $c_2 \nu_2$. By Cauchy-Riemann, there exists a number $c(p)$ at $p \in c_2 \nu_2$ such that
\begin{equation}
(4.2) \quad c(p)(b^1_i, b^2_i, b^3_i) = dX(\frac{\partial}{\partial u}) = dX^*(\frac{\partial}{\partial v}).
\end{equation}
Hence $dX^*(\frac{\partial}{\partial v})$ is parallel to (b^1_i, b^2_i, b^3_i). Therefore Σ^* is perpendicular to the plane $\{y_i^* = d_i^*\}$ along $X^*(c_i \nu_i)$. In conclusion, Σ^* is locally isometric to Σ and is a free boundary minimal surface in a tetrahedron T^* which is similar to T. Thus T contains a free boundary minimal surface which is a homothetic expansion of Σ^*.

The skew quadrilateral Γ depends on the order of $c_1 \nu_1, c_2 \nu_2, c_3 \nu_3, c_4 \nu_4$. Any edge of the four can be chosen to be the first in a quadrilateral. Hence there are $6 = 3!$ orderings of the four edges. But they can be paired off into three quadrilaterals with two opposite orientations. To be precise, for example, if the quadrilateral Γ_1 determined by four ordered vectors (u, v, w, x) is reversely traversed, we get the quadrilateral $-\Gamma_1$ for the ordering $(-u, -v, -w, -x)$. Define an orthogonal map $\xi(p) = -p$, $p \in \mathbb{R}^3$, then $\xi(-\Gamma_1)$ is the quadrilateral determined by (u, v, w, x). $\xi(-\Gamma_1)$ cannot be obtained from Γ_1 by a Euclidean motion. Even so, the two minimal disks spanning Γ_1 and $\xi(-\Gamma_1)$ are intrinsically isometric. Moreover, their conjugate surfaces are extrinsically isometric, i.e., they are identical modulo a Euclidean motion. Therefore the six orderings of the four edges yield three geometrically distinct conjugate minimal disks which, if properly expanded, will be free boundary minimal surfaces in T.
5. Free boundary minimal annuli

By applying Smyth’s theorem to a translationally periodic solution of the periodic Plateau problem we are going to construct four free boundary minimal annuli in a tetrahedron.

Theorem 5.1. Let T be a tetrahedron with faces F_1, F_2, F_3, F_4 in \mathbb{R}^3 and let π_i be the orthogonal projection onto the plane P_i containing F_i, $i = 1, 2, 3, 4$.

(a) If every dihedral angle of T is $\leq 90^\circ$, there exist four free boundary minimal annuli A_1, A_2, A_3, A_4 in T.

(b) If at least one dihedral angle of T is $> 90^\circ$, there exist four minimal annuli A_1, A_2, A_3, A_4 which are perpendicular to $\bigcup_{j=1}^4 P_j$ along ∂A_i. Part of A_i may lie outside T if a dihedral angle is nearer to 180°. (See Figure 6, right.) Near ∂A_i, however, A_i lies in the same side of P_i as T does. Moreover, ∂A_i equals $\Gamma^1_i \cup \Gamma^2_i$, where Γ^1_i is a closed convex curve in P_i and Γ^2_i is a closed, piecewise planar curve in $P_j \cup P_k \cup P_l$ with $\{i, j, k, l\} = \{1, 2, 3, 4\}$.

(c) If the three dihedral angles along ∂F_i are $\leq 90^\circ$, then A_i lies inside T. Γ^1_i is a closed convex curve in F_i and Γ^2_i is a closed, piecewise planar curve in $\partial T \setminus F_i$. (See Figure 6, left.)

(d) Each planar curve in Γ^2_i is convex and is perpendicular to the lines containing the edges of T at its end points.

(e) A_i is an embedded graph over $\pi_i(A_i)$.

\[\text{Figure 6.}\]

Proof. As in the preceding section, ν_i denotes the outward unit normal to F_i. Again, there are positive constants $c_i = \text{Area}(F_i)$ such that $c_1\nu_1 + c_2\nu_2 + c_3\nu_3 + c_4\nu_4 = 0$. Assume that ν_4 is parallel to the x_3-axis so that F_4 is contained in the x_1x_2-plane. Denote the x_1x_2-plane by P_4 and recall that π_4 denotes the orthogonal projection onto P_4. Since

\[\pi_4(c_1\nu_1) + \pi_4(c_2\nu_2) + \pi_4(c_3\nu_3) = 0,\]

$\pi_4(c_1\nu_1), \pi_4(c_2\nu_2), \pi_4(c_3\nu_3)$ determine the boundary of a triangle $\Delta_4 \subset P_4$, that is, $\pi_4(c_i\nu_i)$ is the ith oriented edge of Δ_4, $i = 1, 2, 3$. $\pi_4(c_i\nu_i)$ is perpendicular to the boundary edge $F_i \cap F_i$ of F_i. Also $\pi_4(c_i\nu_i)$ is perpendicular to the corresponding edge of $J(\Delta_4)$, where J denotes the counterclockwise 90° rotation on P_4. Therefore Δ_4 is similar to F_4.

Choose a point q from the interior Δ_4 of Δ_4 and let $\bar{\gamma}_q$ be the vertical line segment starting from q and corresponding to (i.e., having the same length and direction as) $-c_1\nu_4$. Let $\bar{\gamma}_1$ be a connected piecewise linear open curve starting from a vertex of Δ_4 that is the starting point of the oriented edge $\pi_4(c_1\nu_1)$ such that $\bar{\gamma}_1$ is the union of the three oriented line segments corresponding to the ordered vectors $c_1\nu_1, c_2\nu_2, c_3\nu_3$. Then $\pi_4(\bar{\gamma}_1) = \partial\Delta_4$. Also the endpoints of $\bar{\gamma}_1$ and $\bar{\gamma}_q$ are in Δ_4 and in its parallel translate. One can extend $\bar{\gamma}_q \cup \bar{\gamma}_1$ into a complete translationally periodic curve $\Gamma_q := \gamma_q \cup \gamma_1$ such that $\bar{\gamma}_q \cup \bar{\gamma}_1, \bar{\gamma}_q, \gamma_1$ become fundamental pieces of $\Gamma_q, \gamma_q, \gamma_1$, respectively. By Theorem 2.2 and Theorem 3.1 there uniquely exists a simply connected minimal surface Σ_q spanning Γ_q. Σ_q has the same translational periodicity as Γ_q does. (See Figure 7.)

Let Σ^*_q be the conjugate minimal surface of Σ_q and denote by $Y^*_q = X_q^* \circ X_q^{-1}$ the local isometry from Σ_q to Σ^*_q. By Smyth’s arguments in the preceding section we see that the image $Y^*_q(c_1\nu_1)$ of the edge $c_1\nu_1$ is in a plane parallel to the face F_1. More precisely, $Y^*_q(c_i\nu_i)$ lies in the plane $\{ y_i^* = d_i^* \}$, where $\nabla y_i^* = c_i\nu_i$. However, $Y^*_q(\bar{\gamma}_q)$ is not closed in general because Y^*_q may have nonzero period along $\bar{\gamma}_q$. But note that by Cauchy-Riemann the period of Y^*_q along $Y^*_q(\bar{\gamma}_q)$ equals the flux of Σ_q along $\bar{\gamma}_q$. Therefore in order to make Σ^*_q a well-defined compact minimal annulus, we need to find a suitable point q in Δ_4 for which the flux of Σ_q along $\bar{\gamma}_q$ becomes the zero vector. Note here that the flux of Σ_q along $\bar{\gamma}_1$ vanishes if and only if the flux of Σ_q along $\bar{\gamma}_q$ does.

Let $n(p)$ be the inward unit conormal to $\bar{\gamma}_q$ on Σ_q at $p \in \bar{\gamma}_q$ and define

$$f(q) = \int_{p \in \bar{\gamma}_q} n(p).$$

Then $f(q)$ is the flux of Σ_q along $\bar{\gamma}_q$ and f is a map from the interior Δ_4 to the set N of vectors parallel to the plane P_4. f is a smooth map and can be extended continuously to the closed triangle Δ_4. Let $\Delta_4 \times \mathbb{R}$ be the vertical prism over Δ_4. Obviously Σ_q lies inside $\Delta_4 \times \mathbb{R}$. Since $\bar{\gamma}_1$ winds around $\bar{\gamma}_q$ once, so does $n(p)$ as p moves along $\bar{\gamma}_q$. But as q approaches a point $\bar{q} \in \partial\Delta_4$, Γ_q converges to a complete translationally periodic curve $\Gamma_{\bar{q}} := \gamma_{\bar{q}} \cup \gamma_1$ of which $\bar{\gamma}_q \cup \bar{\gamma}_1$ is a fundamental piece. Let τ be the translation defined by $\tau(p) = \bar{p} - c_4\nu_4$, $\bar{p} \in \mathbb{R}^3$. Since $\bar{\gamma}_{\bar{q}}$ intersects $\bar{\gamma}_1$, $\Gamma_{\bar{q}}$ is a periodic union of Jordan curves, or more precisely, $\Gamma_{\bar{q}} = \cup_n \tau^n(\gamma_{\bar{q}})$, where

\begin{figure}
\centering
\includegraphics[width=\textwidth]{construction.png}
\caption{Construction procedure}
\end{figure}
\(\gamma_{1\bar{q}}\) is a Jordan curve which is a subset of \((\gamma_{\bar{q}} \cup \gamma_{\bar{1}}) \cup \tau(\gamma_{\bar{q}} \cup \gamma_{\bar{1}})\). \(\gamma_{1\bar{q}}\) consists of five
(or four if \(\gamma_{\bar{q}}\) passes through a vertex of \(\gamma_{\bar{1}}\)) line segments. It is known that the total
curvature of \(\gamma_{1\bar{q}}\) equals the length of its tangent indicatrix \(T_{1\bar{q}}\). \(T_{1\bar{q}}\) is comprised of
(i) a geodesic triangle and a geodesic with multiplicity 2 in case \(\gamma_{1\bar{q}}\) consists of five
line segments or (ii) four geodesics connecting the four points in \(S^2\) that correspond
to \(\nu_1, \nu_2, \nu_3, \nu_4\). Since the length of a geodesic triangle is less than \(2\pi\) and the length
of a geodesic is less than \(\pi\), the total length of \(T_{1\bar{q}}\) is smaller than \(4\pi\) in either case.
Thus by [4] there exists a unique minimal disk spanning \(\gamma_{1\bar{q}}\). As a matter of fact,
we can easily extend the proof of Theorem 3.1(c) to the limiting case where \(\gamma_{\bar{1}}\)
intersects \(\gamma_{\bar{0}}\). So we can see that \(\gamma_{1\bar{q}}\) bounds a unique minimal surface \(\Sigma_{\bar{q}} \subset \Delta_4 \times \mathbb{R}\)
regardless of its topology. As \(q \to \bar{q} \in \partial \Delta_4\), a fundamental region of \(\Sigma_q\) converges
to \(\Sigma_{\bar{q}}\). Hence, by continuity of the extended map \(f: \Delta_4 \to N\), \(f(q)\) converges to
\(f(\bar{q}) = \int_{p \in \gamma_{\bar{q}}} n(p)\) which is the flux of \(\Sigma_{\bar{q}}\) along \(\gamma_{\bar{q}} \subset \partial \Delta_4 \times \mathbb{R}\). Therefore, as \(n(p)\)
points into the interior of \(\Delta_4\) at any \(p \in \gamma_{\bar{q}}\), \(f(\bar{q})\) is a nonzero horizontal vector
pointing toward the interior of \(\Delta_4\).

Now we are ready to show that there is a point \(q\) in the interior \(\Delta_4\) at which the
flux \(f(q)\) vanishes. Suppose \(f(q) \neq 0\) for all \(q \in \Delta_4\) and define a map \(\tilde{f}: \Delta_4 \to S^1\)
by

\[
\tilde{f}(q) = \frac{f(q)}{|f(q)|}
\]

Then \(\tilde{f}\) is continuous and \(\tilde{f}|_{\partial \Delta_4}\) has winding number 1 because the nonzero hori-
zontal vector \(f(q)\) points toward the interior \(\Delta_4\) at any \(\bar{q} \in \partial \Delta_4\). But this is a
contradiction since the induced homomorphism \(\tilde{f}: \pi_1(\Delta_4) \to \pi_1(S^1)\) must then be
surjective. Therefore there should exist \(q_4 \in \Delta_4\), and a minimal surface \(\Sigma_{q_4}\) which
has zero flux \(f(q_4) = 0\) along \(\gamma_{q_4}\). Thus the conjugate surface \(\Sigma_{q_4}^*\) is a well-defined
minimal annulus. (See Figure 7.)

It remains to show that a homothetic expansion of \(\Sigma_{q_4}^*\) is in \(T\) and perpendicular
to \(\partial T\) along its boundary. According to the arguments of Smyth’s theorem, there
exist constants \(d_{i1}^*, d_{i2}^*, d_{i3}^*, d_{i4}^*\) such that the curve \(Y_{q_4}^*(c_i \nu_i)\) is in the plane \(\{y_{i1}^* = d_{i1}^*\}\)
and \(\Sigma_{q_4}^*\) is perpendicular to that plane along \(Y_{q_4}^*(c_i \nu_i)\). Moreover, the outward unit
conormal to \(Y_{q_4}^*(c_i \nu_i)\) on \(\Sigma_{q_4}^*\) is \(\nu_i\) and hence near \(Y_{q_4}^*(c_i \nu_i)\), \(\Sigma_{q_4}^*\) lies in the same side
of the plane \(\{y_{i1}^* = d_{i1}^*\}\) as \(T\) does. Remember that the four planes \(\cup_{i=1}^4 \{y_{i1} = d_{i1}\}\)
enclose the tetrahedron \(T\) and \(\cup_{i=1}^4 \{y_{i1}^* = d_{i1}^*\}\) enclose the tetrahedron \(T^*\). Since
\(y_i = b_i^1 x_1 + b_i^2 x_2 + b_i^3 x_3\) and \(y_{i1}^* = b_i^1 x_{i1}^* + b_i^2 x_{i2}^* + b_i^3 x_{i3}^*\), \(T'\) is similar to \(T\). As \(\nu_4\)
is assumed to be parallel to the \(x_3\) axis, \(y_{i1}^* = b_i^3 x_{i3}^*\).

Obviously a homothetic expansion of \(\Sigma_{q_4}^*\) will give a minimal annulus \(A_4\) which is
perpendicular to \(\cup_{i=1}^4 \{y_{i1} = d_{i1}\}\) along \(\partial A_4\). Working with a new plane \(P_j\) containing
\(F_j, j = 1, 2, 3\), instead of \(F_4\) and using the triangles \(\Delta_j \subset P_j\), obtained from the
relation for the projection \(\pi_j\) into \(P_j\):

\[
\left(\sum_{i=1}^4 \pi(c_i \nu_i)\right) - \pi_j(c_j \nu_j) = 0, \quad j = 1, 2 \text{ or } 3,
\]

one can similarly find minimal annuli \(A_1, A_2, A_3\) which are homothetic expansions
of \(\Sigma_{q_j}^*\) for some \(q_j \in \Delta_j, j = 1, 2, 3\). This proves (b) except for the convexity of the
closed curve.
Let's denote by F'_j the face of T' which is similar to the face F_j of T, $j = 1, 2, 3, 4$. Is it true that $\partial \Sigma_{q_4}^* \subset \partial T'$? Here we have to be careful because $Y_{q_4}^* (\gamma_{q_4})$ and $Y_{q_4}^* (\gamma_1)$ are disconnected. (Notice that $\partial \Sigma^*$ is connected in Smyth's case.) Consequently, for $j = 4$, $Y_{q_4}^* (\gamma_1)$ is not necessarily a subset of $\partial T' \setminus \{ y_4^* = d_4^1 \}$ and it may intersect the plane $\{ y_4^* = d_4^1 \} (= \{ x_3^* = 0 \})$ as in Figure 6, right. To get some information about the location of $\partial \Sigma_{q_4}^*$, let's first assume that (d) and (e) are true. Since near $Y_{q_4}^* (c_i \nu_i), i = 1, 2, 3$, $\Sigma_{q_4}^*$ lies in the same side of the plane $\{ y_i^* = d_i^4 \}$ as T' does and since $Y_{q_4}^* (c_i \nu_i)$ are convex and are perpendicular on their endpoints to the three lines containing the edges $F_1^* \cap F_2^*, F_2^* \cap F_3^*, F_3^* \cap F_1^*$, respectively, one can conclude that (i) $Y_{q_4}^* (\gamma_1)$ lies in the tangent cone $T_{\Gamma_{p_4}} (\partial T')$ of $\partial T'$ at p_4, the vertex of T' opposite F', and $\Sigma_{q_4}^*$ is a graph over $\pi_4 (\Sigma_{q_4}^*)$. (ii) $Y_{q_4}^* (\gamma_{q_4})$ is surrounded by $\pi_4 (Y_{q_4}^* (\gamma_1))$ in the plane $\{ y_4^* = d_4^1 \}$.

Now let's prove a lemma which is more general than (c). If the dihedral angles along ∂F_4 are $\leq 90^\circ$, the unit normals ν_1, ν_2, ν_3 are pointing upward and γ_1 goes upward. So one can consider the following generalization.

Lemma 5.2. Let $\Gamma = \gamma_0 \cup \gamma_1$ be a translationally periodic curve and γ_0 the x_3-axis. Assume that Σ_{Γ} is a translationally periodic Plateau solution spanning Γ. If x_3 is a nondecreasing function on γ_1, then the boundary component of Σ_{Γ}^* corresponding to γ_0 is in the $x_1^* x_2^*$-plane and Σ_{Γ}^* is on and above the $x_1^* x_2^*$-plane.

Proof. Σ_{Γ} has no horizontal tangent plane $T_p \Sigma_{\Gamma}$ at any interior point $p \in \Sigma_{\Gamma}$. This can be verified as follows. Every horizontal plane $\{ x_3 = h \}$ intersects Γ either at two points only or at infinitely many points (the second case occurs when $\{ x_3 = h \} \cap \gamma_1$ is a curve of positive length). If $T_p \Sigma_{\Gamma} = \{ x_3 = h \}$, then $\{ x_3 = h \} \cap \Sigma_{\Gamma}$ is the set of at least four curves emanating from p. But then three of them intersect γ_1 and hence there exists a domain $D \subset \Sigma_{\Gamma}$ with $\partial D \subset \{ x_3 = h \}$, which contradicts the maximum principle. Hence $\{ x_3 = h \}$ is transversal to Σ_{Γ} for every h and therefore x_3^* is an increasing function on every horizontal section $\{ x_3 = h \} \cap \Sigma_{\Gamma}$. Since $x_3^* = 0$ on γ_0, x_3^* must be nonnegative on Σ_{Γ}.

If the dihedral angles along ∂F_4 are $\leq 90^\circ$, then by the above lemma $Y_{q_4}^* (\gamma_1) \subset \partial T' \setminus F_4^*$. By (e), which will be proved independently, $Y_{q_4}^* (\gamma_{q_4})$ is surrounded by $\pi_4 (Y_{q_4}^* (\gamma_1))$ and hence $Y_{q_4}^* (\gamma_{q_4})$ lies inside F_4^*. This proves (c) (except for convexity) and (a) as well.

We now derive the convexity of $\partial \Sigma_{q_4}^*$ as follows. Henceforth our proof will be independent of (a), (b), (c). It should be mentioned that $\Sigma_{q_4}^*$ has been constructed independently of (d) and (e). Let Q be a vertical half plane emanating from γ_{q_4}, that is, $\partial Q \supset \gamma_{q_4}$. Then $Q \cap \gamma_1$ is a single point unless Q contains the two boundary points of γ_1. Let q be a point of γ_{q_4} which is the end point of $Q \cap (\Sigma_{q_4} \setminus \gamma_{q_4})$. Here we claim that in a neighborhood U of q, $C := U \cap Q \cap (\Sigma_{q_4} \setminus \gamma_{q_4})$ is a single curve emanating from q. If not, $U \cap Q \cap (\Sigma_{q_4} \setminus \gamma_{q_4})$ is the union of at least two curves C_1, C_2, \ldots emanating from q. These curves can be extended all the way up to $\gamma_{q_4} \cup \gamma_1$. In case $Q \cap \partial \gamma_1 = \emptyset$, $Q \cap \gamma_1$ is a single point, then only one of C_1, C_2, \ldots, say C_1, can reach the point $Q \cap \gamma_1$ and C_2 can only reach γ_{q_4}. Since Σ_{q_4} is simply connected, C_2 and γ_{q_4} bound a domain $D \subset \Sigma_{q_4}$ with $\partial D \subset Q$. This contradicts the maximum principle. In case Q intersects γ_1 at its boundary points p_1, p_2, there exist two curves, say $C_1, C_2 \subset Q \cap \Sigma_{q_4}$ emanating from q, such that $p_1 \in C_1$ and $p_2 \in C_2$. Remember that $\gamma_{q_4} \cup \gamma_1$ is a fundamental piece of Γ_{q_4} which is translationally periodic under the vertical translation τ by $-c_4\nu_4$. Hence $\tau(p_1) = p_2$
and therefore the two distinct curves $\tau(C_1), C_2 \subset Q \cap \Sigma_{q_4}$ emanate from p_2. But this is not possible since in a neighborhood of p_2, $Q \cap \Sigma_{q_4}$ is a single curve emanating from p_2. Hence the claim follows.

Note that $\log g = i \arg g$ on the straight line γ_{q_4} containing $\tilde{\gamma}_{q_4}$ because $|g| \equiv 1$ there. If $(d/dx_3) \arg g = 0$ at a point $q \in \gamma_{q_4}$ (x_3: the parameter of γ_{q_4}), then for the vertical half plane Q tangent to Σ_{q_4} at q, $Q \cap (\Sigma_{q_4} \setminus \gamma_{q_4})$ will be the union of at least two curves emanating from q, contradicting the claim. Hence $g' \neq 0$ on γ_{q_4}. Therefore $g' \neq 0$ on $\Sigma_{q_4}^* \cap \{y_4^* = d_4^*\} = Y_{q_4}^* (\gamma_{q_4})$ as well and so $\Sigma_{q_4}^* \cap \{y_4^* = d_4^*\}$ is convex. Similarly, let Q_j be a half plane emanating from the line segment L in γ_1 corresponding to $c_j p_j$, $j = 1, 2, 3$. Being nonvertical, Q_j intersects γ_{q_4} only at one point. Hence $Q_j \cap (\Sigma_{q_4} \setminus L)$ is a single curve joining a point $p \in L$ to $Q_j \cap \gamma_{q_4}$ and p is a tangent point of Q_j and Σ_{q_4}. If we rotate Σ_{q_4} in such a way that $|g| \equiv 1$ on L, we can conclude $g'(p) \neq 0$ in the same way as above, as long as p is an interior point of L. On the other hand, $g' = 0$ at the boundary of L because the interior angle at the boundary of L is π. Note that any interior point of L can be a tangent point of Q_j and Σ_{q_4} for some Q_j emanating from L and that Q_j intersects γ_{q_4} at one point only. Therefore $g' \neq 0$ in the interior of $L \subset \Sigma_{q_4}$ and hence $g' \neq 0$ in the interior of $\Sigma_{q_4}^* \cap \{y_4^* = d_4^*\} = Y^* (L)$. Thus $\Sigma_{q_4}^* \cap \{y_4^* = d_4^*\}$ is convex, $j = 1, 2, 3$. Since $\Sigma_{q_4}^*$ is perpendicular to $\{y_i^* = d_i^*\}$ and to $\{y_j^* = d_j^*\}$ at $p = \Sigma_{q_4}^* \cap \{y_i^* = d_i^*\} \cap \{y_j^* = d_j^*\}, 1 \leq i \neq j \leq 3$, so is $\partial \Sigma_{q_4}^*$ to the edge $\{y_i^* = d_i^*\} \cap \{y_j^* = d_j^*\}$ at p. This proves (d).

Remark that $Q \cap \gamma_1$ being a single point is the key to the convexity of $\Sigma_{q_4}^* \cap \{y_4^* = d_4^*\}$. Therefore one can easily prove the following generalization which is dual to Lemma 5.2.

Lemma 5.3. Let $\Gamma = \gamma_0 \cup \gamma_1$ be a translationally periodic curve and γ_0 the x_3-axis. Assume that Σ_1^* is a translationally periodic Plateau solution spanning Γ and that its conjugate surface Σ_1^* is a well-defined minimal annulus. If a fundamental piece $\tilde{\gamma}_1$ of γ_1 has a one-to-one projection into the $x_1 x_2$-plane $\{x_3 = 0\}$, then the closed curve $\Sigma_1^* \cap \{x_3 = 0\}$ is convex.

Finally let’s prove (e). Theorem 3.1 (b) implies that $\Sigma_{q_4} \setminus \gamma_{q_4}$ is a graph over $\pi_4 (\Sigma_{q_4} \setminus \gamma_{q_4})$. The two boundary curves $\partial (\Sigma_{q_4} \setminus (\gamma_{q_4} \cup \gamma_1))$ are the parallel translates of one another. Therefore Σ_{q_4} is embedded. Now we are going to use Krust’s argument (see Section 3.3 of [1]) to prove that $\Sigma_{q_4}^*$ is also a graph. Let $X = (x_1, x_2, x_3)$ be the immersion of $[0, a] \times [0, \beta]$ into Σ_{q_4} and $X^* = (x_1^*, x_2^*, x_3^*)$ the immersion: $[0, a] \times [0, \beta] \to \Sigma_{q_4}^*$. We can write the orthogonal projections of X and X^* into the horizontal plane as respectively

$$w(z) := x_1(z) + i x_2(z), \quad w^*(z) := x_1^*(z) + i x_2^*(z), \quad z = x + iy, \quad (x, y) \in [0, a] \times [0, \beta].$$

Then w is a map from $[0, a] \times [0, \beta]$ onto the triangle Δ_4. Given two distinct points $z_1, z_2 \in [0, a] \times (0, \beta)$, we have $w(z_1) \neq w(z_2)$ because $X((0, a] \times (0, \beta])$ is a graph over $\Delta_4 \setminus \{q_1\}$. Let $\ell : [0, 1] \to \Delta_4$ be the line segment connecting $p_1 := w(z_1)$ to $p_2 := w(z_2)$ with constant speed, that is, $\ell(t) = p_1$, $\ell(1) = p_2$ and $|\ell(t)| = |p_2 - p_1|$ for all $t \in [0, 1]$.

(1) Choosing a fundamental region $\tilde{\Sigma}_{q_4}$ of Σ_{q_4} suitably, we may suppose ℓ is disjoint from $\pi(\partial \Sigma_{q_4})$. Then there is a smooth curve $c : [0, 1] \to (0, a] \times (0, 2\beta)$ such that $\ell(t) = w(c(t))$. Clearly $|c(t)| > 0$ for all $0 \leq t \leq 1$. Let $g : [0, a] \times \mathbb{R} \to \mathbb{C}$ be the Gauss map of Σ_{q_4}. Krust showed that the inner product W of the two vectors
Theorem 6.1. Let $p_2 - p_1$ and $i(w^*(z_2) - w^*(z_1))$ of \mathbb{R}^2 is written as

$$W := (p_2 - p_1, i(w^*(z_2) - w^*(z_1))) = \int_0^1 \frac{1}{4} |\dot{c}(t)|^2 \left(|g(c(t))|^2 - \frac{1}{|g(c(t))|^2} \right) dt.$$

Since $\Sigma_{q_4} \setminus \gamma_{q_4}$ is a multi-graph, we have $|g| > 1$ on $(0, a) \times \mathbb{R}$. Hence $W > 0$ and therefore $w^*(z_1) \neq w^*(z_2)$.

(2) Suppose ℓ intersects $\pi(\partial \Sigma_{q_4})$ at the point q_4. Then c is piecewise smooth and there exist $0 < d_1 < d_2 < 1$ such that $q_4 \notin w(c([0, d_1])) \cup w(c([d_2, 1]))$, $w(c([d_1, d_2])) = \{q_4\}$, and $|\dot{c}(t)| > 0$ for $t \in [0, d_1) \cup (d_2, 1]$. Clearly $|g(c(t))| = 1$ for $t \in [d_1, d_2]$, $|g(c(t))| > 1$ for $t \in [0, d_1) \cup (d_2, 1]$. Hence

$$W = \left(\int_0^{d_1} + \int_1^{d_2} \right) \frac{1}{4} |\dot{c}(t)|^2 \left(|g(c(t))|^2 - \frac{1}{|g(c(t))|^2} \right) dt > 0$$

and so $w^*(z_1) \neq w^*(z_2)$.

Thus we can conclude that $X^*((0, a) \times (0, \beta))$ is a graph over the $x_1^*x_2^*$-plane. Since $X^*((0, a) \times (0, \beta))$ coincides with $X^*((0, a) \times \{\beta\})$, $X^*((0, a) \times [0, \beta]) = \Sigma_{q_4}^* \setminus \gamma_{q_4}$ is also a graph over its projection into the $x_1^*x_2^*$-plane. This proves (e). □

6. Pyramid

It has been possible to construct free boundary minimal annuli in a tetrahedron T because T is the simplest polyhedron in \mathbb{R}^3. In general one cannot find a free boundary minimal annulus in a polyhedron like a quadrilateral pyramid P_y in Figure 8. Of course, given a translationally periodic curve Γ_q with fundamental piece $\tilde{\gamma}_q \cup \tilde{\gamma}_1$ corresponding to $c_1 \nu_1, \ldots, c_5 \nu_5$, respectively, where ν_1, \ldots, ν_5 are the unit normals to the faces of P_y, one can show that there exists a translationally periodic minimal surface Σ_q spanning Γ_q. One can also find a point $q_5 \in \Delta_5$ such that $\Sigma_{q_5}^*$ is a minimal annulus. However, Σ_{q_5} may be a free boundary minimal annulus not in P_y but in a polyhedron P_o like Figure 8 which has the same unit normals as those of P_y. And yet, in case P_y is a regular pyramid or a rhombic pyramid, we can show that P_y has a free boundary minimal annulus. Surprisingly, we can also show that there exist genus zero free boundary minimal surfaces in every Platonic solid.

![Figure 8. Two polyhedra with parallel faces](image)

Theorem 6.1. Let P_y be a right pyramid whose base B is a regular n-gon. Then there exists a free boundary minimal annulus A in P_y which is a graph over B. A is invariant under the rotation by $2\pi/n$ about the line through the apex and the center.
of B. One component of ∂A is convex and closed in B and the other is convex in each remaining face of P_y.

Proof. Let F_1, \dots, F_n be the faces of P_y other than the base B. Denote by $\nu_0, \nu_1, \dots, \nu_n$ the outward unit normals to B, F_1, \dots, F_n, respectively. Then there exists a unique positive constant c such that

$$cv_0 + \nu_1 + \cdots + \nu_n = 0.$$

Assume that B lies in the x_1x_2-plane with center at the origin. Let γ_0 be a vertical line segment of length c on the x_3-axis and let γ_1 be a connected piecewise linear curve determined by ν_1, \dots, ν_n (i.e., ν_i is the i-th oriented line segment of γ_1) such that the projection $\pi(\gamma_1)$ of γ_1 onto the x_1x_2-plane is a regular n-gon centered at the origin. Moreover, let’s assume that the two end points of γ_0 and γ_1 have the same x_3-coordinates: 0 and c. $\gamma_0 \cup \gamma_1$ determines a complete helically periodic curve Γ of which $\gamma_0 \cup \gamma_1$ is a fundamental piece. Γ is translationally periodic as well. Then Theorem 2.2 guarantees that there exists a translationally periodic minimal surface Σ spanning Γ.

Define the screw motion σ by

$$\sigma(r \cos \theta, r \sin \theta, x_3) = \left(r \cos(\theta + \frac{2\pi}{n}), r \sin(\theta + \frac{2\pi}{n}), x_3 + \frac{c}{n} \right).$$

Obviously Σ is invariant under σ^n. The point is that Σ is invariant under σ as well. This is because by Theorem 3.1 the periodic Plateau solution spanning Γ uniquely exists and $\sigma(\Sigma)$ also spans Γ. So evenly divide γ_0 into n line segments $\gamma_0^1, \dots, \gamma_0^n$ such that

$$\gamma_0^k := \{ p \in \gamma_0 : \frac{k-1}{n} c \leq x_3(p) \leq \frac{k}{n} c \}, \quad k = 1, \dots, n.$$

Similarly, set

$$\Sigma^k = \{ p \in \Sigma : \frac{k-1}{n} c \leq x_3(p) \leq \frac{k}{n} c \}, \quad k = 1, \dots, n.$$

It is clear that

$$\sigma(\gamma_0^k) = \gamma_0^{k+1}, \quad \sigma(\Sigma^k) = \Sigma^{k+1}, \quad k = 1, \dots, n-1,$$

and $\sigma(\Sigma^n) = \sigma^n(\Sigma^1)$.

Denote by $f_\gamma(\Sigma)$ the flux of Σ along $\gamma \subset \partial \Sigma$, that is,

$$f_\gamma(\Sigma) = \int_{p \in \gamma} n(p),$$

where $n(p)$ is the inward unit conormal to γ on Σ at $p \in \gamma$. Clearly

$$f_{\sigma(\gamma)}(\sigma(\Sigma)) = \sigma(f_\gamma(\Sigma)) \quad \text{and} \quad f_{\gamma_0}(\Sigma) = \sum_{k=1}^{n} f_{\gamma_0^k}(\Sigma^k).$$

Hence

$$\sigma(f_{\gamma_0}(\Sigma)) = \sum_{k=1}^{n} \sigma(f_{\gamma_0^k}(\Sigma^k)) = \sum_{k=1}^{n} f_{\gamma_0^k}(\sigma(\Sigma^k))$$

$$= \sum_{k=1}^{n} f_{\gamma_0^k}(\Sigma^{k+1}) + f_{\sigma^n(\gamma_0^1)}(\sigma^n(\Sigma^1))$$

$$= \sum_{k=1}^{n} f_{\gamma_0^k}(\Sigma^k) = f_{\gamma_0}(\Sigma).$$
But \(\sigma(f_{\gamma_0}(\Sigma)) = f_{\gamma_0}(\Sigma) \) holds only when \(f_{\gamma_0}(\Sigma) = 0 \). In this case \(f_{\gamma_1}(\Sigma) \) also vanishes. Therefore \(\Sigma^* \) is a well-defined minimal annulus.

We now show that \(\Sigma^* \) is in \(P_y \) with free boundary. Choose a point \(p \in \Sigma^k \) with coordinates

\[
X(p) = (x_1(p), x_2(p), x_3(p)).
\]

Denote by \(X^*(p) \) the point of \(\Sigma^{k*} \) corresponding to \(p \in \Sigma^k \),

\[
X^*(p) = (x_1^*(p), x_2^*(p), x_3^*(p)).
\]

The coordinates of \(\sigma(p) \) are

\[
X(\sigma(p)) = \left((x_1^0(p), x_2^0(p)), \left(\frac{\cos \alpha}{\sin \alpha}, \frac{\sin \alpha}{\cos \alpha}, x_3^0(p) + \frac{c}{n} \right) \right), \quad \alpha = \frac{2\pi}{n}.
\]

Then

\[
X^*(\sigma(p)) = \left((x_1^*(p), x_2^*(p)), \left(\frac{\cos \alpha}{\sin \alpha}, \frac{\sin \alpha}{\cos \alpha}, x_3^*(p) + 0 \right) \right) = \sigma_0(X^*(p)),
\]

where \(\sigma_0 \) is the rotation in \(\mathbb{R}^3 \) defined by

\[
\sigma_0(r \cos \theta, r \sin \theta, x_3) = \left(r \cos(\theta + \frac{2\pi}{n}), r \sin(\theta + \frac{2\pi}{n}), x_3 \right). \]

Hence

\[
(\Sigma^{k+1})^* = \sigma_0(\Sigma^{k*}), \quad k = 1, \ldots, n
\]

and so

\[
\sigma_0(\Sigma^*) = \sigma_0(\Sigma^1 \cup \cdots \cup \Sigma^n) = \Sigma^2 \cup \cdots \cup \Sigma^n \cup \sigma_0(\Sigma^{n*}) = \Sigma^2 \cup \cdots \cup \Sigma^n \cup \sigma_0^2(\Sigma^{1*}) = \Sigma^*.
\]

Therefore \(\Sigma^* \) is invariant under the rotation \(\sigma_0 \). We know that the curve \(X^*(\nu_1) \) is in the plane \(\{ y_1^* = d_1^* \} \) orthogonal to \(\nabla y_1^* = \nu_1 \) and \(\Sigma^* \) is perpendicular to that plane along \(X^*(\nu_1) \). Therefore (6.1) implies that \(\Sigma^* \) is a free boundary minimal surface in the pyramid \(P_m \) bounded by a plane perpendicular to \(\nu_{n+1} \) and by the \(n \) planes \(\bigcup_{i=1}^{n} (x_i^* = d_i^*) \). \(P_m \) is similar to \(P_y \) and a homothetic expansion \(A \) of \(\Sigma^* \) is a free boundary minimal annulus in \(P_y \). By the same argument as in the proof of Theorem 5.1 we see that \(A \) is a graph over \(B \) and \(\partial A \) is convex on each face of \(P_y \).

There is another way of constructing \(\Sigma^* \): Smyth’s method. Divide the regular \(n \)-gon \(B \) into \(n \) congruent triangles \(B_1, \ldots, B_n \). Then one can tessellate \(P_y \) by \(n \) congruent tetrahedra \(T_1, \ldots, T_n \) with the apex of \(P_y \) as their common vertex and \(B_1, \ldots, B_n \) as their bases. Smyth’s theorem gives us three free boundary minimal disks in \(T_1 \). Among them let’s choose the one that is disjoint from the line through the apex and the center of \(B \). By reflections one can extend the chosen minimal disk to a free boundary minimal annulus in \(P_y \). This annulus must be the same as \(A \) by the uniqueness of Theorem 3.1 (c).

\[\square\]

Corollary 6.2. Every Platonic solid with regular \(n \)-gon faces has five types of embedded, genus zero, free boundary minimal surfaces \(\Sigma_1, \ldots, \Sigma_5 \). Three of them, \(\Sigma_1, \Sigma_2, \Sigma_3 \), intersect each face along 1, \(n \), \(2n \) closed convex congruent curves, respectively. \(\Sigma_4 \) intersects every edge of the solid and \(\Sigma_5 \) surrounds every vertex of the solid. (See Figure 3.)
Proof. Given a Platonic solid P_s, let p be its center and F one of its faces. Then the cone from p over F is a right pyramid with a regular n-gon base and hence P_s is tessellated into congruent right pyramids. Each pyramid contains an embedded free boundary minimal annulus by Theorem 6.1. The union of all those minimal annuli in the congruent pyramids of the tessellation, denoted as Σ_1, is the analytic continuation of each minimal annulus into an embedded, genus zero, free boundary minimal surface in P_s.

The regular n-gon F can be tessellated into n isosceles, one of which is denoted as F_n. F_n can be divided into two congruent right triangles, one of which is F_{2n}. Then the cone from p over F_n is a tetrahedron T_n and T_{2n} denotes the tetrahedron determined by p and F_{2n}. Note here that all the dihedral angles of T_{2n} are $\leq 90^\circ$ whereas an edge of T_n has dihedral angle $= 120^\circ$ in case P_s is a tetrahedron, an octahedron or an icosahedron. Fortunately, the three dihedral angles of T_n along ∂F_n are $\leq 90^\circ$. Hence by Theorem 5.1 there exist free boundary minimal annuli A_2 in T_n and A_3 in T_{2n} one boundary component of which is a closed convex curve in F_n and in F_{2n}, respectively. Then Σ_2, Σ_3 are exactly the analytic continuations (by reflection) of A_2, A_3, respectively.

On the other hand, Smyth’s theorem gives three minimal disks S_4, S_5, S_6 with free boundary in T_{2n}. Only one of them, say S_6, is disjoint from ∂F. Then S_6 must be a subset of Σ_1. Since P_s is tessellated by congruent copies of T_{2n}, both S_4 and S_5 can be extended analytically into free boundary embedded minimal surfaces of genus zero in P_s, which we denote as Σ_4 and Σ_5. Assuming that S_4 connects the two orthogonal edges of F_{2n}, we see that every boundary component of Σ_4 intersects exactly one edge of P_s orthogonally. Then S_5 connects two nonorthogonal edges of F_{2n} and hence each boundary component of Σ_5 surrounds exactly one vertex of P_s.

Corollary 6.3. If P_r is a right pyramid with rhombic base B, there exists a free boundary minimal annulus A in P_r which is a graph over B. One boundary component of A is convex and closed in B and the other one is convex in each remaining face of P_r.

Proof. Similar to Theorem 6.1

Remark 6.4. (a) As $n \to \infty$, P_y of Theorem 6.1 becomes a right circular cone and then Σ will be part of the helicoid and Σ^\ast a catenoidal waist in P_y.

(b) In case the Platonic solid P_s is a cube, the free boundary minimal surface Σ_1 with genus 0 proved to exist in P_s by Corollary 6.2 is the same as Schwarz’s P-surface S. This can be verified as follows. The cube P_s is tessellated into six right pyramids with square base. Let P_y be one of them. Then $(\Sigma_1 \cap P_y)^\ast$ and $(S \cap P_y)^\ast$ are translationally periodic minimal surfaces. Denote their boundaries by Γ_{Σ_1} and Γ_S, respectively. Γ_{Σ_1} and Γ_S are piecewise linear and translationally periodic. Since their fundamental pieces are determined by the outward unit normals to the faces of the same pyramid P_y, Γ_{Σ_1} and Γ_S must be identical. Let $\gamma_0 \cup \gamma_1$ be their fundamental piece. Since the projection of γ_1 into the base of P_y is a square which is convex, there is only one periodic Plateau solution spanning Γ_{Σ_1} by Theorem 5.1 (c). Hence Σ_1^\ast must be the same as S^\ast and therefore $\Sigma_1 = S$. Similarly, the free boundary minimal surface Σ_1 in the regular tetrahedron is the same as the one constructed by Nitsche [5].
(c) In the cube P_s, Σ_4 is nothing but Neovius’ surface and Σ_5 is Schoen’s I-WP surface (see figure 9). Only in the cube can one construct an extra free boundary minimal surface Σ_6 as follows. Let F be a square face of the cube and let F_2 be a right isosceles which is a half of F. Then the tetrahedron that is the cone from the center of P_s over F_2 contains three free boundary minimal disks. If we choose one of the three that connects the two orthogonal edges of F_2, then its analytic continuation is the desired Σ_6. This is Schoen’s F-RD surface which surrounds only four vertices of the cube whereas Schoen’s I-WP surface surrounds all eight vertices of the cube (see Figure 9).

![Neovius’ surface](image1.png) ![Schoen’s I-WP](image2.png) ![Schoen’s F-RD](image3.png)

Figure 9.

We would like to conclude our paper by proposing the following interesting problems.

Problems.

1. What kind of a pyramid P_y with n-gon base ($n \geq 4$) has a free boundary minimal annulus?
2. Let Γ be a Jordan curve in \mathbb{R}^3 bounding a minimal disk Σ. If the total curvature of Γ is $\leq 4\pi$, we know that Σ is unique [4]. Show that Σ^* is the unique minimal disk spanning $\partial \Sigma^*$.
3. Assume that $\Gamma \subset \mathbb{R}^3$ is a Jordan curve with total curvature $\leq 4\pi$. It is proved that any minimal surface Σ spanning Γ is embedded [2]. If Σ is simply connected, show that Σ^* is also embedded.
4. Let Γ be a complete translationally (or helically) periodic curve with a fundamental piece γ. Assume that a translationally (or helically) periodic minimal surface Σ_Γ spans Γ. What is the maximum total curvature of γ that guarantees the uniqueness of Σ_Γ? What about the embeddedness of Σ_Γ?
5. Assume that $\Sigma \subset \mathbb{R}^3$ is a free boundary minimal annulus in a ball. Show that Σ^* is a translationally periodic free boundary minimal surface in a cylinder so that Σ is necessarily the critical catenoid.

References

[1] U. Dierkes, S. Hildebrandt, A. Käster, O. Wohlrab, *Minimal Surfaces I*, Springer-Verlag, Berlin Heidelberg 1992.
[2] T. Ekholm, B. White, D. Wienholtz, *Embeddedness of minimal surfaces with total boundary curvature at most 4π*, Ann. of Math. **155** (2002), 209-234.
[3] R.D. Gulliver, *Regularity of minimizing surfaces of prescribed mean curvature*, Ann. of Math. **97** (1973), 275-305.
[4] J.C.C. Nitsche, *A new uniqueness theorem for minimal surfaces*, Arch. Rational Mech. Anal. **52** (1973), 319-329.
[5] J.C.C. Nitsche, *Stationary partitioning of convex bodies*, Arch. Rational Mech. Anal. 89 (1985), 1-19.

[6] T. Radó, *Some remarks on the problem of Plateau*, Proc. Natl. Acad. Sci. USA, 16 (1930), 242-248.

[7] H.A. Schwarz, *Gesammelte Mathematische Abhandlungen*, Band I und II. Springer, Berlin 1890.

[8] B. Smyth, *Stationary minimal surfaces with boundary on a simplex*, Invent. math. 76 (1984), 411-420.

Korea Institute for Advanced Study, Seoul, 02455, Korea

Email address: choe@kias.re.kr