It has become clear that early life (including in utero exposures) is a key window of vulnerability during which environmental exposures can alter developmental trajectories and initiate allergic disease development. However, recent evidence suggests that there might be additional windows of vulnerability to environmental exposures in the parental generation before conception or even in previous generations. There is evidence suggesting that information of prior exposures can be transferred across generations, and experimental animal models suggest that such transmission can be conveyed through epigenetic mechanisms. Although the molecular mechanisms of intergenerational and transgenerational epigenetic transmission have yet to be determined, the realization that environment before conception can alter the risks of allergic diseases has profound implications for the development of public health interventions to prevent disease. Future research in both experimental models and in multigenerational human cohorts is needed to better understand the role of intergenerational and transgenerational effects in patients with asthma and allergic disease. This will provide the knowledge basis for a new approach to efficient intervention strategies aimed at reducing the major public health challenge of these conditions. (J Allergy Clin Immunol 2018;142:765-72.)

Asthma and allergies have increased exponentially over recent decades of industrialization and urbanization. The effect and severity of these multifactorial diseases are still increasing in many low- and lower-middle income countries, particularly among younger age groups, causing a substantial burden of disease from early childhood years. Despite major initiatives for prevention, no strategies have thus far succeeded in substantially decreasing morbidity. Asthma and allergy now constitute major chronic inflammatory diseases worldwide and are recognized as a global public health concern.

Extensive literature has addressed a large number of factors shown to be associated with asthma and allergic disease. The more traditional risk factors include environmental toxicants, indoor mold and dampness, outdoor air pollution, occupational, and dietary factors. Women’s hormonal/metabolic status, climatic factors, tuberculosis, parasitic worms, and overall loss of protective factors, such as reduced exposure to infectious agents and symbiotic microorganisms, are also of interest.

Epidemiologic research has increasingly acknowledged the importance of developmental origins, with early environmental exposures being key determinants for later onset of allergic disease. In particular, early-life biodiversity is believed to play a role in the causality of allergies. This focus on early-life development has driven a search for new approaches starting during pregnancy and early childhood to prevent allergies. However, to date, no intervention has proved effective to substantially reduce or prevent asthma and allergies.

An emerging understanding of the pathophysiologic mechanisms involved in development and persistence of allergic diseases reveals complex gene-environment interactions, with many genes having been identified in which genetic variants are associated with allergic phenotype and interact with multiple environmental factors. However, it is clear that the inherited sequence variation associated with allergic disease across the...
The epigenome refers to the information in the genome that lies “above” the DNA sequence and controls the expression of genes through mechanisms like DNA methylation (DNAm) and histone modifications. Importantly, the epigenome is in part heritable through cell division (mitosis) and is fundamental to control tissue differentiation and cellular responsiveness. The epigenome of a cell or tissue is determined by both DNA sequence and cellular or organismal environmental exposures, as well as by stochasticity. Partially stable in the course of mitosis, epigenetic information establishes a memory (or signature) of past exposures, particularly in developmental transitions. Thus, the epigenome integrates influences of the genome and developmental and environmental exposures and is increasingly recognized to play a key role in disease pathophysiology.

Epigenetics has been defined by Ptashne in 2007 using 3 criteria: a change in the activity of a gene (1) that does not involve a mutation, (2) that is initiated by a signal, and (3) that can result in altered disease risk in the absence of the signal that initiated its change. Classically, 4 epigenetic mechanisms have been identified: (1) DNAm, (2) histone modification, (3) chromatin remodeling, and (4) small (21- to 26-nt) noncoding RNAs (ncRNAs). There is ample evidence that DNAm fulfills all 3 criteria required to be considered an epigenetic mechanism. Histone modifications fulfill the criteria because they have the potential to result from exogenous signals, such as cigarette smoke; alter gene activity; and are maintained through mitosis. However, meiotic inheritance of histone modification has only been demonstrated in Caenorhabditis elegans. DNA methylation (DNAm) usually works hand in hand with histone modifications to activate or silence genes by influencing the chromatin structure and its accessibility by transcription factors.

MicroRNAs (miRNAs) are also controlled by exogenous factors and alter gene activity by either inhibiting translation or degrading mRNAs. For instance, in human subjects, miRNAs have been demonstrated to be differentially expressed in current and never smokers and to be related to particulate matter exposure. Currently, there is little evidence that environmentally induced miRNA expression patterns can be inherited. However, because miRNAs are part of the genetic code, it is possible that DNAm can affect the activity of miRNAs and thus facilitates inheritance.

The role of epigenetic regulation in the etiology of asthma and allergy is becoming increasingly evident. Furthermore, elucidating the epigenetic mechanisms involved in inflammation and the immune response to allergens will provide better understanding of the pathophysiology of allergic disease and a mechanistic understanding of how genes and the environment interact to determine disease susceptibility. Although the majority of studies of the epigenetics of allergic disease have focused on identifying epigenetic marks that are present before disease development (eg, in cord blood) or in patients with disease, this approach cannot explain the missing heritability (the problem in which single genetic variations are unable to explain for much of the heritability in diseases) in patients with allergic disease described above. However, the recognition that epigenetic information can be transmitted across generations (ie, through meiosis) provides a mechanism whereby epigenetics could contribute to heritability of disease and explain observations of transgenerational effects of environmental exposure on the risk of allergic diseases.

This review aims to summarize the evidence for transgenerational and intergenerational inheritance of allergic disease and the role of epimutations and epigenetic inheritance in patients with allergic diseases.

TRANSGENERATIONAL VERSUS INTERGENERATIONAL INHERITANCE

It is important to note that although early-life, including in utero, exposure to environmental factors has been shown to represent a key susceptibility window for allergic disease, this does not represent true transgenerational inheritance, where epigenetic information is passed between generations. As discussed by Arshad et al., there are a number of ways in which cross-generational effects can be transmitted and result in apparent transmission of disease risk between generations. Genetic inheritance across generations can explain familial resemblance in phenotypes but cannot account for alterations in disease risk as a result of environmental exposures of prior generations in the absence of continued exposure. Shared familial environment or other cultural effects can also result in similarity of disease phenotypes between generations. In addition, there is the possibility of epigenetically mediated effects to explain disease transmission or the effect of environmental factors across generations.

With regard to epigenetic effects, it is important to distinguish between intergenerational and transgenerational inheritance (Fig 1). Intergenerational effects occur when maternal environmental exposures (F0) have direct effects on the germ cells or developing fetus (including the germ line of the fetus, leading to altered phenotype of the child [F1] and possibly grandchild [F2]). On the paternal line, environmental exposures of the father can have direct effects on the germ cells that will form the child (F1). A true transgenerational effect, in which epigenetic information is transmitted across generations, can only be proved if the effect of exposure is transmitted to the F2 (on the paternal line or in a maternal line in which exposure occurred only before conception) or F3 (on the maternal line when exposure occurs during pregnancy) generation and possibly future generations in the absence of further environmental exposure or germline mutations.

Others have suggested that transgenerational similarity in DNAm is attributable to genetic effects by methylation quantitative trait loci; that is, single nucleotide polymorphisms that increase the susceptibility for the methylation of specific CpG sites such as those observed at the 17q21 asthma susceptibility locus, where there is strong association between single nucleotide polymorphisms and CpG sites related to gene expression, illustrating the complex relationship between sequence variation, CpG methylation, and gene expression.

Another mechanism through which genetic effects can cause transgenerational similarity in the epigenome is metastable epialleles. These are alleles that are variably expressed in genetically identical subjects because of epigenetic modifications established during early development and are thought to be particularly vulnerable to environmental influences, such as the Agouti locus in mice. A genetic contribution is also supported by findings that methylation and gene expression differences were smaller in monozygotic compared with dizygotic twins. Investigation of monozygotic twins has been considered of use as a human analog of inbred animal studies.
EVIDENCE FOR INTERGENERATIONAL AND TRANSGENERATIONAL INHERITANCE

A number of studies have shown that environmental exposures can lead to transgenerational inheritance of phenotypes in animal models. For example, in Drosophila species maternal high sugar caloric intake has been found to affect body composition and metabolism of at least 2 generations. In another study exposures to the environmental toxin benzo[a]pyrene have been found, leading to neurobehavioral and physiologic deficits in the F2 generation. In mammals, it has been demonstrated that early-life traumatic stress in the paternal line resulted in altered miRNA expression and behavioral and metabolic responses in the progeny.

Evidence for transgenerational effects of environmental exposure have also been found in vertebrate models. For example, exposure of zebrafish embryos to the environmental toxin benzo[a]pyrene has been found, leading to neurobehavioral and physiologic deficits in the F2 generation. In mammals, it has been demonstrated that early-life traumatic stress in the paternal line resulted in altered miRNA expression and behavioral and metabolic responses in the progeny.

Exploring potential transgenerational and intergenerational epigenetic inheritance in multigenerational human studies is difficult because of the long lifecycle of human subjects, lack of data accuracy (often using the participant’s recall of his or her own and previous generations’ exposures and outcomes), difficulty in controlling for confounding factors, and ethical issues.

Nonetheless, observational studies have suggested that transgenerational effects might exist that cannot easily be attributed to cultural and/or genetic inheritance. For example, a study of the Overkalix population in northern Sweden suggested paternal transgenerational effects in human subjects. In these studies longevity and specific causes of death were linked to detailed historical records of harvests and food supply experienced by previous generations in early life. Studies of the Dutch famine of 1944-1945 have also revealed that offspring born during the famine were smaller compared with those born the year before the famine and that they had increased risk of metabolic and cardiovascular disease in adulthood. Although differences in DNAm have been found in adult female offspring exposed to the famine in utero and that these offspring effects persist for 2 generations, it is not established that these differences are present in germ cells and truly reflect an epigenetic transgenerational inheritance.

MOLECULAR MECHANISMS OF INTERGENERATIONAL AND TRANSGENERATIONAL INHERITANCE

Germ cells undergo extensive epigenetic reprogramming, from their earliest presence in the embryo to mature reproductive cells, and the best described reprogramming phases occur in early embryonic development and in the prepuberty period. Germ cells are believed to be more susceptible to environmental influences during these reprogramming phases. However, the precise molecular mechanisms underlying transgenerational inheritance still remain unclear. It is hypothesized that transmission of information occurs through epigenetic variation in sperm, oocytes, or both sets of gametes. There are several mechanisms, such as DNAm, histone modification, or changes in ncRNA, that could play an important role in transmitting epigenetic information from one generation to the next.

Because of its stability in stored DNA samples and comparative ease of measurement, DNAm has been the most studied epigenetic mechanism in human studies of intergenerational and transgenerational effects. However, DNAm undergoes 2 rounds of erasure in the formation of gametes and shortly after fertilization, and it is unclear whether or how memory of CpG site methylation is maintained through meiosis. Nonetheless, it has been found that the sperm epigenome can be altered by chemical compounds, such as the endocrine disruptor vinclozolin, and result in transgenerational inheritance through DNAm of induced adult-onset disease to the F3 generation.

In Agouti mice methyl
donor supplementation during pregnancy altered the trajectory of obesity across generations because of altered expression of the Agouti gene resulting from changes in DNAm in the offspring.83

Histone modification is another potential route for transgenerational inheritance. C elegans, although it does not exhibit DNAm-like mammals, can impart heritable epigenetic changes generated from histone modification to subsequent generations.45

Another possible mechanism for conveying epigenetic information between generations is ncRNAs, such as miRNA, small interfering RNA, and piwi-interacting RNA, which can potentially act as mediators of environmentally induced transgenerational inheritance. These ncRNAs show enhancer-like function and can control chromatin structure. Gapp et al73 demonstrated that traumatic stress in early life altered mouse miRNA expression and behavioral and metabolic responses in the progeny. The phenotype of the progeny could be recapitulated by injection of sperm miRNAs into fertilized oocytes.

EPIGENETIC TRANSMISSION ACROSS GENERATIONS IN ALLERGIC DISEASE Evidence for transmission across generations in allergic disease in animal models

Several intergenerational murine models provide evidence that preconception allergen sensitization affects the development of antigen-specific (T- and B-cell) immune responses in offspring, predisposing to development of asthma and atopy.84-86 Mechanisms involved in regulation of allergic response have been associated with epigenetic changes of the IL4 gene promoter,86 as well as altered DNAm in dendritic cells.87

A number of studies have demonstrated adverse effects of maternal smoking and nicotine exposure on pulmonary function in offspring. In utero smoking has been demonstrated to affect lung growth and maturation,88 causing alveolarization defects and decreased expression of retinoic acid signaling pathway elements,89 as well as induced airway remodeling and lung structure changes in mice offspring.90 Prenatal nicotine exposure has been shown to decrease forced expiratory flow rates mediated through α7 nicotinic acetylcholine receptors91 and to affect global lung methylation levels and downregulate peroxisome proliferator-activated receptor γ expression in progeny.92

Maternal particle exposure has also been linked to adverse effects on lung health in offspring. Murine models have found associations between diesel exhaust particles and increased asthma susceptibility in F1 pups, with distinct methylation changes located to promoter regions of genes related to lung development, IL-4 and IFN-γ signaling,95-97 and activation of aryl hydrocarbon receptor and oxidative stress–regulated genes.98 Maternal exposure to specific phthalates (mono-n-butyl phthalate, a metabolite of butyl benzyl phthalate) has been shown to increase the risk for persistent airway inflammation in offspring and to induce aberrant DNAm in genes involved in T helper 2 differentiation.87

Murine models have demonstrated that maternal exposure to microbial components and supplementation of probiotic bacteria can modulate immune responses in offspring by suppressing allergic sensitization and airway inflammation in the F1 generation.98-100

It has also been shown that maternal glucocorticoid-induced stress during pregnancy can increase airway inflammation and susceptibility to allergy in the offspring.101

Multigenerational murine models are emerging, and effects of phthalate exposures through enhanced eosinophilic airway inflammation have been reported to persist in the F2 generation.99 It has been shown that exposure to fungi of the F0 generation was associated with decreased IgE levels and airway eosinophilia, as well as altered methylation in genes regulating T helper 2 cells in third-generation (F3) mice.102 In a recent study by Gregory et al,93 increased asthma risk after intrauterine exposure to particulate air pollution was identified up to the F3 generation. This model suggests a transgenerational effect on asthma susceptibility from exposure to environmental particles. The transgenerational murine model developed by Rehan et al103 shows that nicotine exposure of pregnant rats is associated with increased airway resistance in F3 offspring when challenged with methacholine.

Evidence for transmission across generations in allergic disease in human subjects

The long lifecycle of human subjects makes investigating epigenetic transmission across generations in human subjects a challenge. However, recently, several studies with various solutions for obtaining multigeneration data have been published (Table I).104-112 In different cohorts, higher asthma risk in persons whose maternal grandmother smoked has been found, even if the mother did not smoke.104-106 In the North European RHINE study, higher asthma risk was found in persons whose paternal grandmother smoked.110 Furthermore, this study found that father’s smoking before age 15 years was associated with particularly high asthma risk in future offspring. This finding was replicated in an analysis of 2 generations in the Respiratory Health in Northern Europe, Spain and Australia Generation (RHINESSA) cohort by using advanced statistical modeling and also accounting for unmeasured confounders. Ongoing analyses of the RHINESSA cohort provides supportive evidence for a role of father’s early puberty exposure in offspring health, showing lower lung function in offspring whose father smoked before age 15 years,111 differential DNAm related to the father’s smoking,113 and higher asthma risk in offspring of fathers who became overweight before voice break.114

In an analysis of the European Community Respiratory Health Survey cohort, in which asthmatic/allergic disease status was measured in the parent generation at 3 time points over 20 years and allergies in offspring were reported by the parents at the third study wave, the authors found stronger associations of offspring allergies with parental asthmatic and allergic disease activity as measured before conception compared with parental status after birth.112 This indicates that disease activity might induce changes that are transmissible to the next generation rather than a role of the shared environment, which has been termed “induced epigenetic transmission.”57

Finally, a study of helminths and allergies in 2 generations in Norway found that fathers’ Toxocara species exposure was associated with daughters’ allergies and that mothers’ Toxocara species exposure was associated with the sons’ allergies.24 Although parental exposure was not measured before conception, the sex-specific pattern might indicate a role for epigenetic transmission given parent-of-origin effects are seen for both genetic variation and epigenetic variation,115,116 and risk of asthma in offspring from parental asthma has also been shown to be related to the sex of the affected parent.117
Although maternal diet is increasingly recognized as a risk factor for asthma and atopy in offspring, there is no current evidence to suggest that intergenerational or transgenerational effects occur in patients with allergic disease. However, maternal dietary factors, such as vitamin D and fatty acids, that have been associated with asthma risk have also been shown to be associated with DNA methylation changes at birth in offspring. Further research is needed to understand whether these methylation changes lie on the causal pathway between maternal diet and allergic phenotypes in offspring.

METHODOLOGY FOR STUDYING EPIGENETIC TRANSMISSION ACROSS GENERATIONS IN PATIENTS WITH ALLERGIC DISEASE

Several approaches have been undertaken to explore epigenetic inheritance in multigenerational human studies, including recruiting the offspring of birth cohort participants who are now reaching reproductive age, recruiting offspring/grandoffspring of adult cohorts, and using offspring recall and/or registry data to determine phenotype and/or exposures in parental generations. As mentioned before, all these approaches come with advantages and disadvantages, with compromises between prospective data collection and ease/length of cohort recruitment required. However, there are a number of multigenerational cohorts available that are already number of multigenerational cohorts available that are already recruiting the offspring of birth cohort participants who are now reaching reproductive age, recruiting offspring/grandoffspring of adult cohorts, and using offspring recall and/or registry data to determine phenotype and/or exposures in parental generations. As mentioned before, all these approaches come with advantages and disadvantages, with compromises between prospective data collection and ease/length of cohort recruitment required. However, there are a number of multigenerational cohorts available that are already beginning to allow the assessment of intergenerational and transgenerational effects in allergic disease. Although most studies have used regression models to assess the effects of prior exposure on outcome, other approaches, such as logistic regression analyses with generalized estimating equations and multilevel mediation models within a hierarchical framework, are being used to account for familial clustering.

Several statistical approaches have been used to evaluate epigenetic inheritance of methylation in multigenerational cohorts. Correlation is one of the most used methods. Strong positive correlation between parent-offspring pairs indicates a higher level of similarity of DNA methylation (DNAm) between generations. Some studies choose weighted correlation instead of Pearson correlation to minimize the variance of the correlation estimate. However, observed similarity of DNA methylation could also be due to the fact that parent-offspring share the same environmental factors.

To distinguish environmental factors from inheritance, narrow sense heritability is defined as $h^2 = \frac{\text{Var}(A)}{\text{Var}(P)}$, where $\text{Var}(A)$ is variance caused by the average effects of inheritance and $\text{Var}(P)$ is total variance. Two major approaches, the path analysis model and variance of component model, are generally used to estimate heritability. The component of variance can be obtained by means of ANOVA or fitting linear mixed models. The linear mixed model is more flexible in adjusting for covariates, accounting for different types of study designs, and explicitly addressing environmental variation.

In addition to studying epigenetic inheritance at the level of individual CpGs, transgenerational inheritance can also be evaluated for groups of CpGs that share similar pattern of DNA methylation. This approach, which incorporates unsupervised clustering into β-regression, was recently developed by Han et al and was able to identify sets of CpGs that have the same/different inheritance patterns between mother-offspring and father-offspring pairs.

CONCLUSIONS

In conclusion, there is increasing evidence from both invertebrate and vertebrate experimental models that transmission of epigenetic information across generations occurs. Furthermore, experimental animal models also suggest this can lead to altered lung and immune development in response to environmental exposures in previous generations. In human subjects, studies based on historical data suggest a role for transgenerational inheritance in general, and analyses of human multigenerational data suggest intergenerational environmental effects in asthma and allergies.

TABLE I. Evidence for intergenerational and transgenerational inheritance of allergic disease in human subjects

Reference	Key findings/study cohort	Exposure across generations
Accordini et al	Increased asthma risk in F2 generation caused by grandmaternal smoking (F0) and paternal smoking (F1) before conception/ECRHS	Intergenerational: F0-F1-F2
Li et al	Increased asthma risk in the F2 generation because of maternal (F1) and grandmaternal (F0) smoking during pregnancy/Children’s Health Study in southern California (CHS)	Intergenerational: F0-F1-F2
Miller et al	Increased asthma risk in F2 generation (female offspring) because of smoking by the paternal grandmother (F0) during pregnancy/Avon Longitudinal Study of Parents and children (ALSPAC)	Intergenerational: F0-F2-F1
Magnus et al	Increased asthma risk in F2 generation caused by grandmaternal (F0) smoking during pregnancy independent of the mother’s smoking status/Norwegian Mother and Child Cohort Study (MoBa)	Intergenerational: F0-F2-F1
Braback et al	Increased asthma risk in F2 generation caused by smoking by the paternal grandmother (F0)/Respiratory Health In Northern Europe study (RHINE)	Intergenerational: F0-F2-F1
Lodge et al	Increased asthma risk in F2 generation caused by smoking by the paternal grandmother (F0)/RHINESSA study	Intergenerational: F0-F1-F2
Svanes et al	Increased asthma risk in F1 generation caused by paternal smoking (F0) before conception/RHINE study	Intergenerational: F0-F1-F2
Accordini et al	Lower lung function in F1 generation caused by paternal smoking (F0) before conception/RHINESSA study	Intergenerational: F0-F1-F2
Bertelsen et al	Stronger associations of offspring (F1) allergies with parental (F0) asthmatic and allergic disease activity measured before conception compared with parental status after birth/ECRHS study	Intergenerational: F0-F1-F2

ECRHS, European Community Respiratory Health Survey.
Unmeasured confounding is a matter of concern in non-experimental studies in which exposure is not randomized. The only human study addressing unmeasured confounding in this context found that this error was very small; still, human studies will need to be informed and complemented by careful studies in experimental models in which duration of exposure can be tightly controlled to determine precise windows of vulnerability and randomized to avoid confounding.

Careful study design will be needed to show that changes to the epigenome induced by environmental effects are passed across generations in human subjects and that the underlying epigenetic mechanisms were determined. Multigenerational cohort studies based on national and international collaboration should be established to prospectively and with a clear time order address the question on whether intergenerational and transgenerational inheritances are contributing to the risk of allergic diseases, and maximum use should be made of registry data, which can provide retrospective validated information for some generations, shortening the time frame necessary to study effects over multiple decades.

Another important area for future research is the issue of tissue specificity of DNA. In epigenetic studies, unlike studies of DNA sequence variation, the cellular source of DNA samples is an essential consideration in study design given the extent of tissue-specific methylation. The majority of studies of the epigenetics of allergic disease have used peripheral blood leukocytes because of the ease of sampling and availability of stored samples from allergic disease have used peripheral blood leukocytes because of the ease of sampling and availability of stored samples from historical cohorts, although both nasal brushings and saliva have also been used. Recently, a comparison of blood, buccal, nasal, and bronchial epithelial tissue methylation profiles has demonstrated that nasal epithelium represents the best proxy for bronchial epithelial cells. However, with respect to intergenerational and transgenerational effects, it is likely that the effects on the epigenome of exposures to the developing embryo or transmitted through meiosis can manifest in multiple tissues, although this remains to be established.

If it is firmly established that intergenerational and transgenerational effects are of importance in patients with asthma and allergic disease, the potential practical consequences for public health policies are considerable. What are the time windows in which health promotion would be most efficient? A perspective on asthma and allergies might provide the knowledge basis for a new approach to efficient intervention strategies aimed at reducing the major public health challenge of asthma and allergies.

We thank the members of the Isle of Wight, ALEC, and RHINESSA research teams, who contributed to the study of multigenerational responses in allergy and asthma. J.W.H. and C.S. are members of inVIVO Planetary Health, a Group of the Worldwide Universities Network (WUN).

REFERENCES

1. Pawankar R. Allergic diseases and asthma: a global public health concern and a call to action. World Allergy Organization Journal 2014;7(1):12.
2. Bjorksten B, Clayton T, Ellwood P, Stewart A, Strachan D. Worldwide time trends for symptoms of rhinitis and conjunctivitis: phase III of the International Study of Asthma and Allergies in Childhood. Pediatr Allergy Immunol 2008;19:110-24.
3. Pearce N, Ait-Khaled N, Beasley R, Mallol J, Keil U, Mitchell E, et al. Worldwide trends in the prevalence of asthma symptoms: phase III of the International Study of Asthma and Allergies in Childhood (ISAAC). Thorax 2007;62:758-66.
4. Asher MI, Montefort S, Bjorksten B, Lai CK, Strachan DP, Weiland SK, et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 2006;368:733-43.
5. Beaghele B, Bonita R, Allely GE, Horion R, Li L, Lincoln P, et al. UN High-Level Meeting on Non-Communicable Diseases: addressing four questions. Lancet 2011;378:499-55.
6. Beasley R, Semprini A, Mitchell EA. Risk factors for asthma: is prevention possible? Lancet 2015;386:1075-85.
7. Burbank AJ, Sood AK, Kiesic MJ, Peden DB, Hernandez ML. Environmental determinants of allergy and asthma in early life. J Allergy Clin Immunol 2017;140:1-12.
8. Bertelsen RJ, Longnecker MP, Lovik M, Calafat AM, Carlsen KH, London SJ, et al. Triclosan exposure and allergic sensitization in Norwegian children. Allergy 2013;68:84-91.
9. Clayton EM, Todd M, Dow JD, Aciello AE. The impact of bisphenol A and triclosan on immune parameters in the U.S. population, NHANES 2003-2006. Environment Health Perspect 2011;119:390-6.
10. Mendell MJ, Macher JM, Kumagai K. Measured moisture in buildings and adverse health effects: a review. Indoor air 2018;28:488-99.
11. Norback D, Zock JP, Plana E, Heinrich J, Svanes C, Sunyer J, et al. Mold and dampness in dwelling places, and onset of asthma: the population-based cohort ECRHS. Occup Environ Med 2013;70:325-31.
12. Peterson B, Saxon A. Global increases in allergic respiratory disease: the possible role of diesel exhaust particles. Ann Allergy Asthma Immunol 1996;77:263-70.
13. Thurston GD, Kipen H, Annesi-Maesano I, Balmes J, Brook RD, Cronar K, et al. A joint ERS/ATS policy statement: what constitutes an adverse health effect of air pollution? An analytical framework. Eur Respir J 2017;49.
14. Svanes O, Sorge TD, Johannessen A, Bertelsen RJ, Bratveit M, Forsberg B, et al. Respiratory health in cleaners in northern europe: is susceptibility established in early life? PLoS One 2015;10:e0131959.
15. Reid PA, Reid PT. Occupational lung disease. J R Coll Physicians Edinb 2013;43:44-8.
16. Patel S, Murray CS, Woodcock A, Simpson A, Custovic A. Dietary antioxidant intake, allergic sensitization and allergic diseases in young children. Allergy 2009;64:1766-72.
17. Weiland SK, von Mutius E, Husing A, Asher MI. Intake of trans fatty acids and prevalence of childhood asthma and allergies in Europe. ISAAC Steering Committee. Lancet 1999;353:2040-1.
18. Ellwood P, Asher MI, Bjorksten B, Burr M, Pearce N, Robertson CF. Diet and asthma, allergic rhinoconjunctivitis and atopic eczema symptom prevalence: an ecological analysis of the International Study of Asthma and Allergies in Childhood (ISAAC) data. ISAAC Phase One Study Group. Eur Respir J 2001;17:436-43.
19. Maesali F, Real FG, Plana E, Sunyer J, Anto J, Dratva J, et al. Early age at menarche, lung function, and adult asthma. Am J Respir Crit Care Med 2011;183:8-14.
20. Triebner K, Johannessen A, Puggini L, Benediktsdottir B, Bertelsen RJ, Bifulco E, et al. Menopause as a predictor of new-onset asthma: a longitudinal Northern European population study. J Allergy Clin Immunol 2016;137:50-7.e6.
21. Beck I, Joehnner S, Gilles S, McIntyre M, Buters JT, Schmidt-Weber C, et al. High environmental ozone levels lead to enhanced allergenicity of birch pollen. PLoS One 2013;8:e80147.
22. Weiland SK, Husing A, Strachan DP, Rzehak P, Pearce N. Climate and the prevalence of symptoms of asthma, allergic rhinitis, and atopic eczema in children. Occup Environ Med 2004;61:609-15.
23. von Mutius E, Pearce N, Beasley R, Cheng S, von Ehrenstein O, Bjorksten B, et al. International patterns of tuberculosis and the prevalence of symptoms of asthma, rhinitis, and eczema. Thorax 2000;55:449-53.
24. Jogi NO, Svanes C, Siiaak SP, Logan E, Holloway JW, Igland J, et al. Zoonotic helminth exposure and risk of allergic diseases: a study of two generations in Norway. Clin Exp Allergy 2018;48:66-77.
25. Okada H, Kuhn C, Feiliet H, Bach JP. The ‘hypothesis hypothesis’ for autoimmunity and allergic diseases: an update. Clin Exp Immunol 2010;160:1-9.
26. Svanes C, Omenaa E, Jarvis D, Chinn S, Gujvick A, Burney P. Parental smoking in childhood and adult obstructive lung disease: results from the European Community Respiratory Health Survey. Thorax 2004;59:295-302.
27. Duijts L. Growing large and fast: is infant growth relevant for the early origins of chronic obstructive pulmonary disease. Thorax 2010;65:14-20.
28. Jogi NO, Svanes C, Siiaak SP, Logan E, Holloway JW, Igland J, et al. Zoonotic helminth exposure and risk of allergic diseases: a study of two generations in Norway. Clin Exp Allergy 2018;48:66-77.
29. von Mutius E, Pearce N, Beasley R, Cheng S, von Ehrenstein O, Bjorksten B, et al. International patterns of tuberculosis and the prevalence of symptoms of asthma, rhinitis, and eczema. Thorax 2000;55:449-53.
50. Buckley BA, Pedersen BS, Liu Á, O’Connor GT, Teach SL, Kattan M, et al. DNA methylation and childhood asthma in the inner city. J Allergy Clin Immunol 2015;136:69-80.

51. Xu CJ, Soderhall C, Bustamante M, Baiz N, Gruziova O, Gehring U, et al. A nuclear Acornatea promotes multigenerational epigenetic inheritance and germline immortality. Nature 2012;489:447-51.

52. Yang IV, Pedersen BS, Liu Á, O’ Connor GT, Kattan M, et al. DNA methylation and childhood asthma in the inner city. J Allergy Clin Immunol 2015;136:69-80.

53. Xu CJ, Soderhall C, Bustamante M, Baiz N, Gruziova O, Gehring U, et al. A nuclear Acornatea promotes multigenerational epigenetic inheritance and germline immortality. Nature 2012;489:447-51.

54. Yang IV, Schwartz DA. Epigenetic control of gene expression in the am. Am J Respir Crit Care Med 2011;183:1295-301.

55. Buckley BA, Burkhart KB, Gu SG, Spracklin G, Lecuona E, Sznajder JI. Role of microRNAs in lung disease. Arch Bronconeumol 2012;48:325-30.

56. Su WW, Xiong H, Fang JY. Natural antisense transcripts regulate gene expression in an epigenetic manner. Biochem Biophys Res Commun 2010;396:177-81.

57. Buckley BA, Knecht AL, Marvel SW, Reif DM, Garcia A, Lu C, et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 2011;479:365-71.

58. Callinan PA, Feiberg AP. The emerging science of epigenomics. Hum Mol Genet 2006;15(Spec No 1):R95-101.

59. Angulo M, Lecuona E, Sznajder JI. Role of microRNAs in lung disease. Arch Bronconeumol 2012;48:325-30.

60. Su WW, Xiong H, Fang JY. Natural antisense transcripts regulate gene expression in an epigenetic manner. Biochem Biophys Res Commun 2010;396:177-81.

61. Shoemaker R, Deng J, Wang W, Zhang K. Allele-specific methylation is prevalent in diseases of the latest advancements. Curr Allergy Asthma Rep 2012;12:211-20.

62. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012;13:484-92.

63. Lovinsky-Desir S, Miller RL. Epigenetics, asthma, and allergic diseases: a review of the latest advances.Curr Allergy Asthma Rep 2012;12:211-20.

64. Clifford RL, John AE, Brightling CE, Knox AJ. Abnormal histone methylation is responsible for increased vascular endothelial growth factor 165α secretion from airway smooth muscle cells in asthma. J Immunol 2012;189:819-31.

65. Royce SG, Karagiannis TC. Histone deacetylases and their role in asthma. J Asthma 2012;49:121-8.

66. Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, et al. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 2011;479:365-71.

67. Callinan PA, Feiberg AP. The emerging science of epigenomics. Hum Mol Genet 2006;15(Spec No 1):R95-101.

68. Angulo M, Lecuona E, Sznajder JI. Role of microRNAs in lung disease. Arch Bronconeumol 2012;48:325-30.

69. Buckley BA, Burkhart KB, Gu SG, Spracklin G, Lecuona E, Sznajder JI. Role of microRNAs in lung disease. Arch Bronconeumol 2012;48:325-30.

70. Matzkin LM, Johnson S, Pait C, Markow TA. Preadult parental diet affects offspring development and metabolism in Drosophila melanogaster. PLoS One 2013;8:e95930.

71. Rechavi O, Houri-Ze’ev L, Anava S, Goh WSS, Kerk SY, Hannon GJ, et al. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 2014;158:277-87.

72. Knecht AL, Tsuang L, Marvel SW, Reif DM, Garcia A, Lu C, et al. Transgenerational inheritance of neurobehavioral and physiological deficits from developmental exposure to benzo[a]pyrene in zebrafish. Toxicol Appl Pharmacol 2017;329:148-57.

73. Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 2014;17:667-9.

74. Rothstein MA, Cai Y, Marchant GE. The ghost in our genes: legal and ethical implications of epigenetics. Health Matrix Clevel 2009;19:1-62.

75. Pembrey M, Saferity R, Bygren LO. Network in Epigenetic Epidemiology. Human transgenerational responses to early-life experience: potential impact on development, health and biomedical research. J Med Genet 2014;51:563-72.

76. Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjostrom M, et al. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 2006;14:159-66.

77. Kaati G, Bygren LO, Pembrey M, Sjostrom M. Transgenerational response to nutrition, early life circumstances and longevity. Eur J Hum Genet 2007;15:784-90.

78. Veenendaal MV, Painter RC, de Rooy SR, Bossuyt PM, van der Post JA, Gluckman PD, et al. Transgenerational effects of prenatal exposure to the 1944-45 Dutch famine. Biotic J 2013;120:548-53.

79. Wu H, Hauser R, Krawetz SA, Pilsner JR. Environmental susceptibility of the sperm epigenome during windows of male germ cell development. Curr Environ Health Rep 2015;2:356-66.

80. Heard E, Martinussen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 2014;157:95-109.

81. Sales VM, Ferguson-Smith AC, Patti ME. Epigenetic mechanisms of transmutation of metabolic disease across generations. Cell Metab 2017;25:559-71.

82. Guerrero-Bosagna C, Covart TR, Haque MM, Settles M, Anway MD, et al. Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers. Reprod Toxicol 2012;34:694-707.

83. Wolff GL, Kline RL, Moore SR, Cooney CA. Maternal epigenetics and methyl supplements affect agouti gene expression in AyeA yice. FASEB J 1998;12: 949-57.

84. Victor JR, Muniz BP, Fussaro AE, de Brito CA, Taniguchi EF, Duarte AJ, et al. Maternal immunization with ovalbumin prevents neonatal allergy development and up-regulates inhibitory receptor Fc gamma RIIB expression on B cells. BMC Immunol 2010;11:11.

85. Herz U, Joachim R, Ahrens B, Scheffold A, Radbruch A, Renz H. Prenatal sensitisation in a mouse model. J Allergy Clin Immunol 2006;118:362-5.

86. Song Y, Liu C, Hui Y, Srivastava K, Zhou Z, Chen J, et al. Maternal allergy increases susceptibility to offspring allergy in association with TH2-biased epigenetic alterations in a mouse model of peanut allergy. J Allergy Clin Immunol 2014;134:1339-45.e7.
87. Fedulov AV, Kobzik L. Allergy risk is mediated by dendritic cells with congenital epigenetic changes. Am J Respir Cell Mol Biol 2011;44:285-92.
88. Larcombe AN, Foong RE, Berry LJ, Zosky GR, Sly PD. In utero cigarette smoke exposure impairs somatic and lung growth in BALB/c mice. Eur Respir J 2011; 38:982-9.
89. Manoli SE, Smith LA, Vyhildal CA, An CH, Portra Y, Cardoso WV, et al. Maternal smoking and the retinoid pathway in the developing lung. Respir Res 2012;13:42.
90. Blaquaier MJ, Timens W, Melgert BN, Geerlings M, Postma DS, Hylkema MN. Maternal smoking during pregnancy induces airway remodelling in mice offspring. Eur Respir J 2009;33:1330-3.
91. Wongtrakool C, Wang N, Hyde DM, Roman J, Spindel ER. Prenatal nicotine exposure alters lung function and airway geometry through alpha7 nicotinic receptors. Am J Respir Cell Mol Biol 2012;46:695-702.
92. Rehan VK, Liu J, Naemt E, Tian J, Sakurai R, Kwong K, et al. Perinatal nicotine exposure induces asthma in second generation offspring. BMC Med 2012;10:129.
93. Gregory DJ, Kolen L, Yang Z, McGuire CC, Fedulov AV. Transgenerational transmission of asthma risk after exposure to environmental particles during pregnancy. Am J Physiol Lung Cell Mol Physiol 2017;313:L395-405.
94. Fedulov AV, Leme A, Yang Z, Dahl M, Lim R, Mariani TJ, et al. Pulmonary exposure to particles during pregnancy causes increased neonatal asthma susceptibility. Am J Respir Cell Mol Biol 2008;38:57-67.
95. Liu J, Ballaney M, Al-alem U, Quan C, Jin X, Perera F, et al. Combined inhaled diesel exhaust particles and allergen exposure alter methylation of T helper genes and IgE production in vivo. Toxicol Sci 2008;102:76-81.
96. Manners S, Alam R, Schwartz DA, Garska MM. A mouse model links asthma susceptibility to prenatal exposure to diesel exhaust. J Allergy Clin Immunol 2011;128:623-9.
97. Brand S, Troscott S, Baeuerle P, Haendel G, Tate C, et al. Maternal phthalate exposure promotes allergic airway inflammation after 2 generations through epigenetic modifications. J Allergy Clin Immunol 2018;141:741-53.
98. Blumer N, Herz U, Wegmann M, Renz H. Prenatal lipopolysaccharide-exposure prevents allergic sensitization and airway inflammation, but not airway responsiveness in a murine model of experimental asthma. Clin Exp Allergy 2005;35:397-402.
99. Blumer N, Sel S, Virsa S, Patrascan CC, Zimmermann S, Herz U, et al. Perinatal maternal application of Lactobacillus rhamnosus GG suppresses allergic airway inflammation in mouse offspring. Clin Exp Allergy 2007;37:348-57.
100. Brand S, Teisch R, Dicke T, Harb H, Yildirim AO, Tost J, et al. Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J Allergy Clin Immunol 2011;128:618-25, e1-7.
101. Lim R, Fedulov AV, Kobzik L. Maternal stress during pregnancy increases neonatal asthma susceptibility: role of glucocorticoids. Am J Physiol Lung Cell Mol Physiol 2014;307:L141-8.
102. Niedzwiecki M, Zhu H, Corson L, Grunig G, Spindel ER, et al. Combined inhaled diesel exhaust particles and allergen exposure alter methylation of T helper genes and IgE production in vivo. Toxicol Sci 2008;102:76-81.
103. Liu J, Ballaney M, Al-alem U, Quan C, Jin X, Perera F, et al. Combined inhaled diesel exhaust particles and allergen exposure alter methylation of T helper genes and IgE production in vivo. Toxicol Sci 2008;102:76-81.
104. Manners S, Alam R, Schwartz DA, Garska MM. A mouse model links asthma susceptibility to prenatal exposure to diesel exhaust. J Allergy Clin Immunol 2011;128:623-9.