Difference Constraints: An adequate Abstraction for Complexity Analysis of Imperative Programs

Florian Zuleger
Technische Universität Wien
FMCAD, 28.09.2015

Joint work with Moritz Sinn, Helmut Veith
Bounds and Complexity

foo(uint n)
x = n;
y = n;
while(x > 0)
t1:{ x--;
 y = y + 2;
}
z = y;
while(z > 0)
t2: z--;

Local Bound(t1): x

Variable that decreases when t1 is executed.
Bounds and Complexity

foo(uint n)
x = n;
y = n;
while(x > 0)
t1: { x--;
 y = y + 2;
}
z = y;
while(z > 0)
t2: z--;

Local Bound(t1): x
Transition Bound(t1): n

of visits to transition t1
Bounds and Complexity

foo(uint n)
x = n;
y = n;
while(x > 0)
t1: { x--;
y = y + 2;
}
z = y;
while(z > 0)
t2: z--;
Bounds and Complexity

```c
foo(uint n) {
    x = n;
    y = n;
    while(x > 0) {
        x--;
        y = y + 2;
    }
    z = y;
    while(z > 0) {
        z--;
    }
}
```

- **Local Bound** (t1): `x`
- **Transition Bound** (t1): `n`
- **Local Bound** (t2): `z`
- **Variable Bound** (y): `3n`
- **Transition Bound** (t2): `3n`
- **Complexity**: `4n`
Bounds and Complexity

Bound Analysis:
• # of visits to a transition
• # of visits to multiple transitions
• # of iterations of a loop
• resource consumption of a program
• complexity of a program
• upper bound on the value of a variable

Intuition: All these bound analysis problems are related and can be reduced to each other.

Introduce a counter c and increment at places of interest
Applications of Bound Analysis

Verification:
- Computing bounds on resource consumption (CPU time, memory, bandwidth, ...)
- Termination analysis with quantitative information on program progress

Program understanding:
- Static profiling
- Understanding program performance
Bound Analysis and the Halting Problem

For imperative programs:

Halting Problem = termination analysis of loops

→ Bound analysis is a hard problem!

while(n != 0) {
 if (n % 2 == 0)
 n = n / 2;
 else
 n = 3n+1;
}

Typical programs?

while(n > 0) {
 m := n--;
 while(m > 0 && ?)
 m--;
}

while(n % 2 == 0)
 n = n / 2;
else
 n = 3n+1;
Bound Analysis and the Halting Problem

Collatz Conjecture

Real-life Programs

while(n != 0)
 if (n % 2 == 0)
 n = n / 2;
 else
 n = 3n+1;

Typical programs?

while(n > 0) {
 m := n--;
 while(m > 0 && ?)
 m--;
}
Methodological Approach

Desired properties of our abstract program model:
- simple
- good computational properties
- motivates further theoretical analysis

Design goals of our analysis:
- no refinement loop
- fail fast
- captures most common loop patterns
Minimal Requirements for Abstract Program Model?

We need to model:
- counter variables
 - increments/decrements
 - resets
- finite control

```c
foo(uint n)
x = n;
y = n;
while(x > 0)
{
    x--;
    y = y + 2;
}
z = y;
while(z > 0)
    z--;`
foo(uint n)
x = n;
y = n;
while(x > 0)
{
x--;
y = y + 2;
}
z = y;
while(z > 0)
z--;

Variables take values over \( \mathbb{N} \).

Conjunction of \( u' \leq v + k \) (k in \( \mathbb{Z} \)).
Difference Constraint Programs (DCPs)

• Introduced by Ben-Amram (2008)
• Termination is undecidable in general, but decidable for deterministic DCPs
  \[ u' \leq v + k \text{ for every variable } u, \]
  this is a natural subclass: every variable assignment is abstracted to one constraint

• we show: DCPs can model interesting bound analysis problems
Invariant Analysis Problems

Variable Bound(y): 3n

Variable Bound(y): n + 2max\{m1, m2\}

Variable Bound(y): 3n + 2n^2
Bound Analysis Algorithm: Intuition

- Transition Bound $t_1$: $n$
- Transition Bound $t_2$: $3n$
- Local Bound $t_1$: $x$
- Local Bound $t_2$: $z$
- Variable Bound $y$: $3n$

Mutual recursion between Variable Bound and Transition Bound

$y$ modified on two transitions

Variable Bound $y = n \times$ Transition Bound $ta + 2 \times$ Transition Bound $t_1$

$\begin{align*}
x' &\leq n \\
y' &\leq n \\
z' &\leq y \\
x' &\leq x - 1 \\
y' &\leq y + 2 \\
z' &\leq z - 1
\end{align*}$
We assume a local bound for every transition, which decreases when the transition is executed:

- \( \text{LB}(t_1) = x \)
- \( \text{LB}(t_2) = z \)
- \( \text{LB}(ta) = 1 \)
- \( \text{LB}(tb) = 1 \)

We define increments and resets:

- \( \text{inc}(t_1,y) = 2 \)
- \( \text{reset}(ta,z) = y \)
- \( \text{reset}(tb,x) = n \)
- \( \text{reset}(tb,y) = n \)
Bound Analysis Algorithm

\[
TB(t_2) = \\
= VB(reset(t_b, LB(t_2))) \times TB(t_b) = \\
= VB(reset(t_b, z)) \times 1 = \\
= VB(y) = \\
= VB(reset(t_a, y)) \times TB(t_a) + \\
\text{inc}(t_1, y) \times TB(t_1) = \\
= n \times 1 + \\
\quad 2 \times VB(reset(t_a, LB(t_1))) \times TB(t_a) = \\
= n + 2 \times VB(x) \times 1 = 3n
\]
Bound Analysis Algorithm

Let $P$ be a set of transitions, where each transition $t$ of $P$ has local bound $LB(t)$.

For all $t \in P$ we define

$$TB(t) = \sum_{s \in P} \text{inc}(s, LB(t)) \times TB(s) + \sum_{s \in P} \text{VB}(\text{reset}(s, LB(t))) \times TB(s)$$

$$VB(t) = \sum_{s \in P} \text{inc}(s, LB(t)) \times TB(s) + \max_{s \in P} \text{VB}(\text{reset}(s, LB(t))) \times TB(s)$$

Mutual recursion terminates, if there are no cycles. (is the case for reasonable programs).
Invariant Analysis Problems

Alternative Method for Invariant Computation:
- demand-driven
- compositional
- no fixed point computation needed

Complementary technique for invariant computation

Related Work:
has also been observed in earlier work on bound analysis
- SPEED
- KoAT
- Loopus 2014

Variable Bound(y):
- 3n
- \( n + 2\max\{m1, m2\} \)
- \( 3n + 2n^2 \)
Amortized Complexity Analysis

foo(uint n)
x = n;
r = 0;
while (x > 0)
{  
t1:  x--;
    r++;
    if (?) {
        p = r;
        while (p > 0)
        t2:  p--;
        r = 0;
    }
}

Local Bound(t1): x
Transition Bound(t1): n
Local Bound(t2): p
Variable Bound(p): n
Transition Bound(t2): n^2?
foo(uint n) {
    x = n;
    r = 0;
    while (x > 0) {
        t1: x--;
        r++;
        if (?) {
            p = r;
            while (p > 0) {
                t2: p--;
                r = 0;
            }
        }
    }
}

We call r = 0 a context for p = r.

Complexity: 2n

r ist reset after the inner loop → every increment r++ leads to one loop iteration

Local Bound(t1): x
Transition Bound(t1): n
Local Bound(t2): p
Variable Bound(p): n
Transition Bound(t2): n
Amortized Complexity Analysis

```c
foo(uint n) {
 x = n;
 r = 0;
 while (x > 0) {
 x--;
 r++;
 if (?) { p--; r = 0; }
 }
}
```

Using contexts our algorithm can compute the linear complexity.

Complexity: $2n$
Amortized Complexity in Real Code

Amortization due to

Dependencies between increments and resets

15 Examples found during our experiments

Examples: forsyte.at/software/loopus
Implementation

• Tool: „Loopus“ based on LLVM and Z3

• Evaluation: CBench („Collective Benchmark“)
  – C programs
  – 1027 files with > 200 kLoc, > 4000 loops
  – 1751 functions

• Comparison to the tools:
  – KoAT (TACAS 2014)
  – CoFloCo (APLAS 2014)
  – Loopus 2014 (CAV 2014)

• First experimental comparison on real world code
### Experimental Results: Function Complexity

Succ	1	n	n²	n³	n³⁺	2ⁿ	Time	TimeOut	
Loopus 15	806	205	489	97	13	2	0	15m	6
Loopus 14	431	200	188	43	0	0	0	40m	20
KoAT	430	253	138	35	2	0	2	5.6h	161
CoFloCo	386	200	148	38	0	0	0	4.7h	217

**Loopus 15:** - More Complexity Results - In Shorter Time

More details: forsyte.at/software/loopus
Summary

Contributions to bound/complexity analysis:

• notions of increment/decrement and reset
• first algorithm based on DCPs
• we demonstrate the scalability and applicability of our algorithm

• DCPs are an interesting model for further research