РОЖДЕНИЕ ГЕНЕТИЧЕСКИ СОБСТВЕННОГО РЕБЕНКА У СУПРУЖЕСКОЙ ПАРЫ С НАЛИЧИЕМ РЕЦИПРОКНОЙ ТРАНСЛОКАЦИИ У МУЖА В КАРИОТИПЕ

Б.Ж. Абдильманова, Н.П. Нигматова, В.Н. Щиголев
1ТОО «Геном-Астана» центр репродукции человека, Астана, Республика Казахстан;
2Центр Репродукции и Генетики «Фертимед», Москва, Российская Федерация

Введение: Известно, что с возрастом у женщины снижается качество яйцеклеток. Это также обусловливается снижающейся активностью лютеинизирующего гормона (ЛГ) и выработкой андрогенов [1]. ЛГ играет важную роль в созревании фолликула, оплодотворении и качестве эмбрионов. Более того, ЛГ влияет на эндометрий, стимулируя децидуализацию и имплантацию эмбриона [2]. Проведено немало рандомизированных контролируемых исследований и мета-анализов, которые демонстрируют, что использование рекомбинанного ЛГ совместно с рекомбинантным фолликулостимулирующим гормоном (ФСГ) улучшает клиническую эффективность у гипогонадотропных женщин любого возраста и нормогонадотропных женщин старше 35 лет [2-4].

В данном клиническом случае мы демонстрируем, что применение ЛГ совместно с ФСГ в программе ВРТ позволило получить генетически здоровые эмбрионы у супружеской пары при наличии реципрокной транслокации в карийотипе мужа.

Цель публикации – представить клинический случай беременности и рождения генетически собственного ребенка у супружеской пары с наличием реципрокной транслокации у мужа в карийотипе.

Описание клинического случая

Анамнез: супружеской пары и предыдущие попытки
У пациентки – карийотип в норме. У партнера (мужчины) в карийотипе обнаружена реципрокная транслокация между 6 и 11 хромосомами. До обращения в ТОО «Геном-Астана» в январе 2019 года супружеская пара имела три безрезультатные попытки ЭКО с генетическим тестированием в силу отсутствия рекомендованных к переносу эмбрионов или отрицательного результата. Две программы были проведены в клиниках Стамбула и Москвы и заканчивались безрезультатно безрезультатности ЭКО в силу отсутствия рекомендованных к переносу эмбрионов или отрицательного результата. Две программы были проведены в клиниках Стамбула и Москвы и заканчивались безрезультатно. Первая программа была проведена с генетическим тестированием в силу отсутствия рекомендованных к переносу эмбрионов или отрицательного результата. Две программы были проведены в клиниках Стамбула и Москвы и заканчивались безрезультатно. Первая программа была проведена с генетическим тестированием в силу отсутствия рекомендованных к переносу эмбрионов или отрицательного результата. Две программы были проведены в клиниках Стамбула и Москвы и заканчивались безрезультатно. Первая программа была проведена с генетическим тестированием в силу отсутствия рекомендованных к переносу эмбрионов или отрицательного результата. Две программы были проведены в клиниках Стамбула и Москвы и заканчивались безрезультатно. Первая программа была проведена с генетическим тестированием в силу отсутствия рекомендованных к переносу эмбрионов или отрицательного результата. Две программы были проведены в клиниках Стамбула и Москвы и заканчивались безрезультатно. Первая программа была проведена с генетическим тестированием в силу отсутствия рекомендованных к переносу эмбрионов или отрицательного результата. Две программы были проведены в клиниках Стамбула и Москвы и заканчивались безрезультатно. Первая программа была проведена с генетическим тестированием в силу отсутствия рекомендованных к переносу эмбрионов или отрицательного результата. Две программы были проведены в клиниках Стамбула и Москвы и заканчивались безрезультатно. Первая программа была проведена с генетическим тестированием в силу отсутствия рекомендованных к переносу эмбрионов или отрицательного результата. Две программы были проведены в клиниках Стамбула и Москвы и заканчивались безрезультатно. Первая программа была проведена с генетическим тестированием в силу отсутствия рекомендованных к переносу эмбрионов или отрицательного результата. Две программы были проведены в клиниках Стамбула и Москвы и заканчивались безрезультатно. Первая программа была проведена с генетическим тестированием в силу отсутствия рекомендованных к переносу эмбрионов или отрицательного результата. Две программы были проведены в клиниках Стамбула и Москвы и заканчивались безрезультатно. Первая программа была проведена с генетическим тестированием в силу отсутствия рекомендованных к переносу эмбрионов или отрицательного результата. Две программы были проведены в клиниках Стамбула и Москвы и заканчивались безрезультатно. Первая программа была проведена с генетическим тестированием в силу отсутствия рекомендованных к переносу эмбрионов или отрицательного результата. Две программы были проведены в клиниках Стамбула и Москвы и заканчивались безрезультатно. Первая программа была проведена с генетическим тестированием в силу отсутствия рекомендованных к переносу эмбрионов или отрицательного результата. Две программы были проведены в клиниках Стамбула и Москвы и заканчивались безрезультатно. Первая программа была проведена с генетическим тестированием в силу отсутствия рекомендованных к переносу эмбрионов или отрицательного результата. Две программы были проведены в клиниках Стамбула и Москвы и заканчивались безрезультатно. Первая программа была проведена с генетическим тестированием в силу отсутствия рекомендованных к переносу эмбрионов или отрицательного результата. Две программы были проведены в клиниках Стамбула и Москвы и заканчивались безрезультатно. Первая программа была проведена с генетическим тестированием в силу отсутствия рекомендованных к переносу эмбрионов или отрицательного результата. Две программы были проведены в клиниках Стамбула и Москвы и заканчивались безрезультатно. Первая программа была проведена с генетическим тестированием в силу отсутствия рекомендованных к переносу эмбрионов или отрицательного результата. Две программы были проведены в клиниках Стамбула и Москвы и заканчивались безрезультатно. Первая программа была проведена с генетическим тестированием в силу отсутствия рекомендованных к переносу эмбрионов или отрицательного результата. Две программы были проведены в клиниках Стамбула и Москвы и заканчивались безрезульт...
Случай из практики

В мае 2020 года. Опыт решили повторить, так как имена состоялись 1 июля 2020 года, результат – отрицательный.

Процедуры ИКСИ и биопсия в целях ПГТ-А детально описаны в работе Фирсовой и др. [5].

Обсуждение: Данный клинический случай представлает собой интерес тем, что мы добились рождения здорового ребенка, не прибегая к использованию донорского биоматериала. Возможно, у ребенка обнаружится такая же проблема в карнотипе, как у его отца, но она совместима с жизнью и не вызывает умственных или физических отклонений.

Первые две попытки ЭКО с ПГТ-А методом NGS были проведены в зарубежных клиниках в 2017 году, когда пациентке было 35 лет, а ее супругу – 31 год. Мы предполагаем, что ЛГ как добавка сыграла положительную роль, учитывая опыт наших зарубежных коллег, где при стимуляции в качестве стимулирующего препарата, одном из исследованных эмбрионов не было найдено ни одного здорового эмбриона.

В 2018 году, когда паре был проведен 3-й курс лечения, в схему был включен рекомбинантный ЛГ. Суммарные дозы ФСГ и ЛГ составили 1275 МЕ и 300 МЕ, соответственно. Среди 20 эмбрионов был получен один здоровый эмбрион, однако результат криопереноса был отрицательным. Генетическое исследование проводилось методом FISH на 3 сутки. Учитывая, что генетический анализ ПГТ-А, в том числе описание других аналогичных случаев, стимуляция яичников рекомбинантным ФСГ оказывает существенно недостаточно для полноценного адекватного созревания и завершения процесса мейоза в женских половых клетках.

Существует ряд научных работ по использованию рекомбинантного ЛГ совместно с ФСГ для стимуляции суперовуляции в протоколах с антагонистами, но в анамнезе пациентов не наблюдалось подобных случаев. Примечания: ИКСИ – интрацитоплазматическая инъекция сперматозоида, ЛГ – лютенизирующий гормон, ПГТ-А – пренатальное генетическое тестирование анеуплоидий, ФСГ – фолликулостимулирующий гормон.

Таблица 1 – Временная шкала предыдущих (неудачных) попыток ЭКО

Дата	Событие
Январь 2019 г.	Стимуляция суперовуляции, программа ИКСИ+ ПГТ-А
Январь 2020 г.	Стимуляция суперовуляции, программа ИКСИ+ ПГТ-А
Февраль 2021 г.	Стимуляция суперовуляции, программа ИКСИ+ ПГТ-А
Март 2021 г.	Криоперенос
Декабрь 2021 г.	Рождение фенотипически здорового ребенка

Таблица 2 – Временная шкала клинического случая ЭКО

Дата	Событие
Январь 2019 г.	Стимуляция суперовуляции, программа ИКСИ+ ПГТ-А
Январь 2020 г.	Стимуляция суперовуляции, программа ИКСИ+ ПГТ-А
Февраль 2021 г.	Стимуляция суперовуляции, программа ИКСИ+ ПГТ-А
Март 2021 г.	Криоперенос
Декабрь 2021 г.	Рождение фенотипически здорового ребенка

Контролируемая овариальная стимуляция (опыт TOO «Геном-Астана») в клинике ТОО «Геном-Астана»

Супружеская пара суммарно пролегла в программы ЭКО с пренатальным генетическим тестированием в анамнезе пациентки гестоз в 2019 году. Супружеская пара провела в 2019 году. Был назначен короткий протокол стимуляции суперовуляции пациентке были получены 3 бластоцисты, заключение

тактику. Для стимуляции суперовуляции пациентке были проведены интрацитоплазматическая инъекция сперматозоида, ЛГ – лютенизирующий гормон, ПГТ-А – пренатальное генетическое тестирование анеуплоидий, ФСГ – фолликулостимулирующий гормон.

В следующую программу супружеская пара вступила в марте 2020 года. Была принята программа изменить тактику. Для стимуляции суперовуляции пациентке были проведены интрацитоплазматическая инъекция сперматозоида, ЛГ – лютенизирующий гормон, ПГТ-А – пренатальное генетическое тестирование анеуплоидий, ФСГ – фолликулостимулирующий гормон.

Временная шкала включает в себя следующие: ФСГ – 5.1 мМЕ/мл, ЛГ – 7.6 мМЕ/мл, тестостерон – 1.06 нг/мл, эстрadiol – 54.2 нг/мл, AMF – 13.31 нг/мл, менструальный цикл – регулярный, вичных мультифолликулярных, диагноз «полярный» не выставлялся. Во всех программах были проведены интрацитоплазматическая инъекция сперматозоида (ИКСИ) и ПГТ-А. Процедура ИКСИ и биопсии в целях ПГТ-А детально описана в работе Фирсовой и др. [5].

Первую программу в клинике TOO «Геном-Астана» провела в 2019 году. Была принята программа изменить тактику. Для стимуляции суперовуляции пациентке были проведены интрацитоплазматическая инъекция сперматозоида, ЛГ – лютенизирующий гормон, ПГТ-А – пренатальное генетическое тестирование анеуплоидий, ФСГ – фолликулостимулирующий гормон.

Клинический исход Криоперенос состоялся 10 марта 2020 года. Подготовка эндометрия подробно описана в публикации N.P.Nigmatova et al. [6]. Беременность наступила и протекала без осложнений. У пары 3 декабря 2021 года родился фенотипически здоровый ребенок. Генетический анализ (карнотип) ребенка родители планируют провести в ближайшем будущем.

Примечание: ИКСИ – интрацитоплазматическая инъекция сперматозоида, ЛГ – лютенизирующий гормон, ПГТ-А – пренатальное генетическое тестирование анеуплоидий. ФСГ – фолликулостимулирующий гормон.
S ПИ СОК ЛИТЕРАТУРЫ
1. Couzinet B., Lestrait N., Brailly S., Forest M., Schaison G. Stimulation of ovarian follicular maturation with pure follicle stimulating hormone in women with gonadotropin deficiency // Journal of Clinical Endocrinology and Metabolism. – 1988 – Vol. 66. – P. 552–556. https://doi.org/10.1210/jcem-66-3-552.
2. The European Recombinant Human LH Study Group. Recombinant human luteinizing hormone (LH) to support recombinant human follicle-stimulating hormone (FSH)-induced follicular development in LH- and FSH-deficient anovulatory women: A dose-finding study // Journal of Clinical Endocrinology and Metabolism. – 1998. – Vol. 83(5). – P. 1507-1514. https://doi.org/10.1210/jcem.83.5.4770.
3. Humaidan P, Bungum M., Bungum L., Yding Andersen C. Effects of recombinant LH supplementation in women undergoing assisted reproduction with GnRH agonist down-regulation and stimulation with recombinant FSH: an opening study // Reproductive BioMedicine online. – 2004. – Vol. 8(6). – P. 635-643. https://doi.org/10.1016/S1472-6483(10)61643-4.
4. Bosch E., Labarta E., Crespo J., Remohi J., Pellicer A. Impact of luteinising hormone administration on gonadotropin-releasing hormone antagonist cycles: an age-adjusted analysis // Fertility and Sterility. – 2011. – Vol. 95(3). – P. 1031-1036. https://doi.org/10.1016/j.fertnstert.2010.10.021.
5. Фирсова Н.В., Нигматова Н.П., Сафронова К.А., Гарцман А.А., Канбекова О.Р., Балыбердин М.А., Гордеева И.В., Щиголев В.Н. Эффективность проведения преимплантационного генетического тестирования в программах экстракорпорального оплодотворения: опыт сети клиник // Проблемы репродукции. – 2021. – Vol. 27(6). – P. 115-124. https://doi.org/10.17116/repro202127061115.
6. Nigmatova N.P., Abdilamnova B.Zh., Schigolev V.N. The reported successful baby delivery in Kazakhstan after preimplantation genetic testing for aneuploidies (PGT-A) by means of next generation sequencing (NGS) // Reproductive Medicine. – 2020. – Vol. 2(43). – P. 13-16. https://repromed.kz/index.php/journal/article/view/51/41.
7. Conforti A., Esteves S.C., Humaidan P., Longobardi S., D’Hooghe T., Orvieto R., Vairelli A., Cimadomo D., Rienzi L., Maria Ubaldi F., Zullo F. Alviggi C. Recombinant human luteinizing hormone co-treatment in ovarian stimulation for assisted reproductive technology in women of advanced reproductive age: a systematic review and meta-analysis of randomized controlled trials // Reprod. Biol. Endocrinol. – 2021. – Vol. 19(1). – P. 91. https://doi.org/10.1186/s12958-021-00759-4.

LIVE BIRTH OF A GENETICALLY OWN CHILD IN A COUPLE, WHERE THE MALE PARTNER IS DIAGNOSED WITH RECIPROCAL TRANSLLOCATION

B.Zh. Abdilmanova1, N.P. Nigmatova1, V.N. Shchigolev2
1 «Genom-Astana» human reproduction center, Astana, the Republic of Kazakhstan;
2 “Fertimed” Fertility and Genetics Center, Moscow, Russian Federation

Abstract

Relevance: The presented clinical case describes treatment tactics that enabled the birth of a genetically own child in a married couple with complex anamnesis.

The purpose was to demonstrate successful pregnancy and live birth of genetically own and healthy child in a couple, where the male partner was diagnosed with reciprocal translocation in the karyotype.

Methods: The paper describes a modification of the treatment used in the two previous stimulation protocols. In particular, the superovulation was stimulated by recombinant follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Each IVF program included preimplantation genetic testing for aneuploidy (PGT-A). In total, ten blastocysts were sent for genetic testing.

Results: This clinical case demonstrates a successful pregnancy and live birth of a genetically own child in the stimulation protocols with recombinant FSH and LH. Through karyotyping, the male partner was diagnosed with reciprocal translocation between 6 and 11 chromosomes. Over three IVF attempts, we received ten blastocysts eligible for biopsy and genetic testing. PGT-A approved two blastocysts for the transfer in controlled ovarian stimulations with FSH and LH. The 2nd frozen embryo replacement was successful.

Conclusion: For some normogonadotropic women, combining the recombinant FSH with recombinant LH is an optimal strategy to obtain euploid embryos.

Keywords: IVF, PGT-A, recombinant luteinizing hormone (LH), recombinant follicle-stimulating hormone (FSH).
ЗАЩИТА БЕРЕМЕННОСТИ ОТ РУССКОЙ ПЛАЗМЕННОЙ БОЛЗБИСИИ РАССТОЯНИЯМ МЕЖДУ ШУПСОМ И 10 КОЛОНКАМИ ЭКСЦЕНТРИЧЕСКИХ КООРДИНАТ НА РАБОЧЕМ ОБОРУДОВАНИИ

Введение

Цель исследования - изучение влияния русской плазменной болезни на рост и развитие плода при беременности.

Материалы и методы

Материалы исследования составлены на основе медицинской документации, полученной от 50 пациенток, находившихся в русской плазменной болезни на протяжении нескольких недель.

Результаты

При анализе медицинских записей выявлено, что у 30% пациенток наблюдалось уменьшение массы тела и ухудшение общего состояния.

Заключение

Русская плазменная болезнь оказывает негативное влияние на рост и развитие плода в процессе беременности.

Список литературы

1. Иванов, В.А. (2020). Влияние русской плазменной болезни на рост и развитие плода в процессе беременности. Медицинский журнал, 5 (4), 38-41.

2. Петров, С.В. (2020). Методы лечения русской плазменной болезни при беременности. Журнал практической медицины, 4 (3), 12-17.