Conserved CO-FT regulons contribute to the photoperiod flowering control in soybean

Chengming Fan1,2†, Ruibo Hu3†, Xiaomei Zhang1†, Xu Wang1, Wenjing Zhang1, Qingzhe Zhang1, Jinhua Ma1 and Yong-Fu Fu1*

Abstract

Background: CO and FT orthologs, belonging to the BBX and PEBP family, respectively, have important and conserved roles in the photoperiod regulation of flowering time in plants. Soybean genome experienced at least three rounds of whole genome duplications (WGDs), which resulted in multiple copies of about 75% of genes. Subsequent subfunctionalization is the main fate for paralogous gene pairs during the evolutionary process.

Results: The phylogenic relationships revealed that CO orthologs were widespread in the plant kingdom while FT orthologs were present only in angiosperms. Twenty-eight CO homologous genes and twenty-four FT homologous genes were gained in the soybean genome. Based on the collinear relationship, the soybean ancestral CO ortholog experienced three WGD events, but only two paralogous gene pairs (GmCOL1/2 and GmCOLS/13) survived in the modern soybean. The paralogous gene pairs, GmCOL1/2 or GmCOL5/13, showed similar expression patterns in pair but different between pairs, indicating that they functionally diverged. GmFT1L1 to 7 were derived from the same ancestor prior to the whole genome triplication (WGT) event, and after the Legume WGD event the ancestor diverged into two branches, GmFTL3/5/7 and GmFTL1/2/4/6. GmFTL7 were truncated in the N-terminus compared to other FT-lineage genes, but ubiquitously expressed. Expressions of GmFTL1 to 6 were higher in leaves at the flowering stage than that at the seedling stage. GmFTL3 was expressed at the highest level in all tissues except roots at the seedling stage, and its circadian pattern was different from the other five ones. The transcript of GmFTL6 was highly accumulated in seedling roots. The circadian rhythms of GmCOLS/13 and GmFT1L1/2/4/5/6 were synchronized in a day, demonstrating the complicate relationship of CO-FT regulons in soybean leaves. Over-expression of GmCOL2 did not rescue the flowering phenotype of the Arabidopsis co mutant. However, ectopic expression of GmCOL5 did rescue the co mutant phenotype. All GmFTL1 to 6 showed flower-promoting activities in Arabidopsis.

Conclusions: After three recent rounds of whole genome duplications in the soybean, the paralogous genes of CO-FT regulons showed subfunctionalization through expression divergence. Then, only GmCOLS/13 kept flowering-promoting activities, while GmFTL1 to 6 contributed to flowering control. Additionally, GmCOLS/13 and GmFT1L1/2/3/4/5/6 showed similar circadian expression profiles. Therefore, our results suggested that GmCOLS/13 and GmFT1L1/2/3/4/5/6 formed the complicate CO-FT regulons in the photoperiod regulation of flowering time in soybean.

Keywords: CONSTANS, FLOWERING LOCUS T, Paralog, Ortholog, Functional divergence, Soybean

* Correspondence: fulu19cn@163.com
1Equal contributors
1MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
Full list of author information is available at the end of the article

© 2014 Fan et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Background

The photoperiod pathway, which includes a number of genes that form its core, as well as input and output genes, is very important for angiosperms to flower at a precise time in a year [1]. The circadian-regulated gene CONSTANS (CO) is a central regulator of this pathway, which coordinates light and clock inputs in leaves to trigger the expression of florigen gene FLOWERING LOCUS T (FT) [2,3]. In Arabidopsis, a long-day (SD) plant, the transcript peak of CO mRNA occurs late in the day in LD, but after dusk in SD [4]. CO protein, in turn, is stabilized by light and rapidly degrades in darkness, and activates the expression of FT in LD conditions [5,6]. In rice, a short-day (SD) plant, Hdl1, the CO ortholog, functions in the promotion of Hd3a (the FT ortholog) expression in SD conditions, but in the inhibition of Hd3a expression in LD conditions [7,8]. Hd1 mRNA begins to accumulate after dusk and decrease before dawn [8]. In Populus trichocarpa, CO-FT regulator also plays a pivotal role in flowering and controlling of a highly adaptive trait for forest trees [9]. The day-length flowering response in temperate cereals, such as wheat and barley, appears to involve the activation of a length flowering response in temperate cereals, such as Populus trichocarpa, Arabidopsis, and barley, appears to involve the activation of a highly adaptive trait for forest trees [9]. The day-length flowering response in temperate cereals, such as wheat and barley, appears to involve the activation of a highly adaptive trait for forest trees [9].

CO homologs belong to B-box family (BBX) family and are conserved in plants including algae [13-16]. The BBX (Pfam: PF01161) represents a subgroup of zinc finger proteins, which contain one or two B-box domains mediating protein-protein interactions in animals, yeast, and plants [17,18]. Besides B-box domains in the N-termini, some members of BBX family have a C-terminal CCT domain, which includes a nuclear import signal [4] and a domain of interaction with the ubiquitin ligase COP1 [6]. CO homologs can be sub-grouped into three major sub-types: type I with two B-box domains, type II with one B-box domain, and type III with one B-box domain and one degraded B-box domain [2,15,16]. Some members of type I genes, such as CO in Arabidopsis, Hdl1 in rice, and PnCO in Pharbitis nil, control flowering in different plants [12,14,15,19-25]. The CO homolog is also found in algae. CO from Chlamydomonas reinhardtii can complement the Arabidopsis co mutant and promote flowering [16], indicating the function of CO orthologs is ancient and conserved.

Phosphatidyl ethanolamine-binding protein family (PEBP, Pfam: PF00643) has now been identified in many kingdoms and their basic structures as well as sequences are evolutionarily conserved [26]. In plants, PEBP genes are mainly classified into three clades: FT-like, TFL1-like and MFT-like clades [27]. MFT-like is ancestral to the other two clades and shown to be involved in the development of reproductive tissues in moss and seed development and germination in seed plants [28-31]. Several members of the TFL-like clade, such as CEN from Antirrhinum [32] and TFL1 from Arabidopsis, have important roles in delaying flowering and maintaining indeterminacy of inflorescence meristem [33]. As a major component of florigen, FT-like genes mediate the onset of flowering through the photoperiod pathway, vernalization pathways, and other pathways in all angiosperms examined [34-36]. FT/TFL1-like genes, such as PaFTL1 and PaFTL2, code for proteins with a TFL1-like function in gymnosperms [30]. Taken together, the first duplication event resulting in two families of plant PEBP genes (MFT-like and FT/TFL1-like) seems to coincide with the evolution of seed plants, in which independent control of bud and seed dormancy is required [30]. The second duplication resulting in the production of the FT-like and TFL1-like clades probably coincides with the evolution of angiosperms [30]. In addition, the similarity of amino acid among the FT- and TFL-like clades is high, and key amino acids are responsible for this functional divergence [37-39].

Gene duplications have occurred during plant speciation, and the generation of several paralogous copies allows gene diversification. Paralogs may retain the function of the ancestral genes, and thus act redundantly and/or additively due to the increased protein dosage. But they may also develop non-, sub- or neo-functions [40]. In soybean, about 75% genes are present in multiple copies [41], and about 50% of paralogs are differentially expressed. Most of them have undergone sub-functionalization and only a small proportion of the duplicated genes have been neo-functionalized or non-functionalized [42,43].

In this study, the evolutionary relationship between the BBX or PEBP gene family and plant speciation was investigated at the genome level. And then CO and FT orthologs were screened in the soybean genome. Based on the phylogenetic and the collinear relationship, 4 of CO orthologs (GmCOL1, 2, 5, and 13) and 6 of FT orthologs (GmTFL1 to 6) were identified in the soybean. Finally, the detailed expression profiles of these genes in soybean and their flowering functions in Arabidopsis were analyzed. The results suggest that in soybean there were more than one CO and FT orthologs with the function of flowering control.

Results and discussion

CO-like genes are ancient, whereas FT-like genes are recent in plants

The profile-HMMs for the BBX family (PF00643) and the PEBP family (PF01161), including CO-like and FT-like genes, respectively, were employed through HMMER to search candidate genes of the two families in plants with available genomes, including two monocots (Oryza sativa and Zea mays), three eudicots (Vitis vinifera, Arabidopsis thaliana, and Glycine max), four gymnosperms
(Picea sitchensis, Pinus radiate, Pinus pinaster, and Pinus sylvestris), one lycophyte (Selaginella moellendorffii), one moss (Physcomitrella patens), and six chlorophytes (Ostreococcus lucimarinus, Micromonas pusilla RCC299, M. pusilla CCMP1545, Coccomyxa subellipsoidea, Volvox carteri, and Chlamydomonas reinhardtii) (Additional file 1). Phylogenetic trees of the CO-like and FT-like gene families were similarly reconstructed by MEGA 5.0 with Neighbor-joining method (Figure 1A and B). MEME and MAST (http://meme.nbcr.net) were employed to investigate motifs and their organizations among different clusters of the BBX or PEBP family, respectively (Figure 1C and 2D).

Different BBX clusters had completely diverged before the divergence of bryophytes and pteridophytes [13]. According to the phylogenetic tree (Figure 1A) and their own motif organizations (Figure 1C, Additional file 2), the plant BBX family was grouped into seven clusters, Cluster I through VII. Among them, Cluster I, III, IV, VI, and VII can be found in the unicellular green algae and Cluster II and V first appeared in the moss plant. Thus, seven BBX clusters appeared prior to the occurrence of land plants. Based on the alignment results of SMART (http://smart.embl-heidelberg.de/), motifs MB1 and MB4 were equivalent to the B-box1 domain, and MB3 or MB6 to the B-box2 domain (a degraded B-box [15,16]), and MB2 and MB7 to the CCT domain. CO homologs contained conserved B-box1 domain and CCT-domain [4,15]. The members of Cluster I, II and III also had both B-box1 and CCT-domain, suggesting that the members of the three clusters were the CO homologs. In addition, BBX Cluster I contained CO in Arabidopsis [14], Hd1 (OsBBX12) in rice [20], and CrCO (CrbBX1) in a green algae [16]. Thus, BBX Cluster I contained the CO orthologs from different species (Figure 1A), indicating that they formed the conserved motifs and functioned prior to the divergence of algae and plants and were monophyletic.

CO homologs probably represented as ancient regulators of photoperiod-dependent events [16]. Functionally, CrCO from C. reinhardtii shows important roles in processes regulated by the photoperiod and the circadian

![Figure 1 Phylogenetic trees of plant BBX or PEBP family.](http://www.biomedcentral.com/1471-2229/14/9)
clock [16]. In the moss *P. patens*, *PpCOL1* (*PpBBX6* in this study) expression is controlled by the circadian clock [44]. Transcripts of *PaCOL1* and *PaCOL2* in *Picea abies* can also be regulated by the photoperiod [45]. For the flowering plants, *CO* and *Hd1*, display conserved functions in regulating the flowering time through affecting transcriptions of *FT* or *Hd3a* under the LD or SD conditions, respectively [14,20].

For the plant PEBP gene family, the members could be grouped into two groups, Group I and II, with conserved motif organization, respectively (Figure 1B and D, Additional file 2). *MFT*-likes, *FT/TLF*-likes, *TLF*-likes, and *FT*-likes belonged to Group I. Based on the phylogenetic tree (Figure 1B), *MFT*-like genes were presented in all the land plants, and may be the ancestral form of *FT/TLF*-like, *TLF*-like, and *FT*-like genes [28]. *P. patens* had only *MFT*-like genes, whose expressions were regulated by circadian rhythm with maximum expressions in gametangia and sporophytes, indicating an involvement in the development of reproductive tissues in the moss [28]. Similarly, the *MFT*-like genes display important roles in the seed development or dormancy in angiosperms, but do not affect the flowering time [29,31,46]. Before the appearance of seed plants, the function divergence of *FT*-like genes and *TLF*-like genes is not obvious, and the function of some PEBP genes is close to *TLF*-like genes, although their sequences and key motifs are much similar to that of *FT*-like genes [30,45]. Only in angiosperms, the function divergence of *FT*-like genes (as an activator) and *TFL*-like genes (as a repressor) is significant as oppositely regulating the flowering time in monocots and eudicots [38,47-54]. In addition, *TSF* not only plays a role as a floral promoter in the photoperiod pathway redundantly with *FT*, but also makes a distinct contribution to *Arabidopsis* flowering in SD conditions. *TSF* overexpression causes a precocious flowering phenotype independent of photoperiods and *CO* or *FLC*, indicating *FT* and *TSF* are differently regulated by distinct floral-inducing signals [55,56]. All above, *FT*-like genes are present as the main flowering regulator after the divergence of angiosperms and gymnosperms and show different functions from that of *TSF*-like genes.

Duplicateds of the *CO-FT* regulon in the soybean evolution
In the soybean genome, 28 *CO*-like genes in total, named as *GmCOL1* through 28, can be grouped into Cluster I, II and III (Figure 1A), and most of them except for *COL24*, 25, and 26 experienced WGD (Figure 3A). Three loci experienced the Gamma WGT and two WGD events, and then resulted in *GmCOL1*/2/5/13 (Cluster I), *GmCOL6*/19/21/22/23 (Cluster II), and *GmCOL9*/15/27/28 (Cluster III), respectively (Figure 3A). Others were divergent after the *Glycine* WGD event. Evolutionarily, the soybean *CO* orthologs may be anyone of Cluster I, II, and III. However, based on the phylogenetic tree, *GmCOL1*, 2, 5, and 13 among 28 *CO*-like genes were much closer to *CrCO*, *CO*, and *Hd1* (Figure 1A), which showed flowering activity in plants [16,20]. Additionally, the syntenic blocks containing *GmCOL1* or 2 and *GmCOL5* or 13 in chromosomes were divergent after the legume WGD event according to the average *Ks* values of homologous blocks (0.3 ≤ *Ks* ≤ 1.5) (Table 1). Therefore, *GmCOL1*, 2, 5, and 13 were the good candidates of *CO* orthologs in the soybean, which was consistent with Jung *et al*. [58]. Therefore, they were selected for further study here.

There were 11 *FT*-like genes in the soybean (Figure 1B), and according to the collinear relationships (Figure 3B) they can be grouped into two clades, one including *GmFTL1* to 7 and the other composing of *GmTSF1* to 4. Compared with the previous results of Kong *et al*. [59], *GmFTL1* to 6...
were equivalent to GmFTL3a, 3b, 2a, 5a, 2b and 5b, and GmTSF1 to 4 corresponded to GmFTL1b, 1a, 6 and 4, respectively. GmFTL1-6 all experienced WGDs as well as tandem duplications (Figure 3B). GmFTL7 with only a shortened PEBP domain and lacking the N-terminal segment was diverged from its paralogous gene GmFTL3 (Table 1). However, GmFTL7 was strongly expressed in most tissues detected and induced by the photoperiod (Additional file 3). GmFTL3 (GmFTL2a) and GmFTL4 (GmFTL5a) coordinately control flowering and enable the adaptation of soybean to photoperiodic environments [59,60]. In Arabidopsis, FT mainly functions in LD while TSF makes a distinct contribution only in SD conditions [56,61,62], indicating the function of FT and TSF is

![Figure 3 The collinear relationships of homologous blocks containing CO-like or FT-like genes.](image)

Table 1 Collinear relationships of homologous blocks containing CO or FT orthologs in soybean

Gene 1	Block 1		Gene 2	Block 2		Averange Ks	
	Chr.	Start1 (bp)	Stop1 (bp)	Chr.	Start2 (bp)	Stop2 (bp)	
GmCOL1	GM08	20,564,643	23,533,251	GM18	59,120,324	60,758,130	0.1804
GmCOL1	GM08	22,488,108	22,903,468	GM13	7,094,033	7,353,077	0.7170
GmCOL1	GM08	22,268,496	22,705,283	GM19	5,037,623	5,784,423	0.7074
GmCOL2	GM18	59,759,300	60,359,904	GM13	6,762,198	7,353,077	0.6861
GmCOL2	GM18	59,768,883	60,286,871	GM19	4,269,582	5,784,423	0.6852
GmCOL5	GM13	4,686,036	7,380,393	GM19	1,047,196	6,070,543	0.2339
GmFTL7	GM02	3,884,100	7,368,892	GM16	26,025,808	32,876,516	0.2402
GmFTL7	GM02	5,819,578	6,251,781	GM19	35,107,064	36,353,817	1.020
GmFTL7	GM02	6,298,304	5,732,540	GM16	3,729,118	5,022,006	0.8591
GmFTL3, 5	GM16	30,464,871	31,024,893	GM19	35,107,064	36,353,817	0.9123
GmFTL3, 5	GM16	30,321,165	31,089,079	GM19	5,016,992	9,730,561	0.7530
GmFTL2, 6	GM19	27,993,447	37,257,559	GM16	6,662,519	3,315,381	0.2702

Note: The homologous blocks, containing CO or FT orthologs, were gained by MCScanX. Average Ks values of homologous blocks were the mean of Ks values of paralogous gene pairs in blocks.
divergent in regulating the flowering time. In soybean, GmTSF1 and -2 displayed much similar sequences with TSF. GmTSF3/4 showed much similar sequences with FT than that with TSF (Additional file 4), but they should be the TSF lineage according to the collinear relationship (Figure 3B). Furthermore, ectopic expression of GmTSF3 and GmTSF4 in Arabidopsis did not have flower-promoting activities under LD conditions (Additional file 5), so did TSF in Arabidopsis. Thus, GmFTL1 to 6 were here selected as soybean FT orthologs for further study.

Expression divergences among the soybean CO and FT paralogs showing spatio-temporal functions of CO-FT regulons

In soybean, spatio-temporal expression profiles of four candidate CO orthologs (Figure 4A-D) and six FT orthologs (Figure 4E-I) were investigated by quantitative real time RT-PCR at the stages of seedling and flowering under SD conditions (8 h light/16 h dark).

The transcript of GmCOL1/2 accumulated much more than that of GmCOLS/13 in most tissues tested, and the expressions of GmCOL1 and GmCOL5 did not show tissue-specific, while GmCOL2 and GmCOL13 displayed distinct spatio-temporal expression patterns. For example, the expression of GmCOL2 was not detected in roots, the stem at the seedling stage, in the stems at flowering, and in pods at 14 and 21 DAF (Days After Flowering) (Figure 4B). And transcripts of GmCOL13 were undetectable in unifoliolates, cotyledons, and hypocotyls (Figure 4D). GmCOL1, 2, and 5 were expressed in cotyledons and unifoliolates at the seedling and flowering stages (Figure 4A, B and C). For the photoperiod-sensitive plant, the photoperiodic signals at the seedling stage are important to regulate flowering time. These results indicated that GmCOL13 may not be the key gene of photoperiodic responses during the early stage of floral induction in soybean.

The expressions of GmFTL1 and GmFTL2 were undetectable in unifoliolates, but they strongly expressed in trifoliolates at the flowering time, and transcripts of other four GmFTLs were lower in leaves at the seedling stage than that at the flowering time (Figure 4E-I). So, soybean GmFTL genes were induced along with developmental progress. Amongst the six soybean FTL genes, GmFTL3 showed higher expression level compared to that of the other genes in most of the tissues examined (Figure 4G), suggesting that GmFTL3 was very important to promote flowering in soybean, as indicated by Kong et al. [59]. GmFTL4 also was constitutively expressed but at relatively lower level compared with GmFTL3. In the seedling stage, GmFTL3 and 4 were expressed at higher levels than their paralogs, GmFTL5 and GmFTL6, respectively. GmFTL1, 3, and 4 were strongly expressed in cotyledons (Figure 4E, G and I), which can produce sufficient FT proteins to induce flowering in Arabidopsis [63], suggesting that these three genes were important for floral induction at the early stages of soybean development. GmFTL5 was expressed at low levels and was not detected in shoot apical meristems (SAM), cotyledons, and hypocotyls at the seedling stage as well as stems at the flowering stage (Figure 4H). The expression of GmFTL6 was the highest among six soybean FTL genes in roots at the seedling stage, but no expressions were detected in roots at the flowering stage (Figure 4I). Noticeably, expressions of GmFTL1, 2, 3, 4, 6 were detected in flowers, and GmFTL1, 2, 3, 4, 5 and 6 were expressed in pods (Figure 4J), suggesting that FTL genes kept the ancient function of the PEBP family and may be important in reproductive development.

CO regulates FT mainly in leaves, the receptors of photoperiod signals. Soybean unifoliolates only were competent for receiving the signal of SD to promote flower initiation and 3 days of short-day treatment were sufficient for floral induction [64]. As Figure 4 shown, the transcripts of GmCOL1/2/5 and GmFTL3/4/5/6 were detected in unifoliolate leaves at the seedling stage. In addition, cotyledons were shown to be another receptor of photoperiod signals besides leaves [63]. Expectedly, GmCOL1/2/5 and GmFTL1/2/3/4/6 were expressed in the cotyledons at the seedling stage (Figure 4I). Combined results indicated that GmCOL1/2/5 and GmFTL3/4/6 had important roles in response to photoperiod at the soybean seedling stage.

The circadian rhythm of soybean CO-FT regulons in leaves

To investigate the circadian rhythm of the candidate CO-FT regulon genes, transcriptions of 10 genes were detected in the leaves at the stage of the first trifoliolate fully opening under SD (8 h light/16 h dark) or LD (16 h light/8 h dark) conditions (Figure 5). Transcriptional circadian patterns of the paralog gene pair, GmCOL1 and 2, were very similar under both SD and LD conditions, and expression levels was much higher in SD conditions than LD conditions. Their expression peaks were present at dawn, and after that their expressions decreased until dusk (Figure 5A and B), which indicated that the two genes were strongly induced by darkness and inhibited by light. The expression rhythms of GmCOL1 and 2 were similar to that of Hd1 in rice, in which the abundance of Hd1 mRNA was restricted to the dark period under SD conditions [65]. In addition, expression patterns of LjCOa, one of four CO homologs in Lotus japonicus, were also similar to that of GmCOL1 and 2 under SD or LD conditions [66]. Compared to GmCOL1 and 2, GmCOL5 and 13 were expressed at much lower level with different expression profiles in leaves (Figure 5C and D). In addition, the expression levels of GmCOL5 were ten folds higher than those of GmCOL13, although they showed similar expression patterns under SD or LD conditions. Under SD conditions, expression peaks of GmCOL5 and 13 occurred at dawn and ZT12, respectively. Under LD
Figure 4 (See legend on next page.)
conditions, one expression peak of GmCOL5 and 13 occurred at ZT4, and the other at ZT12 and ZT16, respectively (Figure 5C and D).

According to the circadian rhythm of six soybean FT-like genes (Figure 5E-J), five genes have similar expression patterns under SD conditions except GmFTL3. The expression of GmFTL1/2/4/5/6 occurred at dawn and peaked at ZT12 under SD conditions. But the expression peak of GmFTL3 was at ZT4 (Figure 5G), which was consistent with previous reports in soybean [59,60] and in rice [8].

Under LD conditions, all six GmFTL-like genes showed similar expression rhythms (Figure 5E-J). For example, the expressions of six soybean FT-like genes reached to the maximum level at ZT4 and ZT12.

According to the diurnal rhythms of four soybean CO and six FT genes, GmCOL5 and 13 showed similar expression patterns with GmFTL1, 2, 4, 5, and 6, indicating that the paralogous gene pair GmCOL5 and 13 have important roles in regulation of expressions of GmFTL1, 2, 4, 5, and 6, and they may be composed of the soybean complex and multiple CO-FT regulators to sense the circadian and photoperiodic signals.

Ectopic activity on Arabidopsis flowering of GmCOLs and GmFTLs

In Arabidopsis, the CO paralog genes, COL1 and COL2, have little effect on flowering time [67], and other members of BBX Cluster I genes, COL3 and COL5, do not regulate the flowering time in Arabidopsis [68,69]. However, COL9, belonging to the BBX cluster II, is involved in regulation of flowering time by repressing the expression of CO, concomitantly reducing expressions of FT and delaying floral transition [70]. That indicates the functions of CO-like genes are not redundant in controlling the flowering time, and it may result from the rapid evolution of CO-like genes in plants [13]. To investigate the flowering functions of soybean CO orthologs, GmCOL2 and GmCOL5 under control of CaMV 35S promoter were introduced into the co mutant (co-2), respectively. For GmCOL2, no significant changes in flowering time were detected in the over-expressing lines in LD conditions (Figure 6A and I). By contrast, over-expression of GmCOL5 was able to rescue the late-flowering phenotype of co mutant (Figure 6B and I), indicating that GmCOL5 gene may be a functional CO ortholog in soybean.

FT and its orthologs are the universal and conserved promoters of flowering in different plants [34,48,59,65,71].

Over-expressions of GmFTL3 (GmFTL2a) or 4 (GmFTL5a) can promote the flowering in Arabidopsis [59,60]. To identify the flowering activity of soybean FT-like paralogs, all constructs of GmFTL1 to 6 genes under control of CaMV 35S promoter were respectively introduced into Arabidopsis ecotype Columbia (Col-0) (Figure 6C-H and I). Besides GmFTL3 or 4, other four soybean FTL genes can also change the flowering time of Arabidopsis (Figure 6C-H and I), suggesting that these paralogs of FTL genes may be functional FT orthologs in soybean. However, individual GmFTL genes had their own specific functions, because their spatio-temporal expression patterns were quite different.

In Arabidopsis, TSF and FT are differently regulated by distinct floral-inducing signals, so they show different functions on flowering in different conditions [56,61]. Functions of GmTSF3, GmTSF4 and GmPebP21 in promoting flowering were further evaluated through heterologous over-expressions in Arabidopsis under LD conditions. The results showed that no significant changes in flowering time were detected in over-expression lines of GmTSF3 and GmTSF4, compared to Arabidopsis wild type (Additional file 5), suggesting that they may not be the FT-lineage genes. Although GmPebP21 was much similar to FT in sequence (Additional file 4), it was not clustered into the FT-like (Figure 1B). And overexpression of GmPebP21 showed no effect on the flowering of Arabidopsis (Additional file 5), indicating that it also was not a functional FT gene.

Conserved subcellular localization of soybean CO and FT-lineage proteins

Constructs of GmCOL2, GmCOL5, and GmFTL1 to 6 genes tagged by a reporter gene (YFP) at the N- or C-terminal were employed to investigate the subcellular localization through the particle bombardment in the young soybean leaves. Fluorescence signals of YFP-GmCOL2 and YFP-GmCOL5 were only present in the nucleus (Figure 6K), which were similar to CO homologous proteins in other species [14,20]. All six GmFTL proteins also resembled to FT homologous proteins in other plants [72,73] and localized in both the cytoplasm and the nucleus (Figure 7).

Conclusion

BBX gene family contained seven clusters and the CO-homolog cluster were diverged from other clusters at the occurrence of plants. PEBP gene family had three
Figure 5 (See legend on next page.)
groups and FT-lineage genes were diverged from MFT- and TFL-lineage genes at the occurrence of angiosperms. The role of the CO-FT regulon in photoperiodic regulation of flowering time was conserved, although the evolutionary rates of CO- and FT-lineage genes were different in angiosperms. In soybean, an ancient CO-lineage gene experienced three polyploidy events, and then formed four candidate of CO genes, GmCOL1, 2, 5, and 13. Six FT-lineage genes, GmFTL1-6, were from an ancient locus prior to the WGT event. Based on the spatio-temporal expression

Figure 5 The circadian rhythm expression of soybean CO and FT orthologs under SD or LD conditions. A to D, the expression patterns of GmCOL1, 2, 5, 13, respectively. E to J, the expression patterns of GmFTL1-6, respectively. Seedlings were grown in SDs (8 h light/16 h dark cycles) or LDs (16 h light/8 h dark cycles) until the first trifoliolate leaf was fully expanded. Five trifoliolate leaves as one sample were collected at the times shown after dawn (ZT 0). Relative expressions were normalized to GmUKWN transcripts. Average and SD values for three replications are given for each data point.

Figure 6 Flowering function analysis in Arabidopsis and the subcellular localizations of two soybean CO-lineage genes. A and B showed the phenotypes of overexpression of GmCOL2 and 5 in co-2 mutants, respectively. C to H, phenotypes of over-expression of GmFTL1, 2, 3, 4, 5 and 6, respectively. I, total rosette leaf numbers of transgenic lines of GmCOL2 or 5 in co-2 mutants. J, total rosette leaf numbers of transgenic lines of GmFTL1, 2, 3, 4, 5 and 6 at flowering time. n, the total number of tested transgenic lines. Box plot showed total rosette leaf numbers of each line at the beginning of flowering and was generated using GraphPad Prism 5 software. The top of the box is the 75th percentile. The bottom of the box is the 25th percentile. The horizontal line intersecting the box is the median value of the group. Horizontal lines above and below the box represent maximum and minimum values, respectively. Boxes with dissimilar letters are significantly different at P < 0.01 after one-way analysis of variance (ANOVA). K, The subcellular localizations of GmCOL2 and 5 tagged by YFP at the N-terminal in the soybean leaves. PI (Propidium iodide) strain was selected to mark the cell walls.
profiles, *GmCOL1/2/5 and GmFTL3/4/6* were shown to play important roles in responses to photoperiod at the seedling stage. *GmCOL5, GmFTL1 to 6* showed flowering activity in *Arabidopsis*, suggesting that at least these genes may be the candidates of functional CO-FT regulons in soybean. Therefore, the CO-FT regulon in soybean was complicate and had multiple ones instead of a single one as in *Arabidopsis*, which may function synergistically in a spatio-temporal mode to control photoperiodic flowering.

Methods

Plant Materials

The soybean cultivar (Kennong18) was grown in the greenhouse under SD conditions (8 h light/16 h dark) at 24–28°C. The roots, hypocotyls, epicotyls, cotyledons, unifoliolate leaves and shoot apex (including the apical meristem and immature leaves) were sampled when the unifoliolate leaves were fully expanded (about two weeks after sowing). Other sample of the root, stem, unifoliolate leaves, various trifoliolate leaves, petiole and flower were harvested when the fourth trifoliolate were fully expanded (~45 days after sowing, flowering onset). Pods were sampled at 7, 14 and 21 days after flowering. For circadian samples, plants were grown in SD (8 h light/16 h dark) or LD (16 h light/8 h dark) conditions. When the first trifoliolate leaves were fully expanded, leaves were collected at 4 h intervals. All samples were immediately frozen in liquid nitrogen and stored at −80°C until use.

Data sets and identification of the PEBP or BBX family

Protein sequences from the completely sequenced genomes were downloaded from Phytozome V8.0 (http://www.phytozome.net), including two monocots (*Oryza sativa* and *Zea mays*), three eudicots (*Vitis vinifera, Arabidopsis thaliana*, and *Glycine max*), one lycophyte (*Selaginella moellendorfii*), one moss (*Physcomitrella patens*), and six chlorophytes (*Ostreococcus lucimarinus, Micromonas pusilla* RCC299, *M. pusilla* CCMP1545, *Coccomyxa subellipsioidea, Volvox carteri*, and *Chlamydomonas reinhardtii*). Additionally, sequences of four gymnosperms (*Picea sitchensis, Pinus radiata, Pinus pinaster*, and *Pinus sylvestris*) were gained from Protein Knowledgebase (http://www.uniprot.org/uniprot/).

In order to provide a uniform nomenclature for the B-box protein family, all the genes with B-box domain were classified as the BBX family [18]. HMMER 3.0 [74] was employed to identify the members of the BBX family (Pfam: PF00643) and the PEBP family (Pfam: PF01161) through their own profile-HMMs in 13 genomes.

Phylogenetic analysis

Clustalw 2.0 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) was used to aligned protein sequences of the BBX or PEBP family with default parameters. The reconstructions of phylogenetic trees were conducted through MEGA 5.0 [75]. Neighbour-joining (NJ) was used to construct different trees. To estimate evolutionary distances, the proportion of amino acids differences were computed using Jones-Taylor-Thornton (JTT) or Poisson correction models. To handle
gaps and missing data, the pairwise-deletion option was selected. Bootstraps with 1000 replicates for Poisson correction model were performed to assess node support.

Collinearity analysis of the soybean BBX or PEBP gene family
The modern soybean genome has experienced two “recent” whole-genome duplications (WGDs), and a more ancient triplication (Gamma WGT), and about 75% of the genes are present in multiple copies [41,76]. In soybean, the putative homologous chromosomal regions were identified by MCScanX [77] according to the alignment of protein sequences. For a protein sequence, the best five non-self hits in the soybean genome that met an E-value threshold of 10^{-10} were reported. And the homologous blocks including at least 5 collinear gene pairs and the gap number of gene pairs was not more than 20. The schematic diagrams for the collinearity of the members of BBX or PEBP family were drawn by Circos [78] (http://circos.ca/).

Gene cloning and constructing expression vectors
The full CDS sequences of soybean CO orthologs (GmCOL1, 2, 5, and 13), FT orthologs (GmFTL1-6), GmTSF1-4, and GmPEBP21 were cloned into the entry vector (pGWCm) [79] and then recombined into appropriate destination vectors, pLEELA vector for overexpression in Arabidopsis or 2X35S::Gateway cassette: YFP for the subcellular localization in soybean young leaves, with the Gateway technology (Invitrogen).

Quantitative gene expression analysis
The procedure used for RNA extraction, cDNA synthesis, and PCR was as described by Hu, et al [80]. According to the specificity and efficiency of the primer pairs, the soybean CO or FT orthologs were designed by Beacon Designer 7.9, and at least one primer was specific for the target gene primer pairs (Additional file 6). Both GmACT11 and GmUKNI were served as reference genes for the tissue-expression trials, and GmACT11 was selected as the reference gene for the photoperiodic experiments.

Transformation in Arabidopsis and growth conditions
Transformation of WT Col-0 and co mutant plants with Agrobacterium bacteria carrying recombinant constructs was performed using the floral dip method [81,82]. For each construct, at least three independent T1 lines were selected analyzed for flowering time under the LD condition (22-24°C, 150 μmol·m^{-2}·sec^{-1}).

Subcellular localization
Transient expression of GmCOL2, GmCOL5 and GmFTL1 to 6 tagged by YFP in soybean young leaves was performed with a Model PDS-1000/He Biolistic Particle Delivery System (Bio-Rad). 10 micrograms of purified plasmids were coated with 500 μg 1 μm-gold particles, as described by the manufacturer. After bombardment, young soybean leaves were incubated overnight at 25°C on solid 1/2 MS medium. Fluorescent cells were imaged by confocal microscopy (Leica TCS SP5, Leica Microsystem, Wetzlar, Germany). YFP was excited by the 514-nm argon laser line, and PI (Propidium iodide) stain was excited using a 561-nm He-Ne laser. Fluorescence was detected using multimultiplier tube settings as follows: YFP (520 to 560 nm), and PI (570 to 620 nm). At last, post-acquisition image analyzing and processing were performed using MBF Image (version 1.46) (https://www.mabiophotonics.ca/).

Additional files

Additional file 1: The information of the BBX or PEBP family. Sheet Gm, At, Vv, Os, Zm, Pp, and Sm showed the information of G. max, A. thaliana, V. vinifera, O. sativa, Z. mays, P. patens and S. moellendorffii, respectively; Sheet Gymnosperm included F. sitchensis, P. radiata, P. pinaster, and P. sylvestris; Sheet Algae included O. lucimarinus, M. pusilla RCC299, M. pusilla CCMP1545, C. subellipsoidea, V. carperti, and C. reinhardtii.

Additional file 2: The best match sequences of motifs for the BBX or PEBP family.

Additional file 3: Spatio-temporal expressions of GmFTL7, R, root; H, hypocotyl; C, cotyledon; E, epicotyl; L, leaf; S, stem; T1, T2, T3, T4, the first, second, third, and fourth trifoliolate leaf, respectively; F, flower; SAM, the shoot apex (including the apical meristem and immature leaves); GmTSF4, GmTSF5, and GmTSF6, the seedling stage. P1, P2, and P3: seven, fourteen and twenty one days after the onset of flowering, respectively. The geometric means of GmACT11 and GmUKNI transcripts were used as the reference transcript. The bars are means of three replicates, and each replicate represented a pool from at least five plants, and means was formulated as \(\Delta \Delta C_{t} = C_{t}(\text{Target gene}) - C_{t}(\text{geometric means of reference genes}) \).

Additional file 4: The similarity between soybean and Arabidopsis FT-like genes.

Additional file 5: Phenotype of GmTSF3, GmTSF4 and GmPEBP21 over-expressing in Arabidopsis. A. The phenotype of transgenic lines. B. The rosette leaf number of the transgenic lines at flowering. n showed the total detected lines. Box plot showed total rosette leaf numbers of each line at the beginning of flowering and was generated using GraphPad Prism 5 software. The top of the box is the 75th percentile. The bottom of the box is the 25th percentile. The horizontal line intersecting the box is the median value of the group. Horizontal lines above and below the box represent maximum and minimum values, respectively.

Additional file 6: The primers of soybean CO or FT-lineage genes.

Authors’ contributions
CF carried out all the analysis and interpreted the results, and wrote the manuscript. RH, XZ, CF carried out experiments of the manuscript. RH, XZ, CF carried out all the analysis and interpreted the results, and wrote the manuscript. WZ, QZ, JM and CF done some works of the manuscript. RH, XZ, CF carried out experiments of the marked endosperm. RH, XZ, CF carried out all the analysis and interpreted the results, and wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements
This work was partly supported by 863 program (2013AA102602), Transgenic program (2011ZX08009-001 and 2011ZX08004-005), 973 Program (2010CB125006), and the National Natural Science Funds (31000681).

Author details
1MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie,
References

1. Reeves PH, Coupland G: Response of plant development to environment: control of flowering by daylength and temperature. Curr Opin Plant Biol 2000, 3(1):37–42.

2. Valverde F: CONSTANS and the evolutionary origin of photoperiodic timing of flowering. J Exp Bot 2011, 62(8):2453–2463.

3. Tuck F, Fornara F, Coupland G: Regulation and identity of floralgenic FLOWERING LOCUS T moves center stage. Ann Rev Plant Biol 2008, 59:53–94.

4. Suarez-Lopez P, Wheatley K, Robson F, Crouchly H, Valverde F, Coupland G: CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 2001, 410:6830(1116–1120).

5. Valverde F, Mouradov A, Somppi W, Ravenscroft D, Soppe W, Samach A, Coupland G: Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 2004, 303(5630):1003–1006.

6. Jang S, Marchal V, Panigrahi KC, Winkel S, Somppi W, Deng XW, Valverde F, Coupland G: Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. The EMBO journal 2008, 27(9):1277–1288.

7. Iwaz T, Okawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K: Phytocrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Plant Cell Physiol 2009, 50(9):1697–1704.

8. Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K: Adaptation of photoperiodic control pathways promotes short-day flowering in rice. Nature 2003, 422(6933):719–722.

9. Bohlenius H, Huang T, Charbonnel-Campfala L, Brunner AM, Jansson S, Strauss NH, Nilsson O: CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 2006, 312(5768):1040–1043.

10. Greenup A, Peacock WJ, Dennis ES, Trevisk B: The molecular biology of seasonal flowering responses in Arabidopsis and the cereals. Ann Bot (Lond) 2009, 103(3):1165–1172.

11. Nemoto Y, Kisa M, Fuse T, Yano M, Oghara Y: Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering gene in transgenic rice. Plant J 2003, 36:82–93.

12. Martin J, Storsgard MA, Andersen CH, Nielsen KK: Photoperiodic regulation of flowering in perennial eygrass involving a CONSTANS–like homolog. Plant Mol Biol 2004, 55(2):159–169.

13. Lagercrantz U, Axelsson U: Rapid evolution of the family of CONSTANS LIKE genes in plants. Mol Biol Evol 2007, 24(1):1499–1507.

14. Putterill J, Robson F, Lee K, Simon R, Coupland G: The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 1995, 80(6):847–857.

15. Griffiths S, Dunford RP, Copeland G, Laurie D: The evolution of CONSTANS–like gene families in barley, rice, and Arabidopsis. Plant Physiol 2003, 131(4):1853–1867.

16. Serrano G, Herrera-Palau R, Romero JM, Serrano A, Coupland G: The EMBO gene family: a signal transduction modulator and metastasis suppressor. Cell Res 2000, 10(4):452–457.

17. Chardon F, Davernal C: Phylogenomic analysis of the PEBP gene family in cereals. J Mol Evol 2005, 61(5):579–590.

18. Fedyan H, Kallman T, Lagercrantz U: Early evolution of the MFT-like gene family in plants. Plant Mol Biol 2009, 70(4):350–369.

19. W X, Liu C, Hou Y, Xu Y: MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 2010, 22(6):1733–1748.

20. Karkren A, Gyllenstrand N, Kallman T, Sandstrom JD, Moore D, Lascoux M, Lagercrantz U: Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiol 2011, 156(4):1967–1977.

21. Nakamura S, Abe F, Kawaihigashi H, Nakazono K, Tagari A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, et al: A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell 2011, 23(9):3215–3229.

22. Bradley D, Carpenter R, Copes L, Vincent C, Rothstein S, Coen E: Control of inflorescence architecture in Antirrhinum. Nature 1996, 379(6558):791–797.

23. Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E: Inflorescence commitment and architecture in Arabidopsis. Science 1997, 275(5290):80–83.

24. Pin PA, Nilsson O: The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ 2012, 35(10):1742–1755.

25. Wigge PA: FT, a mobile developmental signal in plants. Curr Biol 2011, 21(9):R374–R378.

26. Arnason R: Seasonal and developmental timing of flowering. Plant J 2010, 61(6):1001–1013.

27. Ath JH, Miller D, Winter VI, Banfield MJ, Lee JH, Yoo SY, Hensch ZR, Brady RL, Weigel D: A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 2006, 25(3):605–614.

28. Hanzawa Y, Money T, Bradley D: A single amino acid converts a repressor to an activator of flower development. Proc Natl Acad Sci USA 2005, 102(17):5748–5753.

29. Pin PA, Benlloch R, Bonnet D, Wernet-Welch E, Krafl T, Geilen JJ, Nilsson O: An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Sci 2010, 330(6009):1397–1400.

30. Finde LE, Wendel JF: Gene duplication and evolutionary novelty in plants. New Phytol 2009, 183(3):557–564.

31. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Theilen JI, Cheng J, et al: Genome sequence of the paeleopolyploid soybean. Nature 2010, 463(7281):178–183.

32. Roulin A, Auer PL, Libault M, Schlueter J, Farmer A, May G, Dascouy L, Lagercrantz U: The Arabidopsis B-box zinc finger family. Plant Cell Physiol 2009, 50(11):1937–1947.

33. Michal M, Yasojka Y, Ishikawa M, Yamanechii U, Monna L, Fuse T, Baba T, Yamamoto K, Umemura H, Yamamura Y: et al: HFL1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 2003, 15(12):2473–2484.

34. Liu J, Yu J, McIntosh L, Kende H, Zeevaart JA: Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering. Plant Physiol 2001, 125(4):1821–1830.
57. Ballerini ES, Kramer EM: In the light of evolution: a re-evaluation of conservation in the CO-FT regulon and its role in photoperiodic regulation of photoperiodic flowering in chrysanthemums. Proc Natl Acad Sci USA 2006, 103(16):5898-6003.

58. Jung CH, Wong CE, Singh MB, Bhalla PL: plant biology.

59. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Fan et al. BMC Plant Biology.

60. Sun H, Jia Z, Cao D, Jiang B, Wu C, Hou W, Liu Y, Fei Z, Zhao D, Han T: Plant Cell 2014, 16(10):120-1-125.

61. D’Alonzo M, Bouchard J, Poulin J, Terpstra R: Plant Cell 2011, 23(10):2895-2909.

62. Liu H, Wang H, Cao P, Xu J, Xu T, Wang J, Wang B, Lin C, Fu Y-F: Analysis of clock gene homologs using unifoliolates as target organs in soybean (Glycine max). J Plant Physiol 2009, 166(3):278-289.

63. Kojima S, Takahashi Y, Kobayashi Y, Moriya N, Sasaki T, Araki T, Yano M: HD3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 2002, 43(10):1096-1105.

64. Yamashino T, Yamawaki S, Hagiwara E, Ueno-Nakamura H, Nakamura N, Ito S, Mizuno T: Clock-Controlled and FLOWERING LOCUS T (FT)-Dependent Photoperiodic Pathway in Lotus japonicus I: Verification of the Flowering-Associated Function of an FT Homolog. Biosci Biotechnol Biochem 2013, 77(4):747-753.

65. Ledger S, Strayer C, Ashton F, Kau SA, Putterill J: Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. Plant J 2001, 26(1):15-22.

66. Datta S, Hettiarachchi GH, Deng XW, Holm M: Arabidopsis CONSTITUTIVE-LIKE gene is a positive regulator of red light signaling and root growth. Plant Cell 2006, 18(1):70-84.