Abstract. Let W be the germ of a smooth complex surface around an exceptional curve and let E be a rank 2 vector bundle on W. We study the cohomological properties of a finite sequence \{E_i\}_{1 \leq i \leq t} of rank 2 vector bundles canonically associated to E. We calculate numerical invariants of E in terms of the splitting types of E_i, 1 \leq i \leq t. If S is a compact complex smooth surface and E is a rank two bundle on the blow-up of S at a point, we show that all values of \(c_2(E) - c_2(\pi_*E^{**})\) that are numerically possible are actually attained.

2000 Mathematics Subject Classification: 14F05

0. Introduction

We consider exceptional curves in the following two cases. In the first case, let W be a smooth connected complex analytic surface which contains an exceptional divisor i.e. a smooth curve \(D \cong \mathbb{P}^1\) with \(O_D(-1)\) as normal bundle. Let U be a small tubular neighborhood of D in the Euclidean topology and let \(\pi: U \to Z\) be the contraction of D. In this case Z is the germ of a smooth surface around the point \(P:= \pi(D)\).

In the second case, let W be a smooth connected algebraic surface defined over an algebraically closed field \(K\) with arbitrary characteristic. We assume that W contains an exceptional curve D and denote by U the formal completion of W along D. Let \(\pi: U \to Z\) be the contraction of D. In this case Z is a formal smooth two-dimensional space supported at P.

In what follows we use the notation defined above to represent either case. Let \(I\) be the ideal sheaf of D in U and consider a rank 2 vector bundle E over U. Consider the pair of integers \((a,b)\) such that \(E|D \cong O_D(a) \oplus O_D(b)\). We will refer to the pair \((a,b)\) as the \textit{splitting type} of E. Since Z is a smooth surface the bidual \(\pi_*(E)^{**}\) is locally free and hence free because Z is 2-dimensional. There is a natural inclusion \(j: \pi_*(E) \to \pi_*(E)^{**}\) such that \(\text{coker}(j)\) has finite length. Set \(Q := \text{coker}(j)\).

We show that the pair \((z,w) := (h^0(Z,Q), h^0(Z,R^1\pi_*(E)))\) of numerical invariants of E is uniquely determined by a sequence of pairs of integers associated to E in \([B]\) using ele-
mentary transformations. We review the construction of the associated sequence and prove the following results.

Theorem 0.1. Let E be a rank 2 vector bundle on W with associated admissible sequence $\{(a_i, b_i)\}_{1 \leq i \leq t}$. Then we have the equalities

$$w := h^0(Z, R^1\pi_* (E)) = \sum_{1 \leq i \leq t} \max \{-b_i - 1, 0\} \quad \text{and} \quad z := h^0(Z, Q) = \sum_{1 \leq i \leq t} a_i - a_t^2 - \sum_{1 \leq i \leq t} \max \{-b_i - 1, 0\}.$$

Every admissible sequence is associated to a rank 2 vector bundle on W (see [B] Th.0.2). For simplicity, we normalize our bundles to have splitting type $(j, -j + \varepsilon)$, with $\varepsilon = 0$ or $\varepsilon = -1$. We have the following existence theorem.

Theorem 0.2. For every pair of integers (z, w) satisfying $j - 1 - \varepsilon \leq w \leq j(j-1)/2 - j\varepsilon$ and $1 \leq z \leq j(j+1)/2$ with $j \geq 0$ and $\varepsilon = 0$ or -1, there exists a rank 2 vector bundle E on W with splitting type $(j, -j + \varepsilon)$ having numerical invariants $h^0(Z, R^1\pi_* (E)) = w$ and $h^0(Z, Q) = z$.

Remark 0.3. It follows from theorem 0.2 that the strata defined in [BG] for spaces of bundles on the blow-up of C^2 are all non-empty.

We give also the following characterization of the split bundle.

Proposition 0.4. Let E be a rank 2 vector bundle on U with splitting type $(j, -j + \varepsilon)$ with $j > 0$ and $\varepsilon = 0$ or -1. The following conditions are equivalent:

(i) $E \cong O_U(-jD) \oplus O_U((j+\varepsilon)D)$

(ii) $c_2(E) - c_2(\pi_* (E)**) = j(j+\varepsilon)$

(iii) $h^0(Z, R^1\pi_* (E)) = j(j-1)/2$

(iv) E has associated sequence $\{(a_i, b_i)\}_{1 \leq i \leq j-\varepsilon}$ with $b_i = -j-\varepsilon+i-1$ for every i.

We now consider a compact complex smooth surface S, so that we can calculate second Chern classes. If E is a rank 2 bundle defined on the blow-up of S at a point, then the difference of second Chern classes satisfies $j \leq c_2(E) - c_2(\pi_* (E)**) \leq j^2$ and is given by the sum $h^0(Z, R^1\pi_* (E)) + h^0(Z, Q)$ (see [FM]). Sharpness of these bounds was proven in [B] and in [G2] by different methods. We prove the following existence theorem.
Theorem 0.5. Let S be the blow-up of a compact complex smooth surface S at a point. Let l denote the exceptional divisor and let j be a non-negative integer. Then for every integer k satisfying $j \leq k \leq j^2$ there exists a rank 2 vector bundle E over S with $E|_l \cong O_l(j) \oplus O_l(-j)$ satisfying $c_2(E) - c_2(\pi_0(E)**) = k$.

Note 0.6: In [G1, Thm. 3.5] it is shown that the number of moduli for the space of rank-2 bundles on the blow up of \mathbb{C}^2 at the origin with splitting type j equals $2j-3$; and since such bundles are determined by their restriction to a formal neighborhood of the exceptional divisor it follows that we have the same number of moduli for bundles over the neighborhood U of an exceptional curve on a surface W.

These results are proven in section 1, where we also review the construction of admissible sequences. On section 2 we consider briefly bundles of higher rank.

1. Rank 2 bundles

We briefly recall the construction of the associated sequences of pairs of bundles and splitting types given in the introduction of [B]. We first give the definitions of positive and negative elementary transformations.

Let E be a rank 2 vector bundle on W with splitting type (a,b) with $a \geq b$. Fix a line bundle R on D and a surjection $r: E \to R$ induced by a surjection $\rho: E|_D \to R$. There exists such a surjection if and only if $\text{deg}(R) \geq b$. If $\text{deg}(R) = b < a$, then ρ is unique, up to a multiplicative constant. Set $E' := \ker(r)$ and $R' = \ker(\rho)$. If $\text{deg}(R) = b < a$ the sheaf E' is uniquely determined, up to isomorphism. Since D is a Cartier divisor, E' is a vector bundle on U. We will say that E' is the bundle obtained from E by making the negative elementary transformation induced by r. Note that R' is a line bundle on D with degree $\text{deg}(R') = a + b - \text{deg}(R)$. Since $\text{deg}(I/D) = 1$ it is easy to check that $\text{deg}(E'|_D) = a + b + 1$ and we have the exact sequence

$$0 \to O_D(1+\text{deg}(R)) \to E'|_D \to R' \to 0.$$

Furthermore, using this exact sequence we obtain a surjection $t: E' \to R'$ such that $\ker(t) \cong E(-D)$. In particular $\ker(t)|_D \cong O_D(a+1) \oplus O_D(b+1)$. Thus, up to twisting by $O_D(-D)$, the negative elementary transformation induced by r has an inverse operation and we will say that E is obtained from E' making a positive elementary transformation supported by D. The following diagram, called the display of the elementary transformation, summarizes the construction (see [M]).
Given two vector bundles E_1 and E_2 with splitting types (a_1, b_1) and (a_2, b_2) we say that E_1 is more balanced than E_2 if $a_1 - b_1 \leq a_2 - b_2$. Given a vector bundle E with splitting type (a, b) we say that E is balanced if either $a = b$ (case c_1 even) or else $a = b + 1$ (case c_1 odd). Performing negative elementary transformations we will take the bundle E into more balanced bundles. The sequence of elementary transformations finishes when we arrive at a balanced bundle. If $\deg(R) = b$, then $E'|D$ fits in the exact sequence

$$0 \rightarrow O_D(b+1) \rightarrow E'|D \rightarrow O_D(a) \rightarrow 0.$$

If $b < a$ then E' is more balanced than E. If $b \leq a - 3$, then (2) does not uniquely determine $E'|C$. If $b \leq a - 2$ and E' is not balanced, we reiterate the construction starting from E' taking R' to be the factor of $E'|D$ of lowest degree and we take the unique surjection (up to a multiplicative constant) $\rho': E' \rightarrow R'$. In a finite number, say, $t-1$, of steps, we send E into a bundle which, up to twisting by $O_U(sD)$, where $s = -(a+b+t-1) / 2$ has trivial restriction to D. The process ends with a bundle isomorphic to $O_U(sD)$ (see [B], Remark 0.1).

We now construct the admissible sequence associated to E. Step one: set $E_1 := E$, $a_1 := a$ and $b_1 := b$. If $a_1 = b_1$, set $t = 1$ and stop. Otherwise $a_1 > b_1$. Step two: in the case $a_1 > b_1$ set $E_2 := E'$ and let (a_2, b_2) be the splitting type of E'. Note that $a_2 + b_2 = a_1 + b_1 + 1$ and $b_1 < b_2 \leq a_2 \leq a_1$. Hence $a_2 - b_2 < a_1 - b_1$ and E_2 is more balanced than E_1. If $a_2 = b_2$, set $t := 2$ and stop. If $a_2 > b_2$ reiterate the construction. Final step: in a finite number of steps (say $t-1$ steps) we arrive at a bundle E_t with splitting type (a_t, b_t) with $a_t = b_t$. Call E_i, $2 \leq i \leq t$, the bundle obtained after $i-1$ steps and let (a_i, b_i) be the splitting type of E_i. The finite sequence of pairs $\{(a_i, b_i)\}$ $1 \leq i \leq t$ obtained in this way has the following properties:

i. $a_i \geq b_i \ \forall \ i > 0,$

ii. $a_i + b_i = a_{i-1} + b_{i-1} + i - 1 \ \forall i > 1,$

iii. $a_i \geq a_{i+1} \geq b_{i+1} > b_i \ \forall \ i \geq 1,$ and

iv. $a_t = b_t.$
We call **admissible** any such finite sequence of pairs of integers. We will say that a sequence \(\{(a_i,b_i)\}, 1 \leq i \leq t\) is the **admissible sequence associated to the bundle** E if this sequence is created by the algorithm just described. By [B] Th. 0.2, every admissible sequence is associated to a rank 2 vector bundle on \(W\).

Examples: Let us first set some notation. To represent the admissible sequence \(\{(a_i,b_i)\}, 1 \leq i \leq t\), we write \((a_1,b_1) \rightarrow (a_2,b_2) \rightarrow \cdots \rightarrow (a_t,b_t)\).

1. If the splitting type of E is \((b+2,b)\) then there is only one possibility for the admissible sequence associated to E, namely

\[(b+2,b) \rightarrow (b+2, b+1) \rightarrow (b+2, b+2).\]

2. If the splitting type of E is \((b+4,b)\) then there are 3 different possibilities for admissible sequences associated to E (which in particular will give rise to different values of the numerical invariants \((z,w)\)), these are:

 i. \((b+4,b) \rightarrow (b+4,b+1) \rightarrow (b+4, b+2) \rightarrow (b+4, b+3) \rightarrow (b+4, b+4)\)

 ii. \((b+4,b) \rightarrow (b+4,b+1) \rightarrow (b+3, b+3)\)

 iii. \((b+4,b) \rightarrow (b+3, b+2) \rightarrow (b+3, b+3)\)

We now calculate the numerical invariants of E in terms of admissible sequences. For every integer \(n \geq 0\) let \(D^{(n)}\) be the n-th infinitesimal neighborhood of \(D\) in \(U\). Hence \(D^{(n)}\) is the closed subscheme of \(U\) with \(I^{n+1}\) as ideal sheaf. In particular, \(D^{(0)} = D\) and \(D^{(n)}_{\text{red}} = D\) for every \(n \geq 0\). For each integer \(n \geq 0\) the following sequence is exact

\[0 \rightarrow I^n/I^{n+1} \rightarrow O_U/I^{n+1} \rightarrow O_U/I^n \rightarrow 0\]

(3)

Suppose that E is a vector bundle normalized to have splitting type \((j,-j+\varepsilon)\) where \(j \geq 1\) and either \(\varepsilon = 0\) or \(\varepsilon = -1\). We denote by \(m\) be the maximal ideal of \(O_Z,p\). Consider the inclusion \(j: \pi_\ast(E) \rightarrow \pi_\ast(E)^{**}\) and let \(Q := \text{coker}(j)\), \(z := h^0(Z,Q)\), and \(w := h^0(Z,R^1\pi_\ast(E))\).

Call \(O_D(x)\) the degree x line bundle on \(D\). Twisting the exact sequence (3) by \(E\) and using the fact that \(I^n/I^{n+1}\) has degree \(n\), we obtain the exact sequence

\[0 \rightarrow O_D(j+n) \otimes O_D(-j+\varepsilon+n) \rightarrow E|_D^{(n)} \rightarrow E|_D^{(n-1)} \rightarrow 0\]

(4)

Lemma 1.1. The integers \(z\) and \(w\) satisfy the inequalities:

\[1 \leq z \leq j(j+1)/2 \quad \text{and} \quad j-1-\varepsilon \leq w \leq j (j-1)/2 - \varepsilon j.\]
Proof. By the Theorem on Formal Functions we have the bounds for \(z \) and we have that
\[
w \leq \sum_{n \geq 0} h^1(D, O_D(-j+\epsilon+n)) = j(j-1)/2 - \epsilon j.
\]
The upper bound for \(w+z \) was stated in [FM] Remark 2.8, and proven for bundles with arbitrary rank in [Bu] Prop.2.8. Consequently we have an alternative proof of the upper bound for \(z \). The lower bound for \(w \) will be proven in Remark 1.4. For the case of rank two and \(\epsilon = 0 \) [G2] shows that these bounds are sharp.

Since \(Q \) is a quotient of \(O_{U,P}^{\oplus 2} \) the dimension of the fiber of \(Q \) at \(P \) is either 1 or 2. The sheaf \(Q \) is isomorphic to the structure sheaf of a subscheme of \(Z \) supported by \(P \) and with length \(z \) if and only if the dimension of this fiber is 1. We will check that this is always true (see Proposition 1.3). We first check the split case.

Lemma 1.2. Suppose that \(E \cong O_U(-jD) \oplus O_U((-j+\epsilon)D) \) then \(z = j(j+1)/2, \ w = j(j-1)/2 - \epsilon j \) and \(Q \) is isomorphic to the structure sheaf of a subscheme of \(Z \) supported by \(P \) and with \(m^j \) as ideal sheaf.

Proof. Since \(D \) is an exceptional divisor, we have \(\pi_* (O_U((-j+\epsilon)D)) = \pi_* (O_U) = O_Z \) for every \(j \geq \epsilon \) and \(\pi_* (O_U(-jD)) = m^j \) if \(j > 0 \).

Proposition 1.3. Let \(E \) be a rank 2 vector bundle on \(W \) with splitting type \((j,-j+\epsilon) \) with \(j > 0 \). Then \(Q \) is isomorphic to the structure sheaf of a length \(z \) subscheme \(Q \) of \(Z \) with \(Q_{\text{red}} = P \) and \(Q \subseteq P(j-1) \).

Proof of 1.3. The first assertion is well-known and follows from the proof of Lemma 1.2. Since \(Q \) is a quotient of \(O_Z^{\oplus 2} \), in order to prove the second assertion it is sufficient to check that its fiber at \(P \) is a 1-dimensional vector space. Since \(E \) has splitting type \((j,-j+\epsilon) \), we have an extension
\[
0 \to O_U((-j+\epsilon)D) \to E \to O_U(jD) \to 0 \tag{5}
\]
([BG] Lemma 1.2, or in [G1] Thm. 2.1 in the case \(\epsilon = 0 \)). Call \(e \) the extension (5) giving \(E \). For each \(t \in K \setminus \{0\} \) consider the extension of \(O_U(jD) \) by \(O_U((-j+\epsilon)D) \) given by extension class \(te \), this extension has as middle term a vector bundle isomorphic to \(E \). Using the extension \(e \) for \(t = 0 \), we construct a family \(\{\lambda e\}_{\lambda \in K} \) of extensions. We call \(E_\lambda \) the corresponding middle term and \(Q_\lambda \) the corresponding sheaf. Since \(E_\lambda \cong E \) for \(\lambda \neq 0 \), we have \(Q_\lambda = Q \) for \(\lambda \neq 0 \), and because \(E_0 \cong O_W(jD) \oplus O_W((-j+\epsilon)D) \), we have that \(Q_0 = P(j-1) \), and the result follows by semi-continuity of the fiber dimension at \(P \).

Proof of 0.1. Given the admissible sequence of splitting types \(\{(a_i,b_i)\}_{1 \leq i \leq t} \) associated to \(E \) we want to show that
\[w := h^0(Z, R^1 \pi_\#(E)) = \Sigma_{1 \leq i \leq t} \max \{-b_i-1, 0\} \quad \text{and} \]
\[z := h^0(Z, Q) = \Sigma_{1 \leq i \leq t} a_i - a_i^2 - \Sigma_{1 \leq i \leq t} \max \{-b_i-1, 0\}. \]

We use induction on \(t \), the case \(t = 1 \) arising if and only if \(a_1 = b_1 \), equivalently, when \(E \equiv O_w(-a_1D)^{\oplus 2} \) (this follows immediately from the definition of admissible sequence).

Since
\[R^1 \pi_\#(O_w(xD)) = 0 \quad \forall \ x \leq 1 \quad \text{and} \]
\[R^1 \pi_\#(O_w(yD)) = y(y-1)/2 \quad \forall \ y > 0, \]

we have the equality for \(w \) in the split case. Assume \(t \geq 2 \). By the definition of the sequence \(\{E_i\}_{1 \leq i \leq t} \) associated to \(E \) we have that \(E_1 = E \) and that there is an exact sequence
\[0 \to E_2 \to E_1 \to O_D(-b_1D) \to 0. \quad (6) \]

First assume \(b_1 < 0 \), in which case we have that \(h^0(Z, R^1 \pi_\#(O_D(-b_1D))) = 0 \) and \(h^0(Z, R^1 \pi_\#(O_w(-b_1D))) = -b_1-1. \) Hence \(w := h^0(Z, R^1 \pi_\#(E)) = h^0(Z, R^1 \pi_\#(E_2)) -b_1 + 1 \) and since \(E_2 \) has \(\{(a_{i+1}, b_{i+1})\}_{1 \leq i < t} \) as admissible sequence, the claim follows.

Now assume \(b_1 \geq 0 \), from the exact sequence (6) it follows that \(h^0(Z, R^1 \pi_\#(E)) \leq h^0(Z, R^1 \pi_\#(E_2)). \) Since \(b_i > b_1 \) for every \(i > 1 \), we have \(h^0(Z, R^1 \pi_\#(E_2)) = 0. \) Hence, by the inductive assumption on the length of the admissible sequence, it follows that \(h^0(Z, R^1 \pi_\#(E)) = 0, \) proving the first assertion. The value of \(z := h^0(Z, Q) \) comes from the equalities \(c_2(E) - c_2(\pi_\#(E)^{**}) = \Sigma_{1 \leq i < t} a_i - a_i^2 \) and \(c_2(E) - c_2(\pi_\#(E)^{**}) = h^0(Z, Q) + h^0(Z, R^1 \pi_\#(E)) \) proved in [B, Th. 0.3] and in [FM] respectively. Here, of course, we assume that \(E \) is extended to a compactification, however these integers do not depend upon the choices of compactification and of extension of \(E \).

Proof of 0.2. By [B] Th. 0.2 every admissible sequence \((a_i, b_i) \) is associated to a rank two bundle \(E \) on \(W \), moreover, the intermediate steps of the construction of \(E \) give bundles \(E_i \) with splitting types \((a_i, b_i) \) for each \(i \). Now use Th. 0.1 to calculate \(z \) and \(w \).

Remark 1.4. If we assume that \(E \) has splitting type \((j, -j+\varepsilon) \) with \(j \geq 1+\varepsilon \), then because \(b_1 = -j+\varepsilon \), we obtain \(w \geq j-1-\varepsilon \).

Proof of 0.4. By [B] Th. 0.5 we know that (i) and (ii) are equivalent. By Lemma 1.2 (i) implies (iv). Since \(b_1 = -j + \varepsilon, b_i > b_{i-1} \forall i > 1 \) holds, and \(a_1 = j \) and \(a_i+b_i = \varepsilon+i-1 \forall i \), it follows from Theorem 0.1 that (iv) implies (ii).
Proof of 0.5. Given bundles G on S and F on W with \(c_1(G)=0=c_1(F)\) there exists a bundle E on S satisfying \(E \mid S - l = \pi^* E \mid S - \{p\}\) and \(E \mid W = F\) (see [G3] Cor. 3.4). It then follows that \(c_2(E) - c_2(\pi_\#(E)^{**}) = R^1\pi_\#(F) + l(Q)\) and the result follows from Th. 0.2.

2. Bundles of higher rank

In this section we consider vector bundles with rank \(r \geq 3\). Fix a rank \(r\) vector bundle \(E\) on \(U\). We use the notation of [BG] \(\beta 3\) for the admissible sequence \(\{E_i\}, 1 \leq i \leq t\) of vector bundles associated to \(E\). In particular we denote by \((a(i,1),...,a(i,r))\) the splitting type of \(E_i\) where for \(a(i,1) \geq ... \geq a(i,r)\). We make the strong assumption that \(a(i,r-1) \geq -1\) for every \(i\) and compute \(h^0(Z,R^1\pi_\#(E))\).

Proposition 2.1. Let \(E\) be a rank \(r\) vector bundle on \(W\) whose associated sequence of vector bundles \(\{E_i\}\) has splitting type \((a(i,1),...,a(i,r))\) with \(1 \leq i \leq t\) and \(a(i,r-1) \geq -1\), for all \(i\). Then we have \(h^0(Z,R^1\pi_\#(E)) = \sum_{1 \leq i \leq \min{-a(r,1)-1,0}}\).

Proof. We first observe that the proof of the corresponding inequality for rank 2 bundles works verbatim (both cases \(t = 1\) and \(t > 1\)), because for each \(i\) with \(1 \leq i \leq t\) at most one of the integers \(a(i,j)\) is not at least \(-1\) and \(h^1(P^1,L) = 0\) for every line bundle \(L\) on \(P^1\) with \(\deg(L) \geq -1\).

In the case \(r \geq 3\), the sequence of elementary transformations made to balance the bundle is not, a priori, uniquely determined, and hence the sequence of associated bundles is not uniquely determined by \(E\). The condition \(a(1,r-1) \geq -1\) implies that there is an associated sequence in which we make always an elementary transformation with respect to \(O_D(a(r,i))\) to pass from \(E_i\) to \(E_{i+1}\) for some \(a(r,i) \leq -1\) (which gives that \(h^0(Z,R^1\pi_\#(E_i)) = h^0(Z,R^1\pi_\#(E_{i+1})) - a(r,i) + 1\)). We continue to perform elementary transformations until we arrive at an integer \(m \leq t\) such that \(a(m,j) \geq -1\) for every \(i\). It is then quite easy to check that \(h^0(Z,R^1\pi_\#(E_m)) = 0\) and the result follows.

In the general case the same method gives the following partial result.

Proposition 2.2. Let \(E\) be a rank \(r\) vector bundle on \(W\) whose associated sequence \(\{E_i\}, 1 \leq i \leq t\) of vector bundles has splitting type \((a(i,1),...,a(i,r))\) with \(1 \leq i \leq t\). Then we have \(h^0(Z,R^1\pi_\#(E)) \leq \sum_{1 \leq i \leq t, 1 \leq j \leq \min{-a(j,i)-1,0}}\).

References

[B] E. Ballico, *Rank 2 vector bundles in a neighborhood of an exceptional curve of a smooth surface*, Rocky Mountain J. Math., 29 (1999), 1185-1193.
[BG1] E. Ballico, E. Gasparim, *Vector bundles on a formal neighborhood of a curve in a surface*, Rocky Mountains J. Math. 30, n. 3 (2000), 1-20.

[BG2] E. Ballico, E. Gasparim, *Numerical invariants for bundles on blow-ups*, Proc. of the AMS, to appear.

[Bu] N. P. Buchdahl, *Blow-ups and gauge fields*, alg-geom/9505006

[FM] R. Friedman and J. Morgan, *On the diffeomorphism type of certain algebraic surfaces, II*, J. Diff. Geometry 27 (1988), 371-398.

[G1] E. Gasparim, *Holomorphic vector bundles on the blow-up of C^2*, J. Algebra 199 (1998), 581-590.

[G2] E. Gasparim, *Chern classes of bundles on blown-up surfaces*, Comm. Algebra, Vol. 28, n.10,(2000) 4912-4926.

[M] M. Maruyama, *On a generalization of elementary transformations of algebraic vector bundles*, Rend. Sem. Mat. Univ. Politec. Torino (1987), 1-13.

Edoardo Ballico
Dept. of Mathematics, University of Trento
38050 Povo (TN) - Italy
fa0: 39-0461881624
e-mail: ballico@science.unitn.it

Elizabeth Gasparim
Department of Mathematics
University of Texas at Austin
Austin TX 78712
e-mail: gasparim@math.utexas.edu