A Core-Tools Statistical NLP Course

Dan Klein
Computer Science Division
University of California, Berkeley
Berkeley, CA 94720
klein@cs.berkeley.edu

Abstract

In the fall term of 2004, I taught a new statistical NLP course focusing on core tools and machine-learning algorithms. The course work was organized around four substantial programming assignments in which the students implemented the important parts of several core tools, including language models (for speech reranking), a maximum entropy classifier, a part-of-speech tagger, a PCFG parser, and a word-alignment system. Using provided scaffolding, students built realistic tools with nearly state-of-the-art performance in most cases. This paper briefly outlines the coverage of the course, the scope of the assignments, and some of the lessons learned in teaching the course in this way.

1 Introduction

In the fall term of 2004, I taught a new statistical NLP course at UC Berkeley which covered the central tools and machine-learning approaches of NLP. My goal in formulating this course was to create a syllabus and assignment set to teach in a relatively short time the important aspects, both practical and theoretical, of what took me years of building research tools to internalize. The result was a rather hard course with a high workload. Although the course evaluations were very positive, and several of the students who completed the course were able to jump right into research projects in my group, there’s no question that the broad accessibility of the course, especially for non-CS students, was limited.

As with any NLP course, there were several fundamental choice points. First, it’s not possible to cover both core tools and end-to-end applications in detail in a single term. Since Marti Hearst was teaching an applied NLP course during the same term, I chose to cover tools and algorithms almost exclusively (see figure 1 for a syllabus). The second choice point was whether to organize the course primarily around linguistic topics or primarily around statistical methods. I chose to follow linguistic topics because that order seemed much easier to motivate to the students (comments on this choice in section 3). The final fundamental choice I made in deciding how to target this class was to require both substantial coding and substantial math. This choice narrowed the audience of the class, but allowed the students to build realistic systems which were not just toy implementations.

I feel that the most successful aspect of this course was the set of assignments, so the largest section below will be devoted to describing them. If other researchers are interested in using any of my materials, they are encouraged to contact me or visit my web page (http://www.cs.berkeley.edu/~klein).

2 Audience

The audience of the class began as a mix of CS PhD students (mostly AI but some systems students), some linguistics graduate students, and
a few advanced CS undergrads. What became apparent after the first homework assignment (see section 4.2) was that while the CS students could at least muddle through the course with weak (or absent) linguistics backgrounds, the linguistics students were unable to acquire the math and programming skills quickly enough to keep up. I have no good ideas about how to address this issue. Moreover, even among the CS students, some of the systems students had trouble with the math and some of the AI/theory students had issues with coding scalable solutions. The course was certainly not optimized for broad accessibility, but the approximately 80% of students who stuck it out did what I considered to be extremely impressive work. For example, one student built a language model which took the mass reserved for new words and distributed it according to a character n-gram model. Another student invented a non-iterative word alignment heuristic which outperformed IBM model 4 on small and medium training corpora. A third student built a maxent part-of-speech tagger with a per-word accuracy of 96.7%, certainly in the state-of-the-art range.

4 Assignments

The key component which characterized this course was the assignments. Each assignment is described below. They are available for use by other instructors. While licensing issues with the data make it impossible to put the entirety of the assignment materials on the web, some materials will be linked from http://www.cs.berkeley.edu/~klein, and the rest can be obtained by emailing me.

4.1 Assignment Principles

The assignments were all in Java. In all cases, I supplied a large amount of scaffolding code which read in the appropriate data files, constructed a placeholder baseline system, and tested that baseline. The students therefore always began with a running end-to-end pipeline, using standard corpora, evaluated in standard ways. They then swapped out the baseline placeholder for increasingly sophisticated implementations. When possible, assignments also had a toy "miniTest" mode where rather than reading in real corpora, a small toy corpus was loaded to facilitate debugging. Assignments were graded entirely on the basis of write-ups.

4.2 Assignment 1: Language Modeling

In the first assignment, students built n-gram language models using WSJ data. Their language models were evaluated in three ways by
the support harness. First, perplexity on held-out WSJ text was calculated. In this evaluation, reserving the correct mass for unknown words was important. Second, their language models were used to rescore n-best speech lists (supplied by Brian Roark, see Roark (2001)). Finally, random sentences were generatively sampled from their models, giving students concrete feedback on how their models did (or did not) capture information about English. The support code initially provided an unsmoothed unigram model to get students started. They were then asked to build several more complex language models, including at least one higher-order interpolated model, and at least one model using Good-Turing or held-out smoothing. Beyond these requirements, students were encouraged to achieve the best possible word error rate and perplexity figures by whatever means they chose. They were also asked to identify ways in which their language models missed important trends of English and to suggest solutions.

As a second part to assignment 1, students trained class-conditional n-gram models (at the character level) to do the proper name identification task from Smarr and Manning (2002) (whose data we used). In this task, proper name strings are to be mapped to one of \{drug, company, movie, person, location\}. This turns out to be a fairly easy task since the different categories have markedly different character distributions. In the future, I will move this part of assignment 1 and the matching part of assignment 2 into a new, joint assignment.

4.3 Assignment 2: Maximum Entropy / POS Tagging

In assignment 2, students first built a general maximum entropy model for multiclass classification. The support code provided a crippled maxent classifier which always returned the uniform distribution over labels (by ignoring the features of the input datum). Students replaced the crippled bits and got a correct classifier run-
ning, first on a small toy problem and then on
the proper-name identification problem from as-
signment 1. The support code provided optimi-
ization code (an L-BFGS optimizer) and fea-
ture indexing machinery, so students only wrote
code to calculate the maxent objective function
and its derivatives.

The original intention of assignment 2 was
that students then use this maxent classifier as a
building block of a maxent part-of-speech tagger
like that of Ratnaparkhi (1996). The support
code supplied a most-frequent-tag baseline tag-
gger and a greedy lattice decoder. The students
first improved the local scoring function (keep-
ing the greedy decoder) using either an HMM
or maxent model for each timeslice. Once this
was complete, they upgraded the greedy decoder
to a Viterbi decoder. Since students were, in
practice, generally only willing to wait about 20
minutes for an experiment to run, most chose to
discard their maxent classifiers and build gener-
ative HMM taggers. About half of the students’
final taggers exceeded 96% per-word tagging ac-
curacy, which I found very impressive. Students
were only required to build a trigram tagger
of some kind. However, many chose to have
smoothed HMMs with complex emission mod-
els like Brants (2000), while others built maxent
taggers.

Because of the slowness of maxent taggers’
training, I will just ask students to build HMM
taggers next time. Moreover, with the relation
between the two parts of this assignment gone, I
will separate out the proper-name classification
part into its own assignment.

4.4 Assignment 3: Parsing
In assignment 3, students wrote a probabilis-
tic chart parser. The support code read in
and normalized Penn Treebank trees using the
standard data splits, handled binarization of n-
ary rules, and calculated ParsEval numbers over
the development or test sets. A baseline left-
branching parser was provided. Students wrote
an agenda-based uniform-cost parser essentially
from scratch. Once the parser parsed cor-
rectly with the supplied treebank grammar, stu-
dents experimented with horizontal and vertical
markovization (see Klein and Manning (2003))
to improve parsing accuracy. Students were
then free to experiment with speed-ups to the
parser, more complex annotation schemes, and
so on. Most students’ parsers ran at reasonable
speeds (around a minute for 40 word sentences)
and got final F_1 measures over 82%, which is
substantially higher than an unannotated tree-
bank grammar will produce. While this assign-
ment would appear to be more work than the
others, it actually got the least overload-related
complaints of all the assignments.

In the future, I may instead have students im-
plement an array-based CKY parser (Kasami,
1965), since a better understanding of CKY
would have been more useful than knowing
about agenda-based methods for later parts of
the course. Moreover, several students wanted
to experiment with induction methods which
required summing parsers instead of Viterbi
parsers.

4.5 Assignment 4: Word Alignment
In assignment 4, students built word alignment
systems using the Canadian Hansards training
data and evaluation alignments from the 2003
(and now 2005) shared task in the NAACL
workshop on parallel texts. The support code
provided a monotone baseline aligner and eval-
uation/display code which graphically printed
gold alignments superimposed over guessed
alignments. Students first built a heuristic
aligner (Dice, mutual information-based, or
whatever they could invent) and then built IBM
model 1 and 2 aligners. They then had a choice
of either scaling up the system to learn from
larger training sets or implementing the HMM
alignment model.

4.6 Assignment Observations
For all the assignments, I stressed that the stu-
dents should spend a substantial amount of time
doing error analysis. However, most didn’t, ex-
cept for in assignment 2, where the support code
printed out every error their taggers made, by
default. For this assignment, students actually
provided very good error analysis. In the fu-
ture, I will increase the amount of verbose er-
ror output to encourage better error analysis for the other assignments – it seemed like students were reluctant to write code to display errors, but were happy to look at errors as they scrolled by.\(^3\)

A very important question raised by an anonymous reviewer was how effectively implementing tried-and-true methods feeds into new research. For students who will not be doing NLP research but want to know how the basic methods work (realistically, this is most of the audience), the experience of having implemented several “classic” approaches to core tools is certainly appropriate. However, even for students who intend to do NLP research, this hands-on tour of established methods has already shown itself to be very valuable. These students can pick up any paper on any of these tasks, and they have a very concrete idea about what the data sets look like, why people do things they way they do, and what kinds of error types and rates one can expect from a given tool. That’s experience that can take a long time to acquire otherwise – it certainly took me a while. Moreover, I’ve had several students from the class start research projects with me, and, in each case, those projects have been in some way bridged by the course assignments. This methodology also means that all of the students working with me have a shared implementation background, which has facilitated ad hoc collaborations on research projects.

5 Conclusions

There are certainly changes I will make when I teach this course again this fall. I will likely shuffle the topics around so that word alignment comes earlier (closer to HMMs for tagging) and I will likely teach dynamic programming solutions to parsing and tagging in more depth than graph-search based methods. Some students needed remedial linguistics sections and other students needed remedial math sections, and I would hold more such sessions, and ear-

\(^3\)There was also verbose error reporting for assignment 4, which displayed each sentence’s guessed and gold alignments in a grid, but since most students didn’t speak French, this didn’t have the same effect.

References

Thorsten Brants. 2000. TnT – a statistical part-of-speech tagger. In ANLP 6, pages 224–231.

Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra, Fredrick Jelinek, John D. Lafferty, Robert L. Mercer, and Paul S. Roossin. 1990. A statistical approach to machine translation. *Computational Linguistics*, 16(2):79–85.

Dan Jurafsky and James H. Martin. 2000. *Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition*. Prentice Hall, Englewood Cliffs, NJ.

T. Kasami. 1965. An efficient recognition and syntax analysis algorithm for context-free languages. Technical Report AFCRL-65-758, Air Force Cambridge Research Laboratory, Bedford, MA.

Dan Klein and Christopher D. Manning. 2003. Accurate unlexicalized parsing. In *ACL 41*, pages 423–430.

Christopher D. Manning and Hinrich Schütze. 1999. *Foundations of Statistical Natural Language Processing*. The MIT Press, Cambridge, Massachusetts.

Adwait Ratnaparkhi. 1996. A maximum entropy model for part-of-speech tagging. In *EMNLP 1*, pages 133–142.

Brian Roark. 2001. Probabilistic top-down parsing and language modeling. *Computational Linguistics*, 27:249–276.

Joseph Smarr and Christopher D. Manning. 2002. Classifying unknown proper noun phrases without context. Technical report, Stanford University.

Stephan Vogel, Hermann Ney, and Christoph Tillmann. 1996. HMM-based word alignment in statistical translation. In *COLING 16*, pages 836–841.