Levocabastine eye drops are effective and well tolerated for the treatment of allergic conjunctivitis in children

Brunello Wüthrich¹ and Martin Gerber², CA

¹Allergy Unit, Department of Dermatology, University Hospital, Zürich, Switzerland;
²Janssen Research Foundation, Sihlbruggstrasse 111, Postfach 58, CH-6341 Baar, Switzerland

CA Corresponding Author

Introduction

Levocabastine is a novel selective H₁-receptor antagonist which has been specifically developed as eye drops and nasal spray for the topical treatment of allergic rhinoconjunctivitis.¹ Levocabastine is the most potent antihistamine available to date, being some 15 000 times more potent than chlorpheniramine on a molar basis and expressing antihistaminic activity at doses as low as 0.002 mg/kg.² Onset of action is rapid, typically occurring within minutes of instillation, with duration of effect sufficiently long to permit a convenient twice daily dosing regimen.³⁴

The efficacy and tolerability of levocabastine eye drops in the treatment of allergic conjunctivitis in adults is well documented.⁵ Comparative studies have shown that levocabastine eye drops administered twice daily are at least as effective as standard daily doses of oral antihistamines⁶–⁹ and significantly more effective than sodium cromoglycate four times daily.¹⁰¹¹¹² Levocabastine eye drops have also been shown to be significantly more effective than the topical antihistamine/vasoconstrictor combination, antazoline/naphazoline, for the treatment of ocular symptoms,¹³ with a tolerability profile comparable with that of sodium cromoglycate or placebo.¹⁴

Preliminary studies in children, involving a total of 157 patients, have shown that levocabastine eye drops administered twice daily are at least as effective and well-tolerated as sodium cromoglycate four times daily for the treatment of allergic conjunctivitis, both as single agent therapy¹⁵¹⁶ and as an adjunct to oral antihistamine therapy.¹⁷ The present study was undertaken to assess the efficacy and tolerability of ocular levocabastine in the routine treatment of seasonal allergic conjunctivitis in a much larger group of children and adolescents. Assessment of any correlation between efficacy, tolerability and age (< 12 years and ≥ 12 years) was a secondary aim.

Materials and Methods

Study design: Children and adolescents (aged 5 to 16 years) with a history of seasonal allergic conjunctivitis were eligible for inclusion into this open-label, prospective, multicentre trial which
was conducted during the hay fever seasons of 1992 and 1993. All were required to have a
minimum of two characteristic symptoms of allergic conjunctivitis of at least moderate severity
at the time of entry into the trial. Patients with
soft contact lenses and concurrent disorders
which might have interfered with evaluation of
the study medication were excluded from participa-
tion. In addition, patients were required to dis-
continue use of other anti-allergic medication (for
example, oral antihistamines, vasoconstrictors or
corticosteroids) prior to study entry.

All patients received levocabastine eye drops
(0.5 mg/ml), one drop in each eye, twice daily
for a total of 4 weeks. Sodium cromoglycate
nasal spray (20 mg/ml; one spray four times
daily) was provided for use only in patients in
whom concurrent nasal symptoms became mod-
erate or severe. Antazoline and tetryzoline eye
drops or sodium cromoglycate plus xylometazo-
line could be used in patients with severe symp-
toms with a maximum treatment duration of 3
days. No other rescue medication was provided
and use of other medications which could inter-
fere with the evaluation of the study drug was
not permitted during the trial period.

The study design was approved by the local
ethics committee and all children and their
parents provided informed consent.

Efficacy assessments: Ocular symptoms (pruritus,
lacrimation, photophobia and pain), ocular
signs (conjunctival erythema, conjunctival oedema
and eyelid oedema) and nasal symptoms (congestion,
rhinorrhea, pruritis and sneezing) were as-
sessed by the investigator at the start of the trial
to obtain baseline measurements and then after
2 and 4 weeks of treatment, as well as by the
patients (helped by their parents if necessary) on
a daily basis, using a 4-point scale (0 = absent, 1
= mild, 2 = moderate, 3 = severe). In addi-
tion, the investigator provided a global evaluation
of treatment efficacy for both ocular and nasal
symptoms, as well as treatment tolerability, after
2 weeks of treatment and at the end of the trial,
rating therapy as excellent, good, satisfactory or
unsatisfactory.

Statistical analysis: Patients were divided into
two subgroups according to age: < 12 years
(children) and ≥ 12 years (adolescents). In
addition to the mean severity for each of the
individual symptoms listed above, the following
parameters were calculated and analysed: the
mean total severity score for ocular symptoms,
the mean total severity score for ocular findings,
and the mean total severity score for nasal symp-
toms. Intergroup comparisons were made using
Student's *t*-test for parametric data or the chi-
squared test for non-parametric data (5% level of
significance).

Results

A total of 233 patients were enrolled in this
study (177 children and 56 adolescents) by 34
paediatricians. Although all patients are included
in the tolerability analysis, 27 have been excluded
from the efficacy analysis (21 due to insufficient
symptom severity at baseline, one due to age
(< 5 years), two due to a combination of these
two factors and three due to non-compliance
with the study protocol/early drop-out). Patient
demographics for the remaining 206 patients
who were included in the efficacy analysis are
shown in Table 1. As expected, the mean age,
weight and height differed significantly between
the two patient groups (*p < 0.001*). In addition,
patients < 12 years of age mostly lived in rural
environments, whilst those ≥ 12 years were pre-
dominantly from urban areas (chi-squared, *p <
0.01*). Symptom severity at baseline was generally

![Graph](image-url)

FIG. 1. Total symptom severity scores for ocular symptoms
during the 4-week treatment period. **"** *p < 0.01 compared with
baseline values; *p < 0.05 and **p < 0.05 < *p < 0.1 week 4 com-
pared with week 2.

Table 1. Patient demography
Number of patients (M/F)
Mean age in years (range)
Mean weight in kg (range)
Mean height in cm (range)

***p < 0.001.
comparable, although ocular findings were significantly more severe in patients < 12 years compared with those ≥ 12 years ($p < 0.05$), while the severity of rhinorrhea was greater in the older patient group ($p < 0.01$). In all, 140 patients were eligible for treatment with sodium cromoglycate nasal spray.

Significant reductions in symptom severity compared with baseline values were apparent in both patient groups within 2 weeks of initiation of therapy for all parameters evaluated ($p < 0.01$). As shown in Fig. 1, the mean total severity score for ocular symptoms decreased by $84 \pm 34\%$ in patients < 12 years and $85 \pm 30\%$ in those ≥ 12 years over the 4-week treatment period, with a $84 \pm 40\%$ reduction in the total severity of ocular signs in both patient groups over this period of time.

Pruritus was the most frequent ocular symptom at baseline reported as moderate to severe by 89% of patients < 12 years and 92% of those ≥ 12 years, but moderate to severe ocular pruritus was only present in 7.7% and 6.3% of patients in the two groups, respectively, at the end of the trial (end-point values). Similarly, the incidence of patients with moderate to severe conjunctival erythema, the most severe ocular sign at baseline, was reduced from 89% to 9% in patients < 12 years and from 88% to 8% in those ≥ 12 years over the 4-week treatment period (end-point values) ($p < 0.001$).

Analysis of the data generated in the patients' diaries revealed similar findings. At the end of the trial, the mean reduction in total symptom severity from baseline was $73 \pm 36\%$ in patients < 12 years and $65 \pm 40\%$ in those ≥ 12 years (baseline scores 2.2 ± 0.7 in patients < 12 years and 2.0 ± 0.7 in patients ≥ 12 years; $0 =$ absent, $3 =$ severe).

Investigator assessments of global therapeutic efficacy are shown in Fig. 2. After 2 weeks of treatment, the effect of therapy on ocular symptoms was considered to be excellent or good in 81% of patients < 12 years and 82% of those ≥ 12 years. The corresponding values at end-point were 88% and 82% in the two groups, respectively.

Global therapeutic efficacy for nasal symptoms was considered to be excellent or good in 63% of patients < 12 years after 2 weeks of treatment and 68% at study end-point. Corresponding values for patients ≥ 12 years were 65% and 71%, respectively, at these times.

Global evaluations of treatment tolerability in the patients included in the efficacy analysis are shown in Fig. 3. At the end of treatment, 94% of patients in both age groups considered tolerability to be excellent or good. Adverse events

FIG. 2. Investigator assessments of global therapeutic efficacy for ocular and nasal symptoms after 2 and 4 weeks of treatment and at study end-point.

FIG. 3. Investigator assessments of global treatment tolerability at study end-point.
were reported by 33 (18.6%) of all patients < 12 years and 7 (12.5%) of those ≥ 12 years, with no statistically significant intergroup differences in terms of severity or type (Table 2). In all, four patients (three who were < 12 years and one of ≥ 12 years) discontinued or interrupted treatment due to adverse events. Reasons for treatment withdrawal in patients < 12 years were ocular burning in two patients and erythema rash in another. Treatment was interrupted in one patient ≥ 12 years due to diarrhoea. The most common adverse events were ocular burning (occurring in 9.6% of patients < 12 years and 8.9% of those ≥ 12 years) and/or ocular irritation (reported by 2.8% of patients < 12 years).

Discussion

The results of this open-label, prospective, multicentre trial clearly demonstrate that levocabastine eye drops are effective and well-tolerated for the treatment of allergic conjunctivitis in children, with no apparent correlation between efficacy, tolerability and age. The severity of all symptoms was significantly reduced from baseline values after 2 weeks of treatment for all parameters evaluated, with further reductions apparent by the end of the trial. Overall, response rates were found to be generally comparable with those reported in adults.5–13 These findings are supported by those of another recent paediatric study undertaken to compare the efficacy and tolerability of topical levocabastine with that of sodium cromoglycate.18

Drug tolerability is a key factor determining choice of therapy in children. In this study, levocabastine was found to be well-tolerated with adverse events reported in 18.6% of children and 12.5% of adolescents. As might be expected from the route of drug administration, application site reactions (ocular burning and irritation) were the most common adverse events reported during treatment with levocabastine eye drops, occurring in 12.4% and 8.9% of patients in the two groups, respectively. Studies in adults have shown that the adverse effect profile of topical levocabastine is comparable with that of sodium cromoglycate and placebo with ocular irritation reported in 14% of patients treated with levocabastine eye drops, to date, compared with 15% for placebo-treated controls.19

In summary, twice daily treatment with levocabastine eye drops appears to be effective and well-tolerated for the treatment of seasonal allergic conjunctivitis in children. Furthermore, comparison of the available data suggests that results of studies undertaken to assess the efficacy and tolerability of topical levocabastine in adults can be generalized to paediatric patients. Clinical experience to date therefore suggests that levocabastine eye drops are an attractive primary option for the treatment of seasonal allergic conjunctivitis in this patient population.

References

1. Dechant KL, Goa KL. Levocabastine: a review of its pharmacological properties and therapeutic potential in allergic rhinitis and conjunctivitis. Drugs 1991; 41: 202–226.
2. Van Waerebeek JP. Animal pharmacology of levocabastine: a new type of H1-antihistamine well-suited for topical application. In: Mygind N, Nacerlio BM, eds. Rhinoconjunctivitis: New Perspectives in Topical Treatment of Seasonal Allergic Rhinitis. Proceedings of the XIIIth International Congress of Allergology and Clinical Immunology, Gottingen: Hogrefe and Huber, 1989: 27–34.
3. Sorker TC, Petsberg G. Rapid onset of action of levocabastine eye drops in histamine-induced conjunctivitis. Clin Exp Allergy 1993; 23: 791–794.
4. Tomiyama S, Ohnishi M, Okada M. The dose and duration of effect of levocabastine, a new topical H1 receptor antagonist on nasal provocation reaction to allergens. Ann J Rhinol 1990; 7: 85–88.
5. Abelson MB, Weintraub D. Levocabastine eye drops: a new approach for the treatment of acute allergic conjunctivitis. Eur J Ophthalmol 1994; 4: 91–101.
6. The Livostin Study Group. A comparison of topical levocabastine and oral terfenadine in the treatment of allergic rhinoconjunctivitis. Allergy 1993; 48: 530–534.
7. Selhoel F, Freng BA, Kramer J, et al. Topical levocabastine compared with oral terfenadine for the treatment of seasonal allergic rhinoconjunctivitis. J Allergy Clin Immunol 1993; 92: 73–81.
8. Balsmeier PA, Rappecht KW. Safety and efficacy of topical levocabastine compared with oral terfenadine. Ann Allergy 1994; 72: 429–434.
9. The Swedish GP Allergy Team. Topical levocabastine compared with oral loratadine for the treatment of seasonal allergic rhinoconjunctivitis. Allergy 1994; 49: 611–615.
10. Drozin MA, Yang WH, Horak F. Faster onset of action with topical levocabastine than with oral cetirizine. Med Inflamm 1995; 4 (12): 55–510.
11. Azvedo M, Castel-Franco MG, Ferrez Oliveira J, et al. Double-blind comparison of levocabastine eye drops with sodium cromoglycate and placebo in the treatment of seasonal allergic conjunctivitis. Clin Exp Allergy 1991; 21: 689–694.
12. Davies BH, Mullins J. Topical levocabastine is more effective than sodium cromoglycate for the prophylaxis and treatment of seasonal allergic conjunctivitis. Allergy 1993; 48: 519–524.
13. Bendel M, Pilipczuk U. Topical levocabastine, a selective H1-antagonist, in seasonal allergic rhinoconjunctivitis. Allergy 1987; 42: 512–515.
14. Janernez M, Blockmans S. Tolerability of levocabastine eye drops. Doc Ophthalmol 1993; 84: 111–118.
15. Odellram B, Bjorksten B, Af Krecker T, et al. Topical levocabastine versus sodium cromoglycate in allergic conjunctivitis. Allergy 1989; 44: 432–436.
16. Möller C, Blychert L O. Levocabastine eye drops in comparison with cromoglycate in the treatment of conjunctivitis in children with birch pollen. Pediatr Allergy Immunol 1990; 1: 87–90.
17. Nijs F, Baekken T, Bijlmer D, et al. Levocabastine compared with...
sodium cromoglycate eye drops in children with birch and grass pollen allergy. *Pediatr Allergy Immunol* 1992; 3: 39–42.

18. Vermeulen J, Mercer M. Topical levocabastine is more effective than sodium cromoglycate in children with seasonal allergic rhinoconjunctivitis. *Pediatr Allergy Immunol* 1994; 5: 209–213.

19. Howarth P. A review of the tolerability and safety of levocabastine eye drops and nasal spray. Implications for patient management. *Med Inflamm* 1995; 4 (3): 526–530.

ACKNOWLEDGEMENTS. The authors wish to thank the following investigators to the study: B. Baumgartner-Lips, T. A. Berther, M. Bovet Vetter, R. Christen, V. D'Apuzzo, R. Ebner, B. Evequoz, H. Fuchs, E. Gallen-Bemninger, E. Gerber-Hob, St. Gilardl, H. Häfliger, I. Högger-Imhof, J. Hofer, A. Hohl, M. Huguenin, I. Hunkeler, W. Jörg-Eidenbenz, A. Keel, H. P. Keller, H. P. Kind, P. Kindler, R. Knöpfl, R. Lejeune, M. J. Mettler, A. M. Oppikofer, L. Rützler, D. Schibler, H. Schön, S. Sichitiu, M. Terrapon, A. Weil, W. Weiss.