Confidence of nurses with inhaler device education and competency of device use in a specialised respiratory inpatient unit

Vinita Swami1, Jin-Gun Cho1,2,3, Tracy Smith1,3, John Wheatley1,2,3 and Mary Roberts1,2,3

Abstract
We performed a cross-sectional study within a specialised respiratory inpatient unit assessing 25 nurses’ [85% female, 8.0 ± 7.9 (mean ± SD) years’ experience in nursing] confidence in providing inhaler device education using a self-reported questionnaire, and their competency (% correct steps) in using eight different inhaler devices. Sixteen percent of participants were ‘not confident’ providing inhaler education, while 84% were ‘moderately’ or ‘extremely’ confident. The mean (± SD)% correct steps for all devices was 47 ± 17%. There was no correlation between % correct steps and nursing years (r = 0.21, p = 0.31), or ‘confidence’ with providing inhaler education (r = 0.02, p = 0.91) but % correct steps strongly correlated with number of individual device prescriptions within the hospital in the preceding year (r = 0.78, p = 0.039). Most respiratory nurses felt confident in teaching inhaler technique but their overall demonstrated ability to correctly use inhalers was poor, especially for less frequently prescribed devices within our hospital. Regular assessment and ongoing education on correct inhaler technique for respiratory nurses is necessary to optimise all device usage by nurses, irrespective of experience or confidence.

Keywords
COPD, metered dose inhalers, dry powder inhalers, clinical nursing research, respiratory nurses

Introduction
Inhaled bronchodilators and inhaled steroid medications are important components in the management of asthma and chronic obstructive pulmonary disease (COPD).1 However, the effectiveness of inhaled medications is dependent on patients using their inhalers correctly, which differs from oral medications which only require simple ingestion. Inhaler devices may be difficult to use for patients, and there is extensive evidence demonstrating that many patients have inhalation technique errors resulting in ineffective drug delivery,2,3 a problem that has persisted for over four decades.4,5 Systematic reviews have demonstrated...
that only 31% of patients have correct inhaler technique, 41% have acceptable inhaler technique and 31% have poor inhaler technique with pressurised metered dose inhaler or dry powder inhalers.6 Overall, more than 75% of patients use pressurised metered dose inhalers (pMDI) incorrectly.7 Failure to perform the correct sequence of steps required for inhaler devices may result in poorer control of symptoms, increasing the risk of hospital readmissions, morbidity and mortality as well as raising healthcare costs.5,8 Critical errors in inhaler use have been shown to increase the risk of severe exacerbations of COPD resulting in hospitalisation or emergency room visits.5

In the acute care setting, the correct use of bronchodilators via pMDI and spacers in patients hospitalised for exacerbations of their airways disease has never been more important in the current COVID-19 climate because of the potential for viral particle aerosolisation from nebulisers.9,10 Other advantages of using pMDI and spacers in the acute hospital setting include the opportunity for healthcare professionals to provide pMDI training to patients,11 reducing the risk of increased side effects such tachycardia and tremors which has been associated with the use of nebulisers, and delivering effective treatment via a portable, more cost-effective system in a shorter period of time.12,13 For all of these reasons, education in the correct use of inhaler devices by clinicians competent in inhaler technique is essential in optimising drug delivery.14

International guidelines for asthma and COPD recommend regularly checking patients’ inhaler technique to educate and correct any errors.1,2 However, the growth in the number and variety of inhaler devices has likely resulted in greater difficulty in correctly demonstrating and using these devices, both for patients and clinicians. A recent systematic review of inhaler technique studies in patients has reported frequent error rates with no apparent improvement over a 40 year period,6 and another systematic review demonstrated that all subgroups of health care professionals (including physicians, respiratory therapists, nurses and pharmacists) also have high error rates in the use of these devices which has been known since 1984.15 A small study of 16 nurses and 11 pharmacists in an Australian respiratory ward revealed that no one in either group was able to correctly demonstrate pMDI with spacer or a Turbuhaler.16 However as nurses working in a specialised respiratory ward are involved with regularly administering and supervising inhaler therapy, we hypothesised that inhaler technique competency within this specialised nursing population would correlate with years of nursing experience as well as confidence in delivering inhaler education to patients.

Aim

The aim of our study was to assess the competence of nurses working on a specialised respiratory ward in a quaternary university teaching hospital in the usage of 8 different inhaler devices, and whether years of nursing experience, self-perceived confidence with teaching inhaler technique and number of hospital prescriptions for each device in the preceding year were factors associated with an increase in competence. Furthermore, we explored barriers to providing inhaler technique education to patients, and nurses’ preferences for ongoing education in this area.

Methods

This cross-sectional study was undertaken at Westmead Hospital in Western Sydney, Australia between March 2016 and June 2016. Westmead Hospital is a 975 bed University of Sydney quaternary teaching hospital in the Western Sydney Local Health District with a 28-bed inpatient respiratory unit which has 600 to 700 admissions due to COPD exacerbations per year. We approached eligible nurses who were working in the inpatient respiratory unit at regular respiratory ward meetings to participate in our study. The study was conducted either during or after the nurse’s shift, taking approximately 30 minutes for the inhaler device assessment. Written informed consent was obtained from participants before enrolment. The study was approved by the Human Research Ethics Committee of the Western Sydney Local Health District (LNR/16/WMED/61).

In order to assess participants’ self-reported confidence with inhaler therapy education, we developed a self-administered survey for this study (investigators VS and MR). The survey consisted of 8 items which asked various questions about inhaler technique/education (see Online Appendix A). Competence with inhaled therapy was assessed by the investigators who were expert assessors (VS or MR) using a checklist of steps recommended by Lung Foundation Australia.17 Nurses who had already participated were requested to not inform their colleagues about the content of the questionnaire and assessment to minimise response bias. All data were de-identified prior to analysis.
Questionnaire

We collected demographic data including age, gender and number of years working both in nursing and more specifically, within respiratory nursing. Participants were then asked to rate their confidence in providing inhaler device education to patients (see online supplement A). In addition, we assessed perceived barriers to nurses providing inhaler education and what kind of assistance could be provided to enhance participants’ ability to provide inhaler education to their patients.

Competency assessment

After answering the questionnaire, participants undertook a competency assessment of inhaler technique. Participants were provided with various placebo devices and asked to demonstrate the use of each device as if demonstrating it to a patient. Participants were requested to select inhaler devices in random order and to demonstrate correct technique. The devices assessed were Accuhaler, Breezhaler, Ellipta, Genuair, Handihaler, pressurised metered dose inhaler (pMDI) and spacer device, Respimat and Turbuhaler. In keeping with our local hospital policy of not using pMDIs alone in the ward, we did not assess pMDIs without a spacer. There was a discussion with participants regarding priming various devices before use but this step was not scored as it was not included in the individual inhaler checklists.

Participants were assessed by one assessor (either MR or VS). Both assessors were Clinical Nurse Consultants in Respiratory Medicine and very familiar with inhaler technique as they were regularly involved in training nurses and other healthcare professionals in correct inhaler usage based on Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field. To ensure consistency, both assessors (VS and MR) used a checklist of the correct steps for inhaler use obtained from Lung Foundation Australia recommendations as well as undergoing regular training and assessment with specialists within the field.
second tertile had between 3 and 8 years of experience (n = 9), and the third tertile had more than 8 years of experience (n = 8).

Pre-inhaler assessment survey
Most participants in this cohort reported their confidence in providing inhaler education to patients as ‘moderate’ (76%) or ‘extremely high’ (8%). Only 16% reported that they were ‘not confident’ (Table 1).

Almost all participants (96%) agreed that patients should be supervised when taking inhaled medication and 92% felt this was the responsibility of all nurses. More than half of the participants (60%) stated that inhaler education/supervision should be attended each time a patient was taking a dose of their inhaled medication. Almost two-thirds (64%) felt their ward had sufficient educational resources to equip them with good knowledge and understanding of inhaler technique. Details of responses to assistance with inhaler technique education can be found in Table 1.

Inhaler competency assessment
None of the participants could correctly perform all of the steps of use for all eight inhaler devices tested. Participants demonstrated greatest competence with

Table 1. Pre-assessment questionnaire for 25 participants.
Should patients be supervised taking inhaled medications?
Yes **96%**
How often?
Once/day **32%**
Twice/day **8%**
Every time **60%**
Who should supervise?
Clinical Nurse Consultants only **8%**
All nurses **92%**
Do you feel there is sufficient resource on the ward to equip you with good knowledge and understanding of inhaler technique?
Yes **64%**
No **36%**
How confident are you in providing inhaler education?
Not at all **16%**
Moderately confident **76%**
Extremely confident **8%**
What do you feel are the barriers to providing inhaler education to COPD patients? (please circle all that are applicable)
Not enough time **24%**
Not enough knowledge **28%**
Not enough confidence **4%**
Not enough time/confidence **4%**
Not enough time/knowledge **16%**
Not enough knowledge/confidence **16%**
Not enough time/knowledge/confidence **8%**
How can we assist you with your inhaler technique? (please circle all that are applicable)
In-services **80%**
Providing resources such as handouts, placebos, YouTube videos **76%**
Conducting inhaler technique competency assessment **64%**
Online training package to be completed **64%**
If you circled in-services, how often would like them?
Fortnightly **12%**
Monthly **28%**
6 Monthly **36%**
Yearly **4%**
Not applicable (did not circle ‘in-services’) **20%**
If you circled providing resources, which resources would you like? (please circle all that are applicable)
DVD/YouTube videos (for patients) **52%**
Placebos **36%**

(continued)

Table 1. (continued)
Handouts (inhaler instructions) **48%**
Not applicable (did not circle ‘Resources’) **24%**
If you circled competency assessments, how often would you like them done?
6th monthly **16%**
Yearly **44%**
Second yearly **4%**
Not applicable (did not circle ‘competency assessments’) **36%**
If you circled online training package, how often would it be completed?
Yearly **64%**
Second yearly **0%**
One off **0%**
Not applicable (did not circle ‘online training package’) **36%**

(continued)
pressurised metered dose inhaler (pMDI) and spacer device with a mean total score of 73 ± 22% and Handihaler with a mean total score of 72 ± 27%. The lowest score was recorded with the Respimat device with a mean total score of 1 ± 4% (Table 2). The combined average score for demonstrating correct steps for all the eight devices was 47 ± 17% (Table 2). There was no correlation between percent correct steps (all devices) and years in nursing (r = 0.21, p = 0.31), or between percent correct steps and degree of confidence (r = 0.02, p = 0.91). Although the percentage of correct steps (all devices) increased with higher nursing experience ter-
tiles with the Clinical Nurse Specialists and Educator also being in the highest tertile, there was no statistically significant difference between the tertiles (p = 0.55; Figure 1).

Hospital inhaler device usage

18779 inhalers for treatment of airways disease were dispensed/distributed for inpatient use in 2015 (i.e. the year prior to the study; Table 2). The pMDI device was the most common inhaler used (54%), followed by Breezhaler (23%) and Handihaler (12%). The least prescribed inhalers were Genuair (0.2%) and Ellipta (0.1%). The Respimat device was not on the hospital formulary; therefore no hospital data regarding use was available. There was a strong correlation between number of inhalers prescribed in the previous year and the nurses’ inhaler device score (r = 0.78; p = 0.039; Figure 2).

Discussion

Despite reporting overall moderate to high confidence with providing inhaler education to patients as a group, the group mean score for competence with using 8 different inhaler devices was less than 50% for nurses working in a specialised respiratory inpa-
tient unit at a quaternary teaching hospital. Most participants (84%) rated their confidence in teaching inhaler technique as ‘moderately confident’ to ‘extremely confident’, however none of the partici-
pants were able to demonstrate the correct steps of use for all of the inhalers provided. Our study involved nurses only but inhaler errors are widespread among a diverse range of health care professionals (HCPs) as shown by a recent systematic review in
which inhalation technique was correct in only 15.5% of cases.15 Given inhaler technique has been identified as one of the most important elements in managing airway disease, it is critical to ensure HCPs providing inhaler education to patients are competent in the steps to use each inhaler device, as a first step to teaching effective inhaler technique.

Many prior studies have reviewed inhaler technique for nurses working in a wide variety of departments including medical, respiratory, intensive care, emergency, and community settings, and other HCPs such as pharmacists, doctors and respiratory therapists.16,20,21 However, to our knowledge, this study is the first that has examined the relationships between the total correct device steps, years of nursing, self-reported confidence and total hospital-prescribed inhaler device in nurses from a specialised respiratory ward. The lack of correlation between correct technique and years of experience or confidence suggests a need to improve the inhaler competence of all nursing staff with a particular focus on training for newer and/or less often prescribed inhaler devices to improve patient care, irrespective of nurses’ perceived confidence in inhaler technique or their level of nursing experience. Although knowledge of correct inhaler technique is important to all HCPs treating patients with respiratory diseases, it is essential for respiratory nurses and HCPs working in a specialised respiratory inpatient unit treating the most vulnerable patients who have been admitted for their airways disease, in order to reduce the risk of avoidable readmissions.

Almost two-thirds of participants felt the ward had sufficient educational resources to equip them with adequate knowledge and understanding of correct inhaler technique, but this was not reflected by their overall competency assessment scores. The strong correlation between the number of each inhaler prescribed in the hospital in the 12 months prior to the study and the respective inhaler competency score suggests that a training focus on inhalers which are less commonly prescribed to inpatients may be important. Initiatives to improve inhaler technique for HCPs as well as patients can be delivered through interventions including workshops22 and teaching sessions,23 interactive computer programs24 and serious games,25 training tools for inhalational devices,26 printed instructional materials and videos,27 and internet-based tutorials.28 When considering educational resources to be used in inhaler training including videos and printed instructional materials, it is essential that they have met appropriate quality standards to ensure accurate information; for example, we used nationwide resources through the Lung Foundation Australia.

Our study suggests that nurses need to be more self-aware of their practice and take responsibility for maintaining competence with inhaler device technique through regular training and competency assessments which allows them to retain and refresh their knowledge and skills. Regular ward-based inhaler educational training sessions by an expert may be required to optimise inhaler technique, especially the less commonly encountered inhalers, rather than optional educational sessions or self-directed ad-hoc learning. Periodic competency assessments for inhaler technique may help to identify deficits where further education may be required. Regularly practicing correctly taught techniques to patients may be a valuable way to maintain and consolidate skills as shown by an effective intervention among community pharmacists.29 This may be effective in maintaining inhaler technique for commonly used devices but may not improve technique for less commonly used inhalers. Therefore additional means of maintaining knowledge of less commonly prescribed inhalers may be required.

Although our findings are based on nursing inhaler technique assessment on one occasion (i.e. cross-sectional study), it is important to note that mastery at a particular point in time does not necessarily equate with continued competence in the future.17,26 Further research is required in finding effective strategies which allow nurses to learn and sustain inhaler technique skills and knowledge and the ‘overview, teach and review’ principle that was successfully applied in community pharmacists could also be considered for respiratory nurses;29 however it would be important to review which strategies would be most acceptable and effective in learning and maintaining inhaler technique skills in a busy acute care environment. This may have particular relevance for less often encountered devices, and different strategies may be needed for these as infrequent exposure may lead to a faster deterioration in skills. Understanding the attitudes of nurses to inhaler education, assessing currently available educational materials, and the most effective means to assess, maintain and monitor inhaler technique competence should be further explored.

There are several limitations to our study. Firstly, recruitment of participants into the study may have been hindered by potential participants’ familiarity
with the researchers from their everyday interaction in
the respiratory department that may have resulted in
volunteer bias. Secondly, we are unable to exclude the
possibility that nurses who had already been assessed
may have disclosed the study methodology to col-
leagues, particularly the need to demonstrate the use
of inhalers, allowing nurses to practice prior to assess-
ment which may have altered the true competence of
the nurses prior to the study. Thirdly there was only a
relatively short time for the nursing staff to become
familiar with the Respimat device which was first
listed for treatment for COPD in Australia 6 months
prior to the study, which is likely to have accounted
for the very low competency with this device. Our
study did not address the important issue of critical
errors in inhaler technique and we recognise that each
erroneous inhaler step may not result in an equivalent
impairment in drug delivery; however we took the
view that each correct step in inhaler use was essential
to the optimal delivery of medication and therefore
weighted each step equally. Additionally, there is no
consensus regarding which steps are or are not ‘crit-
ical’. Finally, we assessed the nurses’ own inhaler
techniques as a surrogate measure of their compe-
tence in assessing patients’ inhaler technique. While
competence in inhaler technique is a necessary pre-
requisite to teaching the use of inhalers, we appreciate
that the process of teaching patients to use their inha-
ler correctly is clearly a more complex procedure as it
also involves effective delivery of information.
Furthermore the survey question ‘How confident do
you feel on educating patients on their inhaler medica-
tions’ may be associated with many factors that
relate to ‘confidence’ in educating patients on inhalers
including level of nursing experience, education, and
mastery of English. In addition, participants may not
necessarily be competent with their own inhaler use,
but may feel more confident in their ability to talk
with patients and to educate them. Finally, our
investigator-developed survey was not tested for
reliability or validity; therefore we cannot be sure that
it has measured the construct of inhaler confidence.

Conclusion

Despite reporting a moderate to high degree of confi-
dence in educating patients on inhalers, respiratory
nurses demonstrated significant deficits in using inha-
lar devices, in spite of the importance that this group
had placed on observing and correcting patients’ inha-
lar techniques. Correct inhaler technique correlated
strongly with the number of prescriptions of each
device in the hospital, but was unrelated to the overall
level of nursing experience or confidence in educating
patients on device technique. Future studies exploring
the most effective educational intervention(s) for deli-
vering inhaler education to respiratory nurses, which
develops and maintains their knowledge of correct
inhaler technique, will be important in improving
their competency in educating patients about the
correct use of inhaled respiratory therapies.

Author contributions

V Swami and M Roberts made substantial contributions to
the conception and design of the work, and were involved
in data acquisition, drafting and revising of the manuscript.
J-G Cho was involved with data analysis, and in the draft-
ing and revising of the manuscript. All authors were
involved with interpretation of data for the work, drafting
of the manuscript, and approved of the final version to be
published and agreed to be accountable for all aspects of
the work in ensuring that questions related to the accuracy
or integrity of any part of the work are appropriately inves-
tigated and resolved.

Data accessibility statement

Underlying research materials related to the paper can be
accessed by contacting the authors.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest
with respect to the research, authorship, and/or publication
of this article.

Funding

The author(s) received no financial support for the
research, authorship, and/or publication of this article.

ORCID iD

Vinita Swami https://orcid.org/0000-0002-7298-4390

Supplemental material

Supplemental material for this article is available online.

References

1. Global Strategy for the Diagnosis, Management, and
Prevention of Chronic Obstructive Pulmonary Disease.
2020 GOLD Report.

2. Asthma GIF. 2020 GINA Report, Global Strategy
for Asthma Management and Prevention, https://
ginasthma.org/wp-content/uploads/2020/06/GINA-
20. Scullion J. The nurse practitioners’ perspective on inhaler education in asthma and chronic obstructive pulmonary disease. Can Respir J 2018; 2018: 2525319.

21. Basheti IA, Hamadi SA and Reddel HK. Inter-professional education unveiling significant association between asthma knowledge and inhaler technique. Pharm Pract (Granada) 2016; 14: 713.

22. Basheti IA, Qunaibi EA, Hamadi SA, et al. Inhaler technique training and health-care professionals: effective long-term solution for a current problem. Respir Care 2014; 59: 1716–1725.

23. Kim SH, Kwak HJ, Kim TB, et al. Inappropriate techniques used by internal medicine residents with three kinds of inhalers (a metered dose inhaler, Diskus, and Turbuhaler): changes after a single teaching session. J Asthma 2009; 46: 944–950.

24. Navarre M, Patel H, Johnson CE, et al. Influence of an interactive computer-based inhaler technique tutorial on patient knowledge and inhaler technique. Ann Pharmacother 2007; 41: 216–221.

25. Chee EJM, Prabhakaran L, Neo LP, et al. Play and learn with patients-designing and evaluating a serious game to enhance nurses’ inhaler teaching techniques: a randomized controlled trial. Games Health J 2019; 8: 187–194.

26. Usmani OS, Lavorini F, Marshall J, et al. Critical inhaler errors in asthma and COPD: a systematic review of impact on health outcomes. Respir Res 2018; 19: 10.

27. Plaza V, Giner J, Rodrigo GJ, et al. Errors in the use of inhalers by health care professionals: a systematic review. J Allergy Clin Immunol Pract 2018; 6: 987–995.

28. Nguyen YB, Wainwright C, Basheti IA, et al. Do health professionals on respiratory wards know how to use inhalers? J Pharm Pract Res 2010; 40: 211–216.

29. Australia LF. Resources, https://lungfoundation.com.au/?s=inhaler&user_category&post_type=resource (accessed 15 October 2019).

30. Chrystyn H, van der Palen J, Sharma R, et al. Device errors in asthma and COPD: systematic literature review and meta-analysis. NPJ Prim Care Respir Med 2017; 27: 22.

31. Plaza V, Giner J, Rodrigo GJ, et al. Errors in the use of inhalers by health care professionals: a systematic review. J Allergy Clin Immunol Pract 2018; 6: 987–995.

32. Nylander O, Nylander L, Nylander L, et al. Inhalation technique errors among patients with chronic obstructive lung disease: a systematic review of patient-level studies. J Clin Pharm Ther 2014; 39: 434–445.

33. Nylander O, Nylander L, Nylander L, et al. Inhalation technique errors among patients with chronic obstructive lung disease: a systematic review of patient-level studies. J Clin Pharm Ther 2014; 39: 434–445.

34. Nylander O, Nylander L, Nylander L, et al. Inhalation technique errors among patients with chronic obstructive lung disease: a systematic review of patient-level studies. J Clin Pharm Ther 2014; 39: 434–445.
self-management in Punjabi and Chinese asthma patients: a randomized controlled trial. J Asthma 2012; 49: 542–551.

28. Erickson SR, Chang A, Johnson CE, et al. Lecture versus Web tutorial for pharmacy students’ learning of MDI technique. Ann Pharmacother 2003; 37: 500–505.

29. Basheti IA, Armour CL, Reddel HK, et al. Long-term maintenance of pharmacists’ inhaler technique demonstration skills. Am J Pharm Educ 2009; 73: 32.