Single Nucleotide Polymorphisms in Runt-related Transcription Factor 2 and Bone Morphogenetic Protein 2 Impact on Their Maxillary and Mandibular Gene Expression in Different Craniofacial Patterns - A Comparative Study

Bernardo Olsson, Mateus José da Silva, Camila Lago¹, Robson Diego Calixto, Lucas Alexandre Ramazzotto², Nelson Luis Barbosa Rebellato, Christian Kirschneck³, Francisco Wanderley García Paula-Silva², Erika Calvano Küchler², Rafaela Scariot

Department of Stomatology, Federal University of Paraná, ¹Department of Oral and Maxillofacial Surgery, School of Health Sciences, Positivo University, Curitiba, ²Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil, ³Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany

Abstract

Introduction: This study aimed to evaluate if single nucleotide polymorphisms (SNPs) in runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein 2 (BMP2) are associated with different craniofacial patterns. Furthermore, we also investigated if RUNX2 and BMP2 expression in the maxilla and mandible are differently expressed according to facial phenotypes and influenced by the SNPs in their encoding genes. Orthognathic patients were included. Materials and Methods: Lateral cephalometric radiographs were used to classify facial phenotypes based on Steiner’s ANB and Ricketts’ NBa-PtGn angles. Bone samples from 21 patients collected during orthognathic surgery were used for the gene expression assays. DNA from 129 patients was used for genotyping the SNPs rs59983488 and rs1200425 in RUNX2 and rs2135768 and rs1005464 in BMP2. The established alpha was 5%. Results: A statistically significant difference was observed in the relative BMP2 expression in the mandible between Class I and III participants ($P = 0.042$). Homozygous GG (rs59983488) had higher RUNX2 expression ($P = 0.036$) in the mandible. In maxilla, GG (rs1200425) had a higher BMP2 expression ($P = 0.038$). Discussion: In conclusion, BMP2 is expressed differently in the mandible of Class I and Class III participants. Genetic polymorphisms in RUNX2 and BMP2 are associated with their relative gene expression.

Keywords: Craniofacial morphology, facial type, gene expression, polymorphism, skeletal class

INTRODUCTION

Craniofacial growth and development is a complex process involving many molecular aspects.[°,°] The growth process of the maxilla and other midfacial bones is associated with the growth of the mandible and the cranial base.[°,°] Variations in craniofacial growth lead to different sagittal and vertical morphological patterns.[°-°] Sagittal patterns are most frequently classified into skeletal malocclusion Class I, II, and III,[°] whereas vertical patterns are differentiated into mesofacial, dolicho facial, and brachyfacial facial growth patterns.[°] Many molecular and genetic factors are responsible for triggering the growth process.[°,°] Among them, runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein 2 (BMP2)[°] should be highlighted due to their important role in the craniofacial development.
RUNX2 is a gene that encodes a transcription factor essential for bone formation and skeletal morphogenesis. This protein plays a role in the regulation of factors involved in skeletal gene expression, such as the expression of bone sialoprotein, collagen type 1 α (COL1A1), and osteocalcin (BGLAP).\[9\]

BMP2 is a gene that encodes ligands of the transforming growth factor-beta superfamily of proteins.\[5-7,13\] These ligands are responsible for bone and cartilage formation due to its role in osteoblast and chondroblast differentiation.\[9\] BMP signaling pathway is associated with the fusion of facial patterns.\[2,11\]

Single nucleotide polymorphisms (SNPs) have the potential to alter all steps of gene expression depending on their genomic location. When they are within transcriptional regulatory elements, SNPs can affect mRNA (messenger RNA) expression,\[12\] impacting the phenotype. SNPs in many genes have been associated with different sagittal and vertical craniofacial patterns in humans.\[5-7,13\] including SNPs in RUNX2 and BMP2, which were associated with different maxillary and mandibular phenotypes.\[13\]

Although many studies have been evaluating the association between SNPs in genes with different craniofacial patterns, the interplay among SNPs, gene expression and craniofacial pattern has not been explored yet. Therefore, in this study, we evaluated if SNPs in RUNX2 (rs59983488 and rs1200425) and BMP2 (rs235768 and rs1005464) and were blindly genotyped (described in the Supplementary Material and was previously reported by Olsson et al.\[14\]).

Bone samples (surgical waste) were collected from maxillary and/or mandible, depending on the surgical plan (i.e., mono-or-bimaxillary surgery). Maxillary samples were collected from any region in the area of the Le Fort I osteotomy (as long as they were interfering with maxillary adaptation) after the downfracture. In the mandible, samples were collected from the bilateral sagittal split osteotomy region. The samples were stored in tubes containing RNA later solution and frozen immediately after surgery.

Materials and Methods

Ethical considerations
This study was approved by the ethical committee of the Federal University of Parana (26502919.6.0000.0093). All procedures performed in the study were conducted in accordance with the ethics standards given in 1964 Declaration of Helsinki, as revised in 2013. All the participants provided written informed consent for the participation in the study.

Sample collection for relative gene expression analysis of runt-related transcription factor 2 and bone morphogenetic protein 2

Bone samples (surgical waste) were collected from maxilla and/or mandible, depending on the surgical plan (i.e., mono-or-bimaxillary surgery). Maxillary samples were collected from any region in the area of the Le Fort I osteotomy (as long as they were interfering with maxillary adaptation) after the downfracture. In the mandible, samples were collected from the bilateral sagittal split osteotomy region. The samples were stored in tubes containing RNA later solution and frozen immediately after surgery.

Relative gene expression analysis are described in the Supplementary Material and was previously reported by Olsson et al.\[14\].

Briefly, the target genes RUNX2 (Hs00231692_m1) and BMP2 (Hs00154192_m1) and the reference genes ACTB (Hs01060665_g1) and GAPDH (Hs00758991_g1) were used. The 2-Δ Cycle Threshold method was used to determine the relative levels of mRNA expression.

Sample collection for genotyping analysis

Saliva samples were collected for DNA extraction following a previously described method.\[15\] The SNPs described in Table 1 were blindly genotyped (described in the Supplementary Material) as previously reported.\[16\]. An internal consistency of 100% was obtained by randomly repeating 10% of all samples.
Statistical analysis

Statistical analysis was performed using the Prism GraphPad8.2 package (GraphPad Software, Inc., San Diego, CA-USA). Data normality was assessed with the Kolmogorov – Smirnov and Shapiro – Wilk tests.

One-way analysis of variance or t-test was used to compare the mean and standard deviation (SD) relative gene expression. The Chi-square test was used to compare the SNPs according to the phenotypes. A correlation of gene expressions was tested using the Spearman’s correlation test. An established alpha of 0.05 was adopted.

Results

A total of 129 individuals were included: 86 (66.7%) females and 43 (33.3%) males. Thirty-two (24.8%) were Class I, 24 (18.6%) were Class II, and 73 (56.6%) were Class III. Regarding NBa-PtGn°, 70 (54.3%) were brachyfacial, 37 (28.7%) mesofacial, and 22 (17.1%) dolichofacial.

Bone samples from 14 mandibles and 17 maxillas from 21 individuals (8 males and 13 females) were used in this analysis. Regarding skeletal malocclusion, 7 participants were Class I, 4 were Class II, and 10 were Class III. Eight participants were mesofacial, 7 dolichofacial, and 6 brachyfacial.

Figure 1 shows the RUNX2 and BMP2 expression in the mandible and maxilla ($P = 0.783$).

Figure 2 demonstrated the relative RUNX2 and BMP2 expression according to the skeletal malocclusions. A statistically significant difference was observed for BMP2 expression in mandibular bone from Class I and III participants ($P = 0.042$).

Table 1: Characteristics of the single nucleotide polymorphisms studied

Gene	Chromosome	Reference sequence	Position/function	Base change (context sequence)	Global MAF
RUNX2	6	rs59983488	Intron variant	GGG[G/T] AGT	0.1787
		rs1200425	Intron variant	TTT[G/A] GAA	0.4297
BMP2	20	rs235768	Missense R(Arg)>S(Ser)	CAG[A/T] CTT	0.2332
		rs1005464	Intron variant	GCC[A/G] GCC	0.2232

Table 2: Mean mRNA levels in the mandible and maxilla according to single nucleotide polymorphisms genotypes

Arch	SNPs	Genotypes and mean (SD) relative mRNA expression	P^\dagger				
Mandible	RUNX2	rs59983488	GG	1.58 (1.02)	0.31 (0.27)	TT	0.036*
		rs1200425	AA	1.30 (1.52)	0.95 (0.63)	AG	0.874
BMP2	rs235768	AA	AT	10.7 (4.50)	12.71 (15.98)	TT	0.230
Maxilla	RUNX2	rs59983488	AA	3.73 (-)	21.36 (23.81)	GG	0.686
		rs1200425	AA	0.96 (0.56)	1.38 (0.81)	GG	0.906
BMP2	rs235768	AA	AT	13.98 (17.94)	19.68 (16.84)	TT	0.038*

†ANOVA or t-test were used, *Means statistically significant difference. SNPs: Single nucleotide polymorphisms
Figure 2: Relative mRNA expression according to the skeletal malocclusions. (a) Runt-related transcription factor 2 expression in the mandible. (b) Runt-related transcription factor 2 expression in the maxilla. (c) Bone morphogenetic protein 2 expression in the mandible. (d) Bone morphogenetic protein 2 expression in the maxilla.

Figure 3: Relative mRNA expression according to the facial growth patterns. (a) Runt-related transcription factor 2 expression in the mandible. (b) Runt-related transcription factor 2 expression in the maxilla. (c) Bone morphogenetic protein 2 expression in the mandible. (d) Bone morphogenetic protein 2 expression in the maxilla.

Figure 3 demonstrated the relative RUNX2 and BMP2 expression according to the facial growth patterns ($P > 0.05$). Mean and SD for each comparison are presented in Supplementary Table 1.

There was no correlation between RUNX2 and BMP2 expression neither in the mandible ($r = 0.227; P = 0.379$) nor in the maxilla ($r = 0.389; P = 0.574$).
In RUNX2, the genotype distribution in rs59983488 was: GG = 14, GT = 6 and TT = 0; while in rs1200425 was: AA = 6, AG = 10, and GG = 4. In BMP2, in the rs235768 was: AA = 5, AT = 8 and TT = 6, while in rs1005464 was: AA = 1, AG = 6 and GG = 13.

Table 2 demonstrates the RUNX2 and BMP2 expression according to the genotypes. A statistical significance was observed in rs59983488 (P = 0.036) and in rs1200425 (GG vs. GA, P = 0.038).

Due to associations and borderline associations observed in the first steps of this study, a genotyping analysis was performed in the total sample of 129 individuals. Table 3 shows genotype frequencies according to the phenotypes. No association was observed (P > 0.05).

DISCUSSION

In the past years, there was an increase in SNP-phenotype\(^5\)\(^\text{-}\)\(^7\) and genome-wide association studies (GWAS),\(^1\)\(^6\)\(^,\)\(^17\) in which many genes/SNPs were linked to some craniofacial phenotypes, including RUNX2\(^1\)\(^6\)\(^\text{-}\)\(^8\) and BMP2.\(^1\)\(^9\)\(^\text{-}\)\(^\text{2}1\) However, the understanding of the functional impact of SNPs on gene expression within craniofacial tissue is still largely unexplored. Here, we provide novel findings of the impact of RUNX2 and BMP2 SNPs on their maxillary and mandibular gene expression in different craniofacial patterns.

In our study, BMP2 was differentially expressed in the mandible according to the skeletal malocclusion. Mandibular bone samples from skeletal Class III patients showed a lower BMP2 expression, when compared to skeletal Class I. Interestingly, SNPs in BMP2 are associated with mandibular retrognathism.\(^1\)\(^3\) BMP2 is an essential regulator of osteogenesis, which directly regulates target gene expression\(^2\)\(^2\) crucial for proper development. In osteoblasts, the target genes of BMP2 encode many transcription factors, including RUNX2,\(^2\)\(^3\) known as highly important for the determination of craniofacial pattern.

RUNX2 function in osteoblast differentiation is affected by many regulatory genes.\(^2\)\(^4\) RUNX2 also interacts with several coregulatory transcription factors, forming complexes that regulate the transcription of many bone-related factors in osteoblasts.\(^2\)\(^4\) Mutations in RUNX2 and expression levels of RUNX2 may be involved in the development of several craniofacial defects.\(^2\)\(^5\) SNPs in RUNXs are involved in different craniofacial patterns.\(^1\)\(^1\) Although our results of RUNX2 expression in the bone were not statistically different across skeletal patterns, the gene expression distribution conforms to previous evidence in the literature suggesting that RUNX2 is worth further investigation. Therefore, we performed a functional analysis in our study and found that the GG genotype of rs59983488 was associated with a higher expression of RUNX2 in the mandible.

It is important to highlight that although our study did not demonstrate an association between the SNPs in BMP2 and RUNX2 and the craniofacial pattern, it does not mean that they are not involved in craniofacial phenotypes. Genetic variants in RUNX2 produce a deficient RUNX2 protein.
leading to cleidocranial dysostosis,[26] which affects dental arches.[27] Furthermore, disruptions in BMP signaling cause Treacher-Collins syndrome, which clinically presents remarkable craniofacial alterations.[25] Adhikari et al., (2016) performed a GWAS for facial features (using photographs) in Latin Americans and observed that SNPs in \textit{RUNX2} affected nose morphology. Recently, Köchler et al. (2021) performed a SNP-phenotype association study in Brazilians, also using cephalometrics to determine the phenotype, and observed that SNPs in \textit{RUNX2} and \textit{BMP2} were involved in a variety of craniofacial phenotypes, including skeletal Class II, mandibular retrognathism, mandibular protrusion, and dolichocephalic phenotype.[13] It is possible that our sample led to a type II error in the genotype analysis, as some phenotypic groups presented a small sample size.

In the general population, skeletal Class I is more prevalent than Class II, followed by Class III.[28,29] Our sample was mainly composed by Class III individuals due to the fact that only patients seeking orthognathic surgery were included.[30] This might also explain the difference between the results observed here and in a previous study[13] evaluating orthodontic patients, in which SNPs in \textit{RUNX2} and \textit{BMP2} were associated with different craniofacial patterns.

Conclusion

\textit{BMP2} is expressed differently in the mandible of Class I and Class III participants. SNPs in \textit{RUNX2} and \textit{BMP2} are involved with their relative gene expression in the mandible and maxilla, respectively.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form, the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Nie X. Cranial base in craniofacial development: Developmental features, influence on facial growth, anomaly, and molecular basis. Acta Odontol Scand 2005;63:127-35.
2. Graf D, Malik Z, Hayano S, Mishina Y. Common mechanisms in development and disease: BMP signaling in craniofacial development. Cytokine Growth Factor Rev 2016;27:129-39.
3. Björk A. Facial growth in man, studied with the aid of metallic implants. Acta Odontol Scand 1995;13:9-34.
4. Manjusha KK, Jyothindrakumar K, Nishad A, Manoj KM. Growth and development of dentofacial complex influenced by genetic and environmental factors using monzygotic twins. J Contemp Dent Pract 2017;18:754-8.
5. Köchler EC, Nascimento MA, Matsumoto MA, Romano FL, da Silva RA, Ayumi Omori M, et al. Genetic polymorphism in \textit{RANK} is associated with mandibular size. J Orthod 2018;45:157-62.
6. Cunha A, Nelson-Filho P, Marañón-Vásquez GA, Ramos AG, Dantas B, Sebastiani AM, et al. Genetic variants in \textit{ACTN3} and MYO1H are associated with sagittal and vertical craniofacial skeletal patterns. Arch Oral Biol 2019;97:85-90.
7. Cavalcante RC, Bergamaschi IP, Sebastiani AM, Meger M, Signorini L, Costa DJ, et al. Association between facial measurements and polymorphisms in human epidermal growth factor and transforming growth factor \(\beta\). Br J Oral Maxillofac Surg 2020;58:214-9.
8. Angle E. Classification of malocclusion. Dent Cosm 1899;41:248-64.
9. Yoo SH, Kim JG, Kim BS, Lee J, Pi SH, Lim HD, et al. BST2 mediates osteoblast differentiation via the BMP2 signaling pathway in human alveolar-derived bone marrow stromal cells. PLoS One 2016;11:e0158481.
10. Jani P, Liu C, Zhang H, Younes K, Benson MD, Qin C. The role of bone morphogenetic proteins 2 and 4 in mouse dentinogenesis. Arch Oral Biol 2018;90:33-9.
11. Bennett JH, Hunt P, Thorogood P. Bone morphogenetic protein-2 and -4 expression during murine orofacial development. Arch Oral Biol 1995;40:847-54.
12. Robert F, Pelletier J. Exploring the impact of single-nucleotide polymorphisms on translation. Front Genet 2018;9:507.
13. Köchler EC, Reis CL, Carelli J, Scariot R, Nelson-Filho P, Coletta RD, et al. Potential interactions among single nucleotide polymorphisms in bone- and cartilage-related genes in skeletal malocclusions. Orthod Craniofac Res 2021;24:277-87.
14. Olsson B, Calixto RD, da Silva Machado NC, Meger MN, Paula-Silva FW, Rebellato NL, et al. \textit{MSX1} is differentially expressed in the deepest impacted maxillary third molars. Br J Oral Maxillofac Surg 2020;58:789-94.
15. Köchler EC, Tannure PN, Falagan-Lotsch P, Lopes TS, Granjeiro JM, Amorim LM. Buccal cells DNA extraction to obtain high quality human genomic DNA suitable for polymorphism genotyping by PCR-RFLP and real-time PCR. J Appl Oral Sci 2012;20:467-71.
16. Claes P, Roosenboom J, White JD, Swigut T, Sero D, Li J, et al. Genome-wide mapping of global-to-local genetic effects on human facial shape. Nat Genet 2018;50:414-23.
17. Adhikari K, Fuentes-Guajardo M, Quinto-Sánchez M, Mendoza-Revilla J, Camilo Chacón-Duque J, Acuña-Alonzo V, et al. A genome-wide association scan implicates DCHS2, \textit{RUNX2}, \textit{GLI3}, \textit{PAX1} and EDAR in human facial variation. Nat Commun 2016;7:11616.
18. Wu T, Fallin MD, Shi M, Buczynski I, Liang KY, Hetmanski JB, et al. Evidence of gene-environment interaction for the \textit{RUNX2} gene and environmental tobacco smoke in controlling the risk of cleft lip with/without cleft palate. Birth Defects Res A Clin Mol Teratol 2012;94:76-83.
19. Mu Y, Xu Z, Contreras CI, McDaniel JS, Donly KJ, Chen S. Phenotype characterization and sequence analysis of \textit{BMP2} and \textit{BMP4} variants in two Mexican families with oligodontia. Genet Mol Res 2012;11:4110-20.
20. Lu Y, Qian Y, Zhang J, Gong M, Wang Y, Gu N, et al. Genetic variants of \textit{BMP2} and their association with the risk of non-syndromic tooth agenesis. PLoS One 2016;11:e0158273.
21. Saket M, Salminejad K, Kamali K, Moghadam FA, Anvar NE, Khorram Khorshid HR. \textit{BMP2} and \textit{BMP4} variations and risk of non-syndromic cleft lip and palate. Arch Oral Biol 2019;97:85-90.
22. Massagué J, Seoane J, Wotton D. Smad transcription factors. Genes Dev 1995;9:148-66.
23. Kim BS, Kim HJ, Kim JS, You YO, Zadeh H, Shin HI, et al. \textit{IFITM1} increases osteogenesis through Runx2 in human alveolar-derived bone marrow stromal cells. Bone 2012;51:506-14.
24. Eswarakumar VP, Horowitz MC, Locklin R, Morriss-Kay GM, Lonai P. A gain-of-function mutation of \textit{FGFf2c} demonstrates the roles of this receptor variant in osteogenesis. Proc Natl Acad Sci U S A 2004;101:12555-60.
26. Gao X, Li K, Fan Y, Sun Y, Luo X, Wang L, et al. Identification of RUNX2 variants associated with cleidocranial dysplasia. Hereditas 2019;156:31.
27. Yamashiro T, Aberg T, Levanon D, Groner Y, Thesleff I. Expression of Runx1, -2 and -3 during tooth, palate and craniofacial bone development. Mech Dev 2002;119 Suppl 1:S107-10.
28. Alhammadi MS, Halboub E, Fayed MS, Labib A, El-Saaidi C. Global distribution of malocclusion traits: A systematic review. Dental Press J Orthod 2018;23:40.e1-40.e10.
29. Al Jadidi L, Sabrish S, Shivamurthy PG, Senguttuvan V. The prevalence of malocclusion and orthodontic treatment need in Omani adolescent population. J Orthod Sci 2018;7:21.
30. Gabardo M, Zielak J, Törö G, Gerber J, Meger M, Rebellato N, et al. Impact of orthognathic surgery on quality of life: Predisposing clinical and genetic factors. J Craniomaxillofac Surg 2019;47:1285-91.
Supplementary Material

PCR Method

Relative gene expression analysis of runt-related transcription factor 2 and bone morphogenetic protein 2

For relative gene expression analysis, mirVana miRNA isolation kit (Ambion/Life Technologies™) was used to perform RNA isolation. The spectrophotometer NanoDrop™One (Thermo Fisher Scientific, Massachusetts, USA) was used to assess purity and RNA concentration. The High-Capacity® cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA) was used. For the reaction, 400 ng of RNA, 0.8 μL of dNTP Mix ×25, 2.0μL of RT Buffer ×10, 2 μL of ×10 RT Random Primers and 1.0μL of MultiScribe® enzyme (50 U/μL) were used in a final volume of 20μL.

Both the gene expression and the reverse transcription reaction were run in a StepOnePlus Real-Time Polymerase Chain Reaction System (Applied Biosystems). The target genes *runt-related transcription factor 2* (Hs00231692_m1) and *bone morphogenetic protein 2* (Hs00154192_m1) TaqMan™ Gene Expression Assay primers and probes were used. As reference genes we used *ACTB* (Hs01060665_g1) and *GAPDH* (Hs02758991_g1). Amplification was performed under the following conditions: 95°C for 2 min, followed by 40 cycles of 95°C for 1s and 60°C for 20s. The 2-Δ Cycle Threshold method was used to determine the relative levels of mRNA expression.

Genotyping analysis

The spectrophotometer NanoDrop™One (Thermo Fisher Scientific, Massachusetts, USA) was used to assess purity and DNA concentration. The SNPs were blindly investigated using TaqMan™ technology (Applied Biosystems, Foster City, CA, USA) in the same real-time PCR system described above, following the reaction: 4 ng DNA/reaction, 1.5 μL Taqman PCR master mix and 0.075 μL SNP assay (Applied Biosystems, Foster City, CA, USA) in a total volume of 3 μL. The thermal cycle was 10 min hold-cycle at 95°C and 40 amplification cycles of 15 s at 92°C and 1 min at 60°C. An internal consistency of 100% was obtained by randomly repeating 10% of all samples.

Supplementary Table 1: Mean and standard deviation for each analysis

Gene Arch	Mean (SD)	P
Gene expression in maxilla and mandible (data from Figure 1)		
Runx2 Mandible	1.14 (0.99)	0.346
Maxilla	1.55 (1.26)	
BMP2 Mandible	16.57 (16.93)	0.783
Maxilla	14.95 (15.58)	

Gene Arch	Mean (SD)	P
Gene expression in the maxilla and mandible according to skeletal malocclusion (data from Figure 2)		
RUNX2 Mandible	0.89 (0.79)	>0.05
Class II	1.52 (1.42)	
Class III	1.12 (1.00)	
Maxilla	1.79 (1.94)	>0.05
Class II	1.95 (0.49)	
Class III	1.21 (0.78)	
BMP2 Mandible	28.59 (20.37)	>0.05
Class II	12.09 (11.22)	
Class III	6.79 (6.12)	
Maxilla	20.57 (14.31)**	0.042
Class II	25.63 (21.55)	
Class III	5.56 (4.88)*	

Gene Arch	Mean (SD)	P
Gene expression in the maxilla and mandible according to the facial pattern (data from Figure 3)		
RUNX2 Mandible	1.08 (0.71)	>0.05
Mesofacial	1.01 (1.24)	
Dolichofacial	1.38 (1.12)	
Maxilla	1.60 (1.88)	>0.05
Mesofacial	1.32 (0.71)	
Dolichofacial	1.97 (0.36)	
BMP2 Mandible	23.06 (21.93)	>0.05
Mesofacial	18.10 (16.23)	
Dolichofacial	6.16 (6.26)	
Maxilla	10.78 (13.61)	>0.05
Dolichofacial	23.68 (16.49)	
Brachyfacial	3.42 (2.07)	

SD: Standard deviation; * Means statistically significant difference