Autophagy and metacaspase determine the mode of cell death in plants

Elena A. Minina,1 Lada H. Filonova,2 Kazuake Fukada,1 Eugene I. Savenkov,1 Vladimir Gogvadze,3 David Clapham,4 Victoria Sanchez-Vera,1,4 Maria F. Suarez,4 Boris Zhivotovsky,3 Geoffrey Daniel,2 Andrei Smertenko,5 and Peter V. Bozhkov1

1Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden
2Department of Forest Products, Wood Science, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
3Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, SE-17177, Stockholm, Sweden
4Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Malaga, 290071 Malaga, Spain
5The Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3IE, England, UK

Although animals eliminate apoptotic cells using macrophages, plants use cell corpses throughout development and disassemble cells in a cell-autonomous manner by vacuolar cell death. During vacuolar cell death, lytic vacuoles gradually engulf and digest the cytoplasmic content. On the other hand, acute stress triggers an alternative cell death, necrosis, which is characterized by mitochondrial dysfunction, early rupture of the plasma membrane, and disordered cell disassembly. How both types of cell death are regulated remains obscure. In this paper, we show that vacuolar death in the embryo suspensor of Norway spruce requires autophagy. In turn, activation of autophagy lies downstream of metacaspase mcII-Pa, a key protease essential for suspensor cell death. Genetic suppression of the metacaspase–autophagy pathway induced a switch from vacuolar to necrotic death, resulting in failure of suspensor differentiation and embryonic arrest. Our results establish metacaspase-dependent autophagy as a bona fide mechanism that is responsible for cell disassembly during vacuolar cell death and for inhibition of necrosis.

Introduction

Programmed cell death (PCD) is indispensable for animal and plant development, but the mechanisms of PCD differ between the two kingdoms. Plants lack apoptosis that involves cell fragmentation into discrete bodies and their heterophagic removal, owing to the presence of cell walls and lack of phagocytosis (Beers, 1997; Jones, 2001; Lam, 2004). Furthermore, plant genomes lack the core apoptotic regulators, such as Bcl-2 family proteins and caspases (Koonin and Aravind, 2002).

Although molecular regulation of plant PCD remains poorly understood, most cases of plant cell death can be divided into two classes with distinct kinetics and morphology: vacuolar cell death and necrosis (van Doorn et al., 2011). Vacuolar cell death is a slow process whereby growing lytic vacuoles gradually digest entire or most of the contents of terminally differentiated cells excluding cell walls. This cell death is indispensable for plant development, playing an instrumental role in the formation of conduits of water, nutrients, and hormones (the embryo suspensor and the vascular system) and secretory structures (e.g., laticifers; Beers and McDowell, 2001; Bozhkov et al., 2005a; van Doorn and Woltering, 2005; Bollhöner et al., 2012). We have shown that execution of vacuolar cell death in Norway spruce (Picea abies) embryo suspensor requires type II metacaspase mcII-Pa, a cysteine protease distantly related to caspases (Suarez et al., 2004; Bozhkov et al., 2005b; Tsatsiani et al., 2011). However, mcII-Pa is a nucleocyttoplasmic protein, and its proteolytic action alone is not sufficient to account for progressive growth of lytic vacuoles in the course of execution...
of PCD. Identification of such a mechanism would significantly advance our understanding of the vacuolar cell death process.

In contrast to vacuolar cell death, necrosis is a rapid mode of plant cell death and, like in animal systems, involves mitochondrial dysfunction and early loss of plasma membrane integrity (van Doorn et al., 2011; Galluzzi et al., 2012). However, although animal necrotic cells swell and burst, their plant counterparts retain undigested cytoplasmic materials surrounded by cell walls. Necrosis is a typical response of plants to abiotic stress and pathogen attack (Heath, 2000; Coll et al., 2011; van Doorn et al., 2011). Thus, vacuolar and necrotic modes of cell death not only differ morphologically but are also implicated in distinct aspects of plant biology: development and stress response, respectively. An intriguing question is what determines the mode of cell death in plants.

Here, we show that autophagy is responsible for cell self-disassembly during vacuolar cell death in *P. abies* embryos. Activation of autophagy requires metacaspase mcII-Pa and deficiency of either component switches the mode of cell death from vacuolar to necrotic. These findings provide a mechanistic explanation for morphological differences between two major classes of cell death in plants.

Results and discussion

Vacuolar cell death in the embryo suspensor is associated with enhanced autophagy

In somatic embryogenesis of *P. abies*, the formation of early embryos is induced by withdrawal of growth factors (GFs), auxin and cytokinin, whereas further development to the cotyledonary stage requires exogenous abscisic acid (ABA; Fig. 1 A; Bozhkov et al., 2005a). An early *P. abies* embryo is composed of a proliferating embryonal mass (EM) that will eventually form a cotyledonary embryo and terminally differentiated suspensor, which is gradually eliminated before the cotyledonary stage. Although *Arabidopsis thaliana* embryos have minute suspensors of seven cells, the suspensors in *P. abies* and most other gymnosperms are several millimeters long and composed of many cells (Fig. 1 B; Singh, 1978). In addition, suspensors of *P. abies* consist of several tiers of elongated cells at successive stages of cell disassembly, providing an excellent paradigm for studying vacuolar PCD (Bozhkov et al., 2005a; van Doorn et al., 2011).

We obtained three lines of evidence that vacuolar PCD in the *P. abies* suspensor is associated with increased autophagic activity. First, transmission electron microscopy (TEM) revealed accumulation of autophagic bodies in the vacuoles of suspensor cells upon inhibition of vacuolar acidification using concanamycin A (ConA; Fig. 2 A) as well as increased amounts of double membrane–bound autophagosomes in the cytoplasm of suspensor cells as compared with EM cells (Fig. 2, A–C; Filonova et al., 2000). Second, transgenic mRFP-Atg8 lines showed cytoplasmic localization of mRFP-Atg8 in the EM cells and punctate localization in the suspensor cells (Fig. 2 D; Klionsky et al., 2012). Simultaneous measurement of fluorescein diacetate (FDA) staining intensity, cell length, and amount of mRFP-Atg8 puncta per cell area in the EM and suspensor cells confirmed that progression of vacuolar PCD in the suspensors correlates with cell elongation and enhanced autophagy (Fig. 2 E). Finally, abrogation of autophagic flux by ConA led to dramatic increase in the levels of autophagic target proteins Atg8 and NBR1 (Fig. 2 F; Svenning et al., 2011; Klionsky et al., 2012; Minina et al., 2013b).

Silencing of *ATG5* or *ATG6* abrogates embryogenesis and phenocopies mcII-Pa depletion

The vast body of genetic data demonstrates conservation of the major functional groups of Atg (autophagy related) proteins in plants (Doelling et al., 2002; Hanaoka et al., 2002; Liu and Bassham, 2012). We addressed the requirement of autophagy for vacuolar PCD in the suspensor by silencing two single-copy *ATG* genes, *ATG5* and *ATG6*, by RNAi (Figs. S1 and S2). Silencing either gene abrogated suspensor formation and apical–basal patterning (Fig. 3 A), the phenotype being similar to lines deficient for mcII-Pa, the only type II metacaspase expressed in the *P. abies* embryos (Figs. 3 A, S1, and S2;
Figure 2. Enhanced autophagy in the P. abies embryo suspensor. (A) Assessment of autophagic flux in the EM and suspensor cells using ConA treatment. Arrows denote autophagic bodies. Insets depict autophagosome docking to the vacuole (−ConA) and autophagic body (+ConA). N, nucleus; V, vacuole; asterisks, cell wall. Bars, 2 µm. (B) Typical autophagosome in the suspensor cell. Bar, 0.2 µm. (C) Number of autophagosomes in the cytoplasm estimated from the micrographs of EM and suspensor (S) cells. Data represent the means ± SEM from three independent experiments, each including at least four cells per cell type. (D) mRFP-Atg8 accumulates in puncta in the suspensor cells but remains cytoplasmic in the EM cells upon ConA treatment. Bars, 50 µm. (E) Correlation between anisotropic cell expansion (cell length), progression of cell death (mean FDA intensity; green symbols and green power trendline, $R^2 = 0.5402$), and accumulation of autophagosomes (number of mRFP-Atg8–positive puncta; red symbols and red polynomial trendline, $R^2 = 0.8202$) in the embryos. RFU, relative fluorescence units. (F) Accumulation of NBR1, mRFP-Atg8, and Atg8 upon ConA treatment detected by Western blot analysis of total protein extracts from the embryos. Actin was used as a reference control. Graph represents relative protein amounts shown as means ± SEM from three independent measurements. For each protein, the integrated band intensities were first normalized to corresponding intensities of Coomassie staining (loading) and then to the sample without ConA. The amounts of all three proteins were significantly increased upon ConA treatment ($P < 0.001$; Student’s t-test).
Deficiency of either autophagy or metacaspase switches the mode of cell death from vacuolar to necrotic.

Because autophagy or metacaspase deficiency did not prevent cell death upon withdrawal of GF (Fig. 3 A), we compared the morphology of cell death in RNAi and control lines using TEM. In control lines, dying suspensor cells maintained intact plasma membranes and turgid protoplasts until almost all of the cytoplasm was digested by lytic vacuoles, whereas dying cells in RNAi lines contained shrunken and largely undigested protoplasts. The failure of normal suspensor formation in Atg5-, Atg6- and mcII-Pa–deficient lines was accompanied by reduced anisotropic expansion of dying cells as estimated by measuring the length of Evans blue–positive cells (Fig. 3 B). Genetic inhibition of autophagy or metacaspase increased the frequency of aberrant early embryos lacking suspensors in several independent lines by four- to sixfold (Fig. 3 C). Accordingly, the efficiency of subsequent embryo development to the cotyledonary stage was dramatically reduced (Fig. 3 D; Suarez et al., 2004).
with ruptured plasma membranes (Fig. 4, A–D). This morphology was reminiscent of necrosis (Majno and Joris, 1995; van Doorn et al., 2011). The reduced number of morphologically intact mitochondria in the cytoplasm of dying cells from the RNAi lines as compared with both meristematic and suspensor cells (Fig. 4 E), correlated with the accumulation of swollen mitochondria (Fig. 4, F and G). Consistent with the altered morphology of mitochondria, the RNAi lines displayed a drop in intracellular ATP content (Fig. 4 H) and respiratory decline (Fig. 4 I; Eguchi et al., 1997; Bal-Price and Brown, 2000). These metabolic changes indicate mitochondrial dysfunction and, in combination with the loss of plasma membrane integrity, demonstrate that the cell death observed in autophagy- or metacaspase-deficient lines is necrosis.

The main reason for the incomplete clearance of cellular contents in necrotic cells (Fig. 4 C) was compromised growth of lytic vacuoles, as evidenced from the measurements of the ratios of vacuolar to the whole protoplast areas on the electron micrographs (Fig. 4 J). The failure of progressive vacuolization of necrotic cells correlated with decreased autophagic activity in the cytoplasm (Fig. 4 K) compared with the suspensor cells from control lines in which enhanced autophagy sustained vacuole-mediated cell clearance (Fig. 4, K and L).

To quantify necrotic death in different lines, embryogenic cultures were stained with FM4-64 to distinguish between intact and shrunken protoplasts and FDA to assess cell viability. Combination of both dyes provides robust diagnostic tool for identification of necrotic cells (Fig. 4 M; Minina et al., 2013a). Although the frequency of necrotic cells (as distinguished by collapsed protoplast and no FDA staining) was negligible in the control lines, it increased to 60% in the individual RNAi lines (Fig. 4 N). No statistical differences were found between lines silenced for ATG5, ATG6, or mcII-Pa. Collectively, our data demonstrate that autophagy and metacaspase mcII-Pa are required for both progression of vacuolar cell death and suppression of necrosis.

Metacaspase lies upstream of autophagy in the vacuolar cell death pathway

We have previously shown that the physiological effect of mcII-Pa in the control of suspensor PCD requires its proteolytic activity (Bozhkov et al., 2005b). To address whether metacaspase lies up- or downstream of autophagy in the vacuolar cell death pathway, we first compared proteolytic activity of mcII-Pa in the protein extracts from control, ATG5 RNAi, and ATG6 RNAi lines using three independent approaches: cleavage of peptidic substrate FESR–7-amino-4-methylcoumarin (AMC; Fig. 5 A), mcII-Pa autoprocessing, and cleavage of Tudor staphylococcal nuclease (TSN), a target of mcII-Pa (Fig. S3; Bozhkov et al., 2005b; Sundström et al., 2009). Because there was no difference in the levels of metacaspase activity observed between autophagy-deficient and control lines using all three approaches, we rejected the possibility that autophagy lies upstream of mcII-Pa in the pathway.

To test an alternative scenario in which mcII-Pa is upstream of autophagy, we expressed mRFP-Atg8 in the wild-type (control) and RNAi lines and quantified the amount of autophagosomes per volume of dying cells by confocal microscopy after ConA treatment (Fig. 5, B and C). As shown in Fig. 5 C, silencing of mcII-Pa led to a dramatic decrease in the number of autophagosomes in the dying cells, to levels found in Atg5- and Atg6-deficient lines. Suppression of autophagy under mcII-Pa deficiency was further confirmed by a significant decrease in the efficiency of the degradation of NBR1 (Fig. 5 D). Together, these data establish metacaspase as an upstream mediator of autophagy in the vacuolar cell death pathway (Fig. 5 E).

Conclusions

Our combined data demonstrate a cell-autonomous requirement of autophagy and mcII-Pa for the execution of vacuolar cell death in the *P. abies* embryo suspensor, which in turn is essential for embryogenesis. Critical dependence of vacuolar death on autophagy and type II metacaspases seems to be independent of the experimental system because progression of xylem PCD (classic example of vacuolar cell death; van Doorn et al., 2011) in *A. thaliana* was shown to require autophagy (Kwon et al., 2010) and type II metacaspase AtMC9 (Bollhöner et al., 2013), although these two components have not been linked together in a pathway. The contribution of vacuolar cell death to developmental processes in different systems can vary. For example, the knockout mutants of ATG genes in *A. thaliana* are fertile and do not reveal massive embryo abortion caused by autophagy deficiency in the suspensor. The difference between *A. thaliana* and *P. abies* can be explained by the minute contribution of the seven-cell suspensor to the *A. thaliana* embryo in comparison to the giant suspensors of *P. abies* that exceed the EMs (Fig. 1 B). Furthermore, although the suspensor cells in *P. abies* do not divide and are subjected to PCD as soon as they are formed (Smertenko et al., 2003; Bozhkov et al., 2005a), the suspensor cells in *A. thaliana* undergo several rounds of divisions before PCD is initiated during transition from the late globular to the heart stages (Mansfield and Briarty, 1991; Kawashima and Goldberg, 2010; Wendrich and Weijers, 2013). This implies that in addition to size differences, the suspensor in *P. abies* embryos is composed entirely of dying and dead cells regardless of the developmental stage, whereas the fate of suspensor cells in *A. thaliana* is determined by the stage of embryo development.

Our work strengthens the idea about the evolutionarily conserved and context-independent role of autophagy in the suppression of necrosis and establishes a new paradigm for unraveling molecular mechanisms underlying relationships between two major classes of cell death in plants. In vacuolar cell death, autophagy is both an executioner of slow yet complete cell clearance and a protector against rapid cell death, necrosis, which leaves behind a largely unprocessed cell corpse. Autophagy was also shown to counteract the spread of necrotic lesions in plant leaves infected with microbial or fungal pathogens (Liu et al., 2005; Hofius et al., 2009; Yoshimoto et al., 2009; Lenz et al., 2011). Finally, in mammalian systems and *Dictyostelium discoideum*, autophagy differentially controls distinct modes of cell death and usually suppresses necrosis (Kosta et al., 2004; Degenhardt et al., 2006; Chen et al., 2008; Kroemer and Levine,
Figure 4. **Deficiency of either autophagy or metacaspase switches the mode of cell death from vacuolar to necrotic.**

(A–C) Cell morphology in control and RNAi lines (exemplified by an ATG6 RNAi line). N, nucleus; V, vacuole; asterisks, cell wall. (A) A meristematic cell from the EM of the control line. (B) Vacuolated suspensor cell with intact plasma membrane and turgid protoplast. (C) Dead cells from an RNAi line with shrunken protoplasts (double arrows denote detachment of plasma membranes from the cell wall) and ruptured plasma membranes (inset, arrow).

(D) Frequency of cells with compromised plasma membranes assessed by SYTOX orange staining of meristematic (M; control line), suspensor (S; control line), and necrotic (N; RNAi line) cells. Data represent the means ± SEM from assessing all cells in ≥10 embryogenic structures per line.

(E–G) Mitochondria in control and RNAi lines (exemplified by an ATG6 RNAi line). (E) Number of intact mitochondria per micrometer squared of the cytoplasm counted on the micrographs of meristematic, suspensor, and necrotic cells. Data represent the means ± SEM from three independent experiments, each including at least four cells per cell type. (F) Intact mitochondria (arrows) in a suspensor cell from the control line. (G) Swollen and degraded mitochondria (arrows) in a cell from an RNAi line.

(H and I) Intracellular ATP content (H) and oxygen consumption (I). Data represent the means ± SEM from three independent experiments. *, P < 0.05; **, P < 0.01 (vs. control, Dunnett’s test). FW, fresh weight.

(J and K) Cell vacuolization (J) and number of autophagosomes in the cytoplasm (K) estimated from the micrographs of meristematic (control line), suspensor (control line), and necrotic (ATG6 RNAi line) cells. Data represent the means ± SEM from three independent experiments.
Our study shows that autophagy is an integral part of the suspensor cell death in *P. abies*; however, instead of being the effector mechanism of cell death, it performs cytoprotective role and orchestrates slow kinetics and morphological features of the vacuolar cell death. This demonstrates that the suspensor cells die with autophagy but not by autophagy (Kroemer and Levine, 2008). The primary and so far unknown cell death induction signal, as well as point of no return in the cell death pathway, lies apically to both autophagy and its upstream effectors (Yu and Kroemer, 2008; Yuan and Kroemer, 2010; Shen et al., 2012). Interestingly, although autophagy-dependent vacuolar cell death in plants determines the cell fate (e.g., differentiation of the suspensor cells) and cannot be substituted by necrosis, the switch from autophagy-dependent to -independent cell death in mammals results in no major developmental defects (Golstein and Kroemer, 2005). This indicates that the role of autophagic cell death in development is not conserved throughout the evolution and can be redundant.
regulator metacaspase mcll-Pa (Fig. 5 E). A similar hierarchy was observed in PCD during Drosophila melanogaster oogenesis, in which caspases act upstream to autophagy (Hou et al., 2008). Further understanding of proteolytic processes mediated by evolutionarily related caspases and metacaspases is required to identify the molecular mechanisms activating autophagy during execution of PCD in animals and plants.

Materials and methods
Phylogenetic analysis of Atg5, Atg6, and metacaspase homologues
A search for proteins containing PF00656 (C14 peptidase), PF04106 (Apg5 domain), or PF04111 (Apg6 domain) was performed in Pfam database for species enlisted in the Table S1. An alternative search for proteins containing c00042 (CaSc superfamily) or c04402 (Apg5 superfamily) was performed using CDART (Conserved Domain Architecture Retrieval Tool) tool (Geer et al., 2002). Obtained hits were used for multiple alignments in ClustalW to confirm the presence of p20 and p10 domains in metacaspase homologues, Beclin-1 domain in Atg6 homologues, and Atg5 domain in Atg5 homologues. Estimated conserved sequence elements from the alignments were used as a query for additional search of homologues from gymnosperm species using TBLASTN tool in NCBI and ConGenIE database. To confirm the absence of additional homologous, verified sequences for each individual species were cross-referenced in proteome, transcriptome, and genome databases available at Phytozome, Ensembl, and ConGenIE. Multiple alignments of verified sequences were performed in ClustalW. Unrooted trees were constructed using the neighbor-joining method (Saitou and Nei, 1987) using the yeast homologue as an out group. Topology of each tree was confirmed by bootstrap analysis (2,000 repeats).

Cloning of hairpin and overexpression constructs
Full-length cDNA sequences of P. abies ATG5 (available from GenBank under accession no. HE793992.1) and ATG6 (GenBank accession no. HG332675) were obtained by rapid amplification of cDNA ends PCR using specific primers designed based on the comparison of full-length or partial sequences of homologues from Oryza sativa, A. thaliana, Picea glauca, and Picea sitchensis. To produce the hairpin of ATG5, the corresponding part of ATG5 cDNA was amplified using primers hpATG5-P-sense/ATG5-reverse and hpATG5-Mantisense/ATG5-reverse (the sequences of all primers are listed in Table S2) and cut with BglII-Ascl and PacI-BamHI (Thermo Fisher Scientific), respectively, producing 138–635-nucleotide triphosphate (ntp) and 138–847-ntp fragments of ATG5 coding DNA sequence (CDS). The fragments were ligated with T4 DNA ligase (Thermo Fisher Scientific) into a modified pAHc25 vector cut with PacI–Ascl. The full-length hairpin was then amplified with primers attB1-pAHC25-forward/attB2-pAHC25-reverse and recombined into pDONR/Zeo/Zeomycin (Zeocin) vector (Invitrogen) followed by LR recombination into the pMD32 vector (Clontech, USA). From this construct, the hairpin of ATG6 cDNA was amplified using primers Beclin-Ascl-Ant/Ant (Thermo Fisher Scientific) and cut with BglII-Ascl and PacI-BamHI (Thermo Fisher Scientific) into a modified pAHC25 vector cut with PacI–Ascl. The corresponding part of ATG6 CDNA was amplified using primers Beclin-Ascl-Ant/attB2-hpATG6 and attB1-hpATG6/Beclin-Ascl-Ant. Both PCR products were then cut with the Ascl enzyme (Thermo Fisher Scientific) producing 689–1,298-ntp and 826–1,298-ntp fragments of ATG6 CDS, which were then ligated into pAHc25 and cloned into the pDONR/Zeo vector followed by recombination into pMD32 vector as described for ATG5. To produce the hairpin of mchl-Pa, fragments of mchl-Pa cDNA (GenBank accession no. A5134970.2) were amplified using primers attB1-hpcmll-Pa/attB2-hpcmll-Pa and cut with EcoRI (Thermo Fisher Scientific) producing 312–1,253-ntp and 537–1,253-ntp fragments of mchl-Pa CDS, respectively. The PCR products were then ligated, and the resulting construct was recombined into pDONR/Zeo vector followed by LR recombination into pMD32 vector. Full-length CDS of ATG8 (Iccomp432277_c0_seq1; Nyström et al., 2013) was amplified using primers attB1-ATG8-Pa/attB2-ATG8-Pa, cloned into pDONR/Zeo vector and then into a modified pMD32 vector containing mRFP. The Gus gene was amplified from the pAHc25 plasmid (Christensen and Quail, 1996) using primers attB1-GUS-forward/attB2-GUS-forward and cloned into the pDONR/Zeo vector and then into the pMD32 vector. P. abies embryogenesis system
P. abies embryogenic cell lines were subcultured every 7 d by transferring ~3 ml of the cell pellet into 100 ml of fresh high-strength LP medium and incubated at 22°C in the darkness on a shaker at 120 rpm as described previously (Filippova et al., 2000; Benito et al., 2002; Minina et al., 2013a). Early embryogenesis was induced by omitting GF auxin and cytokinin from the liquid medium (~GF medium) for 7 d. To assess the efficiency of early embryogenesis, 5 ml of 7-d-old ~GF culture was stained with Evans blue, and the percentage of polarized and aberrant embryos was counted. To assess the efficiency of late embryogenesis, 7-d-old ~GF suspension cultures were plated on filter papers placed on the top of solidified maturation medium containing ABA (Filipova et al., 2000) and incubated in the darkness at 22°C. Fully developed cotyledonic embryos were scored in week 4 and 6 of ABA treatment.

Transgenic lines
Cell lines expressing mRFP-Atg5 in ATG5 RNAi, ATG6 RNAi, mcll-Pa RNAi, or control (expressing Gus) background were established by agrotransformation of P. abies wildtype embryogenic cell line O6 28 05. The constructs were transformed into the Agrobacterium tumefaciens C58c strain carrying additional virulence plasmid pTOK47. Transformed bacteria were then grown overnight in YEP (yeast extract peptone) medium supplemented with 100 mg/l rifampicin, 5 mg/l tetracycline, 100 mg/l/iter carbencillin, and 50 mg/liter kanamycin. Cells were centrifuged at 4,500 g for 5 min and re-suspended in infection buffer (10 ml M9, 10 mg MES, pH 5.5, and 130 µM acetylsyringone). The OD600 of the cultures was adjusted to 10 with the infection buffer. A. tumefaciens transformed with mRFP-Atg5 was added in a 1:1 ratio to the agrotransformations cultures transformed with Gus or RNAi constructs and incubated at room temperature for 1 h. 1 ml of the A. tumefaciens mixture was added to 5 ml of a cell pellet of 7-d-old suspension culture grown in the presence of GF. The volume of the mixture was adjusted to 10 ml with GF-containing medium (~GF medium), and acetylsyringone was added to a final concentration of 150 µM. After 4 h, the cells were plated on a filter paper placed on the top of solidified ~GF medium and incubated at room temperature in the darkness for 48 h. Then, filters were transferred on ~GF plates containing 400 mg/ml timentin and 250 µg/ml ceftaxime and incubated under the same conditions for 5 d. Subsequently, filter papers were transferred onto fresh ~GF plates containing 20 µg/ml hygromycin, 400 µg/ml timentin, and 250 µg/ml ceftaxime and subcultured onto the same medium every week. The transgenic calli were picked from the plates after 3 wk. The presence of hairpins was verified by PCR with genomic DNA. The genomic DNA was extracted using a modified hexadecyltrimethylammonium bromide method as previously described (Ciavatta et al., 2002) and used for PCR with primer atB1/PaATG5-forward, attB1/Beclin-Ascl-antisense, and attB1/hs-pcmll-Pa-EcoRI forward for ATG5 RNAi, ATG6 RNAi, and mcll-Pa RNAi lines. Absence of A. tumefaciens in the cultures was confirmed by performing PCR with Pia-forward/picA-reverse and VirG-forward/VirG-reverse primers. Gus expression was confirmed by a histochemical assay as previously described by Jefferson et al. (1987). mRFP-Atg8 expression was confirmed by detecting fluorescence using a confocal microscope (LSM 780, Carl Zeiss), with excitation of 561 nm and emission of 563–686 nm. The wild-type line and lines expressing both Gus and mRFP-Atg8 were used as controls.

Culture staining and confocal microscopy
All imaging was performed at room temperature. Samples were mounted in aqueous solutions. 5 ml of 7-d ~GF suspension cultures were incubated with 0.0025% (wt/vol) Evans blue solution for 10 min on the bench, transferred onto a 50-µm nylon mesh, and washed twice with ~GF medium. For quantification of normal and aberrant cell structures, the cultures were embedded in 6% (wt/vol) low melting temperature agarose. Phenotypes were assessed using an inverted microscope (5x Achrostopmat and 10x Plan-Neofluar objectives with numerical apertures 0.12 and 0.3, respectively; Axiowert 10; Carl Zeiss), and pictures were taken using a camera (DFC295; Leica) and LAS AF v3.2 software (Leica). For measuring the length of dying cells, an aliquot of stained embryos was transferred onto a glass slide and 10 embryogenic structures per line were imaged using z-stack and tile-scan functions of a confocal microscope (LSM 780) and a 20x Plan- Apochromat objective with numerical aperture of 0.8. The length of the cells was measured using ZEN 2011 blue software (Carl Zeiss), and ≥50 cells per structure were analyzed.

F4M-64, FDA, and DAPI triple staining was performed on 7-d-old suspension cultures grown without GF. DAPI and FDA were added to final concentration 4 and 2 µg/ml, respectively. After 15 min, the samples were washed twice with ~GF medium on a 50-µm nylon mesh. Then, 1 µM F4M-64 was added, and samples were scanned within 10 min using the sequential scanning mode of a confocal (LSM 780) microscope, with excitation of 405/488/561 nm, emission of 410–492/492–587/582–754 nm, and a 20x objective with numerical aperture of 0.8. 15–20 days after the detection of cotyledons, samples were treated with 0.5 µM ConA (Fluka) for 1.4 h. If required, samples were additionally incubated in
2 µg/ml FDA for 15 min, washed twice with fresh – GF medium, and scanned within 15 min after staining. Fluorescence was detected using the sequential scanning mode of a confocal microscope (LSM 780), with excitation of 561 nm and emission of 563–568 nm for RFP and excitation of 488 nm and emission of 490–587 nm for FDA and an objective of 40x water Plan-Apochromat with numerical aperture of 1.2. A 10-µm-thick z stack was used to produce a maximal projection image, and mRFP puncta were analyzed on a randomly selected 10µm area in ZEN 2011 (black edition). The mean intensity of FDA was assessed by selecting at least three 10-µm² areas per cell using ZEN 2012 blue edition, and autophagosomal areas were counted in the selected areas.

SYTOX orange staining was performed on 7-d-old suspension cultures grown without GF. SYTOX orange and FDA were added to final concentration 1 µM and 2 µg/ml, respectively. After 15 min, the samples were washed twice with – GF medium on a 50-µm nylon mesh, and samples were scanned within 10 min using the sequential scanning mode of a confocal microscope (LSM 780), with excitation of 488/561 nm, emission of 490–587/582–754 nm, and objectives of 10 and 20x Plan-Apochromat with numerical apertures of 0.45 and 0.8, respectively.

TEMP

Samples for TEM were fixed in 2% of paraformaldehyde, 3% glutaraldehyde, and 100 mM sodium cacodylate, pH 7.2, for 3 h at room temperature followed by overnight fixation at 4°C. Fixed samples were washed three times in 100 mM sodium cacodylate, pH 7.2, and postfixed in 1% OsO₄ aqueous solution for 1 h at room temperature. Postfixed samples were gradually dehydrated in a series of ethanol solutions from 25 to 100% and infiltrated with LR white resin as previously described in Minina et al. (2013a), the resin was cured at 65°C overnight and cut to obtain 99-nm-thick sections. Sections were examined using a transmission electron microscope (CM12; Philips), and images were recorded on film (40x9; Kodak). Films were then scanned with a resolution of 3,200 pixels/inch and processed using Photoshop CS5 extended (Adobe). Raw data were rescaled according to magnification used for each image.

ATP content and oxygen consumption measurement

7-d-old suspension cultures grown in –GF medium were pelleted on a sterile 50-µm mesh and washed three times with fresh growth medium to remove extracellular ATP. Cells were ground in liquid nitrogen, and ATP was extracted by boiling 100 mg of the powdered material in 150 µl of boiling buffer (100 mM Tris, 4 mM EDTA, and phosphatase inhibitors, pH 7.5). Debris from the samples was removed by centrifugation in a table centrifuge for 20 min at maximum speed at 4°C. Supernatants were transferred into a 96-well plate, and plate luminescence intensity was measured using a luminometer (MicroLumat LB960; Berthold). The raw data were then normalized using the reference curve as previously described in Minina et al. (2013a).

7-d-old suspension cultures incubated in –GF medium were gently pelleted by centrifugation and resuspended in 1.6 vol of fresh medium.

300 µl of the cell suspension was used to measure oxygen consumption rate (OCR) in a liquid-phase oxygraph (Oxygraph Plus System; Hansatech Instruments) in the absence (OCR_0) or presence of 10 µM carbonyl cyanide m-chlorophenyl hydrazone (OCR_1000) or 1 mM KCN (OCR_1000)

Respiratory ratio calculated as previously described in Minina et al. (2013a).

Metacaspase activity assay

Cells from 7-d-old suspension cultures were filtered and ground in liquid nitrogen. The total protein was extracted using HNCD buffer (50 mM Hepes, pH 7.5, 150 mM NaCl, 0.1% CHAPS, 5 mM DTT, 100 µM PMSF, and 10 µM peptatin). Fluorogenic substrate FESR-AMC (final concentration 1 µM) was added to 7.5 µg of total protein. Values obtained for reactions without calcium were subconverted into picomoles of AMC released per minute per milligram of total protein. The data presented in Fig. 5 A and shows no effect of the suppression of expression (for

References

Bal-Price, A., and G.C. Brown. 2000. Nitric-oxide-induced necrosis and apoptosis in PC12 cells mediated by mitochondria. J. Neurochem. 75:1455–1464. http://dx.doi.org/10.1046/j.1471-4149.2000.07514.x

Beers, E.P. 1997. Programmed cell death during plant growth and development. Cell Death Differ. 4:649–661. http://dx.doi.org/10.1038/sj.cdd.4400297
Eguchi, Y., S. Shimizu, and Y. Tsujimoto. 1997. Intracellular ATP levels determine...
Singh, H. 1978. Embryology of gymnosperms. In Handbuch der Pflanzenanatomie. Vol. 10. W. Zimmermann, Z. Carlquist, P. Ozenda, and H.D. Wulff, editors. Gebrüder Borntraeger, Berlin. 187–241.

Smertenko, A.P., P.V. Bozhkov, L.H. Filonova, S. von Arnold, and P.J. Hussey. 2003. Re-organisation of the cytoskeleton during developmental programmed cell death in Picea abies embryos. Plant J. 33:813–824. http://dx.doi.org/10.1046/j.1365-313X.2003.01670.x

Suarez, M.F., L.H. Filonova, A. Smertenko, E.I. Savenkov, D.H. Clapham, S. von Arnold, B. Zhivotovsky, and P.V. Bozhkov. 2004. Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Curr. Biol. 14:R339–R340. http://dx.doi.org/10.1016/j.cub.2004.04.019

Sundström, J.F., A. Vaculova, A.P. Smertenko, E.I. Savenkov, A. Golovko, E. Minina, B.S. Tiwari, S. Rodriguez-Nieto, A.A. Zamyatnin Jr., T. Välimäki, et al. 2009. Tudor staphylococcal nuclease is an evolutionarily conserved component of the programmed cell death degradome. Nat. Cell Biol. 11:1347–1354. http://dx.doi.org/10.1038/ncb1979

Svenning, S., T. Lamark, K. Krause, and T. Johansen. 2011. Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1. Autophagy. 7:993–1010. http://dx.doi.org/10.4161/auto.7.9.16389

Tsiatsiani, L., F. Van Breusegem, P. Gallois, A. Zavialov, E. Lam, and P.V. Bozhkov. 2011. Metacaspases. Cell Death Differ. 18:1279–1288. http://dx.doi.org/10.1038/cdd.2011.66

van Doorn, W.G., and E.J. Woltering. 2005. Many ways to exit? Cell death categories in plants. Trends Plant Sci. 10:117–122. http://dx.doi.org/10.1016/j.tplants.2005.01.006

van Doorn, W.G., E.P. Beers, J.L. Dangl, V.E. Franklin-Tong, P. Gallois, I. Hara-Nishimura, A.M. Jones, M. Kawai-Yamada, E. Lam, J. Mundy, et al. 2011. Morphological classification of plant cell deaths. Cell Death Differ. 18:1241–1246. http://dx.doi.org/10.1038/cdd.2011.36

Vestman, D., E. Larsson, D. Uddenberg, J. Cairney, D. Clapham, E. Sundberg, and S. von Arnold. 2011. Important processes during differentiation and early development of somatic embryos of Norway spruce as revealed by changes in global gene expression. Tree Genet. Genomes. 7:347–362. http://dx.doi.org/10.1007/s11295-010-0336-4

Wendrich, J.R., and D. Weijers. 2013. The Arabidopsis embryo as a miniature morphogenesis model. New Phytol. 199:14–25. http://dx.doi.org/10.1111/nph.12267

Yoshimoto, K., Y. Jakunaru, Y. Kamiya, M. Kusano, C. Consomni, R. Panstruga, Y. Ohsumi, and K. Shirasu. 2009. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell. 21:2914–2927. http://dx.doi.org/10.1105/tpc.109.068635

Yuan, J., and G. Kroemer. 2010. Alternative cell death mechanisms in development and beyond. Genes Dev. 24:2592–2602. http://dx.doi.org/10.1101/gad.1984410