Topical Review

A quantitative overview of biophysical forces impinging on neural function

Jerel K Mueller1,2 and William J Tyler1,2,3

1 Virginia Tech Carilion Research Institute, USA
2 School of Biomedical Engineering and Sciences, Virginia Tech, USA
3 Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, USA

E-mail: wtyler@vt.edu

Received 26 September 2013, revised 1 July 2014
Accepted for publication 24 July 2014
Published 26 August 2014

Abstract
The fundamentals of neuronal membrane excitability are globally described using the Hodgkin-Huxley (HH) model. The HH model, however, does not account for a number of biophysical phenomena associated with action potentials or propagating nerve impulses. Physical mechanisms underlying these processes, such as reversible heat transfer and axonal swelling, have been compartmentalized and separately investigated to reveal neuronal activity is not solely influenced by electrical or biochemical factors. Instead, mechanical forces and thermodynamics also govern neuronal excitability and signaling. To advance our understanding of neuronal function and dysfunction, compartmentalized analyses of electrical, chemical, and mechanical processes need to be revaluated and integrated into more comprehensive theories. The present perspective is intended to provide a broad overview of biophysical forces that can influence neural function, but which have been traditionally underappreciated in neuroscience. Further, several examples where mechanical forces have been shown to exert their actions on nervous system development, signaling, and plasticity are highlighted to underscore their importance in sculpting neural function. By considering the collective actions of biophysical forces influencing neuronal activity, our working models can be expanded and new paradigms can be applied to the investigation and characterization of brain function and dysfunction.

Keywords: neuron, biophysics, membrane, mechanical wave

(Some figures may appear in colour only in the online journal)

Introduction
Examination of the importance of mechanical forces on neuronal activity began gaining attention several decades ago [1] and continues to motivate questions in the modern study of brain function [2]. Outside of neuroscience, there exist well-established models describing the interplay between mechanical and electro-chemical signaling in tissues [3–7]. In fact the importance of mechanical cues on physiology has been thoroughly characterized in several organ systems. For instance mechanical forces have been broadly implicated in regulating heart function, and stretch-activated channels (SACs) are known to play a role in cardiac pacing [8–12]. The activity of SACs and mechanosensitive channels (MSC) generate ordered signals influencing the colon [13], bladder [14], and muscles [15]. In sensory neuroscience it is well established that MSCs are involved in signal transduction processes, such as those exemplified by the role of transient receptor potential (TRP) channels and hair cells in hearing [16] or free nerve endings and similar TRP channels or mechanoreceptors in touch [17].

Currently, the physiological functions of nervous systems are primarily regarded as being regulated by electrical and chemical driving forces. For instance, we have an intimate portrait of how electrical signaling along axonal fibers is converted to chemical signaling at the synapse between
It is not well understood however how other forces, such as mechanical ones, impart actions upon neural function although there are numerous cellular and molecular players known to sense and transduce mechanical signals in neurons, glial cells and brain circuits [2]. These components include a viscoelastic plasma membrane, stretch-sensitive ion channels, cytoskeletal proteins, such as actin and microtubules, spectrins, cadherins, integrins, and extracellular matrix proteins. Each of the illustrated components is known to play significant roles in regulating neuronal function. (B) An expanded illustration of the plasma membrane highlights various micromechanical forces transduced and sensed by neurons including expansion, pushing, pulling, coupling, bending, and buckling forces (shown in orange).

![Figure 1](image)

Figure 1. Cellular and molecular components that sense and transduce forces in neurons. (A) Various cellular, intracellular, and extracellular components that are affected by mechanical forces are illustrated including the plasma membrane, ion channels, actin cytoskeleton, microtubules, spectrins, cadherins, integrins, and extracellular matrix proteins. Each of the illustrated components is known to play significant roles in regulating neuronal function. (B) An expanded illustration of the plasma membrane highlights various micromechanical forces transduced and sensed by neurons including expansion, pushing, pulling, coupling, bending, and buckling forces (shown in orange).
In addition to these basic formulations, we describe models and technology for mechanically manipulating and monitoring biophysical forces in the nervous system (Figure 2). To advance our understanding of how nervous systems operate it is important to develop comprehensive models where electrical, chemical, and mechanical energies are not compartmentalized from one another, but rather cooperate in a synergistic manner to regulate neuronal excitability and signaling. By starting to consider the interplay between electrical, chemical, and mechanical energy, new paradigms for understanding and studying the biophysics of neural systems will advance our comprehension of brain function.

Electro-mechanical coupling and deformation forces

The Hodgkin-Huxley (HH) model is a bioelectric description of neuronal excitability based on conductance of ion-selective channels and a membrane capacitor, and is the currently accepted model for describing the action potential [18]. However, there are a number of observations related to the action potential that are not electrical or electro-chemical in nature. Several studies have shown the geometric dimensions of nerve fibers change in phase with action potential propagation, exerting forces normal to the membrane surface [1, 19–23]. Additionally, there is a reversible change in heat generation during action potential propagation, where heat released during the first phase of the action potential is compensated by heat uptake in the second phase [23–27]. The HH model however is based on irreversible processes and does not include thermodynamic variables required to sufficiently explain all the physically observed features of a nerve impulse. Despite this shortcoming, the equivalent RC circuit formalism of the HH model [18] has, no doubt, acquired global support through a bewildering number of independent observations over the past 60 years. While separate models accounting for the other non-electrical behaviors observed during the action potential have been proposed, there is not a broadly accepted model unifying electrical, chemical, and mechanical descriptions of the neuronal action potential. Regardless, the coupling of mechanical and electrical energy has undergone considerable research and development (for example, piezoelectricity) and its consideration as applied to the nervous system is briefly highlighted below.

The flexoelectric effect

The flexoelectric effect is a liquid crystal analogue to the piezoelectric effect in solid crystals. Flexoelectricity refers specifically to the curvature-dependent polarization of the membrane [28]. As opposed to area stretching, thickness compression and shear deformation in solid crystals, the flexoelectric effect includes the deformation of membrane curvature. This effect is manifested in liquid crystalline membrane structures, as a curvature of membrane surface leads to a splay of lipids and proteins. The molecules would otherwise be oriented parallel to each other in the normal flat state of the local membrane. Similar to piezoelectricity of solids, flexoelectricity is also manifested as a direct and a converse effect, featuring electric field induced curvature. The flexoelectric effect provides a basic mechanoelectric mechanism enabling nanometer-thick biomembranes to...
exchange responsiveness between electrical and mechanical stimuli. Consideration that cellular membranes possess mechanoelectric properties has raised concerns regarding the possible origin of inductance in early circuit models of the neuronal membrane and giant squid axons [29].

Experimentally, the generation of alternating currents by membranes subjected to oscillating gradients of hydrostatic pressure was observed in the early 1970’s [30]. This observed vibratory response was assumed to be due to changes in membrane area and thus capacitance, though a detailed explanation of the mechanisms with regard to transmembrane potential was not offered at the time. The oscillations of membrane curvature in these experiments can be credited as a displacement current due to the oscillating reversal of flexoelectric polarization of the curved membrane [28]. According to the Helmholtz equation, an electric potential difference appears across a polarized surface. For a membrane curvature that oscillates in time, and assuming spherical curvature for simplicity, the flexopolarization leads to a transmembrane ac voltage difference with first harmonic amplitude described by equation (1):

\[V_0 = \frac{f}{\varepsilon_0} \cdot 2 \varepsilon_m \]

where \(f \) is the flexoelectric coefficient, measured in coulombs, \(\varepsilon_0 \) is the absolute dielectric permittivity of free space, and \(\varepsilon_m \) is the maximal curvature. Similarly, a displacement current due to oscillating flexopolarization can also be calculated by considering a membrane capacitance described by equation (2):

\[C_0 = \frac{\varepsilon_0 S_0}{d} \]

where \(S_0 \) is the flat membrane area and \(d \) is the capacitive thickness of the membrane. The first harmonic amplitude of the membrane flexoelectric current can then be described by equation (3):

\[I_m = f \cdot C_0 \cdot 2 \varepsilon_m \cdot \omega \]

where \(\omega \) is the angular frequency of oscillations. Thus, the current through or potential across the membrane can be determined from the associated flexoelectric coefficient of the membrane and the radius of curvature. Flexoelectricity (current generation from bending) and converse flexoelectricity have been demonstrated in lipid bilayers and cell membranes [28, 31]. Flexoelectricity provides a linear relationship between membrane curvature and transmembrane voltage and is likely involved in mechanosensitivity and mechanotransduction in biological systems [31]. The direct and converse flexoelectric effects have been used to describe the transformation of mechanical into electrical energy by stereocilia and the electromotility of outer hair cell membranes for hearing [28, 31]. Many membrane functions involve the manipulation of membrane curvature (for example, exocytosis, endocytosis, and cell migration), and the prospects that flexoelectricity is intricately involved in these processes thereby relating membrane mechanics and electrodynamics is likely, but requires further inspection.

Voltage-induced changes in membrane tension

Mechanical equilibrium in membranes requires that the cellular radius depend on surface tension in order to maintain a constant pressure across the membrane, as related by the Young-Laplace equation:

\[\Delta P = \gamma \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \]

where \(\Delta P \) is the pressure difference across the membrane, \(\gamma \) is the surface tension, and \(R_1 \) and \(R_2 \) are the principal radii of curvature. Considering now electric field mediated effects on the membrane, the relation between surface tension and an applied electrostatic potential is given by the Young-Lippmann equation:

\[\gamma = \gamma^0 - \frac{CV^2}{2} \]

where \(\gamma \) is the total chemical and electrical surface tension, \(\gamma^0 \) is the surface tension at zero electric field, \(C \) is the capacitance of the interface, and \(V \) is the surface potential at the interface. Electrowetting on dielectrics is one application concerned with surface tension as related to an applied voltage [32–34]. In electrowetting, a thin insulating layer (analogous to the cell membrane) is used to separate conductive liquid (extracellular environment) from metallic electrodes with an applied voltage (voltage regulated intracellular environment) to avoid electrolysis. Modulation of the applied voltage of the metallic electrode is used to change the interfacial surface tension and contact angle of the conductive liquid with the insulating layer for applications such as electronic displays, adjustable lenses, and microfluidic transport of droplets [33]. Extend this construct however such that the insulating layer is deformable (neuronal membrane) and there is a modulation of surface tension of liquids on both sides of the insulating layer (intracellular and extracellular environments), and the premise of combining and extending equations (4) and (5) as a model for modulation of the tension of the deformable membrane becomes more readily apparent.

Such a model would require a solution to the surface potential at the interfaces based on the distribution of ions in the electric double layer, which is obtainable from the Poisson-Boltzmann equation. Assuming both positive and negative ions of valence 1 are present, the surface potential \(\psi \) near a surface with charge density \(q \) is given by equation (6) [35]:

\[\psi = \frac{2k_B T}{\varepsilon_0} \sinh^{-1} \left(\frac{q}{2 \sqrt{2nk_B T \varepsilon_0} \varepsilon_w} \right) \]

where \(k_B \) is Boltzmann’s constant, \(T \) is the absolute temperature, \(\varepsilon_0 \) electronic charge, \(\varepsilon_0 \) the permittivity of free space, \(\varepsilon_w \) the relative permittivity of water, and \(n \) ionic strength of the solution. Differences in tension between the intracellular and extracellular interfaces will create changes in membrane...
curvature, referred to earlier as converse flexoelectricity. Thus, modulation of membrane tension by transmembrane voltage in a neuron will cause movement of the membrane with magnitude and polarity governed by the neuronal membrane stiffness and surface potentials at the membrane interfaces in order to maintain pressure across the membrane. Such an effect has been observed in real-time using atomic force microscopy (AFM) and voltage clamped HEK293 cells [35]. In these studies Zhang et al (2001) observed that depolarization caused an outward movement of the membrane, with amplitude proportional to voltage. By applying equations (5) and (6) to both interfaces of the lipid bilayer, a mathematical model able to predict the membrane tension over a range of surface potentials was developed [36]. The sum of the two interface tensions yields the total tension in the membrane (γ) as described by equation (7):

$$\gamma = \gamma^0 + \gamma^s = \sqrt{\frac{kT}{\epsilon_0}} \left[\sinh^{-1}\left(\frac{\sigma_\text{con}}{2 \sqrt{2nC \epsilon_0 kT \epsilon_0}} \right) \right]^2 + \sqrt{\frac{kT}{\epsilon_0}} \left[\sinh^{-1}\left(\frac{\sigma_\text{ion} + C_m V}{2 \sqrt{2nC \epsilon_0 kT \epsilon_0}} \right) \right]^2$$

(7)

where k_B is Boltzmann’s constant, T is the absolute temperature, ϵ_0 the permittivity of free space, ϵ_r the relative permittivity of water, e_0 electronic charge, n ionic strength of the solution, σ structural charge density at the interface, C_m specific capacitance of the membrane, V voltage, γ^0 the voltage-independent portion of membrane tension, and the subscripts con and ion refer to the external and internal membrane interfaces respectively. Thus, the tension in the membrane is related to the voltage and to ionic charges across the membrane. Consequently, the change in voltage with a nerve impulse is associated with a change in membrane tension, which will result in an alteration of cell radius to keep pressure constant across the membrane. This offers a mechanism and quantitative description for the observed change in the diameter of nerve fibers during the action potential, as opposed to alternative hypothesized mechanisms such as cell swelling due to water transport [20].

Opto-electric and electro-mechanical coupling

Our early understanding of the phenomena of electrical coupling with the mechanical modification of the neuronal membrane has already begun to yield innovative methods and technologies for interfacing to the nervous system. The modulation of refractive index or thickness of the cell due to transmembrane potential dependent deformations has allowed label free-imaging of the membrane potential without the need of organic dyes or optogenetic probes which themselves likely alter membrane dynamics [37]. By measuring milliradian-scale phase shifts in the transmitted light, changes in the membrane potential of individual mammalian cells have been detected using low coherence interferometric microscopy without the use of exogenous labels [37]. Using this technique, it was also demonstrated that propagation of electrical stimuli in gap junction-coupled cells could be monitored using wide-field imaging. This technique offers the advantages of simple sample preparation, low phototoxicity, and no need for photobleaching. Previous successes in label-free imaging of electrical activity have been possible in invertebrate nerves and neurons, as mammalian cells are smaller, optically transparent, and scatter light significantly less [37]. While such approaches still require further refinement to enable a resolving power capable of imaging single action potentials, these methods have been able to experimentally confirm that the source of light phase shifts are due to potential-mediated changes in membrane tension, as opposed to swelling due to water transport or electrostriction of the cell membrane [37].

Regarding probing the mechanical response of mammalian cells to electrical excitation, atomic force microscopy (AFM) is the most commonly used tool for quantifying cellular deformation despite its invasiveness. Recently, piezoelectric nanoribbons have been developed for electromechanical biosensing and have demonstrated that cells deflect by 1 nm when 120 mV is applied to the membrane [36]. Furthermore, these nanoribbons support the model of voltage induced membrane tension discussed earlier, and support previous investigations of cellular electro-mechanics using AFM. Nanoribbons are made using microfabrication techniques, and so can be scaled more readily than AFM probes. Additionally, advances in microfabrication techniques could allow the manufacture of thinner nanoribbons to enhance their sensitivity, and facilitate the electro-mechanical observation of smaller neural structures, such as axons, dendrites, and dendritic spines. It will be interesting to see how further innovative methods and technologies develop to advance our understanding of the electro-mechanical coupling with the mechanical modification of the neuronal membrane.

Mechanically-sensitive ion channels

Mechanical forces acting on cell membranes, or through cytoskeletal filaments, can be transformed into consequences on membrane-bound and cytoskeletal-tethered protein activity (figure 3). Many ion channels exhibit spring-like structures, rendering their gating kinetics sensitive to mechanical forces. Further, the effects of pressure, tension, stretch, and stress on cell membranes are known to be capable of activating and inactivating a broad range of MSCs. From bacteria to primates, nearly all animal cells express MSCs. Further, many classic voltage-gated channels known to be involved in regulating neuronal excitability have been shown to exhibit mechanosensitive changes in gating dynamics [2].

To better understand the factors influencing ion channel activity, consider the simple case of a two state (open and closed) channel using Boltzmann statistics, where open channel probability (P_0) can be described by equation (8) as:

$$P_0 = \frac{1}{1 + e^{-\frac{\Delta G}{kT}}}$$

(8)

where k_B is the Boltzmann constant, T is the absolute
temperature, and ΔG is an intrinsic energy difference between open and closed states ($G_{\text{open}} - G_{\text{closed}}$). The ΔG dictates the likelihood of the channel occupying each state. The change in free energy can also be expressed as the sum of changes due to chemical (ΔG_{chem}), electrical (ΔG_{elec}), and mechanical (ΔG_{mech}) contributions, and channels can be responsive to a combination of these factors (polymodal). Various analytical models quantifying changes in free energy due to these different mechanisms have been detailed in literature [38–44].

Regarding mechanical stimulation, if a force f is exerted on the channel and the gating domain moves a distance b, then work is done, and the change in free energy is described by equation (9): $$\Delta G_{\text{mech force}} = -fb + \Delta u$$ (9)

where Δu is the intrinsic energy difference between states in the absence of applied force. A larger movement of the gate swing (b) requires less force (f) to obtain the same ΔG. Note that this expression is equivalent to the gating of voltage-dependent channels as described by equation (10):

$$\Delta G_{\text{elec force}} = f_{\text{elec}} \times \text{distance} + \Delta u = -Eq \times b + \Delta u \approx V_m \left(\frac{q b}{m} \right) + \Delta u$$ (10)

where E is the electric field strength, q the net charge on the gating region, and Δu is the intrinsic energy difference between states in the absence of an electric field. The electric field strength is $E = V_m/m$ where V_m is the transmembrane potential and m is the distance over which the field drops, typically approximated as the membrane thickness. Due to difficulties in determining b and m, the term qb/m is utilized, and referred to as the equivalent gating charge. The equivalent gating charge is typically 4–6 electron charges per subunit for voltage-gated channels, such that an energy difference of $1 kT$ is produced by a membrane potential of ~ 5 mV [38].

A similar expression for the free energy holds for channels influenced by tension in the membrane. Tension is the energy excess per unit area resulting from any type of stress. Most work on mechanically gated channels uses patch-recording electrodes to apply suction to a patch of membrane to generate tension. A lateral stretch of a membrane generates an expanded area, producing work, lowering the free energy difference in states, and can be expressed by equation (11) as:

$$\Delta G_{\text{mech tension}} = -\gamma \Delta a + \Delta u$$ (11)

where γ is lateral tension, Δa is the change of the in-plane area of the channel after opening, and Δu is the intrinsic energy difference between states in the absence of tension. Other forms of stress relevant to biological membranes include shear stress and bending stress, which can also contribute to changes in free energy. However, as the area elasticity modulus is much larger than the shear and bending moduli, the contributions to free energy from lateral tension will typically dominate.

The mechanosensitivity of voltage-dependent channels has been investigated for a multitude of ion channels. Mammalian cells express several families of polymodal-gated ion channels, including transient receptor potential (TRP) and potassium two-
pore domain (K_{ag}) channels, which have been shown to be activated by mechanical stimuli including membrane stretch and hydrostatic pressure (for reviews see [45–48]). The TRP channel heteromers TRPC1/C3 and TRPC1/P2 are of particular interest as they have been shown to form calcium-permeable MSCs in mammalian cells including neurons (for reviews see [47–49]). The polymodal K_{ap}2.1 channel TREK-1 is mechanosensitive and is active at rest while mediating potassium leak currents to regulate the resting membrane potential and excitability of neurons [45, 50]. Neurons are also known to express a variety of pressure-sensitive channels, which both exhibit polymodal gating mechanisms.

As briefly mentioned above, several of the voltage-gated ion channels expressed in neurons (for example, the voltage-gated sodium channels Na_{v1.2}, Na_{v1.5}, and the voltage-gated potassium channel K_{v1.1}) possess mechanosensitive properties that render their gating kinetics sensitive to transient changes in lipid bilayer tension [38, 46]. In one particular investigation, voltage-gated potassium (K_v) channels were shown to exhibit sensitivity to small physiologically relevant mechanical perturbations of the cell membrane, producing shifts in the channel activation curve and an increase in the maximum open probability [51]. A theoretical model was developed that could reproduce the shift in gating kinetics. This model was valid only by having the tension act predominantly on the pore opening transition of the channel to favor the open conformation, but not if membrane tension acted mainly on the channel’s voltage sensor conformational changes [51]. This mechanically-induced shift in activation kinetics could allow K_v channels, and likely other voltage-dependent ion channels related in function and structure such as voltage gated sodium and calcium channels, to play a role in mechanosensation and contribute to the variability of cellular responses to mechanical forces.

The heart is of particular interest for investigating the role of mechanosensitivity in voltage-gated channels, as the heart could represent a more readily accessible model of mechano-electric feedback than the nervous system. If the varying mechanical environment of the myocardium and vasculature are indeed involved in the control of cardiac rhythmicity by the routine deformations of the bilayer membrane structure, then the heart makes for a well-characterized model to study the contributions of stretch-activated currents due to mechanoelectric feedback. The heart could also serve as a possible model for investigating the role of mechanically abnormal fibers (such as in diseased heart tissue) to electrical pathologies of the heart [8]. One early attempt to model the effects of MSCs on heart function includes the incorporation of stretch-activated currents into an existing guinea pig ventricular cell model as a linear current introduced by equation (12) [9]:

$$I_{SAC} = \frac{[V - V_{rev}] \gamma \rho A}{1 + K e^{-\alpha(L-L_0)}}$$

(12)

where the stretch activated current I_{SAC} is determined by the membrane potential V, the channel’s reversal potential V_{rev}, channel conductance γ, channel density ρ, cell area A, an equilibrium constant K controlling the amount of current at L_0, sarcomere length L, and a sensitivity parameter α. By using sarcomere length as an analog of membrane tension, simulated ventricular action potentials successfully captured a number of experimentally observed behaviors. In this manner, more macroscopic characterizations of the cell and tissue can be considered to investigate their effect on stretch-activated currents, and effectively MSCs as well. By examining the stretch-activated currents in heart cells as a whole, in addition to the investigation of the mechanical sensitivity of individual ion channels, further insights into the influence of mechanical forces on the activity of ion channels can be obtained. We should strive to apply these observations and models to nervous systems since it is unimaginable how they might escape factors regulating the influence of mechanoelectric coupling on channel activity and cellular excitability.

Phospholipid membranes

The properties of the phospholipid bilayer membrane determine in part the behavior of various dynamic and relaxation processes of neuronal function. Processes influenced include the propagation and attenuation of mechanical waves, the decay of thermal shape fluctuations, and the translational and rotational diffusion of membrane components [52]. When subjected to lateral stretching or compression, bilayer membranes behave as a viscoelastic material with anisotropy, and this can serve as a mechanism to modulate the state of the membrane, and hence all associated neuronal membrane processes such as channel activity. Thermodynamic investigations of lipid phase transitions have shown that lipid density pulses (sound or mechanical waves) can be adiabatically propagated through lipid monolayers, lipid bilayers, and neuronal membranes to influence fluidity and membrane excitability [53–55] (figure 4). Interestingly, recent evidence indicates such sound wave propagation in pure lipid membranes can produce depolarizing potentials ranging from 1 to 50 mV with negligible heat generation [53], linking mechanical waves in neuronal membranes to changes in transmembrane potentials.

How the properties and changes in density of phospholipid bilayers influence the propagation of mechanical waves and neuronal processes, such as action potential initiation and propagation, is not precisely known. Anesthetics though, make for an interesting case to examine the influence of phospholipid bilayer state on neuronal function. It is known that anesthetics affect various functions of the neurons, including membrane permeability, hemolysis, and the function of ion channels and proteins. The Meyer-Overton rule for anesthetics relates that the critical dose is linearly proportional to the membrane solubility of the anesthetic molecules in the neuronal membrane, independent of the chemical ligand actions of the molecule [56]. This rules out specific binding effects based on protein models for the wide variety of anesthetics that follow the Meyer-Overton rule. For example, voltage-gated sodium and potassium channels are slightly inhibited by halogenated
alkanes and ethers, but not by xenon and nitrous oxide, despite all these anesthetics following the Meyer-Overton rule [56]. It is known however that anesthetics have a pronounced effect on the physical properties of lipid bilayers, such as their lipid melting point phase transitions. This change in physical properties of the membrane can be related to the alteration of neuronal function by anesthetics, providing a mechanism for the alterations in function dependent on their solubility in the membrane and independent of their chemical nature. Such changes in the properties of the neuron’s membrane would then influence such mechanisms as flexoelectricity, voltage induced membrane tension, the forces in cytoskeletal and extracellular matrices, ion channels, and all other mechanically-sensitive processes coupled to the membrane (figure 5).

The soliton model of action potentials

An alternative representation of the action potential recently proposed is that of a self-propagating density pulse (soliton) in a cylindrical membrane. This model is better able to explain the phenomena of fluctuations in nerve fiber thickness and reversible heat change associated with the action potential, rather than solely the electro-chemical behavior captured by the HH model [18]. The soliton model of action potentials is based on the thermodynamics and phase behavior of the lipid components of the biological membrane, which are in a fluid state at physiological temperatures. It has been shown...
that properties of the lipid membrane slightly above melting transition temperature are sufficient to allow the propagation of mechanical solitons in a cylindrical membrane [55].

The soliton model is derived from the wave equation for sound given by equation (13):

$$\frac{\partial^2 \Delta \rho}{\partial t^2} = \frac{c^2 \partial^2 \Delta \rho}{\partial x^2}$$ \hspace{1cm} (13)

where ρ is the lateral density of the nerve membrane, $\Delta \rho$ is the change in density compared to the resting membrane, t is time, and x is position. The propagation velocity c is typically considered constant when describing sound propagation in air, however, the speed of sound is a sensitive function of density and frequency close to the melting transition in membranes [57]. This nonlinearity of both the density and frequency dependence of sound velocity makes soliton propagation possible. The differential equation resulting from expansion of the wave equation is complex, but can be expressed as the following localized analytical solution [56] describing the shape of a propagating density excitation through equation (14):

$$\Delta \rho^A(z) = \frac{P}{q} \frac{1 - \left(\frac{v^2 - v_{min}^2}{c_0^2 - v_{min}^2} \right)}{1 + \left(1 + 2 \frac{v^2 - v_{min}^2}{c_0^2 - v_{min}^2} \cosh \left(\frac{c_0}{h} \sqrt{1 - \frac{v^2}{c_0^2}} \right) \right)}$$ \hspace{1cm} (14)

where $\Delta \rho^A$ is the change in lateral membrane area density, z is the position along the axon, the parameters p and q describe the dependence of the sound velocity on density, v is the propagation velocity, v_{min} is the minimum velocity allowed for soliton propagation, c_0 is the velocity of small amplitude sound, and h is a parameter describing the frequency dependence of the speed of sound (dispersion). Area density is a two dimensional property and is calculated as the mass per unit area. As required by the equation, and observed experimentally [55], the soliton profile has a maximum $[\partial(\Delta \rho^A)/\partial z = 0]$ about which it is symmetric.

Of particular interest is the comparison of the energy carried by solitons with the electrostatic energy associated with the conventional modeling of pulse propagation in a nerve. If the empirically observed energy is greater than the electrostatic energy, then the conventional HH mechanism for pulse propagation is insufficient. This inequality has in fact been shown, as the electrical energy released and reabsorbed from a membrane capacitance is unable to account for more than half of observed temperature changes during an action potential [58]. The associated energy of a propagating soliton will have potential and kinetic energy contributions, of which, using a Lagrangian formalism, the energy density is given by equation (15) [55]:

$$e_{el} = \frac{c_0^2}{\rho_0^2} (\Delta \rho^A)^2 + \frac{p}{3\rho_0^4} (\Delta \rho^A)^3 + \frac{q}{6\rho_0^6} (\Delta \rho^A)^4$$ \hspace{1cm} (15)

Assuming a maximum voltage change at the peak of the soliton, V_0, and that the capacitive energy of a membrane is due to compression and the accompanying voltage change, the capacitive energy density is given by equation (16) [55]:

$$e_{cap} = \frac{1}{2} C \cdot \left(\frac{V_0 \Delta \rho^A}{\Delta \rho^A_{max}} \right)^2$$ \hspace{1cm} (16)

where $\Delta \rho^A_{max}$ is the maximum amplitude of the change in lateral membrane area density and C is the capacitance of the membrane. Comparisons of the estimates of energy using these equations found that the electrostatic energy density was more than one order of magnitude smaller than the energy of the corresponding soliton [55].

Clearly, the HH model alone cannot capture a number of behaviors of the propagating nerve pulse, such as the reversible transfer of heat and mechanical changes that are captured in the soliton model of propagating activity. However, proteins do not function as active components or channels in the model of soliton propagation through the phospholipid bilayer, but rather tune the thermodynamics of the membrane. Whether initiation of the mechanical soliton is used for communication is therefore left unanswered, and the numerous investigations supporting the role of proteins in the electrical propagation of nervous signals are left neglected.

Also, the collision of action potentials is known to block the propagation of nervous signals. The collision of solitons according to the above equations based on adiabatic and reversible physics though, allows pulses to pass through each other with minimal loss of energy [59]. The inclusion of proteins for electro-mechanical coupling may resolve these issues, however the combination of the soliton and HH models, which are based in separate mechanisms, is not straightforward.

Hypothesis of neuro-mechanical signaling

Beyond the role of anesthetics to change the mechanical properties of the lipid bilayer, and hence neuronal function, it has recently been proposed that propagating density pulses in the neuronal membrane may serve as the actual signal that modulates the function of membrane-bound enzymes, operating as an alternative mechanism for signaling and nerve pulse propagation [60–62]. In this hypothesis, the activity or conformational fluctuations of one protein initiates a local mechanical disturbance, which propagates along the lipid interface to another protein, transiently changing the thermodynamic state of the second protein’s environment and influencing its activity (figure 5(B)). Communication of this form would not require energy since mechanical pulse propagation is adiabatic and enzymes work reversibly. Additionally, the dielectrical properties of the interface would lead to a propagating voltage pulse coupled to these density oscillations, as discussed via earlier electro-mechanical coupling mechanisms.

Dynamic studies of the biological lipid interface using thermodynamic concepts rather than the currently prevailing electrical theory were used to explore this hypothesis. By
monitoring 2D pressure pulses in lipid monolayers, the degree of excitability of the interface was found to depend on its thermodynamic state. Close to the maximum of compressibility of the interface, the pulse signal becomes very weak, illustrating that the thermodynamic state of the interface influences propagation speed and strength [61, 63]. Furthermore, by investigating different interfaces at different temperatures, correlations of the optical and mechanical states of lipid monolayers were found to be a property of the thermodynamic state, and not due to the nature of the molecules investigated [62]. This coupling between fluorescent intensity and pressure pulses was clearly resolved when the system was excited within or nearby the transition region of the membrane, as was the condition for self-propagating solitons discussed earlier.

To investigate the phenomena in biological systems, the temperature dependence of an excitable medium’s mechanical material properties were derived and also correlated with temperature-dependent relaxation of pulse propagation in blackworms, nerves, and gels [60]. It is typically assumed that temperature sensitivity of the duration of refractory period is determined by the timescales required by metabolic processes to reestablish resting ion gradients and channel kinetics. However, using solely the framework of thermodynamic theory and no assumptions about metabolic reactions or equilibration processes, the predictions of relaxation times based solely on thermodynamic theory compared well with experimental data. The velocity-temperature relationship for vessel pulsations followed a conserved pattern for pulses in excitable systems: linear increase of velocity with increasing temperature ultimately interrupted by a heat block. It was concluded that conservation of temperature dependence of pulse propagation velocity is likely a consequence of some well conserved physical mechanism, such as mechanical state, and not dependent on metabolic reactions [60]. Thus, oscillations in the thermodynamic state of the lipid interface is sufficient to propagate density pulses, and as required thermodynamically, any proteins or enzymes located in the path of such a density pulse will exhibit an altered kinetic behavior. These observations and conclusions form the basis of the proposed hypothesis of mechanical signaling along the neuronal membrane.

Mechanobiology is a rapidly growing field investigating the role of mechanical forces in cellular biology and physiology [3]. One common approach to mechanobiology involves the application of analysis to the cytoskeletal and extracellular matrices of a cell and determining its associated effects on cellular and molecular processes. One such approach is based on the concept of tensegrity architecture as a simple mechanical model of cell structure to relate cell shape, movement, and cytoskeletal mechanics, as well as the cellular response to mechanical forces [64]. Another approach examines interactions between microtubules and actin as basic phenomena behind many fundamental processes, classified as either regulatory or structural interactions [65]. Regulatory interactions are those where microtubule and actin systems indirectly control each other through effects on signaling cascades, such as by the Rho family of small GTPases [65]. Structural interactions are those where microtubules and actin are physically linked, such as by a static connection with a binding protein, or a dynamic interaction with a microtubule- or actin-based motor protein [65]. The application of mechanobiology to neuronal function represents an actively growing field of interest [2].

The structural interactions of neurons lend well to mechano-biological analysis of the forces in the structural matrices. Intracellular forces may be generated by the polymerization and depolymerization of cytoskeletal elements, such as actin filaments. Actin forms soft macromolecular networks of entangled and cross-linked fibers to establish part of the neuronal cytoskeleton. The polymerization and depolymerization of actin filaments and microtubules generates forces that are important to many neuronal processes, such as motility [66], to counteract plasma membrane tension and deformation changes during clathrin-mediated endocytosis [67], and to act as a molecular tension sensor regulating numerous aspects of intracellular homeostasis and function [68]. Actin is in fact one of the best-recognized cytoskeletal contributors to synaptic function. It has been well established that the cytomechanics of axonal growth cone navigation and branching are largely mediated by actin-generated forces and exemplify some of the most important path-finding events occurring in the development of the nervous system [69]. The actin motor proteins myosin are capable of generating forces sufficient to contract muscle tissue and are known to participate in molecular cargo shuffling during motility and growth [70]. Recent measurements of growth cone mechanical properties have shown growth cones have a low elastic modulus (E = 106 ± 21 N m$^{-2}$) and that considering its retrograde flow, actin may generate internal stress in growth cones on the order of 30 pN μm$^{-2}$ [71]. These results indicate growth cones are soft and weak force generators, rendering them sensitive to the mechanical properties of their environment [71]. Thus, the mechanical forces of structural elements, such as actin, and the mechanical environment have broad implications on neural function.

Mechanical forces and neural development

During development, the mechanical properties of nervous tissue are prone to alteration, and neurons encounter different mechanical cues depending on their location and developmental stage. Indeed, the elasticity and mechanical properties of the brain have been shown to change across different stages of development [72–74]. Thus, neurons and growth cones are likely to encounter environments with differing mechanical properties as they migrate in situ. Growth cones are highly motile structures that are the leading tips of developing axons and dendrites, which generate the forces during neuronal growth through polymerization of actin at their leading edge. In vitro, many neuronal cell types adapt their morphology to the stiffness of their substrate, and as
such neuronal growth is likely a mechanical process influenced by the interaction with the mechanical environment in vivo as well. Even between neuronal types, dorsal root ganglion neuron growth cones have been shown to generate significantly greater traction forces compared with hippocampal neuron growth cones, as determined using traction force microscopy [75]. Moreover these neuronal types exhibited differential cytoskeletal adaption to substrate stiffness [75]. Such differences in cytoskeletal mechanics pose the possibility that different forces generated by actin may serve unique mechanical scripts for synapse formation, maturation, and operation in neurons and between their types. Perhaps a unique mechanical scripts for synapse formation, maturation, as well. Applied tension determined axonal specificity in undifferentiated minor processes of cultured hippocampal neurons, and could even induce a second axon in an already polarized neuron [81]. Furthermore, once a neurite has connected to its target, tension promotes its stabilization and at the same time causes retraction or elimination of collateral neurites [82]. Supported by these aforementioned primary observations, neuroscience should focus efforts on characterizing changes in growth cone traction force, elasticity, or viscosity across different anatomical and cellular regions, levels of activity, and stages of development.

The critical importance of proper force distributions during the development of the central nervous system can be underscored by the disorders resultant from abnormalities in cortical folding. The folding of the gyrencephalic cortex is a major mechanical event, and abnormalities in folding have been identified in neurological disorders including autism and schizophrenia [83, 84]. The two major theories currently considered to explain cortical folding are differential expansion [85] and a tension based theory [86]. Differential expansion proposes that the tangential expansion of cortical regions is the driving force of cortical folding, propelled by the local proliferation of cells and changes in their sizes and connections [85]. The tension based theory hypothesizes that tension along axons in the white matter drives the folding of cortex [86]. However, micro-dissection arrays have shown that while axons are under significant tension, the patterns of tissue stress are not entirely consistent with the tension based hypothesis. Tension directed across developing gyri by axons was not found in developing ferret brains [87], and observed relaxation of tissue after cutting was suggested to be due to enhanced growth in the gray matter compared to white matter in an adult mouse brain [88]. Overall, there is currently no theory that can explain all observations related to cortical folding, and proof for either differential expansion or the tension hypothesis is still incomplete.

Mechanical forces influence neuronal signaling and plasticity

Mechanical tension along axons contributes not only to neuronal network development, but also to regulation of neural function, and the evidence of the influence of mechanical forces on neural function is significant. It has recently been shown that mechanical tension within axons plays an essential role in the accumulation of proteins at presynaptic terminals; biochemical signaling and recognition of synaptic partners is not sufficient [89]. Presynaptic vesicle clustering at neuromuscular synapses vanished upon severing the axon from the cell body and could be restored by applying tension to the severed end, and further stretching of intact axons could even increase vesicle clustering [89]. Furthermore, rest tensions of approximately 1 nN in axons were restored over approximately 15 min when perturbed mechanically, implicating mechanical tension as a modulation signal of vesicle accumulation and synaptic plasticity [89]. Axonal tension modulates local and global vesicle dynamics [90], and increased axonal tension from the resting state may induce further actin polymerization and increased clustering via mechanical trapping or interactions between F-actin and vesicles [89].

Regarding the function of neurites in neural networks, actin in dendritic spines has been shown to regulate synapse formation and spine growth [91], activity-dependent spine motility [92–94], and plasticity [95–97]. In gelsolin knockout mice, reduced actin depolymerization has been shown to enhance NMDA-mediated and voltage-gated calcium activity in hippocampal neurons [98]. However, the contribution of mechanical force changes to any of the above observations is not clearly understood. The viscoelasticity of dendritic spines was found to be critical to their function through AFM elasticity mapping and dynamic indentation methods [99]. Through this mechanical characterization, the activity-dependent structural plasticity, metastability, and congestion in the cytoplasm of spines are all gauged by merely a few
physically measurable parameters. The degree of which spines are able to remodel and retain stability is determined in large part by viscosity; where soft, malleable spines have properties likely associated with morphological plasticity for learning, and the properties of rigid, stable spines are likely associated with memory retention [99]. Perhaps the stabilization or destabilization of actomyosin networks produces direct mechanical consequences on synaptic activity by increasing or decreasing plasma membrane tension to coordinate the bending or compression of presynaptic compartments and dendritic spines. Given the dynamic nature of the actin cytoskeleton in the regulation of membrane tension and channel activity, the aforementioned idea seems natural for expanded investigations. Additionally, the contribution of the various other elements composing the cytoskeletal and extracellular matrices besides actin as discussed here can analogously be investigated.

Mechanical interfacing to nervous systems

The modulation and monitoring of the nervous system is pertinent to the treatment of neurologic and psychiatric diseases, as well as to the scientific investigation of the neural mechanisms of cognitive, sensory, and motor functions. Conventionally, interfacing with the nervous system has been conducted using electrical and chemical means, such as micro-dialysis and deep-brain stimulation. Recently, the development of devices utilizing mechanical energy to interact with the nervous system has received considerable attention. These devices include ultrasound for noninvasive imaging of brain function [100], noninvasive neural stimulation using ultrasound [101–103], and magnetic resonance elastography [104] or ultrasonic elastography [105, 106] for noninvasive palpitation and mechanical characterization of the brain.

Ultrasound imaging uses the amplitude of backscattered ultrasonic echoes to generate a tomographic image in real time. Due to the prevalent medical use of ultrasound as a diagnostic tool, the biological effects of ultrasound have been well studied and reviewed to ensure human patient safety [107]. Ultrasound provides good spatio-temporal resolution in comparison to functional magnetic resonance imaging, which has excellent depth penetration but lacks good spatial and temporal resolution. Good spatial and temporal resolution is critical to imaging complex transient events such as epileptic seizures, and functional ultrasound has recently been developed to allow high spatio-temporal resolution imaging of whole brain vasculature dynamics in response to brain activation [100]. Using this technique, task-evoked brain activation and the propagation of epileptiform seizures were observed through a cranial window in rats [100].

Besides its use for diagnostic imaging, ultrasound at low intensity is able to nondestructively excite nervous tissue [101–103]. The mechanisms behind ultrasound stimulation however are not well established. There are two classes of mechanisms primarily considered: thermal and mechanical. Ultrasound can heat tissue, analogous to transcranial high-intensity focused ultrasound ablation [108–110], and temperature sensitive ion channels can be activated through tissue heating. However, negligible temperature increases have been measured during pulsed ultrasound stimulation protocols [101, 111–113]. The premise behind the hypothesized mechanical mechanisms of ultrasound is that deformation of the cell membrane, or the proteins embedded therein, could affect ion channel kinetics and/or membrane capacitance to induce transmembrane currents to initiate action potential discharge [114, 115]. Recently, intramembrane cavitation has been proposed as a mechanism for the effects on nervous tissue by ultrasound [116, 117]. Using models of the cellular membrane, the mechanical energy from ultrasound would be absorbed and transformed by the membrane into expansions and contractions of the space between bilayer membrane leaflets [116]. Linking this model with electro-deformation, ultrasound led to action potential excitation via currents induced by membrane capacitance changes within the computational model [117]. This model is referred to as the bilayer sonophone, and offers explanations on the requirement for long ultrasonic stimulation pulses and other experimentally observed phenomena.

Magnetic resonance imaging is the most common imaging modality for investigating central neurological disorders as it is noninvasive and provides a number of contrast mechanisms. Magnetic resonance elastography determines the shear modulus of tissues in vivo through the application of mechanical shear waves and the use of a phase sensitive magnetic resonance imaging sequence to produce a map (elastogram) of the shear modulus of the tissue [118]. Additionally, ultrasound has also been used as the source of mechanical waves for producing elastograms [105, 106]. The elastogram is used for clinical diagnostics, as a change in cellular elasticity is associated with many diseases [119], due to the altering of the microstructural environment of the central nervous system through neuroinflammation, neurodegeneration, and disruption of the glial matrix. This is analogous to the palpitation of tissue to identify lesions based on their differential stiffness to surrounding tissues such as breast tumors. Application of elastography to the brain may have useful applications for characterizing brain disease based on the mechanical properties of the tissue. The mechanical properties of the human brain have shown a high sensitivity to neurodegeneration in initial investigations of Alzheimer’s disease, multiple sclerosis, normal-pressure hydrocephalus, and cancer [118]. However, elastography of the human brain has yet to gain traction in clinical applications as mechanical properties are largely reported as global averages rather than local values. Recent work on brain elastography has been focused on generating high-resolution, reliable, and repeatable estimates of local mechanical properties in the human brain. The mechanical properties of the corpus callosum and corona radiata were recently measured in healthy individuals using high-resolution magnetic resonance elastography and atlas-based segmentation [120]. Both structures were found to be stiffer than the overall white matter, and demonstrated the feasibility of quantifying the mechanical properties of specific structures in white matter architecture for the assessment of
the localized effects of disease. The ability to reliably estimate local mechanical properties noninvasively represents a possible revolution in the clinical assessment of neurodegeneration of the human brain.

Conclusions

As discussed throughout this perspective, the HH model alone does not capture a number of biophysical phenomena associated with propagating nerve impulses or action potentials. With respect to physical forces, the significance of dynamic mechanical changes occurring in membranes during action potential propagation remains poorly understood [1, 2]. However, the mechanisms underlying these associated processes of the action potential have been investigated and modeled separately. Based on these observations we should consider the importance of electro-mechanical coupling on neuronal excitability. Mechanical forces acting on neuronal membranes or through cytoskeletal filaments can also be transformed into consequences on membrane bound and cytoskeletal tethered protein activity. Membrane bound protein activity is influenced by the properties of the phospholipid bilayer, and how the properties and changes in density of phospholipid bilayers influence the propagation of mechanical waves and neuronal processes, such as action potential initiation and propagation, is not precisely known. It has recently been proposed that propagating density pulses in the membrane may also serve as the signal that modulates the function of membrane bound enzymes, operating as an alternative mechanism for signaling and nerve pulse propagation.

The recent development of methods and devices utilizing mechanical energy to interact with and observe the nervous system (such as ultrasound for neural stimulation, magnetic resonance elastography for noninvasive palpitation of the brain, and label free imaging of membrane potential) represent initial technological advances that capitalize on the coupling between neuronal function and mechanical forces. The extent to which cellular-mechanical dynamics influence neuronal activity, and effectually the interfacing to the nervous system using mechanical forces, remains largely unexplored. To advance neuroscience and our understanding of the complex nervous system, the compartmentalization of analyses and processes due to electrical, chemical, or mechanical energies in system characterization and manipulation needs to be stepped away from. While numerous mechanical events have been observed and associated with neuronal activity, it has not been until very recently that technology has started to be adapted to capitalize on these mechanical events to allow the observation, and even modulation, of nervous tissue. By starting to consider the interplay between electrical, chemical, thermal and mechanical energy, rather than separately compartmentalizing them, fresh insights into nervous system function and dysfunction will likely evolve. We are certainly curious to learn how integrated models spanning neuroscience, engineering, and physics will shape our thinking about neural function 20 years from now.

References

[1] Lundstrom J 1974 Mechanical wave propagation on nerve axons J. Theor. Biol. 45 487–99
[2] Tyler W J 2012 The mechanobiology of brain function Nat. Rev. Neurosci. 13 867–78
[3] Eyckmans J et al 2011 A hitchhiker’s guide to mechanobiology Dev. Cell 21 35–47
[4] Hamill O P and Martinac B 2001 Molecular basis of mechanotransduction in living cells Physiol. Rev. 81 685–740
[5] Sachs F 2010 Stretch-activated ion channels: what are they? Physiology (Bethesda) 25 50–6
[6] Ursell T et al 2007 Cooperative gating and spatial organization of membrane proteins through elastic interactions Plos Comput. Biol. 3 803–12
[7] Ursell T et al 2007 The role of lipid bilayer mechanics in mechanosensation arXiv:q-bio/0702030
[8] Morris C E 2011 Voltage-gated channel mechanosensitivity: fact or friction? Front Physiol. 2 25
[9] Hu H and Sachs F 1997 Stretch-activated ion channels in the heart J. Mol. Cell Cardiol. 29 1511–23
[10] Ward M L et al 2008 Stretch-activated channels in the heart: contributions to length-dependence and to cardiomyopathy Prog. Biophys. Mol. Biol. 97 232–49
[11] Youm J B et al 2005 Role of stretch-activated channels in the heart: action potential and Ca²⁺ transients Mechanosensitivity in Cells and Tissues ed A Kamkin and I Kiseleva (Moscow: Academia)
[12] McCain M L and Parker K K 2011 Mechanotransduction in living cells: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function Pflugers Arch.—European J. Physiol. 462 89–104
[13] Su X, Wachtel R E and Gebhart G F 2000 Mechanosensitive potassium channels in rat colon sensory neurons J. Neurophysiol. 84 836–43
[14] Wellner M C and Isenberg G 1993 Properties of stretch-activated channels in myocytes from the guinea-pig urinary bladder J. Physiol. 466 213–27
[15] Simon A et al 2010 Amiloride-sensitive channels are a major contributor to mechanotransduction in mammalian muscle spindles J. Physiol. 588 171–85
[16] Ding P J, Salvi R J and Sachs F 1991 Stretch-activated ion channels in guinea pig outer hair cells Hear. Res. 56 19–28
[17] Welsh M J, Price M P and Xie J 2002 Biochemical basis of touch perception: mechanosensory function of degenerin/epithelial Na⁺ channels J. Biol. Chem. 277 2369–72
[18] Hodgkin A L and Huxley A F 1952 A quantitative description of membrane current and its application to conduction and excitation in nerve J. Physiol. 117 500–44
[19] Iwasa K and Tasaki I 1980 Mechanical changes in squid giant-axons associated with production of action-potentials Biochem. Biophys. Res. Commun. 95 1328–31
[20] Kim G H et al 2007 A mechanical spike accompanies the action potential in mammalian nerve terminals Biophys. J. 92 3122–9
[21] Tasaki I, Iwasa K and Gibbons R C 1980 Mechanical changes in crab nerve-fibers during action-potentials Japanese J. Physiol. 30 897–905
[22] Tasaki I and Byrne P M 1990 Volume expansion of nonmyelinated nerve-fibers during impulse conduction Biophys. J. 57 633–5
[23] Tasaki I, Kusano K and Byrne P M 1989 Rapid mechanical and thermal-changes in the garfish olfactory nerve associated with a propagated impulse Biophys. J. 55 1033–40
[24] Abbott B C, Hill A V and Howarth J V 1958 The positive and negative heat production associated with a nerve impulse Proc. R. Soc. Lond. B. Biol. Sci. 148 149–87

Phys. Biol. 11 (2014) 051001 J K Mueller and W J Tyler
[76] Elkin B S et al 2007 Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation J. Neurotrauma 24 812–22

[77] Kostic A, Sap J and Sheetz M P 2007 RPTPalpha is required for rigidity-dependent inhibition of extension and differentiation of hippocampal neurons J. Cell Sci. 120 3895–904

[78] Flanagan L A et al 2002 Neurite branching on deformable substrates Neuroreport 13 2411–5

[79] Roth S et al 2012 How morphological constraints affect axonal polarity in mouse neurons Plos One 7 e35323

[80] Ang E S B C et al 2006 Prenatal exposure to ultrasound waves impacts neural migration in mice Proc. Natl. Acad. Sci. USA 103 12903–10

[81] Lamoureux P et al 2002 Mechanical tension can specify axonal fate in hippocampal neurons J. Cell Biol. 159 499–508

[82] Anava S et al 2009 The regulative role of neurite mechanical tension in network development Biophys. J. 96 1661–70

[83] Nordahl C W et al 2007 Cortical folding abnormalities in autism revealed by surface-based morphometry J. Neurosci. 27 11725–35

[84] White T and Hilgetag C C 2011 Gyri and global vesicle dynamics in neurons Proc Natl Acad Sci USA 108 12903–10

[85] Lamoureux P et al 2002 Mechanical tension can specify axonal fate in hippocampal neurons J. Cell Biol. 159 499–508

[86] VanEssen D C 1997 A tension-based theory of morphogenesis and compact wiring in the central nervous system Nature 385 313–8

[87] Xu G et al 2010 Axons pull on the brain, but tension does not drive cortical folding Trans. Asme, J. Biomech. Eng. 132 071013

[88] Xu G, Bayly P V and Taber L A 2009 Residual stress in the adult mouse brain Biomech. Modeling in Mechanobiol. 8 253–62

[89] Steichen S et al 2009 Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals Proc. Natl. Acad. Sci. USA 106 12611–6

[90] Ahmed W W et al 2012 Mechanical tension modulates local and global vesicle dynamics in neurons Cell. Mol Bioeng. 5 155–64

[91] Zito K et al 2004 Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton Neuron 44 321–34

[92] Fischer M et al 1998 Rapid actin-based plasticity in dendritic spines Neuron 20 847–54

[93] Halpain S, Hipolito A and Saffer L 1998 Regulation of f-actin stability in dendritic spines by glutamate receptors and calcineurin J. Neurosci. 18 9835–44

[94] Star E N, K Witkowski D J and Murthy V N 2002 Rapid turnover of actin in dendritic spines and its regulation by activity Nat. Neurosci. 5 239–46

[95] Kim C H and Lisman J E 1999 A role of actin filament in synaptic transmission and long-term potentiation J. Neurosci. 19 4314–24

[96] Krucker T, Siggins G R and Halpain S 2000 Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus Proc. Natl. Acad. Sci USA 97 6856–61

[97] Matus A 2000 Actin-based plasticity in dendritic spines Science 290 754–8

[98] Funukawa K et al 1997 The actin-severing protein gelsolin modulates calcium channel and NMDA receptor activities and vulnerability to excitotoxicity in hippocampal neurons J. Neurosci. 17 8178–86

[99] Smith B A et al 2007 Dendritic spine viscoelasticity and soft-glassy nature: balancing dynamic remodeling with structural stability Biophys. J. 92 1419–30

[100] Mace E et al 2011 Functional ultrasound imaging of the brain Nat. Methods 8 662–U85

[101] Tufail Y et al 2010 Transcranial pulsed ultrasound stimulates intact brain circuits Neuron 66 681–94

[102] Legon W et al 2014 Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans Nat. Neurosci. 17 322–9

[103] Gavrilov L R and Tsirulnikov E M 2012 Focused ultrasound as a tool to input sensory information to humans (review) Acoust. Phys. 58 1–21

[104] Kruse S A et al 2008 Magnetic resonance elastography of the brain Neuroimage 39 231–7

[105] Chakraborty A, Uff C and Harkness W 2011 Intraoperative ultrasound elastography is superior to mri at identifying epileptogenic areas Epilepsia 52 196–7

[106] Xu Z et al 2013 Evidence of changes in brain tissue stiffness after ischemic stroke derived from ultrasound-based elastography J. Ultrasound Med. 32 485–94

[107] Health Protection Agency 2010 Advisory Group on Non-Ionising, R. Health Effects of Exposure to Ultrasound and Infrasound: Report of the Independent Advisory Group on Non-ionising Radiation. Documents of the Health Protection Agency. Radiation, chemical and environmental hazards; RCE-14.

[108] Martin E et al 2009 High-intensity focused ultrasound for noninvasive functional neurosurgery Ann. Neurol. 66 858–61

[109] McDannold N et al 2010 Transcranial magnetic resonance imaging-guided focused ultrasound surgery of brain tumors: initial findings in 3 patients Neurosurgery 66 323–32

[110] Elias W J et al 2013 A pilot study of focused ultrasound thalamotomy for essential tremor N. Engl. J. Med. 369 640–8

[111] Yoo S S et al 2011 Focused ultrasound modulates region-specific brain activity Neuroimage 56 1267–75

[112] Menz M D et al 2013 Precise neural stimulation in the retina using focused ultrasound J. Neurosci. 33 4550–60

[113] King R L et al 2013 Effective parameters for ultrasound-induced in vivo neurostimulation Ultrasound Med. Biol. 39 312–31

[114] Johns L D 2002 Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis Journal of Athletic Training 37 293–9

[115] Tyler W J 2011 Noninvasive neuromodulation with ultrasound? A continuum mechanics hypothesis Neuroscientist 17 25–36

[116] Krasovitski B et al 2011 Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects Proc. Natl Acad. Sci. USA 108 3258–63

[117] Plaksin M, Shoham S and Kimmel E 2013 Intramembrane cavitation as a predictive bio-piezoelectric mechanism for ultrasonic brain stimulation Phys. Rev. X 4 011004

[118] Glaser K J, Manduca A and Ehman R L 2012 Review of Mr elastography applications and recent developments J. Magn. Reson. Imaging 36 757–74

[119] Mariappan Y K, Glaser K J and Ehman R L 2010 Magnetic resonance elastography: a review Clin. Anat. 23 497–511

[120] Johnson C L et al 2013 Local mechanical properties of white matter structures in the human brain Neuroimage 79 145–52