The prevalence of ACPA is lower in rheumatoid arthritis patients with an older age of onset but the composition of the ACPA response appears identical

Debbie M. Boeters, Lukas Mangnus, Sofia Ajeganova, Elisabet Lindqvist, Björn Svensson, René E. M. Toes, Leendert A. Trouw, Tom W. J. Huizinga, Francis Berenbaum, Jacques Morel, et al.

To cite this version:
Debbie M. Boeters, Lukas Mangnus, Sofia Ajeganova, Elisabet Lindqvist, Björn Svensson, et al.. The prevalence of ACPA is lower in rheumatoid arthritis patients with an older age of onset but the composition of the ACPA response appears identical. Arthritis Research and Therapy, BioMed Central, 2017, 19, pp.115. 10.1186/s13075-017-1324-y. hal-01546916

HAL Id: hal-01546916
https://hal.sorbonne-universite.fr/hal-01546916
Submitted on 26 Jun 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
The prevalence of ACPA is lower in rheumatoid arthritis patients with an older age of onset but the composition of the ACPA response appears identical

Debbie M. Boeters1, Lukas Mangnus1, Sofia Ajeganova1,2, Elisabet Lindqvist3, Björn Svensson4, René E. M. Toes1, Leendert A. Trouw1, Tom W. J. Huizinga1, Francis Berenbaum5, Jacques Morel6, Solbritt Rantapää-Dahlqvist7 and Annette H. M. van der Helm-van Mil1

Abstract

Background: Rheumatoid arthritis (RA) consists of two syndromes, one autoantibody-positive and one autoantibody-negative. Existing data on the relation between age of onset and prevalence of autoantibodies were conflicting. Therefore this multicohort study assessed the age of onset in relation to the presence of autoantibodies. The association with characteristics of the anti-citrullinated protein antibodies (ACPA) response was also explored.

Methods: The 1987 criteria-positive RA patients included in the Leiden EAC, BARFOT, ESPOIR, Umeå and Lund cohorts (n = 3321) were studied at presentation for age of onset and the presence of ACPA, rheumatoid factor (RF) and anti-carbamylated protein (anti-CarP) antibodies. Logistic regression analyses were performed; effect sizes were summarized in inverse-weighted meta-analyses. Within ACPA-positive RA, ACPA level was studied in all cohorts; ACPA isotypes, ACPA fine specificity and ACPA avidity index and clinical characteristics were studied in the Leiden EAC.

Results: From the age of 50 onward, the proportion of ACPA-negative RA patients increased with age in the five cohorts. Similar observations were made for RF and anti-CarP. The composition of the ACPA response did not change with increasing age of onset with respect to titer, isotype distribution, fine specificity and avidity index. With increasing age of onset, RA patients smoked less often, had higher acute phase reactants and more often had a sub(acute) symptom onset.

Conclusions: Data of five cohorts revealed that with older age of onset ACPA-negative RA is more frequent than ACPA-positive RA, while characteristics of ACPA-positive RA as judged by the composition of the ACPA response appeared not age dependent. Further biologic studies are needed to characterize the pathogenesis of ACPA-negative polyarthritis at older age and to promote personalized treatment decisions in ACPA-negative patients in daily practice.

Keywords: Rheumatoid arthritis, Age, Autoantibodies, ACPA characteristics

Background

Rheumatoid arthritis (RA) is a syndrome for which characterization is based on a combination of clinical features. Symmetric polyarthritis of hands and feet is a key clinical feature and is captured in the 1987 classification criteria [1]. It is presumed that different biologic pathways can end up in the same clinical phenotype of RA. To arrive at personalized medicine, it is relevant to identify such different groups of patients. The most commonly used division is that into anti-citrullinated protein antibodies (ACPA)-positive RA and ACPA-negative RA, and both subgroups have differences in genetic and environmental risk factors [2, 3].

In addition to ACPA, there is some evidence suggesting that there are different characteristics of RA patients presenting at an older age. Several studies have shown that RA patients with disease onset at older age have a more equal gender distribution, more frequently an acute onset...
whether age at onset was associated with characteristics of
onset as well as on the mentioned considerations, this study
had three aims. Firstly, to determine the association between
age of RA onset and the distribution of ACPA-positive
RA versus ACPA-negative RA remains to be established.

If there is an association between age of onset and the
presence of autoantibodies, this could be explained by
different scenarios. There could be an age-related effect on
the ACPA response itself. Then, in addition to the presence
of ACPA, characteristics of the ACPA response could also
vary with age. This could be a conceivable explanation
because in the general population the immune system
changes with ageing. For instance, an increase in proinflam-
matory cytokines, a more active innate immunity and a
decline in the function of the adaptive immune system has
been observed with older age [19]. T-cell senescence has
been described and may mediate the development of RA
[20]. With regard to B cells and antibodies, titers of
antibodies against nearly all vaccines, including tetanus,
decrease with age [21]. Furthermore there is a defect in
isotype switching and limited production of high-affinity
antibodies with increasing age, all thought to associate with
decreased protection by vaccines and increased susceptibil-
ity to infections [22]. Whether B-cell senescence has a role
in RA development is still unclear [19]. Despite these
studies on the autoantibody response and aging, to our
knowledge it is unknown whether age influences character-
istics of the ACPA response, measured at RA onset.

An alternative explanation could be some of the
patients presenting at older age with ‘typical RA’ (e.g., sym-
metric polyarthritis of small joints) have differences in under-
lying biologic mechanisms compared with younger patients.
Although biologic studies are needed to verify this
hypothesis, detailed phenotypic studies can identify subtle
differences between patient groups, despite their similarity in
key clinical characteristics that are required for classification.

As a follow-up on previous studies of ACPA and age of
onset as well as on the mentioned considerations, this study
had three aims. Firstly, to determine the association between
age of RA onset and the frequency of three autoantibodies
(ACPA, rheumatoid factor (RF) and anti-carbamylated pro-
tein (anti-CarP) antibodies). For this purpose a large study
on data of five cohorts was performed. Secondly, to study
whether age at onset was associated with characteristics of
the ACPA response in ACPA-positive RA patients. Thirdly,
to substantiate previously reported associations between age
at onset and clinical characteristics [4–6].

Methods
Patients
The association between age at RA onset and prevalence of
ACPA and RF was studied in all five RA cohorts (Leiden
Early Arthritis Clinic (EAC), BARFOT, ESPOIR, Umeå,
Lund) and anti-CarP was studied in two cohorts (Leiden
EAC, BARFOT). The association between age at RA onset
and ACPA level was also studied in all five cohorts. Other
ACPA characteristics were studied in ACPA-positive RA
patients from the Leiden EAC. RA was defined as fulfilling
the 1987 classification criteria [1]. The 2010 classification
criteria were not used because autoantibodies are heavily
weighted in these criteria, which may induce circularity be-
tween the parameter that was studied and the reference.

Leiden EAC
The Leiden EAC is an inception cohort set up in the Leiden
University Medical Center (the Netherlands) that started in
1993 and includes patients with clinically confirmed arth-
itis and symptom duration < 2 years at presentation to the
rheumatologist. [23] This department is the only referral
center in a health care population of >400,000 inhabitants.
At baseline questionnaires, joint counts and blood samples
were collected. Information on smoking (present versus
none and past) was obtained at baseline. The presence of
shared epitope alleles was determined as described previ-
ously [24]. The patients studied were included between
1993 and 2015; a total of 1244 RA patients were consecu-
tively included and studied here. The age ranged between
18 and 92 years.

BARFOT
The BARFOT (Better Anti-Rheumatic Farmaco-Therapy)
study is an observational study of patients with early RA in
Sweden [25]. Patients aged 18–93 years were included from
six rheumatology centers when they were diagnosed with
RA and had symptom duration < 1 year. In this study, 839
patients included between 1993 and 1999 were enrolled.

ESPOIR
The Evaluation et Suivi de POlyarthrites Indifférenciées
Récentes (ESPOIR) is a cohort in which patients from 14
regional centers across France (16 university hospital
rheumatology departments) were recruited [26]. Patients
were aged 18–70 years and had ≥2 swollen joints for
>6 weeks and <6 months and a high clinical suspicion on
RA based on expert assessment. In total, 632 RA patients
included between 2002 and 2005 were studied here.
Umeå
Umeå is an observational inception cohort in which 459 RA patients with symptom duration < 12 months from four different counties in Sweden were included between 1995 and 2010 [12]. The age ranged between 18 and 83 years.

Lund
This cohort study recruited patients from primary care units in the area of Lund, Sweden, and included patients with RA for <24 months aged 18−78 years [27]. Although at inclusion RA was defined using the 1958 criteria, these patients also fulfilled the 1987 criteria [28−30]. In total, 183 patients were included between 1985 and 1989; of these, 147 were previously evaluated in longitudinal studies [31, 32] and also studied here.

Sero logical measurements
Baseline serum samples were tested for ACPA: Leiden EAC, anti-CCP2 Immunoscan RA Mark 2 (Eurodagnostica, Arnhem), cutoff 25 U/ml, and anti-CCP2 EliA CCP (Phadia, Nieuwegein, the Netherlands), cutoff 7 U/ml, were used to determine the presence of ACPA. ACPA level studied in samples tested with the anti-CCP2-test from Eurodagnostica; ESPOIR, anti-CCP2 (DiaSorin, France), cutoff 50 U/ml; BARFOT and Umeå, anti-CCP2 (Eurodagnostica, Malmö, Sweden), cutoff 25 U/ml; and Lund, anti-CCP2 (Anamar Lund, using commercial kits, Inova Diagnostics, San Diego, CA), cutoff 20 U/ml. IgM RF was determined as follows: Leiden EAC, in-house ELISA; BARFOT, Serodia RA agglutination test (Fujirebio Inc., Tokyo, Japan); ESPOIR: Elisa, Menarini, France; Positive >9 U/ml; Umeå, in-house ELISA; and Lund (ELISA, Anamar Lund, using commercial kits, Inova Diagnostics, San Diego, CA). IgG anti-CarP antibodies against carbamylated fetal calf serum were determined as described previously in the Leiden EAC [33], cutoff for positivity was based on the mean + 2SD from a set of 204 healthy controls; and in BARFOT the cutoff was based on the 82 controls from the source population [34].

ACPA characteristics
Data on ACPA isotypes, ACPA fine specificity and ACPA avidity were determined as described previously [35] in 157 RA patients included in the Leiden EAC. In short, by measuring ACPA isotypes different antibody subclasses can be distinguished which all differ in their ability to mediate effector responses [38]. ACPA IgG1, IgG2, IgG3, IgG4, IgA and IgM were determined using a sandwich ELISA [37]. The total number of ACPA isotypes in each ACPA-positive patient was used in our analysis. ACPA fine specificity was studied to measure an increase or shift in antigen recognition. To determine ACPA fine specificity, antibodies against the citrullinated and the arginine-containing form of two peptides derived from vimentin (Vim1−16; Vim59−74), two peptides derived from fibrinogen (Fibα 27−43; Fibβ 36−52) and one peptide derived from α-enolase (Eno 5−20) and against citrullinated myelin basic protein were determined by in-house ELISA [36]. The sum of citrullinated antigens recognized by ACPA in each patient was used in our analysis. Finally the avidity of ACPA IgG, as a measure of the strength of the ACPA response, was determined with elution ELISAs [35]. Avidity is presented as the relative avidity index, which was defined as the ratio of the amount of residual antibodies bound to the antigen-coated plate after NaSCN (1 M) elution to the amount of bound antibodies in the absence of NaSCN, expressed as a percentage.

Statistical analysis
To visually inspect the relation between age of onset and presence of autoantibodies, the proportion of autoantibody-positive and autoantibody-negative patients was plotted for different age groups of each 5 years. If <10 patients were present in the older age groups (BARFOT, Lund), age groups were summed. To statistically evaluate associations with age of onset, logistic regression analyses were performed per cohort with ACPA, RF or anti-CarP as the dependent variable and age of onset as the independent variable. Because descriptive results (Fig. 1, Additional file 1: Figure S1 and Additional file 2: Figure S2) showed that the proportion of autoantibody-positive RA patients decreased after ±50 years of age, a two-phase logistic regression analysis with one change point at 50 years was fitted. Odds ratios of the different cohorts (obtained from regression analyses) were entered in an inverse-weighted meta-analysis. This method weights results with a low standard error stronger than results with a higher standard error, thereby preventing over-representation of less precise data. A random effect model was used. The meta-analysis was performed separately for age of onset <50.0 years and >50.0 years and separately in males and females.

The proportion of ACPA-positive and ACPA-negative RA patients within the Leiden EAC was then compared with ACPA probabilities from the general Dutch population [7]. Within different age categories the risk of being ACPA-positive within the Leiden EAC was divided by the risk of being ACPA-positive within the general Dutch source population, revealing a risk ratio. The same was done for the risk of being ACPA-negative. Risk ratios of ACPA-positivity and ACPA-negativity were plotted for different age categories.

Data on ACPA characteristics were depicted visually for different age groups of each 10 years, and evaluated statistically with linear regression analysis (ACPA level, ACPA avidity) and ordinal regression analysis (ACPA isotypes, ACPA fine specificity), using Bonferroni correction for multiple testing.

Within the Leiden EAC, the association between age of onset and smoking, SE alleles and symptom onset was analyzed with logistic regression analysis, and with C-reactive
Analyses were performed using SPSS version 23.0 (IBM).

Symptom onset was considered sub(acute) when there was prompt onset (e.g., <1 week), and not a gradual or intermittent onset. All regression analyses were adjusted for gender. Analyses were performed using SPSS version 23.0 (IBM).

Results

Patient characteristics

Baseline characteristics of all included patients are presented in Table 1. The majority of the included patients were female and the mean age of onset in the different cohorts ranged from 48.9 to 56.7 years. Symptom duration ranged from 18.3 to 43.3 weeks with the longest symptom duration observed in Lund. Within Leiden EAC, BARFOT and ESPOIR about 50% of the included patients were ACPA-positive, while in Umeå and Lund the percentage of ACPA-positive patients was 73.9% and 80.3%.

ACPA prevalence decreased in RA patients with an older age at onset

The proportion of ACPA-positive RA was plotted for all age categories in all five cohorts (Fig. 1). This showed that the proportion of ACPA-positive patients seemed to decrease after age of onset of 50 years. Logistic regression analyses with a change point at 50 years of age and with adjustment for gender were performed for each cohort; odds ratios (ORs) were combined in a meta-analysis. There was no association between the age of onset and the presence of ACPA in RA patients with an age of onset < 50 years (OR 1.01, 95% CI 0.99–1.04). However, age of onset > 50 years was associated with a lower frequency of ACPA-positivity (OR 0.96, 95% CI 0.95–0.97; Fig. 2a). An OR of 0.96 indicates that for a 1-year increase in the age of onset, the odds of being ACPA-positive decrease 4%; thus this reflects 18% per 5-year increase in age. Results were similar when studying ACPA in age categories of 5 years instead of continuously (Additional file 1: Figure S1). Similar results were observed for RF and anti-CarP (Additional file 2: Figure S2, Additional file 3: Figure S3, Fig. 2b, c).

Also when analyses were repeated with a change point at 60 years of age, similar results were obtained (meta-analysis: \(p < 0.001 \) for an association between ACPA presence and age of onset in patients aged > 60 years; and no significant association in patients aged < 60 years, \(p = 0.88 \)).

Then we studied the proportion of ACPA-positive and ACPA-negative patients in relation to the ACPA prevalence protein (CRP), erythrocyte sedimentation rate (ESR) and swollen joint count (SJC) with Spearman’s correlation coefficient, using Bonferroni correction for multiple testing. Symptom onset was considered sub(acute) when there was prompt onset (e.g., <1 week), and not a gradual or intermittent onset. All regression analyses were adjusted for gender. Analyses were performed using SPSS version 23.0 (IBM).
Several clinical parameters in RA patients at disease onset associated with age of onset

The decrease in the relative proportion of ACPA-positive RA patients with increasing age of onset was not paralleled by age-related differences in the ACPA response itself, which suggests that an age-dependent effect on the ACPA response was not the most likely explanation. To further substantiate this, the associations of age with smoking and the HLA-SE alleles were determined, because these are the main risk factors for ACPA-positive RA. The presence of SE alleles remained constant over age of onset (p = 0.54), but the proportion of smokers decreased with increasing age (p < 0.001, Additional file 4: Figure S4). Similar to that observed for ACPA, this decrease was most prominent for RA patients with an age of onset > 50 years.

Another explanation for the higher proportion of ACPA-negative RA at older age of onset is that a group of (auto-)antibody-negative patients with different etiopathology was preferentially present at older age and classified as RA. Because some previous studies have reported associations between clinical characteristics (male gender, more often acute onset, higher acute phase reactants) and an older age of onset [4–6], we aimed to substantiate this in the present data. We evaluated whether the association between age and the presence of autoantibodies was similar in males and females, showing that the effect was more pronounced in males (Additional file 5: Figure S5). Furthermore, an older age of onset was associated with higher CRP levels (p = 0.26, p < 0.001), higher ESR levels (p = 0.32, p < 0.001) and a higher number of swollen joints (p = 0.10, p = 0.001) at first presentation. RA patients presenting at older age also more often had (sub)acute onset of symptoms (p = 0.003,

| Table 1 Baseline characteristics of patients with rheumatoid arthritis included in the cohorts studied |
|----------------------------------|----------|----------|----------|----------|----------|
| Variable | Leiden EAC | BARFOT | ESPOIR | Umeå | Lund |
| Total number of patients | 1244 | 839 | 632 | 459 | 147 |
| Age, mean (SD) | 56.6 (15.5)| 56.7 (15.4)| 48.9 (12.2)| 53.9 (14.5)| 50.7 (11.5)|
| Female, n (%) | 827 (66.5)| 538 (64.1)| 484 (76.6)| 321 (69.9)| 98 (66.7)|
| Symptom durationa (weeks), median (IQR) | 18.3 (9–36) | 26.1 (17–39) | 21.4 (13–33) | 28.0 (16–39) | 43.3 (28–61) |
| Smoking at baseline, n (%) | 308 (25.9)| 227 (27.1)| 137 (21.7)| 107 (23.9)| 39 (30.7)|
| ACPE+, n (%) | 638 (52.8)| 418 (55.0)| 291 (46.0)| 339 (73.9)| 114 (80.3)|
| RF+, n (%) | 715 (58.0)| 453 (59.6)| 344 (54.4)| 362 (79.0)| 115 (81.0)|
| Anti-CarP+, n (%) | 474 (42.3)| 280 (34.7)| NA | NA | NA |
| ESR (mm/h), median (IQR) | 31 (16–50)| 30 (15–50)| 23 (12–41)| 22 (12–39)| 28 (13–50)|
| CRP (mg/L), median (IQR) | 14 (6–35.5)| 19 (7–47.5)| 10 (3–26)| 10 (8–25)| 15 (0–45.5)|
| SJC, median (IQR) | 5 (3–10)| 10 (6–14)| 7 (4–11)| 6 (3–10)| 6 (3–10)|
| TJC, median (IQR) | 6 (2–11)| 7 (3–12)| 8 (4–14)| 5 (2–10)| 7 (4–11)|

n number of patients, SD standard deviation, IQR interquartile range, ACPE anti-citrullinated protein antibodies, RF rheumatoid factor, anti-CarP antibodies ESR erythrocyte sedimentation rate, CRP C-reactive protein, TJC tender joint count based on 68 joints (Leiden EAC) or on 28 joints (BARFOT, ESPOIR, Umeå) or Ritchie index (Lund), SJC swollen joint count based on 66 joints (Leiden EAC) or on 28 joints (BARFOT, ESPOIR, Umeå) or on 50 joints (Lund), NA not available

aTime between symptom onset and inclusion in cohort

of the Dutch source population (Fig. 3). This showed that, for example, in the age group 18–29 the risk of being ACPA-positive was 87 times higher for RA patients compared with individuals from the general population. In line with this, the risk of being ACPA-negative was 0.48 times higher (meaning 52% lower) for RA patients compared with individuals from the general population. The risk ratio for ACPA-negativity increased at older age.

ACPA characteristics did not differ for different ages of RA onset

After having studied the presence of ACPA-positive RA, several characteristics of the ACPA response were evaluated within ACPA-positive RA patients. First, ACPA level was analyzed in relation to age of onset; no association between ACPA level and age of onset was observed (Leiden EAC p = 0.49, BARFOT p = 0.21, ESPOIR p = 0.91, Umeå p = 0.34, Lund p = 0.08; Fig. 4). Then within the Leiden EAC the number of ACPA isotypes was evaluated because isotype class switching can lead to an increased diversity of the antibody repertoire. The ordinal regression showed p = 0.03, and was not significant after correcting for multiple testing (cutoff Bonferroni correction p = 0.01, Fig. 5a). No association was observed between age at onset and the ACPA fine specificity (which we presented as the number of recognized citrullinated antigens by ACPA, p = 0.96; Fig. 5b) and the ACPA avidity index (which measures the overall binding strength of the ACPA response to CCP-2, p = 0.62; Fig. 5c). These findings together suggest that the analyzed ACPA characteristics were comparable within different age categories.
Additional file 6: Figure S6). These findings remained significant after Bonferroni correction (cutoff $p = 0.008$).

Altogether these data suggest that at older age there is a subgroup of patients who fulfill the classification criteria for RA that is more often male, nonsmoking, has higher acute phase reactants, more often has (sub)acute symptom onset and is also more often ACPA-negative.

Discussion

Previous studies have evaluated differences in relation to the age of onset of RA, and have shown that some clinical characteristics were more prevalent at an older age of onset. Whether or not the ratio of ACPA-positive and ACPA-negative RA was also different was unresolved until now because different studies have yielded contrasting
results. This prompted us to perform the present study in 3321 RA patients from five RA cohorts. The combination of the present data clearly showed that the proportion of autoantibody-positive patients (i.e., ACPA, RF and anti-CarP) was lower in RA patients who presented at older age. We also studied characteristics of the ACPA response, and within ACPA-positive RA patients characteristics of this response did not appear to differ at different ages of onset. Hence, our results suggest that the composition of the ACPA response is not different, but only the proportion of ACPA-positive RA is lower at older age of onset. In other words, the data revealed that ACPA-negative RA was more prevalent at older age.

Some findings within RA patients are different from findings obtained in the general population. In the general population, ageing is associated with lower antibody levels in response to vaccination [21]. In this study there was no association between ACPA level and age of onset.

Fig. 3 Risk of ACPA-positivity and ACPA-negativity in RA patients compared with individuals from the Dutch source population, presented for different age categories. For example, in the age group 18–29 the risk of being ACPA-positive was 87 times higher for RA patients than for individuals from the general Dutch population, and the risk of being ACPA-negative was 0.48 times higher (meaning 52% lower). The ratio for ACPA-negativity increased at older age. ACPA anti-citrullinated protein antibodies.

Fig. 4 ACPA level of ACPA-positive RA at different ages of RA onset; data from five cohorts. Association between age of onset and ACPA level within RA patients of the Leiden EAC (a), BARFOT (b), ESPOIR (c), Umeå (d) and Lund (e) cohorts. In Lund the upper detection limit of the anti-CCP2 test was 200 U/ml; there were 76 patients with anti-CCP2 level > 200 U/ml. Horizontal lines represent median values. Each dot represents one patient. ACPA anti-citrullinated protein antibodies.
In addition, in the population autoantibodies (such as antinuclear antibodies, RF and ACPA) are increasingly prevalent at older age [7, 39–41], whereas within RA patients we observed a higher proportion of ACPA-negative disease at older age. This difference also resulted in the observation made in Fig. 3.

Interestingly, not only the proportion of ACPA-positive RA decreased with an older age at onset but also the proportion of RA patients who smoked at disease onset. This observation corresponds to the prevalence of present smokers in the general population, which decreases around 50 years of age [42]. Smoking is a known risk factor for ACPA-positive RA [43] and it is intriguing to speculate that a decrease in smoking patients (compared with nonsmokers) mediates the lower proportion of ACPA-positive RA at older age.

The 2010 classification criteria for RA could not be used to classify RA in the present study because of circularity between the dependent and independent variables. According to the 1987 criteria, RA is mainly classified based on clinical features, among which is symmetric polyarthritis of small joints. Our data suggest that patients fulfilling the 1987 criteria at older age more often had slight differences in other baseline characteristics, because they were more often males, had higher acute phase reactants and more often had (sub)acute onset of symptoms. Cluster analysis using only clinical characteristics, however, was insufficient to cluster patients on the individual level (data not shown).

Nonetheless, based on the present data we presume that part of the ACPA-negative RA patients presenting at older age constitute a subgroup with slight differences in clinical presentation but with more pronounced differences in underlying pathogenic mechanisms. Biologic studies are now warranted to further evaluate this hypothesis and to identify a distinct subgroup within the seronegative patients.

A potential limitation is that the five cohorts were not completely comparable and that two cohorts contained an overall higher percentage of ACPA-positive patients than the other cohorts. Probably this can be explained by differences in health care systems or settings. When for instance the presence of ACPA (or other characteristics of more severe disease) is considered more relevant in the referral process or for inclusion in cohorts, this could explain the higher percentage of ACPA-positive patients in these cohorts. Nonetheless, here the percentage of ACPA-negative patients was also higher at older age of onset. The measurement of ACPA was not centralized, which may have led to different misclassification in different cohorts. Furthermore, anti-CarP was determined in only two of the five cohorts. We observed that RF and anti-CarP also decreased with increasing age of onset, although less distinctly than ACPA. The different autoantibodies often occur in the same patients; therefore another limitation is that we have not studied whether the decrease of RF and anti-CarP was independent of the age-related decrease of ACPA.

A final limitation is that studies on ACPA fine specificity, ACPA isotypes and ACPA avidity index were less powered than those on ACPA level. However, it is known that ACPA level is highly associated with ACPA fine specificity and the number of ACPA isotypes [44]. Because ACPA level was determined in all cohorts and there was no tendency toward differences in ACPA level in patients aged > 50 years at RA onset, this may suggest that ACPA fine specificity and ACPA isotypes would also remain stable with increasing age of RA onset. In some cohorts, patients aged > 80 appeared to have lower ACPA levels, although this age group contained very few patients.

Conclusions
Characteristics of the ACPA response in ACPA-positive RA patients did not appear to be age dependent, while data of five cohorts revealed that with older age of onset ACPA-negative RA is more frequent than ACPA-positive RA. Further biologic studies are needed to characterize the pathogenesis of ACPA-negative polyarthritis at older age and to promote personalized treatment decisions in ACPA-negative patients in daily practice.
Additional files

Additional file 1: Figure S1. Showing proportion of RF-negative RA patients at different ages of RA onset; data from five cohorts. Presented are the proportion RF-negative and RF-positive RA patients within the different age groups in the five different cohorts. Number of patients in each age group: Leiden EAC: <25, n = 49; 25–29, n = 49; 30–34, n = 49; 35–39, n = 66; 40–44, n = 88; 45–49, n = 125; 50–54, n = 127; 55–59, n = 147; 60–64, n = 156; 65–69, n = 128; 70–74, n = 130; 75–79, n = 93; 80, n = 51; BARFOT: <25, n = 16; 25–29, n = 25; 30–34, n = 43; 35–39, n = 40; 40–44, n = 45; 45–49, n = 66; 50–54, n = 92; 55–59, n = 90; 60–64, n = 75; 65–69, n = 92; 70–74, n = 81; 75–79, n = 66; 80, n = 29; ESPOR: <25, n = 30; 25–29, n = 24; 30–34, n = 45; 35–39, n = 52; 40–44, n = 65; 45–49, n = 78; 50–54, n = 107; 55–59, n = 109; 60–64, n = 73; 65, n = 49; Umeå: <25, n = 20; 25–29, n = 13; 30–34, n = 21; 35–39, n = 28; 40–44, n = 28; 45–49, n = 43; 50–54, n = 62; 55–59, n = 60; 60–64, n = 72; 65–69, n = 48; 70–74, n = 32; 75, n = 31; Lund: <25, n = 2; 25–29, n = 6; 30–34, n = 2; 35–39, n = 13; 40–44, n = 15; 45–49, n = 30; 50–54, n = 21; 55–59, n = 25; 60–64, n = 11; 65, n = 17. (TIF 149 kb)

Additional file 2: Figure S2. Showing proportion of anti-CarP-negative RA patients at different ages of RA onset; data from two cohorts. Presented are the proportion of anti-CarP-negative and anti-CarP-positive RA patients within the different age groups in the Leiden EAC and BARFOT cohorts. Number of patients in each age group: Leiden EAC, <25, n = 43; 25–29, n = 23; 30–34, n = 44; 35–39, n = 62; 40–44, n = 49; 45–49, n = 111; 50–54, n = 112; 55–59, n = 135; 60–64, n = 144; 65–69, n = 114; 70–74, n = 120; 75–79, n = 87; 80, n = 47; BARFOT, <25, n = 18; 25–29, n = 37; 30–34, n = 40; 40–44, n = 43; 45–49, n = 62; 50–54, n = 56; 55–59, n = 88; 60–64, n = 80; 65–69, n = 103; 70–74, n = 88; 75–79, n = 97; 80, n = 127; 81, n = 125; 82, n = 38. (TIF 53 kb)

Additional file 3: Figure S3. Showing association between age of onset and ACPA within the Leiden EAC with age in categories of 5 years. Logistic regression analyses of age at RA onset in relation to the onset of symptoms. OR of 1.01 indicates that per 1-year increase in the age of onset, the odds of having ACPA-positive disease base 6% this is 2.7% per 5-year increase in age of onset (0.94%). (TIF 5577 kb)

Additional file 4: Figure S4. Showing proportion of present smokers and presence of SE alleles at different ages of onset of RA; data from the Leiden EAC. Presented are the proportion of currently smoking RA patients (n = 308) versus not smoking (none and past smoking) RA patients (n = 880) (a) and the proportion of patients carrying one or two SE alleles (n = 467) versus no SE alleles (n = 272) (b) within different age groups in the Leiden EAC. The percentage of patients in each number group: smoking: <25, n = 47; 25–29, n = 22; 30–34, n = 48; 35–39, n = 66; 40–44, n = 85; 45–49, n = 119; 50–54, n = 125; 55–59, n = 141; 60–64, n = 153; 65–69, n = 121; 70–74, n = 127; 75–79, n = 87; 80, n = 47; SE alleles: <25, n = 28; 25–29, n = 12; 30–34, n = 29; 35–39, n = 40; 40–44, n = 59; 45–49, n = 74; 50–54, n = 81; 55–59, n = 80; 60–64, n = 91; 65–69, n = 73; 70–74, n = 75; 75–79, n = 61; 80, n = 36. (TIF 16283 kb)

Additional file 5: Figure S5. Showing meta-analysis on the association between age of onset and the presence of ACPA, RF and anti-CarP in male and female RA patients. Association between ACPA (a), RF (b) and anti-CarP (c) with age of onset in the different cohorts for males and females separately. The meta-analysis summarizes the effect of age on the different cohorts and is based on a random effect model, combining the ORs from separate logistic regression analyses of the different cohorts with age as the independent variable and ACPA, RF or anti-CarP as outcome. OR: Odds ratio; RA: Rheumatoid arthritis; RF: Rheumatoid factor; SD: Standard deviation; SE: Shared epitope; SJC: Swollen joint count; Vim: Vimentin.

Acknowledgements

Not applicable.

Funding

This work was supported by the Dutch Arthritis Foundation and the Netherlands Organization for Health Research and Development (Vidi grant). The funding sources had no role in the design and conduct of the study; collection, management, analysis and interpretation of the data; preparation, review or approval of the manuscript; and decision to submit for publication.

Availability of data and materials

Data can be requested from the corresponding author.

Authors’ contributions

DMB, LM and AHMvdH-vM contributed to the conception and study design. DMB analyzed the data. DMB, LM, BS, REMT and TWJH contributed to the interpretation of the data. SA, EL, LAT, FB, JM and SR-D contributed to the acquisition of the data. DMB and AHMvdH-vM wrote the first version of the manuscript and all other authors revised it critically. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

The study was approved under number 3.4138/09/FB/jr and P10.108 by the medical ethics committee of the Leiden University Medical Center, which is known Commissie Medische Ethiek. All patients signed informed consent.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1Department of Rheumatology C1-R, Leiden University Medical Center, PO Box 9600, Leiden 2300RC, The Netherlands. 2Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden. 3Department of Clinical Sciences, Section of Rheumatology, Lund University and Skåne University Hospital, Lund, Sweden. 4Department of Clinical Sciences, Section of Rheumatology, Lund University, Lund, Sweden. 5Department of Rheumatology, Sorbonne University, INSERM UMR_5938, DHU 128, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, Paris, France. 6Department of Rheumatology, Teaching Hospital Lapéryonie and Montpellier University, Montpellier, France. 7Department of Public Health and Clinical Medicine/Rheumatology, University Hospital, Umeå, Sweden.

Received: 7 February 2017 Accepted: 9 May 2017
Published online: 31 May 2017

References

1. Annett FC, Edworthy SM, Bloch DA, Mchaine DJ, Fries JF, Cooper NS, et al. The american rheumatism association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1998;41:1505–24.
2. Padyukov L, Seielstad M, Ong RTH, Ding B, Rönnelid J, Seddighzadeh M, et al. A genome-wide association study suggests contrasting associations of ACPA-positive versus ACPA-negative rheumatoid arthritis. Ann Rheum Dis 2011;70:259–65.
3. Karlon EW, Drane K. Environmental and gene-environment interactions and risk of rheumatoid arthritis. Rheum Dis Clin North Am. 2012;38:405–26.
2. van Schaardenburg D, Breedveld FC. Elderly-onset rheumatoid arthritis. Semin Arthritis Rheum. 1994;23:367–78.

3. Yazici Y, Page SA. Elderly-onset rheumatoid arthritis. Rheum Dis Clin N Am. 2000;26:157–78.

4. Turkcapar N, Demir O, Atli T, Kopuk M, Turgay M, Kinkil G, et al. Late onset rheumatoid arthritis: clinical and laboratory comparisons with younger onset patients. Arch Gerontol Geriatr. 2006;42:225–31.

5. van Zanten A, Arends S, Roosendaal C, Limburg PC, Maas F, Trouw LA, et al. Presence of anticitrullinated protein antibodies in a large population-based cohort from the Netherlands. Ann Rheum Dis. 2017; doi:10.1136/annrheumdis-2016-209991.

6. Derksen VFA, A, Jeganova S, Trouw LA, Mil AHM van der H, Hafström I, Huizinga TWJ, et al. Rheumatoid arthritis phenotype at presentation differs depending on the number of autoantibodies present. Ann Rheum Dis. 2016;76:176–20.

7. Yazici Y, Paget SA. Elderly-onset rheumatoid arthritis. Rheum Dis Clin N Am. 2001;27.

8. Cho S-K, Sung Y-K, Choi C-B, Cha H-S, Choe J-Y, Chung WT, et al. Do patients with elderly-onset rheumatoid arthritis have severe functional disability? Semin Arthritis Rheum. 2012;42:23–31.

9. Deal CL, Meenan RF, Goldenberg DL, Anderson JJ, Sack B, Pastan RS, et al. The diagnosis of elderly-onset rheumatoid arthritis: a comparison with younger-onset disease of similar duration. Arthritis Rheum. 1985;28:987–94.

10. Calvo-Alén J, Corrales A, Sánchez-Andrada S, Fernández-Echevarría MA, Peña JL, Rodríguez-Valverde V. Outcome of late-onset rheumatoid arthritis and polymyalgia rheumatica. Rheumatology. 2004;43:655–70.

11. Calvo-Álén J, Corrales A, Sánchez-Andrada S, Fernández-Echevarría MA, Peña JL, Rodríguez-Valverde V. Outcome of late-onset rheumatoid arthritis and polymyalgia rheumatica. Rheumatology. 2004;43:655–70.

12. van der Leeden HW, Lindqvist E, Brouwer E, Reijnierse M, van Mil AHM, van Gaalen FA, Kloppenburg M, et al. Individual relationship between progression of radiological damage and the acute phase response in early rheumatoid arthritis. Towards development of a decision support system. J Rheumatol. 1997;24:20–7.

13. van der Leeden HW, Lindqvist E, Brouwer E, Reijnierse M, van Mil AHM, van Gaalen FA, Kloppenburg M, et al. Individual relationship between progression of radiological damage and the acute phase response in early rheumatoid arthritis. Towards development of a decision support system. J Rheumatol. 1997;24:20–7.

14. Chalan P, van den Berg A, Kroesen B-J, Brouwer L, Boots A. Rheumatoid arthritis, disease activity score. Rheumatology. 2000;39:1031–46.

15. Vadasz Z, Haj T, Kessel A, Toubi E. Age-related autoimmunity. BMC Med. 2013;11:94.

16. WHO global report on trends in tobacco smoking 2000-2025.http://www.who.int/tobacco/publications/surveillance/reporttrendstobaccosmoking/en/. Accessed 22 May 2017.

17. Klarsleg K, Stolt P, Lundberg K, Källberg H, Bengtsson C, Grenewald J, et al. A new model for an etiology of rheumatoid arthritis: Smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum. 2006;54:38–46.

18. Toes REM, Huizinga TAW. Update on autoantibodies to modified proteins. Curr Opin Rheumatol. 2015;27:262–7.