Letter

Measurement of the \(\eta \) mass at KLOE*

B. Di Micco

On behalf of the KLOE Collaboration

Università degli Studi di Roma Tre, INFN sezione di Roma Tre, Roma, Italy

Received: 11 April 2008 / Revised: 6 August 2008
Published online: 7 October 2008 – © Società Italiana di Fisica / Springer-Verlag 2008
Communicated by Haiyan Gao

Abstract. In this report the measurement of the \(\eta \) mass is presented. The analysis has been performed on 450 pb\(^{-1}\) of data collected in the years 2001 and 2002. The measured value is \(m_\eta = (547.874 \pm 0.07 \text{stat} \pm 0.02 \text{syst}) \) MeV.

PACS. 14.40.Aq \(\pi, K \), and \(\eta \) mesons

1 Introduction

In this paper we describe the measurement of the \(\eta \) mass from the KLOE experiment [1] operating at the Frascati \(\phi \) factory DAoNE.

The value of the \(\eta \)-meson mass has been poorly determined for many years and today the picture is still not fully clarified. The first measurements back to about 40 years ago studying \(\eta \) decays in bubble chamber experiments [2] with a mass resolution of \(\sim 1 \) MeV; these resulted in mass values clustered around 548.5 MeV. A lower value with better precision was obtained in 1974 measuring the missing-mass spectrum of \(\pi^- p \rightarrow \eta X_u \) close to threshold, \(m_\eta = (547.45 \pm 0.25) \) MeV [3]. This result was confirmed by the NA48 experiment studying the production of \(\eta \) at threshold in \(pd \) [4] and \(\gamma \gamma \) [5] reactions. More recently, the mass was measured precisely by the GEM experiment using the reaction \(dp \rightarrow \eta ^3\text{He} \) at threshold:

\[
m_\eta = (547.311 \pm 0.028 \pm 0.032) \text{MeV} \quad [6].
\]

Thus, all the experiments at threshold give consistent results.

However, this value of \(\eta \) mass is highly inconsistent with the one measured by the NA48 experiment studying the decay \(\eta \rightarrow \pi^0 \pi^0 \pi^0 \): \(m_\eta = (547.843 \pm 0.030 \text{stat} \pm 0.041 \text{syst}) \) MeV [7], the difference being about eight standard deviations. This discrepancy between threshold and decay experiments has been confirmed by the preliminary \(\eta \) mass measurement carried out by the KLOE experiment [8] \(m_\eta = (547.822 \pm 0.065 \text{stat} \pm 0.069 \text{syst}) \) MeV. A recent result from the CLEO-c Collaboration gives \(m_\eta = (547.785 \pm 0.017 \pm 0.057) \) MeV [9] using \(\eta \rightarrow J/\psi \) decays and combining different \(\eta \) decay modes. In this paper, we report the best measurement of the \(\eta \) mass to date, using the \(\phi(1020) \rightarrow \gamma \gamma \) decay. This decay chain, assuming the \(\phi(1020) \)-meson at rest, is a source of monochromatic \(\eta \)-mesons of 362.792 MeV/c, recoiling against a photon of the same momentum. The detection of such a photon signals the presence of an \(\eta \)-meson. Photons from \(\eta \rightarrow \gamma \gamma \) cover a continuum flat spectrum between 147 \(E_\gamma < 510 \) MeV in the laboratory reference frame. The photon energies are measured in KLOE, but for 3 \(\gamma \) events the main accuracy is ultimately from accurate measurements of the photon emission angles. Together with the stability of the continuously calibrated detector and the very large sample of \(\eta \)-mesons collected, we have been able to obtain a very accurate measurement of the \(\eta \) mass [10].

Events are selected requiring at least three energy clusters in the barrel calorimeter with polar angle \(50^\circ < \theta_\gamma < 130^\circ \). Being \(r \) the distance between a photon cluster position and the interaction point, the time of the cluster must be such that the \(|t - r/c| < 3\sigma_t \), with \(\sigma_t \) the calorimeter time resolution parametrized as \(\sigma_t = \sqrt{(54 \text{ps})^2 + (1 \text{GeV}/E + (140 \text{ps})^2} \). A kinematic fit imposing energy momentum conservation is performed.

* Original article based on material presented at HADRON 2007.

a e-mail: dimicco@fis.uniroma3.it

b F. Ambrosino, A. Antonelli, M. Antonelli, F. Archilli, P. Beltrame, G. Bencivenni, S. Bertolucci, C. Bini, C. Blose, S. Bocchetta, F. Bossi, P. Branchini, P. Campagna, G. Capon, T. Capussela, F. Ceradini, S. Chi, P. Ciambrone, E. De Lucia, A. De Santis, P. De Simone, G. De Zorzi, A. Denig, A. Di Domenico, C. Di Donato, S. Di Falco, B. Di Micco, A. Doria, M. Drexci, G. Felici, M.L. Ferrer, S. Fiore, C. Forti, P. Franzini, C. Gatti, P. Gauzzi, S. Giovannella, E. Graziani, W. Kluge, G. Lanfranchi, J. Lee-Franzini, D. Leone, M. Martini, P. Massarotti, S. Meola, S. Miscetti, M. Moulson, S. Müller, F. Mus- tas, M. Napolitano, F. Nguyen, M. Palutan, E. Pasqualucci, A. Passeri, V. Pa tera, F. Perfetto, P. Santangelo, B. Sciascia, A. Sciubba, A. Sibidanov, T. Spadaro, M. Testa, L. Tortora, P. Valente, G. Venanzoni, R. Versaci, G. Xu.
The kinematic fit uses the value of the total energy, the \(\phi (1020) \) transverse momentum and the average value of the beam-beam interaction point; these values are determined with good precision run by run by analyzing \(e^+e^- \rightarrow e^+e^- \) elastic scattering events. The energy resolution gets greatly improved from the good calorimeter angular resolution. Moreover, a cut on the \(\chi^2 \) of the kinematic fit is imposed in order to reject background events from \(> 3 \gamma \) final states: events with \(\chi^2 < 35 \) are retained.

Figure 1 shows the \(m_{\gamma \gamma}^2 \), \(m_{\gamma \gamma}^0 \) Dalitz plot population, with the energies ordered as \(E_{\gamma_1} < E_{\gamma_2} < E_{\gamma_3} \). The \(m_{\gamma_1 \gamma_2}^2 \simeq m_{\gamma_2 \gamma_3}^2 \simeq m_{\gamma_3 \gamma_1}^2 \), and \(m_{\gamma_1 \gamma_2}^2 = m_{\gamma_2 \gamma_3}^2 = m_{\gamma_3 \gamma_1}^2 \) bands are clearly visible. We apply a cut \(m_{\gamma \gamma}^2 + m_{\gamma \gamma}^0 \leq 0.73 \text{GeV}^2 \), “background-rejection cut” in the following, shown by the line in fig. 1. Events below the line are retained for the analysis. The resulting \(m_{\gamma \gamma}^0 \) distribution, for a data sub-sample, is shown in fig. 1, right-top panel. The background under the \(\eta \) peak is very small and flat, therefore the \(m(\gamma_1 \gamma_2) \) distribution in the 542.5 to 552.5 interval is well fitted with a single Gaussian with \(\sigma = 2.0 \text{ MeV} \), neglecting the background contribution (fig. 1). The result of the fit is \(m_\eta = 547.777 \pm 0.016 \text{ MeV} \) with \(\chi^2/\text{n.d.f} = 168/161 \). The Gaussian width is dominated mostly by the experimental resolution, as the decay width of the \(\eta \) being \(1.30 \pm 0.08 \text{ keV} \) [11] is well below the detector resolution.

Systematic uncertainties have been determined studying the effects of the detector response, alignment, event selection cuts, kinematic fit and beam energy calibration. The values of the systematic errors are shown in table 1.

The systematic uncertainties have been evaluated using several DATA control samples in order to estimate the error on the reconstructed quantities: photon entry points in the calorimeter, beam interaction point position, photon energies. A sample of \(e^+e^- \rightarrow \pi^+\pi^-\gamma \) events has been used to estimate biases in the interaction point determination, by comparing the \(\pi^+ , \pi^- \) vertex to the reconstructed vertex from Bhabha events. The deviation from linearity and calibration was checked by comparing the photon energy reconstructed from the missing energy of the \(\pi^+\pi^- \) tracks with the cluster energy. The energy scale was found to be correct at 1% level and linearity was better than 2%. Miscalibration at the level of the estimated uncertainty on both vertex and energy was applied event by event. The \(\eta \) mass has been recomputed, and the spread observed in the mass measurement is used as systematic error. The systematics due to the inhomogeneous response

Table 1. Systematic errors evaluated for \(m_\eta \), \(m_{\gamma \gamma} \) and the ratio \(R = m_\gamma/m_{\gamma \gamma} \).

Systematic effect	\(m_\eta \) (keV)	\(m_{\gamma \gamma} \) (keV)	\(R \times 10^{-5} \)
Vertex position	4	6	19
Calorimeter energy scale	4	1	6
Calorimeter non-linearity	4	11	31
\(\theta \) angular uniformity	10	44	120
\(\phi \) angular uniformity	15	12	37
Background-rejection cut	12	4	18
ISR emission	8	9	28
\(\sqrt{s} \) calibration	16	3.4	–
Total	29	49	136
of the calorimeter in the 4π solid angle have been determined by dividing the data sample into subsamples with different photon solid angles. No systematic behaviour has been observed, and the rms of the points has been used as systematic error. The error coming from the background rejection cut was obtained by varying the slope and the intercept of the linear cut in the plot. The rms of the measurements obtained was used as the systematic error.

The initial-state radiation in the e+e− → φ process affects the available center-of-mass energy in the decay φ → ηγ. Correction due to this effect was estimated by MC. The systematic error has been computed evaluating the η mass as a function of the √s and comparing DATA with MC. The rms of the DATA-MC difference has been used as systematic error.

2 Results

The procedure described in the previous section has been applied to events φ(1020) → π0γ, π0 → γγ in order to evaluate the π0 mass and the ratio R = mη/mπ0. The values obtained are:

\[m_{π^0} = (134.906 ± 0.012_{\text{stat}} ± 0.049_{\text{syst}}) \text{MeV}, \]
\[m_η = (547.874 ± 0.007_{\text{stat}} ± 0.029_{\text{syst}}) \text{MeV}, \]
\[\frac{m_η}{m_{π^0}} = 4.0610 ± 0.0004_{\text{stat}} ± 0.0014_{\text{syst}}. \]

Our η mass measurement is the most precise result to date and is in good agreement with the recent measurements based on η decays shown in fig. 2. Averaging these measurements we obtain \(m_η = 547.851 ± 0.025 \) MeV which differs by ∼ 10 σ from the average of the measurements done studying the production of the η-meson at threshold in nuclear reactions. In table 2 we show all η mass measurements starting from 1974.

References

1. M. Adinolfi et al., Nucl. Instrum. Methods A 488, 51 (2002); M. Adinolfi et al., Nucl. Instrum. Methods A 482, 364 (2002).
2. P. Bastien et al., Phys. Rev. Lett. 8, 114 (1962); C. Alff et al., Phys. Rev. Lett. 9, 322 (1962); H. Foelsche, H. Kraybill, Phys. Rev. 134, B1138 (1964); M. Foster et al., Phys. Rev. 138, B652 (1965).
3. A. Duane et al., Phys. Rev. Lett. 32, 425 (1974).
4. F. Plouin et al., Phys. Lett. B 276, 526 (1992).
5. B. Krasche et al., Z. Phys. A 351, 237 (1995).
6. M. Abdel-Bary et al., Phys. Lett. B 619, 281 (2005).
7. A. Lai et al., Phys. Lett. B 533, 196 (2002).
8. The KLOE Collaboration (B. Di Micco et al.), Acta Phys. Slov. 56, 403 (2006).
9. D.H. Miller et al., Phys. Rev. Lett. 99, 122002 (2007).
10. B. Di Micco, Precise measurement of the η mass, KLOE note 217 (http://www.infn.infn.it/kloe/).
11. W.-M. Yao et al., J. Phys. G 33, 1 (2006).