Symptomatic fever management in children: A systematic review of national and international guidelines

Cari Green¹, Hanno Krafft¹, Gordon Guyatt², David Martin¹,³*

¹ Gerhard Kienle Chair, Health Department, University of Witten/Herdecke, Herdecke, Germany, ² Departments of Health Research Methods, Evidence and Impact and Medicine at McMaster University, Hamilton, Canada, ³ University Children’s Hospital, Tübingen University, Tübingen, Germany

* david.martin@uni-wh.de

Abstract

Introduction

Divergent attitudes towards fever have led to a high level of inconsistency in approaches to its management. In an attempt to overcome this, clinical practice guidelines (CPGs) for the symptomatic management of fever in children have been produced by several healthcare organizations. To date, a comprehensive assessment of the evidence level of the recommendations made in these CPGs has not been carried out.

Methods

Searches were conducted on Pubmed, google scholar, pediatric society websites and guideline databases to locate CPGs from each country (with date coverage from January 1995 to September 2020). Rather than assessing overall guideline quality, the level of evidence for each recommendation was evaluated according to criteria of the Oxford Centre for Evidence-Based Medicine (OCEBM). A GRADE assessment was undertaken to assess the body of evidence related to a single question: the threshold for initiating antipyresis. Methods and results are reported according to the PRISMA statement.

Results

74 guidelines were retrieved. Recommendations for antipyretic threshold, type and dose; ambient temperature; dresscovering; activity; fluids; nutrition; proctoclysis; external applications; complementaryherbal recommendations; media; and age-related treatment differences all varied widely. OCEBM evidence levels for most recommendations were low (Level 3–4) or indeterminable. The GRADE assessment revealed a very low level of evidence for a threshold for antipyresis.

Conclusion

There is no recommendation on which all guidelines agree, and many are inconsistent with the evidence—this is true even for recent guidelines. The threshold question is of...
Introduction

Clinical observation has shown that fever is a physiologically controlled elevation of temperature with a strongly regulated upper limit (via protective endogenous antipyretics and inactivity of thermosensitive neurons at temperatures above 42˚C). It rarely reaches 41˚C and does not spiral out of control [1] as is feared by many parents and health professionals [2–4]. Divergent attitudes towards fever have led to a high level of inconsistency in approaches to its management. Many healthcare providers and parents view fever as a dangerous condition or a discomfort to be eliminated [5], despite evidence that fever is an evolutionary resource that aids in overcoming acute infections [6]. Antipyretic treatment can be harmful: in 2006, accidental paracetamol overdose caused 100 deaths in the USA alone [7]. A number of organizations have responded to this situation by developing clinical practice guidelines (CPGs) for management of fever in children with goals of guiding antipyretic treatment, responding to discrepancies between evidence and clinical practice, and diminishing irrational fear of fever and overzealous attempts at its suppression. Nevertheless, a published review addressing the quality of seven such CPGs [8] concluded that even guidelines judged as “high quality” are neither comprehensive in content nor in agreement with each other in their recommendations. Whether these conclusions apply to the full spectrum of guidelines for management of fever in children remains uncertain. Therefore, we have summarized all recommendations made by existing fever management CPGs, and assessed the level of evidence for each recommendation. This systematic review was not registered.

Methods

All methods were structured according to the PRISMA statement (S1 Checklist). Relevant medical guideline databases were identified through a google search for ‘medical guideline databases’ and then searched using the following search terms: ((((((children[MeSH Terms]) OR (pediatric[MeSH Terms])) OR (children[Title/Abstract])) OR (pediatric[Title/Abstract])) AND (((treatment[MeSH Terms]) OR (therapy[MeSH Terms])) OR (management[Title/Abstract])) OR (intervention[Title/Abstract]))) AND (((guideline[MeSH Terms]) OR (principles[MeSH Terms])) OR (guideline[Title/Abstract])) OR (principles[Title/Abstract]))) AND (((fever[MeSH Terms]) OR (pyrexia[MeSH Terms]) OR (fever[Title/Abstract])) OR (pyrexia[Title/Abstract])). 1. A search for CPGs (defined as documents on symptomatic fever management in children, issued by governmental organizations, pediatric associations or other healthcare groups) was conducted on the medical databases listed below, as well as websites of the above-mentioned organizations. 2. Google searches incorporating the country name in addition to the original search criteria were then carried out for each of the 195 countries in an attempt to identify any documents that had been missed by the previous methods. 3. A list of national pediatric associations was obtained from the International Pediatric Association’s website (http://ipa-world.org/society.php) and the website of each association was searched for relevant documents using the term “fever” in the language of each. All CPGs, whether intended for healthcare workers or parents, between the dates of 1995 and September 1, 2020 in the 57 languages available on Pubmed, were included. Only the latest CPG of each series was included. Articles that did not focus on the symptomatic management of fever, or
were exact copies of other guidelines, were excluded. The process of screening the retrieved documents, as well as eligibility determination and inclusion in the review were carried out by one author.

The following databases were included in the search: PubMed, Google Scholar, National Guideline Clearing House (https://www.guideline.gov/), Canadian Medical Association CPG Infobase (https://www.cma.ca/En/Pages/clinical-practice-guidelines.aspx), Danish Health Authority National Clinical Guidelines (https://www.sst.dk/en/national-clinical-guidelines), Haute Autorité de Sante (https://www.has-sante.fr/portail/jcms/c_1249693/en/piliers), German Agency for Quality in Medicine (http://www.leitlinien.de/nvl/), Dutch Institute for Healthcare Improvement (http://www.cbo.nl/), Scottish Intercollegiate Guidelines Network (http://www.sign.ac.uk/), National Institute for Health and Care Excellence (https://www.nice.org.uk/guidance), Malaysia Ministry of Health (http://www.moh.gov.my/english.php/pages/view/218).

Data

Data from all sources was extracted to an excel table by one reviewer. The table summarized guideline information (country, title, source, date); pharmacologic recommendations (threshold temperature for antipyretic treatment, recommended medications, posology) and non-pharmacologic recommendations (ice/cold/tepid sponge baths, hydration status, nutrition, ambient temperature, dress, covering, compresses, activity level, complementary/herbal recommendations) according to age group (S1 Table).

Quality of evidence assessment

For each recommendation, two authors conducted a search for the highest level of supporting evidence as defined by a modified version of the OCEBM Criteria (Oxford Centre for Evidence Based Medicine) [9]. Systematic reviews of randomized trials provided the highest quality evidence (level 1); systematic reviews of observational and single randomized control trials, the second level of evidence (level 2); individual prospective observational studies and systematic reviews of case reports the third (level 3); individual case reports the fourth (level 4); and mechanistic explanations the fifth (level 5). Our modifications to the OCEBM included assigning systematic reviews of prospective observational studies to Level 2 and systematic reviews of case reports to Level 3, as well as relevant non-human studies of high quality to level 5. We also rated the rigour of systematic reviews using AMSTAR criteria (“A MeaSurement Tool to Assess systematic Reviews”) [10]; if the review met fewer than 7 out of the 11 AMSTAR criteria we rated the quality of evidence down one level (e.g. if a systematic review of randomized trials failed AMSTAR criteria we classified the quality of evidence as level 2 rather than level 1) [10]. Apart from one main question (see below), we did not perform a formal quality assessment of each body of evidence. We created a table categorizing and comparing the CPG statements and the highest level of evidence found in the literature in support of each statement. Two authors independently rated the quality of the evidence and resolved disagreement through discussion.

GRADE assessment of the threshold question

We found conflicting statements and a lack of evidence regarding one fundamental category that affects almost all other recommendations. This concerns the question: “is there a temperature above which antipyresis should be attempted in acute febrile infections in children?”—in short: the threshold question. Since the NICE guidelines [11] have previously been judged to be of high quality [8], and make a recommendation to treat distress rather than body
temperature, we thoroughly examined their data for evidence supporting a lack of temperature threshold and determined that the conclusion they came to was unjustified based on the evidence that they provided.

Two authors then independently attempted to address this question using the GRADE method [12]. One author used the search terms: “fever AND temperature threshold AND children AND guideline AND permissive treatment” and identified a pilot RCT trial [13] and 8 papers related to threshold that were surveys and thus deemed ineligible for inclusion in a GRADE analysis. The other author used the terms: {“acetaminophen”[MeSH Terms] OR “acetaminophen”[All Fields]} OR {“acetaminophen”[MeSH Terms] OR “acetaminophen”[All Fields]} OR “paracetamol”[All Fields]} OR antipyresis[All Fields] OR "ibuprofen”[MeSH Terms] OR "ibuprofen”[All Fields]} OR threshold[All Fields] OR "antipyretics”[Pharmacological Action] OR "antipyretics”[MeSH Terms] OR "antipyretics”[All Fields] OR "antipyretics”[All Fields]} AND (harm[All Fields] OR benefit[All Fields] OR outcome[All Fields] OR "mortality”[Subheading] OR "mortality”[All Fields] OR "mortality”[MeSH Terms]} OR "epidemiology”[Subheading] OR "epidemiology”[All Fields] OR "morbidity”[All Fields] OR "morbidity”[MeSH Terms]} OR “immune system phenomena”[MeSH Terms] OR "immune”[All Fields] AND "system”[All Fields] AND "phenomena”[All Fields]} OR “immune system phenomena”[All Fields] OR "immune”[All Fields] AND "function”[All Fields] OR "function”[All Fields] OR distress[All Fields]} AND (peak[All Fields] AND "body temperature”[MeSH Terms] OR “body”[All Fields] AND "temperature”[All Fields]} OR "body temperature”[All Fields]} OR “fever”[MeSH Terms] OR “fever”[All Fields]} OR “fever”[MeSH Terms] OR “fever”[All Fields] OR “tebrile”[All Fields]} OR “fever”[MeSH Terms] OR “fever”[All Fields]} OR “elevated”[All Fields] AND “temperature”[All Fields]} OR “elevated temperature”[All Fields]} and identified 1704 papers.

Results

Guideline selection

The search procedure identified 586 documents, of which 441 were excluded due to lack of relevance or duplication after screening titles and abstracts. The remaining records (n = 145) were retrieved in full text. After examining the full text version, a further 71 documents were excluded because they were not CPGs.

Finally, 74 guidelines [11, 14–86] were included: three international guidelines as well as the national guidelines for 49 countries (multiple guidelines published by different associations exist in some countries) (S1 Table). Six countries follow the recommendations of another national or international guideline. Therefore, our study represents the fever management recommendations of at least 55 countries.

A detailed inventory of the categories and sub-categories of recommendations revealed conflicting advice in all categories. Furthermore, only a few CPGs provided references to substantiate their recommendations. Table 1 and Fig 1–3 summarize the results; for full details, see S1 Table.

GRADE assessment. The search identified several articles addressing the impact of fever management on disease outcome in ICU patients. However, upon closer examination these studies either included a threshold value for rescue therapy and/or specifically excluded children [161]. With the exception of two studies [162, 163] (Table 2), even the placebo arms of antipyretic RCTs operated with a threshold rescue value; and neither study reported outcomes related to temperature and morbidity/mortality. It is likely that permissive management of fever did not result in negative outcomes because this would have been reported but as the outcomes were not measured, the studies could not be included.
Table 1. Recommendations and evidence level.

Threshold for treating fever
Recommendation/Statement

No: treat distress
No: treat distress + minimum temperature
Yes

Paracetamol

General information
Recommendation/Statement

Recommended
Sole recommended antipyretic
As the 1st line antipyretic
As 2nd line antipyretic after ibuprofen/physical methods

Dose determination
Follow doctor’s advice
Follow package instructions
Dose by age and weight
Dose by weight

Dosage (mg/kg/dose)
10
10–15
15
20

Dose interval
Give every 4 hours
Give every 4–6 hours
Give every 6 hours
Give every 6–8 hours

Maximum number of doses per day
Recommendation/Statement

2 doses
4 doses
5 doses
6 doses

Maximum dosage per 24 hours
Recommendation/Statement

40 mg/kg/day
60 mg/kg/day
65 mg/kg/day
80 mg/kg/day
90 mg/kg/day

(Continued)
Table 1. (Continued)

Maximum duration of treatment	Recommendation/Statement	Number of guidelines reporting (10)	OCEBM Evidence Level
			Level 3 for 72 hours [97]
			No published evidence directly comparing duration of treatment

| Ibuprofen | | | |

General information

Recommendation/Statement	Number of guidelines reporting (55)	OCEBM Evidence Level
Recommended	53	Level 1 for temperature reduction [88, 91, 98, 99]
		Level 2 for relief of discomfort, SR (downgraded because it it only included 3 studies and only 69% of children showed reduced distress) [88]
Not recommended	2	No published evidence supports this
As the 1st line antipyretic	0	Level 1 [88, 91, 98, 99]
As 2nd line antipyretic after paracetamol	11	No published evidence shows as inferior to paracetamol [90]

Caution/avoid in:		

Kawasaki disease	1	Level 5 pharmacologically sensible [100]
Influenza	1	Level 5 (SR of animal studies [101] + mention of unpublished data [102]; review [103]
Hemorrhagic fever	1	No direct published evidence
Liver disease	3	Level 4, several case reports summarized in review [90, 105, 106]
Chicken pox	12	Level 3, 5 observational studies [90, 107]
Allergy/asthma/hypersensitivity	3	Level 4, Retrospective [108]
Dehydration	8	Level 2 against! [90] and SR [109, 110]
Renal insufficiency	2	Level 4, summary of 11 case reports/retrospective [90]
GI disease	2	Level 4, summary of 12 case reports and retrospective studies [90]
Bacterial infection	1	Level 4, retrospective study, case control [111–114]
Complex medical conditions	2	No direct published evidence

Dose determination/instructions

Recommendation/Statement	Number of guidelines reporting (32)	OCEBM Evidence Level
Take with food	1	Level 5 against! [115]
Follow doctor’s advice	6	No direct published evidence
Follow package instructions	4	
Dose by weight	4	

Dosage (mg/kg/dose)

Recommendation/Statement	Number of guidelines reporting (17)	OCEBM Evidence Level
5–10 mg/kg/dose	3	Level 2, RCT [116]
7–10 mg/kg/dose	1	Level 2, RCT [117]
10 mg/kg/dose	8	Level 2, RCT [118]
10–15 mg/kg/dose	1	No published evidence

Interval between doses

Recommendation/Statement	Number of guidelines reporting (17)	OCEBM Evidence Level
6 hours	5	No direct published evidence comparing
6–8 hours	11	
8 hours	1	
Table 1. (Continued)

Maximum number of doses per day	Recommendation/Statement	Number of guidelines reporting (10)	OCEBM Evidence Level
			No direct published evidence comparing
2 doses		1	No direct published evidence comparing
3 doses		3	No direct published evidence comparing
4 doses		6	No direct published evidence comparing
Maximum dosage per 24 hours (mg/kg/day)	Recommendation/Statement	Number of guidelines reporting (10)	OCEBM Evidence Level
20–30 mg/day		2	No direct published evidence comparing
30 mg/day		2	No direct published evidence comparing
40 mg/day		4	No direct published evidence comparing
45 mg/day		1	No direct published evidence comparing
1200 mg/day		1	No direct published evidence comparing
Maximum duration of treatment	72 hours	3	No direct published evidence

Acetylsalicylic acid

General	Recommendation/Statement	Number of guidelines reporting (29)	OCEBM Evidence Level
Not recommended < 18 years		16	Level 4, based on epidemiological association with Reyes syndrome, aspirin should not be used to treat acute febrile viral illness in children [119]
Recommended/possible		13	No direct published evidence
Minimum age			
> 5 years		1	No direct published evidence stating exactly which age aspirin is safe
> 10 years		1	No direct published evidence
> 12 years		2	No direct published evidence
> 14 years if they have already had varicella		1	
> 15 years		1	No direct published evidence
> 16 years		2	No direct published evidence
Dosage			
60 mg/kg/day		1	No direct published evidence
1g/3 times per day		1	No direct published evidence
Avoid in			
Chicken pox		2	Level 4, case report [120]
Hemorrhagic disorders		1	Level 5, due to effect on platelets and bleeding diathesis [121]

Other antipyretics

Ketoprofen	Recommendation/Statement	Number of guidelines reporting (9)	OCEBM Evidence Level
Recommended		4	Level 2, RCT [122, 123]
Follow doctor’s advice		1	Level 2, RCT for 0.5 mg/kg/dose [122]
2mg/kg/day in 4 doses		3	Level 2, RCT [124, 125]
Diclofenac	Recommended 2nd line	1	Level 3, RCT [124, 125]
Every 12 hours		1	No published evidence
Mefenamic acid	Recommended	3	Level 3, RCT [126]
Not recommended		1	Level 4 [127]
Follow doctor’s advice		1	No published evidence
6–7 mg/kg/dose max 3 times per day		2	Level 3, RCT [126]
Metamizole	Recommended	2	Level 3, RCTs downgraded [128, 129]
Not recommended		3	Level 3, Single blind clinical trial [130]
Prescription only		1	No published evidence
10–15 mg/kg, every 6–8 hours		1	No published evidence
Naproxen sodium	Recommended	1	Level 3, RCT [131]
Not recommended		1	No published evidence
220 mg every 8–12 hours (>12 years)		1	No published evidence

Alternating/combining antipyretics

(Continued)
Table 1. (Continued)

Recommendation/Statement	Number of guidelines reporting (39)	OCEBM Evidence Level
Not recommended	28	Level 1, SR [132–134]
Alternate and/or combine if necessary	8	No published evidence
Insufficient evidence to make recommendation	1	Level 1, Cochrane review [136]
Switching to other drug if 1st line drug fails	3	No published evidence showing a benefit to this

Prevention of febrile seizures

Antipyretics not recommended for prevention	26	Level 1, SR [137–139] RCT
Evidence is inconclusive	1	No published evidence
Recommended for prevention	10	Level 3, Prospective study [140]

Age dependent treatment recommendations

General

Recommendation/Statement	Number of guidelines reporting (21)	OCEBM Evidence Level
<2 months Extend interval between paracetamol doses to 6–8 hours	1	Level 5, review of pharmacokinetics/dynamics [141]
No paracetamol < 2 months	2	No direct published evidence
No paracetamol < 6 weeks	1	No direct published evidence
Only paracetamol is recommended for neonates	1	No direct published evidence
Paracetamol not recommended for neonates	4	No direct published evidence
Neonatal dosage 10mg/kg/dose 3–4 times per day	1	No direct published evidence
Neonatal dosage 7.5 mg/kg/dose max 30 mg/kg/day	1	No direct published evidence
Premature infants < 32 weeks 15mg/kg/dose, 8–12 hours, 2 doses per day	1	Level 5 [141]
32–36 weeks 15mg/kg/dose, 6–8 hours, 3 doses per day	1	No direct published evidence
>37 weeks 15mg/kg/dose, 4–6 hours, 4 times per day	1	No direct published evidence
<4 months Paracetamol recommended from 3 months	3	No direct published evidence
Follow doctor’s advice when child is less than 3 months	1	
Follow doctor’s advice when child is less than 4 months	1	
Avoid ibuprofen < 3 months	4	
Maximum dose paracetamol < 3 months 60mg/kg/day	1	
Maximum dose paracetamol > 3 months 80mg/kg/day	1	
<6 months Avoid ibuprofen < 6 months	11	Level 4 review of evidence [142]; can be used safely age 3–6 months, dosage 5–10 mg/kg
Ibuprofen has more side effects in children < 6 months	1	
Ibuprofen 5mg/kg/dose	1	
Follow doctor’s advice when child is less than 6 months	1	No published evidence
Avoid mefenamic acid if child is less than 6 months	2	
Avoid ketoprofen if child is less than 6 months	2	
Table 1. (Continued)

Age Group	Recommendations	Number of Guidelines Reporting	OCEBM Evidence Level
<1 year	Ibuprofen should be avoided if child is less than 1 year	1	No direct published evidence supports this; safe from 3rd month [142]
	Diclofenac should be avoided if child is less than 1 year	1	
	Avoid compresses in children less than 1 year	1	
>10 years	Paracetamol dose is 500mg-1g every 6–8 hours, max 4g per day	1	No direct published evidence
>12 years	Nimesulide is an option	1	Level 2, SR [143] suggests it is possible >6 months
	Nurofen is an option	1	No published evidence
	Naproxen sodium is an option	1	No published evidence

Physical methods

Method	Recommendation/Statement	Number of Guidelines Reporting	OCEBM Evidence Level
Cool/ice bath	Not recommended	34	Level 2 (for temporary antipyretic effect but unphysiological) RCT [144]; Level 2, RCT [144] causes discomfort
	Recommended	5	No published evidence
Alcohol rubs	Not recommended	12	Level 1, dramatic effect case reports [145–149]
Lukewarm baths	Recommended	4	See tepid sponge baths
Physical measures	Recommended	1	No published evidence
should be 1st line			

Tepid sponging

Method	Recommendation/Statement	Number of Guidelines Reporting	OCEBM Evidence Level
	Not recommended	16	Level 1, SR [150, 151]
	Recommended	33	No direct published evidence

Instructions for sponge baths

Method	Number of guidelines reporting	OCEBM Evidence Level
Water temperature 37˚C and progressively cool	1	No direct published evidence; RCT showed that adding sponging to antipyretic not effective [152]
Water temperature 27–35˚C	1	
Sponge bath 30min after taking antipyretic	4	
Add peppermint oil to bath	1	
Alternative in case of allergy to antipyretic	1	
max. duration: 30 min	1	

Compresses

Method	Number of guidelines reporting	OCEBM Evidence Level
	Not recommended	8
	Recommended	18
Use if antipyretic fails	2	
Use after antipyretic	2	
Head/face	5	
Neck	1	
Arms	1	
Calves	6	
Armpits & groin	1	
Avoid if extremities are cold	1	
Apply for 20 min and repeat	1	
Ice packs over large vessel areas	1	

Fluid intake

Method	Number of guidelines reporting	OCEBM Evidence Level
Encourage increased fluid intake	56	Level 3, SR [153] exercise care

(Continued)
Table 1. (Continued)

Type of fluids	Cool drinks	2	No direct published evidence
	Water	10	
	Fruit juice	4	
	Dilute fruit juice	5	
	Breast milk	3	
	Formula	1	
	Vegetable stock	1	
	Electrolyte solution	1	
	Jello	1	
	Rice water	1	
	Coconut milk	1	
	Fizzy/soft drinks	2	
	Popsicles	3	
	Tea	3	
	Cows milk	2	
	Cordial	1	
Amount	50-80ml/kg	1	
	10cc/kg/°C rise in temperature	1	

Nutrition

Instructions	Recommendation/Statement	Number of guidelines reporting (13)	OCEBM Evidence Level
	Normal if child doesn’t want to eat; don’t force	9	No direct published evidence
	Feed the child if hungry	1	
	Light, low-fat diet	2	
	Offer child’s regular foods	2	
	Offer favourite food	1	
	Eat small amounts frequently	1	

Type of foods recommended	Salty soup	4	
	Fresh fruit	2	
	Popsicles	2	
	Gelatine	2	
	Low fat biscuits	1	
	Noodles	1	
	Porridge	1	

Environment

Ambient Temperature	Recommendation/Statement	Number of guidelines reporting (24)	OCEBM Evidence Level
	Warm room	3	No direct published evidence
	21–23°C	1	
	20–22 °C	1	
	20–21°C	1	
	Normal/child preference	4	
	Not too warm	2	
	Cool	12	

(Continued)
Fan/ventilated room	Recommendation/Statement	Number of guidelines reporting (19)	No direct published evidence
No fanning or ventilation	2		
Fan/ventilation recommended	15		
No drafts	1		
Fan over liquid to increase heat loss	1		
Fan if room is stuffy	1		
According to comfort of child	2		
Possible, but inconclusive research	1		

Dress of the child	Recommendation/Statement	Number of guidelines reporting (48)	Level 5, physiological; dress appropriately for fever phase [154]
Remove excess clothing	5		
Dress in light weight clothing	23		
Undress/underwear	10		
Dress according to child’s comfort	5		
Don’t overdress	2		
Don’t underdress	2		
Dress normally	1		

Cover /uncover	Recommendation/Statement	Number of guidelines reporting (30)	Level 5, cover according to phase of fever [154] RCT on uncovering [155] vs. paracetamol and sponging that showed very little benefit to unwrapping
Cover lightly	13		
Cover if cold, uncover if hot, according to child’s comfort	11		
Don’t overbundle	2		
Cover during phase of temperature rise and remove later	1		
Change sheets frequently	1		
Uncover	4		

Activity Level	Recommendation/Statement	Number of guidelines reporting (14)	Level 3, clinical trial: bed rest not necessary) [156]
Promote rest	7		
Follow child’s wishes	3		
Bed rest is not necessary	4		
Stay at home	3		

Complementary/alternative recommendations	Recommendation/Statement	Number of guidelines reporting (5)	Level 3, prospective cohort study [157]; RCT [158]
Anconitum (homeopathy)	2		
Belladonna (homeopathy)	2		
Ferrum phosphoricum (homeopathy)	2		
Chamomile (homeopathy)	1		
Mixtures (homeopathy)	1		
Enema	1	Level 4 [159, 160] case study	
Stomach lavage	1	No direct published evidence	
Vinegar mustard rub	1		

https://doi.org/10.1371/journal.pone.0245815.t001
Discussion

Main findings

A comparison of worldwide fever management guidelines, revealed striking discrepancies with each other and with scientific literature on all parameters. The heterogeneity of the recommendations and the low quality of evidence on which they are based, point to a need for better data. Our findings are in line with the previous work of other authors and demonstrate, that many discordant suggestions in guidelines at national or international could be improved [8], in particular, our review stated this fact for recommendations for the use of antipyretics, relevant temperature parameters and treatments. In contrast to previous studies of CPGs, which
showed what improvements are needed in terms of methodology, the applicability and the editorial independence domains [8], our review complements the previous work by the result of low or indeterminable evidence levels for recommendations and a very low level of evidence for the threshold for antipyresis. Through summarizing and assessing the available evidence, we provide an extensive basis for the development of a consensus and evidence based, interdisciplinary fever guideline.

Temperature threshold for antipyresis: Evidence vs. clinical practice. The majority of CPGs recommend against treatment of fever itself, regardless of temperature. In the guidelines that give a threshold for antipyresis, there is little agreement about the temperature, with values ranging from 37.5˚C to 40.5˚C and no rationale provided. Our GRADE assessment suggests—with a very low quality of evidence—that there is no need for a threshold for antipyresis below 39.5 ˚C because that was the maximum threshold used in the studies [13, 161]. Whether a threshold is necessary remains unclear because there are no adequate studies. Despite the majority of guidelines recommending against giving antipyretics based on body temperature, studies of health care workers have shown that most believe that the risk of heat-related adverse outcomes is increased with temperatures above 40˚C (104˚F) and that more than 90%...
of doctors prescribe antipyretic therapy at temperatures >39˚C [164, 165]. Even in the UK, a country with longstanding guidelines that recommend only treating distress, a large study of pediatric ICUs has shown that the threshold for treatment of fever is still 38˚C and that 58% of care-givers asked, considered a fever of 39˚C unacceptable [166].

Pharmacologic treatment: Choice of drug, dosing, adverse effects. Paracetamol is the only medication recommended by all guidelines and 17 give it preference over ibuprofen. Although high quality evidence (Level 1) has shown that they are both effective in lowering temperature, the evidence for effectiveness in distress reduction (the more relevant outcome) is lower (Level 3). There is no justification for paracetamol being the sole, or debatably, even the first-choice antipyretic as no systematic review or RCT comparing it with ibuprofen has shown a superior effect or safety profile. 15 out of 30 RCTs comparing paracetamol and ibuprofen concluded that ibuprofen is superior in effect while the remainder found no significant difference in either effect or safety profiles [90]. This raises the question as to whether paracetamol should be relegated to second-line [91, 167] because while the safety profiles of both drugs are equivalent at therapeutic doses, the toxic level of paracetamol is reached much sooner and causes more deaths than supratherapeutic doses of ibuprofen [7, 168]. Adverse effects caused by ibuprofen generally resolve, although there have been deaths due to triggering of asthma as well as long-term complications from toxic epidermal and soft tissue necrolysis [90]. Also, despite high level evidence [132–134] that combining/alternating antipyretics leads to little additional benefit in temperature control, is associated with a higher risk of supratherapeutic dosing and has not been shown to reduce discomfort, the rate of alternating antipyretics in medical practice is 67% [169]. Given that parents misdose antipyretics in almost half of cases with 15% using supratherapeutic doses [170], arriving at a consensus regarding medication choice and dose, along with methods of communicating this to parents would be a valuable contribution towards standardization of fever management. For a full discussion of dosage recommendations, see e-Supplement.

Antipyretics for prevention of febrile seizures: No evidence. Several systematic reviews and RCTs have shown that antipyretics are ineffective in preventing febrile seizures (Level 1 [137–139]). Interestingly, one trial found that antipyretics are ineffective in lowering the temperature at all during febrile episodes that are associated with febrile seizure [138]. However, a recent study concluded that rectal paracetamol administration significantly decreased the likelihood of recurrent febrile seizures during the same fever episode [140].

Nonpharmacologic measures: Fluid intake, bath, rubs and compressions. Many guidelines recommend an adequate/increased intake of fluids in order to avoid dehydration. Caution should be observed in universally recommending increased fluids as it may cause harm [153]. No direct published evidence was found regarding the optimal amount or type of fluid intake during fever. Proctoclysis is only mentioned in one guideline though the literature suggests that it could be helpful in maintaining hydration status (Level 4), resulting in increased well-being and fewer hospitalizations [159, 160, 171–178]. Nutrition is mentioned in 25% of the guidelines with a majority in agreement that children should not be forced to eat during fever. We did not identify any studies on this.

In terms of other physical recommendations, several seemingly opinion based, contradictory approaches are mentioned: cool to warm room temperatures, ventilated to unventilated rooms, bundling to undressing the child completely, and bedrest to normal activity. A systematic review that attempted to analyze these factors [150] found that there were no studies investigating physiological interventions or environmental cooling measures as separate interventions.

Given the lack of evidence, one may appeal to knowledge of the fever process to determine that appropriate use of physical measures depends on the fever phase: As the fever is rising, the child should be kept warm or even actively warmed—thus reducing the energy needed to
develop fever and thereby discomfort. Once the child is warm all the way to its feet and starts sweating, layers of sheets and clothing can be carefully removed (level 5 [154]).

Despite high level evidence (level 1) that tepid sponging increases discomfort and should be avoided [150, 151], 61% of guidelines are still in favor of its use. Recommendations about compresses show a similar distribution (63% in favor) though fewer guidelines address the topic and little directly applicable research is available. The decrease in temperature that results from external cooling is of short duration. A mismatch between the hypothalamic set point and skin temperature leads to peripheral vasoconstriction and metabolic heat production, which results in shivering and increased discomfort of the child. The initial small reduction in body temperature may not be worth the potential discomfort and the use of these methods indicates a continued focus on the reduction of body temperature rather than distress.

Complementary recommendations. Recommendations on complementary treatments only appear in three guidelines, despite their widespread use by parents and health professionals. The evidence for the proposed treatments is low (Level 4)–perhaps partially because most forms of alternative medicine do not advocate fever suppression as a treatment goal. With regard to well-being, the scientific literature suggests greater or equal efficacy and satisfaction compared with conventional treatments, with high safety and tolerability [157, 158, 179–181].

Other potential issues not yet included in the published guidelines. Digital media: None of the guidelines mention screen exposure. Most countries are beginning to formulate recommendations on child screen exposure [182]. We point to the need for recommendations on screen use in illness.

Parental care by interaction and empathy and relationship: None of the guidelines mention the quality of parental care during illness, which may be the most important factor for both immediate well-being and long-term health [183]. Finding ways to reduce fever phobia by education or counseling intervention may contribute to relational and empathetic fever management and facilitate a significant reduction of distress [184, 185].

Limitations and strengths

Only 74 guidelines were retrieved which, considering the high frequency of fever, is fewer than expected. We cannot exclude that other documents exist as some may not be online and our attempts to contact these countries’ pediatric societies per email did not yield any additional documents. Out of a responsibility for resource investment, we refrained from duplicate assessment of guideline eligibility, risk of bias for the individual intervention and duplicate data extraction (except for the GRADE assessment, which was duplicate), judging that minor changes would have no effect on the overall guideline assessment results. Due to a lack of information regarding the developmental procedure of most guidelines, an overall assessment of quality (using AGREE II) was not feasible. Therefore, we chose to examine the supporting evidence for each of the recommendations using the OCEBM criteria [9] and discuss the results based on the highest level of evidence. This is a unique strength of this review.

Conclusion

A comparison of worldwide fever management guidelines, revealed some uniform themes and recommendations supported by a high level of evidence, but also striking discrepancies and a low level of evidence supporting most recommendations. So far, we can conclude that some recommendations should be part of all guidelines:

- Parents and carers should be educated about the benefits of fever, and how to recognize and act on othersigns of danger and judge the condition rather than fever alone.
• In an otherwise healthy child with an acute febrile infection, treatment should focus on reduction of distress rather than temperature (Level 5). The social and physical environment should be optimized before considering use of antipyretic medications (Level 5).

• Antipyretics should not be combined (Level 1), or routinely alternated (Level 1), and be used, if at all, only as long as the child appears distressed (Level 5).

• Antipyretics should not be given with the intention of preventing febrile seizures (Level 1)

• External cooling may increase discomfort and metabolic strain (Level 1).

None of the CPGs include statements about the potential benefits of fever (level 1). Studies are needed to assess whether educating parents and carers (i.e. about the side effects of antipyretics, the positive immunological effects of fever and how to recognize signs of danger) influences outcomes. The question as to whether or not there should be a threshold for initiating antipyresis must be met with solid evidence.

Supporting information
S1 Checklist. PRISMA checklist.
(DOC)

S1 Table. Table of all details.
(XLSX)

Acknowledgments
Jana Wachmeister, M.Sc., is thanked for systematic literature searches and data curation.

Author Contributions
Conceptualization: David Martin.
Data curation: Cari Green.
Formal analysis: Gordon Guyatt.
Writing – original draft: Hanno Krafft.

References
1. DuBOIS EF. Why are fever temperatures over 106 degrees F. rare? Am J Med Sci. 1949; 217: 361–368. https://doi.org/10.1097/00000441-194904000-00001 PMID: 18115151

2. Karwowska A, Nijssen-Jordan C, Johnson D, Davies HD. Parental and health care provider understanding of childhood fever: a Canadian perspective. CJEM. 2002; 4: 394–400. https://doi.org/10.1017/s1481803500007892 PMID: 17637156

3. Crocetti M, Moghbeli N, Serwint J. Fever phobia revisited: have parental misconceptions about fever changed in 20 years? Pediatrics. 2001; 107: 1241–1246. https://doi.org/10.1542/peds.107.6.1241 PMID: 11389237

4. Elkon-Tamir E, Rimon A, Scolnik D, Glatstein M. Fever Phobia as a Reason for Pediatric Emergency Department Visits: Does the Primary Care Physician Make a Difference? Rambam Maimonides Med J. 2017;8. https://doi.org/10.5041/RMMJ.10282 PMID: 28178434

5. Pursell E, Collin J. Fever phobia: The impact of time and mortality—a systematic review and meta-analysis. Int J Nurs Stud. 2016; 56: 81–89. https://doi.org/10.1016/j.ijnurstu.2015.11.001 PMID: 26643444

6. Duff GW. Is fever beneficial to the host: a clinical perspective. Yale J Biol Med. 1986; 59: 125–130. PMID: 3488618
7. Nourjah P, Ahmad SR, Karwoski C, Willy M. Estimates of acetaminophen (Paracetamol)-associated overdoses in the United States. Pharmacoepidemiol Drug Saf. 2006; 15: 398–405. https://doi.org/10.1002/pds.1191 PMID: 16294364

8. Chiappini E, Bortone B, Galli L, de Martino M. Guidelines for the symptomatic management of fever in children: systematic review of the literature and quality appraisal with AGREE II. BMJ Open. 2017; 7: e015404. https://doi.org/10.1136/bmjopen-2016-015404 PMID: 28760789

9. OCEBM Levels of Evidence Working Group. The Oxford Levels of Evidence 2. In: Oxford Centre for Evidence-Based Medicine [Internet]. 1 May 2016 [cited 13 Sep 2018]. Available: https://www.cebm.net/index.aspx?o=5653

10. Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ. 2017; 358: j4008. https://doi.org/10.1136/bmj.j4008 PMID: 28935701

11. National Institute for Health and Care Excellence (NICE). Fever in under 5s: assessment and initial management | Guidance and guidelines | NICE. 2017 [cited 23 May 2018]. Available: https://www.nice.org.uk/guidance/cg160

12. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008; 336: 924–926. https://doi.org/10.1136/bmj.39489.470347.AD PMID: 18436948

13. Peters MJ, Woolfall K, Khan I, Deja E, Mouncey PR, Wulff J, et al. Permissive versus restrictive temperature thresholds in critically ill children with fever and infection: a multicentre randomized clinical pilot trial. Crit Care. 2019; 23: 69. https://doi.org/10.1186/s13054-019-2354-4 PMID: 30845977

14. When the baby has a fever. In: Naver Blog | Yonsei Bärenpaedie [Internet]. [cited 24 Sep 2020]. Available: https://blog.naver.com/gomdori4585/221229492288

15. Ministry of Public Health, General Directorate of Pharmaceutical Affairs. National Standard Treatment Guidelines for the Primary Level. 2013. Available: http://apps.who.int/medicinedocs/documents/s21744en/s21744en.pdf

16. L’association des pédiatres libéraux d’Alger (APLA). Childhood fever: what to do? In: apla [Internet]. [cited 23 May 2018]. Available: http://www.apla-dz.org/conseils-aux-parents/maladies-infantiles/votre-enfant-a-de-la-fievre/

17. SAP. Argentine Society of Pediatrics | News | Fever. [cited 24 Sep 2020]. Available: http://www.sap.org.ar/

18. What to do and what is forbidden if the baby has a fever [cited 24 Sep 2020]. Available: http://arabkirjmc.am/baby-high-temperature/

19. NSW Department of Health. Children and Infants with Fever—Acute Management. 2010. Available: http://www1.health.nsw.gov.au/pds/ActivePDSDocuments/PD2010_063.pdf

20. Fever Without Source—Kids Health WA (PMH ED Guidelines). In: Kids Health WA (PMH ED Guidelines) [Internet]. [cited 23 May 2018]. Available: http://kidshealthwa.com/guidelines/fever-without-source/

21. South Australian Child Health Clinical Network. Management of Fever without Focus in Children (excluding neonates), Clinical Guideline. 2013. Available: http://www.sahealth.sa.gov.au/wps/wcm/connect/812ad70040d041b4972cb40b897efc8/Fever-without-Focus_Apr2015.pdf?MOD=AJPERES&CACHEID=812ad70040d041b4972cb40b897efc8

22. Clinical Practice Guidelines: Febrile child. [cited 24 Sep 2020]. Available: https://www.rch.org.au/clinicalguide/guideline_index/Febrile_child/

23. Joana Briggs Institute. Management of the Child with Fever. 2004. Available: http://www.babyhintsandtips.com/wp-content/uploads/2013/05/feverhandout.pdf

24. Österreichische Gesellschaft für Kinder- und Jugendheilkunde. Fieber und Schmerzen: Was tun? Available: http://www.paediatrie.at/home/Spezialbereiche/Infektiologie/fieber_und_schmerzen_bei_kindern_was_tun.php

25. Fever In Children. [cited 23 May 2018]. Available: http://www.pediatrie.be/fr/xi-la-fievre-chez-l_enfant/251/2

26. Arteaga Bonilla R. Fever and the use of antipyretics in children. Revista de la Sociedad Boliviana de Pediatría. 2011; 50: 27–29.

27. Fever: Beware of fever phobia. SBP [Internet]. [cited 24 Sep 2020]. Available: https://www.sbp.com.br/especiais/pediatra-para-familias/cuidados-com-a-saude/febre-cuidado-com-a-febrephobia/

28. The College of Family Physicians Canada. Fever in Infants and Children. 2011 [cited 23 May 2018]. Available: http://www.cfpc.ca/ProjectAssets/Templates/Resource.aspx?id=3596
29. What you need to know: fever. [Internet]. [cited 24 Sep 2020]. Available: https://www.cheo.on.ca/en/resources-and-support/resources/P5325E.pdf
30. Government of Manitoba. Healthy Child, Caring for a Child with Fever. 2006. Available: https://www.gov.mb.ca/health/documents/fever.pdf
31. Canada Pharmacist’s Association. Fever. 2010. Available: http://www.pharmacists.ca/cpha-ca/assets/file/store/PSC-Fever.pdf
32. Canadian Pediatric Society. Fever and temperature taking—Caring for Kids. 2015 [cited 23 May 2018]. Available: https://www.caringforkids.cps.ca/handouts/fever_and_temperature_taking
33. SOCHIPE—Soc. Chilena de Pediatrı́a. Fever: Outpatient Treatment. 2013 [cited 23 May 2018]. Available: http://www.sochipe.cl/v3/presenta_dos.php?id=610
34. Colombian Society of Pediatrics | SCP Colombian Society of Pediatrics. [cited 24 Sep 2020]. Available: https://scp.com.co/
35. Fever in the child. In: ACOPE C.R. [Internet]. 11 Apr 2018 [cited 24 Sep 2020]. Available: https://acopecr.com/fiebre-en-el-nino/
36. Nurse performance at a fever in children. [cited 24 Sep 2020]. Available: https://www.revista-portalesmedicos.com/revista-medica/actuacion-enfermera-cuadro-febril/
37. Fever and fever phobia Cyprus Pediatric Society. [cited 24 Sep 2020]. Available: https://www.child.org.cy/phobia-of-fever/
38. When the child has a fever. Drug and Therapeutics Bulletin. 2008; 46: 17–21. https://doi.org/10.1136/dtb.2008.03.0005 PMID: 18337462
39. Asociación de Pediatrı́a de El Salvador. What you need to know about your child’s fever. In: Asopedes [Internet]. 24 Sep 2015 [cited 23 May 2018]. Available: http://asopedes.org/lo-que-debe-saber-sobre-la-fiebre-de-su-hijo/
40. Haute Autorite de Sante. Management of fever in children. 2016. Available: https://www.has-sante.fr/portail/upload/docs/application/pdf/2017-03/dir5/guidance_leaflet_management_of_fever_in_children.pdf
41. Agence française de sécurite sanitaire des produits de santé (Afssaps). Update on the management of fever in children. Available: http://ansm.sante.fr/var/ansm_site/storage/original/application/8a3e72e8e8c90f68797a73832372321.pdf
42. Société Française de Pédiatrie. Symptomatic Management of Young Childhood Fever. 2004 [cited 23 May 2018]. Available: http://www.sfpediatrie.com/recommandation/prise-en-charge-symptomatique-de-la-f%C3%A8vre-du-jeune-enfant
43. Der Berufsverband der Kinder- und Jugendärzte. Fever. [cited 23 May 2018]. Available: https://www.kinderarzte-im-netz.de/erste-hilfe/sofortmassnahmen/fieber
44. Fever in children patient guideline. [cited 23 May 2018]. Available: http://www.patientenleitlinien.de/Fieber_Kindersalter/fieber_kindersalter.html
45. Niehues T. The febrile child: diagnosis and treatment. Dtstch Arztebl Int. 2013; 110: 764–773; quiz 774. https://doi.org/10.3238/arztebl.2013.0764 PMID: 24290365
46. Parents info fever. In: Deutsche Gesellschaft für Kinder- und Jugendmedizin [Internet]. [cited 24 Sep 2020]. Available: https://www.dgkj.de/eltmen/dgkj-eltmeninformationen/dgkj-info-fieber
47. Ministry of Health, Republic of Ghana. Standard Treatment Guidelines:—Ch 19 Fever. 2010. Available: http://apps.who.int/medicinedocs/documents/s18015en/s18015en.pdf
48. Indian Academy of Pediatrics (IAP) | Search. [cited 24 Sep 2020]. Available: https://iapindia.org/search.php
49. Jehangir Apollo hospital. Fever in children. 2013. Available: http://www.jehangirhospital.com/blog/item/2-fever-in-children
50. Handling Fever in Children. In: IDAI [Internet]. [cited 24 Sep 2020]. Available: https://www.idai.or.id/artikel/klinic/keluhan-anak/penanganan-demam-pada-anak
51. Irish College of General Practitioners. Antipyretic Prescribing 2013. 2013 [cited 23 May 2018]. Available: https://www.icgp.ie/library/catalogue/item/6686EC55-D046-1DCB-B9ED227FA2C07DA6
52. Chiappini E, Venturini E, Remaschi G, Principi N, Longhi R, Tovo P-A, et al. 2016 Update of the Italian Pediatric Society Guidelines for Management of Fever in Children. J Pediatr. 2017; 180: 177–183.e1. https://doi.org/10.1016/j.jpeds.2016.09.043 PMID: 27810155
53. Kodomo QQ Kids Emergency (ONLINE-QQ)—Go to the hospital by car/taxi. [cited 24 Sep 2020]. Available: http://kodomoo-q.jp/en/?pname=hatsunetsu%2Fr2
54. Jordan Pediatric Society. Fever in children. [cited 24 Sep 2020]. Available: https://jps.org.jo/
55. Clinical Guidelines for Diagnosis and Treatment of Common Conditions in Kenya.: 356.
56. Al Salam Hospital. Fever and Its Treatment. [cited 23 May 2018]. Available: http://www.sih-kw.com/Fever_En.cms?ActiveID=1132

57. Ministère-DIRECTION de la Santé. Fièvre. 2005 [cited 23 May 2018]. Available: http://www.sante.public.lu/fr/maladies/zone-corps/sang/fievre/index.html

58. La fièvre chez les enfants | Kannerklinik. [cited 24 Sep 2020]. Available: https://kannerklinik.ch.lu/fr/dossier/la-fievre-chez-les-enfants

59. Dutch College of General Practitioners. Children with Fever (Page 25). 2016. Available: https://assortiment.tsl.nl/files/e27c6c2f-8fa3-4f91-9c60-39597b8efc7d/voorbeeldhoofdstuk.pdf

60. NVK—Document. [cited 24 Sep 2020]. Available: https://www.nvk.nl/themas/kwaliteit/overige-kennisdocumenten/document?documentregistrationid=8257539

61. Starship Children’s Hospital of New Zealand. Fever Investigation and Management. 2009 [cited 23 May 2018]. Available: https://www.starship.org.nz/for-health-professionals/starship-clinical-guidelines/f/fever-investigation-and-management/

62. Fever in children. In: Ministry of Health NZ [Internet]. [cited 24 Sep 2020]. Available: https://www.health.govt.nz/your-health/conditions-and-diseases/diseases-and-illnesses/fever/fever-children

63. The Norwegian Medical Association. [cited 24 Sep 2020]. Available: https://www.legeforeningen.no/

64. Png Paediatric Society. Standard Treatment for Common Illnesses of Children in Papua New Guinea (Page 61). 2016. Available: http://pngpaediatricsociety.org/wp-content/uploads/2016/11/PNG-Standard-Treatment-Book-10th-edition-2016.pdf

65. Isolated fever. In: Issuu [Internet]. [cited 24 Sep 2020]. Available: https://issuu.com/procoale_pediatrica/docs/45_febera_izolata

66. Union of Pediatricians of Russia. In: Union of Pediatricians of Russia [Internet]. [cited 24 Sep 2020]. Available: https://www.pediatr-russia.ru/parents_information/soveti-roditelyam/likhoradka.php

67. Fever: What is it, medication, other measures and when to consult a doctor. | KKH. [cited 24 Sep 2020]. Available: https://www.kkh.com.sg/patient-care/conditions-treatments/fever-childhood-illnesses

68. Green R, Jeena P, Kotze S, Lewis H, Webb D, Wells M, et al. Management of acute fever in children: guideline for community healthcare providers and pharmacists. S Afr Med J. 2013; 103: 948–954. https://doi.org/10.7196/samj.7207 PMID: 24300636

69. Fever: what to do when the child has a fever? In: EnFamilia. [cited 24 Sep 2020]. Available: https://enfamilia.aeped.es/temas-salud/que-hacer-cuando-nino-tiene-fiebre

70. Swiss Pediatrics Association. When children are ill: some advice for parents. 1995. Available: http://www.swiss-paediatrics.org/sites/default/files/parents/10-16_ans/parentespdf/2012.12.31_ryan_kate_e_homepage.pdf

71. Ministry Of Health Government Of Southern Sudan. Prevention & Treatment Guidelines for Primary Healthcare Centers and Hospitals. 2006. Available: http://apps.who.int/medicinedocs/documents/s21010en/s21010en.pdf

72. Fever in children [cited 23 May 2018]. Available: https://www.1177.se/Other-languages/Engelska/Barn/Feber—vad-kan-man-gora-sjalv/

73. Swiss Pediatrics Association. When children are ill: some advice for parents. 1995. Available: http://www.swiss-paediatrics.org/sites/default/files/parents/10-16_ans/maladie/pdf/2012.12.31_ryan_kate_e_homepage.pdf

74. Ministry of Health and Social Welfare. Standard Treatment Guidelines and Essential Medicines List. 2013. Available: http://www.who.int_SELECTION_medicines/country_lists/Tanzania_STG_052013.pdf

75. Ministry of Health Tuvalu. Standard Treatment Guidelines. 2010. Available: https://srhr.org/abortion-policies/documents/countries/02-Tuvalu-Standard-Treatment-Guidelines-2010.pdf

76. Association of Ukrainian Pediatricians. Fever and Hyperperexia In Children. Available: http://www.uf.ua/wp-content/uploads/2017/05/Georgiyants_Lyhomanka_giperpreksiya_dity_ENG_R_verstka_c.pdf

77. Mayo Clinic. Fever: First aid, 2015 [cited 23 May 2018]. Available: https://www.mayoclinic.org/first-aid/first-aid-fever/basics/ART-20056685/?p=1

78. American Academy of Pediatrics. Fever. In: HealthyChildren.org [Internet]. 2016. Available: http://www.healthychildren.org/English/health-issues/conditions/fever/Pages/default.aspx

79. UpToDate. Fever in children (Beyond the Basics). 2017. Available: https://www.uptodate.com/contents/fever-in-children-beyond-the-basics

80. PubMed Health. Fever in children: How can you reduce a fever? 2016 [cited 23 May 2018]. Available: https://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0072637/
81. Sullivan J E. Fever and Antipyretic Use in Children | From the American Academy of Pediatrics | Pediatrics. 2011 [cited 23 May 2018]. Available: http://pediatrics.aappublications.org/content/127/3/580 https://doi.org/10.1542/peds.2010-3852 PMID: 21357332

82. Fever in Infants and Children—Pediatrics. In: MSD Manual Professional Edition [Internet]. [cited 24 Sep 2020]. Available: https://www.msdmanuals.com/professional/pediatrics/symptoms-in-infants-and-children/fever-in-infants-and-children

83. SVPP. [cited 24 Sep 2020]. Available: http://www.svpediatria.org/

84. Medecins Sans Frontieres. Clinical Guidelines: Diagnosis and Treatment Manual. 2016. Available: http://refbooks.msf.org/msf_docs/en/clinical_guide/cg_en.pdf

85. WHO/Unicef. Handbook IMCI: Integrated management of childhood illness. 2007. Available: http://apps.who.int/iris/bitstream/10665/42939/1/9241546441.pdf

86. World Health Organization. WHO pocketbook of hospital care for children: guidelines for the management of common childhood illness. 2007. Available: http://apps.who.int/iris/bitstream/10665/81170/1/9789241548373_eng.pdf

87. Mackowiak PA, Boulant JA. Fever’s Glass Ceiling. Clinical Infectious Diseases. 1996; 22: 525–536. https://doi.org/10.1093/clinids/22.3.525 PMID: 8852974

88. Narayan K, Cooper S, Morphet J, Innes K. Effectiveness of paracetamol versus ibuprofen administration in febrile children: A systematic literature review: Antipyretics in paediatric fever. Journal of Paediatrics and Child Health. 2017; 53: 800–807. https://doi.org/10.1111/jpc.13507 PMID: 28437025

89. de Martino M, Chiarugi A, Boner A, Montini G, de’ Angelis GL. Working Towards an Appropriate Use of Ibuprofen in Children: An Evidence-Based Appraisal. Drugs. 2017; 77: 1295–1311. https://doi.org/10.1007/s40265-017-0751-z PMID: 28597358

90. Perrott DA, Piira T, Goodenough B, Champion GD. Efficacy and safety of acetaminophen vs ibuprofen for treating children’s pain or fever: a meta-analysis. Arch Pediatr Adolesc Med. 2004; 158: 521–526. https://doi.org/10.1001/archpedi.158.6.521 PMID: 15184213

91. George M, Phelps MA, Kitzmiller JP. Efficacy and safety of acetaminophen vs ibuprofen for treating children’s pain or fever: a meta-analysis. Arch Pediatr Adolesc Med. 2004; 158: 521–526. https://doi.org/10.1001/archpedi.158.6.521 PMID: 15184213

92. Kozer E, Barr J, Buikowstein M, Avigil M, Greenberg R, Matias A, et al. A prospective study of multiple supratherapeutic acetaminophen doses in febrile children. Vet Hum Toxicol. 2002; 44: 106–109. PMID: 11931497

93. Heard K, Mlynarchek SL, Green JL, Bond GR, Clark RF, et al. Toxicity from repeated doses of acetaminophen in children: assessment of causality and dose in reported cases. Am J Ther. 2014; 21: 174–183. https://doi.org/10.1097/MJT.0b013e3182459c53 PMID: 22407198

94. Temple AR, Zimmermann B, Gelotte C, Kuffner EK. Comparison of the Efficacy and Safety of 2 Acetaminophen Dosing Regimens in Febrile Infants and Children: A Report on 3 Legacy Studies. J Pediatr Pharmacol Ther. 2017; 22: 22–32. https://doi.org/10.5863/1551-6776-22.1.22 PMID: 28337078

95. Southey ER, Soares-Weiser K, Kleijnen J. Systematic review and meta-analysis of the clinical safety and tolerability of ibuprofen compared with acetaminophen in paediatric pain and fever. Curr Med Res Opin. 2009; 25: 2207–2222. https://doi.org/10.1185/03007990903116255 PMID: 19606950

96. Purssell E. Treating fever in children: paracetamol or ibuprofen? Br J Community Nurs. 2002; 7: 316–320. https://doi.org/10.12968/bjcn.2002.7.6.10477 PMID: 12066066

97. Alvarez-Coca Gonzalez J, Caballero Mora FJ, Alonso Martin B, Martinez Perez J. Es aconsejable evitar el ibuprofeno en la enfermedad de Kawasaki? [Is it advisable to avoid ibuprofen in Kawasaki disease?]. An Pediatr (Barc). 2009 Jul; 71(1):83–4. Spanish. https://doi.org/10.1016/j.anpedi.2009.03.019 Epub 2009 May 29. PMID: 19481990.

98. Eyers S, Weatherall M, Shirtcliffe P, Perrin K, Beasley R. The effect on mortality of antipyretics in the treatment of influenza infection: systematic review and meta-analysis. Journal of the Royal Society of Medicine. 2010; 103: 403–411. https://doi.org/10.1258/jrsm.2010.090441 PMID: 20929891
102. Plaisance KI, Mackowiak PA. Antipyretic therapy: physiologic rationale, diagnostic implications, and clinical consequences. Arch Intern Med. 2000; 160: 449–456. https://doi.org/10.1001/archinte.160.4.449 PMID: 10695685

103. Eyers S, Jefferies S, Shirciliffe P, Perrin K, Beasley R. Antipyretic therapy for influenza infection—benefit or harm? In: https://www.nzma.org.nz/journal/read-the-journal/all-issues/2010-2019/2011/vol-124-no-1338/letter-eyers. 8 Jul 2011. PMID: 21946975

104. Kellstein D, Fernandes L. Symptomatic treatment of dengue: should the NSAID contraindication be reconsidered? Postgrad Med. 2019; 131: 109–116. https://doi.org/10.1080/00325481.2019.1561916 PMID: 30575425

105. Zoubek ME, Lucena MI, Andrade RJ, Stephens C. Systematic review: ibuprofen-induced liver injury. Aliment Pharmacol Ther. 2020; 51: 603–611. https://doi.org/10.1111/apt.15645 PMID: 31984540

106. Shen X, Huang Y, Guo H, Peng H, Yao S, Zhou M, et al. Oral ibuprofen promoted cholestatic liver disease in very low birth weight infants with patent ductus arteriosus. Clin Res Hepatol Gastroenterol. 2020. https://doi.org/10.1016/j.clinthera.2020.06.019 PMID: 32723673

107. Mikaeloff Y, Kezouh A, Suissa S. Nonsteroidal anti-inflammatory drug use and the risk of severe skin disease. JAMA. 2020. https://doi.org/10.1001/jama.2020.6501 PMID: 32491181

108. Elemraid MA, Thomas MF, Blain AP, Rushton SP, Spencer DA, Gennery AR, et al. Risk factors for the development of pleural empyema in children. Pediatr Pulmonol. 2015; 50: 721–726. https://doi.org/10.1002/ppul.23041 PMID: 24692118

109. Kanabar D, Dale S, Rawat M. A review of ibuprofen and acetaminophen use in febrile children and the occurrence of asthma-related symptoms. Clin Ther. 2007; 29: 2716–2723. https://doi.org/10.1016/j.clinthera.2007.12.021 PMID: 18201589

110. Sherbash M, Furuya-Kanamori L, Nader JD, Thalib L. Risk of wheezing and asthma exacerbation in children treated with paracetamol versus ibuprofen: a systematic review and meta-analysis of randomised controlled trials. BMC Pulm Med. 2020; 20: 72. https://doi.org/10.1186/s12890-020-1102-5 PMID: 32293369

111. François P, Desrumaux A, Cans C, Pin I, Pavese P, Labarère J. Prevalence and risk factors of suppurative complications in children with pneumonia: Suppurative complications of pneumonia. Acta Paediatrica. 2010; 99: 861–866. https://doi.org/10.1111/j.1651-2227.2010.01734.x PMID: 2078517

112. Elemraid MA, Thomas MF, Blain AP, Rushton SP, Spencer DA, Gennery AR, et al. Risk factors for the development of pleural empyema in children. Pediatr Pulmonol. 2015; 50: 721–726. https://doi.org/10.1002/ppul.23041 PMID: 24692118

113. Voiriot G, Dury S, Parrot A, Mayaud C, Fartoukh M. Nonsteroidal Antiinflammatory Drugs May Affect the Presentation and Course of Community-Acquired Pneumonia. CHEST. 2011; 139: 387–394. https://doi.org/10.1378/chest.10-3102 PMID: 20724739

114. Le Bourgeois M, Ferroni A, Leruez-Ville M, Varon E, Thumereille C, Brémont F, et al. Nonsteroidal Anti-Inflammatory Drug without Antibiotics for Acute Viral Infection Increases the Empyema Risk in Children: A Matched Case-Control Study. J Pediatr. 2016; 175: 47–53.e3. https://doi.org/10.1016/j.jpeds.2016.05.025 PMID: 27339249

115. Rainsford KD, Bjarnason I. NSAIDs: take with food or after fasting? Journal of Pharmacy and Pharmacology. 2012; 64: 465–469. https://doi.org/10.1111/j.2042-7158.2011.01406.x PMID: 22420652

116. Marriott SC, Stephenson TJ, Hull D, Pownall R, Smith CM, Butler A. A dose ranging study of ibuprofen suspension as an antipyretic. Arch Dis Child. 1991; 66: 1037–1042. https://doi.org/10.1136/adc.66.9.1037 PMID: 1929509

117. Autret-Leca E. A general overview of the use of ibuprofen in paediatrics. Int J Clin Pract Suppl. 2003; 9–12. PMID: 12723740

118. Watson PD, Galletta G, Chomilo F, Braden NJ, Sawyer LA, Scheinbaum ML. Comparison of Multidose Ibuprofen and Acetaminophen Therapy in Febrile Children. Am J Dis Child. 1992; 146: 626–632. https://doi.org/10.1001/archpedi.1992.02160170106025 PMID: 16216699

119. Diseases Con I, Fulgniti VA, Brunell PA, Cherry JD, Ector WL, Gershon AA, et al. Aspirin and Reye Syndrome. Pediatrics. 1982; 69: 810–812. PMID: 7079050

120. Çakşen H, Güler E, Alper M, Üstünbaş HB. A Fatal Case of Reye Syndrome after Varicella and Ingestion of Aspirin. The Journal of Dermatology. 2001; 28: 286–287. https://doi.org/10.1111/j.1346-8138.2001.tb00135.x PMID: 11436370

121. Moroz LA. Increased blood fibrinolytic activity after aspirin ingestion. N Engl J Med. 1977; 296: 525–529. https://doi.org/10.1056/NEJM197703102961001 PMID: 836536

122. Kokki H, Kokki M. Dose-finding studies of ketoprofen in the management of fever in children: report on two randomized, single-blind, comparator-controlled, single-dose, multicentre, phase II studies. Clin
123. Kokki H, Kokki M. Ketoprofen versus paracetamol (acetaminophen) or ibuprofen in the management of fever: results of two randomized, double-blind, double-dummy, parallel-group, repeated-dose, multi-centre, phase III studies in children. Clin Drug Investig. 2010; 30: 375–386. https://doi.org/10.1007/BF03256907 PMID: 20380479

124. Polman HA, Huijbers WA, Augusteijn R. The use of diclofenac sodium (Voltaren) suppositories as an antipyretic in children with fever due to acute infections: a double-blind, between-patient, placebo-controlled study. J Int Med Res. 1981; 9: 343–348. https://doi.org/10.1177/030006058100900508 PMID: 7028533

125. Sharifi MR, Haji Rezaei M, Aalinezhad M, Sarami G, Rangraz M. Rectal Diclofenac Versus Rectal Paracetamol: Comparison of Antipyretic Effectiveness in Children. Iran Red Crescent Med J. 2016; 18: e27932. https://doi.org/10.5812/ircmj.27932 PMID: 26889398

126. Khubchandani RP, Ghatikar KN, Keny S, Usqanork NG. Choice of antipyretic in children. J Assoc Physicians India. 1995; 43: 614–616. PMID: 8773063

127. Kamour A, Crichton S, Cooper G, Lupton DJ, Eddleston M, Vale JA, et al. Central nervous system toxicity of mefenamic acid overdose compared with other NSAIDs: an analysis of cases reported to the United Kingdom National Poisons Information Service. Br J Clin Pharmacol. 2017; 83: 855–862. https://doi.org/10.1111/bcp.13169 PMID: 27785820

128. Prado J, Daza R, Chumbes O, Loayza I, Huicho L. Antipyretic efficacy and tolerability of oral ibuprofen, oral dipyrene and intramuscular dipyrorene in children: a randomized controlled trial. Sao Paulo Med J. 2006; 124: 135–140. https://doi.org/10.1590/s1516-3476(2006)00030005 PMID: 17119689

129. Wong A, Sibbald A, Ferrero F, Plager M, Santolaya ME, Escobar AM, et al. Antipyretic effects of dipyrone versus ibuprofen versus acetaminophen in children: results of a multinational, randomized, modified double-blind study. Clin Pediatr (Phil). 2001; 40: 313–324. https://doi.org/10.1177/000992280104000602 PMID: 11824173

130. Giovannini M, Longhi R, Besana R, Michos N, Sarchi C. Clinical experience and results of treatment with suprofen in pediatrics. 5th communication: a single-blind study on antipyretic effect and tolerability of suprofen syrup versus metamizole drops in pediatric patients. Arzneimittelforschung. 1986; 36: 956–960. PMID: 3527181

131. Cashman TM, Stams RJ, Johnson J, Oren J. Comparative effects of naproxen and aspirin on fever in children. J Pediatr. 1979; 95: 626–629. https://doi.org/10.1016/s0022-3476(79)80784-2 PMID: 480048

132. Purssell E. Systematic review of studies comparing combined treatment with paracetamol and ibuprofen, with either drug alone. Arch Dis Child. 2011; 96: 1175–1179. https://doi.org/10.1136/archdischild-2011-300424 PMID: 21868405

133. Pereira GL, Dagostini JMC, Pizzol T da SD. Alternating antipyretics in the treatment of fever in children: a systematic review of randomized clinical trials. J Pediatr (Rio J). 2012; 88: 289–296. https://doi.org/10.2223/JPED.2204 PMID: 22915173

134. Trippella G, Ciarcia M, de Martino M, Chiappini E. Prescribing Controversies: An Updated Review and Meta-Analyis on Combined/Alternating Use of Ibuprofen and Paracetamol in Febrile Children. Front Pediatr. 2019;7. https://doi.org/10.3389/fped.2019.00007 PMID: 30778379

135. Yue Z, Jiang P, Sun H, Wu J. Association between an excess risk of acute kidney injury and concomitant use of ibuprofen and acetaminophen in children, retrospective analysis of a spontaneous reporting system. Eur J Clin Pharmacol. 2014; 70: 479–482. https://doi.org/10.1007/s00228-014-1843-8 PMID: 24445686

136. Wong T, Stang AS, Ganshorn H, Hartling L, Macnochke IK, Thomsen AM, et al. Cochrane in context: Combined and alternating paracetamol and ibuprofen therapy for febrile children. Evid Based Child Health. 2014; 9: 730–732. https://doi.org/10.1002/ebch.1979 PMID: 25236310

137. Offringa M, Newton R, Cozijnssen MA, Nevitt SJ. Prophylactic drug management for febrile seizures in children. Cochrane Epilepsy Group, editor. Cochrane Database of Systematic Reviews. 2017 [cited 9 Apr 2018]. https://doi.org/10.1002/14651858.CD003031.pub3 PMID: 28225210

138. Rosenbloom E, Finkelstein Y, Adams-Weber T, Kozer E. Do antipyretics prevent the recurrence of febrile seizures in children? A systematic review of randomized controlled trials and meta-analysis. European Journal of Paediatric Neurology. 2013; 17: 585–588. https://doi.org/10.1016/j.ejpn.2013.04.008 PMID: 23702315

139. Mewasingh LD. Febrile seizures. BMJ Clin Evid. 2014;2014. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3908738/ PMID: 24484859
140. Murata S, Okasora K, Tanabe T, Ogino M, Yamazaki S, Oba C, et al. Acetaminophen and Febrile Seizure Recurrences During the Same Fever Episode. Pediatrics. 2018;142. https://doi.org/10.1542/peds.2018-1009 PMID: 30297499

141. Arana A, Morton NS, Hansen TG. Treatment with paracetamol in infants. Acta Anaesthesiol Scand. 2001; 45: 20–29. https://doi.org/10.1034/j.1399-6576.2001.450104.x PMID: 1152028

142. Ziesenitz VC, Zutter A, Erb TO, van den Anker JN. Efficacy and Safety of Ibuprofen in Infants Aged Between 3 and 6 Months. Pediatric Drugs. 2017; 19: 277–290. https://doi.org/10.1007/s40272-017-0235-3 PMID: 28516288

143. Gupta P, Sachdev HPS. Safety of oral use of nimesulide in children: systematic review of randomized controlled trials. Indian Pediatr. 2003; 40: 518–531. PMID: 12824661

144. Aluka TM, Gyuse AN, Udonwa NE, Asibong UE, Meremikwu MM, Oyo-Ita A. Comparison of Cold Water Sponging and Acetaminophen in Control of Fever Among Children Attending a Tertiary Hospital in South Nigeria. J Family Med Prim Care. 2013; 2: 153–158. https://doi.org/10.4103/2249-4863.117409 PMID: 24479070

145. Senz EH, Goldfarb DL. Coma in a child following use of isopropyl alcohol in sponging. J Pediatr. 1958; 53: 322–323. https://doi.org/10.1016/s0022-3476(58)80219-x PMID: 13576384

146. McFadden SW, Haddow JE. Coma produced by topical application of isopropyl alcohol. Pediatrics. 1969; 43: 622–623. PMID: 5777081

147. Moss MH. Alcohol-induced hypoglycemia and coma caused by alcohol sponging. Pediatrics. 1970; 46: 445–447. PMID: 5454793

148. Arditii M, Killner MS. Coma following use of rubbing alcohol for fever control. Am J Dis Child. 1987; 141: 237–238. https://doi.org/10.1001/archpedi.1987.04460030015001 PMID: 3812394

149. Wise JR. Alcohol sponge baths. N Engl J Med. 1969; 280: 840. https://doi.org/10.1056/NEJM196904102801518 PMID: 5773646

150. Watts R, Robertson J. Non-pharmacological Management of Fever in Otherwise Healthy Children. JBI Libr Syst Rev. 2012; 10: 1634–1687. https://doi.org/10.11124/01938924-201210280-00001 PMID: 27820389

151. Pursell E. Physical treatment of fever. Arch Dis Child. 2000; 82: 238–239. https://doi.org/10.1136/adc.82.3.238 PMID: 10685930

152. Gibson JP. How much bed rest is necessary for children with fever? The Journal of Pediatrics. 1956; 49: 256–261. https://doi.org/10.1016/s0022-3476(56)80181-9 PMID: 13358016

153. van Haselen R, Thinesse-Mallwitz M, Maidannyk V, Buskin SL, Weber S, Keller T, et al. The Effectiveness and Safety of a Homeopathic Medicinal Product in Pediatric Upper Respiratory Tract Infections With Fever. Glob Pediatr Health. 2016;3. https://doi.org/10.1177/2333794X16654851 PMID: 27493984

154. Lyons N, Nejak D, Lomotan N, Mokszyci R, Jamieson S, McDowell M, et al. An alternative for rapid administration of medication and fluids in the emergency setting using a novel device. The American Journal of Emergency Medicine. 2013; 33: 1113.e5–1113.e6. https://doi.org/10.1016/j.ajem.2013.01.026 PMID: 25662805

155. Tremayne V. Emergency rectal infusion of fluid in rural or remote settings. 2010 [cited 23 May 2018]. Available: https://web.a.ebscohost.com/abstract?direct=true&profile=hostprofile&scope=site&authtype=crawler&jml=13545752&AN=4832032&h=11VLQdmg8mMa4Vvii%Fk2B1m1kF6DP6byDDm Ga2AI6D6eef7mgBWUJUAI17qXpQ7wzyASOeUmheEv%3d%3d&crl=c&resultNs=AdminWebAuth&resultLoca=ErrCrlNotAuth&crhashurl=login.aspx?3direct%3dtrue%26profile%
Dallimore J, Ebmeier S, Thayabar an D, Bellomo R, Bernard G, Schortgen F, et al. Effect of active temperature management on mortality in intensive care unit patients. Crit Care Resusc. 2018; 20: 150–163. PMID: 29852854

van Stuijvenberg M, Derksen-Lubsen G, Steyerberg EW, Hubbema JDF, Moll HA. Randomized, Controlled Trial of Ibuprofen Syrup Administered During Febrile Illnesses to Prevent Febrile Seizure Recurrences. Pediatrics. 1998; 102: e51–e51. https://doi.org/10.1542/peds.102.5.e51 PMID: 9794981

Brewer ET. A comparative evaluation of indomethacin, acetaminophen and placebo as antipyretic agents in children. Arthritis & Rheumatism. 1968; 11: 645–651. https://doi.org/10.1002/art.1780110506 PMID: 4878632

Chiappini E, Parretti A, Becherucci P, Pierattelli M, Bonsignori F, Galli L, et al. Parental and medical knowledge and management of fever in Italian pre-school children. BMC Pediatr. 2012; 12: 97. https://doi.org/10.1186/1471-2431-12-97 PMID: 22794080

Bertille N, Fournier-Charrrière E, Pons G, Chalumeau M. Managing Fever in Children: A National Survey of Parents’ Knowledge and Practices in France. Esposito S, editor. PLoS ONE. 2013; 8: e83469. https://doi.org/10.1371/journal.pone.0083469 PMID: 24391772

Brick T, Agbeko RS, Davies P, Davis PJ, Deep A, Fortune P-M, et al. Attitudes towards fever amongst UK paediatric intensive care staff. Eur J Pediatr. 2017; 176: 423–427. https://doi.org/10.1007/s00431-016-2844-1 PMID: 28097438

Hay A, Redmond N, Costelloe C, Montgomery A, Fletcher M, Hollinghurst S, et al. Guidelines for Fever Care Under Austere Conditions: Introduction to Burn Disaster, Airway and Ventilator Management, and Fluid Resuscitation. J Burn Care Res. 2016; 37: e427–439. https://doi.org/10.1097/BCR.000000000000304 PMID: 27224004

Carassiti M, Pumposo AD, Agrò FE. Fluid Management in Palliative Care. Body Fluid Management. Springer, Milano; 2013. pp. 195–203. https://doi.org/10.1007/978-88-470-2661-2_16

Bruera E, Pruvost M, Schoeller T, Montejo G, Watanabe S. Proctoclysis for Hydration of Terminally Ill Cancer Patients. Journal of Pain and Symptom Management. 1998; 15: 216–219. https://doi.org/10.1016/s0885-3924(97)00367-9 PMID: 9601155

Peck M, Jeng J, Moghazy A. Burn Resuscitation in the Austere Environment. Crit Care Clin. 2016; 32: 561–565. https://doi.org/10.1016/j.ccc.2016.06.010 PMID: 27600127

Nelson BD, Collins LB, Pritchard EWJ. Innovations in Low- and Middle-Income Countries for Newborn and Child Health. Innovating for Healthy Urbanization. Springer, Boston, MA; 2015. pp. 19–40. https://doi.org/10.1007/978-1-4899-7597-3_2

Rouhani S, Meloney L, Ahrn R, Nelson BD, Burke TF. Alternative Rehydration Methods: A Systematic Literature Review and Lessons for Resource-Limited Care. Pediatrics. 2011; peds.2010-0952. https://doi.org/10.1542/peds.2010-0952 PMID: 21321023

Lozynsky OA, Dupuis L, Shandling B, Gilmour RF, Zimmerman B. Anaphylactoid and systemic reactions following saline enema administration. Six case reports. Ann Allergy. 1986; 56: 62–66. PMID: 3511778

Groccott MPW, McCorkell S, Cox ML. Resuscitation From Hemorrhagic Shock Using Rectally Administered Fluids in a Wilderness Environment. Wilderness & Environmental Medicine. 2005; 16: 209–211. https://doi.org/10.1580/PR32-04.1 PMID: 16366202

Hamre HJ, Glockmann A, Fischer M, Riley DS, Baars E, Kiene H. Use and Safety of Anthroposophic Medications for Acute Respiratory and Ear Infections: A Prospective Cohort Study. Drug Target Insights. 2007; 2: 209–219. PMID: 21901075

Bornhöft G, Matthiessen P. Homeopathy in Healthcare: Effectiveness, Appropriateness, Safety, Costs. Springer Science & Business Media; 2011. PMID: 21525600
181. Hamre HJ, Glockmann A, Heckenbach K, Matthes H. Use and Safety of Anthroposophic Medicinal Products: An Analysis of 44,662 Patients from the EvaMed Pharmacovigilance Network. Drugs—Real World Outcomes. 2017; 4: 199–213. https://doi.org/10.1007/s40801-017-0118-5 PMID: 28965336

182. American Academy of Pediatrics, Council on Communications and Media C on CA. Policy statement: Children, Adolescents, and the Media. Pediatrics. 2013; 132: 958–961. https://doi.org/10.1542/peds.2013-2656 PMID: 28448255

183. Andersson MA. Chronic Disease at Midlife: Do Parent-child Bonds Modify the Effect of Childhood SES? Journal of health and social behavior. 2016; 57: 373–389. https://doi.org/10.1177/0022146516661596 PMID: 27601411

184. Gunduz S, Usak E, Koksal T, Canbal M. Why Fever Phobia Is Still Common? Iran Red Crescent Med J. 2016; 18: e23827. https://doi.org/10.5812/ircmj.23827 PMID: 27781110

185. Bertille N, Purssell E, Corrard F, Chiapponi E, Chalumeau M. Fever phobia 35 years later: did we fail? Acta Paediatrica. 2016; 105: 9–10. https://doi.org/10.1111/apa.13221 PMID: 26725574