A Comprehensive and Comparative Analysis of the Fucoidan Compositional Data Across the Phaeophyceae

Nora M. A. Ponce* and Carlos A. Stortz*

Departamento de Química Orgánica, Ciudad Universitaria, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR/CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina

In the current review, compositional data on fucoids extracted from more than hundred different species were surveyed through the available literature. The analysis of crude extracts, purified extracts or carefully isolated fractions is included in tabular form, discriminating the seaweed source by its taxonomical order (and sometimes the family). This survey was able to encounter some similarities between the different species, as well as some differences. Fractions which were obtained through anion-exchange chromatography or cationic detergent precipitation showed the best separation patterns: the fractions with low charge correspond mostly to highly heterogeneous fucoids, containing (besides fucose) other monosaccharides like xylose, galactose, mannose, rhamnose, and glucuronic acid, and contain low-sulfate/high uronic acid proportions, whereas those with higher total charge usually contain mainly fucose, accompanied with variable proportions of galactose, are highly sulfated and show almost no uronic acids. The latter fractions are usually the most biologically active. Fractions containing intermediate proportions of both polysaccharides appear at middle ionic strengths. This pattern is common for all the orders of brown seaweeds, and most differences appear from the seaweed source (habitat, season), and from the diverse extraction, purification, and analytical methods. The Dictyotales appear to be the most atypical order, as usually large proportions of mannose and uronic acids appear, and thus they obscure the differences between the fractions with different charge. Within the family Alariaceae (order Laminariales), the presence of sulfated galactofucans with high galactose content (almost equal to that of fucose) is especially noteworthy.

Keywords: fucoids, brown seaweeds, phaeophyceae, taxonomy, phylogeny

INTRODUCTION: AIM OF THE REVIEW

Fucoids are sulfated polysaccharides present in the cell walls of the Phaeophyceae (brown seaweeds) composed usually by fucose (Fuc) as the main monosaccharide, but accompanied by very variable amounts of other monosaccharides like galactose (Gal), xylose (Xyl), mannose (Man), rhamnose (Rha), and/or glucuronic acid (GlcA). The scientific literature on different aspects of
The taxonomy of brown algae (Heterokonta, Ochrophyta, Phaeophyceae) had many controversies throughout the history (Silberfeld et al., 2014). Order delineation in the Phaeophyceae has traditionally been based on the type of life cycle, reproductive aspects, mode of growth, and filamentous vs. parenchymatous construction of the thallus (Rousseau and de Reviers, 1999a,b). However, with the advent of molecular systematics, new insights were brought, thoroughly reshaping the evolutionary concepts of brown algae. Rousseau and de Reviers (1999b) and de Reviers et al. (2007) have provided a detailed evolution of classificatory concepts within the Phaeophyceae. Several changes in the classification at the ordinal level have been set between the Oltmanns (1922), comprising 8 orders to the present times classification, encompassing 18 orders (Silberfeld et al., 2014; Figure 1). Major changes were produced after the DNA sequencing of brown seaweeds started in 1993 (Draisma et al., 2001, 2003; de Reviers et al., 2007). Different molecular markers can be used, but phylogenetic studies of Phaeophyceae have mostly utilized the rDNA sequences, which include four subunits (18S, 5.8S, 26S, and 5S), containing regions which are highly conserved as well as others highly variable. Most information arose from studies on the 18S subunit of rDNA, although those studies had limited results for more recent Phaeophycean lineages (Tan and Druhl, 1996). In this way, Rousseau et al. (2001) utilized the 26S sequence, which altogether with a larger taxonomic sampling, solved some of the earlier divergences. Thus, a phylogenetic tree was constructed (Draisma et al., 2001, 2003). It has been concluded that morphological characters, many times useful to understand the ecology of brown seaweeds, have no value at all for phylogeny. Different degrees of organization, diffuse or apical growth, or life stages have appeared and disappeared repeatedly in the history of the different taxonomic groups.

Silberfeld et al. (2014) have introduced a thorough phylogenetic analysis based on a dataset generated previously (Silberfeld et al., 2011), including seven markers, for a total of 6804 nucleotides, determined for 91 Phaeophycean taxa, including minor orders for which there were very few studies. In this way, the shape of phylogenetic trees changed sharply the previous knowledge (Silberfeld et al., 2011; Charrrier et al., 2012). Figure 1 depicts the outcome of the tree for the 18 orders determined by Silberfeld et al. (2014), grouped in four subclasses (Discosporangiophycidae and Ishigeophycidae, including one order each, Dictyotophycidae, including four orders, and Fucophycidae, including the remaining 12 orders).

POLYSACCHARIDES FROM THE PHAEOPHYCEAE: THE FUCOIDANS

Most macroalgae exhibit polysaccharides as their most abundant constituents. Taking into account their function, they can be classified into two main groups: storage and structural polysaccharides. The formers are polymers such as starch/glycogen or laminaran considered as food reserve materials, whereas the latters are structural elements of the cell walls, intercellular tissues and mucilaginous matrix. Sulfated polysaccharides are a group of anionic structural polysaccharides, useful for the seaweed in the marine environment to avoid desiccation. Their gross composition is characteristic of each algal group (galactans in red seaweeds, fucoids in brown seaweeds, rhamnoglucuronans, and arabinogalactans in green seaweeds, van den Hock et al., 1996), whereas more or less subtle differences appear often depending on the order, family, genus and species, as well as sometimes on the season, geographic location, or reproductive stage (Mackie and Preston, 1974). Other roles of the polysaccharides might include participations in cell-cell communication (Deniaud-Bouët et al., 2014), and in cell division processes (Skripitsova, 2015).

In macroalgae, the cell walls comprise a fibrillar skeleton immersed in an amorphous matrix. In the case of the Phaeophyceae, the fibrillar skeleton is mainly made up of cellulose [a linear β-(1→4)-glucan], and the surrounding matrix is composed predominantly by alginic acid or its salts, together with a system of sulfated polysaccharides (the fucoids; Mackie and Preston, 1974). In this way, the cell wall is composed of two different layers: the inner layer consisting of a skeleton of microfibrils providing rigidity to the cell wall, and the outermost layer, which is usually observed as a poorly crystalline matrix
in which the set of microfibrils is embedded. There is also evidence that the matrix does not penetrate the fibers, but remains attached to this layer through hydrogen bonds (Davis et al., 2003). It has been suggested that fucoidans might play a key role in cell wall architecture, cross-linking cellulose and alginites (Kloareg et al., 1986). Besides this function, as occurs with other sulfated polysaccharides, the fucoidans help to protect the plant from desiccation. When the fronds are in contact with sea water the sulfate hemiester groups are strongly associated with magnesium ions, which are highly hydrated and thus retain water in the fronds (Percival, 1979). In a more modern model for the Fucales (Deniaud-Bouët et al., 2014, 2017; Torode et al., 2016), it has been proposed that two networks are assembled in the cell wall; the first one contains the fucoidans interlocking a cellulose (or other β-glucans) network, and the second one contains alginate crosslinked by polyphenols. The rigidity is controlled by the alginate structure and its calcium cross-linking capabilities, whereas the fucoidans participate mostly in adaptation to the osmotic stress.

More than one century ago, Kylin has isolated for the first time (from different seaweed species of the genera Fucus, Laminaria, and Ascophyllum) a group of sulfated polysaccharides with a high...
Fuc content and called them “fucoidin” (Kylin, 1913). Originally the name fucoidin (later changed to the more systematic fucoidan) was coined for the polysaccharides from those species, but this term was rapidly extended to any fucose-rich polysaccharides, including not only those becoming from brown seaweeds, but also to those present in echinoderms (Olatunji, 2020). As noted above, fucoidans are sulfated polysaccharides present mainly in the intercellular tissue of mucilaginous matrix of the cell walls of brown algae (Deniaud-Bouët et al., 2017).

Fucoidans comprise a family of diverse molecules containing, in addition to Fuc, varying proportions of Gal, Man, Xyl and GlcA (Figure 2). Acetate esters have also been found, especially in modern studies (see below). In the early studies extensive purification was carried out in an effort to isolate a “fucan” containing only Fuc residues, assuming that the remaining monosaccharides were originated in other, contaminating polysaccharides. Nevertheless, even in the allegedly pure samples, small proportions of Gal, Xyl, and/or uronic acid persisted (Percival, 1979). Later, only in a few species a pure fucan was isolated after purification (see below). Thus, most of the samples so far isolated are heterofucans (Deniaud-Bouët et al., 2014).

FUCOIDANS FROM DIFFERENT SPECIES OF PHAEOPHYCEAE

In this section, the main chemical characteristics of fucoidans extracted from different species of brown seaweeds reported so far to the best of our knowledge (with compositional data provided) will be described in tabular form. They will be shown separately for each of the different orders (Figure 1). When numerous species of an order were studied, separations in families or genera are also displayed. It is worth noting that depending on the way that the analyses were expressed in the original papers, the uronic acids in the following tables were indicated as a percentage of the total sample (in most cases) or as part of the molar ratio of all the monosaccharides. Thus, these molar ratios might or might not include the uronic acid components. The main monosaccharidic units appearing in fucoidans are shown in Figure 2. When the authors have isolated a large number of fractions, only those more abundant or representative are listed in the tables. The reported presence of acetyl groups is indicated qualitatively with the “Ac” acronym. It should be noted that the geographic location and season of harvest of the seaweed can also have significant effects on the composition of the extracted fucoidans (e.g., Zvyagintseva et al., 2003). The extraction and fractionation procedures are schematically displayed, neglecting defatting and depigmenting steps, as well as usual procedures like dialysis or single alcohol precipitations. The methods used for monosaccharide and sulfate quantitation are also shown.

Fucales

As expected, samples of fucoidans from this is order were the most studied. Samples from five different families of the Fucales have been studied. Two species from the Fucaceae, i.e., *Fucus vesiculosus* and *Asphodelinum nodosum* appear in the earlier studies by Kylin (1913). The polysaccharides from these species were studied extensively by different research groups (see below). However, the family with more species studied was the Sargassaceae. Considering only the genus *Sargassum*, studies on the fucoidans from 26 different species were found in the current survey.

The extraction of fucoidans from *Fucus vesiculosus* was originated in the early Kylin studies, when Fuc was characterized after hydrolysis as phenyl-L-fucosazone; pentoses in the hydrolyzate were also reported (Kylin, 1913). Different products from this species were extensively studied (Table 1). Originally, the presence of Xyl was ascribed to a contaminating xylan that accompanied the fucoidan (Percival and McDowell, 1967). As a matter of fact, they reported the isolation of a xylan, although uronic acid residues were found in the xylan fraction and, furthermore, the authors were not able to separate any fraction composed just by Fuc residues. The studies by Nishino et al. (1994a) on a commercial sample from this seaweed were highly comprehensive: they were able to separate 13 different fractions and analyze them thoroughly, showing structures ranging from typical fucans (containing mainly Fuc and sulfate, and free of uronic acids) to heteropolysaccharides with low sulfate content and high content of uronic acids. In a minor fraction, they were able to find an appreciable amount of glucosamine (11.5%). In an interesting study using microwave extraction of this seaweed, Rodriguez-Jasso et al. (2011) showed that depending on the pressure and extraction time, fucoidans with different ratios Fuc/Gal were obtained (ranging from 100% Fuc to a 1:1 ratio), plus variable proportions of Xyl and sulfation degrees. Another species from the same genus that has been studied is *Fucus evanescens*. Zvyagintseva et al. (1999) separated the polysaccharides using a chromatography system on a hydrophobic resin. It is interesting to note that in a subsequent work Zvyagintseva et al. (2003) analyzed specimens of three different seaweeds (*F. evanescens*, *Laminaria cichorioides*, and *Saccharina japonica*) collected at different places, at various stages of development and at different seasons, and found some
Species	Extraction	Purification/ Acronym	Monosaccharide composition (moles %)	Sulfate	UA (%)	References							
			Fuc	Xyl	Gal	Man	Glc	Rha	GlcA	Others	Method	Method	%
Fucus vesiculosus													
HCl pH 2	Ethanol ppt	F1	GC	50	15	4	17	14		Pb 4	22	Medicall and Larsen (1977a)	
HCl 0.01M + CaCl₂ 1%	Ethanol ppt	F2	GC	70	7	8	4	11		Pb 25	6	Mabeau and Kloareg (1987)	
pH 7.5 + CaCl₂ 1%	EtOH + TCA 10%	FF	GC	79	10	6	3	2		Tit 31	14	Mabeau et al. (1990)	
Trion 0.5%, pH 7.5 + CaCl₂ 1%	EtOH + TCA 10%	TF	GC	84	2	13	1			Tit 26	4	Mabeau et al. (1990)	
HCl 0.01M + CaCl₂ 1%	HCl 0.01M ppt	OHF	GC	78	11	5	3	3		Tit 14	9	Mabeau et al. (1990)	
Na₂CO₃ 3%												Nishino et al. (1994a)	
SigmaTM	SEC + AEC I1.8	GC	90	3	5	2					DP 32	3	*
SigmaTM	SEC + AEC I1.35	GC	94	1	5	tr.					DP 33	–	*
SigmaTM	SEC + AEC I2	GC	94	1	5						DP 36	–	*
SigmaTM	SEC + AEC III11.5	GC	93	2	5						DP 34	–	*
H₂O, r.t.	F1	GC	55	11	9	25					DP 6	39	Rupérez et al. (2002)
HCl 0.1M	F3	GC	89	6	5						DP 11	9	*
CaCl₂ 2% hot	PQA	GC	67	6	13	8	6				DP 24	10	Cumashi et al. (2007)
CaCl₂ 2% hot	PQA + AEC F₂	GC	84	10	3	2	1				DP 24	–	*
CaCl₂ 2% hot	PQA + AEC F₂	GC	83	9	4	2	1				DP 24	–	*
CaCl₂ 2% hot	PQA + AEC F₂	GC	96	2	2	Ac					DP 35	–	*
H₂O₂, r.t.	F1	HPLC	90	3	1	6					DP ~12	ND	Zvyagintseva et al. (1999)
HCl 0.4% r.t. + H₂O hot	F₂	HPLC	91	7	1						DP ~25	ND	*
CaCl₂ 2% hot	PQA + AEC F₃	GC	67	16	9	7					DP 29	11	Bittkau et al. (2002)
CaCl₂ 2% hot	PQA + AEC F₄	GC	94	3	6		Ac	43			DP 46	–	*
HCl pH 2-2.3 hot	AEC	HPLC	87	2	2	4	1				DP 28	ND	Anastyuk et al. (2012b)
HCl 0.2M hot	Sterile HPLC	HPLC	69	7	9	8	6	1			ND	ND	Skripotsova et al. (2012)
HCl 0.2M hot	Reprod. HPLC	HPLC	77	5	5	3	10				ND	ND	*
HCl pH 2-2.3	FeF	HPLC	78	8	10	4	Ac				DP 23	ND	Prokofjeva et al. (2013)
CaCl₂ 2% hot	GC	96	4								EA 27	4	Bittkau et al. (2020)
Fucus ceranoides													
HCl 0.01M + CaCl₂ 1%	Ethanol ppt	F1	GC	76	18	5	1				DP 22	15	Mabeau and Kloareg (1987)
CaCl₂ 2% hot	AEC	F₂	GC	86	6	4	2	1	Ac		DP 22	–	Bilan et al. (2006)
CaCl₂ 2% hot	AEC	F₄	GC	94	3	3				Ac	DP 32	–	*
CaCl₂ 2% hot	PQA + AEC F₂	GC	69	7	13	6	5				DP 29	8	Cumashi et al. (2007)
CaCl₂ 2% hot	GC	41	10	4	2	43					EA 12	6	Bittkau et al. (2020)

(Continued)
Species	Extraction	Purification/ Acronym	Monosaccharide composition (moles %)	Sulfate	UA (%)	References							
Fucus spiralis	HCl 0.01M + CaCl₂ 1%		Fuc 90	Xyl 7	Gal 3	Man 1	Glc 3	Rha 3	Others 1	Tit 36	10	Mabeau and Kloareg (1987)	
	CaCl₂ 2% hot		GC 80	7	7	3	3				DP 26	8	Cumashi et al. (2007)
Ascophyllum nodosum	HCl 0.2M		GC 49	51	1%	GC 90	7	3	3				Larsen et al. (1966)
	AP/R		CC 49	51	1%	GC 86	14	16				Larsen et al. (1966)	
	CaCl₂ 0.04M + CE	F₂	GC 73	11	1%	2	10	5				Larsen et al. (1966)	
	H₂O + NaOH pH 2.8g	CaCl₂ 2%	GC 73	11	1%	2	10	5				Cumashi et al. (2007)	
	HCl pH 2	Ethanol ppt	F₁	GC 37	29	3	21	11				Percival (1968)	
	HCl pH 2	Ethanol ppt	F₂	GC 73	11	1%	2	10	5				Percival (1968)
	HCl pH 2	Ethanol ppt	F₃	GC 81	9	2	4	4				Percival (1968)	
	HCl pH 2	Ethanol ppt	F₄	GC 34	14	27	15	10				Percival (1968)	
	HCl pH 2	Ethanol ppt	F₅	GC 71	7	14	4	4				Percival (1968)	
Ascophyllum mackaii	H₂O hot	CaCl₂ 1% + AP/R	GC 67	11	12	7	3				Medcalf et al. (1978)		
	CaCl₂ 2% hot	PQA	GC 67	11	12	7	3				Medcalf et al. (1978)		
	H₂O + HCl 0.2M	AP/R	HPLC 47	40	2	10	1				Medcalf et al. (1978)		
	CaCl₂ 1% + AP/R	F₂	GC 82	8	7	2	1				Medcalf et al. (1978)		
Pelvetia canaliculata	pH 7.5 + CaCl₂ 1%	EtOH + TCA 10%	GC 82	4	10	2	2				Mabeau et al. (1990)		
	Trigon 0.5%, pH 7.5 + CaCl₂ 1%	EtOH + TCA 10%	GC 65	13	11	6	5				Mabeau et al. (1990)		
	Na₂CO₃ 3%	HCl 0.01M ppt	GC 90	4	4	1	1				Yuan and Macquarrie (2015)		
Silvetia babingtonii	HCl pH 2-2.3 hot	AEC	HPLC 77	5	12	6				Ou et al. (2014)			
	HCl 0.2M hot	Sterile	HPLC 71	7	6	5	10				Mabeau et al. (1990)		
	HCl 0.2M hot	Reprod.	HPLC 80	6	6	4	4				Mabeau et al. (1990)		

a Key: AEC, anion exchange chromatography; SEC, size-exclusion chromatography; HC, hydrophobic chromatography; CE, cation exchange; PQA, precipitation with quaternary ammonium salts; AP/R alcohol precipitation and redissolution.

b Key for the less common abbreviations: PAD, HPAEC with pulse amperometric detector; GC, gas chromatography; CC, column chromatography on carbon-Celite.

c Key: DP, method of Dodgson and Price (1962) or equivalent; Pb, titration with lead nitrate (Medcalf et al., 1972); EA, elemental analysis; Tit, titration with cetylpyridinium chloride, pH 1.5 (Scott, 1960); BC, method of barium chloranilate (Lloyd, 1959).

d Analyzed as Fucus distichus subsp. evanescens.

e The information for the uronic acid is included in the molar ratio of monosaccharides.

f Oxalic acid/ammonium oxalate extraction of the residue.

g Microwave-aided extraction.
TABLE 2 | Reported compositions of the fucoidans from the genus Sargassum (Sargassaceae, Fucales).

| Species | Extraction | Purification/ Fractionationa | Acronym | Methodb | Fuc | Xyl | Gal | Man | Glc | Rha | GlcA | Others | Sulfate | UA (%) | References |
|----------------------|-----------------------------|---------------------------------|---------|------------|-----|-----|-----|-----|-----|-----|------|-------|--------|---------|
| *Sargassum aquifolium* | $H_2O + HCl pH 1$ | AEC 0.5M | GC | | 14 | 15 | 37 | 13 | 21 | | | | | Bilan et al. (2017) |
| | $H_2O + HCl pH 1$ | AEC 1.0M | GC | | 15 | 9 | 25 | 10 | 6 | | | | | " |
| | $H_2O + HCl pH 1$ | AEC 1.0M | GC | | 21 | 17 | 10 | 14 | 6 | | | | | " |
| *Sargassum bindii* | CaCl$_2$ 2% hot | PQA Fisol | GC | | 60 | 5 | 19 | 7 | 3 | | | | | Lim et al. (2016) |
| *Sargassum cinereum* | $H_2O + CaCl_2$ 1% | HPDC AEC 0.5M | PAD | | 66 | 7 | 24 | 3 | | | | | | Somasundaram et al. (2016) |
| *Sargassum crassifolium* | $H_2O + CaCl_2$ 1% | HPDC AEC 0.5M | PAD | | 60 | 5 | 19 | 7 | 3 | | | | | " |
| | $H_2O + CaCl_2$ 1% | HPDC AEC 1.0M | PAD | | 60 | 5 | 19 | 7 | 3 | | | | | " |
| *Sargassum duplicatum* | HC$_2$O 1.0M hot | AEC+HC SdF$_1$ | GC | | 40 | 5 | 7 | 3 | | | | | | Shevchenko et al. (2017) |
| | HC$_2$O 0.1M hot | AEC+HC SdF$_2$ | GC | | 59 | 2 | 8 | 3 | | | | | | " |
| | HC$_2$O 0.1M hot | AEC+HC SdF$_3$ | GC | | 51 | 4 | 9 | | | | | | | " |
| | HC$_2$O 0.1M hot | AEC+HC SdF$_4$ | GC | | 51 | 4 | 9 | | | | | | " |
| *Sargassum feldmannii* | Enzymes pH 8 | Acetone ppt SH-0.7HPLC | GC | | 22 | 16 | 27 | 16 | 16 | | | | | Costa et al. (2011) |
| | Enzymes pH 8 | Acetone ppt SH-1.0HPLC | GC | | 22 | 16 | 27 | 16 | 16 | | | | | " |
| *Sargassum fusiforme* | H_2O, hot | AEC+SEC SFPs | GC | | 53 | 9 | 20 | 21 | | | | | | Chen et al. (2012) |
| | Enzymes | AEC+SEC 65A | GC | | 42 | 15 | 21 | 6 | 2 | | | | | " |
| *Sargassum hemiphyllum* | Enzymes pH 8 | Acetone ppt SH-0.7HPLC | GC | | 22 | 16 | 27 | 16 | 16 | | | | | Huang et al. (2017) |
| | Enzymes pH 8 | Acetone ppt SH-0.7HPLC | GC | | 22 | 16 | 27 | 16 | 16 | | | | | " |
| *Sargassum henslowianum* | H_2O, AP/R | AEC+SEC SHAP-1 | HPLC | | 76 | 24 | | | | | | | | Sun et al. (2020) |
| | H_2O, AP/R | AEC+SEC SHAP-2 | HPLC | | 75 | 25 | | | | | | | | " |
| *Sargassum horneri* | HC$_2$O 0.1M hot | AEC Sh-F1 | HPLC | | 81 | 3 | 8 | 7 | | | | | | " |
| | HC$_2$O 0.1M hot | AEC Sh-F2 | HPLC | | 90 | 10 | | | | | | | | " |
| | HC$_2$O 0.1M hot | AEC Sh-F3 | HPLC | | 69 | 31 | | | | | | | | " |
| | CaCl$_2$ 2% hot | AEC | GC | | 90 | 10 | | | | | | | | " |
| *Sargassum isatofolium* | H_2O, hot | AEC+SEC SP-I | HPLC | | 14 | 14 | 42 | 23 | | | | | | Asker et al. (2007) |
| | H_2O, hot | AEC+SEC SP-II | HPLC | | 15 | 13 | 41 | 29 | | | | | | " |
| | H_2O, hot | AEC+SEC SP-III | HPLC | | 15 | 13 | 41 | 29 | | | | | | " |
| *Sargassum mcclurei* | HC$_2$O 2.5 hot | AEC SmF1 | HPLC | | 27 | 6 | 20 | 13 | | | | | | Thinh et al. (2013) |
| | HC$_2$O 2.5 hot | AEC SmF2 | HPLC | | 45 | 5 | 34 | 5 | 10 | | | | | " |
| | HC$_2$O 2.5 hot | AEC SmF3 | HPLC | | 59 | 34 | 41 | | | | | | " |
| *Sargassum muticum* | pH 7.5+CaCl$_2$ 1% | EtOH+TCA 10% | GC | | 44 | 5 | 46 | 3 | 3 | | | | | " |
| | pH 7.5+CaCl$_2$ 1% | EtOH+TCA 10% | GC | | 44 | 5 | 46 | 3 | 3 | | | | | " |
| | pH 7.5+CaCl$_2$ 1% | EtOH+TCA 10% | GC | | 44 | 5 | 46 | 3 | 3 | | | | | Usoltseva et al. (2017b) |
| | Triton 0.5% | EtOH+TCA 10% | GC | | 44 | 5 | 46 | 3 | 3 | | | | | " |

(Continued)
TABLE 2 | Continued

Species	Extraction	Purification/ Acronym	Monosaccharide composition (moles %)	Sulfate	UA (%)	References
				Method	%	
Sargassum elongatum	HCl 0.1M hot	AEC	1SoF1 HPLC	DP	17	ND
	HCl 0.1M hot	AEC	1SoF2 HPLC	DP	24	ND
	HCl 0.1M hot	AEC	1SoF3 HPLC	DP	32	ND
Sargassum pallidum	HCl 0.2M hot	Sterile	HPLC	ND	ND	Skriptsova et al. (2012)
	Hi 0.1M hot	AEC	HPLC	DP	4	33
	Hi 0.1M hot	AEC	HPLC	DP	4	29
	Hi 0.1M hot	AEC	HPLC	DP	7	20
Sargassum polyestrum	HCl pH 2-3 hot	HC+AE	F1 GC	76	23	Bilan et al. (2013)
	HCl pH 2-3 hot	HC+AE	F2 GC	20	11	
	HCl pH 2-3 hot	HC+AE	F3 GC	33	2	
	HCl pH 2-3 hot	HC+AE	F4 GC	34	2	
	Enzymes pH 4.5	CaCl 5M	SPF PAD	28	22	Fernando et al. (2018)
Sargassum ringgoldianum	HCl 0.05M Ca(AcO) 2+ AEC	Fr-B	GC	16	10	Mori and Nisizawa (1982)
	HCl 0.5M Ca(AcO) 2+ AEC	Fr-C	GC	24	7	
Sargassum stenophyllum	H2O + CaCl 2 4M	PQA	F2 GC	19	11	Duarte et al. (2001)
	H2O + CaCl 2 4M	PQA	F3 GC	21	10	
	H2O + CaCl 4 4M	PQA	F5 GC	28	2	
Sargassum swartzi	HCl 0.1M + CaCl 2 2%	PQA+AE	F2 PAD	15	13	Ly et al. (2005)
	HCl 0.1M + CaCl 2 2%	PQA+AE	F3 PAD	18	5	
	HCl 0.1M + CaCl 4 4%	PQA+AE	F4 PAD	28	8	
	HCl 0.05 M+ CaCl 2 4%	AEC	FF1 HPLC	19	18	Dinesch et al. (2016)
	HCl 0.05 M+ CaCl 4 4%	AEC	FF2 HPLC	24	13	
Sargassum tenerrimum	HCl 0.1M - K2CO3 2%	CaCl 2% + HCl 0.1M	C GC	2	9	Sinha et al. (2010)
Sargassum tricharophyllum	H2O, hot	AEC+SEC	STF GC	23	1	Lee et al. (2011)
	H2O + NaOH 0.5M	AEC	STSP-I GC	0	ND	Luo et al. (2019)
Sargassum hentillanum	H2O	CaCl 2	SPS HPLC	12	1	Jesumani et al. (2020)
Sargassum vulgare	Enz, pH 8	AEC	Flo 1.5 Col. 50	HexA 25	15 d	Dietrich et al. (1995)
	Enz, pH 8	AEC	Flo 2.5 Col. 77	HexA 15	41 d	

Key: AEC = anion exchange chromatography; SEC = size-exclusion chromatography; HC = hydrophobic chromatography; PQA = precipitation with quaternary ammonium salts; AP/R = alcohol precipitation and redissolution.

Key for the less common abbreviations: PAD = HPAEC with pulse amperometric detector; GC = gas chromatography; Col. = colorimetric methods.

Key: DP = method of Dodgson and Price (1962) or equivalent; IC = ion chromatography; EA = elemental analysis; IR = estimation by area of IR bands; TB = toluidine blue; Rho = rhodizonate; Tit = titration with cetylpyridinium chloride, pH 1.5 (Scott, 1960).

The information for the uronic acid is included in the molar ratio of monosaccharides.

PT = high pressure and temperature.

NI = sugar not identified.

Fuc, Xyl and uronic acid were the only monosaccharides which could be determined.
Species	Extraction	Purification/ Fractionation	Acronym	Monosaccharide composition (moles %)	Sulfate	UA (%)	References									
		Method	Fuc	Xyl	Gal	Man	Glc	Rha	GlcA	Others	Method	%				
Species	**Extraction**												**References**			
Family Sargassaceae																
Bifurcaria bifurcata	CaCl₂, 2% + HCl pH2	AEC	0.3M	GC+PC	XX	X						JL	5	20	Mian and Percival (1973)	
Cystoseira compressa	HCl 0.1M hot	AEC	CI	GC	62	4	24	8					DP	19	9	Hentati et al. (2018)
Cystoseira indica	H₂O, r.t.	AEC	CIWE	GC	75	14	11					DP/IR	8	4	Mandal et al. (2007)	
Hormophysa cuneiformis	H₂O, CaCl₂ 2M	AEC	F	GC	52	38	4	18					JI	22	30	Wang et al. (2012)
Nizamuddinia zanardinii	H₂O, CaCl₂ 1%	AEC	YF5	GC	44	21	18					DP	20	32		
Turbinaria conoides	HCl 0.1M	AEC	AF3	GC	54	18	28					DP/IR	4	ND	Chattopadhyay et al. (2010)	
Turbinaria ornata	HCl 0.1M	AEC	ToF2	GC	83	17						DP	32	ND	Ermakova et al. (2016)	
Turbinaria turbinata	Enzymes pH 4.5	AEC	F2	PAD	46	22	Ni'	32					DP	10	ND	Jayawardena et al. (2019)
Family Durvillaeaceae																
Durvillaea antarctica	H₂O, MW³	DAP	GC	3	3	9	78	Sorbose 8				ND	ND	He et al. (2016)		
Durvillaea potatorum	HCl pH 1 hot	Acetone ppt	AFS	HPLC	32	4	64					DP	13	–	Lorbeer et al. (2017)	
Family Himanthalaceae																
Himanthalia elongata	H₂O + HCl 0.1M	F-HCl	GC	17	1	29	3	50					DP	6	3	Mateos-Aparicio et al. (2018)
Himanthalia lorea	CaCl₂, 2% + HCl pH2	AEC	0.3M	GC+PC	XX	X						JI	2	19	Mian and Percival (1973)	
Family Seirococcaceae																
Marginariella boryana	H₂SO₄ 1% r.t.	Reprod.	GC	72	2	17	1	7					ND	3	Wozniak et al. (2015)	
Seirococcus axillaris	HCl pH 1 hot	Acetone ppt	AFS	HPLC	61	16	14	3	2	4		DP	20	3	Lorbeer et al. (2017)	

Key:
- AEC, anion exchange chromatography.
- SEC, size-exclusion chromatography.
- PC, paper chromatography.
- GC, gas chromatography.
- PAD, HPAEC with pulse amperometric detector.
- Ni, estimation by area of Ni bands.
- EA, elemental analysis by different methods.
- Tit, titration with cetylpyridinium chloride, pH 1.5 (Scott, 1960).
- ND, not detected.
- SD, standard deviation.
- MI, molar ratio.
- SU, sulfate unit.
- DA, data available.
- **a** Key: AEC, anion exchange chromatography; SEC, size-exclusion chromatography.
- **b** Key for the less common abbreviations: PC, paper chromatography; GC, gas chromatography; PAD, HPAEC with pulse amperometric detector.
- **c** Key DP, method of Dodgson and Price (1962) or equivalent; JL, method of Jones and Letham (1954); IR, estimation by area of IR bands; EA, elemental analysis by different methods; Tit, titration with cetylpyridinium chloride, pH 1.5 (Scott, 1960).
- **d** The information for the uronic acid is included in the molar ratio of monosaccharides.
- **e** As galactose could not be quantified, the data is semiquantitative.
- **f** ND = sugar not identified.
- **g** Microwave-aided extraction.
Table 4: Reported compositions of the fucoids from the order Dictyotales.

Species	Extraction Method	Purification/ Fractionation	Acronym	Monosaccharide composition (moles %)	Sulfate	References
Canistrocarpus cervicornis	Enz. pH 8	Acetone ppt	CC-0.7	HPLC 33 17 50	DP 19	Camara et al. (2011)
	Enz. pH 8	Acetone ppt	CC-2.0	HPLC 20 10 40 20	DP 20	
Dictyopteris plagiogramma	CaCl₂ 2% + HCl pH 2	C	GC 42 10 16 8 3 21	JL 4	Percival et al. (1981)	
Dictyopteris polyiodoideae	HCl 0.1M hot	HC+AEC Dp-F2	HPLC 48 19 5 14 5 9	DP 13	Sokolova et al. (2011)	
	HCl 0.1M hot	HC+AEC Dp-F4	HPLC 38 8 31 4 8 12	DP 13		
Dictyota dichotoma	HCl pH 1 hot	Ethanol ppt	R	PC 25 16 25 10 24	BC 16	Abdel-Fattah et al. (1978)
	HCl pH 2 rt.	PQA EAR-0.5	GC 40 30 6 16 4	DP 13	Rabanal et al. (2014)	
	HCl pH 2 hot	PQA EA1-1.5	GC 41 26 5 25 1 2	DP 19		
	HCl pH 2 hot	PQA EA2-0.5	GC 26 36 4 33 1	DP 10		
	HCl pH 2 hot	PQA EAH4-0.5	GC 10 30 5 51 3	DP 5		
	HCl 0.1M hot	AEC+HC DiF	GC 52 12 10 9 17	Ac	Shevchenko et al. (2017)	
	HCl 0.1M hot	AEC (x 2) DiF	HPLC 43 5 44 4	Ac	Shevchenko et al. (2017)	
Dictyota divaricata	HCl 0.1M hot	AEC+HC DiF1	GC 61 31 4 4	Ac	Shevchenko et al. (2017)	
	HCl 0.1M hot	AEC+HC DiF2	GC 43 5 44 4	Ac	Shevchenko et al. (2017)	
Dictyota menstrualis	Enz. pH 8	Acetone ppt	F1.0v PC 30 24 24	HexA 21	Albuquerque et al. (2004)	
	Enz. pH 8	Acetone ppt	F1.5v PC 31 9 47	HexA 13		
Dictyota mertensii	Enz. pH 8	AEC 1M Col. 26 11	Col. 56 11	HexA 33	Dietrich et al. (1995)	
	Enz. pH 8	AEC 2.5-2.5M	Col. 56 11	Ac		
Dictyota mertensii	Enz. pH 8	AEC 0.1M AEC Dm	33 20	Ac		
Lobophora variegata	Enz. pH 8	Acet + SEC Lj	GC 25 75	Ac	Medeiros et al. (2006)	
Padina australis	CaCl₂ 2% hot	PQA	Fpa 60 8 29 3	DP 22	Yuguichi et al. (2016)	
Padina boryana	HCl 0.1M hot	AEC+HC PbF	GC 61 31 4 3	Ac	Shevchenko et al. (2017)	
	HCl 0.1M hot	AEC (x 2) PbF	GC 40 37 17 6	Ac	Shevchenko et al. (2017)	
Padina gymnospora	Enz. pH 8	Acet + SEC PF1	PC+GC 36 11 7	46	Silva et al. (2005)	
	Enz. pH 8	Acet + SEC PF2	PC+GC 39 8 6	47		
Padina pavorica	CaCl₂ 2% + HCl pH 2	AEC 0.3M PC+GC X X tr.	PC+GC 31 9 47	HexA 13	Man and Percival (1973)	
	CaCl₂ 2% + HCl pH 2	AEC 1M PC+GC X X tr.	PC+GC 31 9 47	HexA 13		
	HCl pH 2.5 hot	AEC Purified	PC 16 11 11 13 30	BC 19	Hussein et al. (1980)	
	HCl 0.1M hot	AEC 4PpF1	HPLC 43 13 9 17 17	DP 4	Men'shova et al. (2012)	
	HCl 0.1M hot	AEC 4PpF2	HPLC 53 16 16 10 5	DP 14		
Padina tetrasomatica	H₂O	CaCl₂ 2% ppt	PW1E 59 23 10 3 5	ND 9	Karmakar et al. (2009)	
	H₂O	AEC+SEC F3	GC 72 25 3	DP/R	8 4	
	HCl 0.1M rt.	Ext. A GC 68 16 9 5 2	DP/R 3 5	Karmakar et al. (2010)		
	HCl 0.1M + K₂CO₃ 2%	CaCl₂ 2% ppt	PW1E 73 16 11	DP/R	6 5	
Spatoglossum asperum	H₂O	CaCl₂ 1%	AP/R HPLC 61 6 25 4 3	DP 21	Paliarsamy et al. (2017)	
Spatoglossum schroederi	Enz. pH 8	Acetone ppt	Fuc. A GC 53 18 4 29	DP 28	Queiruz et al. (2008)	
	Enz. pH 8	Acetone ppt	Fuc. A GC 27 14 55 4 2	DP 37		
	Enz. pH 8	Acet. + AEC Fuc. B GC 28 14 56 2	TB 19	Menezes et al. (2018)		
Stereocladus marginatum	H₂O	AEC (x 2) F3	GC 96 2 2	IR/PR 13	Adhikari et al. (2006)	

Key: AEC, anion exchange chromatography; SEC, size-exclusion chromatography; HC, hydrophobic chromatography; PQA, precipitation with quaternary ammonium salts; Acet, fractional precipitation with acetone; AP/R alcohol precipitation and redissolution.

Key for the less common abbreviations: PC, paper chromatography; GC, gas chromatography; Col., colorimetric methods.

**Key DP, method of Dodgson and Price (1962) or equivalent; JL, method of Jones and Letham (1954); BC, method of barium chloranilate (Lloyd, 1959); TB, method of toluidine blue; IR, estimation by area of IR bands.

**The information for the uronic acid is included in the molar ratio of monosaccharides.

**Fuc, Xyl and uronic acid were the only monosaccharides which could be determined.

**As galactose could not be quantified, the data is semiquantitative.
TABLE 5 | Reported compositions of the fucoidans from the family Laminariaceae (order Laminariales).

Species	Extraction	Purification/ Method	Acronym	Monosaccharide composition (moles %)	Sulfate	UA (%)	References				
Kjellmania crassifolia	pH 6.5 hot	HCl pH 2 ppt	HPLC	Fuc 84	Xyl 5	Gal 10	ND	7	Sakai et al. (2002)		
Enz. pH 4.5	AEC	F1	HPLC	30 3	49 6	4	9	Ac	DP 23	a	Song et al. (2018)
Enz. pH 4.5	AEC	F2	HPLC	47 8	15 12	1	16	Ac	DP 16	a	
Enz. pH 4.5	AEC	F3	HPLC	67 2	23 3	1	4		DP 32	a	
Laminaria angustata	H2O	PQA+AE	F4	GC	90	10					
HCl pH 2+PQA	AEC+SEC	LA-5	GC	2	98						
Laminaria bongardiana	CaCl2 2% hot	PQA+AE	F-2	GC	53 8	20 15	3	Ac	DP 20	12	Bilan et al. (2016)
CaCl2 2% hot	PQA+AE	F-3	GC	39 4	54 2	1	4	Ac	DP 26	3	
Laminaria chilensis	See *Saccharina cichorioides*										
Laminaria digitata	pH 0.01M+CaCl2 1%	ETOH+TCA 10%	FF	GC	62 21	9 4	4				
Triton 0.5%, pH 7.5+CaCl2 1%	ETOH+TCA 10%	TF	GC	47 15	20 11	7					
Laminaria japonica	See *Saccharina japonica*										
Laminaria longipes	HCl 0.1M r.t.	AEC	LlF	GC	100						
Laminaria religiosa	HCl pH 2 hot	PQA	Fr 0.5	GC	34 12	14 21	19				
HCl pH 2 hot	PQA	Fr. 3	GC	61 28	17 7	3					
Macrocytis pyriforma	Exudation	UF	pFuc	GC	98 2		tr.				
HCl pH 1 hot	Acetone ppt	AFS	HPLC	79 3	12 3	3					
Saccharina cichorioides	HCl 0.4%+H2O	Lc-0.5F-2	HPLC	81 2	4 2	3	8				
HCl pH 2-2.3 hot	AEC	Lc-F2	HPLC	98 2							
HCl 0.4% r.t.	HC	Lc2-F1	HPLC	72 7	8 8	5					
HCl 0.4% +H2O	HC	Lc2-F2	HPLC	100							
HCl 0.1M r.t.	AEC	Sc-F1	HPLC	95							
HCl 0.1M r.t.	AEC	Sc-F2	HPLC	100							
HCl pH 2-2.3	AEC	ScF	HPLC	89 2	6	3					
HCl pH 2-2.3	AEC	ScF	GC	98 2							
Saccharina gujarinovae	HCl pH 2-2.3	AEC	SgQF	HPLC	84 21	15		Ac			
CaCl2 2% hot	AEC	SgF	GC	76 24			Ac				
Saccharina japonica	HCl 0.4%+H2O	Lj-1.2F-2	HPLC	94 2	3	1					
HCl 0.4% r.t.	HC	Lj1-F1	HPLC	55 7	26 6	3	3				
HCl 0.4%+H2O	HC	Lj1-F2	HPLC	84 1	12	1	2				
HCl pH 3 r.t.	AEC	L	HPLC	61 5	14 16	4					
HCl pH 3 r.t.	AEC	GA	HPLC	90	10						
HCl 0.1M hot	AEC	Si-F1	HPLC	53 1	29 15	2					
HCl 0.1M hot	AEC	Si-F2	HPLC	61 2	33 1	3		Ac			
HCl 0.2M hot	Sterile	HPLC	41 8	14 12	14	11					
HCl 0.2M hot	Reprod.	HPLC	25 3	13 4	48 7						
HCl 0.1M hot	AEC	Si-sF2	HPLC	62 6	21	9	2				

(Continued)
TABLE 5 | Continued

Species	Monosaccharide composition (moles %)	Sulfate	Acronym	Method	Purification/ Fractionation	References				
Fucus serratus	Fuc Xyl Gal Man Glc Rha GlcA Others	Meth.	HCl 0.1M hot	AEC	Sj-fF2 HPLC	58 37 5 DP 23 ND	Prokofjeva et al. (2013)			
			HCl pH 2-2.3	AEC	SjGF HPLC	50 1 44 5 Ac DP 23 ND	Prokofjeva et al. (2013)			
Saccharina latissima	Fuc Xyl Gal Man Glc Rha GlcA Others	Meth.	HCl pH 2.5 hot	B	CZE	54 3 29 3 1 10 ND	Qu et al. (2014)			
			H2O hot	CaCl2	AP/R LJF HPLC	34 2 37 23 1 3 DP 14 3	Qu et al. (2014)			
			CaCl2	HCO2H 0.1%, PT 21%	HPLC	57 17 21 5 DP 24 10	Saravana et al. (2016)			
			CaCl2	2% hot	PQA GC	80 3 10 2 5 DP 30 5	Cumashi et al. (2007)			
				CaCl2	AEC F-1.0 GC	46 5 32 14 3 DP 16 23	Bilan et al. (2010)			
				CaCl2	2% hot	PQA GC	78 2 18 2 DP 37 2	Bittkau et al. (2020)		
					Enz.pH6	CaCl2	2% hot	PQA GC	84 7 7 2 EA 29 6	Bittkau et al. (2020)
					Enz.pH6	CaCl2	2% hot	PQA GC	63 3 27 2	Nguyen et al. (2020)

Key: AEC, anion exchange chromatography; SEC, size-exclusion chromatography; HC, hydrophobic chromatography; PQA, precipitation with quaternary ammonium salts; AP/R alcohol precipitation and redissolution; UF, ultrafiltration.

b Key for the less common abbreviations: PAD, HPAEC with pulse amperometric detector; PC, paper chromatography; GC, gas chromatography; CC, column chromatography on cellulose; CZE, capillary zone electrophoresis.

c The information for the uronic acid is included in the molar ratio of monosaccharides.

d High pressure and temperature have been applied.
TABLE 6 | Reported compositions of the fucoids from the order Laminariales (families other than the Laminariaceae).

Species	Extraction	Purification/Method	Acronym	Monosaccharide composition (moles %)	Sulfate	UA (%)	References
Family Agaraceae							
Costaria costata	HCl pH 2-2.3 hot	FLM7	HPLC	Fuc Xyl Gal Man Glc Rha GlcA Others	DP 12	ND	Imbs et al. (2009)
	HCl 0.1M hot AEC	CcF	HPLC	62 4 18 5 7 4	DP 19	ND	Ermakova et al. (2011)
	HCl pH 2-2.3 r.t.	F1.5	HPLC	70 20 7 6 3	DP 24	a	Imbs et al. (2011)
	HCl pH 2-2.3 hot AEC	5F2	GC	30 16 8 15 15	DP 15	a	Anastyuk et al. (2012a)
	HCl pH 2-2.3 hot AEC	5F3	GC	40 12 21 12 6 7	DP 15	a	
	HCl pH 2-2.3	CcGF	HPLC	63 30 3 2 Ac	DP 23	ND	Prokofjeva et al. (2013)
	Enz. pH 4.5	AP/R+AEC	F2	17 7 8 61 8	Grav 1	ND	Wang et al. (2014)
	Enz. pH 4.5	AP/R+AEC	F4	47 17 17 12 8	Grav 23	ND	
	Enz. pH 4.5	AEC	6F1	21 11 20 30 7 10	DP 9	4	Liu et al. (2018)
	Enz. pH 4.5	AEC	6F2	31 15 9 26 11 8	DP 10	6	
Family Alariaceae							
Alaria angusta	HCl 0.1M hot	HC+AEC	AaF2	HPLC 75 7 18	DP 14	ND	Menshova et al. (2015)
	HCl 0.1M hot	HC+AEC	AaF3	HPLC 53 47	DP 24	ND	
	Alaria marginata	HC+AEC	AmF2	HPLC 81 9 11	DP 21	ND	Usoltseva et al. (2016)
	Alaria ochotensis	HC+AEC	AmF3	HPLC 48 5 47	DP 28	ND	
	Alaria ochotensis	Sterile	HPLC	18 4 10 4 5 9 6	ND ND		Skripkova et al. (2012)
	Alaria ochotensis	Reprod.	HPLC	25 3 23 5 40 4	ND ND		
	Undaria pinnatifida	AEC	AaGF	HPLC 54 38 8	DP 24	ND	Prokofjeva et al. (2013)
	Undaria pinnatifida	AEC	CF-4B	GC 48 52	EA 32	2	Lee et al. (2004)
	Undaria pinnatifida	H$_2$SO$_4$ 1% r.t.	AEC	F2M GC 54 45 1	EA ~ 28	1	Hemmingson et al. (2006)
	Undaria pinnatifida	H$_2$O+CaCl$_2$ 2%	UF	F > 30K HPLC 64 32 4	DP 32	ND	You et al. (2010)
	Undaria pinnatifida	H$_2$O+CaCl$_2$ 2%	AP/R	F > 30K HPLC 64 32 4	DP 32	ND	Sytysya et al. (2010)
	Undaria pinnatifida	H$_2$O+CaCl$_2$ 2%	Up-F1	HPLC 59 2 30 8 1	DP 14	ND	Vishchuk et al. (2011)
	Undaria pinnatifida	H$_2$O+CaCl$_2$ 2%	Up-F2	HPLC 51 48 1	DP 29	ND	
	Undaria pinnatifida	CaCl$_2$ 2% hot	PQA+AEC	F1 GC 49 4 38 7 3	DP 7	4	Mak et al. (2013)
	Undaria pinnatifida	CaCl$_2$ 2% hot	PQA+AEC	F3 GC 60 2 29 7 3	DP 25	1	
	Undaria pinnatifida	H$_2$O+CaCl$_2$ 2%	Sigmap	PAD 55 45	DP 26	2	Lu et al. (2018)
Family Chordaceae							
Chorda filum	CaCl$_2$ 2% hot	AEC	A-2	GC 95 1 1 1 2	Ac DP 26	–	Chizhov et al. (1999)
	Na$_2$CO$_3$ 3%	AEC	C-1	GC 83 3 1 8 4	DP 13	3	
	Na$_2$CO$_3$ 3%	AEC	C-2	GC 72 11 5 7 4	DP 13	3	
Family Lessoniaceae							
Ecklonia cava	HCl pH 2.0 hot	AEC	Ec-F1	HPLC 70 15 4 11	DP 19	ND	Ermakova et al. (2011)
	HCl pH 2.0 hot	AEC	Ec-F2	HPLC 57 16 23 4	DP 22	ND	
	Enz.+CaCl$_2$ 4M	PQA+AEC	F1	PAD 53 8 33 2 4	DP 20	16	Lee et al. (2012)
	Enz.+CaCl$_2$ 4M	PQA+AEC	F2	PAD 60 4 31 1 4	DP 16	14	
	Enz.+CaCl$_2$ 4M	PQA+AEC	F3	PAD 78 8 10 2 2	DP 39	9	

(Continued)
TABLE 6 | Continued

Species	Monosaccharide composition (moles %)	Sulfate	Purification/Fractionation	Method	References
Ecklonia kurome					
	FUc Xyl Gal Man Glc Rha GlcA Others				
			HCl pH 2 hot CaCl₂		
			+		
			PQA AEC		
			SEC B-I GC		
			34 34 13 18 DP 19 20 4 4		
			HCl pH 2 hot CaCl₂		
			+		
			PQA AEC		
			SEC C-I GC		
			97 3 DP 47 2		
			HCl pH 2 hot CaCl₂		
			+		
			PQA AEC		
			SEC C-II GC		
			83 17 DP 43 4		
			HCl pH 2 hot CaCl₂		
			+		
			PQA AEC		
			SEC C-II GC		
			83 17 DP 43 4		
			HCl pH 2 hot CaCl₂		
			+		
			PQA AEC		
			SEC C-II GC		
			83 17 DP 43 4		
			HCl pH 2 hot CaCl₂		
			+		
			PQA AEC		
			SEC C-II GC		
			83 17 DP 43 4		

Key: AEC, anion exchange chromatography; SEC, size-exclusion chromatography; HC, hydrophobic chromatography; PQA, precipitation with quaternary ammonium salts; AP/R, alcohol precipitation and redissolution; UF, ultrafiltration.

The family Sargassaceae comprises much more species than the Fucales (512 against 18, Guiry and Guiry, 2020). This family has the largest number of species studied from the point of view of its polysaccharides. The fucoidans from at least 26 different species of the genus *Sargassum* alone were analyzed. Table 2 shows the results for the different fucoidans isolated from this genus. For *S. horneri*, Ermakova et al. (2011) postulated the presence of *Rha* in substantial amounts within the polysaccharides (Table 2). However, their NMR spectra did not show the presence of this sugar, and in a further work by the same group (Silchenko et al., 2017) the fucoidans were purified without any trace of *Rha*. In *S. latifolium*, Asher et al. (2007) isolated three fractions where *Glc* and *GlcA* are the major components and *Fuc* is a minor one, not responding to the classical fucoidan composition. Other atypical polysaccharides were reported in *S. pallidum* (Liu et al., 2016) carrying high-mannose fucoidans, rich in uronic acids and scarcely sulfated, and in *S. thunbergii* (Luo et al., 2019), where a fucoidan completely devoid of sulfate groups was reported (Table 2).

Dietrich et al. (1995) studied the polysaccharides from *Sargassum vulgare*, differentiating whole plants and floaters. The fucoidan fractions corresponded to sulfated xylofucans containing important proportions of uronic acids. The proportion of sulfate is clearly higher in floaters. The ratio *Fuc/Xyl/HexA* varied between 1.0:5.0:0.5 and 1.0:1.0:0.2. However, only *Fuc*, *Xyl* and *uronic acid* have been determined in this investigation, missing other sugars possibly present.

For *Sargassum fusiforme*, the presence of galacturonic acid was detected (Hu et al., 2014). However, it has been shown later that this monosaccharide was part of a contaminating polysaccharide which could be separated by careful fractionation (Cong et al., 2016; Hu et al., 2016).

For the remaining members of the Fucales, the data is shown in Table 3. Mian and Percival (1973) carried out studies on *Bifurcaria bifurcata* and *Himanthalia lorea*. The data is shown only partially in Table 3, as *Gal* could not be quantified. Fractionation by ion exchange chromatography showed fractions with high uronic acid/low sulfate content using lower ionic strengths, and high sulfate, high *Fuc*, low uronic acid content in the later elutions. This behavior was observed for many further studies, regardless of the taxonomy of the seaweed. In some cases, like for *Nizamuddinia zanardinii*, the authors have devoted a lot of work in order to search for different extraction methods (Alboofetileh et al., 2019a,b,c). In Table 3 we have included the analysis of one extraction method, as the characteristics of the polysaccharides appear to be quite similar.

For *Marginariella boryana*, Wozniak et al. (2015) analyzed the polysaccharides extracted from vegetative structures (blades and vesicles) and receptacles (reproductive structures) separately. The proportions of *Xyl*, *Man*, and uronic acid increase significantly in the vegetative structures (Table 3). Within the family Durvillaeaaceae two species were studied. Both in *Durvillaea antarctica* (He et al., 2016) and *D. potatorum* (Lorbeer et al., 2017), the proportion of *Glc* was so large that it obscured the analysis of the fucoidan constituents, even when purification procedures (successful with other seaweeds)
TABLE 7 | Reported compositions of the fucoidans from the orders Ascoseirales, Desmarestiales, Ectocarpales, Ralfsiales, and Scytosphaeriales.

Species	Extraction	Purification/ Fractionationa	Acronym	Monosaccharide composition (moles %)	Sulfate	UA (%)	References
Ascoseirales							
Ascoseira mirabilis	CaCl₂ 2% hot	AEC+SEC 1AF	GC	PC 29 9 19 9 10 25	JL 12		Finch et al. (1986)
Na₂CO₃ 3% hot	AEC+SEC 3AF	PC+GC 17 9 31 14 9 17			JL 8		
Desmarestiales							
Desmarestia aculeata	Na₂CO₃ 3% hot	GC+PC 21 3 41 35			JL Low	d	Percival and Young (1974)
Desmarestia firma	H₂O	AEC F0.3M GC		PC X X X ~50' X ManA X	JL 1	17	Carberg et al. (1978)
Desmarestia ligulata	H₂O	AEC F0.2M GC		GC 52 3 5 1 38	JL 3		
Desmarestia viridis	HCl 0.1M hot	AEC+HC DvF	GC	63 13 17 7	Ac	DP 12	Shevchenko et al. (2017)
Ectocarpales							
Family Adenocystaceae							
Adenocystis utricularis	HCl pH 2 r.t	PQA EA1-5	GC	47 4 9 26 6 8	DP 5	42	Ponce et al. (2003)
HCl pH 2 r.t.	PQA EA1-20	GC 83 15 1	DP 23	4			
HCl pH 2 hot	PQA EA2-5	GC 58 3 6 29 1 3	DP 6	31			
HCl pH 2 hot	PQA EA2-20	GC 75 1 21 1 11 1	DP 21	6			
Family Chordariaceae							
Cladosiphon okamuratus	HCl pH3	CaCl₂ 0.5M+Caf	PD 99	1	Ac	DP 15	Cumashi et al. (2007)
ND	CaCl₂ 0.1M	CAF G 95 3 1	Ac	DP 15 9			
Chordaria flagelliformis	H₂O	AEC F2 GC	Ac	DP 18 16			
Chordaria flagelliformis	H₂O	AEC F3 GC	Ac	DP 27 13			
Chordaria flagelliformis	H₂O	AEC F4 GC	Ac	DP 27 10			
Family Scytosiphonaceae	HCl pH 2 r.t	Nmcl 6 6 4	DP 6	3			
Nmcl Pressure	H₂O	CaCl₂ 3M+AEC	HPLC 74	3 5 2 15	DP 4	d	Cui et al. (2018)
H₂O	CaCl₂ 3M+AEC	NP1 HPLC 76 2 2 20 Ac		DP 19 d			
Papenfussiella lutea	H₂SO₄ 1% r.t	GC 55 4 9 1 31	ND 5				Wozniak et al. (2015)
Punctaria plantaginaria	CaCl₂ 2% hot	PQA GC 69 27 4					Bilan et al. (2014)
Family Sctiosiphonaceae	Enzymes ph 4.5 and B	CaCl₂+AEC F2,1 PAD 19 38 7		Nfr 31, Ara 3	DP 5	ND	Fernando et al. (2017)
Enzymes ph 4.5 and B	CaCl₂+AEC F2,4 PAD 79 3			Nfr 18	DP 34	ND	

(Continued)
TABLE 7

Species	Extraction	Monosaccharide composition (moles %)	Sulfate	Acronym	Ura (%)
		Fuc Xyl Gal Man Glc Rha GlcA Others			
		Method			
		Fractionation			
		Purification/			
		Acronym			
		Reference			
Fucus</i>					
Laminaria *digitata*					
		Enzymes pH 4.5			
		CaCl₂			
		Method			
		FAD			
		HPAGE			
		GC			
		Others			
		Man			
		Gal			
		Xyl			
		Rha			
		Glc			
		GlcA			
		Others			
		Method			
		Fractionation			
		Purification/			
		Acronym			
		Reference			
Ralfsiales					
Analipus *japonicus*					
		Enzymes pH 2.0			
		CaCl₂			
		Method			
		FAD			
		HPAGE			
		GC			
		Others			
		Man			
		Gal			
		Xyl			
		Rha			
		Glc			
		GlcA			
		Others			
		Method			
		Fractionation			
		Purification/			
		Acronym			
		Reference			
Scytothamnus australis					
		Enzymes pH 1.0			
		CaCl₂			
		Method			
		FAD			
		HPAGE			
		GC			
		Others			
		Man			
		Gal			
		Xyl			
		Rha			
		Glc			
		GlcA			
		Others			
		Method			
		Fractionation			
		Purification/			
		Acronym			
		Reference			
Saccharina lattissima					
		Enzymes pH 2.0			
		CaCl₂			
		Method			
		FAD			
		HPAGE			
		GC			
		Others			
		Man			
		Gal			
		Xyl			
		Rha			
		Glc			
		GlcA			
		Others			
		Method			
		Fractionation			
		Purification/			
		Acronym			
		Reference			
Stoechospermum marginatum					
		Enzymes pH 2.0			
		CaCl₂			
		Method			
		FAD			
		HPAGE			
		GC			
		Others			
		Man			
		Gal			
		Xyl			
		Rha			
		Glc			
		GlcA			
		Others			
		Method			
		Fractionation			
		Purification/			
		Acronym			
		Reference			

Key: AEC, anion exchange chromatography; SEC, size-exclusion chromatography; HPLC, high-performance liquid chromatography; POA, precipitation with quaternary ammonium salts; CE, cation exchange.

Key for the less common abbreviations: PAD, HPAEC with pulsed amperometric detector; GC, gas chromatography.

Key: JL, method of Jones and Letham (1954); DP, method of Dodgson and Price (1962) or equivalent; IC, ion chromatography; EA, elemental analysis.

Key: The information for the uronic acid is included in the molar ratio of monosaccharides.

Key: Even after purification, these samples contain 10–12% of alginic acid.

Key: NI = sugar not identified.

Key: Only the proportion of Glc is indicated. The remaining monosaccharides were not quantified.
Figure 3 | Difference in selected reported compositions of fucoidans submitted to charge-based separation methods. Fractions on the left side were eluted or redissolved at low ionic strengths, whereas those on the right side were eluted or redissolved at higher ionic strengths. Upper panel, neutral monosaccharide composition (mol/100 mols); lower panel, sulfate and uronic acid content. The data were reported by Koo et al. (2001), Bilan et al. (2002, 2008, 2010, 2013, 2018), and Ponce et al. (2003, 2019).
early-eluting fractions of anion exchange chromatography, whereas highly sulfated fucans or galactofucans appear in the late-eluting fractions.

Seasonal differences were also observed: for Costaria costata, Imbs et al. (2009) determined that the proportion of Fuc, Gal, Glc, and sulfate increased from spring to summer, whereas those of Man, Rha, and Xyl decreased. This trend is similar to that observed by Men’shova et al. (2012) for Padina pavonica (see above). In another study, carried out for Saccharina pavonica (as Laminaria cichorioides), it has been shown that after the summer, and through fall, the proportion of Fuc decreases again, whereas that of Man increases clearly (Anastyuk et al., 2010).

On the basis of chemical degradation and NMR spectroscopy, Bilan et al. (2010) arrived to many structural features of the fucoidans from Saccharina lattisima. Ehrig and Alban (2015) have shown the large effect of the marine habitat and season on the characteristics of the isolated fucoidans of this seaweed. Samples picked up in the Baltic Sea showed more laminaran contamination and lower fucoidan yields, fucose, and sulfate content than those collected around the Faroe Islands (regardless of the season), although the uronic acid content was similar. Regarding the season effects, the proportion of sulfate was higher in fucoidans from seaweeds collected in September than in May. Anion-exchange chromatography separation showed that only from the September-collected seaweed it was possible to obtain high yields of a high-fucose fraction with the highest biological activity. However, in a further work from the same group (Bittkau et al., 2020), the authors have isolated such a fraction with high fucose and sulfate content from the same North Atlantic location, in July without the need of any purification, suggesting that the year of collection has a major effect on the composition of the isolated fucoidans.

A study carried out with an unidentified species of Alaria (Alaria sp., Vishchuk et al., 2012) was later ascertained as being A. ochotensis (Prokofjeva et al., 2013). In the Alaria species studied so far, it is noteworthy to mention the presence of fucogalactans with approximately equal proportions of Fuc and Gal (Table 6).

For Costaria costata, high proportions of Man have been encountered in the polymers, especially in the less charged fractions isolated in some studies (Wang et al., 2014). In any case, Man appears conspicuously in most of the studies carried out on fucoidans of any origin.

The polysaccharides from Undaria pinnatifida were studied by many research groups, probably due to the fact that this seaweed, native from northeastern Asia, is very invasive and now is widespread all around the world (Casas et al., 2004; Thornber et al., 2004). It is worth noting that most of the studies have shown the presence of a galactofucan with high proportions of Gal, sometimes leveling out with Fuc. The proportion of other sugars (Man, Xyl and uronic acids) is usually low, whereas the proportion of sulfate is considerable, but lower than those of other species (Table 6).

Other Orders
The analysis of the fucoidans of different species of the order Ectocarpales appears in Table 7. In this survey, only reports for ten different species (belonging to three families) of the order have been found. Highly sulfated galactofucans or homofucans coexist with polysaccharides containing significant proportions of Man, GlcA and/or Xyl.

The analysis of the fucoidans from four species from the Desmarestiales is also shown in Table 7. It should be taken into account that these seaweeds contain free sulfuric acid in their vacuoles (Carlberg et al., 1978), making them very labile when taken out from the marine environment. This requires special techniques in order to obtain neutral extracts unaffected by the strong acid.

To the best of our knowledge, the fucoidans from only one species from the Ascoseirales and Ralfsiales, and two of the Scytoscleramiales have been studied (Table 7). The fucoidans from the three samples from the Ralfsiales and Scytoscleramiales appear to be particularly rich in Fuc and poor in uronic acids, whereas the Ascoseira sample was quite heterogeneous (Finch et al., 1986, Table 7).

CONCLUDING REMARKS
The current review has surveyed most of the compositional data on fucoidans extracted from different species, in many cases after purification; more than 100 species were screened through the literature. Besides the obvious purpose of providing a reliable source of compositional data gathered in a set of tables, this review attempted to foresee if there is any correlation of these compositional data with their taxonomy, or if other factors are more important than the taxonomic origin.

These general considerations can be deduced from the analysis of the compositional data:

1. Separation by charge is the most efficient method to obtain “pure” fucoidan fractions. Either using anion-exchange chromatography with increasing concentrations of salt as eluant, or by precipitating with cationic detergents and redissolving at increasing ionic strengths, two main type of polymers can be separated: (a) those appearing at low ionic strengths, usually highly heterogeneous in their monosaccharidic composition (containing Fuc, Xyl, Gal, Man, Rha, GlcA), with low-sulfate content, and high uronic acid content, and b) those appearing at high ionic strengths, containing mainly Fuc, accompanied with variable proportions of Gal, highly sulfated and containing little (or none) uronic acids. Fractions containing intermediate proportions of both polysaccharides appear at medium ionic strengths. Figure 3 depicts the composition of fractions belonging to each of the first groups from selected seaweeds, showing clearly the marked differences between both groups. This behavior is observed for samples from the orders Fucales, Laminariales, Ascosereales, Desmarestiales, Ectocarpales, and Ralfsiales (Mian and Percival, 1973; Carlberg et al., 1978; Bilan et al., 2002, 2013, 2016, 2018; Ponce et al., 2003, 2019; Ozawa et al., 2006; Mak et al., 2013); however, for the Dictyoales, the trend is obscured due to the abundance of Man and/or uronic acids in the products separated at
each ionic strength (Table 4). It has been postulated that the biological activity is concentrated on the galactofucan components (Ponce et al., 2003, 2019; Croci et al., 2011).

2. Acetate esters of the fucoidans are very common. As a matter of fact, this constituent has been found in almost every sample where it was searched. Determinations of acetyl groups are not very common, as they are only encountered through NMR spectra or specific colorimetric techniques. They are labile enough in mild alkaline or acid media as to get undetected when using some extraction procedures (Bernhard and Hammett, 1953; Wuts and Greene, 2006). Anyway, almost all of the seven tables report acetyl groups on some species. It is highly probable that searching in other species would have resulted in many more positive results.

3. In some cases, Man and Rha appear together, usually in fractions with lower sulfate contents. For Man, structural explanations have already been reported in terms of fucomannoglucuronans (Bilan et al., 2010), but for Rha no structural function has been found so far. Rha seems to appear in higher proportions within the order Dictyotales and the family Sargassaceae (Fucales).

4. The Dictyotales appear to be the most “atypical” order, as usually large proportions of Man and uronic acids appear. In one species which was highly fractionated, Man becomes the most important monosaccharide in the low-charged fractions, and it is still important in the fractions with more sulfate groups (Table 4: Rabanal et al., 2014). However, fractions with high proportions of monosaccharides different than Fuc were found in most of the taxa studied so far (see Tables).

5. The uronic acid content should be considered with due care. Sometimes it corresponds to GlcA actually comprising the fucoidan structure, but sometimes it corresponds to contamination with alginic acid (e.g., Finch et al., 1986; Lorbeer et al., 2017), a polysaccharide present in all of the brown seaweeds studied so far. By the same token, the Glc present in the samples should almost certainly correspond to contaminating laminarans (Lorbeer et al., 2017; Mateos-Aparicio et al., 2018). Only in a few cases, Glc has been shown to be part of the fucoidan structure (e.g., Duarte et al., 2001).

6. There are several factors to consider when comparing the compositional data of fucoidans from different seaweeds and research groups. The taxon is just one of them. Others like geographical location, year and season of harvest of the seaweed, extraction and purification methods, analytical methods, different parts or reproductive stages of the seaweeds are also of paramount importance in defining the final characteristics.

7. The geographic site of harvesting appears to be very important: Zvyagintseva et al. (2003) found marked differences between the fucoidans of Fucus evanescens collected in different spots of the southern Okhotsk Sea. Ehrig and Alban (2015) also found a significant difference between the composition and yields of fucoidans of Saccharina lattissima samples collected in the North Atlantic and in the Baltic Sea. This factor, together with the year of collection might explain the large differences in composition found for species studied by different groups (or at different times) even with similar extraction and purification procedures.

8. The season of harvesting has also influence over the composition of the fucoidans: a trend with increasing yields, and proportions of sulfate, Fuc, Gal and Glc (together with a decrease in the Man and Rha content) is observed as the collection month progressed from March to October, in the Northern Hemisphere (Imbs et al., 2009; Anastyuk et al., 2010; Menšíhova et al., 2012; Ehrig and Alban, 2015).

9. The effect of the extraction conditions is more controversial: Ponce et al. (2003) and Wozniak et al. (2015) found very little differences when switching the extraction solvent from water to CaCl₂ to diluted HCl. Alboofetileh et al. (2019b) found differences in yield and in sulfate content but a very similar monosaccharide composition using enzymes, ultrasound, or both combined. Rodriguez-Jasso et al. (2011) found a significant difference in composition and yields when changing the time and the pressure of a microwave-assisted water extraction. Nguyen et al. (2020) have shown a sharply different composition of the chemically and enzymatically-extracted crude products, being the latters richer in alginic acid and sulfate/Fuc ratios. After purification, the compositions might level off. However, the enzyme-aided extraction, also used by other groups (Dietrich et al., 1995; Albuquerque et al., 2004; Silva et al., 2005; Medeiros et al., 2008; Queiroz et al., 2008; Costa et al., 2011; Camara et al., 2011; Lee et al., 2012; Wang et al., 2014; Hu et al., 2016; Monsur et al., 2017; Fernando et al., 2017, 2018; Liu et al., 2018; Menezes et al., 2018; Song et al., 2018; Jayawardena et al., 2019; Alboofetileh et al., 2019a,b) appears to be an interesting prospect, considering cleaner chemical issues and the possibility of finding enhanced biological activities in comparison with chemically extracted products (Nguyen et al., 2020).

Some differences were found between the fucoidans isolated from reproductive and sterile tissue of five different seaweeds (Skripotsova et al., 2012, see Tables 1, 2, 5, 6). Usually the reproductive tissue is less heterogeneous, and carries more Fuc and less Glc than the sterile tissue. Regarding the extraction of fucoidans from different parts of the seaweeds, Percival et al. (1983) extracted separately the polysaccharides from fronds and stipes from Lessonia nigrescens, whereas Wozniak et al. (2015) compared the fucoidans isolated from reproductive structures and from vegetative structures in Marginariella boryana. The fucoidans from stipes and the vegetative structures, respectively, appear to be more heterogeneous (less Fuc and more uronic acids).

In order to obtain fucoidan samples devoid of contaminants, the best results were obtained by carrying out the extractions with dilute HCl or CaCl₂, or using these agents after the extraction (for instance enzymatic) in order to precipitate the
alginate in the first place, followed by a careful separation by charge (anion exchange chromatography eluting with increasing ionic strength, or precipitation with quaternary ammonium salts followed by redissolution with increasing ionic strengths). Further purification of each fraction by size-exclusion chromatography usually yield fucoidans devoid of alginic acid or laminaran contaminants.

The conclusion is that with so many variables determining the composition of the fucoidans, the subtle differences that might appear among the different higher taxa (order, family) surveyed in this review are overridden. Probably, comparisons carried out in the same labs with the same methods might help, or more profound structural studies might throw light on chemotaxonomical issues in the future.

AUTHOR CONTRIBUTIONS

NP was involved in the conceptualization, formal analysis, investigation, writing, and visualization of this work. CS was involved in the conceptualization, formal analysis, writing, visualization, and funding of this work. Both authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by grants from the University of Buenos Aires (20020170100255BA), National Research Council of Argentina-CONICET (PIP 298/14 and P-UE 22920160100068CO), and ANPCyT-Argentina (PICT 2017-1675).

ACKNOWLEDGMENTS

We are indebted to Dr. María C. Rodríguez for her help on botanical/psychological issues, and to Dr. Marina Ciancia for her kind invitation to participate in this issue.
Hormophysa cuneiformis (Fucales, Sargassaceae). Carbohydr. Res. 469, 48–54. doi: 10.1016/j.carres.2018.09.001

Bilan, M. I., Vinogradova, E. V., Tsetkovka, E. A., Grachev, A. A., Shashkov, A. S., Nifantiev, N. E., et al. (2008). A sulfated glucuronofucan containing both fucurorafuranose and fucopyranose residues from the brown alga Chordaria flagelliformis. Carbohydr. Res. 343, 2605–2612. doi: 10.1016/j.carres.2008.06.001

Bilan, M. I., Zakharova, A. N., Grachev, A. A., Shashkov, A. S., Nifantiev, N. E., and Usov, A. I. (2007). Polysaccharides of alga: 60. Fucoidan from the Pacific brown alga Analipus japonicus (Harv.) Winnie (Ectocarpales, Systosiphonaceae). Russ. J. Bioorg. Chem. 33, 38–46. doi: 10.1134/S1068162007010049

Bittka, K. S., Neupane, S., and Alban, S. (2020). Initial evaluation of six different brown algal species as source for crude bioactive fucoids. Algal Res. 45:101759. doi: 10.1016/j.algal.2020.101759

Camara, R. B. G., Costa, L. S., Fidelis, G. P., Nobre, L. D. T. B., Dantas-Santos, N., Cordeiro, L. S., et al. (2011). Heterofucans from the brown seaweed Canistrocarpus cervicornis with anticoagulant and antioxidant activities. Mar. Drugs 9, 124–138. doi: 10.3390/md90100124

Carberg, G. E., Percival, E., and Rahman, M. A. (1978). Carbohydrates of the brown alga Desmarestia ligulata (Phaeophyta) and its anticoagulant and elicitor properties. Int. J. Biol. Macromol. 42, 235–240. doi: 10.1016/j.ijbiomac.2007.10.023

Charrier, B., Le Bail, A., and de Reviers, B. (2012). Plant Proteus: brown algal polysaccharides: structure and applications, “in Algae: the Past, Present and Future of Algal Systematic, ed J. Brodie, and J. Lewis (Boca Raton, FL: CRC Press), 267–284. doi: 10.1007/9788094379901

Deniaud-Bouët, E., Hardouin, K., Potin, P., Kloareg, B., and Hervé, C. (2017). A review about brown algal cell walls and fucose-containing sulfated polysaccharides: cell wall context, biomedical properties, and key research challenges. Carbohydr. Polym. 175, 395–408. doi: 10.1016/j.carbpol.2017.07.082

Deniaud-Bouët, E., Kervarec, N., Michel, G., Tonon, T., Kloareg, B., and Hervé, C. (2014). Chemical and enzymatic fractionation of cell walls from fucales: insights into the structure of the extracellular matrix of brown alga. Ann. Bot. 114, 1203–1216. doi: 10.1093/aob/mcu096.

Dietrich, C. P., Farias, G. G. M., de Abreu, L. R. D., Leite, E. L., da Silva, L. F., and Nader, H. B. (1995). A new approach for the characterization of polysaccharides from algae: presence of four main acidic polysaccharides in three species of the class Phaeophyceae. Plant Sci. 108, 143–153. doi: 10.1016/0168-9452(95)01142-H

Dinesh, S., Menon, T., Hanna, L. E., Suresh, V., Sathuvan, M., and Manikaman, M. (2016). In vitro anti-HIV-1 activity of fucoidan from Sargassum swirltzi. Int. J. Biol. Macromol. 82, 83–88. doi: 10.1016/j.ijbiomac.2015.09.078

Dodgson, K. S., and Price, R. C. (1962). A note on the determination of ester sulfate content of sulfated polysaccharides. Biochem. J. 84, 106–110. doi: 10.1042/bj0840106

Draisma, S. G. A., Peters, A. F., and Fletcher, R. L. (2003). “Evolution and taxonomy in the Phaeophyceae: effects of the molecular age on brown algal systematic,” in Out of the Past. Collected Reviews to Celebrate the Jubilee of the British Phycological Society, ed. T. A. Norton (Belfast: British Phycological Society), 87–102.

Draisma, S. G. A., Prud’homme van Reine, W. F., Stam, W. T., and Olsen, J. L. (2001). A reassessment of phylogenetic relationships within the Phaeophyceae based on RUBISCO large subunit and ribosomal DNA sequences. J. Phycol. 37, 586–603. doi: 10.1046/j.1529-8177.2001.037000586.x

Duarte, M. E. R., Cardoso, M. A., Noseda, M. D., and Cerezo, A. S. (2001). Structural studies on fucoids from the brown seaweed Sargassum stenophyllum. Carbohydr. Res. 333, 281–293. doi: 10.1016/S0008-6215(01)00149-5

Ehrig, K., and Alban, S. (2015). Sulfated galactofucan from the brown alga Saccharina latissima — Variability of yield, structural composition, and bioactivity. Mar. Drugs 13, 76–101. doi: 10.3390/md13010076

Ermakova, S., Men shova, R., Vishchuk, O., Kim, S.-M., Um, B.-H., Isakov, V., et al. (2013). Water-soluble polysaccharides from the brown alga E sentiments: structural characteristics and antitumor activity. Algal Res. 2, 51–58. doi: 10.1016/j.algal.2012.10.002

Ermakova, S., Sokolova, R., Kim, S.-M., Um, B.-H., Isakov, V., and Zvyagintseva, T. (2011). Fucoids from brown seaweeds Sargassum hornery, Eclonia cava, Costaria costata: structural characteristics and antitancer activity. Appl. Biochem. Biotechnol. 164, 841–850. doi: 10.1007/s12010-011-9178-2

Feldman, S. C., Reynaldi, S., Stortz, C. A., Cerezo, A. S., and Damonte, E. B. (2015). Structural, chemical and enzymatic modification, and antioxidant activity of polysaccharides from the brown alga Turbinaria ornata. J. Appl. Phycol. 28, 2495–2505. doi: 10.1007/s10525-018-0974-9

Fernando, I. P. S., Sanjeewa, K. K. A., Samarakoon, K. W., Kim, H.-S., Gunasekara, U. K. D. S. S., Park, Y.-J., et al. (2018). The potential of fucoidans from the brown alga Chnoospora minima as potential inhibitors of LPS-induced inflammatory responses. Carbohydr. Res. 469, 48–54. doi: 10.1016/j.carres.2018.09.001

Davis, T. A., Volesky, B., and Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown alga. Water Res. 37, 4311–4330. doi: 10.1016/S0043-1350(03)00293-8

de Revis, B., Rousseau, F., and Draisma, S. G. A. (2007). “Classification of the Phaeophyceae from past to present and current challenges,” in Unraveling the Algae: the Past, Present and Future of Algal Systematic, eds J. Brodie, and J. Lewis (Boca Raton, FL: CRC Press), 267–284. doi: 10.1007/9780894379901

Fernando, I. P. S., Sanjeewa, K. K. A., Samarakoon, K. W., Lee, W. W., Kim, H.-S., Kang, N., et al. (2017). A fucoidan fraction purified from Chnospora minima; a potential inhibitor of LPS-induced inflammatory responses. Int. J. Biol. Macromol. 104, 1185–1193. doi: 10.1016/j.ijbiomac.2017.07.031
Luo, D., Wang, Z., and Nie, K. (2019). Structural characterization of a

Medcalf, D. G., Root, C. F., Craney, C. L., Mukhopadhyhay, D., Miller, C. J.,

Mabeau, S., Kloareg, B., and Joseleau, J.-P. (1990). Fractionation and analysis of

Frontiers in Plant Science | www.frontiersin.org

Menshova, R. V., Anastyuk, S. D., Ermakova, S. P., Shevchenko, M. N., Isakov,

Ponce and Stortz Fucoidans From the Phaeophyceae

Men'shova, R. V., Lepeshkin, F. D., Ermakova, S. P., Pokrovskii, O. I., and

Zvyagintseva, T. N. (2013). Effect of pretreatment conditions of brown algae by

supercritical fluids on yield and structural characteristics of fucoidans. Chem.

Nat. Compd. 48, 925–926. doi: 10.1007/s10600-013-0429-z

Mian, A. J., and Percival, E. (1973). Carbohydrates of the brown seaweeds

Himanthalia lorea, Bifurcaria bifurcata, and Padina pavonia. Part I. Extraction and fractionation. Carbohydr. Res. 26, 133–146. doi: 10.1016/S0008-6215(00)

Miller, I. J. (1997). The chemotaxonomic significance of the water-soluble red algal polysaccharides. Recent Res. Dev. Phytochem. 1, 531–565.

Monsur, H. A., Jaswir, I., Simsek, S., Amid, A., and Alam, Z. (2017). Chemical structure of sulfated polysaccharides from brown seaweed (Turbinaria turbinata). Int. J. Food Prop. 20, 1457–1469. doi: 10.1080/10942912.2016.1211114

Mori, H., and Niszczawa, K. (1982). Sugars constituents of sulfated polysaccharides from the fronds of Sargassum rugoidianum. Bull. Imp. Soc. Fish. 48, 981–986. doi: 10.2331/suisan.48.981

Nagaoka, M., Shibata, H., Kimura-Takagi, I., Hashimoto, S., Kimura, K., Makino, T., et al. (1999). Structural study of fucoidan from Cladophora Okamuraanus TOKIDA. Glycoconj. J. 16, 19–26. doi: 10.1023/A:1006945618657

Nakayasu, S., Soejima, R., Yamaguchi, K., and Oda, T. (2009). Biological activities of fucose-containing polysaccharide asphoan isolated from the brown alga Ascophyllum nodosum. Asian Biotechnol. Biochem. 73, 961–964. doi: 10.1271/ bb.080845

Nguyen, T. T., Mikkelsen, M. D., Tran, V. H. N., Trang, V. T. D., Rhein-Knudsen, N., Holck, J., et al. (2020). Enzyme-assisted fucoidan extraction from brown macroalgae Fucus distichus subsp. evanescens and Saccharina lattissima. Mar. Drugs 18, 296. doi: 10.3390/md18060296

Nishino, T., Nishioka, C., Ura, H., and Nagumo, T. (1994a). Isolation and partial characterization of a novel aminosugar-containing fucan sulphate from commercial Fucus vesiculosus fucoidan. Carbohydr. Res. 255, 213–224. doi: 10.1016/S0008-6215(00)09980-7

Nishino, T., Takeshi, Y., and Nagumo, T. (1994b). Isolation and partial characterization of a novel F-galactan sulfate from the brown seaweed Laminaria angustata var. longissima. Carbohydr. Polym. 23, 165–173. doi: 10.1016/0144-8617(94)90099-X

Nishino, T., Yokoyama, G., Dobashi, K., Fujihara, M., and Nagumo, T. (1989). Isolation, purification, and characterization of fucose-containing sulfated polysaccharides from the brown seaweed Ecklonia kumome and their blood-coagulant activities. Carbohydr. Res. 186, 119–129. doi: 10.1016/0008-6215(89)80410-8

Olatunji, O. (2020). “Fucoidan,” in Aquatic Biopolymers. Springer Series on Polymer and Composite Materials, ed. S. Kalia (Cham: Springer), 95–115. doi: 10.1007/978-3-030-34709-3_5

Oltmanns, F. (1922). Morphologie und Biologie der Algen. Phaeophycceae-Rhodophyceae. 2nd Edn, Vol. II. Jena: Gustav Fischer.

Ozawa, T., Yamamoto, J., Yamagishi, T., Yamaraki, N., and Nishizawa, M. (2006). Two fucoidans in the holdfast of cultivated Laminaria japonica. J. Nat. Med. 60, 236–239. doi: 10.1007/s11418-006-0046-2

Palansamy, S., Vinosh, M., Marudhipandi, T., Rajasekar, P., and Prabhu, N. M. (2017). In vitro antitoxin and antibacterial activity of sulfated polysaccharides isolated from Spatoglossum asperum. Carbohydr. Polym. 170, 296–304. doi: 10.1016/j.carbpol.2017.04.085

Percival, E. (1968). Glucuronofucoluran, a cell-wall component of Ascelliphynum nodosum. Part I. Carbohydr. Res. 7, 272–283. doi: 10.1016/0008-6215(60)81200-8

Percival, E. (1979). The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function. Br. Phycol. J. 14, 103–117. doi: 10.1007/10.0007161790650121

Percival, E., and McDowell, R. H. (1967). Chemical and Enzymology of Marine Algal Polysaccharides. (New York, NY: Academic Press), 157–174.

Percival, E., Rahman, M. D. A., and Weigel, H. (1981). Chemistry of the polysaccharides of the brown seaweed Dictyopteris plumagigomma. Phytochemistry 20, 1579–1582. doi: 10.1016/0031-9422(90)90099-X

Percival, E., and Young, M. (1974). Carbohydrates of the brown seaweeds: part III. Desmarestia aculeata. Carbohydr. Res. 32, 195–201. doi: 10.1016/0008-6215(69)80207-7

Percival, E., Venegas Jara, M. F., and Weigel, H. (1983). Carbohydrates of the brown seaweed Lessonia nigrescens. Phytochemistry 22, 1429–1432. doi: 10.1016/0031-9422(80)80429-7

Frontiers in Plant Science | www.frontiersin.org

23

November 2020 | Volume 11 | Article 556312

Fla. Marine Drugs

Fla. Marine Drugs

Fla. Marine Drugs

Fla. Marine Drugs

Fla. Marine Drugs
Shchepenkov, N. M., Anastayk, S. D., Menshova, R. V., Vishchuk, O. S., Isakov, V. I., Zadorozhny, P. A., et al. (2015). Further studies on structure of fucoidan from brown alga Saccharina laricinae. Carbohydr. Polym. 121, 207–216. doi: 10.1016/j.carbpol.2014.12.042

Shchepenkov, N. M., Usol’tsev (Men’shova), R. V., Ishina, I. A., Thinh, P. D., Ly, B. M., and Ermakova, S. P. (2017). Structural characteristics and in vitro antitumor activity of water-soluble polysaccharides from brown algae of the Russian far east and Vietnam. Chem. Nat. Compd. 53, 1–5. doi: 10.1007/s10600-017-1987-3

Sillbärd, T., Racault, M.-F. L. P., Fletcher, R. L., Couloux, A., Rousseau, F., and de Reviers, B. (2011). Systematics and evolutionary history of pyrenoid-bearing taxa in brown algae (Phaeophyceae). Eur. J. Phycol. 46, 361–377. doi: 10.1080/09670262.2011.628989

Sillbärd, T., Rousseau, F., and de Reviers, B. (2014). An updated classification of brown algae (Ochrophyta, Phaeophyceae). Cryptogam. Algol. 35, 117–156. doi: 10.7872/cria.v35.iiss2.2014.1117

Silchenko, A. S., Rasin, A. B., Kusakym, M. I., Kalinovsky, A. I., Miansong, Z., Changheng, L., et al. (2017). Structure, enzymatic transformation, anticancer activity of fucoidan and sulphated fucooligosaccharides from Sargassum horneri. Carbohydr. Polym. 175, 654–660. doi: 10.1016/j.carbpol.2017.08.043

Silva, T. M. A., Alves, L. G., Queiroz, K. C. S., Santos, M. G. L., Marques, C. T., Chavante, S. F., et al. (2005). Partial characterization and anticoagulant activity of a heterofucan from the brown seaweed Padina gymnospora. Braz. J. Med. Biol. Res. 38, 523–533. doi: 10.1590/S0027-65902005000500005

Sinha, S., Astani, G., Ghosh, T., Schnitzler, P., and Ray, B. (2010). Polysaccharides from Sargassum tenerum: structural features, chemical modification and anti-viral activity. Phytochemistry 71, 235–242. doi: 10.1016/j.phytochem.2009.10.014

Skiripskova, A. V. (2015). Fucoidans from brown algal biosynthesis, localization, and physiological role in the thallus. Russ. J. Mar. Biol. 41, 145–156. doi: 10.1134/S1063074015030098

Skiripskova, A. V., Vechenkov, N. M., Tarbeeva, D. V., and Zaygintsveva, T. N. (2012). Comparative study of polysaccharides from reproductive and sterile tissues of five brown seaweeds. Mar. Biotechnol. 14, 304–311. doi: 10.1007/s10522-010-9306-3

Sokolova, R. V., Ermakova, S. P., Awada, S. M., Zvyagintseva, T. N., and Kanaan, H. M. (2011). Composition, structural characteristics and antitumor properties of polysaccharides from the brown alga Dictyopteris polyposides and Sargassum sp. Chem. Nat. Compd. 47, 329–334. doi: 10.1007/s10600-011-9925-1

Somusundaram, N., Shannugam, S., Subramanian, B., and Jaganathan, R. (2016). Cytotoxic effect of fucoidan extracted from Sargassum cinerum on colon cancer cell line HCT-15 S. Int. J. Biol. Macromol. 91, 1215–1223. doi: 10.1016/j.ijbiomac.2016.06.084

Song, Y. W., Wang, Q., Wang, Q., He, Y., Ren, D., Liu, S., et al. (2018). Structural characterization and antitumor effects of fucoidans from brown algae Kjellmaniella crassifolia farmed in northern China. Int. J. Biol. Macromol. 119, 125–133. doi: 10.1016/j.ijbiomac.2018.07.126

Starok, S., Soto Gomez, M., Darby, H., Demes, K. W., Kawai, H., Yotsukura, N., et al. (2010). Structure and antitumour activity of fucoidan isolated from Padina gymnospora. Cryptogam. Algol. 31, 518–525. doi: 10.1007/s10600-010-9412-0

Storz, C. A., and Cerezo, A. S. (2000). Novel findings in carrageenans, agaroids and “hybrid” red seaweed galactans. Curr. Top. Phytochem. 4, 121–134

Sun, Q. L., Li, Y., Ni, L.-Q., Li, Y.-X., Cui, Y.-S., Jiang, S.-L., et al. (2020). Structural characterization and antiviral activity of two fucoidans from the brown algae Sargassum henslowianum. Carbohydr. Polym. 229:115487. doi: 10.1016/j.carbpol.2019.115487

Synytsya, A., Kim, W.-J., Kim, S.-M., Pohl, R., Synytsya, A., Kraviecka, E., et al. (2010). Structure and antitumour activity of fucoidan isolated from sporophyll-free Korean brown seaweed Undaria pinnatifida. Carbohydr. Polym. 81, 41–48. doi: 10.1016/j.carbpol.2010.01.052

Tako, M., Takeda, S., Teruya, T., and Tamaki, Y. (2010). Chemical characterization of fucoidans from Laminaria angustata var. longissima. Nippon Soshutsu Kogyokou Kogaku Kaishi 57, 495–502. (in Japanese) doi: 10.3136/nsskk.57.495

Tan, I. H., and Druehl, L. D. (1996). A ribosomal DNA phylogeny supports the close evolutionary relationships among the Sporochnales, Desmarestiales, and
Laminariales (Phaeophyceae). J. Phycol. 32, 112–118. doi: 10.1111/j.0022-3646.1996.00112.x

Teruya, T., Tatemoto, H., Konishi, T., and Tako, M. (2009). Structural characteristics and in vitro macrophage of acetyl fucoidan from Cladosiphon okamuranus. Glycoconj. J. 26, 1919–1928. doi: 10.1007/s10719-008-9221-x

Thinh, P. D., Menshova, R. V., Ermakova, S. P., Anastyuk, S. D., Ly, R. M., and Zvyagintseva, T. N. (2013). Structural characteristics and anticancer activity of fucoidan from the brown alga Sargassum mclearei. Mar. Drugs 11, 1456–1476. doi: 10.3390/md11051456

Thorner, C. S., Kinlan, B. P., Graham, M. H., and Stachowicz, J. J. (2004). Population ecology of the invasive kelp Undaria pinnatifida in California: environmental and biological controls on demography. Mar. Ecol. Prog. Ser. 268, 69–80. doi: 10.3354/meps268069

Usov, A. I. (2011). Polysaccharides of the red algae. Adv. Carbohydr. Chem. 175, 547–556. doi: 10.1016/j.carbpol.2017.08.044

Usoltseva, R. V., Zhao, P., Kusaikin, M. I., Jia, A., Yuan, W., Zhang, M., et al. (2012). Analysis of structural heterogeneity of fucoidan from Hizikia fusiforme by ES-CID-MS/MS. Carbohydr. Polym. 90, 602–607. doi: 10.1016/j.carbpol.2012.05.084

Usoltseva, R. V., Chen, P.-W., and Huang, C.-Y. (2017). Compositional characteristics and in vitro evaluations of antioxidant and neuroprotective properties of crude extracts of fucoidan prepared from compressionally puffing-pretreated Sargassum crassifolium. Mar. Drugs 15:183. doi: 10.3390/md15060183

Wang, P., Zhao, X., Lv, Y., Liu, Y., Lang, Y., Wu, J., et al. (2012). Analysis of structural heterogeneity of fucoidan from Hizikia fusiforme by ES-CID-MS/MS. Carbohydr. Polym. 90, 602–607. doi: 10.1016/j.carbpol.2012.05.084

Wang, Q., Song, Y., He, Y., Ren, D., Kow, F., Qiao, Z., et al. (2014). Structural characterisation of algae Costaria costata fucoidan and its effects on CCl4-induced liver injury. Carbohydr. Polym. 107, 247–254. doi: 10.1016/j.carbpol.2014.02.071

Wang, Y., Xing, M., Cao, Q., Ji, A., Liang, H., and Song, S. (2019). Biological activities of fucoidan and the factors mediating Its therapeutic effects: a review of recent studies. Mar. Drugs 17:183. doi: 10.3390/md17030183

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Ponce and Storz. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.