Synthesis and application of titanium dioxide photocatalysis for energy, decontamination and viral disinfection: a review

Jayaseelan Arun, S Nachiappan, Goutham Rangarajan, Ram Prasath Alagappan, K P Gopinath, Eric Lichtfouse

To cite this version:

Jayaseelan Arun, S Nachiappan, Goutham Rangarajan, Ram Prasath Alagappan, K P Gopinath, et al.. Synthesis and application of titanium dioxide photocatalysis for energy, decontamination and viral disinfection: a review. Environmental Chemistry Letters, 2023, 21, pp.339-362. 10.1007/s10311-022-01503-z. hal-03984451

HAL Id: hal-03984451
https://hal.science/hal-03984451
Submitted on 12 Feb 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Synthesis and application of titanium dioxide photocatalysis for energy, decontamination and viral disinfection: a review

Jayaseelan Arun1 · S. Nachiappan2 · Goutham Rangarajan3 · Ram Prasath Alagappan4 · K. P. Gopinath5 · Eric Lichtfouse6

Abstract
Global pollution is calling for advanced methods to remove contaminants from water and wastewater, such as TiO2-assisted photocatalysis. The environmental applications of titanium dioxide have started after the initial TiO2 application for water splitting by Fujishima and Honda in 1972. TiO2 is now used for self-cleaning surfaces, air and water purification systems, microbial inactivation and selective organic conversion. The synthesis of titanium dioxide nanomaterials with high photo-catalytic activity is actually a major challenge. Here we review titanium dioxide photocatalysis with focus on mechanisms, synthesis, and applications. Synthetic methods include sol-gel, sonochemical, microwave, oxidation, deposition, hydro/sol-vothermal, and biological techniques. Applications comprise the production of energy, petroleum recovery, and the removal of microplastics, pharmaceuticals, metals, dyes, pesticides, and of viruses such as the severe acute respiratory syndrome coronavirus 2.

Keywords Titanium dioxide · Wastewater · Photocatalysis · Emerging pollutant · Photocatalyst

Abbreviations
BTEX Benzene toluene ethylbenzene and xylene
SARS Severe acute respiratory syndrome
PPCP Pharmaceutical and personal care products

Introduction
The past several decades have seen an ever-increasing rate of scientific and engineering innovations which has also brought with it the undesirable effects of anthropogenic activities such as pollution, and the proliferation of antibiotic-resistant microbes (Ojemaye et al. 2020; Maganha de Almeida Kumlien et al. 2021) and their associated health hazards. While concerted efforts have been taken to decrease the detrimental effects of such pollutants on the health and wellbeing of the environment, much attention has been on pollution mitigation via adsorption or oxidative mineralization (Daghrir et al. 2013). To this end, nanoparticles have been successfully demonstrated to attenuate pollutants of varying characteristics such as trace, organic, inorganic and biological (Villaseñor and Ríos 2017). Numerous candidates are deployed in environmental endeavours including oxides of transition metals (zinc oxide, titanium oxide, iron oxide, aluminium oxide) (Udom et al. 2013; Fajardo et al. 2014; Haider et al. 2017; Hitam and Jalil 2020), sulphides (zinc sulphide, cadmium sulphide) (Lee and Wu 2017; Theerthagiri et al. 2017), nitrides (graphitic carbon nitrides) (Zhang et al. 2018; Zhu et al. 2020), carbon allotropes (Madima et al. 2020; Long et al. 2021), nanocomposites with noble metals (Liu et al. 2013).
and other transition metal compounds (López et al. 2021). However, the chief criterion for selecting the best nanoparticle for a certain application is based on the cost-effectiveness, chemical stability and recoverability. Consequently, nanosized titanium dioxide (TiO₂) has become a chief candidate for pollution mitigation application as a photocatalyst, adsorbent or electrocatalyst.

Tremendous development in TiO₂ nanoparticles synthesis techniques has enabled its application in an array of fields such as water purification (Jézéquel and Chu 2005) (Lee and Park 2013), carbon dioxide reduction (Ola and Maroto-Valer 2015), water splitting (Ismael 2020), air pollution mitigation (Toma et al. 2004) (Lyu et al. 2014), food (Boutillier et al. 2021) and microbial decontamination/surface disinfection (Laxma Reddy et al. 2017) with promising results. This has also partly been motivated by the eco-friendly, self-cleaning/sterilizing, stable and inert nature of titanium dioxide. In addition, bulk-scale titanium dioxide possesses little to no environmental application and is mostly employed as a dye/pigment (Weir et al. 2012).

A variety of TiO₂ nanoparticles such as dendrites (Sun et al. 2011), anodic grids (de Freitas et al. 2011), nanodots (Zhang et al. 2017), powders (Yildiz et al. 2020), 2D nanosheets (Chen et al. 2020), hollow spheres (Su et al. 2020), nanoflowers (Harris et al. 2020), nanorods (Diao et al. 2021) and nanobelts have been synthesized through various techniques like sol–gel method, hydro (solvo)-thermal method and microwave methods. Considering the diversiform application areas of titanium dioxide nanoparticles in the environment, this work tries to provide a consolidated review of various synthesis techniques that can be applied for the production of nano-titanium dioxide and their application as photocatalysts for pollutants (heavy metals, dyes and microplastic) removal, electrocatalysts for energy production (water splitting and carbon dioxide reforming), antimicrobial agents, nanomedicine and oil recovery which will be discussed towards the latter sections of the work.

While many reviews currently exist on the various techniques for synthesis of TiO₂ nanoparticles, some excellent reviews in this field include the works such as Daghrir et al. (2013), Wang et al. (2014), and Gopinath et al. (2020) that have covered numerous articles until recent past. However, with tremendous improvement in nanoparticle synthesis techniques, a latest and more comprehensive review on the synthesis and application of titanium dioxide is needed and this work has been framed towards addressing this endeavour.

Mechanism of titanium dioxide photocatalysis

Being a semiconductor, titanium dioxide (TiO₂) comprises a small energy difference between the conduction and valence bands. Electrons that are present in the valence band get excited to the conduction band when light (ultraviolet) falls on its surface. This phenomenon leads to the formation of both negative and positive charges on the semiconductor surface. Titanium dioxide has a band gap (3–3.2 eV) with a maximum absorption wavelength of 400 nm. The entire phenomenon of electron excitation is depicted in Fig. 1. Constant exposure to light results in the formation of high temperature on the titanium dioxide surface, and this, in turn, results in the degradation of pollutants in the water system. The degradation of pollutants with the help of dissolved oxygen present in the water is depicted in Eqs. (1–3). Hydroxyl radicals formed during these reactions also help in the degradation of pollutants via the photocatalytic degradation mechanism (Eq. 4) (Yao et al. 2017). Here they undergo protonation and end up in the formation of hydroperoxyl compounds, which help in scavenging undesired radicals and favoring slowness in electron and hole recombination.

\[
\text{TiO}_2 + \text{hv} (\text{Light energy}) \rightarrow e^- (\text{electron}) + h^+ (\text{hole}) \tag{1}
\]

\[
e^- + \text{O}_2 (\text{dissolved oxygen}) \rightarrow \text{O}_2^- \quad \text{(Superoxide radical)} \tag{2}
\]

\[
h^+ + \text{H}_2\text{O} \rightarrow \text{H}^+ + \cdot\text{OH} \tag{3}
\]

\[
\text{O}_2^- + \cdot\text{OH} \rightarrow \text{HO}_2^- \tag{4}
\]

The degradation of pollutants undergoes five major steps. In steps 1 and 2, pollutant molecules are transferred to the surface of the photocatalyst and followed by adsorption onto the active sites. In step 3, once the pollutants get attached to the active sites, the electrons get photoexcited and initiate the photocatalytic degradation process. In steps 4 and 5, once the pollutant is degraded, desorption occurs, and finally, the degraded molecules are released to the water surface (Wang et al. 2015; Gopinath et al. 2020). Additionally, the process of degradation leads to the possible formation of five different products. The process of photocatalytic degradation and end products depends upon the type of pollutant and photocatalyst choice. The possible products that can be resulted at the end of the photocatalytic process are dehalogenated compounds, oxides of alkali, isomerized and cyclized compounds, aromatic ring molecules and decarboxylated compounds (Prihod’ko and Soboleva 2013).
Techniques for titanium dioxide synthesis

Works of literature have shown that the synthesis of titanium dioxide (TiO$_2$) could be achieved through various methodologies including chemical, physical and green (Nabi et al. 2020a; Sharma et al. 2020; Wang et al. 2020b). Table 1 provides a detailed literature comparison on the synthesis routes of titanium dioxide-based catalysts for environmental applications. A variety of different techniques including vapour deposition (Singh et al. 2019a), electrodeposition (He et al. 2019), sol–gel method (Phattepur et al. 2019), hydrothermal method (Wang et al. 2020b), solvothermal method (Ramakrishnan et al. 2018), microwave method (Cabello et al. 2017) and sonochemical method (Moreira et al. 2020) has been extensively used in the past few years to produce nano- titanium dioxide. Though chemical synthesis of titanium dioxide nanoparticles has widely been used owing to the ease of synthesis and effective control of size and shape of nanoparticles, there still exist certain limitations including high cost, the requirement of extreme temperatures and pressures, and eco-toxicity. Consequently, these disadvantages limit titanium dioxide applications in different fields and their mass industrial production (Nadeem et al. 2018). Therefore, there has been a paradigm shift in recent times towards a more eco-friendlier way of titanium dioxide fabrication called the “green synthesis,” wherein reducing agents derived from biological extracts are used for synthesis (Edmundson et al. 2014; Subhapriya and Gomathipriya 2018). The upcoming subsection of the review paper covers a few of these most used techniques for titanium dioxide synthesis in detail.

Physical and chemical methods

Sol–gel technique

Sol–gel is a very versatile wet-chemical technique that has been extensively used in ceramic and material sciences engineering fields. The process proceeds through the conversion of a precursor mixture into an inorganic solid (usually inorganic metal salts or metal alkoxides) via polymerization reactions initiated by water (Nyamukamba et al. 2018). The hydrolysis step leads to the formation of a sol (aggregate of colloidal particles dispersed in a fluid) while the
Catalyst	Synthesis method	Intended application	Category of application	Initial concentration	Illumination condition	Optimal performance	References
TiO₂ films	Sol–gel	Trichloroethylene degradation	Air pollution mitigation	50 ppm	Ultraviolet lamp	Up to 90% conversion	Arconada et al. (2009)
TiO₂-P25	Commercial P25	Nitrous oxide removal	Air pollution mitigation	5 ppm	Ultraviolet lamp (25 W)	70% conversion	Devahasdin et al. (2003)
TiO₂-P25	Commercial P25	HCHO:SO₂:BTEX	Air pollution mitigation	1:1:1 ratio of gases at 1, 10 and 50 ppm	6 W Ultraviolet lamp	88% conversion	Ao et al. (2004)
TiO₂-aluminium silicate	Sol–gel	SO₂:NO:Hg⁰	Air pollution mitigation	400–1200 ppm SO₂, 50–300 ppm NO, 50 µg/m³ Hg⁰	9 W Ultraviolet lamp	Up to 80%	Yuan et al. (2012)
TiO₂ nanofibre	Electrospinning	SO₂	Air pollution mitigation	100–300 ppm in air	300 W Xenon arc lamp	Up to 100%	Wang et al. (2017a)
TiO₂	Precursor hydrolysis	Arsenic removal	Water treatment–adsorption	Arsenic = 26.7 µm	–	90%	Pena et al. (2005)
TiO₂	Precursor hydrolysis	Arsenic removal	Water treatment–adsorption	Arsenic = 0–80 ppm	–	85%	Xu and Meng (2009)
TiO₂	Commercial P25	Methylene blue removal	Water treatment–adsorption	Methylene blue = 56.5 ppm	–	88.5%	Munjal et al. (2014)
TiO₂/chitosan	Commercial TiO₂	Dye (thymol violet) removal and antimicrobial activity	Water treatment–adsorption	Thymol violet = 120 ppm	–	88%	Kamal et al. (2016)
TiO₂ nanotube	Anodization	Bacteria (E. coli) disinfection	Water treatment–microbial decontamination	10⁶ cpu/mL	Ultraviolet lamp	95% disinfection	Ng et al. (2010)
TiO₂	Commercial P25	Fungi (F. solani) disinfection	Water treatment–microbial decontamination	10⁵ cpu/mL	Sunlight	99.99% removal	Fernández-Báñez et al. (2009)
TiO₂	Commercial P25	Protozoa (C.parvum) disinfection	Water treatment–microbial decontamination	15 × 10⁶ oocytes	1100 W Xenon arc lamp	99.33%	Abeledo-Lameiro et al. (2016)
Bismuth/TiO₂	Sol–gel	Water splitting/methanol sacrificial agent	Sustainable energy	–	Ultraviolet lamp	3.5 mL hydrogen production	Wu et al. (2009)
Platinum/Nitrogen/TiO₂	Hydrothermal	Water splitting/glycerol sacrificial agent	Sustainable energy	–	250 W Ultraviolet lamp	3200 μmol hydrogen production	Slamet et al. (2013)
Platinum/TiO₂−xNₓ	Microemulsification	Water splitting/methanol sacrificial agent	Sustainable energy	–	400 W halogen lamp	130 μmol hydrogen production	Lin et al. (2009)
Nickel/TiO₂	Precipitation	Water splitting/methanol sacrificial agent	Sustainable energy	–	3 W Ultraviolet light emitting diode	3056 μmol h⁻¹ g⁻¹	Yu et al. (2011)
Silver/TiO₂	Sol–gel synthesis	Carbon dioxide reduction/water sacrificial agent	Pollution mitigation/sustainable energy	–	Ultraviolet light	Methane = 10.5 Methanol = 2 μmol/ g-catalyst	Krjejčíková et al. (2012)
condensation reaction forms a gel. As mentioned earlier, the most common precursors for sol–gel are metal chlorides and metal alkoxides. The metal alkoxides are made up of an M–O–R linkage, where M stands for the metal, O stands for oxygen and R stands for an alkyl group. The incidence of a polarization reaction in the M–O bond makes the whole molecule susceptible to a nucleophilic substitution and in the presence of water molecules; the alkoxide group are substituted and replaced by hydroxyl ions from water (hydrolysis). Following this, the produced metal hydroxides inter-molecularly connect and generate a hydrated metal oxide network eventually forming small crystal nuclei (condensation) and this is how a typical sol–gel process occurs.

Among the various physical/chemical techniques, sol–gel is a very promising one since it allows the operation of the whole synthesis under low temperatures i.e. < 100 °C and provides a molecular level homogeneity in products (Malekshahi Byranvand et al. 2013). The other benefits of the sol–gel technique include easy monitoring and control of nanoparticle shape and size. Being a flexible technique, sol–gel process could be employed to produce a variety of products like spherical, fine and uniform-sized nanopowders. Works of literature show that sol–gel has been widely used for titanium dioxide synthesis from titanium (IV) alkoxides through acid catalysis. For example, in a study mesoporous titanium dioxide nanoparticles utilizing titanium (IV) isopropoxide using surfactant-mediated sol–gel were synthesized using the water technique (Nateq and Cecatto 2019). One of the outstanding features of the sol–gel technique is the possibility to shape the product into any desired form such as a film, a fibre or even a monodispersed powder. Mehrotra and Singh comprehensively studied and established the conditions and steps applied to achieve various morphological products from the process (Mehrotra and Singh 1997), as shown in Fig. 2.

Table 1 (continued)

Catalyst	Synthesis method	Intended application	Initial concentration	Illumination condition	Optimal performance	Category of application	References
TiO₂	Wet impregnation	Carbon dioxide reduction/water sacrificial agent	-	300 W Xe arc lamp	Methane = 52 μmol/g	Pollution mitigation/sustainable energy	Meng et al. (2014)
Palladium/TiO₂	Sol–gel and wet impregnation	Carbon dioxide reduction/water sacrificial agent	Methane = 1.45 mol	6 W Hg lamp	Methanol = 0.72 μmol/g	Pollution mitigation/sustainable energy	Camarillo et al. (2017)
CuO/TiO₂	Sol–gel and wet impregnation	Carbon dioxide reduction/water sacrificial agent	Methane = 4120 μmol	6 W Hg lamp	Methanol = 41.20 μmol/g	Pollution mitigation/sustainable energy	Thamaraiselvi and Sivakumar (2017)

Sonochemical and microwave-assisted techniques

Ultrasound has been extensively used in the production of a wide range of nanosized materials in the past. The chemical effects arising from ultrasound do not result from direct interaction with the molecular species but instead from acoustic cavitation which involves the formation, growth and collapse of the bubbles within a liquid medium resulting in the creation of localized high pressures (~1000 atm) and high temperatures (~5000 K) (Chen 2009). The sonochemical technique has been employed to synthesise photoactive titanium dioxide nanoparticles through the hydrolysis of titanium tetraisopropoxide either in pure water or in a water/ethanol mixture using ultrasonic waves (Moreira et al. 2020).

Similar to sonochemical that employs ultrasound, the microwave-assisted technique uses microwaves (electromagnetic waves) with frequencies of 0.3–300 GHz and with
wavelengths of 0.001–1 m to synthesize nano-titanium dioxide. It has been reported in a study that microwave heating involves two different mechanisms, namely ionic conduction and dipolar polarization (Zhu and Chen 2014). Any substance that contains a mobile electric charge, i.e. conducting ions or polar molecules, can be heated using microwaves. For polar molecules, the heating phenomenon occurs through the friction, rotation and collisions in between these molecules, which try to orient themselves to the rapidly alternating electric field, while for the conducting ions, the heat gets generated when these ions constantly move through the solution trying to orientate themselves with the electric field causing a local temperature rise as a result of friction and collision (Collins 2010). Microwaves have been applied to synthesize different titanium dioxide nanomaterials, especially in industrial processing due to their benefits of rapid heat transfer and selective heating (Nyamukamba et al. 2018). Cabello et al. (2017) synthesized nano-TiO\textsubscript{2} particles with an average particle size of 73 nm and a pore diameter of 2.6 nm using microwaves under the conditions of 240 °C, 25 bar for 20 s indicating a low sintering time, thereby reducing the overall costs and energy requirements.

Oxidation techniques

The underlying principle behind these techniques is the oxidation of titanium metal to titanium dioxide either using oxidants or by anodization. Research has shown that crystalline titanium dioxide nanorods could be produced through the direct oxidation of titanium metal plates using hydrogen peroxide (Wu et al. 2005; Kumar and Pandey 2018). Archetypally, titanium dioxide nanorods could be obtained from a titanium plate when a pre-treated titanium plate is dissolved in the beaker containing 50 mL of 30 wt% hydrogen peroxide solution at 80 °C for 3 days. The formation of crystalline titanium dioxide initiates with the dissolution precipitation mechanism, followed by the addition of inorganic sodium salts (NaX; X = fluoride, sulphate, chloride ions) to control the crystalline phase of titanium dioxide nanorods. The addition of F− and SO\textsubscript{4}− forms of Na salt favours the formation of anatase while the addition of Cl− promotes the formation of rutile (Wu 2004). Apart from hydrogen peroxide pure oxygen, acetone and a mixture of argon and oxygen can alternatively be used as a source of oxygen for the oxidation of titanium (Chen and Mao 2007).

On the other hand, the anodization of titanium plate under voltages in the range of 5–20 V in a 0.5 wt% hydrogen fluoride solution leads to the production of titanium dioxide nanotubes, whose diameter could be controlled by varying the voltage applied (Chen 2009). In a recent study, Mohan et al. (2020) investigated the effects of anodization time and temperature on the formation of titanium dioxide nanotubes for biomedical purposes. The authors used titanium alloys in an electrolytic mixture of 50 mL of 1 M sulphuric acid and 50 mL of 0.08 M hydrogen fluoride at different temperatures ranging from 5 to 70 °C to prepare self-organized titanium dioxide nanotubes. They observed significant outcomes at 25 °C with titanium dioxide nanotube characteristics of...
30 nm wall thickness, 250 nm length, 125 nm inner pore diameter and 35 nm inner tube space without any visible defects in their morphology unlike at other temperatures.

Deposition techniques

Deposition techniques are commonly utilized to form coatings, thereby altering the thermal, electrical, optical and mechanical properties of substrate materials. The characteristics of the product are fabricated by altering parameters like the geometry of the deposition chamber, composition, flow rate, temperature and pressure of deposition (Malekshahi Byranvand et al. 2013). Among the various deposition techniques, electrophoretic deposition and spray pyrolysis are the most favoured and employed techniques for nano-titanium dioxide synthesis (Irshad et al. 2021).

The electrophoretic deposition includes an electrolytic cell setup wherein charged particles from a suspension medium are deposited onto a substrate under the influence of the applied direct voltage (Cabanas-Polo and Boccaccini 2016) as shown in Fig. 3. When a direct voltage current is applied to the electrodes an electric field gets generated inside the cell, this field interacts with the surface charge of titanium dioxide, thereby creating a force that pulls these particles towards the electrode of opposite charge. Consequently, the accumulation of titanium dioxide onto the substrate (electrode) leads to the formation of a homogeneous layer. The thickness of the layer could be adjusted by controlling the deposition parameters like deposition time, applied current/voltage, solvent type and suspension loading (Narayan and Raturi 2012). Researchers have employed various combinations of titanium dioxide thin film deposits for real-time applications like dye-sensitized solar cells (Xue et al. 2012), biomedical applications (Narkevica et al. 2017) and ceramic coatings (Ledwig et al. 2017). Nyongesa and Aduda (2017) employed electrophoretic deposition to deposit thin films of titanium dioxide onto glass substrates for application in water treatment. The authors concluded that ethanol was a better solvent for use for electrophoretic deposition compared to water, propanol and toluene, which was due to the high dielectric constant of ethanol (24.3). In general, water cannot be used as a suitable suspension medium due to the occurrence of water electrolysis, which leads to the accumulation of bubbles on electrode surfaces. The optimal parameters for the best adherence of titanium dioxide particles in the study were a pH of 3, an applied voltage of 20 V and solid loading of 4.0 wt% (Nyongesa and Aduda 2017). In a similar work performed by Nguu et al. (2018), the optimal time and voltage for achieving a uniform 5-μm titanium dioxide film were found to be 90 s and 35 V, respectively. The authors also discovered that a prolonged time > 90 s showed the agglomeration of the particles. On the contrary, Dhiflaoui et al. (2016) observed that titanium dioxide coatings on stainless steel substrates were the most homogenous at a voltage of 20 V and after a deposition time of 4 min.

While electrophoretic deposition solely allows the production of titanium dioxide films, the spray pyrolysis technique enables the fabrication of a variety of product forms including dense and fine dispersive powders (spray pyrolysis synthesis) and films (spray pyrolysis deposition). Schematic representations of different spray pyrolysis systems are presented in Fig. 4. The technique involves the spraying of a precursor’s solution across a direct flame source. This can be done in two ways: (i) by using supplemental burners mounted adjacent to the spray nozzle or (ii) by additional feeding of oxidants (i.e. air, oxygen) and the combustibles to the nozzle (Nyamukamba et al. 2018). The diameter of the spray droplets depends on the viscosity and surface tension of the precursor solution, the diameter of the nozzle tip, and the pressure difference before and after spraying (Kozhukharov and Tchaoushev 2013). The authors displayed the synthesis of ultrafine dispersive titanium dioxide powders through a swift rise in temperature inside the chamber, and during the process, the pre-formed solid particles were observed to undergo further splitting as a result of phase transitions and mechanical tensions (Kozhukharov and Tchaoushev 2011). The spray pyrolysis deposition has been reported to be performed both using a hot spray and a cold spray on a pre-heated substrate. For instance, Möllmann et al. (2019) prepared compact titanium dioxide layers using cold spray pyrolysis on a glass substrate preheated to 450 °C for the application in...
perovskite solar cells. The authors attempted to carry out the deposition process using substrates at low temperatures of 150 °C to reduce the overall cost of the process but observed the formation of a cracked titanium dioxide layer, which exhibited low light transmittance and reduced the device’s efficiency (Möllmann et al. 2019).

Hydro- and solvothermal techniques

Both these techniques hydrothermal and solvothermal are almost similar. In the hydrothermal technique, the substance is crystallized at high temperatures and vapour pressures using an aqueous suspension of the material (Reis et al. 2002). In general, this technique could be considered as crystal growth or crystal synthesis from materials that are commonly insoluble at customary pressure, i.e. < 1 atm, and temperature, i.e. 100 °C. This process is usually carried out in autoclaves under a controlled atmosphere, which in turn enables the utilization of temperature above the boiling point of water or an organic solution inside the chamber. Briefly, hydrothermal synthesis is described as a concoction response taking place in a dissolvable mixture at temperatures above the mixture’s breaking point and pressures over the bar. Since the essential properties of water including viscosity, heat capacity, thermal conductivity, dielectric constant and ionic product density are all temperature–pressure dependent, the hydrothermal technique exploits these properties, thereby tuning the synthesis factors and achieving specific solvent attributes. However, the technique has a few drawbacks including the high capital requirement for instrumentation, the inability to monitor crystal growth and the method which can only be performed under supercritical conditions of the solvent (Liu et al. 2014). Conversely, in solvothermal techniques, non-aqueous solvents with very high boiling points could be used and this consequently enables much better control over the properties of titanium dioxide particles during the synthesis. For instance, Kathirvel et al. (2020) produced titanium dioxide nanocrystals by treating titanium (IV) isopropoxide with various alcohol solvents (ethanol, propanol, isopropyl alcohol, butanol, tert-butylic alcohol and benzyl alcohol) at 150 °C for 8 h, while Li et al. (2020) used a one-step solvothermal technique to synthesize titanium dioxide from titanocene dichloride with uniform particle size without the use of any surfactants. The solvothermal technique allows better control over the size, shape, crystallinity and distribution of titanium dioxide nanoparticles compared to the hydrothermal, and these could be achieved through effective manipulation of reaction temperature, solvent and surfactant characteristics and reaction time (Stride and Tuong 2010). Additionally, the employment of organic solvents results in a product, which is free from extraneous anions because organic solvents tend to be devoid of ionic species and have relatively low permittivity (Nyamukamba et al. 2018).

Biological methods

Owing to the toxic nature of the chemical techniques towards the environment and the limitations encountered with the mass production, the search for a more sustainable and eco-friendly approach is greatly favoured. As an alternative, the green nanotechnology has gained a lot of attention lately for the production of titanium dioxide nanoparticles from naturally occurring biological resources (i.e. plants, fruit extracts, microorganisms and their waste materials) and for its cost-effect benefits (Nadeem et al. 2018; Singh et al. 2019b).

Plants contain nutrients like carbohydrates, proteins, alkaloids and nucleic acids, which can be used during particle synthesis for stabilization and reduction reactions. Moreover utilizing plant-based extracts as the key components for titanium dioxide production provides an additional safety compared to chemical/physical techniques (Irshad et al. 2021). Nabi et al. (2020a, b) prepared spherical-shaped anatase titanium dioxide nanoparticles through green synthesis using cinnamon powder. The overall method was reported to be feasible, simple and cost-effective. The product was found to
have a band gap residing in the visible light zone along with the presence of oxygen vacancies and excitons necessary for its application in solar cells. In general, green synthesis commonly involves extracts obtained from leaves of plants as raw materials for nanoparticle synthesis since this section of plants is found to have high metabolites (Subhapriya and Gomathipriya 2018). For instance, Kumar used the leaf extracts of Syzygium cumini and synthesized spherical aggregates of titanium dioxide using an eco-friendly, cheap and non-toxic technique (Kumar 2020). The so produced titanium dioxide was employed for treating lead-contaminated industrial waters and the authors reported a maximum removal of 82.5%.

Analogous to plants, microbial extracts from bacteria and fungi have also been utilized to biologically produce nano-titanium dioxide. These microbial extracts have gained considerable attention lately due to their low capital requirement, simple extraction leading to easier scale-up and larger surface of the synthesized product (Pantidos and Horsfall 2014). Peiris et al. (2018) identified the antimicrobial properties of baker’s yeast and used them to synthesize highly pure small-sized titanium dioxide particles (anatase) via a cost-efficient green technique. In a different study, Streptomyces species were used to synthesize less toxic and cheap but highly pure titanium dioxide nanoparticles (Aşçeli et al. 2020). The authors described the method to be simple and quick for achieving antibiofilm and antimicrobial properties-based products. Likewise, various shapes and sizes of titanium dioxide nanostructures have been reported to be synthesized from fungal extracts as they can produce a range of enzymes and other metabolites that can break down large salt molecules into elemental ions (Nadeem et al. 2018). For example, a study carried out by Rajakumar et al. (2012) established the fungus Aspergillus flavus as a novel species for biological titanium dioxide production. Aside from plants and microbes, various derivatives of biological origin like albumen, starch and cellulose have also shown some potential in producing titanium dioxide (Bao et al. 2012; Muniandy et al. 2017). However, nanoparticle titanium dioxide synthesis using these bio-derivatives has not been much explored like their counterparts. A comparison between the various techniques used for the synthesis of nano-TiO₂ particles is summarized in Table 2 based on the technique’s major influencing factor, merits and demerits.

Applications of titanium dioxide

Removal of metals and dyes

In recent years, much attention has been paid by the research community to the simultaneous removal of dyes as well as heavy metals (Louangsouphom et al. 2019; de Lima et al. 2020; Izzudin et al. 2021). This methodology minimizes the processing time, operating cost as well as the use of chemicals in comparison with individual treatment methods. Titanium dioxide was found to be very effective in simultaneous removal of heavy metals and dyes. In some cases, the presence of one pollutant was found to enhance the removal of another pollutant. For instance, the presence of rhodamine B dye, during the transformation of aqueous metal chromium (IV) to chromium (III) using titanium dioxide nano-fibre membrane accelerated the removal rate (Zhang et al. 2021), and under optimized conditions, the removal efficiency of chromium (IV) was found to be 97.09%.

The efficacy of hetero-layered titanium dioxide incorporated on layered double hydroxide-molybdenum disulphide nanostructure was recently tested on the removal of organic cations and ionic dyes along with silver and lead ions and found that 97–99% dye removal was achieved (Panchal et al. 2021). Simultaneously, due to its excellent affinity and selectivity for heavy metal ions, it rapidly reduced the toxic lead from 10 mg/L to less than 0.8 µg/L and this substrate showed an enormous adsorption capacity of silver (421.88 mg/g). In recent years, different forms of nanotitanium dioxide were used which include one-dimensional nanowire, a nanobelt, two-dimensional nanotubes and nanosheets and three-dimensional nanoparticles as well as nanorods. The major advantages of one-dimensional nanobelt are lesser number of grain boundaries, fast charge transfer dynamics and high specific surface, which makes nanobelt more attractive (Pang et al. 2015).

The major disadvantages of one-dimensional nanobelt are (1) higher recombination rate of photoinduced electron–hole pairs due to the single-phase structure, and (2) pure titanium dioxide can only absorb ultraviolet irradiation because of its high band gap, which prevents this nanobelt from widespread applications (Tian et al. 2015). But these issues were resolved by researchers in recent years. For instance, less recombination of electron/hole pairs was observed during the use of novel hybrid bismuth subcarbonate (Bi₂O₂CO₃) quantum dot/titanium dioxide nanobelt on the removal of rhodamine blue (Wang et al. 2021b). The removal efficiency of 95.43% under visible light, which is nine times larger than that of titanium dioxide nanobelts, was observed.

Literature related to the simultaneous removal of heavy metals and dyes is listed in Table 3. A mesoporous 2D-2D TiO₂(B)-bismuth oxobromide heterojunction photocatalyst was synthesized and used for the degradation of mixed pollutants such as rhodamine blue, methyl orange, tactracycline hydrochloride and bisphenol A (Han et al. 2021). This substrate produced abundant superoxide radicals under visible light, which enabled the catalyst to accelerate the degradation process well. The removal of rhodamine blue, methyl orange tetracycline hydrochloride and bisphenol A using
Method	Major factors	Advantage(s)	Disadvantage(s)	References
Physical and Chemical method	Sol-gel pH, time, temperature, agitation, nature of solvent and catalyst	Low operation temperature (<100 °C), cheap and high yield	Slow process, difficult to synthesize monoliths, high precursors cost	Esposito (2019)
Sonochemical-assisted technique	Intensity of acoustic frequency, temperature, static pressure	Fast reaction rate, production of ultra-fine particles and no chemical addition	Low yield, high energy demand	Savun-Hekimouglu (2020)
Microwave-assisted technique	Frequency and wavelength of microwave, temperature	Selective heating, short reaction time, easy handling and high yield	Expensive process, unfeasible to monitor reaction, difficult to scale up	Mikrovalov (2011)
Oxidation techniques (anodization)	Electrolyte type and concentration, batch temperature, voltage, pH	Easy to scale up, time-efficient, facile, effective in synthesis of high quality 1D nanostructures	Limited mass production, employed mostly for nanotubes growth	Kaur et al. (2020)
Electrophoretic deposition	Electrolyte type and nature, temperature, voltage	Simple, low cost equipment, high reproducibility, short product formation time	Requires high sintering temperatures, difficult to achieve fissure less coating, only films can be made	Chava et al. (2017)
Spray Pyrolysis	Nature of precursor solution, pressure, properties of the instrument	Cost effective, do not require high quality reagents, morphology of product is easy to control	Hard to scale up, difficulties associated with determining growth temperature, oxidation of reagent when operated in air atmosphere	Gavrilović et al. (2018)
Hydrothermal technique	Viscosity, heat capacity, thermal conductivity, dielectric constant, ionic product density	Easy handling, simple, production of high quality 1D nanostructures	Slow process, inability to monitor crystal growth, high equipment cost	Liu et al. (2014)
Solvothermal technique	Viscosity, heat capacity, thermal conductivity, dielectric constant, ionic product density	Simple equipment, uniform production on larger area	Requirement of pure organic solvents, high pressure and temperatures are needed	Wang et al. (2017b)
Biological method	Concentration, temperature, pH	Eco friendly, devoid of using any toxic chemicals, cheap and safe	Cell growth of organisms determine size of nano particles, low yield	Wu et al. (2019)
this synthesized substrate was found to be 4.7, 1.4, 23 and 16.4 times higher than that of using pure bismuth oxobromide, respectively. Recently, Karpuraranjith et al. (2022) synthesized a novel three-dimensional hybrid photocatalyst by embedding a porous molybdenum disulphide nano-box on graphitic carbon nitride nanosheets containing titanium dioxide nanoparticles. Around 97.5% photocatalytic removal of methylene blue dye was achieved using this hybrid photocatalyst, in the presence of visible light. Similarly, nanoflowers were widely employed in dye degradation and reported in recent studies (Huda et al. 2019; Shang et al. 2020; Wang et al. 2020a; Quyen et al. 2021) due to their high specific surface area, well-developed pore structure, enormous photocatalytic activity (Wu et al. 2014).

On the other hand, the photocatalytic efficacy of titanium dioxide was employed with a wide range of metal/metal oxides such as silver, cadmium, chromium, copper, manganese and nickel in the degradation of rhodamine blue (Le et al. 2021; Sengul and Asmatulu 2020). It was found that among these metal/metal oxides studied, silver-titanium dioxide produced maximum removal of 98.4% after 60 min, which follows second-order kinetics. All other metal/metal oxides coupled with titanium dioxide followed pseudo-first-order kinetics. Figure 5 provides the mechanistic pathway of dye degradation pathway with titanium dioxide as photocatalyst. A multi-metal oxide including catalyst (titanium dioxide–cadmium oxide–zinc oxide) loaded on silver nanoparticles in the presence of reduced graphene oxide was synthesized, and its photocatalytic efficacy on methylene blue degradation (Akyüz 2021) was explored and found 91% degradation within 15 min under ultraviolet irradiation, mainly attributed to decrease in the wide band gap of titanium dioxide due to the presence of multi-transition oxides. Similar strategy was used to degrade azo dye reactive violet 5 dye by titanium dioxide nanoparticles (Chung and Chen 2009).

Removal of microplastics

In our day-to-day life, plastics took an exceptional place due to their less weight, cheapness, versatility and high durability (Morin-Crini et al. 2022; Alqahtani and Zafar 2021). On the other hand, disposal of used plastics is a big challenge as only just 14% of used plastics are recycled while others enter into our environment in one way or another. More than 8 million metric tons of used plastics are entering into water bodies, every year (MacArthur 2017). Accumulation of these plastics in seas and oceans would surpass the amount of fish present in oceans in near future. These used plastics were decomposed due to physical degradation in the presence of sunlight, micro-organisms into micro-plastics (size less than 5 μm) and nano-plastics (size less than 1 μm) (Koelmans et al. 2015). Degradation of micro-plastics using conventional wastewater purification methodologies would not be enough to remove all of them. Therefore, alternative methods are needed to reduce the amount of micro-plastics entering into the environment.

Table 3 Applications of titanium dioxide based substrates on simultaneous removal of heavy metals and dyes.

TiO₂-based substrate	Pollutants considered	Removal efficiency	References
Polyvinyl alcohol and acrylamide incorporated on TiO₂/SiO₂ nanopowders	Basic blue 3 dye and copper (II) ions	Basic blue 3 dye = 93.5% and copper (II) = 95.2% after 7 h and 6 h, respectively	Elbarbary and Gad (2021)
Natural melamine/TiO₂ hybrid	Methyl orange dye and chromium (VI)	90% reduction on dye and 100% on chromium (VI), after 3 h of visible light irradiation	Xie et al. (2020)
TiO₂/3-cyanopropyltriethoxysilane/metformin polyether sulfone nanocomposite membrane	Copper (II) ions and dye removal from liquorice extraction plant wastewater	90.1% removal of copper ions after 60 min and 88% chemical oxygen demand removal on LEP wastewater after 150 min	Barahimi et al. (2020)
Bismuth molybdenum oxide type-II loaded on TiO₂ nanotubes	Methyl orange, rhodamine blue, methylene blue and chromium (VI)	Removal of nearly 100%, 75%, 100% and 100% for methyl orange, rhodamine blue, methylene blue and chromium (VI) ions, respectively, after 120 min of simulative sunlight irradiation	Liu et al. (2019)
TiO₂/SiO₂ doped with iron	Basic red 29, basic blue 41, basic yellow 51 and chromium (VI)	Reduction in total organic carbon = 74.39% and 78.04% under visible and solar light, respectively	Ghanbari et al. (2019)
Electro-spinning carbon nanofibers/TiO₂ using polyacrylonitrile base	Methylene blue dye and different metals ions such as lead, copper and cadmium ions	A maximum rejection rate of 86.4%, 87.7.5% and 66.6% for methylene blue, lead, copper and cadmium, respectively, after 1800 min	Kumar et al. (2018)
has difficulties in control and complete elimination (Moore 2008). TiO₂ has been used widely in recent years to degrade these micro-plastics. The widely found micro-plastics such as polyethylene and polystyrene can be completely degraded using Triton-based titanium dioxide nanoparticle films and ultraviolet light, through photocatalytic mineralization (Nabi et al. 2020b).

Wang et al. (2019) prepared a novel magnetic Au@Ni@TiO₂ micromotor, by applying 10 nm thickness of nickel layer on titanium dioxide particles, covered with a 30-nm layer of gold, for the removal of microplastics present in water and hydrogen peroxide under ultraviolet light. This motor was found to have a velocity of 14.72 and 65.52 μm S⁻¹ in water and 0.1% hydrogen peroxide solution, respectively. They showcased the efficacy of this micromotor on the degradation of microplastics from personal care products as well as river water and reported 67% of clearance efficiency in pure water. A faster elimination can be achieved by adding a low percentage of hydrogen peroxide to pure water.

The use of ultraviolet light, as well as hydrogen peroxide, makes this fuel-free micromotor less attractive. Some research works to overcome this issue were performed by researchers. The recent works dealing with titanium dioxide-based Janus micromotors are listed in Table 4. Recently, Janus cobalt oxide–titanium dioxide micro-swimmers driven by low intensity–ultraviolet free visible light present inside water were prepared and tested (Sridhar et al. 2020). These micro-swimmers propel by breaking down the water molecules into oxygen and oxide radicals, which enabled them to be applicable in photocatalytic reactions as well as drug delivery. The mean velocity of this micro-swimmer was found to be 11.5 μm S⁻¹ at the intensity of 6 mW cm⁻². It can also be accelerated under a magnetic field due to the presence of cobalt oxide.

Table 4 Titanium dioxide-based Janus micromotors propelled by different propellants for the removal of microplastics

Substrate	Conditions	Results	Reference
Titanium dioxide/water-soluble conjugated polyelectrolyte/glucose oxidase	Visible light; hydrogen peroxide produced through the decomposition of glucose using glucose oxidase	Maximum velocity of 7.49 μm S⁻¹ observed under visible light	Noh et al. (2021)
Hedgehog-shaped titanium dioxide/functional multiwall carbon nanotubes	Ultraviolet light illumination	Velocity of 8.9 μm S⁻¹ is achieved under 160 mW cm⁻² ultraviolet light illumination	Jiang et al. (2021)
Titanium dioxide/gold nanowire-based motor	Ultraviolet irradiation	A velocity of 5.6±1.5 μm S⁻¹ is achieved in deionized water while it was 2.41±0.53 μm S⁻¹ and 2.27±0.35 μm S⁻¹, respectively at pH=4 and 10	Chen et al. (2021a)
Titanium dioxide/manganese dioxide	Hydrogen peroxide decomposed to oxygen bubbles, which propels the micromotor acts as fuel	Maximum speed of 48.1 μm S⁻¹ at [hydrogen peroxide]=30% with maximum instantaneous velocity of 135 μm S⁻¹	Ge et al. (2019)
Electrocatalysis for energy

Currently, heteroatom doping technology has emerged as an intriguing technique to enhance electrocatalytic efficiency (Ochedi et al. 2021; Kumar et al. 2021). An inexpensive and novel catalyst without using noble metals, namely carbon, nitrogen–zeolitic imidazolate framework/TiFe (that is carbon and nitrogen derived from zeolitic imidazolate framework-8 embedded in titanium dioxide/ferric oxide) was found to exhibit superior electrocatalytic performance towards water splitting, oxygen evolution reactions and hydrogen evolution reactions (Vattikuti et al. 2021). This synthesized catalyst has more excellent catalytic power than that of zeolitic imidazolate framework/TiFe and TiFe nanostructures, towards oxygen evolution reactions and hydrogen evolution reactions. The overpotential was found to be 290 mV and 291 mV for oxygen evolution reactions and hydrogen evolution reactions, respectively, to deliver the benchmark current density of 10 mA cm$^{-2}$ under alkaline conditions. This was attributed to the addition of highly active carbon and nitrogen from zeolitic imidazolate framework with titanium dioxide/ferric oxide, which enhanced the rate of water splitting.

Similarly, numerous researchers made innovations in making novel catalysts to enhance the electrocatalytic processes and some of these novel catalysts recently reported are listed in Table 5. Another novel catalyst using reduced titanium dioxide-supported ruthenium nanocatalyst was developed with more oxygen vacancies for hydrogen evolution (Chen et al. 2021b). This nanocatalyst required very less overpotential (15 mV) to deliver the current density of 10 mA cm$^{-2}$ under alkaline conditions. This superior performance was attributed to synergistic water splitting and weakening of OH$^-$ adsorption.

Antimicrobial activity

In recent years, the spreading of infectious diseases such as Ebola, and severe acute respiratory syndrome coronavirus 2 (SARS), is very rapid (COVID-19 in particular) and the health department across the world is working hard to contain these diseases. So, it is highly needed to disinfect the high touch surfaces, such as sinks, faucets, handrails, door-knobs and in public places, as these are acknowledged as a pool of agents causing a wide range of infections (Huslage et al. 2010). Numerous antibacterial/antiviral chemicals were used to sanitize these high touch surfaces, which needs more manpower and chemical use. Thus, the use of self-disinfecting materials on these surfaces is one of the best options to prevent the spreading of COVID-19 and other infectious diseases (Mathew et al. 2020). Many studies made in this decade elucidated the antibacterial efficacy of photocatalysts (Mahmood et al. 2012; Lin et al. 2013; McEvoy and Zhang 2014). These photocatalyst-based substrates gained more attention from the research community due to the direct utilization of sunlight or in some cases, ultraviolet irradiation. Among the photocatalysts employed, TiO$_2$ is the most extensively used photocatalyst for antimicrobial applications (Foster et al. 2011; Yousef et al. 2015; Mathew et al. 2018).

Very recently, the effective use of titanium dioxide on disinfecting the SARS-CoV-2 virion (severe acute respiratory

Table 5	Titanium dioxide-based substrates for electrocatalysis for energy. Nb-MoS$_2$: niobium-molybdenum disulfide, TiO$_2$: titanium dioxide, Ti$_3$C$_2$Tx: titanium carbide, Co$_3$O$_4$: cobalt oxide, Ag$_3$PO$_4$: Tri-silver phosphate, Bi$_2$WO$_6$: bismuth tungstate	
Catalyst	Overpotential and other remarks	References
Cobalt, Nb-MoS$_2$ nanosheets shell in micro-TiO$_2$ hollow spheres	Hydrogen evolution reaction $= 58.8$ mV and oxygen evolution reaction $= 260.0$ mV to deliver current density of 10 mA cm$^{-2}$	Nguyen et al. (2021)
Ag$_3$PO$_4$-Bi$_2$WO$_6$-TiO$_2$	Oxygen evolution reaction $= 360$ mV, this nanohybrid was stable and exhibited a remarkable efficiency of 99.8% for the oxygen evolution reaction	Mandari et al. (2021)
TiO$_2$/Co$_3$O$_4$ composite	Oxygen evolution reaction $= 270$ mV (at 10 mA cm$^{-2}$), with a Tafel slope of 60 mV dec$^{-1}$ and found that overpotential decreases with an increase in titania content in the composite	Aftab et al. (2021)
Ti$_3$C$_2$T$_x$ (MXene) decorated by phosphorus-doped TiO$_2$ (P-TiO$_2$@Ti$_3$C$_2$T$_x$)	Less overpotential of 97 mV (at 10 mA cm$^{-2}$) and a low Tafel slope of 48.4 mV dec$^{-1}$, which performed more efficient than that in darkness	Deng et al. (2021)
Palladium@TiO$_2$-(hollow) core-shell	This novel catalyst (with a trace of Pd—0.05 wt%) required the lowest overpotential of 0.43 V at 10 mA cm$^{-2}$ with a Tafel slope of 63 mV dec$^{-1}$	Shu et al. (2021)
syndrome coronavirus 2) present in the air, as well as the liquid, was tested (Matsuura et al. 2021). The study elucidated the efficacy of titanium dioxide-mediated photocatalytic reaction on this virion that about 99% reduction in infectivity in aerosol after 20 min of treatment while it took 120 min for achieving this level in liquids. This disinfection happened due to the damage caused to the viral proteins and the genome through the mechanistic effects of titanium dioxide. Similarly, the research community performed numerous innovative works since 2020 to contain the covid-19 pandemic across the world and some of these works using titanium dioxide-based substrates are listed in Table 6.

A significant enhancement in the antibacterial property of titanium dioxide was observed with the addition of chalcogens such as sulphur, selenium and tellurium (Mathew et al. 2020). Among these three chalcogens, tellurium-doped titanium dioxide stood first on antimicrobial behaviour against *E. coli* as complete disinfection was achieved within 70 min of light irradiation while the other two chalcogens when doped with titanium dioxide produced little less activity (took 90 min for complete disinfection).

Similarly, cerium-doped titanium dioxide nanoparticles deposited on reduced graphene oxide were found to enhance the microbial activity as well as photocatalytic behaviour under visible light (Behera et al. 2021). This is attributed to the fact that the presence of cerium increases the absorption of titanium from ultraviolet to visible light. This novel substrate containing cerium was found to be more effective, under visible light, in disinfecting human pathogenic bacteria as well as degradation of two pesticides, namely quinalphos and imidacloprid, in comparison with the conventional titanium dioxide catalyst.

The use of zinc oxide, titanium dioxide and silicon dioxide-based nanomaterials on creating protective coatings against biodeterioration was getting momentum in recent years. In another study, titanium dioxide induces membrane rupture (Ranjan and Ramalingam 2016). Therefore, there is a need to compare the efficacy of these substrates on antimicrobial activity. In a recent study, these nanomaterials were Table 6 Methodologies to remove SAR-CoV-2 using titanium dioxide-based substrates. TiO₂: titanium dioxide, Al₂O₃: Aluminium oxide IC₅₀: inhibitory concentration, CC₅₀: cytotoxic concentration, SARS: severe acute respiratory syndrome, CoV: coronavirus

Target organism	Materials employed	Methodology	Results	References
SARS-CoV-2 spike protein	TiO₂ and Al₂O₃	Adsorption	Adsorption on TiO₂ proceeds about one order of magnitude faster than that of Al₂O₃	Xin et al. (2021)
SARS-CoV-2: (1) Spike pseudo-typed virions (2) fully infectious virus	TiO₂ and TiO₂-silver coated on wall tiles	Free radical attack on viruses	Spike viral load was decreased by four orders of magnitude after 1 h, while no active virus was found after 5 h, no significant difference was observed between TiO₂ and TiO₂-silver	Micochova et al. (2021)
SARS-CoV-2 pseudo-virus	TiO₂ supported silver—single atom nano enzyme (silver-TiO₂ SAN)	Adsorption and then reactive oxygen species attack	Silver-TiO₂ SAN produced maximum adsorption (99.65%) than nano-TiO₂, silver	Wang et al. (2021a)
A broad range of pathogens including SARS-CoV-2, Hepatitis C	Nanosized TiO₂	Hydroxyl attack on viral Ribo nucleic acid genome	At low irradiation, TiO₂ inhibited SARS-CoV-2, Hepatitis C and other pathogens	Tong et al. (2021)
SAR-CoV-2 cells	TiO₂ nanoparticles and nanotubes	Reactive oxygen species and titanium radicals damaged proteins, Deoxy Ribonucleic acids and lipid	TiO₂-nanoparticles and nanotubes have potent antiviral activity at very low concentration (IC₅₀ = 568.6 ng/mL), with a weak cytotoxic effect on the cellular host (CC₅₀ = 399.1 ng/mL), where CC₅₀ and IC₅₀ denotes cytotoxic half concentration and half maximal inhibitory concentration, respectively	Hamza et al. (2021)
tested and compared against eight different types of microorganisms that are commonly found on building material surfaces such as Bacillus subtilis, Aspergillus niger, Aspergillus terreus, Aureobasidium pullulans, Cladosporium cladosporioides, Penicillium ochrochloron, Trichoderma viride, Paecilomyces variotii (Dyshlyuk et al. 2020). Among these three nanomaterials studied, zinc oxide with particle sizes 2–7 mm was found to be most efficient against these microorganisms.

Nanomedicine

Nanoparticle-based drugs have been introduced in recent years to increase the efficiency of treatment strategies in oncology in treating cancer cells (Umapathi et al. 2021; Patel et al. 2021; Sharma et al. 2017). In a recent study, the autophagic potential of titanium dioxide nanoparticles was explored in increasing the chemotherapeutic effect of 5-fluorouracil in human AGS gastric cells (human gastric adenocarcinoma cell line) (Azimee et al. 2020). The production of reactive oxygen species by titanium dioxide impaired the lysosomal function, which leads to a block in autophagy flux in AGS cells. A microlevel addition (1 μg/ml) of these titanium dioxide nanoparticles enhanced the cytotoxic as well as apoptotic effects of 5-fluorouracil.

A case study was performed by a team of researchers on the treatment of diabetic foot ulcers using catalytic nanomedicine containing copper/titanium dioxide–silicon dioxide as it was estimated that around 20% of diabetic patients will develop foot ulcers over their lifetime (López-Goerne et al. 2019). These works observed a significant improvement in healing process on the first application itself, and the infection was limited. Further, the regeneration of tissue was enhanced due to its use.

In dentistry, the research community is in search of an efficient method to reduce bacterial adhesion on archwires and around the orthodontic appliance to restrict enamel decalcification as well as periodontal diseases. In this area, one study was performed to clinically test the efficacy of titanium dioxide nanostructure coating on stainless steel orthodontic wires towards the growth of most found bacteria in dentistry, namely Streptococcus mutans (Mollabashi et al. 2020). It was found that decreased adhesion of S. mutans was found on tested orthodontic wires which is attributed to the fact that, the damage in the cell wall of this microorganism due to titanium dioxide leads to changes in osmotic pressure; subsequently, the cell organelles were destroyed. However, further studies are needed in this area to investigate the mechanical stability of titanium dioxide-coated stainless steel orthodontic wires under mechanical loading during the dental treatment.

Removal of pharmaceutical and personal care products

Pharmaceuticals and personal care products (PPCPs) are substances that are man-made for human and/or animal healthcare and medical purposes (Jiang et al. 2013; Omar et al. 2016; Yang et al. 2017). These substances can be classified into a different wide range of products such as antibiotics, antifungal, antiinflammatories, antineoplastics, vaccinations, contrast agents, sedatives, anticonvulsants, nonsteroidal anti-inflammatory drugs, hormones, lipid regulators, painkillers, b-blockers, preservatives, disinfectants, insect repellents, fungicides, soaps and detergents, fragrances, sunscreen ultraviolet filters (Yang et al. 2017). More than 3000 pharmaceuticals and personal care products have been produced as of now (Śauer et al. 2019; Chen et al. 2016) and the constant development of new chemical compounds to contain different newly arising diseases such as COVID-19, Ebola, severe acute respiratory syndrome, led to an increasing abundance and variety of pharmaceuticals and personal care products in the environment. Several methodologies were implemented to reduce the load caused by pharmaceuticals and personal care products, and some of the titanium dioxide-based methodologies proposed in recent studies are listed in Table 7 (Saravanan et al. 2020; Ajiboye et al. 2021; He et al. 2021).

Oil recovery

Many oilfields are employing alkali/surfactant/polymer to enhance the oil recovery across the world, which produces much better results than water flooding. Production of highly stable emulsion (which contains residual oil in the water phase) leads to a decrease in the efficacy of the recovery process. The presence of titanium dioxide was found to enhance the oil recovery due to many reasons. (1) Titanium dioxide is intrinsically hydrophilic (Choi et al. 2017; Kameya and Yabe 2019), the attraction of water molecules increased the water layer and thereby the residual emulsion decreased; (2) improved coalescence between adjacent oil droplets; and (3) improved behaviour of oil/water interfacial film (Kang et al. 2012). Khan et al. (2021) observed 75% clarity in the separated aqueous phase in the presence of titanium dioxide while it was 45% without titanium dioxide, which leads to a 19% overall increase in oil/water separation due to the presence of titanium dioxide.

A newly developed titanium dioxide/silicon dioxide/poly(acrylamide) nanocomposites using pomegranate seeds has shown better results in the enhanced oil recovery process in carbonate reservoirs (Ali et al. 2021). These nanocomposites (1500 ppm) when mixed with smart nanofluid (5000 ppm of calcium sulphate and calcium chloride ions) demonstrated the highest performance in oil recovery from
36% to 46.53% original oil in place due to a reduction in interfacial tension and wettability alteration.

In addition to enhanced oil recovery, research broadened the application of titanium dioxide in different areas such as (1) it can also be used as an excellent insulator which leads to better energy saving in the oil recovery process; (2) it can be used in the purification of recovered oily organic substances from waste liquids or accidental oil discharges in marine or continental situations.

The titanium dioxide–silicon dioxide composite was found to have excellent infrared radiation shield capability, and thus the composite can be used as a thermal insulator for high-temperature steam pipes used in oil recovery. This glass fibre/titanium dioxide–silicon dioxide composite significantly reduces the thermal conductivity by 13.1% and 23.9% at 300 °C and 400 °C, respectively (Liu et al. 2021).

Recently, super-hydrophobic F-TiO$_2$@polypropylene membranes were prepared from polypropylene, trifluorofluorooctyl methacrylate and sol–gel-derived titanium dioxide with vinyltriethoxysilane by Zhu et al. (2021) to recover oily organic components from waste liquids. This membrane was found to enhance the water contact angle up to 157°, and thus, the water removing efficiency was found to be more than 99.7%.

Degradation of pesticides

The residues of pesticides even at minute levels can cause severe harmful effects on human and animal health (Sakkas et al. 2005; Bamba et al. 2008; Colombo et al. 2012; Kaur and Goyal 2019), and the condition still worsens with bioaccumulation of these pesticides in long run (Garcia et al. 2006; Bamba et al. 2008). Many studies (Kaur and Goyal 2019) were performed in recent years to degrade this pesticide, and some recent work is listed in Table 8.

Conclusion

Photocatalysis with titanium dioxide (TiO$_2$) is highly recommended for effective wastewater treatment as this technique removes pollutants to a greater extent than conventional physical techniques such as adsorption and coagulation. Titanium dioxide nano-catalysts are commonly synthesized by physiochemical, e.g. solgel technique, sonochemical and microwave-assisted technique, oxidation technique, deposition technique, hydro/solvothermal techniques, and biological methods. Physical characteristics of titanium dioxide nanoparticles are strongly dependent on the synthesis technique adopted.
Table 8 Degradation of pesticides using titanium dioxide-based substrates. Fe₃O₄: ferric oxide, TiO₂: titanium dioxide, LaFeO₃: lanthanum iron oxide

Pollutant	Substrate	Results	References
Atrazine and dimethoate residues in three samples as deionized water, wastewater and agricultural wastewater containing these residues	TiO₂ in the presence of ultraviolet irradiation of (1) 254 nm and (2) 306 nm	Complete degradation is achieved after 12 h under 306 nm ultraviolet irradiation; dimethoate degrades more easily than atrazine	EL-Saeid et al. (2021)
Monocrotophos (dimethyl(E)-1-methyl-2-(methyl carbamoyl)vinyl phosphate)	MIL-88(IRON) anchored TiO₂-chitosan(2 dimensional) hybrid nanocomposite	98.79% degradation observed at optimized conditions (within 30 min) under visible light irradiation	Vigneshwaran et al. (2021)
Atenolol removal from domestic wastewater effluent	Iron doped with TiO₂ nanoparticles, synthesized using Acacia Catechu pods	A maximum of 85% of atenolol was degraded under visible light for 105 min at pH = 9	Bhuvaneswari et al. (2021)
Herbicide 2,4-dichlorophenoxyacetic acid (2,4D), and the insecticide imidacloprid (1-(6-chloro-3-pyridinylmethyl)-N-nitro-2-imidazolidinimine) (IM)	Molecularly imprinted (MI) TiO₂ powder with pesticides (TiO₂ MI/2,4-D; TiO₂ IM/IM)	At 368 nm ultraviolet irradiation, TiO₂ MI/2,4-D produced 6 times faster degradation of 2,4-D in comparison with bare TiO₂ while TiO₂ IM/IM produced 2 times faster degradation of IM in comparison with bare TiO₂	Fiorenza et al. (2020)
Fungicide myclobutanil (C₁₅H₁₇ClN₄)	LaFeO₃@TiO₂ heterojunction photocatalysts	• Complete removal achieved after 180 min under solar light	
• 85% removal was observed after 240 min using each pure substrate, viz. LaFeO₃ and TiO₂	Garcia-Muñoz et al. (2020)		
Zoxamide [3, 5-dichloro-N-(3-chloro, 1-ethyl, 1-methyl, 2-oxopropyl)-4 methyl benzamide]	Titanium dioxide nanoparticles (TiO₂ nanoparticles) Synthesized using aqueous leaf extract of Trema Orientalis	• The lowest concentration (105 mg/L) of zoxamide exhibits the highest degradation rate (0.32048 h⁻¹)	
• Degradation follows pseudo-first-order kinetics under ultraviolet irradiation	Purkait et al. (2020)		
Atrazine degradation	Magnetic Fe₃O₄•TiO₂/graphene oxides nanocomposite	• This nano-enzyme has a dual role, as highly selective in detecting and degrading atrazine	
• Within 40 min, 100% degradation was achieved in acidic conditions (pH=3) under sunlight | Boruah and Das (2020) |
Acknowledgements Authors wish to thank Sathyabama Institute of Science and Technology for the support.

Declarations

Conflict of Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Abeledo-Lameiro MJ, Ares-Mazés E, Gómez-Couso H (2016) Evaluation of solar photocatalysis using TiO₂ slurry in the inactivation of Cryptosporidium parvum oocysts in water. J Photochem Photobiol B Biol 163:92–99

Aftab U, Tahira A, Gradone A et al (2021) Two step synthesis of TiO₂–Co₃O₄ composite for efficient oxygen evolution reaction. Int J Hydrogen Energy 46:9110–9122

Ağçeli G, Hammachi H, Kodal S et al (2020) A novel approach to synthesize TiO₂ nanoparticles: Biosynthesis by using Streptomyces sp. HC1. J Inorg Organomet Polym Mater 30:3221–3229, https://doi.org/10.1007/S10904-020-01486-W

Ajiboye TO, Ayewo OA, Onwudiwe DC (2021) Photocatalytic removal of parabens and halogenated products in wastewater: a review. Environ Chem Lett 1–31

Akyüz D (2021) rGO-TiO₂-CdO-ZnO-Ag photocatalyst for enhancing photocatalytic degradation of methylene blue. Opt Mater (amst) 2067(08)60126-6

Ali JA, Kolo K, Manshad AK, Stephen KD (2021) Improved photodegradation appeared to influence the work reported in this paper.

Akyüz D (2021) rGO-TiO₂-CdO-ZnO-Ag photocatalyst for enhancing photocatalytic degradation of methylene blue. Opt Mater (amst) 2067(08)60126-6

Ali JA, Kolo K, Manshad AK, Stephen KD (2021) Emerging applications of TiO₂/SiO₂ poly (acrylamide) nanocomposites within the engineered water EOR in carbonate reservoirs. J Mol Liq 322:114943

Alqahtani FK, Zafar I (2021) Plastic-based sustainable synthetic aggregate in Green Lightweight concrete—a review. Constr Build Mater 292:123321, https://doi.org/10.1016/J.Conbuildmat.2021.123321

Ao CH, Lee SC, Yu JZ, Xu JH (2004) Photodegradation of formaldehyde by photocatalyst TiO₂: effects on the presence of NO, SO₂ and VOCs. Appl Catal B Environ 54:41–50, https://doi.org/10.1016/J.apcataB.2004.06.004

Arconada N, Durán A, Suárez S et al (2009) Synthesis and photocatalytic properties of dense and porous TiO₂-anatase thin films prepared by sol–gel. Appl Catal B Environ 86:1–7, https://doi.org/10.1016/J.apcataB.2008.07.021

Arzamendia P, Rodríguez-Troncoso R, Sánchez-Juan J et al (2016) Nanofluid enhanced oil recovery using hydrophobically associative zwitterionic polymeric nanoparticles. Fuel 187:41–48, https://doi.org/10.1016/J.fuel.2016.06.026

Aziz T, El-Fergany MA, El-Raghy M, Al-Atrash M (2021) TiO₂ nanocomposites for the reduction of NO, and NO₂ in exhaust gases. J Ind Eng Chem 78:119965, https://doi.org/10.1016/J.ijiec.2019.119965

Babalola OA, Akinbode-James PO, Ogunniyi AO (2016) Photocatalytic degradation of parabens and halogenated products in wastewater: a review. Environ Chem Lett 14:505–520, https://doi.org/10.1007/S10311-016-0118-X/TABLES/2

Bao S, Lei C, Xu M et al (2012) Environment-friendly biomimetic synthesis of TiO₂ nanoparticles for photocatalytic application. Nanotechnology. https://doi.org/10.1088/0957-4484/23/20/205601

Bhattacharya P, Mukherjee D, Deb N et al (2021) Indigenously developed CuO/TiO₂ coated ceramic ultrafiltration membrane for removal of emerging contaminants like phthalates and parabens: toxicity evaluation in PA-1 cell line. Mater Chem Phys 258:123920

Bhuvaneswari R, Jayanthi K, Kumar M (2021) Visible light assisted degradation of atenolol by Fe-TiO₂: synthesis, characterization, optimization and mechanism. Optik (stuttgart) 239:166658

Bora UK, Das MR (2020) Dual responsive magnetic Fe₃O₄-TiO₂/graphene nanocomposite as an artificial nanozyme for the colorimetric detection and photodegradation of pesticide in an aqueous medium. J Hazard Mater 385:121516

Boutillier S, Fourmentin S, Lapereche B (2021) History of titanium dioxide regulation as a food additive: a review. Environ Chem Lett 1–17

Cabanas-Polo S, Boccaccini AR (2016) Electrophoretic deposition of nanoscale TiO₂: technology and applications. J Eur Ceram Soc 2:265–283, https://doi.org/10.1016/J.Jeurceramso.2015.05.030

Cabello G, Davoglio RA, Pereira EC (2017) Microwave-assisted synthesis of anatase-TiO₂ nanoparticles with catalytic activity in oxygen reduction. J Electroanal Chem 794:36–42, https://doi.org/10.1016/J.jelechem.2017.04.004

Camarillo R, Tostón S, Martínez F et al (2017) Enhancing the photocatalytic reduction of CO₂ through engineering of catalysts with high pressure technology: Pd/TiO₂ photocatalysts. J Supercrit Fluids 123:18–27, https://doi.org/10.1016/J.supflu.2016.12.010

Chava RK, Lee W-M, Oh S-Y et al (2017) Improvement in light harvesting and device performance of dye sensitized solar cells using electrophoretic deposited hollow TiO₂ NPs scattering layer. Sol Energy Mater Sol Cells 161:255–262

Chen X (2009) Titanium dioxide nanomaterials and their energy applications. Chin J Catal 30:839–851, https://doi.org/10.1016/S1872-2067(08)60126-6

Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959, https://doi.org/10.1021/CR0500535

Chen Y, Vymazal J, Březinová T et al (2016) Occurrence, removal and environmental risk assessment of pharmaceuticals and personal care products in rural wastewater treatment wetlands. Sci Total Environ 566:1660–1669

Chen J, Wang M, Han J, Guo R (2020) TiO₂ nanosheet/NiO nanorod hierarchical nanostructures: p–n heterojunctions towards efficient photocatalysis. J Colloid Interface Sci 562:313–321, https://doi.org/10.1016/J.jcis.2019.12.031

Chen B, Liu L, Liu K et al (2021a) Photocatalytic TiO₂-xAu-nanowire-based motor for precise modulation of single-neuron activities. Adv Funct Mater 31:2008667, https://doi.org/10.1002/adfm.20208667

Chen LN, Wang SH, Zhang PY et al (2021b) Ru nanoparticles supported on partially reduced TiO₂ as highly efficient catalyst for hydrogen evolution. Nano Energy 88:106211, https://doi.org/10.1016/J.NANOEN.2021.106211

Choi SK, Son HA, Kim HT, Kim JW (2017) Nanofluid enhanced oil recovery using hydrophobically associative zwitterionic polymer-coated silica nanoparticles. Energy Fuels 31:7777–7782

Chung Y-C, Chen C-Y (2009) Degradation of azo dye reactive violet 5 by TiO₂ photocatalysis. Environ Chem Lett 7:347–352

Collins M (2010) Future trends in microwave synthesis. Future Med Chem 2:151–155, https://doi.org/10.4155/FMC.09.133

Colombo A, Cappelletti G, Ardizzone S et al (2012) Bisphenol A endocrine disruptor complete degradation using TiO₂ photocatalysis with ozone. Environ Chem Lett 10:55–60, https://doi.org/10.1007/S10311-011-0328-0

Daghri R, Drogui P, Robert D (2013) Modified TiO₂ for environmental photocatalytic applications: a review. Ind Eng Chem Res 52:3581–3599, https://doi.org/10.1021/IE303468T
from wastewater. A review. Environ Chem Lett 18:1169–1191. https://doi.org/10.1007/s10311-020-01001-0

Magana de Almeida Kumlien AC, Borrego CM, Balcázar JL (2021) Antimicrobial resistance and bacteriopathies: an overlooked intersection in water disinfection. Trends Microbiol 29:517–527. https://doi.org/10.1016/j.tim.2020.12.011

Mahmood MA, Baruah S, Anal AK, Dutta J (2012) Heterogeneous photocatalysis for removal of microbes from water. Environ Chem Lett 10:145–151

Malekshahi Byranvand M, Nemati Kharat A, Malekshahi Beiranvand Z (2013) A review on synthesis of nano-TiO2 via different methods. J Nanostructures 3:1–9. https://doi.org/10.7508/jns.2013.01.001

Mandari KK, Son N, Kang M (2021) Ag2PO4-Bi2O3-TiO2 as a high performance photocatalyst for oxygen evolution reaction. Appl Surf Sci 566:150681

Mathew S, Ganguly P, Rhatigan S et al (2018) Cu-doped TiO2: visible light assisted photocatalytic antimicrobial activity. Appl Sci 8:2067

Mathew S, Ganguly P, Kumaravel V et al (2020) Effect of chalco gens (S, Se, and Te) on the anatase phase stability and photocatalytic antimicrobial activity of TiO2, Mater Today Proc 33:2458–2464

Matsuura R, Lo C-W, Wada S et al (2021) SARS-CoV-2 disinfection by titanium dioxide surface coating. Wellcome Open Res 6:56

Narayan MR, Raturi A (2012) Deposition and characterisation of tita nium dioxide films formed by electrophoretic deposition. Int J Humom Mater Eng Innov 3:17–31. https://doi.org/10.1002/ijhmat

Ng J, Zhang X, Chang T et al (2010) Construction of self-organized free-standing TiO2 nanotube arrays for effective disinfection of drinking water. J Chem Technol Biotechnol 85:1061–1066. https://doi.org/10.1002/jctb.2395

Ngo NQ, Le T, Thuong NT et al (2012) Antimicrobial activity of titanium dioxide nanotubes for biomedical applications. J Environ Manag 108:7508–7516. https://doi.org/10.1016/j.jenvman.2012.05.053

Nobi I, Li K, Cheng H et al (2020b) Complete photocatalytic mini eralization of microplastic on TiO2 nanoparticle film. Iscience 20:103126

Nadeem M, Tungummith D, Hao C et al (2018) The current trends in the green synthesis of titanium oxide nanoparticles and their applications. Green Chem Lett Rev 11:492–502. https://doi.org/10.1080/17518258.2018.1538430

Narayan MR, Raturi A (2012) Deposition and characterisation of tita nium dioxide films formed by electrophoretic deposition. Int J Mater Eng Innov 3:17–31. https://doi.org/10.1002/ijhmat

Narkevica I, Stradina L, Stpipeece L et al (2017) Electrophoretic deposition of nanocrystalline TiO2 particles on porous TiO2-x ceramic substrates for biomedical applications. J Eur Ceram Soc 37:3185–3193. https://doi.org/10.1016/j.jeurceramsoc.2017.03.053

Nateq MH, Ceccato R (2019) Sol-Gel synthesis of TiO2 nanocrystal line particles with enhanced surface area through the reverse micelle approach. Adv Mater Sci Eng. https://doi.org/10.1155/2019/1567824

Ng J, Zhang X, Yang Z et al (2014) Synthesis of film. Iscience 20:103126

Nguyen DC, Doan TLL, Prabhakaran S et al (2021) Hierarchical Co and Nb dual-doped MoS2 nanosheets shell micro-TiO2 hollow spheres as effective multifunctional electrocatalysts for HER, OER, and ORR. Nano Energy 82:105750

Noh W, Jo S, Kim J, Lee TS (2021) Visible light driven asymmetric TiO2 based photocatalytic micromotor hybridized with a conjugated polyelectrolyte and glucose oxidase. Langmuir

Nyamukamba P, Okoh O, Munegondi H et al (2018) Synthetic methods for titanium dioxide nanoparticles: a review. Titan Dioxide Mater Sustain Environ. https://doi.org/10.1007/S10904-01248-3

O2-coated stainless steel orthodontic wires on oral biofilm: an in vitro study. J Photochem Photobiol C Photochem Rev 24:16–42. https://doi.org/10.1016/j.jphotchemrev.2015.06.001

Omar TFT, Ahmad A, Aris AZ, Yussif FM (2016) Endocrine disrupting compounds (EDCs) in environmental matrices: Review of analytical strategies for pharmaceuticals, estrogenic hormones, and alklyphenol compounds. TrAC Trends Anal Chem 85:241–259

Panchal D, Sharma A, Mondal P et al (2021) Heterolayered TiO2@ layered double hydroxide-MoS2 nanostructure for simultaneous
nano titania catalysts. J Nanosci Nanotechnol 17:313–322. https://doi.org/10.1166/JNN.2017.12421
Theerthagiri J, Senthil RA, Senthil Kumar B et al (2017) Recent advances in MoS2 nanostructured materials for energy and environmental applications—a review. J Solid State Chem 252:43–71. https://doi.org/10.1016/J.JSSC.2017.04.041
Tian J, Leng Y, Cui H, Liu H (2015) Hydrogenated TiO2 nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst. J Hazard Mater 299:165–173
Toma FL, Bertrand G, Klein D, Coddet C (2004) Photocatalytic removal of nitrogen oxides via titanium dioxide. Environ Chem Lett 2:117–121
Tong Y, Shi G, Hu G et al (2021) Photo-catalyzed TiO2 inactivates pathogenic viruses by attacking viral genome. Chem Eng J 414:128788
Udom I, Ram MK, Stefanakos EK et al (2013) One dimensional-ZnO nanostructures: synthesis, properties and environmental applications. Mater Sci Semicond Process 16:2070–2083. https://doi.org/10.1016/J.MSSP.2013.06.017
Umepathi A, Kumawat M, Daima HK (2021) Engineered nanomaterials for biomedical applications and their toxicity: a review. Environ Chem Lett 1–24
Vattikuti SVP, Devarayappalli KC, Reddy Nallabala NK et al (2021) Onion ring like carbon and nitrogen from ZIF-8 on TiO2/Fc3O3 nanostructure for overall electrochemical water splitting. J Phys Chem Lett 12:5909–5918
Vigneshwaran S, Sirajuddheen P, Karthikeyan P et al (2021) Immobilization of MIL-88(Fc) anchored TiO2-chitosan(2D/2D) hybrid nanocomposite for the degradation of organophosphate pesticide: characterization, mechanism and degradation intermediates. J Hazard Mater 406:124728. https://doi.org/10.1016/J.JHAZMAT.2020.124728
Villaseñor MJ, Ríos Á (2017) Nanomaterials for water cleaning and desalination, energy production, disinfestation, agriculture and green chemistry. Environ Chem Lett 16(1):11–34. https://doi.org/10.1007/S10311-017-0656-9
Wang Y, He Y, Lai Q, Fan M (2014) Review of the progress in preparing nano TiO2: an important environmental engineering material. J Environ Sci 26:2139–2177. https://doi.org/10.1016/J.JES.2014.09.023
Wang D, Li Y, Puma GL et al (2015) Mechanism and experimental study on the photocatalytic performance of Ag/AgCl chiral TiO2 nanofibers photocatalyst: the impact of wastewater components. J Hazard Mater 285:277–284
Wang L, Zhao Y, Zhang J (2017a) Photochemical removal of SO2 over TiO2-Based nanofibers by a dry photocatalytic oxidation process. Energy Fuels 31:9905–9914. https://doi.org/10.1021/ACS.ENERGYFUELS.7B01514
Wang X, Ahmad M, Sun H (2017b) Three-dimensional ZnO hierarchical nanostructures: Solution phase synthesis and applications. Materials (basel) 10:1304
Wang L, Kaeppler A, Fischer D, Simmchen J (2019) Photocatalytic TiO2 micromotors for removal of microplastics and suspended matter. ACS Appl Mater Interfaces 11:32937–32944
Wang J, Li Y, Luo YN et al (2020a) New mixed-crystal nanostructure of K2TiO4/TiO2 with dominant facets for efficient removal of anionic dyes. Ceram Int 46:25598–25602. https://doi.org/10.1016/J.CERAMINT.2020.07.032
Wang Z, Ali Haidry A, Xie L et al (2020b) Acetone sensing applications of Ag modified TiO2 porous nanoparticles synthesized via facile hydrothermal method. Appl Surf Sci 533:147383. https://doi.org/10.1016/J.APSUSC.2020.147383
Wang D, Zhang B, Ding H et al (2021a) TiO2 supported single Ag atoms nanozyme for elimination of SARS-CoV2. Nano Today 40:101243. https://doi.org/10.1016/J.NANTOD.2021.101243
Wang Y, Li J, Wang B et al (2021b) Bi2O3-CO2-TiO2 hybrid with 0D/1D nanostructure: design, synthesis and photocatalytic performance. New J Chem 45:6247–6253
Weir A, Westerhoff P, Fabricius L et al (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250. https://doi.org/10.1021/ES204168D
Wu JM (2004) Low-temperature preparation of titania nanorods through direct oxidation of titanium with hydrogen peroxide. J Cryst Growth 269:347–355. https://doi.org/10.1016/J.JCRYSGRO.2004.05.023
Wu J-M, Zhang T-W, Zeng Y-W et al (2005) Large-scale preparation of ordered titania nanorods with enhanced photocatalytic activity. Langmuir 21:6995–7002. https://doi.org/10.1021/LA0500272
Wu Y, Lu G, Li S (2009) The doping effect of Bi on TiO2 for photocatalytic hydrogen generation and photodecolorization of Rhodamine B. J Phys Chem C 113:9950–9955. https://doi.org/10.1021/JP9009433
Wu Z, Wu Q, Du L et al (2014) Progress in the synthesis and applications of hierarchical flower-like TiO2 nanostructures. Particulology. https://doi.org/10.1016/J.PARTIC.2013.04.003
Wu F, Zhou Z, Hicks AL (2019) Life cycle impact of titanium dioxide nanoparticle synthesis through physical, chemical, and biological routes. Environ Sci Technol 53:4078–4087
Xie W, Pakdel E, Liang Y et al (2020) Natural melanin/TiO2 hybrids for simultaneous removal of dyes and heavy metal ions under visible light. J Photochem Photobiol A Chem 389:112292
Xin Y, Grundmeier G, Keller A (2021) Adsorption of SARS-CoV-2 spike protein S1 at oxide surfaces studied by high-speed atomic force microscopy. Adv NanoBioem Res 1:2000024
Xu Z, Meng X (2009) Size effects of nanocrystalline TiO2 on As(V) and As(III) adsorption and As(III) photooxidation. J Hazard Mater 168:747–752. https://doi.org/10.1016/J.JHazardMater.2009.02.084
Xue Z, Zhang W, Yin X et al (2012) Enhanced conversion efficiency of flexible dye-sensitized solar cells by optimization of the nanoparticle size with an electrophotoreception deposition technique. RSC Adv 2:7074–7080. https://doi.org/10.1039/C2RA20542D
Yang Y, Ok YS, Kim K-H et al (2017) Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review. Sci Total Environ 596:303–320
Yang L, Hao X, Yu D et al (2021) High visible-light catalytic activity of Bis-PD1-T@ TiO2 for activating persulfate toward efficient degradation of carbamazepine. Sep Purif Technol 263:118384
Yao J, Chen H, Jiang F et al (2017) Titanium dioxide and cadmium sulfide co-sensitized graphitic carbon nitride nanosheets composite photocatalysts with superior performance in phenol degradation under visible-light irradiation. J Colloid Interface Sci 490:154–162
Yildiz T, Yatmaz HC, Öztürk K (2020) Anatase TiO2 powder immobilized on reticulated Al2O3 ceramics as a photocatalyst for degradation of RO16 azo dye. Ceram Int 46:8651–8657. https://doi.org/10.1016/J.CERAMINT.2019.12.098
Yousef A, El-Halwany MM, Barakat NAM et al (2015) CuO-doped TiO2 nanofibers as potential photocatalyst and antimicrobial agent. J Ind Eng Chem 26:251–258
Yu J, Hai Y, Cheng B (2011) Enhanced photocatalytic H2-production activity of TiO2 by NiO/H2 cluster modification. J Phys Chem C 115:4953–4958. https://doi.org/10.1021/JP111562D
Yuan Y, Zhang J, Li H et al (2012) Simultaneous removal of SO2, NO and mercury using TiO2-aluminum silicate fiber by photocatalysis. Chem Eng J 192:21–28. https://doi.org/10.1016/J.CEJ.2012.03.043
Zhang Y, Ma H, Yi M et al (2017) Magnetron-sputtering fabrication of noble metal nanodots coated TiO2 nanoparticles with enhanced
photocatalytic performance. Mater Des 125:94–99. https://doi.org/10.1016/J.MATDES.2017.03.084

Zhang Y, Wang L, Zhang N, Zhou Z (2018) Adsorptive environmental applications of MXene nanomaterials: a review. RSC Adv 8:19895–19905. https://doi.org/10.1039/C8RA03077D

Zhang J, Yan M, Sun G, Liu K (2021) Simultaneous removal of Cu (II), Cd (II), Cr (VI), and rhodamine B in wastewater using TiO$_2$ nanofibers membrane loaded on porous fly ash ceramic support. Sep Purif Technol 272:118888

Zhu Y, Chen F (2014) Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem Rev 114:6462–6555. https://doi.org/10.1021/CR400366S

Zhu Y, Feng Y, Chen S et al (2020) Carbon nitride nanotube-based materials for energy and environmental applications: a review of recent progresses. J Mater Chem A 8:25626–25648. https://doi.org/10.1039/D0TA08892G

Zhu Y, Lu Y, Yu H et al (2021) Super-hydrophobic F-TiO$_2$@ PP membranes with nano-scale “coral”-like synapses for waste oil recovery. Sep Purif Technol 267:118579