HÖLDER ESTIMATES FOR SINGULAR NON-LOCAL PARABOLIC EQUATIONS

SUNGHOON KIM AND KI-AHM LEE

Abstract. In this paper, we establish local Hölder estimate for non-negative solutions of the singular equation (M.1) below, for m in the range of exponents \(\frac{n-2\sigma}{n+2\sigma} < m < 1 \). Since we have trouble in finding the local energy inequality of \(v \) directly, we use the fact that the operator \((-\Delta)^\sigma\) can be thought as the normal derivative of some extension \(\tilde{v} \) of \(v \) to the upper half space, \([CS]\), i.e., \(v \) is regarded as boundary value of \(\tilde{v} \) the solution of some local extension problem. Therefore, the local Hölder estimate of \(v \) can be obtained by the same regularity of \(\tilde{v} \). In addition, it enables us to describe the behaviour of solution of non-local fast diffusion equation near their extinction time.

1. Introduction

In this paper, we consider initial value problem with fractional fast diffusion:

\[
\begin{cases}
(-\Delta)^\sigma u^n + u_t = 0 & \text{in } \Omega \\
u = 0 & \text{on } \mathbb{R}^n \setminus \Omega \\
u(x, 0) = u_0(x) & \text{non-negative and } H^\sigma_0\text{-bounded}
\end{cases}
\]

in the range of exponents \(\frac{n-2\sigma}{n+2\sigma} < m < 1 \), with \(0 < \sigma < 1 \). The fractional Laplacian of a function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is expressed by the formula

\[(-\Delta)^\sigma f(x) = C_{n,\sigma} \int_{\mathbb{R}^n} \frac{f(x) - f(y)}{|x - y|^{n+2\sigma}} dy\]

where \(C_{n,\sigma} \) is some normalization constant. In addition, the norm in \(H^\sigma \) is given precisely by

\[
\|f\|_{H^\sigma} = \sqrt{\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{|f(x) - f(y)|^2}{|x - y|^{n+2\sigma}} dxdy,}
\]

That is equivalent to

\[
\|f\|_{H^\sigma} \cong \sqrt{\int_{\mathbb{R}^n} |\xi|^{2\sigma} |\hat{f}(\xi)|^2 d\xi.}
\]

for Fourier transform of \(f \) in \(x \). Note that the Sobolev embedding results say that \(H^\sigma \subset L^{2n/(n-2\sigma)} \) (Chap V in [St]). Indeed, \(H^\sigma \) is the space of \(L^{2n/(n-2\sigma)} \) functions for which (1.2) is integrable.

Several regularity results in the non-linear theory of elliptic and parabolic differential equations are based on Hölder estimates for linear equations with measurable coefficients. Hölder estimates can be drived from the Harnack inequalities as the Theorem 8.22 in [GT]. In [De], E. De Giorgi proved a Hölder estimate for second order uniformly elliptic equations in divergence form with measurable coefficients, and the regularity of minimizers for non-linear convex functionals followed from there. Chen and DiBenedetto study in [YD2] the question of Hölder estimates of solutions of singular parabolic equations with measurable coefficients of the \(p \)-Laplacian type, and the methods apply to the porous medium equations in the fast diffusion range. The Harnack inequality for non-negative solutions of singular parabolic equations is proved in [YD3]. The
that the other hand,\((-\Delta)^{\frac{\alpha}{2}} \) gain local Hölder regularity for any space dimension. In [CV], they consider the harmonic extension problem corresponding to the original one in order to avoid difficulties stem from the non-locality.

We are interested in studying of the properties of non-linear eigenvalue problems with fractional powers: regularities, geometric properties, etc. However, there are lots of difficulties to be solved directly. For example, the geometric properties of the first eigenfunction for the fractional Laplacian \((-\Delta)^{\frac{b}{2}} \) is still unsolved. More precisely, the conjecture 1.1 in [RTP], let \(\varphi_1^b \) be the ground state eigenfunction for the symmetric stable processes of index \(0 < b < 2 \) killed upon leaving the interval \(I = (-1,1) \). Then is \(\varphi_1^b \) concave on \(I \)?

Many methods is devised to treat non-linear eigenvalue problems. One of them is parabolic method, [LV], which relies on the fact that the non-linear eigenvalue problem can be described as the asymptotic profile of a corresponding parabolic flow.

For this reason, in this work, we will deal with a Hölder regularity of \(v = u^m \), which is a solution of

\[
\begin{cases}
(-\Delta)^{\alpha} v + (v^\frac{1}{m})_t = 0 & \text{in } \Omega \\
v = 0 & \text{on } \mathbb{R}^n \setminus \Omega \\
v(x,0) = v_0(x) = u_0^m(x) & \text{in } \Omega,
\end{cases}
\]

assuming that the initial value \(v_0 \) is strictly positive in the interior of \(\Omega \) in \(\mathbb{R}^n \). Main two Theorems state as follows:

Theorem 1.1. (Boundedness for positive times)

Let \(v(x,t) \) be a function in \(L^{\infty}(0,T;L^{\frac{2m}{m+2\alpha}}(\Omega)) \cap L^2(0,T;\dot{H}^\alpha_0(\mathbb{R}^n)) \), then

\[
\sup_{x \in \Omega} |v(x,T)| \leq C^* \frac{||v_0||_{L^{\frac{2m}{m+2\alpha}}(\Omega)}}{T^{\frac{2m}{m+2\alpha}(1+\alpha)}}
\]

for some constant \(C^* > 0 \).

For the second theorem, we need better control of \(v \).

Theorem 1.2 (Hölder regularity of fractional FDE).

For \(x_0 = (x_0^1, \ldots, x_0^n) \), we define \(Q_r(x_0, t_0) = [x_0^i - r, x_0^i + r]^n \times [t_0 - r^{2\alpha}, t_0] \), for \(t_0 > r^{2\alpha} > 0 \). Assume now that \([x_0^i - r, x_0^i + r]^n \subset \Omega \) and \(v(x,t) \) is bounded in \(\mathbb{R}^n \times [t_0 - r^{2\alpha}, t_0] \), then there exist constants \(\gamma \) and \(\beta \) in \((0,1) \) that can be determined a priori only in terms of the data, such that \(v \) is \(C^\beta \) in \(Q_{\gamma r}(x_0, t_0) \).

In order to develop the Hölder regularity method, it is necessary to localize the energy inequality by space and time truncation. Due to the non-locality of the diffusion, this appears complicated. On the other hand, \((-\Delta)^{\frac{\alpha}{2}} v \) can be thought as the normal derivative of some extension of \(v \) (the Dirichlet
to Neumann operator of v. See [CS] for a general discussion. This allows us to realize the truncation as a standard local equation in one more dimension: we introduce first the corresponding extension v^* defined from $C^\infty_0(\mathbb{R}^n)$ to $C^\infty_0(\mathbb{R}^n \times \mathbb{R}^+)$ by:

$$
\begin{align*}
-\nabla(y^a \nabla v^*) &= 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\
v^*(x,0) &= v(x) & \text{for } x \in \mathbb{R}^n
\end{align*}
$$

for $a = 1 - 2\sigma$. (This extension consists simply in convolving v with the Poisson kernel of the upper half space in one more variable.) Then the following result holds true: for v defined on \mathbb{R}^n, we have:

$$
(-\Delta)^\sigma v(x) = \partial_\nu v^*(x,0) = -\lim_{y \to 0^+} y^\sigma v_y^*(x,y)
$$

where we denote $\partial_\nu v^*$ the outward normal derivative of v^* on the boundary $\{y = 0\}$. Hence, it is possible to consider the solution v of problem (M.P) as the boundary value of v^* which is solution of

$$
\begin{align*}
\nabla(y^a \nabla v^*) &= 0 & \text{in } y > 0 \\
\lim_{y \to 0^+} y^\sigma v_y^*(x,y,t) &= (v^\frac{1}{\sigma})_t(x,0,t) & x \in \Omega \\
v^*(x,0,t) &= 0 & \text{on } \mathbb{R}^n \setminus \Omega.
\end{align*}
$$

(1.3)

Thus, we can obtain the Hölder estimate of v immediately by showing the Hölder regularity of v^*.

Since the diffusion coefficients $D(v) = |v|^{1-\sigma}$ goes to infinity as $v \to 0$, we need to control the oscillation of v from below. Hence, we consider the new function w^* derived from v^* such that $w^*(x,y,t) = M - v^*(x,y,t + t_0)$ with $M = M(t_0) = \sup_{t \geq t_0} v^*$. By Theorem [1.1] we know that the solution satisfies

$$
v^*(x,t) \leq M(t_0) < \infty \quad (t \geq t_0).
$$

From this, we get to a familiar situation:

$$
\begin{align*}
\nabla(y^a \nabla w^*) &= 0 & \text{in } y > 0 \\
-\lim_{y \to 0^+} y^\sigma \nabla_y \nabla w^*(x,y,t) &= \left[(M-w^*)^\frac{1}{\sigma}\right]_t(x,0) & x \in \Omega \\
w^*(x,0,t) &= M & \text{on } \mathbb{R}^n \setminus \Omega.
\end{align*}
$$

(1.4)

The paper is divided into four parts: In Section 2 we study several properties of the Fast Diffusion Equation (shortly, FDE) with fractional powers

$$
(-\Delta)^\sigma u^m + u_t = 0, \quad \left(\frac{n - 2\sigma}{n + 2\sigma} < m < 1\right).
$$

(1.5)

More precisely, we explain Scale Invariance, L^1-Contraction and Extinction on Finite Time. In Section 3, we show the existence of weak solution of the problem (M.P). Also, we investigate the boundedness of the solutions of problem (M.P) for positive times. Lastly in this section, we compute local energy inequality of $(w^* - k)_\pm$ which will be a key step in establishing local Hölder estimates. The proof of the Hölder regularity of problems is given in Section 4. In this section, we consider the extension v^* of v that solves (M.P). This allows us to treat non-linear problems, involving fractional Laplacians, as a local problems. In the last section, we study the existence of non-linear eigenvalue problem with fractional powers which is asymptotic profile of the parabolic flow (M.P) on extinction time.

Notations: Before we explain the main ideas of the paper, let us summarize the notations and definitions that will be used.
We apply the group of dilations in all the variables. Let us start with showing the properties of the solution for FDE with fractional powers in the following section.

\[-\Delta (2.1) \]

\[u \]

For \(x_0 = (x_0^1, \cdots, x_0^n) \in \mathbb{R}^n \), we denote by \(B_r(x_0) = [x_0^i - r, x_0^i + r]^n \) a cube in the \(x \) variable only, and \(B_{r'}^r(x_0) = B_r(x_0) \times (0, r) \in \mathbb{R}^n \times (0, \infty) \) a cube in the \(x, y \) variables sitting on the plane \(y = 0 \).

We construct the cylinders

\[Q_r(x_0, t_0) = B_r(x_0) \times (t_0 - r^{2r}, t_0) \]

and, for \(\alpha = 1 - \frac{1}{m} \),

\[Q_r(\alpha)(x_0, t_0) = B_r(x_0) \times \left(t_0 - r^{2\sigma} \frac{t_0}{\omega^\alpha}, t_0 \right). \]

In addition, for \(\rho_1 \) and \(\rho_2 \),

\[Q_r(\omega, \rho_1, \rho_2)(x_0, t_0) = B_{r-\rho_1,r}(x_0) \times \left(t_0 - (1 - \rho_2) \frac{t_0}{\omega^\alpha}, t_0 \right). \]

The cylinders \(Q_r^*(x_0, t_0), Q_{r'}^*(\alpha)(x_0, t_0) \) and \(Q_{r'}^*(\omega, \rho_1, \rho_2)(x_0, t_0) \) are obtained in a similar manner by replacing \(B_r(x_0) \) and \(B_{r-\rho_1,r}(x_0) \) by \(B_r^*(x_0) \) and \(B_{r-\rho_1,r}^*(x_0) \) respectively.

We let \(Q_r, Q_{r'}^*, Q_{r'}(\omega), Q_{r'}^*(\omega), Q_r(\omega, \rho_1, \rho_2) \) and \(Q_{r'}^*(\omega, \rho_1, \rho_2) \) be the cylinders around the point \((x_0, t_0) = (0, 0)\).

Let us start with showing the properties of the solution for FDE with fractional powers in the following section.

2. Properties of Fast Diffusion Equations with Fractional Powers

Since the operator \((-\Delta)^\sigma\) converges to \((-\Delta)\) as the quantity \(\sigma\) goes to 1, it is natural to expect that the solutions of the equation \((1.5)\) has a lot in common with those of the FDE (of course, not in complete accord). Hence, before coming to main issue, we will discuss such properties of FDE in this section.

2.1. Scale Invariance. Let us examine the application of scaling transformations to the fractional powers of the FDE in some detail. Let \(u = u(x, t) \) be a solution of the fractional powers of the FDE,

\[(2.1) \quad (-\Delta)^m u^m + u_t = 0 \quad (0 < m < 1). \]

We apply the group of dilations in all the variables

\[u' = Ku, \quad x' = Lx \quad t' = Tt, \]

and impose the condition that \(u' \) so expressed as a function of \(x' \) and \(t' \), i.e.,

\[u'(x', t') = Ku(x', t') \frac{x'}{L}, \frac{t'}{T}, \]

has to be again a solution of \((2.1)\). Then:

\[(2.2) \quad \frac{\partial u'}{\partial t'} = K \frac{\partial u}{T} \left(\frac{\partial (x', t')}{L}, \frac{T}{T} \right) \]
and
\[(-\Delta)^{\alpha} [u'(x', t')]^m = \int \frac{[u'(x', t')]^m - [u'(y', t')]^m}{|x' - y'|^{n + 2\alpha}} dy'. \]
\[= \frac{K^m}{L^{2\alpha}} \int \frac{[u(x', t')]^m - [u(y', t')]^m}{|x' - y'|^{n + 2\alpha}} dy' \]
\[= \frac{K^m}{L^{2\alpha}} (-\Delta)^{\alpha} u^m. \]

Hence, (2.2) will be a solution if and only if \(KT^{-1} = K^m L^{-2\alpha} \), i.e.,
\[K^{m-1} = L^{2\alpha} T^{-1}. \]

We thus obtain a two-parametric transformation group acting on the set of solutions of (2.1). Assuming that \(m \neq 1 \), we may choose as free parameters \(L \) and \(T \), so that it can be written as
\[u'(x', t') = L^{\frac{2\alpha}{m-1}} T^{-\frac{1}{m-1}} u \left(\frac{x'}{L}, \frac{t'}{T} \right) \]
Using standard letters for the independent variables as putting \(u' = \tau u \), we get:
\[(\tau u)(x, t) = L^{\frac{2\alpha}{m-1}} T^{-\frac{1}{m-1}} u \left(\frac{x}{L}, \frac{t}{T} \right). \]

The conclusion is:

Lemma 2.1. If \(u \) is a solution of the fractional powers of the FDE in a certain class of solutions \(S \) that is closed under dilations in \(x, t \) and \(u \), then \(\tau u \) given by (2.3) is again a solution of the fractional powers of the FDE in the same class.

2.2. \(L^1 \)-contraction. This is a very important estimate which has played a key role in the fractional powers of the FDE theory. It will allow us to develop existence, uniqueness and stability theory in the space \(L^1 \).

Lemma 2.2 (\(L^1 \)-contraction). Let \(\Omega \) be a bounded domain of \(\mathbb{R}^n \) with smooth boundary, and let \(u \) and \(\bar{u} \) be two smooth solutions of the fast diffusion equation (FDE):
\[
\begin{align*}
(-\Delta)^{\alpha} u^m + u_t &= 0 & \text{in } Q_T = \Omega \times (0, T) \\
u &= 0 & \text{on } \mathbb{R}^n \setminus \Omega
\end{align*}
\]
with initial date \(u_0, \bar{u}_0 \) respectively. We have for every \(t > \tau \geq 0 \)
\[\int_\Omega \left[u(x, t) - \bar{u}(x, t) \right] dx \leq \int_\Omega \left[u(x, \tau) - \bar{u}(x, \tau) \right] dx. \]
As a consequence,
\[||u(t) - \bar{u}(t)||_1 \leq ||u_0 - \bar{u}_0||_1. \]

Proof. Let \(p \in C^1(\mathbb{R}) \) be such that \(0 \leq p \leq 1, p(s) = 0 \) for \(s \leq 0, \) \(p'(s) > 0 \) for \(s > 0 \). Let \(w = u^m - \bar{u}^m \) which vanishes on the boundary \(\mathbb{R}^n \setminus \Omega \times [0, T) \). Subtracting the equations satisfied by \(u \) and \(\bar{u} \), multiplying by \(p(w) \) and integrating in \(\mathbb{R}^n \), we have for
\[\int_{\mathbb{R}^n} (u - \bar{u}) p(w) dx = \int_{\mathbb{R}^n} -(-\Delta)^{\alpha} wp(w) dx
= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{[w(x, t) + w(y, t)] p(w(x, t))}{|x - y|^{n+2\alpha}} dy dx. \]
Since

\[A = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{[w(x, t) + w(y, t)]p(w(x, t))}{|x - y|^{n+2\alpha}} dy \]

\[= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{[w(x, t) + w(y, t)]p(w(x, t)) - p(w(y, t))}{|x - y|^{n+2\alpha}} dy \]

\[+ \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{[w(x, t) + w(y, t)]p(w(y, t))}{|x - y|^{n+2\alpha}} dy \]

\[= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{[w(x, t) + w(y, t)]p(w(x, t)) - p(w(y, t))}{|x - y|^{n+2\alpha}} dy dx - A, \]

we obtain

\[\int_{\mathbb{R}^n} (u - \bar{u})p(w) dx \]

\[= \frac{1}{2} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{[w(x, t) + w(y, t)]p(w(x, t)) - p(w(y, t))}{|x - y|^{n+2\alpha}} dy dx. \]

Note that the term in the right-hand side is non-positive. Therefore letting \(p \) converge to the sign function \(\text{sign}_0^+ \), \(|V| \), and observing that

\[\frac{\partial}{\partial t} (u - \bar{u})_+ = (u - \bar{u})_+ \text{sign}_0^+, \]

we get

\[\frac{d}{dt} \int_{\Omega} (u - \bar{u})_+ dx = \frac{d}{dt} \int_{\mathbb{R}^n} (u - \bar{u})_+ dx \leq 0, \]

which implies (2.4) for \(u, \bar{u} \). To obtain (2.5), combine (2.4) applied first to \(u \) and \(\bar{u} \) and then to \(\bar{u} \) and \(u \). \(\Box \)

2.3 Extinction in Finite Time.

The main difference with porous medium equation is the finite time convergence of the solutions to the zero solution, which replaces the infinite time stabilization that holds for \(m \geq 1 \). This phenomenon is called extinction in finite time and read as follows.

Lemma 2.3. If \(u(x, t) \) is the \(C^{2,1} \) solution of the fast diffusion equation with fractional powers :

\[
\begin{cases}
(-\Delta)^{\alpha} u^m + u_t = 0 & \text{in } Q_\infty = \Omega \times (0, \infty) \\
u = 0 & \text{on } \mathbb{R}^n \setminus \Omega \\
u(x, 0) = u_0(x) \in C^0(\Omega)
\end{cases}
\]

where \(\Omega \) is a bounded domain of \(\mathbb{R}^n \) with smooth boundary, then there exists \(T^* > 0 \) such that \(u(\cdot, t) = 0 \) for all \(t \geq T^* \), i.e.,

\[\lim_{t \to T^*} ||u(\cdot, t)||_\infty = 0 \]

for some \(T^* > 0 \). The solution can be continued past the extinction time \(T^* \) in a weak sense as \(u \equiv 0 \).

Proof. It is enough to construct a super-solution \(V \) with the property of extinction. We will choose the function \(V \) in the form \(V(x, t) = X(x)T(t) \). Let \(R > 0 \) be such that \(\Omega \subset B_R(0) \), and let us define a
function $X(x)$ by
\[
X(x) = \begin{cases}
\frac{1}{|x|^{\frac{n+2\alpha}{m}}} & |x| \leq R \\
\frac{1}{|x|^{\frac{2n}{m}}} & |x| > R
\end{cases}
\]
and a function $T(t)$ by
\[
T(t) = \begin{cases}
C(T^* - t)^{\frac{1}{m}} & t \leq T^* \\
0 & t > T^*
\end{cases}
\]
for a constant $C > 0$ we can choose later. Since
\[
(-\Delta)^\sigma X^m \geq \int_{\mathbb{R}^n \setminus B_R(0)} \frac{X^m(x) - X^m(y)}{|x - y|^{n+2\alpha}} dy
\]
\[
\geq \left(\frac{2}{3} \right)^{n+2\alpha} \left(1 - \frac{1}{2n-2\alpha} \right) \frac{1}{R^{n-2\alpha}} \int_{\mathbb{R}^n \setminus B_R(0)} \frac{1}{|y|^{n+2\alpha}} dy
\]
\[
\geq \frac{1}{2^\alpha} \left(\frac{2}{3} \right)^{n+2\alpha} \left(\frac{1}{2^n} - \frac{1}{2^\alpha} \right) \frac{1}{R^n}
\]
for all $x \in \Omega$, we have
\[
(-\Delta)^\sigma V^m + V_t
\geq C^m(T^* - t)^{\frac{m}{n}} \left[\left(\frac{1}{2^\alpha} \right)^{n+2\alpha} \left(\frac{1}{2^n} - \frac{1}{2^\alpha} \right) \frac{1}{R^n} - \frac{C^{1-m}}{(1-m)R^{\frac{n-2\alpha}{m}}} \right]
\]
if we choose $C = \left[\left(\frac{1-m}{2^\alpha} \right)^{n+2\alpha} \left(\frac{1}{2^n} - \frac{1}{2^\alpha} \right) R^{\frac{(1-m)n-2\alpha}{m}} \right]^{\frac{1}{1-m}}$. \hfill \Box

Next we deal with the two Lemmas. The ideas are based on the proof of Lemma 1 and 2 in [BH] respectively.

Lemma 2.4 (Estimates on Finite Extinction Time). When $\frac{n-2\alpha}{n+2\alpha} < m < 1$, there exists a positive constant C such that the solution $v = u^m$ of (M.P) satisfies
\[
T^* - t \leq C \left(\int_{\mathbb{R}^n} v^{\frac{m+1}{m}} (x,t) \, dx \right)^{\frac{1}{m+1}}.
\]

Proof. Multiplying equation (M.P) by v and integrating by parts, we obtain the inequality
\[
\frac{d}{dt} \left(\int_{\mathbb{R}^n} v^{\frac{m+1}{m}} \, dx \right) = -(m + 1) \int_{\mathbb{R}^n} v(-\Delta)^\sigma v \, dx = -(m + 1)||v||_{H^\sigma}^2.
\]
By the compactness of imbedding, there are constants C and C' such that, for any $v \in H^\sigma_0$,\n\[
||v||_{H^\sigma}^2 \geq C||v||_{2^{\frac{2m}{m+1}}}^2 \geq C'||v||_{\frac{m+1}{m}}^2
\]
when $\frac{n-2\alpha}{n+2\alpha} < m < 1$. The last inequality makes use of Hölder inequality. Substituting (2.7) into (2.6) one obtains an inequality which can be integrated to yield
\[
\left(\int_{\mathbb{R}^n} v^{\frac{m+1}{m}} (x,t') \, dx \right)^{\frac{1}{m+1}} - \left(\int_{\mathbb{R}^n} v^{\frac{m+1}{m}} (x,t) \, dx \right)^{\frac{1}{m+1}} \leq -C'(1-m)(t' - t)
\]
for $T' > t' \geq t$. Letting $t' \to T'$ and multiplying by -1, we have the statement of the Lemma. \hfill \Box
Lemma 2.5. When \(\frac{n-2\sigma}{n+2\sigma} < m < 1 \), the solution \(v \) of (M.P) satisfies

\[
\int_{\mathbb{R}^n} v^{\frac{m+1}{m}}(x, t) \, dx \leq \left(1 - \frac{t}{T^*} \right)^{\frac{m}{m-1}} \int_{\mathbb{R}^n} v^{\frac{m+1}{m}}(x, 0) \, dx.
\]

Proof. Since \(v(x, t) = 0 \) on \(\mathbb{R}^n \backslash \Omega \), applying the Cauchy-Schwarz inequality, we obtain

\[
\left(\int_{\mathbb{R}^n} v(-\Delta)^{\sigma} v \, dx \right)^2 = \left(\int_{\Omega} v(-\Delta)^{\sigma} v \, dx \right)^2 \leq \int_{\Omega} v^{\frac{m+1}{m}} \, dx \cdot \int_{\Omega} \frac{[(-\Delta)^{\sigma} v]^2}{v^{\frac{m+1}{m}}} \, dx.
\]

It is convenient to rewrite this as

\[
\frac{\int_{\mathbb{R}^n} v(-\Delta)^{\sigma} v \, dx}{\int_{\Omega} v^{\frac{m+1}{m}} \, dx} \leq \frac{\int_{\Omega} \frac{[(-\Delta)^{\sigma} v]^2}{v^{\frac{m+1}{m}}} \, dx}{\int_{\mathbb{R}^n} v(-\Delta)^{\sigma} v \, dx}.
\]

Next an expression for \(\frac{d}{dt} \int_{\mathbb{R}^n} v(x, t)(-\Delta)^{\sigma} v(x, t) \, dx \) will be derived. Carrying out the indicated differentiation, one obtains

\[
\frac{d}{dt} \int_{\mathbb{R}^n} v(x, t)(-\Delta)^{\sigma} v(x, t) \, dx = 2 \int_{\mathbb{R}^n} v_t(x, t)(-\Delta)^{\sigma} v(x, t) \, dx
\]

\[
= 2 \int_{\Omega} v_t(x, t)(-\Delta)^{\sigma} v(x, t) \, dx = -2m \int_{\Omega} \frac{[(-\Delta)^{\sigma} v(x, t)]^2}{v^{\frac{m+1}{m}}(x, t)} \, dx.
\]

The second equality follows from the fact that \(v_t(x, t) = 0 \) on \(\mathbb{R}^n \backslash \Omega \). Using this expression together with (2.6), we see that the basic inequality (2.9) can be rewritten as

\[-\frac{1}{(m+1)} \frac{d}{dt} \int_{\mathbb{R}^n} v^{\frac{m+1}{m}}(x, t) \, dx \leq -\frac{d}{dt} \int_{\mathbb{R}^n} v(x, t)(-\Delta)^{\sigma} v(x, t) \, dx \cdot 2m \int_{\mathbb{R}^n} v(x, t)(-\Delta)^{\sigma} v(x, t) \, dx.
\]

Integrating this differential inequality, we obtain

\[
\left(\frac{\int_{\mathbb{R}^n} v^{\frac{m+1}{m}}(x, t) \, dx}{\int_{\mathbb{R}^n} v^{\frac{m+1}{m}}(x, s) \, dx} \right)^{\frac{2m}{m+1}} \geq \int_{\mathbb{R}^n} v(x, t)(-\Delta)^{\sigma} v(x, t) \, dx \cdot \int_{\mathbb{R}^n} v(x, s)(-\Delta)^{\sigma} v(x, s) \, dx,
\]

for \(T^* \geq t > s \geq 0 \). Define

\[
Z(t) = \left(\int_{\mathbb{R}^n} v^{\frac{m+1}{m}}(x, t) \, dx \right)^{\frac{1-m}{1+m}}.
\]

Then (2.10) is just \(Z'(s) \leq Z'(t) \) for all \(s \leq t \), so that \(Z'' \geq 0 \) and \(Z \) is convex. Hence

\[
Z(t) \geq Z(T) + \frac{Z(T) - Z(s)}{T - s} (T - t)
\]

for all \(s \leq t \leq T \). Setting \(s = 0 \) and \(T = T^* \), one obtains (2.8). \(\square \)

3. Weak solutions and Local Energy Inequality

First, we study the problem (M.P) in the class of nonnegative weak solutions. For the remainder of this paper we assume that

\[
\frac{n-2\sigma}{n+2\sigma} < m < 1
\]

holds.
3.1. Weak solutions and Existence.

Definition 3.1. A non-negative weak solution of equation (M.P) is a locally integrable function, \(v \in L^1_{\text{loc}}(\mathbb{R}^n \times [0, \infty)) \), such that \((-\Delta)^{\sigma} v \in L^1_{\text{loc}}(\mathbb{R}^n \times [0, \infty)) \) and \(v = 0 \) on \(\mathbb{R}^n \setminus \Omega \), and the identity

\[
\int_0^\infty \int_\Omega v \frac{\partial}{\partial t} \eta \, dx \, dt = \int_0^\infty \int_\Omega v (-(-\Delta)^{\sigma} \eta) \, dx \, dt
\]

holds for any test function \(\eta \in C^2_c(\Omega \times [0, \infty)) \) with \(\eta = 0 \) on \(\mathbb{R}^n \setminus \Omega \).

We show the existence and comparison result for weak solutions. The proof is similar to the proof of the Theorem (5.5) in \([Va]\).

Lemma 3.1. There exists a non-negative weak solution of (M.P). Moreover, the comparison principle holds for these solutions: \(v, \hat{v} \) are weak solutions with initial data such that \(v_0 \leq \hat{v}_0 \) a.e. in \(\Omega \), then \(v \leq \hat{v} \) a.e. for all \(t > 0 \).

Proof. We first assume that \(v_0 \) is a non-negative smooth function with compact support in \(\Omega \). Then we begin by constructing a sequence of approximate initial data \(v_{0n} \) which does not take the value zero, so as to avoid the degeneracy of the equation. We may simple put

\[
v_{0n}(x) = v_0(x) + \frac{1}{n} \quad \text{and} \quad N = \sup(v_0).
\]

and we solve the problem

\[
\begin{aligned}
(-\Delta)^{\sigma} v_n + \left(\frac{1}{n} \right) &= 0 \quad \text{in } \Omega \times [0, \infty) \\
v_n(x, 0) &= v_{0n}(x) \quad \text{in } \Omega \\
v_n(x, t) &= 1/n \quad x \in \mathbb{R}^n \setminus \Omega.
\end{aligned}
\]

Then, the \(L^1 \)-contraction implies that

\[
\frac{1}{n} \leq v_n(x, t) \leq N + \frac{1}{n}.
\]

Therefore, we are dealing with a uniformly parabolic problem. Hence the problem (3.2) has a unique smooth solution \(v_n \). Moreover, using the \(L^1 \)-contraction again

\[
v_{n+1}(x, t) \leq v_n(x, t)
\]

for all \(n \geq 1 \). Hence, we may define the function

\[
v(x, t) = \lim_{n \to \infty} v_n(x, t)
\]

as a monotone limit of bounded non-negative functions. We see that \(v_n \) converges to \(v \) in \(L^p(\Omega \times [0, \infty)) \) for every \(1 \leq p < \infty \). In order to show that this \(v \) is the weak solution of problem (M.P), we multiply the equation (3.2) by a test function \(\eta \) and integrate by part, the Theorem 1.2 in \([Gu]\), in \(\Omega \times [0, \infty) \) to obtain

\[
\int_0^\infty \int_\Omega \left(\frac{1}{n} \right) \eta_t \, dx \, dt = \int_0^\infty \int_\Omega v_n (-(-\Delta)^{\sigma} \eta) \, dx \, dt.
\]

Letting \(n \to \infty \), we get the identity (3.1) for \(v \). Also \(v_n = 1/n \) on \(\mathbb{R}^n \setminus \Omega \) and \(0 \leq v \leq v_n \), we have

\[
v(x, t) = 0 \quad \text{on } \mathbb{R}^n \setminus \Omega.
\]

Therefore, \(v \) is a weak solution of (M.P).

If we have initial data \(v_0 \) and \(\hat{v}_0 \) such that \(v_0 \leq \hat{v}_0 \), then the above approximation process produces ordered approximating sequences, \(v_{0n} \leq \hat{v}_{0n} \). By the \(L^1 \)-contraction, we have \(v_n \leq \hat{v}_n \) for
every $n \geq 1$. Letting $n \to \infty$, we have $v \leq \hat{v}$.

We next assume that v_0 is bounded. In order to apply the method used in above, we also construct a sequence of approximate initial data $v_{0m} \in C^{2,1}(\Omega)$ with $v = 1/n$ on $\mathbb{R}^n \setminus \Omega$. Then we can obtain the approximate solutions $v_m \in C^{2,1}(\Omega)$ with $v = 1/n$ on $\mathbb{R}^n \setminus \Omega$. By the L^1-contraction, $v_m \to v$ in $C([0, \infty) : L^1(\Omega))$ as $n \to \infty$ and $v = 0$ on $\mathbb{R}^n \setminus \Omega$. Since the functions are bounded, convergence also takes place in $C([0, \infty) : L^p(\Omega))$ for all $p \leq \infty$. Hence the proof ends as before.

Finally, we assume that the initial date v_0 is integrable. By considering the sequence of approximations of the initial data

$$v_{0k}(x) = \min \{v_0(x), k\},$$

we can complete the proof as before. □

3.2. L^∞ bounds. This subsection is devoted to the proof of Theorem 1.1. The simple proof is based on a recurrence non-linear relation between consecutive truncations of v at an increasing sequence of levels. Following the similar arguments as in Section 2 in [CV], we can get a desired result.

Proof of Theorem 1.1 We use the energy inequality for the levels

$$C_k = N \left(1 - \frac{1}{2^k}\right)$$

where N will be chosen later. Multiplying the equation in (M.P) by the function $v_k = (v - C_k)_+$ and integrating in space, \mathbb{R}^n, we have

(3.3) \[\frac{1}{m} \int_{\mathbb{R}^n} \frac{d}{dt} \left[\int_0^{v_k} (\xi + C_k)^{\frac{1}{m} - 1} \xi \, d\xi \right] \, dx + \int_{\mathbb{R}^n} v_k [(-\Delta)^v v_k] \, dx \leq 0 \]

since

$$(C_k + v_k)^{\frac{1}{m}} v_k = (C_k + \xi)^{\frac{1}{m}} \xi \bigg|_{\xi=0}^{\xi=v_k} = \int_0^{v_k} \frac{d}{d\xi} \left[(C_k + \xi)^{\frac{1}{m}} \xi\right] \, d\xi.$$

Let us fix a $t_0 > 0$, we want to show that v is bounded for $t > t_0$. For

$$T_k = t_0 \left(1 - \frac{1}{2^k}\right),$$

we integrate (3.3) in time between s, $T_{k-1} < s < T_k$, and $t > T_k$ and between s and $+\infty$. Then we find

$$\sup_{t \geq T_k} \int_{\mathbb{R}^n} \left[\int_0^{v_k} (\xi + C_k)^{\frac{1}{m} - 1} \xi \, d\xi \right] \, dx + m \int_{T_k}^{\infty} \|v_k\|^2_{H^v} \, dt$$

\[\leq 2 \int_{\mathbb{R}^n} \left[\int_0^{v_k} (\xi + C_k)^{\frac{1}{m} - 1} \xi \, d\xi \right] (s) \, dx. \]

This leads to

$$\sup_{t \geq T_k} \int_{\mathbb{R}^n} v_k^{\frac{1}{m} + 1} \, dx + (m + 1) \int_{T_k}^{\infty} \|v_k\|^2_{H^v} \, dt \leq (m + 1) \int_{\Omega} v_k^{\frac{1}{m} - 1} (s) v_k^2 (s) \, dx$$

since v_k has compact support in Ω. In addition, Hölder inequality gives

$$\int_{\Omega} v_k^{\frac{1}{m} - 1} (s) v_k^2 (s) \, dx \leq \left(\int_{\Omega} v_k^{\frac{1}{m} - 1 + \frac{1}{1+p}} (s) \, dx \right)^{\frac{1}{1+p}} \left(\int_{\Omega} v_k^{2 - \frac{1}{m} + \frac{1}{p}} (s) \, dx \right)^{\frac{1}{p}}$$

\[\leq C \left(\int_{\Omega} v_k^{\frac{1}{m}} (s) \, dx \right)^{\frac{2}{1+p}}. \]
for some constant $C > 0$. Hence, for the level set of energy
\[U_k = \sup_{t \geq T_k} \int_{\Omega} v_{k,m}^{\frac{1}{m} + 1} \, dx + (m + 1) \int_{T_k}^\infty \|v_k\|^2_{H^0} \, dt, \]
we have
\[U_k \leq 2C(m + 1) \left(\int_{\Omega} v_{k,m}^{1 + \frac{1}{m}} (s) \, dx \right)^{2m \over 1 + m}. \]
Taking the mean value in s on $[T_{k-1}, T_k]$, we find
\[
U_k \leq \frac{C' (k+1) (m+1)}{t_0} \int_{T_{k-1}}^{T_k} \left(\int_{\Omega} v_{k,m}^{1 + \frac{1}{m}} \, dx \right)^{2m \over 1 + m} \, dt
\leq C' \left(\frac{2k}{t_0} \right)^{1 - \frac{1 + m}{m}} \left(\int_{T_{k-1}}^{T_k} \int_{\Omega} v_{k,m}^{1 + \frac{1}{m}} \, dx \, dt \right)^{2m \over 1 + m}
\leq C' \left(\frac{2k}{t_0} \right)^{1 - \frac{1 + m}{m}} \left(\int_{T_{k-1}}^{T_k} \int_{\Omega} v_{k,m}^{1 + \frac{1}{m}} \, dx \, dt \right)^{2m \over 1 + m}
\]
for some constant $C' = C'(\Omega, m, n, \sigma)$. We want to control the right hand side by U_{k-1}. Sobolev and interpolation inequalities give (See interpolation inequalities of L^p-space in Lemma 3.2):
\[U_{k-1} \geq C\|v_{k-1}\|_{L^2(\Omega \cup \{k \leq 0\} \times \mathbb{R}^n)}^2. \]
Note that if $v_k > 0$, then $v_{k-1} \geq N/2^k$. Thus
\[1_{\{v_k > 0\}} \leq \left(\frac{2k}{N} \right)^{2 \left(\frac{1 + (1+n)\sigma}{mn} \right) - \frac{1}{m}}. \]
Hence
\[
U_k \leq C' \left(\frac{2k}{t_0} \right)^{1 - \frac{1 + m}{m}} \left(\int_{T_{k-1}}^{T_k} \int_{\Omega} v_{k-1} \cdot 1_{\{v_k > 0\}} \, dx \, dt \right)^{2m \over 1 + m}
\leq C' \left(\frac{2m}{t_0 \left(\frac{1 + (1+n)\sigma}{mn} \right)^2} \right)^k \left(\int_{\Omega} v_{k-1} \cdot 1_{\{v_k > 0\}} \, dx \, dt \right)^{2m \over 1 + m}
\leq C' \left(\frac{2m}{t_0 \left(\frac{1 + (1+n)\sigma}{mn} \right)^2} \right)^k U_{k-1}
\]
Note that $\frac{2m}{1 + \frac{(1+n)\sigma}{mn}} > 1$. Thus, for N such that $N^2 \frac{2m}{t_0 \left(\frac{1 + (1+n)\sigma}{mn} \right)^2}$ big enough (depending on U_0), Lemma 4.1 of Chap. I in [Di], we have U_k which converges to zero. This gives $v \leq N$ for $t \geq t_0$. Hence we come to the conclusion using the fact that $\|u(-, 0)\|_{L^2(\mathbb{R}^n)}^{2m}$.
\[\square \]
3.3. Local Energy Estimate of w^*. The rest of this section is devoted to the proof of the Sobolev and local energy inequalities for the extension $w^*(x, y, t) = M - v^*(x, y, t + t_0)$ with $M = \sup_{t_0 \geq 0} v^*$. The effect of the non-local part of $(-\Delta)^\sigma$ becomes encoded locally in the extra variable. The first result, Sobolev inequality, states as follows:

Lemma 3.2 (Sobolev Inequality). For a cut-off function η compactly supported in B_r,

$$\|\eta v\|_{L^{2n/(n-2\alpha)}(\mathbb{R}^n)} \leq C \|\eta v\|_{H^0(\mathbb{R}^n)}$$

and

$$\|\eta v\|^2_{L^{2n/(n-2\alpha)}(\mathbb{R}^n)} \leq C \left(\sup_{t_1 \leq t \leq t_2} \|\eta v\|^2_{L^{2n/(n-2\alpha)}(\mathbb{R}^n)} + \|\nabla(\eta v)^*\|^2_{L^{2n/(n-2\alpha)}(\mathbb{B}_r^\eta, y^\eta)} \right) R v > 0 \right)^{2n/(n-2\alpha)}$$

for some $C > 0$.

Proof. The first inequality is well known result. The Sobolev embedding results say that $H^\sigma \subset L^{2n/(n-2\alpha)}$ (See, for example, Chapter V in [St]).

To prove the second inequality, let $\chi_{\eta v}(x, t)$ be the function with

$$\chi_{\eta v} = \begin{cases} 1 & \eta v > 0 \\ 0 & \eta v = 0, \end{cases}$$

then we have

$$\|\eta v\|^2_{L^{2n/(n-2\alpha)}(\mathbb{R}^n)} = \int_{t_1}^{t_2} \int_{\mathbb{R}^n} |\eta v|^2 dx dt = \int_{t_1}^{t_2} \int_{\mathbb{R}^n} |\eta v|^2 \chi_{\eta v} dx dt.$$

Thus, by the Hölder inequality, we obtain

$$\|\eta v\|^2_{L^{2n/(n-2\alpha)}(\mathbb{R}^n)} \leq \int_{t_1}^{t_2} \left(\int_{\mathbb{R}^n} |\eta v|^2 \chi_{\eta v} dx \right)^{\frac{n}{n-2\alpha}} \left(\int_{t_1}^{t_2} \left(\int_{\mathbb{R}^n} \chi_{\eta v} \chi_{\eta v} dx \right)^{\frac{n}{n-2\alpha}} dt \right)^{\frac{2\alpha}{n-2\alpha}}$$

$$\leq \left(\int_{t_1}^{t_2} \int_{\mathbb{R}^n} |\eta v|^2 \chi_{\eta v} dx dt \right)^{\frac{n}{n-2\alpha}} \left(\int_{t_1}^{t_2} \int_{\mathbb{R}^n} \chi_{\eta v} \chi_{\eta v} dx dt \right)^{\frac{2\alpha}{n-2\alpha}}$$

$$= \left(\int_{t_1}^{t_2} \int_{\mathbb{R}^n} |\eta v|^2 \chi_{\eta v} dx dt \right)^{\frac{n}{n-2\alpha}} \left(\int_{\mathbb{R}^n} |\eta v|^2 dx \right)^{\frac{2\alpha}{n-2\alpha}}.$$

Now we use interpolation inequalities of L^p spaces,

$$\left(\int_{t_1}^{t_2} \int_{\mathbb{R}^n} |\eta v|^2 \chi_{\eta v} dx dt \right)^{\frac{n}{n-2\alpha}} \leq \left[\int_{t_1}^{t_2} \left(\int_{\mathbb{R}^n} |\eta v|^2 dx \right)^{(1-\beta)p} \left(\int_{\mathbb{R}^n} |\eta v|^2 dx \right)^\beta dt \right]^\frac{1}{p}.$$
where \(1 < p = \frac{n+2\sigma}{n} < q \) and \(\frac{1}{p} = \frac{\beta}{q} + \frac{1-\beta}{\mathcal{I}}\left(\beta = \frac{1}{p}\right)\). Thus

\[
\left(\int_{t_1}^{t_2} \int_{\mathbb{R}^n} |\eta v|^2 \left(\frac{a_{2\sigma}}{a_{n+2\sigma}}\right) \, dx \, dt\right)^{\frac{n}{n+2\sigma}} \leq \sup_{t_1 \leq t \leq t_2} \left(\int_{\mathbb{R}^n} |\eta v|^2 \, dx\right) + \int_{t_1}^{t_2} \left(\int_{\mathbb{R}^n} |\eta v|^2 \, dx\right)^{\frac{1}{2}} \, dt.
\]

where \(q = \frac{n}{n-2\sigma}\). From the first Sobolev inequality (3.4), we have

\[
\left(\int_{\mathbb{R}^n} |\eta v|^{2q} \, dx\right)^{\frac{1}{q}} \leq C \|\eta v\|_{L^2}^2 = C \int_{\mathbb{R}^n} \eta v (-\Delta)^q (\eta v) \, dx
\]

\[
= C \int_0^\infty \int_{\mathbb{R}^n} y^q |\nabla (\eta v)|^2 \, dx \, dy,
\]

which gives the desired result. \(\square\)

Next, we will derive local energy estimate in the interior of \(\Omega \times (0, \infty)\) which will be the main tools in establishing local Hölder estimates for the solutions. Assuming that the cube \(B_r = [-r, r]^n \subset \Omega\).

Lemma 3.3 (Local Energy Estimate).

Let \(t_1, t_2\) be such that \(t_1 < t_2\) and let \(v^* \in L^\infty(t_1, t_2; L^2(\mathbb{R}^n \times \mathbb{R}^+))\) be solution to (1.3) and let \(w^*(x, y, t) = M - v^*(x, y, t + t_0)\) with \(M = \sup_{t_2 \geq t_0 > 0} v^*\). Then, there exists a constant \(\lambda\) such that for every \(t_1 \leq t \leq t_2\) and cut-off function \(\eta\) such that the restriction of \(\eta(w^* - k)\) on \(B_r^*\) is compactly supported in \(B_r \times (-r, r)\):

\[
\frac{1}{m} \int_{B_r \times \{t\}} \eta^2 \left[\int_0^{(w-k)_+} (M - k \mp \xi)^{\frac{1}{m}-1} \xi \, d\xi \right] \, dx
\]

\[
+ \int_{t_1}^{t_2} \int_{B_r^*} |\nabla (\eta(w^* - k))|^2 \, y^q \, dx \, dy \, dt
\]

\[
\leq \int_{t_1}^{t_2} \int_{B_r^*} |\nabla (\eta(w^* - k))|^2 \, y^q \, dx \, dy \, dt
\]

\[
+ \frac{2}{m} \int_{t_1}^{t_2} \int_{B_r^*} \left[\int_0^{(w-k)_+} (M - k \mp \xi)^{\frac{1}{m}-1} \xi \, d\xi \right] |\eta \eta_k| \, dx \, dt
\]

\[
+ \frac{1}{m} \int_{B_r \times \{t\}} \eta^2 \left[\int_0^{(w-k)_+} (M - k \mp \xi)^{\frac{1}{m}-1} \xi \, d\xi \right] \, dx
\]

(3.6)
Proof. We have for every $t_1 < t < t_2$:

$$0 = \int_{B_r} \eta^2(w^*-k)_+ \nabla (y^\sigma \nabla w^*) \, dx \, dy$$

$$= - \int_{B_r^c} y^\sigma \eta \nabla (w^*-k)_+ \cdot \nabla w^* \, dx \, dy - \int_{B_r^c} y^\sigma \eta (w^*-k)_+ \nabla \eta \cdot \nabla w^* \, dx \, dy$$

$$+ \int_{B_r} \eta^2(w-k)_+ (-\Delta)^\sigma w \, dx$$

$$= - \int_{B_r^c} y^\sigma \nabla \left(\eta (w^*-k)_+ \right)^2 \, dx \, dy + \int_{B_r^c} y^\sigma w^* \nabla \left(\eta (w^*-k)_+ \right) \cdot \nabla \eta \, dx \, dy$$

$$- \int_{B_r^c} y^\sigma \eta (w^*-k)_+ \nabla \eta \cdot \nabla w^* \, dx \, dy + \int_{B_r} \eta^2(w-k)_+ (-\Delta)^\sigma w \, dx$$

$$= - \int_{B_r^c} y^\sigma \nabla \left(\eta (w^*-k)_+ \right)^2 \, dx \, dy + \int_{B_r^c} y^\sigma \left((w^*-k)_+ \right)^2 \nabla \eta \, dx \, dy$$

$$+ \int_{B_r} \eta^2(w-k)_+ (-\Delta)^\sigma w \, dx.$$

Using the equation (1.4), we find that

$$\int_{B_r} \eta^2(w-k)_+ (-\Delta)^\sigma w \, dx = \int_{B_r} \eta^2(w-k)_+ \left((M - w)^{\frac{1}{m}} \right)_t \, dx$$

$$= \int_{B_r} \eta^2(w-k)_+ \left[(M - k - (w-k)_+) \right] \frac{1}{m+1} \, dx$$

$$= \int_{B_r} \eta^2 \left[(w-k)_+ (M - k - (w-k)_+) \right] \frac{1}{m+1} \, dx$$

$$+ \frac{m}{m+1} \left(M - k - (w-k)_+ \right)^{\frac{m+1}{m}} - \frac{m}{m+1} \left(M - k \right)^{\frac{m+1}{m}} \right] \, dx$$

Since

$$\left(M - k - (w-k)_+ \right)^{\frac{1}{m+1}} = \left(M - k - \xi \right)^{\frac{1}{m+1}} \bigg|_{\xi=0}^{\xi=(w-k)_+}$$

$$= \int_{0}^{(w-k)_+} \frac{d}{d\xi} \left(M - k - \xi \right)^{\frac{1}{m+1}} \, d\xi,$$

we get the desired result from

$$(w-k)_+ (M - k - (w-k)_+) \right] \frac{1}{m+1} \, dx$$

$$- \frac{m}{m+1} \left(M - k \right)^{\frac{m+1}{m}} = - \frac{1}{m} \int_{0}^{(w-k)_+} (M - k - \xi)^{\frac{m}{m+1} - 1} \, d\xi.$$

The estimate of $(w-k)_-$ can be obtained in a similar manner. □

4. Hölder Regularity of w^*

From now on, we begin the story of Hölder continuity of w^* the solution of (1.4). In order to develop the Hölder regularity method, we get over the two humps: non-local diffusion and degeneracy. We first follow Caffarelli and Vasseur’s ideas [CV] to solve a difficulty stemming from non-linear evolution equations with fractional diffusion. Also we use the technique developed in
[Di, DK] and [YD1] to overcome the degeneracy of equation.

The key idea of the proof is to work with cylinders whose dimensions are suitably rescaled to reflect the degeneracy exhibited by the equation. To make this precise, fix \((x_0, t_0) \in \Omega \times (0, T]\), for some \(T > 0\), and construct the cylinder
\[
Q_{2R}(x_0, t_0) \subset \Omega \times (0, T].
\]

After a translation we may assume that \((x_0, t_0) = (0, 0)\). Set
\[
\mu^+ = \sup_{Q_{2R}^*} w^*, \quad \mu^- = \inf_{Q_{2R}^*} w^*, \quad \omega = \operatorname{osc}_{Q_{2R}^*} w^* = \mu^+ - \mu^-.
\]
and construct the cylinder
\[
Q_R^*(\theta_0) = B_R^* \times \left(-\frac{R^{2\alpha}}{\theta_0^a}, 0 \right), \quad \theta_0 = \frac{\omega}{A}, \quad \alpha = 1 - \frac{1}{m}
\]
where \(A\) is a constant to be determined later only in terms of the data. We will assume that
\[
\left(\frac{\omega}{A} \right)^a \geq 1.
\]

This implies the inclusion
\[
Q_R^*(\theta_0) \subset Q_{2R}^*
\]
and the inequality
\[
\operatorname{osc}_{Q_R^*(\theta_0)} w^* \leq \omega.
\]

Then, the first alternative in this section states as follows:

Lemma 4.1. There exists positive numbers \(\rho\) and \(\lambda\) independent of \(\mu^+\) and \(\omega\) such that if
\[
\left(x, t \right) \in Q_R(\theta_0); w(x, t) > \mu^+ - \frac{\omega}{2} \right) < \rho|Q_R(\theta_0)|
\]
then
\[
w(x, t) < \mu^+ - \frac{\lambda\omega}{4}
\]
for all \((x, t) \in Q_{R/2}(\theta_0)\).

Proof. Step 1. Useful barrier functions: Consider the function \(h_1(x, y)\), defined by:
\[
\begin{align*}
\nabla (y^a \nabla h_1) &= 0 & \text{in } B_1^* \\
h_1 &= 1 & \text{on } \partial B_1^* \cap \{y > 0\} \\
h_1 &= 0 & \text{on } y = 0.
\end{align*}
\]

Then, following directly the maximum principle, there is uniform constant \(0 < \lambda < 1/2\) such that
\[
h_1(x, y) \leq (1 - 2\lambda) \quad \text{on } B_{1/2}^*.
\]

For the scaling invariance of the equation for \(h_1\),
\[
h_{1,R}(x, y) = h_1 \left(x, \frac{y}{R^a} \right)
\]
satisfies \(4.2\) in \(B_R^*\) and
\[
h_{1,R}(x, y) \leq (1 - 2\lambda) \quad \text{on } B_{R/2}^*.
\]
Step 2. Notations for the induction: Set, for any non-negative integer \(k \),
\[
R_k = \frac{R}{2} + \frac{R}{2^{k+1}}, \quad \text{and} \quad l_k = \mu^+ - \lambda \left(\frac{\omega}{4} + \frac{\omega}{2^{k+2}} \right).
\]
We denote by \(B_{R,\delta}^* \) the set \(B_R \times (0, \delta) \) and introduce the cylinders
\[
Q_k(\theta_0) = B_{R_k} \times (-\theta_0^2 R_k^2, 0)
\]
and
\[
\tilde{Q}_{R_k,\delta}(\theta_0) = B_{R_k}^* \times \left(-\theta_0^2 R_k^2, 0 \right).
\]
We also denote
\[
B(l_k, R_k) = \{(x, t) \in Q_{R_k}(\theta_0); w(x, t) > l_k \},
\]
\[
B^*(l_k, R_k) = \{(x, y, t) \in Q^*_{R_k}(\theta_0); w^*(x, y, t) > l_k \}
\]
and
\[
\tilde{B} \left(l_k, R_k, \frac{\delta k}{4} \right) = \{(x, y, t) \in \tilde{Q}_{R_k,\delta}(\theta_0); w^*(x, y, t) > l_k \}.
\]
From above, we define:
\[
|B(l_k, R_k)| = \int_{-\theta_0^2 R_k^2}^0 |\{ x \in B_{R_k}; w(x, t) > l_k \}| dt,
\]
\[
|B^*(l_k, R_k)| = \int_{-\theta_0^2 R_k^2}^0 |\{ (x, y) \in B^*_{R_k}; w^*(x, y, t) > l_k \}| dt
\]
and
\[
\left| \tilde{B} \left(l_k, R_k, \frac{\delta k}{4} \right) \right| = \int_{-\theta_0^2 R_k^2}^0 |\{ (x, y) \in \tilde{B}_{R_k,\delta}; w^*(x, y, t) > l_k \}| dt.
\]

Step 3. Claim for the Induction: We set
\[
\bar{w}_k = (w - l_k)^+, \quad \bar{w}_k^* = (w^* - l_k)^+.
\]
Note that \(\bar{w}_k^* \neq (\bar{w}_k)^* \). We consider a cut-off function \(\eta_k(x, t) \) such that
\[
\begin{align*}
0 < \eta_k &\leq 1, \quad \text{in } Q_{R_k}(\theta_0) \\
\eta_k &= 1, \quad \text{in } Q_{R_k+1}(\theta_0) \\
\eta_k &= 0, \quad \text{on the parabolic boundary of } Q_{R_k}(\theta_0)
\end{align*}
\]
(4.3)
\[
|\nabla \eta_k| \leq \frac{2^{k+2}}{R}, \quad (\eta_k)_t \leq \frac{2^{2\alpha(k+2)} \theta_0^2}{R^{2\alpha}} \quad \theta_0 = \frac{\omega}{A}.
\]
We will use the energy inequalities of Lemma 3.3 written over the cylinders \(Q^*_{R_k}(\theta_0) \), for the function \(\bar{w}_k^* = (w^* - l_k)^+ \), where for \(k = 0, 1, 2, \cdots \). Let
\[
Z_k = \theta_0^2 |B(l_k, R_k)| = \left(\frac{\omega}{A} \right)^{\alpha^*} |B(l_k, R_k)|,
\]
then we are going to prove simultaneously that for every \(k \geq 0 \)
\[
(4.4) \quad Z_k \leq N^{-k}
\]
for some constant \(N > 1 \) and
\[
(4.5) \quad \eta_k \bar{w}_k^* \quad \text{is supported in } 0 \leq y \leq \frac{\delta k}{4}.
\]
Step 4. the contraction property of the support in y direction: We first want to show that v_k^* is supported in $0 \leq y \leq \frac{\delta_0}{4}$. By a comparison principle, we have:

$$\left(w^* - \left(\mu_+ - \frac{\omega}{2}\right)\right)_+ \leq \left[\left(w - \left(\mu_+ - \frac{\omega}{2}\right)_+ 1_{B_R}\right) * P(y) + \frac{\omega}{2} h_{1,R}(x,y)\right]$$

in $B_R^* \times \mathbb{R}^+$, where $P(y)$ is the Poisson kernel introduced in Section 2.4 in [CS]. Indeed, the right-hand side function has the trace on the boundary is bigger than the one of left-hand. Moreover:

$$\left\|\left(w - \left(\mu_+ - \frac{\omega}{2}\right)_+ 1_{B_R}\right) * P(y)\right\|_{L^\infty(y \geq \frac{a}{2})} \leq C \left\|P\left(\frac{R}{4}\right)\right\|_{L^2} \left(\frac{\omega}{2}\right) (\rho|Q_R(\theta_0)|)^{\frac{1}{2}} \leq C \sqrt{\rho}$$

Choosing ρ small enough such that this constant is smaller that $\frac{\omega}{2}$ gives:

$$\left(w^* - \left(\mu_+ - \frac{\omega}{2}\right)_+ \right) \leq \frac{(1 - \lambda)\omega}{2},$$

in $\{y > \frac{\delta_0}{4}\} \cap Q^*_t(\theta_0)$. Hence

$$\left(w^* - \left(\mu_+ - \frac{\lambda\omega}{2}\right)_+ \right) = 0$$

in $\{y > \frac{\delta_0}{4}\} \cap Q^*_t(\theta_0)$. Since $l_0 = \mu_+ - \frac{\omega}{2}$, we obtain that $\eta_0 w_0^* = \eta_1(v^* - l_1)_+$ is supported in $0 < y < \frac{\delta_0}{4} R = \frac{\delta_0}{4}$ for $\delta_0 = 1$.

Now we assume (4.5) is true at kth-step. We want to show that (4.5) is verified at $(k + 1)$. First, we will control v_{k+1}^* in terms of $\eta_k v_k^*$ with some controllable error, i.e., we will show also that the following is verified at k:

$$(4.6) \quad \eta_{k+1} w_{k+1}^* \leq [\eta_k w_k^*] P(z) \eta_{k+1}, \quad \text{on } \tilde{B}_{R_{k+1}}^*$$

where $\tilde{B}_{R_{k+1}}^* = B_{R_k} \times (0, \frac{\delta_0}{4})$. We consider now h_2 harmonic function defined by:

$$\nabla \left(y^a \nabla h_2(z, y)\right) = 0 \quad \text{in } [0, \infty) \times [0, 1]$$

$$h_2(0, y) = 1 \quad 0 \leq y \leq 1$$

$$h_2(z, 0) = h_2(z, 1) = 0 \quad \text{for } 0 < x < \infty.$$

Then, there exists $C > 0$ such that

$$|h_2(z)| \leq Ce^{-\frac{z}{2}}.$$

Indeed, we can see that

$$h_2(z, y) \leq 2 \sqrt{2} \cos \left(\frac{y}{2}\right) e^{-\frac{z}{2}} \quad (a \geq 0)$$

$$h_2(z, y) \leq 4 \sqrt{2} \sin \left(\frac{y}{2} + \frac{\pi}{6}\right) e^{-\frac{z}{2}} \quad (a < 0),$$

since this function is super-harmonic and bigger than h_2 on the boundary. Consider $B_{R_{k+1}}^* \times \left[0, \frac{\delta_0}{4}\right) \times \left[0, \frac{\delta_0}{4}\right)$. On $y = \frac{\delta_0}{4}$ we have no contribution thanks to the induction property (4.5). The contribution
of the side $y = 0$ can be controlled by $(\eta_k \bar{w}_k) * P(y)$. On each of the other side, we control the contribution by the function of

$$\frac{\omega}{2} \left[h_2 \left(\frac{4(x_i - \delta^+)}{\delta^k}, \frac{4y}{\delta^k} \right) + h_2 \left(\frac{-4(x_i + \delta^+)}{\delta^k}, \frac{4y}{\delta^k} \right) \right]$$

where $\delta^+ = \frac{\delta_0}{2} + \frac{\delta_0}{2^{k+1} + 1}$. Since h_2 is super-solution and on the side $x_i = \delta^+$ and $x_i = -\delta^+$ it is bigger than 1, we have, by the maximum principle:

$$w_k^* \leq (\eta_k \bar{w}_k) * P(y)$$

$$+ \frac{\omega}{2} \sum_{i=1}^n \left[h_2 \left(\frac{4(x_i - \delta^+)}{\delta^k}, \frac{4y}{\delta^k} \right) + h_2 \left(\frac{-4(x_i + \delta^+)}{\delta^k}, \frac{4y}{\delta^k} \right) \right].$$

For $x \in B_{\delta^{k+1}}$,

$$\frac{\omega}{2} \sum_{i=1}^n \left[h_2 \left(\frac{4(x_i - \delta^+)}{\delta^k}, \frac{4y}{\delta^k} \right) + h_2 \left(\frac{-4(x_i + \delta^+)}{\delta^k}, \frac{4y}{\delta^k} \right) \right] \leq 2nCae^{-\frac{\sqrt{2}}{\delta^{k+1}y}} \leq \lambda 2^{-k-4}.$$

for some small constant δ and λ. This gives (4.6) since

$$w_{k+1}^* \leq \left(w_k^* - \lambda 2^{-k-3} \right)_+.$$

More precisely, this gives

$$w_{k+1}^* \leq \left((\eta_k \bar{w}_k) * P(y) - \lambda 2^{-k-4} \right)_+.$$

So

$$\eta_{k+1} w_{k+1}^* \leq \left((\eta_k \bar{w}_k) * P(y) - \lambda 2^{-k-4} \right)_+.$$

Then, we find for $\frac{\delta^{k+1}}{4} \leq y \leq \frac{\delta^k}{4}$,

$$| (\eta_k \bar{w}_k) * P(y) | \leq \sqrt{Z_k} \| P(y) \|_{L^2}$$

$$\leq \sqrt{\frac{\gamma}{\delta^{k+1}}} \| P(1) \|_{L^2} \leq \lambda 2^{-k-4}$$

for large $N > \sup \left(\frac{4^{k+1}}{\delta^k}, \frac{2^{\sqrt{\delta^{k+1}y} \| P(1) \|_{L^2}^2}}{\lambda \delta^{k+1} \| Y \|_4^2} \right)$. Therefore,

$$\eta_{k+1} w_{k+1}^* \leq 0 \quad \text{for} \quad \frac{\delta^{k+1}}{4} \leq y \leq \frac{\delta^k}{4}.$$

Step 5. Local Energy Estimate First, we find the lower bound of the following quantity

$$D = \int_{B_{\delta^k} \times [\delta^k]} \eta^2 \left[\int_0^{(a-k)_+} (M - k - \xi)^{\frac{1}{4}} \xi d\xi \right] d\xi.$$

Let’s define the function $F(\xi)$ by

$$F(\xi) = (M - k - \xi)^{\frac{1}{4}} \xi = (M - k - \xi)^{-a} \xi \quad (0 \leq \xi \leq M - k).$$
Then, we have
\[F'(\xi) = \frac{1}{m} (M-k-\xi)^{-\alpha-1} (m(M-k)-\xi), \]
\[F''(\xi) = -\frac{1}{m} \left(\frac{1}{m-1} \right) (M-k-\xi)^{-\alpha-2} (2m(M-k)-\xi). \]

Note that the sign change of second derivatives of \(F(\xi) \) takes place at \(2m(M-k) \). If \((w-k)_+\) is smaller than \(2m(M-k) \), we get
\[\int_0^{(w-k)_+} F(\xi) \, d\xi \geq \frac{1}{2} (w-k)_+ F\left(\frac{(w-k)_+}{2}\right) \]
and
\[D \geq \frac{1}{4} \left(\frac{M-k}{2} \right)^{\alpha} \int_{B_r \times [t_1]} [\eta(w-k)_+]^2 \, dx. \]

since \(F''(\xi) \leq 0, (0 \leq \xi \leq (w-k)_+) \). On the other hand,
\[\int_0^{(w-k)_+} F(\xi) \, d\xi \geq 2m(M-k)F(2m(M-k)) \]
\[= 2m^2(M-k)^2 \left[(1-2m)(M-k) \right]^{-\alpha} \]
\[\geq 2m^2(w-k)^2 \left[(1-2m)(M-k) \right]^{-\alpha} \]
when \((w-k)_+ \geq 2m(M-k) \). Thus we obtain
\[D \geq 2 \left[(1-2m)(M-k)^{-\alpha} \right] \int_{B_r \times [t_1]} [\eta(w-k)_+]^2 \, dx. \]

Therefore, there is a small constant \(c > 0 \) such that
\[c(M-k)^{-\alpha} \int_{B_r \times [t_1]} [\eta(w-k)_+]^2 \, dx \]
\[\leq \int_{B_r \times [t_1]} \eta^2 \left\{ \int_0^{(w-k)_+} (M-k-\xi)^{\frac{1}{2\alpha}-1} \xi \, d\xi \right\} dx. \]

Next, notice that from Step 4, then we have
\[\|\eta_k \omega_k\|_{L^2(B_{\beta_k}(\Omega))}^2 \leq \|(\eta_{k-1} \omega_{k-1}) * P(y)\|_{L^2(B_{\beta_{k-1}}(\Omega))}^2 \]
\[\leq \int_0^{\beta_{k-1}^{1/4}} \|(\eta_{k-1} \omega_{k-1}) * (P(y))\|_{L^2(B_{\beta_{k-1}})}^2 y^a \, dy \]
\[\leq \|P(1)\|_{L^1(\mathbb{R}^n)}^2 \|(\eta_{k-1} \omega_{k-1})\|_{L^2(B_{\beta_{k-1}})}^2 \int_0^{\beta_{k-1}^{1/4}} y^a \, dy \]
\[\leq \frac{1}{1 + a} \left(\frac{\beta_{k-1}^{1/4}}{4} \right)^{\frac{a+1}{2}} \|P(1)\|_{L^1(\mathbb{R}^n)}^2 \|(\eta_{k-1} \omega_{k-1})\|_{L^2(B_{\beta_{k-1}})}^2 \]
\[\leq \frac{1}{1 + a} \left(\frac{\beta_{k-1}^{1/4}}{4} \right)^{\frac{a+1}{2}} (\lambda \omega)^2 \frac{4}{4} |A_{k-1,R_{k-1}}(t)|. \]
where \(A_{l,R}(t) = \{ x \in B_R; w(x, t) > l \} \). We can apply the Lemma 3.3 (Local Energy Estimate) on \(\eta_k \overline{w}_k \)_{\{0 < y < \frac{4}{l} \}}

\[
c \left(\frac{\lambda \omega}{4} \right)^{-\alpha} \sup_{-\theta_0^{-\alpha} R_k^2 < t < 0} \| \eta_k \overline{w}_k \|_{L^2(B_{R_k})}^2
+ \| \nabla(\eta_k \overline{w}_k) \|_{L^2(Q_{\theta_k}^\ast(\theta_0), \eta^\alpha)}^2
(4.8)
\]

\[
\leq \frac{(\delta^{k-1})^4 + 14^{k-2} \lambda \omega}{(1 + a) R^2} \int_{-\theta_0^{-\alpha} R_k^2}^0 |A_{l-1,R_k-1}(t)| dt
+ \frac{4^4 (k + 2) \theta_0^4}{2mM R^2} \int_{-\theta_0^{-\alpha} R_k^2}^0 |A_{l,R_k}(t)| dt.
\]

From this, it follows that

\[
c \left(\frac{4}{\Lambda} \right)^{\alpha} \sup_{-\theta_0^{-\alpha} R_k^2 < t < 0} \| \eta_k \overline{w}_k \|_{L^2(B_{R_k})}^2
+ \theta_0^4 \| \nabla(\eta_k \overline{w}_k) \|_{L^2(Q_{\theta_k}^\ast(\theta_0), \eta^\alpha)}^2
\leq (\lambda \omega)^2 \left(\frac{(\delta^{k-1})^4 + 14^{k-2} \lambda \omega}{(1 + a) R^2} + \frac{4^4 (k + 2) \theta_0^4}{2mM R^2} \right) Z_{k-1}.
(4.9)
\]

Now let us make a change of variable

\[
\tau = \left(\frac{\omega}{\Lambda} \right)^{\alpha} t = \theta_0^{-\alpha} t.
\]

Then, \(Q_{R}(\theta_0), Q_{R}^\ast(\theta_0) \) and \(Q_{R}^\ast(\theta_0) \) will be transformed to \(Q_R(1), Q_R^\ast(1) \) and \(Q_R^\ast(1) \) respectively. Let \(\overline{w}(x, \tau) = w(x, \theta_0^{-\alpha} \tau) \) and \(\overline{w}(x, y, \tau) = \overline{w}^\ast(x, y, \theta_0^{-\alpha} \tau) \). We also define the quantity \(\overline{Z}_k \) to be

\[
\overline{Z}_k = \| \{ (x, t) \in Q_{R_k}(1) : \overline{w} > l_k \} \|.
\]

Then, \(\overline{Z}_k \) will be equal to \(Z_k \). After the change of variable, we have

\[
c \left(\frac{4}{\Lambda} \right)^{\alpha} \sup_{-\theta_0^{-\alpha} R_k^2 < \tau < 0} \| \eta_k \overline{w}_k \|_{L^2(B_{R_k})}^2
+ \| \nabla(\eta_k \overline{w}_k) \|_{L^2(Q_{\theta_k}^\ast(1), \eta^\alpha)}^2
\leq (\lambda \omega)^2 \left(\frac{(\delta^{k-1})^4 + 14^{k-2} \lambda \omega}{(1 + a) R^2} + \frac{4^4 (k + 2) \theta_0^4}{2mM R^2} \right) \overline{Z}_{k-1}.
\]

Let’s choose a small constant \(A \) such that

\[
c \left(\frac{4}{\Lambda} \right)^{\alpha} > 1.
\]

Then

\[
\sup_{-\theta_0^{-\alpha} R_k^2 < \tau < 0} \| \eta_k \overline{w}_k \|_{L^2(B_{R_k})}^2 + \| \nabla(\eta_k \overline{w}_k) \|_{L^2(Q_{\theta_k}^\ast(1), \eta^\alpha)}^2
\leq (\lambda \omega)^2 \left(\frac{(\delta^{k-1})^4 + 14^{k-2} \lambda \omega}{(1 + a) R^2} + \frac{4^4 (k + 2) \theta_0^4}{2mM R^2} \right) \overline{Z}_{k-1}.
(4.10)
\]
Since $\eta_k \overline{w}_k^1_{|0<y<\frac{\delta^k}{n}}$ has the same trace at $y = 0$ as $(\eta_k \overline{w}_k)^*$, we have
\[
C \int_0^{\frac{\delta^k}{n}} \int_{R^d} |\nabla (\eta_k \overline{w}_k)|^2 y^\alpha \, dx \, dy = \int_0^\infty \int_{R^d} |\nabla (\eta_k \overline{w}_k^1_{|0<y<\frac{\delta^k}{n}})|^2 y^\alpha \, dx \, dy \geq \int_0^\infty \int_{R^d} |\nabla (\eta_k \overline{w}_k)^*|^2 y^\alpha \, dx \, dy.
\]

We also have
\[
\int_{Q_{R_k}(1)} |\eta_k \overline{w}_k|^2 \, dx \, dt \geq (l_k-1-l_k)^2 \int_{R_k}^0 \|(x,t) \in Q_{R_k}(1) : \overline{w} > l_k+1\| \, dt = \left(\frac{\lambda \omega}{2k+3}\right)^2 Z_{k+1}.
\]

Hence, combining above estimates with Sobolev inequalities (Lemma 3.2), the inequality (4.10) changes into
\[
\left(\frac{\lambda \omega}{2k+3}\right)^2 Z_{k+1} \leq \|\eta_k \overline{w}_k\|_{L^2(Q_{R_k}(1))}^2 \leq C \left[\sup_{-R_k^2 \leq t \leq 0} \|\eta_k w_k\|_{L^2(R^d)}^2 + \|\nabla (\eta_k \overline{w}_k)^*\|_{L^2(Q_{R_k}(1),\eta \theta)}^2\right] Z_{k+1}^{\frac{2k}{2k+3}} \leq C(\lambda \omega)^2 \left(\frac{(\delta^{k-1})^a+1}{(1+a)R^2} + \frac{4^a(k+2)\theta^a}{2mM^aR^{2a}}\right) Z_{k+1}^{1+\frac{2a}{n+2a}}
\]

for some constant $C > 0$. Since $0 < \sigma, \delta < 1$, we have
\[
Z_{k+1} \leq C 4^k \left(\frac{4^{3-a}}{(1+a)R^2} + \frac{4^5 \delta^a}{2mM^aR^{2a}}\right) Z_{k+1}^{1+\frac{2a}{n+2a}} = C' 4^k Z_{k+1}^{1+\frac{2a}{n+2a}}.
\]

Let's choose the constant N to satisfy
\[
N > \sup \left\{1, C', 16^{\frac{2a}{n+2a}}, 4^{\frac{n+1}{2}} \frac{2^{4n+9} \omega}{\lambda^2 \delta^{2n}}, \frac{\lambda^2 \delta^{2n}}{\lambda^2 \delta^{2n}}\right\}.
\]

Then
\[
\left(\frac{N}{16^{\frac{2a}{n+2a}}}\right)^{\frac{2a}{n+2a}} \geq N^\frac{2a}{n+2a} \geq N^4 \geq C' N^2 (1 + \frac{2a}{n+2a})
\]

for $k \geq \frac{4(n+2a)}{\sigma}$ and this is equivalent to
\[
N^{-k} \geq C' 4^k N^{-\left(1 + \frac{2a}{n+2a}\right)}(k-2).
\]

If we take the constant ρ so sufficiently small that
\[
Z_{k+1} \leq N^{-k} \left(1 \leq k < \frac{4(n+2a)}{\sigma} + 1\right),
\]
then (4.3) is true for all $k \geq 0$. \(\square\)

We next assume that the assumption of Lemma 4.1 are violated, i.e., for every sub-cylinder $Q_R(\theta_0)$
\[
\left|\left\{(x,t) \in Q_R(\theta_0) : w(x,t) > \mu^+ - \frac{\omega}{2}\right\}\right| > \rho |Q_R(\theta_0)|.
\]
Since
\[\mu^+ - \frac{\omega}{2} \geq \mu^- + \frac{\omega}{2s_0}, \quad \forall s_0 \geq 2, \]
we rewrite this as
\[(4.11) \quad \left| \{ (x, t) \in Q_R(\theta_0) : w(x, t) \leq \mu^- + \frac{\omega}{2s_0} \} \right| \leq (1 - \rho) |Q_R(\theta_0)| \]
valid for all cylinders $Q_R(\theta_0)$.

Lemma 4.2.
If (4.1) is violated, then there exists a time level
\[t^* \in \left[-\theta_0^{-a} R^{2\sigma}, -\frac{\rho}{2} \theta_0^{-a} R^{2\sigma} \right] \]
such that
\[\left| \{ x \in B_R; w(x, t) \leq \mu^- + \frac{\omega}{2s_0} \} \right| \leq \frac{1 - \rho}{1 - \frac{\rho}{2}} |B_R|. \]

Proof. If not, for all $t \in \left[-\theta_0^{-a} R^{2\sigma}, -\frac{\rho}{2} \theta_0^{-a} R^{2\sigma} \right]$, we have
\[\left| \{ x \in B_R; w(x, t) \leq \mu^- + \frac{\omega}{2s_0} \} \right| > \frac{1 - \rho}{1 - \frac{\rho}{2}} |B_R| \]
and
\[\left| \{ (x, t) \in Q_R(\theta_0) : w(x, t) \leq \mu^- + \frac{\omega}{2s_0} \} \right| \]
\[\geq \int_{-\theta_0^{-a} R^{2\sigma}}^{\frac{\rho}{2} \theta_0^{-a} R^{2\sigma}} \left| \{ x \in B_R; w(x, \tau) \leq \mu^- + \frac{\omega}{2s_0} \} \right| d\tau \]
\[> (1 - \rho) |Q_R(\theta_0)|, \]
contradicting (4.11). \qed

The Lemma asserts that at some time level t^* the set where w is close to its supremum occupies only a portion of the B_R. The next Lemma claims that this indeed occurs for all time levels near the $Q_R(\theta_0)$. Set
\[H = \sup_{B_R} \left| \{ w^* - \left(\mu^- + \frac{\omega}{2s_0} \right) \} \right|. \]

Lemma 4.3. There exists a positive integer $s_1 > s_0$ such that if
\[(4.12) \quad H > \frac{\omega}{2s_1}, \]
then
\[\left| \{ x \in B_R; w(x, t) \leq \mu^- + \frac{\omega}{2s_0} \} \right| \leq \left(1 - \left(\frac{\rho}{2} \right)^2 \right) |B_R| \]
for all $t \in [t^*, 0]$.

Proof. We introduce the logarithmic function which appears in Section 2 in [YD1]
\[\Psi(H, (w^* - k)_-, c) \equiv \max \left\{ \ln \left(\frac{H}{H - (w^* - k)_- + c} \right); 0 \right\} \]
for \(k = \mu^+ + \frac{\mu}{2} \), and \(c = \frac{\mu}{2} \). From the definition and the indicated choices we have

\[
\Psi(H, (w^* - k)_-, c) \leq (s_1 - s_0) \ln 2
\]

\[
|\Psi_{w^*}(H, (w^* - k)_-, c)|^2 \leq \left(\frac{2 s_1}{\omega} \right)^2.
\]

To simplify the symbolism let us set

\[
\Psi(H, (w^* - k)_-, c) = \varphi(w^*).
\]

We apply to (1.4) the testing function

\[
(M - w^*)^\alpha \frac{\partial}{\partial w^*} \left[\varphi^2(w^*) \right] \zeta^2 = (M - w^*)^\alpha \left[\varphi^2(w^*) \right]' \zeta^2
\]

where \(\zeta(x, z) \) is the smooth cut-off function such that

\[
\zeta = 1 \quad \text{in } B_{(1 - \nu)R} \times (-1 - \nu)R, (1 - \nu)R, \\
\zeta = 0 \quad \text{on } \partial[B_R \times (-R, R)]
\]

and

\[
|D\zeta| \leq \frac{2}{\nu R}.
\]

Then, we have for every \(t^* < t < t_0 \)

\[
0 = - \int_{B_R} y^\alpha \nabla \left[(M - w^*)^\alpha (\varphi^2)' \zeta^2 \right] \cdot \nabla w^* \, dxdy
\]

\[
= 2\alpha \int_{B_R} y^\alpha \varphi \varphi' \zeta^2 (M - w^*)^{\alpha - 1} |\nabla w^*|^2 \, dxdy - 4 \int_{B_R} y^\alpha \varphi \varphi' (M - w^*)^\alpha \zeta \nabla \zeta \cdot \nabla w^* \, dxdy
\]

\[
- 2 \int_{B_R} y^\alpha (M - w^*)^\alpha \zeta^2 (1 + \varphi)(\varphi')^2 |\nabla w^*|^2 \, dxdy
\]

\[
+ \int_{B_R} (M - w)^\alpha \zeta^2 (\varphi(w))^2 \zeta' (-\Delta)^2 w \, dx
\]

\[
\leq 2\alpha \int_{B_R} y^\alpha \varphi \varphi' \zeta^2 (M - w^*)^{\alpha - 1} |\nabla w^*|^2 \, dxdy + 2 \int_{B_R} y^\alpha (M - w^*)^\alpha \varphi |\nabla \zeta|^2 \, dxdy
\]

\[
- 2 \int_{B_R} y^\alpha (M - w^*)^\alpha \zeta^2 (\varphi'(w))^2 |\nabla w^*|^2 \, dxdy - \frac{1}{m} \int_{B_R} \zeta^2 (\varphi(w))^2 \zeta' w_t \, dx.
\]

Since \(\varphi \) vanishes on the set where \((w^* - k)_- = 0 \), we have

\[
\alpha \int_{B_R} y^\alpha \varphi \varphi' \zeta^2 (M - w^*)^{\alpha - 1} |\nabla w^*|^2 \, dxdy \leq \int_{B_R} y^\alpha (M - w^*)^\alpha \zeta^2 (\varphi'(w))^2 |\nabla w^*|^2 \, dxdy
\]

when \(-\frac{\alpha}{\nu} + 1 \leq 2 s_0 \). Hence

\[
\sup_{t^* < t < t_0} \int_{B_R} \Psi^2(H, (w - k)_-, c)(x, 0, t) \zeta^2(x, 0) \, dx
\]

\[
\leq \int_{B_R} \Psi^2(H, (w - k)_-, c)(x, 0, t^*) \zeta^2(x, 0) \, dx
\]

\[
+ 2m \int_{B_R \times [t^*, t_0]} y^\alpha (M - w^*)^\alpha \Psi(H, (w^* - k)_-, c)|\nabla \zeta|^2 \, dxdydt.
\]
Combining this with the previous Lemma\ref{lemma} gives
\[
\int_{B_R} \Psi^2(H, (w-k)_-, c)(x, 0, t)\zeta^2(x, 0) \, dx
\]
(4.13)
\[
\leq [(s_1-s_0) \ln 2]^2 \left(\frac{1-\rho}{1-\frac{\rho}{2}} \right) |B_R| + \frac{R^{2\alpha+a-1} \omega^\alpha (1-\frac{1}{2\alpha})^\alpha}{(1+a)\nu^2} (s_1-s_0) \ln 2 |B_R|.
\]
The integral on the left hand side of (4.13) is estimated below by integrating over the smaller set
\[
\{ x \in B_{(1-\nu)R} : \omega(x, t) < \mu^- + \frac{\alpha}{2\nu} \}.
\]
On such a set, since the function Ψ is a decreasing function of H, we find
\[
\Psi^2 \left(H, \left(w - \left(\mu^- + \frac{\alpha}{2\nu} \right) \right), \frac{\alpha}{2\nu} \right) \geq (s_1 - s_0 - 1)^2 \ln^2 2,
\]
and therefore (4.13) gives
\[
\left| \{ x \in B_{(1-\nu)R} : \omega(x, t) < \mu^- + \frac{\alpha}{2\nu} \} \right|
\leq \left(\frac{1-\rho}{1-\frac{\rho}{2}} \right) \left(\frac{s_1-s_0}{s_1-s_0-1} \right)^2 |B_R| + \frac{\gamma}{\nu^2(s_1-s_0-2)} |B_R|
\]
for constant $\gamma = \frac{R^{2\alpha+a-1} \omega^\alpha (1-\frac{1}{2\alpha})^\alpha}{(1+a)\ln 2}$. On the other hand
\[
\left| \{ x \in B_R : \omega(x, t) < \mu^- + \frac{\alpha}{2\nu} \} \right|
\leq \left| \{ x \in B_{(1-\nu)R} : \omega(x, t) < \mu^- + \frac{\alpha}{2\nu} \} \right| + |B_R \setminus B_{(1-\nu)R}|
\leq \left| \{ x \in B_{(1-\nu)R} : \omega(x, t) < \mu^- + \frac{\alpha}{2\nu} \} \right| + n\nu |B_R|.
\]
Therefore
\[
\left| \{ x \in B_R : \omega(x, t) < \mu^- + \frac{\alpha}{2\nu} \} \right|
\leq \left[\left(\frac{1-\rho}{1-\frac{\rho}{2}} \right) \left(\frac{s_1-s_0}{s_1-s_0-1} \right)^2 + \frac{\gamma}{\nu^2(s_1-s_0-2)} + n\nu \right] |B_R|
\]
for all $t \in (t^*, 0)$.

To prove the Lemma, we first choose ν so small that $n\nu \leq \frac{3}{8} \rho^2$ and then s_1 so large that
\[
\frac{\gamma}{\nu^2(s_1-s_0-2)} \leq \frac{3}{8} \rho^2, \quad \left(\frac{s_1-s_0}{s_1-s_0-1} \right)^2 \leq \left(1-\frac{1}{2\rho} \right)(1+\rho).
\]
\[\square\]

Well-definedness of $\lim_{y \to 0} y^\rho w_x'$ gives us that there is no jumping near the hyper-plane $y = 0$. More precisely,
\[
w'(x, y, t) - w(x, t) = O(y^{1-\rho}) \quad \text{a.e. } B_R
\]
as \(y \) goes to zero since the fact that \(y^2 w'_y \) has a limit as \(y \to 0 \), immediately implies that
\[
\lim_{y \to 0} \frac{w'(x,y,t) - w'(x,t)}{y^2}
\]
has the same limit. Hence, we can also make similar estimates of \(w^* \) in the cube \(B^*_R \) using the measure condition (Lemma 4.3):
\[
\left| \left\{ x \in B_R; w(x,t) > \mu^- + \frac{\alpha}{2^s} \right\} \right| > \left(\frac{\rho}{2} \right)^2 |B_R| > 0
\]
for all \(t \in [t^*, 0] \). The conclusion follows.

Lemma 4.4. There exists a constant \(\overline{\rho} > 0 \) such that
\[
\left| \left\{ (x, y) \in B^*_R : w^*(x, y, t) > \mu^- + \frac{\alpha}{2^{s+1}} \right\} \right| > \overline{\rho}|B^*_R|
\]
for all \(t \in [t^*, t_0] \).

We list Lemma from the literature and adapted here to our situation.

Lemma 4.5 (De Giorgi [De]). If \(f \in W^{1,1}(B_r) (B_r \subset \mathbb{R}^n) \) and \(l, k \in \mathbb{R}, k < l \), then
\[
(l - k) \left| \left\{ x \in B_r : f(x) > l \right\} \right| \leq C^{n+1} \frac{r^{n+1}}{\left| \left\{ x \in B_r : f(x) < k \right\} \right|} \int_{k < f < l} |\nabla f| \, dx,
\]
where \(C \) depends only on \(n \).

For the remainder of this section we assume that (4.12) holds.

Lemma 4.6.
If (4.1) is violated, for every \(\nu \in (0, 1) \), there exists a number \(\nu^* > s_1 + 1 > s_0 \) independent of \(\omega \) and \(R \) such that
\[
\left| \left\{ (x, y, t) \in Q^*_R \left(\theta_0, 0, 1 - \frac{\rho}{2} \right) : w^*(x, y, t) \leq \mu^- + \frac{\omega}{2^{s^*}} \right\} \right| \leq \nu^* \left| Q^*_R \left(\theta_0, 0, 1 - \frac{\rho}{2} \right) \right|.
\]

Proof. Apply Lemma 4.5 over the cube \(B^*_R \) for \(f(x, y) = -w^*(x, y, t), t \in \left(-\frac{\rho\theta_0^{-\alpha} R^{2\alpha}}{2}, 0 \right) \) and the levels
\[
l = -\mu^- - \frac{\omega}{2^{s+1}}, \quad k = -\mu^- - \frac{\omega}{2^s}, \quad s = s_1 + 1, s_1 + 2, \ldots, s^*.
\]
Then, from the Lemma 4.4, we have
\[
\left(\frac{\omega}{2^{s+1}} \right)|A_{s+1}(t)| \leq \frac{4C R^{n+2}}{\overline{\rho}|B^*_R|} \int_{A_{s}(t) \cap A_{s+1}(t)} |\nabla w^*| \, dx dy
\]
where
\[
A_s(t) = \left\{ (x, y) \in B^*_R : w^*(x, y, t) < \mu^- + \frac{\omega}{2^s} \right\}.
\]
Set
\[
A_s = \left\{ (x, y, t) \in B^*_R \times \left[-\frac{\rho\theta_0^{-\alpha} R^{2\alpha}}{2}, 0 \right] : w^*(x, y, t) < \mu^- + \frac{\omega}{2^s} \right\}.
\]
From this, integrating (4.14) over \(\left(-\frac{\rho\theta_n R^2}{2}, 0 \right) \) we get

\[
\left(\frac{\omega}{2s+1} \right) |A_{s+1}| \leq C'R \int_{A_s \setminus A_{s+1}} |\nabla w|^2 y^\frac{s}{2} \, dxdy \tau
\]

\[
\leq C'R \left(\int_{Q_R^* (\theta_0,0,1-\frac{\rho}{2})} |\nabla w|^2 y^\frac{s}{2} \, dxdy \tau \right)^{\frac{2}{s+1}} \times \left(\int_{Q_R^* (\theta_0,0,1-\frac{\rho}{2})} (y^{-\frac{s}{2}})^{\frac{1}{s+1}} \, dxdy \tau \right)^{\frac{s+1}{s+2}} \left(\int_{A_s \setminus A_{s+1}} \, dxdy \tau \right)^{\frac{1-s}{s+2}}.
\]

\text{(4.15)}

Take the \(\frac{1}{1-a} \)-th power to obtain

\[
\left(\frac{\omega}{2s+1} \right)^{\frac{1}{1-a}} |A_{s+1}|^{\frac{1}{1-a}} \leq C'' (|A_s| - |A_{s+1}|) \left(\int_{Q_R^* (\theta_0,0,1-\frac{\rho}{2})} |\nabla w|^2 y^\frac{s}{2} \, dxdy \tau \right)^{\frac{2}{s+1}}
\]

\text{(4.16)}

where \(C'' = (C'R)^{\frac{1-a}{1-a}} \left(\frac{1+a}{1+a} \right)^{\frac{1-a}{1-a}} (t_0 - t)^{-\frac{1+a}{1-a}} \).

We estimate the integral on the right hand side by making use of (3.6) written over again as \(Q_{2R}^* (\theta_0), k = \mu + \frac{\omega}{2} \) and as \(\eta(x,z,t) \) a smooth cut-off function in \(Q_{2R}^* (\theta_0) \) which equals one on \(Q_R^* (\theta_0) \), vanishes on the parabolic boundary of \(Q_{2R}^* (\theta_0) \) and is such that

\[|\nabla \eta| \leq \frac{1}{R}, \quad |\eta| \leq \frac{\omega t}{A^a R^{2a}}. \]

Then, since \(|\nabla w|^s = |\nabla (w^s - k)| \), we deduce

\[
\left[\int_{Q_R^* (\theta_0,0,1-\frac{\rho}{2})} |\nabla (w^s - k)|^2 y^\frac{s}{2} \, dxdy \tau \right]^{\frac{2}{s+1}} \leq C(A,a,M,n,R,\sigma,\alpha) \left(\frac{\omega}{2s+1} \right)^{\frac{1}{s+1}} \left| Q_R^* (\theta_0,0,1-\frac{\rho}{2}) \right|^{\frac{1}{s+1}}.
\]

Substitute this estimate into (4.16) and divide through by \(\left(\frac{\omega}{2s+1} \right)^{\frac{1}{1-a}} \).

\text{(4.17)}

\[|A_{s+1}|^{\frac{1}{1-a}} \leq C'' \left| Q_R^* (\theta_0,0,1-\frac{\rho}{2}) \right|^{\frac{1}{1-a}} (|A_s| - |A_{s+1}|). \]

These inequalities are valid for all \(s_1 + 1 \leq s \leq s^* - 1 \). Adding (4.17) for \(s = s_1 + 1, s_1 + 2, \ldots, s^* - 1 \), we have

\[(s^* - s_1 - 2)|A_{s^*}|^{\frac{1}{1-a}} \leq C'' \left| Q_R^* (\theta_0,0,1-\frac{\rho}{2}) \right|^{\frac{1}{1-a}}. \]

To prove the Lemma, we divide \((s^* - s_1 - 2) \) and take \(s^* \) so large that

\[\left(\frac{C''}{s^* - s_1 - 2} \right)^{\frac{1}{1-a}} \frac{1}{\left| Q_R^* (\theta_0,0,1-\frac{\rho}{2}) \right|^{\frac{1}{1-a}}} \leq v^* \].

\[\Box \]

Using the relation between \(w \) and \(w^* \), we show next that we can replace the \(Q_R^* (\theta_0,0,1-\frac{\rho}{2}) \) and \(w^* \) by \(Q_R (\theta_0,0,1-\frac{\rho}{2}) \) and \(w \) respectively.
Lemma 4.7.
In addition, we have
\[
\left| \left\{ (x, t) \in Q^*_R \left(\theta_0, 0, 1 - \frac{\rho}{2} \right) : w(x, t) \leq \mu^- + \frac{\omega}{2^{s+1}} \right\} \right| \leq v^* \left| Q^*_R \left(\theta_0, 0, 1 - \frac{\rho}{2} \right) \right|
\]
for every \(v^* \in (0, 1) \).

Proof. For every \(t, x \) fixed and for \(k = \mu^- + \frac{\omega}{2^{s+1}} \),
\[
(w - k)_+ = (w^* - k)_+ (s) - \int_0^s \partial_y \left[(w^* - k)_- \right] dy
\]
\[
\leq (w^* - k)_+ (s) + \int_0^s \left| \partial_y \left[(w^* - k)_- \right] \right| y^{\frac{2}{a}} \cdot y^{-\frac{2}{a}} dy
\]
\[
\leq (w^* - k)_+ (s) + \frac{s^{1-a}}{1-a} \left(\int_0^s \left| \nabla (w^* - k)_- \right|^2 y^a dy \right)^{\frac{1}{2}}.
\]
So, integrating in \(x \) and \(t \) over \(Q^*_R \left(\theta_0, 0, 1 - \frac{\rho}{2} \right) \), we have
\[
\int_{Q^*_R \left(\theta_0, 0, 1 - \frac{\rho}{2} \right)} \left[(w - k)_+ \right]^2 dxdt
\]
\[
\leq 2 \left[\int_{Q^*_R \left(\theta_0, 0, 1 - \frac{\rho}{2} \right)} \left[(w^* - k)_+ (s) \right]^2 dxdt
\]
\[
+ \frac{s^{2-2a}}{(1-a)^2} \int_{Q^*_R \left(\theta_0, 0, 1 - \frac{\rho}{2} \right)} \left| \nabla (w^* - k)_- \right|^2 y^a dxdydt \right]
\]
for any \(y = s \leq R \). Hence, integrating in \(s \) over \([0, \epsilon_1]\),
\[
\epsilon_1 \int_{(A(t))} \left[(w - k)_+ \right]^2 dxdt
\]
\[
\leq 2 \left[\int_{Q^*_R \left(\theta_0, 0, 1 - \frac{\rho}{2} \right)} \left[(w^* - k)_+ (s) \right]^2 dxdydt
\]
\[
+ \frac{\epsilon_1^{3-2a}}{(3-2a)(1-a)^2} \int_{Q^*_R \left(\theta_0, 0, 1 - \frac{\rho}{2} \right)} \left| \nabla (w^* - k)_- \right|^2 y^a dxdydt \right] \]
By making use of (3.6) written over as \(Q^*_R \left(\theta_0 \right), k = \mu^- + \frac{\omega}{2^{s+1}} \) and as \(\eta(x, z, t) \) which is given in the proof of Lemma 4.6. Then, we obtain
\[
\int_{Q^*_R \left(\theta_0, 0, 1 - \frac{\rho}{2} \right)} \left| \nabla (w^* - k)_- \right|^2 y^a dydxd\tau
\]
\[
\leq C(A, a, M, n, R, \sigma, \alpha) \left(\frac{\omega}{2^{s+1}} \right)^2 \left| Q^*_R \left(\theta_0, 0, 1 - \frac{\rho}{2} \right) \right|.
\]
Thus, we have
\[\varepsilon_1 \left(\frac{\omega}{2^{a+1}} \right)^2 \left| \left\{ (x, t) \in Q_R \left(\theta_0, 0, 1 - \rho \frac{\rho}{2} \right) : w \leq \mu^- + \frac{\omega}{2^{a+1}} \right\} \right| \]
\[\leq \varepsilon_1 \int_{\lambda(t)} \left((w - k) \right)^2 \ dx \ dt \]
\[\leq C \left(\frac{\omega}{2^{a+1}} \right)^2 \left| \left\{ (x, t) : w \leq \mu^- + \frac{\omega}{2^{a+1}} \right\} \right| \frac{\varepsilon_1}{(3 - 2a)(1 - a)^2} \left| Q_R \left(\theta_0, 0, 1 - \rho \frac{\rho}{2} \right) \right|.\]

To prove the lemma, we take \(\nu^* \) and \(\varepsilon_1 \) so small that
\[4C \left(\frac{\nu^*}{2^{a+1}} \right)^2 \left(\frac{\varepsilon_1}{(3 - 2a)(1 - a)^2} \right) \leq \nu^* \]
for \(\nu^* \) in \((0, 1) \).

Now we show that given \(\nu^* \), it determines a level \(\mu^- + \frac{\omega}{2^{a+1}} \) and a cylinder so that the measure of the set where \(w \) is below such a level can be made smaller than \(\nu^* \), on that particular cylinder.

Hence, for sufficiently small number \(\nu^* \), we have new powerful assumption like to that of Lemma (4.1). Therefore, using the same arguments as in Lemma (4.1) with \(w - (\mu^- + \frac{\omega}{2^{a+1}}) \), we can obtain the following result.

Lemma 4.8. The number \(\nu^* \) (and hence \(s^* \)) can be chosen so that
\[w(x, t) \geq \mu^- + \frac{\lambda \omega}{2^{a+2}} \ a.e. \ Q_{\frac{\rho}{2}} \left(\theta_0, 0, \frac{\rho}{2} \right) \]
for some \(\lambda \) in \((0, \frac{1}{2}) \).

Lemma 4.9 (Oscillation Lemma). There exist constants \(\lambda^* > 0 \) and \(\kappa \in (0, 1) \) such that if
\[\text{osc}_{Q_{\frac{\rho}{2}}} w^* = \omega = \mu^+ - \mu^- \]
then
\[\text{osc}_{Q_{\frac{\rho}{2}} \left(\theta_0, 0, 1 - \frac{\rho}{2} \right)} w^* \leq \omega - \lambda^* = \kappa \omega.\]

Proof. We first suppose that
\[\left| \left\{ (x, t) \in Q_R (\theta_0) ; w(x, t) > \mu^+ - \frac{\omega}{2} \right\} \right| < \varepsilon \left| Q_R (\theta_0) \right| \]
for sufficiently small \(\varepsilon > 0 \). Then, from the Lemma (4.1), we obtain
\[w(x, t) < \mu^+ - \frac{\lambda \omega}{4} \quad \text{in} \quad Q_{\frac{\rho}{2}} (\theta_0) \supset Q_{\frac{\rho}{2}} (\theta_0, 0, 1 - \frac{\rho}{2}).\]

Let’s consider the function \(h_3 \) defined by:
\[
\begin{cases}
\nabla (y^a \nabla h_3) = 0 & \text{in } B_{\frac{\rho}{2}}^+
\\
h_3 = \mu^+ & \text{on } \partial B_{\frac{\rho}{2}}^+ \cap \{ y > 0 \}
\\
h_3 = \mu^+ - \frac{\lambda \omega}{4} & \text{on } y = 0.
\end{cases}
\]
Then, we have
\[w^* \leq h_3 \quad \text{in } Q^\circ_{\bar{r}}(\theta_0, 0, 1 - \frac{\rho}{2}) \]
from the maximum principle. Since \(h_3 \leq \mu^+ - \lambda_1 \) in \(B^*_r \) for some \(0 < \lambda_1 < \frac{2\omega}{\gamma} \), we obtain that
\[\text{osc}_{Q^\circ_{\bar{r}}(\theta_0, 0, 1 - \frac{\rho}{2})} w^* \leq \mu^+ - \lambda_1 = \omega - \lambda_1. \]

Next, we assume that
\[\left| \left\{ (x, t) \in Q_R(\theta_0); w(x, t) > \mu^+ - \frac{\omega}{2} \right\} \right| > \varepsilon_1 |Q_R(\theta_0)| \]
for some \(\varepsilon_1 > 0 \). From the Lemma (4.8), we have
\[w(x, t) \geq \mu^- + \frac{\lambda \omega}{2^{s+2}} \quad \text{in } Q^\circ_{\bar{r}}(\theta_0, 0, \frac{\rho}{2}). \]

We also consider the function \(h_4 \) defined by:
\[
\begin{cases}
\nabla(y^n \nabla h_4) = 0 & \text{in } B^*_r \\
h_4 = \mu^- & \text{on } \partial B^*_r \cap \{ y > 0 \} \\
h_4 = \mu^- + \frac{\lambda \omega}{2^{s+2}} & \text{on } y = 0.
\end{cases}
\]

Then, we have
\[w^* \geq h_4 \quad \text{in } Q^\circ_{\bar{r}}(\theta_0, 0, 1 - \frac{\rho}{2}) \]
from the minimum principle. Since \(h_4 \geq \mu^- + \lambda_2 \) in \(B^*_r \) for some \(0 < \lambda_2 \leq \frac{\lambda \omega}{2^{s+2}} \), we have
\[\text{osc}_{Q^\circ_{\bar{r}}(\theta_0, 0, 1 - \frac{\rho}{2})} w^* \leq \mu^+ - (\mu^- + \lambda_1) = \omega - \lambda_1. \]

By taking \(\lambda^* = \min(\lambda_1, \lambda_2) \), we get a desired conclusion
\[\text{osc}_{Q^\circ_{\bar{r}}(\theta_0, 0, 1 - \frac{\rho}{2})} w^* \leq \omega - \lambda^* = \kappa \omega. \]

\[\square \]

Theorem 4.10 (Hölder estimates). There exist constants \(\gamma > 1 \) and \(\beta \in (0, 1) \) that can be determined a priori only in terms of the data, such that for all the cylinders
\[\text{osc}_{Q^\circ_{\bar{r}}(\theta_0, 0, 1 - \frac{\rho}{2})} w^* \leq \gamma \omega \left(\frac{r}{R} \right)^{\beta} \quad (0 < r \leq R). \]

Proof. From the Oscillation Lemma (Lemma (4.9)), we obtain
\[\text{osc}_{Q^\circ_{\bar{r}}(\theta_0, 0, 1 - \frac{\rho}{2})} w^* \leq \kappa \omega. \]

Let now \(0 < r \leq R \) be fixed. There exists a non-negative integer \(k \) such that
\[\frac{R}{2^{k+1}} \leq r \leq \frac{R}{2^k}. \]
This implies the inequalities
\[-\log_2 \left(\frac{r}{R} \right) \leq k + 1\]
and
\[\kappa^m \leq \frac{1}{\kappa} \kappa^{-\log_2 (\frac{r}{R})} = \frac{1}{\kappa} \left(\frac{r}{R} \right)^{-\log_2 \kappa}.\]
Since \(\lambda^* \leq \frac{4\omega}{2^{m+2}}\), we have \(\frac{1}{2} < \kappa < 1\). Hence
\[\text{osc}_{Q^*_r(\theta_0,0,1-\frac{\rho}{2})} w^* \leq \gamma \omega \left(\frac{r}{R} \right)^\beta\]
where \(\gamma = \frac{1}{k} > 1\) and \(0 < \beta = -\log_2 \kappa < 1\). To conclude the proof we observe that the cylinder \(Q^*_r(\theta_0,0,1-\frac{\rho}{2})\) is included in \(Q^*_r(\theta_0,0,1-\frac{\rho}{2})\).

We finish with the proof of Theorem 1.2.

Proof of Theorem 1.2 From the Theorem (4.10), the solution \(v^*\) of the problem (1.3) satisfies
\[\text{osc}_{Q^*_r(\theta_0,0,1-\frac{\rho}{2})} v^* = \text{osc}_{Q^*_r(\theta_0,0,1-\frac{\rho}{2})} w^* \leq \gamma \omega \left(\frac{r}{R} \right)^\beta (0 < r \leq R)\]
since \(v^* = M - w^*\). This gives that \(v^*\) is \(C^\beta\) at \((x,0,t)\), and so \(v\) is \(C^\beta\) at \((x,t)\).

5. Asymptotic behaviour for the FDE with fractional powers

5.1. Special solutions and stabilization. The asymptotic description is based on the existence of appropriate solutions that serve as model for the behavior near extinction: there is a self-similar solution of the form
\[U(x,t;T) = (T-t)^{1/(1-m)} f(x)\]
for a certain profile \(f > 0\), where \(\varphi = f^m\) is the solution of the super-linear elliptic equation
\[(-\Delta)^\varphi \varphi(x) = \frac{1}{1-m} \varphi(x)^p, \quad p = \frac{1}{m}\]
such that \(\varphi > 0\) in \(\Omega\) with zero on \(\mathbb{R}^n \setminus \Omega\). Hence, similarity means in this case the separate-variables form. The existence and regularity of this solution depends on the exponent \(p\), indeed it exists for \(p < (n+2\sigma)/(n-2\sigma)\), the Sobolev exponent. Since \(p = 1/m\), this means that smooth separate-variables solutions exist for
\[\frac{n-2\sigma}{n+2\sigma} < m < 1\]
an assumption that will be kept in the sequel. Note that the family of solutions (5.1) has a free parameter \(T > 0\).
5.2. Stabilization. The above family of solutions allows to describe the behavior of general solutions near their extinction time.

Lemma 5.1. Let u be a non-negative solution of \((1.1)\). Suppose that the extinction time $T^* = 10$. Then

$$\sup_{\Omega} v(x, 2) = \sup_{\Omega} u^m(x, 2) \geq c_0$$

where c_0 is a uniform constant.

Proof. Suppose that $\sup_{\Omega} v(x, 2) < \epsilon$ for sufficiently small $\epsilon > 0$. Then, we have

$$\left(\int_{\mathbb{R}^n} v^{\frac{m+1}{1-m}}(x, 2) \, dx\right)^{\frac{1-m}{1+m}} \leq \epsilon^\frac{1-m}{1+m} |\Omega|^{\frac{1-m}{1+m}}.$$

Hence, from the estimates on Finite Extinction Time, (Lemma 2.4),

$$T^* - 2 \leq C \epsilon^\frac{1-m}{1+m} |\Omega|^{\frac{1-m}{1+m}}.$$

If $\epsilon > 0$ is small enough, then we have $T^* \leq 5$, which is a contradiction to the assumption $T^* = 10$. □

Using the same arguments as in Section 5 in [KL], we can obtain the following two Corollaries.

Corollary 5.2. Let u be a nonnegative solution of \((1.1)\) and u_0^m be a super-solution for the fractional power of the Laplacian. Suppose that the extinction time $T^* = 10$. There exist a function $\psi(x) > 0$ in Ω and a constant $r \in (0, 1)$ such that

$$v(x, t) \geq C \psi(x) \quad \text{for } 2 - r \leq t \leq 2$$

where C is uniform.

Proof. Combining the Lemma (5.1) with Theorem (4.10), we can take a point $x_0 \in \Omega$ and constants $\epsilon, \sigma \in (0, 1)$ and $\tilde{r} > 0$ such that

$$v(x, t) \geq c_1 > 0$$

for $(x, t) \in B_{\tilde{r}}(x_0) \times [2 - \epsilon \tilde{r}^{2\sigma}, 2]$. Let ψ be the solution of

$$\begin{cases}
(-\Delta)^{\sigma} \psi(x) = 0 & \text{in } \Omega \setminus B_{\tilde{r}}(x_0) \\
\psi = 1 & \text{on } B_{\tilde{r}}(x_0) \\
\psi = 0 & \text{on } \mathbb{R}^n \setminus \Omega.
\end{cases}$$

On the other hand, v_t satisfies

$$mv^{1-\frac{\tilde{r}^{2\sigma}}{m}}(-\Delta)^{\sigma}v_t + (v_t)_t = \frac{m-1}{mg}v_t^2 \quad \text{in } \Omega$$

$$v_t = 0 \quad \text{on } \mathbb{R}^n \setminus \Omega.$$

Since the constant function $f = 0$ is a solution of above problem and $(-\Delta)^{\sigma}u_0^m \geq 0$, we have $(-\Delta)^{\sigma}v(x, t) \geq 0$ for all $0 < t < T^*$. Hence, $c_1 \psi(x, t) \leq v(x, t)$ which is in $\Omega \times [2 - \epsilon \tilde{r}^{2\sigma}, 2]$. Therefore, we have

$$C \psi(x) \leq v(x, t) \quad \text{in } \Omega \times [2 - r, 2]$$

where $C = c_1$ and $r = \epsilon \tilde{r}^{2\sigma}$. □
Corollary 5.3. Let u be a nonnegative solution of (1.1) and u^m_0 be a super-solution for the fractional power of the Laplacian with the extinction time T^*. For $0 < t < T^*$

$$u \left(x, \frac{T^* - t}{10} s + t \right) \geq C\psi(x)(T^* - t)^{\frac{1}{1-m}} (2 - \delta \leq s \leq 2).$$

Proof. One can easily check that the scaled function \tilde{g} defined by

$$\tilde{g}(x, t) = \left(\frac{T^* - t_0}{10} \right)^{\frac{-\delta}{1-m}} v \left(x, \frac{T^* - t_0}{10} t + t_0 \right)$$

is a solution of (M.P) with the finite extinction time 10. Then, there exists a function $\psi(x) > 0$ such that

$$C\psi(x) \leq \tilde{g}(x, \tilde{t}) = \left(\frac{T^* - t_0}{10} \right)^{\frac{-\delta}{1-m}} v \left(x, \frac{T^* - t_0}{10} \tilde{t} + t_0 \right) (2 - r \leq \tilde{t} \leq 2)$$

from the Corollary (5.2). Substituting in this inequality $v = u^m$, we easily come to a conclusion. □

In the end of this section, we look at an asymptotic behavior of a sequence of time-slice for normalized solutions. We first put

$$u(x, t) = (T^* - t)^{\frac{1}{1-m}} \overline{u}(x, \tau) \quad \left(\tau = \ln \frac{T^*}{T^* - t}. \right)$$

Then, the problem (1.1) is mapped into:

$$\begin{cases}
\frac{\overline{u}}{1 - m} = (-\Delta)^m \overline{u}^m + \overline{u}_t & \text{in } \Omega \\
\overline{u}(x, \tau) = 0 & \text{on } \mathbb{R}^n \setminus \Omega \\
\overline{u}(x, 0) = \left(\frac{1}{T^*} \right)^{\frac{1}{1-m}} u_0(x) & \text{in } \Omega.
\end{cases}$$

(5.2)

Observe that the new time τ ranges from 0 to ∞. We now state the main Theorem in this section.

Theorem 5.4. Under the above assumptions on u_0 and m, we have the following property near the extinction time of a solution $u(x, t)$: for any sequence $\{u(x, t_n)\}$, we have a subsequence $t_{n_k} \to T^*$ and a $\varphi(x)$ such that

$$\lim_{k \to \infty} (T^* - t_{n_k})^{-1/(1-m)} |u(x, t_{n_k}) - U(x, t_{n_k}; T^*)| \to 0$$

uniformly in compact subset of Ω for $U(x, t; T^*) = (T^* - t)^{1/(1-m)} \varphi^{1/m}(x)$ where φ is an eigen-function of fully nonlinear equation

$$\begin{cases}
(-\Delta)^m \varphi = \frac{1}{1 - m} \varphi^{\frac{1}{m}} & \text{in } \Omega \\
\varphi = 0 & \text{on } \mathbb{R}^n \setminus \Omega \\
\varphi > 0 & \text{in } \Omega.
\end{cases}$$

Proof. The function $\overline{\varphi} = \overline{u}^m$ satisfies the equation

$$\left(\frac{\overline{u}^m}{1 - m} \right) = (-\Delta)^m \overline{\varphi} + \frac{1}{m} \overline{\varphi}^{\frac{1-m}{m}} \overline{\varphi}_t$$

in $\Omega \times (0, \infty)$, with $\overline{\varphi} = 0$ on $\mathbb{R}^n \setminus \Omega$. Now define the functional

$$F(f) = \int_{\mathbb{R}^n} \left(\frac{1}{2} f(-\Delta)^m f - \frac{m}{(1-m)(1+m)} f^{\frac{1+m}{m}} \right) dx$$

(5.3)
and \(g(\tau) = F(\overline{v}(\cdot; \tau)) \). Then a simple calculation yields
\[
g'(\tau) = -\frac{1}{m} \int_{\mathbb{R}^n} \frac{1}{\overline{v}^{m+1}} (x, \tau) \overline{v}^2(x, \tau) \, dx,
\]
the right side being non-positive since \(\overline{v} \geq 0 \). Lemma 2.5 shows that \(\int_{\mathbb{R}^n} \frac{1}{\overline{v}^{m+1}} \, dx \) bounded in \(\tau \), so \(g(\tau) \) is bounded below. Therefore \(\lim_{\tau \to \infty} g(\tau) \) exists and there exists a sequence of times \(\tau_n \to \infty \) such that \(g'(\tau_n) \to 0 \).

From the Lemma 2.3, we now translate the estimate information in terms of \(\overline{v} \) to the estimate
\[
0 \leq \overline{v}(x, \tau) \leq C
\]
where \(C > 0 \) is a universal constant. In addition, for each \(\tau_n \), \(\overline{v}(x, \tau_n) \) is equicontinuous in every compact set \(K \subset \Omega \) from the Lemma 4.10. Hence, every subsequence, again labeled \(\tau_{n_k} \), \(\overline{v}(x, \tau_{n_k}) \) has a subsequence \(\{ \overline{v}(x, \tau_{n_k}) \} \) that converges to some function \(\varphi(x) \) uniformly on every compact subset of \(K \). Note also, by Lemma 2.5, that
\[
\int_{\mathbb{R}^n} \frac{1}{\overline{v}^{m+1}} (x, \tau) \, dx
\]
is monotone decreasing, hence
\[
\lim_{\tau \to \infty} \int_{\mathbb{R}^n} \frac{1}{\overline{v}^{m+1}} (x, \tau) \, dx = \int_{\mathbb{R}^n} \frac{1}{\overline{v}^{m+1}} (x) \, dx.
\]
Multiply equation (5.3) by any test function \(\eta \in C_c^\infty(K) \) and integrate in space, \(x \in K \). Then, for each \(\tau_{n_k} \),
\[
\frac{1}{m} \int_K \frac{1}{\overline{v}^{m+1}} \overline{v} \eta \, dx = \int_K \frac{1}{\overline{v}} \left[-(-\triangle)^a \eta \right] \, dx + \frac{1}{1 - m} \int_K \frac{1}{\overline{v}^{m+1}} \eta \, dx
\]
from the Theorem 1.2 in [Gu](Integration by part). Since the absolute value of the left hand side of (5.4) is bounded above by
\[
\left(\int_{\mathbb{R}^n} \eta \, dx \right)^{\frac{m}{2(m+1)}} \left(\int_{\mathbb{R}^n} \frac{1}{\overline{v}^{m+1}} \, dx \right)^{\frac{1}{2(m+1)}} \left(\int_{\mathbb{R}^n} \frac{1}{\overline{v}^{m+1}} \overline{v}^2 \, dx \right)^{\frac{1}{2}}
\]
and the third term of (5.5) has limit zero as \(\tau_{n_k} \to \infty \), we get in the limit \(\tau_{n_k} \to \infty \)
\[
\int_K \phi(-\triangle)^a \eta \, dx = \frac{1}{1 - m} \int_K \phi^{\frac{1}{m}} \eta \, dx.
\]
which is weak formuation of the equation
\[
(-\triangle)^a \varphi = \frac{1}{1 - m} \phi^{\frac{1}{m}} \quad \text{in} \ K.
\]
By the arbitrary choice of a compact subset \(K \) in \(\Omega \), (5.6) holds in \(\Omega \).

Acknowledgement Ki-Ahm Lee was supported by the Korea Research Foundation Grant funded by the Korean Government(MOERHD, Basic Research Promotion Fund)(KRF-2008-314-C00023).

References
[BH] James G. Berryman, Charles J. Holland, Stability of the separable solution for fast diffusion. Arch. Rational Mech. Anal. 74 (1980), no. 4, 379–388
[BK] Richard F. Bass, Moritz Kassmann, Hölder continuity of harmonic functions with respect to operators of variable order, Comm. Partial Differential Equations 30 (2005), 1249-1259
[BL] Richard F. Bass, David A. Levin, Harnack inequalities for jump processes, Potential Anal. 17 (2002), 375-388
Chi hin chan, Magdalena czubak: Regularity of solutions for the critical n-dimensional burgers’ equation. preprint, arXiv:0810.3055v3 [math.AP]

Peter Constantin: Euler equations, Navier-Stokes equations and turbulence. Mathematical foundation of turbulent viscous flows, volume 1871 of Lecture Notes in Math., 1-43. Springer Berlin, 2006.

L. Caffarelli, L. Silvestre, An Extension Problem Related to the Fractional Laplacian, Comm. Partial Differential Equations 32: 1245-1260(2007)

L. Caffarelli, Alexis Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geometric equation to appear in Annals of math.

E. De Giorgi, Sulla differenziabilita’ e l’analiticità delle estremali degli integrali multipli regolari. Mem. Acc. Sci. Torino, Cl. Sci. Fis. Mat. Natur., 3, №3 (1957) pp 25-34.

Emmanuele Dibenedetto, Degenerate parabolic Equations Springer-Verlag, New York, 1993.

E. Dibenedetto, Y.C. Kwong, Harnack Estimates and extinction profile for weak solutions of certain singular Parabolic Equations Trans. Amer. Math. Soc. 330 (1992), no. 2, 783–811.

G. Duvalt, J. L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris, 1972. Travaux et Recherches Mathématiques, No. 21.

Gilbarg, David; Trudinger, Neil S. Elliptic partial differential equations of second order. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224. Springer-Verlag, Berlin, 1983. xiii+513 pp.

Guan, Q.Y.: Integration by Parts Formula for Regional Fractional Laplacian, Commun. Math. Phys 266, 289-329(2006)

Soojung Kim, Ki-Ahm Lee, Elliptic eigenvalue problems for fully nonlinear equations (preprint)

N. V. Krylov, M. V. Safonov, An estimate for the probability of a diffusion process hitting a set of positive measure, Dokl. Akad. Nauk SSSR 245(1979), 18-20. MR 525227(80b:60101)(Russian)

Ki-ahm Lee, J.L. Vázquez, Parabolic approach to nonlinear elliptic eigenvalue problems, Advances in Mathematics 219(2008) 2006-2028.

Banuelos, Rodrigo, Kulczycki, Tadeusz, Mendez-Hernandez, Pedro J On the shape of the ground state eigenfunction for stable processes. Potential Anal. 24 (2006), no. 3, 205–221.

Luis Silvestre, Hölder estimates for solutions of integro-differential equations like the fractional Laplace. Indiana Univ. Math. J. 55 (2006), no. 3, 1155–1174.

E. M. Stein, Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.

Vázquez, J. L.: The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford, 2007.

Chen, Ya Zhe; DiBenedetto, Emmanuele On the local behavior of solutions of singular parabolic equations. Arch. Rational Mech. Anal. 103 (1988), no. 4, 319–345.

Y.Z. Chen, E. DiBenedetto, Hölder estimates of solutions of singular parabolic equations with measurable coefficients. Arch. Rational Mech. Anal., 118 (1992), no 3, 257-271

Y.Z. Chen, E. DiBenedetto,(1993) On the Harnack inequality for nonnegative solutions of singular parabolic equations. Degenerate Diffusions (Minneapolis, MN, 1991), pp. 61.69, IMA Vol. Math. Appl., Vol. 47, Springer, New York.

SUNGHOON KIM : SCHOOL OF MATHEMATICAL SCIENCES, SEOUL NATIONAL UNIVERSITY, SAN56-1 SHINRIM-DONG KWANAK-GU SEOUL 151-747, SOUTH KOREA

E-mail address: gauss79@smu.ac.kr

KI-AHM LEE : SCHOOL OF MATHEMATICAL SCIENCES, SEOUL NATIONAL UNIVERSITY, SAN56-1 SHINRIM-DONG KWANAK-GU SEOUL 151-747, SOUTH KOREA

E-mail address: kiahm@math.snu.ac.kr