Expression of Interleukin-10 by \textit{in Vitro} and \textit{in Vivo} Activated Hepatic Stellate Cells*

(Received for publication, May 28, 1997, and in revised form, October 9, 1997)

Saixi C. Wang, Mitsuoru Ohta, Laura Schrum, Richard A. Rippe, and Hidekazu Tsukamoto

Activated hepatic stellate cells (HSC) participate in matrix remodeling and deposition in liver fibrosis. The present study demonstrates that interleukin (IL)-10 is expressed by HSC upon activation \textit{in vitro} or \textit{in vivo} and that autocrine effects of this cytokine include inhibition of collagen production. Culture activation of HSC caused a distinct increase in IL-10 mRNA level compared with freshly isolated quiescent HSC. Treatment of cultured HSC with tumor necrosis factor-\(\alpha\), transforming growth factor-\(\beta\), or lipopolysaccharide further increased IL-10 mRNA by 2-fold and resulted in the release of IL-10 protein into the medium. HSC isolated from rats after bile duct ligation (BDL) showed prominent induction of IL-10 protein at 7 days after BDL, but such induction disappeared in advanced liver fibrosis (19 days after BDL). IL-10 expression correlated positively with mRNA expression of interstitial collagenase and inversely with that of \(\alpha_1(\text{I})\) collagen. Addition of anti-IL-10 IgG to cultured HSC caused enhanced collagen production under a basal or stimulated condition with TGF-\(\beta\), tumor necrosis factor-\(\alpha\), or lipopolysaccharide. These effects were associated with increased \(\alpha_1(\text{I})\) collagen mRNA and reciprocally reduced collagenase mRNA levels. Co-transfection of HSC with an IL-10 expression vector and collagen reporter genes showed a 40% inhibition of \(\alpha_1(\text{I})\) collagen promoter activity. These results demonstrate that activation of HSC causes enhanced autocrine expression of IL-10 which possesses a negative autoregulatory effect on HSC collagen production mediated at least in part by \(\alpha_1(\text{I})\) collagen transcriptional inhibition and stimulation of collagenase expression. These findings, along with the demonstrated early induction of HSC IL-10 expression and its late disappearance during biliary liver fibrosis, suggest its \textit{in vivo} role in matrix remodeling and a possibility that failure for HSC to sustain IL-10 expression underlies pathologic progression to liver cirrhosis.

Hepatic stellate cells (HSC)\footnote{This work was supported by National Institutes of Health Grants AA06603 (to H. T.) and AA10459 (to R. A. R.) and by the Medical Research Service of Department of Veterans Affairs (to H. T.) and USC Research Center for Liver Disease Molecular Biology Core Facility Grant P50-DK-48922. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.} are vitamin A-storing perisinusoidal cells in the liver. These cells participate in matrix remodeling and wound healing of the liver via their myofibroblastic activation (see Ref. 1 for review). Several plausible mechanisms have been proposed which underlie HSC activation (1). One such mechanism involves soluble factors such as cytokines and inflammatory mediators, which seem to induce different aspects of the cellular activation. For example, platelet-derived growth factor, IL-1, TNF-\(\alpha\), TGF-\(\alpha\) are all mitogenic to HSC (2, 3), while TGF-\(\beta\) is a potent fibrogenic cytokine that not only induces expression of matrix genes (3–5) and tissue inhibitors of metalloprotease (TIMP) (6), but may also confer HSC a myofibroblastic phenotype by up-regulating \(\alpha\)-smooth muscle actin expression (7, 8). These soluble factors are released by effector cells such as hepatic macrophages (9–11), endothelial cells (12), hepatocytes (13), or platelets (14) to establish a paracrine mode of action or produced by HSC to achieve autocrine effects (15). It also seems important to recognize that one of the primary activities of many of these cytokines resides in their modulation of inflammation and immune responses. As integral part of wound repair processes, monocytes, fibroblasts, and myofibroblasts are recruited to the injury site by platelet-derived growth factor (16) and TGF-\(\beta\) (17). HSC are shown to express MCP-1 (18), which chemotacts monocytes; M-CSF (19), which induces proliferation and differentiation of monocytes; PAF (20) and CINC (21), which recruit neutrophils; and ICAM (22), which causes adhesion and transmigration of neutrophils. Thus, HSC may also actively participate in regulation of inflammation in the liver.

IL-10 is a cross-regulatory cytokine produced by Th2 cells, macrophages, mast cells, and B cells. It mediates several key functions of multiple cell types. IL-10 inhibits functions of Th1 cells and their expression of IL-2 and \(\gamma\)-interferon (23), suppresses macrophages, including antigen presentation to Th1 cells, cytokine production, and cytotoxic activities (24, 25). In contrast, IL-10 stimulates mast cells (26) and B cells (27). In addition, IL-10 has been shown recently to down-regulate type I collagen gene expression and to increase matrix metalloprotease-1 (interstitial collagenase) and matrix metalloprotease-3 (stromelysin-1) (MMP-1 and -3) expression in cultured skin fibroblasts, suggesting a role of IL-10 in the breakdown and remodeling of the extracellular matrix (28). In contrast, exogenous IL-10 inhibits synthesis of MMP-9 (92-kDa gelatinase) and blocks LPS-stimulated MMP-1 expression by human macrophages while it stimulates their TIMP-1 production (29). Thus, these findings suggest fibrogenic effects of IL-10 on macrophages, which seem to oppose the aforementioned effects on fibroblasts.
IL-10 Expression by Hepatic Stellate Cells

In this report, we demonstrate for the first time, induced expression of IL-10 by rat HSC upon activation in vitro by culturing on plastic dish and in vivo by cholestatic liver injury. IL-10 expression by HSC is up-regulated by TNF-α and TGF-β1 in vitro and induced consecutively during the early phase of cholestatic injury followed by a disappearance of the induction at the late fibrogenic phase. In vitro neutralization experiments demonstrate autocrine stimulation of interstitial collagenase expression and inhibition of α1(1) collagen expression by IL-10 in HSC, suggesting its role in initiation of matrix remodeling.

MATERIALS AND METHODS

Cholestatic Liver Injury—Cholestatic liver injury was induced in male Wistar rats weighing 500–600 g by aseptic ligation and transection of the common bile duct (BDL) as described previously (30). Another group of the rats was sham-operated to serve as controls (Sham). The animal protocol described in this study was approved by the Institutional Care and Use Committee of the University of Southern California.

HSC Isolation and Culture—HSC were isolated from normal male Wistar rats, BDL, and Sham animals by in situ digestion of the liver and arabino-galactan gradient ultracentrifugation as reported previously (31, 32). The purity and the viability of the cells from all animals exceeded 98 and 97%, respectively. The cells from normal rats were cultured in RPMI 1640 medium with 10% fetal calf serum in 24-well plates for 5–6 days after isolation. For experiments testing effects of TNF-α (0.1–10 ng/ml), TGF-β (0.1–10 ng/ml), LPS (1–100 μg/ml), and anti-IL-10 IgG (20 μg/ml), the cells were washed with phosphate-buffered saline twice and incubated with serum-free RPMI and test substances for 42 h. TNF-α, TGF-β, and goat anti-mouse IL-10 IgG were purchased from R & D System (Minneapolis, MN), and LPS and non-immune goat IgG were from Sigma.

RNA Extraction, RT-PCR—Total RNA was extracted from freshly isolated and cultured cells by a method of Chomczynski and Sacchi (33). For RT-PCR, total RNA was reverse-transcribed using 600 units of M-MLV (Clontech) retrotranscriptase with 10% fetal calf serum in 24-well plates for 5–6 days after isolation. For experiments testing effects of TNF-α (0.1–10 ng/ml), TGF-β (0.1–10 ng/ml), LPS (1–100 μg/ml), and anti-IL-10 IgG (20 μg/ml), the cells were washed with phosphate-buffered saline twice and incubated with serum-free RPMI and test substances for 42 h. TNF-α, TGF-β, and goat anti-mouse IL-10 IgG were purchased from R & D System (Minneapolis, MN), and LPS and non-immune goat IgG were from Sigma.

RESULTS

IL-10 RT-PCR for Cultured HSC—RT-PCR analysis of RNA from freshly isolated HSC from normal rats showed no detectable product for IL-10 using 35 cycles of amplification (first lane, Fig. 1 (upper panel)). However, HSC cultured on plastic wells for 7 days showed an increase in IL-10 mRNA as indicated by a detectable PCR product (second lane, Fig. 1 (upper panel)). Furthermore, incubation of HSC with TNF-α or TGF-β, cytokines known to stimulate HSC (3), caused further increases in IL-10 mRNA (lane 3–8, Fig. 1 (upper panel)). Semi-quantitative analyses of the RT-PCR results were performed by scanning densitometry of the IL-10 PCR product and standardization with β-actin results (Fig. 1, lower panel). These analyses show 2-fold increases in IL-10 mRNA expression by TGF-β (10 ng/ml) or TNF-α (10 ng/ml) and a 50% increase by LPS (10 μg/ml).

IL-10 Release by Cultured HSC—To assess the levels of IL-10 released by cultured HSC following treatment with several agonists, and enzyme-linked immunosorbent assay was performed on the medium samples (Table I). No detectable IL-10 was measured in the medium from unstimulated HSC. However, TNF-α, TGF-β, and LPS all stimulated IL-10 release by HSC. In the HSC—IL-10 mRNA Expression Analysis—To determine whether IL-10 is expressed by HSC during the course of cholestatic liver injury, HSC were isolated from rats at 2, 7, and 19 days after bile duct ligation or sham operation, and RT-PCR was performed on HSC RNA samples for detection of IL-10 mRNA (Fig. 2). Shim HSC showed undetectable or minimal IL-10 mRNA levels at each time point. In
IL-10 Expression by Hepatic Stellate Cells

Fig. 1. Upper panel, IL-10 mRNA expression by cultured activated HSC. IL-10 mRNA expression in HSC was assessed by RT-PCR. Freshly isolated HSC show very low levels of IL-10 (first lane), whereas culture-activated HSC grown in plastic dish for 6 days expressed appreciably more IL-10 mRNA (second lane). Treatment of cultured HSC with TNF-α and TGF-β further increased IL-10 mRNA levels (third to eighth lanes). Lower panel, densitometric analysis of IL-10 mRNA expression by cultured HSC. Densitometric RT-PCR data for IL-10 mRNA were standardized with β-actin signals and statistically compared between different treatment groups. Treatment of cultured HSC with TNF-α (10 ng/ml) and TGF-β (10 ng/ml) resulted in significant 2-fold increases in IL-10 mRNA expression, while LPS (10 μg/ml) caused a 40% increase. *, p < 0.05 as compared with control.

Table I
IL-10 released by cultured HSC in response to agonists

| Condition | Experiment | IL-10 |
|-----------|------------|-------|
|           | 1          | 2     | 3     | 4     | Mean ± S.E. |
| TNF-α (10 ng/ml) | 16.56     | 33.95 | 25.22 | 28.77 | 26.88 ± 3.67* |
| TGF-β (10 ng/ml) | 17.3      | 11.46 | 13.23 | 14.56 | 14.14 ± 1.23* |
| LPS (10 μg/ml)  | 4.6        | NDa   | 13.89 | 18.73 | 12.41 ± 4.15* |
| Control       | UDb       | UD    | UD    | UD    | UD           |

* p < 0.05.
ND, not determined.
* p = 0.09.
UD, undetected.

In contrast, HSC from BDL show a distinct increase in IL-10 mRNA at 2 days, which was further accentuated at 7 days. Interestingly, this induction of IL-10 mRNA expression was completely abrogated at 19 days. To quantitatively assess the induction at 7 days, competitive PCR was performed using a specifically constructed competitive template. As shown in the upper panel of Fig. 3A, addition of an increasing amount of the competitor (from right to left) resulted in a progressive reduction in the level of IL-10 PCR product from the Sham sample while reciprocally raising the level of the competitor product. For the BDL samples, which are expected to have much lower levels, 40 cycles of amplification was used. Even though the level of IL-10 product was still lower, the similarly effective competition by the competitor was shown but with the amounts of the competitor that were approximately 2 orders of magnitude lower than those used for Sham. Linear regression analysis was performed for three pairs of competitive PCR data (Fig. 3B). As predicted, the level of IL-10 mRNA in 7-day BDL HSC was 100-fold higher than that in Sham HSC.

Subcloning and Sequencing of IL-10 PCR Product—To verify that the PCR product detected was truly a IL-10 cDNA fragment, we subcloned the product into a TA vector and sequenced a partial EcoRI fragment (326 bp) following a large scale plasmid preparation and cDNA purification. The sequence of the fragment showed a perfect match with the published nucleotide sequence of rat IL-10 cDNA (34), demonstrating that our PCR indeed detected IL-10 mRNA in HSC. Furthermore, we have utilized the purified 326-bp IL-10 cDNA fragment as a probe to perform Northern blot analysis on HSC RNA samples. Northern blot analysis clearly confirmed prominent induction of IL-10 mRNA expression in HSC from 7-day BDL as compared with corresponding Sham (Fig. 4).

Detection of IL-10 Protein in Activated HSC—Western blot analysis was performed to examine whether IL-10 protein level is coordinately increased in HSC from 7-day BDL (Fig. 5). The analysis detected an immunoreactive band with a distinct increased intensity in BDL (last two lanes), which corresponded to the molecular size (17 kDa) of authentic recombinant mouse IL-10 standard (first lane). As an internal control, desmin was immunoblotted using the same samples, which showed the relatively similar immunoreactivity between the two groups of the samples (bottom panel).

Relationship of IL-10 Expression to Collagen or Collagenase Expression in BDL—We were very intrigued by the time-dependent induction of IL-10 in HSC at 7 days in BDL animals. Since recent studies suggested regulation of collagen and collagenase genes by IL-10 in other cell types (28, 29), we examined α1(I) collagen and interstitial collagenase mRNA expression in the same HSC RNA samples used for IL-10 RT-PCR analysis (Fig. 2, lower two panels). Induction of interstitial collagenase mRNA expression was shown to coincide with that of IL-10 at 7 days as was the disappearance of induction of both genes at 19 days. On the contrary, marked induction of α1(I) collagen expression occurred when IL-10 expression ceased at 19 days.
IL-10 Neutralization Enhances HSC Collagen Production——

The above results suggested a possible link between IL-10 expression by activated HSC and matrix homeostasis. To examine this possibility, collagen production was assessed by incorporation of [3H]proline with cultured HSC exposed to

**FIG. 4. Northern blot analysis for IL-10 mRNA.** Using PCR-cloned IL-10 cDNA, we have performed Northern blot analysis on two sets of RNA samples. This analysis confirmed the prominent increase in IL-10 mRNA level in HSC from BDL animals.

**FIG. 5. Western blot analysis of HSC protein extracts for IL-10.** HSC protein extracts (100 μg each lane) prepared from Sham and BDL animals were analyzed for IL-10 by Western blot analysis and a chemiluminescence detection method as described under “Materials and Methods.” Note distinctly increased levels of IL-10 in BDL samples as compared with Sham samples. The lower panel shows desmin immunoblotting with relatively equal levels of this cytoskeletal protein in all four samples, indicating equal protein loading.

**FIG. 6. IL-10 neutralization stimulates HSC collagen production.** Cultured HSC were incubated with anti-IL-10 IgG (20 μg/ml) or nonimmune IgG (20 μg/ml) in the absence or presence of TGF-β (10 ng/ml), TNF-α (10 ng/ml), or LPS (10 μg/ml). Collagen production by these cells was determined by incorporation of [3H]proline into collagenase-sensitive peptides as described under “Materials and Methods.” Addition of IL-10 antibodies alone resulted in a 50% increase in basal collagen production (Control) by HSC. TGF-β-mediated up-regulation of collagen production was enhanced by 2-fold by IL-10 neutralization. TNF-α or LPS, which did not stimulate HSC collagen production by itself, caused significant enhancement of collagen production if added together with anti-IL-10 IgG. *, p < 0.05.
TGF-β (10 ng/ml), TNF-α (10 ng/ml), and LPS (10 μg/ml) in the presence of anti-IL-10 IgG or nonimmune IgG (Fig. 6). The addition of anti-IL-10 IgG alone caused a 50% increase in basal collagen production. TGF-β-mediated stimulation of collagen production was doubled by the addition of the antibodies. Even though TNF-α or LPS alone did not increase collagen production, concomitant IL-10 neutralization resulted in significant enhancements in collagen synthesis. These results clearly demonstrate an inhibitory autocrine effect of IL-10 on collagen synthesis by culture-activated HSC.

**IL-10 Neutralization Affects α1(I) Collagen and Collagenase mRNA Expression**—To investigate mechanisms underlying the observed inhibitory role of IL-10 in HSC collagen production, we have examined effects of IL-10 neutralization on mRNA expression of α1(I) collagen and interstitial collagenase by cultured HSC. Exposure of HSC to TNF-α (10 ng/ml) or LPS (10 μg/ml) stimulated mRNA expression of collagenase (Fig. 7, upper left panel). However, addition of anti-IL-10 IgG clearly suppressed these stimulatory effects (Fig. 7, upper right panel). TGF-β (10 ng/ml) stimulated α1(I) collagen mRNA expression in cultured HSC and LPS marginally showed the effect (Fig. 7, upper left panel). Addition of anti-IL-10 antibodies further promoted the increases in α1(I) collagen mRNA levels in TGF-β- or LPS-stimulated HSC (Fig. 7, upper panel). Densitometric data from at least three sets of experiments were standardized with β-actin results and statistically compared between the different treatments (Fig. 7, lower panel). Addition of anti-IL-10 antibodies slightly, but significantly, reduced basal interstitial collagenase mRNA expression. Furthermore, it suppressed an increase in interstitial collagenase mRNA levels induced by TNF-α and LPS (Fig. 7, lower left panel). On the contrary, IL-10 neutralization significantly enhanced by 2-fold the increase in α1(I) collagen mRNA expression induced by TGF-β (10 ng/ml). Even though LPS (10 μg/ml) alone did not significantly increase α1(I) collagen mRNA levels, concomitant treatment of the cells with anti-IL-10 IgG caused a significant stimulation of α1(I) collagen mRNA expression.
IL-10 Expression by Hepatic Stellate Cells

**Fig. 8. Effects of IL-10 expression on α1(I) collagen promoter activity.** Cultured HSC were co-transfected with a IL-10 expression vector (sense or antisense) and an α1(I) collagen promoter-luciferase construct (pGLCOL2 or pGLCOL3) to examine effects of IL-10 expression of α1(I) collagen promoter activity. The transfection with the antisense vector served as a control. Note that the promoter activity of both pGLCOL2 and pGLCOL3 was suppressed by 40% by the IL-10 sense transfection, indicating expression of IL-10 suppresses α1(I) collagen promoter activity.

**DISCUSSION**

The present study is the first to demonstrate that HSC express IL-10 upon their activation in vivo and in vitro. HSC are considered as pericytes in the liver (40), which are also known to serve as principal cells to participate in liver fibrogenesis via their myofibroblastic activation (1). A recent report demonstrated expression of IL-10 by mesangial cells, the pericytes in the glomerulus, which are incriminated as the major source of fibroproliferative responses in glomerulonephritis (41). Since HSC and mesangial cells are considered analogous due to their similar functionality and pathophysiologic roles, we hypothesized that HSC may express IL-10. Our results demonstrate IL-10 is expressed by HSC upon activation in culture and during the early stage of biliary liver injury. Our RT-PCR specificity was verified by sequencing of the IL-10 PCR product, with which we further confirmed induced mRNA expression in vivo. Western blot analysis of HSC protein extracts revealed a prominently expressed 17-kDa IL-10 protein at 7 days after BDL, and the cultured HSC were shown to express and release IL-10 in response to TNF-α, TGF-β, and LPS.

Our previous work showed enhanced expression of TNF-α by hepatic macrophages at 1 and 2 weeks after BDL but an almost complete disappearance of such induction at 3 weeks (42). Since our in vitro experiment demonstrates induction of IL-10 in HSC by TNF-α, it may be assumed that macrophage-derived TNF-α in the liver might have induced IL-10 expression by HSC in the time-dependent manner in the BDL model. However, the concomitant induction (7 days) and repression (19 days) of macrophage TNF-α and HSC IL-10 expression in this in vivo model also suggest IL-10 derived from HSC may not function as an anti-inflammatory cytokine toward hepatic macrophages. This assumption led us to think of other biological significance that HSC-derived IL-10 may possess in the liver. To this end, we were intrigued by recent studies that showed IL-10-mediated regulation of the genes involved in matrix remodeling and homeostasis such as MMP-1, MMP-3, MMP-9, TIMP-1, and α1(I) collagen in skin fibroblasts (28) and macrophages (29). Indeed, our culture study clearly demonstrates IL-10 released by HSC suppresses their collagen production and this effect is mediated at least in part by transcriptional inhibition of collagen gene and enhanced expression of interstitial collagenase. These findings suggest a negative autoregulatory role of IL-10 in HSC collagen production in matrix remodeling. In support of this view, our in vivo data reveals concomitant induction of IL-10 and interstitial collagenase in HSC during the early stage of cholestatic liver fibrosis (7 days after BDL) and the lack of HSC IL-10 expression in association with marked α1(I) collagen induction in advanced liver fibrosis at 19 days. This raises an intriguing secondary hypothesis that the failure of HSC to continue their expression of IL-10 may underlie progressive fibrogenesis leading to liver cirrhosis.

Interplay between soluble factors of paracrine and autocrine sources is complex in regulation of HSC biology. Among several cytokines implicated in activation of HSC, TGF-β is considered a potent fibrogenic cytokine that seems capable of conferring HSC most aspects of cellular activation (3–8). This cytokine can be released by hepatic macrophages (9) or HSC by themselves (15), and the paracrine and autocrine interaction can be established via its ability to autoinduce its expression (15). In our in vitro study, TGF-β induced IL-10 in cultured HSC. However, IL-10 induction was abolished in HSC at 19 days after BDL despite HSC (43) and hepatic macrophages continue to express TGF-β at this time point in this model. Thus, unlike the close in vivo association between IL-10 and TNF-α expression in the BDL model, this dissociation of IL-10 and TGF-β expression suggests complex regulation of IL-10 expression by TGF-β. Another discrepancy noted in the present study was the continued induction of IL-10 expression by culture-activated HSC as compared with the time-dependent induction seen in vivo. This obviously suggests cellular or molecular differences in in vitro and in vivo activated HSC or reflects the absence of other in vivo factors that may cause the time-dependent expression in the culture system. It is attractive to speculate that these factors may be derived from other cell types in the liver including hepatic macrophages. Additional studies are obviously needed to test this hypothesis.

**REFERENCES**

1. Friedman, S. L. (1996) in *Progress in Liver Diseases* (Bayer, J. L., and Ocker, R. K., eds) Vol. 14, pp. 101–130, W. B. Saunders, Philadelphia
2. Pinzani, M., Gesualdo, L., Sabbah, G. M., and Abboud, H. E. (1989) *J. Clin. Invest.* 84, 1764–93
3. Matsuoka, M., Pham, N.-T., and Tsukamoto, H. (1989) *Liver* 9, 71–78
4. Davis, B. H. (1988) *J. Cell. Physiol.* 140, 167–178
5. Pinzani, M., Godin, P., Khouri, E., Meschan, I., and Abboud, H. E. (1990) *J. Clin. Invest.* 85, 1739–1745
6. Gressner, A. M., Lotfi, S., Gressner, G., and Lahme, B. (1992) *Hepatology* 16, 1300–1306
7. Overall, C. M. (1995) *J. Cell. Physiol.* 164, 17–25
8. Demouville, A., Geinoz, A., Gabbiani, F., and Gabbiani, G. (1993) *J. Cell Biol.* 122, 103–111
9. Yokozeki, M., Moriyama, K., Shimokawa, H., and Kuroda, T. (1997) *Exp. Biol. Med.* 22, 328–329
10. Matsuoka, M., and Tsukamoto, H. (1999) *Hepatology* 30, 599–605
11. Friedman, S. L., and Arthur, M. J. P. (1989) *J. Clin. Invest.* 84, 1780–1785
12. Kamimura, S., and Tsukamoto, H. (1995) *Hepatology* 21, 1304–1309
13. Vidal-Vanaclocha, F., Alvarez, A., Assumendi, A., Urcelay, B., Tonino, P., and Dinarello, C. A. (1996) *J. Natl. Cancer Inst.* 88, 3–4
14. Gressner, A. M., Lotfi, S., Gressner, G., and Lahme, B. (1992) *Hepatology* 16, 1250–1256
15. Bachem, M. G., Melchior, R., and Gressner, A. M. (1989) *J. Clin. Chem. Clin. Biochem.* 27, 555–565
16. Bachem, M. G., Meyer, D., Melchior, R., Sell, K. M., and Gressner, A. M. (1992) *J. Clin. Invest.* 89, 19–27
17. Denel, T. F., and Huang, J. S. (1984) *J. Clin. Invest.* 74, 669–676
18. Ferreira, G. P., Mustoe, T. A., Landesman, B., Gershon, M. S., and Senior, R. M. (1989) *J. Clin. Invest.* 84, 1250–1256
19. Pinzani, M., and Abboud, H. E. (1990) *Hepatology* 21, 1300–1309
20. Senior, R. M., and Denel, T. F. (1989) *J. Cell Biol.* 109, 429–440
21. Marra, P., Valent, A. J., Pinzani, M., and Abboud, H. E. (1995) *J. Clin. Invest.* 92, 1674–1680
22. Marra, P., Ferrari, A., Marra, F., Riccardi, D., Laffi, G., and Gentilini, P. (1996) *Gastroenterology* 106, 1301–1311
23. Maher, J. J., and Scott, M. K. (1996) *Am. J. Physiol.* 272, C676–C683
24. Pinzani, M., Carloni, V., Marra, F., Riccardi, D., Laffi, G., and Gentilini, P. (1998) *Gastroenterology* 106, 1301–1311
25. Maher, J. J., and Scott, M. K. (1996) *Hepatology* 24, 353A (abstr.)
26. Hellebrand, C., Wang, S., and Tsukamoto, H., Brenner, D. A., and Rippe, R. A. (1996) *Hepatology* 24, 670–676
27. Fiorentino, D. F., Bond, M. W., and Mosmann, T. R. (1989) *J. Exp. Med.* 170, 2081–2095
28. S. C. Wang, M. Ohata, M. Lin, and H. Tsukamoto, unpublished observation.
308

IL-10 Expression by Hepatic Stellate Cells

24. De Waal Malefyt, R., Hannen, J., Spits, H., Roncarolo, M. G., Te Velde, A., Figdor, C., Johnson, K., Kastelein, R., Yssel, H., and De Vries, J. E. (1991) *J. Exp. Med.* 174, 915–924

25. De Waal Malefyt, R., Abrams, J., Bennett, B., Figdor, C. G., and De Vries, J. E. (1991) *J. Exp. Med.* 174, 1209–1220

26. Thompson-Snipes, L., Dhar, V., Bond, M. W., Mosmann, T. R., Moore, K. W., and Rennick, D. M. (1991) *J. Exp. Med.* 173, 507–510

27. Rousset, F., Garcia, E., Defrance, T., Peronne, C., Vezzio, N., Hsu, D. H., Kastelein, R., Moore, K. W., and Banchereau, J. (1992) *Proc. Natl. Acad. Sci. U. S. A.* 89, 1890–1893

28. Reitamo, S., Remitz, A., Tamai, K., and Uitto, J. (1994) *J. Clin. Invest.* 94, 2489–2492

29. Lacraz, S., Nicod, L. P., Chicheportiche, R., Welgus, H. G., and Dayer, J.-M. (1995) *J. Clin. Invest.* 96, 2304–2310

30. Tramas, E. G., and Symeonidis, A. (1957) *Am. J. Pathol.* 33, 13–27

31. Tsukamoto, H., Cheng, S., and Blaner, W. S. (1996) *Am. J. Physiol.* 270, G581-G586

32. Ohata, M., Lin, M., Satre, M., and Tsukamoto, H. (1997) *Am. J. Physiol.* 272, G589-G596

33. Chomczynski, P., and Sacchi, N. (1987) *Anal. Biochem.* 162, 156–159

34. Goodman, R. E., Oblak, J., and Bell, R. G. (1992) *Biochem. Biophys. Res. Commun.* 189, 1–7

35. Quinn, C. O., Scott, D. K., Brinckerhoff, C. E., Matrisian, L. M., Jeffrey, J. J., and Partridge, N. C. (1990) *J. Biol. Chem.* 265, 22342–22347

36. Genovese, C., Rowe, D., and Kream, B. (1984) *Biochemistry* 23, 6210–6216

37. Peterkofsky, B., and Diegelmann, R. (1971) *Biochemistry* 10, 988–994

38. Rippe, R. A., Almounajed, G., and Brenner, D. A. (1995) *Hepatology* 22, 241–251

39. Feng, L., Tang, W. W., Chang, J. C. C., and Wilson, C. B. (1993) *Biochem. Biophys. Res. Commun.* 192, 452–458

40. Pinzani, M., Pailli, P., Ruocco, C., Casini, A., Milani, S., Baldi, E., Giotti, A., and Gentilini, P. (1992) *J. Clin. Invest.* 90, 193–203

41. Fuqueray, B., Boutard, V., Philippe, C., Kornreich, A., Marcharnt, A., Perez, J., Goldman, M., and Baud, L. (1995) *Am. J. Pathol.* 147, 176–182

42. Lin, M., Rippe, R. A., Niemela, O., Brittenham, G., and Tsukamoto, H. (1997) *Am. J. Physiol.* 272, G1355-G1364

43. Ohata, M., Lin, M., Satre, M., and Tsukamoto, H. (1997) *Am. J. Physiol.* 272, G589–G596