Designing Performance Measurement For Supply Chain’s Actors And Regulator Using Scale Balanced Scorecard And Data Envelopment Analysis

Elisa Kusriini¹, Subagyo² and Nur Aini Masruroh³

¹Department of Industrial Engineering, Indonesia Islamic University, Jl Kaliurang Km 14,5 Yogyakarta 55584 Telp (+62) 274 898444 , Indonesia,
Mechanical and Industrial Engineering, Gadjahmada University, Jl. Grafika No. 2, Yogyakarta, 55281, Indonesia, (+62) 274 521673, Email : elisa_kusriini@yahoo.com

²Mechanical and Industrial Engineering, Gadjahmada University, Jl. Grafika No. 2, Yogyakarta, 55281, Indonesia, (+62) 274 521673, Email : subagyo@ugm.ac.id

³Mechanical and Industrial Engineering, Gadjahmada University, Jl. Grafika No. 2, Yogyakarta, 55281, Indonesia, (+62) 274 521673, Email : aini@ugm.ac.id

Abstract. This research is a sequel of the author’s earlier conducted researches in the fields of designing of integrated performance measurement between supply chain’s actors and regulator. In the previous paper, the design of performance measurement is done by combining Balanced Scorecard - Supply Chain Operation Reference - Regulator Contribution model and Data Envelopment Analysis. This model referred as B-S-Rc-DEA model. The combination has the disadvantage that all the performance variables have the same weight. This paper investigates whether by giving weight to performance variables will produce more sensitive performance measurement in detecting performance improvement. Therefore, this paper discusses the development of the model B-S-Rc-DEA by giving weight to its performance’variables. This model referred as Scale B-S-Rc-DEA model. To illustrate the model of development, some samples from small medium enterprises of leather craft industry supply chain in province of Yogyakarta, Indonesia are used in this research. It is found that Scale B-S-Rc-DEA model is more sensitive to detecting performance improvement than B-S-Rc-DEA model.

Keywords: Performance Measurement, Supply Chain’s Actors and Regulator, Balanced Scorecard, Data Envelopment Analysis, Scale BSC-DEA

1. Introduction

Performance measurement is defined as the process of quantifying the level of efficiency and effectiveness of an activity into a measured value [1]. Performance measurement is a process of assessing the progress of work towards the goals and objectives that have been defined previously. The measurement of supply chain performance becomes the main concern of not only the supply chain
actors but also the regulator/government. For supply chain actors, performance measurement can be used as a basis to improve its performance. For regulators, performance measurement can be used to identify the effectiveness and the impact of its program in facilitating the improvement of supply chain performance. All this time, performance measurements by supply chain actors and regulator/government are conducted separately. It causes inefficiency, as well as obstructs both parties in understanding the effectiveness of each respective performance. Therefore, an efficient and effective integrated model of performance measurement by supply chain actors and a regulator is required.

Currently, the measurement model is developed separately. Supply chain performance measurement takes more attention from both practitioners and academics. The performance measurement model of supply chain actors is improved by using various approaches and different focuses. Several models have been proposed and employed such as Balanced Scorecard [2,3,4,5,6,7,8,9], Supply Chain Operation Reference (SCOR) [10,11,12,13,14,15], Component of measurement, seperti quality, cost, delivery time dan sebagainya [16, 17, 18,19,20, 21], Data Envelopment Analysis (DEA) [22, 23,24,25,26]. Until recently, there has been no agreement of researchers which model is most flattering to be used and which key indicator that important to be maintained. Recent models demonstrate its complex performance measurement due to wide range of supply chain that becomes cause of weaknesses. The complexity will put management in difficulties for selecting the most important key indicator to be maintained. The existing models could not yet be employed for best performance management since it have not based on optimization model.

While, the models of performance measurement on regulator/government contribution towards development of supply chain actors are commonly performed but only on certain aspects, i.e. regulator’s role in technology, research and development [27,28,29], regulator’s role in improving financial performance [30,31,32], regulator’s role in improving human resources capability [33,34], regulator’s role in improving networking and marketing [35,36]. The measurement model for regulator/government’s contribution on the whole process of chain operation still limited, especially those which specifically effect on performance of financial, customers, internal business process and learning and growth of supply chain.

Kusrini et al. (2014) [37], proposed a model of integrated measurement between actors and regulators by combining Balanced Scorecard - Supply Chain Operation Reference - Regulator Contribution model and Data Envelopment Analysis. This model referred as B-S-Rc-DEA model. This B-S-Rc-DEA model has been tested in an innovative industry of leather craft in Indonesia and has managed to measure the performance of the regulator and supply chain’s actor. However, B-S-Rc-DEA model has the disadvantage that all variables have the same weight. This paper investigates whether by giving weight to performance variables will produce more sensitive performance measurement in detecting performance improvement.

This paper is divided into 4 sections . The first part is introduction. The second part contains discussion of performance measurement using B-S-Rc-DEA model. The third part shows the development of scale B-S-Rc-DEA model. The final section contains conclusions.

2. Performance Measurement For Supply Chain Actor And Regulator Using B-S-Rc-Dea Model

The following is a brief explanation of the model B-S-Rc-DEA. Development of B-S-Rc-DEA model is performed in three stages, as follows [37]:

1. Developing BSC model to obtain valid indicators
 The basic model is Balance Scorecard (BSC) model. It is selected based on its frequent use in various industries and classified as the model with the most comprehensive approach by involving all aspects in balance. Widely, it applied also to assess regulator/government’s performance. In this stage, basic model is improved, from BSC (corporate) model to BSC’s
supply chain model (BSC-SC). Later, process activity measurement that conducted based on SCOR (Plan-Source-Make-Deliver-Return) is integrated into the perspective of internal process business originated from BSC-SC. Furthermore, integration is continued by involving performance measurement on regulator contribution towards supply chain actors on each BSC-SC perspective. Then, this model is known as BSC-SCOR-Regulator Contribution integration model. Later on, it is abbreviated as B-S-Rc (Balanced Scorecard- SCOR- Regulator Contribution) as illustrated by Figure 1. The indicators in this proposed model are consisted of 31 KPIs, i.e. 19 indicators to measure performance of supply chain’s actors and 12 indicators to measure the regulator’s performance.

2. Integrating developed B-S-Rc model with Data Envelopment Analysis (DEA). This model integration is required to cover weaknesses on a model based on BSC, which are the absence of standard methodology and benchmarking facility. These could be accomplished by combining B-S-Rc model with DEA, whereas DEA is a mathematic optimization model that calculates actors’ level of efficiency and might be used for benchmarking with clear and objective methodology [38,39]. This concept integration of B-S-Rc with DEA is carried out by indentifying variables in B-S-Rc into input and output variables. Those variables will be inputted into mathematical optimization calculation of DEA. Model of B-S-Rc-DEA is illustrated by Figure 2.

Figure 1. B-S-Rc model

![Efficiency Frontier Diagram](http://example.com/efficiency_frontier.png)
Figure 2. Integrated b-S-Re-DEA model

Performance measurement using B-S-Re-DEA model is initiated with identification of input and output variables from B-S-Rc model. Those variables will be inputted into mathematical optimization calculation of DEA model. DEA using primal and dual model with CRS (Constant Return to Scale) approach. Input model is consisted of 7 variables, which are regulator’s role in improving financial performance (X1), regulator’s role in market expansion (X2), regulator’s role in improving internal business process performance (X3), regulator’s role in improving learning and growth performance (X4), customer’s performance (X5), internal business process performance (X6), learning and growth performance (X7). Model output is consisted only one variable, which is financial performance (Y1) [40].

Performance measurement towards Small Medium Enterprises (SME) SC is performed on 40 innovative SME’s product of leather’s craft in Yogyakarta, Indonesia by measuring the indicators include in B-S-Re-DEA model during year 2013. Regulator’s measurement is held based on ‘LAKIP’ data (Report of Performance Accountability for Government Institution) and interview with Department of industry and trade, province of Yogyakarta, Indonesia. Each indicator measurement is normalized with SNORM and generates value ranged from 0-100.

B-S-Re-DEA uses linear programming model of primal and dual forms. The model solved by Linear Programming with the help of Software Win QS. Score (value) reflects the performance efficiency values are given in Table 1. Score of actors and regulators’ performance with B-S-Re-DEA model is ranged between 40.81 – 100 with average score of 60.61. Base on the measurement result using B-S-Re-DEA model, it is obtained only two SMEs that have a value of performance with 100% efficiency is Decision Making Unit (DMU/SME) 19 and 44. This shows that the two businesses can manage their input to get the optimum output [41]. The role of the regulator in these DMU is optimum with the assistance and facilitation that can be managed effectively by both DMU’s. Other DMUs can refer to both the DMU’s in managing performance.

DMU	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11
Performance score using B-S-Re-DEA	40.81	40.81	40.81	72.30	77.72	43.29	60.02	40.81	40.81	68.02
DMU	A12	A13	A14	A15	A16	A17	A18	A19	A20	A21
Performance score using B-S-Re-DEA	40.81	72.79	72.51	55.18	64.14	54.05	48.17	100.00*	80.53	74.15
DMU	A22	A24	A27	A28	A29	A30	A31	A32	A33	A35
Performance score using B-S-Re-DEA	40.81	45.99	49.62	96.31	61.45	63.61	42.58	85.90	83.28	45.01
DMU	A36	A37	A38	A40	A41	A42	A43	A44	A45	A46
Performance score using B-S-Re-DEA	61.50	50.02	48.91	40.81	57.38	60.55	68.70	100.00*	74.15	60.27
From the above explanation, it can be concluded that the B-S-Rc-DEA model has been tested in an innovative supply chain industry and has managed to measure the performance of the regulator and supply chain’s actor. However, B-S-Rc-DEA model has the disadvantage that all variables have the same weight. The following section will discuss the development of a model B-S-Rc-DEA by giving weights to the variables. This model is called the Scale B-S-Rc-DEA.

3. Performance Measurement For Supply Chain Actor And Regulator Using Scale B-S-Rc-Dea Model

Model combination of B-S-Rc-DEA excludes the consideration on indicator’s weighting. In fact, each indicator possibly provides difference contribution on performance. Hence, to acquire more sensitive result on performance improvement, then B-S-Rc-DEA will be more developed by weighting its each variable (later called as Scale B-S-Rc-DEA model). This is a model with weighting input and output variables. The concept of Scale B-S-Rc-DEA model is presented in Figure 3.

This measurement is performed by weighting the input and output variables. The performance variable weighting is carried out by conducting a survey and tested by using Analytical Hierarchy Process (AHP) technique. AHP is a tool in decision-making by many criteria. A total of 74 questionnaires distributed and filled out by the respondents with the composition of the respondents are given in Table 2. The questionnaire contains pair wise comparisons between perspective and an indicator of the scale of 1-9. Designed questionnaire was designed to determine the relative importance of each indicator and perspectives. The hierarchical structure is given in Appendix 1.

The result of AHP analysis shows that the actors’ performance weighted as 67.3% while the regulators weighted as 32.7%. The actors’ performance that provide highest contribution is customer’s performance (27.9%), followed by, consecutively financial performance (26.8%), internal business process performance (24.3%) and learning and growth performance (21%). While, for regulator, the performance that provides highest contribution is the role in improving new market expansion (29%), followed by, consecutively, the role in improving financial performance (28.8%), the role in improving internal business process (23%) and the role in improving learning and growth (19%).

Calculation of performance using B-S-Rc-DEA model is done by first multiplying the value of each indicator with weights obtained from AHP. The performance of the weighted value is then analyzed using a mathematical model of DEA. Results of the calculation of the performance of the Scale B-S-Rcs –DEA model is given in Table 3. Score of actors and regulators’ performance with Scale B-S-Rc-DEA model is ranged between 39.69 – 100 with average score of 59.98.
To find out whether there is a significant differences in the value of the performance between B-S-Rec-DEA and Scale B-S-Rc-DEA, then the independent t test is conducted. Results of statistical test t test showed that both methods confirmed no significant difference in performance values. However, the average value (mean) of Scale B-S-Rc - DEA (59.98) is lower than B-S_Rc-DEA model (60.61). This means that Scale B-S-Rc-DEA model more sensitive in assessing the performance due to low efficiency values indicate greater gap value (towards 100 % efficiency). It will provide information about opportunities for improvement [42].

Table 2. Respondent Composition

Number	Respondent	Total
1.	The Cooperative, Industrial and Trade service of Yogyakarta and Center for Leather, Rubber and Plastics Yogyakarta, Indonesia	23
2.	Leather’s craftsmen, trader and administrators of cooperative or association of leather craftsmen	47
3.	SCM’s Consultant	4
Total		74

Table 3. Performance score using Scale B-S-Rc-DEA model

DMU	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11
Score										
Scale B-S-Rc - DEA	40.01	39.91	39.89	73.10	83.44	42.80	59.68	39.69	39.69	67.74
DMU	A12	A13	A14	A15	A16	A17	A18	A19	A20	A21
Score										
Scale B-S-Rc - DEA	39.69	73.54	69.00	52.88	60.96	55.18	47.92	100.00	80.06	72.99
DMU	A22	A24	A27	A28	A29	A30	A31	A32	A33	A35
Score										
Scale B-S-Rc - DEA	39.69	44.67	51.24	89.74	61.39	62.47	43.67	87.87	83.39	44.12
DMU	A36	A37	A38	A40	A41	A42	A43	A44	A45	A46
Score										
Scale B-S-Rc - DEA	57.71	50.60	46.27	40.39	59.31	60.20	67.66	100.00	72.99	57.48

4. Conclusion
The B-S-Rc-DEA model excludes the consideration on indicator's weighting. In fact, each indicator possibly provides difference contribution on performance. Hence, B-S-Rc-DEA model is developed by weighting its input and output variable using AHP technique. This model referred as Scale B-S-Rc-DEA model. Base on case study in small medium enterprises of leather craft industry supply chain in province of Yogyakarta, Indonesia, it can be conclude there is no significant difference in performance values between B-S-Rc-DEA and scale B-S-Rc-DEA model. However Scale B-S- Rc-DEA model is more sensitive in assessing the performance than B-S-Rc-DEA model. The limitation of this study is that the sample is limited to Supply chain of innovative products, thus it is required consideration and prudent to generalize the results to apply to supply chain of functional product.
Reference

[1] Neely, Agregory, M., and Platts, K. 1995 Performance Measurement System Design: A Literature Review and Research Agenda, *International Journal of Operation and Production Management*, Vol 15, pp 80-116.

[2] De Sousa, T.B., Camparotti, C.E.S., Esposto, K.F., and Guerrini, F.M. 2014 Alignment of Balanced Scorecard Perspectives with Supply Chain Management Objectives: a Literature Review, *Independent Journal of Management & Production (IJM&P)* ISSN: 2236-269X, Vol. 5, No. 4, pp. 1050-1070.

[3] Barber, E. 2008 How to Measure the "Value" in Value Chains, *International Journal of Physical Distribution & Logistics Management*, Vol. 38 No. 9, pp. 685-698.

[4] Bhagwat, R. and Sharma, M.K. 2007 Performance Measurement of Supply Chain Management: a Balanced Scorecard Approach, *Computers & Industrial Engineering*, Vol. 53 pp.43–62.

[5] Brewer, P.C. and Speh, T.W. 2000 Using Balanced Scorecard to Measure Supply Chain Performance, *Journal of Business Logistics*, Vol 21, No.1.

[6] Chia, A., Goh, M., and Hum, S.H. 2009 Performance Measurement in Supply Chain Entities: Balanced Scorecard Perspective, *Benchmarking: An International Journal*, Vol. 16 No. 5, pp. 605-620.

[7] Chang, H. H. 2009 An Empirical Study of Evaluating Supply Chain Management Integration using Balanced Score Card in Taiwan’, *The Service industries Journal*, Vol.29, No.2, pp.185-201.

[8] Gunasekaran, A., Patel, C., and Mc Gaughey, R.E. 2004 A Framework for Supply Chain Performance Measurement’, *International Journal Production Economy*, Vol 87, 2004, pp.333–347.

[9] Park, J.H., Lee, J. S., and Yoo, J. S. 2005 A Framework for Designing the Balanced Supply Chain Scorecard, *European Journal of Information Systems*, Vol. 14, pp. 335–346.

[10] Georgise, F.B., Thoben, KD., and Seifert, M. 2012 Adapting the SCOR Model to Suit the Different Scenarios: A Literature Review & Research Agenda, *International Journal of Business and Management*, Vol. 7, No. 6; pp. 1-17.

[11] Chae, K. 2009 Developing Key Performance Indicators for Supply Chain: an Industry Perspective’, *Supply Chain Management: An International Journal*, 14/6, pp. 422–428.

[12] Huan, S., Sheoran, S.,Unil K., and Wang, G. 2004 A Review and Analysis of Supply Chain Operations Reference (SCOR) Model, *Supply Chain Management*, Vol 9, No.1. pp 23-29.

[13] Lockamy, A. and McCormack, K. 2004 Linking SCOR Planning Practices to Supply Chain Performance: An Exploratory Study’, *International Journal of Operations & Production Management*, Vol 24, No. 11/12, pp 1192- 1217.

[14] Supply Chain Council 2001 Supply Chain Operation Reference Model, http://www.supply-chain.org [online] (accessed 14 December 2010).

[15] Theeranuphattana, A. and John C.S. Tang. 2008 A Conceptual Model of Performance Measurement for Supply Chains Alternative Considerations, *Thailand Journal of Manufacturing Technology Management*, Vol. 19 No. 1, pp.125-148.

[16] Beamon, B.M. 1999 Measuring Supply Chain Performance, *International Journal of Operation & Production Management*, Vol 19, pp. 275-292.

[17] Espinoza, O., Bond, B.H., and Kline, E. 2010 Supply Chain Measures of Performance for wood products manufacturing', *Forest Production Journal*, 60(7/8);700–708.

[18] Farris, M.T. and Hutchison, P.D. 2002 Cash-To-Cash: The New Supply Chain Management Metric, *International Journal of Physical Distribution & Logistics Management*, Vol 32/4, Pp 288-298.

[19] Hum, S.H. and Parllar,M. 2014 Measurement and Optimization of Supply Chain Responsiveness, *IIE Transactions*, Vol 46 Number 1, Taylor & Francis Group, Philadelphia.

[20] Marthin, R. and Patterson, J. W. 2009 On Measuring Company within A Supply Chain, *International Journal of Production Research*, Vol.47, No.9, pp.2449 - 2460.
[21] Pohlen, T., L. and Coleman, B., J. 2005 Evaluating Internal Operations and Supply Chain Performance Using EVA and ABC, Advanced Management Journal; spring, 70, 2; ABI/INFORM Global 45-58.

[22] Chen,Y.S. and Chen, B., Y. 2009 Using Data Envelopment Analysis (DEA) to Evaluate the Operational Performance of the Wafer Fabrication Industry in Taiwan, Journal of Manufacturing Technology Management, Vol. 20, No. 4, 475-488.

[23] Wong,W.P. and Wong,K.Y. 2007 Supply Chain Performance Measurement System using DEA Modeling, Industrial Management & Data Systems, Vol. 107, No. 3, pp. 361-381.

[24] Yang, Y., Feng, D., Wu, L., Liang, G., and Wu, D. D. 2011 Supply Chain DEA: Production Possibility Set and Performance Evaluation Model, Annals of Operations Research, Vol. 185, no. 1, pp. 195–211.

[25] Liang, L., Yang, F., Cook, W.D., and Zhu, J. 2006 DEA Models for Supply Chain Efficiency Evaluation, Published Online: Annual Operation Research, 145:35–49.

[26] Deng, Z., Wu, C., Zhang, J., and Wang, J. 2014 Study on the Supply Chain Efficiency of Rural Public service in China Based on Three Stage DEA Model, Asian Agricultural Research, 691, 6-13.

[27] Park, J.Y. and Kim, S.W. 2010 An Empirical Model To Assess The Influence Of The Government’s Research And Development Program On Korean Small And Medium Enterprise (SME) Performance, The Asian Journal on Quality, Vol. 11 No. 3, pp. 288-302.

[28] Nam, M. 2010 The Impact Of Government R&D Subsidies On Smes In Korea Do Government R&D Subsidies Make Smes More Competitive In The Market?, A Thesis submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University, UMI publishing, ProQuest LLC.

[29] Cin, B.C., Kim, Y.J., and Vonortas, N.S. 2013 The Impact of Government R&D Subsidy on Firm Performance: Evidence from Korean SMEs, The Asian Research Policy Symposium, Seoul, Korea.

[30] Saad, M.N. and Idris, A. 2014 A Profile of Malaysian International Small and Medium Enterprises: Mapping Current Performance on National Policies and Strategic Objectives, The IUP Journal of Business Strategy, Vol. XI, No. 3, Pp.60-83.

[31] Xiang, D. and Worthington, A.C. 2013 The Impact of Government Financial Assistance on SMEs in Australia During the GFC, Disscussion Paper Financial, Griffith Business School, No. 2013-07.

[32] Tesfayohannes, M. 2010 Streamlining Government Financing Programs for SME’s in the Sub-Saharan Africa: The Case of Botswana, ICSB World Conference Proceedings: 1-37. Washington: International Council for Small Business (ICSB).

[33] Ćučković, N. and Vučković, V. 2013 Education-Research-Innovation Policy Triangle And Competitiveness Of The Croatian SME Sector, The Tenth International Conference Challenges of Europe: The Quest for New Competitiveness.

[34] Shariff, M.N.M., Peou, C., and Ali, J. 2010 Moderating Effect of Government Policy on Entrepreneurship and Growth Performance of Small-Medium Enterprises in Cambodia, International Journal of Business and Management Science, 3(1),Pp. 57-72.

[35] Hussain, I., Farooq, Z., and Akhtar, W. 2012 Smes Development And Failure Avoidance In Developing Countries Through Public Private Partnership, African Journal of Business Management, Vol. 6 (4), pp. 1581-1589.

[36] Hadiyati, E. 2015 Marketing and Government Policy on MSMEs in Indonesian: A Theoretical Framework and Empirical Study, International Journal of Business and Management; Vol. 10, No. 2, Pp. 128-141.

[37] Kusrini, E., Subagyo., and Masruroh, N.A. 2014 A New Approach to Design Supply Chain Key Performance Indicator for Actors and Regulator : A Case Study in Innovative Product In Indonesia, International Journal of Business Performance Management, (in press).
[38] Coelli, T. 1996 A Guide to DEAP version 2.1. A Data Envelopment Analysis (Computer) Program. *Departement of Economic University of New England*.

[39] Rickards, R.C. 2003 Setting Benchmarks and Evaluating Balanced Scorecards with Data Envelopment Analysis, *International Benchmarking Journal*, Vol. 10, No. 5, pp. 62-86.

[40] Kusrini, E., Subagyo., and Masruroh, N.A. 2015 Combining Balanced Scorecard and Data Envelopment Analysis to Design Performance Measurement for Supply Chain Actor and Regulator: A Case Study in Innovative Product in Indonesia, *Lectures Note in Electrical Engineering, Industrial Engineering, management Science and Application 2015*, Springer, Vol 349, pp 551-562.

[41] Banker, R.D., Charness, A., and Cooper, W.W. 1984 Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis, *Management Science*, Vol. 30 No. 6,1078-92.

[42] Lee, J.Y. 2012 Combining Balanced Scorecard and Data Envelopment Analysis in Kitchen Employees Performance Measurement - An Exploratory Study - A Dissertation Hospitality Management, Iowa.

Appendix 1. The Hierarchical Structure of Supply Chain’s Actors and Regulator’s Performance