Nuclear Weak Processes and Astrophysical Applications

Toshio Suzuki1,2 and Michio Honma3
1Department of Physics, College of Humanities and Sciences, Nihon University
Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan
2Center for Nuclear Study, University of Tokyo, Hirosawa, Wako-shi, Saitama 351-0198, Japan
3Center for Mathematical Sciences, University of Aizu
Aizu-Wakamatsu, Fukushima 965-8580, Japan
E-mail: suzuki@chs.nihon-u.ac.jp

Abstract. Nuclear weak processes are investigated based on new shell model Hamiltonians, which give successful description of spin responses in nuclei, and applied to astrophysical problems. Neutrino-induced reactions on 12C and synthesis of light elements by supernova neutrinos, and effects of contamination of 13C, whose natural isotopic abundance is 1.1\%, on inclusive ν-12C reactions are discussed. Spin-dipole transitions and ν-induced reactions on 16O are studied by using a new Hamiltonian with proper tensor components, and compared with conventional calculations and previous CRPA results. Gamow-Teller transition strength in 40Ar and ν-induced reactions on 40Ar by solar neutrinos are studied based on monopole-based-universal interaction (VMU). We finally discuss electron capture reactions on Ni isotopes in stellar environments.

1. Introduction
Neutrino-nucleus reactions and electron capture reactions, which are dominantly induced by excitations of spin modes in nuclei, are investigated with the use of new shell model Hamiltonians, SFO[1] and SFO-tls [2] in p-shell and p-sd shell, GXPF1 [3] in fp-shell and monopole-based-universal interaction (VMU[4]) in $sd.fp$ shell. The new Hamiltonians properly take into account important roles of the tensor interactions.

Neutrino nucleus reactions on 12C, 13C and 16O are studied in Sect. 2. Neutrino-induced reactions on 40Ar are studied in Sect. 3. Electron capture reactions on Ni isotopes in stellar environments are discussed in Sect. 4.

2. Neutrino-Nucleus Reactions in Carbon and Oxygen
2.1. Neutrino-induced Reaction on 12C and Light Element Synthesis
Neutrino-induced reactions in p-shell nuclei are investigated based on new shell model Hamiltonians[1], which take into account important roles of tensor interaction properly[9] and give good account of spin-dependent modes in p-shell nuclei. Magnetic moments of p-shell nuclei are systematically well described, and Gamow-Teller (GT) transition strengths in 12C and 14C are also well explained[1].

The GT strength in 12C is enhanced for the new Hamiltonian, SFO[1], compared to conventional Hamiltonians, and the cross sections of ν-induced exclusive charge-exchange
reaction, $^{12}\text{C} (\nu, e^-)^{12}\text{N}_{\text{g.s.}}$, are reproduced by SFO. The enhancement of the ν-^{12}C reaction cross sections is found to lead to the enhancement of the production yields of light elements, ^{11}B and ^7Li, in supernova explosions[5, 6]. The element ^{11}B is produced by both $^{12}\text{C} (\nu, \nu'p)^{11}\text{B}$ and $^7\text{Li} (\alpha, \gamma)^{11}\text{B}$ reactions while ^7Li is produced through $^4\text{He} (\nu, \nu'p)^{3}\text{H} (\alpha, \gamma)^{7}\text{Li}$. Therefore, in addition to the enhancement of the reaction cross sections in ^{12}C, the enhancement of the ν-^4He reaction cross sections with the use of recent Hamiltonians such as WBP[7] is also important to get the enhancement of the enhancement of the production yields of ^7Li and ^{11}B. The enhancement factor for the production yield is found to be about 20% and 30% for ^{11}B and ^7Li, respectively, for WBP+SFO Hamiltonians in a supernova explosion model[5]. Here, neutral current reactions induced by heavy-flavor neutrinos with higher energies play dominant roles, while in case of neutrino oscillations charge-exchange reactions induced by ν_e also become important[6].

2.2. Neutrino-induced Reactions on ^{13}C

Neutrino-induced reactions on ^{13}C are studied by shell model calculations with the use of SFO. The carbon target is one of a very few examples, on which neutrino induced reactions are measured. The target is usually assumed to be pure ^{12}C isotope while it has contamination of ^{13}C with 1.1% of the natural isotopic abundance. As the Q-values for the ν-^{13}C reactions are low compared to ^{12}C case, the cross sections for ^{13}C are larger than those of ^{12}C and the small admixture of ^{13}C in the target can have non-negligible contributions to the inclusive ν-carbon cross sections at low neutrino energies.

Figure 1. (a) Inclusive reaction cross sections for $^{12}\text{C} (\nu, e^-)^{12}\text{C}$ and $^{13}\text{C} (\nu, e^-)^{13}\text{N}$ obtained by shell model calculations with the use of SFO. The sum of ^{12}C and 1.1% of ^{13}C cross sections are also shown. (b) Ratio of the cross sections; $[^{12}\text{C}+^{13}\text{C}(1.1\%)]/^{12}\text{C}$.

Calculated inclusive cross sections for carbon isotopes are shown in Fig. 1. The contributions from GT and spin-dipole transitions are included; multipoles up to $J^\pi = 4^+$ are taken into account. The effects of the mixing of ^{13}C on the ν-^{12}C cross sections are about 20% \sim 4% at E_ν =30 \sim 80 MeV, and get larger at lower E_ν (see Figs.1(a) and 1(b)). The inclusive cross sections for supernova temperatures T_ν are affected by about 30% \sim 5% at T_ν =4\sim 10 MeV. While the
effects are minor at high temperatures, they can be as large as $(50\%, 30\%, 15\%)$ for $T_\nu=(3.5, 4, 6)$ MeV, which correspond to a typical set of T_ν for ($\nu_e, \bar{\nu}_e, \nu_{\mu,\tau}$ and $\bar{\nu}_{\mu,\tau}$).

2.3. Neutrino-induced Reactions on 16O

The 16O nucleus plays an important role in producing 15N by 16O ($\nu, \nu'p$) 15N reaction in supernova explosions. It is also contained in water, which is used as target for neutrino detections. Here, ν-16O reactions are studied by using the modified SFO interaction, SFO-tls[2], where the tensor components of the $\pi + \rho$ meson exchange potential are used for the p-sd cross shell two-body matrix elements. As the ν-16O reactions are mainly induced by spin-dipole transitions, it is important to take full account of the tensor force properly in the p-sd cross shell part. Energies of the spin-dipole states are rather well reproduced. Calculated spin-dipole strength is more fragmented and shifted toward lower energy region for SFO-tls compared to SFO.

![Figure 2](image)

Figure 2. (a) Calculated reaction cross sections for 16O (ν, e^-) 16F obtained by shell model calculations with the use of SFO-tls and SFO, as well as CRP A calculations. (b) Ratios of the cross sections; SFO-tls vs CRPA, and SFO vs CRPA.

Calculated cross sections for charged-current and neutral-current reactions are shown in Figs. 2 and 3, respectively. The cross sections obtained by SFO-tls are compared with those of SFO and CRPA[8]. The charged-current (neutral-current) cross sections for SFO-tls are enhanced compared with those of SFO and CRPA by about $30\% \sim 5\%$ ($20\% \sim 10\%$) and 15%, respectively, at $E_\nu =30\sim 60$ MeV. It would be interesting to study effects of the enhancement of the cross sections for SFO-tls on nucleosynthesis and neutrino detections.

3. Neutrino-induced Reactions on 40Ar

Liquid Ar is an important target to measure solar neutrinos. Neutrino-induced reactions on 40Ar are studied by using the monopole-based-universal interaction (VMU) which has proper tensor components[4, 9]. The sdpf-m[10] and Gxpf1j[11] interactions are used for sd-shell and fp-shell part, respectively, while the VMU is adopted for the sd-fp cross shell part. This interaction will be referred as SDPF-VMU. Configurations are restricted within $2\hbar \omega$.
The same as in Fig. 2 for neutral current reaction; 16O (ν, ν') 16O.

Excitations, $(sd)^{-2}(fp)^2$, and the GT transition strengths are obtained for SDPF-VMU and WBT[7] interactions with the quenching factor of $f = 0.775[12]$. For SDPF-VMU, the energy of the first 1^+ state of 40K is well reproduced and the strength distribution is also rather well described. Calculated $B(GT_1)$ and the sum of $B(GT_1)$ up to the excitation energy of 40K (E_x) are shown in Fig. 4 as well as experimental values obtained by recent (p, n) reaction[13]. In case of WBT, the GT strength distribution is shifted toward lower energy by 1.81 MeV so that the E_x for the first 1^+ state coincides with the experimental value; this case is referred as WBT-ΔE. The experimental GT strength is rather well described by SDPF-VMU as shown in Fig. 4(b). The sum of the GT strength in Ref. [12] is smaller than the observed strength[13].

Calculated cross section for 40Ar (ν, e^-) 40K is shown in Fig. 5 for SDPF-VMU. The GT transitions and the transition to the isobaric analog state (IAS) are included. The contributions from the transitions where the final electron energy is larger than 5 MeV, which is consistent with the experimental condition for ICARUS[14], are taken into account. The calculated cross section is consistent with that obtained from experimental GT strength from the (p, n) reaction[13].

Cross sections folded over 8B ν spectrum[15] are shown in Table I. Here, the contributions from E_1^5 (axial electric dipole), $M1$ (magnetic dipole), C_1^5 (axial Coulomb) and L_1^1 (axial longitudinal) for GT and $C0$ (Coulomb) and $L0$ (longitudinal) for IAS are taken into account, except for the case of Ref. [12] where only the E_1^5 and $C0$ contributions are included. Note that $C0 + L0 = (2^2 - \omega^2)C0$ with q (ω) the momentum (energy) transfer. The GT contributions are found to be enhanced for SDPF-VMU and WBT-ΔE about by 40% compared with those of Ref. [12].

4. Electron Capture Reactions in Ni Isotopes

Electron capture reactions in Ni isotopes in stellar environments are studied by using the new shell model Hamiltonian, GXPF1J[11]. Spin properties of fp-shell nuclei are well described by GXPF1J with the universal quenching factors: $g_A^{E1}/g_A = 0.74$ and $g_A^{M1}/g_A = 0.75$. Experimental GT$_+$ strengths in the β^+ channel in 58Ni [16] and 60Ni [17] are well reproduced by GXPF1J [18]. Thus, the electron capture rates in 58Ni and 60Ni obtained from the experimental GT$_+$ strengths
Figure 4. (a) GT strengths for $^{40}\text{Ar} \rightarrow ^{40}\text{K}$ transition obtained by shell model calculations with the use of SDPF-VMU and WBT-ΔE interactions. (b) The sum of $B(GT)$ values up to excitation energy E_x of ^{40}K for SDPF-VMU and WBT-ΔE as well as the experimental data[13]. The values in Ref. [12] are also shown.

Table 1. Calculated cross sections for ^{40}Ar (ν, e^-) ^{40}K reaction folded over the neutrino spectrum of ^8B[15]. Contributions from GT, IAS and GT+IAS transitions are shown in units of 10^{-43}cm^2 for SDPF-VMU, WBT-ΔE interactions and Ref. [12].

	GT	IAS	GT+IAS
SDPF-VMU	10.99	2.10	13.1
WBT-ΔE	10.78	2.10	12.9
Ref. [12]	7.7	3.8	11.5

are well reproduced by GXPF1J at high temperatures, $T = T_9 \times 10^9$ K with $T_9 = 1$~10, and at high densities, $\rho Y_e = 10^7 \sim 10^{10}$ g/cm3 with Y_e the lepton-to-baryon ratio in stars[18]. The GXPF1J is also promising in neutron-rich Ni isotopes. The capture rates in ^{56}Ni for GXPF1J are found to be smaller compared to those for KB3G [19] due to larger fragmentation of the GT strength for GXPF1J. The extension of the present work to other isotopes such as Co and Mn is now under way[20].

The authors would like to thank B. Balantekin for raising the problem of ^{13}C contamination. The shell model calculations were carried out by the codes OXBASH[21] and MSHELL64[22]. This work has been supported in part by Grants-in-Aid for Scientific Research (C)22540290 of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References
[1] Suzuki T, Fujimoto R and Otsuka T 2003 Phys. Rev. C 67 044302
[2] Suzuki T and Otsuka T 2008 Phys. Rev. 78 061301(R)
Figure 5. Calculated reaction cross sections for 40Ar (ν, e^-) 40K reaction obtained by shell model calculations with the use of SDPF-VMU. The GT and IAS transitions are taken into account. Results are shown up to $E_x = (a)$ 40 MeV (log scale) and (b) 100 MeV.

[3] Honma M, Otsuka T, Brown B A and Mizusaki T 2002 Phys. Rev. C 65 061301(R); 2004 ibid. 69 034335
[4] Otsuka T, Suzuki T, Honma M, Utsuno Y, Tsunoda N, Tsukiyama K and Hjorth-Jensen M 2010 Phys. Rev. Lett. 104 012501
[5] Suzuki T, Chiba S, Yoshida T, Kajino T and Otsuka T 2006 Phys. Rev. C 74 034307
[6] Yoshida T, Suzuki T, Chiba S, Kajino T, Yokomakura H, Kimura K, Takamura A and Hartmann D H 2008 Astrophys. J. 686 448
[7] Warburton E K and Brown B A 1992 Phys. Rev. C 46 923
[8] Kolbe E, Langanke K and Vogel P 2002 Phys. Rev. D 66 013007
[9] Otsuka T, Suzuki T, Fujimoto R, Grawe H and Akashi Y 2005 Phys. Rev. Lett. 95, 232502
[10] Utsuno Y, Otsuka T, Mizusaki T and Honma M 1999 Phys. Rev. C 60 054315
[11] Honma M et al. 2005 J. Phys. Conf. Ser. 20 7
[12] Ormand W E, Pizzochero P M, Bortignon P F and Broglia R A 1995 Phys. Lett. B345 343
[13] Bhattacharya M, Goodman C D and Garcia A 2009 Phys. Rev. C 80 055501
[14] Bachall J N, Baldo-Ceolin M, Cline C B and Rubbia C 1986 Phys. Lett. B178 324
[15] Winter W T et al. 2003 Phys. Rev. Lett. 91 252501
[16] Hagemann M et al. 2004 Phys. Lett. B 579 251
[17] Anantaraman et al. 2008 Phys. Rev. C 78 065803
[18] Suzuki T, Honma M, Mao H, Otsuka T and Kajino T 2011 Phys. Rev. C 83 044619
[19] Coulier E et al. 2005 Rev. Mod. Phys. 77 427
[20] Suzuki T, Honma M, Yoshida T, Mao H, Kajino T and Otsuka T 2011 Prog. Part. Nucl. Phys. 66 385
[21] OXBASH, The Oxford, Buenos-Aires, Michigan State, Shell Model Program, Brown B A, Etchegoyen A and Rae W D M 1986 MSU Cyclotron Laboratory Report No. 524
[22] Mizusaki T, Shimizu N, Utsuno Y and Honma M 2010, unpublished.