Intermolecular dialkylation of alkenes with two distinct C(sp\(^3\))–H bonds enabled by synergistic photoredox catalysis and iron catalysis

Xuan-Hui Ouyang\(^1\)*, Yang Li\(^1\)*, Ren-Jie Song\(^1\)†, Ming Hu\(^1\), Shenglian Luo\(^1\), Jin-Heng Li\(^1,2,3\)†

The functionalization of unactivated C(sp\(^3\))–H bonds represents one of the most powerful and most atom-economical tools for the formation of new carbon-based chemical bonds in synthesis. Although cross-dehydrogenative coupling reactions of two distinct C–H bonds for the formation of carbon-carbon bonds have been well investigated, controlled functionalizations of two or more different C(sp\(^3\))–H bonds across a functional group or a molecule (e.g., an alkene or alkyne) in a single reaction remain challenging. Here, we present a three-component dialkylation of alkenes with common alkanes and 1,3-dicarbonyl compounds via synergistic photoredox catalysis and iron catalysis for the synthesis of two functionalized 1,3-dicarbonyl compounds. Mechanistic studies suggest that the photoredox catalysis serves as a promotion system to allow the dialkylation to proceed under mild conditions by reducing the oxidation and reduction potentials of the iron intermediates and the reaction partners.

INTRODUCTION

The development of a mild, economical, and practical catalytic process that can selectively and rapidly increase molecular complexity starting from readily available materials, especially petroleum-based feedstocks (e.g., alkenes, alkanes, and arenes), is a critical objective in both the academic and industrial communities. In this field, the functionalization of a molecule through transformations of an alkene and/or C–H bonds is a particularly fascinating but challenging goal, which has therefore attracted substantial attention from chemical researchers. Typical technologies include alkene dicarbofunctionalizations that enable the concomitant incorporation of two vicinal carbon-based functional groups to lengthen carbon chains and increase structural complexity (1–4). However, the vast majority of alkene dicarbofunctionalization approaches focus on the merger of the classical cross-couplings (1–18), which suffer from requiring expensive nucleophilic and electrophilic functional reagents, such as organometallic species and organohalides, for inserting the C–C bonds in the presence of noble transition metals and/or ligands. Moreover, examples that allow the addition of alkyl groups across alkenes to achieve dicarbofunctionalization are rare; this is partly because competitive side reactions, such as the Heck-type β-hydride elimination, homocoupling, isomerization, and/or protodemetalation, are common in these types of reactions (5–18).

Alternatively, alkene dicarbofunctionalizations via the oxidative radical functionalization of one or two C–H bonds has attracted increasing interest in the past few years because it features excellent selectivity, high atom economy, and cost efficiency by avoiding the use of expensive functional reagents and noble metals (19–21). However, the number of available methods is much lower, and methods are limited to two modes, alkylarylation (22–26) and acylarylation (27, 28), which are accomplished via an intramolecular inherent aryl C(sp\(^3\))–H bond, cyclization process to prepare cyclic compounds at high reaction temperatures. Furthermore, to the best of our knowledge, examples of using two distinct C(sp\(^3\))–H bonds in the intermolecular dialkylation of alkenes has not been reported, as controlled functionalizations of two or more distinct C(sp\(^3\))–H bonds across a functional group or a molecule (e.g., an alkene or alkyne) in a single reaction is challenging.

Merging visible light photoredox catalysis with transition metal catalysis has become a conceptually powerful strategy for the formation of chemical bonds owing to its extraordinary catalytic activity and mild conditions (29–32), and this method has also been applied to the functionalization of C(sp\(^3\))–H bonds (29–37). In these radical processes, selectivity and reactivity could be manipulated mainly through tuning the oxidation and reduction potentials of the reaction partners and catalysts (29–32). We envisioned that using photoredox and transition metal catalysts cooperatively might allow the controlled and simultaneous transformation of an alkene with two or more C(sp\(^3\))–H bonds under mild conditions by regulating the oxidation and reduction potentials. Here, we report a new radical-mediated intermolecular 1,2-dialkylation of terminal alkenes with two distinct C(sp\(^3\))–H bonds enabled by synergistic photoredox catalysis and iron catalysis (Fig. 1). The activation of two distinct C(sp\(^3\))–H bonds for insertion across C=C bonds is disclosed for the first time, and in this reaction, a C(sp\(^3\))–H bond of a cycloalkane, linear alkane, or ether serves as an sp\(^3\)-hybridized carbon-centered radical precursor to initiate this reaction, and the other C(sp\(^3\))–H bond, α to a 1,3-dicarbonyl fragment, terminates this reaction. Notably, such multifunctional 1,3-dicarbonyl compounds are among the most common and versatile building blocks in synthesis, and they are privileged structural units in natural products, bioactive molecules, and materials.

RESULTS

Optimization of the reaction conditions

Initial experiments were performed using three reaction partners, namely, 1-methoxy-4-vinylbenzene (1a), cyclohexane (2a), and ethyl 3-oxo-3-phenylpropanoate (3a), by merging photoredox catalysis and iron catalysis (Table 1). The use of Fe(OTf)\(_2\) as the metal catalyst and Eosin Y as the visible light catalyst in the presence of 2 equiv of di-tert-butyl peroxide (DTBP) and a 5-W blue light-emitting diode (LED) light at 30°C successfully allowed the 1,2-dialkylation of alkene 1a with 2a and 3a, giving the desired product 4aaa in 82% yield (entry 1).
However, in the absence of Fe(OTf)$_2$, only trace gas chromatography (GC) yield of 4aaa was observed at either 30° or 120°C (entry 2). We found that a lower [10 mole percent (mol %)] or a higher (30 mol %) loading of Fe(OTf)$_2$ had a negative effect (entries 3 and 4). Other Fe catalysts, including FeCl$_2$, Fe(acac)$_2$, Fe(OTf)$_3$, and FeCl$_3$, were examined (entries 1 and 5 to 7), and each of them was less efficient than Fe(OTf)$_2$, and the Fe(II) catalysts were more active than the Fe(III) catalysts. Both Eosin Y (entry 8) and DTBP (entry 9) are necessary for the dialkylation to proceed below 100°C (entries 2 to 7), as in the absence of either, the reaction did not proceed. It is noteworthy that without Eosin Y, the reaction can proceed when the reaction temperature is increased to 110°C (entry 9; 36% yield at 110°C and 80% yield at 120°C), but without DTBP, the reaction does not occur even at 120°C (entry 12). Furthermore, the reaction did not proceed in the dark at 30°C but did generate 4aaa in 78% yield (entry 15). These results suggest that the photoredox catalyst promotes the reaction, probably by reducing the oxidation and reduction potentials of the iron intermediates. However, other visible light metal catalysts [e.g., Ru(bpy)$_3$Cl$_2$ or Ir(ppy)$_3$] and peroxides [e.g., tert-Butyl hydroperoxide (TBHP) or tert-Butyl peroxybenzoate (TBPB)] all proved to be less reactive (entries 10 and 11 and 13 and 14). The reaction proceeded smoothly on scales up to 1 mmol of 1a (80% yield; entry 16).

Substrate scope with respect to alkenes
With the optimal reaction conditions in hand, we then investigated the generality of this three-component dialkylation protocol with respect to alkenes (Table 2), alkanes, and 1,3-dicarbonyl compounds (Table 3). Under the optimal conditions, this protocol proved amenable to a wide range of terminal alkenes, including arylalkenes 1b to 1l, 1,1-disubstituted alkene 1m, alkyalkene 1n, and methyl acrylate 1o but unsuitable for internal alkene 1r (Table 2). For arylalkenes 1b to 1l,

![Fig. 1. 1,2-Dialkylation of alkenes with two distinct C(sp3)─H bonds. Synergistic photoredox catalysis and iron catalysis for the intermolecular dialkylation of alkenes with alkanes and 1,3-dicarbonyl compounds to synthesize two functionalized 1,3-dicarbonyl compounds.](image)

Table 1. Optimization of reaction conditions. Experiments were performed with 1a (0.2 mmol), 2a (2 ml), 3a (2 equiv), Fe(OTf)$_2$ (20 mol %), Eosin Y (10 mol %), DTBP (2 equiv), 5-W blue LED, argon, 30°C, and 48 hours. The dr value is 1.1:1, as determined by 1H nuclear magnetic resonance (NMR) analysis of the crude product.

Entry	Variation from the optimal conditions	Isolated yield (%)
1	None	82
2	Without Fe(OTf)$_2$	Trace*
3	Fe(OTf)$_2$ (10 mol %) at 60°C	40
4	Fe(OTf)$_2$ (30 mol %)	53
5	FeCl$_2$ instead of Fe(OTf)$_2$	71
6	Fe(acac)$_2$ instead of Fe(OTf)$_2$	62
7	Fe(OTf)$_3$ instead of Fe(OTf)$_2$	8
8	FeCl$_3$ instead of Fe(OTf)$_2$	21
9	Without Eosin Y	Trace*/36%/80%†
10	Ru(bpy)$_3$Cl$_2$ instead of Eosin Y	<5
11	Ir(ppy)$_3$ instead of Eosin Y	<5/51%‡
12	Without DTBP	Trace*
13	TBHP instead of DTBP	22
14	TBPB instead of DTBP	57
15	Without visible light (in the dark)	Trace/31%/78%‡
16#	None	80

*At 30° or 120°C. †At 30° or 100°C. ‡At 60°C. †At 110°C. †At 120°C. †At 80°C. †1a (1 mmol).
Table 2. Variation of the alkene (1). Experiments were performed with 1 (0.2 mmol), 2a (2 ml), 3a (2 equiv), Fe(OTf)$_2$ (20 mol %), Eosin Y (10 mol %), DTBP (2 equiv), 5-W blue LED, argon, 30°C, and 48 hours. The dr value is given in the Supplementary Materials and was determined by 1H NMR or GC–mass spectrometry (MS) analysis of the crude product.

*At 80°C. †At 100°C. ‡At 130°C without the photocatalyst.
Table 3. Variation of the alkane (2) and 1,3-dicarbonyl compounds (3). Experiments were performed with 1a (0.2 mmol), 2 (2 ml), 3 (2 equiv), Fe(OTf)$_2$ (20 mol %), Eosin Y (10 mol %), DTBP (2 equiv), 5-W blue LED, argon, 30°C, and 48 hours. The dr value is given in the Supplementary Materials and was determined by 1H NMR or GC-MS analysis of the crude product.

- 4aba, 91% (dr = 1:1)
- 4ac, 96% (dr = 1.1:1)
- 4ada, 93% (dr = 1.1:1)
- 4aea, 71%, (dr = 1.1:1)
- 4aga, 72% (dr = 1.1:1)*
- 4aha, 62% (dr = 1.9:1.2:1)*
- 4ab, 92% (dr = 1.2:1)
- 4aa, 42% (dr = 1.1:1)$^+$
- 6aa, 9% (dr = 1:1)$^+$
- 7aa, 7%$^+$
- 4aad, 52% (dr = 1.1:1)$^+$
- 4aae, 50% (dr = 1.1:1)
- 4aaf, 80% (dr = 1.1:1)*
- 4aag, 64% (dr = 1.1:1)*
- 4aah, 74% (dr = 1.1:1)
- 4ai, 53% (dr = 1.2:1)$^+$
- 4aj, 50% (dr = 1.1:1)$^+$
- 4aak, 55%
- 4aal, 53% (dr = 1.1:1)*
- 4am, trace*‡
- 4aao, trace*‡

* At 80°C.
$^+$ At 60°C.
‡ At 130°C without the photocatalyst.
several substituents, including Me, Cl, Br, CN, and MeO, on the aryl ring were well tolerated (4bba to 4jaa), and their electronic and steric properties influenced the yields. While alkene 1b with an electron-donating 4-Me group gave 70% yield of 4bba, alkene 1c with an electron-withdrawing 4-CN group afforded 46% yield of 4eaa. Unexpectedly, o-MeO-substituted arylalkene 1i is more reactive (4iaa) than m-MeO-substituted arylalkene 1f (4faa), probably due to the electronic effect more so than the steric effects. Notably, halogen groups, including Cl and Br, are compatible with the optimal conditions and thus provide easy handles for further synthetic elaboration of the halogenated positions (4cua to 4daa and 4kkaa). Using polysubstituted arylalkenes 1j and 1k provided 4jaa to 4kraa. Both 2-vinylphenanthrene 1l and styrene 1m are suitable substrates for constructing 4lga to 4mkaa. Prop-1-en-2-ylbenzene 1n, a 1,1-disubstituted alkene, was smoothly transformed into 4naa. However, (1-cyclopropylvinyl)benzene 1o did not afford 4oaa and instead generated 4-(cyclohexylmethyl)-1,2-dihydronaphthalene (5oaa) via ring opening, which supports a radical process (24). Notably, alkylalkene 1p and electron-poor methyl acrylate 1q successfully delivered 4paa to 4qa, albeit in reduced yields. Unfortunately, attempts at the 1,2-dialkylation of internal alkene 1r failed to provide 4raa.

Substrate scope with respect to alkanes and 1,3-dicarbonyl compounds

As shown in Table 3, a broad scope was also found for the alkane substrate scope with respect to alkanes and 1,3-dicarbonyl compounds. A number of cycloalkanes, including cyclopentane 2b, cyclohexane 2c, cyclooctane 2d, and bulky adamantane 2e, underwent 1,2-dialkylation with alkene 1a and 1,3-dicarbonyl 3a in good to excellent yields (4ada to 4eaa). Using n-hexane 2f, a linear alkane, delivered 4faa in 81% yield, albeit as a mixture of regioisomers. Notably, the benzyl C(sp²)–H bond of 2g and the C(sp³)–H bond adjacent to an oxygen atom in 2h could react to afford corresponding products 4gaa and 4aha.

The optimized conditions also proved to be tolerant of a wide array of 1,3-keto esters 3b to 3j and 1,3-diketones 3k to 3l (4aaa to 4aal). Ethyl 3-(4-methoxyphenyl)-3-oxopropanoate (3b) was highly reactive and afforded 92% yield of 4aba. However, the reactivity of 3-oxobutanoates 3c to 3e was lower, and the products were generated in moderate yields (4aac to 4aea). Notably, two by-products, 6aa and 7aa, were observed in the reaction of 3c. Using 3-oxopentanone 1f, 3-oxohexanone 1g, or 3-cyclopentyl-3-oxopropionate 1h successfully delivered 4aaf to 4aah in 64 to 80% yields. Both 2-methyl-3-oxobutanoate 3i and 2-oxocyclohexane-1-carboxylate 3j provided challenging quaternary carbon centers, making this an attractive method for synthesis (4aai to 4ajj). 1,3-Diketones 3k and 3l were also suitable substrates and provided 4kaa to 4aal. Unfortunately, diethyl malonate 3m had no reactivity for accessing 4amm.

DISCUSSION

Control experiments and mechanistic studies

Control experiments (Table 1 and fig. S2) and the reaction progress with the light on or off over time (fig. S3) show that this alkene 1,2-dialkylation protocol is achieved through cooperative photoredox and iron catalysis (38). Consequently, the mechanisms of this alkene dialkylation reaction were proposed on the basis of the current results and the reported processes (Fig. 3). To further verify it, the loadings of Eosin Y were examined (Fig. 2A). The results demonstrated that the yield of 4aaa decreased with reducing the Eosin Y loadings. While in the absence of Eosin Y the dialkylation protocol cannot occur at 30°, 60°, or 100°C under blue light (entry 9; Table 1), using 10 mol % Eosin Y at 60°C led to 31% yield of 4aaa in the dark (entry 15; Table 1). According to these results and the half-life period of DTBP data of DTBP (39, 40), the Eosin Y and iron cooperating catalysis might activate DTBP to make DTBP decomposition at lower temperature. Moreover, the cyclic voltammogram experiments indicated that the photocatalyst could modulate the redox potential of the Fe(OTf)₂, catalyst (figs. S4 to S6). It was noted that in the presence of TEMPO, a radical inhibitor, the reaction of alkene 1a with cyclohexane 2a and dicarbonyl compound 3a was completely inhibited, and another product (10) from the reaction of cyclohexane 2a with TEMPO was observed (Fig. 2A). The results suggest that the radical process first generates cyclohexyl sp³-hybridized carbon-centered radical A (Fig. 3), which was also supported by the formation of 5oaa (Table 2). In the absence of dicarbonyl compounds 3, both the Heck-type β–H elimination product 6aa and the two radicals homocoupling product 7aa were obtained (Fig. 2C): With enhancing temperatures, yield of 6aa increased slowly, but yield of 7aa increased sharply. However, the reaction could not take place without Eosin Y at 30° or 100°C (entry 9 in Table 1 and Fig. 2C). The results support the formation of the 2-cyclohexyl-1-(4-methoxyphenyl)ethyl radical B and carboxylation C. Moreover, the higher temperatures are conducive to the radical B forming, and the conversion of the radical B into the carboxylation C is far slower than the radicals homocoupling. In contrast to the results in Table 1, addition of dicarbonyl nucleophiles 3b obviously promotes the generation of the carboxylation C.

To further understand the mechanism, the cyclic voltammetry experiments of the catalytic system and substrates were conducted to study the redox potential (figs. S4 to S6). Two oxidation peaks of Fe(OTf)₂ were observed at −1.560 V SCE and −0.790 V SCE in CH₂CN, while two reduction peaks appeared on the reverse scan at −0.203 V SCE and −1.000 V SCE (fig. S4). The first oxidation peak of Fe(OTf)₂ was quasi-reversible, and only one electron was transferred in the oxidation process. Ethyl 3-oxo-3-phenylpropanoate (3a) (three oxidation peaks) exhibited a higher oxidation potential than cyclohexane (2a), implying that 2a was likely to undergo oxidative C–H cleavage. As shown in fig. S5, the cyclic voltammogram curve from a mixture of Fe(OTf)₂ and Eosin Y featured an onset oxidation potential of −0.255 V SCE and an oxidation peak at 0.871 V SCE for the oxidation of Fe(II) to Fe(III) with the aid of Eosin Y*, while it featured a reduction peak at −0.416 V SCE and a notable reduction peak at −1.725 V SCE, which makes the Fe(III) reduction very easy. A mixture of multiple component experiments outlined in fig. S6 indicated that both the mixed 1a/2a/3a/Eosin Y and 1a/2a/3a/Eosin Y/Fe(OTf)₂/DTBP have one oxidation peak at about 0.763 V SCE, whereas the mixed 1a/2a/3a/Eosin Y/DTBP has two higher oxidation peaks (0.436 V SCE and 0.742 V SCE). However, the mixed 1a/2a/3a/Fe(OTf)₂/Eosin Y shows a rather low oxidation peak at 0.845 V SCE, presumably signifying a one-electron reduction event of Fe(OTf)₂ to form the Eosin Y* radical anion. Notably, the Stern–Volmer fluorescence quench experiments were investigated (fig. S7). The emission intensity of Eosin Y is obviously diminished, which is affected by the concentration of Fe(OTf)₂, and is slightly influenced when using DTBP or cyclohexane (2a), suggesting that Fe(OTf)₂ provides the electron for the reductive quenching of the Eosin Y* excited state.

Consequently, DTBP may be readily split into the tert-butoxy radical (38) with the aid of photoredox (29–37) and iron (19–28) synergistic catalysis [the Fenton chemistry (38)] (39, 40), and the radical
Fig. 2. Control experiments. (A) Loadings of Eosin Y on the reaction. (B) Trapping experiment with a stoichiometric amount of radical inhibitor. (C) Reaction between alkene 1a and cyclohexane 2a in the absence of dicarbonyl compounds.

Fig. 3. Possible mechanism. The generation of cyclohexyl sp³-hybridized carbon-centered radical A and new alkyl radical intermediate B is supported by experimental evidence, and subsequent single-electron oxidation and nucleophilic reaction with 1,3-keto ester 3a afford 4aaa.
then abstracts a hydrogen from cyclohexane (2a) to afford sp3 carbon-centered radical intermediate A (Fig. 3). Subsequently, addition of intermediate A across the C=C bond of alkene 1a gives new alkyl radical intermediate B, which is supported by these results, including the formation of product 5oa from the reaction of alkene 1o with cyclohexane 2a (Table 2) (24) and two other by-products 6aa and 7aa from the reaction of alkene 1a with cyclohexane 2a at 60°C in the presence of methyl 3-oxobutanionate (Table 3 and Fig. 2C). Last, intermediate B undergoes single-electron oxidation via the cooperative effects of the active Fe(III) species (19–28), which is generated from the oxidation of the Fe(II) species by the [Eosin Y]$^+$ intermediate (29–37) to deliver carboxination intermediate C followed by nucelophilic reaction with 1,3-keto ester 3a to access 4aaa. Among these processes, the photoredox catalysis might asist in the single-electron oxidation step by regulating the oxidation and reduction potentials of the iron intermediates and the reaction partners (29–40).

In summary, we have established the first intermolecular unsymmetrical 1,2-dialkylation of alkenes with two distinct C(sp3)–H bonds through cooperative photoredox and iron catalysis. The reaction allows concomitant incorporation of two vicinal alkyl groups across the C=C bond via dual C(sp3)–H functionalization under mild conditions, and the method features high atom economy, excellent functional group tolerance, and broad substrate scopes with respect to both the sp3 carbon-centered radical precursors (such as cycloalkanes, linear alkanes, and 1,4-dioxane) and the 1,3-dicarbonyl nucleophiles. This alkene dicarbofunctionalization reaction represents a novel and powerful strategy for the controlled functionalization of two or more different C(sp3)–H bonds across an alkene or alkyne in a single reaction to access complex functionalized molecules through regulating the oxidation and reduction potentials of the iron intermediates and the reaction partners. Further studies on the applications of this new strategy for transforming petroleum-based feedstocks are currently underway.

MATERIALS AND METHODS

General procedure for intermolecular dialkylation of alkenes with two distinct C(sp3)–H bonds enabled by synergistic photoredox catalysis and iron catalysis

Alkene 1 (0.2 mmol), alkane 2 (2 ml), 1,3-dicarbonyl 3 (0.3 mmol), Fe(OTf)$_2$ (20 mol %; 0.02 mmol), Eosin Y (10 mol %; 0.02 mmol), and DTBP (2 equiv; 0.4 mmol) were added to a Schlenk tube. Then the tube was charged with argon, and the mixture was stirred at the indicated reaction temperature (30°C to 130°C) for 48 hours until complete consumption of starting material, as monitored by thin-layer chromatography and/or GC–mass spectrometry (MS) analysis. After cooling to room temperature, the mixture was filtered through a small plug of silica gel to remove the precipitate, and the plug was washed with EtOAc (3 × 10 ml). The solvent was then removed in vacuo, and the residue was further purified by silica gel flash column chromatography (10 to 40% ethyl acetate in hexane) to afford the desired product 4.

REFERENCES AND NOTES

1. R. I. McDonald, G. Liu, S. S. Stahl, Palladium(II)-catalyzed alkene functionalization via nucleopalladiation: Sterechemical pathways and enantioselective catalytic applications. *Chem. Rev.* 111, 2981–3019 (2011).
2. E. Merino, C. Nevado, Addition of CF$_3$ across unsaturated moieties: A powerful functionalization tool. *Chem. Soc. Rev.* 43, 6598–6608 (2014).
3. S. Tang, K. Liu, C. Liu, A. Lei, Olefinic C–H functionalization through radical alkenylation. *Chem. Soc. Rev.* 44, 1070–1082 (2015).
4. R. K. Dhungana, S. KC, P. Basnet, R. Giri, Transition metal-catalyzed dicarbofunctionalization of unactivated olefins. *Chem. Rev.* 128, 1314–1340 (2018).
5. P. Basnet, S. KC, R. K. Dhungana, B. Shrestha, T. J. Boyle, R. Giri, Synergistic bimetallic Ni/Ag and Ni/Cu catalysis for regioselective γ,δ-dialylation of alkyl ketimines: Addressing [β-elimination by in situ generation of cationic Ni]$_2$ Catalysts. *J. Am. Chem. Soc.* 130, 15586–15590 (2018).
6. B. Shrestha, P. Basnet, R. K. Dhungana, S. KC, S. Thapa, J. M. Sears, R. Giri, Ni-catalyzed regioselective 1,2-dicarbofunctionalization of olefins by intercepting Heck intermediates as imine-stabilized transient metalacyclics. *J. Am. Chem. Soc.* 139, 10653–10656 (2017).
7. P. Basnet, R. K. Dhungana, S. Thapa, B. Shrestha, S. KC, J. M. Sears, R. Giri, Ni-catalyzed regioselective δ,γ-dialylation of unactivated olefins in ketimines via ligand-enabled contraction of transient nikellicacycles: Rapid access to remotely diylated ketones. *J. Am. Chem. Soc.* 140, 7782–7786 (2018).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/5/3/eaav9839/DC1

Section S1. General information and procedures
Section S2. Preliminary synthetic utilization
Section S3. Control experiments and mechanistic studies
Section S4. Analytical data for 4aaa to 4aaa, 4apa to 4apa, 4aba to 4aba, 4aab to 4aan, 5oa, 6aa, 7aa, 8aa, and 9aa

Fig. 51. Preliminary synthetic utilization.
Fig. 52. Control experiments.
Fig. S3. Profile of 4aaa with the light on or off over time.
Fig. S4. Possible mechanisms.
Fig. S5. Cyclic voltammogram curves.
Fig. S6. Cyclic voltammogram curves.
Fig. S7. Cyclic voltammogram curves.
Fig. S8. Stern-Volmer fluorescence quenching experiments.
Fig. S9. 1H, 13C-NMR spectra of product 4aaa.
Fig. S10. 1H, 13C-NMR spectra of product 4baa.
Fig. S11. 1H, 13C-NMR spectra of product 4caaa.
Fig. S12. 1H, 13C-NMR spectra of product 4daaa.
Fig. S13. 1H, 13C-NMR spectra of product 4eaaa.
Fig. S14. 1H, 13C-NMR spectra of product 4faa.
Fig. S15. 1H, 13C-NMR spectra of product 4gaaa.
Fig. S16. 1H, 13C-NMR spectra of product 4haaa.
Fig. S17. 1H, 13C-NMR spectra of product 4iaa.
Fig. S18. 1H, 13C-NMR spectra of product 4jaa.
Fig. S19. 1H, 13C-NMR spectra of product 4kaa.
Fig. S20. 1H, 13C-NMR spectra of product 4laaa.
Fig. S21. 1H, 13C-NMR spectra of product 4maaa.
Fig. S22. 1H, 13C-NMR spectra of product 4naa.
Fig. S23. 1H, 13C-NMR spectra of product 4oaa.
Fig. S24. 1H, 13C-NMR spectra of product 4paa.
Fig. S25. 1H, 13C-NMR spectra of product 4qaa.
Fig. S26. 1H, 13C-NMR spectra of product 4aaa.
Fig. S27. 1H, 13C-NMR spectra of product 4aaa.
Fig. S28. 1H, 13C-NMR spectra of product 4aaa.
Fig. S29. 1H, 13C-NMR spectra of product 4aaa.
Fig. S30. 1H, 13C-NMR spectra of product 4aaa.
Fig. S31. 1H, 13C-NMR spectra of product 4aaa.
Fig. S32. 1H, 13C-NMR spectra of product 4aaa.
Fig. S33. 1H, 13C-NMR spectra of product 4aaa.
Fig. S34. 1H, 13C-NMR spectra of product 4aaa.
Fig. S35. 1H, 13C-NMR spectra of product 4aaa.
Fig. S36. 1H, 13C-NMR spectra of product 4aaa.
Fig. S37. 1H, 13C-NMR spectra of product 4aaa.
Fig. S38. 1H, 13C-NMR spectra of product 4aaa.
Fig. S39. 1H, 13C-NMR spectra of product 4aaa.
Fig. S40. 1H, 13C-NMR spectra of product 4aaa.
Fig. S41. 1H, 13C-NMR spectra of product 4aaa.
Fig. S42. 1H, 13C-NMR spectra of product 4aaa.
Fig. S43. 1H, 13C-NMR spectra of product 4aaa.
Fig. S44. 1H, 13C-NMR spectra of product 4aaa.
Fig. S45. (E)-1,12-cyclohexylyvinyl)-4-methoxybenzene (6aa).
Fig. S46. 4,4′-(1,4-Dicyclohexylbutane-2,3-diyl)bis(methoxybenzene) (7aa).
Fig. S47. 1H, 13C-NMR spectra of product 8aaa.
Fig. S48. 1H, 13C-NMR spectra of product 8aaa.
23. J.-H. Fan, W.-T. Wei, M.-B. Zhou, R.-J. Song, J.-H. Li, Palladium-catalyzed oxidative tandem cyclization/cross-coupling with alkyl electrophiles. J. Am. Chem. Soc. 136, 3788–3791 (2014).

24. W. You, M. K. Brown, Diarylation of alkenes by a Cu-catalyzed migratory insertion/cross-coupling cascade. J. Am. Chem. Soc. 136, 14730–14733 (2014).

25. S. Thapa, P. Basnet, R. Giri, Copper-catalyzed dicarbofunctionalization of unactivated olefins by tandem cyclization/cross-coupling. J. Am. Chem. Soc. 139, 5700–5703 (2017).

26. A. García-Dominguez, Z. Li, C. Nevado, Nickel-catalyzed reductive dicarbofunctionalization of alkenes. J. Am. Chem. Soc. 139, 6833–6838 (2017).

27. J. Derosa, V. T. Tran, M. S. N. Boulous, J. S. Chen, K. M. Engle, Nickel-catalyzed α,γ-Dicarbofunctionalization of alkynyl carbonyl compounds via conjunctive cross-coupling. J. Am. Chem. Soc. 139, 10657–10660 (2017).

28. S. K. K. Prier, D. A. Rankic, D. W. C. MacMillan, Visible light photoredox catalysis with butadiene to form skipped polyenes. J. Am. Chem. Soc. 135, 4167–4170 (2013).

29. H. Cong, G. C. Fu, Catalytic enantioselective cyclization/cross-coupling with alkyl electrophiles. J. Am. Chem. Soc. 136, 3788–3791 (2014).

30. W. You, Y. Liu, R.-J. Song, J.-H. Li, Metal-free oxidative tandem cyclization of activated alkenes with carboxyl C(sp²)-H bonds and aryl C(sp²)-H bonds using TBHP. Chem. Sci. 4, 2690–2694 (2013).

31. C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Visible light photoredox catalysis with transition metal complexes: Applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

32. M. N. Hopkinson, B. Sahoo, J.-L. Li, F. Glorius, Dual cyclization sees the light: Combining photoredox with organo-, acid, and transition-metal catalysis. Chem. Eur. J. 20, 3874–3886 (2014).

33. J.-R. Chen, X.-Q. Hu, L.-Q. Lu, W.-J. Xiao, Visible light photoredox-controlled reactions of N-radicals and radical ions. Chem. Soc. Rev. 45, 2044–2056 (2016).

34. J.-R. Chen, X.-Q. Hu, L.-Q. Lu, W.-J. Xiao, Exploration of visible-light photocatalysis in heterocycle synthesis and functionalization: Reaction design and beyond. Acc. Chem. Res. 49, 1911–1923 (2016).

35. Z. Li, Y. Zhao, X. X. Xia, Photoredox functionalization of C–H bonds adjacent to a nitrogen atom. Chem. Sci. 4, 7678–7697 (2012).

36. G. J. Choi, O. Zhou, C. D. Miller, C. J. Gu, R. R. Knowles, Catalytic alkylation of remote C–H bonds enabled by proton-coupled electron transfer. Nature 539, 268–271 (2016).

37. J. C. K. Chu, T. Rovis, Amide-directed photoredox-catalysed C–C bond formation at skipped polyenes. Angew. Chem. Int. Ed. 55, 1872–1875 (2016).

38. A. García-Dominguez, Z. Li, C. Nevado, Nickel-catalyzed reductive dicarbofunctionalization of alkenes by stabilizing Heck intermediates as pyridylsilyl-coordinated transient metallacycles. Chem. Sci. 9, 904–909 (2018).

39. R. Giri, S. K. K. Prier, Nickel-catalyzed regioselective 1,2-diarlylation of unactivated olefins enabled by synergistic photoredox catalysis and iron catalysis. Angew. Chem. Int. Ed. 55, 3013–3022 (2016).

40. J. H. Fan, W.-T. Wei, M.-B. Zhou, R.-J. Song, J.-H. Li, Palladium-catalyzed oxidative difunctionalization of alkenes with γ-carbonyl alkyl bromides initiated through a Heck-type insertion: A route to indolin-2-ones. Angew. Chem. Int. Ed. 52, 3638–3641 (2013).

41. J.-H. Fan, W.-T. Wei, M.-B. Zhou, R.-J. Song, J.-H. Li, Palladium-catalyzed oxidative difunctionalization of alkenes with a-carbonyl alkyl bromides initiated through a Heck-type insertion: A route to indolin-2-ones. Angew. Chem. Int. Ed. 53, 6650–6654 (2014).

42. J. Derosa, V. T. Tran, M. S. N. Boulous, J. S. Chen, K. M. Engle, Nickel-catalyzed α,γ-Vinylcarbonyl functionalization of alkynyl carbonyl compounds via directed nucleopalladation. J. Am. Chem. Soc. 138, 15122–15125 (2016).

43. A. J. McCarroll, J. C. Walton, Programming organic molecules: Design and management of organic syntheses through free-radical cascade processes. Angew. Chem. Int. Ed. 49, 2224–2224 (2001).

44. Z.-M. Chen, X.-M. Zhang, Y.-Q. Tu, Radical arylation reactions and synthetic applications. Chem. Rev. 44, 5220–5245 (2015).

45. H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh, A. Lei, Recent advances in radical C–H activation/radical cross-coupling. Chem. Rev. 117, 9016–9085 (2017).

46. W.-T. Wei, M.-B. Zhou, J.-H. Fan, W. Liu, R.-J. Song, Y. Liu, M. Hu, P. Xie, J.-H. Li, Synthesis of oxindoles by iron-catalyzed oxidative 1,2-alkarylation of activated alkenes with an aryl C(sp²)-H bond and a C(=O)-H bond adjacent to a heteroatom. Angew. Chem. Int. Ed. 52, 3638–3641 (2013).

47. J.-H. Fan, W.-T. Wei, M.-B. Zhou, R.-J. Song, J.-H. Li, Palladium-catalyzed oxidative difunctionalization of alkenes with γ-carbonyl alkyl bromides initiated through a Heck-type insertion: A route to indolin-2-ones. Angew. Chem. Int. Ed. 53, 6650–6654 (2014).

48. A. Bunescu, Q. Wang, J. Zhu, Copper-catalyzed cyanomethylation of allylic alcohols with concomitant 1,2-arylation migration: Efficient synthesis of functionalized ketones containing a quaternary center. Angew. Chem. Int. Ed. 54, 3132–3135 (2015).

49. X.-H. Ouyang, R.-J. Song, M. Hu, Y. Yang, J.-H. Li, Silver-mediated intermolecular 1,2-alkarylation of styrenes with γ-carbonyl Alkyl bromides and indoles. Angew. Chem. Int. Ed. 55, 3187–3191 (2016).

50. Z. Li, Y. Zhang, L. Zhang, Z.-Q. Liu, Free-radical cascade alkylarylation of alkenes with simple alkenes: Highly efficient access to oxindoles via selective (sp³)C-H and (sp²)C-H bond functionalization. Org. Lett. 16, 382–385 (2014).

51. H. Wang, L.-N. Guo, X.-H. Duan, Silver-catalyzed decarboxylative acylation of acrylic amides with α-oxoacarboxylic acids in aqueous media. Adv. Synth. Catal. 355, 2222–2226 (2013).