Differential decay rates of CP-even and CP-odd Higgs bosons to top and bottom quarks at NNLO QCD

Werner Bernreuther, Long Chen, Zong-Guo Si

Abstract: We consider the decay of a neutral Higgs boson of arbitrary CP nature to a massive quark antiquark pair at next-to-next-to-leading order in perturbative QCD. Our analysis is made at the differential level using the antenna subtraction framework. We apply our general set-up to the decays of a CP-even and CP-odd heavy Higgs boson to a top-quark top-antiquark pair and to the decay of the 125 GeV Higgs boson to a massive bottom-quark bottom-antiquark pair. In the latter case we calculate, in particular, the two-jet, three-jet, and four-jet decay rates and, for two-jet events, the energy distribution of the leading jet.

Keywords: Higgs bosons, top quark, bottom quark, perturbative QCD, jets

1Corresponding author.
1 Introduction

The detailed investigation of the production and decay modes of the 125 GeV Higgs boson and the search for new Higgs resonances remain among the major research topics at the Large Hadron Collider (LHC). The interactions of the 125 GeV Higgs boson, as investigated by the ATLAS and CMS experiments, are in accord with the predictions of the Standard Model (SM), and considerable improvement of the experimental precision is expected with the future high luminosity LHC program. (For a recent overview see, for instance, [1].)

A plethora of theoretical investigations have been made on non-standard Higgs bosons and their interactions within SM extensions and, specifically, on the production and the decay modes of the SM and of non-SM Higgs bosons including higher-order QCD and electroweak radiative corrections. In this paper we are concerned with the decays of heavy neutral non-SM Higgs bosons and of the 125 GeV Higgs boson – these states will be generically denoted by h in the following – into a massive quark antiquark pair ($Q\bar{Q}$) at next-to-next-to-leading (NNLO) order in the QCD coupling. Let us briefly recapitulate previous work on neutral Higgs-boson decays to quarks. The order α_s QCD corrections to the decay width of $h \to Q\bar{Q}$ and several distributions including the full quark-mass dependence were computed both for scalar and pseudoscalar Higgs bosons by [8–14]. Higher order QCD corrections to the hadronic decay widths of neutral Higgs bosons, in particular the decay widths into quark antiquark pairs, were determined from the imaginary part of respective
two-point current correlation functions. The corrections to order α_s^2 were computed in [15] for massless quarks, while quadratic and higher-order quark-mass corrections in the m_Q/m_h expansion were calculated both for scalar and pseudoscalar Higgs bosons by [16–19] and by [20–22]. The order α_s^2 scalar and pseudoscalar current correlators were determined by [23] for arbitrary values of m_Q/m_h using Padé approximations. The hadronic decay width of a scalar Higgs boson was computed for massless quarks to order α_s^3 and α_s^4 in [24, 25] and [26–29], respectively. Partial results for the decay of a pseudoscalar Higgs boson to three massless partons at NNLO QCD were presented in [30]. Electroweak corrections were determined in [31, 32]. For Higgs-boson decays into quark antiquark pairs, differential distributions were computed by [33, 34] for the decay of a scalar Higgs boson into massless b quarks at order α_s^2.

We analyze in this paper the decay of a neutral Higgs boson h into a massive quark antiquark pair,

$$h \rightarrow Q \bar{Q} X, \quad Q = t, b,$$

(1.1)
at order α_s^2, i.e. at NNLO QCD, and to lowest order in the Yukawa and electroweak interactions. The quark-mass dependence of the matrix elements is taken into account without any approximation. We consider the general case of a neutral Higgs boson with both scalar and pseudoscalar couplings to quarks. Its Yukawa interaction is

$$\mathcal{L}_{Y,Q} = -y_{0,Q} \left[a_Q \bar{Q} Q + b_Q i \gamma_5 Q \right] h,$$

(1.2)

where Q and h denote bare fields, $y_{0,Q}$ is the bare SM Yukawa coupling,

$$y_{0,Q} = \frac{m_{0,Q}}{v},$$

(1.3)

$m_{0,Q}$ is the bare mass of Q, $v = (\sqrt{2}G_F)^{-1/2}$ is the SM Higgs vacuum expectation value with G_F being Fermi’s constant, and a_Q, b_Q are dimensionless reduced Yukawa couplings whose values depend on the parameters of the specific model under consideration. If h is identified with the SM Higgs boson then

$$\text{SM: } a_Q = 1, \quad b_Q = 0.$$

(1.4)

Because we consider in this work only QCD corrections, the reduced Yukawa couplings a_Q, b_Q do not get renormalized.

Our set-up applies to the general case (1.2) where h is not a CP eigenstate. For the decay of a heavy Higgs boson into $t\bar{t}$ we analyze the cases where h is CP-even (i.e., a scalar where $a_t = 0$) and CP-odd (a pseudoscalar where $a_t = 0$), respectively. Because we consider unpolarized Q, \bar{Q} our NNLO QCD results can be combined and applied to the case of h being a CP mixture (see below). In our analysis of $h(125\text{GeV}) \rightarrow b\bar{b}X$ we assume that h is CP-even.

Our paper is organized as follows. We outline in the next section the calculation of the differential decay rate and distributions of IR-safe observables of (1.1) at order α_s^2 using

\[1\] With the exception of the top-quark triangle contribution to the two-loop $h \rightarrow b\bar{b}$ amplitude, see section 3.
the antenna subtraction method [35–38]. First we use renormalized matrix elements where the QCD coupling is defined in the $\overline{\text{MS}}$ scheme and the quark masses and the Yukawa coupling are defined in the on-shell scheme. In section 3 we express the on-shell Yukawa coupling in terms of the $\overline{\text{MS}}$ Yukawa coupling and derive a generic formula for the resulting differential decay widths of (1.1) to order α^2_s. In section 4 we apply this set-up to the decays of a scalar and a pseudoscalar Higgs boson $h \to t\bar{t}X$. We calculate the respective decay widths for a sequence of Higgs-boson masses and we compare with results that are obtained by expansion in $(m_t/m_h)^2$ to fourth order [21]. In order to demonstrate the usefulness of our differential approach we compute the top-quark energy distribution in the Higgs-boson rest frame and the $t\bar{t}$ invariant mass distribution at NNLO QCD both for a scalar and a pseudoscalar Higgs boson of mass $m_h = 500$ GeV. In section 5 we analyze $h(125) \to b\bar{b}X$ at NNLO QCD for massive b quarks, using the formulas of sections 2 and 3, where we assume the 125 GeV Higgs boson to be purely CP-even. We compute the inclusive decay width and the decay rates into two, three, and four jets using the Durham cluster algorithm. Moreover, we compute for two-jet events the distribution of the energy of the leading jet. In addition we compare with results from the literature obtained at order α^2_s for massless b quarks. We conclude in section 6.

2 The differential decay rate at NNLO QCD

In this section we briefly outline the salient features of computing the decay rate of $h \to Q\bar{Q}X$ to order α^2_s at the differential level using the antenna subtraction method. Here Q denotes a massive quark, for instance, the b or t quark. The antenna method with massive quarks in the final state that we use has been described in detail in [39] for the process $e^+e^- \to Q\bar{Q}X$. Because the strategy and formulas presented in [39] can be applied in analogous fashion to the reaction at hand we will delineate in the following only the most important features of computing the various infrared-finite contributions to the differential Higgs-boson decay rate to a pair of massive quarks at order α^2_s and refer for details to [39].

We work in QCD with n_f massless quarks q and one massive quark Q. All matrix elements in this and in the following sections refer to renormalized matrix elements. We define the renormalized mass of Q in the on-shell scheme and denote it by m_Q, while the QCD coupling α_s is defined in the $\overline{\text{MS}}$ scheme. Dimensional regularization is used to handle IR singularities that appear in intermediate steps of our calculation. As to the renormalization of the Yukawa coupling $y_{0,Q}$, we proceed as follows. First, we renormalize it in the on-shell scheme and then convert it to the $\overline{\text{MS}}$ scheme. Details will be given in section 3.

We use the following notation for the differential rate of the decay (1.1):

$$d\Gamma = d\Gamma_{LO} + d\Gamma_1 + d\Gamma_2 + \mathcal{O}(\alpha^3_s),$$

(2.1)

where $d\Gamma_{LO}$ is the leading-order contribution and $d\Gamma_1, d\Gamma_2$ are the contributions of order α_s and α^2_s. The first order correction receives contributions from the interference of the

\footnote{In section 5 both the b quark and, of course, also the top quark are taken to be massive.}
Born and one-loop amplitude of \(h \to QQ \) and the squared Born amplitude of \(h \to Q\bar{Q}g \).

In any subtraction scheme for handling the IR divergences the NLO QCD correction can be written as follows:

\[
\int d\Gamma_1 = \int_{\Phi_3} \left[\left(d\Gamma_{QQg}^R \right)_{\epsilon=0} - \left(d\Gamma_{QQg}^S \right)_{\epsilon=0} \right] + \int_{\Phi_2} \left[d\Gamma_{Q\bar{Q}}^V + \int_1 d\Gamma_{Q\bar{Q}g}^S \right]_{\epsilon=0},
\tag{2.2}
\]

where \(\epsilon = (4-D)/2 \) is the dimensional regularization parameter and the subscripts \(\Phi_n \) denote \(n \)-particle phase-space integrals. The second term in the first and second square bracket of (2.2) is the unintegrated and integrated subtraction term that renders the difference, respectively the sum of the terms in the square brackets finite in \(D = 4 \) dimensions. Here and in the following the symbol \(\int_n \) indicates the analytic integration over the phase space of \(n \) unresolved partons in \(D \neq 4 \) dimensions. The NLO subtraction terms labeled with the superscript \(S \) in (2.2) were computed within the antenna framework in \([40]\).

The second-order term \(d\Gamma_2 \) in the expansion (2.1) of the differential decay rate receives the following contributions: i) the double real radiation contribution \(d\Gamma_{\text{RRNNLO}} \) associated with the squared Born amplitudes of \(h \to Q\bar{Q}gg \) and \(h \to Q\bar{Q}q\bar{q} \) (where \(q \) denotes a massless quark), and above the 4\(Q \) threshold, the squared Born matrix element of \(h \to Q\bar{Q}QQ \), ii) the real-virtual cross section \(d\Gamma_{\text{RVNNLO}}^V \) associated with the matrix element of \(h \to Q\bar{Q}g \) to order \(\alpha_s^2 \) (1-loop times Born), and iii) the double virtual correction \(d\Gamma_{\text{VVNNLO}}^V \) associated with the matrix element of \(h \to Q\bar{Q} \) to order \(\alpha_s^2 \) (i.e., 2-loop times Born and 1-loop squared).

Apart from the \(Q\bar{Q}QQ \) contribution, which is IR finite, the terms i), ii), iii) are IR divergent. When a subtraction method is used the second order correction \(d\Gamma_2 \), where the different pieces are separately finite in \(D = 4 \) dimensions, is constructed schematically as follows:

\[
\int d\Gamma_2 = \int_{\Phi_4} \left(d\Gamma_{\text{RRNNLO}} - d\Gamma_{\text{SNLO}}^S \right) + \int_{\Phi_3} \left(d\Gamma_{\text{RVNNLO}}^V - d\Gamma_{\text{TNLO}}^T \right) + \left(\int_{\Phi_2} d\Gamma_{\text{VVNNLO}} + \int_{\Phi_4} d\Gamma_{\text{SNLO}}^S \right).
\tag{2.3}
\]

The symbols \(d\Gamma_{\text{SNLO}}^S \) and \(d\Gamma_{\text{TNLO}}^T \) denote the double-real subtraction terms (for \(h \to Q\bar{Q}q\bar{q} \) and \(h \to Q\bar{Q}gg \)) and the real-virtual subtraction term (for \(h \to Q\bar{Q}g \)), respectively. We shortly discuss in turn the various terms in (2.3).

\section*{2.1 Double real radiation corrections}

The first term on the right-hand side of (2.3) receives the following contributions:

\[
d\Gamma_{\text{RRNNLO}} - d\Gamma_{\text{SNLO}}^S = d\Gamma_{\text{NNLO}}^\text{sub,QQq\bar{q}} + d\Gamma_{\text{NNLO}}^\text{sub,Q\bar{Q}gg} + d\Gamma_{\text{NNLO}}^\text{Q\bar{Q}QQ}.
\tag{2.4}
\]

The last term on the right-hand side of this equation is the unsubtracted, IR-finite differential decay rate associated with the 4\(Q \) final state, while the first two terms denote the subtracted, IR-finite differential decay rates associated with the \(Q\bar{Q}q\bar{q} \) and \(Q\bar{Q}gg \) final states. Within the antenna subtraction framework they are defined as follows:

\[
d\Gamma_{\text{NNLO}}^\text{sub,QQij} = d\Gamma_{\text{NNLO}}^\text{S,QQij} - d\Gamma_{\text{NNLO}}^\text{S,2QQij} - d\Gamma_{\text{NNLO}}^\text{S,1QQij}, \quad ij = q\bar{q}, gg.
\tag{2.5}
\]
In the case of $ij = q\bar{q}$ a sum over all massless quark-antiquark pairs is implicit on the right-hand side of (2.5). The term $d\Gamma_{NNLO}^{S,h,2QQ_{ij}}$ subtrahs from $d\Gamma_{NNLO}^{Qij}$ the IR singularities associated with the singler unresolved parton configurations, while the subtraction term $d\Gamma_{NNLO}^{S,h,1QQ_{ij}}$ takes care of the singularities of $d\Gamma_{NNLO}^{Qij}$ associated with the double unresolved configurations. The latter subtraction term develops, however, singularities in the single unresolved limits that are subtracted by the term $d\Gamma_{NNLO}^{S,h,1QQ_{ij}}$.

The antenna subtraction terms required in (2.5) were determined in [41] and [42] for the $Qq\bar{q}$ and $Q\bar{q}g$ final states, respectively. They involve redefined on-shell momenta constructed from the final-state parton momenta. For the construction in the case where two massive quarks are involved, see for instance [39].

There is a subtlety associated with angular correlations in the unsubtracted squared matrix element of $Q\bar{Q}ij$, caused by the splitting into a pair of massless partons i,j of the virtual gluon radiated off the Q or \bar{Q}. The subtraction term $d\Gamma_{NNLO}^{S,h,2QQ_{ij}}$ contains these angular correlations, too, but the subtraction terms $d\Gamma_{NNLO}^{S,a,QQ_{ij}}$ and $d\Gamma_{NNLO}^{S,h,1QQ_{ij}}$ do not [39]. This precludes a local cancellation of the IR singularities. A very efficient IR cancellation can be achieved by averaging out these angular correlations. This can be done as follows [43–46]. Denoting the final-state four-momenta by k_1, k_2, k_3, k_4 where k_3, k_4 are the momenta of the massless partons i,j, one evaluates the two terms in (2.5) that contain the angular correlations for each set of phase-space momenta k_1, k_2, k_3, k_4 and $k_1, k_2, \epsilon_3, k_4$ and takes the average. The four-momenta k_{3r}, k_{4r} are obtained by rotating the spatial parts of k_3, k_4 by an angle $\pi/2$ around the collinear axis $k = k_3 + k_4$. We will apply this procedure in our calculation of the inclusive cross sections $h \to Q\bar{Q}X$ ($Q = t, b$) and distributions associated with the massive quark. In section 5.2 we compute, in addition, the two-jet, three-jet, and four-jet rates for the decay $h \to b\bar{b}XX$. In this case this averaging procedure is not applicable because the rotated momenta k_{3r}, k_{4r} are located, in general, outside of the respective n-jet phase space. Nevertheless, straightforward subtraction as prescribed in (2.5) leads to a numerically stable IR cancellation in the calculation of the n-jet cross sections.

2.2 Real-virtual corrections

Within the antenna subtraction framework, the second term on the right-hand side of (2.3) receives the following contributions:

$$\int_{\Phi_3} (d\Gamma_{NNLO}^{RV} - d\Gamma_{NNLO}^{T}) = \int_{\Phi_3} \left[d\sigma_{NNLO}^{RV,Q\bar{Q}g} - d\Gamma_{NNLO}^{T,a,QQ_{ij}} - d\Gamma_{NNLO}^{T,b,QQ_{ij}} - d\Gamma_{NNLO}^{T,c,QQ_{ij}} \right]_{\epsilon=0}. $$

(2.6)

The term $d\Gamma_{NNLO}^{RV}$ involves the interference of the tree-level and renormalized one-loop amplitude associated with $h \to Q\bar{Q}g$. This term contains explicit IR poles, i.e., single and doubles poles in ϵ. These poles are canceled by the explicit IR poles of the second term on the right-hand side of (2.6) that is determined by

$$d\Gamma_{NNLO}^{T,a,QQ_{ij}} = -\int_{1} d\Gamma_{NNLO}^{S,a,QQ_{ij}g} - \sum_{q} \int_{1} d\Gamma_{NNLO}^{S,a,QQ_{ij}q}. $$

(2.7)

The integrals in (2.7) denote the analytic integration of the a-type subtraction terms appearing in (2.5) over the phase space of one unresolved massless parton in $D \neq 4$ dimensions.
The result of the integration involves integrated tree-level antenna functions determined in [40, 47]. Apart from its explicit IR poles $d\Gamma^{\text{RV,NNLO}}$ is IR-singular also in the limit where the external gluon becomes soft. The term $d\Gamma^{T,b,QQg}_{\text{NNLO}}$ is constructed such that it cancels those terms of $d\Gamma^{\text{RV,NNLO}}$ which become singular in the limit $k_{\text{gluon}} \to 0$. This subtraction term involves massive one-loop antenna functions that were computed in [48].

In certain regions of phase space, the subtraction terms (2.7) and $d\Gamma^{T,b,QQg}_{\text{NNLO}}$ develop IR singularities that do not coincide with the IR singularities of $d\Gamma^{\text{RV,NNLO}}$. For removing these spurious singularities one must introduce an additional subtraction term given by

$$d\Gamma^{T,c,Q\bar{Q}g}_{\text{NNLO}} = -\int d\Gamma^{S,b,1,QQg}_{\text{NNLO}} - \int d\Gamma^{S,b,1,QQq}_{\text{NNLO}},$$

where the integrands are subtraction terms that appear in (2.5). The analytic integration in $D \neq 4$ dimensions over the phase space of one unresolved parton was performed in [48].

By construction the expression (2.6) is finite in $D = 4$ dimensions when integrated over the three-parton phase space, or arbitrary sections thereof when computing differential distributions. We recall that the terms $d\Gamma^{T,a,Q\bar{Q}g}_{\text{NNLO}}$ and $d\Gamma^{T,c,Q\bar{Q}g}_{\text{NNLO}}$ are counterbalanced by the double-real subtraction terms $d\Gamma^{S,a,Qij}_{\text{NNLO}}$ and $d\Gamma^{S,b,1,Qij}_{\text{NNLO}}$ ($ij = gg, q\bar{q}$), respectively, that were introduced in (2.5). Hence, only the integrated form of $d\Gamma^{T,b,QQg}_{\text{NNLO}}$ has to be added back to the contribution from the double virtual corrections.

2.3 Double virtual corrections

Recalling the subtraction terms introduced in (2.5) and (2.6) we see that those that are not yet counterbalanced are $d\Gamma^{T,c,Q\bar{Q}g}_{\text{NNLO}}$ ($ij = q\bar{q}, gg$) and $d\Gamma^{T,b,QQg}_{\text{NNLO}}$. They have to be integrated over the unresolved two-parton, respectively unresolved one-parton phase space and then serve as counterterms for the subtraction of the IR poles of the double virtual correction. Thus the last term on the right-hand side of (2.3) is given by

$$\int_{\Phi_2} d\Gamma^{VV}_{\text{NNLO}} + \int_{\Phi_3} d\Gamma^{T}_{\text{NNLO}} + \int_{\Phi_4} d\Gamma^{S}_{\text{NNLO}} = \left[\int_{\Phi_2} d\Gamma^{V,VQQ}_{\text{NNLO}} + \int_{\Phi_3} d\Gamma^{T,b,QQg}_{\text{NNLO}} + \int_{\Phi_4} d\Gamma^{S,b,2,QQg}_{\text{NNLO}} + \sum_q \int_{\Phi_2} d\Gamma^{S,b,2,Qq\bar{q}}_{\text{NNLO}} \right]_{\epsilon=0}.$$

The term $d\Gamma^{V,VQQ}_{\text{NNLO}}$ is the order α_s^2 correction computed from the interference of the renormalized two-loop and Born matrix element and the squared one-loop matrix element of $h \to Q\bar{Q}$. In the sum (2.9) all IR poles cancel in analytic fashion. One can then take the limit $\epsilon \to 0$ and perform the integration over the two-parton phase space in four dimensions.

3 Decay rate in terms of the $\overline{\text{MS}}$ Yukawa coupling

After having outlined our subtraction formalism we discuss a few details of our computation of the differential decay rate of (1.1) for general Yukawa couplings (1.2) and unpolarized Q, \bar{Q}. For constructing the subtraction terms we need the (un)integrated antenna functions determined at NLO QCD in [40, 47] and at NNLO QCD in [41, 42, 48] and, in addition,
the squared tree level matrix elements of $h \rightarrow Q\bar{Q}$ and $h \rightarrow Q\bar{Q}g$, and the $\mathcal{O}(\alpha_s)$ interference matrix element (tree level and renormalized one-loop amplitude) of $h \rightarrow Q\bar{Q}$. These matrix elements and the antenna subtraction terms [40, 47] determine also the differential decay rate $d\Gamma_1$ at NLO. Because we sum over spins, $d\Gamma_1$ does not contain a CP-odd term proportional to a_{QbQ}.

As to the unsubtracted matrix elements that contribute to $d\Gamma_2$. Computation of the squared tree-level matrix elements of $h \rightarrow Q\bar{Q}g$, $h \rightarrow Q\bar{Q}q\bar{q}$, and $h \rightarrow Q\bar{Q}Q\bar{Q}$ is straightforward. Summation over the spins of the partons in the final state eliminates the CP-odd terms proportional to a_{QbQ}. That is, these squared matrix elements are given by the incoherent sum of the respective squared matrix elements for the decay of a CP-even and CP-odd Higgs boson h. This holds true also for the contributions to $d\Gamma_2$ associated with three-parton and two-parton final states.

The renormalized one-loop amplitude for $h \rightarrow Q\bar{Q}g$ required in (2.6) is computed with standard one-loop perturbation theory methods. As to the $\mathcal{O}(\alpha_s^2)$ contribution to $h \rightarrow Q\bar{Q}$. The renormalized (but IR-divergent) non-singlet two-loop scalar and pseudoscalar $hQ\bar{Q}$ form factors (and the one-loop form factors including the terms of order ϵ) that enter the respective matrix element were computed in [49]. The two-loop singlet scalar form factor is contained in the results of [49] while the singlet pseudoscalar form factor was determined in [50]. The singlet form factors are UV- and IR-finite. The scalar and pseudoscalar two-loop form factors were recently computed also in [51]. While the unrenormalized non-singlet form factors of [51] agree with those of [49] the renormalized ones differ by terms proportional to $\zeta(2) = \pi^2/6$. This is because the renormalization constant for the QCD coupling in the $\overline{\text{MS}}$ scheme used in [51] is not identical to the one used in [49]; they differ at order ϵ^2 by a term proportional to $\zeta(2)$. This does not affect the UV renormalization of Green functions with at most a single UV pole per loop, but it affects the the two-loop quark wave function and mass renormalization constants in the on-shell scheme that have double IR ϵ-poles and the renormalized non-singlet form factors. However, we emphasize that these differences are unphysical infrared artefacts. Our NNLO subtraction antenna subtraction terms [48] were computed with the same $\overline{\text{MS}}$ coupling renormalization convention as used in [49, 52, 53]. Therefore these IR artefacts cancel in the computation of observables.

A further remark pertains to the order α_s^2 flavor-singlet contributions to the scalar and pseudoscalar $h \rightarrow Q\bar{Q}$ and $h \rightarrow Q\bar{Q}g$ amplitude, depicted in figure 1a and 1b, respectively. These amplitudes are ultraviolet- and infrared-finite. Let us first discuss $h \rightarrow t\bar{t}$. The case where h has a scalar coupling to the internal top-quark triangle (that is, equal masses associated with the inner and outer fermion line) has been taken into account in [49], while the amplitude associated with a pseudoscalar coupling of h to the internal top-quark loop was determined in [50]. Here we neglect the masses of the five quarks $b, ..., u$ in the propagators of the respective fermion triangle. Therefore, they do not contribute to the flavor-singlet scalar and pseudoscalar amplitudes $h \rightarrow t\bar{t}$ and $h \rightarrow t\bar{t}q$ because the respective massless quark triangle is proportional to the trace of the product of an odd number of γ matrices. The contribution to $h \rightarrow t\bar{t}g$ with a top quark circulating in the triangle is

3The $\overline{\text{MS}}$ renormalization of the QCD coupling used in [49] is explicitly defined in [52, 53].
Figure 1. The flavor-singlet contributions to $h \to Q\bar{Q}$ and $h \to Q\bar{Q}g$, where $Q, Q' = t, b$ and h denotes a scalar or pseudoscalar Higgs boson. If the quark in a triangle (a) or (b) is taken to be massless then the contribution is zero. Diagrams with reversed fermion flow in the triangles are not shown.

computed with standard methods.

In our calculation of $h(125\text{GeV}) \to b\bar{b}X$ we assume h to be CP-even, take the b quark to be massive and u, d, c, s to be massless. As just mentioned, concerning the $h \to b\bar{b}$ amplitude, the flavor-singlet scalar equal-mass case with an internal and external massive b quark is contained in the results given in [49]. The massive b-quark triangle contribution to $h \to b\bar{b}g$ is again computed with standard methods. The scalar flavor-singlet contribution to $h \to b\bar{b}X$ with a top quark circulating in the triangle — which does not decouple — and an external massive b quark, that is, the sum of the contributions shown in figure 1a and 1b, where $Q' = t$ and $Q = b$, was computed in [20] to leading order in the b-quark mass as an expansion in inverse powers of the top-quark mass. (The first four terms of this expansion are given in [20].) For our computation of the two-jet and three-jet rates for $h \to b\bar{b}X$ in section we will need the contributions figure 1a and 1b with a top quark (and b quark) circulating in the respective quark triangle separately. We compute the contribution to the differential decay rate of $h \to b\bar{b}g$ with a top-quark in the triangle, and by subtraction of this term from the result of [20] we obtain the top-quark triangle contribution to $h \to b\bar{b}$.

As already mentioned above, we first compute the differential decay width in terms of the on-shell mass m_Q of Q and in terms of the on-shell Yukawa coupling $y_Q = m_Q/v$. It reads schematically to order α_s^2:

$$d\Gamma_{Q\bar{Q}} = \frac{y_Q^2}{2} \left[d\hat{\Gamma}_{Q\bar{Q}}^0 + \frac{\alpha_s(\mu)}{\pi} d\hat{\Gamma}_{Q\bar{Q}}^1 + \left(\frac{\alpha_s(\mu)}{\pi} \right)^2 d\hat{\Gamma}_{Q\bar{Q}}^2 \right],$$

(3.1)

where the $\overline{\text{MS}}$ coupling $\alpha_s(\mu)$ is defined in QCD with n_l massless and one massive quark, μ is the renormalization scale,

$$d\hat{\Gamma}_{i}^{QQ} = d\hat{\Gamma}_{i}^{QQ}(m_Q, m_h, a_Q, b_Q, \mu),$$

(3.2)

- 8 -
and \(m_h \) denotes the Higgs-boson mass. To lowest order in \(\alpha_s \) we have

\[
\hat{\Gamma}_Q^{\bar{Q}Q} = N_c \frac{\beta_Q}{8\pi m_h} \left[a_Q^2 (m_h^2 - 4m_Q^2) + b_Q^2 m_h^2 \right],
\]

(3.3)

where \(\beta_Q = \sqrt{1 - 4m_Q^2/m_h^2} \) and \(N_c \) denotes the number of colors.

It has been known for a long time [8] that it is not a good idea to express the decay rate in terms of the on-shell Yukawa coupling when \(m_Q/m_h \ll 1 \), because then the decay rate contains already at NLO a large logarithm in \(m_Q/m_h \) that arises from the on-shell renormalization. This logarithm can be absorbed by using the \(\overline{\text{MS}} \) Yukawa coupling \(\overline{\gamma}_Q(\mu) = m_{Q}(\mu)/v \), where \(m_{Q}(\mu) \) is the running \(\overline{\text{MS}} \) mass, and choosing \(\mu = m_h \). In the following we convert in (3.1) the on-shell Yukawa coupling \(\gamma_Q \) to \(\overline{\gamma}_Q(\mu) \) using the relation between these couplings to order \(\alpha_s^2 \). One may express the coefficients \(\hat{d}\hat{\Gamma}_Q^{\bar{Q}Q} \) defined in (3.2) also in terms of the \(\overline{\text{MS}} \) mass \(m_{Q}(\mu) \). However, we keep their dependence on the on-shell mass \(m_Q \) because one may argue that this yields a somewhat more realistic description of the decay kinematics when computing distributions. We notice that this hybrid renormalization prescription also avoids large logarithms in the case \(m_Q/m_h \ll 1 \). In our analysis of \(h \to t\bar{t}X \) in section 4 we consider a range of Higgs-boson masses for which the ratio \(m_t/m_h \) is not very small. Nevertheless it turns out that using the \(\overline{\text{MS}} \) Yukawa coupling \(\overline{\gamma}_t \) is appropriate also in this case, see section 4.

For expressing \(y_Q \) in terms of \(\overline{\gamma}_Q \) we need the relation between the the on-shell mass \(m_Q \) and the \(\overline{\text{MS}} \) mass \(m_{Q}(\mu) \) to order \(\alpha_s^2 \). It reads in QCD with \(n_l \) massless and one massive quark [54, 55]:

\[
m_Q = m_{Q}(\mu) \left[1 + c_1(m_Q, \mu) \frac{\alpha_s(\mu)}{\pi} + c_2(m_Q, \mu) \left(\frac{\alpha_s(\mu)}{\pi} \right)^2 \right] + \mathcal{O}(\alpha_s^3),
\]

(3.4)

where

\[
c_1 = -u_1, \quad c_2 = u_1^2 - u_2,
\]

(3.5)

and

\[
u_1 = - C_F (1 + \frac{3}{4} L_Q), \quad u_2 = C_F \left[\frac{7}{128} + 3\zeta(2)(-\frac{5}{8} + \ln 2) - \frac{3}{4}\zeta(3) + \frac{21}{32} L_Q + \frac{9}{32} L_Q^2 \right] + N_c C_F \left[- \frac{1111}{384} + \frac{\zeta(2)}{2} (1 - 3 \ln 2) + \frac{3}{8}\zeta(3) - \frac{185}{96} L_Q - \frac{11}{32} L_Q^2 \right]
\]

\[
+ C_F T_F n_l \left[\frac{71}{96} + \frac{1}{2}\zeta(2) + \frac{13}{24} L_Q + \frac{1}{8} L_Q^2 \right]
\]

\[
+ C_F T_F \left[\frac{143}{96} - \zeta(2) + \frac{13}{24} L_Q + \frac{1}{8} L_Q^2 \right].
\]

(3.7)

Here

\[
C_F = \frac{N_c^2 - 1}{2 N_c}, \quad T_F = \frac{1}{2}, \quad L_Q = \ln \left(\frac{\mu^2}{m_Q^2} \right), \quad \zeta(2) = \frac{\pi^2}{6}, \quad \zeta(3) = 1.20205690...
\]

(3.8)
Inserting (3.4) into the squared Yukawa coupling in the on-shell scheme,
\[y_Q^2 = \frac{m_Q^2}{v^2}, \]
and expanding to order \(\alpha_s^2 \) we get
\[y_Q^2 = \tilde{y}_Q^2(\mu) \left[1 + r_1(m_Q, \mu) \frac{\alpha_s(\mu)}{\pi} + r_2(m_Q, \mu) \left(\frac{\alpha_s(\mu)}{\pi} \right)^2 \right], \tag{3.9} \]
where \(\tilde{y}_Q^2(\mu) \) is the squared Yukawa coupling in the \(\overline{\text{MS}} \) scheme,
\[\tilde{y}_Q^2(\mu) = \frac{m_Q^2(\mu)}{v^2}, \quad r_1 = -2u_1, \quad r_2 = 3u_1^2 - 2u_2. \tag{3.10} \]

Let us now apply (3.9) to the differential decay width of \(h \to Q\bar{Q}X \). Inserting (3.9) into (3.1) and expanding to order \(\alpha_s^2 \) we obtain schematically:
\[d\Gamma^{Q\bar{Q}} = \tilde{y}_Q^2(\mu) \Gamma_0^{Q\bar{Q}} \left[1 + \frac{\alpha_s(\mu)}{\pi} \left(\gamma_1^{Q\bar{Q}} + r_1 \right) + \left(\frac{\alpha_s(\mu)}{\pi} \right)^2 \left(\gamma_2^{Q\bar{Q}} + r_1 \gamma_1^{Q\bar{Q}} + r_2 \right) \right], \tag{3.11} \]

Because of the truncation of the perturbation series, equation (3.11) is not identical to (3.1); therefore we use the bar notation. The decay width can be cast into the form
\[\Gamma^{Q\bar{Q}} = \tilde{y}_Q^2(\mu) \tilde{\Gamma}_0^{Q\bar{Q}} \left[1 + \frac{\alpha_s(\mu)}{\pi} \left(\hat{\gamma}_1^{Q\bar{Q}} + r_1 \right) + \left(\frac{\alpha_s(\mu)}{\pi} \right)^2 \left(\hat{\gamma}_2^{Q\bar{Q}} + r_1 \hat{\gamma}_1^{Q\bar{Q}} + r_2 \right) \right], \tag{3.12} \]
where
\[\hat{\gamma}_1^{Q\bar{Q}} = \frac{\hat{\Gamma}_1^{Q\bar{Q}}}{\tilde{\Gamma}_0^{Q\bar{Q}}}, \quad \hat{\gamma}_2^{Q\bar{Q}} = \frac{\hat{\Gamma}_2^{Q\bar{Q}}}{\tilde{\Gamma}_0^{Q\bar{Q}}}. \tag{3.13} \]

The \(\overline{\text{MS}} \) Yukawa coupling makes the LO decay width \(\tilde{y}_Q^2(\mu) \tilde{\Gamma}_0^{Q\bar{Q}} \) dependent on \(\mu \). In our application of (3.11) and (3.12) to \(h \to t\bar{t}X \) we work in 6-flavor QCD with \(\alpha_s = \alpha_s^{(6)} \) and \(n_l = 5 \) while in the application to \(h \to b\bar{b}X \) we evaluate these formulas with \(\alpha_s = \alpha_s^{(5)} \) and \(n_l = 4 \).

When computing the on-shell mass of \(Q \) from its \(\overline{\text{MS}} \) mass the coefficients \(c_1, c_2 \) in (3.4) are expressed in terms of the \(\overline{\text{MS}} \) mass instead of the on-shell mass. Iterating (3.4) we get
\[m_Q = \overline{m}_Q(\mu) \left[1 + \bar{c}_1(\overline{m}_Q, \mu) \frac{\alpha_s(\mu)}{\pi} + \bar{c}_2(\overline{m}_Q, \mu) \left(\frac{\alpha_s(\mu)}{\pi} \right)^2 \right], \tag{3.14} \]
where
\[\bar{c}_1 = -u_1(\overline{m}_Q, \mu), \quad \bar{c}_2 = u_1^2(\overline{m}_Q, \mu) - u_2(\overline{m}_Q, \mu) + \frac{3C_F}{2}u_1(\overline{m}_Q, \mu), \tag{3.15} \]
i.e., the logarithm \(L_Q \) in \(u_1, u_2 \) is replaced by
\[L_Q = \ln \left(\frac{\mu^2}{\overline{m}_Q(\mu)} \right). \tag{3.16} \]
For computing the \(\overline{\text{MS}} \) top and bottom Yukawa couplings at arbitrary scales \(\mu \) we use the solution of the renormalization group equation for \(\overline{m}_Q(\mu) \) at two-loops. It reads

\[
\overline{m}_Q(\mu) = \overline{m}_Q(\mu_0) \left(\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)} \right)^{\gamma_{m,0}/\beta_0} \left\{ 1 + \frac{(\gamma_{m,1}\beta_0 - \gamma_{m,0}\beta_1)}{\pi \beta_0^2} [\alpha_s(\mu) - \alpha_s(\mu_0)] + \mathcal{O}(\alpha_s^4) \right\}. \tag{3.17}
\]

The coefficients are, putting \(N_c = 3 \) and \(n_f = n_t + 1 \):

\[
\gamma_{m,0} = 1, \quad \gamma_{m,1} = \frac{303 - 10n_f}{72}, \tag{3.18}
\]

\[
\beta_0 = \frac{33 - 2n_f}{12}, \quad \beta_1 = \frac{153 - 19n_f}{24}, \tag{3.19}
\]

and \(\alpha_s \) in (3.17) is the coupling in \(n_f \)-flavor QCD.

Finally, a remark concerning the relation between the on-shell and \(\overline{\text{MS}} \) Yukawa coupling of \(Q \). When the iterated relation (3.14) instead of (3.4) is used to express \(y_Q^0 \) in terms of \(\hat{y}_Q^0 \) to order \(\alpha_s^2 \), the coefficients \(r_1 \) and \(r_2 \) in (3.9) change; in particular, they depend then on the \(\overline{\text{MS}} \) mass of \(Q \). In cases where the ratio \(m_Q/m_h \) is not very small, one may consider it to be a matter of convention which one of these two variants one uses. In cases where \(m_Q/m_h \) tends to zero the formulas (3.11) and (3.12) are to be used if the matrix elements are computed in terms of the on-shell mass \(m_Q \), as we do. This is because for small \(m_Q \) the \(\hat{\Gamma}_i^{QQ} \) (\(i = 1, 2 \)) develop large logarithms in the on-shell mass which are compensated by the large logarithms in \(m_Q \) that appear in \(r_1, r_2 \). We will show in section 5.1 that by choosing a small \(b \)-quark mass, eq. (3.12) allows to recover the known \(h \to b \bar{b}X \) decay width at order \(\alpha_s^2 \) for massless \(b \) quarks.

4 Decays of non-standard Higgs bosons to \(t\bar{t}X \)

In this section we analyze the decay of a non-standard heavy neutral Higgs boson of arbitrary CP nature into \(t\bar{t} \) for a set of Higgs-boson masses. As emphasized before we consider unpolarized final states. Then, as mentioned in the previous section, the differential decay rate to order \(\alpha_s^2 \) and to lowest order in the electroweak couplings decomposes into the incoherent sum

\[
d\Gamma^{t\bar{t}} = a_t^2 d\Gamma^{t\bar{t}}_S + b_t^2 d\Gamma^{t\bar{t}}_P, \tag{4.1}
\]

where \(d\Gamma^{t\bar{t}}_S \) (\(d\Gamma^{t\bar{t}}_P \)) denotes the differential decay rate of a CP-even (CP-odd) Higgs boson with reduced Yukawa couplings \(a_t = 1, b_t = 0 \) (\(a_t = 0, b_t = 1 \)). In the following we compute \(\Gamma^{t\bar{t}}_S, \Gamma^{t\bar{t}}_P \) and the respective top-quark energy distribution in the Higgs-boson rest frame and the \(t\bar{t} \) invariant mass distribution using the NNLO antenna subtraction framework outlined in section 2 and the formulas (3.11), (3.12).

We use \(m_t = 173.34 \) GeV for the on-shell mass of the top quark. With the relation (3.4) we get \(\overline{m}_t(\mu = m_t) = 163.46 \) GeV for the \(\overline{\text{MS}} \) mass at \(\mu = m_t \). This value is used as an input for computing with (3.17) the running top-quark mass \(\overline{m}_t(\mu) \) with which the \(\overline{\text{MS}} \) Yukawa coupling \(y_t(\mu) \) is determined. The renormalization scale is chosen to be \(\mu = m_h \). The effect of scale variations is assessed by varying \(\mu \) between \(\mu = m_h/2 \) and \(\mu = 2m_h \). For
the QCD coupling we use $\alpha_s^{(5)}(M_Z) = 0.118$ and convert it to the $\overline{\text{MS}}$ coupling of $n_f = 6$ flavor QCD.

The left plot of figure 2 shows our result for the decay width $\Gamma_{t\bar{t}}^{S}$ of a scalar Higgs boson with $a_t = 1$ at LO, NLO, and NNLO QCD for Higgs-boson masses between 500 GeV and below the four-top threshold. (For larger Higgs-boson masses the IR-finite $\mathcal{O}(\alpha_s^2)$ contribution from $h \to t\bar{t}t\bar{t}$ can be straightforwardly added.) The short-dashed, long-dashed, and solid lines correspond to the choice $\mu = m_h$ and the shaded bands correspond to scale variations between $\mu = m_h/2$ and $\mu = 2m_h$. The analogous result is depicted in the right plot of figure 2 for the decay width $\Gamma_{t\bar{t}}^{P}$ of a pseudoscalar Higgs boson with $b_t = 1$. The plots in figure 2 show that inclusion of the order α_s^2 corrections reduce the scale uncertainties significantly. Moreover, the perturbation expansion in α_s of the decay widths is well behaved, although the order α_s^2 corrections are not negligible. For a scalar (pseudoscalar) Higgs boson with mass $m_h = 500$ GeV and $\mu = m_h$ the α_s^2 correction increases the NLO width by 9.2% (5.8%) while for $m_h = 680$ GeV the increase amounts to 5.3% (3.4%).

![Figure 2](image_url)

Figure 2. Left plot: The decay width into $t\bar{t}$ of a scalar Higgs boson with $a_t = 1$ at LO (short-dashed, green), NLO (long-dashed, blue), and NNLO (solid, red) QCD as a function of the Higgs-boson mass. The short-dashed, long-dashed, and solid lines correspond to the scale choice $\mu = m_h$ while the shaded bands show the effect of varying the renormalization scale between $m_h/2$ and $2m_h$. Right plot: Same as left plot, but for a pseudoscalar Higgs boson with $b_t = 1$.

If the ratio m_t/m_h is not significantly smaller than one, one may argue that the decay widths can also be computed using the on-shell top Yukawa coupling instead of the $\overline{\text{MS}}$ Yukawa coupling. In table 1 we list, for two Higgs-boson masses, our results for the $t\bar{t}$ decay widths at NNLO QCD obtained with (3.1) and (3.12). The decay widths $\Gamma_{X}^{t\bar{t}} (X = S, P)$ are slightly smaller than the corresponding widths $\Gamma_{X}^{\text{on-shell}}^{t\bar{t}} (X = S, P)$. Using the on-shell top Yukawa coupling we note that for $m_h \gtrsim 600$ GeV the order α_s^2 contribution to the respective decay width becomes of the same order of magnitude than the order α_s contribution, while figure 2 shows that the perturbation expansion in α_s works well when the $\overline{\text{MS}}$ top Yukawa coupling is used.

Moreover, we can compare our NNLO QCD results for the $t\bar{t}$ decay widths, which are
Table 1. The $t\bar{t}$ decay widths at NNLO QCD, Γ^t_X and $\Gamma^{\bar{t}}_X$ ($X = S, P$), of a scalar and pseudoscalar Higgs boson for two Higgs-boson masses computed with the \overline{MS} and on-shell top-Yukawa couplings, respectively, cf. equations (3.12) and (3.1). The reduced Yukawa couplings are chosen to be $a_t = 1$ and $b_t = 1$, respectively. The central values correspond to the scale $\mu = m_h$ and the uncertainties to $\mu = m_h/2$ and $\mu = 2m_h$.

m_h [GeV]	Γ^t_S [GeV]	$\Gamma^{\bar{t}}_S$ [GeV]	Γ^t_P [GeV]	$\Gamma^{\bar{t}}_P$ [GeV]
500	$12.529^{+0.265}_{-0.314}$	$12.955^{+0.037}_{-0.046}$	$22.392^{+0.283}_{-0.411}$	$22.931^{+0.030}_{-0.062}$
680	$25.007^{+0.285}_{-0.408}$	$25.647^{+0.075}_{-0.101}$	$32.188^{+0.214}_{-0.307}$	$32.784^{+0.185}_{-0.225}$

exact in m_t, with those of α_t^4 [21] that were obtained by expanding the scalar and pseudoscalar current correlation functions to fourth order in $(m_t/m_h)^2$. Let us denote the order α_t^2 contribution to the respective $t\bar{t}$ decay width to the results of [21] by $\Gamma^t_{2,X}$, $\Gamma^{\bar{t}}_{2,X}$, $X = S, P$. For $m_h = 500$ GeV and $\mu = m_h$ we get $\Gamma^t_{2,S}/\Gamma^{\bar{t}}_{2,S} = 1.007$ and $\Gamma^t_{2,P}/\Gamma^{\bar{t}}_{2,P} = 1.026$. As expected, for smaller ratios m_t/m_h the agreement becomes even better. For $m_h = 680$ GeV and $\mu = m_h$ we find $\Gamma^t_{2,S}/\Gamma^{\bar{t}}_{2,S} = 0.9997$ and $\Gamma^t_{2,P}/\Gamma^{\bar{t}}_{2,P} = 1.0003$.

Next we turn to differential distributions. We consider the distribution of the normalized top-quark energy $x_t = 2E_t/m_h$ in the rest frame of the Higgs boson and the $t\bar{t}$ invariant mass distribution. We recall that the distributions expressed in terms of the \overline{MS} Yukawa coupling are computed with (3.11). For definiteness we choose $m_h = 500$ GeV.

The left plot of figure 3 shows $d\Gamma^t_S/dx_t$ for a scalar Higgs boson at LO, NLO, and NNLO QCD, while the right plot of figure 3 displays the analogous result for a pseudoscalar Higgs boson. Again, the short-dashed, long-dashed, and solid lines correspond to the renormalization scale $\mu = m_h$ and the shaded bands correspond to scale variations between $\mu = m_h/2$ and $\mu = 2m_h$. The $t\bar{t}$ invariant mass distribution at LO, NLO, and NNLO QCD is displayed in the left and right plots of figure 4 for the $t\bar{t}$ decays of a scalar and pseudoscalar Higgs boson with mass $m_h = 500$ GeV. The same conventions are used as in figure 3. Figures 3 and 4 show that for a Higgs boson with mass of the order of 500 GeV most of the final-state events consist of t, \bar{t} with additional soft or collinear massless partons. Events where t, \bar{t} are accompanied by hard massless partons are significantly suppressed both at NLO and NNLO QCD. Inclusion of the order α_t^2 corrections significantly reduces the scale uncertainties of the distributions.

5 Decay of $h(125)$ to $b\bar{b}X$

In this section we analyze the decay of the 125 GeV Higgs boson $h(125)$ into $b\bar{b}$ at NNLO QCD, taking the b quark to be massive. The experimental data on the production and decays of this boson are compatible with SM predictions. Therefore, we identify it with the SM Higgs boson, that is, we assume it to be CP-even with $a_h = 1$. Moreover, we use the Higgs-boson mass $m_h = 125.09$ GeV [56].

\footnote{We thank Robert Harlander for providing the results of [21] in electronic form.}
Figure 3. Left plot: Distribution $d\Gamma_{\bar{t}t}/dx_t$ of the normalized top-quark energy $x_t = 2E_t/m_h$ for a 500 GeV scalar Higgs boson with $a_t = 1$ at LO (short-dashed, green), NLO (long-dashed, blue), and NNLO (solid, red) QCD. The short-dashed, long-dashed, and solid lines correspond to the scale choice $\mu = m_h$ while the shaded bands show the effect of varying the renormalization scale between $m_h/2$ and $2m_h$. Right plot: Same as left plot, but for a pseudoscalar Higgs boson with $b_t = 1$.

Figure 4. Left plot: Distribution $d\Gamma_{\bar{t}t}/dM_{tt}$ of the $\bar{t}t$ invariant mass for a 500 GeV scalar Higgs boson with $a_t = 1$ at LO (short-dashed, green), NLO (long-dashed, blue), and NNLO (solid, red) QCD. The short-dashed, long-dashed, and solid lines correspond to the scale choice $\mu = m_h$ while the shaded bands show the effect of varying the renormalization scale between $m_h/2$ and $2m_h$. Right plot: Same as left plot, but for a pseudoscalar Higgs boson with $b_t = 1$.

For the b-quark mass we use $m_b(\mu = m_b) = 4.18$ GeV [56] in $n_f = 5$ flavor QCD as input in (3.17) for computing the running MS b-quark mass and the Yukawa coupling $\overline{y}_b(\mu)$ at arbitrary scales μ. As in section 4 we use $\alpha_s^{(5)}(m_Z) = 0.118$. From the two-loop relation (3.14) we obtain $m_b = 4.78$ GeV. This value of the on-shell b-quark mass is used in computing the coefficients r_1, r_2, the $\hat{\Gamma}_{\bar{b}b}$, and the $\gamma_{i \bar{b}b}$ defined in eq. (3.10), (3.11), and (3.13), respectively. (Higher order corrections to (3.14) shift this value of m_b to a somewhat higher value [57, 58], but for the sake of consistency of the order of the perturbative expansion,
we stick to $m_b = 4.78$ GeV.) With the above value of $m_b(\mu = \overline{m}_b)$ we get, using (3.17), the values $m_b(\mu) = 2.97$ GeV, 2.80 GeV, and 2.65 GeV at $\mu = m_h/2, m_h,$ and $2m_h$, respectively. With these values we compute the MS Yukawa couplings $\overline{y}_b(\mu)$. As in section 4 we use $\alpha_s^{(5)}(m_Z) = 0.118$. The displayed digits of our numerical results given below are not affected by our numerical integration errors.

5.1 Inclusive decay width

First, we determine the inclusive decay width of $h(125) \to b\bar{b}X$ at NNLO QCD using the antenna subtraction framework of section 2. We have to take into account also $h \to b\bar{b}b\bar{b}$ whose contribution is IR finite. We represent our result for the inclusive decay width at NNLO QCD in the form (3.12):

$$\Gamma_{b\bar{b}}^{NNLO} = \Gamma_{b\bar{b}}^{LO} \left[1 + g_1 \frac{\alpha_s^{(5)}}{\pi} + g_2 \left(\frac{\alpha_s^{(5)}}{\pi} \right)^2 \right],$$ \hspace{1cm} (5.1)

where

$$\Gamma_{b\bar{b}}^{LO} = \overline{y}_b^2(\mu)\Gamma_{b\bar{b}}^0, \quad g_1 = \gamma_{\Gamma_1}^{b\bar{b}} + r_1, \quad g_2 = \gamma_{\Gamma_2}^{b\bar{b}} + r_1\gamma_{\Gamma_1}^{b\bar{b}} + r_2,$$ \hspace{1cm} (5.2)

and $\Gamma_{b\bar{b}}^0$ is defined in eq. (3.3). Our results for $g_1, g_2, \Gamma_{b\bar{b}}^{LO}, \Gamma_{b\bar{b}}^{NLO},$ and $\Gamma_{b\bar{b}}^{NNLO}$ are given in table 2 for $\mu = m_h/2, m_h,$ and $2m_h$.

μ	$\Gamma_{b\bar{b}}^{LO}$ [MeV]	$\Gamma_{b\bar{b}}^{NLO}$ [MeV]	$\Gamma_{b\bar{b}}^{NNLO}$ [MeV]
$m_h/2$	2.153	2.413	2.425
m_h	1.910	2.307	2.399
$2m_h$	1.717	2.196	2.353

The numbers in table 2 show that the order α_s^2 correction increases the NLO $b\bar{b}$ decay width by 4% for $\mu = m_h$. Inclusion of these corrections reduces the renormalization scale uncertainties significantly. The values of the MS Yukawa couplings $\overline{y}_b(\mu)$, which are determined by the MS masses $m_b(\mu)$ given above, have of course a decisive impact on the values of $\Gamma_{b\bar{b}}^{\Gamma_I}$ (1=LO,NLO, NNLO) given in table 2. Moreover, we point out that the top-quark triangle contribution to $h \to b\bar{b}$ and $h \to b\bar{b}g$ shown in figure 1 constitute an important part of the order α_s^2 corrections. This contribution, which is μ-independent, to g_2 listed in table 2 is $g_2(t) = 6.898$.

As a check of our computational set-up in the case of $h \to b\bar{b}X$ we determine the QCD correction coefficients g_1 and g_2 in the limit of small b-quark mass and compare with the
results for massless \(b \) quarks, \(g_1(m_b = 0) = 5.6666 \) and \(g_2(m_b = 0) = 29.1467 \) \cite{15, 24}. We cannot perform the limit \(m_b \to 0 \) analytically. Therefore we choose a value for \(m_b \) that is very small compared to \(m_h \), to wit, we choose \(m_b = 0.5 \) GeV and compute the resulting \(g_1 \) and \(g_2 \) for \(\mu = m_h \). For the order \(\alpha_s \) QCD coefficient we obtain \(g_1(m_b = 0.5 \text{GeV}) = 5.6685 \). The \(\alpha_s^2 \) QCD coefficient given in \cite{15, 24} does not include the top-quark triangle contribution to \(h \to bb \) and \(h \to bbg \), respectively. In fact these contributions vanish for \(m_b = 0 \) because of helicity mismatch. Omitting these contributions we obtain \(g_2(m_b = 0.5 \text{GeV}) = 29.187 \) which is very close to the number for \(m_b = 0 \). Using the same Yukawa coupling \(m_h(m_h) \) as in the massive case, the resulting NNLO decay width for \(m_b = 0 \) and \(\mu = m_h \) is \(\Gamma_{NNLO}(m_b = 0) = 2.391 \text{MeV} \).

5.2 Two-jet, three-jet, and four-jet rates

Concerning the decay of \(h(125) \) to \(b \) quarks, other interesting observables for future experimental analyses include the decay rates into two, three, and four jets. For definiteness we use here the Durham jet algorithm \cite{59} (and the recombination scheme \(k_{ij} = k_i + k_j \)) with jet resolution parameters \(y_{cut} = 0.01 \) and \(y_{cut} = 0.05 \). The \(n \)-jet rates can be represented, in analogy to (3.11) and (3.12), to order \(\alpha_s^2 \) as follows:

\[
\Gamma_{2\text{jet}}^{bb} = \Gamma_{LO}^{bb} \left[1 + g_1(2\text{jet}) \frac{\alpha_s(5)}{\pi} + g_2(2\text{jet}) \left(\frac{\alpha_s(5)}{\pi} \right)^2 \right],
\]

\[
\Gamma_{3\text{jet}}^{bb} = \Gamma_{LO}^{bb} \left[g_1(3\text{jet}) \frac{\alpha_s(5)}{\pi} + g_2(3\text{jet}) \left(\frac{\alpha_s(5)}{\pi} \right)^2 \right],
\]

\[
\Gamma_{4\text{jet}}^{bb} = \Gamma_{LO}^{bb} \times g_2(4\text{jet}) \left(\frac{\alpha_s(5)}{\pi} \right)^2,
\]

where

\[
g_1(2\text{jet}) = \gamma_1^{bb}(2\text{jet}) + r_1, \quad g_2(2\text{jet}) = \gamma_2^{bb}(2\text{jet}) + r_1 \gamma_1^{bb}(2\text{jet}) + r_2,
\]

\[
g_1(3\text{jet}) = \gamma_1^{bb}(3\text{jet}), \quad g_2(3\text{jet}) = \gamma_2^{bb}(3\text{jet}) + r_1 \gamma_1^{bb}(3\text{jet}),
\]

\[
g_2(4\text{jet}) = \gamma_2^{bb}(4\text{jet}).
\]

Our results for the coefficients \(g_i(n\text{jet}) \) are given in table 3 for \(\mu = m_h/2, m_h \), and \(2m_h \). With decreasing resolution parameter \(y_{cut} \) the two-jet rate decreases while the three- and four-jet rates increase. This is because a smaller \(y_{cut} \) resolves more and more gluon radiation respectively massless quark radiation. The three-jet rate has a maximum below \(y_{cut} = 0.01 \) and then decreases for smaller \(y_{cut} \), while the four-jet rate still increases for these resolution parameters till its maximum is reached. Notice that for each value of \(y_{cut} \) and \(\mu \) the sum of the \(g_i(n\text{jet}) \) listed in table 3 yields the inclusive coefficient \(g_i \) \(i = 1, 2 \) given in table 2.

The coefficients \(g_i(n\text{jet}) \) were computed in \cite{33} for \(\mu = m_h \) and massless \(b \) quarks using the JADE algorithm and \(y_{cut} = 0.01 \).

Finally we analyze, for two-jet events, the distribution of the energy of the leading jet, i.e., the jet with the largest energy in the Higgs-boson rest frame. We use the dimensionless...
The coefficients $g_i(n\text{ jet})$ defined in eqs. (5.6) – (5.8) and computed with the Durham algorithm using $y_{cut} = 0.01$ and $y_{cut} = 0.05$ for three renormalization scales μ. They determine the n-jet rates (5.3) – (5.5).

	$y_{cut} = 0.01$			$y_{cut} = 0.05$		
	$\mu = m_h/2$	$\mu = m_h$	$\mu = 2m_h$	$\mu = m_h/2$	$\mu = m_h$	$\mu = 2m_h$
$g_1(2\text{ jet})$	-5.055	-2.283	0.490	0.291	3.063	5.836
$g_2(2\text{ jet})$	-56.351	-66.532	-61.658	-19.496	-0.650	33.250
$g_1(3\text{ jet})$	8.079	8.079	8.079	2.733	2.733	2.733
$g_2(3\text{ jet})$	36.873	80.741	124.609	22.256	37.096	51.937
$g_2(4\text{ jet})$	23.163	23.163	23.163	0.926	0.926	0.926

variable

$$x_{max} = \max(E_{j1}/m_h, E_{j2}/m_h).$$

(5.9)

Obviously, $x_{max} \geq 0.5$. We choose the Durham algorithm with $y_{cut} = 0.05$ and the parameter set-up as specified at the beginning of this section. The distribution of this observable is shown in figure 5 at LO, NLO, and NNLO QCD. The figure shows that the perturbation series is well-behaved for this observable.

Figure 5. The distribution of the variable x_{max} defined in (5.9) for two-jet events using the Durham algorithm with $y_{cut} = 0.05$ at LO (short dashed, green), NLO (long dashed, blue), and NNLO (solid, red) QCD. The central lines correspond to $\mu = m_h$ and the shaded bands correspond to scale variations between $\mu = m_h/2$ and $(\mu = 2m_h)$.

This distribution was presented before for massless b quarks in [33] (where the JADE algorithm with $y_{cut} = 0.1$ was used) and in [34] (where the Durham algorithm with $y_{cut} = 0.05$ was used). Comparing figure 5 with figure 2 of [34] shows that taking the non-zero b-quark mass into account has only a minor impact on the shape of this distribution.
6 Conclusions

We have presented, within the antenna subtraction framework, the set-up for calculating the fully differential decay rate of a scalar and pseudoscalar Higgs boson to a massive quark antiquark pair at NNLO in the perturbation series in α_s. Our approach is fully differential in the phase-space variables and can be used to compute any infrared-safe observable for these decays. So far, methods for calculating Higgs-boson decays at order α_s^2 in QCD at the differential level were available only for massless quarks. We have applied our set-up to the decay of a scalar and pseudoscalar Higgs boson to t, \bar{t} and to the decay of the $h(125\text{GeV})$ Higgs boson to massive b, \bar{b} quarks. Apart from computing the respective decay widths at NNLO accuracy we have determined also several distributions, in order to show the use of our approach. We have presented our results in terms of the $\overline{\text{MS}}$ Yukawa coupling $\overline{\gamma}_Q$, while the on-shell mass m_Q is used in the matrix elements. For the NNLO decay width of $h(125\text{GeV}) \to b \bar{b} X$ we have shown numerically that this formulation recovers, for $m_b/m_h \to 0$, the known result for massless b quarks.

Our results can be used as a building block in a theoretical description of Higgs-boson production and decay to massive quarks at order α_s^2 at the differential level in hadron or electron-positron collisions.

Acknowledgments

We thank Matteo Capozi, Thomas Gehrmann, Robert Harlander, and Matthias Kerner for discussions. The work of Z.G. Si is supported by Natural Science Foundation of China (NSFC) and by Natural Science Foundation of Shandong Province.

References

[1] J. Brandstetter [ATLAS and CMS Collaborations], Higgs boson results on couplings to fermions, CP parameters and perspectives for HL-LHC (ATLAS AND CMS), arXiv:1801.07926 [hep-ex].

[2] J. A. Aguilar-Saavedra et al. [ECFA/DESY LC Physics Working Group Collaboration], TESLA: The Superconducting electron positron linear collider with an integrated x-ray laser laboratory. Technical design report. Part 3. Physics at an e^-e^- linear collider, hep-ph/0106315.

[3] H. Baer et al., The International Linear Collider Technical Design Report - Volume 2: Physics, arXiv:1306.6352 [hep-ph].

[4] CEPC-SPPC Study Group, CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector, IHEP-CEPC-DR-2015-01, IHEP-TH-2015-01, IHEP-EP-2015-01.

[5] M. Bicer et al. [TLEP Design Study Working Group Collaboration], First Look at the Physics Case of TLEP, JHEP 1401 (2014) 164 doi:10.1007/JHEP01(2014)164 [arXiv:1308.6176 [hep-ex]].

[6] G. Moortgat-Pick et al., Physics at the e^+e^- Linear Collider, Eur. Phys. J. C 75 (2015) no.8, 371 doi:10.1140/epjc/s10052-015-3511-9 [arXiv:1504.01726 [hep-ph]].
[7] K. Fujii et al., Physics Case for the 250 GeV Stage of the International Linear Collider, arXiv:1710.07621 [hep-ex].

[8] E. Braaten and J. P. Leveille, Higgs Boson Decay and the Running Mass, Phys. Rev. D 22 (1980) 715. doi:10.1103/PhysRevD.22.715

[9] N. Sakai, Perturbative QCD Corrections to the Hadronic Decay Width of the Higgs Boson, Phys. Rev. D 22 (1980) 2220. doi:10.1103/PhysRevD.22.2220

[10] T. Inami and T. Kubota, Renormalization Group Estimate of the Hadronic Decay Width of the Higgs Boson, Nucl. Phys. B 179 (1981) 171. doi:10.1016/0550-3213(81)90253-4

[11] M. Drees and K. i. Hikasa, Note On QCD Corrections To Hadronic Higgs Decay, Phys. Lett. B 240 (1990) 455 Erratum: [Phys. Lett. B 262 (1991) 497]. doi:10.1016/0370-2693(90)91130-4

[12] A. L. Kataev and V. T. Kim, The Effects of the QCD corrections to Gamma (H_0 \rightarrow b anti-b), Mod. Phys. Lett. A 9 (1994) 1309. doi:10.1142/S0217732394001131

[13] A. Djouadi and P. Gambino, QCD corrections to Higgs boson selfenergies and fermionic decay widths, Phys. Rev. D 51 (1995) 218 Erratum: [Phys. Rev. D 53 (1996) 4111] doi:10.1103/PhysRevD.51.218, 10.1103/PhysRevD.53.4111.2 [hep-ph/9406431].

[14] W. Bernreuther, A. Brandenburg and M. Flesch, QCD corrections to decay distributions of neutral Higgs bosons with (in)definite CP parity, Phys. Rev. D 56 (1997) 90. doi:10.1103/PhysRevD.56.90 [hep-ph/9701347].

[15] S. G. Gorishnii, A. L. Kataev, S. A. Larin and L. R. Surguladze, Corrected Three Loop QCD Correction to the Correlator of the Quark Scalar Currents and \Gamma^{(tot)}(H_0 \rightarrow Hadrons), Mod. Phys. Lett. A 5 (1990) 2703. doi:10.1142/S0217732390003152

[16] L. R. Surguladze, Quark mass effects in fermionic decays of the Higgs boson in O(\alpha_s^2) perturbative QCD, Phys. Lett. B 341 (1994) 60 doi:10.1016/0370-2693(94)01253-9 [hep-ph/9405325].

[17] L. R. Surguladze, Minimal supersymmetric Higgs boson decay rate in O(\alpha_s^2) perturbative QCD, Phys. Lett. B 338 (1994) 229 doi:10.1016/0370-2693(94)91370-6 [hep-ph/9406294].

[18] K. G. Chetyrkin and A. Kwiatkowski, Second order QCD corrections to scalar and pseudoscalar Higgs decays into massive bottom quarks, Nucl. Phys. B 461 (1996) 3 doi:10.1016/0550-3213(95)00616-8 [hep-ph/9505358].

[19] K. G. Chetyrkin, B. A. Kniehl and M. Steinhauser, Three loop O(\alpha_s^2 G_F M_t^2) corrections to hadronic Higgs decays, Nucl. Phys. B 490 (1997) 19 doi:10.1016/S0550-3213(97)00051-5 [hep-ph/9701277].

[20] S. A. Larin, T. van Ritbergen and J. A. M. Vermaseren, The Large top quark mass expansion for Higgs boson decays into bottom quarks and into gluons, Phys. Lett. B 362 (1995) 134 doi:10.1016/0370-2693(95)01192-S [hep-ph/9506465].

[21] R. Harlander and M. Steinhauser, Higgs decay to top quarks at O(\alpha_s^2), Phys. Rev. D 56 (1997) 3980 doi:10.1103/PhysRevD.56.3980 [hep-ph/9704436].

[22] K. G. Chetyrkin, R. Harlander and M. Steinhauser, Singlet polarization functions at O(\alpha_s^2), Phys. Rev. D 58 (1998) 014012 doi:10.1103/PhysRevD.58.014012 [hep-ph/9801432].

[23] K. G. Chetyrkin, J. H. Kuhn and M. Steinhauser, Heavy quark current correlators to O(\alpha_s^2), Nucl. Phys. B 505 (1997) 40 doi:10.1016/S0550-3213(97)00481-1 [hep-ph/9705254].
[24] K. G. Chetyrkin, Correlator of the quark scalar currents and Gamma(tot) (H → hadrons) at $O(\alpha_s^2)$ in pQCD, Phys. Lett. B 390 (1997) 309 doi:10.1016/S0370-2693(96)01368-8 [hep-ph/9608318].

[25] K. G. Chetyrkin and M. Steinhauser, Complete QCD corrections of order $O(\alpha_s^2)$ to the hadronic Higgs decay, Phys. Lett. B 408 (1997) 320 doi:10.1016/S0370-2693(97)00779-X [hep-ph/9706462].

[26] K. G. Chetyrkin, B. A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order $O(\alpha_s^4)$, Phys. Rev. Lett. 79 (1997) 353 doi:10.1103/PhysRevLett.79.353 [hep-ph/9705240].

[27] P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, Scalar correlator at $O(\alpha_s^4)$, Higgs decay into b-quarks and bounds on the light quark masses, Phys. Rev. Lett. 96 (2006) 012003 doi:10.1103/PhysRevLett.96.012003 [hep-ph/0511063].

[28] J. Davies, M. Steinhauser and D. Wellmann, Completing the hadronic Higgs boson decay at order α_s^4, Nucl. Phys. B 920 (2017) 20 doi:10.1016/j.nuclphysb.2017.04.012 [arXiv:1703.02988 [hep-ph]].

[29] F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren and A. Vogt, On Higgs decays to hadrons and the R-ratio at N4LO, JHEP 1708 (2017) 113 doi:10.1007/JHEP08(2017)113 [arXiv:1707.01044 [hep-ph]].

[30] P. Banerjee, P. K. Dhani and V. Ravindran, Two loop QCD corrections for the process Pseudo-scalar Higgs → 3 partons, JHEP 1710 (2017) 067 doi:10.1007/JHEP10(2017)067 [arXiv:1708.02387 [hep-ph]].

[31] J. Fleischer and F. Jegerlehner, Radiative Corrections to Higgs Decays in the Extended Weinberg-Salam Model, Phys. Rev. D 23 (1981) 2001. doi:10.1103/PhysRevD.23.2001

[32] A. Dabelstein and W. Hollik, Electroweak corrections to the fermionic decay width of the standard Higgs boson, Z. Phys. C 53 (1992) 507. doi:10.1007/BF01625912

[33] C. Anastasiou, F. Herzog and A. Lazopoulos, The fully differential decay rate of a Higgs boson to bottom-quarks at NNLO in QCD, JHEP 1203 (2012) 035 doi:10.1007/JHEP03(2012)035 [arXiv:1110.2368 [hep-ph]].

[34] V. Del Duca, C. Duhr, G. Somogyi, F. Tramontano and Z. Trocsanyi, Higgs boson decay into b-quarks at NNLO accuracy, JHEP 1504 (2015) 036 doi:10.1007/JHEP04(2015)036 [arXiv:1501.07226 [hep-ph]].

[35] D. A. Kosower, Antenna factorization of gauge theory amplitudes, Phys. Rev. D57 (1998) 5410-5416. [hep-ph/9710213].

[36] D. A. Kosower, Antenna factorization in strongly ordered limits, Phys. Rev. D 71 (2005) 045016 [hep-ph/0311272].

[37] A. Gehrmann-De Ridder, T. Gehrmann and E. W. N. Glover, Antenna subtraction at NNLO, JHEP 0509 (2005) 056 [hep-ph/0505111].

[38] J. Currie, E. W. N. Glover and S. Wells, Infrared Structure at NNLO Using Antenna Subtraction, JHEP 1304, 066 (2013) [arXiv:1301.4693 [hep-ph]].

[39] L. Chen, O. Dekkers, D. Heisler, W. Bernreuther and Z. G. Si, Top-quark pair production at next-to-next-to-leading order QCD in electron positron collisions, JHEP 1612 (2016) 098 doi:10.1007/JHEP12(2016)098 [arXiv:1610.07897 [hep-ph]].
A. Gehrmann-De Ridder and M. Ritzmann, *NLO Antenna Subtraction with Massive Fermions*, JHEP 0907 (2009) 041 [arXiv:0904.3297 [hep-ph]].

W. Bernreuther, C. Bogner and O. Dekkers, *The real radiation antenna function for S → Q̄Qq̄q at NNLO QCD*, JHEP 1106 (2011) 032 doi:10.1007/JHEP06(2011)032 [arXiv:1105.0530 [hep-ph]].

W. Bernreuther, C. Bogner and O. Dekkers, *The real radiation antenna functions for S → Q̄Qgg at NNLO QCD*, JHEP 1310 (2013) 161 doi:10.1007/JHEP10(2013)161 [arXiv:1309.6887 [hep-ph]].

S. Weinzierl, *NNLO corrections to 2-jet observables in electron-positron annihilation*, Phys. Rev. D 74 (2006) 014020 doi:10.1103/PhysRevD.74.014020 [hep-ph/0606008].

A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover and G. Heinrich, *Infrared structure of e⁺e⁻ → 3 jets at NNLO*, JHEP 0711 (2007) 058 [arXiv:0710.0346 [hep-ph]].

E. W. Nigel Glover and J. Pires, *Antenna subtraction for gluon scattering at NNLO*, JHEP 1006 (2010) 096 doi:10.1007/JHEP06(2010)096 [arXiv:1003.2824 [hep-ph]].

G. Abelof and A. Gehrmann-De Ridder, *Double real radiation corrections to t̄t production at the LHC: the all-fermion processes*, JHEP 1204 (2012) 076 [arXiv:1112.4736 [hep-ph]].

G. Abelof and A. Gehrmann-De Ridder, *Antenna subtraction for the production of heavy particles at hadron colliders*, JHEP 1104 (2011) 063 [arXiv:1102.2443 [hep-ph]].

O. Dekkers and W. Bernreuther, *The real-virtual antenna functions for S → Q̄QX at NNLO QCD*, Phys. Lett. B 738 (2014) 325 doi:10.1016/j.physletb.2014.09.060 [arXiv:1409.3124 [hep-ph]].

W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, P. Mastrolia and E. Remiddi, *Decays of scalar and pseudoscalar Higgs bosons into fermions: Two-loop QCD corrections to the Higgs-quark-antiquark amplitude*, Phys. Rev. D 72 (2005) 096002 doi:10.1103/PhysRevD.72.096002 [hep-ph/0508254].

W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber and E. Remiddi, *Two-loop QCD corrections to the heavy quark form-factors: Anomaly contributions*, Nucl. Phys. B 723 (2005) 91 doi:10.1016/j.nuclphysb.2005.06.025 [hep-ph/0504190].

W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber and E. Remiddi, *Two-loop QCD corrections to the heavy quark form-factors: The Vector contributions*, Nucl. Phys. B 706 (2005) 245 doi:10.1016/j.nuclphysb.2004.10.059 [hep-ph/0406046].

W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, P. Mastrolia and E. Remiddi, *Two-loop QCD corrections to the heavy quark form-factors: Axial vector contributions*, Nucl. Phys. B 712 (2005) 229 doi:10.1016/j.nuclphysb.2005.01.035 [hep-ph/0412259].

N. Gray, D. J. Broadhurst, W. Grafe and K. Schilcher, *Three Loop Relation of Quark (Modified) Ms and Pole Masses*, Z. Phys. C 48 (1990) 673. doi:10.1007/BF01614703

J. Fleischer, F. Jegerlehner, O. V. Tarasov and O. L. Veretin, *Two loop QCD corrections of the massive fermion propagator*, Nucl. Phys. B 539 (1999) 671 Erratum: [Nucl. Phys. B 571]
[56] C. Patrignani et al. [Particle Data Group], *Review of Particle Physics*, Chin. Phys. C **40** (2016) no.10, 100001. doi:10.1088/1674-1137/40/10/100001

[57] P. Marquard, A. V. Smirnov, V. A. Smirnov, M. Steinhauser and D. Wellmann, *MS-on-shell quark mass relation up to four loops in QCD and a general SU(N) gauge group*, Phys. Rev. D **94** (2016) no.7, 074025 doi:10.1103/PhysRevD.94.074025 [arXiv:1606.06754 [hep-ph]].

[58] A. L. Kataev and V. S. Molokoedov, *On the flavour dependence of the O(α_s^4) correction to the relation between running and pole heavy quark masses*, Eur. Phys. J. Plus **131** (2016) no.8, 271 doi:10.1140/epjp/i2016-16271-7 [arXiv:1511.06898 [hep-ph]].

[59] S. Catani, Y. L. Dokshitzer, M. Olsson, G. Turnock and B. R. Webber, *New clustering algorithm for multi-jet cross-sections in e^+e^- annihilation*, Phys. Lett. B **269** (1991) 432. doi:10.1016/0370-2693(91)90196-W