The biogeochemical fate of nickel during microbial ISA degradation; implications for nuclear waste disposal

Gina Kuipers1, Christopher Boothman1, Heath Bagshaw1, Michael Ward2, Rebecca Beard3,5, Nicholas Bryan4 & Jonathan R. Lloyd1

Intermediate level radioactive waste (ILW) generally contains a heterogeneous range of organic and inorganic materials, of which some are encapsulated in cement. Of particular concern are cellulosic waste items, which will chemically degrade under the conditions predicted during waste disposal, forming significant quantities of isosaccharinic acid (ISA), a strongly chelating ligand. ISA therefore has the potential to increase the mobility of a wide range of radionuclides via complex formation, including Ni-63 and Ni-59. Although ISA is known to be metabolized by anaerobic microorganisms, the biodegradation of metal-ISA complexes remains unexplored. This study investigates the fate of a Ni-ISA complex in Fe(III)-reducing enrichment cultures at neutral pH, representative of a microbial community in the subsurface. After initial sorption of Ni onto Fe(III)oxyhydroxides, microbial ISA biodegradation resulted in >90% removal of the remaining Ni from solution when present at 0.1 mM, whereas higher concentrations of Ni proved toxic. The microbial consortium associated with ISA degradation was dominated by close relatives to Clostridia and Geobacter species. Nickel was preferentially immobilized with trace amounts of biogenic amorphous iron sulfides. This study highlights the potential for microbial activity to help remove chelating agents and radionuclides from the groundwater in the subsurface geosphere surrounding a geodisposal facility.

The policy of the UK Government (and those of other nuclear nations) is to dispose of long-lived intermediate level waste (ILW) via engineered deep underground geological disposal facilities (GDFs).1 Post-closure, a cementitious GDF will become saturated with groundwater, which through interaction with the cementitious materials that make up the engineered barrier components, will result in the development of a highly alkaline plume. These high pH conditions are expected to minimize the mobility of toxic or hazardous radionuclides and inhibit most microbiological processes. However, organic ligands have the potential to impact on the solubility of radionuclides in these wastes. Ligands can be either present in ILW, for example the decontamination agents ethylenediaminetetraacetic acid (EDTA) or nitriloacetic acid (NTA), or may form under GDF conditions from the chemical degradation of organic materials. Of particular interest are cellulosic materials, which are present at high loadings and have been shown to undergo alkaline hydrolysis at elevated pH and calcium concentrations, resulting in the production of small organic acids in the pore fluids. Under GDF conditions, the main stable end product is expected to be isosaccharinic acid (ISA)3–8. Even though ISA is known to sorb to cement9,10, it can form strong water-soluble complexes with some priority radionuclides, especially divalent cations, such as nickel (Ni)9,11. Nickel is chiefly valuable in Ni-based steel alloys to minimize corrosion of steel12. In a reactor, stable Ni that is part of nuclear reactor steel components can be irradiated from the fuel and form Ni-63 (half-life 9.9 × 1011 years)
years) and Ni-59 (half-life 7.6 × 10^4 years) as activation products. Upon groundwater resaturation of the GDF, steel corrosion will release Ni, which should be poorly soluble in the alkaline porewaters (pH 11.5 to 13.5) and sorb readily onto cement. However, the formation of aqueous complexes between ISA and Ni (at a 2:1 stoichiometry) may significantly enhance the transport of Ni in the groundwater and their fate upon disposal needs to be considered as part of the safety assessment of a GDF. Thus, there is concern regarding the fate of Ni, alongside other priority radionuclides and metals that may complex with ISA, in and around a cementitious GDF. Nickel was chosen for this study as a model radionuclide, from which conclusions on the fate of other cationic radionuclides forming complexes with ISA can be drawn.

Previous studies on metal-microbe interactions have focused on a range of microorganisms, including anaerobic metal- and sulfate-reducing bacteria, for their ability to immobilize radionuclides via mechanisms including bio-reduction, bioaccumulation, biosorption or biominalisation. To this date, studies on Ni removal relevant to nuclear disposal have looked at Ni intercalation into biominerals, such as hydrogen uranyl-phosphates, and the biodegradation of organic ligands with subsequent Ni precipitation, such as Ni-citrate complexes.

Microbiologically mediated processes have been shown to control the fate of ISA, which can be used as an organic carbon source and electron donor for microbial metabolism, under a range of biogeochemical conditions, including nitrate and Fe(III) reduction at high pH and neutral pH. However, no studies to date have addressed the fate of radionuclide-ISA complexes, such as of Ni-ISA, which could potentially form under repository conditions, and have the potential to influence the properties of components in a GDF. Furthermore, biodegradation of Ni-ISA, could lead to sorption of the radionuclide, or its incorporation into new biominerals and sorption surfaces. Other scavengers for metals and radionuclides, could be Fe(III) oxyhydroxides present in a GDF from the corrosion of steel under aerobic conditions in the “open phase of a GDF”, or naturally occurring Fe(III)-bearing minerals in the wider circumneutral pH geosphere (or “far field”). These Fe(III)-bearing minerals may further play a role as alternative electron acceptors, if bioavailable, sustaining ISA metabolizing anaerobes in and around a GDF. Such Fe(III)-bearing minerals could release Ni upon reduction to Fe(II) and need to be considered in biodegradation studies. Other potentially relevant electron acceptors in the far field could include Mn(IV) minerals or sulfate, while nitrate could be sourced from waste materials or far field groundwaters, supporting ISA oxidation. The microbial reduction of Fe(III)-minerals in the subsurface and associated secondary mineral transformations could therefore have a profound influence on the fate of Ni and other priority metals and radionuclides in the geosphere. In this study, we have used a microbial inoculum obtained from an alkaline, Ca^2+-rich lime kiln site, which is an analogue for a cementitious GDF and known to contain ISA-degrading microorganisms.

In this study the fate of non-radioactive Ni was explored in ISA-degrading, Fe(III)-reducing microbial cultures. Prior to the study, abiotic factors in the system that could control the solubility of Ni were considered, e.g. the presence of Fe(III)oxyhydroxide that exhibits high adsorptive capacities for metal ions. The solubility of Ni (at 0.1 mM Ni and 1 mM Ni) was tested in freshwater minimal medium (FWM) at neutral pH, containing (i) medium only, (ii) medium plus ISA, (iii) medium plus Fe(III) or (iv) medium plus ISA and Fe(III) (Fig. S1). Bioaccumulation of Ni onto cells was not specifically tested, as it is considered to be low. The presence of the medium only, approximately 90–91% Ni remained in solution, whilst in the presence of ISA the solubility of Ni was increased to approximately 100%, regardless of the initial Ni concentration. In the medium that contained Fe(III)oxyhydroxides added as a solid, the solubility of Ni dropped to around 64% at 0.1 mM Ni and to 15% at 1 mM Ni, but was increased by approximately 10% in the medium containing Fe(III) and ISA at 1 mM Ni, but remained unchanged at 0.1 mM Ni.

These initial tests showed that Ni had a great solubility in the medium which was enhanced by ISA, and therefore has the potential to increase radionuclide mobility in groundwater systems. However, the presence of competing Fe(III)oxyhydroxides decreased the solubility of the Ni.

Development of an Ni-ISA biodegrading, Fe(III)-reducing enrichment experiment. Biogeochemistry. An anaerobic enrichment culture representative of Fe(III)-reducing bacteria, possibly present in the geosphere surrounding a GDF, was developed using ISA complexed with Ni as the electron donor and Fe(III)oxyhydroxide as the electron acceptor. Microbial inocula were obtained from a lime workings site, with high calcium concentrations and alkaline pH values, and were enriched to stable cultures with ISA as the sole carbon source at circum-neutral pH. The microbially active incubations contained either no nickel, 0.1 mM Ni or 1 mM Ni. Medium with microbial enrichments without Ni or with 0.1 mM Ni concentration, there was an increase in pH from 7.0 to 7.3 while the E_h fell to around –250 mV after approximately 14 days (Fig. 1A,B). This coincided with a drop in ISA levels, which was no longer detected after approximately 28 days (Fig. 1C), while volatile fatty acids (VFAs), comprising acetate and butyrate accumulated and peaked at 28 days (Fig. 1E,F). Thereafter, acetate remained stable in solution during an extended incubation time (62 days), whilst butyrate concentrations decreased after ISA was depleted. Fe(III) reduction, monitored using the ferrozine assay by Fe(II) ingrowth (Fig. 1D), was also initiated during the period of ISA biodegradation, and continued after ISA was depleted until day 42, after which it started to plateau at approximately 26 mmol/L Fe(II). It should be noted that the medium also contained comparatively low levels of sulfate (0.13 mM), which decreased in the presence of 0.1 mM Ni and without Ni, alongside ISA removal, until it was fully depleted at day 42 (Fig. S2). In contrast, in the enrichment cultures supplemented with 1 mM Ni, data for pH, E_h and concentrations of ISA, Fe(II), and sulfate all remained stable, and Fe(III) and sulfate were not reduced. Abiotic influences, two control experiments were set up, containing ISA and Fe(III) oxyhydroxide, either with an autoclaved inoculum or without the inoculum added. ISA concentration remained...
stable in these controls (Fig. 1B), while the pH remained unchanged, the pH showed only a minor drop over the incubation time (Fig. 1A,D) and Fe(II) levels remained constant, all consistent with abiotic influences playing a negligible role in these experiments (Fig. 1E).

Fate of nickel. The concentrations of Ni in the supernatants of these experiments were also monitored by ICP-AES, to help identify the fate of the metal during ISA biodegradation and Fe(III) reduction (Fig. 2). At the start of incubation, soluble Ni concentrations were 64% (64 μM) of the 0.1 mM Ni added, and 12% (115 μM) of the 1 mM Ni added to the microbially-active cultures. These results were in agreement with data from the initial Ni solubility tests and were most likely a result of sorption to the surface of the Fe(III)oxyhydroxides that were added.

After partial precipitation of the Ni (about 90%) in the control incubations (with either autoclaved inoculum or no added inoculum), the remaining soluble Ni concentrations remained stable, confirming that sorption equilibrium or abiotic precipitation were not disturbed under these experimental conditions. Similarly, after initial sorption of about 90%, no decrease of Ni concentrations in solution was observed in the microbially active cultures containing 1 mM Ni, where ISA degradation was absent. In the microbially active 0.1 mM Ni incubation, the Ni concentration in solution was also reduced at the start of the incubation to about 64% of Ni added (presumably due to sorption onto any residual insoluble Fe(III)). However in contrast to the treatments which showed a lack of ISA degradation, the Ni concentration started to decrease from day 14 from 64 μM to 8.5 μM (about 9%) final concentration in solution at the end of the incubation (Fig. 2), and remained at this value throughout an extended incubation time of 200 days (data not shown). Thus, following Ni sorption onto Fe(III) oxyhydroxides (36% removal), the oxidation of ISA and reduction of Fe(III) and sulfate was concomitant with the almost complete removal (90%) of the Ni added.

Molecular Ecology. A stable microbial community was enriched from lime kiln sediment samples over seven consecutive transfers in ISA/Fe(III)-containing medium, with the last transfer used in the Ni-ISA biostimulation.
experiments discussed above. DNA was extracted from these final cultures at selected time points and the 16S rRNA genes present were amplified and sequenced, to identify changes in microbial community composition that may have controlled the fate of the Fe and Ni. The chosen profiles were from the 0 mM Ni and 0.1 mM Ni experiments at 0 hours, at 28 days, the point at which ISA was depleted, and at 63 days, the point where Fe(III) reduction levelled off (Fig. 3). α-rarefaction curves showed a dramatic decrease in microbial diversity from the original sediment inoculum (approximately 600 distinct sequences detected) to the seventh transfer of the enrichments (approximately 190 distinct sequences detected at the start of this experiment; Fig. S3). A further modest decrease in microbial diversity was noted over the duration of this experiment, whereby the 0 mM Ni and 0.1 mM Ni supplemented enrichments contained approximately 160 distinct sequences. The decrease in community microbial diversity was confirmed by calculating the Shannon H indices (values are shown above the columns in Fig. 3).

Analysis of 16S rRNA gene sequences obtained from the 0.1 mM Ni experiment after ISA depletion (28 days) showed enrichment in organisms most closely affiliated with the Gram-positive Class Clostridia, representing approximately 56% of the total abundance of bacteria detected. This Class comprised mainly of members of the family Ruminococcaceae (33% of genes detected), known to possess a multi-enzyme cellulosome complex that could play a central role in carbohydrate metabolism. Another important Class detected was the Gram-negative Deltaproteobacteria comprising approximately 18% of sequences detected. This Class was dominated by sequences affiliated most closely (97% to 99% match) with the Fe(III)-reducing family Geobacteraceae (16% of sequences detected). Despite representing less than 2% of the sequences, detection of members of the Desulfovibrionaceae was considered potentially important, as these organisms were affiliated with the sulfate-reducing bacteria Desulfovibrio putealis B7–43 (1% of sequences, 98% match) and Desulfovibrio L7 sp. (0.65% of sequences, 100% match). A second 16S rRNA gene profile was obtained from the 0.1 mM Ni experiment when Fe(III) reduction had finished (day 63). This had a higher percentage of sequences affiliated with Betaproteobacteria (26% of sequences), of which most of the sequences (25%) were related to Dechlorosoma stultus PS (100% match) from the genus Azospira, an anaerobic, perchlorate-reducing organism. The second most abundant Class detected was again most closely affiliated with Clostridia (20% of sequences) followed by the Bacteroidia (17% of sequences, of which most sequences were affiliated with an uncultured bacterium from the vadinBC27 wastewater-sludge group (11% of sequences), from the genus Rikenellaceae, which are described as anaerobic, mesophilic carbohydrate-fermenting organisms.
Biomineralogy. To help define the fate of Ni in the ISA-degrading, Fe(III)-reducing cultures, the mineralogical end-products in these experiments were assessed using X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Environmental Scanning Electron Microscopy (ESEM).

At the start of the Ni-ISA biostimulation experiment, a brick red precipitate was observed, which is likely to be ferrihydrite as detected in XRD analyses (Fig. S4). This material remained unchanged in the sterile and no electron donor controls, and also the incubations with 1 mM Ni added. This mineral phase was converted to a dark grey precipitate where ISA metabolism was observed (microbially active experiment without Ni and with 0.1 mM Ni). TEM analysis of the red precipitate in the sterile control showed the presence of fine grained material, while selected area electron diffraction (SAED) revealed two broad rings at about 1.49 Å and 2.5 Å, all consistent with 2-line ferrihydrite that is of irregular, poorly ordered nanoparticulate dimensions (2–4 nm). The XRD patterns (Fig. S4) obtained for the bio-reduced samples in the absence of Ni and with 0.1 mM Ni added, revealed two sharp peaks at 2θ = 13.2° and at 2θ = 31.9°, corresponding to sidereite (FeCO₃) and vivianite Fe₃(PO₄)₂·8H₂O (Fig. S4). The relative abundance of vivianite:sidereite was very similar at both ISA-degrading treatments of about 40%:60% in the absence of Ni and 35%:65% at 0.1 mM Ni, respectively. Fe(II) in the siderite structure was partially replaced by Ca(II), as previously noted (Kuipers et al., Submitted 2017).

ESEM imaging of the post-reduction precipitates (with 0.1 mM Ni; Fig. 4A,B), confirmed the identity of (1) sidereite and (2) vivianite crystals, which did not show Ni in the corresponding EDS profile. Precipitates of less crystalline morphology were also noted, comprising relatively high amounts of Fe, S and Ni, (EDS 3 in Fig. 4B); peaks of P, Ca and O were probably background signal from the underlying vivianite crystal (EDS 1 and 2 in Fig. 4A). Similarly, in TEM images, distinct crystals of angular shape that contained Ca, Fe, P and O (60–70 nm length; 12–16 nm diameter; area 4 in Fig. 4C) had matching lattice d spacings for siderite in the corresponding diffraction pattern as 2.12 (140), 2.17 (113), 1.47 (9,59), 1.41 (7,49), but did not contain Ni. In contrast, a weakly crystalline area (area 5 in Fig. 4C), deduced from very faint rings in the diffraction pattern with d spacings at 5.18 Å, 2.59 Å, 1.78 Å and 1.68 Å in the diffraction pattern, had high peaks of S and Ni, and some contributions of Fe, consistent with literature values for nanocrystalline mackinawite. Another area was amorphous, with no rings in the diffraction pattern, but consisted of mainly Fe, S and Ni (area 6 in Fig. 4C). Finally, TEM mapping suggested close association of Ni and S areas, whilst P, Ca and O were accumulated in separate locations, and Fe was detected throughout the mapped area (Fig. S5). Additional PHREEQC modelling was carried out to estimate the Ni solubility. Results from the modelling suggested that Ni was undersaturated in solution under anoxic conditions and before reduction (Fig. S6) while after bio-reduction precipitation of millerite and mackinawite was predicted (Fig. S7).

Discussion

Ni is an important constituent in steel alloys used for nuclear reactor components. Irradiation of stable Ni leads to the formation of Ni-63 and Ni-59 activation products, hence there is great interest in understanding the fate of Ni during the (bio)geochemical evolution of a GDF and the surrounding geological environment.

Here we studied the fate of a Ni-ISA complex in circumneutral enrichment cultures containing Fe(III) as the main terminal electron acceptor. It should be noted, however, that to facilitate mineralogical investigations that underpin this study, significantly higher concentrations of Ni were added, than those expected in a GDF environment for ILW, which will range around 3.8 × 10⁻⁴ M within 10⁶ years of GDF evolution. In these incubations, ISA biodegradation coincided with Fe(III) reduction, and led to a significant decrease in the concentration of Ni when supplied at 0.1 mM. At 1 mM Ni concentration, no ISA removal occurred, highlighting the strongly inhibitory impact of higher Ni concentrations on microorganisms. In the microbially active experiment at 0.1 mM Ni, fermentation played a significant role as approximately 60% of the carbon from ISA degradation was recovered as acetate and butyrate. Other end-products identified included the crystalline Fe(II) biominerals, siderite (Fe(II)-carbonate) and vivianite (Fe(II)-phosphate). Although ferrihydrite is considered highly bioavailable to Fe(III)-reducing bacteria, the production of fully reduced Fe(II) minerals from this substrate, rather than a mixed Fe(II)/Fe(III) valence iron oxide, such as magnetite, is not commonly observed in laboratory studies, but has been previously noted when ISA was supplied as an electron donor. Chelating ligands are known to enhance microbial Fe(III) reduction rates, and since ISA has been shown to complex with Fe(III) minerals, ISA may have increased the solubility and hence bioavailability of ferrihydrite to microbial Fe(III) reduction in our experiments. We conclude therefore, that chelation of ISA with Fe(III) will result in the production of Fe(II) biominerals not normally observed in natural environments.

The negative standard reduction potential of the Ni(II)/Ni(0) couple (E₀ = −0.26 V) makes Ni highly resistant to microbially-mediated reduction under pH-neutral conditions (Tsezos et al.). Therefore, capture of Ni via interaction with bio-mineralogical products under a more feasible endpoint under anoxic ISA-degrading conditions. In these Fe(III)-reducing experiments, the endpoint minerals included an Fe(II)-carbonate phase (siderite) and Fe(II)-phosphate phase (vivianite). Siderite is known to play a role in trace metal immobilization because cations of similar size to Fe(II), such as Co(II), Cr(III), Ni(II), can be readily incorporated into the crystal structure in place of ferrous iron. These experiments only Ca(II) was incorporated into the siderite structure upon metabolism of Ca(ISA), whereas Ni(II) was not found to be associated with the biominerals, nor was Ni associated with vivianite. However, it should be noted that Fe(II)-bearing minerals, including siderite and vivianite, are known to mediate the reduction of soluble Tc(VII) or Np(V) to insoluble tetravalent forms. Additionally, vivianite has also been shown to reduce soluble U(VI) to immobile U(IV). Thus, siderite and vivianite may decrease the mobility of this and other priority radionuclides in the wider geosphere.

Regarding the fate of Ni, EDS profiles from TEM and ESEM images showed that Ni accumulated together with Fe and S in amorphous precipitates, consistent with mackinawite (FeS), although this mineral could not be detected with XRD. Mackinawite is a common metastable iron-sulfide mineral in anoxic sediments and a possible precursor to greigite and pyrite formation. Furthermore it is known to substitute Ni for Fe, into the
The identification of Ni-containing iron-sulfide phases in the ISA bio-stimulated experiment, accompanied by an enrichment of Desulfovibrio sp., is consistent with the production of sulfide by sulfate-reducing bacteria that can act as a precursor to precipitate Ni. This is in agreement with PHREEQC modelling that suggested formation of mackinawite (FeS) and millerite (NiS) in these experiments. The PHREEQC database does not include data for mixed phases, such as Fe\(_{1-x}\)Ni\(_x\)S, and so it predicts the formation of these separate phases. However, since pure Ni-sulfides, such as heazelwoodite (Ni\(_3\)S\(_2\)) or millerite (NiS), are generally only observed in systems that are low in Fe\(_2\), and (Fe,Ni)\(_2\)S has a greater stability over pure FeS\(_2\), the modelling results can be interpreted as formation of a mixed Fe\(_{1-x}\)Ni\(_x\)S phase, which is in agreement with TEM and ESEM imaging, following the equation:

\[
(1 - x)\text{Fe}^{2+}_{(aq)} + x\text{Ni}^{2+}_{(aq)} + \text{H}_2\text{S}_{(aq)} \rightarrow \text{Fe}_{(1-x)}\text{Ni}_x\text{S}_{(s)} + 2\text{H}^+_{(aq)}
\]

The immobilization of Ni precipitated as a mixed (Fe,Ni)S phase is thus a result of combined microbial activity by Fe(III)- and sulfate-reducing bacteria.

16S rRNA gene profiling of the enrichment identified key soil microorganisms that may have been involved in the degradation of ISA and thus supported Ni immobilization. The 16S rRNA gene profiles of the 0.1 mM

Figure 4. ESEM (A,B) and TEM (C) images of biominerals from the Ni-ISA biodegrading, Fe(III)-reducing enrichment experiment with 0.1 mM Ni with representative EDS profiles. (A) and (B): Biominerals identified were (1) siderite, (2) vivianite and (3) an amorphous phase, comprising S, Fe, and Ni. C: (4) a crystalline area without Ni and (5, 6) weakly crystalline areas with Fe, S and Ni.
Ni and without Ni experiments were very similar, being dominated by fermenting organisms associated with members from the family Clostridia during ISA degradation (day 28), whilst Betaproteobacteria increased in later stages of the incubation, when Fe(III) reduction became more important (day 63). Although close relatives to well-known Fe(III)-reducing bacteria such as Geobacter species were detected in these cultures, we cannot discount the involvement of other more abundant organisms in mediating this process. Finally, although Ni is an essential trace element for several enzymes,76–79 at higher concentrations it poses a toxic threat to microorganisms.60,81 Such an inhibitory effect of Ni was observed at 1 mM concentration, where no ISA biodegradation (or Fe(III) reduction) was recorded.

In summary, it was shown that the solubility of Ni in ISA-degrading Fe(III)-reducing enrichment cultures was influenced by two dominant factors; the mobilization of Ni by complexation with ISA, and the competing immobilization of Ni by sorption to Fe(III)oxyhydroxides. The overall fate of Ni in the system was defined by microbial metabolism, which was driven by biodegradation of ISA. The combined activity of Fe(III)- and sulfate-reducing microorganisms resulted in >90% Ni incorporation into iron-sulfides, presenting a stable sink for the Ni. Given the high abundance of sulfate as electron acceptor in deep subsurface groundwaters in the UK82 and elsewhere, the fate of Ni and other radionuclides in the deep geosphere surrounding a GDF, is likely to be governed by sulfidation reactions. These processes will be potentially mediated by Fe(III)- and sulfate-reducing bacteria in the deep subsurface that have been stimulated by the release of organics such as ISA, that may migrate in the alkaline groundwater plume from a cementitious GDF. Since ISA oxidation coupled to Fe(III) and sulfate reduction is energetically unfavorable in the alkaline GDF "near field"83, precipitation of Ni and other radionuclides is expected to occur in the geological "far field" of a GDF and in low pH niches of the "near field". It should be noted that also direct abiotic interactions within the geosphere are possible once the strong complexant ISA has been biodegraded, e.g. with clay minerals, known to adsorb cationic Ni due to their negatively charged surfaces, and thus are able to retard the movement of Ni.77,84,85 Additionally to the trace levels of Fe formed, ISA degradation in our experiments supported dissimilatory Fe(III) reduction that produced the Fe(II) minerals siderite and vivianite. These Fe(II) minerals of are known to form at moderately high pH86, and to abiotically mediate the reduction of priority radionuclides to insoluble forms. Thus, it is likely that microbial metabolism in the deep subsurface biosphere surrounding a GDF will play a significant role in minimizing the transport of mobile radionuclide-ISA complexes, through the fermentation of ISA at high pH83, and further coupling of biodegradation reactions to the reduction of electron acceptors such as Fe(III) and sulfate in and around the GDF, extending to the circumneutral deep subsurface biosphere. Consequently it is likely that a "bio-barrier" will develop, which could support the containment of priority radionuclides, including Ni-63 and Ni-59, in addition to other physical and chemical barriers. Clearly further research is warranted in this area, including studies to define the impact of microbial metabolism on ISA complexed to other radionuclides, including Am(III), Th(IV) and U(VI). There exists also the need to focus on more realistic subsurface in situ conditions to better quantify the efficiency of metal and radionuclide immobilization upon ISA degradation. Although it is clearly a significant challenge to quantify the impact of microbial metabolism in GDF scenarios, over long time periods within highly complex biogeochemical gradients, it is reasonable to expect that such studies would support a reduction in conservatisms in future GDF safety cases.

Methods

Experimental conditions. Fresh water minimal (FWM) medium preparation. FWM was prepared in deionized water and contained 30 mM NaHCO3, 4.7 mM NH4Cl, 4.4 mM NaH2PO4·H2O, 1.3 mM KCl, and 0.3 mL of mineral and vitamin stock solutions87.

α-Ca(ISA)2 preparation. α-lactose monohydrate and Ca(OH)2 was used for preparation of Ca(ISA)2 following the protocol of88.

Fe(III)oxyhydroxides preparation. 0.6 M FeCl3 were hydrolyzed in six washing steps with 18Ω de-ionized water (DIW), whilst the pH was continually adjusted under stirring to 7 by addition of 10 M NaOH solution. With the ferrozine assay the final Fe(III) concentration of the resultant precipitate was determined.

Nickel stock preparation. Stock solutions of 0.1 M and 0.01 M NiCl2·6H2O (n = 237.7 g/mol) were prepared with deionized water and filter-sterilized prior to use (0.22 μm, diam. 33 mm, Millex-GP, Sigma-Aldrich).

Nickel solubility. To help determine the impact of the growth medium on Ni solubility, Ni was added at 0.1 mM Ni or 1 mM Ni to 100 mL serum bottles, containing 30 mL (i) FWM, (ii) FWM plus 20 mmoles L−1 Fe(III), (iii) FWM plus 4 mM ISA, or (iv) FWM plus 20 mmoles L−1 Fe(III) plus 4 mM ISA. The solutions were incubated in the dark at 20°C for 7 days and then sampled for analysis by ICP-AES.

Ni-ISA biodegrading, Fe(III)-reducing enrichment experiment. Anaerobic Fe(III)-reducing microbial communities were enriched from shallow subsurface sediments that were collected from a site contaminated by legacy lime workings at Harpur Hill, in Buxton, Derbyshire, UK84. Cultures were prepared with a 1% (v/v) inoculum added to 100 mL serum bottles containing 30 mL FWM. ISA (as Ca(ISA)2) was added to 4 mM as sole carbon source and 25 mmoles L−1 of poorly soluble Fe(III)oxyhydroxide was added as the terminal electron acceptor (TEA) to support anaerobic growth. The bottles were sealed with butyl stoppers and flushed with a N2/CO2 (80:20) gas mixture for 5 min to provide anaerobic conditions and to adjust a pH of 7 and incubated in the dark at 20°C. After Fe(III) reduction had reached a plateau, a 1% vol/vol inoculum was transferred to fresh medium. For this study, the seventh consecutive transfer was used to prepare five tests in the medium as above in triplicate: to three incubations containing a microbially active inoculum, ISA and Fe(III)oxyhydroxide, nickel was added at the following concentrations: (i) 0 mM Ni, (ii) 0.1 mM Ni, or (iii) 1 mM Ni, alongside (iv) a sterile microbial inoculum (autoclaved),...
containing ISA, Fe(III)oxyhydroxide and 1 mM Ni and (v) an abiotic control without microbial inoculum but
with ISA, Fe(III)oxyhydroxide and 1 mM Ni were created. Time-based samples were collected aseptically and
frozen immediately at −20 °C until further analysis.

Geochemical analyses. The pH was monitored throughout the experiment with a calibrated Mettler Toledo
FEP20 digital meter equipped with a Fisherbrand FB68801 electrode and the redox potential with a Denver
Instrument Accumet digital meter equipped with a Mettler Toledo Inlab Redox Micro ORP. Microbial Fe(III)
reduction was monitored by the ferrozine spectrophotometric assay quantifying Fe(II) following the protocol
from Stookey89. Total bioavailable Fe was determined at the beginning and end of the experiment by digesting
20 μL of sample in 980 μL of 0.5 N HCl and 0.25 N hydroxylamine−HCl, and biogenic Fe(II) was determined by
digestion of 20 μL of sample in 980 μL of 0.5 N HCl, followed by the ferrozine assay90.

Ion-Exchange Chromatography. ISA and organic acids were analyzed using ion exchange high performance liq-
uid chromatography (IE-HPLC), using a Dionex ICS5000 Dual Channel on Chromatograph, fitted with a Dionex
AS-AP auto sampler that was connected to a CD20 conductivity detector. The columns were a Dionex Capillary
(50 × 0.4 mm) AG11-HC 4 μm guard column and Dionex Capillary (250 × 0.4 mm) AS11-HC 4 μm analytical
column. A Dionex ACES300 Chemical Suppressor was used for background reduction. The mobile phase was
centrifuged at 13 mA.

Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). ICP-AES was used to quantify total Ni in
solution. Samples were prepared by centrifugation to remove any suspended particles and the supernatants were
diluted to below <10 ppm Ni in 2% nitric acid. Samples were analyzed together with standards (from 10 ppm
stocks obtained from VWR) on a Perkin-Elmer Optima 5300 DV.

Microbial analyses. 16S rRNA gene sequencing. 16S rRNA gene sequencing was performed with the
Illumina MiSeq platform (Illumina, San Diego, CA, USA) using a Roche ‘Fast Start High Fidelity PCR System’
(Roche Diagnostics Ltd, Burgess Hill, UK). The primers used were 515 F (5′-GTG YCA GCM GCC GCG GTA
A-3′) and 806 R (5′-GGA CTA CHV GGG TWT CTA AT-3′), targeting the V4 hyper variable regions for
2 × 150-bp paired-end sequencing91,92. PCR was performed in 50 μL reactions, starting with the denaturation at
95 °C for 2 min, followed by 36 cycles of 95 °C for 30s, 55 °C for 30s, 72 °C for 1 min, and a final extension step of
5 min at 72 °C. PCR products were cleaned up and normalized to ~20 ng each using the SequalPrep Normalisation
Kit (Fisher Scientific, Loughborough, UK). PCR amplicons were pooled in equimolar ratios, using a 4 pmol
sample library spiked with 4 pM PhiX, to a final concentration of 10%93. Sequence assignment was performed using
an Agilent BioAnalyzer for the Center for Musculoskeletal Research, Manchester94. Raw sequences were divided
into samples by barcodes (up to one mismatch was permitted) using a sequencing pipeline. Quality control
and trimming was performed using Cutadapt94, FastQC95, and Sickle96. MiSeq error correction was performed
using SPAdes97. Forward and reverse reads were assembled to full-length sequences with PANDAseq98. Using
ChimeraSlayer the sequences were screened for chimeras which were removed subsequently99. OTU’s were gen-
nerated with UPARSE100 and classified by USEARCH101 at the 97% similarity level, and singletons were removed.
The taxonomic assignment was performed by the RDP classifier102 and α-rarefaction curves were generated in
Qime103. The raw sequencing data have been deposited at the NCBI Sequence Read Archive (http://www.ncbi.
lm.nih.gov/sra/) with the accession numbers SRR5786557 and SRR5786559 to SRR5786562.

Mineralogical analyses. X-Ray Diffraction (XRD) crystallography. XRD was used for mineral phase identifi-
cation by centrifugation of sample aliquots and coating wet pellets onto a XRD glass slide which was left to
dry anaerobically. Samples were analyzed in an anaerobic holder fitted with an internal knife-edge on a Bruker
D8 Advance, fitted with a Gobel Mirror and a Lynxeye detector. Cu Kα1 X-rays were used from 5–70 degrees
on a Philips FEI Technai T20 (200 kV LaB6) instrument fitted with an Oxford Instruments
a holey carbon film coating and let to dry anaerobically. Samples were viewed over a range of magnifications
(5,000–200,000x) and step size 0.02 degrees and count time of 0.5 sec per step. Eva v14 was used to match crystal patterns to stand-
ards from the ICDD (International Centre for Diffraction Data) database and a semi-quantitative analysis of
Mineralogical analyses.

References
1. DECC. Implementing Geological Disposal: A framework for the long-term management of higher activity radioactive waste. (2014).
2. Nuclear Decommissioning Authority & Department of Energy & Climate Change. The 2013 UK Radioactive waste inventory: Radioactive waste composition. (Nuclear Decommissioning Authority 2014, 2014).
3. Whistler, R. L. & BeMiller, J. N. Alkaline degradation of polysaccharides. Adv. Carbohydr. Chem. 13, 289–329 (1958).
46. Drits, V. A., Sakharov, B. A., Salyon, A. L. & Manceau, A. Structural model for ferrhydrite. Clay Miner. 28, 185–207 (1993).
47. Janney, D. E., Cowley, J. M. & Bousek, P. R. Transmission electron microscopy of synthetic 2- and 6-line Fe(III) oxyhydroxide. Clays Clay Miner. 48, 111–119 (2000).
48. Guo, H. & Barnard, A. N. Naturally occurring iron oxide nanoparticles: morphology, surface chemistry and environmental stability. J. Mater. Chem. A 1, 27–42 (2013).
49. Bartelsnäs, K. & Downs, B. R.0034-1Powder _Cell_Refinement_Output_Data__3109.txt. Available at, http://rruff.info/repository/sample_child_record_powder/by_minerals/ (1998).
50. Kim, J., Dong, H., Seabaugh, J., Newell, S. W. & Eberl, D. D. Role of Microbes in the Smetectite-to-Illite Reaction. Science (80-.). 303, 830–832 (2004).
51. Evans, H. T. et al. Vallerite and the new iron sulfide mackinawite. Mineral. Petrol. 333, D64–D69 (1964).
52. Lenné, A. R., Redfern, S. A. T., Schofield, P. F. & Vaughan, D. J. Synthesis and Rietveld crystal structure refinement of mackinawite, tetragonal FeS. Mineral. Mag. 59, 677–683 (1995).
53. Wolthers, M., Van der Gaast, S. J. & Rickard, D. The structure of disordered mackinawite. Am. Mineral. 88, 2007–2015 (2003).
54. Ohfuji, H. & Rickard, D. High resolution transmission electron microscopy study of synthetic nanocrystalline mackinawite. Earth Planet. Sci. Lett. 227–233, https://doi.org/10.1016/j.epsl.2005.10.006 (2006).
55. Gramp, J. P., Bigham, J. M., Jones, F. S. & Tuovinen, O. H. Formation of Fe–sulfides in cultures of sulfate-reducing bacteria. J. Hazard. Mater. 175, 1062–1067 (2010).
56. Lentiini, C. J., Wankel, S. D. & Hansel, C. M. Enriched iron(III)-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy. Front. Microbiot. 3, 404 (2012).
57. Lovley, D. R. & Phillips, E. J. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472–1480 (1988).
58. Lovley, D. R., Woodward, J., Chapelle, F. & Nature Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370, 128–131 (1994).
59. Dobbins, P. S., Powell, A. K., McEwan, A. G. & Richardson, D. J. The influence of chelating agents upon the dissimilatory reduction of Fe(III) by Shewanella putrefaciens. BioMetals 8, 163–173 (1995).
60. Dobbins, P. S. et al. The influence of chelating agents upon the dissimilatory reduction of Fe(III) by Shewanella putrefaciens. Part 2. Oxo- and hydroxo-bridged polyvalent Fe(III) complexes. BioMetals 9, 291–303 (1996).
61. Islam, F. S. et al. Interactions between the Fe(III)-reducing bacterium Geobacter sulfurreducens and arsenate, and capture of the metalloid by biogenic Fe(II). Appl. Environ. Microbiol. 71, 8642–8648 (2005).
62. McBeth, J. M. et al. Redox interactions of techtinum with iron-bearing minerals. Mineral. Mag. 75, (2011).
63. Bard, A. J., Parsons, R. & Jordan, J. Standard potentials in aqueous solution. (M. Dekker, 1983).
64. Fredrickson, J. K. et al. Biotransformation of Ni-substituted hydrous ferric oxide by an Fe(III)-reducing bacterium. Environ. Sci. Technol. 35, 703–712 (2001).
65. Rho, Y. et al. Biogeochemical and environmental factors in Fe biomineralization: Magnetite and siderite formation. Clays Clay Miner. 51, 83–95 (2003).
66. Lloyd, J. R., Sole, V. A., Van Praag, C. V. & Lovley, D. R. Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Appl. Environ. Microbiol. 66, 3743–3749 (2000).
67. Thorpe, C. L. et al. The interactions of strontium and technetium with Fe(II) bearing biominerals: Implications for bioremediation of radioactively contaminated land. Appl. Geochemistry 40, 135–143 (2014).
68. Law, G. T. W. et al. Geomicrobiological Redox Cycling of the Transuranic Element Neptunium. Environ. Sci. Technol. 44, 8924–8929 (2010).
69. Veeramani, H. et al. Products of abiotic U(VI) reduction by biogenic magnetite and vivianite. Geochim. Cosmochim. Acta 75, 2512–2528 (2011).
70. Takeno, S., Zoka, H. & Nihara, T. Metastable cubic iron sulfide—with special reference to mackinawite. Am. Mineral. 55, 1639–1649 (1970).
71. Schoonen, M. A. A. & Barnes, H. L. Reactions forming pyrite and marcasite from solution: I. nucleation of FeSx below 100°C. Geochim. Cosmochim. Acta 55, 1495–1504 (1991).
72. Morse, J. W. & Arakaki, T. Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochim. Cosmochim. Acta 57, 3633–3640 (1993).
73. Clark, A. H. Nickelian mackinawite from Volkfontein, Transvaal: A discussion. Mineral. Notes 55, 1802–1807 (1970).
74. Kwon, K. D., Refson, K. & Sposito, G. Transition metal incorporation into mackinawite (tetragonal FeS). Am. Mineral. 100, 1509–1517 (2015).
75. Gramp, J. P., Bigham, J. M., Sasaki, K. & Tuovinen, O. H. Formation of Ni- and Zn-Sulfides in Cultures of Sulfate-Reducing Bacteria. Geomicrobiol. J. 24, 609–614 (2007).
76. Nielsen, F. H. & Ollerich, D. A. Nickel: a new essential trace element. Fed. Proc. 33, 1767–1772 (1974).
77. Babich, H. & Stotzky, G. Further studies on environmental factors that modify the toxicity of nickel to microbes. Regul. Toxicol. Pharmacol. 3, 82–99 (1983).
78. Pümpel, T., Macaskie, L. E., Finlay, I. A., Diel, L. & Tsiezos, M. Nickel removal from nickel plating waste water using a biologically active moving-bed sand filter. BioMetals 16, 567–581 (2003).
79. Madigan, M. T., et al Brock biology of microorganisms. (Pearson Education Limited, 2015).
80. Poulsen, S. R., Callberg, P. J. S. & Drever, J. I. Toxicity of heavy metals (Ni, Zn) to Desulfovibrio desulfuricans. Geomicrobiol. J. 14, 41–49 (1997).
81. Ruggiero, C. E. et al. Actinide and metal toxicity to prospective bioremediation bacteria. Environ. Microbiol. 7, 88–97 (2005).
82. Metcalfe, R. et al. Characteristics of deep groundwater flow in a basin marginal setting at Sellafield, Northwest England: 36Cl and halide evidence. Appl. Geochemistry 22, 128–151 (2007).
83. Rizoulis, A., Steele, H. M., Morris, K. & Lloyd, J. R. The potential impact of anaerobic microbial metabolism during the geological disposal of intermediate-level waste. Mineral. Mag. 76, 3261–3270 (2012).
84. Carvalho, W. A., Vignado, C. & Fontana, J. Ni(II) removal from aqueous effluents by silylated clays. J. Hazard Mater. 153, 1240–1247 (2008).
85. Suresh, K., Borah, M. & Jatty, S. K. Adsorption of nickel by bentonite clays: A comparative study. J. Environmental Sci. Eng. 51, 133–6 (2009).
86. Williamson, A. J. et al Microbial reduction of Fe(III) under alkaline conditions relevant to geological disposal. Appl. Environ. Microbiol. 39, 3320–3326 (2013).
87. Lovley, D. R., Greening, R. C. & Ferry, J. G. Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate. Appl. Environ. Microbiol. 48, 81–87 (1984).
88. Vercaenen, K. et al. Complexation of calcium by alpha-isoasacharic acid under alkaline conditions. Acta Chem. Scand. 53, 241–246 (1999).
89. Stooke, J. L. Ferrrozine—a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781 (1970).
90. Lovley, D. R. & Phillips, E. J. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51, 683–689 (1986).
91. Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108, 4516–4522 (2011).
92. Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6, 1621–1624 (2012).
93. Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).
94. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBO journal 17, 10–12 (2011).
95. Andrews, S. FastQC A quality control tool for high throughput sequence data (2010).
96. Joshi, N. A. & Fass, J. N. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (2011).
97. Nurk, S. et al. In Research in Computational Molecular Biology: 17th Annual International Conference, RECOMB 2013, Beijing, China, April 7–10, 2013 (eds Deng, M., Jiang, R., Sun, F. & Zhang, X.) 158–170, https://doi.org/10.1007/978-3-642-37195-0_13 (Springer, Berlin, Heidelberg, 2013).
98. Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G. & Neufeld, J. D. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13, 31 (2012).
99. Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504 (2011).
100. Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).
101. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
102. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
103. Caporaso, G. J. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Publ. Gr. 7, (2010).

Acknowledgements

This work was supported by Radioactive Waste Management (RWM). We thank the University of Leeds EPSRC Nanoscience and Nanotechnology Facility (LENNF) (EPSRC EP/K023853/1) for access to TEM. Further thank goes to Alastair Bewsher, Paul Lythgoe and John Waters at the University of Manchester for analytical support. The authors would like to thank NERC for additional funding under the BIGRAD consortium (NE/H007768/1). J.R.L also acknowledges the financial support of the Royal Society and the EU MIND programme under “Euratom 2014–2015” and the call "NFRP-06-2014: Supporting the implementation of the first of-a-kind geological repositories”.

Author Contributions

G.K. – primary investigator, planning, preparation and monitoring of experiments, data acquisition, analysis and interpretation, manuscript writing and editing; C.B. – sample analysis for microbial ecology (sequencing); H.B. – training and support on the ESEM instrument; M.W. – support with TEM analysis; R.B. – industrial sponsor and manuscript review; N.B. – manuscript review; J.R.L. Planning experiments with G.K., data interpretation, review and editing of manuscript.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-26963-8.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018