MAXIMALLY SYMMETRIC COSMOLOGICAL SOLUTIONS
OF TYPE II SUPERSTRINGS

M. C. BENTO
Departamento de Física, Instituto Superior Técnico, Av. Rovisco Pais,
Lisboa Codex, Portugal

We study maximally symmetric cosmological solutions of type II supersymmetric
strings in the presence of the exact, SL(2,Z)-invariant, higher-curvature corrections
to the lowest order effective action. We find that, unlike the case of type IIA
theories, de Sitter solutions exist, at all orders in α', for type IIB superstrings
when non-perturbative D-instanton effects are included on the basis of SL(2,Z)
invariance.

Recently, there has been considerable interest on the subject of cosmolog-
ical solutions of the low-energy limit of string theories and M-theory. String
theories, in their low-energy limit, give rise to effective theories of gravity con-
taining higher-derivative corrections. The effect of higher-curvature terms in
the string low energy effective actions on the maximally symmetric cosmolog-
ical solutions of the theory has been studied
1, with the result that, for all
string theories, at tree-level, there are no stable de Sitter solutions and these
solutions disappear once the dilaton is included. However, in those works, in-
stanton and string-loop effects were not taken into account. Here, we report
the result of Ref. [2], where it is shown that maximally symmetric solutions
exist for type IIB superstrings, at all orders in string perturbation theory once
those effects are taken into account on the basis of SL(2,Z) invariance.

We start by considering the bosonic effective Lagrangian of the the ory at
lowest order in α' (hereafter we set $\alpha' = 1$) in the Einstein frame

$$\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_3,$$

where \mathcal{L}_0 is the lowest order Lagrangian and \mathcal{L}_3 contains the first perturbative
corrections, which arise at order α'^3,

$$\mathcal{L}_0 = R - \frac{1}{2\phi^2_2} \partial_\mu S \partial^\mu S - \frac{1}{12\phi^2_2} (SH^1 + H^2)_{\mu\nu\rho}(SH^1 + H^2)_{\mu\nu\rho},$$

$$\mathcal{L}_3 = \frac{\zeta(3)}{32\pi^3} e^{\frac{2\phi}{\phi_2}} (t_8 t_8 + \frac{1}{8} \epsilon_{10} \epsilon_{10}) R^4,$$

\footnote{Talk presented at the New Worlds in Astroparticle Physics Conference, Faro, Portugal, September 1998, to be published by World Scientific Press.}
where $S = \phi_1 + i \phi_2 = \chi + i e^{-\phi}$, ζ is the Riemann ζ-function and we have used the compact notation

$$(t_8 t_8 + \frac{1}{8} \epsilon_{10} \epsilon_{10}) R^4 \equiv (t_8 \mu_1 \mu_2 \ldots \mu_8 t_8 \nu_1 \nu_2 \ldots \nu_8 + \frac{1}{8} \epsilon_{10} \mu_1 \mu_2 \ldots \mu_8 \rho_9 \rho_{10} \nu_1 \nu_2 \ldots \nu_8 \mu_9 \mu_{10}) \times \hat{R}_{\mu_1 \mu_2 \nu_1 \nu_2} \hat{R}_{\mu_3 \mu_4 \nu_3 \nu_4} \hat{R}_{\mu_5 \mu_6 \nu_5 \nu_6} \hat{R}_{\mu_7 \mu_8 \nu_7 \nu_8} + \ldots \ ,$$

where t_8 is the standard eight-index tensor arising in string amplitudes, ϵ_{10} is the totally antisymmetric symbol in ten dimensions and \ldots denotes terms involving derivatives of the dilaton and

$$\hat{R}_{\mu \nu}^{\alpha \beta} = R_{\mu \nu}^{\alpha \beta} - \frac{1}{4} g_{[\mu} \nabla_{\nu]} \nabla^{[\alpha} \phi. \quad (5)$$

Lagrangian (1) reproduces the four-point amplitude calculated in string theory and it is in agreement with σ-model calculations. Furthermore, \mathcal{L}_0 is invariant under an SL(2,R) symmetry that acts as

$$g_{\mu \nu} \rightarrow g_{\mu \nu}, \quad S \rightarrow aS + b \frac{\phi}{cS + d}, \quad \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in SL(2, R) \quad (6)$$

A discrete subgroup of this symmetry, SL(2, Z), is conjectured to be an exact non-perturbative symmetry of the type IIB string [2].

At the perturbative level, there exist string one-loop corrections to the four-point functions. For four gravitons, these corrections have been calculated and amount to the exchange

$$\zeta(3) \rightarrow \zeta(3) + \frac{\pi^2}{3} \phi_2^{-2} \quad (7)$$

in Eq. (3). Non-renormalization theorems ensure that there are no higher-loop corrections [3]. On the other hand, in type IIB theory there can be non-perturbative contributions due to D-instantons [4]. The multi-instanton contributions are determined by the SL(2, Z) symmetry i.e. the exact non-perturbative result for four gravitons can be found by covariantizing the perturbative result, which is not SL(2, Z)-invariant, under SL(2, Z) [5].

$$\mathcal{L}_3 = \frac{1}{32} f_0(S, \bar{S}) \left(t_8 t_8 + \frac{1}{8} \epsilon_{10} \epsilon_{10} \right) R^4 , \quad (8)$$

where we have used the compact notation defined in Eq. (2); $f_0(S, \bar{S})$ is the non-holomorphic modular form

$$f_0(S, \bar{S}) = \sum_{(m, n) \neq (0, 0)} \frac{\phi_3^{3/2}}{|m + nS|^3} \quad (9)$$
and has the small ϕ_2 expansion

$$f_0 = 2\zeta(3)\phi_2^{3/2} + \frac{2\pi}{3} \phi_2^{-1/2} + 8\pi\phi_2^{1/2} \sum_{m=0, n \geq 1} |m/n| e^{2i\pi mn\phi_1} K_1(2\pi|mn|\phi_2), \quad (10)$$

where K_1 is a Bessel function. This form for the exact R^4 corrections satisfies SL(2,Z) invariance, reproduces the correct perturbative expansion and the non-perturbative corrections are of the expected form.

We look for maximally symmetric solutions of $L_0 + L_3$ (provisionally we set $\chi = 0$). For maximally symmetric spaces

$$R_{\nu\lambda\sigma} = K (\delta_\nu^{\mu} g_{\lambda\sigma} - \delta_\mu^{\nu} g_{\lambda\sigma}), \quad \phi = \phi_c = cte. \quad (11)$$

It is known that it is not possible to satisfy both the graviton and dilaton equations of motion with L_3 given by Eq. (2), except for $K = 0$ i.e. Minkowsky space is the only maximally symmetric solution possible. However, if we take L_3 given by Eq. (8), the equations of motion for the metric and scalar fields read, respectively

$$\alpha_1 K + \alpha_2 f_0(S, \bar{S})K^4 = 0, \quad (12)$$
$$\alpha_2 f_0(S, \bar{S})_S K^4 = 0, \quad (13)$$
$$\alpha_2 f_0(S, \bar{S})_{\bar{S}}K^4 = 0, \quad (14)$$

where $\alpha_1 = (D-1)(D-2)$ and $\beta = -\frac{3}{8}\zeta(3)e^{-3/2}\phi(D-3)(D-2)(D-1)$ and $\alpha_2 = -\frac{3}{8}(D-3)(D-2)(D-1)$.

Hence, it is clear that it is now possible to satisfy all equations provided extrema of f_0 exist. This is the case as the fixed points, $S = e^{i\pi/6}$ and $S = 1$ in the fundamental domain, are necessarily extrema of f_0. We have checked numerically that, in either case, $f_0 > 0$ and, therefore, substituting in eq. (12), we find $K_s = (-\frac{\alpha_1}{f_0\alpha_2})^{1/3} > 0$, corresponding to a de Sitter solution. However, this solution is unstable since, defining $\tilde{f}(K) = \alpha_1 K + f_0\alpha_2 K^4$, then $\tilde{f}'(K_s) = -3\alpha_1 < 0$. There remains, of course, the possibility that stable solutions become possible when higher order curvatures are included.

For type IIA theories, the tree level effective Lagrangian for R^4 terms is the same as for type IIB theories and R^4 terms receive no perturbative corrections beyond one loop; however, for type IIA theories there are no non-perturbative corrections in ten-dimensional type IIA theories. Hence, given the analysis presented above, it is not possible to obtain de Sitter (anti-de Sitter) solutions for these theories.
Finally, we turn to the question of whether the de Sitter solutions we found for type IIB theories up to order α' survive when higher order curvatures are taken into account. One expects that the equations of motion (12)–(14) generalise to

$$\alpha_1 K + \alpha_2 f_0(S, \bar{S}) K^4 + \ldots + \alpha_{n-2} f_n(S, \bar{S}) K^{n+4} + \ldots = 0, \quad (15)$$

$$f_0(S, \bar{S}) \alpha_2 K^4 + \ldots + \alpha_{n-2} f_n(S, \bar{S}) K^{n+4} + \ldots = 0, \quad (16)$$

$$f_0(S, \bar{S}) \alpha_2 K^4 + \ldots + \alpha_{n-2} f_n(S, \bar{S}) K^{n+4} + \ldots = 0. \quad (17)$$

Hence, it is clear that it is possible to satisfy all equations if the functions f_n have at least one common extremum. Normally this would not happen but, for the case of type IIB superstrings, the SL(2,Z) symmetry requires the functions f_n to be SL(2,Z)-invariant, implying that they have common fixed points, $S = e^{i\pi/6}$ and $S = 1$, and these are then necessarily extrema of these functions. Hence, we conclude that maximally symmetric solutions exist, in principle, for the superstring II at all orders in α'. Although this result is quite general and does not depend on the particular form of the functions f_n but solely on the assumption of SL(2,Z)-invariance, it is relevant to mention that the structure of the higher order curvature terms has already been discussed in the literature and a proposal exists for their form:

$$\int d^{10}x \sqrt{-g} f_{-\frac{3}{2},0}(S, \bar{S}) R^{3m+1}, \quad (18)$$

where

$$f_{s,k}(S, \bar{S}) = \sum_{(m,n) \neq (0,0)} \frac{\phi_s^2}{(mS + n)^{s+k} (m\bar{S} + n)^{s-k}} \quad (19)$$

are non-holomorphic modular forms of weights $(k, -k)$; hence, the functions $f_{-\frac{3}{2},0}$ are indeed modular invariant. Notice that $f_{3/2,0}$ is identical to f_0 introduced before.

Hence, we see that the existence of de Sitter solutions for type IIB superstrings seems to be intimately related to the SL(2,Z) symmetry of the theory. In this context, it is interesting to notice that, although stabilization of the dilaton and successful inflation are very difficult features to implement for generic string cosmological models, the situation seems to improve significantly for S-field potentials that are based on the assumption of SL(2,Z) invariance in the context of $N = 1$ supergravity.

4
We conclude that inclusion of non-perturbative effects in type IIB superstrings make it possible to obtain de Sitter solutions to the effective action at all orders in α'.

Acknowledgments

We are grateful to A. Kehagias, O. Bertolami and especially to F. Quevedo for valuable discussions.

References

1. M. C. Bento and O. Bertolami, Phys. Lett. B228 (1989) 348; Phys. Lett. B368 (1996) 198.
2. M.C. Bento, gr-qc/9901052.
3. D.J. Gross and J.H. Sloan, Nucl. Phys. B291 (1987) 41; M.T. Grisaru, A.E.M. van de Ven and D. Zanon, Nucl. Phys. B277 (1986) 388; Nucl. Phys. B277 (1986) 223.
4. J.H. Schwarz, Phys. Lett. B360 (1995) 13, hep-th/9508143. Phys. Lett. B367 (1996) 97, hep-th/9510086.
 E. Witten, Nucl. Phys. B460 (1996) 335, hep-th/9510133.
5. N. Sakai and Y. Tanii, Nucl. Phys. B287 (1987) 457.
 M. Abe, H. Kubota and N. Sakai, Phys. Lett. B200 (1988) 461; Nucl. Phys. B306 (1988) 405.
6. A. A. Tseytlin, Nucl. Phys. B467 (1996) 383, hep-th/9512081.
 N. Berkovitz, Phys. Lett. B409 (1997), hep-th/9706175.
7. M.B. Green, M. Gutperle, Nucl. Phys. B498 (1997) 195; hep-th/9701093.
 I. Antoniadis, B. Pioline and T.R. Taylor, Nucl. Phys. B512 (1998) 61, hep-th/9707222.
8. M.B. Green and P. Vanhove, Phys. Lett. B408 (1997) 122, hep-th/9704145.
9. A. Shapere, O. Lane and F. Wilczek, Nucl. Phys. B320 (1989) 669.
10. A. Kehagias and H. Partouche, Int. J. Mod. Phys. A13 (1998) 5075.
11. P. Binétruy and M.K. Gaillard, Phys. Rev. D34 (1986) 3069; R. Brustein and P.J. Steinhardt, Phys. Lett. B302 (1993) 196.
12. M.C. Bento and O. Bertolami, Phys. Lett. B384 (1996) 98.
 M.C. Bento, O. Bertolami and N.J. Nunes, Phys. Lett. B427 (1998) 261; O. Bertolami and R. Schiappa, gr-qc/9810013.