HOOK FORMULAS FOR SKEW SHAPES IV. INCREASING TABLEAUX AND FACTORIAL GROTHENDIECK POLYNOMIALS

ALEJANDRO H. MORALES*, IGOR PAK⋄ AND GRETA PANOVA†

Abstract. We present a new family of hook-length formulas for the number of standard increasing tableaux which arise in the study of factorial Grothendieck polynomials. In the case of straight shapes our formulas generalize the classical hook-length formula and the Littlewood formula. For skew shapes, our formulas generalize the Naruse hook-length formula and its q-analogues, which were studied in previous papers of the series.

1. Introduction

1.1. Foreword. There is more than one way to explain a miracle. First, one can show how it is made, a step-by-step guide to perform it. This is the most common yet the least satisfactory approach as it takes away the joy and gives you nothing in return. Second, one can investigate away every consequence and implication, showing that what appears to be miraculous is actually both reasonable and expected. This takes nothing away from the the miracle except for its shining power, and puts it in the natural order of things. Finally, there is a way to place the apparent miracle as a part of the general scheme. Even, or especially, if this scheme is technical and unglamorous, the underlying pattern emerges with the utmost clarity.

The hook-length formula (HLF) is long thought to be a minor miracle, a product formula for the number of certain planar combinatorial arrangements, which emerges where one would expect only a determinant formula. Despite its numerous proofs and generalizations, including some by the authors (see §7.1), it continues to mystify and enthrall. The goal of this paper is to give new curious generalizations of the HLF by using Grothendieck polynomials. The resulting formulas are convoluted enough to be unguessable yet retain the hook product structure to be instantly recognizable.

1.2. Straight shapes. Recall some classical results in the area. Let \(\lambda = (\lambda_1, \ldots, \lambda_\ell) \vdash n \) be an integer partition of \(n \) with \(\ell = \ell(\lambda) \) parts, and let \(f^\lambda := |\text{SYT}(\lambda)| \) be the number of standard Young tableaux of shape \(\lambda \). The hook-length formula by Frame–Robinson–Thrall [FRT] states that

\[
 f^\lambda = n! \prod_{u \in \lambda} \frac{1}{h(u)},
\]

where \(h(u) = \lambda_i - i + \lambda_j - j + 1 \) is the hook-length of the square \(u = (i, j) \in \lambda \).

Similarly, let \(\text{SSYT}(\lambda) \) denote the set of semi-standard Young tableaux of shape \(\lambda \). For a tableau \(T \in \text{SSYT}(\lambda) \), let \(|T| \) denote the sum of its entries. The Littlewood formula, a special case of the Stanley hook-content formula, states that

\[
 \sum_{T \in \text{SSYT}(\lambda)} q^{|T|} = q^{b(\lambda)} \prod_{u \in \lambda} \frac{1}{1 - q^{h(u)}},
\]
where

\[b(\lambda) := \sum_{(i,j) \in \lambda} (i - 1) = \sum_{i=1}^{\ell(\lambda)} (i - 1)\lambda_i , \]

see e.g. [S1, §7.21]. Note that \((q\text{-HLF})\) implies \((\text{HLF})\) by taking limit \(q \to 1\) and using a geometric argument, see [P1, §2], or the \(P\text{-partition theory}, see [S1, §3.15]. We are now ready to state the first two results of the paper, which generalize \((\text{HLF})\) and \((q\text{-HLF}),\) respectively.

For a tableau \(T \in \text{SSYT}(\lambda),\) let \(T_k = \{u \in \lambda : T(u) = k\}\) be the set of tableau entries equal to \(k.\) Define \(T_{\leq k} = \{u \in \lambda : T(u) \leq k\}, \ T_{> k} = \{u \in \lambda : T(u) > k\}\) and \(T_{< k} = T_{\leq k+1}\) similarly. Finally, let \(\nu(T_k), \nu(T_{< k})\) and \(\nu(T_{> k})\) be the shapes of these tableaux.

We say that \(T\) is a \textit{standard increasing tableau} if it is strictly increasing in rows and columns, and \(T_k\) is nonempty for all \(1 \leq k \leq m,\) where \(m = m(T)\) is the maximal entry in \(T.\) Note that the (usual) standard Young tableaux are exactly the standard increasing tableaux \(T\) with \(m(T) = n.\) Denote by \(\text{SIT}(\lambda)\) the set of standard increasing tableaux of shape \(\lambda.\) By definition, for \(T \in \text{SIT}(\lambda),\) we have \(0 \leq \nu_i(T_{\leq k}) \leq \lambda_i\) is the number of elements in \(T_{\leq k}\) in \(i\)-th row of \(\lambda.\)

Theorem 1.1. Fix \(d \geq 1.\) In the notation above, for every \(\lambda \vdash n\) with \(\ell(\lambda) \leq d,\) we have:

\[
(\text{K-HLF}) = \frac{\prod_{i=1}^{\ell(\lambda)} \left(1 + \beta(\lambda_i + d - i + 1)\right)^{\lambda_i}}{\left(-\beta\right)^n \prod_{i,j \in \lambda} 1 + \beta(\lambda_i + d - i + 1) \prod_{(i,j) \in \lambda} 1}.
\]

Here “\(K\)” in \((\text{K-HLF})\) stands for \(K\)-theory, see below. Note that \((\text{K-HLF})\) implies \((\text{HLF})\) by taking the limit \(\beta \to 0,\) see Proposition 4.8.

To state the \(K\)-theory analogue of \((q\text{-HLF}),\) we need a few more notation. For a strictly increasing tableau \(T \in \text{SIT}(\lambda),\) denote by \(T_{> k}\) the skew subtableau of integers \(\geq k,\) and let \(a(T_{> k}) := |\nu(T_{> k})|\) denote the number of such integers. This should not be confused with \(|T_{> k}|\) which is the sum of such integers. Finally, denote

\[s(\lambda) := \sum_{(i,j) \in \lambda} (i + j - 1) = b(\lambda) + b(\lambda') + |\lambda| .\]

Corollary 1.2. In the notation above, for every \(\lambda \vdash n,\) we have:

\[
(1.1) \sum_{T \in \text{SIT}(\lambda)} q^{|T|} \prod_{k=1}^{m(T)} \frac{1}{1-q^{a(T_{> k})}} = q^{s(\lambda)} \prod_{(i,j) \in \lambda} \frac{1}{1-q^{b(i,j)}} .
\]

The relationship between \((\text{K-HLF})\) and \((1.1)\) is somewhat indirect and both follow from a more general equation \((4.5)\) by taking limits.

Remark 1.3. Denote by \(\text{RPP}(\lambda)\) the set of \textit{reverse plane partitions}, which are Young tableaux with entries \(\geq 0,\) weakly increasing in rows and columns. Similarly, denote by \(\text{IT}(\lambda)\) the set of \textit{increasing tableaux}, which are Young tableaux with entries \(\geq 1,\) strictly increasing in rows and columns. Thus:

\[
(1.2) \quad \text{SYT}(\lambda) \subset \text{SIT}(\lambda) \subset \text{IT}(\lambda) \subset \text{SSYT}(\lambda) \subset \text{RPP}(\lambda).
\]

It is well known, and easily follows from \((q\text{-HLF}),\) that

\[
(1.3) \sum_{T \in \text{IT}(\lambda)} q^{|T|} = q^{s(\lambda)} \sum_{T \in \text{RPP}(\lambda)} q^{|T|} = q^{s(\lambda)} \prod_{(i,j) \in \lambda} \frac{1}{1-q^{b(i,j)}} .
\]
Note that both (1.1) and (1.3) have identical RHS, but the LHS of (1.1) has an extra product term. In fact, there is a similar direct way to derive (1.1) from (q-HLF) by subtracting a constant to the entries in each anti-diagonal of the tableau. However, this approach does not extend to skew shapes, see Theorem 1.5 below and §7.9.

1.3. Skew shapes. We start with the Naruse hook-length formula (NHLF), the subject of the previous papers in this series [MPP1, MPP2, MPP3]. Here we omit some definitions; precise statements are given in Section 5.

Let λ/μ be a skew Young diagram (skew shape), and let $f^{\lambda/\mu} = |\text{SYT}(\lambda/\mu)|$ be the number of standard Young tableaux of a shape λ/μ. Then

\[(\text{NHLF}) \quad f^{\lambda/\mu} = |\lambda/\mu|! \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{u \in \lambda \setminus D} \frac{1}{h(u)},\]

where $h(u)$ is the (usual) hook-length of square $u \in \lambda$, and $\mathcal{E}(\lambda/\mu)$ denotes the set of excited diagrams of shape λ/μ. Note that when $\mu = \emptyset$, there is a unique generalized excited diagram $D = \emptyset$, and (NHLF) reduces to (HLF).

The q-analogue of (NHLF) generalizing Littlewood’s formula (q-HLF) to skew shapes was given by the authors in [MPP1]:

\[(q\text{-NHLF}) \quad \sum_{T \in \text{SSYT}(\lambda/\mu)} q^{|T|} = \sum_{D \in \mathcal{E}(\lambda/\mu)} \prod_{(i,j) \in \lambda \setminus D} \frac{q^{\lambda_i - i}}{1 - q^{h(i,j)}}.\]

In Remark 1.6, we discuss another notable q-analogue as a summation over RPP(λ/μ). The following results respectively generalize Theorem 1.1 and Corollary 1.2 to skew shapes, thus giving an advanced generalizations of the (HLF).

Let $\mu \subset \lambda$ be two integer partitions. Define the set $\text{SIT}(\lambda/\mu)$ of standard increasing tableaux of skew shape λ/μ again as Young tableaux T which strictly increase in rows and columns and have nonempty T_k for all $1 \leq k \leq m(T)$. In this case, the generalized excited diagrams were introduced by Graham–Kreiman [GK] and Ikeda–Naruse [IN2]. We denote the set of such diagrams by $\mathcal{D}(\lambda/\mu)$, and postpone their definition until the next section.

Theorem 1.4. Fix $d \geq 1$. In the notation above, for every $\mu \subset \lambda$ with $\ell(\lambda) \leq d$, we have:

\[(K\text{-NHLF}) \quad \sum_{T \in \text{SIT}(\lambda/\mu)} \prod_{k=1}^{m(T)} \left(\prod_{i=1}^{d} \frac{1 + \beta \nu_i(T_{<k}) + d - i + 1}{1 + \beta \nu_i(T_{<k}) + d - i + 1} \right)^{-1} = \sum_{D \in \mathcal{D}(\lambda/\mu)} (-\beta)^{|D| - |\lambda|} \prod_{(i,j) \in \lambda \setminus D} \frac{\beta(\lambda_i + d - i + 1) + 1}{h(i,j)}.\]

See §6.4 for a completely different generalization of (HLF) to skew shapes, which also has a q-analogue and K-theory analogue (Theorem 6.8). Finally, Corollary 1.2 extends to skew shapes as follows:

Theorem 1.5. In the notation above, for every $\mu \subset \lambda$, we have:

\[(1.4) \quad \sum_{T \in \text{SIT}(\lambda/\mu)} q^{|T|} \prod_{k=1}^{m(T)} \frac{1}{1 - q^{a(T_{<k})}} = \sum_{D \in \mathcal{D}(\lambda/\mu)} \prod_{(i,j) \in \lambda \setminus D} \frac{q^{h(i,j)}}{1 - q^{h(i,j)}}.\]

Again, equation (1.4) reduces to (1.1) by taking for $\mu = \emptyset$, and noting that

$$\sum_{(i,j) \in \lambda} h(i,j) = \sum_{(i,j) \in \lambda} (\lambda'_j - i + 1) + \sum_{(i,j) \in \lambda} (\lambda_i - j) = s(\lambda).$$
Remark 1.6. While the inclusions in (1.2) continue to hold for skew shapes, the natural analogue of (1.3) is no longer straightforward. In fact, for
\[I_{\lambda/\mu}(q) := \sum_{T \in \text{IT}(\lambda/\mu)} q^{|T|} \quad \text{and} \quad R_{\lambda/\mu}(q) := \sum_{T \in \text{RPP}(\lambda/\mu)} q^{|T|}, \]
the theory of P-partition gives:
\[(1.5) \quad I_{\lambda/\mu}(-q) = q^N R_{\lambda/\mu}(1/q) \quad \text{for some} \ N \geq 0, \text{ see } [S1, \S 3.15]. \]

On the other hand, the summation formula for \(R_{\lambda/\mu}(q) \) given in [MPP1, Thm. 1.5] gives yet another generalization of (NHLF), but is summing over a different, albeit related, set of pleasant diagrams (see \(\S 5.2 \)):
\[(1.6) \quad \sum_{T \in \text{RPP}(\lambda/\mu)} q^{|T|} = \sum_{S \in \pi(\lambda/\mu)} \prod_{i,j \in S} q^{h(i,j)} \left(1 - q^{h(i,j)} \right), \]

As we explain in Section 6, equation (K-NHLF) is really a generalization of (1.6) rather than (q-NHLF). A connection can also be seen through yet another summation formula for \(R_{\lambda/\mu}(q) \) is given in [MPP1, Cor. 6.17] in terms of (ordinary) excited diagrams and subsets \(\pi(\lambda/\mu) \) of excited peaks (see the definition in \(\S 5.2 \)):
\[(1.7) \quad \sum_{T \in \text{RPP}(\lambda/\mu)} q^{|T|} = \sum_{D \in \mathcal{E}(\lambda/\mu)} q^{c(D)} \prod_{(i,j) \in D} \frac{1}{1 - q^{h(i,j)}}, \]
where \(c(D) := \sum_{(i,j) \in \pi(\lambda/\mu)} h(i,j) \). Finally, let us mention that the corresponding summation formula for \(I_{\lambda/\mu}(q) \) implied by (1.5) and (1.7), is obtained in (6.8) more directly.

1.4. Methodology. While all results in this paper can be understood as enumeration of certain Young tableaux, both the motivation and the proofs are algebraic. This is routine in Algebraic Combinatorics, of course, and goes back to the most basic and classical results in the area.

For example, for the LHS of (HLF), we have \(f^\lambda = \dim S^\lambda \), the dimension of the corresponding irreducible \(S_n \)-module, with standard Young tableaux giving a natural basis. On the other hand, the LHS in (q-HLF) is equal to evaluation of the Schur function \(s_{\lambda}(1, q, q^2, \ldots) \), and counts multiplicities of \(S^\lambda \) in the natural action on the symmetric algebra \(\mathbb{C}[x_1, \ldots, x_n] \) graded by the degree. The connection between the two are then provided by the combination of Burnside and Chevalley theorems.

One can similarly define the standard Young tableaux of skew shapes, excited diagrams, etc., even if the explanations become more technical and involved with each generalization. A tremendous amount of work by many authors went into developments of this theory, making a proper overview for a paper of this scope impossible. Instead, we skip to the end of the story and briefly describe the motivation behind our new enumerative results.

Before we proceed to the recent work, it is worth pausing and pondering on how the results in the area come about. First, there are algebraic areas (representation theory, enumerative algebraic geometry, etc.) which provide the source of key algebraic objects (characters, Schubert cells, characteristic classes, etc.) Second, in order to build the theory of these objects and be able to compute them, combinatorial objects are extracted which are able to characterize the algebraic objects (Schur functions, Schubert polynomials, etc.)

Third, the algebraic combinatorialists join the party and introduce the theory of these combinatorial objects without regard to their algebraic origin. Along the way they introduce a plethora of new combinatorial tools (Young tableaux, reduced decompositions, RSK, etc.) which substantially enhance and clarify the resulting combinatorial structures. This is still the same theory, of course, but the self-contained presentation and rich yet to be understood combinatorics allows an easy access to people not algebraically inclined.
All this leads to the fourth wave, by enumerative combinatorialists who are able to use tools and ideas from algebraic combinatorics to study purely combinatorial problems. This is where we find ourselves in this paper, staring with an amazement at new enumerative results we would not be able to dream up otherwise, yet grasping for understanding of what these results really mean in the grand scheme of things.

1.5. Motivation and background. The main result of this paper is an unusual β-deformation of many known hook formulas. Notably, our β-deformation (K-HLF) of the (HLF), see Theorem 1.1, remains concise and multiplicative even if it is quite cumbersome at first glance. By comparison, it is unlikely that $g_\lambda := |\operatorname{SIT}(\lambda)|$ has a closed formula (cf. §7.10), so a product formula for the weighted enumeration of SITs is both a minor miracle and testament to the intricate nature of such tableaux.

The same pattern extends to other, more general hook formulas, suggesting that (K-HLF) is not an accident, that the β-deformation is a far-reaching generalization, on par with the “q-analogue”, “shifted analogue”, etc. We expect further results in this direction in the future.

In the combinatorial context, standard increasing tableaux (without the restriction on the values of the entries), appear as byproducts of the classical Edelman–Greene insertion [EG, HY] aimed at understanding of Stanley’s theorem on reduced factorizations of Grassmannian permutations (permutations with at most one descent, see, e.g. [Man]). They also appear in a more general setting of the Hecke insertion [B+].

More recently, standard increasing tableaux have appeared in the context of K-theoretic version of the jeu de taquin of Thomas and Yong [TY1, TY3], and K-promotion in K-theoretic Schubert calculus [Pe1]. Closely related semistandard set-valued tableaux were defined by Buch [B1], and have also been studied in a number of papers.

In the algebraic context, the K-theory Schubert calculus of the Grassmannian was introduced by Lascoux and Schützenberger [LS2]. There, they defined the Grothendieck polynomials as representatives for K-theory classes determined by structure sheaves of Schubert varieties. The theory has been rapidly developed in the past two decades. We refer to [Bri, B2] for early surveys of the subject, as reviewing the extensive recent literature is beyond the scope of this paper.

In this paper, the key role is played by the factorial Grothendieck polynomials [Mc1, KMY], which generalize both the well studied Grothendieck polynomials and factorial symmetric functions. The latter was first also introduced by Lascoux and Schützenberger [LS1] in the guise of double Schubert polynomials for Grassmannian permutations, and has been systematically studied by Macdonald [Mac], see also [BMN] for further background.

Finally, let us mention the excited diagrams, pleasant diagrams and the generalized excited diagrams, which all arise in the context of hook formulas of skew shapes, introduced by Ikeda–Naruse [IN1], by us [MPP1], and by Naruse–Okada [NO], respectively. These diagrams provide a combinatorial language needed to state our results.

1.6. Proof ideas. For us, the story starts with our proof in [MPP1] of equations (NHLF) and (q-NHLF) using evaluations of factorial Schur functions and the Chevalley type formulas, see [MS]. Naruse’s (unpublished) approach was likely similar, cf. [Nar]. After our paper, Naruse–Okada [NO] rederived and further generalized to d-complete posets our RPP(λ/μ) generalization (1.7) of (NHLF) using the Billey-type and the Chevalley-type formulas from the equivariant K-theory. Note that our own proof of the RPP(λ/μ) summation (1.6) given in [MPP1] is completely combinatorial, and based on a generalization of the Hillman–Grassl bijection.

Our proofs in this paper combine our earlier proof technique in [MPP2] with that of Naruse–Okada. Namely, we study evaluations of the factorial Grothendieck polynomials in two different ways. First, we use the Pieri rule for the factorial Grothendieck polynomials to obtain the LHS of the equations in terms of increasing tableaux. In the skew case, we combine these with the Chevalley type formulas. We also use the Naruse–Okada characterization of generalized excited
diagrams in terms of the usual excited diagrams (see Proposition 5.1), to obtain equation (6.7) and its generalizations. We also prove that these diagrams have a lattice path interpretation that we exploit in §5.3 to obtain an upper bound on their number.

Second, for the RHS of our hook formulas, we use the vanishing property of the evaluation for the case of straight shapes. Finally, we use formulas in terms of excited diagrams of Graham–Kreiman [GK] for the case of skew shapes.

1.7. Paper structure. We begin with preliminary Sections 2 and 3, where we review basic definitions and properties of permutation classes, Young tableaux, increasing tableaux, and factorial Grothendieck polynomials. We then proceed to present proofs of all our hook formulas via more general multivariate formulas.

Namely, in Section 4, we prove Theorem 4.2, the main result of the straight shape case, which implies Theorem 1.1 and Corollary 1.2. In Section 5 we review the technology of excited diagrams that was unnecessary for the straight shape. We also relate our notation and results to further clarify combinatorics of the double Grothendieck polynomials of vexillary permutations for devotees of the subject. Then, in Section 6, we prove Theorem 6.5, the main and most general result of this paper, which similarly implies both Theorems 1.4 and 1.5.

Let us emphasize that this paper is not self-contained by any measure, as we are freely using results from the area and from our previous papers in this series. We tried, however, to include all necessary definitions and results, so the paper can be read by itself. This governed the style of the paper: we covered the straight shape case first as it requires less of a background and can be understood by a wider audience. This also helped set up the more general skew shape case which followed. We conclude with final remarks and open problems in Section 7.

2. Permutations, Dyck paths and Young tableaux

2.1. Basic notation. Let \(\mathbb{N} = \{0, 1, \ldots \} \) and \([n] = \{1, \ldots, n\}\).

2.2. Permutations. We write permutations of \([n]\) as \(w = w_1w_2\ldots w_n \in S_n \), where \(w_i \) is the image of \(i \). The Rothe diagram of a permutation \(w \) is the subset of \([n] \times [n]\) given by \(R(w) := \{(i, w_j) \mid i < j, w_i > w_j\} \). The essential set of a permutation \(w \) is the subset of \(R(w) \) given by \(\text{Ess}(w) := \{(i, j) \in R(w) \mid (i + 1, j), (i, j + 1), (i + 1, j + 1) \notin R(w)\} \), see e.g. [Man, §2.1-2].

A permutation \(w \in S_n \) is called Grassmannian if it has a unique descent, say at position \(k \). Such a Grassmannian permutation corresponds to a partition \(\mu = \mu(w) \) with \(\ell(\mu) \leq k \) and \(\mu_1 \leq n-k \). Grassmannian permutations \(w \) can also be characterized as having \(\text{Ess}(w) \) contained in one row, the last row of \(R(w) \) and \(\mu(w) \) can be read from the number of boxes of \(R(w) \) in each row bottom to top.

A permutation \(w \in S_n \) is called vexillary if it is 2143-avoiding. Vexillary permutations can also be characterized as permutations \(w \) where \(R(w) \) is, up to permuting rows and columns, the Young diagram of a partition \(\mu = \mu(w) \). Given a vexillary permutation let \(\lambda = \lambda(w) \) be the smallest partition containing the diagram \(R(w) \). We call this partition the supershape of \(w \) and note that \(\mu(w) \subseteq \lambda(w) \). The Young diagram of \(\lambda(w) \) can also be obtained by taking the union over \(i \times j \) rectangles with NW and SE corners \((1, 1) \) and \((i,j) \) for each \((i,j) \) in \(\text{Ess}(w) \). Note also that Grassmannian permutations are examples of vexillary permutations.

2.3. Lattice paths. A lattice path contained in a Young diagram \(\lambda \) is a path of steps \((1,0)\) and \((0,1)\) along the square grid centered at the centers of the cells of \(\lambda \).

A Dyck path \(\gamma \) of length \(2n \) is a lattice path from \((0,0)\) to \((2n,0)\) with steps \((1,0)\) and \((1,-1)\) that stay on or above the \(x\)-axis. The set of Dyck paths of length \(2n \) is denoted by \(\text{Dyck}(n) \). For a Dyck path \(\gamma \), a peak is a point \((c,d)\) such that \((c-1,d-1)\) and \((c+1,d-1)\) are in \(\gamma \). A peak \((c,d)\) is called high peak if \(d > 1 \). The set of high peaks of a Dyck path \(\gamma \) is denoted
by \(\mathcal{HP}(\gamma) \) and its size by \(\text{hp}(\gamma) \). Note that a Dyck path, upon rotation and rescaling is also a lattice path in the Young diagram of \(\delta_n = (n + 1, n, \ldots, 1) \).

For general lattice paths \(\gamma \) above a certain base path \(\gamma' \) we can also define high peaks relative to \(\gamma' \) as the set of points \((c, d) \), such that \((c, d - 1), (c + 1, d) \in \gamma \) and \((c, d) \notin \gamma' \). We will also denote this set by \(\mathcal{HP}(\gamma) \).

2.4. Plane partitions and Young tableaux. We use standard English notation for Young diagrams and Young tableaux, see e.g. [S1, §2.4].

To simplify the notation, we use the same letter to denote an integer partition and the corresponding Young diagram \(\lambda \). The skew shape (skew Young diagram) \(\lambda/\mu \) is given by a pair of Young diagrams, such that \(\mu \subset \lambda \). Denote \(|\lambda/\mu| \) the size of the skew shape.

A reverse plane partition of skew shape \(\lambda/\mu \) is an array \(A = (a_{ij}) \) of nonnegative integers of shape \(\lambda/\mu \) that is weakly increasing in rows and columns. A semistandard Young tableau (SSYT) of skew shape \(\lambda/\mu \) is a reverse plane partition of shape \(\lambda/\mu \) that is strictly increasing in columns and has entries \(\geq 1 \). We denote these sets of tableaux by \(\text{RPP}(\lambda/\mu) \) and \(\text{SSYT}(\lambda/\mu) \), respectively.

A standard Young tableau of shape \(\lambda/\mu \) is an reverse plane partition \(T \) of shape \(\lambda/\mu \) which contains entries \(1, \ldots, |\lambda/\mu| \) exactly once. We denote this set by \(\text{SYT}(\lambda/\mu) \), and let \(f^{\lambda/\mu} := |\text{SYT}(\lambda/\mu)| \).

In less standard notation, for a tableau \(T \in \text{RPP}(\lambda) \), we define tableaux \(T_k, T_{\leq k} \) and \(T_{\geq k} \) as in the introduction. The (skew) shape of a tableau \(Q \) is denote by \(\nu(Q) \). We are using \(a(Q) := |\nu(Q)| \) to denote the size (the number of entries) in \(Q \). As in the introduction, we write \(|T| \) to denote the sum of entries in the tableau \(T \).

2.5. Increasing and set-valued Young tableaux. An increasing tableau of shape \(\lambda/\mu \) is a row strict semistandard Young tableau of shape \(\lambda/\mu \). A standard Increasing tableau\(^1\) is an increasing tableau of shape \(\lambda/\mu \) whose entries are exactly \([m]\), for some \(m \leq |\lambda/\mu| \). As in the introduction, we denote by \(m(T) := m \) the maximal entry in \(T \).

Denote by \(\text{IT}(\lambda/\mu) \) the set of increasing tableaux, and by \(\text{SIT}(\lambda/\mu) \) the set of standard increasing tableaux of shape \(\lambda/\mu \). Let \(g^{\lambda/\mu} := |\text{SIT}(\lambda/\mu)| \) be the number of standard increasing tableaux.

Tableau \(T \in \text{SIT}(\lambda/\mu) \) is called a barely standard Young tableau of shape \(\lambda/\mu \), if \(m(T) = |\lambda/\mu| - 1 \). In other words, these are the standard increasing tableaux with exactly one entry appearing twice (cf. §7.4). We denote the set of these tableaux by \(\text{BSYT}(\lambda/\mu) \). We also denote by \(\text{BSYT}_k(\lambda/\mu) \) the tableaux in \(\text{BSYT}(\lambda/\mu) \) with entry \(k \) appearing twice.

Finally, a semistandard set-valued tableau of shape \(\lambda/\mu \) is an assignment of subsets of \([n]\) to the cells of \(\lambda/\mu \), such that for \(T(u) \) is the set in cell \(u \in \lambda \), we have:

\(\circ \) max \(T(u) \leq \min T(u') \), where \(u' \) is the cell to the right of \(u \) in the same row, and

\(\circ \) max \(T(u) < \min T(u') \), where \(u' \) is the cell below \(u \) in the same column.

We use \(\text{ne}(T) \) to denote the number of entries of \(T \), and \(\text{SSVT}_n(\lambda/\mu) \) to denote the set of such tableaux.

2.6. Examples. To illustrate the definitions, in the figure below we have \(\lambda = 442, \mu = 21, A \in \text{RPP}(\lambda/\mu), B \in \text{SSYT}(\lambda/\mu), C \in \text{SYT}(\lambda/\mu), D \in \text{SSVT}_5(\lambda/\mu), E \in \text{IT}(\lambda/\mu), F \in \text{SIT}(\lambda/\mu) \) with \(m(F) = 5 \), and \(G \in \text{BSYT}_3(\lambda/\mu) \). Note that \(\text{ne}(D) = 9 \).

\(^{1}\)In the literature these tableaux are sometimes called (just) increasing tableaux or packed increasing tableaux [Pe2].
In this case, we have $|F| = 18$, $\nu(F_{\leq 0}) = \mu = 21$, $\nu(F_{\leq 1}) = 32$, $\nu(F_{\leq 2}) = 331$, $\nu(F_{\leq 3}) = 431$, $\nu(F_{\leq 4}) = 441$, and $\nu(F_{\leq 5}) = \lambda = 442$. Similarly, $\nu(F_{\geq 2}) = 442/32$ and $a(F_{\geq 2}) = 5$.

Finally, in the notation of the introduction, we have $b(\lambda) = |N_\lambda|$ and $s(\lambda) = |M_\lambda|$ is the sum of the entries of the minimal reverse plane partition $N_\lambda \in \text{RPP}(\lambda)$, and minimal strictly increasing tableau $M_\lambda \in \text{SIT}(\lambda)$, with entries $N_\lambda(i,j) = (i-1)$ and $M_\lambda(i,j) = (i+j-1)$, respectively. See an example in the figure below:

$$N_{442} = \begin{array}{cccc} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 2 & 2 & \end{array} \quad \text{and} \quad M_{442} = \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & \end{array}$$

In this case $b(\lambda) = |N_{442}| = 8$ and $s(\lambda) = |M_{442}| = 31$.

2.7. Special cases. To further clarify the definitions, let us give a quick calculation of the number of increasing tableaux for the two row shape (n,n) and the hook shape $(p,1^q)$.

Let s_n denote the n-th little Schröder number [OEIS, A001003] that counts lattice paths $(0,0) \to (n,n)$ with steps $(1,0)$, $(0,1)$ and $(1,1)$ that never go below the main diagonal $x = y$ and with no $(1,1)$ steps on the diagonal.

Proposition 2.1 ([Pe1]). We have $g^{(n,n)} = s_n$.

Proof. We interpret the SITs as lattice paths on the square grid. In the case $\lambda = (n,n)$, let $T \in \text{SIT}(\lambda)$ correspond to the lattice path $\gamma : (0,0) \to (n,n)$ is given by a sequence of steps:

- $(1,0)$ if the entry i appears only in the first row of T,
- $(0,1)$ if the entry i appears only in the second row of T, and
- $(1,1)$ if the entry i appears on both rows.

The increasing columns condition forces the paths γ not to cross below the diagonal, with all $(1,1)$ steps strictly above the diagonal, as desired.

Similarly, let $D(m,n)$ denoted the Delannoy number [OEIS, A008288] that counts lattice paths $(0,0) \to (m,n)$ with steps $(0,1)$, $(1,0)$ and $(1,1)$. We call these Delannoy steps.

Proposition 2.2 (cf. [PSV]). For the hook shape $\lambda = (p,1^q)$, we have $g^{(p,1^q)} = D(p-1,q)$.

The proof follows verbatim the argument above, but the lattice paths with Delannoy steps no longer have a diagonal constraint. We omit the details.
3. Factorial Grothendieck polynomials

Recall the following operators first introduced in [FK1, FK3]:

\[x \oplus y := x + y + \beta xy, \quad x \otimes y := \frac{(x - y)}{(1 + \beta y)}, \quad \ominus x := 0 \ominus x, \]

where \(y = (y_1, y_2, \ldots) \).

Proposition 3.3 \((3.1)\) \(G\).

\[\text{Definition/Theorem 3.1 (McNamara [Mc1].)} \]

Factorial Grothendieck polynomials are defined by either of the following:

\[
G_\mu(x_1,\ldots,x_d|y) := \sum_{T \in SSVT_d(\mu)} \beta^{ne(T) - |\mu|} \prod_{u \in \mu, r \in T(u)} (x_r \oplus y_{r+\epsilon(u)})
= \det \left[(x_i | y_{j+|\mu| + d-j}(1 + \beta x_i)^{j-1}) \right]_{i,j=1}^{d} \prod_{1 \leq i < j \leq d} \frac{1}{(x_i - x_j)}.
\]

The factorial Grothendieck polynomials are equal to the double Grothendieck polynomials parameterized by a Grassmannian permutation associated to partition \(\mu \), see [Mc2]. These in turn were defined earlier in [KMY], in the greater generality of all vexillary permutations, see equation (3.2) below. We postpone their definition until §5.6 (see also §7.3).

Remark 3.2. As mentioned in [Mc1, Rem. 3.2], in the literature Grothendieck polynomials sometimes appear only in the case \(\beta = -1 \). However, one can obtain the \(\beta \) case from the case \(\beta = -1 \) by replacing \(x_i \) with \(-x_i / \beta \) and \(y_i \) with \(y_i / \beta \).

\[G_\mu(x|y) \bigg|_{\beta=-1} = (-\beta)^{|\mu|} G_\mu(-x|y/\beta). \]

\[(3.1) \]

It is easy to see that \(G_\phi(x|y) = 1 \). We need the following technical result.

Proposition 3.3 \((\text{Mc1, Mc2).)}\) The factorial Grothendieck polynomials \(G_\phi(x|y) \) satisfy:

(i) \(G_\mu(x_1,\ldots,x_d|y) \) is symmetric in \(x_1, x_2, \ldots, x_d \).

(ii) Doing the substitution \(y_i \leftarrow (-y_i) \), and setting \(\beta = 0 \), we obtain the factorial Schur function:

\[G_\mu(x_1,\ldots,x_d|-y) \bigg|_{\beta=0} = s_\mu(x_1,\ldots,x_d|y). \]

(iii) Setting \(y_i = 0 \), we obtain the ordinary Grothendieck polynomials:

\[G_\mu(x_1,\ldots,x_d|y) \bigg|_{y_i=0} = G_\mu(x_1,\ldots,x_d). \]

(iv) They are equal to double Grothendieck polynomial of Grassmannian permutations:

\[(3.2) \]

\[\Phi_{w(\mu)}(x,y) = G_\mu(x_1,\ldots,x_d|y), \]

for \(d \geq \ell(\mu) \), and \(w(\mu) \) is the Grassmannian permutation with descent at position \(d \) associated to \(\mu \).

Proposition 3.4 \((\text{Vanishing property of Grothendieck polynomial [Mc1, Thm. 4.4).)}\) When evaluated at \(y_\lambda := (\ominus y_{\lambda_1+d}, \ominus y_{\lambda_2+d-1}, \ldots, \ominus y_{\lambda_d+1}) \) with \(\ell(d) \leq d \),

\[(3.3) \]

\[G_\mu(y_\lambda|y) = \begin{cases} 0 & \text{if } \mu \nsubseteq \lambda, \\ \prod_{(i,j) \in \lambda} (y_{d+1-j} \ominus y_{\lambda_i+d-1}) & \text{if } \mu = \lambda. \end{cases} \]

To simplify the notation, we write \(G_1 \) for \(G_{(1)} \). We use notation \(\nu \mapsto \mu \) when the skew shape \(\nu / \mu \) is nonempty and its boxes are in different rows and columns. Note that \(\nu \neq \mu \) in this case. In this notation, every standard increasing tableau \(T \in SIT(\lambda/\mu) \) is viewed as a chain

\[(3.4) \]

\[\lambda = \nu(T_{\leq k}) \mapsto \nu(T_{\leq k-1}) \mapsto \cdots \mapsto \nu(T_{\leq 1}) \mapsto \nu(T_{\leq 0}) = \mu. \]
Lemma 3.5 (Pieri rule for Grothendieck polynomial [Mc1, Prop. 4.8]).

\(G_\mu(x \mid y)(1 + \beta G_1(x \mid y)) = (1 + \beta G_1(y_\mu \mid y)) \sum_{\nu \rightarrow \mu} \beta^{[\nu/\mu]} G_\nu(x \mid y). \)

We can rewrite this Pieri rule as follows:

Proposition 3.6. We have:

\(G_\mu(x \mid y) \left(\frac{G_1(x \mid y) - G_1(y_\mu \mid y)}{1 + \beta G_1(y_\mu \mid y)} \right) = \sum_{\nu \rightarrow \mu} \beta^{[\nu/\mu]-1} G_\nu(x \mid y). \)

Proof. We expand both sides of (3.5) and cancel the term \(G_\mu(x \mid y) \) giving

\[
G_\mu(x \mid y) \cdot \beta G_1(x \mid y) = \beta G_1(y_\mu \mid y) \cdot G_\mu(x \mid y) + (1 + \beta G_1(y_\mu \mid y)) \sum_{\nu \rightarrow \mu} \beta^{[\nu/\mu]} G_\nu(x \mid y).
\]

Now collect the terms with \(G_\mu(x \mid y) \) on the LHS. Dividing by \(1 + \beta G_1(y_\mu \mid y) \neq 0 \) and \(\beta \) gives the desired expression. \(\square \)

Remark 3.7. When we set \(\beta = 0 \) in the Pieri rule above, it immediately reduces to the Pieri rule of factorial Schur functions (see e.g. [MS, §3]).

Note that

\[
1 + \beta G_1(x \mid y) = \prod_{j=1}^d \left(1 + \beta(x_j \oplus y_j) \right) = \prod_{i=1}^d (1 + \beta x_i) \prod_{i=1}^d (1 + \beta y_i).
\]

Evaluating both sides at \(x = y_\lambda \), we get

\[
1 + \beta G_1(y_\lambda \mid y) = \prod_{i=1}^d \frac{1 + \beta y_i}{1 + \beta y_{\lambda_i+d-i+1}}.
\]

4. Hook formula for straight shapes

The goal of this section is to prove the multivariate Theorem 4.2 and derive its specializations Theorem 1.1 and Corollary 1.2.

4.1. Multivariate formulas. First we evaluate \(x = y_\lambda \) in (3.6) and simplify to obtain the following expression:

Proposition 4.1. We have:

\[
G_\mu(y_\lambda \mid y) \left(wt(\lambda/\mu) - 1 \right) = \sum_{\nu \rightarrow \mu} \beta^{[\nu/\mu]} G_\nu(y_\lambda \mid y),
\]

where

\[
wt(\lambda/\mu) := \prod_{i=1}^d \frac{1 + \beta y_{\mu_i+d-i+1}}{1 + \beta y_{\lambda_i+d-i+1}}.
\]

Proof. We evaluate (3.6) at \(x = y_\lambda \) and multiply by \(\beta \). Note that

\[
\frac{\beta G_1(y_\lambda \mid y) - \beta G_1(y_\mu \mid y)}{1 + \beta G_1(y_\mu \mid y)} = \frac{1 + \beta G_1(y_\lambda \mid y)}{1 + \beta G_1(y_\mu \mid y)} - 1.
\]

By (3.7), this equals \(wt(\lambda/\mu) - 1 \), as desired. \(\square \)
Theorem 4.2 (Multivariate K-HLF). Fix \(d \geq 1\). For every \(\lambda \vdash n\) with \(\ell(\lambda) \leq d\) we have:

\[
\sum_{T \in \text{SIT}(\lambda)} \prod_{k=1}^{m(T)} \left(\sum_{i=1}^{d} \frac{1 + \beta y_{\nu(T_e \cdot d-i+1)}}{1 + \beta y_{\lambda_i + d-i+1}} \right) - 1 \right)^{-1} \\
= \frac{1}{\beta^n} \prod_{i=1}^{d} (1 + \beta y_{\lambda_i + d-i+1})^{\lambda_i} \prod_{(i,j) \in \lambda} \frac{1}{y_{d+j-\lambda_j} - y_{\lambda_i + d-i+1}}.
\] (4.2)

Proof. We apply Proposition 4.1 repeatedly, by taking \(\mu \leftarrow \nu(T_{\leq k-1})\) and \(\nu \leftarrow \nu(T_{\leq k})\), and noting that \(\nu \mapsto \mu\) by equation (3.4). Since this is a straight shape, we are starting with the empty partition \(\emptyset = \nu(T_{\leq 0})\), until we eventually reach \(\nu(T_{\leq k}) = \lambda\). Here we use that the vanishing property Proposition 3.4 ensures that all shapes are contained in \(\lambda\). We obtain:

\[
\sum_{T \in \text{SIT}(\lambda)} \prod_{k=0}^{m(T)-1} \frac{\beta^d(T_{\leq k+1}) - a(T_{\leq k})}{\text{wt}(\lambda/\nu(k)) - 1} = \frac{G_\lambda(y_\lambda | y)}{G_\emptyset(y_\lambda | y)}.
\]

Since \(G_\emptyset = 1\) and

\[
G_\lambda(y_\lambda | y) = \prod_{(i,j) \in \lambda} \frac{y_{d+j-\lambda_j} - y_{\lambda_i + d-i+1}}{1 + \beta y_{\lambda_i + d-i+1}}
\]

by Proposition 3.4, the desired statement follows.

\[\square\]

Proposition 4.3. Fix \(d \geq 1\). For every \(\lambda \vdash n\) with \(\ell(\lambda) \leq d\), we have:

\[
(-1)^n G_\lambda(y_\lambda | y)|_{y_i = i} = \prod_{i=1}^{d} \frac{1}{(1 + \beta (\lambda_i + d-i+1))^{\lambda_i}} \prod_{(i,j) \in \lambda} h(i,j).
\]

Proof. This follows directly from Proposition 3.4, since for \(y_i = i\), \(i \geq i\), we have:

\[
(y_{d+j-\lambda_j} \otimes y_{\lambda_i + d-i+1}) = \frac{j - \lambda_j - \lambda_i + i - 1}{1 + \beta (\lambda_i + d-i+1)}
\]

and \(h(i,j) = \lambda_j - i + \lambda_i - j + 1\).

\[\square\]

Proof of Theorem 1.1. This follows from Theorem 4.2 by substituting \(y_i \leftarrow i\), for all \(i \geq 1\). Indeed, notice that

\[
y_{d+j-\lambda_j} - y_{\lambda_i + d-i+1} = -(\lambda_i - j + \lambda_j - i + 1) = -h(i,j),
\]

which implies the result.

\[\square\]

Example 4.4. For \(\lambda = (2,2) \vdash 4\), the hook lengths are 3, 2, 2, 1 as in the tableau \(H\) below. We have:

\[
G_{22}(y_{22} | y)|_{y_1 = y_2 = 1} = \frac{3 \cdot 2 \cdot 1}{(1 + 3\cdot 2)(1 + 4\cdot 2)^4}.
\]

There are three standard increasing tableaux: SIT(\(\lambda\)) = \(\{A, B, C\}\), as shown below:

\[
H = \begin{array}{cc}
3 & 2 \\
2 & 1
\end{array}, \quad
A = \begin{array}{cc}
1 & 2 \\
3 & 4
\end{array}, \quad
B = \begin{array}{cc}
1 & 3 \\
2 & 4
\end{array}, \quad
C = \begin{array}{cc}
1 & 2 \\
2 & 3
\end{array}
\]

The terms on the RHS of (4.2) are

\[
u(A) = u(B) = \frac{(1 + 3\cdot 2)(1 + 4\cdot 2)^2}{6\cdot 2^4(4 + 10\cdot 2)}, \quad
u(C) = -\frac{(1 + 3\cdot 2)^2(1 + 4\cdot 2)^2}{3\cdot 2^3(4 + 10\cdot 2)},
\]
and indeed we have
\[\beta^4 (u(A) + u(B) + u(C)) = \frac{(1 + 3\beta)^2 (1 + 4\beta)^4}{12}. \]

4.2. An infinite version. Next we give an equivalent expression for Theorem 1.1 in terms of increasing tableaux instead of standard increasing tableaux.

Theorem 4.5 (Infinite Multivariate K-HLF). Fix \(d \geq 1 \). For every \(\lambda \vdash n \) with \(\ell(\lambda) \leq d \), we have:
\[
\sum_{T \in IT(\lambda)} \prod_{k=1}^{m(T)} \prod_{i=1}^{d} \frac{1 + \beta y_{\lambda_i + d - i + 1}}{1 + \beta y_{\nu_i(T_{<k})} + d - i + 1} = \frac{1}{(-\beta)^n} \prod_{i=1}^{d} (1 + \beta (\lambda_i + d - i + 1))^{\lambda_i} \prod_{(i,j) \in \lambda} \frac{1}{h(i,j)}. \tag{4.3}
\]

In contrast with (4.2), the sum on the LHS of (4.3) is infinite. This is somewhat further away from the original (HLF), but closer in spirit to \((q\text{-HLF})\).

Proof. Rewrite Proposition 4.1 as
\[G_\mu(y_\lambda | y) = \sum_{\nu = \mu \text{ or } \nu = \mu} \beta^{\nu/\mu} \frac{G_\nu(y_\lambda | y)}{wt(\lambda/\mu)}. \]
Now, as in the proof of Theorem 4.2, iterate this relation until \(\nu(T_{\leq m}) = \lambda \), where \(m = m(T) \). This implies the result. \(\square \)

By analogy with the previous argument for SITs, we obtain the following infinite version of (K-HLF):

Corollary 4.6 (Infinite K-HLF). Fix \(d \geq 1 \). For every \(\lambda \vdash n \) with \(\ell(\lambda) \leq d \), we have:
\[
\sum_{T \in IT(\lambda)} \prod_{k=1}^{m(T)} \prod_{i=1}^{d} \frac{1 + \beta q^\nu(T_{<k}) + d - i + 1}{1 + \beta q^\lambda + d - i + 1} = \frac{q^{m(\lambda)}}{\beta^n} \prod_{i=1}^{d} (1 + \beta q^{\lambda_i + d - i + 1})^{\lambda_i} \prod_{(i,j) \in \lambda} \frac{1}{1 - q^h(i,j)}. \tag{4.4}
\]

The proof follows verbatim the proof above and will be omitted.

4.3. \(q\)-analogue. Let us now obtain the \(q\)-analogue of (K-HLF).

Theorem 4.7 (\(q\text{-K-HLF})\). Fix \(d \geq 1 \). For every \(\lambda \vdash n \) with \(\ell(\lambda) \leq d \), we have:
\[
\sum_{T \in SIT(\lambda)} \prod_{k=1}^{m(T)} \left(\prod_{i=1}^{d} \frac{1 + \beta q^\nu(T_{<k}) + d - i + 1}{1 + \beta q^{\lambda_i + d - i + 1}} - 1 \right)^{-1} = \frac{q^{m(\lambda)}}{\beta^n} \prod_{i=1}^{d} (1 + \beta q^{\lambda_i + d - i + 1})^{\lambda_i} \prod_{(i,j) \in \lambda} \frac{1}{1 - q^h(i,j)}. \tag{4.5}
\]

Proof. Substitute \(y_i \leftarrow q^i \) for all \(i \geq 1 \), in Theorems 1.1 and 4.5. Observe that
\[y_{d+i-\lambda'_j} - y_{\lambda_i + d - i + 1} = q^{d+j-\lambda'_j} (1 - q^{h(i,j)}) , \]

since \(h(i,j) = (\lambda'_j - j) + (\lambda_i - i) + 1 \). Following verbatim the argument above, this implies the result. \(\square \)
Proof of Corollary 1.2. Letting $\beta \to \infty$ in (4.5), for each term on the LHS we have:

$$\frac{1 + \beta q^{\nu(T<k)i+d-i+1}}{1 + \beta q^{\Lambda_1+d-i+1}} \to q^{\nu(T<k) - \lambda_i} = q^{\nu(T_{\geq k})}.$$

A product of inverses of such terms over all $1 \leq i \leq d$, gives $q^{\nu(T_{\geq k})}$. Factoring out the leading β^n terms on both sides and simplifying the formula, we obtain (1.1). □

4.4. Evaluations of coefficients. We can expand the LHS in (1.1) as a power series in β and compare the coefficients on both sides. First, as mentioned in the introduction, we recover the original hook-length formula (HLF) by evaluating the constant terms.

Proposition 4.8 ($\beta = 0$ in K-HLF). The term at β^{-n} in equation (K-HLF) gives (HLF).

Proof. Let $\lambda \vdash n$. Extract the constant term in (K-HLF), after multiplying both sides by β^n. In the RHS, we obtain the product of hooks $\prod_{u \in \lambda} 1/h(u)$. In the LHS, since

$$\frac{1 + \beta p}{1 + \beta t} = 1 + \sum_{i=1}^{\infty} (p-t) (-t)^{i-1} \beta^i,$$

then the constant term contains only the summands with $m(T) = n$, each with weight $1/n!$. By definition, these summands correspond to $T \in SYT(\lambda)$. Thus (K-HLF) at $\beta = 0$ gives the HLF in the form

$$\sum_{T \in SYT(\lambda)} \frac{1}{n!} = \prod_{u \in \lambda} \frac{1}{h(u)},$$

as desired. □

We conclude with a curious corollary relating standard Young tableaux and barely standard Young tableaux (see §2.5). Here we are using $p_2(x_1, \ldots, x_d) = x_1^2 + \ldots + x_d^2$, a symmetric power sum. Other notation are the staircase shape $\delta_d = (d-1, \ldots, 1,0)$, and the harmonic number $h_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$.

Corollary 4.9 (coefficient of β^{1-n} in K-HLF). Fix $d \geq 1$. For every $\lambda \vdash n$ with $\ell(\lambda) \leq d$, we have:

$$\sum_{\nu \subseteq \lambda} f^\nu f^{\lambda/\nu} \frac{p_2(\nu + \delta_d)}{n - |\nu|} - \sum_{k=1}^{n} (n + k - 2) |\text{BSYT}_k(\lambda)|$$

(4.6)

$$= f^\lambda \left((h_n - 1) p_2(\lambda + \delta_d) + \frac{n(n - d(d + 1))}{2} \right).$$

The proof is a lengthy but straightforward calculation of evaluating the coefficient of β^n on both sides of (K-HLF) normalized by β^n, and will be omitted. See §7.4 for the background on BSYTs.

5. Generalized excited diagrams

5.1. Definitions. Given a set $S \subset \lambda$ we say that $(i,j) \in S$ is active if $(i+1,j), (i,j+1)$, and $(i+1,j+1)$ are in $\lambda \setminus S$. For an active $u = (i,j) \in S$, define $a_u(S)$ to be the set obtained by replacing (i,j) by $(i+1,j+1)$ in S. Similarly, define $b_u(S)$ to be the set obtained by adding $(i+1,j+1)$ to S. We call $a_u(S)$ a type I excited move and $b_u(S)$ a type II excited move.

Let $E(\lambda/\mu)$ be the set of diagrams obtained from μ after a sequence of type I excited moves on active cells. These are called excited diagrams. These diagrams are used in both Naruse hook-length formula (NHLF) and its q-analogue (q-NHLF).

Let $D(\lambda/\mu)$ be the set of diagrams obtained from μ after a sequence of both types of excited moves on active cells. These are called generalized excited diagrams. For example, the skew
shape $\lambda/\mu = 43/2$ has five generalized excited diagrams, three of which are the ordinary excited diagrams. These are illustrated in Figure 3 below.

5.2. Properties. For an excited diagram $D \in E(\lambda/\mu)$ we associate a subset $\pi(D) \subseteq \lambda \setminus D$ called excited peaks, constructed inductively, see [MPP1, §6.3]. For $\mu \in E(\lambda/\mu)$, let $\pi(\mu) = \emptyset$. Let $D \in E(\lambda/\mu)$ be an excited diagram with active cell $u = (i,j)$, and let $D' = a_u(D)$ be result of the type I excited move $D \rightarrow D'$. Then the excited peaks of D' are defined as

$$\pi(D') := \pi(D) - (i,j+1) - (i+1,j) + (i,j),$$

see Figure 1. It is easy to see that the set $\pi(D)$ of excited peaks is well defined and independent on the order of the moves. Naruse–Okada gave in [NO, Prop. 3.7] an explicit non-recursive description of $\pi(D)$ as well as the following characterization of generalized excited diagrams in terms of excited diagrams and excited peaks.

Proposition 5.1 ([NO, Prop. 3.13]). We have:

$$D(\lambda/\mu) = \bigcup_{D \in E(\lambda/\mu)} \{D \cup S : S \subseteq \pi(D)\},$$

so in particular

$$|D(\lambda/\mu)| = \sum_{D \in E(\lambda/\mu)} 2^{\pi(D)}.$$ \hspace{1cm} (5.1)

Remark 5.2. There is a certain duality between the set $D(\lambda/\mu)$ of generalized excited diagrams and the set $P(\lambda/\mu)$ of pleasant diagrams defined in [MPP1] to give an RPP(λ/μ) version of (q-NHLF). In particular, the following result is a direct analogue of Proposition 5.1.

Proposition 5.3 ([MPP1, §6.2]). We have:

$$P(\lambda/\mu) = \bigcup_{D \in E(\lambda/\mu)} \{\pi(D) \cup S : S \subseteq \lambda \setminus D\},$$

so in particular

$$|P(\lambda/\mu)| = \sum_{D \in E(\lambda/\mu)} 2^{\lambda/\mu - \pi(D)}.$$ \hspace{1cm} (5.2)

Example 5.4. We have $|E(332/21)| = 5$, see Figure 1, giving $|D(332/21)| = 11$ by (5.1). Similarly, equation (5.2) gives $|P(332/21)| = 88$ pleasant diagrams in this case.

![Figure 1](excited_diagrams.png)

Figure 1. Excited diagrams of shape $\lambda/\mu = 332/21$, excited moves of type I, and the corresponding excited peaks denoted by shaded triangles.
5.3. **Lattice paths interpretation.** Following the approach in [Kre, MPP2], these generalized excited diagrams are in bijection with certain collections of lattice paths by the following construction.

Let us cut the skew diagram λ/μ into *border strips* greedily starting from μ. Consider these strips between the diagonal starting at $(0, \ell(\mu))$ and the diagonal starting at $(\mu_1, 0)$. Within this region, let these border strips have starting squares with midpoints A_i and ending at square with midpoint B_i, see Figure 2 (left).

Figure 2. Paths corresponding to two generalized excited diagrams, the flips of the paths in the type I and II excited moves, and the forbidden path configuration.

Let $\eta(A, B)$ be the number of paths $A \to B$ inside λ, with endpoints in the center of the squares of the Young diagram and Delannoy steps. We call these Delannoy paths. The following result interprets the generalized excited diagrams $\mathcal{D}(\lambda/\mu)$ as collections of nonintersecting Delannoy paths inside λ/μ.

Proposition 5.5. The set $\mathcal{D}(\lambda/\mu)$ is in bijection with Delannoy path collections $\gamma_i : A_i \to B_i$, such that no two such lattice paths γ_i and γ_j intersect or have configuration as in Figure 2 (right). In particular, we have:

$$|\mathcal{D}(\lambda/\mu)| \leq \det [\eta(A_i, B_j)]_{i,j}.$$

Proof. For the first part, take Delannoy paths in the complement as shown in Figure 3. Observe that the initial configuration $\mu \in \mathcal{D}$, the lowest such lattice paths traverse μ inside λ/μ. A type I excited move transforms a path by flipping a corner from $(1, 0), (0, 1)$ steps to $(0, 1), (1, 0)$ steps. A type II excited move transforms a path by changing a $(1, 0), (0, 1)$ corner to a $(1, 1)$ step, while the cells SE and NW of that step are empty. Further, a type I excited move applied to cell u with a diagonal step at its SE corner results in flipping this diagonal to steps $(0, 1), (1, 0)$ and transferring the diagonal step to nearest SE path. A type II excited move at a cell u with a diagonal step already present results in modifying the nearest SE as above. See Figure 2 (middle).

The final configuration can be drawn by a greedy traverse of the non-excited cells starting from A_1 to B_1, see Figure 3. Thus the paths pass exactly through the cells outside S, the corresponding moves are reversible on paths as long as there is no intersection and no forbidden configuration. For the second part, note that all non-intersecting Delannoy paths are enumerated by the determinant using the Lindström–Gessel–Viennot (LGV) lemma (see e.g. [GJ, §5.4]), giving the desired determinant inequality. \square

Example 5.6. For the skew shape $\lambda/\mu = 5442/21$ as in Figure 2, we have:

$$23 = |\mathcal{D}(5442/21)| \leq \det \begin{bmatrix} 13 & 7 \\ 1 & 3 \end{bmatrix} = 32.$$
Figure 3. The generalized excited diagrams of shape $\lambda/\mu = 43/2$, their peaks and the corresponding flagged set tableaux (see §7.5). The complements of diagrams in $D(\lambda/\mu)$ can be viewed as Delannoy paths inside λ (shown in red).

5.4. Labeled lattice paths. Kreinain [Kre] (see also [MPP2, Prop. 3.6]), showed that excited diagrams are in bijection with the complements of collections of non-intersecting lattice paths consisting of the $(0,1)$ and $(1,0)$ steps, contained in λ, and with starting and ending points A_i, B_i as above. Note that in [Kre, MPP2], the starting and ending points where different, but the geometry actually forces the corner portions of the paths to be always fixed and hence the start and end points can vary.

Following the definition in §2.3, consider the high peaks of collection of non-intersecting lattice paths relative to the original path obtained corresponding to the skew diagram λ/μ. As an example, in Figure 1, there is one lattice path which corresponds to the white cells and the inner corners which are high-peaks are labeled.

Remark 5.7. Note that high peaks are a subset of the cells on which a type I excited move was applied at some point and correspond exactly to the excited peaks.

Denote by $\Pi(\lambda/\mu)$ the set of such collections of paths, where each high peak has been labeled 0 or 1. Similarly, denote by $\Delta(\lambda/\mu)$ the set of collections of Delannoy paths in the complement of generalized excited diagrams in $D(\lambda/\mu)$.

We can now explain Proposition 5.1 via lattice paths by the following bijection $\phi : \Pi(\lambda/\mu) \rightarrow \Delta(\lambda/\mu)$ between labeled lattice and Delannoy paths. Formally, for a collection $\Upsilon \in \Pi(\lambda/\mu)$, replace each high peak labeled 1 with a $(1,1)$ step; all other peaks and paths stay the same.

Proposition 5.8. For the a skew shape λ/μ the map $\phi : \Pi(\lambda/\mu) \rightarrow \Delta(\lambda/\mu)$ defined above is a bijection.

Proof. It is easy to see that for every $\Upsilon \in \Pi(\lambda/\mu)$, the paths in $\phi(\Upsilon)$ are exactly the Delannoy paths for $\Delta(\lambda/\mu)$. For the inverse map ϕ^{-1}, replace each $(1,1)$ step with $(0,1), (1,0)$ steps which would necessarily form a high peak and label it 1. This implies the result. □

5.5. Thick zigzag shape. Consider now the thick zigzag shape δ_{n+2k}/δ_n. Recall that

$$\left| \mathcal{E}(\delta_{n+2k}/\delta_n) \right| = \det[C_{n+i+j-2}]_{i,j=1}^k \quad \text{and} \quad \left| \mathcal{P}(\delta_{n+2}/\delta_n) \right| = 2^{k} \det[\hat{s}_{n+i+j-2}]_{i,j=1}^k,$$

where $\hat{s}_n = 2^{n+2}s_n$. The first equality is proved in [MPP2, Cor. 8.1], while the second was originally conjectured in [MPP1, Conj. 9.3] and proved in [HKYY, Thm. 1.1]. We give a similar determinant formula for the number of generalized excited diagrams of thick zigzag shape.

Theorem 5.9. We have: $|D(\delta_{n+2}/\delta_n)| = s_n$ and $|D(\delta_{n+4}/\delta_n)| = \frac{1}{2} (s_n s_{n+2} - s_n^2)$. More generally, we have:

$$\left| D(\delta_{n+2k}/\delta_n) \right| = 2^{-\binom{k}{2}} \det[s_{n-2i-j}]_{i,j=1}^k \quad \text{for all} \ k \geq 1.$$ (5.3)
Proof. From [MPP2, §3.3, §8.1], the complements of excited diagrams \(D \in \mathcal{E}(\delta_{n+2k}/\delta_n) \) correspond to \(k \)-tuples \(\Upsilon := (\gamma_1, \ldots, \gamma_k) \) of non-intersecting Dyck paths \(\gamma_i \in \text{Dyck}(n + 2i - 2) \), for all \(1 \leq i \leq k \), for which we denote by \(\text{NDyck}(n,k) \). Define \(\mathcal{H}(\Upsilon) := \bigcup_{i=1}^{k} \mathcal{H}(\gamma_i) \), and \(\mathfrak{h}(\Upsilon) := |\mathcal{H}(\Upsilon)| \).

By Proposition 5.8, the diagrams \(D \in \mathcal{D}(\delta_{n+2k}/\delta_n) \) correspond to tuples \((\Upsilon, S) \), where \(\Upsilon \in \text{NDyck}(n,k) \) and \(S \subseteq \mathcal{H}(\Upsilon) \) are the high peaks labeled with 1. We conclude:

\[
|\mathcal{D}(\delta_{n+2k}/\delta_n)| = \sum_{\Upsilon \in \text{NDyck}(n,k)} 2^{\mathfrak{h}(\Upsilon)}.
\]

Let

\[
L_n(x) := \sum_{\gamma \in \text{Dyck}(n)} x^{\mathfrak{h}(\gamma)} \quad \text{and} \quad L_{n,k}(x) := \sum_{\Upsilon \in \text{NDyck}(n,k)} x^{\mathfrak{h}(\Upsilon)}.
\]

Note that \(s_n = L_n(2) \), see e.g. [Sul]. By (5.4), we have \(L_{n,k}(2) = |\mathcal{D}(\delta_{n+2k}/\delta_n)| \).

Finally, by [HKYY, Thm. 5.9], the sum \(L_{n,k}(x) \) satisfies the following determinant formula:

\[
(x^{(\underline{k})}) \cdot L_{n,k}(x) = \det[L_{n+i+j-2}(x)]_{i,j=1}^{k}.
\]

Setting \(x = 2 \), we obtain the result. \(\square \)

5.6. Double Grothendieck polynomials. Excited diagrams can be used to give a combinatorial model of these polynomials in the special case we need. For a definition and combinatorial models of double Grothendieck polynomials for all permutations, see [FK1, FK2, KM].

In [KMY], Knutson–Miller–Yong gave the following formula for Grothendieck polynomials of vexillary permutations originally stated in terms of flagged set tableaux, and restated here in terms of generalized excited diagrams. See also §7.7 for discussion of another proof of this result.

Theorem 5.10 ([KMY, Thm. 5.8]). Let \(w \) be a vexillary permutation of shape \(\mu \) and supershape \(\lambda \). Then the double Grothendieck polynomial parameterized by \(w \) can be computed as follows:

\[
\mathfrak{G}_w(x,y) = \sum_{D \in \mathcal{D}(\lambda/\mu)} \beta^{|\mathcal{D}|-|\mu|} \prod_{(i,j) \in D} (x_i \oplus y_j)
\]

Corollary 5.11. Let \(w \) be a vexillary permutation of shape \(\mu \) and supershape \(\lambda \). Then we have:

\[
\mathfrak{G}_w(x,y) = \sum_{D \in \mathcal{E}(\lambda/\mu)} \beta^{|\mathcal{D}|-|\mu|} \prod_{(i,j) \in \pi(D)} (1 + \beta(x_i \oplus y_j)) \prod_{(i,j) \in D} (x_i \oplus y_j).
\]

Proof. This follows immediately from Theorem 5.10 and Proposition 5.1. \(\square \)

Example 5.12. For \(w = 1432 \in S_4 \), we have \(\mu = 21 \), \(\lambda = 332 \), and \(|\mathcal{D}(332/21)| = 11 \), see Example 5.4 and [FK1, Ex. 1]. By Corollary 5.11 for \(y_i = 0 \) we have:

\[
\mathfrak{G}_{1432}(x,0) = x_1^2 x_2 + x_2^2 x_1 (1 + \beta x_1) + x_1^2 x_3 (1 + \beta x_2) + x_1 x_2 x_3 (1 + \beta x_1)(1 + \beta x_2) + x_2^2 x_3 (1 + \beta x_1)
\]

\[
= x_1^2 x_2 + x_2^2 x_1 + x_1^2 x_3 + x_1 x_2 x_3 + x_2^2 x_3 + \beta x_1^2 x_2^2 + 2 \beta x_1^2 x_2 x_3 + 2 \beta x_2^2 x_1 x_3 + \beta^2 x_1^2 x_2^2 x_3.
\]
5.7. Principal specialization. Let \(\Gamma_w(\beta) := \Phi_w(1, \mathbf{0}) \) be the principal specialization of the Grothendieck polynomial. Substituting \(x_i \leftarrow 1 \) and \(y_i \leftarrow 0 \) in Corollary 5.11, we immediately obtain:

Corollary 5.13. Let \(w \) be a vexillary permutation of shape \(\mu \) and supershape \(\lambda \). Then:
\[
\Gamma_w(\beta) = \sum_{D \in \mathcal{D}(\lambda/\mu)} \beta^{|D|-|\mu|} = \sum_{D \in \mathcal{E}(\lambda/\mu)} \beta^{|D|-|\mu|} (1 + \beta)^{|(D)|},
\]

Using the lattice paths interpretation from \(\S 5.3 \), let \(\eta_\beta(A, B) \) be the weighted sum of Delannoy paths \(A \to B \) with \(\beta \) keeping track of the number of \((1,1)\) steps. We have the following inequality for the principal specialization of the Grothendieck polynomials considered above.

Corollary 5.14. Let \(w \) be a vexillary permutation of shape \(\mu \) and supershape \(\lambda \), and let \(\Gamma_w(\beta) \) be the principal specialization of the Grothendieck polynomial. Then:
\[
\Gamma_w(\beta) \leq \det \left[\eta_\beta(A_i, B_j) \right]_{i,j},
\]
where \(\leq \) means coefficient-wise inequality as polynomials in \(\beta \).

Proof. The result follows immediately from Corollary 5.13, the proof of Proposition 5.5, and the proof of the LGV lemma which preserves the total number of \((1,1)\) steps under the involution. \(\square \)

Finally, we give a determinant formula for the principal specialization \(\Gamma_{w(n,k)}(1) \), where
\[
w(n,k) := (1, 2, \ldots, k, n + k, n + k - 1, \ldots, k + 1).
\]

See [FK3] and [MPP3, Cor. 5.8] for the analogous results on evaluations of Schubert polynomials of \(w(n,k) \).

Corollary 5.15. For all \(n, k \geq 1 \), in notation we have:
\[
\Gamma_{w(n,k)}(1) = 2^{-\binom{k}{2}} \det [s_{n-2+i+j}]_{i,j=1}^k \text{ for all } k \geq 1.
\]

Proof. The permutation \(w(n,k) \) is dominant (132-avoiding), and hence vexillary. Denote by \(\lambda/\delta_n \) the skew shape associated to \(w(n,k) \), see [MPP3, Fig. 6(a)]. Then Corollary 5.13 at \(\beta = 1 \) gives:
\[
\Gamma_{w(n,k)}(1) = |\mathcal{D}(\lambda/\delta_n)|.
\]

From the definition of generalized excited diagrams, or from their correspondence with flagged set-valued tableaux (see \(\S 7.5 \)), it is easy to see that \(|\mathcal{D}(\lambda/\delta_n)| = |\mathcal{D}(\delta_{n+2k}/\delta_n)| \). The result then follows by Theorem 5.9. \(\square \)

6. Hook formula for skew shapes

6.1. The setup.** Recall the vanishing property (Proposition 3.4) of the factorial Grothendieck polynomials:
\[
G^\mu_\nu(y_\lambda | y) = \begin{cases} 0 & \text{if } \mu \subsetneq \lambda, \\
\prod_{(i,j) \in \lambda} (y_{ld+j-l'} + y_{l'+d-i+1}) & \text{if } \mu = \lambda.
\end{cases}
\]

Following the approach of Ikeda–Naruse [IN1] and Kreiman [Kre] for the factorial Schur functions \(s^\mu_\nu(y_\lambda | y) \), we present a combinatorial model for the Andersen–Jentzen–Soergel [AJS] and Billey [Bil] expressions for evaluations of the factorial Grothendieck polynomials \(G^\mu_\nu(y_\lambda | y) \) when \(\mu \subseteq \lambda \).

Fix two Grassmannian permutations \(w \leq v \) in \(S_N \) with associated partitions \(\mu \subseteq \lambda \) with \(\ell(\lambda) \leq d \) and \(\lambda_1 \leq N-d \), see e.g. [Man, §2.1]. Let \(c^\lambda_{\mu\tau} \) and \(K^\lambda_{\mu\tau} \) be the structure constants for the
where the second equality follows by (3.7). Therefore, we have:

\[e^\lambda_{\mu} = \sum_{D \in E(\lambda/\mu)} \prod_{(i,j) \in D} (y_{d+j} - y_{\lambda_i+d+1-i}). \]

Theorem 6.1 (Ikeda–Naruse [IN1], Kreiman [Kre]). Fix \(d \geq 1 \). For all \(\mu \subset \lambda \) with \(\ell(\lambda) \leq d \), we have:

\[G_\mu(\mathbf{y} \mid \mathbf{y}) = \sum_{D \in D(\lambda/\mu)} \beta^{D \mid -|\mu|} \prod_{(i,j) \in D} (y_{d+j} - y_{\lambda_i+d+1-i}). \]

Proof. We show that both sides of (6.1) satisfy the same identity. First, the factorial Grothendieck polynomials satisfy the Chevalley formula (3.6). Thus, for the LHS of (6.1) we have:

\[G_\mu(\mathbf{y}_\lambda \mid \mathbf{y}) \left(\frac{G_1(\mathbf{y}_\lambda \mid \mathbf{y}) - G_1(\mathbf{y}_\mu \mid \mathbf{y})}{1 + \beta G_1(\mathbf{y}_\mu \mid \mathbf{y})} \right) = \sum_{\nu \supseteq \mu} \beta^{\nu \setminus \mu} (1 - \ell^\nu). \]

By Theorem 6.2, the RHS of (6.1) at \(\beta = -1 \) equals \(K^\lambda_{\mu \lambda} \). On the other hand, Lenart–Postnikov [LP, Cor. 8.2] (see also the proof of Prop. 3.1 in [PY]), give the following **equivariant K-theory Chevalley formula**:

\[K^\lambda_{\mu \lambda} \left(\frac{K^1_{1 \lambda} - \beta w't'(\mu)}{w't'(\mu)} \right) = \sum_{\nu \supseteq \mu} (-1)^{|\nu \setminus \mu| - 1} K^\lambda_{\nu \lambda}, \]

where

\[w't'(\mu) := \prod_{(i,j) \in \mu} \frac{1 - y + 1}{1 - y + 1}. \]

Observe that we have cancellations in the formula for \(w't'(\mu) \), and for each row \(i \) of \(\mu \) only the term \((1 - y_i)/(1 - y_{\mu_i+d-i+1})\) survives in the product. Thus:

\[w't'(\mu) = \prod_{i=1}^d \frac{1 - y_i}{1 - y_{\mu_i+d-i+1}} = 1 - G_1(\mathbf{y}_\mu \mid \mathbf{y}) \mid_{\beta = -1}, \]

where the second equality follows by (3.7). Therefore, we have:

\[K^\lambda_{\mu \lambda} \left(\frac{K^1_{1 \lambda} - G_1(\mathbf{y}_\mu \mid \mathbf{y}) \mid_{\beta = -1}}{1 - G_1(\mathbf{y}_\mu \mid \mathbf{y}) \mid_{\beta = -1}} \right) = \sum_{\nu \supseteq \mu} (-1)^{|\nu \setminus \mu| - 1} K^\lambda_{\nu \lambda}. \]

This shows that

\[G_\mu(\mathbf{y}_\lambda \mid \mathbf{y}) \mid_{\beta = -1} = K^\lambda_{\mu \lambda}. \]
We conclude:

\[
G_\mu(y_\lambda | y) |_{\beta = -1} = \sum_{D \in \mathcal{D}(\lambda/\mu)} (-1)^{|D|-|\mu|} \prod_{(i,j) \in D} \frac{y_{d+j-\lambda_j'} - y_{\lambda_i+d+1-i}}{1 - y_{\lambda_i+d+1-i}}.
\]

It remains to show that by substituting $y_i \leftarrow (-y_i)\beta$ in (6.2), we get the desired result. Denote the LHS of (6.2) by $F(y_1, \ldots, y_n)$. We easily verify that

\[
(-\beta)^{|\mu|} F(-y_1\beta, \ldots, -y_n\beta) = \sum_{D \in \mathcal{D}(\lambda/\mu)} \beta^{|D|-|\mu|} \prod_{(i,j) \in D} (y_{d+j-\lambda_j'} \ominus y_{\lambda_i+d+1-i}).
\]

Finally, for the RHS by (3.1) we have that

\[
G_\mu(y_\lambda | y) |_{y_i \leftarrow (-y_i)\beta} = (-\beta)^{|\mu|} G_\mu(y_\lambda | y),
\]

as desired. \hfill \Box

Theorem 6.5 (Multivariate K-NHLF). Fix $d \geq 1$. For all $\mu \subset \lambda$ with $\ell(\lambda) \leq d$, we have:

\[
\sum_{T \in \text{SIT}(\lambda/\mu)} \prod_{k=1}^{m(T)} \left(\prod_{i=1}^{d} \frac{1 + \beta y_{\nu_i(T_{c_k})+d-i+1}}{1 + \beta y_{\lambda_i+d-i+1}} \right) - 1)^{-1}
\]

\[
= \sum_{D \in \mathcal{D}(\lambda/\mu)} \beta^{|D|-|\lambda|} \prod_{(i,j) \in \lambda \setminus D} \frac{\beta y_{\lambda_i+d-i+1} + 1}{y_{d+j-\lambda_j'} - y_{\lambda_i+d+1-i}}.
\]

Proof. By Lemma 6.4 and the vanishing property (3.3) of $G_\mu(y_\lambda | y)$, we have:

\[
G_\mu(y_{\lambda_1} | y) = \sum_{D \in \mathcal{D}(\lambda/\mu)} \beta^{|D|-|\mu|} \prod_{(i,j) \in \lambda \setminus D} \frac{1}{y_{d+j-\lambda_j'} \ominus y_{\lambda_i+d+1-i}}.
\]

Alternatively, by iterating (4.1), we obtain:

\[
G_\mu(y_{\lambda_1} | y) = \beta^{|\lambda_1|} \sum_{T \in \text{SIT}(\lambda/\mu)} \prod_{k=1}^{m(T)} \left(\prod_{i=1}^{d} \frac{1 + \beta y_{\nu_i(T_{c_k})+d-i+1}}{1 + \beta y_{\lambda_i+d-i+1}} \right) - 1)^{-1}
\]

Equating (6.5) and (6.6) we get the result. \hfill \Box

Proof of Theorem 1.4. This follows from Theorem 6.5 by substituting $y_i \leftarrow i$ for all $1 \leq i \leq d$, and noticing that $y_{d+j-\lambda_j'} - y_{\lambda_i+d-i+1} = -h(i,j)$. \hfill \Box

6.3. q-analogue. By analogy with the straight shape (§4.3), we obtain a q-analogue using the substitution $y_i \leftarrow q^i$ for all $i \geq 1$.

Theorem 6.6 (q-K-NHLF). Fix $d \geq 1$. For all $\mu \subset \lambda$ with $\ell(\lambda) \leq d$, we have:

\[
\sum_{T \in \text{SIT}(\lambda/\mu)} \prod_{k=1}^{m(T)} \left(\prod_{i=1}^{d} \frac{1 + \beta q^{\nu_i(T_{c_k})+d-i+1}}{1 + \beta q^{\lambda_i+d-i+1}} \right) - 1)^{-1}
\]

\[
= \sum_{D \in \mathcal{D}(\lambda/\mu)} \beta^{|D|-|\lambda|} \prod_{(i,j) \in \lambda \setminus D} \frac{\beta q^{\lambda_i+d-i+1} + 1}{q^{d+j-\lambda_j'} (1 - q^{h(i,j)})}.
\]

We omit the proof as the calculations follow verbatim that in the proof of Theorem 4.7.
Proof of Theorem 1.5. Following the proof of Corollary 1.2, let $\beta \to \infty$ in (6.7). We have:

$$\frac{1 + \beta q^{\nu_i(T_{\lambda k}) + d - i + 1}}{1 + \beta q^{d - i + 1}} \to q^{-|\nu_i(T_{\lambda k})|} = q^{-|\nu_i(T_{\lambda k})|}.$$

Taking the inverse of a product of these terms over all $1 \leq i \leq d$, we get $q^\alpha(T)$. The β terms on the RHS of (6.7) all have exponents zero, which implies the result. □

Finally, as discussed in the introduction (see Remark 1.6), we can now rewrite the RHS of (6.7) in terms of the (ordinary) excited diagrams.

Corollary 6.7. For every $\mu \subset \lambda$, we have:

$$\sum_{T \in \text{SIT}(\lambda/\mu)} q^{|T|} \prod_{k=1}^{m(T)} \frac{1}{1 - q^{|T_{\lambda k}|}}$$

(6.8)

Taking the inverse of a product of these terms over all $1 \leq i \leq d$, we get $q^\alpha(T)$. The β terms on the RHS of (6.7) all have exponents zero, which implies the result. □

6.4. Back to set-valued tableaux. The following Okounkov–Olshanski formula (OOF) given in [OO], is yet another nonnegative formula for $f^{\lambda/\mu}$. Fix $d \geq 1$ for $\mu \subset \lambda$ with $\ell(\lambda) \leq d$ we have:

$$(\text{OOF}) \quad f^{\lambda/\mu} = n! \sum_{T \in \text{SSYT}_d(\mu)} \prod_{(i,j) \in \lambda} (\lambda_0 + T(i,j) + i - j) \prod_{(i,j) \in \lambda} \frac{1}{h(i,j)},$$

where SSYT$_d(\mu)$ denotes the set of SSYTs of shape μ with entries $\leq d$. Note that (OOF) is also proved via evaluations of factorial Schur functions, preceding (HNF) in this approach. The corresponding q-analogues are given in [CS, Thm. 1.2] and [MZ, §1.4], for the summations over SSYT(λ/μ) and RPP(λ/μ), respectively.

Here we follow a simple proof in [MZ, §3.1] via evaluations of factorial Schur functions, to give a (K-OOF) generalization of (OOF) for SIT(λ/μ) analogous to Theorem 1.4.

Theorem 6.8 (K-OOF). Fix $d \geq 1$. For all $\mu \subset \lambda$ with $\ell(\lambda) \leq d$, we have:

$$\sum_{T \in \text{SIT}(\lambda/\mu)} \prod_{k=1}^{m(T)} \left(\prod_{i=1}^{d} \frac{1 + \beta(\nu_i(T_{\lambda k}) + d - i + 1)}{1 + \beta(\lambda_i + d - i + 1)} \right)^{-1} = \prod_{i=1}^{d} \left(1 + \beta(\lambda_i + d - i + 1) \right)^{\lambda_i} \prod_{T \in \text{SSVT}_d(\mu)} (-\beta)^{n(T)-|\lambda|} \prod_{(i,j) \in \mu, r \in T(i,j)} \frac{\lambda_{d+1-r} + i - j}{1 + \beta(\lambda_{d+1-r} + r)} \prod_{(i,j) \in \lambda} \frac{1}{h(i,j)}.$$

Proof. We evaluate $G_\mu(\mathbf{y} \mid \mathbf{y}) / G_\lambda(\mathbf{y} \mid \mathbf{y}) |_{y_i \leftarrow i}$ in two different ways. First, the LHS is obtained by substitution $y_i \leftarrow i$ in (6.6). For the RHS we evaluate the numerator and denominator directly. For the denominator we use Proposition 4.3. For the numerator, since $G_\mu(\mathbf{x}_1, \ldots, \mathbf{x}_d) \mid \mathbf{y}$ is symmetric in $\mathbf{x}_1, \ldots, \mathbf{x}_d$ by Proposition 3.3 (i), we have:

$$G_\mu(\bigoplus(\lambda + d), \ldots, \bigoplus(\lambda_{d-1} + 2), \bigoplus(\lambda_d + 1)) = G_\mu(\bigoplus(\lambda + 1), \bigoplus(\lambda_{d-1} + 2), \ldots, \bigoplus(\lambda_d + 1) \mid 1, 2, 3, \ldots).$$

Next, by Definition 3.1 of factorial Grothendieck polynomials, the RHS of the equation above is equal to

$$\sum_{T \in \text{SSVT}_d(\mu)} (-\beta)^{n(T)-|\mu|} \prod_{(i,j) \in \mu, r \in T(i,j)} \left[\frac{-(\lambda_{d+1-r} + r)}{1 + \beta(\lambda_{d+1-r} + r)} \bigoplus (r + j - i) \right].$$
The result then follows by simplifying power of β and doing the calculation

$$
\frac{-(\lambda_{d+1-r} + r)}{1 + \beta(\lambda_{d+1-r} + r)} \oplus (r + j - i) = \frac{-\lambda_{d+1-r} - i + j}{1 + \beta(\lambda_{d+1-r} + r)}.
$$

We omit the details. \hfill \Box

Remark 6.9. Note that the set $SSYT_d(\mu)$ in (OOF) is finite and plays a role of the set $E(\lambda/\mu)$ of excited diagrams in (NHLF). This connection is clarified in [MZ], with reformulations of (OOF) in terms of *puzzles* and *reverse excited diagrams*. Finally, the set $SSYT_d(\mu)$ plays a role of generalized excited diagrams $D(\lambda/\mu)$. It would be interesting to reformulate the theorem similarly, in terms of puzzles.

7. Final remarks and open problems

7.1. The hook-length formula (HLF) has numerous proofs, starting with the original paper [FRT]. The Littlewood formula (q-HLF) was first given in [Lit, p. 124]. We refer to [CKP, §6.2] for an overview of other proofs and generalizations. The Naruse hook-length formula (NHLF) was originally given by Naruse in his talk slides [Nar]. In our first two papers of this series [MPP1, MPP2] we give about four proofs of this result, which include both the SSYT and RPP generalizations, see (q-NHLF) and (1.6).

7.2. In [MPP3], we give various enumerative and asymptotic applications of the (NHLF). Further applications and comparisons with other tools for estimating $f^{\lambda/\mu} = |SYT(\lambda/\mu)|$ are surveyed in [P2]. It would be interesting to find similar applications of the β-deformations presented in this paper. Let us single out Thm. 3.10 in [MPP3] which established a key symmetry via factorial Schur functions, used to obtain a host of product formulas. Note that two elementary proofs of this result are given in [PP]; we are especially curious to find its generalization motivated by the factorial Grothendieck polynomials.

7.3. The notation used for the factorial Grothendieck polynomials goes back to the formal group law of *connective K-theory*, and in the context of Algebraic Combinatorics is explained in [FK1] as follows.

Let A_n^β be the algebra with generators u_1, \ldots, u_{n-1} satisfying $u_i^2 = \beta u_i$, the exchange and braid relation. Observe that A_n^0 is the *NilCoxeter algebra* and A_n^{-1} is the *degenerate Hecke algebra*. Then the functions $h_i(t) = e^{tu_i}$ satisfy the Yang–Baxter equation:

$$
h_i(t)h_{i+1}(t + s)h_i(s) = h_{i+1}(s)h_i(t + s)h_{i+1}(t).
$$

For $h_i(t) = e^{tu_i} = 1 + xu_i$ we have $x = (e^{\beta t} - 1)/\beta$. We can now write this as $x = [t]_\beta$ and note that $[t]_\beta \oplus [s]_\beta = [t + s]_\beta$.

7.4. Our notion of *barely standard Young tableaux* BSYT comes from a similar notion of *barely set-valued tableaux* recently introduced in [RTY], and probably the closest relative of SYT that we have. Note that (4.6) can be rewritten as computing the expectation of the repeated entry, similar to [RTY] (see also [FGS]), although the resulting formula is more cumbersome.

7.5. Excited diagrams are in bijection with certain *flagged tableaux* $|E(\lambda/\mu)| = |\text{Flag}(\lambda/\mu)|$, where $\text{Flag}(\lambda/\mu) \subset \text{SSYT}(\mu)$, see [MPP1, §3.3]. This connection was used in [MPP2, §3.3] to obtain a determinant formula for $|E(\lambda/\mu)|$. Similarly, the generalized excited diagrams in $D(\lambda/\mu)$ are in bijection with certain *flagged set-valued tableaux* of shape μ, see an example in Figure 3. These bijections were obtained by Kreiman [Kre, §6] and by Knutson–Miller–Yong [KMY, §5] in the context of Schubert calculus.
7.6. In Theorem 5.9, we gave a determinant formula for the number of generalized excited diagrams of the skew shape δ_{n+2k}/δ_n using the connection between $D(\lambda/\mu)$ and $P(\lambda/\mu)$, see Proposition 5.1. A similar determinant formula for $P(\delta_{n+2k}/\delta_n)$ is proved in [HKYY]. In fact, [HKYY, Cor. 6.4] gives determinant formulas for pleasant diagrams of more general classes of skew shapes called good that also include thick reverse hooks $(b+c)a^{a+c}/b^a$. Using [HKYY, Thm. 6.3], which is an analogue of (5.5), one can show determinant formula for generalized excited diagrams of such good skew shapes.

7.7. In [Wei, Cor. 1.5, Thm. 1.1], Weigandt gave two formulas for double Grothendieck polynomials $G_w(x, y)$ in terms of the bumpless pipe dreams of w defined by Lam–Lee–Shimozono [LLS]. When w is vexillary, these formulas reduce to Theorem 5.10 and Corollary 5.11, respectively. Indeed, a bijection between marked bumpless pipe dreams of vexillary w and $D(\lambda(w)/\mu(w))$ via the corresponding flagged set-valued tableaux is given in [Wei, Thm. 1.6]. Similarly, a bijection between vexillary bumpless pipe dreams and ordinary excited diagrams is given in [Wei, §7.3].

We should mention that bumpless pipe dreams of w behave like (generalized) excited diagrams of shape λ/μ, since the former are connected by certain moves called (K-theoretic) droop moves [LLS, Wei]. It would be interesting to further explore this connection.

7.8. There is a large literature on enumeration of increasing tableaux in many special cases based on a trick of adding M_λ implicitly used in (1.3). Notably, for the rectangular shape, tableaux in $\text{SIT}(a^b)$ are in bijection with certain plane partitions of the same shape, see e.g. [DPS, §4] and [HPPW]. This approach fails to give a bijection for general skew shapes λ/μ, except when $\mu = \delta_k$ is a staircase. The latter are characterized by all minimal elements in $M_{\lambda/\mu}$ having the same entries.

7.9. While all our proofs are algebraic, some of our results seem well-positioned to have a direct combinatorial proof. We are especially curious if (K-HLF) has such a proof. Similarly, it would be interesting to use Konvalinka's recursive approach [Kon], to find a combinatorial proof of our Theorem 1.4.

7.10. The complexity of counting standard increasing tableaux is yet to be understood. In [TY2, §1.3], the authors give examples of large primes appearing as values, and suggest that the exact formula might not exist. They ask if there are “efficient (possibly randomized or approximate) counting algorithms” for $g^\lambda = |\text{SIT}(\lambda)|$ and its refinements.

We conjecture that computing g^λ is #P-complete. This would partly explain why our hook formulas involve nontrivial β-weights. For the related notion of set-valued tableaux, see a discussion in [MPY] and #P-completeness conjecture in [H+, §5.7].

7.11. The LHS of (K-HLF) is equal to the LHS of equation (K-OOF) given in Theorem 6.8. It then follows from the proof of Theorem 6.8 that both can be computed efficiently for a given skew shape λ/μ and $\beta \in \mathbb{Q}$. It would be interesting to see if these have a determinant formula generalizing the Aitken–Feit determinant formula for $f^{\lambda/\mu}$ (see e.g. [S1, Cor. 7.16.3] and [P2]).

Note that the Lascoux–Pragacz identity gives yet another determinant formula for $f^{\lambda/\mu}$, which we used in [MPP2] to give a combinatorial proof of (NHLF). Finally, let us mention that $E(\lambda/\mu)$ has a determinant formula (see §7.5i above), while Proposition 5.5 is not an equality but gives only a determinant upper bound for $D(\lambda/\mu)$.

7.12. Following the approach of Stanley [S2], we conjecture that for all $\beta \geq 0$, there is a limit

$$
\lim_{n \to \infty} \frac{\log_2 u(\beta, n)}{n^2}, \quad \text{where} \quad u(\beta, n) := \max_{w \in S_n} \Gamma_w(\beta).
$$
Using the Cauchy identity for Grothendieck polynomials [FK1, Cor. 5.4], we obtain the following bounds:

\[
\frac{1}{4} \log_2(2 + \beta) \leq \liminf_{n \to \infty} \frac{\log_2 u(\beta, n)}{n^2} \leq \limsup_{n \to \infty} \frac{\log_2 u(\beta, n)}{n^2} \leq \frac{1}{2} \log_2(2 + \beta).
\]

In [MPP4], we computed the limit above for \(\beta = 0 \), when the maximum is restricted to layered (231- and 312-avoiding) permutations. It would be interesting to see if our analysis can be extended to the case of general \(\beta > 0 \).

7.13. Dividing both sides of (K-HLF) by \((-1)^n\) and taking \(\beta > 0 \), gives positive weights in the summation on the LHS over the SITs. Can one efficiently sample from this distribution? Perhaps, there is a deformation of the NPS algorithm or the GNW hook walk? A positive answer to either of these would be remarkable.

Acknowledgements. This paper is dedicated to the memory of Sergei Kerov, whose work was inspirational to all of us. While the results in this paper were obtained over five years ago, the writing was greatly delayed due to various life related matters. It took the \(\Delta \) variant to hold off other plans and finally force us to finish this project.

We are thankful to Zach Hamaker, Oliver Pechenik, Pasha Pylyavskyy, Anna Weigandt, Damir Yeliussizov and Alex Yong for interesting conversations and helpful remarks on the paper. AHM was partially supported by the NSF grant DMS-1855536. IP was partially supported by the NSF grants DMS-1704444 and CCF-2007891. GP was partially supported by the NSF grant DMS-1939717 and CCF-2007652.
NEW HOOK FORMULAS FOR STRAIGHT AND SKEW SHAPES

References

[AJS] H. H. Andersen, J. C. Jantzen and W. Soergel, Representations of quantum groups at p-th root of unity and of semisimple groups in characteristic p, independence of p. Astérisque 220 (1994), 321 pp.

[Bil] S. Billey, Kostant polynomials and the cohomology ring for G/B, Duke Math. J. 96 (1999), 205–224.

[Bri] M. Brion, Lectures on the geometry of flag varieties, in Topics in cohomological studies of algebraic varieties, Birkhäuser, Basel, 2005, 33–85.

[B1] A. Buch, A Littlewood–Richardson rule for the K-theory of Grassmannians, Acta Math. 189 (2002), 37–78.

[B2] A. Buch, Combinatorial K-theory, in Topics in cohomological studies of algebraic varieties, Birkhäuser, Basel, 2005, 87–103.

[B+] A. Buch, A. Kresch, M. Shimozono, H. Tamvakis and A. Yong, Stable Grothendieck polynomials and K-theoretic factor sequences, Math. Ann. 340 (2008), 359–382.

[BMN] D. Bump, P. J. McNamara and M. Nakasuji, Factorial Schur functions and the Yang–Baxter equation, Comment. Math. Univ. St. Pauli 63 (2014), 23–45.

[CS] X. Chen and R. P. Stanley, A formula for the specialization of skew Schur functions, Ann. Comb. 20 (2016), 539–548.

[CKP] I. Ciocan-Fontanine, M. Konvalinka and I. Pak, The weighted hook length formula, J. Combin. Theory, Ser. A 118 (2011), 1703–1717.

[DPS] K. Dilks, O. Pechenik and J. Striker, Resonance in orbits of plane partitions and increasing tableaux, J. Combin. Theory, Ser. A 148 (2017), 244–274.

[FGS] N. J. Y. Fan, P. L. Guo and S. C. C. Sun, Proof of a conjecture of Reiner–Tenner–Yong on barely set-valued tableaux, SIAM J. Discrete Math. 33 (2019), 189–196.

[FK1] S. Fomin and A. N. Kirillov, Yang–Baxter equation, symmetric functions and Grothendieck polynomials, preprint (1993), 25 pp.; arXiv:hep-th/9306005.

[FK2] S. Fomin and A. N. Kirillov, Grothendieck polynomials and the Yang–Baxter equation, in Proc. 6-th FPSAC, DIMACS, Piscataway, NJ, 1994, 183–190.

[FK3] S. Fomin and A. N. Kirillov, Reduced words and plane partitions, J. Algebraic Combin. 6 (1997), 311–319.

[FRT] J. S. Frame, G. de B. Robinson and R. M. Thrall, The hook graphs of the symmetric group, Canad. J. Math. 6 (1954), 316–324.

[GJ] I. P. Goulden and D. M. Jackson, Combinatorial enumeration, Wiley, New York, 1987, 569 pp.

[GK] W. Graham and V. Kreiman, Excited Young diagrams and equivariant K-theory, and Schubert varieties, Trans. AMS 367 (2015), 6597–6645.

[HPPW] Z. Hamaker, R. Patrias, O. Pechenik and N. Williams, Doppelgängers: bijections of plane partitions, IMRN (2020), no. 2, 487–540.

[H+] Z. Hamaker, A. H. Morales, I. Pak, L. Serrano and N. Williams, Bijecting hidden symmetries for skew staircase shapes, preprint (2021), 19 pp.; arXiv:2103.09551.

[HY] Z. Hamaker and B. Young, Relating Edelman–Greene insertion to the Little map, J. Algebraic Combin. 40 (2014), 693–710.

[HKYY] B. H. Hwang, J. S. Kim, M. Yoo and S. M. Yun, Reverse plane partitions of skew staircase shapes and q-Euler numbers, J. Combin. Theory, Ser. A 168 (2019), 120–163.

[IN1] T. Ikeda and H. Naruse, Excited Young diagrams and equivariant Schubert calculus, Trans. AMS 361 (2009), 5193–5221.

[IN2] T. Ikeda and H. Naruse, K-theoretic analogues of factorial Schur P- and Q-functions, Adv. Math. 243 (2013), 22–66.

[Kre] V. Kreiman, Schubert classes in the equivariant K-theory and equivariant cohomology of the Grassmannian, preprint (2005), 27 pp.; arXiv:math.AG/0512204.

[KM] A. Knutson and E. Miller, Gröbner geometry of Schubert polynomials, Annals of Math. 161 (2005), 1245–1318.

[KMY] A. Knutson, E. Miller and A. Yong, Gröbner geometry of vertex decompositions and of flagged tableaux, J. Reine Angew. Math. 630 (2009), 1–31.

[Kon] M. Konvalinka, A bijective proof of the hook-length formula for skew shapes, European J. Combin. 88 (2020), 103104, 14 pp.

[LLS] T. Lam, S. J. Lee, and M. Shimozono, Back stable Schubert calculus, Compositio Math. 157 (2021), 883–962.

[LS1] A. Lascoux and M.-P. Schützenberger, Polynômes de Schubert (in French), C. R. Acad. Sci. Paris 294 (1982), no. 13, 447–450.

[LS2] A. Lascoux and M.-P. Schützenberger, Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux (in French), C. R. Acad. Sci. Paris 295 (1982), no. 11, 629–633.
