Growth inhibition of oral mutans streptococci and candida by commercial probiotic lactobacilli - an *in vitro* study

Pamela Hasslöf¹, Maria Hedberg², Svante Twetman³ and Christina Stecksén-Blicks*¹

Abstract

Background: Probiotic bacteria are suggested to play a role in the maintenance of oral health. Such health promoting bacteria are added to different commercial probiotic products. The aim of the study was to investigate the ability of a selection of lactobacilli strains, used in commercially available probiotic products, to inhibit growth of oral mutans streptococci and *C. albicans in vitro*.

Methods: Eight probiotic lactobacilli strains were tested for growth inhibition on three reference strains and two clinical isolates of mutans streptococci as well as two reference strains and three clinical isolates of *Candida albicans* with an agar overlay method.

Results: At concentrations ranging from 10^9 to 10^5 CFU/ml, all lactobacilli strains inhibited the growth of the mutans streptococci completely with the exception of *L. acidophilus* La5 that executed only a slight inhibition of some strains at concentrations corresponding to 10^7 and 10^5 CFU/ml. At the lowest cell concentration (10^3 CFU/ml), only *L. plantarum* 299v and *L. plantarum* 931 displayed a total growth inhibition while a slight inhibition was seen for all five mutans streptococci strains by *L. rhamnosus* LB21, *L. paracasei* F19, *L. reuteri* PTA 5289 and *L. reuteri* ATCC 55730. All the tested lactobacilli strains reduced candida growth but the effect was generally weaker than for mutans streptococci. The two *L. plantarum* strains and *L. reuteri* ATCC 55730 displayed the strongest inhibition on *Candida albicans*. No significant differences were observed between the reference strains and the clinical isolates.

Conclusion: The selected probiotic strains showed a significant but somewhat varying ability to inhibit growth of oral mutans streptococci and *Candida albicans in vitro*.

Background

Probiotic bacteria, defined as "live microorganisms which when administered in adequate amounts confer a health benefit on the host" (FAO/WHO 2001), are suggested to play a role in the maintenance of oral health [1,2]. Such health promoting bacteria are added to different commercial dairy products such as milk, cheese and yogurt as well as chewing gums and fruit drinks. Possible actions of probiotic bacteria in the oral environment are competition of binding sites, production of antimicrobial substances and activation and regulation of the immune response [3]. Bacterial antagonism may occur when growth of one bacterial species is hampered by components produced by another species. Lactic acid bacteria produce antimicrobial components [4,5] and some have the ability to produce hydrogen peroxide (H_2O_2) that can be toxic to organisms producing little or no H_2O_2-scavenging enzymes.

Molecular analyses of the oral microbiota in preschool children have shown that *Streptococcus mutans* is significantly associated with early childhood caries [6]. *Candida albicans* is a persistent member of the oral microbiota in children with caries [7] with a substantial growth response to sucrose exposure [8]. *C. albicans* produce organic acids like pyruvate and acetate and are considered to have a significant contribution to caries pathogenesis [9]. Lactobacilli play a significant role in the oral ecosystem and can be linked with oral disease as well as oral health [10]. Since the discovery by Polonskaya [11]

* Correspondence: christina.stecksen-blicks@odont.umu.se
¹ Paediatric Dentistry, Department of Odontology, Faculty of Medicine, Umeå University, S 901 85 Umeå, Sweden
² Full list of author information is available at the end of the article

© 2010 Hasslöf et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
that \textit{L. acidophilus} inhibits growth of certain streptococci \textit{in vitro}, clinical studies have confirmed that probiotic lactobacilli can reduce the counts of salivary mutants streptococci after ingestion of \textit{L. rhamnosus} GG [12,13] and \textit{L. reuteri} [14-16]. Furthermore, naturally occurring \textit{Lactobacillus} species, including \textit{L. paracasei}, \textit{L. plantarum} and \textit{L. rhamnosus}, may inhibit growth of laboratory strains of mutants streptococci as well as subject’s autologous \textit{L. acidophilus} and \textit{S. sobrinus} OMZ176 and clinical isolates (\textit{S. mutans} P1:27 and \textit{S. mutans} P2:29) were cultured on blood agar plates (Columbia Blood Agar Base, Alpha BioScience, Baltimore, USA) supplemented with 5% horse blood during 16-20 hours and on the following day, pure colonies of each bacterium were transferred to 2 ml Todd-Hewitt broth (Oxid, Hampshire, England) and incubated for another 16-20 hours. Five strains of \textit{Candida albicans} including both reference strains (\textit{C. albicans} ATCC 28366, \textit{C. albicans} ATCC 10231) and clinical isolates (\textit{C. albicans} 1957, \textit{C. albicans} 3339 and \textit{C. albicans} GDM8) were cultured on Difco™ Sabouraud Maltose Agar (Becton, Dickinson and Complany, Sparks, USA) over night and the following day, pure colonies of each yeast were transferred to 2 ml Difco™ Sabouraud Maltose broth and incubated for 16-20 hours. The \textit{C. albicans} strains were characterized by the API Candida (Bio-Mérieux® SA, Marcy-l’Etoile, France). Culturing of lactobacilli and mutants streptococci were performed in anaerobic atmosphere (10% H2, 5% CO2 and 85% N2) in an anaerobe chamber at 37°C, while culturing of \textit{C. albicans} was performed under aerobic conditions at 37°C.

Methods

Lactobacilli strains and cultivation

Eight strains of probiotic lactobacilli (\textit{L. plantarum} 299v, \textit{L. plantarum} 931, \textit{L. rhamnosus} GG ATCC 53103, \textit{L. rhamnosus} LB21, \textit{L. paracasei} F19 and \textit{L. reuteri} PTA 5289, \textit{L. reuteri} ATCC 55730 and \textit{L. acidophilus} La5) used in different probiotic products were selected (Table 1).

The bacteria were provided by the different producers in different probiotic products were selected (Table 1).

Table 1: Probiotic lactobacilli strains, producer and products used in the present experiments.

Strain	Producer	Product
\textit{L. plantarum} 299v	Probi AB, Lund, Sweden	Fruit drink
\textit{L. plantarum} 931	Essum, Umeå, Sweden	Fruit drink
\textit{L. rhamnosus} GG ATCC 53103	Valio Ltd, Helsinki, Finland	Yogurt
\textit{L. rhamnosus} LB21	Essum, Umeå, Sweden	Yogurt
\textit{L. paracasei} F19	Arla Ltd, Stockholm, Sweden	Yogurt, Porridge, Gruel
\textit{L. reuteri} PTA 5289	BioGaia, Stockholm, Sweden	Chewing gum, Tablets
\textit{L. reuteri} ATCC 55730	BioGaia, Stockholm, Sweden	Chewing gum, Gruel, Drops, Tablets
\textit{L. acidophilus} La5	Arla Ltd, Stockholm, Sweden	Fermented milk
grown for 16-20 hours in Todd-Hewitt broth were diluted in the same medium and the OD was measured at 500 nm and adjusted to 0.2. The suspensions of MS were stamped on the plates with Steer’s replicator (CMI-Promex ICN, Pedricktown, USA). The plates were left at room temperature for 1 hour to dry and were subsequently incubated overnight at 37°C in the anaerobe chamber. To test the susceptibility of \(C.\) albicans, 24 ml Difco® Sabouraud Maltose Agar (SAB) was casted on top of the MRS agar with grown lactobacilli. Broth cultures of \(C.\) albicans grown for 16-20 h in Difco® Sabouraud Maltose Broth were diluted in the same medium and the OD was measured at 500 nm and adjusted to 0.2. The suspensions were then stamped on the plates in the same way as MS (see above). The plates inoculated with \(C.\) albicans were incubated in air at 37°C. As controls, the MS and \(C.\) albicans strains were stamped onto agar plates without lactobacilli within the first agar layer.

All assays were made in duplicate and each experiment was repeated on three different occasions. The results of the agar overlay tests were categorized as follows according to Simark-Mattsson et al. [17]: Score 0 = complete inhibition (no visible colonies), Score 1 = slight inhibition (at least one visible colony but definitely smaller amounts than in the control plate), and Score 2 = no inhibition (the same growth as on the control plate). The evaluation of the plates was performed by two independent observers, in case of disagreement a consensus was reached after discussion.

pH-measurements

As an estimation of the lactobacilli acid production, the surface pH of the MRS plates with M17 and SAB agar was determined before and after the final incubation of each lactobacilli strain but without mutans streptococci or candida. A pH-meter (Seven Easy pH, Mettler-Toledo GmbH, Schwerzenbach, Switzerland) equipped with a flat electrode was used and the mean of two measurements was calculated.

Statistical method

The data were processed with the SPSS software (version 17.0, Chicago Ill, USA) and subjected to chi-square tests. A p-value < 0.05 was considered as statistically significant.

Results

Characterization of lactobacilli and \(C.\) albicans

Both \(L.\) plantarum strains as well as the \(L.\) acidophilus La5, \(L.\) paracasei F19 strains were identified by the API 50 CH system without difficulty. The two \(L.\) reuteri strains gave a biochemical profile interpreted as \(L.\) fermentum. None of the \(L.\) rhamnosus strains were fully identified by the system. All five candida strains were completely identified as \(C.\) albicans by the API Candida assay.

Growth inhibition of \(S.\) mutans \(S.\) streptococci

The results of the growth inhibition assay are summarized in Table 2. At concentrations ranging from \(10^9\) to \(10^6\) CFU/ml, all lactobacilli strains inhibited the growth of the MS strains completely with the exception of \(L.\) acidophilus La5 that executed only a slight inhibition of some strains at concentrations corresponding to \(10^7\) and \(10^5\) CFU/ml. \(L.\) acidophilus La5 had a statistically significantly weaker inhibition capacity in comparison with the other probiotic strains (p < 0.05). At the lowest cell concentration (\(10^3\) CFU/ml), only \(L.\) plantarum 299v and \(L.\) plantarum 931 displayed a total growth inhibition while a slight inhibition was seen for all five MS strains by \(L.\) rhamnosus LB21, \(L.\) paracasei F19, \(L.\) reuteri PTA 5289 and \(L.\) reuteri ATCC 55730. \(L.\) rhamnosus GG ATCC 53103 diluted to \(10^3\) CFU/ml inhibited the growth slightly for three of the five MS strains (\(S.\) mutans NCTC 10449, \(S.\) sobrinus OMZ176 and \(S.\) mutans P1:27) while low concentrations of \(L.\) acidophilus La5 did not affect MS growth. In general, no significant differences in growth inhibition were observed between the reference strains and the oral isolates.

Growth inhibition of \(C.\) albicans

All the tested lactobacilli strains reduced candida growth but the effect was generally weaker than for mutans streptococci. Since an identical inhibition pattern was displayed for all candida strains, the results of the assays for only one of them are displayed in Table 3. At concentrations \(10^9\) and \(10^7\) CFU/ml, all lactobacilli except \(L.\) acidophilus La5 and \(L.\) reuteri PTA 5289 inhibited the five candida strains completely. At \(10^5\) CFU/ml, \(L.\) rhamnosus LB21, \(L.\) rhamnosus GG ATCC 53103, \(L.\) paracasei F19 and \(L.\) reuteri PTA 5289 displayed a slight inhibition, \(L.\) acidophilus La5 showed no inhibition at all while \(L.\) plantarum 299v, \(L.\) plantarum 931 and \(L.\) reuteri ATCC 55730 executed a total inhibition. At the lowest cell concentration, no inhibition was recorded except for the two \(L.\) plantarum strains.

pH-measurements

The initial pH on the surface of the M17 and SAB agar plates were 6.8 and 5.8, respectively. After incubation, the pH decreased in all plates inoculated with lactobacilli and varied between 3.7 and 5.3 in the plates containing \(10^3\) CFU/ml (Table 4). \(L.\) acidophilus La5 displayed the highest pH values while the lowest values were recorded for the \(L.\) plantarum strains.

Discussion

The predominant strategy for caries prevention relies on influencing the re- and demineralisation processes,
mainly by using fluorides but also other factors involved in the caries process may be targeted [19]. One alternative could be to promote colonization of caries inhibiting bacteria and in this aspect, probiotic bacteria constitute a novel concept that needs further exploration. This in vitro study was performed to compare the effect of eight commercial probiotic lactobacilli strains on growth inhibition of mutans streptococci and C. albicans. We selected these particular lactobacilli strains because they are found in dairy products, fruit drinks, drops, gruels, chewing gums and tablets on the market. The test panel of mutans streptococci and yeast contained both reference strains and clinical isolates. C. albicans is the most commonly isolated candida species in the oral cavity and constitute up to 80% of the clinical isolates [20]. Furthermore, candida has been ascribed a significant predictive value for dental caries in children [21]. The majority of the lactobacilli strains were fully identified with biochemical analysis using the API 50 CH system while a satisfactory identification of the L. reuteri and L. rhamnosus strains would require molecular genetic methods [22].

The agar overlay method was considered suitable for the research question since the method can test the inhibitory effect on multiple strains on a single plate. The method has earlier been used to demonstrate the in vitro growth inhibition of different isolates of lactobacilli on pathogenic bacteria in the female urogenital region [23].

Table 2: Growth inhibition of mutans streptococci strains by selected probiotic lactobacilli at different cell concentrations.

Lactobacilli	CFU/ml	Ingbritt	NCTC 10449	OMZ176	P1:27	P2:29
L. plantarum 299v	10⁷-10⁹	0	0	0	0	0
L. plantarum 931	10⁷-10⁹	0	0	0	0	0
L. rhamnosus GG	10⁷-10⁹	0	0	0	0	0
ATCC 53103	10³	0	1	1	1	1
L. rhamnosus	10⁷-10⁹	0	0	0	0	0
LB21	10³	1	1	1	1	1
L. paracasei	10⁷-10⁹	0	0	0	0	0
F19	10³	1	1	1	1	1
L. reuteri	10⁷-10⁹	0	0	0	0	0
PTA5289	10³	1	1	1	1	1
L. reuteri	10⁷-10⁹	0	0	0	0	0
ATCC 55730	10³	1	1	1	1	1
L. acidophilus	10⁷	0	0	0	0	0
La5 *	10³	1	1	1	1	1
	10³	1	1	1	1	1

Inhibition scores: 0 = total inhibition; 1 = slight inhibition; 2 = no inhibition.

* p < 0.05, chi-square test.

Table 3: Growth inhibition of Candida albicans ATCC 28366 by selected probiotic lactobacilli at different cell concentrations.

Strain	Cell concentration (CFU/ml)	10⁷	10⁵	10³	10³
L. plantarum 299v	0	0	0	1	
L. plantarum 931	0	0	0	1	
L. rhamnosus GG ATCC 53103	0	0	1	2	
L. rhamnosus LB21	0	0	1	2	
L. paracasei F19	0	0	1	2	
L. reuteri PTA 5289	1	1	1	2	
L. reuteri ATCC 55730	0	0	0	2	
L. acidophilus La5	1	1	2	2	

Inhibition scores: 0 = total inhibition; 1 = slight inhibition; 2 = no inhibition.
and to study the inhibitory effect of alpha-hemolytic streptococci on the otitis media pathogens Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis [24]. Köl et al [25] used the deferred antagonism method to test the inhibitory capacity against mutans streptococci and C. albicans. In that method the lactobacilli are stab-inoculated on the surface of the bottom agar and pathogen suspensions are poured over the macrocolonies of lactobacilli. After incubation the width of the inhibition zones are measured. The main advantage with the deferred antagonism method is the more exact outcome while the agar overlay method enables assessment of different cell concentrations. Thus, the methods may be regarded as complements to each other.

With the exception of _L. acidophilus_, the present probiotic strains displayed strong inhibitory capacities against both the reference strains and the oral mutans streptococci isolates and these results were mainly in agreement with the recent observations of Simark-Mattsson and coworkers [17]. The findings concerning the candida strains were however novel and showed an even larger variation between the lactobacilli strains and only three of the eight tested strains exhibited strong inhibitory capacity. These results were in disagreement to Köl et al [25] who failed to demonstrate inhibition of Candida albicans 048 (wild-type). This could due to the method used in the experiments or the fact that the tested candida strain were more resistant than our reference strains and clinical isolates. The production of bacteriocins can be different in different systems and the ability to diffuse through the agar. Since significant growth inhibiting differences between the probiotic lactobacilli were noted, the null hypothesis was rejected. Similar strain-dependent differences have previously been observed concerning the metabolic capacity to form acids from dietary sugars that differs significantly between various probiotic strains [26,27].

Table 4: Final pH on the surface of M17 and SAB agar plates after incubation with selected probiotic lactobacilli (10^3 CFU/ml).

Strain	M17 agar	SAB agar
L. plantarum 299v	4.4	3.7
L. plantarum 931	4.4	3.7
L. rhamnosus GG ATCC 53103	4.6	4.0
L. rhamnosus LB21	4.5	4.1
L. paracasei F19	4.8	4.4
L. reuteri PTA 5289	5.1	4.0
L. reuteri ATCC 55730	5.1	3.9
L. acidophilus La5	5.2	5.3

The final pH in the medium has been suggested to be an important factor for growth inhibition, either directly or due to the production of bacteriocins at low pH [28]. We found a similar tendency in the present experiments; the lactobacilli strains that caused the lowest pH after incubation were also most effective in inhibiting MS and candida growth. The weakest inhibition of both mutans streptococci and _C. albicans_ was displayed by _L. acidophilus_ La5 which also had the weakest acid production in both systems. In the agar overlay method the lactobacilli is grown inside the MRS-agar and it is possible that this particular system not is optimal for _L. acidophilus_ La5. The inhibitory potential may be different, for better or for worse, in other test system or _in vivo_. However, also some bacteria with fairly weak acid production, such as _L. reuteri_ ATCC 55730, proved to be effective against both mutans streptococci and candida. This indicates that other inhibitory substances also may be involved in the process with _H₂O₂_ being among the primary metabolites with inhibitory capacity against microbial pathogens [29]. The importance of _H₂O₂_ production for health can be illustrated in bacterial vaginosis, since lack of lactobacilli with such production seems to be associated with an altered composition of the vaginal flora resulting in a massive anaerobic overgrowth [30]. Tano et al. [31] concluded that the inhibitory effect of alpha-hemolytic streptococci on otitis media pathogens most likely was due to their _H₂O₂_ production. The antimicrobial glycerol derivative reuterin is another example of a growth inhibitory substance produced by _L. reuteri_ ATCC 55730 that may be involved in the reduction of mutans streptococci in saliva [14,15] as well as beneficial influences on gingivitis [33] and inflammatory mediators in gingival crevicular fluid [34]. Although any conclusion from _in vitro_ studies must be drawn with caution, our findings provide some further support to the hypothesis that probiotic lactobacilli may influence the homeostasis and microbial profile in the oral cavity.

Conclusion

The present _in vitro_ study showed that commercial probiotic lactobacilli could inhibit growth of reference strains and oral isolates of mutans streptococci and candida but the capacity differed significantly between the strains. Further clinical studies are needed to verify whether or not the observed differences can play a role in the complex oral biofilm.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

PH contributed with the laboratory work, the acquisition, analysis and interpretation of data and took part in drafting of the manuscript. MH contributed with the design, laboratory work, analysis and interpretation of data and took part in
drafting of the manuscript. ST contributed with drafting of the manuscript and revised it critically. CSB contributed with analysis and interpretation of data, drafting of the manuscript and revised it critically. All authors read and approved the final manuscript.

Acknowledgements
The study was supported with grants from the Västerbotten County Council (TUA). We are thankful to Professor Ingegerd Johansson who provided us with the Calibrisian strains.

Author Details
1. Paediatric Dentistry, Department of Odontology, Faculty of Medicine, Umeå University, S 901 85 Umeå, Sweden, 2Oral Microbiology, Department of Odontology, Faculty of Medicine, Umeå University, S 901 85 Umeå, Sweden and 3Department of Cariology and Endodontics, Faculty of Health Sciences, University of Copenhagen, 3B, Blegdamsvej, DK 2200 Copenhagen, Denmark

Received: 22 February 2010 Accepted: 2 July 2010 Published: 2 July 2010

References
1. Meurman JH, Stamatova I. Probiotics: contributions to oral health. Oral Dis 2007, 13: 443-451.
2. Twetman S, Stecklén-Blicks C. Probiotics and oral health effects in children. Int J Paediatr Dent 2008, 18:3-10.
3. Meurman JH. Probiotics: do they have a role in oral medicine and dentistry? Eur J Oral Sci 2005, 113:188-196.
4. Ouwehand AC. Antimicrobial components from lactic acid bacteria. In Lactic acid bacteria: microbiology and functional aspects, 2nd edition. Edited by: Salminen S, von Wright A. New York: Marcel Dekker Inc; 1998:139-160.
5. Allaker RP, Douglas CW. Novel anti-microbial therapies for dental plaque-related diseases. Int J Antimicrob Agents 2009, 33:8-13.
6. Becker MR, Paster BJ, Leyes EI, Moeschberger ML, Kenoyoa SG, Galvin JL, Boches SK, Dewhurst FE, Grifffen AL. Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 2002, 40:1001-1009.
7. de Carvalho FG, Silva DS, Helbling L, Spolidorio LC, Spolidorio DM. Presence of mutans streptococci and Candida spp. in dental plaque/dentine of carious teeth and early childhood caries. Arch Oral Biol 2006, 51:1024-1028.
8. Sissons CH, Anderson SA, Wong L, Coleman MJ, White DC. Microbiota of plaque microcosm biofilms: Effect of three times daily sucrose pulses in different simulated oral environments. Caries Res 2007, 41:143-422.
9. Klinke T, Kreisn T, de Soet JJ, Kuhlisch E, Mauersberger S, Förster A, Klimm E. Lactobacillus-mediated interference of mutans streptococi in caries-free vs. caries-active subjects. Eur J Oral Sci 2007, 115:306-314.
10. Hatakka K, Ahola AJ, Yli-Knuuttila H, Richardson M, Poussa T, Meurman JH, Korpela R. Probiotics reduce the prevalence of oral candida in the elderly - a randomized controlled trial. J Dent Res 2007, 86:125-130.
11. Garcia-Godoy F, Hicks MJ. Maintaining the integrity of the enamel surface: the role of dental bacterial, saliva and preventive agents in enamel remineralization and remineralization. J Am Dent Assoc 2008, 139(Suppl):235-245.
12. Marsh PD, Martin MV. Oral Microbiology, 5th edition. China: Elsevier Limited; 2009.
13. Ollila PS, Larmas MA. Long-term predictive value of salivary microbial diagnostic tests in children. Eur Arch Paediatr Dent 2009, 2:29-30.
14. Negatu A. Evaluation of numerical analyses of RAPD and API 50 CH patterns to differentiate Lactobacillus plantarum, Lact. fermentum, Lact. rhamnosus, Lact. sake, Lact. parabuchneri, Lact. gallinarum, Lact. casei, Weisella minor and related taxa isolated from kocho and tef. J Appl Microbiol 2000, 89:969-978.
15. Ronnowst D, Forsgren Bruk U, Husmark U, Grahn-Håkansson E. Lactobacillus fermentum Ess-1 with unique growth inhibition of vulvovaginal candidiasis pathogens. J Med Microbiol 2007, 56:1500-1504.
16. Tano K, Grahn-Håkansson E, Holm SE, Hellström S. Inhibition of OM pathogens by alpha-hemolytic streptococci from healthy children, children with SOM and children with rAOM. Int J Pediatr Otorhinolaryngol 2000, 22:185-190.
17. Koll P, Mardar R, Marcotte H, Leber E, Mikelssaa M, Hammarström L. Characterization of oral lactobacilli as potential probiotics for oral health. Oral Microbiol Immunol 2008, 23:139-147.
18. Haukoja A, Soderling E, Tenojou J. Acid production from sugars and sugar alcohols by probiotic lactobacilli and bifidobacteria in vitro. Cane Res 2008, 42:449-453.
19. Hedberg M, Hasslöf P, Skjøstøl I, Twetman S, Stecklén-Blicks C. Sugar fermentation in probiotic bacteria - an in vitro study. Oral Microbiol Immunol 2003, 23:482-485.
20. Simrak-Mattsson C, Jonsson R, Emilson CG, Roos K. Final pH affects the interference capacity of naturally occurring oral Lactobacillus strains against mutans streptococci. Arch Oral Biol 2009, 54:602-607.
21. Dunne C, O'Mahony L, Murphy L, Thornton G, Morsssey D, O'Halloran S, Feeoney N, Flynn S, Fitzgerald G, Daly C, Kelly B, OSullivan GC, Shanahan F, Collins JK. In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 2001, 73:386-392.
22. Verstraeten H. Cutting edge: the vaginal microflora and bacterial vaginosis. Virk Acad Geneesk Belg 2008, 70:147-174.
23. Tano K, Grahn-Håkansson E, Wallbrandt P, Rönnqvist D, Holm SE, Hellström S. Hydrogen peroxide responsible for the inhibitory activity of alpha-haemolytic streptococci sampled from the nasopharynx? Acta Otolaryngol 2003, 123:724-729.
24. Jones SE, Versalovic J. Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol 2009, 11:9-35.
25. Krause P, Carlsson B, Dahl C, Paulsson A, Nilsson A, Sinkiewicz G. Decreased gum bleeding and reduced gingivitis by the probiotic Lactobacillus reuteri. Swed Dent J 2006, 30:55-60.
26. Twetman S, Derawi B, Keller M, Ekstrand K, Yuvel-Lindberg T, Stecklén-Blicks C. Short-term effect of chewing gums containing probiotic Lactobacillus reuteri on the levels of inflammatory mediators in gingival crevicular fluid. Acta Odontol Scand 2009, 67:19-24.

Pre-publication history
The pre-publication history for this paper can be accessed here: http://www.biomedcentral.com/1472-6831/10/18/prepub

doi: 10.1186/1472-6831-10-18
Cite this article as: Hasslöf et al., Growth inhibition of oral mutans streptococci and candida by commercial probiotic lactobacilli - an in vitro study BMC Oral Health 2010, 10:18