ORDERS OF REDUCTIONS OF ELLIPTIC CURVES WITH MANY AND FEW PRIME FACTORS

LEE TROUPE

Abstract. In this paper, we investigate extreme values of \(\omega(\#E(F_p))\), where \(E/\mathbb{Q}\) is an elliptic curve with complex multiplication and \(\omega\) is the number-of-distinct-prime-divisors function. For fixed \(\gamma > 1\), we prove that

\[
\#\{p \leq x : \omega(\#E(F_p)) > \gamma \log \log x\} = \frac{x}{(\log x)^2 + \gamma \log \gamma - \gamma + o(1)}.
\]

The same result holds for the quantity \#\{p \leq x : \omega(\#E(F_p)) < \gamma \log \log x\} when \(0 < \gamma < 1\). The argument is worked out in detail for the curve \(E : y^2 = x^3 - x\), and we discuss how the method can be adapted for other CM elliptic curves.

1. Introduction

Let \(E/\mathbb{Q}\) be an elliptic curve. For primes \(p\) of good reduction, one has

\[E(F_p) \simeq \mathbb{Z}/d_p\mathbb{Z} \oplus \mathbb{Z}/e_p\mathbb{Z}\]

where \(d_p\) and \(e_p\) are uniquely determined natural numbers such that \(d_p\) divides \(e_p\). Thus, \(\#E(F_p) = d_pe_p\). We concern ourselves with the behavior of \(\omega(\#E(F_p))\), where \(\omega(n)\) denotes the number of distinct prime factors of the number \(n\), as \(p\) varies over primes of good reduction. Work has been done already in this arena: If the curve \(E\) has CM, Cojocaru [Coj05, Corollary 6] showed that the normal order of \(\omega(\#E(F_p))\) is \(\log \log p\), and a year later, Liu [Liu06] established an elliptic curve analogue of the celebrated Erdős-Kac theorem: For any elliptic curve \(E/\mathbb{Q}\) with CM, the quantity

\[\frac{\omega(\#E(F_p)) - \log \log p}{\sqrt{\log \log p}}\]

has a Gaussian normal distribution. In particular, \(\omega(\#E(F_p))\) has normal order \(\log \log p\) and standard deviation \(\sqrt{\log \log p}\). (These results hold for elliptic curves without CM, if one assumes GRH.)

In light of the Erdős-Kac theorem, one may ask how often \(\omega(n)\) takes on extreme values, e.g. values greater than \(\gamma \log \log n\), for some fixed \(\gamma > 1\). A more precise version of the following result appears in [EN79]; its proof is due to Delange.

Theorem 1.1. Fix \(\gamma > 1\). As \(x \to \infty\),

\[
\#\{n \leq x : \omega(n) > \gamma \log \log x\} = \frac{x}{(\log x)^{1+\gamma \log \gamma - \gamma + o(1)}}.
\]

Presently, we establish an analogous theorem for the quantity \(\omega(\#E(F_p))\), where \(E/\mathbb{Q}\) is an elliptic curve with CM.

Theorem 1.2. Let \(E/\mathbb{Q}\) be an elliptic curve with CM. For \(\gamma > 1\) fixed,

\[
\#\{p \leq x : \omega(\#E(F_p)) > \gamma \log \log x\} = \frac{x}{(\log x)^{2+\gamma \log \gamma - \gamma + o(1)}}.
\]

The same result holds for the quantity \#\{p \leq x : \omega(\#E(F_p)) < \gamma \log \log x\} when \(0 < \gamma < 1\).

The author was partially supported by NSF RTG Grant DMS-1344994.
In what follows, the above theorem will be proved for \(E/\mathbb{Q} \) with \(E : y^2 = x^3 - x \). Essentially the same method can be used for any elliptic curve with CM; refer to the discussion in §4 of [Polar]. To establish the theorem, we prove corresponding upper and lower bounds in sections §3 and §4, respectively.

Remark. One can ask similar questions about other arithmetic functions applied to \(\#E(\mathbb{F}_p) \). For example, Pollack has shown [Polar] that, if \(E \) has CM, then
\[
\sum_{p \leq x} \tau(\#E(\mathbb{F}_p)) \sim c_E \cdot x,
\]
where the sum is restricted to primes \(p \) of good ordinary reduction for \(E \). Several elements of Pollack’s method of proof will appear later in this manuscript.

Notation. \(K \) will denote an extension of \(\mathbb{Q} \) with ring of integers \(\mathbb{Z}_K \). For each ideal \(a \subset \mathbb{Z}_K \), we write \(\|a\| \) for the norm of \(a \) (that is, \(\|a\| = \#(\mathbb{Z}_K/a) \) and \(\Phi(a) = \#(\mathbb{Z}_K/a)^x \). The function \(\omega \) applied to an ideal \(a \subset \mathbb{Z}_K \) will denote the number of distinct prime ideals appearing in the factorization of \(a \) into a product of prime ideals. For \(\alpha \in \mathbb{Z}_K \), \(\|\alpha\| \) and \(\Phi(\alpha) \) denote those functions evaluated at the ideal \((\alpha) \). If \(\alpha \) is invertible modulo an ideal \(u \subset \mathbb{Z}_K \), we write \(\gcd(\alpha, u) = 1 \). The notation \(\log_k x \) will be used to denote the \(k \)th iterate of the natural logarithm; this is not to be confused with the base-\(k \) logarithm. The letters \(p \) and \(q \) will be reserved for rational prime numbers. We make frequent use of the notation \(\ll, \gg \) and \(O \)-notation, which has its usual meaning. Other notation may be defined as necessary.

Acknowledgements. The author thanks Paul Pollack for a careful reading of this manuscript and many helpful suggestions.

2. Useful Propositions

One of our primary tools will be a version of Brun’s sieve in number fields. The following theorem can be proved in much the same way that one obtains Brun’s pure sieve in the rational integers, cf. [Pol09] §6.4.

Theorem 2.1. Let \(K \) be a number field with ring of integers \(\mathbb{Z}_K \). Let \(\mathcal{A} \) be a finite sequence of elements of \(\mathbb{Z}_K \), and let \(\mathcal{P} \) be a finite set of prime ideals. Define
\[
S(\mathcal{A}, \mathcal{P}) := \# \{ a \in \mathcal{A} : \gcd(a, \mathfrak{P}) = 1 \}, \quad \text{where } \mathfrak{P} := \prod_{p \in \mathcal{P}} p.
\]

For an ideal \(u \subset \mathbb{Z}_K \), write \(A_u := \# \{ a \in \mathcal{A} : a \equiv 0 \pmod{u} \} \). Let \(X \) denote an approximation to the size of \(\mathcal{A} \). Suppose \(\delta \) is a multiplicative function taking values in \([0,1]\), and define a function \(r(u) \) such that
\[
A_u = X \delta(u) + r(u)
\]
for each \(u \) dividing \(\mathfrak{P} \). Then, for every even \(m \in \mathbb{Z}^+ \),
\[
S(\mathcal{A}, \mathcal{P}) = X \prod_{p \in \mathcal{P}} (1 - \delta(p)) + O \left(\sum_{u \mid \mathfrak{P}, \omega(u) \leq m} |r(u)| \right) + O \left(X \sum_{u \mid \mathfrak{P}, \omega(u) \geq m} \delta(u) \right).
\]

All implied constants are absolute.

In our estimation of \(O \)-terms arising from the use of Proposition 2.1, we will make frequent use of the following analogue of the Bombieri-Vinogradov theorem, which we state for an arbitrary imaginary quadratic field \(K/\mathbb{Q} \) with class number 1. For \(\alpha \in \mathbb{Z}_K \) and an ideal \(q \subset \mathbb{Z}_K \), write
\[
\pi(x; q, \alpha) = \# \{ \mu \in \mathbb{Z}_K : \|\mu\| \leq x, \mu \equiv \alpha \pmod{q} \}.
\]
Proposition 2.2. For every $A > 0$, there is a $B > 0$ so that
\[
\sum_{\|q\| \leq x^{1/2}(\log x)^{-\epsilon}} \max_{\gcd(\alpha, u) = 1} \max_{y \leq x} |\pi(y; q, \alpha) - w_K \cdot \text{Li}(y) / \Phi(q)| \ll \frac{x}{(\log x)^A},
\]
where the above sum and maximum are taken over $q \in \mathbb{Z}_K$ and $\alpha \in \mathbb{Z}_K$. Here w_K denotes the size of the group of units of \mathbb{Z}_K.

The above follows from Huxley’s analogue of the Bombieri-Vinogradov theorem for number fields [Hux71]; see the discussion in [Polar, Lemma 2.3].

The following proposition is an analogue of Mertens’ theorem for imaginary quadratic fields. It follows immediately from Theorem 2 of [Ros99].

Proposition 2.3. Let K/\mathbb{Q} be an imaginary quadratic field and let α_K denote the residue of the associated Dedekind zeta function, $\zeta_K(s)$, at $s = 1$. Then
\[
\prod_{\|p\| \leq x} \left(1 - \frac{1}{\|p\|}\right)^{-1} \sim e^{\gamma} \alpha_K \log x,
\]
where the product is over all prime ideals p in \mathbb{Z}_K. Here (and only here), γ is the Euler-Mascheroni constant.

Note also that the “additive version” of Mertens’ theorem, i.e.,
\[
\sum_{\|p\| \leq x} \frac{1}{\|p\|} = \log_2 x + B_K + O_K \left(\frac{1}{\log x}\right)
\]
for some constant B_K, holds in this case as well; it appears as Lemma 2.4 in [Rosen].

Finally, we will make use of the following estimate for elementary symmetric functions [HR83, p. 147, Lemma 13].

Lemma 2.4. Let y_1, y_2, \ldots, y_M be M non-negative real numbers. For each positive integer d not exceeding M, let
\[
\sigma_d = \sum_{1 \leq k_1 < k_2 < \cdots < k_d \leq M} y_{k_1} y_{k_2} \cdots y_{k_d},
\]
so that σ_d is the dth elementary symmetric function of the y_k’s. Then, for each d, we have
\[
\sigma_d \geq \frac{1}{d!} \sigma_1^d \left(1 - \frac{1}{2} \sigma_1 \sum_{k=1}^{M} y_k^2\right).
\]

3. An upper bound

Theorem 3.1. Let E be the elliptic curve $E: y^2 = x^3 - x$ and fix $\gamma > 1$. Then
\[
\#\{p \leq x : \omega(\#E(\mathbb{F}_p)) > \gamma \log_2 x\} \ll \frac{x(\log_2 x)^5}{(\log x)^{2+\gamma \log \gamma - \gamma}}.
\]
The same statement is true if instead $0 < \gamma < 1$ and the strict inequality is reversed on the left-hand side.

Before proving Theorem 3.1 we refer to [JU08, Table 2] for the following useful fact concerning the numbers $\#E(\mathbb{F}_p)$: For primes $p \leq x$ with $p \equiv 1 \pmod{4}$, we have
\[
\#E(\mathbb{F}_p) = p + 1 - (\pi + \overline{\pi}) = (\pi - 1)(\overline{\pi} - 1),
\]
where $\pi \in \mathbb{Z}[i]$ is chosen so that $p = \pi \overline{\pi}$ and $p \equiv 1 \pmod{(1+i)^3}$. (Such π are sometimes called primary.) This determines π completely up to conjugation.
We begin the proof of Theorem 3.1 with the following lemma, which will allow us to disregard certain problematic primes \(p \).

Lemma 3.2. Let \(x \geq 3 \) and let \(P(n) \) denote the largest prime factor of \(n \). Let \(\mathcal{X} \) denote the set of \(n \leq x \) for which either of the following properties fail:

(i) \(P(n) > x^{1/6 \log_2 x} \)

(ii) \(P(n)^2 \mid n \).

Then, for any \(A > 0 \), the size of \(\mathcal{X} \) is \(O(x/(\log x)^4) \).

The following upper bound estimate of de Bruijn [dB66, Theorem 2] will be useful in proving the above lemma.

Proposition 3.3. Let \(x \geq y \geq 2 \) satisfy \((\log x)^2 \leq y \leq x\). Whenever \(u := \frac{\log x}{\log y} \to \infty \), we have

\[
\Psi(x, y) \leq x/u^{\gamma + o(u)}.
\]

Proof of Lemma 3.2. If \(n \in \mathcal{X} \), then either (a) \(P(n) \leq x^{1/6 \log_2 x} \) or (b) \(P(n) > x^{1/6 \log_2 x} \) and \(P(n)^2 \mid n \). By Proposition 3.3, the number of \(n \leq x \) for which (a) holds is \(O(x/(\log x)^4) \) for any \(A > 0 \), noting that \((\log x)^A \ll (\log x)^{\log_2 x} = (\log_2 x)^{\log_2 x} \). The number of \(n \leq x \) for which (b) holds is

\[
\ll x \sum_{p > x^{1/6 \log_2 x}} p^{-2} \ll x \exp(-\log x/6 \log_2 x),
\]

and this is also \(O(x/(\log x)^4) \). \(\square \)

We would like to use Lemma 3.2 to say that a negligible amount of the numbers \(\#E(\mathbb{F}_p) \), for \(p \leq x \), belong to \(\mathcal{X} \). The following lemma allows us to do so.

Lemma 3.4. The number of \(p \leq x \) with \(\#E(\mathbb{F}_p) \in \mathcal{X} \) is \(O(x/(\log x)^B) \), for any \(B > 0 \).

Proof. Suppose \(\#E(\mathbb{F}_p) = b \in \mathcal{X} \). Then, by [11], \(b = \| \pi - 1 \| \), where \(\pi \in \mathbb{Z}[i] \) is a Gaussian prime lying above \(p \). Thus, the number of \(p \leq x \) with \(\#E(\mathbb{F}_p) = b \) is bounded from above by the number of Gaussian integers with norm \(b \), which, by [HW00, Theorem 278], is \(4 \sum_{d|b} \chi(d) \), where \(\chi \) is the nontrivial character modulo 4. Now, using the Cauchy-Schwarz inequality and Lemma 3.2,

\[
4 \sum_{b \in \mathcal{X}} \sum_{d|b} \chi(d) \leq 4 \sum_{b \in \mathcal{X}} \tau(b) \leq 4 \left(\sum_{b \in \mathcal{X}} 1 \right)^{1/2} \left(\sum_{b \in \mathcal{X}} \tau(b)^2 \right)^{1/2}
\]

\[
\ll \left(\frac{x}{(\log x)^A} \right)^{1/2} \left(x \log^3 x \right)^{1/2} = \frac{x}{(\log x)^{A/2 - 3/2}}.
\]

Since \(A > 0 \) can be chosen arbitrarily, this completes the proof. \(\square \)

For \(k \) a nonnegative integer, define \(N_k \) to be the number of primes \(p \leq x \) of good ordinary reduction for \(E \) such that \(\#E(\mathbb{F}_p) \) possesses properties (i) and (ii) from the above lemma and such that \(\omega(\#E(\mathbb{F}_p)) = k \). Then, in the case when \(\gamma > 1 \),

\[
\#\{p \leq x : \omega(\#E(\mathbb{F}_p)) > \gamma \log \log x\} = \sum_{k > \gamma \log_2 x} N_k + O\left(\frac{x}{(\log x)^A} \right)
\]

for any \(A > 0 \). Our task is now to bound \(N_k \) from above in terms of \(k \). Evaluating the sum on \(k \) then produces the desired upper bound.
It is clear that
\[
N_k \leq \sum_{\substack{a \leq x^{1-1/6 \log x} \\
\omega(a) = k-1}} \sum_{\substack{p \leq x \\
p \equiv 1 \pmod{4} \\
a \mid \#E(\mathbb{F}_p) \mid \#E(\mathbb{F}_p) / a \text{ prime}}} 1.
\]

To handle the inner sum, we need information on the integer divisors of $\#E(\mathbb{F}_p)$, where $p \leq x$ and $p \equiv 1 \pmod{4}$. We employ the analysis of Pollack in his proof of [Polar, Theorem 1.1], which we restate here for completeness.

By (1), we have $a \mid \#E(\mathbb{F}_p)$ if and only if $a \mid (\pi - 1)(\overline{\pi - 1}) = \|\pi - 1\|$. With this in mind, we have
\[
\sum_{\substack{a \leq x^{1-1/6 \log x} \\
\omega(a) = k-1}} \sum_{\substack{p \leq x \\
p \equiv 1 \pmod{4} \\
a \mid \#E(\mathbb{F}_p) \mid \#E(\mathbb{F}_p) / a \text{ prime}}} 1 = \frac{1}{2} \sum_{\substack{a \leq x^{1-1/6 \log x} \\
\omega(a) = k-1}} \sum_{\substack{\pi \leq x \\
\pi \equiv 1 \pmod{1+i^3} \\
a \mid \|\pi - 1\| \mid \|\pi - 1\| / a \text{ prime}}} 1,
\]

where the $'$ on the sum indicates a restriction to primes π lying over rational primes $p \equiv 1 \pmod{4}$.

3.1. Divisors of shifted Gaussian primes. The conditions on the primed sum above can be reformulated purely in terms of Gaussian integers.

Definition 3.5. For a given integer $a \in \mathbb{N}$, write $a = \prod q^v_q$, with each q prime. For each $q \mid a$ with $q \equiv 1 \pmod{4}$, write $q = n_q \overline{n}_q$. Define a set S_a which consists of all products α of the form
\[
\alpha = (1+i)^{v_2} \prod_{q \equiv 3 \pmod{4}} q^{[v_q/2]} \prod_{q \equiv 1 \pmod{4}} \alpha_q,
\]
where $\alpha_q \in \{n_q \overline{n}_q^{-i} : i = 0, 1, \ldots, v_q\}$.

Notice that the condition $a \mid \|\pi - 1\|$ is equivalent to $\pi - 1$ being divisible by some element of the set S_a. We can therefore write
\[
\sum_{\substack{a \leq x^{1-1/6 \log x} \\
\omega(a) = k-1}} \sum_{\substack{p \equiv 1 \pmod{4} \\
a \mid \#E(\mathbb{F}_p) \mid \#E(\mathbb{F}_p) / a \text{ prime}}} 1 \leq \frac{1}{2} \sum_{\substack{a \leq x^{1-1/6 \log x} \\
\omega(a) = k-1}} \alpha \in S_a \sum_{\substack{\pi \leq x \\
\pi \equiv 1 \pmod{1+i^3} \\
a \mid \|\pi - 1\| \mid \|\pi - 1\| / a \text{ prime}}} 1.
\]

Now, for any $\alpha \in S_a$, we have
\[
\frac{\alpha \overline{\alpha}}{a} = \prod_{q \equiv 3 \pmod{4}} q^{2[v_q/2]-v_q}.
\]

Observe that
\[
\frac{\|\pi - 1\|}{a} = \frac{(\pi - 1)(\overline{\pi - 1})}{\alpha \overline{\alpha}} \prod_{q \equiv 3 \pmod{4}} q^{2[v_q/2]-v_q}.
\]

Therefore, if $\frac{\|\pi - 1\|}{a}$ is to be prime, the number a must satisfy exactly one of the following properties:

1. The number a is divisible by exactly one prime $q \equiv 3 \pmod{4}$ with v_q an odd number, and $\alpha = u(\pi - 1)$ where $u \in \mathbb{Z}[i]$ is a unit; or
2. All primes $q \equiv 3 \pmod{4}$ which divide a have v_q even, and $(\pi - 1)/\alpha$ is a prime in $\mathbb{Z}[i]$.

This splits the outer sum in \([3]\) into two components.

Lemma 3.6. We have

\[
\sum_{a \leq x^{1/6} \log x} \sum_{\omega(a) = k-1} \sum'_{\pi : \|\pi\| \leq x} 1 = O\left(\frac{x}{\log^A x}\right),
\]

where \(U\) is the set of units in \(\mathbb{Z}[i]\) and the \(b\) on the outer sum indicates a restriction to integers \(a\) such that there is a unique prime power \(q^{\nu} \|a\| \) with \(q \equiv 3 \pmod{4}\) and \(\nu\) odd.

Proof. If \(\alpha = u(\pi - 1)\) for \(u \in U\), then there are at most four choices for \(\pi\), given \(\alpha\). Thus

\[
\sum_{\omega(a) = k-1} \sum'_{\pi : \|\pi\| \leq x} 1 \leq 4 \sum_{a \leq x^{1/6} \log x} |S_a|.
\]

We have \(|S_a| = \prod_{q \equiv 1 (\text{mod} \ 4)} (\nu_q + 1)\); this is bounded from above by the divisor function on \(a\), which we denote \(\tau(a)\). Therefore, the above is

\[
\ll \sum_{a \leq x^{1/6} \log x} \tau(a) \ll x^{1/16} \log x (\log x),
\]

which is \(O(x/\log^A x)\) for any \(A > 0\). \(\square\)

The second case provides the main contribution to the sum.

Lemma 3.7. Let \(a \leq x^{1/6} \log x\) with \(\omega(a) = k-1\) such that all primes \(q \equiv 3 \pmod{4}\) dividing \(a\) have \(\nu_q\) even. Let \(\alpha \in S_a\). Then

\[
\sum'_{\pi : \|\pi\| \leq x} 1 \ll \frac{x \log^2 x \|a\|}{\|\alpha\| (\log x)^2}
\]

uniformly over all \(a\) as above and \(\alpha \in S_a\).

Proof. If \(\pi \equiv 1 \pmod{\alpha}\), then \(\pi = 1 + \alpha \beta\) for some \(\beta \subset \mathbb{Z}[i]\). Thus \(\beta = \frac{\pi - 1}{\alpha}\), and so \(\|\beta\| \leq \frac{2\pi}{\|\alpha\|}\). Let \(\mathcal{A}\) denote the sequence of elements in \(\mathbb{Z}[i]\) given by

\[
\left\{ \beta(1 + \alpha \beta) : \|\beta\| \leq \frac{2x}{\|\alpha\|} \right\}.
\]

Define \(\mathcal{P} = \{p \subset \mathbb{Z}[i] : \|p\| \leq z\}\) where \(z\) is a parameter to be chosen later. Then, in the notation of Theorem 2.1

\[
\sum'_{\pi : \|\pi\| \leq x} 1 \leq S(\mathcal{A}, \mathcal{P}) + O(z).
\]

Here, the \(O(z)\) term comes from those \(\pi \in \mathbb{Z}[i]\) such that both \(\pi\) and \((\pi - 1)/\alpha\) are primes of norm less than \(z\).

For \(u \subset \mathbb{Z}[i]\), write \(A_u = \#\{a \in \mathcal{A} : a \equiv 0 \pmod{u}\}\). An element \(a \in \mathcal{A}\) is counted by \(A_u\) if and only if a generator of \(u\) divides \(a\). Thus, by familiar estimates on the number of integer lattice points contained in a circle, \(A_u\) satisfies the equation

\[
A_u = \frac{2\pi x \nu(u)}{\|\alpha\| \|u\|} + O\left(\nu(u) \frac{x}{\|\alpha\| \|u\|^{1/2}}\right),
\]
where
\[\nu(u) = \#\{ \beta \pmod{u} : \beta(1 + \alpha\beta) \equiv 0 \pmod{u} \}. \]

We apply Theorem 2.1 with
\[X = \frac{2\pi x}{\|\alpha\|} \quad \text{and} \quad \delta(u) = \frac{\nu(u)}{\|u\|}. \]

With these choices, we have
\[r(u) = O\left(\frac{\sqrt{x}}{(\|\alpha\||\|u\|)^{1/2}}\right). \]

Then, for any even integer \(m \geq 0 \),
\[S(A, \mathcal{P}) = 2\pi x \frac{\prod_{\|p\| \leq z} \left(1 - \frac{\nu(p)}{\|p\|}\right)}{\|\alpha\|} \prod_{\|p\| \leq z} \left(1 - \frac{1}{\|p\|}\right) \]
\[\leq \prod_{\|p\| \leq z} \left(1 - \frac{1}{\|p\|}\right)^2 \prod_{\|p\| \leq z} \left(1 - \frac{1}{\|p\|}\right)^{-1} \ll \frac{1}{(\log z)^{2} \Phi(\alpha)}, \]

where \(\Psi = \prod_{p \in \mathcal{P}} p \).

For a prime \(p \), we have \(\nu(p) = 2 \) if \(\alpha \not\equiv 0 \pmod{p} \) and \(\nu(p) = 1 \) otherwise. Therefore, the product in the first term is
\[\prod_{\|p\| \leq z} \left(1 - \frac{2}{\|p\|}\right) \prod_{\|p\| \leq z} \left(1 - \frac{1}{\|p\|}\right) \]
\[\leq \prod_{\|p\| \leq z} \left(1 - \frac{1}{\|p\|}\right)^2 \prod_{\|p\| \leq z} \left(1 - \frac{1}{\|p\|}\right)^{-1} \ll \frac{1}{(\log z)^{2} \Phi(\alpha)}, \]

where in the last step we used Proposition 2.3.

Choose \(z = x^{200(\log_2 x)^2} \). Then our first term in (4) is
\[\ll \frac{x(\log_2 x)^4}{\Phi(\alpha)(\log x)^2}. \]

Recall that \(\|\alpha\| = a \), and \(a \leq x^{1-1/6 \log_2 x} \). Since \(\Phi(\alpha) \gg \|\alpha\|/\log_2 x \) (analogous to the minimal order for the usual Euler function, c.f. [HW00 Theorem 328]), the above is
\[\ll \frac{x(\log_2 x)^5}{\|\alpha\|(\log x)^2}. \]

We now show that this “main” term dominates the two \(O \)-terms uniformly for \(\alpha \in S_a \) and \(a \leq x^{1-1/6 \log_2 x} \). For the first \(O \)-term, we begin by noting that \(\nu(u)/\|u\|^{1/2} \ll 1 \).

Then, taking \(m = 10 \log_2 x \), we have
\[\sum_{u \in \Psi} \sum_{\omega(u) \leq m} \frac{\nu(u)}{\|u\|^{1/2}} \ll \sum_{k=0}^{m} \left(\pi_K(z)\right)^k \leq \sum_{k=0}^{m} \pi_K(z)^k \leq 2\pi_K(z)^m \leq x^{1/20 \log_2 x}, \]

where \(\pi_K(z) \) denotes the number of prime ideals \(p \subset \mathbb{Z}[i] \) with norm up to \(z \). Therefore, the inequality
\[\frac{x(\log_2 x)^5}{\|\alpha\|(\log x)^2} \gg \frac{x^{1/2 + 1/20 \log_2 x}}{\|\alpha\|^{1/2}} \]

must be satisfied.
holds for all \(\alpha \) with \(\| \alpha \| \leq x^{1-1/6 \log_2 x} \), as desired.

Next we handle the second \(O \)-term. The sum in this term is

\[
\sum_{u|p, \omega(u) \geq m} \delta(u) \leq \sum_{s \geq m} \frac{1}{s!} \left(\sum_{\|p\| \leq z} \frac{\nu(p)}{\|p\|} \right)^s.
\]

Observe that, by Proposition 2.3, we have

\[
\sum_{\|p\| \leq z} \frac{\nu(p)}{\|p\|} \leq 2 \log_2 x + O(1).
\]

Thus, by the ratio test, one sees that the sum on \(s \) is

\[
\ll \frac{1}{m!} (2 \log_2 x + O(1))^m.
\]

Using Proposition 2.3 followed by Stirling’s formula, we obtain that the above quantity is

\[
\frac{1}{m!} (2 \log_2 x + O(1))^m \leq \left(\frac{2e \log_2 x + O(1)}{10 \log_2 x} \right)^{10 \log_2 x} \ll \left(\frac{e}{5} \right)^{9 \log_2 x} \leq \frac{1}{(\log x)^5}.
\]

So the second \(O \)-term is

\[
\ll \frac{x}{\| \alpha \|(\log x)^5},
\]

and this is certainly dominated by the main term.

\[\square\]

From Lemmas 3.6 and 5.7, we see (2) can be rewritten

\[N_k \ll \frac{x \log_2 x}{(\log x)^2} \sum_{a \leq x^{1-1/6 \log_2 x}, \omega(a) = k-1} \frac{|S_a|}{a} + O\left(\frac{x}{\log^A x} \right),
\]

noting that \(\| \alpha \| = a \) for all \(a \) under consideration and all \(\alpha \in S_a \). We are now in a position to bound \(N_k \) from above in terms of \(k \).

Lemma 3.8. We have

\[
\sum_{a \leq x^{1-1/6 \log_2 x}, \omega(a) = k-1} \frac{|S_a|}{a} \leq \frac{(\log_2 x + O(1))^{k-1}}{(k-1)!}.
\]

Proof. We have already seen that the size of \(S_a \) is \(\prod_{p|a; p \equiv 1 (\mod 4)} (v_p + 1) \), where \(v_p \) is defined by \(p^{v_p} || a \). Recall that in the current case, each prime \(p \equiv 3 (\mod 4) \) dividing \(a \) appears to an even power. Therefore, we have

\[5\]

\[
\sum_{a \leq x, \omega(a) = k-1} \frac{|S_a|}{a} \leq \frac{1}{(k-1)!} \left(\sum_{p^k \leq x, p \equiv 3 (\mod 4)} \frac{|S_{p^k}|}{p^k} + \sum_{p^k \leq x, p \equiv 3 (\mod 4)} \frac{|S_{p^{2k}}|}{p^{2k}} + O(1) \right)^{k-1}.
\]

Note that \(|S_{p^{2k}}| = 1 \) for each prime \(p \equiv 3 (\mod 4) \). Thus we can absorb the sum corresponding to these primes into the \(O(1) \) term, giving

\[6\]

\[
\sum_{a \leq x, \omega(a) = k-1} \frac{|S_a|}{a} \ll \frac{1}{(k-1)!} \left(\sum_{p^k \leq x, p \equiv 3 (\mod 4)} \frac{|S_{p^k}|}{p^k} + O(1) \right)^{k-1}.
\]
Now
\[
\sum_{p^f \leq x \atop p \equiv 1 \mod 4} \frac{|S_p|}{p^f} = \sum_{p^f \leq x \atop p \equiv 1 \mod 4} \frac{\ell + 1}{p^f} + O(1)
\]
\[
= \sum_{p^f \leq x \atop p \equiv 1 \mod 4} \frac{2}{p} + O(1)
\]
\[
= \log_2 x + O(1).
\]
Inserting this expression into (6) proves the lemma. \(\square\)

3.2. Finishing the upper bound. We have shown so far that
\[
N_k \ll \frac{x(\log_2 x)^5}{(\log x)^2} \cdot \frac{(\log_2 x + O(1))^{k-1}}{(k-1)!}.
\]
We now sum on \(k > \gamma \log_2 x\) for fixed \(\gamma > 1\) to complete the proof of Theorem 3.1. (The statement corresponding to \(0 < \gamma < 1\) may be proved in a completely similar way.) Again using the ratio test and Stirling’s formula, we have
\[
\sum_{k > \gamma \log_2 x} \frac{(\log_2 x + O(1))^{k-1}}{(k-1)!} \ll \left(\frac{e \log_2 x + O(1)}{[\gamma \log_2 x]} \right)^{[\gamma \log_2 x]}
\]
\[
\ll \left(\frac{\gamma}{\gamma + O(\frac{1}{\log_2 x}}) \right)^{[\gamma \log_2 x]} \ll \gamma (\log x)^{\gamma - \gamma \log \gamma}.
\]
Thus, we have obtained an upper bound of
\[
\ll \gamma \frac{x(\log_2 x)^5}{(\log x)^{2+\gamma \log \gamma - \gamma}},
\]
as desired.

4. A lower bound

Theorem 4.1. Consider \(E : y^2 = x^3 - x\) and fix \(\gamma > 1\). Then
\[
\#\{p \leq x : \omega(\#(E(F_p))) > \gamma \log_2 x\} \geq \frac{x}{(\log x)^{2+\gamma \log \gamma - \gamma + o(1)}}.
\]
The same statement is true if instead \(0 < \gamma < 1\) and the strict inequality is reversed on the left-hand side.

Our strategy in the case \(\gamma > 1\) is as follows. As before, we write \(#(E(F_p)) = \|\pi - 1\|\), where \(\pi \equiv 1 \mod (1 + i)^3\) and \(p = \pi \overline{\pi}\). Let \(k\) be an integer to be specified later and fix an ideal \(s \in \mathbb{Z}[i]\) with the following properties:

(A) \((1 + i)^3 | s\)
(B) \(\omega(s) = k\)
(C) \(P^+(\|s\|) \leq x^{1/100 \gamma \log_2 x}\)
(D) Each prime ideal \(p | s\) (with the exception of \((1 + i)\)) lies above a rational prime \(p \equiv 1 \mod 4\)
(E) Distinct \(p\) dividing \(s\) lie above distinct \(p\)
(F) \(s\) squarefree

Here \(P^+(n)\) denotes the largest prime factor of \(n\). Note that we have \(\omega(s) = \omega(\|s\|)\).

First, we will estimate from below the size of the set \(\mathcal{M}_s\), defined to be the set of those \(\pi \in \mathbb{Z}[i]\) with \(\|\pi\| \leq x\) satisfying the following properties:
(1) \(\pi \) prime (in \(\mathbb{Z}[i] \))
(2) \(\|\pi\| \) prime (in \(\mathbb{Z} \))
(3) \(\pi \equiv 1 \pmod{\sigma} \)
(4) \(P^- \left(\frac{\|\pi-1\|}{\|\pi\|} \right) > x^{1/100 \gamma \log_2 x} \).

Here \(P^- (n) \) denotes the smallest prime factor of \(n \). The conditions on the size of the prime factors of \(\|\pi\| \) and \(\|\pi-1\|/\|\pi\| \) imply that each \(\pi \) with \(\|\pi\| \leq x \) belongs to at most one of the sets \(M_\pi \). If \(\gamma > 0 \) is chosen to be greater than \(\gamma \log_2 x \), then carefully summing over \(\sigma \) satisfying the conditions above yields a lower bound on the count of distinct \(\pi \) corresponding to \(p \) with the property that \(\omega(\#E(\mathbb{F}_p)) \geq k > \gamma \log_2 x \). The problem of counting elements \(\pi \) and \(\pi^* \) with \(p = \pi \pi^* \) is remedied by inserting a factor of \(\frac{1}{\pi} \), which is of no concern for us.

More care is required in the case \(0 < \gamma < 1 \), which is handled in Section 4.3.

4.1. Preparing for the proof of Theorem 4.1. Suppose the fixed ideal \(\mathfrak{s} \) is generated by \(\sigma \in \mathbb{Z}[i] \). We will estimate from below the size of \(M_\mathfrak{s} \) using Theorem 2.1. Define \(A \) to be the sequence of elements of \(\mathbb{Z}[i] \) of the form

\[
\left\{ \frac{\pi-1}{\sigma} : \|\pi\| \leq x, \pi \text{ prime, and } \pi \equiv 1 \pmod{\sigma} \right\}.
\]

Let \(\mathcal{P} \) denote the set of prime ideals \(\{ p : \|p\| \leq z \} \), where \(z := x^{1/50 \gamma \log_2 x} \). Let \(\mathfrak{p} := \prod_{p \in \mathcal{P}} p \). If \(\frac{\pi-1}{\sigma} \equiv 0 \pmod{p} \) implies \(\|\pi\| \geq z \), then all primes \(p \mid \|\pi\| \) have \(p > x^{1/100 \gamma \log_2 x} \). Note also that if a prime \(\pi \in \mathbb{Z}[i] \), \(\|\pi\| \leq x \) is such that \(\|\pi\| \) is not prime, then \(\|\pi\| = p^2 \) for some rational prime \(p \), and so the count of such \(\pi \) is clearly \(O(\sqrt{x}) \). Therefore, we have

\[
\#M_\mathfrak{s} \geq S(A, \mathcal{P}) + O(\sqrt{x}).
\]

Lemma 4.2. With \(M_\mathfrak{s} \) defined as above, we have

\[
\#M_\mathfrak{s} \geq c \cdot \frac{\operatorname{Li}(x) \log x}{\Phi(\mathfrak{s}) \log x} + O \left(\sum_{\|p\| \leq z} |r(us)| \right) + O \left(\frac{1}{\Phi(\mathfrak{s}) (\log x)^{22}} \right) + O(\sqrt{x}),
\]

where \(r(v) = \left| \frac{\operatorname{Li}(x)}{\Phi(v)} - \pi(x; v, 1) \right| \) and \(c > 0 \) is a constant.

Proof. First, note that we expect the size of \(A \) to be approximately \(X := 4 \frac{\operatorname{Li}(x)}{\Phi(\mathfrak{s})} \). Write \(A_u = \# \{ a \in A : u \mid a \} \). Then

\[
A_u = X \delta(u) + r(us),
\]

where \(\delta(u) = \frac{\Phi(\mathfrak{s})}{\Phi(us)} \) and \(r(us) = \left| 4 \frac{\operatorname{Li}(x)}{\Phi(us)} - \pi(x; us, 1) \right| \). By Theorem 2.1, for any even integer \(m \geq 0 \) we have

\[
S(A, \mathcal{P}) = 4 \frac{\operatorname{Li}(x)}{\Phi(\mathfrak{s})} \prod_{\|p\| \leq z} \left(1 - \frac{\Phi(\mathfrak{s})}{\Phi(p\mathfrak{s})} \right) + O \left(\sum_{\|p\| \leq z} |r(us)| \right) + O \left(\frac{\operatorname{Li}(x)}{\Phi(\mathfrak{s})} \sum_{\|p\| \leq z} \delta(u) \right) + O(\sqrt{x}).
\]
Using Proposition 2.3, we have
\[\prod_{\|p\| \leq z} \left(1 - \frac{\Phi(s)}{\Phi(ps)} \right) = \prod_{\|p\| \leq z} \left(1 - \frac{1}{\Phi(p)} \right) \prod_{\|p\| \leq z} \left(1 - \frac{1}{\|p\|} \right) \]
\[= \prod_{\|p\| \leq z} \left(1 - \frac{1}{\|p\|} \right) \prod_{\|p\| \leq z} \left(1 - \frac{1}{(\|p\| - 1)^2} \right) \]
\[\gg \frac{1}{\log z} = \frac{\log x}{\log x} \]

Take \(m = 14\lfloor \log_2 x \rfloor \). We leave aside the first \(O \)-term and concentrate for now on the second. This term is handled in essentially the same way as in the proof of the upper bound: The sum in the this term is bounded from above by
\[\sum_{s \geq m} \frac{1}{s!} \left(\sum_{\|p\| \leq z} \delta(p) \right)^s. \]
By Proposition 2.3, we have
\[\sum_{\|p\| \leq z} \delta(p) \leq \log_2 x + O(1). \]
Now, one sees once again by the ratio test that the sum on \(s \) is
\[\ll \frac{1}{m!} \left(\sum_{\|p\| \leq z} \delta(p) \right)^m \leq \frac{1}{m!} (\log_2 x + O(1))^m. \]
Thus, by the same calculations as in the proof of Theorem 3.1, the second \(O \)-term is
\[\ll \frac{\operatorname{Li}(x)}{\Phi(s)(\log x)^{22}}, \]
completing the proof of the lemma.

We now sum this estimate over \(\sigma \) in an appropriate range to deal with the \(O \)-terms and establish a lower bound. Here, the cases \(\gamma > 1 \) and \(0 < \gamma < 1 \) diverge.

4.2. The case \(\gamma > 1 \). The argument in this case is somewhat simpler. Recall that \(s \) is chosen to satisfy properties A through F listed below Theorem 4.1; in particular, \(\omega(s) = k \) for some integer \(k \) and \(P^+(\|s\|) \leq x^{1/100\gamma \log_2 x} \). Choose \(k := \lfloor \gamma \log_2 x \rfloor + 2 \).
Since \(\omega(\|s\|) = \omega(s) \), we have that \(\|s\| \leq x^{k/100\gamma \log_2 x} \leq x^{1/10} \). A lower bound follows by estimating the quantity
\[\mathcal{M} = \sum' \# M_s, \]
where the prime indicates a restriction to those ideals \(s \subset \mathbb{Z}[i] \) satisfying properties A through F mentioned above.

Lemma 4.3. We have
\[\mathcal{M} \gg \frac{x \log_2 x (\log_2 x + O(\log_3 x))^k}{k!(\log x)^2}. \]

Proof. Since \(\sum_{\|s\| \leq x} 1/\Phi(s) \ll \log x \), the second \(O \)-term in Lemma 4.2 is, upon summing on \(s \), bounded by a constant times \(\operatorname{Li}(x)/(\log x)^{21} \). The third error term, \(O(\sqrt{x}) \), is therefore safely absorbed by this term.
We now handle the sum over s of the first O-term. We have $|r(us)| = |\pi(x; us, 1) - 4\text{Li}(x)/\Phi(us)|$. We can think of the double sum (over s and u) as a single sum over a modulus q, inserting a factor of $\tau(q)$ to account for the number of ways of writing q as a product of two ideals in $\mathbb{Z}[i]$. (Here, $\tau(q)$ is the number of ideals in $\mathbb{Z}[i]$ which divide q.) Recalling our choice of $m = 14[\log_2 x]$, we have

$$\sum_{|s| \leq x^{1/10}} \sum_{\omega(u) \leq m} |r(us)| \ll \sum_{|s| < x^{2/5}} |\pi(x; q, 1) - \frac{\text{Li}(x)}{\Phi(q)}\tau(q)|.$$

The restriction $|q| \leq x^{2/5}$ comes from $|s| \leq x^{1/10}$ and $|u| \leq x^{m/50^1 \log_2 x} \leq x^{28}$, recalling $m = 14[\log_2 x]$ and $\gamma > 1$. Now, for all $y > 0$ and nonzero $i \in \mathbb{Z}[i]$ we have $\pi(y; i, 1) \ll y/|i|$; indeed, the same inequality is true with $\pi(y; i, 1)$ replaced by the count of all proper ideals $\equiv 1 \pmod{i}$. Thus

$$|\pi(x; q, 1) - \frac{\text{Li}(x)}{\Phi(q)}| \ll \frac{x}{\Phi(q)}.$$

Using this together with the Cauchy-Schwarz inequality and Proposition 2.2, we see that, for any $A > 0$,

$$\sum_{|q| < x^{2/5}} |\pi(x; q, 1) - \frac{4\text{Li}(x)}{\Phi(q)}\tau(q)| \ll \sum_{|q| < x^{2/5}} |\pi(x; q, 1) - \frac{4\text{Li}(x)}{\Phi(q)}|^{1/2} \left(\frac{x}{\Phi(q)}\right)^{1/2} \tau(q)$$

$$\ll \left(x \sum_{|q| < x^{2/5}} \frac{\tau(q)^2}{\Phi(q)}\right)^{1/2} \left(\frac{x}{(\log x)^A}\right)^{1/2}.$$

We can estimate this sum using an Euler product:

$$\sum_{|q| < x^{2/5}} \frac{\tau(q)^2}{\Phi(q)} \ll \prod_{|p| \leq x^{2/5}} \left(1 + \frac{4}{|p|}\right)$$

$$\leq \exp\left\{ \sum_{|p| \leq x^{2/5}} \frac{4}{|p|}\right\} \ll (\log x)^4.$$

Collecting our estimates, we see that the total error is at most $x/(\log x)^{A/2 - 2}$, which is acceptable if A is chosen large enough.

For the main term, we need a lower bound for the sum

$$(7) \quad M = \sum_{s} \frac{1}{\Phi(s)}.$$

Let $I = (e^{(\log_2 x)^2/k}, x^{1/10k})$. Define a collection of prime ideals \mathcal{P} such that each $p \in \mathcal{P}$ lies above a prime $p \equiv 1 \pmod{4}$, each prime $p \equiv 1 \pmod{4}$ has exactly one prime ideal lying above it in \mathcal{P}, and $|p| \in I$. We apply Lemma 2.3 with the y_i chosen to be of the form $1/\Phi(p)$ with $p \in \mathcal{P}$, obtaining

$$(8) \quad \frac{1}{\Phi((1 + i)^3)} \sum_{\text{ord}(s/(1+i)^3) \Rightarrow p \in \mathcal{P}} \frac{1}{\Phi(s/(1 + i)^3)}$$

$$\gg \frac{1}{(k - 1)!} \left(\sum_{p \in \mathcal{P}} \frac{1}{\Phi(p)} \right)^{k-1} \left(1 - \binom{k-1}{2} \frac{1}{\omega_i^2} \sum_{p \in \mathcal{P}} \frac{1}{\Phi(p)^2} \right),$$
where
\[S_1 = \sum_{p \in P} \frac{1}{\Phi(p)}. \]

By Theorem 2.3, \(S_1 = \frac{1}{2} \log_2 x - 2 \log_3 x + O(1) \). This introduces a factor of \(\frac{1}{2} \) to the right-hand side of (5), but this is of no concern: If each of the \(k \) prime factors of \(s \), excluding \((1 + i)\), lies above a distinct prime \(p \equiv 1 \pmod{4} \), then there are \(2^{k-1} \) such ideals \(s \) of a given norm. Thus, if we extend the sum on the left-hand side of (8) to range over all \(s \) counted in primed sums (cf. the discussion above Lemma 4.3), we obtain
\[\sum_{s} \frac{1}{\Phi(s)} \geq \frac{2^{k-1}}{(k-1)!} \left(\frac{1}{2} \log_2 x - 2 \log_3 x + O(1) \right)^{k-1} \times \left(1 - \left(\frac{k-1}{2} \right) \left(\frac{1}{S_1} \sum_{p \in P} \frac{1}{\Phi(p)^2} \right) \right). \]

The quantity \(\left(\frac{k-1}{2} \right) \) is bounded from above by \(\lceil \gamma \log_2 x \rceil^2 \), and the sum on \(1/\Phi(p)^2 \) tends to 0 as \(x \to \infty \). Therefore,
\[1 - \left(\frac{k-1}{2} \right) \left(\frac{1}{S_1} \sum_{p \in P} \frac{1}{\Phi(p)^2} \right) \geq 1 - 4 \gamma^2 \sum_{p \in P} \frac{1}{\Phi(p)^2} \geq \frac{1}{2} \]
for large enough \(x \), and so
\[\frac{x \log_2 x}{(\log x)^2} \sum_{s} \frac{1}{\Phi(s)} \geq \frac{x \log_2 x (\log_2 x + O(\log_3 x))^{k-1}}{(k-1)! (\log x)^2}, \]
as desired. \(\square \)

With \(k = \lceil \gamma \log_2 x \rceil + 2 \) and by the more precise version of Stirling’s formula \(n! \sim \sqrt{2\pi n} (n/e)^n \), we have
\[\frac{\log_2 x + O(\log_3 x)}{(k-1)!} \gg \frac{1}{\sqrt{\log_2 x}} \left(\frac{e \log_2 x + O(\log_3 x)}{\lceil \gamma \log_2 x \rceil} \right)^{\lceil \gamma \log_2 x \rceil} \]
\[= \frac{1}{\sqrt{\log_2 x}} \left(\frac{e}{\gamma} \left(1 + O \left(\frac{\log_3 x}{\log_2 x} \right) \right) \right)^{\lceil \gamma \log_2 x \rceil} \]
\[= (\log x)^{\gamma - \gamma \log \gamma + o(1)}. \]

This yields a main term of the shape
\[\frac{x}{(\log x)^{2 + \gamma \log \gamma + o(1)}}, \]
which completes the proof of Theorem 4.1 in the case \(\gamma > 1 \).

4.3. The case \(0 < \gamma < 1 \). Above, we used the fact that if \(\pi - 1 \) is divisible by certain \(s \subset \mathbb{Z}[i] \) with \(\omega(\|s\|) = k \), then \(\|\pi - 1\| \) will have at least \(k > \gamma \log_2 x \) prime factors. The case \(0 < \gamma < 1 \) is requires more care: We need to ensure that the quantity \(\|\pi - 1\|/\|s\| \) does not have too many prime factors.

Lemma 4.4. For any \(s \subset \mathbb{Z}[i] \) satisfying properties A through F listed below Theorem 4.1, we have
\[\# \{ \pi \in \mathcal{M}_s : \omega \left(\frac{\|\pi - 1\|}{\|s\|} \right) > \frac{\log_2 x}{\log_4 x} \} \ll \frac{x}{\|s\| (\log x)^\gamma}. \]
Upon discarding those π counted by the above lemma, the remaining π will have the property that $\omega(\|\pi - 1\|) \in [k, k + \log_2 x / \log_4 x]$. Choosing k to be the greatest integer strictly less than $\gamma \log_2 x - \log_2 x / \log_4 x$ ensures that $\|\pi - 1\| < \gamma \log_2 x$.

Proof of Lemma 4.4. We begin with the observation that, for any $s \in \mathbb{Z}[i]$, we have $\|\pi - 1\|/\|s\| \leq 2x/\|s\|$. Therefore, we estimate

$$
\sum_{\|a\| \leq \frac{2x}{\|s\|}} 1 \leq \frac{2x}{\|s\|} \sum_{\|a\| \leq \frac{2x}{\|s\|}} \frac{1}{\|a\|}.
$$

Noting that $\omega(\|a\|) \leq \omega(a)$ for any $a \in \mathbb{Z}[i]$, by Theorem 2.3 and Stirling’s formula, we have

$$
\sum_{\|a\| \leq \frac{2x}{\|s\|}} \frac{1}{\|a\|} \leq \sum_{\|a\| \leq \frac{2x}{\|s\|}} \frac{1}{\|a\|} \leq \sum_{\ell > \log_2 x / \log_4 x} \frac{1}{\ell^\ell} \sum_{x/100 \log_2 x \leq \|p\| \leq \frac{x^2}{\log_4 x}} \sum_{m=1}^\infty \frac{1}{\|p\|^m} \cdot \ell.
$$

For each $\ell > \log_2 x / \log_4 x$, we have $(\log_4 x + O(1))/\ell < 1/2$. Thus

$$
\sum_{\ell > \log_2 x / \log_4 x} \frac{1}{\ell^\ell} \leq \left(\frac{\log_4 x + O(1)}{\ell} \right)^{\log_2 x / \log_4 x + 1} \leq \left(\frac{1}{(\log_2 x)^{1+o(1)}} \right)^{\log_2 x / \log_4 x} \leq e^{-2 \log_2 x \log_3 x / \log_4 x}.
$$

This last expression is smaller than $(\log x)^{-A}$, for any $A > 0$. Therefore, for any fixed $A > 0$,

$$
\#\{\pi \in \mathcal{M}_s : \omega\left(\frac{\|\pi - 1\|}{\|s\|}\right) > \frac{\log_2 x}{\log_4 x}\} \ll \frac{x}{\|s\|(\log x)^A}.
$$

Write

$$
\mathcal{M}_s' = \{\pi \in \mathcal{M}_s : \omega\left(\frac{\|\pi - 1\|}{\|s\|}\right) \leq \frac{\log_2 x}{\log_4 x}\}.
$$

Lemmas 4.2 and 4.4 show that $\#\mathcal{M}_s'$ satisfies

$$
\#\mathcal{M}_s' \geq c \cdot \frac{x \log_2 x}{\Phi(s)(\log x)^2} + O\left(\sum_{u \in \mathcal{F}, \omega(u) \leq m} |r(u\mathbf{s})| \right) + O\left(\frac{1}{\Phi(s)} \frac{\text{Li}(x)}{(\log x)^2} \right) + O\left(\frac{x}{\|s\|(\log x)^A} \right) + O(\sqrt{x}),
$$

for any $A > 0$. Here, all quantities are defined as in the previous section. Just as before, we sum this quantity over $s \subset \mathbb{Z}[i]$ satisfying conditions A through F listed below.
Letting ' on a sum indicate a restriction to such s, we have, by the same calculations as before,

$$M' \gg \frac{x \log x (\log x + O(\log_3 x))^{k-1}}{(k-1)! (\log x)^2},$$

where

$$M' = \sum_s' \#M'_s.$$

Recall that k is chosen to be the largest integer strictly less than $\gamma \log_2 x - \log_2 x / \log_4 x$; then by Stirling’s formula,

$$\frac{\log x + O(\log_3 x))^{k-1}}{(k-1)!} \gg \frac{1}{\log_2 x} \left(\frac{e \log_2 x + O(\log_3 x)}{k-1} \right)^{k-1}$$

$$\gg \frac{1}{\log_2 x} \left(e \left(1 + O \left(\frac{1}{\log_4 x} \right) \right)^{k-1} \right)$$

$$\gg (\log x)^{\gamma \log \gamma - \gamma + o(1)}.$$

A final assembly of estimates yields Theorem 4.1 in the case $0 < \gamma < 1$.

REFERENCES

[Coj05] A. C. Cojocaru, Reductions of an elliptic curve with almost prime orders, Acta Arith. 119 (2005), no. 3, 265–289.

[dB66] N. G. de Bruijn, On the number of positive integers $\leq x$ and free of prime factors $> y$. II, Indag. Math. 28 (1966), 239 – 247.

[EN79] P. Erdős and J-L. Nicolas, Sur la fonction nombre de facteurs premiers de n, Séminaire Delange-Pisot-Poitou. Théorie des nombres 20 (1978-1979), no. 2, 1–19.

[HR83] H. Halberstam and K. F. Roth, Sequences, second ed., Springer-Verlag, New York-Berlin, 1983.

[Hux71] M. N. Huxley, The large sieve inequality for algebraic number fields. III. Zero-density results, J. London Math. Soc. (2) 3 (1971), 233–240.

[HW00] G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, fifth ed., Oxford University Press, Oxford, 2000.

[JU08] J. Jiménez Urroz, Almost prime orders of CM elliptic curves modulo p, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 5011, Springer, Berlin, 2008, pp. 74–87.

[Liu06] Y-R. Liu, Prime analogues of the Erdös-Kac theorem for elliptic curves, J. Number Theory 119 (2006), no. 2, 155–170.

[Pol09] P. Pollack, Not always buried deep, American Mathematical Society, Providence, RI, 2009.

[Pol99] M. Rosen, A generalization of Mertens’ theorem, J. Ramanujan Math. Soc. 14 (1999), no. 1, 1–19.

Department of Mathematics, Boyd Graduate Studies Research Center, University of Georgia, Athens, GA 30602, USA

E-mail address: ltroupe@math.uga.edu