On the Generators of the Group of Units Modulo a Prime and Its Analytic and Probabilistic Views

Ricky B. Villeta1*, Elmer C. Castillano2, and Roberto N. Padua3

1,2,3 University of Science and Technology of Southern Philippines, Cagayan de Oro City, Philippines

1 https://orcid.org/0000-0001-8386-6798

2 https://orcid.org/0000-0002-1230-8817

3 https://orcid.org/0000-0002-2054-0835

*Email Correspondence: rbvilleta35@usjr.edu.ph

\textbf{Abstract}

This paper further investigates the cyclic group \((\mathbb{Z}_p)^*\) with respect to the primitive roots or generators \(g \in (\mathbb{Z}_p)^*\). The simulation algorithm that determines the generators and the number of generators, \(g\) of \((\mathbb{Z}_p)^*\) for a prime \(p\) is illustrated using Python programming. The probability of getting a generator \(g\) of \((\mathbb{Z}_p)^*\), denoted by \(\frac{\phi(\phi(p))}{\phi(p)}\), is generated for prime \(p\) between 0 to 3000. The scatterplot is also shown that depicts the data points on the probability \(\frac{\phi(\phi(p))}{\phi(p)}\) of the group of units \((\mathbb{Z}_p)^*\) with respect to the order \(p - 1\) of \((\mathbb{Z}_p)^*\) for prime \(p\) between 0 to 3000. The scatterplot results reveal that the probability of getting a generator of the group of units \((\mathbb{Z}_p)^*\) is fluctuating within the probability range of 0.20 to 0.50, for prime \(p\) modulus from 3 to 3000. These findings suggest that the proportion of the number of generators of the group of units modulo a prime of order \(p - 1\), though fluctuating, is bounded from 20\% to 50\% for prime \(p\) modulus from 3 to 3000.

Keywords: Group of units modulo a prime, \((\mathbb{Z}_p)^*\), primitive roots or generators of \((\mathbb{Z}_p)^*\), simulation algorithm, probability of getting a generator \(g\) of \((\mathbb{Z}_p)^*\).

\textbf{1.0 Introduction}

Let \(Z_n\) be the set of integers \(\{0, 1, 2, \ldots, n - 1\}\) under addition modulo \(n\). Then the set of all elements \(a\) of \(Z_n\) relatively prime to \(n\), that is, \(\gcd(a, n) = 1\), under multiplication modulo \(n\) forms a group denoted by \((Z_n)^*\). The order of this group, \(\left| (Z_n)^* \right|\), is equal to \(\phi(n)\) where:

\[\phi(n) = n \prod_{p | n} \left(1 - \frac{1}{p}\right).\]

The function \(\phi\) is called the Euler Totient function (Vinogradov, 2003).

The group \((Z_n)^*\) is cyclic if and only if \(n\) is equal to 1, 2, 4, \(p^k\) or \(2p^k\) (Gauss, 1966). When \(n = p\) is prime, it follows that \((Z_n)^*\) is a cyclic group of
A number g is a generator of a cyclic group under multiplication modulo n, if for each b in this group, there exists a k, such that $g^k \equiv b\pmod{n}$, $\gcd(b, n) = 1$. Such a generator is called a primitive root modulo n. The integer k is called the index of b to the base g modulo n (sometimes referred to as the discrete logarithm of b to the base g modulo n). When $n = p$ is a prime, the number of primitive roots modulo n is $(n-1)/\phi(n)$ since a cyclic group of size $(n-1)$ has $(n-1)/\phi(n)$ generators (Vinogradov, 2003). Knuth (1998) showed that:

$$\frac{\phi(n)}{\phi(n-1)} = O(\log \log n)$$

so that for large n, the generators are very common among $\{2, 3, \ldots, n-1\}$.

This study endeavors to investigate further the cyclic group $(\mathbb{Z}_p)^*$, and the elements of $(\mathbb{Z}_p)^*$, specifically the generators $g \in (\mathbb{Z}_p)^*$. The simulation algorithm that determines the generators and the number of generators, g of $(\mathbb{Z}_p)^*$ for a prime p is illustrated using the Python programming. The distribution of the resulting number of generators for each prime p as modulus of the cyclic group $(\mathbb{Z}_p)^*$ is presented using a scatterplot diagram. The probability of getting a generator g of $(\mathbb{Z}_p)^*$, denoted by $\frac{\phi(\phi(p))}{\phi(p)}$, is also generated for prime p between 1 and 3000.

2.0 Prime Generators of $(\mathbb{Z}_p)^*$

The group $(\mathbb{Z}_p)^*$ under modulo p is cyclic with $\phi(p) = p - 1$ elements. The number of generators of this cyclic group, therefore is, at most $\phi(\phi(p)) = \phi(p - 1)$ (Vinogradov, 2003). We enumerated facts about the generators of $(\mathbb{Z}_p)^*$ and had proven some of them. Wilson’s Theorem (Burton, 2007, p. 94) in number theory is an important tool in deriving a result for the product of generators g_i of $(\mathbb{Z}_p)^*$ for a prime p. It says:

Theorem 2.1 (Wilson) Let p be a prime number. Then $(p - 1)\equiv -1 \pmod{p}$.

While Wilson’s result can be used as a primality test, however, it is computationally intractable. It remains an important theoretical result. Next, if p is a prime, then $(\mathbb{Z}_p)^*$ has $\phi(p) = p - 1$ elements. Since $(\mathbb{Z}_p)^*$ is cyclic, it has $\phi(p - 1)$ generators.

Examples 2.2

1. If $p = 11$, $(\mathbb{Z}_{11})^*$ has $\phi(11) = 10$ elements and it has $\phi(10) = \phi(10)$ generators, that is, $\phi(10) = 4$. The generators are $\{2, 6, 7, 8\}$. Note that $2 \cdot 6 \cdot 7 \cdot 8 \equiv 1 \pmod{11}$ since $2 \cdot 6 \equiv 1 \pmod{11}$ and $7 \cdot 8 = 56 \equiv 1 \pmod{11}$.

2. If $p = 17$, $(\mathbb{Z}_{17})^*$ has $\phi(17) = 16$ elements, and it has $\phi(16) = \phi(16) = 8$ generators, namely, $\{3, 5, 6, 7, 10, 11, 12, 14\}$. We can re-group generators as follows $\{(3,6), (5,7), (10,12), (11,14)\}$, so that $\prod_{i=1}^{8} g_i \equiv 1 \pmod{17}$.

The following result shows that the product of generators \(g_i \) of the group of units modulo a prime \(p \) is congruent to 1 modulo \(p \). Fermat’s Theorem (Burton, 2007, p. 88) is used to prove this result.

Theorem 2.3 (Fermat’s Theorem) Let \(p \) be a prime and suppose that \(p \) does not divide \(a \). Then, \(a^{p-1} \equiv 1 \pmod{p} \).

Theorem 2.4 Let \(p \) be a prime. Then \(\left(\mathbb{Z}_p^* \right) \) has \(\phi(p-1) \) generators and
\[
\phi(p-1) \prod g_i = 1 \pmod{p}.
\]

Proof: The first part follows from the fact that \(\left(\mathbb{Z}_p^* \right) \) has \(\phi(p) = p-1 \) elements. Since \(\left(\mathbb{Z}_p^* \right) \) is cyclic, it has \(\phi(p-1) \) generators. Next, take a generator \(g_k \). By Fermat’s Theorem (Theorem 2.3),
\[
g_k^{p-1} \equiv 1 \pmod{p} \text{ for } k = 1, 2, \ldots, \phi(p-1).
\]

For each \(j \), \(g_j = g_k^{d_j} \) since \(g_k \) is a generator. Now,
\[
\prod_{j=1}^{\phi(p-1)} g_j = \prod_{j=1}^{\phi(p-1)} g_k^{d_j} = g_k^{d_1+d_2+d_3+\ldots+d_{\phi(p-1)}} = g_k^{\sum_{j=1}^{\phi(p-1)} d_j}.
\]

We can pair each term by their inverses and this gives:
\[
\prod_{i=1}^{\phi(p-1)} g_i = g_k^{\phi(p-1)} \equiv 1 \pmod{p}. \quad \blacksquare
\]

Lemma 2.5 Let \(Q \) be the set of all primes less than or equal to \(p \) and let \(P \) be the set of all prime factors of \(\phi(p) \). Then \(P \subseteq Q \subseteq \left(\mathbb{Z}_p^* \right) \).

Proof: Let \(p_j \in P \), then \(p_j / \phi(p) \) and so \(p_j < p \). Moreover, \(\gcd(p_j, p) = 1 \), hence, \(p_j \in Q \subseteq \left(\mathbb{Z}_p^* \right) \). It follows that \(P \subseteq Q \). \(\blacksquare \)

3.0 Analytic and Probabilistic Procedure in Finding Generators of the Cyclic Group \(\left(\mathbb{Z}_p^* \right) \)

An element of the group of units modulo a prime \(p \), \(g \in \left(\mathbb{Z}_p^* \right) \), is a generator if \(\left(\mathbb{Z}_p^* \right) = \{ g^k : k \in \mathbb{Z} \} \). The computation of generators of the cyclic group, \(\left(\mathbb{Z}_p^* \right) \), is indispensable in pseudorandom number generators, error detecting codes, and in many cryptosystems such as the following: Diffie-Hellman key exchange protocol; ElGamal and Massey-Omura public key ciphers; DSA; ElGamal and Nyberg-Rueppel digital signature (Adamski & Nowakowski, 2015).

The following result, Theorem 3.1, Adamski & Nowakowski (2015), in algebraic number theory is useful in the simulation algorithm which can be used to obtain the generators of the cyclic group, \(\left(\mathbb{Z}_p^* \right) \) modulo a prime \(p \).

Theorem 3.1 Let \(\left(\mathbb{Z}_p^* \right) \) be the cyclic group of the group of units modulo a prime \(p \) of order \(\phi(p) = p-1 \). Let \(2p_1 \cdot p_2 \cdots p_k \) be the prime factorization of \(\phi(p) \). Then, \(g \in \left(\mathbb{Z}_p^* \right) \) is a generator of \(\left(\mathbb{Z}_p^* \right) \) if and only if for all \(i = 1, 2, \ldots, k \),
\[
g^{\phi(p)/p_i} \not\equiv 1 \pmod{p_i}.
\]

Consider next, the prime factors of \(\phi(p) \) where \(p \) is a prime. Suppose that \(\phi(p) = 2p_1p_2 \cdots p_k \). Let \(Q \) be the set of all primes less than or equal to \(p \), \(Q = \{ q_1, q_2, \ldots, q_m \} \). Then, it is clear that \(\{ p_1, p_2, \ldots, p_k \} \subseteq Q \subseteq \left(\mathbb{Z}_p^* \right) \).
Simulation Algorithm for Finding Generators of the Group of Units Modulo a Prime

This section determines the simulation algorithm that constructs a large prime \(p \) for the modulus of \(\left(Z_p \right)^* \), and finds the generator and the number of generators of \(\left(Z_p \right)^* \). Python programming was used in the implementation of this algorithm.

Constructing the Large Prime \(p \) for the Modulus of \(\left(Z_p \right)^* \)

In constructing the large prime \(p \) for the modulus of \(\left(Z_p \right)^* \), the Miller-Rabin Test (Rabin, 1980) for the test of primality can be used.

The Miller-Rabin Test of Primality

Suppose \(n \) is prime with \(n > 2 \), hence \(n - 1 \) is even, which can be written as \(2^t \cdot e \), where \(t \) and \(e \) are positive integers (\(e \) is odd). For each integer \(x, 1 < x < n \), then either \(x^e \equiv \pm 1 \pmod{n} \) or \(x^{2^r \cdot e} \equiv -1 \pmod{n} \) for any \(r \) with \(1 \leq r \leq t - 1 \).

The Miller-Rabin primality test is the contrapositive of the preceding statement, that is, in the event that we can find an \(x^e \) is not congruent to \(1 \) or \(-1 \pmod{n} \) or \(x^{2^r \cdot e} \) is not congruent to \(-1 \pmod{n} \) for all \(1 \leq r \leq t - 1 \), then \(n \) is not prime.

Finding the Generators \(g \in \left(Z_p \right)^* \) for a Prime \(p \)

The following outlines the simulation algorithm for finding the generators \(g \in \left(Z_p \right)^* \) for a large prime \(p \) as the modulus of \(\left(Z_p \right)^* \):

1. Determine the number \(n \) if prime using the Miller-Rabin primality test. If \(n \) is prime, then denote it by \(p \);
2. Get the prime factors of \(p-1 \), that is, \(\phi(p) = p - 1 = 2p_1 \cdot p_2 \cdots p_k \);
3. Initialize the list of generator;
4. Iterate \(j \) from 1 to \(\phi(p) = p - 1 \), the order or size of \(\left(Z_p \right)^* \);
5. In every iteration \(j \), initialize flag to a generator;
6. Iterate \(i \) for all the prime factors of \(\phi(p) = p - 1 \);
7. If \(j^{(p-1)/i} \equiv 1 \pmod{p} \), then make a flag that \(j \) is not a generator;
8. Outside the iteration of the prime factors, provide a condition for checking the flag;
9. If flag is true, then \(j \) is a generator and append to the list of generators of \(\left(Z_p \right)^* \);
10. Count the number of generators of \(\left(Z_p \right)^* \) in the list; and
11. Iterate steps 1 to 10 to generate all the generators of \(\left(Z_p \right)^* \), for prime \(p \) between 1 and 3000.

4.0 Simulation Results for the Generators and Number of Generators of the Group of Units Modulo a Prime for Prime Modulus Between 0 to 3000

Figures 1, 2, 3, 4 and 5 depict the scatterplot for the data points on the number of generators of the group of units \(\left(Z_p \right)^* \) versus the corresponding prime number modulus from 0 to 3000.
Figure 1. Scatterplot for the number of generators of \((\mathbb{Z}_p)^*\) versus the corresponding prime number modulus between 0 and 100

Figure 2. Scatterplot for the number of generators of \((\mathbb{Z}_p)^*\) versus the corresponding prime number modulus between 0 and 500

Figure 3. Scatterplot for the number of generators of \((\mathbb{Z}_p)^*\) versus the corresponding prime number modulus between 0 and 1000

Figure 4. Scatterplot for the number of generators of \((\mathbb{Z}_p)^*\) versus the corresponding prime number modulus between 0 and 2000

Figure 5. Scatterplot for the number of generators of \((\mathbb{Z}_p)^*\) versus the corresponding prime number modulus between 0 and 3000

5.0 The Probability, \(\frac{\phi(\phi(p))}{\phi(p)}\) Behavior of Finding a Generator of the Group of Units Modulo a Prime \(p\) for each Prime Modulus Between 0 to 3000

Figures 6, 7, 8, 9 and 10 depict the scatterplot for the data points on the probability \(\frac{\phi(\phi(p))}{\phi(p)}\) of the group of units \((\mathbb{Z}_p)^*\) versus the corresponding order \(p-1\) of \((\mathbb{Z}_p)^*\) for prime \(p\) between 2 to 3000. The scatterplot results reveal that the probability of getting a generator of the group of units \((\mathbb{Z}_p)^*\)
is fluctuating within the probability range of 0.20 to 0.50, for prime p modulus from 3 to 3000. These findings suggest that the proportion of the number of generators of the group of units modulo a prime of order $p - 1$, though fluctuating, is bounded from 20% to 50% for prime p modulus from 3 to 3000.

Figure 6. Scatterplot for the probability $\frac{\phi(p)}{\phi(p)}$ of the group of units $(\mathbb{Z}_p)^*$ versus the corresponding order $p-1$ of $(\mathbb{Z}_p)^*$ for prime p between 0 and 100

Figure 7. Scatterplot for the probability $\frac{\phi(p)}{\phi(p)}$ of the group of units $(\mathbb{Z}_p)^*$ versus the corresponding order $p-1$ of $(\mathbb{Z}_p)^*$ for prime p between 0 and 500

Figure 8. Scatterplot for the probability $\frac{\phi(p)}{\phi(p)}$ of the group of units $(\mathbb{Z}_p)^*$ versus the corresponding order $p-1$ of $(\mathbb{Z}_p)^*$ for prime p between 0 and 1000

Figure 9. Scatterplot for the probability $\frac{\phi(p)}{\phi(p)}$ of the group of units $(\mathbb{Z}_p)^*$ versus the corresponding order $p-1$ of $(\mathbb{Z}_p)^*$ for prime p between 0 and 2000

Figure 10. Scatterplot for the probability $\frac{\phi(p)}{\phi(p)}$ of the group of units $(\mathbb{Z}_p)^*$ versus the corresponding order $p-1$ of $(\mathbb{Z}_p)^*$ for prime p between 0 and 3000
6.0 Conclusion

This study investigated further the cyclic group \((\mathbb{Z}_p)^* \) with respect to the primitive roots or generators \(g \in (\mathbb{Z}_p)^* \). The simulation algorithm that determines the generators and the number of generators, \(g \) of the cyclic group \((\mathbb{Z}_p)^* \), for prime \(p \) is illustrated using the Python programming. The probability of getting a generator \(g \) of \((\mathbb{Z}_p)^* \) denoted by \(\frac{\phi(\phi(p))}{\phi(p)} \) is generated for prime \(p \) between 0 to 3000. The scatterplot results for the data points on the probability \(\frac{\phi(\phi(p))}{\phi(p)} \) of the group of units \((\mathbb{Z}_p)^* \) with respect to the order \(p - 1 \) of \((\mathbb{Z}_p)^* \) reveal that the probability of getting a generator of the group of units \((\mathbb{Z}_p)^* \) is fluctuating within the probability range of 0.20 to 0.50 for prime \(p \) modulus from 3 to 3000. These findings suggest that the proportion of the number of generators of the group of units modulo a prime of order \(p - 1 \), though fluctuating, is bounded from 20% to 50% for prime \(p \) modulus from 3 to 3000.

References

Adamski, T., & Nowakowski, W. (2015). The average time complexity of probabilistic algorithms for finding generators in finite cyclic groups. Bulletin of the Polish Academy of Sciences, Technical Sciences, 63(4), 989-996. https://doi.org/10.1515/bpasts-2015-0112.

Burton, D. M., (2007). Elementary number theory (6thed.). McGraw-Hill.

Gauss, C. F. (1966). *Disquisitiones arithmeticae* (English ed). Springer-Verlag. https://doi.org/10.1007/978-1-4939-7560-0.

Knuth, D. E. (1998). *The art of computer programming: Vol. 2. Seminumerical algorithms* (3rd ed.). Addison-Wesley.

Rabin, M. O. (1980). Probabilistic algorithm for testing primality. *Journal of Number Theory*, 12(1), 128-138. https://doi.org/10.1016/0022-314X(80)90084-0.

Vinogradov, I. M. (2003). *Elements of number theory*. Dover Publications Inc. https://books.google.com.ph/books?id=xllfdGPM9t4C&printsec=frontcover#v=onepage&q&f=false