Mycosis fungoides: is it a Borrelia burgdorferi-associated disease?

S Miertusova Tothova1,3, S Bonin1,2,3, G Trevisan2 and G Stanta*1,2

1ICGBE – International Centre for Genetic Engineering and Biotechnology, 99 Podriciana, Trieste 34012, Italy; 2Department of Clinical, Morphological and Technological Sciences, University of Trieste, 1-Dermatology Unit, 2-Pathology Unit, Cattinara Hospital, 447 Strada di Fiume, Trieste 34149, Italy

Mycosis fungoides (MF) is the most frequently found cutaneous T-cell lymphoma with an unknown aetiology. Several aetiopathogenetic mechanisms have been postulated, including persistent viral or bacterial infections. We looked for evidence of Borrelia burgdorferi (Bb), the aetiologic agent of Lyme disease (LD), in a case study of MF patients from Northeastern Italy, an area with endemic LD. Polymerase chain reaction for the flagellin gene of Bb was used to study formalin-fixed paraffin-embedded lesional skin biopsies from 83 patients with MF and 83 sex- and age-matched healthy controls with homologised cutaneous nevi. Borrelia burgdorferi-specific sequence was detected in 15 out of 83 skin samples of patients with MF (18.1%), but in none out of 83 matched healthy controls (P<0.001). The Bb positivity rates detected in this study support a possible role for Bb in the aetiopathogenesis of MF in a population endemic for LD.

British Journal of Cancer (2006) 94, 879 – 883. doi:10.1038/sj.bjc.6602997 www.bjcancer.com
Published online 21 February 2006
© 2006 Cancer Research UK

Keywords: Borrelia burgdorferi; cutaneous T-cell lymphoma; aetiology; Lyme disease; mycosis fungoides; polymerase chain reaction

MATERIALS AND METHODS

This study included 83 patients with a clinical diagnosis of MF, who were diagnosed between 1993 and 2003 at the Dermatology Unit of The University of Trieste in Italy. Clinical data analysed in this study included age, sex, stage of disease, extracutaneous tumour involvement and disease duration at the moment of the histological diagnosis. The study was conducted according to the Declaration of Helsinki protocols. Lesional tissue biopsies were reviewed by two dermatopathologists (GG and GS), and classified according to the criteria of the WHO classification of malignant lymphoma (Jaffe, 2001) after precise immunohistochemical evaluation. In all cases, the diagnosis of MF was established by clinico histopathological correlation between dermatologist GT and dermatopathologists GG and GT. Immunostaining was performed on paraffin-embedded tissue sections in all 83 MF cases using monoclonal antibodies specific for T-cell-associated antigens (CD3, CD4 and CD8) and for B-cell-associated antigens (CD20) and plasma cells.

Formalin-fixed and paraffin-embedded tissues of skin biopsies from 83 MF patients were examined for the presence of Bb genome. As controls we used surgical excisions of homolocalised naevi with the surrounding skin (63 dermal nevi, eight junctional nevi, six compound nevi and six blue nevi) of 83 healthy subjects, matched for age, sex and skin location.

Total DNA was extracted from 10μm sections of paraffin-embedded tissue blocks using a phenol–chloroform method (Pauluzzi et al, 2004). We avoided a nested PCR because of the high risk of carryover related to this method. As the DNA extracted from formalin-fixed and paraffin-embedded tissues is partially degraded, we decreased the amplicon size to 75 bases and increased a number of amplification cycles to 70 in order to improve the sensitivity of the method (a high number of PCR cycles is suggested for paraffin-embedded tissue analysis) (Lehmann and Kreipe, 2001; Bonin et al, 2003). Primer sets were designed in low variability regions of the Borrelia chromosome.
The primers targeted the gene that encodes flagellin, a 41 kDa protein (GenBank X16833) that is conserved in all European species of *Borrelia burgdorferi sensu lato* (Schwan et al., 2001). Amplification employed bp 775–793 as the forward primer and bp 849–829 as the reverse primer. The sensitivity and specificity of the primers has previously been tested (Pauluzzi et al., 2004). Every PCR reaction was run in duplicate under previously reported conditions (Pauluzzi et al., 2004).

Pure genomic Bb DNA from *Borrelia afzelii*, *Borrelia garinii* and *Borrelia sensu stricto* and Bb positive tissues were used as positive controls. Formalin-fixed and paraffin-embedded biopsies of acrodermatitis chronica atrophicans and erythema migrans were used as tissue positive controls. As negative controls, we used paraffin blocks without tissue and Bb negative tissues, which were skin lesions positive for *Mycobacterium tuberculosis*. In the set-up of the method to assess its specificity, we analysed scrapes of primary syphilis, the DNA from *Mycobacterium avium* and *Candida albicans*, as previously reported (Pauluzzi et al., 2004). As additional critical controls, we have included 36 paraffin-embedded biopsies of B-cell pseudolymphomas.

Polymerase chain reaction products were confirmed by hybridisation with a 32P-labelled probe bp 801–828 internal to the amplicon, detected and counted using a Cyclon instrument (Packard) (Pauluzzi et al., 2004).

In Bb positive cases a molecular analysis for the rearrangement of T-cell receptor-gamma (TCR-γ) gene was performed. T-cell receptor-gamma monoclonality was analysed using a PCR technique as described by McCarthy et al. (1992) and modified by Department of Dermatology, Medical University of Graz, Graz, Austria (Massone et al., 2005). Polymerase chain reaction products were concentrated by precipitation and then resuspended in 20 μl of TE buffer 1×. A 10 μl aliquot of the PCR product was run on a 3.5% Metaphor agarose gel, stained with ethidium bromide and viewed under the UV light (Massone et al., 2005). T-cell receptor-gamma gene rearrangements were considered monoclonal when one or two bands were produced within the expected size ranges (75–110 bases) (McCarthy et al., 1992). As positive controls we used DNA extracted from Jurkat cells and DNA extracted from non-Hodgkin lymph nodes where a T-cell monoclonality has been previously assessed.

Statistical analysis was performed with dedicated STATASE8 software (StatA Corporation, TX, USA). The statistical significance was evaluated by Fisher’s exact test for a 2 × 2 contingency table (95% confidence intervals) and one-way analysis of variance (ANOVA) test. Kruskal–Wallis test was applied to compare age at diagnosis, sex and disease duration in MF patients positive and negative for Bb genome. Moreover, to estimate the joint effects of the above-mentioned covariates on disease duration, the data were analysed by fitting the Cox proportional hazards regression model. P-values of 0.05 or less were considered to indicate statistical significance.

RESULTS

In total, 83 MF patients were enrolled in the study, and patient characteristics are shown in Table 1. Skin biopsies were taken from MF lesions localised in five cases on the head and neck, in 43 cases on the trunk, in nine cases on the upper extremities, in 14 cases on lower extremities, and 12 cases were of unspecified localisation. The majority of our patients (87%) presented with early-stage disease (IA – IIA). In total, 13% of our patients had late-stage disease (IIB – IVB). Duration of the disease varied from 6 months to 15 years, mean 3.5 years. Immunohistochemistry: all cases examined were uniformly positive for CD3 and CD4 antigens and uniformly negative for CD20 and plasma cell antigens, 75% of samples were also CD8 positive (Figure 1).

The most common histological finding in our cases consisted of a bandlike upper dermal infiltrate of lymphocytes, fibrosis of papillary dermis and the infiltration of lymphocytes into the epidermis (epidermotropism) in the form of either a single lymphocyte epidermotropism or Pautrier’s microabscesses.

Table 1 Characteristics of patients with mycosis fungoides

Patients' data	
Number of MF samples	83
Average age (years); range	65.5; 52 – 91
Median age (years); 25 – 75th percentile	66; 58 – 75
Sex male/female	49/34
Stage	
IA	33 (40%)
IB	28 (34%)
IIA	11 (13%)
III	4 (5%)
IV	5 (6%)
IVA	0
IVB	2 (2%)

Immunohistochemistry

CD3+	83/83
CD4+	83/83
CD8+	62/83
CD20−	0/83
Plasma cells	0/83

Figure 1 (A) The most common histological finding in our MF cases: a bandlike upper dermal infiltrate of lymphocytes, fibrosis of papillary dermis and the infiltration of lymphocytes into the epidermis (epidermotropism). (B) A detail of Pautrier’s microabscesses. (C) CD4 positive immunohistochemistry. (D) CD20 negative immunohistochemistry.
negative and Bb positive MF samples was not significant ($P = 0.99$). No significant differences were detected between Bb positive and negative patients regarding age ($P = 0.313$), sex ($P = 0.160$) and disease duration ($P = 0.590$). In the multivariate analysis, the analysed covariates (age, sex and Bb positive or negative results) did not have any effect on disease duration ($P = 0.596$).

In cases positive for the Bb genome, we analysed the TCR-\(\gamma\) gene rearrangements using PCR analysis. A monoclonal T-cell infiltrate was demonstrated in 12 out of 15 Bb positive cases (80%). In 10 cases, one band in the range of 80–85 bases was observed and in two cases two bands in the same range were found representing a biallelic rearrangement of the TCR-\(\gamma\) genes (Figure 2) (McCarthy et al., 1992).

DISCUSSION

We have demonstrated the presence of Bb-specific DNA within lesional skin biopsies of MF patients, implying that approximately 18% of MF cases in this geographic area are perhaps related to infection with this organism. Despite LD being endemic in this region of FVG in Northeastern Italy (Ciceroni and Ciaroncchi, 1998), we have shown that this association is highly significant, since Bb DNA was not found in any of our healthy control subjects.

To confirm the diagnosis of MF we analysed the TCR-\(\gamma\) gene rearrangements using PCR analysis. The finding of identical (clonal) TCR-\(\gamma\) gene rearrangements in cutaneous T lymphocytes indicates a malignant proliferation and differs them from a non-clonal (reactive) T-cell infiltration. Thus, detection of clonal TCR-\(\gamma\) gene rearrangements by PCR is a valuable tool for the diagnosis of cutaneous or other T-cell lymphomas. Out of 15 Bb positive cases, 12 were found to be positive for the clonal rearrangements of TCR-\(\gamma\) chain gene. The percentage of positive cases (80%) for the TCR-\(\gamma\) gene rearrangement agrees with other studies (Klemke et al., 2002; Ponti et al., 2005). Negative cases may represent T-cell neoplasms with rearrangement not in the gamma chain locus but rather in the V-\(\beta\) family locus (McCarthy et al., 1992).

The diagnosis of MF is dependent on confirmatory tissue biopsy showing atypical skin-homing (epidermotropic) malignant T-helper memory phenotype (CD3\(+\), CD4\(+\), CD8\(\sim\), CD45RO\(\sim\)) (Fierro et al., 2001). MF is hypothesised to arise through a persistent antigenic stimulation, leading to an accumulation of skin-homing T-cells that are defective in Fas-mediated apoptotic programmed cell death (Tan et al., 1974; Nagasawa et al., 2004).

Although viruses are known to provide chronic immune stimulation, the findings of their association with MF are controversial (Pancake et al., 1995; Boni et al., 1996; Nagore et al., 2000; Herne et al., 2003). HTLV-1 is found in adult T-cell lymphoma and leukemia, and it has been implicated by several studies in CTCL (Zucker-Franklin and Pancake, 1994; Pancake et al., 1995; Khan et al., 1996). However, others have not been able to confirm these findings (Boni et al., 1996; Wood et al., 1996).

Epstein–Barr virus infection has also been previously implicated in several kinds of lymphomas, including peripheral T-cell lymphomas (Shimakage et al., 2001; Kanegane et al., 2002). Another study showed significantly higher CMV seropositivity rates in early-stage MF patients with normal immune systems and minimal skin involvement compared with control subjects (Herne et al., 2003). Latent CMV and/or EBV infection could provide chronic antigen stimulation, induce T-cell proliferation, and adversely affect the apoptosis of skin-homing memory/helper T-cells.

It has also been suggested that bacterial agents, such as *Staphylococcus aureus* (Tokura et al., 1992; Jackow et al., 1997) or *Chlamydia pneumoniae* (Abrams et al., 2001), might contribute to MF pathogenesis by acting as persistent antigens, thus exacerbating and/or perpetuating chronic T-cell expansion and cutaneous inflammation.

In Europe LD is caused by at least three species: *Borrelia burgdorferi sensu stricto*, *Borrelia afzelii* and *Borrelia garinii* (Wilske, 2003). Among the dominant genospecies of Bb isolated in the FVG region is Borrelia afzelii, with its known tropism for the skin (Ciceroni et al., 2001). The predominance of Borrelia afzelii in cutaneous lesions in LD has been already reported in several European countries (Rijpkema et al., 1997; Robertson et al., 1999; Ruzic-Salajc et al., 2000; Ornstein et al., 2001). Strains of this intracellular pathogen can survive the adaptive immune response and persist in the skin despite a strong host antibody response (Pachner et al., 2004). It has been postulated that borrelia interacts with the complement, inactivating complement regulatory proteins (Kraiczy et al., 2001, 2002). Others have proved that Bb can hide in immunopri vileged sites (de Koning et al., 1995; Girschick et al., 1996). The antigen variation of the Bb outer membrane has also been discussed as a possible strategy for evading the immune response (Seiler and Weis, 1996; Zhang et al., 1997). Data from Petricarari et al. (2003) suggest that spirochaetes, including Bb, are able to induce apoptosis in lymphocytes, and that the cells involved are prevalently CD4.

The immune response in humans with LD is characterised by a type 1-like cytokine response with the production of gamma interferon (IFN-\(\gamma\)), but no interleukin (IL)-4 (Forberg et al., 1995; Oksi et al., 1996). The type 1 (Th-1) immune response with high production of IFN-\(\gamma\) has been suggested to be the optimal response to all infections caused by intracellular microbes, such as Bb. It stimulates phagocytosis, the intracellular killing of microbes, antigen presentation to T cells and secretion of pro-inflammatory cytokines (Shtrichman and Samuel, 2001). By clearing the pathogen, the Th-1 immune response would diminish further antigenic stimulation and allow a switch to a type 2 response by up-regulation of IL-4 (Spellberg and Edwards, 2001). However, if the Th-1 response fails to completely clear the infection, a persistent antigenic stimulation might induce chronic Th-1 immune responses with IFN-\(\gamma\) production. Data from Widhe et al. suggest that an initial Borrelia- specific IFN-\(\gamma\) response, followed by up-regulation of IL-4, is associated with non-chronic manifestations of LD, whereas a persistent IFN-\(\gamma\) response may lead to chronic LD (Widhe et al., 2004).

Cutaneous lesions of MF are characterised by an epidermal Th1-type cytokine profile consisting of interleukin-2 and IFN-\(\gamma\), whereas a type 2 cytokine production profile, consisting of IL-4, is more likely to occur in Sézary syndrome, the erythrodermic variant of MF (Saed et al., 1994). Human IFN-\(\gamma\)-inducible protein 10 (IP-10) is secreted by IFN-\(\gamma\)-stimulated keratinocytes (Sarris et al., 1997). It is chemotactic for CD4\(\sim\) lymphocytes, a major component of MF lesions, and it probably accounts for the epidermotropism of CTCL (Sarris et al., 1995).

The inflammatory infiltrate in both the early and late skin manifestations of Lyme borreliosis is mainly composed of CD68\(\sim\) macrophages and CD45RO\(\sim\) memory T cells, with a
The identification and eradication of H. pylori causes prolonged remission in more than 70% of patients with MALT lymphoma (Boot and de Jong, 2002).

In conclusion, we have provided significant evidence to support the concept of antigen-driven lymphomagenesis in CTCL in response to Bb infection. We could hypothesise that in some individuals Bb might induce an antigen-specific long-lasting Th1 response leading to the accumulation of cutaneous CD4+ lymphocytes and their possible neoplastic transformation. A further assessment of the true incidence of Bb-associated CTCL is needed, together with further studies to assess the efficacy of antimicrobial therapy in treating this malignancy.

ACKNOWLEDGEMENTS

This study was supported by the Department of Health Research Grant 107 PFN2003 and by the European Union Research Grant Interregional IIIA Italy-Slovenia (Project code AAFVG332366). The sponsors of the study had no role in study design, data collection, data analysis and data interpretation, or in the writing of the report. We thank Giorgio Grandi, MD for the histopathological re-evaluation of the samples used in this study. Pure genomic Bb DNA from Borrelia afzelii, Borrelia garinii and Borrelia sensu stricto was kindly provided by Professor Marina Cinco from the spirochete laboratory of the University of Trieste. We thank Lorenzo Cerroni, MD for providing the analytical protocol for the detection of TCR-γ gene rearrangements. We would like to thank Miranda Thomas, PhD for English revision of the manuscript.

REFERENCES

Hermans MM, Amedei A, Del Prete G (2003) Helicobacter pylori antigen-specific T-cell responses at the gastric site of infection and, in some cases, drives a long-lasting polarised Th1 response with the development of specific T cells leading to the onset of low-grade gastric MALT lymphoma (D’Elia et al., 2003).
Kraiczy P, Skerka C, Kirschfink M, Zipfel PF, Brade V (2002) Immune evasion of Borrelia burgdorferi: insufficient killing of the pathogens by complement and antibody. Int J Med Microbiol 291(Suppl 33): 141 – 146
Lebec AM (2002) Polymerase chain reaction in diagnosis of Borrelia burgdorferi infections and studies on taxonomic classification. APMIS Suppl, 105: 1 – 40
Lehmann U, Kreipe H (2001) Real-time PCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embedded biopsies. Methods 25: 409 – 418
Massone C, Kodama K, Kerl H, Cerroni L (2005) Histopathologic features of early (patch) lesions of mycosis fungoides: a morphologic study on 745 biopsy specimens from 427 patients. Am J Surg Pathol 29: 550 – 560
McCarthy KP, Sloane JP, Babarowski JH, Wiedemann LM (1992) A simplified method of detection of clonal rearrangements of the T-cell receptor-gamma chain gene. Diagn Mol Pathol 1: 173 – 179
Morales Suarez-Varela MM, Llopis Gonzalez A, Marquina Vila A, Bell J (2000) Mycosis fungoides: review of epidemiological observations. Dermatology 201: 21 – 28
Mulleger RR (2004) Dermatological manifestations of Lyme borreliosis. Eur J Dermatol 14: 296 – 309
Nagasawa T, Sasagawa T, Kawanaka K, Tsuru M, Kusuhka H, Kozuka T (2001) Expression of Epstein –Barr virus in cutaneous T-cell lymphoma including mycosis fungoides. Int J Cancer 92: 226 – 231
Shtrichman R, Samuel CE (2001) The role of gamma interferon in antimicrobial immunity. Curr Opin Microbiol 4: 251 – 259
Siegel RS, Pandolfini T, Guittar J, Rosen S, Kuzel TM (2000) Primary cutaneous T-cell lymphoma: review and current concepts. J Clin Oncol 18: 2908 – 2925
Silberer M, Koszik F, Stirling G, Aberer E (2000) Downregulation of class II molecules on epidermal Langerhans cells in Lyme borreliosis. Br J Dermatol 143: 786 – 794
Spellberg B, Edwards Jr JE (2001) Type 1/type 2 immunity in infectious diseases. Clin Infect Dis 33: 76 – 102
Strle F (1999) Lyme borreliosis in Slovenia. Zentralbl Bakteriol 289: 643 – 652
Tan RS, Butterworth CM, McLaughlin H, Malka S, Samman PD (1974) Mycosis fungoides—a disease of antigen persistence. Br J Dermatol 91: 607 – 616
Tokuoka Y, Heald PW, Yan SL, Edelson RL (1992) Stimulation of cutaneous T-cell lymphomas with superantigenic staphylococcal toxins. J Invest Dermatol 98: 33 – 37
Van Krieken JH, Hoeve MA (2000) Epidemiological and prognostic aspects of gastric MALT-lymphoma. Recent Results Cancer Res 156: 3 – 8
Weinstock MA, Horn JW (1988) Mycosis fungoides in the United States. Increasing incidence and descriptive epidemiology. JAMA 260: 42 – 46
Widhe M, Jarefors S, Ekerfelt C, Vrethem M, Bergstrom S, Forsberg P, Ernerudh J (2004) Borrelia-specific interferon-gamma and interleukin-4 secretion in cerebrospinal fluid and blood during Lyme borreliosis in humans: association with clinical outcome. J Infect Dis 189: 1881 – 1891
Wilke B (2003) Diagnosis of Lyme borreliosis in Europe. Vector Borne Zoonotic Dis 3: 215 – 227
Wood GS, Salvekar A, Schaffer J, Crooks CF, Henghold W, Fivenson DP, Kim YH, Smoller BR (1996) Evidence against a role for human T-cell lymphotropic virus type 1 (HTLV-1) in the pathogenesis of American cutaneous T-cell lymphoma. J Invest Dermatol 107: 301 – 307
Zanier L (1995 – 2000) Incidence of mycosis fungoides. Friuli-Venezia Giulia cancer registry personal communication incidence of mycosis fungoides from 1995 to 2000. In Friuli-Venezia Giulia RT (ed). Agenzia Regionale della Sanita
Zhang JR, Hardham AM, Barbour AG, Norris SJ (1997) Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89: 275 – 285
Zucker-Franklin D, Pancake BA (1994) The role of human T-cell lymphotropic virus (HTLV-I) in the pathogenesis of cutaneous T-cell lymphomas. Semin Dermatol 13: 160 – 165

Mycosis fungoides
SM Tathova et al...