Research Article

Refinements of Some Integral Inequalities for \((s, m)\)-Convex Functions

Ghulam Farid 1, Yu-Ming Chu 2,3, Maja Andrić 4, Chahn Yong Jung 5, Josip Pečarić 6, and Shin Min Kang 7

1Department of Mathematics, COMSATS University Islamabad, Attock Campus, Pakistan
2Department of Mathematics, Huzhou University, Huzhou 313000, China
3Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha University of Science & Technology, Changsha 410114, China
4Faculty of Civil Engineering, Architecture and Geodesy, University of Split, Matice Hrvatske 15, 21000 Split, Croatia
5Department of Business Administration, Gyeongsang National University, Jinju 52828, Republic of Korea
6RUDN University, Moscow, Russia
7Center for General Education, China Medical University, Taichung 40402, Taiwan

Correspondence should be addressed to Yu-Ming Chu; chuyuming@zjhu.edu.cn and Chahn Yong Jung; bb5734@gnu.ac.kr

Received 29 August 2020; Revised 24 September 2020; Accepted 27 October 2020; Published 21 November 2020

Academic Editor: Xinguang Zhang

Copyright © 2020 Ghulam Farid et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, the refinements of integral inequalities for all those types of convex functions are given which can be obtained from \((s, m)\)-convex functions. These inequalities not only provide refinements of bounds for unified integral operators but also for various associated fractional integral operators containing Mittag–Leffler function. At the same time, presented results give generalizations of many known fractional integral inequalities.

1. Introduction

The following fractional integral operator is the well-known Riemann–Liouville fractional integral operator.

Definition 1 (see [1]). Let \(f \in L_1[a, b] \). Then, Riemann–Liouville fractional integrals of order \(\mu \) where \(\Re(\mu) > 0 \) are defined as follows:

\[
\mu I_a^+ f(x) = \frac{1}{\Gamma(\mu)} \int_a^x (x-t)^{\mu-1} f(t) dt, \quad x > a,
\]

\[
\mu I_b^- f(x) = \frac{1}{\Gamma(\mu)} \int_x^b (t-x)^{\mu-1} f(t) dt, \quad x < b,
\]

where \(\Gamma(\cdot) \) is the gamma function.

Next, generalizations of Riemann–Liouville fractional integral operators are given.

Definition 2 (see [2]). Let \(f: [a, b] \to \mathbb{R} \) be an integrable function. Also, let \(g \) be an increasing and positive function on \((a, b) \), having a continuous derivative \(g' \) on \((a, b) \). The left-sided and the right-sided fractional integrals of a function \(f \) with respect to another function \(g \) on \([a, b] \) of order \(\mu \) where \(\Re(\mu) > 0 \) are defined by

\[
\mu g I_a^+ f(x) = \frac{1}{\Gamma(\mu)} \int_a^x (g(x) - g(t))^{\mu-1} g'(t) f(t) dt, \quad x > a,
\]

\[
\mu g I_b^- f(x) = \frac{1}{\Gamma(\mu)} \int_x^b (g(t) - g(x))^{\mu-1} g'(t) f(t) dt, \quad x < b,
\]

where \(\Gamma(\cdot) \) is the gamma function.

A \(k \)-analogue of the above definition is given as follows.
Definition 3 (see [3]). Let \(f: [a, b] \rightarrow \mathbb{R} \) be an integrable function. Also, let \(g \) be an increasing and positive function on \([a, b]\), having a continuous derivative \(g' \) on \([a, b]\). The left-sided and right-sided fractional integrals of a function \(f \) with respect to another function \(g \) on \([a, b]\) of order \(\mu \) where \(\mathfrak{R}(\mu), k > 0 \) are defined by

\[
\begin{align*}
\mathcal{I}_a^\mu_{\phi, b} f(x) &= \frac{1}{\Gamma(\mu/k)} \int_{a}^{x} (g(t) - g(x))^{(\mu/k) - 1} g'(t) t^\mu dt, \quad x > a, \\
\mathcal{I}_a^\mu_{\phi, b} f(x) &= \frac{1}{\Gamma(\mu/k)} \int_{\rho}^{b} (g(t) - g(x))^{(\mu/k) - 1} g'(t) t^\mu dt, \quad x < b,
\end{align*}
\]

(4)

where \(\Gamma_k(x) = \int_0^\infty t^{x-1} e^{-\left(\frac{t}{\mu/k}\right)} dt, \mathfrak{R}(x) > 0 \).

The following identity for the constant function are obtained in [8] (see also [9]):

\[
\begin{align*}
J_{a,n} (x; p) &= \left(\frac{\gamma_{\mu,k,c}^{y,\delta,k,c}}{\mu,k,c} \right)(x; p) = (x - a)^{y} E_{\mu,k,c}^{\mu,k,c} (w(x - a)^{y}; p), \\
J_{b,n} (x; p) &= \left(\frac{\gamma_{\mu,k,c}^{y,\delta,k,c}}{\mu,k,c} \right)(x; p) = (b - x)^{y} E_{\mu,k,c}^{\mu,k,c} (w(b - x)^{y}; p).
\end{align*}
\]

(10)

Recently, a unified integral operator is defined as follows.

Definition 6 (see [10]). Let \(f, g: [a, b] \rightarrow \mathbb{R}, 0 < a < b \), be the functions such that \(f \) be positive and \(f \in L_1[a, b] \) and \(g \) be differentiable and strictly increasing. Also, let \(\phi(x) \) be an increasing function on \([a, \infty)\). Then, for \(x \in [a, b] \), the left and right integral operators are defined by

\[
\begin{align*}
\left(\mathcal{I}_{a;\phi}^{\mu,k,c} F \right)(x) &= \int_{a}^{x} K_a(t; x; \phi) g(t) f(t) dt, \quad x > a, \\
\left(\mathcal{I}_{b;\phi}^{\mu,k,c} F \right)(x) &= \int_{x}^{b} K_b(t; x; \phi) g(t) f(t) dt, \quad x < b,
\end{align*}
\]

(5)

where \(K_a(x, y; \phi) = ((\phi(g(x) - g(y))) / (g(x) - g(y))) \).

A fractional integral operator containing an extended generalized Mittag-Leffler function in its kernel is defined as follows.

Definition 5 (see [5]). Let \(\omega, \mu, \alpha, \lambda, \gamma, c \in C, \mathfrak{R}(\mu), \mathfrak{R}(\alpha), \mathfrak{R}(\lambda) > 0, \) and \(\mathfrak{R}(c) > \mathfrak{R}(y) > 0 \) with \(\rho > 0, \delta > 0, \) and \(0 < \kappa < \delta + \mathfrak{R}(\mu) \). Let \(f \in L_1[a, b] \) and \(x \in [a, b] \). Then, the general fractional integral operators \(\gamma_{\mu,k,c}^{y,\delta,k,c} \) and \(\gamma_{\mu,k,c}^{y,\delta,k,c} \) are defined by

\[
\begin{align*}
\left(\mathcal{I}_{a;\phi}^{\mu,k,c} F \right)(x; p) &= \int_{a}^{x} (x - t)^{\rho - 1} E_{\mu,k,c}^{\mu,k,c} (w(x - t)^{y}; p) f(t) dt, \\
\left(\mathcal{I}_{b;\phi}^{\mu,k,c} F \right)(x; p) &= \int_{x}^{b} (t - x)^{\rho - 1} E_{\mu,k,c}^{\mu,k,c} (w(t - x)^{y}; p) f(t) dt,
\end{align*}
\]

(6)

(7)

where

\[
E_{\mu,k,c}^{\mu,k,c}(t; p) = \sum_{n=0}^{\infty} \frac{\beta_p(y + n k, \gamma - c; \gamma)}{\beta(\gamma, \gamma - c)} (\frac{c}{\gamma})_{n} \frac{t^n}{(\mu + n)(\lambda + n)},
\]

(8)

is the extended generalized Mittag-Leffler function. For further study of the Mittag-Leffler function, see [6, 7]. \((c)_{n} \) is the Pochhammer symbol defined by \((c)_{n} = ((\Gamma(c + n)) / \Gamma(c)) \), and \(\beta_p \) is the extended beta function given by

\[
\beta_p(x, y) = \int_{0}^{1} t^{x-1} (1 - t)^{y-1} e^{-t(p(t(1-t)))} dt, \quad x, y, p \in \mathbb{R}_+,
\]

(9)

The following identities for the constant function are obtained in [8] (see also [9]):

\[
\begin{align*}
J_{a,n} (x; p) &= \left(\frac{\gamma_{\mu,k,c}^{y,\delta,k,c}}{\mu,k,c} \right)(x; p) = (x - a)^{y} E_{\mu,k,c}^{\mu,k,c} (w(x - a)^{y}; p), \\
J_{b,n} (x; p) &= \left(\frac{\gamma_{\mu,k,c}^{y,\delta,k,c}}{\mu,k,c} \right)(x; p) = (b - x)^{y} E_{\mu,k,c}^{\mu,k,c} (w(b - x)^{y}; p).
\end{align*}
\]

(10)

The known fractional integrals studied in [2, 11–22] can be reproduced from the above definition, see [23], Remarks 6 and 7.

The aim of this study is to obtain the bounds of all known fractional integral operators defined in [2, 11–22] in a unified form for strongly \((s, m)\)-convex functions. In the result, we get refinements of many known integral and fractional integral inequalities. Next, we recall definitions of convex, strongly convex, \(s\)-convex, \(m\)-convex, \((s, m)\)-convex, and strongly \((s, m)\)-convex functions.

Definition 7 (see [24]). A function \(f: I \rightarrow \mathbb{R} \) is said to be a convex function if the inequality

\[
f(ta + (1 - t)b) \leq tf(a) + (1 - t)f(b),
\]

holds for all \(a, b \in I \) and \(t \in [0, 1] \).

The concept of a strongly convex function is defined as follows.

Definition 8 (see [25]). Let I be a nonempty convex subset of a normed space. A real-valued function \(f \) is said to be strongly convex with modulus \(\lambda \geq 0 \) on I if for each \(a, b \in I \) and \(t \in [0, 1] \), we have

\[
f(ta + (1 - t)b) \leq tf(a) + (1 - t)f(b) - \lambda t(1 - t)\|b - a\|^2.
\]

(15)
A generalization of the convex function defined on the right half of the real line is called the s-convex function, and it is given as follows.

Definition 9 (see [26]). Let $s \in [0, 1]$. A function $f : [0, \infty) \to \mathbb{R}$ is said to be an s-convex function in the second sense if

$$f(ta + (1-t)b) \leq t^s f(a) + (1-t)^sf(b),$$

holds for all $a, b \in [0, \infty)$ and $t \in [0, 1]$.

The notion of the m-convex function and strongly m-convex function is defined as follows.

Definition 10 (see [27]). A function $f : [0, b] \to \mathbb{R}$ is said to be an m-convex function, where $m \in [0, 1]$ and $b > 0$, if for every $x, y \in [0, b]$ and $t \in [0, 1]$, we have

$$f(tx + (1-t)y) \leq tf(x) + m(1-t)f(y).$$

Definition 11 (see [28]). A function $f : [0, +\infty) \to \mathbb{R}$ is said to be a strongly m-convex function with modulus λ if

$$f(ta + (1-t)b) \leq f(a) + m(1-t)f(b) - \lambda m t (1-t) (b-a)^2,$$

with $a, b \in [0, +\infty)$ and $m \in [0, 1]$.

A further generalized convexity is given as follows.

$$\left(e^{\gamma \beta \delta} f(x; t) \right) (x; p) + \left(e^{\gamma \beta \delta} f(y; t) \right) (y; p) \leq \left(\frac{(f(a) + mf(x/m))}{s+1} - \lambda \frac{(x-ma)^2}{6m^2} \right)$$

holds for all $a, b \in [0, +\infty)$ and $t \in [0, 1]$.

Theorem 1 (see [31]). Let $f : \mathbb{R}$ be a real-valued function. If f is positive and strongly (s, m)-convex, then for $a, b > 0$, the following fractional integral inequality holds:

\begin{align*}
\frac{2^s}{1 + m} \left(f\left(\frac{a + mb}{2} \right) \right) (f(a; b) + f_{\beta + 1, b} (a; p)) &+ \frac{\lambda}{4m} \left((b - a) \beta + 2 \right) f_{\beta + 1, b} (a; p) \\
- 2(1 + m)(b - a) \beta + 1 \right) f_{\beta + 2, b} (a; p) &+ 2(1 + m)^2 f_{\beta + 3, b} (a; p) + (b - a) \beta + 2 \\
	imes f_{\beta + 1, a} (b; p) &- 2(1 + m)(b - a) \beta + 1 \right) f_{\beta + 2, a} (b; p) + 2(1 + m)^2 f_{\beta + 3, a} (b; p)) &
\end{align*}

\begin{equation}
\leq \left(f_{\beta + 1, a} (b; p) + f_{\beta + 1, b} (a; p) \right) (b - a) \left(\frac{f(b) + mf(a/m)}{s+1} - \lambda \frac{(mb - a)^2}{6m^2} \right)
\end{equation}
In the following, using the strongly \((s,m)\)-convexity of \(|f'|\), a modulus inequality is obtained.

\[
\left| \left(e^{\alpha \delta k_{\Delta_{\mu\alpha}+1} x} f(x; p) \right) + \left(e^{\beta \delta k_{\Delta_{\beta\alpha}+1} x} f(x; p) \right) - (J_{a-1} f(a) + J_{b-1} f(b)) \right|
\]

\[
\leq \left| \frac{f'(a)}{s+1} + \frac{m f'(x/m)}{s+1} - \frac{(x-ma)^2}{6m^2} \right| (x-a) J_{a-1} (x; p)
\]

\[
+ \left| \frac{f'(b)}{s+1} + \frac{m f'(x/m)}{s+1} - \frac{(mb-x)^2}{6m^2} \right| (b-x) J_{b-1} (x; p), \quad x \in [a,b].
\]

(23)

In [32], we studied the properties of the kernel given in (13). Here, we are interested in the following property.

Theorem 3 (see [31]). Let \(f \) be a real-valued function. If \(f \) is differentiable and \(|f'|\) is strongly \((s,m)\)-convex, then for \(a, b \geq 1 \), the following fractional integral inequality holds:

\[
(mf' \frac{\alpha}{m} g(x) - f(a)g(a) - \frac{(s+1)}{(x-a)} mf' \frac{\alpha}{m} 1_{x \leq a} g(a) - f(a)1_{x \geq a} g(x))
\]

\[
+ \frac{\lambda (x-ma)^2}{(x-a)} (2I(a, x) 1_{x \leq a} - (a-x) I(a, x))
\]

\[
+ \frac{\lambda (mb-x)^2}{(b-x)} (2I(x, b) 1_{x \leq b} - (x-b) I(x, b))
\]

\[
+ \frac{\Gamma(s+1)}{(x-a)} \left(mf' \frac{x}{m} 1_{x \leq b} g(b) - f(b) 1_{x \geq b} g(b) \right)
\]

\[
+ \frac{\Gamma(s+1)}{(b-x)} \left(mf' \frac{x}{m} 1_{x \leq a} g(a) - f(a) 1_{x \geq a} g(a) \right)
\]

The reverse of inequality (13) holds when \(g \) and \(\phi/x \) are decreasing.

The upcoming section contains the results for unified integral operators dealing with the bounds of several fractional integral operators in a compact form by utilizing strongly \((s,m)\)-convex functions. A compact version of the Hadamard inequality is presented, and also a modulus inequality is given for the differentiable function \(f \) such that \(|f'|\) is a strongly \((s,m)\)-convex function. In the whole paper, we will use

\[
I(a, b, g) := \frac{1}{b-a} \int_a^b g(t) dt.
\]

(26)

2. Main Results

The following result provides the upper bound of unified integral operators.

Theorem 4. Let \(f \) be a positive integrable and strongly \((s,m)\)-convex function, \(m \neq 0 \). Then, for unified integral operators (11) and (12), the following inequality holds:

\[
(13)
\]

\[
\left(e^{\alpha \delta k_{\Delta_{\mu\alpha}+1} x} f(x; p) \right) + \left(e^{\beta \delta k_{\Delta_{\beta\alpha}+1} x} f(x; p) \right) - (J_{a-1} f(a) + J_{b-1} f(b))
\]

\[
\leq \left| \frac{f'(a)}{s+1} + \frac{m f'(x/m)}{s+1} - \frac{(x-ma)^2}{6m^2} \right| (x-a) J_{a-1} (x; p)
\]

\[
+ \left| \frac{f'(b)}{s+1} + \frac{m f'(x/m)}{s+1} - \frac{(mb-x)^2}{6m^2} \right| (b-x) J_{b-1} (x; p), \quad x \in [a,b].
\]

(23)
Proof. By (P), the following inequalities hold:

\[K_a^t \left(E_{\mu,a,d}^{\gamma,\delta,k,c}, g; \phi \right) g'(t) \leq K_a^t \left(E_{\mu,a,d}^{\gamma,\delta,k,c}, g; \phi \right) g'(t), \quad a < t < x, \]

\[K_t^x \left(E_{\mu,a,d}^{\gamma,\delta,k,c}, g; \phi \right) g'(t) \leq K_t^x \left(E_{\mu,b,l}^{\gamma,\delta,k,c}, g; \phi \right) g'(t), \quad x < t < b. \]

(28)

(29)

For a strongly \((s,m)\)-convex function, the following inequalities hold for \(a < t < x\) and \(x < t < b\), respectively:

\[f(t) \leq \left(\frac{x-t}{a} \right)^s f(a) + m \left(\frac{t-a}{a} \right)^s f\left(\frac{x}{m} \right) - \frac{\lambda(x-t)(t-a)(x-\omega)^2}{m^2(x-a)^2}, \]

\[f(t) \leq \left(\frac{t-x}{b-x} \right)^s f(b) + m \left(\frac{b-t}{b-x} \right)^s f\left(\frac{x}{m} \right) - \frac{\lambda(t-x)(b-t)(mb-x)^2}{m^2(b-x)^2}. \]

(30)

(31)

From (28) and (30), one can have

\[\int_a^x K_a^t \left(E_{\mu,a,d}^{\gamma,\delta,k,c}, g; \phi \right) f(t) d(g(t)) \leq f(a)K_a^t \left(E_{\mu,a,d}^{\gamma,\delta,k,c}, g; \phi \right) \]

\[\times \int_a^x \left(\frac{x-t}{x-a} \right)^s d(g(t)) + mf\left(\frac{x}{m} \right)K_a^t \left(E_{\mu,a,d}^{\gamma,\delta,k,c}, g; \phi \right) \]

\[- \frac{\lambda(x-\omega)^2}{(x-a)^2} \int_a^x (x-t)(t-a)d(g(t)), \]

(32)

(33)

On the other hand, from (29) and (31), one can have

\[\int_x^b K_t^b \left(E_{\mu,b,l}^{\gamma,\delta,k,c}, g; \phi \right) f(t) d(g(t)) \leq f(b)K_t^b \left(E_{\mu,b,l}^{\gamma,\delta,k,c}, g; \phi \right) \]

\[\times \int_x^b \left(\frac{t-x}{b-x} \right)^s d(g(t)) + mf\left(\frac{x}{m} \right)K_x^b \left(E_{\mu,b,l}^{\gamma,\delta,k,c}, g; \phi \right) \]

\[- \frac{\lambda(mb-x)^2}{m^2(b-x)^2} \int_x^b (t-x)(b-t)d(g(t)). \]

(34)
i.e.,

\[
\left(I_{\lambda \phi}^{\Gamma, \delta, \kappa} f \right)(x, \omega; p) \leq K_{\lambda} \left(E_{\phi, \delta, \kappa} \cdot g, \phi \right) \left(f(b)g(b) - mf\left(\frac{x}{m}\right)g(x) - \frac{\Gamma(s+1)}{(b-x)} \left(f(b)I_{\phi} g(x) - mf\left(\frac{x}{m}\right)I_{\phi} g(b) \right) \right)
\]

By adding (33) and (35), (27) can be obtained.

Corollary 1. Setting \(p = \omega = 0 \) in (27), we can obtain the following inequality involving fractional integral operators defined in [4]:

\[
\left(I_{\alpha, \beta, \lambda}^{\Gamma, \delta, \kappa} f \right)(x; p) + \left(I_{\beta, \phi}^{\Gamma, \delta, \kappa} f \right)(x; p) \leq K_{\alpha} \left(a, x; \phi \right) \left(mf\left(\frac{x}{m}\right)g(x) - f(a)g(a) - \frac{\Gamma(s+1)}{(x-a)^{\beta}} \left(mf\left(\frac{x}{m}\right)I_{\alpha} g(a) - f(a)I_{\alpha} g(x) \right) \right) + K_{\beta} \left(x, b; \phi \right) \left(f(b)g(b) \right)
\]

Remark 1

(i) If we consider \(\lambda = 0 \) in (27), then Theorem 3.1 in [32] can be obtained, and for \(\lambda > 0 \), we get its refinement

(ii) If we consider \(\phi(t) = t^\alpha \) and \(g(x) = x \) in (27), then Theorem 1 can be obtained

(iii) If we consider \(s = m = 1 \) in the result of (ii), then Corollary 1 in [31] can be obtained

(iv) If we consider \(\alpha = \beta \) in the result of (ii), then Corollary 3 in [31] can be obtained

(v) If we consider \(f \in L_{\infty}[a, b] \) in the result of (ii), then Corollary 5 in [31] can be obtained

(vi) If we consider \(\alpha = \beta \) in the result of (v), then Corollary 7 in [31] can be obtained

(vii) If we consider \(s = 1 \) in the result of (ii), then Corollary 5 in [31] can be obtained

(viii) If we consider \((s, m) = (1, 1) \) in (27), then Theorem 2 in [33] is obtained

(ix) If we consider \(\alpha = \beta, \lambda = 0 \), and \((s, m) = (1, 1) \) in (27), then Theorem 8 in [23] is obtained

(x) If we consider \(\lambda = 0 \) and \(p = \omega = 0 \) in (27), then Theorem 1 in [34] is obtained

(xi) If we consider \(\lambda = 0, \phi(t) = \Gamma(a)t^\alpha, p = \omega = 0 \), and \((s, m) = (1, 1) \) in (27), then Theorem 1 in [35] is obtained

(xii) If we consider \(\alpha = \beta \) in the result of (xi), then Corollary 1 in [35] is obtained

(xiii) If we consider \(\lambda = 0, \phi(t) = t^\alpha, g(x) = x \), and \(m = 1 \) in (27), then Theorem 2.1 in [36] is obtained

(xiv) If we consider \(\alpha = \beta \) in the result of (xiii), then Corollary 2.1 in [36] is obtained

(xv) If we consider \(\lambda = 0, \phi(t) = \Gamma(a)t^{\alpha/(\alpha+k)}, (s, m) = (1, 1), g(x) = x \), and \(p = \omega = 0 \) in (27), then Theorem 1 in [37] can be obtained

(xvi) If we consider \(\alpha = \beta \) in the result of (xv), then Corollary 1 in [37] can be obtained

(xvii) If we consider \(\lambda = 0, \phi(t) = \Gamma(a)t^{\alpha/(\alpha+k)}, g(x) = x \), \(p = \omega = 0 \), and \((s, m) = (1, 1) \) in (27), then Theorem 1 in [38] is obtained

(xviii) If we consider \(\alpha = \beta \) in the result of (xvii), then Corollary 1 in [38] can be obtained

(xix) If we consider \(\alpha = \beta = 1 \) and \(x = a \) or \(x = b \) in the result of (xviii), then Corollary 2 in [38] can be obtained

(xii) If we consider \(\alpha = \beta = 1 \) and \(x = ((a + b)/2) \) in the result of (xviii), then Corollary 3 in [38] can be obtained

The following lemma is very helpful in the proof of the upcoming theorem, see [31].
Lemma 1. Let \(f: [a, mb] \rightarrow \mathbb{R} \) be a strongly \((s, m)\)-convex function, \(0 \leq a < mb \). If \(f \) is \(f ((a + mb - x)/m) = f (x), \) \(m \neq 0 \), then the following inequality holds:

\[
f\left(\frac{a + mb}{2} \right) \leq \frac{(1 + m)f (x)}{2} - \frac{\lambda}{4m}(a + mb - x)^2.
\]

In the literature, many mathematicians have established many types of Hadamard inequalities, and for their generalizations, see [39–42]. This also motivates us to introduce the more generalized forms of Hadamard-type inequalities. So, by the help of the abovementioned lemma, the following result provides generalized Hadamard inequality for strongly \((s, m)\)-convex functions.

Theorem 5. Under the assumptions of Theorem 4, in addition to \(f (x) = f ((a + mb - x)/m) \), the following inequality holds:

\[
f\left(\frac{a + mb}{2} \right) \leq \frac{(1 + m)f (x)}{2} - \frac{\lambda}{4m}(a + mb - x)^2.
\]

Proof. By (P), the following inequalities hold:

\[
K_a^b \left(E_{\mu; a, b}^{\gamma, \delta, \kappa}, \phi \right) g' (x) \leq K_a^b \left(E_{\mu; a, b}^{\gamma, \delta, \kappa}, \phi \right) g' (x), \quad a < x < b,
\]

\[
K_b^a \left(E_{\mu; b, a}^{\gamma, \delta, \kappa}, \phi \right) g' (x) \leq K_b^a \left(E_{\mu; b, a}^{\gamma, \delta, \kappa}, \phi \right) g' (x), \quad a < x < b.
\]

A strongly \((s, m)\)-convex function satisfying the following inequalities hold for \(a < x < b \):

\[
f (x) \leq \frac{(x - a)^s}{(b - a)^s} f (b) + m \left(\frac{b - x}{b - a} \right)^s f \left(\frac{a}{m} \right) - \frac{\lambda (b - x)(x - a)(b - ma)}{m^2 (b - a)^2}.
\]

From (39) and (41), one can have

\[
\int_a^b a \left(E_{\mu; a, b}^{\gamma, \delta, \kappa}, \phi \right) f (x) d (g (x)) \leq \int_a^b \left(\frac{a}{m} \right)^s \left(E_{\mu; a, b}^{\gamma, \delta, \kappa}, \phi \right) f (x) d (g (x)) + f (b) \int_a^b \left(\frac{x - a}{b - a} \right)^s d (g (x)) - K_a^b \left(E_{\mu; b, a}^{\gamma, \delta, \kappa}, \phi \right)
\]

\[
\frac{\lambda (b - ma)^2}{m^2 (b - a)^2} \int_a^b (x - a) (b - x) d (g (x)).
\]

Further, the aforementioned inequality takes the form which involves Riemann–Liouville fractional integrals in the right-hand side, and thus we have upper bound of the unified left-sided integral operator (2) as follows:
On the other hand, from (39) and (41), the following inequality holds which involves Riemann–Liouville fractional integrals on the right-hand side and gives the estimate of the integral operator (3):

\[
\begin{align*}
\left(g^{\mu, \lambda, \delta, k, c}_{\mu, \lambda, b, c} f \right)(a, \omega; p) & \leq K_{\rho}^{a} \left(E_{\mu, \lambda, b, c}^{\phi, \delta, k, c} g; \phi \right) \left(f(b) + m f \left(\frac{a}{m} \right) g(a) - \frac{\Gamma(s + 1)}{(b - a)^{s}} \left(f(b)^{s} I_{b, c}^{\phi} g(a) - m f \left(\frac{a}{m} \right) I_{a, c}^{\phi} g(b) \right) + \frac{\lambda (mb - a)^{2}}{(b - a)} (2I(a, b, I_{d} g) - (a + b) I(a, b, g)) \right),
\end{align*}
\]

By adding (43) and (44), the following inequality can be obtained:

\[
\begin{align*}
\left(g^{\mu, \lambda, \delta, k, c}_{\mu, a, b, c} f \right)(a, \omega; p) + \left(g^{\mu, \lambda, \delta, k, c}_{\mu, a, b, c} f \right)(b, \omega; p) & \leq \left(K_{\rho}^{a} \left(E_{\mu, a, b, c}^{\phi, \delta, k, c} g; \phi \right) + K_{b}^{a} \left(E_{\mu, b, a, c}^{\phi, \delta, k, c} g; \phi \right) \right) \left(f(b) g(b) - m f \left(\frac{a}{m} \right) g(a) \right) \\
& \quad - \frac{\Gamma(s + 1)}{(b - a)^{s}} \left(f(b)^{s} I_{b, c}^{\phi} g(a) - m f \left(\frac{a}{m} \right) I_{a, c}^{\phi} g(b) \right) + \frac{\lambda (mb - a)^{2}}{(b - a)} (2I(a, b, I_{d} g) - (a + b) I(a, b, g)).
\end{align*}
\]

Multiplying both sides of (37) by \(K_{\rho}^{a} \left(E_{\mu, a, b, c}^{\phi, \delta, k, c} g; \phi \right) g'(x) \) and integrating over \([a, b]\), we have

\[
\begin{align*}
& \int_{a}^{b} \int_{a}^{b} K_{\rho}^{a} \left(E_{\mu, a, b, c}^{\phi, \delta, k, c} g; \phi \right) d(g(x)) \\
& \leq \left(\frac{1}{2} \right)(1 + m) \int_{a}^{b} K_{b}^{a} \left(E_{\mu, a, b, c}^{\phi, \delta, k, c} g; \phi \right) f(x) d(g(x)) \\
& \quad - \frac{\lambda}{4m} \int_{a}^{b} K_{b}^{a} \left(E_{\mu, a, b, c}^{\phi, \delta, k, c} g; \phi \right) (a + mb - x - mx)^{2} d(g(x)).
\end{align*}
\]

From Definition 6, the following inequality is obtained:

\[
\begin{align*}
& \int_{a}^{b} \frac{a + mb}{2} \left(\frac{1 + m}{2} \right) g^{\mu, \lambda, \delta, k, c}_{\mu, a, b, c}(a, \omega; p) \\
& \leq \left(g^{\mu, \lambda, \delta, k, c}_{\mu, a, b, c} f \right)(a, \omega; p) \\
& \quad - \frac{\lambda}{4m} \left(g^{\mu, \lambda, \delta, k, c}_{\mu, a, b, c} (a + mb - x - mx)^{2} \right)(a, \omega; p).
\end{align*}
\]

Similarly, multiplying both sides of (37) by \(K_{\rho}^{a} \left(E_{\mu, a, b, c}^{\phi, \delta, k, c} g; \phi \right) g'(x) \) and integrating over \([a, b]\), we have
By adding (47) and (48), the following inequality is obtained:

\[
\begin{align*}
&f\left(\frac{a + mb}{2}\right) + 2^s \left(\frac{\Gamma}{1 + m}\right) \left(g_{\frac{\mu, \beta, \lambda}{\alpha, \omega}}^{\phi, \gamma, \delta, k, c} \right) (b, \omega; p) \\
\leq &\left(\frac{\lambda}{4m} \left(g_{\frac{\mu, \beta, \lambda}{\alpha, \omega}}^{\phi, \gamma, \delta, k, c} (a + mb - x - mx)^2\right) (a, \omega; p) + \left(g_{\frac{\mu, \beta, \lambda}{\alpha, \omega}}^{\phi, \gamma, \delta, k, c} f\right) (a, \omega; p)\right) \\
&+ \lambda \left(g_{\frac{\mu, \beta, \lambda}{\alpha, \omega}}^{\phi, \gamma, \delta, k, c} (a + mb - x - mx)^2\right) (b, \omega; p).
\end{align*}
\]

Using (45) and (49), inequality (38) can be obtained, which completes the proof.

\[\square\]

Corollary 2. Setting \(p = \omega = 0 \) in (38), we can obtain the following inequality involving fractional integral operators defined in [4]:

\[
f\left(\frac{a + mb}{2}\right) + 2^s \left(\frac{\Gamma}{1 + m}\right) \left(g_{\frac{\mu, \beta, \lambda}{\alpha, \omega}}^{\phi, \gamma, \delta, k, c} \right) (b, \omega; p) \\
\leq &\left(F_{\frac{\beta, a}{\alpha, p}}^{\phi} \right) (b; p) + \left(F_{\frac{\beta, a}{\alpha, p}}^{\phi} \right) (a; p) \\
&+ \lambda \left(F_{\frac{\beta, a}{\alpha, p}}^{\phi} (a + mb - x - mx)^2\right) (b; p) \\
&+ \left(K_{g} (a, b; \phi) + K_{g} (a, b; \phi)\right) \\
&\left\{f(b) + \frac{\lambda(mb - a)^2}{(b - a)} (2I_{\alpha}(a, b, I_{\alpha}g) - (a + b)I_{\alpha}(a, b, g))\right\}.
\]

Remark 2

(i) If we consider \(\phi(t) = t^s \) and \(g(x) = x \) in (38), then Theorem 7 in [31] can be obtained

(ii) If we consider \(\lambda = 0 \) in the result of (i), then Theorem 8 in [31] can be obtained

(iii) If we consider \((s, m) = (1, 1) \) in (38), then Theorem 3 in [33] is obtained

(iv) If we consider \(\lambda = 0 \) and \((s, m) = (1, 1) \) in (38), then Theorem 22 in [23] is obtained

(v) If we consider \(\lambda = 0 \), \(\phi(t) = \Gamma(\alpha t^{(\alpha/b)}), \) \(p = \omega = 0, \) and \((s, m) = (1, 1) \) in (38), then Theorem 3 in [35] is obtained

(vi) If we consider \(\alpha = \beta \) in the result of (v), then Corollary 3 in [35] is obtained

(vii) If we consider \(\lambda = 0, \) \(\phi(t) = t^{\alpha+1}, \) \(g(x) = x, \) and \(m = 1 \) in (38), then Theorem 2.4 in [36] is obtained

(viii) If we consider \(\alpha = \beta \) in the result of (vii), then Corollary 2.6 in [36] is obtained

(ix) If we consider \(\lambda = 0, \phi(t) = \Gamma(\alpha t^{(\alpha/b)}), \) \((s, m) = (1, 1), \) \(g(x) = x, \) and \(p = \omega = 0 \) in (38), then Theorem 3 in [37] can be obtained

(x) If we consider \(\alpha = \beta \) in the result of (ix), then Corollary 6 in [37] can be obtained

(xi) If we consider \(\lambda = 0, \phi(t) = \Gamma(\alpha t^{(\alpha/b)}), \) \(p = \omega = 0, \) \((s, m) = (1, 1), \) \(g(x) = x \) in (38), then Theorem 3 in [38] can be obtained

(xii) If we consider \(\alpha = \beta \) in the result of (xi), then Corollary 6 in [38] can be obtained
Theorem 6. Let \(f: [a, mb] \rightarrow \mathbb{R}, \) \(0 \leq a < mb, \) be a differential function such that \(|f'| \) is a strongly \((s,m)\)-convex function, \(m \neq 0. \) Then, for unified integral operators (11) and (12), the following inequality holds:

\[
\left| \left(\mathcal{I}_{\mu,\alpha,l,a}^{\gamma,\delta,k,c} f \ast g \right)(x,\omega; p) + \left(\mathcal{I}_{\mu,\beta,l,b}^{\gamma,\delta,k,c} f \ast g \right)(x,\omega; p) \right| \\
\leq K^{\phi}_{\alpha} \left(\mathcal{E}_{\mu,\alpha,l,a}^{\gamma,\delta,k,c}, \psi \right) \left(\left(m \left| f' \left(\frac{x}{m} \right) g(x) \right| - \left| f' \left(a \right) \right| g(a) - \frac{\Gamma(s+1)}{(x-a)^{s+1}} \right) \right) + \\
\left(m \left| f' \left(\frac{x}{m} \right) \right| I_{x} g(a) - \left| f' \left(a \right) \right| \left| I_{a} g(x) \right| \right)
\]

where

\[
\left(\mathcal{I}_{\mu,\alpha,l,a}^{\gamma,\delta,k,c} f \ast g \right)(x,\omega; p) = \int_{a}^{x} K^{\phi}_{\alpha} \left(\mathcal{E}_{\mu,\alpha,l,a}^{\gamma,\delta,k,c}, \psi \right) f'(t) \mathcal{I}_{d}(g(t)),
\]

\[
\left(\mathcal{I}_{\mu,\beta,l,b}^{\gamma,\delta,k,c} f \ast g \right)(x,\omega; p) = \int_{a}^{b} K^{\phi}_{\beta} \left(\mathcal{E}_{\mu,\beta,l,b}^{\gamma,\delta,k,c}, \psi \right) f'(t) \mathcal{I}_{d}(g(t)).
\]

Proof. For a strongly \((s,m)\)-convex function \(|f'| \), the following inequalities hold for \(a < t < x \) and \(x < t < b \), respectively:

\[
|f'(t)| \leq \left(\frac{x-t}{x-a} \right)^{s} \left| f'(a) \right| + m \left(\frac{t-a}{x-a} \right)^{s} \left| f' \left(\frac{x}{m} \right) \right| \frac{\lambda(x-t)(t-a)(x-ma)^{2}}{m^{2}(x-a)^{2}},
\]

\[
|f'(t)| \leq \left(\frac{t-x}{b-x} \right)^{s} \left| f'(b) \right| + m \left(\frac{b-t}{b-x} \right)^{s} \left| f' \left(\frac{x}{m} \right) \right| \frac{\lambda(t-x)(b-t)(mb-x)^{2}}{m^{2}(b-x)^{2}}.
\]

From (28) and (54), the following inequality is obtained:

\[
\left| \left(\mathcal{I}_{\mu,\alpha,l,a}^{\gamma,\delta,k,c} (f \ast g) \right)(x,\omega; p) \right| \leq K^{\phi}_{\alpha} \left(\mathcal{E}_{\mu,\alpha,l,a}^{\gamma,\delta,k,c}, \psi \right) \left(\left(m \left| f' \left(\frac{x}{m} \right) g(x) \right| - \left| f' \left(a \right) \right| g(a) - \frac{\Gamma(s+1)}{(x-a)^{s+1}} \right) \right) + \\
\left(m \left| f' \left(\frac{x}{m} \right) \right| I_{x} g(a) - \left| f' \left(a \right) \right| \left| I_{a} g(x) \right| \right)
\]

Similarly, from (29) and (55), the following inequality is obtained:
By adding (56) and (57), inequality (52) can be achieved.

Corollary 3. Setting \(p = \omega = 0 \) in (52), we can obtain the following inequality involving fractional integral operators defined in [4]:

\[
\left\{ F_{p,\omega} \ast f \ast g \right\}(x, p) + \left\{ F_{\beta,\omega} \ast f \ast g \right\}(x, p) \leq K_{\beta}(a, x; \phi)
\]

\[
(m f' \left(\frac{x}{m} \right) g(x) - f'(a) g(a)) \prod \frac{(s+1)}{(x-a)^{\frac{1}{2}}}
\]

\[
\left\{ m f' \left(\frac{x}{m} \right) I_{\beta} g(a) - f'(a) I_{\beta} g(x) \right\}
\]

\[
\frac{s(x-a)^{m}}{(x-a)^{\frac{1}{2}}} \left(2I_{x, b, I_{d} g} - (x+b)I_{a, g} \right)
\]

(57)

Remark 3

(i) If we consider \(\lambda = 0 \) in (52), then Theorem 3.4 in [32] can be obtained

(ii) If we consider \(\phi(t) = t^a \) and \(g(x) = x \) in (52), then Theorem 6 in [31] can be obtained

(iii) If we consider \(s = m = 1 \) in the result of (ii), then Corollary 13 in [31] can be obtained

(iv) If we consider \(\alpha = \beta \) in the result of (ii), then Corollary 11 in [31] can be obtained

(v) If we consider \((s, m) = (1, 1) \) in (52), then Theorem 3 in [33] is obtained

(vi) If we consider \(\lambda = 0 \) and \((s, m) = (1, 1) \) in (52), then Theorem 25 in [23] is obtained

(vii) If we consider \(\lambda = 0 \) and \(p = \omega = 0 \) in (52), then Theorem 2 in [34] is obtained

(viii) If we consider \(\lambda = 0, \phi(t) = \Gamma(a)t^{a+1}, p = \omega = 0, \) and \((s, m) = (1, 1) \) in (52), then Theorem 2 in [35] is obtained

(ix) If we consider \(\alpha = \beta \) in the result of (viii), then Corollary 2 in [35] is obtained

(x) If we consider \(\lambda = 0, \phi(t) = t^a, g(x) = x, \) and \(m = 1 \) in (52), then Theorem 2.3 in [36] is obtained

(xi) If we consider \(\alpha = \beta \) in the result of (x), then Corollary 2.5 in [36] is obtained

(xii) If we consider \(\lambda = 0, \phi(t) = \Gamma(a) t^{\alpha + k+1}, (s, m) = (1, 1), g(x) = x, \) and \(p = \omega = 0 \) in (52), then Theorem 2 in [37] can be obtained

(xiii) If we consider \(\alpha = \beta \) in the result of (xii), then Corollary 4 in [37] can be obtained

(xiv) If we consider \(\alpha = \beta = k = 1 \) and \(x = \frac{(a+b)}{2} \) in the result of (xii), then Corollary 5 in [37] can be obtained

(xv) If we consider \(\lambda = 0, \phi(t) = \Gamma(a) t^{\alpha+1}, g(x) = x, p = \omega = 0, \) and \((s, m) = (1, 1) \) in (52), then Theorem 2 in [38] is obtained

(xvi) If we consider \(\alpha = \beta \) in the result of (xv), then Corollary 5 in [38] can be obtained

3. Concluding Remarks

In this paper, bounds of a unified integral operator for strongly \((s, m)\)-convex functions are studied. The compact form of these bounds lead to further interesting consequences with respect to fractional integrals of various kinds for convex, \((s, m)\)-convex, \(m\)-convex, \(s\)-convex, and convex functions. These findings are generalized in nature and give the refinements of many inequalities for unified and fractional integral operators via different types of convex functions.

Data Availability

No data are required for this work.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The research work of Yu-Ming Chu was supported by the National Natural Science Foundation of China (Grant nos. 11971142, 11871202, 61673169, 11701176, 11626101, and 11601485). The work of Josip Pečarić was supported by the Ministry of Education and Science of the Russian Federation (the agreement no. 02.a03.21.0008).
References

[1] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integral and Derivatives, Theory and Applications, Gordon and Breach, Yverdon et alibi., Yverdon-les-Bains, Switzerland, 1993.

[2] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, "Theory and applications of fractional differential equations," North-Holland Mathematics Studies, Elsevier, New York, NY, USA, 2006.

[3] Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, and S. M. Kang, "Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities," IEEE Access, vol. 6, pp. 64946–64953, 2018.

[4] G. Farid, "Existence of an integral operator and its consequences in fractional and conformable integrals," Open Journal of Mathematical Sciences, vol. 3, no. 1, pp. 210–216, 2019.

[5] M. Andrić, G. Farid, and J. Pečarić, "A further extension of Mittag-Leffler function," Fractional Calculus and Applied Analysis, vol. 21, no. 5, pp. 1377–1395, 2018.

[6] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, Netherlands, 2006.

[7] A. K. Shukla and J. C. Prajapati, "On a generalization of Mittag-Leffler function and its properties," Journal of Mathematical Analysis and Applications, vol. 336, no. 2, pp. 797–811, 2007.

[8] M. Andrić, G. Farid, S. Mehmood, and J. Pečarić, "Polya-Szego and Chebyshev types inequalities via an extended generalized Mittag-Leffler function," Mathematical Inequalities and Applications, vol. 22, no. 4, pp. 1365–1377, 2019.

[9] G. Farid, K. A. Khan, N. Latif, A. U. Rehman, and S. Mehmood, "General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function," Journal of Inequalities and Applications, vol. 2018, p. 243, 2018.

[10] G. Farid, "A unified integral operator and further its consequences," Open Journal of Mathematical Analysis, vol. 4, no. 1, pp. 1–7, 2020.

[11] H. Chen and U. N. Katugampola, "Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals," Journal of Mathematical Analysis and Applications, vol. 446, no. 2, pp. 1274–1291, 2017.

[12] S. S. Dragomir, "Inequalities of Jensen’s type for generalized k-g-fractional integrals of function f for which the composite f * g^r 1 is convex," Fractional Differential Calculus, vol. 8, no. 1, pp. 127–150, 2018.

[13] S. Habib, S. Mubeen, and M. N. Naeem, "Chebyshev type integral inequalities for generalized k-fractional conformable integrals," Journal of Inequalities and Special Functions, JIFS, vol. 9, no. 4, pp. 53–65, 2018.

[14] F. Jarad, E. Uğur, T. Abdeljawad, and D. Baleanu, "On a new class of fractional operators," Advances in Difference Equations, vol. 2017, no. 1, p. 247, 2017.

[15] T. U. Khan and M. A. Khan, "Generalized conformable fractional operators," Journal of Computational and Applied Mathematics, vol. 346, pp. 378–389, 2019.

[16] S. Mubeen and M. Habibullah, "k-fractional integrals and applications," International Journal of Contemporary Mathematical Sciences, vol. 7, no. 2, pp. 89–94, 2012.

[17] T. R. Parbhakar, "A singular integral equation with a generalized Mittag-Leffler function in the kernel," Yokohama Mathematical Journal, vol. 19, pp. 7–15, 1971.

[18] G. Rahman, D. Baleanu, M. A. Qureshi, S. D. Purohit, S. Mubeen, and M. Arshad, "The extended Mittag-Leffler function via fractional calculus," The Journal of Nonlinear Sciences and Applications, vol. 10, no. 8, pp. 4244–4253, 2013.

[19] T. O. Salim and A. W. Faraj, "A generalization of Mittag-Leffler function and integral operator associated with integral calculus," Journal of Fractional Calculus and Applications, vol. 3, no. 5, pp. 1–13, 2012.

[20] M. Z. Sarikaya, M. Dahman, M. E. Kiris, and F. Ahmad, "(k,s)-Riemann-Liouville fractional integral and applications," Hacettepe Journal of Mathematics and Statistics, vol. 45, no. 1, pp. 77–89, 2016.

[21] H. M. Srivastava and Z. Tomovski, "Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernel," Applied Mathematics and Computation, vol. 211, no. 1, pp. 198–210, 2009.

[22] T. Tunç, H. Budak, F. Usta, and M. Z. Sarikaya, "On new generalized fractional integral operators and related fractional inequalities," https://www.researchgate.net/publication/313650587.

[23] Y. C. Kwun, G. Farid, S. Ullah, W. Nazeer, K. Mahreen, and S. M. Kang, "Inequalities for a unified integral operator and associated results in fractional calculus," IEEE Access, vol. 7, pp. 126283–126292, 2019.

[24] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, NY, USA, 1973.

[25] B. T. Polyak, "Existence theorems and convergence of minimizing sequences in extremum problems with restrictions," Soviet Mathematics Doklady, vol. 7, pp. 72–75, 1966.

[26] H. Hudzik and L. Maligranda, "Some remarks on s-convex functions," Aequationes Mathematicae, vol. 48, pp. 100–111, 1994.

[27] G. A. Anastassiou, "Generalized fractional Hermite-Hadamard inequalities involving m-convexity and (s,m)-convexity," Series Mathematics and Informatics, vol. 28, pp. 107–126, 2013.

[28] T. Lara, N. Merentes, R. Quintero, and E. Rosales, "On strongly m-convex functions," Mathematica Aeterna, vol. 5, pp. 521–535, 2015.

[29] G. Farid, S. B. Akbar, S. U. Rehman, and J. Pečarić, "Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity," AIMS Mathematics, vol. 5, pp. 966–978, 2020.

[30] M. Bracamonte, J. Giménez, and M. Vivas-Cortez, "Hermite-Hadamard-Fejér type inequalities for strongly (s,m)-convex functions with modulus c, in second sense," Journal of Inequalities and Applications, vol. 2020, pp. 521–535, 2015.

[31] G. Farid, M. A. Khan, M. Saddiq, J. Pečarić, Y.-M. Chu, and C. Y. Jung, "Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions," AIMS Mathematics, vol. 5, no. 6, pp. 7332–7349, 2020.

[32] Z. He, X. Ma, G. Farid, A. U. Haq, and K. Mahreen, "Bounds of a unified integral operator for (s,m)-convex functions and their consequences," AIMS Mathematics, vol. 5, no. 6, pp. 5510–5520, 2020.

[33] C. Y. Jung, G. Farid, M. Andrić, J. Pečarić, and Y.-M. Chu, "Refinements of some integral inequalities for unified integral operators,", 2021.

[34] Y. C. Kwun, G. Farid, S. M. Kang, B. K. Bangash, and S. Ullah, "Derivation of bounds of several kinds of operators via (s,m)-convexity," Advances in Difference Equations, vol. 2020, p. 5, 2020.

[35] G. Farid, W. Nazeer, M. Saleem, S. Mehmood, and S. Kang, "Bounds of Riemann-Liouville fractional integrals in general
form via convex functions and their applications,” *Mathematics*, vol. 6, no. 11, p. 248, 2018.

[36] L. Chen, G. Farid, S. I. Butt, and S. B. Akbar, “Boundedness of fractional integral operators containing Mittag-Leffler functions,” *Turkish Journal of Inequalities*, vol. 4, no. 1, pp. 14–24, 2020.

[37] G. Farid, “Estimations of Riemann-Liouville k-fractional integrals via convex functions,” *Acta et Commentationes Universitatis Tartuensis de Mathematica*, vol. 23, no. 1, pp. 71–78, 2019.

[38] G. Farid, “Some Riemann-Liouville fractional integral for inequalities for convex functions,” *The Journal of Analysis*, vol. 27, pp. 1095–1102, 2019.

[39] G. Adilov and İ. Yeşilce, “On generalizations of the concept of convexity,” *Hacettepe Journal of Mathematics and Statistics*, vol. 41, no. 5, pp. 723–730, 2012.

[40] İ. Yeşilce and G. Adilov, “Hermite-Hadamard inequalities for $L(\beta)$-convex functions and $S(\beta)$-convex functions,” *Malaya Journal of Matematik*, vol. 3, no. 3, pp. 346–359, 2015.

[41] İ. Yeşilce, “Inequalities for B-convex functions via generalized fractional integral,” *Journal of Inequalities and Applications*, vol. 2019, p. 194, 2019.

[42] İ. Yeşilce and G. Adilov, “Hermite-Hadamard type inequalities for $B – 1$-convex functions involving generalized fractional integral operators,” *Filomat*, vol. 32, no. 18, pp. 6457–6464, 2018.