Key sources and seasonal dynamics of greenhouse gas fluxes from yak grazing systems on the Qinghai-Tibetan Plateau

Yang Liu1, Caiyu Yan1, Cory Matthew2, Brennon Wood2 & Fujiang Hou1

Greenhouse gas (GHG) emissions from livestock grazing systems are contributing to global warming. To examine the influence of yak grazing systems on GHG fluxes and relationships between GHG fluxes and environmental factors, we measured carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) fluxes over three key seasons in 2012 and 2013 from a range of potential sources, including: alpine meadows, dung patches, manure heaps and yak night pens, on the Qinghai-Tibetan Plateau. We also estimated the total annual global warming potential (GWP, CO₂-equivalents) from family farm grazing yaks using our measured results and other published data. In this study, GHG fluxes per unit area from night pens and composting manure heaps were higher than from dung patches and alpine meadows. Increased moisture content and surface temperature of soil and manure were major factors increasing CO₂ and CH₄ fluxes. High contributions of CH₄ and N₂O (21.1% and 44.8%, respectively) to the annual total GWP budget (334.2 tonnes) strongly suggest these GHG other than CO₂ should not be ignored when estimating GWP from the family farm grazing yaks on the Qinghai-Tibetan Plateau for the purposes of determining national and regional land use policies or compiling global GHG inventories.

Increased atmospheric concentrations of trace greenhouse gas (GHG), in particular carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O), have been identified as the main contributors to global warming1. Discovering the sources and sinks of these gases in terrestrial ecosystems has therefore become an important aim for global research. Considerable scientific effort has focused on grasslands. Comprising approx. 40% of the globe’s terrestrial ecosystem2, grassland plays a major role in the biosphere-atmosphere exchanges of the major GHG.

Pastoral farming is an important human activity that significantly affects grassland ecosystems. Livestock grazing alters the exchange of carbon and nitrogen between the biosphere and the atmosphere. Key processes include animal feed intake, excreta deposition (dung and urine) and trampling of the ground. The proportion of ingested nutrients that are retained in the body tissue of grazing livestock is small. Most of the mineral nutrients consumed are excreted in faeces and urine1. Ruminants may excrete 75–95% of the nitrogen (N) consumed5, though increased stocking rate reduces soil C sequestration potential and C and N dynamics are intertwined6. High N loading generated by an increased stocking rate and the associated urine and dung patches, to a much lesser extent, is of particular environmental concern because of the potential for leaching of nitrate N below the root zone of pasture plants, with subsequent degradation of ground water. With increased soil N loading, soil nitrate N is subject to transformations that can yield nitrogen oxides, including N₂O under chemically reducing conditions, such as when soil oxygen is depleted by high moisture levels. A single urine deposit by European cattle (Bos taurus) may yield the equivalent of 400–500 kg N ha⁻¹ and over 800 kg elemental K ha⁻¹ applied to the soil7. The pool of available nitrogen and carbon added to the soil by livestock excreta provides substrate for the production of N₂O as well as CO₂ and CH₄ by soil microorganisms8. Deposition sites of animal excreta, particularly urine, during grazing have been referred to as “hot spots” for gaseous N losses and N leaking to air and water due to the high nutrient loading in these areas9.

1State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China. 2Institute of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North, New Zealand. Correspondence and requests for materials should be addressed to F.H. (email: cyhoufj@lzu.edu.cn)
As the largest and highest grassland unit on the Eurasian continent, the Qinghai-Tibetan Plateau (QTP) covers an area of approx. 2.5 million km² and it is often referred to as the "Third Pole" (mostly situated at 4000 m above sea level), playing a critical climatic role, governing the Asian monsoon and it is the source of river systems that provide water to some 20% of the world’s population. Alpine meadow, which is the major pastureland on the plateau, covers 35% of the plateau area. There are in excess of 13.3 million domestic yaks and 20 thousand wild yaks living on QTP, large amounts of yaks excreta (dung and urine) are deposited onto the alpine grassland which can make a huge GHG emissions. Furthermore, unlike the paddock-based systems of Australian and New Zealand farmers, herdsmen on the QTP typically practise open grazing in alpine meadows during the day and then bring their yaks back to outdoor pens close to their dwellings during the night. Prolonged excreta accumulation and animal trampling in these pens creates conditions for alternating wet and dry hypoxic fermentation, which may be a significant source of GHG emissions. Research has found that US feedlots are significant N₂O sources, suggesting that the impact of yak night pens requires investigation. About 40% of the total yak excreta is deposited in the night pens. Yak dung in the pens is regularly collected and stored in manure heaps for drying for use as household fuel, and such heaps may also be sources of GHG. Although some studies have reported that alpine meadows on the QTP acts as a weak CH₄ sink during the growing season, excreta patches deposited onto grassland as "hotspot" of CH₄ and N₂O emissions, as well as feedlots as the significant N₂O sources; so far, they have not taken into account of the effects of excreta patches, especially manure heaps and night pens, on GHG emissions in the whole farm practices.

Thus, the overall objective of our study was to quantify GHG emissions from yak farming, taking account in the measurement protocol of farm practices such as use of night pens and manure heaps, as well as environmental factors. In this way the study was expected to expand the limited published data on GHG emissions from family farm grazing yaks on QTP in China and contribute additional data for use in global GHG inventories. The specific aims of this study were to (1) observe temporal variation in CH₄, CO₂ and N₂O fluxes of key sources (alpine meadows, dung patches, manure heaps and night pens) under yak grazing systems across different seasons (early growing, peak growing and non-growing season); (2) evaluate relationships between GHG fluxes and physico-chemical factors (i.e. surface temperature (ST), moisture content (MC), total organic carbon (TOC), total nitrogen (TN), microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN)); (3) estimate the total annual GWP (CO₂-equivalents) and the contribution of each gas from a typical family farm grazing yaks.

Results

GHG fluxes. Fluxes of CO₂ varied significantly by source and season, with differences between sources in their seasonal pattern (Fig. 1a), as indicated by statistically significant interaction between source and season in ANOVA. Each source showed rising CO₂ fluxes from the early growing season (May) to a high point in the peak growing season (August), then lower but continuing flux in the non-growing season (November). CO₂ emitted from the manure heaps was significantly higher than from the other sources in May and November 2012 and May 2013 (Minimum Significant Difference (MSD) = 298.9, 18.6 and 132.2 respectively, P < 0.001). However, CO₂ emissions were significantly higher from dung patches than other sources in August 2012 (MSD = 200.5, P < 0.0001) and from both dung patches and manure heaps in August 2013 (MSD = 509.5, P = 0.0044), with no significant difference detected among sources in November 2013 (MSD = 194.3, P > 0.05).

Seasonal patterns of CH₄ fluxes differed strongly among measured sources, as indicated by highly significant interaction effects between source and season (P < 0.0001). In general alpine meadow soils were slightly methanotrophic, while dung patches had small methane effluxes. Manure heaps and night pens generated substantial CH₄ effluxes, especially in the higher temperatures of the peak growing season, but with some variability between years (Fig. 1b). Fluxes in the alpine meadows were negative in May and August 2012 and 2013 (i.e. meadows were methanotrophic), with positive values measured for the other three sources at this time. Positive values were also observed for each source in November (the non-growing season) during the two year experimental period. With the exception of the alpine meadows, CH₄ fluxes rose from May to August and then dropped in November. Fluxes from manure heaps and night pens were significantly higher than from the alpine meadows and dung patches in May and August 2012 and 2013 (MSD = 0.51, 0.33, 0.62 and 1.26 respectively, P < 0.0001). However, CH₄ fluxes were significantly higher from the manure heaps in November 2012 and 2013 than from the other sources (MSD = 0.58 and 1.17, P < 0.0001 and P = 0.0107). Emissions from dung patches were significantly higher than the alpine meadows in May and August 2012 and 2013, with no significant difference detected with the alpine meadows in November 2012 and 2013.

For N₂O fluxes the notable feature of the data was that emissions from night pens were always numerically highest among the sources, though not always statistically so (Fig. 1c). N₂O fluxes also showed temporal variability as indicated by statistical interactions between GHG source and season. Fluxes from dung patches were statistically higher than from the alpine meadows during the measurement made in August 2012 (MSD = 1.41, P < 0.0001), but apart from this, no consistent pattern was observed.

Physico-chemical properties. ST showed an expected seasonal pattern during the two year experimental period, with only minor differences between sources; manure heaps and night pens being on some occasions a little warmer than the surrounding meadows (Fig. 2a). MC of alpine meadow soils was typically around 40% (range 32.6–47.5%) with no indication of seasonal variation and no elevation at dung patch sites or in night pens. Manure heaps had higher MC values (53.7–65.4%) (Fig. 2b). As would be expected, manure heaps had higher MBC and MBN contents than other sampled GHG sources, although there was MBC and MBN accumulation in night pens in 2013. Neither MBC nor MBN exhibited significant seasonal variation (Fig. 2c,d). TOC values measured in 2012 only were 258.5, 84.1 and 64.3 g kg⁻¹ for manure heaps, night pens, and alpine meadow soil, respectively (Fig. 2e); while corresponding TN values were 15.5, 7.5 and 3.3 g kg⁻¹, respectively (Fig. 2f). Neither TOC nor TN varied significantly by season.
Key factors associated with GHG fluxes. Pearson correlation analysis was used to overview the relationships between GHG fluxes and the physico-chemical indicators measured (Table 1). Fluxes of the three GHG were only weakly correlated with each other. CO₂ and CH₄ fluxes (but not N₂O) are increased with increased ST. CH₄ fluxes were correlated with all the parameters and the strongest correlation was with TN. N₂O fluxes were weakly but significantly negatively correlated with MC, MBC and MBN. Quantification of the relationships by multiple linear regression (Table 2) largely reflected these patterns but did also highlight a role of TN in N₂O flux, likely reflecting high N₂O efflux from night pens (Fig. 1), and much higher TN values for night pens than for alpine meadows.

Figure 1. Seasonal changes in CO₂, CH₄ and N₂O fluxes from the different GHG sources. S, Source; Y, Season (Year/Month); S*Y, the interaction between source and season (Year/Month). Data are presented as the mean ± 1 SE (n = 9). Columns with the same letters have no significant seasonal differences (P > 0.05). The p values presented in the figures are the significance levels for source, season and their interaction in the GLM model. Negative values for CH₄ fluxes represent uptake by soil/manure.
Figure 2. Seasonal variation in the physico-chemical properties of soil and manure for the GHG sources. Data are presented as means ± 1 SE (n = 9). Columns with same letters have no significant differences (P > 0.05) for each season (Year/Month). ST, surface temperature; MC, moisture content; TOC, total organic carbon; TN, total nitrogen; MBC, microbial biomass carbon and MBN, microbial biomass nitrogen. Alpine meadows and Dung patches share the same values of MBC, MBN, TOC and TN; TOC and TN were measured for 2012 only.
Data imported from other studies. The GHG fluxes from yak urine patches which were not directly measured in our study (since data were available from other studies at other QTP sites with similar vegetation), need to be estimated to complete the inventory of the total annual GWP from a family farm grazing yaks. The results of averaged GHG fluxes from yak urine patches, obtained with the model of Lin et al.14 are presented in Table 3.

Integration of GHG Sources to estimate GWP. A relational diagram of GHG sources for QTP yak grazing systems is presented in Fig. S1. Our methodology for estimating the total annual GWP from a family farm grazing yaks, followed the organisation of the relational diagram and used our measured results (i.e. GHG fluxes from alpine meadows, dung patches, night pens and manure heaps) and other published data in some cases, as described in the “Methods” section, below. The results of our family-farm-level integration of GHG fluxes (two year averaged data) are presented in Table 4. It is seen that total annual GWP (CO\textsubscript{2}-eq.) from a typical QTP family farm (average farm size 83 ha, yak population 87 head; stocking rate approximate 1.05 yaks ha-1) is estimated at 334.2 tonnes. Of the annual total GHG emissions, CO\textsubscript{2} release accounted for approximately 34.1% of emissions, while CH\textsubscript{4} and N\textsubscript{2}O emissions contributed approximately 21.1% and 44.8%, respectively. By season, the GWP during the non-growing season (winter) was 600.7 tonnes CO\textsubscript{2}-eq. (Table 4), however, GWP of the non-growing season was offset by ecosystem CH\textsubscript{4} and CO\textsubscript{2} uptake during the early growing and peak growing season of –119.6 and –147 tonnes CO\textsubscript{2}-eq, respectively.

Discussion

CO\textsubscript{2} fluxes seasonally measured in this study were respiration from alpine meadows, fluxes from dung patches in the meadows and manure heaps amassed by farmers, and fluxes from night pens. Respiration from the alpine meadows is made up of soil heterotrophic respiration and the autotrophic respiration of vegetation from both above and below the ground (plant height in the meadows was approximately 50–70 mm). The fluxes measured from the yaks’ night pens are primarily due to soil heterotrophic respiration and yak excreta (with no significant plant respiration in the pens due to extensive trampling of the ground). The results show a clear pattern of...
seasonal variation in CO₂ fluxes from all four GHG sources in the yak grazing systems of the studied farms on the QTP. Highest emissions were in the peak-growing season for plants (August) when temperatures were relatively high, lowest in the non-growing season (November) when temperatures were relatively low. This is an expected result, given that previous studies have shown that soil temperature and moisture are dominant environmental variables controlling seasonal changes in CO₂ emission. Our study found that surface temperature and soil water content are also key factors affecting these emissions (Tables 1 and 2). Urea in animal urine undergoes hydrolysis catalysed by the enzyme urease to form (NH₄)₂CO₃, with the resulting carbonate hydrolysis producing CO₂, previous studies have thus found pulses in CO₂ emission following urine application. Given these findings we might expect significant emissions from the night pens with their abundant deposition of yak urine. In our study, however, the CO₂ effluxes from night pens were lower than from the other sources. It seems likely that respiration from pen soil was inhibited due to anaerobic conditions and the lack of vegetation following yak trampling. In addition, we found that fluxes from dung patches and manure heaps tended to be either equal to, or exceed those from alpine meadows and night pens across all three seasons (Fig. 1). These higher levels of CO₂ emission may be due to higher soil organic carbon and microbial community activities, both of which may contribute to increased respiration.

The CH₄ fluxes presented the net flux between consumption and production by methanotrophic and methanogenic microbes. A previous study has reported that alpine meadows on the QTP are a weak CH₄ sink, with average uptake fluxes of 59.2 ± 3.7 μg CH₄ m⁻² h⁻¹ during the growing season. Our research observed that alpine meadows absorbed CH₄ in the early and peak growing seasons, but emitted it in the non-growing seasons for both years sampled. The mean CH₄ fluxes in May, August and November were −20.7 ± 5.3, −27.3 ± 3.0, 3.5 ± 7.4 μg CH₄ m⁻² h⁻¹, respectively, during the two year period of this experiment. The extensive duration of the winter period (197 days), this is a biologically significant result that should be incorporated in GHG inventories of the plateau. Yak dung deposition significantly increased CH₄ emissions, a finding attributable to dissolved CH₄, large microbial populations, highly degradable organic compounds and the anaerobic condition of the fresh patches. The MC of soil strongly controls CH₄ dynamics given the increases in production due to anaerobic conditions. Our study shows the significantly higher MC of the manure heaps (approximately 60%), thus higher CH₄ fluxes were observed from manure heaps. Although the night pens contain high dung levels, across all seasons they tended to emit less CH₄ per unit area than the manure heaps. Increased soil pH after livestock urine deposition significantly reduces CH₄ oxidation rates. Moreover, soil NH₄⁺ -N content may limit the capacity of soils to take up CH₄ as it can inhibit the activity of methanotrophs. Previous research has found that with increasing soil applications of NH₄⁺ -N from 13 to 96 kg N ha⁻¹ the amount of CH₄ oxidation fell by amounts ranging from 31 to 97%. Yak urine excreted to the night pens contains both water and urine-N and the combined effect of these two factors may both promote CH₄ production and inhibit its consumption by soil in the night pens. Our study thus suggests that the relationship between CH₄ emission and soil NH₄⁺ -N requires further research.

N₂O fluxes result from biological processes of nitrification and denitrification. In general, nitrification involves the aerobic microbial oxidation of ammonia into nitrate (NO₃⁻), denitrification of the anaerobic microbial reduction of NO₃⁻ to NO, N₂O and N₂. These processes result in N₂O emissions as an intermediate by-product. Our research shows that night pens were consistently the highest N₂O emitters and that all sources exhibited significant seasonal variations. These results are attributable to the spatially and temporally highly variable character of nitrification processes. Nitrification and denitrification depend on soil and manure moisture and pH levels, temperature, organic matter, NO₃⁻ and NH₄⁺ content and the nature of the microbial community, as well as a range of other factors. The combined effect of these factors clearly favours N₂O emissions from pens more than from other sources measured, and from pens in the early growing season in particular, though their impact on seasonal fluxes from the other sources is complex. The results show that N₂O fluxes were higher from dung patches than alpine meadows throughout 2012. Moreover, fluxes were higher from manure heaps than alpine meadow only in the 2012 early growing season and the 2013 non-growing season. These findings are difficult to interpret, although they are generally consistent with prior studies reporting that animal dung application stimulates N₂O emission in the field. Dung patches and heaps are likely to have high denitrification rates due to internal anaerobic conditions, combined with high levels of moisture, TOC, TN, MBC and MBN. Nitrogen losses from NH₃ volatilization and N leaching can significantly reduce the denitrification potential of sources. The relatively lower N₂O emissions from manure heaps during the peak growing season may thus be due to the warm and dry measurement conditions. These conditions can be optimal for NH₃ volatilisation losses, leaving less inorganic N in the manure for N₂O formation and emission, although this assumption requires testing by further research. The negative correlation between N₂O fluxes and MBC or MBN is counterintuitive and we
The GHG fluxes of N₂O and CH₄ from night pens and composting manure heaps per unit area were expectedly family farms on the QTP, coupled with a climatic warming trend, is resulting in a release of sequestered soil C. The contributions of CH₄ and N₂O (21.1% and 44.8%, respectively) to the annual total GHG budget strongly suggest these GHG should not be ignored when estimating GWP (CO₂-eq.) in the grazing systems on the QTP. Practically speaking, understanding the role of the QTP in global warming requires a thorough analysis of GHG fluxes generated by its yak grazing systems. The plateau is not simply a natural landscape; it is populated by farmers whose techniques are both ancient and rapidly changing. These nomadic pastoralists and their livestock are at the forefront of ecological degradation on the plateau and are the target of policies aimed at reversing this degradation. We have investigated GHG fluxes from four key sources in yak grazing systems on nine farms, and to address logistical issues from the number of samples to be collected, we have adopted some measurements of other researchers at similar sites (notably GHG fluxes from urine deposition in meadows and rumen emission of CH₄) rather than repeat those measurements in our own study. Our nine farms were initially chosen to represent a range of stocking rates but after data were collected it became apparent that spatial heterogeneity within farms had resulted in data variability such that it was more meaningful to average results for all nine farms. In hindsight this has provided a strength to the study because averaging of nine replicates is a sound way to deal with variable data. Even so, for a number of reasons we believe confirmation through additional data collection would be desirable. Moreover, we lack full seasonal data for all significant GHG sources and must rely on interpolative estimates. Our synthesis of GWP for the yak grazing systems thus requires cautious interpretation, but should provide a useful first estimate of the comparative size of these fluxes, pending further research on this topic.

These data indicate (Table 4), that in the QTP yak grazing family farm systems N₂O is more important on an annual basis than CO₂, and that the carbon sink activity of the alpine meadows during the early and peak growing seasons has a GWP mitigation effect, but there is a substantial carbon respiration during the non-growing season with additional GWP from CH₄ and N₂O emissions, which while highest in the non-growing season, also continues through the early and peak growing seasons. To place these observations in context, Merbold et al. reported CO₂ emission from snow covered alpine meadows in Switzerland to be 0.77 μmol m⁻² s⁻¹, which converts to just 3.54 tonnes for their 121 day study period from 1 December to 31 March. The same authors reported a small CH₄ uptake and N₂O emission of 0.23 n mol m⁻² s⁻¹, which equates to just 0.315 tonnes CO₂-eq. in their 121 day winter measurement period. It seems reasonable to assume that the transfer of N via urine to night pens accounts for the high GWP contribution of N₂O in the QTP data, compared to the Swiss data. A hypothesis for further study is that the present defoliation intensity and warming on the QTP have combined to create a net annual loss of soil carbon, as indicated by data of Yuan and Hut. The difference between the results of these two studies in Switzerland and on the QTP highlights the importance of obtaining site specific data for GWP inventory calculations, and shows that management of the QTP, with its very large land area, will be a significant element in determining regional land use policies and will have measurable global impact.

Conclusions
The single largest source of GWP identified in this study was CO₂ emission by alpine meadow soils in winter, and a hypothesis for further study is that the defoliation intensity from an average stocking rate of 1.05 yaks ha⁻¹ on family farms on the QTP, coupled with a climatic warming trend, is resulting in a release of sequestered soil C. The GHG fluxes of N₂O and CH₄ from night pens and composting manure heaps per unit area were expectedly high, with yak night pens being an important N₂O emission source, and when calculated as whole-farm quantities exceeded the annual GWP from CO₂ emission by a factor of approximately 2. Total annual GWP (CO₂-eq.) from the typical 83 ha family farm with an average stocking rate of 1.05 yaks ha⁻¹ is 334.2 tonnes. The yak grazing family farm system has a GWP mitigation status during the early and peak growing seasons, but is a large carbon source during the non-growing season. The contributions of CH₄ and N₂O (21.1% and 44.8%, respectively) to the annual total GHG budget strongly suggest these GHG should not be ignored when estimating GWP (CO₂-eq.) in the grazing alpine meadows on the QTP for the purposes of determining national and regional land use policies or compiling global GHG inventories.

Methods
Study site. The study investigated yak grazing farms located 5–10 kilometres from Azi Research Station, Maqu County, Gansu Province, China, which is located in the eastern part of the QTP at longitude 101°53′E, latitude 33°58′N. Average elevation is 3700 m above sea level, with a cold, humid climate typical of the Tibetan Plateau. Annual average temperature is approximately 1.2 °C, with lowest monthly average temperatures around −10 °C in December to February and the highest monthly average temperatures just below 12 °C in June to August each year. Annual average precipitation is 620 mm, mainly concentrated within the growing season from May to September. Vegetation is dominated by typical alpine meadow types: clonal Kobresia species and Carex kansuensis (Cyperaceae), Festuca ovina, Poa poophagorum, Elymus nutans and Agrostis species (Poaceae), Saussurea species (Asteraceae) and Anemone rivularis (Ranunculaceae). Nine typical yak grazing farms were selected to measure GHG fluxes and to explore the influence of soil and manure physico-chemical properties. In our study, each of the 9 yak farms was taken as an independent experimental unit and considered as a grazing system defined by its family ownership and related statistics (Table S1) and with a hierarchically related set of major GHG sources (Fig. S1).
For analytical purposes, the yak grazing systems are conceptualised as a coupling of soil, plant and animal related processes. Plant related processes are primarily associated with the pasture plant community but also involve the fertilisation of alpine meadows by animal excreta. Animal related processes include emissions by the yaks themselves, GHG sources arising from human management of these animals, and the direct losses from excreta deposited on pasture. GHG emissions from urine patches in alpine meadows and from rumen fermentation of yaks were not directly measured in this study, though relevant findings from previously published research for these sources will be included in the paper’s discussion of results. We follow the accepted methodology for dealing with respiratory emissions of CO₂ by animals in GHG accounting, namely these emissions are zero-rated. This is because herbage eaten by animals represents CO₂ recently acquired by photosynthesis and whether respired by animals or by eventual decomposition of uneaten herbage is returned to the atmosphere without involvement in any longer-term C-sink. Direct N₂O emissions from yaks were also excluded as these were considered to be negligible.

Measurement of GHG emissions. For the purposes of GHG measurement, three seasons have been identified on the plateau: early growing season, peak growing season and non-growing season. In order to capture data for these three periods, we sampled CO₂, CH₄, and N₂O fluxes of the various sources everyday (except for rainy weather) in May, August and November in 2012 and 2013. In order to determine season duration for estimation of annual GHG emission totals from measured seasonal values, we examined the 2013 daily temperatures and precipitation recorded at the Azi Research Station (Fig. S2). From those data we judge that:

1. The early growing season runs for 61 days from mid-April to mid-June (average temperature 6.9 °C and total precipitation 107.5 mm);
2. The peak growing season runs for 107 days from mid-June to the end of September (average temperature 11.1 °C and total precipitation 368.1 mm); and
3. The non-growing season runs for 197 days from October to mid-April (average temperature −2.7 °C and total precipitation 56.9 mm).

GHG fluxes were measured using the static opaque chamber methods following the guidelines from previous research. These chambers were constructed as described by Lin et al. Each chamber in a seat with a water groove to make the chamber seal with the seat airtight was inserted into the soil or manure to a depth of 50 mm. A battery-operated fan was installed on the top wall of each chamber to mix the air when the chamber was closed. Gas samples were drawn through a three-way stopcock, using a 60 ml syringe, and then transferred for storage into 500 ml aluminium foil gas-collecting bags (China Dalian Delin Gas Packing Co., Ltd). Four gas samples of approximately 250 ml were then taken in each chamber at four time intervals for each sampling event (0, 10, 20 and 30 min) from 9:00 am to represent daily mean flux. Temperatures inside the chamber and at soil or manure depths of 50 mm were also recorded on each sampling occasion. A CH₄/CO₂ analyser with syringe injection (DLT-100, Model No. 908-0011-0001) was used for simultaneous CH₄ and CO₂ analysis, and a N₂O/CO₂ analyser (Model No. 908-0015-0000) was used for simultaneous N₂O analysis. The fluxes were calculated according to the equation described by Song et al., with modifications made for QTP conditions as follows:

\[
F = \left(\frac{V}{A} \right) \times \left(\frac{P - P_0}{T} \right) \times \frac{dT}{dt},
\]

where \(F \) is the gas flux (mg m⁻² h⁻¹), \(P \) is the gas density under standard conditions (CO₂, CH₄, N₂O; 1.977, 0.717, 1.978 kg m⁻³, respectively), \(V \) is chamber volume (m³), \(A \) is the base area of the chamber (m²), \(P_0 \) is the atmospheric pressure (kPa) of the sampling sites, \(T_0 \) is the temperature under standard conditions (273.15 K), \(T \) is the temperature inside the chamber (K), and \(dC/dt \) is the average rate of concentration change with time.

Analysis of soil and manure physico-chemical properties. Soil and manure samples were collected at each measurement event. For each of the sources (soil or manure), surface layer temperatures (ST) were measured at 50 mm depth and the other physico-chemical properties from sample material from 0–100 mm depth. The moist fresh samples were analysed to determine their moisture content (MC), microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN). The samples were then air-dried to measure total organic carbon (TOC) and total nitrogen (TN). MC was analysed by oven-drying the samples at 105 °C to constant weight. TOC was determined by the wet combustion method, with K₂Cr₂O₇ and concentrated H₂SO₄ at 170–180 °C, and TN in the digest was determined using a continuous flow analyser (FIAsstar 5000 Analyzer). MBC and MBN were determined using the chloroform fumigation-extraction method. The samples were conditioned for 7 days at 25 °C while maintaining 40% of their total water holding capacity. Then the fumigated and non-fumigated samples were extracted with K₂SO₄ solutions (0.5 mol L⁻¹) with a 1:4 (weight to volume) soil/manure-to-extractant ratio. MBC and MBN concentrations were calculated as the differences in total extractable C and N between the fumigated and non-fumigated samples, with the conversion factors set at 2.64 for biomass C and 1.85 for biomass N.

Data adopted from other studies. To complete the inventory of the annual GHG fluxes from the yaks grazing family farm level (Fig. S1), the GHG fluxes from rumen activity of yaks and from their urine patches which were not directly measured in our study, needed to be estimated. Ruminant rumen fermentation is an important source of CH₄. In our study, we use the emission factor 81.4 g CH₄ day⁻¹ to estimate the CH₄ emission from yaks, based on assumptions of 175 kg live-weight and an intake of 3.78 kg DM/day.
An independent variable linear model from Lin et al.14 was chosen to estimate averaged GHG fluxes from yak urine patches. Soil surface temperature (0–50 mm) and WFPS (0–100 mm) data invested at sampling day were used in this model to calculate the averaged CH\textsubscript{4}, CO\textsubscript{2}, and N\textsubscript{2}O fluxes for each season.

Also, the CO\textsubscript{2} fluxes measured using the static opaque chamber described above represent the respiration of alpine meadows ecosystems. To estimate GWP of alpine meadows, the CO\textsubscript{2} consumption by plant photosynthesis also needs to be accounted for Chen et al.15

Integration of GHG data to estimate GWP. Following the methodology of other published studies5,6,7, the combined impact of different sources and GHG is expressed as a GWP (CO\textsubscript{2}-eq.) based on GWP factors compared to CO\textsubscript{2} of 25 times for CH\textsubscript{4} and 298 times for N\textsubscript{2}O for a time horizon of 100 years8. Total CH\textsubscript{4} fluxes from yaks are the product of emission factor, averaged yak population and season days. However, total GHG (CO\textsubscript{2}, CH\textsubscript{4}, and N\textsubscript{2}O) fluxes for these key sources (Alpine meadows, Dung patches, Urine patches, Manure heaps and Night pens) at average family farm level for each season were simplified calculated using the equation as follows: Total GHG Fluxes = mean GHG fluxes \times area \times season days.

Statistical analysis.

All statistical analyses were conducted using SAS 9.3 (SAS Institute Inc., Cary, NC, USA), with significance levels set at \(P < 0.05\). A goodness-of-fit test (Shapiro-Wilk test) was used to test data distributions and confirm normality. Data for soil and manure physico-chemical properties and for GHG fluxes were analyzed using ANOVA (Proc GLM), followed by Tukey’s HSD tests. Prior to ANOVA, the data on CH\textsubscript{4} and N\textsubscript{2}O fluxes were log-transformed (\(\ln(x)\)), but the means calculated from the original data are presented. A general linear model (Proc GLM) was applied to determine the effects of source and season and their interactions (source \times season) on GHG emissions. To test the correlations between GHG fluxes and physico-chemical properties, Pearson correlations (Proc CORR) was performed. Multiple linear regression analysis (Proc REG) of GHG fluxes on the physico-chemical indicators was performed.

References

1. Qin, D. et al. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) (Cambridge University Press, 2007).
2. LeCain, D. R., Morgan, J. A., Schuman, G. E., Reeder, J. D. & Hart, R. H. Carbon exchange and species composition of grazed pastures and exclosures in the shortgrass steppe of Colorado. Agric. Ecosyst. Environ. 93, 421–435 (2002).
3. White, R., Murray, S. & Rohwerder, M. Pilot Analysis of Global Ecosystems: Grassland Ecosystems. 1–69 (World Resources Institute, Washington D.C., 2000).
4. Rotz, C. et al. Whole-farm perspectives of nutrient flows in grassland agriculture. Crop Sci. 45, 2139–2159 (2005).
5. Ball, R., Keeney, D., Thoebold, P. & Nesi, P. Nitrogen balance in urine-affected areas of a New Zealand pasture. Agron. J. 71, 309–314 (1979).
6. Parsons, A. J., Thornley, J. H., Newton, P. C., Rasmussen, S. & Rowarth, J. S. Soil carbon dynamics: the effects of nitrogen input, intake demand and off-take by animals. Sci. Total Environ. 465, 205–215, doi: 10.1016/j.scitotenv.2013.02.019 (2013).
7. Haynes, R. & Williams, P. Nutrient cycling and soil fertility in the grazed pasture ecosystem. Advances in agronomy 49, 119–199 (1993).
8. Bohn, A., Robinson, J. S., Chadwick, D. & Cardenas, L. Effect of cattle urine addition on the surface emissions and subsurface concentrations of greenhouse gases in a UK peat grassland. Agric. Ecosyst. Environ. 186, 23–32 (2014).
9. Vante-Leech, R., Liu, K., Sollenberger, L. E., Woodard, K. R. & Interrante, S. M. Effect of position on Grassland Patches. I Forage Harvested, Nutritive Value, and Nitrogen Recovery. Crop Sci. 53, 688–695, doi: 10.2135/cropsci2012.07.0407 (2013).
10. Harris, R. B. Rangeland degradation on the Qinghai-Tibetan plateau: a review of the evidence of its magnitude and causes. J. Arid Environ. 74, 1–12 (2010).
11. Wilson, M. C. & Smith, A. T. The pika and the watershed: The impact of small mammal poisoning on the ecohydrology of the Qinghai-Tibetan Plateau. Ambio 44, 16–22, doi: 10.1007/s13280-014-0568-x (2015).
12. Immerzeel, W. W., Beek, L. P. H. v. & Bierkens, M. F. P. Climate change will affect the Asian water towers. Science 328, 1382–1385, doi: 10.1126/science.1183188 (2010).
13. Xu, J. et al. The melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv. Biol. 23, 520–530, doi: 10.1111/j.1523-1739.2009.01237.x (2009).
14. Lin, X. et al. Fluxes of CO\textsubscript{2}, CH\textsubscript{4}, and N\textsubscript{2}O in an alpine meadow affected by yak excreta on the Qinghai-Tibetan plateau during summer grazing periods. Soil Biol. Biochem. 41, 718–725, doi: 10.1016/j.soilbio.2009.01.007 (2009).
15. Saggar, S. et al. Modelling nitrous oxide emissions from dairy-grazed pastures. Nutr. Cycl. Agroecosys. 68, 243–255 (2004).
16. Aguilar, O. A., Maghirang, R. G., Rice, C. W., Trabue, S. L. & Erickson, L. E. Nitrous oxide fluxes from a commercial beef cattle feedlot in Kansas. Air Soil Water Res. 7, 35–45 (2014).
17. Wang, S., Wang, Y., Schnug, E., Haneklaus, S. & Fleckenstein, J. Effects of nitrogen and sulphur fertilization on oats yield, quality and digestibility and nitrogen and sulphur metabolism of sheep in the Inner Mongolia Steppe of China. Nutr. Cycl. Agroecosys. 62, 195–202 (2002).
18. Wei, D., Wang, Y. & Wang, Y. Considerable methane uptake by alpine grasslands despite the cold climate: in situ measurements on the central Tibetan Plateau, 2008–2013. Glob. Chang. Biol. 21, 777–788 (2015).
19. Ma, X., Wang, S., Wang, Y., Jiаng, G. & Nyren, P. Short-term effects of sheep excreta deposition and farm effluent application in grazed pastures. N. Z. J. Agirc. Res. 47, 513–544 (2004).
20. Petersen, S. O., Christofides, C., Dittert, K. & Hansen, M. N. Short-term N2O, CO2, NH3 fluxes, and N/C transfers in a Danish grassland. Nutr. Soil Sci. 167, 568–576 (2004).
21. Saggar, S., Bolan, N. S., Bhandarl, R., Hedley, C. B. & Luo, J. A review of emissions of methane, ammonia, and nitrous oxide from animal excreta deposition and farm effluent application in grazed pastures. N. Z. J. Agrirc. Res. 47, 513–544 (2004).
24. Sherlock, R. R. et al. Ammonia, methane, and nitrous oxide emission from pig slurry applied to a pasture in New Zealand. J. Environ. Qual. 31, 1491–1501 (2002).
25. Jones, S. K., Rees, R. M., Skiba, U. M. & Ball, B. C. Greenhouse gas emissions from a managed grassland. Global Planet. Change 47, 201–211, doi:10.1016/j.gloplacha.2004.10.011 (2005).
26. Price, S. J., Kellihfer, F. M., Sherlock, R. R., Tate, K. R. & Condon, L. M. Environmental and chemical factors regulating methane oxidation in a New Zealand forest soil. Soil Res. 42, 767–776 (2004).
27. Dobbie, K. E. & Smith, K. A. Comparison of CH4 oxidation rates in woodland, arable and set aside soils. Soil Biol. Biochem. 28, 1357–1365 (1996).
28. Merino, A., Pérez-Batallón, P. & MacAs, F. Responses of soil organic matter and greenhouse gas fluxes to soil management and land use changes in a humid temperate region of southern Europe. Soil Biol. Biochem. 36, 917–925 (2004).
29. Yamulki, S., Jarvis, S. C. & Owen, P. Nitrous oxide emissions from excreta applied in a simulated grazing pattern. Soil Biol. Biochem. 30, 491–500, doi:http://dx.doi.org/10.1016/S0038-0717(98)00145-4 (1998).
30. Wachendorf, C., Lampe, C., Taube, F. & Dittert, K. Nitrous oxide emissions and dynamics of soil nitrogen under 15N-labeled cow urine and dung patches on a sandy grassland soil. J. Plant Nutr. Soil Sci. 171, 171–180 (2008).
31. Virkajari, P., Malijanen, M., Saarijarvi, K., Haapala, J. & Martikainen, P. J. N2O emissions from boreal grass and grass – clover pasture soils. Agric. Ecosyst. Environ. 137, 59–67, doi: http://dx.doi.org/10.1016/j.agee.2009.12.015 (2010).
32. Cai, Y. et al. The impact of excreta returns from yak and Tibetan sheep dung on nitrous oxide emissions in an alpine steppe on the Qinghai-Tibetan Plateau. Soil Biol. Biochem. 76, 90–99, doi: 10.1016/j.soilbio.2014.05.008 (2014).
33. Sherlock, R. R. & Goh, K. M. Dynamics of ammonia volatilization from simulated urine patches and aqueous urea applied to pasture I. Field experiments. Fertil. Res. 5, 181–195 (1984).
34. Sommer, S. G., Sherlock, R. R. & Khan, R. Z. Nitrous oxide and methane emissions from pig slurry amended soils. Soil Biol. Biochem. 28, 1541–1544, doi:http://dx.doi.org/10.1016/S0038-0717(96)00146-0 (1996).
35. Douglas, J. T. & Crawford, C. E. The response of a ryegrass sward to wheel traffic and applied nitrogen. Grass & Forageence 48, 91–100 (1993).
36. Rafieque, R., Hennessy, D. & Kiely, K. Nitrous Oxide Emission from Grazed Grassland Under Different Management Systems. Ecosystems 14, 563–582 (2011).
37. Merbold, L., Steinlin, C. & Hagedorn, F. Winter greenhouse gas fluxes (CO2, CH4, and N2O) from a subalpine grassland. Biogeoosciences 10, 3185–3303 (2013).
38. Yuan, H. & Hou, F. Grazing intensity and soil depth effects on soil properties in alpine meadow pastures of Qilian Mountain in northwest china. Acta Agr. Scand.B-S. P 65, 222–232, doi: 10.1080/09064710.2014.992940 (2014).
39. Sun, Y., Angerer, J. P. & Hou, F. J. Effects of grazing systems on herbage mass and liveweight gain of Tibetan sheep in Eastern Qinghai-Tibetan Plateau, China. Rangeland J. 37, 181–190 (2015).
40. Wu, G., Du, G., Liu, Z. & Thirgood, S. Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant Soil 319, 115–126, doi:10.1007/s11104-008-9854-3 (2008).
41. Jia, P., Bayaerta, T., Li, X. & Du, G. Relationships between Grazing Phenology and Functional Traits in Eastern Tibetan Alpine Meadow. Arct. Antarct. Alp. Res. 43, 585–592, doi:10.1657/1938-4246-43.4.585 (2011).
42. Herrera, M. et al. Livestock and greenhouse gas emissions: The importance of getting the numbers right. Anim. Feed Sci. Technol. 166, 779–782 (2011).
43. Flessa, H. et al. Integrated evaluation of greenhouse gas emissions (CO2, CH4, N2O) from two farming systems in southern Germany. Agric. Ecosyst. Environ. 91, 175–189 (2002).
44. Li, Y. et al. Seasonal changes of CO2, CH4 and N2O fluxes in different types of alpine grassland in the Qinghai-Tibetan Plateau of China. Soil Biol. Biochem. 80, 306–314 (2015).
45. Sommer, S. G. & Møller, H. B. Emission of greenhouse gases during composting of deep litter from pig production—effect of straw content. J. Agric. Sci. 134, 327–335 (2000).
46. Song, C. et al. Fluxes of carbon dioxide and methane from swamp and impact factors in Sanjiang Plain, China. Chin. Sci. Bull. 48, 2749–2753, doi:10.1360/03wd0250 (2003).
47. Cao, G. et al. Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau. Soil Biol. Biochem. 36, 237–243, doi:10.1016/j.soilbio.2003.09.010 (2004).
48. Hirota, M. et al. The potential importance of grazing to the fluxes of carbon dioxide and methane in an alpine wetland on the Qinghai-Tibetan Plateau. Atmos. Environ. 39, 5255–5259, doi:10.1016/j.atmosenv.2005.05.036 (2005).
49. Saggard, S., Hedley, C. B., Giltrap, D. L. & Lambie, S. M. Measured and modelled estimates of nitrous oxide emission and methane consumption from a sheep-grazed pasture. Agric. Ecosyst. Environ. 122, 357–365, doi:10.1016/j.agee.2007.02.006 (2007).
50. Wang, J., Duan, C., Ji, Y. & Sun, Y. Methane emissions during storage of different treatments from cattle manure in Tianjin. J. Environ. Sci. 22, 1564–1569, doi:10.1016/j.jes.2009(09)0290-4 (2010).
51. Zhou, Y. et al. Experimental warming of a mountain tundra increases soil CO2 effluxes and enhances CH4 and N2O uptake at Changbai Mountain, China. Sci. Rep. 6, 21108, doi:10.1038/srep21108 (2016).
52. Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).
53. Vance, E., Brookes, P. & Jenkinson, D. An extraction method for measuring microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).
54. Ding, X. Z., Long, R. J., Kreuzer, M., Mi, I. D. & Yang, B. Methane emissions from yak (Bos grimmiens) steers grazing or kept indoors and fed diets with varying forage concentration ratio during the cold season on the Qinghai-Tibetan Plateau. Fuel & Energy Abstracts 162, 91–98 (2010).
55. Chen, J., Shi, W. & Cao, J. Effects of grazing on ecosystem CO2 exchange in a meadow grassland on the Tibetan Plateau during the growing season. Environ. Manage. 55, 347–359 (2015).
56. Chen, W., Wolf, B., Brüggemann, N., Butterbach-Bahl, K. & Zeng, X. Annual emissions of greenhouse gases from sheepfolds in Inner Mongolia. Plant Soil 340, 291–301, doi:10.1007/s11104-010-0367-5 (2010).
57. Schönbach, P. et al. Grazing effects on the greenhouse gas balance of a temperate steppe ecosystem. Nutr. Cycl. Agroecosys. 93, 357–371, doi:10.1007/s10705-012-9521-1 (2012).

Acknowledgements
This study was financially supported by the National Key Project of Scientific and Technical Supporting Programs (2014CB138706), National Natural Science Foundation of China (No. 31672472) and Program for Changjiang Scholars and Innovative Research Team in University (IRT13019). The authors gratefully thank Yi Sun and Yan Zhang who assisted with gas collection in the field, especially during harsh winter on the QTP; we also thank to Shenghua Chang and Zhaofeng Wang for assistance with laboratory analysis; and Xiongzhao He at Massey University, and Coby Hoogendoorn, and Dongwen Luo at AgResearch in New Zealand, for guidance with statistical analysis.
Author Contributions
F.H. and Y.L. conceived and designed the experiments; Y.L. and C.Y. performed the experiments; Y.L., C.M., B.W.,
and F.H. analysed the data; Y.L. wrote the main manuscript text; C.M. and B.W. provided advice in manuscript
compilation and reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Liu, Y. et al. Key sources and seasonal dynamics of greenhouse gas fluxes from yak
grazing systems on the Qinghai-Tibetan Plateau. Sci. Rep. 7, 40857; doi: 10.1038/srep40857 (2017).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images
or other third party material in this article are included in the article’s Creative Commons license,
unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017