Identification and evaluation of the role of the manganese efflux protein in *Deinococcus radiodurans*

Hongxing Sun¹, Guangzhi Xu¹, Hongdan Zhan¹, Huan Chen², Zongtao Sun¹, Bing Tian¹, Yuejin Hua¹*

Abstract

Background: *Deinococcus radiodurans* accumulates high levels of manganese ions, and this is believed to be correlated with the radiation resistance ability of this microorganism. However, the maintenance of manganese ion homeostasis in *D. radiodurans* remains to be investigated.

Results: In this study, we identified the manganese efflux protein (MntE) in *D. radiodurans*. The null mutant of *mntE* was more sensitive than the wild-type strain to manganese ions, and the growth of the *mntE* mutant was delayed in manganese-supplemented media. Furthermore, there was a substantial increase in the *in vivo* concentration of manganese ions. Consistent with these characteristics, the *mntE* mutant was more resistant to *H₂O₂*, ultraviolet rays, and γ-radiation. The intracellular protein oxidation (carbonylation) level of the mutant strain was remarkably lower than that of the wild-type strain.

Conclusions: Our results indicated that *dr1236* is indeed a *mntE* homologue and is indispensable for maintaining manganese homeostasis in *D. radiodurans*. The data also provide additional evidence for the involvement of intracellular manganese ions in the radiation resistance of *D. radiodurans*.

Background

Deinococcus radiodurans is an extreme bacterium known for its resistance to ionizing radiation (IR), ultraviolet (UV) radiation, oxidative stress, and desiccation [1,2]. It has been reported that *D. radiodurans* can recover from exposure to γ-radiation at 15 kGy, a dose lethal to most life forms. IR can directly damage biomacromolecules and can also produce reactive oxygen species (ROS) that can indirectly attack both proteins and DNA [3,4]. Therefore, cellular defense against ROS-induced protein and DNA damage is proposed to be important to the radiation resistance of *D. radiodurans* [5].

Manganese plays an important role in the antioxidant systems of bacteria and can relieve the phenotypic deficit of sod-null *Escherichia coli* [6]. Interestingly, Daly and coworkers found that the Mn/Fe ratio of most IR-resistant bacteria is higher than that of IR-sensitive bacteria. The group also found that *D. radiodurans* grown in manganese-deficient medium was relatively more sensitive to IR than the bacteria grown in manganese-containing medium, suggesting that the accumulation of intracellular manganese ions can protect proteins from ROS-induced damage and can help in the survival of *D. radiodurans* in extreme environments [5,7,8].

Although manganese can improve cellular ROS resistance, excess manganese is toxic to cells. Thus, maintenance of the intracellular Mn concentration homoeostasis is a challenge. In bacteria, two main classes of manganese transporters have been identified—Nramp H+-Mn²⁺ transporters and the ATP-binding cassette (ABC) Mn²⁺ permeases [9]. Recently, a manganese efflux system was identified in *Streptococcus pneumoniae*, and this was found to play important roles in host pathogenesis and H₂O₂ resistance [10]. Many genes involved in the maintenance of manganese ion homeostasis have been reported in *D. radiodurans*, such as *dr1709*, *dr2523* [11], *dr2539* [12], and *dr0615* [13]. Therefore, it would be very interesting to determine...
whether *D. radiodurans* possesses a similar manganese efflux system. In this study, we identified a manganese efflux gene (*dr1236*) in *D. radiodurans* and demonstrated that it plays an important role in maintaining the homeostasis of intracellular Mn. The null mutant *mntE* was highly sensitive to manganese ions. When the intracellular level of manganese ions was increased by mutating *dr1236*, the mutant showed clearly enhanced resistance to oxidative stress. Our results also demonstrated that increased intracellular Mn levels could substantially suppress protein oxidation (carbonylation) in *D. radiodurans* exposed to H₂O₂, indicating that manganese transport and regulation may be involved in the cellular resistance of *D. radiodurans* to oxidative stress.

Results and discussion

D. radiodurans encodes a putative manganese efflux protein

By searching the *D. radiodurans* genome [http://www.ncbi.nlm.nih.gov/], we identified a manganese efflux protein homologue that was annotated as the conserved hypothetical protein DR1236 based on its extensive sequence similarity (25% identity, 49% similarity) to the manganese efflux protein (sp1552) of *Streptococcus pneumoniae* [10]. Similar to most cation diffusion facilitator (CDF) proteins, DR1236 has six putative transmembrane domains (TMDs) [http://www.ch.embnet.org/software/TMPRED_form.html]. The most conserved region of the CDF protein is the TMD region, which is probably involved in metal transfer [14]. Sequence alignment was performed with the CLUSTAL W program available on the EMBL web page [http://www.ebi.ac.uk]. The alignment Sp1552 and DR1236 revealed the presence of highly conserved sequences in metal transfer regions III and VI (Figure 1). Moreover, the DXXXD motif, which is conserved in the manganese efflux protein, was also present in DR1236 (224 DAGVD 230).

mntE is essential for the manganese resistance of *D. radiodurans*

To confirm the specific substrate and roles of DR1236 in *D. radiodurans*, the null mutant of *dr1236* (*mntE*) and wild-type revertant *mntE* strains were constructed (Figure 2). Metals including manganese are essential yet potentially toxic to bacteria [15]. Supplementation with certain metal ions can inhibit the growth of an exporter system mutant [16,17]; therefore, this phenotype is used to verify certain mutants. In this study, wild-type R1 and *dr1236* (*mntE*) were grown on TGY plates overlaid with discs containing manganese, magnesium, cobalt, calcium, copper, zinc, nickel, or iron ions. As shown in Figure 3A/B, the growth of the *mntE* mutant was strongly inhibited by the manganese ions, but the mutant grew normally in the presence of other cations. Moreover, the wild-type revertant showed a growth phenotype similar to that of R1, indicating that growth inhibition of the *mntE* mutant was due to the interruption of *dr1236*.

To further investigate the influence of manganese ions on the *mntE* mutant, different concentrations of manganese ions were added to TGY medium, and the growth of the *mntE* mutant was measured (Figure 3C). The results showed that in comparison with R1, the growth of the *mntE* mutant was clearly delayed in the presence of low concentrations of manganese ions. When the manganese concentration increased, the growth defect phenotype became more pronounced. This phenotype is similar to that observed in Rosch’s study in which the growth of *S. pneumoniae* having a disrupted calcium efflux system was more severely inhibited at higher calcium concentrations [18].

The *mntE* mutant shows high intracellular manganese concentrations

To confirm that the *mntE* mutant had lost its ability to export manganese ions, the intracellular manganese ion levels of wild-type R1 and the *mntE* mutant were measured by inductively coupled plasma-mass spectrometry (ICP-MS). As expected, when grown on TGY medium supplemented with manganese ions, the manganese ion level in the *mntE* mutant was almost four-fold higher than that in wild-type R1. However, there was no significant difference in the intracellular Fe ion concentrations of R1 and the mutant (Figure 4A). Similar results were obtained when the *mntE* mutant and wild-type R1 were grown on TGY medium (Figure 4B). This result indicates that Dr1236 is a manganese ion exporter.

The *mntE* mutant shows higher resistance to γ-radiation, UV, and oxidative

Recently, there has been a debate on whether the high intracellular Mn/Fe ratio of *D. radiodurans* contributes to the extreme oxidative resistance of this microorganism. Daly *et al* proposed that the high Mn/Fe ratio can effectively suppress protein carbonylation and increase radiation resistance [7,8]. In contrast, Sukhi *et al* and Shashidhar *et al* argued that *D. radiodurans* exhibits the same radiation resistance even when the intracellular Mn/Fe ratio changed substantially [19,20]. Since the intracellular manganese ion level was significantly increased, a cell survival experiment was carried out to confirm whether the high intracellular manganese ion level could contribute to cellular resistance. The D₁₀ value represents the irradiating dose required to reduce the population by 90%. Here, the D₁₀ value was proposed to assess the resistant ability of R1 and *mntE* mutant to different stresses. As shown in Figure 5 the
resistance of the mntE mutant under different stresses was higher than that of R1, and the D_{10} values of the mntE mutant were 14000 Gy γ-radiation, 700 J/m^{2} UV, and 50 mM H_{2}O_{2}, whereas that for R1 was 11000 Gy γ-radiation, 600 J/m^{2} UV, and 40 mM H_{2}O_{2}. Moreover, when R1 and mntE mutant were cultured in TGY supplemented with 50 μM manganese, their resistance to different stresses also increased remarkably, and it is consistent with their intracellular manganese level (Figure 5). The results suggest that there is a correlation between the intracellular manganese level and cellular oxidative resistance, which is consistent with the data from Daly’s studies [8]. Although the role of manganese in the oxidative resistance of D. radiodurans remains unclear, the data support the hypothesis that manganese plays an important role in cellular oxidative resistance.

Figure 1 Sequence alignment of the two manganese efflux proteins. DEIRA, Deinococcus radiodurans R1; STRPN, Streptococcus pneumoniae. The metal transfer regions III and VI are boxed. Identical amino acids and similar amino acids are denoted by black and gray backgrounds, respectively.

Figure 2 mntE mutant construction and verification by PCR. (A) Ethidium-bromide-stained agarose gel illustrating that the mutant carries a homozygous deletion of dr1236::aadA. Lane 1, mntE mutant; lane 2, R1; lane 3, DNA marker. Primers M1/M4 were used for PCR. (B) Verification of wild-type revertant mntE by PCR. Lane 1, DNA marker; lane 2, R1; lane 3, revertant mntE. Primers M5/M6 were used for PCR.
unclear, our study implies that an increase in the intracellular manganese level may be one of the responses to oxidative stress. Moreover, it is notable that the UV resistance of the \textit{mntE} mutant also increased. Generally, UV light results in DNA damage, and only high doses of UV cause oxidative damage. Therefore, it is interesting to speculate that the UV resistance of the \textit{mntE} mutant may be indirectly enhanced by manganese ions. In fact, many important DNA repair enzymes use Mn$^{2+}$ as the cofactor [21], and manganese accumulation may have a positive effect on gene function. Furthermore, a high intracellular manganese level is also known to have an important effect on the expression of many genes including stress response genes [10].

The \textit{mntE} mutant shows a lower protein oxidation level under oxidative stress

The protein carbonylation level is an important index of intracellular oxidative damage to proteins [8]. Previous reports have shown that the proteins of IR-sensitive bacteria are more vulnerable than those of \textit{D. radiodurans} to ROS-induced protein oxidative damage [7]. Therefore, we measured and compared the levels of protein carbonylation in the \textit{mntE} mutant and wild-type \textit{R1}. Notably, the level of protein carbonylation in the \textit{mntE} mutant decreased to nearly 50% of that in \textit{R1} after H$_2$O$_2$ treatment (Figure 6), indicating that the mutation of \textit{mntE} resulted in a lower level of protein oxidation than that observed in the wild type. This suggests that the high level of intracellular manganese ions could enhance cellular resistance by protecting proteins against ROS damage.

\textbf{Conclusions}

Although it is known that the Mn/Fe ratio of \textit{D. radiodurans} is higher than that of other bacteria, little is known regarding the maintenance of the intracellular manganese ion level in this bacterium. So far, only one manganese efflux system has been identified in bacteria [10], and it is still unknown whether this system exists in \textit{D. radiodurans} [22]. In this study, we identified a MntE homolog in \textit{D. radiodurans}. As expected, our
results showed that the intracellular manganese ion level was almost four-fold higher in the mutant than in R1. Furthermore, we also found that the oxidative level of mntE proteins decreased to almost one half that of R1. On the other hand, the data also revealed that manganese accumulation is dangerous to the mntE mutant. Based on these data, we conclude that dr1236 is indeed a mntE homologue and is indispensable for maintaining manganese homeostasis in D. radiodurans. The results provide additional evidence that intracellular manganese ions are involved in the radiation resistance of D. radiodurans. However, because the intracellular Mn/Fe ratio and the Mn concentration of mntE both increased in this study, we could not clarify whether the Mn/Fe ratio or the Mn concentration is more important for stress tolerance. Therefore, global analysis of the regulation of the intracellular manganese ion level is necessary in further studies.

Methods

Strains and media
All the strains and plasmids used in this study are listed in the supporting information (Table 1). The D. radiodurans strains were cultured at 30°C in TGY (0.5% Bacto tryptone, 0.1% glucose, and 0.3% Bacto yeast extract) medium with aeration or on TGY plates supplemented with 1.2% Bacto agar.

Disruption and complementation of dr1236
The mutant dr1236 gene was constructed as described previously [23]. Briefly, ~600-bp DNA fragments immediately upstream and downstream from dr1236 were amplified from the genome of the R1 strain using the primer pairs ME1/ME2 and ME3/ME4, respectively (Table 2). These two fragments were digested with BamHI and HindIII, respectively, and cloned to the streptomycin-resistance DNA fragment from pKat-aadA [24] pretreated with the same enzymes. The ligation product was transformed into D. radiodurans R1, and mutant colonies were selected on TGY plates containing 8 μg/mL streptomycin. Null mutants were confirmed by PCR and sequencing, and the resulting mutant was designated mntE.

A complementary plasmid was constructed and transformed into the mntE mutant as described previously [25]. Briefly, the dr1236 gene with the NdeI and BamHI sites was amplified with primers ME5/ME6. The PCR product was ligated to the pMD18-T simple vector (Takara, JP), and the product was designated pMDmntE. After digestion with NdeI and BamHI, the target gene

![Figure 4](http://www.biomedcentral.com/1471-2180/10/319)
MntE was ligated to Ndel- and BamHI-predigested pRADK [23]. The complementation plasmid was confirmed by PCR and DNA sequence analyses and transformed into the mntE- strain.

Cation sensitivity assay
Cation sensitivity assays were carried out as described previously [18]. Solutions (1 M) of manganese chloride, manganese sulfate, calcium chloride, magnesium chloride, zinc chloride, cobalt (II) chloride, copper chloride, ferric chloride, and ferrous sulfate (Sigma) were prepared in milli-Q water and filter-sterilized by passing through 0.22-μm filters. Cells grown to the early stationary phase in TGY broth were plated on TGY plates and overlaid with 5-mm sterile filter discs containing 10 μL of various cation solutions. The plates were incubated for three days, and the inhibition zone of each disc was measured.

To measure the growth of mntE- and R1, 1 × 10⁵ cfu mL⁻¹ were grown in TGY supplemented with increasing concentrations of MnCl₂. The OD₆₀₀ value was measured 12 h post incubation (mean ± SD of three experiments).

Inductively coupled plasma-mass spectrometry (ICP-MS) assay
For the ICP-MS assays [26], the cells were cultured in TGY broth that had been pretreated with Chelex (Sigma) to remove any cations and supplemented with

Figure 5 Survival curves for R1 (triangles) and mntE- (squares) following exposure to UV (A), H₂O₂ (B), and γ radiation (C). R1 and mntE- were cultured in TGY broth with or without 50 μM manganese. The values represent the means ± standard deviations of four independent experiments.

Figure 6 Protein carbonylation levels in R1 (black bars) and mntE- (white bars). Cells (OD₆₀₀ = 0.8) were harvested and treated with 40 mM H₂O₂ for 30 min. The protein carbonylation levels were determined by the DNPH assay. Data represent the means ± standard deviations of three independent experiments.
Table 1 Strains and plasmids used in this study

Strain or plasmid	Relevant marker	Reference or resource
Strains		
E. coli DH5α	hisD17 recA1 endA1 lacZΔM15	Invitrogen
D. radiodurans R1	ATCC13939	
mntE	As R1, but mntE::aadA	This study
mntR	As mntE::aadA(pME mntE+)	This study
Plasmids		
pMD18-T	TA cloning vector	Takara
pRADK	E. coli-D. radiodurans shuttle vector carrying D. radiodurans groEL promoter	[27]
pME	pRADK derivative expressing D. radiodurans mntE	This study

50 μM manganese, 10 μM ferric chloride, 100 mM magnesium, or 100 mM calcium chloride. Cells (OD_{600} = 0.6-0.8) were harvested by centrifugation, washed three times with phosphate-buffered saline (PBS) containing 10 mM EDTA, and rinsed three times with PBS without EDTA. Cells (1/10 of the total volume) were withdrawn to measure the dry weight, and the remaining cells were treated with nitric acid and used for the ICP-MS assay.

Survival curves of the mntE mutant and R1

R1 and mntE cells were cultured in TGY broth with or without 50 μM manganese to OD_{600} = 1.0, centrifuged, and then resuspended in phosphate buffer. For the γ-irradiation treatment, the suspension was irradiated with different doses of 60Co γ-radiation for 1 h on ice. After the irradiation treatment, the cells were plated on TGY plates and incubated at 30°C for three days. The colonies were then counted. For the UV treatment, the cells were plated on TGY plates and exposed to different doses of UV radiation at 254 nm. For the H2O2 treatment, the cultures were treated with different concentrations of H2O2 for 30 min and then plated on TGY plates.

Protein carbonylation assay

Cells grown to OD_{600} = 0.5 were treated with H2O2 (30 mM), harvested, and resuspended in PBS containing 1% (by volume) β-mercaptoethanol and 1 mM phenylmethylene-sulfonyl fluoride. The cells were disrupted by sonication, and the cell-free extracts were used for the protein carbonylation assay. The protein concentrations were determined by the Bradford method. The cell-free extracts were incubated with 400 μL of 10 mM 2, 4-dinitrophenyl hydrazine (DNPH) in 2 M HCl for 2 h in the dark. After precipitation with ice-chilled 10% trichloroacetic acid (TCA), the precipitated proteins were washed three times with 50% ethyl acetate in ethanol. The decolorized precipitates were evaporated and dissolved in 1 mL of 6 M guanidine hydrochloride. The solution was centrifuged, and the absorbance of the supernatant was determined at 370 nm against a protein control that had been processed in parallel but with 2 M HCl instead of DNPH. The protein carbonyl content is defined as mM/mg protein.

Statistical analysis

Student’s t-test was used to assess the significance between results, and p < 0.05 was considered as significant.

Acknowledgements

This work was supported by a grant from the National Basic Research Program of China (2007CB707804), a grant from the National Hi-Tech Development Program (2007AA021305), a key project of the National Natural Science Foundation of China (30830006), a major scientific and technological project for significant new drugs creation (2009ZX099001-034), a major project for genetically modified organisms breeding (2009ZX08009-073B), a grant from the National Natural Science Foundation of China (30870035), the project “Application of Nuclear Techniques in Agriculture” from the Chinese Ministry of Agriculture (200803034), and a grant from Zhejiang Provincial Natural Science Foundation (Y5040032).

Author details

1Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 310029, Hangzhou, PR China. 2Zhejiang Institute of Microbiology, Zhejiang Province, Hangzhou, 310012, PR China.

Authors’ contributions

HXS and YJH conceived and designed the study. HDZ and ZTS carry out the protein carbonylation analysis. All authors read and approved the final manuscript.

Received: 9 June 2010 Accepted: 14 December 2010 Published: 14 December 2010
Manganese supplementation relieves Accumulation of Mn(II) in Deinococcus radiodurans

A new perspective on radiation resistance based on Emerging themes in manganese transport, DNA repair (Amst)

Manganese transport and the role of Novel OxyR sensor and regulator of hydrogen peroxide stress with one domain have synergistic effect on the RecQ functions in Deinococcus radiodurans.

Manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae.

Molecular analysis of the psa permease complex of Streptococcus pneumoniae.

Calcium efflux is essential for bacterial survival in the eukaryotic host.

Construction of DNA damage response gene pprf function deficient and function complementary mutants in Deinococcus radiodurans.

Radiation resistance of Deinococcus radiodurans R1 with respect to growth phase.

Evaluation of the role of manganese efflux protein in Deinococcus radiodurans.