Perinatal listeriosis patients treated at a maternity hospital in Beijing, China, from 2013-2018

Chunyun Li
Capital Medical University Beijing Obstetrics and Gynecology Hospital

Huihui Zeng
Capital Medical University Beijing Obstetrics and Gynecology Hospital

Xin Ding
Capital Medical University Beijing Obstetrics and Gynecology Hospital

Yi Chen
Capital Medical University Beijing Obstetrics and Gynecology Hospital

Xiaowei Liu
Capital Medical University Beijing Obstetrics and Gynecology Hospital

Li Zhou
Capital Medical University Beijing Obstetrics and Gynecology Hospital

Xin Wang
Capital Medical University Beijing Obstetrics and Gynecology Hospital

Yumei Cheng
Capital Medical University Beijing Obstetrics and Gynecology Hospital

Shanshan Hu
Capital Medical University Beijing Obstetrics and Gynecology Hospital

Zheng Cao
Capital Medical University Beijing Obstetrics and Gynecology Hospital

Ruixia Liu
Capital Medical University Beijing Obstetrics and Gynecology Hospital

Chenghong Yin (yinchh@ccmu.edu.cn)
Capital Medical University Beijing Obstetrics and Gynecology Hospital

Research article

Keywords: Listeria monocytogenes, listeriosis, foodborne infectious disease, perinatal, maternal, neonate, septicaemia, central nervous system infection

DOI: https://doi.org/10.21203/rs.3.rs-18011/v4

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Listeriosis is a rare but severe foodborne infectious disease. Perinatal listeriosis is often associated with septicemia, central nervous system (CNS) infection, and serious adverse pregnancy outcomes (miscarriage and neonatal death). Here we report the characteristics and outcomes of perinatal listeriosis cases treated over 6 years at Beijing Obstetrics and Gynecology Hospital (BOGH), the largest maternity hospital in China. Methods: We retrospectively reviewed the records of laboratory-confirmed, pregnancy-associated listeriosis cases treated from January 1, 2013 to December 31, 2018. The clinical manifestations, laboratory results, perinatal complications and outcomes (post-natal follow-up of 6 months) were investigated. Results: In BOGH, 12 perinatal listeriosis cases were diagnosed based on Listeria monocytogenes positive culture, including 10 single pregnancies and 2 twin pregnancies. The corresponding incidence of pregnancy-associated listeriosis was 13.7/100,000 deliveries. Among those cases, four pregnant women and four newborns had septicemia, and two of the neonates with septicemia also suffered CNS infection. All the maternal patients recovered. Two inevitable miscarriages and four fetal stillbirths occurred. Of the eight delivered newborns, six survived, and two died within 2 days from birth. None of the survivors had neurological sequelae during a 6-month follow-up. The overall feto-neonatal fatality rate was 57.1%; notably, this rate was 100% for infections occurring during the second trimester of pregnancy and only 14.3% for those occurring in the third trimester. Conclusions: Perinatal listeriosis is associated with high feto-neonatal mortality, and thus, a public health concern. Additional large-scale studies are needed to strengthen the epidemiological understanding of listeriosis in China.

1. Background

Listeria monocytogenes (L. monocytogenes) is a facultative anaerobic Gram-positive bacterium that causes severe foodborne illnesses associated with substantial mortality (20%–30%) [1]. This pathogen, a ubiquitous bacterium in nature, can be isolated from soil, stream water, vegetables, fruits, raw meat, milk products, ready-to-eat food products, and even refrigerated processed foods because Listeria can survive and grow at wide ranges of pH and temperatures as well as high salt concentrations [2-4].

L. monocytogenes is mainly transmitted through the consumption of contaminated foods. After crossing the intestinal mucosal barrier, L. monocytogenes disseminate within the circulation and show preferential accumulation in the central nervous system (CNS) and the placenta [5]. Increased progesterone levels during pregnancy weaken the cellular immunity, which makes expectantmothers particularly susceptible to microorganisms such as like L. monocytogenes [6, 7]. The infection risk for pregnant women is 12–20 times higher than that for the general population [8, 9]. The reported incidence of pregnancy-related listeriosis has ranged from 3.0 to 25 cases per 100,000 births [10-13]. In systematic reviews, pregnancy-associated cases have accounted for 20.7%–43% of all listeriosis cases worldwide [14, 15]. In China, a human listeriosis surveillance system was established in 2013. However, to date, listerioshas not become a notifiable disease in China. Two recent reports showed that in China, perinatal listeriosis accounts for 41.1%–52% of all listeriosis cases, and thus, the burden of pregnancy-related listeriosis in the country is not light [16, 17]. Pregnant women infected with L. monocytogenes are often asymptomatic or have only nonspecific clinical symptoms such as gastrointestinal and flu-like symptoms. However, many of these patients experience adverse pregnancy outcomes, including fetal loss, preterm birth, and neonatal listeriosis.

This report retrospectively reviewed all laboratory-confirmed, pregnancy-associated listeriosis cases treated from January 1, 2013 to December 31, 2018 at Beijing Obstetrics and Gynecology Hospital (BOGH), a high-level maternal and child health care hospital with 660 beds in Beijing, China [1]. In the present study, we detail the clinical characteristics and outcomes of these L. monocytogenes infected perinatal patients.

[1]http://www.bjogh.com.cn/english/article/19730.html

2. Methods

The number of births in BOGH exceeds 14,000 every year. We retrospectively analyze the clinical data of all laboratory-confirmed, pregnancy-associated L. monocytogenes infections treated from January 1, 2013 to December 31, 2018, based on a list generated from the Department of Disease Prevention and Control and Nosocomial Infection of BOGH. Recording of the clinical information of all patients of BOGH in an electronic database began in 2013.

Pregnancy-associated listeriosis cases includes illness with an onset during pregnancy or within the first 2 weeks of the postpartum period as well as illness in the neonate between birth and 4 weeks of age [18]. All the confirmed cases were based on the isolation of L. monocytogenes from a normally sterile site (e.g., blood or cerebrospinal fluid [CSF]) or products of conception (e.g., placental or fetal tissue), with the presence of compatible clinical symptoms. A perinatal listeriosis case was defined based on isolation of L. monocytogenes from a clinical sterile sample from the pregnant woman or foetus, stillborn, and newborn aged < 4 weeks [9]. If L. monocytogenes was isolated in samples from both the mother and neonate, a single case was counted. Neonatal cases were divided into early onset (diagnosed between birth and day 6) and late onset (diagnosed between 7 and 28 days) [18, 19]. L. monocytogenes CNS infection was diagnosed if L. monocytogenes was isolated from a patient’s CSF or when a patient had neurological symptoms (e.g., altered consciousness, seizures, nuchal rigidity, or focal neurological symptoms, and an increased white blood cell [WBC] count in the CSF) and blood culture showing L. monocytogenes. If a patient did not meet the criteria for CNS infection diagnosis but L. monocytogenes was found on blood culture, the patient was considered to have septicemia [20].

The culture, isolation, and identification of L. monocytogenes was performed using the traditional blood agar plating method followed by automated biochemical confirmation (bioMérieux VITEK 2 COMPACT, France) with visible colonies [20].

We defined ‘stillbirth’ as death of the fetus between 24 and 41 weeks of gestation, and fetal loss before 24 weeks was defined as an inevitable miscarriage. Furthermore, we calculated the overall neonatal fatality of pregnancy-associated listeriosis, including miscarriages, stillbirths and newborn deaths.
3. Results

3.1 Basic characteristics of perinatal listeriosis cases in the considered period

We identified 12 cases of pregnancy-associated listeriosis from overall total of 87,644 deliveries, for an incidence of 13.7/100,000 births. These included 12 maternal and 14 neonatal infections with L. monocytogenes, and the characteristics of these cases are summarized in Table 1. The annual and seasonal numbers of pregnancy-associated listeriosis cases are shown in Fig. 1a and Fig. 1b, respectively. Ten cases (10/12 83.33%) occurred during summer and fall months (i.e. June to November) during 2013 to 2018. The median age of these women was 29 years (range, 25–41 years).

3.2 Clinical characteristics of maternal listeriosis cases

The clinical characteristics of the 12 maternal listeriosis cases are described in Table 2. Among them, 10 were singleton pregnancies and 2 were twin pregnancies (i.e., cases 2 and 9). Six cases were infected with L. monocytogenes in the second trimester pregnancy (between 14 and 27 weeks), and the other six were infected in the third trimester pregnancy (between 28 and 41 weeks). Their median gestational age at the time of infection was 29.3 weeks (range, 20.0–38.1 weeks). Eleven of the twelve maternal listeriosis patients had prenatal fever (38–39.3°C), and 3 of 12 had flu-like symptoms. Five patients had gastrointestinal symptoms (diarrhea and abdominal pain). Various obstetrical symptoms were reported among the 12 pregnant women, including decreased fetal movement (n=5), intrauterine fetal death (n=2), premature rupture of the membranes (PROM, n=2), and vaginal bleeding (n=1). All of the symptomatic women received antibiotic therapy, and eight patients received only cephalosporin antibiotics initially.

Among the 12 maternal patients, 1 progressed to normal labor, 5 experienced fetal loss and 6 had premature deliveries. Additional complications included postpartum hemorrhage in 3 patients, meconium staining in 5 patients, and the need for induced labor in 3 patients. Caesarean section (C-section) was performed in four cases, due to abnormal fetal heart rates. None of the women were diagnosed with CNS infection. One-third (4/12) had sepsisemia. All of the maternal patients eventually recovered after delivery with no sequelae.

3.3 Clinical characteristics and outcomes of listeriosis infections in offspring

The clinical characteristics and outcomes of all 14 offspring are summarized in Table 3. Nine of the fourteen offspring (64.29%) were female, and the median birth weight was 1,305 g (range, 380–3,565 g). Six of the fourteen neonates were found to have confirmed L. monocytogenes infection based on microbiological methods (laryngeal swab: 2; blood + laryngeal swab: 2; blood + CSF + laryngeal swab: 2). Two neonates were diagnosed with CNS infection, and four had sepsisemia. No late-onset cases of newborn/infant listeriosis were observed. Two inevitable miscarriages and four fetal stillbirths occurred, and the other eight neonates survived with fetal distress. Four newborns received intubation. Of the eight delivered newborns, six survived, and two died within 2 days after birth. None of the survivors had neurological sequelae throughout a 6-month follow-up.

4. Discussion

The incidence of perinatal listeriosis in BOGH was 13.7/100,000 deliveries, which was consistent with previously reported incidence rates [10-13]. In our study, half of the pregnancy-associated listeriosis cases (6/12, cases 2, 3, 5, 8, 10, and 12) suffered from listeriosis in the second trimester of pregnancy, and all seven offspring of these patients died. Among the other six perinatal cases (cases 1, 4, 6, 7, 9, and 11; 7 newborns in total), six newborns survived without sequelae, despite CNS infection in two infants and septicemia in four infants, while one (case 1, delivered at week 31.3) died 2 days after birth. Consistent with the previous studies, [13, 21] in this study, the prognosis of neonate from maternal listeriosis cases occurring during late pregnancy was quite excellent even if the infants were infected with L. monocytogenes, whereas the pregnancy outcomes of perinatal cases infected prior to the 28th week of gestation were very bad. The overall cases-fatality rate among the offspring was 57.1%, which was close to the range of 32.7%–50.7% reported in two recent systematic reviews in the mainland of China [16, 22]. Accordingly, the feto-neonatal listeriosis mortality rate in China is very high, which was in contrast to the low child mortality estimated by de Noordhout et al [14] in 2010.

We found that 66.67% (8/12) of maternal patients received only cephalosporin antibiotics initially, because cephalosporins are the preferred empirical therapy for obstetric infections with nonspecific clinical symptoms in China. However, while L. monocytogenes strains are susceptible to many antibiotics (e.g., ampicillin and penicillin G [PNG]), they are not sensitive to cephalosporins [23-24]. Previous studies demonstrated that delayed diagnosis and inappropriate antibiotic administration decrease the probability of a favorable outcome among L. monocytogenes infection cases [21, 27]. In China, there are still no national guidelines for the treatment of listeriosis. According to Hof et al [24], when listeriosis is a likely diagnosis, the use of ampicillin, PNG, or vancomycin provides empiric coverage for L. monocytogenes. However, empiric therapy for bacterial meningitis with ampicillin may not be necessary for children beyond the neonatal period [28]. Ampicillin or PNG, with or without aminoglycoside or gentamicin, is recommended for all forms of listeriosis. Trimethoprim-sulfamethoxazole can be used as an alternative treatment. Two to three weeks of therapy is sufficient for most forms of listeriosis. Rhombencephalitis with abscess formation in the CNS may require 4-week therapy [27, 29]. Notably though, researchers recently found high resistance levels of L. monocytogenes to many antibiotics (ampicillin, PNG, tetracycline, cefotaxime, etc.) among clinical and food isolates, which represents a serious problem for the treatment of listeriosis [30, 31].

Listeriosis is a typical foodborne disease, which means food contamination is the major source of infection. Data from Beijing Centers for Disease Control and Prevention (CDC) showed that among the 12 maternal patients in the present study, positive culture of the same strain of L. monocytogenes from samples obtained from the patient’s kitchen was observed only for case 5. Even for this case though, various food sources of L. monocytogenes made it difficult to trace the pathogen and identify the specific food source.
Inspection reports have shown that the estimated prevalence of *L. monocytogenes* in Chinese food products is 4.42%[^22], and in the retail markets of Beijing 15.20% of the raw pork was found to be contaminated[^33]. Thus, food safety regarding *L. monocytogenes* contamination remains a problem in China. Additionally, processed food and pasteurized dairy products stored in a refrigerator are also vulnerable to recontamination, because *L. monocytogene* can grow very well at 4°C[^34, 35]. Currently, there are no diet guidelines for the prevention of *L. monocytogenes* infection in China. Therefore, improving awareness of relevant food safety among the people at higher risk of *L. monocytogenes* infection, especially pregnant women and immune-compromised individuals, can facilitate prevention. Because doctors are the most credible source of health information for pregnant patients, campaigns by doctors communicating healthy diet habits education (e.g., avoiding direct eat consumption of even pasteurized dairy products and cooked foods stored in the refrigerator without recooking, and eating out less often) are recommended for pregnant women.

5. Conclusions

There are several limitations in this study. First, this was a retrospective study over a protracted timespan of 6 years, and no stored samples were available for further research, such as microbial typing. Second, the lack of epidemiological investigations does not allow for identification of the food sources of *L. monocytogenes* in these cases and the formulation of clear recommendations. Third, the sample size was relatively small. Data large-scale investigation of pregnancy-associated listeriosis is needed to further understanding the demographic distribution of this dangerous infection in China.

Abbreviations

CNS: central nervous system; BOGH: Beijing Obstetrics and Gynecology Hospital; *L. monocytogenes*: *Listeria monocytogenes*; CSF: cerebrospinal fluid; WBC: white blood cell; PNG: penicillin-G; SLE: systemic lupus erythematosus; GDM: gestational diabetes mellitus; C-section: Caesarean section; PROM: premature rupture of the membranes; NA: not available; SpO\(_2\): oxygen saturation from pulse oximetry; SOB: shortness of breath; DIC: disseminated intravascular coagulation; NRDS: neonatal respiratory distress syndrome; max, maximum; min, minimum; SD, standard deviation.

Declarations

Ethics approval and consent to participate

The need for ethics approval of our study was deemed unnecessary according to the national regulations -- "The Regulations of Ethical Reviews of Biomedical Research Involving Human Subjects (2016)"[^1] issued by National Health and Family Planning Commission of the People's Republic of China. Also, the need for ethics approval was waived by the Ethics Committee of Capital Medical University Beijing Obstetrics and Gynecology Hospital. The data used in this study were anonymized before analysis.

Consent for publication

Not applicable.

Availability of data and materials

The raw data are not publicly available, but as the medical staff at the hospital, we have access to it. All data generated or analyzed during this study are included in this published article.

Competing interests

The authors declare that they have no competing interests.

Funding

Not applicable.

Authors' contributions

CHY and RXL conceived and designed the study. CYL, RXL, HHZ, XD, YC, XWL, LZ, XW, SSH, YMC, and ZC collected the data. CYL and RXL finished the literature search, data interpretation, and writing. All the authors critically reviewed this report and approved the final version.

Acknowledgements

We are grateful to all the medical record department staff of BOGH for their support. We also thank our colleagues and the expert panel members, without whom this initiative could not have come to fruition.

[^1]: http://www.nhc.gov.cn/xxgk/pages/viewdocument.jsp?dispatchDate=&staticUrl=/fzs/s3576/201610/84b33b81d8e747eeaf048f68b174f829.shtml&wenhao=%E7%AC%AC11%E5%8F%B7%E5%A7%94%E4%BB%A4i00224&manuscriptId=84b33b81d8e747eeaf048f68b174f829

References
1 Thomas J, Govender N, McCarthy KM, Erasmus LK, Doyle TJ, Allam M, et al. Outbreak of Listeriosis in South Africa Associated with Processed Meat. N Engl J Med. 2020;382(7):632-43.

2 Buchanan R. L., Gorris L. G. M., Hayman M. M., Jackson T. C., Whiting R. C. A review of Listeria monocytogenes: an update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control. 2017;75:1–13.

3 Cabal A, Pietzka A, Huhulescu S, Allerberger F, Ruppitsch W, Schmid D. Isolate-Based Surveillance of Listeria monocytogenes by Whole Genome Sequencing in Austria. Front Microbiol. 2019;10:2282.

4 Jordan K, McAuliffe O. Listeria monocytogenes in Foods. Adv Food Nutr Res. 2018;86:181-213.

5 Rolhion N, Cossart P. How the study of Listeria monocytogenes has led to new concepts in biology. Future Microbiol 2017;12:621–38.

6 Leber A, Zenclussen ML, Teles A, Brachwitz N, Casalis P, El-Mousleih T, et al. Pregnancy: tolerance and suppression of immune responses. Methods Mol Biol. 2011;677:397–417.

7 Poulsen KP, Czuprynski CJ. Pathogenesis of listeriosis during pregnancy. Anim Health Res Rev. 2013;14:30–9.

8 Craig AM, Dotters-Katz S, Kuller JA, Thompson JL. Listeriosis in Pregnancy: A Review. Obstet Gynecol Surv. 2019;74(6):362-8.

9 Elinav H, Hershko-Klement A, Solt I, et al. Pregnancy-associated listeriosis: many beliefs, few facts. Lancet Infect Dis. 2015;15(10):1128–1130.

10 Filipello V, Amato E, Gori M, Huerdo P, Ciceri G, Lomonaco S, et al. Epidemiology and Molecular Typing of Pregnancy-Associated Listeriosis Cases in Lombardy, Italy, over a 10-Year Period (2005–2014). Infect Dis Obstet Gynecol. 2017;2017:6479121.

11 Jeffs E, Williman J, Brunton C, Gullam J, Walls T. The epidemiology of listeriosis in pregnant women and children in New Zealand from 1997 to 2016: an observational study. BMC Public Health. 2020;20(1):116.

12 de Valk H., Tourdjman, M., Leclercq, A., Maury, M., Moura, A., Laurent, E., et al. Changes in epidemiology and surveillance of listeriosis in France. International Symposium On Problems of Listeriosis; Paris: Institut Pasteur; 2016.

13 Elinav H, Hershko-Klement A, Valinsky L, Jaffe J, Wiseman A, Shimon H, et al., Pregnancy-associated listeriosis: clinical characteristics and geospatial analysis of a 10-year period in Israel. Clin Infect Dis. 2014;59:pp.953–61.

14 de Noordhout CM, Devleesschauwer B, Angulo FJ, Verbeke G, Haagmsa J, Kirk M, et al. The global burden of listeriosis: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14:1073–82.

15 Mateus T, Silva J, Maia RL, Teixeira P. Listeriosis during pregnancy: a public health concern. ISRN Obstet Gynecol. 2013;2013:851712.

16 Zhangling Fan, Jing Xie, Yue Li, Huanling Wang. Listeriosis in mainland China: a systematic review. Int J Infect Dis. 2019;81:17–24.

17 Feng Y, Wu S, Varma JK, Klena JD, Angulo FJ, Ran L. Systematic review of human listeriosis in China, 1964–2010. Trop Med Int Health 2013;18:1248–56.

18 Thomas J, Govender N, McCarthy K.M, Erasmus LK, Doyle TJ, Allam M, et al. Outbreak of Listeriosis in South Africa Associated with Processed Meat. N Engl J Med. 2020;382:632-43.

19 Cekmez F, Tayman C, Saglam C, Cetinkaya M, Bedir O, Gnal A, et al. Well-known but rare pathogen in neonates: Listeria monocytogenes. Eur Rev Med Pharmacol Sci. 2012;16:58-61.

20 Gasanov U, Hughes D, Hansbro PM. Methods for the isolation and identification of Listeria spp. and Listeria monocytogenes: a review. FEMS Microbiol Rev. 2005;29(5):851-75.

21 Sisó C, Concé A, Bosch J, Salvia MD, Hernández S, Figueras F. Listeriosis in pregnancy: a secular trend in a tertiary referral hospital in Barcelona. Eur J Clin Microbiol Infect Dis. 2012;31(9):2125–32.

22 Feng Y, Wu S, Varma JK, Klena JD, Angulo FJ, Ran L. Systematic review of human listeriosis in China, 1964-2010. Trop Med Int Health. 2013;18(10):1248–56.

23 Kessler SL, Dajani AS. Listeria meningitis in infants and children. Pediatr Infect Dis J. 1990;9:61–3.

24 Hof H. An update on the medical management of listeriosis. Expert Opin Pharmacother. 2004;5:1727-35.

25 Safrar A, Armstrong D. Antimicrobial activities against 84 Listeria monocytogenes isolates from patients with systemic listeriosis at a comprehensive cancer center (1955-1997). J Clin Microbiol. 2003;41:483–5.

26 Morvan A, Moubareck C, Leclercq A, Hervé-Bazin M, Bremont S, Lecuit M, et al. Antimicrobial resistance of Listeria monocytogenes strains isolated from humans in France. Antimicrob Agents Chemother. 2010;54:2728–31.

27 Temple ME, Nahata MC. Treatment of listeriosis. Annals of Pharmacotherapy. 2000;34(5):656–61.
Table 1 Characteristics of 12 maternal and 14 neonatal cases of pregnancy-associated listeriosis

Group	Maternal	Neonatal
Total, n	12	14
Median age (min, max), y	29 (25, 41)	29.0 (20.0, 38.1)
Median gestation at delivery (min, max), wk		
Underlying disease, n (%)		
GDM	2 (16.67)	
SLE	1 (8.33)	
Clinical manifestations, n (%)		
Fever	11 (91.67)	
Gastrointestinal symptoms	5 (41.67)	
Flu-like symptoms	3 (25)	
Laboratory findings		
Peripheral WBC, mean ± SD, 10⁹/L	21.13 ± 6.55	
Neutrophils, %, median (min, max)	82.55 (74.3, 92.6)	
Mononuclear cells, mean ± SD, 10⁹/L	0.98 ± 0.34	
Mortality, n (%)	0	8 (57.1)

Abbreviations: max, maximum; min, minimum; GDM, gestational diabetes mellitus; SLE, systemic lupus erythematosus; WBC, white blood cell; SD, standard deviation.
Table 2 Clinical characteristics of 12 maternal listeriosis cases

No	Gestation (wk)	Obstetrical manifestations	Culture sites	Initial antibiotic	Switched antibiotic	Maternal complications and outcomes
1	31.3	decreased fetal movement 3d; fetal distress; Tmax:39.3℃	(+)	metronidazole + amoxicillin 4d	No	premature delivery; C-section; severe meconium staining of amniotic fluid; recovered
2	24.4	decreased fetal movement 3d; lower abdominal pain; twin pregnancy; PROM; Tmax:38.5℃	(+)	cefuroxime 3d	No	stillbirth; recovered
3	20.0	abdominal pain; fetal movement disappear 3d; chill; Tmax:38.7℃	(+)	hydrotoxan, ascite, amniotic fluid (⁺)	amoxicillin 3d	ineritable miscarriage; induced labor; recovered
4	34.3	decreased fetal movement 1d; uterine contraction; fetal distress; headache; Tmax:38.3℃	(+)	cefmetazole 1d	moxifloxacin 6d	premature delivery; severe meconium staining of amniotic fluid; recovered
5	26.0	lower abdominal pain 17b; PROM; fetal distress; septicemia; Tmax:39.9℃	(+)	cefuroxime 3d	metronidazole 3d	stillbirth; induced labor; recovered
6	36.1	decreased fetal movement 2d; fetal distress; polyhydramnios; Tmax:38℃	(+)	cefuroxime 3d	No	premature delivery; C-section; severe meconium staining of amniotic fluid; recovered
7	38.1	fetal distress; Tmax:39.2℃	(+)	metronidazole + ceftriazone 4d	No	normal labor; postpartum hemorrhage; C-section; severe meconium staining of amniotic fluid; recovered
8	21.7	fever15d; intrauterine fetal death1d; lower abdominal pain; headache; Tmax:39.1℃	(+)	cefuroxime 8d	moxifloxacin 6d	recovered
9	35.6	fetal distress; threatened prematurity; twin pregnancy; septicemia; Tmax:38.4℃	(+)	ceftriazone 5d	No	premature delivery; postpartum hemorrhage; recovered
10	24.9	fever7d; fetal distress; abdominal pain; septicemia; Tmax:39.3℃	(+)	ceftriazone 7d	PNG 4d	stillbirth; recovered
11	35.4	fetal distress; decreased fetal movement 1d; afebrile	(+)	cefuroxime 3d	No	premature delivery; recovered
12	27.3	fever 2w; prematurity; vaginal bleeding; uterine contraction; septicemia; Tmax:39℃	(+)	clindamycin + ceftriazone 2d	azithromycin + PNG 7d	premature delivery; postpartum hemorrhage; C-section; mild meconium staining of amniotic fluid; recovered

Abbreviations: Tmax, maximal temperature; PROM, premature rupture of the membranes; C-section, cesarean section; PNG, penicillin-G.

Table 3 Clinical characteristics and outcomes among the 14 neonates in the 12 pregnancy-associated listeriosis cases

No.	Birth weight (g)	Presentation	Culture sites	Initial antibiotic	Switched antibiotic	Intubation	Complications	Outcomes				
1	1610	fetal distress; Aggar 6; SpO₂ 92% on ambient air; rash	(⁺)	NA	NA	Yes	preterm birth; neonatal asphyxia; pneumonia; hypoglycemia; DIC; septic shock; renal failure; hyperfactalidemia; metabolic acidosis	deceased day 2; infant listeriosis death				
2.1	740/560	fetal distress; decreased fetal movement	/	/	/	/	stillbirth; induced labor					
2.2								infant listeriosis survived				
3	440	fetal distress; decreased fetal movement	(⁺)	NA	NA	Yes	septicemia; preterm birth; CNS infection; meningitis; intrauterine infection; low birth weight; hypoglycemia; DIC; sepsis; thrombocytopenia; myocardial infarction	infant listeriosis survived; infant listeriosis death				
4	2275	fetal distress; Aggar 9; SOB; SpO₂ 88% on ambient air; rash	(⁺)	cefotaxime 5d	meropenem 4d	No	septicemia; preterm birth; intrauterine infection	infant listeriosis survived; infant listeriosis survived				
5	1000	fetal distress; Aggar 10; SpO₂ 97% on ambient air	(⁺)	+ (⁺)	(⁺)	(⁺)	stillbirth					
6	2565	fetal distress; Aggar 10; SpO₂ 95% on ambient air	(⁺)	+ (⁺)	(⁺)	(⁺)	septicemia; intrauterine infection; pneumonia; hyperfactalidemia; neonatal encephalopathy; anemia; myocardial infarction; thrombocytopenia	infant listeriosis survived; infant listeriosis survived				
7	3565	fetal distress; Aggar 8; SpO₂ 81% on ambient air; meconium aspiration	(⁺)	+ (⁺)	(⁺)	(⁺)	(⁺)	spinal fluid				
8	380	intrauterine fetal death	/	/	/	/	(⁺)	(⁺)	(⁺)	ineritable miscarriage	induced labor survived	
9.1	2730	fetal distress; Aggar 8; SOB; SpO₂ 92% on ambient air	(⁺)	(⁺)	(⁺)	(⁺)	(⁺)	(⁺)	(⁺)	preterm birth; pneumonia; patent foramen ovale	preterm birth; pneumonia; patent foramen ovale	
9.2	2285	fetal distress; Aggar 7; SOB; SpO₂ 90% on ambient air	(⁺)	+ (⁺)	(⁺)	(⁺)	(⁺)	(⁺)	(⁺)	preterm birth; septicemia; low birth weight; CNS infection; meningitis; liver function lesion; pneumonia; metabolic acidosis; hypoglycemia; anemia; neonuria; patent foramen ovale; patent ductus arteriosus	preterm birth; septicemia; low birth weight; CNS infection; meningitis; liver function lesion; pneumonia; metabolic acidosis; hypoglycemia; anemia; neonuria; patent foramen ovale; patent ductus arteriosus	
10	620	fetal distress	/	/	/	/	(⁺)	(⁺)	(⁺)	(⁺)	(⁺)	stillbirth
11	2810	fetal distress; Aggar 10; SpO₂ 96% on ambient air; cyanosis	(⁺)	PNG + latamoxef 7d	cefepime 7d	No	preterm birth; pneumonia; neonatal infection; hypocalcemia; neonatal jaundice; patent foramen ovale; hydrenephrosis	infant listeriosis survived				
12	820	fetal distress; Aggar 8; SpO₂ 94% on ambient air	/	/	/	/	Yes	extremely low birth weight; preterm birth; hyperfactalidemia; NRDS	deceased day 1			

Abbreviations: NA, not available; C-section, cesarean section; SOB, shortness of breath; DIC, disseminated intravascular coagulation; NRDS, neonatal respiratory distress syndrome; CSF, cerebrospinal fluid; PNG, penicillin.

Figures
Figure 1

The annual and seasonal numbers of pregnancy-associated listeriosis cases from 2013 to 2018. (a) Annual number of perinatal listeriosis infections. (b) Seasonal number of perinatal listeriosis cases. Spring (March, April, May), summer (June, July, August), fall (September, October, November), and winter (December, January and February).