A Deterministic and Storable Single-Photon Source Based on Quantum Memory

Shuai Chen, Yu-Ao Chen, Thorsten Strassell, Zhen-Sheng Yuan, Bo Zhao, Jörg Schmiedmayer, and Jian-Wei Pan
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 12, 69120 Heidelberg, Germany
(Dated: April 1, 2022)

A single photon source is realized with a cold atomic ensemble (87Rb atoms). In the experiment, single photons, which is initially stored in an atomic quantum memory generated by Raman scattering of a laser pulse, can be emitted deterministically at a time-delay in control. It is shown that production rate of single photons can be enhanced by a feedback circuit considerably while the single-photon quality is conserved. Thus our present single-photon source is well suitable for future large-scale realization of quantum communication and linear optical quantum computation.

PACS numbers: 03.67.Hk, 32.80.Pj, 42.50.Dv

Although weak coherent beams can be used as a pseudo single-photon source, the advent of quantum information processing (QIP) has placed stringent requirements on single photons either on demand or heralded [1]. In particular, secure quantum cryptography [2] and linear optical quantum computing [3] depend on the availability of such single-photon sources. Different approaches have been attempted in the last decade to develop the on-demand single-photon source, such as the implementations with quantum dots [4,5], single atoms and ions [6,7], and color centers [8]. However, all of them are confronted with different challenges. For example, the single-atom implementation provides spectrally narrow single photons with a well defined spatial mode, but the main challenge is the manipulation of single atoms, which requires sophisticated and expensive setups [9]. Although quantum dots present many advantages as potential source of single photons, e.g. high single-photon rate, the requirement of spectral filtering entails inevitable losses. Additionally, it is a major problem for preparing truly identical sources due to inhomogeneities in both the environment of the emitters and the emitters itself [10]. The stability of color centers is excellent, even at room temperature. However, the high peak intensities of a pulsed excitation can lead to complex and uncontrollable dark states [11]. So it has been taken as a formidable task to develop a promising single-photon source.

Moreover, an important challenge in distributed QIP is the controllable transfer of quantum state between flying qubit and macroscopic matter. Remarkably, as shown in a recent proposal for long-distance quantum communication with atomic ensembles [12], it is possible to implement both a single-photon source on demand and the controllable transfer of quantum state between photonic qubit and macroscopic matter, provided that proper feedback is applied to achieve the classical feed-forward ability. Such feed-forward ability is a crucial requirement in linear optics QIP [13]. In other words, it must be, in principle, possible to detect when an operation has succeeded by performing some appropriate measurement on ancilla photons. This information can then be feed-forwarded for conditional future operations on the photonic qubits to achieve efficient QIP.

Recently, significant experimental progresses have been achieved in demonstration of quantum storage and single-photon sources [11,12,13,14], and even entanglement between two atomic ensembles [15,16] has been generated. However, coincidence-based post-selection was used in these experiments. Consequently no feedback could be applied to achieve the feed-forward ability and the requirement of resources will exponentially increase with each new step of operation. This significantly limit the scalability of the schemes [3,10].

In this letter, we present an experimental realization of a deterministic and storable single-photon source. Single spin excitations in an atomic ensemble are generated by detecting anti-Stokes photons from spontaneous Raman scattering. This detection allows to implement feed-forward and convert the spin excitations into single photons at a predetermined given time. Moreover, it is shown that the single-photon quality is conserved while the production rate of single photons can be enhanced greatly by the feedback circuit. In principle, the spatial mode, bandwidth, and frequency of single-photon pulses are determined by the spatial mode, intensity and frequency of the retrieve laser [13]. So it is feasible to integrate such a single-photon source with the storage medium, atomic ensembles. Together with the technology developed in previous experiments [11,12,13,14,15,16], our controllable single-photon source potentially paves the way for the construction of scalable quantum communication networks [10,17] and linear optical quantum computation [3].

The basic concept of our experiments is shown in Fig. 1. Cold atoms with A-type level configuration (two ground state $|a\rangle$, $|b\rangle$ and an excited state $|e\rangle$) collected by a magneto-optical trap (MOT) are used as the media for quantum memory. The atoms are initially optically pumped to state $|a\rangle$ by a pump laser. Then a weak classical write pulse, with the Rabi frequency Ω_w, close to the resonance of transition $|a\rangle$ to $|e\rangle$ is introduced in the atomic cloud. Due to the spontaneous Raman process, a photon of anti-Stokes field \hat{a}_{AS} is emitted into the forward scattering mode. Simultaneously, a collective spin
The photons, whose polarization is orthogonal to that of the write beam by PBS2 and detected by detector D1. Similarly, a write pulse with the Rabi frequency Ω_w is applied to generate the spin excitation and the accompanying photon of the mode a_{AS}. Waiting for a duration δt, a read pulse is applied with orthogonal polarization and spatially overlap with the write beam in PBS1. The photons, whose polarization is orthogonal to that of the write beam, in the mode a_{AS} are spatially extracted from the write beam by PBS2 and detected by detector D1. Similarly, the field a_s is spatially extracted from the Read beam and detected by detector D2 (or D3). Here, FC1 and FC2 are two filter cells filled with 87Rb atoms to filter the leakage of write beam and read beam respectively. (b) The time sequence can be achieved with the feedback circuit and the two acousto-optic modulators AOM1 and AOM2.

excitation corresponding to the mode of the anti-Stokes field a_{AS} is generated in the atomic ensemble. The state of the field a_{AS} and the collective spin state of the atoms can be expressed by the superposed state

$$|\Psi\rangle = |0_{AS}0_b\rangle + \sqrt{\chi}|1_{AS}1_b\rangle + |2_{AS}2_b\rangle + O(\chi^{3/2}),$$

where χ is the excitation probability of one spin flip, $|i_{AS}i_b\rangle$ denotes the i-fold excitation of the anti-Stokes field and the collective spin. Ideally, conditioned on detecting one and only one anti-Stokes photon in detector D1, a single spin excitation is generated in the atomic ensemble with certainty. After a controllable time delay δt (in the order of the lifetime τ_s of the spin excitation), another classical read pulse with the Rabi frequency Ω_R, which is on-resonance with the transition from $|b\rangle$ to $|e\rangle$, is applied to retrieve the spin excitation and generate a photon of Stokes field a_s.

In our present experiment, more than 10^8 87Rb atoms are collected by the MOT with an optical depth of about 5 and the temperature of about 100 μK. The earth magnetic field is compensated by three pairs of Helmholtz coils. The two ground states $|a\rangle$ and $|b\rangle$ and the excited state $|e\rangle$ in the Λ-type system are $|5S_{1/2}, F = 2\rangle$, $|5S_{1/2}, F = 1\rangle$, and $|5P_{3/2}, F = 2\rangle$, respectively. The write laser is tuned to the transition from $|5S_{1/2}, F = 2\rangle$ to $|5P_{3/2}, F = 2\rangle$ with detuning of 10 MHz and the read laser is locked on resonance to the transition from $|5S_{1/2}, F = 1\rangle$ to $|5P_{3/2}, F = 2\rangle$. By using orthogonal polarizations, write and read beams are spatially overlapped on a polarized beam splitter (PBS1), and then focused into the cold atoms with the beam waist of 35 μm. After going through the atomic cloud, the two beams are split by PBS2 which also serves as the first stage of filtering the write (read) beam out from the anti-Stokes (Stokes) field. The leakage of write (read) field from PBS2 propagating with the anti-Stokes (Stokes) field will be further filtered by a thermal cell filled with 87Rb atoms, in which the rubidium atoms are prepared in state $|5S_{1/2}, F = 2\rangle (|5S_{1/2}, F = 1\rangle)$ initially. Coincident measurements among D1, D2 and D3 are performed with a time resolution of 2 ns.

After switching off the trapping laser and the gradient magnetic field of the MOT, the atoms are optically pumped to the initial state $|a\rangle$. The write pulse containing about 10^4 photons with a duration of 100 ns is applied into the atomic ensemble, to induce the spontaneous Raman scattering via $|a\rangle \rightarrow |e\rangle \rightarrow |b\rangle$. The state of the induced anti-Stokes field and the collective spin in Eq. 4 is generated with a probability $\chi \ll 1$. After a controllable delay of δt, the read pulse with the duration of 75 ns is applied for converting the collective excitation into the Stokes field. In comparison, the intensity of the read pulse is about 100 times stronger than that of the write one.

Assume the probability to have an anti-Stokes (Stokes) photon is p_{AS} (p_s), and the coincident probability between the Stokes and anti-Stokes channels is $p_{AS,S}$, then the intensity correlation function $g^{(2)}_{AS,S} = p_{AS,S}/(p_{AS}p_s) = 1 + 1/\chi$. We measured the variation of $g^{(2)}_{AS,S}$ as a function of p_{AS} shown in Fig. (a) with a time delay of $\delta t = 500$ ns. Considering the background in each channel, we obtain

\begin{align}
p_{AS} &= \chi \eta_{AS} + B \eta_{AS}, \\
p_s &= \chi \eta_s + C \eta_s, \\
p_{AS,S} &= \chi^2 \eta_{AS} \eta_s + p_{AS} p_s.
\end{align}

Here, η_{AS} and η_s are the overall detection efficiencies in
the anti-Stokes and Stokes channels respectively, which include the transmission efficiency η_t of the filters and optical components, the coupling efficiency η_c of the fiber couplers, and the quantum efficiency η_q of single photon detectors (there is another spatial mode-match efficiency η_m embodied in $\eta_{AS}(\alpha)$), γ is the retrieval efficiency which is a time-dependent factor, and B (C) is a fitted factor indicating the background in the anti-Stokes (Stokes) channel. The red curve is the least-square fitting result according to Eq. (2), where we assume $B = 0$ for simplicity. The efficiency in the anti-Stokes channel is observed as $\eta_{AS} \sim 0.07$ and the retrieve efficiency $\gamma \sim 0.3$. It can be seen the largest correlation $\eta_{AS}(\alpha)$ (101 ± 6) appears at the lowest excitation probability $p_{AS} (3.5 \times 10^{-4})$.

The finite lifetime of the spin excitation results from the dephasing of the collective state due to the Larmor precession of the collective spin in the residual magnetic field. It can be characterized by the decay of the retrieve efficiency $\gamma(\delta t) = \gamma_0 \exp(-\delta t^2/\tau_c^2)$, where τ_c is the lifetime of the collective state. Experimentally, the lifetime can be determined from the decay of the intensity correlation function $g^{(2)}_{AS,S}(\delta t)$. Using Eq. (2), the intensity correlation function reads

$$g^{(2)}_{AS,S}(\delta t) = 1 + \frac{\gamma(\delta t)}{(B + \chi)\gamma(\delta t) + D},$$

(3)

where C is absorbed by the new constant D. The decay of intensity correlation function $g^{(2)}_{AS,S}(\delta t)$ is shown in Fig. 2b). This curve was taken at $p_{AS} = 0.003$. The observed lifetime is $\tau_c = 12.5 \pm 2.6 \mu s$. It might be the noise arising from the elastic scattering of the write beam which makes the cross correlation of the first point slightly lower than those of the two succeeding ones.

The protocol of the feedback process aims for a storable and time controllable single photon source. As shown in Fig. 2b), in a duration of ΔT, N independent write pulses with a period of δt_w are applied into the atomic ensemble. Once an anti-Stokes photon is detected by D1 after one of the write pulses, the feedback circuit stops further write pulses and enables the read pulse to retrieve the single photon after a time delay Δt. If there is no click in D1, the atomic ensemble will be pumped back to the initial state by a cleaning pulse. The above process will be halted until either an anti-Stokes photon is detected, or the maximum number of trials (N) given by the lifetime of the excitation is exceeded. In principle, the production rate of Stokes photons is enhanced while the single-photon quality is conserved. This can be understood by the new excitation probability $P_{AS} = \sum_{i=0}^{N-1} p_{AS}(1 - p_{AS})^i$.

Our protocol can be executed in two different modes. In the first mode, we fix the retrieving time ΔT. Therefore, the delay Δt varies because the spin excitation is created randomly in the N write pulses. Single photons could be produced at a certain time with a high probability, ideally approaching unity if $N \gg 1$. Furthermore, the retrieve efficiency can be improved significantly by an increased optical depth of the atomic ensemble and an optimal retrieve protocol [10]. Thus, this mode serves as a deterministic single-photon source. In second mode, we retrieve the single photon with a fixed delay Δt after a successful write. Thus the imprinted single photon can be retrieved at any time needed. This is well suited for a quantum repeater [11,17] when one node is prepared while waiting for the other node.

In the first mode, we fixed $\Delta T = 12.5 \mu s$ and $\delta t_w = 1 \mu s$. Then $N = 12$ write pulses were introduced. The anti-correlation parameter α of field \hat{a}_s characterizes the quality of the single photon source. A 50/50 beam splitter is put in the Stokes channel to measure the auto-correlation of the conditioned Stokes photons. The coincident probability between D1 and D2 (D3) is $p_{2,AS} (p_{3,AS})$ and the three-fold coincident probability in D1, D2 and D3 is $p_{23,AS}$ if we use only one write pulse and retrieve immediately after the write. When we use N write pulses and the feedback protocol, the detection probabilities in D2 and D3 conditioned on a registration of an anti-Stokes photon in D1 are

$$P_{m|AS} = \frac{\sum_{i=0}^{N-1} p_{AS}(1 - p_{AS})^i p_{m|AS}(\Delta T - n \cdot \delta t_w)}{\sum_{i=0}^{N-1} p_{AS}(1 - p_{AS})^i},$$

(4)

where $m = 2, 3$ and $p_{m|AS}(\Delta T - n \cdot \delta t_w)$ is a time-dependent probability conditioning on a click in the anti-Stokes channel. Therefore, the anti-correlation parameter $\alpha = P_{23,AS}/(P_{2,AS} P_{3,AS})$.

In Fig. 2a), α was measured as a function of the excitation probability p_{AS}. The variation of α, shown as black dots, is nearly linear in the region of $p_{AS} = 0 \sim 0.006$ when the experiment is performed as each write pulse is followed by one read pulse. The black curve is the fitted result according to Eq. (4) ($N = 1$). When we use 12 successive write pulse, α versus $12 p_{AS}$ is plotted as red dots, which is consistent with the theoretical curve eval-

FIG. 2: Intensity correlation function $g^{(2)}_{AS,S}$ along the excitation probability p_{AS} with $\delta t = 500 \text{ ns}$ (a) and along the time delay δt between read and write pulses with $p_{AS} = 3 \times 10^{-3}$ (b). The black dots are obtained from current experiment and the curves correspond to a least-square fitting procedure according to Eq. (2) and (3). Here the observed lifetime is $\tau_c = 12.5 \pm 2.6 \mu s$ according to Eq. (3).
The delay Δt and α background in the black curve. Note that, the value of g leakage of the write and read beams, the stray light, and only depends on the retrieve efficiency itself. The generation efficiency is conserved. Then the generation probability can reach unity while the single-photon is long enough to hold many write pulses, the excitability is much larger. If the lifetime of the spin excitation varies more slowly compared with α varies due to the spin excitation created randomly δt. Being a key device in the scalable quantum communication network, this circuit also shows a promising performance in the enhancement of the excitation probability while the single-photon quality is conserved. This single-photon source is able to work at either a deterministic mode or a time controllable mode heralded by the feedback circuit. The single-photon source based on atomic ensemble has the advantages of narrow band, high quality and controllable character, which is helpful for the construction of scalable quantum information processing system in the future.

In conclusion, we have demonstrated an experimental realization of an controllable single-photon source with atomic storage. The lifetime of the collective spin excitation reaches 12.5 μs. A feedback circuit was constructed to control the generation of the spin excitation and the storage time δt. During the preparation of our manuscript, we are aware of two recently related experiments by A. Kuzmich’s group [21] and H. J. Kimble’s group [22].

* These authors contribute equally to this work.

[1] Brahim Lounis, and Michel Orrit, Rep. Prog. Phys. 68, 1129 (2005).
[2] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
[3] E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001)
[4] P. Michler et al., Science 290, 2282 (2000).
[5] C. Santori et al., Phys. Rev. Lett. 86, 1502 (2001).
[6] A. Kuhn, M. Hennrich, and G. Rempe, Phys. Rev. Lett. 89, 67901 (2002).
[7] M. Keller et al., Nature 431, 1075 (2004).
[8] C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, Phys. Rev. Lett. 85, 290 (2000).
[9] C. Santori et al., New J. Phys. 6, 89 (2004).
[10] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature 414, 413 (2001).
[11] A. Kuzmich et al., Nature 423, 731 (2003).
[12] C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, Phys. Rev. Lett 92, 213601 (2004).
[13] T. Chanelière et al., Nature 438, 833 (2005).
[14] M. D. Eisaman et al., Nature 438, 837 (2005).
[15] D. N. Matsukevich, and A. Kuzmich, Science 306, 663 (2004).
[16] C. W. Chou et al., Nature 438, 828 (2005).
[17] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys.
[18] M. D. Lukin, Rev. Mod. Phys. 75, 457 (2003).
[19] A. V. Gorshkov et al., quant-ph/0604037.
[20] P. Grangier, G. Roger, and A. Aspect, Europhys. Lett.
[21] D. N. Matsukevich et al., quant-ph/0605098.
[22] J. Laurat et al., quant-ph/0605122.