Insight into Platinum Poisoning Effect on Cu-SSZ-13 in Selective Catalytic Reduction of NO\textsubscript{x} with NH\textsubscript{3}

Huawang Zhao 1,*, Lei Han 2, Yujie Wang 3 and Jiandong Zheng 3

1 Department of Environmental Science & Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
2 School of Chemical Engineering, Tianjin University, Tianjin 300072, China; leihan@tju.edu.cn
3 School of Materials and Chemical Engineering, Chuzhou University, Chuzhou 239000, China; 15243229372@163.com (Y.W.); zjd07@126.com (J.Z.)
* Correspondence: hwzhaohq.edu.cn

Abstract: Platinum’s (Pt) poisoning effect on Cu-SSZ-13 and its regeneration were investigated. The Pt enhanced the parallel reactions, such as NH\textsubscript{3} oxidation and NO oxidation reactions, which decreased the deNO\textsubscript{x} activities. In the temperature range below 330 °C, the deactivation of Cu-SSZ-13 by Pt poisoning was primarily caused by the overconsumption of NH\textsubscript{3}, due to the enhanced NH\textsubscript{3}-selective oxidation reaction, while the formation of NO\textsubscript{x} in NH\textsubscript{3} oxidation and NO oxidation into NO\textsubscript{2} further aggravated the degradation when the temperature was above 460 °C. The non-selective NH\textsubscript{3} oxidation and non-selective NO\textsubscript{x} catalytic reduction reactions resulted in increased N\textsubscript{2}O formation over Pt-doped samples. The transformation of Pt0 into Pt\textsubscript{4+} after hydrothermal aging recovered the deNO\textsubscript{x} activities of the Pt-poisoned samples.

Keywords: Pt poisoning; Cu-SSZ-13; NH\textsubscript{3}-SCR; regeneration

1. Introduction

Cu-exchanged SSZ-13 has recently been commercialized as a catalyst for the selective catalytic reduction of NO\textsubscript{x} with a NH\textsubscript{3} (NH\textsubscript{3}-SCR) section in a diesel engine exhaust after-treatment system [1]. For automotive applications, there is a critical requirement for the application life of the SCR catalyst in order to meet the NO\textsubscript{x} emission standard [2].

Sulfur poisoning (including SO\textsubscript{2} and SO\textsubscript{3}), hydrothermal aging, and chemical contamination (such as Ca, P, Pt, Pd, etc.) would deactivate the Cu-SSZ-13 [3–7]. Specific to the sulfur poisoning, the deactivation caused by SO\textsubscript{2} poisoning is mostly reversible, as NH\textsubscript{4}HSO\textsubscript{4} and CuHSO\textsubscript{4} intermediates formed on Cu-SSZ-13 can be decomposed after thermal treatment at high temperatures [8]. However, the deactivation caused by SO\textsubscript{3} poisoning due to the formation of copper sulfate and structural damage is irreversible [3,7].

Specific to hydrothermal treatment, the deactivation of Cu-SSZ-13 is typically attributed to the destruction and transformation of cupric sites from SCR-active to inactive forms, which is irreversible [5,9]. Nevertheless, the effect of chemical poisoning on Cu-SSZ-13 is more complex than that of sulfur poisoning and hydrothermal treatment. In addition to the poisoning effect of the destruction and transformation of isolated Cu2+ ions into inactive forms [6,10–12], the additional chemical contaminants may act as active sites that catalyze side reactions in the NH\textsubscript{3}-SCR reaction system.

In general, the standard SCR reaction is the target pathway for the NO\textsubscript{x} elimination in the NH\textsubscript{3}-SCR system, as shown in Reaction 1 (R.1):

\[4\text{NH}_3 + 4\text{NO} + \text{O}_2 = 4\text{N}_2 + 6\text{H}_2\tag{1}\]

However, some parallel reactions also occur along with the standard reaction, as shown in R.2–R.7.

\[4\text{NO} + 4\text{NH}_3 + 3\text{O}_2 = 4\text{N}_2\text{O} + 6\text{H}_2\text{O}\tag{2}\]
Without the contaminants, the rate of the standard NH\textsubscript{3}-SCR reaction is much higher than that of the side reactions when using the Cu-SSZ-13 as catalyst, because the isolated Cu2+ ions primarily catalyze the standard reaction \[13,14\]. Therefore, the Cu-SSZ-13 exhibited excellent deNO\textsubscript{x} activity. However, the presence of additional chemical contamination sites might help to catalyze the reactions in R.2–R.7, which increases the parallel reactions rate \[6\]. As such, the competition between the parallel reactions (R.2–R.7) and the standard reaction (R.1) would reduce the SCR activity of Cu-SSZ-13 (R.1) \[6\].

Pt is a typical chemical contamination species for Cu-SSZ-13 \[6\]. In an after-treatment system, the SCR catalyst is located downstream of the diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) sections \[15\]. The Pt coating in DOC and DPF would be volatilized and deposited on the SCR catalyst due to the high exhaust temperature, which significantly decreases the deNO\textsubscript{x} activities of the SCR catalysts \[16–18\]. The previous work in the industry investigated the Pt poisoning effect on Cu-SSZ-13 with Pt loading in the weight range of 0–0.016 wt. \% \[19\]. This work found that 0.008 wt. \% was the threshold with little influence on the activity of Cu-SSZ-13, above which the activity decreased significantly. Lezcano-Gonzalez et al. \[6\] investigated the effect of series pollutants (Pt, Zn, Ca and P) on Cu/SSZ-13 catalysts during the NH\textsubscript{3}-SCR process, and Pt poisoning (with Pt loading of 1–2 wt. \%) resulted in the NO\textsubscript{x} conversion reduction, which was predicted to be due to the Pt species' oxidation ability that promoted the NH\textsubscript{3} oxidation reaction (R.3–R.6). A similar poisoning effect of Pt was also observed on Cu-SAPO-34 \[18\]. It should be noted that the amount of Pt has a significant impact on the SCR performance of Cu-SSZ-13 \[19\]. Therefore, the effect of a Pt loading of 0.01–0.1 wt. \% on Cu-SSZ-13 should be investigated. In addition, the hydrothermal treatment effect on the Pt poisoning influence on Pt/Cu-SSZ-13 has also not been reported.

In this work, a series of Pt/Cu-SSZ-13 samples with different Pt doping contents (0.01–0.1 wt. \%) was prepared to elucidate the poisoning impact of Pt on the NH\textsubscript{3}-SCR performance of the catalysts. The Pt’s influence on the NH\textsubscript{3}-SCR reaction network was investigated based on transient reaction experiments. The Pt poisoning effects on the structure and cupric sites of Cu-SSZ-13 were evaluated by XRD and H\textsubscript{2}-TPR measurements. The effect of hydrothermal treatment on the recovery of a Pt-contaminated sample was analyzed.

2. Results and Discussion

2.1. Influence of Pt Poisoning on the Catalytic Performance of Cu-SSZ-13

Figure 1 shows the SCR performance of the Cu-SSZ-13 and Pt poisoning samples with and without hydrothermal treatment. The Cu-SSZ-13 presented above 75% NO\textsubscript{x} conversion at 150–550 °C, and the N\textsubscript{2}O concentration was below 20 ppm, indicating that the NO and NH\textsubscript{3} were primarily converted via the standard NH\textsubscript{3}-SCR reaction (R.1) pathway over Cu-SSZ-13. For Cu-SSZ-13 doping with Pt (PtxCu), the NO\textsubscript{x} conversion decreased with increasing Pt loading, particularly in the temperature range above 300 °C. Notably, larger concentrations of N\textsubscript{2}O were formed in PtxCu samples than in Cu-SSZ-13 (Figure 2). This indicates that the parallel reactions (e.g., R.2–R.7) should be accelerated by Pt sites \[18,20\]. In addition, the N\textsubscript{2}O formation shows a volcanic curve, with the peaks at around 330 °C in the Pt-doped samples. This demonstrates that the parallel reactions (such as R.2 and R.4) contributing to the N\textsubscript{2}O formation mainly affect the NO\textsubscript{x} conversion below 330 °C. In other words, some other parallel reactions resulted in a decrease in deNO\textsubscript{x} activity above 330 °C. This part will be further analyzed in Section 3.2, accompanied by
the transient reaction results. In addition, in our work, the NO$_x$ conversion decreased with the increasing Pt loading from 0.01 to 0.1 wt. % (Figure 1). However, in the work by Lezcano-Gonzalez et al. [6], the Pt-poisoned Cu-SSZ-13 showed a similar loss of NOx conversion in the Cu-SSZ-13 with Pt loadings of 1 and 2 wt. %. This indicates that the Pt poisoning effect might not change significantly when the Pt loading reaches a high content (around 1 wt.%).

Figure 1. NO$_x$ conversion during standard NH$_3$–SCR with the fresh and aged samples. The reaction conditions: 500 ppm NH$_3$, 500 ppm NO, 5% O$_2$, 5% H$_2$O, N$_2$ balance, flow rate at 500 mL/min, 100 mg of catalyst.

Figure 2. N$_2$O concentration during standard NH$_3$–SCR of fresh and aged catalyst samples. The reaction conditions: 500 ppm NH$_3$, 500 ppm NO, 5% O$_2$, 5% H$_2$O, N$_2$ balance, flow rate at 500 mL/min, 100 mg of catalyst.
The NO\textsubscript{x} conversion of Cu-SSZ-13 decreased after hydrothermal treatment. However, the hydrothermally aged PtxCu samples showed only slightly inferior NO\textsubscript{x} conversions as compared to the Cu-H sample, which was much higher than its fresh counterparts, as shown in Figures 1 and 2. In addition, the N\textsubscript{2}O formation over the PtxCu samples decreased after hydrothermal treatment. This demonstrates that the hydrothermal treatment partially recovered the activity of Pt-poisoned Cu-SSZ-13.

2.2. Transient Reactions

To investigate the effect of Pt on the standard NH\textsubscript{3}-SCR reaction and parallel reactions with Cu-SSZ-13 below and above 330 °C, the transient reactions were conducted, and the results are given in Table 1. The procedure of the transient reactions is shown in Figure 3. The NH\textsubscript{3} oxidation results in Figure S1 reveal that the Pt poisoning enhanced the NH\textsubscript{3} oxidation capacity of PtxCu samples. However, small amounts of NO and NO\textsubscript{2} were formed on the Cu-SSZ-13 and Pt-poisoned samples during the NH\textsubscript{3} oxidation period at 330 °C, as shown in Table 1. This indicates that the Pt sites mainly enhanced the NH\textsubscript{3} selectivity of the oxidation reaction to N\textsubscript{2} (R.3), which led to insufficient NH\textsubscript{3} taking part in the standard SCR reaction, and decreased the NO\textsubscript{x} conversion of PtxCu samples (Figure 1) below 330 °C as a result.

![Figure 3. The procedure of the transient reactions.](image-url)

Both the non-selective NH\textsubscript{3} oxidation reaction (NSNO, R.4) and the non-selective NO\textsubscript{x} catalytic reduction reaction (NSCR, R.2) contributed to the N\textsubscript{2}O formation [21]. The larger content of N\textsubscript{2}O in the PtxCu sample than Cu-SSZ-13 (Figure 2) must be attributed to the enhancement of the NSNO and NSCR reaction rates. However, the N\textsubscript{2}O formation cannot be attributed to the enhancement of the non-selective NH\textsubscript{3} oxidation reaction (NSNO, R.4), because only a low concentration of N\textsubscript{2}O was formed in the NH\textsubscript{3} oxidation period at 330 °C, as shown in Table 1. After the introduction of NO, the N\textsubscript{2}O concentration was significantly increased (Table 1). This indicates that the N\textsubscript{2}O formation was primarily attributed to the non-selective NO\textsubscript{x} catalytic reduction reaction (NSCR, R.2), which was catalyzed by Pt sites.
Table 1. Transient reaction results for the catalyst samples at 330 °C and 460 °C.

Sample	T (°C)	NO (ppm)	NH₃ Oxidation (ppm)	SCR Reaction (ppm)	NO Oxidation (ppm)
Cu-SSZ-13	330	0	59	4	0
	460	0	0	1	0
Pt₁Cu	330	0	0	7	0
	460	0	48	3	8
Pt₂Cu	330	0	0	12	0
	460	0	98	4	23
Pt₃Cu	330	0	17	24	10
	460	0	160	5	35

More NO was formed during the NH₃ oxidation at 460 °C (R.6) than at 330 °C. This indicates that, in addition to the decrease in reductant involved in the standard SCR reaction due to the enhancement of the NH₃ oxidation reaction by Pt, the oxidation of NH₃ to NO (R.6) also contributed to the decrease in NOx conversion at high temperatures (460 °C).

Besides this, at 460 °C, a large amount of NO₂ was also produced during the NH₃ oxidation of Pt doping samples, while none was observed in Cu-SSZ-13 (Table 1), indicating that a part of the NH₃ was oxidized to NO₂ by Pt at 460 °C. Meanwhile, NO oxidation into NO₂ (R.7) was also enhanced in the PtxCu samples, as confirmed by the higher concentration of NO₂ formed over PtxCu than Cu-SSZ-13 during the NO oxidation period (Table 1). Furthermore, the total concentration of NO₂ formed in the NH₃ oxidation and NO oxidation reactions was similar to that formed in the NH₃-SCR period. This demonstrates that Pt loading accelerated the reactions in R.6 and R.7, resulting in the increased NO₂ formation in the NH₃-SCR process. Those observations above imply that, beside the overconsumption of NH₃ following R.1, the additional NO and NO₂ production via NH₃ and NO oxidation (R.5-R.7) also led to the decline in NOx conversion in the PtxCu samples at high temperatures (around 460 °C) [22,23].

2.3. Pt Poisoning Effect on the Texture and Structure

The ICP results of the samples are given in Table 2. The fresh and aged samples showed similar Cu loading contents, and the Pt amount increased with the increment in the Pt loading. The hydrothermal treatment did not change the Pt content.

Table 2. The element content and textural properties of the catalysts.

Sample	Cu Content a (wt. %)	Pt Content a (wt. %)	Surface Area b (m²/g)	Pore Volume b (cm³/g)
Cu-SSZ-13	4.11	ND c	498	0.21
Pt₁Cu	4.13	0.009	412	0.2
Pt₂Cu	4.08	0.051	390	0.19
Pt₃Cu	4.14	0.1	382	0.19
Cu-H	4.06	ND	406	0.17
Pt₁Cu-H	4.10	0.01	355	0.17
Pt₂Cu-H	4.10	0.048	342	0.16
Pt₃Cu-H	4.09	0.1	335	0.15

a Determined with ICP. b Determined with N₂ physisorption.
The surface area and pore volume decreased with the increasing Pt loading (Table 2). No significant framework dealumination took place as a result of Pt impregnation, as only a slight decline of the peak at 58 ppm, attributed to the tetrahedral Al species, was observed in the Pt-doped samples compared to Cu-SSZ-13 (Figure S4) [14,24]. In addition, no significant formation of octahedrally coordinated Al species (showing a resonance peak at 0 ppm) could be detected [14,24]. These observations above indicate that the dealumination should not be the primary reason for the decline in BET surface area. Actually, SSZ-13 possesses small windows of about 3.8 Å, so mass transfer limitations might be induced due to the deposition of impurities, even at low quantities. Moreover, taking into account the diameter of Pt⁰ and PtOₓ (around 1 nm, shown in the TEM results in Figure S6), it is reasonable to assume that some of the Pt might be located in the zeolite micropores, causing a decrease in the micropore volume and the BET surface area. However, those values were largely maintained after hydrothermal treatment, suggesting that the structure of the hydrothermally aged sample remains intact, consistent with the XRD results in Figure S2.

2.4. Pt Poisoning Effect on the Catalytic Active Sites

2.4.1. H₂-TPR

The isolated Cu²⁺ ions are identified as the active sites that catalyze the standard NH₃SCR reaction [25–27]. H₂-TPR was carried out on the catalysts to detect the state of cupric species, and the results are shown in Figure 4a. For the fresh samples, two peaks in 220–380 °C and in 600–750 °C were observed, representing the reduction of isolated Cu²⁺ to Cu⁺ (R.8) and the reduction of Cu⁺ to Cu⁰ (R.9), respectively [28,29].

\[
\begin{align*}
\text{Cu}^{2+} + \frac{1}{2} \text{H}_2 &= \text{Cu}^{+} + \text{H}^+ \\
\text{Cu}^{+} + \frac{1}{2} \text{H}_2 &= \text{Cu}^0 + \text{H}^+
\end{align*}
\]

Figure 4. (a) H₂-TPR spectra of fresh and aged Cu-SSZ-13 and PtxCu samples; (b) the relative Cu²⁺ ion content in the catalyst samples, using Cu-SSZ-13 as a reference.

After deconvolution, the peak in the 220–380 °C range can be divided into two peaks with tops at 250 °C and 325 °C, assigned to the reduction of isolated Cu²⁺ located in eight- and six-member rings, respectively [30]. After the hydrothermal treatment, the reduction peak below 500 °C was widened, and an additional peak at 190 °C appeared. This can be attributed to the transformation of a part of the isolated Cu²⁺ ions to CuO during the hydrothermal treatment [31].
The isolated Cu\(^{2+}\) ions content of each sample was normalized using the area of the reduction peaks of isolated Cu\(^{2+}\) ions in Cu-SSZ-13 as a reference, shown in Figure 4b. The Cu-SSZ-13 and PtxCu samples contained similar isolated Cu\(^{2+}\) ions contents. This suggests that the Pt poisoning has no influence on the cupric sites, which is consistent with previous work [6]. Therefore, the parallel reactions should exclusively be catalyzed by the Pt species, which reduced the SCR activities. Furthermore, the SCR active sites, i.e., isolated Cu\(^{2+}\) ions, decreased, and the Pt content remained constant (Figure 4b), while the SCR activity was increased for the PtxCu samples after hydrothermal treatment. This indicates that the hydrothermal conditions might change the state of Pt, which plays a critical role in determining the SCR’s performance.

2.4.2. X-ray Photoelectron Spectroscopy

To detect the changes of state in Pt, the XPS technique was utilized, and the Pt 4f spectra of the fresh and aged samples are given in Figure 5a,b, respectively. The Cu-SSZ-13 sample displayed no Pt signals, and a broad peak at 70–80 eV was observed in the PtxCu samples. The signals for the Pt 4f\(_{7/2}\) peaks with a binding energy value at 71.32 eV confirmed the presence of platinum in the zero oxidation state (Pt\(^0\)) [32]. The Pt 4f\(_{7/2}\) signals at around 72.96 and 74.01 are attributed to PtO and PtO\(_2\) species, respectively, which were formed due to the Pt\(^0\) oxidation during the catalyst’s calcination in preparation [33]. In comparison, only reduced Pt was observed in the previous work on Pt-poisoned Cu-SSZ-13 [6]. This might be attributed to the different Pt precursors used in the work by Lezcano-Gonzalez et al. ([Pt(NH\(_3\))\(_4\)](NO\(_3\))\(_2\)) and in our work (Pt(NO\(_3\))\(_2\)), as the different precursors have an influence on the state of the Pt [6,34]. After the hydrothermal treatment, the XPS spectra of the hydrothermally aged samples changed. Only the PtO and PtO\(_2\) species remained in the aged samples. This indicates that all the Pt\(^0\) was oxidized during the aging process, which is consistent with the previous works that reported that the Pt\(^0\) would be easily oxidized at high temperatures [16,18].

![Figure 5. Pt 4f XPS results of the catalyst samples. (a) Fresh samples, (b) aged samples, (c) Pt\(^0\) content in PtxCu samples.](image-url)
The Pt\(^0\) content of each sample was calculated, as shown in Figure 5c (details shown in Figure S3). The Pt\(^0\) content increased in the order of Pt\(_3\)Cu > Pt\(_2\)Cu > Pt\(_1\)Cu > Cu-SSZ-13, consistent with the extent of the deactivation of the Pt-loaded samples (Figure 1). Combined with the transient reaction results in Table 1, it is suggested that the Pt\(^0\) catalyzed the R.2–7, decreasing the deNO\(_x\) activities of the PtxCu samples (Figure 1). In addition, the aged Cu-SSZ-13 and PtxCu exhibited similar SCR activities after hydrothermal treatment, although a large content of PtO\(_x\) still existed in the PtxCu-H samples (Figures 1 and 5b). This demonstrates that the PtO\(_x\) is ineffective in catalyzing the parallel reactions. In other words, the transformation of Pt\(^0\) into PtO\(_x\) results in the regeneration of PtxCu samples after hydrothermal treatment.

3. Experimental

3.1. Catalyst Preparation

The Cu-SSZ-13 was synthesized via one-pot hydrothermal synthesis using copper-tetraethylenepentamine (Cu-TEPA, Guangfu, Tanjin) as a structure-directing agent. In total, 180 mL of gel was prepared with a molar ratio of 2.5 Na\(_2\)O:1 Al\(_2\)O\(_3\):10 SiO\(_2\):150 H\(_2\)O:2 Cu-TEPA, which was then transferred into a 250 mL autoclave with a Teflon liner and crystallized at 140 °C for 4 days. The solid product was filtrated, washed with water, and then dried at 120 °C for 6 h. Then, 15 g of as-synthesized sample was ion-exchanged with 300 mL NH\(_4\)NO\(_3\) solution (1 mol/L) at 80 °C and kept for 9 h to remove excess Cu. After filtration, washing, and drying at 100 °C, the sample was calcinated in synthetic air at 600 °C for 6 h to obtain Cu-SSZ-13. The Si/Al ratio of Cu-SSZ-13 is 4, as determined by ICP-OES. The details of the preparation can be found in our previous work [14].

The Pt-doped Cu-SSZ-13 catalysts (Pt/Cu-SSZ-13 = 0.01, 0.05, 0.1 wt. %) were prepared by incipient wetness impregnation. Typically, 0.6 mL Pt(NO\(_3\))\(_2\) solution (Guangfu) at different concentrations (0.088, 0.44 and 0.88 mol/L, respectively) was dropped onto 1 g of Cu-SSZ-13. After calcination at 550 °C for 4 h, the catalysts with different Pt loadings were obtained. The samples were denoted as Pt\(_1\)Cu, Pt\(_2\)Cu and Pt\(_3\)Cu for short, respectively.

All catalysts were treated at 750 °C in air with 10% H\(_2\)O for 12 h. The flow rate was kept at 500 mL/min. The hydrothermally aged samples with Pt loading were distinguished with the suffix of (-H), and Cu-H was used as the abbreviation for the aged Cu-SSZ-13.

3.2. Catalytic Performance Test

The NH\(_3\)-SCR activities of the catalysts were tested in a fixed-bed quartz reactor (10 mm in diameter). Typically, 100 mg of the catalyst (40–60 mesh) was used, which was pre-activated in 5% O\(_2\)/N\(_2\) flow at 550 °C for 1 h. The reactant gases contain 500 ppm NO, 500 ppm NH\(_3\), 5 vol.% O\(_2\), and N\(_2\) as balance. The gas flow was kept at 500 mL/min, and the corresponding GHSV was 150,000 h\(^{-1}\). The concentrations of the gases (NO, NO\(_2\), N\(_2\)O and NH\(_3\)) were measured with the FTIR gas analyzer (Thermo Nicolet iS10).

The surface area and pore volume were determined by N\(_2\) physisorption measurement at −196 °C using a Quantachrome Autosorb-1, with pre-degassing at 250 °C for 6 h. The

\[
NO_x = \left(1 - \frac{[NO_x]_{\text{out}}}{[NO_x]_{\text{in}}}\right) \times 100% \quad (10)
\]

3.3. Transient Reaction

Transient reactions were carried out at 330 and 460 °C. First, a similar reaction condition as in the standard SCR measurement mentioned above was adopted for the NH\(_3\) oxidation reaction, in which NO was not introduced into the gas mixture. After the reaction reached a steady state, 500 ppm NO was switched into the reaction system. The concentrations of the gases (NO, NO\(_2\), N\(_2\)O and NH\(_3\)) were measured with the FTIR gas analyzer (Thermo Nicolet iS10).

The surface area and pore volume were determined by N\(_2\) physisorption measurement at −196 °C using a Quantachrome Autosorb-1, with pre-degassing at 250 °C for 6 h. The
chemical composition of the sample was determined by ICP-OES (VISTA-MPX, Varian, Palo Alto, CA, USA). The H2 temperature-programmed reduction (H2-TPR) was conducted on an AutoChem II 2920 (Micromeritics, Norcross, GA, USA) instrument. The samples were treated at 550 °C in 10%O2/N2 for 1 h before testing. X-ray photoelectron spectroscopy (XPS) was performed with a PHI-1600 ESCA system spectrometer(Perkin-Elmer Co., USA) using Mg Kα as the X-ray source (1253.6 eV) under a residual pressure of 5 × 10−6 Pa. The error of the binding energy was calibrated using C1s at 284.6 eV as the standard.

4. Conclusions

The Cu-SSZ-13 suffered severe deactivation after Pt impregnation, resulting in a decrease in NOx conversion. The Pt0 species accelerated the NH3 selective oxidation reaction to N2 in the temperature range below 330 °C, reducing the deNOx activity of PtxCu samples due to the insufficient amount of reductant taking part in the standard NH3-SCR reaction. In addition to the over-consumption of NH3 due to NH3 oxidation, the formation of NO and NO2 via NH3 and NO oxidation (R.3–R.7) further increased the loss of deNOx activity in Pt-poisoned samples at high temperatures (around 460 °C). The NSCR (R.2) reaction contributed to the increased N2O formation in Pt-poisoned samples at around 330 °C. After hydrothermal treatment, the activity was mostly recovered due to the transformation of Pt0, which catalyzed the parallel reactions, into PtOx species.

Supplementary Materials

The following are available online at https://www.mdpi.com/article/10.3390/catal11070796/s1, Figure S1: NH3 conversion as a function of temperature during NH3 oxidation experiment for the Cu-SSZ-13 and PtxCu samples. Reactant feed contains 500 ppm NH3, 5% O2 5% H2O, balanced with N2; flow rate at 500 mL/min, GHSV: 150,000 h−1, Figure S2: NO2 formation as a function of temperature during NH3-SCR reaction. The reactant feed contains 500 ppm NH3, 5% O2, 5% H2O, balanced with N2; flow rate at 500 mL/min, GHSV: 150,000 h−1, Figure S3: XRD patterns of the (a) fresh and (b) aged catalysts, Figure S4: Solid state 27Al MAS NMR spectra of the Cu-SSZ-13 and Pt-poisoned samples, Figure S5: Ratio of different Pt species in the Pt loading samples quantified by the XPS spectra in Figure 5, Figure S6: TEM images of (a) Pt3Cu and (b) Pt3Cu-H samples.

Author Contributions:

H.Z.: literature search, figures, study design, data collection, writing; L.H.: literature search, figures, study design; Y.W.: figures, study design; J.Z.: data analysis. All authors have read and agreed to the published version of the manuscript.

Funding:

This work was supported by the Scientific Research Funds of Huqiao University (605-50Y200270001).

Conflicts of Interest:

The authors declare no conflict of interest.

References

1. Beale, A.M.; Gao, F.; Lezcano-Gonzalez, I.; Peden, C.H.F.; Szanyi, J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 2015, 44, 7371–7405. [CrossRef]
2. Nova, I.; Tronconi, E. Urea-SCR Technology for deNOx after Treatment of Diesel Exhausts; Springer: New York, NY, USA, 2014.
3. Shen, M.; Zhang, Y.; Wang, J.; Wang, C.; Wang, J. Nature of SO3 poisoning on Cu/SAPO-34 SCR catalysts. Catalysts 2018, 358, 277–286. [CrossRef]
4. Kumar, A.; Smith, M.A.; Kamasamudram, K.; Currier, N.W.; An, H.; Yezerets, A. Identification of two types of Cu sites in Cu/SSZ-13 and their unique responses to hydrothermal aging and sulfur poisoning. Catal. Today 2014, 231, 75–82. [CrossRef]
5. Gao, F.; Szanyi, J. On the hydrothermal stability of Cu/SSZ-13 SCR catalysts. Appl. Catal. A Gen. 2018, 560, 185–194. [CrossRef]
6. Lezcano-Gonzalez, I.; Deka, U.; van der Bij, H.E.; Paalannen, P.; Arstad, B.; Weckhuysen, B.M.; Beale, A.M. Chemical deactivation of Cu-SSZ-13 ammonia selective catalytic reduction (NH3-SCR) systems. Appl. Catal. B Environ. 2014, 139–140, 154–155. [CrossRef]
7. Hammershøi, P.S.; Jangjou, Y.; Epling, W.S.; Jensen, A.D.; Janssens, T.V.W. Reversible and irreversible deactivation of Cu-CHA NH3-SCR catalysts by SO2 and SO3. Appl. Catal. B Environ. 2018, 226, 38–45. [CrossRef]
8. Wang, C.; Wang, J.; Wang, J.; Yu, T.; Shen, M.; Wang, W.; Li, W. The effect of sulfate species on the activity of NH3-SCR over Cu/SAPO-34. Appl. Catal. B Environ. 2017, 204, 239–249. [CrossRef]
9. Kim, Y.J.; Lee, J.K.; Min, K.M.; Hong, S.B.; Nam, I.-S.; Cho, B.K. Hydrothermal stability of CuSSZ13 for reducing NOx by NH3. J. Catal. 2014, 311, 447–457. [CrossRef]
10. Ma, J.; Si, Z.C.; Weng, D.; Wu, X.D.; Ma, Y. Potassium poisoning on Cu-SAPO-34 catalyst for selective catalytic reduction of NOx with ammonia. Chem. Eng. J. 2015, 267, 191–200. [CrossRef]

11. Fan, C.; Chen, Z.; Pang, L.; Ming, S.; Dong, C.; Albert, K.B.; Liu, P.; Wang, J.; Zhu, D.; Chen, H.; et al. Steam and alkali resistant Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx in diesel exhaust. Chem. Eng. J. 2018, 334, 344–354. [CrossRef]

12. Shwan, S.; Jansson, J.; Olsson, L.; Skoglundh, M. Chemical deactivation of Fe-BEA as NH3-SCR catalyst—Effect of phosphorous. Appl. Catal. B Environ. 2014, 147, 111–123. [CrossRef]

13. Wang, J.; Zhao, H.; Haller, G.; Li, Y. Recent advances in the selective catalytic reduction of NOx with NH3 on Cu-Chabazite catalysts. Appl. Catal. B Environ. 2017, 202, 346–354. [CrossRef]

14. Zhao, H.; Zhao, Y.; Liu, M.; Li, X.; Ma, Y.; Yong, X.; Chen, H.; Li, Y. Phosphorus modification to improve the hydrothermal stability of a Cu-SSZ-13 catalyst for selective reduction of NOx with NH3. Appl. Catal. B Environ. 2019, 252, 230–239. [CrossRef]

15. Gu, Y.; Marino, S.; Cortés-Reyes, M.; Pieta, I.S.; Pühl, J.A.; Epling, W.S. Integration of an Oxidation Catalyst with Pd/Zeolite-Based Passive NOx Adsorbers: Impacts on Degradation Resistance and Desorption Characteristics. Ind. Eng. Chem. Res. 2020, 60, 6455–6464. [CrossRef]

16. Chen, X.; Currier, N.; Yezerets, A.; Kamasamudram, K. Axially Resolved Performance of Cu-Zeolite SCR Catalysts. SAE Int. J. Engines 2013, 6, 856–861. [CrossRef]

17. Girard, J.W.; Montreuil, C.; Kim, J.; Cavataio, G.; Lambert, C. Origin and Effect of Ultra-Low Platinum Contamination on Diesel-SCR Catalysts. SAE Int. J. Fuels Lubr. 2008, 1, 1553–1559.

18. Yu, T.; Xu, M.; Huang, Y.; Wang, J.; Wang, J.; Lv, L.; Qi, G.; Li, W.; Shen, M. Insight of platinum poisoning Cu/SAPO-34 during NH3-SCR and its promotion on catalysts regeneration after hydrothermal treatment. Appl. Catal. B Environ. 2017, 204, 525–536. [CrossRef]

19. Cavataio, G.; Jen, H.-W.; Girard, J.W.; Dobson, D.; Warner, J.R.; Lambert, C.K. Laboratory Study of Soot, Propylene, and Diesel Fuel Impact on Zeolite-Based SCR Filter Catalysts. SAE Int. J. Fuels Lubr. 2009, 2, 204–216. [CrossRef]

20. Lezcano-Gonzalez, I.; Wragg, D.S.; Slawinski, W.A.; Hemelsoet, K.; Deyne, A.; Waroquier, M.; van Speybroeck, V.; Beale, A.M. Determination of the Nature of the Cu Coordination Complexes Formed in the Presence of NO and NH3 within SSZ-13. J. Phys. Chem. C 2015, 119, 24393–24403. [CrossRef]

21. Wang, J.; Cui, H.; Dong, X.; Zhao, H.; Wang, Y.; Chen, H.; Yao, M.; Li, Y. N2O formation in the selective catalytic reduction of NOx with NH3 on CeMoOx catalyst. Appl. Catal. A Gen. 2015, 505, 8–15. [CrossRef]

22. Dong, X.; Wang, J.; Zhao, H.; Li, Y. The promotion effect of CeOx on Cu-SAPO-34 catalyst for selective catalytic reduction of NOx with ammonia. Catal. Today 2015, 258, 28–34. [CrossRef]

23. Zhao, H.; Li, H.; Li, X.; Liu, M.; Li, Y. The promotion effect of Fe to Cu-SAPO-34 for selective catalytic reduction of NOx with NH3. Catal. Today 2017, 297, 84–91. [CrossRef]

24. Zhao, H.; Zhao, Y.; Ma, Y.; Yong, X.; Wei, M.; Chen, H.; Zhang, C.; Li, Y. Enhanced hydrothermal stability of a Cu-SSZ-13 catalyst for the selective reduction of NOx by NH3 synthesized with SAPO-34 micro-crystallite as seed. J. Catal. 2019, 377, 218–223. [CrossRef]

25. Shan, Y.; Shi, X.; Yan, Z.; Liu, J.; Yu, Y.; He, H. Deactivation of Cu-SSZ-13 in the presence of SO2 during hydrothermal aging. Catal. Today 2019, 320, 84–90. [CrossRef]

26. Shan, Y.; Du, J.; Yu, Y.; Shan, W.; Shi, X.; He, H. Precise control of post-treatment significantly increases hydrothermal stability of in-situ synthesized Cu-zeolites for NH3-SCR reaction. Appl. Catal. B Environ. 2020, 266, 118655. [CrossRef]

27. Shan, Y.; Sun, Y.; Du, J.; Zhang, Y.; Shi, X.; Yu, Y.; Shan, W.; He, H.H. Hydrothermal aging alleviates the inhibition effects of NO2 on Cu-SSZ-13 catalyst for NH3-SCR. Appl. Catal. B Environ. 2020, 275, 119105. [CrossRef]

28. Gao, F.; Walter, E.D.; Karp, E.M.; Luo, J.; Tonkyn, R.G.; Kwak, J.H.; Szanyi, J.; Peden, C.H.F. Structure–activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies. J. Catal. 2013, 300, 20–29. [CrossRef]

29. Kwak, J.H.; Tonkyn, R.G.; Kim, D.H.; Szanyi, J.; Peden, C.H.F. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx by NH3 synthesized with SAPO-34 micro-crystallite as seed. J. Catal. 2020, 111, 297–305. [CrossRef]

30. Kwak, J.H.; Zhu, H.; Lee, J.H.; Peden, C.H.F.; Szanyi, J. Two different cationic positions in Cu-SSZ-13? Chem. Commun. 2012, 48, 4758–4760. [CrossRef]

31. Li, X.; Zhao, Y.; Zhao, H.; Liu, M.; Ma, Y.; Yong, X.; Chen, H.; Li, Y. The Cu migration of Cu-SAPO-34 catalyst for ammonia selective catalytic reduction of NOx during high temperature hydrothermal aging treatment. Catal. Today 2019, 237, 126–133. [CrossRef]

32. Cordatos, H.; Gorte, R.J. CO, NO, and H2 Adsorption on Ceria-Supported Pd. J. Catal. 1996, 159, 112–118. [CrossRef]

33. Şen, F.; Gökgaç, G.; Şen, S. High performance Pt nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions. J. Nanopart. Res. 2013, 15, 1979. [CrossRef]

34. Borges, L.R.; Lopez-Castillo, A.; Meira, D.M.; Gallo, J.M.R.; Zanchet, D.; Bueno, J.M.C. Effect of the Pt Precursor and Loading on the Structural Parameters and Catalytic Properties of Pt/Al2O3. ChemCatChem 2019, 11, 3064–3074. [CrossRef]