Co-Precipitation Synthesis and Optical Properties of Mn$^{4+}$-Doped Hexafluoroaluminate w-LED Phosphors

Tim Senden*, Robin G. Geitenbeek and Andries Meijerink

Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands; r.g.geitenbeek@uu.nl (R.G.G.); a.meijerink@uu.nl (A.M.)
*Correspondence: t.senden@uu.nl; Tel.: +31-30-253-2214

Received: 29 September 2017; Accepted: 7 November 2017; Published: 17 November 2017

Abstract: Mn$^{4+}$-activated hexafluoroaluminates are promising red-emitting phosphors for white light emitting diodes (w-LEDs). Here, we report the synthesis of Na$_3$AlF$_6$:Mn$^{4+}$, K$_3$AlF$_6$:Mn$^{4+}$ and K$_2$NaAlF$_6$:Mn$^{4+}$ phosphors through a simple two-step co-precipitation method. Highly monodisperse large (~20 µm) smoothed-octahedron shaped crystallites are obtained for K$_2$NaAlF$_6$:Mn$^{4+}$. The large size, regular shape and small size distribution are favorable for application in w-LEDs. All Mn$^{4+}$-doped hexafluoroaluminates show bright red Mn$^{4+}$ luminescence under blue light excitation. We compare the optical properties of Na$_3$AlF$_6$:Mn$^{4+}$, K$_3$AlF$_6$:Mn$^{4+}$ and K$_2$NaAlF$_6$:Mn$^{4+}$ at room temperature and 4 K. The luminescence measurements reveal that multiple Mn$^{4+}$ sites exist in M$_3$AlF$_6$:Mn$^{4+}$ (M = Na, K), which is explained by the charge compensation that is required for Mn$^{4+}$ on Al$^{3+}$ sites. Thermal cycling experiments show that the site distribution changes after annealing. Finally, we investigate thermal quenching and show that the luminescence quenching temperature is high, around 460–490 K, which makes these Mn$^{4+}$-doped hexafluoroaluminates interesting red phosphors for w-LEDs. The new insights reported on the synthesis and optical properties of Mn$^{4+}$ in the chemically and thermally stable hexafluoroaluminates can contribute to the optimization of red-emitting Mn$^{4+}$ phosphors for w-LEDs.

Keywords: Mn$^{4+}$; red emission; phosphors; white LED; hexafluoroaluminate; thermal quenching

1. Introduction

White light emitting diodes (w-LEDs) are nowadays widely applied in general lighting and consumer electronics because of their high energy efficiency and long operation lifetime [1–5]. Commercial w-LEDs generate white light by combining blue-emitting (In,Ga)N LED chips with inorganic phosphors that convert part of the blue LED emission to green, yellow and/or red light [5,6]. Currently, the typical red phosphors in w-LEDs are Eu$^{2+}$-doped nitrides. These phosphors can have quantum yields (QYs) exceeding 90%, but a drawback is that the Eu$^{2+}$ emission band extends into the deep red and near-IR regions where the sensitivity of the human eye is low [6–8]. As a result, there are significant efficacy losses (reduced lumen/W output) at high color rendering indices (CRIIs) when using Eu$^{2+}$-doped nitrides as red phosphors in w-LEDs [9]. To overcome this issue, efficient narrow band red-emitting phosphors with λ_{max} ~620 nm have to be developed.

Mn$^{4+}$-doped fluorides are a promising class of materials to improve the color rendering of w-LEDs while maintaining a high luminous efficacy [8–11]. Upon blue photoexcitation Mn$^{4+}$-doped fluorides show narrow red line emission in the 600–640 nm spectral region. Furthermore, they can have a QY > 90% and are prepared through simple wet-chemical synthesis at room temperature [8,12]. These characteristics make Mn$^{4+}$-doped fluorides interesting narrow band red phosphors for w-LEDs. In recent years, a large number of Mn$^{4+}$-activated fluorides with the general chemical formulas A$_2$MF$_6$:Mn$^{4+}$ (A = Na, K, Rb, Cs and NH$_4$; M = Si, Ge, Ti, Zr and Sn) and BaMF$_6$:Mn$^{4+}$ (M = Si, Ge, Ti and Sn) have been reported [11–13]. In these compounds Mn$^{4+}$ substitutes for the M$^{4+}$ cation that is octahedrally coordinated by six F$^{-}$ ions. Most work
has been done on the phosphor K$_2$SiF$_6$:Mn$^{4+}$ (KSF) [14,15]. The Mn$^{4+}$-doped fluorides have excellent luminescence properties. The deep red color of the 600–640 nm Mn$^{4+}$ emission is particularly favorable for extending the color gamut of displays, and KSF is already widely applied in displays. In lighting, large-scale application is still limited, partly hampered by issues related to thermal and chemical stability and saturation at high pump powers [14,16].

Recently, the synthesis and luminescence properties of Mn$^{4+}$-doped hexafluoroaluminates with the compositions M$_3$AlF$_6$:Mn$^{4+}$ (M = Li, Na, K) were reported [17–20]. The ionic radius of Mn$^{4+}$ is similar to the ionic radius of Al$^{3+}$ (0.53 versus 0.54 Å), and as a result, Mn$^{4+}$ can easily substitute for Al$^{3+}$ in fluoride hosts [17,21]. The M$_3$AlF$_6$:Mn$^{4+}$ phosphors have potential advantages over K$_2$SiF$_6$:Mn$^{4+}$ and other Mn$^{4+}$-doped fluorides. First, Na$_3$AlF$_6$ and K$_3$AlF$_6$ have a melting point of ~1000 °C and therefore have a much better thermal stability than K$_2$SiF$_6$, which already decomposes at 350–400 °C [10,22–24]. Secondly, the M$_3$AlF$_6$ compounds have a lower water solubility than K$_2$SiF$_6$, making them more chemically stable under high humidity conditions [14,25]. Thirdly, hexafluoroaluminates are already produced worldwide on a large scale, as they are used as solvents for bauxite in the industrial extraction of aluminum [26]. This may facilitate cheap large-scale production of Mn$^{4+}$-activated hexafluoroaluminates.

Until now, different methods have been used to synthesize M$_3$AlF$_6$:Mn$^{4+}$ phosphors. Song et al. prepared Na$_3$AlF$_6$:Mn$^{4+}$ phosphors via a co-precipitation method [17], while others synthesized K$_3$AlF$_6$:Mn$^{4+}$ and K$_2$NaAlF$_6$:Mn$^{4+}$ by cation exchange [18,19]. Furthermore, K$_2$LiAlF$_6$:Mn$^{4+}$ was synthesized via a hydrothermal method [20]. A single convenient synthesis method for preparing M$_3$AlF$_6$:Mn$^{4+}$ phosphors is thus so far lacking. The previous works on M$_3$AlF$_6$:Mn$^{4+}$ have reported luminescence spectra and decay curves for different Mn$^{4+}$ doping concentrations in the temperature range of 300 to 500 K [17–20]. However, they provided no insight into the influence of (charge compensating) defects on the luminescence spectra and quantum yield of M$_3$AlF$_6$:Mn$^{4+}$. Furthermore, no explanations for the thermal quenching of the Mn$^{4+}$ luminescence were given.

In this work we report a new synthesis route for Na$_3$AlF$_6$:Mn$^{4+}$, K$_3$AlF$_6$:Mn$^{4+}$ and K$_2$NaAlF$_6$:Mn$^{4+}$ based on a simple two-step co-precipitation method. We synthesize Mn$^{4+}$-doped hexafluoroaluminates by initially preparing the Mn$^{4+}$-precursor K$_2$MnF$_6$ and then in a second step precipitating M$_3$AlF$_6$:Mn$^{4+}$ (M = Na, K) from an aqueous HF solution containing Al$^{3+}$, Mn$^{4+}$ and Na$^+$/K$^+$ ions. The presented method gives good control over the composition and homogeneity of the M$_3$AlF$_6$:Mn$^{4+}$ phosphors. All synthesized M$_3$AlF$_6$:Mn$^{4+}$ phosphors exhibit bright red Mn$^{4+}$ luminescence around 620 nm. For K$_2$NaAlF$_6$:Mn$^{4+}$ we obtain highly monodisperse and large (~20 μm) phosphor particles that exhibit narrow size and shape distributions that are superior to the size and shape distributions of other reported Mn$^{4+}$-doped phosphors. This makes K$_2$NaAlF$_6$:Mn$^{4+}$ interesting for use in w-LEDs, as monodisperse, uniform and large particles are favorable for reproducible and high packing density of phosphors in w-LEDs.

We perform both room-temperature and low-temperature (T = 4 K) spectral measurements of M$_3$AlF$_6$:Mn$^{4+}$. The measurements at 4 K reveal that multiple Mn$^{4+}$ sites exist in M$_3$AlF$_6$:Mn$^{4+}$, which was not observed in previous works on Mn$^{4+}$-doped hexafluoroaluminates. The formation of multiple Mn$^{4+}$ sites can be understood from the need for charge compensation for Mn$^{4+}$ ions on an Al$^{3+}$ site. Further evidence for the presence of multiple sites is obtained from thermal cycling experiments, which show a change in site distribution after high temperature annealing. The charge compensation and associated defects have a large influence on the luminescence properties (e.g., quantum yield) of M$_3$AlF$_6$:Mn$^{4+}$.

Finally, we study the thermal quenching behavior for M$_3$AlF$_6$:Mn$^{4+}$ by measuring the luminescence intensity as a function of temperature between 300 and 600 K. The luminescence quenching temperature we find for M$_3$AlF$_6$:Mn$^{4+}$ is 460–490 K, which is above the operating temperature of phosphors in high-power w-LEDs. The thermal quenching is explained by thermally activated crossover from the 4T_2 excited state to the 4A_2 ground state. Furthermore, there is luminescence quenching due to non-radiative energy transfer from Mn$^{4+}$ ions to quenching sites (defects and impurities).
2. Materials and Methods

The M_3AlF_6:Mn^{4+} (M = Na, K) phosphors were synthesized through a two-step chemical co-precipitation method. In the first step the Mn^{4+}-precursor K_2MnF_6 was synthesized and in the second step the M_3AlF_6:Mn^{4+} phosphor was prepared. Since K_2MnF_6 and M_3AlF_6:Mn^{4+} are synthesized in corrosive HF solutions, all reactions described were carried out in plastic or Teflon beakers.

2.1. Chemicals

The following chemicals were purchased from Sigma-Aldrich: KMnO_4 (≥ 99.0%), KF (≥ 99.0%), H_2O_2 (30 wt % solution, ACS reagent), Al(OH)_3 (reagent grade), Na_2CO_3 (≥ 99.95%) and K_2CO_3 (≥ 99.0%). Hydrofluoric acid (HF, 40% aqueous solution) was purchased from Riedel de Haën. All chemicals were used without any further purification.

2.2. Synthesis of K_2MnF_6

K_2MnF_6 was prepared according to the method of Bode [27,28]. KMnO_4 (4 g) and KF (59.5 g) were dissolved in 250 mL of a 40% HF solution. The black-purple solution obtained was stirred for 30 min and then cooled with an ice bath. Under constant cooling and stirring, a 30 wt % H_2O_2 solution was added dropwise which resulted in the gradual precipitation of yellow K_2MnF_6 powder. The dropwise addition of H_2O_2 was stopped when the reaction solution turned from purple to red-brown, indicating the formation of Mn^{4+}. The K_2MnF_6 product was isolated by decanting the red-brown solution, washing the precipitate twice with 100 mL of acetone and finally drying the precipitate at 60 °C for 5 h.

2.3. Synthesis of M_3AlF_6:Mn^{4+}

Al(OH)_3 (10 mmol, 0.78 g) was dissolved in 15 mL 40% HF by stirring and heating at 60 °C. After cooling down to room temperature, 0.1 mmol K_2MnF_6 (1 mol % doping concentration) was added. Simultaneously, a solution of M^+ ions (M = Na, K) in 40% HF was prepared by gradually adding M_2CO_3 or MF to 40% HF (aq) while stirring. Table 1 lists the amounts of Na_2CO_3, K_2CO_3, KF and 40% HF (aq) used for preparing the M^+/HF solutions. The M^+/HF solution was added to the Al^{3+}/Mn^{4+}/HF solution, which resulted in the precipitation of Na_3AlF_6:Mn^{4+} and K_2NaAlF_6:Mn^{4+} but not K_3AlF_6:Mn^{4+} phosphor. K_3AlF_6:Mn^{4+} was precipitated by adding 50 mL of ethanol to the mixed M^+/Al^{3+}/Mn^{4+}/HF solution (ethanol acts as anti-solvent). The synthesized phosphors were isolated by decanting the solution, washing the precipitate twice with ethanol and subsequently drying at 75 °C for 3 h. Different Mn^{4+} doping concentrations could be obtained by changing the amount of K_2MnF_6 that was used in the synthesis.

Table 1. Amounts of Na_2CO_3, K_2CO_3, KF and 40% HF (aq) used in the synthesis of M_3AlF_6:Mn^{4+} (M = Na, K).

Phosphor	Na_2CO_3	K_2CO_3	KF	40% HF
Na_3AlF_6:Mn^{4+}	15 mmol	-	-	15 mL
K_2NaAlF_6:Mn^{4+}	5 mmol	10 mmol	-	15 mL
K_3AlF_6:Mn^{4+}	-	-	40 mmol	3 mL

A 4:1 ratio of K:Al was used, as this gave K_3AlF_6 without impurity phases. With a 3:1 ratio, the obtained phosphor contained impurities of other crystal phases.

2.4. Characterization

Powder X-ray diffraction (XRD) patterns were measured on a Philips PW1729 X-ray diffractometer using Cu Kα radiation (λ = 1.5418 Å). Scanning electron microscopy (SEM) images of the phosphors were obtained using a Philips XL30S FEG microscope operating at 20 keV. The manganese concentrations in the phosphors were determined with inductively coupled plasma optical emission spectroscopy (ICP-OES).
performed on a Perkin-Elmer Optima 8300 spectrometer. For the ICP-OES measurements the M$_3$AlF$_6$:Mn$^{4+}$ phosphors were dissolved in aqua regia.

Photoluminescence (PL) measurements were performed on an Edinburgh Instruments FLS900 fluorescence spectrometer equipped with a double 0.22 m excitation monochromator. For recording emission and excitation spectra, we used a 450 W Xe lamp as excitation source and a Hamamatsu R928 photomultiplier tube (PMT) to detect the emission. For PL measurements down to 4 K, the phosphors were cooled in an Oxford Instruments liquid helium flow cryostat. PL measurements between 300 K and 600 K were performed by heating the phosphors with a Linkam THMS600 temperature controlled stage. PL quantum yields were determined with a calibrated home-built setup which consisted of a 65 W Xe lamp, excitation monochromator, integrating sphere (Labsphere) and CCD camera (Avantes AvaSpec-2048).

3. Results and Discussion

3.1. Structural Properties

To investigate the composition, size and shape of the M$_3$AlF$_6$:Mn$^{4+}$ (M = Na, K) phosphor particles, we used different characterization techniques such as XRD, SEM and ICP-OES. Figure 1 shows XRD patterns of the M$_3$AlF$_6$:Mn$^{4+}$ phosphors. The XRD patterns are in perfect agreement with the reference patterns for Na$_3$AlF$_6$ (PDF 00-025-0772, red), K$_2$NaAlF$_6$ (PDF 01-072-2434, blue) and K$_3$AlF$_6$ (PDF 00-057-0227, green). No other crystal phases can be observed, which confirms that the phosphor samples are single phase.

![Figure 1. Powder X-ray diffraction (XRD) patterns of M$_3$AlF$_6$:Mn$^{4+}$ (M = Na, K). The XRD patterns of the synthesized phosphors are in excellent agreement with the reference patterns for Na$_3$AlF$_6$ (PDF 00-025-0772, red), K$_2$NaAlF$_6$ (PDF 01-072-2434, blue) and K$_3$AlF$_6$ (PDF 00-057-0227, green).](image)

The XRD measurements show that incorporation of Mn$^{4+}$ on the Al$^{3+}$ sites does not significantly change the crystal structure of M$_3$AlF$_6$, which is expected as the ionic radii of Mn$^{4+}$ and Al$^{3+}$ are similar (0.53 versus 0.54 Å) [21]. The space groups of Na$_3$AlF$_6$, K$_2$NaAlF$_6$ and K$_3$AlF$_6$ are listed in Table 2. K$_2$NaAlF$_6$ has a highly symmetric cubic crystal structure (space group is Fm$ar{3}$m), while Na$_3$AlF$_6$ and K$_3$AlF$_6$ have a crystal structure with lower symmetry (space groups are P2$_1$/n and I4$_1$/a, respectively) [29–31]. In the M$_3$AlF$_6$ crystal structure, the Al$^{3+}$ ions are octahedrally coordinated by six F$^-$ ions. Depending on the M$_3$AlF$_6$ lattice, the AlF$_6$ octahedron can be highly symmetric (O$_h$ in K$_2$NaAlF$_6$) or distorted (C$_1$ in Na$_3$AlF$_6$ and C$_1$ in K$_3$AlF$_6$). The average Al–F distances in the AlF$_6$ octahedra are around 1.8 Å.
Table 2. Space group, Al3+ site symmetry and average Al–F distance for M\textsubscript{3}AlF\textsubscript{6}:Mn4+. Structural data obtained from Refs. [29–31].

Lattice	Space Group	Al3+ Symmetry	Al–F Distance (Å)	ZPL Energy (cm-1)
Na\textsubscript{3}AlF\textsubscript{6}	P2\textsubscript{1}/n	C\textsubscript{1}	1.808	16,167
K\textsubscript{2}NaAlF\textsubscript{6}	Fm\textsubscript{3}m	O\textsubscript{h}	1.778	16,082
K\textsubscript{3}AlF\textsubscript{6}	I\textsubscript{4}1/a	C\textsubscript{1}	1.810	16,200

By using ICP-OES, we measured the manganese concentrations in the synthesized M\textsubscript{3}AlF\textsubscript{6}:Mn4+ phosphors (see Materials and Methods section). The XRD patterns displayed in Figure 1 were measured for M\textsubscript{3}AlF\textsubscript{6}:Mn4+ phosphors containing 0.4 mol % (Na\textsubscript{3}AlF\textsubscript{6}:Mn4+), 1.2 mol % (K\textsubscript{3}AlF\textsubscript{6}:Mn4+) and 0.9 mol % Mn (K\textsubscript{2}NaAlF\textsubscript{6}:Mn4+). The results presented in the rest of this work were obtained for M\textsubscript{3}AlF\textsubscript{6}:Mn4+ phosphors having these doping concentrations. For K\textsubscript{3}AlF\textsubscript{6}:Mn4+ and K\textsubscript{2}NaAlF\textsubscript{6}:Mn4+ the measured Mn concentration is very close to the 1 mol % Mn added during the synthesis, which demonstrates that our synthesis method provides good control over the Mn4+ doping concentration. Also a substantially higher fraction of Mn4+ is incorporated into K\textsubscript{3}AlF\textsubscript{6} compared to previously reported cation exchange methods for preparing K\textsubscript{3}AlF\textsubscript{6}:Mn4+ [18].

Figure 2 displays SEM images of Na\textsubscript{3}AlF\textsubscript{6}:Mn4+ (0.4%), K\textsubscript{3}AlF\textsubscript{6}:Mn4+ (1.2%) and K\textsubscript{2}NaAlF\textsubscript{6}:Mn4+ (0.9%) phosphor particles. The Na\textsubscript{3}AlF\textsubscript{6}:Mn4+ (Figure 2a) and K\textsubscript{3}AlF\textsubscript{6}:Mn4+ (Figure 2b) phosphors consist of irregularly shaped particles and clusters of particles with sizes ranging from ~100 nm to >10 µm. For K\textsubscript{2}NaAlF\textsubscript{6}:Mn4+, we attribute the large variety in shape and size to the rapid and forced crystallization following addition of the anti-solvent ethanol. In contrast, the synthesis of K\textsubscript{2}NaAlF\textsubscript{6}:Mn4+ (Figure 2c,d) yields highly monodisperse phosphor particles with a large average diameter of 22.5 ± 6.1 µm. The K\textsubscript{2}NaAlF\textsubscript{6}:Mn4+ particles have a smoothed octahedral shape, as expected from the cubic elpasolite structure of K\textsubscript{2}NaAlF\textsubscript{6} [10,19,29]. The K\textsubscript{2}NaAlF\textsubscript{6}:Mn4+ particles prepared with our co-precipitation method have a more uniform shape and size than the K\textsubscript{2}NaAlF\textsubscript{6}:Mn4+ particles prepared by Zhu et al. via cation exchange [19]. Moreover, the K\textsubscript{2}NaAlF\textsubscript{6}:Mn4+ (0.9%) phosphor shown in Figure 2c,d exhibits particle size and shape distributions that are superior to the size and shape distributions of other reported Mn4+-doped fluoride phosphors [10,24,32–37].

Figure 2. Representative scanning electron microscopy (SEM) images of (a) Na\textsubscript{3}AlF\textsubscript{6}:Mn4+ (0.4%) phosphor particles; (b) K\textsubscript{3}AlF\textsubscript{6}:Mn4+ (1.2%) phosphor particles and (c,d) K\textsubscript{2}NaAlF\textsubscript{6}:Mn4+ (0.9%) phosphor particles.
The high monodispersity of the $\text{K}_2\text{NaAlF}_6\text{Mn}^{4+}$ crystallites reported here may originate from the synthesis method used. In order to achieve a narrow size distribution, it is necessary to temporally separate the particle nucleation and growth stages [38]. As described in the Materials and Methods section, we dissolve all the starting materials in HF solutions prior to the formation of the phosphor particles. Mixing of the precursor solutions results in oversaturation and the rapid formation of crystal nuclei. Once the nuclei have been formed, the precursor concentrations drop and no new nuclei are formed. The particles can grow to monodisperse and large crystallites during the growth stage. This differs from syntheses where Mn$^{4+}$-doped particles are prepared via cation exchange or chemical etching [14]. With these methods, new precursor ions are constantly supplied to the reaction solution preventing temporal separation of nucleation and growth.

The superior size distribution gives $\text{K}_2\text{NaAlF}_6\text{Mn}^{4+}$ potential advantages in LED applications. Monodisperse and large crystallites are favorable for uniform and reproducible packing of phosphors, which is very important in the production of w-LEDs. In addition, phosphors with large and highly crystalline particles often display higher quantum yields because of reduced concentrations of defects which act as quenching sites. Finally, a large particle size aids the long-term stability of a phosphor.

3.2. Mn$^{4+}$ Luminescence

Figure 3 shows the room-temperature emission and excitation spectra of $\text{M}_3\text{AlF}_6\text{Mn}^{4+}$ (M = Na, K). Upon blue photoexcitation the Mn$^{4+}$-doped hexafluoroaluminates show narrow red emission lines around 620 nm (see Figure 3b). The emission lines are in a spectral range where the eye sensitivity is still relatively high, which is beneficial for applications. The red emission lines are assigned to spin- and parity-forbidden Mn$^{4+} \text{2}^\text{E} \rightarrow \text{4}^\text{A}_2$ transitions. Figure 3a shows that the red luminescence of $\text{M}_3\text{AlF}_6\text{Mn}^{4+}$ has two broad excitation bands in the ultraviolet (UV) to blue spectral region. These bands correspond to the $\text{4}^\text{A}_2 \rightarrow \text{4}^\text{T}_1$ and $\text{4}^\text{A}_2 \rightarrow \text{4}^\text{T}_2$ transitions of Mn$^{4+}$. In all three lattices the $\text{4}^\text{A}_2 \rightarrow \text{4}^\text{T}_2$ excitation band is positioned at 460 nm, which indicates that the crystal field splitting is approximately equal for the investigated M_3AlF_6 hosts.

![Figure 3. Room-temperature luminescence spectra of $\text{M}_3\text{AlF}_6\text{Mn}^{4+}$ (M = Na, K) phosphors. (a) Excitation spectra of $\text{K}_3\text{AlF}_6\text{Mn}^{4+}$ (1.2%) (red, $\lambda_{\text{em}} = 628$ nm), $\text{Na}_3\text{AlF}_6\text{Mn}^{4+}$ (0.4%) (green, $\lambda_{\text{em}} = 628$ nm) and $\text{K}_2\text{NaAlF}_6\text{Mn}^{4+}$ (0.9%) (blue, $\lambda_{\text{em}} = 631$ nm). The broad excitation bands correspond to the Mn$^{4+} \text{4}^\text{A}_2 \rightarrow \text{4}^\text{T}_1$ and $\text{4}^\text{A}_2 \rightarrow \text{4}^\text{T}_2$ transitions; (b) Emission spectra ($\lambda_{\text{exc}} = 460$ nm) of $\text{K}_3\text{AlF}_6\text{Mn}^{4+}$ (1.2%) (red), $\text{Na}_3\text{AlF}_6\text{Mn}^{4+}$ (0.4%) (green) and $\text{K}_2\text{NaAlF}_6\text{Mn}^{4+}$ (0.9%) (blue). The Mn$^{4+}$ emission spectra consist of zero-phonon (ZPL) and (anti-)Stokes vibronic (ν_3, ν_4 and ν_6) lines on the high and low energy side of the ZPL, respectively [39]. The Mn$^{4+}$ emission spectra are dominated by vibronic lines because the parity selection rule is relaxed by coupling of the
$2E \rightarrow 4A_2$ electronic transition with odd-parity vibrations (ν_3, ν_4 and ν_6 vibrational modes) [39,41]. It is noted that the $2E \rightarrow 4A_2$ ZPL intensity of M_3AlF_6-Mn^{4+} is relatively strong when compared to other Mn$^{4+}$-doped fluorides. For example, in K_2SiF_5-Mn^{4+} the ZPL intensity is less than 5% of the Stokes ν_6 intensity, while in K_3AlF_6-Mn^{4+} the ZPL intensity is almost half of the Stokes ν_6 intensity [40]. The intense ZPL is an interesting property for (w-LED) applications, as it improves the color quality of the red Mn$^{4+}$ phosphor. Furthermore, the observation of relatively strong zero-phonon lines is a sign that the Mn$^{4+}$ centers lack inversion symmetry. The presence of odd-parity crystal field components relaxes the parity selection rule by inducing mixing with opposite parity states. As a result, the radiative lifetime of the $2E \rightarrow 4A_2$ emission is shorter (which is beneficial to reduce saturation effects) and the $4A_2 \rightarrow 4T_2$ absorption is stronger (and thus less material or a lower Mn$^{4+}$ concentration is needed to absorb the desired fraction of blue LED light).

The strong ZPL intensity in K_2AlF_6-Mn^{4+} can be attributed to the low symmetry for Mn$^{4+}$ on the Al$^{3+}$ sites, i.e., the AlF$_6$ octahedron lacks an inversion center (C$_1$ symmetry, see Table 2). As discussed, without inversion symmetry, the $2E \rightarrow 4A_2$ ZPL intensity increases due to relaxation of the parity selection rule by odd-parity crystal field components that mix odd-parity states into the 3d wavefunctions [42]. In Na$_3$AlF$_6$ and K$_2$NaAlF$_6$ the AlF$_6$ octahedra have inversion centers (C$_1$ and O$_h$ symmetry, respectively) and the $2E \rightarrow 4A_2$ ZPL is expected to be weak, since there are no odd-parity crystal field components to relax the parity selection rule. The emission spectra in Figure 3b however show that the ZPLs of Na$_3$AlF$_6$-Mn^{4+} and K$_2$NaAlF$_6$-Mn^{4+} are significant, which indicates that at least for a part of the Mn$^{4+}$ ions the site symmetry is lower than C$_1$ (no inversion symmetry). This we explain by the charge compensation required for the Mn$^{4+}$ sites (the Kröger-Vink notation is used to identify defects). The proximity of charge compensating defects (probably V$_{K,Na}$ vacancies or F$_i$ interstitials) gives rise to local deformation of the Mn$^{4+}$ octahedra and lifts the inversion symmetry, causing the $2E \rightarrow 4A_2$ ZPL intensity of Na$_3$AlF$_6$-Mn^{4+} and K$_2$NaAlF$_6$-Mn^{4+} to increase.

Besides influencing the $2E \rightarrow 4A_2$ ZPL intensity, the charge compensating defects have a large influence on the integrated luminescence intensity and emission lifetime of M_3AlF_6-Mn^{4+}. Typical luminescence quantum yield (QY) values measured for the M_3AlF_6-Mn^{4+} phosphors are 39% for Na$_3$AlF$_6$-Mn^{4+}, 53% for K$_2$NaAlF$_6$-Mn^{4+} and 55% for K$_3$AlF$_6$-Mn^{4+}. These QY values are below unity, which is attributed to non-radiative transfer of excitation energy from Mn$^{4+}$ to crystal defects. At the defects the excitation energy is lost non-radiatively as heat, i.e., the defects act as quenching sites. The defect concentration will increase with the Mn$^{4+}$ concentration, and it is therefore expected that the luminescence quenching becomes stronger at higher Mn$^{4+}$ concentrations. Previously, it has been measured that the luminescence intensity and emission lifetime of M_3AlF_6-Mn^{4+} significantly decrease with increasing Mn$^{4+}$ concentration already at doping levels of 4% Mn$^{4+}$ [17–19]. In these works, the decrease in intensity and lifetime with the Mn$^{4+}$ concentration was explained by concentration quenching, i.e., energy migration between Mn$^{4+}$ ions to quenchers (defects, impurities). Energy migration is however not expected at doping concentrations of 4%, as most Mn$^{4+}$ ions will not have Mn$^{4+}$ neighbors in this concentration range (see also [43]). The results presented here indicate that quenching becomes stronger due to an increase in the defect concentration connected to the need for charge compensation and not because of enhanced energy migration among the Mn$^{4+}$ ions.

We performed low-temperature ($T = 4 \, K$) spectral measurements to get more insight into the Mn$^{4+}$ sites in M_3AlF_6-Mn^{4+}. In addition, the measurements at 4 K allow us to accurately compare the energy of the emitting $2E$ level in the different M_3AlF_6 hosts. Figure 4 displays emission spectra ($A_{exe} = 460 \, nm$) at $T = 4 \, K$ of M_3AlF_6-Mn^{4+}. In line with the luminescence spectra at room temperature, the 4 K emission spectra of M_3AlF_6-Mn^{4+} consist of zero-phonon and vibronic $2E \rightarrow 4A_2$ emission lines (labeled ZPL, ν_3, ν_4 and ν_6). Multiple lines are observed in the ZPL region. The peaks marked with a star can be due to $2E \rightarrow 4A_2$ electronic transitions that couple with low energy rotatory or translatory lattice vibrational modes [40,44]. Vibronic lines due to these modes are usually found at 50–150 cm$^{-1}$ relative to the ZPL in emission spectra of Mn$^{4+}$. Alternatively, the peaks marked with a star can be ZPLs of Mn$^{4+}$ ions located on different sites than the Mn$^{4+}$ ions yielding the most intense zero-phonon
emission line (labeled ZPL in Figure 4). Mn$^{4+}$ emission lines caused by lattice modes are typically very weak, and therefore it is more probable that the peaks marked with stars are ZPLs of Mn$^{4+}$ ions with other geometric environments [33,44]. In addition, multiple Mn$^{4+}$ sites can be expected, based on the need for charge compensation. Below, further evidence is given which indicates that the various sharp emission lines around 620 nm arise from MnF$_6$ groups with different local geometries related to charge compensation.

Figure 4. Emission spectra of K$_3$AlF$_6$:Mn$^{4+}$ (1.2%) (red), Na$_3$AlF$_6$:Mn$^{4+}$ (0.4%) (green) and K$_2$NaAlF$_6$:Mn$^{4+}$ (0.9%) (blue) at $T = 4$ K. The excitation wavelength is 460 nm. Labels are assigned to the highest-energy zero-phonon line (ZPL) and vibronic $2E \rightarrow 4A_2$ emissions (v_3, v_4 and v_6). The stars mark lines assigned to ZPLs of other Mn$^{4+}$ sites (see text).

In Figure 5 we investigate the presence of multiple Mn$^{4+}$ sites by measuring 4 K luminescence spectra of K$_2$NaAlF$_6$:Mn$^{4+}$ for various excitation and emission wavelengths. The excitation spectra in Figure 5a show that the structure in the $4A_2 \rightarrow 4T_2$ excitation band of K$_2$NaAlF$_6$:Mn$^{4+}$ changes significantly with emission wavelength. If only one Mn$^{4+}$ site would be present in K$_2$NaAlF$_6$:Mn$^{4+}$, the excitation spectrum will have the same shape and structure for all emission wavelengths. However, here, the excitation spectrum changes significantly with emission wavelength, which indicates that more than one Mn$^{4+}$ site is present in K$_2$NaAlF$_6$:Mn$^{4+}$. Furthermore, the spectra in Figure 5b show that the shape of the $2E \rightarrow 4A_2$ spectrum is different for various excitation wavelengths within the $4A_2 \rightarrow 4T_2$ band. This confirms that multiple Mn$^{4+}$ sites exist in K$_2$NaAlF$_6$:Mn$^{4+}$, and likely also in K$_3$AlF$_6$:Mn$^{4+}$ and Na$_3$AlF$_6$:Mn$^{4+}$. The presence of more than one Mn$^{4+}$ site in M$_3$AlF$_6$:Mn$^{4+}$ was not observed in previous reports on Mn$^{4+}$-doped hexafluoraluminates [17,18]. Instead, from time-resolved measurements it was concluded that only one Mn$^{4+}$ emission site was present in M$_3$AlF$_6$:Mn$^{4+}$. The formation of geometrically different Mn$^{4+}$ sites in M$_3$AlF$_6$:Mn$^{4+}$ is expected as charge compensation is required for the Mn$^{4+}$Al center. The charge compensating defect can be local or distant, i.e., in the first shell of cations around the Mn$^{4+}$ ion or further away in the lattice. A distant defect will not influence the local geometry around the Mn$^{4+}$ ion, whereas a local defect can cause a deformation of the fluorine octahedron around the Mn$^{4+}$ ion. This will give rise to multiple differently charge compensated Mn$^{4+}$ sites within the lattice, depending on the type and local geometry of charge compensation.

To study the influence of the M$_3$AlF$_6$ (M = Na, K) host on the energy of the Mn$^{4+}$2E level, we compare the positions of the highest-energy $2E \rightarrow 4A_2$ ZPLs in M$_3$AlF$_6$:Mn$^{4+}$. The energies of these ZPLs (labeled ZPL in Figure 4) are 16,200 cm$^{-1}$ (K$_3$AlF$_6$:Mn$^{4+}$), 16,167 cm$^{-1}$ (Na$_3$AlF$_6$:Mn$^{4+}$) and 16,082 cm$^{-1}$ (K$_2$NaAlF$_6$:Mn$^{4+}$). The 2E level energies are also listed in Table 2. The energy of the $2E$ level for Mn$^{4+}$ in M$_3$AlF$_6$ is in good agreement with the $2E$ level energy observed for Mn$^{4+}$ in other fluoride hosts [45,46]. Furthermore, it is observed that the energy of the Mn$^{4+}$ 2E level increases from K$_2$NaAlF$_6$ to Na$_3$AlF$_6$ to K$_3$AlF$_6$ (see dashed line in Figure 4). This indicates that the local structure...
and type of M^+ cation in the second coordination sphere around the Mn$^{4+}$ ion has an influence on the ^{2}E level energy. Previous studies on M_2SiF$_6$:Mn$^{4+}$ ($M = \text{Na, K, Rb or Cs}$) also show an influence of the M^+ cation on the ^{2}E level energy [33,40,44]. In these compounds the energy E of the ^{2}E level follows the trend $E(\text{Na}^+) > E(\text{K}^+) > E(\text{Rb}^+) > E(\text{Cs}^+)$, which suggests that the ^{2}E level energy decreases with the radius or electron affinity of the M^+ ion [21]. This is however not confirmed by our results for the M_3AlF$_6$:Mn$^{4+}$ phosphors, where the highest ^{2}E energy is found for K_3AlF$_6$:Mn$^{4+}$. Instead, the results in Table 2 indicate that the energy of the ^{2}E level increases when the Mn–F (Al–F) distance becomes longer or when the symmetry of the Mn$^{4+}$ site (Al$^{3+}$ site) is reduced. It is however not possible to draw definite conclusions from the data in Table 2 as the symmetry and distances in (part of) the MnF$_6$ octahedra will change due to deformations caused by nearby charge compensating defects.

3.3. ThermalQuenching in M_3AlF$_6$:Mn$^{4+}$

For high-power w-LED applications, the thermal quenching behavior of a phosphor is very important, as the temperature of the on-chip phosphor layer in a high-power w-LED reaches temperatures as high as 450 K. The thermal quenching behavior of K_3AlF$_6$:Mn$^{4+}$ and Na_3AlF$_6$:Mn$^{4+}$ has been investigated by Song et al. [17,18]. They reported that thermal quenching sets in around 423 K (150 $^{\circ}$C) for K_3AlF$_6$:Mn$^{4+}$ and Na_3AlF$_6$:Mn$^{4+}$. More interestingly, they found that the integrated photoluminescence (PL) intensity of these phosphors doubles between room temperature and 423 K. This is a very useful property for high temperature applications, but is also very unexpected. For most Mn$^{4+}$-doped fluorides, the PL intensity is relatively constant between room temperature and the temperature at which thermal quenching sets in [8–10].

To investigate the thermal quenching of the Mn$^{4+}$ emission in M_3AlF$_6$:Mn$^{4+}$ ($M = \text{Na, K}$), we measure the integrated PL intensity of M_3AlF$_6$:Mn$^{4+}$ as a function of temperature between 298 K and 600 K. Figure 6a shows emission spectra of K_3AlF$_6$:Mn$^{4+}$ recorded in this temperature range. Emission spectra of Na_3AlF$_6$:Mn$^{4+}$ and K_2NaAlF_6:Mn$^{4+}$ between 298 K and 600 K can be found in Figure S1. The results show that the PL intensity of M_3AlF$_6$:Mn$^{4+}$ slowly decreases up to 423 K (150 $^{\circ}$C). Above this temperature, there is rapid quenching, with no emission intensity remaining at 573 K. After heating to 573 K, around half of the initial room-temperature PL intensity is retained. Part of the PL intensity is lost upon heating due to e.g., degradation of the phosphor, reduction/oxidation of the Mn$^{4+}$ ions and formation of Mn-oxide impurities.

From the emission spectra recorded between 298 K and 600 K we obtain the temperature dependence of the integrated PL intensity (I_{PL}), which is displayed in Figure 6b. The intensity is given relative to the integrated PL intensity at room temperature (I_{RT}). The PL intensity gradually decreases between 300 K
and 450 K, but then at higher temperatures rapidly drops due to an increased probability for non-radiative transitions from the 2E excited state (luminescence quenching). The luminescence quenching temperature $T_{1/2}$, the temperature at which the PL intensity is half of its initial value, is around 460 K for $K_3AlF_6:Mn^{4+}$ and $Na_3AlF_6:Mn^{4+}$ and 485 K for $K_2NaAlF_6:Mn^{4+}$. The $T_{1/2}$ values fall in the range of quenching temperatures reported for Mn$^{4+}$-doped fluoride phosphors [39,47]. The quenching temperatures of $M_3AlF_6:Mn^{4+}$ are above the phosphor operating temperatures of high-power w-LEDs.

Figure 6. (a) Emission spectra of $K_3AlF_6:Mn^{4+}$ (1.2%) at various temperatures between 298 K and 573 K ($\lambda_{\text{exc}} = 450$ nm); (b) Integrated PL intensity of $K_3AlF_6:Mn^{4+}$ (1.2%) (blue), $Na_3AlF_6:Mn^{4+}$ (0.4%) (green) and $K_2NaAlF_6:Mn^{4+}$ (0.9%) (red) as a function of temperature between 300 and 600 K. The integrated PL intensity I_{PL} is scaled to the integrated PL intensity at room temperature I_{RT}.

The temperature dependences we obtain for $K_3AlF_6:Mn^{4+}$ and $Na_3AlF_6:Mn^{4+}$ (Figure 6b) are significantly different from the work by Song et al. [17,18]. We observe a small decrease in the P intensity between 298 K and 423 K, while they reported a doubling of the PL intensity between these temperatures. The decrease in PL intensity between 298 K and 423 K for $M_3AlF_6:Mn^{4+}$ we ascribe to an increase of the energy transfer from Mn$^{4+}$ ions to quenching sites (defects and impurities) with temperature [48]. The rapid quenching of the Mn$^{4+}$ luminescence above 430 K is attributed to thermally activated crossing of the Mn$^{4+}^4T^2_2$ excited state and $^4A^2$ ground state, as is explained in [49].

Finally, we observe some interesting changes in the emission spectrum of $K_2NaAlF_6:Mn^{4+}$ upon heating to 573 K. This is illustrated in Figure 7, which displays emission spectra recorded at $T = 4$ K and 298 K of $K_2NaAlF_6:Mn^{4+}$ (0.9%) for as-synthesized $K_2NaAlF_6:Mn^{4+}$ (blue spectra) and $K_2NaAlF_6:Mn^{4+}$ phosphor that was heated to 573 K (red spectra). The room-temperature spectra in Figure 7a show that the structure of the $^2E \rightarrow ^4A_2$ ZPL emission in $K_2NaAlF_6:Mn^{4+}$ changes upon heating to 573 K. This effect is even more pronounced in the spectra measured at 4 K (Figure 7b). Four ZPLs of similar intensity are observed for the as-synthesized phosphor, while two ZPLs dominate the spectrum after heating at 573 K. In addition, the results in Figure 7b show that heating to 573 K changes the structure and intensity of the vibronic $^2E \rightarrow ^4A_2$ emission lines. The changes in the emission spectra can be caused by a phase transition in the K_2NaAlF_6 crystal structure. However, the XRD patterns of as-synthesized $K_2NaAlF_6:Mn^{4+}$ and $K_2NaAlF_6:Mn^{4+}$ phosphor heated to 573 K both match the reference pattern of elpasolite K_2NaAlF_6, which indicates that no phase transition occurs (see Figure S2). We therefore explain the changes in the emission spectra upon high temperature annealing by a rearrangement of the Mn$^{4+}$ sites in $K_2NaAlF_6:Mn^{4+}$ upon heating to 573 K. Furthermore, the fact that two ZPLs dominate the emission spectrum of $K_2NaAlF_6:Mn^{4+}$ after heating indicates that there is a redistribution in the abundance of different charge compensated Mn$^{4+}$ sites. The results presented in Figure 7 show that post-synthesis heating can have a large effect on the luminescence properties of $M_3AlF_6:Mn^{4+}$ and other Mn$^{4+}$-doped fluoride phosphors.
Figure 7. (a) Room-temperature emission spectra ($\lambda_{\text{exc}} = 450$ nm) of K$_2$NaAlF$_6$:Mn$^{4+}$ (0.9%) for as-synthesized K$_2$NaAlF$_6$:Mn$^{4+}$ phosphor (blue) and K$_2$NaAlF$_6$:Mn$^{4+}$ phosphor that has been heated to 573 K (red); (b) Emission spectra of K$_2$NaAlF$_6$:Mn$^{4+}$ (0.9%) at $T = 4$ K ($\lambda_{\text{exc}} = 460$ nm) for as-synthesized K$_2$NaAlF$_6$:Mn$^{4+}$ phosphor (blue) and K$_2$NaAlF$_6$:Mn$^{4+}$ phosphor that has been heated to 573 K (red).

4. Conclusions

Mn$^{4+}$-doped fluorides have recently attracted considerable attention due to their potential for application in w-LEDs. For application in w-LEDs, it is important to understand and control the synthesis and luminescence properties of Mn$^{4+}$-doped fluoride phosphors. Here, we report the synthesis of different M$_3$AlF$_6$:Mn$^{4+}$ (M = Na, K) phosphors via a simple two-step co-precipitation method. Our synthesis method provides good control over Mn$^{4+}$ doping and yields highly monodisperse ~20 µm smooth octahedron shaped crystallites for K$_2$NaAlF$_6$:Mn$^{4+}$, while irregularly shaped particles with a broad size distribution are obtained for K$_3$AlF$_6$:Mn$^{4+}$ and Na$_3$AlF$_6$:Mn$^{4+}$. All synthesized M$_3$AlF$_6$:Mn$^{4+}$ phosphors show narrow red Mn$^{4+}\text{2}\text{E} \rightarrow \text{4}\text{A}_2$ luminescence that can be excited in the UV and blue spectral region. Luminescence spectra recorded at $T = 4$ K reveal that multiple Mn$^{4+}$ sites are present in M$_3$AlF$_6$:Mn$^{4+}$, which was not observed in previous reports. The presence of multiple Mn$^{4+}$ sites is attributed to charge compensation that is required for Mn$^{4+}$ on Al$^{3+}$ sites. The results show that charge compensating defects have a large influence on the luminescence properties (e.g., spectra, QY, luminescence lifetime) of Mn$^{4+}$-doped fluorides. Lowering of the QY by defect quenching is a problem for application of this class of Mn$^{4+}$ phosphors. Finally, we investigated the thermal quenching behavior for M$_3$AlF$_6$:Mn$^{4+}$. The luminescence quenching temperature of M$_3$AlF$_6$:Mn$^{4+}$ is between 460 K and 490 K, which is above the phosphor operating temperature in high-power w-LEDs. If the QY can be improved by suppressing defect quenching, Mn$^{4+}$-doped hexafluoroaluminates are a promising class of materials as their chemical and thermal stability is superior to the presently used commercial Mn$^{4+}$ phosphors.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1944/10/11/1322/s1. Figure S1: Emission spectra of (a) Na$_3$AlF$_6$:Mn$^{4+}$ (0.4%) and (b) K$_2$NaAlF$_6$:Mn$^{4+}$ (0.9%) at various temperatures between 298 and 573 K ($\lambda_{\text{exc}} = 450$ nm); Figure S2: XRD patterns of K$_2$NaAlF$_6$:Mn$^{4+}$ (2.9%) for as-synthesized K$_2$NaAlF$_6$:Mn$^{4+}$ phosphor and K$_2$NaAlF$_6$:Mn$^{4+}$ phosphor that has been heated to 573 K. The XRD patterns are in agreement with the reference diffraction pattern for K$_2$NaAlF$_6$ (PDF 01-072-2434, red); Video S1: Movie of synthesis of K$_2$NaAlF$_6$:Mn$^{4+}$ phosphor. The phosphor shows bright red Mn$^{4+}$ luminescence under 405 nm illumination.

Acknowledgments: The authors thank Stephan Zevenhuizen for performing the SEM measurements. Mart Peeters is acknowledged for measuring the photoluminescence quantum yields. This work is financially supported by Technologietching STW, which is part of the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

Author Contributions: Tim Senden and Andries Meijerink conceived and designed the experiments; Tim Senden and Robin G. Geitenbeek synthesized the phosphor particles; Tim Senden performed the characterization measurements; Tim Senden, Robin G. Geitenbeek and Andries Meijerink analyzed the data; Tim Senden and Andries Meijerink wrote the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.
References

1. Charge of the LED brigade: A global switch to LEDs will change the lighting business. *Economist*. 2011. http://www.economist.com/node/21526373.

2. Krames, M.R.; Shchekin, O.B.; Mueller-Mach, R.; Mueller, G.O.; Zhou, L.; Harbers, G.; Craford, M.G. Status and future of high-power light-emitting diodes for solid-state lighting. *IEEE/OSA J. Disp. Technol.* 2007, 3, 160–175. [CrossRef]

3. Harbers, G.; Bierhuizen, S.J.; Krames, M.R. Performance of high power light emitting diodes in display illumination applications. *IEEE/OSA J. Disp. Technol.* 2007, 3, 98–109. [CrossRef]

4. Nakamura, S. Current status of GaN-based solid-state lighting. *MRS Bull.* 2009, 34, 101–107. [CrossRef]

5. Smet, P.F.; Parmentier, A.B.; Poelman, D. Selecting conversion phosphors for white light-emitting diodes. *J. Electrochem. Soc.* 2011, 158, R37–R34. [CrossRef]

6. Setlur, A.A. Phosphors for LED-based solid-state lighting. *Electrochem. Soc. Interface* 2009, 18, 32–36.

7. Xie, R.J.; Hirosaki, N. Silicon-based oxynitride and nitride phosphors for white LEDs—A review. *Sci. Technol. Adv. Mater.* 2007, 8, 588–600. [CrossRef]

8. Zhu, H.; Lin, C.C.; Luo, W.; Shu, S.; Liu, Z.; Liu, Y.; Kong, J.; Ma, E.; Cao, Y.; Liu, R.-S.; et al. Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. *Nat. Commun.* 2014, 5, 4312. [CrossRef] [PubMed]

9. Setlur, A.A.; Radkov, E.V.; Henderson, C.S.; Her, J.-H.; Srivastava, A.M.; Karkada, N.; Kishore, M.S.; Kumar, N.P.; Aesram, D.; Deshpande, A.; et al. Energy-efficient, high-color-rendering LED lamps using oxyfluoride and fluoride phosphors. *Chem. Mater.* 2010, 22, 4076–4082. [CrossRef]

10. Sijbom, H.F.; Joos, J.J.; Martin, L.I.D.; Van den Eekhout, K.; Poelman, D.; Smet, P.F. Luminescent behavior of the K$_2$SiF$_6$:Mn$^{4+}$ red phosphor at high fluxes and at the microscopic level. *ECS J. Solid State Sci. Technol.* 2016, 5, R3040–R3048. [CrossRef]

11. Lin, C.C.; Meijerink, A.; Liu, R.-S. Critical red components for next-generation white LEDs. *J. Phys. Chem. Lett.* 2016, 7, 495–503. [CrossRef] [PubMed]

12. Nguyen, H.-D.; Liu, R.-S. Narrow-band red-emitting Mn$^{4+}$-doped hexafluoride phosphors: Synthesis, optoelectronic properties, and applications in white light-emitting diodes. *J. Mater. Chem. C* 2016, 4, 10759–10775. [CrossRef]

13. Hoshino, R.; Adachi, S. Photo-induced degradation and thermal decomposition in ZnSnF$_6$·6H$_2$O:Mn$^{4+}$ red-emitting phosphor. *Opt. Mater.* 2015, 48, 36–43. [CrossRef]

14. Sijbom, H.F.; Verstraete, R.; Joos, J.J.; Poelman, D.; Smet, P.F. K$_2$SiF$_6$:Mn$^{4+}$ as a red phosphor for displays and warm-white LEDs: A review of properties and perspectives. *Opt. Mater. Express* 2017, 7, 3332–3365. [CrossRef]

15. Murphy, J.E.; Garcia-Santamaria, F.; Setlur, A.A.; Sista, S. PFS, K$_2$SiF$_6$:Mn$^{4+}$: The red-line emitting LED phosphor behind GE’s TriGain Technology™ platform. *SID Symp. Dig. Tech. Pap.* 2015, 46, 927–930. [CrossRef]

16. Nguyen, H.-D.; Lin, C.C.; Liu, R.-S. Waterproof alkyl phosphate coated fluoride phosphors for optoelectronic materials. *Angew. Chem. Int. Ed.* 2015, 54, 10862–10866. [CrossRef] [PubMed]

17. Song, E.H.; Wang, J.Q.; Ye, S.; Jiang, X.F.; Peng, M.Y.; Zhang, Q.Y. Room-temperature synthesis and warm-white LED applications of Mn$^{4+}$ ion doped fluorocaluminate red phosphor Na$_3$AlF$_6$:Mn$^{4+}$. *J. Mater. Chem. C* 2016, 4, 2480–2487. [CrossRef]

18. Song, E.; Wang, J.; Shi, J.; Deng, T.; Ye, S.; Peng, M.; Wang, J.; Wondraczek, L.; Zhang, Q. Highly efficient and thermally stable K$_2$AlF$_6$:Mn$^{4+}$ as a red phosphor for ultra-high-performance warm white light-emitting diodes. *ACS Appl. Mater. Interfaces* 2017, 9, 8805–8812. [CrossRef] [PubMed]

19. Zhu, Y.; Cao, L.; Brik, M.G.; Zhang, X.; Huang, L.; Xuan, T.; Wang, J. Facile synthesis, morphology and photoluminescence of a novel red fluoride nanophosphor K$_2$NaAlF$_6$:Mn$^{4+}$. *J. Mater. Chem. C* 2017, 5, 6420–6426. [CrossRef]

20. Zhu, Y.; Huang, L.; Zou, R.; Zhang, J.; Yu, J.; Wu, M.; Wang, J.; Su, Q. Hydrothermal synthesis, morphology and photoluminescent properties of an Mn$^{4+}$-doped novel red fluoride phosphor elpasolite K$_2$LiAlF$_6$. *J. Mater. Chem. C* 2016, 4, 5690–5695. [CrossRef]

21. Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallogr. Sect. A* 1976, 32, 751–767. [CrossRef]
22. Thompson, W.T.; Goad, D.G.W. Some thermodynamic properties of K₃AlF₆–KAlF₄ melts. Can. J. Chem. 1976, 54, 3342–3349. [CrossRef]
23. Rumble, J.R. Handbook of Chemistry and Physics, 98th ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Boca Raton, FL, USA, 2017.
24. Lv, L.; Jiang, X.; Huang, S.; Chen, X.; Pan, Y. The formation mechanism, improved photoluminescence and LED applications of red phosphor K₂SiF₆:Mn⁴⁺. J. Mater. Chem. C 2014, 2, 3879–3884. [CrossRef]
25. Setlur, A.A.; Lyons, R.J.; Nammalwar, P.K.; Hanumanthia, R.; Murphy, J.E.; Garcia, F. Moisture-Resistant Phosphor Compositions and Associate Methods. World Patent WO 2,015,102,876, 9 July 2015.
26. Shriver, D.F.; Atkins, P. Inorganic Chemistry, 4th ed.; Oxford University Press: Oxford, UK, 2006.
27. Bode, H.; Jenssen, H.; Bandt, F. Über eine neue darstellung des kalium-hexafluoromanganats (IV). Angew. Chem. 1953, 65, 304. [CrossRef]
28. Roesky, H.W. Efficient Preparations of Fluorine Compounds; Roesky, H.W., Ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2012; ISBN 9781118409466.
29. Morss, L.R. Crystal structure of dipotassium sodium fluoroaluminate (elpasolite). J. Inorg. Nucl. Chem. 1974, 36, 3876–3878. [CrossRef]
30. Hawthorne, F.C.; Ferguson, R.B. Refinement of the crystal structure of cryolite. J. Inorg. Nucl. Chem. 1974, 36, 3876–3878. [CrossRef]
31. Abakumov, A.M.; King, G.; Laurinavichute, V.K.; Rozova, M.G.; Woodward, P.M.; Antipov, E.V. The crystal structure of α-K₃AlF₆: Elpasolites and double perovskites with broken corner-sharing connectivity of the octahedral framework. Inorg. Chem. 2009, 48, 9336–9344. [CrossRef] [PubMed]
32. Adachi, S.; Takahashi, T. Photoluminescent properties of K₂GeF₆:Mn⁴⁺ red phosphor synthesized from aqueous HF/KMnO₄ solution. J. Appl. Phys. 2009, 106, 013516. [CrossRef]
33. Xu, Y.K.; Adachi, S. Properties of Na₂SiF₆:Mn⁴⁺ and Na₂GeF₆:Mn⁴⁺ red phosphors synthesized by wet chemical etching. J. Appl. Phys. 2009, 105, 013525. [CrossRef]
34. Jiang, X.; Pan, Y.; Huang, S.; Chen, X.; Wang, J.; Liu, G. Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF₆:Mn⁴⁺ for LED applications. J. Mater. Chem. C 2014, 2, 2301–2306. [CrossRef]
35. Fang, M.-H.; Nguyen, H.-D.; Lin, C.C.; Liu, R. Preparation of a novel red Rb₂SiF₆:Mn⁴⁺ phosphor with high thermal stability through a simple one-step approach. J. Mater. Chem. C 2015, 3, 7277–7280. [CrossRef]
36. Zhao, Q.; Tan, H.; Zhou, Y.; Zhang, Q.; Wang, Z.; Yang, J.; Wu, M. Optical performance of Mn⁴⁺ in a new hexa-coordinative fluorozirconate complex of Cs₅ZrF₁₆. J. Mater. Chem. C 2016, 4, 7443–7448. [CrossRef]
37. Wang, Z.; Zhou, Y.; Yang, Z.; Liu, Y.; Yang, H.; Tan, H.; Zhang, Q.; Zhou, Q. Synthesis of K₂XFe₆:Mn⁴⁺ (X = Ti, Si and Ge) red phosphors for white LED applications with low-concentration of HF. Opt. Mater. 2015, 49, 235–240. [CrossRef]
38. De Mello Donégá, C. Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 2011, 40, 1512–1546. [CrossRef] [PubMed]
39. Paulusz, A.G. Efficient Mn(IV) emission in fluorine coordination. J. Electrochem. Soc. 1973, 120, 942–947. [CrossRef]
40. Takahashi, T.; Adachi, S. Mn⁴⁺-activated red photoluminescence in K₂SiF₆ phosphor. J. Electrochem. Soc. 2008, 155, E183–E188. [CrossRef]
41. Senden, T.; Broers, F.T.H.; Meijerink, A. Comparative study of the Mn⁴⁺ 2E → 4A₂ luminescence in isostructural RE₂Sn₂O₇:Mn⁴⁺ pyrocroles (RE³⁺ = Y³⁺, Lu³⁺ or Gd³⁺). Opt. Mater. 2016, 60, 431–437. [CrossRef]
42. Blasse, G.; Grabmaier, B.C. Luminous Materials; Springer: Berlin, Germany, 1994.
43. Garcia-Santamaria, F.; Murphy, J.E.; Setlur, A.A.; Sista, S.P. Concentration quenching in K₂SiF₆:Mn⁴⁺ phosphors. ECS J. Solid State Sci. Technol. 2018, 7, R3030–R3033. [CrossRef]
44. Chodos, S.L.; Black, A.M.; Flint, C.D. Vibronic spectra and lattice dynamics of Cs₅MnF₆ and A₁₂M⁴⁺F₆: MnF₆²⁻. J. Chem. Phys. 1976, 65, 4816–4824. [CrossRef]
45. Brik, M.G.; Srivastava, A.M. On the optical properties of the Mn¹⁺ ion in solids. J. Lumin. 2013, 133, 69–72. [CrossRef]
46. Brik, M.G.; Camardello, S.J.; Srivastava, A.M. Influence of covalency on the Mn¹⁺ 2E₈ → 4A₂g emission energy in crystals. ECS J. Solid State Sci. Technol. 2014, 4, R39–R43. [CrossRef]
47. Sakurai, S.; Nakamura, T.; Adachi, S. Rb₂SiF₆:Mn⁴⁺ and Rb₂TiF₆:Mn⁴⁺ red-emitting phosphors. ECS J. Solid State Sci. Technol. 2016, 5, R206–R210. [CrossRef]
48. Bachmann, V.; Ronda, C.; Meijerink, A. Temperature quenching of yellow Ce\(^{3+}\) luminescence in YAG:Ce. *Chem. Mater.* **2009**, *21*, 2077–2084. [CrossRef]

49. Senden, T.; van Dijk-Moes, R.J.A.; Meijerink, A. Quenching of the red Mn\(^{4+}\) luminescence in Mn\(^{4+}\)-doped fluoride LED phosphors. *ECS J. Solid State Sci. Technol.* **2017**. Unpublished work.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).