Feeble ferromagnetism and double relaxation mechanism in Bi$_{0.42}$Ho$_{0.28}$Ba$_{0.24}$Ca$_{0.06}$Fe$_{0.7}$Ti$_{0.3}$O$_3$ ceramics

Chiranjib Chakrabartia, Songliu Yuana, Qingshan Fua, and Anirban Dasb

a School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
b Department of physical and material Sciences, College of engineering and management, Kolaghat, Purba Medinipur, West Bengal 721171, India

e-mail: yuansl@hust.edu.cn (Songliu Yuan)
anirban_das@cemk.ac.in (Anirban Das)
chiranjib1987@yahoo.com (Chiranjib Chakrabarti)

Abstract. The structural, magnetic, and dielectric studies on Bi$_{0.42}$Ho$_{0.28}$Ba$_{0.24}$Ca$_{0.06}$Fe$_{0.7}$Ti$_{0.3}$O$_3$ ceramics present some exciting outcomes. An XRD based structural study shows that the ceramics hold an ABO$_3$-type perovskite network. Room-temperature MH-hysteresis study detected the trace of ferromagnetism in the ceramics. The temperature-dependent dielectric study exhibits that a double relaxation mechanism is engaged for a wide range of temperature and frequency.

1. Introduction

Recently, BiFeO$_3$ has emerged as a novel material to the researchers because of its excellent multiferroic properties at room temperature that exhibits numerous commercial application possibilities in spintronics, memory elements, sensors, actuators, etc.[9] Unfortunately, some stumbling blocks, such as poor magnetic properties and defect-related conductions, creates a severe challenge for the application possibilities of this class of material.[5, 7] A substantial amount of effort was made to overcome this problem, such as the substitution of A- with Rare earth or B-site sites with a transition metal or creating binary or trinary networks with other suitable perovskite materials.[1, 7]. In our previous work,[5] the presence of Ho-holding a perovskite-ferrite form is demonstrated in a series of BFO based solid-solutions. Here, the phase-structural, magnetic, and dielectric studies on Bi$_{0.42}$Ho$_{0.28}$Ba$_{0.24}$Ca$_{0.06}$Fe$_{0.7}$Ti$_{0.3}$O$_3$ ceramics are discussed, and possible relaxation mechanism in this material is portrayed.

2. Synthesis and characterizations

Polycrystalline samples of Bi$_{0.42}$Ho$_{0.28}$Ba$_{0.24}$Ca$_{0.06}$Fe$_{0.7}$Ti$_{0.3}$O$_3$ were prepared by a solid-state reaction process. The details of the preparation procedure are elaborated elsewhere. [5] The phase structural analysis of the sample was performed by an X-ray powder diffractometer (Model no: MXP18AHF, MARK, Japan). The temperature dielectric properties at different frequencies were investigated using a precision impedance analyzer (Model no: Wayne Kerr 6500B).

3. Results and discussions

Fig. 1(a) shows the refined X-ray diffraction pattern (XRD) of Bi$_{0.42}$Ho$_{0.28}$Ba$_{0.24}$Ca$_{0.06}$Fe$_{0.7}$Ti$_{0.3}$O$_3$ ceramics at room temperature. The crystalline phases and structural parameters of Bi$_{0.42}$Ho$_{0.28}$Ba$_{0.24}$Ca$_{0.06}$Fe$_{0.7}$Ti$_{0.3}$O$_3$ were obtained from XRD pattern analysis followed by a Reitveld refinement using X’pert refinement using X’pert pro and Full prof software, respectively. The phase analysis indicated the existence of $R3c$ (~23.2%), $P4mm$ (~60.6%),

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
and *Pbnm* (~16.2%) phase in the ceramics network, which identifies the presence of BiFeO₃, BaTiO₃, and HoFeO₃, respectively. Therefore the ceramic network contains a complete perovskite structure. Moreover, the Rietveld refinement result exhibits an excellent χ^2 value (~1.8) with reliability factors: $R_p=48.5$ and $R_{wp}=31.3$.

![Refined X-Ray Diffraction patterns measured at room temperature](image)

As shown in Fig. 1(b), the room temperature magnetization-magnetic field hysteresis (M-H) in the Bi$_{0.42}$Ho$_{0.28}$Ba$_{0.24}$Ca$_{0.06}$Fe$_{0.7}$Ti$_{0.3}$O$_3$ sample indicating a ferromagnetic behavior. The enlarged part of the hysteresis curve estimates the M_r (0.075 emu g$^{-1}$) and H_c (~0.0601 kOe) value of the sample. The obtained M_r value is comparable to the previously reported 0.7BiFeO$_3$-0.3Ba$_{0.75}$Ca$_{0.25}$TiO$_3$ (~0.07 emu g$^{-1}$) ceramics[3] and considerably improved than that in the BSFO (~0.0017 emu g$^{-1}$) ceramics.[2] Such origin of the weak ferromagnetism in the Bi$_{0.42}$Ho$_{0.28}$Ba$_{0.24}$Ca$_{0.06}$Fe$_{0.7}$Ti$_{0.3}$O$_3$ sample can be attributed to the combination of two different mechanisms (1) ferromagnetic exchange interaction between Fe and Ho ions, and (2) canting mechanism in Fe$^{3+}$ spins due to the substitution.[5, 6]

The temperature-dependent relative permittivity in Bi$_{0.42}$Ho$_{0.28}$Ba$_{0.24}$Ca$_{0.06}$Fe$_{0.7}$Ti$_{0.3}$O$_3$ ceramics under a wide range of frequencies (10kHz-1MHz) are shown in Fig. 2(a). Careful observation reveals that two different anomalies are present; one at a lower temperature region (~407 K) and the other one at a relatively higher temperature region (~ 600 K), namely A₁ and A₂ regions, respectively. Such dual anomalous behavior also can be observed in the temperature variation of the $\tan \delta$ curve (inset of Fig. 2(a)). A similar anomalous response was previously observed in (1-x) BiFeO$_3$-x(0.5CaTiO$_3$-0.5SmFeO$_3$) ceramics, which was attributed to the different relaxation processes in the ceramics.[8] It was demonstrated that A₂ is probably due to the grain boundary effect, and A₁ is related to the charge ordering in mechanism between the Fe ions.
Fig. 2(b) presents the temperature-dependent AC conductivity (σ_{AC}) measurement in Bi$_{0.42}$Ho$_{0.28}$Ba$_{0.24}$Ca$_{0.06}$Fe$_{0.7}$Ti$_{0.3}$O$_3$ sample, which is obtained from the following relationship:[4]

$$\sigma_{AC} = 2\pi f \varepsilon_0 \varepsilon_r \tan \delta$$

(1)

Besides, the change of slopes, as indicated by the arrows, indicates different relaxation mechanism is active inside the material. Therefore, the entire temperature range is divided into three regions: (i) The frequency-independent high-temperature region I, where σ_{AC} increases sharply, partially frequency-dependent region II, where the defect conductivity is a crucial factor for conduction process, and (iii) a frequency-dependent low-temperature region III, σ_{AC} is nearly constant over the frequency range. In this region, the relaxation mechanism is attributed to the carrier hopping.[4] Interesting that, the slope of the curve primarily changes at two junction points, which can be recognized as A_2 and A_1 at lower and higher temperature region, respectively. Hence, the anomaly at A_1 can be identified as the charge ordering due to the carrier hopping between Fe$^{2+}$-Fe$^{3+}$ in the perovskite network, while the anomaly at A_2 is probably due to the grain boundary defect based conductivity, such as Bismuth or oxygen vacancy triggered conduction mechanism.

Fig. 2 Temperature-dependent relative permittivity (a) and tangent loss (inset) under different frequencies in Bi$_{0.42}$Ho$_{0.28}$Ba$_{0.24}$Ca$_{0.06}$Fe$_{0.7}$Ti$_{0.3}$O$_3$ ceramics. Variation of A.C conductivity with 1000/T (b) in the same ceramics.

4. Conclusion

The phase-structural, room-temperature magnetic, and temperature-dependent dielectric studies are performed for the Bi$_{0.42}$Ho$_{0.28}$Ba$_{0.24}$Ca$_{0.06}$Fe$_{0.7}$Ti$_{0.3}$O$_3$ ceramics. XRD analysis, along with Rietveld refinement, indicated that the ceramic holds a perovskite network containing three different (ABO$_3$) perovskites. Room-temperature MH-hysteresis study indicated weak ferromagnetism in the sample. Besides, a detailed high-temperature dielectric analysis revealed that two different relaxation mechanisms exist in the sample, the one at a relatively lower temperature occurs from the carrier hopping and the other
one, at a relatively higher temperature, emerges from the Bismuth or oxygen vacancy related defects inside the crystal.

Acknowledgment

This work was aided by the National Natural Science Foundation of China (Grant No. 11474111). We are thankful to the staff of the Analysis Center of Huazhong University of Science and Technology (HUST) for their support in various measurements.

References

[1] Sugato Hajra, Manisha Sahu, Varsa Purohit, R. N. P. Choudhary, 2019 Dielectric, conductivity and ferroelectric properties of lead-free electronic ceramic: 0.6Bi(Fe_{0.98}Ga_{0.02})O_3-0.4BaTiO_3, Heliyon 5 e01654.

[2] T. Durga Rao, Asmitha Kumari, Manish K. Niranjan, Saket Asthana, 2014 Enhancement of magnetic and electrical properties in Sc substituted BiFeO_3 multiferroic, Physica B Condens. Matter. 448 267-272.

[3] X. N. Zhu, M. S. Rahman, Y. J. Wu, X. Q. Liu, Y. H. Huang, G. Liu, R. Guo, X. M. Chen, A. S. Bhalja, 2016 Enhanced ferroelectricity, piezoelectricity, and ferromagnetism in (Ba_{0.75}Ca_{0.25})TiO_3 modified BiFeO_3 multiferroic ceramics, J. Alloys Compd. 658 973-980.

[4] Nitin Kumar, Alok Shukla, R. N. P. Choudhary, Structural.2017, Electrical and Magnetic Properties of (Cd, Ti) Modified BiFeO_3, Phys. Lett. A 381 2721-2730.

[5] Chiranjib Chakrabarti, Qingshan Fu, Xinghan Chen, Yang Qiu, Songliu Yuan Canglong Li 2020,Modulation of magnetic, ferroelectric and leakage properties by HoFeO_3 substitution in multiferroic 0.7BiFeO_3-0.3Ba_{0.2}Ca_{0.8}TiO_3 solid-solutions, Ceram. Int. 46 212-217.

[6] N. Wang, A. Jain, Y. Li, F. L. Wang, Y. L. Lu, H. Zhen, Y.G. Wang, F. G. Chen, 2020,Investigation of structural, ferroelectric, and magnetic properties of Ca modified BiFeO_3-BaTiO_3 ceramics, Ceram. Int. 46 3855-3860.

[7] Chiranjib Chakrabarti, Qingshan Fa, Xinghan Chen, Canglong Li, Biao Meng, Yang Qiu, Songliu Yuan,2020, Substitution driven enhancement of ferromagnetic, ferroelectric and leakage properties in multiferroic 0.7Bi_{1-x}Er_{x}FeO_3-0.3Bi_{0.5}Na_{0.5}TiO_3 solid-solutions, J. Sol-Gel Sci. Technol. 93 587-95.

[8] Juan Liu, Xiao Qiang Liu, Xiang Ming Chen,2017, Ferroelectric and magnetic properties in (1-x) BiFeO_3-(0.5CaTiO_3-0.5SmFeO_3) ceramics, J. Am. Ceram. Soc. 100 4045-4057.

[9] N. A. Spaldin, R. Ramesh, 2019,Advances in magnetoelcetric multiferroics, Nature. Mater. 18 203-212.

Nomenclature

\[\sigma_{AC} \quad \text{AC conductivity (S m}^{-1}) \]

\[f \quad \text{frequency of ac current (Hz)} \]

\[\tan \delta \quad \text{tangent loss} \]

\[\varepsilon_0 \quad \text{absolute permittivity} \]

\[\varepsilon_r \quad \text{relative permittivity} \]