PROPERTIES OF BOUNDED REPRESENTATIONS FOR G-FRAMES

FATEMEH GHOBADZADEH, YAVAR KHEDMATI AND JAVAD SEDGHI MOGHADDAM

Abstract. Due to the importance of frame representation by a bounded operator in dynamical sampling, researchers studied the frames of the form \(\{ T^i f \}_{i \in \mathbb{N}} \), which \(f \) belongs to separable Hilbert space \(\mathcal{H} \) and \(T \in B(\mathcal{H}) \), and investigated the properties of \(T \). Given that \(g \)-frames include the wide range of frames such as fusion frames, the main purpose of this paper is to study the characteristics of the operator \(T \) for \(g \)-frames of the form \(\{ \Lambda T^i f \}_{i \in \mathbb{N}} \).

1. Introduction

Duffin and Schaeffer introduced an extension of orthonormal bases for separable Hilbert space \(\mathcal{H} \) named frames [13], which in spite of producing \(\mathcal{H} \), is not necessarily linearly independent. Frames are important tools in the signal/image processing [4, 5, 14], data compression [12, 23], dynamical sampling [1, 2] and etc.

Definition 1.1. A sequence \(F = \{ f_i \}_{i \in \mathbb{N}} \) in \(\mathcal{H} \) is called a frame for \(\mathcal{H} \), if there exist two constants \(A_F, B_F > 0 \) such that

\[
A_F \| f \|^2 \leq \sum_{i \in \mathbb{N}} |\langle f, f_i \rangle|^2 \leq B_F \| f \|^2, \quad f \in \mathcal{H}.
\]

For more on frames we refer to [9, 16].

Aldroubi et al. introduced the concept of dynamical sampling to examine sequences of the form \(\{ T^i f \}_{i \in \mathbb{N}} \subset \mathcal{H} \), that spans \(\mathcal{H} \) for \(T \in B(\mathcal{H}) \). As frames span the space, researchers have studied the frames \(F = \{ f_i \}_{i \in \mathbb{N}} \) for infinite dimensional Hilbert space \(\mathcal{H} \) that can be represented by \(T \), i.e. \(F = \{ T^i f_1 \}_{i \in \mathbb{N}} \) [12]. Christensen et al. have shown that the only frames with bounded representations are those which are linearly independent and the kernel of their synthesis operators is invariant under right-shift operator \(\mathcal{T} : \ell^2(\mathcal{H}, \mathbb{N}) \to \ell^2(\mathcal{H}, \mathbb{N}) \).

2000 Mathematics Subject Classification. Primary 41A58, 42C15, 47A05.

Key words and phrases. representation, \(g \)-frame, dual, stability.
defined by
\[T(\{c_i\}_{i \in \mathbb{N}}) = (0, c_1, c_2, \ldots), \]
where \(\ell^2(\mathcal{H}, \mathbb{N}) = \{\{g_i\}_{i \in \mathbb{N}} : g_i \in \mathcal{H}, \sum_{i \in \mathbb{N}} \|g_i\|^2 < \infty\} \), such as orthonormal bases and Riesz bases [10]. They have also explored the relationship between frame representation and its duals. For the applications of frames, they established that frame representations were preserved under some perturbations. Results [2, Theorem 7] and [11, Proposition 3.5] are shown that the sequence \(\{T^{-1}f_i\}_{i \in \mathbb{N}} \) is not a frame, whenever \(T \) is unitary or compact. Also, Lemma 2.1 and Proposition 2.3 of [22] indicate \(\text{ran} \, T \) is close and give some equivalent conditions for \(T \) to be surjective.

In 2006, Sun introduced a generalization of frames, named \(g \)-frames [24] which are including some extensions and types of frames such as frames of subspaces [8], fusion frames [6, 7], oblique frames [3], a class of time-frequency localization operators and generalized translation invariant (GTI) [17]. Therefore, some concepts presented in frames such as duality, stability and Riesz-basis were also studied in \(g \)-frames [25].

Throughout this paper, \(J \) is countable set, \(\mathbb{N} \) is natural numbers and \(\mathbb{C} \) is complex numbers, \(\mathcal{H} \) and \(\mathcal{K} \) are separable Hilbert spaces, \(\text{Id}_H \) denotes the identity operator on \(\mathcal{H} \), \(B(\mathcal{H}) \) and \(GL(\mathcal{H}) \) denote the set of bounded linear operators and invertible bounded linear operators on \(\mathcal{H} \), respectively. Also, we will apply \(B(\mathcal{H}, \mathcal{K}) \) for the set of bounded linear operators from \(\mathcal{H} \) to \(\mathcal{K} \). We use \(\ker T \) and \(\text{ran} \, T \) for the null space and range \(T \in B(\mathcal{H}) \), respectively. Now, we summarize some facts about \(g \)-frames from [20, 24]. For more on related subjects to \(g \)-frames, we refer to [15, 19, 21].

Definition 1.2. We say that \(\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}_i) : i \in \mathbb{N}\} \) is a generalized frame for \(\mathcal{H} \) with respect to \(\{\mathcal{K}_i : i \in \mathbb{N}\} \), or simply \(g \)-frame, if there are two constants \(0 < A_{\Lambda} \leq B_{\Lambda} < \infty \) such that
\[
A_{\Lambda} \|f\|^2 \leq \sum_{i \in \mathbb{N}} \|\Lambda_i f\|^2 \leq B_{\Lambda} \|f\|^2, \quad f \in \mathcal{H}.
\]
(1.1)

We call \(A_{\Lambda}, B_{\Lambda} \) the lower and upper \(g \)-frame bounds, respectively. \(\Lambda \) is called a tight \(g \)-frame if \(A_{\Lambda} = B_{\Lambda} \), and a Parseval \(g \)-frame if \(A_{\Lambda} = B_{\Lambda} = 1 \). If for each \(i \in \mathbb{N}, \mathcal{K}_i = \mathcal{K} \), then, \(\Lambda \) is called a \(g \)-frame for \(\mathcal{H} \) with respect to \(\mathcal{K} \). Note that for a family \(\{\mathcal{K}_i\}_{i \in \mathbb{N}} \) of Hilbert spaces, there exists a Hilbert space \(\mathcal{K} = \bigoplus_{i \in \mathbb{N}} \mathcal{K}_i \) such that for all \(i \in \mathbb{N}, \mathcal{K}_i \subseteq \mathcal{K} \), where \(\bigoplus_{i \in \mathbb{N}} \mathcal{K}_i \) is the direct sum of \(\{\mathcal{K}_i\}_{i \in \mathbb{N}} \). A family \(\Lambda \) is called \(g \)-Bessel if the right hand inequality in (1.1) holds for all \(f \in \mathcal{H} \), in this case, \(B_{\Lambda} \) is called the \(g \)-Bessel bound.
Example 1.3. [24] Let \(\{f_i\}_{i \in \mathbb{N}} \) be a frame for \(\mathcal{H} \). Suppose that \(\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathbb{C}) : i \in \mathbb{N}\} \), where

\[\Lambda_i f = \langle f, f_i \rangle, \quad f \in \mathcal{H}. \]

It is easy to see that \(\Lambda \) is a \(g \)-frame.

For a \(g \)-frame \(\Lambda \), there exists a unique positive and invertible operator \(S_\Lambda : \mathcal{H} \to \mathcal{H} \) such that

\[S_\Lambda f = \sum_{i \in \mathbb{N}} \Lambda_i^* \Lambda_i f, \quad f \in \mathcal{H}, \]

and \(A_\Lambda Id_\mathcal{H} \leq S_\Lambda \leq B_\Lambda Id_\mathcal{H} \). Consider the space

\[\left(\sum_{i \in \mathbb{N}} \oplus \mathcal{K}_i \right)_{\ell^2} = \left\{ \{g_i\}_{i \in \mathbb{N}} : g_i \in \mathcal{K}_i, \ i \in \mathbb{N} \text{ and } \sum_{i \in \mathbb{N}} \|g_i\|^2 < \infty \right\}. \]

It is clear that, \(\left(\sum_{i \in \mathbb{N}} \oplus \mathcal{K}_i \right)_{\ell^2} \) is a Hilbert space with pointwise operations and with the inner product given by

\[\langle \{f_i\}_{i \in \mathbb{N}}, \{g_i\}_{i \in \mathbb{N}} \rangle = \sum_{i \in \mathbb{N}} \langle f_i, g_i \rangle. \]

For a \(g \)-Bessel \(\Lambda \), the synthesis operator \(T_\Lambda : \left(\sum_{i \in \mathbb{N}} \oplus \mathcal{K}_i \right)_{\ell^2} \to \mathcal{H} \) is defined by

\[T_\Lambda \left(\{g_i\}_{i \in \mathbb{N}} \right) = \sum_{i \in \mathbb{N}} \Lambda_i^* g_i. \]

The adjoint of \(T_\Lambda \), \(T_\Lambda^* : \mathcal{H} \to \left(\sum_{i \in \mathbb{N}} \oplus \mathcal{K}_i \right)_{\ell^2} \) is called the analysis operator of \(\Lambda \) and is as follow

\[T_\Lambda^* f = \{\Lambda_i f\}_{i \in \mathbb{N}}, \quad f \in \mathcal{H}. \]

It is obvious that \(S_\Lambda = T_\Lambda T_\Lambda^* \). For a \(g \)-frame \(\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}_i) : i \in \mathbb{N}\} \), the sequence \(\widetilde{\Lambda} = \{\widetilde{\Lambda} := \Lambda_i S_\Lambda^{-1} \in B(\mathcal{H}, \mathcal{K}_i) : i \in \mathbb{N}\} \) is a \(g \)-frame with lower and upper \(g \)-frame bounds \(\frac{1}{B_\Lambda} \) and \(\frac{1}{A_\Lambda} \), respectively, which is called canonical dual of \(\Lambda \). For \(g \)-Bessel sequences \(\Lambda \) and \(\Theta \), we consider \(S_{\Lambda \Theta} := T_\Lambda T_\Theta^* \).

Definition 1.4. Consider a sequence \(\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}_i) : i \in \mathbb{N}\} \).

(i) We say that \(\Lambda \) is \(g \)-complete if \(\{f : \Lambda_i f = 0, i \in \mathbb{N}\} = \{0\} \).

(ii) We say that \(\Lambda \) is a \(g \)-Riesz sequence if there are two constants \(0 < A_\Lambda \leq B_\Lambda < \infty \) such that for any finite set \(\{g_i\}_{i \in I_n} \),

\[A_\Lambda \sum_{i \in I_n} \|g_i\|^2 \leq \| \sum_{i \in I_n} \Lambda_i^* g_i \|^2 \leq B_\Lambda \sum_{i \in I_n} \|g_i\|^2, \quad g_i \in \mathcal{K}_i. \]
(iii) We say that Λ is a g-Riesz basis if Λ is g-complete and g-Riesz sequence.

(iv) We say that Λ is a g-orthonormal basis if it satisfies the following:

$$\langle \Lambda_i^* g_i, \Lambda_j^* g_j \rangle = \delta_{i,j} \langle g_i, g_j \rangle, \quad i, j \in \mathbb{N}, g_i \in K_i, g_j \in K_j,$$

$$\sum_{i \in \mathbb{N}} \|\Lambda_i f\|^2 = \|f\|^2, \quad f \in \mathcal{H}.$$

A g-Riesz basis $\Lambda = \{\Lambda_i \in B(\mathcal{H}, K_i) : i \in \mathbb{N}\}$ is g-biorthonormal with respect to its canonical dual $\tilde{\Lambda} = \{\tilde{\Lambda} := \Lambda_i S_{\Lambda}^{-1} \in B(\mathcal{H}, K_i) : i \in \mathbb{N}\}$ in the following sense

$$\langle \Lambda_i^* g_i, \tilde{\Lambda}_j^* g_j \rangle = \delta_{i,j} \langle g_i, g_j \rangle, \quad i, j \in \mathbb{N}, g_i \in K_i, g_j \in K_j.$$

Theorem 1.5. [21] Let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, K_i) : i \in \mathbb{N}\}$ be a g-frame and $\Theta = \{\Theta_i \in B(\mathcal{H}, K_i) : i \in \mathbb{N}\}$ be a g-orthonormal basis. Then there is a bounded operator $V : \mathcal{H} \rightarrow \mathcal{H}$ such that $\Lambda_i = \Theta_i V^*$, for all $i \in \mathbb{N}$. If Λ is a g-Riesz basis, then V is invertible. If Λ is a g-orthonormal bases, then V is unitary.

Theorem 1.6. [24] Let for $i \in \mathbb{N}$, $\{e_{i,j}\}_{j \in J_i}$ be an orthonormal basis for K_i. Sequence $\Lambda = \{\Lambda_i \in B(\mathcal{H}, K_i) : i \in \mathbb{N}\}$ is a g-frame (respectively, g-Bessel family, g-Riesz basis, g-orthonormal basis) if and only if $\{\Lambda_i^* e_{i,j}\}_{i \in \mathbb{N}, j \in J_i}$ is a frame (respectively, Bessel sequence, Riesz basis, orthonormal basis).

Now we summarize some results of article [18] in which we generalize the results of articles [10, 11] to introduce the representation of g-frames with bounded operators.

Remark 1.7. Consider a frame $F = \{f_i\}_{i \in \mathbb{N}} = \{T^{i-1} f_1\}_{i \in \mathbb{N}}$ for \mathcal{H} with $T \in B(\mathcal{H})$. For the g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathbb{C}) : i \in \mathbb{N}\}$ where

$$\Lambda_i f = \langle f, f_i \rangle, \quad f \in \mathcal{H},$$

we have

$$\Lambda_{i+1} f = \langle f, f_{i+1} \rangle = \langle f, T f_i \rangle = \langle T^* f, f_i \rangle = \Lambda_i T^* f, \quad f \in \mathcal{H}.$$

Therefore, $\Lambda_i = \Lambda_1 (T^*)^{i-1}, i \in \mathbb{N}$. Conversely, if we consider a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathbb{C}) : i \in \mathbb{N}\} = \{\Lambda_1 T_i^{-1} : i \in \mathbb{N}\}$ for $T \in B(\mathcal{H})$, then by the Riesz representation theorem, $\Lambda_i f = \langle f, f_i \rangle, i \in \mathbb{N}$ and $f, f_i \in \mathcal{H}$, where $F = \{f_i\}_{i \in \mathbb{N}}$ is a frame that $f_i = (T^*)^{i-1} f_1, i \in \mathbb{N}$.

Now, we have been motivated to study g-frames $\Lambda = \{\Lambda_i \in B(\mathcal{H}, K) : i \in \mathbb{N}\}$, where $\Lambda_i = \Lambda_1 T_i^{-1}$ with $T \in B(\mathcal{H})$.
Definition 1.8. We say that a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ has a representation if there is a $T \in B(\mathcal{H})$ such that $\Lambda_i = \Lambda_1 T_i^{-1}, i \in \mathbb{N}$. In the affirmative case, we say that Λ is represented by T.

The following theorem shows that for g-frames $\Lambda = \{\Lambda_i T_i^{-1} : i \in \mathbb{N}\}$, the boundedness of T is equivalent to the invariance of $\ker T_\Lambda$ under the right-shift operator.

Theorem 1.9. Let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ be a g-frame such that for every finite set $\{g_i\}_{i \in I_n} \subset \mathcal{K}$, $\sum_{i \in I_n} \Lambda_i^* g_i = 0$ for every $i \in I_n$. Suppose that $\ker T_\Lambda$ is invariant under the right-shift operator. Then, Λ is represented by $T \in B(\mathcal{H})$, where $\|T\| \leq \sqrt{B_\Lambda A_\Lambda^{-1}}$.

Corollary 1.10. Every g-orthonormal and g-Riesz bases has a representation.

Remark 1.11. Consider a g-frame $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ which is represented by T. For $S \in GL(\mathcal{H})$, the family $\Lambda S = \{\Lambda_i S \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ is a g-frame [21, Corollary 2.26], which is represented by $S^{-1} T S$.

In this paper, we generalize some recent results of [11, 22] to investigate properties of representations for g-frames with bounded operators.

2. G-Frame Representation Properties

In this section, we examine some properties of operator representations of g-frames, including being closed range, injective, unitary and compact.

In the following results, we first specify the range of adjoint of g-frame operator representations to indicates that the range of operator representations is closed. Then, we get necessary and sufficient conditions for g-frames to have injective operator representations.

Theorem 2.1. Let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ be a g-frame that is represented by T. Then $\text{ran} T^* = \text{span} \{T^* \Lambda_i^* e_j\}_{i \in \mathbb{N}, j \in J}$, where $\{e_j\}_{j \in J}$ is an orthonormal basis for \mathcal{K}, and $\text{ran} T$ is close.

Proof. By Theorem 1.6, $\{\Lambda_i^* e_j\}_{i \in \mathbb{N}, j \in J}$ is a frame for \mathcal{H}, and so for every $f \in \mathcal{H}$, we have

$$T^* f = T^* \left(\sum_{i \in \mathbb{N}, j \in J} c_{ij} \Lambda_i^* e_j \right) = \sum_{i \in \mathbb{N}, j \in J} c_{ij} T^* \Lambda_i^* e_j.$$

Thus, $\text{ran} T^* \subseteq \text{span} \{T^* \Lambda_i^* e_j\}_{i \in \mathbb{N}, j \in J} := \mathcal{H}_0$. On the other hand, since $\{T^* \Lambda_i^* e_j\}_{i \in \mathbb{N}, j \in J}$, is a frame for \mathcal{H}_0, we have

$$g = \sum_{i \in \mathbb{N}, j \in J} d_{ij} T^* \Lambda_i^* e_j = T^* \left(\sum_{i \in \mathbb{N}, j \in J} c_{ij} \Lambda_i^* e_j \right), \quad g \in \mathcal{H}_0.$$
Then \(\text{ran}\ T^* = \mathcal{H}_0 \) is close and so \(\text{ran}\ T \) is close. \(\square \)

Proposition 2.2. Let \(\Lambda = \{ \Lambda_i T^{i-1} \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N} \} \) be a g-frame such that \(\| \Lambda_1 \| < \sqrt{\Lambda} \). Then \(T \) is injective.

Proof. For every \(f \in \mathcal{H} \),

\[
A_\Lambda \| f \|^2 \leq \sum_{i \in \mathbb{N}} \| \Lambda_i T^{i-1} f \|^2 \leq \| \Lambda_1 \|^2 (\| f \|^2 + \sum_{i \in \mathbb{N}} \| T^i f \|^2),
\]

thus \(\sum_{i \in \mathbb{N}} \| T^i f \|^2 \geq \left(\frac{A_\Lambda}{\| \Lambda_1 \|^2} - 1 \right) \| f \|^2 \) and since \(\frac{A_\Lambda}{\| \Lambda_1 \|^2} - 1 > 0 \), \(T \) is injective. \(\square \)

Theorem 2.3. Let \(\Lambda = \{ \Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N} \} \) be a g-frame that is represented by \(T \). Then the following are equivalent.

(i) \(T \) is injective.

(ii) \(\text{ran}(S^{-1}_\Lambda \Lambda_1^*) \cap \ker T = \{0\} \).

(iii) \(\text{ran} \Lambda_1^* \subseteq \text{ran} T^* \).

Proof. (i) \(\Rightarrow \) (ii) and (i) \(\Rightarrow \) (iii) are clear.

(ii) \(\Rightarrow \) (i) Suppose that \(T \) is not injective. Then there exists \(0 \neq f \in \ker T \). We get

\[
f = \sum_{i \in \mathbb{N}} S^{-1}_\Lambda \Lambda_i^* \Lambda_i f = S^{-1}_\Lambda \Lambda_1^* \Lambda_1 f + \sum_{i \in \mathbb{N}} S^{-1}_\Lambda \Lambda_i^* \Lambda_i T f = S^{-1}_\Lambda \Lambda_1^* \Lambda_1 f.
\]

So \(f \in \text{ran}(S^{-1}_\Lambda \Lambda_1^*) \), which is a contradiction.

(iii) \(\Rightarrow \) (i) For any \(f \in \mathcal{H} \), we have

\[
f = \sum_{i \in \mathbb{N}} \Lambda_i^* \Lambda_i S^{-1}_\Lambda f = \Lambda_1^* \Lambda_1 S^{-1}_\Lambda f + \sum_{i \in \mathbb{N}} T^* \Lambda_i^* \Lambda_i S^{-1}_\Lambda f
\]

\[
= \Lambda_1^* \Lambda_1 S^{-1}_\Lambda f + T^* \left(\sum_{i \in \mathbb{N}} \Lambda_i^* \Lambda_i S^{-1}_\Lambda f \right).
\]

Since \(\text{ran} \Lambda_1^* \subseteq \text{ran} T^* \), \(f \in \text{ran} T^* \). Therefore \(T^* \) is surjective, and so \(T \) is injective. \(\square \)

The main purpose of the reminder of the paper is to show that the operator representation of g-frames can not be unitary and compact.

Theorem 2.4. Let \(\Lambda = \{ \Lambda_i T^{i-1} \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N} \} \) be a g-frame. Then for every \(f \in \mathcal{H} \), \(T^n f \to 0 \) as \(n \to \infty \).

Proof. For every \(n \in \mathbb{N} \) and \(f \in \mathcal{H} \), we have

\[
(2.1) \quad A_\Lambda \| T^n f \|^2 \leq \sum_{i \in \mathbb{N}} \| \Lambda_i T^{i-1+n} f \|^2 = \sum_{i=n}^{\infty} \| \Lambda_i T^i f \|^2.
\]
On the other hand, by $\sum_{i \in \mathbb{N}} \|\Lambda_i T_i^{-1} f\|^2 \leq B_\Lambda \|f\|^2$, we get $\sum_{i=n}^\infty \|\Lambda_i T_i f\|^2 \to 0$ as $n \to \infty$. Therefore, by the inequality (2.1), we conclude that $T^n f \to 0$ as $n \to \infty$. □

Corollary 2.5. For every unitary operator T and every $\Lambda_1 \in B(\mathcal{H}, \mathcal{K})$, the sequence $\Lambda = \{\Lambda_1 T_i^{-1} \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ cannot be a g-frame.

Proof. For every $f \in \mathcal{H}$,

$$f \in B(\mathcal{H}, \mathcal{K}),$$

(2.2) \[\|f\| = \|(T^*)^n T^nf\| \leq \|T^*\|^n \|T^n f\| = \|T^n f\|. \]

If Λ is a g-frame, then by Theorem 2.4 $T^n f \to 0$ as $n \to \infty$, and so by the inequality (2.2), $\|f\| \to 0$, that is a contradiction. □

Corollary 2.6. Let $\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ and $\Theta = \{\Theta_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ be two g-orthonormal bases. Then for every $\Gamma_i \in B(\mathcal{H}, \mathcal{K})$, the sequence $\Gamma = \{\Gamma_i S_{\Lambda_\Theta}^{-1} \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\}$ is not a g-frame.

Proof. By Theorem 2.5 there exists a unitary operator $U \in B(\mathcal{H})$ such that $\Theta_i = \Lambda_i U$. We have

$$S_{\Lambda_\Theta} S_{\Lambda_\Theta}^* = T_\Lambda^* T_\Theta^* T_\Lambda = T_\Lambda^* U U^* T_\Lambda^* = S_{\Lambda_\Theta} \text{Id}_H S_{\Lambda_\Theta} = \text{Id}_H,$$

and similarly $S_{\Lambda_\Theta}^* S_{\Lambda_\Theta} = \text{Id}_H$. So S_{Λ_Θ} is a unitary operator on \mathcal{H} and by Corollary 2.5 Γ is not a g-frame for every $\Gamma_1 \in B(\mathcal{H}, \mathcal{K})$. □

Proposition 2.7. Let \mathcal{H}_1 and \mathcal{H}_2 be two Hilbert spaces. Assume that $T \in B(\mathcal{H}_1)$, $S \in B(\mathcal{H}_2)$ and $\Lambda \in B(\mathcal{H}_1, \mathcal{K})$, $\Theta \in B(\mathcal{H}_2, \mathcal{K})$ such that $T = V^{-1} S V$ and $\Theta V = \Lambda$ for some $V \in GL(\mathcal{H}_1, \mathcal{H}_2)$. Then $\{\Lambda T_i^{-1} \in B(\mathcal{H}_1, \mathcal{K}) : i \in \mathbb{N}\}$ is a g-frame, if and only if $\{\Theta S_i^{-1} \in B(\mathcal{H}_2, \mathcal{K}) : i \in \mathbb{N}\}$ is a g-frame. In the affirmative case V is unique.

Proof. For every $f \in \mathcal{H}_1$, we have

$$\sum_{i \in \mathbb{N}} \|\Lambda T_i^{-1} f\|^2 = \sum_{i \in \mathbb{N}} \|\Theta V (V^{-1} S V) T_i^{-1} f\|^2 = \sum_{i \in \mathbb{N}} \|\Theta V V^{-1} S_i^{-1} V f\|^2 = \sum_{i \in \mathbb{N}} \|\Theta S_i^{-1} V f\|^2.$$

Since $V \in GL(\mathcal{H}_1, \mathcal{H}_2)$, the sequence $\{\Lambda T_i^{-1} \in B(\mathcal{H}_1, \mathcal{K}) : i \in \mathbb{N}\}$ is a g-frame, if and only if $\Lambda = \{\Theta S_i^{-1} \in B(\mathcal{H}_2, \mathcal{K}) : i \in \mathbb{N}\}$ is a g-frame.
Also, by Theorem 1.6 there exists \(\{c_{ij}\}_{i \in N, j \in J} \in \ell^2(\mathbb{C}, \mathbb{N}) \) such that

\[
(V^*)^{-1}f = (V^*)^{-1}\left(\sum_{i \in N, j \in J} c_{ij} (T^{i-1})^* \Lambda^* e_j \right)
\]

\[
= (V^*)^{-1}\left(\sum_{i \in N, j \in J} c_{ij} V^* (S^{i-1})^* (V^{-1})^* \Theta^* e_j \right)
\]

\[
= \sum_{i \in N, j \in J} c_{ij} (S^{i-1})^* \Theta^* e_j,
\]

which \(\{e_j\}_{j \in J} \) is an orthonormal basis for \(\mathcal{K} \).

\[\square \]

Proposition 2.8. Let \(\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\} \) be a g-frame. If for \(\Theta \in B(\mathcal{H}, \mathcal{K}) \) the sequence \(\{\Theta S^{-1}_\Lambda \} \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N} \) is a g-frame, then \(A_\Lambda < 1 \).

Proof. The proof is the same as the proof of the [22 Proposition 2.7].

\[\square \]

In [22 Corollary 2.4], it has been shown that for Riesz basis \(\{T^{i-1} f_i\}_{i \in \mathbb{N}} \) the operator \(T \) cannot be surjective. While the following examples show that for the g-Riesz basis \(\{\Lambda_1 T^{i-1} \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\} \), the operator \(T \) can be injective.

Example 2.9.
(i) For \(\Lambda_1 \in GL(\mathcal{H}) \), the set \(\{\Lambda_1\} \) is a g-Riesz basis which is represented by \(Id_\mathcal{H} \).

(ii) By [22 Corollary 2.4], for a Riesz basis \(F = \{T^{i-1} f_i\} \), \(T \) is not surjective. Consider \(\Lambda = \{\Lambda_i \in B(\mathcal{H}, \mathbb{C}) : i \in \mathbb{N}\} \), where \(\Lambda_i f = \langle f, f_i \rangle \). By Remark 1.7 \(\Lambda \) is represented by \(T^* \) which is not injective. On the other hand, for any \(i \in \mathbb{N}, \Lambda_i^*(1) = f_i \), and therefore by Theorem 1.6 \(\Lambda \) is a g-Riesz basis.

Theorem [11 Proposition 3.5] and [22 Proposition 2.2] show that for frame \(\{T^{i-1} f_i\}_{i \in \mathbb{N}} \), the operator \(T \) can not be compact. In the following, we show that in the finite space \(\mathcal{K} \) for g-frame \(\{\Lambda_1 T^{i-1} \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\} \) the operator \(T \) is not compact as well. By giving example, we show that this is not generally true.

Proposition 2.10. Let \(\Lambda = \{\Lambda_1 T^{i-1} \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N}\} \) be a g-frame, where \(\mathcal{K} \) is a finite-dimensional Hilbert space. Then \(T \) is not compact.

Proof. Let \(\{e_j\}_{j \in J} \) be an orthonormal basis for \(\mathcal{K} \) and \(T \) be compact. By Theorem 2.1 \(\text{ran} \ T^* = \text{Span} \{\Lambda_1^* e_j\}_{i \in N, j \in J} \), and therefore by [9 Lemma 2.5.1], there exists \(T^\dagger \in B(\mathcal{H}) \) such that \(T^* T^\dagger = Id_{\text{ran} \ T^*} \). Since \(T \) is compact, \(T^* \) is compact and so \(\text{ran} \ T^* \) is finite-dimensional. Consequently, \(\text{Span} \{\Lambda_1^* e_j\}_{i \in N, j \in J} \) is finite-dimensional and so by Theorem 1.6 \(\mathcal{H} \) is finite-dimensional, that is a contradiction. \[\square \]
Example 2.11. Consider \(\Lambda_1 = 1d_{\ell^2(\mathcal{H}, \mathbb{N})} \) and \(T : \ell^2(\mathcal{H}, \mathbb{N}) \to \ell^2(\mathcal{H}, \mathbb{N}) \), that is defined by \(T\{a_j\}_{j \in J} = (\alpha a_1, 0, 0, ...) \) for a scalar \(\alpha \) with \(|\alpha| < 1 \). It is clear that \(T \) is compact and \(\Lambda = \{ \Lambda_1 T_i^{-1} \in B(\ell^2(\mathcal{H}, \mathbb{N})) : i \in \mathbb{N} \} \) is a \(g \)-frame. In fact, for every \(\{a_j\}_{j \in J} \in \ell^2(\mathcal{H}, \mathbb{N}) \), we have

\[
\|\{a_j\}_{j \in J}\|_2^2 \leq \sum_{i \in \mathbb{N}} \|\Lambda_1 T_i^{-1}\{a_j\}_{j \in J}\|_2^2 = \sum_{i \in \mathbb{N}} \|T_i^{-1}\{a_j\}_{j \in J}\|_2^2
= \|\{a_j\}_{j \in J}\|_2^2 + \sum_{i \in \mathbb{N}} \|(\alpha^i a_1, 0, 0, ...\|_2^2
\leq \frac{1}{1 - \alpha^2}\|\{a_j\}_{j \in J}\|_2^2.
\]

Theorem 2.12. Let \(\Lambda = \{ \Lambda_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N} \} \) be a \(g \)-Riesz sequence and \(\Theta = \{ \Theta_i \in B(\mathcal{H}, \mathcal{K}) : i \in \mathbb{N} \} \) be a sequence of operators, where \(\alpha := \sum_{i \in \mathbb{N}} \|\Lambda_i - \Theta_i\| \|\Lambda_i S_{\Lambda}^{-1}\| < 1 \) and \(\beta := \sum_{i \in \mathbb{N}} \|\Lambda_i - \Theta_i\|^2 < \infty \). Then \(\Theta \) is a \(g \)-Riesz sequence.

Proof. For every \(\{g_i\}_{i \in \mathbb{N}} \in \ell^2(\mathcal{K}, \mathbb{N}) \), we have

\[
\|\sum_{i \in \mathbb{N}} \Theta_i^* g_i\| = \|\sum_{i \in \mathbb{N}} (\Theta_i^* - \Lambda_i^*) g_i + \sum_{i \in \mathbb{N}} \Lambda_i^* g_i\|
\leq \sum_{i \in \mathbb{N}} \|\Theta_i^* - \Lambda_i^*\| \|g_i\| + \|\sum_{i \in \mathbb{N}} \Lambda_i^* g_i\|
\leq \left(\sum_{i \in \mathbb{N}} \|\Theta_i - \Lambda_i\|^2 \right)^{\frac{1}{2}} \|\{g_i\}_{i \in \mathbb{N}}\|_{\ell^2(\mathcal{K}, \mathbb{N})} + \sqrt{B_\Lambda} \|\{g_i\}_{i \in \mathbb{N}}\|_{\ell^2(\mathcal{K}, \mathbb{N})}
\leq (\sqrt{\beta} + \sqrt{B_\Lambda}) \|\{g_i\}_{i \in \mathbb{N}}\|_{\ell^2(\mathcal{K}, \mathbb{N})}.
\]

So for well-defined operator \(U : \mathcal{H} \to \mathcal{H} \), defined by

\[
U f = \sum_{i \in \mathbb{N}} \Theta_i^* \left(\sum_{j \in J} \langle f, S_{\Lambda}^{-1} \Lambda_i e_j e_j \rangle \right).
\]
we have
\[
\|Uf\| = \left\| \sum_{i \in \mathbb{N}} \Theta_i^* \left(\sum_{j \in J} \langle f, S_{\Lambda_i}^{-1} \Lambda_i^* e_j \rangle e_j \right) \right\|
\leq (\sqrt{\beta} + \sqrt{B_{\Lambda}}) \left\| \left\{ \sum_{j \in J} \langle f, S_{\Lambda_i}^{-1} \Lambda_i^* e_j \rangle e_j \right\}_{i \in \mathbb{N}} \right\|_{\ell^2(\mathbb{K}, \mathbb{N})}
\leq (\sqrt{\beta} + \sqrt{B_{\Lambda}}) \left\| \left\{ \sum_{j \in J} \langle f, P_M S_{\Lambda_i}^{-1} \Lambda_i^* e_j \rangle e_j \right\}_{i \in \mathbb{N}} \right\|_{\ell^2(\mathbb{K}, \mathbb{N})}
\leq \frac{\sqrt{\beta} + \sqrt{B_{\Lambda}}}{\sqrt{A_\Lambda}} \|P_M f\| \leq \frac{\sqrt{\beta} + \sqrt{B_{\Lambda}}}{\sqrt{A_\Lambda}} \|f\|,
\]
where \(M = \text{span}\{\Lambda_i^* e_j\}_{i \in \mathbb{N}, j \in J} \). Note that the operator \(U \) on \(M \) is equal to \(S_{\Theta_i} S_{\Lambda_i}^{-1} \). On the other hand, for every \(k \in \mathbb{N} \), we have
\[
\langle U \Lambda_k^* g, f \rangle = \sum_{i \in \mathbb{N}} \langle \Theta_i^* \Lambda_i S_{\Lambda_i}^{-1} \Lambda_i^* g, f \rangle = \sum_{i \in \mathbb{N}} \langle \Lambda_k^* g, S_{\Lambda_i}^{-1} \Lambda_i^* \Theta_i f \rangle
\leq \langle g, \Theta_k f \rangle = \langle \Theta_k^* g, f \rangle, \quad f \in \mathcal{H}, g \in \mathcal{K},
\]
which implies \(U \Lambda_k^* = \Theta_k^* f. \) Also
\[
\|f - Uf\| = \left\| \sum_{i \in \mathbb{N}} \Lambda_i^* \Lambda_i S_{\Lambda_i}^{-1} f - \sum_{i \in \mathbb{N}} \Theta_i^* \Lambda_i S_{\Lambda_i}^{-1} f \right\|
\leq \sum_{i \in \mathbb{N}} \|\Lambda_i - \Theta_i\| \|\Lambda_i S_{\Lambda_i}^{-1} f\|
\leq \sum_{i \in \mathbb{N}} \|\Lambda_i - \Theta_i\| \|\Lambda_i S_{\Lambda_i}^{-1}\| \|f\| = \alpha \|f\|, \quad f \in M,
\]
and so we get \(\|Uf\| \geq (1 - \alpha) \|f\| \). Consequently, for any finite sequence \(\{g_i\} \subseteq \mathcal{K} \)
\[
\left\| \sum_{i \in \mathbb{N}} \Theta_i^* g_i \right\| = \left\| \sum_{i \in \mathbb{N}} U \Lambda_i^* g_i \right\| = \|U \sum_{i \in \mathbb{N}} \Lambda_i^* g_i\|
\geq (1 - \alpha) \| \sum_{i \in \mathbb{N}} \Lambda_i^* g_i \| \geq (1 - \alpha) \sqrt{A_\Lambda} \left(\sum_{i \in \mathbb{N}} \|g_i\|^2 \right)^{1/2}.
\]
\[\square\]

Theorem 2.13. Let \(\Lambda = \{\Lambda_i T^{i-1} \in B(\mathcal{H}, \mathcal{K}); i \in \mathbb{N} \} \) be a g-Riesz sequence and for \(\Theta_1 \in B(\mathcal{H}, \mathcal{K}) \) there exists \(\mu \in [0, 1) \) such that \(\|\Theta_1 T^*\| \leq \mu \|\Theta_1\| \) and \(\|\Theta_1\| < (1 - \mu) \sqrt{A_\Lambda} \). Then \(\{\Lambda_1 + \Theta_1 T^{i-1} \in B(\mathcal{H}, \mathcal{K}); i \in \mathbb{N} \} \) is a g-Riesz sequence.
Proof. It is sufficient to examine the conditions of Theorem 2.12 for the sequence \(\{(\Lambda_1 + \Theta_i)T^{i-1} \in B(\mathcal{H}, \mathcal{K}); i \in \mathbb{N}\} \).

\[
\sum_{i \in \mathbb{N}} \| (\Lambda_1 + \Theta_i)T^{i-1} - \Lambda_1T^{i-1} \|^2 = \sum_{i \in \mathbb{N}} \| \Theta_i T^{i-1} \|^2 \\
\leq \sum_{i \in \mathbb{N}} \mu^{2i-2} \| \Theta_1 \|^2 = \frac{\| \Theta_1 \|^2}{1 - \mu^2}.
\]

Also, by Remark ??

\[
\sum_{i \in \mathbb{N}} \| \Theta_i T^{i-1} \| \| \Lambda_1 S_A^{-1} \| \leq \frac{\| \Theta_1 \|}{(1 - \mu) \sqrt{A}} < 1.
\]

\[\square\]

References

[1] A. Aldroubi, C. Cabrelli, U. Molter and S. Tang, Dynamical sampling, Applied and Computational Harmonic Analysis 42(3) (2017): 378-401.
[2] A. Aldroubi and A. Petrosyan, Dynamical sampling and systems from iterative actions of operators, In Frames and Other Bases in Abstract and Function Spaces, Birkhäuser, Cham. (2017): 15-26.
[3] J. Antezana, G. Corach, M. Ruiz and Stojanoff, D., Oblique projections and frames, Proceedings of the American Mathematical Society 134(4) (2006): 1031-1037.
[4] J. P. Antoine, The continuous wavelet transform in image processing, CWI Q 11(4) (1998): 323-345.
[5] P. Balazs, M. Dörfler, F. Jailet, N. Holighaus and G. Velasco, Theory, implementation and applications of nonstationary Gabor frames, Journal of computational and applied mathematics 236(6) (2011): 1481-1496.
[6] P. G. Casazza, G. Kutyniok and S. Li, Fusion frames and distributed processing, Applied and computational harmonic analysis 25(1) (2008): 114-132.
[7] P. G. Casazza and G. Kutyniok, Finite frames: Theory and applications, Springer Science & Business Media (2012).
[8] P. G. Casazza and G. Kutyniok, Frames of subspaces, Contemporary Mathematics 345 (2004): 87-114.
[9] O. Christensen, An introduction to frames and Riesz bases, Applied and Numerical Harmonic Analysis, Boston: Birkhäuser (2016).
[10] O. Christensen, M. Hasannasab, Operator representations of frames: boundedness, duality, and stability, Integral Equations and Operator Theory 88(4) (2017): 483-499.
[11] O. Christensen, M. Hasannasab and E. Rashidi, Dynamical sampling and frame representations with bounded operators, Journal of Mathematical Analysis and Applications 463(2) (2018): 634-644.
[12] R. A. DeVore, B. Jawerth and B. J. Lucier, Data compression using wavelets: error, smoothness and quantization, In Data Compression Conference, 1991. DCC’91 (1991): 186-195. IEEE.
[13] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Transactions of the American Mathematical Society 72(2) (1952): 341-366.
[14] M. Duval-Destin, M. A. Muschietti and B. Torrésani, Continuous wavelet decompositions, multiresolution, and contrast analysis, SIAM journal on mathematical analysis 24(3) (1993): 739-755.

[15] X. Guo, Perturbations of invertible operators and stability of g-frames in Hilbert spaces, Results in Mathematics 64(3-4) (2013): 405-421.

[16] D. Han and D. R. Larson, Frames, bases and group representations, American Mathematical Society 697 (2000).

[17] Y. Khedmati and M. S. Jakobsen, Approximately dual and perturbation results for generalized translation invariant frames on LCA groups, International Journal of Wavelets, Multiresolution and Information Processing 16(1) (2017).

[18] Y. Khedmati and F. Ghobadzadeh, G-frame representations with bounded operators, arXiv preprint arXiv:1812.00386 (2018).

[19] A. Khosravi and K. Musazadeh, Fusion frames and g-frames, Journal of Mathematical Analysis and Applications 342(2) (2008): 1068-1083.

[20] A. Najati and A. Rahimi, Generalized frames in Hilbert spaces, Bulletin of the Iranian Mathematical Society 35 (2011): 97-109.

[21] A. Najati, M. H. Faroughi, and A. Rahimi, G-frames and stability of g-frames in Hilbert spaces, Methods of Functional Analysis and Topology 14(03) (2008): 271-286.

[22] E. Rashidi, A. Najati and E. Osgooei Dynamical sampling: mixed frame operators, representations and perturbations, (2...):

[23] G. M. Richter, M. Capacciol, G. Longo and H. Lorenz, Data Compression and Wavelet Transforms, In Symposium-International Astronomical Union 161 (1994): 219-223. Cambridge University Press.

[24] W. Sun, G-frames and g-Riesz bases, Journal of Mathematical Analysis and Applications 322(1) (2006): 437-452.

[25] W. Sun, Stability of g-frames, Journal of mathematical analysis and applications 326(2) (2007): 858-868.

DEPARTMENT OF MATHEMATICS
Faculty of Sciences
University of Mohaghegh Ardabili
Ardabil 56199-11367
IRAN

E-mail address: gobadzadehf@yahoo.com
E-mail address: khedmati.y@uma.ac.ir, khedmatiy.y@gmail.com
E-mail address: j.smoghaddam@uma.ac.ir