ACCIDENT PREVENTION EYE TIREDNESS DETECTION

USING IMAGE MINING

STEPHEN RAJ. S¹ & SRIPRIYA. P²

¹Research Scholar, Department of Computer Applications, Vels University, Chennai, Tamilnadu, India.
²Associate Professor, Department of Computer Applications, Vels University, Chennai, Tamilnadu, India

ABSTRACT

Driver exhaustion is the majority frequent reason for the deadly highway accident around the earth. This shows that in the motor vehicle industry, particularly, anywhere a driver of a serious motor vehicle is frequently uncovered to hours of dull driving which causes exhaustion, lacking normal rest time. Appropriate to the normal frequency of driver exhaustion, this has become a part of huge public financial anxiety. Accordingly, a road accident avoidance structure by detecting driver’s tiredness, which gauge the point of driver’s inattentiveness and present a caution while a possible danger exists, have usually a huge deal of concentration as a gauge to stop an accident, cause by driver’s inattentiveness. In this article, driver’s tiredness detection structure is using the eyeball detection, so that highway accidents can be avoided productively.

KEYWORDS: Tiredness, Face Detection, Eyes Detection & Alert

INTRODUCTION

Driver support systems develop the highway protection. On a normal, each 30 second, one human being dies someplace in the globe due to vehicle accident. Conventional estimate hint that an elevated part of wounded and injury due to travel accidents engage impair drivers.

This is an effectual driver exhaustion monitor system. An intellectual structure for monitoring driver diversion and exhaustion during journey using adaptive pattern and adaptive boost is intended and implemented. Tiredness through driving is a main reason for highway accidents. Several public opine that tired driving is the grave cause of accidents[4][6].

Sleepy driving deteriorates watchfulness, attention and attentiveness so that the aptitude to make dissimilar consciousness-based actions is impaired and this decreases alertness, reduces decision making skills and increases the danger of roaring. Other than drunken driving and rash driving, an accident due to drowsiness is more crucial, because the driver loses the awareness which leads to grave injury or passing away. Not only the public itinerant in vehicle is the wounded, the pedestrians will also get affected[5][7].

Image preprocessing is completed to each frame to avoid noise obtained during video gaining. A review was conducted on different design on sleepiness recognition method to decrease the accidents, which are realized using Computer Vision as healthy as Image Processing which are connected to every additional. Image processing means dispensation of the descriptions, that means studying the images and manufacturing results for the
additional test. Computer Vision deals with removal of lofty dimensional information from computers and converts it into representative notations or digital images or videos. In the view of manufacturing, its major plan is to mechanize tasks that the human being visual scheme can do while Image Processing uses numerical operations and several shapes of signal processing [3] [8].

Here the say can be a picture or a series of descriptions, or a record. The various steps in sleepiness detection are image gaining, appearance detection, eye area, taking out, opening and closing of the eye detection, etc.

BACKGROUND REVISE

The system is prepared on a model-based advance with the use of motor vehicle side technology. Its decay is made in 3 layers: the awareness layer, the choice layer, and the act layer. The awareness layer consists of a feeler system and image processing. Motor vehicle information like speed, direction-finding angle, and yaw speed are also included.

[2] Jaeik Jo et al. It presents A idea based method for detecting driver’s sleepiness and interruption in driver monitoring system is featured by a driver- monitoring system that contain both tiredness detection method and disturbance detection process. Tiredness involves a driver concluding his eyes because exhaustion and distraction involves a driver not paying enough awareness to the public road, even though there is the attendance of obstacle or citizens. Now an eyeball-detection algorithm is planned which combine adaptive boosting, adaptive pattern corresponding, and spot detection with eye corroboration. Also a narrative eyeball state–detection algorithm that combine two techniques PCA and LDA is worn. It consists of facade- detection, skull orientation– estimation, eyeball- detection, eye-state–detection, tiredness detection, and disturbance detection.

[3] Kohji Murata et al., future the Noninvasive Biological feeler System for recognition of intoxicated driving which present a non-invasive structure to detect folks driving below the power of alcohol by calculating biological signals. Here a seat incorporates an air set feeler that can be close to an obtainable vehicle place and reported the capability of this place for non-invasive recognition of harm of a driver who has inspired alcohol. The feeler scheme in the place has while been better. Natural signals were detected from the rear of the driver with the air-pack feeler, a non-invasive and non confinement process. The extract signal was distinct as an air-pack beat wave (AP- PW). An algorithm for the recognition of alcohol- impair driving was generated from investigation of the AP-PW [1] [11].

![Figure 1: Sleep Problems in the Street Positions](image)

PROSPECT METHODS

Driver exhaustion recognition has been the future. The FDS aims to check the driver and the attentiveness to stop them from declining his sleeping at the steering wheel. In the present paper, the FDS software is a customized request and is introduced to be run in instead of Laptop which is very hard to fix in the vehicle and use all compensation camera and late power. Image processing method and Snapdragon library which is a library in Qualcomm Company are used to sense the driver’s exhaustion condition. Image processing realizes extremely precise and dependable discovery of sleepiness.
Also, it offers a non-worrying advance for detecting tiredness without troubled the driver[12][15].

Figure 2: Block Diagram

The developers have seen a few of the accepted image processing techniques. These techniques are: eye detection, head sleepy detection and eyelid progress. Eye method has some drawbacks such that lip position is not easy to detect exactly. The skull nodding method also has a lot of drawbacks. The system detects a sleepy condition using eyelid progress method[10][13][14].

EYE DETECTION

Eye Region Approximation

Since human being eye locations typically fix in human face detected. We estimated eye area based on height and width of human eye[19].

\[F_a = 0.29 \times J_c, \quad F_l = 0.125 \times J_n \]

\[F_c = 0.29 \times J_c, \quad F_i = 0.33 \times J_n \]

where \(F_a \) and \(F_l \) are ‘a’ and ‘l’ coordinate of eyeball area, \(F_c \), \(J_c \), \(F_n \), and \(J_n \) are size and tallness of eye area and look correspondingly. By means of this method, eyes are constantly in this constituency, but a dissimilar place for each individual person [18] [19].

Figure 3: Shows the Different Blinks

Eye State Recognition

To identify eyeball state, we utilize the cropped area from preceding step again to make a score. When the eyeball is opened, Eye beginner will appear and make value higher. For stopped eye, Score is dropped, because there is no ball in
that area. Consequently, we can sell for categorization to each border. Though, stopped up eyeball may have some little dark circle approximately the curve. So, we use Score at the middle of emerald [17]. To decrease the proportion of fault, we use proceeding and present eye condition consequently in TN. Number of frames identified as closed eyeball state are alienated by border rate[17][16].

Figure 4: Alert in Case of Tired Detection

Behind the discovery of sleepiness using the look and eyeball detection technique, a caution is known to the driver in the shape of a “fear” noise, loud sufficient to wake up the driver. Evade fear of the computer can be used as the alarm for the request. A timepiece is set following the driver’s tiredness, which is an extremely little value for produce the fear as soon as likely. The fright, incessantly created sound till the driver is awaken and place it off physically[20][21][22].

CONCLUSIONS

Eye base monitor enable from beginning to end the use of image processing will be the prospects of all types of machine manage, thus creation the process so at ease and much easier with less human being attendance, thus road outside way for auto-driving in vehicle. Hence, eyeball is residential to monitor exhaustion and skull on crash by detecting eye blink, eye look widen & skull movement was industrial using self industrial algorithms. Eyeball is the require of the hour system which can be a predictable part of our content driving as it encourage getting unfocused but with a pressure on in charge driving

REFERENCES

1. Amditis, M. Bimpas, G. Thomaidis, M. Tsogas, M. Netto, S. Mammar, A. Beutner, N. Mühler, T. Wirthgen, S. Zipser, A. Etemad, M. Da Lio, and R. Cicilloni, “A Situation-Adaptive Lane Keeping Support System: Overview of the SAFELANE approach”, in Proc. IEEE Trans. Intell. Transp. Syst., vol. 11, no. 3, September 2010.

2. Jaeik Jo, Ho Gi Jung, Kang Ryoung, Jaihie Kim, “Vision –based method for detecting driver drowsiness and distraction in driver monitoring system”, in Proc. Optical Engineering, vol. 15, no. 12, December 2012.

3. Kohji Murata, Etsunori Fujita, Shigeyuki Kojima, Shinirou Maeda, Yumi Ogura, Tsutomu Kamei, Toshio Tsuji, “Noninvasive Biological Sensor System for Detection of Drunk Driving”, in Proc. IEEE Trans. Info. Tech. Biomedicine, vol. 15, no. 1, January 2011.

4. Paul Viola Michael J. Jones Daniel Snow, “Detecting Pedestrians Using Patterns of Motion and Appearance”, in Proc. of the Ninth IEEE International Conference on Computer Vision (ICCV’03) 0-7695-1950-4/03.

5. Zibo Li, Guangmin Sun, Fan Zhang, Linan Jia, Kun Zheng, Dequn Zhao”, “Smartphone Based Fatigue Detection System using Progressive Locating Method”, in Proc.IET Intell. Transp. Syst., pp. 1–9, January 2015.

6. Bappaditya Mandal, Liyuan Li, Gang Sam Wang, and Jie Lin, “Towards Detection of Bus Driver Fatigue Based on Robust Visual Analysis of Eye State”, in Proc. IEEE Trans. Intell. Transp. Syst., vol. 18, no. 3, March 2013.
7. Behnoosh Hariri, Shabnam Abtahi, Shervin Shirmohammadi, Luc Martel., “Demo: Vision Based Smart in-Car Camera System for Driver Yawning Detection”, in Proc. IEEE Trans. Intell. Transp. Syst., 2016.

8. P. M. Forsman, B. J. Vila, R. A. Short, C. G. Mott, and H. P. A. van Dongen., “Efficient Driver Drowsiness Detection at Moderate Levels of Drowsiness”, International Journal of Accident Analysis and Prevention, page no: 341-350, September 2012.

9. Vandna Saini, Rekha Saini, “Driver Drowsiness Detection System and Techniques: A Review”, in Proc of. IJCSIT Vol. 5 (3), 2014, 4245-4249.

10. Z. Zhu and Q. Ji, “Real Time and Non-intrusive Driver Fatigue Monitoring”, in The 7th International IEEE Conference on Intelligent Transportation Systems, pp. 657-662, Oct. 2004.

11. A.B. Albu, B. Widsten, T. Wang, J. Lan and J. Mah, “A Computer Vision-Based System for Real-Time Detection of Sleep Onset in Fatigued Drivers”, in 2008 IEEE Intelligent Vehicles Symposium, pp. 25-30, June 2008.

12. J. Lee, J. Li, L. Liu and C. Chen, “A Novel Driving Pattern Recognition and Status Monitoring System”, in First Pacific Rim Symposium, PSIVT 2006, pp. 504-512, December 2006.

13. A.V. Desai and M. A. Haque, “Vigilance Monitoring for Operator Safety: A Simulation Study on Highway Driving”, in Journal of Safety Research, Vol. 37, No. 2, pp. 139-147, 2006.

14. J. Krajewski, D. Sommer, U. Trutschel, D. Edwards and M. Golz, “Steering Wheel Behavior Based Estimation of Fatigue”, in Proceedings of the Fifth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, pp. 118-124.

15. “SaabAlcoKeyHelpsDrivers”, http://www.saabnet.com/tsn/press/061013a.html.

16. A. Heitmann, R. Cuttkuhn, A. Aguirre, U. Trutschel and M. Moore-Ede, “Technologies for The Monitoring and Prevention of Driver Fatigue”, in Proceedings of the Fifth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, pp. 81-86.

17. V. D. Lecce and M. Calabrese, “Experimental System to Support Real-Time Driving Pattern Recognition”, in Advanced Intelligent Computing Theories and Applications With Aspects of Artificial Intelligence Annals of Emergency Medicine, pp. 1192-1199, 2008.

18. M. Wilczkowiak, E. Boyer, and P. Sturm, “Camera Calibration and 3D Reconstruction from Single Images Using Parallelepipeds”, in Proceedings of ICCV, pp. 142-148, 2001.

19. S.G. Klauer, T. A. Dinges, Neale, V. L., Sudweeks, J.D., and Ramsey, DJ, “The Impact of Driver Inattention on Near-Crash/Crash Risk: An Analysis Using the 100-Car Naturalistic Driving Study Data,” Virginia Tech Transportation Institute, Technical Report # DOT HS810594

20. http://www.financialexpress.com/news/india-suffers-from-the-highest-number-of-road-accidents-who/786419/

21. The Royal Society for Prevention of Accidents, “Driver Fatigue and Road Accidents, A Literature Review and Position Paper, February 2001”

22. T. Wang, P. Shi, “Yawning Detection For Determining Driver Drowsiness.” IEEE International Workshop VLSI Design & Video Tech. Suzhou, China, 2005, pp. 373-376.
