SIGN-CHANGING SOLUTIONS FOR A PARAMETER-DEPENDENT QUASILINEAR EQUATION

JIAQUAN LIU
LMAM, School of Mathematical Science, Peking University
Beijing 100871, China

XIANGQING LIU*
Department of Mathematics, Yunnan Normal University
Kunming 650500, China

ZHI-QIANG WANG*
Department of Mathematics and Statistics, Utah State University
Logan, UT 84322, USA

Abstract. We consider quasilinear elliptic equations, including the following Modified Nonlinear Schrödinger Equation as a special example:

\[
\begin{cases}
\Delta u + \frac{1}{2} u \Delta u^2 + \lambda |u|^{r-2}u = 0, & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\]

where \(\Omega \subset \mathbb{R}^N (N \geq 3) \) is a bounded domain with smooth boundary, \(\lambda > 0, r \in (2, 4) \). We prove as \(\lambda \) becomes large the existence of more and more sign-changing solutions of both positive and negative energies.

1. Introduction. In this paper, we consider the following quasilinear elliptic equation

\[
\begin{cases}
\sum_{i,j=1}^{N} D_j(b_{ij}(x,u)D_i u) - \frac{1}{2} \sum_{i,j=1}^{N} D_z b_{ij}(x,u)D_i uD_j u + \lambda f(x,u) = 0, & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\]

where \(\Omega \subset \mathbb{R}^N (N \geq 3) \) is a bounded domain with smooth boundary, and we use the notations \(D_i u = \frac{\partial u}{\partial x_i} \), \(D_z b_{ij}(x,z) = \frac{\partial}{\partial z} b_{ij}(x,z) \).

A function \(u \in H^1_0(\Omega) \cap L^\infty(\Omega) \) is called a weak solution of (1.1) if the following equation holds for all \(\varphi \in C_0^\infty(\Omega) \)

\[
\int_{\Omega} \sum_{i,j=1}^{N} b_{ij}(x,u)D_i uD_j \varphi dx + \frac{1}{2} \int_{\Omega} \sum_{i,j=1}^{N} D_z b_{ij}(x,u)D_i uD_j u \varphi dx = \lambda \int_{\Omega} f(x,u)\varphi dx.
\]

2020 Mathematics Subject Classification. 35B20, 35H30.

Key words and phrases. Quasilinear elliptic equation, sign-changing solutions, truncation techniques.

* Corresponding author: Xiangqing Liu, Zhi-Qiang Wang.
Formally the problem has a variational structure, given by the functional
\[
I(u) = \frac{1}{2} \int_{\Omega} \sum_{i,j=1}^{N} b_{ij}(x,u) D_i u D_j u \, dx - \lambda \int_{\Omega} F(x,u) \, dx, \quad u \in H^1_0(\Omega)
\]
where \(F(x,z) = \int_0^z f(x,\tau) \, d\tau\).

We assume
\begin{align*}
(b_1) & \quad b_{ij} \in C^\alpha(\overline{\Omega} \times \mathbb{R}, \mathbb{R}), \alpha \in (0, 1), D_2 b_{ij} \in C^{1,0}(\overline{\Omega} \times \mathbb{R}, \mathbb{R}), b_{ij} = b_{ji}, i,j = 1, \ldots, N. \text{ There exists a constant } c_1 > 0 \text{ such that for } x \in \overline{\Omega}, z_1, z_2 \in \mathbb{R}, \quad |D_z b_{ij}(x,z_1) - D_z b_{ij}(x,z_2)| \leq c_1 |z_1 - z_2|. \\
(b_2) & \quad \text{There exist constants } c_0, c_1 > 0 \text{ such that for } x \in \overline{\Omega}, z \in \mathbb{R}, \xi = (\xi_i) \in \mathbb{R}^N, \quad c_0 (1 + z^2)|\xi|^2 \leq \sum_{i,j=1}^{N} b_{ij}(x,z) \xi_i \xi_j \leq c_1 (1 + z^2)|\xi|^2. \\
(b_3) & \quad \text{There exist constants } c_0, c_1 > 0 \text{ such that for } x \in \overline{\Omega}, z \in \mathbb{R}, \xi = (\xi_i) \in \mathbb{R}^N, \quad c_0 (1 + z^2)|\xi|^2 \leq \sum_{i,j=1}^{N} (b_{ij}(x,z) + \frac{1}{2} z D_z b_{ij}(x,z)) \xi_i \xi_j \leq c_1 (1 + z^2)|\xi|^2. \\
(b_4) & \quad b_{ij}(x,z) \text{ is even in } z. \\
f_1 & \quad f \in C(\overline{\Omega} \times \mathbb{R}, \mathbb{R}). \\
f_2 & \quad \lim_{z \to 0} \frac{f(x,z)}{z} = 0 \text{ uniformly in } x \in \overline{\Omega}. \\
f_3 & \quad \text{There exist } c_1 > 0 \text{ and } r \in (2, 4) \text{ such that for } x \in \overline{\Omega}, z \in \mathbb{R}, \quad |f(x,z)| \leq c_1 (1 + |z|^{r-1}). \\
(f_4) & \quad f(x,z) \text{ is odd in } z.
\end{align*}

We have the following multiplicity result of sign-changing solutions.

Theorem 1.1. Assume (\(b_1\))-(\(b_4\)) and (\(f_1\))-(\(f_4\)). Then for any positive integer \(k\) there exists \(\Lambda_k > 0\) such that if \(\lambda \geq \Lambda_k\), the problem (1.1) has \(2k\) pairs of solutions \(\pm u_1, \ldots, \pm u_k; \pm v_1, \ldots, \pm v_k\) with the property that \(I(u_1) \leq \cdots \leq I(u_k) < 0 < I(v_1) \leq I(v_2) \leq \cdots \leq I(v_k)\), \(u_1, v_1\) are positive and \(u_2, \ldots, u_k, v_2, \ldots, v_k\) are sign-changing.

An important example of the equation (1.1) is the so-called Modified Nonlinear Schrödinger Equation (MNSE)
\[
\begin{cases}
\Delta u + \frac{1}{r} u \Delta u^2 + \lambda |u|^{r-2} u = 0, & \text{in } \Omega, \\
u = 0, & \text{on } \partial\Omega,
\end{cases}
\]
which corresponds to the case of \(b_{ij}(x,z) = (1 + z^2) \delta_{ij}, f(x,z) = |z|^{r-2} z\) with \(2 < r < 4\). This equation and its extensions have been involved in many models of mathematical physics and received considerable attention during the last years, we refer \([5, 9, 13, 14, 18, 20, 31, 32]\) and the references therein.

When \(4 \leq r < \frac{4N}{N-2}\), existence theory and multiple solutions for (MNSE) and the general equation (1.1) have been well developed in recent years, see \([8, 11, 19, 27, 28, 26, 22, 23]\). Multiple sign-changing solutions of positive energies have been obtained for the quasilinear equation (1.1), c.f.,[19]. There are few results for the
case $2 < r < 4$. The authors of [10] obtained a multiplicity result without much sign information and under more restricted conditions they obtained multiple sign-changing solutions. Our paper here provides a different approach for constructing sign-changing solutions for the case $2 < r < 4$. Next we outline our idea and approach.

Notice that the functional I is not differentiable in $H^1_0(\Omega)$. In [22, 19] the authors of the present paper introduced a p-Laplacian perturbation method to deal with the quasilinear equation (1.1) with a superlinear function $f(x, z)$. In [22] they considered the functional

$$L_\mu(u) = \frac{1}{4} \mu \int_\Omega |\nabla u|^4 \, dx + \frac{1}{2} \mu \sum_{i,j=1}^N b_{ij}(x, u)D_i u D_j u \, dx - \lambda \int_\Omega F(x, u) \, dx, \quad u \in W^{1,4}_0(\Omega).$$

In order to obtain sign-changing solutions, in [19] they considered the functional for $u \in W^{1,q}_0(\Omega)$

$$L_\mu(u) = \frac{1}{q} \mu \int_\Omega |\nabla u|^q \, dx + \frac{1}{2} \mu \sum_{i,j=1}^N b_{ij}(x, u)D_i u D_j u \, dx$$

$$+ \frac{1}{q} \mu \int_\Omega |\nabla u|^{q-2} u^2 \, dx - \lambda \int_\Omega F(x, u) \, dx,$$

with $q > 4$. In both cases the critical points of the perturbed functionals L_μ are used as approximate solutions of the original problem. Assume u_μ is a critical point of L_μ and the critical value $L_\mu(u_\mu)$ is bounded uniformly in $\mu \in (0, 1]$. We expect u_μ to converge to a solution of the original problem by the limit process $\mu \to 0$. If we want to obtain multiple solutions of the original equation, the difficulty is that different solutions of the approximate equations converge to the same solution of the original equation. It is a hard work to distinguish these limit functions. For the superlinear case $4 < r < \frac{4N}{N-2}$, we can distinguish the limit functions by showing that the corresponding critical values tend to infinity. For the case $2 < r < 4$, the situation is quite different.

Following the idea of [29, 34], we expect that the original problem shares some solutions with the approximate problem so that the limit process is not needed. The approach was used recently in [24] to treat a semi-classical setting of the quasilinear equation (1.1) with $4 < r < 22^*$. Obviously the functionals I and the perturbed functional can not share any nontrivial solutions. We need to choose the perturbation terms more carefully. We define the perturbed functional I_μ by the following for $\mu \in (0, 1]$

$$I_\mu(u) = \frac{1}{2} \sigma \int_\Omega \left(\frac{|\nabla u|}{m_\mu(|\nabla u|)} \right)^{q-2} |\nabla u|^2 \, dx + \frac{1}{2} \sigma \int_\Omega \left(\frac{|\nabla u|}{m_\mu(|\nabla u|)} \right)^{q-4} u^2 |\nabla u|^2 \, dx$$

$$+ \frac{1}{2} \sum_{i,j=1}^N \beta_{ij}(x, u)D_i u D_j u \, dx - \lambda \int_\Omega F(x, u) \, dx$$

for $u \in W^{1,q}_0(\Omega)$, where $q > 4$, $\beta_{ij}(x, z) = b_{ij}(x, z) - \sigma(1 + z^2)\delta_{ij}$, σ is a small positive number so that $\beta_{ij}, i, j = 1, \cdots, N$ satisfy the assumptions (b1)-(b4) as b_{ij} do (with a smaller positive constant c_0). The auxiliary function m_μ (see Section 2 for the definition of m_μ) has the property that

$$m_\mu(t) = t, \quad \text{for } |t| \leq \frac{1}{\mu},$$

(1.5)
This property allows the approximate problem and the original problem to share solutions. In fact we have the following theorem.

Theorem 1.2. Assume (b₁)-(b₄) and (f₁)-(f₄). Then

1. For any positive integer \(k \) there exists \(\Lambda_k > 0 \), independent of \(\mu \) such that for \(\lambda \geq \Lambda_k \) the functional \(I_\mu \) has \(2k \) pairs of critical points \(\pm u_1(\mu), \pm u_2(\mu), \pm v_1(\mu), \cdots, \pm u_k(\mu), \pm v_k(\mu) \) with the property that \(I_\mu(u_1(\mu)) \leq \cdots \leq I_\mu(u_k(\mu)) \leq I_\mu(v_1(\mu)) \leq \cdots \leq I_\mu(v_k(\mu)) \), \(u_1(\mu) \) and \(v_1(\mu) \) are positive, and \(u_j(\mu), v_j(\mu), j = 2, \cdots, k \) are sign-changing.

2. There exist \(\beta \in (0, 1) \), \(M > 0 \), independent of \(\mu \), such that

\[
\|u_j(\mu)\|_{C^1,\lambda(T)} \leq M, \quad \|v_j(\mu)\|_{C^1,\lambda(T)} \leq M, \quad j = 1, \cdots, k.
\]

Consequently for \(\mu \leq \frac{1}{2\beta}M \), \(u_j(\mu), v_j(\mu), j = 1, \cdots, k \) are solutions of the problem (1.1).

Obviously Theorem 1.1 follows from Theorem 1.2.

In this paper, we use \(c, c_0, c_1, \cdots \) to denote variant constants, and \(c(\mu) \), if necessary, to denote constants depending on \(\mu \), \(\| \cdot \| \) to denote the norm \(\|u\| = (\int_\Omega |\nabla u|^q \, dx)^{\frac{1}{q}} \). The paper is organized as follows. In Section 2 we prove the deformation lemma for the functional \(I_\mu \). In Section 3 we construct critical values of \(I_\mu \) by the method of invariant sets with respect to the descending flow. In Section 4 we prove the uniform bound for the gradient of the approximate sign-changing solutions obtained in Section 3 and complete the proof of Theorem 1.2 and Theorem 1.1.

2. **The deformation lemma.** We define the auxiliary function \(m_\mu \). Let \(b \in C_0^\infty([0, \infty), [0, 1]) \) such that \(b(t) = 1 \) for \(0 \leq t \leq 1 \); \(b(t) = 0 \) for \(t \geq 2 \) and \(b'(t) \leq 0 \). Let \(m(t) = \int_0^t b(\tau) \, d\tau \). For \(\mu \in (0, 1) \) define

\[
b_\mu(t) = b(\mu t), \quad m_\mu(t) = \int_0^t b_\mu(\tau) \, d\tau = \frac{1}{\mu} m(\mu t), \quad t \in [0, \infty).
\]

We have

\[
0 \leq \frac{tb_\mu(t)}{m_\mu(t)} \leq 1, \quad 0 \leq \frac{-t^2b_\mu'(t)}{m_\mu(t)} \leq c, \quad m_\mu(t) \leq \min\{t, \frac{c}{\mu}\}. \tag{2.1}
\]

Lemma 2.1. The functional \(I_\mu \) is of \(C^1 \)-class, coercive and bounded from below on \(W_0^{1,q}(\Omega) \).

Proof. By the assumptions (b₂) and (f₃), we have

\[
I_\mu(u) = \frac{1}{2} \int_\Omega \left(\frac{|\nabla u|}{m_\mu(|\nabla u|)} \right)^{q-2} |\nabla u|^2 \, dx + \frac{1}{2} \int_\Omega \left(\frac{|\nabla u|}{m_\mu(|\nabla u|)} \right)^{q-4} u^2 |\nabla u|^2 \, dx
\]

\[
+ \frac{1}{2} \int_\Omega \sum_{i,j=1}^N \beta_{ij}(x,u)D_iuD_ju \, dx - \lambda \int_\Omega F(x,u) \, dx
\]

\[
\geq c_\mu^{q-2} \int_\Omega |\nabla u|^q \, dx + c \int_\Omega u^2 |\nabla u|^2 \, dx - c \left(1 + \int_\Omega |u|^r \, dx \right)
\]

\[
\geq c_\mu^{q-2} \int_\Omega |\nabla u|^q \, dx + c \int_\Omega u^2 |\nabla u|^2 \, dx - c,
\]

where \(c > 0 \) is independent of \(\mu \).
solution of the following equation

Obviously Lemma 2.2.

to the class of quasilinear elliptic problems.

some early work of this approach, and [19, 21] for more development more relevant

presence of invariant sets with respect to the descent flow, see [4, 2, 3, 16, 25] for

Definition 2.1.

Given

since

r < 4 < \frac{4N}{N-2}, I_\mu is bounded from below uniformly in \mu. We have

\langle DI_\mu(u), \varphi \rangle = \sigma \int_\Omega \left(\frac{\nabla u}{m_\mu(\nabla u)} \right)^{q-2} \left(1 + \frac{q - 2}{2} \left(1 - \frac{m_\mu(\nabla u)}{m_\mu(\nabla u)} \right) \right) \nabla u \nabla \varphi \, dx

+ \sigma \int_\Omega \left(\frac{\nabla u}{m_\mu(\nabla u)} \right)^{q-4} u^2 \left(1 + \frac{q - 4}{2} \left(1 - \frac{m_\mu(\nabla u)}{m_\mu(\nabla u)} \right) \right) \nabla u \nabla \varphi \, dx

+ \sigma \int_\Omega \left(\frac{\nabla u}{m_\mu(\nabla u)} \right)^{q-4} |\nabla u|^2 \varphi \, dx

(2.2)

\begin{align*}
&+ \int_\Omega \sum_{i,j=1}^N \beta_{ij}(x,u) D_i u D_j \varphi \, dx + \frac{1}{2} \int_\Omega \sum_{i,j=1}^N D_i \beta_{ij}(x,u) D_i u D_j u \varphi \, dx \\
&- \lambda \int_\Omega f(x,u) \varphi \, dx .
\end{align*}

\Box

In order to obtain sign-changing solutions we shall use minimax method in the

presence of invariant sets with respect to the descent flow, see [4, 2, 3, 16, 25] for

some early work of this approach, and [19, 21] for more development more relevant
to the class of quasilinear elliptic problems.

First we construct an operator \(A : W_0^{1,q}(\Omega) \to W_0^{1,q}(\Omega) \). The vector field \(u - Au \)

behaves like a pseudo gradient vector field of the functional \(I_\mu \). We define a family

of convex functions for \(\mu \in (0, 1]\)

\begin{align*}
J_\mu(u) &= \frac{1}{2} \sigma \int_\Omega \left(\frac{\nabla u}{m_\mu(\nabla u)} \right)^{q-2} |\nabla u|^2 \, dx + \frac{1}{2} \sigma \int_\Omega \left(\frac{\nabla u}{m_\mu(\nabla u)} \right)^{q-4} u^2 |\nabla u|^2 \, dx \\
&+ \frac{1}{2} \int_\Omega \sum_{i,j=1}^N \beta_{ij}(x,u) D_i u D_j u \, dx + \frac{1}{q} c_1 \int_\Omega |u|^q \, dx + \frac{1}{2} c_2 \int_\Omega u^2 \, dx , \quad u \in W_0^{1,q}(\Omega)
\end{align*}

(2.3)

where \(c_1, c_2 \) are positive constants to be chosen. Also we define

\begin{align*}
R(u) &= \lambda \int_\Omega F(x,u) \, dx + \frac{1}{q} c_1 \int_\Omega |u|^q \, dx + \frac{1}{2} c_2 \int_\Omega u^2 \, dx .
\end{align*}

(4.4)

Obviously

\begin{align*}
I_\mu(u) &= J_\mu(u) - R(u).
\end{align*}

Definition 2.1. Given \(u \in W_0^{1,q}(\Omega) \), define \(v = Au \in W_0^{1,q}(\Omega) \) as the unique solution of the following equation

\begin{align*}
\langle DJ_\mu(v), \varphi \rangle = \langle DR(u), \varphi \rangle \quad \text{for all } \varphi \in W_0^{1,q}(\Omega).
\end{align*}

(2.5)

The definition is well-posed, as shown in Proposition 2.1.

Lemma 2.2. \(DJ_\mu \) is locally Lipschitz continuous, there exists a constant \(c_0 = c_0(\mu) \)
such that

\begin{align*}
\| DJ_\mu(u) - DJ_\mu(v) \| \leq c_0(1 + \|u\|^{q-2} + \|v\|^{q-2})\|u-v\| , \quad \text{for } u, v \in W_0^{1,q}(\Omega).
\end{align*}

(2.6)
Proof. Denote $w_t = tu + (1-t)v$, $t \in [0, 1]$. By (2.3), for $u, v, \varphi \in W_0^{1,q}(\Omega)$, we have
\[
\langle D\mu(u) - D\mu(v), \varphi \rangle = \int_0^1 \frac{d}{dt} \langle D\mu(w_t), \varphi \rangle dt \tag{2.7}
\]
and
\[
\langle D\mu(w_t), \varphi \rangle = \left(1 + \frac{q - 2}{2} \frac{1}{m_\mu(\nabla w_t)} \right) \nabla w_t \nabla \varphi dx
\]
\[
+ \frac{q - 1}{2} \frac{1}{m_\mu(\nabla w_t)} \nabla w_t \nabla \varphi dx
\]
\[
+ \sum_{i,j=1}^N \beta_{ij}(x, w_t) D_i w_t D_j \varphi dx + \frac{1}{2} \left(\sum_{i,j=1}^N D_i \beta_{ij}(x, w_t) D_i w_t D_j \varphi dx \right)
\]
\[
+ c_1 \int_\Omega |w_t|^q w_t \varphi dx + c_2 \int_\Omega w_t \varphi dx . \tag{2.8}
\]
Also
\[
\frac{d}{dt} \langle D\mu(w_t), \varphi \rangle = \left(1 + \frac{q - 2}{2} \frac{1}{m_\mu(\nabla w_t)} \right) \nabla (u - v) \nabla \varphi dx
\]
\[
+ \frac{q - 1}{2} \frac{1}{m_\mu(\nabla w_t)} \nabla (u - v) \nabla \varphi dx
\]
\[
+ \sum_{i,j=1}^N \beta_{ij}(x, w_t) D_i (u - v) D_j \varphi dx + \frac{1}{2} \left(\sum_{i,j=1}^N D_i \beta_{ij}(x, w_t) D_i (u - v) D_j \varphi dx \right)
\]
\[
+ c_1 \int_\Omega |w_t|^q (u - v) \varphi dx + c_2 \int_\Omega (u - v) \varphi dx . \tag{2.9}
\]
+ \int_{\Omega} \sum_{i,j=1}^{N} D_{ij} \beta_{ij}(x, w_t) D_i w_t D_j (u - v) \varphi \, dx + \frac{1}{2} \int_{\Omega} \sum_{i,j=1}^{N} \left(\frac{d}{dt} D_{ij} \beta_{ij}(x, w_t) \right) D_i w_t D_j w_t \varphi \, dx \\
+ c_1 (q - 1) \int_{\Omega} |w_t|^{q - 2} (u - v) \varphi \, dx + c_2 \int_{\Omega} (u - v) \varphi \, dx.

We can check the right hand side of (2.8) term by term and show that all terms can be controlled by \(c(1 + ||w_t||^{q - 2})||u - v|| \cdot ||\varphi||\) and obtain (2.6). As an example we consider two terms and omit the rest. We have

\[
\left| \frac{1}{m_\mu(|\nabla w_t|)} \left(1 + \frac{q - 2}{2} \left(1 - \frac{|\nabla w_t| b_\mu(|\nabla w_t|)}{m_\mu(|\nabla w_t|)} \right) \right) \nabla(u - v) \nabla \varphi \, dx \right| \\
\leq c \int_{\Omega} (1 + \mu^{q - 2} |\nabla w_t|^{q - 2}) |\nabla(u - v)||\nabla \varphi| \, dx \\
\leq c(1 + ||w_t||^{q - 2})||u - v|| \cdot ||\varphi||,
\]

and

\[
\left| \int_{\Omega} \sum_{i,j=1}^{N} \left(\frac{d}{dt} D_{ij}(t, w_t) \right) D_i w_t D_j w_t \varphi \, dx \right| \\
\leq c \int_{\Omega} |u - v||\nabla w_t|^2 |\varphi| \, dx \\
\leq c \int_{\Omega} (1 + |\nabla w_t|^{q - 2}) |u - v||\varphi| \, dx \\
\leq c(1 + ||w_t||^{q - 2})||u - v|| \cdot ||\varphi||.
\]

In the above we have used the fact \(D_t b_{ij}\), as well \(D_z \beta_{ij}\), satisfies the Lipschitz condition \((b_1)\), that is,

\[|D_z \beta_{ij}(x, z_1) - D_z \beta_{ij}(x, z_2)| \leq c|z_1 - z_2| \quad \text{for} \quad z_1, z_2 \in \mathbb{R}, x \in \overline{\Omega}\]

hence

\[
\left| \frac{d}{dt} D_z \beta_{ij}(x, w_t) \right| \leq c|u - v|.
\]

Now

\[
\left| \frac{d}{dt} \langle DJ_\mu(w_t), \varphi \rangle \right| \leq c(1 + ||w_t||^{q - 2})||u - v|| \cdot ||\varphi|| \quad (2.10)
\]

and

\[
|\langle DJ_\mu(u) - DJ_\mu(v), \varphi \rangle| = \left| \int_0^1 \frac{d}{dt} \langle DJ_\mu(w_t), \varphi \rangle \, dt \right| \\
\leq c \int_0^1 (1 + ||w_t||^{q - 2}) ||u - v|| \cdot ||\varphi|| \, dt \leq c(1 + ||u||^{q - 2} + ||v||^{q - 2}) ||u - v|| \cdot ||\varphi||.
\]

\[
\square
\]

Lemma 2.3. Given the proper constants \(c_1, c_2\), the operator \(DJ_\mu : X = W_0^{1,q}(\Omega) \rightarrow X^*\) is strongly monotone, that is, there exists \(c = c(\mu) > 0\) such that

\[
\langle DJ_\mu(u) - DJ_\mu(v), u - v \rangle \geq c ||u - v||^q, \quad \text{for} \quad u, v \in W_0^{1,q}(\Omega).
\]
Proof. Take $\varphi = u - v$ in (2.9), we have

\[
\frac{d}{dt} (DJ_\mu(w_t), u - v) \\
= \int_{\Omega} \left(\frac{|\nabla w_t|}{m_\mu(|\nabla w_t|)} \right)^{q-2} \left(1 + \frac{q - 2}{2} \left(1 - \frac{|\nabla w_t|b_\mu(|\nabla w_t|)}{m_\mu(|\nabla w_t|)} \right) \right) |
\nabla (u - v)|^2 \, dx \\
+ (q - 2) \sigma \int_{\Omega} \left(\frac{|\nabla w_t|}{m_\mu(|\nabla w_t|)} \right)^{q-2} \left(1 - \frac{|\nabla w_t|b_\mu(|\nabla w_t|)}{m_\mu(|\nabla w_t|)} \right) \frac{1}{2} + \frac{q - 1}{2} \left(1 - \frac{|\nabla w_t|b_\mu(|\nabla w_t|)}{m_\mu(|\nabla w_t|)} \right) \\
\cdot \left(\frac{\nabla w_t}{|\nabla w_t|} \nabla (u - v) \right)^2 \, dx \\
- \frac{q - 2}{2} \sigma \int_{\Omega} \left(\frac{|\nabla w_t|}{m_\mu(|\nabla w_t|)} \right)^{q-4} w_t^2 \left(1 + \frac{q - 2}{2} \left(1 - \frac{|\nabla w_t|b_\mu(|\nabla w_t|)}{m_\mu(|\nabla w_t|)} \right) \right) |
\nabla (u - v)|^2 \, dx \\
+ \frac{1}{2} \sum_{i,j=1}^N \int_{\Omega} \frac{\partial \beta_{ij}}{\partial \theta} \cdot \nabla \beta_{ij} \nabla w_t \nabla (u - v) \, dx \\
+ \frac{1}{2} \sum_{i,j=1}^N \int_{\Omega} \frac{\partial D_{ij}}{\partial \theta} \cdot \nabla D_{ij} \nabla w_t \nabla (u - v) \, dx \\
+ \frac{1}{2} \int_{\Omega} \sum_{i,j=1}^N (\frac{\partial D_{ij}}{\partial \theta} D_{ij}) \nabla w_t \nabla w_t \nabla (u - v) \, dx \\
+ \frac{1}{2} \int_{\Omega} (\frac{\partial D_{ij}}{\partial \theta} D_{ij}) \nabla w_t \nabla w_t \nabla (u - v) \, dx \\
+ c_1 \int_{\Omega} |w_t|^{q-2}(u - v)^2 \, dx + c_2 \int_{\Omega} (u - v)^2 \, dx.
\]

There are only three indefinite terms in the right hand side of (2.11) and they can be controlled by other definite terms. In fact

\[
\frac{d}{dt} (DJ_\mu(w_t), u - v) \\
\geq c \int_{\Omega} \left(\frac{|\nabla w_t|}{m_\mu(|\nabla w_t|)} \right)^{q-2} |
\nabla (u - v)|^2 \, dx \\
+ \frac{1}{2} \sum_{i,j=1}^N \int_{\Omega} \frac{\partial \beta_{ij}}{\partial \theta} \cdot \nabla \beta_{ij} \nabla w_t \nabla (u - v) \, dx \\
+ \frac{1}{2} \sum_{i,j=1}^N \int_{\Omega} \frac{\partial D_{ij}}{\partial \theta} \cdot \nabla D_{ij} \nabla w_t \nabla (u - v) \, dx \\
+ \frac{1}{2} \sum_{i,j=1}^N (\frac{\partial D_{ij}}{\partial \theta} D_{ij}) \nabla w_t \nabla w_t \nabla (u - v) \, dx \\
+ \frac{1}{2} \int_{\Omega} \sum_{i,j=1}^N (\frac{\partial D_{ij}}{\partial \theta} D_{ij}) \nabla w_t \nabla w_t \nabla (u - v) \, dx.
\]
We estimate the last three terms in the right hand side of (2.12),
\[
\left| \int_\Omega \left(\frac{\nabla w_1}{m_\mu(\nabla w_1)} \right)^{q-4} \left(1 + \frac{q-4}{2} \left(1 - \frac{\nabla w_1 |_{\partial \Omega}(\nabla w_1)}{m_\mu(\nabla w_1)} \right) \right) w_1(u-v) \nabla w_2 \nabla (u-v) \, dx \right|
\leq \varepsilon \int_\Omega \left(\frac{\nabla w_1}{m_\mu(\nabla w_1)} \right)^{q-2} |\nabla(u-v)|^2 \, dx + c_\varepsilon \int_\Omega \left(\frac{\nabla w_1}{m_\mu(\nabla w_1)} \right)^{q-4} m_\mu^2(|\nabla w_1|) w_1^2(u-v)^2 \, dx
\]
\[
\leq \varepsilon \int_\Omega \left(\frac{\nabla w_1}{m_\mu(\nabla w_1)} \right)^{q-2} |\nabla(u-v)|^2 \, dx + \varepsilon \int_\Omega \left(\frac{\nabla w_1}{m_\mu(\nabla w_1)} \right)^{q-4} m_\mu^2(|\nabla w_1|)(u-v)^2 \, dx
\]
\[
+ c_\varepsilon \mu^{-2} \int_\Omega |w_1|^{q-2}(u-v)^2 \, dx
\]
(2.13)

and
\[
\left| \int_\Omega \sum_{i,j=1}^N D_i \beta_{ij}(x, w_1) D_i w_1 D_j(u-v) \, dx \right|
\leq \varepsilon \int_\Omega \left(\frac{\nabla w_1}{m_\mu(\nabla w_1)} \right)^2 |\nabla(u-v)|^2 \, dx + c_\varepsilon \int_\Omega \sum_{i,j=1}^N (D_i \beta_{ij}(x, w_1))^2 (u-v)^2 m_\mu^2(|\nabla w_1|) \, dx
\]
\[
\leq \varepsilon \int_\Omega \left(1 + \left(\frac{\nabla w_1}{m_\mu(\nabla w_1)} \right)^{-q^{-2}} \right) |\nabla(u-v)|^2 \, dx + c_\varepsilon \mu^{-2} \int_\Omega (1 + |w_1|^{q-2})(u-v)^2 \, dx .
\]
(2.14)

Also
\[
\left| \int_\Omega \left(\frac{d}{dt} D_{ij}(x, w_1) \right) D_i w_1 D_j(u-v) \, dx \right|
\leq c \int_\Omega |\nabla w_1|^2 (u-v)^2 \, dx
\leq \varepsilon \int_\Omega \left(\frac{\nabla w_1}{m_\mu(\nabla w_1)} \right)^{q-2} m_\mu^2(|\nabla w_1|) (u-v)^2 \, dx + c_\varepsilon \int_\Omega m_\mu^2(|\nabla w_1|)(u-v)^2 \, dx
\leq \varepsilon \int_\Omega \left(\frac{\nabla w_1}{m_\mu(\nabla w_1)} \right)^{q-4} |\nabla w_1|^2 (u-v)^2 \, dx + c_\varepsilon \mu^{-2} \int_\Omega (u-v)^2 \, dx .
\]
(2.15)

By taking \(\varepsilon \) small enough first, then \(c_1, c_2 \) large enough, by (2.12)-(2.15) we obtain
\[
\frac{d}{dt} (D\mu(w_1), u-v) \geq c \int_\Omega \left(\frac{\nabla w_1}{m_\mu(\nabla w_1)} \right)^{q-2} |\nabla(u-v)|^2 \, dx
\geq c_\mu^{q-2} \int_\Omega |\nabla w_1|^{q-2} |\nabla(u-v)|^2 \, dx
\]
\[
\langle DJ_\mu(u) - DJ_\mu(v), u-v \rangle = \int_0^1 \frac{d}{dt} (DJ_\mu(w_1), u-v) \, dt
\geq c_\mu^{q-2} \int_\Omega \left(\int_0^1 |\nabla w_1|^{q-2} \, dt \right) \cdot |\nabla(u-v)|^2 \, dx
\]
\[
\begin{align*}
&\geq c\mu^{q-2} \int_{\Omega} (|\nabla u|^q + |\nabla v|^q - |\nabla(u - v)|^2) \, dx \\
&\geq c\mu^{q-2} \int_{\Omega} |\nabla (u - v)|^q \, dx = c\mu^{q-2} ||u - v||^q.
\end{align*}
\]

Lemma 2.4. The functional \(I_\mu \) satisfies the Palais-Smale condition.

Proof. We have
\[
I_\mu(u) = J_\mu(u) - R(u), \quad DI_\mu(u) = DJ_\mu(u) - DR(u), \quad u \in W_0^{1,q}(\Omega). \quad (2.16)
\]

The operator \(DR : X = W_0^{1,q}(\Omega) \to X^* \) is weakly continuous, that is, if \(u_n \to u \) in \(W_0^{1,q}(\Omega) \), then \(||DR(u_n) - DR(u)||_{X^*} \to 0 \) as \(n \to \infty \).

Let \(\{u_n\} \subset W_0^{1,q}(\Omega) \) be a Palais-Smale sequence of \(I_\mu \). By Lemma 2.1, \(\{u_n\} \) is bounded in \(W_0^{1,q}(\Omega) \). Assume \(u_n \to u \) in \(W_0^{1,q}(\Omega) \), then by (2.16) and Lemma 2.3, we have
\[
o(1) = (DI_\mu(u_n) - DI_\mu(u), u_n - u)
= (DJ_\mu(u_n) - DJ_\mu(u), u_n - u) - (DR(u_n) - DR(u), u_n - u)
\geq c\|u_n - u\|^q - ||DR(u_n) - DR(u)||_{X^*} \|u_n - u\|
= c\|u_n - u\|^q + o(1),
\]

therefore \(u_n \to u \) in \(W_0^{1,q}(\Omega) \). \(\square \)

Proposition 2.1. (1) The operator \(A : u \in W_0^{1,q}(\Omega) \to v = Au \in W_0^{1,q}(\Omega) \) is well-defined and continuous. Moreover, there exist constants \(a_1, a_2 > 0 \) such that
\[
(2) \quad \langle DI_\mu(u), u - Au \rangle \geq a_1 \|u - Au\|^q.
(3) \quad ||DI_\mu(u)|| \leq a_2 (1 + ||I_\mu(u)|| + \|u - Au\|^{q-2})\|u - Au\|.
\]

Proof. (1) It follows from Lemma 2.3 that the operator \(A \) is strongly monotone and coercive, by Minty-Browder’s Theorem (e.g., [6] Theorem 5.16) the operator \(A \) is well-defined. Let \(u, \bar{u} \in W_0^{1,q}(\Omega) \), \(v = Au, \bar{v} = A\bar{u} \). Then by Lemma 2.3, we have
\[
c\|v - \bar{v}\|^q \leq \langle DJ_\mu(v) - DJ_\mu(\bar{v}), v - \bar{v}\rangle
= \langle DR_\mu(u) - DR_\mu(\bar{u}), v - \bar{v}\rangle
\leq ||DR(u) - DR(\bar{u})||_{X^*} \|v - \bar{v}\|.
\]

So \(\|v - \bar{v}\| \leq c||DR(u) - DR(\bar{u})||^{1\over q} \). Since \(DR : X = W_0^{1,q}(\Omega) \to X^* \) is weakly continuous, \(A \) is continuous.

(2) Given \(u \in W_0^{1,q}(\Omega) \), \(v = Au \), we have
\[
DI_\mu(u) = DJ_\mu(u) - DR(u) = DJ_\mu(u) - DJ_\mu(v).
(2.17)
\]

By Lemma 2.3, we have
\[
\langle DI_\mu(u), u - v \rangle = \langle DJ_\mu(u) - DJ_\mu(v), u - v \rangle \geq a_1 \|u - v\|^q.
(3) \quad \text{By Lemma 2.2, we have}
\]
\[
||DI_\mu(u)|| = ||DJ_\mu(u) - DJ_\mu(v)||
\leq c(1 + \|u\|^{q-2} + \|v\|^{q-2})\|u - v\|
(2.18)
\leq c(1 + \|u\|^{q-2} + \|u - v\|^{q-2})\|u - v\|.
\]
By Lemma 2.1, \(I_\mu \) is bounded from below

\[
I_\mu(u) \geq c \int_\Omega |\nabla u|^q \, dx - c. \tag{2.19}
\]

Substituting (2.19) into (2.18), we obtain

\[
\|D I_\mu(u)\| \leq c(1 + \|u\|^{q-2} + \|u - v\|^{q-2})\|u - v\|
\begin{align*}
&\leq c(1 + |I_\mu(u)|^{\frac{q-2}{q}} + \|u - v\|^{q-2})\|u - v\|
&\leq a_2(1 + |I_\mu(u)| + \|u - v\|^{q-2})\|u - v\|.
\end{align*}
\]

\[
\square
\]

For \(\varepsilon > 0 \), let \(P_\varepsilon \) be an open convex neighborhood of the positive cone \(P \) of \(W^{1,q}_0(\Omega) \):

\[
P = \{ u \in W^{1,q}_0(\Omega) | u \geq 0, \text{ a.e. } x \in \Omega \}
\]

\[
P_\varepsilon = \{ u \in W^{1,q}_0(\Omega) | \left(\frac{3}{4}c_0\lambda_1 + \frac{1}{2}c_2\right) \int_\Omega u^2 \, dx + \frac{3}{16}c_0S\left(\int_\Omega u^{\frac{4N}{N-4}} \, dx \right)^\frac{N-2}{N} + \frac{q-1}{q}c_1 \int_\Omega u^\eta \, dx < \varepsilon \}
\]

and \(Q_\varepsilon = -P_\varepsilon \), where \(\lambda_1 \) is the first eigenvalue of the Laplacian \(-\Delta\) with Dirichlet boundary condition, \(S \) is the best constant of the Sobolev imbedding \(H^1_0(\Omega) \hookrightarrow L^{\frac{4N}{N-4}}(\Omega) \), \(c_0 \) is the constant given in the assumption \(b_3 \), \(c_1 \) and \(c_2 \) are chosen in Lemma 2.3. \(P_\varepsilon \) and \(Q_\varepsilon \) are convex sets.

Lemma 2.5. For sufficiently small \(\varepsilon \), we have

\[
A(\partial P_\varepsilon) \subset P_\varepsilon, \quad A(\partial Q_\varepsilon) \subset Q_\varepsilon.
\]

Proof. Let \(u \in W^{1,q}_0(\Omega), v = A u \in W^{1,q}_0(\Omega) \). By the definition of the operator \(A \), we have

\[
\sigma \int_\Omega \left(\frac{|\nabla v|}{m_\mu(|\nabla v|)} \right)^{q-2} \left(1 + \frac{q-2}{2} \left(1 - \frac{|\nabla v|b_\mu(|\nabla v|)}{m_\mu(|\nabla v|)} \right) \right) \nabla v \nabla \varphi \, dx
\]

\[
+ \sigma \int_\Omega \left(\frac{|\nabla v|}{m_\mu(|\nabla v|)} \right)^{q-4} \left(1 + \frac{q-4}{2} \left(1 - \frac{|\nabla v|b_\mu(|\nabla v|)}{m_\mu(|\nabla v|)} \right) \right) v^2 \nabla v \nabla \varphi \, dx
\]

\[
+ \sigma \int_\Omega \left(\frac{|\nabla v|}{m_\mu(|\nabla v|)} \right)^{q-4} |\nabla v|^2 v \varphi \, dx
\]

\[
+ \frac{1}{2} \int_\Omega \sum_{i,j=1}^N \beta_{ij}(x,v) D_i v D_j \varphi \, dx
\]

\[
+ \frac{1}{2} \int_\Omega \sum_{i,j=1}^N D_z \beta_{ij}(x,v) D_i v D_j \varphi \, dx
\]

\[
+ c_1 \int_\Omega |v|^{q-2} v \varphi \, dx + c_2 \int_\Omega v \varphi \, dx
\]

\[
= \int_\Omega (\lambda f(x,u) + c_1 |u|^{q-2} u + c_2 u) v \, dx.
\]

\[
\square
\]
Take $\varphi = v_+$ as test function in (2.20). We estimate the left hand side of (2.20)

\[
\text{LHS} \geq \sigma \int_\Omega |\nabla v_+|^2 \, dx + 2\sigma \int_\Omega v_+^2 |\nabla v_+|^2 \, dx \\
+ \int_\Omega \sum_{i,j=1}^N (\beta_{ij}(x, v_+) + \frac{1}{2} v_+ D_2 \beta_{ij}(x, v_+)) D_i v_+ D_j v_+ \, dx \\
+ c_1 \int_\Omega v_+^q \, dx + c_2 \int_\Omega v_+^2 \, dx \\
\geq \int_\Omega \sum_{i,j=1}^N (b_{ij}(x, v_+) + \frac{1}{2} v_+ D_2 b_{ij}(x, v_+)) D_i v_+ D_j v_+ \, dx + c_1 \int_\Omega v_+^q \, dx \\
+ c_2 \int_\Omega v_+^2 \, dx \\
\geq c_0 \int_\Omega (1 + v_+^2) |\nabla v_+|^2 \, dx + c_1 \int_\Omega v_+^q \, dx + c_2 \int_\Omega v_+^2 \, dx \\
\geq c_0 \lambda_1 \int_\Omega v_+^2 \, dx + \frac{1}{4} c_0 S \left(\int_\Omega \frac{4N}{\alpha} \, dx \right)^\frac{N-2}{N} + c_1 \int_\Omega v_+^q \, dx + c_2 \int_\Omega v_+^2 \, dx.
\]
(2.21)

By the assumptions (f_2), (f_4), without loss of generality, we assume

\[
(\lambda f(x, z) + c_1 |z|^{q-2} z + c_2 z) z \geq 0, \quad \text{for } z \in \mathbb{R}.
\]
(2.22)

The right hand side of (2.20),

\[
\text{RHS} = \int_\Omega \left((\lambda f(x, u) + c_1 |u|^{q-2} u + c_2 u) v_+ \right) \, dx \\
\leq \int_\Omega \left(\lambda f(x, u_+) + c_1 u_+^{q-1} + c_2 u_+ \right) v_+ \, dx \\
\leq \int_\Omega \left(\frac{1}{2} c_0 \lambda_1 u_+ + c_\lambda \frac{4N}{\alpha} u_+^{q-1} + c_1 u_+^{q-1} + c_2 u_+ \right) v_+ \, dx \\
\leq \left(\frac{1}{2} c_0 \lambda_1 + c_2 \right) \int_\Omega u_+ v_+ \, dx + c_1 \int_\Omega u_+^{q-1} v_+ \, dx \\
+ c_\lambda \left(\int_\Omega \frac{4N}{\alpha} \, dx \right)^\frac{q}{2} \left(\int_\Omega \frac{4N}{\alpha} \, dx \right)^\frac{N-2}{2} \left(\int_\Omega \frac{4N}{\alpha} \, dx \right)^\frac{N-2}{N} \\
\leq \left(\frac{1}{2} c_0 \lambda_1 + c_2 \right) \int_\Omega u_+ v_+ \, dx + c_1 \int_\Omega u_+^{q-1} v_+ \, dx \\
+ \frac{1}{4} c_0 S \left(\int_\Omega \frac{4N}{\alpha} \, dx \right)^\frac{N-2}{N} \left(\int_\Omega \frac{4N}{\alpha} \, dx \right)^\frac{N-2}{N}
\]

provided

\[
c_\lambda \left(\int_\Omega \frac{4N}{\alpha} \, dx \right)^\frac{q}{2} \leq \frac{1}{4} c_0 S.
\]
(2.24)

It follows from (2.21) and (2.23) that

\[
(c_0 \lambda_1 + c_2) \int_\Omega v_+^2 \, dx + \frac{1}{4} c_0 S \left(\int_\Omega \frac{4N}{\alpha} \, dx \right)^\frac{N-2}{N} + c_1 \int_\Omega v_+^q \, dx
\]
that is, \(v \) Then there exists \(\varepsilon_0 \) two sequences of critical values of the approximate functional \(I \) Critical values of the approximate functionals. \[\text{Proposition 2.2.} \]

For sufficiently small \(\varepsilon \), \(u \) Let \(\text{Lemma 3.1.} \)

Now let \(u \in \partial \Omega \), then

\[
\left(\frac{3}{4} c_0 \lambda_1 + \frac{1}{2} c_2 \right) \int_{\Omega} u_+^2 \, dx + \frac{3}{16} c_0 \mathcal{S} \left(\int_{\Omega} u_+^{4N} \, dx \right)^{\frac{N-2}{N}} + \frac{q-1}{q} c_1 \int_{\Omega} v_+^q \, dx
\]

and

\[
\left(\frac{3}{4} c_0 \lambda_1 + \frac{1}{2} c_2 \right) \int_{\Omega} v_+^2 \, dx + \frac{3}{16} c_0 \mathcal{S} \left(\int_{\Omega} v_+^{4N} \, dx \right)^{\frac{N-2}{N}} + \frac{q-1}{q} c_1 \int_{\Omega} v_+^q \, dx
\]

(2.25)

Now let \(u \in \partial \Omega \), then

\[
\left(\frac{3}{4} c_0 \lambda_1 + \frac{1}{2} c_2 \right) \int_{\Omega} u_+^2 \, dx + \frac{3}{16} c_0 \mathcal{S} \left(\int_{\Omega} u_+^{4N} \, dx \right)^{\frac{N-2}{N}} + \frac{q-1}{q} c_1 \int_{\Omega} u_+^q \, dx = \varepsilon.
\]

For sufficiently small \(\varepsilon \), (2.24) holds. Hence by (2.25), we have

\[
\left(\frac{3}{4} c_0 \lambda_1 + \frac{1}{2} c_2 \right) \int_{\Omega} v_+^2 \, dx + \frac{3}{16} c_0 \mathcal{S} \left(\int_{\Omega} v_+^{4N} \, dx \right)^{\frac{N-2}{N}} + \frac{q-1}{q} c_1 \int_{\Omega} v_+^q \, dx < \varepsilon
\]

that is, \(v = Au \in Q_{\varepsilon} \). We have proved that \(A(\partial \Omega) \subset Q_{\varepsilon} \). Similarly, we have \(A(\partial \Omega) \subset P_{\varepsilon} \). \(\square \)

Proposition 2.2. (The deformation lemma) Let \(K_{\varepsilon} = \{ u \in W_0^{1,q}(\Omega) \mid DI_{\mu}(u) = 0, \, I_{\mu}(u) = c \}, \Sigma = P_{\varepsilon} \cup Q_{\varepsilon}, \, K_{\varepsilon} = K_{\varepsilon} \setminus \Sigma \). Let \(N \) be an open neighborhood of \(K_{\varepsilon} \). Then there exists \(\varepsilon_0 \) such that for \(0 < \varepsilon < \varepsilon_0 \) there exists a map \(\eta : W_0^{1,q}(\Omega) \rightarrow W_0^{1,q}(\Omega) \) satisfying

(i) \(\eta(I_{\mu}^{-\varepsilon}(\Omega \cup \Sigma)) \subset I_{\mu}^{1-\varepsilon} \);

(ii) \(\eta|_{I_{\mu}^{-\varepsilon}} = Id \);

(iii) \(\eta(P_{\varepsilon}) \subset P_{\varepsilon}, \, \eta(Q_{\varepsilon}) \subset Q_{\varepsilon} \);

(iv) \(\eta \) is odd.

Proof. The proof follows from Lemma 2.4, Proposition 2.1 and Lemma 2.5. For the detail of the proof see [20]. \(\square \)

3. **Critical values of the approximate functionals.** In this section we define two sequences of critical values of the approximate functional \(I_{\mu} \). Recall that \(\Omega_0 \subset \Omega \) is from condition \((f_3) \).

Lemma 3.1. Let \(X_k \) be a \(k \)-dimensional subspace of \(W_0^{1,q}(\Omega_0) \), \(S_k = \{ u \mid u \in X_k, \| u \| = 1 \} \). Then

\[
\int_{\Omega} F(x, Ru) \, dx \rightarrow \infty \quad \text{as} \, R \rightarrow \infty, \quad \text{uniformly in} \, u \in S_k.
\]

Proof. Otherwise there exist \(u_n \in S_k, \, R_n \rightarrow \infty, \, M > 0 \) such that

\[
\int_{\Omega} F(x, R_n u_n) \, dx \leq M, \, n = 1, 2, \ldots
\]

Since \(X_k \) is finite-dimensional, we may assume \(u_n \rightarrow u \neq 0 \) in \(W_0^{1,q}(\Omega_0) \). Then there is \(\alpha > 0 \) such that the set \(A_1 = \{ x \mid u(x) \geq \alpha \} \) has a positive measure. Then by Egorov’s Theorem (e.g., [6, Theorem 4.9]) we find \(A_2 \subset A_1 \) with positive measure
such that \(u_n \to u \) uniformly on \(A_2 \). By \((f_3)\), there is \(a > 0 \) such that \(F(x, u) \geq 0 \) for \(|u| \geq a \) and \(x \in \Omega_0 \). Now by the assumption \((f_3)\) we have
\[
\int_{\Omega} F(x, R_n u_n) \, dx = \int_{A_2} F(x, R_n u_n) \, dx + \int_{\Omega_0 \setminus A_2} F(x, R_n u_n) \, dx
\geq \int_{\Omega_0} F(x, R_n u_n) \, dx - c \to \infty \quad \text{as} \ n \to \infty.
\]
We arrive at a contradiction. \(\square \)

Lemma 3.2. For any positive integer \(k \) there exist \(\Lambda_k > 0, R_k > 0 \) and a \(k \)-dimensional subspace \(X_k \) of \(W_0^{1,q}(\Omega) \) such that for \(\lambda \geq \Lambda_k \)
\[
I_\mu(u) < 0 \quad \text{for} \ u \in B_k := \{ u \in X_k ||u|| = R_k \}.
\]

Proof. The proof follows from Lemma 3.1. \(\square \)

Proposition 3.1. Define
\[
c_j(\mu) = \inf_{B \in I_j} \sup_{u \in B \setminus \Sigma} I_\mu(u) \quad 2 \leq j \leq k \tag{3.1}
\]
where \(\Sigma = P_\varepsilon \cup Q_\varepsilon \) and
\[
\Gamma_j = \{ B \subset W_0^{1,q}(\Omega) | B \text{ is compact, symmetric and } \gamma(B) \geq j \},
\]
\(\gamma(B) \) is the genus of a closed, compact, symmetric set of \(B \). Then for \(\lambda \geq \Lambda_k \),
\[
c_2(\mu), \ldots, c_k(\mu) \text{ are critical values of the functional } I_\mu,
\]
\[-\infty < c_2(\mu) \leq \cdots \leq c_k(\mu) < 0. \tag{3.2}\]
Moreover if \(c = c_j(\mu) = \cdots = c_{j+l-1}(\mu) \), then \(\gamma(K^*_c) \geq l \), where \(c = \inf I_\mu(u) \).

We remark that if \(\Sigma = \emptyset \), this is the classical Clark’s theorem [7, 33]. Clark’s Theorem in the setting of ordered Hilbert spaces was given in [16]. Multiple sign-changing solutions of negative energies in the semilinear cases were obtained in [4, 2, 16]. For reader’s convenience we give the proof for the case \(\Sigma \neq \emptyset \).

Proof. By Lemma 2.1 \(I_\mu \) is bounded from below. Using the sets \(B_j \) in Lemma 3.2 we have \(\gamma(B_j) = j \) and for \(j \geq 2 \), \(B_j \setminus \Sigma \neq \emptyset \). Thus formula \((3.2)\) follows from Lemma 2.1 and Lemma 3.2. Assume \(c = c_j(\mu) = \cdots = c_{j+l-1}(\mu) \). Let \(N \) be an open neighborhood of \(K^*_c \) with \(\gamma(I) = \gamma(K^*_c) \). By the deformation lemma there exist \(\varepsilon > 0 \) and an odd map \(\eta : W_0^{1,q}(\Omega) \to W_0^{1,q}(\Omega) \) satisfying \(\eta(\Sigma) \subset \Sigma \) and \(\eta(I_\mu(\frac{1}{2}\varepsilon)(\Omega \cup \Sigma)) \subset I_\mu(\frac{1}{2}\varepsilon) \). By the definition we have a set \(B \) in \(\Gamma_j \setminus \Sigma \) such that \(B \setminus \Sigma \subset I_\mu(\frac{1}{2}\varepsilon) \). Now we have
\[
\eta(B \setminus N) \setminus \Sigma \subset (\eta(B \setminus (N \cup \Sigma)) \cup \eta(\Sigma)) \setminus \Sigma
\leq \eta(I_\mu(\frac{1}{2}\varepsilon) \setminus (N \cup \Sigma)) \subset I_\mu(\frac{1}{2}\varepsilon).
\]
Again by the definition \(\eta(B \setminus N) \notin \Gamma_j \), that is \(j - 1 \geq \gamma(\eta(B \setminus N)) \). We have
\[
j - 1 \geq \gamma(\eta(B \setminus N)) \geq \gamma(B \setminus N) \geq \gamma(B) - \gamma(\Sigma) \geq (j + l - 1) - \gamma(\Sigma)
\]
hence \(\gamma(K^*_c) = \gamma(\Sigma) \geq l \). \(\square \)

Lemma 3.3. For sufficiently small \(\varepsilon > 0 \), there exists \(\alpha = \alpha(\varepsilon) > 0 \) such that
\[
I_\mu(u) \geq \alpha > 0 \quad \text{for} \ u \in \partial P_\varepsilon \cap \partial Q_\varepsilon,
\]
\[
I_\mu(u) \geq 0 \quad \text{for} \ u \in M = \overline{P_\varepsilon \cap \overline{Q_\varepsilon}}.
\]
Proof.

\[I_\mu(u) = \frac{1}{2} \sigma \int_\Omega \left(\frac{1}{m_\mu(|\nabla u|)} \right)^{q-2} |\nabla u|^2 \, dx + \frac{1}{2} \int_\Omega \left(\frac{1}{m_\mu(|\nabla u|)} \right)^{q-4} u^2 |\nabla u|^2 \, dx \\
\quad + \frac{1}{2} \int_\Omega \sum_{i,j=1}^N \beta_{ij}(x,u) D_i u D_j u \, dx - \lambda \int_\Omega F(x,u) \, dx \]

\[\geq \frac{1}{2} c_0 \int_\Omega (1 + u^2) |\nabla u|^2 \, dx - \int_\Omega \left(\frac{1}{2} c_0 \lambda_1 u^2 + c_\lambda |u|^{\frac{4N}{N-2}} \right) \, dx \]

\[\geq \frac{1}{8} c_0 S \left(\int_\Omega |u|^{\frac{4N}{N-2}} \, dx \right)^{\frac{N-2}{N}} - c_\lambda \int_\Omega |u|^{\frac{4N}{N-2}} \, dx \]

\[= \left(\int_\Omega |u|^{\frac{4N}{N-2}} \, dx \right)^{\frac{N-2}{N}} \left(\frac{1}{8} c_0 S - c_\lambda \left(\int_\Omega |u|^{\frac{4N}{N-2}} \, dx \right)^{\frac{N}{N-2}} \right). \]

If \(u \in O = \partial P_\varepsilon \cap \partial Q_\varepsilon \), then

\[\left(\frac{3}{4} c_0 \lambda_1 + \frac{1}{2} c_2 \right) \int_\Omega u^2 \, dx + \frac{3}{16} c_0 S \int_\Omega |u|^{\frac{4N}{N-2}} \, dx + \frac{q-1}{q} c_1 \int_\Omega |u|^q \, dx = 2 \varepsilon. \] (3.3)

For \(\varepsilon \) small enough

\[c_\lambda \left(\int_\Omega |u|^{\frac{4N}{N-2}} \, dx \right)^{\frac{N}{N-2}} \leq \frac{1}{16} c_0 S. \] (3.4)

Moreover, by (3.3) we have

\[c \left(\left(\int_\Omega |u|^{\frac{4N}{N-2}} \, dx \right)^{\frac{2-N}{N}} + \left(\int_\Omega |u|^{\frac{4N}{N-2}} \, dx \right)^{\frac{N}{N-2}} + \int_\Omega |u|^{\frac{4N}{N-2}} \, dx \right) \geq 2 \varepsilon \]

hence \(\int_\Omega |u|^{\frac{4N}{N-2}} \, dx \geq c(\varepsilon) > 0 \). Now

\[I_\mu(u) \geq \left(\int_\Omega |u|^{\frac{4N}{N-2}} \, dx \right)^{\frac{N-2}{N}} \left(\frac{1}{8} c_0 S - c_\lambda \left(\int_\Omega |u|^{\frac{4N}{N-2}} \, dx \right)^{\frac{N}{N-2}} \right) \]

\[\geq \frac{1}{16} c_0 S \left(\int_\Omega |u|^{\frac{4N}{N-2}} \, dx \right)^{\frac{N-2}{N}} \geq \alpha(\varepsilon) \text{ for } u \in O = \partial P_\varepsilon \cap \partial Q_\varepsilon. \]

Similarly, \(I_\mu(u) \geq 0 \) for \(u \in P_\varepsilon \cap Q_\varepsilon \). \(\square \)

Proposition 3.2. Define

\[d_j(\mu) = \inf_{A \in \Gamma_j} \sup_{u \in A \setminus \Sigma} I_\mu(u), \quad j = 2, \cdots, k \]

where

\[\Gamma_j = \{ A | A \subset W^{1,q}_0(\Omega), -A = A, A \text{ compact}, \gamma(A \cap \sigma^{-1}(O)) \geq j, \forall \sigma \in \Lambda \} \]

\[\Lambda = \{ \sigma : W^{1,q}_0(\Omega) \to W^{1,q}_0(\Omega), \text{ continuous, odd}, P_\varepsilon \subset P_\varepsilon, \sigma(Q_\varepsilon) \subset Q_\varepsilon \}
\]

and \(\sigma(u) = u \text{ if } I_\mu(u) \leq 0 \}

Then for \(\lambda \geq \Lambda_k, d_2(\mu), \cdots, d_k(\mu) \) are critical values of the functional \(I_\mu \),

\[0 < d_2(\mu) \leq \cdots \leq d_k(\mu) \leq d < +\infty \] (3.5)

where \(d := d_k(1) \). Moreover, if \(d = d_j(\mu) = \cdots = d_{j+l-1}(\mu) \), then \(\gamma(K_\varepsilon) \geq l \).

We remark that if \(\Sigma = \emptyset \), basically this is the symmetric mountain pass lemma due to Ambrosetti and Rabinowitz [1]. Some earlier versions of this appeared in [16, 19]. We give the proof for completeness.
Proof. First the family Γ_j is nonempty, the set B_j belongs to Γ_j with B_j from Lemma 3.2. Moreover, for $j \geq 2$ and $A \in \Gamma_j$, $(A \setminus \Sigma) \cap O \neq \emptyset$ (see [22]). By Lemma 3.3,
\[
\sup_{u \in A \setminus \Sigma} I_\mu(u) \geq \inf_{u \in O} I_\mu(u) \geq \alpha > 0,
\]
so we obtain the formula (3.5). Now let N be an open neighborhood of K^*_η with $\gamma(\bar{N}) = \gamma(K^*_\eta)$. By the deformation lemma there exist $\varepsilon > 0$ and an odd map
\[
\eta : W_0^{1,q}(\Omega) \to W_0^{1,q}(\Omega)
\]
satisfying $\eta(\Sigma) \subset \Sigma$, $\eta(I^{s+\frac{1}{2}}_\mu \setminus (N \cup \Sigma)) \subset I^{s-\frac{1}{2}}_\mu$ and $\eta|_{I^{s-\varepsilon}} = \text{Id}$. By the definition we have a set A in Γ_{j+l-1} such that $A \setminus \Sigma \subseteq I^{s+\frac{1}{2}}_\mu$. We have
\[
\eta(A \setminus N) \setminus \Sigma \subseteq (\eta(A \setminus (N \cup \Sigma)) \cup \eta(\Sigma)) \setminus \Sigma \subseteq (I^{s+\frac{1}{2}}_\mu \setminus (N \cup \Sigma)) \setminus I^{s-\frac{1}{2}}_\mu.
\]
Again by the definition $\eta(A \setminus N) \notin \Gamma_j$, there exists $\sigma \in \Lambda$ such that
\[
\gamma(\eta(A \setminus N) \cap \sigma^{-1}(O)) \leq j - 1.
\]
Since $\sigma\eta \in \Lambda$, we have
\[
j - 1 \geq \gamma(\eta(A \setminus N) \cap \sigma^{-1}(O)) \\
\geq \gamma(A \setminus N \cap (\sigma\eta)^{-1}(O)) \\
\geq \gamma(A \setminus (\sigma\eta)^{-1}(O)) - \gamma(\bar{N}) \\
\geq (j + l - 1) - \gamma(\bar{N})
\]
hence $\gamma(K^*_\eta) = \gamma(\bar{N}) \geq l$. \hfill \Box

Proof of Part 1 of Theorem 1.2. By Proposition 3.1 and Proposition 3.2, we obtain $k - 1$ pairs sign-changing solutions with negative critical values and $k - 1$ pairs of sign-changing solutions with positive critical values, respectively. By minimization of I_μ we obtain signed solutions with negative critical value, by mountain pass lemma we obtain signed solutions with positive critical value. \hfill \Box

4. Sign-changing solutions of the quasilinear equations. In this section we prove the second part of Theorem 1.2, consequently Theorem 1.1. We have

(1) the functional
\[
I_\mu(u) = \frac{1}{2} \sigma \int_{\Omega} \left(\frac{|\nabla u|}{m_\mu(|\nabla u|)} \right)^{q-2} |\nabla u|^2 \, dx + \frac{1}{2} \sigma \int_{\Omega} \left(\frac{|\nabla u|}{m_\mu(|\nabla u|)} \right)^{q-4} (1 + u^2)|\nabla u|^2 \, dx
\]
\[
+ \frac{1}{2} \int_{\Omega} \sum_{i,j=1}^N \beta_{ij}(x,u)D_i u D_j u \, dx - \lambda \int_{\Omega} F(x,u) \, dx \quad \text{for } u \in W_0^{1,q}(\Omega). \tag{4.1}
\]

(2) The equation in weak form
\[
\langle DI_\mu(u), \phi \rangle = \sigma \int_{\Omega} \left(\frac{|\nabla u|}{m_\mu(|\nabla u|)} \right)^{q-2} \left(\frac{q}{2} - \frac{q-2}{2} \frac{|\nabla u| b_\mu(|\nabla u|)}{m_\mu(|\nabla u|)} \right) \nabla u \nabla \phi \, dx
\]
\[
+ \sigma \int_{\Omega} \left(\frac{|\nabla u|}{m_\mu(|\nabla u|)} \right)^{q-4} \left(\frac{q-2}{2} - \frac{q-4}{2} \frac{|\nabla u| b_\mu(|\nabla u|)}{m_\mu(|\nabla u|)} \right) (1 + u^2)|\nabla u| \nabla \phi \, dx \tag{4.2}
\]
where the structure of elliptic operators in divergence form, see [15, 17]. It holds that for Lemma 4.1.

Proof. Increasing.

\[pA(x, u, \nabla u) = \sigma \left(\frac{|p|}{\mu(|p|)} \right)^{q-2} \left(q - \frac{2}{\mu(|p|)} \right) |p| \]

\[+ \sigma \left(\frac{|p|}{\mu(|p|)} \right)^{q-4} \left(q - \frac{2}{\mu(|p|)} - \frac{4}{\mu(|p|)} \right) (1 + z^2) |p| \]

\[+ \sum_{i,j=1}^{N} \beta_{ij}(x, z) p_i p_j \]

for \(\varphi \in W^{1,q}_0(\Omega) \).

(3) The equation in divergence form

\[Q(x, u, \nabla u) = \text{div} A_\mu(x, u, \nabla u) + B_\mu(x, u, \nabla u) = 0, \quad (4.3) \]

where

\[Q(x, z, p) = \text{div} A_\mu(x, z, p) + B_\mu(x, z, p) \]

for \((x, z, p) \in \Omega \times \mathbb{R} \times \mathbb{R}^N \), and

\[A_\mu(x, z, p) = \sigma \left(\frac{|p|}{\mu(|p|)} \right)^{q-2} \left(q - \frac{2}{\mu(|p|)} \right) |p| \]

\[+ \sigma \left(\frac{|p|}{\mu(|p|)} \right)^{q-4} \left(q - \frac{2}{\mu(|p|)} - \frac{4}{\mu(|p|)} \right) (1 + z^2) |p| \]

\[+ \sum_{j=1}^{N} \beta_{ij}(x, z) p_j \]

\[B_\mu(x, z, p) = -\sigma \left(\frac{|p|}{\mu(|p|)} \right)^{q-4} |p|^2 z - \frac{1}{2} \sum_{i,j=1}^{N} D_z \beta_{ij}(x, z) p_i p_j + \lambda f(x, z). \]

We verify that the coefficients \(A_\mu, B_\mu \) satisfy the general natural conditions for the structure of elliptic operators in divergence form, see [15, 17].

For \(\mu \in (0, 1] \), define \(g_\mu(t) = \mu^{q-2} t^{q-1} + \mu^{q-4} t^{q-3} + t, t > 0 \). The function \(g_\mu, \mu \in (0, 1] \) satisfies

\[1 \leq \frac{t g_\mu(t)}{g_\mu(t)} \leq q - 1. \quad (4.4) \]

Lemma 4.1. It holds that for \(x \in \Omega, |z| \leq M, p \in \mathbb{R}^N \),

\begin{enumerate}
 \item \(p \cdot A_\mu(x, z, p) \geq \lambda(M) g_\mu(|p|)|p| \),
 \item \(|A_\mu(x, z, p)| \leq \Lambda(M) g_\mu(|p|) \),
 \item \(|B_\mu(x, z, p)| \leq \Lambda(M)(1 + g_\mu(|p|)|p|) \),
\end{enumerate}

where \(\lambda, \Lambda \) are two functions from \(\mathbb{R}^+ \) to \(\mathbb{R}^+ \) such that \(\lambda \) is decreasing and \(\Lambda \) is increasing.

Proof.

\begin{enumerate}
 \item \(p A_\mu(x, z, p) = \sigma \left(\frac{|p|}{\mu(|p|)} \right)^{q-2} \left(q - \frac{2}{\mu(|p|)} \right) |p|^2 \]

\[+ \sigma \left(\frac{|p|}{\mu(|p|)} \right)^{q-4} \left(q - \frac{2}{\mu(|p|)} - \frac{4}{\mu(|p|)} \right) (1 + z^2) |p|^2 \]

\[+ \sum_{i,j=1}^{N} \beta_{ij}(x, z) p_i p_j \]

\[\geq \sigma \left(\frac{|p|}{\mu(|p|)} \right)^{q-2} |p|^2 + \sigma \left(\frac{|p|}{\mu(|p|)} \right)^{q-4} (1 + z^2) |p|^2 + c_0 (1 + z^2) |p|^2 \]

\end{enumerate}
Lemma 4.2. Let $a_{ij} = \frac{\partial A_{ij}}{\partial p_j}$. Then

1. $\sum_{i,j=1}^{N} a_{ij} \xi_i \xi_j \geq \lambda(M) \frac{g_{\mu}(|p|)}{|p|} |\xi|^2$, $\xi \in \mathbb{R}^N$;

2. $|a_{ij}| \leq \Lambda(M) g_{\mu}(|p|)$;

3. $|A_{ij}(x,z,p) - A_{ij}(y,w,p)| \leq \Lambda(M) (|x-y|^\alpha + |z-w|^\alpha) g_{\mu}(|p|)$, $x, y \in \mathbb{R}$, where $\alpha \in (0, 1)$ is the constant in the assumption (b₁);

4. $|B_{ij}(x,z,p)| \leq \Lambda(M) (1 + g_{\mu}(|p|)|p|)$, the same as (3), Lemma 4.1.

Proof. We have

$$a_{ij} = \frac{\partial A_{ij}}{\partial p_j} = \sigma \left(\frac{|p|}{m_{\mu}(|p|)} \right)^{q-2} \left(\frac{q}{2} - \frac{q-2 |p| b_{\mu}(|p|)}{m_{\mu}(|p|)} \right) \delta_{ij}$$

$$+ \frac{q-2}{2} \sigma \left(\frac{|p|}{m_{\mu}(|p|)} \right)^{q-2} \left(1 - \frac{|p| b_{\mu}(|p|)}{m_{\mu}(|p|)} \right) \left(q - (q-1) \frac{|p| b_{\mu}(|p|)}{m_{\mu}(|p|)} \right) \frac{p_i}{p} \frac{p_j}{p}$$

$$- \frac{q-2}{2} \sigma \left(\frac{|p|}{m_{\mu}(|p|)} \right)^{q-2} |p| b_{\mu}(|p|) \frac{p_i}{m_{\mu}(|p|)} \frac{p_j}{p}$$

$$+ \sigma \left(\frac{|p|}{m_{\mu}(|p|)} \right)^{q-4} \left(q - \frac{q-4 |p| b_{\mu}(|p|)}{2 m_{\mu}(|p|)} \right) (1 + z^2) \delta_{ij}$$

$$+ \frac{q-4}{2} \sigma \left(\frac{|p|}{m_{\mu}(|p|)} \right)^{q-4} \left(1 - \frac{|p| b_{\mu}(|p|)}{m_{\mu}(|p|)} \right) \left((q-2) - (q-3) \frac{|p| b_{\mu}(|p|)}{m_{\mu}(|p|)} \right) (1 + z^2) \frac{p_i}{p} \frac{p_j}{p}$$

$$- \frac{q-4}{2} \sigma \left(\frac{|p|}{m_{\mu}(|p|)} \right)^{q-4} |p|^2 b_{\mu}(|p|) \frac{p_i}{m_{\mu}(|p|)} (1 + z^2) \frac{p_i}{p} + \beta_{ij}(x,z).$$

Then

$$\sum_{i,j=1}^{N} a_{ij} \xi_i \xi_j \geq \sigma \left(\frac{|p|}{m_{\mu}(|p|)} \right)^{q-2} \left(\frac{q}{2} - \frac{q-2 |p| b_{\mu}(|p|)}{m_{\mu}(|p|)} \right) |\xi|^2$$

$$+ \sigma \left(\frac{|p|}{m_{\mu}(|p|)} \right)^{q-4} \left(q - \frac{q-4 |p| b_{\mu}(|p|)}{2 m_{\mu}(|p|)} \right) (1 + z^2) |\xi|^2$$

$$+ \sum_{i,j=1}^{N} \beta_{ij}(x,z) \xi_i \xi_j.$$
\[
\geq \lambda(M)(\mu^{q-2}|p|^{q-2} + \mu^{q-4}|p|^{q-4} + 1)|\xi|^2 = \lambda(M)\frac{g_{\mu}|p|}{|p|}|\xi|^2.
\]

(2)

\[
|a_{ij}| \leq c \left(\frac{|p|}{m_{\mu}(|p|)} \right)^{q-2} + \left(\frac{|p|}{m_{\mu}(|p|)} \right)^{q-4}(1 + z^2) + (1 + z^2) \\
\leq \Lambda(M)(\mu^{q-2}|p|^{q-2} + \mu^{q-4}|p|^{q-4} + 1) = \Lambda(M)\frac{g_{\mu}|p|}{|p|}.
\]

(3)

\[
A_{\mu}(x, z, p) - A_{\mu}(y, w, p) \\
= \sigma\left(\frac{|p|}{m_{\mu}(|p|)} \right)^{q-4}\left(\frac{q - 2}{2} - \frac{q - 4 |p|}{2m_{\mu}(|p|)} \right)(z^2 - w^2)p_i \\
+ \sum_{i,j=1}^N (\beta_{ij}(x, z) - \beta_{ij}(y, w))p_j
\]

and

\[
|A_{\mu}(x, z, p) - A_{\mu}(y, w, p)| \\
\leq \Lambda(M)\left(\left(\frac{|p|}{m_{\mu}(|p|)} \right)^{q-4}|z - w|^\alpha|p| + (|x - y|^\alpha + |z - w|^\alpha)|p| \right) \\
\leq \Lambda(|x - y|^\alpha + |z - w|^\alpha)(\mu^{q-4}|p|^{q-3} + |p|) \\
\leq \Lambda(M)(|x - y|^\alpha + |z - w|^\alpha)g_{\mu}(|p|).
\]

\[\square\]

Proof of Part 2 of Theorem 1.2. By Corollary 1.5, Theorem 1.7 in [17], any bounded solutions of the perturbed problems satisfies

\[\|u\|_{C^{1,\alpha}(\overline{\Omega})} \leq M\]

where \(\beta = \beta(M_0)\), \(M = M(M_0)\) and \(M_0 = \max_{u \in \overline{\Omega}}|u|\), the constants \(\beta, M\) are independent of \(\mu\). Using the condition \((b_3)\) and the Moser iteration we can show that the solutions \(u_j(\mu), v_j(\mu), j = 1, 2, \cdots, k\) have a uniform bound \(M_0\) independent of \(\mu\), hence are uniformly bounded in \(C^{1,\beta}(\overline{\Omega})\) for some \(\beta \in (0, 1)\).

\[\square\]

Remark 4.1. Though our conditions on \(f\) are modeled on the special case \(f(x, z) = |z|^{r-2}z\) with \(2 < r < 4\), our method allows more other cases of the nonlinearity \(f\). For example, the second part of the condition \((f_3)\) is: There is an open subset \(\Omega_0 \subset \Omega\) such that \(F(x, z) \to +\infty\), as \(|z| \to \infty\) uniformly for \(x \in \Omega_0\). This can be replaced by the following: There is an open subset \(\Omega_0 \subset \Omega\) and a constant \(a > 0\) such that \(F(x, z) > 0\) for \(0 < |z| \leq a\) and \(x \in \Omega_0\). Then the same result still holds with slight modification of the proofs.

Acknowledgments. The authors are grateful to the referee for a careful reading of the manuscript, clarifying some details and some thoughtful suggestions. The work is supported by NSFC 11761082, 11671364, 11771324, 11831009, 12071438. X.Q. Liu is also supported by The Calculus of Variations and its Applications Innovation Team in Universities of Yunnan Province.
REFERENCES

[1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, *J. Funct. Anal.*, **14** (1973), 349–381.

[2] T. Bartsch, K.-C. Chang and Z.-Q. Wang, On the Morse indices of sign changing solutions of nonlinear elliptic problems, *Math. Z.*, **233** (2000), 655–677.

[3] T. Bartsch, Z. Liu and T. Weth, Sign changing solutions of superlinear Schrödinger equations, *Commun. Partial Differential Equations*, **29** (2004), 25–42.

[4] T. Bartsch and Z.-Q. Wang, On the existence of sign changing solutions for semilinear Dirichlet problems, *Topol. Methods Nonlinear Anal.*, **7** (1996), 115–131.

[5] F. G. Bass and N. N. Nasonov, Nonlinear electromagnetic-spin waves, *Phys. Rep.*, **189** (1990), 165–223.

[6] H. Brezis, *Functional Analysis, Sobolev Spaces and Partial Differential Equations*, Universitext, Springer, New York, 2011.

[7] D. C. Clark, A variant of the Lusternik-Schnirelman theory, *Indiana Univ. Math. J.*, **22** (1972/1973), 65–74.

[8] M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, *Nonlinear Anal.*, **56** (2004), 213–226.

[9] R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations, *Z. Phys. B.*, **37** (1980), 83–87.

[10] Y. Jing, Z. Liu and Z.-Q. Wang, Multiple solutions of a parameter-dependent quasilinear elliptic equation, *Calc. Var. Partial Differential Equations*, **55** (2016), 26 pp.

[11] Y. Jing, Z. Liu and Z.-Q. Wang, Existence results for a singular quasilinear elliptic equation, *J. Fixed Point Theory Appl.*, **19** (2017), 67–84.

[12] Y. Jing, Z. Liu and Z.-Q. Wang, Parameter-dependent multiplicity results of sign-changing solutions for quasilinear elliptic equations, preprint.

[13] M. Kosevich, A. Ivanov and S. Kovalev, Magnetic solutions, *Phys. Rep.*, **194** (1990), 117–238.

[14] S. Kurihara, Large-amplitude quasi-solitons in superfluid films, *J. Phys. Soc. Jap.*, **50** (1981), 3801–3805.

[15] O. A. Ladyzhenskaya and N. N. Ural’tseva, *Linear and Quasilinear Elliptic Equations*, Academic Press, New York-London, 1968.

[16] S. Li and Z.-Q. Wang, Lusternik-Schnirelman theory in partially ordered Hilbert spaces, *Trans. Amer. Math. Soc.*, **354** (2002), 3207–3227.

[17] G. M. Lieberman, The natural generalizations of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations, *Commun. Partial Differential Equations*, **16** (1991), 311–361.

[18] A. G. Litvak and A. M. Sergeev, One dimensional collapse of plasma waves, *JEPT Letters*, **27** (1978), 517–520.

[19] J.-Q. Liu, X.-Q. Liu and Z.-Q. Wang, Multiple sign-changing solutions for quasilinear elliptic equations via perturbation method, *Commun. Partial Differential Equations*, **39** (2014), 2216–2239.

[20] J. Liu, X. Liu and Z.-Q. Wang, Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth, *J. Differential Equations*, **261** (2016), 7194–7236.

[21] J. Liu, X. Liu and Z.-Q. Wang, Multiple mixed states of nodal solutions for nonlinear Schrödinger systems, *Calc. Var. Partial Differential Equations*, **52** (2015), 565–586.

[22] X.-Q. Liu, J.-Q. Liu and Z.-Q. Wang, Quasilinear elliptic equations via perturbation method, *Proc. Amer. Math. Soc.*, **141** (2013), 253–263.

[23] X.-Q. Liu, J.-Q. Liu and Z.-Q. Wang, Quasilinear elliptic equations with critical growth via perturbation method, *J. Differential Equations*, **254** (2013), 102–124.

[24] X. Liu, J. Liu and Z.-Q. Wang, Localized nodal solutions for quasilinear Schrödinger equations, *J. Differential Equations*, **267** (2019), 7411–7461.

[25] Z. Liu and J. Sun, Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations, *J. Differential Equations*, **172** (2001), 257–299.

[26] J. Liu and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equations, *Proc. Amer. Math. Soc.*, **131** (2003), 441–448.

[27] J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Soliton solutions for quasilinear Schrödinger equation, *J. Differential Equations*, **187** (2003), 473–493.

[28] J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, *Commun. Partial Differential Equations*, **29** (2004), 879–901.
[29] X. Liu and J. Zhao, \(p\)-Laplacian equation in \(\mathbb{R}^N\) with finite potential via the truncation method, *Adv. Nonlinear Stud.*, 17 (2017), 595–610.

[30] V. G. Makhan’kov and V. K. Fedyanin, Nonlinear effects in quasi-one-dimensional models of condensed matter theory, *Phys. Rep.*, 104 (1984), 1–86.

[31] M. Porkolab and M. V. Goldman, Upper hybrid solitons and oscillating two-stream instabilities, *Phys. Fluids*, 19 (1976), 872–881.

[32] G. R. W. Quispel and H. W. Capel, Equation of motion for the Heisenberg spin chain, *Phys. A*, 110 (1982), 41–80.

[33] P. H. Rabinowitz, *Minimax Methods in Critical Point Theory with Applications to Differential Equations*, CBMS Regional Conference, Series in Mathematics, American Mathematical Society, Vol. 65, 1986.

[34] J. Zhao, X. Liu and J. Liu, \(p\)-Laplacian equations in \(\mathbb{R}^N\) with finite potential via truncation method, the critical case, *J. Math. Anal. Appl.*, 455 (2017), 58–88.

Received February 2020; revised July 2020.

E-mail address: jiaquan@math.pku.edu.cn
E-mail address: lxq8u8@163.com
E-mail address: zhi-qiang.wang@usu.edu