Risk Factors and Modes for Implant Failure in the Modern Dual Mobility Implant. A Systematic Review and Meta-analysis

Fu-Yuan Pai
Taipei Veterans General Hospital

Hsuan-Hsiao Ma
Taipei Veterans General Hospital

Te-Feng Chou
Taipei Veterans General Hospital

Shang-Wen Tsai
Taipei Veterans General Hospital

Tsan-Wen Huang
Chiayi Chang Gung Memorial Hospital

Kuo-Chin Huang
Chiayi Chang Gung Memorial Hospital

Cheng-Fong Chen (cfchen.vghtpe@gmail.com)
Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taiwan

Wei-Ming Chen
Taipei Veterans General Hospital

Research Article

Keywords: Dislocation, dual mobility, implant failure, instability, outcome, revision total hip arthroplasty, risk factor, total hip arthroplasty

DOI: https://doi.org/10.21203/rs.3.rs-109503/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

The aims of this meta-analysis were to: (1) validate the outcome of modern dual mobility (DM) designs in patients who had undergone primary and revision total hip arthroplasty (THA) procedures and (2) to identify factors that affect the outcome.

Methods

We searched for studies that assessed the outcome of modern DM-THA in primary and revision procedures that have been conducted between January, 2000 to August, 2020 on PubMed, MEDLINE, Cochrane Reviews and Embase. The pooled incidence of common failure modes and functional scores were evaluated in patients who have received: (1) primary THA, (2) revision THA for all causes or (3) for recurrent dislocation. A meta-regression analysis was performed for each parameter to determine the association with the outcome.

Results

A total of 120 studies (N= 30016 DM-THAs) were included for analysis. The mean follow-up duration was 47.3 months. The overall implant failure rate was 4.2% (primary: 2.3%, revision for all causes: 5.5%, recurrent dislocation: 6.0%). The most common failure modes were aseptic loosening (primary: 0.9%, revision for all causes: 2.2%, recurrent dislocation: 2.4%), septic loosening (primary:0.8%, revision for all causes: 2.3%, recurrent dislocation: 2.5%), extra-articular dislocation (primary:0.6%, revision for all causes:1.3%, recurrent dislocation:2.5%), intra-prosthetic dislocation (primary:0.8%, revision for all causes:1.0%, recurrent dislocation:1.6%) and periprosthetic fracture (primary:0.9%, revision for all causes:0.9%, recurrent dislocation:1.3%). The multi-regression analysis identified younger age (β=-0.04, 95% CI -0.07 – -0.02) and female patients (β=3.34, 95% CI 0.91 – 5.78) were correlated with higher implant failure rate. Age, gender, posterolateral approach and body mass index (BMI) were not risk factors for extra-articular or intra-prosthetic dislocation in this cohort. The overall Harris hip score and Merle d’Aubigné score were 84.87 and 16.36, respectively.

Conclusion

Modern dual-mobility designs provide satisfactory mid-term implant survival and clinical performance. Younger age and female patients might impact the outcome after DM-THA.

Background

Dislocation has been one of the most common cause of implant failure after total hip arthroplasty (THA).(1) The reported dislocation rate after primary THAs is 0.3-10%(2-4) and is much higher after revision THAs (5-30%).(5-7) Dislocation can be multifactorial, including both surgeon and patient related factors.(8-18) Several design changes have been made on the prosthesis to resolve this. Currently, dual mobility (DM) THA is one of the most successful designs to reduce the risk of dislocation.(19) The concept of DM was invented by Gilles Bousquet and André Rambert in France in 1973.(19) The design included Charnley’s low-friction principle and the theory of McKee and Watson-Farrar, which increased the femoral head-to-neck ratio, extending the "jumping" distance in order to prevent dislocations.(20-23) The first generation DM design was associated with higher aseptic loosening and intra-prosthetic dislocation (IPD) rate, which resulted from polyethylene wear, suboptimal fixation and surface coating of the acetabular component.(24-30) In the late 1990’s, a newer DM design was introduced with several modifications including modular design, shape, surface coating and highly cross-linked polyethylene to reduce the rate of aseptic loosening and IPD.(31-34)

Compared with the fixed-bearing THA, several meta-analyses have validated a lower dislocation rate using DM articulation in both primary(35-37) and revision THA procedures.(36-39) Despite the established efficacy of DM articulation in preventing dislocation, it is with clinical importance to validate the overall implant survival and failure modes of this unique design. To our knowledge, the most recent and comprehensive systematic review discussing the outcome after DM-THA was conducted by Darrith et al.(40) The authors reviewed studies published from 2007 to 2016, including 54 studies with 14345 primary and revision THA procedures. They reported the overall failure rate (primary: 2.0%, revision: 3.4%) and incidence of common failure modes including aseptic loosening (primary: 1.3%, revision: 1.4%), extra-articular dislocation (primary: 0.46%, revision: 2.2%) and intra-prosthetic dislocation (primary: 1.1%, revision: 0.3%). However, this review involves a mixture of the 1st generation and modern (2nd and 3rd generations) DM designs. Some important modes of implant failure such as septic loosening and periprosthetic fracture were not analyzed in this review. Moreover, the number of articles regarding the outcome of modern DM-THA from 2016 to 2020 have doubled since 2016.(41-115) Therefore, an up-to-date meta-analysis is essential to validate the outcome of modern DM-THA. Our primary objective was to identify the overall implant failure rate and several common failure modes including aseptic loosening, septic loosening, extra-articular dislocation, intra-prosthetic dislocation and periprosthetic fracture. The secondary objective was to determine risk factors predisposing to implant failure and functional outcome.

Methods

We completed a comprehensive search on PubMed, MEDLINE, Cochrane Reviews and Embase for studies that reported outcome in patients who had undergone dual mobility total hip arthroplasty (DM-THA) published from the earliest record to August, 2020. We conducted the search according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement. The following terms were used in variable combinations: total hip arthroplasty, total hip replacement and dual mobility. Two authors (xxx, xxx) independently searched and screened the titles and abstracts for relevant studies. If there was disagreement, a third author (xxx) was consulted for a consensus. The search strategy is shown in Figure 1.
We included original articles written in English that validated the outcome in patients who had undergone DM-THA for all kinds of indications including primary THA, revision THA or recurrent dislocation. We excluded review articles, letter to the editor, expert opinion, biomechanical studies, articles not written in English, study period earlier than 2000 or studies in which data were not obtainable. For comparative studies (e.g. hemiarthroplasty or THA vs DM-THA), we extracted data from the DM-THA group if possible. If there was uncertainty regarding the data from the study, we contacted the authors for clarifications.

Two authors (xxx, xxx) examined all relevant studies and extracted data using a predetermined form. The primary aim was to determine the overall implant failure rate and failure modes including aseptic loosening, septic loosening, extra-articular dislocation, intra-prosthetic dislocation and periprosthetic fracture. We further validated these rates stratified by indications including primary THA, revision THA for all causes or for recurrent dislocation. The secondary aim was to identify risk factors for implant failures and to evaluate the functional outcome using Harris hip score(116) and Merle d’Aubigné score(117). We recorded the first author, year, study design, number of THA procedures, indications, age, follow-up duration, implant brand and outcome parameters in Table 1.

Two authors (xxx, xxx) independently evaluated the methodological quality of the included studies using the NIH Quality Assessment Tool for Case Series Studies(118). The highest score on this scale is 9. A score between 7 and 9, 4 and 6, less than 4 were defined as "good", "fair" and "poor", respectively. If there were disagreement, we consulted a third author (xxx). (Table 2)

Statistical analysis

A meta-analysis of proportions was conducted using the Freeman-Tukey analysis under random-effects model to determine pooled estimates with a 95% confidence interval (CI). A random-effects model was used for differences among studies such as age, sex, surgical approaches, body mass index, indications for THA procedure, implant brand and methodology. A standard multivariate linear regression analysis (β) was performed to determine potential factors for implant failure or improved functional outcome. We completed all analyses with the Comprehensive Meta-Analysis (CMA) software, version 3 (Biostat, Englewood, New Jersey, USA) and significance was defined as p < 0.05.

Results

We identified 1123 studies according to our search strategy. We removed 714 duplicate records and 231 studies after reading the title and abstract. Another 58 studies were excluded after reading the full text as the studies did not meet the inclusion criteria: studies on different outcome domains (n=21), mixed etiologies (n=12), 1st generation DM designs (n=10), cemented liner to cup (n=9), cadaveric or in vitro studies (n=3), studies not written in English (n=3). After exclusion, a total of 120 studies were included (41-115, 119-163) (Figure 1).

Baseline characteristics

We included 30016 patients who had undergone DM-THA for primary and revision THA procedures. The mean age was 71.9 years (range, 19.2 to 87.6) and 63.2% of the patients were female. Mean follow-up duration in overall, primary, revision and recurrent dislocation group were 47.29 months (range, 3 to 152.4), 40.86 months (range, 3 to 152.4), 61.82 months (range, 6 to 87.6), and 35.23 months (range, 24 to 55), respectively. DM-THA was used in 19819 primary THA procedures, 9411 revision THA procedures and 786 revision THA procedures for recurrent dislocation.

Aseptic loosening

A total of 105 studies, including 28980 DM-THA procedures, have reported aseptic loosening rates. The overall pooled rate was 1.6% (95% CI 0.008 – 0.032). The aseptic loosening rates in primary THA, revision THA and revision THA for recurrent dislocation were 0.9%, 2.2% and 2.4%, respectively (Table 3, Figure S1). A multivariate regression analysis revealed that a revision THA procedure for all causes (β=1.30, 95% CI 0.71 – 1.89), or for recurrent dislocation (β=1.18, 95% CI 0.26 – 2.10), carried a higher risk of aseptic loosening compared with a primary THA procedure (Table 4).

Septic loosening

A total of 105 studies, including 28980 DM-THA procedures, have reported septic loosening rates. The overall pooled rate was 1.6% (95% CI 0.007 – 0.037). The septic loosening rates in primary THA, revision THA and revision THA procedure for recurrent dislocation were 0.8%, 2.3% and 2.5%, respectively (Table 3, Figure S2). A multivariate regression analysis showed that both revision THA for all causes (β=1.85, 95% CI 1.26 – 2.44) and for recurrent dislocation (β=1.40, 95% CI 0.45 – 2.36) were at a higher risk of septic loosening, compared with a primary THA procedure (Table 4).

Extra-articular dislocation

A total of 113 studies, including 20447 DM-THA procedures, have validated the extra-articular dislocation rates. The overall pooled rate was 1.2% (95% CI 0.006 – 0.025). The extra-articular dislocation rates in primary THA, revision THA and revision THA for recurrent dislocation were 0.6%, 1.3% and 2.5%, respectively (Table 3, Figure S3). Compared with a primary THA procedure, risk of dislocation was higher after revision THA procedures (β=1.02, 95% CI 0.30 – 1.73) (Table 4).

Intra-prosthetic dislocation

A total of 113 studies, including 20447 DM-THA procedures, have reported the intra-prosthetic dislocation rates. The overall pooled rate was 1.0% (95% CI 0.007 – 0.015). The intra-prosthetic dislocation rates in primary THA, revision THA and revision THA for recurrent dislocation were 0.8%, 1.0% and 1.6%,
respectively (Table 3, Figure S3). None of the factors including age, female sex, posterolateral approach, BMI or indication have led to intra-prosthetic dislocation (Table 4).

Periprosthetic fracture

A total of 100 studies, including 27731 DM-THA procedures, have recorded the periprosthetic fracture rates. The overall pooled rate was 0.9% (95% CI 0.008 – 0.011). The periprosthetic fracture rates in primary THA, revision THA and revision THA for recurrent dislocation were 0.9%, 0.9% and 1.3%, respectively (Table 3, Figure S5). Revision THA procedure for all causes (β=0.93, 95% CI 0.23 – 1.62) was a risk factor for periprosthetic fracture (Table 4).

Overall implant failure

A total of 105 studies, including 27873 DM-THA procedures, have recorded the implant failure rates. The overall pooled rate was 4.2% (95% CI 0.021 – 0.081) at a mean follow-up of 45.8 months. The implant failure rates in primary THA, revision THA and revision THA for recurrent dislocation were 2.3%, 5.5% and 6.0%, respectively (Table 3, Figure S6). Younger age (β=-0.04, 95% CI -0.07 – -0.02), female sex (β=3.34, 95% CI 0.91 – 5.78), revision THA procedure for all causes (β=1.48, 95% CI 0.93 – 2.03) and for recurrent dislocation (β=1.08, 95% CI 0.24 – 1.92) were risk factors for implant failures (Table 4).

Functional outcome

We included 49 (N= 7086) and 21 (N= 2764) studies that have evaluated functional outcome using Harris hip score and Merle d’Aubigné score. The pooled Harris hip score and Merle d’Aubigné score were 84.87 (95% CI 78.99 – 90.76) and 16.36 (95% CI 15.20 – 17.53), respectively (Table 3, Figure S7, S8). Revision THA procedure for all causes (β=-9.44, 95% CI -15.17 – -3.72) and female sex (β=-4.10, 95% CI -8.17 – -0.03) were associated with lower functional scores (Table 4).

Discussion

In this meta-analysis, we included 120 studies with 30016 primary and revision THA procedures using the modern DM design. At a mean follow-up of 47.3 months, the overall failure rate of modern dual mobility design was 4.2%. The most common failure modes include aseptic loosening (primary: 0.9%, revision for all causes: 2.2%, revision for recurrent dislocation: 2.4%), septic loosening (primary: 0.8%, revision for all causes: 2.3%, revision for recurrent dislocation: 2.5%), extra-articular dislocation (primary: 0.6%, revision for all causes: 1.3%, revision for recurrent dislocation: 2.5%), intra-prosthetic dislocation (primary: 0.8%, revision for all causes: 1.0%, revision for recurrent dislocation: 1.6%) and periprosthetic fracture (primary: 0.9%, revision for all causes: 0.9%, revision for recurrent dislocation: 1.3%). The multi-regression analysis revealed that revision THA procedures were associated with a higher risk of aseptic loosening, septic loosening, extra-articular dislocation, periprosthetic fracture, overall implant failure and lower Harris Hip scores. But interestingly, several risk factors that have been identified for THA dislocation such as advanced age, female sex, posterolateral approach and increased BMI were not risk factors for extra-articular dislocation. Younger and female patients were associated with higher risk of implant failure. In terms of functional outcome, the patients were satisfied with their postoperative function based on the improved Harris hip score and Merle d’Aubigné score.

Dislocation is one of the common causes of THA implant failure and can be caused by many factors. In current literature, the known risk factors include advanced age, female patients, obesity, previous hip surgeries, posteroslateral surgical approach, THA for acute fractures, patients with neurological diseases, and patients with abductor weakness. The dual mobility design increases femoral head-to-neck ratio and jumping distance to improve stability. Therefore, we can anticipate decreased dislocation rates for the DM design in primary and revision THA. Even after revision THA due to recurrent instability, the dislocation rate was only 2.5%, which was much lower than the reported dislocation rate after primary THAs and revision THAs, which ranged from 0.3% to 10% (2-4) and 5% to 30% (5-7), respectively. In addition, a multivariate analysis revealed that older age, female patients, posterior approach and BMI were not risk factors for dislocation after DM-THA. Based on the difference in risk factors for dislocations, we can assume that the DM design can effectively overcome some of the shortcomings of previous THA designs. Nevertheless, optimization of component position and restoration of soft tissue tension are paramount to prevent dislocation in both primary and revision THA procedures.

Despite these improvements, there are still some concerns with the DM design, including increased wear of the acetabular liner, increased risk of aseptic loosening and intra-prosthetic dislocation.

The two-articulation design creates two surfaces for plastic deformation and wear, which theoretically leads to a higher wear rate than fixed-bearing THA. The inner, small articulation dominates the majority of movement and follows the Charnley’s low-friction principle with a small-diameter head to reduce aseptic loosening. The outer, larger articulation provides a larger surface area for plastic deformation and wear, which theoretically leads to a higher wear rate than fixed-bearing THA. The two-articulation design creates two surfaces for plastic deformation and wear, which theoretically leads to a higher wear rate than fixed-bearing THA.

The inner, small articulation dominates the majority of movement and follows the Charnley’s low-friction principle with a small-diameter head to reduce aseptic loosening. The outer, larger articulation provides a larger surface area for plastic deformation and wear, which theoretically leads to a higher wear rate than fixed-bearing THA. The two-articulation design creates two surfaces for plastic deformation and wear, which theoretically leads to a higher wear rate than fixed-bearing THA.
is considered less accurate than the retrieval or simulation studies.(171, 172) Currently, there is limited evidence regarding the increased PE wear of modern DM articulation.

The non-porous alumina-coated surface, tripod anchoring system of acetabular component and polyethylene wear have been associated with a higher aseptic loosening rate in the first-generation DM implants.(24, 29, 31) Several changes have been made in modern dual mobility designs, including (1) to replace UHMWPE with HXLPE to reduce wear,(33, 34); (2) to add bevelled edges (or chamfer) in polyethylene (PE) inserts to lower femoral neck impingement and wear(32); (3) press-fit fixation by bilayer coating of porous titanium and hydroxyapatite to enhance osseointegration on the outer surface(31); (4) modular metal liner design to facilitate supplementary screw fixation. The long-term overall survival and aseptic loosening rate of the primary THAs using 1st generation DM implants were 85-95.4% and 3.8-3.3%, respectively.(24-28) In this study, the primary THAs using modern generations DM implants are associated with a better overall survival (97.7%) and a lower aseptic loosening rate (0.9%). This pooled aseptic loosening rate was comparable to that of primary, fixed-bearing THA from several registries, which ranged from 0.7-1.1% at 5 to 16 years.(1, 173, 174)

The modern, modular design has an additional cobalt-chromium (CoCr) liner inserted into a titanium acetabular component allowing supplementary screw fixation to enhance primary stability. However, the metal-on-metal interface between CoCr liner and titanium cup is at risk of fretting corrosion and remains a concern.(175-177) Metal ions can further lead to advance local tissue reaction (ALRT) and implant loosening.(178) The first study regarding metal ions was conducted by Matsen Ko et al., which revealed 21% of the patient had elevated serum chromium levels.(179) Other studies reported that serum ion levels (cobalt, chromium or titanium) was elevated in 9.3-23% of the patients.(47, 111) On the other hand, some studies have noted that this elevation was not associated with clinical adverse events including instability, loosening or need of revision.(64, 67, 72) In summary, the current evidence suggests there is a slight elevation of serum ion level but this does not negatively affect the implant survival.

Intra-prosthetic dislocation (IPD) is a rare complication of DM design, which occurs as a result of retentive failure of the inner articulation. Long-term, homogenous PE wear or impingement at extreme range of motion between neck and PE liner leads to loss of PE retentive rim and IPD.(180, 181) The incidence of IPD ranged from 0.7%-4.3% in first generation of DM cup and(29, 30) modifications have been made to the 2nd generation DM implants. These changes include a thinner, more polished femoral neck to reduce impingement with the liner and the use of HXLPE to reduce wear during contact. (32) In our pooled study for modern DM cup, IPD rate in primary THA and revision THA was 0.8% and 1.0% respectively, which is much lower than the 1st generation.(29, 30) Another form of IPD has been observed in modern generation DM implants, which often occurs in the short-term. This form of IPD results from a secondary decapsulation of the liner followed by reduction for dislocation.(182) During close reduction of a dislocated DM-THA, impingement occurs between PE liner and posterior edge of the acetabular component. The excessive loading during reduction maneuver may “decapsulate” the femoral head from PE liner. Therefore, the reduction should be performed gradually under general anesthesia with completely relaxed muscle.(29)

Our meta-analysis showed that the mid-term revision rates in primary and revision DM-THA were 2.3% and 5.5-6.0%, respectively. These results were comparable to the reported outcome of primary or revision, fixed-bearing THA.(1, 38, 39, 60, 73, 98, 108, 183, 184) In primary fixed-bearing THA, the mid-term and long-term revision rate ranged from 1.2-4.0% and 12.1-14.3%, respectively.(1, 38, 60, 73, 98, 108, 183) In revision fixed-bearing THA, the mid-term and long-term revision rates can be up to 5.3-13% and 27-45%, respectively.(39, 184)

This meta-analysis revealed promising mid-term outcomes and a reduction in dislocation rate, but the long-term implant survival of modern DM-THA is still lacking. In addition, the regression analysis showed that revision THA procedures, younger age and female patients were associated with a higher risk of implant failure. Younger patients have been established as a risk factor for failure after primary THAs. However, whether female sex is a risk factor remains controversial.(185-188) This can be attributed to the representativeness of the study cohort, follow-up duration and type of implant. Although female patients have been associated with increased risk of dislocation, aseptic loosening, periprosthetic fracture and overall implant failure after primary THA(187, 188), the same was not seen in DM-THA aside from overall implant failure. Potential confounders and inadequate follow-up duration are important considerations when interpreting this result.

We should recognize several limitations. First, we included only studies written in English. In addition, due to the nature of our research question, the level of evidence of the included studies was low (III or IV). Furthermore, we included studies that reported outcome of modern DM (the 2nd and 3rd generation) implants over a time span of 12 years between 2008 to 2020. We could only analyze factors that were clearly described in the studies, including age, sex, surgical approach, BMI and indication for hip arthroplasty. Factors such as surgeons’ experience, patient activity level or implant designs could have affected the outcome but were unavailable could not be analyzed. Nonetheless, this review provides an updated information about the outcome of modern DM implants and factors that might affect the outcome.

Conclusions

In conclusion, the mid-term implant survival of modern dual-mobility designs was satisfactory. Aseptic loosening continued to be the most common failure mode after DM-THA. Younger age and female sex were correlated with implant failure.

List Of Abbreviations

Dual mobility (DM); total hip arthroplasty (THA); body mass index (BMI); intra-prosthetic dislocation (IPD); Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA); confidence interval (CI); Comprehensive Meta-Analysis (CMA); ultra-high molecular weight polyethylene (UHMWPE); highly cross-linked polyethylene (HXLPE); polyethylene (PE); cobalt-chromium (CoCr); advance local tissue reaction (ALRT)
Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and materials

All data generated or analysed during this study are included in this published article [and its supplementary information files]

Competing interests

The authors declare that they have no competing interests

Funding

No funding

Authors’ contributions

FYP and SWT were responsible for conception and design, publication screening, acquisition of data, analysis and interpretation, and drafting and revising the manuscript. HHM and TFAC were initial analysis and prepared tables. TWH and KCH prepared figures. CFC and WMC were responsible for reviewing and revising the manuscript. All authors were involved with interpretation of the data. All authors discussed the results and commented on the manuscript. The author(s) read and approved the final manuscript.

Acknowledgements

Not applicable

Authors’ information

1Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan; 2Department of Orthopaedics, School of Medicine, National Yang-Ming University, Taipei, Taiwan; 3Chang Gung University College of Medicine, Taoyuan, Taiwan; 4Department of Orthopaedic Surgery, Chang-Gung Memorial Hospital, Chiayi, Taiwan

References

1. American Joint Replacement Registry. 2019 Sixth AJRR Annual Report on Hip and Knee Arthroplasty Data. 2019;http://connect.ajrr.net/2019-ajrr-annual-report Accessed September 13, 2020.
2. Bozic KJ, Kurtz SM, Lau E, Ong K, Vail TP, Berry DJ. The epidemiology of revision total hip arthroplasty in the United States. The Journal of bone and joint surgery American volume. 2009;91(1):128-33.
3. Berry DJ, von Knoch M, Schleck CD, Harmsen WS. Effect of femoral head diameter and operative approach on risk of dislocation after primary total hip arthroplasty. The Journal of bone and joint surgery American volume. 2005;87(11):2456-63.
4. Parvizi J, Picinic E, Sharkey PF. Revision total hip arthroplasty for instability: surgical techniques and principles. The Journal of bone and joint surgery American volume. 2008;90(5):1134-42.
5. Berend KR, Sporer SM, Sierra RJ, Glassman AH, Morris MJ. Achieving stability and lower-limb length in total hip arthroplasty. The Journal of bone and joint surgery American volume. 2010;92(16):2737-52.
6. Parvizi J, Picinic E, Sharkey PF. Revision total hip arthroplasty for instability: surgical techniques and principles. Instr Course Lect. 2009;58:183-91.
7. Wetters NG, Murray TG, Moric M, Sporer SM, Paprosky WG, Della Valle CJ. Risk factors for dislocation after revision total hip arthroplasty. Clinical orthopaedics and related research. 2013;471(2):410-6.
8. Delaunay C, Hamadouche M, Girard J, Duhamel A, So FG. What are the causes for failures of primary hip arthroplasties in France? Clinical orthopaedics and related research. 2013;471(12):3863-9.
9. Newington DP, Bannister GC, Fordyce M. Primary total hip replacement in patients over 80 years of age. The Journal of bone and joint surgery British volume. 1990;72(3):450-2.
10. Woolson ST, Rahimtoola ZO. Risk factors for dislocation during the first 3 months after primary total hip replacement. J Arthroplasty. 1999;14(6):662-8.
11. Davis AM, Wood AM, Keenan AC, Brenkel IJ, Ballantyne JA. Does body mass index affect clinical outcome post-operatively and at five years after primary unilateral total hip replacement performed for osteoarthritis? A multivariate analysis of prospective data. The Journal of bone and joint...
12. Kim Y, Morshed S, Joseph T, Bozic K, Ries MD. Clinical impact of obesity on stability following revision total hip arthroplasty. Clinical orthopaedics and related research. 2006;453:142-6.

13. Padgett DE, Warashina H. The unstable total hip replacement. Clinical orthopaedics and related research. 2004(420):72-9.

14. Patel PD, Potts A, Froimson MI. The dislocating hip arthroplasty: prevention and treatment. J Arthroplasty. 2007;22(4 Suppl 1):86-90.

15. Miller LE, Gondusky JS, Kamath AF, Boettner F, Wright J, Bhattacharyya S. Influence of surgical approach on complication risk in primary total hip arthroplasty. Acta Orthop. 2018;89(3):289-94.

16. Raphael BS, Dines JS, Akerman M, Root L. Long-term followup of total hip arthroplasty in patients with cerebral palsy. Clinical orthopaedics and related research. 2010;468(7):1845-54.

17. Schroeder K, Hauck C, Wiedenhofer B, Braatz F, Aldinger PR. Long-term results of hip arthroplasty in ambulatory patients with cerebral palsy. International orthopaedics. 2010;34(3):335-9.

18. Bourne RB, Mehin R. The dislocating hip: what to do, what to do. J Arthroplasty. 2004;19(4 Suppl 1):111-4.

19. Bousquet G, Argenson C, Godeneche JL, Cisterne JP, Gazielly DF, Girardin P, et al. [Recovery after aseptic loosening of cemented total hip arthroplasties with Bousquet's cementless prosthesis. Apropos of 136 cases]. Rev Chir Orthop Reparatrice Appar Mot. 1986;72 Suppl 2:70-4.

20. Charnley J. The long-term results of low-friction arthroplasty of the hip performed as a primary intervention. The Journal of bone and joint surgery British volume. 1972;54(1):61-76.

21. McKee GK, Watson-Farrar J. Replacement of arthritic hips by the McKee-Farrar prosthesis. The Journal of bone and joint surgery British volume. 1966;48(2):245-59.

22. Howie DW, Holubowycz OT, Middleton R, Large Articulation Study G. Large femoral heads decrease the incidence of dislocation after total hip arthroplasty: a randomized controlled trial. The Journal of bone and joint surgery American volume. 2012;94(12):1095-102.

23. Cooper HJ, Della Valle CJ. Large diameter femoral heads: is bigger always better? Bone Joint J. 2014;96-B(11 Supple A):23-6.

24. Farizon F, de Lavision R, Azoulai JJ, Bousquet G. Results with a cementless alumina-coated cup with dual mobility. A twelve-year follow-up study. International orthopaedics. 1998;22(4):219-24.

25. Philippot R, Farizon F, Camilleri JP, Boyer B, Derhi G, Bonnan J, et al. Survival of cementless dual mobility socket with a mean 17 years follow-up. Rev Chir Orthop Reparatrice Appar Mot. 2008;94(8):e23-7.

26. Boyer B, Philippot R, Geringer J, Farizon F. Primary total hip arthroplasty with dual mobility socket to prevent dislocation: a 22-year follow-up of 240 hips. International orthopaedics. 2012;36(3):511-8.

27. Aubriot JH, Lesimple P, Leclercq S. [Study of Bousquet's non-cemented acetabular implant in 100 hybrid total hip prostheses (Charnley type cemented femoral component). Average 5-year follow-up]. Acta Orthop Belg. 1993;59 Suppl 1:267-71.

28. Vielpeau C, Lebel B, Ardouin L, Burdin G, Lautridou C. The dual mobility socket concept: experience with 668 cases. International orthopaedics. 2011;35(2):225-30.

29. Neri T, Philippot R, Klasan A, Putnis S, Leie M, Boyer B, et al. Dual mobility acetabular cups for total hip arthroplasty: advantages and drawbacks. Expert Rev Med Devices. 2018;15(11):835-45.

30. Philippot R, Boyer B, Farizon F. Intraprosthetic dislocation: a specific complication of the dual-mobility system. Clinical orthopaedics and related research. 2013;471(3):965-70.

31. Massin P, Orain V, Philippot R, Farizon F, Fessy MH. Fixation failures of dual mobility cups: a mid-term study of 2601 hip replacements. Clinical orthopaedics and related research. 2012;470(7):1932-40.

32. Aslanian T. All dual mobility cups are not the same. International orthopaedics. 2017;41(3):573-81.

33. Callary SA, Field JR, Campbell DG. Low wear of a second-generation highly crosslinked polyethylene liner: a 5-year radiostereometric analysis study. Clinical orthopaedics and related research. 2013;471(11):3596-600.

34. Campbell DG, Field JR, Callary SA. Second-generation highly cross-linked X3 polyethylene wear: a preliminary radiostereometric analysis study. Clinical orthopaedics and related research. 2010;468(10):2704-9.

35. You D, Sepehr A, Kooner S, Krzyzaniak H, Johal H, Duffy P, et al. Outcomes of total hip arthroplasty using dual mobility components in patients with a femoral neck fracture. Bone Joint J. 2020;102-B(7):811-21.

36. Romagnoli M, Grassi A, Costa GG, Lazaro LE, Lo Presti M, Zaffagnini S. The efficacy of dual-mobility cup in preventing dislocation after total hip arthroplasty: a systematic review and meta-analysis of comparative studies. International orthopaedics. 2019;43(5):1071-82.

37. Reina N, Pareek A, Krych AJ, Pagnano MW, Berry DJ, Abdel MP. Dual-Mobility Constructs in Primary and Revision Total Hip Arthroplasty: A Systematic Review of Comparative Studies. J Arthroplasty. 2019;34(3):594-603.

38. Jonker RC, van der Wal BCH, Vogely HC, Parratte S, Castelein RM, et al. Can dual mobility cups prevent dislocation without increasing revision rates in primary total hip arthroplasty? A systematic review. Orthopaedics & traumatology, surgery & research : OTSR. 2020;106(3):509-17.

39. Levin JM, Sultan AA, O’Donnell JA, Soodi N, Khlopas A, Piuzzi NS, et al. Modern Dual-Mobility Cups in Revision Total Hip Arthroplasty: A Systematic Review and Meta-Analysis. J Arthroplasty. 2018;33(12):3793-800.

40. Darrith B, Courtney PM, Della Valle CJ. Outcomes of dual mobility components in total hip arthroplasty: a systematic review of the literature. Bone Joint J. 2018;100-B(1):11-9.
41. Klement C, Smith EJ, Oganesyan R, Limmahakhun S, Fitz D, Kwon YM. Outcome of Dual Mobility Constructs for Adverse Local Tissue Reaction Associated Abductor Deficiency in Revision Total Hip Arthroplasty. J Arthroplasty. 2020.

42. Dubin J, Huang RC, Muskat A, Sharpe K, Malkani AL, Mont M, et al. Five-Year Follow-Up of Clinical Outcomes with an Anatomic Dual-Mobility Acetabular System: A Multicenter Study. Arthroplast Today. 2020;6(3):543-7.

43. Ait Mokhtar M. Postero-posterolateral approach in total hip arthroplasty. International orthopaedics. 2020.

44. Abdel MP, Miller LE, Hull SA, Coppolecchia AB, Hanssen AD, Pagnano MW. Cost Analysis of Dual-Mobility Constructions in Revision Total Hip Arthroplasty: A European Payer Perspective. Orthopedics. 2020;43(4):250-5.

45. Schmidt A, Batailler C, Fary C, Servien E, Lustig S. Dual Mobility Cups in Revision Total Hip Arthroplasty: Efficient Strategy to Decrease Dislocation Risk. J Arthroplasty. 2020;35(2):500-7.

46. de l'Escaloipier N, Dumaine V, Aubeger G, Babinet A, Courpied JP, Anract P, et al. Dual mobility constructs in revision total hip arthroplasty: survivorship analysis in recurrent dislocation versus other indications at three to twelve-year follow-up. International orthopaedics. 2020;44(2):253-60.

47. Civinini R, Cozzi Lepi A, Carulli C, Matassi F, Villano M, Innocenti M. Patients Following Revision Total Hip Arthroplasty With Modular Dual Mobility Components and Cobalt-Chromium Inner Metal Head are at Risk of Increased Serum Metal Ion Levels. J Arthroplasty. 2020;35(6S):S294-S8.

48. Favreau H, Ehlinger M, Adam F, Bonnomet F. Total hip arthroplasty with exclusive use of dual-mobility cup after failure of internal fixation in trochanteric fracture. Orthopaedics & traumatology, surgery & research : OTSR. 2020;106(4):645-9.

49. Rashed RAM, Seenoaks H, Choudry QA, Kasem MS, Elkhadrawe TA, Eldakhakhny MM. Comparison of functional outcome of cemented total hip replacement versus cemented dual-mobility cup total hip replacement for the management of displaced femoral neck fractures in the active elderly patients. Hip Int. 2020;112070020910414.

50. Nessler JM, Malkani AL, Sachdeva S, Nessler JP, Westrich G, Harwin SF, et al. Use of dual mobility cups in patients undergoing primary total hip arthroplasty with prior ilumbar spine fusion. International orthopaedics. 2020;44(5):857-62.

51. Dubin JA, Westrich GH. Lack of early dislocation for dual mobility vs. fixed bearing total hip arthroplasty: A multi-center analysis of comparable cohorts. J Orthop. 2020;21:1-5.

52. Tabori-Jensen S, Mosegaard SB, Hansen TB, Stilling M. Inferior stabilization of cementless compared with cemented dual-mobility cups in elderly osteoarthritis patients: a randomized controlled radiostereometry study on 60 patients with 2 years’ follow-up. Acta Orthop. 2020;91(3):246-53.

53. Hoggett L, Cross C, Helm A. Acetabular revision using a dual mobility cup as treatment for dislocation in Charnley total hip arthroplasty. Bone Joint J. 2020;102-B(4):423-5.

54. Li WT, Kozzik Z, Sherman M, Restrepo C, Smith EB, Courtney PM. Dual Mobility Bearing Articulations Result in Lower Rates of Dislocation After Revision Total Hip Arthroplasty. The Journal of the American Academy of Orthopaedic Surgeons. 2019.

55. Jones CW, De Martino I, D’Apolito R, Nocon AA, Sculco PK, Sculco TP. The use of dual-mobility bearings in patients at high risk of dislocation. Bone Joint J. 2019;101-B(1_Supple_A):41-5.

56. Huang RC, Malkani AL, Harwin SF, Hozack WJ, Mont MA, Higuera-Rueda CA, et al. Multicenter Evaluation of a Modular Dual Mobility Construct for Revision Total Hip Arthroplasty. J Arthroplasty. 2019;34(7S):S287-S91.

57. Dikmen G, Ozden VE, Karaytug K, Tozun R. Dual-mobility cups in revision acetabular reconstructions: Short-term outcomes in high-risk patients for instability. Acta Orthop Traumatol Turc. 2019;53(5):329-33.

58. Cypres A, Fiquet A, Girardin P, Fitch D, Bauchu P, Bonnard O, et al. Long-term outcomes of a dual-mobility cup and cementless triple-taper femoral stem combination in total hip replacement: a multicenter retrospective analysis. J Orthop Surg Res. 2019;14(1):376.

59. Boulat S, Neri T, Boyer B, Philippon R, Farizon F. Dual mobility cups in total hip arthroplasty after failed internal fixation of proximal femoral fractures. Orthopaedics & traumatology, surgery & research : OTSR. 2019;105(3):491-5.

60. Bloemheuvel EM, van Steenbergen LN, Swierstra BA. Dual mobility cups in primary total hip arthroplasties: trend over time in use, patient characteristics, and mid-term revision in 3,038 cases in the Dutch Arthroplasty Register (2007-2016). Acta Orthop. 2019;90(1):11-4.

61. Bloemheuvel EM, Steenbergen LNV, Swierstra BA. Lower 5-year cup re-revision rate for dual mobility cups compared with unipolar cups: report of 15,922 cup revision cases in the Dutch Arthroplasty Register (2007-2016). Acta Orthop. 2019;90(4):338-41.

62. Assi C, Barakat H, Mansour J, Samaha C, Yammine K. Primary total hip arthroplasty: mid-term outcomes of dual-mobility cups in patients at high risk of dislocation. Hip Int. 2019;1120700019889031.

63. Addona JL, Gu A, De Martino I, Malhais MA, Sculco TP, Sculco PK. High Rate of Early Intraprosthetic Dislocations of Dual Mobility Implants: A Single Surgeon Series of Primary and Revision Total Hip Replacements. J Arthroplasty. 2019;34(11):2793-8.

64. Chalmers BP, Mangold DG, Hanssen AD, Pagnano MW, Trousdale RT, Abdel MP. Uniformly low serum cobalt levels after modular dual-mobility total hip arthroplasties with ceramic heads: a prospective study in high-risk patients. Bone Joint J. 2019;101-B(6_Supple_B):57-61.

65. Dubin JA, Westrich GH. Anatomic dual mobility compared to modular dual mobility in primary total hip arthroplasty: a matched cohort study. Arthroplast Today. 2019;5(4):509-14.

66. Schmidt-Braekling T, Sieber D, Gosheger G, Theil JC, Moellenbeck B, Andreou D, et al. Dislocation rates with combinations of anti-protrusio cages and dual mobility cups in revision cases: Are we safe? PloS one. 2019;14(2):e0212072.

67. Markel DC, Bou-Akil T, Rossi MD, Pizzimenti N, Wu B, Ren W. Blood metal levels, leucocyte profiles, and cytokine profiles in patients with a modular dual-mobility hip prosthesis: early results from a prospective cohort study. Bone Joint J. 2019;101-B(9):1035-41.
68. Colacchio ND, Wooten CJ, Martin JR, Masonis JL, Fehring TK. Dual Mobility for Monoblock Metal-on-Metal Revision Is It Safe? J Arthroplasty. 2020;35(2):508-12.

69. Laende EK, Richardson CG, Dunbar MJ. Migration and Wear of a Dual Mobility Acetabular Construct at 3 Years Measured by Radiostereometric Analysis. J Arthroplasty. 2020;35(4):1109-16.

70. Ukaj S, Zhuri O, Ukaj F, Podvorica V, Grezda K, Caton J, et al. Dual Mobility Acetabular Cup Versus Hemiarthroplasty in Treatment of Displaced Femoral Neck Fractures in Elderly Patients: Comparative Study and Results at Minimum 3-Year Follow-up. Geriatr Orthop Surg Rehabil. 2019;10:2151459319848610.

71. Nonne D, Sanna F, Bardelli A, Milano P, Rivera F. Use of a Dual mobility cup to prevent hip early arthroplasty dislocation in patients at high falls risk. Injury. 2019;50 Suppl 4:S26-S9.

72. Nam D, Salih R, Nahhas CR, Barrack RL, Nunley RM. Is a modular dual mobility acetabulum a viable option for the young, active total hip arthroplasty patient? Bone Joint J. 2019;101(4):365-71.

73. Kreipe R, Rogmark C, Pedersen AB, Kanholm J, Hallan G, Havelin LI, et al. Dual Mobility Cups: Effect on Risk of Revision of Primary Total Hip Arthroplasty Due to Osteoarthritis: A Matched Population-Based Study Using the Nordic Arthroplasty Register Association Database. The Journal of bone and joint surgery American volume. 2019;101(2):169-76.

74. Jobory A, Kanholm J, Overgaard S, Becic Pedersen A, Hallan G, Gjertsen JE, et al. Reduced Revision Risk for Dual-Mobility Cup in Total Hip Replacement Due to Hip Fracture: A Matched-Pair Analysis of 9,040 Cases from the Nordic Arthroplasty Register Association (NARA). The Journal of bone and joint surgery American volume. 2019;101(14):1278-85.

75. Iorio R, Iannotti F, Maizza D, Speranza A, Massafra C, Guzzini M, et al. Is dual cup mobility better than hemiarthroplasty in patients with dementia and femoral neck fracture? A randomized controlled trial. SICOT J. 2019;5:38.

76. Gaillard R, Kenney R, Delalande JL, Batailler C, Lustig S. Ten- to 16-Year Results of a Modern Cementless Dual-Mobility Acetabular Implant in Primary Total Hip Arthroplasty. J Arthroplasty. 2019;34(11):2704-10.

77. Fessy MH, Jacquot L, Rollier JC, Chouteau J, Ait-Si-Selmi T, Bothorel H, et al. Midterm Clinical and Radiographic Outcomes of a Contemporary Monoblock Dual-Mobility Cup in Uncemented Total Hip Arthroplasty. J Arthroplasty. 2019;34(12):2983-91.

78. Fahad S, Nawaz Khan MZ, Aqueel T, Hashmi P. Comparison of bipolar hemiarthroplasty and total hip arthroplasty with dual mobility cup in the treatment of old active patients with displaced neck of femur fracture: A retrospective cohort study. Ann Med Surg (Lond). 2019;45:62-5.

79. Canton G, Moghnie A, Cleva M, Kostoris FM, Murena L. Dual mobility total hip arthroplasty in the treatment of femoral neck fractures: a retrospective evaluation at mid-term follow-up. Acta Biomed. 2019;90(1-S):98-103.

80. Assi CC, Barakat HB, Caton JH, Najjar EN, Samaha CT, Yammine KF. Mortality Rate and Mid-Term Outcomes of Total Hip Arthroplasty Using Dual Mobility Cups for the Treatment of Femoral Neck Fractures in a Middle Eastern Population. J Arthroplasty. 2019;34(2):337-3.

81. Harwin SF, Sultan AA, Khlopsas A, Chughtai M, Sodhi N, Piuzzi NS, et al. Mid-Term Outcomes of Dual Mobility Acetabular Cups for Revision Total Hip Arthroplasty. J Arthroplasty. 2018;33(5):1494-500.

82. Hartzler MA, Abdel MP, Sculco PK, Taunton MJ, Pagnano MW, Hanssen AD. Otto Aufranc Award: Dual-mobility Constructs in Revision THA Reduced Dislocation, Rerevision, and Reoperation Compared With Large Femoral Heads. Clinical orthopaedics and related research. 2018;476(2):293-301.

83. Diamond OJ, Konan S, Greidanus NV, Garbuz DS, Duncan CP, Masri BS. An Early Report of the Use of a Modular Dual Mobility Articulation in Revision Acetabular Reconstruction. J Arthroplasty. 2018;33(9):2961-6.

84. Hwang JH, Kim SM, Oh KJ, Kim Y. Dislocations after use of dual-mobility cups in cementless primary total hip arthroplasty: prospective multicentre series. International orthopaedics. 2018;42(4):761-7.

85. Kavcic G, Mirt P, Bedencic K. Good mid-term clinical results of a cemented dual mobility cup: a single-centre experience. Hip Int. 2018;28(1):59-62.

86. Ozden VE, Dikmen G, Bekas B, Tozun R. Dual-mobility bearings for patients with abductor-trochanteric complex insufficiency. Hip Int. 2018;28(5):491-7.

87. Chalmers BP, Pallante GD, Taunton MJ, Sierras RJ, Trousdale RT. Can Dislocation of a Constrained Liner Be Salvaged With Dual-mobility Constructs in Revision THA? Clinical orthopaedics and related research. 2018;476(2):305-12.

88. Assi C, Caton J, Fawaz W, Samaha C, Yammine K. Revision total hip arthroplasty with a Kerboull plate: comparative outcomes using standard versus dual mobility cups. International orthopaedics. 2019;43(10):2245-51.

89. Assi C, Their N, Samaha C, Khouzamian P, Yammine K. Early results of total hip arthroplasty using dual-mobility cup in patients with osteonecrosis of the femoral head. SICOT J. 2018;4:4.

90. Stucinskas J, Kalvaitis T, Smalys A, Robertsson O, Tarasevicius S. Comparison of dual mobility cup and other surgical constructs used for three hundred and sixty two first time hip revisions due to recurrent dislocations: five year results from Lithuanian arthroplasty register. International orthopaedics. 2018;42(5):1015-20.

91. Taboja-Sensen S, Hansen TB, Bowling S, Aalund P, Homilus M, Stilling M. Good function and high patient satisfaction at mean 2.8 years after dual mobility THA following femoral neck fracture: a cross-sectional study of 124 patients. Clin Interv Aging. 2018;13:615-21.

92. Taboja-Sensen S, Hansen TB, Stilling M. Low dislocation rate of Saturne(R)/Avantage(R) dual-mobility THA after displaced femoral neck fracture: a cohort study of 966 hips with a minimum 1.6-year follow-up. Arch Orthop Trauma Surg. 2019;139(5):605-12.

93. Rashed RA, Sevenoaks H, Shabaan AM, Choudry QA, Hammad AS, Kasem MS, et al. Functional outcome and health related quality of life after dual mobility cup total hip replacement for displaced femoral neck fractures in middle aged Egyptian patients. Injury. 2018;49(3):667-72.
94. Lange JK, Spiro SK, Westrich GH. Utilizing Dual Mobility Components for First-Time Revision Total Hip Arthroplasty for Instability. J Arthroplasty. 2018;33(2):505-9.

95. Kim YT, Yoo JH, Kim MK, Kim S, Hwang J. Dual mobility hip arthroplasty provides better outcomes compared to hemiarthroplasty for displaced femoral neck fractures: a retrospective comparative clinical study. International orthopaedics. 2018;42(6):1241-6.

96. Marie-Hardy L, O’Laughlin P, Bonnin M, Ait Si Selmi T. Are dual mobility cups associated with increased metal ions in the blood? Clinical study of nickel and chromium levels with 29 months’ follow-up. Orthopaedics & traumaology, surgery & research : OTSR. 2018;104(8):1179-82.

97. Boukebous B, Boutroux P, Zahi R, Azmy C, Guillou P. Comparison of dual mobility total hip arthroplasty and bipolar arthroplasty for femoral neck fractures: A retrospective case-control study of 199 hips. Orthopaedics & traumaology, surgery & research : OTSR. 2018;104(3):369-75.

98. Tarasevicius S, Smailys A, Grigaitis K, Robertsson O, Stucinskas J. Short-term outcome after total hip arthroplasty using dual-mobility cup: report from Lithuanian Arthroplasty Register. International orthopaedics. 2017;41(3):595-8.

99. Sutter EG, McClellan TR, Attarian DE, Bolognesi MP, Lachiwicz PF, Wellman SS. Outcomes of Modular Dual Mobility Acetabular Components in Revision Total Hip Arthroplasty. J Arthroplasty. 2017;32(9S):S220-S4.

100. Lebeau N, Bayle M, Belhaouane R, Chelli M, Havet E, Brunschweiler B, et al. Total hip arthroplasty revision by dual-mobility acetabular cup cemented in a metal reinforcement: A 62 case series at a minimum 5 years’ follow-up. Orthopaedics & traumaology, surgery & research : OTSR. 2017;103(5):679-84.

101. Henawy AT, Abdel Badie A. Dual mobility total hip arthroplasty in hemiplegic patients. SICOT J. 2017;3:40.

102. Chalmers BP, Perry KL, Hanssen AD, Pagnano MW, Abdel MP. Conversion of Hip Hemiarthroplasty to Total Hip Arthroplasty Utilizing a Dual-Mobility Construct Compared With Large Femoral Heads. J Arthroplasty. 2017;32(10):3071-5.

103. Ferreira A, Prudhon JL, Verdier R, Puch JM, Descamps L, Dehri G, et al. Contemporary dual-mobility cup regional and private register: methodology and results. International orthopaedics. 2017;41(3):439-45.

104. Kasparek MF, Renner L, Faschingbauer M, Waldstein W, Rueckl K, Boettner F. Salvage of a monoblock metal-on-metal cup using a dual mobility liner: a two-year MRI follow-up study. International orthopaedics. 2018;42(5):1035-41.

105. Ochi H, Baba T, Homma Y, Matsumoto M, Watari T, Ozaki Y, et al. Total hip arthroplasty via the direct anterior approach with a dual mobility cup for displaced femoral neck fracture in patients with a high risk of dislocation. SICOT J. 2017;3:56.

106. Graversen AE, Jakobsen SS, Kristensen PK, Thilleman TM. No dislocations after primary hip arthroplasty with the dual mobility cup in displaced femoral neck fracture in patients with dementia. A one-year follow-up in 20 patients. SICOT J. 2017;3:9.

107. Perrin A, Saab M, Putman S, Benad K, Drumez E, Chantelot C. The benefit of the systematic revision of the acetabular implant in favor of a dual mobility articulation during the treatment of periprosthetic fractures of the femur: a 49 cases prospective comparative study. European journal of orthopaedic surgery & traumaology : orthopedic trauma surgery. 2018;28(2):239-46.

108. Rowan FE, Salvatore AJ, Lange JK, Westrich GH. Dual-Mobility vs Fixed-Bearing Total Hip Arthroplasty in Patients Under 55 Years of Age: A Single-Institution, Matched-Cohort Analysis. J Arthroplasty. 2017;32(10):3076-81.

109. Spaans EA, Koenraadt KLM, Wagenmakers R, van den Hout J, Te Stroet MAJ, Bolder SBT. Midterm survival analysis of a cemented dual-mobility cup combined with bone impaction grafting in 102 revision hip arthroplasties. Hip Int. 2018;28(2):161-7.

110. Batailler C, Fary C, Batailler P, Servien E, Neyret P, Lustig S. Total hip arthroplasty using direct anterior approach and dual mobility cup: safe and efficient strategy against post-operative dislocation. International orthopaedics. 2017;41(3):499-506.

111. Nam D, Salih R, Brown K, Nunley RM, Barrack RL. Metal Ion Levels in Young, Active Patients Receiving a Modular, Dual Mobility Total Hip Arthroplasty. J Arthroplasty. 2017;32(5):1581-5.

112. Morin C, Ursu C, Delecourt C. Total hip replacement in young non-ambulatory cerebral palsy patients. Orthopaedics & traumaology, surgery & research : OTSR. 2016;102(7):845-9.

113. Epinette JA, Harwin SF, Rowan FE, Tracol R, Mont MA, Chughtai M, et al. Early experience with dual mobility acetabular systems featuring highly cross-linked polyethylene liners for primary hip arthroplasty in patients under fifty years of age: an international multi-centre preliminary study. International orthopaedics. 2017;41(3):543-50.

114. Griffin XL, Parsons N, Achten J, Costa ML. A randomised feasibility study comparing total hip arthroplasty with and without dual mobility acetabular component in the treatment of displaced intracapsular fractures of the proximal femur: The Warwick Hip Trauma Evaluation Two: WHiTE Two. Bone Joint J. 2016;98-B(11):1431-5.

115. Carulli C, Macera A, Matassi F, Civenini R, Innocenti M. The use of a dual mobility cup in the management of recurrent dislocations of hip hemiarthroplasty. Journal of orthopaedics and traumaology : official journal of the Italian Society of Orthopaedics and Traumatology. 2016;17(2):131-6.

116. Harris WH. Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. The Journal of bone and joint surgery American volume. 1969;51(4):737-55.

117. d'Aubigné RM, Postel M. The classic: functional results of hip arthroplasty with acrylic prosthesis. 1954. Clinical orthopaedics and related research. 2009;467(1):7-27.

118. NIH. Quality assessment tool for case series studies. National Institutes of Health Web site. 2020;https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools Accessed September 13, 2020.
119. Neil Wheelton A, Myatt D, Helm AT. Outcomes for cemented dual mobility cup to treat recurrent instability; A UK case series. J Orthop. 2019;16(3):220-3.

120. Viste A, Desmarchelier R, Fessy MH. Dual mobility cups in revision total hip arthroplasty. International orthopaedics. 2017;41(3):535-42.

121. Puch JM, Derhi G, Descamps L, Verdiier R, Caton JH. Dual-mobility cup in total hip arthroplasty in patients less than fifty five years and over ten years of follow-up : A prospective and comparative series. International orthopaedics. 2017;41(3):475-80.

122. Martz P, Maczynski A, Elsair S, Labattut L, Viard B, Baulot E. Total hip arthroplasty with dual mobility cup in osteonecrosis of the femoral head in young patients: over ten years of follow-up. International orthopaedics. 2017;41(3):605-10.

123. Hernigou P, Auregan JC, Potage D, Roubineau F, Flouzat Lachaniette CH, Dubory A. Dual-mobility implants prevent hip dislocation following hip revision in obese patients. International orthopaedics. 2017;41(3):469-73.

124. Hamadouche M, Ropers M, Rodaix C, Musset T, Gaucher F, Biau D, et al. Five to thirteen year results of a cemented dual mobility socket to treat recurrent dislocation. International orthopaedics. 2017;41(3):513-9.

125. Gonzalez AI, Bartalone P, Lubbeke A, Dupuis Lozeron E, Peter R, Hoffmeyer P, et al. Comparison of dual-mobility cup and unipolar cup for prevention of dislocation after revision total hip arthroplasty. Acta Orthop. 2017;88(1):18-23.

126. Nich C, Vandenbussche E, Augereau B, Sadaka J. Do Dual-Mobility Cups Reduce the Risk of Dislocation in Total Hip Arthroplasty for Fractured Neck of Femur in Patients Aged Older Than 75 Years? J Arthroplasty. 2016;31(6):1256-60.

127. Jauregui JJ, Pierce TP, Elmallah RK, Cherian JJ, Delanois RE, Mont MA. Dual mobility cups: an effective prosthesis in revision total hip arthroplasties for preventing dislocations. Hip Int. 2016;26(1):57-61.

128. Homma Y, Baba T, Kobayashi H, Desroches A, Ochi H, Ozaki Y, et al. Benefit and risk in short term after total hip arthroplasty by direct anterior approach combined with dual mobility cup. European journal of orthopaedic surgery & traumatology : orthopedie traumatologie. 2016;26(6):619-24.

129. Haughom BD, Plummer DR, Moric M, Della Valle CJ. Is There a Benefit to Head Size Greater Than 36 mm in Total Hip Arthroplasty? J Arthroplasty. 2016;31(1):152-5.

130. Chuhtai M, Mistry JB, Diedrich AM, Jauregui JJ, Elmallah RK, Bonutti PM, et al. Low Frequency of Early Complications With Dual-mobility Acetabular Cups in Cementless Primary THA. Clinical orthopaedics and related research. 2016;474(10):2181-7.

131. Wegryn J, Tebaa E, Jacquel A, Carret JP, Beji-Hugues J, Pibarot V. Can Dual Mobility Cups prevent Dislocation in All Situations After Revision Total Hip Arthroplasty? J Arthroplasty. 2015;30(4):631-40.

132. Vigdorchik JM, D’Apuzzo MR, Markel DC, Malkani AL, Raterman S, Sharpe KP, et al. Lack of early dislocation following total hip arthroplasty with a new dual mobility acetabular design. Hip Int. 2015;25(1):34-8.

133. Vermeersch T, Viste A, Desmarchelier R, Fessy MH. Prospective longitudinal study of one hundred patients with total hip arthroplasty using a second-generation cementless dual-mobility cup. International orthopaedics. 2015;39(11):2097-101.

134. van Heumen M, Heesterbeek PJ, Swierstra BA, Van Hellemontd GG, Goosen JH. Dual mobility acetabular component in revision total hip arthroplasty for persistent dislocation: no dislocations in 50 hips after 1-5 years. Journal of orthopaedics and traumatology : official journal of the Italian Society of Orthopaedics and Traumatology. 2015;16(1):15-20.

135. Simian E, Chatellard R, Druo J, Berhouet J, Rosset P. Dual mobility cup in revision total hip arthroplasty: dislocation rate and survival after 5 years. Orthopaedics & traumatology, surgery & research : OTSR. 2015;101(5):577-81.

136. Mohammed R, Hayward K, Mulay S, Bindi F, Wallace M. Outcomes of dual-mobility acetabular cup for instability in primary and revision total hip arthroplasty. Journal of orthopaedics and traumatology : official journal of the Italian Society of Orthopaedics and Traumatology. 2015;16(1):9-13.

137. Epinette JA. Clinical outcomes, survivorship and adverse events with mobile-bearings versus fixed-bearings in hip arthroplasty-a prospective comparative cohort study of 143 ADM versus 130 trident cups at 2 to 6-year follow-up. J Arthroplasty. 2015;30(2):241-8.

138. Bel JC, Carret JP. Total hip arthroplasty with minimal invasive surgery in elderly patients with neck of femur fractures: our institutional experience. Injury. 2015;46 Suppl 1:S13-7.

139. Wegryn J, Pibarot V, Jacquel A, Carret JP, Beji-Hugues J, Guyen O. Acetabular reconstruction using a Kerboull cross-plate, structural allograft and cemented dual-mobility cup in revision THA at a minimum 5-year follow-up. J Arthroplasty. 2014;29(2):432-7.

140. Prudhon JL, Steffann F, Ferreira A, Verdier R, Ablanian T, Caton J. Cementless dual-mobility cup in total hip arthroplasty revision. International orthopaedics. 2014;38(12):2463-8.

141. Jakobsen T, Kappel A, Hansen F, Krarup N. The dislocating hip replacement - revision with a dual mobility cup in 56 consecutive patients. Open Orthop J. 2014;8:268-71.

142. Epinette JA, Beracassat R, Tracol P, Pagazani G, Vandenbussche E. Are modern dual mobility cups a valuable option in reducing instability after primary hip arthroplasty, even in younger patients? J Arthroplasty. 2014;29(6):1323-8.

143. Caton JH, Prudhon JL, Ferreira A, Ablanian T, Verdier R. A comparative and retrospective study of three hundred and twenty primary Charnley type hip replacements with a minimum follow up of ten years to assess whether a dual mobility cup has a decreased dislocation risk. International orthopaedics. 2014;38(6):1125-9.

144. Bensen AS, Jakobsen T, Krarup N. Dual mobility cup reduces dislocation and re-operation when used to treat displaced femoral neck fractures. International orthopaedics. 2014;38(6):1241-5.
145. Tarasevicius S, Robertsson O, Dobozkinskas P, Wingstrand H. A comparison of outcomes and dislocation rates using dual articulation cups and THA for intracapsular femoral neck fractures. Hip Int. 2013;23(1):22-6.

146. Saragaglia D, Ruatti S, Refaie R. Relevance of a press-fit dual mobility cup to deal with recurrent dislocation of conventional total hip arthroplasty: a 29-case series. European journal of orthopaedic surgery & traumatology : orthopedie traumatologique. 2013;23(4):431-6.

147. Sanders RJ, Swierstra BA, Goosen JH. The use of a dual-mobility concept in total hip arthroplasty patients with spastic disorders: no dislocations in a series of ten cases at mid-term follow-up. Arch Orthop Trauma Surg. 2013;133(7):1011-6.

148. Prudhon JL, Ferreira A, Verdier R. Dual mobility cup: dislocation rate and survivorship at ten years of follow-up. International orthopaedics. 2013;37(12):2345-50.

149. Hamadouche M, Arnould H, Bouxin B. Is a cementless dual mobility socket in primary THA a reasonable option? Clinical orthopaedics and related research. 2012;470(11):3048-53.

150. Hailer NP, Weiss RJ, Stark A, Karhholm J. Dual-mobility cups for revision due to instability are associated with a low rate of re-revisions due to dislocation: 228 patients from the Swedish Hip Arthroplasty Register. Acta Orthop. 2012;83(6):566-71.

151. Cивини, Р, Carulli C, Matassi F, Nistri L, Innocenti M. A dual-mobility cup reduces risk of dislocation in isolated acetabular revisions. Clinical orthopaedics and related research. 2012;470(12):3542-8.

152. Adam P, Philippe R, Ehlinger M, Roche O, Bonnomet F, Mole D, et al. Dual mobility cups hip arthroplasty as a treatment for displaced fracture of the femoral neck in the elderly. A prospective, systematic, multicenter study with specific focus on postoperative dislocation. Orthopaedics & trauma, surgery & research : OTSR. 2012;98(3):296-300.

153. Schneider L, Philippot R, Boyer B, Farizon F. Revision total hip arthroplasty using a reconstruction cage device and a cemented dual mobility cup. Orthopaedics & trauma, surgery & research : OTSR. 2011;97(8):807-13.

154. Bouchet R, Mercier N, Saragaglia D. Posterior approach and dislocation rate: a 213 total hip replacements case-control study comparing the dual mobility cup with a conventional 28-mm metal head/polyethylene prosthesis. Orthopaedics & trauma, surgery & research : OTSR. 2011;97(1):2-7.

155. Tarasevicius S, Busevicius M, Robertsson O, Wingstrand H. Dual mobility cup reduces dislocation rate after arthroplasty for femoral neck fracture. BMC Musculoskelet Disord. 2010;11:175.

156. Hamadouche M, Blau DJ, Hutten D, Musset T, Gaucher F. The use of a cemented dual mobility socket to treat recurrent dislocation. Clinical orthopaedics and related research. 2010;468(12):3248-54.

157. Guyen O, Plbarot V, Vaz G, Chevillotte C, Beji-Hugues J. Use of a dual mobility socket to manage total hip arthroplasty instability. Clinical orthopaedics and related research. 2009;467(2):465-72.

158. Langlais FL, Ropars M, Gaucher F, Musset T, Chaix O. Dual mobility cemented cups have low dislocation rates in THA revisions. Clinical orthopaedics and related research. 2008;466(2):389-95.

159. Goldman AH, Thompson JC, Berry DJ, Sierra RJ. Tripolar Articulations as a "High Stability Bearing" for Revision Total Hip Arthroplasty: Success Rates and Risk Factors for Failure. J Arthroplasty. 2020.

160. Bauchu P, Bonnard O, Cypres A, Fiquet A, Girardin P, Noyer D. The dual-mobility POLARCUP: first results from a multicenter study. Orthopedics. 2008;31(12 Suppl 2).

161. Pattyn C, Audenaert E. Early complications after revision total hip arthroplasty with cemented dual-mobility socket and reinforcement ring. Acta Orthop Belg. 2012;78(3):357-61.

162. Vassukutty NL, Middleton RG, Matthews EC, Young PS, Uzoigwe CE, Minhas TH. The double-mobility acetabular component in revision total hip replacement: the United Kingdom experience. The Journal of bone and joint surgery British volume. 2012;94(5):603-8.

163. Snir N, Park BK, Garofolo G, Marwin SE. Revision of Failed Hip Resurfacing and Large Metal-on-Metal Total Hip Arthroplasty Using Dual-Mobility Components. Orthopedics. 2015;38(6):369-74.

164. Gaudin G, Ferreira A, Gaillard R, Prudhon JL, Caton JH, Lustig S. Equivalent wear performance of dual mobility bearing compared with standard bearing in total hip arthroplasty: in vitro study. International orthopaedics. 2017;41(3):521-7.

165. Geringer J, Boyer B, Farizon F. Understanding the dual mobility concept for total hip arthroplasty. Investigations on a multiscale analysis-highlighting the role of arthrofibrosis. Wear. 2011;271(9):2379-85.

166. Imbert L, Geringer J, Boyer B, Farizon F. Wear analysis of hip explants, dual mobility concept: Comparison of quantitative and qualitative analyses. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology. 2012;226(10):838-53.

167. Boyer B, Neri T, Geringer J, Di Iorio A, Philippot R, Farizon F. Long-term wear of dual mobility total hip replacement cups: explant study. International orthopaedics. 2018;42(7):41-7.

168. Boyer B, Neri T, Geringer J, Di Iorio A, Philippot R, Farizon F. Understanding wear in dual mobility total hip replacement: first generation explant wear patterns. International orthopaedics. 2017;41(3):529-33.

169. Boyer B, Neri T, Di Iorio A, Geringer J, Philippot R, Farizon F. The linear penetration rate is not relevant for evaluating wear of dual mobility cups: an explant study. International orthopaedics. 2017;41(3):599-603.

170. Loving L, Herrera L, Banerjee S, Heffeman C, Nevelos J, Markel DC, et al. Dual mobility bearings withstand loading from steeper cup-inclinations without substantial wear. J Orthop Res. 2015;33(3):398-404.
171. Callary SA, Solomon LB, Holubowycz OT, Campbell DG, Munn Z, Howie DW. Wear of highly crosslinked polyethylene acetabular components. Acta Orthop. 2015;86(2):159-68.

172. Deckard ER, Azzam KA, Meneghini RM. Contemporary Dual Mobility Head Penetration at Five Years: Concern for the Additional Convex Bearing Surface? J Arthroplasty. 2018;33(7S):S280-S4.

173. Australian Orthopaedic Association National Joint Replacement Registry. Annual report 2019. 2019;https://aoanjrr.sahmri.com/annual-reports-2019 Accessed September 13, 2020.

174. National Joint Registry for England W, Northern Ireland, and the Isle of Man. National Joint Registry for England, Wales, Northern Ireland, and the Isle of Man 16th annual report, 2019. 2019;https://reports.njrcentre.org.uk/downloads Accessed September 13, 2020.

175. Tarity TD, Koch CN, Burket JC, Wright TM, Westrich GH. Fretting and Corrosion at the Backside of Modular Cobalt Chromium Acetabular Inserts: A Retrieval Analysis. J Arthroplasty. 2017;32(3):1033-9.

176. Hothi HS, Illo K, Whittaker RK, Eskelinen A, Skinner JA, Hart AJ. Corrosion of Metal Modular Cup Liners. J Arthroplasty. 2015;30(9):1652-6.

177. Kolz JM, Wyles CC, Van Citters DW, Chapman RM, Trousdale RT, Berry DJ. In Vivo Corrosion of Modular Dual-Mobility Implants: A Retrieval Study. J Arthroplasty. 2020.

178. Wiley KF, Ding K, Stoner JA, Teague DC, Yousuf KM. Incidence of pseudotumor and acute lymphocytic vasculitis associated lesion (ALVAL) reactions in metal-on-metal hip artiﬁcations: a meta-analysis. J Arthroplasty. 2013;28(7):1238-45.

179. Matsen Ko LJ, Pollag KE, Yoo JY, Sharkey PF. Serum Metal Ion Levels Following Total Hip Arthroplasty With Modular Dual Mobility Components. J Arthroplasty. 2016;31(1):186-9.

180. D’Apuzzo MR, Koch CN, Esposito CI, Elpers ME, Wright TM, Westrich GH. Assessment of Damage on a Dual Mobility Acetabular System. J Arthroplasty. 2016;31(8):1828-35.

181. Neri T, Boyer B, Geringer J, Di Iorio A, Caton JH, Philippot R, et al. Intraprosthetic dislocation of dual mobility total hip arthroplasty: still occurring? International orthopaedics. 2019;43(5):1097-105.

182. De Martino I, D’Apolito R, Waddell BS, McLawhorn AS, Sculco PK, Sculco TP. Early intraprosthetic dislocation in dual-mobility implants: a systematic review. Arthroplast Today. 2017;3(3):197-202.

183. Evans JT, Evans JP, Walker RW, Blom AW, Whitehouse MR, Sayers A. How long does a hip replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. Lancet. 2019;393(10172):647-54.

184. Van Eecke E, Vanbiervliet J, Dauwe J, Mulier M. Comparison of Constrained Acetabular Components and Dual Mobility Cups in Revision Total Hip Arthroplasty: A Literature Review. Hip Pelvis. 2020;32(2):59-69.

185. Wright EA, Katz JN, Baron JA, Wright RJ, Malchau H, Mahomed N, et al. Risk factors for revision of primary total hip replacement: results from a national case-control study. Arthritis Care Res (Hoboken). 2012;64(12):1879-85.

186. Prokopetz JJ, Losina E, Bliss RL, Wright J, Baron JA, Katz JN. Risk factors for revision of primary total hip arthroplasty: a systematic review. BMC Musculoskelet Disord. 2012;13:251.

187. Inacio MC, Ake CF, Paxton EW, KhatoD M, Wang C, Gross TP, et al. Sex and risk of hip implant failure: assessing total hip arthroplasty outcomes in the United States. JAMA Intern Med. 2013;173(6):435-41.

188. Karachalios T, Komnos G, Koutalos A. Total hip arthroplasty: Survival and modes of failure. EFORT Open Rev. 2018;3(5):232-9.

Tables

Table 1 Characteristics of included studies
Author, Year	Study design	No. of THA procedure	Indications	Mean age(yrs)	Follow up duration (m)	Implant type	A	B	C	D	E	F	G	H									
2020 Tabori-jensen	Prospective series	59	Primary	75	24	1	V	V	V	V	V	V	V	V									
2020 Schmidt	Retrospective series	184	Revision	69	24	2, 3	V	V	V	V	V	V	V	V									
2020 Rashed	Prospective series	31	Primary	66.4	12	4	V	V	V	V	V	V	V	V									
2020 Nessler	Retrospective series	93	Primary	65.5	32.4	5	V	V	V	V	V	V	V	V									
2020 Laende	Retrospective series	27	Primary	63	36	6	V	V	V	V	V	V	V	V									
2020 Klemt	Retrospective series	42	Revision	55	48	1, 5, 6, 10, 13	V	V	V	V	V	V	V	V									
2020 Hoggett	Retrospective series	28	Recurrent dislocation	80	55	3, 7	V	V	V	V	V	V	V	V									
2020 Favreau	Retrospective series	40	Revision	77	54	3	V	V	V	V	V	V	V	V									
2020 Dubin	Retrospective series	664	Primary	61.7	25	5, 6	V	V	V	V	V	V	V	V									
2020 Dubin (Arthroplasty Today)	Retrospective series	142	Primary	67	68.4	6	V	V	V	V	V	V	V	V									
2020 de l'Escalopier	Retrospective series	84	Revision	71	65.3	8, 9	V	V	V	V	V	V	V	V									
2020 Colacchio	Retrospective series	29	Revision	61.4	47	6, 10	V	V	V	V	V	V	V	V									
2020 Civinini	Retrospective series	37	Revision	63.7	61.2	5	V	V	V	V	V	V	V	V									
2020 Ait Mokhtar	Retrospective series	148	Primary	78	38	2	V	V	V	V	V	V	V	V									
2020 Abdel	Retrospective series	126	Revision	66	43.2	5	V	V	V	V	V	V	V	V									
2019 Ukaj	Prospective series	47	Primary	78.1	36	2	V	V	V	V	V	V	V	V									
2019 Tabori-jensen, Arch	Retrospective series	997	Primary	80.5	64.8	1, 11	V	V	V	V	V	V	V	V									
2019 Schmidt-braekling	Retrospective series	77	Revision	68.5	63.6	1, 4	V	V	V	V	V	V	V	V									
2019 Nonne	Retrospective series	60	Primary	87.6	28.3	12	V	V	V	V	V	V	V	V									
2019 Neil Wheelton	Retrospective series	54	Revision	78	22.8	NR	V	V	V	V	V	V	V	V									
2019 Nam	Prospective series	43	Primary	52.6	24	5	V	V	V	V	V	V	V	V									
2019 Markel	Prospective series	21	Primary	61.7	24	5	V	V	V	V	V	V	V	V									
2019 Li	Retrospective series	94	Revision	63.6	37.8	5	V	V	V	V	V	V	V	V									
2019 Kreipke	Retrospective series	2277	Primary	75.5	35.9	1, 11, 13	V	V	V	V	V	V	V	V									
2019 Jones	Retrospective series	151	Primary	82	43.2	6	V	V	V	V	V	V	V	V									
2019 Jobory	Retrospective series	4520	Primary	77	25.2	1, 11, 13	V	V	V	V	V	V	V	V									
2019 Iorio	Retrospective series	30	Primary	82	12	2	V	V	V	V	V	V	V	V									
2019 Huang	Retrospective series	315	Revision	65.8	39.6	5	V	V	V	V	V	V	V	V									
Year	Study Title	Design	Primary/Revision	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10										
------------	------------------------------	--------------	------------------	----	----	----	----	----	----	----	----	----	-----										
2019 Huang	Retrospective series	Primary	107	65.8	39.6	5																	
2019 Gaillard	Retrospective series	Primary	138	68	152.4	11																	
2019 Fessy	Retrospective series	Primary	541	73.6	103.2	3																	
2019 Fahad	Retrospective series	Primary	27	69.3	19	NR																	
2019 Dubin	Retrospective series	Primary	287	67.8	34.3	6																	
2019 Dubin	Retrospective series	Primary	287	67.9	34.3	5																	
2019 Dikmen	Prospective series	Revision	34	66.1	42.24	13																	
2019 Cypres	Retrospective series	Primary	244	63.8	142.8	13																	
2019 Chalmers	Retrospective series	Revision	24	63	48	5																	
2019 Canton	Retrospective series	Primary	31	76.7	67.2	1																	
2019 Boulat	Retrospective series	Primary	33	74	44	3																	
2019 Bloemheuvel	Retrospective series	Primary	3038	70	36	1, 2, 11, 13, 14																	
2019 Bloemheuvel	Retrospective series	Revision	4637	74	72	1, 2, 11, 13, 14																	
2019 Assi (J Arthroplasty)	Retrospective series	Primary	125	78.1	61.2	1, 2																	
2019 Assi (Int Orthop)	Retrospective series	Revision	16	69.2	72.9	NR																	
2019 Assi (Hip Int.)	Retrospective series	Primary	229	62	70	1, 2																	
2019 Addona	Retrospective series	Primary	107	NR	NR	5; 15																	
2019 Addona	Retrospective series	Revision	47	NR	NR	5; 15																	
2018 Tabori-Jensen	Retrospective series	Primary	124	74.7	33.6	11																	
2018 Stucinskas	Retrospective series	Revision	247	72	24	1; 2																	
2018 Spaans	Retrospective series	Recurrent dislocation	102	73.1	27.6	1																	
2018 Rashed	Prospective series	Primary	32	66.4	12	4																	
2018 Perrin	Prospective series	Revision	24	79.5	6	NR																	
2018 Ozden	Retrospective series	Revision	20	64.5	38.1	13																	
2018 Marie-hardy	Retrospective series	Primary	16	69.6	29	3																	
2018 Lange	Retrospective series	Recurrent dislocation	40	64	36	5; 6																	
2018 Kim	Retrospective series	Primary	84	73.1	21.7	5																	
2018 Kavcic	Retrospective series	Primary	173	76.8	92.4	1																	
2018 Kasparek	Retrospective series	Revision	11	64	31	5; 6																	
Year	Author	Type	Case Count	Primary	Revision	Recurrent dislocation	-	1-2-19	3	5	6	7	8	9	10	11	12	13	14	15	16	17	
--------	-------------	-----------	------------	---------	----------	------------------------	---	---------	---	----	---	---	---	---	----	---	----	---	----	---	----	---	----
2018	Hwang	Prospective series	167	Primary	72	22	10	V	V	V	V	V	V	V									
2018	Harwin	Retrospective series	85	Revision	67	48	5	V	V	V	V	V	V	V									
2018	Hartzler	Retrospective series	126	Revision	66	40	5	V	V	V	V												
2018	Diamond	Retrospective series	60	Revision	65.5	38.6	5	V	V	V	V	V	V										
2018	Chalmers	Retrospective series	14	Recurrent dislocation	65	37	5	V	V	V	V	V	V	V									
2018	Boukebous	Retrospective series	98	Primary	77.8	25.9	16, 17	V	V														
2018	Assi	Retrospective series	30	Primary	54.9	51	1, 2, 19	V	V	V	V	V	V										
2017	Viste	Retrospective series	334	Revision	NR	84	3	V	V	V	V	V	V										
2017	Tarasevicius	Retrospective series	620	Revision	63.2	30	1, 2	V	V	V	V	V											
2017	Sutter	Retrospective series	64	Revision	59	38	5	V	V	V	V	V	V										
2017	Rowan	Retrospective series	136	Primary	48.5	38.4	5, 6	V	V	V	V	V	V										
2017	Puch	Prospective series	103	Primary	49.9	132	20	V	V	V	V	V	V	V									
2017	Puch	Prospective series	217	Primary	72.3	149	20	V	V	V	V	V	V	V									
2017	Ochi	Retrospective series	33	Primary	80	15.8	5	V	V	V	V	V											
2017	Nam	Prospective series	26	Primary	52.8	12	5	V															
2017	Martz	Retrospective series	25	Primary	44	129.8	3	V	V	V	V	V	V	V									
2017	Lebeau	Retrospective series	62	Revision	75.5	77	2 (1st-gen)	V	V	V	V	V	V										
2017	Hemigou	Retrospective series	35	Revision	73	84	2, 21	V	V	V	V	V	V										
2017	Henawy	Prospective series	24	Primary	68	12	3	V	V	V	V	V	V	V									
2017	Hamadouche	Retrospective series	51	Revision	71.4	60	8	V	V	V	V	V	V										
2017	Graversen	Retrospective series	20	Primary	83	12	1	V	V	V	V	V	V										
2017	Gonzalez	Prospective series	150	Revision	73	6	13, 22	V	V	V	V	V	V										
2017	Ferreira	Retrospective series	553	Primary	71.2	36	2	V	V	V	V	V											
2017	Ferreira	Retrospective series	83	Primary	81.7	36	2	V	V	V	V	V											
2017	Epinette	Retrospective series	321	Primary	48.1	32.4	5, 6	V	V	V	V	V	V	V									
2017	Chalmers	Retrospective series	16	Revision	75	36	5	V	V	V	V	V	V	V									
2017	Batailler	Retrospective series	302	Primary	73	14	2, 23	V	V	V	V	V	V	V									
2016	Nich	Retrospective series	45	Primary	86.7	23.8	6, 24	V	V	V	V	V	V	V									
2016	Morin	Retrospective series	40	Primary	19.2	60	NR	V	V	V	V	V	V										

Page 16/31
| Year | Study Type | Study Name | Cases | Follow-up | Complications | Disability | Rate | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 |
|-----------|------------------|----------------|-------|-----------|---------------|------------|------|----|----|----|----|----|----|----|----|----|
| 2012 | | | | | | | | | | | | | | | | |
| 2013 | | | | | | | | | | | | | | | | |
| 2014 | | | | | | | | | | | | | | | | |
| 2015 | | | | | | | | | | | | | | | | |
| 2016 | | | | | | | | | | | | | | | | |
Year	Study Type	Series	Procedure Type	Revisions	Score Categories
2012	Hailer	Retrospective	Recurrent dislocation	75	V V V V V V V V
2012	Civinini	Prospective	Revision	69	V V V V V V V V
2012	Adam	Prospective	Primary	83	NR V V V V V V V
2011	Schneider	Retrospective	Revision	69.9	V V V V V V V V
2011	Bouchet	Retrospective	Primary	76.6	1; 3; 20; 24 V V V
2010	Tarasevicius	Retrospective	Primary	75	12 1 V V V V
2010	Hamadouche	Retrospective	Recurrent dislocation	71.3	51.4 V V V V V V V
2009	Guyen	Retrospective	Recurrent dislocation	66.5	48 11 V V V V V V V
2008	Langlais	Retrospective	Revision	72	36 8 V V V V V V V
2008	Bauchu	Retrospective	Primary	69	74.4 13 V V V V V V V

A: aseptic loosening; B: septic loosening or PJI; C: extra-dislocation; D: Intra-dislocation; E: Periprosthetic fracture; F: implant failure; G: HHS; H: Merle D’Aubigne scores

1. Avantage (Zimmer Biomet, Warsaw, Indiana, USA); 2. Quattro (Groupe Lépine, Genay, France); 3. Novae cup or Novae Sunfit cup (Serf, Décines, France); 4. EcoFit 2M cup (Ecofit, implantcast, Buxtehude, Germany); 5. Stryker MDM (Stryker, Mahwah, New Jersey, USA); 6. Stryker ADM (Stryker, Mahwah, New Jersey, USA); 7. ADES (Zimmer Biomet, Warsaw, Indiana, USA); 8. Medial cup (Aston Medical, Saint-Étienne, France); 9. Tregor cup (Aston Medical, Saint-Étienne, France); 10. Biomet Active Articulation E1 (Biomet Orthopedics, Warsaw, Indiana, USA); 11. Satume (Amplitude, Valence, France); 12. Dualis acetabular cup (Gruppo Bioimpianti, Peschiera Borromeo, Milano, Italy); 13. Polarcup (Smith & Nephew AG, Aarau, Switzerland); 14. SeleXys DS cup (Mathys European Orthopaedics, Bettlach, Switzerland); 15. G7 DM (Zimmer Biomet, Warsaw, Indiana, USA); 16. Galliée (SEM, Créteil, France); 17. Evora (SEM, Créteil, France); 18. DMS (SEM, Créteil, France); 19. Hip’n Go dual mobility (FH orthopedics, Mulhouse, France); 20. Gyros cup (Depuy, Warsaw, IN, USA); 21. Ceraver DM device (Ceraver Osteal, Roissy, France); 22. Versafit DM cup (Medacata international, Castel San Pietro, Switzerland); 23. Tornier DM cup (Tornier, Montbonnot-Saint-Martin, France); 24. Stafit (Zimmer, Etupes, France); 25. Mobilite (Tornier, Montbonnot-Saint-Martin, France); 26. Apogee DM socket (Biotechni Inc., Marseille, France)

Table 2. Study Assessment based on Quality Assessment Tool for Case Series Studies.
Criteria	2020 Tabori-jensen et al.	2020 Schmidt et al.	2020 Rashid et al.	2020 Nessler et al.	2020 Laende et al.	2020 Klemn et al.	2020 Hoggett et al.	2020 Favreau et al.	2020 Dubin et al.	2020 Dubin (Arthroplasty Today) et al.
1. Was the study question or objective clearly stated?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
2. Was the study population clearly and fully described, including a case definition?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
3. Were the cases consecutive?	N	Y	N	N	Y	Y	Y	N	N	N
4. Were the subjects comparable?	Y	Y	Y	N	N	Y	Y	Y	N	Y
5. Was the intervention clearly described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
6. Were the outcome measures clearly defined, valid, reliable and implemented consistently across all study participants?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
7. Was the length of follow-up adequate?	Y	Y	N	Y	Y	Y	Y	Y	Y	Y
8. Were the statistical methods well-described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
9. Were the results well-described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Quality of the cohort study (score)	8	9	7	7	8	9	9	7	8	7

Y= Yes, N= No; The maximum possible score on this scale is 9. "Good" was defined as a total score of 7-9; "fair" as a score 4-6, and "poor" as a score of less than 4.
Criteria	2019 Neil Wheelton et al.	2019 Nam et al.	2019 Markel et al.	2019 Li et al.	2019 Kreipke et al.	2019 Jones et al.	2019 Jobory et al.	2019 Iorio et al.	2019 Huang et al.	2019 Gailliard et al.	2019 Fessy et al.
1. Was the study question or objective clearly stated?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
2. Was the study population clearly and fully described, including a case definition?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
3. Were the cases consecutive?	Y	N	N	Y	N	Y	N	N	Y	Y	Y
4. Were the subjects comparable?	N	N	N	Y	Y	N	Y	Y	N	N	N
5. Was the intervention clearly described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
6. Were the outcome measures clearly defined, valid, reliable and implemented consistently across all study participants?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
7. Was the length of follow-up adequate?	N	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
8. Were the statistical methods well-described?	N	Y	Y	Y	N	Y	Y	Y	Y	Y	Y
9. Were the results well-described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Quality of the cohort study (score)	6	7	7	9	8	7	8	7	8	7	8

Y = Yes, N= No; The maximum possible score on this scale is 9. “Good” was defined as a total score of 7-9; “fair” as a score 4-6, and “poor” as a score of less than 4.
Criteria	2019 Assi (Hip Int.) et al.	2019 Addona et al.	2018 Tabori-Jensen et al.	2018 Stucinskas et al.	2018 Spaans et al.	2018 Rashed et al.	2018 Penn et al.	2018 Ozden et al.	2018 Marie-hardy et al.	2018 Lange et al.	2018 Kim et al.
1. Was the study question or objective clearly stated?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
2. Was the study population clearly and fully described, including a case definition?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
3. Were the cases consecutive?	N	Y	N	N	N	N	Y	Y	N	Y	Y
4. Were the subjects comparable?	N	N	Y	Y	Y	N	Y	N	N	N	N
5. Was the intervention clearly described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
6. Were the outcome measures clearly defined, valid, reliable and implemented consistently across all study participants?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
7. Was the length of follow-up adequate?	Y	N	Y	Y	Y	N	N	Y	Y	Y	N
8. Were the statistical methods well-described?	Y	N	Y	Y	Y	Y	Y	Y	N	Y	Y
9. Were the results well-described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Quality of the cohort study (score)	7	6	9	8	8	6	7	8	7	7	8

Y = Yes, N= No; The maximum possible score on this scale is 9. “Good” was defined as a total score of 7-9; “fair” as a score 4-6, and “poor” as a score of less than 4.
Criteria	2018 Kavcic et al.	2018 Kasparek et al.	2018 Hwang et al.	2018 Hanwin et al.	2018 Hartzler et al.	2018 Diamond et al.	2018 Chalmers et al.	2018 Boukebous et al.	2018 Assi et al.	2017 Viste et al.	2017 Tarasevicius et al.	2017 Sutter et al.
1. Was the study question or objective clearly stated?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
2. Was the study population clearly and fully described, including a case definition?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
3. Were the cases consecutive?	Y	N	N	N	N	Y	N	Y	Y	Y	N	Y
4. Were the subjects comparable?	N	N	N	Y	Y	N	N	Y	N	N	N	N
5. Was the intervention clearly described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
6. Were the outcome measures clearly defined, valid, reliable and implemented consistently across all study participants?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
7. Was the length of follow-up adequate?	Y	Y	N	Y	Y	Y	Y	Y	Y	Y	Y	Y
8. Were the statistical methods well-described?	Y	Y	Y	Y	Y	Y	N	Y	N	Y	Y	Y
9. Were the results well-described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Quality of the cohort study (score)	8	7	6	8	8	8	6	8	8	8	8	8

Y = Yes, N = No; The maximum possible score on this scale is 9. “Good” was defined as a total score of 7-9; “fair” as a score 4-6, and “poor” as a score of less than 4
Criteria	2017 Rowan et al.	2017 Puch et al.	2017 Ochi et al.	2017 Nam et al.	2017 Martz et al.	2017 Lebeau et al.	2017 Hernigou et al.	2017 Henawy et al.	2017 Hamadouche et al.	2017 Graversen et al.	2017 Gonzalez et al.
1. Was the study question or objective clearly stated?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
2. Was the study population clearly and fully described, including a case definition?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
3. Were the cases consecutive?	N	Y	N	N	N	N	Y	N	N	Y	Y
4. Were the subjects comparable?	Y	N	Y	N	N	N	Y	N	N	N	Y
5. Was the intervention clearly described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
6. Were the outcome measures clearly defined, valid, reliable and implemented consistently across all study participants?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
7. Was the length of follow-up adequate?	Y	Y	N	N	Y	Y	Y	N	Y	N	Y
8. Were the statistical methods well-described?	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	Y
9. Were the results well-described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Quality of the cohort study (score)	8	8	7	6	7	7	8	6	7	6	9

Y = Yes, N = No; The maximum possible score on this scale is 9. “Good” was defined as a total score of 7-9; “fair” as a score 4-6, and “poor” as a score of less than 4.
Criteria	2017 Ferreira et al.	2017 Epinette et al.	2017 Chalmers et al.	2017 Batailler et al.	2016 Nich et al.	2016 Morin et al.	2016 Jauregui et al.	2016 Homma et al.	2016 Haughom et al.	2016 Griffin et al.	2016 Chughtai et al.	2016 Carulli et al.
1. Was the study question or objective clearly stated?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
2. Was the study population clearly and fully described, including a case definition?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
3. Were the cases consecutive?	N	N	N	Y	N	N	N	N	N	N	N	N
4. Were the subjects comparable?	N	N	Y	Y	N	N	Y	Y	Y	Y	N	N
5. Was the intervention clearly described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
6. Were the outcome measures clearly defined, valid, reliable and implemented consistently across all study participants?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
7. Was the length of follow-up adequate?	Y	Y	Y	N	Y	Y	Y	N	Y	Y	Y	N
8. Were the statistical methods well-described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N
9. Were the results well-described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Quality of the cohort study (score)	7	7	8	8	7	7	8	7	7	7	7	6

Y = Yes, N= No; The maximum possible score on this scale is 9. "Good" was defined as a total score of 7-9; "fair" as a score 4-6, and "poor" as a score of less than 4
Criteria	2015 Wegrzyn et al.	2015 Vigdorchik et al.	2015 Vermersch et al.	2015 van Heumen et al.	2015 Snir et al.	2015 Simian et al.	2015 Mohammed et al.	2015 Epinette et al.	2015 Bel et al.	2014 Wegrzyn et al.	2014 Prudhon et al.
1. Was the study question or objective clearly stated?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
2. Was the study population clearly and fully described, including a case definition?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
3. Were the cases consecutive?	N	N	Y	Y	Y	N	N	N	Y	N	Y
4. Were the subjects comparable?	N	N	N	N	N	N	N	Y	Y	N	N
5. Was the intervention clearly described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
6. Were the outcome measures clearly defined, valid, reliable and implemented consistently across all study participants?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
7. Was the length of follow-up adequate?	Y	Y	Y	Y	N	Y	N	Y	Y	Y	Y
8. Were the statistical methods well-described?	N	Y	Y	Y	N	Y	N	Y	Y	Y	Y
9. Were the results well-described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Quality of the cohort study (score)	6	7	8	8	6	7	5	8	9	7	8

Y = Yes, N = No; The maximum possible score on this scale is 9. "Good" was defined as a total score of 7-9; "fair" as a score 4-6, and "poor" as a score of less than 4.
Criteria	2014 Jakobsen et al.	2014 Epinette et al.	2014 Caton et al.	2014 Bensen et al.	2013 Tarasevicius et al.	2013 Saragaglia et al.	2013 Sanders et al.	2013 Prudhon et al.	2012 Vasukutty et al.	2012 Pattyn et al.
1. Was the study question or objective clearly stated?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
2. Was the study population clearly and fully described, including a case definition?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
3. Were the cases consecutive?	Y	Y	Y	Y	N	N	Y	Y	Y	N
4. Were the subjects comparable?	N	Y	Y	Y	N	N	N	N	N	N
5. Was the intervention clearly described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
6. Were the outcome measures clearly defined, valid, reliable and implemented consistently across all study participants?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
7. Was the length of follow-up adequate?	Y	Y	Y	Y	N	Y	Y	Y	Y	N
8. Were the statistical methods well-described?	Y	Y	Y	Y	Y	N	Y	Y	Y	N
9. Were the results well-described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Quality of the cohort study (score)	8	9	9	9	7	6	8	8	8	5

Y = Yes; N = No; The maximum possible score on this scale is 9. “Good” was defined as a total score of 7-9; “fair” as a score 4-6, and “poor” as a score of less than 4.
Criteria	2012 Hamadouche et al.	2012 Haller et al.	2012 Civinini et al.	2012 Adam et al.	2011 Schneider et al.	2011 Bouchet et al.	2010 Tarasevicius et al.	2010 Hamadouche et al.	2009 Guyen et al.	2008 Langlais et al.	2008 Bauchu et al.
1. Was the study question or objective clearly stated?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
2. Was the study population clearly and fully described, including a case definition?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
3. Were the cases consecutive?	N	N	N	N	N	Y	Y	N	N	N	Y
4. Were the subjects comparable?	N	N	N	N	N	Y	Y	N	N	N	N
5. Was the intervention clearly described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
6. Were the outcome measures clearly defined, valid, reliable and implemented consistently across all study participants?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
7. Was the length of follow-up adequate?	Y	Y	Y	N	Y	Y	N	Y	Y	Y	Y
8. Were the statistical methods well-described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N
9. Were the results well-described?	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Quality of the cohort study (score)	7	7	7	6	7	9	8	7	7	7	7

Y = Yes, N= No; The maximum possible score on this scale is 9. “Good” was defined as a total score of 7-9; “fair” as a score 4-6, and “poor” as a score of less than 4.

Table 3 Pooled event rate and clinical performance stratified by indications.
Condition	Primary THA	95% CI	Revision THA	95% CI	Recurrent dislocation	95% CI	Overall	95% CI
Aseptic loosening	0.009	0.007-0.012	0.022	0.016-0.030	0.024	0.013-0.045	0.016	0.008-0.032
Septic loosening	0.008	0.006-0.011	0.023	0.017-0.032	0.025	0.013-0.049	0.016	0.007-0.037
Extra-articular dislocation	0.006	0.005-0.008	0.013	0.009-0.017	0.025	0.014-0.043	0.012	0.006-0.025
Intra-prosthetic dislocation	0.008	0.006-0.010	0.010	0.007-0.015	0.016	0.008-0.031	0.010	0.007-0.015
Periprosthetic fracture	0.009	0.007-0.011	0.009	0.006-0.012	0.013	0.006-0.025	0.009	0.008-0.011
Implant failure	0.023	0.018-0.030	0.055	0.042-0.073	0.060	0.034-0.103	0.042	0.021-0.081
Harris Hip score	89.47	87.62-91.33	81.89	78.96-84.83	82.65	77.41-87.89	84.87	78.99-90.76
Merle d'Aubigné score	17.08	16.85-17.30	15.45	15.07-15.83	16.57	15.85-17.28	16.36	15.20-17.53

THA: total hip arthroplasty.

Table 4 Multivariate Linear Regression Analysis.
Independent Variable	Coefficient	95% Confidence Interval	P Value
Aseptic loosening			
Age	-0.02	-0.05 – 0.01	0.269
Female Sex	0.55	-2.08 – 3.17	0.683
Posterolateral approach (ref to others)	0.18	-0.59 – 0.94	0.654
BMI	-0.07	-0.19 – 0.06	0.302
Indication (ref to primary THA)			
Revision THA	1.30	0.71 – 1.89	<0.001
Recurrent dislocation	1.18	0.26 – 2.10	0.012
Septic loosening			
Age	-0.02	-0.05 – 0.01	0.226
Female Sex	1.39	-1.54 – 4.32	0.353
Posterolateral approach (ref to others)	0.34	-0.42 – 1.10	0.384
BMI	-0.09	-0.20 – 0.02	0.125
Indication (ref to primary THA)			
Revision THA	1.85	1.26 – 2.44	<0.001
Recurrent dislocation	1.40	0.45 – 2.36	0.004
Extra-articular dislocation			
Age	0.01	-0.03 – 0.05	0.741
Female Sex	1.18	-1.82 – 4.18	0.440
Posterolateral approach (ref to others)	-0.39	-1.20 – 0.41	0.338
BMI	-0.10	-0.24 – 0.03	0.126
Indication (ref to primary THA)			
Revision THA	1.02	0.30 – 1.73	0.006
Recurrent dislocation	0.78	-0.49 – 2.04	0.230
Intra-prosthetic dislocation			
Age	0.00	-0.05 – 0.04	0.829
Female Sex	1.30	-2.04 – 4.64	0.444
Posterolateral approach (ref to others)	-0.31	-1.19 – 0.56	0.482
BMI	-0.05	-0.18 – 0.08	0.473
Indication (ref to primary THA)			
Revision THA	0.52	-0.24 – 1.28	0.180
Recurrent dislocation	0.88	-0.19 – 1.94	0.107
Periprosthetic fracture			
Age	-0.02	-0.06 – 0.02	0.340
Female Sex	0.81	-2.47 – 4.08	0.629
Posterolateral approach (ref to others)	0.21	-0.70 – 1.12	0.651
BMI	-0.07	-0.22 – 0.08	0.364
Indication (ref to primary THA)			
Revision THA	0.93	0.23 – 1.62	0.009
Recurrent dislocation	0.42	-0.93 – 1.77	0.542
Implant failure			
Age	-0.04	-0.07 – -0.02	0.002
Female Sex	3.34	0.91 – 5.78	0.007
	Value	Confidence Interval	p-Value
---------------------------------	---------	-------------------------	-----------
Posterolateral approach (ref to others)	0.34	-0.32 – 1.01	0.309
BMI	-0.06	-0.16 – 0.05	0.273
Indication (ref to primary THA)			
Revision THA	1.48	0.93 – 2.03	<0.001
Recurrent dislocation	1.08	0.24 – 1.92	0.012
Harris Hip score			
Age	-0.01	-0.34 – 0.32	0.964
Female Sex	3.66	-15.82 – 23.15	0.713
Posterolateral approach (ref to others)	-1.71	-8.11 – 4.69	0.601
BMI	0.58	-0.48 – 1.64	0.285
Indication (ref to primary THA)			
Revision THA	-9.44	-15.17 – -3.72	0.001
Recurrent dislocation	-6.81	-15.42 – 1.80	0.121
Merle d’Aubigné score			
Age	0.03	-0.03 – 0.09	0.378
Female Sex	-4.10	-8.17 – -0.03	0.049
Posterolateral approach (ref to others)	0.23	-0.64 – 1.11	0.600
BMI	0.14	-0.03 – 0.31	0.109
Indication (ref to primary THA)			
Revision THA	-0.38	-1.45 – 0.69	0.487
Recurrent dislocation	-0.37	-1.81 – 1.07	0.617

BMI: body mass index; ref: reference; THA: total hip arthroplasty

Figures

Records identified through database searching (n=1123)	Additional records identified through other sources (n=0)
Records identified (n=1123)	Duplicated records excluded (n=714)
Records after duplicates removed (n=409)	Excluded by title and abstract (n=231)
Full-text articles assessed for eligibility (n=178)	Articles excluded (n=58):
	- Study on different outcome domains (n=21)
	- Mixed etiology (n=12)
	- Included 1st generation DM design (n=10)
	- Cemented liner to cup (n=9)
	- Cadaveric or in vitro study (n=3)
	- Not written in English (n=3)
Studies included in qualitative synthesis (n=120)	
Studies included in meta-analysis (n=120)	
Figure 1

Preferred reporting items for systematic reviews and meta-analysis (PRISMA) flow diagram for the searching and identification of included studies.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download:

- 1027FigureS1asepticloosening.jpg
- 1027FigureS2septicloosening.jpg
- 1027FigureS3extradislocation.jpg
- 1027FigureS4IPD.jpg
- 1027FigureS5Periprostheticfx.jpg
- 1027FigureS6implantfailure.jpg
- 1027FigureS7HHS.jpg
- 1027FigureS8MerleDAubigne.jpg