Phase-Selective and Localized TiO$_2$ Coating on Additive and Wrought Titanium by a Direct Laser Surface Modification Approach

Parvin Fathi-Hafshejani, Haden Johnson, Zabihollah Ahmadi, Michael Roach, Nima Shamsaei, and Masoud Mahjouri-Samani*

Cite This: ACS Omega 2020, 5, 16744–16751

ABSTRACT: Titanium has been the material of interest in biological implant applications due to its unique mechanical properties and biocompatibility. Their design is now growing rapidly due to the advent of additive manufacturing technology that enables the fabrication of complex and patient-customized parts. Titanium dioxides (TiO$_2$) coatings with different phases (e.g., anatase, rutile) and morphologies have shown to be effective in enhancing osteointegration and antibacterial behavior. This enhanced antibacterial behavior stems from the photocatalytic activity generated from crystalline TiO$_2$ coatings. Anatase has commonly been shown to be a more photocatalytic oxide phase compared to rutile despite its larger band gap. However, more recent studies have suggested that a synergistic effect leading to increased photocatalytic activity may be produced with a combination of oxides containing both anatase and rutile phases. Here, we demonstrate the selective and localized formation of TiO$_2$ nanostructures on additive and wrought titanium parts with anatase, rutile, and mixed phases by a laser-induced transformation approach. Compared to conventional coating processes, this technique produces desired TiO$_2$ phases simply by controlled laser irradiation of titanium parts in an oxygen environment, where needed. The effects of processing conditions such as laser power, scanning speed, laser pulse duration, frequency, and gas flow on the selective transformation were studied. The morphological and structural evolutions were investigated using various characterization techniques. This method is specifically of significant interest in creating phase-selective TiO$_2$ surfaces on titanium-based bioimplants, including those fabricated by additive manufacturing technologies.

INTRODUCTION

Titanium-based parts and implants are widely used in the field of orthopedic and dental surgery because of their appropriate biocompatibility and mechanical properties such as bio-inertness, low allergenicity, excellent fatigue life, and good strength-to-weight ratio. The design of such implants is growing rapidly with the advent of additive manufacturing technology that enables the fabrication of complex and patient-customized parts. Many recent efforts have been made to modify and functionalize the surface of titanium-based implants. Improving the antibacterial activity of titanium dioxide (TiO$_2$) coatings on implant materials has been reported as an attractive natural solution for improving implant surfaces, for example, by depositing TiO$_2$ nanoparticles or nanotubes on the surface of titanium parts.

TiO$_2$ nanomaterials are widely used in applications ranging from photocatalysis and energy to biomedical and sensing devices. Their physical properties are strongly correlated to their phases (e.g., anatase, rutile, brookite, amorphous), and morphologies (e.g., micro/nanostructures, porosity). Thus, various surface oxidation methods, such as chemical (acid and alkali) treatment, sol–gel formation, ion implantation, and thermal oxidation, have been employed to develop a functional implant surface by changing the surface properties of the native passive layer to improve osseointegration. Various physical, chemical, or electrochemical deposition processes are used for the synthesis of TiO$_2$ structures and films on titanium parts such as electrochemical anodization, chemical vapor deposition, pulse laser deposition, thermal and plasma spray, and sputtering techniques. Anodization is a technique that expands the thickness of the natural oxide layer on the surface of metal components. These methods have been successful in providing uniform coatings of specific TiO$_2$ phases. Anodized anatase surfaces have commonly shown higher photocatalytic activity than rutile surfaces leading to an enhanced antimicrobial effect. More recent studies have shown mixed-phase oxides, containing both anatase and rutile, to exhibit a synergistic effect with increased photocatalytic activity.
mixed-phase oxides, differences in the band gaps extend the lifetime of the electron–hole pairs and thus increase the generation of free radicals. For this synergistic effect to occur, the anatase and rutile phases need to be in close spatial proximity to each other. Anodization methods are not able to provide localized, phase-selective, and patterned coatings, especially on parts with complex geometries. Therefore, the development of a facile method that allows the formation of phase-specific, location-specific, and patternable TiO2 nanostructures on the complex titanium parts is highly desirable for the medical sector.

Additionally, the complexity of the implants’ shape and multi-interfaces with various tissues in the body requires the ability to selectively and locally deposit specific phases and morphologies of TiO2 on various locations of implants, making it extremely challenging using conventional coating methods. This is specifically true for additively manufactured implants that can be customized per patient and injury. The freedom in design offered by additive manufacturing technologies is revolutionizing the implant industry by introducing customized implants that often have more complex geometries. Due to such complexities, not only are more location-specific depositions needed, but it also requires an accurate method to precisely deposit on confined regions of the implant.

Here, we report a novel laser processing method for localized, phase-selective, and patterned TiO2 nanostructures directly on the titanium samples as desired. In this method, a tunable nanosecond fiber laser (1064 nm wavelength) with pulse widths ranging from 5 to 2000 ns, pulse energy ranging from 0.04 to 1.57 mJ, and a repetition rate ranging from 1 Hz to 4160 kHz was used for the controlled surface modifications. The laser beam was coupled into a galvo scanner with an F-theta lens providing an 18 μm focal size and a scan speed ranging from 1 to 5000 mm/s. This allowed us to locally process the titanium parts in a controlled oxygen environment to accurately induce structural, chemical, and phase transformations. After reactions, a thin film of TiO2 nanoparticles formed on the titanium parts. By tuning the processing parameters, different TiO2 phases (e.g., rutile, anatase, mixed) and patterns were generated on the surfaces of titanium samples where desired.

RESULTS AND DISCUSSION

Lasers provide the ability to accurately deliver a precise amount of energy onto a confined region of a material to achieve the desired response. For opaque materials, this energy is absorbed near the surface, modifying the surface chemistry, crystal structure, and/or multiscale morphology without altering the bulk material. The nonequilibrium processes in the high-energy laser-material interaction dynamics can overcome energy barriers required for chemical reactions and increase their reaction kinetics far beyond equilibrium processes. In this method, irradiation of the material with a short laser leads to rapid heating of the surface of the material and the formation of high-temperature plasma that prepares the bed for oxygen dissociation and its reaction with titanium. With this dry and clean technique, high-purity TiO2 coatings with controlled phases and morphologies can be synthesized on the surface of titanium samples. Figure 1 shows the schematic illustration of the fabrication process. By scanning the titanium surface with this tunable laser, titanium and oxygen controllably react to form the porous structures of TiO2 with specific phases on the surface of the titanium sample. A comprehensive experimental study was performed to understand and control this process.

We first focused on understanding how the laser parameters, and hence, the surface-coupled energy can govern the evolution of the phase and morphology of the formed TiO2 micro/nanostructures. The amount of coupled energy in this process is mainly the combination of pulse width, focus point, repetition rate, and scan speed of the laser. Therefore, we performed a systematic study under various process parameters including laser power ranging from 13 to 71 W with six scan speeds (100, 200, 500, 1000, 2000, 5000 mm/s), and six factory-set pulse widths (10, 108, 261, 508, 1020, 2020 ns). Through these studies, we demonstrated the crystallization dynamics, identified the energy thresholds, and found all possible transformation and noninteracting zones. Four types of titanium samples, including additive manufactured and commercial wrought TAV (Ti−6Al−4V Grade 5), CP titanium Grade 4, and pure titanium (99.99% purity), were tested in this study.

Figure 2 shows the effect of laser power, scan speed, and pulse width on the formation of anatase, rutile, and mixed-phase on the titanium samples. Figure 2a shows a heatmap of the unaffected, anatase, mixed anatase/rutile, and rutile formation zones as a function of laser power and scan speed using a laser pulse width of 508 nm and a PRF0 frequency of 108 kHz on pure titanium sheets (purity 99.99%). The line hatch has 40% overlap, while the pulse overlap (pitch) varies by the scan speed. In this case, the energy per pulse ranges from 0.125 mJ for 13.5 W power to 0.687 mJ for 74 W power with the fluence of 47 and 270 J/cm², respectively. It should be noted that the energy per pulse is constant for all of the frequencies used in this work since the chosen frequencies are below the PRF0 value for each waveform, according to the laser operating manual. PRF0 is the minimum frequency that gives maximum average power (defined by the active current setpoint). For PRF > PRF0, pulse energies and peak powers decrease so that the average power does not exceed the rated power of the laser module.

In general, higher laser powers and/or slower scan speeds tend to induce rutile formation by inducing more heat, while lower laser power and/or faster scan speed change the kinetics toward the anatase formation zone by inducing less heat. It was observed that the rutile zone (red), where the best quality rutile crystals form, was much wider than the anatase and mixed-phase zones. Above this red zone, due to extreme temperatures, samples ignite and burn. As it is apparent from
It should be noted that the energy per heat accumulation, and, hence, the formation of high-quality anatase structures. At higher frequencies (e.g., 100 kHz), the overlap between the pulses increases, providing more cooling time before the next pulse arrives. This fast heat quenching of the reaction in each pulse resulted in the formation of anatase nanoparticles that stick well to the surface. We, therefore, designed a systematic experiment to track the impact of overlapping pulses and the off-time between the consecutive pulses employing the best speed and power parameters found in the previous experiment, which could produce better anatase, rutile, and mixed phases.

As expected, at lower frequencies (e.g., 20 kHz), the off-time between pulses is 49.5 μs, which provides the material enough time to cool between the pulses resulting in the formation of high-quality anatase structures. At higher frequencies (e.g., 100 kHz), the off-time between pulses becomes 9.5 μs, resulting in heat accumulation, and, hence, the formation of high-quality rutile TiO₂ structures. It should be noted that the energy per pulse does not change by changing the repetition rate as long as it is below the maximum allowable frequency defined by the manufacturer (SPI Lasers). Similarly, using less overlap (e.g., 0%) between the processed spots formed anatase structures, while more overlap (e.g., 90%) formed rutile structures due to the overheating/reheating. In addition, reprocessing of the formed anatase phase transformed it into the rutile phase. Table 1 shows an example of the optimized process parameters by which the high-quality anatase, rutile, and mixed-phase TiO₂ coatings were produced, according to Raman and X-ray diffraction (XRD) measurements described below. Although Table 1 was optimized for wrought Ti samples, the same set of parameters were also tested on wrought CP Ti, additive, and pure titanium (see the Supporting Information) that created similar expected results. The results on the wrought CP Ti samples were comparable and had the same quality results as wrought TAV. The results on the additive and pure titanium samples could be further improved by fine-tuning these parameters.

Table 1. Laser Parameters to Synthesize Different Titanium Phases

TiO₂ phase	laser power (W)	scan speed (mm/s)	pulse width (ns)	pulse energy (mJ)	pulse fluence (J/cm²)	gas flow rate (SLM)	pulse overlap (%)	line hatch (%)	frequency (kHz)
anatase	12.5	400	508	0.625	246	25.6	0	40	20
mixed	67.5	400	508	0.337	133	25.6	50	0	200
rutile	62.5	200	508	0.625	246	21.3	90	0	100

Figure 2. Comprehensive map (a) of the pure titanium (purity 99.99%) response to different laser powers and scan speeds under atmospheric oxygen pressure and 0.1 SLM oxygen flow. Blue, red, and purple zones show the process regions where anatase, rutile, and mixed phases form during the process, respectively. The effect of the pulse width on the transformation process (b). The lines in (b) indicate the anatase to rutile transition boundary, where mixed rutile and anatase phases coexist. Pure anatase and rutile phases exist to the left and right of the lines for each waveform, respectively.

The transformation quality was similar for all samples used in this experiment, including additively manufactured and wrought TAV, wrought CP Ti Grade 4, and pure titanium samples.
Figure 3b shows the XRD results from wrought TAV samples. Peaks at 25.3°, which verify the presence of anatase phase, are present on the anatase and mixed-phase specimens. The peak at 27.5° on rutile and mixed-phase specimens confirms the formation of rutile. The weight fractions of anatase and rutile in the oxide layer of representative specimens from each group were calculated using the following Spurr and Myers equation:

\[
X_A = \frac{1}{1 + 1.26 \left(\frac{I_R}{I_A} \right)}
\]

\[
X_R = 1 - X_A
\]

where \(X_R\) and \(X_A\) are the weight percentages of rutile and anatase, and \(I_R\) and \(I_A\) are the intensities of the diffraction peaks for rutile (110) and anatase (101), respectively. The phase ratio for the mixed-phase oxide shown in Figure 3b was 37% anatase and 63% rutile. Similar results were also obtained for the additively manufactured and pure titanium samples (see the Supporting Information). These results verify and support the findings observed using Raman spectroscopy.

To analyze the surface morphology and physical structure of the synthesized TiO\(_2\) samples in this process, we performed optical microscopy, laser confocal microscopy, and scanning electron microscopy (SEM) to obtain information at various length scales. Figure 4a−f shows the laser confocal two-dimensional (2D) images (a, c, e) and corresponding three-dimensional (3D) surface profiles (b, d, f) of the synthesized anatase, mixed-phase, and rutile samples, respectively. Representative surface roughness (\(R_a\)) values for anatase, mixed-phase, and rutile wrought TAV samples were 5.17, 4.69, and 4.72 μm, respectively. Optical microscopy images for additively manufactured TAV and pure titanium (purity 99.99%) samples have been shown in Figures S2 and S5 of the Supporting Information.

Figure 5 shows the SEM images of the anatase, mixed-phase, and rutile TiO\(_2\) formed on the surface of wrought TAV samples. The size and morphology of the anatase samples were micro/nanostructures with a porous morphology, as shown in Figure 5a,b. As seen in Figure 5e,f, the rutile TiO\(_2\) on wrought TAV were larger crystals with big cracks showing the ceramic nature of the rutile structures. Additionally, both cracks and porous structures were produced on the mixed-phase surface,
as shown in Figure 5c,d. SEM images for titanium sheets (purity 99.99%) and additive manufactured samples show a similar trend (see the Supporting Information). Based on the cross-section SEM images of the laser-modified wrought TAV, the anatase layer looked mesoporous with a thickness of \(\sim 0.2\)–0.5 \(\mu m\), whereas the thickness of the mixed-phase and rutile became gradually thicker with \(\sim 0.4\) and \(\sim 2\) \(\mu m\), respectively (see the Supporting Information).

One of the most noticeable advantages of this method, specifically for the customized additive manufactured implants, is its ability for the selective and localized synthesis of various phases, shapes, sizes, and patterns side-by-side without the need for any conventional patterning or lithography and deposition processes. This unique laser processing method allows us to design desired TiO\(_2\) structures on beneficial locations on the bioimplant surfaces. We have successfully synthesized rutile, anatase, and mixed-phase TiO\(_2\) structures with designed patterns and matrices. Figure 6a–c shows the optical images of various rutile/anatase patterns side-by-side in checkerboard, concentric circles, and AU logo designs. Figure 6d,e shows the corresponding Raman spectra obtained from anatase and rutile as labeled.

CONCLUSIONS

In conclusion, we demonstrated the localized, selective, and patterned synthesis of various TiO\(_2\) phases and structures by controlled laser transformation of titanium surface. Anatase, mixed-phase, and rutile TiO\(_2\) were formed by precisely tuning the laser interaction with titanium in an oxygen environment. The laser interaction with titanium was controlled by the laser power, scan speed, and pulse width. We showed that longer pulse widths, slower scan speeds, and higher laser powers led to the formation of rutile phases, while shorter pulse widths, lower laser powers, and faster scan speeds resulted in the formation of anatase TiO\(_2\). Processing parameters in between formed mixed rutile/anatase TiO\(_2\). We also showed the effect of the overlapping of pulses on the phase transformation. More overlaps resulted in the phase transformation toward rutile TiO\(_2\) and vice versa. This method offers a simple, clean, and fast formation of TiO\(_2\) coating on titanium bioimplants, specifically the customized, additively manufactured ones, with the preferred phases, structures, and patterns where desired.

MATERIALS AND METHODS

Sample Preparation. We used four different types of titanium products, including pure titanium (purity 99.99%) sheets (10 \(\times\) 10 mm squares, 1000 test surfaces), additively manufactured (10 mm in diameter, 60 test surfaces), wrought TAV (15 mm in diameter, 30 test surfaces), and CP Ti Grade 4 (15 mm in diameter, 30 test surfaces) samples in these experiments. CP Ti Grade 4, TAV, and pure titanium were obtained from commercial vendors. Additively manufactured samples were prepared using an EOS M290 machine and a laser beam powder bed fusion (LB-PBF) additive manufacturing process, with the manufacturer’s recommended process parameters of 280 W laser power, 0.14 mm hatching space, 1200 mm/s scanning speed, and 30 \(\mu m\) layer thickness using Ti–6Al–4V Powder: LPW-Ti64GD23-AAFD.

TiO\(_2\) Formation Process. First, the titanium samples were cleaned by acetone and methanol and placed into a custom-built environmental chamber for laser processing. The laser
transformation experiments were performed in an oxygen environment with different flow rates (6–60 SLM) and at room temperature. The chamber was first flushed with oxygen gas for 2 min to ensure the removal of possible air contaminants. Samples were then controllably laser-processed by a 130 W tunable nanosecond fiber laser (1064 nm wavelength, an S-type beam with beam quality (M²) of 1.3, and a beam diameter of 9.5 mm prior to focusing) with a pulse width ranging from 5 to 2000 ns, pulse energy ranging from 0.04 to 1.57 mJ, and a repetition rate ranging from 1 Hz to 4160 kHz. The laser beam was coupled into a galvo scanner with an F-theta lens with a 103 mm focal length producing an 18 μm focal size and a scan speed ranging from 1 to 5000 mm/s. A laser marking software (Laser Studio Professional) was used to design various patterns and control the process parameters (e.g., power, pulse width, number of pulses, scan speed, repetition rate, and overlap) for each specific pattern.

Raman Spectroscopy. A custom-made Raman spectroscopy system was used for our optical diagnostics of our laser synthesized TiO₂ samples. The measurements were performed in a confocal micro configuration using a 10× microscope objective lens (NA = 0.25). We used a Horiba HR spectrometer with 1200 grooves/mm grating and a laser excitation wavelength of 532 nm for Raman acquisition.

XRD Measurements. Thin-film X-ray diffraction (XRD) (Scintag XDS 2000, Franklin, MA) was used to further verify the formation of crystalline TiO₂ in these experiments. Samples were rotated 1° away from the copper X-ray source (1.54 Å Cu Kα) to enhance the X-ray interaction volume with the surface layer. Scans were conducted between 2θ angles ranging from 24 to 30° at a continuous scan rate of 2°/min. Anatase and rutile have their highest intensity diffraction peaks within this range at 25.3 and 27.5°, respectively. Jade software (Jade 9 MDI, Livermore, CA) was used to identify diffraction peaks.

Morphology and Structure Analysis. A scanning electron microscope (SEM: Zeiss Supra 40, Jena, Germany) with an accelerating voltage of 3 kV was used to examine the surface morphology of the laser synthesized oxides at different magnifications. Laser confocal microscopy (Leica TCS SP2, Wetzler, Germany) was used to measure surface roughness of the oxides. The total scan area for each specimen was 1500 μm × 1500 μm, and a 1 μm z-axis step size was used. Fiji software was used to process raw image data and build 3D surface profiles of the oxide surfaces.55

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/10.1021/acsomega.0c01671.

Authors

PARVIN FATHI-HAFsheJANI − Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama 36849, United States
HADEN JOHNSON − The Department of Biomedical Materials Science, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
ZABIHOLLAH AHMADI − Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama 36849, United States
MICHAEL ROACH − The Department of Biomedical Materials Science, University of Mississippi Medical Center, Jackson, Mississippi 39216, United States
NIMA SHAMSAEi − Department of Mechanical Engineering and National Center for Additive Manufacturing Excellence (NCAME), Auburn University, Auburn, Alabama 36849, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.0c01671

Author Contributions

P. F.-H. designed and performed laser synthesis and processing experiments, materials characterization, and data analysis. Z. A. participated in the laser processing experiment. M. R. and H. J. participated in XRD and SEM characterization, data analysis, and paper preparation. N. H. participated in the experimental design, additive manufacturing sample preparation, and discussions on experimental results. M. M.-S. led the project, participated in experimental design, data acquisition and analysis, discussions, and paper preparation. All of the authors commented on the paper.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This material is based upon work partially supported by the U.S. National Science Foundation (NSF) under grant no. 1923363 and the Auburn University Interimural Grant Program (IGP-VPR 180247). The authors would like to thank Fort Wayne Metals (Fort Wayne, IN) for the donations of the wrought TAV and CP Ti Grade 4 materials for the study.

REFERENCES

(1) Adell, R.; Eriksson, B.; Lekholm, U.; Brånemark, P.-I.; Jemt, T. A long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int. J. Oral Maxillofac. Implants 1990, 5, 347–359.
(2) Geetha, M.; Singh, A.; Asokamani, R.; Gogia, A. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog. Mater. Sci. 2009, 54, 397–425.
(3) Carrion, P. E.; Shamsaei, N.; Daniewicz, S. R.; Moser, R. D. Fatigue behavior of Ti-6Al-4V ELI including mean stress effects. Int. J. Fatigue 2017, 99, 87–100.
(4) Sidambe, A. T. Biocompatibility of advanced manufactured titanium implants—A review. Materials 2014, 7, 8168–8188.
(5) Liu, X.; Chu, P. K.; Ding, C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng., R 2004, 47, 49–121.
(6) Kulangara, K.; Leong, K. W. Substrate topography shapes cell function. Soft Matter 2009, 5, 4072–4076.
implantation in osteogenic activity and antibacterial ability of titanium. Biomaterials 2014, 35, 7699–7713.
(28) Tan, A.; Ismail, R.; Chua, K.; Ahmad, R.; Akbar, S.; Pingguan-Murphy, B. Osteogenic potential of in situ TiO2 nanowire surfaces formed by thermal oxidation of titanium alloy substrate. Appl. Surf. Sci. 2014, 320, 161–170.
(29) Mahjouri-Samani, M.; Tan, M.; Puretzky, A. A.; Chi, M.; Wang, K.; Duscher, G.; Rouleau, C. M.; Eres, G.; Yoon, M.; Lassetter, J.; et al. Nonequilibrium synthesis of TiO2 nanoparticle “building blocks” for crystal growth by sequential attachment in pulsed laser deposition. Nano Lett. 2017, 17, 4624–4633.
(30) Yuan, C.-F.; Zheng, X.-B.; Guo, Z. Surface characterization and in vivo performance of plasma-sprayed hydroxyapatite-coated porous Ti6Al4V alloy by forming a thin nanoporous TiO2 layer and hydroxyapatite electrodeposition under lubricated conditions. Tribol. Int. 2014, 78, 168–175.
(31) Cheng, Y.; Wang, X.; Li, Y.; Hodgson, P. D.; Wen, C. Biomimetic modification of porous TiNbZt alloy scaffold for bone tissue engineering. Tissue Eng., Part A 2010, 16, 309–316.
(32) Yang, B.; Mahjouri-Samani, M.; Rouleau, C. M.; Geohegan, D. B.; Xiao, K. Low temperature synthesis of hierarchical TiO2 nanostructures for high performance perovskite solar cells by pulsed laser deposition. Phys. Chem. Chem. Phys. 2016, 18, 27067–27072.
(33) Benea, L.; Mardare-Danaila, E.; Celis, J.-P. Increasing the tribological performances of Ti–6Al–4V alloy by forming a thin nanoporous TiO2 layer and hydroxyapatite electrodeposition under lubricated conditions. Tribol. Int. 2014, 78, 168–175.
(34) Joo, H.-C.; Lim, Y.-J.; Kim, M.-J.; Kwon, H.-B.; Han, J.-H. Characterization on titanium surfaces and its effect on photolytic bacterial activity. Appl. Surf. Sci. 2010, 257, 741–746.
(35) Sumita, T.; Yamaki, T.; Yamamoto, S.; Miyashita, A. Photoinduced surface charge separation of highly oriented TiO2 anatase and rutile thin films. Appl. Surf. Sci. 2002, 200, 21–26.
(36) Bickley, R. L.; Gonzalez-Carreno, T.; Lees, J. S.; Palmisano, L.; Tilley, R. J. A structural investigation of titanium dioxide photocatalysts. J. Solid State Chem. 1991, 92, 178–190.
(37) Su, R.; Bechstein, R.; So, L.; Vang, R. T.; Sillansen, M.; Esbjörnsson, B.; Palmqvist, A.; Besenbacher, F. How the Anatase-to-

Rutile Ratio Influences the Photoreactivity of TiO₂. *J. Phys. Chem. C* 2011, 115, 24287–24292.

47) Hurum, D. C.; Agrios, A. G.; Gray, K. A.; Rajh, T.; Thurnauer, M. C. Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO₂ Using EPR. *J. Phys. Chem. B* 2003, 107, 4545–4549.

48) Xiong, W.; Zhou, Y.; Hou, W.; Jiang, L.; Mahjouri-Samani, M.; Park, J.; He, X.; Gao, Y.; Fan, L.; Baldacchini, T.; et al. Laser-based micro/nanofabrication in one, two and three dimensions. *Front. Optoelectron.* 2015, 8, 351–378.

49) Wang, X.; Xu, X. Thermoeelastic wave induced by pulsed laser heating. *Appl. Phys. A* 2001, 73, 107–114.

50) Xiong, W.; Zhou, Y.; He, X.; Gao, Y.; Mahjouri-Samani, M.; Baldacchini, T.; Lu, Y. In *Three-Dimensional Micro/Nano-Fabrication by Integration of Additive and Subtractive Femtosecond-Laser Direct Writing Processes*, International Congress on Applications of Lasers & Electro-Optics; LIA, 2012; pp 1160–1164.

51) Su, W.; Zhang, J.; Feng, Z.; Chen, T.; Ying, P.; Li, C. Surface phases of TiO₂ nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy. *J. Phys. Chem. C* 2008, 112, 7710–7716.

52) Spurr, R. A.; Myers, H. Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer. *Anal. Chem.* 1957, 29, 760–762.

53) Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; Tinevez, J.-Y.; White, D. J.; Hartenstein, V.; Eliceiri, K.; Tomancak, P.; Cardona, A. Fiji: an open-source platform for biological-image analysis. *Nat. Methods* 2012, 9, 676–682.