Classification vs Regression in Overparameterized Regimes: Does the Loss Function Matter?

Adhyyan Narang

University of Washington

August 8, 2024
Collaborators

Joint work with:

Vidya Muthukumar Vignesh Subramanian Misha Belkin Daniel Hsu Anant Sahai
Empirical Observation

model	# params	train accuracy	test accuracy
Inception	1,649,402	100.0	89.05
(fitting random labels)	100.0	89.31	86.03
	100.0	85.75	
Inception w/o BatchNorm	1,649,402	100.0	83.00
(fitting random labels)	100.0	82.00	10.12
Alexnet	1,387,786	99.90	81.22
(fitting random labels)	99.82	79.66	77.36
	100.0	76.07	
MLP 3x512	1,735,178	100.0	53.35
(fitting random labels)	100.0	52.39	
MLP 1x512	1,209,866	99.80	50.39
(fitting random labels)	99.34	50.51	

- From Zhang et.al "Understanding Deep Learning Requires Rethinking Generalization (2016)".
- CIFAR 10 (50,000 train examples)
- Benign overfitting happens for classification too
Regression Very Quick Recap

Minimum 2-norm interpolator

\[\hat{\alpha}_{\text{MNI}} = \min_{\alpha \in \mathbb{R}^d} \| \alpha \| \]

s.t \(X_i^\top \alpha = Y_i \) for all \(i = 1 \ldots n \)

This admits the closed form expression:

\[\hat{\alpha}_{\text{MNI}} = A_{\text{train}}^\dagger Y_{\text{train}}. \]

Analysis of MSE Risk

\[\mathcal{E}_{\text{test}}(\hat{\alpha}) \]
\[= \mathbb{E} \left[(\langle X, \alpha^* \rangle + \epsilon - \langle X, \hat{\alpha} \rangle)^2 \right] \]
\[= \mathbb{E} \left[(\langle X, \hat{\alpha} - \alpha^* \rangle)^2 \right] + \mathbb{E}[\epsilon^2] \]
\[= \mathbb{E} \left[(\hat{\alpha} - \alpha^*)^\top X X^\top (\hat{\alpha} - \alpha^*) \right] + \sigma^2 \]
\[= (\hat{\alpha} - \alpha^*)^\top \Sigma (\hat{\alpha} - \alpha^*) + \sigma^2 \]
\[= \| \Sigma^{1/2}(\hat{\alpha} - \alpha^*) \|^2_2 - \sigma^2 \]
\[= \| \Sigma^{1/2}(\hat{\alpha} - \alpha^*) \|^2_2. \]
Analyzing classification is more challenging

Minimum 2-norm interpolator

$$\hat{\alpha}_{\text{MNI}} = \min_{\alpha \in \mathbb{R}^d} \|\alpha\| \quad \text{s.t.} \quad X_i^\top \alpha = Y_i \quad \text{for all} \quad i = 1 \ldots n$$

This admits the closed form expression:

$$\hat{\alpha}_{\text{MNI}} = A_{\text{train}}^\dagger Y_{\text{train}}.$$

Support Vector Machine

$$\hat{\alpha}_{\text{SVM}} = \min_{\alpha \in \mathbb{R}^d} \|\alpha\| \quad \text{s.t.} \quad Y_i X_i^\top \alpha \geq 1 \quad \text{for all} \quad i = 1, \ldots, n.$$

Now, the solution is not in closed form anymore, and the risk does not admit an easy form.
1. Setup

2. Proliferation of Support Vectors

3. Benign overfitting: Classification v/s Regression
Data Model

Gaussian Features \(X_i \sim \mathcal{N}(0, \Sigma) \)

Denote by \(\Lambda = [\lambda_1 \ldots \lambda_n] \) the spectrum of \(\Sigma \)

Labels

\[
Z_i = \langle X_i, \alpha^* \rangle \quad \text{and}
\]

\[
Y_i = \begin{cases}
\text{sgn}(Z_i) \quad \text{with probability} \quad (1 - \nu^*) \\
-\text{sgn}(Z_i) \quad \text{with probability} \quad \nu^*.
\end{cases}
\]
Interpolating Estimators, Risk

Interpolators

\[
\hat{\alpha}_{\text{binary}} = \min_{\alpha \in \mathbb{R}^d} \|\alpha\| \quad \text{s.t} \quad X_i^\top \alpha = Y_i
\]

\[
\hat{\alpha}_{\text{real}} = \min_{\alpha \in \mathbb{R}^d} \|\alpha\| \quad \text{s.t} \quad X_i^\top \alpha = Z_i
\]

\[
\hat{\alpha}_{\text{SVM}} = \min_{\alpha \in \mathbb{R}^d} \|\alpha\| \quad \text{s.t} \quad Y_i X_i^\top \alpha \geq 1
\]

Third = First when all constraints are tight.

Regression Risk

\[
\mathcal{R}(\hat{\alpha}) = \mathbb{E}[\langle X, \alpha^* - \hat{\alpha} \rangle^2]
\]

Classification Risk

\[
\mathcal{C}(\hat{\alpha}) = \mathbb{P}[\text{sgn}(\langle X, \hat{\alpha} \rangle) \neq \text{sgn}(\langle X, \alpha^* \rangle)]
\]
1. Setup

2. Proliferation of Support Vectors

3. Benign overfitting: Classification v/s Regression
Curious Empirical Observation

- Fix $n = 32$ and $\Sigma = I$
Theoretical Result

Theorem

If \(\Sigma = I_d \) and \(d > n \log(n) + n - 1 \), then for any fixed \(Y_{\text{train}} \in \{-1, 1\}^n \), we have with probability \((1 - \frac{2}{n})\)

\[
\hat{\alpha}_{\text{binary}} = \hat{\alpha}_{\text{SVM}}
\]
Curious Empirical Observation 2

- Fix \(n = 519 \), \(d = 12167 \) and vary \(\Lambda \).
- As “effective overparameterization” is increased, the fraction of support vectors increases.
Theoretical Result

Theorem

If Σ satisfies

$$\frac{\|\Lambda\|_1}{\|\Lambda\|_2} \geq n\sqrt{\log(n)} \quad \text{and} \quad \frac{\|\Lambda\|_1}{\|\Lambda\|_\infty} \geq n\sqrt{n \log(n)}$$

then simultaneously for all $Y_{\text{train}} \in \{-1, 1\}^n$, we have with probability $(1 - \frac{2}{n})$

$$\hat{\alpha}_{\text{binary}} = \hat{\alpha}_{\text{SVM}}$$

- Note that $d \geq \left(\frac{\|\Lambda\|_1}{\|\Lambda\|_2}\right)^2 \geq \frac{\|\Lambda\|_1}{\|\Lambda\|_\infty}$.
- In the isotropic setting, these are all equal.
- So these ratios measure how far we are from isotropic.
Equivalence of Loss Functions

The outcome of training loss functions in the linear model (separable data)

- **Logistic loss**
 - Gradient Descent
 - (Ji and Telgarsky, 2019)
 - (Soudry et al., 2018)

- **Squared loss**
 - Gradient Descent, initialized at 0
 - (Engl et al., 1996)

Hard-margin SVM

Equivalent with sufficient overparameterization

Min ℓ_2-norm interpolation
Proof technique

• By complementary slackness, the ith point is a support vector when the ith dual constraint is strictly feasible.
• Dual condition is expressed cleanly, and goes through when Gram matrix is close to diagonal.
• This happens in high dimensions whp

Intuition

• In the small d or highly anisotropic case, a lot of weight is placed on small features.
• So you would probably overshoot the constraint.
• But when you have many features to use, you have more “fine-grained control” and is cheaper to be tight.
"On the proliferation of support vectors in high dimensions" Hsu, Muthukumar, Xu (2020): Sharpens the second theorem here, and provides a converse result

"Support vector machines and linear regression coincide with very high-dimensional features.” Ardeshir, Sanford, Hsu (2021): Show that above paper is tight

"Benign overfitting in binary classification of gaussian mixtures” Wang, Thrampoulidis (2021): Show the same for Gaussian Mixture Models

"Benign overfitting in multiclass classification: All roads lead to interpolation.” Wang, Muthukumar, Thrampoulidis (2021): Multiclass extension
Assumption (1-sparse) For some unknown $t \in \{1 \ldots s\}$, assume that $\alpha^* = e_t$
Survival and Contamination

Survival (Signal Recovery)

\[SU(\hat{\alpha}) = \frac{\hat{\alpha}_t}{\alpha^*_t} \]

Contamination (False discovery of features)

\[B = \sum_{j \neq t} \hat{\alpha}_j X_j \]
\[CN(\hat{\alpha}) = \sqrt{\mathbb{E}[B^2]} \]

Then,

\[R(\hat{\alpha}) = (1 - SU(\hat{\alpha}))^2 + CN(\hat{\alpha})^2 \]

And,

\[C(\hat{\alpha}) = 1 - \tan^{-1} \left(\frac{SU(\hat{\alpha})}{CN(\hat{\alpha})} \right) \]
Results

Theorem (Bartlett, Long, Lugosi and Tsigler)

\[R(\hat{\alpha}_{\text{real}}) \approx \left(\frac{d - s}{d - s + nR} \right)^2 \]

Taking the limit,

\[\to 0 \text{ as } n \to \infty \text{ if and only if } R \gg \frac{d}{n}. \]

Theorem (Present Work)

\[C(\hat{\alpha}_{\text{binary}}) \approx \frac{1}{2} - \tan^{-1} \left(\frac{R}{\sqrt{(d - s)/n}} \right) \]

\[\to 0 \text{ as } n \to \infty \text{ if and only if } R \gg \sqrt{\frac{d}{n}}. \]
Separating Regime

Ratio (R)	$\gg \frac{d}{n}$	$\gg \sqrt{\frac{d}{n}}$, $\ll \frac{d}{n}$	$\ll \sqrt{\frac{d}{n}}$
Classification	0	0	$\frac{1}{2}$
Regression	0	1	1

Note:
- Benign overfitting does not always happen – it depends on the quality of features and the razor.
- The second and third column co-incide with the regime where support vectors proliferate.
Summary

• With high enough effective overparameterization, support vectors proliferate.
• This paves the way to analyze the SVM by looking at the 2-norm interpolator.
• Identify clear separating regimes between regression and classification.

Since then:
• Community: Extend to multiclass, kernels, mixture models.
• My work: The same phenomena that lead to benign overfitting cause adversarial examples! Would be happy to give a talk on this at some point.