A hSCARB2-transgenic mouse model for Coxsackievirus A16 pathogenesis

Yanli Chen
Chinese Academy of Medical Science and Peking Union Medical college

Heng Li
Institute of Medical Biology

Jinxi Yang
Institute of Medical Biology

Huiwen Zheng
Institute of Medical Biology

Lei Guo
Institute of Medical Biology

Weiyu Li
Institute of Medical Biology

Zening Yang
Institute of Medical Biology

Jie Song
Institute of Medical Biology

Longding Liu (✉️ longdingl@gmail.com)
Chinese Academy of Medical Science and Peking Union Medical college https://orcid.org/0000-0001-8335-5613

Research

Keywords: Coxsackievirus A16 (CA16), Hand, foot, and mouth disease (HFMD), Human scavenger receptor class B, member 2 (hSCARB2), Respiratory and neurological pathology.

DOI: https://doi.org/10.21203/rs.3.rs-86918/v1

License: 📈 This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Coxsackievirus A16 (CA16) is one of the neurotropic pathogen that has been associated with severe neurological forms of hand, foot, and mouth disease (HFMD), but its pathogenesis is not yet clear. The limited species tropism of CA16 make the establishment of a suitable animal model that can recapitulate the neurological pathology observed in human HFMD more difficult. Because the human scavenger receptor class B, member 2 (hSCARB2) is a cellular receptor for CA16, we used transgenic mice bearing human SCARB2 and nasally infected them with CA16 to study the pathogenicity of the virus.

Methods: Coxsackievirus A16 was administered by intranasal instillation to groups of hSCARB2 transgenic mice and clinical signs were observed. Sampled at different time-points to document and characterize the mode of viral dissemination, pathological change and immune response of CA16 infection.

Results: Weight loss and virus replication in lung and brain were observed in hSCARB2 mice infected with CA16, indicating that these animals could model the neural infection process. Viral antigens were observed in the alveolar epithelia and brainstem cells. The typical histopathology was interstitial pneumonia with infiltration of significant lymphocytes into the alveolar interstitial in lung and diffuse punctate hemorrhages in the capillaries of the brainstem. In addition, we detected the expression levels of inflammatory cytokines and detected high levels of interleukin IL-1β, IL-6, IL-18, and IFN-γ in nasal mucosa, lungs and brain tissues.

Conclusions: The hSCARB2-transgenic mice can be productively infected with CA16 via respiratory route and exhibited a clear tropism to lung and brain tissues, which can serve as a model to investigate the pathogenesis of CA16 associated respiratory and neurological disease.

Introduction

Coxsackievirus A16 (CA16) is a member of the Human enterovirus A (HEV-A) species of the Enterovirus genus of picornaviridae, and it is one of the major pathogens associated with hand, foot, and mouth disease (HFMD) in infants and young children besides Enterovirus A71 (EV71) [1, 2]. HFMD caused by CA16 infection is generally thought to cause mild and self-limiting symptoms, such as blisters/ulcers on the hands and feet and in the mouth as well as pharyngitis in infants and children. However, increasing evidences show poor clinical outcomes in patients infected with CA16 [3–7], such as fatal myocarditis, pneumonia, aseptic meningitis and encephalitis, which make clinical treatment and prevention challenging. The precise mechanisms of CA16-mediated disease, particularly the pathogenesis of central nervous system (CNS), have not yet been fully understood because suitable and relevant animal models have not been established.

In humans, the main route of CA16 infection is through the oral (OL) route, but the respiratory route has also been documented and became an important route that cannot be ignored in recent years [8–10]. Most of the previous animal models, including murine, adult mice and gerbil models were inoculated with...
this virus via an intraperitoneal (i.p.) [11–13] or intracerebral (i.c.) [14] route. These animals mainly demonstrated an infection process occurred in skeletal and cardiac muscle tissues and replication profile with obvious signs of hind-limb paralysis. Nevertheless, since these inoculation route were not the natural route for CA16 infection and no neurological lesions were observed, the application of these models is limited. Several studies tried to establish animal models that can reproduce human neurological pathogenesis via natural infective route including oral and respiratory route. In recent studies, 21-day-old gerbils [15] and 7-day-old hamsters [16] were used to establish the orally infected animal models. However, gerbils exhibited lower infection efficiency in detected tissues and no obvious disease symptoms were observed in the CNS, which appeared to be rather resistant to CA16 infection. Hamsters could develop neurological disease by inoculating of the mouse-adapted strains, but it should be noted that mouse-adapted strains are unable to represent all the typical characters of clinical viruses. As for the respiratory infection animal models, our group has developed large animal models including tree shrew [17] and rhesus macaques [18] to study the pathological mechanisms of neurological lesions, but their use are limited for ethical and economical reasons. Therefore, we would like to further investigate the suitability of small animals to study CA16 infections via respiratory route based on our previous work.

It is generally believed that specific cellular receptors determine the host range specificity and tissue tropism for most animal viruses. Similar to poliovirus and EV71, CA16 has a limited host range and humans are the only known natural host [19, 20]. Human scavenger receptor class B, member 2 (hSCARB2) has been demonstrated to be a candidate cellular receptor for CA16 and EV71 [20–24]. SCARB2, also known as lysosomal integral membrane protein-2, localizes mainly to lysosomes and acts as a receptor for lysosomal targeting of β-glucocerebrosidase [25–27]. Previously, successful in vivo EV71 infection and pathogenesis have been achieved by intraperitoneal (i.p.) inoculation of adaptive viral strains into hSCARB2 transgenic mice [28–30]. Both EV71 and CA16 belong to the enterovirus genus and cause similar clinical symptoms. However, no study has demonstrated thus far whether CA16 is able to infect transgenic mice expressing hSCARB2 as well. Here, we assess the utility of the transgenic mouse as a model for investigating the mode of viral dissemination, tissue tropism and pathology within the host via the respiratory infection route. The data obtained further extend our knowledge of CA16 infectious disease pathology in general and the CNS pathology in particular.

Material And Methods

Ethics Statement

Transgenic C57BL/6J mice expressing hSCARB2 were purchased from the National institutes of Food and Drug Control of China. All mice were housed in a high-efficiency particulate air-filtered individual isolation unit in an Animal Biosafety Level 2-enhanced (ABSL-2+) facility, which complied with the requirements for mouse housing, environment, and comfort as described in the Guide for Laboratory Animals Care issued by the Institute of Medical Biology. The Yunnan Provincial Experimental Animal Management Association and the institutional Experimental Animal Ethics Committee approved the experimental protocols.
Mouse Study Design

A total of 20 transgenic mice (weight: 17.00–20.00 g, 4 weeks old) were randomly divided into the control and CA16 groups. Based on our earlier work on nasally infected CA16 tree shrew [17] and rhesus macaques model [18], fifteen mice were infected with $10^{4.5}$ 50% cell culture infectious doses (CCID50) of CA16 via the nostrils dropwise. The CA16 virus strain (sub-genotype B) was isolated from a throat swab from an HFMD patient obtained in Guangxi in 2010 (GenBank: JN590244.1) and grown in Vero cells (ATCC, Manassas, VA, USA), which were maintained in Dulbecco's Modified Eagle Medium (DMEM, HyClone, Logan, UT, USA) supplemented with 10% fetal bovine serum (FBS, Gibco, Grand Island, NY, USA). While 5 mice used as mock controls were inoculated with the same dosage of phosphate-buffered saline (PBS) via the same route.

After inoculation, the animals were monitored daily for survival and clinical manifestation for 21 days. The onset and duration of all visible changes, such as reduced mobility, limb weakness, paralysis and death, were recorded. Animal feces, and throat swabs were collected daily to detect viral load. Three mice were sacrificed on days 3, 7, 12, 15 and 21 after infection, and the organs or tissues were harvested for viral distribution analysis, histopathology, immunohistochemistry and inflammatory cytokines detection.

Real-Time PCR Test for Viral Load Quantity

Total RNA was extracted from fresh tissue, feces, nasal washes, and blood from the experimental animals using the TRNzol-A + Reagent mini kit (TianGen Biotech, Co., Ltd., Beijing, China) according to the manufacturer's instructions. The total RNA was eluted in a final volume of 30 µL. For quantification, a single-tube, real-time TaqMan RT-PCR assay was performed using the TaqMan one-step RT-PCR Master Mix in the CFX96 Touch™ Real-Time PCR Detection system (Bio-Rad, Laboratories, Hercules, CA, USA). The experiments were carried out by adding the primer (200 nm), FAM/TAMRA probe (100 nm) (TAKARA Biotechnology Co., Ltd., Dalian, China), and 2 µL of RNA into the TaqMan PCR mater mix, for which the total reaction volume is 20 µL. The following sequences including CA16-specific primers and probe: forward primer, 5’-CTAGTAGTCACAGATTAGGCACTGGTG-3’; reverse primer 5’-CATTGTGATGATGCTGACAAGACC-3’ and the probe 5’FAM-CGTCTAATGCTAGCGACAA-TAMRA-3’; The following reaction conditions were applied for all PCR experiments: 5 min at 42 ºC and 10 s at 95 ºC, followed by 40 cycles at 95 ºC for 5 s, and 60 ºC for 30 s. A standard reference curve was established by measuring the serially diluted concentrations of the CA16 RNA standards generated from the in vitro transcription of a DNA gene fragment containing the CA16 p1 gene region.

Histopathological and Immunohistochemical (IHC) Staining

Tissue samples from sacrificed mice were fixed in 10% formaldehyde, dehydrated, embedded, and then cut into 4-µm-thick sections for hematoxylin and eosin (HE) staining assays. For immunohistochemical analysis, the sections were prepared according to the manufacturer's protocol. Briefly, the slides were deparaffinized, hydrated, antigen-repaired, and then blocked in 4% BSA. CA16 antigen was detected using
an anti-enterovirus 71 antibody and cross-reacted with CA 16 antibody (Cat # MAB979, Millipore) prepared by diluting 1:1000 in PBS containing 1% BSA. These slides were washed with PBST and incubated with goat poly-HRP anti-rabbit IgG antibody (Cat # AS040, AB clonal) as a secondary antibody for 35 min at 37 °C. Peroxidase activity was detected with an Enhanced HRP-DAB Chromogenic Substrate Kit (TianGen Biotech, Co., Ltd., Beijing, China). Finally, the slides were examined under a light microscope.

Quantification of Cytokine mRNA

RNA isolations were performed on mouse lung tissue samples with the TRNzol-A + Reagent kit (TianGen Biotech, Co., Ltd., Beijing, China) according to the manufacturer’s protocols. Then, cytokine expression levels were normalized to Beta-actin (β-actin) and are reported as the fold change compared with mock-infected animals. Primer sequences for IL-1β, IL-6, IL-18, TNF-γ and β-actin were published elsewhere. Primer sequences for the remaining genes are as follows: IL-1β: forward, 5’-GAGATGCCTGAGACACCAGCCAAA-3’; reverse, 5’-TGTGCACCAGTTTTCGTTCC-3’; IL-6: forward, 5’-GGAGGCTGTGGATAAACTATTCC-3’; reverse, 5’-CCGGTGTCCACTCAGTGTTTAT-3’; IL-18: forward, 5’-AGAATCAGGCATCCCTCTGC-3’; reverse, 5’-CTTACTGGAGATCCCTGCCG-3’; TNF-γ: forward, 5’-GTGCTGACGGACGCTTAAA-3’; reverse, 5’-ACCAGCATCTTTTCCAACCG-3’; Quantitative real-time PCR (qRT-PCR) was performed by using a CFX96 Touch™ Real-Time PCR Detection system (Bio-Rad, Laboratories), and a One Step SYBR PrimeScript™ RT-PCR Kit (TAKARA Biotechnology Co., Ltd.). Each reaction consisted of 1 cycle of 42 ºC for 5 min, 95 ºC for 10 s, followed by 40 cycles of 95 ºC for 5 s and 60 ºC for 30 s. The results of cytokines expression were normalized by β-actin, respectively, and calculated using the $2^{-\Delta \Delta CT}$ method [31].

Neutralization Antibody Titer Test

To investigate the dynamic changes of neutralizing antibody response to CA16 in hSCARB2 transgenic mice after infection, serum samples were collected at 3, 7, 12, 14, and 21 days post-infection. CA16-neutralizing antibodies were analyzed using a standard protocol. Briefly, mouse serum was heat-inactivated for 30 min at 56 ºC, then diluted 1:2 in minimum essential medium containing 2% fetal bovine serum (FBS) (Gibco, Life Technologies, Shanghai, China). After that, diluted serum was transferred in triplicate to the first row of one 96-well plate and then diluted two-fold from 1:4 to 1:512. 10^2.0 hundred CCID50 were combined with the diluted sera in a 96-well, white, opaque-bottom plate and incubated at 35 ºC for 3 h before adding 10,000 Vero cells/well. After incubation, the mixtures were added onto a monolayer of Vero cells and the cells were inspected daily for cytopathic effect (CPE) for up to 4 days. Neutralizing antibody titers were taken to be the highest dilution of serum that inhibited 50% of the viral growth. Neutralization titers were estimated with the Spearman–Karber method and expressed in log2 form (e.g., 4 is a titer of 1:16).

Statistics

GraphPad Prism 8 (Version 8.0, La Jolla, CA, USA) was used to graph data and to perform statistical analyses. To compare cytokine expression levels between groups, the Mann–Whitney U test was used.
Means ± SEMs (standard errors of the mean) were graphed and p < 0.05 was considered to be statistically significant.

Results

Clinical observations of CA16-infected hSCARB2-transgenic mice

Compared to mock-infected mice, slight bristled fur and weight loss were observed in hSCARB2-transgenic mice during the 15 days of observation, and other clinical symptoms such as limb weakness and paralysis were not found. Notably, the weight loss of hSCARB2 mice first occurred at 4 days post infection (dpi) and had increased to 13% at 12 dpi (Fig. 1), followed by a slight uptrend. Generally, patients infected with this virus can appear to have various disease severities ranging from mild symptoms, such as cold-like clinical signs and blisters/ulcers in the oral mucosa and limbs, to severe respiratory and neurological infections, including aseptic meningitis, encephalitis and even fatal myocarditis and pneumonia. In our study, however, the most obvious clinical signs was weight loss and 4 of 15 infected animals died during the observation. In contrast, hSCARB2-Mock mice appeared to be healthy throughout the course of the experiment.

Dynamic profile of CA16 viral load in tissues of nasally infected hSCARB2-transgenic mice

To determine the mode of viral dissemination in vivo post respiratory-route infection, the viral loads in the nasal mucosa, lungs, blood, intestines and limb muscles of CA16-infected mice at 3, 7, 12 and 15 dpi were detected by real-time PCR. As shown in Fig. 2, virus replication was observed in almost all of the tissues assayed except for throat swabs. At an early stage of infection (3 dpi), the highest viral load was detected in nasal mucosa, which is the site of viral infection, with levels of 316,228 copies per 100 mg sample. With the progress of the infection, virus from the sites of infection spread to and replicated in other tissues, including lungs, blood, brainstem, intestines and skeletal muscles, then reduced gradually after reaching a peak value at 7 or 12 days post-infection. Interestingly, the amount of viral particles that eventually reach the muscles is significantly lower than that measured in lung and brain tissues, which is quite different from the mode of viral dissemination in previous studies evaluating intra-peritoneally or intra-cerebrally infected animals. These findings demonstrated that the virus does travel from the site of infection to the central nervous systems eventually through the respiratory route, indicating a clear neurotropism of the virus in transgenic mice.

Tissue distribution of VP1 of CA16 in hSCARB2-transgenic mice

To understand the distribution of virus antigen, the brainstem, lung, skeletal muscle and intestinal tissues of hSCARB2-transgenic mice infected by CA16 at 7 and 12 dpi were harvested for immunohistochemistry (IHC) examinations. As shown in Fig. 3A, virus antigen was detected in lung and brain at 7 dpi (Fig. 3B). However, limited CA16 antigen was observed in the skeletal muscle and intestinal tissues, and negative reactions were observed in the control group treated with PBS. This finding further confirmed indicated
that nasally infected hSCARB2 transgenic mice had a tropism to lung and brain tissues rather than to muscle tissues in nasally infected hSCARB2 transgenic mice.

Pathological changes in hSCARB2-transgenic mice

To investigate the pathological effects of CA16 on nasally infected hSCARB2 transgenic mice, a histopathological examination of the infected mice at 7 and 12 dpi was carried out. Histologic examination of the lung tissues revealed interstitial pneumonia with infiltration of significant lymphocytes into the alveolar interstitium from 7 dpi (Fig. 4A). Microscopically, the lung tissues from transgenic mice displayed interstitial pneumonia characterized by thickened alveolar septa accompanied with infiltration of inflammatory cells in some areas of the lung tissues and accumulation of inflammatory cells in partial alveolar cavities. The brainstem was the most severely affected organs of the central nervous system in the infected mice. At 7dpi, only a few dark blue inflammatory cells are scattered within the brainstem; as the infection progress into the late stage (12 dpi), diffuse punctate hemorrhages in the capillaries were detected in the area of damage (Fig. 4B). However, minor damage was observed for the limb muscles, characterized by a small amount of inflammatory cell infiltration in interstitial cells at 12 dpi (Fig. 4C).

Immune response of CA16 infection in hSCARB2-transgenic mice

To detect the ability of viral infection to elicit an antibody response, three mice were followed for up to 21 days after inoculation. The immunological analysis of the CA16-infected animals showed a typical antibody response of viral-induced characteristics. Antibodies were present on the 7th day post-infection and increased to a peak level of 1:8 at 21 days post-infection (Fig. 5). Average neutralizing antibodies had geometric mean titers of 1:4, suggesting that CA-16 infection elicited an adaptive immune response in transgenic mice. Furthermore, enhanced cytokine production has been demonstrated to represent immune activation in both HFMD patients and mouse models [32–34]. However, the relationship between the viral-specific immune response and cytokine production of CA16 infection remains ill-defined. Here, we focused on IL-1β, IL-6, IL-18 and IFN-γ, since these cytokines are important inflammatory cytokines expressed in HFMD patients. To follow the time course of virus-host interactions post-inoculation, we compared the levels of cytokines at early and late stages of the disease. mRNA expression levels of inflammatory cytokines in the nasal mucosa, lung and brain tissues of the normal control group and the CA16 group were detected by qPCR. Consistently, the levels of IL-1β, IL-6, IL-18 and IFN-γ in lung and brain tissues increased progressively in conjunction with disease advancement, reaching the highest levels at 12 dpi. Unlike the expression patterns in lung and brain, the patterns of IL-18 and IFN-γ in nasal mucosa were identified as early pro-inflammatory cytokines, as their levels were significantly increased at 3 dpi and declined by 12 dpi (Fig. 6).

Discussion

Previous studies on the CA16 nasally infected animal models primarily focused on large animals, with little emphasis on the small animal models. It’s well known that the non-human primate (NHP) model
best recapitulates CA16 pathogenesis in humans since NHPs present the nearest anatomy, physiology, and the immune system from humans [35–37]. However, it should be noted that these large animal models are generally constrained by significant individual differences, poor repeatability and small sample size. Compared with large animals, small animal models are more convenient and cost-effective to study the mechanism of viral pathogenesis. However, this animal model had never been evaluated for its suitability to study CA16 infections via respiratory route. Thus, establishing the nasal mouse models for CA16 infection is highly desirable, which would be complementary to large animal studies in some aspects.

In the present study, we showed that the exogenous expression of hSCARB2 in mice was sufficient to confer susceptibility to CA16 infection and subsequent development of neuro-pathogenesis, suggesting that hSCARB2 also functions as a cellular receptor for CA16 infection in vivo. In CA16-infected hSCARB2-transgenic mice, although no typical clinical symptoms such as limb weakness and paralysis were observed, other features such as histopathological changes and inflammatory responses could mimic some manifestations in human patients with HFMD. Upon nasally administration to hSCARB2-transgenic mice, the virus initially disseminated effectively in various organs and tissues, and eventually reached and persisted within the brain tissue. Consistently, the virus load in the brain increased progressively and peaked at 12 dpi suggesting that CA16 is neurotropic. Immunohistological examination further confirmed the presence of CA16 in the lung and brain tissues. Moreover, histopathological examination demonstrated that CA16 infection resulted in significant neurological damage in the brainstem. In contrast, in the previous intraperitoneally or intracerebrally inoculated animal models, no obviously positive CVA16 antigen or pathological change was found in the CNS, which demonstrated that CA16 had no significant neurotropism in these models [11, 14]. Despite some evidence showing that CA16 infection is associated with damage to muscle tissues, we did not observe the apparent relationship between limb paralysis and the presence of infectious particles in the skeletal muscle from nasally infected mice, which is different from previous studies [38, 39] and also suggested that infection sensitivity differs slightly between respiratory inoculation and the intraperitoneal- or intracerebral- inoculation route. Consistent with previous studies in orally infected immunodeficiency AG129 mice [40], the small quantity of infectious viral RNA in the limbs suggests that limb paralysis might be a consequence of virus neuro-invasion rather than direct damage to limb muscle. Furthermore, since the distribution of hSCARB2 of each tissue was different in mice, the lack of muscle tropism of CA16 in the hSCARB2 mice could be related to the lower expression of hSCARB2 or the higher protective immunity in muscle.

Previous studies demonstrated that elevated antiviral pro-inflammatory or inflammatory cytokines after viral infection present immune activation and contribute to the immunopathogenesis of EV71 infection in both humans and mice [32–34, 41]. Likewise, the levels of pro-inflammatory cytokines implicated in CA16 infection, namely, IL-1β, IL-6, IL-18, and IFN-γ, were found to be significantly elevated in infected hSCARB2 transgenic mice. Furthermore, the nasal mucosa developed higher levels of IL-18 and IFN-γ than did the lung and brain tissues, likely as a consequence of the stronger mucosal immunity in the nasal mucosa. Consistent with previous studies in EV71-infected mouse models [42], it was also suggested that type I IFNs represent an essential innate defense mechanism for controlling CA16 in hSCARB2 transgenic mice.
Thus, it was not surprising to find that stronger IFN responses in hSCARB2 transgenic mice prevent them from being susceptible to CA16 infection.

Therefore, considering their small size, ease of handling and reduced cost of the mice in comparison to NHPs, this nasally infected hSCARB2-transgenic mouse model represents an important step toward the development of a suitable animal model of CA16 infection and an improved platform that could facilitate the development of antiviral research in clinical medicine.

Conclusion

In summary, the results presented in this paper demonstrate that hSCARB2-transgenic mice can be productively infected with CA16 via respiratory route. The virus exhibits a clear neurovirulence, causing neurological lesion-related symptoms in mice, which resembled the symptoms observed in human patients. This hSCARB2-transgenic mice model could further our understanding of neurotropism, neurovirulence, as well as neuropathology of CA16 infection.

Abbreviations

CA16: Coxsackievirus A16; HFMD: hand, foot, and mouth disease; hSCARB2: human scavenger receptor class B, member 2; HEV-A: Human enterovirus A; EV71: Enterovirus A71; CNS: central nervous system; CCID50: 50% cell culture infectious doses; DMEM: Dulbecco's Modified Eagle Medium; FBS: fetal bovine serum; PBS: phosphate-buffered saline; RT-PCR: Real time polymerase chain reaction; HE: hematoxylin and eosin; CPE: cytopathic effect; SEM: standard errors of the mean; dpi: days post infection; IHC: immunohistochemistry; NHP: non-human primate.

Declarations

Acknowledgements

The authors thank the English proofreading services provided by American Journal Experts (AJE).

Funding

This study is supported by the CAMS Innovation Fund for Medical Sciences (2016-I2M-1-014), National Natural Sciences Foundations of China (31700153), Fundamental Research Funds for the Central Universities and PUMC Youth Fund (3332019004), Yunnan Fundamental Research Projects (2018ZF006), Medical Reserve Talents of Yunnan Province Health and Family Planning (H-2017034) and Top young talents of Yunnan province ten thousand talents plan (Jie Song). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and material

All data presented in this manuscript is included in the text.
Ethics approval and consent to participate

The Yunnan Provincial Experimental Animal Management Association and the institutional Experimental Animal Ethics Committee approved the experimental protocols.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Authors’ contributions

Jie Song and Longding Liu conceived and designed the study. Yanli Chen, Heng Li, Jinxing Yang, Weiyu Li, and Zening performed the experiments. Yanli Chen, Huiwen Zheng and Lei Guo analyzed the data. Yanli Chen, Jie Song and Longding Liu wrote the manuscript. All authors read and approved the final version.

References

1. Koh WM, Bogich T, Siegel K, Jin J, Chong EY, Tan CY, Chen MI, Horby P, Cook AR: The Epidemiology of Hand, Foot and Mouth Disease in Asia: A Systematic Review and Analysis. Pediatric Infectious Disease Journal 2016, 35.

2. Fang C-Y, Liu C-C: Recent development of enterovirus A vaccine candidates for the prevention of hand, foot, and mouth disease. Expert Review of Vaccines 2018, 17:819-831.

3. de Graaf H, Pelosi E, Cooper A, Pappachan J, Sykes K, MacIntosh I, Gbesemete D, Clark TW, Patel SV, Faust SN: Severe enterovirus infections in hospitalized children in the South of England: clinical phenotypes and causative genotypes. The Pediatric infectious disease journal 2016, 35:723.

4. Owatanapanich S, Wutthanarungsan R, Jaksupa W, Thisyakorn U: Risk factors for severe enteroviral infections in children. J Med Assoc Thai 2016, 99:322-330.

5. Zhao Y, Zhang H, Liu H, Zhang J, He L, Sun H, Huang X, Yang Z, Ma S: Molecular characteristics of hand, foot, and mouth disease for hospitalized pediatric patients in Yunnan, China. Medicine 2018, 97.

6. Chen B-S, Lee H-C, Lee K-M, Gong Y-N, Shih S-R: Enterovirus and Encephalitis. Frontiers in microbiology 2020, 11:261-261.

7. Majer A, McGreevy A, Booth TF: Molecular Pathogenicity of Enteroviruses Causing Neurological Disease. Frontiers in microbiology 2020, 11:540-540.

8. Muehlenbachs A, Bhatnagar J, Zaki SR: Tissue tropism, pathology and pathogenesis of enterovirus infection. The Journal of Pathology 2015, 235:217-228.
9. Phyu WK, Ong KC, Wong KT: Modelling person-to-person transmission in an Enterovirus A71 orally infected hamster model of hand-foot-and-mouth disease and encephalomyelitis. *Emerging Microbes & Infections* 2017, 6:1-9.

10. Sun L, Lin H, Lin J, He J, Deng A, Kang M, Zeng H, Ma W, Zhang Y: Evaluating the transmission routes of hand, foot, and mouth disease in Guangdong, China. *American Journal of Infection Control* 2016, 44:e13-e14.

11. Liu Q, Shi J, Huang X, Liu F, Cai Y, Lan K, Huang Z: A murine model of coxsackievirus A16 infection for anti-viral evaluation. *Antiviral Research* 2014, 105:26-31.

12. Caine EA, Fuchs J, Das SC, Partidos CD, Osorio JE: Efficacy of a trivalent hand, foot, and mouth disease vaccine against enterovirus 71 and coxsackieviruses A16 and A6 in mice. *Viruses* 2015, 7:5919-5932.

13. Yao P, Miao Z, Xu F, Lu H, Sun Y, Xia Y, Chen C, Yang Z, Xia S, Jiang J: An adult gerbil model for evaluating potential coxsackievirus A16 vaccine candidates. *Vaccine* 2019, 37:5341-5349.

14. Mao Q, Wang Y, Gao R, Shao J, Yao X, Lang S, Wang C, Mao P, Liang Z, Wang J: A Neonatal Mouse Model of Coxsackievirus A16 for Vaccine Evaluation. *Journal of Virology* 2012, 86:11967-11976.

15. Sun Y, Li Y, Xia Y, Xu F, Wang W, Yang Z, Lu H, Chen Z, Miao Z, Liang W: Coxsackievirus A16 induced neurological disorders in young gerbils which could serve as a new animal model for vaccine evaluation. *Scientific Reports* 2016, 6:34299-34299.

16. Hooi YT, Ong KC, Tan SH, Perera D, Wong KT: A novel orally infected hamster model for Coxsackievirus A16 hand-foot-and-mouth disease and encephalomyelitis. *Laboratory Investigation* 2020, 100:1262-1275.

17. Jian-Ping L, Yun L, Ying ZHANG J-JW, Li-Chun W, Kai F, Qi-Han L, Long-Ding L: Experimental infection of tree shrews (Tupaia belangeri) with Coxsackie virus A16. *Zoological Research* 2014, 35:485.

18. Wang J, Zhang Y, Zhang X, Hu Y, Dong C, Liu L, Yang E, Che Y, Pu J, Wang X: Pathologic and immunologic characteristics of coxsackievirus A16 infection in rhesus macaques. *Virology* 2017, 500:198-208.

19. Kobayashi K, Koike S: Cellular receptors for enterovirus A71. *Journal of biomedical science* 2020, 27:23-23.

20. Yamayoshi S, Izuka S, Yamashita T, Minagawa H, Mizuta K, Okamoto M, Nishimura H, Sanjoh K, Katsushima N, Itagaki T: Human SCARB2-Dependent Infection by Coxsackievirus A7, A14, and A16 and Enterovirus 71. *Journal of Virology* 2012, 86:5686-5696.

21. Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, Koike S: Scavenger receptor B2 is a cellular receptor for enterovirus 71. *Nat Med* 2009, 15:798-801.

22. Li X, Fan P, Jin J, Su W, An D, Xu L, Sun S, Zhang Y, Meng X, Gao F, et al: Establishment of cell lines with increased susceptibility to EV71/CA16 by stable overexpression of SCARB2. *Virol J* 2013, 10:250.

23. Yamayoshi S, Ohka S, Fujii K, Koike S: Functional comparison of SCARB2 and PSGL1 as receptors for enterovirus 71. *J Virol* 2013, 87:3335-3347.
24. Yamayoshi S, Koike S: Identification of a human SCARB2 region that is important for enterovirus 71 binding and infection. *J Virol* 2011, 85:4937-4946.

25. Kuronita T, Eskelinen EL, Fujita H, Saftig P, Himeno M, Tanaka Y: A role for the lysosomal membrane protein LGP85 in the biogenesis and maintenance of endosomal and lysosomal morphology. *J Cell Sci* 2002, 115:4117-4131.

26. Eskelinen EL, Tanaka Y, Saftig P: At the acidic edge: emerging functions for lysosomal membrane proteins. *Trends Cell Biol* 2003, 13:137-145.

27. Gamp AC, Tanaka Y, Lüllmann-Rauch R, Wittke D, D’Hooge R, De Deyn PP, Moser T, Maier H, Hartmann D, Reiss K, et al: LIMP-2/LGP85 deficiency causes ureteric pelvic junction obstruction, deafness and peripheral neuropathy in mice. *Hum Mol Genet* 2003, 12:631-646.

28. Lin Y-W, Yu S-L, Shao H-Y, Lin H-Y, Liu C-C, Hsiao K-N, Chitra E, Tsou Y-L, Chang H-W, Sia C, et al: Human SCARB2 Transgenic Mice as an Infectious Animal Model for Enterovirus 71. *PLOS ONE* 2013, 8:e57591.

29. Fujii K, Nagata N, Sato Y, Ong KC, Wong KT, Yamayoshi S, Shimanuki M, Shitara H, Taya C, Koike S: Transgenic mouse model for the study of enterovirus 71 neuropathogenesis. *Proceedings of the National Academy of Sciences of the United States of America* 2013, 110:14753-14758.

30. Liou AT, Wu SY, Liao CC, Chang YS, Chang CS, Shih C: A new animal model containing human SCARB2 and lacking stat-1 is highly susceptible to EV71. *Sci Rep* 2016, 6:31151.

31. Rao X, Huang X, Zhou Z, Lin X: An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. *Biostat Bioinforma Biomath* 2013, 3:71-85.

32. Zhang W, Huang Z, Huang M, Zeng J: Predicting Severe Enterovirus 71-Infected Hand, Foot, and Mouth Disease: Cytokines and Chemokines. *Mediators Inflamm* 2020, 2020:9273241.

33. Xu Y, Li S, Cai C, Liu J, Wang Y, Jiay Y, Du L, Chen Z: Characterization of inflammatory cytokine profiles in cerebrospinal fluid of hand, foot, and mouth disease children with enterovirus 71-related encephalitis in Hangzhou, Zhejiang, China. *Medicine (Baltimore)* 2019, 98:e18464.

34. Ye N, Gong X, Pang L-I, Gao W-J, Zhang Y-t, Li X-I, Liu N, Li D-d, Jin Y, Duan Z-j: Cytokine responses and correlations thereof with clinical profiles in children with enterovirus 71 infections. *BMC Infectious Diseases* 2015, 15:225-225.

35. Food, Drug Administration H: New drug and biological drug products; evidence needed to demonstrate effectiveness of new drugs when human efficacy studies are not ethical or feasible. *Final rule. Federal register* 2002, 67:37988.

36. Park GD, Mitchel JT: Working with the US Food and Drug Administration to obtain approval of products under the Animal Rule. *Annals of the New York Academy of Sciences* 2016, 1374:10-16.

37. Safronetz D, Geisbert TW, Feldmann H: Animal models for highly pathogenic emerging viruses. *Current opinion in virology* 2013, 3:205-209.

38. Li C, Zhang B, Feng Y, Xu C, Jiang J, Lu Y: Establishment and characterization of an oral gerbil model for a non-mouse-adapted enterovirus 71 strain. *Virus Research* 2018, 255:117-126.
39. Chang C, Liao C, Liou A, Chang Y, Chang Y, Tzeng B, Chen C, Shih C: Enterovirus 71 targets the cardiopulmonary system in a robust oral infection mouse model. Scientific Reports 2019, 9:11108.

40. Khong WX, Yan B, Yeo H, Tan EL, Lee JJ, Ng JK, Chow VT, Alonso S: A non-mouse-adapted enterovirus 71 (EV71) strain exhibits neurotropism, causing neurological manifestations in a novel mouse model of EV71 infection. J Virol 2012, 86:2121-2131.

41. Zhu D, Zhao XY, Yao Y, Dai FF, He H, Li RQ, Jin RH, Liang LC, Li N: A new factor influencing pathogen detection by molecular assay in children with both mild and severe hand, foot, and mouth disease. Diagn Microbiol Infect Dis 2013, 76:162-167.

42. Liao CC, Liou AT, Chang YS, Wu SY, Chang CS, Lee CK, Kung JT, Tu PH, Yu YY, Lin CY, et al: Immunodeficient mouse models with different disease profiles by in vivo infection with the same clinical isolate of enterovirus 71. J Virol 2014, 88:12485-12499.