H.-Ch. Kim · H.-Y. Ryu · A. Titov · A. Hosaka

φN photoproduction coupled with the KΛ* channel

Received: date / Accepted: date

Abstract We present in this talk a recent investigation on φ photoproduction, emphasizing the rescattering effects of the KΛ* channel near the threshold region. We discuss the results of the differential cross section and the angular distributions.

Keywords φ photoproduction · Rescattering effects of KΛ*
the rescattering equation can be written as

\[M_{\gamma N \rightarrow \phi N}(p,p';s) = M_{\gamma N \rightarrow \phi N}^{\text{Born}}(p,p';s) + \int d^4q \frac{\omega + E}{(2\pi)^3 2\omega E} M_{\gamma N \rightarrow K^+ A^*}(p,q;s) \frac{1}{s - (\omega + E)^2 + i\epsilon} M_{K^+ A^* \rightarrow \phi N}(q,p';s), \]

which is a Blankenbecler-Sugar (BbS) equation. The amplitude \(M_{\gamma N \rightarrow \phi N}^{\text{Born}} \) contains the diagrams of pomeron- and meson-exchanges. The second part of Eq. (1) in the right-hand side denotes the rescattering amplitude of the \(K^+ A^* \) channel. Both \(M_{\gamma N \rightarrow K^+ A^*}(p,k;s) \) and \(M_{K^+ A^* \rightarrow \phi N}(k,p';s) \) are the off-mass-shell extended amplitudes for the \(\gamma p \rightarrow K^+ A^* \) and \(K^+ A^* \rightarrow \phi p \), respectively. \(\omega \) and \(E \) correspond to the off-mass-shell energies of the \(K^+ \) and the \(A^* \) in the intermediate states. \(s \) is a Mandelstam variable, i.e. the square of the total energy \(s = (E_\gamma + E_p)^2 \).

Since it is quite complicated to deal with Eq. (1) in a full coupled-channel formalism, we will first concentrate on the imaginary part of Eq. (1), which can be easily derived by the two-body unitarity relation (Landau-Cutkosky rule). In this case, we need only the on-mass-shell amplitudes. The full calculation of Eq. (1) is under investigation and will be presented elsewhere. The imaginary part of the BbS equation is written as

\[\text{Im} M_{K^+ A^* \rightarrow \phi N}^\text{rescatt.} = -\frac{1}{8\pi} \frac{r}{\sqrt{s}} \int \frac{d\Omega}{4\pi} M_L(\gamma p \rightarrow K^+ A^*) M_L^\dagger(K^+ A^* \rightarrow \phi p), \]

where \(r \) is the magnitude of the \(K^+ \) on-mass-shell three momentum. For detailed formalism, we refer to the recent work [5].

3 Results

We now present the results for the rescattering effects of the \(K A^* \) coupled channel on \(\phi \) photoproduction. Figure 1 draws the results of the total cross section for \(K^+ A(1520) \) photoproduction, based on Ref. [3]. The experimental data are well reproduced. Employing the \(\gamma p \rightarrow K^+ A(1520) \) amplitude, we are able to consider the \(K A^* \) rescattering in \(\phi \) photoproduction.

In Fig. 2 we show each contribution to the differential cross section \(d\sigma / dt \) for \(\phi \) photoproduction in log scale. The dashed curve with P represents the pomeron-exchange contribution. The pomeron governs typically the general \(E_\gamma \) dependence, in particular, in the high energy region, while the \(t \)-channel effects designated by T contribute to the differential cross section almost equally along \(E_\gamma \). The \(K A(1520) \) rescattering effects start to arise from the threshold drastically till around 2 GeV, then fall off fast. Thus, the interference of all these three contributions make it possible to describe the bump-like structure around \(E_\gamma = 2.3 \) GeV.

The angular distributions of the \(\phi \rightarrow K^+ K^- \) decay in the \(\phi \) rest frame allow one to get access to the helicity amplitudes experimentally [8, 9]. They were measured by the LEPS collaboration at forward angles \((-0.2 < t + |t|_{\text{min}}) \) in two different energy regions: \(1.97 < E_\gamma < 2.17 \) GeV and \(2.17 < E_\gamma < 2.37 \) GeV [1]. Here, \(|t|_{\text{min}} \) denotes the minimum four-momentum transfer from the incident photon to the...
Fig. 1 Total cross section for the $\gamma p \rightarrow K^+\Lambda(1520)$ process. The experimental data taken from Ref. [7].

Fig. 2 (Color on-line) Differential cross section as a function of the photon energy E_γ in a log scale. The thick solid curve depicts the result with all contributions included. The solid curves with the symbols P, R, and T denote the Pomeron contribution, $K\Lambda^*$ rescattering effects, and the t-channel contribution of π- and η-exchanges.

In this talk, we focus on the one-dimensional decay angular distribution $2\pi W(\phi - \Phi)$, since it illuminates the effects of the $K\Lambda^*$ coupled channel. The $2\pi W$ is defined as

$$2\pi W(\phi - \Phi) = 1 + 2P_\gamma P_\Lambda^* \cos 2(\phi - \Phi),$$

where ϕ is the polar and azimuthal angles of the decay particle K^+ in the ϕ rest frame. Φ stands for the azimuthal angle of the photon polarization in the center-of-mass frame. P_γ denotes the degree of the polarization of the photon beam. The definition of P_Λ^* can be found in Ref. [5]. In Fig. 3 we compare the results of the $2\pi W(\phi - \Phi)$ with the experimental data. Note that since the photon energy $E_\gamma = 2.07$ GeV is small, the pomeron does not come into play. Interestingly, the $K\Lambda^*$ rescattering effects turn out to be crucial in describing $2\pi W(\phi - \Phi)$. The t-channel contribution interferes destructively with the $K\Lambda^*$ effects.
Fig. 3 (Color on-line) The decay angular distributions for $-0.2 < t + |t|_{\text{min}}$. The experimental data are taken from Ref. [1].

4 Summary and outlook

In the present talk, we briefly reviewed a recent investigation on the $K\Lambda^*$ coupled-channel effects in addition to the conventional approach of Pomeron-, π-, and η-exchanges. We found that the $K\Lambda(1520)$ rescattering effects play a crucial role in describing the bump-like structure near $E_\gamma \approx 2.3$ GeV of the LEPS experiment. The angular distribution of the ϕ also was well explained by the inclusion of the $K\Lambda(1520)$ coupled channel.

In this work, we have considered only the imaginary part of the $K\Lambda(1520)$ rescattering effects. However, the real part will be as equally important as the imaginary one. The corresponding investigation is under way and will soon appear elsewhere.

References

1. Mibe, T et al. [LEPS Collaboration]: Diffractive phi-meson photoproduction on proton near threshold. Phys. Rev. Lett. 95, 182001 (2005).
2. Ozaki, S., Hosaka, A., Nagahiro, H., Scholten, O.: A Coupled-channel analysis for ϕ-photoproduction with $\Lambda(1520)$. Phys. Rev. C 80, 035201 (2009) [Erratum-ibid. C 81, 059901 (2010)].
3. Nam, S.-I., Hosaka, A., Kim, H.-Ch.: $\Lambda(1520, 3/2^-)$ photoproduction reaction via $\gamma N \to K\Lambda(1520)$. Phys. Rev. D 71, 114012 (2005).
4. Kiswandhi, A., Xie, J. J., Yang, S. N.: Is the nonmonotonic behavior in the cross section of phi photoproduction near threshold a signature of a resonance? Phys. Lett. B 691, 214 (2010).
5. Ryu, H.-Y., Titov, A. I., Hosaka, A., Kim, H.-Ch.: ϕ photoproduction with coupled-channel effects. arXiv:1212.6075 [hep-ph].
6. Blankenbecler, R., Sugar, R.: Linear integral equations for relativistic multichannel scattering. Phys. Rev. 142, 1051 (1966).
7. Adelseck, R. A., Bennhold, C., Wright, L. E.: Kaon Photoproduction Operator for Use in Nuclear Physics. Phys. Rev. C 32, 1681 (1985).
8. Gottfried, K., Jackson, J. D.: On the Connection between production mechanism and decay of resonances at high-energies. Nuovo Cim. 33, 309 (1964).
9. Schilling, K., Seyboth, P., Wolf, G. E.: On the Analysis of Vector Meson Production by Polarized Photons. Nucl. Phys. B 15, 397 (1970) [Erratum-ibid. B 18, 332 (1970)].