Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs)

Shann S Yu1,2, Randy L Scherer2,3, Ryan A Ortega1,2, Charleson S Bell1,2, Conlin P O’Neil4, Jeffrey A Hubbell4 and Todd D Giorgio1,2*

Correction
After publication of this work [1], we found an error in the figure legend for Figure two. In Figure 2A, GPC chromatograms of the synthesized co-polymers were shown, but the completed cPEG-PPS product contains some residual PPS-COOH, not H2N-PEG-COOH as originally described in the figure legend.

Author details
1Department of Biomedical Engineering, Vanderbilt University; Nashville, Tennessee, USA. 2Vanderbilt Institute for Nanoscale Science and Engineering, Vanderbilt University; Nashville, Tennessee, USA. 3Interdisciplinary Program in Materials Science, Vanderbilt University; Nashville, Tennessee, USA. 4Integrative Biosciences Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Received: 3 November 2011 Accepted: 14 November 2011 Published: 14 November 2011

Reference
1. Yu SS, Scherer RL, Ortega RA, Bell CS, O’Neil CP, Hubbell JA, Giorgio TD: Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs). Journal of Nanobiotechnology 2011, 9:

Cite this article as: Yu et al. Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs). Journal of Nanobiotechnology 2011 9:51.

Submit your next manuscript to BioMed Central and take full advantage of:
- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

© 2011 Yu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.