Asymptotic behavior of projections of supercritical multi-type continuous state and continuous time branching processes with immigration

Mátyás Barczy*,⋄, Sandra Palau**, Gyula Pap***

* MTA-SZTE Analysis and Stochastics Research Group, Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary.
** Department of Statistics and Probability, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, México.
*** Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, H-6720 Szeged, Hungary.
e-mail: barczy@math.u-szeged.hu (M. Barczy), sandra@sigma.iimas.unam.mx (S. Palau).

Abstract

Under a fourth order moment condition on the branching and a second order moment condition on the immigration mechanisms, we show that an appropriately scaled projection of a supercritical and irreducible continuous state and continuous time branching process with immigration on certain left non-Perron eigenvectors of the branching mean matrix is asymptotically mixed normal. With an appropriate random scaling, under some conditional probability measure, we prove asymptotic normality as well. In case of a non-trivial process, under a first order moment condition on the immigration mechanism, we also prove the convergence of the relative frequencies of distinct types of individuals on a suitable event; for instance, if the immigration mechanism does not vanish, then this convergence holds almost surely.

1 Introduction

The asymptotic behavior of multi-type supercritical branching processes without or with immigration has been studied for a long time. Kesten and Stigum [20, Theorems 2.1, 2.2, 2.3, 2.4] investigated the limiting behaviors of the inner products $\langle a, X_n \rangle$ as $n \to \infty$, where $X_n, n \in \{1, 2, \ldots\}$, is a supercritical, irreducible and positively regular d-type Galton–Watson

\begin{itemize}
 \item [2010 Mathematics Subject Classifications] 60J80, 60F15
 \item [Key words and phrases] multi-type continuous state and continuous time branching processes with immigration, mixed normal distribution.
\end{itemize}

Mátyás Barczy is supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. Sandra Palau is supported by the Royal Society Newton International Fellowship and by the EU-funded Hungarian grant EFOP-3.6.1-16-2016-00008.
branching process without immigration and \(a \in \mathbb{R}^d \setminus \{0\} \) is orthogonal to the left Perron eigenvector of the branching mean matrix \(M := \langle \mathbb{E}(e_j, X_1) | X_0 = e_i \rangle_{i,j \in \{1, \ldots, d\}} \) of the process, where \(e_1, \ldots, e_d \) denotes the natural basis in \(\mathbb{R}^d \). Of course, this can arise only if \(d \in \{2, 3, \ldots\} \). It is enough to consider the case of \(\|a\| = 1 \), when \(\langle a, X_n \rangle \) is the scalar projection of \(X_n \) on \(a \). The appropriate scaling factor of \(\langle a, X_n \rangle \), \(n \in \{1, 2, \ldots\} \), depends not only on the Perron eigenvalue \(r(M) \) (which is the spectral radius of \(M \)) and on the left and right Perron eigenvectors of \(M \), but also on the full spectral representation of \(M \). Badalbaev and Mukhitdinov [4] Theorems 1 and 2 extended these results of Kesten and Stigum [20], namely, they described in a more explicit way the asymptotic behavior of \(\langle a^{(1)}, X_n \rangle, \ldots, \langle a^{(d-1)}, X_n \rangle \) as \(n \to \infty \), where \(\{a^{(1)}, \ldots, a^{(d-1)}\} \) is a basis of the hyperplane in \(\mathbb{R}^d \) orthogonal to the left Perron eigenvector of \(M \). They also pointed out the necessity of considering the functionals above originated in statistical investigations for \(X_n \), \(n \in \{1, 2, \ldots\} \).

Athreya [1, 2] investigated the limiting behavior of \(X_t \) and the inner products \(\langle v, X_t \rangle \) as \(t \to \infty \), where \((X_t)_{t \in [0, \infty)} \) is a supercritical, positively regular and non-singular \(d \)-type continuous state and continuous time branching process without immigration and \(v \in \mathbb{C}^d \) is a right eigenvector corresponding to an eigenvalue \(\lambda \in \mathbb{C} \) of the infinitesimal generator \(A \) of the branching mean matrix semigroup \(M(t) := \langle \mathbb{E}(e_j, X_t) | X_0 = e_i \rangle_{i,j \in \{1, \ldots, d\}} = e^{tA}, \ t \in [0, \infty) \), of the process. Under a first order moment condition on the branching distributions, denoting by \(s(A) \) the maximum of the real parts of the eigenvalues of \(A \), it was shown that there exists a non-negative random variable \(w_{u,x_0} \) such that \(e^{-s(A)t} X_t \) converges to \(w_{u,x_0} u \) almost surely as \(t \to \infty \), where \(u \) denotes the left Perron eigenvector of the branching mean matrix \(M(1) \). Under a second order moment condition on the branching distributions, it was shown that if \(\text{Re}(\lambda) \in \left(\frac{1}{2}s(A), s(A) \right] \), then \(e^{-\lambda t} \langle v, X_t \rangle \) converges almost surely and in \(L_2 \) to a (complex) random variable as \(t \to \infty \), and if \(\text{Re}(\lambda) \in (-\infty, \frac{1}{2}s(A)] \) and \(\mathbb{P}(w_{u,x_0} > 0) > 0 \), then, under the conditional probability measure \(\mathbb{P}(\cdot | w_{u,x_0} > 0) \), the limit distribution of \(t^{-\theta} e^{-s(A)t/2} \langle v, X_t \rangle \) as \(t \to \infty \) is mixed normal, where \(\theta = \frac{1}{2} \) if \(\text{Re}(\lambda) = \frac{1}{2}s(A) \) and \(\theta = 0 \) if \(\text{Re}(\lambda) \in (-\infty, \frac{1}{2}s(A)) \). Further, in case of \(\text{Re}(\lambda) \in (-\infty, \frac{1}{2}s(A)] \), under the conditional probability measure \(\mathbb{P}(\cdot | w_{u,x_0} > 0) \), with an appropriate random scaling, asymptotic normality has been derived as well with an advantage that the limit laws do not depend on the initial value \(X_0 \). We also recall that Athreya [1] described the asymptotic behaviour of \(\mathbb{E}((\langle v, X_t \rangle)^2) \) as \(t \to \infty \) under a second order moment condition on the branching distributions. These results have been extended by Athreya [3] for the inner products \(\langle a, X_t \rangle \), \(t \in [0, \infty) \), with arbitrary \(a \in \mathbb{C}^d \). Janson [18, Theorem 3.1] gave a functional version of Athreya’s above mentioned results in [1] [2]. Under some weaker conditions than Athreya [1] [2], Janson [18] described the asymptotic behaviour of \(\langle v, X_{t+s} \rangle_{s \in [0, \infty)} \) as \(t \to \infty \) by giving more explicit formulas for the asymptotic variances and covariances as well. For a more detailed comparison of Athreya’s and Janson’s results, see Janson [18, Section 6].

Kyprianou et al. [21] described the limit behavior of the inner product \(\langle u, X_t \rangle \) as \(t \to \infty \) for supercritical and irreducible \(d \)-type continuous state and continuous time branching processes (without immigration), where \(u \) denotes the left Perron vector of the branching mean
matrix of \((X_t)_{t \in [0, \infty)}\). Barczy et al. \[8\] started to investigate the limiting behavior of the inner products \(\langle v, X_t \rangle\) as \(t \to \infty\), where \((X_t)_{t \in [0, \infty)}\) is a supercritical and irreducible \(d\)-type continuous state and continuous time branching process with immigration (CBI process) and \(v \in \mathbb{C}^d\) is a left eigenvector corresponding to an eigenvalue \(\lambda \in \mathbb{C}\) of the infinitesimal generator \(B\) of the branching mean matrix semigroup \(e^{tB}, \ t \in [0, \infty)\), of the process. Note that for each \(t \in [0, \infty)\) and \(i, j \in \{1, \ldots, d\}\), we have \(\langle e_t, e^{tB}e_j \rangle = \mathbb{E}(\langle e_t, Y_t \rangle | Y_0 = e_j)\), where \((Y_t)_{t \in [0, \infty)}\) is a multi-type continuous state and continuous time branching process without immigration and with the same branching mechanism as \((X_t)_{t \in [0, \infty)}\), so \(B\) plays the role of \(A^\top\) in Athreya \[2\], hence in our results the right and left eigenvectors are interchanged compared to Athreya \[2\]. Under first order moment conditions on the branching and immigration mechanisms, it was shown that there exists a non-negative random variable \(w_{u, X_0}\) such that \(e^{-sB}X_t\) converges to \(w_{u, X_0}\tilde{u}\) almost surely as \(t \to \infty\), where \(\tilde{u}\) is the right Perron vector of \(e^B\), see Barczy et al. \[8\] Theorem 3.3]. If \(v\) is a left non-Perron eigenvector of the branching mean matrix \(e^B\), then this result implies that \(e^{-sB}t\langle v, X_t \rangle \to w_{u, X_0}\langle v, \tilde{u} \rangle = 0\) almost surely as \(t \to \infty\), since \(\langle v, \tilde{u} \rangle = 0\) due to the so-called principle of biorthogonality (see, e.g., Horn and Johnson \[14\] Theorem 1.4.7(a)), consequently, the scaling factor \(e^{-sB}t\) is not appropriate for describing the asymptotic behavior of the projection \(\langle v, X_t \rangle\) as \(t \to \infty\).

Under suitable moment conditions on the branching and immigration mechanisms, it was shown that if \(\text{Re}(\lambda) \in \left(-\infty, \frac{1}{2}s(\tilde{B})\right]\), then \(e^{-\lambda t}\langle v, X_t \rangle\) converges almost surely and in \(L_1\) (in \(L_2\)) to a (complex) random variable as \(t \to \infty\), see Barczy et al. \[8\] Theorems 3.1 and 3.4].

The aim of the present paper is to continue the investigations of Barczy et al. \[8\]. We will prove that under a fourth order moment condition on the branching mechanism and a second order moment condition on the immigration mechanism, if \(\text{Re}(\lambda) \in \left(-\infty, \frac{1}{2}s(\tilde{B})\right]\), then the limit distribution of \(t^{-\theta}e^{-sB}t/2\langle v, X_t \rangle\) as \(t \to \infty\) is mixed normal, where \(\theta \in \left[0, \frac{1}{2}\right]\) if \(\text{Re}(\lambda) = \frac{1}{2}s(\tilde{B})\) and \(\theta = 0\) if \(\text{Re}(\lambda) \in \left(-\infty, \frac{1}{2}s(\tilde{B})\right]\), see parts (ii) and (iii) of Theorem 3.1. If \(\text{Re}(\lambda) \in \left(-\infty, \frac{1}{2}s(\tilde{B})\right]\) and \((X_t)_{t \in [0, \infty)}\) is non-trivial (equivalently, \(\mathbb{P}(w_{u, X_0} > 0) > 0\), see Lemma 3.3], then under the conditional probability measure \(\mathbb{P}(\cdot | w_{u, X_0} > 0)\), with an appropriate random scaling, we prove asymptotic normality as well with an advantage that the limit laws do not depend on the initial value \(X_0\), see Theorem 3.3]. For the asymptotic variances, explicit formulas are presented. In case of a non-trivial process, under a first order moment condition on the immigration mechanism, we also prove the convergence of the relative frequencies of distinct types of individuals on the event \(\{w_{u, X_0} > 0\}\) (see Proposition 3.6]; for instance, if the immigration mechanism does not vanish, then this convergence holds almost surely (see Theorem 3.2].

Now, we summary the novelties of our paper. We point out that we investigate the asymptotic behavior of the projections of a multi-type CBI process on certain left non-Perron eigenvectors of its branching mean matrix. Our approach is based on a decomposition of the process \((e^{-\lambda t}\langle v, X_t \rangle)_{t \in [0, \infty)}\) as the sum of a deterministic process and three square-integrable martingales, see the beginning of the proof of part (iii) of Theorem 3.1. For proving asymptotic normality of the martingales in question, we use a result due to Crimaldi and Pratelli \[11\] Theorem 2.2] (see also Theorem 3.1], which provides a set of sufficient conditions for the
asymptotic normality of multivariate martingales. These sufficient conditions are about the quadratic variation process and the jumps of the multivariate martingale in question. In the course of checking the conditions of Theorem E.1, we need to study the asymptotic behaviour of the expectation of the running supremum of the jumps of a compensated Poisson integral process having time dependent integrand over an interval \([0,t]\) as \(t \to \infty\). There is a new interest in this type of questions, see, e.g., the paper of He and Li [13] on the distributions of jumps of a single-type CBI process.

Next, we compare our methodology with the discrete-valued settings. Athreya [2] decomposed \(e^{-\lambda t}\langle v, X_t \rangle \) in three terms, where \((X_t)_{t \in [0,\infty)}\) is a supercritical, positively regular and non-singular \(d\)-type continuous time Galton–Watson branching process without immigration, and he showed that two of them are small in probability and, using the central limit theorem, the third one converges to the desired normal distribution. Janson’s proof [18, Theorem 3.1] for a functional extension of Athreya’s results is based on a martingale convergence theorem (see [18, Proposition 9.1]) that relies on the convergence of the quadratic variation of an \(L_2\)-locally bounded (see [18, condition (9.2)]) martingale sequence. Then, he needed to define a suitable martingale sequence, and estimate its quadratic variation. Observe that he asked for a finite second moment for the branching mechanism in order to have an \(L_2\)-locally bounded martingale (see [18, assumption (A.2)]). In our case, where \((X_t)_{t \in \mathbb{R}_+}\) is a supercritical and irreducible \(d\)-type CBI process, the three martingales appearing in the previously mentioned decomposition of \((e^{-\lambda t}\langle v, X_t \rangle)_{t \in [0,\infty)}\) turn out to be square-integrable under our moment assumptions of the branching and immigration mechanisms. One of the three martingales in question is an integral with respect to a standard Wiener process, and the other two are integrals with respect to compensated Poisson measures. The decomposition in question was derived using an SDE representation of \((X_t)_{t \in [0,\infty)}\) together with an application of the multidimensional Itô’s formula, see Barczy et al. [7, Lemma 4.1]. Concerning our moment assumptions, in order to be able to check the conditions of the previously mentioned Theorem 2.2 in Crimaldi and Pratelli [11] (see also Theorem E.1) we need a fourth order moment condition on the branching mechanism and a second order moment condition on the immigration mechanism. So our proof technique can not be considered as an easy adaption of that of Athreya’s [1, 2] or that of Janson [18, Theorem 3.1].

The paper is structured as follows. In Section 2, we recall the definition of multi-type CBI processes together with the notion of irreducibility, and we introduce a classification of multi-type CBI processes as well. Sections 3 and 4 contain our results and their proofs, respectively. We close the paper with five appendices. In Appendix A we recall a decomposition of multi-type CBI processes, Appendix B is devoted to a description of deterministic projections of multi-type CBI processes (i.e., projections that are deterministic). In Appendix C based on Buraczewski et al. [10, Proposition 4.3.2], we recall some mild conditions under which the solution of a stochastic fixed point equation is atomless. Appendix D is devoted to the description of the asymptotic behaviour of the second moment of projections of multi-type CBI processes. In Appendix E we recall a result on the asymptotic behavior of multivariate martingales due to Crimaldi and Pratelli [11, Theorem 2.2], which serves us as a key tool for proving our results,
2 Preliminaries

Let $\mathbb{Z}_+, \mathbb{N}, \mathbb{R}, \mathbb{R}_+, \mathbb{R}_{++}$ and \mathbb{C} denote the set of non-negative integers, positive integers, real numbers, non-negative real numbers, positive real numbers and complex numbers, respectively. For $x, y \in \mathbb{R}$, we will use the notations $x \wedge y := \min\{x, y\}$, $x \vee y := \max\{x, y\}$ and $x^+ := \max\{0, x\}$. By $\langle x, y \rangle := \sum_{j=1}^{d} x_j y_j$, we denote the Euclidean inner product of $x = (x_1, \ldots, x_d)^\top \in \mathbb{C}^d$ and $y = (y_1, \ldots, y_d)^\top \in \mathbb{C}^d$, and by $\|x\|$ and $\|A\|$, we denote the induced norm of $x \in \mathbb{C}^d$ and $A \in \mathbb{C}^{d \times d}$, respectively. By $r(A)$, we denote the spectral radius of $A \in \mathbb{C}^{d \times d}$. The null vector and the null matrix will be denoted by $\mathbf{0}$. Moreover, $I_d \in \mathbb{R}^{d \times d}$ denotes the identity matrix. If $A \in \mathbb{R}^{d \times d}$ is positive semidefinite, then $A^{1/2}$ denotes the unique positive semidefinite square root of A. If $A \in \mathbb{R}^{d \times d}$ is strictly positive definite, then $A^{1/2}$ is strictly positive definite and $A^{-1/2}$ denotes the inverse of $A^{1/2}$. The set of $d \times d$ matrices with non-negative off-diagonal entries (also called essentially non-negative matrices) is denoted by $\mathbb{R}_+^{d \times d}$. By $\mathcal{C}^2_c(\mathbb{R}_+, \mathbb{R})$, we denote the set of twice continuously differentiable real-valued functions on \mathbb{R}_+^d with compact support. By $B(\mathbb{R}_+, \mathbb{R})$, we denote the Banach space (endowed with the supremum norm) of real-value d-bounded Borel functions.

Throughout this paper, we make the conventions $\int_a^b := \int_{(a, b]}$ and $\int_a^\infty := \int_{(a, \infty)}$ for any $a, b \in \mathbb{R}$ with $a < b$.

2.1 Definition. A tuple $(d, c, \beta, B, \nu, \mu)$ is called a set of admissible parameters if

(i) $d \in \mathbb{N},$

(ii) $c = (c_i)_{i \in \{1, \ldots, d\}} \in \mathbb{R}_+^d,$

(iii) $\beta = (\beta_i)_{i \in \{1, \ldots, d\}} \in \mathbb{R}_+^d,$

(iv) $B = (b_{i,j})_{i,j \in \{1, \ldots, d\}} \in \mathbb{R}_{++}^{d \times d},$

(v) ν is a Borel measure on $U_d := \mathbb{R}_+^d \setminus \{0\}$ satisfying $\int_{U_d} (1 \wedge \|r\|) \nu(dr) < \infty,$

(vi) $\mu = (\mu_1, \ldots, \mu_d)$, where, for each $i \in \{1, \ldots, d\}$, μ_i is a Borel measure on U_d satisfying

$$\int_{U_d} \left[\|z\| \wedge \|z\|^2 + \sum_{j \in \{1, \ldots, d\} \setminus \{i\}} (1 \wedge z_j) \right] \mu_i(dz) < \infty.$$
2.2 Theorem. Let \((d, c, \beta, B, \nu, \mu)\) be a set of admissible parameters. Then there exists a unique conservative transition semigroup \((P_t)_{t \in \mathbb{R}_+}\) acting on \(B(\mathbb{R}_+^d, \mathbb{R})\) such that its Laplace transform has a representation

\[
\int_{\mathbb{R}_+^d} e^{-\langle \lambda, y \rangle} P_t(x, dy) = e^{-\langle x, v(t, \lambda) \rangle - \int_0^t \psi(v(s, \lambda)) \, ds}, \quad x \in \mathbb{R}_+^d, \; \lambda \in \mathbb{R}_+^d, \; t \in \mathbb{R}_+,
\]

where, for any \(\lambda \in \mathbb{R}_+^d\), the continuously differentiable function \(\mathbb{R}_+ \ni t \mapsto v(t, \lambda) = (v_1(t, \lambda), \ldots, v_d(t, \lambda))^T \in \mathbb{R}_+^d\) is the unique locally bounded solution to the system of differential equations

\[
\partial_t v_i(t, \lambda) = -\varphi_i(v(t, \lambda)), \quad v_i(0, \lambda) = \lambda_i, \quad i \in \{1, \ldots, d\},
\]

with

\[
\varphi_i(\lambda) := c_i \lambda_i^2 - \langle Be_i, \lambda \rangle + \int_{\mathbb{R}_+^d} (e^{-\langle \lambda, z \rangle} - 1 + \lambda_i(1 \wedge z_i)) \mu_i(dz)
\]

for \(\lambda \in \mathbb{R}_+^d\), \(i \in \{1, \ldots, d\}\), and

\[
\psi(\lambda) := \langle \beta, \lambda \rangle + \int_{\mathbb{R}_+^d} (1 - e^{-\langle \lambda, r \rangle}) \nu(dr), \quad \lambda \in \mathbb{R}_+^d.
\]

Theorem 2.2 is a special case of Theorem 2.7 of Duffie et al. [12] with \(m = d\), \(n = 0\) and zero killing rate. For more details, see Remark 2.5 in Barczy et al. [6].

2.3 Definition. A conservative Markov process with state space \(\mathbb{R}_+^d\) and with transition semigroup \((P_t)_{t \in \mathbb{R}_+}\) given in Theorem 2.2 is called a multi-type CBI process with parameters \((d, c, \beta, B, \nu, \mu)\). The function \(\mathbb{R}_+^d \ni \lambda \mapsto (\varphi_1(\lambda), \ldots, \varphi_d(\lambda))^T \in \mathbb{R}_+^d\) is called its branching mechanism, and the function \(\mathbb{R}_+^d \ni \lambda \mapsto \psi(\lambda) \in \mathbb{R}_+\) is called its immigration mechanism. A multi-type CBI process with parameters \((d, c, \beta, B, \nu, \mu)\) is called a CB process (a continuous state and continuous time branching process without immigration) if \(\beta = 0\) and \(\nu = 0\) (equivalently, \(\psi = 0\)).

Let \((X_t)_{t \in \mathbb{R}_+}\) be a multi-type CBI process with parameters \((d, c, \beta, B, \nu, \mu)\) such that \(\mathbb{E}(\|X_0\|) < \infty\) and the moment condition

\[
(2.1) \quad \int_{\mathbb{R}_+^d} \|r\| 1_{\{\|r\| \geq 1\}} \nu(dr) < \infty
\]

holds. Then, by formula (3.4) in Barczy et al. [6],

\[
(2.2) \quad \mathbb{E}(X_t \mid X_0 = x) = e^{t\bar{B}} x + \int_0^t e^{u\bar{B}} \bar{\beta} \, du, \quad x \in \mathbb{R}_+^d, \; t \in \mathbb{R}_+,
\]

where

\[
\bar{B} := (\bar{b}_{i,j})_{i,j \in \{1, \ldots, d\}}, \quad \bar{b}_{i,j} := b_{i,j} + \int_{\mathbb{R}_+^d} (z_i - \delta_i,j)^+ \mu_j(dz), \quad \bar{\beta} := \beta + \int_{\mathbb{R}_+^d} r \, \nu(dr),
\]
with \(\delta_{i,j} := 1 \) if \(i = j \), and \(\delta_{i,j} := 0 \) if \(i \neq j \). Note that, for each \(x \in \mathbb{R}^d \), the function \(\mathbb{R}_+ \ni t \mapsto \mathbb{E}(X_t \mid X_0 = x) \) is continuous, and \(\dot{B} \in \mathbb{R}^{d \times d} \) and \(\tilde{\beta} \in \mathbb{R}^d_+ \), since

\[
\int_{U_d} \|r\| \nu(dr) < \infty, \quad \int_{U_d} (z_i - \delta_{i,j})^+ \mu_j(dz) < \infty, \quad i,j \in \{1, \ldots, d\},
\]

see Barczy et al. [6] Section 2). Further, \(\mathbb{E}(X_t \mid X_0 = x) \), \(x \in \mathbb{R}^d_+ \), does not depend on the parameter \(c \). One can give probabilistic interpretations of the modified parameters \(\dot{B} \) and \(\tilde{\beta} \), namely, for each \(t \in \mathbb{R}_+ \), we have \(e^{t\dot{B}}e_j = \mathbb{E}(Y_t \mid Y_0 = e_j), \ j \in \{1, \ldots, d\} \), and \(t\tilde{\beta} = \mathbb{E}(Z_t \mid Z_0 = 0) \), where \((Y_t)_{t \in \mathbb{R}_+} \) and \((Z_t)_{t \in \mathbb{R}_+} \) are multi-type CBI processes with parameters \((d, c, \beta, B, \nu, \mu) \) and \((d, 0, \beta, 0, \nu, 0) \), respectively, see formula (2.2). The processes \((Y_t)_{t \in \mathbb{R}_+} \) and \((Z_t)_{t \in \mathbb{R}_+} \) can be considered as pure branching (without immigration) and pure immigration (without branching) processes, respectively. Consequently, \(e^{t\dot{B}} \) and \(t\tilde{\beta} \) may be called the branching mean matrix and the immigration mean vector, respectively. Note that the branching mechanism depends only on the parameters \(c, B \) and \(\mu \), while the immigration mechanism depends only on the parameters \(\beta \) and \(\nu \).

If \((d, c, \beta, B, \nu, \mu) \) is a set of admissible parameters, \(\mathbb{E}(\|X_0\|) < \infty \) and the moment condition (2.1) holds, then the multi-type CBI process with parameters \((d, c, \beta, B, \nu, \mu) \) can be represented as a pathwise unique strong solution of the stochastic differential equation (SDE)

\[
X_t = X_0 + \int_0^t (\beta + \dot{B}X_u) \, du + \sum_{\ell=1}^d \int_0^t \sqrt{2c_{\ell}} \max\{0, X_{u,\ell}\} \, dW_{u,\ell} e_\ell
\]

(2.3)

\[
+ \sum_{\ell=1}^d \int_0^t \int_{U_d} \int_{U_d} z 1_{\{w \in X_{u-\ell}\}} \, N_\ell(du, dz, dw) + \int_0^t \int_{U_d} r \, M(du, dr)
\]

for \(t \in \mathbb{R}_+ \), see, Theorem 4.6 and Section 5 in Barczy et al. [6], where (2.3) was proved only for \(d \in \{1, 2\} \), but their method clearly works for all \(d \in \mathbb{N} \). Here \(X_{t,\ell}, \ \ell \in \{1, \ldots, d\} \), denotes the \(\ell^{\text{th}} \) coordinate of \(X_t \), \(\mathbb{P}(X_0 \in \mathbb{R}_+^d) = 1 \), \((W_{t,1})_{t \in \mathbb{R}_+} \), \ldots, \((W_{t,d})_{t \in \mathbb{R}_+} \) are standard Wiener processes, \(N_\ell, \ \ell \in \{1, \ldots, d\} \), and \(M \) are Poisson random measures on \(\mathbb{R}_+ \times U_d \times \mathbb{R}_+ \) and on \(\mathbb{R}_+ \times U_d \) with intensity measures \(du \mu_\ell(dz) dw, \ \ell \in \{1, \ldots, d\} \), and \(du \nu(dr) \), respectively, such that \(X_0, (W_{t,1})_{t \in \mathbb{R}_+}, \ldots, (W_{t,d})_{t \in \mathbb{R}_+} \), \(N_1, \ldots, N_d \) and \(M \) are independent, and \(\tilde{N}_\ell(du, dz, dw) := N_\ell(du, dz, dw) - du \mu_\ell(dz) dw, \ \ell \in \{1, \ldots, d\} \).

Next we recall a classification of multi-type CBI processes. For a matrix \(A \in \mathbb{R}^{d \times d} \), \(\sigma(A) \) will denote the spectrum of \(A \), that is, the set of all \(\lambda \in \mathbb{C} \) that are eigenvalues of \(A \). Then \(r(A) = \max_{\lambda \in \sigma(A)} |\lambda| \) is the spectral radius of \(A \). Moreover, we will use the notation

\[
s(A) := \max_{\lambda \in \sigma(A)} \text{Re}(\lambda).
\]

A matrix \(A \in \mathbb{R}^{d \times d} \) is called reducible if there exist a permutation matrix \(P \in \mathbb{R}^{d \times d} \) and an integer \(r \) with \(1 \leq r \leq d - 1 \) such that

\[
P^T AP = \begin{pmatrix}
A_1 & A_2 \\
0 & A_3
\end{pmatrix},
\]

7
where $A_1 \in \mathbb{R}^{r \times r}$, $A_3 \in \mathbb{R}^{(d-r) \times (d-r)}$, $A_2 \in \mathbb{R}^{r \times (d-r)}$, and $0 \in \mathbb{R}^{(d-r) \times r}$ is a null matrix. A matrix $A \in \mathbb{R}^{d \times d}$ is called irreducible if it is not reducible, see, e.g., Horn and Johnson \cite{HornJohnson} Definitions 6.2.21 and 6.2.22. We do emphasize that no 1-by-1 matrix is reducible.

\[\text{2.4 Definition. Let } (X_t)_{t \in \mathbb{R}^+} \text{ be a multi-type CBI process with parameters } (d, c, \beta, B, \nu, \mu) \text{ such that the moment condition (2.1) holds. Then } (X_t)_{t \in \mathbb{R}^+} \text{ is called irreducible if } B \text{ is irreducible.} \]

Recall that if $\tilde{B} \in \mathbb{R}^{d \times d}_{(+)}$ is irreducible, then $e^t \tilde{B} \in \mathbb{R}^{d \times d}_{++}$ for all $t \in \mathbb{R}^+$, and $s(\tilde{B})$ is a real eigenvalue of \tilde{B}, the algebraic and geometric multiplicities of $s(\tilde{B})$ is 1, and the real parts of the other eigenvalues of \tilde{B} are less than $s(\tilde{B})$. Moreover, corresponding to the eigenvalue $s(\tilde{B})$ there exists a unique (right) eigenvector $\tilde{u} \in \mathbb{R}^d_{++}$ of \tilde{B} such that the sum of its coordinates is 1 which is also the unique (right) eigenvector of $e^{\tilde{B}}$, called the right Perron vector of $e^{\tilde{B}}$, corresponding to the eigenvalue $\rho(e^{\tilde{B}}) = e^{s(\tilde{B})}$ of $e^{\tilde{B}}$ such that the sum of its coordinates is 1. Further, there exists a unique left eigenvector $u \in \mathbb{R}^d_{++}$ of \tilde{B} corresponding to the eigenvalue $s(\tilde{B})$ with $\tilde{u}^\top u = 1$, which is also the unique (left) eigenvector of $e^{\tilde{B}}$, called the left Perron vector of $e^{\tilde{B}}$, corresponding to the eigenvalue $\rho(e^{\tilde{B}}) = e^{s(\tilde{B})}$ of $e^{\tilde{B}}$ such that $\tilde{u}^\top u = 1$. Moreover, there exist $C_1, C_2, C_3, C_4 \in \mathbb{R}^+$ such that

\[
\begin{align}
\|e^{-s(\tilde{B})}e^t \tilde{B} - \tilde{u} u^\top\| & \leq C_1 e^{-C_2 t}, \\
\|e^t \tilde{B}\| & \leq C_3 e^{s(\tilde{B})} t, \\
E(\|X_t\|) & \leq C_4 e^{s(\tilde{B})} t, & t & \in \mathbb{R}^+.
\end{align}
\]

These Frobenius and Perron type results can be found, e.g., in Barczy and Pap \cite{Barczy} Appendix A and Barczy et al. \cite{Barczy2} (3.8)).

We will need the following dichotomy of the expectation of an irreducible multi-type CBI process.

\[\text{2.5 Lemma. Let } (X_t)_{t \in \mathbb{R}^+} \text{ be an irreducible multi-type CBI process with parameters } (d, c, \beta, B, \nu, \mu) \text{ such that } E(\|X_0\|) < \infty \text{ and the moment condition (2.1) holds. Then either } E(X_t) = 0 \text{ for all } t \in \mathbb{R}^+, \text{ or } E(X_t) \in \mathbb{R}^d_{++} \text{ for all } t \in \mathbb{R}^+. \text{ Namely, if } \mathbb{P}(X_0 = 0) = 1, \beta = 0 \text{ and } \nu = 0, \text{ then } E(X_t) = 0 \text{ for all } t \in \mathbb{R}^+, \text{ and hence } \mathbb{P}(X_t = 0) = 1 \text{ for all } t \in \mathbb{R}^+, \text{ otherwise } E(X_t) \in \mathbb{R}^d_{++} \text{ for all } t \in \mathbb{R}^+. \]

\[\text{Proof. For each } t \in \mathbb{R}^+, \text{ by (2.2), we have} \]

\[E(X_t) = e^{\tilde{B} t} E(X_0) + \int_0^t e^{\tilde{B} u} \tilde{\beta}du, \]

Since $e^{\tilde{B} u} \in \mathbb{R}^{d \times d}_{++}$ for all $u \in \mathbb{R}^+$, $E(X_0) \in \mathbb{R}^d_+$ and $\tilde{\beta} \in \mathbb{R}^d_+$, we obtain the assertions. \Box

\[\text{2.6 Definition. Let } (X_t)_{t \in \mathbb{R}^+} \text{ be an irreducible multi-type CBI process with parameters } (d, c, \beta, B, \nu, \mu). \text{ Then } (X_t)_{t \in \mathbb{R}^+} \text{ is called trivial if } \mathbb{P}(X_0 = 0) = 1, \beta = 0 \text{ and } \nu = 0, \text{ equivalently, if } \mathbb{P}(X_t = 0) = 1 \text{ for all } t \in \mathbb{R}^+. \text{ Otherwise } (X_t)_{t \in \mathbb{R}^+} \text{ is called non-trivial.} \]
We do recall the attention that if \((X_t^{(1)})_{t \in \mathbb{R}^+}\) and \((X_t^{(2)})_{t \in \mathbb{R}^+}\) are multi-type CBI processes with parameters \((d, c^{(1)}, \beta, B^{(1)}, \nu, \mu^{(1)})\) and \((d, c^{(2)}, \beta, B^{(2)}, \nu, \mu^{(2)})\), respectively, \(X_0^{(1)} \overset{a.s.}{=} X_0^{(2)}\) and \((X_t^{(1)})_{t \in \mathbb{R}^+}\) is trivial, then \((X_t^{(2)})_{t \in \mathbb{R}^+}\) is also trivial.

2.7 Definition. Let \((X_t)_{t \in \mathbb{R}^+}\) be an irreducible multi-type CBI process with parameters \((d, c, \beta, B, \nu, \mu)\) such that \(\mathbb{E}(\|X_0\|) < \infty\) and the moment condition \((2.1)\) holds. Then \((X_t)_{t \in \mathbb{R}^+}\) is called

\[
\begin{aligned}
\text{subcritical} & \quad \text{if } s(\tilde{B}) < 0, \\
\text{critical} & \quad \text{if } s(\tilde{B}) = 0, \\
\text{supercritical} & \quad \text{if } s(\tilde{B}) > 0.
\end{aligned}
\]

For motivations of Definitions 2.4 and 2.7 see Barczy and Pap [9, Section 3].

3 Results

Now we present the main result of this paper. Recall that \(u \in \mathbb{R}^d_{++}\) is the left Perron vector of \(\tilde{B}\) corresponding to the eigenvalue \(e^{s(\tilde{B})}\).

3.1 Theorem. Let \((X_t)_{t \in \mathbb{R}^+}\) be a supercritical and irreducible multi-type CBI process with parameters \((d, c, \beta, B, \nu, \mu)\) such that \(\mathbb{E}(\|X_0\|) < \infty\) and the moment condition \((2.1)\) holds. Let \(\lambda \in \sigma(\tilde{B})\) and let \(v \in \mathbb{C}^d\) be a left eigenvector of \(\tilde{B}\) corresponding to the eigenvalue \(\lambda\).

(i) If \(\text{Re}(\lambda) \in \left(\frac{1}{2}s(\tilde{B}), s(\tilde{B})\right]\) and the moment condition

\[
(3.1) \sum_{\ell=1}^d \int_{\mathbb{R}^d} g(\|z\|) \mathbb{1}_{\{\|z\| \geq 1\}} \mu_\ell(dz) < \infty
\]

with

\[
g(x) := \begin{cases} x^{\text{Re}(\lambda)} & \text{if } \text{Re}(\lambda) \in \left(\frac{1}{2}s(\tilde{B}), s(\tilde{B})\right), \\ x \log(x) & \text{if } \text{Re}(\lambda) = s(\tilde{B}) \quad (\iff \lambda = s(\tilde{B})), \\ \end{cases} \quad x \in \mathbb{R}^d_{++}
\]

holds, then there exists a complex random variable \(w_{v, X_0}\) with \(\mathbb{E}(|w_{v, X_0}|) < \infty\) such that

\[
(3.2) \quad e^{-\lambda t} \langle v, X_t \rangle \to w_{v, X_0} \quad \text{as } t \to \infty \quad \text{in } L_1 \quad \text{and almost surely.}
\]

(ii) If \(\text{Re}(\lambda) = \frac{1}{2}s(\tilde{B})\) and the moment condition

\[
(3.3) \sum_{\ell=1}^d \int_{\mathbb{R}^d} |z|^{4} \mathbb{1}_{\{|z| \geq 1\}} \mu_\ell(dz) < \infty, \quad \int_{\mathbb{R}^d} |r|^{2} \mathbb{1}_{\{|r| \geq 1\}} \nu(dz) < \infty
\]
Theorem 3.1. Note that under the moment condition (3.3), the moment condition (3.1) holds for such that $e_t - (t \Sigma_0)$. Note also that Theorem 3.1 is valid even if part (i) of Theorem 3.1 will be studied later on, this motivates the forthcoming Theorem 3.2. The correctness of the scaling factor in the corresponding limits are non-degenerate random variables, since $e_t - (t \Sigma_0)$ is not a trivial process (see Definition 2.6) and hence there exists a non-negative random variable X_0 where Z_v is a 2-dimensional random vector such that $Z_v \overset{D}{=} N_2(0, \Sigma_v)$ independent of w_{u,X_0}, where

$$\Sigma_v := \frac{1}{2} \sum_{\ell=1}^d \langle e_{\ell}, \bar{u} \rangle \left(C_{v,\ell} I_2 + \begin{pmatrix} \text{Re}(\bar{C}_{v,\ell}) & \text{Im}(\bar{C}_{v,\ell}) \\ \text{Im}(\bar{C}_{v,\ell}) & -\text{Re}(\bar{C}_{v,\ell}) \end{pmatrix} 1_{\{\text{Im}(\lambda) = 0\}} \right)$$

with

$$C_{v,\ell} := 2 |\langle v, e_{\ell} \rangle|^2 c_{\ell} + \int_{\mathbb{R}^d} |\langle v, z \rangle|^2 \mu_{\ell}(dz), \quad \ell \in \{1, \ldots, d\};$$

$$\bar{C}_{v,\ell} := 2 \langle v, e_{\ell} \rangle^2 c_{\ell} + \int_{\mathbb{R}^d} \langle v, z \rangle^2 \mu_{\ell}(dz), \quad \ell \in \{1, \ldots, d\}.$$
and sufficient conditions are given for the invertibility of Σ_v provided that $E(||X_0||^2) < \infty$, $\text{Im}(\lambda) \neq 0$, and the moment condition

$\sum_{\ell=1}^{d} \int_{U_d} ||z||^2 1_{\{||z||>1\}} \mu_\ell(dz) < \infty$, \quad \int_{U_d} ||r||^2 1_{\{||r||>1\}} \nu(dr) < \infty$

holds.

Moreover, in Proposition D.2 under the moment condition (3.8) together with $E(||X_0||^2) < \infty$ we describe the asymptotic behavior of the variance matrix of the real and imaginary parts of $\langle v, X_t \rangle$ as $t \to \infty$, which explains the phase transition at $\text{Re}(\lambda) = \frac{1}{2}s(\widetilde{B})$ in Theorem 3.1. This result can be considered as an extension of Proposition B.1 in Barczy et al. [8] (see also Proposition D.1), where the asymptotic behavior of the second absolute moment $E(\langle \langle v, X_t \rangle \rangle^2)$ of $\langle v, X_t \rangle$ has been described as $t \to \infty$. The proof of Proposition D.2 is based on the decomposition of $e^{-\lambda t}\langle v, X_t \rangle$ mentioned in the Introduction (see the beginning of the proof of part (iii) of Theorem 3.1) yielding an appropriate decomposition of $E(\langle v, X_t \rangle^2)$ containing $E(\langle v, X_0 \rangle^2)$, $E(\langle v, X_0 \rangle)$ and $E(X_u, t)$, $u \in [0, t]$, $\ell \in \{1, \ldots, d\}$. So the proof of Proposition D.2 can be finished by delicate estimations using the explicit form of $E(X_t | X_0 = x)$, $x \in \mathbb{R}^d$, $t \in \mathbb{R}_+$, given in (2.2).

In the next statement, sufficient conditions are derived for $\mathbb{P}(w_v,X_0 = 0) = 0$. Note that in case of $\mathbb{P}(w_v,X_0 = 0) = 0$, the scaling factor $e^{-\lambda}$ is correct in part (i) of Theorem 3.1 in the sense that the limit is a non-degenerate random variable.

3.2 Theorem. Let $(X_t)_{t \in \mathbb{R}_+}$ be a supercritical and irreducible multi-type CBI process with parameters $(d, c, \beta, B, \nu, \mu)$ such that $E(||X_0||) < \infty$ and the moment conditions (2.1) and (3.8) hold. Let $\lambda \in \mathbb{C}$, $\sigma(\widetilde{B})$ be such that $\text{Re}(\lambda) \in \left(\frac{1}{2}s(\widetilde{B}), s(\widetilde{B})\right]$, and let $v \in \mathbb{C}^d$ be a left eigenvector of \widetilde{B} corresponding to the eigenvalue λ.

If the conditions

(i) $\widetilde{\beta} \neq 0$, i.e., $\beta \neq 0$ or $\nu \neq 0$,

(ii) $\nu(\{r \in U_d : \langle v, r \rangle \neq 0\}) > 0$, or there exists $\ell \in \{1, \ldots, d\}$ such that $\langle v, e_\ell \rangle c_\ell \neq 0$ or $\mu_\ell(\{z \in U_d : \langle v, z \rangle \neq 0\}) > 0$

hold, then the law of w_{v,X_0} does not have atoms, where w_{v,X_0} is given in part (i) of Theorem 3.1. In particular, $\mathbb{P}(w_{v,X_0} = 0) = 0$.

If the condition (ii) does not hold, then $\mathbb{P}(w_v, X_0 = \langle v, X_0 + \lambda^{-1}\widetilde{\beta} \rangle) = 1$, and in particular, $\mathbb{P}(w_v, X_0 = 0) = \mathbb{P}(\langle v, X_0 + \lambda^{-1}\widetilde{\beta} \rangle = 0)$.

If $\lambda = s(\widetilde{B})$, $v = u$ and the condition (i) holds, then $\mathbb{P}(w_u, X_0 = 0) = 0$.

If $\lambda = s(\widetilde{B})$, $v = u$, and the conditions (i) and (ii) do not hold, then $\mathbb{P}(w_u, X_0 = 0) = \mathbb{P}(X_0 = 0)$.

11
Next, we show that with an appropriate random scaling in parts (ii) and (iii) in Theorem 3.1 \(\langle v, X_t \rangle \) is asymptotically normal as \(t \to \infty \) under the conditional probability measure \(\mathbb{P}(\cdot | w_{u,X_0} > 0) \), provided that \(\mathbb{P}(w_{u,X_0} > 0) > 0 \). Parts (ii) and (iii) of the forthcoming Theorem 3.4 are analogous to Theorems 1 and 2 and part 5 of Corollary 5 in Athreya [2]. First we give a necessary and sufficient condition for \(w_{u,X_0} \overset{a.s.}{=} 0 \).

3.3 Lemma
Suppose that \((X_t)_{t \in \mathbb{R}^+} \) is a supercritical and irreducible multi-type CBI process with parameters \((d, c, \beta, B, \nu, \mu) \) such that \(\mathbb{E}||X_0|| < \infty \), the moment condition (2.1) holds, and the moment condition (3.1) holds for \(\lambda = s(B) \). Then \(w_{u,X_0} \overset{a.s.}{=} 0 \) if and only if \((X_t)_{t \in \mathbb{R}^+} \) is a trivial process (equivalently, \(X_0 \overset{a.s.}{=} 0 \) and \(\beta = 0 \), see Lemma 2.5 and Definition 2.6).

3.4 Theorem
Suppose that \((X_t)_{t \in \mathbb{R}^+} \) is a supercritical, irreducible and non-trivial multi-type CBI process with parameters \((d, c, \beta, B, \nu, \mu) \) such that \(\mathbb{E}||X_0|| < \infty \) and the moment condition (2.1) holds.

(i) If \(\text{Re}(\lambda) \in \left(\frac{1}{2}s(B), s(B) \right] \) and the moment condition (3.1) holds, then

\[
\mathbb{I}_{\{X_t \neq 0\}} \frac{1}{\langle u, X_t \rangle \text{Re}(\lambda)/s(B)} \begin{pmatrix}
\cos(\text{Im}(\lambda)t) & \sin(\text{Im}(\lambda)t) \\
-\sin(\text{Im}(\lambda)t) & \cos(\text{Im}(\lambda)t)
\end{pmatrix}
\begin{pmatrix}
\text{Re}(\langle v, X_t \rangle) \\
\text{Im}(\langle v, X_t \rangle)
\end{pmatrix}
\rightarrow \frac{1}{w_{u,X_0}^{\text{Re}(\lambda)/s(B)}} \begin{pmatrix}
\text{Re}(w_{v,X_0}) \\
\text{Im}(w_{v,X_0})
\end{pmatrix}
\quad \text{as } t \to \infty
\]

on the event \(\{w_{u,X_0} > 0\} \).

(ii) If \(\text{Re}(\lambda) = \frac{1}{2}s(B) \) and the moment condition (3.3) holds, then, under the conditional probability measure \(\mathbb{P}(\cdot | w_{u,X_0} > 0) \), we have

\[
\mathbb{I}_{\{u,X_t > 1\}} \frac{1}{\sqrt{\langle u, X_t \rangle \log(\langle u, X_t \rangle)}} \begin{pmatrix}
\text{Re}(\langle v, X_t \rangle) \\
\text{Im}(\langle v, X_t \rangle)
\end{pmatrix}
\overset{\mathbb{P}(w_{u,X_0} > 0)}{\to} \mathcal{N}_2 \left(0, \frac{1}{s(B)} \Sigma_v \right)
\]

as \(t \to \infty \).

(iii) If \(\text{Re}(\lambda) \in (-\infty, \frac{1}{2}s(B)) \) and the moment condition (3.3) holds, then, under the conditional probability measure \(\mathbb{P}(\cdot | w_{u,X_0} > 0) \), we have

\[
\mathbb{I}_{\{X_t \neq 0\}} \frac{1}{\sqrt{\langle u, X_t \rangle}} \begin{pmatrix}
\text{Re}(\langle v, X_t \rangle) \\
\text{Im}(\langle v, X_t \rangle)
\end{pmatrix}
\overset{\mathbb{P}(w_{u,X_0} > 0)}{\to} \mathcal{N}_2 \left(0, \Sigma_v \right)
\quad \text{as } t \to \infty.
\]

3.5 Remark
The indicator function \(\mathbb{I}_{\{X_t \neq 0\}} \) are needed in parts (i) and (iii) of Theorem 3.4 and the indicator function \(\mathbb{I}_{\{u,X_t > 1\}} \) is needed in part (ii) of Theorem 3.3 since it can happen that \(\mathbb{P}(X_t = 0) > 0, \ t \in \mathbb{R}^+_+ \), even if \(\tilde{\beta} \neq 0 \). For example, if \((X_t)_{t \in \mathbb{R}^+} \) is a multi-type CBI process with parameters \((d, c, 0, B, \nu, 0) \) such that \(X_0 = 0, \ B \) is irreducible
with \(s(B) > 0 \) and \(\nu \neq 0 \) with \(\int_{U_d} (1 \vee \|r\|) \nu(dr) < \infty \), then \(\widetilde{B} = B \), thus \((X_t)_{t \in \mathbb{R}_+} \) is irreducible and supercritical. One can choose, for instance, \(d = 2 \) and

\[
B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \in \mathbb{R}_{(+)}^{2 \times 2},
\]

yielding that \(\sigma(B) = \sigma(\widetilde{B}) = \{0, 2\} \) and \(s(B) = s(\widetilde{B}) = 2 \), hence, by choosing \(\lambda = 0 \in \sigma(\widetilde{B}) \), we have \(\text{Re}(\lambda) = 0 \in (-\infty, 1) = (-\infty, \frac{1}{2}s(\widetilde{B})) \), and, by choosing \(\lambda = 2 \in \sigma(\widetilde{B}) \), we have \(\text{Re}(\lambda) = 2 \in (1, 2] = \left(\frac{1}{2}s(\widetilde{B}), s(B)\right) \). If \(d = 2 \) and we choose

\[
B = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \in \mathbb{R}_{(+)}^{2 \times 2},
\]

then \(\sigma(B) = \sigma(\widetilde{B}) = \{2, 4\} \), \(s(B) = s(\widetilde{B}) = 4 \), and with \(\lambda = 2 \) we have \(\text{Re}(\lambda) = \frac{1}{2}s(\widetilde{B}) \). Further, using \(\beta = \int_{U_d} r \nu(dr) \), by Lemma 4.1 in Barczy et al. [7],

\[
X_t = \int_0^t e^{(t-u)B} \beta du + \sum_{\ell = 1}^d \int_0^t e^{(t-u)B} \sqrt{2c_\ell X_{u,\ell}} dW_{u,\ell} + \int_0^t \int_{U_d} e^{(t-u)B} r M(du, dr)
\]

for all \(t \in \mathbb{R}_+ \), where \(M(du, dr) := M(du, dr) - du \nu(dr) \). Note that until the first jump of \(M \) in \(\mathbb{R}_+ \times U_d \), the pathwise unique solution of this SDE is the identically zero process. Hence, using that \(e^{(t-u)B} \in \mathbb{R}_{d \times d}^{d \times d} \) and \(e^{(t-u)B} \) is invertible for all \(t \in \mathbb{R}_{++} \) and \(u \in [0, t] \), we have

\[
P(X_s = 0 \text{ for each } s \in [0, t]) \geq P(M \text{ has no point in } \{(u, r) \in (0, t] \times U_d : e^{(t-u)B} r \neq 0\})
\]

\[
= P(M \text{ has no point in } \{(u, r) \in (0, t] \times U_d : r \neq 0\}) = e^{-\int_0^t \int_{U_d} (r \neq 0) du \nu(dr)} = e^{-\nu(U_d)}
\]

for all \(t \in \mathbb{R}_+ \). Consequently, since \(\nu(U_d) < \infty \), we obtain \(P(X_t = 0) > 0 \), \(t \in \mathbb{R}_+ \). \(\square \)

Next we describe the asymptotic behavior of the relative frequencies of distinct types of individuals on the event \(\{w_{u,X_0} > 0\} \). For different models, one can find similar results in Jagers [17] Corollary 1 and Yakovlev and Yanev [24] Theorem 2. For critical and irreducible multi-type CBI processes, see Barczy and Pap [9 Corollary 4.1].

3.6 Proposition. If \((X_t)_{t \in \mathbb{R}_+} \) is a non-trivial, supercritical and irreducible multi-type CBI process with parameters \((d, c, \beta, B, \nu, \mu) \) such that \(\mathbb{E}(\|X_0\|) < \infty \) and the moment condition (2.1) holds, then for each \(i, j \in \{1, \ldots, d\} \), we have

\[
1_{\{e_j, X_t \neq 0\}} \frac{\langle e_i, X_t \rangle}{\langle e_j, X_t \rangle} \to \frac{\langle e_i, \tilde{u} \rangle}{\langle e_j, \tilde{u} \rangle} \quad \text{and} \quad 1_{\{X_t \neq 0\}} \frac{\langle e_i, X_t \rangle}{\sum_{k=1}^d \langle e_k, X_t \rangle} \to \frac{\langle e_i, \tilde{u} \rangle}{\sum_{k=1}^d \langle e_k, \tilde{u} \rangle} \quad \text{as} \quad t \to \infty
\]

on the event \(\{w_{u,X_0} > 0\} \).
3.7 Remark. The indicator functions \(1_{\{e_j^T x_t \neq 0\}}\) and \(1_{\{x_t \neq 0\}}\) are needed in Proposition 3.6, since it can happen that \(\mathbb{P}(X_t = 0) > 0, \ t \in \mathbb{R}_+\), see Remark 3.5. \(\square\)

3.8 Remark. If \(\mathbb{P}(w_u x_0 = 0) = 0\), then the convergence in part (i) of Theorem 3.4 and in Proposition 3.6 holds almost surely, and the convergences in parts (ii) and (iii) hold under the unconditional probability measure \(\mathbb{P}\). \(\square\)

4 Proofs

Proof of part (i) of Theorem 3.1. This statement has been proved in Barczy et al. [8, Theorem 3.1].

Proof of part (iii) of Theorem 3.1. The proof is divided into three main steps. First, we decompose the process \((e^{-\lambda t} \langle v, X_t \rangle)_{t \in \mathbb{R}_+}\) as the sum of a deterministic process and three square-integrable martingales. We show that the deterministic process goes to zero as \(t \to \infty\). For proving asymptotic normality of the martingales in question, we use Theorem E.1 due to Crimaldi and Pratelli [11, Theorem 2.2] which provides a set of sufficient conditions for the asymptotic normality of multivariate martingales. Then, the proof is complete as soon as we show that the conditions (E.1) and (E.2) of Theorem E.1 are satisfied. In the second and third steps, we prove that (E.1) and (E.2) are satisfied, respectively.

Step 1. For each \(t \in \mathbb{R}_+\), we have the representation \(e^{-\lambda t} \langle v, X_t \rangle = Z_t^{(0,1)} + Z_t^{(2)} + Z_t^{(3,4)} + Z_t^{(5)}\) with

\[
Z_t^{(0,1)} := \langle v, X_0 \rangle + \langle v, \tilde{\beta} \rangle \int_0^t e^{-\lambda u} \, du,
\]

\[
Z_t^{(2)} := \sum_{\ell=1}^d \langle v, e_\ell \rangle \int_0^t e^{-\lambda u} \sqrt{2e_\ell X_u e_\ell} \, dW_{u,\ell},
\]

\[
Z_t^{(3,4)} := \sum_{\ell=1}^d \int_0^t \int_{U_\ell} \int_{U_\ell} e^{-\lambda u} \langle v, z \rangle 1_{\{w \leq X_u - \ell\}} \tilde{N}_u (du, dz, dw),
\]

\[
Z_t^{(5)} := \int_0^t \int_{U_\ell} e^{-\lambda u} \langle v, r \rangle \tilde{M}(du, dr),
\]

see Barczy et al. [7, Lemma 4.1]. Thus for each \(t \in \mathbb{R}_+\), we have

\[e^{-s(B)^{1/2} \langle v, X_t \rangle} = e^{-s(B)^{-2\lambda}t/2} \left(Z_t^{(0,1)} + Z_t^{(2)} + Z_t^{(3,4)} + Z_t^{(5)}\right).\]

First, we show

\[(4.1) \quad e^{-s(B)^{-2\lambda}t/2} Z_t^{(0,1)} \xrightarrow{a.s.} 0 \quad \text{as} \quad t \to \infty.\]

Indeed, if \(\lambda = 0\), then

\[e^{-s(B)^{-2\lambda}t/2} Z_t^{(0,1)} = e^{-s(B)^{1/2} \langle v, X_t \rangle} \langle v, \tilde{\beta} \rangle t \xrightarrow{a.s.} 0 \quad \text{as} \quad t \to \infty,\]

14
since $s(\hat{B}) \in \mathbb{R}^+$. Otherwise, if $\text{Re}(\lambda) \in (-\infty, \frac{1}{2} s(\hat{B}))$ and $\lambda \neq 0$, then

$$e^{-(s(\hat{B})-2\lambda)t/2}Z_t^{(0,1)} = e^{-(s(\hat{B})-2\text{Re}(\lambda))t/2+i\text{Im}(\lambda)t} \left(\left\langle v, X_0 \right\rangle - \frac{\langle v, \beta \rangle}{\lambda} (e^{-\lambda t} - 1) \right)$$

$$= \left(\left\langle v, X_0 \right\rangle + \frac{\langle v, \beta \rangle}{\lambda} \right) e^{-(s(\hat{B})-2\text{Re}(\lambda))t/2+i\text{Im}(\lambda)t} - \frac{\langle v, \beta \rangle}{\lambda} e^{-s(\hat{B})t/2} \xrightarrow{a.s.} 0$$
as $t \to \infty$.

For each $t \in \mathbb{R}_+$, we have

$$\left(\begin{array}{c} \text{Re}(e^{-(s(\hat{B})-2\lambda)t/2} (Z_t^{(2)} + Z_t^{(3,4)} + Z_t^{(5)})) \\ \text{Im}(e^{-(s(\hat{B})-2\lambda)t/2} (Z_t^{(2)} + Z_t^{(3,4)} + Z_t^{(5)})) \end{array} \right) = Q(t) M_t$$

with

$$Q(t) := \left(\begin{array}{cc} \text{Re}(e^{-(s(\hat{B})-2\lambda)t/2}) & -\text{Im}(e^{-(s(\hat{B})-2\lambda)t/2}) \\ \text{Im}(e^{-(s(\hat{B})-2\lambda)t/2}) & \text{Re}(e^{-(s(\hat{B})-2\lambda)t/2}) \end{array} \right), \quad t \in \mathbb{R}_+,$$

and

$$M_t := \left(\begin{array}{c} \text{Re}(Z_t^{(2)}) + Z_t^{(3,4)} + Z_t^{(5)} \\ \text{Im}(Z_t^{(2)}) + Z_t^{(3,4)} + Z_t^{(5)} \end{array} \right), \quad t \in \mathbb{R}_+.$$

The assumption $\text{Re}(\lambda) \in (-\infty, \frac{1}{2} s(\hat{B}))$ implies

$$Q(t) = e^{-(s(\hat{B})-2\text{Re}(\lambda))t/2} \begin{pmatrix} \cos(\text{Im}(\lambda)t) & -\sin(\text{Im}(\lambda)t) \\ \sin(\text{Im}(\lambda)t) & \cos(\text{Im}(\lambda)t) \end{pmatrix} \xrightarrow{t \to \infty} 0$$

as $t \to \infty$.

For each $t \in \mathbb{R}_+$, we can write $M_t = M_t^{(2)} + M_t^{(3,4)} + M_t^{(5)}$ with

$$M_t^{(2)} := \left(\begin{array}{c} \text{Re}(Z_t^{(2)}) \\ \text{Im}(Z_t^{(2)}) \end{array} \right), \quad M_t^{(3,4)} := \left(\begin{array}{c} \text{Re}(Z_t^{(3,4)}) \\ \text{Im}(Z_t^{(3,4)}) \end{array} \right), \quad M_t^{(5)} := \left(\begin{array}{c} \text{Re}(Z_t^{(5)}) \\ \text{Im}(Z_t^{(5)}) \end{array} \right).$$

Note that under the moment condition (3.3), $(M_t^{(2)})_{t \in \mathbb{R}_+}$, $(M_t^{(3,4)})_{t \in \mathbb{R}_+}$ and $(M_t^{(5)})_{t \in \mathbb{R}_+}$ are square-integrable martingales (see, e.g., Ikeda and Watanabe [15] pages 55 and 63). One can also observe that, by the decomposition of $(e^{-\lambda t} (v, X_t))_{t \in \mathbb{R}_+}$ given at the beginning of this step, $(e^{-\lambda t} (v, X_t) - (v, \beta)) \int_0^t e^{-\lambda u} du)_{t \in \mathbb{R}_+}$ is a martingale with respect to the filtration $\sigma(X_u : u \in [0, t])$, $t \in \mathbb{R}_+$, which follows by Barczy et al. [8] Lemma 2.6] as well.

The aim of the following discussion is to apply Theorem E.1 for the 2-dimensional martingale $(M_t)_{t \in \mathbb{R}_+}$ with the scaling $Q(t)$, $t \in \mathbb{R}_+$.

Step 2. Now we prove that condition (E.1) of Theorem E.1 holds for $(M_t)_{t \in \mathbb{R}_+}$ with the scaling $Q(t)$, $t \in \mathbb{R}_+$. For each $t \in \mathbb{R}_+$, by Theorem 1.4.52 in Jacod and Shiryaev [10], we
have
\[
[M^{(2)}_t] = \left(\begin{array}{c}
\Re(Z^{(2)})_t, \Im(Z^{(2)})_t \\
\Re(Z^{(2)})_t, \Im(Z^{(2)})_t \\
\end{array}\right).
\]

\[
= \left(\begin{array}{c}
\Re(Z^{(2)})_t, \Im(Z^{(2)})_t \\
\Re(Z^{(2)})_t, \Im(Z^{(2)})_t \\
\end{array}\right)
\]

\[
= 2 \sum_{\ell=1}^{d} \epsilon_{\ell} \int_{0}^{t} \left(\begin{array}{c}
\Re(e^{-\lambda u} \langle v, e_\ell \rangle) \\
\Im(e^{-\lambda u} \langle v, e_\ell \rangle) \\
\end{array}\right) X_{u,\ell} du,
\]

since \((M^{(2)}_t)_{t \in \mathbb{R}^{+}}\) is continuous, where \((M^{(2)}_t)_{t \in \mathbb{R}^{+}}\) denotes the quadratic variation process and the predictable quadratic variation process of \((M^{(2)}_t)_{t \in \mathbb{R}^{+}}\), respectively. Moreover, we have \(M^{(3,4)}_t = \sum_{\ell=1}^{d} \tilde{Y}^{(\ell)}_t\) with

\[
\tilde{Y}^{(\ell)}_t := \left(\begin{array}{c}
\Re(\tilde{Y}^{(\ell)}_t) \\
\Im(\tilde{Y}^{(\ell)}_t) \\
\end{array}\right), \quad \tilde{Y}^{(\ell)}_t := \int_{0}^{t} \int_{u}^{t} e^{-\lambda u} \langle v, z \rangle \mathbb{1}_{\{w \leq X_{u,\ell} \}} \tilde{N}_u (du, dz, dw)
\]

for \(t \in \mathbb{R}^{+}\) and \(\ell \in \{1, \ldots, d\}\). For each \(t \in \mathbb{R}^{+}\) and \(\ell \in \{1, \ldots, d\}\), \((\tilde{Y}^{(\ell)}_t)_{t \in \mathbb{R}^{+}}\) is a square-integrable purely discontinuous martingale, see, e.g., Jacod and Shiryayev [16, Definition II.1.27 and Theorem II.1.33]). Hence, for each \(t \in \mathbb{R}^{+}\) and \(k, \ell \in \{1, \ldots, d\}\), by Lemma I.4.51 in Jacod and Shiryayev [16], we have

\[
[\tilde{Y}^{(k)}, \tilde{Y}^{(\ell)}]_t = \sum_{s \in [0,t]} (\tilde{Y}^{(k)}_s - \tilde{Y}^{(k)}_{s-}) (\tilde{Y}^{(\ell)}_s - \tilde{Y}^{(\ell)}_{s-})^\top.
\]

Further, by the proof of part (a) of Theorem II.1.33 in Jacod and Shiryayev [16], for each \(t \in \mathbb{R}^{+}\) and \(k \in \{1, \ldots, d\}\),

\[
[\tilde{Y}^{(k)}]_t = \int_{0}^{t} \int_{u}^{t} \int_{u}^{t} \left(\begin{array}{c}
\Re(e^{-\lambda u} \langle v, z \rangle) \\
\Im(e^{-\lambda u} \langle v, z \rangle) \\
\end{array}\right) \mathbb{1}_{\{w \leq X_{u,\ell} \}} N_k (du, dz, dw).
\]

The aim of the following discussion is to show that for each \(t \in \mathbb{R}^{+}\) and \(k, \ell \in \{1, \ldots, d\}\) with \(k \neq \ell\), we have \([\tilde{Y}^{(k)}, \tilde{Y}^{(\ell)}]_t = 0\) almost surely. By the bilinearity of quadratic variation process, for all \(\varepsilon \in \mathbb{R}^{++}\) and \(t \in \mathbb{R}^{+}\), we have

\[
[\tilde{Y}^{(k)}, \tilde{Y}^{(\ell)}]_t = [\tilde{Y}^{(k,\varepsilon)}, \tilde{Y}^{(\ell,\varepsilon)}]_t + [\tilde{Y}^{(k)}, \tilde{Y}^{(\ell)}]_t + [\tilde{Y}^{(k,\varepsilon)}, \tilde{Y}^{(\ell)}]_t + [\tilde{Y}^{(k)} - \tilde{Y}^{(k,\varepsilon)}], [\tilde{Y}^{(\ell)} - \tilde{Y}^{(\ell,\varepsilon)}]_t,
\]

where, for all \(\varepsilon \in \mathbb{R}^{++}\), \(k \in \{1, \ldots, d\}\) and \(t \in \mathbb{R}^{+}\),

\[
\tilde{Y}^{(k,\varepsilon)} := \left(\begin{array}{c}
\Re(\tilde{Y}^{(k,\varepsilon)}_t) \\
\Im(\tilde{Y}^{(k,\varepsilon)}_t) \\
\end{array}\right), \quad \tilde{Y}^{(k,\varepsilon)}_t := \int_{0}^{t} \int_{u}^{t} \int_{u}^{t} e^{-\lambda u} \langle v, z \rangle \mathbb{1}_{\{w \leq X_{u,\varepsilon} \}} \tilde{N}_u (du, dz, dw),
\]

and
which is well-defined and square-integrable, since, by (2.5) and (3.8),
\[
\int_0^t \int_{\mathcal{U}_d} e^{-\text{Re}(\lambda)u} \langle \mathbf{v}, \mathbf{z} \rangle^2 \mathbb{1}_{\{\| z \| \geq \varepsilon \}} \mathbb{E}(X_{u,k}) \, du \, \mu_k(\mathbf{d}z)
\]
\[
\leq C_4 \| \mathbf{v} \|^2 \int_0^t \int_{\mathcal{U}_d} e^{(s(\mathcal{B}) - \text{Re}(\lambda))u} \, du \, \int_{\mathcal{U}_d} \| \mathbf{z} \|^2 \mathbb{1}_{\{\| z \| \geq \varepsilon \}} \, \mu_k(\mathbf{d}z) < \infty.
\]
For each $\varepsilon \in \mathbb{R}_{++}$, $t \in \mathbb{R}_+$ and $k, \ell \in \{1, \ldots, d\}$, we have
\[
[\widetilde{Y}^{(k, \varepsilon)}_t, \widetilde{Y}^{(\ell, \varepsilon)}_t]_t = \sum_{s \in [0, t]} (\widetilde{Y}^{(k, \varepsilon)}_s - \widetilde{Y}^{(k, \varepsilon)}_{s^-})(\widetilde{Y}^{(\ell, \varepsilon)}_s - \widetilde{Y}^{(\ell, \varepsilon)}_{s^-})^\top = \sum_{s \in [0, t]} (Y^{(k, \varepsilon)}_s - Y^{(k, \varepsilon)}_{s^-})(Y^{(\ell, \varepsilon)}_s - Y^{(\ell, \varepsilon)}_{s^-})^\top
\]
with
\[
Y^{(k, \varepsilon)}_t := \begin{pmatrix} \text{Re}(Y^{(k, \varepsilon)}_t) \\ \text{Im}(Y^{(k, \varepsilon)}_t) \end{pmatrix}, \quad Y^{(\ell, \varepsilon)}_t := \int_0^t \int_{\mathcal{U}_d} e^{-\lambda u} \langle \mathbf{v}, \mathbf{z} \rangle \mathbb{1}_{\{\| z \| \geq \varepsilon \}} \mathbb{1}_{\{w \in X_{u-k}\}} N_k(du, d\mathbf{z}, dw),
\]
where the first equality follows by the proof of part (a) of Theorem II.1.33 in Jacod and Shiryaev [16], and the second equality, by (2.5), part (vi) of Definition 2.1 and (3.8), since
\[
\int_0^t \int_{\mathcal{U}_d} e^{-\text{Re}(\lambda)u} \langle \mathbf{v}, \mathbf{z} \rangle \mathbb{1}_{\{\| z \| \geq \varepsilon \}} \mathbb{E}(X_{u,k}) \, du \, \mu_k(\mathbf{d}z)
\]
\[
\leq C_4 \| \mathbf{v} \| \int_0^t \int_{\mathcal{U}_d} e^{(s(\mathcal{B}) - \text{Re}(\lambda))u} \, du \, \int_{\mathcal{U}_d} \| \mathbf{z} \|^2 \mathbb{1}_{\{\| z \| \geq \varepsilon \}} \, \mu_k(\mathbf{d}z)
\]
\[
\leq C_4 \| \mathbf{v} \| \varepsilon \int_0^t \int_{\mathcal{U}_d} e^{(s(\mathcal{B}) - \text{Re}(\lambda))u} \, du \, \int_{\mathcal{U}_d} \| \mathbf{z} \|^2 \mu_k(\mathbf{d}z) < \infty,
\]
and hence we have
\[
\widetilde{Y}^{(k, \varepsilon)}_t = Y^{(k, \varepsilon)}_t - \int_0^t \int_{\mathcal{U}_d} e^{-\lambda u} \langle \mathbf{v}, \mathbf{z} \rangle \mathbb{1}_{\{\| z \| \geq \varepsilon \}} \mathbb{1}_{\{w \in X_{u-k}\}} N_k(du, d\mathbf{z}, dw).
\]
For each $\varepsilon \in \mathbb{R}_{++}$ and $k \in \{1, \ldots, d\}$, the jump times of $(Y^{(k, \varepsilon)}_t)_{t \in \mathbb{R}_+}$ is a subset of the jump times of the Poisson process $(N_k([0, t] \times \mathcal{U}_d \times \mathcal{U}_1))_{t \in \mathbb{R}_+}$. For each $k, \ell \in \{1, \ldots, d\}$ with $k \neq \ell$, the Poisson processes $(N_k([0, t] \times \mathcal{U}_d \times \mathcal{U}_1))_{t \in \mathbb{R}_+}$ and $(N_\ell([0, t] \times \mathcal{U}_d \times \mathcal{U}_1))_{t \in \mathbb{R}_+}$ are independent, hence they can jump simultaneously with probability zero, see, e.g., Revuz and Yor [22], Chapter XII, Proposition 1.5. Consequently, for each $\varepsilon \in \mathbb{R}_{++}$, $t \in \mathbb{R}_+$ and $k, \ell \in \{1, \ldots, d\}$ with $k \neq \ell$, we have $[\widetilde{Y}^{(k, \varepsilon)}, \widetilde{Y}^{(\ell, \varepsilon)}]_t = 0$ almost surely.

Moreover, for each $t \in \mathbb{R}_+$, $\varepsilon \in \mathbb{R}_{++}$, $i, j \in \{1, 2\}$ and $k, \ell \in \{1, \ldots, d\}$ with $k \neq \ell$, by the Kunita–Watanabe inequality, we have
\[
\left| \langle \mathbf{e}_i, [\widetilde{Y}^{(k, \varepsilon)}, \widetilde{Y}^{(\ell, \varepsilon)}]_t \mathbf{e}_j \rangle \right| = \left| \langle \mathbf{e}_i, [\widetilde{Y}^{(k, \varepsilon)}]_t \mathbf{e}_j \rangle \tilde{\langle} \mathbf{e}_j, [\widetilde{Y}^{(\ell, \varepsilon)}]_t \rangle \right|
\]
\[
\leq \left| \langle \mathbf{e}_i, [\widetilde{Y}^{(k, \varepsilon)}]_t \mathbf{e}_j \rangle \right|^{1/2} \left| \langle \mathbf{e}_j, [\widetilde{Y}^{(\ell, \varepsilon)}]_t \mathbf{e}_i \rangle \right|^{1/2},
\]
\[
\left| \langle \mathbf{e}_i, [\widetilde{Y}^{(k, \varepsilon)}]_t \mathbf{e}_j \rangle \right| \leq \left| \langle \mathbf{e}_i, [\widetilde{Y}^{(k, \varepsilon)}]_t \mathbf{e}_j \rangle \right|^{1/2} \left| \langle \mathbf{e}_j, [\widetilde{Y}^{(\ell, \varepsilon)}]_t \mathbf{e}_i \rangle \right|^{1/2},
\]
\[
\left| \langle \mathbf{e}_i, [\widetilde{Y}^{(k, \varepsilon)}, \widetilde{Y}^{(\ell, \varepsilon)}]_t \mathbf{e}_j \rangle \right| \leq \left| \langle \mathbf{e}_i, [\widetilde{Y}^{(k, \varepsilon)}]_t \mathbf{e}_j \rangle \right|^{1/2} \left| \langle \mathbf{e}_j, [\widetilde{Y}^{(\ell, \varepsilon)}]_t \mathbf{e}_i \rangle \right|^{1/2}.
Hence it is enough to check that $\langle e_j, \tilde{Y}^{(t, \varepsilon)} \rangle_t$ is stochastically bounded in $\varepsilon \in \mathbb{R}_{++}$ and

$$\langle e_j, \tilde{Y}^{(t, \varepsilon)} - \tilde{Y}^{(t, \varepsilon)} \rangle_t \overset{L_1}{\to} 0 \quad \text{as} \quad \varepsilon \downarrow 0$$

for all $t \in \mathbb{R}_+$, $j \in \{1, 2\}$ and $\ell \in \{1, \ldots, d\}$. Indeed, in this case

$$\left| \langle e_j, \tilde{Y}^{(k, \varepsilon)} - \tilde{Y}^{(k, \varepsilon)} - \tilde{Y}^{(t, \varepsilon)} \rangle, e_j \right| \overset{p}{\to} 0 \quad \text{as} \quad \varepsilon \downarrow 0,$$

$$\left| \langle e_j, \tilde{Y}^{(k, \varepsilon)} - \tilde{Y}^{(k, \varepsilon)} \rangle, e_j \right| \overset{p}{\to} 0 \quad \text{as} \quad \varepsilon \downarrow 0,$$

and, by (4.2), for each $t \in \mathbb{R}_+$ and $k, \ell \in \{1, \ldots, d\}$ with $k \neq \ell$, we have $\tilde{Y}^{(k, \varepsilon)} \tilde{Y}^{(t, \varepsilon)} = 0$ almost surely. By the proof of part (a) of Theorem II.1.33 in Jacod and Shiryaev [16],

$$\tilde{Y}^{(t, \varepsilon)}_t = \int_0^t \int_{U_d} \int_{U_t} \left(\frac{\text{Re}(e^{-\lambda u} \langle v, z \rangle)}{0} \right) \left(\frac{\text{Im}(e^{-\lambda u} \langle v, z \rangle)}{0} \right) \mathbb{1}_{\{||z|| \geq \varepsilon\}} \mathbb{1}_{\{w \in X_{u, \varepsilon}\}} N_u(du, dz, dw),$$

and

$$\tilde{Y}^{(t, \varepsilon)} - \tilde{Y}^{(t, \varepsilon)} = \int_0^t \int_{U_d} \int_{U_t} \left(\frac{\text{Re}(e^{-\lambda u} \langle v, z \rangle)}{0} \right) \left(\frac{\text{Im}(e^{-\lambda u} \langle v, z \rangle)}{0} \right) \mathbb{1}_{\{||z|| < \varepsilon\}} \mathbb{1}_{\{w \in X_{u, \varepsilon}\}} N_u(du, dz, dw).$$

Consequently, using that $||zz^\top|| \leq ||z||^2$, $z \in \mathbb{R}^2$, we have

$$\left| \langle [e_j, \tilde{Y}^{(t, \varepsilon)}]_t \right| \leq \int_0^t \int_{U_d} \int_{U_t} |e^{-\lambda u} \langle v, z \rangle| \mathbb{1}_{\{||z|| < \varepsilon\}} \mathbb{1}_{\{w \in X_{u, \varepsilon}\}} N_u(du, dz, dw)$$

for all $\varepsilon \in \mathbb{R}_{++}$ and $j \in \{1, 2\}$, where the right-hand side is finite almost surely, since

$$\mathbb{E} \left(\int_0^t \int_{U_d} \int_{U_t} |e^{-\lambda u} \langle v, z \rangle|^2 \mathbb{1}_{\{||z|| < \varepsilon\}} \mathbb{1}_{\{w \in X_{u, \varepsilon}\}} N_u(du, dz, dw) \right) \leq \int_0^t \int_{U_d} |e^{-\lambda u} \langle v, z \rangle|^2 \mathbb{E}(X_u, \ell) du \mu_\ell(dz)$$

$$\leq C_4 ||v||^2 \int_0^t e^{(s(\theta - 2\text{Re}(\lambda)))u} du \int_{U_d} ||z||^2 \mu_\ell(dz) \leq C_4 ||v||^2 \int_0^t e^{(s(\theta - 2\text{Re}(\lambda)))u} du \int_{U_d} ||z||^2 \mu_\ell(dz) \to 0.$$
as $\varepsilon \downarrow 0$. Consequently, for each $t \in \mathbb{R}_+$ and $k, \ell \in \{1, \ldots, d\}$ with $k \neq \ell$, we have $\widetilde{Y}^{(k)}_t, \widetilde{Y}^{(\ell)}_t = 0$ almost surely.

In a similar way,

$$[M^{(6)}]_t = \int_0^t \int_{t_0}^t \begin{pmatrix} \text{Re}(e^{-\lambda u\langle \nu, r \rangle}) & \text{Im}(e^{-\lambda u\langle \nu, r \rangle}) \\ \text{Im}(e^{-\lambda u\langle \nu, r \rangle}) & \text{Re}(e^{-\lambda u\langle \nu, r \rangle}) \end{pmatrix} M(du,dr), \quad t \in \mathbb{R}_+,$$

and $[\widetilde{Y}^{(\ell)}, M^{(5)}]_t = 0$, $\ell \in \{1, \ldots, d\}$ almost surely. Consequently, for each $t \in \mathbb{R}_+$, we have $[M^{(3,4)} + M^{(5)}]_t = [M^{(3,4)}]_t + [M^{(5)}]_t$ with $[M^{(3,4)}]_t = \sum_{\ell=1}^d [\widetilde{Y}^{(\ell)}]_t$. Since $(M^{(2)}_t)_{t \in \mathbb{R}_+}$ is a continuous martingale and $(M^{(3,4)} + M^{(5)}_t)_{t \in \mathbb{R}_+}$ is a purely discontinuous martingale, by Corollary I.4.55 in Jacod and Shiryaev [16], we have $[M^{(2)}, M^{(3,4)} + M^{(5)}]_t = 0$, $t \in \mathbb{R}_+$.

Consequently,

$$[M]_t = [M^{(2)}]_t + [M^{(3,4)}]_t + [M^{(5)}]_t, \quad t \in \mathbb{R}_+.$$

For each $t \in \mathbb{R}_+$, we have

$$Q(t)[M^{(2)}]_t Q(t)^\top = 2 \sum_{\ell=1}^d c_\ell \int_0^t f(t - \tau, e_\ell) e^{-s(\bar{B})^2} X_{\tau,\ell} d\tau$$

with

$$f(w, z) := \begin{pmatrix} \text{Re}(e^{-(s(\bar{B})-2\lambda)w/2\langle \nu, z \rangle}) & \text{Re}(e^{-(s(\bar{B})-2\lambda)w/2\langle \nu, z \rangle}) \\ \text{Im}(e^{-(s(\bar{B})-2\lambda)w/2\langle \nu, z \rangle}) & \text{Im}(e^{-(s(\bar{B})-2\lambda)w/2\langle \nu, z \rangle}) \end{pmatrix} \top, \quad w \in \mathbb{R}_+, \quad z \in \mathbb{R}^d.$$

First, we show

$$(4.3) \quad Q(t)[M^{(2)}]_t Q(t)^\top - 2w_{u,x_0} \sum_{\ell=1}^d c_\ell \langle e_\ell, \bar{u} \rangle \int_0^t f(w, e_\ell) dw \xrightarrow{a.s.} 0 \quad \text{as} \quad t \to \infty.$$

For each $t, T \in \mathbb{R}_+$, we have

$$Q(t+T)[M^{(2)}]_{t+T} Q(t+T)^\top - 2w_{u,x_0} \sum_{\ell=1}^d c_\ell \langle e_\ell, \bar{u} \rangle \int_0^{t+T} f(w, e_\ell) dw = \Delta^{(1)}_{t,T} + \Delta^{(2)}_{t,T}$$

with

$$\Delta^{(1)}_{t,T} := 2 \sum_{\ell=1}^d c_\ell \int_0^T f(t + T - \tau, e_\ell)(e^{-s(\bar{B})\tau} X_{\tau,\ell} - w_{u,x_0} \langle e_\ell, \bar{u} \rangle) d\tau,$$

$$\Delta^{(2)}_{t,T} := 2 \sum_{\ell=1}^d c_\ell \int_T^{t+T} f(t + T - \tau, e_\ell)(e^{-s(\bar{B})\tau} X_{\tau,\ell} - w_{u,x_0} \langle e_\ell, \bar{u} \rangle) d\tau.$$

For each $t, T \in \mathbb{R}_+$, we have

$$\|\Delta^{(1)}_{t,T}\| \leq 2 \left(\sup_{\tau \in [0,T]} \|e^{-s(\bar{B})\tau} X_{\tau} - w_{u,x_0} \bar{u}\| \right) \sum_{\ell=1}^d c_\ell \int_0^T \|f(t + T - \tau, e_\ell)\| d\tau,$$
where \(\sup_{\tau \in [0,T]} \| e^{-s(B)\tau} X_\tau - w_{u, X_0} \tilde{u} \| < \infty\) almost surely, since \((X_t)_{t \in \mathbb{R}^+}\) has càdlàg sample paths (due to Theorem 4.6 in Barczy et al. [2]). Then, using that \(\| zz^T \| \leq \| z \|^2, \ z \in \mathbb{R}^2\), we have

\[
\int_0^T \| f(t + T, e_\ell) \| \, dt = \int_t^{t+T} \| f(w, e_\ell) \| \, dw \leq \int_t^{t+T} |e^{-(s(B)-2\lambda)w/2} \langle v, e_\ell \rangle|^2 \, dw
\]

(4.4) \[\leq \| v \|^2 \int_t^{t+T} e^{-(s(B)-2\Re(\lambda))w} \, dw \leq \| v \|^2 \int_t^\infty e^{-(s(B)-2\Re(\lambda))w} \, dw\]

\[
= \frac{\| v \|^2}{s(B) - 2\Re(\lambda)} e^{-(s(B)-2\Re(\lambda))t} \rightarrow 0
\]
as \(t \rightarrow \infty\). Hence for each \(T \in \mathbb{R}_+\), we obtain

\[
\limsup_{t \rightarrow \infty} \| \Delta_{t,T}^{(1)} \| = 0
\]
amost surely. Moreover, for each \(t, T \in \mathbb{R}_+\), we have

\[
\| \Delta_{t,T}^{(2)} \| \leq 2 \left(\sup_{\tau \in [T, \infty]} \| e^{-s(B)\tau} X_\tau - w_{u, X_0} \tilde{u} \| \right) \sum_{\ell=1}^d c_\ell \int_T^{t+T} \| f(t + T, e_\ell) \| \, dt
\]
amost surely, where

\[
\int_T^{t+T} \| f(t + T, e_\ell) \| \, dt = \int_0^t \| f(w, e_\ell) \| \, dw
\]

(4.5) \[\leq \| v \|^2 \int_0^\infty e^{-(s(B)-2\Re(\lambda))w} \, dw = \frac{\| v \|^2}{s(B) - 2\Re(\lambda)}.
\]

Consequently, for each \(T \in \mathbb{R}_+\), we obtain

\[
\limsup_{t \rightarrow \infty} \left\| Q(t) [M^{(2)}]_{tT} Q(t)^\top - 2w_{u, X_0} \sum_{\ell=1}^d c_\ell \langle e_\ell, \tilde{u} \rangle \int_0^t f(w, e_\ell) \, dw \right\|
\]

\[
= \limsup_{t \rightarrow \infty} \left\| Q(t + T) [M^{(2)}]_{t+T} Q(t + T)^\top - 2w_{u, X_0} \sum_{\ell=1}^d c_\ell \langle e_\ell, \tilde{u} \rangle \int_0^{t+T} f(w, e_\ell) \, dw \right\|
\]

\[
\leq \limsup_{t \rightarrow \infty} \| \Delta_{t,T}^{(1)} \| + \limsup_{t \rightarrow \infty} \| \Delta_{t,T}^{(2)} \|
\]

\[
\leq \frac{2\| v \|^2}{s(B) - 2\Re(\lambda)} \left(\sup_{\tau \in [T, \infty]} \| e^{-s(B)\tau} X_\tau - w_{u, X_0} \tilde{u} \| \right) \sum_{\ell=1}^d c_\ell
\]

almost surely. Letting \(T \rightarrow \infty\), by Theorem 3.3 in Barczy et al. [8] (which can be used, since the moment condition (5.3) yields the moment condition (3.1) with \(\lambda = s(B)\)), we obtain (4.3). Moreover, \(\int_0^t f(w, e_\ell) \, dw \rightarrow \int_0^\infty f(w, e_\ell) \, dw\) as \(t \rightarrow \infty\), since we have

\[
\int_0^\infty \| f(w, e_\ell) \| \, dw \leq \| v \|^2 \int_0^\infty e^{-(s(B)-2\Re(\lambda))w} \, dw = \frac{\| v \|^2}{s(B) - 2\Re(\lambda)} < \infty.
\]
Consequently,

\[(4.6) \quad Q(t)[M^{(2)}]Q(t)^\top \xrightarrow{\text{as}} 2w_u.x_0 \sum_{\ell=1}^d c_\ell \langle e_\ell, \overline{u} \rangle \int_0^\infty f(w, e_\ell) \, dw \quad \text{as} \quad t \to \infty.\]

Next, by Theorem 3.3 in Barczy et al. \cite{Barczy}, we show that

\[
Q(t)[M^{(3,4)}]Q(t)^\top - w_u.x_0 \sum_{\ell=1}^d \langle e_\ell, \overline{u} \rangle \int_0^t \int_{U_d} f(w, z) \, dw \, \mu_\ell(dz) \xrightarrow{L_1} 0
\]

as \(t \to \infty \). Since

\[(4.7) \quad Q(t)[M^{(3,4)}]Q(t)^\top = \sum_{\ell=1}^d \int_0^t \int_{U_d} \int_{U_t} f(t - u, z)e^{-s(B)u}1_{\{w \leq X_{u,\ell}\}} \, N_\ell(du, dz, dw),\]

it is enough to show that for each \(\ell \in \{1, \ldots, d\} \) and \(i, j \in \{1, 2\} \), we have

\[
\int_0^t \int_{U_d} \int_{U_t} f_{i,j}(t - u, z)e^{-s(B)u}1_{\{w \leq X_{u,\ell}\}} \, N_\ell(du, dz, dw)
\]

(4.8)

\[- w_u.x_0 \langle e_\ell, \overline{u} \rangle \int_0^t \int_{U_d} f_{i,j}(t - u, z) \, du \, \mu_\ell(dz) \xrightarrow{L_1} 0 \quad \text{as} \quad t \to \infty,
\]

where \(f(w, z) = (f_{i,j}(w, z))_{i,j \in \{1, 2\}}, \ w \in \mathbb{R}_+, \ z \in \mathbb{R}^d \). For each \(t \in \mathbb{R}_+, \ \ell \in \{1, \ldots, d\} \) and \(i, j \in \{1, 2\} \), we have

\[
\mathbb{E}\left(\left| \int_0^t \int_{U_d} \int_{U_t} f_{i,j}(t - u, z)e^{-s(B)u}1_{\{w \leq X_{u,\ell}\}} \, N_\ell(du, dz, dw) \right. \right.
\]

(4.9)

\[
\left. \left. - w_u.x_0 \langle e_\ell, \overline{u} \rangle \int_0^t \int_{U_d} f_{i,j}(t - u, z) \, du \, \mu_\ell(dz) \right| \right) \leq I_{t,1} + I_{t,2},
\]

where

\[
I_{t,1} := \mathbb{E}\left(\left| \int_0^t \int_{U_d} \int_{U_t} f_{i,j}(t - u, z)e^{-s(B)u}1_{\{w \leq X_{u,\ell}\}} \, \tilde{N}_\ell(du, dz, dw) \right| \right)
\]

and

\[
I_{t,2} := \mathbb{E}\left(\left| \int_0^t \int_{U_d} \int_{U_t} f_{i,j}(t - u, z)e^{-s(B)u}1_{\{w \leq X_{u,\ell}\}} \, du \, \mu_\ell(dz) \, dw \right. \right.
\]

\[
\left. - w_u.x_0 \langle e_\ell, \overline{u} \rangle \int_0^t \int_{U_d} f_{i,j}(t - u, z) \, du \, \mu_\ell(dz) \right| \right)
\]

\[
= \mathbb{E}\left(\left| \int_0^t \int_{U_d} f_{i,j}(t - u, z)(e^{-s(B)}w_{u,\ell} - w_u.x_0 \langle e_\ell, \overline{u} \rangle) \, dw \, \mu_\ell(dz) \right| \right).
\]
Here, for each $\ell \in \{1, \ldots, d\}$ and $i, j \in \{1, 2\}$, using Ikeda and Watanabe \[15\] page 63, (2.5) and that $|\Re(a)| \leq |a|$ and $|\Im(a)| \leq |a|$ for each $a \in \mathbb{C}$, we have

$$I_{t,1}^2 \leq \mathbb{E}\left(\left| \int_0^t \int_{\mathcal{U}_d} \int_{\mathcal{U}_1} f_{i,j}(t-u,z)e^{-sB\tau}u \mathbb{1}_{\{w \leq X_{u-\tau}\}} \tilde{N}_\ell(du,dz,dw) \right|^2 \right)$$

$$= \int_0^t \int_{\mathcal{U}_d} |f_{i,j}(t-u,z)|^2 e^{-2sB\tau}u \mathbb{E}(X_{u-\tau}) \, du \mu_\ell(dz)$$

(4.10)

$$\leq \int_0^t \int_{\mathcal{U}_d} e^{-(sB-2\lambda)(t-u)/2} \mathbb{E}(\|X_u\|) \, du \mu_\ell(dz)$$

$$\leq C_4 \|v\|^4 \int_{\mathcal{U}_d} \|z\|^4 \mu_\ell(dz) e^{-2(sB-2\Re(\lambda))t} \int_0^t e^{(sB-4\Re(\lambda))u} \, du \to 0$$

as $t \to \infty$. Indeed, if $sB \neq 4\Re(\lambda)$, using that $2\Re(\lambda) < sB$, we get

$$I_{t,1}^2 \leq C_4 \|v\|^4 \int_{\mathcal{U}_d} \|z\|^4 \mu_\ell(dz) \frac{e^{-sB\tau}u - e^{-2(sB-2\Re(\lambda))t}}{sB - 4\Re(\lambda)} \to 0$$

as $t \to \infty$, since $\int_{\mathcal{U}_d} \|z\|^4 \mu_\ell(dz) < \infty$. Otherwise, if $sB = 4\Re(\lambda)$, then we obtain

$$I_{t,1}^2 \leq C_4 \|v\|^4 \int_{\mathcal{U}_d} \|z\|^4 \mu_\ell(dz) \to 0 \quad \text{as } t \to \infty.$$

Further, for each $\ell \in \{1, \ldots, d\}$, $i, j \in \{1, 2\}$, and $t, T \in \mathbb{R}_+$, we have

(4.11)

$$I_{t+T,2} \leq J_{t,T}^{(1)} + J_{t,T}^{(2)}$$

with

$$J_{t,T}^{(1)} := \mathbb{E}\left(\left| \int_0^T \int_{\mathcal{U}_d} f_{i,j}(t+T-\tau,z)(e^{-sB\tau}X_{\tau,\ell} - w_{u,x_0}(e_\ell, \tilde{u})) \, d\tau \mu_\ell(dz) \right| \right),$$

$$J_{t,T}^{(2)} := \mathbb{E}\left(\left| \int_T^{t+T} \int_{\mathcal{U}_d} f_{i,j}(t+T-\tau,z)(e^{-sB\tau}X_{\tau,\ell} - w_{u,x_0}(e_\ell, \tilde{u})) \, d\tau \mu_\ell(dz) \right| \right).$$

By Theorem 3.3 in Barczy et al. [8], we have $K := \sup_{\tau \in \mathbb{R}_+} \mathbb{E}(\|e^{-sB\tau}X - w_{u,x_0}(\tilde{u})\|) < \infty$, and hence, similarly as in (4.4), for any $T \in \mathbb{R}_+$,

$$J_{t,T}^{(1)} \leq K \int_0^T \int_{\mathcal{U}_d} |f_{i,j}(t+T-\tau,z)| \, d\tau \mu_\ell(dz) = K \int_T^{t+T} \int_{\mathcal{U}_d} |f_{i,j}(w,z)| \, dw \mu_\ell(dz)$$

$$\leq K \|v\|^2 \int_{\mathcal{U}_d} \|z\|^2 \mu_\ell(dz) \int_t^\infty e^{-(sB-2\Re(\lambda))w} \, dw$$

$$= \frac{K \|v\|^2}{sB - 2\Re(\lambda)} \int_{\mathcal{U}_d} \|z\|^2 \mu_\ell(dz) e^{-(sB-2\Re(\lambda))t} \to 0$$
as \(t \to \infty \). Further, similarly as in (4.5), for each \(t, T \in \mathbb{R}_+ \),
\[
J_{t,T}^{(2)} \leq \sup_{\tau \in [T, \infty)} \mathbb{E}(|e^{-s(B)\tau} X_{\tau, t} - w_{u, X_0}(e_\ell, \tilde{u})|) \int_T^{t+T} \int_{\mathcal{U}_d} |f_{i,j}(t + \tau, z)| \, d\tau \mu_\ell(dz)
\]
\[
\leq \sup_{\tau \in [T, \infty)} \mathbb{E}(|e^{-s(B)\tau} X_{\tau, t} - w_{u, X_0}(e_\ell, \tilde{u})|) \frac{\|v\|^2}{s(B) - 2\text{Re}(\lambda)} \int_{\mathcal{U}_d} \|z\|^2 \mu_\ell(dz).
\]
Consequently, for each \(T \in \mathbb{R}_+ \), we obtain
\[
\limsup_{t \to \infty} I_{t,2} = \limsup_{t \to \infty} I_{t+T,2} \leq \limsup_{t \to \infty} J_{t,T}^{(1)} + \limsup_{t \to \infty} J_{t,T}^{(2)}
\]
\[
\leq \sup_{\tau \in [T, \infty)} \mathbb{E}(|e^{-s(B)\tau} X_{\tau, t} - w_{u, X_0}(e_\ell, \tilde{u})|) \frac{\|v\|^2}{s(B) - 2\text{Re}(\lambda)} \int_{\mathcal{U}_d} \|z\|^2 \mu_\ell(dz).
\]
Letting \(T \to \infty \), by Theorem 3.3 in Barczy et al. [8], we have \(\lim_{t \to \infty} I_{t,2} = 0 \), as desired. All in all, \(\lim_{t \to \infty}(I_{t,1} + I_{t,2}) = 0 \), yielding (4.8). Moreover, for each \(\ell \in \{1, \ldots, d\} \),
\[
\int_0^t \int_{\mathcal{U}_d} f(t - u, z) \, du \mu_\ell(dz) = \int_0^t \int_{\mathcal{U}_d} f(w, z) \, dw \mu_\ell(dz) \to \int_0^\infty \int_{\mathcal{U}_d} f(w, z) \, dw \mu_\ell(dz)
\]
as \(t \to \infty \), since we have
\[
\int_0^\infty \int_{\mathcal{U}_d} \|f(w, z)\| \, dw \mu_\ell(dz) \leq \|v\|^2 \int_0^\infty \int_{\mathcal{U}_d} e^{-(s(B) - 2\text{Re}(\lambda))w} \|z\|^2 \, dw \mu_\ell(dz)
\]
\[
= \frac{\|v\|^2}{s(B) - 2\text{Re}(\lambda)} \int_{\mathcal{U}_d} \|z\|^2 \mu_\ell(dz) < \infty.
\]
Consequently,
\[
(4.12) \quad Q(t)[M^{(3,4)}] Q(t)^T \xrightarrow{L_1} w_{u, X_0} \sum_{\ell=1}^d (e_\ell, \tilde{u}) \int_0^\infty \int_{\mathcal{U}_d} f(w, z) \, dw \mu_\ell(dz) \quad \text{as} \quad t \to \infty.
\]
Further,
\[
Q(t)[M^{(5)}] Q(t)^T = \int_0^t \int_{\mathcal{U}_d} f(t - u, r)e^{-s(B)u} M(du, dr) \xrightarrow{L_1} 0
\]
as \(t \to \infty \), since if \(\text{Re}(\lambda) \in (-\infty, \frac{1}{2}s(B)) \), then
\[
\mathbb{E}(\|Q(t)[M^{(5)}] Q(t)^T\|) \leq \mathbb{E} \left(\int_0^t \int_{\mathcal{U}_d} \|f(t - u, r)e^{-s(B)u}\| M(du, dr) \right)
\]
\[
= \int_0^t \int_{\mathcal{U}_d} \|f(t - u, r)e^{-s(B)u}\| \, du \nu(dr)
\]
\[
\leq \int_0^t \int_{\mathcal{U}_d} e^{-(s(B) - 2\text{Re}(\lambda))(t - u)/2} \|v, r\|^2 e^{-s(B)u} \, du \nu(dr)
\]
\[
\leq \|v\|^2 e^{-(s(B) - 2\text{Re}(\lambda))t} \int_0^t e^{-2\text{Re}(\lambda)u} \, du \int_{\mathcal{U}_d} \|r\|^2 \nu(dr) \to 0
\]
23
as \(t \to \infty \). Indeed, if \(\text{Re}(\lambda) \neq 0 \), then
\[
\int_0^t e^{-2\text{Re}(\lambda)u} \, du = \frac{1}{2\text{Re}(\lambda)} \left(e^{-s(B)-2\text{Re}(\lambda)t} - e^{-s(B)t} \right) \to 0
\]
as \(t \to \infty \), and if \(\text{Re}(\lambda) = 0 \), then
\[
e^{-s(B)-2\text{Re}(\lambda)t} \int_0^t e^{-2\text{Re}(\lambda)u} \, du = te^{-s(B)t} \to 0 \quad \text{as} \quad t \to \infty.
\]
Consequently, by (4.6) and (4.12), we get
\[
Q(t)[M]_t Q(t)^\top \xrightarrow{P} 2w_{u,X_0} \sum_{\ell=1}^d c_{\ell} \langle e_{\ell}, \tilde{\nu} \rangle \int_0^\infty f(w, e_{\ell}) \, dw
\]
(4.14)
\[
+ w_{u,X_0} \sum_{\ell=1}^d \langle e_{\ell}, \tilde{\nu} \rangle \int_0^\infty \int_{\mathcal{U}_d} f(w, z) \, dw \mu_{\ell}(dz) = w_{u,X_0} \Sigma_v
\]
as \(t \to \infty \), hence the condition (E.1) of Theorem E.1 holds. Indeed, for each \(a \in \mathbb{C} \), we have the identity
\[
\begin{pmatrix}
\text{Re}(a) \\
\text{Im}(a)
\end{pmatrix} = \frac{1}{2} \begin{pmatrix}
\text{Re}(a^2) & \text{Re}(a) \text{Im}(a)
\end{pmatrix} \\
\begin{pmatrix}
\text{Re}(a) \text{Im}(a) & \text{Im}(a^2)
\end{pmatrix} + \frac{1}{2} \begin{pmatrix}
\text{Re}(a^2) & \text{Im}(a^2)
\end{pmatrix} \begin{pmatrix}
\text{Im}(a^2) & -\text{Re}(a^2)
\end{pmatrix}
\]
(4.15)
Hence, for each \(\ell \in \{1, \ldots, d\} \), applying (4.15) with \(a = e^{-s(B)-2\lambda}w/2 \langle v, e_{\ell} \rangle \), we have
\[
\int_0^\infty f(w, e_{\ell}) \, dw = \frac{1}{2} \int_0^\infty \begin{pmatrix}
e^{-s(B)-2\text{Re}(\lambda)w} |\langle v, e_{\ell} \rangle|^2 & 0 \\
0 & e^{-s(B)-2\text{Re}(\lambda)w} |\langle v, e_{\ell} \rangle|^2
\end{pmatrix} \, dw
\]
\[
+ \frac{1}{2} \int_0^\infty \begin{pmatrix}
\text{Re}(e^{-s(B)-2\lambda}w \langle v, e_{\ell} \rangle^2) & \text{Im}(e^{-s(B)-2\lambda}w \langle v, e_{\ell} \rangle^2)
\end{pmatrix} \\
\begin{pmatrix}
\text{Im}(e^{-s(B)-2\lambda}w \langle v, e_{\ell} \rangle^2) & -\text{Re}(e^{-s(B)-2\lambda}w \langle v, e_{\ell} \rangle^2)
\end{pmatrix} \, dw
\]
\[
= \frac{|\langle v, e_{\ell} \rangle|^2}{2(s(B) - 2\text{Re}(\lambda))} I_2
\]
\[
+ \frac{1}{2} \left(\text{Re}(\int_0^\infty e^{-s(B)-2\lambda}w \, dw \langle v, e_{\ell} \rangle^2) \text{Im}(\int_0^\infty e^{-s(B)-2\lambda}w \, dw \langle v, e_{\ell} \rangle^2) \right)
\]
\[
= \frac{|\langle v, e_{\ell} \rangle|^2}{2(s(B) - 2\text{Re}(\lambda))} I_2 + \frac{1}{2} \left(\text{Re} \left(\frac{|\langle v, e_{\ell} \rangle|^2}{s(B) - 2\lambda} \right) \text{Im} \left(\frac{|\langle v, e_{\ell} \rangle|^2}{s(B) - 2\lambda} \right) \right)
\]
and similarly
\[
\int_0^\infty \int_{\mathcal{U}_d} f(w, z) \, dw \mu_{\ell}(dz) =
\]
24
where \(\Sigma_v \) is non-negative definite irrespective of \(\tilde{\beta} \neq 0 \) or \(\tilde{\beta} = 0 \), since \(c \in \mathbb{R}_+^d, \, \tilde{u} \in \mathbb{R}_+^{d+1} \), and \(f(w, z) \) is non-negative definite for any \(w \in \mathbb{R}_+ \) and \(z \in \mathbb{R}^d \).

Step 3. Now we turn to prove that condition (E.2) of Theorem E.1 holds for \((M_t)_{t \in \mathbb{R}_+} \) with the scaling \(Q(t), \, t \in \mathbb{R}_+ \), namely,

\[
\mathbb{E} \left(\sup_{u \in [0,t]} \| Q(t)(M_u - M_{u-}) \| \right) \rightarrow 0 \quad \text{as} \quad t \rightarrow \infty.
\]

Since \((M_t^{(2)})_{t \in \mathbb{R}_+} \) has continuous sample paths, we have for each \(t \in \mathbb{R}_+ \),

\[
\sup_{u \in [0,t]} \| Q(t)(M_u - M_{u-}) \| = \sup_{u \in [0,t]} \| Q(t)(M_u^{(3,4)} - M_{u-}^{(3,4)}) + Q(t)(M_u^{(5)} - M_{u-}^{(5)}) \|
\]

almost surely. Since \(Q(t)Q(t)^\top = e^{-(s(B) - 2\text{Re}(\lambda))t} I_2, \, t \in \mathbb{R}_+ \), we have \(\| Q(t) \| = e^{-(s(B) - 2\text{Re}(\lambda))t/2}, \, t \in \mathbb{R}_+ \). Hence it is enough to show that

\[
e^{-s(B) - 2\text{Re}(\lambda))t/2} \mathbb{E} \left(\sup_{u \in [0,t]} \| \tilde{Y}_u^{(\ell)} - \tilde{Y}_{u-}^{(\ell)} \| \right) \rightarrow 0 \quad \text{as} \quad t \rightarrow \infty
\]

for every \(\ell \in \{1, \ldots, d\} \), and

\[
e^{-s(B) - 2\text{Re}(\lambda))t/2} \mathbb{E} \left(\sup_{u \in [0,t]} \| M_u^{(5)} - M_{u-}^{(5)} \| \right) \rightarrow 0 \quad \text{as} \quad t \rightarrow \infty.
\]

First, we prove (4.17) for each \(\ell \in \{1, \ldots, d\} \). By Cauchy-Schwarz’s inequality, for each \(\varepsilon \in \mathbb{R}_{++}, \, t \in \mathbb{R}_+ \) and \(\ell \in \{1, \ldots, d\} \), we have

\[
e^{-s(B) - 2\text{Re}(\lambda))t/2} \mathbb{E} \left(\sup_{u \in [0,t]} \| \tilde{Y}_u^{(\ell)} - \tilde{Y}_{u-}^{(\ell)} \| \right)
\]

\[
\leq e^{-s(B) - 2\text{Re}(\lambda))t/2} \mathbb{E} \left(\sup_{u \in [0,t]} \| \tilde{Y}_u^{(\ell, \varepsilon)} - \tilde{Y}_{u-}^{(\ell, \varepsilon)} \| \right)
\]

\[
+ e^{-s(B) - 2\text{Re}(\lambda))t/2} \mathbb{E} \left(\sup_{u \in [0,t]} \| \tilde{Y}_u^{(\ell, \varepsilon)} - \tilde{Y}_{u-}^{(\ell, \varepsilon)} \| \right) - (\tilde{Y}_u^{(\ell)} - \tilde{Y}_{u-}^{(\ell)})
\]

\[
\leq e^{-s(B) - 2\text{Re}(\lambda))t/2} \left(\mathbb{E} \left(\sup_{u \in [0,t]} \| \tilde{Y}_u^{(\ell, \varepsilon)} - \tilde{Y}_{u-}^{(\ell, \varepsilon)} \| ^4 \right) ^{1/4} \right)
\]

\[
+ e^{-s(B) - 2\text{Re}(\lambda))t/2} \left(\mathbb{E} \left(\sup_{u \in [0,t]} \| \tilde{Y}_u^{(\ell)} - \tilde{Y}_{u-}^{(\ell)} \| ^2 \right) ^{1/2} \right).
\]

25
Here, by (2.5), for each $\varepsilon \in \mathbb{R}_{++},$ $t \in \mathbb{R}_{+}$ and $\ell \in \{1, \ldots, d\},$ we have
\[
\mathbb{E}\left(\sup_{u \in [0,t]} \|\tilde{Y}_{u}^{(\ell,\varepsilon)} - \tilde{Y}_{u-}^{(\ell,\varepsilon)}\|^4\right) = \mathbb{E}\left(\sup_{u \in [0,t]} |\tilde{Y}_{u}^{(\ell,\varepsilon)} - \tilde{Y}_{u-}^{(\ell,\varepsilon)}|^4\right) = \mathbb{E}\left(\sup_{u \in [0,t]} |Y_{u}^{(\ell,\varepsilon)} - Y_{u-}^{(\ell,\varepsilon)}|^4\right)
\leq \mathbb{E}\left(\sum_{u \in [0,t]} |Y_{u}^{(\ell,\varepsilon)} - Y_{u-}^{(\ell,\varepsilon)}|^4\right)
\]
\[
(4.20) = \mathbb{E}\left(\int_{0}^{t} \int_{\mathcal{L}_{d}} \int_{\mathcal{L}_{d}} |e^{-\lambda u}\langle \mathbf{v}, \mathbf{z} \rangle| \mathbf{1}_{\{\|z\| \geq \varepsilon\}} \mathbf{1}_{\{w \leq X_{u-\cdot,\ell}\}} |^4 N_{\ell}(du, d\mathbf{z}, dw)\right)
\leq \int_{0}^{t} \int_{\mathcal{L}_{d}} e^{-4\Re(\lambda)u} |\langle \mathbf{v}, \mathbf{z} \rangle| |^4 \mathbf{1}_{\{\|z\| \geq \varepsilon\}} \mathbb{E}(X_{u,\ell}) du \mu_{\ell}(d\mathbf{z})
\leq C_{4}||\mathbf{v}||^4 \int_{0}^{t} e^{(s(\bar{B}) - 4\Re(\lambda))u} du \int_{\mathcal{L}_{d}} \|z\|^4 \mathbf{1}_{\{\|z\| \geq \varepsilon\}} \mu_{\ell}(d\mathbf{z}).
\]

Hence, by (4.10) and $2\Re(\lambda) < s(\bar{B}),$ for each $\varepsilon \in \mathbb{R}_{++}$ and $\ell \in \{1, \ldots, d\},$ we get
\[
(4.21) e^{-(s(\bar{B}) - 2\Re(\lambda))t/2} \left(\mathbb{E}\left(\sup_{u \in [0,t]} \|\tilde{Y}_{u}^{(\ell,\varepsilon)} - \tilde{Y}_{u-}^{(\ell,\varepsilon)}\|^4\right)^{1/4}\right) \rightarrow 0 \quad \text{as} \quad t \rightarrow \infty.
\]

Further, since
\[
\tilde{Y}_{t}^{(\ell,\varepsilon)} - \tilde{Y}_{t-}^{(\ell,\varepsilon)} = \int_{0}^{t} \int_{\mathcal{L}_{d}} \int_{\mathcal{L}_{d}} |e^{-\lambda u}\langle \mathbf{v}, \mathbf{z} \rangle| \mathbf{1}_{\{\|z\| \geq \varepsilon\}} \mathbf{1}_{\{w \leq X_{u-\cdot,\ell}\}} \tilde{N}_{\ell}(du, d\mathbf{z}, dw), \quad t \in \mathbb{R}_{+},
\]
by the proof of part (a) of Theorem II.1.33 in Jacod and Shiryaev [16], we get
\[
\mathbb{E}\left(\sup_{u \in [0,t]} \|\tilde{Y}_{u}^{(\ell,\varepsilon)} - \tilde{Y}_{u-}^{(\ell,\varepsilon)}\|^4\right)
\leq \mathbb{E}\left(\sum_{u \in [0,t]} \|\tilde{Y}_{u}^{(\ell,\varepsilon)} - \tilde{Y}_{u-}^{(\ell,\varepsilon)}\|^4\right)
\]
\[
(4.22) = \mathbb{E}\left(\int_{0}^{t} \int_{\mathcal{L}_{d}} \int_{\mathcal{L}_{d}} |e^{-\lambda u}\langle \mathbf{v}, \mathbf{z} \rangle| \mathbf{1}_{\{\|z\| \geq \varepsilon\}} \mathbf{1}_{\{w \leq X_{u-\cdot,\ell}\}} \mathbb{E}(X_{u,\ell}) du \mu_{\ell}(d\mathbf{z})\right)
\leq C_{4}||\mathbf{v}||^2 \int_{0}^{t} \int_{\mathcal{L}_{d}} e^{(s(\bar{B}) - 2\Re(\lambda))u} \|z\|^4 \mathbf{1}_{\{\|z\| \geq \varepsilon\}} \mu_{\ell}(d\mathbf{z})
\leq C_{4}||\mathbf{v}||^2 e^{(s(\bar{B}) - 2\Re(\lambda))t} \int_{\mathcal{L}_{d}} \|z\|^2 \mathbf{1}_{\{\|z\| \geq \varepsilon\}} \mu_{\ell}(d\mathbf{z}).
\]
Hence, by (4.19) and (4.21), for all \(\varepsilon \in \mathbb{R}_{++} \) and \(\ell \in \{1, \ldots, d\} \), we have
\[
\limsup_{t \to \infty} e^{-(s(B) - 2\text{Re}(\lambda))t/2} \mathbb{E}\left(\sup_{u \in [0,t]} \|Y_u^{(\ell)} - \hat{Y}_{u-}^{(\ell)}\|\right)
\leq \left(\frac{C_4 \|v\|^2}{s(B) - 2\text{Re}(\lambda)} \int_{\mathcal{U}_d} \|z\|^2 \mathbb{1}_{\{\|z\| < \varepsilon\}} \mu_t(dz) \right)^{1/2},
\]
which tends to 0 as \(\varepsilon \downarrow 0 \) due to (3.8). Hence we conclude (4.17) for each \(\ell \in \{1, \ldots, d\} \).

Next, we prove (4.18). By Cauchy-Schwarz’s inequality, for each \(t \in \mathbb{R}_+ \), we have
\[
\mathbb{E}\left(\sup_{u \in [0,t]} \|M_u^{(5)} - M_{u-}^{(5)}\|\right) \leq \left(\mathbb{E}\left(\sup_{u \in [0,t]} \|M_u^{(5)} - M_{u-}^{(5)}\|^2\right) \right)^{1/2} = \left(\mathbb{E}\left(\sup_{u \in [0,t]} |Z_u^{(5)} - Z_{u-}^{(5)}|^2\right) \right)^{1/2},
\]
therefore it is enough to prove that
\[
e^{-(s(B) - 2\text{Re}(\lambda))t} \mathbb{E}\left(\sup_{u \in [0,t]} |Z_u^{(5)} - Z_{u-}^{(5)}|^2\right) \to 0 \quad \text{as} \quad t \to \infty.
\]
Since \(\int_{\mathcal{U}_d} \|r\| \nu(dr) < \infty \), for each \(t \in \mathbb{R}_+ \), we have \(Z_t^{(5)} = Z_t^* - \int_0^t \int_{\mathcal{U}_d} e^{-\lambda u} \langle \nu, r \rangle M(du, dr) \)
with \(Z_t^* := \int_0^t \int_{\mathcal{U}_d} e^{-\lambda u} \langle \nu, r \rangle M(du, dr) \), hence
\[
\mathbb{E}\left(\sup_{u \in [0,t]} |Z_u^{(5)} - Z_{u-}^{(5)}|^2\right) = \mathbb{E}\left(\sup_{u \in [0,t]} |Z_u^* - Z_{u-}^*|^2\right) \leq \mathbb{E}\left(\sum_{u \in [0,t]} |Z_u^* - Z_{u-}^*|^2\right)
\]
(4.24)
\[
= \mathbb{E}\left(\int_0^t \int_{\mathcal{U}_d} e^{-\lambda u} \langle \nu, r \rangle^2 M(du, dr) \right) = \int_0^t \int_{\mathcal{U}_d} e^{-2\text{Re}(\lambda)u} |\langle \nu, r \rangle|^2 du \nu(dr)
\]
\[
\leq \|v\|^2 \int_0^t e^{-2\text{Re}(\lambda)u} du \int_{\mathcal{U}_d} \|r\|^2 \nu(dr)
\]
hence, by (4.13), we conclude (4.18). Consequently, by Theorem E.1 we obtain
\[
Q(t) M_t \stackrel{D}{\to} \left(w_{u,x_0} \Sigma_v\right)^{1/2} N \quad \text{as} \quad t \to \infty,
\]
where \(N \) is a 2-dimensional random vector with \(N \stackrel{D}{=} N_2(0, I_2) \) independent of \(w_{u,x_0} \Sigma_v \).

Clearly, \((w_{u,x_0} \Sigma_v)^{1/2} N = \sqrt{w_{u,x_0} \Sigma_v}^{1/2} N \stackrel{D}{=} \sqrt{w_{u,x_0} \Sigma_v} N \). By the decomposition
\[
e^{-s(B)t/2} \begin{pmatrix} \text{Re}(\langle \nu, X_t \rangle) \\ \text{Im}(\langle \nu, X_t \rangle) \end{pmatrix} = \begin{pmatrix} \text{Re}(e^{-s(B) - 2\lambda}) \langle \nu, X_t \rangle \cr \text{Im}(e^{-s(B) - 2\lambda}) \langle \nu, X_t \rangle \end{pmatrix} + Q(t) M_t, \quad t \in \mathbb{R}_+,
\]
the convergence (4.14) and Slutsky’s lemma (see, e.g., van der Vaart [23, Lemma 2.8]), we obtain (3.6).

Proof of part (ii) of Theorem 3.1. We use a similar approach as in the proof of part (iii) of Theorem 3.1. We divide the proof into three main steps.

27
Step 1. We use the same representation of $e^{-\lambda t}\langle \mathbf{v}, \mathbf{X}_t \rangle$, $t \in \mathbb{R}_+$ as in the proof of part (iii) of Theorem 3.1: We have

$$t^{-1/2}e^{-(s\overline{B}-2\lambda)t/2}Z_t^{(0,1)} \xrightarrow{a.s.} 0 \quad \text{as } t \to \infty,$$

since Re(λ) = $\frac{1}{2}s(\overline{B}) > 0$ implies $\lambda \neq 0$, hence

$$t^{-1/2}e^{-(s\overline{B}-2\lambda)t/2}Z_t^{(0,1)} = t^{-1/2}e^{i\text{Im}(\lambda)t}\left(\langle \mathbf{v}, \mathbf{X}_0 \rangle - \frac{\langle \mathbf{v}, \mathbf{\tilde{\beta}} \rangle}{\lambda}(e^{-\lambda t} - 1)\right)$$

$$= t^{-1/2}e^{i\text{Im}(\lambda)t}\left(\langle \mathbf{v}, \mathbf{X}_0 \rangle + \frac{\langle \mathbf{v}, \mathbf{\tilde{\beta}} \rangle}{\lambda}\right) - t^{-1/2}e^{-(s\overline{B})t/2} \frac{\langle \mathbf{v}, \mathbf{\tilde{\beta}} \rangle}{\lambda} \xrightarrow{a.s.} 0$$

as $t \to \infty$.

For each $t \in \mathbb{R}_+$, with the notations of the proof of part (iii) of Theorem 3.1, we have

$$\left(\begin{array}{c}
\text{Re}(t^{-1/2}e^{-(s\overline{B}-2\lambda)t/2}(Z_t^{(2)} + Z_t^{(3,4)} + Z_t^{(5)})) \\
\text{Im}(t^{-1/2}e^{-(s\overline{B}-2\lambda)t/2}(Z_t^{(2)} + Z_t^{(3,4)} + Z_t^{(5)}))
\end{array}\right) = t^{-1/2}Q(t)M_t,$$

where now

$$Q(t) = \left(\begin{array}{cc}
\text{Re}(e^{i\text{Im}(\lambda)t}) & -\text{Im}(e^{i\text{Im}(\lambda)t}) \\
\text{Im}(e^{i\text{Im}(\lambda)t}) & \text{Re}(e^{i\text{Im}(\lambda)t})
\end{array}\right) = \left(\begin{array}{cc}
\cos(\text{Im}(\lambda)t) & -\sin(\text{Im}(\lambda)t) \\
\sin(\text{Im}(\lambda)t) & \cos(\text{Im}(\lambda)t)
\end{array}\right), \quad t \in \mathbb{R}_+.$$

We are again going to apply Theorem E.1 for the 2-dimensional martingale $(M_t)_{t \in \mathbb{R}_+}$ now with the scaling $t^{-1/2}Q(t)$, $t \in \mathbb{R}_+$. We clearly have $t^{-1/2}Q(t) \to \mathbf{0}$ as $t \to \infty$.

Step 2. Now we prove that condition [E.1] of Theorem E.1 holds. For each $t \in \mathbb{R}_+$, with the notations of the proof of part (iii) of Theorem 3.1, we have

$$t^{-1}Q(t)[M^{(2)}]_t Q(t)^\top = \frac{2}{t} \sum_{\ell=1}^d c_{\ell} \int_0^t f(t-\tau, e_{\ell})e^{-s\overline{B}\tau}X_{\tau,\ell}d\tau,$$

where now

$$f(w, z) = \left(\begin{array}{c}
\text{Re}(e^{i\text{Im}(\lambda)w}\langle \mathbf{v}, \mathbf{z} \rangle) \\
\text{Im}(e^{i\text{Im}(\lambda)w}\langle \mathbf{v}, \mathbf{z} \rangle)
\end{array}\right)^\top, \quad w \in \mathbb{R}_+, \quad z \in \mathbb{R}^d.$$

First, we show

$$t^{-1}Q(t)[M^{(2)}]_t Q(t)^\top - \frac{2w_{u,w}}{t} \sum_{\ell=1}^d c_{\ell}(e_{\ell}, \tilde{u}) \int_0^t f(w, e_{\ell})dw \xrightarrow{a.s.} \mathbf{0} \quad \text{as } t \to \infty.$$

For each $t, T \in \mathbb{R}_{++}$, we have

$$(t+T)^{-1}Q(t+T)[M^{(2)}]_{t+T} Q(t+T)^\top - \frac{2w_{u,w}}{t+T} \sum_{\ell=1}^d c_{\ell}(e_{\ell}, \tilde{u}) \int_0^{t+T} f(w, e_{\ell})dw = \Delta_{t,T}^{(1)} + \Delta_{t,T}^{(2)}$$
with
\[\Delta_{t,T}^{(1)} := \frac{2}{t + T} \sum_{\ell=1}^d c_\ell \int_0^T f(t + T - \tau, e_\ell)(e^{-s(B)\tau} X_{\tau, \ell} - w_{u, X_0}(e_\ell, \tilde{u})) \, d\tau, \]
\[\Delta_{t,T}^{(2)} := \frac{2}{t + T} \sum_{\ell=1}^d c_\ell \int_0^{t+T} f(t + T - \tau, e_\ell)(e^{-s(B)\tau} X_{\tau, \ell} - w_{u, X_0}(e_\ell, \tilde{u})) \, d\tau. \]

For each \(t, T \in \mathbb{R}_+ \), we have
\[
\| \Delta_{t,T}^{(1)} \| \leq \frac{2}{t + T} \left(\sup_{\tau \in [0, T]} \| e^{-s(B)\tau} X_{\tau} - w_{u, X_0} \| \right) \sum_{\ell=1}^d c_\ell \int_0^T \| f(t + T - \tau, e_\ell) \| \, d\tau,
\]
where \(\sup_{\tau \in [0, T]} \| e^{-s(B)\tau} X_{\tau} - w_{u, X_0} \| < \infty \) almost surely since \((X_t)_{t \in \mathbb{R}_+} \) has càdlàg sample paths, and using that \(\| z z^T \| \leq \| z \|^2, \ z \in \mathbb{R}^2 \), we have
\[
\int_0^T \| f(t + T - \tau, e_\ell) \| \, d\tau = \int_t^{t+T} \| f(w, e_\ell) \| \, dw \leq \int_t^{t+T} |e^{i \text{Im}(\lambda)w} \langle v, e_\ell \rangle|^2 \, dw \leq \| v \|^2 T.
\]
Hence for each \(T \in \mathbb{R}_+ \), we obtain
\[
\lim_{t \to \infty} \sup_{t \in T} \| \Delta_{t,T}^{(1)} \| = 0
\]
almost surely. Moreover, for each \(t, T \in \mathbb{R}_+ \), we have
\[
\| \Delta_{t,T}^{(2)} \| \leq \frac{2}{t + T} \left(\sup_{\tau \in [T, \infty]} \| e^{-s(B)\tau} X_{\tau} - w_{u, X_0} \| \right) \sum_{\ell=1}^d c_\ell \int_T^{t+T} \| f(t + T - \tau, e_\ell) \| \, d\tau
\]
amost surely, where
\[
\int_T^{t+T} \| f(t + T - \tau, e_\ell) \| \, d\tau = \int_t^t \| f(w, e_\ell) \| \, dw \leq \int_0^{t+T} |e^{i \text{Im}(\lambda)w} \langle v, e_\ell \rangle|^2 \, dw \leq \| v \|^2 t.
\]
Consequently, for each \(T \in \mathbb{R}_+ \), we obtain
\[
\lim_{t \to \infty} \sup_{t \in T} \left| t^{-1} Q(t) [M^{(2)}]_{1} Q(t)^\top - \frac{2w_{u, X_0}}{t} \sum_{\ell=1}^d c_\ell \langle e_\ell, \tilde{u} \rangle \int_0^T f(w, e_\ell) \, dw \right|
\]
\[= \lim_{t \to \infty} \left| (t + T)^{-1} Q(t + T) [M^{(2)}]_{1} T Q(t + T)^\top - \frac{2w_{u, X_0}}{t + T} \sum_{\ell=1}^d c_\ell \langle e_\ell, \tilde{u} \rangle \int_0^{t+T} f(w, e_\ell) \, dw \right|
\]
\[\leq \lim_{t \to \infty} \sup_{t \in T} \| \Delta_{t,T}^{(1)} \| + \lim_{t \to \infty} \sup_{t \in T} \| \Delta_{t,T}^{(2)} \|
\]
\[\leq 2 \| v \|^2 \left(\sup_{\tau \in [T, \infty]} \| e^{-s(B)\tau} X_{\tau} - w_{u, X_0} \| \right) \sum_{\ell=1}^d c_\ell
\]
almost surely. Letting \(T \to \infty \), by Theorem 3.3 in Barczy et al. [8], we obtain (4.26). The aim of the following discussion is to show

\[
\frac{1}{t} \int_0^t f(w, e_\ell) \, dw \to \frac{1}{2} \left| \langle v, e_\ell \rangle \right|^2 I_2 + \frac{1}{2} \begin{pmatrix} \Re(\langle v, e_\ell \rangle^2) & \Im(\langle v, e_\ell \rangle^2) \\ \Im(\langle v, e_\ell \rangle^2) & -\Re(\langle v, e_\ell \rangle^2) \end{pmatrix} 1_{\{\text{Im}(\lambda) = 0\}}
\]

as \(t \to \infty \). Applying (4.15) for \(a = e^{\text{Im}(\lambda) w} \langle v, e_\ell \rangle \), we obtain

\[
f(w, e_\ell) = \frac{1}{2} \left| \langle v, e_\ell \rangle \right|^2 I_2 + \frac{1}{2} \begin{pmatrix} \Re((e^{\text{Im}(\lambda) w} \langle v, e_\ell \rangle)^2) & \Im((e^{\text{Im}(\lambda) w} \langle v, e_\ell \rangle)^2) \\ \Im((e^{\text{Im}(\lambda) w} \langle v, e_\ell \rangle)^2) & -\Re((e^{\text{Im}(\lambda) w} \langle v, e_\ell \rangle)^2) \end{pmatrix}.
\]

Thus, if \(\text{Im}(\lambda) = 0 \), then we have

\[
\frac{1}{t} \int_0^t f(w, e_\ell) \, dw = \frac{1}{2} \left| \langle v, e_\ell \rangle \right|^2 I_2 + \frac{1}{2} \begin{pmatrix} \Re((e^{\text{Im}(\lambda) w} \langle v, e_\ell \rangle)^2) & \Im((e^{\text{Im}(\lambda) w} \langle v, e_\ell \rangle)^2) \\ \Im((e^{\text{Im}(\lambda) w} \langle v, e_\ell \rangle)^2) & -\Re((e^{\text{Im}(\lambda) w} \langle v, e_\ell \rangle)^2) \end{pmatrix}
\]

for all \(t \in \mathbb{R}_+ \). If \(\text{Im}(\lambda) \neq 0 \), then we have

\[
\frac{1}{t} \int_0^t \Re((e^{\text{Im}(\lambda) w} \langle v, e_\ell \rangle)^2) \, dw = \frac{1}{t} \Re \left(\langle v, e_\ell \rangle^2 \int_0^t e^{2\text{Im}(\lambda) w} \, dw \right)
\]

\[
= \frac{1}{t} \Re \left(\langle v, e_\ell \rangle^2 \left(e^{2\text{Im}(\lambda) t} - 1 \right) \right) \leq \frac{\|v\|^2}{|\text{Im}(\lambda)| t} \to 0
\]

as \(t \to \infty \), and, in a similar way, \(\frac{1}{t} \int_0^t \Im((e^{\text{Im}(\lambda) w} \langle v, e_\ell \rangle)^2) \, dw \to 0 \) as \(t \to \infty \). Hence \(\frac{1}{t} \int_0^t f(w, e_\ell) \, dw \to \frac{1}{2} \left| \langle v, e_\ell \rangle \right|^2 I_2 \) as \(t \to \infty \), and we conclude (4.27).

Next, using Theorem 3.3 in Barczy et al. [8], we show that

\[
t^{-1} Q(t)[M^{(3,4)}] Q(t)^\top - t^{-1} w_{u,X_0} \sum_{\ell = 1}^d \langle e_\ell, \tilde{u} \rangle \int_0^t \int_{\mathcal{U}_d} f(w, z) \, dw \mu_\ell(dz) \overset{L_1}{\to} 0
\]

as \(t \to \infty \). By the help of (4.7), it is enough to show that for each \(\ell \in \{1, \ldots, d\} \) and \(i, j \in \{1, 2\} \), we have

\[
t^{-1} \int_0^t \int_{\mathcal{U}_d} \int_{\mathcal{U}_d} f_{i,j}(t - u, z) e^{-s(\tilde{B})u} \mathbb{1}_{\{w \leq X_{u-\ell}\}} N_\ell(du, dz, dw)
\]

\[
- t^{-1} w_{u,X_0} \langle e_\ell, \tilde{u} \rangle \int_0^t \int_{\mathcal{U}_d} f_{i,j}(t - u, z) \, du \mu_\ell(dz) \overset{L_1}{\to} 0 \quad \text{as } t \to \infty.
\]

For each \(t \in \mathbb{R}_+ \), \(\ell \in \{1, \ldots, d\} \) and \(i, j \in \{1, 2\} \), we use again the estimation (4.9). For each \(\ell \in \{1, \ldots, d\} \) and \(i, j \in \{1, 2\} \), as in (4.10), we have

\[
((t + T)^{-1} I_{i,1})^2 \leq (t + T)^{-2} \int_0^t \int_{\mathcal{U}_d} |e^{\text{Im}(\lambda)(t-u)} \langle v, z \rangle|^4 e^{-2s(\tilde{B})u} \mathbb{E}(\|X_u\|) \, du \, \mu_\ell(dz) \leq C_4 \|v\|^4 (t + T)^{-2} \int_{\mathcal{U}_d} \|z\|^4 \mu_\ell(dz) \int_0^t e^{-s(\tilde{B})u} \, du \to 0
\]
As $t \to \infty$, since $\int_0^t e^{-s(B)u} \, du \leq \int_0^\infty e^{-s(B)u} \, du = \frac{1}{s(B)}$ for every $t \in \mathbb{R}_+$, and $\int_{\mathbb{U}_d} ||z||^4 \mu_\ell(dz) < \infty$. For each $t \in \mathbb{R}_+$ and $T \in \mathbb{R}_+$, we use again the decomposition (1.1). Similarly as in (4.4), for any $T \in \mathbb{R}_+$,

$$(t + T)^{-1}J_{t,T}^{(1)} \leq \frac{K}{t + T} \int_0^T \int_{\mathbb{U}_d} |f_{i,j}(t + T - \tau, z)| d\tau \mu_\ell(dz)$$

Similarly as in (4.5), for each $T \in \mathbb{R}_+$, we obtain

$$\limsup_{t \to \infty} t^{-1} I_{t,2} = \limsup_{t \to \infty} (t + T)^{-1} J_{t,T,2} \leq \limsup_{t \to \infty} (t + T)^{-1} J_{t,T}^{(1)} + \limsup_{t \to \infty} (t + T)^{-1} J_{t,T}^{(2)} \leq \|v\|^2 \sup_{T \in \mathbb{R}_+} \mathbb{E}(|e^{-s(B)T} X_{t,\ell} - w_u, x_0 \langle e_\ell, \tilde{u} \rangle|) \int_{\mathbb{U}_d} ||z||^2 \mu_\ell(dz)$$

Consequently, for each $T \in \mathbb{R}_+$, we obtain

$$\limsup_{t \to \infty} t^{-1} I_{t,1} = \limsup_{t \to \infty} (t + T)^{-1} I_{t,1} + \limsup_{t \to \infty} (t + T)^{-1} J_{t,T}^{(1)} + \limsup_{t \to \infty} (t + T)^{-1} J_{t,T}^{(2)} \leq \|v\|^2 \sup_{T \in \mathbb{R}_+} \mathbb{E}(|e^{-s(B)T} X_{t,\ell} - w_u, x_0 \langle e_\ell, \tilde{u} \rangle|) \int_{\mathbb{U}_d} ||z||^2 \mu_\ell(dz).$$

Letting $T \to \infty$, by Theorem 3.3 in Barczy et al. [3], we have $\lim_{t \to \infty} t^{-1} I_{t,2} = 0$, as desired. All in all, $\lim_{t \to \infty} t^{-1} (I_{t,1} + I_{t,2}) = 0$, yielding (1.29). As in case of (1.27), one can derive

$$\frac{1}{t} \int_0^t \int_{\mathbb{U}_d} f(w, z) dw \mu_\ell(z) \to \frac{1}{2} \int_{\mathbb{U}_d} ||\langle v, z \rangle||^2 \mu_\ell(dz) I_2$$

as $t \to \infty$. Indeed, we can apply (1.15) for $a = e^{i\lambda \mu}(v, z)$. In case of $\text{Im}(\lambda) = 0$, we obtain

$$\frac{1}{t} \int_0^t \int_{\mathbb{U}_d} f(w, z) dw \mu_\ell(dz) = \frac{1}{2} \int_{\mathbb{U}_d} ||\langle v, z \rangle||^2 \mu_\ell(dz) I_2$$

for all $t \in \mathbb{R}_+$. If $\text{Im}(\lambda) \neq 0$, then we have

$$\frac{1}{t} \int_0^t \int_{\mathbb{U}_d} \text{Re}(e^{i\lambda \mu}(v, z)^2) dw \mu_\ell(dz) = \frac{1}{t} \text{Re} \left(\int_{\mathbb{U}_d} \langle v, z \rangle^2 \mu_\ell(dz) \int_0^t e^{2i\lambda \mu} dw \right)$$

$$= \frac{1}{t} \text{Re} \left(\int_{\mathbb{U}_d} \langle v, z \rangle^2 \mu_\ell(dz) e^{2i\lambda \mu} \frac{-1}{2i\lambda} \right) \leq \frac{||v||^2}{|\lambda|} \int_{\mathbb{U}_d} ||z||^2 \mu_\ell(dz) \to 0$$
as $t \to \infty$, and, in a similar way, $\frac{1}{t} \int_0^t \int_{\mathcal{L}_d} \operatorname{Im}((e^{i\operatorname{Im}(\lambda)w} \langle \nu, z \rangle)^2) \, dw \, \mu_\ell(dz) \to 0$ as $t \to \infty$.

Hence $\frac{1}{t} \int_0^t \int_{\mathcal{L}_d} f(w, z) \, dw \, \mu_\ell(dz) \to \frac{1}{2} \int_{\mathcal{L}_d} |\langle \nu, z \rangle|^2 \mu_\ell(dz) I_2$ as $t \to \infty$, and we conclude (4.30).

Further,

$$t^{-1}Q(t)[M^{(5)}]_tQ(t)^\top = t^{-1} \int_0^t \int_{\mathcal{L}_d} f(t - u, r)e^{-s(\tilde{B}^t)u} M(du, dr) \xrightarrow{L_1} 0$$

as $t \to \infty$, since $\operatorname{Re}(\lambda) = \frac{1}{2}s(\tilde{B}) > 0$ implies $\operatorname{Re}(\lambda) \neq 0$, and hence

$$t^{-1} \mathbb{E}(\|Q(t)[M^{(5)}]_tQ(t)^\top\|) \leq t^{-1} \mathbb{E} \left(\int_0^t \int_{\mathcal{L}_d} \|f(t - u, r)e^{-s(\tilde{B}^t)u}\| M(du, dr) \right)$$

$$= t^{-1} \int_0^t \int_{\mathcal{L}_d} \|f(t - u, r)e^{-s(\tilde{B}^t)u}\| \, du \, \nu(dr)$$

$$\leq t^{-1} \int_0^t \int_{\mathcal{L}_d} \|\langle \nu, r \rangle\|^2 e^{-s(\tilde{B}^t)u} \, du \, \nu(dr)$$

$$\leq \|\nu\|^2 t^{-1} \int_0^t e^{-s(\tilde{B}^t)u} \, du \int_{\mathcal{L}_d} \|r\|^2 \, \nu(dr) \to 0$$

as $t \to \infty$. Consequently, by (4.26), (4.27), (4.28), (4.30) and (4.31), we get

$$t^{-1}Q(t)[M]_tQ(t)^\top \xrightarrow{p} w_{u, X_0} \Sigma_v \quad \text{as } t \to \infty.$$

Step 3. Now we turn to prove that condition (E.2) of Theorem E.1 holds, namely,

$$\mathbb{E} \left(\sup_{u \in [0, t]} t^{-1/2}\|Q(t)(M_u - M_{u-})\| \right) \to 0 \quad \text{as } t \to \infty.$$

By (4.16) and $\|Q(t)\| = 1$, $t \in \mathbb{R}_+$, it is enough to show that

$$t^{-1/2} \mathbb{E} \left(\sup_{u \in [0, t]} \|\tilde{Y}^{(\ell)}_u - \tilde{Y}^{(\ell)}_{u-}\| \right) \to 0 \quad \text{as } t \to \infty$$

for every $\ell \in \{1, \ldots, d\}$, and

$$t^{-1/2} \mathbb{E} \left(\sup_{u \in [0, t]} \|M^{(5)}_u - M^{(5)}_{u-}\| \right) \to 0 \quad \text{as } t \to \infty.$$

First, we prove (4.32) for each $\ell \in \{1, \ldots, d\}$. By (4.19), it is enough to prove that for all $\varepsilon \in \mathbb{R}_+$,

$$t^{-2} \mathbb{E} \left(\sup_{u \in [0, t]} |\tilde{Y}^{(\ell, \varepsilon)}_u - \tilde{Y}^{(\ell, \varepsilon)}_{u-}|^4 \right) \to 0 \quad \text{as } t \to \infty$$

and

$$\limsup_{\varepsilon \downarrow 0} \limsup_{t \to \infty} t^{-1} \mathbb{E} \left(\sup_{u \in [0, t]} \|\tilde{Y}^{(\ell)}_u - \tilde{Y}^{(\ell, \varepsilon)}_u - (\tilde{Y}^{(\ell)}_{u-} - \tilde{Y}^{(\ell, \varepsilon)}_{u-})\|^2 \right) = 0.$$
By \((4.20)\), for all \(\varepsilon \in \mathbb{R}_+\), we get
\[
-2 \mathbb{E}\left(\sup_{u \in [0,t]} |\tilde{Y}^{(\ell)},u| \right) = -2 \mathbb{E}\left(\sup_{u \in [0,t]} |\tilde{Y}^{(\ell)},u| - |\tilde{Y}^{(\ell)},u| \right) \leq C_4 \|v\|^4 t^{-2} \int_0^t e^{-s(B)u} du \int_{\mathcal{U}_d} \|z\|^4 \mathbb{1}_{\{\|z\| > \varepsilon\}} \mu_t(dz) \to 0
\]
as \(t \to \infty\). Further, by \((4.22)\), for all \(t \in \mathbb{R}_+\),
\[
-1 \mathbb{E}\left(\sup_{u \in [0,t]} \|\tilde{Y}^{(\ell)},u - \tilde{Y}^{(\ell)},u\|_2 \right) \leq C_4 \|v\|^2 \int_0^t e^{-s(B)u} du \int_{\mathcal{U}_d} \|r\|^2 \nu(dr) \to 0
\]
as \(\varepsilon \downarrow 0\) due to \((3.8)\). Hence we conclude \((4.32)\) for each \(\ell \in \{1, \ldots, d\}\).

Next, we prove \((4.33)\). By \((4.23)\), it is enough to prove that
\[
t^{-1} \mathbb{E}\left(\sup_{u \in [0,t]} |\tilde{Z}^{(5)},u - \tilde{Z}^{(5)},u| \right) \to 0\]
as \(t \to \infty\). By \((4.24)\), we get
\[
t^{-1} \mathbb{E}\left(\sup_{u \in [0,t]} \|\tilde{Z}^{(5)},u - \tilde{Z}^{(5)},u\|_2 \right) \leq C_4 \|v\|^2 \int_0^t e^{-s(B)u} du \int_{\mathcal{U}_d} \|r\|^2 \nu(dr) \to 0
\]
as \(t \to \infty\), hence we conclude \((4.33)\). Consequently, by Theorem \(E.1\) we obtain
\[
t^{-1/2} Q(t) M_t \xrightarrow{D} (w_{u,0} \Sigma_v)^{1/2} N\]
as \(t \to \infty\), where \(N\) is a \(2\)-dimensional random vector with \(N \xrightarrow{D} N_2(0, I_2)\) independent of \(w_{u,0} \Sigma_v\). Clearly, \((w_{u,0} \Sigma_v)^{1/2} N = \sqrt{w_{u,0} \Sigma_v}^{1/2} N \xrightarrow{D} \sqrt{w_{u,0} \Sigma_v} Z_v\). By the decomposition
\[
t^{-1/2} e^{-s(B)t/2} \left(\mathbb{R}(v, X_t) \right) = t^{-1/2} \left(\mathbb{R}(e^{i \Im(\lambda t)} Z^{(0,1)}_{\lambda t}) \right) + t^{-1/2} Q(t) M_t, \quad t \in \mathbb{R}_+,
\]
the convergence \((4.25)\) and Slutsky’s lemma, we obtain \((3.4)\). \(\square\)

Proof of Theorem 3.2. First, suppose that the conditions (i) and (ii) hold. In the special case of \(X_0 \equiv 0\), applying Lemma \(A.1\) with \(T = 1\), we have \(X_{t+1} \equiv X_t^{(1)} + X_t^{(2)}\) for each \(t \in \mathbb{R}_+\), where \((X^{(1)}_s)_{s \in \mathbb{R}_+}\) and \((X^{(2)}_s)_{s \in \mathbb{R}_+}\) are independent multi-type CBI processes with \(X_0^{(1)} \equiv 0\), \(X_0^{(2)} \equiv X_1\), and with parameters \((d, c, \beta, B, v, \mu)\) and \((d, c, 0, B, 0, \mu)\), respectively. Without loss of generality, we may and do suppose that \((X^{(1)}_s)_{s \in \mathbb{R}_+}\) and \((X^{(2)}_s)_{s \in \mathbb{R}_+}\) are independent. Then, for each \(t \in \mathbb{R}_+\), we have \(e^{-\lambda(t+1)} < \nu(X_{t+1}) \equiv e^{-\lambda} < \nu(X_t) \equiv e^{-\lambda} < \nu(X_t^{(1)}) + e^{-\lambda} < \nu(X_t^{(2)})\). By \((3.2)\), we obtain \(w_{v,0} \equiv e^{-\lambda} < w_{v,0}^{(1)} + e^{-\lambda} < w_{v,0}^{(2)}\), where \(w_{v,0}^{(1)}\) and \(w_{v,0}^{(2)}\) denote the almost sure limit of \(e^{-\lambda} < \nu(X_t^{(1)})\) and \(e^{-\lambda} < \nu(X_t^{(2)})\) as \(t \to \infty\), respectively. Since, for each \(t \in \mathbb{R}_+\), we have \(X_t^{(1)} \equiv X_t\), we conclude \(w_{v,0}^{(1)} \equiv w_{v,0}^{(2)}\).
The independence of $(X_s)_{s \in \mathbb{R}_+}$ and $(X^{(2,1)}_s)_{s \in \mathbb{R}_+}$ implies the independence of $w_{v,0}$ and $w^{(2,1)}_{v,X^{(2,1)}_0}$, hence $w_{v,0} \overset{\mathcal{D}}{=} e^{-\lambda t} w_{v,0} + e^{-\lambda t} w^{(2,1)}_{v,X^{(2,1)}_0}$. Taking the real and imaginary parts, we get

$$\begin{pmatrix} \text{Re}(w_{v,0}) \\ \text{Im}(w_{v,0}) \end{pmatrix} \overset{\mathcal{D}}{=} \begin{pmatrix} \text{Re}(e^{-\lambda t} w_{v,0}) \\ \text{Im}(e^{-\lambda t} w_{v,0}) \end{pmatrix} + \begin{pmatrix} \text{Re}(e^{-\lambda t} w^{(2,1)}_{v,X^{(2,1)}_0}) \\ \text{Im}(e^{-\lambda t} w^{(2,1)}_{v,X^{(2,1)}_0}) \end{pmatrix}$$

$$= \begin{pmatrix} \text{Re}(e^{-\lambda t}) - \text{Im}(e^{-\lambda t}) \\ \text{Im}(e^{-\lambda t}) \end{pmatrix} \begin{pmatrix} \text{Re}(w_{v,0}) \\ \text{Im}(w_{v,0}) \end{pmatrix} + \begin{pmatrix} \text{Re}(e^{-\lambda t}) - \text{Im}(e^{-\lambda t}) \\ \text{Im}(e^{-\lambda t}) \end{pmatrix} \begin{pmatrix} \text{Re}(w^{(2,1)}_{v,X^{(2,1)}_0}) \\ \text{Im}(w^{(2,1)}_{v,X^{(2,1)}_0}) \end{pmatrix}$$

$$=: A \begin{pmatrix} \text{Re}(w_{v,0}) \\ \text{Im}(w_{v,0}) \end{pmatrix} + AC,$$

which is a 2-dimensional stochastic fixed point equation. We are going to apply Corollary C.2. We have $\det(A) = (\text{Re}(e^{-\lambda}))^2 + (\text{Im}(e^{-\lambda}))^2 = |e^{-\lambda}|^2 = e^{-2\text{Re}(\lambda)} \neq 0$. The eigenvalues of the matrix A are $e^{-\lambda}$ and $e^{-\lambda}$, hence the spectral radius of A is $r(A) = e^{-\text{Re}(\lambda)} \in (0, 1)$. Next we check that AC is not deterministic. Suppose that, on the contrary, AC is deterministic. Then $w^{(2,1)}_{v,X^{(2,1)}_0}$ is deterministic, since A is invertible. By Lemma 2.6 in Barczy et al. [3], the process $(e^{-sB}X^{(2,1)}_s)_{s \in \mathbb{R}_+}$ is a d-dimensional martingale with respect to the filtration $\mathcal{F}^{X^{(2,1)}}_s := \sigma(X^{(2,1)}_u : u \in [0,s])$, $s \in \mathbb{R}_+$, hence $(e^{-\lambda s}(v,X^{(2,1)}_s))_{s \in \mathbb{R}_+}$ is a complex martingale with respect to the same filtration. By (3.2), we have $e^{-\lambda s}(v,X^{(2,1)}_s) \overset{\mathcal{D}}{\to} w^{(2,1)}_{v,X^{(2,1)}_0}$ as $s \to \infty$ in L_1 and almost surely, hence $\langle v, X^{(2,1)}_0 \rangle = \mathbb{E}(w^{(2,1)}_{v,X^{(2,1)}_0} | \mathcal{F}^{X^{(2,1)}_0}) = w^{(2,1)}_{v,X^{(2,1)}_0}$ almost surely, see, e.g., Karatzas and Shreve [19, Chapter I, Problem 3.20]. Thus $\langle v, X^{(2,1)}_0 \rangle$ is deterministic as well. Then $\langle v, X_1 \rangle$ is also deterministic since $X_1 \overset{\mathcal{D}}{=} X^{(2,1)}_0$. However, applying Lemma B.1 for the process $(X_s)_{s \in \mathbb{R}_+}$, we obtain that $\langle v, X_1 \rangle$ is not deterministic, since the condition (i) of this theorem implies that the process $(X_s)_{s \in \mathbb{R}_+}$ is non-trivial, and the condition (ii) of this theorem yields that the condition (ii)/(b) of Lemma B.1 does not hold. Thus we get a contradiction, and we conclude that AC is not deterministic. Moreover, we have $\mathbb{E}(||C||) = \mathbb{E}(||w^{(2,1)}_{v,X^{(2,1)}_0}||) < \infty$, see (3.2). Applying Corollary C.2 we conclude that the distribution of $w_{v,0}$ does not have atoms. In particular, we obtain $\mathbb{P}(w_{v,0} = 0) = 0$.

If the conditions (i) and (ii) hold, but $X_0 \overset{a.s.}{=} 0$ does not necessarily holds, then we apply Lemma A.1 with $T = 0$, and we obtain that $X_t \overset{\mathcal{D}}{=} X^{(1)}_t + X^{(2,0)}_t$ for each $t \in \mathbb{R}_+$, where $(X^{(1)}_s)_{s \in \mathbb{R}_+}$ and $(X^{(2,0)}_s)_{s \in \mathbb{R}_+}$ are independent multi-type CBI processes with $X^{(1)}_0 \overset{a.s.}{=} 0$, $X^{(2,0)}_0 \overset{\mathcal{D}}{=} X_0$, and with parameters (d,c,β,B,v,μ) and $(d,c,0,B,0,\mu)$, respectively. Then, for each $t \in \mathbb{R}_+$, we have $e^{-\lambda t}(v,X_t) \overset{\mathcal{D}}{=} e^{-\lambda t}(v,X^{(1)}_t) + e^{-\lambda t}(v,X^{(2,0)}_t)$. By (3.2), we obtain $w_{v,X_0} \overset{\mathcal{D}}{=} w^{(1)}_{v,0} + w^{(2,0)}_{v,X^{(2,0)}_0}$, where $w^{(1)}_{v,0}$ and $w^{(2,0)}_{v,X^{(2,0)}_0}$ denotes the almost sure limit of $e^{-\lambda t}(v,X^{(1)}_s)$ and of $e^{-\lambda t}(v,X^{(2,0)}_s)$ as $s \to \infty$, respectively. The independence of $(X^{(1)}_s)_{s \in \mathbb{R}_+}$ and $(X^{(2,0)}_s)_{s \in \mathbb{R}_+}$ implies the independence of $w^{(1)}_{v,0}$ and $w^{(2,0)}_{v,X^{(2,0)}_0}$. We have already shown that $w^{(1)}_{v,0} \overset{\mathcal{D}}{=} w_{v,0}$ does not have atoms, yielding that w_{v,X_0} does not have atoms, since for
each $z \in \mathbb{C}$, we have

$$\mathbb{P}(w_v, x_0 = z) = \mathbb{P}\left(w_{v,0}^{(1)} = z - w_{v, x_0}^{(2,0)} \right) = \mathbb{E}\left[\mathbb{P}\left(w_{v,0}^{(1)} = z - w_{v, x_0}^{(2,0)} \mid w_{v, x_0}^{(2,0)} \right) \right] = \mathbb{E}(0) = 0.$$

In particular, we obtain $\mathbb{P}(w_v, x_0 = 0) = 0$.

If the condition (ii) does not hold, then, as in part (ii) \implies (iii) of the proof of Lemma 3.1, we obtain that in the representation \((B.1)\) of $e^{-\lambda t} \langle v, X_t \rangle$, the terms $Z_t^{(2)}$, $Z_t^{(3,4)}$, and $Z_t^{(5)}$ are 0 almost surely, so $e^{-\lambda t} \langle v, X_t \rangle = \langle v, X_0 \rangle + \langle v, \tilde{\beta} \rangle \int_0^t e^{-\lambda u} du$ for all $t \in \mathbb{R}_+$ almost surely, and hence, taking the limit $t \to \infty$, we have $w_v, x_0 = \langle v, X_0 \rangle + \lambda^{-1} \langle v, \tilde{\beta} \rangle$ almost surely.

If $\lambda = s(B)$, $v = u$ and the conditions (i) and (ii) hold, then we have already derived $\mathbb{P}(w_u, x_0 = 0) = 0$.

If $\lambda = s(B)$, $v = u$ and the condition (i) holds but the condition (ii) does not hold, then we have already derived $\mathbb{P}(w_u, x_0 = 0) = \mathbb{P}(\langle u, X_0 \rangle + s(B)^{-1} \langle u, \tilde{\beta} \rangle = 0)$, and this probability is 0, since $u \in \mathbb{R}_+^d$, $\mathbb{P}(X_0 \in \mathbb{R}_+^d) = 1$, $s(B) \in \mathbb{R}_+^d$ and $\tilde{\beta} \in \mathbb{R}_+^d \setminus \{0\}$ yielding that $\langle u, \tilde{\beta} \rangle > 0$.

If $\lambda = s(B)$, $v = u$ and the conditions (i) and (ii) do not hold, then we have already derived $\mathbb{P}(w_u, x_0 = 0) = \mathbb{P}(\langle u, X_0 \rangle + s(B)^{-1} \langle u, \tilde{\beta} \rangle = 0) = \mathbb{P}(\langle u, X_0 \rangle = 0)$, and this equals $\mathbb{P}(X_0 = 0)$, since $u \in \mathbb{R}_+^d$ and $\mathbb{P}(X_0 \in \mathbb{R}_+^d) = 1$. \qed

Proof of Lemma 3.3. Note that $w_u, x_0 \overset{a.s.}{\to} 0$ if and only if $\mathbb{E}(w_u, x_0) = 0$. By (3.2), we have $e^{-s(B)t} \langle u, X_t \rangle \overset{L_1}{\to} w_u, x_0$ as $t \to \infty$. By (2.2), we obtain $\mathbb{E}(X_t) = e^{tB} \mathbb{E}(X_0) + \int_0^t e^{uB} \tilde{\beta} du$, $t \in \mathbb{R}_+$, hence

$$\mathbb{E}(e^{-s(B)t} \langle u, X_t \rangle) = \langle u, \mathbb{E}(X_0) \rangle + \langle u, \tilde{\beta} \rangle \int_0^t e^{-s(B)(t-u)} du \to \langle u, \mathbb{E}(X_0) \rangle + \frac{\langle u, \tilde{\beta} \rangle}{s(B)} \mathbb{E}(w_u, x_0)$$

as $t \to \infty$, where $u \in \mathbb{R}_+^d$ and $s(B) > 0$, thus $\mathbb{E}(w_u, x_0) = 0$ if and only if $X_0 \overset{a.s.}{=} 0$ and $\tilde{\beta} = 0$. \qed

Proof of part (i) of Theorem 3.4. By Theorem 3.3 in Barczy et al. [8], we have $e^{-s(B)t} X_t \overset{a.s.}{\to} w_u, x_0 \tilde{u}$ as $t \to \infty$, hence $\mathbb{E}(x_t \neq 0) = \mathbb{P}(e^{-s(B)t} x_t \neq 0) \to 1$ as $t \to \infty$ on the event $\{w_u, x_0 > 0\}$, since $\tilde{u} \in \mathbb{R}_+^d$. By (3.2), we have $e^{-s(B)t} \langle u, X_t \rangle \overset{a.s.}{\to} w_u, x_0$ and $e^{-\lambda t} \langle v, X_t \rangle \overset{a.s.}{\to} w_v, x_0$ as $t \to \infty$. Using that $\langle u, X_t \rangle \neq 0$ if and only if $X_t \neq 0$, we have

$$\mathbb{E}(e^{-s(B)t} \langle u, X_t \rangle) = \langle u, \mathbb{E}(X_0) \rangle + \langle u, \tilde{\beta} \rangle \int_0^t e^{-s(B)(t-u)} du \to \langle u, \mathbb{E}(X_0) \rangle + \frac{\langle u, \tilde{\beta} \rangle}{s(B)} \mathbb{E}(w_u, x_0)$$

as $t \to \infty$, where $u \in \mathbb{R}_+^d$ and $s(B) > 0$, thus $\mathbb{E}(w_u, x_0) = 0$ if and only if $X_0 \overset{a.s.}{=} 0$ and $\tilde{\beta} = 0$. \qed
as \(t \to \infty \) on the event \(\{ w_{0,X_0} > 0 \} \), as desired.

Proof of part (iii) of Theorem 3.4. First, note that the moment condition (3.3) yields the moment condition (3.1) with \(\lambda = s(\tilde{B}) \), so, by Lemma 3.3, \(w_{u,X_0} \overset{a.s.}{=} 0 \) if and only if \((X_t)_{t \in \mathbb{R}_+} \) is trivial. For each \(t \in \mathbb{R}_+ \), we have the decomposition

\[
\mathbb{1}_{\{ X_t \neq 0 \}} \frac{1}{\sqrt{\langle u, X_t \rangle}} \begin{pmatrix} \Re(\langle v, X_t \rangle) \\ \Im(\langle v, X_t \rangle) \end{pmatrix} = \mathbb{1}_{\{ X_t \neq 0 \}} \frac{\sqrt{w_{0,X_0}}}{\sqrt{e^{-s(B)t} \langle u, X_t \rangle}} \begin{pmatrix} \Re(\langle v, X_t \rangle) \\ \Im(\langle v, X_t \rangle) \end{pmatrix}
\]

on the event \(\{ w_{0,X_0} > 0 \} \). As we have seen in the proof of (i) of Theorem 3.4 we have \(\mathbb{1}_{\{ X_t \neq 0 \}} \to 1 \) as \(t \to \infty \) on the event \(\{ w_{0,X_0} > 0 \} \), and \(e^{-s(B)t} \langle u, X_t \rangle \overset{a.s.}{\to} w_{u,X_0} \) as \(t \to \infty \). In case of \(\Sigma_v = 0 \), (3.6) yields

\[
e^{-s(B)t/2} \begin{pmatrix} \Re(\langle v, X_t \rangle) \\ \Im(\langle v, X_t \rangle) \end{pmatrix} \overset{p}{\to} 0 \quad \text{as} \quad t \to \infty,
\]

hence, using the above decomposition, by Slutsky’s lemma, we obtain

\[
\mathbb{1}_{\{ X_t \neq 0 \}} \frac{1}{\sqrt{\langle u, X_t \rangle}} \begin{pmatrix} \Re(\langle v, X_t \rangle) \\ \Im(\langle v, X_t \rangle) \end{pmatrix} \overset{p}{\to} 0 \quad \text{as} \quad t \to \infty.
\]

In case of \(\Sigma_v \neq 0 \), as in the proof of (3.4), we may apply Theorem E.1 to obtain

\[
e^{-s(B)t/2} \begin{pmatrix} \Re(\langle v, X_t \rangle) \\ \Im(\langle v, X_t \rangle) \end{pmatrix} \overset{p}{\to} (w_{u,X_0} \Sigma_v)^{1/2} N, \sqrt{w_{u,X_0}} \quad \text{as} \quad t \to \infty,
\]

where \(N \) is a 2-dimensional random vector with \(N \overset{D}{=} \mathcal{N}_2(0, I_2) \) independent of \(w_{u,X_0} \Sigma_v \), and hence independent of \(w_{0,X_0} \) because \(\Sigma_v \neq 0 \) and \(\Sigma_v \) is deterministic. Applying the continuous mapping theorem, we get

\[
e^{-s(B)t/2} \sqrt{w_{u,X_0}} \begin{pmatrix} \Re(\langle v, X_t \rangle) \\ \Im(\langle v, X_t \rangle) \end{pmatrix} \overset{D}{\to} (w_{u,X_0} \Sigma_v)^{1/2} N \quad \text{as} \quad t \to \infty.
\]

Hence, using again the above decomposition, by Slutsky’s lemma and (3.2),

\[
\mathbb{1}_{\{ X_t \neq 0 \}} \frac{1}{\sqrt{\langle u, X_t \rangle}} \begin{pmatrix} \Re(\langle v, X_t \rangle) \\ \Im(\langle v, X_t \rangle) \end{pmatrix} \overset{D}{\to} (w_{u,X_0} \Sigma_v)^{1/2} N \quad \text{as} \quad t \to \infty,
\]

where \(\Sigma_v^{1/2} N \overset{D}{=} \mathcal{N}_2(0, \Sigma_v) \), as desired. \(\square \)

Proof of part (ii) of Theorem 3.4. First, note that the moment condition (3.3) yields the moment condition (3.1) with \(\lambda = s(\tilde{B}) \), so, by Lemma 3.3, \(w_{u,X_0} \overset{a.s.}{=} 0 \) if and only if \((X_t)_{t \in \mathbb{R}_+} \) is trivial. For each \(t \in \mathbb{R}_+ \), we have the decomposition

\[
\mathbb{1}_{\{ u,X_t > 1 \}} \frac{1}{\sqrt{\langle u, X_t \rangle \log(\langle u, X_t \rangle)}} \begin{pmatrix} \Re(\langle v, X_t \rangle) \\ \Im(\langle v, X_t \rangle) \end{pmatrix} = \mathbb{1}_{\{ u,X_t > 1 \}} \frac{\sqrt{w_{0,X_0}}}{\sqrt{e^{-s(B)t} \langle u, X_t \rangle \log(\langle u, X_t \rangle)}} \frac{t^{-1/2} e^{-s(B)t/2}}{\sqrt{w_{0,X_0}}} \begin{pmatrix} \Re(\langle v, X_t \rangle) \\ \Im(\langle v, X_t \rangle) \end{pmatrix}
\]

36
on the event \(\{ w_u, X_0 > 0 \} \). By Theorem 3.3 in Barczy et al. [8], we have \(e^{-s(B)t} X_t \overset{a.s.}{\longrightarrow} w_u, X_0 \tilde{u} \) as \(t \to \infty \), hence \(\mathbb{1}_{\{ u, X_t \geq 1 \}} = \mathbb{1}_{\{ e^{-s(B)t} (u, X_t) - e^{-s(B)t} > 0 \}} \to 1 \) as \(t \to \infty \) on the event \(\{ w_u, X_0 > 0 \} \), since \(e^{-s(B)t} (u, X_t) \overset{a.s.}{\longrightarrow} w_u, X_0 \). In case of \(\Sigma_v = 0 \), (3.4) yields
\[
t^{-1/2} e^{-s(B)t/2} \left(\frac{\text{Re}(\langle v, X_t \rangle)}{\text{Im}(\langle v, X_t \rangle)} \right) \overset{P}{\longrightarrow} 0 \quad \text{as} \quad t \to \infty,
\]
hence, using the above decomposition, by Slutsky’s lemma, we obtain
\[
\mathbb{1}_{\{ u, X_t \geq 1 \}} \frac{1}{\sqrt{\langle u, X_t \rangle \log(\langle u, X_t \rangle)}} \left(\frac{\text{Re}(\langle v, X_t \rangle)}{\text{Im}(\langle v, X_t \rangle)} \right) \overset{D}{\longrightarrow} 0 \quad \text{as} \quad t \to \infty,
\]
since, by (3.2), we have \(e^{-s(B)t} \langle u, X_t \rangle \overset{a.s.}{\longrightarrow} w_u, X_0 \) as \(t \to \infty \), which also implies
\[
t^{-1} \log(\langle u, X_t \rangle) = t^{-1} \log(e^{s(B)t}) + t^{-1} \log(e^{-s(B)t} \langle u, X_t \rangle) \overset{a.s.}{\longrightarrow} s(B) \in \mathbb{R}_+^+ \quad \text{as} \quad t \to \infty.
\]
In case of \(\Sigma_v \neq 0 \), as in the proof of (3.4), we may apply Theorem E.1 to obtain
\[
\left(t^{-1/2} e^{-s(B)t/2} \left(\frac{\text{Re}(\langle v, X_t \rangle)}{\text{Im}(\langle v, X_t \rangle)} \right) \right) \overset{D}{\longrightarrow} \left((w_u, X_0 \Sigma_v)^{1/2} N, \sqrt{w_u, X_0} \right) \quad \text{as} \quad t \to \infty,
\]
where \(N \) is a 2-dimensional random vector with \(N \overset{D}{=} N_2(0, I_2) \) independent of \(w_u, X_0 \Sigma_v \), and hence independent of \(w_u, X_0 \) because \(\Sigma_v \neq 0 \) and \(\Sigma_v \) is deterministic. Applying the continuous mapping theorem, we get
\[
\frac{t^{-1/2} e^{-s(B)t/2}}{\sqrt{w_u, X_0}} \left(\frac{\text{Re}(\langle v, X_t \rangle)}{\text{Im}(\langle v, X_t \rangle)} \right) \overset{D}{\longrightarrow} \left(\Sigma_v^{1/2} N \right) \quad \text{as} \quad t \to \infty,
\]
Hence, using again the above decomposition, by Slutsky’s lemma and (3.2),
\[
\mathbb{1}_{\{ u, X_t \geq 1 \}} \frac{1}{\sqrt{\langle u, X_t \rangle \log(\langle u, X_t \rangle)}} \left(\frac{\text{Re}(\langle v, X_t \rangle)}{\text{Im}(\langle v, X_t \rangle)} \right) \overset{D}{\longrightarrow} \frac{1}{s(B)^{1/2}} \Sigma_v^{1/2} N \quad \text{as} \quad t \to \infty,
\]
where \(\frac{1}{s(B)^{1/2}} \Sigma_v^{1/2} N \overset{D}{=} N_2(0, \frac{1}{s(B)} \Sigma_v) \), as desired.

\[\square\]

Proof of Proposition 3.6 Theorem 3.3 in Barczy et al. [8] yields that \(e^{-s(B)t} \langle e_i, X_t \rangle \overset{a.s.}{\longrightarrow} w_u, X_0 \langle e_i, \tilde{u} \rangle \) and \(e^{-s(B)t} \langle e_j, X_t \rangle \overset{a.s.}{\longrightarrow} w_u, X_0 \langle e_j, \tilde{u} \rangle \) as \(t \to \infty \). Consequently, since \(\tilde{u} \in \mathbb{R}_+^+ \), we have \(\mathbb{1}_{\{ e_j, X_t \neq 0 \}} = \mathbb{1}_{\{ e_j, X_t \neq 0 \}} \to 1 \) as \(t \to \infty \) on the event \(\{ w_u, X_0 > 0 \} \), and hence
\[
\mathbb{1}_{\{ e_j, X_t \neq 0 \}} \frac{\langle e_i, X_t \rangle}{\langle e_j, X_t \rangle} = \mathbb{1}_{\{ e_j, X_t \neq 0 \}} \frac{e^{-s(B)t} \langle e_i, X_t \rangle}{e^{-s(B)t} \langle e_j, X_t \rangle} \overset{w_u, X_0, \langle e_i, \tilde{u} \rangle}{\longrightarrow} \mathbb{1}_{\{ e_j, X_t \neq 0 \}} \frac{\langle e_i, \tilde{u} \rangle}{\langle e_j, \tilde{u} \rangle} \quad \text{as} \quad t \to \infty.
\]
on the event \(\{ w_u, x_0 > 0 \} \), thus we obtain the first convergence. In a similar way, \(1_{\{ x_t \neq 0 \}} \to 1 \) as \(t \to \infty \) on the event \(\{ w_u, x_0 > 0 \} \), thus

\[
1_{\{ x_t \neq 0 \}} \frac{\langle e_i, X_t \rangle}{\sum_{k=1}^{d} \langle e_k, X_t \rangle} = 1_{\{ x_t \neq 0 \}} \frac{e^{-s(B)t} \langle e_i, X_t \rangle}{\sum_{k=1}^{d} e^{-s(B)t} \langle e_k, X_t \rangle} \to \frac{w_u, x_0 \langle e_i, \tilde{u} \rangle}{\sum_{k=1}^{d} w_u, x_0 \langle e_k, \tilde{u} \rangle} = \langle e_i, \tilde{u} \rangle
\]

as \(t \to \infty \) on the event \(\{ w_u, x_0 > 0 \} \) since the sum of the coordinates of \(\tilde{u} \) is 1, hence we obtain the second convergence.

\[\square \]

Appendix

A A decomposition of multi-type CBI processes

The following useful decomposition of a multi-type CBI process as an independent sum of a multi-type CBI process starting from 0 and a CB process has been derived in Barczy et al. [8, Lemma A.1].

A.1 Lemma. If \((X_s)_{s \in \mathbb{R}_+}\) is a multi-type CBI process with parameters \((d, c, \beta, B, \nu, \mu)\), then for each \(t, T \in \mathbb{R}_+ \), we have \(X_{t+T} \overset{D}{=} X_t^{(1)} + X_t^{(2,T)} \), where \((X_s^{(1)})_{s \in \mathbb{R}_+}\) and \((X_s^{(2,T)})_{s \in \mathbb{R}_+}\) are independent multi-type CBI processes with \(\mathbb{P}(X_0^{(1)} = 0) = 1 \), \(X_0^{(2,T)} \overset{D}{=} X_T \), and with parameters \((d, c, \beta, B, \nu, \mu)\) and \((d, c, 0, B, 0, \mu)\), respectively.

B On deterministic projections of multi-type CBI processes

B.1 Lemma. Let \((X_t)_{t \in \mathbb{R}_+}\) be an irreducible multi-type CBI process with parameters \((d, c, \beta, B, \nu, \mu)\) such that \(\mathbb{E}(\|X_0\|) < \infty \) and the moment conditions (2.1) and (3.8) hold. Let \(\lambda \in \sigma(B) \), and let \(v \in \mathbb{C}^d \) be a left eigenvector of \(B \) corresponding to the eigenvalue \(\lambda \). Then the following three assertions are equivalent:

(i) There exists \(t \in \mathbb{R}_+ \) such that \(\langle v, X_t \rangle \) is deterministic.

(ii) One of the following two conditions holds:

(a) \((X_t)_{t \in \mathbb{R}_+}\) is a trivial process (see Definition 2.6).

(b) \(\langle v, X_0 \rangle \) is deterministic, \(\langle v, e_\ell \rangle c_\ell = 0 \) and \(\mu_\ell(\{ z \in U_d : \langle v, z \rangle \neq 0 \}) = 0 \) for every \(\ell \in \{1, \ldots, d\} \), and \(\nu(\{ r \in U_d : \langle v, r \rangle \neq 0 \}) = 0 \).

(iii) For each \(t \in \mathbb{R}_+ \), \(\langle v, X_t \rangle \) is deterministic.

If \((\langle v, X_t \rangle)_{t \in \mathbb{R}_+}\) is deterministic, then \(\langle v, X_t \rangle \overset{a.s.}{=} e^{\lambda t} \langle v, \mathbb{E}(X_0) \rangle + \langle v, \tilde{B} \rangle \int_0^t e^{\lambda u} \, du, \quad t \in \mathbb{R}_+ \).
Proof. (i) \(\implies\) (ii). We have the representation

\[(B.1) \quad e^{-\lambda t}\langle v, X_t \rangle = Z_t^{(0)} + Z_t^{(1)} + Z_t^{(2)} + Z_t^{(3,4)} + Z_t^{(5)}\]

with

\[
Z_t^{(0)} := \langle v, X_0 \rangle, \\
Z_t^{(1)} := \langle v, \tilde{\beta} \rangle \int_0^t e^{-\lambda u} \, du, \\
Z_t^{(2)} := \sum_{\ell=1}^{d} \langle v, e_\ell \rangle \int_0^t \int_0^u e^{-\lambda \lambda(u)} \sqrt{2\epsilon_\ell X_u,\ell} \, dW_u, \\
Z_t^{(3,4)} := \sum_{\ell=1}^{d} \int_0^t \int_{\lambda u}^{\lambda t} \int_{\lambda u}^{\lambda t} e^{-\lambda u} \langle v, z \rangle 1_{\{z \in \mathbb{R} \}} M_\ell (du, dz, dw), \\
Z_t^{(5)} := \int_0^t \int_{\lambda u}^{\lambda t} e^{-\lambda u} \langle v, r \rangle \tilde{M}(du, dr),
\]

see Barczy et al. [7 Lemma 4.1] or Barczy et al. [8 Lemma 2.7]. Note that under the moment condition \((B.8)\), \((Z_t^{(2)}) t \in \mathbb{R}_+\), \((Z_t^{(3,4)}) t \in \mathbb{R}_+\) and \((Z_t^{(5)}) t \in \mathbb{R}_+\) are square-integrable martingales with initial values 0, hence \(\mathbb{E}(Z_t^{(2)}) = \mathbb{E}(Z_t^{(3,4)}) = \mathbb{E}(Z_t^{(5)}) = 0\). Since \(e^{-\lambda t}\langle v, X_t \rangle \) and \(Z_t^{(1)}\) are deterministic, we obtain \(e^{-\lambda t}\langle v, X_t \rangle = \mathbb{E}(e^{-\lambda t}\langle v, X_t \rangle) = \mathbb{E}(\langle v, X_0 \rangle) + Z_t^{(1)}\). Hence, by the representation \((B.1)\), we get

\[0 = e^{-\lambda t}\langle v, X_t \rangle - \mathbb{E}(e^{-\lambda t}\langle v, X_t \rangle) = \langle v, X_0 \rangle - \mathbb{E}(\langle v, X_0 \rangle) + \sum_{j=2}^{5} Z_t^{(j)} \]

almost surely. Consequently,

\[\mathbb{E}(\langle v, X_0 \rangle - \mathbb{E}(\langle v, X_0 \rangle) + Z_t^{(2)} + Z_t^{(3,4)} + Z_t^{(5)}|_{\mathcal{F}_t}) = 0.\]

By the independence of \(X_0\), \((W_u, u > 0)\), \((N_1, \ldots, N_d)\) and \(M\), the random variables \(\langle v, X_0 \rangle - \mathbb{E}(\langle v, X_0 \rangle)\), \(Z_t^{(2)}\), \(Z_t^{(3,4)}\), and \(Z_t^{(5)}\) are conditionally independent with respect to \((X_u)_{u \in [0,t]}\), thus

\[0 = \mathbb{E} \left(\left| \langle v, X_0 \rangle - \mathbb{E}(\langle v, X_0 \rangle) + Z_t^{(2)} + Z_t^{(3,4)} + Z_t^{(5)} \right|^2 \right) \]

\[= \mathbb{E} \left(\mathbb{E} \left(\left| \langle v, X_0 \rangle - \mathbb{E}(\langle v, X_0 \rangle) + Z_t^{(2)} + Z_t^{(3,4)} + Z_t^{(5)} \right|^2 \middle| (X_u)_{u \in [0,t]} \right) \right) \]

\[= \mathbb{E}(\mathbb{E}(\langle v, X_0 \rangle - \mathbb{E}(\langle v, X_0 \rangle)|^2 \middle| (X_u)_{u \in [0,t]})) + \mathbb{E}(\mathbb{E}(\langle Z_t^{(2)} \rangle^2 \middle| (X_u)_{u \in [0,t]})) \]

\[+ \mathbb{E}(\mathbb{E}(\langle Z_t^{(3,4)} \rangle^2 \middle| (X_u)_{u \in [0,t]})) + \mathbb{E}(\mathbb{E}(\langle Z_t^{(5)} \rangle^2 \middle| (X_u)_{u \in [0,t]})) \]

\[= \mathbb{E}(\langle v, X_0 \rangle - \mathbb{E}(\langle v, X_0 \rangle)|^2) + \mathbb{E}(\langle Z_t^{(2)} \rangle^2) + \mathbb{E}(\langle Z_t^{(3,4)} \rangle^2) + \mathbb{E}(\langle Z_t^{(5)} \rangle^2), \]

where we also used that \((Z_s^{(2)})_{s \in [0,t]}\), \((Z_s^{(3,4)})_{s \in [0,t]}\) and \((Z_s^{(5)})_{s \in [0,t]}\) are square-integrable martingales with initial values 0 conditionally on \((X_u)_{u \in [0,t]}\). Consequently, \(\mathbb{E}(\langle v, X_0 \rangle -
\[\mathbb{E}(|v, X_0|^2) = 0 \quad \text{and} \quad \mathbb{E}(|Z_t^{(2)}|^2) = \mathbb{E}(|Z_t^{(3,4)}|^2) = \mathbb{E}(|Z_t^{(5)}|^2) = 0. \] One can easily derive

\[\mathbb{E}(|Z_t^{(2)}|^2) = 2 \sum_{\ell=1}^{d} |\langle v, e_\ell \rangle|^2 c_\ell \int_0^t e^{-2\text{Re}(\lambda)u} \mathbb{E}(X_{u,\ell}) \, du, \]

hence we conclude

\[|\langle v, e_\ell \rangle|^2 c_\ell \int_0^t e^{-2\text{Re}(\lambda)u} \mathbb{E}(X_{u,\ell}) \, du = 0, \quad \ell \in \{1, \ldots, d\}. \]

Consequently, for each \(\ell \in \{1, \ldots, d\} \), we have \(|\langle v, e_\ell \rangle|^2 c_\ell = 0 \) or \(\int_0^t e^{-2\text{Re}(\lambda)u} \mathbb{E}(X_{u,\ell}) \, du = 0 \).

In the first case we obtain \(\langle v, e_\ell \rangle c_\ell = 0 \), which is in \((ii)/(b) \). In the second case, using Lemma 2.25 and \(e^{-2\text{Re}(\lambda)u} \in \mathbb{R}_{++} \) for all \(u \in \mathbb{R}_+ \), we conclude \((ii)/(a) \).

Since \(\mathbb{E}(|Z_t^{(3,4)}|^2) = 0 \), we have

\[\mathbb{E}(|Z_t^{(3,4)}|^2) = \sum_{\ell=1}^{d} \int_0^t \int_{\mathcal{U}_d} e^{-2\text{Re}(\lambda)u} |\langle v, z \rangle|^2 \mathbb{E}(X_{u,\ell}) \, du \, \mu_\ell(dz) = 0. \]

Using \(e^{-2\text{Re}(\lambda)u} \in \mathbb{R}_{++} \) for all \(u \in \mathbb{R}_+ \), we conclude

\[\sum_{\ell=1}^{d} \int_0^t \int_{\mathcal{U}_d} 1_{\{v,z\neq 0\}} \mathbb{E}(X_{u,\ell}) \, du \, \mu_\ell(dz) = 0. \]

Then, using the non-negativity of the integrands, we obtain

\[\int_0^t \int_{\mathcal{U}_d} 1_{\{v,z\neq 0\}} \mathbb{E}(X_{u,\ell}) \, du \, \mu_\ell(dz) = 0, \quad \ell \in \{1, \ldots, d\}. \]

By Lemma 2.25 for each \(\ell \in \{1, \ldots, d\} \), we have either \((ii)/(a) \), or \(\mathbb{E}(X_{u,\ell}) = e_\ell^\top \mathbb{E}(X_u) \in \mathbb{R}_{++} \) for all \(u \in \mathbb{R}_{++} \). In the second case, we conclude

\[\int_0^t \int_{\mathcal{U}_d} 1_{\{v,z\neq 0\}} \, du \, \mu_\ell(dz) = t \mu_\ell(\{z \in \mathcal{U}_d : \langle v, z \rangle \neq 0\}) = 0, \]

and hence \(\mu_\ell(\{z \in \mathcal{U}_d : \langle v, z \rangle \neq 0\}) = 0 \), which is in \((ii)/(b) \).

Since \(\mathbb{E}(|Z_t^{(5)}|^2) = 0 \), we have \(Z_t^{(5)} = 0 \) almost surely. Hence the random variable

\[\int_0^t \int_{\mathcal{U}_d} e^{-\lambda u} \langle v, r \rangle \, M(du,dr) \]

is deterministic, since \(\int_0^t \int_{\mathcal{U}_d} e^{-\lambda u} \langle v, r \rangle \, du \, \nu(dr) \) is deterministic. We have \(Z_t^{(5)} = \mathbb{E}(Z_t^{(5)} | \mathcal{F}_s^{(5)}) = \mathbb{E}(0 | \mathcal{F}_s^{(5)}) = 0 \) for all \(s \in [0, t] \) almost surely, where \(\mathcal{F}_s^{(5)} := \sigma(Z_u^{(5)} : u \in [0, s]) \), since \((Z_u^{(5)})_{u \in \mathbb{R}_+} \) is a martingale. Thus \(\mathbb{P}(A_t^{(M)}) = 1 \), where \(A_t^{(M)} \) is the event such that the Poisson random measure \(M \) has no point in the set \(H_t \), where

\[H_t := \{(u, r) \in (0, t] \times \mathcal{U}_d : e^{-\lambda u} \langle v, r \rangle \neq 0\} = \{(u, r) \in (0, t] \times \mathcal{U}_d : 1_{\{v,r\neq 0\}} \neq 0\}, \]
since \(e^{-\lambda u} \neq 0 \) for all \(u \in \mathbb{R}_+ \). The number of the points of \(M \) in the set \(H_t \) has a Poisson distribution with parameter

\[
\lambda_t := \int_0^t \int_{U_d} 1_{\{\langle v, r \rangle \neq 0\}} \, du \, \nu(\mathbf{d}r).
\]

We have \(1 = \mathbb{P}(A_1^{(M)}) = e^{-\lambda_t} \), yielding

\[
\lambda_t = \int_0^t \int_{U_d} 1_{\{\langle v, r \rangle \neq 0\}} \, du \, \nu(\mathbf{d}r) = t\nu(\{r \in U_d : \langle v, r \rangle \neq 0\}) = 0,
\]

and hence \(\nu(\{r \in U_d : \langle v, r \rangle \neq 0\}) = 0 \), which is in (ii)/(b).

(ii) \(\Rightarrow \) (iii). If (ii)/(a) holds, then \(\langle v, X_t \rangle \stackrel{\text{a.s.}}{=} 0 \) for all \(t \in \mathbb{R}_+ \). If (ii)/(b) holds, then we use again the representation (3.1) of \(\langle v, X_t \rangle \). We have

\[
\langle v, X_0 \rangle = \mathbb{E}(\langle v, X_0 \rangle) = \langle v, \mathbb{E}(X_0) \rangle,
\]

since \(\langle v, X_0 \rangle \) is deterministic. For each \(t \in \mathbb{R}_+ \), we have

\[
Z_t^{(2)}(\{\nu, e\}) = \sqrt{2} \sum_{\ell_1=1}^d \langle v, e_\ell \rangle \sqrt{c_\ell} \int_0^t \mathrm{e}^{-\lambda u} \sqrt{X_{u,\ell}} \, dW_{u,\ell} = 0,
\]

since \(\langle v, e_\ell \rangle c_\ell = 0 \) for every \(\ell \in \{1, \ldots, d\} \).

Further, for each \(t \in \mathbb{R}_+ \) and \(n \in \mathbb{N} \), using the notation

\[
f(u, z, w) := \sum_{\ell_1=1}^d \mathrm{e}^{-\lambda u} \langle v, z \rangle 1_{\{w \leq X_{u,\ell_1}\}} = \mathrm{e}^{-\lambda u} \langle v, z \rangle \sum_{\ell_1=1}^d 1_{\{w \leq X_{u,\ell_1}\}}
\]

for \(u \in (0, t] \), \(z \in U_d \), and \(w \in U_t \), we have

\[
\int_0^t \int_{U_d} \int_{U_t} 1_{\{|f(u, z, w)| < n\}} 1_{\{||z|| > 1/n\}} 1_{\{w < n\}} f(u, z, w) \tilde{N}_t(du, dz, dw)
\]

\[
= \int_0^t \int_{U_d} \int_{U_t} 1_{\{|f(u, z, w)| < n\}} 1_{\{||z|| > 1/n\}} 1_{\{w < n\}} f(u, z, w) N_t(du, dz, dw)
\]

\[- \int_0^t \int_{U_d} \int_{U_t} 1_{\{|f(u, z, w)| < n\}} 1_{\{||z|| > 1/n\}} 1_{\{w < n\}} f(u, z, w) \, du \, \mu_\ell(dz) \, dw = 0
\]

almost surely, since \(\int_{U_d} 1_{\{||z|| > 1/n\}} \mu_\ell(dz) \leq n^2 \int_{U_d} ||z||^2 \mu_\ell(dz) < \infty \) due to part (vi) of Definition 2.1 (3.3) and

\[
(\mathcal{L}_1 \otimes \mu_\ell \otimes \mathcal{L}_d)(\{(u, z, w) \in (0, t] \times U_d \times U_t : f(u, z, w) \neq 0\}) = 0
\]

for each \(\ell \in \{1, \ldots, d\} \), where \(\mathcal{L}_1 \) and \(\mathcal{L}_d \) denote the Lebesgue measure on \(\mathbb{R} \) and on \(\mathbb{R}^d \), respectively. Letting \(n \to \infty \), by Ikeda and Watanabe [15, page 63], we conclude

\[
Z_t^{(3,4)} = \sum_{\ell_1=1}^d \int_0^t \int_{U_d} \int_{U_t} \mathrm{e}^{-\lambda u} \langle v, z \rangle 1_{\{w \leq X_{u,\ell_1}\}} \tilde{N}_t(du, dz, dw) = 0
\]
almost surely.

Finally, for each $t \in \mathbb{R}_+$, we have

$$Z^{(5)}_t = \int_0^t \int_{\mathcal{U}_d} e^{-\lambda u} \langle \mathbf{v}, \mathbf{r} \rangle M(du, dr) - \int_0^t \int_{\mathcal{U}_d} e^{-\lambda u} \langle \mathbf{v}, \mathbf{r} \rangle du \nu(dr) = 0$$

almost surely, since $\int_{\mathcal{U}_d} \|\mathbf{r}\| \nu(dr) < \infty$ (due to Definition 2.1 and (2.1)) and $\nu(\{\mathbf{r} \in \mathcal{U}_d : \langle \mathbf{v}, \mathbf{r} \rangle \neq 0\}) = 0$.

(iii) \Rightarrow (i) is trivial.

If $(\langle \mathbf{v}, \mathbf{X}_t \rangle)_{t \in \mathbb{R}_+}$ is deterministic, then, by (2.2), for each $t \in \mathbb{R}_+$, we have $\langle \mathbf{v}, \mathbf{X}_t \rangle = \mathbb{E}(\langle \mathbf{v}, \mathbf{X}_t \rangle) = \langle \mathbf{v}, \mathbb{E}(\mathbf{X}_t) \rangle = e^{\lambda t} \langle \mathbf{v}, \mathbb{E}(\mathbf{X}_0) \rangle + \langle \mathbf{v}, \mathbf{\tilde{\beta}} \rangle \int_0^t e^{\lambda u} du$ almost surely. \qed

C A stochastic fixed point equation

Under some mild conditions, the solution of a stochastic fixed point equation is atomless, see, e.g., Buraczewski et al. [10, Proposition 4.3.2].

C.1 Theorem. Let (\mathbf{A}, \mathbf{C}) be a random element in $\mathbb{R}^{d \times d} \times \mathbb{R}^d$, where $d \in \mathbb{N}$. Assume that

(i) \mathbf{A} is invertible almost surely,

(ii) $\mathbb{P}(\mathbf{A} \mathbf{x} + \mathbf{C} = \mathbf{x}) < 1$ for every $\mathbf{x} \in \mathbb{R}^d$,

(iii) the d-dimensional fixed point equation $\mathbf{X} \overset{D}{=} \mathbf{A} \mathbf{X} + \mathbf{C}$, where (\mathbf{A}, \mathbf{C}) and \mathbf{X} are independent, has a solution \mathbf{X}, which is unique in distribution.

Then the distribution of \mathbf{X} does not have atoms and is of pure type, i.e., it is either absolutely continuous or singular with respect to Lebesgue measure in \mathbb{R}^d.

C.2 Corollary. Let $\mathbf{A} \in \mathbb{R}^{d \times d}$ with $\det(\mathbf{A}) \neq 0$ and $r(\mathbf{A}) < 1$. Let \mathbf{C} be a d-dimensional non-deterministic random vector with $\mathbb{E}(\|\mathbf{C}\|) < \infty$. Then the d-dimensional fixed point equation $\mathbf{X} \overset{D}{=} \mathbf{A} \mathbf{X} + \mathbf{C}$, where \mathbf{X} is independent of \mathbf{C}, has a solution \mathbf{X} which is unique in distribution, the distribution of \mathbf{X} does not have atoms and is of pure type, i.e., it is either absolutely continuous or singular with respect to Lebesgue measure in \mathbb{R}^d.

Proof. The first condition of Theorem C.1 is trivially satisfied, since $\det(\mathbf{A}) \neq 0$. Since \mathbf{C} is not deterministic and for each $\mathbf{x} \in \mathbb{R}^d$, we have $\mathbb{P}(\mathbf{A} \mathbf{x} + \mathbf{C} = \mathbf{x}) = \mathbb{P}(\mathbf{C} = (I_d - \mathbf{A}) \mathbf{x})$, the second condition of Theorem C.1 is also satisfied. In order to check the third condition of Lemma C.1, first we suppose that \mathbf{X} is a solution of the stochastic fixed point equation $\mathbf{X} \overset{D}{=} \mathbf{A} \mathbf{X} + \mathbf{C}$, where \mathbf{X} is a d-dimensional random vector independent of (\mathbf{A}, \mathbf{C}), equivalently, independent of \mathbf{C} (since \mathbf{A} is deterministic and invertible). Then, iterating this equation, for each $n \in \mathbb{N}$, we obtain $\mathbf{X} \overset{D}{=} \mathbf{A}^n \mathbf{X} + \sum_{k=0}^{n-1} \mathbf{A}^k \mathbf{C}_k$, where $\mathbf{C}_k, \, k \in \mathbb{Z}_+$, are independent copies of \mathbf{C}. Since
Moreover, \(r(A) < 1 \), we have \(A^n \to 0 \) as \(n \to \infty \), see, e.g., Horn and Johnson [14, Theorem 5.6.12]. Moreover, \(\sum_{k=0}^{n-1} A^k C_k \xrightarrow{L_1} \sum_{k=0}^{\infty} A^k C_k \) as \(n \to \infty \), since \(\sum_{k=n}^{\infty} A^k C_k \xrightarrow{L_1} 0 \) as \(n \to \infty \). Indeed, by the Gelfand formula, we have \(r(A) = \lim_{k \to \infty} \|A^k\|^{1/k} \), see, e.g., Horn and Johnson [14, Corollary 5.6.14], hence there exists \(k_0 \in \mathbb{N} \) such that \(\|A^k\|^{1/k} \leq (r(A) + 1)/2 < 1 \) for every \(k \in \mathbb{N} \) with \(k > k_0 \). Thus, for each \(n \in \mathbb{N} \) with \(n > k_0 \), we have

\[
\mathbb{E}\left(\left\|\sum_{k=n}^{\infty} A^k C_k\right\|\right) \leq \sum_{k=n}^{\infty} \|A^k\| \mathbb{E}(\|C_k\|) \leq \mathbb{E}(\|C\|) \sum_{k=n}^{\infty} \left(\frac{r(A) + 1}{2}\right)^k \to 0
\]

as \(n \to \infty \), hence we obtain \(\sum_{k=n}^{\infty} A^k C_k \xrightarrow{L_1} 0 \) as \(n \to \infty \), and hence \(\sum_{k=0}^{n-1} A^k C_k \xrightarrow{L_1} \sum_{k=0}^{\infty} A^k C_k \) as \(n \to \infty \). Consequently, if \(X \) is a solution of \(X \xrightarrow{D} AX + C \), then, necessarily, \(X \xrightarrow{D} \sum_{k=0}^{\infty} A^k C_k \). The \(d \)-dimensional random variable \(\sum_{k=0}^{\infty} A^k C_k \) is a solution of \(X \xrightarrow{D} AX + C \), since \(\sum_{k=0}^{\infty} A^k C_k = A \sum_{k=0}^{\infty} A^k C_{k+1} + AC_0 \), where \(\sum_{k=0}^{\infty} A^k C_{k+1} \xrightarrow{D} \sum_{k=0}^{\infty} A^k C_k \) and \(\sum_{k=0}^{\infty} A^k C_{k+1} \) is independent of \(AC_0 \) (equivalently, of \((A, AC_0) \)), hence the third condition of Lemma [C.1] is also satisfied.

\[\square\]

D On the second moment of projections of multi-type CBI processes

An explicit formula for the second absolute moment of the projection of a multi-type CBI process on the left eigenvectors of its branching mean matrix has been presented together with its asymptotic behavior in the supercritical and irreducible case in Barczy et al. [8, Proposition B.1].

D.1 Proposition. If \((X_t)_{t \in \mathbb{R}^+_t} \) is a multi-type CBI process with parameters \((d, c, \beta, B, \nu, \mu) \) such that \(\mathbb{E}(\|X_0\|^2) < \infty \) and the moment condition \((3.8) \) holds, then for each left eigenvector \(v \in \mathbb{C}^d \) of \(\bar{B} \) corresponding to an arbitrary eigenvalue \(\lambda \in \sigma(B) \), we have

\[
\mathbb{E}(\|\langle v, X_t \rangle\|^2) = E_{v,\lambda}(t) + \sum_{\ell=1}^{d} C_{v,\ell} I_{\lambda,\ell}(t) + I_\lambda(t) \int_{\mathbb{R}_+} |\langle v, r \rangle|^2 \nu(dr), \quad t \in \mathbb{R}_+,
\]

where \(C_{v,\ell}, \ell \in \{1, \ldots, d\} \), are defined in Theorem [B.1] and

\[
E_{v,\lambda}(t) := \mathbb{E}\left(\left| e^{t\lambda} \langle v, X_0 \rangle + \langle v, \bar{\beta} \rangle \int_0^t e^{u\lambda} \, du \right|^2 \right),
\]

\[
I_{\lambda,\ell}(t) := \int_0^t e^{2Re(\lambda)(t-u)} \mathbb{E}(X_{u,\ell}) \, du, \quad \ell \in \{1, \ldots, d\},
\]

\[
I_\lambda(t) := \int_0^t e^{2Re(\lambda)(t-u)} \, du.
\]

43
If, in addition, \((X_t)_{t \in \mathbb{R}^+}\) is supercritical and irreducible, then we have

\[
\lim_{t \to \infty} h(t) \mathbb{E}(|\langle v, X_t \rangle|^2) = M_v^{(2)},
\]

where

\[
h(t) := \begin{cases}
 e^{-s(B)t} & \text{if } \text{Re}(\lambda) \in (-\infty, \frac{1}{2}s(\bar{B})) , \\
 t^{-1}e^{-s(B)t} & \text{if } \text{Re}(\lambda) = \frac{1}{2}s(\bar{B}) , \\
 e^{-2\text{Re}(\lambda)t} & \text{if } \text{Re}(\lambda) \in \left(\frac{1}{2}s(\bar{B}), s(\bar{B})\right] ,
\end{cases}
\]

and

\[
M_v^{(2)} := \begin{cases}
 \frac{1}{s(B) - 2\text{Re}(\lambda)} \left(\langle u, \mathbb{E}(X_0) \rangle + \frac{\langle u, \bar{\beta} \rangle}{s(B)} \right) \sum_{\ell=1}^{d} C_{v, \ell} \langle e_\ell, \bar{u} \rangle & \text{if } \text{Re}(\lambda) \in (-\infty, \frac{1}{2}s(\bar{B})) , \\
 \langle u, \mathbb{E}(X_0) \rangle + \frac{\langle u, \bar{\beta} \rangle}{s(B)} \sum_{\ell=1}^{d} C_{v, \ell} \langle e_\ell, \bar{u} \rangle & \text{if } \text{Re}(\lambda) = \frac{1}{2}s(\bar{B}) , \\
 \mathbb{E}\left(|\langle v, X_0 \rangle|^2 + \frac{\langle u, \bar{\beta} \rangle}{\lambda} \right)^2 - \frac{2\text{Re}(\lambda)}{\lambda} \int_{\mathbb{R}} |\langle v, r \rangle|^2 \nu(dr) & \text{if } \text{Re}(\lambda) \in \left(\frac{1}{2}s(\bar{B}), s(\bar{B})\right] , \\
 + \sum_{\ell=1}^{d} C_{v, \ell} \frac{2\text{Re}(\lambda)}{\lambda} (d - \bar{B})^{-1} \left(\mathbb{E}(X_0) + \frac{\langle u, \bar{\beta} \rangle}{s(B)}\right) & \text{if } \text{Re}(\lambda) \in \left(\frac{1}{2}s(\bar{B}), s(\bar{B})\right] .
\end{cases}
\]

Based on Proposition [D.1], we derive the asymptotic behavior of the variance matrix of the real and imaginary parts of the projection of a multi-type CBI process on certain left eigenvectors of its branching mean matrix \(e\bar{B}\).

D.2 Proposition. If \((X_t)_{t \in \mathbb{R}^+}\) is a supercritical and irreducible multi-type CBI process with parameters \((d, c, \beta, B, v, \mu)\) such that \(\mathbb{E}(||X_0||^2) < \infty\) and the moment condition \((3.8)\) holds, then for each left eigenvector \(v \in \mathbb{C}^d\) of \(\bar{B}\) corresponding to an arbitrary eigenvalue \(\lambda \in \sigma(\bar{B})\) with \(\text{Re}(\lambda) \in (-\infty, \frac{1}{2}s(\bar{B}))\) we have

\[
\lim_{t \to \infty} h(t) \mathbb{E} \begin{pmatrix} \text{Re}(\langle v, X_t \rangle) \\ \text{Im}(\langle v, X_t \rangle) \end{pmatrix} \begin{pmatrix} \text{Re}(\langle v, X_t \rangle) \\ \text{Im}(\langle v, X_t \rangle) \end{pmatrix}^T = \begin{pmatrix} \langle u, \mathbb{E}(X_0) \rangle + \langle u, \bar{\beta} \rangle \frac{1}{s(B)} \end{pmatrix} \Sigma_v,
\]

where the scaling factor \(h : \mathbb{R}_+ \to \mathbb{R}_+\) and the matrix \(\Sigma_v\) are defined in Proposition [D.1] and in Theorem [3.7], respectively.

Proof. For each \(t \in \mathbb{R}_+\), using the identity \((1.15)\) for \(a = \langle v, X_t \rangle \in \mathbb{C}\), and then taking expectation, we obtain

\[
\mathbb{E} \begin{pmatrix} \text{Re}(\langle v, X_t \rangle) \\ \text{Im}(\langle v, X_t \rangle) \end{pmatrix} \begin{pmatrix} \text{Re}(\langle v, X_t \rangle) \\ \text{Im}(\langle v, X_t \rangle) \end{pmatrix}^T = \frac{1}{2} \mathbb{E}(\langle v, X_t \rangle^2) I_2 + \frac{1}{2} \begin{pmatrix} \text{Re}(\mathbb{E}(\langle v, X_t \rangle^2)) & \text{Im}(\mathbb{E}(\langle v, X_t \rangle^2)) \\ \text{Im}(\mathbb{E}(\langle v, X_t \rangle^2)) & -\text{Re}(\mathbb{E}(\langle v, X_t \rangle^2)) \end{pmatrix}.
\]

The asymptotic behavior of \(\mathbb{E}(\langle v, X_t \rangle^2)\) as \(t \to \infty\) is described in Proposition [D.1]. The aim of the following discussion is to describe the asymptotic behavior of \(\mathbb{E}(\langle v, X_t \rangle^2)\) as \(t \to \infty\).
For each \(t \in \mathbb{R}_+ \), we use the representation of \(e^{-\lambda t} \langle v, X_t \rangle \) given at the beginning of the proof of part (iii) of Theorem 3.1. The independence of \(X_0 \), \((W_{u,1})_{u \in \mathbb{R}_+}, \ldots, (W_{u,d})_{u \in \mathbb{R}_+}, N_1, \ldots, N_d \) and \(M \) implies the conditional independence of the random variables \(Z_t^{(0,1)}, Z_t^{(2)}, Z_t^{(3,4)} \) and \(Z_t^{(5)} \) with respect to \((X_u)_{u \in [0,t]} \) for every \(t \in \mathbb{R}_+ \). Moreover, the conditional expectations of \(Z_t^{(2)}, Z_t^{(3,4)} \) and \(Z_t^{(5)} \) with respect to \((X_u)_{u \in [0,t]} \) are 0, since the processes \((Z_t^{(2)})_{t \in \mathbb{R}_+}, (Z_t^{(3,4)})_{t \in \mathbb{R}_+} \) and \((Z_t^{(5)})_{t \in \mathbb{R}_+} \) are martingales with initial values 0. Consequently, for all \(t \in \mathbb{R}_+ \), we get

\[
E((e^{-\lambda t} \langle v, X_t \rangle)^2 \mid (X_u)_{u \in [0,t]}) = E\left((Z_t^{(0,1)})^2 \mid (X_u)_{u \in [0,t]}\right) + E\left((Z_t^{(2)})^2 \mid (X_u)_{u \in [0,t]}\right) + E\left((Z_t^{(3,4)})^2 \mid (X_u)_{u \in [0,t]}\right) + E\left((Z_t^{(5)})^2 \mid (X_u)_{u \in [0,t]}\right)
\]

almost surely. We have

\[
E\left((Z_t^{(0,1)})^2 \mid (X_u)_{u \in [0,t]}\right) = \left(\langle v, X_0 \rangle + \langle v, \tilde{\beta} \rangle \int_0^t e^{-\lambda u} du\right)^2,
\]

\[
E\left((Z_t^{(2)})^2 \mid (X_u)_{u \in [0,t]}\right) = 2 \sum_{\ell=1}^d \langle v, e_\ell \rangle^2 c_\ell \int_0^t e^{-2\lambda u} X_{u,\ell} du,
\]

\[
E\left((Z_t^{(3,4)})^2 \mid (X_u)_{u \in [0,t]}\right) = \sum_{\ell=1}^d \int_0^t e^{-2\lambda u} X_{u,\ell} du \int_{\mathcal{U}_d} \langle v, z \rangle^2 \mu_\ell(dz),
\]

\[
E\left((Z_t^{(5)})^2 \mid (X_u)_{u \in [0,t]}\right) = \int_0^t e^{-2\lambda u} du \int_{\mathcal{U}_d} \langle v, r \rangle^2 \nu(dr)
\]

almost surely. Taking the expectation and multiplying by \(e^{2\lambda t} \), \(t \in \mathbb{R}_+ \), we obtain

\[
E(\langle v, X_t \rangle^2) = \tilde{E}_{v,\lambda}(t) + \sum_{\ell=1}^d \tilde{C}_{v,\ell} \tilde{I}_{\lambda,\ell}(t) + \tilde{I}_\lambda(t) \int_{\mathcal{U}_d} \langle v, r \rangle^2 \nu(dr)
\]

with

\[
\tilde{E}_{v,\lambda}(t) := E\left(\left(e^{\lambda t} \langle v, X_0 \rangle + \langle v, \tilde{\beta} \rangle \int_0^t e^{\lambda(t-u)} du\right)^2\right),
\]

\[
\tilde{I}_{\lambda,\ell}(t) := \int_0^t e^{2\lambda(t-u)} E(X_{u,\ell}) du, \quad \ell \in \{1, \ldots, d\},
\]

\[
\tilde{I}_\lambda(t) := \int_0^t e^{2\lambda(t-u)} du,
\]

and \(\tilde{C}_{v,\ell}, \ell \in \{1, \ldots, d\} \) defined in Theorem 3.1. For each \(t \in \mathbb{R}_+ \), we have

\[
|\tilde{E}_{v,\lambda}(t)| \leq E\left(\left|e^{\lambda t} \langle v, X_0 \rangle + \langle v, \tilde{\beta} \rangle \int_0^t e^{\lambda(t-u)} du\right|^2\right) = E_{v,\lambda}(t).
\]

45
If $\text{Re}(\lambda) \in (-\infty, \frac{1}{2}s(\tilde{B}))$, then $h(t)E_{v,\lambda}(t) \to 0$ as $t \to \infty$, see the proof of Proposition B.1 in Barczy et al. [8], hence

\[(D.2)\]

$$h(t)\tilde{E}_{v,\lambda}(t) \to 0 \quad \text{as} \quad t \to \infty.$$

Moreover, for each $t \in \mathbb{R}_+$ and $\ell \in \{1, \ldots, d\}$, by formula (2.2), we get

$$\tilde{\lambda}_{t}(t) = e_t^\top \tilde{A}_{\lambda,1}(t) \mathbb{E}(X_0) + e_t^\top \tilde{A}_{\lambda,2}(t)\tilde{\lambda}$$

with

$$\tilde{A}_{\lambda,1}(t) := \int_0^t e^{2(\lambda - u)}u B du, \quad \tilde{A}_{\lambda,2}(t) := \int_0^t e^{2(\lambda - u)}\left(\int_0^u e^{w B} dw\right) du.$$

We have

$$\tilde{A}_{\lambda,1}(t) = e^{2\lambda t}\tilde{A}_{\lambda,1,1}(t) + e^{2\lambda t}\tilde{A}_{\lambda,1,2}(t), \quad t \in \mathbb{R}_+,$$

with

$$\tilde{A}_{\lambda,1,1}(t) := \int_0^t e^{(s(\tilde{B})-2\lambda)u} \tilde{u}u^\top du, \quad \tilde{A}_{\lambda,1,2}(t) := \int_0^t e^{(s(\tilde{B})-2\lambda)u} e^{-s(\tilde{B})u} \tilde{u}u^\top du.$$

If $\text{Re}(\lambda) \in (-\infty, \frac{1}{2}s(\tilde{B}))$, then we have

$$e^{-(s(\tilde{B})-2\lambda)t}\tilde{A}_{\lambda,1,1}(t) = e^{-(s(\tilde{B})-2\lambda)t} \frac{e^{(s(\tilde{B})-2\lambda)t} - 1}{s(\tilde{B}) - 2\lambda} \tilde{u}u^\top = \frac{1 - e^{-(s(\tilde{B})-2\lambda)t}}{s(\tilde{B}) - 2\lambda} \tilde{u}u^\top \to \frac{\tilde{u}u^\top}{s(\tilde{B}) - 2\lambda}$$

as $t \to \infty$, and, by (2.4),

$$|e^{-(s(\tilde{B})-2\lambda)t}\tilde{A}_{\lambda,1,2}(t)| \leq C_1 e^{-(s(\tilde{B})-2\text{Re}(\lambda))t} \int_0^t e^{(s(\tilde{B})-2\text{Re}(\lambda))u} e^{-2u} du$$

$$\leq C_1 e^{-(s(\tilde{B})-2\text{Re}(\lambda))t} \int_0^t e^{(s(\tilde{B})-2\text{Re}(\lambda)-\tilde{C}_2)u} du$$

$$\leq C_1 e^{-(s(\tilde{B})-2\text{Re}(\lambda))t} \int_0^{\infty} e^{(s(\tilde{B})-2\text{Re}(\lambda)-\tilde{C}_2)u} du$$

$$= \frac{C_1}{s(\tilde{B}) - 2\text{Re}(\lambda) - \tilde{C}_2} e^{-(s(\tilde{B})-2\text{Re}(\lambda))t} \to 0$$

as $t \to \infty$, where $\tilde{C}_2 \in (0, C_2 \wedge (s(\tilde{B}) - 2\text{Re}(\lambda)))$. Hence, if $\text{Re}(\lambda) \in (-\infty, \frac{1}{2}s(\tilde{B}))$, then

\[(D.3)\]

$$h(t)\tilde{A}_{\lambda,1}(t) = e^{-(s(\tilde{B})t)}\tilde{A}_{\lambda,1}(t) \to \frac{\tilde{u}u^\top}{s(\tilde{B}) - 2\lambda} \quad \text{as} \quad t \to \infty.$$

If $\lambda = 0$, then, by Fubini's theorem, we obtain

$$h(t)\tilde{A}_{\lambda,2}(t) = e^{-(s(\tilde{B})t)}\tilde{A}_{\lambda,2}(t) = e^{-(s(\tilde{B})t)} \int_0^t (t-u) e^{w B} dw \to \frac{\tilde{u}u^\top}{s(\tilde{B})^2} \quad \text{as} \quad t \to \infty,$$

46
see the proof of Proposition B.1 in Barczy et al. [8]. Hence, if $\lambda = 0$, then

$$h(t)\tilde{I}_{\lambda,t}(t) = e^{-s(\tilde{B})t}\tilde{I}_{\lambda,t}(t) \to \frac{1}{s(\tilde{B})} e^{\top} \tilde{u} u \top \left(\mathbb{E}(X_0) + \frac{\bar{\beta}}{s(\tilde{B})} \right),$$

(D.4)

as $t \to \infty$. If $\lambda \in \sigma(\tilde{B}) \setminus \{0\}$ with $\text{Re}(\lambda) \in (-\infty, \frac{1}{2} s(\tilde{B}))$, then, by Fubini’s theorem, we obtain

$$e^{-s(\tilde{B}) t} \tilde{A}_{\lambda,2}(t) = e^{-(s(\tilde{B})-2\lambda) t} \int_0^t e^{-2\lambda u} \left(\int_0^u e^{w \tilde{B}} dw \right) du$$

$$= e^{-(s(\tilde{B})-2\lambda) t} \int_0^t \left(\int_w^t e^{-2\lambda u} du \right) e^{w \tilde{B}} dw$$

$$= \frac{1}{2\lambda} e^{-(s(\tilde{B})-2\lambda) t} \int_0^t (e^{-2\lambda w} - e^{-2\lambda t}) e^{w \tilde{B}} dw$$

$$= \frac{1}{2\lambda} \left(e^{-(s(\tilde{B})-2\lambda) t} \int_0^t e^{-2\lambda w} e^{w \tilde{B}} dw - e^{-(s(\tilde{B})-2\lambda) t} \int_0^t e^{w \tilde{B}} dw \right)$$

$$\to \frac{1}{2\lambda} \frac{\tilde{u} u \top - \tilde{u} u \top}{s(\tilde{B}) - 2\lambda s(\tilde{B})} = \frac{\tilde{u} u \top}{s(\tilde{B})}$$

as $t \to \infty$, since

$$e^{-(s(\tilde{B})-2\lambda) t} \int_0^t e^{-2\lambda w} e^{w \tilde{B}} dw = e^{-s(\tilde{B}) t} \tilde{A}_{\lambda,1}(t) \to \frac{\tilde{u} u \top}{s(\tilde{B}) - 2\lambda}, \quad e^{-s(\tilde{B}) t} \int_0^t e^{w \tilde{B}} dw \to \frac{\tilde{u} u \top}{s(\tilde{B})}$$

as $t \to \infty$, by (D.3) and the proof of Proposition B.1 in Barczy et al. [9]. Hence, if $\lambda \in \sigma(\tilde{B}) \setminus \{0\}$ with $\text{Re}(\lambda) \in (-\infty, \frac{1}{2} s(\tilde{B}))$, then

$$h(t)\tilde{I}_{\lambda,t}(t) = e^{-s(\tilde{B})t}\tilde{I}_{\lambda,t}(t) \to \frac{1}{s(\tilde{B}) - 2\lambda} e^{\top} \tilde{u} u \top \left(\mathbb{E}(X_0) + \frac{\bar{\beta}}{s(\tilde{B})} \right),$$

(D.5)

as $t \to \infty$. If $\text{Re}(\lambda) = \frac{1}{2} s(\tilde{B})$ and $\text{Im}(\lambda) = 0$, then we have

$$t^{-1} e^{-s(\tilde{B}) t - 2\lambda t} \tilde{A}_{\lambda,1,1}(t) = t^{-1} \int_0^t \tilde{u} u \top du = \tilde{u} u \top, \quad t \in \mathbb{R}_+$$

and, by (2.4),

$$|t^{-1} e^{-s(\tilde{B}) t - 2\lambda t} \tilde{A}_{\lambda,1,2}(t)| = |t^{-1} \tilde{A}_{\lambda,1,2}(t)| \leq C_1 t^{-1} \int_0^t e^{s(\tilde{B}) t - 2\text{Re}(\lambda) u} e^{-C_2 u} du$$

$$\leq C_1 t^{-1} \int_0^\infty e^{-C_2 u} du = \frac{C_1}{C_2} t^{-1} \to 0 \quad \text{as } t \to \infty.$$
Hence, if $\text{Re}(\lambda) = \frac{1}{2}s(\widetilde{B})$ and $\text{Im}(\lambda) = 0$, then

$$h(t)\tilde{A}_{\lambda,1}(t) = t^{-1}e^{-s(\tilde{B})t}\tilde{A}_{\lambda,1}(t) \rightarrow \tilde{uu}^\top$$ as $t \rightarrow \infty$.

If $\text{Re}(\lambda) = \frac{1}{2}s(\widetilde{B})$ and $\text{Im}(\lambda) = 0$, then, by Fubini’s theorem, we obtain

$$t^{-1}e^{-s(\tilde{B})t}\tilde{A}_{\lambda,2}(t) = t^{-1}\int_0^t e^{-s(\tilde{B})u} \left(\int_0^u e^{w\tilde{B}} dw \right) du = t^{-1}\int_0^t \left(\int_0^t e^{-s(\tilde{B})u} du \right) e^{w\tilde{B}} dw$$

$$= \frac{1}{s(\tilde{B})} t^{-1}\int_0^t (e^{-s(\tilde{B})w} - e^{-s(\tilde{B})t}) e^{w\tilde{B}} dw$$

$$= \frac{1}{s(\tilde{B})} t^{-1} \left(\int_0^t e^{-s(\tilde{B})w} e^{w\tilde{B}} dw - e^{-s(\tilde{B})t} \int_0^t e^{w\tilde{B}} dw \right) \rightarrow \frac{\tilde{uu}^\top}{s(\tilde{B})}$$

as $t \rightarrow \infty$, since

$$t^{-1}\int_0^t e^{-s(\tilde{B})w} e^{w\tilde{B}} dw \rightarrow \tilde{uu}^\top, \quad e^{-s(\tilde{B})t} \int_0^t e^{w\tilde{B}} dw \rightarrow \frac{\tilde{uu}^\top}{s(\tilde{B})}$$

as $t \rightarrow \infty$.

see part (v) of Lemma A.2 and the proof of Proposition B.1 in Barczy et al. [9]. Consequently, if $\text{Re}(\lambda) = \frac{1}{2}s(\widetilde{B})$ and $\text{Im}(\lambda) = 0$, then

$$t^{-1}e^{-s(\tilde{B})t}\tilde{I}_{\lambda,t}(t) \rightarrow e_t^T \tilde{uu}^\top \left(E(X_0) + \frac{\tilde{\beta}}{s(\tilde{B})} \right) = \langle e_t, \tilde{u} \rangle \left(\langle u, E(X_0) \rangle + \frac{\langle u, \tilde{\beta} \rangle}{s(\tilde{B})} \right)$$

as $t \rightarrow \infty$.

If $\text{Re}(\lambda) = \frac{1}{2}s(\widetilde{B})$ and $\text{Im}(\lambda) \neq 0$, then we have

$$t^{-1}e^{-(s(\tilde{B})-2\lambda)t}\tilde{A}_{\lambda,1,1}(t) = t^{-1}e^{-(s(\tilde{B})-2\lambda)t} \frac{e^{(s(\tilde{B})-2\lambda)t}}{s(\tilde{B})-2\lambda} - 1 \tilde{uu}^\top$$

$$= \frac{1}{s(\tilde{B})-2\lambda t} (1 - e^{2\text{Im}(\lambda)t}) \tilde{uu}^\top \rightarrow 0$$

as $t \rightarrow \infty$ and

$$|t^{-1}e^{-(s(\tilde{B})-2\lambda)t}\tilde{A}_{\lambda,1,2}(t)| \leq C_1 t^{-1}e^{-(s(\tilde{B})-2\text{Re}(\lambda))t} \int_0^t e^{(s(\tilde{B})-2\text{Re}(\lambda))u} e^{-C_2 u} du$$

$$\leq C_1 t^{-1} \int_0^\infty e^{-C_2 u} du = \frac{C_1}{C_2} t^{-1} \rightarrow 0$$ as $t \rightarrow \infty$.

Hence, if $\text{Re}(\lambda) = \frac{1}{2}s(\widetilde{B})$ and $\text{Im}(\lambda) \neq 0$, then

$$h(t)\tilde{A}_{\lambda,1}(t) = t^{-1}e^{-s(\tilde{B})t}\tilde{A}_{\lambda,1}(t) \rightarrow 0$$ as $t \rightarrow \infty$.

48
If $\Re(\lambda) = \frac{1}{2}s(\widetilde{B})$ and $\Im(\lambda) \neq 0$, then, by Fubini’s theorem, as above, we obtain

$$t^{-1}e^{-s(\widetilde{B})t}A_{\lambda,2}(t) = t^{-1}e^{-(s(\widetilde{B})-2\lambda)t} \int_0^t \left(\int_0^t e^{-2\lambda u} \, du \right) e^{w\widetilde{B}} \, dw$$

$$= \frac{1}{2\lambda t} e^{-(s(\widetilde{B})-2\lambda)t} \int_0^t (e^{-2\lambda w} - e^{-2\lambda t}) e^{w\widetilde{B}} \, dw$$

$$= \frac{1}{2\lambda t} \left(e^{-(s(\widetilde{B})-2\lambda)t} \int_0^t e^{-2\lambda w} e^{w\widetilde{B}} \, dw - e^{-s(\widetilde{B})t} \int_0^t e^{w\widetilde{B}} \, dw \right) \to 0$$
as $t \to \infty$. Indeed, $e^{-s(\widetilde{B})t} \int_0^t e^{w\widetilde{B}} \, dw \to \frac{\tilde{w}w}{s(\widetilde{B})}$ as $t \to \infty$, and using that $\Re(\lambda) = \frac{1}{2}s(\widetilde{B})$ and $\Im(\lambda) \neq 0$, for all $t \in \mathbb{R}_+$ we have

$$t^{-1}e^{-(s(\widetilde{B})-2\lambda)t} \int_0^t e^{-2\lambda w} e^{w\widetilde{B}} \, dw = t^{-1}e^{2i\Im(\lambda)t} \int_0^t e^{-2i\Im(\lambda)w} e^{-s(\widetilde{B})w} e^{w\widetilde{B}} \, dw$$

$$= t^{-1}e^{2i\Im(\lambda)t} \left(\int_0^t e^{-2i\Im(\lambda)w} \, dw \right) \tilde{u}u^\top + t^{-1}e^{2i\Im(\lambda)t} \int_0^t e^{-2i\Im(\lambda)w} (e^{-s(\widetilde{B})w} e^{w\widetilde{B}} - \tilde{u}u^\top) \, dw,$$

where

$$\left| t^{-1}e^{2i\Im(\lambda)t} \int_0^t e^{-2i\Im(\lambda)w} \, dw \right| = t^{-1} \left| \frac{e^{-2i\Im(\lambda)t} - 1}{-2i\Im(\lambda)} \right| \leq \frac{1}{t|\Im(\lambda)|} \to 0$$
as $t \to \infty$, and, by (2.4),

$$\left\| t^{-1}e^{2i\Im(\lambda)t} \int_0^t e^{-2i\Im(\lambda)w} (e^{-s(\widetilde{B})w} e^{w\widetilde{B}} - \tilde{u}u^\top) \, dw \right\| \leq t^{-1} \int_0^t \|e^{-s(\widetilde{B})w} e^{w\widetilde{B}} - \tilde{u}u^\top\| \, dw$$

$$\leq t^{-1}C_1 \int_0^t e^{-C_2 w} \, dw \leq t^{-1} C_1 \int_0^\infty e^{-C_2 w} \, dw = \frac{C_1}{C_2 t} \to 0 \quad \text{as} \quad t \to \infty.$$Consequently, if $\Re(\lambda) = \frac{1}{2}s(\widetilde{B})$ and $\Im(\lambda) \neq 0$, then

\begin{equation}
(D.7) \quad h(t) \tilde{I}_{\lambda,\ell}(t) = t^{-1}e^{-s(\widetilde{B})t} \tilde{I}_{\lambda,\ell}(t) \to 0 \quad \text{as} \quad t \to \infty.
\end{equation}

By the help of (D.4), (D.5), (D.6) and (D.7), we have

\begin{equation}
(D.8) \quad \lim_{t \to \infty} h(t) \tilde{I}_{\lambda,\ell}(t) = \begin{cases}
\frac{(e^t, \tilde{u})}{s(\widetilde{B})-2\lambda}(\langle u, \mathbb{E}(X_0) \rangle + \frac{\langle u, \tilde{B} \rangle}{s(\widetilde{B})}) & \text{if } \Re(\lambda) \in (-\infty, \frac{1}{2}s(\widetilde{B})) ,
\langle e_\ell, \tilde{u} \rangle(\langle u, \mathbb{E}(X_0) \rangle + \frac{\langle u, \tilde{B} \rangle}{s(\widetilde{B})}) & \text{if } \Re(\lambda) = \frac{1}{2}s(\widetilde{B}) \text{ and } \Im(\lambda) = 0,
0 & \text{if } \Re(\lambda) = \frac{1}{2}s(\widetilde{B}) \text{ and } \Im(\lambda) \neq 0.
\end{cases}
\end{equation}

Further, we have

$$\tilde{I}_{\lambda}(t) = \int_0^t e^{2\lambda w} \, dw = \begin{cases}
t & \text{if } \lambda = 0,
\frac{1}{2\lambda}(e^{2\lambda t} - 1) & \text{if } \lambda \neq 0.
\end{cases}$$

If $\lambda = 0$, then

$$e^{-s(\widetilde{B})t} \tilde{I}_{\lambda}(t) = te^{-s(\widetilde{B})t} \to 0 \quad \text{as} \quad t \to \infty.$$
If \(\lambda \in \sigma(\tilde{B}) \setminus \{0\} \) with \(\text{Re}(\lambda) \in (-\infty, \frac{1}{2}s(\tilde{B})) \), then
\[
e^{-s(\tilde{B})t} \tilde{I}_\lambda(t) = \frac{1}{2\lambda} (e^{-(s(\tilde{B})-2\lambda)t} - e^{-s(\tilde{B})t}) \to 0 \quad \text{as} \ t \to \infty.
\]
If \(\text{Re}(\lambda) = \frac{1}{2}s(\tilde{B}) \), then
\[
t^{-1}e^{-s(\tilde{B})t} \tilde{I}_\lambda(t) = \frac{1}{2\lambda t} (e^{2\text{Im}(\lambda)t} - e^{-s(\tilde{B})t}) \to 0 \quad \text{as} \ t \to \infty.
\]
Consequently,
\[
(D.9) \quad \lim_{t \to \infty} h(t) \tilde{I}_\lambda(t) = 0.
\]
Hence, by \((D.2), (D.8)\) and \((D.9)\), we have
\[
\lim_{t \to \infty} h(t) \mathbb{E}(\langle v, X_t \rangle^2) = \tilde{M}_v^{(2)}
\]
with
\[
\tilde{M}_v^{(2)} := \begin{cases}
\sum_{\ell=1}^d \tilde{C}_{v,\ell} \langle e_\ell, \tilde{u} \rangle \left(\langle u, \mathbb{E}(X_0) \rangle + \frac{\langle u, \beta \rangle}{s(B)} \right) & \text{if} \ \text{Re}(\lambda) \in (-\infty, \frac{1}{2} s(\tilde{B})) , \\
\sum_{\ell=1}^d \tilde{C}_{v,\ell} \langle e_\ell, \tilde{u} \rangle \left(\langle u, \mathbb{E}(X_0) \rangle + \frac{\langle u, \beta \rangle}{s(B)} \right) & \text{if} \ \text{Re}(\lambda) = \frac{1}{2} s(\tilde{B}) \ \text{and} \ \text{Im}(\lambda) = 0 , \\
0 & \text{if} \ \text{Re}(\lambda) = \frac{1}{2} s(\tilde{B}) \ \text{and} \ \text{Im}(\lambda) \neq 0 .
\end{cases}
\]
Using the identity \((D.1)\), then taking the limit as \(t \to \infty \), and using Proposition \((D.1)\) we obtain
\[
h(t) \mathbb{E} \begin{pmatrix} \text{Re}(\langle v, X_t \rangle) \\ \text{Im}(\langle v, X_t \rangle) \end{pmatrix} \to \frac{1}{2} M_v^{(2)} I_2 + \frac{1}{2} \begin{pmatrix} \text{Re}(\tilde{M}_v^{(2)}) & \text{Im}(\tilde{M}_v^{(2)}) \\ \text{Im}(\tilde{M}_v^{(2)}) & -\text{Re}(\tilde{M}_v^{(2)}) \end{pmatrix} = \left(\langle u, \mathbb{E}(X_0) \rangle + \frac{\langle u, \beta \rangle}{s(B)} \right) \Sigma_v
\]
as \(t \to \infty \), as desired. \(\square \)

D.3 Proposition. Let \((X_t)_{t \in \mathbb{R}_+}\) be a supercritical and irreducible multi-type CBI process with parameters \((d, c, \beta, B, v, \mu)\) such that \(\mathbb{E}(\|X_0\|^2) < \infty \) and the moment condition \((3.8)\) holds. Let \(\lambda \in \sigma(\tilde{B}) \) with \(\text{Re}(\lambda) \in (-\infty, \frac{1}{2}s(\tilde{B})) \) and \(v \in \mathbb{C}^d \) be a left-eigenvector of \(\tilde{B} \) corresponding to the eigenvalue \(\lambda \). Then \(\Sigma_v = 0 \) if and only if \(\text{Re}(\langle v, e_\ell \rangle) = 0 \) and \(\mu_\ell(\{z \in U_d : \langle v, z \rangle \neq 0\}) = 0 \) for each \(\ell \in \{1, \ldots, d\} \). If, in addition, \(\text{Im}(\lambda) \neq 0 \), then \(\Sigma_v \) is invertible if and only if there exists \(\ell \in \{1, \ldots, d\} \) such that \(\text{Re}(\langle v, e_\ell \rangle) \neq 0 \) or \(\mu_\ell(\{z \in U_d : \langle v, z \rangle \neq 0\}) > 0 \).

Proof. First, suppose that \(\text{Re}(\lambda) \in (-\infty, \frac{1}{2}s(\tilde{B})) \). If \(\text{Re}(\langle v, e_\ell \rangle) = 0 \) and \(\mu_\ell(\{z \in U_d : \langle v, z \rangle \neq 0\}) = 0 \) for each \(\ell \in \{1, \ldots, d\} \), then we have \(C_{v,\ell} = \tilde{C}_{v,\ell} = 0, \ \ell \in \{1, \ldots, d\} \),
yielding that $\Sigma_v = 0$. If there exists an $\ell \in \{1, \ldots, d\}$ such that $c_\ell(v, e_\ell) \neq 0$ or $\mu_\ell(\{z \in U_d : \langle v, z \rangle \neq 0\}) > 0$, then we check that $\Sigma_v \neq 0$, as requested. On the contrary, let us suppose that $\Sigma_v = 0$. Due to the existence of such an ℓ, we have $C_{\ell, \ell} \in \mathbb{R}_{++}$ and hence $\sum_{k=1}^d \langle e_k, \tilde{u} \rangle \frac{C_{\ell, k}}{s(B) - 2\text{Re}(\lambda)} \in \mathbb{R}_{++}$. However, using the notation $\Sigma_v = (\Sigma_v)_{ij}, i,j \in \{1,2\}$, since

\[
(\Sigma_v)_{1,1} = \frac{1}{2} \sum_{k=1}^d \langle e_k, \tilde{u} \rangle \frac{C_{\ell, k}}{s(B) - 2\text{Re}(\lambda)} + \frac{1}{2} \sum_{k=1}^d \langle e_k, \tilde{u} \rangle \text{Re}\left(\frac{\tilde{C}_{\ell, k}}{s(B) - 2\lambda} \right) = 0,
\]

\[
(\Sigma_v)_{2,2} = \frac{1}{2} \sum_{k=1}^d \langle e_k, \tilde{u} \rangle \frac{C_{\ell, k}}{s(B) - 2\text{Re}(\lambda)} - \frac{1}{2} \sum_{k=1}^d \langle e_k, \tilde{u} \rangle \text{Re}\left(\frac{\tilde{C}_{\ell, k}}{s(B) - 2\lambda} \right) = 0,
\]

we have $\sum_{k=1}^d \langle e_k, \tilde{u} \rangle \frac{C_{\ell, k}}{s(B) - 2\text{Re}(\lambda)} = 0$, yielding us to a contradiction.

Next, suppose that $\text{Re}(\lambda) = \frac{1}{2}s(B)$. If $c_\ell(v, e_\ell) = 0$ and $\mu_\ell(\{z \in U_d : \langle v, z \rangle \neq 0\}) = 0$ for each $\ell \in \{1, \ldots, d\}$, then, as in case of $\text{Re}(\lambda) \in (-\infty, \frac{1}{2}s(B))$, we have $\Sigma_v = 0$. If there exists an $\ell \in \{1, \ldots, d\}$ such that $c_\ell(v, e_\ell) \neq 0$ or $\mu_\ell(\{z \in U_d : \langle v, z \rangle \neq 0\}) > 0$, then we check that $\Sigma_v \neq 0$, as requested. On the contrary, let us suppose that $\Sigma_v = 0$. Similarly, as in case of $\text{Re}(\lambda) \in (-\infty, \frac{1}{2}s(B))$, we have $\sum_{k=1}^d \langle e_k, \tilde{u} \rangle C_{\ell, k} = 0$, yielding us to a contradiction.

Recall that, by (4.14),

\[
\Sigma_v = 2 \sum_{\ell=1}^d c_\ell(e_\ell, \tilde{u}) \int_0^\infty f(w, e_\ell) \, dw + \sum_{\ell=1}^d \langle e_\ell, \tilde{u} \rangle \int_0^\infty \int_{U_d} f(w, z) \, dw \mu_\ell(\text{d}z) =: \Sigma_{v,1} + \Sigma_{v,2},
\]

where both $\Sigma_{v,1}$ and $\Sigma_{v,2}$ (and consequently Σ_v) are symmetric and non-negative definite matrices, since $c \in \mathbb{R}^d$, $\tilde{u} \in \mathbb{R}^d_{++}$, and $f(w, z)$ is symmetric and non-negative definite for any $w \in \mathbb{R}_+$ and $z \in U_d$.

In what follows, let us assume that $\text{Re}(\lambda) \in (-\infty, \frac{1}{2}s(B)]$ and $\text{Im}(\lambda) \neq 0$. First, let us suppose that Σ_v is invertible, and, on the contrary, for each $\ell \in \{1, \ldots, d\}$, we have $c_\ell(v, e_\ell) = 0$ and $\mu_\ell(\{z \in U_d : \langle v, z \rangle \neq 0\}) = 0$. Then, for each $\ell \in \{1, \ldots, d\}$, we have $C_{\ell, \ell} = \tilde{C}_{\ell, \ell} = 0$, and hence, by (3.5) and (3.7), $\Sigma_v = 0$, yielding us to a contradiction.

Let us suppose now that there exists $\ell \in \{1, \ldots, d\}$ such that $c_\ell(v, e_\ell) \neq 0$ or $\mu_\ell(\{z \in U_d : \langle v, z \rangle \neq 0\}) > 0$. Next we show that if $\ell \in \{1, \ldots, d\}$ is such that $c_\ell(v, e_\ell) \neq 0$, then $\Sigma_{v,1}$ is strictly positive definite, and that if $\ell \in \{1, \ldots, d\}$ is such that $\mu_\ell(\{z \in U_d : \langle v, z \rangle \neq 0\}) > 0$, then $\Sigma_{v,2}$ is strictly positive definite, yielding that Σ_v is strictly positive definite, and consequently is invertible. Here for all $w \in \mathbb{R}_+$, $z \in U_d$, and $a, b \in \mathbb{R}$, we have

\[
\begin{pmatrix} a \\ b \end{pmatrix}^T f(w, z) \begin{pmatrix} a \\ b \end{pmatrix} = \left(a \text{Re}(e^{-s(B)/2}w/2\langle v, z \rangle) + b \text{Im}(e^{-s(B)/2}w/2\langle v, z \rangle) \right)^2
\]

\[
= \left(\text{Re}((a - ib)e^{-s(B)/2}w/2\langle v, z \rangle) \right)^2.
\]
Consequently, if $\ell \in \{1, \ldots, d\}$ is such that $\langle \mathbf{v}, e_\ell \rangle \neq 0$, then for each $(a, b)^T \in \mathbb{R}^2 \setminus \{\mathbf{0}\}$, we have
\[
\begin{pmatrix} a \\ b \end{pmatrix}^T \int_0^\infty \mathbf{f}(w, e_\ell) \, dw \begin{pmatrix} a \\ b \end{pmatrix} = \int_0^\infty (\text{Re}((a-ib)e^{-(s(B)-2\lambda)w/2}\langle \mathbf{v}, e_\ell \rangle))^2 \, dw
\]
is equal to 0 if and only if $\text{Re}((a-ib)e^{-(s(B)-2\lambda)w/2}\langle \mathbf{v}, e_\ell \rangle) = 0$ for every $w \in \mathbb{R}_+$ or equivalently $\text{Re}(e^{i\text{Im}(\lambda)w}(a-ib)\langle \mathbf{v}, e_\ell \rangle) = 0$ for every $w \in \mathbb{R}_+$. Since $(a-ib)\langle \mathbf{v}, e_\ell \rangle \neq 0$ and $\text{Im}(\lambda) \neq 0$, there exists $w \in \mathbb{R}_+$ such that $\text{Re}(e^{i\text{Im}(\lambda)w}(a-ib)\langle \mathbf{v}, e_\ell \rangle) \neq 0$. Indeed, the multiplication by the complex number $e^{i\text{Im}(\lambda)w}$ corresponds to a rotation by degree $\text{Im}(\lambda)w$. Hence for each $(a, b)^T \in \mathbb{R}^2 \setminus \{\mathbf{0}\}$, we have
\[
\begin{pmatrix} a \\ b \end{pmatrix}^T \int_0^\infty \mathbf{f}(w, e_\ell) \, dw \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}_{++},
\]
This yields that if $\ell \in \{1, \ldots, d\}$ is such that $c_\ell \langle \mathbf{v}, e_\ell \rangle \neq 0$, then for each $(a, b)^T \in \mathbb{R}^2 \setminus \{\mathbf{0}\}$,
\[
\begin{pmatrix} a \\ b \end{pmatrix}^T \Sigma_{v,1} \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}_{++},
\]
implying that $\Sigma_{v,1}$ is strictly positive definite. Further, for each $(a, b)^T \in \mathbb{R}^2$, we have
\[
\begin{pmatrix} a \\ b \end{pmatrix}^T \int_0^\infty \int_{\mathcal{U}_d} \mathbf{f}(w, z) \, dw \mu_\ell(dz) \begin{pmatrix} a \\ b \end{pmatrix} = \int_0^\infty \int_{\mathcal{U}_d} (\text{Re}((a-ib)e^{-(s(B)-2\lambda)w/2}\langle \mathbf{v}, z \rangle))^2 \, dw \mu_\ell(dz).
\]
Since $\text{Im}(\lambda) \neq 0$, for each $z \in \mathcal{U}_d$ with $\langle \mathbf{v}, z \rangle \neq 0$ and $(a, b)^T \in \mathbb{R}^2 \setminus \{\mathbf{0}\}$, there exists an open subset K_z of \mathbb{R}_+ such that $(\text{Re}((a-ib)e^{-(s(B)-2\lambda)w/2}\langle \mathbf{v}, z \rangle))^2 \in \mathbb{R}_{++}$ for all $w \in K_z$. Consequently, if $\ell \in \{1, \ldots, d\}$ is such that $\mu_\ell(\{z \in \mathcal{U}_d : \langle \mathbf{v}, z \rangle \neq 0\}) > 0$, then
\[
\int_0^\infty \int_{\mathcal{U}_d} (\text{Re}((a-ib)e^{-(s(B)-2\lambda)w/2}\langle \mathbf{v}, z \rangle))^2 \, dw \mu_\ell(dz)
\geq \int_{\mathcal{U}_d} 1_{\{\langle \mathbf{v}, z \rangle \neq 0\}} \left(\int_{K_z} (\text{Re}((a-ib)e^{-(s(B)-2\lambda)w/2}\langle \mathbf{v}, z \rangle))^2 \, dw \right) \mu_\ell(dz) \in \mathbb{R}_{++}.
\]
This yields that if $\ell \in \{1, \ldots, d\}$ is such that $\mu_\ell(\{z \in \mathcal{U}_d : \langle \mathbf{v}, z \rangle \neq 0\}) > 0$, then for each $(a, b)^T \in \mathbb{R}^2 \setminus \{\mathbf{0}\}$, we have
\[
\begin{pmatrix} a \\ b \end{pmatrix}^T \Sigma_{v,2} \begin{pmatrix} a \\ b \end{pmatrix} \in \mathbb{R}_{++},
\]
implying that $\Sigma_{v,2}$ is strictly positive definite.

D.4 Remark. Under the conditions of Proposition [D.3](#), if $\lambda \in \sigma(\tilde{B})$ with $\text{Re}(\lambda) \in (-\infty, \frac{1}{2} s(\tilde{B}))$ and $\text{Im}(\lambda) = 0$ and $\mathbf{v} \in \mathbb{R}^d$ is a left eigenvector of \tilde{B} corresponding
to the eigenvalue λ, then Σ_v is singular. Indeed, in this case, by (3.7) and (3.5), we have

$$
\Sigma_v = \begin{cases}
\left(\frac{1}{s(\tilde{B})-2\lambda} \sum_{\ell=1}^d \langle e_\ell, \tilde{u} \rangle C_{v,\ell} , 0 \right) & \text{if } \text{Re}(\lambda) \in (-\infty, \frac{1}{2}s(\tilde{B})) , \\
0 & \text{if } \text{Re}(\lambda) = \frac{1}{2}s(\tilde{B}) .
\end{cases}
$$

Note that if $v \in \mathbb{R}^d$ is a left eigenvector of \tilde{B} corresponding to an eigenvalue λ of \tilde{B}, then $\lambda \in \mathbb{R}$ necessarily, and hence in case of $\lambda \in (-\infty, \frac{1}{2}s(\tilde{B}))$, we have Σ_v is not invertible. However, if $\lambda \in \mathbb{R}$ is an eigenvalue of \tilde{B} and $v \in \mathbb{C}^d$ is a left eigenvector of \tilde{B} corresponding to λ, then $\text{Re}(v) \in \mathbb{R}^d$ and $\text{Im}(v) \in \mathbb{R}^d$ are also left eigenvectors of \tilde{B} or the zero vector.

\[\square\]

E A limit theorem for martingales

The next theorem is about the asymptotic behavior of multivariate martingales.

E.1 Theorem. (Crimaldi and Pratelli [11, Theorem 2.2]) Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, \mathbb{P})$ be a filtered probability space satisfying the usual conditions. Let $(M_t)_{t \in \mathbb{R}_+}$ be a d-dimensional martingale with respect to the filtration $(\mathcal{F}_t)_{t \in \mathbb{R}_+}$ such that it has càdlàg sample paths almost surely. Suppose that there exists a function $Q : \mathbb{R}_+ \to \mathbb{R}^{d \times d}$ such that

(E.1) \[Q(t)[M]_t Q(t)^{\top} \xrightarrow{\mathbb{P}} \eta \quad \text{as } t \to \infty , \]

where η is a $d \times d$ random (necessarily positive semidefinite) matrix and $([M]_t)_{t \in \mathbb{R}_+}$ denotes the quadratic variation (matrix-valued) process of $(M_t)_{t \in \mathbb{R}_+}$, and

(E.2) \[\mathbb{E} \left(\sup_{u \in [0,t]} \| Q(t)(M_u - M_{u-}) \| \right) \to 0 \quad \text{as } t \to \infty . \]

Then, for each $\mathbb{R}^{k \times \ell}$-valued random matrix A defined on $(\Omega, \mathcal{F}, \mathbb{P})$ with some $k, \ell \in \mathbb{N}$, we have

(E.3) \[(Q(t)M_t, A) \xrightarrow{D} (\eta^{1/2}Z, A) \quad \text{as } t \to \infty , \]

where Z is a d-dimensional random vector with $Z \overset{D}{=} \mathcal{N}_d(0, I_d)$ independent of (η, A).

Acknowledgements

We would like to thank the referees for their comments that helped us to improve the paper. This paper has been revised after the sudden death of Gyula Pap, the third author, in October 2019.
References

[1] Athreya, K. B. (1968). Some results on multitype continuous time Markov branching processes. *The Annals of Mathematical Statistics* **39**(2) 347–357.

[2] Athreya, K. B. (1969). Limit theorems for multitype continuous time Markov branching processes. I. The case of an eigenvector linear functional. *Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete* **12** 320–332.

[3] Athreya, K. B. (1969). Limit theorems for multitype continuous time Markov branching processes. II. The case of an arbitrary linear functional. *Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete* **13** 204–214.

[4] Badalbaev, I. S. and Mukhitdinov, A. (1990). Limit distributions of some functionals in multitype branching processes. *Theory of Probability and its Applications* **35**(4) 625–638.

[5] Barczy, M., Li, Z. and Pap, G. (2015). Yamada-Watanabe results for stochastic differential equations with jumps. *International Journal of Stochastic Analysis* **2015** Article ID 460472, 23 pages.

[6] Barczy, M., Li, Z. and Pap, G. (2015). Stochastic differential equation with jumps for multi-type continuous state and continuous time branching processes with immigration. *ALEA. Latin American Journal of Probability and Mathematical Statistics* **12**(1) 129–169.

[7] Barczy, M., Li, Z. and Pap, G. (2016). Moment formulas for multi-type continuous state and continuous time branching processes with immigration. *Journal of Theoretical Probability* **29**(3) 958–995.

[8] Barczy, M., Palau, S. and Pap, G. (2020). Almost sure, L_1- and L_2-growth behavior of supercritical multi-type continuous state and continuous time branching processes with immigration. *Science China Mathematics* **63**(10) 2089–2116.

[9] Barczy, M. and Pap, G. (2016). Asymptotic behavior of critical, irreducible multi-type continuous state and continuous time branching processes with immigration. *Stochastics and Dynamics* **16**(4) Article ID 1650008, 30 pages.

[10] Buraczewski, D., Damek, E. and Mikosch, T. (2016). *Stochastic Models with Power-Law Tails*. Springer, Cham.

[11] Crimaldi, I. and Pratelli, L. (2005). Convergence results for multivariate martingales. *Stochastic Processes and their Applications* **115**(4) 571–577.

[12] Duffie, D., Filipović, D. and Schachermayer, W. (2003). Affine processes and applications in finance. *Annals of Applied Probability* **13** 984–1053.
[13] He, X. and Li, Z. (2016). Distributions of jumps in a continuous-state branching process with immigration. *Journal of Applied Probability* 53 1166–1177.

[14] Horn, R. A. and Johnson, Ch. R. (2013). *Matrix Analysis*, 2nd ed. Cambridge University Press, Cambridge.

[15] Ikeda, N. and Watanabe, S. (1989). *Stochastic Differential Equations and Diffusion Processes*, 2nd ed. North-Holland/Kodansha, Amsterdam/Tokyo.

[16] Jacod, J. and Shiryaev, A. N. (2003). *Limit Theorems for Stochastic Processes*, 2nd ed. Springer-Verlag, Berlin.

[17] Jagers, P. (1969). The proportions of individuals of different kinds in two-type populations. A branching process problem arising in biology. *Journal of Applied Probability* 6(2) 249–260.

[18] Janson, S. (2004). Functional limit theorems for multitype branching processes and generalized Pólya urns. *Stochastic Processes and their Applications* 110 177–245.

[19] Karatzas, I. and Shreve, S. E. (1991). *Brownian Motion and Stochastic Calculus*, 2nd ed. Springer-Verlag, New York.

[20] Kesten, H. and Stigum, B. P. (1966). Additional limit theorems for indecomposable multidimensional Galton–Watson processes. *Annals of Mathematical Statistics* 37 1463–1481.

[21] Kyprianou, A. E., Palau, S. and Ren, Y.-X. (2018). Almost sure growth of supercritical multi-type continuous-state branching process. *ALEA. Latin American Journal of Probability and Mathematical Statistics* 15 409–428.

[22] Revuz, D. and Yor, M. (1999). *Continuous martingales and Brownian motion*. Third edition. Springer-Verlag, Berlin.

[23] van der Vaart, A. W. (1998) *Asymptotic Statistics*. Cambridge University Press, Cambridge.

[24] Yakovlev, A. Y. and Yanev, N. M. (2010). Limiting distributions for multitype branching processes. *Stochastic Analysis and Applications* 28(6) 1040–1060.