Importance of accurate consideration of the electron inertia in hybrid-kinetic simulations of collisionless plasma turbulence: 1. The 2D limit

Neeraj Jain,¹, a) Patricio Muñoz,² Meisam Farzalipour Tabriz,³ Markus Rampp,³ and Jörg Büchner², ¹

¹) Center for Astronomy and Astrophysics, Technische Universität Berlin, 10623 Berlin, Germany
²) Max Planck Institute for Solar System Research, 37077 Göttingen, Germany
³) Max Planck Computing and Data Facility, 85748 Garching, Germany

(Dated: February 3, 2022)
The dissipation mechanism of the magnetic energy in turbulent collisionless space and astrophysical plasmas is still not well understood. Its investigation requires efficient kinetic simulations of the energy transfer in collisionless plasma turbulence. In this respect, hybrid-kinetic simulations, in which ions are treated as particles and electrons as an inertial fluid, have begun to attract a significant interest recently. Hybrid-kinetic models describe both ion- and electron scale processes by ignoring electron kinetic effects so that they are computationally much less demanding compared to fully kinetic plasma models. Hybrid-kinetic codes solve either the Vlasov equation for the ions (Eulerian Vlasov-hybrid codes) or the equations of motion of the ions as macro-particles (Lagrangian Particle-in-Cell (PIC)-hybrid codes). They consider the inertia of the electron fluid using different approximations. We check the validity of these approximations by employing our recently massively parallelized three-dimensional PIC-hybrid code CHIEF which considers the electron inertia without any of the common approximations. In particular we report the results of simulations of two-dimensional collisionless plasma turbulence. We conclude that the simulation results obtained using hybrid-kinetic codes which use approximations to describe the electron inertia need to be interpreted with caution. We also discuss the parallel scalability of CHIEF, to the best of our knowledge, the first PIC-hybrid code which without approximations describes the inertial electron fluid.

\[\text{neeraj.jain@tu-berlin.de}\]
I. INTRODUCTION

The nature of collisionless plasma turbulence, from large (fluid) down to small (kinetic) scales, is a key unsolved problem in plasma physics\(^1\). It finds its importance in many physical situations ranging from hot laboratory to astrophysical plasmas\(^2,3\). In these predominantly collisionless plasmas, turbulence develops from fluid to kinetic scales where its energy is finally dissipated into heat. Thus, the understanding of heating and dissipation in collisionless plasma requires kinetic studies of the plasma turbulence. This is particularly true for the study of the turbulent solar wind plasma\(^4\) which provides an excellent natural laboratory for turbulence studies in a broad range of parameters\(^5\). In fact, recent in situ spacecraft measurements in the solar wind have provided a wealth of data which extended the observational basis to kinetic scales\(^6-9\). Recent observations in the inner solar corona by the Parker Solar Probe have revealed new kinetic scale features of the collisionless turbulence of the solar wind plasma\(^10-12\). On the other hand, numerical simulations of collisionless kinetic plasma turbulence phenomena have helped to better understand step-by-step the physical processes behind it\(^9,13-16\).

Plasma kinetic scales range from ion- down to electron scales. An ideal numerical simulation of the kinetic plasma turbulence would, therefore, have to cover the full range of plasma kinetic scales, from sufficiently above ion scales to below the electron scales, treating both ions and electrons kinetically. Fully kinetic particle-in-cell (PIC) codes, which treat ions and electrons as particles, as well as Vlasov-codes, which solve for the evolution of phase-space distribution functions of electrons and ions, are, however, computationally very demanding. They are typically carried out for artificially modified physical parameters, like reduced ion-to-electron mass ratios and for small spatial domains. Recently three-dimensional PIC-code simulations with more and more realistic physical parameters are becoming feasible with the increasing computational power. Nevertheless, the inherent noise associated with the always reduced number of macro-particles in PIC-code simulations makes the particle statistics at the smallest scales unreliable. The alternative, a direct numerical solution of the Vlasov equations for the ion- and electron distribution functions, is very expensive in terms of computer memory for an appropriate velocity space resolution\(^17,18\).

One way out of this situation is to understand the processes in parts by simulating certain aspects of physics while neglecting others. This implies the use of a variety of approximations
utilized by different simulation models. A comprehensive understanding is then obtained by combining various aspects of these simulations. Even if we were able to simulate all the scales simultaneously, a physicist’s approach would be to understand the physical processes in parts and then develop an overall understanding by comprehending the essential physics.

Hybrid-kinetic plasma simulation models treat electrons as a fluid but ions kinetically. This relaxes some of the computational constraints of the fully kinetic simulation models and thus reduces the computational cost19. Hybrid-kinetic models do not describe the kinetic effects associated with electrons. Such models are suitable to study processes in which ion kinetic effects are more important than electron kinetic effects. The majority of hybrid-kinetic simulation codes further simplify their algorithms by assuming an inertia-less electron fluid. This allows a direct calculation of the electric field from the electron’s momentum equation without the need for solving a differential equation. On the other hand, this limits their validity to scales much larger than the electron scales. Space observations of collisionless plasma turbulence by multi-spacecraft missions (Cluster and MMS) in the Earth’s magnetosphere and the solar wind, however, revealed electron- and ion-scale breaks in the power spectra as well as the formation of current sheet (CS) structures from ion to electron scales20–22. On the other hand, even hybrid-kinetic simulations with inertia-less electrons have already shown that in evolving turbulent CSs, the electrons become the main current carriers15 and that these CSs thin down to the grid scale23. This finding implies that the electron mass has to be incorporated in hybrid-kinetic plasma models in order to understand the role of electron-scale CSs in collisionless turbulent plasmas.

Hybrid-kinetic codes with electron inertia have been under development over the last six decades. First, PIC-hybrid codes considering ions as particles and an inertial electron fluid were developed. They were applied to simulations of collisionless shock waves and magnetic reconnection19,24–30. Later, Eulerian Vlasov-hybrid codes with an inertial electron fluid were also developed. They solve the Vlasov equation for the ions in the phase space31,32. In these previous PIC-hybrid and Vlasov-hybrid codes, the electron inertia is considered in the momentum equation of the electron fluid (the generalized Ohm’s law) under varying degrees of approximations, which are, however, not necessarily valid at the electron scales (see Ref. Muñoz \textit{et al.}33 for a detailed discussion of these approximations and their limits). Our recently developed PIC-hybrid code CHIEF (Code Hybrid with Inertial Electron Fluid), by contrast, considers the electron inertia without any of those approximations33. In Ref.
Muñoz et al.33 the numerical algorithms of the CHIEF code are described as well as the results of the validation of the code against a number of physical benchmark problems.

We have now updated the code by massively parallelizing it for high performance computing (HPC) on supercomputers. This enables two- and three-dimensional simulations of the evolution of turbulent plasmas with an electron scale spatial resolution and on physically relevant spatial- and temporal scales.

In this paper we report our assessment of the validity of the different approximations used to describe the effects of the electron inertia by utilizing the simulation results obtained by the accurate description of the inertial electron fluid in the CHIEF code. In particular, we have simulated the evolution of two dimensional collisionless plasma turbulence utilizing CHIEF, which is genuinely a three-dimensional code, in a quasi-two dimensional mode by reducing the spatial resolution in the third dimension to four-grid points. CHIEF simulations allowing variations in all three spatial dimensions will be presented in a forthcoming publication. CHIEF is suitable to assess the validity of describing the electron inertia by different approximations as it does not use any of them itself.

We also compare the results of the CHIEF simulations obtained for inertial and inertia-less electron fluids to understand the role of the electron inertia. Our simulations have shown that the commonly used approximate descriptions of electron inertia are inapplicable to simulate the physical processes of collisionless plasma turbulence in two dimensions. The paper is organized as follows: in Sec. II we present a short description of the hybrid-kinetic plasma model used by CHIEF. In Sec. III we discuss the numerical implementation of the MPI-based parallelization of CHIEF. The simulation setup is presented in Sec. IV. Sec. V contains the results of simulations of collisionless plasma turbulence and an assessment of the validity of the commonly used electron-inertia related approximations. We summarize our results in Sec. VI. In Appendix A we present a basic performance assessment of CHIEF and of its scalability using a few thousand CPU cores for spatial grid-resolutions up to $4096 \times 4096 \times 4$ grid points and for up to 500 protons per cell. The discretization of a second order elliptic partial differential equations without cross derivative terms used by CHIEF is presented in Appendix B.
II. HYBRID-KINETIC PLASMA MODEL WITH ELECTRON INERTIA

The PIC-hybrid code CHIEF treats ions as Lagrangian macro-particles modelled via the Particle-in-Cell (PIC) method and electrons as an Eulerian fluid with finite mass and temperature. The position \vec{x}_i^p and velocity \vec{v}_i^p of each ion macro-particle (the index “p” denotes each numerical macro-particle, while “i” indicates ions as a plasma species), representing a large number of physical ions, are obtained from:

$$\frac{d\vec{x}_i^p}{dt} = \vec{v}_i^p, \quad (1)$$

$$m_i \frac{d\vec{v}_i^p}{dt} = e(\vec{E}^p + \vec{v}_i^p \times \vec{B}^p). \quad (2)$$

Here, e and m_i are the fundamental charge and mass of a physical ion, respectively. The electric and magnetic field at the particles’ position, \vec{E}^p and \vec{B}^p respectively, are calculated from the electric and magnetic fields on the numerical grid employing an appropriate weighting scheme. The ion number density n_i and the ion current density \vec{j}_i on the numerical grid is obtained from the particles’ positions and velocities employing the same weighting scheme (See Muñoz et al.33 for details). The electric and magnetic fields on the grid, \vec{E} and \vec{B}, are obtained using n_i, \vec{j}_i and the ion bulk velocity $\vec{u}_i = \vec{j}_i/en_i$. The electric field on the grid, \vec{E}, is calculated from the generalized Ohm’s law with the electron inertial and resistive terms included.

$$\vec{E} = -\vec{u}_e \times \vec{B} - \frac{1}{en} \nabla p_e - \frac{m_e}{e} \left(\frac{\partial \vec{u}_e}{\partial t} + (\vec{u}_e \cdot \nabla)\vec{u}_e \right) + \eta \vec{j}. \quad (3)$$

Here, $\vec{u}_e = \vec{u}_i - \vec{j}/en$ is the electron bulk velocity, p_e the scalar electron pressure, $n = n_i$ the electron and ion number density, $\vec{j} = \nabla \times \vec{B}/\mu_0$ the total current density (neglecting the displacement current in the Ampère’s law, an appropriate assumption for frequencies much lower than the electron plasma frequency) and $\eta = m_e \nu/(e^2 n)$ the collisional resistivity with ν the electron-ion collision frequency and m_e the electron mass. The magnetic field on the grid is obtained by first solving an evolution equation for the generalized vorticity $\vec{W} = \nabla \times \vec{u}_e - e\vec{B}/m_e$,

$$\frac{\partial \vec{W}}{\partial t} = \nabla \times \left[\vec{u}_e \times \vec{W} \right] - \nabla \times \left(\nabla p_e \right)/m_e - \nabla \times \left(\frac{\nu}{en} \vec{j} \right). \quad (4)$$
Equation (4) is obtained by taking the curl of Eq. (3) and using Faraday’s law to eliminate the electric field. The magnetic field is then calculated by solving an elliptic partial differential equation (PDE) which is obtained by substituting for \vec{u}_e from Ampere’s law $\vec{u}_e = \vec{u}_i - \nabla \times \vec{B} / (\mu_0 e n)$ in the expression for $\vec{W} = \nabla \times \vec{u}_e - e\vec{B} / m_e$.

$$\frac{1}{\mu_0 e} \nabla \times \left(\frac{\nabla \times \vec{B}}{n} \right) + \frac{e\vec{B}}{m_e} = \nabla \times \vec{u}_i - \vec{W}. \quad (5)$$

Here μ_0 is the magnetic permeability of vacuum. The scalar electron pressure p_e is given by the isothermal equation of state,

$$p_e = n_e k_B T_e, \quad (6)$$

with k_B the Boltzmann constant and T_e the electron temperature, constant in time. Note that if the temperature T_e is spatially uniform, the second term on the RHS of Eq. (4) vanishes. In our hybrid simulation model, we solve Eqs. (1)-(6) without making any of the bulk electron inertia related approximations used in other hybrid-kinetic codes33.

III. NUMERICAL IMPLEMENTATION AND PARALLELIZATION

The simulation model discussed in Sec. II was numerically implemented in the CHIEF code33 by combining the particle-in-cell (PIC) code ACRONYM34 (http://plasma.nerd2nerd.org/) with an electron-magnetohydrodynamics (EMHD) code35,36. The numerical algorithms and their implementation and validation were described in detail in Ref.33. The CHIEF code now comprises the following updates:

The code is now fully parallelized by a two-dimensional ("pencil") domain decomposition of the computational grid based on the Message Passing Interface (MPI) standard, and thus overcomes a substantial performance bottleneck of the original version where the EMHD part of the code was still computed in serial on a single processor core. This entailed a replacement of the MUDPACK library of PDE solvers, which we used to solve the elliptic equation (Eq. (5)), by the HYPRE37 library which provides a comprehensive collection of general-purpose, scalable linear solvers and multi-grid methods (for details the reader is referred to the HYPRE user manual available at https://hypre.readthedocs.io/en/latest/ch-intro.html). To this end, Eq. (5) was discretized to obtain a system
of algebraic equations with periodic boundary conditions (cf. Appendix B). The discretized
equations are passed to HYPRE through its linear-algebraic (IJ matrix form) interface which
provides access to various sparse-matrix solvers, and preconditioners such as BoomerAMG,
AMS, Euclid, GMRES, BiCGSTAB, etc. CHIEF provides an interface to the BoomerAMG
solver, and a hybrid solver (BoomerAMG preconditioner with PCG, GMRES, or BiCGSTAB
solver), and other solvers supported by the HYPRE library can easily be integrated.

Moreover, we replaced the method for solving the three dimensional partial differential
equation, Eq. (4), which in the original CHIEF code employed the one-dimensional flux-
corrected transport solver (LCPFCT library38) via dimensional splitting, by a more accurate,
three dimensional flux-corrected transport solver, LCPFCT339, which does not rely on the
dimensional splitting approximation and in addition turned out to be more scalable for
our purposes. We modernized the LCPFCT3 code and added support for the runtime
definition of grid size and other parameters, and for the initialization and finalization of
time-independent quantities in order to avoid redundant computations in consecutive calls
to the LCPFCT3 solver.

IV. SIMULATION SETUP

We initialize the 2-D simulations in a y-z plane with random phased fluctuations of
magnetic field and plasma velocity imposed on an isotropic background plasma of uniform
density n_0. A uniform magnetic field $B_0 \hat{x}$ is applied perpendicular to the simulation plane.
Magnetic field fluctuations are calculated from the magnetic vector potential

$$\hat{A} = \hat{x} \sum_{k_y,k_z} \delta A_x(k_y,k_z) \sin(k_y y + k_z z + \phi(k_y,k_z)),$$

where k_y and k_z are wave numbers in the y- and z-direction, respectively, and ϕ is the wave-
number dependent random phase. The amplitude δA_x of the magnetic vector potential is
so chosen that the amplitude of the perpendicular magnetic field fluctuation $\delta B_\perp = \delta A_x k_\perp$
is independent of the wave number $k_\perp = (k_y^2 + k_z^2)^{1/2}$, i.e., all initialized modes have the
same energy. Here we used the subscripts “ \perp ” and “ $||$ ” to denote the components of a
vector quantity perpendicular and parallel to the applied magnetic field $B_0 \hat{x}$, respectively.
Plasma velocity fluctuations have the same form as the magnetic field fluctuations except
the random phases so that the magnetic and velocity fluctuations have vanishing correlation
but an equi-partition of energy.

We initialize fluctuations in the wave number range $|k_{y,z}d_i| < 0.2$ ($k_{y,z} \neq 0$) to have a root-mean-square value $B_{\text{rms}}/B_0 = 0.24$. Here $d_i = v_{Ai}/\omega_{ci}$, $v_{Ai} = B_0/\sqrt{\mu_0 n_0 m_i}$ and $\omega_{ci} = eB_0/m_i$ are the inertial length, Alfvén velocity and cyclotron frequency of ions, respectively. The electron and ion plasma beta are $\beta_e = 2\mu_0 n_0 k_B T_e/B_0^2 = 0.5$ and $\beta_i = 2\mu_0 n_0 k_B T_i/B_0^2 = 0.5$, respectively. Here T_e and T_i are electron and ion temperatures, respectively. Simulations are carried out for the ion to electron mass ratio $m_i/m_e = 25$. The simulation box size in the y-z plane $102.4d_i \times 102.4d_i$ is resolved by 1024×1024 grid points (giving a grid spacing of 0.5 d_e in each direction where the electron inertial length $d_e = (m_i/m_e)^{-1/2}d_i$) and the number of particles per cell is 500. The time step is $\Delta t = 0.25 \omega_{ce}^{-1}$. We take the plasma resistivity to be zero. We also carry out simulations for inertia-less electrons to compare with the results obtained for inertial electrons. The grid resolution for the inertia less simulations is 0.1 d_i with 1024 grid points in each of the y- and z-directions. The time step is $\Delta t = 0.002\omega_{ci}^{-1}$ to satisfy the Courant (CFL) conditions for grid scale whistler waves. The number of particles per cell is also 500. Boundary conditions are periodic in all directions.

V. SIMULATIONS OF COLLISIONLESS PLASMA TURBULENCE

Figure 1 shows the evolution of the root-mean-square (RMS) values of the perpendicular magnetic field (b_{rms}^{\perp}) and parallel current density ($J_{\text{rms}}^{||}$) for the cases with inertia-less and inertial ($m_i/m_e = 25$) electrons. The initial evolution up to $\omega_{ci}t \approx 10$ is more or less similar for the simulations with inertia-less and inertial electrons. Later, the evolution for the cases with inertia-less and inertial electrons deviate from each other with the latter reaching slightly smaller values. The peak values of b_{rms}^{\perp} and $J_{\text{rms}}^{||}$ are reached at around $\omega_{ci}t \approx 40$ and 120, respectively, for both the cases of inertial and inertia-less electrons.

A. Effect of electron inertia on the formation of current sheets

Fig. 2 shows the current density parallel to the applied magnetic field for the cases of inertial and inertia-less electrons at $\omega_{ci}t = 40$ and 120 when b_{rms}^{\perp} and $J_{\text{rms}}^{||}$ reach their respective peaks. By $\omega_{ci}t = 40$, the power in the initial random Alfvénic fluctuations in the wave number range $k_{y,z}d_i < 0.2$ has cascaded down to much shorter scales to form current
sheets in the configuration space. The current sheets evolve further and show development of turbulence within them at $\omega_{ci}t=120$ possibly due to the growth of current sheet instabilities.

The parallel current density at a given time in Fig. 2 appears to be quite similar for the inertial and inertia-less electrons. They are, however, different at the finer scales as shown by their line-outs along the lines $z/d_i = -25$ and 25 in Fig. 3. The current density for the case of the inertia-less electrons is typically noisier and spikier than that for the case of the inertial electrons. At $\omega_{ci}t = 40$, the current density for the two cases have more or less the same spatial variation at large scales but different at shorter scales where the current density spikes have higher magnitude for the case of inertia-less electrons. This is due to the role that electron inertia plays at short scales. Current sheets formed in collisionless plasma turbulence tend to thin down to grid scale in the case of inertia-less electrons15,23.

Figure 1. Evolution of the rms values of the perpendicular magnetic field ($b_⊥/B_0$) and parallel current density ($J_||/n_0e\nu_Ai$) for $m_i/m_e = 25$ and $m_i/m_e = \infty$ (inertia-less electrons)
Finite electron inertia interferes with the thinning process of current structures at scales $k_{\perp} d_e \sim 1$ limiting the CSs thicknesses and thus the amplitude of the current density spikes. At $\omega_{ci} t = 120$, the large scale spatial variation of the current density in the two cases can be seen to deviate from each other at selected locations. This could be due to the electron inertia driven instabilities operating in electron scale structures in the case of the inertial electrons.

B. Validity of approximated descriptions of the electron inertia in hybrid-kinetic codes

In this section, we check the validity of two different approximations, referred to as A1 and A2 here, used in the numerical implementation of the electron inertial terms in
hybrid-kinetic codes. In A1, the non-stationary electron inertia term \((m_e/e)\partial\vec{u}_e/\partial t\) in the generalized Ohm’s law, Eq. (3), is neglected when Eq. (3) is directly used for the calculation of the electric field \(^{19,27,28}\). The term is, however, retained to obtain the evolution equation for magnetic field by taking the curl of Eq. (3). This is not entirely self-consistent. We check the effect of neglecting \((m_e/e)\partial\vec{u}_e/\partial t\) in the calculation of electric field from Eq. (3) by comparing the results of our simulations with the results of additional simulations carried out by disabling the \((m_e/e)\partial\vec{u}_e/\partial t\) term in Eq. (3).

Fig. 4 shows the differences in parallel current densities \(\Delta J_\parallel = J_\parallel - J_\parallel'\) at \(\omega_{ci}t = 40\) and 120. Here \(J_\parallel'\) is the parallel current density obtained from simulations additionally carried out by disabling the \((m_e/e)\partial\vec{u}_e/\partial t\) term in Eq. (3). The magnitude of \(\Delta J_\parallel\) is very small in the whole simulation plane except in electron-scale-thin current sheet like regions where it
is a small fraction of \(J_\parallel \) at \(\omega_{ci}t = 40 \) but becomes a significantly large fraction of \(J_\parallel \) later at \(\omega_{ci}t = 120 \) (compare Figs. 4 and 2). The larger magnitude of \(\Delta J_\parallel \) at \(\omega_{ci}t = 120 \) is expected as the term \((m_e/e)\partial \tilde{u}_e/\partial t \) in Eq. (3) is likely to be playing a role only after the electron scale current structure are formed. Thus, the approximation A1 introduces errors at the electron scales in the calculation of the current density.

Figure 4. Difference of parallel current densities \(\Delta J_\parallel = J_\parallel - J'_\parallel \) at \(\omega_{ci}t = 40 \) (left) and 120 (right). Here \(J'_\parallel \) is the parallel current density obtained from simulations by disabling \((m_e/e)\partial \tilde{u}_e/\partial t \) term in Eq. (3).

The approximation A2 is used by hybrid-kinetic codes which solve an elliptic partial differential equation, instead of Eq. (3), for the electric field. The elliptic equation for the electric field can be obtained by taking the curl of Faraday’s law, using Ampere’s law \(\nabla \times \vec{B} = \mu_0 \vec{J} \) and then substituting for \(\partial \vec{J}/\partial t \) which can be obtained from the generalized Ohm’s law,

\[
\nabla \times \nabla \times \vec{E} + \frac{1}{d_e^2} \left(1 + \frac{m_e}{m_i} \right) \vec{E} = -\frac{1}{d_e^2} \left(\tilde{u}_e + \frac{m_e}{m_i} \tilde{u}_i \right) \times \vec{B} \\
+ \frac{1}{ncd_e^2} \left[m_e \nabla \cdot [n (\tilde{u}_i \tilde{u}_i - \tilde{u}_e \tilde{u}_e)] + \frac{m_e}{m_i} \nabla P_i - \nabla p_e \right].
\]

(8)

Here \(P_i \) is the ion pressure tensor. This elliptic partial differential equation has the advantage that it does not have explicit time derivative terms as in Eq. (3). The solution of Eq. (8) is, however, a bit more involved than the solution of Eq. (5) due to the presence of cross-derivative terms in Eq. (8). The cross derivative terms arise from the \(\nabla(\nabla.\vec{E}) \) term.
on the LHS of Eq. (8) as \(\nabla \times \nabla \times \vec{E} = \nabla (\nabla \cdot \vec{E}) - \nabla^2 \vec{E} \). Hybrid-kinetic codes using the approximation A2 neglect the \(\nabla (\nabla \cdot \vec{E}) \) term to obtain a simpler form of the elliptic PDE for the electric field\(^{31}\). There is, however, no \textit{a priori} reason to justify this.

We check the validity of neglecting the \(\nabla (\nabla \cdot \vec{E}) \) term in Eq. (8). Note that our code does not solve Eq. (8) to calculate the electric field. It is, therefore, not possible to directly disable the \(\nabla (\nabla \cdot \vec{E}) \) term in our simulations and compare the simulation results with the term disabled and enabled, as was done to check the approximation A1. We, instead, compare the quantities \(\nabla (\nabla \cdot \vec{E}) \) and \(\nabla^2 \vec{E} \) calculated from the electric field data obtained by solving Eq. (3) in our simulations to find their relative importance.

Figure 5. Gaussian-filtered in-plane components \(E_y/v_{Ai}B_0 \) and \(E_z/v_{Ai}B_0 \) of the electric field for \(m_i/m_e = 25 \) at \(\omega_{ci}t = 120 \).

Calculations of \(\nabla (\nabla \cdot \vec{E}) \) and \(\nabla^2 \vec{E} \) require finding spatial derivatives of the electric field which as obtained from the simulations is noisy, making derivatives noisier. For this reason we smooth the electric field obtained from the simulations by applying to it a Gaussian filter with a standard deviation of four times the grid spacing. Fig. 5 shows the filtered components of the electric field at \(\omega_{ci}t = 120 \).

Fig. 6 shows the components of \(\nabla (\nabla \cdot \vec{E}) \) and \(\nabla^2 \vec{E} \) at \(\omega_{ci}t = 120 \) calculated from the filtered electric field data. The corresponding components of the two quantities are almost cancelling each other. The differences of the corresponding components, shown in Fig. 7, is almost negligible everywhere in the y-z plane and only feebly noticeable in some electron scale structures. Therefore, the two quantities are almost equal at all scales and neglecting \(\nabla (\nabla \cdot \vec{E}) \) while keeping at the same time \(\nabla^2 \vec{E} \) in Eq. (8) is not consistent.
Figure 6. In-plane y- and z-components of $\nabla(\nabla \cdot \vec{E})$ (top row) and $\nabla^2 \vec{E}$ (bottom row) obtained by differentiating the Gaussian-filtered electric field at $\omega_{ci}t = 120$.

In order to confirm that the filtering procedure is not contributing to the cancellation of the two quantities, we show in Fig. 8 two-dimensional histograms of the corresponding components of the two quantities without applying any filter. It is clear from this figure that they have very good linear correlation, thereby, cancelling each other in Eq. (8).

Due to the almost perfect cancellation of the two terms $\nabla(\nabla \cdot \vec{E})$ and $\nabla^2 \vec{E}$, it is tempting to neglect the term $\nabla \times \nabla \times \vec{E} = \nabla(\nabla \cdot \vec{E}) - \nabla^2 \vec{E}$ in Eq. (8). Such a neglect would reduce Eq. (8) to an algebraic equation for the calculation of the electric field, greatly simplifying the numerical algorithm and improving the parallel efficiency of a hybrid code. In order to estimate the impact of neglecting $\nabla \times \nabla \times \vec{E}$ in Eq. (8) using our simulations which solve Eq. (3) instead of Eq. (8), we write $\nabla \times \nabla \times \vec{E} = -\mu_0 \epsilon \partial (n\vec{u}_i - n\vec{u}_e) / \partial t$ using Faraday’s and Ampere’s law and approximate it as $\nabla \times \nabla \times \vec{E} = \mu_0 \epsilon n \partial \vec{u}_e / \partial t$ by neglecting the time derivative of the ion bulk velocity and plasma density at electron scales. Therefore,
neglecting the $\nabla \times \nabla \times \vec{E}$ term in Eq. (8) (in comparison to the second term on the LHS of Eq. (8)) is equivalent to neglecting $(m_e/e)\partial \vec{u}_e/\partial t$ term on the RHS of Eq. (3) (in comparison to \vec{E} on the LHS of Eq. (3)). We have already seen in Fig. 4 that neglecting $(m_e/e)\partial \vec{u}_e/\partial t$ in Eq. (3) impacts the results on electron scales. It is, therefore, not appropriate to neglect the $\nabla \times \nabla \times \vec{E}$ term while calculating the electric field from Eq. (8).
VI. SUMMARY

We employed our recently updated and parallelized three-dimensional PIC-hybrid code CHIEF, which avoids electron inertia related approximations commonly used in hybrid-kinetic codes, to explore the importance of the accurately considered electron inertia. For this sake we carried out simulations of collisionless plasma turbulence in a quasi-two dimensional setup. We checked the validity of two approximations made by previously developed hybrid-kinetic codes to implement electron inertial effects. These two approximations, here referred to as A1 and A2, are made in the calculation of electric field by two different algorithms, one of which obtains the electric field directly from the generalized Ohm’s law (Eq. (3)) and the other via the solution of the elliptic PDE (Eq. (8)). In the approximation A1 the non-stationary electron inertial term \((m_e/e)\partial u_e/\partial t\) in Eq. (3) is neglected. In the approximation A2, \(\nabla(\nabla \cdot E)\) in the expression of \(\nabla \times \nabla \times E = \nabla(\nabla \cdot E) - \nabla^2 E\) is neglected to replace \(\nabla \times \nabla \times E\) by \(-\nabla^2 E\) in Eq. (8). We determined the errors which in approximation A1 are introduced at electron scales. On the other hand, we found that approximation A2 is invalid from ion to electron scales. Hence, results of hybrid-kinetic simulations of collisionless plasma turbulence using either of the two approximations (A1 and A2) need to be interpreted with caution.

A question arises naturally: What is the physical nature of the errors introduced by the approximations A1 and A2 into the description of collisionless plasma turbulence? Hybrid-kinetic simulations with the approximation A1 may miss the essential physics of collisionless dissipation which occurs mainly in and around electron scale current sheets. In fact, hybrid-kinetic simulations with an inertia-less electron fluid have already shown that ion scale current sheets forming in collisionless turbulent plasmas develop strong electron shear flows\(^{15}\). Our hybrid-kinetic simulations with inertial electron fluid now confirm the development of electron shear flows at electron scale current sheets (results not shown here). The electron shear flow at CSs cause sheet tearing, allow magnetic reconnection, and non-tearing plasma instabilities. For them the inertial term \((m_e/e)\partial u_e/\partial t\) in Eq. (3) plays a crucial role\(^{40}\). Two-and-a-half-dimensional fully kinetic PIC code simulations of collisionless magnetic reconnection have shown that the inertial term \((m_e/e)\partial u_e/\partial t\) can contribute to the reconnection electric field in electron scale current sheets\(^{41}\). The question to what degree avoiding approximation A1 affects collisionless dissipation in CSs is now under investigations.
and will be presented separately. Since the CHIEF algorithm does not directly solve Eq. (8), studies of the physical impact of approximation A2 cannot be carried out using CHIEF code alone. A comparison of the results obtained by CHIEF and those obtained by other hybrid-kinetic codes using approximation A2 needs to be carried out for this purpose.

To the best of our knowledge, CHIEF is the first PIC-hybrid code with an accurately described inertial electron fluid to simulate collisionless plasma turbulence. The computational effort required for CHIEF-code simulation runs is comparable with that of other hybrid-kinetic codes (cf. Appendix A), but CHIEF comes with the advantage of the accurate consideration of the electron inertia. Large-scale CHIEF-code simulations in three dimensions and their performance analysis will be presented in a forthcoming publication.

Appendix A: Code performance and parallel scalability

In order to assess the parallel scalability of our new code a number of benchmark simulations were performed with CHIEF, using the setup of the model described in Sec. IV and employing different sizes of the quasi-two dimensional numerical grid ($4 \times 2048 \times 2048$ and $4 \times 4096 \times 4096$). The three-dimensional grid is partitioned across MPI processes using a two-dimensional domain decomposition of the last two dimensions into “pencils” with a height of 4 grid cells each. The number of particles per grid cell was set to 200 and 500.

All calculations were performed on the HPC system Cobra at the Max Planck Computing and Data Facility, the compute nodes of which consist of two Intel Xeon Gold 6148 (“Skylake” architecture) processors with 40 cores per node, operated at the nominal frequency of 2.4 GHz (Turbo mode disabled). The nodes are connected through a 100 Gb/s OmniPath interconnect with a non-blocking fat-tree topology. We used Intel 19.1.3 C++ and Fortran compilers and Intel MPI 2019.7, Intel MKL 2020.4, Blitz++ 1.0.1, and HYPRE 2.22 libraries. Out of several alternatives offered by HYPRE, the hybrid solver (BiCGSTAB with a single step of BoomerAMG preconditioning) was found to provide the best performance for our setup.

The left panel of Fig. 9 shows the run time per time step (average of the first three time steps in 4 different runs) as a function of the number of computing cores (resp. MPI tasks) for two different grid sizes (coloured symbols) up to 10240 cores (256 nodes) with 200 and 500 particles per cell illustrated with solid and dashed-lines, respectively. The black lines
indicate ideal strong scaling, taking the computation time on the minimum number of nodes with 768 GB RAM which could run the calculations as the reference. For the larger grid size \((4 \times 4096 \times 4096)\) with 500 particles per cell the code maintains good strong scalability up to roughly 2560 cores, and is able to at least decrease the run time down to ca. 12 s per time step when using 10240 cores. As expected, deviation from close-to-ideal scaling occurs at smaller core counts for smaller grids or smaller number of particles per cell.

Figure 9. Strong scaling results (run time as a function of compute cores) for the CHIEF code using up to 256 nodes (left panel), and a breakdown into its main algorithmic parts for the \(4 \times 2048 \times 2048\) grid with 500 particles per cell (right panel)

For the grid size of \(4 \times 2048 \times 2048\), the right panel of Fig. 9 shows a breakdown of the strong scaling behaviour into the main algorithmic parts (detailed in Muñoz et al.\(^{33}\)) of CHIEF. When running on a single node, the overall performance of the code is mainly limited by the available memory bandwidth. When increasing the number of nodes, while PIC parts scale virtually perfectly up to 2560 cores (and beyond), the overall strong scalability gets increasingly limited by the less scalable PDE solver in the EMHD part of the code. A detailed analysis has shown that the HYPRE solver is plagued by a significant intrinsic load imbalance beyond a few hundred cores and thus is identified as the main scaling bottleneck for the given setup.

For 2560 compute cores, the CHIEF code takes approximately 6.5 seconds (or 4.6 core-hours) per time step for the numerical grid of size \(4 \times 2048 \times 2048\) and 500 particles per cell. This gives a total computational cost of 0.92 million core-hours for a simulation resolving electron time scales by a time step of \(0.25 \omega_{ci}^{-1}\) \((0.0025 \omega_{ci}^{-1}\) for \(m_i/m_e = 100\)) running
for 500 ω_{ci}^{-1}. By comparison, the largest hybrid simulations (known to the authors) of collisionless plasma turbulence carried out using Vlasov-hybrid code covering this scale range for ion to electron mass ratio $m_i/m_e = 100$ and a 2048^2 numerical grid takes 2 million core-hours\(^{42}\) (see table 1 in the cited reference). This suggests that our CHIEF code requires a similar computational effort for two dimensional simulations as other hybrid-kinetic codes but CHIEF comes with the additional advantage of the accurate numerical implementation of electron inertial terms.

Appendix B: Discretization of a 3-D elliptic partial differential equation

Most general form of a second order elliptic partial differential equation without any cross-derivative term can be written as,

$$
\begin{align*}
&c_{xx} \frac{\partial^2 u}{\partial x^2} + c_{yy} \frac{\partial^2 u}{\partial y^2} + c_{zz} \frac{\partial^2 u}{\partial z^2} + c_x \frac{\partial u}{\partial x} + c_y \frac{\partial u}{\partial y} + c_z \frac{\partial u}{\partial z} + c_e u = r
\end{align*}
$$

(B1)

Here u is the unknown. The coefficients, c_{xx}, c_{yy}, c_{zz}, c_x, c_y, c_z, c_e and the right hand side r are all known functions of (x, y, z). In the code CHIEF, we solve three elliptic equations, one for each component of the magnetic field (Eq. (5)). In all the three equations $c_{xx} = c_{yy} = c_{zz} = 1$ and $c_e = -n_e$. The coefficients c_x, c_y and c_z are different for the three equations. We, however, discretize the general form in Eq. (B1) for the sake of completeness and write the discretized equations in the matrix form suitable for their numerical solution.

We discretize Eq. (B1) on a numerical grid consisting of points represented by indices (i, j, k) with $i = 1, 2, \ldots M$, $j = 1, 2, \ldots N$ and $k = 1, 2, \ldots P$. Here M, N and P are the number of grid points along x, y and z directions, respectively. The two boundary points in each of the x, y, and z directions correspond to $i = (1, M)$, $j = (1, N)$ and $k = (1, P)$.

Using second order central difference formula for the partial derivatives, Eq. (B1) can be discretized at a point (i, j, k) to yield the following algebraic equation.

$$
\begin{align*}
\gamma_{i,j,k}^- u_{i,j,k-1} + \beta_{i,j,k}^- u_{i,j-1,k} + \alpha_{i,j,k}^- u_{i-1,j,k} + \lambda_{i,j,k}^- u_{i,j,k} + \alpha_{i,j,k}^+ u_{i+1,j,k} + \beta_{i,j,k}^+ u_{i,j+1,k} + \gamma_{i,j,k}^+ u_{i,j,k+1} &= r_{i,j,k}
\end{align*}
$$

(B2)
where,

\[
\alpha_{i,j,k}^\pm = \frac{c^{(i,j,k)}_{xx}}{\Delta_x^2} \pm \frac{c^{(i,j,k)}_{x}}{2\Delta_x},
\]

(B3)

\[
\beta_{i,j,k}^\pm = \frac{c^{(i,j,k)}_{yy}}{\Delta_y^2} \pm \frac{c^{(i,j,k)}_{y}}{2\Delta_y},
\]

(B4)

\[
\gamma_{i,j,k}^\pm = \frac{c^{(i,j,k)}_{zz}}{\Delta_z^2} \pm \frac{c^{(i,j,k)}_{z}}{2\Delta_z},
\]

(B5)

\[
\lambda_{i,j,k} = -\left[\frac{2c^{(i,j,k)}_{xx}}{\Delta_x^2} + \frac{2c^{(i,j,k)}_{yy}}{\Delta_y^2} + \frac{2c^{(i,j,k)}_{zz}}{\Delta_z^2} - c_e^{(i,j,k)}\right],
\]

(B6)

Here \(\Delta_x\), \(\Delta_y\) and \(\Delta_z\) are the grid spacing in the \(x\), \(y\) and \(z\) directions, respectively. Varying indices over their full range \((i = 1, \ldots M; j = 1, \ldots N; k = 1, \ldots P)\), Eq. (B2) gives \(N_t = MNP\) number of equations containing terms with \(u\) at ghost points (points outside the boundaries) arising from the index values \(i = 1\) and \(M\), \(j = 1\) and \(N\), \(k = 1\) and \(P\), thus making number of unknowns more than the number of equations. Note that only one of the three indices \((i^*, j^*\) and \(k^*)\) in \(u_{i^*,j^*,k^*}\) will be a ghost index (from the set \([0, M+1, N+1, P+1]\)). The values of \(u\) at ghost points in terms of the internal points have to be obtained from boundary conditions. We apply periodic boundary conditions in all three directions to obtain ghost values in terms of internal values.

\[
u_{0,j,k} = u_{M-1,j,k}, u_{M+1,j,k} = u_{1,j,k}
\]

(B7)

\[
u_{i,0,k} = u_{i,N-1,k}, u_{i,N+1,k} = u_{i,1,k}
\]

(B8)

\[
u_{i,j,0} = u_{i,j,P-1}, u_{i,j,P+1} = u_{i,j,1}
\]

(B9)

Equations (B7), (B8) and (B9) are obtained from the application of periodic boundaries in the \(x\), \(y\) and \(z\) directions, respectively. The system of equations, Eq. (B2), can now be written in matrix form.

\[
\overlambdas \ \overu = \overf.
\]

(B10)

where \(\overlambdas\), \(\overu\) and \(\overf\) are block matrices of sizes \(P \times P\), \(P \times 1\) and \(P \times 1\), respectively. The number of bars over a variable representing a matrix shows the level of nesting of matrices. A single bar denotes a matrix, double bars a matrix of matrices and triple bars a matrix of matrices of matrices. These block matrices and their sub-matrices are the following.
\[\begin{pmatrix} \bar{u}_1 \\ \bar{u}_2 \\ \vdots \\ \bar{u}_{P-1} \\ \bar{u}_P \end{pmatrix}, \quad \begin{pmatrix} \bar{v}_1 \\ \bar{v}_2 \\ \vdots \\ \bar{v}_{P-1} \\ \bar{v}_P \end{pmatrix}, \quad \begin{pmatrix} \bar{w}_1 \\ \bar{w}_2 \\ \vdots \\ \bar{w}_{P-1} \\ \bar{w}_P \end{pmatrix}, \quad \begin{pmatrix} \bar{y}_1 \\ \bar{y}_2 \\ \vdots \\ \bar{y}_{P-1} \\ \bar{y}_P \end{pmatrix}, \quad \begin{pmatrix} \bar{z}_1 \\ \bar{z}_2 \\ \vdots \\ \bar{z}_{P-1} \\ \bar{z}_P \end{pmatrix}, \quad \begin{pmatrix} \bar{t}_1 \\ \bar{t}_2 \\ \vdots \\ \bar{t}_{P-1} \\ \bar{t}_P \end{pmatrix}, \quad \begin{pmatrix} \bar{r}_1 \\ \bar{r}_2 \\ \vdots \\ \bar{r}_{P-1} \\ \bar{r}_P \end{pmatrix} \]
Here $j = 1, 2, \ldots, N$ and $k = 1, 2, \ldots, P$. In the hybrid code CHIEF, we solve system of
equations, Eq. (B2), using HYPRE package of scalable linear solvers37.

ACKNOWLEDGMENTS

The authors acknowledge the support by the German Science Foundation (DFG) projects JA 2680-2-1, MU-4255/1-1, BU 777-16-1 and BU 777-17-1. We acknowledge the developers of the ACRONYM code (Verein zur Förderung kinetischer Plasmasimulationen e.V.).

REFERENCES

1K. H. Kiyani, K. T. Osman, and S. C. Chapman, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences \textbf{373}, 20140155 (2015).
2A. A. Schekochihin and S. C. Cowley, “Turbulence and magnetic fields in astrophysical plasmas,” in \textit{Magnetohydrodynamics: Historical Evolution and Trends} (Springer Netherlands, Dordrecht, 2007) pp. 85–115.
3A. Fujisawa, Proceedings of the Japan Academy, Series B \textbf{97}, 103 (2021).
4E. Marsch, Living Reviews in Solar Physics \textbf{3}, 1 (2006).
5R. Bruno and V. Carbone, Living Rev. Sol. Phys. \textbf{10}, 2 (2013).
6O. Alexandrova, C. Chen, L. Sorriso-Valvo, T. S. Horbury, and S. D. Bale, Space Sci Rev \textbf{178}, 101 (2013).
7C. H. K. Chen, Journal of Plasma Physics \textbf{82}, 535820602 (2016).
8M. L. Goldstein, R. T. Wicks, S. Perri, and F. Sahraoui, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences \textbf{373}, 20140147 (2015).
9L. Matteini, L. Franci, O. Alexandrova, C. Lacombe, S. Landi, P. Hellinger, E. Papini, and A. Verdini, Frontiers in Astronomy and Space Sciences \textbf{7}, 563075 (2020).
10D. Duan, J. He, T. A. Bowen, L. D. Woodham, T. Wang, C. H. K. Chen, A. Mallet, and S. D. Bale, The Astrophysical Journal Letters \textbf{915}, L8 (2021).
11J. C. Kasper, K. G. Klein, E. Lichko, J. Huang, C. H. K. Chen, S. T. Badman, J. Bonnell, P. L. Whittlesey, R. Livi, D. Larson, M. Pulupa, A. Rahmati, D. Stansby, K. E. Korreck, M. Stevens, A. W. Case, S. D. Bale, M. Maksimovic, M. Moncuquet, K. Goetz, J. S. Halekas, D. Malaspina, N. E. Raouafi, A. Szabo, R. MacDowall, M. Velli, T. Dudok de Wit, and G. P. Zank, Phys. Rev. Lett. \textbf{127}, 255101 (2021).
12T. A. Bowen, A. Mallet, S. D. Bale, J. W. Bonnell, A. W. Case, B. D. G. Chandran,
A. Chasapis, C. H. K. Chen, D. Duan, T. Dudok de Wit, K. Goetz, J. S. Halekas, P. R.
Harvey, J. C. Kasper, K. E. Korreck, D. Larson, R. Livi, R. J. MacDowall, D. M. Malaspina,
M. D. McManus, M. Pulupa, M. Stevens, and P. Whittlesey, Phys. Rev. Lett. 125, 025102
(2020).
13S. S. Cerri, D. Grošelj, and L. Franci, Frontiers in Astronomy and Space Sciences 6, 64
(2019).
14D. Grošelj, S. S. Cerri, A. B. Navarro, C. Willmott, D. Told, N. F. Loureiro, F. Califano,
and F. Jenko, The Astrophysical Journal 847, 28 (2017).
15N. Jain, J. Büchner, H. Comişel, and U. Motschmann, The Astrophysical Journal 919,
103 (2021).
16L. Franci, S. Landi, A. Verdini, L. Matteini, and P. Hellinger, The Astrophysical Journal
853, 26 (2018).
17J. Büchner, in Proc. "International School on Space Plasma Simulation", Kyoto, Feb. 2005,
edited by H. Matsumoto, Y. Omura, and H. Usui, Kyoto University Press (Kyoto University
Press, Kyoto, Japan, 2005) pp. 25–30.
18K. Kormann, K. Reuter, and M. Rampp, The International Journal of High Performance
Computing Applications 33, 924 (2019).
19A. S. Lipatov, The Hybrid Multiscale Simulation Technology (Springer-Verlag, Berlin Hei-
delberg, 2002).
20O. Khabarova, T. Sagitov, R. Kislov, and G. Li, Journal of Geophysical Research: Space
Physics 126, e2020JA029099 (2021).
21R. Wang, Q. Lu, R. Nakamura, W. Baumjohann, C. Huang, C. T. Russell, J. L. Burch,
C. J. Pollock, D. Gershman, R. E. Ergun, S. Wang, P. A. Lindqvist, and B. Giles, Geophysical
Research Letters 45, 4542 (2018).
22M. Zhou, J. Huang, H. Y. Man, X. H. Deng, Z. H. Zhong, C. T. Russell, W. R. Paterson,
B. L. Giles, P.-A. Lindqvist, Y. V. Khotyaintsev, and J. L. Burch, The Astrophysical
Journal 872, L26 (2019).
23A. C. Azizabadi, N. Jain, and J. Büchner, Physics of Plasmas 28, 052904 (2021).
24D. W. Forslund and J. P. Freidberg, Phys. Rev. Lett. 27, 1189 (1971).
25D. Hewett and C. Nielson, J. Comput. Phys. 29, 219 (1978).
26D. W. Swift, J. Comput. Phys. 126, 109 (1996).
27M. A. Shay, J. F. Drake, R. E. Denton, and D. Biskamp, J. Geophys. Res. 103, 9165 (1998).
28M. M. Kuznetsova, M. Hesse, and D. Winske, J. Geophys. Res. 103, 199 (1998).
29D. W. Swift and Y. Lin, J. Atmos. Solar-Terrestrial Phys. 63, 683 (2001).
30T. Amano, K. Higashimori, and K. Shirakawa, J. Comput. Phys. 275, 197 (2014).
31F. Valentini, P. Trávníček, F. Califano, P. Hellinger, and A. Mangeney, J. Comput. Phys. 225, 753 (2007).
32J. Cheng, S. E. Parker, Y. Chen, and D. A. Uzdensky, J. Comput. Phys. 245, 364 (2013).
33P. A. Muñoz, N. Jain, P. Kilian, and J. Büchner, Computer Physics Communications 224, 245 (2018), 1612.03818.
34P. Kilian, T. Burkart, and F. Spanier, in High Perform. Comput. Sci. Eng. ’11, edited by W. E. Nagel, D. B. Kröner, and M. M. Resch (Springer Berlin Heidelberg, Berlin, Heidelberg, 2012) pp. 5–13.
35N. Jain, A. Das, P. Kaw, and S. Sengupta, Phys. Plasmas 10, 29 (2003).
36N. Jain, Study of Electron-magnetohydrodynamic (EMHD) Phenomena in Plasmas, Ph.d. thesis, Gujarat University (2006).
37R. D. Falgout and U. M. Yang, in Computational Science — ICCS 2002, edited by P. M. A. Sloot, A. G. Hoekstra, C. J. K. Tan, and J. J. Dongarra (Springer Berlin Heidelberg, Berlin, Heidelberg, 2002) pp. 632–641.
38J. P. Boris, A. Landsberg, E. Oran, and J. Gardner, NRL Memorandum Report 93-7192 (1993).
39S. T. Zalesak, Journal of Computational Physics 31, 335 (1979).
40N. Jain and J. Büchner, Journal of Plasma Physics 81, 905810606 (2015).
41M. Hesse and D. Winske, Journal of Geophysical Research: Space Physics 103, 26479 (1998).
42A. Hu, M. Sisti, F. Finelli, F. Califano, J. Dargent, M. Faganello, E. Camporeale, and J. Teunissen, The Astrophysical Journal 900, 86 (2020).