INTRODUCTION

Oil palm (Elaeis guineensis Jacq.) is planted in an equilateral triangular design with a spacing of 8.50-10.25 m (Corley and Tinker, 2003). There is significant variability in soil properties on the scale of individual palms, caused by plant features and management practices (Anamulai et al., 2019; Tinker, 1960). Oil palm is becoming an increasingly important crop in the tropics (Cramb and Curry, 2012), and accurate evaluation of soil properties under oil palm is crucial to the industry’s productivity and sustainability. Consideration of tree-scale variability is needed for soil condition monitoring, fertiliser application recommendations, and calculations of water, carbon, and nutrient stock (Nelson et al., 2014; 2019).

Soil biodiversity plays a major role in the functioning of the ecosystem, which helps to maintain soil sustainability (Delgado-Baquerizo et al., 2020). However, information on the ecosystem function in different oil palm operational zones is still lacking. According to Carron et al. (2015), the zones around the palms contain varying amounts of soil fauna and nutrients. The samples collected...
in any particular management zone do not describe anything about processes in other zones, which may be important for the palm. As a result of typical management regimes, direct linkage of the operational zones with the soil microbes in an oil palm plantation, which is crucial for many critical ecosystem functions, including nutrient cycling, carbon sequestration and plant nutrient uptake (Schröder et al., 2016), requires further investigation.

This study involves the cultivation and comparison of the bacterial diversity in the peat soil of an oil palm plantation in Pekan, Pahang, Malaysia. The studied area was the four operational zones, which consists of the frond pile (FP), harvesting path (HP), weeding circle (WC), and inter palm row (IPR).

METHODOLOGY

Soil Sampling

A sampling of soil for methanotrophic bacteria diversity study at fertilised oil palm plantation, Pekan, Pahang, Malaysia, was conducted from four operational zones consisting of FP, HP, WC and IPR (Figure 1) in August 2017. Sampling was done at the respective GPS coordinates of 3°26’09.748” N, 103°23’23.555” E, 3°26’10.794” N, 103°23’17.438” E, 3°26’18.062” N, 103°23’19.458” E and 3°26’17.328” N, 103°23’28.560” E at a depth of 0-30 cm. Soil sampling was done in triplicates using a 5 cm internal diameter auger, carefully kept in the ice box, and stored at -80°C for further analysis.

Enrichment Culture

The basal medium, nitrate mineral salts (Whittenbury et al., 1970), was used for bacterial consortium enrichment. One L of the basal medium was sterilised by autoclaving at 121°C for 15 min. Then, a total of 1 g of the soil sample was inoculated into a serum flask filled with a 20% capacity of the basal medium. Methane gas was continuously supplied at 10% (v/v). The culture was stirred at 150 rpm in a shaker incubator and incubated at 30°C for three days.

Isolation of Soil Bacteria

Nitrate mineral salt agar, nutrient agar, soil enriched medium, nitrogen-deficient medium, Pikovskaya medium, Aleksandrov medium, anaerobic medium and actinomycetes medium were used for bacterial isolation using the spread plate method. Isolated colonies were subcultured repeatedly to obtain a single type of isolated bacterial colony. The culture was incubated at 30°C for three days.

Polymerase Chain Reaction (PCR) Amplification of 16S Ribosomal Ribonucleic Acid (16S rRNA) and Purification

Isolates from plate cultures were added into 100 uL of sterilised distilled water and boiled for 10 min at 100°C to lyse the cells and subsequently amplified using PCR. The primer set used was forward (f) primer, 341f (5’-cct-acg-gga-ggc-agc-ag-3’) and reverse (r) primer 907r (5’-ccc-cgt-caa-

Figure 1. Typical operational zones of a mature oil palm plantation. The pattern is repeated throughout the plantation. Operational zones are the frond pile (FP), where pruned fronds are placed, the weeded circle (WC), which is kept bare to facilitate harvesting, the harvest path (HP), upon which fruit is removed from the plantation and workers access for other management practices, and the inter palm row (IPR), is the space between palms.
ttc-att-tga-gtt-t-3') using the PCR program (Muyzer et al., 1993). The PCR was performed in 25 μL of reaction volume with a thermocycler (gradient) containing a succession of 10 pmol of each primer, 100 mM dNTPs, 1X PCR buffer, 50 mM MgCl, 0.3% BSA, and 2.5 units of Taq polymerase. The PCR started with initial denaturation at 94°C for 2 min, 35 cycles of 94°C for 30 s, 52°C for 30 s and 72°C for 30 s, final extension at 72°C for 2 min, and held at 10°C. Eluted DNA from excised agarose gel was purified using QIAquick gel extraction kits (QIAGEN, Inc., Valencia, CA, USA) according to the kit’s protocol.

Sequencing Analysis

The purified PCR products were sent to First Base Laboratories for sequencing. The nucleotide sequences were read using the software ChromasPro (www.technelysium.com.au/ChromasPro.html) and analysed using an online sequence database available at the National Center for Biotechnology Information (NCBI). A sequence similarity search was conducted using the nucleotide-nucleotide basic logic alignment search tool (BLASTn) in the NCBI GenBank database to identify the nearest relatives of the partially sequenced 16S rRNA genes of excised bands.

Statistical and Phylogenetic Analysis

Alpha diversity and principal component analysis (PCA) matrices scatter biplot were performed based on the identified isolated bacteria to compare the bacterial diversity in the soil samples among the four aforementioned operational zones using the PAST software program (Hammer et al., 2001).

The nucleotide sequences determined in this study were aligned, and neighbour-joining trees were constructed using Molecular Evolutionary Genetics Analysis (MEGA) version 7.0 (Kumar et al., 2016). Neighbour-joining phylogenetic trees were constructed based on the 16S rRNA gene by using the Kimura two-parameter substitution model evaluated by 1000 bootstrap samplings of the data, and nodes with bootstrap values were indicated.

RESULTS AND DISCUSSION

Based on the data of total microbes, the Dominance (D) and Berger Parker indices data in Table 1 showed that the Proteobacteria dominated the soil community. This is due to the highest value of Proteobacteria classes compared to other bacterial classes. Among them, β-proteobacteria was the most dominant, followed by α-proteobacteria and γ-proteobacteria. In comparison, the Shannon (H) index (Table 1) shows that bacilli was the most diverse among other bacterial classes.

The relative abundance of the identified bacterial classes was plotted in Figure 2 and the accession number is included in Table 2. The Proteobacteria was the most prevalent phylum amongst the prokaryotic population. Firmicutes was the second most frequent, followed by Actinobacteria. The phylum Bacteroidetes for class Sphingobacteria could only be found in the HP area and was also the only site, which did not harbour the β-proteobacteria. The γ-proteobacteria was found in the highest percentage and could be found within all sites with the highest occurrence in IPR (52%), followed by HP (32%), WC (29%), and FP (10%). The second prevalent class was α-proteobacteria, which mostly appeared in FP (43%), followed by HP (32%), WC (10%), and IPR (5%). β-proteobacteria could be found mostly in WC (14%), IPR (10%), and FP (5%). Bacterial class of bacilli can also be found in peat soil with the percentage occurrence of FP (38%), WC, and IPR both (24%), and HP (21%). Whilst, the percentage of occurrences in class Actinobacteria were WC (24%), HP (11%), IPR (10%), and FP (5%).

PCA was used to correlate the bacterial classes with the operational zones (Figure 3). The differences between the bacterial communities can be seen clearly in the distribution of the bacterial classes. The α-proteobacteria and bacilli were generally clustered together in the FP. Both classes are essential in FP, mainly involved in decomposition and as an additional carbon source (Hirano et al., 2009). The α-proteobacteria was also clustered in HP along with γ-proteobacteria. Most of the known methanotrophs belong to α-proteobacteria and γ-proteobacteria (Semrau et al., 2010). This is an

| TABLE 1. BACTERIAL BIODIVERSITY INDICES FOR 16S rRNA GENE LIBRARIES REPRESENTING PEAT SOIL SAMPLE PEKAN, PAHANG, MALAYSIA |
|---|---|---|---|
| Diversity indices | Actinobacteria | Bacilli | Proteobacteria |
| | Alpha | Beta | Gamma |
| Dominance_D | 0.3288 | 0.2653 | 0.3701 | 0.3817 | 0.3086 |
| Berger-Parker | 0.4800 | 0.3551 | 0.4778 | 0.4828 | 0.4228 |
| Shannon_H | 1.238 | 1.358 | 1.125 | 1.022 | 1.259 |
TABLE 2. SUBMITTED NCBI BLASTn BACTERIAL NAME AND ACCESSION NUMBER

Description	Accession	Description	Accession
Sphingomonas zeae	KX682019.1	Brevibacillus fluminis	NR_116293.1
Sphingomonas paucimobilis	LN867216.1	Serratia sp.	KY848325.1
Sphingomonas zeae strain	KX682019.1	Bacillus thuringiensis	KU180424.1
Methylobacterium radiotolerans	KF777382.1	Bacillus cereus	KY029074.1
Stenotrophomonas sp.	KY084474.1	Pseudarthrobacter equi	LTT92779.1
Methylobacterium radiotolerans	KT923692.1	Bacillus sp.	JX327175.1
Pseudarthrobacter defluvii	KY882049.1	Pseudomonas stutzeri	KF318832.1
Stenotrophomonas sp.	KY084474.1	Bacillus megaterium	FJ914677.1
Sphingomonas zeae	KX682019.1	Brevibacillus parachiuni	KU212113.1
Methylobacterium radiotolerans	KF777382.1	Bacillus flexus	KX853169.1
Luteibacter jiangsuensis	JN592614.1	Mesorhizobium soli	NR_145552.1
Stenotrophomonas maltophilia	JN592614.1	Luteibacter jiangsuensis	KY029044.1
Methylobacterium radiotolerans	KF777382.1	Burkholderia sp.	JQ316420.1
Pauenibacillus barengoltizii	KP704353.1	Dyella yeojuensis	FN796854.1
Arthrobacter defluvii	FN908791.1	Bacillus amylophilicus	AB739898.1
Stenotrophomonas maltophilia	JN592614.1	Serratia marcescens	KU522248.1
Stenotrophomonas sp.	KY084474.1	Serratia sp.	KY848325.1
Luteibacter jiangsuensis	KY029044.1	Rhizobium sp.	KU097063.1
Luteibacter jiangsuensis	KY029044.1	Methylobacterium radiotolerans	KY882119.1
Staphylococcus sp.	KF777547.1	Sphingomonas sp.	FR872453.1
Bacillus koreensis	KT986105.1	Octobactrum sp.	HQ652578.1
Staphylococcus epidermidis	KRR809423.1	Luteibacter jiangsuensis	KY029044.1
Bacillus subtilis	JQ246902.1	Luteibacter jiangsuensis	KY029044.1
Bacillus subtilis	KX453903.1	Dyella yeojuensis	FN796854.1
Staphylococcus sp.	KX865751.1	Methylobacterium oryzae	AY683046.1
Bacillus subtilis	KX453903.1	Methylobacterium radiotolerans	KF777382.1
Arthrobacter chlorophenolicus	GU326384.1	Ralstonia sp.	KF777622.1
Moraxellaceae bacterium	KF777626.1	Dyella japonica	AM268334.1
Micrococcus luteus	LN884071.1	Methylobacterium radiotolerans	KF777382.1
Arthrobacter sp.	KY476117.1	Luteibacter jiangsuensis	KY029044.1
Pseudarthrobacter defluvii	KY882049.1	Amycolatopsis sp.	KP232907.1
Pandoraea theoculosans	CP014839.1	Streptomyces diastaticus	KY458979.1
Moraxellaceae bacterium	KF777626.1	Burkholderia soli	KPS87356.1
Moraxella osloensis	LT718623.1	Luteibacter jiangsuensis	KY029044.1
Arthrobacter sp.	KY476117.1	Brevundimonas aurantiaca	KC429645.1
Brevibacillus fluminis	KP958491.1	Methylobacterium oryzae	AY683046.1
Bacillus altitudinis	KYS82045.1	Pedobacter cryoconitis	KCS08065.1
Brevibacillus fluminis	NR_116293.1	Massilia aurea	LT718650.1
Staphylococcus hominis	KF777547.1	Oxalobacteraceae bacterium	KM274103.1
Spirometra eriaceecurvata	LN020105.1	Pseudomonas luteola	KX301304.1
Bacillus altitudinis	KYS82045.1	Dyella japonica	AM268334.1
Brevibacillus sp.	KU578096.1		
exciting discovery since both bacterial classes were also reported to co-dominate the active methane-oxidising communities in an acidic boreal peat bog (Esson et al., 2016). The soil structure in HP usually has a higher bulk density to facilitate the movement of labour and equipment on the plantation (Melling and Henson, 2011). Actinobacteria and ß-proteobacteria were both clustered together in WC, whereas γ-proteobacteria was only clustered in IPR. WC-clustered actinobacteria can play critical roles in various plant growth-promoting attributes, such as phosphorus solubilisation, potassium and zinc, and biological nitrogen fixation (Yadav and Yadav, 2019). Both HP and IPR showed the prevalent cluster of γ-proteobacteria. Further research needs to be conducted to unravel the role of γ-proteobacteria in methane mitigation in these two operational zones and oil palm plantations subsequently.

Phylogenetic tree indicated the presence of 56 bacterial species isolated from peat soil is shown in Figure 4. This phylogenetic tree was constructed based on similar nucleotide sequences using BLASTn, Kimura two-parameter algorithm, and the neighbour-joining method. The major phyla of Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes are shown and clustered. The abundance presence of bacterial genus under the class of α-proteobacteria and γ-proteobacteria would be related to previous studies on their contribution to the global nutrient cycle. According to Aislabie and Deslippe (2013), the important genus isolated for α-proteobacteria was among the heterotroph and methanotrophs. The genera include Methylobacterium, Mesorhizobium, Rhizobium, and Sphingomonas. Methylobacterium plays a major role as a soil methane oxidiser. Both Mesorhizobium and Rhizobium have dual functions as nitrogen fixers and form a symbiotic relationship with legumes. In contrast, Sphingomonas can degrade toxic compounds like pentachlorophenol and polyaromatic hydrocarbons. The Pseudomonas genus in γ-proteobacteria was implicated in oil degradation studies. Under aerobic conditions, isolated Pseudomonas genes and enzymes can degrade alkanes, monoaromatics, naphthalene, and phenanthrene as a sole carbon source (Martirani-Von Abercron et al., 2017).
Figure 4. Phylogenetic tree derived from microbes isolated from peat soil at Pekan, Pahang, Malaysia. The tree was constructed based on similar nucleotide sequences using BLASTn, Kimura two-parameter algorithm and the neighbour-joining method. Bootstrap values (expressed as percentage of 1000 replications) are reported at each node. The scale bar indicates 0.1 substitutions per nucleotide positions.
CONCLUSION

Phylum Proteobacteria dominated the peat soil in Pekan, Pahang, Malaysia. Proteobacteria, comprised of α-proteobacteria, β-proteobacteria, and γ-proteobacteria, were the most dominant bacterial class in the FP, HP, WC, and IPR. The Proteobacteria community that inhabits the aforementioned operational zones is the crucial indicator of nutrient cycling, carbon sequestration and plant nutrient uptake for sustainable soil in oil palm plantations.

ACKNOWLEDGEMENT

The authors would like to give the utmost gratitude to the Director-General of MPOB and the Director of Biology and Sustainability Research Division for permission to publish this article. Special thanks also go to the Entomology and Integrated Pest Management Group for their assistance and commitment in completing this study.

REFERENCES

Aislabie, J and Deslippe, J R (2013). Soil microbes and their contribution to soil services. Manaaki Whenua Press. Lincoln, New Zealand. p. 148-156.

Anamulai, S; Sanusi, R; Zubaid, A; Lechner, A M; Ashton-Butt, A and Azhar, B (2019). Land use conversion from peat swamp forest to oil palm agriculture greatly modifies microclimate and soil conditions. PeerJ., 7: e7656.

Carron, M P; Auriac, Q; Snoeck, D; Villenave, C; Blanchart, E; Ribeyre, F; Marichal, R; Darmiento, M and Caliman, J P (2015). Spatial heterogeneity of soil quality around mature oil palms receiving mineral fertilization. Eur. J. Soil Biol., 66: 24-31.

Corley, R H V and Tinker, P B (2003). The Oil Palm. Fourth edition. Blackwell Science. Oxford. p 284.

Cramb, R and Curry, G N (2012). Oil palm and rural livelihoods in the Asia-Pacific region: An overview. Asia Pac. Viewp., 53: 223-239.

Delgado-Baquerizo, M; Reich, P B; Trivedi, C; Eldridge, D J; Abades, S; Alfaro, F D; Bastida, F; Berhe, A A; Cutler, N A; Gallardo, A; García-Velázquez, L; Hart, S C; Hayes, P E; He, J Z; Hseu, Z Y; Hu, H W; Kirchmaier, M; Neuhauser, S; Pérez, C A; Reed, S C; Santos, F; Sullivan, B W; Trivedi, P; Wang, J T; Weber-Grullon, L; Williams, M A and Singh, B K (2020). Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol., 4(2): 210-220.

Esson, K C; Lin, X; Kumaresan, D; Chanton, J P; Murrell, J C and Kostka, J E (2016). Alpha-and gamma-proteobacterial methanotrophs codominate the active methane-oxidizing communities in an acidic boreal peat bog. Appl. Environ. Microbiol., 82(8): 2363-2371.

Hammer, Ø; Harper, D A T and Ryan, P D (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron, 4: 9.

Hirano, T; Jauhiainen, J; Inoue, T and Takahashi, H (2009). Controls on the carbon balance of tropical peat lands. Ecosystems, 12: 873-887.

Kumar, S; Stecher, G and Tamura, K (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol., 33(7): 1870-1874.

Martirani-Von Abercron, S M; Marín, P; Solsona-Ferraz, M; Castañeda-Catana, M A and Marqués, S (2017). Naphthalene biodegradation under oxygen-limiting conditions: Community dynamics and the relevance of biofilm-forming capacity. Microb. Biotechnol., 10(6): 1781-1796.

Melling, L and Henson, I E (2011). Greenhouse gas exchange of tropical peatlands - A review. J. Oil Palm Res., 23: 1087-1095.

Muyzer, G; de Waal, E C and Uitterlinden, A G (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol., 59(3): 695-700.

Nelson, P N; Webb, M J; Banabas, M; Nake, S; Goodrick, I; Gordon, J; O’grady, D and Dubos, B (2014). Methods to account for tree-scale variability in soil-and plant-related parameters in oil palm plantations. Plant Soil, 374: 459-471.

Nelson, P; Webb, M; Huth, N; Banabas, M; Sheaves, M; Johnston, R; Mcneill, A; Nake, S; Pipai, R; Koczberski, G and Davies, K (2019). Project sustainable management of soil and water resources for oil palm production systems in PNG. ACIAR Final Reports. FR2019/101.

Schröder, J J; Schulte, R P O; Creamer, R E; Delgado, A; van Leeuwen, J; Lehtinen, T; Rutgers, M; Spiegel, H; Staes, J; Töth, G and Wall, D P (2016). The elusive role of soil quality in nutrient cycling; A review. Soil Use Manage., 32(4): 476-486.
Semrau, J D; Dispirito, A A and Yoon, S (2010). Methanotrophs and Copper. *FEMS Microbiol. Rev.*, 34: 496-531.

Tinker, P B H (1960). Soil heterogeneity and sampling procedure under oil palms. *J. West Afr. Inst. Oil Palm Res.*, 4: 7-15.

Whittenbury, R; Phillips, K C and Wilkinson, J F (1970). Enrichment, isolation and some properties of methane-utilizing bacteria. *Microbiology*, 61: 205-218.

Yadav, N and Yadav, A N (2019). Actinobacteria for sustainable agriculture. *J. Appl. Biotechnol.*, 6(1): 38-41.