Exploring the role of lipids in intercellular conduits: breakthroughs in the pipeline
Elise Delage, Chiara Zurzolo

To cite this version:
Elise Delage, Chiara Zurzolo. Exploring the role of lipids in intercellular conduits: breakthroughs in the pipeline. Frontiers in Plant Science, Frontiers, 2013, 4 (504), pp.1-7. 10.3389/fpls.2013.00504 . hal-01111547

HAL Id: hal-01111547
https://hal.archives-ouvertes.fr/hal-01111547
Submitted on 30 Jan 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Exploring the role of lipids in intercellular conduits: breakthroughs in the pipeline

Elise Delage* and Chiara Zurzolo*

Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Innfection, Institut Pasteur, Paris, France

Correspondence: Elise Delage* and Chiara Zurzolo*, Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Innfection, Institut Pasteur, 25, Rue du Docteur Roux, 75248 Paris Cedex 15, France

e-mail: elise.delage@pasteur.fr; chiara.zurzolo@pasteur.fr

INTRODUCTION

The existence of “cytoplasmic bridges” between plant cells was first reported by Tangl (1880). These structures, later named “plasmodesmata” (PDs), are thin plasma-membrane lined pores embedded in the cell wall and allowing direct cell-to-cell transmission of materials and signals (Kragler, 2013). More recently, the discovery that many different mammalian cell types can also be connected by cytoplasmic bridges, namely tunneling nanotubes (TNTs; Figure 1A), suggests that this type of communication is not a hallmark of plant cells (Rustom et al., 2004; Rustom, 2009). Like PDs, TNTs are thin membranous channels supported by the actin cytoskeleton mediating intercellular communication through cytoplasmic continuity (Figures 1B,C). These structures are dynamic and heterogeneous and contrary to other types of membrane protrusions, such as filopodia, do not touch the substrate in cell culture (Rustom et al., 2004; Abounit and Zurzolo, 2012). Although the lack of known molecular markers hampers the identification of TNTs within tissues, several recent studies described the presence of TNT-like structures in vivo (Chinnery et al., 2004; Pyragi et al., 2010; Lou et al., 2012; Seyé-Drazè et al., 2013). If TNT diameter (∼50 nm) is comparable to PD diameter (∼100 nm), TNT length is highly variable and can extend up to several cell diameters (∼100 μm), whereas the length of PD is determined by the cell wall thickness (Gerdes et al., 2007). Another difference between the two structures is that TNTs lack the central desmotubule (membranous rod of appressed endoplasmic reticulum), which is typical of most PDs (Figures 1B,C).

In addition, while primary PDs result from incomplete cell plate formation during cytokinesis, TNTs, like secondary PDs, are formed de novo and can be observed between heterotypic cells (Gerdes et al., 2007). Therefore TNTs are very dynamic structures which can be formed after cells previously in contact detach from one another, or can arise from the extension of filopodia-like protrusions toward neighboring cells (Abounit and Zurzolo, 2012; Kimura et al., 2012). Although some early steps in TNT genesis have been highlighted, the molecular pathways involved in their formation are still unclear (Marzo et al., 2012; Gouasset et al., 2013). In addition, the structural (e.g., length/diameter, presence of microtubules, open-endedness) and functional (e.g., type of transferred cargoes/signals) diversity observed among TNT-like structures in various cell types suggests that they may also differ in their formation mechanisms (Abounit and Zurzolo, 2012). A wide variety of cellular materials, such as cytoplasmic molecules, plasma membrane (PM) components, vesicles derived from various organelles, and even whole organelles (e.g., mitochondria) have been shown to transfer through TNTs (Marzo et al., 2012; Gerdes et al., 2013). Furthermore, TNTs can be “hijacked” by different pathogens, such as bacteria, viruses, or prions, and might represent a general way for pathogen spreading (Hurtig et al., 2010; Marzo et al., 2012). Therefore these structures attracted much attention in cell biology over the last decade. While some TNT constituents, such as actin and myosin which are also found in PDs, have been identified (Abounit and Zurzolo, 2012), the lipid composition of their membrane remains largely unknown. Nevertheless, this question is of major interest because the peculiar conformation of intercellular conduits like TNTs and PDs suggests that lipids play crucial roles in their establishment and function. Indeed, although lipids have for a long time been considered as...
Delage and Zurzolo Lipid roles in intercellular conduits

FIGURE 1 | Intercellular conduits in mammalian and plant cells. (A) Picture of a TNT connecting two neuronal CAD cells in culture. Cells were stained with wheat germ agglutinin in order to visualize TNT membrane, then fixed, and imaged by spinning-disc fluorescence microscopy. White arrow indicates a TNT connecting two remote cells. Scale bar = 5 μM. Schematic representations of a TNT (B) and a PD (C). PM = plasma membrane, CW = cell wall, ER = endoplasmic reticulum, red circles = actin-based cytoskeleton. Note the absence of a midbody, which excludes the possibility that this structure could be an intercellular bridge.

Lipid roles in intercellular conduits

Passive building blocks of cellular membranes, their active role in many cellular processes such as membrane trafficking, cytoskeleton remodeling and signaling, is now widely recognized (Takenawa and Itoh, 2001; Wenk, 2005). Specifically, some membrane lipids, such as phosphoinositides or sphingolipids, can be precursors of signaling molecules and can also directly interact with proteins, thus regulating their activity or subcellular location (Wenk, 2005; Delage et al., 2013). In addition, lipids can segregate in membrane nano and microdomains such as rafts, “small (10–200 nm), heterogeneous, highly dynamic, sterol- and sphingolipid-enriched domains that compartmentalize cellular processes” (Pike, 2006; Simons and Sampaio, 2011) involved in many biological events (Somurini and Preinetti, 2013).

The present review aims to emphasize the multiple different functions that lipids might exert in TNTs and to summarize the current knowledge on this topic. In addition, we will discuss some of the promising imaging techniques that might be crucial to decipher lipid organization within nanotubular intercellular conduits such as TNTs or PDs.

MEMBRANE LIPIDS AS POSSIBLE KEYSTONES OF TNT STRUCTURE AND FUNCTION: THE PREMISES

It is noteworthy that, similar to PD membrane, the membrane delimiting TNTs is characterized by a strong curvature, which suggests that its lipid composition differs from the surrounding PM (Figure 2A). Indeed, different studies using artificial membrane nanotubes and theoretical predictions highlighted the reciprocal influence of membrane curvature and lipid segregation (Callan-Jones et al., 2011; Kabas et al., 2012). Lipid sorting can reduce the energy cost of membrane bending, which depends on the deformability of the bilayer and on the molecular shape of its lipid components (Callan-Jones et al., 2011; Lokar et al., 2012). Interestingly, several recent papers indicated that the clustering of lipid and protein nanodomains with an affinity for highly curved membrane regions may induce a tubular budding of the membrane, even in absence of a pushing or pulling force from the cytoskeleton (Figure 2B; Farsad and Camilli, 2003; Gimsa et al., 2007; Iglic et al., 2007; Römer et al., 2007). The accumulation of specific membrane domains (or rafts) enriched in proteins that preferentially localize to cylindrical membrane protrusions and generate anisotropy, like the membrane protein prominin, could also be crucial for the stability of those structures (Iglič, 2006; Veranič et al., 2008; Hurtig et al., 2010; Kabas et al., 2012). In addition, an enrichment of ordered lipid domains could influence TNT transfer function by restricting the lateral diffusion of membrane components or by targeting membrane proteins, such as glycosylphosphatidylinositol (GPI)-anchored proteins, to TNTs for intercellular transfer (Figure 2C; Veranič et al., 2008; Tilsner et al., 2010). Interestingly, the presence of rafts in filopodia and other membrane protrusions has been highlighted (Corbeil et al., 2001; Huttner and Zimmerberg, 2001; Gupta and DeFranco, 2003). Furthermore a possible enrichment of membrane rafts in PDs have been reported (Tilsner et al., 2010; Cacas et al., 2012) suggesting that this could be a common feature of thin tubular membrane structures.

Lipid constituents of the PM can also influence its curvature via their tight interplay with membrane-bending proteins,
such as Bin/amphiphysin/Rvs (BAR) domain-containing proteins (Figure 2A; Rao and Haucke, 2011). In contrast to other members of the BAR domain family which generate membrane invaginations, inverse BAR (I-BAR) domains recognize negative curvature and induce membrane protrusions (Saarikangas et al., 2009). I-BAR proteins have been implicated in filopodia generation in different cell types (Millard et al., 2005; Mattila et al., 2007; Saarikangas et al., 2009) and might play a similar role in TNT formation. The I-BAR domain electrostatically interacts with negatively charged phospholipids, with a stronger affinity for phosphatidylinositol 4,5-biphosphate (PI(4,5)P2) (Figure 2A; Mattila et al., 2007; Saarikangas et al., 2009). Interestingly, I-BAR proteins can also bind many different regulators of the actin cytoskeleton and their main role in filopodia formation may be achieved through the coupling of membrane protrusion and actin filament formation (Figure 2D; Ahmed et al., 2010).

The structural and functional relation between the actin cytoskeleton and lipid constituents of the PM is far from being limited to I-BAR proteins. It has been suggested that components of the actin cytoskeleton exert an ordering effect on the lipid bilayer and could contribute to assemble membrane protrusions (Chichili and Rodgers, 2009; Gowrishankar et al., 2012). Various raft structural and functional features require an intact actin cytoskeleton. In turn, proteins and lipids involved in cytoskeleton regulation or anchorage to the PM are found associated with rafts (Figure 2D). Notably, the inner leaflet of membrane rafts is enriched with phosphoinositides, such as PI(4,5)P2 and phosphatidylinositol 3,4,5-trisphosphate (PIP3), which emerged as major regulators of cytoskeleton structure and dynamics (Saarikangas et al., 2010). In a nutshell, phosphoinositides positively regulate proteins that promote actin polymerization and inhibit proteins that induce filament disassembly (Figure 2D). They also contribute to anchor actin filament to the PM through protein linkers, such as ezrin-radixin-moesin (ERM) protein, key proteins in the formation of PM protrusions (Chichili and Rodgers, 2009; Saarikangas et al., 2010). Specifically, the role of PI(4,5)P2 and PIP3 in filopodia formation, in relation with the actin cytoskeleton, has been widely documented (Arjonen et al., 2011; Khurana and George, 2011). Interestingly, sphingosine 1-phosphate can...
The formation of TNTs involves lipid organization in the membrane of intercellular conduits. In addition, recent data obtained in our laboratory using CAD cells, a mouse neuronal cell line of catecholaminergic origin, also suggested the importance of PIP2 for TNT generation (Gousset et al., 2013). It was shown that expression of the unconventional molecular motor myosin 10 (Myo10) increases the number of functional TNTs and the vesicle transfer between connected cells. A point mutation in the second pleckstrin homology of Myo10, which impairs its binding to PIP2, hindered the ability of Myo10 to induce TNT formation. Thus, in accordance with what has been reported for filopodia (Planta et al., 2010; Lu et al., 2011), Myo10 recruitment to the PM through PIP2 binding seems to be necessary for Myo10 role in TNT induction. However, contrary to what has been shown for astrocytes, no correlation between Akt activation and TNT formation has been observed in CAD cells, suggesting a PI3K dependent but Akt independent pathway (Gousset et al., 2013).

MEMBRANE LIPIDS AS POSSIBLE KEYSTONES OF TNT STRUCTURE AND FUNCTION: THE CURRENT KNOWLEDGE

In accordance with what has been hypothesized from theoretical studies, experimental data suggested the presence of specific lipid domains in the membrane lining TNTs. Indeed, using the raft marker ostreolysin (Oly) Iglic and coworkers recently highlighted the presence of cholesterol–phosphatidylinositol nanodomains within TNTs in a T24 urothelial cancer cell line (Lokar et al., 2012). In contrast to Oly, very little binding of cholesterol toxin B, which binds to the raft-specific ganglioside GM1, was observed along TNTs, and immunofluorescence studies do not reveal the presence of caveolin-1 and flotillin-1 raft markers (Bickel, 2002). On the other hand, addition of the cholesterol depletion agent methyl β-cyclodextrin and the growth in cholesterol-free medium were shown to reduce the number of TNTs, suggesting a role for cholesterol in the stability of these structures (Lokar et al., 2012). Cholesterol is expected to be more present in the external leaflet of the bilayer, whereas cone-shaped lipids, like cis-unsaturated fatty acids or diacylglycerol, promote it when located in the proximal leaflet (Figure 2E; Chernomordik and Kozlov, 2003; Larjani and Poccia, 2012).

To our knowledge, no other data regarding the lipid composition of TNTs has been reported in the literature thus far. However, indirect evidences support the role of PIP2 in TNT formation. Wang and collaborators (Wang et al., 2011) recently highlighted the involvement of the Akt/phosphatidylinositol 3-kinase (PI3K)/mTOR pathway in TNT generation in astrocytes under H2O2 treatment. Interestingly, they observed a drastic reduction of stress-induced TNT formation in astrocytes treated with PI3K and mTOR inhibitors or expressing the Akt dominant negative mutant, whereas expression of the constitutive form of Akt increased the number of connections. They also reported an increase of Akt and PDK1 phosphorylated forms upon H2O2 treatment. In this context, PIP2 formation thus appears as an important step for TNT genesis.
yield important information on lipid/actin interactions within intercellular conduits. Because lateral organization of the membrane affects the mobility of its constituents, sub-resolution membrane domains can also be analyzed thanks to fluorescence microscopy techniques based on molecular dynamics assessment (Owen et al., 2009). This include highly sensitive single molecule techniques like fluorescence correlation spectroscopy (FCS) and single particle tracking (SPT), which would allow to address crucial questions regarding membrane domains, such as lipid-lipid and lipid-protein interactions within the tubular membranes, which cannot be unraveled with conventional optical methods (Chiantia et al., 2009; Owen et al., 2009).

A major issue when studying lipid organization in cellular membranes is that the predicted size of lipid nanodomains is below the resolution limit of classical optical microscopes (Fikes, 2006; Owen et al., 2012). The development of super-resolution techniques that allow to image structures beyond the diffraction limit, such as photo-activated localization microscopy (PALM), stimulated emission depletion (STED) microscopy, and structured illumination microscopy (SIM), greatly improved the possibilities in the field. Combinations of far-field super-resolution techniques with approaches such as FLIM, FCS, and SPT have substantially increased our perception of lipid organization in biological membranes during the past few years (Owen et al., 2009) and may represent the most promising way to decipher lipid organization and dynamics within TNTs or PDs.

An alternative to fluorescence microscopy for high-resolution study of membrane organization within intercellular conduits might be the utilization of scanning or transmission electron microscopy (EM, Rustom et al., 2004; Lokar et al., 2010). However, two major hurdles in this context are the impossibility to observe live cells and the difficulties to preserve both the fragile nanotubular structure and lipid distribution in the membrane (Rustom et al., 2004; Bell and Oparka, 2011; Sonnino and Prinetti, 2012). Indeed, EM requires multiple preparation steps susceptible to alter cellular structures and to generate artifacts. Development of fixation procedures allowing a better preservation of the structures, such as high pressure freezing, may overcome some of these issues (Vanhoecke et al., 2008). EM can be coupled with fluorescence imaging studies, thus enabling to combine contextual information obtained by fluorescence microscopy in live cells with the resolution of EM but also to study dynamic processes or rare events and/or structures (McDonald, 2009).

Such correlative approaches offer very interesting perspectives in the study of TNT and PD formation and transfer function and are the most promising to answer still unresolved questions on the structural/functional diversity of the various TNT-like structures described to date (cf. Introduction, Abounit and Zurzolo, 2012).

Finally, because separating TNTs from the cell constitutes a technical challenge that may be difficult to overcome, an alternative non-targeted approach to resolve lipid distribution in intercellular conduits may come from the developments of imaging mass spectrometry techniques (IMS; Ellis et al., 2013). Although the current technical limitations of IMS are critical for the study of very thin and fragile structures like TNTs, research towards improvement in achievable resolution/sensitivity and in sample preparation procedures is very active, quickly expanding the possibilities of these techniques (Passarelli and Winograd, 2011; Passarelli and Ewung, 2013).

PERSPECTIVES

Despite differences in their formation and architecture, TNTs and PDs present striking functional and structural similarities, which need to be thoroughly explored. The questions raised by their unusual nanotubular membrane conformation are largely overlapping; therefore data obtained on TNT can be informative on PD membrane and vice versa. In these review we have underscored the importance of studying the lipid composition and dynamics in these structures, as they are likely to be key elements regulating their structure and function. In addition to the imaging techniques described above, biophysical approaches and computational models may also greatly contribute to extend our knowledge on this important subject. As it is often the case for emerging fields, we believe that the key for a better understanding of those fascinating intercellular communication highways lies in pushing the current technology to new applications and in the development of transkingdom and interdisciplinary studies.

ACKNOWLEDGMENTS

We thank Dr. Soraya Giuliana Victoria for critical reading of the manuscript and the lab members for useful discussion. TNT work in Chiara Zurzolo lab is supported by the European Union FP7 (Priority, Grant 222887) and by ANR (ANR-09-BLAN-0122, ANR-09-NEUR-02-02). Elise Delage is supported by the Pasteur–Roux Fellowship Program.

REFERENCES

Abounit, S., and Zurzolo, C. (2012). Wiring through tunneling nanotubes from electrical signals to organelle transfer. J. Cell Sci. 125, 1089–1098. doi: 10.1242/jcs.083279

Ahmed, S., Goh, W. I., and Bu, W. (2010). I-BAR domains, ELP53 and filipodium formation. Semin. Cell Dev. Biol. 21, 550–556. doi: 10.1016/j.semcdb.2009.11.008

Almeida, P. F. M., Loura, L. M. S., and Prieto, M. (2009). Membrane lipid domains and raft currents: applications of fluorescence lifetime spectroscopy and imaging. Chrom. Phys. Lipids 157, 65–77. doi: 10.1016/j.chroma.2008.07.011

Arjona, A., Kuikman, P., and Franka, J. (2011). Filopodia and adhesion in cancer cell motility. Cell Adh. Migr. 5, 421–430. doi: 10.4161/cam.5.5.17723

Braeckmans, K., Deschout, H., Demeester, J., and Smedt, S. C. (2011). “Measuring lipid nanodomain dynamics with optical fluorescence microscopy,” in Optical Fluorescence Microscopy, ed. A. Dhanap (Berlin: Springer). 153–165.

Cao, Y.-L., Pate, F., Le Guiral, M., Schmitter, J.-M., Burel, C., Garbatsu, P., et al. (2012). Lipids of plant membrane rafts. Prog. Lipid Res. 51, 272–299. doi: 10.1016/j.plipres.2012.04.001

Callan-Jones, A., Soere, B., and Buenrostro, P. (2011). Curvature-driven lipid sorting in homotypic cell fusion. Cold Spring Harb. Perspect. Biol. 3, a004648. doi: 10.1101/cshperspect.a004648

Callan-Jones, A., Søré, B., and Buenrostro, P. (2011). Curvature-driven lipid sorting in homotypic cell fusion. Cold Spring Harb. Perspect. Biol. 3, a004648. doi: 10.1101/cshperspect.a004648

Delage and Zurzolo Lipid roles in intercellular conduits

www.frontiersin.org December 2013 | Volume 4 | Article 504 | 5
Delage and Zurzolo
Lipid roles in intercellular conduits

Plantard, L., Arjonen, A., Lock, J. G., Nurani, G., Ivaska, J., and Stromblad, S. (2010). PtdIns(3,4,5)P3 is a regulator of myosin-X localization and filopodia formation. J. Cell Sci. 123, 3525–3534. doi: 10.1242/jcs.069609

Pyrgaki, C., Trainor, P., Hadjantonakis, A.-K., and Niswander, L. (2010). Dynamic imaging of mammalian neural tube closure. Dev. Biol. 344, 941–947. doi: 10.1016/j.ydbio.2010.06.010

Rao, Y., and Haucke, V. (2011). Membrane shaping by the Bin/amphiphysin/Rvs (BAR) domain protein superfamily. Cell. Mol. Life Sci. 68, 3983–3993. doi: 10.1007/s00018-011-0768-5

Römer, W., Berland, L., Chambon, V., Gaus, K., Windschiegl, B., Tenna, D., et al. (2007). Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 450, 670–675. doi: 10.1038/nature05996

Rustom, A. (2009). Hen or egg? Some thoughts on tunneling nanotubes. Ann. N. Y. Acad. Sci. 1178, 129–136. doi: 10.1111/j.1749-6632.2009.04997.x

Simons, K., and Sampaio, J. L. (2011). Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 3, a004697. doi: 10.1101/cshperspect.a004697

Sonnino, S., and Prinetti, A. (2013). Membrane domains and the “lipid raft” concept. Curr. Med. Chem. 20, 4–21.

Stöckl, M. T., and Herrmann, A. (2010). Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy. Biochim. Biophys. Acta 1798, 1444–1456. doi: 10.1016/j.bbamem.2009.12.015

Tang, E. (1880). Uber offene communicationen zwischen den Zellen des Endosperms einiger Samen. Jahrb. Wiss. Botanik 12, 170–190.

Vanhecke, D., Grafet, W., and Stuiler, D. (2008). Close-to-native ultrastructural preservation by high pressure freezing. Methods Cell Biol. 88, 151–164. doi: 10.1016/S0091-679X(08)00489-5

Veranić, P., Lukar, M., Schütz, G. J., Weghuber, J., Wagner, S., Hägele, H., et al. (2008). Different types of cell-to-cell connections mediated by nanotubular structures. Biophys. J. 95, 4416–4425. doi: 10.1529/biophysj.107.113175

Wang, Y., Cui, J., Sun, X., and Zhang, Y. (2011). Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death. Differ. 18, 732–742. doi: 10.1038/cdd.2010.147

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.