We investigated effects of paramyotonia congenita mutations F1473S and F1705I on gating of skeletal muscle Na⁺ channels. We used on-cell recordings from *Xenopus* oocytes to compare fast inactivation and deactivation in wild-type and mutant channels. Then, we used gating current recordings to determine how these actions of PC mutants might be reflected in their effects on charge movement and its immobilization. F1473S, but not F1705I, accelerated deactivation from the inactivated state and enhanced the remobilization of gating charge. F1473S and F1705I decreased the completion of closed-state fast inactivation, and decreased charge movement over the voltage range at which channels did not activate. An unexpected result was that F1705I increased the extent of charge immobilization in response to strong depolarization. Our results suggest that the DIV S4-S5 linker mutation F1473S promotes the hyperpolarized position of DIVS4 to accelerate recovery. Inhibition of charge movement by F1473S and F1705I in the absence of channel opening is discussed with respect to their effects on closed-state fast inactivation.

Introduction

Voltage-gated sodium channels regulate electrical signals that characterize the function of excitable cells such as neurons and muscle fibers. Sodium channels in nervous or muscle tissues share a common structure of four domains, each comprised of six transmembrane segments. Conserved sequences in these channels promote specific functions. For example, voltage sensitivity is ascribed to the complement of positively charged amino acids in S4 segments that allow voltage-gated channels to open (activate) or close (deactivate) in response to changes in membrane polarization.

Several determinants of fast inactivation in voltage-gated sodium channels have been identified. The inactivation particle per se has been localized to a conserved IFMT motif in the DIII-DIV linker. Other regions of the channel that regulate fast inactivation include the DIVS4 voltage sensor, residues in the S4-S5 linkers of domains III and IV, S6 segments, and the C terminus.

Channels opened by strong depolarization subsequently inactivate with kinetics and voltage dependence driven in large part by their coupling to the activation process. Channels subject to weaker depolarization directly enter the fast-inactivated state without opening. The kinetics of closed-state fast inactivation are relatively slow, as they are not coupled to the rapid kinetics of channel opening.

Channelopathies of skeletal muscle include several forms of non-dystrophic myotonia. These include the hyperkalemic and hypokalemic periodic paralyses (PP), potassium-aggravated myotonia (PAM, acetazolamide-responsive, myotonia fluctuans and myotonia permeneans) and paramyotonia congenita (PC). Genetic screens of families with PP, PAM, PC or overlap syndromes have revealed numerous point mutations of the *SCN4A* gene encoding the human skeletal muscle sodium channel. Subsequent studies using heterologous expression systems to identify determinants of myotonia or periodic paralysis have linked mutations in *SCN4A* to a spectrum of defects, with some general and noteworthy effects on channel function. Mutant channels in PC were first reported to promote hyperexcitability by slowing entry of channels into the fast-inactivated state, accelerating recovery, and uncoupling fast inactivation from activation. PC mutations that disrupt fast inactivation are found in DIVS4, the DIII-DIV linker, the S4-S5 linkers of DIII and DIV, and the C terminus.

Other studies have shown that certain PC mutants produce defects in channel deactivation. Sodium channels exhibit voltage-dependent deactivation from open and inactivated states. Inactivated-state deactivation, observed as the delay in the onset to recovery, exhibits kinetics that are approximately one order of magnitude slower than those for tail currents observed in open-state deactivation. The relatively slow kinetics of inactivated-state deactivation might be a consequence of gating charge immobilization. Since voltage sensors in DIII and DIV contain the immobilizable fraction of gating charge, PC mutations in this region of the channel offer a means to study allosteric regulation of voltage sensor movements underlying deactivation. In the present study we compared sodium channel gating parameters in PC mutants F1473S in the DIV S4-S5 linker and F1705I in the C terminus. Whereas open-state deactivation is not affected by these mutations, F1473S accelerates inactivated-state deactivation and recovery from fast inactivation by promoting a rapid remobilization.
Table 1 Parameters for hNaV1.4 and PC channels: On-cell recording configuration

Gating parameter	hNaV1.4	F1473S	F1705I
$V_{1/2} \text{ (mV)}$	-32.6 ± 2.3	-34.2 ± 1.6	-37.6 ± 1.7
Slope factor	3.45 ± 0.07	4.03 ± 0.18	3.81 ± 0.06
$h_{\infty} \text{ (mV)}$	-86.1 ± 2.2	-68.9 ± 2.4	-73.4 ± 2.3
Slope factor	4.11 ± 0.12	3.76 ± 0.18	4.27 ± 0.31
Rise time, 0 mV (ms)	0.33 ± 0.03	0.40 ± 0.04	0.33 ± 0.02
τ$_{H}$, 0 mV (ms)	0.92 ± 0.08	2.55 ± 0.23	1.62 ± 0.30
τ$_{-80}$ mV (ms)	29.8 ± 2.6	32.5 ± 11.0	116.2 ± 14.1
τ$_{ECC}$, -120 mV (ms)	6.42 ± 0.85	2.13 ± 0.28	4.84 ± 0.54
Recovery delay, -120 mV (ms)	0.98 ± 0.10	0.37 ± 0.03	0.87 ± 0.06

*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; On-cell recording configuration.

Results

Activation. The voltage dependence of activation was measured in the on-cell macropatch configuration by comparing peak current amplitudes for hNaV1.4 and PC mutants F1473S and F1705I in response to 20 ms depolarizing commands from a holding potential of -150 mV. Families of sodium currents are shown in Figure 1 for step commands to voltages ranging from -90 mV to +60 mV. Calibration: 3 ms; hNaV1.4 and F1705I 300 pA, F1473S 500 pA. Locations of mutations employed in this study are shown in the cartoon depicting the structure of hNaV1.4.

Fast inactivation. Steady-state fast inactivation (h_{∞}) parameters were obtained from experiments in which channels were subjected to 500 ms, variable-voltage pre-pulses prior to test pulses to -20 mV to assess channel availability. The normalized h_{∞} curves were fit to Boltzmann distributions and parameters are listed in Table 1. F1473S and F1705I activation kinetics, taken as 10% to 90% of rise time towards peak inward current, were similar to hNaV1.4 at most voltages tested.

Table 1 Differential gating defects in PC

of the gating charge. F1705I, which lacks the typical PC phenotype of accelerated recovery from fast inactivation, slows the remobilization of gating charge. Both mutants inhibit charge movement in unopened channels, an effect that might contribute to their common action to inhibit closed-state fast inactivation. Some of these results have been reported in abstract form.48

Closed-state fast inactivation parameters in hNaV1.4 and mutant channels were determined from a double pulse protocol. Depolarizations from -90 mV to -50 mV for durations up to 300 ms were delivered to the patch. Immediately following each conditioning pulse, test pulses to -20 mV were used to assess availability of channels (Fig. 2). Decreased responses to -20 mV test pulses during the initial 5 ms (left) and terminal 60 ms (right) of a -70 mV conditioning pre-pulse are shown for hNaV1.4 and mutant channels in Figure 2A–C. Decreases in normalized current amplitudes over the course of 300 ms pre-pulse duration are shown in Figure 2D. Completion of closed-state fast inactivation was determined from the asymptote, and kinetics determined as the time constant towards completion, from the normalized curves.

F1705I significantly slowed closed-state fast inactivation at all voltages tested, compared to hNaV1.4 (Fig. 3A). F1473S slowed fast inactivation kinetics following pre-pulses to -60 mV or -50 mV, voltages at which open-state fast inactivation might be expected to contribute to a decrement of current amplitude. Both mutants significantly inhibited the completion of fast inactivation at voltages more negative than -50 mV (Fig. 3B). Since F1705I slowed kinetics of closed-state fast inactivation, we compared completion measurements for this mutation to those obtained in a separate set of 6 measurements using pre-pulse durations up to 500 ms, as used in measurements of steady-state fast inactivation. Asymptotes for F1705I were similar following the 300 ms or 500 ms pre-pulse duration. Taken together, these results indicate that similar actions of F1473S and F1705I on closed-state fast inactivation (less complete) explain their effect on the midpoint of the h_{∞} curve (less likely).
Recovery from fast inactivation was measured from a double pulse protocol used to inactivate and then recover channels in experiments as shown in Figure 4A. As reported for these mutations expressed in mammalian cells, F1473S significantly accelerated the recovery of channels over the voltage range tested of -180 mV to -100 mV (Fig. 4B). Acceleration of recovery in F1473S increased from 1.5-fold compared to hNa\textsubscript{1.4} at -180 mV, to 3 fold at -120 and -100 mV. Recovery was slightly faster in F1705I compared to hNa\textsubscript{1.4}, but this effect was significant only at -160 mV.

Deactivation. Interpulse intervals in the experiments shown in Figure 4A were stepped in 50 or 100 \(\mu\)s increments to permit an accurate measurement of the delay in onset to recovery from fast inactivation. Whereas F1705I did not significantly alter delay in the onset to recovery, F1473S significantly abbreviated recovery delay at all voltages tested (Fig. 4C). Recovery delay in F1473S was consistently 2-fold shorter in duration than hNa\textsubscript{1.4}, but this effect was significant only at -160 mV.

We then tested F1473S and F1705I for effects on deactivation from the open state with tail current measurements. Channels were opened with brief 50 mV pulses prior to commands from -180 mV to -70 mV to elicit tail currents. PC mutations slightly prolonged tail current decay at voltages more positive than -90 mV when 0.5 ms pulses were used to open channels (Fig. 5A). To control for the possibility that fast inactivation might influence tail currents, we repeated these experiments with 0.2 ms or 0.1 ms pulse durations (Fig. 5B and C). With shorter pulses used to open channels, deactivation time constants were unaffected by either F1473S or F1705I compared to hNa\textsubscript{1.4}, indicating that neither mutation altered open-state deactivation. Thus, F1473S accelerates the deactivating transition only in channels that have fast inactivated.

Gating charge movement. State transitions in voltage-gated channels are promoted by charge movement with S4 translocation. We compared Q/V relations, gating charge immobilization and its remobilization in wild-type and PC channels to determine if gating defects in F1473S and F1705I are the consequence of altered voltage sensor movements. Immobilization of the gating charge occurs with fast inactivation of the channel.27 We hypothesized that slowed fast inactivation in these mutations would parallel a slowed onset of gating charge immobilization, and decrease its extent. Recovery of channels that have fast-inactivated is predicted by remobilization of gating charge in DIVS4.50 F1473S, but not F1705I, accelerated recovery from fast inactivation and shortened the delay in onset to recovery. Therefore, we also hypothesized that remobilization of the gating charge would be faster in F1473S, but not in F1705I.

Outward ionic currents in the cut-open configuration were elicited from a -120 mV holding potential by step depolarizations from -90 mV to +60 mV (Fig 6A). Ionic current was blocked with 2 \(\mu\)M tetrodotoxin (TTX, Fig. 6B). Gating charge movement (Fig. 6C) was quantified by calculating the integrals from ON gating currents (I\textsubscript{GON}). Normalized measurements of ionic current (I/I\textsubscript{MAX}) and gating charge (Q/Q\textsubscript{MAX}) are shown in Figure 6D.
midpoint of the I/V curve, without affecting slope factor. In contrast to their modest effects on activation, PC mutants produced more obvious effects on charge movement. The midpoint of the Q/V curve was significantly shifted by F1473S (15.5 mV) and F1705I (25.9 mV), and F1473S also decreased the slope factor.

The I/V curves in Figure 6 show that wild-type and mutant channels activated with a threshold between -40 mV and -50 mV. Whereas hNaV1.4 exhibited, as expected, substantial charge (Q/QMAX) movement at activation threshold or at more negative voltages, PC channels inhibited charge movement over this voltage range. At -40 mV, 37.2 ± 2.4% of the maximum charge movement (Q/QMAX) was reached in hNaV1.4 (Table 2). In contrast, PC mutations limited charge movement at sub-threshold voltages. At -40 mV, Q/QMAX values in F1473S (22.1 ± 2.0%) and in F1705I (13.1 ± 3.0%) were significantly decreased compared to hNaV1.4.

Gating charge immobilization. To compare the extent of charge immobilized in hNaV1.4 and PC channels, we measured total ON and fast OFF integrals from gating currents in response to step depolarizations as shown in Figure 7A. Charge immobilization was calculated as 1 - (IgOFF FAST/IgON) and plotted against membrane potential (Fig. 7B). Immobilization curves were fit to Boltzmann distributions and parameters are given in Table 2. Similar to their effect on the Q/V curve, F1473S and F1705I significantly shifted the midpoint of the immobilization curve by 26.4 mV and 26.5 mV, and F1473S also decreased slope factor. F1473S decreased charge immobilization at voltages more negative than 20 mV. F1705I produced a biphasic effect, significantly decreasing charge immobilization over the voltage range from -60 mV to -20 mV, but increasing charge immobilization at voltages more positive than -10 mV.

We determined the onset of charge immobilization by comparing IgON and IgOFF FAST in response to variable-voltage and duration depolarizations, as shown in Figure 8. Percent charge immobilized was determined for each time point. For hNaV1.4 and PC mutants, the resulting curves were best fit with double exponential functions at -40 mV, whereas curves from more depolarized pulses were best fit with single exponential functions. Time constants for onset of charge immobilization were then compared to the kinetics of fast inactivation of unblocked channels in the cut-open recording configuration (Fig. 9). Charge immobilized at a rate more rapid than the entry of channels into the fast-inactivated state. F1473S produced voltage-independent fast inactivation and gating charge immobilization at more depolarized potentials.

Recovery from charge immobilization was studied with a double pulse protocol. 0 mV depolarizations were used to promote the initial IgON and recovering IgON following interpulse voltages ranging from -100 mV to -70 mV (Fig. 10). In the fast phase of recovery, F1473S significantly increased, and F1705I decreased, the extent of charge remobilized compared to hNaV1.4. Over this range of interpulse intervals, the extent of charge remobilized in hNaV1.4 (43.1 ± 1.0%), F1473S (61.9 ± 6.2%) and in F1705I (24.2 ± 2.1%) was similar to the magnitude of gating charge not immobilized at 0 mV, as determined from experiments as shown in Figure 7B. These findings support the notion that the initial rise in gating charge recovered is due to S4 translocation unimpeded by charge immobilization.

Gating charge recovery proceeded with a bi-exponential time course (Fig. 10). F1705I did not alter the kinetics of either phase of remobilization. F1473S slowed the kinetics of the initial phase at -70 mV and -80 mV but significantly accelerated the second phase of gating charge recovery (Table 2). Thus, F1473S enhanced the return of the gating charge by increasing its extent (fast phase) and accelerating the rate of remobilization (slow phase).

Discussion

Sodium channel dysfunction in non-dystrophic myotonia has been studied using heterologous expression systems to elucidate common gating defects that might explain muscle fiber hyperexcitability. Studies of PC mutations have also yielded valuable insight into the structural determinants of sodium channel gating. In the present study we investigated the effects of PC mutants F1473S and F1705I, with a focus on deactivation, charge movement and its immobilization. We found that F1473S and F1705I, expressed in oocytes, produce effects on gating parameters similar to effects reported in mammalian expression systems. Both mutants slow the entry of channels into the fast-inactivated state, and inhibit closed-state fast inactivation. Whereas neither mutation alters deactivation of channels from the open state, F1473S accelerates inactivated-state...
Differential gating defects in PC

deactivation to promote faster recovery. These effects of F1473S are predicted by its effect to enhance the remobilization of charge in fast inactivated channels. At voltages negative to activation threshold, the extent of charge and its immobilization were significantly decreased in PC mutants. At more depolarized voltages, F1705I produced the unexpected result of increasing the immobilizable fraction of the gating charge compared to wild-type channels.

Comparison of F1473S and F1705I: open-state fast inactivation. The PC mutation F1473S is located in the DIV S4-S5 linker. Fast inactivation is slowed by F1473S, and by analogous mutations at this residue. Cysteine scanning mutagenesis of residues in the DIV S4-S5 linker suggests an α helical structure. F1473 and other residues in the proximal region of the linker are accessible to sulfhydryl reagents at depolarized as well as hyperpolarized membrane potentials. These findings suggest that residues distal to F1473 likely comprise the IFMT receptor itself.

In response to membrane depolarization, movement of DIVS4 promotes fast inactivation, probably by exposing a binding site for the IFMT motif. That action supports a model in which DIVS4 couples the voltage dependencies of activation and fast inactivation. Mutations at residues analogous to F1473, A1474, M1476 and M1477 in the DIV S4-S5 linker typically reduce the voltage dependence of fast inactivation and suggest that F1473 comprises a portion of the molecular link coupling voltage-dependent activation to fast inactivation. In the present study we found that F1473S reduced the voltage dependence of fast inactivation, the extent of charge immobilized and the kinetics of charge immobilization. Our results thus support previous studies suggesting that this residue helps coordinate activation/inactivation coupling. In addition, they suggest a role for F1473 in the coupling of activation to immobilization of gating charge in DIVS4.

F1705I is located in the C terminus, a region recently identified as a determinant of sodium channel fast inactivation. While F1705I produced significant slowing of fast inactivation, the voltage dependence of fast inactivation and of charge immobilization in F1705I were similar to hNaV1.4, unlike F1473S. In addition, only F1705I increased charge immobilization at voltages for which channels open and then inactivate. To our knowledge this is the first report of a sodium channel mutation that increases charge immobilization compared to the wild-type channel. Differential effects of F1473S and F1705I on gating charge movement in response to strong depolarization suggest to us that these two PC mutants are unlikely to promote their overtly similar actions to slow open-state fast inactivation by identical mechanisms. A previous report suggests the possibility that F1705I might disrupt fast inactivation in a manner like that of the nearby GEFS+ type II mutation D1866Y in NaV1.1 by inhibiting interaction of the C termini of α and β subunits. Additional studies are needed to identify the molecular mechanisms by which C terminal mutations disrupt fast inactivation and to determine the role of this region of the channel in charge immobilization.

Charge movement and closed-state fast inactivation. We found that F1705I slows fast inactivation at voltages for which channels do not open, unlike F1473S. In contrast to these disparate effects on kinetics, both mutations decrease the completion of closed-state fast
Differential gating defects in PC Channels 2008; Vol. 2 Issue 1

An examination of the normalized Q/V and I/V curves from experiments utilizing the cut-open oocyte clamp reveals that significant charge moves in wild-type channels at voltages more negative than the threshold of activation. Thus, a “window potential” is observed for which charge movement occurs in the absence of channel activation. Both F1473S and F1705I produced a significant depolarizing shift of the Q/V curve and decrease this window of potential between gating and ionic current. The decrease in gating charge movement at sub-threshold potentials was paralleled by a decrease in the extent of immobilized charge and of inactivation, suggesting a possible common link. Interestingly, gating charge immobilization and closed-state fast inactivation are causally related in Kv4.2 channels.58 It has been postulated that for weak depolarizations that do not open the activation gate, DIIIS4 and DIVS4 voltage sensors promote inactivation from the closed state.30 While our results do not yet present a molecular mechanism for closed-state fast inactivation, our results set the stage for future studies examining the relative contributions of DIIIS4 and DIVS4 voltage sensor movements to inactivate closed channels.

Charge immobilization and deactivation. Our results suggest that the most significant effect of F1473S on sodium channel recovery is to enhance the remobilization of the gating charge in inactivated channels. This mutation abbreviated inactivated-state deactivation without altering deactivation of channels from the open state. F1473S significantly reduced the extent of gating charge immobilized at 0 mV, the potential used in recovery protocols in the on-cell and cut-open recording configurations. We propose that decreased charge immobilization in F1473S dictates the more rapid return of channels to an available state, and accelerates recovery. Nevertheless, we found that F1473S produced effects on recovery rate not perfectly correlated with effects on recovery delay over the range of interpulse voltages tested. In addition, whereas F1705I did not affect recovery or its delay, charge immobilization was increased. Therefore, effects of these mutants of the recovery of channels from fast inactivation may only be fully explained with an examination of putative effects downstream of the deactivation transition, such as unbinding of the IFMT motif.

We found that gating defects of F1473S and F1705I, expressed in oocytes, are similar to those described for these mutations expressed in mammalian cells. Our use of oocytes to study these channels allowed us to measure gating charge movement and its immobilization with the cut-open oocyte recording configuration. F1473S and F1705I each decrease the completion of closed-state fast inactivation, and reduce charge immobilization at voltages for which channels do not open. In addition, F1473S and F1705I produce effects on recovery from fast inactivation generally paralleled by their effects on the remobilization of charge. However, it should be noted that a causal link of altered charge movement or its immobilization in F1473S and F1705I to the cellular phenotype of myotonia remains to be determined.

Materials and Methods

Site-directed mutagenesis. Mutations F1473S and F1705I were made from template SCN4A in SP64T vector with PCR-directed mutagenesis using Quik-Change II XL Site Directed Mutagenesis Kits™ (Stratagene, La Jolla, CA). All constructs were confirmed by sequencing. Plasmids were linearized with NotI and transcribed with T7 RNA polymerase for injection into oocytes.

Oocyte preparation. Xenopus laevis oocyte lobes were surgically removed after anesthetizing the animals with 0.17% tricaine (3-aminobenzoic acid ethyl ester, Sigma, St. Louis, MO) according to guidelines approved by Animal Use and Care Committees at ISU. Oocytes were isolated by defolliculation after 10 min exposure to 2 mg/mL collagenase in a solution containing (in mM): NaCl 96, KCl 2, MgCl₂ 20, HEPES 5, pH 7.4. Culture of oocytes was done at 18°C in medium containing (in mM): NaCl 96, KCl 2, MgCl₂ 1,
Differential gating defects in PC

Macropatch recordings. On-cell macropatch recordings were used to obtain data shown in Figures 1 to 5. The bath solution contained (in mM): NaCl 9.6, KCl 88, EGTA 11, HEPES 5, pH 7.4 and recording pipette solution contained (in mM): NaCl 96, KCl 4, MgCl 2 1, CaCl 2 1, HEPES 5, pH 7.4. Recordings were done using EPC-9 or EPC-10 patch-clamp amplifiers (HEKA, Lambrecht, Germany) controlled via Pulse or PatchMaster™ software (HEKA) run by Macintosh G4 or G5 computers. Bath solution was maintained at 12°C with a Peltier device and HCC-100A temperature controller (Dagan Corporation, Minneapolis, MN).

We performed experiments at 12°C to slow deactivation kinetics for better resolution, and preliminary experiments indicated that gating parameters exhibited sensitivity to decreased temperature for which 12°C was not saturating. Oocyte holding potential was -120 mV between trials and changed to -150 mV immediately prior to each protocol. Leak (p/4) and capacitance subtractions were done following patch formation and corrected before each voltage clamp experiment. Analyses and graphing were done using PulseFit (HEKA) and Igor Pro 6.0 (WaveMetrics, Lake Oswego, OR).

Equilibrium parameters were obtained from responses to variable-voltage, 20 ms test pulses from -150 mV (activation), or in response to -20 mV test pulses following variable-voltage, 500 ms pre-pulses (inactivation). Conductance/voltage (g(V)) relationships were derived using Equation 1:

\[
g_{Na} = \frac{I_{\text{max}}}{(V_M - E_{Na})} \tag{Eqn. 1}
\]

where \(g_{Na}\) is sodium conductance, \(I_{\text{max}}\) is calculated as peak current in response to the test pulse, \(V_M\) is test pulse voltage, and \(E_{Na}\) is the measured \(Na^+\) equilibrium potential. Steady-state activation and fast inactivation (\(h_{\infty}\)) curves were fit to Boltzmann distributions according to Equation 2:

\[
I/I_{\text{max}} = \frac{1}{1 + \exp(-z_0(V_M - V_{1/2})(kT))} \tag{Eqn. 2}
\]

where the normalized current amplitude \(I/I_{\text{max}}\) is measured from the response to the test pulse potential \(V_M\), \(z_0\) is the apparent valence, \(V_{1/2}\) is midpoint voltage, \(k\) is the Boltzmann constant, and \(T\) is temperature in K.

We measured activation kinetics as the time for 10% to 90% of peak inward current in experiments as shown in Figure 1. We measured kinetics of fast inactivation from the open and closed states, and for recovery. Time constants of open-state fast inactivation were determined by fitting current decays to Equation 3:

\[
I(t) = \text{offset} + a_1 \exp(-t/\tau_H) \tag{Eqn. 3}
\]

Table 2 Parameters for hNaV1.4 and PC channels: Cut-open oocyte recording configuration

Gating parameter	hNaV1.4	F1473S	F1705I
\(I/V_{1/2}\) [mV]	12.4 ± 1.7 (15)	11.2 ± 0.9 (13)	6.2 ± 2.0 (13)*
Slope factor	1.65 ± 0.08 (15)	1.53 ± 0.05 (13)	1.70 ± 0.07 (13)
\(Q/V_{1/2}\) [mV]	-33.6 ± 1.5 (13)	-18.1 ± 3.7 (12)**	-7.7 ± 6.7 (8)**
Slope factor	1.80 ± 0.07 (13)	1.13 ± 0.11 (12)**	1.94 ± 0.28 (8)
\(Q/Q_{MAX}\) -40 mV	0.37 ± 0.02 (13)	0.22 ± 0.02 (12)**	0.13 ± 0.05 (8)**
% Charge immobilized \(V_{1/2}\)	-53.3 ± 3.0 (13)	-26.9 ± 7.6 (12)**	-26.8 ± 4.5 (8)**
Slope factor	390.5 ± 42.0 (13)	233.0 ± 59.8 (12)**	364.7 ± 61.5 (8)
\(\tau_H\), inactivation at 0 mV (ms)	1.74 ± 0.18 (15)	4.81 ± 0.32 (13)**	3.29 ± 0.23 (13)**
\(\tau_{ON}\), immobilization at 0 mV (ms)	1.26 ± 0.11 (11)	1.61 ± 0.30 (10)	1.78 ± 0.31 (13)
\(\tau_{REC, FAST}\), -80 mV (ms)	1.11 ± 0.12 (11)	2.67 ± 0.58 (12)**	0.80 ± 0.18 (13)
\(\tau_{REC, SLOW}\), -80 mV (ms)	29.9 ± 4.7 (11)	15.0 ± 4.4 (12)**	29.2 ± 5.2 (13)

*\(p \leq 0.05\); **\(p \leq 0.01\); ***\(p \leq 0.001\); Cut-open recording configuration.
Differential gating defects in PC

where offset is plateau amplitude, \(a_1 \) is current amplitude at \(t = 0 \), and \(\tau_{H} \) is the time constant. Kinetics and completion of closed-state fast inactivation were determined from experiments utilizing a double pulse protocol. First, channels were subjected to pre-pulses at voltages ranging from -90 mV to -50 mV for durations up to 300 ms. Pre-pulses were applied in three contiguous segments in which durations ranged from 0 to 5 ms, 5 to 50 ms and 50 to 300 ms. During the second (test) pulse, channels were subjected to 20 ms, -20 mV test pulses to assess channel availability. Decreases in peak current amplitude were normalized to the response to the initial test pulse, and the normalized curve over 300 ms was fit with Equation 3 to determine \(\tau_{H} \). Completion of fast inactivation from the closed state was assessed from the asymptote (offset) of the normalized curve and expressed as % normalized current.

Recovery from fast inactivation was measured using a double pulse protocol in which 0 mV, 50 ms depolarizing pulses to inactivate channels were followed by interpulses at voltages from -180 mV to -100 mV, at durations ranging from 0 to 10 ms. Channel availability was assessed after each interpulse interval with a second depolarization to 0 mV. Peak amplitudes of recovery currents were normalized to the initial depolarization for that sweep, and recovery time constants were calculated from single exponential fits to recovery curves according to Equation 3 with the parameters:

\[
I(t) = \text{offset} + a_1 \exp(-t/\tau_{REC})
\]

where offset is plateau amplitude, \(a_1 \) is current amplitude at \(t = 0 \), and \(\tau_{REC} \) is the time constant.

Cut-open oocyte recordings. Sodium channel gating currents were recorded using the cut-open oocyte clamp as described earlier. Briefly, top and middle (guard) chambers were filled with external gating solution (in mM): NMG-MES (N-methyl D-glucamine, methanesulfonic acid) 120, HEPES 10, Ca(OH)\(_2\) 2, pH 7.4. The bottom chamber was filled with internal gating solution (in mM): NMG-MES 120, HEPES 10, EGTA 2, pH 7.4. Glass electrodes containing platinum wires and filled with 3% agar in 500 mM NMG-MES connected each pool to a CA-1B amplifier (Dagan) via salt bridges with 1 M NaCl. Electrical access to the interior of the oocyte was obtained by rinsing the bottom chamber with 0.5% saponin in internal solution. The animal pole was impaled with a borosilicate electrode filled with 3 M KCl, and membrane potential clamped to -100 mV.

Ionic currents were elicited with commands from a holding potential of -120 mV (Fig. 6A). Gating currents (Fig. 6C) were isolated by adding 2 uM tetrodotoxin (TTX, Sigma) to the upper chamber, followed by a train of 20 ms step depolarizations to 0 mV. I/V relations were determined from peak amplitudes of outward current in response to commands to voltages from -90 mV to 60 mV. Q/V relations were determined by integrating total outward gating currents (\(I_{gON} \)) to quantify charge movement over that voltage range. Normalized curves for \(I/I_{MAX} \) and \(Q/Q_{MAX} \) were fit to Boltzmann distributions according to equation 2 to obtain equilibrium parameters.

Immobilization of the gating charge was measured by integrating the fast component of the inward gating current (\(I_{gOFF \ FAST} \)) at the end of each step depolarization, and comparing to \(I_{gON} \) according to Equation 4:

\[
\text{% charge immobilized} = 1 - \frac{I_{gOFF \ FAST}}{I_{gON}} \quad \text{Eqn. 4}
\]

Percent of charge immobilized was plotted against command voltage and the resulting curves were fit to Boltzmann distributions.
Differential gating defects in PC

www.landesbioscience.com Channels 47

Onset kinetics of gating charge immobilization were determined from experiments using variable-duration (0 to 15 ms) pulses at voltages from -40 mV to 40 mV, using equation 4. We determined kinetics at each voltage by fitting the % charge immobilized curve to a single exponential function, using equation 3. Kinetics at -40 mV fit more closely with a double exponential function (see Eqn. 5).

Recovery, or remobilization of gating charge, was determined in experiments using a double pulse protocol. The membrane was depolarized to 0 mV for 30 ms to inactivate channels and immobilize the gating charge. Interpulses at voltages ranging from -100 mV to -70 mV for durations up to 50 ms were followed by a second depolarization to 0 mV to assess recovery of the gating charge. Integrals for I_{RON} following interpulse commands were normalized to the initial I_{RON} and remobilization parameters determined by fitting the recovery curve with Equation 5:

Figure 8. Onset of charge immobilization in hNaV1.4 and PC channels. From a holding potential of -120 mV, variable-voltage and duration pulses were applied to generate Ig_{ON} and Ig_{OFF} as shown at top. Calibration: 5 ms; F1473S 150 nA, hNaV1.4 200 nA, F1705I 250 nA. For each plot of time course of charge immobilization, values are mean ± SEM for 8–14 experiments.

Figure 9. Comparison of kinetics of open-state fast inactivation (open symbols) to onset of charge immobilization (closed symbols). Kinetics of fast inactivation were derived from single exponential fits to decays of ionic current. Kinetics of charge immobilization were calculated from the curves shown in Figure 8 as the slow component of a double exponential (40 mV) and from single exponential fits at all other voltages. Values are mean ± SEM for 8–15 experiments.
Differential gating defects in PC

Figure 10. Remobilization of the gating charge. A double pulse protocol was used to generate initial and recovering Ig ON as shown by the traces [selected sweeps] shown at top. Calibration: 10 ms; F1473S 150 nA, hNaV1.4 and F1705I 200 nA. For each plot of time course of gating charge remobilization, values are mean ± SEM for 10–13 experiments.

\[
\text{Ig}(t) = \text{offset} + a_1 \exp(-t/\tau_{\text{recF}}) + a_2 \exp(-t/\tau_{\text{recS}}) \quad \text{Eqn. 5}
\]

where Ig(t) is the normalized Ig ON as a function of time, offset is plateau amplitude, \(a_1\) and \(a_2\) are asymptotes for the fast (F) and slow (S) phases of recovery, and \(\tau_{\text{recF}}\) and \(\tau_{\text{recS}}\) are time constants.

Statistical significance was assessed with Instat 2.0 (GraphPad, San Diego, CA) using Student’s unpaired “t” tests or, where there was a statistically significant difference between standard deviations, Welch’s alternative “t” tests. Statistical significance of difference between hNaV1.4 and mutations was accepted at \(p \leq 0.05\).

Acknowledgements

We would like to thank Dr. Katarina Stroffekova (Utah State University, Logan, UT) and Jennifer Abruzzese (University of Utah, Salt Lake City, UT) for their comments on a draft of this manuscript, and Esther Fujimoto (University of Utah) for help with molecular biology. This work was supported by NSF RUI 023558 to James R. Groome and by NIH P20 RR016454 to Idaho State University.

References

1. Armstrong CM, Hille B. Voltage-gated ion channels and electrical excitability. Neuron 1998; 20:371-80.
2. Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 2000; 26:13-25.
3. Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takashi H, Nakayama Y, Kanaoka N, Minamino N, Kangawa K, Matsuo K, Raftery H, Hirose M, Inayama T, Hayashida H, Miyata T, Numa S. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 1984; 312:121-7.
4. Stuthmer W, Conti F, Suzuki H, Wang X, Noda M, Yahagi N, Kubo H, Numa S. Structural parts involved in activation and inactivation of the sodium channel. Nature 1989; 339:597-604.
5. Yang N, Horn R. Evidence for voltage-dependent movement in sodium channels. Neuron 1995; 15:213-6.
6. Yang N, George AL Jr, Horn R. Molecular basis of charge movement in sodium channels. Neuron 1996; 16:213-8.

7. Konris KJ, Rotunghi A, Goldin AL. Sodium channel activation gating is affected by substitutions of voltage sensor positive charges in all four domains. J Gen Physiol 1997; 110:391-401.
8. Horn R, Ding S, Gruber HJ. Immobilizing the moving parts of voltage-gated ion channels. J Gen Physiol 2000; 116:69-89.
9. Cesterole Y, Yarov-Yarovoy V, Qu Y, Sampieri F, Scheuer T, Catterall WA. Structure and function of the voltage sensor of sodium channels probed by a β-scorpion toxin. J Biol Chem 2006; 281:21332-44.
10. Vassilev PM, Scheuer T, Catterall WA. Identification of an intracellular peptide segment involved in sodium channel inactivation. Science 1989; 241:1658-61.
11. West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA. A cluster of hydrophobic amino acid residues required for fast Na⁺ channel inactivation. Proc Natl Acad Sci USA 1992; 89:10910-4.
12. Rohr CA, Boeckman FA, Baker C, Scheuer T, Catterall WA, Klevit RE. Solution structure of the sodium channel inactivation gate. Biochem 1999; 38:854-61.
13. Chahine M, George AL Jr, Zhou M, Ji S, Sun W, Barchi RL, Horn R. Sodium channel mutations in paramyotonia congenita uncouple activation from inactivation. Neuron 1994; 12:281-94.
14. Chen LQ, Santarelli V, Horn R, Kallen BG. A unique role for the S4 segment of domain 4 in the inactivation of sodium channels. J Gen Physiol 1996; 108:549-56.
15. Ji S, George AL Jr, Horn R, Barchi RL. Paramyotonia congenita mutations reveal different roles for segments S3 and S4 of domain D4 in hSkM1 sodium channel gating. J Gen Physiol 1996; 107:183-94.
16. Smith MR, Goldin AL. Interaction between the sodium channel inactivation linker and domain III S4-S5. Biophys J 1997; 73:1885-95.
17. Tang L, Kallen BG, Horn R. Role of an S4-S5 linker in sodium channel inactivation probed by mutagenesis and a peptide blocker. J Gen Physiol 1996; 108:89-104.
18. Lerche H, Peter W, Fleischhauer R, Pika-Hartlaub U, Malina T, Mitzovic N, Lehmann-Horn F. Role in fast inactivation of the IV/S4-S5 loop of the human muscle Na⁺ channel probed by cysteine mutagenesis. J Physiol 1997; 505:345-52.
19. McPhee JC, Ragdale DS, Scheuer T, Catterall WA. A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel α-subunit in fast inactivation. J Biol Chem 1998; 273:1121-9.
20. Mitzovic N, Lerche H, Heine R, Fleischhauer R, Pika-Hartlaub U, Hartlaub U, George AL Jr, Lehmann Horn F. Role in fast inactivation of conserved amino acids in the IV/S4-S5 loop of the human muscle Na⁺ channel. Neurosci Lett 1996; 214:9-12.
21. McPhee JC, Ragdale DS, Scheuer T, Catterall WA. A critical role for transmembrane segment IVS6 of the sodium channel α-subunit in fast inactivation. J Biol Chem 1995; 270:12025-34.
Differential gating defects in PC

22. Green DS, George AL Jr, Cannon SC. Human sodium channel gating defects caused by missense mutations in S6 segments associated with myotonia. J Physiol 1998; 510:685-94.

23. Vidanathan V, Cannon SC. Rapid and slow voltage-dependent conformational changes in segment IVS6 of voltage-gated Na+ channels. Biophys J 2000; 78:2943-58.

24. Mantegazza M, Yu FH, Catterall WA, Scheurer T. Role of the C-terminal domain in inactivation of brain and cardiac sodium channels. Proc Natl Acad Sci USA 2001; 98:15348-53.

25. Herzog RI, Liu C, Waxman SG, Cummins TR. Calmodulin binds to the C-terminus of sodium channels Na1.4 and Na1.6 and differentially modulates their functional properties. J Neurosci 2003; 23:8621-70.

26. Muroike HK, Liu H, Glaeser IW, Yang A-S, Tatemaya M, Kass RS. The Na+ channel inactivation gate is a molecular complex: a novel role of the COOH domain. J Gen Physiol 2004; 123:155-65.

27. Armstrong CM, Bezainilla F. Inactivation of the sodium channel II. Gating current experiments. J Gen Physiol 1977; 70:567-90.

28. Aldrich RW, Corey DP, Stevens CE. A reinterpretation of mammalian sodium channel gating based on single channel recording. Nature 1983; 3:436-41.

29. Bean BP. Sodium channel inactivation in the crayfish giant axon. Biophys J 1980; 35:595-614.

30. Armstrong CM. Na channel inactivation from open and closed states. Proc Natl Acad Sci USA 2006; 103:17991-6.

31. Lehmann-Horn E, Engel AG, Ricker K, Rudel R. The periodic paralyses and paramyotonia congenita. In: Myology. Engel AG, Armstrong F, eds. New York: McGraw-Hill, 1994; 1303-4.

32. Cannon SC. Spectrum of sodium channel disturbances in the nondystrophic myotonias and periodic paralyses. Kid Internat 2000; 57:772-9.

33. George AL Jr. Inherited disorders of voltage-gated sodium channels. J Clin Invest 2005; 115:1990-9.

34. Jurtz-Rott K, Lehmann-Horn E. Muscle channelopathies and critical points in functional and genetic studies. J Clin Invest 2005; 115:2000-9.

35. Yang N, Ji S, Zhou M, Pacek LJ, Barchi RL, Horn R, George AL Jr. Sodium channel mutations in paramyotonia congenita exhibit similar biophysical phenotypes in vitro. Proc Natl Acad Sci USA 1994; 91:12785-9.

36. Pacek LJ, George AL Jr, Barchi RL, Grigge RC, Riggs JE, Robertson M, Leppert MF. Mutations in an S4 segment of the adult skeletal muscle sodium channel cause paramyotonia congenita. Nature 1992; 8:891-7.

37. Sasaki R, Takano H, Kamakura K, Kaida K, Hirata A, Saito M, Tanaka H, Kurahara S, Tsuji S. A novel mutation in the gene for the adult skeletal muscle sodium channel α-subunit (SCN4A) that causes paramyotonia congenita of von Eulenburg. Arch Neurol 1999; 56:692-6.

38. Richmond JE, Featherstone DE, Ruben PC. Human Na+ channel fast and slow inactivation in paramyotonia congenita mutants expressed in Xenopus laevis oocytes. J Physiol 1997; 499:589-600.

39. Bouhours M, Sternberg D, Davoine CS, Ferrer X, Willer JC, Fontaine N, Tabiri N. Functional characterization and cold sensitivity of T1313A, a new mutation of the skeletal muscle sodium channel causing paramyotonia congenita. J Physiol 2004; 554:635-47.

40. Bouhours M, Luce S, Sternberg D, Claude-Wilker J, Fontaine B, Tabiri N. A novel mutation in the Na+ channel causes paramyotonia congenita and mimics the role of DIII/S4-S5 linker in fast inactivation. J Physiol 2005; 565:415-27.

41. Fleischhauer R, Mitrovic N, Deymeer F, Lehmann-Horn F, Lerche H. Effects of temperature and muscle subtype on fast inactivation of the Na+ channel. Pflugers Arch Eur J Physiol 1998; 436:757-65.

42. Wu FE, Gordon E, Hoffman EP, Cannon SC. A C-terminal skeletal muscle sodium channel mutation associated with myotonia disrupts fast inactivation. J Physiol 2005; 565:371-80.

43. Featherstone DE, Fujimoto E, Ruben PC. A defect in skeletal muscle sodium channel deactivation exacerbates hyperexcitability in human paramyotonia congenita. J Physiol 1998; 506:627-38.

44. Groome JR, Fujimoto E, Ruben PC. The delay in recovery from fast inactivation in skeletal muscle sodium channels is deactivation. Cell Mol Neurobiol 2000; 20:521-7.

45. Dice MS, Abbruzzese JL, Wheeler JT, Groome JR, Fujimoto E, Ruben PC. Temperature-sensitive defects in paramyotonia congenita mutants R1448C and T1313M. Muscle Nerve 2004; 30:277-88.

46. Kuo CC, Bean BP. Na+ channels must deactivate to recover from inactivation. Neuron 1994; 12:819-29.

47. Cha A, Ruben PC, George AL Jr, Fujimoto E, Bezainilla F. Voltage sensors in domains III and IV, but not in I and II, are immobilized by Na+ channel fast inactivation. Neuron 1999; 22:73-87.

48. Groome JR, Larsen M, Coonts A. Deactivation defects in Na+, paramyotonia congenita mutations F1473S and F1705I. Biophys Soc Abstr 2007;467-Poa.

49. Groome JR, Dice MC, Fujimoto E, Ruben PC. Charge immobilization of skeletal muscle Na+ channels: role of residues in the III-IV inactivation linker. Biophys J 2007; 93:1519-33.

50. Kuhn FJ, Gref NG. Movement of voltage sensor S4 in domain 4 is tightly coupled to sodium channel fast inactivation and gating charge immobilization. J Gen Physiol 1999; 114:167-83.
Differential gating defects in PC