Coherence and multimode correlations from vacuum fluctuations in a microwave superconducting cavity

Pasi Lähteenmäki, Gheorghe Sorin Paraoanu, Juha Hassel & Pertti J. Hakonen

The existence of vacuum fluctuations is one of the most important predictions of modern quantum field theory. In the vacuum state, fluctuations occurring at different frequencies are uncorrelated. However, if a parameter in the Lagrangian of the field is modulated by an external pump, vacuum fluctuations stimulate spontaneous downconversion processes, creating squeezing between modes symmetric with respect to half of the frequency of the pump. Here we show that by double parametric pumping of a superconducting microwave cavity, it is possible to generate another type of correlation, namely coherence between photons in separate frequency modes. The coherence correlations are tunable by the phases of the pumps and are established by a quantum fluctuation that stimulates the simultaneous creation of two photon pairs. Our analysis indicates that the origin of this vacuum-induced coherence is the absence of which-way information in the frequency space.
A direct consequence of the Heisenberg uncertainty principle is that quantum fields, even in the vacuum state, are teeming with fluctuations. Modern quantum field theory predicts that these fluctuations are not only a useful mathematical representation but also they can produce observable effects, encompassing vastly different physical scales—from atoms to black holes. Among these are the Purcell effect, the Lamb shift of the atomic states, the Schwinger effect, and the Hawking radiation also the Casimir effect.

Recently, in parallel to the interest in fundamental physics, a novel approach has emerged—the idea of engineering the quantum vacuum to create novel devices and protocols for quantum technologies. Parametrically modulated superconducting circuits have attracted significant interest in both theoretical and experimental realms. These devices are utilized for controlling the relative phase of the applied pumps. Our result demonstrates that two-mode coherence correlations can be obtained from the dynamical Casimir effect by employing a nested structure:

$$\begin{align*}
\tilde{a}_{\text{out}}[\xi] & = \left[1 - \frac{\kappa \gamma(\xi)}{\frac{1}{2} \sum_{p=1}^{2} N^{p}(\xi) \left(\frac{1}{2} \sum_{p=1}^{2} N^{p}(\xi) \right)} \frac{\tilde{a}_{\text{in}}[\xi]}{\tilde{a}_{\text{in}}[\xi]} \right] \\
& + \frac{\kappa \gamma(\xi)}{\frac{1}{2} \sum_{p=1}^{2} N^{p}(\xi) \left(\frac{1}{2} \sum_{p=1}^{2} N^{p}(\xi) \right)} \frac{\tilde{a}_{\text{in}}[\xi]}{\tilde{a}_{\text{in}}[\xi]} \\
& \left[\left(\frac{\tilde{a}_{\text{in}}[2\Delta_{p} - 2\Delta_{p} + \xi]}{\tilde{a}_{\text{in}}[\xi]} \right)^{2} + \frac{\gamma(\xi)}{\frac{1}{2} \sum_{p=1}^{2} N^{p}(\xi) \left(\frac{1}{2} \sum_{p=1}^{2} N^{p}(\xi) \right)} \right].
\end{align*}$$

Here $\gamma(\xi) = (\kappa / 2 - i\xi)^{-1}$ is the electrical susceptibility of the resonator, $p \in \{1, 2\}$, $N^{p}(\xi)$ denote normalization factors (see the Supplementary Notes 1–3), and $\Delta_{p} = \omega_{p} / 2 - \omega_{\text{res}}$.

For simplification, we truncate equation (2) to the first-order reflections of ξ with respect to the pumps, and assume $|\Delta_{p}| \gg |\xi|$. Higher-order reflection (Supplementary Fig. 1) amplitudes are suppressed by a factor proportional to the cavity susceptibility, however they can be observed experimentally at high enough pumping power (Supplementary Fig. 6). In this first-order approximation, we have $N^{p}(\xi) \approx 1$, and we use a pump-power parameterization by a squeezing parameter λ and power asymmetry angle θ, $\lambda \gamma(\Delta_{p}) = \cos \theta \tan(\lambda / 2) e^{i\omega_{p}}$, and $\lambda \gamma(\Delta_{p}) = \sin \theta \tan(\lambda / 2) e^{i\omega_{p}}$. This allows us to calculate the correlations in the output field of the cavity \tilde{a}_{out} with the vacuum as the input state. We find that each pump produces squeezing correlations $\langle \tilde{a}_{\text{out}}[\xi] \tilde{a}_{\text{out}}[2\Delta_{1} - \xi'] \rangle = \frac{i}{8} \cos \theta \exp(i\omega_{p}) \sinh 2\lambda \Delta_{1} \delta(\xi - \xi')$, $\langle \tilde{a}_{\text{out}}[\xi] \tilde{a}_{\text{out}}[2\Delta_{2} - \xi'] \rangle = \frac{i}{8} \exp(i\omega_{p}) \sin \theta \sinh 2\lambda \delta(\xi - \xi')$, as well as noise at $2\Delta_{1} - \xi$ and $2\Delta_{2} - \xi$, according to the dynamical Casimir effect power noise formula for each pump separately, $\langle \tilde{a}_{\text{out}}[2\Delta_{1} - \xi'] \rangle \tilde{a}_{\text{out}}[2\Delta_{1} - \xi'] = \cos^{2} \theta \sinh^{2} 2\lambda \delta(\xi - \xi')$, $\langle \tilde{a}_{\text{out}}[2\Delta_{2} - \xi'] \rangle \tilde{a}_{\text{out}}[2\Delta_{2} - \xi'] = \sin^{2} \theta \sinh^{2} 2\lambda \delta(\xi - \xi')$.
The two spontaneous parametric downconversion processes in the pumps.

\[
\hat{b}[\xi] = \cos \theta e^{-i\phi} \hat{a}[2\Delta_1 - \xi] + \sin \theta e^{-i\phi} \hat{a}[2\Delta_2 - \xi],
\]

(4)

\[
\hat{d}[\xi] = \sin \theta e^{-i\phi} \hat{a}[2\Delta_1 - \xi] - \cos \theta e^{-i\phi} \hat{a}[2\Delta_2 - \xi],
\]

(5)

and similar relations for the output and input modes. These two modes are orthogonal to each other, spanning the Hilbert space of the extremal modes \(2\Delta_1 - \xi\) and \(2\Delta_2 - \xi\). Experimentally, the asymmetry angle \(\theta\) in the bright and dark modes is determined from measurements of the noise power generated by each pump through the dynamical Casimir effect. The definition of the modes \(b\) and \(d\) resembles a beam-splitter/merging operation in frequency (rather than in space, as in usual interferometers), where a mode is separated into two branches with a distance \(2(\Delta_1 - \Delta_2)\) between them. Indeed, when the modes \(\hat{a}[2\Delta_1 - \xi]\) and \(\hat{a}[2\Delta_2 - \xi]\) are rotated by some angles \(\phi_1\) and \(\phi_2\) and combined as in equations (4) and (5), this vacuum-induced coherence manifests as an interference effect, producing the extinction of power in the dark mode and the maximization of power in the bright mode. Specifically, for the correlations involving the dark and bright modes we obtain

\[
\left\langle \hat{b}_{\text{out}}[\xi]^{\dagger} \hat{b}_{\text{out}}[\xi'] \right\rangle = \sinh^2 \lambda \times \delta(\xi - \xi'),
\]

(6)

\[
\left\langle \hat{a}_{\text{out}}[\xi] \hat{b}_{\text{out}}[\xi'] \right\rangle = \frac{1}{2} \sinh 2\lambda \times \delta(\xi - \xi'),
\]

(7)

\[
\left\langle \hat{a}_{\text{out}}[\xi] \hat{a}_{\text{out}}[\xi'] \right\rangle = \left\langle \hat{b}_{\text{out}}[\xi] \hat{a}_{\text{out}}[\xi'] \right\rangle = 0,
\]

(8)

\[
\left\langle \hat{a}_{\text{out}}[\xi]^{\dagger} \hat{a}_{\text{out}}[\xi'] \right\rangle = 0.
\]

(9)

These correlations reflect the structure of the output state of the resonator \(|\text{vac}_{\text{out}}\rangle\), which fulfils \(\hat{a}_{\text{out}}[\xi]|\text{vac}_{\text{out}}\rangle = 0\). For the truncated form of equation (2), the output state is a two-mode squeezed state in terms of the operators \(\hat{a}[\xi]\) and \(\hat{b}[\xi]\).

\[|\text{vac}_{\text{out}}\rangle = |S| |\text{vac}_{\text{in}}\rangle,\]

where \(S = \exp[\lambda \hat{a}_{\text{in}}^{\dagger} \hat{b}_{\text{in}} - h.c.]\). In the subspace containing at most two excitations, the tripartite state is in the W class, see Supplementary Note 5.

The disappearance of power in the dark mode is a particular manifestation of coherence which has been employed for many applications, such as quantum memory\(^{35}\) and stimulated Raman adiabatic passage (STIRAP) in superconducting qubit systems\(^{36}\). Note that in the usual type of dark state, the destructive interference is produced at the same frequency, for example, on a quantum state of a qubit or of a mode of a field. Here, the two modes at \(2\Delta_1 - \xi\) and \(2\Delta_2 - \xi\) are separated in frequency and do not overlap\(^{37}\). The destructive interference effect is created by the vacuum fluctuations at \(\xi\) which trigger two correlated two-photon parametric downconversion processes in the pumps.

As for standard quantum interference, the lack of path information\(^{23,32}\) is critical for the interference between extremal frequencies. Here, instead of which-path information in space, we deal with absence of which-colour information\(^{29,30}\). For a real photon at frequency \(\xi\), there is no way of knowing from which of the two spontaneous parametric downconversion processes it came from (see Supplementary Note 4).
Experimental results for correlations. To test the above predictions, we pumped our sample using two phase-locked microwave generators at frequencies 9.99 and 10.01 GHz. The output field \hat{a}_{out} from the resonator is amplified, yielding a signal that is further downconverted and digitized. The Fourier-transformed amplified field is measured in a bandwidth around the three frequencies of interest. The resulting fields are denoted by \hat{a}_0, \hat{a}_1, \hat{a}_2 (see Methods), corresponding to the output fields $\hat{a}_{\text{out}}(\xi)$, $\hat{a}_{\text{out}}(2\Delta_1-\xi)$ and $\hat{a}_{\text{out}}(2\Delta_2-\xi)$, respectively. Upon subtraction of the added noise of the amplifiers, the correlations between the amplified fields provide a direct measurement of the corresponding correlations of the resonator output field\(^{19,54}\).

For additional information see Supplementary Notes 7–8. The measured noise power data can be reproduced by simulations using the theoretical results presented earlier. The data are presented in (Fig. 2a), while the corresponding numerical result from equation (2) is presented in Fig. 2b). The measured correlations, as well as the analytical and the simulation results are normalized with respect to the vacuum state values, corresponding to $\lambda = 0$. Thus, the correlations at finite pumping $\lambda \neq 0$ are expressed in dB (with vacuum as reference). The noise power levels can also be expressed in absolute units (photon flux/Hz).

For symmetry reasons, we chose to analyse correlations when the microwave resonance lies at half of the average of the two pump frequencies, that is $\Delta_1 \approx -\Delta_2$, in which case the tripartite correlations are strongest.

Figure 3 displays the most relevant correlators determined as a function of the number of photons in the resonator. All these correlators can be calculated from the measured field quadratures of the output field. The simulation is based on the Langevin equation corresponding to the Hamiltonian equation (1) (see also equation (6) in Supplementary Note 1), with white noise as input, and the theoretical curves are obtained from equations (3), (6) and (9). We find that the behaviour of these correlators agrees well with the theory—squeezing correlations exist between neighbouring frequencies and vacuum-induced coherence correlations between the extremal ones. Indeed, the correlators grow nearly exponentially with the squeezing parameter, as predicted by theory. Furthermore, the ratio between various correlators is close to the expectations obtained from equation (2), with only the first-order pump reflections included.

From Fig. 3, we note that the coherence is preserved also in the limit of small number of photons. This shows that our result is fundamentally different from tripartite slit-interferometer schemes\(^{35}\), where the coherence between two modes is obtained only in the limit of a large number of photons in the pump mode.

The phase-dependent interplay between the bright and dark modes is presented in (Fig. 4a). By adjusting the phase difference $\varphi_{12}=\varphi_1-\varphi_2$ of the pumps, the measured correlator power will shift from $\langle \hat{b}^\dagger \hat{b} \rangle$ into $\langle \hat{d}^\dagger \hat{d} \rangle$ as seen in Fig. 4a. The division of power between the dark and bright modes depends also on the asymmetry of the two pump amplitudes, that is, the parameter θ. Thus, we find θ by measuring the noise power generated by each pump separately. Figure 4b illustrates the change in the argument of the correlator when the phase of one pump is varied relative to the other one. We note that the possibility of applying phase shifts on the modes by the rotation of the pump phases is a key operation in CV quantum computing\(^{56}\).
Figure 4 | Phase sensitivity of correlations. (a) Bright-/dark-mode amplitude versus phase difference between the pumps $\phi_{12} = \phi_1 - \phi_2$, and pump amplitude asymmetry parameter θ (symmetric pumps have $\theta = \pi/4$). The maximum value corresponds to the bright-mode amplitude while the minimum refers to the dark mode. (b) Measured argument of the complex quadrature correlations versus ϕ_{12}, where ϕ_2 is varied and $\theta \approx \pi/4$.

Figure 5 | Pulsed-pump measurements. Decrease of vacuum-induced coherence $|\langle \hat{a}_1 \hat{a}_2 \rangle|$ when the overlap time t of the parametric pump pulses is varied. The coherence decreases linearly (see Supplementary Note 6) as the pumps become non-overlapping. Complete vanishing of the correlation between the extremal frequencies with zero overlap of the pulses implies that the photons are created simultaneously. For this experiment the sample was replaced with a new higher Q chip with $\kappa \approx 1\text{ MHz}$, $\kappa_c \approx 2\text{ MHz}$. The pulse width for both pump tones was 1 μs. Three other correlators specified in the inset labelling are also depicted. Dashed lines are from time domain simulations based on equation (6) from the Supplementary Note 1 and the dots are experimental data. The difference in the values of $\langle \hat{b}^\dagger \hat{b} \rangle$ and $\langle \hat{d}^\dagger \hat{d} \rangle$ when the pulses do not overlap is due to the asymmetric power generation by the dynamical Casimir effect in each of the pumps separately.

Correlations in time-domain. The creation of vacuum-induced coherence was investigated in pulsed pump tone experiments, in which the overlap of the pump signals was varied as illustrated in (Fig. 5). The results show that, in order to obtain a non-zero coherence correlation, the downconversion processes have to occur simultaneously. We observe that the coherence $|\langle \hat{a}_1 \hat{a}_2 \rangle|$ is reduced proportionally to the decrease of pulse overlap, while the squeezing correlations $|\langle \hat{a}_1 \hat{a}_0 \rangle|$ and $|\langle \hat{a}_0 \hat{a}_2 \rangle|$ remain. The linear dependence of the coherence correlation on the overlap can be obtained through a fully analytical relation (see Supplementary Note 6). This demonstrates that the generation of the coherence requires overlapping pump signals and simultaneous creation of photons, during which the which-colour information is not available. When the pump pulses are separated in time, the information about which pump has generated the photons becomes accessible in principle, and the coherence is suppressed.

Discussion

Our work on tripartite microwave correlations can be extended towards multipartite entangled states, which would yield a platform for universal quantum computation using CV, as recently proposed in ref. 25. For example, the creation of cluster states in microwave cavities would be an important step towards realizing a superconducting one-way computer. Such multipartite entangled states require pulsed microwave pumping for entangling different frequencies, a scheme that has been shown to be a fully functioning concept in our work.

Methods

Numerical evaluation of correlators. The numerically simulated results presented in Figs 2 and 3 were obtained using Gaussian (white) noise to represent the effect of the vacuum as input. In addition, higher-order reflections were included in Fig. 3 by solving the HLE in the rotating-wave approximation $\hat{a}\approx \sum_{p=1,2}^2 e^{-2\text{i}\omega_d t} \hat{a} - \frac{1}{2} \hat{a}: \hat{a} = \sqrt{N_{\text{a}}}.\hat{a}$. The presumption of white noise is accurate for narrow bandwidths where the spectrum of quantum noise is approximately uniform. In this way, higher-order reflections are included automatically in the results.

As seen from Fig. 3, the simple tripartite analytical solution of equation (2), leading to correlators listed in equations (5)–(9), agrees quite well with the results, except for the dark-mode correlator $\langle \hat{d}^\dagger \hat{d} \rangle$. The disagreement can be traced to the assumption $\xi \ll \Delta_1, \Delta_2$, but the numerical simulations are not limited by this approximation.

Homodyne detection of correlations. The output field of the resonator propagates through circulators and is amplified by a cryogenic low-noise high-electron-mobility transistor (HEMT) amplifier and by room-temperature microwave amplifiers. The quadratures are measured by standard homodyne methods, that is, captured using an Anritsu MS2830A signal analyser. Approximately 20 GB of data per sweep were collected and transferred to PC for later analysis. The single bins of the Fourier transformed data represent a bandwidth of 50 Hz and, therefore, spectral leakage due to used rectangular windowing is insignificant.

From the quadratures, we can construct the complete field amplitudes, calculate their Fourier components around the central and extremal frequencies, in a bandwidth BW. We can write

$$\hat{a}_0 = \int_{-\infty}^{\infty} dfw_{BW}[\xi;\zeta] \hat{a}_{0\text{out}}[\zeta],$$

$$\hat{a}_{1,2} = \int_{-\infty}^{\infty} dfw_{BW}[2\Delta_{1,2} - \xi;\zeta] \hat{a}_{1,2\text{out}}[\zeta],$$

where $f_{BW}[\xi;\zeta]$ is a digital filtering function of width BW centred at the frequency ξ. Choosing $\int_{-\infty}^{\infty} dfw_{BW}[\xi;\zeta] = 1$ ensures that $|\langle \hat{a}_0 \hat{a}_0 \rangle| = 1$, $|\langle \hat{a}_1 \hat{a}_1 \rangle| = 1$, $|\langle \hat{a}_2 \hat{a}_2 \rangle| = 1$.

Because the added noise of the measurement chain is contained in $\hat{a}_{0\text{out}}$ and it is uncorrelated, its contribution will vanish when calculating the correlations of $\hat{a}_{1,2}$ and in the case of autocorrelation, it can be subtracted as a known constant.
We can obtain directly from equations (10) and (11) all the measured correlations, for example $\langle \hat{a}_{\lambda} \rangle = \cos \theta \exp(i\phi_{\lambda}) \sinh(2\beta)$, etc.

Also, given the definitions above, the correlations in the field at the output of the cavity are adiabimetric; in particular, $\langle \hat{a}_{\lambda} \rangle$, $\langle \hat{b}_{\lambda} \rangle$, and $\langle \hat{a}_{\lambda} \hat{a}_{\lambda} \rangle$ represent the flux of photons per bandwidth in the modes \hat{a}_λ, \hat{b}_λ, and \hat{a}_λ, respectively. This power is estimated from the increase of observed power due to pumping relative to the amplifier-noise temperature.

Pulsed parametric pumping. In pulsed measurements, the pumping tones (corresponding to 50 photon flux/Hz in continuous operation emerging from the cavity) were modulated using a pair of mixers (Marki M10220LA), driven by digital delay generators from Stanford Research System (DG535). The system provides an ON/OFF ratio of 1:100 and a rise time of 10 ns. The cavity at the centre frequency of 5 GHz) were modulated using a pair of mixers

Data availability. The data that support the findings of this study are available from the corresponding author upon request.

References

1. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

2. Lamb, W. & Retherford, R. Fine structure of the hydrogen atom by a microwave method. Phys. Rev. 72, 241–243 (1947).

3. Schwinger, J. S. On gauge invariance and vacuum polarization. Phys. Rev. 97, 713–719 (1955).

4. Casimir, H. B. G. On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. B 51, 793–795 (1948).

5. Paraanou, G. S. in *Boston Studies in the Philosophy and History of Science* Vol. 313 (eds Parvu, I., Sandu, G. & Toader, I.) 181–197 (Springer, 2015).

6. Sabín, C. & Adesso, G. Generation of quantum steering and interferometric power in the dynamical Casimir effect. Phys. Rev. A 92, 042107 (2015).

7. Lähteenmäki, P. et al. Advanced concepts in Josephson junction reflection amplifiers. J. Low Temp. Phys. 175, 865–876 (2014).

8. Paraanou, G. S. Recent progress in quantum simulation using superconducting circuits. J. Low Temp. Phys. 175, 633–654 (2014).

9. Vidal, G. & Cirac, J. I. The quantum simulator as a many-body quantum computer. N. Phys. 9, 231103 (2011).

10. Vidal, G. & Cirac, J. I. The quantum simulator as a many-body quantum computer. N. Phys. 9, 231103 (2011).

11. Kamal, A., Marblestone, A., Danilin, S. & Paraanou, G. S. Stimulated Raman adiabatic passage in a three-level superconducting circuit. Nat. Commun. 7, 10628 (2016).

12. Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007).

13. Zakka-Bajjani, E. et al. Quantum superposition of a single microwave photon in two different colour states. Nature Phys. 7, 599–603 (2011).

14. Giedke, G., Kraus, B., Lewenstein, M. & Cirac, J. I. Suppression of arbitrary internal coupling in a quantum register. Phys. Rev. A 64, 052301 (2001).

15. Adesso, G., Serafini, A. & Illuminati, F. Multiparticle entanglement in the-modes Gaussian states of continuous-variable systems: quantification, sharing structure, and decoherence. Phys. Rev. A 73, 032345 (2006).

16. Serafini, A., Adesso, G. & Illuminati, F. Unitarily localizable entanglement of Gaussian states. Phys. Rev. A 71, 032349 (2005).

17. Adesso, G., Serafini, A. & Illuminati, F. Quantification and scaling of multiparticle entanglement in continuous variable systems. Phys. Rev. Lett. 93, 220504 (2004).

18. Dür, W., Vidal, G. & Cirac, J. I. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000).

19. van Loock, P. & Braunstein, S. L. Telecloning of continuous quantum variables. Phys. Rev. Lett. 87, 247901 (2001).

20. Adesso, G., Serafini, A. & Illuminati, F. Optical state engineering, quantum communication, and robustness of entanglement promiscuity in three-mode Gaussian states. New J. Phys. 9, 6 (2007).

21. Paraanou, G. S. Realism and single-quanta nonlocality. Found. Phys. 41, 734 (2011).

22. Heaney, L., Cabello, A., Santos, M. F. & Vedral, V. Extreme nonlocality with one photon. New J. Phys. 13, 053043 (2011).

23. Aaronson, S. & Arkhipov, A. The computational complexity of quantum optics. Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing 333–342, http://doi.org/10.1145/1993636.1993682 (2011).

24. Chen, M., Menicucci, N. C. & Pfister, O. Experimental realization of multipartite entanglement in 60 modes of a quantum optical frequency comb. Phys. Rev. Lett. 112, 120505 (2014).

25. Raussendorf, R. & Briegel, H. A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001).

26. Lemos, B. G. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014).

27. Ma, X.-S., Millner, L. & Zeilinger, A. Delayed-choice gedanken experiments and their realizations. Rev. Mod. Phys. 88, 015005 (2016).

28. da Silva, M. P., Bozyigit, D., Wallraff, A. & Blais, A. Schemes for the observation of photon correlation functions in circuit QED with linear detectors. Phys. Rev. A 82, 043804 (2010).

29. Bertet, P. et al. A complementarity experiment with an interferometer at the quantum-classical boundary. Nature 411, 166–170 (2001).

30. Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

31. Kiviranta, M. et al. Multilayer fabrication process for josephson junction circuits cross-compatible over two foundries. IEEE Trans. Appl. Supercond. 99, 1–5 (2016).

Acknowledgements

We thank K. Mølmer, Sr. P. Knight, Y. Makhlin, C. Sabin, H. Briegel, W. Dür, D. Bruschi, G. Adesso and A. Simonsen for discussions and M. Kviranta and L. Grönberg for contributions in fabrication. This work used the cryogenic facilities of the Low Temperature Laboratory infrastructure at OtaNano, Aalto University.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12548 | www.nature.com/naturecommunications

6
We acknowledge financial support from FQXi, the Academy of Finland project 263457, the Center of Excellence ‘Low Temperature Quantum Phenomena and Devices’ (project 250280) and the FP7 iQuOEMS project 323924.

Author contributions
P.L. and J.H. designed the sample. P.L. and P.J.H. were responsible for the experimental setup. P.L. performed the experiment and analysed the data. G.S.P. developed the theoretical model. P.L., P.H., and G.S.P. wrote the paper, and the results were discussed with all authors.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Lähteenmäki, P. et al. Coherence and multimode correlations from vacuum fluctuations in a microwave superconducting cavity. Nat. Commun. 7:12548 doi: 10.1038/ncomms12548 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016