Prehistoric and recent extinctions of large-bodied terrestrial herbivores had significant and lasting impacts on Earth’s ecosystems due to the loss of their distinct trait combinations. The world’s surviving large-bodied avian and mammalian herbivores remain among the most threatened taxa. As such, a greater understanding of the ecological impacts of large herbivore losses is increasingly important. However, comprehensive and ecologically-relevant trait datasets for extinct and extant herbivores are lacking. Here, we present HerbiTraits, a comprehensive functional trait dataset for all late Quaternary terrestrial avian and mammalian herbivores ≥10 kg (545 species). HerbiTraits includes key traits that influence how herbivores interact with ecosystems, namely body mass, diet, fermentation type, habitat use, and limb morphology. Trait data were compiled from 557 sources and comprise the best available knowledge on late Quaternary large-bodied herbivores. HerbiTraits provides a tool for the analysis of herbivore functional diversity both past and present and its effects on Earth’s ecosystems.

Background & Summary

Large-bodied terrestrial avian and mammalian herbivores strongly influenced terrestrial ecosystems through much of the Cenozoic—the last 66 million years of Earth history. However, many of the world’s large-bodied herbivore species became extinct or experienced significant range contractions beginning ~100,000 years ago in the late Quaternary. Human impacts were the primary driver of these extinctions and declines, though possibly in conjunction with climate change1–3. The world’s remaining large-bodied herbivores are among the most threatened species on the planet4,5, leading to urgent calls to protect these species and to better understand their distinct ecological roles6.

Large-bodied herbivores are unique in their capacity to consume large quantities of plant biomass and, as the largest terrestrial animals, they are uniquely capable of causing disturbance to vegetation and soils. These taxa thus exert strong top-down control on ecological communities and ecosystem processes. Prehistoric and historic losses of large herbivores led to profound changes to Earth’s terrestrial ecosystems, including reductions in ecosystem productivity from reduced nutrient cycling, reduced carbon forest stocks from the loss of disturbance, increases in wildfire frequency and severity, and changes in plant communities7–12. The causes and ecological legacies of late Quaternary extinctions are key topics of rapidly growing research interest13–18. Likewise, the potential for introduced herbivores (either inadvertently or intentionally) to restore lost ecological processes is an important focus of research and debate today19–27.

The capacity for organisms to affect the environment is driven by their functional trait combinations28 (Fig. 1). As such, the availability and accuracy of herbivore functional trait data is critical for understanding the patterns and ecological consequences of the late Quaternary extinctions, the implications of modern ecological changes, and to guide conservation action. However, datasets of herbivore traits are rare and suffer from poor documentation, incomplete species lists, and outdated taxonomies. Trait datasets have been particularly scarce
and/or inconsistently available for extinct species. Furthermore, there often exists a trade-off between species coverage and the resolution of many datasets. Mammalian trait datasets such as PHYLACINE29 or MOM (Mass of Mammals)30 include data on many late Quaternary mammal species, including carnivorous, aquatic, and flying species. These datasets thus include traits that are universal across these disparate ecological niches but in doing so lack trait data relevant to understanding herbivores and their unique ecological roles in particular. Furthermore, few datasets have considered or included avian herbivores, which can be particularly important components of large vertebrate faunas, especially on islands. The lack of a consistent and high-resolution trait dataset for late Quaternary avian and mammalian herbivores stymies efforts to understand the consequences of ecological changes that followed late Quaternary extinctions and hinders modern responses to changes in this important functional group.

Here, we present HerbiTraits, a comprehensive global trait dataset containing functional traits for all terrestrial avian ($n = 34$ species) and mammalian ($511$ species) herbivores $\geq 10$kg spanning the last $\sim 130,000$ years of the late Quaternary. HerbiTraits contains traits fundamental to understanding the multiple dimensions of herbivore ecology, including body mass, diet, fermentation type, habitat use, and limb morphology (Fig. 1, Table 1). These data are broadly useful for both paleo and modern ecological research, including potential conservation and rewilding efforts involving herbivores. Recent research using these data has yielded insight into the functionality of novel assemblages composed of introduced and native herbivores25.

Fig. 1 Herbivores affect numerous ecological and ecosystem processes. The traits contained in HerbiTraits encapsulate major dimensions of herbivore ecology and its effect on the environment, from affecting local vegetation and soils to influencing global climate. Linkages indicate direct and indirect effects of traits on ecological processes or components, scaling from traits (left-hand side) to globe (right-hand side).
| Trait | Variable Name | Variable type | Values/Unit | Notes |
|-------|---------------|---------------|-------------|-------|
| Mass  | Mass.g        | Continuous    | Grams       | Body mass is a continuous variable reflecting average body mass of adult, across males and females. |
| Diet  | Three variables: Diet.Graminoids; Diet.Browse.Fruit; Diet.Meat | Ordinal | 0 (insignificant, 0–9% of diet) 1 (low significance, 10–24%) 2 (moderate significance, 25–49%) 3 (high significance, 50–100%) | Graminoid, browse, and meat consumption were treated as separate ordinal variables. Fruit consumption was included with browse. Grass-seed, bamboo, and forbs (herbaceous dicots) were considered browse. |
| Fermentation type | Two variables: Fermentation.Type Fermentation.Efficiency | Categorical/Ordinal | Simple gut (Efficiency: 0) Hindgut colon (Efficiency: 1) Hindgut caecum (Efficiency: 1) Forerogum non-ruminant (Efficiency: 2) Forerogum ruminant (Efficiency: 3) | Fermentation type was collected as a categorical variable, following, but was ranked as an ordinal variable in terms of efficiency (0–3). |
| Habitat | Three variables: Habitat.Aquatic; Habitat.Terrestrial; Habitat.Arboreal | Binary | 0 (no significant use of habitat) 1 (use of habitat) | Use of particular habitats (aquatic, terrestrial, arboreal) was given a 0 or 1, non-exclusively. This variable has also been coded categorically and includes semi-aquatic, terrestrial, semi-arboreal, arboreal |
| Limb morphology | Limb.Morphology | Categorical | Plantigrade Digitigrade Unguligrade | Limb morphology reflects major vertebrate postural adaptations, which govern habitat affinities, fossoolarity, cursoriality, and disturbance-related effects on soils. |

Table 1. HerbiTraits contains key traits for all late Quaternary herbivorous mammals over the last 130,000 years. Traits include body mass, diet, fermentation type, habitat, and limb morphology. These variables can be used to understand patterns and processes of ecological change.

Methods

Compilation of Species List. HerbiTraits includes all known herbivores over the last ~130,000 years from the start of the last interglacial period, which is ~30,000 years prior to the onset of the earliest late Quaternary extinctions. The mammal species list was derived from PHYLACINE v1.2.19. Herbivorous birds ≥10 kg were gathered through a comprehensive review of the peer-reviewed literature, including handbooks. Herbivores were selected as any species ≥10 kg with >50% plant in their diet, thus including several omnivorous taxa (e.g. bears). The 10 kg cut-off was chosen following Owen-Smith's designation of a mesoherbivore, a category paradigmatic to many herbivore ecological analyses but missed by the commonly used ≥44 kg cutoff commonly used for 'megafauna'. Domestic species with wild introduced populations (e.g. horses Equus ferus caballus, water buffalo Bubalus arnee bubalis) were included separately in HerbiTraits as their trait values (particularly body mass) can differ substantially from their extant or extinct pre-domestic conspecifics. We included the status for all species, including ‘Extant’, ‘Extinct before 1500 CE’, ‘Extinct after 1500 CE’, ‘Extinct before 1500 CE, but wild in introduced range’ and ‘Extinct after 1500 CE, but wild in introduced range’. The latter two cases apply to species that are extinct in their native ranges (e.g. Camelus dromedarius, Bos primigenius, Oryx dammah) but which have wild, introduced populations. Species listed as Extinct in the Wild by the IUCN Red List are considered ‘Extinct after 1500 CE’ in the dataset.

Functional Traits. Functional trait data were collected from a variety of peer-reviewed literature (n = 502 references, 91% of total references), books (n = 28, e.g. Handbook of the Mammals of the World39), online databases (n = 7), theses (n = 9), and others (n = 11). For all taxa, multiple sources were consulted, and the most reliable source was used in trait designation. Reliability was based on the method of the source data (see Table 2 for the ranking system we employed). In cases where studies disagreed, we gave extra weight to studies with more reliable methods, larger sample sizes, and/or broader geographic and temporal coverage. We provide justification for our decision-making process in note fields.

Body mass. Body mass is strongly associated with a number of life history attributes and ecological effects, including metabolic and reproductive rates, the capacity to cause disturbance, the ability to digest coarse fibrous vegetation, and the vulnerability of herbivores to predation (Fig. 1). Mammal body mass (in grams) was sourced from PHYLACINE v1.2.19 and Mass of Mammals (Table 1). Avian body masses were collected directly through a comprehensive review of the peer-reviewed literature, including handbooks. Isometric equations (which assume a simple linear relationship between morphology (e.g. tarsus length) and body mass) were ranked lower, as were cases where body masses were estimated based on similar, often closely related species (Table 2). However, we restricted metadata gathering to extinct taxa as accounts of extant species rarely report how their mass estimates were generated (though in all likelihood they are derived from a measured voucher specimen). Furthermore, the mass estimates of extinct species are the most uncertain and the most difficult to verify for users who are not familiar with extinct species or paleobiological methods of mass reconstruction. The avian mass estimates were collected by the authors directly from the peer reviewed literature.
Table 2. Method for assigning reliability in trait assessments for all traits. The italic text substitutes for ‘___’. At times, in cases where sources contradicted each other, or because of low source quality, reliability rank will be lower than reported here, with explanations in respective notes column. Likewise, particularly for diet, if empirical evidence was interpolated from a closely related species, the taxonomic relation is noted in parentheses following the method designation and reliability ranks are reduced.

| Reliability rank | Diet | Mass | Habitat | Fermentation & Limb morphology |
|------------------|------|------|---------|--------------------------------|
| 0                | Expert opinion Imputed Inferred from ___: Genus, habitat associations | Expert Opinion Imputed Method unknown Method uncertain Inferred from ___: relative of suggested similar size Extant species (method unknown, presume measured) | Method uncertain Inferred from ___: Family, Genus, absence of evidence, co-occurring species | Proxy isotopes ___: δ¹³C, δ¹⁵N |
| 1                | Functional ___ morphology: craniodental, appendicular Observed low sample size (1–5) ___: dental bolus/coprolite | Functional isometric relationship (____): bone size, shoulder height, teeth size etc. | Functional ___ morphology: craniodental, appendicular Low sample size ___: dental bolus, coprolite, foraging, fecal analysis, stomach-contents, DNA metabarcoding | Inferred from ___: Suborder, sister Families |
| 2                | Proxy ___: isotopes (δ¹³C, δ¹⁵N, δ¹⁵O, etc), dental wear (mesowear, microwear) | Proxy allometric relationship (____): bone size, shoulder height, teeth size etc, Proxy volumetric estimate | Inferrer from: ___: habitat association, vegetation association | Inferred from ___: Subfamily, Family |
| 3                | Observed ___: Fecal analysis, stomach-contents, coprolites, foraging observations, dental bolus, DNA metabarcoding | Observed measured body mass | Observed ___: foraging observations, habitat use | Observed ___: Species, Genus |

Diet. Diet determines the type of plants herbivores consume and thus downstream effects on vegetation, nutrient cycling, wildfire, seed dispersal, and albedo (Fig. 1)19,31. Diet was collected as three ordinal variables describing graminoid consumption (i.e. grazing), browse and fruit consumption (i.e. browsing), and meat consumption (including vertebrate and invertebrate) (Table 1). Grazing and browsing have distinct effects on vegetation and ecosystems and are key dimensions of herbivore dietary differentiation31, reflecting a suite of strategies that have evolved across all major herbivore lineages. This is because grasses and their relatives (graminoids) and dicots (woody plants and herbaceous forbs) present different obstacles to herbivory. While graminoids are highly abrasive and composed primarily of cellulose, dicots are lignified and/or protected with secondary chemical compounds39. Frugivory is often impossible to differentiate from browsing based on paleobiological sources of data for extinct taxa and thus was included with browsing, though known records of fruit consumption are marked in the dataset’s diet notes column. The consumption of bamboo was considered browsing despite bamboo being a grass, as its lignification makes it structurally similar to wood39.

Ggraminoid, browse, and meat consumption ranged from 0–3, with 0 indicating insignificant consumption and 3 indicating regular or heavy consumption. In general, 0 indicates 0–9% of diet, 1 indicates 10–19%, 2 indicates 20–49%, and 3 indicates 50–100%. For example, an obligate grazer that consumes 90% graminoids would have a 0 for browse, and a 3 for graze, whereas a grazer that consumes 70% graze and 30% browse would have a 3 for graze and a 2 for browse. Likewise, if a species consumed both graze and browse equally (e.g. a mixed feeder) they would receive a score of 3 for each. While dietary estimates for extinct taxa by necessity came from broad temporal and spatial scales46, the coarseness of our ordinal (0–3) diet designation allowed us to capture intraspecific and spatiotemporal variation, making extant and extinct species comparable.

Diets for extant species (n = 321) were based on records from the Handbook of the Mammals of the World45, which represents a compiled, expert-reviewed synopsis of natural history data across mammals. However, to ensure that these diet designations were up to date, we conducted literature reviews for each species, searching for any papers published since the Handbook of the Mammals of the World (2009–2011 depending on taxonomic group). We also consulted region-specific handbooks, in particular Kingdon et al. 2013 Mammals of Africa46. In cases where percent diet composition was unavailable, we determined dietary values by converting textual descriptions into ordinal values (Table 3) following the methods outlined by MammalDIET47. Diets for extinct species were gathered from a variety of literature, as no systematic compilation of extinct herbivore diet is presently available. Discrepancies between sources were noted and described in the dietary notes field.

The methods of the original source papers for extant and extinct were designated and ranked by reliability (Table 2), which was used in assigning final dietary values. We gave priority to direct observations, including fecal or stomach content analysis, coprolites, fossilized boluses (e.g. phytoliths or other vegetation remnants in teeth), and foraging observations. This category was followed by proxy data, such as stable carbon isotopes and dental microwear and mesowear. Inferences from functional morphology, direct observations with sample sizes ≤5, expert opinions, and inferences from extant relatives were considered to have the lowest reliability (Table 2).

Herbivore diets can be highly variable, particularly across seasons and regions. In most cases where primary sources differed because of geographic variation in diets (e.g. a diet heavy in grass in one location and in browse in another), we increased the value of both dietary categories to reflect the mixed feeding capacity of the species across their range. However, we tempered this in cases of unusual diets in response to starvation, such as in the
Digestive physiology controls the quantity and quality of vegetation (e.g., fiber and nutrient content) that herbivores consume. Fermentation type therefore shapes effects on vegetation, gut passage rate, seed and nutrient dispersal distances, water requirements, and the resulting stoichiometry of excreta (Fig. 1).

Table 3. Method for converting textual descriptions to ordinal dietary values. This table is based upon the method outlined by Kissling et al.42, and shows some example key words and phrases that were used to determine dietary values.

| Diet Value | Interpretation | Textual description |
|------------|----------------|---------------------|
| 3          | The food source is a major (51–100%) and essential part of the species' diet. | “primarily consumes” “mainly consumes” “regularly consumes” “major part of the diet” “only consumes” |
| 2          | The food source is an important but not major part (21–50%) of the species' diet. It is generally a non-essential part of the species diet. | “also consumes” “seasonally consumes” “may consume” |
| 1          | The food source is a relatively small (11–20%) and unimportant part of the species' diet. | “occasionally consumes” “sometimes consumes” “opportunistically consumes” “has been reported to eat” |
| 0          | This food source is an insignificant part (0–10%) of the species' diet. | “does not consume” “has once been seen consuming” “The text does not mention the food source” |

Fermentation type. Digestive physiology controls the quantity and quality of vegetation (e.g., fiber and nutrient content) that herbivores consume. Fermentation type therefore shapes effects on vegetation, gut passage rate, seed and nutrient dispersal distances, water requirements, and the resulting stoichiometry of excreta. Following Hume46, fermentation type was collected as a categorical variable consisting of simple gut, hindgut colon, hindgut caecum, foregut non-ruminant, and ruminant (Table 1). These variables capture the range of fermentation adaptations across avian and mammalian herbivores. Based on these classifications and Hume46, we also ranked fermentation efficiencies (0–3) on an ordinal scale to these various digestive strategies, to facilitate quantitative functional diversity analyses (Table 1).

Fermentation types show strong phylogenetic conservatism at the family level. Therefore, for the most part, if direct anatomical evidence was not available, we inferred fermentation types from extant relatives. However, some extinct herbivores possess no close modern relatives and may have been functionally non-analog (e.g. 23 extinct ground sloths, 3 notoungulates, 4 diprotodonts, 16 glyptodonts, and 12 giant lemur). In these cases, clos-est living relatives, expert opinions, and craniodental morphology were used to determine the most likely fermentation system. For example, notoungulates, an extinct group from South America, possess no close modern relatives yet their craniodental and appendicular morphology resemble extant hindgut fermenting taxa (rhinos), and hindgut fermentation is widely considered to be ancestral in ungulates50. In all cases, we describe our justification and the state of the debate in the current literature.

Habitat use. Habitat use determines the components of ecosystems that herbivores interact with and is central to understanding their effects on vegetation, soils, and processes like nutrient dispersal (e.g. moving nutrients from terrestrial to aquatic environments51). We classified habitat with three non-exclusive binary variables (0 or 1) for the use of arboreal, terrestrial, and aquatic environments. We further classified this variable categorically as semi-aquatic, terrestrial, semi-arboreal, and arboreal. Defining habitat use is challenging as many terrestrial species use aquatic or arboreal environments opportunistically, and percentage habitat use data is unavailable for most species. To ensure habitat designations were consistent for extant and extinct species, we classified taxa on the basis of obligate habitat use across their geographic range and/or the possession of specialized adaptations (e.g. climbing ability) that would be evident in the morphology of fossil specimens. Further proof of habitat use by extinct species was inferred from close relatives or isotopic proxy data, when relevant. In cases where no specific information was available, we inferred habitat use from absence of evidence (e.g. there is no specific data regarding aquatic or arboreal habitat use by gemsbok Oryx gazella).
Limb morphology. Limb morphology is broadly associated with herbivore habitat preferences, locomotion (e.g., cursoriality, fossoriality, climbing), anti-predator responses, and rates of body size evolution12–14. Limb morphology also controls disturbance-related trampling effects on soils, with hoofed unguligrade taxa having stronger influences on soils than those with other morphologies15. Trampling has important effects on soils, hydrology, albedo, and vegetation16, and is often considered an essentially novel aspect of introduced herbivores in Australia and North America (e.g.,17,18). Limb morphology was collected as a three-level categorical variable consisting of plantigrade (walking on soles of feet), digitigrade (walking on toes), and unguligrade (walking on hoof). For example, plantigrade species are more likely to be fossorial or scansorial in habit, digitigrade species are likely to be salatory or ambulatory (e.g., extant kangaroos), while unguligrade species are often adapted for rocky, vertiginous terrain or cursoriality19. Limb morphology shows high phylogenetic conservatism across herbivore lineages and thus was primarily collected at the genus or family level from primary and secondary literature.

Data Records
HerbiTraits consists of an Excel workbook containing metadata (column names and descriptions), the trait dataset, and references as three separate sheets. The dataset is open-access and is hosted on Figshare20 as well as on GitHub (https://github.com/MegaPast2Future/HerbiTraits).

Technical Validation
The majority of functional trait data were collected from primary peer-reviewed literature (1,733 trait values from 456 articles), secondary peer-reviewed literature (1,294 values from 46 articles), or academic handbooks (1,099 trait values from 27 resources). Twenty-eight remaining resources consisted of theses (n = 39 trait values), databases (44), websites (39), conference proceedings (9), and grey literature (5). For transparency, justifications for trait designations (particularly relevant for extinct species) are described in the Notes columns and the highest quality evidence is ranked in trait-specific Reliability columns. Contradictions between sources have been noted and values have been based on the most empirically-robust methods or by averaging values across studies (see above). All data designations have been cross-checked (by EJL, SDS, JR, MD, and OM). We aim to maintain HerbiTraits with the best available data. We urge users to report errors or updates on newly published data for integration into HerbiTraits by filing an Issue on our GitHub (https://github.com/MegaPast2Future/HerbiTraits) repository page, or by emailing the corresponding authors. Furthermore, the GitHub (https://github.com/MegaPast2Future/HerbiTraits) page includes an incomplete trait file, which contains other ecologically relevant traits, such as adaptations for digging and free water dependence21. These traits remain unavailable for many taxae, but provide a starting point for further data collection and analysis.

Usage notes
Please cite this publication when using HerbiTraits. As the taxonomy and phylogeny is derived from PHYLACINE v1.2.1, that data is compatible with PHYLACINE v1.2.1’s phylogeny and range maps and with the IUCN Red List Version 2016-3 (2016), with the exception of domestic mammals and birds. All source references are cited in the main text14,24,25,40,83 to see above). All data designations have been cross-checked (by EJL, SDS, JR, MD, and OM). We aim to maintain HerbiTraits with the best available data. We urge users to report errors or updates on newly published data for integration into HerbiTraits by filing an Issue on our GitHub (https://github.com/MegaPast2Future/HerbiTraits) repository page, or by emailing the corresponding authors. Furthermore, the GitHub (https://github.com/MegaPast2Future/HerbiTraits) page includes an incomplete trait file, which contains other ecologically relevant traits, such as adaptations for digging and free water dependence21. These traits remain unavailable for many taxa, but provide a starting point for further data collection and analysis.

Code availability
The authors declare no custom code necessary for the interpretation or use of dataset.

Received: 2 June 2020; Accepted: 30 November 2020;
Published online: 20 January 2021

References
1. Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75, https://doi.org/10.1126/science.1101476 (2004).
2. Sandon, C., Faubry, S., Sandel, B. & Svenning, J. C. Global late Quaternary mega fauna extinctions linked to humans, not climate change. Proc. R. Soc. B. 281, 20133254, https://doi.org/10.1098/rspb.2013.3254 (2014).
3. Metcalf, J. L. et al. Synergistic roles of climate warming and human occupation in Patagonian mega fauna extinctions during the Last Deglaciation. Science Advances 2, e1501682 (2016).
4. Ripple, W. J. et al. Collapse of the world’s largest herbivores. Science Advances 1, e1400103 (2015).
5. Atwood, T. B. et al. Herbivores at the highest risk of extinction among mammals, birds, and reptiles. Science Advances 6, eaab8458 (2020).
6. Ripple, W. J. et al. Saving the world’s terrestrial megafauna. Bioscience 66, 807–812 (2016).
7. Zimov, S. A. et al. Steppe-tundra transition: a herbivore-driven biome shift at the end of the Pleistocene. The American Naturalist 146, 765–799 (1995).
8. Zhu, D. et al. The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum. Nature Ecology & Evolution 2, 640–649, https://doi.org/10.1038/s41559-018-0481-y (2018).
9. Berzaghi, F. et al. Carbon stocks in central African forests enhanced by elephant disturbance. Nature Geoscience 12, 725–729 (2019).
10. Johnson, C. N. et al. Can trophic rewilding reduce the impact of fire in a more flammable world? Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, https://doi.org/10.1098/rstb.2017.0443 (2018).
11. Rule, S. et al. The aftermath of mega faunal extinction: ecosystem transformation in Pleistocene Australia. Science 335, 1483–1486, https://doi.org/10.1126/science.1214262 (2012).
12. Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).
13. Smith, F. A., Elliott Smith, R. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 360, 310–313, https://doi.org/10.1126/science.aao5987 (2018).
14. Smith, F. A. et al. Unraveling the consequences of the terminal Pleistocene megafauna extinction on mammal community assembly. *Ecography* **39**, 223–239, https://doi.org/10.1111/ecog.01779 (2015).

15. Davis, M. What North America’s skeleton crew of megafauna tells us about community disassembly. *Proc. R. Soc. B* **284**, 20162116 (2017).

16. Bakker, E. S. et al. Combining paleo-data and modern enclosure experiments to assess the impact of megafauna extinctions on woody vegetation. *Proc. Natl. Acad. Sci. USA* **113**, 847–855 (2016).

17. Bakker, E. S., Arthur, R. & Alcoverro, T. Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems. *Ecography* **39**, 162–179 (2016).

18. Rowan, J. & Faith, J. in *The Ecology of Browsing and Grazing II* 61–79 (Springer, 2019).

19. Wallach, A. D. et al. Invisible megafauna. *Conservation Biology* **32**, 962–965 (2018).

20. Sandom, C. J. et al. Trophic rewilding presents regionally specific opportunities for mitigating climate change. *Philosophical Transactions of the Royal Society B* **375**, 20190125 (2020).

21. Svenning, J. C. et al. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. *Proc. Natl. Acad. Sci. USA* **113**, 898–906, https://doi.org/10.1073/pnas.1505561113 (2016).

22. Guyton, J. A. et al. Trophic rewilding revives biotic resistance to shrimp invasion. *Nature Ecology & Evolution*, https://doi.org/10.1038/s41559-019-1068-y (2020).

23. Derham, T. T., Duncan, R. P., Johnson, C. N. & Jones, M. E. Hope and caution: rewilding to mitigate the impacts of biological invasions. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **373**, 20180127 (2018).

24. Derham, T. & Mathews, F. Elephants as refugees. *People and Nature* **2**, 103–110 (2020).

25. Lundgren, E. J. et al. Introduced herbivores restore Late Pleistocene ecological functions. *Proc. Natl. Acad. Sci. USA*, https://doi.org/10.1073/pnas.1915769117 (2020).

26. Lundgren, E. J., Ramp, D., Ripple, W. J. & Wallach, A. D. Introduced megafauna are rewilding the Anthropocene. *Ecography* **41**, 857–866, https://doi.org/10.1111/ecog.03430 (2018).

27. Donlan, C. J. et al. Pleistocene rewilding: an optimistic agenda for twenty-first century conservation. *The American Naturalist* **168**, 660–681 (2006).

28. Luck, G. W., Lavelle, S., McIntyre, S. & Lumb, K. Improving the application of vertebrate trait-based frameworks to the study of ecosystem services. *I. Anim. Ecol.* **81**, 1065–1076, https://doi.org/10.1111/j.1365-2656.2012.01974.x (2012).

29. Faureby, S. & PHYLACINE I.2: The Phylogenetic Atlas of Mammal Macroecology. *Ecology* **99**, 2626–2626 (2018).

30. Smith, F. A. et al. Body mass of late Quaternary mammals. *Ecology* **84**, 3403–3403 (2003).

31. Hume, J. P. & Walters, M. *Extinct birds*. Vol. 217 (A&C Black, 2012).

32. Owen-Smith, R. N. *Megaherbivores: the influence of very large body size on ecology*. (Cambridge University Press, 1988).

33. Gordon, J. I. & Prins, H. H. *Ecology Browsing and Grazing II*. Springer Nature, 2019.

34. Martin, P. S. & Wright, H. E. *Pleistocene extinctions: the search for a cause*. (National Research Council (U.S.): International Association for Quaternary Research., 1967).

35. Wilson, D. E. & Mittermeier, R. A. *Handbook of the Mammals of the World* Vol. 1-9 (Lynx Publishing, 2009-2019).

36. Hopcraft, J. G. C., Olff, H. & Sinclair, A. R. E. *Herbivores, resources and risks: alternating regulation along primary environmental gradients in savannas*. (Bloomsbury Natural History, 2013).

37. Faurby, S. & Svenning, J. C. A species-level phylogeny of all extant and late Quaternary extinct mammals using a novel heuristic-hierarchical Bayesian approach. *Mol. Phylogenet. Evol.* **84**, 14–26, https://doi.org/10.1016/j.ympev.2014.11.001 (2015).

38. Goosby, E. W., Bruggeman, J. & Ané, C. Phylotops: fast multivariate phylogenetic comparative methods for missing data and within-species variation. *Methods Ecol. Evol.* **8**, 22–27 (2017).

39. Bruggeman, J., Heringa, J. & Brandt, B. W. *PhyloPars: estimation of missing parameter values using phylogeny*. *Nucleic Acids Res.* **37**, W179–W184 (2009).

40. Hume, I. D. *Digestive strategies of mammals*. *Acta Zoologica Sinica* **48**, 1–19 (2002).

41. Demment, M. W. & Van Soest, P. J. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. *The American Naturalist* **125**, 641–672 (1985).

42. Doughty, C. E. et al. Global nutrient transport in a world of giants. *Proc. Natl. Acad. Sci. USA* **113**, 868–873, https://doi.org/10.1073/pnas.1502549112 (2016).

43. Hofmann, R. R. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. *Oecologia* **78**, 443–457 (1989).

44. Prothero, D. R. & Foss, S. E. *The evolution of artiodactyls*. (JHU Press, 2007).

45. Subalusky, A. L., Dutton, C. L., Rosi-Marshall, E. J. & Post, D. M. The hippopotamus conveyor belt: vectors of carbon and nutrients from terrestrial grasslands to aquatic systems in sub-Saharan Africa. *Freshw. Biol.* **60**, 512–525, https://doi.org/10.1111/fwb.12474 (2015).

46. Kubo, T., Sakamoto, M., Meade, A. & Venditti, C. Transitions between foot postures are associated with elevated rates of body size evolution in mammals. *Proc. Natl. Acad. Sci. USA* **116**, 2618–2623 (2019).

47. Brown, J. C. & Yalden, D. W. The description of mammals-2 limbs and locomotion of terrestrial mammals. *Mammal Review* **33**, 107–134 (1973).

48. Polly, P. D. in *Fire into Limbs: Evolution, Development, and Transformation* (ed B.K. Hall) 245–268 (2007).

49. Cumming, D. H. M. & Cumming, G. S. Ungulate community structure and ecological processes: body size, hoof area and trampling in African savannas. *Oecologia* **134**, 560–568 (2003).

50. te Beest, M., Sitters, J., Ménard, C. B. & Olofsson, J. Reindeer grazing increases summer albedo by reducing shrub abundance in Arctic tundra. *Environmental Research Letters* **11**, 125013, https://doi.org/10.1088/1748-9326/aa3128 (2016).

51. Bennett, M. Foot areas, ground reaction forces and pressures beneath the feet of kangaroos, wallabies and rat-kangaroos (Marsupialia: Macropodoidae). *J. Zool.* **247**, 365–369 (1999).

52. Beever, E. A., Huso, M. & Pyke, D. A. Multiscale responses of soil stability and invasive plants to removal of non-native grazers from an arid conservation reserve. *Diversity and Distributions* **12**, 258–268 (2006).

53. Lundgren, E. J. et al. Functional traits of the world’s late Quaternary large-bodied avian and mammalian herbivores. figshare https://doi.org/10.6084/m9.figshare.c.5001971 (2020).

54. Khîwele, E. S. et al. Quantifying water requirements of African ungulates through a combination of functional traits. *Ecological Monographs* **90**, e01404, https://doi.org/10.1002/ecm.1404 (2020).
103. Bedaso, Z. K., Wynn, J. G., Alemseged, Z. & Geraads, D. Dietary and paleoenvironmental reconstruction using stable isotopes of herbivore tooth enamel from middle Pliocene Dikika, Ethiopia: Implication for Australopithecus afarensis habitat and food resources. *J. Hum. Evol.* **64**, 21–38 (2013).

104. Benamor, N., Bounaceur, F., Baha, M. & Aulagnier, S. First data on the seasonal diet of the vulnerable Gazella cuvieri (Mammalia: Bovidae) in the Djbel Messaâd forest, northern Algeria. *Folia Zoologica* **68**, 1–8 (2019).

105. Bennett, C. V. & Goswami, A. Statistical support for the hypothesis of developmental constraint in marsupial skull evolution. *BMC Biol.* **11** (2013).

106. Bergmann, G. T., Craine, J. M., Robeson, M. S. II & Fierer, N. Seasonal shifts in diet and gut microbiota of the American bison (Bison bison). *PLoS One* **10**, e0142209 (2015).

107. Bhat, S. A., Telang, S., Wani, M. A. & Sheikh, K. A. Food habits of Nilgai (Boselaphus tragocamelus) in Van Vihar National Park, Bhopal, Madhya Pradesh, India. *Biomedical and Pharmacology Journal* **3**, 141–147 (2015).

108. Bhattacharya, T., Kuttur, S., Sathyakumaran, S. & Rawat, G. Diet overlap between wild ungulates and domestic livestock in the greater Himalaya: implications for management of grazing practices in *Proceedings of the Zoological Society*. 11–21 (Springer).

109. Bibi, F. & Kessling, W. Continuous evolutionary change in Plio-Pleistocene mammoths of eastern. *Africa. Proc. Natl. Acad. Sci. USA* **112**, 10623–10628 (2015).

110. Biknevicius, A. R., McFannel, D. A. & MacPhee, R. D. E. Body size in Amblyrhiza inundata (Rodentia, Cavimorpha), an extinct megafaunal rodent from the Anguilla Bank, West Indies: estimates and implications. *American Museum novitates*; no. 3079 (1993).

111. Cornell Lab of Ornithology. Birds of the World. <https://birdsoftheworld.org/bow Cornell Lab of Ornithology> (2020).

112. Biswas, J. et al. The enigmatic Arunachal macaque: its biogeography, biology and taxonomy in Northeastern India. *Am. J. Primatol.* **73**, 458–473, https://doi.org/10.1002/arp.20924 (2011).

113. Bocherens, H. et al. Isotopic insight on paleodiet of extinct Pleistocene megafauna Xenarthrans from Argentina. *Gondwana Research* **48**, 7–14, https://doi.org/10.1016/j.gr.2017.04.003 (2017).

114. Boeskorov, G. G. Wooly rhino discovery in the lower Kolyma River. *Quaternary Science Reviews* **30**, 2262–2272 (2011).

115. Bojarska, K. & Selva, N. Spatial patterns in brown bear Ursus arctos diet: the role of geographical and environmental factors. *Mammal Review* **42**, 120–143 (2012).

116. Bon, R., Rideau, C., Villaret, J.-C. & Joachim, J. Segregation is not only a matter of sex in Alpine ibex, Capra ibex ibex. *Anim. Behav.* **62**, 495–504 (2001).

117. Bond, W. J., Silander, J. A. Jr, Ranaivonasy, J. & Ratsirarson, J. The antiquity of Madagascar's grasslands and the rise of C4 grassy biomes. *J. Biogeography* **35**, 1743–1758, https://doi.org/10.1111/j.1365-2699.2008.01923.x (2008).

118. Borgnia, M., Vilà, B. L. & Cassini, M. H. Foraging ecology of Vicuña, Vicugna vicugna, in dry Puna of Argentina. *Small Rumin. Res.* **88**, 44–53 (2010).

119. Bowman, D. M., Murphy, B. P. & McMahon, C. R. Using carbon isotope analysis of the diet of two introduced Australian herbivores to understand Pleistocene megafaunal extinctions. *Journal of Biogeography* **37**, 499–505 (2010).

120. Bradford, M. G., Dennis, A. J. & Westcott, D. A. Diet and dietary preferences of the southern cassowary (Casuarius cassuarius) in North Queensland, Australia. *Biota tropica* **40**, 338–348 (2008).

121. Bradshaw, J. L., DeSantis, L. R., Jorge, M. L. S. & Keuroghlian, A. Dietary variability of extinct tayassuids and modern white-lipped peccaries (Tayassu pecari) as inferred from dental microwear and stable isotope analysis. *Palaeogeography, Palaeoclimatology, Palaeoecology* **499**, 93–101 (2018).

122. Bravo-Cuevas, V. M., Rivals, F. & Priego-Vargas, J. Paleoecology (*Hylochoerus meinertzhageni*, Mammalia: Primates) based on the carbon isotopic composition of dentin from the late Miocene of southern Spain. *Journal of Biogeography* **46**, 13–34, https://doi.org/10.1111/j.1365-2699.2008.01923.x (2008).

123. Cain, J. W., Avery, M. M., Caldwell, C. A., Abbott, L. B. & Holechek, J. L. Diet composition, quality and overlap of sympatric species of ungulates in southern Arizona. *Am. J. Primatol.* **59**, 14518–14523 (2001).

124. Buchsbaum, R., Wilson, J. & Valiela, I. Digestibility of plant constituents by Canada Geese and Atlantic Brant. *J. Wildl. Dis.* **44**, 137–142 (2008).

125. Buckland, R. & Guy, G. *Dinosaurs, dragons, and dwarfs: the evolution of maximal body size*. (Oxford University Press, 2000).

126. Burness, G. P., Diamond, J. & Flannery, T. *Dinosaurs, dragons, and dwarfs: the evolution of maximal body size*. (Oxford University Press, 2000).

127. Butynski, T. M., Shi, Z., Yang, H., Wang, H. & Zheng, H. 2010. Field guide to the 223 species of terrestrial mammals of China. *Science Review* **42**, 523–549, https://doi.org/10.1111/j.1365-2699.2008.01923.x (2008).

128. Butler, K., Louys, J. & Travouillon, K. Extending dental mesowear analyses to Australian marsupials, with applications to six Pliocene–Pleistocene antilocaprids (Mammalia, Artiodactyla, Antilocapridae) from the state of Hidalgo, central Mexico. *Revista mexicana de Ciencias Geológicas* **30**, 601–613 (2013).

129. Buchsbaum, R., Wilson, J. & Valiela, I. Digestibility of plant constituents by Canada Geese and Atlantic Brant. *J. Wildl. Dis.* **44**, 137–142 (2008).

130. Buchsbaum, R., Wilson, J. & Valiela, I. Digestibility of plant constituents by Canada Geese and Atlantic Brant. *J. Wildl. Dis.* **44**, 137–142 (2008).

131. Burness, G. P., Diamond, J. & Flannery, T. *Dinosaurs, dragons, and dwarfs: the evolution of maximal body size*. (Oxford University Press, 2000).

132. Cartelle, C. & Hartwig, W. C. A new extinct primate among the Pleistocene megafauna of Bahia, Brazil. *Proc. Natl. Acad. Sci. USA* **93**, 6405–6409, https://doi.org/10.1073/pnas.93.13.6405 (1996).

133. Cassini, G. H., Cerdeño, E., Villafañe, A. L. & Muñoz, N. A. Paleobiology of Santacrucian native ungulates (Meridiungulata: Meridiungulata) in the late Pleistocene (Rancholabrean) of southern Patagonia (Mammalia, Artiodactyla, Meridiungulata). *Journal of Biogeography* **49**, 59–71, https://doi.org/10.2343/jb.2016.11.2 (2017).

134. Cerling, T. E. & Viehle, K. Seasonal diet changes of the forest hog (*Hylochoerus meinertzhageni* Thos) based on the carbon isotope composition of hair. *African Journal of Ecology* **42**, 82–92 (2004).

135. Chevalier, D., Dugne, L., Songar, F., Charrier, T., Tsygankov, A. V. & Karasov, R. O. Isotopic composition of hair in the forest hog (*Hylochoerus meinertzhageni*). *Science Reviews* **10**, 137–142 (2000).

136. Choudhury, A. The decline of the wild water buffalo in north-east India. *Oryx* **28**, 70–73 (1994).

137. Christiansen, P. What size were *Arctodus simus* and *Ursus spelaeus*? *Carnivora: Ursidae*? *Annales Zoologici Fennici* **36**, 93–102 (1999).

138. Christiansen, P. Body size in proboscideans, with notes on elephant metabolism. *Zoological journal of the Linnean Society* **140**, 523–549 (2004).
181. Dijouc, C., Codron, D., Sealy, J., Mensah, G. & Sinisim, B. Stable carbon isotope analysis of the diets of West African boids in Pendjari Biosphere Reserve, Northern Benin. *African Journal of Wildlife Research* 43, 33–43 (2013).

182. Domingo, L., Prado, J. L. & Alberdi, M. T. The effect of paleoecology and paleobiogeography on stable isotopes of Quaternary mammals from South America. *Quaternary Science Reviews* 55, 103–113 (2012).

183. Dong, W. et al. Late Pleistocene mammalian fauna from Wulanmuran Paleolithic Site, Nei Mongol, China. *Quaternary International* 347, 139–147 (2014).

184. Doody, J. S., Sims, R. A. & Letnic, M. Environmental Manipulation to Avoid a Unique Predator: Drinking Hole Excavation in the Agile Wallaby, Macropus agilis. *Ethology* 113, 128–136, https://doi.org/10.1111/j.1439-0310.2006.01299.x (2007).

185. Dookia, S. & Jakher, G. R. Food and Feeding Habit of Indian Gazelle (Gazella bennettii), in the Thar Desert of Rajasthan. *The Indian Forester* 133 (2007).

186. Downer, C. C. Observations on the diet and habitat of the mountain tapir (Tapirus pinchaque). *J. Zool.* 254, 279–291 (2001).

187. Dunning, J. B. Jr CRC handbook of avian body masses. (CRC press, 2007).

188. Dunstan, H., Florentine, S. K., Calviño-Cancela, M., Westbrooke, M. E. & Palmer, G. C. Dietary characteristics of Emus (Dromaius novaehollandiae) in semi-arid New South Wales, Australia, and dispersal and germination of ingested seeds. *Emu-Austral Ornithology* 113, 168–176 (2015).

189. Endo, Y., Takada, H. & Takatsuki, S. Comparison of the Food Habits of the Sika Deer (Cervus nippon), the Japanese Serow (Capricornis crispus), and the Wild Boar (Sus scrofa), Symptomatic Herbivorous Mammals from Mt. Asama, Central Japan. *Mammal Study* 42, 131–140, 110 (2017).

190. Evans, M. C., Macgregor, C. & Jarman, P. J. Diet and feeding selectivity of common wombats. *Wildlife Research* 33, 321–330 (2006).

191. Faith, J. T. Late Quaternary dietary shifts of the Cape grayshoek (Raphicerus melanotis) in southern Africa. *Quaternary Research* 75, 159–165 (2011).

192. Faith, J. T. Late Pleistocene and Holocene mammal extinctions on continental Africa. *Earth-Science Reviews* 128, 105–121 (2014).

193. Faith, J. T. & Behrensmeyer, A. K. Climate change and faunal turnover: testing the mechanics of the turnover-pulse hypothesis with South African fossil data. *Paleobiology* 39, 609–627 (2013).

194. Faith, J. T. & Thompson, J. C. Fossil evidence for seasonal calving and migration of extinct blue antelope (Hippotragus leucopus) in southern Africa. *Journal of Biogeography* 40, 2108–2118 (2013).

195. Faith, J. T. et al. New perspectives on middle Pleistocene change in the large mammal faunas of East Africa: Damaliscus hypsodon sp. nov. (Mammalia, Artiodactyla) in Sfinyamok, Kenya. *Palaeogeography, Palaeoclimatology, Palaeoecology* 361–362, 84–93, https://doi.org/10.1016/j.palaeo.2012.08.005 (2012).

196. Flannery, T. F., Martin, R. & Szalay, A. *The Pleistocene mammal fauna of Kelangurr Cave, central montane Irian Jaya, Indonesia.*

197. Flannery, T. F. *The Pleistocene mammal fauna of Kelangurr Cave, central montane Irian Jaya, Indonesia.*

198. Farhadinia, M. S. *Palaeogeography, Palaeoclimatology, Palaeoecology et al.* 271–282 (2007).

199. Farhadinia, M. S. *Palaeogeography, Palaeoclimatology, Palaeoecology et al.* 271–282 (2007).

200. Fanelli, F., Palombo, M. R., Pillola, G. L. & Ibba, A. Tracks and trackways of “Praemegaceros” cazioti (Deperet, 1897) (Artiodactyla, Cervidae) in Pleistocene coastal deposits from Sardinia (Western Mediterranean, Italy). *Bollettino della Società Paleontologica Italiana* 46, 47–54 (2007).

201. Feranec, R., García, N., Díez, J. & Arsuaga, J. Understanding the ecology of mammalian carnivorans and herbivores from Puntali Cave, Carini (Sicily; late Middle Pleistocene): Anatomy, systematics and phylogenetic relationships. *Quaternary International* 182, 90–108, https://doi.org/10.1016/j.quaint.2007.11.003 (2008).

202. Figueirido, B. & Soibelzon, L. H. Inferring palaeoecology in extinct taxomarine bears (Carnivora, Ursidae) using geometric morphometrics. *Lethaia* 43, 209–222 (2010).

203. Flannery, T. T. Late Pleistocene faunal loss: implications of the affershock for Australia’s past and future. *Archaeology in Oceania* 25, 45–55 (1990).

204. Flannery, T. T. *Taxonomy of Dendrolagus goodfellowi (Marsupiulalia: Marsupialia) with description of a new subspecies. Records of the Australian Museum* 45, 33–42, https://doi.org/10.3853/j.0067-1975.1993.128.1993 (1993).

205. Flannery, T. F. *The Pleistocene mammal fauna of Kelangurr Cave, central montane Irian Jaya, Indonesia.* *Records of the Western Australian Museum* 57, 341–350 (1999).

206. Flannery, T. F., Martin, R. & Szalay, A. Tree kangaroos: a curious natural history. (Reed Books, 1996).

207. Fleagle, J. G. & Gilbert, C. C. Elwyn Simons: a search for origins. (Reed Books, 1996).

208. Fooden, J. *Systematic review of the Barbary Macaque, Macaca sylvanus.* (CRC press, 2007).

209. Foerster, C. R. & Vaughan, C. Diet and foraging behavior of a female Baird’s tapir (Tapirus bairdi) in a Costa Rican lowland rainforest. *Cuadernos de Investigación UNED* 7, 259–267 (2015).

210. Forden, J. *Dietary preferences in extant African Bovidae.* (Springer Science & Business Media, 2007).

211. Fooden, J. *Systematic review of the Barbary Macaque, Macaca sylvanus.* (CRC press, 2007).

212. Forster, C. R. & Vaughan, C. Diet and foraging behavior of a female Baird’s tapir (Tapirus bairdi) in a Costa Rican lowland rainforest. *Cuadernos de Investigación UNED* 7, 259–267 (2015).

213. Foster, J. *Chilenial Systematic review of the Barbary Macaque, Macaca sylvanus.* (CRC press, 2007).

214. Forasiepi, A. M. et al. *Exceptional skull of Huayqueriana (Mammalia, Litopterna, Macraucheniidae) from the late Miocene of Intertropical Region.* (Springer Science & Business Media, 2007).

215. France, C. A., Zelanko, P. M., Kaufman, A. J. & Holtz, T. R. Carbon and nitrogen isotopic analysis of Pleistocene mammals from the Saltville Quarry (Virginia, USA): Implications for trophic relationships. *Palaeogeography, Palaeoclimatology, Palaeoecology* 249, 271–282 (2007).

216. Fuller, B. T. et al. Pleistocene paleoecology and feeding behavior of terrestrial vertebrates recorded in a pre-LGM asphalatic deposit at Rancho La Brea, California. *Palaeogeography, Palaeoclimatology, Palaeoecology* 537, 109383, https://doi.org/10.1016/j.palaeo.2019.109383 (2020).

217. Furley, C. W. Potential Use of Gazelles for Game Ranching in the Arabian Peninsula (This lecture was delivered at the Agro-Gulf Exhibition and Conference, Abu Dhabi, 1983.).

218. Gad, S. D. & Shyama, S. K. Diet composition and quality in Indian boson (Bos gaurus) based on fecal analysis. *Zoolog. Sci.* 28, 264–267 (2011).

219. Gagnon, M. & Chew, A. E. Dietary preferences in extant African Bovidae. *J. Mammal.* 81, 490–511 (2000).
262. Hempson, G. P., Archibald, S. & Bond, W. J. A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350, 1056–1061 (2015).

263. Henry, O., Feer, F. & Sabatier, D. Diet of the lowland tapir (Tapirus terrestris L.) in French Guiana. Biotropica 32, 364–368 (2000).

264. Herd, R. M. & Dawson, T. J. Fiber digestion in the emu, Dromaius novaehollandiae, a large bird with a simple gut and high rates of passage. Physiol. Zool. 57, 70–84 (1984).

265. Hershkovitz, V. L. & Lister, A. M. Extreme insular dwarfism evolved in a mammoth. Proc. R. Soc. B. 279, 3193–3200 (2012).

266. Heywood, J. Functional anatomy of bovid upper molar occlusal surfaces with respect to diet. J. Zool. 281, 1–11 (2010).

267. Hofreiter, M. et al. A molecular analysis of ground sloth diet through the last glaciation. Mol. Ecol. 9, 1975–1984 (2000).

268. Hollis, C., Robertshaw, I. & Harden, R. Ecology of the swamp wallaby (Wallabia-Bicolor) in northeastern New-South-Wales. 1. Diet. Wildlife Research 13, 355–365 (1986).

269. Hope, G. & Flannery, T. A preliminary report of changing Quaternary mammal faunas in subalpine New Guinea. Quaternary Research 40, 117–126 (1993).

270. Hou, R. et al. Seasonal variation in diet and nutrition of the northern-most population of Rhinopithecus roxellana. Am. J. Primatol. 80, e22755 (2018).

271. Huffman, B. Racervus schombergii. Ultimate Ungulate. http://www.ultimateungulate.com/Artiodactyla/Racervus_schombergii.html (2020).

272. Hullot, M., Antoine, P.-O., Ballatore, M. & Merceron, G. Dental microwear textures and dietary preferences of extant rhinoceroses (Perissodactyla, Mammalia). Mammal Research 64, 397–409 (2019).

273. Hume, J. P. The history of the Dodo Raphus cucullatus and the penguin of Mauritius. Hist. Biol. 18, 69–93 (2006).

274. Hummel, J. et al. Fluid and particle retention in the digestive tract of the addax antelope (Addax nasomaculatus)—Adaptations of a grazing desert ruminant. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 149, 142–149 (2008).

275. Iribarren, C. & Kotler, B. P. Foraging patterns of habitat use reveal landscape of fear of Nubian ibex Capra nubiana. Wildlife Biology 18, 194–201 (2012).

276. Ismail, K., Kamal, K., Plath, M. & Wronski, T. Effects of an exceptional drought on daily activity patterns, reproductive behaviour, and reproductive success of reintroduced Arabian oryx (Oryx leucoryx). J. Arid Environ. 75, 125–131 (2011).

277. IUCN Redlist. The International Union for the Conservation of Nature 2018.

278. Iwaniuk, A. N., Pellis, S. M. & Whishaw, I. Q. The relative importance of body size, phylogeny, locomotion, and diet in the evolution of forelimb dexterity in fissiped carnivores (Carnivora). Can. J. Zool. 78, 1110–1125 (2000).

279. Iwase, A., Hashizume, J., Izuho, M., Takahashi, K. & Sato, H. Timing of megafaunal extinction in the late Late Pleistocene on the Japanese Archipelago: Quaternary International 255, 114–124, https://doi.org/10.1016/j.quaint.2011.03.029 (2012).

280. Jackson, J. The annual diet of the fallow deer (Dama dama) in the New Forest, Hampshire, as determined by rumen content analysis. J. Zool. 181, 465–473 (1977).

281. Janis, C. M., Napoli, J. G., Billingham, C. & Martin-Serra, A. Proximal humerus morphology indicates divergent patterns of locomotion in extinct giant kangaroos. J. Mamm. Evol., 1–20 (2020).

282. Jankowski, J. R., Guly, G. A., Jacobs, Z., Roberts, R. G. & Prideaux, G. J. A late Quaternary vertebrate deposit in Kudjal Yolgha Cave, south-western Australia: refining regional late Pleistocene extinctions. Journal of Quaternary Science 31, 538–550 (2016).

283. Janssen, R. et al. Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. Quaternary Science Reviews 144, 145–154 (2016).

284. Al-Jassim, R. & Hogan, J. in Proc. 3rd ISOCARD Conference. Keynote presentations, 29th January–1st February, 75–86.

285. Jhala, Y. V. & Irsavar, K. in The Ecology of Large Herbivores in South and Southeast Asia 151–176 (Springer, 2016).

286. Jiménez-Hidalgo, E. et al. Species diversity and paleoecology of Late Pleistocene horses from southern Mexico. Frontiers in Ecology and Evolution 7, 394 (2019).

287. Johnson, C. M. Australia’s mammal extinctions: a 50,000-year history. (Cambridge University Press, 2006).

288. Johnson, C. N. & Prideaux, G. J. Extinctions of herbivorous mammals in the late Pleistocene of Australia in relation to their feeding ecology: no evidence for environmental change as cause of extinction. Austral Ecol. 29, 553–557 (2004).

289. Jones, T. J. The Highland Mangabey Lophocebus kipunji: A New Species of African Monkey. Science 308, 1161–1164, https://doi.org/10.1126/science.1109191 (2005).

290. Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals: Ecological Archives E090‐184. The Highland Mangabey Lophocebus kipunji: A New Species of African Monkey. Science 308, 1161–1164, https://doi.org/10.1126/science.1109191 (2005).

291. Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals: Ecological Archives E090‐184. The Highland Mangabey Lophocebus kipunji: A New Species of African Monkey. Science 308, 1161–1164, https://doi.org/10.1126/science.1109191 (2005).

292. Kelly, E. M. & Sears, K. E. Limb specialization in living marsupial and eutherian mammals: constraints on mammalian limb evolution. J. Mammal. 92, 1638–1049 (2011).

293. Kelt, D. A. & Meyer, M. D. Body size frequency distributions in African mammals are bimodal at all spatial scales. Glob. Ecol. Biogeogr. 18, 19–29, https://doi.org/10.1111/1466-8238.2008.00422.x (2008).

294. Khadka, K. K., Singh, N., Magar, K. T. & James, D. A. Dietary composition, breadth, and overlap between seasonally sympatric Himalayan musk deer and livestock: Conservation implications. Journal for Nature Conservation 38, 30–36 (2017).

295. Kim, B. J., Lee, N. S. & Lee, S. D. Feeding diets of the Korean water deer (Hydropotes inermis argyropus) based on a 202 bp rbcL sequence analysis. Conservation Genetics 12, 851–856 (2011).

296. Kim, D. B., Koo, K. A., Kim, H. H., Hwang, G. Y. & Kong, W. S. Reconstruction of the habitat range suitable for long-tailed goral (Naemorhedus caudatus) using fossils from the Paleolithic sites. Quaternary International 519, 101–112 (2019).

297. Koch, P. L. & Barmosky, A. D. Late Quaternary extinctions: state of the debate. Annu. Rev. Ecol. Evol. Syst. 37 (2006).

298. Köhler, M. & Moyá-Solà, S. Reduction of brain and sense organs in the fossil insular bovid Myotragus. Brain. Behav. Evol. 63, 125–140 (2004).

299. Kohn, M. J. & McKay, M. P. Paleoeconomy of late Pleistocene–Holocene faunas of eastern and central Wyoming, USA, with implications for LGM climate models. Palaeogeography, Palaeoclimatology, Palaeoecology 326–328, 42–53 (2012).

300. Kohn, M. J., McKay, M. P. & Knight, J. L. Dining in the Pleistocene—whos on the menu? Geology 33, 649–652 (2005).

301. Koike, S., Nakashita, R., Naganawa, K., Koyama, M. & Tamura, A. Changes in diet of a small, isolated bear population over time. J. Mammal. 94, 361–368, https://doi.org/10.1644/11-mamm-a-403.3 (2013).

302. Kosintsev, P. et al. Evolution and extinction of the giant rhinoceros Elasmotherium sibiricum sheds light on late Quaternary megafaunal extinctions. Nature Ecology & Evolution 3, 31–38 (2019).
349. Marin, V. C. et al. Diet of the marsh deer in the Paraná River Delta, Argentina—a vulnerable species in an intensive forestry landscape. *European Journal of Wildlife Research* **66**, 16 (2020).

350. Marinero, N. V., Navarro, J. L. & Martella, M. B. Does food abundance determine the diet of the Puna Rhea (Rhea tarapacensis) in the Austral Puna desert in Argentina? *Emu—Austral Ornithology* **117**, 199–206 (2017).

351. Mayte, G. B. et al. Diet and habitat of Mammothus columbi (Falconer, 1857) from two Late Pleistocene localities in central western Mexico. *Quaternary International* **406**, 137–146 (2016).

352. McAfee, R. K. Feeding mechanics and dietary implications in the fossil sloth Neocnus (Mammalia: Xenarthra: Megalonychidae) from Haiti. *J. Morphol.* **272**, 1204–1216 (2011).

353. McDonald, H. G. Paleocology of extinct Xenarthrans and the Great American Biotic Interchange. *Bulletin of the Florida Museum of Natural History* **45**, 319–340 (2005).

354. McDonald, H. G. & Pelikan, S. Mammoths and mylodons: Exotic species from two different continents in North American Pleistocene faunas. *Quaternary International* **142–143**, 229–241, https://doi.org/10.1016/j.quaint.2005.03.020 (2006).

355. McDonald, H. G., Feranec, R. S. & Miller, N. First record of the extinct ground sloth, Megalonyx jeffersonii,(Xenarthra, Megalonychidae) from New York and contributions to its paleoecology. *Quaternary International* **530**, 42–46 (2019).

356. McFarlane, D. A., MacPhee, R. D. E. & Ford, D. C. Body Size Variability and a Sangamonian Extinction Model for Amblyrhiza, a West Indian Megalosaur Rodent. *Quaternary Research* **50**, 80–89 (1998).

357. McNamara, K. & Murray, P. Prehistoric Mammals of Western Australia. (Western Australian Museum, 2010).

358. Mead, J. L. O’Rourke, M. K. & Foppe, T. M. Dung and diet of the extinct Harrington’s mountain goat (*Oreamnos harringtoni*). *J. Mammal.* **67**, 284–293 (1986).

359. Mead, J. L., Agenbroad, L. D., Phillips, A. M. III & Middleton, L. T. Extinct mountain goat (*Oreamnos harringtoni*) in southeastern Utah. *Quaternary Research* **27**, 323–331 (1987).

360. Meijaard, E. & Groves, C. Upgrading three subspecies of babirusa (Babyrousa spp.) to full species level. *Asian Wild Pig News* **2**, 33–39 (2002).

361. Meijaard, E. & Groves, C. P. Morphometric relationships between South–East Asian deer (*Cervidae*, tribe Cervini): Evolutionary and biogeographic implications. *J. Zool.* **263**, 179–196 (2004).

362. Meloro, C. & de Oliveira, A. M. Elbow joint geometry in bears (*Ursidae, Carnivora*): a tool to infer paleobiology and functional adaptations of Quaternary fossils. *J. Mammal. Evol.* **26**, 133–146 (2019).

363. Menghi, Z., Willms, W. D., Guodong, H. & Ye, J. Bovine camel foraging behaviour in a Haloxylon ammodendron (C.A. Mey) desert of Inner Mongolia. *Appl. Anim. Behav. Sci.* **99**, 330–343, https://doi.org/10.1016/j.applanim.2005.11.001 (2006).

364. Miller, G. H. et al. Pleistocene extinction of Genyornis newtoni: human impact on Australian megafauna. *Science* **283**, 205–208 (1999).

365. Miller, G. H. Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. *Science* **309**, 287–290, https://doi.org/10.1126/science1021592 (2005).

366. Milligan, H. E. & Humphries, M. M. The importance of aquatic vegetation in beaver diets and the seasonal and habitat specificity of aquatic-terrestrial ecosystem linkages in a subarctic environment. *Oikos* **119**, 1877–1886, https://doi.org/10.1111/j.1600-0706.2010.18160.x (2010).

367. Milton, S. J., Dean, W. R. J. & Siegfried, W. R. Food selection by ostrich in southern Africa. *The Journal of Wildlife management* **23**, 248–249 (1954).

368. Mimoun, J. B. & Nouira, S. Food habits of the aoudad Ammotragus lervia in the Bou Hedma mountains, Tunisia. *South African Journal of Science* **111**, 1–5 (2015).

369. Mingxing, D., Yanhong, Z. & Jianguo, Z. Cold and/or wet Early Holocene in Shijiazhuang district: Evidences from tooth microwear and stable isotopes analyses. *Quaternary Sciences* **34**, 8–15 (2014).

370. Miranda, M. et al. Contrasting feeding patterns of native red deer and two exotic ungulates in a Mediterranean ecosystem. *Wildlife Research* **39**, 171–182 (2012).

371. Missagia, R. V., Parisi-Dutra, R. & Cozzuol, M. A. Morphometry of Catagonus stenocephalus (Lund in Reinhardt 1880, Proterotheriidae) using carbon and oxygen stable isotopes (Late Pleistocene; Uruguay).

372. Mitchell, D. R. & Wroe, S. Biting mechanics determines craniofacial morphology among extant diprotodont herbivores: dietary predictions for the giant extinct short-faced kangaroo, *Simosthenurus occidentalis*. *Paleobiology* **45**, 167–181 (2019).

373. Mitchell, K. J. et al. Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution. *Science* **344**, 896–900 (2014).

374. Moczyczynska, J. D. Movements of nilgai antelope (*Boselaphus tragocamelus*) in southern Texas. (Texas A&M University-Kingsville, 2010).

375. Moore, D. M. Post-glacial vegetation in the South Patagonian territory of the giant ground sloth, Mylodon. *Botanical Journal of the Linnean Society* **77**, 177–202 (1978).

376. Mori, E., Bozzi, R. & Laurenzi, A. Feeding habits of the crested porcupine *Hystrix cristata* L. 1758 (Mammalia, Rodentia) in a Mediterranean area of Central Italy. *The European Zoological Journal* **84**, 261–265 (2017).

377. Morosi, E. & Ubbia, M. Dietary and palaeoenvironmental inferences in Neolicaphrium recens Frenguelli, 1921 (Litopterna, Proterotheriidae) using carbon and oxygen stable isotopes (Late Pleistocene: Uruguay). *Hist. Biol.* 1–7, https://doi.org/10.1080/08192963.2017.1355914 (2017).

378. Murray, P. F. & Vickers-Rich, P. Magnificent mihirungs: the colossal flightless birds of the Australian dreamtime. (Indiana University Press, 2004).

379. Naish, D. The anatomy of sloths, https://blogs.scientificamerican.com/tetrapod-zoology/the-anatomy-of-sloths/ (2012).

380. Nedin, C. The dietary niche of the extinct Australian marsupial lion: Thylacoleo carnifex Owen. *Lethaia* **24**, 115–118, https://doi.org/10.1111/j.1502-3931.1991.tb01184.x (1991).

381. New Zealand Organisms Register. (New Zealand, 2020).

382. Nijboer, J. & Clauss, M. Fibre intake and fitness quality in leaf-eating primates PhD thesis, Utrecht University, (2006).

383. Noé-Nygaard, N., Price, T. D. & Hede, S. U. Diet of aurochs and early cattle in southern Scandinavia: evidence from 15N and 13C stable isotopes. *Journal of Archaeological Science* **32**, 855–871 (2005).

384. Northcote, E. M. Size, form and habitat of the extinct Maltese swan *Cygnus falconeri*. *Ibis* **124**, 148–158 (1982).

385. Nowak, R. M. *The mammals of the world*. (Johns Hopkins University Press, 1999).

386. Nugraha, R. & Mustari, A. H. Habitat Characteristics and Diet of Bear Cuscus (*Ailurops ursinus*) in Tanjung Perupa Wildlife Reserve, Southeast Sulawesi, *Jurnal Waisan* **4**, 55–68 (2017).

387. Oli, C. B. et al. Dry season diet composition of four-horned antelope *Tetracerus quadricornis* in tropical dry deciduous forests, Nepal. *Peek* **6**, e5102 (2018).

388. de Oliveira, J. F., Asevedo, L., Cherkinsky, A. & Dantas, M. A. T. Radiocarbon dating and integrating paleoecology (*O13C*, *stereomicrowear*) of *Eremotherium laurillardi* (*LUND, 1842*) from midwest region of the Brazilian intertropical region. *Journal of South American Earth Sciences*, 102653 (2020).

389. Olson, V. A. & Turvey, S. T. The evolution of sexual dimorphism in New Zealand giant moa (*Dinornis*) and other ratites. *Proc. R. Soc. B* **280**, 20130401 (2013).
594. Yang, Y. et al. First insights into the feeding habits of the Critically Endangered black snub-nosed monkey, Rhinopithecus strykeri (Colobinae, Primates). *Primates* **60**, 143–153 (2019).

595. Yates, A. M. & Worthy, T. H. A diminutive species of emu (Casuariidae: Dromaiinae) from the late Miocene of the Northern Territory, Australia. *Journal of Vertebrate Paleontology* **39**, e1665057 (2019).

596. YouTube. YouTube, www.youtube.com (Accessed May 2019).

597. Zhang, H., Wang, Y., Janis, C. M., Goodall, R. H. & Purnell, M. A. An examination of feeding ecology in Pleistocene proboscideans from southern China (Sinomastodon, Stegodon, Elephas), by means of dental microwear texture analysis. *Quaternary International* **445**, 60–70, https://doi.org/10.1016/j.quaint.2016.07.011 (2017).

598. Zhegallo, V. et al. On the fossil rhinoceros Elasmotherium (including the collections of the Russian Academy of Sciences). *Cranium* **22**, 17–40 (2005).

599. Zheng, R. & Bao, Y. Seasonal food habits of the black muntjac Muntiacus crinifrons. *Europe PMC*, 201–207 (2010).

600. Zhou, Q., Wei, H., Huang, Z. & Huang, C. Diet of the Assamese macaque Macaca assamensis in limestone habitats of Nonggang, China. *Current Zoology* **57**, 18–25 (2011).

601. Zingg, A. *Seasonal variability in the diet composition of alpine ibex (Capra ibex ibex L.) in the Swiss National Park* Masters thesis, University of Zurich (2009).

**Acknowledgements**

JCS considers this work a contribution to his Carlsberg Foundation Semper Ardens project MegaPast2Future (grant CF16-0005), which also supported SDS and MD, and to his VILLUM Investigator project “Biodiversity Dynamics in a Changing World” funded by VILLUM FONDEN (grant 16549). RØP was supported by a European Research Council grant to JCS (ERC-2012-StG-310886-HISTFUNC). We thank Emilia Djomina Hansen for assistance in data collection.

**Author contributions**

E.J.L. and S.D.S. contributed equally and share first authorship. S.D.S., E.J.L., O.M., J.R., S.C.S., A.D.W., D.R., C.J.S., J.C.S. devised the idea. S.D.S., E.J.L., O.M. and J.R. collected the data. S.D.S., R.Ø.P., E.J.L. and J.R. did the analysis. E.J.L., S.D.S., O.M., M.D., R.Ø.P., D.R., C.J.S., J.C.S., A.D.W. and J.R. wrote the manuscript.

**Competing interests**

The authors declare no competing interests.

**Additional information**

**Correspondence** and requests for materials should be addressed to E.J.L. or S.D.S.

**Reprints and permissions information** is available at www.nature.com/reprints.

**Publisher’s note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article.

© The Author(s) 2021