2020

Wikidata as a knowledge graph for the life sciences

Andra Waagmeester
Micello

Malachi Griffith
Washington University School of Medicine in St. Louis

Obi L. Griffith
Washington University School of Medicine in St. Louis

et al.

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Waagmeester, Andra; Griffith, Malachi; Griffith, Obi L.; and et al., "Wikidata as a knowledge graph for the life sciences." Elife. 9, . (2020).
https://digitalcommons.wustl.edu/open_access_pubs/9019

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Abstract Wikidata is a community-maintained knowledge base that has been assembled from repositories in the fields of genomics, proteomics, genetic variants, pathways, chemical compounds, and diseases, and that adheres to the FAIR principles of findability, accessibility, interoperability and reusability. Here we describe the breadth and depth of the biomedical knowledge contained within Wikidata, and discuss the open-source tools we have built to add information to Wikidata and to synchronize it with source databases. We also demonstrate several use cases for Wikidata, including the crowdsourced curation of biomedical ontologies, phenotype-based diagnosis of disease, and drug repurposing.

Introduction
Integrating data and knowledge is a formidable challenge in biomedical research. Although new scientific findings are being discovered at a rapid pace, a large proportion of that knowledge is either locked in data silos (where integration is hindered by differing nomenclature, data models, and licensing terms; Wilkinson et al., 2016) or locked away in free-text. The lack of an integrated and structured version of biomedical knowledge hinders efficient querying or mining of that information, thus preventing the full utilization of our accumulated scientific knowledge.

Recently, there has been a growing emphasis within the scientific community to ensure all scientific data are FAIR – Findable, Accessible, Interoperable, and Reusable – and there is a growing consensus around a concrete set of principles to ensure FAIRness (Wilkinson et al., 2019; Wilkinson et al., 2016). Widespread implementation of these principles would greatly advance efforts by the open-data community to build a rich and heterogeneous network of scientific knowledge. That knowledge network could, in turn, be the foundation for many computational tools, applications and analyses.

Most data- and knowledge-integration initiatives fall on either end of a spectrum. At one end, centralized efforts seek to bring multiple knowledge sources into a single database (see, for example, Mungall et al., 2017): this approach has the advantage of data alignment according to a common data model and of enabling high performance queries. However, centralized resources are difficult and expensive to maintain and expand (Chandras et al., 2009; Gabella et al., 2018), at least in part because of bottlenecks that are inherent in a centralized design.

At the other end of the spectrum, distributed approaches to data integration result in a broad landscape of individual resources, focusing on technical infrastructure to query and integrate...
across them for each query. These approaches lower the barriers to adding new data by enabling anyone to publish data by following community standards. However, performance is often an issue when each query must be sent to many individual databases, and the performance of the system as a whole is highly dependent on the stability and performance of each individual component. In addition, data integration requires harmonizing the differences in the data models and data formats between resources, a process that can often require significant skill and effort. Moreover, harmonizing differences in data licensing can sometimes be impossible.

Here we explore the use of Wikidata (www.wikidata.org; Vrandečić, 2012; Mora-Cantallops et al., 2019) as a platform for knowledge integration in the life sciences. Wikidata is an openly-accessible knowledge base that is editable by anyone. Like its sister project Wikipedia, the scope of Wikidata is nearly boundless, with items on topics as diverse as books, actors, historical events, and galaxies. Unlike Wikipedia, Wikidata focuses on representing knowledge in a structured format instead of primarily free text. As of September 2019, Wikidata’s knowledge graph included over 750 million statements on 61 million items (tools.wmflabs.org/wikidata-todo/stats.php). Wikidata was also the first project run by the Wikimedia Foundation (which also runs Wikipedia) to have surpassed one billion edits, achieved by a community of 12,000 active users, including 100 active computational ‘bots’ (Figure 1—figure supplement 1).

As a knowledge integration platform, Wikidata combines several of the key strengths of the centralized and distributed approaches. A large portion of the Wikidata knowledge graph is based on the automated imports of large structured databases via Wikidata bots, thereby breaking down the walls of existing data silos. Since Wikidata is also based on a community-editing model, it harnesses the distributed efforts of a worldwide community of contributors, including both domain experts and bot developers. Anyone is empowered to add new statements, ranging from individual facts to large-scale data imports. Finally, all knowledge in Wikidata is queryable through a SPARQL query interface (query.wikidata.org/), which also enables distributed queries across other Linked Data resources.

In previous work, we seeded Wikidata with content from public and authoritative sources of structured knowledge on genes and proteins (Burgstaller-Muehlbacher et al., 2016) and chemical compounds (Willighagen et al., 2018). Here, we describe progress on expanding and enriching the biomedical knowledge graph within Wikidata, both by our team and by others in the community (Turki et al., 2019). We also describe several representative biomedical use cases on how Wikidata can enable new analyses and improve the efficiency of research. Finally, we discuss how researchers can contribute to this effort to build a continuously-updated and community-maintained knowledge graph that epitomizes the FAIR principles.

The Wikidata Biomedical Knowledge Graph

The original effort behind this work focused on creating and annotating Wikidata items for human and mouse genes and proteins (Burgstaller-Muehlbacher et al., 2016), and was subsequently expanded to include microbial reference genomes from NCBI RefSeq (Putman et al., 2017). Since then, the Wikidata community (including our team) has significantly expanded the depth and breadth of biological information within Wikidata, resulting in a rich, heterogeneous knowledge graph (Figure 1). Some of the key new data types and resources are described below.

Genes and proteins: Wikidata contains items for over 1.1 million genes and 940 thousand proteins from 201 unique taxa. Annotation data on genes and proteins come from several key databases including NCBI Gene (Agarwala et al., 2018), Ensembl (Zerbino et al., 2018), UniProt (UniProt Consortium, 2019), InterPro (Mitchell et al., 2019), and the Protein Data Bank (Burley et al., 2019). These annotations include information on protein families, gene functions, protein domains, genomic location, and orthologs, as well as links to related compounds, diseases, and variants.

Genetic variants: Annotations on genetic variants are primarily drawn from CIViC (http://www.civicdb.org), an open and community-curated database of cancer variants (Griffith et al., 2017). Variants are annotated with their relevance to disease predisposition, diagnosis, prognosis, and drug efficacy. Wikidata currently contains 1502 items corresponding to human genetic variants,
Figure 1. A simplified class-level diagram of the Wikidata knowledge graph for biomedical entities. Each box represents one type of biomedical entity. The header displays the name of that entity type (e.g., pharmaceutical product) and the number of Wikidata items for that entity type. The lower portion of each box displays a partial listing of attributes about each entity type and the number of Wikidata items for each attribute. Edges between boxes represent the number of Wikidata statements corresponding to each combination of subject type, predicate, and object type. For example, there are 1,505 statements with ‘pharmaceutical product’ as the subject type, ‘therapeutic area’ as the predicate, and ‘disease’ as the object type. For clarity, edges for reciprocal relationships (e.g., ‘has part’ and ‘part of’) are combined into a single edge, and scientific articles (which are widely cited in statement references) have been omitted. All counts of Wikidata items are current as of September 2019. The most common data sources cited as references are available in Figure 1—source data 1. Data are generated using the code in https://github.com/SuLab/genewikiworld (archived at Mayers et al., 2020). A more complete version of this graph diagram can be found at https://commons.wikimedia.org/wiki/File:Biomedical_Knowledge_Graph_in_Wikidata.svg.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Most frequent data sources cited as references for the biomedical subset of the Wikidata knowledge graph shown in Figure 1.

Figure supplement 1. Trends in Wikidata edits.

focused on those with a clear clinical or therapeutic relevance.

Chemical compounds including drugs: Wikidata has items for over 150 thousand chemical compounds, including over 3500 items which are specifically designated as medications. Compound attributes are drawn from a diverse set of databases, including PubChem (Wang et al., 2009), RxNorm (Nelson et al., 2011), the IUPHAR Guide to Pharmacology (Harding et al., 2018; Pawson et al., 2014; Southan et al., 2016), NDF-RT (National Drug File – Reference Terminology), and LIPID MAPS (Sud et al., 2007). These items typically contain statements describing chemical structure and key physicochemical properties, and links to
databases with experimental data, such as MassBank (Horai et al., 2010; Wohlgemuth et al., 2016) and PDB Ligand (Shin, 2004), and toxicological information, such as the EPA CompTox Dashboard (Williams et al., 2017). Additionally, these items contain links to compound classes, disease indications, pharmaceutical products, and protein targets.

Pathways: Wikidata has items for almost three thousand human biological pathways, primarily from two established public pathway repositories: Reactome (Fabregat et al., 2018) and WikiPathways (Slentner et al., 2018). The full details of the different pathways remain with the respective primary sources. Our bots enter data for Wikidata properties such as pathway name, identifier, organism, and the list of component genes, proteins, and chemical compounds. Properties for contributing authors (via ORCID properties; Sprague, 2017), descriptions and ontology annotations are also being added for Wikidata pathway entries.

Diseases: Wikidata has items for over 16 thousand diseases, the majority of which were created based on imports from the Human Disease Ontology (Schriml et al., 2019), with additional disease terms added from the Monarch Disease Ontology (Mungall et al., 2017). Disease attributes include medical classifications, symptoms, relevant drugs, as well as subclass relationships to higher-level disease categories. In instances where the Human Disease Ontology specifies a related anatomic region and/or a causative organism (for infectious diseases), corresponding statements are also added.

References: Whenever practical, the provenance of each statement added to Wikidata was also added in a structured format. References are part of the core data model for a Wikidata statement. References can either cite the primary resource from which the statement was retrieved (including details like version number of the resource), or they can link to a Wikidata item corresponding to a publication as provided by a primary resource (as an extension of the WikiCite project; Ayers et al., 2019), or both. Wikidata contains over 20 million items corresponding to publications across many domain areas, including a heavy emphasis on biomedical journal articles.

Bot automation
To programatically upload biomedical knowledge to Wikidata, we developed a series of computer programs, or bots. Bot development began by reaching a consensus on data modeling with the Wikidata community, particularly the Molecular Biology WikiProject. We then coded each bot to retrieve, transform, normalize and upload data from a primary resource to Wikidata via the Wikidata application programming interface (API).

We generalized the common code modules into a Python library, called Wikidata Integrator (WDI), to simplify the process of creating Wikidata bots (https://github.com/SuLab/WikidataIntegrator; archived at Burgstaller-Muehlbacher et al., 2020). Relative to accessing the API directly, WDI has convenient features that improve the bot development experience. These features include the creation of items for scientific articles as references, basic detection of data model conflicts, automated detection of items needing update, detailed logging and error handling, and detection and preservation of conflicting human edits.

Just as important as the initial data upload is the synchronization of updates between the primary sources and Wikidata. We utilized Jenkins, an open-source automation server, to automate all our Wikidata bots. This system allows for flexible scheduling, job tracking, dependency management, and automated logging and notification. Bots are either run on a predefined schedule (for continuously updated resources) or when new versions of original databases are released.

Applications of Wikidata
Translating between identifiers from different databases is one of the most common operations in bioinformatics analyses. Unfortunately, these translations are most often done by bespoke scripts and based on entity-specific mapping tables. These translation scripts are repetitively and redundantly written across our community and are rarely kept up to date, nor integrated in a reusable fashion.

An identifier translation service is a simple and straightforward application of the biomedical content in Wikidata. Based on mapping tables that have been imported, Wikidata items can be mapped to databases that are both widely- and rarely-used in the life sciences community. Because all these mappings are stored in a centralized database and use a systematic data model, generic and reusable translation scripts can easily be written (Figure 2). These scripts can be used as a foundation for more complex Wikidata queries, or the results can be
downloaded and used as part of larger scripts or analyses.

There are a number of other tools that are also aimed at solving the identifier translation use case, including the BioThings APIs (Xin et al., 2018), BridgeDb (van Iersel et al., 2010), BioMart (Smedley et al., 2015), UMLS (Bodenreider, 2004), and NCI Thesaurus (de Coronado et al., 2009). Relative to these tools, Wikidata distinguishes itself with a unique combination of the following: an almost limitless scope including all entities in biology, chemistry, and medicine; a data model that can represent exact, broader, and narrow matches between items in different identifier namespaces (beyond semantically imprecise ‘cross-references’); programmatic access through web services with a track record of high performance and high availability.

Moreover, Wikidata is also unique as it is the only tool that allows real-time community editing. So while Wikidata is certainly not complete with respect to identifier mappings, it can be continually improved independent of any centralized effort or curation authority. As a database of assertions and not of absolute truth, Wikidata is able to represent conflicting information (with provenance) when, for example, different curation authorities produce different mappings between entities. (However, as with any bioinformatics integration exercise, harmonization of cross-references between resources can include relationships other than ‘exact match’. These instances can lead to Wikidata statements that are not explicitly declared, but rather the result of transitive inference.)

Integrative Queries

Wikidata contains a much broader set of information than just identifier cross-references. Having biomedical data in one centralized data resource facilitates powerful integrative queries that span multiple domain areas and data sources. Performing these integrative queries through Wikidata obviates the need to perform many time-consuming and error-prone data integration steps.

As an example, consider a pulmonologist who is interested in identifying candidate chemical compounds for testing in disease models (schematically illustrated in Figure 3). They may start by identifying genes with a genetic association to any respiratory disease, with a particular interest in genes that encode membrane-bound proteins (for ease in cell sorting). They may then look for chemical compounds that either directly inhibit those proteins, or finding none, compounds that inhibit another protein in the same pathway. Because they have collaborators with relevant expertise, they may specifically filter for proteins containing a serine-threonine kinase domain.

Figure 2. Generalizable SPARQL template for identifier translation. SPARQL is the primary query language for accessing Wikidata content. These simple SPARQL examples show how identifiers of any biological type can easily be translated using SPARQL queries. The top query demonstrates the translation of a small list of gene symbols (wdt:P353) to Entrez Gene IDs (wdt:P351), while the bottom example shows conversion of RxNorm concept IDs (wdt:P3345) to NDF-RT IDs (wdt:P2115). These queries can be submitted to the Wikidata Query Service (WDQS; https://query.wikidata.org/) to get real-time results. Translation to and from a wide variety of identifier types can be performed using slight modifications on these templates, and relatively simple extensions of these queries can filter mappings based on the statement references and/or qualifiers. A full list of Wikidata properties can be found at https://www.wikidata.org/wiki/Special:ListProperties. Note that for translating a large number of identifiers, it is often more efficient to perform a SPARQL query to retrieve all mappings and then perform additional filtering locally.
Almost any competent informatician can perform the query described above by integrating cell localization data from Gene Ontology annotations, genetic associations from GWAS Catalog, disease subclass relationships from the Human Disease Ontology, pathway data from WikiPathways and Reactome, compound targets from the IUPHAR Guide to Pharmacology, and protein domain information from InterPro. However, actually performing this data integration is a time-consuming and error-prone process. At ever, actually performing this data integration is a time-consuming and error-prone process. At the time of publication of this manuscript, this Wikidata query completed in less than 10 s and reported 31 unique compounds. Importantly, the results of that query will always be up-to-date with the latest information in Wikidata.

This query, and other example SPARQL queries that take advantage of the rich, heterogeneous knowledge network in Wikidata are queries that perform complex queries across other biomedical SPARQL endpoints. Federated queries are useful for accessing data that cannot be included in Wikidata directly due to limitations in size, scope, or licensing.

Crowdsourced curation

Ontologies are essential resources for structuring biomedical knowledge. However, even after the initial effort in creating an ontology is finalized, significant resources must be devoted to maintenance and further development. These tasks include cataloging cross references to other ontologies and vocabularies, and modifying the ontology as current knowledge evolves. Community curation has been explored in a variety of tasks in ontology curation and annotation (see, for example, Bunt et al., 2012; Gil et al., 2017; Putman et al., 2019; Putman et al., 2017; Wang et al., 2016). While community curation offers the potential of distributing these responsibilities over a wider set of scientists, it also has the potential to introduce errors and inconsistencies.

Here, we examined how a crowd-based curation model through Wikidata works in practice. Specifically, we designed a hybrid system that combines the aggregated community effort of many individuals with the reliability of expert curation. First, we created a system to monitor, filter, and prioritize changes made by Wikidata contributors to items in the Human Disease Ontology. We initially seeded Wikidata with disease items from the Disease Ontology (DO) starting in late 2015. Beginning in 2018, we
compared the disease data in Wikidata to the most current DO release on a monthly basis.

In our first comparison between Wikidata and the official DO release, we found that Wikidata users added a total of 2030 new cross references to GARD (Lewis et al., 2017) and MeSH (https://www.nlm.nih.gov/mesh/meshhome.html). These cross references were primarily added by a small handful of users through a web interface focused on identifier mapping (Manske, 2020). Each cross reference was manually reviewed by DO expert curators, and 2007 of these mappings (98.9%) were deemed correct and therefore added to the ensuing DO release. 771 of the proposed mappings could not be easily validated using simple string matching, and 754 (97.8%) of these were ultimately accepted into DO. Each subsequent monthly report included a smaller number of added cross references to GARD and MeSH, as well as ORDO (Maiella et al., 2018), and OMIM (Amberger and Hamosh, 2017; McKusick, 2007), and these entries were incorporated after expert review at a high approval rate (>90%).

Addition of identifier mappings represents the most common community contribution, and likely the most accessible crowdsourcing task. However, Wikidata users also suggested numerous refinements to the ontology structure, including changes to the subclass relationships and the addition of new disease terms. These structural changes were more nuanced and therefore rarely incorporated into DO releases with no modifications. Nevertheless, they often prompted further review and refinement by DO curators in specific subsections of the ontology.

The Wikidata crowdsourcing curation model is generalizable to any other external resource that is automatically synced to Wikidata. The code to detect changes and assemble reports is tracked online at https://github.com/SuLab/scheduled-bots (archived at Stupp et al., 2020) and can easily be adapted to other domain areas. This approach offers a novel solution for integrating new knowledge into a biomedical ontology through distributed crowdsourcing while preserving control over the expert curation process. Incorporation into Wikidata also enhances exposure and visibility of the resource by engaging a broader community of users, curators, tools, and services.

Interactive pathway pages
In addition to its use as a repository for data, we explored the use of Wikidata as a primary access and visualization endpoint for pathway data. We used Scholia, a web app for displaying scholarly profiles for a variety of Wikidata entries, including individual researchers, research topics, chemicals, and proteins (Nielsen et al., 2017). Scholia provides a more user-friendly view of Wikidata content with context and interactivity that is tailored to the entity type.

We contributed a Scholia profile template specifically for biological pathways (Scholia, 2019). In addition to essential items such as title and description, these pathway pages include an interactive view of the pathway diagram collectively drawn by contributing authors. The WikiPathways identifier property in Wikidata informs the Scholia template to source a pathway-viewer widget from Toolforge (https://tools.wmflabs.org/admin/tool/pathway-viewer) that in turn retrieves the corresponding interactive pathway image. Embedded into the Scholia pathway page, the widget provides pan and zoom, plus links to gene, protein and chemical Scholia pages for every clickable molecule on the pathway diagram see, for example, Scholia (2019). Each pathway page also includes information about the pathway authors. The Scholia template also generates a participants table that shows the genes, proteins, metabolites, and chemical compounds that play a role in the pathway, as well as citation information in both tabular and chart formats.

With Scholia template views of Wikidata, we were able to generate interactive pathway pages with comparable content and functionality to that of dedicated pathway databases. Wikidata provides a powerful interface to access these biological pathway data in the context of other biomedical knowledge, and Scholia templates provide rich, dynamic views of Wikidata that are relatively simple to develop and maintain.

Phenotype based disease diagnosis
Phenomizer is a web application that suggests clinical diagnoses based on an array of patient phenotypes (Köhler et al., 2009). On the back end, the latest version of Phenomizer uses BOQA, an algorithm that uses ontological structure in a Bayesian network (Bauer et al., 2012). For phenotype-based disease diagnosis, BOQA takes as input a list of phenotypes (using the Human Phenotype Ontology [HPO; Köhler et al., 2017]) and an association file between phenotypes and diseases. BOQA then suggests disease diagnoses based on semantic similarity (Köhler et al., 2009). Here, we studied whether phenotype-disease associations from
Wikidata could improve BOQA’s ability to make differential diagnoses for certain sets of phenotypes. We modified the BOQA codebase to accept arbitrary inputs and to be able to run from the command line (code available at https://github.com/SuLab/boqa; archived at Köhler and Stupp, 2020) and also wrote a script to extract and incorporate the phenotype-disease annotations in Wikidata (code available at https://github.com/SuLab/Wikidata-phenomizer; archived at Tu et al., 2020).

As of September 2019, there were 273 phenotype-disease associations in Wikidata that were not in the HPO’s annotation file (which contained a total of 172,760 associations). Based on parallel biocuration work by our team, many of these new associations were related to the disease Congenital Disorder of Deglycosylation (CDDG; also known as NGLY-1 deficiency) based on two papers describing patient phenotypes (Enns et al., 2014; Lam et al., 2017). To see if the Wikidata-sourced annotations improved the ability of BOQA to diagnose CDDG, we ran our modified version using the phenotypes taken from a third publication describing two siblings with suspected cases of CDDG (Caglayan et al., 2015). Using these phenotypes and the annotation file supplemented with Wikidata-derived associations, BOQA returned a much stronger semantic similarity to CDDG relative to the HPO annotation file alone (Figure 4). Analyses with the combined annotation file reported CDDG as the top result for each of the past 14 releases of the HPO annotation file, whereas CDDG was never the top result when run without the Wikidata-derived annotations.

This result demonstrated an example scenario in which Wikidata-derived annotations could be a useful complement to expert curation. This example was specifically chosen to illustrate a favorable case, and the benefit of Wikidata would likely not currently generalize to a random sampling of other diseases. Nevertheless, we believe that this proof-of-concept demonstrates the value of the crowd-based Wikidata model and may motivate further community contributions.

Drug repurposing

The mining of graphs for latent edges has been an area of interest in a variety of contexts from predicting friend relationships in social media platforms to suggesting movies based on past viewing history. A number of groups have explored the mining of knowledge graphs to reveal biomedical insights, with the open source Rephetio effort for drug repurposing as one example (Himmelstein et al., 2017). Rephetio uses logistic regression, with features based on graph metapaths, to predict drug repurposing candidates.

The knowledge graph that served as the foundation for Rephetio was manually assembled from many different resources into a heterogeneous knowledge network. Here, we explored whether the Rephetio algorithm could successfully predict drug indications on the Wikidata knowledge graph. Based on the class diagram in Figure 1, we extracted a biomedically-focused subgraph of Wikidata with 19 node types and 41 edge types. We performed five-fold cross validation on drug indications within Wikidata and found that Rephetio substantially enriched the true indications in the hold-out set. We then downloaded historical Wikidata versions from 2017 and 2018 and observed marked improvements in performance over time (Figure 5). We also performed this analysis using an external test set based on Drug Central, which showed a similar improvement in
Rephetio results over time (Figure 5—figure supplement 1).

This analysis demonstrates the value of a community-maintained, centralized knowledge base to which many researchers are contributing. It suggests that scientific analyses based on Wikidata may continually improve irrespective of any changes to the underlying algorithms, but simply based on progress in curating knowledge through the distributed, and largely uncoordinated efforts of the Wikidata community.

Outlook
We believe that the design of Wikidata is well-aligned with the FAIR data principles.

Findable: Wikidata items are assigned globally unique identifiers with direct cross-links into the massive online ecosystem of Wikipedias. Wikidata also has broad visibility within the Linked Data community and is listed in the life science registries FAIRsharing (https://fairsharing.org/; Sansone et al., 2019) and Identifiers.org (Wimalaratne et al., 2018). Wikidata has already attracted a robust, global community of contributors and consumers.

Accessible: Wikidata provides access to its underlying knowledge graph via both an online graphical user interface and an API, and access includes both read- and write-privileges. Wikidata provides database dumps at least weekly (https://www.wikidata.org/wiki/Wikidata:Database_download), ensuring the long-term accessibility of the Wikidata knowledge graph independent of the organization and web application. Finally, Wikidata is also natively multilingual.

Interoperable: Wikidata items are extensively cross-linked to other biomedical resources using Universal Resource Identifiers (URIs), which unambiguously anchor these concepts in the Linked Open Data cloud (Jacobsen et al., 2018). Wikidata is also available in many standard formats in computer programming and knowledge management, including JSON, XML, and RDF.

Reusable: Data provenance is directly tracked in the reference section of the Wikidata statement model. The Wikidata knowledge graph is released under the Creative Commons Zero (CC0) Public Domain Declaration, which explicitly declares that there are no restrictions on downstream reuse and redistribution.

The open data licensing of Wikidata is particularly notable. The use of data licenses in biomedical research has rapidly proliferated, presumably in an effort to protect intellectual property and/or justify long-term grant funding (see, for example, Reiser et al., 2016). However, even seemingly innocuous license terms (like requirements for attribution) still impose legal requirements and therefore expose consumers to legal liability. This liability is especially problematic for data integration efforts, in which the license terms of all resources (dozens or hundreds or more) must be independently tracked and satisfied (a phenomenon referred to as ‘license stacking’). Because it is released under CC0, Wikidata can be freely and openly used in any other resource without any restriction. This freedom greatly simplifies and encourages downstream use, albeit at the cost of not being able to incorporate ontologies or datasets with more restrictive licensing.

In addition to simplifying data licensing, Wikidata offers significant advantages in centralizing the data harmonization process. Consider the use case of trying to get a comprehensive list of disease indications for the drug bupropion. The National Drug File – Reference Terminology (NDF-RT) reported that bupropion may treat nicotine dependence and attention deficit hyperactivity disorder, the Inxight database listed major depressive disorder, and the FDA Adverse Event Reporting System (FAERS) listed anxiety and bipolar disorder. While no single database listed all these indications, Wikidata provided an integrated view that enabled seamless query and access across resources. Integrating drug indication data from these individual data resources was not a trivial process. Both Inxight and NDF-RT mint their own identifiers for both drugs and diseases. FAERS uses Medical Dictionary for Regulatory Activities (MedDRA) names for diseases and free-text names for drugs (Stupp and Su, 2018). By harmonizing and integrating all resources in the context of Wikidata, we ensure that those data are immediately usable by others without having to repeat the normalization process. Moreover, by harmonizing data at the time of data loading, consumers of that data do not need to perform the repetitive and redundant work at the point of querying and analysis.

As the biomedical data within Wikidata continues to grow, we believe that its unencumbered use will spur the development of many new innovative tools and analyses. These innovations will undoubtedly include the machine learning-based mining of the knowledge graph to predict new relationships (also referred to as knowledge graph reasoning; Das et al., 2017; Lin et al., 2018; Xiong et al., 2017).

For those who subscribe to this vision for cultivating a FAIR and open graph of biomedical...
knowledge, there are two simple ways to contribute to Wikidata. First, owners of data resources can release their data using the CC0 declaration. Because Wikidata is released under CC0, it also means that all data imported in Wikidata must also use CC0-compatible terms (e.g., be in the public domain). For resources that currently use a restrictive data license primarily for the purposes of enforcing attribution or citation, we encourage the transition to CC0 (+BY), a model that “move[s] the attribution from the legal realm into the social or ethical realm by pairing a permissive license with a strong moral entreaty” (Cohen, 2013). For resources that must retain data license restrictions, consider releasing a subset of data or older versions of data using CC0. Many biomedical resources were created under or transitioned to CC0 (in part or in full) in recent years, including the Disease Ontology (Schrøl et al., 2019), Pfam (El-Gebali et al., 2019), Bgee (Bastian et al., 2008), WikiPathways (Slenter et al., 2018), Reactome (Fabregat et al., 2018), ECO (Chibucos et al., 2014), and CIViC (Griffith et al., 2017).

Second, informaticians can contribute to Wikidata by adding the results of data parsing and integration efforts to Wikidata as, for example, new Wikidata items, statements, or references. Currently, the useful lifespan of data integration code typically does not extend beyond the immediate project-specific use. As a result, that same data integration process is likely performed repetitively and redundantly by other informaticians elsewhere. If every informatician contributed the output of their effort to Wikidata, the resulting knowledge graph would be far more useful than the stand-alone contribution of any single individual, and it would continually improve in both breadth and depth over time. Indeed, the growth of biomedical data in Wikidata is driven not by any centralized or coordinated process, but rather the aggregated effort and priorities of Wikidata contributors themselves.

The authors thank the thousands of Wikidata contributors for curating knowledge, both directly related and unrelated to this work, much of which has been organized under the WikiProjects for Molecular Biology, Chemistry and Medicine. The authors also thank the Wikimedia Foundation for financially supporting Wikidata, and many developers and administrators for maintaining Wikidata as a community resource.

Acknowledgements
The authors thank the thousands of Wikidata contributors for curating knowledge, both directly related and unrelated to this work, much of which has been organized under the WikiProjects for Molecular Biology, Chemistry and Medicine. The authors also thank the Wikimedia Foundation for financially supporting Wikidata, and many developers and administrators for maintaining Wikidata as a community resource.

Andra Waagmeester is at Micelio, Antwerp, Belgium
Gregory Stupp is in the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
Sebastian Burgstaller-Muehlbacher is in the Center for Integrative Bioinformatics Vienna, Max Perutz
Laboratories, University of Vienna and Medical University of Vienna, Vienna, Austria
https://orcid.org/0000-0003-4640-3510
Benjamin M Good is in the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
https://orcid.org/0000-0002-7334-7852
Malachi Griffith is in the McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States
https://orcid.org/0000-0002-6388-446X
Obi L Griffith is in the McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States
https://orcid.org/0000-0002-8043-4271
Kristina Hanspers is in the Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, United States
https://orcid.org/0000-0003-0719-3485
Henning Hermjakob is at the European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
https://orcid.org/0000-0001-8479-0262
Toby S Hudson is in the School of Chemistry, University of Sydney, Sydney, Australia
https://orcid.org/0000-0002-3348-3622
Kevin Hybiske is in the Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States
https://orcid.org/0000-0002-9296-3079
Sarah M Keating is at the European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
https://orcid.org/0000-0002-3356-3542
Magnus Manske is at the Welcome Trust Sanger Institute, Hinxton, United Kingdom
https://orcid.org/0000-0001-5916-0947
Michael Mayers is in the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
https://orcid.org/0000-0002-7792-0150
Daniel Mietchen is in the School of Data Science, University of Virginia, Charlottesville, VA, United States
https://orcid.org/0000-0001-9488-1870
Elvira Mitraka is in the University of Maryland School of Medicine, Baltimore, MD, United States
https://orcid.org/0000-0003-0719-3485
Alexander R Pico is in the Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, United States
https://orcid.org/0000-0001-5706-2163
Timothy Putman is in the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
https://orcid.org/0000-0002-4291-0737
Anders Riutta is in the Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, United States
https://orcid.org/0000-0002-4693-0591
Núria Queralt-Rosinach is in the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
https://orcid.org/0000-0003-0169-8159
Lynn M Schriml is in the University of Maryland School of Medicine, Baltimore, MD, United States
https://orcid.org/0000-0001-8910-9851
Thomas Shafee is in the Department of Animal Plant and Soil Sciences, La Trobe University, Melbourne, Australia
https://orcid.org/0000-0001-8449-1318
Ralf Stephan is a retired researcher based in Berlin, Germany
https://orcid.org/0000-0002-4650-631X
Katherine Thornton is at Yale University Library, Yale University, New Haven, CT, United States
https://orcid.org/0000-0002-4499-0451
Ginger Tsueng is in the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
https://orcid.org/0000-0001-9536-9115
Roger Tu is in the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
https://orcid.org/0000-0002-7899-1604
Sabah Ul-Hasan is in the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
https://orcid.org/0000-0001-6334-452X
Egon Willighagen is in the Department of Bioinformatics-BiGCaT, NUTRIM, Maastricht University, Maastricht, Netherlands
https://orcid.org/0000-0001-7542-0286
Chunlei Wu is in the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
https://orcid.org/0000-0002-2629-6124
Andrew I Su is in the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
https://orcid.org/0000-0002-9859-4104

Author contributions: Andra Waagmeester, Conceptualization, Data curation, Software, Formal analysis, Validation, Visualization, Writing - review and editing; Gregory Stupp, Conceptualization, Data curation, Software, Formal analysis, Validation, Visualization, Writing - original draft; Sebastian Burgstaller-Muehlbacher, Conceptualization, Data curation, Software; Benjamin M Good, Conceptualization, Data curation, Software, Supervision, Project administration; Malachi Griffith, Kevin Hybiske, Data curation, Funding acquisition; Obi L Griffith, Data curation, Funding acquisition, Writing - review and editing; Kristina Hanspers, Sarah M...
Keating, Magnus Manske, Timothy Putman, Anders Rutta, Nuria Queralt-Rosina, Denise Slenter, Ginger Tseng, Sahab UI-Hasan, Egon Willighagen, Data curation, Software; Henning Hermjakob, Lynn M Schriml, Data curation, Supervision, Funding acquisition; Toby S Hudson, Elvira Mitraka, Ralf Stephan, Data curation, Validation; Michael Meyers, Data curation, Software, Formal analysis, Visualization; Daniel Mietchen, Data curation, Validation, Writing - review and editing; Alexander R Pico, Data curation, Supervision, Writing - original draft, Writing - review and editing; Thomas Shafee, Data curation, Visualization, Writing - review and editing; Katherine Thornton, Software, Validation; Roger Tu, Software, Formal analysis, Visualization; Chunlei Wu, Data curation, Software, Supervision, Funding acquisition; Andrew I Su, Conceptualization, Formal analysis, Supervision, Funding acquisition, Validation, Writing - original draft, Project administration, Writing - review and editing

Competing interests: The authors declare that no competing interests exist.

Received 09 October 2019
Accepted 28 February 2020
Published 17 March 2020

Funding

Funder	Grant reference number	Author
National Institute of General Medical Sciences	R01 GM089820	Andrew I Su
National Institute of General Medical Sciences	U54 GM114833	Henning Hermjakob
National Institute of General Medical Sciences	R01 GM100039	Alexander R Pico
National Human Genome Research Institute	R00HG007940	Malachi Griffith
National Cancer Institute	U24CA237719	Malachi Griffith
V Foundation for Cancer Research	V2018-007	Malachi Griffith
National Institute of Allergy and Infectious Diseases	R01 AI126785	Kevin Hybiske
National Center for Advancing Translational Sciences	UL1 TR002550	Andrew I Su

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.52614.sa1
Author response https://doi.org/10.7554/eLife.52614.sa2

Additional files

Data availability

Links to all data and code used in this manuscript have been provided.

References

Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, Bourexis D, Brister JR, Bryant SH, Canese K, Cavanaugh M, Charowhas C, Clark K, Dondoshansky I, Feolo M, Fitzpatrick L, Funk K, Geer LY, Gorelenkov V, Graeff A, et al. 2018. Database resources of the National Center for Biotechnology Information. Nucleic Acids Research 46:D8–D13. DOI: https://doi.org/10.1093/nar/gkx1095, PMID: 29140470

Amberger JS, Hamosh A. 2017. Searching Online Mendelian Inheritance in Man (OMIM): A knowledgebase of human genes and genetic phenotypes. Current Protocols in Bioinformatics 58:27. DOI: https://doi.org/10.1002/cpbi.27

Ayers P, Mietchen D, Orlovitz J, Proffitt M, Rödlund S, Seiver E, Taraborelli D, Vershbow B. 2019. WikiCite 2018-2019: Citations for the Sum of All Human Knowledge: Wikimedia Foundation.

Bastian F, Parmentier G, Roux J, Moretti S, Laulet V, Robinson-Rechavi M. 2008. Bgee: Integrating and Comparing Heterogeneous Transcriptome Data Among Species. In: Bairoch A, Cohen-Boulakia S, Froidevaux C (Eds). Data Integration in the Life Sciences, Lecture Notes in Computer Science. Berlin Heidelberg: Springer. p. 124–131. DOI: https://doi.org/10.1007/978-3-540-69828-9_12

Bauer S, Köhler S, Schulz MH, Robinson PN. 2012. Bayesian ontology querying for accurate and noise-tolerant semantic searches. Bioinformatics 28:2502–2508. DOI: https://doi.org/10.1093/bioinformatics/bts471, PMID: 22843981

Bodenreider O. 2004. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Research 32:267D–270. DOI: https://doi.org/10.1093/nar/gkh061

Bunt SM, Grumbling GB, Field HI, Marygold SJ, Brown NH, Millburn GH, FlyBase Consortium. 2012. Directly e-mailing authors of newly published papers encourages community curation. Database 2012: bas024. DOI: https://doi.org/10.1093/database/bas024, PMID: 22554788

Burgstaller-Muehlbacher S, Waagmeester A, Mitракa E, Turner J, Putman T, Leong J, Naik C, Pavlidis P, Schriml L, Good BM, Su AI. 2016. Wikidata as a semantic framework for the Gene Wiki initiative. Database 2016: baw015. DOI: https://doi.org/10.1093/database/baw015, PMID: 26989148

Burgstaller-Muehlbacher S, Waagmeester A, Stupp GS, Arrow T, Konstjn, Jeong-ndn, Putman TE, Mystou, Mietchen D, Su AI, pdehaye, Leturia I, Vrandecic D, Andrea. 2020. SuLab/WikidataIntegrator 0.5.1. Zenodo. http://doi.org/10.5281/zenodo.3621065
Burley SK, Berman HM, Bhikadiya C, Bi C, Chen L, Costanzo LD, Christie C, Duarte JM, Dutta S, Feng Z, Ghosh S, Goodsell DS, Green RK, Guranova V, Guzenko D, Hudson BP, Liang Y, Lowe R, Peisach E, Perikova I, et al. 2019. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Research 47:D299–D328. DOI: https://doi.org/10.1093/nar/gky949, PMID: 30357364

Caglayan AO, Comu S, Baranoski JF, Parman Y, Kaymakçalan H, Akgumus GT, Caglar C, Dolen D, Ersan-Ömay EZ, Harmanci AS, Mishra-Gorur K, Freeze HH, Yasuno K, Bilgguar K, Gunel M. 2015. NGLY1 mutation causes neuromotor impairment, intellectual disability, and neuropathy. European Journal of Medical Genetics 58:39–43. DOI: https://doi.org/10.1016/j.ejmg.2014.08.008, PMID: 25220016

Chandras C, Weaver T, Zouberakis M, Smedley D, Schug hart K, Rosenthal N, Hancock JM, Kollias G, Schofield PN, Aidinis V. 2009. Models for financial sustainability of biological databases and resources. Database 2009:bap017. DOI: https://doi.org/10.1093/database/bap017, PMID: 20157490

Chibucos MC, Mungall CJ, Balakrishnan R, Christie KR, Huntley RP, White O, Blake JA, Lewis SE, Giglio M. 2014. Standardized description of scientific evidence using the Evidence Ontology (ECO). Database 2014:bau075. DOI: https://doi.org/10.1093/database/bau075, PMID: 25052702

Cohen D. 2013. CC0 (+BY). https://dlancohen.org/2013/11/26/cc0-by/

Das R, Dhuliawala S, Zaheer M, Vlinis L, Durugkar I, Krishnamurthy A, Smola A, McCallum A. 2017. Go for a walk and arrive at the answer: reasoning over paths in knowledge bases using reinforcement learning. arXiv. https://arxiv.org/abs/1711.05851

de Coronado S, Wright LW, Fragoso G, Haber MW, Hahn-Dantona EA, Hartel FW, Quan SL, Safran T, Thomas N, Whiteman L. 2009. The NCI Thesaurus quality assurance lifecycle. Journal of Biomedical Informatics 42:530–539. DOI: https://doi.org/10.1016/j.jbi.2009.01.003, PMID: 19475726

El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Potter SC, Sue F, Cudré-Mauroux P, Sequeda J, Lange C, Heflin J (Eds). The Semantic Web – ISWC 2017, Lecture Notes in Computer Science. Springer International Publishing. p. 231–246. DOI: https://doi.org/10.1007/978-3-319-68204-4

Griffith M, Spies NC, Krysiak K, Michael JF, Coffman AC, Danos AM, Ainscough BJ, Ramirez CA, Rieke DT, Kujan L, Barnell EW, Wagner AH, Skidmore ZL, Wollam A, Liu CJ, Jones MR, Bliski RL, Lesurf R, Feng YY, Shah NM, et al. 2017. CWIC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. Nature Genetics 49:170–174. DOI: https://doi.org/10.1038/ng.3774, PMID: 28138153

Hartling LD, Sharram J, Faccenda E, Southan C, Gawaj AJ, Ireland S, Gray AJG, Bruce L, Alexander SPH, Anderton S, Bryant C, Davenport AP, Doerig C, Fabbro D, Levi-Schaffer F, Spedding M, Davies JA, NC-IUPHAR. 2018. The IUPHAR/BPS guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Research 46:D1091–D1106. DOI: https://doi.org/10.1093/nar/gnx1121, PMID: 29149325

Himmelstein DS, Lizee A, Hessler C, Brueggeman L, Chen SL, Hadley D, Green A, Khankhanian P, Baranzini SE. 2017. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. eLife 6:e26726. DOI: https://doi.org/10.7554/eLife.26726, PMID: 28936969

Horai H, Arita M, Kanaya S, Nishi Y, Ikeda T, Suwa K, Ojima Y, Tanaka K, Tanaka S, Aoshima K, Oda Y, Kakazu Y, Kusano M, Tohge T, Matsuda F, Sawada Y, Hirai MY, Nakashini H, Ikeda K, Akimoto N, et al. 2010. MassBank: a public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry 45:703–714. DOI: https://doi.org/10.1002/jms.1777, PMID: 20623627

Jacobsen A, Kiljaperumal R, Stupp GS, Schriml LM, Thompson M, Su AI, Roos M. 2018. Wikidata as an intuitive resource towards semantic data modeling in data FAIRification. In: Proceedings of the 11th International Conference Semantic Web Applications and Tools for Life Sciences, (SWAT4LS) 2018, Antwerp, Belgium, December 3-6, 2018. 2275 CEUR-WS.org.

Köhler S, Schulz MH, Krawitz P, Bauer S, Dölken S, Ott CE, Mundlos C, Horn D, Mundlos S, Robinson PN. 2009. Clinical diagnostics in human genetics with semantic similarity searches in ontologies. The American Journal of Human Genetics 85:457–464. DOI: https://doi.org/10.1016/j.ajhg.2009.09.003, PMID: 19800049

Köhler S, Vasilevsky NA, Engelstad M, Foster E, McMurry J, Aymé S, Baynham G, Bello SM, Boerkoel CF, Boycott KM, Brudno M, Buske OJ, Chinnery PF, Cipriani V, Connell LE, Dawkins HJ, DeMare LE, Devereau AD, de Vries BB, Firth HV, et al. 2017. The Human Phenotype Ontology in 2017. Nucleic Acids Research 45:D865–D876. DOI: https://doi.org/10.1093/genebonkx188, PMID: 28996020

Waagmeester et al. eLife 2020;9:e52614. DOI: https://doi.org/10.7554/eLife.52614
Science Forum | Wikidata as a knowledge graph for the life sciences

Köhler S, Stupp GS. 2020. SuLab/bqca: release v1.0 2020-01-21. Zenodo. http://doi.org/10.5281/zenodo.3620979

Lam C, Ferreira C, Krasnewich D, Toro C, Latham L, Zein WM, Lehky T, Brewer C, Baker EH, Thurm A, Farmer CA, Rosenzweig SD, Lyons JJ, Schreiber JM, Gropman A, Lingala S, Ghany MG, Solomon B, Macnamara E, Davids M, et al. 2017. Prospective phenotyping of NGLY1-CDGG, the first congenital disorder of deglycosylation. Genetics in Medicine 19:160–168. DOI: https://doi.org/10.1038/gim.2016.75, PMID: 27388694

Lewis J, Snyder M, Hyatt-Knorr H. 2017. Marking 15 years of the Genetic and Rare Diseases Information Center. Translational Science of Rare Diseases 2:77–88. DOI: https://doi.org/10.3233/TRD-170011, PMID: 29152459

Lin XY, Socher R, Xiong C. 2018. Multi-hop knowledge graph reasoning with reward shaping. arXiv. https://arxiv.org/abs/1808.10568.

Maieilla S, Oly A, Hanauer M, Lanneavu U, Lourghi H, Donadille B, Rodwell C, Köhler S, Seelow D, Jupp S, Parkinson H, Groza T, Brudno M, Robinson PN, Rath A. 2018. Harmonising phenomics information for a better interoperability in the rare disease field. European Journal of Medical Genetics 61:706–714. DOI: https://doi.org/10.1016/j.ejmg.2018.01.013, PMID: 29425702

Manske M. 2020. Mix’n’match. https://tools.wmflabs.org/mix-n-match/wiki/

Mayers MD, Su AI. 2020. SuLab/WD-repheto-analysis: v1.1 release on 2020-01-21. Zenodo. http://doi.org/10.5281/zenodo.3620811

Mayers MD, Stupp GS, Su AI. 2020. SuLab/phenociwkiworld: v1.1 release on 2020-01-21. Zenodo. http://doi.org/10.5281/zenodo.3620812

McKusick VA. 2007. Mendelian Inheritance In Man and its online version, OMIM. The American Journal of Human Genetics 80:586–604. DOI: https://doi.org/10.1086/514346, PMID: 17357067

Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang HY, El-Gebali S, Fraser MI, Gough J, Haft DR, Huang H, Letunic I, Lopez R, Luciani A, Madeira F, Marchler-Bauer A, Mi H, Natale DA, et al. 2019. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research 47:D351–D360. DOI: https://doi.org/10.1093/nkx1100, PMID: 30398656

Mora-Cantallops M, Sánchez-Alonso S, Garcia-Barrionanal E. 2019. A systematic literature review on Wikidata. Data Technologies and Applications 53:250–268. DOI: https://doi.org/10.1108/DTA-12-2018-0110

Mungall CJ, McMurry JA, Köhler S, Balhoff JP, Borromeo C, Brush M, Carbon S, Conlin T, Dunn N, Engelstad M, Foster E, Gourdon D, Jacobsen JO, Keith D, Laraway B, Lelong S, Lirman D, Lynam K, Marschel-Bauer A, Mi H, Natale DA, Oates CP, Park J, Socher R, Xiong C. 2018. Mix’n’match.

Nicolaas FA, Miettinen D, Willighagen E. 2017. Scholia, Scientometrics and Wikidata. In: Blomqvist E, Hose K, Paulheim H, Lawnowicz A, Ciravegna F, Hartig O (Eds.) The Semantic Web: ESWC 2017 Satellite Events, Lecture Notes in Computer Science. Springer International Publishing. p. 237–259. DOI: https://doi.org/10.1007/978-3-319-70407-4_36

Pawson AJ, Sharman JL, Benson HE, Facenda E, Alexander SP, Buneman OP, Davenport AP, McGrath JC, Peters JA, Southan C, Speeding M, Yu W, Harmar AJ, NC-IUPHAR. 2014. The IUPHAR/BPS guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands. Nucleic Acids Research 42:D1098–D1106. DOI: https://doi.org/10.1093/nar/gkt1143, PMID: 24234439

Putman TE, Lelong S, Burgstaller-Muehlbacher S, Waagmeester A, Diesh C, Dunn N, Munoz-Torres M, Stupp GS, Wu C, Su AI, Good BM. 2017. WikiGenomes: an open web application for community consumption and curatation of gene annotation data in Wikidata. Database 2017:bax025. DOI: https://doi.org/10.1093/database/bax025

Reiser L, Berardini TZ, Li D, Muller R, Strait EM, Li Q, Mezheritsky Y, Vetushko A, Hualae E. 2016. Sustainable funding for biocuration: The Arabidopsis Information Resource (TAIR) as a case study of a subscription-based funding model. Database 2016:baw018. DOI: https://doi.org/10.1093/database/baw018, PMID: 26891150

Sansone SA, McQuilten P, Rocca-Serra P, Gonzalez-Beltran A, Izzo M, Lister AL, Thurston M, FAIRsharing Community. 2019. FAIRsharing as a community approach to standards, repositories and policies. Nature Biotechnology 37:358–367. DOI: https://doi.org/10.1038/s41587-019-0080-8, PMID: 30940948

Scholia. 2019. Scholia, ACE Inhibitor Pathway. https://tools.wmflabs.org/scholia/pathway/?P22982242

Schrilm LM, Mitraka E, Munro J, Tauber B, Schor M, Nickle L, Felix V, Jeng L, Bearer C, Lichtenstein R, Bisordi K, Campion P, Bajaj S, Kurland D, Oates CP, Kibbey S, Sreekumar P, Le C, Giglio M, Greene C. 2018. WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Research 47:149–159. DOI: https://doi.org/10.1093/nkx1100, PMID: 30407550

Shin J-M. 2004. PDB-Ligand: a ligand database based on PDB for the automated and customized classification of ligand-binding structures. Nucleic Acids Research 33:D238–D241. DOI: https://doi.org/10.1093/gk059

Sletner DN, Kutmon MN, Hanspers K, Ritttmann, J, Winston J, Nunes N, Meliou J, Cirillo E, Coort SL, Digles D, Ehrhart F, Giesbertz P, Kalafati M, Martens M, Miller R, Nishida K, Rieswijk L, Waagmeester A, Eijssen LMT, Evelo CT, et al. 2018. WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Research 46:D661–D667. DOI: https://doi.org/10.1093/nkx1100, PMID: 29136241

Smedley D, Haidar S, Durinck S, Pandini L, Provero P, Allen J, Arnaiz O, Awedh BM, Baldock R, Barbiera G, Bardou P, Beck T, Blake A, Bonierbale M, Brookes AJ,
Bucci G, Buetti I, Burge S, Cabau C, Carlson JW, et al. 2015. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Research 43:W589–W598. DOI: https://doi.org/10.1093/nar/gkv350, PMID: 25897122
Southan C, Sharman JL, Benson HE, Facenda E, Pavon AJ, Alexander SP, Bunimovich VP, Davenport AP, McGrath JC, Peters JA, Spedding M, Catterall WA, Fabbro D, Davies JA, NC-IUPHAR. 2016. The IUPHAR/BPS guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucleic Acids Research 44:D1054–D1068. DOI: https://doi.org/10.1093/nar/gkx1037, PMID: 26464438
Sprague ER. 2017. ORCID. Journal of the Medical Library Association 105:207–208. DOI: https://doi.org/10.5195/jmla.2017.89
Stupp GS, Su AI. 2018. Drug indicators extracted from FAERS. Zenodo. http://doi.org/10.5281/zenodo.3620977
Stupp GS, Waagmeester A, Tsueng G, Pico AR, Tu R, Ul-Hasan S, Burgstaller-Muehlbacher S, Riutta A, Jacobson M, Su AI. 2020. Sulab/scheduled-bots: release v1.0 2020-01-21. Zenodo. http://doi.org/10.5281/zenodo.1436000
Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, Merrill AH, Murphy RC, Paetz CT, Russell DW, Subramaniam S. 2007. LMSD: LIPID MAPS Structure Database. Nucleic Acids Research 35:D527–D532. DOI: https://doi.org/10.1093/nar/gkl838, PMID: 1709839
Tu R, Stupp GS, Su AI. 2020. Sulab/Wikidata-phenomizer: release v1.0 on 2020-01-15. Zenodo. http://doi.org/10.5281/zenodo.3609142
Turki H, Shafee T, Haji Taeib MA, Ben Aouicha M, Vrandečić D, Das D, Hamdi H. 2019. Wikidata: a large-scale collaborative ontological medical database. Journal of Biomedical Informatics 99:103292, DOI: https://doi.org/10.1016/j.jbi.2019.103292, PMID: 31557529
UniProt Consortium. 2019. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research 47: D506–D515. DOI: https://doi.org/10.1093/nar/gky1049, PMID: 30395287
Ursu O, Holmes J, Knockel J, Bologa CG, Yang JJ, Mathias SL, Nelson SJ, Oprea TJ. 2017. DrugCentral: online drug compendium. Nucleic Acids Research 45: D932–D939. DOI: https://doi.org/10.1093/nar/gkw993, PMID: 27789690
van Iersel MP, Pico AR, Kelder T, Gao J, Ho I, H pansers K, Conklin BR, Evelo CT. 2010. The BridgeDb framework: standardized access to gene, protein and metabolite identifier mapping services. BMC Bioinformatics 11:5. DOI: https://doi.org/10.1186/1471-2105-11-5, PMID: 20047655
Vrandečić D. 2012. Wikidata: a new platform for collaborative data collection. Proceedings of the 21st International Conference on World Wide Web. DOI: https://doi.org/10.1145/2187980.2188242
Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH. 2009. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Research 37:W623–W633. DOI: https://doi.org/10.1093/nar/gkp456, PMID: 19498078
Wang M, Carver JJ, Phelan W, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kaponio CA, Luzzatto-Knaan T, Porto C, Boulimani A, Melnik AV, Meehan MJ, Liu WT, Grüsemann M, Boudreau PD, Esquenazi E, Sandoval-Calderón M, Kersten RD, et al. 2016. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nature Biotechnology 34:828–837. DOI: https://doi.org/10.1038/nbt.3597, PMID: 27504778
Wilkinson MD, Dumontier M, Alabersberg U, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Ebel CT, Finkers R, Gonzalez-Beltran A, et al. 2016. The FAIR guiding principles for scientific data management and stewardship. Scientific Data 3:160018. DOI: https://doi.org/10.1038/sdata.2016.18, PMID: 26798244
Wilkinson MD, Dumontier M, Sansone SA, Bonino da Silva Santos LO, Prieto M, Batista D, McQuilton P, Kuhn T, Rocca-Serra P, Crosas M, Schultes E. 2019. Evaluating FAIR maturity through a scalable, automated, community-governed framework. Scientific Data 6:1–12. DOI: https://doi.org/10.1038/s41597-019-0184-5, PMID: 31541130
Williams AJ, Grujke CM, Edwards J, McEachran AD, Mansouri K, Baker NC, Patlewicz G, Shah I, Wambaugh JF, Judson RS, Richard AM. 2017. The CompTox chemistry dashboard: a community data resource for environmental chemistry. Journal of Cheminformatics 9:61. DOI: https://doi.org/10.1186/s13321-017-0247-6, PMID: 29185060
Willighagen E, Slenter D, Mietchen D, Ecelo C, Nielsen F. 2018. Wikidata and scholia as a hub linking chemical knowledge. Figshare. https://figshare.com/articles/Wikidata_and_Scholia_as_a_hub_linking_chemical_knowledge/6356027. Wimalaratne SM, Juty N, Kunze J, Janée G, McMurry JA, Beard N, Jimenez R, Grethe JS, Hermjakob H, Martone ME, Clark T. 2018. Uniform resolution of compact identifiers for biomedical data. Scientific Data 5:180029. DOI: https://doi.org/10.1038/sdata.2018.29, PMID: 29737976
Wohlgemuth G, Mehta SS, Mejia RF, Neumann S, Pedrosa D, Pluskal T, Schymanski EL, Willighagen EL, Wilson M, Wishart DS, Arita M, Dorrestein PC, Bandeira N, Wang M, Schulze T, Salek RM, Steinbeck C, Nainala VC, Mistrik R, Nishioka T, et al. 2016. SPLASH, a hashed identifier for mass spectra. Nature Biotechnology 34:1099–1101. DOI: https://doi.org/10.1038/nbt.3689, PMID: 27824832
Xin J, Afrasiabi C, Lelong S, Adesara J, Tsueng G, Su AI, Wu C. 2016. Cross-linking BioThings APIs through JSON-LD to facilitate knowledge exploration. BMC Bioinformatics 19:30. DOI: https://doi.org/10.1186/s12859-018-2041-5, PMID: 29390967
Xiong W, Hoang T, Wang WY. 2017. DeepPath: a reinforcement learning method for knowledge graph reasoning. arXiv. https://arxiv.org/abs/1707.06690. Zerboino DR, Achuthan P, Akanni W, Amode MR, Barrett D, Bhai J, Billis K, Cummins C, Gall A, Girón CG, Gil L, Gordon L, Haggerty L, Haskell E, Hourlier T, Izuogu OG, Janarek SH, Juettemann T, To JK, Laird MR, et al. 2018. Ensembl 2018. Nucleic Acids Research 46:D754–D761. DOI: https://doi.org/10.1093/nar/gkx1098, PMID: 29155950