Vimentin on the move: new developments in cell migration
[version 1; peer review: 2 approved]

Rachel A. Battaglia¹, Samed Delic¹, Harald Herrmann²,³, Natasha T. Snider¹

¹Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
²Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
³Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany

Open Peer Review

Approval Status

1 2

version 1
15 Nov 2018

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1. Gaudenz Danuser, UT Southwestern, Dallas, USA
2. Thomas Magin, Institute of Biology and SIKT, Leipzig, Germany

Any comments on the article can be found at the end of the article.

Abstract

The vimentin gene (VIM) encodes one of the 71 human intermediate filament (IF) proteins, which are the building blocks of highly ordered, dynamic, and cell type-specific fiber networks. Vimentin is a multifunctional 466 amino acid protein with a high degree of evolutionary conservation among vertebrates. Vim−/− mice, though viable, exhibit systemic defects related to development and wound repair, which may have implications for understanding human disease pathogenesis. Vimentin IFs are required for the plasticity of mesenchymal cells under normal physiological conditions and for the migration of cancer cells that have undergone epithelial-mesenchymal transition. Although it was observed years ago that vimentin promotes cell migration, the molecular mechanisms were not completely understood. Recent advances in microscopic techniques, combined with computational image analysis, have helped illuminate vimentin dynamics and function in migrating cells on a precise scale. This review includes a brief historical account of early studies that unveiled vimentin as a unique component of the cell cytoskeleton followed by an overview of the physiological vimentin functions documented in studies on Vim−/− mice. The primary focus of the discussion is on novel mechanisms related to how vimentin coordinates cell migration. The current hypothesis is that vimentin promotes cell migration by integrating mechanical input from the environment and modulating the dynamics of microtubules and the actomyosin network. These new findings undoubtedly will open up multiple avenues to study the broader function of vimentin and other IF proteins in cell biology and will lead to critical insights into the relevance of different vimentin levels for the invasive behaviors of metastatic cancer cells.

Keywords

cytoskeleton, cell migration, cell polarity, cell stiffness, post-translational modifications
Introduction

Vimentin is an intermediate filament (IF) protein whose name is derived from the Latin word *vimentum*, which means wickerwork\(^1\). Early observations with immunofluorescence microscopy revealed a complex fiber network, distinct from the already-known keratin system in the cytoskeleton of epithelial cells\(^2\). In mouse development, vimentin initially emerges in a highly migratory cell type (that is, when the embryo is still a two-layered epithelium and ectodermal cells start to migrate into the newly forming “mesodermal cleft”). In these first mesenchymal cells, keratin genes are turned off and the vimentin gene is turned on\(^3\). Postnatal expression of vimentin is restricted to fibroblasts, endothelial cells, lymphocytes, and several specialized cells of the thymus and the brain\(^4,5\). Moreover, it was observed early on that vimentin is significantly expressed in most cell types, particularly tumor cells, when the cells are taken from primary tissues and transitioned into culture\(^6\). The mechanism behind this widespread expression of vimentin is a serum response element in the *VIM* promoter, which responds to factors present in the serum that culture media are complemented with\(^7\). Therefore, many cell types expressing vimentin in culture are not ideal models to study the genuine biological functions of vimentin. However, with appropriate cell systems, it has been demonstrated that vimentin plays an important role in various physiological situations. For instance, upregulation of vimentin in cultured epithelial cells\(^8,9\) and in *vivo*\(^10\) correlates with epithelial–mesenchymal transition (EMT), a process that occurs during development, wound healing, and cancer metastasis\(^11\). Though originally described as a “skeletal” element of cells, the vimentin filament network was revealed by live-cell imaging studies to be a very dynamic system\(^12\). Specifically, FRAP (fluorescence recovery after photobleaching) studies demonstrated that vimentin in interphase BHK-21 cells had a recovery half-time of 5 ± 3 minutes\(^13\), exhibiting dynamic properties similar to those of microtubules\(^14,15\) and actin filaments\(^14\).

Small molecules for the selective targeting of vimentin (and other IFs) are currently not available, which has limited mechanistic understanding of this cytoskeletal component. The first global vimentin knockout mouse was generated 25 years ago and described as having no phenotype\(^16\), which was frequently and mistakenly taken as evidence that, despite its extreme evolutionary conservation in vertebrates\(^16\), vimentin is of little physiological importance. While early embryogenesis and litter size are unaffected in the *Vim*\(^−/−\) mice, a number of phenotypes reported in the literature support multiple functions of vimentin at the cellular level in the maintenance of stemness\(^17,18\), differentiation\(^19,19\), proliferation\(^20\), adhesion\(^21,22\), migration\(^23,24\), and invasion\(^25\). The cellular-level defects in the *Vim*\(^−/−\) mice cause impairments in normal physiological processes, such as mammary gland development\(^21\), angiogenesis\(^24\), vascular stiffness\(^25\), steroidogenesis\(^26\), glia development\(^27\), and myelination of peripheral nerves\(^28\). Of particular relevance to human disease pathogenesis, *Vim*\(^−/−\) mice have defects in wound healing and exhibit differences in tissue repair after injury to the skin\(^29\), eye\(^30,30\), brain\(^31,33\), vasculature\(^34,35\), lung\(^36,37\), kidney\(^38,39\), and gut\(^40,41\). Accordingly to studies using the global *Vim*\(^−/−\) mice, the “true” function of vimentin is at the organismal level of cells and is important under both physiological and pathophysiological stress conditions.

There are no known monoallelic diseases resulting from missense mutations in vimentin, in contrast to other IF genes. In general, disease-causing mutations are less likely to occur in genes with extensive molecular interaction networks compared with genes with more restricted connectivities\(^42\). Currently, the number of unique interactions documented for vimentin in the Biological General Repository for Interaction Datasets is 276, which is severalfold higher than that for IF genes with known disease-causing mutations, including *KRT5* (66), *KRT14* (45), *DES* (47), *GFAP* (95), and *NEFL* (52)\(^43\) (https://thebiogrid.org). This view of vimentin functioning within a large molecular network is supported by studies showing that dominant negative vimentin mutations that disrupt filament formation interfere with cellular proteostasis pathways and apoptosis\(^44\) and are associated with the development of cataracts in mice\(^45\) and humans\(^46\). With these historical facts in mind, we will review new findings relevant to the role of vimentin in migratory processes of cells and tissues.

Novel roles of vimentin in cell migration

Vimentin promotes the migration of different cell types

It is well appreciated that motile and invasive cells express higher levels of vimentin\(^47,48\) and that vimentin knockout or knockdown attenuates the migration of fibroblasts\(^49,50\), leukocytes\(^51\), endothelial cells, and various cancer cell types\(^52\). For a broader overview of the functions of vimentin and other IFs in cell biology\(^33\) (and cell migration in particular), we refer the readers to previous reviews\(^49,52\). Here, we specifically focus on the most recent studies illuminating how vimentin orchestrates cytoskeletal rearrangements and mechano-signaling to promote cell migration. In particular, we will discuss how the flexibility of the vimentin scaffold is modulated to provide a plastic “net” dynamically enforcing the rigid actomyosin motor system.

Vimentin filaments pattern microtubules during directed migration

Establishment of persistent cell polarity is a key property of migrating cells responding to internal and external signals that guide directionality of movement\(^49\). The high turnover rate of the microtubule network, which occurs in the order of 3 to 5 minutes, stabilizes cell polarity during directed cell migration\(^19,60\). The vimentin filament network is closely associated with, and functionally dependent on, microtubules\(^61,62\) and microtubule-associated molecular motors\(^63,65\). This is reflected in the drastic vimentin reorganization, often as an apparent “collapse” around the cell nucleus, upon disrupting microtubules with colchicine\(^62\). Recent work by Gan *et al.* used a systematic quantitative approach to characterize the co-dependent behavior of these two cytoskeletal systems during cell migration\(^66\). The authors subjected a retinal pigment epithelium (RPE) cell line expressing fluorescently tagged vimentin and tubulin (under the control of their endogenous promoters) to a scratch wound assay in a confluent monolayer followed by live-cell imaging and computational image analysis\(^66\). The study revealed that vimentin filaments are stable for up to 20 minutes after nocodazole treatment and that
Vimentin regulates cell migration by restricting actin flow and aligning traction stress

Cell migration is dependent on actin filaments, which reorganize into different arrays to support the formation of membrane protrusions (for example, lamellipodia and filopodia) and propel the cell along its substrate. Vimentin interacts with actin filaments directly via its tail domain and indirectly via the cytolinker protein plectin. Another vimentin binding partner, the capping protein (CP) regulator CARMIL2 (CP, Arp2/3, myosin-I linker 2), facilitates lamellipodia formation and cell migration in a vimentin-dependent manner.

Jiu et al. showed recently that transverse arcs, which are actin bundles containing the motor protein myosin II, are essential for the retrograde flow of small vimentin particles and their incorporation into perinuclear vimentin filaments in the osteosarcoma U2OS cells. The small vimentin particles, called squiggles, represent intermediates of synthesis-independent filament turnover that occurs through severing and re-anchoring or subunit exchange. Upon depletion of transverse arcs by knockdown of tropomyosin 4, which recruits myosin II, retrograde flow and perinuclear localization of vimentin were lost. While vimentin deficiency did not affect stress fiber formation in this particular system, it caused transverse arcs to pull away from the leading edge, suggesting that vimentin controls actin dynamics by restricting the retrograde flow of transverse arcs. The cross-talk between vimentin and actin transverse arcs is dependent on plectin and appears to be important for nuclear positioning, a key element of cell migration, and other processes. To that end, vimentin was recently shown to interact with the nuclear pore complex protein Nup88, which may bear consequences to nuclear positioning during cancer cell migration.

Because vimentin filaments are highly dynamic, a key question is how the various physical states of the network control cellular behavior. For example, phosphorylation-dependent vimentin disassembly at the cell periphery is required for the formation of actin-based lamellipodia membrane protrusions. The Danuser group developed a novel computational method to analyze vimentin filaments and showed that long (>4 µm) vimentin fibers serve as a load-bearing scaffold to buffer traction stress during single-cell migration. Using traction force microscopy on non-immortalized human skin fibroblasts, the authors observed that actin moved 14 times faster in areas devoid of vimentin and two times faster in areas containing a rarefied vimentin “mesh” when compared with areas of the cell that were occupied by fibrous vimentin. Thus, these findings align with the work by Jiu et al. with respect to the function of filamentous vimentin in restraining retrograde actin flow. Additionally, traction forces distributed non-specifically throughout the interface between the cell and the substrate in vimentin-deficient cells while, in the presence of vimentin, actomyosin forces were redirected to peripheral adhesions. Therefore, the current understanding is that mature vimentin fibers restrict the formation of lamellipodia and actin flow while facilitating the alignment of traction forces to promote single-cell migration in collaboration with microtubules.

Vimentin promotes collective cell migration by restraining traction forces and supporting lateral cell-cell contacts

In addition to vimentin, actin transverse arcs regulate the perinuclear localization of nestin, an IF protein that cannot form filaments on its own but can co-assemble with vimentin in various cell types, such as astrocytes. Astrocytes are specialized glial cells critical for central nervous system (CNS) function. The IF cytoskeleton of astrocytes is composed of vimentin, nestin, and glial fibrillary acidic protein (GFAP). Whereas GFAP is the major IF protein of mature astrocytes under basal conditions, vimentin is highly expressed by astrocytes during normal development and in CNS injury. In developing Xenopus laevis embryos, vimentin-expressing cells first appear lining the forming neural tube, indicating that these cells are radial glia guiding migratory neuronal cells.

There is strong evidence that astrocyte migration is implicated in CNS development, injury, and glioma tumor formation. Combined reduction of the protein levels of vimentin, GFAP, and nestin decreases astrocyte speed, directionality, and persistence of movement during collective cell migration, the coordinated movement of cells as groups, in a manner dependent on cell–cell contact. In a scratch wound assay using primary rodent astrocytes, knockdown of vimentin, along with GFAP and nestin, promotes an increase in actin stress fibers perpendicular to the wound, a reduction in actin stress fibers parallel to the wound, and a reduction in retrograde actin flow. Triple IF knockdown in astrocytes additionally alters the morphology of adherens junctions (AJs) and decreases the retrograde flow of AJs measured by live imaging of N-cadherin and loss of vinculin localization to AJs. Finally, the astrocyte IF system restricted the mechanical coupling of focal adhesion to the actomyosin network. Given the interdependent nature of astrocyte IFs and the triple IF knockdown strategy used in this study, it is not possible to assign a specific role of vimentin per se. However, in light of the additional studies supporting similar roles of vimentin in other cell types, vimentin is a likely key regulator of astrocyte migration. Overall, these findings may have functional implications for gliomas, since...
high vimentin expression is an independent prognostic factor for their metastatic aggressiveness.

Vimentin promotes cell migration by enhancing contact-dependent cell stiffening
Upregulation of vimentin in epithelial cells, in addition to increasing cell motility, induces physical changes in cell shape, loss of cell–cell contacts, and increased turnover of focal adhesions. Furthermore, vimentin supports cellular elasticity and protects against mechanical stress, such as compression. Tumor cells experience significant compressive stress as they grow, which is known to promote cell migration and invasion related to the formation of new leader cells and actomyosin-independent cell extensions in breast cancer cells.

Using a number of biophysical methods coupled with cell migration assays under low- and high-cell-density conditions, Messica et al. showed that vimentin controls cell migration in dense, but not sparse, cultures. Using the invasive breast carcinoma MDA-MB-231 cells as a model system, the authors compared how the presence or absence of vimentin regulates their mechanical, migratory, and invasive properties. Vimentin-lacking MDA-MB-231 cells were softer and more deformable, which are characteristics attributed to more invasive and metastatic cancer cells. Interestingly, the loss of vimentin significantly diminished the ability of MDA-MB-231 cells to migrate and invade in dense, but not sparse, cultures, while vimentin expression positively correlated with longer persistence time of migration. The latter is in line with the previous
study supporting a role for vimentin in microtubule-dependent cell polarity regulation during migration. The authors proposed that the decreased migration and invasiveness of the “softer” vimentin-negative MDA-MB-231 cells relate to their deformability in crowded spaces, such that each cell can be molded to accommodate neighboring cells, losing its polarity in the course of this process. In the presence of vimentin, the cells are able to stiffen and redirect their migration to move toward vacant intercellular spaces. It would be intriguing to explore whether and how vimentin regulates cytoskeleton reorganization and cellular stiffening during cancer cell migration through soft substrates, as was recently reported.

Novel regulators of vimentin

Vimentin regulation by microRNAs

Vimentin expression is elevated in cancer development and progression, as demonstrated by multiple recent studies using in vivo cancer metastasis models. Therefore, factors that regulate vimentin expression are of particular interest. MicroRNAs (miRs) are small, non-coding RNA molecules that are involved in gene regulation by binding to the 3’ untranslated region of the target mRNA to promote degradation or prevent translation. miRs are well-recognized regulators of wound healing, EMT, and cancer metastasis. It was shown recently that vimentin expression is inhibited by miR-548a, resulting in reduced invasion and proliferation of pancreas cancer cells. Another study found that miR-22 acts as an EMT antagonist by blocking the expression of the transcription factors Snail and Slug, as well as vimentin mRNA, and by increasing the expression of E-cadherin mRNA. This study found that miR-22 is a direct inhibitor of Snail and ERK2 and that ERK2 is involved in a regulatory feedback loop with Slug and vimentin. Specifically, ERK2 activates Slug, which in turn promotes vimentin-dependent ERK2 phosphorylation and decreased apoptosis. The relationship between vimentin and miRs is bi-directional, since vimentin blocks the function of several miRs, including miRs 182, 203, 887, and 3619, which are proposed to be tumor suppressor molecules that prevent phospholipase D-associated cancer cell migration and invasion.

Vimentin regulation by post-translational modifications

Vimentin and other IF proteins are extensively modulated by PTMs under normal conditions and in disease settings. Recent studies have revealed novel regulators of vimentin, including the E3 ubiquitin ligase TRIM56, which promotes ubiquitination and proteasome-dependent degradation of vimentin. In addition, vimentin interacts directly with ubiquitin 2 (UBQLN2) and myotubularin-1 (MTM1) as demonstrated by proteomics studies. Knockdown of either UBQLN2 or MTM1 increased vimentin protein expression and decreased proteasome activity. Vimentin is known to be glycosylated at multiple sites on the head domain, and recently Tarbet et al. demonstrated that glycosylation of vimentin is required for vimentin crosslinking, filament formation, and cell migration. Since glycosylation is significantly altered and functionally important in cancer development and progression, the findings from this study bear importance for understanding the role of vimentin in cancer at a mechanistic level.

Conclusions

Vimentin is a key component of the cytoskeleton with important biological functions at the cellular and organismal levels. Vimentin is particularly important during development and in cancer during EMT and metastasis. Vimentin interacts with, and regulates, microtubules, actin, focal adhesions, and AJs during cell migration. Recent studies highlight that environmental factors, such as cell density and substrate stiffness, should be carefully considered when studying the role of vimentin in cell migration in vitro. Overexpression and tagging of vimentin can cause defects in the filament network, so novel gene editing strategies at endogenous loci should be used to determine the importance of specific vimentin residues and their respective modifications in filament dynamics. One such approach could be to focus on frequently reported PTM sites on vimentin that have been curated by the comprehensive PhosphoSitePlus database, but not validated via mechanistic studies. This approach was applied previously on keratin 8 to reveal conserved tyrosine phosphorylation as an important regulator of solubility and filament dynamics. Future development of small molecules that selectively target vimentin and control the assembly state of vimentin filaments will be essential to understand vimentin dynamics and to target its function as a means to modulate cell migration.

Grant information

The authors receive funding from the National Institutes of Health (R01DK110355), National Science Foundation (Graduate Research Fellowship Program), Hannah’s Hope Fund and the German Research Foundation (DFG, HE 1853/14-1).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

1. Franke WW, Schmid E, Osborn M, et al.: Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc Natl Acad Sci U S A. 1978; 75(10): 5034-8. PubMed Abstract | Publisher Full Text | Free Full Text
2. Franke WW, Grund C, Kuhn C, et al.: Formation of cytoskeletal elements during mouse embryogenesis. III. Primary mesenchymal cells and the first appearance of vimentin filaments. Differentiation. 1982; 23(1): 43–59. PubMed Abstract | Publisher Full Text
3. Franke WW, Moll R: Cytoskeletal components of lymphoid organs. I. Synthesis of cytokeratins 8 and 18 and desmin in subpopulations of extrafollicular...
et al. 2015; 11(10): 1511–18.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

75. Togkander S, Gateva G, Schvezov G, et al.: A molecular pathway for myosin II recruitment to stress fibers. Curr Biol. 2011; 21(7): 539–50.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

76. Gundersen GG, Woman HJ: Nuclear positioning. Cell. 2013; 152(6): 1376–89.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

77. Maske M, Nakamura H, Kuniyasu A: The role of vimentin in the tumor marker Nup98-deficient multinucleated phenotype. BMC Cancer. 2018; 18(1): 619.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

78. Denais C, Lammering J: Nuclear mechanics in cancer. Adv Exp Med Biol. 2014; 773: 436–70.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

79. Hisl EM, Peikny M: Gial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol. 2015; 32: 121–30.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

80. Hermann H, Fouquet B, Franke WW: Expression of intermediate filament proteins during development of Xenopus laevis. J. Cell Biol. 1981; 90(1): 445–8.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

81. Deniau JB, Barnes BA: Glia in mammalian development and disease. Development. 2015; 142(22): 3805–19.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

82. Costiglicola N, Ding L, Burckhardt CJ, et al.: Vimentin fibers orient traction stress. Proc Natl Acad Sci U S A. 2017; 114(20): 5195–200.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

83. Mittler R, Karbstein F: Microtubule networks to enhance persistence in cell polarity and cell migration. Mol Biol Cell. 2015; 26(25): 4577–88.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

84. Tao C, Zhang X: Direct interaction between actin and intermediate filaments mediated by the tail domain of vimentin. J Biol Chem. 2006; 281(41): 30393–9.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

85. Saiki TM, Vehkova AB, Borisov GD: Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J Cell Biol. 1996; 135(4): 991–1007.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

86. LeGall EA, Eliaison C, Berthold CH, et al.: Intermediate filaments regulate astrocyte motility. J Neurochem. 2001; 79(3): 617–25.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

87. Svitkina TM, Verkhovsky AB, Borisy GG: Microtubules stabilize cell polarity by localizing cadherin. J Cell Biol. 2003; 162(5): 795–806.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

88. Tan DD, Gerlach BD: Microtubule networking galore: intermediate filaments and microtubules depend on kinesin.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

89. Benard V, Yoon M, Moir RD, et al.: Rapamovements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks. J Cell Biol. 1998; 141(1): 159–70.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

90. Liao RJ, Jiang L, Wang RR, et al.: Keratin down-regulation in vimentin-rich astrocytes promotes gliosis after cerebral ischemia through promoting astrocyte migration and angiogenesis. Sci Rep. 2015; 5: 18937.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

91. Tao C, Zhang X: Direct interaction between actin and intermediate filaments mediated by the tail domain of vimentin. J Biol Chem. 2006; 281(41): 30393–9.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

92. Saiki TM, Vehkova AB, Borisov GD: Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J Cell Biol. 1996; 135(4): 991–1007.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

93. LeGall EA, Eliaison C, Berthold CH, et al.: Intermediate filaments regulate astrocyte motility. J Neurochem. 2001; 79(3): 617–25.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

94. Benard V, Yoon M, Moir RD, et al.: Rapamovements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks. J Cell Biol. 1998; 141(1): 159–70.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

95. Colakoglu G, Brown A: Intermediate filaments exchange subunits along their length and elongate by end-to-end anealing. J Cell Biol. 2009; 185(5): 769–77.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

96. Robert A, Rossow MJ, Hockway C, et al.: Vimentin filament precursors exchange subunits in an ATP-dependent manner. Proc Natl Acad Sci U S A. 2015; 112(27): E3505–14.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

97. Togkander S, Gateva G, Schvezov G, et al.: A molecular pathway for myosin II recruitment to stress fibers. Curr Biol. 2011; 21(7): 539–50.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

98. Gundersen GG, Woman HJ: Nuclear positioning. Cell. 2013; 152(6): 1376–89.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

99. Maske M, Nakamura H, Kuniyasu A: The role of vimentin in the tumor marker Nup98-deficient multinucleated phenotype. BMC Cancer. 2018; 18(1): 619.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

100. Denais C, Lammering J: Nuclear mechanics in cancer. Adv Exp Med Biol. 2014; 773: 436–70.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

101. Hisl EM, Peikny M: Gial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol. 2015; 32: 121–30.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

102. Hermann H, Fouquet B, Franke WW: Expression of intermediate filament proteins during development of Xenopus laevis. J. Cell Biol. 1981; 90(1): 445–8.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

103. Deniau JB, Polong AG, Kymkowisky MW: A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus. Development. 1989; 105(1): 61–74.

PubMed Abstract

104. Dent JA, Polong AG, Kymkowisky MW: A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus. Development. 1989; 105(1): 61–74.

PubMed Abstract

105. Tao C, Zhang X: Retinal Proteoglycans Act as Cellular Receptors for Basement Membrane Assembly to Control Astrocyte Migration and Angiogenesis. Cell Rep. 2016; 17(7): 1832–44.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

106. Mao X, Zhang D, Tao T, et al.: GGI/GNAC glycosylation of p27Kip1 promotes astrocyte migration and functional recovery after spinal cord contusion. Exp Cell Res. 2015; 339(2): 197–205.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

107. Liao RJ, Jiang L, Wang RR, et al.: Histidine provides long-term neuroprotection after cerebral ischemia through promoting astrocyte migration. Sci Rep. 2015; 5: 15336.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

108. Singh SK, Bhardwaj R, Wilczynska KM, et al.: A complex of nuclear factor I-X3 and STAT3 regulates astrocyte and glia migration through the secreted glycoprotein XYL-40. J Biol Chem. 2011; 286(4): 3983–903.

PubMed Abstract | Publisher Full Text | F1000 Recommendation

109. De Pascais C, Pérez-González C, Seetharaman S, et al.: Intermediate...
filaments control collective migration by restricting traction forces and sustaining cell-cell contacts. J Cell Biol. 2016; 217(6): 3031–44. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

94. Mayor R, Elenne-Manneville S: The front and rear of collective cell migration. Nat Rev Mol Cell Biol. 2016; 17(2): 97–109. PubMed Abstract | Publisher Full Text

95. Li SS, Xu LZ, Zhou W, Abidine Y, Constantinescu A, Laurent VM, Tse JM, Cheng G, Tyrrell JA, Mendez MG, Restle D, Janmey PA: Vimentin expression. Mol Cancer Ther. 2016; 15(9): 2209–19. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

96. Xu M, Li J, Wang X, et al.: MiR-22 suppresses epithelial-mesenchymal transition in bladder cancer by inhibiting Snail and MAPK1/Slug/vimentin feedback loop. Cell Death Dis. 2018; 9(2): 209. PubMed Abstract | Publisher Full Text | Free Full Text

97. File K, Gomez-Cambreron J: Down-regulation of MicroRNAs (MiRs) 203, 887, 3619 and 182 Prevents Vimentin-triggered, Phospholipase D (PLD)-mediated Cancer Cell Invasion. J Biol Chem. 2016; 291(2): 719–30. PubMed Abstract | Publisher Full Text | Free Full Text

98. Snider NT, Omary MB: Assays for Posttranslational Modifications of Intermediate Filament Proteins, Methods Enzymol. 2016; 568: 113–38. PubMed Abstract | Publisher Full Text | Free Full Text

99. Slawson C, Lakshmanan T, Knapp S, Wang Z, Pandey A, Hart GW: The role of Vimentin in regulating cell invasive migration in dense cultures of breast carcinoma cells. Nano Lett. 2017; 17(11): 6941–8. PubMed Abstract | Publisher Full Text | F1000 Recommendation

100. Abidine Y, Constantinescu A, Laurens VM, et al.: Mechanosensitivity of Cancer Cells in Contact with Soft Substrates Using AFM. Biophys J. 2018; 114(5): 1160–75. PubMed Abstract | Publisher Full Text | Free Full Text

101. Li SS, Xu LZ, Zhou W, et al.: p62/SQSTM1 interacts with vimentin to enhance breast cancer metastasis. Carcinogenesis. 2017; 38(11): 1092–103. PubMed Abstract | Publisher Full Text | Free Full Text

102. Zelenko Z, Gallagher EJ, Tobin-Hess A, et al.: Silencing vimentin expression decreases pulmonary metastases in a pre-diabetic mouse model of mammary tumor progression. Oncogene. 2017; 36(10): 1394–403. PubMed Abstract | Publisher Full Text | Free Full Text

103. Zhang J, Ma L: MiRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev. 2012; 31(3–4): 533–54. PubMed Abstract | Publisher Full Text | Free Full Text

104. Zhu S, He C, Deng S, et al.: MiR-1548B, Transcriptionally Downregulated by HIF1a/HDAC1, Suppresses Tumorigenesis of Pancreatic Cancer by Targeting Vimentin Expression. Mol Cancer Ther. 2016; 15(9): 2209–19. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

105. Hornbeck PV, Zhang B, Murray B, et al.: PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015; 43(Database issue): D912–20. PubMed Abstract | Publisher Full Text | Free Full Text

106. Snider NT, Park H, Omary MB: A conserved rod domain phosphophoryosine that is targeted by the phoshatase PTP1B promotes keratin 8 protein insolubility and filament organization. J Biol Chem. 2013; 288(43): 31323–37. PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Peer Review Status: ✔ ✔

Editorial Note on the Review Process
Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

1. Thomas Magin
 University of Leipzig, Institute of Biology and SIKT, Leipzig, Germany
 Competing Interests: No competing interests were disclosed.

2. Gaudenz Danuser
 Departments of Bioinformatics and Cell Biology, UT Southwestern, Dallas, TX, USA
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

• Your article is published within days, with no editorial bias
• You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com