A Note on Guaranteed Stable Recovery of Sparse Signal in Compressed Sensing via the RIP of Orders

Hiroshi Inoue1*

1 Graduate School of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

Article Information
DOI: 10.9734/BJMCS/2015/18237
Editor(s):
(1) Victor Carvalho, Polytechnic Institute of Covado and Ave, Portuguese Catholic University and Lusiada University, Portugal.

Reviewers:
(1) Anonymous, University of Colorado Denver, USA.
(2) J. I. Jiabing, Department of Information and Mathematics Sciences, China Jiliang University, China.
(3) Anonymous, India.
Complete Peer review History: http://sciencedomain.org/review-history/10081

Original Research Article

Received: 10 April 2015
Accepted: 12 May 2015
Published: 07 July 2015

Abstract

In this paper, we shall continue a study of the CS-recovery of signals studied in [1]. Under the assumption that a $m \times n$ matrix A obeys the RIP of order s we decompose the space of unknown vectors into sets M_0, M_1, \cdots, M_7 defined by a bias function p_x on a good location $T_0 = \{1, 2, \cdots, s\}$ and research a good condition of CS-recovery.

Keywords: Compressed sensing; restricted isometry property; sparse signal recovery.

1 Introduction

This paper introduces the theory of compressed sensing (CS). For a signal $x \in \mathbb{R}^n$, let $\|x\|_0$ be the l_0-norm of x, which is defined to be the number of nonzero coordinates, $\|x\|_1$ be the l_1-norm of x and $\|x\|_2$ be the l_2-norm of x. Let x be a sparse or nearly sparse vector. Compressed sensing aims to recover a high-dimensional signal (for example: images signal, voice signal, code signal..etc.) from only a few samples or linear measurements. The efficient recovery of sparse signals has been a very active field in applied mathematics, statistics, machine learning and signal processing. Formally, one considers the following model:

$$y = Ax + z,$$

*Corresponding author: E-mail: h-inoue@math.kyushu-u.ac.jp
where A is a $m \times n$ matrix ($m < n$) and z is an unknown noise term.

Our goal is to reconstruct an unknown signal x based on A and y given. Then we consider reconstructing x as the solution x^* to the optimization problem

$$\min_{x} \|x\|_1, \text{ subject to } \|y - Ax\|_2 \leq \varepsilon,$$

where ε is an upper bound on the the size of the noisy contribution.

In fact, a crucial issue is to research good conditions under which the inequality

$$\|x - x^*\|_2 \leq C_0\|x - x_T\|_1 + C_1\varepsilon,$$

for suitable constants C_0 and C_1, where T is any location of $\{1, 2, \ldots, n\}$ with number $|T| = s$ of elements of T and x_T is the restriction of x to indices in T. One of the most generally known condition for CS theory is the restricted isometry property (RIP) introduced by [2]. When we discuss our proposed results, it is an important notion. The RIP needs that subsets of columns of A for all locations in $\{1, 2, \ldots, n\}$ behave nearly orthonormal system. In detail, a matrix A satisfies the RIP of order s if there exists a constant δ with $0 < \delta < 1$ such that

$$(1 - \delta)\|a\|_2^2 \leq \|Aa\|_2^2 \leq (1 + \delta)\|a\|_2^2$$

for all s-sparse vectors a. A vector is said to be an s-sparse vector if it has at most s nonzero entries. The minimum δ satisfying the above restrictions is said to be the restricted isometry constant and is denoted by δ_s.

Many researchers has been shown that the l_1 optimization can recover an unknown signal in noiseless cases and in noisy cases under various sufficient conditions on δ, or δ_2, when A obeys the RIP. For example, E.J. Candès and T. Tao have proved that if $\delta_{2s} < \sqrt{2} - 1$, then an unknown signal can be recovered [3]. Later, S. Foucart and M. Lai have improved the bound to $\delta_{2s} < 0.4531$ [4]. Others, $\delta_{2s} < 0.4652$ is used in [5], $\delta_{2s} < 0.4721$ for cases such that s is a multiple of 4 or s is very large in [6], $\delta_{2s} < 0.4734$ for the case such that s is very large in [5] and $\delta_8 < 0.307$ in [7]. In a recent paper, Q. Mo and S. Li have improved the sufficient condition to $\delta_{2s} < 0.4931$ for general case and $\delta_{2s} < 0.6569$ for the special case such that $n \leq 4s$ [8]. J. Ji and J. Peng have improved the sufficient condition to $\delta_8 < 0.308$ [9]. T. Cai and A. Zhang have improved the sufficient condition to $\delta_8 < 0.333$ for general case [10]. T. Cai and A. Zhang have improved the sufficient condition to δ_k in case of $k \geq \frac{2}{3}n$, in particular, $\delta_{2s} < 0.707$ [11]. By using a rescaling method, H. Inoue has obtained the sufficient conditions of $\delta_s < 0.5$ and $\delta_{2s} < 0.828$ in [12].

Recently, In [1] we have researched good conditions for the recovery of sparse signals by investigating the difference between the l_{∞}-norm of $h \equiv x^* - x$ and the mean $\frac{|h_1| + |h_2| + \cdots + |h_s|}{|h_1| + |h_2| + \cdots + |h_s|}$ of $\{|h_1|, \ldots, |h_s|\}$. In more details, we considered a function p on $T_0 \equiv \{1, 2, \ldots, s\}$ defined by

$$p(r) = \frac{|h_1| + |h_2| + \cdots + |h_r|}{|h_1| + |h_2| + \cdots + |h_s|}, \quad r = 1, 2, \ldots, s,$$

where the index of h is sorted by $|h_1| \geq |h_2| \geq \cdots \geq |h_s|$ and have shown that for $c > 1$ and $\frac{2}{\pi} < \frac{p(1)}{c}$ if A obeys the RIP of order $\frac{2}{\pi}$ and $\delta_{2s} < \frac{1}{1 + \sqrt{\frac{2}{\pi} p(1)}}$, then we have stable recovery of approximately sparse signals, where r_c is a natural number such that $\frac{2}{\pi} (r_c - \frac{1}{2}) < p(r_c) < \frac{2}{\pi} r_c, \ 2 \leq r_c < \frac{\pi}{2}$. But, the function p on T_0 and r_c depend on x. Furthermore r_c is not easily searched. In this paper, in order to compensate for these defects, we decompose $K_s(y, A) \equiv \{x \in R^n; \ |y - Ax| \leq \varepsilon\}$ into
the following subsets \(\{M_0, M_1, \cdots, M_7\} \):

\[
M_0 = \left\{ x \in K_s(y, A); \: p_x \left(\frac{1}{2} s \right) \leq \frac{2}{5} \right\},
\]

\[
M_1 = \left\{ x \in K_s(y, A); \: p_x \left(\frac{1}{2} s \right) > \frac{2}{5} \text{ and } p_x \left(\frac{1}{4} s \right) \leq \frac{1}{2} \right\},
\]

\[
 \vdots
\]

\[
M_k = \left\{ x \in K_s(y, A); \: p_x \left(\frac{k + 3}{20} s \right) > \frac{k + 3}{10} \text{ and } p_x \left(\frac{k + 4}{20} s \right) \leq \frac{k + 4}{10} \right\}, \: 2 \leq k \leq 6,
\]

\[
M_7 = \left\{ x \in K_s(y, A); \: p_x \left(\frac{1}{2} s \right) = 1 \right\}
\]

by dividing \(T_0 = \{1, 2, \cdots, s\} \) into \(T_0 \cap [1, \frac{s}{2}), T_0 \cap (\frac{s+3}{20}, \frac{s+4}{20})(k = 1, \cdots, 6) \) and \(T_0 \cap (\frac{s}{2}, s] \), and we show for any \(x \in M_k(k = 1, 2, \cdots, 7) \) that if \(A \) obeys the RIP of order \(s \) and \(\delta_s < \frac{1}{1+\sqrt{\frac{s}{m}-1}} \), then the inequality (1.3) holds. We also state in Section 2 the existence of CS-solution.

2 CS-Solution

In this section, we discuss the existence of CS-solutions mathematically.

Let a \(m \times n \) matrix \(A \) \((m < n)\) and a data \(y \in \mathbb{R}^m \) be given. We define closed convex subsets of \(\mathbb{R}^n \) by

\[
K_0(y, A) = \{ x \in \mathbb{R}^n; \: y = Ax \},
\]

\[
K_s(y, A) = \{ x \in \mathbb{R}^n; \: \| y - Ax \|_2 \leq \varepsilon \}, \: \varepsilon > 0.
\]

When \(K_0(y, A) \neq 0 \), that is, \(y \in A\mathbb{R}^n \), then \(K_0(y, A) \) and \(K_s(y, A) \) are

\[
K_0(y, A) = x_0 + \ker A
\]

for some vector \(x_0 \in K_0(y, A) \), where \(\ker A = \{ x \in \mathbb{R}^n; \: Ax = 0 \} \). For example, if the rank \(r(A) \) of \(A \) equals \(m \), then \(AA^* \) is invertible and \(A(A^* AA^*)^{-1} y = y \). Hence, \(AA^*(AA^*)^{-1} y \in K_0(y, A) \).

Let \(y \notin A\mathbb{R}^n \). Since \(A\mathbb{R}^n \) is a closed subspace of \(\mathbb{R}^n \), there exists a unique vector \(y_0 \in A\mathbb{R}^n \) such that \(\| y - y_0 \|_2 = \min \{ \| y - Ax \|_2; \: x \in \mathbb{R}^n \} \). Then \(y_0 \) is a vector in \(A\mathbb{R}^n \) such that \(y - y_0 \) is a vector in the orthogonal complement \((A\mathbb{R}^n)^\perp \) of \(A\mathbb{R}^n \). It is clear that \(K_s(y, A) \neq \emptyset \) if and only if \(\| y - y_0 \|_2 \leq \varepsilon \). In this paper, we assume that \(K_0(y, A) \neq 0 \) in noiseless cases and \(K_s(y, A) \neq 0 \) in noise cases. We show the existence of CS-solutions.

For any \(t \geq 0 \) we put

\[
D_t = \{ x \in \mathbb{R}^n; \: \| x \|_1 \leq t \}.
\]

Then \(AD_t \) is a closed convex subset of \(A\mathbb{R}^n \) such that \(A(\partial D_t) = \partial AD_t \), where \(\partial K \) is a boundary of a set \(K \). Assume that \(y_0 \notin AD_t \). Then there exists a vector \(x_t \in \partial D_t \) such that \(\| y - Ax_t \|_2 = \min \{ \| y_0 - Ax_\|_2; \: x \in D_t \} \). Since

\[
\| y - Ax_t \|_2^2 = \| y - y_0 \|_2^2 + \| y_0 - Ax_t \|_2^2,
\]

we have

\[
\| y - Ax_t \|_2 = \min \{ \| y - Ax \|_2; \: x \in D_t \}.
\]
which implies that there exists a vector x^*_1 in $(x + \ker A) \cap D_t$ such that

$$\|x^*_1\|_1 \leq \|x_1\|_1, \quad \forall x \in \ker A.$$

Thus we have the following:

Proposition 2.1. Suppose that $K_s(y, A) \neq \emptyset$. Then there exists a positive number t_0 such that

$$\|y_0 - Ax_{t_0}\|^2 = \varepsilon^2 - \|y - y_0\|^2$$

and the vector $x^*_{t_0}$ determined by x_{t_0} equals the CS-solution x^*. In particular, in noiseless cases, $x^* = x^*_{t_0}$, where t_0 is a positive number satisfying $y_0 = Ax_{t_0}$.

3 Recovery of CS

Take an arbitrary $x \in K_s(y, A)$. We denote by x^T a vector obtained by changing coefficients of x as follows;

$$|h_1| \geq |h_2| \geq \cdots \geq |h_n|,$$

where \(h = (h_1, h_2, \cdots h_n) \equiv x^* - x^T \). Let $T_0 = \{1, 2, \cdots, s\}$ and we define a function $p_x(r)$ on T_0 depending on x by

$$p_x(r) = \|\frac{|h_1| + |h_2| + \cdots + |h_s|}{\|h_{T_0}\|_1} - r\|,$$

where \(r \in T_0 \).

By dividing $T_0 = \{1, 2, \cdots, s\}$ into $T_0 \cap [1, \frac{s}{2}]$, $T_0 \cap [\frac{k+3}{20}s, \frac{k+4}{20}s] (k = 1, \cdots, 6)$ and $T_0 \cap (\frac{s}{2}, s]$, we decomposed $K_s(y, A)$ into the following subsets \(\{M_0, M_1, \cdots, M_7\} \):

- $M_0 = \left\{ x \in K_s(y, A); \; p_x\left(\frac{1}{5}s\right) \leq \frac{2}{5}\right\},$
- $M_1 = \left\{ x \in K_s(y, A); \; p_x\left(\frac{1}{5}s\right) > \frac{2}{5} \text{ and } p_x\left(\frac{1}{4}s\right) \leq \frac{1}{2}\right\},$
- \vdots
- $M_6 = \left\{ x \in K_s(y, A); \; p_x\left(\frac{k+3}{20}s\right) > \frac{k+3}{10} \text{ and } p_x\left(\frac{k+4}{20}s\right) \leq \frac{k+4}{10}\right\}, \; 2 \leq k \leq 6,$
- $M_7 = \left\{ x \in K_s(y, A); \; p_x\left(\frac{1}{2}s\right) = 1\right\}.$

Then, $K_s(y, A) = \bigcup_{k=0}^{7} M_k$ and $M_i \cap M_j = \emptyset (i \neq j)$. (Figure 1)

Using the function $p_x(r)$ on T_0, we obtain a similar result to that of ([1] Theorem 2.1):

Theorem 3.1. Take an arbitrary $x \in M_k (k = 1, 2, \cdots, 7)$. Assume that A obeys the RIP of order s and $\delta_s \leq \frac{1}{1 + \sqrt{\frac{\delta_s}{2\pi}s} - 1}$. Then,

$$\|x^* - x\|_2 \leq C_0^{(k)} \|x - x_s\|_1 + C_1^{(k)} \varepsilon,$$
where \mathbf{x}_s is a vector consisting of the s-large entries of \mathbf{x} in magnitude and

$$C^{(k)}_0 = \frac{4\sqrt{\frac{20}{k+3}} - 1 \cdot \delta_s}{1 - (1 + \sqrt{\frac{20}{k+3}} - 1) \delta_s},$$

$$C^{(k)}_1 = \frac{2\sqrt{1 + \delta_s} \sqrt{s}}{\sqrt{\frac{k+3}{20}} (1 - (1 + \sqrt{\frac{20}{k+3}} - 1) \delta_s)}.$$

Proof. Take an arbitrary $\mathbf{x} \in M_k$. Let r_k be a natural number such that

$$\frac{k+3}{20} s < r_k \leq \frac{k+4}{20} s \quad \text{and} \quad \frac{2}{s} (r_k - 1) < p_x(r_k) \leq \frac{2}{s} r_k.$$

Then,

$$\frac{k+3}{10} < p_x(r_k) \leq \frac{k+4}{10}. \quad (3.2)$$

We put

$$\alpha = \frac{\|h_{r_k}\|_1 + 2\|\mathbf{x} - \mathbf{x}_s\|_{1}}{s}.$$
Let $T_1 = \{1, 2, \cdots, r_2\}$ and $T_2 = \{r_2 + 1, \cdots, n\}$ be a decomposition of $\{1, 2, \cdots, n\}$. By (3.1) and (3.2) we have

$$\|h_{T_2}\|_1 \leq \frac{p_x(r_2)}{r_2} \|h_{T_0}\|_1 \leq 2\alpha.$$

(3.3)

By the definition of CS optimization (1.2), we have

$$\|h_{T_2}\|_1 \leq \|h_{T_0}\|_1 + 2\|x - x_s\|_1.$$

(3.4)

Hence it follows from (3.3) and (3.4) that

$$\|h_{T_2}\|_1 = \|h_{T_0}\|_1 + \|h_{T_0 \cap T_2}\|_1 \leq \alpha s + (1 - p_x(r_k)) \|h_{T_0}\|_1 \leq (2 - p_x(r_k)) \alpha s \leq 2\alpha \left(1 - \frac{k + 3}{20}\right) s,$$

which implies by [1] Lemma 1.1 and the Cai idea [4] that there exist $\{\lambda_i\}_{1 \leq i \leq N}$ and $\{u_i\}_{1 \leq i \leq N}$ such that

$$h_{T_2} = \sum_{i=1}^{N} \lambda_i u_i,$$
where

\[0 \leq \lambda_i \leq 1, \quad \sum_{i=1}^{N} \lambda_i = 1, \]
\[\text{supp } u_i \subset T_2, \quad |\text{supp } u_i| \leq \left(1 - \frac{k + 3}{20} \right) s \]
\[\|u_i\|_{1} \leq 2 \alpha. \]

Hence we have
\[\|u_i\|_2 \leq \|u_i\|_{\infty} \sqrt{|\text{supp } u_i|} \leq 2 \alpha \sqrt{1 - \frac{k + 3}{20}}, \]
\[|T_1| + |\text{supp } u_i| \leq r_k + \left(1 - \frac{k + 3}{20} \right) s \leq s \]

and
\[\alpha_s = \|h_{T_1}\|_1 + 2\|x - x_s\|_1 \]
\[= \frac{1}{\rho_s(r_k)} \|h_{T_1}\|_1 + 2\|x - x_s\|_1 \]
\[\leq \frac{\sqrt{s}}{\rho_s(r_k)} \|h_{T_1}\|_2 + 2\|x - x_s\|_1 \]
\[\leq \frac{\sqrt{s}}{2\sqrt{1 - \frac{k + 3}{20}}} \|h_{T_1}\|_2 + 2\|x - x_s\|_1, \]

which implies since \(A \) obeys the RIP of order \(s \) that

\[(1 - \delta_s)\|h_{T_1}\|_2^2 \leq \|Ah_{T_1}\|_2^2 \leq \|Ah_{T_1}\|_1 + \|Ah_{T_2}\|_1 \]
\[\leq \sqrt{1 + \delta_s} \|h_{T_1}\|_2 \cdot 2\varepsilon + \sum_{i=1}^{N} \lambda_i |\langle Ah_{T_1}, Au_i \rangle| \]
\[\leq 2\sqrt{1 + \delta_s} \|h_{T_1}\|_2 + 2\|x - x_s\|_1 \sum_{i=1}^{N} \lambda_i \|h_{T_1}\|_2 |u_i|_2 \]
\[\leq 2\sqrt{1 + \delta_s} \|h_{T_1}\|_2 \]
\[+ \delta_s \|h_{T_1}\|_2 \left(\frac{1}{2\sqrt{1 - \frac{k + 3}{20}}} \|h_{T_1}\|_2 + \frac{2}{\sqrt{s}} \|x - x_s\|_1 \right) \cdot 2\sqrt{1 - \frac{k + 3}{20}} \]
\[= 2\sqrt{1 + \delta_s} \|h_{T_1}\|_2 + \delta_s \sqrt{\frac{20}{k + 3} - 1}\|h_{T_1}\|_2^2 \]
\[+ \frac{4\delta_s}{\sqrt{s}} \sqrt{1 - \frac{k + 3}{20}} \|x - x_s\|_1 \|h_{T_1}\|_2. \]

Since
\[\left(1 + \sqrt{\frac{20}{k + 3} - 1} \right) \delta_s < 1, \]
we have
\[
\|h_{T_1}\|_2 \leq \frac{2\sqrt{1 + \delta_s \varepsilon} + \frac{4\delta_s}{\sqrt{3}} \sqrt{1 - \frac{6 + 3\delta_s}{20} \|x - x_s\|_1}}{1 - \left(1 + \sqrt{\frac{20}{20 + 1}} - 1\right) \delta_s},
\]
which implies that
\[
\|x - x^*\|_2 \leq \|x - x^*\|_1
\]
\[
= \|h_{T_0}\|_1 + \|h_{T_0}\|_2
\]
\[
\leq 2\|h_{T_0}\|_1 + 2\|x - x_s\|_1
\]
\[
\leq \frac{2\sqrt{\tau}}{\varepsilon}\|h_{T_1}\|_2 + 2\|x - x_s\|_1
\]
\[
\leq \frac{\sqrt{\varepsilon}}{\sqrt{\frac{\delta_s}{1 - \sqrt{\frac{20}{20 + 1}}}}}
\]
\[
\left(\frac{2\sqrt{1 + \delta_s \varepsilon} + \frac{4\delta_s}{\sqrt{3}} \sqrt{1 - \frac{6 + 3\delta_s}{20} \|x - x_s\|_1}}{1 - \left(1 + \sqrt{\frac{20}{20 + 1}} - 1\right) \delta_s}
\right)
\]
\[
+ 2\|x - x_s\|_1
\]
\[
= \frac{2\sqrt{1 + \delta_s \varepsilon}}{\sqrt{\frac{\delta_s}{1 - \sqrt{\frac{20}{20 + 1}}}}} + \frac{4 \sqrt{\frac{20}{20 + 1}} \delta_s - 1 \cdot \delta_s}{1 - \left(1 + \sqrt{\frac{20}{20 + 1}} - 1\right) \delta_s} \|x - x_s\|_1.
\]
This completes the proof.

We state concretely the following case:

(i) Take an arbitrary \(x \in M_1\). If \(\delta_s < \frac{1}{3}\), then
\[
\|x^* - x\|_2 \leq \frac{8\delta_s}{1 - 3\delta_s} \|x - x_s\|_1 + \frac{2\sqrt{\frac{5\delta_s}{20}}\sqrt{1 + \delta_s \varepsilon}}{1 - 3\delta_s}.
\]

(ii) Take an arbitrary \(x \in M_2\). If \(\delta_s < \frac{\sqrt{7} - 1}{2} \approx 0.366\), then
\[
\|x^* - x\|_2 \leq \frac{4\sqrt{3}\delta_s}{1 - (1 + \sqrt{3})\delta_s} \|x - x_s\|_1 + \frac{4\sqrt{1 + \delta_s \varepsilon}}{1 - (1 + \sqrt{3})\delta_s}.
\]

(iii) Take an arbitrary \(x \in M_7\). If \(\delta_s < \frac{1}{5}\), then
\[
\|x^* - x\|_2 \leq \frac{4\delta_s}{1 - 2\delta_s} \|x - x_s\|_1 + \frac{2\sqrt{2\sqrt{1 + \delta_s \varepsilon}}}{1 - 2\delta_s}.
\]

Though we have decomposed \(K_s(y, A)\) into \(M_k(k = 0, 1, \ldots, 7)\) in this paper, we may consider the other decompositions of \(K_s(y, A)\).

4 Conclusion

In a previous paper [1], we have discussed sufficient conditions of isometry constant \(\delta\) by investigating a bias function \(p_x\) defined by each unknown vector \(x\). In this paper, we decompose the space of unknown vectors into sets \(M_0, M_1, \ldots, M_7\) defined by the bias function \(p_x\). More precisely, when
x is contained in M_k ($1 \leq k \leq n$), the sufficient condition of δ_s is improved, and so this method is useful. When $x \in M_0$, the sufficient condition of δ_s is not improved by this method. We think that this method is more usable than a previous one in [1].

Competing Interests
The author declares that no competing interests exist.

References

[1] Inoue H. Stable recovery of sparse signal in compressed sensing via the RIP of order less than s. British Journal of Mathematics & Computer Science. 2014;6(2):91-101.

[2] Candès EJ. The restricted isometry property and its implications for compressed sensing. Compte Rendus de l’ Academie des Sci. 2008;346:589-592 Serie I.

[3] Candès EJ, Tao T. Decoding by linear programming. IEEE Transactions on Information Theory. 2005;51:4203-4215.

[4] Foucart S, Lai M. Sparest solutions of underdetermined linear systems via l_q-minimization for $0 < q \leq 1$. Applied and Computational Harmonic Analysis. 2009;26:395-407.

[5] Foucart S. A note on guaranteed sparse recovery via l_1-minimization. Applied and Computational Harmonic Analysis. 2010;29:97-103.

[6] Cai T, Wang L, Xu G. Shifting inequality and recovery of sparse signals. IEEE Transactions on Signal Processing. 2010;50:1300-1308.

[7] Cai T, Wang L, Xu G. New bounds for restricted isometry constants. IEEE Transactions on Information Theory. 2010;56:4388-4394.

[8] Mo Q, Li S. New bounds on the restricted isometry constant δ_{2k}. Applied and Computational Harmonic Analysis. 2011;31:460-468.

[9] Ji J, Peng J. Improved bounds for restricted isometry constants. Discrete Dynamics in Nature and Society. 2012;2012. Article ID 841261, 6 pages.

[10] Cai T, Zhang A. Sharp RIP bound for sparse signal and low-rank matrix recovery. Applied and Computational Harmonic Analysis. 2013;35:74-93.

[11] Cai T, Zhang A. Sparse representation of a polytope and recovery of sparse signals and low-rank matrices. IEEE Transactions on Information Theory. 2014;60:122-132.

[12] Inoue H. Sufficient conditions for CS-recovery. British Journal of Mathematics & Computer Science. 2014;4(2):184-198.

©2015 Inoue; This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
http://scieduadmin.org/public/index.php/BJMC/article/view/10081