Transition metal dichalcogenide nanospheres for high-refractive-index nanophotonics and biomedical theranostics

Gleb I. Tselikovab,1, Georgy A. Ermolaeabh,1, Anton A. Popov,1, Gleb V. Tikhonovskii,1, Daria A. Panova,1, Alexey S. Taradin,1, Andrey A. Vyshnevyyab,1, Alexander V. Syuya,1, Sergey M. Klimentov,2, Sergey M. Novikov,4, Andrey B. Evlyukhin,3, Andrei V. Kabashinab,1,2, Aleksey V. Arseninb,1,2, Kostya S. Novoselovab,1,2, and Valentyn S. Volkovab,1

Contributed by Kostya S. Novoselov; received May 23, 2022; accepted August 23, 2022; reviewed by Pavel Ginzburg and Maria Kafesaki

Recent developments in the area of resonant dielectric nanostructures have created attractive opportunities for concentrating and manipulating light at the nanoscale and the establishment of the new exciting field of all-dielectric nanophotonics. Transition metal dichalcogenides (TMDCs) with nanopatterned surfaces are especially promising for these tasks. Still, the fabrication of these structures requires sophisticated lithographic processes, drastically complicating application prospects. To bridge this gap and broaden the application scope of TMDC nanomaterials, we report here femtosecond laser-ablative fabrication of water-dispersed spherical TMDC (MoS2 and WS2) nanoparticles (NPs) of variable size (5 to 250 nm). Such NPs demonstrate exciting optical and electronic properties inherited from TMDC crystals, due to preserved crystalline structure, which offers a unique combination of pronounced exciton response and high refractive index value, making possible a strong concentration of electromagnetic field in the NPs. Furthermore, such NPs offer additional tunability due to hybridization between the Mie and excitonic resonances. Such properties bring to life a number of nontrivial effects, including enhanced photoabsorption and photothermal conversion. As an illustration, we demonstrate that the NPs exhibit a very strong photothermal response, much exceeding that of conventional dielectric nanoresonators based on Si. Being in a mobile colloidal state and exhibiting superior optical properties compared to other dielectric resonant structures, the synthesized TMDC NPs offer opportunities for the development of next-generation nanophotonic and nanotheranostic platforms, including photothermal therapy and multimodal bioimaging.

nanooptics | 2D materials | transition metal dichalcogenides | laser ablation

Interest in layered materials (1) has exploded in the last decade, with applications spanning from electronics (2, 3) and photonics (4, 5) to medicine (6, 7). In particular, the family of transition metal dichalcogenides (TMDCs), most notably MoS2 and WS2, greatly accelerated the progress in compact photodetectors (8, 9), electro- and photocatalysis (10, 11), ultrasensitive detectors (12, 13), and cancer therapies (14, 15). TMDCs exhibit a strong excitonic response, leading to nontrivial optical phenomena enabled by strong light–matter interactions: exciton–polariton transport (16, 17), enhanced second and third harmonic generation (18, 19), high refractive index, and giant optical anisotropy (17, 20, 21). Motivated by these benefits, novel TMDC nanostructures are being rapidly developed. Typically, such nanostructures are produced by electron beam lithography (22), reactive ion etching (23), focused ion beam (24), or laser thinning (25, 26). Despite their effectiveness, all of these methods have a relatively low throughput and cannot create nanostructures formed in place and immobilized on a substrate, significantly limiting their applicability.

Pulsed laser ablation in liquids has recently emerged as a novel pathway to synthesize nanoparticles (NPs). In this technique the production of nanoclusters is done through the action of pulsed laser radiation on a solid target, followed by their release into a liquid ambient to form colloidal NP solutions (27, 28). This method is exceptionally efficient in the case of ultrashort (femtosecond) regime of laser ablation, known as a “fine” regime, which makes possible excellent control of NP size and the conservation of physicochemical properties of the bulk original material (29–31). Our previous studies illustrate a high efficiency of femtosecond laser ablation in the fabrication of a variety of nanomaterials exhibiting unique structural and optical properties, including Au (29, 30), Si (31), TiN (32), Bi (33) NPs, and Au–Si nanocomposites (34), which promises its successful use for other classes of materials. Recent publications (7, 35) tried to adopt a laser-ablative technique to obtain MoS2 NPs. However, produced NPs

Significance
Transition metal dichalcogenides offer a number of exciting physical phenomena in optics, optoelectronics, and many-body physics. At the same time, these materials offer a number of opportunities for applications. One of the biggest challenges is the mass production of high-quality nanostructures based on such materials. We propose an approach based on femtosecond laser ablation in liquids for the fabrication of water-dispersed ultrastable spherical transition metal dichalcogenide (TMDC) nanoparticles of variable size (5 to 250 nm). Such nanoparticles demonstrate very exciting optical and electronic properties inherited from the TMDC crystals, due to preserved crystalline structure, which offers a unique combination of pronounced excitonic response and high refractive index value, making possible a strong concentration of electromagnetic field in nanoparticles.

Readers may use their own names and affiliations in place of “Author(s).” This article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

The authors declare no competing interest.

Published September 19, 2022.

This article contains supporting information online at http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2208830119/-/DCSupplemental.
in these works are only partially crystalline, and as a result they lack excitonic response and high refractive index, which are crucial in nanophotonics. The amorphous structure reported in these works is most likely due to the nanosecond laser pulse duration, which is longer than the electron–phonon cooling time (usually several picoseconds), determining the process kinetics. Hence, achieving crystalline laser-ablated TMDC NPs for photonic applications remains a standing challenge.

Here, we explore the technique of femtosecond laser ablation in water for the synthesis of nanostructures based on TMDCs (MoS$_2$ and WS$_2$). We show that the femtosecond laser-ablative process results in the production of nearly spherical MoS$_2$ and WS$_2$ NPs, ranging from 5 nm to hundreds of nanometers. We also show that the synthesized NPs conserve crystal structure and, more crucially, high refractive index and excitonic properties of the original crystals. As a result, they exhibit distinct Mie resonances and provide a significantly improved photothermal performance compared to conventional dielectric nanoresonators in the optical transparency window of biological tissue. The proposed approach opens up the substrate-free nanofabrication of functional TMDC nanostructures, which promises tremendous potential for nanophotonic and biomedical applications.

Results and Discussion

Laser Ablation Synthesis of TMDC NPs. For the production of MoS$_2$ and WS$_2$ NPs from bulk crystal (Fig. 1A), we adopted the methods of ultrashort pulsed laser ablation (29–31) (Methods) in water, as illustrated in Fig. 1B. Within a few minutes of the procedure, we observed a green-brownish coloration of the solution, indicating the formation of TMDC NPs (Fig. 1C). Synthesized colloids were extremely stable, showing practically no signs of aggregation or precipitation even after months of storage at room temperature. This remarkable stability of colloidal solutions can be attributed to a significant charge of the NP surface identical to the process found for gold NPs (30). It should be noted that we employed a high-numerical-aperture objective to increase laser fluence and thus maximize laser ablation efficiency, but such a geometry results in a high fluence gradient and, hence, in a relatively broad size distribution (28).

We centrifuged colloidal solutions at increasing rotation speeds of 200 to 8,000 rpm to achieve monodisperse size distribution and remove the smallest (<10 nm) NPs (Methods). Then, size distributions of the formed colloids were assessed by the analysis of scanning electron microscopy (SEM) images of NPs (Methods). As expected, after the centrifugation at high rotation speed the solutions exhibited a narrow lognormal distribution presented in Fig. 1D. In addition, the colloids centrifuged under different conditions had smoothly changing hues (Fig. 1C) due to variable size and material’s high dielectric permittivity (Fig. 1E and SI Appendix, Fig. S1) acquired by ellipsometry (Methods). Therefore, pronounced colors already indicate that NPs retain optical characteristics of the original crystal. As described in the following sections, we also performed extensive morphological and optical analyses to establish this result quantitatively.

Morphology of TMDC NPs. SEM (Fig. 2A and SI Appendix, Fig. S2A) shows that the produced NPs have a polygonal shape close to spherical. Conceivably, this shape results from TMDCs’ edges, which tend to organize along crystallographic edges (23). The energy-dispersive X-ray spectrum in Fig. 2A, Inset confirms the predominant atomic composition of the original crystal with little oxygen present (less than 5%). Oxygen may have been...
generated as a result of minor oxidation during laser ablation in water. Meanwhile, selected area electron diffraction (SAED) images (Fig. 2B for MoS2 and SI Appendix, Fig. S2B for WS2) show a ring sequence typical for TMDCs with a hexagonal lattice. According to the Joint Committee on Powder Diffraction Standards (card no.: 75-1539), the rings labeled 1 to 5 in Fig. 2B correspond to the first five diffraction rings of the 2H-MoS2 structure. The calculated lattice constants (a = b = 0.32 nm and c = 1.39 nm) from the rings correspond to lattice values for bulk MoS2 from the literature (17). SI Appendix, Table S1 contains the final analysis findings of the SAED pattern. The internal structure of synthesized NPs was then examined using transmission electron microscopy (TEM). TEM data shown in Fig. 2C (for MoS2) and SI Appendix, Fig. S2 C and D (for WS2) evidence a polycrystalline core structure and a thick fullerene-like outer shell. A closer look reveals that the NP shell is not fully spherical and has a polygonal shape. This finding suggests that NP formation takes place along crystallographic axes, similar to the recently observed anisotropic crystallographic etching in TMDC during the lithography process (23).

At the same time, the smallest NPs (below 10 nm in diameter) demonstrate a well-developed layered structure and complete absence of the shell (Fig. 2C, Inset). Hence, one could expect them to inherit the original crystal’s giant optical anisotropy (17). As a result, small TMDC NPs may pave the way for a new research field related to extremely anisotropic quantum dots. Finally, Raman spectroscopy was used to characterize the NPs (Fig. 2D and SI Appendix, Fig. S3). The characteristic Raman peaks (E_{2g} = 383 cm^{-1} and A_{1g} = 408 cm^{-1}) perfectly matched the values reported for bulk MoS2 (36), additionally demonstrating the excellent quality of produced NPs.

Optical Response of TMDC NPs. In light of the high crystallinity of synthesized NPs, one can expect them to exhibit bulk high refractive index and excitonic properties. The measured extinction curves (Fig. 3A and SI Appendix, Fig. S4) exhibit rich structure that agrees well with the predictions based on anisotropic constants from Fig. 1D and the extended Mie theory for radially anisotropic spheres (Methods (37). As a result, optical properties of NPs mimic those of the original crystal, which opens up exciting possibilities for all-dielectric nanophotonics due to very high dielectric permittivity (ε ≈ 22) of TMDCs in the visible range, much exceeding that of traditional high-refractive-index materials like Si (ε = 14) (38) and GaP (ε ≈ 10) (39). Since the refractive index determines the capacity of NPs to control multipole moments and their ability to concentrate electromagnetic energy, one can expect the excitation of distinct Mie-multipole resonances from TMDCs nanostructures (38), particularly magnetic (MD) and electric dipole (ED) resonances (SI Appendix, Fig. S5). Fig. 3A clearly shows a blue shift of the MD resonance as the size of NPs decreases from 100 to 42 nm. Meanwhile, silicon NPs of the same size do not exhibit any features in the 1.5- to 2-eV (620 to 830 nm) spectral range, as follows from Fig. 3B. Moreover, MD and ED resonances appear near A- and B-excitons, as illustrated in Fig. 3C. Additionally, the high refractive index of MoS2 leads to the excitation of Mie resonances that are substantially red-shifted compared to silicon NPs of the same size (Fig. 3D) and match the window of relative biological transparency (700 to 980 nm), which promises attractive theranostics (therapy + diagnostics) applications.

Photothermal Applications of TMDC NPs. Photothermal therapy of cancer (40) presents one of the most appealing implementations...
of nanomedicine. Modern therapeutic approaches suggest combining efficient absorbing of light by complex resonant nanostructures in the window of relative biological transparency (41, 42) with enhanced optical contrast of such nanosystems (43). Besides that, photothermal therapy also requires efficient nanosensitizers to have a relatively small size (less than 100 nm) for a better transport in vivo and an enhanced uptake by the cells. However, this therapeutic modality requires efficient nanosensitizers absorbing in the tissue transparency window and having a relatively small size (less than 100 nm) for a better transport in vivo and an enhanced uptake by the cells. To assess the potential of laser-synthesized TMDC NPs for these applications, we investigated power-dependent Raman spectra from 65-nm MoS2 and WS2 NPs (Fig. 4A and B and SI Appendix, Fig. S5A and B). To determine heating efficiency, we assumed linear temperature T dependence of characteristic Raman peaks (E_{2g}^1 and A_{1g}) position $\omega(T)$:

$$\omega(T) = \omega_0 + \chi_1 T,$$

where ω_0 is the peak position of modes at room temperature and χ_1 is the first-order temperature coefficient determined in the recent work (44). Consequently, we were able to recalculate the thermal shift of Raman peaks into the increase of local temperature (Fig. 4C and D and SI Appendix, Fig. S5C and D). Surprisingly, the temperature reached almost 800 K even at a very low excitation power of 300 μW, which was obviously due to drastically enhanced NP absorption boosted by the excitonic transitions, in contrast to unpatterned TMDC crystals (SI Appendix, Fig. S6). Apart from the 532- and 633-nm excitation wavelength used in Raman, we also tested the photothermal response of MoS2 NPs at 830 nm in the therapeutic window (700 to 980 nm) and compared it with silicon NPs. The concentrations of NPs were normalized to the value of extinction at 830 nm (Fig. 4E). Under the same excitation conditions, MoS2 NPs provided almost two times greater photothermal response than silicon NPs (Fig. 4F) due to a higher refractive index resulting in superior electromagnetic field concentration (38). Indeed, at 830 nm absorption cross-section of MoS2 NPs with $d_{av} = 65$ nm is two times greater than for Si NPs with $d_{av} = 140$ nm. This high photothermal response makes TMDC NPs perfect biocompatible agents for photothermal applications.

In summary, we adopted methods of femtosecond laser ablation for the synthesis of TMDC spherical NPs of a controllable size and low size dispersion. Surprisingly, obtained NPs preserved the original crystal’s layered structure and therefore demonstrated a unique combination of pronounced excitonic response and high refractive index value, which renders possible a strong concentration of electromagnetic field in NPs and the hybridization between the Mie and excitonic resonances. Such unique properties make TMDC NPs very promising candidates for a variety of all-dielectric nanophotonic applications where enhanced light–matter interaction via electromagnetic resonances plays a key role, including nanolasing (45), biosensing (46), photothermal cancer therapy (47), and nonlinear optics (48). Furthermore, in contrast to conventional lithographic
techniques for the fabrication of dielectric resonators, the proposed laser-ablative synthesis is substrate-free, high-throughput, and makes possible the fabrication of nanomaterials in mobile (colloidal) state, which promises the extension of TMDC-based materials to medical applications, including cancer therapy (47) and biomedical imaging (49). Finally, we believe our synthesis approach is universal for all layered materials such as MXenes (50), TMDCs (51), graphite (52), and hyperbolic materials (53). The fabrication of mobile nanostructures of these materials promises the development of postsilicon nanotechnology and a variety of novel attractive applications.

Methods

Sample Preparation. For the fabrication of TMDC NPs, we used a diode pump Teta 10 system (Avesta) with 100-μJ pulse energy at 1,030 nm and a repetition rate of 10 kHz. The laser beam was focused onto the surface of highly oriented synthetic 2H-phase MoS2 and WS2 crystals (2D Semiconductors Inc.) placed on the glass vessel bottom filled with deionized water. The process was carried out for 0.5 h at room temperature with a final NP concentration of about 0.1 mg/mL.
cuvette and subjected to laser irradiation by the laser beam from diode pump Teta 10 system (Avesta) with 270-fs pulse duration, 100 μJ pulse energy at 1,030 nm, and a repetition rate of 10 kHz. The laser beam was focused by a 75-mm lens onto the center of the cuvette, while the solution was stirred by a magnet to homogenize the ablation process. The duration of the fragmentation step was 2 h. Then, the colloidal solution of produced Si NPs was subjected to the centrifugation at increasing rotation speeds of 200 to 8,000 rpm to achieve monodisperse size distributions.

Structural Characterization. The atomic composition of the synthesized NPs was characterized by a scanning TEM system (MAIA 3; Tescan) operating at 0.1 to 30 kV coupled with an EDS detector (X-act; Oxford Instruments). Samples per grid and subsequent drying at ambient conditions. Analysis of SAED pattern were prepared by dropping 2 μL of the NP solution onto a cleaned silicon substrate with subsequent drying at ambient conditions. Morpho-

Optical Characterization. Spectroscopic ellipsometry measurements were performed on an imaging Accurion nanoep4 ellipsometer over a wide wavelength range of 360 to 1,000 nm in steps of 1 nm at multiple incidence angles (50°, 55°, and 60°). The optical extinction spectra of colloidal NPs were measured using an ultraviolet-visible spectrophotometer (Cary 5000; Agilent Technologies) in a 500- to 800-nm (1.55 to 2.48 eV) spectral interval with the spectral resolution of 1 nm using 2-mm optical path length cuvettes. Raman scattering spectra were collected from NPs deposited on a glass substrate in backscattering geometry using a confocal scanning Raman microscope Horiba LabRAM HR Evolution. All measurements were carried out using linearly polarized excitation at wavelengths 633 nm and 532 nm, 1,800 lines per millimeter diffraction grating, whereas we used unpolarized detection to have a significant signal-to-noise ratio. Exciting radiation was focused on the sample surface with the x100 objective (numerical aperture = 0.90) into the spot size of ~0.5 μm.

Numerical Simulation. We used the extended Mie theory for spherical particles with radial anisotropy for numerical simulations (37). To achieve high accuracy, multipole expansion was carried out up to hexadecapole terms. Extinction spectra for NP solutions produced by centrifugation were calculated for spheres with diameters ranging from 6 nm to 500 nm with a step of 2 nm then averaged with weights corresponding to the fitted size distribution functions (Fig. 1E).

Multipolar Mode Decomposition. The multipole mode decomposition of the radiation is performed by applying the approach described previously (54). The fundamental multipole moments are evaluated by integrating the total electric field induced by a normally incident plane wave numerically inside the NP.

Data, Materials, and Software Availability. All study data are included in the article and/or SI Appendix.

ACKNOWLEDGMENTS. We gratefully acknowledge the financial support from the Ministry of Science and Higher Education of the Russian Federation (agreement 075-15-2021-606) Characterization of fabricated solutions of TMD nanomaterials (G.I.T.) was supported by the Russian Science Foundation (grant 21-79-00206). Calculation of the extinction spectra (A.A.V.) was supported by the Russian Science Foundation (grant 22-79-10312). Fabrication of TMD nanopar-

described solutions of TMD nanomaterials (G.I.T.) was supported by the Russian Science Foundation (grant 21-79-00206). Calculation of the extinction spectra (A.A.V.) was supported by the Russian Science Foundation (grant 22-79-10312). Fabrication of TMD nanoparticles was supported by the Russian Science Foundation (grant 19-72-30012). K.S.N. acknowledges support from the Ministry of Education (Singapore) through the Research Centre of Excellence program (award EDUN C-33-18-279-V12, Institute for Functional Intelligent Materials) and the Royal Society (grant RSRP/IR/190000).

Author affiliations: *Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia; †Emerging Technologies Research Center, XPACECO, Dubai Investment Park First, Dubai, United Arab Emirates; ‡Institute of Engineering Physics for Biomedicine (PhysBio), Bio-Nanophotonics Laboratory, National Research Nuclear University MEPhI, Moscow 115409, Russia; §Institute of Quantum Optics, Liebniz University Hannover, Hannover 30167, Germany; ¶CNRS, LPS, Aix-Marseille Université, Marseille 13288, France; #National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; ‡‡Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117574; and ‡‡‡Chongqing 2D Materials Institute, Chongqing 400714, China

Author contributions: A.S.T., A.A.V., A.V.S., M.M.N., A.K.V., A.V.K., and V.S.V. designed research; G.I.T., G.A.E., A.A.P., G.V.T., and D.A.P. performed research; S.M.K., A.B.E., and K.S.N. analyzed data; and K.S.N. and V.S.V. wrote the paper.

1. T. Mueller, E. Malic, Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl. 2, 1–12 (2018).
2. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Electronics and optoelectronics of transition metal dichalcogenides. NPJ 2D Mater. Appl. 4, 1–6 (2020).
3. Z. Sun, A. Martinez, F. Wang, Optical modulators with 2D layered materials. Nat. Photonics 14, 3270–3285 (2020).
4. G. Migliato Marega et al., Logic-in-memory based on an atomically thin semiconductor. Nature 587, 72–77 (2020).
5. A. Singh et al., Reflective uses of layered and two-dimensional materials for integrated photonics. ACS Photonics 7, 3270–3285 (2020).
6. Z. Sun, A. Martinez, F. Wang, Optical modulators with 2D layered materials. Nat. Photonics 10, 227–232 (2016).
7. M. Cai et al., Molybdenum derived from nanomaterials incorporates into molybdenum enymes and affects their activities in vivo. Nat. Nanotechnol. 16, 708–716 (2021).
8. Q. Han et al., Molybdenum disulfide nanoparticles as multifunctional inhibitors against Alzheimer's disease. ACS Appl. Mater. Interfaces 9, 21116–21123 (2017).
9. K. F. Mai, J. Shao, Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216–226 (2016).
10. O. Lopes Sanchez, D. Lembke, M. Kayo, A. Rademovic, A. Kis, Ultrafast photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013).
11. A. B. Laurenz, S. Kegnæs, S. Dahl, I. Chorkendorff, Molybdenum sulfides—Efficient and viable materials for electros- and photoelectrocatalytic hydrogen evolution. Energy Environ. Sci. 5, 5577 (2012).
12. O. U. N. Zhang, Y. Yang, G. Wang, D. H. L. Ng, High efficiency photocatalysis for pollutant degradation with MoS2/Ca3N2 heterostructures. Langmuir 30, 8965–8972 (2014).
13. G. Ermolaev et al., Topological phase singularities in atomically thin high-refractive-index materials. Nat. Commun. 13, 2049 (2022).
14. H. Hu et al., Recent advances in two-dimensional transition metal dichalcogenides for biological sensing. Biosens. Bioelectron. 142, 111531 (2019).
15. H. Chen, T. Liu, Z. Su, L. Zhang, G. Wei, 2D transition metal dichalcogenide nanosheets for photo/thermal-based tumor imaging and therapy. Nano Scale Horiz. 3, 74–89 (2018).
16. L. Gong et al., Two-dimensional transition metal dichalcogenide nanomaterials for combination cancer therapy. J. Mater. Chem. B Mater. Biol. Med. 8, 1873–1895 (2017).
17. F. Hu et al., Imaging ex situ-polarization transport in MoS2 wavergides. Nat. Photonics 11, 356–360 (2017).
18. G. A. Ermolaev et al., Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics. Nat. Commun. 12, 854 (2021).
19. A. A. Popkova et al., Nonlinear exciton-Mie coupling in transition metal dichalcogenide nanoresonators. Nano Letters 16, 2100604 (2016).
37. C.-W. Qiu, L.-W. Li, T.-S. Yeo, S. Zouhdi, Scattering by rotationally symmetric anisotropic spheres: Potential formulation and parametric studies. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75, 026609 (2007).
38. A. B. Evlyukhin et al., Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 12, 3749-3755 (2012).
39. D. Khmelevskaia et al., Directly grown crystalline gallium phosphide on sapphire for nonlinear all-dielectric nanophotonics. Appl. Phys. Lett. 118, 201101 (2021).
40. D. Jaque et al., Nanoparticles for photothermal therapies. Nanoscale 6, 9494-9530 (2014).
41. R. F. Moskov et al., Golden vaterite as a mesoscopic metamaterial for biophotonic applications. Adv. Mater. 33, e2008484 (2021).
42. L. R. Hirsch et al., Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U.S.A. 100, 13549-13554 (2003).
43. H. Li, X. Wang, T. Y. Ohulchanskyy, G. Chen, Lanthanide-doped near-infrared nanoparticles for biophotonics. Adv. Mater. 33, e2000678 (2021).
44. S. Sahoo, A. P. S. Gaur, M. Ahmadi, M. J.-F. Guinel, R. S. Katiyar, Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 117, 9042-9047 (2013).
45. E. Tiguntseva et al., Room-temperature lasing from Mie-resonant nonplasmonic nanoparticles. ACS Nano 14, 8149-8156 (2020).
46. O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, R. Quidant, On-a-chip biosensing based on all-dielectric nanoresonators. Nano Lett. 17, 4421-4426 (2017).
47. G. P. Zograf, M. I. Petrov, V. V. Makarov, Y. S. Kivshar, All-dielectric thermonanophotonics. Adv. Opt. Photonics 13, 643 (2021).
48. C. Schlickriede et al., Nonlinear imaging with all-dielectric metasurfaces. Nano Lett. 20, 4370-4376 (2020).
49. A. Y. Kharin et al., Bi-modal nonlinear optical contrast from Si nanoparticles for cancer theranostics. Adv. Opt. Mater. 7, 1801728 (2019).
50. B. Anason, M. R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).
51. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, A. Kis, 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).
52. Y. Hernandez et al., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563-568 (2008).
53. W. Ma et al., In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 662, 557-562 (2019).
54. A. B. Evlyukhin, C. Reinhardt, E. Evlyukhin, B. N. Chichkov, Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface. J. Opt. Soc. Am. B 30, 2589 (2013).