Connexin hemichannels regulate redox potential via metabolite exchange and protect lens against cellular oxidative damage

Yumeng Quan a,b, Yu Du b, Changrui Wu b, Sumin Gu b, Jean X. Jiang b,

a Department of Ophthalmology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
b Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA

ARTICLE INFO

Keywords:
Connexin
Hemichannel
Redox metabolite
Redox potential
Oxidative damage
Lens

ABSTRACT

Increased oxidative stress contributes to cataract formation during aging. Anterior epithelial cells are a frontline antioxidant defense system with powerful capacities to maintain redox homeostasis and lens transparency. In this study, we report a new molecular mechanism of connexin (Cx) hemichannels (HCs) in lens epithelial cells to protect lens against oxidative stress. Our results showed haploinsufficiency of Cx43 elevated oxidative stress and susceptibility to cataracts in the mouse lens. Cx43 HCs opened in response to hydrogen peroxide (H₂O₂) or ultraviolet radiation (UVR) in human lens epithelium HLE-B3 cells, and this activation contributed to a cellular protective mechanism against oxidative stress-induced apoptotic cell death. Furthermore, we found that Cx43 HCs mediated the exchange of oxidants and antioxidants in lens epithelial cells undergoing oxidative stress. These transporting activities facilitated a reduction of intracellular reactive oxygen species (ROS) accumulation and maintained the intracellular glutathione (GSH) level through the exchange of redox metabolites and change of anti-oxidative gene expression. In addition, we show that Cx43 HCs can be regulated by the intracellular redox state and this regulation is mediated by residue Cys260 located at the Cx43 C-terminus. Together, our results demonstrate that Cx43 HCs activated by oxidative stress in the lens epithelial cells play a key role in maintaining redox homeostasis in lens under oxidative stress. Our findings contribute to advancing our understanding of oxidative stress induced lens disorders, such as age-related non-congenital cataracts.

1. Introduction

The lens is an avascular and transparent organ in the anterior segment of the eye, which refracts and focuses light on the retina. Lenses are constantly exposed to oxidative environments, such as ultraviolet radiation (UVR), thus they are prone to oxidative damage [1,2]. Oxidative damage triggers apoptosis of lens epithelial cells located at the anterior, outmost region of the lens, and this type of damage is a major cellular basis for the initiation of non-congenital cataracts [3,4]. As an avascular organ, one of the major means for the lens to receive nutrients and antioxidants is through a microcirculatory system, a network of membrane channels that includes ion channels and connexin (Cx) channels that can form hemichannels (HCs) and gap junctions [5]. Unlike gap junctions that mediate cell-cell communication between adjacent cells, unopposed Cx HCs mediate the exchange of small molecules between the intracellular and extracellular environments [6]. Growing evidence supports that HCs function as a pathway for exchange of ions and small molecules and participate in paracrine and autocrine signaling in normal and pathological conditions [7,8]. Therefore, HCs in lens epithelial cells could be a potential transport portal for redox metabolic molecules that contribute to maintaining cellular redox homeostasis in the lens.

The ocular lens contains two major cell types: epithelial cells that form a single layer along the anterior lens surface, and fiber cells that make up the bulk of the lens organ. Since mature fiber cells lose their nuclei and organelles and lack de novo synthesis of proteins during differentiation, it is believed that epithelial cells contain most of the synthetic, metabolic, and active transport machinery in the lens [1]. Thus, lens epithelial cells are a likely candidate responsible for maintaining the anti-oxidative defense system. Three Cx isoforms have been identified in the mammalian lens, Cx43, Cx46, and Cx50, among which Cx43 and Cx50 are expressed in lens epithelial cells [1,9]. Cx mutations are a leading cause of human congenital cataracts [10]. It was reported that early stage cataract formation was observed in Cx43 knockout mice...
The Cx43 Y17S mutation has previously been associated with cataracts in oculodentodigital syndrome [12]. The study by Lai et al. (2006) [13] also showed that the Y17S mutation in Cx43 reduces the activity of gap junctions and HCs in C6 cells compared to wild type (WT) Cx43. These observations postulate that Cx43 Y17S mutation-induced cataract formation is due to a partial loss of normal function of gap junctions and/or HCs.

UVR and H\textsubscript{2}O\textsubscript{2} are two major causes of oxidative stress in lens [14]. In response to environmental radiation and oxidants, ROS accumulates excessively in lens cells, including epithelial cells and the superficial fiber cells, as well as the surrounding fluid like aqueous humor [15]. To tackle constant oxidative insults from the environment, the lens possesses one of the highest tissue level of reduced GSH (\(~4–6\) mM) [16] and a complex antioxidant defense system including enzymatic antioxidants, such as superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) [17]. In comparison, lens fiber cells have minimal capabilities of redox metabolism and require antioxidant substances provided by lens epithelial cells, such as GSH [18]. Thus, epithelial cells are essential for maintaining whole lens transparency and metabolic hemostasis, but how lens epithelial cells maintain redox homeostasis has remained largely elusive.

Previous evidence implied that the HCs might be involved in regulating survival or cell death by facilitating the transport of various redox metabolites, including GSH and ROS [19–23]. The critical role of GSH in maintaining lens redox homeostasis and transparency is well recognized [16,17,24]. Therefore, we hypothesize that Cx HCs play a critical role in the antioxidant defense system to maintain GSH homeostasis and redox state balance in the lens epithelium. Cxs are transmembrane proteins containing four transmembrane domains, two extracellular loops, one cytoplasmic loop, and cytosolic N- and C- termini [25]. The C-terminus of Cx43 is a target for various posttranslational modifications [26]. The potential intracellular redox related cysteine residues are located in the

Fig. 1. Cx43 maintains the redox homeostasis of the ocular lens. (A) Cryosections of eyeballs from WT (Cx43+/+) and Cx43+/− mice were immunostained with anti-GPX1 (red) or anti-SOD1 (green) antibody (upper panel). Scale bar = 500 \(\mu\)m. High resolution fluorescence images (lower panel) of anterior (AT) and equator (EQ) region of lenses are indicated by frames on whole cross-section images (corresponding upper panels). Scale bar = 20 \(\mu\)m. (B and C) The fluorescence signals of SOD1 (B) and GPX1 (C) positive areas were quantified by NIH ImageJ software. The data are presented as the mean ± SEM. (n = 4). *, P < 0.05; **, P < 0.01 (Unpaired T-test). (D) The lenses of WT and Cx43+/− mice were carefully dissected and kept transparent in culture media for 24 h at 37 °C before being treated with 0.5 mM H\textsubscript{2}O\textsubscript{2}. Photographic images were taken at the identical magnification using a dissecting microscope. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
C-terminus. It is believed that HCs are closed under physiological conditions. Recent studies have shown that the cellular redox potential changes, which occurs primarily at the Cx C-terminal region, can modify HC gating properties [27–29]. In addition, studies have shown that the changes of redox potential triggered by oxidative stress induce the opening of gap junctions and HCs [30–32]. UVR causes lens damages through the photochemical generation of ROS, including superoxide and its potent derivatives such as hydrogen peroxide, hydroxyl radicals, and singlet oxygen [33–36]. It is likely that the cellular redox alteration induced by UVR could be involved in the activation of HCs. However, it remains unclear how oxidative stress and UVR activate HCs and the role of redox potential alteration triggered by oxidative stress in the opening of HCs.

In this study, we found that HCs protect lens epithelial cells against oxidative stress by facilitating the influx/efflux of redox metabolic molecules such as, H$_2$O$_2$, oxidized glutathione (GSSG), and GSH. We further demonstrate that intracellular redox potential is critical for UVR-induced Cx43 HC opening and identify C260 as a unique redox sensory residue in Cx43.

Fig. 2. Activation of Cx43 HCs in lens epithelial HLE-B3 cells by H$_2$O$_2$ and UVB radiation. (A) HLE-B3 cells were treated with 0.3 mM H$_2$O$_2$ or 63 mJ/cm2 UVB radiation for different time periods and followed by a dye uptake assay with EtBr and FITC-Dextran. The data are presented as the mean ± SEM. (n = 3). ****, P < 0.0001 (One-way ANOVA). (B) HLE-B3 transfected with Silencer™ Negative Control or Cx43 siRNA. Membrane extracts were subjected to immunoblotted with anti-Cx43CT, β-actin and GAPDH antibodies. Lower panel shows the normalized ratios of band intensities of Cx43 and β-actin (n = 3). ****, P < 0.0001 (One-way ANOVA). (C) HLE-B3 cells were transfected with Silencer™ Negative Control or Cx43 siRNA by Lipofectamine RNAiMAX and then treated with 0.3 mM H$_2$O$_2$ or 63 mJ/cm2 UVB radiation and followed by a dye uptake assay with EtBr and FITC-Dextran. The data are presented as the mean ± SEM. (n = 3). ****, P < 0.0001 (Two-way ANOVA). (D and E) HLE-B3 cells were treated with 0.3 mM H$_2$O$_2$ (D) for 1.5 h or 63 mJ/cm2 UVB radiation (E) for 1 h Cx43E2 antibody was pre-incubated for 30 min before exposure of H$_2$O$_2$ or UVB radiation, and a dye uptake assay was performed with 0.1 mM EtBr and FITC-Dextran. The data are presented as the mean ± SEM. (n = 3). **, P < 0.01; ****, P < 0.0001 (One-way ANOVA). Scale bar: 50 μm. At least three microphotographs of fluorescence fields were taken under microscope (Keyence BZ-X710) with a 20X objective and TxRed and GFP filters. The average pixel density of 30 random cells was measured by using NIH ImageJ software.
2. Results

2.1. Downregulation of anti-oxidative protein expression in heterozygous Cx43-null (C43+/−) mouse lens

Western blots showed that four month-old Cx43+/− lenses expressed less than half the amount of Cx43 compared to WT control (Fig. S1). We determined the level of oxidative stress markers in heterozygous Cx43-null mouse lens. Immunostaining with antibodies for oxidative stress markers, superoxide dismutase 1 (SOD1), and glutathione peroxidase 1 (GPX1) were used to evaluate the oxidative stress level (Fig. 1A). We found that in the heterozygous Cx43 knockout lens, reduced SOD1 and GPX1 levels were detected across various regions of the lens, especially at anterior and equatorial epithelial regions (Fig. 1A, lower panel). Moreover, the signals of SOD1 and GPX1 at anterior epithelium regions were significantly decreased in Cx43+/− lenses (Fig. 1B and C). Furthermore, we observed severer lens opacity in heterozygous Cx43-null mouse lenses with H2O2 treatment compared to that in WT Cx43 lenses (Fig. 1D). These results indicate that Cx43 may play a crucial role in regulating lens redox homeostasis, especially in the anterior epithelium.

2.2. Cx43 HCs in human lens epithelial cells are activated in response to H2O2 or UVB radiation

Cx HCs are closed under normal physiological conditions, and open in response to certain stimuli and cellular stress, such as, oxidative stress [19,20,23,28]. We used two major oxidative stress models, H2O2 and UVB, which are known to induce cataract formation in the lens [2,14]. HC activity was assessed in human lens epithelial cells (HLE-B3 cells) by ethidium bromide (EtBr) and FITC-dextran dye uptake. HCs are permeable to EtBr, while the larger FITC-dextran (~10 kDa) cannot pass through HCs and serve as a control for non-specific membrane permeability, including dying cells. Our results show that both H2O2 and UVB radiation treatment in HLE-B3 cells led to a drastic increase of EtBr uptake within the first 2 h and then gradually declined afterwards. This suggested that Cx HCs were activated rapidly in response to oxidative stress and UVB radiation (Fig. 2A). Noticeably, HC opening induced by UVB radiation was short-lived compared to that by H2O2. To determine the functional involvement of Cx43 in HLE-B3 cells, we knocked down cellular Cx43 expression by siRNA transfection (Fig. 2B). Quantification of dye uptake at 1 h and 1.5 h after H2O2 and UVB radiation treatment, respectively (the peak time point under oxidative stress), showed that HC activity was almost completely inhibited by Cx43 knockdown (Fig. 2C). We used Cx43E2 antibody, a specific Cx43 HC inhibitor [37],

Fig. 3. Cx43 HCs protect lens epithelial HLE-B3 cells from H2O2 and UVB radiation-induced apoptosis. (A) HLE-B3 transfected with Silencer™ Negative Control or Cx43 siRNA were treated with 0.3 mM H2O2 or 63 mJ/cm2 UVB radiation, and then subjected to a cell viability assay using trypan blue staining, and cell numbers were counted using Countess™ II FL automated cell counter. The data are presented as the mean ± SEM. (n = 3), *, P < 0.05; ***, P < 0.01; ****, P < 0.001 (Two-way ANOVA). (B) HLE-B3 cells were treated with 0.3 mM H2O2 or 63 mJ/cm2 UVB radiation for different time periods and Cx43E2 antibody was pre-incubated 30 min before treatment with H2O2 or UVB and followed by cell viability analysis. The data are presented as the mean ± SEM. (n = 3), *, P < 0.05; ***, P < 0.01; ****, P < 0.001 (Two-way ANOVA). (C and D) Cells were incubated with Cx43E2 antibody 30 min before the treatment with 0.3 mM H2O2 for 12 h (C) or UVB for 6 h (D), and were then subject to analysis using the Dead Cell Apoptosis Kit with FITC-Annexin V and PI (Molecular Probes). Apoptosis was quantified by counting Annexin V− cell population and necrosis was quantified by counting Annexin V+/PI− cell population. At least ten microphotographs of fluorescence fields were taken under a microscope (Keyence BZ-X710) with a 10X objective, and phase-contrast, TxRed or GFP filter. Positive cells were quantified and shown as a percentage of total counted cells. The data are presented as the mean ± SEM. (n = 3), ***, P < 0.01; ****, P < 0.001; *****, P < 0.0001 (One-way ANOVA). Scale bar: 100 μm. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
to assess the response of the Cx43 HCs to oxidative stress and UVB radiation in HLE-B3 cells. The EtBr uptake (Fig. 2D and E) after H$_2$O$_2$ or UVB radiation treatment was reduced in cells treated with Cx43E2, suggesting that the increase of membrane permeability is mediated by Cx43 HCs.

2.3. Cx HCs protect HLE-B3 cells from H$_2$O$_2$ and UVB radiation-induced apoptotic cell death

To determine the role of Cx43 under oxidative stress or UVB radiation, we knocked down Cx43 by siRNA in cells before treatment with H$_2$O$_2$ or UVB radiation. Cell viability was determined by a Trypan blue staining assay. The results showed that knocking down Cx43 increased the susceptibility of the cells to both H$_2$O$_2$ and UVB radiation-induced cell death (Fig. 3A), indicating the protective role of Cx43 in cells under oxidative stress. We further tested the role of Cx43 HCs in cell viability by treating HLE-B3 cells with H$_2$O$_2$ or UVB radiation with or without Cx43E2 antibody (Fig. 3B). The results from the Trypan blue staining assay showed that both H$_2$O$_2$ and UVB radiation treatment led to decreased cell viability over the time. However, the treatment with Cx43E2 antibody significantly decreased cell viability at 12 h after H$_2$O$_2$ treatment, or 6 h after UVB radiation. This indicated that inhibition of Cx43 HCs accelerated the process of H$_2$O$_2$ and UVB radiation-induced cell death.

In the ocular lens, previous studies support the notion that lens epithelial cells are responsible for the initiation of non-congenital cataract formation [3]. To elucidate whether Cx43 HCs modulate apoptosis in lens epithelial cells under oxidative stress or UVB radiation, Annexin V and PI staining was performed at 12 h after H$_2$O$_2$ treatment (Fig. 3C) or 6 h after UVB radiation (Fig. 3D). Results showed that both H$_2$O$_2$ and UVB radiation predominantly induced apoptotic cell death as opposed to necrotic cell death. Furthermore, it was observed that inhibition of HCs by Cx43E2 antibody resulted in increased apoptotic cell death compared to controls without Cx43E2 treatment. These observations suggest that HCs play a role in protecting cells from apoptotic cell death triggered by oxidative stress.

2.4. Cx HCs inhibit intracellular ROS accumulation and maintain intracellular GSH levels

Anterior epithelial cells are one of the major sites of GSH synthesis, which plays a critical role in regulating and maintaining the overall lens redox state [38]. To elucidate the role of epithelial Cx43, we knocked down Cx43 with siRNA in HLE-B3 cells and measured the intracellular ROS and GSH level using commercial fluorescence-based probes. The results showed that deletion of Cx43 led to increased intracellular ROS levels and decreased intracellular GSH levels (Fig. S2A and S2B) at 4 h after H$_2$O$_2$ or UVB treatment, suggesting that Cx43 is involved in protecting HLE-B3 from cell death by scavenging intracellular ROS and preserving intracellular GSH. Interestingly, Cx43 HCs initially responded in an opposite manner to H$_2$O$_2$ and UVB radiation in regulating the intracellular redox state; intracellular ROS levels significantly increased.
in Cx43 knockdown cells with UVB, while decreased in H$_2$O$_2$-treated cells as compared with non-transfected control cells (Fig. 4A). Moreover, compared with the redox state indicated by the ROS levels, the alteration of intracellular GSH level upon the treatment with H$_2$O$_2$ showed similar responses as that to the ROS levels, confirming the consistent cellular redox state (Fig. 4B). This consistency of redox state change, however, was not observed in the UVB radiation groups, a similar GSH level were detected in Cx43 WT and knockdown cells. These intriguing results raised a question regarding how Cx43 channels modulate intracellular ROS/GSH level in response to H$_2$O$_2$ and UVB.

We determined the intracellular ROS levels after H$_2$O$_2$ or UVB radiation treatment with or without Cx43E2 antibody after various time periods (Fig. 4C). Results showed that the intracellular ROS levels increased rapidly after H$_2$O$_2$ treatment and then restored to a normal level. In contrast, when the Cx43 was blocked by Cx43E2 antibody, the intracellular ROS levels accumulated slowly over time and continued to stay at a higher level (Fig. 4C, left panel). Similarly, UVB radiation also induced rapid increase of intracellular ROS levels and returned to baseline by 4 h. The similar persistent elevated ROS levels were seen in cells treated with Cx43E2 antibody (Fig. 4C, right panel). We also determined the intracellular ROS levels at 1 h and 3 h after H$_2$O$_2$ or UVB radiation treatment. With the presence of Cx43E2 antibody, an opposite change of intracellular ROS levels was observed at 1 h between H$_2$O$_2$ and UVB radiation-treated groups (Fig. S3, A and B).

We also assessed the intracellular GSH level in cells upon the same treatment (Fig. 4D). Results showed that both H$_2$O$_2$ and UVB irradiation led to an initial decrease of the GSH levels in response to oxidative stress and the GSH level was restored within 1–2 h. Consistent with ROS responses, GSH level in Cx43E2-treated cells were continuously lowered with time. Therefore, the time course study with H$_2$O$_2$ and UVB with Cx43E2 antibody suggests the critical role of Cx43 HCs in regulating intracellular ROS and GSH level and further implies that the protective role of Cx43 HCs against apoptotic death is likely mediated through increased intracellular GSH and reduced ROS.

2.5. Cx HCs are involved in transient increase of cellular H$_2$O$_2$ and excretion of oxidized glutathione

As shown in Fig. 3, after H$_2$O$_2$ treatment, intracellular ROS levels in Cx43E2 antibody treated cells accumulated slowly over time, contrary to a sharp increase observed in the control group. However, unlike the slow accumulation of ROS upon H$_2$O$_2$ stimulation in cells with inhibition of Cx43 HCs, this sharp, early increase was intensified under UVB radiation by Cx43E2 antibody treatment. We hypothesized that
inhibition of HCs by Cx43E2 antibody blocked accumulation of H$_2$O$_2$, thus inhibiting the rapid increase of ROS levels. To test this hypothesis, we performed an H$_2$O$_2$ uptake assay to determine the ability of HCs in mediating H$_2$O$_2$ influx. Results showed that HC inhibition led to a significant delay of intracellular H$_2$O$_2$ uptake compared to control cells with functional HCs (Fig. 5A), indicating the role of HCs in the increase of intracellular H$_2$O$_2$. Comparing intracellular H$_2$O$_2$ level at 30 min, H$_2$O$_2$ treatment exhibited a greater increase than UVB radiation (Fig. S3C). After initial increase, the H$_2$O$_2$ level rapidly declined in non-treated cells, but not in cells with impaired HCs.

In the cellular anti-oxidative system, H$_2$O$_2$ can be metabolized by GPX, while oxidized GSH (also known as glutathione disulfide, GSSG) can be reduced and converted back to GSH by glutathione-disulfide reductase (GSR), which forms a GSH redox cycle [16]. The capability of cells to reduce GSSG to GSH may be overwhelmed during severe oxidative damage, leading to an accumulation of intracellular GSSG, which promotes cataract formation [16,39]. The cellular redox level is indicated through the ratio of reduced GSH and oxidized GSSG.

We further validated the capability of Cx43 in regulating intracellular H$_2$O$_2$ and GSSG levels in Cx43 knockdown cells (Fig. 5D and E). Cx43 was knocked down by siRNA and scrambled siRNA was used as a control. A decrease of intracellular H$_2$O$_2$ level was observed after H$_2$O$_2$ treatment in Cx43 knockdown cells when compared to non-transfected and scrambled siRNA H$_2$O$_2$-treated controls, while UVB exposure showed an increase in intracellular H$_2$O$_2$ level in Cx43 knockdown cells. In addition, after H$_2$O$_2$ treatment or UVB irradiation, we observed a decline in extracellular GSSG level in cells with Cx43 knockdown when compared to their respective treated controls. These results further confirm the role of Cx43 HCs in mediating intracellular H$_2$O$_2$ level and GSSG efflux under oxidative stress.

2.6. Cx43 HC activation alters anti-oxidative gene expression in response to oxidative stress

We hypothesized that the elevated ROS levels in response to H$_2$O$_2$ uptake triggers the increase of anti-oxidative gene expression. Quantitative PCR and western blots were performed to assess anti-oxidative gene/protein expression under oxidative stress. We determined glutathione peroxidase 1 (GPX1), glutathione peroxidase 8 (GPX8), glutathione-disulfide reductase (GSR), glutathione S-transferase Mu 2 (GSTM2), microsomal glutathione S-transferase 1 (MGST1), superoxide dismutase 1 (SOD1), and heme oxygenase 1 (HMox1) gene expression with or without Cx43E2 antibody after H$_2$O$_2$ or UVB radiation treatment (Fig. 6A and B, S4, A-E). Among these anti-oxidative genes, SOD1 and GPX1 showed the most significant changes. Results from qPCR showed that H$_2$O$_2$ treatment in HLE-B3 cells led to a time-dependent, yet rapid and significant increase of GPX1 and SOD1 mRNA levels (Fig. 6A), indicating the activation of cellular anti-oxidative mechanism. After UVB irradiation, we observed instead an initial decrease of mRNA levels of GPX1, and SOD1 (Fig. 6B). The response to UVB was opposite to H$_2$O$_2$-treated cells, suggesting that H$_2$O$_2$ treatment and UVB irradiation triggered anti-oxidative responses through different mechanisms. Consistent with gene expression, results from western blot showed opposite changes in levels of anti-oxidative proteins, GPX1 and SOD1; increased upon H$_2$O$_2$ treatment while decreased upon UVB radiation treatment. Nevertheless, these changes were abolished in cells treated with Cx43E2 antibody (Fig. 6, A-C), suggesting that HCs play an essential role in regulating anti-oxidative genes likely through intracellular H$_2$O$_2$ and ROS.

![Figure 6](image-url) Inhibition of Cx43 HCs alters anti-oxidative gene expression in response to oxidative stress. (A and B) The cells were pre-incubated with or without Cx43E2 antibody for 30 min followed by incubation with 0.3 mM H$_2$O$_2$ (A) or 63 mJ/cm2 UVB radiation (B) for 0, 0.5, and 3 h. RNA extracts were prepared and subjected to qRT-PCR analysis for GPX1 or SOD1 mRNA expression. (C) HLE-B3 cells were pre-incubated with or without Cx43E2 antibody for 30 min followed by incubation with 0.3 mM H$_2$O$_2$ or 63 mJ/cm2 UVB radiation and immunoblotting with anti-GPX1, SOD1 or β-actin antibody. The protein levels of SOD1 and GPX1 were quantified by Image Studio Site software (LI-COR Biosciences). The data are presented as the mean ± SEM. (n = 3). *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001 (Two-way ANOVA).
2.7. Cx HCs mediate glutathione uptake and protect cells against oxidative stress

Lens epithelial cells located at the anterior surface of the lens face the aqueous humor, which provides reductants and nutrition, and removes metabolic products, thus contributing to lens homeostasis [40]. The aqueous humor is postulated as a potential source of GSH for lens epithelial cells, and Cx HCs are permeable to GSH [18,41,42]. To determine the GSH transport activity of HCs, we performed GSH uptake assays using Thioltracker™, a probe detecting the reducing state of thiols in the cell. The intracellular GSH level was significantly elevated after H₂O₂ or UVB radiation treatment in the presence of exogenous GSH, suggesting an active uptake of extracellular GSH in response to oxidative stress. This increase, however, was diminished in cells treated with Cx43E2 antibody (Fig. 7A). Cellular apoptosis analysis showed that exogenous GSH treatment reduced apoptotic death induced by H₂O₂ or UVB radiation, and such reduction by GSH was attenuated by HC inhibition by Cx43E2 antibody (Fig. 7B). These results together indicated that the protective role of HCs against oxidative stress is mediated through the influx of GSH.

2.8. Cx43 HC activity is regulated by the intracellular redox state

Several studies reported that HCs are regulated by redox-related alterations, like oxidants or reducing molecules [27–29] and the extracellular or intracellular cysteine residue on Cx43 could be potential sensory residues for intracellular redox potential [43]. We first determined if extracellular or intracellular domains of Cx43 were redox sensory regions by using two reducing reagents GSH and DTT at various time points during UVB radiation (Fig. 8A, right lower panel). DTT is permeable to the lipid bilayer while GSH does not permeate the membrane. Pre-treatment of GSH followed by UVB radiation did not affect EtBr uptake (Fig. 8A), suggesting that the extracellular reducing environment did not affect HC activation. However, when cells were incubated with GSH after UVB radiation, HC activation was significantly inhibited, indicating entry of GSH with the increased intracellular reducing state could suppress HC activity. A similar inhibition of HC opening induced by UVB radiation was obtained in cells pre-treated or
Redox Biology 46 (2021) 102102

post-treated with DTT. Contrary to GSH, we observed slightly inhibited HCs activation even when cells were pre-treated with DTT due to the membrane permeable property of this reductant. These data suggested that intracellular reducing states negatively regulate HC activation. Moreover, this study indicates that the redox sensory residues are likely to be located in the cytoplasmic domain of Cx43.

Given that cysteine residues in proteins are common redox sensory residues, we introduced various site mutant forms of Cx43 into HeLa cells and determined HC activation upon UVB radiation. We made single or triple site mutation by replacing cytosolic cysteine’s C260A, C271A,
and C298A of Cx43 with alanine (Fig. 8B, right upper panel) and assessed HC activity using the DAPI uptake assay (Fig. 8B). Results showed that a mutation at residue C260 resulted in significantly reduced HC activation. This result suggests that residue C260 at the Cx43 C-terminus is a likely intracellular redox sensor that regulates HC activation in response to the cellular redox state.

3. Discussion

Due to lack of blood vessels, the lens is postulated to obtain nutrients and antioxidants by diffusion from surrounding fluids, and/or through a microcirculatory system based on a network of channels, including gap junction channels [5,44]. Evidence indicates that the transport of molecules involved in redox metabolism, including reduced glutathione, might play an essential role in the cell death or survival process of lens fiber cells [20,21]. In addition, published studies also show that the entry of ROS contributes to cell death [19]. However, how the lens epithelial cells modulate oxidative stress in the lens as well as the consequent impact on redox balance is largely unknown. In our present study, we have elucidated a molecular mechanism underlying the cellular defense against oxidative stress in lens epithelial cells and the mechanistic role of Cx43 HCs in this process.

Oxidative stress is one of the major risk factors for cataracts, especially age-related cataracts. Studies have shown that the incidence of cataracts is higher in environments with a relatively higher ultraviolet index [45,46]. In addition, elevated H$_2$O$_2$ level is seen in the lens and aqueous humor of cataract patients. H$_2$O$_2$ at the concentration ranges found in cataracts, can cause lens opacification and produce a similar oxidation pattern to that found in cataracts, such as crystallin damage [2]. Constant exposure to UV radiation and elevated H$_2$O$_2$ level in the surrounding environment are two major sources of oxidative stress in the lens. In this study, we used both H$_2$O$_2$ and UV radiation to introduce oxidative stress in lens epithelial cells. Previous studies have shown that H$_2$O$_2$ and cigarette smoke extract can induce Cx HC opening [19]. Additionally, we have previously shown that H$_2$O$_2$ induces HC opening in bone osteocytes and lens fiber cells [20,47]. Here we observed that Cx43 HCs open temporarily in response to H$_2$O$_2$-induced oxidative stress in lens epithelial cells. Further, this opening could be inhibited by a Cx43E2 blocking antibody, which demonstrated the responsiveness of Cx43 HCs to oxidative stress. In addition to H$_2$O$_2$, another major source of oxidative insults for the lens is UV radiation. The UVR, which can be divided into three regions in increasing order of wavelengths, including UVC (100–280 nm), UVB (280–315 nm), and UVA (315–400 nm) [45]. Among these, UVB is responsible for photochemical reactions that damage the lens through the generation of ROS [48–51]. Previous studies have shown that gap junction channels respond to UV radiation. It is also reported that UV radiation affects Cx43 phosphorylation status and regulates Cx channel activity [52–55]. However, there is no direct evidence showing whether and how Cx HCs respond to UV radiation in the lens. In this study, we show that HCs open in response to UVB radiation in lens epithelial cells and the extent of the opening induced by UVB radiation is similar to that induced by H$_2$O$_2$. The activation of HCs is temporal within a limited time period. HC opening ultimately helps mitigate the elevated intracellular ROS levels induced by oxidative stress induced by either H$_2$O$_2$ or UVB. Moreover, HC activity is subjected to the regulation of the redox state of the cell.

Lens epithelial cell apoptosis is a major cause leading to initiation of non-congenital cataract formation, which is associated with intracellular accumulation of ROS [3,56]. Previous studies have shown that biphasic, protective, or detrimental roles of Cx43 channels in modulating oxidative stress-induced cell damage [20,47,57–62]. We determined the extent of oxidative stress in the lens of heterozygous Cx43 knockout mice and found that two of the major anti-oxidative enzymes, SOD1 and GPX1, were significantly reduced in the anterior epithelium, indicating the anti-oxidative role of Cx43 in anterior epithelial cells. Moreover, we found increased susceptibility to cataracts in heterozygous Cx43 knockout mice under oxidative stress compared to WT lens. Previous studies reported that Cx43$^{+/−}$ heterozygous mice do not exhibit many abnormal phenotypes as compared to WT mice and the reports on cardiac electrophysiological abnormalities are contradictory [63]. We cannot exclude the possible involvement of other tissues, but given that lens is an avascular organ, any impact due to systematic changes is unlikely to be significant.

Here we used two major oxidative insults to the lens, H$_2$O$_2$ and UVB radiation, to assess the role of Cx43 HCs in cellular oxidative damage and apoptotic cell death. In both models, we found an initial increase in redox status. This increase was quickly restored back to a normal level, indicating the strong capability of ROS scavenging and detoxification in lens epithelial cells in response to oxidative stress. This observation supports a previous notion that the lens epithelial cells are the major site in the synthesis of detoxification substances and an active glutathione redox cycle [1,24]. However, this self-recovery capability is abrogated with the inhibition of Cx43 HCs. Lens epithelial cells have a de novo GSH synthesis machinery associated with an unusually high concentration of reduced GSH (64 μmol per gram of wet weight) [64]. GSH from circulating and aqueous sulfur amino acids only represent a minor portion of GSH in the epithelial cells [41]. Previous studies also show that lens epithelial cells can take up circulating GSH from the aqueous humor [42,65]. Together, these reports suggest that lens epithelial cells produce endogenous GSH and uptake exogenous GSH to maintain their own redox homeostasis. We found that in the absence of extracellular GSH, GSH was regenerated de novo in lens following initial oxidation, consistently showing that lens epithelium is capable of generating and maintaining GSH homeostasis and cellular redox status. Inhibition of Cx43 HCs abolished this effect through elevated intracellular ROS accumulation and impaired intracellular GSH regeneration. Cx HCs show a certain substrate selectivity and permit molecules with a molecular weight less than 1 kDa to pass through [66]. These channels mediate the exchange of small molecules between cells and the extracellular microenvironment. We show here that HCs are involved in the elevated intracellular H$_2$O$_2$ response to exogenous H$_2$O$_2$ and the efflux of ROS produced by UVB. GSSG can be regenerated into GSH through enzymatic action. A recent study reported that the permeation of GSSG in Cx46 and Cx50 HCs was extremely low [21]. In contrast, we show that Cx43 HCs are permeable to GSSG with the treatment of H$_2$O$_2$ or UVB radiation. Compared to UVB, exogenous H$_2$O$_2$ led to a short spike of intracellular H$_2$O$_2$ level and corresponding ROS. This is possibly caused by an import of H$_2$O$_2$ mediated by Cx43 HCs in lens epithelial cells; given that such a spike was not observed with the inhibition of HCs. However, we did not observe a rapid increase of ROS at 30 min time point, implying a potential indirect mechanism. Cx43 HCs are known to mediate Ca$^{2+}$ entry into the cell. As previously reported [73], H$_2$O$_2$ triggers the entry of extracellular Ca$^{2+}$ into the cell and promotes ROS production. We showed that inhibition of HCs impedes ROS production and this impediment of ROS could be caused by the inhibition of HC-triggered entry of Ca$^{2+}$. The elevation of ROS at later time points with impaired HCs is possibly a result of the impeded entry of GSH and release of GSSG. UVB, on the other hand, promotes mitochondria ROS production by complex III and complex I [74]. The production of ROS is triggered by intracellular Ca$^{2+}$, in contrast to extracellular Ca$^{2+}$ entry by H$_2$O$_2$. Blockade of Cx43 HCs will likely inhibit the entry of GSH and the release of GSSG, and consequently increase ROS production.

H$_2$O$_2$ is capable of regulating redox status via the control of anti-oxidant enzymatic activity or transcription of genes encoding antioxidant enzymes [67,68]. Therefore, the transient increase of intracellular H$_2$O$_2$ in lens epithelial cells likely up-regulates transcription factors and consequently, anti-oxidative gene expression [68]. Indeed, we show that inhibition of Cx43 HCs abolished the increased expression of anti-oxidative genes, further supporting the notion that anti-oxidative genes can be regulated by intracellular H$_2$O$_2$ uptake via HCs. Interestingly, compared to that of H$_2$O$_2$, we observed an opposite response of anti-oxidative genes to UVB-induced oxidative stress. H$_2$O$_2$ is considered
a more suitable messenger to deliver redox signals from its generation site to the target site [67–69]. The superoxide anion (O$_2^-$) is thought to be the starting material for the production of a suite of reactive species [70]. Under UVB, photosensitive molecules subsequently react with oxygen, resulting in the generation of ROS including O$_2^-$, which can be converted to electric neutral H$_2$O$_2$ and further photolysis of H$_2$O$_2$ generates 2X$^·$OH, which all contribute to the overall pro-oxidant state [36]. Thus, the major difference is that UVB induces cells to directly generate O$_2^-$, but not H$_2$O$_2$. The superoxide generated by UVB, unlike H$_2$O$_2$, cannot directly activate anti-oxidative gene transcription, thereby causing a delayed response compared to the activation induced by intracellular H$_2$O$_2$ transported by Cx43 HCs. In addition to the generation of ROS, UVB contributes to direct DNA damage through photo-oxidation [33], resulting in decreased gene transcription. This may lead to the downregulation of anti-oxidative genes/proteins in cells exposed to UVR and the attenuation effect seen with the inhibition of photo-oxidation [33].

We demonstrated the presence of Cx43 functional HCs in human lens epithelial cells (CLE). A previous study showed that Cys271 might be a candidate as a redox sensor since this Cys is modified by S-nitrosylation in Cx43-forming gap junction channels in endothelial cells [27]. However, until now, there was no evidence showing which Cys residues were responsible for channel activity under oxidative stress. Here we introduced mutation at the potential residues in the Cx43 C-terminus, C260A, C271A, and C298A. Our results, for the first time, show that the position C260, but not C271 and C298, is an oxidative sensor that mediates UVR-induced HC opening.

4. Materials and Methods

Materials. HLE-B3 cells were purchased from American Type Culture Collection (ATCC, Rockville MD, USA). HeLa cells expressing pIRE2-EGFP-Cx43 WT or HC-impaired mutants were previously generated by our laboratory. The Cx43E2 antibody was developed in our laboratory, targeting the second extracellular loop domain of Cx43. This antibody was affinity-purified and used for blocking HC function as previously described [37]. Rabbit anti-Cx43 C-terminus (CT) was developed in our laboratory. Rabbit anti-SOD1 antibody and mouse anti-GBP1/2 antibody were obtained from Santa Cruz (Dallas, TX, USA). Cx43 small interfering RNA (siRNA) and Silencer™ Negative Control were purchased from Ambion (Life Technologies, Carlsbad, CA, USA).

Generation of heterozygous Cx43-null mice. All mice were maintained and studied in accordance with the NIH Guidelines for the Care and Use of Laboratory Animals. The animal protocols were approved by the University of Texas Health Science Center at San Antonio (UTSHA) Institutional Animal Care and Use Committee (IACUC). The heterozygous Cx43-null mice were kindly provided by Roberto Civitelli at Washington University School of Medicine, and generated by crossing C57BL/6/Cx43 (+/-) mice with C57BL/6/Cx43 (+/-) mice. Genotyping was performed by PCR technique using genomic DNA isolated from mouse tails and corresponding primers synthesized by Integrated DNA Technologies (Corvallel, IA).

Lenses tissue isolation. A small incision on the eyeball at the side of optic nerve was made to remove the lens operated under a dissecting microscope. Isolated lenses were cultured in Medium 199 containing 10% FBS and 1% penicillin/streptomycin and incubated for 24 h at 37 °C. The lenses were examined to confirm their intactness and transparency throughout the entire procedure before treatment. Photographic images of lenses were acquired using a dissecting microscope.

Cell culture. HLE-B3 cells were cultured in Eagle’s Minimum Essential Medium (EMEM, ATCC, Rockville MD, USA) containing 20% fetal bovine serum (FBS, Hyclone Laboratories, Logan, UT, USA) and penicillin/streptomycin (Invitrogen, Carlsbad, CA, USA) in an incubator supplied with 5% CO$_2$ at 37 °C. HeLa cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM, Invitrogen, Carlsbad, CA, USA) containing 10% FBS and 1% penicillin/streptomycin in an incubator supplied with 5% CO$_2$ at 37 °C. Transfected HeLa cells were selected with Geneticin™ Selective Antibiotic (G418 Sulfate, Life Technologies, Carlsbad, CA, USA) at the concentration of 1 mg/ml for 1 month. To maintain stability of expression of Cx43, 0.5 mg/ml of G418 Sulfate were applied during cell culturing.

siRNA transfection. HLE-B3 cells were transfected with 30 nM Silencer™ Negative Control or Cx43 siRNA using Lipofectamine RNAiMAX transfection reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer instructions. 48 h after transfection, cells were treated with H$_2$O$_2$ or UBV radiation for further experiments.

Preparation of crude cell and membrane extracts, and western blot. Confluent cells were lysed and homogenized with ice-cold lysis buffer (5 mM Tris, 5 mM EDTA, and 5 mM EGTA) containing protease inhibitors (5 mM NEM, 2 mM PMSF, 1 mM Na$_2$VO$_4$, and 0.2 mM leupeptin). The whole cell lysate was boiled in 0.6% SDS or used to prepare crude membrane extracts. For preparation of membrane extracts, whole cell lysate was homogenized by passing through a 20G needle and centrifuged for 5 min at 1000 rpm to remove cell debris. The supernatant was then subjected to centrifugation at 45,000 rpm for 30 min (TLA55 rotor, Beckman Coulter, Brea, CA, USA) at 4 °C. The crude membrane extract pellets were resuspended in lysis buffer containing protease inhibitors, and then boiled in 1% SDS. The protein amount in whole cell lysates and membrane extracts was quantified using the microBCA assay (Pierce, Rockford, IL, USA) and equal amounts of proteins were loaded on
Y. Quan et al.

Primary antibodies and dilutions used in this study were as follows: Anti-Cx43CT (1:300 dilution), anti-GPX1/2 (1:100 dilution, Santa Cruz Biotechnology) and anti-SOD1 (1:300 dilution Santa Cruz Biotechnology). Primary antibodies were detected with goat anti-rabbit IgG conjugated IRDye® 800CW or goat anti-mouse IgG conjugated IRDye® 680RD (1:15,000 dilution) using a Licor Odyssey Infrared Imager (Lincoln, NE, USA). The intensity of the bands on western blots was quantified.

Immunofluorescence. The cells were seeded in a glass coverslip for 3 days, rinsed with PBS and fixed with 2% paraformaldehyde (PFA) for 10 min at room temperature (RT). The cells were washed in PBS three times, incubated in blocking buffer (2% donkey serum, 2% gelatin, 0.25% Triton X100, and 1% bovine serum albumin) for 1 h at RT, then incubated with primary antibody overnight at 4°C, and followed by incubation with fluorescein-conjugated secondary antibody for 2 h at RT. The cells were washed with PBS three times and incubated with 1, 6-diamidino-2-phenylindole (DAPI) for 5 min at RT. The coverslip was mounted to a slide using Fluoromount-G (SouthernBiotech, Birmingham, AL, USA) and subjected to fluorescence imaging analysis using a fluorescence microscope (Keyence BZ-X710) at DAPI and GFP filters.

Lens frozen tissue sectioning and immunofluorescence. The dissected mouse eyeballs were kept in PBS and a small incision was made using a needle (BD Lo-Dose U-100 Insulin Syringes). The entire eyeball was then fixed in 0.75% PFA for 24 h at RT, dehydrated with various concentrations of sucrose solution sequentially; first in 10% for 1 h, next in 20% for 1 h and finally in 30% at 4 °C overnight, and embedded in OCT compound (Sakura, Torrance, CA, USA). Sagittal sections (14 μm) collected were stained with primary antibodies overnight at 4 °C, and followed by incubation with fluorescein-conjugated secondary antibody for 1 h at RT and DAPI for 5 min at RT. After rinsing with PBS for three times, a drop of mounting medium was added before being covered by coverslips. The images of specimens were taken by a fluorescence microscope (Keyence BZ-X710) and the acquisition settings were kept consistent for all samples.

qRT-PCR analysis. RNAs were isolated using TRIzol Reagent (Molecular Research Center, Cincinnati, OH, USA) from various treated cells. cDNA was generated using the High-Capacity RNA-to-cDNA Kit (Applied Biosystems®, Life Technologies, Carlsbad, CA) according to the manufacturer instructions. qPCR was performed using an ABI 7900 PCR device (Applied Biosystems®, Life Technologies, Carlsbad, CA) with Maxima SYBR Green/ROX qPCR Master Mix (2X) and a two-step PCR protocol (95 °C, 10 s and 60 °C, 30 s). The primer sequences for GPX1, GPX8, GSR, GSTM2, MGST1, SOD1, and HMOX1 are provided in Table 1. 18S rRNA was used as a housekeeping gene control.

Measurement of cellular ROS and GSH. Intracellular ROS or GSH levels in cells was determined by fluorescence-based probes Carboxy-H2DCFDA (Invitrogen, Carlsbad, CA, USA) or ThiolTracker™ (Thermo Fisher, Waltham, MA, USA) in live cells. Cells were rinsed with HBSS and incubated with 10 μM Carboxy-H2DCFDA or ThiolTracker™ for 30 min at 37 °C. The cells incubated with Carboxy-H2DCFDA were rinsed and maintained in HBSS and immediately followed by fluorescence imaging analysis. The cells incubated with ThiolTracker™ were rinsed twice with HBSS, fixed with 2% PFA, and were then subjected to fluorescence imaging analysis (Keyence BZ-X710). At least three fields in each well of 12-well plates were captured, and the average pixel density of 30 random cells from each field was measured using a NIH ImageJ software.

H2O2 uptake assay. Cells were pre-treated with Cx43E2 antibody for 30 min before the treatment with 0.3 mM H2O2. After H2O2 treatment, the cells were rinsed with HBSS and incubated with 10 μM Fluorescent Peroxide Sensor (Sigma-Aldrich, St. Louis, MO) for 8 min at 37 °C. One field was taken for each well of 96-well plates using a fluorescence microscope (Keyence BZ-X710). The intracellular H2O2 level was measured and quantified by determining the fluorescence intensity using the NIH ImageJ software.

Determination of GSSG. Cells were harvested by trypsinization, washed once with ice-cold DPBS, resuspended in PBS containing 0.5% NP-40, pH 6.0, and homogenized by pipetting. Proteins were removed by precipitation with trichloroacetic acid (TCA)/NaHCO3 and centrifugation at 12,000 × g. GSH and total glutathione in the supernatant were measured in clear flat bottom black 96-well plates using the GSH/GSSG Ratio Detection Assay Kit (Abcam, Cambridge, United Kingdom) according to the manufacturer instructions. GSSG concentration was calculated as follows: GSSG = (Total glutathione – GSH)/2.

GSH uptake assay. We determined GSH transport by performing a dynamic uptake measurement using ThiolTracker™ (Thermo Fisher) in live cells. Cells were pre-incubated with 1 mM GSH for 20 min before the treatment with H2O2 or UVB radiation with or without Cx43E2 antibody. The cells were then rinsed with HBSS and incubated with 10 μM ThiolTracker™ for 30 min. The cells were rinsed with PBS and fixed with 2% PFA. The images were taken at least three fields using a fluorescence microscope (Keyence BZ-X710). The intracellular GSH level was measured and quantified by determining fluorescence intensity using the NIH ImageJ software.

Apoptosis analysis. The cells were grown in complete culture media to 85% confluency and followed by culturing in serum-depleted media for 48 h. After being treated with H2O2 or UVB radiation, cells and medium were collected and centrifuged. The cell pellets were resuspended in Annexin V Binding Buffer and further processed using FITC–Annexin V Apoptosis Detection Kit (BioLegend, San Diego, CA, USA) according to the manufacturer instructions. Fluorescence images were then incubated with 0.1 mM EtBr and 1 mg/ml fluorescein-dextran in HBSS for 5 min. Ethidium bromide (EtBr, Mr ~ 394 Da) was used as a tracer for HC activity. Fluorescein-dextran (Mr ~ 10 kDa), which could be taken up by dying cells but cannot pass through HCs, was used to exclude dead cells. The cells were then rinsed twice with HBSS and DPBS, respectively, fixed with 2% PFA for 10 min at RT, and subject to fluorescence imaging analysis.

Hela cells transfected with Cx43 WT or mutants were grown to 85% confluency and starved for 48 h before UVB radiation. The cells were then treated with 0.1 mM DAPI (Mr ~ 277 Da) and 1 mg/ml rhodamine-dextran (Mr ~ 10 kDa) dye mixture HBSS for 5 min, followed by rinsing twice with HBSS and PBS, respectively, fixing with 2% PFA for 10 min at RT, and being subjected to fluorescence imaging analysis. At least three fields in a well of 12 well plates were taken using a fluorescence microscope (Keyence BX-X710). In each field, the average pixel density of 30 random HLE-B3 cells (excluding fluorescein-dextran positive cells) and HeLa cells transfected with Cx43 WT or mutants (excluding rhodamine-dextran positive and Cx43 positive cells) were measured using a NIH ImageJ software (Bethesda, MD).

Table 1

Name	Sequence
GSTM2-F	5′-CCCTGAAACTGGGAAGCTCCTA-3′
GSTM2-R	5′-TGGTTCCTCAGGGACTATATA-3′
MGST1-F	5′-CACCCAGTTAAGTGATGAGA-3′
MGST1-R	5′-TGCTACACAGTCTTCTGGATTG-3′
GPX1-F	5′-AAATGTTGGCTGCCCTTGC-3′
GPX1-R	5′-CTCTGGTTCCTGGCCTTCT-3′
GPX8-F	5′-TCTGAAGGAGAAGCTGGATT-3′
GPX8-R	5′-GCCAGGCTTGCAAACATT-3′
SOD1-F	5′-GGATCTCAGTCTAGGCTTAA-3′
SOD1-R	5′-CATCAGTGTTGAAGATGAA-3′
HMOX1-F	5′-TCAGGGCAGAGGTGATGAGA-3′
HMOX1-R	5′-GCCTGGCACTCCTCCTA-3′
GR-F	5′-GGTGGCCACGCTTGAATGAA-3′
GR-R	5′-GAATTTCCTGGCGAGAGGATGTA-3′
18S rRNA-F	5′-AACAGGTCTGGTGATGCCTCTA-3′
18S rRNA-R	5′-GCAAGTGGTATACGCCGACTA-3′
were taken by using Countess™ cell counting chamber slides using a fluorescence microscope (Keyence BZ-X710), and the percentage of positive staining cells was quantified.

Cell viability assay. The cells were grown to 85% confluency and starved for 48 h, trypsinized, centrifuged, and resuspended in PBS containing 0.4% Trypan blue. The number of viable cells and total cells were counted using a Countess II FL Automated Cell Counter (Invitrogen, Carlsbad, CA, USA).

Statistical Analysis. All data were analyzed with GraphPad Prism 7 software (GraphPad Software, La Jolla, CA). Multiple group comparisons were used by means of a one-way ANOVA and Tukey multiple comparison test. Two-way ANOVA and Sidak multiple comparison tests were used to compare the mean differences between two independent variables groups. The data are presented as mean ± SEM of at least three measurements. P < 0.05 was designated as a statistically significant difference. Hashing in all figures indicate the significant differences compared between two independent variables groups. Asterisks in all figures indicate the degree of significant differences compared to controls: *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.

Declarations of interest for all authors: none.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.redox.2021.102102.

References

1. V.M. Berthoud, E.C. Beyer, Oxidative stress, lens gap junctions, and cataracts, Antioxidants Redox Signal. 11 (2) (2009) 339–355.
2. A. Spector, Oxidative stress-induced cataract: mechanism of action, Faseb. J. 9 (12) (1995) 1173–1182.
3. W.C. Li, et al., Lens epithelial cell apoptosis appears to be a common cellular basis for non-congenital cataract development in humans and animals, J. Cell Biol. 130 (1) (1995) 169–181.
4. Y. Tamada, et al., Evidence for apoptosis in the selenite rat model of cataract, Biochem. Biophys. Res. Commun. 275 (2) (2000) 300–306.
5. R.T. Mathias, J. Küttler, P. Donaldson, The lens circulation, J. Membr. Biol. 216 (1) (2007) 1–16.
6. D.A. Goodenough, D.L. Paul, Beyond the gap: functions of unpaired connexon channels, Annu. Rev. Biophys. 28 (2001) 403–418.
7. S. Burra, J.X. Jiang, Regulation of cellular function by connexin hemichannels, Curr. Opin. Cell Biol. 22 (2010) 294–303.
8. K. Pogoda, P. Kameritsch, M.A. Retamal, J.L. Vega, Regulation of gap junctional intercellular communication by reactive oxygen species, J. Biophot. 11 (7) (2018), e201700377.
9. V.M. Berthoud, E.C. Beyer, Oxidative stress, lens gap junctions, and cataracts, Physiol. Rev. 77 (1) (1997) 21–50.
10. X. Tong, et al., Glutathione release through Connexin 43 hemichannels: implications for chemical modification of pores permeable to large molecules, J. Gen. Physiol. 146 (3) (2015) 245–254.
11. F.J. Giblin, Glutathione: a vital lens antioxidant, J. Ocul. Pharmacol. Therapeut. 16 (2) (2000) 121–135.
12. M.M. Kumar, N.B. Gihula, The gap junction communication channel, Cell 84 (3) (1996) 381–388.
13. S.R. Johnstone, M. Billaud, A.W. Lohman, E.P. Taddio, B.E. Isakson, Posttranslational modifications in connexins and pannexins, J. Membr. Biol. 245 (5) (2012) 219–332.
14. M.A. Lillo, et al., S-nitrosylation of connexin43 hemichannels elicits cardiac stress-induced arrhythmias in Duchenne muscular dystrophy mice, JCI Insight 4 (24) (2019).
15. M.A. Retamal, C.J. Corts, L. Reuss, M.V. Bennett, J. S. ez, S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: induction by oxidant stress and reversal by reducing agents, Proc. Nat. Acad. Sci. (USA) 103 (2006) 4475–4480.
16. A. Spector, Oxidative stress-induced cataract: mechanism of action, Faseb. J. 9 (12) (1995) 1173–1182.
17. J.B. Mackic, R. Kannan, N. Kaplowitz, B.V. Zlokovic, Low de novo glutathione synthesis in the lens serves as a cellular antioxidant, J. Biol. Chem. 283 (2008) 1611–1617.
18. V.N. Reddy, Glutathione and its function in the lens—an overview, Exp. Eye Res. 50 (6) (1990) 771–778.
19. M.F. Lee, Thiol regulation in the lens, J. Ocul. Pharmacol. Therapeut. 16 (2) (2020) 137–148.
20. F. Kamari, et al., Phototoxicity of environmental radiations in human lens: revisiting the pathogenesis of UV-induced cataract, Graefes Arch. Clin. Exp. Ophthalmol. 257 (10) (2019) 2065–2077.
21. X. Fan, V.M. Monnier, J. Whitson, Lens glutathione homeostasis: discrepancies and gaps in knowledge standing in the way of novel therapeutic approaches, Exp. Eye Res. 116 (2016) 103–111.
22. M.H. Stridh, M. Tranberg, S.G. Weber, F. Blomstran, M. Sandberg, Stabilized efflux of amino acids and glutathione from cultured hippocampal slices by omission of extracellular calcium: likely involvement of connexin hemichannels, J. Biol. Chem. 283 (2008) 10347–10356.
23. R.J. Truscott, Age-related nuclear cataract—oxidation is the key, Exp. Eye Res. 21 (2002) e71–e72.
24. W. Shi, M.A. Riquelme, S. Gu, J.X. Jiang, Connexin hemichannels mediate glutathione transport and protect lens fibers from oxidative stress, J. Cell Sci. 131 (6) (2018).
25. J. Wenk, et al., Connexin43 channel dysfunction in lens fiber cells is associated with age-related nuclear cataract, J. Clin. Invest. 118 (3) (2006) 1173–1182.
Y. Quan et al.

Redox Biology 46 (2021) 102102

[48] S. Lerman. Lens proteins and fluorescence. Isr. J. Med. Sci. 8 (8) (1972) 1583–1589.

[49] S. Lerman. Characterization of the insoluble protein fraction in the ocular lens. Can. J. Biochem. 47 (12) (1969) 1115–1119.

[50] J. Dillon. UV-B as a pro-aging and pro-cataract factor. Doc. Ophthalmol. 88 (3–4) (1994) 339–344.

[51] C.S. Rogers, et al. The effects of sub-solar levels of UV-A and UV-B on rabbit corneal and lens epithelial cells. Exp. Eye Res. 78 (5) (2004) 1007–1014.

[52] N. Prevost, M. Moreau, A. Leturque, C. Nizard. Ultraviolet A radiation transiently disrupts gap junctional communication in human keratinocytes. Am. J. Physiol. Cell Physiol. 284 (1) (2003) C51–C59.

[53] J.H. Lin, et al. Connexin mediates gap junction-independent resistance to cellular injury. J. Neurosci. 23 (2) (2003) 430–441.

[54] K. Wang, et al. Developmental trascision of connexin 50 by caspases adaptively regulate gap junctions/hemichannels and protect lens cells against ultraviolet radiation. J. Biol. Chem. 287 (19) (2012) 15786–15797.

[55] B. Bellei, et al. Ultraviolet A induced modulation of gap junctional intercellular communication by P38 MAPK activation in human keratinocytes. Exp. Dermatol. 17 (2) (2008) 115–124.

[56] S.D. Varma, D. Chand, Y.R. Sharma, J.F. Kuck Jr., R.D. Richards. Oxidative stress on lens and cataract formation: role of light and oxygen. Curr. Eye Res. 3 (1) (1984) 35–57.

[57] M.A. Retamal, et al. Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J. Neurosci. 27 (50) (2007) 13781–13792.

[58] J.T. Le, et al. Gap junction intercellular communication mediated by connexin43 in astrocytes is essential for their resistance to oxidative stress. J. Biol. Chem. 289 (3) (2014) 1345–1354.

[59] M.A. Riquelme, J.X. Jiang. Elevated intracellular Ca(2+) signals by oxidative stress activate connexin 43 hemichannels in osteocytes. Bone Res 1 (4) (2013) 355–361.

[60] C.M. Hutnik, C.E. Pocrnich, H. Liu, D.W. Laird, Q. Shao. The protective effect of oxidative stress and cell injury. Antioxidants Redox Signal. 14 (12) (2011) 2427–2439.

[61] X. Fang, et al. Connexin43 hemichannels contribute to cadmium-induced oxidative stress and cell injury. Antioxidants Redox Signal. 14 (12) (2011) 2427–2439.

[62] V.A. Figureoza, et al. Contribution of connexin hemichannels to the decreases in cell viability induced by iminoic acid in the human lens epithelial cells (HLE-B3). Front. Physiol. 10 (2019).

[63] D. Eckardt, et al. Functional role of connexin43 gap junction channels in adult mouse heart assessed by inducible gene deletion. J. Mol. Cell. Cardiol. 36 (1) (2004) 101–110.

[64] F.J. Giblin, B. Chakrangi, V.N. Reddy. Glutathione and lens epithelial function. Invest. Ophthalmol. Vis. Sci. 15 (5) (1976) 381–393.

[65] B.V. Zlokovic, et al. Blood-to-lens transport of reduced glutathione in an in situ perfused Guinea-pig eye. Exp. Eye Res. 59 (4) (1994) 487–496.

[66] A.P. Quist, S.K. Rhodes, H. Lin, R. Lal. Physiological role of gap-junctional hemichannels. Extracellular calcium-dependent isosmotic volume regulation, J. Cell Biol. 148 (5) (2000) 1063–1074.

[67] H. Sies. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative stress, Redox Biol 11 (2017) 613–619.

[68] H.S. Marinho, C. Real, L. Cymne, H. Soares, F. Antunes. Hydrogen peroxide sensing, signaling and regulation of transcription factors, Redox Biol 2 (2014) 535–562.

[69] H.J. Forman, M. Marios, F. Ursini. Signaling functions of reactive oxygen species, Biochemistry 49 (5) (2010) 835–842.

[70] A. Rahal, et al. Oxidative stress, prooxidants, and antioxidants: the interplay, BioMed Res. Int. 2014 (2014) 761264.

[71] J.E. Contreiras, et al. Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture, Proc. Natl. Acad. Sci. U. S. A. 99 (1) (2002) 495–500.

[72] I.B. Poole. The basics of thiol and cysteine in redox biology and chemistry, Free Radic. Biol. Med. 80 (2015) 148–157.

[73] H. Sies, Dean P. Jones. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents, Nat. Rev. Mol. Cell Biol. 21 (2020) 363–383. https://doi.org/10.1038/s41591-020-0273-1.

[74] R. Gniadecki, T. Thorn, J. Vicanova, A. Petersen, H.C. Wulf. Role of mitochondria in reactive oxygen species signaling and regulation of transcription factors, Redox Biol 2 (2014) 535–562.

[75] H.J. Forman, M. Marios, F. Ursini. Signaling functions of reactive oxygen species, Biochemistry 49 (5) (2010) 835–842.

[76] L.B. Poole. The basics of thiol and cysteine in redox biology and chemistry, Free Radic. Biol. Med. 80 (2015) 148–157.

[77] H.S. Marinho, C. Real, L. Cymne, H. Soares, F. Antunes. Hydrogen peroxide sensing, signaling and regulation of transcription factors, Redox Biol 2 (2014) 535–562.

[78] B.V. Zlokovic, et al. Blood-to-lens transport of reduced glutathione in an in situ perfused Guinea-pig eye. Exp. Eye Res. 59 (4) (1994) 487–496.

[79] M.A. Retamal, et al. Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J. Neurosci. 27 (50) (2007) 13781–13792.

[80] J.T. Le, et al. Gap junction intercellular communication mediated by connexin43 in astrocytes is essential for their resistance to oxidative stress, J. Biol. Chem. 289 (3) (2014) 1345–1354.

[81] M.A. Riquelme, J.X. Jiang. Elevated intracellular Ca(2+) signals by oxidative stress activate connexin 43 hemichannels in osteocytes. Bone Res 1 (4) (2013) 355–361.

[82] C.M. Hotnik, C.E. Pocrnich, H. Liu, D.W. Laird, Q. Shao. The protective effect of functional connexin43 channels on a human epithelial cell line exposed to oxidative stress, Invest. Ophthalmol. Vis. Sci. 49 (2) (2008) 800–806.

[83] J.E. Contreiras, et al. Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture, Proc. Natl. Acad. Sci. U. S. A. 99 (1) (2002) 495–500.