EFFECT OF FLOUR FROM PEA STRAW ON LIPID PEROXIDATION AND ANTIOXIDANT PROTECTION IN THE FOOD SYSTEM OF RATS WITH EXPERIMENTAL DYSBIOSIS

Abstract

The work shows that growing peas in Ukraine produces a significant amount of a secondary resource - unused straw, which is inexpedient from both economic and environmental points of view. This also contradicts current global trends regarding the most efficient use of all available types of food and feed raw materials to ensure food security of the population, and reduce the negative impact on the environment. It is shown that the use of pea straw in the feed industry will allow returning a significant amount of natural resources into the chain of creating products for people, in addition, it will contribute to an increase in the production of animal protein. The reasons for the low efficiency of using straw as a component of enriching the nutritional value of compound feed products are given and the expediency of using it as a component with functional properties is shown.

The aim of the work was to determine the effect of the consumption of flour from pea straw on the state of lipid peroxidation in the digestive system under conditions of experimental dysbiosis.

We used flour from the vegetative parts of peas (straw). Dysbiosis was reproduced in rats using the antibiotic lincomycin. The state of lipid peroxidation (LPO) was studied by the content of malondialdehyde (MDA) in the tissues of the digestive system (mucous membranes of the cheeks, small and large intestines, as well as in the liver). Pea straw flour was added to the compound feed in the amount of 10% instead of wheat grain. The experiment lasted 18 days. The activity of the antioxidant enzyme catalase was also determined, and the antioxidant-prooxidant index (API) was calculated from the ratio of catalase and MDA indices.

An increase in lipid peroxidation intensity and a slight decrease in catalase activity in rats with dysbiosis were found. Consumption of flour from pea straw reduced the intensity of lipid peroxidation, especially in the colon mucosa. It was found that dysbiosis in the digestive system stimulates LPO to a greater extent in organs with low catalase activity. Pea straw flour has antioxidant properties.

Key words: peas, straw, dysbiosis, lipid peroxidation, digestive system, feeding, nutrition

Introduction

The gross harvest of peas in Ukraine in recent years has increased significantly, if in 2012/2013 the volume was 349 thousand tons, then over the past 5 years this figure fluctuates between 478.8 ... 755 thousand tons due to an increase in acreage. This trend is typical for the EU countries. The prerequisites for growth are an increase in world consumption, new trends in healthy nutrition, and reducing the negative impact on the environment.

Thus, an urgent problem is the search for rational ways to return pea straw to the chain of creating products for people and the best option may be to use it in the feed industry, since it will increase the production of animal protein.

The low efficiency of using straw as a fodder means is associated with its low digestibility, poor feeding, although the energy of straw is equivalent to 40-50% of the energy of grain, however, it is in a form that is difficult to access. All this leads to the limitation of the use of straw for enriching the nutritional value of compound feed products, however, its use as a functional component can be a promising direction.

It was found that in rats with experimental dysbiosis reproduced with the antibiotic lincomycin, inflammatory-dystrophic processes develop in the digestive system, in the pathogenesis of which lipid peroxidation (LPO) plays a significant role [2-5].
To counteract lipid peroxidation in the body, there is an antioxidant system (AOS), one of the components of which is the enzyme catalase, which is capable of breaking down hydrogen peroxide (H₂O₂) [6].

In our previous work, it was shown that flour from pea straw has a high antidisbiotic activity, that is, a prebiotic [7].

The aim of this work was to determine the effect of flour from pea straw on LPO and the antioxidant effect in the tissues of the digestive system of rats with experimental dysbiosis.

Materials and methods of research
Pea straw flour was obtained from the vegetative parts of peas, which were crushed on a laboratory knife grinder and sieved through a sieve with a hole size of 0.8 mm. Experimental dysbiosis was reproduced in white Wistar rats (males 2–2.5 months old, live weight 193 ± 13 g) by administering the antibiotic lincomycin with drinking water at a dose of 70 mg / kg daily for the first 5 days [8]. The rats were divided into 3 levels of the group (5 animals each): the 1st group (control) received a standard diet [5], the 2nd and 3rd groups received lincomycin, the diet of the 2nd group was standard, and in 3rd group 10% of wheat grain was replaced by flour from pea straw.

Euthanasia of animals was carried out on the 18th day of the experiment under thiopentane anesthesia (20 mg/kg) and the mucous membranes of the oral cavity (MOC) (cheek), small intestine and large intestine, as well as the liver were isolated. Intestinal mucous membranes were isolated after preliminary washing from the chyme with cold 0.9% NaCl solution. In tissue homogenates, the content of malondialdehyde (MDA) was determined [9], the activity of catalase [8], and the antioxidant-prooxidant index (API) was calculated from the ratio of catalase activity and MDA content [8].

The experimental results were subjected to standard statistical processing [10].

Results and discussion.
Table 1 shows the results of determining the content of the end product of lipid peroxidation - malondialdehyde (MDA).

Bioobject	Groups of laboratory animals	1 (control)	2 (dysbiosis)	3 (dysbiosis + flour from pea straw)
Oral mucosa		23.3±2.0	38.7±2.8	25.6±3.4
		P<0.01	P<0.01	P1<0.05
Small intestine		3.88±0.48	7.74±0.32	6.51±0.55
		P<0.01	P<0.05	P1<0.05
Colon		2.31±0.16	7.49±0.59	3.27±0.35
		P<0.01	P<0.05	P1<0.01
Liver		19.49±1.35	32.87±1.71	28.05±1.67
		P<0.01	P<0.05	P1<0.05

Note P - compared to group 1
P1 - compared with group 2

From the results obtained, it can be seen that the highest activity of catalase is observed in the OSS, and the lowest in the mucous membrane of the colon. With dysbiosis, catalase activity in the colon decreases by 49%, in the OAS and small intestine by 28 %, and practically unchanged in the liver.

Consumption of flour from pea straw does not significantly affect the activity of catalase in the OAS and in the liver, but significantly increases it in the intestine. An increase in the level of catalase in the mucous membrane of the colon by 43.6 %, in the small intestine by 10.6 %, in the OAS and in the liver by 5.43 and 2.3 %, respectively. Normalization of catalase levels is not
observed in all tissues. The liver did not respond to the consumption of pea straw flour.

Table 3 shows the results of determining the API index, which is an indicator of the balance of the antioxidant and prooxidant systems of the body [8].

Table 3 - The effect of pea straw flour on the API index in the digestive system of rats with experimental dysbiosis

Bioobject	Groups of laboratory animals			
	1 (control)	2 (dysbiosis)	3 (dysbiosis + flour from pea straw)	
Oral mucosa	3.77±0.31	1.85±0.22	2.96±0.30	P<0.01
		P>0.05	P1<0.05	
Small intestine	10.52±0.17	4.28±0.49	5.62±0.93	P<0.05
		P<0.001	P>0.05	P1<0.05
Colon	9.35±0.91	1.47±0.20	4.83±0.47	P<0.05
		P<0.001	P1<0.01	
Liver	2.95±0.21	1.69±0.19	2.02±0.2	P<0.05
		P<0.05	P1>0.05	

Note P - compared to group 1
P1 - compared with group 2

It can be seen that the highest level of API is observed in the mucous membranes and the lowest in the liver. With dysbiosis, the API index significantly decreases in all tissues of the digestive system: in the OAS by 5%, in the small intestine by 59%, in the large intestine by 84%, in the liver by 43%.

Consumption of flour from pea straw increases the level of the API index: in the OSS by 60%, in the small intestine by 31%, in the large intestine by 229%, in the liver by 20%, however, this indicator normalizes only in the OAS.

The data obtained indicate that according to this indicator, the mucous membrane of the large intestine was the most sensitive to the action of flour from pea straw.

At the same time, the only biological object in which lipid peroxidation is normalized is SOPR, possibly by the level of the highest catalase activity.

A significant increase in LPO under conditions of dysbiosis in the intestinal mucosa (2-3 times) is possibly also explained by the low level of catalase activity in these tissues: 2-4 times less than in the OAS.

Conclusions

Based on the work done, the following conclusions can be drawn.

1. In case of dysbiosis in the digestive system, there is an activation of lipid peroxidation (LPO), which is most pronounced in the mucous membrane of the large intestine.

2. The intensity of LPO is to a certain extent inversely related to the activity of catalase.

3. Consumption of flour from pea straw reduces the level of lipid peroxidation, and to a greater extent in the mucous membrane of the large intestine.

REFERENCES

1. Ot limskoy fasoli do golubinogo goroha: OON zapuskaet Mezhdunarodnyiy god zernobobovyih. Elektronniy resurs. – Rezhim dostupu http://www.fao.org/news/story/ru/item/343653/icode/
2. Levitsky A. P. The experimental prophylaxis of the peroxide periodontitis by antidysbiotic means / A. P. Levitsky, O. A. Makarenko, I. A. Selivanska [et al.] // Journal of Education, Health and Sport. 2017. – v. 7, № 2. – P. 682-693.
3. Markov A.V. Influence of oral fatty applications on biochemical indicators of inflammation and dysbiosis in the tissues of the rat mouth. Markov A.V., Labush Iu.Z., Khodakov I.V., Levitsky A.P., Varava G.N. – Journal of Education, Health and Sport. – 2018. – № 8(10). – P. 392-404.
4. Levitsky A. P. Influence of high-fat nutrition with different fat-acid composition of fats on lipid peroxidation processes in rat's organs and tissues / Levitsky A. P., Egorov B. V., Gozhenko A. I., Badiuk N.S., Selivanskaya I. A., Lapinskaya A. P. // PharmacologyOnLine; Archives - 2021 - vol.1 – P. 37-46.
5. Levickij A.P. Normalizaciya fitopreparatom «Kvertulin» obiminu essencial'nyih zhirnih kislot fosfolipidov pechinki shchuriv, yaki otrimuvali pal'movu oiliyu na tli disbiozu / Levickij A.P., Markov A.V., Papin T.I., Zubachik V.M. // Fitoterapiya. Chasopis. – 2021. –№2. – S. 35-39.
6. Men'shikova E. B., Lankin V. Z., Zenkov N. K. i dr. Okislitel'nyj stress. Prooksidanty i antioksidanty. M. : Slovo, 2006. 553 s.
7. Levickij A. P. Metody eksperimental'noj stomatologii: uchebno-metodicheskoe posobie / A. P. Levickij, O. A. Makarenko, S. A. Dem'yanenko. – Simferopol': Tarpan, 2018. – 78 s.
8. Stal'naya I. D. Metod opredeleniya malonovogo dial'degida s pomoshch'yu tiobarbiturovoj kisloty // Sovremennye metody v biohimii. – M., 1977. – S. 66-68.
9. Truhacheva N. V. Matematicheskaya statistika v mediko-biologicheskikh issledovaniyah s primeneniem paketa Statistica. – M.: GEOTAR-Media, 2012. – 384 s.
ВПЛИВ МУКИ З ГОРОХОВОЇ СОЛОМИ НА ПЕРЕКИСНЕ ОКИСНЕННЯ ЛІПІДІВ ТА АНТИОКСИДАНТНИЙ ЗАХИСТ В ТРАВНІЙ СИСТЕМІ ЩУРІВ З ЕКСПЕРИМЕНТАЛЬНИМ ДИСБІОЗОМ

Анотація. В роботі показано, що при вирощуванні гороху в Україні отримується значна кількість вторинного ре- сурсу – соломи, яка не використовується, що недоцільно як з економічної так і з екологічної точок зору. Це також супер- чить актуальним створенням сьогодення щодо максимально ефективного використання усіх доступних видів харчової та кормової сировини для забезпечення продовольчої безпеки населення, змінення негативного впливу на навколиш- нє середовище. Показано, що використання горохової соломи у комбікормій промисловості дозволяє поверху зменшити значний обсяг природного ресурсу у тащо створення продуктів для людей, крім того, сприятиме збільшенню виробництва тва- ринного білка. Наведено дані, що низької ефективності використання соломи як компонента для збагачення поживної цін- ності комбікормової продукції та показано доцільність застосування як компонента із функціональними властивостями.

Метою роботи було визначення впливу споживання муки з горохової соломи на стан пероксидації ліпідів в травній системі щурів умов експериментального дисбіоzu.

В роботі використовувався музу з вегетативних частин гороху (солома). Дисбіоз відтворювали у цілях за допо- гою антибіотика лінкоміцина. Досліджені станови пероксидації ліпідів (ПОЛ) за кількістю мальовий пероксидду (МДА) в органах і тканинах травних систем (сільови оболонки щурів, тонких та товстих кишок, а також в печінці). Муку з горохо- вої соломи вводили до складу комбікорму в кількості 10% замість зерна пшениці. Тривалість досліду становила 18 днів. Визначали також активність антиоксидантного ферменту каталязу і за співвідношенням показників каталязу і МДА розраховували антиоксидантно-протоксидантний індекс (АПІ). Встановлено зростання інтенсивності ПОЛ і зменшення активності каталязу у цілях з дисбіоzu. Споживання муки з горохової соломи знижувало інтенсивність ПОЛ, особ- ліво сильно в сільових оболонках товстої кишки. Встановлено, що дисбіоз викликає у травній системі стимуляцію ПОЛ в більшій мірі в таких органах, які мають низьку активність каталязу. Мука з горохової соломи виявляє антиоксидантні влас- тивості.

Ключові слова: горох, солома, дисбіоз, перекисне окиснення ліпідів, травна система, голодя, харчування.

ЛІТЕРАТУРА

1. Левицький, A. P. The experimental prophylaxis of the peroxide periodontitis by antidiabiotic means / A. P. Levitsky, O. A. Makarenko, I. A. Selivianska [et al.]. // Journal of Education, Health and Sport. 2017. – v. 7, № 2. – P. 682-693.
2. Стрітенська, Е. Б. Методи досліджень у гострих процесах / Е. Б. Стрітенська, В. З. Ланкин, Н. К. Зенков и др. – Київ: В. М. // Фітотерапія. Часопис. – 2021. – № 2. – С. 35-39.
3. Левицький, A. P. Ефективна фітопрепаративна провінція: медико-біологічні дослідження / A. P. Levitsky, O. A. Makarenko, С. А. Демяненко. – Симферополь: Tarpan, 2018. – 78 с.
4. Макаренко, С. А. Розробка методу оцінки здатності фосфоліпідів печінці шурів, які отримували пальмову олію на тлі дисбіозу / С. А. Макаренко, А. М. Марков, Т. І. Пупін, З. С. Селівська, Е. Б. Стрітенська, В. З. Ланкин, Н. К. Зенков // ГНОТАР-Медиа, 2012. – 384 с.

Cite as Vancouver Citation Style

Levitsky A., Lapinska A., Velichko V. Effect of flour from pea straw on lipid peroxidation and antioxidant protection in the food system of rats with experimental dysbiosis. Grain Products and Mixed Fodder’s, 2021; 21 (4, 84): 16-19.

Cite as State Standard of Ukraine 8302:2015

Effect of flour from pea straw on lipid peroxidation and antioxidant protection in the food system of rats with experimental dysbiosis. // Levitsky A. et al. // Grain Products and Mixed Fodder’s. 2021. Vol. 21, Issue 4 (84). P. 16-19.

Received 09.10.2021
Reviewed 27.10.2021
Approved 03.12.2021