MULTIPlicity ON A RICHARDSON VARIETY
IN A COMINUSCULE G/P

MICHAËL BALAN

Abstract. We show that in a cominuscule partial flag variety G/P, the multiplicity of an arbitrary point on a Richardson variety $X_w^v = X_w \cap X^v \subset G/P$ is the product of its multiplicities on the Schubert varieties X_w and X^v.

Introduction

Richardson varieties, named after [33], are intersections of a Schubert variety and an opposite Schubert variety inside a partial flag variety G/P (G a connected complex semi-simple group, P a parabolic subgroup). They previously appeared in [9, Ch. XIV, §4] and [36], as well as the corresponding open cells in [6]. They have since played a role in different contexts, such as equivariant K-theory [24], positivity in Grothendieck groups [3], standard monomial theory [4], Poisson geometry [8], positroid varieties [13], and their generalizations [14, 1].

On the other hand, singularities of Schubert varieties have been extensively studied in the last decades. The singular locus of Schubert varieties in Grassmannians has been determined independently in [37] and [27], and more generally in a minuscule G/P in [26]. In the full flag variety of type A_n, it has been determined independently in [2], [3], [12], and [29].

Moreover, the multiplicity of a singular point on a Schubert variety is known in several cases: when G/P is minuscule of arbitrary type, or cominuscule of type C_n, a recursive formula was given in [26]. A direct determinantal formula was given in [34] for G/P a Grassmannian; it has been subsequently interpreted in terms of non-intersecting lattice paths [17]. The multiplicity problem has also been studied in relationship with Hilbert functions and Gröbner degenerations [7, 16, 18, 23, 31, 32], as well as with T-equivariant cohomology [10, 11, 15, 20, 21, 25]. The problem of determining the multiplicity of a point in a Schubert variety in the full flag variety is more complicated; see [39, 28, 40, 41].

For Richardson varieties in a minuscule G/P, the multiplicity of a T-fixed point ($T \subset P$ a maximal torus in G) has been determined by Kreiman and Lakshmibai [22] (for the Gröbner point of view, see also [19] in type A_n and [38] in orthogonal types).

In this paper, we determine the multiplicity of an arbitrary point on a Richardson variety in a cominuscule G/P.

Before stating the main result, let us fix some notation. Let G, P, T be as above, with G adjoint. Let $X(T)$ be the character group of T, $R \subset X(T)$ the root system,
and $W = N_G(T)/T$ its Weyl group. Let $B \subset G$ be a Borel subgroup such that $T \subset B \subset P$: it determines a system of positive roots R^+ and a system of simple roots S. Denote by B^- the opposite Borel subgroup (i.e. such that $B \cap B^- = T$).

Let $W_P \subset W$ be the subgroup associated to P (so that $W_G = W$ and W_β is the trivial subgroup). In the quotient $W^P = W/W_P$, every coset wP contains a unique minimal element for the Bruhat order \leq on W, so we shall identify W^P with the set of minimal representatives. The B-orbit (resp. the B^--orbit) of a T-fixed point $e_\tau = \tau P$ is called a Schubert cell (resp. an opposite Schubert cell) in G/P, and denoted by C_τ (resp. C^τ). Its closure is the Schubert variety X_τ (resp. the opposite Schubert variety X^τ).

If $v, w \in W^P$, then the intersection $X_w^v = X_w \cap X^v$ is called a Richardson variety; it is non-empty if and only if $v \leq w$ (note that Schubert varieties are the particular cases $X_w = X_w^v$ and $X^v = X_w^v$, where $e, w_0 \in W$ are the identity and the longest element, respectively).

Now assume P to be maximal, and let α be the associated simple root (so that W_P is generated by the reflections s_δ with $\delta \in S \setminus \{\alpha\}$). Then P (or α) is said to be

- cominuscule if α occurs with a coefficient 1 in the decomposition of the highest root of R^+;
- minuscule if α^\vee is cominuscule in the dual root system R^\vee.

The main result of this paper is the following:

Theorem 0.1. Assume P is cominuscule. Let $m \in X_w^v$ be arbitrary, and denote by μ_w (resp. μ^v, μ_w^v) the multiplicity of m on X_w (resp. X^v, X_w^v). Then

$$
(1) \quad \mu^v_w = \mu_w \mu^v.
$$

This result indeed determines the multiplicities on X_w^v, since those on X_w and X^v are known: types A_n, D_n, E_6, E_7 are covered by [20], Section 3 (since cominuscule is equivalent to minuscule in those types); type C_n is covered by [20], Section 4. The only remaining case, in type B_n (cf. the table below), is elementary, and covered in the Appendix of the present paper for the sake of completeness.

Note that (1) is exactly the result obtained in [22] for a T-fixed point in a minuscule G/P.

To prove the theorem, we shall use a description of the multiplicity using a central projection: namely, given a projective variety $X \subset P^N$ and a point $m \in X$, we consider the projection p_m of centre m, onto a hyperplane not containing m. Then the multiplicity of m on X is the difference between the degree of X and the projective degree of p_m. Note that the projective degree of p_m is zero when X is a cone. We apply this description for X, the projective closure of the affine trace $X_w^v \cap O_\tau$, where O_τ is an affine open subset of G/P identified with A^N. One then needs to know whether the affine traces of X_w, X^v, X_w^v are cones or not. In this setting, we can explain why we assume that P is cominuscule:

- it implies that $X_w \cap O_\tau$ is a cone over any point of the cell C_τ (although this may not be the case for $X^v \cap O_\tau$);
- we relate the central projection p_m to a map which turns out to be a C-action if P is cominuscule. It is this C-action which allows to prove all the necessary properties for p_m.

In Section 1, we give a system of local coordinates in which $X_w \cap O_\tau$ is a cone over both e_τ and m, and $X_v \cap O_\tau$ over e_τ. In Section 2, we prove Theorem 0.1 assuming certain formulas for the degrees involved and that $X_v \cap O_\tau$ is not a cone over m. These assumptions are summarized in Proposition 2.1 and proved in Sections 4 and 5. The proofs are based on a C-action linking the central projections of centres m and e_τ; this action is defined and studied in Section 3.

For the convenience of the reader, we give the minuscule and cominuscule weights in the following table:

Type	Minuscule	Cominuscule	Both
A_n	\bullet	\circ	\bullet
B_n	\bullet	\circ	\bullet
C_n	\bullet	\circ	\bullet
D_n	\bullet	\circ	\bullet
E_6	\bullet	\circ	\bullet
E_7	\bullet	\circ	\bullet

There are no minuscule nor cominuscule fundamental weights in types E_8, F_4, G_2.

Assumption. For the rest of the paper, the parabolic subgroup P is assumed to be cominuscule.

1. Local Coordinates

Use the notation as in the Introduction. Moreover, R_P denotes the root system associated with P,

$$R^+ \setminus R^+_P = \{ \beta \in R^+ \mid U_\beta \subset R_u(P) \},$$

where $R_u(P)$ is the unipotent radical of P, and U_β is the root subgroup associated with β.

Let $m \in X_w^v$. Then m lies in a Schubert cell C_τ for some $\tau \in W^P$. Let

$$U^-_\tau = \prod_{\beta \in \tau(R^+ \setminus R^+_P)} U_{-\beta}$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
and $O_\tau = U^- e_\tau$, where $e_\tau = \tau P$. We identify U_β with C via an isomorphism $\theta_\beta : C \to U_\beta$ satisfying

$$t \theta_\beta(x) t^{-1} = \theta_\beta \left(\frac{1}{\beta(t)} x \right)$$

for all $t \in T$ and all $x \in C$. Let N be the cardinality of $R^+ \backslash R^+_P$. We identify O_τ with the affine space A^N via the isomorphism

$$A^N \to O_\tau$$

$$\left(x_\beta \right)_{\beta \in \tau(R^+ \backslash R^+_P)} \to \prod_{\beta \in \tau(R^+ \backslash R^+_P)} \theta_\beta(x_\beta).e_\tau.$$

(In particular, N is the dimension of G/P.)

Lemma 1.1. Let $\beta \in R$, and $\tau \in W^P$. Then U_β fixes e_τ if and only if $-\beta \notin \tau(R^+ \backslash R^+_P)$.

Proof. Let $\beta \in R$, and $\tau \in W^P$. Then

$$U_\beta.e_\tau = e_\tau \iff \tau^{-1} U_\beta \tau P = P$$

$$\iff U_{-\beta} \subset P$$

$$\iff \tau^{-1} \beta \in R^+ \text{ or } -\tau^{-1} \beta \in R^+_P$$

$$\iff -\beta \notin \tau(R^+) \text{ or } -\beta \in \tau(R^+_P)$$

$$\iff -\beta \notin \tau(R^+ \backslash R^+_P).$$

□

Lemma 1.2. The Schubert cell C_τ is the affine subspace of O_τ defined by the vanishing of the coordinates $x_{-\beta}$ with $\beta \in R^+$.

Proof. Since B is the semi-direct product of T and the unipotent subgroup U, we have $C_\tau = U.e_\tau$. Moreover, for any ordering of positive roots $\{\beta_1, \ldots, \beta_p\}$,

$$U = \prod_{i=1}^p U_{\beta_i}.$$

We choose an ordering such that the positive roots β with $-\beta \notin \tau(R^+ \backslash R^+_P)$ appear at the end. Then, by the preceding lemma, we have

$$C_\tau = \prod_{\beta \in \tau(R^+ \backslash R^+_P)} U_{-\beta}.e_\tau \subset O_\tau.$$

□

The following lemma will be useful for the next section.

Lemma 1.3. For all $\beta, \gamma \in \tau(R^+ \backslash R^+_P)$ and for all $x, y \in C$, the elements $\theta_\beta(x)$ and $\theta_\gamma(y)$ commute.

Proof. We use the following expansion for the commutator (cf. [35], proposition 8.2.3),

$$\theta_\beta(x)\theta_\gamma(y)\theta_\beta(x)^{-1}\theta_\gamma(y)^{-1} = \prod_{i,j \geq 0 \atop i \beta + j \gamma \in R} \theta_{i \beta + j \gamma}(c_{i \beta, j \gamma} x_i^j y^j),$$
where $c_{\delta,\gamma,i,j}$ are some constants in C. Since the commutator must lie in U_{-}^τ, it suffices to prove that the roots of the form $i\beta + j\gamma$ do not lie in $\tau(R^+ \setminus R^+_P)$. Now, P is the parabolic subgroup associated with the simple root α. Since α is cominuscule, a positive root δ lies in $R^+ \setminus R^+_P$ if and only if α occurs with coefficient 1 in the expression of δ. Clearly, α occurs with a coefficient $i + j$ in $\tau(\delta_{-\beta} + j\gamma)$. \hfill \Box

Remark 1.4. Identifying O_τ with U_{-}^τ, it follows from Lemma 1.3 that the isomorphism of algebraic varieties $A_N \to O_\tau$ is also an isomorphism of unipotent groups.

Example 1.5. Let $G = SL_n(C)$. It is a group of type A_{n-1}. The torus T is the group of diagonal matrices of determinant 1, and the Borel subgroup B is the group of upper triangular matrices of determinant 1. The roots are denoted $\alpha_{i,j}$, where

$$\alpha_{i,j} : T \to C^* : \begin{pmatrix} t_1 & \cdots & t_i & \cdots & t_n \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \cdots & t_i & \cdots & t_j \\ \vdots & \cdots & \cdots & \cdots & \vdots \\ 1 & \cdots & \cdots & \cdots & 1 \end{pmatrix} \mapsto \frac{t_i}{t_j}.$$

The positive roots are the $\alpha_{i,j}$ with $i < j$, and the simple roots are the $\alpha_i = \alpha_{i,i+1}$ ($i = 1, \ldots, n-1$). Let $\omega = \omega_d$ be the fundamental weight associated with the simple root α_d. The corresponding parabolic subgroup P is

$$P = \left\{ \begin{pmatrix} \ast & \ast \\ 0_{(n-d) \times d} & \ast \end{pmatrix} \right\}.$$

The group G acts transitively on the Grassmannian $G_{d,n}$ of d-spaces in C^n, and P is the isotropy subgroup of the vector space generated by e_1, \ldots, e_d, where (e_1, \ldots, e_n) is the canonical basis of C^n. The Weyl group W of this root system is S_n, and W_P is isomorphic to $S_d \times S_{n-d}$, so

$$W^P = I_{d,n} = \{ i = i_1 \ldots i_d \mid 1 \leq i_1 < i_2 < \cdots < i_d \leq n \}.$$

The Lie algebra \mathfrak{g} of G is the space of traceless matrices. Let t be the Lie algebra of the torus T. We have the weight decomposition of \mathfrak{g},

$$\mathfrak{g} = t \oplus \bigoplus_{i \neq j} \mathbb{C}E_{i,j},$$

where $E_{i,j}$ is the elementary matrix with a 1 on the row i and column j, and zero elsewhere. Thus, the root subgroups are given by

$$U_{\alpha_{i,j}} = \{ I_n + xe_{i,j} \mid x \in \mathbb{C} \}$$

and the isomorphism $\theta_{\alpha_{i,j}}$ is just $x \mapsto \exp(xE_{ij})$. Moreover,

$$R^+ \setminus R^+_P = \{ \alpha_{i,j} \mid i \leq d < j \},$$

so in this case, Lemma 1.3 becomes an elementary matrix computation.

Returning to the general case, we denote by $(m_{-\beta} | \beta \in \tau(R^+ \setminus R^+_P))$ the coordinates of m, that is,

$$m = \prod_{\beta \in \tau(R^+ \setminus R^+_P)} \theta_{-\beta}(m_{-\beta})e_\tau.$$
Notation 1.6. We set
\[Y_w = X_w \cap O_\tau, \quad Y^v = X^v \cap O_\tau, \quad Y^w = X^w \cap O_\tau. \]
These sets are affine varieties, i.e., Zariski-closed in \(O_\tau = A^N \).

We now investigate if these affine varieties are cones over \(m \).

Proposition 1.7. The varieties \(Y_w, Y^v \) and \(Y^w \) are cones over \(e_\tau \).

Proof. Let \(\omega^\vee : C^* \to T \) be the fundamental coweight associated to \(P \). Since \(\omega^\vee \) is minuscule, the pairing \(\langle \omega^\vee, \gamma \rangle \) is equal to 1 if \(\gamma \in R^+ \setminus R^+_P \) and to 0 if \(\gamma \in R^+_P \). Now multiplication in \(A^N \) by a scalar \(\xi \) is then given by conjugation in \(U^- \) by \(\tau(\omega^\vee)(\xi)^{-1} \in T \): indeed, for \(\beta = \tau(\gamma) \) with \(\gamma \in R^+ \setminus R^+_P \), and for \(z \in C \), we have
\[
\tau(\omega^\vee)(\xi)^{-1} \theta_\beta(z) \tau(\omega^\vee)(\xi) = \theta_\beta(\xi^{\tau(\omega^\vee),\beta} z) = \theta_\beta(\xi^{\omega^\vee,\gamma} z). (3)
\]

Let \(x \in Y_w \) (resp. \(x \in Y^v \)), and \((x_{-\beta}) \) be its coordinates. Then the point that has coordinates \((\xi x_{-\beta}) \) is \(t.x \), where \(t = \tau(\omega^\vee)(\xi) \in T \). Therefore, this point lies in \(X_w \cap O_\tau \) (resp. in \(X^v \cap O_\tau \)), since \(X_w \) (resp. \(X^v \)) is \(T \)-stable. It follows that \(Y_w, Y^v \), and therefore \(Y^w \) are cones over \(e_\tau \). \(\square \)

Proposition 1.8. The variety \(Y_w \) is a cone over \(m \).

Proof. Consider the translation that maps \(e_\tau \) to \(m \). It is given in coordinates by \((x_{-\beta}) \mapsto (x_{-\beta} + m_{-\beta}) \). But if \(x \) has coordinates \((x_{-\beta}) \), then, by Remark 1.2, the point of coordinates \((x_{-\beta} + m_{-\beta}) \) corresponds to \(b.x \), where \(b = \prod_\beta \theta_\beta(m_{-\beta}) \). Since \(m_{-\beta} = 0 \) for all \(\beta > 0 \), we have \(b \in B \) according to Lemma 1.2. Now \(b \) leaves \(Y_w \) invariant and maps \(e_\tau \) to \(m \). \(\square \)

However, the opposite Schubert variety \(Y^v \) need not be a cone over \(m \).

Example 1.9. We take the same notation as in Example 1.3. In particular, using the identification \(W^F = I_{d,n} \), we denote a Schubert variety in \(G_{d,n} \) by \(X_{i,j} \), and similarly for opposite Schubert and Richardson varieties. In the Grassmannian \(G_{3,7} \), consider the Richardson variety \(X_{3,5}^{125} \). The coordinates on the open set \(O_{256} \) are parametrized by the set \(\{12, 15, 16, 32, 35, 36, 42, 45, 46, 72, 75, 76\} \), where \(ij \) stands for the root \(\alpha_i, j \). More precisely, we have

\[
A^{12} \rightarrow O_{256} \quad \begin{bmatrix} x_{12} & x_{15} & x_{16} \\ 1 & 0 & 0 \\ x_{32} & x_{35} & x_{36} \\ x_{42} & x_{45} & x_{46} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ x_{72} & x_{75} & x_{76} \end{bmatrix}
\]

Here, a matrix between brackets actually stands for the 3-space in \(C^7 \) generated by its columns. The equations of \(X_{3,5}^{125} \) are
\[
\begin{align*}
& x_{72} = x_{75} = x_{76} = 0, \\
& x_{42} = 0.
\end{align*}
\]
The equations of X_{125}^\ast are
\[
\begin{align*}
&x_{15}x_{36} - x_{35}x_{16} = 0, \\
x_{15}x_{46} - x_{45}x_{16} = 0, \\
x_{35}x_{46} - x_{45}x_{36} = 0.
\end{align*}
\]

Let
\[
m = \begin{bmatrix}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix} \in X_{356}.
\]

We set
\[
\begin{align*}
y_{16} &= x_{16} - 1, \\
y_{36} &= x_{36} + 1, \\
y_{ij} &= x_{ij}, & \text{if } ij \notin \{16, 36\}.
\end{align*}
\]
The equations in these new coordinates are
\[
\begin{align*}
y_{72} = y_{75} = y_{76} = 0, \\
y_{42} = 0,
\end{align*}
\]
for X_{356} and
\[
\begin{align*}
y_{15}(y_{36} - 1) - y_{35}(y_{16} + 1) &= 0, \\
y_{15}y_{46} - y_{45}(y_{16} + 1) &= 0, \\
y_{35}y_{46} - y_{45}(y_{36} - 1) &= 0,
\end{align*}
\]
for X_{125}^\ast. While the equations for X_{356} remain homogeneous, those for X_{125}^\ast do not.

If Y^\ast is indeed a cone over m, then we have the following result. The proof is taken from [22], Remark 7.6.6.

Proposition 1.10. Assume Y^\ast is a cone over m. Let μ_w (resp. μ^v, μ^v_w) be the multiplicity of m on X_w (resp. X^v, X^v_w). Then
\[
\mu_w^v = \mu_w \mu^v.
\]

Proof. In this case, $Y_w^v = Y_w \cap Y^v$ is a cone (over m) as well, so we may consider the projective varieties $P(Y_w)$, $P(Y^v)$ and $P(Y^v_w)$, consisting of lines through m. Then μ_w (resp. μ^v, μ^v_w) is just the degree of $P(Y_w)$ (resp. $P(Y^v)$, $P(Y^v_w)$). We conclude with Bézout’s theorem since $P(Y_w)$ and $P(Y^v)$ intersect transversely (cf. [33], Corollary 1.5).

Assumption 1.11. For the rest of the paper, we assume that Y^\ast is not a cone over m.

It is not clear however whether Y_w^v is a cone or not. This problem will be solved in Section 4.
2. Central projection and proof of Theorem 0.1

We shall compute the multiplicity of a point \(m \in Y_w \) by relating it to degrees of projections, which requires us to work in a projective setting. More precisely, embed \(\mathbb{A}^N \) into \(\mathbb{P}^N \) via

\[
\iota: \quad \mathbb{A}^N \rightarrow \mathbb{P}^N = \{[\xi : x_{-\beta}]\}
\]

and consider the projective closures

\[
Z_w = \iota(Y_w), \quad Z^v = \iota(Y^v), \quad Z^w = \iota(Y^w).
\]

We also identify \(\mathbb{P}^{N-1} \) with the hyperplane at infinity \(\xi = 0 \) and consider the central projection \(p_m : \mathbb{P}^N \rightarrow \mathbb{P}^{N-1} \), sending any point \(x \neq m \) to the intersection of the line \((mx) \) with \(\mathbb{P}^{N-1} \). If \(X \subset \mathbb{P}^N \) is any projective variety and \(m \in X \), then we have the following formula (cf. [30], Theorem 5.11),

\[
(5) \quad \deg X - \text{mult}_m X = \begin{cases} \deg(p_m)|_X & \text{if } X \text{ is not a cone over } m, \\ 0 & \text{if } X \text{ is a cone over } m, \end{cases}
\]

where \(\deg X \) is the degree of \(X \), \(\deg(p_m)|_X \) is the degree of the rational map \(p_m \) restricted to \(X \), and \(p_mX \) denotes the Zariski closure of \(p_m(X \setminus \{m\}) \).

Proposition 2.1.

(a) \(\deg Z^v = \deg Z_w \deg Z^v. \)
(b) \(Z^w \) is not a cone over \(m \).
(c) \(\deg(p_m)|Z^v = \deg(p_m)|Z^v. \)
(d) \(\deg(p_m Z^v) = \deg Z_w \deg(p_m Z^v). \)

We defer the proof to Section 4.

Proof of Theorem 0.1. Using (5) and Proposition 2.1, we obtain

\[
\mu^v_w = \deg Z^v_w - \deg(p_m)|Z^v_w \deg(p_m Z^v) = \deg Z_w \deg Z^v - \deg(p_m)|Z^v \deg Z_w \deg(p_m Z^v) = \deg Z_w \deg Z^v - \deg(p_m)|Z^v \deg(p_m Z^v) = \mu_w \mu^v.
\]

\[\square\]

Remark 2.2. In particular, this result enables us to find the singular locus of \(X^w \) in terms of those of \(X_w \) and \(X^v \): the point \(m \) is smooth on \(X_w \) if and only if \(\mu^v_w = 1 \) if and only if \(\mu_w = \mu^v = 1 \), that is, if and only if \(m \) is smooth on both \(X_w \) and \(X^v \). Note that this may also be seen more directly, using the fact that \(X_w \) and \(X^v \) intersect properly and transversely at any point at which \(\mu_w = \mu^v = 1 \) (cf. [33], Corollary 1.5, or [1], Corollary 2.9).

3. C-action on G/P

In this section, we introduce the main tool that will permit us to prove Proposition 2.1 in the next section. Let \(e_\tau, m \in \mathcal{O}_\tau \) be as before. We shall construct an action of (the additive group) \(\mathbb{C} \) on \(G/P \) for which \(e_\tau \) and \(m \) are in the same orbit.
Consider first the map
\[\varphi^* : \mathbf{C}^* \rightarrow B \]
\[\xi \mapsto \varphi_\xi = \tau(\omega^\vee)(\xi)^{-1}b\tau(\omega^\vee)(\xi), \]
where \(b \in B \cap U^- \) is the element defined in the proof of Proposition 1.8. The computation (3) shows that this map extends to a group homomorphism \(\varphi : \mathbf{C} \rightarrow B \). The natural \(B \)-action on \(G/P \) thus induces a \(\mathbf{C} \)-action,
\[\Phi^* : \mathbf{C} \times G/P \rightarrow G/P \]
\[(\xi, x) \mapsto \varphi_\xi x. \]

Moreover, \(\mathcal{O}_x \) is invariant under this action (again by (3)). Actually, \(\mathbf{C} \) acts on \(\mathcal{O}_x = \mathbf{A}^N \) by translations: indeed, we get the following commutative diagram
\[
\begin{array}{ccc}
\mathbf{C} \times \mathbf{A}^N & \xrightarrow{\Phi} & \mathbf{A}^N \\
(\xi, x_{-\beta}) & \xrightarrow{\Phi} & (x_{-\beta} - \xi m_{-\beta}) \\
\downarrow f & & \downarrow \Phi \downarrow p_m \\
P^N & \xrightarrow{-p_m} & P^{N-1} \\
\end{array}
\]
(6)

Let us now restrict to \(Y_w^u \): since it is a cone over \(e_\tau \), a point \([\xi : x]\) lies in \(Z_w^u \) if and only if \(x \in Y_w^u \). It follows that \(f(\mathbf{C} \times Y_w^u) = Z_w^u \). Thus, the commutative diagram (6) restricts to
\[
\begin{array}{ccc}
\mathbf{C} \times Y_w^u \setminus \{ (\xi, \xi m_{-\beta}) | \xi \in \mathbf{C} \} & \xrightarrow{\Phi} & \Phi(\mathbf{C} \times Y_w^u) \setminus \{ e_\tau \} \\
\downarrow f & & \downarrow \Phi \downarrow p_m \\
Z_w^u \setminus \{ m \} & \xrightarrow{p_m} & P^{N-1}. \\
\end{array}
\]
(7)

Remark 3.1. Since (6) is a fibre product diagram, any fibre \(\Phi^{-1}(\lambda y) \) (for \(\lambda \neq 0 \) and \([y] \in P^{N-1}\)) is mapped isomorphically via \(f \) to the fibre \(p_m^{-1}([y]) \). Since we have the equalities \(f(\mathbf{C} \times Y_w^u) = Z_w^u \), \(f(\mathbf{C} \times Y_w^u) = Z_w^u \) and \(\mathbf{C} \times Y_w = f^{-1}(Z_w^u) \), \(\mathbf{C} \times Y_w^u = f^{-1}(Z_w^u) \), the fibres of \(\Phi|_{\mathbf{C} \times Y_w^u} \), \(\Phi|_{\mathbf{C} \times Y_w^u} \) over a point \(\lambda y \) are isomorphic to the fibres of \(p_m|_{Z_w^u} \), \(p_m|_{Z_w^u} \) over the point \([y]\).

In the next section, this remark will allow us to relate the degree of \(p_m \) in diagram (7) to that of \(\Phi \).

4. PROOF OF PROPOSITION 2.1

Proof of (a). Since \(Y_w^u \), \(Y_v^u \), and \(Y_w^u \) are (affine) cones over \(e_\tau \), it is clear that \(Z_w^u = Z_w \cap Z_v \). In addition, this intersection is proper and generically transverse (34), Corollary 1.5), hence \(\deg Z_w^u = \deg Z_w \deg Z_v^u \) by Bézout’s theorem.

Notation 4.1. We denote by \(F_w^u \) the closure in \(\mathbf{A}^N \) of \(\Phi(\mathbf{C} \times Y_w^u) \), and by \(d_w^u \) the degree of \(p_m : Z_w^u \setminus \{ m \} \rightarrow p_m Z_w^u \) whenever it makes sense (i.e., when \(Z_w^u \) is not a cone). We define \(F_w^u, F_v^u, d_v^u \) in a similar way.

Proposition 4.2. When defined, the degree \(d_w^u \) is equal to the degree of \(\Phi : \mathbf{C} \times Y_w^u \rightarrow F_w^u \).

Proof. This follows from Remark 3.1. \(\square \)
Lemma 4.3. The following properties are equivalent:

- Z_w^v is a cone over m,
- $F_w^v = Y_w^v$,
- every fibre of $\Phi : C \times Y_w^v \to F_w^v$ has dimension 1.

In particular, they are true for $v = e$, hence $F_w = Y_w = \Phi(C \times Y_w)$.

Proof. By Remark 3.1, we see that the dimension of a generic fibre of Φ equals the dimension of a generic fibre of p_m. Now Z_w^v is a cone over m if and only if every fibre of p_m has dimension 1, if and only if $\dim F_w^v = \dim Y_w^v$. But $Y_w^v = \Phi(0 \times Y_w^v) \subset F_w^v$ and the varieties Y_w^v and F_w^v are irreducible, so Z_w^v is a cone over m if and only if $F_w^v = Y_w^v$. □

Proof of (b) and (c). By Proposition 4.2, it suffices to compare the degree d^v of $\Phi^v : C \times Y^v \to F^v$ with the degree d_w^v of $\Phi_w^v : C \times Y_w^v \to F_w^v$. First, the fibre of a point $x \in G/P$ for Φ is

$$\Phi^{-1}(x) = \{(\xi, \Phi(-\xi, x)) | \xi \in C\}.$$

In particular, a point lies in $\text{Im}(\Phi^v)$ (resp. in $\text{Im}(\Phi_w^v)$) if and only if its C-orbit meets Y^v (resp. Y_w^v). There exists an open set Ω^v of F^v in which the fibre of every point y consists of d^v points. Then d^v is just the number of points in the C-orbit of y that belong to Y^v. Now set $y = (y_{-\beta})_{\beta \in \tau(R^+ \setminus R^+_{\tau})}$ and let

$$c = \prod_{\beta \in \tau(R^+ \setminus R^+_{\tau})} \theta_{-\beta}(y_{-\beta}), \quad c^- = \prod_{\beta \in \tau(R^+ \setminus R^+_{\tau})} \theta_{-\beta}(-y_{-\beta}),$$

so we have $c.e_{\tau} = c^- . y =: x$. Since $c \in B$, $x \in C_{\tau} \subset Y_w$. Now c^- commutes with φ_{ξ} for all $\xi \in C$, hence every point in $c^-(\Omega^v)$ has a C-orbit which meets Y^v in exactly d^v points. In particular, $F_w^v \neq Y_w^v$, since otherwise every fibre of Φ_w^v would have dimension 1 (by Lemma 4.3), which is not the case for the fibre of x. This already shows (b), so it makes sense to talk about the degree d_w^v of Φ_w^v. Thus, let Ω_w^v be an open set of F_w^v such that for every point z in Ω_w^v, the fibre of z consists of d_w^v points. Since $x \in c^-(\Omega^v)$, $c^-(\Omega^v) \cap F_w^v$ and Ω_w^v are non-empty open sets of the irreducible variety F_w^v, so they must meet. Taking z in this intersection, we see that $d_w^v = d^v$, which shows (c). □

Proposition 4.4. The intersection $F_w \cap F^v$ is proper and transverse on an open set of F_w^v.

Proof. The transversality of the intersection $F_w \cap F^v$ on a generic point in F_w^v follows from the transversality of the intersection of a direct Schubert variety and an opposite Schubert variety. More precisely, let $(F_w)_{sm}$ be the open set of smooth points of F_w. Taking a point smooth on Y_w^v shows that $\Omega_w = (F_w)_{sm} \cap F_w^v$ is a non-empty open set of F_w^v. Let $(F^v)_{sm}$ be the open set of smooth points of F^v. Again, $\Omega^v = (F^v)_{sm} \cap F^v \neq \emptyset$. Indeed, take a smooth point x of F^v belonging to $\Phi(C \times Y^v)$. We have seen in the previous proof that from x we can construct an isomorphism c^- of F^v mapping x to a point of F_w^v, which thus remains smooth on F^v. The two non-empty open subsets Ω_w and Ω^v of the irreducible variety F_w^v have a non-empty intersection Ω_w^v. Now $\Omega_w^v = \Phi^{-1}(\Omega_w^v) \cap (P^1 \times Y_w^v)_{sm} \neq \emptyset$ since $P^1 \times Y_w^v$ is irreducible. We claim that $\Phi : Q_w^v \to \Omega_w^v$ is dominant. Indeed, we must show that every open subset U of Ω_w^v meets $\Phi(U)$, since U is open in F_w^v.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let $y = \Phi(p) \in \Omega$ be such a point. We view the map $\Phi : C \times A^N \to A^N : (\xi, x) \mapsto \varphi_{-\xi, x}$ as a map $\Phi : C^{N+1} \to C^N$. It is linear and surjective. Thus,

$$C^N \supset T_y(F_w) + T_y(F_v) \supset d\Phi_p(T_p(C \times Y_w)) + d\Phi_p(T_p(C \times Y_v))$$

$$\supset d\Phi_p(C \oplus (T_pY_w + T_pY_v))$$

$$\supset d\Phi_p(C \oplus C^N)$$

$$\supset C^N.$$

This transversality result proves that the intersection is proper: indeed, on one hand, $\dim(F_w \cap F_v) \geq \dim(F_w) + \dim(F_v) - N$, but on the other hand,

$$\dim(F_w \cap F_v) \leq \dim(T_y(F_w \cap F_v)) \leq \dim(T_yF_w + T_yF_v)$$

$$\leq \dim(T_yF_w) + \dim(T_yF_v) - \dim(T_yF_w + T_yF_v)$$

$$\leq \dim(F_w) + \dim(F_v) - N.$$

\[\square \]

Proposition 4.5. We have the equality $F_w^v = F_w \cap F_v$. In particular, the intersection $F_w \cap F_v$ is generically transverse.

This result will be proved in the next section.

Proof of (d). Since $y = \Phi(\xi, x)$ implies $zy = \Phi(z\xi, zx)$ for all $z \in C$, $\Phi(C \times Y_w^v)$ is a cone over e_r, and so is its closure F_w^v. But by the commutative diagram 7,

$$p_{e_r}(F_w^v \setminus \{e_r\}) \subset p_{e_r}(\Phi(C \times Y_w^v) \setminus \{e_r\}) = p_mZ_w^v.$$

Comparing dimensions, we see that $p_{e_r}F_w^v = p_mZ_w^v$, i.e. $p_mZ_w^v$ is the projective variety at infinity of the cone F_w^v. In particular, $\deg(p_mZ_w^v) = \deg(F_w^v)$, and similarly $\deg(p_mZ_w) = \deg(F_w)$ and $\deg(p_mZ_w^v) = \deg(F_w^v)$. Equality (d) now follows from Proposition 4.4 and Bézout’s theorem, noting that $\deg(p_mZ_w) = \deg(Z_w)$.

\[\square \]

5. PROOF OF PROPOSITION 4.5

Since $\Phi(C \times Y_w^v) \subset \Phi(C \times Y_w) \cap \Phi(C \times Y_v)$, we obtain $F_w^v \subset F_w \cap F_v$. Moreover, the first inclusion is an equality: indeed, if $z = \Phi(\xi, x) \in Y_w$ with $\xi \in C, x \in Y_v$, then $x = \Phi(-\xi, z) \in Y_v$ since $\Phi(C \times Y_w) = Y_v$, so $z = \Phi(\xi, x) \in \Phi(C \times Y_w^v)$. However, the inclusion $F_w \cap F_v \subset F_w^v$ requires some work. Let

$$U = \{(\xi, x, \Phi(\xi, x)) | \xi \in C, x \in G/P\}$$

and Γ be its closure in $\mathbb{P}^1 \times G/P \times G/P$ (so Γ is the graph of Φ viewed as a rational map). We have a commutative diagram,

$$\begin{array}{ccc}
\mathbb{P}^1 \times G/P & \xrightarrow{\pi_3} & G/P \\
\downarrow & & \downarrow \\
(\xi, x) & \xrightarrow{\Phi} & \Phi(\xi, x)
\end{array}$$

\[\Rightarrow \]

$$\begin{array}{ccc}
\mathbb{P}^1 \times G/P & \xrightarrow{\pi_3} & G/P \\
\downarrow & & \downarrow \\
(\xi, x) & \xrightarrow{\Phi} & \Phi(\xi, x)
\end{array}$$

\[\square \]
The morphism $\pi_1 \times \pi_2 : \Gamma \to \mathbf{P}^1 \times G/P$ is surjective, and restricts to an isomorphism between U and $C \times G/P$. In particular, Γ is an irreducible projective variety of dimension $N + 1$.

Likewise, let $U_w = \{ (\xi, x, \Phi(\xi, x)) | \xi \in C, x \in X_w \}$ and Γ_w be its closure, and similarly for $U^v, U^w, \Gamma^v, \Gamma^w$. Then $\pi_3(\Gamma_w) = \pi_3(U_w) = \pi_3(U_w)$ in G/P, so $\pi_3(\Gamma_w) \cap \mathcal{O}_\tau$ is the closure of $\pi_3(U_w) \cap \mathcal{O}_\tau = \Phi(C \times Y_w)$ in \mathcal{O}_τ. Proceeding similarly with Γ^v and Γ^w, we obtain

$$
\pi_3(\Gamma_w) \cap \mathcal{O}_\tau = F_w, \quad \pi_3(\Gamma^v) \cap \mathcal{O}_\tau = F^v, \quad \pi_3(\Gamma^w) \cap \mathcal{O}_\tau = F^w.
$$

We now need to study the π_3-fibre of a point in F_w. Actually, if y is in Y_w, then its fibre lies entirely in Γ_w. Indeed, U^-_τ naturally acts on G/P and on Γ via $g.(\xi, x, y) = (\xi.g.x, g.y)$ (since U^-_τ is Abelian), and the morphism π_3 is U^-_τ-equivariant. It follows that whenever two points in G/P belong to the same U^-_τ-orbit, their fibres are isomorphic. Now since $\pi_3 : \Gamma \to G/P$ is dominant, there is an open set in G/P in which every point has a fibre of pure dimension 1. Since \mathcal{O}_τ is open in G/P, it meets this open set, and since \mathcal{O}_τ is a U^-_τ-orbit in G/P, y itself has a fibre of pure dimension 1.

Now fix an irreducible component C of $\pi_3^{-1}(y)$. Then

$$
(\pi_1 \times \pi_2(C)) \cap (C \times G/P) \subset \Phi^{-1}(y).
$$

If $C \cap U \neq \emptyset$, then the left hand side of this inclusion is non-empty and of dimension 1. Since $\Phi^{-1}(y)$ is isomorphic to the C-orbit of y, it is itself irreducible of dimension (at most) 1, hence the inclusion becomes an equality. Taking closures, we then obtain $C = \{(\xi, x, y) | (\xi, x) \in \Phi^{-1}(y)\}$; in particular, C is the unique irreducible component of $\pi_3^{-1}(y)$ that intersects U. Note also that $C \subset \Gamma_w$.

Now let C' be an irreducible component of $\pi_3^{-1}(y)$ different from C, so that $C' \subset \{ \infty \} \times G/P \times \{ y \}$. Let $\Gamma_\infty \subset \Gamma$ be the subvariety $\pi_3^{-1}(\infty)$. We have a U^-_τ-equivariant morphism $\pi : \Gamma_\infty \to G/P : (\infty, x, y) \mapsto y$, so C' is an irreducible subvariety of the fibre $\pi^{-1}(y)$. Since $\Gamma_\infty \subset \Gamma$, its dimension is at most N. Because of the equivariance of π, we see that \mathcal{O}_τ is in the image of π, so π is surjective.

Decomposing Γ_∞ into irreducible components $\Gamma_\infty = C_1 \cup \cdots \cup C_r$, we obtain $G/P = \pi(C_1) \cup \cdots \cup \pi(C_r)$, so that for some i, $\pi : C_i \to G/P$ is onto. Renumbering the C_i, we may assume that for some $t \geq 1$, C_1, \ldots, C_t are mapped surjectively to G/P, and C_{t+1}, \ldots, C_r are not. For $i \leq t$, there is an open set U_i of G/P such that each element on U_i has a finite fibre in C_i. For $i > t$, let U_i be the open set $G/P \setminus \pi(C_i)$. Taking the intersection $U = \bigcap_{i=1}^t U_i$, we obtain a non-empty open set of G/P satisfying the following property: for each $z \in U$, the fibre of z in Γ_∞ consists of a finite number of points. Again, U meets the open orbit \mathcal{O}_τ, so this property is true for every point in \mathcal{O}_τ, in particular for y. So C' is included in the finite fibre $\pi^{-1}(y)$; a contradiction. Therefore, C' cannot exist, i.e. $\pi_3^{-1}(y) = C \subset \Gamma_w$ is irreducible, and not contained in $\{ \infty \} \times G/P \times \{ y \}$.

Assume now that $F_w \neq F_w \cap F^v$. By Proposition 4.4, F_w and $F_w \cap F^v$ have the same dimension, thus $F_w \cap F^v$ is not irreducible. Let F be an irreducible component of the intersection $F_w \cap F^v$ different from F_w. Let $y \in F$, and assume that $y \notin F_w$. Then $y \notin \pi_3(U^v)$, so $\pi_3^{-1}(y) \subset \Gamma^v \setminus U^v \subset \{ \infty \} \times G/P \times G/P$. But $y \in F_w$, and we have seen that in this case $\pi_3^{-1}(y)$ is never contained in $\{ \infty \} \times G/P \times G/P$. This gives a contradiction.

□
APPENDIX. SINGULARITIES OF SCHUBERT VARIETIES IN \(SO(2n + 1)/P_1 \)

In this Appendix, we shall determine the singular locus of Schubert varieties in \(G/P \), where \(G \) is of type \(B_n \) and \(P \) is cominuscule. So let \(V = C^{2n+1} \) together with a non-degenerate symmetric bilinear form \((.,.)\) given in the canonical basis \((e_1,\ldots,e_{2n+1})\) by the anti-diagonal matrix \(E \) with 1’s all along the anti-diagonal. The expression of the quadratic form \(Q \) associated with \((.,.)\) is

\[
Q(x_1,\ldots,x_{2n+1}) = x_{n+1}^2 + 2 \sum_{i=1}^{n} x_{i}x_{2n+2-i}.
\]

Let \(G = SO(V) \), \(B \subset G \) the subgroup of upper triangular matrices, and \(T \subset G \) the subgroup of diagonal matrices. Then \(B \) is a Borel subgroup of \(G \) and \(T \) is a maximal torus of \(G \). The group \(G \) acts naturally on \(V \), and \(e_1 \) is a highest weight vector, of weight \(\omega_1 \) (the unique cominuscule weight of \(G \)), so that \(G/P \) gets identified with the \(G \)-orbit of the line generated by \(e_1 \),

\[
G/P = \{[x_1: \cdots :x_{2n+1}] \mid Q(x_1,\ldots,x_{2n+1}) = 0\}.
\]

In this setting, the Schubert varieties are given by

\[
X_i = \{[x_1: \cdots :x_i :0: \cdots :0] \mid Q(x_1,\ldots,x_i,0,\ldots,0) = 0\},
\]

with \(1 \leq i \leq 2n+1 \), but \(i \neq n+1 \). Indeed, let \(x = [x_1: \cdots :x_{i-1} :1:0: \cdots :0] \) with \(Q(x) = 0 \), and let us prove that \(x \in C_i \), that is, there exists \(b \in B \) such that \(x = b.c. \). A straightforward calculation shows that we may take the columns \(b_1,\ldots,b_{2n+1} \) of \(b \) as follows:

- **Case 1:** \(i < n+1 \).
 \[
b_j = \begin{cases}
 e_j, & \text{if } j \neq i \text{ and } j \leq 2n+2-i, \\
 x, & \text{if } j = i, \\
 e_j - x_{2n+2-j}e_{2n+2-i}, & \text{otherwise}.
 \end{cases}
 \]

- **Case 2:** \(i > n+1 \).
 \[
b_j = \begin{cases}
 e_j, & \text{if } j \leq 2n+2-i, \\
 x, & \text{if } j = i, \\
 e_j - x_{2n+2-j}e_{2n+2-i}, & \text{otherwise}.
 \end{cases}
 \]

The Jacobian criterion easily shows that \(\text{Sing } X_i \) is equal to \(X_{2n+1-i} \) if \(i > n+1 \), and empty if \(i < n+1 \). Moreover, since \(X_i \) is defined by a single quadratic equation, the multiplicity of a singular point must be equal to 2. Hence there are two cases for the multiplicity \(\mu_i(x) \) of a point \(x = [x_1: \cdots :x_i :0: \cdots :0] \) on \(X_i \):

- **Case 1:** \(i < n+1 \). Then \(\mu_i(x) = 1 \).
- **Case 2:** \(i > n+1 \). Then
 \[
 \mu_i(x) = \begin{cases}
 2, & \text{if } x_1 = \cdots = x_{2n+2-i} = 0, \\
 1, & \text{otherwise}.
 \end{cases}
 \]

Of course, we have the same result for the opposite Schubert varieties

\[
X^J = \{[0: \cdots :0: x_j: \cdots :x_{2n+1}] \mid Q(0,\ldots,0,x_j,\ldots,x_{2n+1}) = 0\}.
\]
There are again two cases for the multiplicity $\mu^j(x)$ of $x = [0 : \cdots : 0 : x_j : \cdots : x_{2n+1}]$ on X^j:

- **Case 1:** $j < n + 1$. Then

 $\mu^j(x) = \begin{cases} 2, & \text{if } x_j = \cdots = x_{2n+2-j} = 0, \\ 1, & \text{otherwise.} \end{cases}$

- **Case 2:** $j > n + 1$. Then $\mu^j(x) = 1$.

Note that a Richardson variety X^j_i ($j \leq i$) also is a quadric in a projective space, so the multiplicity of a point $m \in X^j_i$ must be at most 2. But by Theorem 1.1 if m were singular in both X^j_i and in X^j, then its multiplicity would be 4. This means that $\text{Sing} X^j_i \cap \text{Sing} X^j = \emptyset$, a fact that can also be verified directly: indeed, if this intersection is non-empty, then $2n + 3 - j \leq 2n + 1 - i$, so $j \leq i \leq j - 2$; a contradiction.

Acknowledgements

The author would like to thank Christian Ohn for helpful discussions, and Takeshi Ikeda for pointing out several references in the literature. The author is grateful to the referee for his valuable remarks, and especially for pointing out a gap in the proof of Proposition 4.5 and for providing a way to fill it.

References

[1] S. Billey, I. Coskun, *Singularities of generalized Richardson varieties*, Comm. Algebra 40 (2012), no. 4, 1466–1495. MR2912998

[2] S. Billey, G. Warrington, *Maximal singular loci of Schubert varieties in SL(n)/B*, Trans. Amer. Math. Soc. 355 (2003), no. 10, 3915–3945 MR1990570 (2004f:14071)

[3] M. Brion, *Positivity in the Grothendieck group of complex flag varieties*, J. Algebra 258 (2002), no. 1, 137–159 MR1958901 (2003m:14017)

[4] M. Brion, V. Lakshmibai, *A geometric approach to Standard Monomial Theory*, Representation theory 7 (2003), 651–680 MR2017071 (2004m:14106)

[5] A. Cortez, *Singularités génériques et quasi-résolutions des variétés de Schubert pour le groupe linéaire*, Adv. Math. 178 (2003), no. 2, 396–445 MR1994224 (2004i:14056)

[6] V. Deodhar, *On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells*, Invent. Math. 79 (1985), no. 3, 499–511 MR782232 (86f:20045)

[7] S. Ghorpade, K. Raghavan, *Hilbert functions of points on Schubert varieties in the symplectic Grassmannian*, Trans. Amer. Math. Soc. 358 (2006), no. 12, 5401–5423 MR2238920 (2007d:14088)

[8] K. Goodearl, M. Yakimov, *Poisson structures on affine spaces and flag varieties. II*, Trans. Amer. Math. Soc. 361 (2009), no. 11, 5753–5780 MR2529913 (2010k:14092)

[9] W. Hodge, D. Pedoe, *Methods of algebraic geometry. Vol. II*, Cambridge University Press, Cambridge, 1952 MR1288306 (95d:14002b)

[10] T. Ikeda, *Schubert classes in the equivariant cohomology of the Lagrangian Grassmannian*, Adv. Math. 215 (2007), no. 1, 1–23 MR2354984 (2008j:14094)

[11] T. Ikeda, H. Naruse, *Excited Young diagrams and equivariant Schubert calculus*, Trans. Amer. Math. Soc. 361 (2009), no. 10, 5193–5221 MR2515809 (2010i:05351)

[12] C. Kassel, A. Lascoux, C. Reutenauer, *The singular locus of a Schubert variety*, J. Algebra 269 (2003), no. 1, 74–108 MR2015362 (2005f:14096)

[13] A. Knutson, T. Lam, D. Speyer, *Positroid varieties: Juggling and Geometry*, Preprint http://arxiv.org/abs/1111.3660

[14] A. Knutson, T. Lam, D. Speyer, *Projections of Richardson Varieties*, Preprint http://arxiv.org/abs/1008.3999
A. Knutson, T. Tao, Puzzles and (equivariant) cohomology of Grassmannians, Duke Math. J. 119 (2003), no. 2, 221–260 MR1997940 (2006a:14088)

V. Kodiyalam, K. Raghavan, Hilbert functions of points on Schubert varieties in Grassmannians, J. Algebra 270 (2003), no. 1, 28–54 MR2016997 (2005a:14066)

C. Krattenthaler, On multiplicities of points on Schubert varieties in Grassmannians, Sém. Lothar. Combin. 45 (2000/01), Art. B45c, 11 pp. (electronic) MR1817336 (2002c:14080)

C. Krattenthaler, On multiplicities of points on Schubert varieties in Grassmannians. II, J. Algebraic Combin. 22 (2005), no. 3, 273–288 MR2181366 (2006i:14053)

V. Kreiman, Local properties of Richardson varieties in the Grassmannian via a bounded Robinson-Schensted-Knuth correspondence, J. Algebraic Combin. 27 (2008), no. 3, 351–382 MR2393260 (2009g:14095)

V. Kreiman, Schubert Classes in the Equivariant K-Theory and Equivariant Cohomology of the Grassmannian, Preprint http://arxiv.org/abs/math/0512204

V. Kreiman, Schubert Classes in the Equivariant K-Theory and Equivariant Cohomology of the Lagrangian Grassmannian, Preprint http://arxiv.org/abs/math/0602245

V. Kreiman, V. Lakshmibai, Richardson Varieties in the Grassmannian, in “Contributions to automorphic forms, geometry, and number theory”, 573–597, Johns Hopkins Univ. Press, Baltimore, MD, 2004 MR2058620 (2005c:14060)

V. Kreiman, V. Lakshmibai, Multiplicities of singular points in Schubert varieties of Grassmannians, Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000), 553–563, Springer, Berlin, 2004 MR2037109 (2005c:14060)

V. Lakshmibai, P. Littelmann, Richardson varieties and equivariant K-theory, J. Algebra 260 (2003), no. 1, 239–260 MR1973584 (2004e:14077)

V. Lakshmibai, K. Raghavan, P. Sankaran, Equivariant Giambelli and determinantal restriction formulas for the Grassmannian, Pure Appl. Math. Q. 2 (2006), no. 3, part 1, 699–717 MR2252114 (2007h:14084)

V. Lakshmibai, J. Weyman, Multiplicities of Points on a Schubert Variety in a Minuscule G/P, Adv. Math. 84 (1990), no. 2, 179–208 MR1080976 (92a:14058)

A. Lascoux, Foncteurs de Schur et grassmanniennes, thèse, Université de Paris VII, 1977

L. Li, A. Yong, Some degenerations of Kazhdan-Lusztig ideals and multiplicities of Schubert varieties, Adv. Math. 229 (2012), no. 1, 633–667. MR2854186

L. Manivel, Le lieu singulier des variétés de Schubert, Internat. Math. Res. Notices 2001, no. 16, 849–871 MR1853139 (2002f:14045)

D. Mumford, Algebraic Geometry. I. Complex Projective Varieties, Grundlehren der Mathematischen Wissenschaften, No. 221. Springer-Verlag, Berlin-New York, 1976 MR0453732 (56:11992)

K. Raghavan, S. Upadhyay, Initial ideals of tangent cones to Schubert varieties in orthodox Grassmannians, J. Combin. Theory Ser. A 116 (2009), no. 3, 663–683 MR2500164 (2010g:14071)

K. Raghavan, S. Upadhyay, Hilbert functions of points on Schubert varieties in orthogonal Grassmannians, J. Algebraic Combin. 31 (2010), no. 3, 355–409 MR2610290

R. Richardson, Intersections of double cosets in algebraic groups, Indag. Math. (N.S.) 3 (1992), no. 1, 69–77 MR1157520 (93b:20081)

J. Rosenthal, A. Zelevinsky, Multiplicities of points on Schubert varieties in Grassmannians, J. Algebraic Combin. 13 (2001), no. 2, 213–218 MR1826954 (2002d:14089)

T. Springer, Linear Algebraic Groups, Progress in Mathematics, 9, Birkhäuser Boston, Inc., Boston, MA, 1998 MR1642713 (99h:20075)

R. Stanley, Some combinatorial aspects of the Schubert calculus, Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976), pp. 217–251. Lecture Notes in Math., Vol. 579, Springer, Berlin, 1977. MR0465880 (57:5760)

T. Svanes, Coherent cohomology on Schubert subschemes of flag schemes and applications, Adv. Math. 14 (1974), 369–453 MR0419469 (54:7490)

S. Upadhyay, Initial ideals of tangent cones to Richardson varieties in the Orthogonal Grassmannian via a Orthogonal-Bounded-RSK-Correspondence, Preprint http://arxiv.org/abs/0909.1424

A. Woo, Multiplicities of the Most Singular Point on Schubert varieties on Gl(n)/B for n = 5, 6, Preprint http://arxiv.org/abs/math/0407158
[40] A. Woo, A. Yong, *Governing singularities of Schubert varieties*, J. Algebra **320** (2008), no. 2, 495–520 MR2422304 (2009j:14063)
[41] A. Woo, A. Yong, *A Gröbner basis for Kazhdan-Lusztig ideals*, Amer. J. Math. **134** (2012), no. 4, 1089–1137. MR2956258

E-mail address: michael.balan@laposte.net