Adenovirus-mediated transfection with glucose transporter 3 suppresses PC12 cell apoptosis following ischemic injury

Junliang Li¹, Xinke Xu¹, Shanyi Zhang¹, Meiguang Zheng¹, Zhonghua Wu², Yinhun Weng¹, Leping Ouyang¹, Jian Yu¹, Fangcheng Li¹

¹Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong Province, China
²Department of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, Henan Province, China

Abstract
In this study, we investigated the effects of adenovirus-mediated transfection of PC12 cells with glucose transporter 3 after ischemic injury. The results of flow cytometry and TUNEL showed that exogenous glucose transporter 3 significantly suppressed PC12 cell apoptosis induced by ischemic injury. The results of isotopic scintiscan and western blot assays showed that, the glucose uptake rate was significantly increased and nuclear factor kappaB expression was significantly decreased after adenovirus-mediated transfection of ischemic PC12 cells with glucose transporter 3. These results suggest that adenovirus-mediated transfection of cells with glucose transporter 3 elevates the energy metabolism of PC12 cells with ischemic injury, and inhibits cell apoptosis.

Key Words
glucose transporter 3; ischemia; glucose uptake rate; apoptosis; nuclear factor kappaB

INTRODUCTION
The mechanism underlying the onset of cerebral ischemia-reperfusion injury is complicated, and therapeutic efficacy is presently not ideal. A previous study showed that disturbances of energy metabolism play an important role in the secondary brain damage induced by ischemia[1]. Energy supply in neuronal cells is mainly derived from the aerobic oxidation of glucose. Glucose in blood entering neuronal cells is mainly mediated by glucose transporter (GLUT) 1 and GLUT3. Under conditions with a low concentration of glucose, GLUT3 transport efficiency is high, and GLUT3 plays an important role in maintaining neuronal function and neuronal survival in the penumbral region[2-3].

Therefore, increasing GLUT3 expression might lessen brain ischemia-induced cell apoptosis[4-7]. In this study, we constructed rat PC12 cell models of ischemic injury, transfected rat PC12 cells using adenovirus, analyzed cell apoptosis using flow cytometry and TUNEL, detected glucose uptake rate and nuclear factor kappaB (NF-kB) expression using isotopic scintiscan and western blot assays, and explored the anti-apoptotic effects of GLUT3.

RESULTS
GLUT3 transfection suppressed PC12 cell apoptosis following ischemic injury
The results of flow cytometry revealed that the rate of apoptosis in GLUT3-transfected
PC12 cells after ischemic injury (4.70 ± 1.75%) was significantly lower than the rate in green fluorescent protein (GFP)-transfected cells (14.25 ± 3.46%) and non-transfected cells (13.10 ± 2.98%) ($P < 0.05$; Figure 1).

By TUNEL, the rate of apoptosis in GLUT3-transfected PC12 cells after ischemic injury (7.7 ± 3.31%) was significantly lower than that in GFP-transfected cells (17.1 ± 3.10%) and non-transfected cells (15.2 ± 2.70%) ($P < 0.05$; Figure 2).

GLUT3 transfection elevated the glucose uptake rate in PC12 cells following ischemic injury

The results of isotopic scintiscans revealed that the glucose uptake rate (d/min per mg) in GLUT3-transfected PC12 cells (603.0 ± 13.1) was significantly higher than that in GFP-transfected cells (300.0 ± 8.8) and non-transfected cells (319.0 ± 11.2) ($P < 0.05$).

GLUT3 transfection inhibited NF-κB expression in PC12 cells following ischemic injury

The results of western blot assays showed that the level of NF-κB in GLUT3-transfected PC12 cells (0.92 ± 0.17) relative to β-actin was significantly lower than the level in GFP-transfected cells (1.02 ± 0.24) and non-transfected cells (1.06 ± 0.21) ($P < 0.05$; Figure 3).

DISCUSSION

Cell apoptosis is an important form of cell death during ischemic injury. Energy metabolism can affect cell apoptosis. Glucose metabolism is a major form of metabolism providing energy to brain cells. A decrease in the level of glucose transporters led to a reduction in glucose metabolism and cell apoptosis, possibly via the following three pathways: (1) reduced adenosine triphosphate levels resulted in abundant mitochondrial death; (2) oxidative stress response; (3) activation of hypoxia-inducible factor-1α. A previous study confirmed...
that oxidation leads to a decrease in GLUT3 expression and neuronal cell and vascular endothelial cell apoptosis[8]. Another study showed that during cerebral ischemia/hypoxia-induced oxidation, Ad-GLUT1 intervention suppressed cell apoptosis, and reduced infarct volume[6]. These experimental results confirmed that PC12 cell apoptosis was obviously decreased following GLUT3 transfection. GLUT3 is a major glucose transporter in adult brain parenchymal cells[10-12]. Normally, the stable internal environment of cells is retained by regulation of the distribution of GLUT3 protein in the cell membrane and cytoplasm[11-13]. Energy metabolism in brain cells is completed by aerobic oxidation of glucose. Glucose mainly enters neuronal cells through transmembrane transport of GLUT3 protein. A previous study confirmed that glucose transport is critical for neuronal survival under conditions of hypoxia, and that increased glucose transport may be an important mechanism underlying neuronal hypoxia tolerance[14]. The decrease in GLUT3 level was not only a result of cell apoptosis, but also played an important role in cell apoptosis[15-16]. GLUT is a significant regulatory factor to initiate the apoptosis cascade[17-20]. The apoptosis cascade is started by many cytokines and growth factors affecting glucose transport or energy metabolism[17-20]. In this study, PC12 cells were transfected with GLUT3 following ischemic injury. The results suggested that the rate of apoptosis in GLUT3-transfected PC12 cells was significantly decreased, and that glucose uptake rate was significantly increased. These findings indicated that an increase in glucose uptake achieved via an exogenous increase in GLUT3 protein expression in PC12 cells could elevate cell energy metabolism and suppress cell apoptosis, consistent with the results of previous studies[13, 16]. However, Morissette et al[13] demonstrated that GLUT1-transfected myocardial cells effectively inhibited myocardial cell hypertrophy and suppressed myocardial cell apoptosis, while the glucose uptake rate was not elevated. The above-mentioned results suggest that GLUT3 does more than merely elevate cell energy metabolism, and inhibits cell apoptosis by suppressing NF-κB activation and proliferation[21]. Oxidative stress leads to NF-κB activation and induces cell apoptosis[22]. Therefore, it is presumed that GLUT3 transfection in PC12 cells increases cell energy metabolism, decreases hypoxia-inducible factor-1α protein expression, lessens ischemic injury, suppresses NF-κB activation, and inhibits cell apoptosis. The results of this study also confirm that NF-κB activation is markedly decreased after GLUT3 transfection. In summary, transfection of PC12 cells with GLUT3 effectively elevated the glucose uptake rate and suppressed ischemic injury-induced PC12 cell apoptosis, providing an important experimental basis for gene therapy for cerebral ischemia-reperfusion injury.

MATERIALS AND METHODS

Design
Cytological *in vitro* comparative observation study.

Time and setting
Experiments were performed at the Central Laboratory of Sun Yat-sen University, China in 2008.

Materials
The PC12 cell line was stored in Pharmacy College of Sun Yat-sen University. HEK-293 cells were supplied by Tumor Treatment and Prevention Center of Sun Yat-sen University in China.

Methods
Construction and intervention of rat PC12 cell models of ischemia
PC12 cells have been widely used in studies of neural cell differentiation and function. In a study describing the mechanisms underlying cell sensitivity to oxygen, we utilized PC12 cells to simulate neuronal cells. PC12 cells were gifted by School of Pharmaceutical Sciences, Sun Yat-sen University. Cell models of hypoxia were constructed by cobalt chloride-evoked chemical method[23]. PC12 cells were seeded onto 6-well plates at a density of 1 × 10⁶/well in 2 mL of DMEM/F12 (1:1; Invitrogen, Carlsbad, CA, USA), supplemented with 10% fetal bovine serum, 5% horse serum (Hangzhou Sijiqing Biological Engineering Materials Co., Ltd., Hangzhou, Zhejiang Province, China). These cells were incubated at 37°C in a 5% CO₂ incubator for 8 hours. The supernatant was then removed. Cells were transfected with GLUT3 (constructed in our previous study) using adenovirus-mediated transfection, rinsed twice in PBS, and incubated in a 2-mL mixture of 150 µM cobalt chloride (Sigma, St. Louis, MO, USA) and serum-free low-glucose DMEM (Sigma) in a 37°C 5% CO₂ incubator.
for 4 hours. After the removal of supernatant, the specimen was washed twice in PBS. Then, 2 mL of serum-free low-glucose DMEM (Sigma) was added and cells were incubated in a 37°C 5% CO2 incubator for 24 hours. GFP-transfected cells and non-transfected cells served as controls.

Flow cytometry for assessment of cell apoptosis

Following removal of supernatant, cells were digested in 0.25% trypsin (Invitrogen), washed three times in PBS, and fixed in 70% ice-cold alcohol at –20°C overnight. Cell apoptosis was determined by flow cytometry (Becton Dickinson, San Jose, CA, USA).

TUNEL for assessment of cell apoptosis

Cells were fixed in 4% paraformaldehyde. Cell apoptosis was detected using an in situ cell death detection kit (Roche Diagnostics, Penzberg, Germany). In accordance with the instructions of the kit, the precise procedures are as follows: (1) cells were fixed in 4% paraformaldehyde at room temperature for 1 hour, and washed in PBS; (2) they were then incubated in 3% H2O2 paraformaldehyde at room temperature for 1 hour, in a dark room. Chemiluminescence reagents (Boster) working fluid was added for exposure and development. Films were scanned using the Image J (National Institutes of Health, Bethesda, Maryland, USA) image analysis system to measure absorbance in the photosensitive zone. β-actin served as an internal reference. Experiments were repeated five times using different cells.

Statistical analysis

Data were analyzed using SPSS 13.0 software (SPSS, Chicago, IL, USA), and were expressed as mean ± SD. Differences between groups were compared using t-tests. A value of P < 0.05 was considered to represent statistical significance.

Funding: This study was funded by the National Natural Science Foundation of China, No. 30770765.

Author contributions: Fangcheng Li designed this study. All authors performed the experiments.

Conflicts of interest: None declared.

REFERENCES

[1] Hacke W, Kaste M, Skyhøj Olsen T, et al. Acute treatment of ischemic stroke. European Stroke Initiative (EUSI). Cerebrovasc Dis. 2000;10 Suppl 3:22-33.

[2] Zhang WW, Zhang L, Hou WK, et al. Dynamic expression of glucose transporters 1 and 3 in the brain of diabetic rats with cerebral ischemia reperfusion. Chin Med J (Engl). 2009;122(17): 1996-2001.

[3] Fung C, Evans E, Shin D, et al. Hypoxic-ischemic brain injury exacerbates neuronal apoptosis and precipitates spontaneous seizures in glucose transporter isoform 3 heterozygous null mice. J Neurosci Res. 2010;88(15): 3386-3398.

[4] Chen J, Hu CL. Glucose transporters and brain ischemia. Guowai Yixue: Shengjingbingxue Shenjing Waikexue Fence. 2002;29(2): 109-112.
(Edited by Yang XY, Zhang YW/Qiu Y/Song LP)