Matrix limit theorems of Kato type related to positive linear maps and operator means

Fumio Hiai

1 Tohoku University (Emeritus), Hakusan 3-8-16-303, Abiko 270-1154, Japan

Abstract

We obtain limit theorems for \(\Phi(A^p)^{1/p}\) and \((A^p \sigma B)^{1/p}\) as \(p \to \infty\) for positive matrices \(A, B\), where \(\Phi\) is a positive linear map between matrix algebras (in particular, \(\Phi(A) = KAK^*\)) and \(\sigma\) is an operator mean (in particular, the weighted geometric mean), which are considered as certain reciprocal Lie-Trotter formulas and also a generalization of Kato’s limit to the supremum \(A \vee B\) with respect to the spectral order.

2010 Mathematics Subject Classification: Primary 15A45, 15A42, 47A64

Key words and phrases: positive semidefinite matrix, Lie-Trotter formula, positive linear map, operator mean, operator monotone function, geometric mean, antisymmetric tensor power, Rényi relative entropy

1 Introduction

For any matrices \(X\) and \(Y\), the well-known Lie-Trotter formula is the convergence

\[
\lim_{n \to \infty} \left(e^{X/n} e^{Y/n} \right)^n = e^{X+Y}.
\]

The symmetric form with a continuous parameter is also well-known for positive semidefinite matrices \(A, B \geq 0\) as

\[
\lim_{p \to 0} (A^{p/2} B^p A^{p/2})^{1/p} = P_0 \exp(\log A + \log B),
\]

where \(P_0\) is the orthogonal projection onto the intersection of the supports of \(A, B\) and \(\log A + \log B\) is defined as \(P_0(\log A)P_0 + P_0(\log B)P_0\). When \(\sigma\) is an operator mean corresponding to an operator monotone function \(f\) on \((0, \infty)\) such that \(\alpha := f'(1)\) is in \((0, 1)\), the operator mean version of the Lie-Trotter formula is also known to hold as

\[
\lim_{p \to 0} (A^p \sigma B^p)^{1/p} = P_0 \exp((1 - \alpha) \log A + \alpha \log B)
\]
for matrices $A, B \geq 0$. In particular, when σ is the geometric mean $A\# B$ (introduced first in [15] and further discussed in [13]) corresponding to the operator monotone function $f(x) = x^{1/2}$, (1.2) yields

$$\lim_{p \downarrow 0} (A^p \# B^p)^{2/p} = P_0 \exp(\log A + \log B),$$

(1.3)

which has the same right-hand side as (1.1). Due to the Araki-Lieb-Thirring inequality and the Ando-Hiai log-majorization [4, 1], it is worthwhile to note that $(A^p/B^p \sigma B^p A^p/B^p)^{1/p}$ and $(A^p \# B^p)^{2/p}$ both tend to $P_0 \exp(\log A + \log B)$ as $p \downarrow 0$, with the former decreasing and the latter increasing in the log-majorization order (see [1] for details on log-majorization for matrices).

In the previous paper [6], under the name “reciprocal Lie-Trotter formula”, we considered the question complementary to (1.1) and (1.3), that is, about what happens to the limits of $(A^p/B^p \sigma B^p A^p/B^p)^{1/p}$ and $(A^p \# B^p)^{2/p}$ as $p \to \infty$ instead of 0. If A and B are commuting, then $(A^p/B^p \sigma B^p A^p/B^p)^{1/p} = (A^p \# B^p)^{2/p} = AB$, independently of $p > 0$. However, if A and B are not commuting, then the question is rather complicated. Indeed, although we can prove the existence of the limit $\lim_{p \to \infty} (A^p/B^p \sigma B^p A^p/B^p)^{1/p}$, the description of the limit has a rather complicated combinatorial nature. Moreover, it is unknown so far whether the limit of $(A^p \# B^p)^{2/p}$ as $p \to \infty$ exists or not. In the present paper, we consider a similar (but seemingly a bit simpler) question about what happens to the limits of $(BA^p B^p)^{1/p}$ and $(A^p \# B^p)^{1/p}$ as p tends to ∞, the case where B is fixed without the p-power, in certain more general settings.

The rest of the paper is organized as follows. In Section 2, we first prove the existence of the limit of $(KA^p K^*)^{1/p}$ as $p \to \infty$ and give the description of the limit in terms of the diagonalization (eigenvalues and eigenvectors) data of A and the images of the eigenvectors by K. We then extend the result to the limit of $\Phi(A^p)^{1/p}$ as $p \to \infty$ for a positive linear map Φ between matrix algebras. For instance, this limit is applied to the map $\Phi(A \oplus B) := (A + B)/2$ to reformulate Kato’s limit theorem $((A^p + B^p)/2)^{1/p} \to A \lor B$ in [12]. Another application is given to find the limit formula as $\alpha \downarrow 0$ of the sandwiched α-Rényi divergence [14, 18], a new relative entropy relevant to quantum information theory. In Section 3, we discuss the limit behavior of $(A^p \sigma B)^{1/p}$ as $p \to \infty$ for operator means σ. To do this, we may assume without loss of generality that B is an orthogonal projection E. Under a certain condition on σ, we prove that $(A^p \sigma E)^{1/p}$ is decreasing as $1 \leq p \to \infty$, so that the limit as $p \to \infty$ exists. Furthermore, when σ is the the weighted geometric mean, we obtain an explicit description of the limit in terms of E and the spectral projections of A.

It is worth noting that a limit formula in the same vein as those in [12] and this paper was formerly given in [2, 3] for the spectral shorting operation.
2 \ \lim_{p \to \infty} \Phi(A^p)^{1/p} \text{ for positive linear maps } \Phi

For each \(n \in \mathbb{N} \) we write \(\mathbb{M}_n \) for the \(n \times n \) complex matrix algebra and \(\mathbb{M}_n^+ \) for the set of positive semidefinite matrices in \(\mathbb{M}_n \). When \(A \in \mathbb{M}_n \) is positive definite, we write \(A > 0 \). We denote by \(\text{Tr} \) the usual trace functional on \(\mathbb{M}_n \). For \(A \in \mathbb{M}_n^+ \), \(\lambda_1(A) \geq \cdots \geq \lambda_n(A) \) are the eigenvalues of \(A \) in decreasing order with multiplicities, and \(\text{ran} \ A \) is the range of \(A \).

Let \(A \in \mathbb{M}_n^+ \) be given, whose diagonalization is

\[
A = V \text{diag}(a_1, \ldots, a_n)V^* = \sum_{i=1}^{n} a_i |v_i\rangle \langle v_i|
\]

with the eigenvalues \(a_1 \geq \cdots \geq a_n \) and a unitary matrix \(V = [v_1 \cdots v_n] \) so that \(Av_i = a_i v_i \) for \(1 \leq i \leq d \). Let \(K \in \mathbb{M}_n \) and assume that \(K \neq 0 \) (our problem below is trivial when \(K = 0 \)). Consider the sequence of vectors \(Kv_1, \ldots, Kv_n \) in \(\mathbb{C}^n \). Let \(1 \leq l_1 < l_2 < \cdots < l_m \) be chosen so that if \(l_{k-1} < i < l_k \) for \(1 \leq k \leq m \), then \(Kv_i \) is in \(\text{span}\{Kv_{l_1}, \ldots, Kv_{l_{k-1}}\} \) (this means, in particular, \(Kv_i = 0 \) if \(i < l_1 \)). Then \(\{Kv_{l_1}, \ldots, Kv_{l_m}\} \) is a linearly independent subset of \(\{Kv_1, \ldots, Kv_n\} \), so we perform the Gram-Schmidt orthogonalization to obtain an orthonormal vectors \(u_1, \ldots, u_m \) from \(Kv_{l_1}, \ldots, Kv_{l_m} \). In particular, \(u_1 = Kv_{l_1} / \|Kv_{l_1}\| \). The next theorem is our first limit theorem. This implicitly says that the right-hand side of (2.2) is independent of the expression of (2.1) (note that \(v_i \)'s are not unique for degenerate eigenvalues \(a_i \)).

Theorem 2.1. We have

\[
\lim_{p \to \infty} (KA^pK^*)^{1/p} = \sum_{k=1}^{m} a_{l_k} |u_k\rangle \langle u_k|,
\]

and in particular,

\[
\lim_{p \to \infty} \lambda_k((KA^pK^*)^{1/p}) = \begin{cases} a_{l_k}, & 1 \leq k \leq m, \\ 0, & m < k \leq n. \end{cases}
\]

Proof. Write \(Z_p := (KA^pK^*)^{1/p} \) and \(\lambda_i(p) := \lambda_i(Z_p) \) for \(p > 0 \) and \(1 \leq i \leq n \). First we prove (2.3). Note that

\[
Z_p^p = KA^pK^* = KV \text{diag}(a_1^p, \ldots, a_n^p)V^* K^* = [a_1^p Kv_1 \ a_2^p Kv_2 \ \cdots \ a_n^p Kv_n] [Kv_1 \ Kv_2 \ \cdots \ Kv_n]^*.
\]

Since

\[
\lambda_i(p)^p \leq \text{Tr} \ Z_p^p = \text{Tr} [Kv_1 \ \cdots \ Kv_n]^* [a_1^p Kv_1 \ \cdots \ a_n^p Kv_n] = \sum_{i=1}^{n} a_i^p \langle Kv_i, Kv_i \rangle \leq a_1^p \sum_{i=1}^{n} \|Kv_i\|^2,
\]

for \(i \leq m \) and

\[
\lambda_i(p)^p \leq \text{Tr} \ Z_p^p = \text{Tr} [Kv_1 \ \cdots \ Kv_n]^* [a_1^p Kv_1 \ \cdots \ a_n^p Kv_n] = \sum_{i=m+1}^{n} a_i^p \langle Kv_i, Kv_i \rangle \leq a_m^p \sum_{i=m+1}^{n} \|Kv_i\|^2,
\]

for \(m < i \leq n \).
we have
\[\limsup_{p \to \infty} \lambda_1(p) \leq a_1. \]

Moreover, since
\[n\lambda_1(p)^p \geq \text{Tr} Z^p_p = \sum_{i=1}^n a_i^p \langle Kv_i, Kv_i \rangle \geq a_{l_1} \|Kv_i\|^2, \]
we have
\[\liminf_{p \to \infty} \lambda_1(p) \geq a_{l_1}. \]

Therefore, (2.3) holds for \(k = 1 \).

To prove (2.3) for \(k > 1 \), we consider the antisymmetric tensor powers \(A^{\wedge k} \) and \(K^{\wedge k} \) for each \(k = 1, \ldots, n \). Note that
\[Z^{\wedge k}_p = \left((K^{\wedge k})(A^{\wedge k})^p (K^{\wedge k})^* \right)^{1/p} \]
and
\[A^{\wedge k} = \sum_{1 \leq i_1 < \cdots < i_k \leq d} a_{i_1} \cdots a_{i_k} \langle v_{i_1} \wedge \cdots \wedge v_{i_k} \rangle \langle v_{i_1} \wedge \cdots \wedge v_{i_k} \rangle. \]

The above case applied to \(A^{\wedge k} \) and \(K^{\wedge k} \) yields that
\[\lim_{p \to \infty} \lambda_1(p) \lambda_2(p) \cdots \lambda_k(p) = \lim_{p \to \infty} \lambda_1(Z^{\wedge k}_p) \]
\[= \max \{ a_{i_1} \cdots a_{i_k} : 1 \leq i_1 < \cdots < i_k \leq d, \ K^{\wedge k}(v_{i_1} \wedge \cdots \wedge v_{i_k}) \neq 0 \}. \] (2.6)

Since \(K^{\wedge k}(v_{i_1} \wedge \cdots \wedge v_{i_k}) = K v_{i_1} \wedge \cdots \wedge K v_{i_k} \) is non-zero if and only if \(\{ K v_{i_1}, \ldots, K v_{i_k} \} \) is linearly independent, it is easy to see that (2.6) is equal to \(a_{i_1} \cdots a_{i_k} \) if \(k \leq m \) and equal to 0 if \(k > m \). Therefore,
\[\lim_{p \to \infty} \lambda_1(p) \lambda_2(p) \cdots \lambda_k(p) = \begin{cases} a_{i_1} \cdots a_{i_k}, & 1 \leq k \leq m, \\ 0, & m < k \leq n, \end{cases} \]
which implies (2.3).

Now, for \(p > 0 \) choose an orthonormal basis \(\{ u_1(p), \ldots, u_n(p) \} \) of \(\mathbb{C}^n \) for which \(Z_p u_i(p) = \lambda_i(p) u_i(p) \) for \(1 \leq i \leq n \). To prove (2.2), write \(\tilde{a}_k := a_{l_k} \) for \(1 \leq k \leq m \). If \(\tilde{a}_1 = 0 \) then it is obvious that \(\lim_{p \to \infty} Z_p = 0 \). So assume that \(\tilde{a}_1 > 0 \) and furthermore \(\tilde{a}_1 > \tilde{a}_2 \), i.e., \(\lim_{p \to \infty} \lambda_1(p) > \lim_{p \to \infty} \lambda_2(p) \) at the moment. From (2.3) we have
\[Z^p_p = \sum_{i=1}^n a_i^p \langle Kv_i \rangle \langle Kv_i \rangle \]
\[= \sum_{i=l_1}^{l_2-1} a_i^p \langle Kv_i \rangle \langle Kv_i \rangle + \sum_{i=l_2}^n a_i^p \langle Kv_i \rangle \langle Kv_i \rangle \]

4
so that

$$
\left(\frac{Z_p}{\tilde{a}_1} \right)^p = \sum_{i=1}^{l_2-1} \left(\frac{a_i}{\tilde{a}_1} \right)^p \|Kv_i\|^2 |u_1\rangle \langle u_1| + \sum_{i=l_2}^{n} \left(\frac{a_i}{\tilde{a}_1} \right)^p |Kv_i\rangle \langle Kv_i|
$$

as $p \to \infty$ for some $\alpha > 0$, since $a_i/\tilde{a}_1 \leq \tilde{a}_2/\tilde{a}_1 < 1$ for $i \geq l_2$. Hence, for any $p > 0$ sufficiently large, the largest eigenvalue of $(Z_p/\tilde{a}_1)^p$ is simple and the corresponding eigen projection converges to $|u_1\rangle \langle u_1|$ as $p \to \infty$. Since the eigen projection $E_1(p)$ of Z_p corresponding to the largest eigenvalue $\lambda_1(p)$ (simple for any large $p > 0$) is the same as that of $(Z_p/\tilde{a}_1)^p$, we have

$$
E_1(p) = |u_1(p)\rangle \langle u_1(p)| \longrightarrow |u_1\rangle \langle u_1| \quad \text{as } p \to \infty.
$$

In the general situation, we assume that $\tilde{a}_1 \geq \cdots \geq \tilde{a}_k > \tilde{a}_{k+1}$ with $1 \leq k \leq m$, where $\tilde{a}_{k+1} = 0$ if $k = m$. From (2.3) note that

$$
\lim_{p \to \infty} \lambda_1(Z_p^{\wedge k}) = \tilde{a}_1 \cdots \tilde{a}_{k-1} \tilde{a}_k > \tilde{a}_1 \cdots \tilde{a}_{k-1} \tilde{a}_{k+1} = \lim_{p \to \infty} \lambda_2(Z_p^{\wedge k}).
$$

Hence, for any sufficiently large $p > 0$, the largest eigenvalue $\lambda_1(Z_p^{\wedge k}) = \lambda_1(p) \cdots \lambda_k(p)$ of $Z_p^{\wedge k}$ is simple, and from the above case applied to (2.5) it follows that

$$
|u_1(p) \wedge \cdots \wedge u_k(p)\rangle \langle u_1(p) \wedge \cdots \wedge u_k(p)| \longrightarrow |u_1 \wedge \cdots \wedge u_k\rangle \langle u_1 \wedge \cdots \wedge u_k| \quad \text{as } p \to \infty,
$$

since the vector in the present situation corresponding to $u_1 = Kv_{l_1}/\|Kv_{l_1}\|$ is

$$
\frac{K^{\wedge k}(v_{l_1} \wedge \cdots \wedge v_{l_k})}{\|K^{\wedge k}(v_{l_1} \wedge \cdots \wedge v_{l_k})\|} = \frac{Kv_{l_1} \wedge \cdots \wedge Kv_{l_k}}{\|Kv_{l_1} \wedge \cdots \wedge Kv_{l_k}\|} = u_1 \wedge \cdots \wedge u_k.
$$

(The last identity follows from the fact that, for linearly independent w_1, \ldots, w_k, $w_1 \wedge \cdots \wedge w_k/\|w_1 \wedge \cdots \wedge w_k\| = w'_1 \wedge \cdots \wedge w'_k$ if w'_1, \ldots, w'_k are the Gram-Schmidt orthogonalization of w_1, \ldots, w_k. By [6] Lemma 2.4 we see that the orthogonal projection $E_k(p)$ onto span$\{u_1(p), \ldots, u_k(p)\}$ converges to the orthogonal projection E_k of span$\{u_1, \ldots, u_k\}$.

Finally, let $0 = k_0 < k_1 < \cdots < k_{s-1} < k_s = m$ be such that

$$
\tilde{a}_1 = \cdots = \tilde{a}_{k_1} > \tilde{a}_{k_1+1} = \cdots = \tilde{a}_{k_2} > \cdots > \tilde{a}_{k_{s-1}+1} = \cdots = \tilde{a}_{k_s}.
$$

The above argument says that, for every $r = 1, \ldots, s-1$, the orthogonal projection $E_{kr}(p)$ onto span$\{u_1(p), \ldots, u_{kr}(p)\}$ converges to the orthogonal projection E_{kr} onto span$\{u_1, \ldots, u_{kr}\}$. When $\tilde{a}_{k_r} > 0$, this holds for $r = s$ as well. Therefore, when $\tilde{a}_{k_s} > 0$, we have

$$
Z_p = \sum_{i=1}^{n} \lambda_i(p) |u_i(p)\rangle \langle u_i(p)|
$$
\[
\sum_{r=1}^{s-1} \sum_{i=k_{r-1}+1}^{k_r} \lambda_i(p) |u_i(p)| \langle u_i(p) \rangle + \sum_{i=k_s+1}^{n} \lambda_i(p) |u_i(p)| \langle u_i(p) \rangle
\]

\[
= \sum_{r=1}^{s} \sum_{i=k_{r-1}+1}^{k_r} (\lambda_i(p) - \bar{a}_i) |u_i(p)| \langle u_i(p) \rangle + \sum_{r=1}^{s} \bar{a}_{k_r}(E_{k_r}(p) - E_{k_{r-1}}(p))
\]

\[
+ \sum_{i=k_s+1}^{n} \lambda_i(p) |u_i(p)| \langle u_i(p) \rangle
\]

\[
\rightarrow \sum_{r=1}^{s} \bar{a}_{k_r}(E_{k_r} - E_{k_{r-1}}) = \sum_{i=1}^{m} \bar{a}_i |u_i| \langle u_i \rangle, \quad \text{where } E_0(p) = E_0 = 0.
\]

When \(\bar{a}_{k_s} = 0 \), we may modify the above estimate as

\[
Z_p = \sum_{r=1}^{s-1} \sum_{i=k_{r-1}+1}^{k_r} \lambda_i(p) |u_i(p)| \langle u_i(p) \rangle + \sum_{i=k_{s-1}+1}^{n} \lambda_i(p) |u_i(p)| \langle u_i(p) \rangle
\]

\[
\rightarrow \sum_{r=1}^{s-1} \bar{a}_{k_r}(E_{k_r} - E_{k_{r-1}}) = \sum_{i=k_{s-1}+1}^{k_s-1} \bar{a}_i |u_i| \langle u_i \rangle = \sum_{i=1}^{m} \bar{a}_i |u_i| \langle u_i \rangle.
\]

\[\square\]

The following corollary of Theorem 2.1 is an improvement of [7, Theorem 1.2].

Corollary 2.2. Let \(A \in \mathbb{M}_n \) be positive definite. We have \(\lim_{p \to \infty} \lambda_i((KA^pK^*)^{1/p}) = a_i \) for all \(i = 1, \ldots, n \) if and only if \(\{Kv_1, \ldots, Kv_n\} \) is linearly independent.

Remark 2.3. Note that Theorem 2.1 can easily extend to the case where \(K \) is a rectangle \(n' \times n \) matrix. In fact, when \(n' < n \) we may apply Theorem 2.1 to \(n \times n \) matrices \(\begin{bmatrix} K & O \\ O & \end{bmatrix} \) and \(A \), and when \(n' > n \) we may apply to \(n' \times n' \) matrices \(\begin{bmatrix} K & O \\ O & \end{bmatrix} \) and \(A \oplus O_{n'-n} \).

A linear map \(\Phi : \mathbb{M}_n \to \mathbb{M}_{n'} \) is said to be positive if \(\Phi(A) \in \mathbb{M}_{n'}^+ \) for all \(A \in \mathbb{M}_n^+ \), which is further said to be strictly positive if \(\Phi(I_n) > 0 \), that is, \(\Phi(A) > 0 \) for all \(A \in \mathbb{M}_n \), \(A > 0 \). The following is an extended and refined version of Theorem 2.1.

Theorem 2.4. Let \(\Phi : \mathbb{M}_n \to \mathbb{M}_{n'} \) be a positive linear map. Let \(A \in \mathbb{M}_n^+ \) be given as \(A = \sum_{i=1}^{n} a_i |v_i\rangle \langle v_i| \) with \(a_1 \geq \cdots \geq a_n \) and an orthonormal basis \(\{v_1, \ldots, v_n\} \) of \(\mathbb{C}^n \). Then \(\lim_{p \to \infty} \Phi(A^p)^{1/p} \) exists and

\[
\lim_{p \to \infty} \Phi(A^p)^{1/p} = \sum_{i=1}^{n} a_i P_{\mathcal{M}_i},
\]

where \(\mathcal{M}_1 := \text{ran } \Phi(\langle v_1 \rangle \langle v_1 \rangle) \).
\[\mathcal{M}_i := \bigvee_{j=1}^{i} \operatorname{ran} \Phi(|v_0\rangle\langle v_0|) \oplus \bigvee_{j=1}^{i-1} \operatorname{ran} \Phi(|v_j\rangle\langle v_j|), \quad 2 \leq i \leq n, \]

and \(P_{\mathcal{M}_i} \) is the orthogonal projection onto \(\mathcal{M}_i \) for \(1 \leq i \leq n \).

Proof. Let \(C^*(I, A) \) be the commutative \(C^* \)-subalgebra of \(M_n \) generated by \(I, A \). We can consider the composition of the conditional expectation from \(M_n \) onto \(C^*(I, A) \) with respect to \(\text{Tr} \) and \(\Phi|_{C^*(I, A)} : C^*(I, A) \to M_{\nu}^* \) instead of \(\Phi \), so we may assume that \(\Phi \) is completely positive. By the Stinespring representation there are a \(\nu \in \mathbb{N} \), a \(* \)-homomorphism \(\pi : M_n \to M_{\nu}^* \) and a linear map \(K : \mathbb{C}^n_{\nu} \to \mathbb{C}^{\nu^\prime} \) such that \(\Phi(X) = K\pi(X)K^* \) for all \(X \in M_n \). Moreover, since \(\pi : M_n \to M_{\nu}^* \) is represented, under a suitable change of an orthonormal basis of \(\mathbb{C}^{\nu^\prime} \), as \(\Phi(X) = I_{\nu} \otimes X \) for all \(X \in M_n \) under identification \(M_{\nu}^* = M_\nu \otimes M_n \), we can assume that \(\Phi \) is given (with a change of \(K \)) as

\[\Phi(X) = K(I_{\nu} \otimes X)K^*, \quad X \in M_n. \]

We then write

\[I_{\nu} \otimes A = (I_{\nu} \otimes V)\operatorname{diag}(a_1, \ldots, a_1, a_2, \ldots, a_2, \ldots, a_n, \ldots, a_n) (I_{\nu} \otimes V)^* = \sum_{i=1}^{n} a_i (|e_1 \otimes v_i\rangle\langle e_1 \otimes v_i| + \cdots + |e_\nu \otimes v_i\rangle\langle e_\nu \otimes v_i|). \]

Now, we consider the following sequence of \(n\nu \) vectors in \(\mathbb{C}^{\nu^\prime} \):

\[K(e_1 \otimes v_1), \ldots, K(e_\nu \otimes v_1), K(e_1 \otimes v_2), \ldots, K(e_\nu \otimes v_2), \ldots, K(e_1 \otimes v_n), \ldots, K(e_\nu \otimes v_n), \]

and if \(K(e_j \otimes v_i) \) is a linear combination of the vectors in the sequence preceding it, then we remove it from the sequence. We write the resulting linearly independent subsequence as

\[K(e_j \otimes v_{l_1}) \quad (j \in J_1), \quad K(e_j \otimes v_{l_2}) \quad (j \in J_2), \ldots, \quad K(e_j \otimes v_{l_m}) \quad (j \in J_m), \]

where \(1 \leq l_1 < l_2 < \cdots < l_m \leq n \) and \(J_1, \ldots, J_m \subseteq \{1, \ldots, \nu\} \). Furthermore, by performing the Gram-Schmidt orthogonalization to this subsequence, we end up making an orthonormal sequence of vectors in \(\mathbb{C}^{\nu^\prime} \) as follows:

\[u_j^{(l_1)} \quad (j \in J_1), \quad u_j^{(l_2)} \quad (j \in J_2), \ldots, \quad u_j^{(l_m)} \quad (j \in J_m). \]

Since

\[\Phi(A^p)^{1/p} = K((I_{\nu} \otimes A)^p)^{1/p}K^*, \]

Theorem 2.1 and Remark 2.3 imply that \(\lim_{p \to \infty} \Phi(A^p)^{1/p} \) exists and

\[\lim_{p \to \infty} \Phi(A^p)^{1/p} = \sum_{k=1}^{m} a_k \left(\sum_{j \in J_k} |u_j^{(l_k)}\rangle\langle u_j^{(l_k)}| \right), \]

7
Lemma 2.5. For any finite set \(\{w_1, \ldots, w_k\} \) in \(\mathbb{C}^n \), \(\text{span}\{w_1, \ldots, w_k\} \) is equal to the range of \(\sum |w_j\rangle \langle w_j| \). More generally, for every \(B_1, \ldots, B_k \in \mathbb{M}_{n'}^+ \), \(\bigvee_{j=1}^k \text{ran } B_j \) is equal to the range of \(B_1 + \cdots + B_k \).

\[\sum_{j \in J_k} |u_j^{(l_k)}\rangle \langle u_j^{(l_k)}| = 0 \text{ if } J_k = \emptyset. \]

The next step of the proof is to find what is \(\sum_{j \in J_k} |u_j^{(l_k)}\rangle \langle u_j^{(l_k)}| \) for \(1 \leq k \leq m \). For this we first note that

\[
\sum_{j=1}^\nu |K(e_j \otimes v_i)\rangle \langle K(e_j \otimes v_i)| = K\left(\sum_{j=1}^\nu |e_j \otimes v_i\rangle \langle e_j \otimes v_i| \right) K^* = K(I_\nu \otimes |v_i\rangle \langle v_i|) K^* = \Phi(|v_i\rangle \langle v_i|).
\]

From Lemma 2.5 below this implies that

\[
\mathcal{R}_i := \text{ran } \Phi(|v_i\rangle \langle v_i|) = \text{span}\{K(e_j \otimes v_i) : 1 \leq j \leq \nu\}.
\]

Through the procedure of the Gram-Schmidt diagonalization we see that

\[
\begin{align*}
\mathcal{R}_i &= 0, \quad 1 \leq i < l_1, \\
\mathcal{R}_{l_1} &= \text{span}\{u_j^{(l_1)} : j \in J_1\}, \\
\mathcal{R}_i &\subset \mathcal{R}_{l_1}, \quad l_1 < i < l_2, \\
(\mathcal{R}_{l_1} \lor \mathcal{R}_{l_2}) \ominus \mathcal{R}_{l_1} &= \text{span}\{u_j^{(l_2)} : j \in J_2\}, \\
\mathcal{R}_i &\subset \mathcal{R}_{l_1} \lor \mathcal{R}_{l_2}, \quad l_2 < i < l_3, \\
(\mathcal{R}_{l_1} \lor \mathcal{R}_{l_2} \lor \mathcal{R}_{l_3}) \ominus (\mathcal{R}_{l_1} \lor \mathcal{R}_{l_2}) &= \text{span}\{u_j^{(l_3)} : j \in J_3\}, \\
&\vdots \\
\mathcal{R}_i &\subset \mathcal{R}_{l_1} \lor \cdots \lor \mathcal{R}_{l_{m-1}}, \quad l_{m-1} < i < l_m, \\
(\mathcal{R}_{l_1} \lor \cdots \lor \mathcal{R}_{l_m}) \ominus (\mathcal{R}_{l_1} \lor \cdots \lor \mathcal{R}_{l_{m-1}}) &= \text{span}\{u_j^{(l_m)} : j \in J_m\}, \\
\mathcal{R}_i &\subset \mathcal{R}_{l_1} \lor \cdots \lor \mathcal{R}_{l_m}, \quad l_m < i \leq n.
\end{align*}
\]

Now, let \(P_{M_i} \) be the orthogonal projections, respectively, onto the subspaces

\[
\mathcal{M}_1 := \mathcal{R}_1, \quad \mathcal{M}_i := (\mathcal{R}_1 \lor \cdots \lor \mathcal{R}_i) \ominus (\mathcal{R}_1 \lor \cdots \lor \mathcal{R}_{i-1}), \quad 2 \leq i \leq n,
\]

so that \(P_{M_i} = 0 \) if \(i \not\in \{l_1, \ldots, l_m\} \) and \(P_{M_{l_k}} \) is the orthogonal projection onto \(\text{span}\{u_j^{(l_k)} : j \in J_k\} \) for \(1 \leq k \leq m \). Therefore, we have

\[
\lim_{p \to \infty} \Phi(A^p)^{1/p} = \sum_{k=1}^m a_{l_k} \left(\sum_{j \in J_k} |u_j^{(l_k)}\rangle \langle u_j^{(l_k)}| \right) = \sum_{k=1}^m a_{l_k} P_{M_{l_k}} = \sum_{i=1}^n a_i P_{M_i}.
\]

\[\square \]
Proof. Let $Q := |w_1\rangle\langle w_1| + \cdots + |w_k\rangle\langle w_k|$. Since

$$Qx = \langle w_1, x \rangle w_1 + \cdots + \langle w_k, x \rangle w_k \in \text{span}\{w_1, \ldots, w_k\}$$

for all $x \in \mathbb{C}^n$, we have $\text{ran} \ Q \subseteq \text{span}\{w_1, \ldots, w_k\}$. Since $|w_i\rangle\langle w_i| \leq Q$, we have

$$w_i \in \text{ran} \ |w_i\rangle\langle w_i| \subseteq \text{ran} \ Q, \quad 1 \leq i \leq k.$$

Hence we have $\text{span}\{w_1, \ldots, w_k\} \subseteq \text{ran} \ Q$. The proof of the latter assertion is similar. \hfill \square

Thanks to the lemma we can restate Theorem 2.4 as follows:

Theorem 2.6. Let $\Phi : M_n \rightarrow M_{n'}$ be a positive linear map. Let $A \in M_n^+$ be given with the spectral decomposition $A = \sum_{k=1}^m a_k P_k$, where $a_1 > a_2 > \cdots > a_m > 0$. Define

$$\mathcal{M}_1 := \text{ran} \ \Phi(P_1),$$

$$\mathcal{M}_k := \text{ran} \ \Phi(P_1 + \cdots + P_k) \ominus \text{ran} \ \Phi(P_1 + \cdots + P_{k-1}), \quad 2 \leq k \leq m.$$

Then

$$\lim_{p \rightarrow \infty} \Phi(A^p)^{1/p} = \sum_{k=1}^m a_k P_{\mathcal{M}_k}.$$

Example 2.7. Consider a linear map $\Phi : M_{2n} \rightarrow M_n$ given by

$$\Phi \left(\begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} \right) := \frac{X_{11} + X_{22}}{2}, \quad X_{ij} \in M_n.$$

Clearly, Φ is completely positive. For any $A, B \in M_n^+$ and $p > 0$ we have

$$\Phi \left(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}^p \right)^{1/p} = \left(\frac{A^p + B^p}{2} \right)^{1/p}.$$

Thus, it is well-known \cite{12} that

$$\lim_{p \rightarrow \infty} \Phi \left(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}^p \right)^{1/p} = \lim_{p \rightarrow \infty} \left(\frac{A^p + B^p}{2} \right)^{1/p} = A \lor B,$$

where $A \lor B$ is the supremum of A, B in the spectral order. Here let us show (2.7) from Theorem 2.6. The spectral decompositions of A, B are given as

$$A = \sum_{i=1}^m a_i P_i, \quad B = \sum_{j=1}^{m'} b_j Q_j,$$

where $a_1 > \cdots > a_m \geq 0$, $b_1 > \cdots > b_{m'} \geq 0$ and $\sum_{i=1}^m P_i = \sum_{j=1}^{m'} Q_j = I$. Then

$$A \oplus B = \sum_{k=1}^l c_k R_k,$$
where \(\{ c_k \}_{k=1}^l = \{ a_i \}_{i=1}^m \cup \{ b_j \}_{j=1}^{m'} \) with \(c_1 > \cdots > c_l \) and

\[
R_k = \begin{cases}
 P_i \oplus Q_j & \text{if } a_i = b_j = c_k, \\
 P_i \oplus 0 & \text{if } a_i = c_k \text{ and } b_j \neq c_k \text{ for all } j, \\
 0 \oplus Q_j & \text{if } b_j = c_k \text{ and } a_i \neq c_k \text{ for all } i.
\end{cases}
\]

Note that

\[
\Phi(R_1 + \cdots + R_k) = \frac{1}{2} \left(\sum_{i:a_i \geq c_k} P_i + \sum_{j:b_j \geq c_k} Q_j \right)
\]

so that by Lemma 2.5 the support projection \(F_k \) (i.e., the orthogonal projection onto the range) of \(\Phi(R_1 + \cdots + R_k) \) is

\[
F_k = \left(\sum_{i:a_i \geq c_k} P_i \right) \vee \left(\sum_{j:b_j \geq c_k} Q_j \right).
\]

Theorem 2.6 implies that

\[
\lim_{p \to \infty} \Phi \left(\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \right)^{1/p} = C := \sum_{k=1}^l c_k (F_k - F_{k-1}).
\]

For every \(x \in \mathbb{R} \) we denote by \(E_{[x,\infty)}(A) \) the spectral projection of \(A \) corresponding to the interval \([x, \infty)\), i.e.,

\[
E_{[x,\infty)}(A) := \sum_{i:a_i \geq x} P_i,
\]

and similarly for \(E_{[x,\infty)}(B) \) and \(E_{[x,\infty)}(C) \). If \(c_k \geq x > c_{k+1} \) for some \(1 \leq k < l \), then we have

\[
E_{[x,\infty)}(C) = F_k = E_{[x,\infty)}(A) \vee E_{[x,\infty)}(B).
\]

This holds also when \(x > c_1 \) and \(x \leq c_l \). Indeed, when \(x > c_1 \), \(E_{[x,\infty)}(C) = 0 = E_{[x,\infty)}(A) \vee E_{[x,\infty)}(B) \). When \(x \geq c_1 \), \(E_{[x,\infty)}(C) = I = E_{[x,\infty)}(A) \vee E_{[x,\infty)}(B) \). This description of \(C \) is the same as \(A \vee B \) in [12], so we have \(C = A \vee B \).

Example 2.8. The example here is relevant to quantum information. For density matrices \(\rho, \sigma \in \mathbb{M}_n \) (i.e., \(\rho, \sigma \in \mathbb{M}_n^+ \) with \(\operatorname{Tr} \rho = \operatorname{Tr} \sigma = 1 \)) and for a parameter \(\alpha \in (0, \infty) \setminus \{1\} \), the traditional Rényi relative entropy is

\[
D_{\alpha}(\rho \| \sigma) := \begin{cases}
 \frac{1}{\alpha-1} \log \left[\operatorname{Tr} \rho^\alpha \sigma^{1-\alpha} \right] & \text{if } \rho^0 \leq \sigma^0 \text{ or } 0 < \alpha < 1, \\
 +\infty & \text{otherwise},
\end{cases}
\]

where \(\rho^0 \) denotes the support projection of \(\rho \). On the other hand, the new concept recently introduced and called the sandwiched Rényi relative entropy [14] [18] is

\[
\tilde{D}_{\alpha}(\rho \| \sigma) := \begin{cases}
 \frac{1}{\alpha-1} \log \left[\operatorname{Tr} \left(\sigma^{\frac{1-\alpha}{2\alpha}} \rho \sigma^{\frac{1-\alpha}{2\alpha}} \right)^\alpha \right] & \text{if } \rho^0 \leq \sigma^0 \text{ or } 0 < \alpha < 1, \\
 +\infty & \text{otherwise}.
\end{cases}
\]
By taking the limit we also consider
\[D_0(\rho\|\sigma) := \lim_{\alpha \searrow 0} D_\alpha(\rho\|\sigma) = -\log \text{Tr} (\rho^0 \sigma), \]
\[\tilde{D}_0(\rho\|\sigma) := \lim_{\alpha \searrow 0} \tilde{D}_\alpha(\rho\|\sigma) = -\log \left[\lim_{\alpha \searrow 0} \text{Tr} \left(\sigma^{1-\alpha} \rho \sigma^{1-\alpha} \right)^\alpha \right]. \]

(We remark that the notations \(D_\alpha \) and \(\tilde{D}_\alpha \) are interchanged from those in \[8\].) Here, note that
\[\lim_{\alpha \searrow 0} \text{Tr} \left(\sigma^{1-\alpha} \rho \sigma^{1-\alpha} \right)^\alpha = \lim_{p \to \infty} \text{Tr} \left(\sigma^{p/2} \rho \sigma^{p/2} \right)^{1/p} = \lim_{p \to \infty} \text{Tr} \left(\rho^0 \sigma^p \rho^0 \right)^{1/p}, \]
where the existence of \(\lim_{p \to \infty} \text{Tr} \left(\rho^0 \sigma^p \rho^0 \right)^{1/p} \) follows from the Araki-Lieb-Thirring inequality \[4\] (also \[1\]), and the latter equality above follows since \(\lambda \rho^0 \leq \rho \leq \mu \rho^0 \) for some \(\lambda, \mu > 0 \) and
\[\lambda^{1/p} \text{Tr} \left(\sigma^{p/2} \rho^0 \sigma^{p/2} \right)^{1/p} \leq \text{Tr} \left(\sigma^{p/2} \rho \sigma^{p/2} \right)^{1/p} \leq \mu^{1/p} \text{Tr} \left(\sigma^{p/2} \rho^0 \sigma^{p/2} \right)^{1/p}. \]

It was proved in \[8\] that
\[\tilde{D}_0(\rho\|\sigma) \leq D_0(\rho\|\sigma) \quad (2.8) \]
and equality holds in \[2.8\] if \(\rho^0 = \sigma^0 \). Let us here prove the following:

1. \(\tilde{D}_0(\rho\|\sigma) = -\log \tilde{Q}_0(\rho\|\sigma) \), where
\[\tilde{Q}_0(\rho\|\sigma) := \max \{ \text{Tr} (P\sigma) : P \text{ an orthogonal projection}, \]
\[[P, \sigma] = 0, (P \rho^0 P)^0 = P \}. \]

2. \(\tilde{D}_0(\rho\|\sigma) = D_0(\rho\|\sigma) \) holds if and only if \([\rho^0, \sigma] = 0 \). (Obviously, \([\rho^0, \sigma] = 0 \) if \(\rho^0 = \sigma^0 \).)

Indeed, to prove (1), first note that \((P \rho^0 P)^0 = P \) means that the dimension of \(\text{ran} \rho^0 P \) is equal to that of \(P \), that is, \(\rho^0 v_1, \ldots, \rho^0 v_d \) are linearly independent when \(\{v_1, \ldots, v_d\} \) is an orthonormal basis of \(\text{ran} P \). Choose \(1 \leq l_1 < l_2 < \cdots < l_m \) as in the first paragraph of this section (before Theorem \[2.1\]) for \(A = \sigma \) and \(K = \rho^0 \). Let \(P_0 \) be the orthogonal projection onto \(\text{span}\{v_1, \ldots, v_{l_m}\} \). Then \([P_0, \sigma] = 0, (P_0 \rho^0 P_0)^0 = P_0 \), and Theorem \[2.1\] gives
\[\lim_{p \to \infty} \text{Tr} \left(\rho^0 \sigma^p \rho^0 \right)^{1/p} = \sum_{k=1}^m a_{i_k} = \text{Tr} (P_0 \sigma). \]
On the other hand, let \(P \) be an orthogonal projection with \([P, \sigma] = 0 \) and \((P \rho^0 P)^0 = P \). From \([P, \sigma] = 0 \) we may assume that \(P = \sum_{k=1}^d |v_i \rangle \langle v_i| \) for some \(1 \leq i_1 < \cdots < i_d \leq n \).
(after, if necessary, changing \(v_i \) for degenerate eigenvalues \(a_i \)). Since \((P \rho^0 P)^0 = P\) implies that \(\rho^0 v_1, \ldots, \rho^0 v_d\) are linearly independent, we have \(d \leq m\) and

\[
\text{Tr} (P \sigma) = \sum_{k=1}^{d} a_{ik} \leq \sum_{k=1}^{m} a_{ik} = \text{Tr} (P_0 \sigma).
\]

Next, to prove (2), note that \(\text{Tr} (\rho^0 \sigma^p \rho^0)^{1/p}\) is increasing in \(p > 0\) by the Araki-Lieb-Thirring inequality mentioned above, which shows that

\[
\text{Tr} (\rho^0 \sigma) \leq \lim_{p \to \infty} \text{Tr} (\rho^0 \sigma^p \rho^0)^{1/p}.
\]

This means inequality (2.8), and equality holds in (2.8) if and only if \(\text{Tr} (\rho^0 \sigma^p \rho^0)^{1/p}\) is constant for \(p \geq 1\). By [10, Theorem 2.1] this is equivalent to the commutativity \(\rho^0 \sigma = \sigma \rho^0\).

Finally, we consider the complementary convergence of \(\Phi(A^p)^{1/p}\) as \(p \to -\infty\), or \(\Phi(A^{-p})^{-1/p}\) as \(p \to \infty\). Here, the expression \(\Phi(A^{-p})^{-1/p}\) for \(p > 0\) is defined in such a way that the \((-p)\)-power of \(A\) is restricted to the support of \(A\), i.e., defined in the sense of the generalized inverse, and the \((-1/p)\)-power of \(\Phi(A^{-p})\) is also in this sense.

The next theorem is the complementary counterpart of Theorem 2.6.

Theorem 2.9. Let \(\Phi : M_n \to M_{n'}\) be a positive linear map. Let \(A \in M_n^+\) be given with the spectral decomposition \(A = \sum_{k=1}^{m} a_k P_k\), where \(a_1 > a_2 > \cdots > a_m > 0\). Define

\[
\tilde{\mathcal{M}}_k := \text{ran} \Phi(P_k + \cdots + P_m) \ominus \text{ran} \Phi(P_{k+1} + \cdots + P_m), \quad 1 \leq i \leq m - 1,
\]

\[
\tilde{\mathcal{M}}_m := \text{ran} \Phi(P_m).
\]

Then

\[
\lim_{p \to -\infty} \Phi(A^{-p})^{-1/p} = \sum_{k=1}^{m} a_k P_{\tilde{\mathcal{M}}_k}.
\]

Proof. The proof is just a simple adaptation of Theorem 2.6. We can write for any \(p > 0\)

\[
\Phi(A^{-p})^{-1/p} = \left\{ \Phi((A^{-1})^p)^{1/p} \right\}^{-1},
\]

where \(A^{-1}\) and \(\{\cdots\}^{-1}\) are defined in the sense of the generalized inverse so that

\[
A^{-1} = \sum_{k=1}^{m} a_k^{-1} P_k = \sum_{k=1}^{m} a_{m+1-k}^{-1} P_{m+1-k}
\]

with \(a_m^{-1} > \cdots > a_1^{-1} > 0\). By Theorem 2.6 we have

\[
\lim_{p \to -\infty} \Phi((A^{-1})^p)^{1/p} = \sum_{k=1}^{m} a_{m+1-k}^{-1} P_{\tilde{\mathcal{M}}_{m+1-k}} = \sum_{k=1}^{m} a_k^{-1} P_{\tilde{\mathcal{M}}_k}.
\]
where

\[\tilde{M}_m := \text{ran } \Phi(P_{m+1}) = \text{ran } \Phi(P_m), \]
\[\tilde{M}_{m+1-k} := \text{ran } \Phi(P_{m+1} \oplus \cdots \oplus P_{m+1-k}) \oplus \text{ran } \Phi(P_{m+1} \oplus \cdots \oplus P_{m+1-(k-1)}) \]
\[= \text{ran } \Phi(P_{m+1-k} \oplus \cdots \oplus P_m) \oplus \text{ran } \Phi(P_{m+2-k} \oplus \cdots \oplus P_m), \quad 2 \leq k \leq m. \]

According to the proofs of Theorems 2.1 and 2.4, we see that the \(i\)th eigenvalue \(\lambda_i(p)\) of \(\Phi((A^{-1})^p)^{1/p}\) converges to a positive real as \(p \to \infty\), or otherwise, \(\lambda_i(p) = 0\) for all \(p > 0\). That is, \(\lambda_i(p) \to 0\) as \(p \to \infty\) occurs only when \(\lambda_i(p) = 0\) for all \(p > 0\). This implies that

\[\lim_{p \to \infty} \Phi(A^{-p})^{1/p} = \left\{ \lim_{p \to \infty} \Phi((A^{-1})^p)^{1/p} \right\}^{-1} = \sum_{k=1}^{m} a_k P_{\tilde{M}_k}. \]

\[\square \]

Remark 2.10. Assume that \(\Phi : M_n \to M_n\) is a unital positive linear map. Let \(A \in M_n\) be positive definite and \(1 \leq p < q\). Since \(x^{p/q}\) and \(x^{1/p}\) are operator monotone on \([0, \infty)\), we have \(\Phi(A^q)^{p/q} \geq \Phi(A^p)\) and so \(\Phi(A^q)^{1/q} \geq \Phi(A^p)^{1/p}\). Hence \(\Phi(A^p)^{1/p}\) increases as \(1 \leq p \nearrow\). Similarly, \(\Phi(A^{-q})^{p/q} \geq \Phi(A^{-p})\) and so \(\Phi(A^{-q})^{-1/q} \leq \Phi(A^{-p})^{-1/p}\) since \(x^{-1/p}\) is operator monotone decreasing on \((0, \infty)\). Hence \(\Phi(A^{-p})^{-1/p}\) decreases as \(1 \leq p \nearrow\). Moreover, since \(x^{-1}\) is operator convex on \((0, \infty)\), we have \(\Phi(A^{-1})^{-1} \leq \Phi(A)\). (See [5, Theorem 2.1] for more details.) Combining altogether, when \(A\) is positive definite, we have

\[\Phi(A^{-p})^{-1/p} \leq \Phi(A^q)^{1/q}, \quad p, q \geq 1, \quad (2.9) \]

and in particular,

\[\lim_{p \to \infty} \Phi(A^{-p})^{-1/p} \leq \lim_{p \to \infty} \Phi(A^p)^{1/p}. \]

However, the latter inequality does not hold unless \(\Phi\) is unital. For example, let

\[P_1 := \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad P_2 := \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad Q_1 := \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}, \quad Q_2 := \begin{bmatrix} 1/2 & -1/2 \\ -1/2 & 1/2 \end{bmatrix}, \]

and consider \(\Phi : M_2 \to M_2\) given by

\[\Phi \left(\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \right) := a_{11}P_1 + a_{22}Q_1, \]

and \(A := aP_1 + bP_2\) where \(a > b > 0\). Since \(P_{\text{ran } \Phi(P_1+P_2)} = I\), \(P_{\text{ran } \Phi(P_1)} = P_1\) and \(P_{\text{ran } \Phi(P_2)} = Q_1\), Theorems 2.6 and 2.9 give

\[\lim_{p \to \infty} \Phi(A^p)^{1/p} = aP_1 + b(I - P_1) = aP_1 + bP_2, \]
\[\lim_{p \to \infty} \Phi(A^{-p})^{-1/p} = a(I - Q_1) + bQ_1 = aQ_2 + bQ_1. \]
We compute
\[(aP_1 + bP_2) - (aQ_2 + bQ_1) = \begin{bmatrix} a-b & a-b \\ \frac{a-b}{2} & \frac{a-b}{2} \end{bmatrix},\]
which is not positive semidefinite.

Remark 2.11. We may always assume that \(\Phi : M_n \to M_{n'}\) is strictly positive. Indeed, we may consider \(\Phi\) as \(\Phi : M_n \to Q_0M_{n'}Q_0 \cong M_{n''}\), where \(Q_0\) is the support projection of \(\Phi(I_n)\). Under this convention, another reasonable definition of \(\Phi(A^{-p})^{-1/p}\) for \(p \geq 1\) is
\[
\Phi(A^{-p})^{-1/p} := \lim_{\varepsilon \downarrow 0} \Phi((A + \varepsilon I_n)^{-p})^{-1/p},
\]
which is well defined since \(\Phi((A + \varepsilon I)^{-p})\) is increasing so that \(\Phi((A + \varepsilon I)^{-p})^{-1/p}\) is decreasing as \(\varepsilon \downarrow 0\). But this definition is different from the above definition of \(\Phi(A^{-p})^{-1/p}\). For example, let \(\Phi : M_2 \to M_2\) be given by \(\Phi(A) := KAK^*\) with an invertible \(K = \begin{bmatrix} a & b \\ c & d \end{bmatrix}\), and let \(A = P = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\). Then \(A^{-p} = P\) (in the generalized inverse) so that
\[
KA^{-p}K^* = \begin{bmatrix} |a|^2 & a\overline{c} \\ \overline{ac} & |c|^2 \end{bmatrix}
\]
and so
\[
(KA^{-p}K^*)^{-1/p} = \frac{1}{(|a|^2 + |c|^2)^{1-\frac{1}{p}}} \begin{bmatrix} |a|^2 & a\overline{c} \\ \overline{ac} & |c|^2 \end{bmatrix}. \tag{2.10}
\]
On the other hand,
\[
\lim_{\varepsilon \downarrow 0} (K(A + \varepsilon I)^{-p}K^*)^{-1/p} = \lim_{\varepsilon \downarrow 0} (K^{*^{-1}}K^{-1})^{1/p} = (K^{*^{-1}}A^{-1}P)^{-1/p} = (K^{*^{-1}}PK^{-1})^{1/p}
\]
is equal to
\[
\frac{1}{|ad - bc|^2/p(|b|^2 + |d|^2)^{1-\frac{1}{p}}} \begin{bmatrix} |d|^2 & -b\overline{d} \\ -b\overline{d} & |b|^2 \end{bmatrix}. \tag{2.11}
\]
Hence we find that (2.10) and (2.11) are very different, even after taking the limits as \(p \to \infty\).

Here is a simpler example. Let \(\varphi : M_2 \to \mathbb{C} = M_1\) be a state (hence, unital) with density matrix \(\begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}\), and let \(A = P = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\). For the first definition we have
\[
\lim_{p \to \infty} \varphi(A^{-p})^{-1/p} = \lim_{p \to \infty} 2^{1/p} = 1.
\]
For the second definition,
\[
\lim_{\varepsilon \downarrow 0} \varphi((A + \varepsilon I)^{-p})^{-1/p} = \lim_{\varepsilon \downarrow 0} \left\{ \frac{(1 + \varepsilon)^{-p} + \varepsilon^{-p}}{2} \right\}^{-1/p} = 0
\]
Hence we find that (2.10) and (2.11) are very different, even after taking the limits as \(p \to \infty\).
for all $p > 0$. Moreover, since $\varphi(A^p)^{1/p} = 2^{-1/p}$ for $p > 0$, this example says also that (2.9) does not hold for general positive semidefinite A.

Problem 2.12. It is also interesting to consider the limit of $(A^pBA^p)^{1/p}$ as $p \to \infty$ for $A, B \in \mathbb{M}_n^+$, a version different from the limit treated in Theorem 2.1. To consider $\lim_{p \to \infty} (A^pBA^p)^{1/p}$, we may assume without loss of generality that B is an orthogonal projection E (see the argument around (3.2) below). Since $(A^pEA^p)^{1/p} = (A^pE^{2p}A^p)^{1/p}$ converges as $p \to \infty$ by [6, Theorem 2.5], the existence of the limit $\lim_{p \to \infty} (A^pBA^p)^{1/p}$ follows. But it seems that the description of the limit is a combinatorial problem much more complicated than that in Theorem 2.1.

3 \quad \lim_{p \to \infty} (A^p\sigma B)^{1/p}$ for operator means σ

In theory of operator means due to Kubo and Ando [13], a main result says that each operator mean σ is associated with a non-negative operator monotone function f on $[0, \infty)$ with $f(1) = 1$ in such a way that

$$A\sigma B = A^{1/2}f(A^{-1/2}BA^{-1/2})A^{1/2}$$

for $A, B \in \mathbb{M}_n^+$ with $A > 0$, which is further extended to general $A, B \in \mathbb{M}_n^+$ as

$$A\sigma B = \lim_{\varepsilon \searrow 0} (A + \varepsilon I)\sigma(B + \varepsilon I).$$

We write σ_f for the operator mean associated with f as above. For $0 \leq \alpha \leq 1$, the operator mean corresponding to the function x^α ($x \geq 0$) is the *weighted geometric mean* $\#_\alpha$, i.e.,

$$A\#_\alpha B = A^{1/2}(A^{-1/2}BA^{-1/2})^\alpha A^{1/2}$$

for $A, B \in \mathbb{M}_n^+$ with $A > 0$. In particular, $\# = \#_{1/2}$ is the so-called *geometric mean* first introduced by Pusz and Woronowicz [15].

The transpose of f above is given by

$$\tilde{f}(x) := x f(x^{-1}), \quad x > 0,$$

which is again an operator monotone function on $[0, \infty)$ (after extending to $[0, \infty)$ by continuity) corresponding to the transposed operator mean of σ_f, i.e., $A\sigma_f B = B\sigma_f A$. We also write

$$\tilde{f}(x) := \begin{cases}
\tilde{f}(x^{-1}) = f(x)/x & \text{if } x > 0, \\
0 & \text{if } x = 0.
\end{cases} \quad (3.1)$$

In the rest of the section, let f be such an operator monotone function as above and σ_f be the corresponding operator mean. We are concerned with the existence and
the description of the limit \(\lim_{p \to \infty} (A^p \sigma f B)^{1/p} \), in particular, \(\lim_{p \to \infty} (A^p \#_\alpha B)^{1/p} \) for \(A, B \in \mathbb{M}_n^+ \). For this, we may assume without loss of generality that \(B \) is an orthogonal projection. Indeed, let \(E \in A, B \) \(\lambda < \mu \) such that \(\lambda E \leq B \leq \mu E \). Thanks to monotonicity and positive homogeneity of \(\sigma_f \), we have

\[
\lambda(A^p \sigma f E) = (\lambda A^p) \sigma f (\lambda E) \leq A^p \sigma f B \leq (\mu A^p) \sigma f (\mu E) = \mu(A^p \sigma f E).
\]

Hence, for every \(p \geq 1 \), since \(x^{1/p} (x \geq 0) \) is operator monotone,

\[
\lambda^{1/p}(A^p \sigma f E)^{1/p} \leq (A^p \sigma f B)^{1/p} \leq \mu^{1/p}(A^p \sigma f B), \tag{3.2}
\]

so that \(\lim_{p \to \infty} (A^p \sigma f B)^{1/p} \) exists if and only if \(\lim_{p \to \infty} (A^p \sigma f E)^{1/p} \) does, and in this case, both limits are equal. In particular, when \(B > 0 \), since \((A^p \sigma f I)^{1/p} = \tilde{f}(A^p)^{1/p} \), we note that

\[
\lim_{p \to \infty} (A^p \sigma f B)^{1/p} = \tilde{f}^{(\infty)}(A)
\]

whenever \(\tilde{f}^{(\infty)}(x) := \lim_{p \to \infty} \tilde{f}(x^p)^{1/p} \) exists for all \(x \geq 0 \). For instance,

- if \(f(x) = 1 - \alpha + \alpha x \) where \(0 \leq \alpha < 1 \), then \(\sigma_f = \nabla_\alpha \), the \(\alpha \)-arithmetic mean \(A \nabla_\alpha B := (1 - \alpha) A + \alpha B \), and \(\tilde{f}^{(\infty)}(x) = \max\{x, 1\} \),
- if \(f(x) = x^\alpha \) where \(0 \leq \alpha \leq 1 \), then \(\sigma_f = \#_\alpha \) and \(\tilde{f}^{(\infty)}(x) = \tilde{f}(x) = x^{1-\alpha} \),
- if \(f(x) = x/((1-\alpha)x + \alpha) \) where \(0 < \alpha < 1 \), then \(\sigma_f = !_\alpha \), the \(\alpha \)-harmonic mean \(A !_\alpha B := (A^{-1} \nabla_\alpha B)^{-1} \), and \(\tilde{f}^{(\infty)}(x) = \min\{x, 1\} \).

But it is unknown to us that, for any operator monotone function \(f \) on \([0, \infty)\), the limit \(\lim_{p \to \infty} f(x^p)^{1/p} \) exists for all \(x \geq 0 \), while it seems so.

When \(E \) is an orthogonal projection, the next proposition gives a nice expression for \(A \sigma f E \). This was shown in [11, Lemma 4.7], while the proof is given here for the convenience of the reader.

Lemma 3.1. Assume that \(f(0) = 0 \). If \(A \in \mathbb{M}_n \) is positive definite and \(E \in \mathbb{M}_n \) is an orthogonal projection, then

\[
A \sigma f E = \hat{f}(EA^{-1}E), \tag{3.3}
\]

where \(\hat{f} \) is given in (3.1).

Proof. For every \(m = 1, 2, \ldots \) we have

\[
A^{-1/2}(EA^{-1}E)^m A^{-1/2} = (A^{-1/2}E)A^{-1/2})^{m+1}. \tag{3.4}
\]

Note that the eigenvalues of \(EA^{-1}E \) and those of \(A^{-1/2}E A^{-1/2} \) are the same including multiplicities. Choose a \(\delta > 0 \) such that the positive eigenvalues of \(EA^{-1}E \) and
\(A^{-1/2}EA^{-1/2}\) are included in \([\delta, \delta^{-1}]\). Then, since \(\hat{f}(x)\) is continuous on \([\delta, \delta^{-1}]\), one can choose a sequence of polynomials \(p_k(x)\) with \(p_k(0) = 0\) such that \(p_k(x) \to \hat{f}(x)\) uniformly on \([\delta, \delta^{-1}]\) as \(n \to \infty\). By (3.3) we have
\[
A^{-1/2}p_k(EA^{-1}E)A^{-1/2} = A^{-1/2}EA^{-1/2}p_k(A^{-1/2}EA^{-1/2})
\]
for every \(k\). Since \(\hat{f}(0) = 0\) by definition, we have
\[
p_k(EA^{-1}E) \to \hat{f}(EA^{-1}E)
\]
and
\[
A^{-1/2}EA^{-1/2}p_k(A^{-1/2}EA^{-1/2}) \to A^{-1/2}EA^{-1/2} \hat{f}(A^{-1/2}EA^{-1/2})
\]
as \(k \to \infty\). Since \(f(0) = 0\) by assumption, we have \(f(x) = x\hat{f}(x)\) for all \(x \in [0, \infty)\). This implies that
\[
A^{-1/2}EA^{-1/2} \hat{f}(A^{-1/2}EA^{-1/2}) = f(A^{-1/2}EA^{-1/2}).
\]
Therefore,
\[
A^{-1/2} \hat{f}(EA^{-1}E)A^{-1/2} = f(A^{-1/2}EA^{-1/2})
\]
so that we have \(\hat{f}(EA^{-1}E) = A^{1/2}f(A^{-1/2}EA^{-1/2})A^{1/2} = A\sigma f\), as asserted. \(\square\)

Formula (3.3) can equivalently be written as
\[
A\sigma f = \tilde{f}((EA^{-1}E)^{-1}),
\]
where \((EA^{-1}E)^{-1}\) is the inverse restricted to \(\text{ran } E\) (in the sense of the generalized inverse) and \(\tilde{f}((EA^{-1}E)^{-1})\) is also restricted to \(\text{ran } E\). In particular, if \(f\) is symmetric (i.e., \(f = \tilde{f}\)) with \(f(0) = 0\), then
\[
A\sigma f = f((EA^{-1}E)^{-1}).
\]

Example 3.2. Assume that \(0 < \alpha \leq 1\) and \(A, E\) are as in Lemma 3.1.

1. When \(f(x) = x^\alpha\) and \(\sigma_f = \#_\alpha\), \(\hat{f}(x) = x^{\alpha-1}\) for \(x > 0\) so that
\[
A\#_\alpha E = (EA^{-1}E)^{\alpha-1},
\]
where the \((\alpha-1)\)-power in the right-hand side is defined with restriction to \(\text{ran } E\).

2. When \(f(x) = x/(1 - \alpha)x + \alpha\) and \(\sigma_f = \!\alpha\), \(\hat{f}(x) = (1 - \alpha + \alpha x)^{-1}\) for \(x > 0\) so that
\[
A\!\alpha E = \{(1 - \alpha)E + \alpha EA^{-1}E\}^{-1} = \{E((1 - \alpha)I + \alpha A^{-1}E)^{-1}\}^{-1},
\]
where the inverse of \(E((1 - \alpha)I + \alpha A^{-1}E)\) in the right-hand side is restricted to \(\text{ran } E\).
(3) When \(f(x) = (x - 1)/\log x \) and so \(\sigma_f \) is the logarithmic mean, \(\tilde{f}(x) = (1 - x^{-1})/\log x \) for \(x > 0 \) so that

\[
A \sigma_f E = (E - (EA^{-1}E)^{-1})(\log EA^{-1}E)^{-1},
\]

where the right-hand side is defined with restriction to \(\text{ran } E \).

Theorem 3.3. Assume that \(f(0) = 0 \) and \(f(x^r) \geq f(x)^r \) for all \(x > 0 \) and all \(r \in (0, 1) \). Let \(A \in \mathbb{M}_n^+ \) and \(E \in \mathbb{M}_n \) be an orthogonal projection. Then

\[
(A^p \sigma_f E)^{1/p} \geq (A^q \sigma_f E)^{1/q} \quad \text{if } 1 \leq p < q. \tag{3.6}
\]

Proof. First, note that \(\tilde{f}(x^r) = x^r f(x^{-r}) \geq x^r f(x^{-1})^r = \tilde{f}(x)^r \) for all \(x > 0, r \in (0, 1) \). By replacing \(A \) with \(A + \varepsilon I \) and taking the limit as \(\varepsilon \to 0 \), we may assume that \(A \) is positive definite. Let \(1 \leq p < q \) and \(r := p/q \in (0, 1) \). By (3.5) we have

\[
(A^q \sigma_f E)^r = \tilde{f}((EA^{-q}E)^{-1}) \leq \tilde{f}((EA^{-q}E)^{-r}). \tag{3.7}
\]

Since \(x^r \) is operator monotone on \([0, \infty)\), we have by Hansen’s inequality \([9]\)

\[
(EA^{-q}E)^r \geq EA^{-qr}E = EA^{-p}E
\]

so that \((EA^{-q}E)^{-r} \leq (EA^{-p}E)^{-1} \). Since \(\tilde{f}(x) \) is operator monotone on \([0, \infty)\), we have

\[
\tilde{f}((EA^{-q}E)^{-r}) \leq \tilde{f}((EA^{-p}E)^{-1}) = A^p \sigma_f E. \tag{3.8}
\]

Combining (3.7) and (3.8) gives

\[
(A^q \sigma_f E)^r \leq A^p \sigma_f E.
\]

Since \(x^{1/p} \) is operator monotone on \([0, \infty)\), we finally have

\[
(A^q \sigma_f E)^{1/q} \leq (A^p \sigma_f E)^{1/p}.
\]

Corollary 3.4. Assume that \(f(0) = 0 \) and \(f(x^r) \geq f(x)^r \) for all \(x > 0, r \in (0, 1) \). Then for every \(A, B \in \mathbb{M}_n^+ \), the limit

\[
\lim_{p \to \infty} (A^p \sigma_f B)^{1/p}
\]

exists.

Proof. From the argument around (3.2) we may assume that \(B \) is an orthogonal projection \(E \). Then Theorem 3.3 implies that \((A^p \sigma_f E)^{1/p} \) converges as \(p \to \infty \).
Remark 3.5. Following [17], an operator monotone function \(f \) on \([0, \infty)\) is said to be power monotone increasing (p.m.i. for short) if \(f(x^r) \geq f(x)^r \) for all \(x > 0, r > 1 \) (equivalently, \(f(x^r) \leq f(x)^r \) for all \(x > 0, r \in (0,1) \)), and power monotone decreasing (p.m.d.) if \(f(x^r) \leq f(x)^r \) for all \(x > 0, r > 1 \). These conditions play a role to characterize the operator means \(\sigma_f \) satisfying Ando-Hiai’s inequality [1], see [17] Lemmas 2.1, 2.2. For instance, the p.m.d. condition is satisfied for \(f \) in (1) and (2) of Example 3.2 while \(f \) in Example 3.2(3) does the p.m.i. condition. Hence, for any \(\alpha \in [0,1] \), \((A^p\#\alpha E)^{1/p}\) and \((A^p\sigma_f E)^{1/p}\) converge decreasingly as \(1 \leq p \nearrow \infty \). In fact, for the harmonic mean, we have the limit \(A \wedge B := \lim_{p \to \infty} (A^p B^p)^{1/p} \), the decreasing limit as \(1 \leq p \nearrow \infty \) for any \(A, B \geq 0 \), which is the infimum counterpart of \(A \vee B \) in [12] (see also Example 2.7). The reader might be wondering if the opposite inequality to (3.6) holds (i.e., \((A^p f E)^{1/p}\) is increasing as \(1 \leq p \nearrow \infty \)) when \(f \) satisfies the p.m.i. condition. Although this is the case when \(\sigma = \nabla_\alpha \) the weighted arithmetic mean, it is not the case in general. In fact, if it were true, \((A^p\#\alpha E)^{1/p}\) must be constant for \(p \geq 1 \) since \(x^\alpha \) satisfies both p.m.i. and p.m.d. conditions, that is impossible.

Finally, for the weighted geometric mean \(\#_\alpha \) we obtain the explicit description of \(\lim_{p \to \infty} (A^p\#\alpha E)^{1/p} \) for any \(A \in \mathbb{M}_n^+ \). For the trivial cases \(\alpha = 0,1 \) note that \((A^p\#0 E)^{1/p} = A\) and \((A^p\#1 E)^{1/p} = E\) for all \(p > 0 \).

Theorem 3.6. Assume that \(0 < \alpha < 1 \). Let \(A \in \mathbb{M}_n^+ \) be given with the spectral decomposition \(A = \sum_{k=1}^m a_k P_k \) where \(a_1 > \cdots > a_m > 0 \), and \(E \in \mathbb{M}_n \) be an orthogonal projection. Then

\[
\lim_{p \to \infty} (A^p\#_\alpha E)^{1/p} = \sum_{k=1}^m a_k^{1-\alpha} Q_k, \tag{3.9}
\]

where

\[
Q_1 := P_1 \wedge E,
Q_k := (P_1 + \cdots + P_k) \wedge E - (P_1 + \cdots + P_{k-1}) \wedge E, \quad 2 \leq k \leq m.
\]

Proof. First, assume that \(A \) is positive definite so that \(P_1 + \cdots + P_m = I \). When \(f(x) = x^\alpha \) with \(0 < \alpha < 1 \), formula (3.5) is given as

\[
A\#_\alpha E = (EA^{-1}E)^{-(1-\alpha)}.
\]

Since

\[
\lim_{p \to \infty} (A^p \#_\alpha E)^{1/p} = \lim_{p \to \infty} (EA^{-p}E)^{-(1-\alpha)/p} = \lim_{p \to \infty} (E(A^{1-\alpha}E)^{-p}E)^{-1/p},
\]

it follows from Theorem 2.9 that

\[
\lim_{p \to \infty} (A^p \#_\alpha E)^{1/p} = \sum_{k=1}^m a_k^{1-\alpha} P_k \bar{M}_k.
\]
where
\[\mathcal{M}_k := \text{ran } E(P_k + \cdots + P_{m})E \ominus \text{ran } E(P_{k+1} + \cdots + P_{m})E, \quad 1 \leq k \leq m - 1, \]
\[\mathcal{M}_m := \text{ran } EP_mE. \]

From Lemma 3.7 below we have
\[\mathcal{M}_1 = \text{ran } E \ominus \text{ran } EP_1^\perp E = \text{ran } P_1 \wedge E, \]
and for \(2 \leq k \leq m, \)
\[\mathcal{M}_k = \text{ran } (P_1 + \cdots + P_{k-1})^\perp E \ominus \text{ran } (P_1 + \cdots + P_k)^\perp E \]
\[= [\text{ran } E \ominus \text{ran } (P_1 + \cdots + P_k)^\perp E] \ominus [\text{ran } E \ominus \text{ran } (P_1 + \cdots + P_{k-1})^\perp E] \]
\[= \text{ran } (P_1 + \cdots + P_k) \wedge E \ominus \text{ran } (P_1 + \cdots + P_{k-1}) \wedge E \]
\[= \text{ran } [(P_1 + \cdots + P_k) \wedge E - (P_1 + \cdots + P_{k-1}) \wedge E]. \]

Therefore, (3.9) is established when \(A \) is positive definite.

Next, when \(A \) is not positive definite, let \(P_{m+1} := (P_1 + \cdots + P_m)^\perp \). For any \(\varepsilon \in (0, a_m) \) define \(A_\varepsilon := A + \varepsilon P_{m+1} \). Then the above case implies that
\[\lim_{p \to \infty} (A_\varepsilon A_\varepsilon^* E)^{1/p} = \sum_{k=1}^{m} a_k^{1-\alpha} Q + \varepsilon^{1-\alpha} Q_{m+1}, \]
where
\[Q_{m+1} := E - (P_1 + \cdots + P_m) \wedge E. \]

Assume that \(0 < \varepsilon < \varepsilon' < a_m \). For every \(p \geq 1 \), since \(A_\varepsilon^p \leq A_{\varepsilon'}^p \), we have \(A_\varepsilon^p A_\varepsilon^* E \leq A_{\varepsilon'}^p A_{\varepsilon'}^* E \) and hence \((A_{\varepsilon}^p A_{\varepsilon}^* E)^{1/p} \leq (A_{\varepsilon'}^p A_{\varepsilon'}^* E)^{1/p} \). Furthermore, since \(A_\varepsilon^p A_\varepsilon^* E \to A^p A^* E \) as \(a_m > \varepsilon \wedge 0 \), we have
\[(A^p A^* E)^{1/p} = \lim_{a_m > \varepsilon \wedge 0} (A_{\varepsilon}^p A_{\varepsilon}^* E)^{1/p} \text{ decreasingly. } (3.10) \]

Now, we can perform a calculation of limits as follows:
\[\lim_{1 \leq p \to \infty} (A^p A^* E)^{1/p} = \lim_{1 \leq p \to \infty} \lim_{a_m > \varepsilon \wedge 0} (A_{\varepsilon}^p A_{\varepsilon}^* E)^{1/p} \]
\[= \lim_{a_m > \varepsilon \wedge 0} \lim_{1 \leq p \to \infty} (A_{\varepsilon}^p A_{\varepsilon}^* E)^{1/p} \]
\[= \lim_{a_m > \varepsilon \wedge 0} \left(\sum_{k=1}^{m} a_k^{1-\alpha} Q + \varepsilon^{1-\alpha} Q_{m+1} \right) \]
\[= \sum_{k=1}^{m} a_k^{1-\alpha} Q_k. \]

In the above, the second equality (the exchange of two limits) is confirmed as follows. Let \(X_{p,\varepsilon} := (A_{\varepsilon}^p A_{\varepsilon}^* E)^{1/p} \) for \(p \geq 1 \) and \(0 < \varepsilon < a_m \). Then \(X_{p,\varepsilon} \) is decreasing as
1 \leq p \to \infty \text{ by Theorem 3.3} \text{ and also decreasing as } a_m > \varepsilon \to 0 \text{ as seen in (3.10). Let } X_p := \lim_{\varepsilon} X_{p,\varepsilon} (= (A^p \&_\alpha E)^{1/p}), X_{\varepsilon} := \lim_{p} X_{p,\varepsilon}, \text{ and } X := \lim_{p} X_p. \text{ Since } X_{p,\varepsilon} \geq X_p, \text{ we have } X_{\varepsilon} \geq X \text{ and hence } \lim_{\varepsilon} X_{\varepsilon} \geq X. \text{ On the other hand, since } X_{p,\varepsilon} \geq X_{\varepsilon}, \text{ we have } X_p \geq \lim_{\varepsilon} X_{\varepsilon} \text{ and hence } X \geq \lim_{\varepsilon} X_{\varepsilon}. \text{ Therefore, } X = \lim_{\varepsilon} X_{\varepsilon}, \text{ which gives the assertion.}

In particular, when \(A = P \) is an orthogonal projection, we have \((A^p \&_\alpha E)^{1/p} = P \& E\) for all \(p > 0 \) (see [13, Theorem 3.7]) so that both sides of (3.9) are certainly equal to \(P \& E \).

Lemma 3.7. For every orthogonal projections \(E \) and \(P \),

\[
\text{ran } EP^\perp E = \text{ran } (E - P \& E),
\]

or equivalently,

\[
\text{ran } P \& E = \text{ran } E \ominus \text{ran } EP^\perp E.
\]

Proof. According to the well-known representation of two projections (see [16 pp. 306–308]), we write

\[
E = I \oplus 0 \oplus \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \oplus 0,
\]

\[
P = I \oplus 0 \oplus I \oplus \begin{bmatrix} C^2 & CS \\ CS & S^2 \end{bmatrix} \oplus 0,
\]

where \(0 < C, S < I \) with \(C^2 + S^2 = I \). We have

\[
P \& E = I \oplus 0 \oplus 0 \oplus 0 \oplus 0.
\]

Since

\[
P^\perp = 0 \oplus I \oplus 0 \oplus \begin{bmatrix} S^2 & -CS \\ -CS & C^2 \end{bmatrix} \oplus I
\]

we also have

\[
EP^\perp E = 0 \oplus I \oplus 0 \oplus \begin{bmatrix} S^2 & 0 \\ 0 & 0 \end{bmatrix} \oplus 0,
\]

whose range is that of

\[
0 \oplus I \oplus 0 \oplus \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \oplus 0 = E - P \& E,
\]

which yields the conclusion.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number JP17K05266.
References

[1] T. Ando and F. Hiai, Log majorization and complementary Golden-Thompson type inequalities, *Linear Algebra Appl.* 197/198 (1994), 113–131.

[2] J. Antezana, G. Corach and D. Stojanoff, Spectral shorted matrices, *Linear Algebra Appl.* 381 (2004), 197–217.

[3] J. Antezana, G. Corach and D. Stojanoff, Spectral shorted operators, *Integral Equations Operator Theory* 55 (2006), 169–188.

[4] H. Araki, On an inequality of Lieb and Thirring, *Lett. Math. Phys.* 19 (1990), 167–170.

[5] K. M. R. Audenaert and F. Hiai, On matrix inequalities between the power means: counterexamples, *Linear Algebra Appl.* 439 (2013), 1590–1604.

[6] K. M. R. Audenaert and F. Hiai, Reciprocal Lie-Trotter formula, *Linear and Multilinear Algebra* 64 (2016), 1220–1235.

[7] J.-C. Bourin, Convexity or concavity inequalities for Hermitian operators, *Math. Ineq. Appl.* 7 (2004), 607–620.

[8] N. Datta and F. Leditzky, A limit of the quantum Rényi divergence, *J. Phys. A: Math. Theor.* 47 (2014), 045304.

[9] F. Hansen, An operator inequality, *Math. Ann.* 246 (1980), 249–250.

[10] F. Hiai, Equality cases in matrix norm inequalities of Golden-Thompson type, *Linear and Multilinear Algebra* 36 (1994), 239–249.

[11] F. Hiai, A generalization of Araki’s log-majorization, *Linear Algebra Appl.* 501 (2016), 1–16.

[12] T. Kato, Spectral order and a matrix limit theorem, *Linear and Multilinear Algebra* 8 (1979), 15–19.

[13] F. Kubo and T. Ando, Means of positive linear operators, *Math. Ann.* 246 (1980), 205–224.

[14] M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr and M. Tomamichel, On quantum Rényi entropies: A new generalization and some properties, *J. Math. Phys.* 54 (2013), 122203.

[15] W. Pusz and S. L. Woronowicz, Functional calculus for sesquilinear forms and the purification map, *Rep. Math. Phys.* 8 (1975), 159–170.
[16] M. Takesaki, *Theory of Operator Algebras I*, Encyclopaedia of Mathematical Sciences, Vol. 124, Springer-Verlag, Berlin, 2002.

[17] S. Wada, Some ways of constructing Furuta-type inequalities, *Linear Algebra Appl.* 457 (2014), 276–286.

[18] M. M. Wilde, A. Winter and D. Yang, Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative Entropy, *Comm. Math. Phys.* 331 (2014), 593–622.