Localization and projected role of phosphatidylinositol 4-kinases IIα and IIβ in inositol 1,4,5-trisphosphate-sensitive nucleoplasmic Ca\(^{2+}\) store vesicles

Seung Hyun Yoo*, Yang Hoon Huh, Seong Kwon Huh, Sei Yoon Chu, Ki Deok Kim, and Yong Suk Hur

Department of Biochemistry; Inha University School of Medicine; Incheon, Korea

Keywords: PI4KIIα, PI4KIIβ, chromogranin B, IP3, IP3 receptor/Ca\(^{2+}\) channel, nucleoplasmic vesicle, Ca\(^{2+}\) store, PIP2

Abbreviations: PI, phosphatidylinositol; PI4KII, type II PI 4-kinase; CGB, chromogranin B; IP3, inositol 1,4,5-trisphosphate receptor

Phosphatidylinositol (PI) kinases are key molecules that participate in the phosphoinositide signaling in the cytoplasm. Despite the accumulating evidence that supports the existence and operation of independent PI signaling system in the nucleus, the exact location of the PI kinases inside the nucleus is not well defined. Here we show that PI4-kinases IIα and IIβ, which play central roles in P(4,5)P2 synthesis and PI signaling, are localized in numerous small nucleoplasmic vesicles that function as inositol 1,4,5-trisphosphate (Ins(1,4,5)P3)-sensitive Ca\(^{2+}\) stores. This is in accord with the past results that showed the localization of PI4(PI5)-kinases that are essential in P(4,5)P2 production and P(4,5)P2 in nuclear matrix. Along with P(4,5)P2 that also exists on the nucleoplasmic vesicle membranes, the localization of PI4-kinases IIα and IIβ in the nucleoplasmic vesicles strongly implicates the vesicles to the PI signaling as well as the Ins(1,4,5)P3-dependent Ca\(^{2+}\) signaling in the nucleus. Accordingly, the nucleoplasmic vesicles indeed release Ca\(^{2+}\) rapidly in response to Ins(1,4,5)P3. Further, the Ins(1,4,5)P3-induced Ca\(^{2+}\) release studies suggest that PI4KIIα and IIβ are localized near the Ins(1,4,5)P3 receptor (Ins(1,4,5)P3R) on Ca\(^{2+}\) store vesicle membranes. In view of the widespread presence of the Ins(1,4,5)P3-dependent Ca\(^{2+}\) store vesicles and the need to fine-control the nuclear Ca\(^{2+}\) concentrations at multiple sites along the chromatin fibers in the nucleus, the existence of the key PI enzymes in the Ins(1,4,5)P3-dependent nucleoplasmic Ca\(^{2+}\) store vesicles appears to be in perfect harmony with the physiological roles of the PI kinases in the nucleus.

Introduction

Of the many phosphatidylinositol (PI) kinases that participate in the PI cycles of the cell, PI4-kinase IIs (PI4KII) that exist in α- and β-forms and PI(4)P5KIs that exist in three isoforms (α-, β-, and γ) are among the most widely studied. PI4KII are the key enzymes in producing P(4,5)P2, that is known to play a number of important roles in the cytoplasm in addition to its being an indispensable phospholipid component of cell membranes. As such, the function of PI kinases is generally discussed in the context of the cytoplasm. Nonetheless, PI kinases are also reported to be present inside the nucleus, along with phospholipase C (PLC), PtdIns(4,5)P2, and Ins(1,4,5)P3. The presence of PI kinases and inositol phosphates inside the nucleus implies the existence and function of PI signaling system in the nucleus. Further, in view of the fact that phosphatidylinositol compounds are normally components of membranous structures it becomes of immediate interest to identify the subnuclear organelles in which these molecules are part of. Yet the exact location of the molecules that participate in the phosphoinositide signaling of the nucleus still largely remains to be unclear although nonmembranous nuclear matrix complex termed “nuclear speckles” are sometimes referred to. In particular, the intranuclear location of PtdIns(4,5)P2, which is a key member of phospholipid cell membranes, appears to pose a serious challenge.

We have demonstrated previously the existence of numerous small Ins(1,4,5)P3-sensitive nucleoplasmic Ca\(^{2+}\) store vesicles that contain the Ins(1,4,5)P3 receptors and PtdIns(4,5)P2 in the nucleus. The small Ins(1,4,5)P3-sensitive nucleoplasmic Ca\(^{2+}\) store vesicles have an average diameter of ~50 nm and rapidly release Ca\(^{2+}\) in response to Ins(1,4,5)P3. No other inositol phosphates including inositol 1,4-bisphosphate (IP2), inositol 1,3,4-trisphosphate, and inositol 1,3,4,5-tetrakisphosphate (IP4) can release Ca\(^{2+}\) from these vesicles, whereby demonstrating the inositol 1,4,5-trisphosphate (Ins(1,4,5)P3)-specific nature of the Ca\(^{2+}\) stores. Yet the Ins(1,4,5)P3 specificity would not have
been possible without the presence of integral membrane protein Ins(1,4,5)P_3 receptor (Ins(1,4,5)P_3R)/Ca^{2+} channels in the vesicle membranes through which Ca^{2+} is released.

Although it is not known where the PI kinases exist in the nucleus, it appears rather apparent that their location in the nucleoplasm will be limited to some form of membrane-containing structures given that most of PI4KIIα and ~30% of PI4KIIβ exist as integral membrane proteins in the cytoplasm due to palmitoylation of their cysteine residues. In light of the fact that the Ins(1,4,5)P_3-sensitive nucleoplasmic Ca^{2+} store vesicles are the only identified intranuclear organelle with membrane bilayers, we have here investigated the possibility of PI4KIIIs existing in the nucleoplasmic Ca^{2+} store vesicles and found indeed the localization of PI4KIIIs in these vesicles. The Ins(1,4,5)P_3-induced Ca^{2+} release studies further suggested close association of PI4KIIs with the Ins(1,4,5)P_3R/Ca^{2+} channels on the membranes of the nucleoplasmic Ca^{2+} store vesicles.

Moreover, the product of PI kinase activity PtdIns(4,5)P_2 has also been shown to exist in the PI4KII-containing nucleoplasmic Ca^{2+} store vesicles. Considering that the role of PI4KIIs is to help synthesize the membrane phospholipid PtdIns(4,5)P_2, which in turn is supposed to supply Ins(1,4,5)P_3 for Ins(1,4,5)P_3-dependent Ca^{2+} signaling mechanisms inside the nucleus, the existence of PI4KIIs in the Ins(1,4,5)P_3-sensitive nucleoplasmic Ca^{2+} store vesicles appears to be a natural consequence, shedding new light on the roles of PI kinases in the nucleus.

Results

Localization of PI4KIIs in small nucleoplasmic vesicles

To determine the exact location of PI4KIIs in the nucleus, the localization of PI4KIIα in bovine adrenal chromaffin cells was studied first with immunogold electron microscopy using the PI4KIIα-specific antibody. In addition, in view of the presence of integral membrane protein Ins(1,4,5)P_3Rs in the Ins(1,4,5)P_3-sensitive nucleoplasmic Ca^{2+} store vesicle membranes, the localization of Ins(1,4,5)P_3Rs isoforms was also examined using each Ins(1,4,5)P_3R isoform-specific antibody. Figure 1A shows that PI4KIIα and Ins(1,4,5)P_3Rs are localized not only in secretory granules but also in what appear to be the same organelles in the nucleoplasm. Given the exclusive localization of the Ins(1,4,5)P_3Rs in the Ins(1,4,5)P_3-dependent nucleoplasmic Ca^{2+} store vesicles, this result in turn raises the possibility of the presence of PI4KIIα in the Ins(1,4,5)P_3-sensitive nucleoplasmic Ca^{2+} store vesicles.

Similarly, the localization of PI4KIIβ and Ins(1,4,5)P_3Rs in bovine adrenal chromaffin cells was also examined with immunogold double-labeling electron microscopy. Figure 1B shows that PI4KIIβ and Ins(1,4,5)P_3Rs are localized not only in secretory granules but also in what appear to be the same organelles in the nucleoplasm, thereby further strengthening the possibility of the presence of PI4KIIβ in the Ins(1,4,5)P_3,R-containing Ins(1,4,5)P_3-sensitive nucleoplasmic Ca^{2+} store vesicles. Since the Ca^{2+} storage protein chromogranin B (CGB) is known to colocalize with the Ins(1,4,5)P_3Rs exclusively in the Ins(1,4,5)P_3-sensitive nucleoplasmic Ca^{2+} store vesicles, the localization of CGB and the Ins(1,4,5)P_3Rs in the

Figure 1. Immunocytochemical localization of PI4KIIα and IIβ, Ins(1,4,5)P_3Rs, and chromogranin B in adrenal chromaffin cells. Bovine adrenal chromaffin cells were immunolabeled for (A) PI4KIIα (10 nm gold) and Ins(1,4,5)P_3R2 (15 nm gold) with PI4KIIα and Ins(1,4,5)P_3R2 antibodies, respectively, (B) PI4KIIβ (10 nm gold) and Ins(1,4,5)P_3R2 (15 nm gold) with PI4KIIβ and Ins(1,4,5)P_3R2 antibodies, respectively, and (C) chromogranin B (15 nm gold) and Ins(1,4,5)P_3R1 (10 nm gold) with chromogranin B (cGB) and Ins(1,4,5)P_3R1 antibodies, respectively. The gold particles are localized in secretory granules (Sg), endoplasmic reticulum (er), and nucleus (Nu), but not in mitochondria (M). Colocalization of respective molecules is indicated by arrows. Experiments with other Ins(1,4,5)P_3R isoforms in each set gave identical results. Bar = 200 nm.
nucleus was also investigated here using CGB and Ins(1,4,5)P₃ double-labeling electron microscopy (Fig. 1C). In line with the previous reports, Ins(1,4,5)P₃ and CGB appeared to localize in the same organelles in the nucleoplasm as they colocalized in secretory granules (Fig. 1C), which strengthens the possibility of the localization of the PI4KIIα and IIβ in the CGB-containing Ins(1,4,5)P₃-sensitive nucleoplasmic Ca²⁺ store vesicles.

To confirm the localization of Ins(1,4,5)P₃Rs and CGB in the Ins(1,4,5)P₃-sensitive nucleoplasmic Ca²⁺ store vesicles, the nucleoplasmic Ca²⁺ store vesicles were purified from the nuclei of bovine adrenal chromaffin cells and the expression of both CGB and Ins(1,4,5)P₃Rs was investigated using double immunogold electron microscopy (Fig. 2A). Figure 2A shows that CGB and all three Ins(1,4,5)P₃ isoforms are localized in the small nucleoplasmic vesicles as had been demonstrated before, which in turn suggests the localization of PI4KIIα and IIβ in the membranes of the Ins(1,4,5)P₃-sensitive nucleoplasmic Ca²⁺ store vesicles. Hence, the possibility of PI4KIIα and IIβ localization in the CGB-containing Ins(1,4,5)P₃-sensitive nucleoplasmic Ca²⁺ store vesicles was further investigated using the purified nucleoplasmic Ca²⁺ store vesicles (Fig. 2B). Agreeing with the presence of PI4KIIα in the Ins(1,4,5)P₃-sensitive nucleoplasmic Ca²⁺ store vesicles, PI4KIIα and CGB were shown to colocalize in the purified nucleoplasmic vesicles (Fig. 2B). Likewise, PI4KIIβ and CGB were also shown to colocalize in the purified nucleoplasmic vesicles (Fig. 2B), thereby confirming the localization of PI4KIIα and IIβ in the CGB- and Ins(1,4,5)P₃R-containing Ins(1,4,5)P₃-sensitive nucleoplasmic Ca²⁺ store vesicles.

Identification of the small nucleoplasmic vesicles as the Ins(1,4,5)P₃-sensitive Ca²⁺ store

In keeping with the expression of the Ins(1,4,5)P₃-carrying Ca²⁺ channels and the Ca²⁺ storage protein CGB in the vesicles, the small nucleoplasmic vesicles are known to rapidly release Ca²⁺ in response specifically to inositol 1,4,5-trisphosphate, and no other inositol phosphates exert any effect. To further corroborate whether the PI4KIIα- and IIβ-containing nucleoplasmic vesicles function as the Ins(1,4,5)P₃-sensitive Ca²⁺ stores, we have tested the Ins(1,4,5)P₃-dependent Ca²⁺-release properties (Fig. 3). As shown in Figure 3, the PI4KIIα- and IIβ-containing nucleoplasmic vesicles rapidly released Ca²⁺ in response to inositol 1,4,5-trisphosphate (Fig. 3A). Yet Ins(1,4,5)P₃ failed to induce Ca²⁺ release from the vesicles in the presence of the Ins(1,4,5)P₃R antibody (Fig. 3B) or heparin (Fig. 3C) while preimmune serum and IgG were without any effect on the Ins(1,4,5)P₃-induced Ca²⁺ release (Fig. 3D). Moreover, fitting with the nucleoplasmic nature of the Ca²⁺ store vesicles, thapsigargin, antimycin A, and oligomycin that are known to inhibit Ca²⁺ uptake into the endoplasmic reticulum and mitochondria, did not affect the Ins(1,4,5)P₃-mediated Ca²⁺ release properties from the nucleoplasmic Ca²⁺ store vesicles.

Localization of PtdIns(4,5)P₂ on the Ins(1,4,5)P₃-sensitive nucleoplasmic vesicle membranes

The existence of PI4KIIα and IIβ in the Ins(1,4,5)P₃-sensitive nucleoplasmic Ca²⁺ store vesicles strongly suggests the possibility of PtdIns(4,5)P₂ production on the vesicle membranes by PI4KIIα and IIβ. Since PtdIns(4,5)P₂ is the source of Ins(1,4,5)P₃ and PLC is also available in the nucleus, it would be a natural course of event for Ins(1,4,5)P₃ to be produced from the PtdIns(4,5)P₂ of the vesicle membranes and open the nucleoplasmic Ca²⁺ store vesicle Ins(1,4,5)P₃-carrying Ca²⁺ channels to induce Ca²⁺ release. Underscoring this possibility and confirming the past results, PtdIns(4,5)P₂ was shown to exist in the nucleoplasm (Fig. 4A). Moreover, the specific location of the PtdIns(4,5)P₂ existence in the nucleus was confirmed to be the CGB-containing Ins(1,4,5)P₃-sensitive nucleoplasmic Ca²⁺ store vesicles (Fig. 4B). Hence, based on the information currently available a model of the Ins(1,4,5)P₃-sensitive nucleoplasmic Ca²⁺ store vesicles could be drawn as shown in Figure 5.
mass of ~1.2 × 10^6 daltons, it is likely that the Ins(1,4,5)P_3R/Ca^{2+} channels interact with many proteins of the nucleoplasmic vesicle membranes. Furthermore, the intravesicular Ca^{2+} storage protein CGB is not only known to couple to the Ins(1,4,5)P_3R/Ca^{2+} channels and activate the Ca^{2+} channels but also thought to interact with another Ca^{2+} storage protein SgII.

Localization of PI4KIIα next to the Ins(1,4,5)P_3Rs in the Ins(1,4,5)P_3-sensitive nucleoplasmic vesicles

In order to determine whether the newly identified PI4KIIα and IIβ stay in close association with the Ins(1,4,5)P_3R/Ca^{2+} channels on the nucleoplasmic Ca^{2+} store vesicle membranes, we have performed the Ins(1,4,5)P_3-induced Ca^{2+} release experiments by microinjection of Ins(1,4,5)P_3 into the nucleus of both chromaffin and PC12 cells in the presence of the antibodies specific for PI4KIIα and PI4KIIβ (Fig. 6). The results in Figure 6A show that the antibodies for PI4KIIα and PI4KIIβ reduced the Ins(1,4,5)P_3-induced Ca^{2+} releases inside the nucleus of bovine chromaffin cells by ~38–40% while the antibodies for Ins(1,4,5)P_3R and PtdIns(4,5)P_2 reduced the Ins(1,4,5)P_3-mediated Ca^{2+} releases by ~59% and ~35%, respectively (Fig. 6B). However, IgG alone was without any effect on the Ins(1,4,5)P_3-induced releases in the nucleus. Similarly, the antibodies for PI4KIIα and PI4KIIβ reduced the Ins(1,4,5)P_3-induced Ca^{2+} releases inside the nucleus of PC12 cells by ~38–39% whereas IgG did not affect the Ins(1,4,5)P_3-mediated Ca^{2+} release (Fig. 6C and D). These results suggest that not only PtdIns(4,5)P_2 but PI4KIIα and IIβ as well exist in close association with the Ins(1,4,5)P_3R/Ca^{2+} channels on the nucleoplasmic Ca^{2+} store vesicle membranes.

Discussion

The present results not only show that PI4KIIα and IIβ exist in the nucleus but also identify the organelle in which they are localized, i.e., the Ins(1,4,5)P_3-sensitive nucleoplasmic Ca^{2+} store.
vesicles. Although past studies pointed out the existence of PI kinases and the PI-based signaling systems in the nucleus, the exact identity of the nucleoplasmic organelles in which the PI kinases exist remained unclear. Considering that most PI4KIIα and a substantial portion of PI4KIIβ exist as membrane proteins in the cytoplasm owing to the palmitoylated cysteine residues, it appears inevitable that the nuclear PI4KIIα and IIβ also exist as membrane proteins in the nucleus. Moreover, in view of the fact that the small numerous Ins(1,4,5)P₃-sensitive nucleoplasmic Ca²⁺ store vesicles are the only known nucleoplasmic entity with membranes, the localization of PI4KIIα and IIβ in the nucleoplasmic vesicles is in accord with their biochemical properties.

In addition, the nucleoplasmic Ca²⁺ store vesicles not only contain the high capacity, low affinity Ca²⁺ storage proteins chromogranin B and secretogranin II but also are loaded with the Ins(1,4,5)P₃, P₃R/Ca²⁺ channels, increasing the mean open time and the open probability of the Ca²⁺ channels, 24-fold and 8-fold, respectively. Yet despite the seeming similarity between the cytoplasmic secretory granules and the nucleoplasmic Ca²⁺ store vesicles in having both the Ins(1,4,5)P₃R/Ca²⁺ channels on their respective membranes and the coupled CGB inside the vesicles, the Ins(1,4,5)P₃R/Ca²⁺ channels in the nucleoplasmic vesicles are at least 3- to 4-fold more sensitive to Ins(1,4,5)P₃ than those of secretory granules. This marked difference in the sensitivity of the Ins(1,4,5)P₃R/Ca²⁺ channels to Ins(1,4,5)P₃ appears to be due to the difference in the molecular structures of secretory granules and the nucleoplasmic vesicles.

Although secretory granules function as the major Ins(1,4,5)P₃-sensitive Ca²⁺ store in the cytoplasm of secretory cells, the organelle’s primary physiological role in secretory cells is to store high concentrations of a variety of secretory cargos and transport them to the site of secretion. Accordingly, secretory granules of bovine chromaffin cells contain >500 mM catecholamines, ~150 mM ATP, 40 mM Ca²⁺, and 2–4 mM chromogranins, in addition to many other molecules. Secretory granules from other types of cells also contain high concentrations of molecules specific to each type of granules that they look electron-dense under an electron microscope. In contrast, the nucleoplasmic Ca²⁺ store vesicles appear transparent under an electron microscope, clearly highlighting the difference in the nucleoplasmic vesicular contents from those stored in secretory granules albeit the Ca²⁺ concentration in the nucleoplasmic vesicles is expected to be high.

Given the storage of high concentrations of hormones and other molecules besides the grain proteins in secretory granules, the Ins(1,4,5)P₃R/Ca²⁺ channels on secretory granule membranes are likely to interact with multiple molecules that may complicate the channel-activating roles of the coupled CGB. In contrast, the nucleoplasmic Ca²⁺ store vesicles appear to be specialized organelles that exist primarily for the control of nucleoplasmic Ca²⁺ concentrations, free from duties such as storage and transport of heavy loads of secretory cargos. In this respect, the nucleoplasmic vesicles are likely to contain only the molecules that are necessary for them to function as the Ins(1,4,5)P₃-sensitive nucleoplasmic Ca²⁺ store vesicles.

Figure 4. Immunogold labeling of adrenal chromaffin cells and the purified nucleoplasmic vesicles with PtdIns(4,5)P₂. (A) Bovine adrenal chromaffin cells (A) and purified Ins(1,4,5)P₃-sensitive nucleoplasmic vesicles (B) were immunolabeled for PtdIns(4,5)P₂ (15 nm gold). (A) The PtdIns(4,5)P₂-labeling gold particles are localized in secretory granules (SG), endoplasmic reticulum (er), and nucleus (Nu), but not in mitochondria (M). The PtdIns(4,5)P₂-labeling gold particles are indicated by arrows. Bar = 200 nm. (B) PtdIns(4,5)P₂ is shown to localize on the membranes of the Ins(1,4,5)P₃-sensitive nucleoplasmic vesicles. Bar = 50 nm.
coordinate the supply of Ins(1,4,5)P$_3$ for the control of Ins(1,4,5)P$_3$-dependent nuclear Ca$^{2+}$ concentrations. Furthermore, considering that Ins(1,4,5)P$_3$ is produced from PtdIns(4,5)P$_2$, and PI4KIIα and IIβ play central roles in producing PtdIns(4,5)P$_2$, the nuclear Ca$^{2+}$ control role of the nucleoplasmic Ca$^{2+}$ store vesicles would not be possible without a close mechanistic correlation with the PI cycling systems inside the nucleus. It seems therefore very natural that PI4KIIα and IIβ are localized in the Ins(1,4,5)P$_3$-sensitive nucleoplasmic Ca$^{2+}$ store vesicles. Moreover, the reported presence of PI(4)P5Ks, one of the two key enzymes in PtdIns(4,5)P$_2$ production, in the nucleus seems to underscore the pivotal importance of PtdIns(4,5)P$_2$ in nuclear functions. Interestingly, the PI(4)P5Ks and its product PtdIns(4,5)P$_2$ are suggested to take part in transcription control of certain types of genes through their interaction with poly(A) polymerase termed ‘Star-PAP’ in the nucleus. Recent studies also indicate the presence of PI(5)P and its metabolizing enzyme PI(5)P4Ks in the nucleus, thereby demonstrating the widespread expression of a variety of PI kinases in the nucleus. In this respect, the widespread existence of PI kinases that participate in PtdIns(4,5)P$_2$ production in the nucleus appears to further raise the possibility of localization of even PI(4)P5Ks and PI(5)P4Ks in the Ins(1,4,5)P$_3$-sensitive nucleoplasmic Ca$^{2+}$ store vesicles. Furthermore, the results in Figure 6 indicate that PI4KIIα and IIβ, along with PtdIns(4,5)P$_2$, are localized near the Ins(1,4,5)P$_3$/Ca$^{2+}$ channels (Fig. 5). The apparent close localization of PI4KIIα and IIβ near the Ins(1,4,5)P$_3$/Ca$^{2+}$ channels and PtdIns(4,5)P$_2$ on the membranes of the nucleoplasmic vesicles (Fig. 5) appears to ensure the Ins(1,4,5)P$_3$-dependent nuclear Ca$^{2+}$ control role of the nucleoplasmic Ca$^{2+}$ store vesicles in tune with the PI cycle of the nucleus. In this regard, the localization of PI(4)P5Ks and PtdIns(4,5)P$_2$ inside the nucleus as evidenced in fluorescence microscopy is in accord with the present results.

Further, given that PtdIns(4,5)P$_2$ on the membranes of the Ins(1,4,5)P$_3$-sensitive nucleoplasmic Ca$^{2+}$ store vesicles can be replenished by the PI4KIIα and IIβ, the localization of the PI kinases near the Ins(1,4,5)P$_3$/Ca$^{2+}$ channels accords well with the projected function of the vesicles in the control of Ca$^{2+}$ storage and concentrations inside the nucleus. Moreover, in our unpublished results the Ins(1,4,5)P$_3$-sensitive nucleoplasmic Ca$^{2+}$ store vesicles were shown to stay in close contact with many nucleosomes in the nucleoplasm (Yoo SH, unpublished results), which implied the Ca$^{2+}$ control role of the nucleoplasmic Ca$^{2+}$ store vesicles in chromatins. Considering that there are numerous small Ins(1,4,5)P$_3$-sensitive nucleoplasmic Ca$^{2+}$ store vesicles in the nucleus, the presence of the Ca$^{2+}$ store vesicles in close association with the chromatins suggests the vesicles’ intimate involvement in the Ca$^{2+}$ control roles at multiple sites along the chromatin fibers, which is also in line with the previously suggested roles of nuclear phosphoinositides. In this regard, the presence of PI4KIIαs in the small nucleoplasmic Ca$^{2+}$ store vesicles will be of critical importance not only in the Ins(1,4,5)P$_3$-dependent Ca$^{2+}$ control function of the nucleoplasmic Ca$^{2+}$ store vesicles.
store vesicles but also in the maintenance and operation of the PI cycles in the nucleus.

Being the home of chromosomes and chromosomes containing billions of negative charges in the form of one negative charge per nucleotide, the nucleus must contain large amounts of positive charges just to neutralize the high magnitude of intrinsic negative charges and maintain an appropriate nuclear structure. This extraordinary need for positive charges in chromosomes is primarily met by high concentrations of Ca\(^{2+}\), ranging from ~20 mM when the chromosomes are in relaxed state to ~32 mM when in condensed state, 47 though Mg\(^{2+}\) and histones are also known to supply positive charges. Although the Ca\(^{2+}\) concentrations stored in the Ins(1,4,5)\(P_3\)-sensitive nucleoplasmic Ca\(^{2+}\) store vesicles are not known at present, it is highly likely that they contain large amounts of Ca\(^{2+}\), probably in high mM range, given the presence of ~11 mM Ca\(^{2+}\) in the nuclei of bovine chromaffin cells 25 and the presence of high capacity, low affinity Ca\(^{2+}\) storage proteins CGB, and SgII in the nucleoplasmic vesicles. 29

That the chromosomes maintain millimolar range of Ca\(^{2+}\) concentrations inside the nucleus simply translates into the existence and operation of high capacity nucleoplasmic Ca\(^{2+}\) stores that are capable of controlling the millimolar Ca\(^{2+}\). Moreover, in light of the need to fine-control the Ca\(^{2+}\) needs at multiple sites along the chromatin fibers that are building blocks of chromosomes, it is inevitable that the nuclear Ca\(^{2+}\) stores should be small enough to fit in between the chromatins and be widely present along the chromatin fibers. In this respect, the

Figure 6. Microinjection of Ins(1,4,5)\(P_3\) into the nucleus of bovine chromaffin and PC12 cells and Ca\(^{2+}\) imaging. Ten nM Ins(1,4,5)\(P_3\) was microinjected into the nucleus of bovine chromaffin (A) and PC12 cells (C) at the time indicated by a downward arrow, and the resulting Ca\(^{2+}\) release images are shown as a function of time in pseudo colors. The effect of the various antibodies on the Ca\(^{2+}\) release was determined after microinjection of each antibody (2 \(\mu\)g) into the nucleus first, followed by microinjection of 10 nM Ins(1,4,5)\(P_3\), as described in the Experimental Procedures section. The results shown are typical of bovine chromaffin (A) and PC12 cells (C), and the Ca\(^{2+}\) release results for chromaffin (B) and PC12 cells (D) are also expressed in bar graphs (mean ± s.d., n equals the number of cells tested).
Ins(1,4,5)P$_3$-sensitive nucleoplasmic Ca$^{2+}$ store vesicles appear to be the organelle that satisfies not only the physical requirements to be small and widespread (Figs. 1 and 2) but also the physiological needs to store and release Ca$^{2+}$ in tune with the PI cycles inside the nucleus. Therefore, the existence of the key enzyme in the PI cycles PI4KII is in perfect harmony with the Ca$^{2+}$ storage and control role of the Ins(1,4,5)P$_3$-sensitive nucleoplasmic Ca$^{2+}$ store vesicles and appears to highlight the under-studied and yet essential roles of PI kinases in the nucleus.

Materials and Methods

Antibodies

Polyclonal anti-rabbit CGB antibody was raised against intact recombinant CGB, and the specificity of the antibody was confirmed. The monoclonal anti-mouse CGB antibody (L1BF2) that recognizes an epitope within residues 526–575 was raised against intact bovine CGB. The polyclonal anti-rabbit PI4KIIa and IIβ antibodies (generous gift of Dr Joseph Albanesi of The University of Texas Southwestern Medical Center at Dallas, Texas) were raised against peptides corresponding to the N-terminal residues 2–17 of rat PI4KIIa and 2–15 of human PI4KIIβ, respectively. The polyclonal antibodies were affinity purified on each immobilized peptide, and their specificities have been confirmed. Ins(1,4,5)P$_3$R peptides specific to terminal 10–13 amino acids of type 1 (HPPHMNVNPQQPA), type 2 (SNTPHENHHMPPA), and type 3 (FVDVQNCMRSR) were synthesized with a C-terminal cysteine, and anti-rabbit polyclonal antibodies were raised. The polyclonal anti-rabbit antibodies were affinity purified on each immobilized peptide, and the specificity of each antibody was confirmed. In addition, an Ins(1,4,5)P$_3$R peptide (DEEEVWLFWRDSNKEI) with an approximate consensus sequence with all three Ins(1,4,5)P$_3$R isoforms was synthesized with a C-terminal cysteine, and the anti-rabbit polyclonal antibody was prepared as described. The fractions containing CGB and the Ins(1,4,5)P$_3$Rs were pooled and concentrated (sample #2). The concentrated sample #2 was further fractionated by sucrose gradient centrifugation. For this 7 mg of the nucleoplasmic proteins in 3 ml buffer 3 (15 mM TRIS-HCl, pH 7.5) was loaded on 28 ml of sucrose gradient solution (0.3–1.5 M sucrose in buffer 3) and centrifuged at 112000 x g for 6 h at 2 °C. Approximately 1.1 ml per fraction was collected and each fraction was analyzed by SDS-PAGE and immunoblots. Fractions that contained the Ins(1,4,5)P$_3$Rs and CGB were pooled and used as the purified nucleoplasmic Ca$^{2+}$ store vesicles. To prepare the nucleoplasmic vesicles for electron microscopy and Ca$^{2+}$ release study, the purified nucleoplasmic vesicles were concentrated to 2.5–3.0 mg protein/ml and kept frozen at -70 °C for at least 1 h. This freezing step caused the nucleoplasmic vesicles to aggregate so that they could be pelleted by centrifugation at 21000 x g for 3 min for subsequent use in electron microscopy and Ca$^{2+}$ release measurements.

Immunogold electron microscopy

For the immunogold electron microscopy of chromaffin cells and the purified nucleoplasmic vesicles, the tissue samples from bovine adrenal medulla as well as the pelleted nucleoplasmic vesicle samples were prepared on Formvar/carbon-coated nickel grids as described. After etching and washing, the grids were placed on 50 μl droplets of solution A (phosphate buffered saline solution, pH 8.2, containing 4% normal goat serum, 1% BSA, 0.1% Tween 20, 0.1% sodium azide) for 30 min. Grids were then incubated for 2 h at room temperature in a humidified chamber on 50 μl droplets of monoclonal anti-mouse CGB and PtdIns(4,5)P$_2$ antibodies or polyclonal CGB, PI4KIIa, PI4KIIb, and Ins(1,4,5)P$_3$R antibodies appropriately diluted in solution B (solution A but with 1% normal goat serum), followed by rinses in solution B. The grids were reacted with the 10 (or 15)-nm gold-conjugated goat anti-mouse IgG or IgM, diluted in solution A. For double immunogold labeling experiment, the grids that had gone through the first-labeling step with the first antibody were reacted once more with the second antibody and labeled with 15 (or 10)-nm gold particles. Controls for the specificity of each antibody-specific immunogold labeling included (1) omitting the...
primary antibody, (2) replacing the primary antibody with the preimmune serum, and (3) adding the primary antibody in the excess presence of either purified CGB or each antibody-specific peptide that had been used to raise the antibody. After washes in PBS and deionized water, the grids were stained with uranyl acetate (7 min) and lead citrate (2 min), and were viewed with a JEOL 1011 electron microscope.

Measurements of Ca^{2+} release from the Ins(1,4,5)P_{3}-sensitive nucleoplasmic Ca^{2+} store vesicles by fluorescence microscopy

To prepare the purified nucleoplasmic vesicles for Ca^{2+} release experiments, the freeze-thawed nucleoplasmic vesicles (2.5–3.0 mg protein/ml buffer 3) were pelleted by centrifugation at 21 000 x g for 3 min. The nucleoplasmic vesicles were suspended in 1 ml of buffer 3 containing 10 μM EGTA, and centrifuged again (wash 1). This washing step was repeated two more times, and the pellet after the third wash was resuspended in buffer 3 at a final concentration of 1.5 mg protein/ml. Then the Ca^{2+} concentration of the nucleoplasmic vesicle solution was adjusted with EGTA to ~0.1 μM and used for Ca^{2+} measurement. To 200 μl (1.5 mg protein/ml) of the nucleoplasmic vesicle solution, fura-2 was added at a final concentration of 20 μM and incubated for 10 min at room temperature. The fura-2 containing sample chamber was then placed on the stage of a Carl Zeiss Axiovert S 100 microscope. The Ca^{2+} release from the nucleoplasmic vesicles was analyzed by dual excitation of fura-2 at 340nm and 380nm with a LAMBDA LS xenon arc lamp and LAMBDA 10–2 optical filter changer (Sutter Instrument Co). The emission fluorescence signals at 510 nm were collected using a band pass filter of D510/40 nm (Sutter Instrument Co). The emission fluorescence signals at 510 nm were collected using a band pass filter of D510/40 nm (Sutter Instrument Co). The emission fluorescence signals at 510 nm were collected using a band pass filter of D510/40 nm (Sutter Instrument Co). The emission fluorescence signals at 510 nm were collected using a band pass filter of D510/40 nm (Sutter Instrument Co).

Isolation and primary culture of bovine adrenal chromaffin cells

Bovine adrenal glands supplied by the local slaughterhouse were processed within 1 h after death of the animals. The adrenal glands were washed with Locke’s buffer (154 mM NaCl, 5.6 mM KCl, 3.6 mM NaHCO₃, 5.6 mM glucose, 5 mM HEPES, pH 7.4) through the adrenal vein and then infiltrated for 15 min at 37 °C with Locke’s buffer containing 0.2% collagenase and 0.5% BSA, followed by additional infiltration with buffer change. The adrenal medullae were dissected free of the cortex, finely minced, and incubated in collagenase-containing Locke’s buffer for 30 min at 37 °C in spinner flask. The cells were dissociated by filtering through 250 μm sterile nylon mesh and centrifuged at 2800 x g for 10 min. The pellet was then resuspended in Locke’s buffer and filtered through 100 μm nylon cell strainer (BD Falcon). After this, the chromaffin cell-containing solution was placed on Percoll (Sigma-Aldrich Co) and centrifuged at 20,000 x g for 20 min. The chromaffin cell-containing middle layer was filtered through 40 μm nylon cell strainer, and the filtrate was suspended with 300 ml of Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine serum, followed by centrifugation at 1000 x g for 10 min. The chromaffin cell pellet was then resuspended in DMEM and centrifuged again as above, after which highly purified and Percoll-free chromaffin cells were obtained in the pellet. Finally, the isolated chromaffin cells were suspended in DMEM supplemented with 10% FBS, and 2 x 10⁵ cells were plated on a glass coverslip (22 x 22 mm) coated with collagen type IV (BD Biosciences), and cultured for 1–2 d at 37 °C, 5% CO₂ atmosphere before Ca^{2+} release studies.

Cell culture and preparation for Ca^{2+} release studies

PC12 cells were maintained in RPMI 1640 (Gibco BRL) medium supplemented with 10% fetal bovine serum, and -1 x 10⁵ PC12 cells were plated on a collagen-coated glass coverslip in a well containing 800 μl of RPMI 1640 medium supplemented with 10% FBS before Ca^{2+} release studies. For real-time Ca^{2+} release studies, bovine chromaffin cells and PC12 cells grown on coverslips were stabilized with serum free medium (OPTI-MEM I) for 30 min, and then were loaded with Fluo-4, AM (Molecular Probes) at a final concentration of 4 μM in OPTI-MEM I for 40 min at 37 °C, 5% CO₂. After incubation, the cells were washed 3 times with OPTI-MEM I, followed by stabilization with the same medium for 30 min at room temperature. Then, each coverslip containing the cells was mounted on a perfusion chamber on the stage of an inverted microscope (IX71, Olympus), and the cells that had been uniformly loaded with Fluo-4 in the nucleus and cytosol were selected for microinjection and for [Ca^{2+}] measurements.

Microinjection of Ins(1,4,5)P_{3} and antibodies

Microinjections of Ins(1,4,5)P_{3} to the bovine chromaffin and PC12 cells were done with an Eppendorf system (Injectman N12 5181, Femtojet 5247; Eppendorf-Netheler-Hinz) using pipettes (~100 nm inner diameter) pulled from quartz glass (outer diameter, 1.0 mm; inner diameter, 0.7 mm, Sutter Instrument) using a P-2000 micropipette puller (Sutter Instrument). The Ins(1,4,5)P_{3} and antibodies to be microinjected were diluted to their final concentrations in buffer (20 mM Hepes, 110 mM KCl, 2 mM MgCl₂, 5 mM KH₂PO₄, and 10 mM NaCl, pH 7.2) and filtered (0.2 μm) before filling into microinjection pipette (~100 nm in inner diameter). Injections were made using the semiautomatic mode of the Eppendorf system at a pipette angle of 45° and under the following instrument settings: injection pressure 80 hPa, compensatory pressure 60 hPa, injection time 0.5 s, and velocity of the pipette 2000 μm/sec.

Under such conditions using Femtotips II (~500 nm inner diameter) as pipettes, the injection volume had previously been estimated to be 1–1.5% of the cell volume in the case of Jurkat T-lymphocytes. Hence, in light of the similarity in size between Jurkat T-lymphocytes and PC12 cells, and much larger bovine chromaffin cells that have an average diameter ~1.5 to 2 times larger than that of PC12 cells, our injection volume was also expected to be ~1% of the PC12 cell volume or less than 0.3% of the bovine chromaffin cell volume. The Ins(1,4,5)P_{3}–induced Ca^{2+} release was initiated by the microinjection of 10 nM Ins(1,4,5)P_{3}, directly into the nucleus and the changes in the fluorescence Ca^{2+} images were acquired every 100 ms. In the
course of successive microinjection of antibodies and Ins(1,4,5)_P_3, the movement associated with the first injection of antibodies (including anti-PI4KIIα, -PI4KIIβ, -Ins(1,4,5)_P_3 R, -PtdIns(4,5)_P_2, and IgG) into the nucleus of the cells caused transient increases in [Ca^{2+}]. Hence, subsequent microinjection of Ins(1,4,5)_P_3 to the same region was performed 5 min later, allowing the [Ca^{2+}] to return to the basal level and the microinjected antibodies to react with their antigens.

Detection of nuclear Ca^{2+} signals with confocal microscopy

The confocal images of intranuclear Ca^{2+} signals of bovine chromaffin and PC12 cells were recorded near the middle of the nucleus using a Perkin Elmer UltraView LCI confocal imaging system with 60×, 1.4 NA objective lens. To detect the confocal fluorescence images of the calcium signals, fluo-4 was excited at 488 nm using an argon laser and a 488/10 nm excitation filter (Chroma Technology Corp), and the emission fluorescence signals were collected through a HQ525/50 nm band pass filter. Images were acquired every 100 ms after microinjection of 10 nM Ins(1,4,5)_P_3, and the Ca^{2+} release in the nucleus of microinjected cells was measured using the UltraVIEW LCI confocal imaging system with 100× objective (NA = 1.35) from the optical Z-section transverse the middle region of the nucleus of the cell. The baseline fluorescence (F_0) of each ROI was calculated as the average fluo-4 fluorescence intensity of 100 frames before Ins(1,4,5)_P_3 injection. The onset of the Ca^{2+} signal was determined as the time point at which F - F_0 began to rise above 5% of the difference between F_{max} - F_0 for the first time.

Disclosure of Potential Conflicts of Interest

No potential conflict of interest was disclosed.

Acknowledgments

The authors thank Drs Joseph Albanesi and Barbara Barylko of The University of Texas Southwestern Medical Center at Dallas for their generous gift of the PI4KII antibodies and their interests in the work. The present work was supported in part by the CRI Program, the Brain Korea 21 Program of the Republic of Korea, and Inha University research grant.

References

1. Balla A, Balla T. Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol 2006; 16:351-61; PMID:16793271; http://dx.doi.org/10.1016/j.tcb.2006.05.003
2. Burgess J, Del Bel LM, Ma CI, Barylko B, Polevoy G, Ballan J, Albanesi PJ, Kramer H, Boll JA. Type II phosphatidylinositol 4-kinase regulates trafficking of secretory granule proteins in Drosophila. Development 2012; 139:3040-50; PMID:22791894; http://dx.doi.org/10.1242/dev.077644
3. Jung G, Barywo B, Lin D, Sha H, Yin H, Albanesi JP. Stabilization of phosphatidylinositol 4-kinase type IbIIa by interaction with Hup90. J Biol Chem 2011; 286:12775-84; PMID:23303072; http://dx.doi.org/10.1074/jbc.M110.178616
4. Ishihara H, Shibasaki Y, Kizuki N, Wada T, Yazaki Y, Asano T, Oka Y. Type I phosphatidylinositol 4-kinase 5-kinases: Cloning of the third isoform and function. Cell Mol Life Sci 2009; 66:8741-50; PMID:19889969; http://dx.doi.org/10.1007/s00018-009-0156-2
10. Fiume R, Keune WJ, Faenza I, Bulsima Y, Ramazzotti G, Jones DR, Martelli AM, Ognibene A, Buontempo F, Fini P, Finelli C, Manzoli FA, et al. Nuclear phospholipase D: a signaling enzyme in the nucleus. Biochem J 2010; 430:223-35; PMID:20593997; http://dx.doi.org/10.1042/BJ20100344
11. Folio MY, Marmirol S, Faenza I, Fiume R, Ramazzotti G, Martelli AM, Gobbo P, McBride JA, Finelli C, Manzoli FA, et al. Nuclear phospholipase Cβ1 and its signaling, epigenetics and treatment in MDS. Adv Bioi Regul 2013; 53:2-7; PMID:23058275; http://dx.doi.org/10.1016/j.bior.2012.09.009
12. Bulsoma Y, Keune WJ, Divecha N. PIP4KIIa interacts with and modulates nuclear localization of the high-activity PtdIns5P-4-kinase isoform PIP4Kalpha. Biochem J 2010; 430:223-35; PMID:20593997; http://dx.doi.org/10.1042/BJ20100344
13. Delage E, Puylaert J, Zachowski A, Ruelland E. Signal transduction pathways involving phosphatidylinositol 4-phosphate and -5-phosphate: convergence and divergences among eukaryotic kingdoms. Pplied Phys Lbid 2013; 52:1-14; PMID:22989191; http://dx.doi.org/10.1016/j.plp.2012.08.003
14. Wang M, Bond NJ, Letterj AJ, Richardson JP, Lilley KS, Irvine RF. Nuclear targeting of the beta isoform of phosphatidylinositol 4-phosphate 5-kinase: a random association of endogenous PtdIns5P 4-kinase type IbIIa and Ibbeta and a partial nuclear localization of the Ibbeta isoform. Biochem J 2010; 430:215-21; PMID:20569199; http://dx.doi.org/10.1042/BJ20100340
15. Clarke JH, Richardson JP, Hinchliffe KA, Irvine RF. Type II PtdInsP kinases: location, regulation and function. Biochem Soc Symp 2007; 149-59; PMID:17235588
16. Ciruela A, Hinchliffe KA, Divecha N, Irvine RF. Nuclear targeting of the beta isoform of type II phosphatidylinositol 5-phosphate kinase (phosphatidylinositol 5-phosphate 4-kinase) by its alpha helix 7. Biochem J 2000; 346:587-91; PMID:10698683; http://dx.doi.org/10.1042/0264-6021:346587
17. Schill NJ, Anderson RA. Two novel phosphatidylinositol 4-phosphate 5-kinase type Igamma splice variants expressed in human cells display distinctive cellular targeting. Biochem J 2009; 422:473-82; PMID:19548880; http://dx.doi.org/10.1042/BJ20090638
18. Faenza I, Fiume R, Piazz M, Colantoni A, Coccol L. Nuclear inositol specific phospholipase C signaling - interactions and activity. FEBS J 2013; 280:6295-310; PMID:24112514; http://dx.doi.org/10.1111/febs.12450
19. Shah ZH, Jones DR, Sommer L, Foulger R, Bulsima Y, D'Santos C, Divecha N. Nuclear phospholipases and their impact on nuclear functions. FEBS J 2013; 280:6295-310; PMID:24112514; http://dx.doi.org/10.1111/febs.12453
20. Meeschaert K, Tipp MF, Remue E, De Giancke A, Boucherie C, Vanloos B, Degeest G, Vanderkreekhe J, Zimmermann P, Bhardwaj N, et al. The PDZ2 domain of zonula occludens-1 and -2 is a phospholipid binding domain. Cell Mol Life Sci 2009; 66:3951-66; PMID:19784548; http://dx.doi.org/10.1007/s00018-009-0156-2
21. Melman DL, Gonzales ML, Song C, Barlow CA, Wang P, Kendzorski C, Anderson RA. A PtdIns4P,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs. Nature 2008; 451:1013-7; PMID:18288197; http://dx.doi.org/10.1038/nature06666
22. Boronenkov IV, Lojens JC, Umeda M, Anderson RA. Phospholipase C signaling pathways in nuclei are associated with nuclear storetaining containing pre-mRNA processing factors. Mol Biol Cell 1998; 9:3547-60; PMID:9834587; http://dx.doi.org/10.1091/mbc.9.12.3547
23. Barlow CA, Lainsbrink RS, Anderson RA. Nuclear phospholipases: a signaling enigma wrapped in a compartmental conundrum. Trends Cell Biol 2010; 20:25-35; PMID:19846310; http://dx.doi.org/10.1016/j.tcb.2009.09.009
24. Yoo SH, Nam SW, Huh SK, Park SY, Huh YH. Presence of a nucleoatomic complex composed of the inositol 1,4,5-trisphosphate receptor/Ca^{2+} channel, chromogranin B, and phospholipids. Biochemistry 2005; 44:9246-54; PMID:15966749; http://dx.doi.org/10.1021/bi051837f
25. Huh YH, Huh SK, Chu SY, Kweon HS, Yoo SH. Presence of a putative vesicular inositol 1,4,5-trisphosphate-sensitive nucleoatomic complex. Biochemistry 2006; 45:346-73; PMID:16445278; http://dx.doi.org/10.1021/bi051837f

Nucleus Volume 5 Issue 4
30. Montaña M, García del Caño G, López de Jesús M, González-Burguera I, Echeazarra L, Barrondo S, Gallis J. Cellular neurochemical characterization and subcellular localization of phospholipase C β1 in rat brain. Neuroscience 2012; 222:239-68; PMID:22735577; http://dx.doi.org/10.1016/j.neuroscience.2012.06.039

31. Foskett JK, White C, Cheung KH, Mak DO. Inositol phosphatidylinositol 4-kinase IIalpha. J Biol Chem 2009; 284:9994-10003; PMID:19211550; http://dx.doi.org/10.1074/jbc.M900724200

32. Thrower EC, Choe CU, So SH, Jeon SH, Ehrlich BE, Yoo SH. A functional interaction between chromogranin B and the insulin 1,4,5-trisphosphate receptor/Ca2+ channel. J Biol Chem 2003; 278:12553-9; PMID:12775744; http://dx.doi.org/10.1074/jbc.M309307200

33. Yoo SH, So SH, Kweon HS, Lee JS, Kang MK, Jeon CJ. Coupling of the insulin 1,4,5-trisphosphate receptor and chromogranins A and B in secretory granules. J Biol Chem 2000; 275:12553-9; PMID:10775744; http://dx.doi.org/10.1074/jbc.275.19.12553

34. Yoo SH, pH- and Ca(2+)-dependent aggregation property of secretory vesicle matrix proteins and the potential role of chromogranins A and B in secretory vesicle biogenesis. J Biol Chem 1996; 271:1558-65; PMID:8756153

35. Huh YH, Kim KD, Yoo SH. Comparison of and chromogranin effect on insulin 1,4,5-trisphosphate sensitivity of cytoplasmic and nucleoplasmic insulin 1,4,5-trisphosphate receptor/Ca2+ channels. Biochemistry 2007; 46:14032-43; PMID:17997581; http://dx.doi.org/10.1021/bi070364p

36. Yoo SH. Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2+ signaling in the cytoplasm of neuroendocrine cells. FASEB J 2010; 24:653-64; PMID:19837865; http://dx.doi.org/10.1096/fj.09-132456

37. Yoo SH. Role of secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2(+)- signaling, from phylloplane to mammals. Cell Calcium 2011; 50:175-83; PMID:21170577; http://dx.doi.org/10.1016/j.ceca.2010.11.013

38. Winkler H, Westhead E. The molecular organization of adrenal chromaffin granules. Neuroscience 1980; 5:1803-23; PMID:7432623; http://dx.doi.org/10.1016/0091-3972(80)90031-7

39. Haigh JR, Parris R, Phillips JH. Free concentrations of sodium, potassium and calcium in chromaffin granules. Biochem J 1989; 259:485-91; PMID:2719661

40. Helle KB. The chromogranins. Historical perspectives. Adv Exp Med Biol 2002; 50:175-83; PMID:11192591; http://dx.doi.org/10.1007/0-306-46837-9_1

41. Montero-Hadjadje M, Vaingankar S, Elias S, Tostivint H, Mahata SK, Anouar Y. Chromogranins A and B and secretogranin II: evolutionary and functional aspects. Acta Physiol (Oxf) 2008; 192:309-24; PMID:18053993; http://dx.doi.org/10.1111/j.1748-1716.2007.01806.x

42. Taupenot L, Harper KL, O’Connor DT. The chromogranin-secretogranin family. N Engl J Med 2003; 348:1134-49; PMID:12646671; http://dx.doi.org/10.1056/NEJMra021405

43. Li W, Lalishram RS, Anderson RA. The novel poly(A) polymerase Star-PAP is a signal-regulated switch at the 3′-end of mRNAs. Adv Biol Regul 2013; 53:64-91; PMID:23306079; http://dx.doi.org/10.1016/j.advenreg.2012.10.004

44. Clarke JH, Irvine RF. The activity, evolution and association of phosphoinositol 5-phosphate 4-kinases. Physiol Rev 2007; 87:593-320; PMID:1742591; http://dx.doi.org/10.1074/phyr.060355

45. Clarke JH, Irvine RF. The activity, evolution and association of phosphoinositol 5-phosphate 4-kinases. Adv Biol Regul 2012; 52:40-5; PMID:21945524; http://dx.doi.org/10.1016/j.advenreg.2011.09.002

46. Jones DR, Bulsma Y, Keune WJ, Halstead JR, Eloulzait M, Mohamad S, Heck AJ, D’Santos CS, Divecha N. Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4Kbeta. Mol Cell Biochemistry 2002; 222:239-68; PMID:11739403; http://dx.doi.org/10.1016/j.molcel.2002.06.014

47. Bunce MW, Bergendahl K, Anderson RA. Nuclear PI(4,5)P(2): a new place for an old signal. Biochim Biophys Acta 2006; 1761:560-9; PMID:16750654; http://dx.doi.org/10.1016/j.bbalip.2006.03.002

48. Park HY, So SH, Lee WB, You SH, Yoo SH. Paraffinification, pH-dependent conformational change, aggregation, and secretogranule membrane binding property of secretogranulin II (chromogranin C). Biochemistry 2002; 41:1259-66; PMID:11802725; http://dx.doi.org/10.1021/bi0105603

49. Huh YH, Jeon SH, Yoo SH. Chromogranin B-induced secretory granule biogenesis: comparison with the similar role of chromogranin A. J Biol Chem 2003; 278:40581-9; PMID:12962590; http://dx.doi.org/10.1074/jbc.M309307200

50. Yoo SH, You SH, Kang MK, Huh YH, Lee CS, Shim CS. Localization of the secretory granule marker protein chromogranin B in the nucleus. Potential role in transcription control. J Biol Chem 2002; 277:16011-21; PMID:11854256; http://dx.doi.org/10.1074/jbc.M309307200

51. Wei YJ, Sun HQ, Yamamoto M, Wlodarski P, Kunii K, Martinez M, Barylko B, Albanesi JP, Yin HL. Type II phosphatidylinositol 4-kinase beta is a cytosolic and peripheral membrane protein that is recruited to the plasma membrane and activated by Rac-GTP. J Biol Chem 2002; 277:40586-93; PMID:12524459; http://dx.doi.org/10.1074/jbc.M206660200

52. Barylko B, Wlodarski P, Binns DD, Gerber SH, Earnest S, Sudhof TC, Grichine N, Albanesi JP. Analysis of the catalytic domain of phosphatidylinositol 4-kinase type II. J Biol Chem 2002; 277:40566-75; PMID:12324459; http://dx.doi.org/10.1074/jbc.M206660200

53. Yoo SH, Oh YS, Kang MK, Huh YH, So SH, Park HS, Park HY. Localization of three types of the inositol 1,4,5-trisphosphate receptor/Ca(2+) channel in the secretory granules and coupling with the Ca(2+) storage proteins chromogranins A and B. J Biol Chem 2001; 276:45806-12; PMID:11584808; http://dx.doi.org/10.1074/jbc.M107532200

54. Yoo SH. pH-dependent interaction of chromogranin A with integral membrane proteins of secretory vesicle including 260-kDa protein reactive to inositol 1,4,5-trisphosphate receptor antibody. J Biol Chem 1994; 269:12001-6; PMID:8163593

55. Guse AH, Berg I, da Silva CP, Potter BV, Mayr GW. Ca(2+) entry induced by cyclic ADP-ribose in intact T-lymphocytes. J Biol Chem 1997; 272:8546-56; PMID:9079869; http://dx.doi.org/10.1074/jbc.272.13.8546