Diagnosis and surgical treatment of colonic obstructive foreign bodies in chinchillas (*Chinchilla lanigera*): a case series (2017–2020)

Iori KOIZUMI1)*

1) Koizumi Nest Animal Hospital, Fukuoka, Japan

ABSTRACT. We describe a case series of colonic foreign bodies in seven chinchillas. These animals had all shown complete lack of fecal output. Ultrasonography was performed in each case, revealing a hyperechoic foreign body with strong acoustic shadowing in the bowel in 6 of the 7 cases (86%). Foreign bodies were removed under exploratory laparotomy in all cases, with a perioperative survival rate of 71% (5/7). The foreign bodies were extracted from the distal ansa of the ascending colon (n=3), descending colon (n=3), or intermediate part of the ascending colon (n=1). This case series suggests chinchillas are affected by colonic obstructive foreign bodies and surgical intervention may be necessary to pursue better prognosis in cases where medical therapies prove ineffective.

KEYWORDS: chinchilla, *Chinchilla lanigera*, foreign body, gastrointestinal disease, intestinal obstruction

Chinchillas (*Chinchilla lanigera*) are rodents belonging to the *Chinchillidae* family and are bred in captivity and kept for the fur-trade and biomedical research, and as companion animals [8, 10]. These animals are strict herbivores and hindgut fermenters, and so possess a long gastrointestinal tract (total length of the colon and rectum is often over 2 m) [8, 10, 14, 21]. Gastrointestinal disease is the major cause of morbidity and mortality among farmed chinchillas, and gastrointestinal pathologies resulting from any systemic disease and inappropriate husbandry remain a frequent and important problem among pet chinchillas [8, 10, 14, 27]. Gastrointestinal foreign bodies in this species have been poorly documented in the literature, so descriptions of antemortem diagnosis and treatment of foreign bodies are rare [14, 19]. This report aimed to describe the clinical signs, imaging and biochemistry findings, and medical and surgical treatments with outcome data for 7 chinchillas presenting with colonic obstructive foreign bodies.

Cases 1, 2 and 3 were brought into a clinic with a chief complaint of anorexia, decreased fecal output, soft feces, and abdominal pain. These chinchillas were alert with mildly decreased activity and had been received pharmacotherapy for several days on an outpatient basis. However, Cases 1, 2 and 3 were hospitalized on Day 13, 8 and 5, respectively, due to unresolved symptoms and complete lack of fecal output. Cases 4 and 5 were brought into a clinic with a chief complaint of complete lack of fecal output and were hospitalized on Day 1. Case 6 was hospitalized on Day 5 after receiving medical therapy on an outpatient basis, although this case also showed complete lack of fecal output on Day 1. Case 7 had been receiving pharmacotherapy for about 2 months as an outpatient. This case was presented with complete lack of fecal output and was hospitalized. The day of patient hospitalization was defined as day 1 for Case 7 (Table 1). All cases underwent serum biochemical analysis and abdominal palpation multiple times during the clinical course. Precise biochemical panel findings are summarized in Table 2. Common biochemical abnormalities in the early clinical course were hyperglycemia (n=6), increased alkaline phosphatase (n=6), hypokalemia (n=6), increased blood urea nitrogen (n=4), and hyperproteinemia (n=4). Abdominal palpation revealed a firm pellet interpreted as representing a foreign body only in one case (Case 3). All cases showed mild depression with anorexia under hospitalization with medical treatment provided along with abdominal ultrasound and plain/positive-contrast gastrointestinal radiography. Ultrasound revealed a hyperechoic foreign body with strong acoustic shadowing in the bowel in 6 of the 7 cases (Cases 1–6). On longitudinal view, ultrasound showed the bowel dilated with anechoic fluid proximal to the foreign body (Fig. 1). All foreign bodies apparent on ultrasound were ovoid with the edge of the foreign body outlined by anechoic luminal fluid. Ultrasound did not show any foreign bodies in Case 7, only revealing localized bowel dilation with anechoic fluid. Of the 6 cases with foreign body revealed by ultrasound, 5 cases (Cases 1, 2, 4–6) underwent ultrasound multiple times (mean, 3.8 times; range, 2–6 times) during hospitalization. A hyperechoic foreign body was noted each
Table 1. Clinical signs, image findings, outcome, site of obstruction and length of foreign body

Case	1	2	3	4	5	6	7
Age (years)	3.7	1.9	4.4	5.9	3.3	Approximately 4 or 5	2.3
Body weight (g)	683	382	507	480	549	719	467
Sex	Male	Female	Male	Female	Male	Anorexia, lack of fecal output, mild lethargy	Anorexia, lack of fecal output, mild lethargy
Clinical signs	Anorexia, soft feces	Anorexia, decreased fecal output, soft feces, abdominal pain, mild lethargy	Anorexia, decreased fecal output, mild lethargy	Anorexia, lack of fecal output and decrease in fecal size, mild lethargy	Anorexia, lack of fecal output, mild lethargy	Anorexia, intermittent diarrhea and lack of fecal output, mild lethargy	
Plain abdominal radiographic findings	Severe gaseous dilation in small intestine, cecum, colon	Moderate gaseous dilation in cecum	Severe gaseous and fluid-filled dilation in colon	Mild gaseous dilation in cecum	Mild gaseous dilation in cecum	Severe abdominal distention due to impacted ingesta and small, round accumulations of gas in cecum, severe gaseous dilation in colon	Moderate gaseous dilation in colon
Gastric transit time (hr)	3.3	1.1	19.9	32.4	NT	4.3	1.9
Small intestinal transit time (hr)	19.5	NT	NT	55.4	NT	NT	10.2
Cecum transit time (hr)	34.2	NT	NT	73.4	NT	NT	71.4
Total examination time (hr)	54.0	57.7	109.4	96.3	43.3	29.8	157.4
Onset of complete lack of fecal output	Day 13	Day 8	Day 5	Day 1	Day 1	Day 1	Day 1*
Timing of surgery	Day 15 Discharged on Day 23; treatment completed on Day 83	Day 10 Discharged on Day 16; treatment completed on Day 132	Day 10 Discharged on Day 18; no follow-up data available, although owner reported uneventful course 14 months postoperatively	Day 7 Discharged on Day 14; treatment completed on Day 130	Day 3 Remained with complete lack of fecal output and anorexia; a few small fecal pellets observed on Day 12, but animal died on Day 18	Died 9 hr postoperatively	Died 17 hr postoperatively
Site of obstruction	Distal ansa of ascending colon (ansa distalis coli)	Distal ansa of ascending colon (ansa distalis coli)	Descending colon	Descending colon	Distal ansa of ascending colon (ansa distalis coli)	Descending colon	Intermediate part of ascending colon (pars intermedia)
Length of foreign body (cm)	2.6 × 1	1.9 × 1	4.5 × 1.7	3.4 × 0.9	2.2 × 1.1	2.6 × 1.2	3.3 × 1.9

NT, no transit. *This animal presented with complete lack of fecal output and was hospitalized after receiving pharmacotherapy for about 2 months as an outpatient. The day of patient hospitalization was defined as day 1 for Case 7.

In contrast, a foreign body was not noted on ultrasound once among 4 trials in Case 2 and five times among 6 trials in Case 4. When no foreign body was apparent in these two cases, localized bowel dilation with anechogenic fluid was revealed by ultrasound. Abnormalities in plain abdominal radiography for each case are summarized in Table 1 (Fig. 2). Positive-contrast gastrointestinal radiography was performed during hospitalization along with medical treatment in all cases (Figs. 3 and 4). Barium sulfate suspension (1–3 mL/kg, 200 w/v%, Bamster S200; Kaigen Pharma, Osaka, Japan) was orally administered. Right lateral and ventrodorsal views of the abdomen were taken immediately after administration of contrast medium as well as at approximately 30, 60, and 180 min, and 6 and 12 hr post-administration; and subsequently every 6–12 hr along with the condition of the patient. Gastric transit time, small intestinal transit time, and cecum transit time were determined by recording the time from initial administration of contrast medium to its first appearance in the duodenum, cecum, and colon, respectively. Total examination time was the time from initial administration of contrast medium to the timing of the final radiographic image followed by exploratory laparotomy (Table 1). Gastric transit to the duodenum was noted in all but one case (Case 5). Of these six cases, small intestinal transit to the cecum and cecal transit to the colon were noted in three cases, none of which showed the formation of fecal pellets. As pharmacotherapy, all cases were administered enrofloxacin (10 mg/kg, s.c., q 12 hr, enrofloxacin injection 25 KS for dogs and cats; Kyoritsu Seiyaku, Tokyo, Japan), metoclopramide (1 mg/kg, s.c., q 12 hr, Primperan injection; Astellas Pharma, Tokyo, Japan), famotidine (1 mg/kg, s.c., q 12 hr, Famotidine injection Sawai; Sawai Pharmaceutical, Osaka, Japan), lactulose (1 mL/kg, p.o., q 12 hr, Monilac syrup 65%; Chugai Pharmaceutical Co., Tokyo, Japan), liquid paraffin/white petroleum (1 mL/kg, p.o., q 12 hr, Laxatone; Fujita Pharmaceutical Co., Tokyo, Japan), mosapride citrate (1 mg/kg, p.o., q 12 hr, Pronamide tablet; DS Pharma Animal Health, Japan).
Osaka, Japan), *Pediococcus* probiotics (0.25 capsules, p.o., q 12 hr, Mito max super for small dogs and cats; Kyoritsu Seiyaku Corp.), and acetated Ringer’s solution (20–40 mL/kg, s.c., q 12 hr, Soluace; Terumo Corp., Tokyo, Japan). In addition to these medications, buprenorphine (0.02 mg/kg, s.c., q 12 hr, Lepetan injection; Otsuka Pharmaceutical, Tokyo, Japan) was administered in Cases 1, 2, and 3 and trimethoprim/sulfamethoxazole (30 mg/kg, p.o., q 12 hr, Baktar combination tablet; Shionogi & Co., Osaka, Japan) was administered in Case 3. Although subcutaneous fluid dose was adjusted according to the condition of the patient, Cases 3, 4, 6, and 7 had shown subcutaneous edema, leading to discontinuation of fluid administration in the middle of hospitalization. Assisted feeding (5–10 mL/kg, q 12 hr, Vet’s selection Lifecare for rabbits; Yeaster Co., Tatsuno, Japan) with a syringe was provided in five cases (Cases 1, 2, 4, 5, 7), and was discontinued during hospitalization in four cases (Cases 1, 2, 4, 5) because the patients gradually showed reluctance to swallow. In the remaining two cases (Cases 3 and 6), assisted feeding was not performed due to severe abdominal

Table 2. Biochemical panel findings for colonic obstructive foreign body in 7 chinchillas

Biochemistry	Units	Preop-Postoperative						
Sodium	mM	134 132	151 153	135 154	144 143	146 144	138 122	136 130–155
Potassium	mM	2.7 3.6	3.7 3.6	3.4 4	4.5 2.7	3.4 3.2	3.3 2.5	4.1 5–6.5
Chloride	mM	93 103	113 118	99 128	112 110	110 114	99 93	105–115
Blood urea nitrogen	mg/dL	16.6 7	39.1 18	34.3 14.2 17.3	63 23.8 30.5 27.1	24.2 18.9 17.6	28.9 89 17.9 17	10–25
Creatinine	mg/dL	0.48 0.64	0.8	0.8	0.75 0.46	0.4 1	0.3 NA	
Calcium	mg/dL	5.6 7.1	9.5 9.2	9	7 7.7 6.5	6.2 7.4 6.2	6.7 5.6	5.6 5.6–12.1
Phosphorus	mg/dL	4.2 7.6	7.4	7.5	7.4 3.5 3.9	5.1 8.5 8.7	7.3 14.6	4.5 4–8
Glucose	mg/dL	256 175	143 176	226 261	168 164	280 117 90	262 >600 168	38 60–120
Total protein	g/dL	5 5.5 4.5	5.5 5.5 4.4	6.2 5.6	6.6 5.4 4.1 4.6	6.2 4.3 4 6.6	5.2 3.3 5.6	3.3 5–6
Albumin	g/dL	2.9 2.5 2.1	2.9 2.1 2.2	2.3 1.6 2.4	5.4 2.3 1.7 3	3.3 2.1 1.9	2.9 1.8 1.5	1.1 2.4–4.2
Globulin	g/dL	3.1 3 2.4	2.6 3.4 2.2	3.9 4	1.2 3.1 2.4 1.6	2.9 2.2 2.1	3.7 3.4 3.9	2.2 NA
Alanine aminotransferase	IU/L	31 16	16	21	14 11	18	10 20 11 67	10–35
Alkaline	IU/L	112 339	83	61	136 369	251 408	31 3–47	
Phosphatase	IU/L	58 146	96					
Total bilirubin	mg/dL	0.5	0.4	0.5	0.5 0.3 0.3 0.1	0.4 0.4	NA	
Creatinine kinase	IU/L	311 >2000	958		866	NA		
Amylase	IU/L	125 86 44	866		117–229.5	NA		
Triglycerides	mg/dL	68 105	142	125	86 44	117–229.5	NA	
Ammonia	µg/dL	112 165 96	103 94	113 71 74	133 82 115 243	112 117–229.5	NA	

NA, not available.
All cases had shown a persistent complete lack of fecal output throughout hospitalization, despite medical treatment. Given these clinical courses, ultrasound and plain/positive-contrast radiography findings, the presumptive diagnosis in each case was intestinal obstruction due to a foreign body.

Exploratory laparotomy was performed in all cases. Biochemical analyses were performed again just before surgery in all but one case (Case 7), showing hypokalemia (n=5), hyperglycemia (n=5), and hypoalbuminemia (n=5) in most cases. Following intramuscular injection of a mixture of 0.25 mg/kg midazolam (Dormicum Injection; Astellas Pharma) and 0.25 mg/kg butorphanol (Vetorphale; Meiji Seika Pharma, Tokyo, Japan), anesthesia was induced with 2% isoflurane and oxygen (2 L/min) via an anesthetic chamber and maintained at 1–3% with a face mask. Abdominal palpation under anesthesia was performed just before surgery in 5 of the 7 cases (Cases 1–5). Of these 5 cases with palpation under anesthesia, a firm foreign body was palpable in 3 cases (Cases 2, 3, and 5). Vascular access was secured in the cephalic vein of the foreleg or lateral saphenous vein of the hindleg using a 26-G indwelling needle, and continuous drip of acetated Ringer’s solution was supplied at 10 mL/kg/hr. Cases 3, 4, 6, and 7 showed severe edema in the ventral abdominal skin, mild accumulation of ascites and collapse in peripheral blood vessels with severe hypoalbuminemia as revealed by biochemistry just before surgery. Human serum albumin (HSA) (5 mL/kg, i.v., Albuminar 25% i.v. injection; CSL Behring, Tokyo, Japan) was administered over 30 min in Cases 3 and 4 following prednisolone sodium succinate (1 mg/kg, i.v., Predonine for injection; Shionogi Pharma Co.), while hydroxyethylated starch 70,000 (5 mL/kg, slow i.v., Salinhes fluid solution 6%; Fresenius Kabi Japan, Tokyo, Japan) was given in Cases 6 and 7. Abdominal midline incision and intrabdominal exploration revealed a colonic foreign body in all cases. The foreign body was noted at the distal ansa of the ascending colon (ansa distalis coli) in Cases 1, 2, and 5, in the descending colon in Cases 3, 4, and 6, and in the intermediate part of the ascending colon (pars intermedia) in Case 7 (Figs. 5 and 6). All cases showed severe bowel dilation with luminal fluid proximal to the foreign body and lumen collapse distal to the foreign body. The colonic wall containing a foreign body was adherent to adipose tissue in Cases 3 and 5 (Fig. 6). The colonic wall containing a foreign body in Case 3 seemed viable on visual inspection and palpation, while that of Case 5 showed severe thinning and a patchy pattern of brown and white, suggesting severe ischemia and necrosis. Thickening of the colonic wall containing the foreign body was noted in Case 7. The section of colon containing a foreign body was exteriorized and packed off from the rest of the abdomen with moist gauze. A longitudinal incision was made in healthy-appearing tissue proximal or distal to the foreign body using a No. 11 blade. The foreign body was moved to the incision site by digital pressure and removed. The incision site was closed in a longitudinal direction by simple interrupted sutures with 6–0 polydioxanone (Ethicon PDS II; Johnson & Johnson, Tokyo, Japan). For leak testing, the lumen was distended with sterile saline and gentle digital pressure was applied to confirm the absence of leakage between sutures. Following lavage of the isolated intestine and entire abdomen with warm saline, the peritoneum was closed and subcutaneous tissue was apposed by simple continuous sutures with 5–0 polydioxanone. The skin was closed with simple interrupted sutures using 5–0 nylon suture (ELP; Akiyama Medical, Tokyo, Japan) to complete the surgery. Flumazenil (0.02 mg/kg, i.m., Flumazenil i.v. injection 0.5 mg “TEVA”; Teva Takeda Pharma, Nagoya, Japan) was administered postoperatively in Cases 1 and 2. The foreign body in each case was a firm, compact ball of matted hair forming an elongated oval (Fig. 7). Postoperatively, cases administered HSA (Cases 3 and 4) showed increased albumin compared with preoperatively (Table 2), as well as distension of peripheral blood vessels and disappearance of edema.

Cases 1–5 recovered from anesthesia uneventfully, while Cases 6 and 7 died 9 hr and 17 hr postoperatively, respectively. Cases 1–5

Fig. 3. Positive-contrast gastrointestinal radiographic image on Day 14 in Case 1. This right lateral view was taken 19.5 hr after oral administration of barium sulfate suspension. Contrast medium is apparent in the cecum and also remains in the stomach. Severe gaseous dilation of the cecum (arrowhead) is also noted.

Fig. 4. Positive-contrast gastrointestinal radiographic image on Day 15 in Case 1. This right lateral view was taken 54.0 hr after oral administration of barium sulfate suspension. Contrast medium appears in dilated loops of bowel, which can be interpreted as colon (arrow). The rest of the contrast medium remains largely in the cecum, with some in the stomach. Moderate gaseous dilation of the cecum is also evident (arrowhead). No formation of fecal pellets is evident.
were administered acetated Ringer’s solution (10–20 mL/kg, s.c., q 12 hr), and enrofloxacin, metoclopramide, famotidine, buprenorphine, lactulose, liquid paraffin/white petroleum, mosapride citrate, and *Pediococcus* probiotics using the same route and dose given above. Assisted feeding (10–20 mL/kg, q 8 hr) with a syringe was also provided. In addition to these medications, meloxicam (0.2 mg/kg, s.c., q 24 hr, Metacam 0.2% injection; Boehringer Ingelheim Vetmedica, Japan, Tokyo, Japan) was administered in Cases 1 and 2 and trimethoprim/sulfamethoxazole (30 mg/kg, p.o., q 12 hr) was administered in Case 3. Cases 1–4 showed fecal output postoperatively (mean, 12.3 hr; range, 7–17 hr) and followed an uneventful postoperative course. These animals were discharged after approximately 1 week in hospital (mean, 7.8 days; range, 7–8 days). Due to insufficient appetite and small fecal pellets with decreased amounts, assisted feeding and oral medication at home had been given for Cases 1, 2, and 4 until Days 83, 132, and 130 (68, 122, and 123 days postoperatively), respectively, although the animals had been alert with normal activity. Case 3 was not brought in for further treatment for this condition after Day 31, although the owner reported the animal had shown increased appetite and sufficient fecal output soon after discharge and remained clinically healthy as of 14 months postoperatively. Case 5 remained with complete lack of fecal output and anorexia postoperatively. A few small fecal pellets were observed on Day 12, but the animal died on Day 18 (15 days postoperatively).

This report highlights three clinical features of colonic obstructive foreign bodies in chinchillas that have been poorly documented in the literature, although the potential mechanisms underlying formation of a colonic foreign body and its pathogenesis remain unclear. First, abdominal ultrasound is the most useful tool for diagnosing colonic foreign bodies in chinchillas. Second, surgical removal of the colonic foreign body may be necessary to achieve better prognosis in cases where medical therapy proves ineffective. Third, albumin represents a useful tool to assess perioperative risks because most chinchillas with colonic foreign body show severe hypoalbuminemia due to prolonged malabsorption of nutrition from the bowel.

In this case series, abdominal ultrasound revealed a hyperechoic foreign body with the localized bowel dilatation by anechoic fluid proximal to the foreign body in 86% (6/7), while abdominal palpation under anesthesia and simple abdominal palpation revealed firm foreign bodies in 60% (3/5) and 14% (1/7), respectively. This result underscores the usefulness of abdominal ultrasound to specifically diagnose colonic foreign bodies in chinchillas, although the application and utility of ultrasound would be limited in general for herbivorous mammals due to interference from the natural presence of gas and ingesta within the large intestine [25]. In fact, foreign bodies were not detected by ultrasound depending on the timing of examination in Cases 2 and 4. Ultrasound on multiple occasions may thus be essential to improve the detection rate for colonic foreign bodies in chinchilla. Plain abdominal radiography showed
The perioperative survival rate was 71% (5/7) in this case series. In Cases 1 and 2, exploratory laparotomy was successfully performed without any anesthetic problems and the subsequent course was uneventful. We focused on the fact that the preoperative biochemistry in both cases showed normal to mildly decreased albumin. In contrast to Cases 1 and 2, Cases 3, 4, 6, and 7 at surgery showed severe edema, mild accumulation of ascites and collapse of peripheral blood vessels, most likely attributable to severe hypoalbuminemia due to prolonged malabsorption of nutrition from the bowel and hepatic lipidosis. Hypoalbuminemia can lead to life-threatening complications including hypotension, ascites, peripheral edema and gastrointestinal ileus, resulting in increased morbidity and mortality [7, 13, 28]. Acute postoperative death in Cases 6 and 7 can be attributable to perioperative hypoalbuminemia. Taken together, these clinical course and biochemical findings indicate that albumin should be considered as a useful tool for assessing perioperative risks in chinchillas with colonic foreign body.

Colloids have been studied and used in hypoalbuminemic rabbit to correct hypotension [9, 11, 17, 22]. Albumin is a natural colloid and HSA has been reported to increase serum levels of albumin and colloid osmotic pressure in dogs and cats [7, 13, 28]. Despite these benefits, administration of HSA has been controversial due to the potential for several adverse hyporeactivity reactions [13, 28]. HSA was administered in Cases 3 and 4 at surgery resulting in increased albumin levels with distension of peripheral blood vessels, disappearance of edema, and subsequent successful outcomes. However, the potentially life-threatening complications of
HSA administration should not be ignored, although adverse reactions were not observed in either case during hospitalization or after discharge in terms of general condition or repeated hematological or biochemical findings. The current recommendation in dogs is that HSA should be administered only if the potential benefits outweigh the potential risks [28]. This should be more strongly followed in small exotic animals, for which no studies regarding the administration of HSA have been conducted [17].

In conclusion, this case series suggests that chinchillas are affected by colonic obstructive foreign bodies. Abdominal ultrasound is the most useful tool to diagnose colonic foreign bodies in chinchillas and albumin is considered a useful tool to assess peritoneal risks. Surgical removal of the colonic foreign body may be necessary to achieve better prognosis in cases where medical therapy proves ineffective, although the potential mechanisms underlying the formation of a colonic foreign body and its pathogenesis remain unclear.

CONFLICT OF INTEREST. The authors declare that they have no competing interests.

REFERENCES
1. Castro DTF, Dummer RJ, Rickes EM, Pereira MAM. 2010. Morphological, morphometric and topographical description of the digestive tract in Chinchilla laniger. Braz J Vet Res Anim Sci 47: 86–94. [CrossRef]
2. Guzman DSM, Graham JE, Keller K, Hunt GB, Tong N, Morrissey JK. 2015. Colonic obstruction following ovariohysterectomy in rabbits: 3 cases. J Exot Pet Med 24: 112–119. [CrossRef]
3. Hagen KB, Dittmann MT, Ortmann S, Kreuzer M, Hatt JM, Claus M. 2016. Retention of solute and particle markers in the digestive tract of chinchillas (Chinchilla laniger). J Anim Physiol Anim Nutr (Berl) 100: 801–806. [Medline] [CrossRef]
4. Harcourt-Brown F. 2014. Digestive system disease. pp. 168–190. In: BSAVA Manual of Rabbit Medicine (Meredith A and Lord B eds.), BSAVA, Gloucester.
5. Harcourt-Brown F. 2013. Gastric dilation and intestinal obstruction. pp. 172–189. In: BSAVA Manual of Rabbit Surgery, Dentistry and Imaging. (Harcourt-Brown F and Chitty J eds.), BSAVA, Gloucester.
6. Hasse K, Romano J, Emerson S, Johnston M. 2019. Colocolic intussusception in a domestic rabbit (Oryctolagus cuniculus). J Exot Pet Med 30: 69–71. [CrossRef]
7. Horowitz FB, Read RL, Powell LL. 2015. A retrospective analysis of 25% human serum albumin supplementation in hypoalbuminemic dogs with septic peritonitis. Can Vet J 56: 591–597. [Medline]
8. Hsu CC, Chan MM, Wheler CL. 2015. Biology and diseases of chinchillas. pp. 387–409. In: Laboratory Animal Medicine, 3rd ed. (Fox JG, Anderson LC, Otto G, Pritchett-Corning KR and Whary MT eds.), Elsevier, St. Louis.
9. Huynh M, Boyeaux A, Pignon C. 2016. Assessment and care of the critically ill rabbit. Vet Clin North Am Exot Anim Pract 19: 379–409. [Medline] [CrossRef]
10. Johnson-Delaney C. 2014. Guinea pigs, chinchillas, degus and duprasi. pp. 28–62. In: BSAVA Manual of Exotic Pets, 5th ed. (Meredith A and Johnson-Delaney C eds.), BSAVA, Gloucester.
11. Komori M, Takada K, Tomizawa Y, Uezono S, Nishiyama K, Ozaki M. 2005. Effects of colloid resuscitation on peripheral microcirculation, hemodynamics, and colloidal osmotic pressure during acute severe hemorrhage in rabbits. Shock 23: 377–382. [Medline] [CrossRef]
12. Lamb S. 2017. Large bowel resection and anastomosis in a domestic rabbit following obstruction. J Exot Pet Med 26: 224–229. [CrossRef]
13. MacPhail CM. 2013. Preoperative and intraoperative case of the surgical patient. pp. 27–38. In: Small Animal Surgery, 4th ed. (Quesenberry KE, Orcutt CJ, Mans C and Carpenter JW eds.), Elsevier, St. Louis.
14. Mans C, Donnelly TM. 2021. Chinchillas. pp. 298–322. In: Ferrets, Rabbits, and Rodents Clinical Medicine and Surgery, 4th ed. (Quesenberry KE, Orcutt CJ, Mans C and Carpenter JW eds.), Elsevier, St. Louis.
15. Marlow CHB. 1963. An outbreak of intussusception in a herd of chinchillas. J S Afr Vet Med Assoc 34: 637–642.
16. McGreevy PD, Carm VM. 1988. Intestinal torsion in a chinchilla. Vet Rec 122: 287. [Medline] [CrossRef]
17. McLaughlin A, Strunk A. 2016. Common emergencies in small rodents, hedgehogs, and sugar gliders. Vet Clin North Am Exot Anim Pract 19: 465–499. [Medline] [CrossRef]
18. Misiriloğlu D, Ozmen O, Kangil T. 2000. A case of rectum prolapsus and intestinal invagination in a male chinchilla. J Turk Vet Surg 6: 51–53.
19. Miwa Y, Sladky KK. 2016. Small mammals: common surgical procedures of rodents, ferrets, hedgehogs, and sugar gliders. Vet Clin North Am Exot Anim Pract 19: 205–244. [Medline] [CrossRef]
20. Oglesbee B, Lord B. 2021. Gastrointestinal diseases of rabbits. pp. 174–187. In: Ferrets, Rabbits, and Rodents Clinical Medicine and Surgery, 4th ed. (Quesenberry KE, Orcutt CJ, Mans C and Carpenter JW eds.), Elsevier, St. Louis.
21. Pérez W, Vazquez N, Jerbi H. 2011. Gross anatomy of the intestine and their peritoneal folds in the chinchilla (Chinchilla lanigera). J Morphol. Sci. 28: 180–183.
22. Raymundo VS, Mayer J. 2013. Small mammals blood transfusion. pp. 551–552. In: Clinical Veterinary Advisor Birds and Exotic Pets (Mayer J and Donnelly TM eds.), Elsevier, St. Louis.
23. Reese S, Hej J. 2011. Abdomen. pp. 280–297. In: Diagnostic Imaging of Exotic Pets (Krautwald-Junghanss ME, Pees M, Reese S and Tully T eds.), Schlütersche, Hannover.
24. Rettemund CL, Heatley JJ. 2020. Hystricomorph rodents: guinea pigs, chinchillas, degus, and viscachas. pp. 129–144. In: Exotic Animal Laboratory Diagnosis (Heatley JJ and Russell KE ed.), Wiley Blackwell, New Jersey.
25. Ritzman TK. 2014. Diagnosis and clinical management of gastrointestinal conditions in exotic companion mammals (rabbits, guinea pigs, and chinchillas). Vet Clin North Am Exot Anim Pract 17: 179–194. [Medline] [CrossRef]
26. Stan F, Damian A, Gudea A, Dezdrobitu C, Bob D, Martonos C, Bochis I, Pogena B. 2014. Comparative anatomical study of the large intestine in rabbit and chinchilla. Bull Univ Agric Sci Vet Med Cluj-Napoca 71: 208–212.
27. Turner PV, Brash ML, Smith DA. 2018. Chinchillas. pp. 193–224. In: Pathology of Small Animal Pets, Wiley Blackwell, New Jersey.
28. Viganó F, Perissinotto L, Bosco VRF. 2010. Administration of 5% human serum albumin in critically ill small animal patients with hypoalbuminemia: 418 dogs and 170 cats (1994–2008). J Vet Emerg Crit Care (San Antonio) 20: 237–243. [Medline] [CrossRef]