A hybrid optimization procedure for solving a tire curing scheduling problem

Joaquín Velázquez Héctor Cancela
Pedro Piñeyro
Departamento de Investigación Operativa, Instituto de Computación
Facultad de Ingeniería, Universidad de la República
Julio Herrera y Reissig 565, 11300
Montevideo, Uruguay

April 2, 2020

Abstract

This paper addresses a lot-sizing and scheduling problem variant arising from the study of the curing process of a tire factory. The aim is to find the minimum makespan needed for producing enough tires to meet the demand requirements on time, considering the availability and compatibility of different resources involved. To solve this problem, we suggest a hybrid approach that consists in first applying a heuristic to obtain an estimated value of the makespan and then solving a mathematical model to determine the minimum value. We note that the size of the model (number of variables and constraints) depends significantly on the estimated makespan. Extensive numerical experiments over different instances based on real data are presented to evaluate the effectiveness of the hybrid procedure proposed. From the results obtained we can note that the hybrid approach is able to achieve the optimal makespan for many of the instances, even large ones, since the results provided by the heuristic allow to reduce significantly the size of the mathematical model.

1 Introduction

The tire manufacturing process is usually decomposed into three steps: materials mixing, tire building and tire curing or vulcanization. In the first step, different materials such as natural or synthetic rubber, carbon black, sulfur, oils and other chemicals are mixed to prepare the rubber sheets. Then, the rubber sheets along with fabric and wires are used to build the uncured or green tires. Finally, in the tire curing step, the green tires are placed into curing machines known as heaters, to apply the needed levels of heat and pressure to give the tires the required functional characteristics. Molds are used in the heaters to give the tires their shape and tread pattern. The curing process has a large
impact in the manufacturing efficiency, as it employs expensive equipment and consumes a large amount of energy. Adequately planning the tire curing process to meet the demand requirements on time is in general a complex task. It is necessary to consider the number of available heaters and molds as well as the mold-mold and mold-heater allowed combinations. In addition, mold configuration and tire curing times must be considered in the planning process.

Particular cases of tire curing scheduling problems are studied in the seminal works of Gorenstein [1970] and Lasdon and Terjung [1971]. More recently, Degraeve and Schrage [1997] address the tire curing scheduling problem for the tire manufacturer Bridgestone/Firestone Off-The-Road, in which the tires have different priority and the number of compatible molds that can be stacked into one heater is limited. A column generation based procedure is proposed for solving the problem. Later, in Degraeve and Schrage [1998] a scheduling software for this problem is presented. Jans and Degraeve [2001] also consider the column generation approach for the tire curing scheduling problem of the Solideal manufacturer. The problem is modeled as an extension of the general Discrete Lot-Sizing and Scheduling Problem (DLSP) that involves start-up times, mold-heater compatibility, capacity constraints and backlogging. The objective is to determine the tire curing plan that minimizes the sum of the costs involved. For details about the DLSP we refer the readers to Fleischmann [1990], Salomon et al. [1991] and Brüggemann and Jahnke [2000] and to Copil et al. [2017] for a recent survey. Several works consider the two-stage production system of building and curing of tires. Tabucanon and Petchratanaporn [1991] tackle both problems separately, considering first the minimization of the production costs of the green tires and then the curing scheduling problem of them. Kuiting et al. [2006] and Oulamara et al. [2009] formulate the integrated problem of building and curing tires as a Flow Shop Scheduling Problem (FSSP) considering a single batching machine and task compatibilities, with the objective of minimizing the makespan. Three different heuristic procedures along with a simple lower bound procedure are suggested and evaluated for the problem. Bellanger and Oulamara [2009] extend the two works mentioned above by considering multiple machines at each stage. A Polynomial Time Approximation Scheme (PTAS) algorithm is suggested for the particular case in which tasks have the same processing time on the first stage. Safari et al. [2017] also consider the integrated problem of building and curing tires by means of a Hybrid Flow-Shop Scheduling Problem (HFS) model with resource constraints. The procedure proposed for solving the problem is based on hybridizing the Genetic Algorithms (GA) and Variable Neighborhood Search (VNS) metaheuristics. For details about the FSSP we refer to Johnson [1954] and Graham et al. [1979]. We also refer to Brucker et al. [2007] and Ribas et al. [2010] for recent surveys on FSSP and HFS, respectively. Mukhopadhyay and Shanker [2005] and Karabacak et al. [2017] study the implementation in the production line of a tire manufacturer of the Kanban and Kaizen systems, respectively. Yu et al. [2011, 2012, 2013] provide heuristic procedures and simulation analysis for tire curing scheduling problems under particular specifications. Arslankaya and Çalık [2016] study the production process of trial tires by means of simulation tech-
niques aiming to improve the productivity of a tire manufacturer. Finally, Kim et al. [2017] consider the integrated problem of materials mixing and building of tires. A Particle Swarm Optimization (PSO) based procedure is suggested for solving the problem.

The problem tackled in this paper has been defined to model the tire curing process at FunsaCoop (http://funsa.uy), an Uruguayan tire manufacturer. FunsaCoop is a cooperative organization producing tires for both the internal market and for exportation to other countries in the region. Some characteristics of FunsaCoop tire curing process include mold setup and removal times, shared parts among molds, and heaters holding up to two molds simultaneously. While these features are usual in real life situations in a tire factory (not just at FunsaCoop), as far as we know they have not been modelled in detail in the existing literature.

In a previous work [Cancela et al., 2018], we introduced a Mixed Integer Linear Programming (MILP) formulation for the tire curing problem at FunsaCoop. That model was employed for solving small instances but it was not suitable for finding exact solutions for larger instances, as the MILP solver ran out of time or out of memory before finishing. These results motivated the study of other solution approaches. In the current paper, we suggest an hybrid approach, consisting in two phases: in the first phase a heuristic solution procedure is used to determine a feasible solution of good quality; in the second phase, the makespan of this solution is used as a planning horizon parameter to instantiate a MILP formulation, which is then tackled using a solver. This hybrid optimization procedure is evaluated over scenarios comprising instances of different sizes generated from real data given by FunsaCoop.

The remainder of the paper is organized as follows. In Section 2 we present the description of the tire curing problem under study and a MILP formulation. In Section 3 we describe the hybrid approach proposed for solving the problem. Section 4 provides the computational results obtained by applying the different solving approaches to a number of test scenarios inspired from real data. Section 5 presents the general conclusions of the paper and possible directions for future work.

2 Problem formulation

As mentioned before, FunsaCoop manufactures different type of tires for the regional market. The production is pulled by the demand requirements, which are known in advance and must be satisfied within a given time horizon. Thus, the production of tires at FunsaCoop can be classified as a make-to-order production system.

The study presented in this paper focuses on the scheduling of the curing process. The heaters are set up with the molds corresponding to the type of tires to be produced. Every heater can hold up to two molds at once. Some molds are composed by special parts also known as molars. Parts can not be shared while they are in use, and their number is limited. During the curing
process, the green tires are exposed to high pressures and temperatures in order to acquire their final characteristics. As the curing time depends on the tire type, the pair of molds within a heater must be either identical, or belonging to a set of compatible molds for tires having similar curing times. In addition to the molds compatibility, only some combinations between molds and heaters are allowed. Therefore, the number of different tires of the same type that can be processed simultaneously is limited, since it depends on the number of available heaters, molds and parts. The workers perform a number of tasks when molds are swapped in a heater, such as placement, cleanup, machinery warming and removal. The times of these tasks define the setup and removal times, which reduce the duration of a working period when they are carried out.

In FunsaCoop the heaters are powered by a steam boiler, which is the most expensive operative component of the company. The survey at FunsaCoop allowed to determine that makespan minimization is the most suitable objective function for the tire curing scheduling problem under study. In addition to the reduction of production and operative costs in terms of the steam boiler, makespan minimization decreases the CO$_2$ emissions and improves the delivery times in a make-to-order setting. In order to determine high quality solutions in terms of makespan, it is necessary to balance the trade-off between curing and configuration times. The curing times are reduced if there are as many molds as possible processed in parallel. On the other hand, to reduce the setup and removal times it is necessary to reduce as much as possible the number of mold changes in the heaters.

All the aforementioned characteristics of the tire curing scheduling problem at FunsaCoop were considered in order to develop the mathematical formulation presented below. The model, which can be considered as a variant of the DLSP, is a revised version of an initial MILP formulation introduced in [Cancela et al.]($^\text{2018}$) for the problem.

Sets:

- **M** = Molds set, indexes $i,j,l \in \{1...M\}$.
- **MExt** = \{0\} \cup **M** = **M** extended with the empty mold.
- **H** = Heaters set, indexes $k,k' \in \{1...H\}$.
- **P** = Periods set, indexes $t \in \{1...P\}$.
- **PExt** = **P** extended with period zero, indexes $t' \in \{0\} \cup \{1...P\}$.
- **Q** = Parts set, indexes $q \in \{1...Q\}$.
- **C** = Set of compatible mold-heater pairs (i,k).
- **CExt** = **C** \cup \{(0, k) $|$ $k \in \mathcal{H}$\}, extended **C** set, including the empty mold which is compatible with each heater.
- **MC** = Set of molds that can be processed together (i,j) with $i \leq j$.
- **MCExt** = **MC** \cup \{(0, i) $|$ $i \in \mathcal{M}$\}, including the empty mold which is compatible with all others.
Parameters:

- \(\text{THB} \) = Time horizon bound for production planning, with \(\text{THB} = P \).
- \(dm_i \) = Demand of tires of type \(i \) (i.e., tires produced with mold \(i \)).
- \(tc_i \) = Time needed to place mold \(i \) in a heater (setup time).
- \(tq_i \) = Time needed to remove mold \(i \) from a heater (removal time).
- \(tv_{i,k} \) = Curing time of tires of mold type \(i \) in heater \(k \).
- \(\varphi \) = Duration of working day.
- \(nm_i \) = Quantity of molds \(i \) available.
- \(np_{pq} \) = Quantity of parts of type \(q \) available.
- \(rq_{iq} \) = Binary parameter that indicates if mold \(i \) requires part \(q \).
- \(init_{ik} \) = Initial quantity of molds \(i \) used in heater \(k \), with \(init_{ik} \in \{0,1,2\} \).

Auxiliary sets:

- \(T \) = \(\{ (i,j,k) \mid (i,j) \in MC \land \{ (i,k),(j,k) \} \subseteq C \land i \leq j \} \).
 Compatible pairs of molds \((i,j) \) that can be processed in heater \(k \).
- \(T_i = \{ (j,k) \mid (i,j,k) \in T \} \).
- \(PC_q = \{ i \mid rq_{iq} = 1, \forall i \in M \} \), with \(q \in Q \), set of molds that share part \(q \).
- \(T_{Ext} = \{ (i,j,k) \mid (i,j) \in MC_{Ext} \land \{ (i,k),(j,k) \} \subseteq C_{Ext} \land i \leq j \} \).
 Extended set \(T \) including the empty mold.
- \(T_{Ext}' = \{ (j,k) \mid (j,i,k) \in T_{Ext} \} \).
- \(H_{Ext_k} = \{ (i,j) \mid (i,j,k) \in T_{Ext} \} \).

Variables:

- \(x_{ikt} \) = Number of molds \(i \) used in heater \(k \) during period \(t \), with \(x_{ikt} \in \{0,1,2\} \).
- \(y_{ikt} \) = Number of setups of mold \(i \) in heater \(k \) during period \(t \) with \(y_{ikt} \in \{0,1,2\} \).
- \(y'_{ikt} \) = Number of molds \(l \) used in last period and which must be removed at heater \(k \) at period \(t \), with \(y'_{ikt} \in \{0,1,2\} \).
- \(z_{i,jkt} \) = Binary variable that indicates if molds \(i \) and \(j \) are used in heater \(k \) during period \(t \).
- \(w_t \) = Binary variable that indicates if at period \(t \) there exists some heater in use.
- \(u_{ijkt} \) = Number of tires cured using mold \(i \) when assigned jointly with mold \(j \) in heater \(k \) during period \(t \).
- \(prd_{it} \) = Number of tires cured using mold \(i \) during period \(t \).
The formulation is then as follows:

$$\min \sum_{t \in P} w_t$$

s.t.
$$w_t \leq w_{t-1}, \forall t \in P \setminus \{1\}$$
$$w_t \geq \frac{1}{2H} \sum_{(i,j) \in TExt} z_{ijkt}, \forall t \in P$$
$$\sum_{(i,j) \in HExt} z_{ijkt} \leq 1, \forall k \in H, \forall t \in P$$
$$u_{0jkt} \leq \frac{(\phi - y_{jkt}.tc_j - \sum_{l \in M} y_{lkt}'.tq_l)}{tv_{jk}}, \forall (0, j, k) \in T, \forall t \in P$$
$$u_{ijkt} \leq \frac{(\phi - y_{jkt}.tc_j - y_{jkt}.tc_j - \sum_{l \in M} y_{lkt}'.tq_l)}{\max(tv_{ik}, tv_{jk})}, \forall (i, j, k) \in T, i < j, \forall t \in P$$
$$u_{ikt} \leq \frac{(\phi - y_{ikt}.tc_i - \sum_{l \in M} y_{lkt}'.tq_l)}{tv_{ik}}, \forall (i, i, k) \in T, \forall t \in P$$
$$u_{ijkt} \leq \frac{\phi}{\max(tv_{ik}, tv_{jk})} z_{ijkt}, \forall (i, j, k) \in TExt, \forall t \in P$$

$$\text{prd}_{it} = \sum_{(j,k) \in T_i} u_{ijkt} + \sum_{(j,k) \in TExt_i} u_{ikt}, \forall i \in M, \forall t \in P$$

$$\sum_{t \in P} \text{prd}_{it} \geq dm_i, \forall i \in M$$

$$x_{ikt} = \sum_{(j,k) \in T_i} z_{ijkt} + \sum_{(j,k) \in TExt_i} z_{jikt}, \forall i \in M, \forall k \in H, \forall t \in P$$

$$\sum_{(i,k) \in C} x_{ikt} \leq nm_i, \forall i \in M, \forall t \in P$$

$$\sum_{i \in PC_k} x_{ikt} \leq np_q, \forall q \in Q, \forall k \in H, \forall t \in P$$

$$x_{ikt} = \text{init}_{i,k}, \forall i \in MExt, \forall k \in H$$

$$y_{ikt} \geq x_{ikt} - x_{ikt_{(t-1)}}, \forall i \in M, \forall k \in H, \forall t \in P$$

$$y_{ikt} \geq x_{ikt_{(t-1)}} - x_{ikt}, \forall i \in M, \forall k \in H, \forall t \in P$$

$$x_{ikt}, y_{ikt}, y_{ikt}' \in \{0, 1, 2\}, \forall i \in M, \forall k \in H, \forall t \in P, \forall t' \in PExt$$

$$u_{ijkt} \in N, \forall i \in MExt, \forall k \in H, \forall t \in PExt$$

$$w_t \in \{0, 1\}, \forall t \in P$$

$$\text{prd}_{it} \in N, \forall i \in M, \forall t \in P$$

$$z_{ijkt} \in \{0, 1\}, \forall i \in MExt, \forall j \in M, \forall k \in H, \forall t \in PExt$$

The objective function minimizes the makespan. As noted before, the delivery time and the most relevant production costs are minimized when makespan
is minimized. Constraints (2) and (3) are formulated to avoid solutions with empty intermediate periods. Constraints (4) correspond to the capacity of each heater (at most two molds). Constraints (5) - (8) correspond to the production capacity of each heater during a period \(t \), taking into account curing and configuration times. Constraints (9) state the production amount for each type of tire and constraints (11) ensure that the demands are satisfied. Constraints (11) relate the number of molds used in period \(t \) and heater \(k \) to the \(z \) assignment variables. Constraints (12) and (13) correspond to the number of molds and parts available. Constraints (14) define which molds are already present at the heaters in the first period. Constraints (15) and (16) correspond to the number of mold \(i \) setups and removals in period \(t \) and heater \(k \). Last, constraints (17) - (21) define the domains of the variables.

3 Solution approaches

For small instances it is possible to directly employ the MILP formulation given in the previous section and use a commercial solver for finding an optimal solution of the problem. It is relevant to note that model (I) - (21) has \(O(M^2 \times H \times \text{THB}) \) integer variables and \(O((M^2 \times H + Q) \times \text{THB}) \) constraints. Therefore, the \(\text{THB} \) value has a significant impact on the size of the model. Results from Cancela et al. [2018] show that when \(\text{THB} \) is large, solution times grow and the solvers cannot reach optimality and sometimes not even a feasible solution. On the other hand, if \(\text{THB} \) is too low, there may not exist a feasible solution to the problem.

The following formula allows to determine a \(\text{THB} \) value that guarantees feasibility:

\[
X = \{ i \in M : nm_i \geq 2 \land rq_{iq} = 0, \forall q \in Q \} \\
Y = \{ i \in M : nm_i = 1 \lor rq_{iq} = 1, \exists q \in Q \} \\
tv_i = \max_{k \in H} \{tv_{i,k} \}, \forall i \in M \\
\text{THB} = \sum_{i \in X} \left[\frac{4[tc_i/tv_i] + 4[tq_i/tv_i] + dm_i}{\lceil \phi/tv_i \rceil} \right] + \sum_{i \in Y} \left[\frac{\lceil tc_i/tv_i \rceil + \lceil tq_i/tv_i \rceil + dm_i}{\lfloor \phi/tv_i \rfloor} \right]
\]

(22)

Formula (22) corresponds to the makespan value for producing sequentially all the tires in a single heater. Two sets of tires are considered: \(X \) for those tires for which there are at least two identical molds and no parts are required, and \(Y \) for tires with only one existing mold or requiring parts.

We note that the \(\text{THB} \) of (22) can be much larger than the optimal makespan of a real situation in which there is more than one heater. Below we describe a heuristic procedure suggested for obtaining a feasible tight value for the \(\text{THB} \) value, which when substituted in the MILP formulation above discussed allows to reduce its size and therefore the solving time required.
3.1 Heuristic procedure

The heuristic procedure consists of a constructive phase and an improvement phase, embedded in an iterative search for producing new solutions for the problem. From all the solutions constructed, the one with the lowest makespan value is returned. We present below the main ideas of the procedure. For the readers interested in the details of the heuristic a pseudocode is provided in A.

In the first step of the constructive phase, a set of pairs of molds is randomly determined, considering the available number of molds and shared parts between them as well as the combinations allowed. The production quantity of each pair of molds is also determined considering the demand requirements for each type of tire. The second step of the constructive phase builds a feasible solution for the problem by assigning pairs of molds to heaters, taking into account processing and configuration times as well as heaters availability.

The improvement phase attempts to decrease the makespan value of the feasible solution obtained from the constructive phase by means of balancing as well as reducing the load of the different heaters. First, the assignments of pairs of molds without the empty mold are considered for splitting. Secondly, the excess in the heaters load is revised in order to reduce it. The improvement phase finishes when a certain maximum number of iterations has been reached.

Although the order of complexity of the heuristic procedure described above is pseudopolynomial (see A for details), we want to note that it showed very fast execution times in the numerical experiments carried out and reported in Section 4.

3.2 Hybrid optimization procedure

The hybrid optimization procedure (HOP) suggested for the tire scheduling problem stated at the beginning of Section 2 consists of solving the MILP formulation of (1) - (21), using as THB value the makespan of a given feasible solution. The feasible solution is that obtained from the heuristic procedure of Section 3. First, the heuristic procedure is executed for obtaining an initial feasible solution of the problem, which in addition is considered as candidate for global solution. The makespan of the candidate solution is then set as the value for the THB parameter of the MILP, and a MILP solver is invoked for obtaining an optimized solution, if it is possible. The procedure returns the solution with the minimum makespan obtained.

The hybrid optimization procedure (HOP):

begin
candidateSolution := HeuristicProcedure;
globalSolution ← candidateSolution;
THB = candidateSolution.getMakespan();
improvedSolution := MILP_Solver(THB);
end
if \((\text{improvedSolution.getMakespan()} < \text{globalSolution.getMakespan()}))\) then

 \(\text{globalSolution} \leftarrow \text{improvedSolution};\)

end

return \(\text{globalSolution};\)
end

4 Numerical experimentation

Here we present the numerical experiments carried out in order to evaluate the hybrid approach proposed for the tire curing scheduling problem at Funsacoop. In order to perform this evaluation, the MILP formulation of Section 2 using the THB of (22) is used as a baseline. The results of this formulation are then compared against the hybrid optimization procedure (HOP) presented in Section 3.2.

4.1 Instances description

Three scenarios were defined in order to cover different sizes of instances as well as different degrees of resolution complexity. Each scenario is composed by fifteen instances generated randomly from real life data provided by Funsacoop. The demand values for each type of tire were generated uniformly within an interval between \(-20\%\) and \(+20\%\) from a demand baseline according to the tire type and instance size scenario. From this procedure, in the case of the scenario of small instances S01 to S15, the demand values generated are in the range [22, 595]. For the scenario of medium size instances M01 to M15, the values are in the range [111, 3012], and for the large instances L01 to L15, the range is [1619, 7147]. For all the scenarios, the number of molds type and heaters is in the set \(\{5, 7\}\) and \(\{7, 12\}\), respectively. The following sets of compatible molds with each other are considered: \(\{1, \ldots, 5\}\), \(\{6, 7\}\) and \(\{8, 9\}\). The mold-heater combinations allowed are as follows: molds in \(\{1, \ldots, 5\}\) with heaters in \(\{1, \ldots, 7\}\); molds in \(\{6, 7\}\) with heaters in \(\{8, 9, 10\}\); and molds in \(\{8, 9\}\) with heaters in \(\{11, 12\}\). The duration of a period is assumed equal to 1440 minutes (24 hours). The values of the time to place a mold in a heater are in the set \(\{41.6, 60.6, 66.8\}\) (minutes) and the times to remove a mold from a heater are in the set \(\{25.2, 44.9, 62.2\}\). The times considered for the tire curing are in the set \(\{12.5, 18, 26, 30, 40, 42, 53, 55\}\) (minutes). A single unit per mold type is considered for the small instances; two units for medium size instances; and two, ten or fifteen units for the large instances. Two different mold shared parts are considered. For all the scenarios, molds 1 and 2 share a single unit of part 1. In addition, for the large instances molds 3 and 4 share two units of a single unit of part 2.

The full instances, as well as other useful information, are available at https://www.fing.edu.uy/inco/investigacion/proyecto/Funsacoop.
4.2 Computational results

The model provided in Section 2 was coded in AMPL and solved using CPLEX 12.6.0.0 with running time limited to 3600 seconds (1 hour). The heuristic procedure described in Section 3.1 was developed in Java 8. For managing the execution of parallel threads, the library Threadly (https://github.com/threadly/threadly) was used. The number of total iterations was set to 100, 250 and 500, for small, medium and large instances, respectively. All the numerical experiments were executed in a laptop Intel Quad-Core 3.0Ghz with 16GB of RAM and Windows 10.

Results are reported in Tables 1, 3 and 5. The first column of the tables shows the name of the instance. The second column shows the time horizon bound, THB, computed by means of formula (22) discussed at the end of Section 2. Columns three to five correspond to the makespan value, the duality gap and the execution time obtained from CPLEX solver for the MILP of Section 2 using the THB of (22). Column six shows the makespan value obtained with the heuristic procedure proposed in Section 3.1. Finally, columns seven to nine correspond to the makespan value, the duality gap and the execution time obtained from the hybrid optimization procedure of Section 3.2. The running time of the heuristic procedure is not reported since it was less than 2 seconds for all instances. In addition, we point out that the cases where the duality gap value of columns four and eight is positive and the running time reported is less than the imposed limit of 3600 seconds correspond to situations where the CPLEX solver finished prematurely due to out-of-memory errors.

A relevant information is the size of the MILP instances, which are reported in Tables 2, 4 and 6. The tables include the name of the instances, the THB values, and the number of constraints, binary variables and real variables, both for the MILP formulation with the initial THB value and for the hybrid procedure.

From Table (1), it can be noted that for the scenario of small instances, both the MILP approach and the hybrid one obtain the optimal makespan in a reasonable computational time. However, we note that on average the hybrid approach is almost five times faster than the basic MILP.

In the case of medium size instances the results of Table (3) show that the basic MILP achieves the optimal makespan in 14 of 15 instances. We note that the hybrid approach is able to optimally solve all instances, and that a much lower running time.

For the large instances, the results of Table (5) show that the basic MILP approach achieves the optimal makespan for only 8 of 15 instances (53%), whereas the hybrid approach achieves optimality for 11 of 15 instances (63%). For the remaining four instances, we note that the duality gap of the hybrid approach is less than 2.7%. Regarding the running times, we note that for these harder instances, the hybrid approach requires on average 54% of the running time of the basic MILP approach. This comparison is not entirely accurate, since for several instances the running time reported for the basic MILP corresponds to the case of termination due to the 3600 seconds CPLEX run time limit (which if not imposed, would lead to still longer solution times). For many instances
Table 1: Makespan results for the small-size instances.

Instance	MILP	HOP		
	Make	Time (s)	Make	Time (s)
S01	17	0 2.870	8	8 1.141
S02	20	0 1.201	9	9 0.456
S03	21	0 1.307	9	9 0.492
S04	19	0 1.628	8	8 0.448
S05	19	0 1.464	8	8 0.469
S06	44	12 12.174	12	12 0.989
S07	43	15 6.352	15	15 1.003
S08	44	12 6.591	13	12 1.101
S09	45	13 5.724	13	13 0.900
S10	43	14 4.756	14	14 0.616
S11	44	13 5.054	13	13 0.621
S12	48	17 5.057	17	17 1.023
S13	46	17 4.867	17	17 1.198
S14	45	16 4.123	16	16 0.746
S15	39	13 3.320	13	13 0.625
Average	0	3.966	0	0 0.789

Table 2: Problem size data for the small-size instances.

Instance	MILP	HOP				
	Contra	Binary v.	Real v.	Contra	Binary v.	Real v.
S01	17	4850 3397	1456	8	2150	561 637
S02	20	5750 4009	1729	9	2450	1765 728
S03	21	6050 4213	1820	9	2450	1765 728
S04	19	5450 3805	1638	8	2150	1561 637
S05	19	5450 3805	1638	8	2150	1561 637
S06	44	16582 11171	4859	12	4294	2979 1243
S07	43	16198 10915	4746	15	5446	3747 1582
S08	44	16582 11171	4859	13	4678	3235 1356
S09	45	16966 11427	4972	13	4678	3235 1356
S10	43	16198 10915	4746	14	5062	3491 1469
S11	44	15936 10863	4558	13	4497	3144 1272
S12	48	17410 11858	4982	17	5973	4140 1696
S13	46	16672 11360	4770	17	5971	4139 1696
S14	45	16305 11112	4664	16	5604	3891 1590
S15	39	14091 9618	4028	13	4497	3144 1272
Average	12699	8643 3698	4137	2891	1193	

where the basic MILP approach can not find the optimal value, the hybrid approach takes profit of the significantly reduced makespan values obtained by
Instance	MILP	HOP						
	THB	Makespan	% Gap	Time (s)	THB	Makespan	% Gap	Time (s)
M01	56	22	0	60.535	22	22	0	1.802
M02	53	22	0	25.488	22	22	0	1.691
M03	58	28	0	33.615	28	28	0	1.840
M04	52	20	0	18.837	20	20	0	1.061
M05	59	27	0	42.493	27	27	0	1.910
M06	201	71	0	146.778	71	71	0	7.667
M07	198	60	0	164.959	60	60	0	7.197
M08	187	64	0	189.438	64	64	0	6.996
M09	212	77	0	147.855	77	76	0	34.512
M10	208	85	1.18	3600.318	85	84	0	43.535
M11	118	37	0	77.408	37	37	0	3.718
M12	101	30	0	50.634	30	30	0	2.376
M13	106	31	0	48.675	31	31	0	2.568
M14	115	38	0	69.224	38	38	0	3.253
M15	114	38	0	57.243	38	38	0	3.696
Average	0.079	315.567	0	9.874				

Table 3: Makespan results for the medium-size instances.

Instance	MILP	HOP						
	THB	Constraints	Binary v.	Real v.	THB	Constraints	Binary v.	Real v.
M01	56	19798	9043	10115	22	7694	3535	3927
M02	53	18730	8557	9569	22	7694	3535	3927
M03	58	20508	9366	10479	28	9828	4506	5019
M04	52	18374	8395	9387	20	6982	3211	3563
M05	59	20864	9528	10661	27	9472	4344	4837
M06	201	76649	49946	22600	72	27242	17825	8023
M07	198	75504	49201	22261	61	23033	15088	6780
M08	187	71289	46461	21018	65	24563	16083	7232
M09	212	80860	52684	23843	76	28772	18820	8475
M10	208	79326	51687	23391	85	32217	21060	9492
M11	118	52324	22031	27859	37	16279	6884	8602
M12	101	44761	18853	23830	30	13166	5576	7003
M13	106	46986	19788	25015	31	13611	5763	7240
M14	115	50989	21470	27148	38	16724	7071	8899
M15	114	50544	21283	26911	38	16724	7071	8899
Average	48500	26553	19606	16933	9358	6799		

Table 4: Problem size data for the medium-size instances.

the heuristic, and builds a smaller model which can be solved to optimality. Nevertheless, we note that for some of the more demanding case the hybrid
Instance	MILP	HOP						
	THB	Makespan	% Gap	Time (s)	THB	Makespan	% Gap	Time (s)
L01	136	41	2.44	3600.198	40	40	0	5.531
L02	152	49	0	2211.056	49	49	0	5.765
L03	159	50	0	3180.421	50	50	0	5.614
L04	145	51	1.96	3614.256	50	50	0	4.160
L05	135	38	2.63	3600.191	37	37	0	2394.454
L06	206	38	0	137.844	46	38	0	27.022
L07	226	36	0	296.702	45	36	0	329.915
L08	216	37	2.7	3600.412	44	37	2.7	3600.110
L09	220	35	0	443.196	44	35	0	81.961
L10	235	42	0	121.713	48	42	0	7.457
L11	226	46	2.17	3600.307	49	46	2.17	3608.251
L12	215	41	2.44	3608.348	48	41	2.44	3606.455
L13	222	37	0	282.235	43	37	0	17.073
L14	217	43	2.33	3600.384	42	42	0	3608.318
L15	234	43	0	401.239	55	43	0	96.069
Average	1.111	2153.233	0.487	1159.877				

Table 5: Makespan results for the large instances.

Instance	MILP	HOP						
	THB	Constraints	Binary v.	Real v.	THB	Constraints	Binary v.	Real v.
L01	136	54124	19174	33215	40	15820	5638	9695
L02	152	60506	21429	37135	49	19409	6906	11900
L03	159	63299	22416	38850	50	19808	7047	12145
L04	145	57713	20442	35420	50	19808	7047	12145
L05	135	53725	19033	32970	37	14623	5215	8960
L06	206	90656	38485	48715	46	20096	8565	10795
L07	226	99474	42224	53455	45	19653	8377	10558
L08	216	95064	40354	51085	44	19212	8190	10321
L09	220	96828	41102	52033	44	19212	8190	10321
L10	235	103439	43905	55588	48	20972	8936	11269
L11	226	90008	42224	53448	49	21305	9125	11499
L12	215	94181	40168	50841	48	20868	8939	11262
L13	222	97252	41476	52500	43	18671	8003	10077
L14	217	95057	40541	51315	42	18232	7816	9840
L15	234	102518	43719	55344	55	23937	10246	12921
Average	84190	34446	46794	19442	7883	10914		

Table 6: Problem size data for the large instances.

The approach is not able to obtain a significantly improved result within the 3600 seconds running time limit.
Considering the above results, we note that the proposed hybrid approach is able to obtain optimal solutions in the case of small and medium size instances of the tire curing scheduling problem under consideration, with a significantly improved computational performance over the basic MILP approach. In the case of large instances, the proposed hybrid approach also dominates the basic MILP approach. The hybrid approach obtains high quality solutions, and in many cases optimal ones, including some instances where the basic MILP does not reach optimality. The efficiency is also increased, with lower execution times of the solver. From Tables (2), (4) and (6), we can note that the number of constraints and variables is much lower in the hybrid approach than in the initial MILP formulation, as a smaller THB value allows to have a more compact formulation. Therefore, the hybrid approach can be applied successfully to the problem in general, and in particular to the case of large instances.

5 Conclusions

This paper proposes and evaluates a hybrid optimization procedure for a tire curing scheduling problem from an Uruguayan cooperative tire factory. The tire curing is the bottleneck of the production line of the firm, and has an important impact in costs and energy consumption. This is a complex problem, since a limited number of resources as well as different tasks duration must be considered. Nowadays, the scheduling is done by experienced workers with no computational aids. The hybrid approach consists of solving a MILP formulation for the problem using the makespan returned by a heuristic procedure as the planning horizon value. The heuristic is composed by a constructive phase followed by an improvement phase, both embedded in an iterative process in order to find a solution that minimizes the makespan. The MILP formulation introduced in [Cancela et al. 2018] and revised here minimizes the makespan, considering features of the curing process under consideration such as allowed combinations of mold-mold and mold-heater, setup and removal times for each type of mold, and limited number of parts, molds and heaters. In order to evaluate the hybrid approach, an extensive numerical experimentation was conducted with instances of different size and based on data from a real case. From the results of the numerical experiments carried out, it can be observed that the hybrid approach is able to find the minimum makespan for most the instances, even the large ones. This is largely due to the fact that the makespan returned by the heuristic allows to significantly reduce the size of the MILP formulation, and to solve it in a reasonable amount of time, achieving optimality for most of the instances. This effect is especially important in the case of large instances, where a non-tight value for the planning horizon can result in an unsolvable model in practice.

Future work includes working closely with Funsacoop in order to implement the resolution methods developed and presented here. In this sense, a software including a practical interface for entering the information and visualizing the scheduling results was developed for the suggested heuristic. Some preliminary
experiments carried out show the superiority of the proposed methods against manual made schedules. However, we note that further interaction is needed in order to fully validate the software and implement it in the firm. Despite the good performance observed for the hybrid optimization procedure, it would be interesting to evaluate the impact of using other heuristic procedures for estimating a tight feasible makespan value. Regarding the problem, a possible direction for future research is to study its complexity classification, and to analyze the current MILP formulation in order to explore alternative formulations which could be solved more efficiently. It would be also interesting to extend the work developed here in order to include other particular characteristics of the tire production line at FunsaCoop such as shifts, availability of workers, or distances among heaters, mold depots and storage areas. More in general, it would be also interesting to include other processes of the tire production line, as discussed by Oulamara et al. [2009] for the building stage, or explore opportunities to consider similar production problems involving batch processing of in-progress products, as in Motta Toledo et al. [2016] for a glass container industry and Pérez Perales and Alemany [2016] for a firm of ceramic products.

Acknowledgments

We thank the staff of FunsaCoop for their time and willingness to provide information about their productive process and on real data for the settings of the test scenarios. We also thank Agustín Guerra (Unidad de Extensión, FING) for his help in establishing the contact with FunsaCoop, and Agustín Ghioldi and Sofía Lemes who participated in the initial contacts and developed a first mathematical model for the tire curing process.

References

S. Arslankaya and G. Çalık. Optimization of the production processes of trial tires at a tire-producing company with the simulation technique. *Procedia - Social and Behavioral Sciences*, 229:88–95, 2016.

A. Bellanger and A. Oulamara. Scheduling hybrid flow shop with parallel batching machines and compatibilities. *Computers & Operations Research*, 36(6): 1982–1992, 2009.

P. Brucker, Y.N. Sotskov, and F. Werner. Complexity of shop-scheduling problems with fixed number of jobs: a survey. *Mathematical Methods of Operations Research*, 65(3):461–481, 2007.

W. Brüggemann and H. Jahnke. The discrete lot-sizing and scheduling problem: Complexity and modification for batch availability. *European Journal of Operational Research*, 124(3):511–528, 2000.
Héctor Cancela, Pedro Piñeyro, and Joaquín Velázquez. A MILP formulation for a tire curing scheduling problem. *Electronic Notes in Discrete Mathematics*, 69:61–68, 2018. ISSN 1571-0653.

K. Copil, M. Wörlbelauer, H. Meyr, and H. Tempelmeier. Simultaneous lotsizing and scheduling problems: a classification and review of models. *OR Spectrum*, 39:1–64, 2017.

Z. Degraeve and L. Schrage. A Tire Production Scheduling System for Bridgestone/Firestone Off-The-Road. *Operations Research*, 45(6):789–796, 1997. ISSN 0303-634X.

Z. Degraeve and L. Schrage. Hop: A software tool for production scheduling at bridgestone/firestone off-the-road. *European Journal of Operational Research*, 110(2):188–198, 1998.

Bernhard Fleischmann. The discrete lot-sizing and scheduling problem. *European Journal of Operational Research*, 44(3):337–348, 1990. ISSN 03772217.

S. Gorenstein. Planning tire production. *Management Science*, 17(2):72–82, 1970.

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy-Kan. Optimization and approximation in deterministic sequencing and scheduling: a survey. *Annals of Discrete Mathematics*, 5:287–326, 1979.

R. Jans and Z. Degraeve. An industrial extension of the discrete lot-sizing and scheduling problem. *IIE Transactions*, 36(1):47–58, 2004.

S.M. Johnson. Optimal two- and three-stage production schedules with setup times included. *Naval Research Logistics Quarterly*, 1(1):61–68, 1954.

Ç. Karabıçak, G. Akman, B. Özcan, and S. Karabıçak. Process improvement and kaizen study: an application in a tire company. In *Proceedings of the 5th International Symposium on Innovative Technologies in Engineering and Science (ISITES 2017)*, pages 325–334, 2017.

H.H. Kim, D.G. Kim, J.Y. Choi, and S.C. Park. Tire mixing process scheduling using particle swarm optimization. *Computers & Industrial Engineering*, 110:333–343, 2017.

A.K. Kuijting, A. Oulamara, and G. Finke. Flowshop scheduling problem with batching machines and task compatibilities. *IFAC Proceedings Volumes*, 39 (3):39–44, 2006.

L.S. Lasdon and R.C. Terjung. An efficient algorithm for multiitem scheduling. *Operations Research*, 19(4):946–969, 1971.
C.F. Motta Toledo, M. da Silva Arantes, M.Y. Bressan Hossoni, and B. Almada-Lobo. Mathematical programming-based approaches for multi-facility glass container production planning. *Computers & Operations Research*, 74:92–107, 2016.

S.K. Mukhopadhyay and S. Shanker. Kanban implementation at a tyre manufacturing plant: a case study. *Production Planning & Control: The Management of Operations*, 16(5):488–499, 2005.

A. Oulamara, G. Finke, and A.K. Kuiteing. Flowshop scheduling problem with a batching machine and task compatibilities. *Computers & Operations Research*, 36(2):391–401, 2009.

D. Pérez Perales and M.M.E. Alemany. A mathematical programming model for tactical planning with set-up continuity in a two-stage ceramic firm. *International Journal of Production Management and Engineering*, 4(2):53–64, 2016.

I. Ribas, R. Leisten, and J.M. Framiñan. Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. *Computers & Operations Research*, 37(8):1439–1454, 2010.

G. Safari, A. Hafezalkotob, and M. Khalilzadeh. A novel mathematical model for a hybrid flow shop scheduling problem under buffer and resource limitations-a case study. *Journal of Industrial and Systems Engineering*, 10:58–77, 2017.

Marc Salomon, Leo G. Kroon, Roelof Kuik, and Luk N. van Wassenhove. Some extensions of the discrete lotsizing and scheduling problem. *Management Science*, 37(7):801–812, 1991.

M.T. Tabucanon and S. Petchratanaporn. Tyre manufacturing: simplifying a complex production planning and scheduling problem. *Logistics Information Management*, 4(3):10–14, 1991.

S. Yu, D. Yang, X. Wang, K. Zhu, and B. Zheng. A two-stage heuristic method for vulcanization production scheduling. In *Proceedings of the 23rd Chinese Control and Decision Conference (CCDC 2011)*, pages 3601–3605, 2011.

S. Yu, D. Yang, and K. Zhu. Production planning simulating system for tire vulcanization based on heuristic algorithm. In *Proceedings of the 24th Chinese Control and Decision Conference (CCDC 2012)*, pages 2661–2666, 2012.

S. Yu, D. Yang, K. Zhu, and S. Lu. Scheduling method for tire building based on heuristic algorithm. In *Proceedings of the 25th Chinese Control and Decision Conference (CCDC 2013)*, pages 2380–2383, 2013.
A Pseudocode of the heuristic procedure

Here we provide the pseudocode of the heuristic procedure described in Section 3.1 of the paper, for the tire curing scheduling problem under consideration.

The heuristic receives as input the data of a problem instance (I) including the demand requirements for each type of tire, the mold-mold and mold-heater combinations allowed, number of parts, molds and heaters as well as configuration and curing times. It also receives the value of the total number of iterations (TOTAL_ITERATIONS). The heuristic returns a solution for the problem specified as a collection of 5-tuples, where each 5-tuple includes: 1) a numerical identifier of the tuple; 2) a pairs of molds \((M_1, M_2)\); 3) the number of units to produce of each mold \((Q)\); 4) the assigned heater \((H)\); 4) the starting period \((T)\), and 5) the number of periods of the assignment \((L)\). The demand requirements of the empty mold are assumed zero and the makespan value of an empty solution equal to infinite.

Heuristic main procedure:

begin

\(globalSolution := \emptyset;\)

for \(i := 1\) to TOTAL_ITERATIONS do

\(partialSolution := mold_pairsProcedure();\)

\(initialSolution := assignmentProcedure(partialSolution);\)

\(improvedSolution := improvementProcedure(initialSolution);\)

if \((improvedSolution.getMakespan() < globalSolution.getMakespan())\) then

\(globalSolution ← improvedSolution;\)

end

\(i := i + 1;\)

end

return \(globalSolution;\)

end

Auxiliary procedures:

proc mold_pairsProcedure() ≡

for \(m := 1\) to \(I\).getNumberOfMoldTypes() do

\(Demand(m) := I\).getDemand(m);\)

if \((I\).getQuantityOfMold(m) > 0) then

\(BatchSize(m) := I\).getDemand(m)/I\).getQuantityOfMold(m);\)

else

\(BatchSize(m) := \infty;\)

end
\(j := 1; \)
\begin{align*}
\text{solution} & := \emptyset; \\
\text{while } (\exists t : \text{Demand}(t) > 0) \text{ do} \\
& (M_1, M_2) := I.\text{getRandomMoldPairWithPositiveDemand}(); \\
& \text{if (there are sufficient molds and parts for producing } M_1 \text{ and } M_2) \text{ then} \\
& \quad \text{if } (M_1 > 0 \text{ AND } M_2 > 0) \text{ then} \\
& \quad \quad Q := \min\{\text{BatchSize}(M_1), \text{BatchSize}(M_2), \text{Demand}(M_1), \text{Demand}(M_2)\}; \\
& \quad \text{else} \\
& \quad \quad \text{if } (M_1 > 0) \text{ then} \\
& \quad \quad \quad Q := \min\{\text{BatchSize}(M_1), \text{Demand}(M_1)\}; \\
& \quad \text{else} \\
& \quad \quad \text{if } (M_2 > 0) \text{ then} \\
& \quad \quad \quad Q := \min\{\text{BatchSize}(M_2), \text{Demand}(M_2)\}; \\
& \text{end} \\
& \text{end} \\
& H := \emptyset; \\
& T := \infty; \\
& L := \infty; \\
& \text{solution} \leftarrow \text{solution} \cup \{(j, M_1, M_2, Q, H, T, L)\}; \\
& \text{Demand}(M_1) := \text{Demand}(M_1) - Q; \\
& \text{Demand}(M_2) := \text{Demand}(M_2) - Q; \\
& j := j + 1; \\
& \text{end} \\
& \text{return } \text{solution}; \\
\end{align*}

\begin{algorithm}
\textbf{proc} assignmentProcedure(partialSolution) \equiv \\
\begin{align*}
S & \leftarrow partialSolution; \\
\text{solution} & := \emptyset; \\
\text{while } S \neq \emptyset \text{ do} \\
& \text{for all } x \in S \text{ do} \\
& \quad x.T := \text{solution}.\text{getInitialPeriodOfAssignment}(x.M_1, x.M_2); \\
& \text{end} \\
& p := \text{solution}.\text{getMoldsPairWithShortestStartTime}(); \\
& p.H := \text{solution}.\text{getHeaterAvailableWithLowestSetups}(p.M_1, p.M_2); \\
& p.L := \text{solution}.\text{getNumberOfAssignementPeriods}(p.M_1, p.M_2, p.Q, p.H); \\
& \text{solution} \leftarrow \text{solution} \cup \{p\}; \\
& S \leftarrow S \setminus \{p\}; \\
& \text{end} \\
& \text{return } \text{solution}; \\
\end{align*}
\end{algorithm}

\begin{algorithm}
\textbf{proc} improvementProcedure(originalSolution) \equiv \\
\begin{align*}
\text{improvedSolution} & \leftarrow originalSolution; \\
\text{improvement} & \leftarrow true; \\
\text{while } \text{improvement} \text{ do} \\
& \text{end} \\
\end{align*}
\end{algorithm}
$S_1 \leftarrow \text{improvedSolution}$;

$j := S_1.\text{getLastNumericalIdentifier}()$;

for all $x \in S_1: (x.M_1 \neq 0, x.M_2 \neq 0)$ do

$H := 0$;

$T := \infty$;

$L := \infty$;

if $x.M_1 = x.M_2$ then

$y_1 := (j + 1, x.M_1, x.M_2, \lceil (x.Q)/2 \rceil, H, T, L)$;

$y_2 := (j + 2, x.M_1, x.M_2, \lfloor (x.Q)/2 \rfloor, H, T, L)$;

else

$y_1 := (j + 1, x.M_1, 0, \lceil (x.Q)/2 \rceil, H, T, L)$;

$y_2 := (j + 2, x.M_2, 0, \lfloor (x.Q)/2 \rfloor, H, T, L)$;

end

$S_1 \leftarrow S_1 \setminus \{x\} \cup \{y_1, y_2\}$;

$j := j + 2$;

end

$S_2 := \text{assignmentProcedure}(S_1)$;

for all $h \in I.\text{getSetOfHeaters}()$ do

$x := S_2.\text{getLastMoldPairOfHeater}(h)$;

$x.Q := S_2.\text{tryReduceProduction}(x)$;

end

if $(S_2.\text{getMakespan}()) < \text{improvedSolution.\text{getMakespan}()}$ then

$\text{improvedSolution} \leftarrow S_2$;

else

$\text{improvement} \leftarrow \text{false}$;

end

end

return improvedSolution;

end

Other auxiliary procedures:

proc getMakespan() ≡

Returns the makespan of a solution calculated as the maximal final period of completion ($T + L$) among all heaters.

end

proc getNumberOfMoldTypes() ≡

Returns the number of different mold types of a problem instance.

end

proc getDemand(m) ≡

Returns the demand requirements for mold type m of a problem instance.

end

proc getQuantityOfMold(m) ≡

Returns the quantity of molds for mold type m of a problem instance.
proc getRandomMoldPairWithPositiveDemand() ≡
Returns a pair of compatible molds randomly selected \(m_1 \) and \(m_2 \) with positive net demand (demand value minus production quantity) for at least one of them.

end

proc getInitialPeriodOfAssignment\((m_1, m_2) \) ≡
Returns \(\max\{t_1, t_2, t_3\} \) with:
- \(t_1 \) the earliest period with compatible heater available for molds \(m_1 \) and \(m_2 \)
- \(t_2 \) the earliest period with available molds for molds \(m_1 \) and \(m_2 \)
- \(t_3 \) the earliest period with available parts for molds \(m_1 \) and \(m_2 \)

end

proc getMoldsPairWithShortestStartTime() ≡
Returns the pair of molds with the shortest start time of a certain solution.

end

proc getHeaterAvailableWithLowestSetups\((t, m_1, m_2) \) ≡
Returns a compatible heater available at period \(t \) that requires less set-up times and removal times for \(m_1 \) and \(m_2 \).

end

proc getNumberOfAssignmentPeriods\((h, q) \) ≡
Returns the numbers of periods for producing a quantity \(q \) of molds \(m_1 \) and \(m_2 \) in heater \(h \).

end

proc getLastNumericalIdentifier() ≡
Returns the greatest numerical identifier value of the tuples of a certain solution.

end

proc getSetOfHeaters() ≡
Returns the set of heaters of a problem instance.

end

proc getLastMoldPairOfHeater\((h) \) ≡
Returns the last pair of molds assigned to heater \(h \) in a certain solution.

end

proc tryReduceProduction\((x) \) ≡
Returns a reduced production quantity for the pair of molds \((x.M_1, x.M_2) \) whenever the current total production quantity for each mold is greater than the demand requirement.

end

The complexity order of the heuristic procedure depends on the procedures for the assignment of pairs of molds to heaters (assignmentProcedure) and for improving the initial solution (improvementProcedure). The order of the assignment procedure is \(O(D^2) \), with \(D = \sum_{i \in M} d_m \), the total demand requirements, since in the worst case a solution is composed by \(O(D) \) tuples, each one of them with one unit of production quantity for a certain pair of molds. We note that
all the procedures called in the assignment procedure run in $O(D)$ time. In the case of the improvement procedure, the order is $O(D^3)$ since for each tuple of a given solution it calls the assignment procedure. Therefore, the order of complexity of the heuristic procedure is $O(D^3)$.