SUB-LEADING ASYMPTOTICS OF ECH CAPACITIES

DAN CRISTOFARO-GARDINER AND NIKHIL SAVALE

ABSTRACT. In previous work [11], the first author and collaborators showed that the leading asymptotics of the embedded contact homology (ECH) spectrum recovers the contact volume. Our main theorem here is a new bound on the sub-leading asymptotics.

1. Introduction

1.1. The main theorem. Let Y be a closed, oriented three-manifold. A contact form on Y is a one-form λ satisfying

$$\lambda \wedge d\lambda > 0.$$

A contact form determines the Reeb vector field, R, defined by

$$\lambda(R) = 1, \quad d\lambda(R, \cdot) = 0,$$

and the contact structure $\xi := \text{Ker}(\lambda)$. Closed orbits of R are called Reeb orbits.

If (Y, λ) is a closed three-manifold equipped with a nondegenerate contact form and $\Gamma \in H_1(Y)$, then the embedded contact homology $ECH(Y, \lambda, \Gamma)$ is defined. This is the homology of a chain complex freely generated over \mathbb{Z}_2 by certain sets of Reeb orbits in the homology class Γ, relative to a differential that counts certain J-holomorphic curves in $\mathbb{R} \times Y$. (ECH can also be defined over \mathbb{Z}, but for the applications in this paper we will not need this.) It is known that the homology only depends on ξ, and so we sometimes denote it $ECH(Y, \lambda, \xi)$. Any Reeb orbit γ has a symplectic action

$$A(\gamma) = \int_\gamma \lambda$$

and this induces a filtration on $ECH(Y, \lambda)$; we can use this filtration to define a number $c_\sigma(Y, \lambda)$ for every nonzero class in ECH, called the spectral invariant associated to σ; the spectral invariants are C^0 continuous and so can be extended to degenerate contact forms as well.
We will review the definition of ECH and of the spectral invariants in §2.1.

When the class $c_1(\xi) + 2\text{P.D.}(\Gamma) \in H^2(Y; \mathbb{Z})$ is torsion, then $ECH(Y, \xi, \Gamma)$ has a relative \mathbb{Z} grading, which we can refine to a canonical absolute grading gr^Q by rationals [18], and which we will review in §2.3. It is known that for large gradings the group is eventually 2-periodic and non-vanishing:

$$ECH_*(Y, \xi, \Gamma) = ECH_{*+2}(Y, \xi, \Gamma) \neq 0, \; * \gg 0.$$

The main theorem of [11] states that in this case, the asymptotics of the spectral invariants recover the contact volume

$$\text{vol}(Y, \lambda) = \int_Y \lambda \wedge d\lambda.$$

Specifically:

Theorem 1. [11, Thm. 1.3] Let (Y, λ) be a closed, connected oriented three-manifold with a contact form, and let $\Gamma \in H_1(Y)$ be such that $c_1(\xi) + 2\text{P.D.}(\Gamma)$ is torsion. Then if $\{\sigma_j\}$ is any sequence of nonzero classes in $ECH(Y, \xi, \Gamma)$ with definite gradings tending to positive infinity,

$$\lim_{j \to \infty} \frac{c_{\sigma_j}(Y, \lambda)^2}{\text{gr}^Q(\sigma_j)} = \text{vol}(Y, \lambda).$$

The formula (1.1) has had various implications for dynamics. For example, it was a crucial ingredient in recent work [10] of the first author and collaborators showing that many Reeb vector fields on closed three-manifolds have either two or infinitely many distinct closed orbits, and it was used in [9] to show that every Reeb vector field on a closed three-manifold has at least two distinct closed orbits. It has also been used to prove C^∞ closing lemmas for Reeb flows on closed three-manifolds and Hamiltonian flows on closed surfaces [1, 17].

By (1.1), we can write

$$c_{\sigma_j}(Y, \lambda) = \sqrt{\text{vol}(Y, \lambda) \cdot \text{gr}^Q(\sigma_j) + d(\sigma_j)},$$

where $d(\sigma_j)$ is $o(\text{gr}^Q(\sigma_j)^{1/2})$ as $\text{gr}^Q(\sigma_j)$ tends to positive infinity. It is then natural to ask:

Question 2. What can we say about the asymptotics of $d(\sigma_j)$ as $\text{gr}^Q(\sigma_j)$ tends to positive infinity?

Previously, W. Sun has shown that $d(\sigma_j)$ is $O(\text{gr}^Q(\sigma_j)^{125/252})$ [27, Thm. 2.8]. Here we show:
Theorem 3. Let \((Y,\lambda)\) be a closed, connected oriented three-manifold with contact form \(\lambda\), and let \(\Gamma \in H_1(Y)\) be such that \(c_1(\xi) + 2P.D.(\Gamma)\) is torsion. Let \(\{\sigma_j\}\) be any sequence of nonzero classes in \(ECH(Y,\lambda,\Gamma)\) with definite gradings tending to positive infinity. Define \(d(\sigma_j)\) by (1.2). Then \(d(\sigma_j)\) is \(O(\text{gr}^Q(\sigma_j))^{2/5}\) as \(\text{gr}^Q(\sigma_j) \to +\infty\).

We do not know whether or not the \(O(\text{gr}^Q(\sigma_j))^{2/5}\) asymptotics here are optimal — in other words, we do not know whether there is some contact form on a three-manifold realizing these asymptotics. We will show in §4.3 that there exist contact forms with \(O(1)\) asymptotics for the \(d(\sigma_j)\). In Remark 13 we clarify where the exponent \(\frac{2}{5}\) comes from in our proof, and why the methods in the current paper can not improve on it.

Another topic which we do not address here, except in a very specific example, see §4.3, but which is of potential future interest, is whether the asymptotics of the \(d(\sigma_j)\) carry interesting geometric information. In this regard, a similar question in the context of the spectral flow of a one-parameter family of Dirac operators was recently answered in [22]. This is particularly relevant in the context of the argument we give here, as our argument also involves estimating spectral flow, see Remark 13.

1.2. A dynamical zeta function and a Weyl law. We now mention two corollaries of Theorem 3.

Given \(\Gamma \in H_1(Y)\), define a set of nonnegative real numbers, called the \(ECH\) spectrum for \((Y,\lambda,\Gamma)\)

\[
\Sigma_{(Y,\lambda,\Gamma)}^* := \cup_{*} \Sigma_{(Y,\lambda,\Gamma),*}
\]

\[
\Sigma_{(Y,\lambda,\Gamma),*} := \{c_\sigma(\lambda) \mid 0 \neq \sigma \in ECH_*(Y,\xi,\Gamma;\mathbb{Z}_2)\}.
\]

(To emphasize, in the set \(\Sigma_{(Y,\lambda,\Gamma),*}\) we are fixing the grading \(*\).) Then, define the Weyl counting function for \(\Sigma_{(Y,\lambda,\Gamma)}\)

\[
N_{(Y,\lambda,\Gamma)}(R) := \# \{c \in \Sigma_{(Y,\lambda,\Gamma)} \mid c \leq R\}.
\]

We now have the following:

Corollary 4. If \(c_1(\xi) + 2P.D.(\Gamma)\) is torsion, then the Weyl counting function for the \(ECH\) spectrum satisfies the asymptotics

\[
N(R) = \left[\frac{2^d - 1}{\text{vol}(Y,\lambda)}\right] R^2 + O(R^{9/5})
\]

where \(d = \text{dim } ECH_* (Y,\xi,\Gamma;\mathbb{Z}_2) + \text{dim } ECH_{*+1} (Y,\xi,\Gamma;\mathbb{Z}_2), * \gg 0\).
As another corollary, one may obtain information on the corresponding dynamical zeta function. To this end, first note that the ECH zeta function

\[\zeta_{ECH}(s; Y, \lambda, \Gamma) := \sum_{c \neq 0 \in \Sigma(Y, \lambda, \Gamma)} c^{-s} \]

converges for $\operatorname{Re}(s) > 2$ by (1.1) and defines a holomorphic function of s in this region whenever $c_1(\xi) + 2 \operatorname{P.D.}(\Gamma)$ is torsion, by (1.4).

In view of for example [13, 14], one can ask if ζ_{ECH} has a meromorphic continuation to \mathbb{C}, and, if so, whether it contains interesting geometric information. The Weyl law (1.4) then shows:

Corollary 5. The zeta function (1.5) continues meromorphically to the region $\operatorname{Re}(s) > \frac{5}{2}$. The only pole in this region is at $s = 2$ which is further simple with residue $\operatorname{Res}_{s=2} \zeta_{ECH}(s; Y, \lambda, \Gamma) = \left[\frac{2^2 - 1}{\text{vol}(Y, \lambda)} \right]$.

In §4.3, we give an example of a contact form for which ζ_{ECH} has a meromorphic extension to all of \mathbb{C} with two poles at $s = 1, 2$. The meromorphy and location of the poles of (1.5) would be interesting to figure out in general.

1.3. **Idea of the proof and comparison with previous works.**

The method of the proof uses previous work by C. Taubes relating embedded contact homology to Monopole Floer homology. By using Taubes’s results, we can estimate spectral invariants associated to nonzero ECH classes by estimating the energy of certain solutions of the deformed three-dimensional Seiberg-Witten equations. This is also the basic idea behind the proofs of Theorem 1 and the result of Sun mentioned above, and it was inspired by a similar idea in Taubes’s proof of the three-dimensional Weinstein conjecture [24].

The essential place where our proof differs from these arguments involves a particular estimate, namely a key “spectral flow” bound for families of Dirac operators that appears in all of these proofs. This estimate bounds the difference between the grading of a Seiberg-Witten solution, and the “Chern-Simons” functional, which we review in §2.2 and is important in all of the works mentioned above. We prove a stronger bound of this kind than any previous bound, see Proposition 6 and the discussion about the eta invariant below, and this is the key point which allows us to prove $O(\text{gr}^Q(\sigma_j))^{2/5}$ asymptotics. Spectral flow bounds for families of Dirac operators were also considered in [20, 21, 26]. The main difference here is that in those works the bounds were proved on reducible solutions where the connections needed to
define the relevant Dirac operators were explicitly given. Here we must consider irreducible solutions, and so we rely on a priori estimates.

We have chosen to phrase this spectral flow bound in terms of a bound on the eta invariants of a family of operators. By the Atiyah-Patodi-Singer index theorem, the bound we need on the spectral flow is equivalent to a bound on the eta invariant, and we make the relationship between these two quantities precise in the appendix.

The paper is organized as follows. In §2 we review what we need to know about embedded contact homology, Monopole Floer cohomology and Taubes’s isomorphism. §3 reviews the eta invariant, reviews the necessary estimates on irreducible solutions to the Seiberg-Witten equations, and proves the key Proposition 6. We then give the proof of Theorem 3 in §4 — while our argument in this section is novel, one could instead argue here as in [27], but we give our own argument here since it might be of independent interest, see Remark 15. The end of the paper reviews the sub-leading asymptotics and the dynamical zeta function in the case of ellipsoids, and an appendix rephrases the grading in Seiberg-Witten in terms of the eta invariant rather than in terms of spectral flow.

1.4. Acknowledgments. The first author thanks M. Hutchings, D. McDuff, and W. Sun for very helpful discussions.

2. Floer homologies

We begin by reviewing the facts that we will need about ECH and Monopole Floer homology.

2.1. Embedded contact homology. We first summarize what we will need to know about ECH. For more details and for definitions of the terms that we have not defined here, see [16].

Let (Y, λ) be a closed oriented three-manifold with a nondegenerate contact form. Fix a homology class $\Gamma \in H_1(Y)$. As stated in the introduction, the embedded contact homology $ECH(Y, \lambda, \Gamma)$ is the homology of a chain complex $ECC(Y, \lambda, \Gamma)$. To elaborate, the chain complex ECC is freely generated over \mathbb{Z}_2 by orbit sets $\alpha = \{(\alpha_j, m_j)\}$ where the α_j’s are distinct embedded Reeb orbits while each $m_j \in \mathbb{N}$; we further have the constraints that $\sum m_j \alpha_j = \Gamma \in H_1(Y)$ and $m_j = 1$ if α_j is hyperbolic. To define the chain complex differential ∂, we consider the symplectization $(\mathbb{R}_t \times Y, d(e^t \lambda))$, and choose an almost complex structure J that is \mathbb{R}-invariant, rotates the contact hyperplane $\xi := \text{ker}\lambda$ positively with respect to $d\lambda$, and satisfies $J\partial_t = R$. The differential
on $ECC(Y, \lambda, \Gamma)$ is now defined via

$$\partial \alpha = \sum_{\beta} \sharp \left[\mathcal{M}_1(\alpha, \beta) / \mathbb{R} \right] \beta.$$

Here $\mathcal{M}_1(\alpha, \beta)$ denotes the moduli space of J-holomorphic curves C of ECH index $I(C) = 1$ in the symplectization, modulo translation in the \mathbb{R}-direction, and modulo equivalence as currents, with the set of positive ends given by α and the set of negative ends given by β. If J is generic, then the differential squares to zero $\partial^2 = 0$ and defines the ECH group $ECH(Y, \lambda; \Gamma)$. We will not review the definition of the ECH index here, see [16] for more details, but the key point is that the condition $I(C) = 1$ forces C to be (mostly) embedded and rigid modulo translation.

As stated in the introduction, the homology $ECH(Y, \lambda; \Gamma)$ does not depend on the choice of generic J, and only depends on the associated contact structure ξ; we therefore denote it $ECH(Y, \xi; \Gamma)$. (In fact, the homology only depends on the spinc structure determined by ξ, but we will not need that.) This follows from a canonical isomorphism between ECH and Monopole Floer homology [25], which we will soon review. The ECH index I induces a relative $\mathbb{Z}/d\mathbb{Z}$ grading on $ECH(Y, \xi; \Gamma)$, where d is the divisibility of $c_1(\xi) + 2\text{P.D.}(\Gamma) \in H^2(Y; \mathbb{Z})$ mod torsion. In particular, it is relatively \mathbb{Z}-graded when this second homology class is torsion.

Recall now the action of a Reeb orbit from the introduction. This induces an action on orbit sets $\alpha = \{(\alpha_j, m_j)\}$ by

$$\mathcal{A}(\alpha) := \sum_{j=1}^N m_j \left(\int_{\alpha_j} \lambda \right).$$

The differential decreases action, and so we can define $ECC^L(Y, \lambda, \Gamma)$ to be the homology of the sub-complex generated by orbit sets of action strictly less than L. The homology of this sub-complex $ECH^L(Y, \lambda, \Gamma)$ is again independent of J but now depends on λ; there is an inclusion induced map $ECH^L(Y, \lambda, \Gamma) \to ECH(Y, \xi, \Gamma)$. Using this filtration, we can define the spectral invariant associated to a nonzero class σ in ECH

$$c_\sigma(Y, \lambda) := \inf \{ L \mid \sigma \in \text{image } (ECH^L(Y, \lambda, \Gamma) \to ECH(Y, \xi, \Gamma)) \}.$$

As stated in the introduction, the spectral invariants are known to be C^0 continuous in the contact form, and so extend to degenerate contact forms as well by taking a limit over nondegenerate forms, see [15].
2.2. Monopole Floer homology. We now briefly review what we need to know about Monopole Floer homology, referring to [18] for additional details and definitions.

Recall that a spinc structure on an oriented Riemannian three-manifold Y is a pair (S, c) consisting of a rank 2 complex Hermitian vector bundle and a Clifford multiplication endomorphism $c : T^*Y \otimes \mathbb{C} \to \text{End} (S)$ satisfying $c(e_1)^2 = -1$ and $c(e_1)c(e_2)c(e_3) = 1$ for any oriented orthonormal frame (e_1, e_2, e_3) of T_yY. Let $\mathfrak{su}(S)$ denote the bundle of traceless, skew-adjoint endomorphisms of S with inner product $\frac{1}{2} \text{tr}(A^*B)$. Clifford multiplication c maps T^*Y isometrically onto $\mathfrak{su}(S)$. Spinc structures exist on any three-manifold, and the set of spinc structures is an affine space over $H^2(Y; \mathbb{Z})$. A spinc connection A on S is a connection such that c is parallel. Given two spin-c connections A_1, A_2 on S, their difference is of the form $A_1 - A_2 = a \otimes 1^S$ for some $a \in \Omega^1(Y, i \mathbb{R})$.

If we denote by A^0_1, A^0_2 the induced connections on $\det (S) = \Lambda^2 S$, we have $A^0_1 - A^0_2 = 2a$. Hence prescribing a spinc connection on S is the same as prescribing a unitary connection on $\det (S)$. We let $\mathcal{A}(Y, s)$ denote the space of all spinc connections on S. Given a spinc connection A, we denote by ∇^A the associated covariant derivative. We then define the spinc Dirac operator $D_A : C^\infty(S) \to C^\infty(S)$ via $D_A \Psi = c \circ \nabla^A \Psi$.

Given a spinc structure $s = (S,c)$ on Y, monopole Floer homology assigns three groups denoted by $\text{HM}(Y,s), \overline{\text{HM}}(Y,s)$ and $\text{HM}(Y,s)$. These are defined via infinite dimensional Morse theory on the configuration space $\mathcal{C}(Y,s) = \mathcal{A}(Y,s) \times C^\infty(S)$ using the Chern-Simons-Dirac functional \mathcal{L}, defined as

\[
(2.1) \quad \mathcal{L} (A, \Psi) = -\frac{1}{8} \int_Y (A^t - A^0_0) \wedge (F_{A^t} + F_{A^0_0}) + \frac{1}{2} \int_Y \langle D_A \Psi, \Psi \rangle dy =: \text{CS}(A)
\]

using a fixed base spin-c connection A_0 (we pick one with A^0_0 flat in the case of torsion spin-c structures) and a metric g^TY.

The gauge group $\mathcal{G}(Y) = \text{Map}(Y, S^1)$ acts on the configuration space $\mathcal{C}(Y,s)$ by $u \cdot (A, \Psi) = (A - u^{-1} du \otimes I, u \Psi)$. The gauge group action is free on the irreducible part $\mathcal{C}^\circ(Y,s) = \{(A, \Psi) \in \mathcal{C}(Y,s) | \Psi \neq 0 \} \subset \mathcal{C}(Y,s)$ and not free along the reducibles. The blow up of the configuration space along the reducibles

\[
\mathcal{C}^\circ(Y,s) = \{(A, s, \Phi) | \| \Phi \|_{L^2} = 1, s \geq 0 \}
\]

then has a free $\mathcal{G}(Y)$ action $u \cdot (A, s, \Phi) = (A - u^{-1} du \otimes I, s, u\Phi)$.
To define the Monopole Floer homology groups one needs to perturb the Chern-Simons-Dirac functional \((2.1)\). First given a one form \(\mu \in \Omega^1 (Y; \mathbb{R})\), one defines the functional \(e_\mu (A) := \frac{1}{2} \int_Y \mu \wedge F_A\) whose gradient is calculated to be \(*d\mu\). To achieve non-degeneracy and transversality of configurations one uses the perturbed Chern-Simons-Dirac functional

\[
\mathcal{L}_\mu (A, \psi) = \mathcal{L} (A, \psi) - e_\mu (A)
\]

where \(\mu\) is a suitable finite linear combination of eigenvectors of \(*d\) with non-zero eigenvalue. Next let

\[
\mathbb{T} = \{ A \in \mathcal{A} (Y, s) \mid F_{A^t} = 0 \} / \mathcal{G} (Y)
\]

be the space of \(A^t\) flat spin-c connections up to gauge equivalence. We choose a Morse function \(f : \mathbb{T} \to \mathbb{R}\) to define the functional \(f \in \mathcal{C}^0 (Y, s) \to \mathbb{R}, f (A_0 + a, s, \psi) := f ((A^t_0 + a^h))\), where \(a^h\) denotes the harmonic part of \(a \in \Omega^1 (Y, \mathbb{iR})\). The gradient may be calculated

\[
(\nabla f)^A = (\nabla f_{(A^t)^h}, 0, 0).
\]

The Monopole Floer homology groups are now defined using solutions \(A, s, \Phi \in \mathcal{C}^0 (Y, s)\) to the three-dimensional Seiberg-Witten equations

\[
\begin{align*}
\frac{1}{2} \ast F_{A^t} + s^2 c^{-1} (\Phi \Phi^*)_0 + (\nabla f)_{p(A)} + *d\mu &= 0 \\
\Lambda (A, s, \Phi) &= 0 \\
D_A \Phi - \Lambda (A, s, \Phi) \Phi &= 0
\end{align*}
\]

where \(\Lambda (A, s, \Phi) = \langle D_A \Phi, \Phi \rangle_{L^2} \) and \((\Phi \Phi^*)_0 := \Phi \otimes \Phi^* - \frac{1}{2} |\Phi|^2\) defines a traceless, Hermitian endormophism of \(S\). We denote by \(\mathcal{C}\) the set of solutions to the above equations.

We first subdivide the solutions as follows:

\[
\mathcal{C}^o = \{ (A, s, \Phi) \in \mathcal{C} | s \neq 0 \} / \mathcal{G} (Y),
\]

\[
\mathcal{C}^s = \{ (A, 0, \Phi) \in \mathcal{C} | \Lambda (A, 0, \Phi) > 0 \} / \mathcal{G} (Y)
\]

\[
= \left\{ (A, \Phi) \mid \frac{1}{2} F_{A^t} + d\mu = 0, [A] \text{ is a critical point of } f, \Phi \text{ is a (positive-)normalized eigenvector of } D_A \right\} / \mathcal{G} (Y)
\]

\[
\mathcal{C}^n = \{ (A, 0, \Phi) \mid \Lambda (A, 0, \Phi) < 0 \} / \mathcal{G} (Y)
\]

\[
= \left\{ (A, \Phi) \mid \frac{1}{2} F_{A^t} + d\mu = 0, [A] \text{ is a critical point of } f, \Phi \text{ is a (negative-)normalized eigenvector of } D_A \right\} / \mathcal{G} (Y).
\]
Next, we consider the free \(\mathbb{Z}_2 \) modules generated by the three sets above

\[
C^0 = \mathbb{Z}_2 [c^0], \quad C^s = \mathbb{Z}_2 [c^s], \quad C^u = \mathbb{Z}_2 [c^u].
\]

The chain groups for the three versions of Floer homology mentioned above are defined by

\[
\tilde{C} = C^0 \oplus C^s, \quad \hat{C} = C^0 \oplus C^u, \quad \bar{C} = C^s \oplus C^u.
\]

These chain groups \(\tilde{C}, \hat{C}, \bar{C} \) can be endowed with differentials \(\partial, \hat{\partial}, \bar{\partial} \) with square zero; we do not give the precise details here, but the idea is to count Fredholm index one solutions of the four-dimensional equations, see [18, Thm. 22.1.4] for the details. The homologies of these three complexes are by definition the three monopole Floer homology groups

\[
\hat{H}(Y, s), \quad \hat{H}(Y, s), \quad \bar{H}(Y, s).
\]

They are independent of the choice of metric and perturbations \(\mu, \mathcal{f} \).

Each of the above Floer groups has a relative \(\mathbb{Z}/d\mathbb{Z} \) grading where \(d \) is the divisibility of \(c_1(S) \in H^2(Y, \mathbb{Z}) \) mod torsion. This is defined using the extended Hessian

\[
\hat{H}(A, \Psi) : C^\infty(Y; iT^*Y \oplus \mathbb{R} \oplus S) \to C^\infty(Y; iT^*Y \oplus \mathbb{R} \oplus S); \quad (A, \Psi) \in \mathcal{C}(Y, s)
\]

\[
\hat{H}(A, \Psi) \begin{bmatrix} a \\ \psi \end{bmatrix} = \begin{bmatrix} *da + 2c^{-1}(\psi \Psi)_0 - df \\ c(a) \Psi + D\Psi + f \Psi \end{bmatrix} \begin{bmatrix} a \\ f \end{bmatrix}
\]

\[
\hat{H}(A, \Psi) = \begin{bmatrix} *d & -d & c^{-1}(\Psi)_0 \\ -d^* & 0 & \langle \cdot, \Psi \rangle \\ c(\cdot) \Psi & \Psi & D\Psi \end{bmatrix} \begin{bmatrix} a \\ f \end{bmatrix}.
\]

(2.4)

The relative grading between two irreducible generators \(a_i = (A_i, s_i, \Phi_i) \), \((s_i \neq 0), i = 1, 2 \), is now defined via \(\text{gr}(a_1, a_2) = \text{sf} \{ \hat{H}(A_i, \Psi_i) \}_{0 \leq i \leq 1} \) (mod \(d \)) for some path of configurations \((A_i, \Psi_i) \) starting at \((A_2, s_2 \Phi_2) \) and ending at \((A_1, s_1 \Phi_1) \), where \(\text{sf} \) denotes the spectral flow.

In the case when the spin-c structure is torsion, the monopole Floer groups are further equipped with an absolute \(\mathbb{Q} \)-grading, refining this relative grading. As we will review in the appendix, this is given via

\[
\text{gr}^Q[a] = \begin{cases}
2k - \eta(D\phi) + \frac{1}{2}\eta_Y - \frac{1}{2\pi}CS(A); & a = (A, 0, \Phi_k^A) \in \mathcal{C}^s, \\
-\eta(D\hat{H}(A, s\Phi)) + \frac{5}{4}\eta_Y - \frac{1}{2\pi^2}CS(A); & a = (A, s, \Phi) \in \mathcal{C}^0, s \neq 0.
\end{cases}
\]

where \(\Phi_k^A \) above denotes the \(k \)th positive eigenvector of \(D\phi \) (see [13], and \(\eta_Y \) and \(\eta_{D\phi} \) denote the eta invariant of the corresponding operator, which we will review in [13].
2.3. ECH=HM. We now state the isomorphism between the ECH and HM, proved in [25]. Given a contact manifold \((Y^3, \lambda)\) with \(d\lambda\)-compatible almost complex structure \(J\) as before, we define a metric \(g^{TV}\) via
\[g^{TV}(\xi, J) = d\lambda(\cdot, J), |R| = 1 \]
and \(R\) and \(\xi\) are orthogonal. This metric is adapted to the contact form in the sense
\[*d\lambda = 2\lambda, |\lambda| = 1. \]
Decompose \(\xi \otimes C = \bigoplus_{i, 0} K^{i, 0} \otimes K^{-1}\) into the \(i, -i\) eigenspaces of \(J\). The contact structure now determines the canonical spin-c structure \(s^\xi\) via
\[s^\xi = C \oplus K^{-1} \]
with Clifford multiplication \(c^\xi\) given by
\[c^\xi_p R_q = i^{p-q}, c^\xi_p v_q = -i^{p-q} v^1_0, v \in \xi. \]
Furthermore, there is a unique spin-c connection \(A_c\) on \(S^\xi\) with the property that
\[D_{A_c} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0 \]
and we call the induced connection \(A'_c\) on
\[K^{-1} = \det (S^\xi) \]
the canonical connection. Tensor product with an auxiliary Hermitian line bundle \(E\) via
\[S^E = S^\xi \otimes E \]
and \(c^E = c^\xi \otimes 1\) gives all other spin-c structures \(s^E\). Furthermore all spin-c connections on
\(S^E\) arise as
\[A = A_c \otimes 1 + 1 \otimes \nabla^A \]
for some unitary connection \(\nabla^A\) on \(E\). The ECH/HM isomorphism is then
\[H\hat{M}_* (-Y, s^E) = ECH_* (Y, \xi; P.D. c_1 (E)). \]
In the literature, this isomorphism is often stated with the left hand side given by the cohomology group \(H\hat{M}^* (Y)\) instead; the point is that
\[H\hat{M}^* (Y) \text{ and } H\hat{M}(-Y) \]
are canonically isomorphic, see \([18, \text{S 22.5, Prop. 28.3.4}]\). The isomorphism (2.6) allows us to define a \(\mathbb{Q}\)-grading on ECH, by declaring that (2.6) preserves this \(\mathbb{Q}\)-grading.

We now state the main ideas involved in the isomorphism (we restrict attention to the case when \(c_1 (\det s^E)\) is torsion, which is the case which is relevant here, and we sometimes state estimates that, while true, are stronger than those originally proved by Taubes). To this end, let \(\sigma \in H\hat{M} (-Y, s^E)\). We use the perturbed Chern-Simons-Dirac functional (2.2) and its gradient flow (2.3) with \(\mu = ir\lambda, r \in [0, \infty)\), in defining monopole Floer homology. (One also adds a small term \(\eta\) to \(\mu\) to achieve transversality, see for example \([11]\), but to simplify the notation we will for now suppress this term.) Giving a family of (isomorphic) monopole Floer groups \(H\hat{M} (-Y, s^E)\), the class \(\sigma\) is hence representable by a formal sum of solutions to (2.3) corresponding to...
\[\mu = ir\lambda. \] Denote by \(\tilde{C} \) the \(\mu = ir\lambda \) version of the complex \(\tilde{C} \) and note that its reducible generators are all of the form \(a = (A, 0, \Phi_k) \) where \(A = A_0 - ir\lambda, A_0 \) is flat and \(\Phi_k \) is the \(k \)th positive eigenvector of \(D_A \). An important estimate \(\eta(D_{A_0 - ir\lambda}) = O(r) \) now gives that the grading of this generator \(\text{gr}^Q[a] = -r^2 \int \lambda \wedge d\lambda + O(r) > \text{gr}^Q[\sigma] \) by (2.5) for \(r > 0 \). Hence for \(r > 0 \) the class \(\sigma \) is represented by a formal sum of irreducible solutions to (2.3) with \(\mu = ir\lambda \), and by a max-min argument, we may choose a family \((A_r, \Psi_r) \): \(a_s \) satisfying

\[
\text{gr}^Q[\sigma] = \text{gr}^Q[(A_r, \Psi_r)].
\]

Following a priori estimates on solutions to the Seiberg-Witten equations, one then proves another important estimate \(\eta(H_{(A_r, \Psi_r)}) = O(r^{3/2}) \) uniformly in the class \(\sigma \). This gives \(CS(A_r) = O(r^{3/2}) \) which in turn by a differential relation (see [14] leads to \(e_\lambda(A_r) = O(1) \). The final step in the proof shows that for any sequence of solutions \((A_r, \Psi_r) \) to Seiberg-Witten equations with \(e_\lambda(A_r) \) bounded, the \(E \)-component

\[
\Psi^+ _r \text{ of the spinor } \Psi_r = \begin{bmatrix} \Psi^+ _r \\ \Psi^- _r \end{bmatrix} \in C^\infty \left(Y; E \oplus K^{-1}E \right)_{s^E} \right)
\]

satisfies the weak convergence \((\Psi^+ _r)^{-1}(0) \rightharpoonup \{ (\alpha_j, m_j) \} \) to some ECH orbit set. This last orbit set is what corresponds to the image of \(\sigma \in HM(Y, s^E) \) in ECH under the isomorphism (2.6). Furthermore, crucially for our purposes, one has

\[
(2.7) \quad c_\sigma(\lambda) = \lim_{r \to \infty} e_\lambda(A_r) = \frac{2\pi}{|\lambda|^{s}}.
\]

see [11, Prop. 2.6]. (The proof in [11, Prop. 2.6] is given in the case where \(\lambda \) is nondegenerate, but it holds for all \(\lambda \) by continuity.)

3. Estimating the eta invariant

Let \(D \) be a generalized Dirac operator acting on sections of a Clifford bundle \(E \) over a closed, oriented Riemannian manifold \(Y \). Then the sum

\[
(3.1) \quad \eta(D, s) := \sum_{\lambda \neq 0} \frac{\text{sgn}(\lambda)}{|\lambda|^s}
\]

is a convergent analytic function of a complex variable \(s \), as long as \(\text{Re}(s) \) is sufficiently large; here, the sum is over the nonzero eigenvalues of \(D \). Moreover, the function \(\eta(D, s) \) has an analytic continuation to a meromorphic function on \(\mathbb{C} \) of \(s \), which we also denote by \(\eta(D, s) \), and
which is holomorphic near 0. We now define
\[\eta(D) := \eta(D, 0). \]

We should think of this as a formal signature of \(D \), which we call the \textit{eta invariant} of Atiyah-Patodi-Singer [2].

We will be primarily concerned with the case where \(D = D_{A_r} \), namely \(D \) is the spin-c Dirac operator for a connection \(A_r \) solving (2.3). Another case of interest to us is where \(D \) is the \textit{odd signature operator} on \(C^\infty(\mathcal{Y}; iT^*\mathcal{Y} \oplus \mathbb{R}) \) sending

\[(a, f) \mapsto (\star da - df, d^*a) ,\]
in which case we denote the corresponding \(\eta \) invariant by \(\eta_Y \).

Now consider the Seiberg-Witten equations (2.3) corresponding to \(\mu = ir\lambda \), for a torsion spin^c structure as above, and note that an irreducible solution (after rescaling the spinor) corresponds to a solution \((A_r, \Psi_r) \) to the Seiberg-Witten equations on \(\mathcal{C}(\mathcal{Y}, \mathfrak{g}) \) given via

\[\frac{1}{2} c(\star F_{A^r}) + r(\Psi \Psi^*)_0 + c(ir\lambda) = 0 \]
\[D_A \Psi = 0. \]

A further small perturbation is needed to obtain transversality of solutions see [11, S 2.1]. We ignore these perturbation as they make no difference to the overall argument.

We can now state the primary result of this section:

Proposition 6. Any solution to (3.2) satisfies \(\eta \left(\hat{\mathcal{H}}_{(A_r, \Psi_r)} \right) = O \left(r^{q \frac{3}{2}} \right) \).

The purpose of the rest of the section will be to prove this.

3.1. **Known estimates.** We first collect some known estimates on solutions to the equations (3.2).

Lemma 7. For some constants \(c_q, q = 0, 1, 2, \ldots \), we have
\[|\nabla^q F_{A^r}| \leq c_q \left(1 + r^{1+q/2} \right). \]

Proof. We first note that we have the estimates:
\[|\Psi_r^+| \leq 1 + \frac{c_0}{r}, \]
\[|\Psi_r^-| \leq \frac{c_0}{r} \left(\left| 1 - |\Psi_r^+|^2 \right| + \frac{1}{r} \right), \]
\[|(\nabla A)^q \Psi_r^+| \leq c_q \left(1 + r^{q/2} \right), \]
\[|(\nabla A)^q \Psi_r^-| \leq c_q \left(1 + r^{(q-1)/2} \right). \]
The first two of these estimates are proved in [24, Lem. 2.2]. The third and fourth are proved in [24, Lem. 2.3].

The lemma now follows by combining the above estimates with the equation (3.2).

In (4), we will also need:

Lemma 8. One has the bound

\[
|CS(A_r)| \leq c_0 r^{2/3} e^{A_r} \lambda_r^{4/3}
\]

where the constant \(c_0\) only depends on the metric contact manifold.

Proof. This is proven in [24, eq. 4.9], see also [11, Lem. 2.7].

3.2. The \(\eta\) invariant of families of Dirac operators. In this section, we prove the key Proposition 6. The main point that we need is the following fact concerning the \(\eta\) invariant:

Proposition 9. Let \(A_r\) be a solution to (3.2). Then \(\eta(D_{A_r})\) is \(O(r^{3/2})\) as \(r \to \infty\).

Before giving the proof, we first explain our strategy.

The first point is that we have the following integral formula for the \(\eta\) invariant:

\[
\eta(D_{A_r}) = \frac{1}{\sqrt{\pi t}} \int_0^\infty \text{tr} (D_{A_r} e^{-tD^2_{A_r}}) dt
\]

where the right hand side is a convergent integral. This is proved in [7, S 2], by Mellin transform it is equivalent to the fact that the eta function \(\eta(D_{A_r}, s)\) in (3.1) is holomorphic for \(\text{Re}(s) > -2\).

We therefore have to estimate the integral in (3.5). To do this, we will need the following estimates:

Lemma 10. There exists a constant \(c_0\) independent of \(r\) such that for all \(r \geq 1, t > 0\):

\[
\left| \text{tr} \left(D_{A_r} e^{-tD^2_{A_r}} \right) \right| \leq c_0 t^2 e^{cor}, \quad \text{and}
\]

\[
\left| \text{tr} \left(e^{-tD^2_{A_r}} \right) \right| \leq c_0 t^{-3/2} e^{cor}.
\]

Once we have proved Lemma 10, Proposition 9 will follow from a short calculation, which we will give at the end of this section.

The proof of Lemma 10 will require two auxiliary lemmas, see Lemma 11 and Lemma 12 below, and some facts about the heat equation associated to a Dirac operator that we will now first recall. Let \(D\) be a Dirac
operator on a Clifford bundle V over a closed manifold Y. The heat equation associated to D is the equation

$$\frac{\partial s}{\partial t} + D^2 s = 0$$

for sections s, and nonnegative time t; the operator e^{-tD^2} is the solution operator for this equation. The heat equation has an associated heat kernel $H_t(x, y)$ which is a (time-dependent) section of the bundle $V \otimes V$ over $Y \times Y$ whose fiber over a point (x, y) is $V_x \otimes V_y$; it is smooth for $t > 0$. For any smooth section s of V and $t > 0$, the heat kernel satisfies

$$e^{-tD^2}s(x) = \int_Y H_t(x, y)s(y)\text{vol}(y).$$

Also,

$$\left[\frac{\partial}{\partial t} + D_x^2\right] H_t(x, y) = 0,$$

where D_x denotes the Dirac operator applied in the x variables.

Moreover,

$$\text{tr}(e^{-tD^2}) = \int_Y \text{tr}(H_t(y, y))\text{vol}(y).$$

Hence, we can prove Lemma [10] by bounding $|H_t|$ along the diagonal. The operator De^{-tD^2} has a kernel $L_t(x, y)$ as well, and the analogous results hold.

A final fact we will need is Duhamel’s principle: this says that the inhomogeneous heat equation

$$\frac{\partial \tilde{s}}{\partial t} + D^2 \tilde{s}_t = s_t$$

has a unique solution tending to 0 with t, given by

$$\tilde{s}_t(x) = \int_0^t (e^{-(t-t')D^2}s_{t'})(x)dt',$$

as long as s_t is a smooth section of S, continuous in t.

Now let D be D_{A_r}, and V the spinor bundle for the spinc structure S, and let H'_t and L'_t be defined as above, but with $D = D_{A_r}$. Let $\rho(x, y)$ the Riemannian distance function. Define an auxiliary function

$$h_t(x, y) := (4\pi t)^{-3/2}e^{-\rho(x,y)^2/4t}.$$

In the case of $Y = \mathbb{R}^3$, with ρ the standard Euclidean distance, the function $h_t(x, y)$ is precisely the ordinary heat kernel. In our case, the kernel $H'_t(x, y)$ has an asymptotic expansion as $t \to 0$,

$$H'_t(x, y) \sim h_t(x, y)(b_0'(x, y) + b_1'(x, y)t + b_2'(x, y)t^2 + \ldots +),$$

as $t \to 0$. For any smooth section s of V and $t > 0$, the heat kernel satisfies

$$e^{-tD^2}s(x) = \int_Y H_t(x, y)s(y)\text{vol}(y).$$

Also,

$$\left[\frac{\partial}{\partial t} + D_x^2\right] H_t(x, y) = 0,$$

where D_x denotes the Dirac operator applied in the x variables.

Moreover,

$$\text{tr}(e^{-tD^2}) = \int_Y \text{tr}(H_t(y, y))\text{vol}(y).$$

Hence, we can prove Lemma [10] by bounding $|H_t|$ along the diagonal. The operator De^{-tD^2} has a kernel $L_t(x, y)$ as well, and the analogous results hold.

A final fact we will need is Duhamel’s principle: this says that the inhomogeneous heat equation

$$\frac{\partial \tilde{s}}{\partial t} + D^2 \tilde{s}_t = s_t$$

has a unique solution tending to 0 with t, given by

$$\tilde{s}_t(x) = \int_0^t (e^{-(t-t')D^2}s_{t'})(x)dt',$$

as long as s_t is a smooth section of S, continuous in t.

Now let D be D_{A_r}, and V the spinor bundle for the spinc structure S, and let H'_t and L'_t be defined as above, but with $D = D_{A_r}$. Let $\rho(x, y)$ the Riemannian distance function. Define an auxiliary function

$$h_t(x, y) := (4\pi t)^{-3/2}e^{-\rho(x,y)^2/4t}.$$

In the case of $Y = \mathbb{R}^3$, with ρ the standard Euclidean distance, the function $h_t(x, y)$ is precisely the ordinary heat kernel. In our case, the kernel $H'_t(x, y)$ has an asymptotic expansion as $t \to 0$,
that is studied in detail in [6, Ch. 2]; here, the $b_i^r(x, y)$ are defined on all of $Y \times Y$. The following lemma summarizes what we need to know about the results from [6, Ch. 2]:

Lemma 11. There exists for all $i = 0, 1, 2, \ldots$ sections $b_i^r(x, y)$ such that:

- The b_i^r are supported in any neighborhood of the diagonal.
- The asymptotic expansion (3.10) may be formally differentiated to obtain asymptotic expansions for the derivative. In particular, there is an asymptotic expansion

\[
L_i^r(x, y) \sim h_t(x, y) (\tilde{b}_0^r(x, y) + \tilde{b}_1^r(x, y)t + \tilde{b}_2^r(x, y)t^2 + \ldots +)
\]

where

\[
\tilde{b}_n^r(x, y) = (DA_r + c(\rho d\rho/2t))b_n^r(x, y).
\]

- For any $n, t > 0$,

\[
L_i^r(x, y) - h_t(x, y) \sum_{i=0}^{n} \tilde{b}_i^r(x, y)t^i
\]

is $O(t^{-1/2})$, in the C^0-norm on the product, as $t \to 0$.

\[
(\partial_t + D_{A_r}^2) \left(L_i^r(x, y) - h_t(x, y) \sum_{i=0}^{n} \tilde{b}_i^r(x, y)t^i \right) = -D_{A_r}^2 \tilde{b}_n^r t^n.
\]

Proof. The lemma summarizes those parts of the proof of [6, Thm. 2.30] that we will soon need; the arguments in [6, Thm. 2.30] provide the proof. The idea behind the first bullet point is that $h_t(x, y)$ is on the order of t^{-3} away from the diagonal. The reason for the $i - 1/2$ exponent in the third bullet point is that h_t has a $t^{-3/2}$ term. For the fourth bullet point, the point is that the coefficients \tilde{b}_r^r are constructed so as to satisfy (3.7) when formally differentiating (3.10) and equating powers of t; this gives a recursion which is relevant for our purposes because it implies that when we truncate the expansion at a finite n, the inhomogeneous equation (3.12) is satisfied. \[\square\]

In view of the first bullet point of the above lemma, we only have to understand the coefficients b_i^r in a neighborhood of the diagonal. To facilitate this, let i_{y^rY} denote the injectivity radius of the Riemannian metric g, and given $y \in Y$, let $B_y \left(\frac{i_{y^rY}}{2} \right)$ denote a geodesic ball of radius $\frac{i_{y^rY}}{2}$ centered at y, and let y denote a choice of co-ordinates
on this ball. Define \(G^k_y \subset C^\infty(B_y\left(\frac{\|y\|^2}{2}\right)) \) to be the subspace of \((r\)-dependent) functions \(f \) satisfying the estimate \(\mathcal{C}^\alpha_y f = O\left(r^{\alpha + \frac{|\alpha|}{2}}\right) \) as \(r \to \infty \), \(\forall \alpha \in \mathbb{N}^3_0 \), and for each \(j \in \frac{1}{2}\mathbb{N}_0 \), further define the subspace \(W^j_y \subset C^\infty(B_y\left(\frac{\|y\|^2}{2}\right)) \) via \(f \in W^j_y \iff f = \sum_{i=1}^N f_i \), with each \(f_i \in y^\alpha G^k_y, \ k \leq j + \frac{|\alpha|}{2} \).

Finally, given \(y \in Y \), we choose a convenient frame for \(S^\xi_y \) and \(E \) over \(B_y\left(\frac{\|y\|^2}{2}\right) \), which we will call a synchronous frame; specifically, choose an orthonormal basis for each of \(S^\xi_y, E_y \), and parallel transport along geodesics with \(A_c, A_r \) to obtain local orthonormal trivializations \(\{s_1, s_2\}, \{e\} \). Now, if \(b \) is any section of \(S \otimes S_y \), \(E \) over \(B_y\left(\frac{\|y\|^2}{2}\right) \times \{y\} \) write

\[
b(\cdot, y) = \sum_{k,l=1}^2 f^y_{b,kl}(\cdot) (s_k \otimes e)(\cdot) (s_l \otimes e)^*(y).
\]

Lemma 12. There is a constant \(c_0 \) independent of \(r \) such that for any \(t > 0, r \geq 1 \), we have

\[
|H^r_t(x, y)| \leq c_0 h_{2t}(x, y) e^{c_0 r t}.
\]

Further, for any \(y \in Y \), the restriction of the terms \(b^r_j \) to \(B_y\left(\frac{\|y\|^2}{2}\right) \times \{y\} \) have the property that their corresponding functions \(f^y_{b^r_j,kl} \) in (3.14) are all in \(W^j_y \).

Proof. The first bullet point is similar to [20], Prop. 3.1.

To prove the second bullet point, we use the fact that the terms \(b^r_j \) in the heat kernel expression (3.10) are known to satisfy a recursion, as alluded to above, and explained in the proof of [6], Thm. 2.30]. Specifically, fix \(y \in Y \), choose geodesic coordinates \(y \) around \(y \), mapping 0 to \(y \), and choose a synchronous frame as in (3.14). Then, in these coordinates, we have

\[
b^r_0(x, y) = \sum_{i=1}^2 g^{-1/4}(x)(s_i \otimes e)(x)(s_i \otimes e)^*(y),
\]

where \(g = \det (g_{jk}) \). Moreover, if use these coordinates to identify sections of \(S \otimes S^*_y \) with a vector of functions, then we have

\[
b^r_j(x, y) = -\frac{1}{g^{1/4}(x)} \int_0^1 \rho^{j-1} g^{1/4}(\rho x) D_{A_r} b^r_{j-1}(\rho x, y) d\rho, \quad j \geq 1
\]
where on the right hand side of this equation, we mean that we are integrating this vector of functions component by component.

Now recall the Bochner-Lichnerowicz-Weitzenbock formula for the Dirac operator:

\[D^2_{A_r} = \nabla^*_{A_r} \nabla_{A_r} + \frac{\kappa}{4} - \frac{1}{2} c(*F_{A_r}), \]

where \(\kappa \) denotes the scalar curvature; we will want to combine this with (3.17). In coordinates, we have

\[\nabla_{A_r} = (\partial_1 + \Gamma_1, \partial_2 + \Gamma_2, \partial_3 + \Gamma_3), \]

where each \(\Gamma_i \) is the \(i^{th} \) Christoffel symbol for \(A_r \). We also have

\[\nabla^*_{A_r} = -\sum_{j,k}^3 -g^{jk}(\partial_k + \Gamma_k) + \sum_{i,j,k}^3 g^{ik} \Gamma^i_{jk}, \]

where the \(\Gamma^i_{jk} \) are the Christoffel symbols of the Riemannian metric.

Since we have \(A_r = 1 \otimes A + A_c \otimes 1 \), where \(A_c \) is the canonical connection on \(S^5 \), we can decompose each Christoffel symbol

\[\Gamma_i = c_i + a_i, \]

where the \(c_i \) are Christoffel symbols for \(A_c \) and the \(a_i \) are Christoffel symbols for \(A \).

The \(c_i \) are independent of \(r \). To understand the \(a_j \), first write the defining equations for the curvature

\[F_{kj} = \partial_k a_j - \partial_j a_k. \]

Now write the coordinate \(x = (x^1, x^2, x^3) \), and consider \(\sum_{k=1}^3 x^k (\partial_k a_j - \partial_j a_k) \). Reintroducing the radial coordinate \(\rho \), we have

\[\rho \sum_{k=1}^3 x^k \partial_k a_j = \frac{\partial a_j}{\partial \rho}. \]

On the other hand, since the frame \(e \) is parallel, we have \(\nabla x^i \partial_{e_1} + x^2 \partial_{e_2} + x^3 \partial_{e_3} e = \nabla_{\rho \partial_{\rho}} e = 0 \), hence \(\sum_{k=1}^3 x^k a_k = 0 \). Thus, we have

\[a_j(x) = \sum_{k=1}^3 \int_0^1 d\rho \rho x^k F_{kj}(\rho x). \]

In particular, it follows from the a priori estimate (3.23) and (3.22) that each

\[a_j \in W^{1,2}_{y}. \]
Now note that we have $W^j + W^k \subset W^{\max\{j,k\}}_y$, $W^j \cdot W^k \subset W^{j+k}_y$, and
\[\partial_y W^j \subset W^{j+\frac{1}{2}}_y. \] Hence, by (3.18), (3.19), (3.20), and (3.23), we have
that the square of the Dirac operator has the schematic form
\begin{equation}
D_{\lambda_r}^2 = \sum_{j,k} -g^{jk} \partial_j \partial_k + P_j \partial_j + Q
\end{equation}
where $P_j \in W^{\frac{1}{2}}_y$ and $Q \in W^1_y$. The Lemma now follows by induction, using (3.16) and (3.17).

We now give the promised:

Proof of Lemma 10. The second bullet point follows by combining (3.8) and (3.15).

To prove the first bullet point, our strategy will be to bound the pointwise size of the kernel $L_t^r(y,y)$ and appeal to the version of (3.8) for L_t^r. To do this, consider the asymptotic expansion (3.11). By a theorem of Bismut-Freed ([7, Thm. 2.4]), for any $y \in Y$, $\text{tr} L_t^r(y,y)$ is $O(t^{\frac{1}{2}})$ as $t \to 0$. So we have $\text{tr} L_t^r(y,y) = \text{tr} R_t^r(y,y)$ for the remainder
\[R_t^r(x,y) := L_t^r - D_{\lambda_r} [h_t (b_0 + tb_1)]. \]
By (3.12), R_t^r satisfies the inhomogeneous heat equation
\[(\partial_t + D_{\lambda_r}^2) R_t^r(x,y) = h_t \left\{ -D_{\lambda_r}^3 b_1 + c \left(\frac{\rho d \rho}{2t} \right) D_{\lambda_r}^2 b_1 \right\}, \]
and by the third bullet point of Lemma 11, $R_t^r \to 0$ as $t \to 0$. We can then apply Duhamel’s principle (3.9) to write
\begin{equation}
R_t^r(x,y) = \int_0^t e^{-(t-s)D_{\lambda_r}^2} h_s(x,y) \left\{ -D_{\lambda_r}^3 b_1 + c \left(\frac{\rho d \rho}{2s} \right) D_{\lambda_r}^2 b_1 \right\} ds.
\end{equation}
We can then apply the key property of the heat kernel (3.6) to write
\[R_t^r(x,y) = \int_0^t \int_Y H_{t-s}(x,z)h_s(z,y)sK_s(z,y)\text{vol}(z)ds, \]
and we can apply the second bullet point of Lemma 11 to conclude that
\[|R_t^r(y,y)| \leq c_0 \int_0^t \int_Y e^{c_0(t-s)} h_s(z,y) h_2(t-s)(z,y)sK_s(z,y)\text{vol}(z)ds. \]
By the first bullet point of Lemma 11, we can assume that $K_s(z, y)$ is supported in $B_y \left(\frac{i_{NY}}{2} \right) \times \{ y \}$. Thus, we just have to bound

\begin{equation}
\int_0^t \int_{B_y \left(\frac{i_{TY}}{2} \right)} e^{\text{cor}(t-s)} h_s(y, 0) h_{2(t-s)}(y, 0) sK_s(y, 0) dy ds,
\end{equation}

where y are geodesic coordinates centered at y. To do this, choose a synchronous frame for the spinor bundle, as we have been doing above. Then, following (3.21), (3.22), in these coordinates the Dirac operator is seen to have the form

$$D_{A_r} = w^{jk} \partial_j + K,$$

for $r-$independent w^{jk} and $K \in W^\perp \frac{1}{2}$, in the geodesic coordinates and orthonormal frame introduced before. Combining this with the second bullet point of Lemma 12 gives that the term $K_s \in W^\perp \frac{5}{2}$. So, (3.26) is dominated by a finite sum of integrals of the form

$$\int_0^t ds \int_{B_y \left(\frac{i_{TY}}{2} \right)} dy s e^{\text{cor} h_{2(t-s)}(y, 0) h_s(y, 0) y^\alpha r^k, \ k \leq \frac{5}{2} + \frac{|\alpha|}{2}}.$$

On $B_y \left(\frac{i_{TY}}{2} \right)$, we have

$$y^I h_I(y, 0) \leq c_1 t^{\frac{1}{2} |I|} h_{2t}(y, 0),$$

for some constant c_1. Hence, we can bound the above integral by

\begin{equation}
\int_0^t ds \int_{B_y \left(\frac{i_{TY}}{2} \right)} dy s^{1 + \frac{|\alpha|}{2}} h_{2(t-s)}(y, 0) h_{2s}(y, 0) dy.
\end{equation}

We also have

$$\int_V h_t(x, y) h_{t'}(y, z) dy \leq c_2 h_{4(t+t')} (x, z)$$

as proved in [20, Sec. A]. So, we can bound (3.27) by

$$c_3 r^k e^{\text{cor} \int_0^t s^{1 + \frac{|\alpha|}{2}} h_{8t}(0, 0) ds = c_3 r^k e^{\text{cor} \int_0^t (4t)^{-3/2} ds} \leq c_3 r^k t^{\frac{1 + |\alpha|}{2}} e^{\text{cor}}.$$
Proof of Proposition 9. Define $E(x) := \text{sign}(x) \text{erfc}(|x|) = \text{sign}(x) \cdot \frac{2}{\sqrt{\pi}} \int_{|x|}^{\infty} e^{-s^2} ds < e^{-x^2}$. This is a rapidly decaying function, so the function $E(D_{A_r})$ is defined, and its trace is a convergent sum

$$\text{tr}(E(D_{A_r})) = \sum_{\lambda} E(\lambda),$$

where λ is an eigenvalue of D_{A_r}. The eta invariant in unchanged under positive rescaling

$$\eta(D_{A_r}) = \eta\left(\frac{1}{\sqrt{r}} D_{A_r}\right).$$

Now use [3,5] to rewrite the right hand side of the above equation as

$$\left| \int_0^1 dt \frac{1}{\sqrt{\pi t}} \text{tr} \left[\frac{1}{\sqrt{r}} D_{A_r} e^{-\frac{1}{4} D_{A_r}^2} \right] + \text{tr} E \left(\frac{1}{\sqrt{r}} D_{A_r} \right) \right|.$$

The absolute value of the first summand in the above expression is bounded from above by a constant multiple of $r^{3/2}$, by the first bullet point in Lemma 10. The absolute value of the second summand in the same expression is bounded from above by $\text{tr} e^{-\frac{1}{4} D_{A_r}^2}$, which by the second bullet point in Lemma 10 is bounded by a constant multiple of $r^{3/2}$ as well. □

Proof of Proposition 6. An application of the Atiyah-Patodi-Singer index theorem as in §A gives

$$\frac{1}{2} \eta \left(\mathcal{H}(A_r, \Psi_r) \right) = \frac{1}{2} \eta(D_{A_r}) + \frac{1}{2} \eta_Y + \text{sf} \left\{ \mathcal{H}(A_r, e\Psi_r) \right\}_{0 \leq \varepsilon \leq 1}.$$

The spectral flow term above is estimated to be $O\left(r^{3/2}\right)$ as in [24, S 5.4] while $\eta(D_{A_r}) = O\left(r^{3/2}\right)$ by Proposition 9. □

We also note that the constant in Proposition 6 above is only a function of (Y, λ, J) and independent of the class $\sigma = [(A_r, \Psi_r)] \in \overline{HM} (-Y, s^E)$ defined by the Seiberg-Witten solution.

Remark 13. The reason that we can not improve upon gr^Q asymptotics is because we do not know how to strengthen the $O\left(r^{3/2}\right)$ spectral flow estimate on the irreducible solutions of Propositions 6 or 7. A better $O(r)$ estimate does however exist [20, 22] for reducible solutions for which one understands the connection precisely in the limit $r \to \infty$. However, the a priori estimates (3,23) are not strong enough to carry out the same for irreducibles.
4. Asymptotics of capacities

4.1. The main theorem. In this section we now prove our main theorem Theorem 3 on ECH capacities.

Proof of Theorem 3. Let $0 \neq \sigma_j \in ECH (Y, \lambda, \Gamma)$, $j = 0, 1, 2, \ldots$, be a sequence of non-vanishing classes with definite gradings $gr^Q (\sigma_j)$ tending to positive infinity. As in §2.3 we use the perturbed Chern-Simons-Dirac functional (2.2) \mathcal{L}_μ and its gradient flow (2.3) with $\mu = \mathfrak{i} r \lambda$, $r \in [0, \infty)$, in defining monopole Floer homology. Hence for each $r \in [1, \infty)$, the class σ_j may be represented by a formal sum of solutions to (2.3) with $\mu = \mathfrak{i} r \lambda$. As noted in §2.3, this solution is eventually irreducible.

Without loss of generality we may assume $gr^Q (\sigma_j) = q + j$, where q is a fixed rational number and $j \in 2\mathbb{N}$.

We now estimate $r_1 (j)$, the infimum of the values of r such that each solution $[a_j]_r$ to (2.3) representing σ_j is irreducible. For this note that a reducible solution is of the form $a = (A, 0, \Phi_k)$ where $A = A_0 - \mathfrak{i} r \lambda$, A_0 flat and Φ_k the kth positive eigenvector of D_A. The grading of such a reducible is given by (2.5). The important estimate (§2.3) now shows $gr^Q ([A, 0, \Phi_k]) > gr^Q (\sigma_j) = q + j$ for

$$r > \bar{r}_1 (j) := \sup \left\{ r \left| \frac{r^2}{4\pi^2} \text{vol} (Y, \lambda) < c_0 r + q + j \right. \right\}.$$

Hence $r_1 (j) < \bar{r}_1 (j)$. Furthermore

$$\bar{r}_1 (j) = 2\pi \left[\frac{j}{\text{vol} (Y, \lambda)} \right]^{1/2} + O (1) \text{ as } j \to \infty$$

(4.1)

from the above definition. A max-min argument, as also mentioned in §2.3 then gives $\forall j \in 2\mathbb{N}$ a piecewise-smooth family of irreducible solutions $[a]_r = (A_r, \Psi_r)$, $r > r_1 (j)$, of fixed grading $gr^Q [a] = q + j$ such that \mathcal{L}_μ is continuous, see (for example) [11, S. 2.6].

By (3.4), we have

$$|CS (A)| \leq c_0 r^{2/3} e_\lambda (A)^{4/3}.$$

(4.2)

In addition, by combining (2.5) and Proposition 9 we have

$$\left| \frac{1}{2\pi^2} CS (A_r) - (q + j) \right| \leq c_0 r^{3/2},$$

(4.3)
with the constant \(c_0 > 0 \) being independent of the grading \(j \). We also have the differential relation

\[
\frac{d \alpha}{dr} = \frac{d \text{CS}}{dr}
\]

between the two functionals, away from the discrete set of points where derivatives are undefined, see [11, Lem. 2.5]. Now define \(F(r) = \frac{1}{2} r_1^2 \text{vol}(Y, \lambda) + \int_{r_1}^{r} e_\lambda(A_s) \, ds \). This is a continuous function, and \(v \) is continuous as well, so we may integrate the above equation to conclude that

\[
\text{CS}(r) = rF' - F
\]

valid for all \(r \) away from the above discrete set; here, we have used [27, Property 2.3.(i)], together with the computation in [11, Lem. 2.3] in the computation of the terms at \(r_1 \).

On account of (4.3), \(F \) is then a super/subsolution to the ODEs

\[
-c_2 r^{3/2} \leq rF' - F - (q + j) \leq c_2 r^{3/2}
\]

for \(r \geq r_1 \). This gives

\[
\frac{1}{2} r_1^2 \text{vol}(Y, \lambda) + r \left[\frac{q + j}{r_1} - \frac{q + j}{r} - 2 c_2 r^{1/2} + 2 c_2 r_1^{1/2} \right] \leq F
\]

\[
\frac{1}{2} r_1^2 \text{vol}(Y, \lambda) + r \left[\frac{q + j}{r_1} - \frac{q + j}{r} + 2 c_2 r^{1/2} - 2 c_2 r_1^{1/2} \right] \geq F
\]

\[
\frac{1}{2r} r_1^2 \text{vol}(Y, \lambda) + \frac{q + j}{r_1} - 3 c_2 r^{1/2} + 2 c_2 r_1^{1/2} \leq F'
\]

\[
\frac{1}{2r} r_1^2 \text{vol}(Y, \lambda) + \frac{q + j}{r_1} + 3 c_2 r^{1/2} - 2 c_2 r_1^{1/2} \geq F'.
\]

(4.4)

Next the estimate (4.2) in terms of \(F \) is

\[
-c_1 r^{2/3} (F')^{4/3} \leq rF' - F \leq c_1 r^{2/3} (F')^{4/3}.
\]

(4.5)

We let \(\rho_0 \) be the smallest positive root of \(\frac{1}{3} - \left[\rho + \rho^2 + \rho^3 + \rho^4 \right] = 0 \) and define

\[
\tilde{r}_2(j) = \sup \{ r | c_1 r^{-2/3} F^{1/3} \geq \rho_0 \}
\]
which is finite on account of (4.4). Further with $c_3 = 1 + 3\left(\frac{2\alpha_1}{3}\right) + 3\left(\frac{2\alpha_1}{3}\right)^2$ define

$$\tilde{r}_2(j) = \sup \left\{ r \mid \frac{1}{2r}r_1^2 \text{vol}(Y, \lambda) + \frac{q + j}{r_1} + 3c_2 r^{1/2} - 2c_2 r_1^{1/2} \geq \left(\frac{3}{4c_1}\right)^3 r \right\}$$

or $\frac{1}{2r}r_1^2 \text{vol}(Y, \lambda) + \frac{q + j}{r_1} - \frac{q + j}{r} + 2c_2 r^{1/2} - 2c_2 r_1^{1/2} \geq \left(\frac{1}{9c_3}\right)^3 r$

(4.6)

and set $r_2(j) := \max\{\tilde{r}_2(j), \tilde{r}_2(j)\}$. We note that $r_2(j) = O\left(j^{1/2}\right)$. We now have the following lemma.

Lemma 14. For $r > r_2(j)$ we have

$$\left(\frac{F}{r}\right)^{1/3} - \frac{2c_1}{3r} F^{2/3} \leq (F')^{1/3} \leq \left(\frac{F}{r}\right)^{1/3} + \frac{2c_1}{3r} F^{2/3}. \tag{4.7}$$

Proof. By definition,

$$r > r_2(j) \geq \tilde{r}_2(j)$$

$$\implies \rho := c_1 r^{-2/3} F^{1/3} < \rho_0$$

$$\implies \rho + \rho^2 + \rho^3 + \rho^4 < \frac{1}{3}$$

as well as

$$r > r_2(j) \geq \tilde{r}_2(j)$$

(4.8)

$$\implies F' \leq \frac{1}{2r}r_1^2 \text{vol}(Y, \lambda) + \frac{q + j}{r_1} + 3c_2 r^{1/2} - 2c_2 r_1^{1/2} \leq \left(\frac{3}{4c_1}\right)^3 r$$

by (4.4).

For $y = (F')^{1/3}$ equations (4.5) become the pair of quartic inequalities

$$0 \leq c_1 r^{-1/3} y^4 - y^3 + r^{-1} F \tag{4.9}$$

$$0 \leq c_1 r^{-1/3} y^4 + y^3 - r^{-1} F \tag{4.10}$$
With $y_0^\pm = (\frac{F}{r})^{1/3} \pm \frac{2\alpha}{3r}F^{2/3}$ we calculate
\[
c_1 r^{-1/3}(y_0^+)^4 - (y_0^+)^3 + r^{-1}F
= - r^{-5/3} c_1 F^{4/3} \left[1 - \frac{4}{3} \rho - \frac{64}{27} \rho^2 - \frac{32}{27} \rho^3 - \frac{16}{81} \rho^4 \right] < 0 \quad \text{and}
\]
\[
c_1 r^{-1/3}(y_0^-)^4 + (y_0^-)^3 - r^{-1}F
= r^{-5/3} c_1 F^{4/3} \left[-1 - \frac{4}{3} \rho + \frac{64}{27} \rho^2 - \frac{32}{27} \rho^3 + \frac{16}{81} \rho^4 \right] < 0.
\]

Since the minimum of the quartic (4.9) is attained at $y_{\text{min}} = (F^\prime)^{1/3} = \frac{3}{4c_1} r^{1/3}$, this gives $(F^\prime)^{1/3} = y \leq y_0^+$ or $(F^\prime)^{1/3} = y \geq y_{\text{min}} = \frac{3}{4c_1} r^{1/3}$. The second possibility being disallowed on account of (4.8), gives the desired upper bound of (4.7). Similarly, the minimum of quartic (4.10) is attained at the negative $y_{\text{min}} = -\frac{3}{4c_1} r^{1/3}$. Hence $y_0^- \leq y = (F^\prime)^{1/3}$ which is the lower bound in (4.7). □

Next we cube (1.7) and use (1.6) to obtain
\]
\[
(4.11) \quad \frac{F}{r} - c_3 \frac{F^{4/3}}{r^{5/3}} \leq F^\prime \leq \frac{F}{r} + c_3 \frac{F^{4/3}}{r^{5/3}}
\]
for $r \geq r_2 (j)$. This gives
\[
r^{1/3} \left[-c_3 + c_0^{1/3} r^{1/3} \right] \leq F^{1/3} \leq r^{1/3} \left[\frac{r^{1/3}}{c_3 + c_0^{1/3} r^{1/3}} \right], \quad \text{where}
\]
\[
c_0^\pm = \frac{r_3^{1/3} \pm c_3 \left[\frac{F(r_3)}{r_3} \right]^{1/3}}{F(r_3)^{1/3}}
\]
for $r \geq r_3 (j) \geq r_2 (j)$. The last equation with (4.11) gives
\[
\frac{F(r_3)}{r_3} \left[1 - \frac{4c_3}{r_3^{1/3}} \left(\frac{F(r_3)}{r_3} \right)^{1/3} \right] \leq e_\lambda (A_r) \leq \frac{F(r_3)}{r_3} \left[1 + \frac{4c_3}{r_3^{1/3}} \left(\frac{F(r_3)}{r_3} \right)^{1/3} \right]
\]
and hence
\[
\frac{F(r_3)}{r_3} \left[1 - \frac{4c_3}{r_3^{1/3}} \left(\frac{F(r_3)}{r_3} \right)^{1/3} \right] \leq e_\lambda (A_r) \leq \frac{F(r_3)}{r_3} \left[1 + \frac{4c_3}{r_3^{1/3}} \left(\frac{F(r_3)}{r_3} \right)^{1/3} \right]
\]

\[\text{SUB-LEADING ASYMMETRIC CAPACITIES} \quad 24\]
from (4.6) for $r \gg 0$. However, (4.4) for $r = r_3$ when substituted into the last equation above becomes
\[
\left[\frac{q + j}{r_1} - \frac{q + j}{r_3} - 2c_2r_3^{1/2} \right] (1 - R) \leq c_\lambda(A_r) \leq \left[\frac{1}{2r_3} \text{vol}(Y, \lambda) + \frac{q + j}{r_1} + 2c_2r_3^{1/2} \right] (1 + R)
\]
with $R := \frac{4c_3}{r_3^{1/3}} \left[\frac{1}{2r_3} \text{vol}(Y, \lambda) + \frac{q + j}{r_1} + 2c_2r_3^{1/2} \right]^{1/3}$.

Setting $r_3 = j^{4/5}$ (satisfying $r_3 \geq r_2 = O \left(j^{1/2} \right)$ for $j \gg 0$) and using (2.7), (4.1) gives
\begin{equation}
(4.13) \quad c_{\sigma_j}(\lambda) = j^{1/2} \text{vol}(Y, \lambda)^{1/2} + O \left(j^{2/5} \right),
\end{equation}
as $j \to \infty$, which is our main result Theorem 3. □

Remark 15. One could replace the arguments in this subsection with the arguments in Sun’s paper [27], if desired — the key reason why we have a stronger bound than Sun is because of our stronger bound on the Chern-Simons functional, and not because of anything we do in this subsection. We have chosen to include our argument here, which we developed independently of the arguments in [27], for completeness, and because it might be of independent interest, although we emphasize that we do use the result of Sun establishing [27, Property 2.3.(i)].

On the other hand, the arguments in [11] are not quite strong enough for Theorem 3, even with the improved bound in Proposition 9.

4.2. Proofs of Corollaries. Here we prove the two corollaries Corollary 4 and Corollary 5, both following immediately from the capacity formula Theorem 3.

Proof of Corollary 4. The \mathbb{Z}_2 vector space $ECH(Y, \xi, \Gamma; \mathbb{Z}_2)$ is known to be two-periodic, and nontrivial, in sufficiently high grading, see for example [16]. Thus, for $* \gg 0$ sufficiently large there exists a finite set of classes $\{\sigma_1, \ldots, \sigma_{2^d-1}\} \subset ECH_*(Y, \xi, \Gamma; \mathbb{Z}_2) \cup ECH_{*+1}(Y, \xi, \Gamma; \mathbb{Z}_2)$ such that
\[
\{0, U^j\sigma_1, \ldots, U^j\sigma_{2^d-1}\} = ECH_{*+2j}(Y, \xi, \Gamma; \mathbb{Z}_2) \cup ECH_{*+1+2j}(Y, \xi, \Gamma; \mathbb{Z}_2), \forall j \geq 0.
\]
Thus the ECH spectrum modulo a finite set is given by
\[
\cup_{j=0}^{\infty} \left\{ c_{U^j\sigma_1}(\lambda), \ldots, c_{U^j\sigma_{2^d-1}}(\lambda) \right\}.
\]
The corollary now follows as $c_{U^j\sigma_l}(\lambda) = j^{1/2} \text{vol}(Y, \lambda)^{1/2} + O \left(j^{2/5} \right)$, $1 \leq l \leq 2^d - 1$, by Theorem 3. □
Proof of Corollary 4. As in the previous corollary, the ECH zeta function is given, modulo a finite and holomorphic in $s \in \mathbb{C}$, sum by
\[
\sum_{j=0}^{\infty} c_{U^j \sigma_1} (\lambda)^{-s} + \ldots + c_{U^j \sigma_{2d-1}} (\lambda)^{-s}.
\]
With $\zeta^R(s)$ denoting the Riemann zeta function, we may using Theorem 3 compare
\[
\left| \sum_{j=0}^{\infty} c_{U^j \sigma_1} (\lambda)^{-s} - \text{vol} (Y, \lambda)^{-\frac{3}{2}} \sum_{j=0}^{\infty} j^{-\frac{3}{2}} \right| = O \left(\sum_{j=0}^{\infty} \frac{1}{j^{3s/5}} \right)
\]
whence the difference is holomorphic for $\text{Re} (s) > \frac{5}{3}$. The corollary now follows on knowing $s = 2$ to be the only pole of the Riemann zeta function $\zeta^R\left(\frac{1}{2}\right)$ with residue 1. □

4.3. The ellipsoid example. We close by presenting an example with $O(1)$ asymptotics, and where the corresponding ζ_{ECH} function extends meromorphically to all of \mathbb{C}.

Consider the symplectic ellipsoid
\[
E(a, b) := \left\{ \left| z_1 \right|^2 + \frac{\left| z_2 \right|^2}{b} \leq 1 \right\} \subset \mathbb{C}^2 = \mathbb{R}^4.
\]
The symplectic form on \mathbb{R}^4 has a standard primitive
\[
\lambda_{std} = \frac{1}{2} \sum_{i=1}^{2} (x_i dy_i - y_i dx_i).
\]
This restricts to $\partial E(a, b)$ as a contact form, and the ECH spectrum of $(\partial E(a, b), \lambda)$ is known. Specifically, let $N(a, b)$ be the sequence whose j^{th} element (indexed starting at $j = 0$) is the $(j+1)^{st}$ smallest element in the matrix
\[
(ma + nb)_{(m,n) \in \mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}}.
\]
Then, the ECH spectrum $S_{\partial E(a, b)}$ is precisely the values in $N(a, b)$. Moreover, the homology
\[
ECH_a(\partial E(a, b))
\]
has a canonical \mathbb{Z}-grading, such that the empty set of Reeb orbits has grading 0, and it is known to have one generator σ_j in each grading $2j$, see [16]. The spectral invariant associated to σ_j is precisely the j^{th} element in the sequence $N(a, b)$.

With this understood, we now have:

Proposition 16. Let σ_j be any sequence of classes in $ECH(\partial E(a,b))$ with grading tending to infinity. Then, the $d(\sigma_j)$ are $O(1)$. In fact, if a/b is irrational, then

$$
\lim_{j \to \infty} \frac{d(\sigma_j)}{j} = \frac{a + b}{2}.
$$

Proof. Assume that a/b is irrational. If $t = c_{\sigma_j}$, then by the above description, the grading of σ_j is precisely twice the number of terms in $N(a,b)$ that have value less than t. With this understood, the example follows from [12, Lem. 2.1].

When a/b is rational, a similar argument still works to show $O(1)$ asymptotics. Namely, if $t = c_{\sigma_j}$, then by above, the grading of σ_j is precisely twice the number of terms in $N(a,b)$ that have value less than t, up to an error no larger than some constant multiple of \sqrt{t}. Now apply [5, Thm. 2.10]. □

Proposition 17. The ECH zeta function ζ_{ECH} for $ECH(\partial E(a,b))$ has a meromorphic continuation to all of \mathbb{C}. It has exactly two poles, at $s = 1$ and $s = 2$, with residues

$$
\text{Res}_{s=2} \zeta_{ECH} (s; Y, \lambda, \Gamma) = \frac{1}{ab}, \quad \text{Res}_{s=1} \zeta_{ECH} (s; Y, \lambda, \Gamma) = \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right).
$$

Proof. The ECH zeta function in this example

$$
\zeta_{ECH} (s; Y, \lambda, \Gamma) = \sum_{m,n \in \mathbb{N}} (ma + nb)^{-s}
$$

(4.14)

$$
= \frac{1}{2} \left[\zeta^B (s, a|a, b) + \zeta^B (s, b|a, b) - a^{-s} \zeta^R (s) - b^{-s} \zeta^R (s) \right]
$$

is given in terms of the classical zeta functions of Riemann and Barnes [4, 19]

$$
\zeta^B (s, w|a, b) := \sum_{m,n \in \mathbb{N}_0} (w + ma + nb)^{-s}, \ w \in \mathbb{R}_{>0}.
$$

Thus $\zeta_{ECH} (s; Y, \lambda, \Gamma)$ (4.14) is known to possess a meromorphic continuation to the entire complex plane in this example. Its only two poles are at $s = 1, 2$ with residues

$$
\text{Res}_{s=2} \zeta_{ECH} (s; Y, \lambda, \Gamma) = \frac{1}{ab},
$$

$$
\text{Res}_{s=1} \zeta_{ECH} (s; Y, \lambda, \Gamma) = \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right).
$$
respectively; while its values at the non-positive integers are also known [23, Cor. 2.4]. In particular its value at zero is
\[
\zeta_{ECH} (0; Y, \lambda, \Gamma) = \frac{1}{4} + \frac{1}{12} \left(\frac{b}{a} + \frac{a}{b} \right).
\]

□

APPENDIX A. THE Q-GRADING AND THE \(\eta \) INVARIANT

In this appendix we give a formula for the absolute grading \(\text{gr}^Q \) on monopole Floer groups of torsion spin-c structures (from [IN, S 28.3]) in terms of a relevant eta invariant. First to recall the definition of \(\text{gr}^Q (\alpha) \), \(\alpha = (A, s, \Phi) \), choose a four manifold \(X \) which bounds \(Y \) and form the manifold with cylindrical end \(Z = X \cup (Y \times [0, \infty)) \). Choose a metric \(g^{TZ} \) on \(Z \) which is of product type \(g^{TZ} = g^{TX} + dt^2 \) on the cylindrical end. Choose a spin-c structure \((S^{TZ}, c^Z) \) over \(Z \) which is of the form
\[
S^{TZ} = S^T_+ \oplus S^T_-; \quad S^{TZ}_+ = S^{TZ}_-= S^Y,
\]
\[
c^Z (\alpha) = \begin{bmatrix} 0 & c^Y (\alpha) \\ c^Y (\alpha) & 0 \end{bmatrix}, \quad \alpha \in T^* Y
\]
\[
c^Z (dt) = \begin{bmatrix} 0 & -I \\ I & 0 \end{bmatrix}
\]
over the cylindrical end and a spin-c connection on \(S^{TZ} \) of the form \(B = dt \wedge \partial_t + A \oplus A \) on the cylindrical end. One may now form the Fredholm elliptic operator
\[
d^* + d^+ + D_B^*: L^2_T (Z; \Lambda^1_{TZ} \oplus S^T_+) \to L^2_T (Z; \Lambda^0_{TZ} \oplus \Lambda^2_{TZ} \oplus S^{-TZ}).
\]
The absolute grading of \([(A, 0, \Phi^A)] \in \mathcal{C}^s \), with \(A \) flat and \(\Phi^A_0 \) the first positive eigenvector of \(D_A \), is given in terms of this operator. The precise formula [IN, Defn. 28.3.1] simplifies to
\[
\text{gr}^Q \left((A, 0, \Phi^A_0) \right) = -2 \text{ind} (D_B^+) + \frac{1}{4} \left< c_1 (S^+), c_1 (S^+) \right> - \frac{1}{4} \sigma (Z),
\]
with \(\sigma (Z) \) denoting the signature of \(Z \), \(S^+ \) the bundle \(S^T_+ \) from above, and \(\text{ind} \) denoting the complex index, namely the difference in complex dimensions, compare [IN, S 3.4].

The APS index theorem for spin-c Dirac operators now gives
\[
\text{ind} (D_B^+) = \frac{1}{8} \left< c_1 (S^+), c_1 (S^+) \right> - \frac{1}{24} \int_X p_1 + \eta (D_A) / 2.
\]
The APS signature theorem for the manifold X with boundary also gives

$$-rac{1}{24} \int_X p_1 = -\frac{1}{8} \sigma(Z) - \frac{1}{8} \eta_Y,$$

where η_Y is the eta invariant of the odd signature operator on $C^\infty(Y; T^*Y \oplus \mathbb{R})$ sending

$$(a, f) \mapsto (\ast da - df, -d^*a).$$

Combining the above we have

$$\text{gr}^Q[(A, 0, \Phi^A_0)] = -\eta(D_A) + \frac{1}{4}\eta_Y.$$

A reducible generator $[a_0] = [(A, 0, \Phi^A_0)] \in C^s$ however has $\frac{1}{2}F_{A'} = -d\mu$ and Φ^A_k the kth eigenvector of D_A. Hence,

$$\text{gr}^Q[(A, 0, \Phi^A_k)] = 2k + (-\eta(D_A) + \frac{1}{4}\eta_Y) - 2\text{sf}\{D_{A_s}\}_{0 \leq s \leq 1},$$

where D_{A_s} is a family of Dirac operators, associated to a family of connections starting at the flat connection and ending at one satisfying $\frac{1}{2}F_A = -d\mu$. Hence, by interpreting this spectral flow as an index through another application of Atiyah-Patodi-Singer [3, p. 95], and applying [2, eq. 4.3] to compute this index, we get

$$(A.1) \quad \text{gr}^Q[(A, 0, \Phi^A_k)] = 2k - \eta(D_A) + \frac{1}{4}\eta_Y - \frac{1}{2\pi^2} CS(A)$$

as the absolute grading of a reducible generator.

The absolute grading of an irreducible generator $[a'] = (A', s, \Phi')$, $s \neq 0$, is then given by

$$\text{gr}^Q[a'] = \text{gr}^Q[a_0] - 2\text{sf}\{\hat{\mathcal{H}}(A_s, \psi_s)\}_{0 \leq s \leq 1}$$

in terms of spectral flow of the Hessians [2,4] for a path $(A_\varepsilon, \psi_\varepsilon) \in \mathcal{A}(Y, s) \times C^\infty(S)$, $\varepsilon \in [0, 1]$ starting at $[a_0] = [(A_0, 0)]$ and ending at $(A', s\Phi')$. As above, we can interpret this spectral flow as an index; this time, to compute the relevant index, we need to apply ([2, Thm. 3.10]), which gives that the above is equal to

$$\text{gr}^Q[a'] = -\eta(\hat{\mathcal{H}}(A_s, \psi_\varepsilon)) + \frac{5}{4}\eta_Y - 2\int_{Y \times [0, 1]} \rho_0.$$

Here ρ_0 is the usual Atiyah-Singer integrand, namely the local index density defined as the constant term in the small time expansion of the local supertrace $\text{str}(e^{-tD_\varepsilon^2})$ with

$$(A.2) \quad \mathcal{D} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \hat{\mathcal{H}}(A_s, \psi_\varepsilon).$$
and where \((A_\varepsilon, \Psi_\varepsilon)\) is the chosen path of configurations. To compute the index density we choose a path of the form

\[
(A_\varepsilon, \Psi_\varepsilon) = \begin{cases}
(A + 2\varepsilon (A' - A), 0); & 0 \leq \varepsilon \leq \frac{1}{2}, \\
(A', (2\varepsilon - 1) \Psi); & \frac{1}{2} \leq \varepsilon \leq 1.
\end{cases}
\]

On the interval \([0, \frac{1}{2}]\), the integral of the local density is given by the usual local index theorem: as above, we have

\[
-2 \int_{Y \times [0, \frac{1}{2}]} \rho_0 = -\frac{1}{2\pi^2} CS(A).
\]

On the other hand, for the calculation on \(Y \times [\frac{1}{2}, 1]\), we have \(\rho_0 = 0\). To see this, first note \(D^2 = -\partial^2_\varepsilon + \widehat{\mathcal{H}}^2_{(A_\varepsilon, \Psi_\varepsilon)} + \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} 2M\Psi\) gives

\[
\text{str} \left(e^{-t D^2} \right) = \text{tr} \left(e^{-t \left[-\partial^2_\varepsilon + \widehat{\mathcal{H}}^2_{(A_\varepsilon, \Psi_\varepsilon)} - 2M\Psi \right]} - e^{-t \left[-\partial^2_\varepsilon + \widehat{\mathcal{H}}^2_{(A_\varepsilon, \Psi_\varepsilon)} + 2M\Psi \right]} \right).
\]

Duhamel’s principle then gives that the coefficients in the small time heat kernel expansion of the difference above are of the form

\[
\begin{bmatrix}
0 & 0 & * \\
0 & 0 & * \\
* & * & 0
\end{bmatrix}
\]

with respect to the decomposition \(iT^*Y \oplus \mathbb{R} \oplus S\).

Hence we have in summary:

\[
\text{gr}^Q [a] = \begin{cases}
2k - \eta(D_A) + \frac{1}{4} \eta_Y - \frac{1}{2\pi^2} CS(A); & a = (A, 0, \Phi^A_\varepsilon) \in \mathcal{C}^s, \\
-\eta(\widehat{\mathcal{H}}_{(A, \Phi^A_\varepsilon)}) + \frac{5}{4} \eta_Y - \frac{1}{2\pi^2} CS(A); & a = (A, s, \Phi) \in \mathcal{C}^s, s \neq 0.
\end{cases}
\]

References

[1] M. Asaoka and K. Irie, A C^\infty closing lemma for Hamiltonian diffeomorphisms of closed surfaces, Geom. Funct. Anal., 26 (2016), pp. 1245–1254.
[2] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc., 77 (1975), pp. 43–69.
[3] ———, Spectral asymmetry and Riemannian geometry. III, Math. Proc. Cambridge Philos. Soc., 79 (1976), pp. 71–99.
[4] E. W. Barnes, The theory of the double gamma function., Philos. Trans. R. Soc. Lond., Ser. A, Contain. Pap. Math. Phys. Character, 196 (1901), pp. 265–387.
[5] M. Beck and S. Robins, Computing the continuous discretely, Undergraduate Texts in Mathematics, Springer, New York, second ed., 2015. Integer-point enumeration in polyhedra, With illustrations by David Austin.
[26] C.-J. Tsai, *Asymptotic spectral flow for Dirac operations of disjoint Dehn twists*, Asian J. Math., 18 (2014), pp. 633–685.

[27] S. Weifeng, *An estimate on energy of min-max Seiberg-Witten Floer generators*, 2018. arXiv:1801.02301.

Department of Mathematics, University of California Santa Cruz, CA 95064, United States
E-mail address: dcristof@ucsc.edu

Universität zu Köln, Mathematisches Institut, Weyertal 86-90, 50931 Köln, Germany
E-mail address: nsavale@math.uni-koeln.de