Correction to Friis Noise Factors

Ankitha E. Bangera

Department of Electrical Engineering,
Indian Institute of Technology Bombay,
Mumbai–400076, India
E-mail: ankitha_bangera@iitb.ac.in; ankitha.bangera@iitb.ac.in

Abstract
The signal-to-noise ratio of a multistage cascade network is often estimated using Friis formulas for noise factors (or the noise figures in decibel). In this letter, the correct formulas to calculate the stage-wise noise factors and the total noise factor in terms of the stage-wise noise factors of an n-stage cascade network are derived. A comparison of our derived formulas for noise factors with Friis’s formulas is presented. Contrary to Friis’s total noise factor in terms of the stage-wise noise factors, we define the actual total noise factor of the n-stage cascade network as the product of its stage-wise noise factors.

1 Introduction
Cascade systems are widely used in various electrical and electronics engineering domains such as telecommunications and signal processing [1–7], circuits [8–16], networks and systems [17–20], solid-state devices [21–29], and so on. To extract the actual signal component at the output of these systems, it is critical to calculate its total noise factor (F_T). Friis’s formulas for noise are most commonly used to calculate the total noise factor of n-stage cascade networks [1–29].

In this letter, we briefly discuss the existing theory to calculate the noise factors of a cascade structure and the well-known Friis formulas for the stage-wise and the total noise factors of a cascade structure. We then derive the correct formulas for the stage-wise noise factor and the total noise factor in terms of the stage-wise noise factors of n-stage cascade networks. Our derived formulas are then compared with Friis’s formulas, with a discussion on the correction required to Friis noise factors.

2 Theory and Discussion
Fig. 1 shows the block diagram of an n-stage cascade network. From the block diagram, S_i is the input signal to the network from a source, N_i is the noise from the input source, M_x is the gain of the x-th stage, F_x is the noise factor at the x-th stage, $N_{a(x)}$ is the added noise at the output of the x-th stage, $\text{SNR}_i(x)$ is the input signal-to-noise ratio (SNR) of the x-th stage, $\text{SNR}_o(x)$ is the output SNR of the x-th stage, SNR_i is the input SNR of the network, SNR_o is the output SNR of the network, S_o is the output signal of the network, and N_o is the output noise of the network.

2.1 Existing Noise Theory and Friis Noise Factors
The total noise factor of the n-stage cascade network (F_T) is defined as the ratio of input SNR to output SNR [1,15,30]. Solving for F_T of the n-stage cascade network shown in Fig. 1, we get F_T as given by equation (1).
2.2 Correct Formulas for Noise Factors

For cascade networks, the output of the previous stage will be the input to the next stage. Therefore, the stage-wise noise factor must be equal to the ratio of SNR at the input of the stage to SNR at the output of the corresponding stage [1, 15, 30]. From the block diagram shown in Fig. 1, the noise factor at the x-th stage is,

$$F_x = \frac{\text{SNR}_i(x)}{\text{SNR}_o(x)} = \frac{\text{SNR}_{i(x-1)}}{\text{SNR}_{o(x)}}.$$ (5)

Solving equation (5) for the 1-st stage of the network, we obtain the 1-st stage noise factor (F_1) same as that of Friis's 1-st stage noise factor ($F_{1\text{Friis}}$). However, for higher stages ($x \geq 2$), the x-th stage noise factor will not be equal to the corresponding Friis's stage-wise noise factor. For illustration, considering the noise factor at the 2-nd stage of the network,

$$F_2 = \frac{\text{SNR}_i(2)}{\text{SNR}_o(2)} = \frac{\text{SNR}_i(1)}{\text{SNR}_o(2)} = \frac{\left(\frac{S_i}{N_i}\right)}{\left(\frac{S_i}{N_i} + \frac{N_{a(1)}}{N_i}M_1 + \frac{N_{a(2)}}{N_i}M_2 + \frac{N_{a(3)}}{N_i}M_3 + \cdots M_x\right)}.$$ (6)

From equation (6), the stage-wise noise factor may also be defined as the ratio of the total noise at the output of the stage ($N_o(x)$) to the total noise at its input ($N_i(x)$) multiplied by the stage gain (M_x). This definition does not agree with Friis’s stage-wise noise factors. A comparison of the stage-wise noise factor for the 2-nd stage of the cascade network is shown in equation (7).

$$F_2^{\text{Cor}} = 1 + \frac{N_{a(2)}}{N_iM_1} = \frac{N_{a(2)}}{N_iM_2} = F_2^{\text{Cor}}.$$ (7)
Therefore, the correct generalized formula for the stage-wise noise factor at the x-th stage (F_{x}^{Cor}) must be,

$$F_{x}^{\text{Cor}} = 1 + \frac{N_{n(x)}}{N_{i(x)}M_{x}} = 1 + \frac{N_{n(x)}}{N_{i(x)}M_{x}} \cdot \frac{N_{a(x)}}{N_{i(x)}M_{x}}.$$

Comparing equations (2) and (8), the stage-wise noise factors will be ‘equal to one’ if the stage-wise added noises are ‘equal to zero’. Thus, if $N_{n(x)} = 0$, then, $F_{x} = F_{x}^{\text{Cor}} = F_{x}^{\text{Friis}} = 1$. However, if there is a stage-wise added noise that is ‘greater than zero’ and ‘equal at all the stages’, then, a bar chart comparing the relative values of the stage-wise noise factors calculated using Friis formula (equation (2)) and our formula (equation (8)) for up to the 6-th stage is shown in Fig. 2. Here, firstly it is observed that the 1-st stage noise factors calculated using Friis and our formulas are equal. Whereas, for higher stages, the noise factors calculated using Friis formula are greater than the corresponding stage-wise noise factors calculated using our formula. Secondly, the Friis stage-wise noise factor values remain the same for all stages if the stage-wise added noises are equal. However, our formula suggests that if all the stage-wise added noises are equal and greater than zero, then the stage-wise noise factors reduce with the stage number. This is because, as the stage number increases, the total noise at its input also increases. Thus, if $\forall x = \{1, 2, \ldots, n\} \exists N_{n(x)} > 0 \Rightarrow \{N_{n(1)} = N_{n(2)} = \ldots = N_{n(n)}\}$, then, (i) $F_{x}^{\text{Friis}} = F_{x}^{\text{Cor}}$ for $x = 1$ and $F_{x}^{\text{Friis}} > F_{x}^{\text{Cor}}$ for $x \geq 2$; (ii) $F_{1}^{\text{Cor}} = F_{2}^{\text{Friis}} = \ldots = F_{n}^{\text{Friis}}$, whereas, $F_{1}^{\text{Cor}} > F_{2}^{\text{Cor}} > \ldots > F_{n}^{\text{Cor}}$. Therefore, our formula for the stage-wise noise factor is a correction to Friis’s formula.

Moreover, the correct generalized formula for the stage-wise noise factor at the x-th stage in terms of the stage-wise noise factors of the previous stages is written as,

$$F_{x}^{\text{Cor}} = 1 + \frac{N_{n(x)}}{N_{i(x)} \prod_{j=1}^{x} M_{j} \prod_{k=1}^{x-1} F_{k}^{\text{Cor}}}.$$

Rearranging equation (9) and substituting it in equation (1) we get,

$$F_{T} = 1 + \frac{N_{n(1)}}{N_{i(1)} M_{1}} + \frac{N_{n(2)}}{N_{i(2)} M_{1} M_{2}} = \prod_{i=1}^{n} F_{x}^{\text{Cor}} = (F_{1}^{\text{Cor}} - 1) F_{1}^{\text{Cor}} + \ldots + \frac{N_{n(n)}}{N_{i(n)} M_{2} \ldots M_{n}} = (F_{1}^{\text{Cor}} - 1) \prod_{x=1}^{n-1} F_{x}^{\text{Cor}}.$$

Therefore, the correct total noise factor of the n-stage cascade network (F_{T}^{Cor}) in terms of the stage-wise noise factors (F_{x}^{Cor}) is given by equation (11), which is not equal to equation (4).

$$F_{T}^{\text{Cor}} = \prod_{x=1}^{n} F_{x}^{\text{Cor}} \neq (F_{T}^{\text{Friis}})$$

From equation (11), the actual total noise factor of the n-stage cascade network is defined as the product of the stage-wise noise factors.

3 Conclusion

We conclude that our derived formulas for the stage-wise noise factor for stages $x \geq 2$ and the total noise factor in terms of the stage-wise noise factors of the
n-stage cascade network are a correction to Friis’s formulas.

Acknowledgments

A.E.B. would like to thank the Indian Institute of Technology Bombay for their support.

References

[1] H.T. Friis. Noise figures of radio receivers. *Proc. IRE*, 32(7):419–422, 1944.

[2] David Wake, Anthony Nkansah, and Nathan J. Gomes. Radio over fiber link design for next generation wireless systems. *J. Lightw. Technol.*, 28(16):2456–2464, 2010.

[3] Bersant Gashi, Laurenz John, Dominik Meier, Markus Rösch, Sandrine Wagner, Axel Tessmann, Arnulf Leuther, Oliver Ambacher, and Rüdiger Quay. Broadband 400-GHz InGaAs mHEMT transmitter and receiver S-MMICs. *IEEE Trans. THz Sci. Technol.*, 11(6):660–675, 2021.

[4] Won Namgoong and J. Lerdworatawee. Noise figure of digital communication receivers-revisited. *IEEE Trans. Circuits Syst. I, Reg. Papers*, 51(7):1330–1335, 2004.

[5] M. E. Marhic. Quantum-limited noise figure of networks of linear optical elements. *J. Opt. Soc. Am. B*, 30(6):1462–1472, 2013.

[6] J. Bromage. Raman amplification for fiber communications systems. *J. Light. Technol.*, 22(1):79–93, 2004.

[7] C.K.S. Miller, W.C. Daywitt, and M.G. Arthur. Noise standards, measurements, and receiver noise definitions. *Proc. IEEE*, 55(6):865–877, 1967.

[8] Ilias Pagkalos, Michelle L. Rogers, Martyn G. Bouteille, and Emmanuel M. Drakakis. A high-performance application specific integrated circuit for electrical and neurochemical traumatic brain injury monitoring. *ChemPhysChem*, 19(10):1215–1225, 2018.

[9] Maissa Daoud, Mohamed Ghorbel, and Hassene Mnif. A low noise cascaded amplifier for the ultra-wide band receiver in the biosensor. *Sci. Rep.*, 11(1):22592, 2021.

[10] M. Renger, S. Pogorzalek, Q. Chen, Y. Nojiri, K. Inomata, Y. Nakamura, M. Partanen, A. Marx, R. Gross, F. Deppe, and K. G. Fedorov. Beyond the standard quantum limit for parametric amplification of broadband signals. *npj Quantum Inf.*, 7(1):160, 2021.

[11] H. A. Haus and J. A. Mullen. Quantum noise in linear amplifiers. *Phys. Rev.*, 128:2407–2413, 1962.

[12] A.A. Abidi and J.C. Leete. De-embedding the noise figure of differential amplifiers. *IEEE J. Solid-State Circuits*, 34(6):882–885, 1999.

[13] A. R. Aravindh Kumar, Bibhu Datta Sahoo, and Ashudeb Dutta. A wideband 2–5 GHz noise canceling subthreshold low noise amplifier. *IEEE Trans. Circuits Syst. II, Exp. Briefs*, 65(7):834–838, 2018.

[14] Sining Zhou and M.-C.F. Chang. A CMOS passive mixer with low flicker noise for low-power direct-conversion receiver. *IEEE J. Solid-State Circuits*, 40(5):1084–1093, 2005.

[15] H.A. Haus. The noise figure of optical amplifiers. *IEEE Photon. Technol. Lett.*, 10(11):1602–1604, 1998.

[16] Yu-Tso Lin, Hsiao-Chin Chen, Tao Wang, Yo-Sheng Lin, and Shey-Shi Lu. 3–10-GHz ultra-wideband low-noise amplifier utilizing Miller effect and inductive shunt–shunt feedback technique. *IEEE Trans. Microw. Theory Techn.*, 55(9):1832–1843, 2007.

[17] H. Rothe and W. Dahlke. Theory of noisy four-poles. *Proc. IRE*, 44(6):811–818, 1956.
[18] H. Hashemi and A. Hajimiri. Concurrent multi-band low-noise amplifiers - theory, design, and applications. *IEEE Trans. Microw. Theory Techn.*, 50(1):288–301, 2002.

[19] Michel T. Ivrlaˇc and Josef A. Nossek. Toward a circuit theory of communication. *IEEE Trans. Circuits Syst. I, Reg. Papers*, 57(7):1663–1683, 2010.

[20] Wenjun Sheng, A. Emira, and E. Sanchez-Sinencio. CMOS RF receiver system design: a systematic approach. *IEEE Trans. Circuits Syst. I, Reg. Papers*, 53(5):1023–1034, 2006.

[21] A. van der Ziel, Y.J. Yu, G. Bosman, and C.M. Van Vliet. Two simple proofs of Capasso’s excess noise factor f_n of an ideal N-stage staircase multiplier. *IEEE Trans. Electron Devices*, 33(11):1816–1817, 1986.

[22] F. Capasso, Won-Tien Tsang, and G.F. Williams. Staircase solid-state photomultipliers and avalanche photodiodes with enhanced ionization rates ratio. *IEEE Trans. Electron Devices*, 30(4):381–390, 1983.

[23] A. Pilotto, P. Palestri, L. Selmi, M. Antonelli, F. Arfelli, G. Biasiol, G. Cautero, F. Driussi, R. H. Menk, C. Nichetti, and T. Steinhartova. A new expression for the gain-noise relation of single-carrier avalanche photodiodes with arbitrary staircase multiplication regions. *IEEE Trans. Electron Devices*, 66(4):1810–1814, 2019.

[24] M. Teich, K. Matsuo, and B. Saleh. Excess noise factors for conventional and superlattice avalanche photodiodes and photomultiplier tubes. *IEEE J. Quantum Electron.*, 22(8):1184–1193, 1986.

[25] Stephen D. March, Andrew H. Jones, Joe C. Campbell, and Seth R. Bank. Multistep staircase avalanche photodiodes with extremely low noise and deterministic amplification. *Nat. Photonics*, 15(6):468, 2021.

[26] M. Sannino. Simultaneous determination of device noise and gain parameters through noise measurements only. *Proc. IEEE*, 68(10):1343–1345, 1980.

[27] L.D. Nguyen, L.E. Larson, and U.K. Mishra. Ultra-high speed modulation-doped field-effect transistors: a tutorial review. *Proc. IEEE*, 80(4):494–518, 1992.

[28] G. C. Messenger and C. T. McCoy. Theory and operation of crystal diodes as mixers. *Proc. IRE*, 45(9):1269–1283, 1957.

[29] Y. Anand and W.J. Moroney. Microwave mixer and detector diodes. *Proc. IEEE*, 59(8):1182–1190, 1971.

[30] H.A. Haus. *Electromagnetic Noise and Quantum Optical Measurements*. Advanced Texts in Physics. Springer-Verlag Berlin Heidelberg, Heidelberg, Germany, 2000.