Ambitwistor strings at null infinity and (subleading) soft limits

Yvonne Geyer, Arthur E Lipstein and Lionel Mason

Mathematical Institute, Andrew Wiles Building, Woodstock Road, Oxford, OX2 6CG, UK

E-mail: geyery@maths.ox.ac.uk, arthur.lipstein@desy.de and lmason@maths.ox.ac.uk

Received 21 October 2014
Accepted for publication 5 December 2014
Published 30 January 2015

Abstract
The relationship between BMS symmetries at null infinity and Weinberg’s soft theorems for gravitons and photons together with their subleading extensions are developed using ambitwistor string theory. Ambitwistor space is the phase space of complex null geodesics in complexified space-time. We show how it can be canonically identified with the cotangent bundle of complexified null infinity. BMS symmetries of null infinity lift to give a Hamiltonian action on ambitwistor space, both in general dimension and in its twistorial four-dimensional representation. General vertex operators arise from Hamiltonians generating diffeomorphisms of ambitwistor space that determine the scattering from past to future null infinity. When a momentum eigenstate goes soft, the diffeomorphism defined by its leading and its subleading part are extended BMS generators realized in the world sheet conformal field theory of the ambitwistor string. More generally, this gives an explicit perturbative correspondence between the scattering of null geodesics and that of the gravitational field via ambitwistor string theory.

Keywords: ambitwistor string theory, soft theorems, BMS symmetry

1. Introduction
It has long been understood that infrared behavior in gravity is related to supertranslation ambiguities in the choices of coordinates at null infinity [1]. In a recent series of papers [2–5], Strominger and coworkers have proposed a new way of understanding the Weinberg soft limit theorems in terms of the action of the BMS group at null infinity, and used this approach to suggest new theorems for the subleading terms in the soft limit. In an intriguing recent paper [6], Adamo et al proposed a sigma model at null infinity in four dimensions that gives a CFT derivation of these ideas. They also suggested a link with ambitwistor strings [7]. These underly the gravity and Yang–Mills amplitude formulae in arbitrary dimensions of Cachazo,
He and Yuan (CHY) [8–10] and these in turn were used in [11] to extend the subleading soft limit theorems to arbitrary dimensions.

The purpose of this paper is to show how ambitwistor strings can be formulated at null infinity and to explain how soft theorems arise from BMS symmetries in this framework. Ambitwistor space is the phase space of complexified null geodesics in a complexified space–time, and can be realized as the cotangent bundle of null infinity. We make clear the relationship between BMS symmetries, more general diffeomorphisms of null infinity, and Hamiltonian diffeomorphisms of ambitwistor space. The key point is that the vertex operators that generate graviton states in ambitwistor–string theory also arise from Hamiltonians generating diffeomorphisms of ambitwistor space. We then show how a soft momentum eigenstate leads to an extended BMS generator at leading and subleading order (although the relevant generators are not Virasoro in four dimensions as originally conjectured). We will also see that these ideas are realized straightforwardly in the more twistorial four-dimensional (4D) ambitwistor strings [12, 13].

Several decades ago, Weinberg showed that photon and graviton amplitudes behave in a universal way when one of the external particles with momentum \(s \) becomes soft [14]:

\[
\mathcal{A}_{n+1} \to \sum_{a=1}^{n} \varepsilon_a \cdot \frac{k_a}{k_a} \mathcal{A}_n, \quad \mathcal{M}_{n+1} \to \sum_{a=1}^{n} \varepsilon_{\mu \nu} k_a^\mu k_a^\nu \mathcal{M}_n, \quad \text{as } s \to 0.
\]

Strominger and collaborators have argued that these formulae are a consequence of the asymptotic symmetries of Minkowski space, known as the BMS group [2–4]. Here we will understand the BMS group to be diffeomorphisms of null infinity \(\mathcal{I} \) that preserve its weak and strong conformal structure as given in [15] in four dimensions. This group has a similar structure in all dimensions, but is no longer a symmetry of the gravitational asymptotics in dimensions greater than four [16, 17]. The null infinity of \(d \)-dimensional Minkowski space, \(\mathcal{I} \cong \mathbb{R} \times S^{d-2} \), is a light cone, the product of a conformal \((d-2)\)-sphere with the null generators \(\mathbb{R} \). The BMS group consists of global conformal transformations of the \((d-2)\)-sphere and so-called supertranslations (including an arbitrary function on the sphere) up the generators [18, 19]. Strominger et al argue that the soft limit theorem of Weinberg arises from the Ward identity following from supertranslation invariance, but taking only a diagonal subgroup of the product of the groups obtained at past null infinity \(\mathcal{I}^- \) with that at \(\mathcal{I}^+ \). This diagonal subgroup is obtained by requiring the real part of the second derivative of the shear from \(\mathcal{I}^- \) to be equal at space-like infinity to that from \(\mathcal{I}^+ \). Then the idea is that the generator of the symmetry on the gravitational Fock space decomposes into a hard part that determines the action of the symmetry on the external states and yielding the soft factors, and a soft part that inserts the soft graviton; their equality gives rise to the Weinberg soft graviton theorem.

Recently, Cachazo and Strominger analyzed subleading and sub-subleading terms in the soft limit of tree-level graviton amplitudes in four dimensions [5], finding that

\[
\mathcal{M}_{n+1} = \left(S^{(0)} + S^{(1)} + S^{(2)} \right) \mathcal{M}_n + \mathcal{O} \left(s^2 \right),
\]

where

\[
S^{(0)} = \sum_{a=1}^{n} \frac{(e \cdot k_a)^2}{s \cdot k_a}, \quad S^{(1)} = \frac{\varepsilon_{\mu \nu}}{s \cdot k_a} k_a^\mu k_a^\nu s_j J_j^{\mu \nu}, \quad S^{(2)} = \frac{\varepsilon_{\mu \nu} (s_j J_j^{\mu \nu}) (s_j J_j^{\mu \nu})}{s \cdot k_a}.
\]

Moreover, Strominger and collaborators have recently argued that the subleading soft theorem implies a Ward identity associated with superrotation symmetry [20]. Here superrotations were understood as extensions of the global conformal symmetry of the two-sphere in \(d = 4 \) to a local conformal or Virasoro symmetry [21–23]. A similar subleading
factor was found by Casali for tree-level Yang–Mills amplitudes in four dimensions [24]:
\[A_{n+1} = \left(S^{(0)} + S^{(1)} \right) A_n + \mathcal{O}(s), \]
(2)
where \(S^{(0)} \) denotes the Weinberg soft limit, and \(S^{(1)} \) is the subleading contribution,
\[S^{(0)} = \sum_{a \text{ adj.}, s \text{ signed}} \frac{e \cdot k_a}{s \cdot k_a}, \quad S^{(1)} = \sum_{a \text{ adj.}, s \text{ signed}} \frac{\epsilon_{\mu} S \cdot J^\mu}{s \cdot k_a}. \]
Larkoski showed that the subleading soft term in 4D Yang–Mills can be deduced from conformal symmetry [25]. Subleading soft limits of gauge and gravity amplitudes were previously studied in [26, 27] and [28–30], respectively. Schwab and Volovich subsequently extended these subleading soft limit formulae for tree-level Yang–Mills and gravity amplitudes to any spacetime dimension using the formulae of CHY [11]. Loop corrections to the subleading soft limits were studied using dimensional regularization in [31–33].

Ambitwistor string theories provide a powerful point of view on tree-level gauge and gravity amplitudes. They naturally encode the scattering equations and give rise to the CHY formulae in arbitrary dimensions [7], being critical in ten in the supersymmetric case. This geometric framework was used to develop 4D ambitwistor strings [12, 13] in a twistorial representation rather than the original vector RNS representation so that any amount of supersymmetry can be naturally incorporated.

Here we explain how ambitwistor space can be identified with the cotangent bundle of null infinity in such a way that the extended BMS generators and their generalizations, indeed arbitrary symplectic diffeomorphisms of \(T^n \mathcal{J} \), act canonically. This leads directly to an action on the worldsheet theory of the ambitwistor string. We will see that a general integrated vertex operator corresponding to a graviton insertion can be expressed as the implementation of such a diffeomorphism in the worldsheet theory. Such a vertex operator for a momentum eigenstate can be straightforwardly expanded in powers of the soft momentum. We then obtain worldsheet generators of supertranslations on \(\mathcal{J} \) to leading order, certain super-rotations that are not Virasoro in four dimensions at subleading order, and operators that generate an infinite series of new higher-order soft terms corresponding to more general diffeomorphisms of \(T^n \mathcal{J} \). The analogous story for Yang–Mills is that vertex operators at null infinity combine gauge transformations with diffeomorphisms at \(T^n \mathcal{J} \). In its soft expansion, we obtain gauge transformations incorporating supertranslations at leading order and super-rotations for the subleading terms.

In higher dimensions, the extension of these ideas is remarkable because the role of supertranslations changes. In four dimensions they are symmetries of null infinity that preserve the asymptotics of the gravitational field. They can also be defined geometrically as those diffeomorphisms of null infinity that preserve the weak and strong conformal structure of null infinity [15] and this geometric definition extends to arbitrary dimension. However they no longer preserve the asymptotics of the gravitational field as the gravitational radiation field falls off faster than \(1/r \) in higher dimensions as opposed to \(O(1/r) \) in four whereas supertranslations generate \(O(1/r) \) terms in all dimensions [16, 17].

Another remarkable feature is that the superrotations that naturally arise for us for the subleading contributions are not the Virasoro generators proposed by Barnich and Troessaert in four dimensions, but in fact fail to preserve the conformal structure on the sphere even locally as discussed in sections 4.1 and 4.3.

These facts suggest an interpretation in which it is the more general spontaneously broken diffeomorphism symmetry that is at work here, rather than the exact 4D local symmetries of gravitational radiation at null infinity as discussed by other authors. In the
discussion section, we explain how these ideas are related to old formulae of Penrose’s [34] for the Hamiltonians that generated scattering of null geodesics through gravitational fields. Here the diffeomorphisms that make up the vertex operators are interpreted as the null geodesic scattering across the space-time induced by the gravitational perturbation (and for Yang–Mills, the interpretation is as the parallel propagation along charged null geodesics or Wilson lines).

In the appendices we give detailed calculations of the correlators of the soft graviton and Yang–Mills vertex operators with a general set of vertex operators to reproduce the leading and subleading soft limits, confirming the Ward identity arguments of Strominger et al. We also give a brief discussion of the connections of our 4D model with that of ACS [6].

2. Ambitwistor strings at null infinity

2.1. Background geometry

Ambitwistor space \mathbb{A} is the complexification of the phase space of complex null geodesics with scale in a space-time. As such, they can be represented by their directions and their intersection with any Cauchy surface. The symplectic potential Θ and symplectic form $d\Theta$ on \mathbb{A} arise from identifying \mathbb{A} with the cotangent bundle of the complexification of that Cauchy hypersurface. In an asymptotically simple space-time, they can therefore be represented with respect to the complexification of null infinity, which we will denote \mathcal{I}, and so $\mathbb{A} = T^*\mathcal{I}$; and at this point \mathcal{I} can be the complexification of either future or past null infinity, \mathcal{I}^+ or \mathcal{I}^-. Null infinity can be represented as a light cone, although it is normal to invert the parameter up the generators to give a parameter u for which the vertex is at $u = \infty$. In order to make the symmetries manifest, we use homogeneous coordinates p_μ with $p^2 = 0$ for the complexified sphere of generators of \mathcal{I}, and a coordinate u of weight one also, so that $(u, p_\mu) \sim (au, aq_\mu)$ for $a \neq 0$. As depicted in figure 1, a null geodesic through a point x^μ with null tangent vector P_μ reaches \mathcal{I} at the point with coordinates

$$\left(u, p_\mu \right) = w^{-1} \left(x^\mu P_\mu, P_\mu \right),$$

where w encodes the scale of P. The notation is intended to be suggestive of the fact that u is canonically conjugate to frequency here denoted w.

Since $\mathbb{A} = T^*\mathcal{I}$, it can be described using homogeneous coordinates (u, p_μ, w, q^μ) with (w, q^μ) of weight 0 and (u, p_μ) weight one to yield the one-form

![Figure 1. Diagram of null infinity, \(\mathcal{I} \).](image)
\[\Theta = w \, du - q^\mu \, dp_\mu \]

(3)

and this defines the symplectic potential on \(\mathcal{A} \). As \(\Theta \) must be orthogonal to the Euler vector field \(Y = u \partial_u + p_\mu \partial_\mu \), we have the constraint

\[wu - q \cdot p = 0, \]

(4)

which is the Hamiltonian for \(Y \).

In [7], the coordinate description of \(\mathcal{A} \) was given as the symplectic quotient of the cotangent bundle of space-time, i.e. as \((x^\mu, P_\mu)\) with \(P^2 = 0 \), quotiented by \(P \cdot \partial_\mu \). In including the scale, \(\mathcal{A} \) is a symplectic manifold with symplectic form \(d\Theta \), where \(\Theta = P \cdot dx \).

The null geodesic through \(x^\mu \) with null cotangent vector \(\mu \) has coordinates determined by

\[\Theta = P_\mu \, dx^\mu = w \, du - q^\mu \, dp_\mu \]

so that

\[q^\mu = wx^\mu \mod p^\mu, \quad \text{and} \quad p_\mu = w^{-1}P_\mu. \]

On reducing by the constraint (4), we can identify the scalings of \(p \) with those of the momentum by scaling \(w \) to 1. For scaled null geodesics, we can therefore simply incorporate the scale of \(p \).

In summary, we can express \(\mathcal{A} \) as the symplectic quotient of \((u, p, w, q)\) space by the constraints \(P^2 = 0 \) and \(uw - q \cdot p = 0 \). Although \((u, w)\) can be eliminated by using the constraint (4) and making the gauge choice \(w = 1 \), they serve to reveal how \(\mathcal{A} \) is related to \(\mathcal{F} \).

For the RNS ambitwistor string models, we augment the coordinates above to include either \(d \) or 2D fermionic coordinates respectively in the heterotic case and the type II case. These are given by coordinates \(\Psi^\mu_\nu, r = 1, 2 \) in the type II case (and \(r = 1 \) in the heterotic case), subject to the constraint(s) \(\Psi^\mu_\nu \cdot P^\nu = 0 \). The symplectic potential is then augmented to

\[\Theta = w \, du - q \cdot dp + \Psi \cdot d\Psi. \]

(5)

2.2. BMS symmetries and their generalizations

All diffeomorphisms of a manifold have a Hamiltonian lift to the cotangent bundle with Hamiltonian given by the contraction of the generating vector field with the symplectic potential \(\Theta \). Thus the vector field \(V = v_\mu \partial_\mu + v_\nu \partial_\nu \) has Hamiltonian \(H_V = wv_\mu - q^\mu v_\mu \) which has weight one, assuming that \(V \) itself had weight zero.

Poincaré motions in particular act as diffeomorphisms of \(\mathcal{F} \). Translations act by \(\delta x^\mu = a^\mu, \delta p = 0, \delta u = a \cdot p \) and \(\delta q^\mu = wa^\mu \), and have Hamiltonian

\[H_u = wa \cdot p. \]

(6)

Supertranslations generalize these to \(\delta u = f(p) \), where \(f \) is now an arbitrary function of weight 1 in \(p \) (i.e., a section of \(O(1) \)) but no longer necessarily linear (and generally with singularities in the complex). These motions are all symplectic with Hamiltonian

\[H_f = wf(p). \]

(7)

Lorentz transformations act by \(\delta P_\mu = r_{\mu\nu}p^\nu, \delta q^\mu = r_{\mu\nu}q^\nu \), and similarly for \(x^\mu \) and \(\Psi^\mu_\nu \), with \(r_{\mu\nu} = \eta_{[\mu\nu]} \). This action has a natural lift to the total space of the line bundle \(O(1) \) of homogeneity degree 1 functions in which \(u \) takes its values. The Hamiltonian for this action is
\[H_r = \left(q^\mu p^\nu + w \sum_r \Psi_\mu \Psi_\nu \right) \ell_{\mu \nu}. \]

We can define the angular momentum to be
\[J^{\mu \nu} = \left(q^\mu p^\nu + w \sum_r \Psi_\mu \Psi_\nu \right). \]

It is the sum of an orbital part and an intrinsic spin part and commutes with the constraints \(p^2 = uw - p \cdot q = wp \cdot \Psi = 0 \). If \(r_{\mu \nu} \) is a constant, \(H_r \) is an \(O(d - 1, 1) \) generator, which corresponds to a global conformal transformation of the \((d - 2)\)-sphere at null infinity.

Superrotations will be defined here by generalizing \(r_{\mu \nu} \) to functions that have non-trivial dependence on \(p \) (but are still of weight zero),
\[H_r = J^{\mu \nu} r_{\mu \nu}(p). \]

They also preserve the constraints \(p^2 = uw - p \cdot q = wp \cdot \Psi = 0 \) on the constraint surface. In \(d \neq 4 \) dimensions, conformal motions of the \((d - 2)\)-sphere are finite-dimensional even locally, but in \(d = 4 \), conformal transformations become infinite dimensional if not constrained to be global on the Riemann sphere, and provide a non-trivial restriction on the general diffeomorphisms we have allowed above. However, the superrotations that will arise for us will not be the local conformal motions on the sphere that lead to the Virasoro group.

2.3. The string model

As in the original ambitwistor string, the action is determined by the symplectic potential \(\Theta \).

This gives the worldsheet action on a Riemann surface \(\Sigma \) in the new coordinates as
\[
S = \frac{1}{2\pi} \int \mathcal{E} w \partial u - q^\mu \partial \Psi_\mu + \Psi_\nu \cdot \partial \Psi_\nu + eT + \bar{\epsilon} p^2 + \chi_\nu wp \cdot \Psi_\nu + a(uw - q \cdot p).
\]

Here \((u, p_\mu) \) take values in \(\kappa = \Omega^{1,0}, \Psi \) in a worldsheet spin bundle \(\kappa^{1/2} \), and \((w, q^n) \) are worldsheet scalars. \(\bar{\epsilon} \in \Omega^{0,1} \otimes T \), \(\chi_\nu \in \Omega^{0,1} \otimes T^{1/2} \) and \(a \in \Omega^{0,1} \) are gauge fields imposing and gauging the various constraints. The term \(eT \) with \(T = (w \partial u - q^\mu \partial \Psi_\mu) \) allows for an arbitrary choice of complex structure parametrized by \(e \).

These gaugings are fixed by setting \(e = \bar{\epsilon} = \chi_\nu = a = 0 \) but lead to respective ghost systems \((b, c)\) and \((\bar{b}, \bar{c})\) fermionic, \((\beta, \gamma)\) bosonic, and \((r, s)\) fermionic. We are left with the BRST operator
\[
Q_{\text{BRST}} = \frac{1}{2\pi i} \oint c T + \bar{c} p^2 \frac{1}{2} + \chi_\nu wp_\nu \cdot P + s(uw - q \cdot p). \]

This is sufficiently close to the original ambitwistor string that we can simply adapt the Yang–Mills vertex operators in the heterotic model (with \(r = 1 \) only) and the gravitational vertex operators in the type II case with \(r = 1, 2 \). With momentum vector \(k^\mu \) and polarization vectors \(\epsilon_\mu \), this gives
\[
U = e^{ik^\mu /\sqrt{\kappa}} \prod_{r=1}^{2} \delta(\chi_r) \Psi_\mu \cdot \epsilon_\mu,
\]

Class. Quantum Grav. 32 (2015) 055003 Y Geyer et al
\[V = \int_x \delta (k \cdot p) w e^{ikq/\rho} \prod_{\nu=1}^{2} e_{\nu}(p^{\mu} + i\gamma_{\nu}\gamma_{\nu}^{\prime} \cdot k), \]

(14)

for gravity. For Yang–Mills we have

\[U_{ym} = e^{ikq/\rho} e_{j} \cdot c_{l}, \]

(15)

\[\mathcal{V}_{ym} = \int_{\Sigma} \delta (k \cdot p) w e^{ikq/\rho} \left(p^{\mu} + i\gamma_{\nu}^{\prime}\gamma_{\nu} \cdot k \right) j \cdot t, \]

(16)

where \(j \) is a current algebra on the worldsheet associated to the gauge group and \(t \) a Lie algebra element. As described in [7], \(\mathcal{V} \) are the integrated vertex operators, and \(U \) are unintegrated with respect to both the zero modes of \(\gamma_{\nu} \) and \(\tilde{c} \). When \(\Sigma \) is a Riemann sphere, we need two insertions of \(c\tilde{c}U \) to fix the two pairs of \(\gamma_{\nu} \) zero-modes and and a third insertion of \(c\tilde{c} \) mulptiplied by an unintegrated version of \(\mathcal{V} \) (without its \(\delta (k \cdot p) \)) to fix the third of the \(c \) and \(\tilde{c} \) zero-modes.

The new feature here is the gauge field \(a \) whose ghost \(s \) has a zero mode that must also be fixed. This can be associated also with a \(1/\text{Vol GL}(1) \) factor from the scalings and we will treat this as the requirement that the scale of \(w \) be fixed to be 1. This can be done before correlators are taken because the vertex operators do not depend on \(u \). At this point it is easily seen that the amplitude computations directly reduce to those of [7] to yield the CHY formulae. A key feature of this derivation is that, in the evaluation of the correlation functions, the exponentials in the vertex operators are taken into the off-shell action leading to the following expression for \(p \)

\[p(\sigma) = \sum_{i} \frac{k_{i}}{\sigma - \sigma_{i}}, \]

(17)

on the moduli space.

2.4. Symmetries, vertex operators and diffeomorphisms

Because the action of the worldsheet model is based on the symplectic potential, the singular parts of OPE of operators in the ambitwistor string theory precisely arise from the Poisson structure, so that for example

\[p_{\mu}(\sigma)q^{\nu}(\sigma) \sim \frac{\delta_{\mu}^{\nu}}{\sigma - \sigma'} d\sigma + \cdots, \quad \gamma_{\nu}^{\prime}(\sigma)\gamma_{\nu}^{\prime}(\sigma') = \frac{\delta_{\nu}^{\nu}}{\sigma - \sigma'} + \cdots, \]

(18)

where the ellipses denote finite terms. The Hamiltonians must all have weight one in \(p \) (or weight one in \(\gamma_{\nu}^{\prime} \)) to preserve the symplectic potential and so on the worldsheet they take vaules in \(\Omega^{1,0} \). We can therefore directly use the Hamiltonian \(h \) that generates a symplectic diffeomorphism of \(\mathcal{A} \) to define an operator

\[Q_{h} = \frac{1}{2\pi i} \oint h \]

that induces the action of the symplectic diffeomorphism in the ambitwistor string model, i.e. for translations we have

\[Q_{h}q^{\nu} = \frac{1}{2\pi i} \oint \frac{\delta_{\mu}^{\nu}}{\sigma - \sigma'} + \cdots = \delta_{\mu}^{\nu}. \]
Clearly the same logic will apply to more general BMS transformations and indeed more general diffeomorphisms of \mathcal{F} as these all have a symplectic lift to $\mathcal{A} = T^*\mathcal{F}$.

In fact all vertex operators can be related to such motions. This is most easily stated for gravity where we can rewrite the integrated vertex operator as

$$\mathcal{V} = \int_\Sigma \delta(k \cdot p) w e^{ik \cdot p} \prod_{r=1}^2 \epsilon_{\mu} (p^\mu + i \mathcal{P}_{\mu}^{\Psi} \Psi \cdot k)$$

$$= \frac{1}{2\pi i} \oint_{|k \cdot p| = \epsilon} e^{ik \cdot p} w \prod_{r=1}^2 \epsilon_{\mu} (p^\mu + i \mathcal{P}_{\mu}^{\Psi} \Psi \cdot k),$$

(19)

where we have used the relation

$$\delta(k \cdot p) = \frac{1}{2\pi i} \frac{1}{k \cdot p}$$

to reduce the integral over Σ to a contour integral around the pole at $p \cdot k = 0$. If we now evaluate this contour integral by looking for poles outside of the contour $|k \cdot p| = \epsilon$, this will act on all other operators in a correlator by the generator of the diffeomorphism of \mathcal{A} with Hamiltonian given by the integrand of (19). This is to be expected in the ambitwistor construction as the data of the space-time metric is encoded in deformations of the complex structure of ambitwistor space [35]. Such deformations can in turn be encoded in a Dolbeault fashion as a global variation of the $\bar{\partial}$-operator as in the first line of (19) or as a Čech deformation of the patching functions for the manifold as determined by the Hamiltonian in the second line.

The story for Yang–Mills is very similar except that now we are talking about variations of the $\bar{\partial}$-operator on a bundle in the Dolbeault description, or a non-global gauge transformation in the Čech description. In particular, we can rewrite the integrated vertex operator as

$$\mathcal{V}_{YM} = \frac{1}{2\pi i} \oint_{|k \cdot p| = \epsilon} e^{ik \cdot p} w \epsilon_{\mu} (p^\mu + i \mathcal{P}_{\mu}^{\Psi} \Psi \cdot k) j,$$

(20)

where j is the worldsheet current algebra.

3. From soft limits to BMS

In this section, we will expand the gravitational vertex operator in (19) in the soft limit, which corresponds to the momentum of the graviton going to zero, and show that the leading and subleading terms in the expansion correspond to generators of supertranslations and superrotations, respectively.

Denoting the soft momentum as s, we can expand the vertex operator as follows:

$$\mathcal{V}_s = \frac{1}{2\pi i} \oint_{s \cdot p} e^{is \cdot p} \prod_{r=1}^2 \epsilon_{\mu} (p^\mu + i \mathcal{P}_{\mu}^{\Psi} \Psi \cdot s)$$

$$= \mathcal{V}_s^0 + \mathcal{V}_s^1 + \mathcal{V}_s^2 + \mathcal{V}_s^3 + \cdots.$$

(21)

Simplifying to the situation where $e_1 = e_2$ (which is sufficient for ordinary gravity), the first two terms in the expansion are given by
where we have used the angular momentum operator defined in (9),

\[J_{\mu\nu} = p_{[\mu} q_{\nu]} + w \sum_{r=1}^{2} \Psi_{\mu} \Psi_{\nu}, \tag{23} \]

which corresponds to a sum of orbital angular momentum and intrinsic spin. To get to the second line of (22), we note that the extra \(s \cdot p \) term in the numerator cancels that in the denominator and so there is no singularity and the contour integral gives zero.

The integrands in (22) correspond precisely to the generators of the Hamiltonian lift of the supertranslations and superrotations of null infinity discussed in section 2.4. In particular, \(\mathcal{V}_s^0 \) generates the supertranslation \(\delta u = \frac{(e \cdot p)^2}{sp} \), and \(\mathcal{V}_s^1 \) generates the superrotation \(r_{\mu\nu} = \frac{iw_s}{s \cdot p} \cdot \frac{J_{\mu\nu}}{w} \) on \(\mathcal{I} \).

By a similar calculation to that for \(\mathcal{V}_s^1 \), one finds that

\[\mathcal{V}_s^2 = \frac{1}{2\pi i} \frac{(e \cdot p)^2(s \cdot q)^2 + 2we \cdot p s \cdot q \sum_{e} e \cdot \Psi s \cdot \Psi + w^2 \prod_{e} e \cdot \Psi s \cdot \Psi}{2ws \cdot p} \]

\[= \frac{1}{2\pi i} \frac{(\epsilon \cdot s \cdot J_{\mu\nu})^2}{2ws \cdot p}. \tag{24} \]

\(\mathcal{V}_s^2 \) therefore gives a motion whose Hamiltonian is a square of that for a superrotation on ambitwistor space. This \(\mathcal{V}_s^2 \) does not generate a symmetry of null infinity, since lifts of symmetries of null infinity must have Hamiltonians that are linear in \(q^\mu \). Hence, beyond subleading order, terms in the expansion of a soft graviton vertex operator generate diffeomorphisms of ambitwistor space \(\mathcal{A} = T^* \mathcal{I} \), but not diffeomorphisms of \(\mathcal{I} \) itself.

In appendix A.2, we show that correlators of \(\mathcal{V}_s^0 \) and \(\mathcal{V}_s^1 \) give rise to the leading and subleading terms in the soft limit of graviton amplitudes:

\[\{ \mathcal{V}_1 \ldots \mathcal{V}_n \mathcal{V}_0 \} = \left(\sum_{a=1}^{n} \frac{(e \cdot k_a)^2}{s \cdot k_a} \right) \{ \mathcal{V}_1 \ldots \mathcal{V}_n \}, \tag{25} \]

\[\{ \mathcal{V}_1 \ldots \mathcal{V}_n \mathcal{V}_1 \} = \sum_{a=1}^{n} \epsilon_{\mu\nu} k_{a}^{\mu} s_{a}^{\nu} J_{\alpha}^{\mu} \{ \mathcal{V}_1 \ldots \mathcal{V}_n \}, \tag{26} \]

where \(\epsilon_{\mu\nu} = \epsilon^\rho \epsilon_{\rho}^{\mu} \) and \(J_{\mu}^{\alpha} = k_{a}^{\alpha} \frac{\partial}{\partial s_{a}^{\alpha}} + \epsilon_{\nu}^{\alpha} \frac{\partial}{\partial \epsilon_{\nu}^{\mu}} \). These results give an alternative expression of the claims of [3–5] that the soft theorems are equivalent to Ward identities associated with
the diagonal subgroup of $\text{BMS}^+ \otimes \text{BMS}^-$, when it is proposed as a symmetry of the gravitational S-matrix. Here, however, the Ward identities are expressed in the context of the worldsheet quantum field theory of the ambitwistor string rather than the Fock space of radiative modes. In particular, the identity arises by taking the integral in (19) to pick up the residues inside the contour $|s \cdot p| = \epsilon$ on the left-hand side of the equation but on the outside of the contour on the right-hand side. Inserting an extended BMS generator into a correlator is therefore equivalent to inserting a soft graviton vertex operator, which then generates the expected leading and subleading soft terms.

There is a similar story for Yang–Mills theory. If we expand the gluon vertex operator in (20) in powers of the soft momentum s, we obtain the series

\begin{align}
\mathcal{V}_s^{ym} & = \frac{1}{2\pi i} g^{\mu
u} g_{\nu\alpha} \left(\frac{1}{s \cdot p} \epsilon_{\mu \nu} \delta \right) j \\
& = \mathcal{V}_s^{ym,0} + \mathcal{V}_s^{ym,1} + \mathcal{V}_s^{ym,2} + \mathcal{V}_s^{ym,3} + \cdots, \tag{27}
\end{align}

where

\begin{align}
\mathcal{V}_s^{ym,0} & = \frac{1}{2\pi i} \int \frac{d \mu}{s \cdot p} J_{\mu} j, \\
\mathcal{V}_s^{ym,1} & = \frac{1}{2\pi i} \int \frac{d \mu}{s \cdot p} J_{\mu} j. \tag{28}
\end{align}

Hence, the leading and subleading terms in the expansion of the gluon vertex operator generate an analogue of supertranslations and superrotations for Yang–Mills theory being respectively generators of gauge transformations that depend only on p or are linear in $J_{\mu \nu}$.

Unlike gravity, $\mathcal{V}_s^{ym,2}$ no longer involves the square of J.

In appendix A.1, we show that correlators of $\mathcal{V}_s^{ym,0}$ and $\mathcal{V}_s^{ym,1}$ give rise to the leading and subleading terms in the soft limit of gluon amplitudes:

\begin{align}
\langle \mathcal{V}_1 \ldots \mathcal{V}_n \mathcal{V}_s^{ym,0} \rangle & = \left(\frac{\epsilon \cdot k_1}{s \cdot k_1} - \frac{\epsilon \cdot k_n}{s \cdot k_n} \right) \langle \mathcal{V}_1 \ldots \mathcal{V}_n \rangle, \\
\langle \mathcal{V}_1 \ldots \mathcal{V}_n \mathcal{V}_s^{ym,1} \rangle & = \left(\frac{\epsilon \cdot k_n^\mu J_{\mu n}}{s \cdot k_1} - \frac{\epsilon \cdot k_n^\mu J_{\mu n}}{s \cdot k_n} \right) \langle \mathcal{V}_1 \ldots \mathcal{V}_n \rangle. \tag{29}
\end{align}

Hence, we find that the leading and subleading terms in the soft limit of gluon amplitudes arise from the action of gauge transformations that are gauge analogues of supertranslations and superrotations.

In summary, the soft limits of tree-level graviton and gluon scattering amplitudes emerge as Ward identities for supertranslations and superrotations on \mathcal{I}. The natural Hamiltonian lift \mathcal{H} of diffeomorphisms of \mathcal{I} to the cotangent bundle $T^* \mathcal{I} \cong \mathcal{A}$ allows us to define symmetry operators Q_h inducing the action of the diffeomorphism on \mathcal{I} in the ambitwistor string. This in turn facilitates the identification of the leading and subleading terms in the soft limit of the integrated vertex operators with the generators of supertranslations and superrotations on \mathcal{I}, whose insertion into correlators gives the well-known soft terms emerging from the corresponding Ward identities.
4. 4D ambitwistor strings at \mathcal{I}

In the 4D case, adapting ambitwistor strings of [12, 13] to null infinity is perhaps more elegant, requiring no new coordinates. This model uses the twistorial representation of ambitwistor space. Twistor space is $\mathbb{C}^{4|N}$ and we use coordinates

$$Z = (\mu^a, \lambda_a, \chi^a) \in \mathbb{T} \quad \text{and} \quad W = (\tilde{\lambda}_a, \tilde{\mu}^a, \tilde{\chi}_a) \in \mathbb{T}^*$$

where $a = 0, 1$ and $\bar{a} = \bar{0}, \bar{1}$ and $a = 1...N$. Ambitwistor space is then represented as the quadric

$$\mathcal{A} = \left\{(Z, W) \in \mathbb{T} \times \mathbb{T}^* \mid Z \cdot W = 0 \right\} \big/ \left\{Z \cdot \partial_Z - W \cdot \partial_W \right\}.$$

The symplectic potential in this representation is

$$\Theta = \frac{i}{2} (Z \cdot dW - W \cdot dZ).$$

With homogeneous coordinates $(\mu, \rho_{\bar{a}})$ on \mathcal{I} as before (using the spinorial decomposition of the vector index on p) we have that the projection from this representation of ambitwistor space to null infinity follows by setting [36]

$$u = -i \langle \tilde{\lambda} \tilde{\rho} \rangle, \quad \bar{u} = i \langle \tilde{\lambda} \mu \rangle, \quad \rho_{\bar{a}} = \lambda_a \tilde{\lambda}_a,$$

where we have introduced the usual spinor helicity bracket notation to denote spinor contractions, $\langle \lambda \tilde{\rho} \rangle := \lambda_a \tilde{\rho}^a$ etc. The spinorial representation here explicitly solves the constraint $P^2 = 0$, but, working without supersymmetry, we see that $u = \bar{u}$ is the constraint $Z \cdot W = 0$.

4.1. Extended BMS and Hamiltonians in 4D

Poincaré generators and supertranslations can easily be adapted to act on this ambitwistor space. Indeed conformal motions $E^I \in SU(2, 2|N)$ are generated by $Z^I E^I W_I$. The Hamiltonian for the supertranslations $\delta u = f(\lambda, \tilde{\lambda})$ with f of weight $(1, 1)$ in this model is simply f itself as it induces the transformation

$$\delta \tilde{\mu}^a = \frac{1}{\partial \lambda_a} \frac{\partial f}{\partial \lambda_a}, \quad \text{so} \quad \delta u = \lambda_a \frac{\partial f}{\partial \lambda_a} = f,$$

with the latter equality following by homogeneity. Superrotations can similarly be taken to be those transformations generated by Hamiltonians H_r of weight $(1, 1)$ that are linear in (μ, χ) and in $(\bar{\mu}, \bar{\chi})$ but have more complicated dependence in $(\lambda, \tilde{\lambda})$, which will then of necessity include poles. These Poisson commute with $Z \cdot W$ on $Z \cdot W = 0$ as they have weight $(1, 1)$. Thus we obtain

$$H_r = [\mu \tilde{\rho}^r] + \langle \bar{\rho} \bar{r} \rangle,$$

for r_μ and \bar{r}_ρ respectively weight $(1, 0)$ and $(0, 1)$ functions of $(\lambda, \tilde{\lambda})$. These are linear functions respectively of λ or $\tilde{\lambda}$ for ordinary rotations or dilations but for superrotations will be allowed to have poles and more general functional dependence on $(\lambda, \tilde{\lambda})$. Below we will make the further requirement that
\[\frac{\partial r_a}{\partial \lambda_a} + \frac{\partial r_a}{\partial \lambda^a} = \frac{\partial^2 H}{\partial Z^i \partial W_i} = 0 \]

which will ensure that we are working with SL(4) rather than GL(4). This can always be done by adding a term proportional to \(Z \cdot W\) to \(H\) that does not affect its action on \(\lambda\).

In this notation, the Virasoro algebra can be understood as arising from those Hamiltonians in (31) in which \(\lambda_\alpha\) is a holomorphic function of \(\lambda\) alone and \(\hat{\lambda}_\alpha\) a holomorphic function of \(\lambda\) alone.

In order to incorporate Einstein gravity in the worldsheet model, we will introduce further coordinates \((\rho, \bar{\rho}) \in T \times T^\ast\) of opposite statistics to \((Z, W)\) and perform the symplectic quotient by the following further constraints

\[Z \cdot \bar{\rho} = W \cdot \rho = \rho \cdot \bar{\rho} = \{Z, \rho\} = \{W, \bar{\rho}\} = 0, \quad (32) \]

where \(\langle Z_i, Z_j \rangle = \langle \lambda_1, \lambda_2 \rangle\) and \([W_i, W_j] = [\hat{\lambda}_1, \hat{\lambda}_2]\). In this model, the symplectic potential is

\[\Theta = \frac{1}{2} (Z \cdot dW - W \cdot dZ + \rho \cdot d\bar{\rho} - \bar{\rho} \cdot d\rho). \]

In order to extend the supertranslations and superrotations to this space, we need to extend the above Hamiltonians so that they commute with these constraints on the constraint submanifold. It can be checked that this can be done automatically by taking the Hamiltonians above and acting on them with \(1 + \rho \cdot \partial Z \bar{\rho} \cdot \partial W\). Thus for supertranslations we obtain the extensions

\[(1 + \rho \cdot \partial Z \bar{\rho} \cdot \partial W) H_f = f + \rho^f \bar{\rho}^j \frac{\partial^2 f}{\partial Z^i \partial W_j}, \]

and for superrotations we get

\[(1 + \rho \cdot \partial Z \bar{\rho} \cdot \partial W) H_r = [\mu r] + (\bar{\mu} \bar{r}) + \rho^f \bar{\rho}^j \frac{\partial^2 ([\mu r] + (\bar{\mu} \bar{r}))}{\partial Z^i \partial W_j}. \]

4.2. The string model

As before we base the action on the symplectic potential so that the Poisson brackets will be reflected in the OPE. For Yang–Mills we use a model based on fields \((Z, W)\) on a Riemann surface \(\Sigma\) that take values in \(\mathbb{T} \times \mathbb{T}^\ast\) and \(\kappa^{1/2}\) in which we gauge the constraint \(Z \cdot W = 0\)

\[S = \frac{1}{2\pi} \int Z \cdot \partial W - W \cdot \partial Z + aZ \cdot W + eT \]

where \(a \in \Omega^{0,1}(\Sigma)\) is a Lagrange multiplier for the constraint \(Z \cdot W = 0\), and as before \(e \in \Omega^{1,1} \otimes T^\ast \Sigma\) with \(T = Z \cdot \partial W - W \cdot \partial Z\), see [12, 13] for more detail.

For Yang–Mills, we introduce integrated vertex operators for both self-dual and anti-self dual fields as

\[V_p = \int_\Sigma \frac{dr_p}{t_p} \delta^2 (\lambda_p - t_p \lambda (\sigma_p)) e^{\mu_p (\overline{\lambda}_p)} f_p \cdot c_p, \]

\[\overline{V}_i = \int_\Sigma \frac{dr_i}{t_i} \delta^2 (\bar{\lambda}_i - t_i \bar{\lambda} (\sigma_i)) e^{\mu_i (\overline{\lambda}_i)} f_i \cdot c_i, \quad (33) \]

where \(c_i, c_p\) are Lie algebra elements and \(j\) some current algebra on \(\Sigma\).
The gravity sector of the above model is the Berkovits–Witten non-minimal version of conformal supergravity [37]. For Einstein gravity we must also incorporate the \((\rho, \tilde{\rho}) \) system described above to give the main matter action
\[
S = \frac{1}{2\pi} \int Z \cdot \partial W - W \cdot \partial Z + \tilde{\rho} \cdot \partial \rho - \rho \cdot \partial \tilde{\rho}.
\]
(34)

We gauge all the currents
\[
K_a = (Z \cdot W, \rho \cdot \tilde{\rho}, Z \cdot \tilde{\rho}, W \cdot \rho, [Z \rho], [\rho \rho], [\rho \tilde{\rho}])
\]
and gauge fixing all the gauge fields to zero, we are left with corresponding ghosts \((\beta^a, \gamma^a) \) and the usual BRST operator
\[
Q_{\text{BRST}} = \oint c T + \gamma^a K_a - \frac{i}{2} \beta^a \gamma^b C^a_{bc},
\]
where \(C^a_{bc} \) are the structure constants of the current algebra \(K_a \).

As in Yang–Mills, the pull-back from twistor space and dual twistor space leads to vertex operators for self-dual and anti self-dual fields [12]
\[
\mathcal{V}_\rho = \int \left(1 + \rho \cdot \partial Z \tilde{\rho} \cdot \partial W \right) \frac{dt_p \delta^2}{t_p^2} \left(\tilde{\lambda}_p - t_p \lambda(\sigma_p) \right) \left(\tilde{\lambda}(\sigma_p) \lambda_p \right) e^{i\mu(\sigma_p)\lambda_p},
\]
\[
\mathcal{V}_w = \int \left(1 + \rho \cdot \partial Z \tilde{\rho} \cdot \partial W \right) \frac{dt_i \delta^2}{t_i^2} \left(\tilde{\lambda}_i - t_i \lambda(\sigma_i) \right) \left(\tilde{\lambda}(\sigma_i) \lambda_i \right) e^{i\mu(\sigma_i)\lambda_i}.
\]
(35)

It is easily seen that the integrated vertex operators defined as above agree with the original definition in [12].

The amplitude calculations for both Yang–Mills and gravity then reduce trivially to those of the original 4D ambitwistor string [12, 13]. As in higher dimensions, the correlation functions will be evaluated by incorporating the exponentials of the vertex operators into the action. For \(k \) insertions of \(\mathcal{V} \) and \(n - k \) insertions of \(\mathcal{V} \), the equations of motion determine \(\lambda(\sigma) \) and \(\tilde{\lambda}(\sigma) \) to be
\[
\lambda(\sigma) = \sum_{i=1}^{k} \frac{t_i \lambda_i}{\sigma - \sigma_i}, \quad \tilde{\lambda}(\sigma) = \sum_{p=k+1}^{n} \frac{t_p \tilde{\lambda}_p}{\sigma - \sigma_p}.
\]
(36)

As in the higher dimensional case, the 4D ambitwistor string theory naturally incorporates the geometry encoded in the Poisson structure via the singular part of the OPE, due to the construction of the kinetic term in the action from the symplectic potential. The discussion of section 2.4 is therefore directly applicable in the 4D case; for any Hamiltonian \(h \) generating a symplectic diffeomorphism on \(\mathcal{A} \), the attribute that it preserves the symplectic potential and thus has the correct weights in the fields allows us to define a corresponding symmetry operator \(Q_h \). In particular, the Hamiltonians for the extended BMS transformations discussed above will lead to operators inducing the action of the diffeomorphism of \(\mathcal{F} \) in the ambitwistor string.

4.3. Soft limits

Yang–Mills in 4D. Following the same outline as in higher dimensions, we will again expand the integrated vertex operators (33) in the soft gluon limit to show that the leading and subleading terms correspond to gauge analogues of the generators of supertranslations and superrotations.
The t-integrals occurring in the Yang–Mills vertex operators can be performed explicitly against one of the delta functions with a choice of reference spinors ξ_α or $\tilde{\xi}_\dot{\alpha}$ to give $t_s = \langle \xi_\alpha \lambda_s \rangle / \langle \xi \lambda (\sigma) \rangle$ in the first case and its tilde’d version in the second. For V this leads to

$$V_{s}^{ym} = \oint \{ \xi \lambda (\sigma) \} \delta(\{ \lambda_s \lambda (\sigma) \}) \exp \left(\frac{i \{ \xi \lambda_s \} \{ \mu (\sigma) \lambda_s \}}{\langle \xi \lambda (\sigma) \rangle} \right) J \cdot c_s,$$

$$= \oint \{ \xi \lambda (\sigma) \} \exp \left(\frac{i \{ \xi \lambda_s \} \{ \mu (\sigma) \lambda_s \}}{\langle \xi \lambda (\sigma) \rangle} \right) J \cdot c_s,$$

$$= V_{s}^{ym,0} + V_{s}^{ym,1} + V_{s}^{ym,2} + \ldots,$$ (37)

where, as before, in the second line we have used the fact that

$$\delta(\{ \lambda_s \lambda (\sigma) \}) = \frac{1}{2\pi i \langle \lambda_s \lambda (\sigma) \rangle}$$ (38)

and reduced the integral to a contour integral around $\langle \lambda_s \lambda (\sigma) \rangle = 0$. In the last line we are expanding the exponential in the soft gluon limit $\lambda_s \rightarrow 0$. We obtain

$$V_{s}^{ym,0} = \oint d\sigma \{ \xi \lambda (\sigma) \} J \cdot c_s,$$

$$V_{s}^{ym,1} = \oint \{ \mu (\sigma) \lambda_s \} J \cdot c_s,$$

$$V_{s}^{ym,2} = \oint \left(\frac{\{ \xi \lambda_s \} \{ \mu (\sigma) \lambda_s \}}{\langle \xi \lambda (\sigma) \rangle} \right)^2 J \cdot c_s.$$ (39)

The vertex operators $V_{s}^{ym,0}, V_{s}^{ym,1}$ can be thought of as the gauge analogues of the supertranslation and superrotation generators in the gravitational case below. As we show in appendix A.3, a single insertion of these charges directly gives the leading and subleading terms of the soft gluon limit:

$$\langle \tilde{V}_1 \ldots \tilde{V}_k \ldots \tilde{V}_n V_{s}^{ym,0} \rangle = \frac{\langle 1 n \rangle}{\langle s 1 \rangle \langle s n \rangle} \langle \tilde{V}_1 \ldots \tilde{V}_k V_{s}^{ym} \ldots \tilde{V}_n \rangle,$$ (40)

$$\langle \tilde{V}_1 \ldots \tilde{V}_k \ldots \tilde{V}_n V_{s}^{ym,1} \rangle = \left(\frac{1}{\langle s 1 \rangle} \tilde{\lambda}_s \cdot \frac{\partial}{\partial \tilde{\lambda}_s} + \frac{1}{\langle s n \rangle} \tilde{\lambda}_s \cdot \frac{\partial}{\partial \tilde{\lambda}_n} \right) \times \langle \tilde{V}_1 \ldots \tilde{V}_k \ldots \tilde{V}_n \rangle.$$ (41)

Einstein gravity in 4D. In analogy to the discussion in Yang–Mills, we can identify the leading and subleading terms in the soft expansion of the integrated gravity vertex operators as generators of supertranslations and superrotations on \mathcal{F}; with the corresponding Ward identities yielding the soft graviton contributions found by Cachazo and Strominger [5].
Following through the same steps as before, we get
\[
\mathcal{V}_s = \int_\Sigma \left(1 + \rho \cdot \partial_Z \bar{\rho} \cdot \partial_W \right) \frac{dt}{t^2} \delta^2 (\lambda_t - t\lambda (\sigma)) \left[\hat{\lambda} (\sigma_t, \hat{\lambda}_s) \right] e^{i \rho (\sigma_t, \hat{\lambda}_s)}
\]
\[
= \int_\Sigma \left(1 + \rho \cdot \partial_Z \bar{\rho} \cdot \partial_W \right) \delta \left(\left(\lambda_t, \hat{\lambda} (\sigma_t) \right) \right) \left[\frac{\xi \cdot \hat{\lambda} (\sigma_t)}{\xi \lambda_t} \right] \left[\frac{\hat{\lambda} (\sigma_t)}{\hat{\lambda}_s} \right] e^{i \rho (\sigma_t, \hat{\lambda}_s)}
\]
\[
= \delta \left(\left(\lambda_t, \hat{\lambda} (\sigma_t) \right) \right) \left[\frac{\xi \cdot \hat{\lambda} (\sigma_t)}{\xi \lambda_t} \right] \left[\frac{\hat{\lambda} (\sigma_t)}{\hat{\lambda}_s} \right] e^{i \rho (\sigma_t, \hat{\lambda}_s)}
\]
\[
= \mathcal{V}^0_s + \mathcal{V}^1_s + \mathcal{V}^2_s + \ldots,
\]

where, as above, to get to the second line we have performed the s-integrals against one of the delta functions with a choice of reference spinor ξ, to find $\xi \lambda \xi \lambda \xi = \langle \xi \lambda \xi \lambda \xi \rangle$. To get to the third line we have again used $\delta (\langle \xi \lambda \xi \lambda \xi \rangle) = \partial (1/2 \pi i \langle \xi \lambda \xi \lambda \xi \rangle)$. In the last line we are simply expanding out the exponential as before to find
\[
\mathcal{V}^0_s = \delta \left(\left(\lambda_t, \hat{\lambda} (\sigma_t) \right) \right) \left[\frac{\xi \cdot \hat{\lambda} (\sigma_t)}{\xi \lambda_t} \right] \left[\frac{\hat{\lambda} (\sigma_t)}{\hat{\lambda}_s} \right] e^{i \rho (\sigma_t, \hat{\lambda}_s)}.
\]
\[
\mathcal{V}^1_s = \delta \left(\left(\lambda_t, \hat{\lambda} (\sigma_t) \right) \right) i \left[\frac{\xi \cdot \hat{\lambda} (\sigma_t)}{\xi \lambda_t} \right] \left[\frac{\hat{\lambda} (\sigma_t)}{\hat{\lambda}_s} \right] \left[\frac{\mu (\sigma_t) \hat{\lambda}_s}{\mu (\sigma_t) \hat{\lambda}_s} \right] e^{i \rho (\sigma_t, \hat{\lambda}_s)}.
\]
\[
\mathcal{V}^2_s = \delta \left(\left(\lambda_t, \hat{\lambda} (\sigma_t) \right) \right) \left[\frac{\hat{\lambda} (\sigma_t)}{\hat{\lambda}_s} \right] \left[\frac{\mu (\sigma_t) \hat{\lambda}_s}{\mu (\sigma_t) \hat{\lambda}_s} \right] e^{i \rho (\sigma_t, \hat{\lambda}_s)}.
\]

From the discussion in section 4.1, we can identify \mathcal{V}^0_s as a supertranslation generator, and \mathcal{V}^1_s as a superrotation generator now with
\[
\tilde{\eta}_a = \frac{\hat{\lambda}_s}{\xi \lambda_t} \left[\frac{\xi \lambda (\sigma_t)}{\xi \lambda_t} \right] \left[\hat{\lambda} (\sigma_t) \right] e^{i \rho (\sigma_t, \hat{\lambda}_s)}.
\]

As can be seen, this is not a Virasoro generator as for a Virasoro generator, $\tilde{\eta}_a$ should depend only on $\hat{\lambda}$ and not on λ as described in section 4.1. \mathcal{V}^2_s corresponds, as in higher dimensions, to the ‘square’ of a superrotation. All of these contributions generate diffeomorphisms of \mathcal{F}, but only \mathcal{V}^0_s and \mathcal{V}^1_s can be seen to arise from Hamiltonian lifts of diffeomorphisms of \mathcal{F}.

With the vertex operators defined above, an insertion of a soft graviton leads to the following Ward identities:
\[
\left\langle \bar{\mathcal{V}}_1 \ldots \bar{\mathcal{V}}_k \mathcal{V}_{k+1} \ldots \mathcal{V}_n \mathcal{V}^0_s \right\rangle = \sum_{a=1}^n \frac{[as] (\xi \sigma)^2}{\langle a s \rangle \langle \xi \sigma^2 \rangle} \left\langle \bar{\mathcal{V}}_1 \ldots \bar{\mathcal{V}}_k \mathcal{V}_{k+1} \ldots \mathcal{V}_n \right\rangle,
\]
\[
\left\langle \bar{\mathcal{V}}_1 \ldots \bar{\mathcal{V}}_k \mathcal{V}_{k+1} \ldots \mathcal{V}_n \mathcal{V}^1_s \right\rangle = \sum_{a=1}^n \frac{[as] (\xi \sigma)}{\langle a s \rangle \langle \xi \sigma \rangle} \frac{\partial}{\partial \bar{\mathcal{V}}_a} \left\langle \bar{\mathcal{V}}_1 \ldots \bar{\mathcal{V}}_k \mathcal{V}_{k+1} \ldots \mathcal{V}_n \right\rangle.
\]

refer to appendix A.4 for more details on the calculation. These Ward identities can immediately be seen to be equivalent to the leading and subleading terms in the soft graviton theorems.
In the sub-subleading case, \mathcal{V}_s^2 generates a diffeomorphism of ambitwistor space whose Hamiltonian is the square of that for a rotation, but again does not descend to \mathcal{I} itself being quadratic now in μ. Inserting it into correlators yields at tree-level the sub-subleading soft graviton contribution found by Cachazo and Strominger

$$\left\langle \bar{\mathcal{V}}_1 \ldots \bar{\mathcal{V}}_k \mathcal{V}_{k+1} \ldots \mathcal{V}_n \right\rangle = \frac{1}{2} \sum_{\mu=1}^{a} \langle a \ s \rangle \frac{\partial^2}{\partial h_{\mu} \partial h_{\mu}} \left\langle \bar{\mathcal{V}}_1 \ldots \bar{\mathcal{V}}_k \mathcal{V}_{k+1} \ldots \mathcal{V}_n \right\rangle.$$ (46)

5. Conclusion and discussion

The work of Strominger and collaborators has shown that BMS symmetries have important implications for gravitational scattering amplitudes. In particular, they showed that if the diagonal subgroup of $\mathbf{BMS}^+ \otimes \mathbf{BMS}^-$ is taken to be a symmetry of the 4D gravitational S-matrix, the associated Ward identity for diagonal supertranslations gives Weinberg’s soft graviton theorem. Furthermore, Cachazo and Strominger found subleading terms in the soft graviton theorem and conjectured that they arise from the Ward identity associated with superrotations.

In this paper, we generalize the relation between BMS symmetry and soft limits to gravity and Yang–Mills theory in arbitrary dimensions using ambitwistor string theory. Ambitwistor space can be identified with \mathcal{I}^\pm and so admits a canonical lift of BMS symmetries and indeed more general diffeomorphisms of null infinity. If one expands the integrated vertex operator of a soft graviton in powers of the soft momentum, the leading and subleading terms correspond to supertranslation and superrotation generators, although here the superrotations are not the Virasoro generators of Barnich and Troessaert as conjectured by Cachazo and Strominger. Furthermore, we find that higher order terms in the expansion correspond to an infinite series of new soft terms which are associated with more general diffeomorphisms of ambitwistor space, although no longer lifted from diffeomorphisms of null infinity. These ideas work perhaps most elegantly in the case of the four dimensional twistorial version of the ambitwistor string model which does not need to be extended in any way to connect with null infinity.

A remarkable feature is that gravitational vertex operators in ambitwistor string theory always arise as generators of rather more general symplectic diffeomorphisms of \mathfrak{A}. That such diffeomorphisms should encode the gravitational field follows from the original ambitwistor constructions of LeBrun [35] in which the gravitational field is encoded in the deformed complex structure of ambitwistor space. In a Čech description of ambitwistor space the data is encoded in diffeomorphisms of the patching functions of the manifold. In their infinitesimal form that leads to our vertex operators, these must be generated by Hamiltonians to preserve the holomorphic symplectic potential and two-form as described in [38]. Here they are obtained from diffeomorphisms of $T^*\mathcal{I}$ and in fact they can be understood as arising from the scattering of null geodesics through the space-time following the scattering theory calculations of [34].

What is therefore suggested by this picture is that we can give a description of the full nonlinear ambitwistor space in a globally hyperbolic space-time as follows. We glue together the flat space one constructed from the complexification $T^*\mathcal{I}_C$ to another constructed from the complexification $T^*\mathcal{I}_C$ using the gluing map obtained from the diffeomorphism from the real $T^*\mathcal{I}_R \to T^*\mathcal{I}_R$ determined by the flow along the real null geodesics. This then specifies enough of the complex structure on ambitwistor space to determine the full gravitational field
and its scattering. The scattering of null geodesics is already a complicated object and to identify those that correspond to solutions to Einstein’s equations seems rather daunting in a fully nonlinear regime. However, within ambitwistor string theory, this is somehow achieved perturbatively, but nevertheless to all orders, as the scattering of null geodesics determined by each Fourier mode in the vertex operator determines the scattering of the gravitational field by explicit ambitwistor-string calculation. The correlator achieves the required nonlinear superposition of the effects of each linearized Fourier mode to the required order in perturbation theory. It would be intriguing to find a nonperturbative formulation of this correspondence. In the ambitwistor string theory this might be expressed in the form of the structure of a curved beta–gamma system along the lines of [39, 40] with gluing determined by diffeomorphism from \(\mathcal{J}^- \) to \(\mathcal{J}^+ \) arising from the scattering of null geodesics but pieced together from manageable ingredients as it is in the perturbative calculations.

The analogous story for Yang–Mills theory is that vertex operators at null infinity correspond to certain gauge transformations coupled to diffeomorphisms at \(T^*,\mathcal{J} \). The scattering now corresponds to parallel propagation along each real but now charged null geodesic, regarding such geodesics essentially as Wilson lines. In its soft expansion, we obtain gauge transformations coupled to supertranslations at leading order and superrotations for the subleading terms. This gives a realization in perturbative string theoretic terms of the ambitwistor constructions of [41–43] in which Yang–Mills fields are encoded in the complex structure of a holomorphic vector bundle over ambitwistor twistor space with the gauge transformations playing the role of patching functions. However, unlike those constructions, even with pure Yang–Mills we have a deformation of the underlying ambitwistor space even for the pure Yang–Mills field because of the curvature of the charged null geodesics.

Loop corrections in ambitwistor string theory have been studied in [44] and it seems plausible that ambitwistor strings will give the correct all-loop integrand for type II supergravity in ten dimensions, although this remains unproven. If so these ideas will apply directly in that context (and hence to its reductions) also.

A key issue raised in [1] was the existence of infrared sectors for the gravitational field (and there is a corresponding story for Yang–Mills). To our knowledge this way of understanding infrared issues has never been fully incorporated into the way infrared structures are understood perturbatively. The ideas in this paper perhaps provide a starting point for a more unified understanding of these ideas.

Acknowledgments

AL is supported by a Simons Postdoctoral Fellowship, YG by the EPSRC and the Mathematical Prizes fund and LM is supported by EPSRC grant number EP/J019518/1. We thank Tim Adamo, Tristan McLoughlin, VP Nair, Jan Plefka, Dave Skinner, and Andrew Strominger for stimulating conversations.

Appendix A. Details of the correlators with soft limits

Integrated graviton vertex operators implement symplectic diffeomorphisms of \(T^*,\mathcal{J} \) in the worldsheet ambitwistor string theory. We have seen explicitly how these vertex operators can be expanded in powers of the soft momentum, and have identified the leading and subleading terms as generators of supertranslations and superrotations on \(\mathcal{J} \). We have also obtained analogous results for Yang–Mills theory. In this appendix, we deduce the associated Ward
identities, both in the d-dimensional model and the 4D twistorial model. In particular, we compute correlators with insertions of supertranslation/superrotation generators and obtain the leading/subleading terms in the soft theorems for Yang–Mills and gravity.

A.1. Yang–Mills soft limits in d-dimensional model

Leading terms. Let ϵ and s be the polarization and momentum of a soft gluon. If we expand the vertex operator in s, the leading term corresponds to the generator of a singular gauge transformation that only depends on p. This is the gauge analogue of a supertranslation and we denote it by $V_{ym,0}^\epsilon$:

$$V_{ym,0}^\epsilon = \frac{1}{2\pi i} \oint d\sigma \frac{e \cdot p(\sigma)}{s \cdot p(\sigma)} j(\sigma),$$

where $j(\sigma)$ is the worldsheet current algebra contracted with an element of the corresponding Lie algebra. Since we are dealing with color-stripped amplitudes, we will leave out generators of the Lie algebra and simply take the single trace term when we take the correlation function.

Consider the correlator of a soft gluon with n other gluons. This is given by

$$\left\langle \gamma_1 \cdots \gamma_n \gamma_s \right\rangle \overset{\epsilon \to 0}{\longrightarrow} \frac{1}{2\pi i} \sum_{j=1}^n \int_{[\gamma_j \cdots \gamma_n]} d\sigma \frac{(\sigma_n - \sigma_j)}{(\sigma_j - \sigma_1)(\sigma_n - \sigma_1)(s \cdot p(\sigma_1))} e \cdot p(\sigma_j),$$

where $e \to 0$. As the soft gluon vertex operator approaches one of the other vertex operators, we have

$$\lim_{\sigma_j \to \sigma_1, s \cdot p(\sigma_1)} \frac{e \cdot p(\sigma_1)}{s \cdot p(\sigma_1)} = \frac{e \cdot k_j}{s \cdot k_j}. \quad (A.1)$$

Plugging this into equation (A.1) and performing the contour integral finally gives the leading order contribution to the soft limit

$$\left\langle \gamma_1 \cdots \gamma_n \gamma_s \right\rangle \overset{\epsilon \to 0}{\longrightarrow} \left(\frac{e \cdot k_1}{s \cdot k_1} - \frac{e \cdot k_n}{s \cdot k_n} \right) \left\langle \gamma_1 \cdots \gamma_n \right\rangle. \quad (A.2)$$

Subleading terms. Expanding the vertex operator further in s, the gauge analogue of the superrotation generator corresponds the terms linear in s

$$V_{ym,1}^\epsilon = Q_{R}^{\text{orbit}} + Q_{R}^{\text{spin}},$$

where

$$Q_{R}^{\text{orbit}} = \frac{1}{2\pi i} \oint d\sigma \frac{iq(\sigma) \cdot s e \cdot p(\sigma)}{s \cdot p(\sigma)} j(\sigma),$$

$$Q_{R}^{\text{spin}} = \frac{1}{2\pi i} \oint d\sigma \frac{e \cdot \Psi(\sigma) s \cdot \Psi(\sigma)}{s \cdot p(\sigma)} j(\sigma). \quad (A.3)$$

Let’s compute the correlator of $V_{ym,1}^\epsilon$ with n other vertex operators. If we focus only on the delta functions in the other vertex operators, we can neglect Q_{R}^{spin} since the delta functions do not depend on fermionic fields. Hence, we only need the following OPE:
where $\sigma_j = \sigma_i - \sigma_n$, $\delta = \delta(k_j \cdot P(\sigma_j))$, and I_n indicates that rest of the integrand does not depend on σ_i. Note that this integral is precisely equation (19) of [11]. Following the calculations of this paper, we can easily see that this will indeed correspond to the subleading soft limit terms $S^{(1)}$, with the derivatives taken to act exclusively on the scattering equations obtained from the momentum eigenstates in the vertex operators.

To obtain the full subleading soft factors, we will have to include all contributions from the correlation function $\{ \mathcal{V}_1 \ldots \mathcal{V}_k \}_{\text{spin}}$, as well as additional contributions from Q^R_{spin}. In particular, we find that

$$\langle \mathcal{V}_1 \ldots \mathcal{V}_k \rangle_{\text{spin}} = \frac{1}{2\pi i} \int \frac{d^2 \sigma}{\text{VolSL}(2)} \oint \frac{d\sigma_j}{\sigma_j} \frac{e \cdot P(\sigma_j)}{s \cdot P(\sigma_j)} \frac{\sigma_{n1}}{\sigma_{11} \sigma_{ns}} \times \left(\sum_{j=1}^n \frac{s \cdot k_j}{\sigma_j} \delta^{(1)}_{\sigma_j} \frac{\eta^{(1)}}{\Pi_{a=b+1}^{a+b}} \delta_a \prod_{b=b+1}^n \frac{\delta_b}{\sigma_{b,b+1} + \sum_{a=1}^n \frac{s \cdot \epsilon_a \Pi_a^b}{\sigma_a}} \frac{\text{Pf}(M^{(a)}_{a+b})}{\prod_{b=b+1}^n \sigma_{b,b+1}} \right),$$

where we denote the CHY matrix obtained from n vertex operator insertions by $M^{(a)}$. Note especially that this does not contain any data of the soft gluon. As mentioned above, additional contributions to the orbital part of the subleading soft limit (in addition to the spin contribution) will originate from the correlation function involving Q^R_{spin}.

A closer look at the structure and origin of these terms already indicates how to match them to the contributions to the subleading soft limits found in [11]. Recall from the original ambitwistor string [7] that in the correlation functions, the fermionic fields Ψ give rise to the Pfaffians, with the diagonal terms C_{aa} coming from the contributions $e \cdot P(\sigma_j)$. An insertion of Q^R_{spin} will therefore contribute the subleading soft limits, where the derivative is taken to act on the scattering equations, as well as an additional term due to the appearance of the soft gluon in the diagonal terms of the matrix C. The charge Q^R_{spin}, on the other hand, will give the remaining contributions of the soft particle in the Pfaffian, as well as the spin contribution.
\(J_{\text{spin},a}^{\mu\nu} = e_a^{\mu
u} k_a^3 \), stemming from the double contractions where both soft gluon \(\Psi_f \) fields are contracted to the fields \(\Psi_a \) of one external gluon \(a \). Combining these terms and following the manipulations described in [11], one then finds the subleading soft limit

\[
\langle \mathcal{V}_1 \ldots \mathcal{V}_s \mathcal{V}_s^{\text{ym,1}} \rangle = \left(\frac{e_s s J_s^{\mu\nu}}{s \cdot k_s} - \frac{\epsilon_s s J_s^{\mu\nu}}{s \cdot k_s} \right) \langle \mathcal{V}_1 \ldots \mathcal{V}_a \rangle, \tag{A.6}
\]

where \(J_s^{\mu\nu} = J_{\text{orb},a}^{\mu\nu} + J_{\text{spin},a}^{\mu\nu} \), with \(J_{\text{orb},a}^{\mu\nu} = k_a^{\mu} \frac{\partial}{\partial x_a^\nu} \) and \(J_{\text{spin},a}^{\mu\nu} = \epsilon_a^{\mu} \frac{\partial}{\partial x_a^\nu} \).

A.2. Gravity soft limits in \(d \)-dimensional model

Leading terms. For a soft graviton \(s \), we are interested in computing the Ward identity associated to the leading order term \(\mathcal{V}_s^0 \) in the soft expansion of the vertex operator. As we have seen above, this corresponds to a supertranslation on \(\mathcal{I} \). With one insertion of \(\mathcal{V}_s^0 \), the correlator becomes

\[
\langle \mathcal{V}_1 \ldots \mathcal{V}_s \mathcal{V}_s^0 \rangle = \frac{1}{2\pi i} \sum_{\ell=1}^{n} \langle \mathcal{V}_1 \ldots \mathcal{V}_\ell \int_{\sigma-\sigma_0} \frac{\text{d} \sigma}{s \cdot p(\sigma)} \left(e \cdot p(\sigma) \right)^2 \rangle,
\]

where \(e \rightarrow 0 \) and \(p(\sigma) \) is given in equation (17). When the soft graviton vertex operator approaches one of the other vertex operators, from (17) we have

\[
\lim_{\sigma \rightarrow \sigma_0} \frac{(e \cdot p(\sigma))^2}{s \cdot k (\sigma_0 - \sigma)}.
\]

Plugging this into equation (A.2) and performing the contour integral yields the Weinberg soft graviton theorem

\[
\langle \mathcal{V}_1 \ldots \mathcal{V}_s \mathcal{V}_s^0 \rangle = \left(\sum_{j=1}^{n} \frac{(e \cdot k_j)^2}{s \cdot k_j} \right) \langle \mathcal{V}_1 \ldots \mathcal{V}_h \rangle. \tag{A.7}
\]

Subleading terms. Expanding the soft graviton vertex operator further in \(s \), we obtain a term \(\mathcal{V}_s^1 \) linear in \(s \) which corresponds to the generator of a supertranslation on \(\mathcal{I} \). Note that \(\mathcal{V}_s^1 \) is made out of \(e_{\mu} J_{s}^{\mu\nu} \) which breaks up into an orbital part \(q^\mu \rho^\nu \) and spin part \(\Psi_s^\mu \Psi_s^\nu \):

\[
\mathcal{V}_s^1 = Q_{\text{orb}}^{s} + Q_{\text{spin}}^{s}.
\]

where the orbital and spin contributions are given by

\[
Q_{\text{orb}}^{s} = \frac{1}{2\pi i} \int \text{d} \sigma_s \frac{e \cdot p(\sigma_s)q(\sigma_s)q(\sigma_s)\rho(\sigma_s)}{s \cdot p(\sigma_s)}; \tag{A.8}
\]

\[
Q_{\text{spin}}^{s} = \frac{1}{2\pi i} \int \text{d} \sigma_s \frac{e \cdot p(\sigma_s)s \cdot \Psi_s(\sigma_s)e \cdot \Psi_s(\sigma_s) + (1 \leftrightarrow 2)}{s \cdot p(\sigma_s)} \tag{A.9}
\]

The correlation functions involving these vertex operators are computed using the OPE (18). Related calculations have been performed in detail in [11] to compute subleading soft limits. There, the authors focus on the soft limits of the delta functions in the CHY formulae, which contributes to the orbital part of the subleading soft limit. The remainder of the orbital part and the spin part of the subleading soft limit then comes from analyzing the soft limits of the Pfaffians. Similarly, when we compute the correlation functions of \(\mathcal{V}_s^1 \) with other vertex
operators, we will first focus on the contractions involving the delta functions of the other vertex operators. This will allow us to make contact with the calculations in [11] to demonstrate that \(Q^\text{orbit}_R \) indeed generates the correct contributions to the orbital part of the subleading soft limit. One can then show that \(Q^\text{spin}_R \) generates the spin part of the subleading soft limit, as well as the missing contributions to the orbital part. \(\mathcal{V}^1_i = Q^\text{orbit}_R + Q^\text{spin}_R \) will therefore generate the full subleading soft gluon or graviton contribution as discussed in [5].

In compute the correlator of \(Q_R \) with \(n \) other vertex operators, we will focus first only on the delta functions in the other vertex operators, and neglect \(Q^\text{spin}_R \). Furthermore, using equation (A.5), one finds that

\[
\left\{ \mathcal{V}_1 \cdots \mathcal{V}_n Q^\text{orbit}_R \right\} = \frac{1}{2\pi i} \int d^2 \sigma \oint d\sigma_s \frac{\epsilon_{1} \cdot P(\sigma_s) \epsilon_{2} \cdot P(\sigma_s)}{s \cdot P(\sigma_s)} \sum_{j=1}^{n} \frac{s \cdot k_j}{\sigma_{ij}} \Pi R_{ai_{1} a_{i_{2}}} \delta_{a_{i_{1}}} I_{n},
\]

where we use notation defined in the previous subsection. Note that this integral is precisely equation (23) of [11]. Again, the remaining correlation function

\[
\left\{ \mathcal{V}_1 \cdots \mathcal{V}_n Q^\text{spin}_R \right\},
\]

can be calculated along similar lines as in Yang–Mills, described in appendix A.1. Following the manipulations outlined in [11], we find indeed the subleading soft graviton limit derived in [5]

\[
\left\{ \mathcal{V}_1 \cdots \mathcal{V}_n \mathcal{V}^1_i \right\} = \sum_{a=1}^{n} \epsilon_{\mu \nu} k_a^\mu s_a J^\nu_a \left\{ \mathcal{V}_1 \cdots \mathcal{V}_n \right\}, \quad (A.10)
\]

where \(\epsilon_{\mu \nu} = \epsilon_{\mu}^i \epsilon_{\nu}^j \) and \(J^\mu_a \) was defined in appendix A.1.

A.3. Yang–Mills soft limits in the twistorial model

Leading terms.

The action of the worldsheet model for the ambitwistor string is based on the symplectic potential of \(\mathcal{A} \), and the singular parts of the OPE of operators in the ambitwistor string is thus given by the Poisson structure on \(\mathcal{A} = \mathcal{T}^* \mathcal{F} \). In calculating the soft limits in the twistorial model, the following OPE’s of fields in the ambitwistor string will be useful:

\[
\lambda_{\alpha}(z) \bar{\mu}^\beta (w) = \frac{\delta_{\alpha}^\beta}{z - w} + \cdots, \quad \bar{\lambda}_{\dot{\alpha}}(w) \mu^\beta (z) = \frac{\delta_{\dot{\alpha}}^\beta}{z - w} + \cdots \quad (A.11)
\]

Expanding an integrated gluon vertex operator in the soft momentum the leading term is given by

\[
\mathcal{V}_{\gamma}^{ym,0} = \frac{1}{2\pi i} \oint d\sigma \frac{\bar{\xi} \lambda(\sigma_i)}{\xi \lambda(\sigma_i)} f(\sigma_i),
\]

where \(l = \lambda, \bar{\lambda} \) is the soft momentum, \(\xi \) is a reference spinor, and

\[
\bar{\lambda}(\sigma) = \sum_{i=1}^{k} \frac{s_i \lambda_i}{\sigma - \sigma_i} \quad (A.12)
\]

Let us compute the correlator of \(\mathcal{V}_{\gamma}^{ym,0} \) with \(k \) negative helicity vertex operator \(\bar{\mathcal{V}} \) and \(n - k \) positive helicity vertex operators \(\mathcal{V} \):
\begin{equation}
\newcommand{\P}{\mathcal{P}}
\left< \P_{1} \ldots \P_{k+1} \ldots \P_{n} \right>^\text{soft} = \frac{1}{2 \pi i} \frac{1}{\langle \xi 1 \rangle} \left< \P_{1} \ldots \P_{k+1} \ldots \P_{n} \mathfrak{f} \mathfrak{d} \sigma_1 \frac{\sigma_{\pi}}{\sigma_{\mu} \sigma_{\nu}} \left< \frac{\xi \lambda(\sigma)}{s \lambda(\sigma)} \right> \right> \, . \quad (A.13)
\end{equation}

Note from equation (A.12) that
\begin{equation}
\lim_{\sigma_i \to \sigma} \left< \frac{\xi \lambda(\sigma)}{s \lambda(\sigma)} \right> = \langle \xi 1 \rangle \, .
\end{equation}

Furthermore, on the support of the delta functions in \P_{n}, we have
\begin{equation}
\lim_{\sigma_i \to \sigma} \left< \frac{\xi \lambda(\sigma)}{s \lambda(\sigma)} \right> = \langle \xi n \rangle \, .
\end{equation}

Hence, when we evaluate the contour integral in (A.13), the residues at $\sigma_i = \sigma_1$ and $\sigma_i = \sigma_n$ give the soft graviton contribution to leading order
\begin{equation}
\left< \P_{1} \ldots \P_{k+1} \ldots \P_{n} \right>^\text{soft} = \frac{\langle 1 n \rangle}{\langle s 1 \rangle \langle s n \rangle} \left< \P_{1} \ldots \P_{k} \right> \, \left< \P_{k+1} \ldots \P_{n} \right> \, ,
\end{equation}
where we have used the Schouten identity.

Subleading terms. Expanding the gluon vertex operator further to first order in the soft momentum gives
\begin{equation}
\left< \P_{1} \ldots \P_{k+1} \ldots \P_{n} \right>^\text{soft} = \frac{1}{2 \pi i} \int \mathfrak{f} \mathfrak{d} \sigma_1 \frac{\langle \mu(\sigma) s \rangle}{\langle s \lambda(\sigma) \rangle} J(\sigma) \, .
\end{equation}

Note that there is subtlety in defining this operator, since the equations of motion for the $\tilde{\lambda}$ field imply that $\mu = 0$. On the other hand, μ will have nonzero contractions with the $\tilde{\lambda}$ fields which appear in the delta functions of other vertex operators, so correlation functions of $\P_{k+1} \ldots \P_{n}$ will be non-vanishing. In particular, from (A.11), we see that
\begin{equation}
\left< \frac{\mu(\sigma) s}{\langle s \lambda(\sigma) \rangle} \right> \delta^2 \left(\tilde{\lambda}_i - t_i\tilde{\lambda}(\sigma) \right) = \frac{1}{\sigma_i - \sigma_1} \frac{\partial}{\partial \lambda(\sigma_i)} \delta^2 \left(\tilde{\lambda}_i - t_i\tilde{\lambda}(\sigma) \right) + \ldots,
\end{equation}
where the ellipses denote non-singular terms. The subleading contribution to the soft gluon will arise from the correlator of $\P_{1} \ldots \P_{k+1} \ldots \P_{n}$ with k negative helicity vertex operator \P and $n - k$ positive helicity vertex operators \P:
\begin{equation}
\left< \P_{1} \ldots \P_{k+1} \ldots \P_{n} \right> = \frac{1}{2 \pi i} \int d^2 \sigma \mathfrak{f} \mathfrak{d} \sigma_1 \frac{1}{\langle s \lambda(\sigma) \rangle} \frac{\sigma_{\pi}}{\sigma_{\mu} \sigma_{\nu}} \sum_{i=1}^{n} \frac{1}{\sigma_i} \frac{\partial}{\partial \lambda(\sigma_i)} \mathfrak{f} \mathfrak{d} \lambda_i \, . \quad (A.14)
\end{equation}

where I_n indicates that the rest of the integrand does not depend on σ_i. Noting that
\begin{equation}
\lim_{\sigma_i \to \sigma_1} \frac{\sigma_{\pi}}{\sigma_{\mu} \sigma_{\nu}} \frac{\delta^2 \left(\tilde{\lambda}_i - t_i\tilde{\lambda}(\sigma) \right)}{\langle s 1 \rangle} = \frac{\sigma_{\pi}}{\sigma_{\mu} \sigma_{\nu}} \frac{1}{\langle s 1 \rangle} \, ,
\end{equation}
the residue at $\sigma_i = \sigma_1$ gives to
\begin{equation}
\frac{1}{\langle s 1 \rangle} \frac{\partial}{\partial \lambda_1} \left< \P_{1} \ldots \P_{k+1} \right> \, .
\end{equation}

Furthermore, the residue at $\sigma_i = \sigma_n$ corresponds to
\begin{equation}
\int d^2 \sigma \mathfrak{f} \mathfrak{d} \sigma_1 \frac{1}{\langle \frac{\lambda(\sigma) s}{\lambda(\sigma)} \rangle} \frac{1}{\sigma_\mu \sigma_\nu} \frac{\partial}{\partial \lambda_n} I_n = \frac{1}{\langle n \rangle} \frac{\partial}{\partial \lambda_n} \left< \P_{1} \ldots \P_{k+1} \right> \, .
\end{equation}
where we noted that on the support of the delta functions in \mathcal{V}_s, we have $\langle \lambda(\sigma) \rangle_s = \langle ns \rangle / \langle n \rangle$.

Hence, we find that the correlator in (A.14) reduces to the subleading soft gluon contribution from [24]

$$\left\langle \tilde{V}_1 \ldots \tilde{V}_k \mathcal{V}_{k+1} \ldots \mathcal{V}_n \mathcal{V}_s^m \right\rangle = \left\langle \frac{1}{\langle s \rangle} \tilde{\lambda}_s \cdot \frac{\partial}{\partial \tilde{\lambda}_1} + \frac{1}{\langle ns \rangle} \tilde{\lambda}_s \cdot \frac{\partial}{\partial \tilde{\lambda}_n} \right\rangle \left\langle \tilde{V}_1 \ldots \tilde{V}_k \mathcal{V}_{k+1} \ldots \mathcal{V}_n \right\rangle.$$

A.4. Gravity soft limits in twistorial model

As we have seen above, the leading and subleading terms in the soft limit expansion of the integrated vertex operators for gravity correspond to generators for the symmetries of \mathcal{F}_s in particular we find generators of translations \mathcal{V}_s^0 at leading order, and generators of superrotations \mathcal{V}_s^1 at subleading order. By imposing the constraints (32), the equations for the generators (43) can be simplified drastically. In particular, when computing correlators, the pieces $\rho \frac{\partial}{\partial \tilde{\alpha}} + \rho \frac{\partial}{\partial \alpha}$ can be ignored, as there remains always at least one ρ in one of the vertex operators, which causes the path integral to vanish. Keeping this in mind, the first three terms in the expansion of an integrated soft graviton vertex operator are

$$\mathcal{V}_s^0 = \frac{1}{2\pi i} \oint \frac{\xi \lambda(\sigma)}{\xi \lambda_0} \frac{\left[\tilde{\lambda}(\sigma) \tilde{\lambda}_s \right]}{\left[\lambda(\sigma) \lambda_0 \right]} \left(A.15 \right).$$

$$\mathcal{V}_s^1 = \frac{1}{2\pi} \oint \frac{\left[\xi \lambda(\sigma) \right]}{\xi \lambda_s} \frac{\left[\tilde{\lambda}(\sigma) \tilde{\lambda}_s \right]}{\left[\lambda(\sigma) \lambda_s \right]} + \frac{\left[\xi \lambda(\sigma) \right]}{\xi \lambda_0} \frac{\left[\mu(\sigma) \mu_0 \right]}{\left[\lambda(\sigma) \lambda_0 \right]} \left(A.16 \right).$$

$$\mathcal{V}_s^2 = \frac{1}{2\pi i} \oint \left(\frac{1}{2} \frac{\left[\tilde{\lambda}(\sigma) \tilde{\lambda}_s \right]}{\left[\lambda(\sigma) \lambda_s \right]} + \frac{\left[\mu(\sigma) \mu_0 \right]}{\left[\lambda(\sigma) \lambda_0 \right]} \left(A.17 \right).$$

Leading terms. In particular, we can investigate the Ward identity of the first order contribution of an integrated vertex operator in the soft limit, which we have identified with a charge associated to superrotations. For a soft graviton s, the superrotation generator is then given by

$$\mathcal{V}_s^0 = \frac{1}{2\pi i} \oint d\sigma \frac{\xi \lambda(\sigma)}{\xi s} \left[\tilde{\lambda}(\sigma) \right] \left(A.18 \right).$$

We are interested in the correlator

$$\left\langle \tilde{V}_1 \ldots \tilde{V}_k \mathcal{V}_{k+1} \ldots \mathcal{V}_n \right\rangle,$$

for momentum eigenstates, where the equations of motion determine $\lambda(\sigma)$ and $\tilde{\lambda}(\sigma)$ to be

$$\lambda(\sigma) = \sum_{i=1}^{k} \frac{S_{\lambda_i}}{\sigma - \sigma_i}, \quad \tilde{\lambda}(\sigma) = \sum_{p=k+1}^{n} \frac{S_{\rho \tilde{\lambda}_p}}{\sigma - \sigma_p}.$$

Recall that, from the form of $\lambda(\sigma)$ and on the support of the delta-functions, which will eventually be interpreted as the scattering equations, the limit
Using the residue theorem and scattering equations, the correlator reduces to
\[
\left\langle \tilde{\chi}_1 \ldots \tilde{\chi}_n \chi_{k+1} \ldots \chi_n \psi_{n}^{I} \right\rangle = \sum_{a=1}^{n} \frac{\langle a s \rangle (\xi s)^2}{\langle a s \rangle} \left\langle \chi_1 \ldots \tilde{\chi}_a \chi_{k+1} \ldots \chi_n \right\rangle, \tag{A.19}
\]
which can be identified as the soft graviton theorem.

Subleading terms. Expanding the integrated graviton vertex operator to subleading order in the soft momentum \(s\) defines a superrotation
\[
\Psi_1^I = \frac{1}{2\pi} \oint \frac{\langle \xi \lambda (\sigma_i) \rangle \left[\lambda_2 (\sigma_i) \right] \left[\mu (\sigma_i) \tilde{\lambda}_i \right]}{\langle \xi \lambda_2 (\sigma_i) \rangle \left[\lambda_2 (\sigma_i) \right] \left[\mu (\sigma_i) \tilde{\lambda}_i \right]} + \frac{\langle \xi \lambda (\sigma_i) \rangle \left[\rho \tilde{\lambda}_i \right]}{\langle \xi \lambda (\sigma_i) \rangle \left[\rho \tilde{\lambda}_i \right]} \left[\tilde{\lambda}_i \right]. \tag{A.20}
\]
Again, we can investigate the ‘Ward identity’ associated to this superrotation, where we insert \(Q_R\) in a correlation function of graviton vertex operators
\[
\left\langle \chi_1 \ldots \tilde{\chi}_n \chi_{k+1} \ldots \chi_n \Psi_1^I \right\rangle. \tag{A.21}
\]
Using
\[
[\mu (\sigma_i) s] \delta^2 \left(\tilde{\lambda}_i - s_i \lambda (\sigma_i) \right) = \frac{1}{\sigma_i - \sigma_i} \cdot \frac{\partial \delta^2 \left(\tilde{\lambda}_i - s_i \lambda (\sigma_i) \right)}{\partial \lambda (\sigma_i)} + \ldots
\]
we can calculate the correlation functions easily
\[
\left\langle \chi_1 \ldots \tilde{\chi}_n \chi_{k+1} \ldots \chi_n \Psi_1^I \right\rangle
= \frac{1}{2\pi} \left\langle \oint ds \sum_{i=1}^{k} \frac{\langle \xi \lambda (\sigma_i) \rangle \left[\lambda_2 (\sigma_i) s \right]}{\langle \xi s \rangle \left[\lambda (\sigma_i) s \right]} \frac{1}{\sigma_i - \lambda_i} \cdot \frac{\partial \tilde{\chi}_i \chi_{k+1} \ldots \chi_n}{\partial \lambda (\sigma_i)} \right\rangle
+ \frac{1}{2\pi} \left\langle \oint ds \sum_{p=k+1}^{n} \frac{\langle \xi \lambda (\sigma_i) \rangle \left[\lambda_2 (\sigma_i) s \right]}{\langle \xi s \rangle \left[\lambda (\sigma_i) s \right]} I_R \tilde{\chi}_1 \chi_{k+1} \ldots \tilde{\chi}_p \chi_{n} \right\rangle,
\]
where the notation \(\tilde{\chi}_p\) indicates that the integrand of the corresponding vertex operator is omitted from the correlation function, still leaving the integration over the variable \(ds_{p}^{1/s_p}\) and the scattering equation \(\tilde{\delta}^2 \left(\lambda_p - s_p \lambda (\sigma_p) \right)\), and where
\[
I_R = \left[\tilde{\lambda} (\sigma_i) s \right] \frac{[s p]}{\sigma_i - \sigma_p} + (-1)^p \left[\tilde{\rho} (\sigma_p) s \right] \left[\rho (\sigma_p) s \right] \left[\sigma_i \right] \frac{[s p]}{\sigma_i - \sigma_p}.
\]
Trivially, the derivative \(\tilde{\lambda}_i \cdot \frac{\partial}{\partial \lambda (\sigma)}\) can be taken to act on all vertex operators, as the only occurrence of \(\tilde{\lambda} (\sigma)\) is in the scattering equations. Note furthermore that the terms in \(I_R\) can be obtained alternatively by acting with \(\tilde{\lambda}_i \cdot \frac{\partial}{\partial \lambda (\sigma)}\) on the vertex operators in the correlation function, with the first term arising from the diagonal elements of \(H_{pp}\), and the remaining terms from the off-diagonal contributions \(H_{pq}\). We can thus rewrite the correlation function as
\[
\left\langle \tilde{V}_1...\tilde{V}_k\tilde{V}_{k+1}...\tilde{V}_nV^1_s \right\rangle \\
= \frac{1}{2\pi} \left\langle \int d\sigma s \sum_{i=1}^n \left(\frac{\xi}{\lambda(\sigma_i)} \right) \left[\frac{s}{\lambda(\sigma_i)} \right] \frac{1}{\sigma_i - \sigma_i} \tilde{V}_1...\tilde{V}_k\tilde{V}_{k+1}...\tilde{V}_n \right\rangle \\
+ \frac{1}{2\pi} \left\langle \int d\sigma s \sum_{p=k+1}^n \left(\frac{\xi}{\lambda(\sigma_p)} \right) \left[\frac{s}{\lambda(\sigma_p)} \right] \frac{1}{\sigma_p - \sigma_p} \tilde{V}_1...\tilde{V}_k\tilde{V}_{k+1}...\tilde{V}_n \right\rangle.
\]

Now the integral can be calculated straightforwardly, using the explicit expressions for \(\lambda(\sigma) \) and \(\tilde{\lambda}(\sigma) \), as well as the support of the delta-functions of the vertex operators. Thus inserting the superrotation generator obtained from the soft expansion of the graviton vertex operator into correlation functions gives the subleading terms of the soft limit

\[
\left\langle \tilde{V}_1...\tilde{V}_k\tilde{V}_{k+1}...\tilde{V}_nV^1_s \right\rangle = \sum_{a=1}^{[a \ s]} \left(\frac{\xi}{\lambda(\sigma_a)} \right) \frac{1}{\sigma_a - \sigma_a} \tilde{V}_1...\tilde{V}_k\tilde{V}_{k+1}...\tilde{V}_n \right\rangle. (A.22)
\]

Sub-subleading terms. Although the subsubleading term in the soft expansion of a soft graviton vertex operator does not generate a symmetry of null infinity, we can still insert it into correlators to obtain the sub-subleading tree-level soft limit. In particular

\[
\left\langle \tilde{V}_1...\tilde{V}_k\tilde{V}_{k+1}...\tilde{V}_nV^2_s \right\rangle = \frac{1}{2\pi i} \left\langle \int d\sigma s \left[\frac{s}{\lambda(\sigma)} \right] \frac{1}{\sigma - \sigma} \tilde{V}_1...\tilde{V}_k\tilde{V}_{k+1}...\tilde{V}_n \right\rangle
\]

where we have chosen to abbreviate the integrands by

\[
h = \sum_{i=1}^k \frac{1}{\sigma_i} \tilde{\lambda}_i \cdot \frac{\sigma_i}{\lambda(\sigma_i)} + \sum_{p=k+1}^n \frac{1}{\sigma_p} \tilde{\lambda}_p,
\]

\[
l_2 = \sum_{i,j=1}^k \frac{1}{\sigma_i} \tilde{\lambda}_i \cdot \frac{\sigma_j}{\lambda(\sigma_j)} \frac{1}{\sigma_i - \sigma_j} \tilde{\lambda}_j \cdot \frac{\sigma_i}{\lambda(\sigma_i)} + \sum_{p,q=k+1}^n \frac{1}{\sigma_p} \frac{1}{\sigma_q} \tilde{\lambda}_p \tilde{\lambda}_q + \sum_{p,q=k+1}^n \frac{1}{\sigma_p} \frac{1}{\sigma_q} \tilde{\lambda}_p \tilde{\lambda}_q.
\]

Again, we have indicated by \(\tilde{\lambda}_p \) that the corresponding integrand of the vertex opertor is omitted from the correlation function. Calculating the residues and comparing the results to the derivatives obtained by acting with \(\lambda(\sigma) \) for \(p \in \{ k+1, \ldots, n \} \), all unwanted residues cancel and the only contributions are coming from

\[
\left\langle \tilde{V}_1...\tilde{V}_k\tilde{V}_{k+1}...\tilde{V}_nV^2_s \right\rangle = \frac{1}{2} \sum_{a=1}^{[a \ s]} \left(\frac{\xi}{\lambda(\sigma_a)} \right) \frac{1}{\sigma_a - \sigma_a} \tilde{V}_1...\tilde{V}_k\tilde{V}_{k+1}...\tilde{V}_n \right\rangle. (A.23)
\]
Appendix B. Brief comparison to the ACS model

The 4D twistorial ambitwistor model is closely connected to the 2D CFT recently proposed by Adamo et al [6]. Indeed, ambitwistor strings provide a very flexible framework and one can take different coordinate realizations of the space of null geodesics, adding further variables and corresponding constraints to bring out different structures or features. This can lead to quite different realizations with different properties (as witnessed by the distinction between the 4D RNS model versus the twistoral one which does a better job of bringing out underlying conformal invariance and its breaking). The general strategy of identifying the worldsheet action from a symplectic potential guarantees that Hamiltonians will give rise to operators that can be realized in the worldsheet theory.

The model of Adamo et al also lives on a supersymmetric extension of the cotangent bundle of the complexification of null infinity. This model uses a different presentation of the supersymmetry, but the main coordinates can be identified by identifying their action as arising from the symplectic potential \(\Theta \) on \(T^*\mathcal{F} \). Thus we see for example that in their coordinates the symplectic potential is

\[
\Theta = w \, du + \chi \, d\xi + \nu^A \, d\lambda_A + \bar{\nu}^\bar{A} \, d\bar{\lambda}_{\bar{A}} + \bar{\psi}^\bar{A} \, d\psi_A + \psi^A \, d\bar{\psi}_{\bar{A}}, \quad A = (\alpha, \alpha),
\]

and here \(a = 1, \ldots, 4 \) is an \(R \)-symmetry index corresponding to a representation of \(\mathcal{N} = 8 \) supersymmetry. We can clearly identify

\[
Z = (\lambda_A, i\bar{\nu}^\bar{A}), \quad W = \left(-i\nu^A, \bar{\lambda}_{\bar{A}}\right), \quad \rho = \left(\psi_A, \bar{\psi}^\bar{A}\right), \quad \bar{\rho} = \left(\bar{\psi}^\bar{A}, \psi_A\right),
\]

because the bosonic parts of \(\lambda \) and \(\bar{\lambda} \) are geometrically identical to that of the original twistorial ambitwistor model, although the representation of supersymmetry is somewhat different to the usual one on twistor space. There are additional variables, \((w, u)\) playing an identical role to the \((w, u)\) in the \(d \)-dimensional ambitwistor string model at \(\mathcal{F} \). These are associated with an additional constraint that can be used to eliminate them and that is similarly the case here. They also introduce a further pair of fields, \((\gamma, \xi)\). One can readily identify \(Z \cdot W = (Z\rho) = [W\bar{\rho}] = 0 \) constraints of the 4D ambitwistor string model amongst the gaugings in the ACS model.

There are nevertheless important distinctions. Firstly, the vertex operators are quite distinct from ours, and secondly their formulae work with the worldsheet fields taking values in line bundles of more general degree (ours are taken to be spinors on the worldsheet) leading to a larger integral over moduli in the evaluation of scattering amplitudes. However, the latter issue is not so significant as it is already the case that the 4D ambitwistor string model also admits different choices of degree giving the same answer [13]. The distinction between the vertex operators seems to be quite substantial and would appear to correspond to a realization of linearized fields in \(H^2 \) rather than in \(H^4 \) as in the models presented in this paper.

References

[1] Ashtekar A 1981 Asymptotic quantization of the gravitational field Phys. Rev. Lett. 46 573–6
[2] Strominger A 2014 Asymptotic symmetries of Yang-Mills theory J. High Energy Phys. JHEP1407 (2014)151
[3] Strominger A 2014 On BMS invariance of gravitational scattering J. High Energy Phys. JHEP1407(2014)152
[4] He T, Lysov V, Mitra P and Strominger A 2014 BMS supertranslations and Weinberg’s soft graviton theorem (arXiv:1401.7026)
[5] Cachazo F and Strominger A 2014 Evidence for a new soft graviton theorem (arXiv:1404.4091)
[6] Adamo T, Casali E and Skinner D 2014 Perturbative gravity at null infinity Class. Quantum Grav. 31 225008
[7] Mason L and Skinner D 2014 Ambitwistor strings and the scattering equations J. High Energy Phys. JHEP1407(2014)038
[8] Cachazo F, He S and Yuan E Y 2014 Scattering equations and KLT orthogonality Phys. Rev. D 90 065001
[9] Cachazo F, He S and Yuan E Y 2014 Scattering of massless particles in arbitrary dimension Phys. Rev. Lett. 113 171601
[10] Cachazo F, He S and Yuan E Y 2014 Scattering of massless particles: scalars gluons and gravitons J. High Energy Phys. JHEP1407(2014)033
[11] Schwab B U W and Volovich A 2014 Subleading soft theorem in arbitrary dimension from scattering equations Phys. Rev. Lett. 113 101601
[12] Mason L and Skinner D 2014 Ambitwistor strings and the scattering equations J. High Energy Phys. JHEP1407(2014)048
[13] Geyer Y, Lipstein A E and Mason L J 2014 Ambitwistor strings in 4-dimensions Phys. Rev. Lett. 113 081602
[14] Schwab B U W and Volovich A 2014 Subleading soft theorem in arbitrary dimension from scattering equations Phys. Rev. Lett. 113 101601
[15] Geyer Y, Lipstein A E and Mason L J in preparation
[16] Weinberg S 1965 Infrared photons and gravitons Phys. Rev. 140 516–24
[17] Penrose R and Rindler W 1986 Spinors and Space-Time vol 2 (Cambridge: Cambridge University Press)
[18] Hollands S and Ishibashi A 2003 Asymptotic flatness at null infinity in higher dimensional gravity (arXiv:0311178 [hep-th])
[19] Hollands S and Ishibashi A 2005 Asymptotic flatness and Bondi energy in higher dimensional gravity J. Math. Phys. 46 022503
[20] Bondi H, van der Burg M and Metzner A 1962 Gravitational waves in general relativity: VII. Waves from axisymmetric isolated systems Proc. R. Soc. A 269 21–52
[21] Sachs R 1962 Gravitational waves in general relativity: VIII. Waves in asymptotically flat space-times Proc. R. Soc. A 270 103–26
[22] Kapec D, Lysov V, Pasterski S and Strominger A 2014 Semiclassical virasoro symmetry of the quantum gravity s-matrix J. High Energy Phys. JHEP1408(2014)058
[23] Barnich G and Troessaert C 2011 BMS charge algebra J. High Energy Phys. JHEP12(2011)105
[24] Casali E 2014 Soft sub-leading divergences in Yang-Mills amplitudes J. High Energy Phys. JHEP1408(2014)077
[25] Larkoski A J 2014 Conformal invariance of the subleading soft theorem in gauge theory Phys. Rev. D 90 087701
[26] Low F 1958 Bremsstrahlung of very low-energy quanta in elementary particle collisions Phys. Rev. 110 974–7
[27] Burnet T and Kroll N M 1968 Extension of the low soft photon theorem Phys. Rev. Lett. 20 86
[28] Jackiw R 1968 Low-energy theorems for massless bosons: photons and gravitons Phys. Rev. 168 1623–33
[29] Gross D J and Jackiw R 1968 Low-energy theorem for graviton scattering Phys. Rev. 166 1287–92
[30] White C D 2011 Factorization properties of soft graviton amplitudes J. High Energy Phys. JHEP05(2011)060
[31] Bern Z, Davies S and Noble J 2014 On loop corrections to subleading soft behavior of gluons and gravitons Phys. Rev. D 90 085015
[32] He S, Huang Y-t and Wen C 2014 Loop corrections to soft theorems in gauge theories and gravity J. High Energy Phys. JHEP1412(2014)115
[33] Berkovits N and Witten E 2004 Conformal supergravity in twistor-string theory J. High Energy Phys. JHEP08(2004)009
[38] Baston R and Mason L 1987 Conformal gravity, the Einstein equations and spaces of complex null geodesics Class. Quantum Grav. 4 815–26
[39] Witten E 2007 Two-dimensional models with (0, 2) supersymmetry: perturbative aspects Adv. Theor. Math. Phys. 11
[40] Nekrasov N A 2005 Lectures on curved beta–gamma systems, pure spinors, and anomalies (arXiv:0511008[hep-th])
[41] Witten E 1978 An interpretation of classical Yang-Mills theory Phys. Lett. B 77 394
[42] Isenberg J, Yasskin P and Green P 1978 Non selfdual gauge fields Phys. Lett. B 78 462–4
[43] Witten E 1986 Twistor-like transform in ten-dimensions Nucl. Phys. B 266 245
[44] Adamo T, Casali E and Skinner D 2014 Ambitwistor strings and the scattering equations at one loop J. High Energy Phys. JHEP1404(2014)104