Automatic hearing loss detection system based on auditory brainstem response

J Aldonate, C Mercuri, J Reta, J Biurrun, C Bonell, G Gentiletti, S Escobar and R Acevedo
Laboratorio de Ingenieria en Rehabilitación e Investigaciones Neuromusculares y Sensoriales
Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Ruta 11 – Km 10, Oro Verde, Entre Ríos, Argentina
E-mail: racevedo@bioingenieria.edu.ar

Abstract. Hearing loss is one of the pathologies with the highest prevalence in newborns. If it is not detected in time, it can affect the nervous system and cause problems in speech, language and cognitive development. The recommended methods for early detection are based on otoacoustic emissions (OAE) and/or auditory brainstem response (ABR). In this work, the design and implementation of an automated system based on ABR to detect hearing loss in newborns is presented. Preliminary evaluation in adults was satisfactory.

1. Introduction
According to the Health World Organization, 5 per 1,000 neonates are born with significant hearing loss. This pathology has a negative incidence on the nervous system, causing a delay in the development of speech and language, and consequently affecting cognitive and behavioral skills [1] [2].

Early detection of hearing impairment is therefore essential, in order to allow more successful intervention and rehabilitation. Recommended practice begins with universal newborn hearing screening (UNHS) using objective physiological methods, preferably before being discharged from the hospital, and if not, no later than 2 or 3 months of age [3].

All over the world, strategies used in UNHS are based on otoacoustic emissions (OAE) and auditory brainstem response (ABR). Particularly, methods based on ABR are well-considered due to their high specificity and sensitivity rates, and their high correlation between impairment and alteration in the ABR pattern [4].

However, traditional analysis is complex and time consuming, limiting its use to selective screening a small percentage of newborns. With the development of Automatic ABR (AABR) analysis, results are obtained faster, facilitating its application on a larger population [5].

In this context, the Facultad de Ingenieria de la Universidad Nacional de Entre Ríos (Argentina), in cooperation with the Hospital Materno Infantil San Roque (HMISR), Paraná, Argentina, and the Centro de Especialidades Médicas Ambulatorias (CEMA), Rosario, Argentina, have begun a technological development project, aiming to design and build a universal hearing screening system based on AABR. This work presents the design and preliminary results obtained with an implemented prototype, named AudioScreen.
2. System requirements

A universal hearing screener based on AABR should be able to evoke, record, store and process electroencephalographic (EEG) signals generated in the brain [6]. Therefore, suitable hardware and/or software for these purposes must be able to perform the following tasks:

- Stimulate the auditory system according to specific parameters [7].
- Record the EEG signals from the scalp, synchronizing the acquisition with the stimulation (Acevedo et al., 2006).
- Perform a digital processing on the EEG signals, in order to detect whether the ABR is present or not [8].

The system has to be flexible enough to allow a range of stimulation and recording options. Tables 1 and 2 summarize specific requirements for this system.

Table 1. Stimulation parameters.

Parameter	Description
Stimulus type	Condensation click
Stimulus width	100 µs
Stimulus intensity	20 to 70 dB peSPL in 10 dB steps
Stimulation frequency	11 and 31 clicks/s
Audio output	Mono
Masking	None

Table 2. Recording parameters.

Parameter	Description
Gains	500 a 100,000 in 10 steps
Bandwidth	100 Hz – 2500 Hz
Input impedance	> 10⁶ Ω
CMRR	> 80 dB
Isolation	> 3,000 V_{RMS}
Sampling frequency	200 Hz to 20 kHz
Sampling window	Up to 15 ms
Resolution	> 10 bits

3. System design

The design of the hearing screener is based on four modules: auditory stimulation (AS), signal conditioning (SC), signal acquisition and digitalization (SAD) and signal processing and visualization (SPV). Figure 1 shows a block diagram of these modules.

Being this one the first research prototype, it is planned to be used both in research and clinical environments. The first one requires this system to be flexible at the digital processing stage, in order to allow testing and evaluation of different algorithms for automatic ABR detection. For this reason, the SPV module is implemented in software, and a personal computer is required in order to use the screener. Future versions of AudioScreen will implement this module in specific hardware, making the system independent from the computer.
A brief description of the system operation would be as follows: initially, the computer sends a number of configuration parameters for the AS and the SAD modules. When a start signal is received, the stimulator generates acoustic stimuli, which are applied to the patient through headphones. At the same time, a synchronism signal is generated and sent to the SAD module to establish the beginning of the EEG recording, which is amplified and filtered in the SC module. Finally, the EEG is digitalized and transmitted to the computer via USB 1.0, where the SPV module stores it for further processing and visualization.

4. System implementation

4.1. Auditory Stimulation Module (AS)
The auditory stimulator produces digital clicks (electrical stimuli) whose amplitude is set by a gain-controlled amplifier (PGA2310 Texas Instruments Inc). Then, the clicks are transduced to auditory stimuli by headphones (Telephonics® TDH39). Two stimulation parameters can be set: intensity, ranging from 20 to 70 dB peSPL in 10 dB steps, and frequency in two possible values, 11 or 33 clicks/s. The selected values are indicated by LEDs at the front panel. In this way, different configurations may be used for auditory stimulation.

The electronic circuit is implemented with an 8-bit RISC microcontroller. The microcontroller configures the gain-controlled amplifier through a serial port interface and it is linked up with the SAD module using two ports; one is used to generate the synchronism signal, and the other one is used to receive a start signal to begin the stimulation.

4.2. Signal conditioning module (SC)
Appropriated integrated circuits (IC) for medical instrumentation are used. This module consists of four parts:
- Instrumentation amplifier: INA128 (Burr-Brown Corp.). This IC has high input impedance (1010 Ω) and common-mode rejection (120dB at G ≥ 100), and very low offset voltage (50µV) and drift (0.5µV/°C).
- Programmable gain amplifier: OP07 (Analog Devices Inc.). Gain can be set in the range of 500 and 100000 in 10 steps.
- Isolating amplifier: ISO121 (Burr-Brown Corp.). This IC has unitary gain and it is based on a 2 pF differential capacitive barrier, which results in a 3500 VRMS isolation.
- Filter: a band pass filter is implemented using a cascade design of Sallen-Key cells with cutoff frequencies in 2500 Hz for low pass and 100 Hz for high pass. In order to reduce the
electromagnetic induction produced by the power line, a Sallen-Key notch filter centered in 50 Hz is implemented. This notch filter can be enabled or disabled using onboard jumpers.

4.3. Signal Acquisition and Digitalization module (SAD)
This module is based on another 8-bit RISC microcontroller, which controls the AD module as well as the communication with the computer. The AD module includes a 12-bits, bipolar input range, analog-to-digital converter and a low-noise, temperature-stabilized, precision reference. The sampling frequency can be set to a maximum of 20 kHz and the acquisition window is set to 15 ms.

4.4. Power supply
The power supply has two stages: one of them is not isolated and the other one is isolated according to IEC 60610 standard. Isolation is achieved using PWR1303A (C&D Technologies Inc.). Table 3 summarizes its specifications.

Parameter	Description
Isolated stage	± 5 V, 150 mA, 4 kV DC
Non-isolated stage	± 5 V, ± 12 V, 1 A

Hardware-implemented modules are shown in figure 2.

4.5. Signal Processing and Visualization module (SPV)
SPV module block diagram is shown in figure 3. This module was programmed using Borland® C++ Builder®, and the database was generated with Microsoft® Access® 2003. The user interface was designed taking into account advices from several professionals of the health centers mentioned above.

The database stores all the information about the screening, which basically consists of newborn’s and mother’s personal information, along with the signals recorded with the EEG acquisition block and the parameters used in the study, e.g. stimulation frequency and intensity.

The EEG processing block performs two main tasks: signal averaging to enhance signal-to-noise ratio, and automatic ABR detection using the F_{sp} algorithm [9]. The results of the study are visualized in the computer monitor (figure 4), and can be printed along with a full report of the study.

5. Experiments and results
Figure 5 shows the complete system, which complies with the IEC 60610 standard for medical equipment.
User interface was assessed by HMISR and CEMA personnel, and the resulting evaluation was satisfactory. Finally, a full set of tests were carried out with healthy patients, which verified the correct performance of the system.

![Figure 5. AudioScreen system with the software running on the computer; (a) screener; (b) software interface; (c) electrode cable; (d) power supply.](image)

6. Conclusions
A first prototype of AudioScreen system was designed, built and tested. It was made using adequate off-the-shelf electronic components, which satisfy standards for medical equipment and also accomplish their desired functionality. The following step is to perform the system validation at the HMISR and CEMA. In addition, an algorithm for ABR signal detection based on support vector machines is being developed, which will be validated and contrasted against the Fsp method.

Acknowledgements
This work was supported by the Secretary of Science, Technology and Productive Innovation (SeCTIP) and by the Council of Investigations of the National University of Entre Ríos (CIUNER).

References
[1] Priesler G 1999 The Development of Communication and Language in Deaf and Severely Hard of Hearing Children: Implications for the Future Int J Pediatr Otorhinolaryngol vol 49(Suppl 1) pp 39-43.
[2] Jacobson T 1985 The Auditory Brainstem Response Boston Editorial Collage-Hill Press.
[3] Gracey K 2003 Current Concepts in Universal Newborn Hearing Screening and Early Hearing Detection And Intervention Programs. Advances in Neonatal Care vol 3 pp 308-317.
[4] American Academy of Pediatric 1999 Newborn and Infant Hearing Loss: Detection and Intervention Pediatrics vol 103 pp 527-30.
[5] Suppiej A, Rizzardi E, Zanardo V, Franzoi M, Ermani M and Orzan E 2007 Reliability of Hearing Screening in High-Risk Neonates: Comparative study of automated OEA, and conventional ABR Clin Neurophysiol. 2007 vol 118 pp 869-76.
[6] McAllister H and McCullagh P 2000 Objective methods of hearing assessment Computing and Control Engineering Journal pp 53-64.
[7] Mercuri C, Escobar S, Cadirola F, Astiasaran P, Gentiletti G, Aldonate J, Bonell C and Acevedo R 2006 Estimulador auditivo para audiometría tonal y potenciales evocados auditivos, Revista Argentina de Bioingeniería vol 12 pp 13-19.
[8] Acevedo R, Bonell C, Gentiletti G, Aldonate J, Mercuri C, Escobar S and Biurrun J 2006 Potenciales Evocados Auditivos de Tronco Cerebral: Aspectos tecnológicos del Registro Revista Argentina de Bioingeniería vol. 12 pp 10-17.
[9] Gentiletti G, Yañez O and Cornejo J 2003 Evaluation of Automatic Identification Algorithms for Auditory Brainstem Response used in Universal Hearing Loss Screening Proceedings of 25th Annual International Conference of the IEEE EMBS.