RESEARCH ARTICLE

ANALYTICAL METHOD VALIDATION FOR DETERMINATION OF HEAVY METAL IN CAPSULE SHELL BY USING INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY (ICP-MS).

R K Phadke¹ and V D Gaitonde².

1. Research Scholar, J.J.T University, churu, Jhunjhunu Road, Rajasthan -333001.
2. ProChrome India, A/2 ,Varsha Milan, Sahra road, Andheri (East), Mumbai-400099, India.

Abstract

A precise, linear, accurate, sensitive and selective eco friendly analytical method has been developed and validated using inductively coupled plasma mass spectrometry (ICP-MS) for the determination of heavy metal Arsenic (As), Mercury (Hg), Lead (Pb) and Cadmium (Cd) in hard gelatin capsule shell. Arsenic, Mercury, Lead and Cadmium are heavy metal and heavy metals are a genotoxic in nature. These heavy metals follows under class I category therefore ICH guidelines Q3D have control limit base on its risk assessment. The developed analytical method was selective and sensitive for capable detecting heavy metal as 0.006ppm As, 0.002ppm Hg, 0.019ppm Pb, 0.005ppm Cd and further quantified from 0.020ppm As, 0.012ppm Hg, 0.063ppm Pb, 0.017ppm Cd to 200 percent of limit concentration. The analytical method found to be linear with working concentration range from 0.986 ppb to 100 ppb for As, 0.856ppb to 50 ppb Cd, 0.302 ppb to 10 ppb Hg and 3.127 ppb to 100 ppb Pb with correlation coefficient 1.0000 As, 1.0000 Cd, 0.9999 Hg and 0.9998 Pb. The percentage recoveries of heavy metals at three different concentrations with spiking in samples of hard gelatin capsule were found to be an acceptable range as 70% to 130 %. The method was precise and robust and its relative standard deviation was below 25%. The actual % RSD in precision are 5.67% As, 5.19% Cd, 3.79% Hg and 5.34% Pb. Therefore the developed method can use for routinely quantitative determination of heavy metal in hard gelatin capsule shell to ensure the quality of capsule shell.

Introduction:

Gelatin is a natural product, a solid substance and it’s tasteless, colorless, and translucent obtained from partial hydrolysis of collagen. The gelatin can be made from materials that are rich in collagen such as skin, connective tissue, organs, intestines and bones of animals just as pigs, horses, cattle or other animals. However if made from leather and cow bone or other large animals, the process become longer and requires lot of water for washing, due to natural product and huge water washing in manufacturing process heavy metals may present in gelatin. Such heavy metals need to be identified and determine any of analytical technique. Hence method development need for those heavy metals. Heavy metals are a genotoxic in nature and its follows under class I category therefore ICH guidelines

Corresponding Author:- R K Phadke.
Address:- Research Scholar, J.J.T University, churu, Jhunjhunu Road, Rajasthan -333001.
Q3D have given control stringent limit base on risk assessment. The graphical representations of material used in gelatin production are as follows.

![Materials Used in Gelatin Production](image)

Fig.1: Gelatin material composition.

Gelatin capsule was first patented by Mr.F.A.B. Mothes, students and Dublanc, a pharmacist, they obtained the patent in 1834, cover a method for producing gelatin capsules consisting of one section, oval-shaped, and covered with a drop of hot concentrated solution of gelatin after charging. The uses of gelatin capsules are spread even produced by many countries in Europe and America restricted they use gelatin capsules patent on a particular company, sparked two new capsule forms. In 1839 in Paris, Garot created a thin layer coated products, gelatin-coated pills. In 1846 another pharmacist, J.C. Lehubby patented capsule 2 parts which is still used. Many medications enclosed in capsule shell are administered orally. The Pharmacopoeia of the People’s Republic of China (2010 version) sets a clear standard for the grade of gelatin that can be used for drug capsule production and requires that pharmaceutical companies only purchase capsules from manufacturers that are licensed. There have been recent reports that some companies in eastern China have been making and selling capsules made from cheaper industrial gelatin prepared from discarded leather. Heavy metal like Chromium, which is a known carcinogen, and can be toxic if ingested in large quantities, is used in the leather tanning process. Consequently 20 to 90 times more Cr was typically found in the leather-derived gelatin than in pharmaceutical/edible grade gelatin.

In current pharmacopeia heavy metals control by heavy metal test by visual observation no any specific instrument technique like flame photometric, atomic absorption spectroscopic, inductively coupled plasma atomic emission spectroscopy and inductively coupled plasma mass spectroscopy was given. In most of Active pharmaceutical ingredient and excipients pharmacopeia mentions that heavy metals to be perform by any of analytical instruments. This instrumentation technique will compulsory applied by pharmacopeia from year 2018. In current scenario most of literatures are given on inductively coupled plasma atomic emission spectroscopy (ICP-AES), however an extensive survey revealed that there were no any quantitative methods for determination of genotoxic heavy metal by inductively coupled plasma mass spectrometry (ICP-MS) in hard gelatin capsule. Hence it was felt necessary to develop an accurate, rapid, sensitive, and specific method for the determination of heavy metals in hard gelatin capsule. We developed simple, fast, linear, accurate, reproducible and robust ICP-MS method. The method was validated by following ICH guideline parameter.

Materials and Methods:-

Chemical and reagents:-

Table.1: Chemical and Reagents
Name
Nitric Acid (69%)
Hydrogen Peroxide
Water, Milli Q
Equipments:
The heavy metals analysis was carried out by using a Thermo; Inductively Coupled Plasma Mass spectrometry (ICP-MS) modal iCAP Q with Anton paar; Microwave Reaction System, modal Multi PRO. The whole analysis data was process through Qutegra software and software was 21CFR part 11 comply.

Instrument conditions:

Microwave Reaction System:

Method Parameter:

Parameter	Value
Max. Pressure increases Rate	0.5 bar/s
Max. Pressure	40 bar
Max. Microwave power	1200 W
IR temperature Limit	210 °C
Internal temperature Limit	240 °C

Digestion Program:

Step	Temp.(°C)	Power (W)	Time (min)	Fan Level
Power ramp		1200	10	1
Power hold		1200	15	1
Cooling	50	--	--	3

ICP-MS Parameter:

Parameter	Value
Plasma power	1550W
Carrier Gas 1 / Flow Rate	Argon (14 mL/min.)
Carrier Gas 2	Helium
Analysis mode	KED (Kinetic Energy Discrimination)
No. of Sweeps	10
Main Runs	6
Dwell time	0.1
Peristaltic pump speed	40rpm
Up take time	30 seconds
Wash time	30 seconds

Preparation of solutions:

Diluent:
Transfer about 40 mL of Concentrated (69%) Nitric acid in to a 500mL flask containing 300 mL of water and dilute to volume with water.

Sample blank preparation:
Transfer 1.5 ml Nitric acid (69%), 0.8mL H₂O₂, 4 ml water and add 0.2ml of Gold Standard stock solution (10ppm) into the microwave digestion vessel; place the vessel in Microwave digester chamber and run digestion program. After completion of digestion transfer the Content into the 10 ml volumetric flask and dilute up to the mark with water. Centrifuge the sample blank and use supernatant for analysis.

Test Solution preparation:
Weigh and transfer accurately about 0.5g of sample into the microwave digestion vessel, add 1.5 ml Nitric acid (69%), 0.8 ml H₂O₂, 4 ml water and add 0.2ml of Gold Standard stock solution (10ppm); place the vessel in Microwave digester chamber and run digestion program. After completion of digestion, transfer the content into the 10 ml volumetric flask, and dilute up to the mark with water. Centrifuge the test sample and use supernatant for analysis.

Standard stock solution:

Arsenic Standard stock solution (10ppm):
Transfer 1 ml from 1000ppm of Arsenic standard into 100 ml volumetric flask and dilute up to the mark with diluent.
Mercury Standard stock solution (10ppm):-
Transfer 1 ml from 1000ppm of Mercury standard into 100 ml volumetric flask and dilute up to the mark with diluent.

Lead Standard stock solution (10ppm):-
Transfer 1 ml from 1000ppm of Lead standard into 100 ml volumetric flask and dilute up to the mark with diluent.

Cadmium Standard stock solution (10ppm):
Transfer 1 ml from 1000ppm of Cadmium standard into 100 ml volumetric flask and dilute up to the mark with diluent.

Gold Standard stock solution (10ppm):
Transfer 1 ml from 1000ppm of Gold standard into 100 ml volumetric flask and dilute up to the mark with diluent.

Linearity Standard Stock Solution:-
Transfer 2.5 ml from Arsenic Standard stock solution (10ppm), 1.25mL of Cadmium Standard stock solution (10ppm), 0.25 ml from Mercury Standard stock solution (10ppm), 2.5 ml from Lead Standard stock solution (10ppm) in to 100 ml volumetric flask and dilute up to the mark with diluent.

Preparation of Linearity Standard Solutions:--
Table 2: Linearity Standard Solutions.

STD Nos.	Volume taken in mL from Linearity Std Stock Soln (mL)	Volume of Gold Std stock Soln (10ppm)	Volume to be made (mL)	Conc. of elements in ppb
1	2.50	0.5	25	As 25.0 Hg 2.50 Pb 25.0 Cd 12.50
2	3.75	0.5	25	As 37.5 Hg 3.75 Pb 37.5 Cd 18.75
3	5.00	0.5	25	As 50.0 Hg 5.00 Pb 50.0 Cd 25.00
4	7.50	0.5	25	As 75.0 Hg 7.50 Pb 75.0 Cd 37.50
5	10.00	0.5	25	As 100.0 Hg 10.00 Pb 100.0 Cd 50.00

Procedure:--
Keep the instrument ready as per instrument parameters given in instrument condition and run the sequence as blank, Std-1 to 5, sample blank, Test solution and finally bracketing standard in six times. Plot the Linearity standard solution graph as intensity response of element on Y-axis Vs Conc. of standards on X-axis and Calculate Intercept, Slope.

System Suitability Criteria:--
1. The correlation coefficient should not be less than 0.99
2. Cumulative %RSD of intensity response of Std-5 and Bracketing standard (Std-5) should not be more than 20.

Calculations:--
Calculate the concentration of element in sample as per following formula:
\[
\text{Element Content (ppm)} = \frac{I - C}{10} x \frac{1}{m} \times \frac{1}{\text{weight of Sample (g)}} \times \frac{1}{1000}
\]

Where,
- I = Intensity Response of element for Sample.
- C = Intercept of the linearity curve.
- m = Slope of the linearity curve.

Specificity:--
Specificity is the ability of a method to measure specifically or selectively the analyte in the presence of components which may be expected to be present in the sample. Specificity was established by analyzing the blank, Test blank, standard and Sample solutions in ICP-MS and observed the interference. The observed interference of blank and Test blank was less than 3.0% hence method is specific refer (Table 3).
Table 3: Specificity.

Solution	Arsenic (As)	Cadmium (Cd)	Mercury (Hg)	Lead (Pb)
Blank- Intensity	29	49	257	43,858
% Interference	0.03	0.02	0.24	0.38
Test Blank-Intensity	128	730	3,192	265,993
% Interference	0.12	0.23	2.35	2.26

System suitability (system precision):
Six replicate of Linearity standard solutions 5 was run and find out relative standard deviation and System suitability run the Linearity standard solutions from 1 to 5 and check correlation coefficient. The %RSD of the six replicate run of Linearity standard solutions 5 was should be below 20% and correlation coefficient of Linearity standard from 1 to 5 should less than 0.99 refer (Table 4 and 5).

Table 4: System Precision.

Run Nos.	Arsenic (As)	Cadmium (Cd)	Mercury (Hg)	Lead (Pb)
1	163,855	486,054	205,475	17,630,628
2	163,146	486,261	204,698	17,643,338
3	164,870	495,097	205,053	17,842,138
4	165,454	492,956	206,045	17,963,836
5	166,793	491,029	205,723	17,778,016
6	167,647	493,071	207,724	18,121,590
Mean	162,726	485,314	203,988	17,652,338
SD	2967.00	6375.28	2407.64	247791.63
% RSD	1.82	1.31	1.18	1.40

Table 5: System suitability.

Standards	AS (ppb)	AS (Intensity)	Cd (ppb)	Cd (Intensity)	Hg (ppb)	Hg (Intensity)	Pb (ppb)	Pb (Intensity)
Blank	NA	NA	NA	NA	NA	NA	NA	NA
Std 1	25.0	42,184	12.50	125,295	2.50	51,880	25.0	4,454,365
Std 2	37.5	64,410	18.75	190,704	3.75	78,438	37.5	6,784,672
Std 3	50.0	84,554	25.00	250,385	5.00	104,965	50.0	9,011,390
Std 4	75.0	124,557	37.50	367,641	7.50	157,256	75.0	13,234,735
Std 5	100.0	165,265	50.00	490,696	10.00	205,529	100.0	17,786,066
Correlation Coefficient	0.9999	0.9999	0.9999	0.9999				

Limit of detection (LOD) and limit of quantitation (LOQ):
Five different concentrations of standard where run and find out the slope and STE_{XY}. Base on slope and STE_{XY} determined the LOD and LOQ. The LOD and LOQ for the element found to be 0.006ppm and 0.02ppm for As; 0.005ppm and 0.017 for Cd; 0.002ppm and 0.006 for Hg and 0.019ppm and 0.063ppm for Pb w.r.t test concentration refer (Table 6).
Table 6: Determination of LOD and LOQ: Linearity.

Standards	AS (ppb)	AS (Intensity)	Cd (ppb)	Cd (Intensity)	Hg (ppb)	Hg (Intensity)	Pb (ppb)	Pb (Intensity)
Blank	NA	NA	NA	NA	NA	NA	NA	NA
Std 1	10	16,881	5	48,457	1	19,152	10	1,726,324
Std 2	20	34,415	10	99,472	2	38,981	20	3,445,657
Std 3	30	51,332	15	148,883	3	58,820	30	5,185,435
Std 4	40	68,474	20	198,773	4	78,784	40	6,950,560
Std 5	50	85,873	25	251,050	5	100,287	50	8,827,399

Correlation Coefficient
- 1.0000
- 1.0000
- 0.9999
- 0.9999

Slope
- 1720.4300
- 10089.7400
- 20207.3000
- 177070.5300

Intercept
- -217.9000
- -2019.1000
- -1417.1000
- -85040.9000

STEYX
- 169.2189
- 863.5950
- 610.8578
- 55384.7152

LOD in ppm
- 0.0003
- 0.0003
- 0.0001
- 0.001

LOQ in ppm
- 0.0010
- 0.001
- 0.0003
- 0.003

LOD w.r.t. SPL
- 0.006
- 0.005
- 0.002
- 0.019

LOQ w.r.t. SPL
- 0.020
- 0.017
- 0.006
- 0.063

Precision at limit of quantitation level:
The LOQ precisions were evaluated by using six replicate of LOQ concentration and determine the %RSD. The obtained %RSD of the element was 4.37 % for As; 2.00 % for Cd; 2.92 % for Hg and 0.85 % for Pb (Table. 7).

Table 7: Precision at Limit of Quantitation

Preparation Nos.	Arsenic (As)	Cadmium (Cd)	Mercury (Hg)	Lead (Pb)
LOQ Solution_1	1.429	8.058	24.130	509,657
LOQ Solution_2	1.332	7.667	24.456	500,831
LOQ Solution_3	1.328	7.683	24.125	497,147
LOQ Solution_4	1.280	7.697	24.820	499,437
LOQ Solution_5	1.272	7.694	24.971	501,845
LOQ Solution_6	1.293	7.662	25.668	501,656
Mean	1322.33	7743.50	589.88	4240.75
SD	57.77	154.71	2.92	0.85
% RSD	4.37	2.00	0.020	0.063

Precision/ruggedness:
The ruggedness of the method was evaluated by determine the content of element form six different test preparation and find out the %RSD. The ruggedness parameter was done by different analysis, different day and different instrument. The obtained %RSD of each element was 5.67% for As; 5.19% for Cd; 3.79% for Hg and 5.34% for Pb (Table. 8 and 9).

Table 8: Precision and Ruggedness (Day1, Analyst 1).

SPL Id	SPL (wt)	As (Int)	Cont. (ppm)	Cd (Int)	Cont. (ppm)	Hg (Int)	Cont. (ppm)	Pb (Int)	Cont. (ppm)
Test_1	0.49958	80,137	1.1804	171,957	0.4902	102,032	0.1187	6,954,179	1.0894
Test_2	0.49927	78,149	1.1524	167,712	0.4786	100,183	0.1167	6,825,024	1.0705
Test_3	0.50039	75,267	1.1082	160,353	0.4571	96,796	0.1126	6,489,566	1.0174
Test_4	0.49766	73,004	1.0815	157,163	0.4507	96,209	0.1126	6,462,042	1.0188
Test_5	0.49471	69,842	1.0418	151,398	0.4372	92,203	0.1087	6,058,172	0.9631
Test_6	0.49687	68,657	1.0200	148,929	0.4284	91,847	0.1078	6,032,597	0.9550
Average		1.0974	0.4570	0.1129		1.0190			
SD	0.0622	0.0237	0.0043	0.0544					
% RSD	5.67	5.19	3.79	5.34					
Table 9: Precision and ruggedness (Day2, Analyst 2).

SPL Id	SPL (wt)	As (Int)	Cont. (ppm)	Cd (Int)	Cont. (ppm)	Hg (Int)	Cont. (ppm)	Pb (Int)	Cont. (ppm)
Test_1	0.51187	68,829	1.0064	173,524	0.4536	98,458	0.1087	7,329,192	0.9387
Test_2	0.50249	67,886	1.0111	171,149	0.4557	97,137	0.1093	7,241,401	0.9445
Test_3	0.50804	67,794	0.9987	169,307	0.4458	95,871	0.1067	7,145,229	0.9214
Test_4	0.50537	67,643	1.0017	169,371	0.4483	96,535	0.1080	7,168,941	0.9294
Test_5	0.50902	67,616	0.9941	170,065	0.4470	96,879	0.1076	7,244,084	0.9327
Test_6	0.51518	67,795	0.9849	171,993	0.4467	97,786	0.1073	7,246,896	0.9219
Average									
	0.9995			0.4495		0.1079		0.9315	
SD								0.0093	0.0041
% RSD	0.93	0.92	0.88	0.98					

Linearity:-
Under the optimized working conditions, five different concentration of standards were run and plotted calibration curve over the range from LOQ to 200%. The squared correlation coefficient was found to be 1.000 for As; 1.000 for Cd; 0.999 for Hg and 0.999 for Pb. For linearity curve refer (Table 6; Fig 2)

Fig 2: Linearity Graph for Arsenic, Cadmium, Mercury and Lead.

Accuracy/ Recovery study:-
Accuracy of method was determined by doping the respective concentration solution of element in test preparation and find the content of elements from test preparation. Recovery studies were carried out at concentration LOQ, 50%, 100%, and 200%. The obtained % recovery was well within the limit 70% to 150%. For accuracy refer (Table 10 and 11)
Table 10: Accuracy (As and Cd)

Spiked SPL Id	SPL (wt)	As (Int)	As Cont. (ppm)	As Dop. (ppm)	% Accuarcy	Cd (Int)	Cd Cont. (ppm)	Cd Dop. (ppm)	% Accuarcy
LOQ 0.49952	3.360	0.0175	0.020	89.2	9.782	0.0217	0.017	126.6	
LOQ 0.50167	3.176	0.0149	0.020	75.8	9.544	0.0210	0.017	122.4	
LOQ 0.49944	3.275	0.0169	0.020	86.1	9.662	0.0217	0.017	126.6	
50% 0.50024	52.076	0.6516	0.500	130.3	104.278	0.2511	0.250	100.4	
50% 0.49390	51.304	0.6503	0.500	130.1	103.335	0.2522	0.250	100.9	
50% 0.49495	51.286	0.6486	0.500	129.7	103.180	0.2512	0.250	100.5	
100% 0.49225	89.977	1.1642	1.000	114.4	192.094	0.4637	0.500	93.6	
100% 0.50091	90.025	1.1440	1.000	114.7	192.637	0.4692	0.500	93.8	
100% 0.49655	89.443	1.1468	1.000	114.7	192.637	0.4692	0.500	93.8	
200% 0.49926	172.061	2.2179	2.000	110.9	396.654	0.9631	1.000	96.3	
200% 0.49095	171.916	2.2546	2.000	112.7	394.128	0.9735	1.000	97.4	
200% 0.49711	172.143	2.2287	2.000	111.4	391.220	0.9540	1.000	95.4	

Average 83.7%-130.0% 93.4%-125.2%

Table 11: Accuracy (Hg and Pb)

Spiked SPL Id	SPL (wt)	Hg (Int)	Hg Cont. (ppm)	Hg Dop. (ppm)	% Accuarcy	Pb (Int)	Pb Cont. (ppm)	Pb Dop. (ppm)	% Accuarcy
LOQ 0.49952	21.791	0.0100	0.0120	83.5	1,060,171	0.0875	0.063	139.9	
LOQ 0.50167	21.957	0.0103	0.0120	85.5	1,050,004	0.0854	0.063	136.5	
LOQ 0.49494	22.334	0.0106	0.0120	88.5	1,062,058	0.0892	0.063	142.7	
50% 0.50024	52.751	0.0586	0.050	117.1	3,815,211	0.4671	0.500	93.4	
50% 0.49390	51.060	0.0586	0.050	117.2	3,882,569	0.4834	0.500	96.7	
50% 0.49495	52.603	0.0591	0.050	118.2	3,951,061	0.4918	0.500	98.4	
100% 0.49225	92.818	0.1075	0.100	107.5	6,982,526	0.9196	1.000	92.0	
100% 0.50091	93.945	0.1068	0.100	106.8	7,074,562	0.9151	1.000	91.5	
100% 0.49655	94.825	0.1089	0.100	108.9	7,183,941	0.9390	1.000	93.9	
200% 0.49926	197.569	0.2292	0.200	114.6	14,996,339	2.0127	2.000	100.6	
200% 0.49095	196.162	0.2316	0.200	115.8	15,078,283	2.0599	2.000	103.0	
200% 0.49711	194.947	0.2271	0.200	113.6	14,941,265	2.0140	2.000	100.7	

Average 85.8%-117.5% 89.1%-139.7%

Robustness study:
The robustness study was carried out by varying the instrument parameter and find out the content of heavy metals.
The variation in parameters was change in Dwell time from to 0.1s to 0.11s; Power hold time from 15 min to 16.5 min and 15min to 13.5 min. The obtained results of element were shown in (Table.12, 13 and 14).

Table 12: Robustness (Change in Dwell time from to 0.1s to 0.11s)

SPL Id	SPL (wt)	As (Int)	Cont. (ppm)	Cd (Int)	Cont. (ppm)	Hg (Int)	Cont. (ppm)	Pb (Int)	Cont. (ppm)
Test_1	0.49958	82677	1.2197	167641	0.4645	88838	0.0984	5965193	0.8498
Test_2	0.49927	84640	1.2496	169118	0.4689	88862	0.0985	5997955	0.8550
Test_3	0.50039	84444	1.2439	167667	0.4638	88035	0.0973	6036505	0.8586

Average 1.2377 0.4688 0.0981 0.08544
SD 0.0159 0.0028 0.0006 0.0044
% RSD 1.29 0.59 0.65 0.52

Table 13: Robustness (Change in power hold time from 15 min to 16.5 min.)
Table 14: Robustness (Change in Power hold time from 15min to 13.5 min)

SPL Id	SPL (wt)	As (Int)	Cont. (ppm)	Cd (Int)	Cont. (ppm)	Hg (Int)	Cont. (ppm)	Pb (Int)	Cont. (ppm)
Test_1	0.49587	86818	1.2444	172074	0.4686	91598	0.0987	620932	0.8679
Test_2	0.49789	84460	1.2037	168930	0.4574	89306	0.0956	605138	0.8605
Test_3	0.49885	84490	1.2039	169016	0.4576	89685	0.0960	605429	0.8608
Average		1.2173	0.4612		0.0968		0.0158		
SD		0.0235	0.0064		0.0017		0.0158		
% RSD		1.93	1.40		1.71		1.81		

Batch analysis:
The batch analysis was done in Triplicate as per method of analysis and found the results are well within limit. Refer (Table 15)

Table 15: Batch Analysis

SPL Id	SPL (wt)	As (Int)	Cont. (ppm)	Cd (Int)	Cont. (ppm)	Hg (Int)	Cont. (ppm)	Pb (Int)	Cont. (ppm)
Test_1	0.49952	2.033	0.0381	879	0.0105	3.128	0.0081	425763	0.0747
Test_2	0.49783	2.015	0.0380	887	0.0106	2.865	0.0078	425699	0.0749
Test_3	0.50088	1.992	0.0375	850	0.0104	2.732	0.0076	427781	0.0747
Average		0.0379	0.0105		0.0078		0.0748		

Results and Discussion:
Heavy metals are toxic in nature and have to control in specified limit. In recent ICH Q3D guideline specific limits were given for each element. In current pharmacopeia heavy metals test procedure performed by chemically and observed by visual observation, there was no any specific instrument methods was given in pharmacopeia therefore pharmacopeia team has revised the USP General chapter <232> and <2232>. This change will effective in year 2018. In hard gelatin capsules manufacturing process lots of water and colour dyes were used therefore heavy metals present in sample. To control these heavy metals needs method development. In hard gelatin capsule Arsenic, Mercury, Lead and Cadmium are heavy metals. We tried to develop a heavy metal on atomic absorption spectroscopy (AAS) instrument but due to less sensitivity and stringent limits as well as some limitation of AAS, AAS technique was not feasible. Hence we tried to develop method on inductively coupled plasma mass spectrometer. The sample preparation technique of hard gelatin capsule is very difficult because metals are soluble in waters and gelatin was insoluble in water. Hence sample preparation technique was critical. We use concentrated hydrochloric and nitric acid for sample preparation but sample was not dissolving properly. In sample preparation some issues was observed therefore we digest the sample in microwave digester and run the sample in inductively coupled plasma mass spectrometer (ICP-MS). The results obtained of such sample are getting higher side where as blank inference was more than 3.0%. Therefore again method development was required. We developed new technique using hydrogen peroxide and digest the sample in microwave digester. In this technique the blank interfere was below 3.0%. Base on this technique we further validate the method for specificity, linearity, accuracy, precision and robustness and obtained result are within acceptance criteria. The method was validated by ICH Q2 (R1) guideline parameter.
Conclusion:
The developed analytical method for determination of Arsenic, Mercury, cadmium and Lead as heavy metal in hard gelatin capsule shell by using inductively coupled plasma mass spectroscopy (ICP-MS). The analytical method was specific, accurate, precision, reproducible, rugged, linear and robust method. The same method has been validated as per ICH guideline Q2 (R1). This method can be use for routine quality control sample analysis or can use for control monitor for heavy metals in the manufacturing process of hard gelatin capsule preparation.

References:
1. Goncalves, Daniel A., et al. "Direct determination of chromium in empty medicine capsules by tungsten coil atomic emission spectrometry." Journal of Analytical Atomic Spectrometry 30.6 (2015): 1395-1399.
2. Yilmaz, Yildiz, Faraj Atassi, and Manuel Sanchez-Felix. "The application of crystallization in the presence of additives to enable drug-in-capsule technology." Pharmaceutical Development and Technology (2016): 1-5.
3. Yeong, Chai-Hong, et al. "Production and first use of 153 SmCl 3-ion exchange resin capsule formulation for assessing gastrointestinal motility." Applied Radiation and Isotopes 70.3 (2012): 450-455.
4. Wolkoff, Hal N., George Pinchuk, and Paul H. Shapiro. "Design and evaluation of a miniature air suspension coating apparatus." Journal of pharmaceutical sciences 57.2 (1968): 317-321.
5. Karin, R. W., J. A. Buono, and J. L. Fasching. "Removal of trace elemental impurities from polyethylene by nitric acid." Analytical Chemistry 47.13 (1975): 2296-2299.
6. Van Hoecke, Karen, Christian Catry, and Frank Vanhaecke. "Optimization of sample preparation and a quadrupole ICP-MS measurement protocol for the determination of elemental impurities in pharmaceutical substances in compliance with USP guidelines." Journal of Analytical Atomic Spectrometry 27.11 (2012): 1909-1919.
7. Braun, T., et al. "Determination of traces of elemental impurities in single walled (SWNT) and multi walled (MWNT) pristine and purified carbon nanotubes by instrumental neutron activation analysis." Journal of radioanalytical and nuclear chemistry 262.1 (2004): 31-34.
8. Cross, Eilene S., et al. "The effect of elemental and hydrocarbon impurities on mercuric iodide gamma ray detector performance." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 380.1 (1996): 23-25.
9. Stoving, Celina, et al. "Development and validation of an ICP-OES method for Quantitation of elemental impurities in tablets according to coming US pharmacopeia chapters." Journal of pharmaceutical and biomedical analysis 84 (2013): 209-214.
10. Muller, Aline LH, et al. "Study and determination of elemental impurities by ICP-MS in active pharmaceutical ingredients using single reaction chamber digestion in compliance with USP requirements." Talanta 136 (2015): 161-169.
11. Fischer, Lisa, et al. "Flow injection combined with ICP-MS for accurate high throughput analysis of elemental impurities in pharmaceutical products according to USP<232> <233>." Journal of pharmaceutical and biomedical analysis 95 (2014): 121-129.
12. Safadi M, Licht D, Zholkovsky M, Caciularu F, Andrysek T, Vrana A, Eiblova M, Stonis R, inventors. Rasagiline soft gelatin capsules. United States patent application US 12/455,969. 2010 Jan 14.