From standard model of particle physics to room-temperature superconductivity

G E Volovik

Low Temperature Laboratory, Aalto University, PO Box 15100, FI-00076 Aalto, Finland
Landau Institute for Theoretical Physics, acad. Semyonov av., 1 a, 142432 Chernogolovka, Russia

E-mail: volovik@boojum.hut.fi

Received 12 September 2014
Accepted for publication 27 April 2015
Published 25 August 2015

Abstract

Topological media are gapped or gapless fermionic systems, whose properties are protected by topology, and thus are robust to deformations of the parameters of the system and generic. We discuss here the class of gapless topological media, which contains the quantum vacuum of the Standard Model in its symmetric phase, and also the condensed matter systems with zeroes in the fermionic energy spectrum, which form Fermi surfaces, Weyl and Dirac points, Dirac lines, Khodel–Shaginyan flat bands, etc. Some zeroes are topologically protected, being characterized by topological invariants, expressed in terms of Green’s function. For the stability of the others the p-space topology must be accompanied by symmetry. Vacua with Weyl points serve as a source of effective relativistic quantum fields emerging at low energy: chiral fermions, effective gauge fields and tetrad gravity emerge together in the vicinity of a Weyl point. The accompanying effects, such as chiral anomaly, electroweak baryo-production and chiral vortical effect, are expressed via the symmetry protected p-space invariants. The gapless topological media exhibit the bulk-surface and bulk-vortex correspondence: which in particular may lead to the flat band on the surface of the system or in the core of topological defects. The materials with flat band in bulk, on the surface or within the dislocations have singular density of states, which crucially influences the critical temperature of the superconducting transition in such media. While in all the known superconductors the transition temperature is exponentially suppressed as a function of the pairing interaction, in the flat band the transition temperature is proportional to the pairing interaction, and thus can be essentially higher. So the p-space topology may give us the general recipe for the search or artificial fabrication of room-temperature superconductors.

Keywords: standard model, superconductivity, topological media

(Some figures may appear in colour only in the online journal)

1. Weyl point, level crossing and Berry phase monopole

Some features of topological matter can be formulated in terms of the Berry’s connection in momentum space p. For example, the Weyl points in the fermionic spectrum in standard model (SM) or in condensed matter Weyl materials such as superfluid 3He-A, can be viewed as the Berry’s phase monopoles in momentum space [1]. Such a monopole represents the topologically non-trivial point of level crossing (the conical or diabolical point) in the 3D space of parameters, where the parameters are three components of the (quasi) particle momentum (p_x, p_y, p_z).

Figure 1 demonstrates the elementary case of the level crossing, where only two branches of spectra touch each other. Near the crossing point the complex $n \times n$ Hamiltonian is effectively reduced to the 2×2 matrix

$$H = \sigma \cdot g(p),$$

where σ are the Pauli matrices. In the vicinity of the Weyl point $p^{(0)}$, only linear terms in expansion of the Hamiltonian are important, and one obtains the effective Hamiltonian

$$H \approx \epsilon \sigma^1 \left(p_i - p_i^{(0)}\right),$$

In the non-uniform situation the parameters of expansion ϵ_i and $p^{(0)}$ become the fields, and then the Hamiltonian (2)
describes the Weyl relativistic particle with spin $s = \frac{1}{2}$, which propagates in the effective gravitational field of the dreibein $e^i_1(\mathbf{r})$ and in the effective electromagnetic field $A(\mathbf{r}) = \mathbf{g}^\dagger(\mathbf{p})$.

This may suggest, that the Weyl particles of the SM, the relativistic spin, the gauge and gravitational fields and all the other stuff of relativistic quantum fields could be the emergent phenomena, which originate from the level crossing in the underlying deep quantum vacuum [2, 3]. This is supported by topology [5]. That is why it may lead to the universal consequences which do not depend much on the microscopic details of the deep quantum vacuum.

In the simple case of 2×2 complex matrix, the topological invariant can be expressed in terms of the unit vector $\mathbf{g} = \mathbf{g}/|\mathbf{g}|$, see figure 1 (bottom left), where the integral is over the 2D surface around the Weyl point. This integer valued invariant N_3 determines the chirality of the Weyl particle, which emerges near the crossing point. The fermions living near the Weyl point with topological charge $N_3 = -1$ behave as the left-handed particles with spectrum $H = -\sigma \cdot \mathbf{p}$, while the value $N_3 = +1$ corresponds to the right-handed fermions with $H = \sigma \cdot \mathbf{p}$. This suggests that the chiral nature of left-handed and right-handed quarks and leptons could be also the emergent phenomenon.

2. Symmetry and topology of Green’s functions

The more interesting geometry and topology of the crossing points occur if the symmetries of the Hamiltonian are taken into account. For example, starting from purely real Hamiltonians H, one finds that depending on symmetry of H the effective quasiparticles emerging near the crossing point may behave as Majorana, Dirac or Weyl fermions [6–8]. This suggests that appearance of complex numbers in quantum mechanics is also the emergent phenomenon, i.e. complex numbers emerge in the low energy description of the underlying high energy theory together with Weyl particles and gauge and gravitational fields.

The symmetry consideration is especially important for SM vacuum in its symmetric semimetal phase above the electroweak transition. In this phase the total topological charge N_1 of the multiple crossing point at $\mathbf{p} = 0$ is zero, $N_1 = \sum \omega N_1(\omega) = 0$, where the sum is over all the fermions. The massless Weyl particles survive only due to a special symmetry between the fermions, which does not allow for
mixing of Weyl points with opposite topological charges and thus protects the masslessness of quarks and leptons.

However, at this point the formulation in terms of the Berry phase becomes too complicated. Moreover, this formulation is not complete, since it is applicable only to single-particle Hamiltonians and thus only to the non-interacting quantum fields. The more relevant formulation is in terms of the Green’s function topology, since it automatically includes the interactions. In this approach the topological invariants (Chern numbers) can be expressed via the Green’s function $G(p, \omega)$, where ω is Matsubara frequency (see the earlier papers on the quantum Hall effect, quantum Hall topological insulators and Chern–Simons action [9–16] and on topology of nodes in fermionic spectrum [2, 6, 17], and the more recent papers [18, 19]).

The Weyl point represents the Green’s function singularity described by the π_2 topological invariant [17]:

$$N_3 = \frac{\epsilon_{a\mu}^{a\mu}}{24\pi^2} \text{tr} \int d^3s \sum G_{\alpha\beta\mu}^{\alpha\beta\mu} G^{-1} \partial_\mu G^{-1} \partial_\mu N_{\alpha\beta\mu}^{\alpha\beta\mu} G^{-1}. \quad (3)$$

Here the integral is over the 3D surface σ around the singular point in the 4-momentum space $p_\mu = (\omega, \mathbf{p})$. For the non-interacting fermions one has $G^{-1} = i\omega - H$, and in the case of 2 × 2 matrix Hamiltonian the equation (3) transforms to the equation in figure 1 (bottom left) for the Berry phase monopole.

The Green’s function approach also allows us to consider the combined effects of topology and symmetry, when the symmetry gives rise to additional topological invariants expressed via the Green’s functions [14, 20]. In the case of the multiple Weyl points, the symmetry protected topological invariants have the following structure [3, 21]:

$$N_3(\mathcal{K}) = \frac{\epsilon_{a\mu}^{a\mu}}{24\pi^2} \text{tr} \left[\mathcal{K} \int d^3s \sum G_{\alpha\beta\mu}^{\alpha\beta\mu} G^{-1} \partial_\mu G^{-1} \partial_\mu N_{\alpha\beta\mu}^{\alpha\beta\mu} G^{-1} \right]. \quad (4)$$

Here \mathcal{K} is the matrix, which commutes or anticommutes with the Green’s function matrix. This can be the discrete symmetry operator, the generator of continuous symmetry transformations, and in some cases the matrix of chemical potential (see equation (20.6) for the chiral vortical effect (CVE) in [3]).

In the symmetric vacuum of SM the key symmetry \mathcal{K} is the Z_2 subgroup of the electroweak symmetry group $SU(2) \times U(1)$ [22]. It protects the masslessness of quarks and leptons, as a result the symmetric phase of SM is analogous to Dirac semimetals in condensed matter (identification of the topological Dirac semimetal in Cd$_3$As$_2$ has been reported in [23]). Below the electroweak transition the \mathcal{K}-symmetry is spontaneously broken. Without the symmetry protection, all the quarks and leptons acquire Dirac masses, and the vacuum of SM becomes the topological insulator with its own topological invariants [22].

The symmetry protected topological invariants

$$N_3(\mathcal{K}_1, \mathcal{K}_2, \mathcal{K}_3) = \frac{\epsilon_{a\mu}^{a\mu}}{24\pi^2} \text{tr} \left[\mathcal{K}_1 \mathcal{K}_2 \mathcal{K}_3 \int d^3s \sum G_{\alpha\beta\mu}^{\alpha\beta\mu} G^{-1} \partial_\mu G^{-1} \partial_\mu N_{\alpha\beta\mu}^{\alpha\beta\mu} G^{-1} \right]. \quad (5)$$

are responsible for quantization of different physical parameters. For example, the production of baryonic charge from the quantum vacuum by hyperelectric Y_E and hypermagnetic B_Y fields is determined by the triangle diagram in figure 2, which describes the phenomenon of chiral anomaly [25, 26]. The production rate is

$$B = \frac{1}{4\pi^2} N_3(B Y, \mathcal{Y}) B_Y \cdot E_Y, \quad (6)$$

where the coefficient $N_3(B Y, \mathcal{Y})$ is the topological invariant in equation (5), with \mathcal{K}_1 being the matrix of baryonic charges B of SM fermions; and $\mathcal{K}_2 = \mathcal{K}_3 = \mathcal{Y}$, the generator of the hypercharge Y.

Using $\mathcal{K}_1 = Q$, the matrix of electric charges of SM fermions, and $\mathcal{K}_2 = \mathcal{K}_3 = \mu$, the matrix of chemical potentials, one obtains the prefactor in the so-called CVE, when the dissipationless equilibrium current is proportional to the angular velocity of rotation: $J = N_3(Q \mu \mu) \left(\Omega / h^2 \right) [3]$. CVE has been studied in chiral liquids with the imbalance between the left and right fermions [27–30].
gapless topological vacua as defects in \(p \)-space

\[
\omega \quad \hat{p}_y (p_z)\quad \hat{p}_x
\]

\[
\Delta \phi = 2\pi
\]

\[p \equiv p_1\quad p \equiv p_2\]

Khodel-Shaginyan flat band: \(\pi \)-vortex in \(p \)-space

\[3\text{He-A}, \text{ vacuum of Standard Model, topological semimetals (Abrikosov)}\]

\[\text{fully gapped topological vacua as skyrmions in } p \text{-space}\]

\[
3\text{He-B, topological insulators, intrinsic QHE & spin QHE,}
\]
\[3\text{He-A film, Standard Model vacuum in massive phase}\]

\[\text{dimensional reduction of Horava-2005 K-theory classification}\]

\[\text{bulk - surface correspondence}\]

\[\text{strings terminated by monopole in bulk}\]

\[\text{Figure 3. Topological materials as configurations in } p \text{-space. (Top left): Fermi surface as vortex in } p \text{-space [3], see figure 4. (Bottom left): Khodel–Shaginyan flat band [35], formed by splitting of Fermi surface (} p \text{-space vortex) into two half-quantum vortices connected by } p \text{-space domain wall [36]. (Top middle): Weyl point as hedgehog (monopole) in } p \text{-space (see figure 1). Topological stability of the Weyl point was first considered in [31]. In [32] the Weyl point in } ^3\text{He-A is viewed as the } p \text{-space analog of boojum, the topological object introduced by David Mermin [33], which can live on a surface of the system, but not in bulk (topological classification of boojums see in [34]). In } ^3\text{He-A the } p \text{-space boojum lives on Fermi surface. (Bottom right): Kopnin–Salomaa flat band in the vortex core in the Weyl superfluids [37–39] and Fermi arc on the surface of the Weyl material [40] represent the } p \text{-space analogs of strings terminated by monopole. (Top right): topological insulators and fully gapped superfluids/superconductors are the non-singular topological configurations in } p \text{-space. The figure demonstrates the configuration of the field } g(p_x, p_y) \text{ in the } 2D \text{ topological insulator discussed in [41]. This configuration is the } p \text{-space analog of continuous topological objects–skyrmions.}\]

The topological charge of this skyrmion, \(N_3 = \frac{1}{2\pi} \int d^2p \cdot \hat{d} \cdot \frac{\partial }{\partial p_x} \times \frac{\partial }{\partial p_y} \), determines the intrinsic quantum Hall effect (i.e. without external magnetic field); \(\sigma_y = N_3 e^2/\hbar \) [13]. In 2D crystals the integral is over the Brillouin zone. The more general \(p \)-space skyrmions describe the 3D topological band insulators [42, 43]; fully gapped superfluid \(^3\text{He-B} [44–47]; 2D\) materials exhibiting intrinsic quantum Hall and spin-Hall effects, such as gapped graphene [48], thin film of superfluid \(^3\text{He-A}\) and 2D planar phase of triplet superfluid [13–15]; chiral superconductor \(\text{Sr}_{2}\text{RuO}_4 \) [49], etc. These theories have the topological properties similar to that of quantum vacuum of standard model in its broken symmetry massive phase, i.e. in the state below the electroweak transition, where all elementary particles are massive [22].

3. Fermi surface, flat band and room-temperature superconductivity

Figure 3 demonstrates different classes of topological materials. They correspond to different topological configurations in \(p \)-space: quantized vortices (Fermi surfaces in metals); hedgehogs (Weyl materials); skyrmions (topological insulators and fully gapped topological superfluids); half-quantum vortices terminating the domain wall (Khodel–Shaginyan flat band [35, 36]), the \(r \)-space counterpart of this configuration can be found in [50]; and strings terminated by monopoles (Kopnin–Salomaa flat band in the core of Weyl superfluids [37–39]).

The most robust object in \(p \)-space is the Fermi surface. Its stability is similar to the topological stability of the vortex line in superconductor (figure 4). Fermi surface in \(p \)-space and the quantized vortex in \(r \)-space, though they live in different spaces, are described by the same topological invariant—the winding number \(N_1 \), which characterizes the elements of homotopy group \(\pi_1 \). The topological stability of the Fermi surface towards perturbative interactions is at the origin of existence of metals.

The Dirac, Weyl and Majorana points, which are described by the homotopy group \(\pi_3 \), are rare in condensed matter systems. The reason for that is that the \(\pi_3 \) topological stability does not prevent the expansion of a point to a small Fermi surface. The topological invariant \(N_3 \) in equation (3) still holds if the integral is around the whole Fermi pocket. So such a Fermi surface has two topological invariants, the local invariant \(N_1 \) of a \(p \)-space vortex and the global invariant \(N_3 \) of the former \(p \)-space hedgehog. An example of the interplay of two invariants, \(N_1 \) and \(N_3 \), is demonstrated in figure 5. This figure describes the topological quantum phase transitions at which the global invariant \(N_3 \) is transferred between two
In addition, the topological invariant N_2, which describes the Dirac nodal lines [52, 53], can be involved leading to a more complicated behavior, see e.g. the structure of four Dirac lines which are expanded to form the Fermi surface of graphite [54, 55]. If the interaction between the electron is strong enough, the Fermi surface in turn can be expanded to the more powerful manifold of zeroes, where the energy of electrons is zero in the 3D region of momentum space [35, 36]. Such a 3D flat band is formed due to the effect of merging of the energy levels caused by the interaction between the fermions. Both the phenomenological Landau type theory [38] and the Hubbard model calculations [56] suggest, that the interaction supported flat band is more easily formed in the vicinity of the saddle point (see figure 6). Recently the merging of levels due to interaction has been reported in [57]. From the point of view of the p-space topology, the flat band is formed by splitting of the p-space vortex to two half-quantum vortices terminating the p-space domain wall–the flat band [36], see figure 3 (bottom left).

If the interaction between the electron is strong enough, the Fermi surface in turn can be expanded to the more powerful manifold of zeroes, where the energy of electrons is zero in the 3D region of momentum space [35, 36]. Such a 3D flat band is formed due to the effect of merging of the energy levels caused by the interaction between the fermions. Both the phenomenological Landau type theory [38] and the Hubbard model calculations [56] suggest, that the interaction supported flat band is more easily formed in the vicinity of the saddle point (see figure 6). Recently the merging of levels due to interaction has been reported in [57]. From the point of view of the p-space topology, the flat band is formed by splitting of the p-space vortex to two half-quantum vortices terminating the p-space domain wall–the flat band [36], see figure 3 (bottom left).

The flat band has the enhanced density of states, as compared to the Fermi surface. As a result the superconducting transition temperature is not exponentially suppressed, but is proportional to the coupling constant g in the Cooper channel [35] (see figure 7). The flat band materials

Figure 4. (Left): vortex ring in superfluid or superconductor. The phase Φ of the complex scalar order parameter changes by 2π around the vortex line (winding number $N_1 = 1$). (Right): Fermi surface as quantized vortex line in p-space. For simplicity one dimension (p_z) is suppressed, and the Fermi surface represents the closed line in 3D space (ω, p_x, p_y). In the simplest case, the Green’s function is the complex scalar, and its phase Φ changes by 2π around the vortex line (winding number $N_1 = 1$). The non-zero winding number indicates, that the Green’s function must have singularity on the line, which means the existence of the gapless fermionic excitations. In a general case, when the Green’s function is matrix, the N_1 is the integer valued topological invariant, which describes the mapping of the contour around the vortex line to the space of non-degenerate complex matrices.

Figure 5. Illustration of the interplay of local N_1 and global N_3 topological charges of Fermi surfaces. The process of the topological quantum phase transition is shown, where t is the parameter of interaction, or time. When t increases, the initial Fermi spheres with opposite global topological charges, $N_3 = \pm 1$, merge forming the single Fermi surface with $N_1 = 0$, which then splits into two Fermi spheres, both with trivial global charges, $N_3 = 0$ [51]. Looks somewhat similar to interaction of closed strings in string theory. The more interesting effects are expected if one takes into account the topology of the shape of the Fermi surface and also the other topological invariants, such as N_2, which describes the Dirac nodal lines in 3D systems and Dirac point nodes in graphene [52, 53], see e.g. Dirac lines within the Fermi surface of graphite [54, 55].
The momentum space topology provides the other sources of 2D Fermi liquid \cite{38}. Numerical simulations of the 2D Hubbard model also show that strong interaction leads to the flattening of the spectrum in the vicinity of the saddle point \cite{56}.

Figure 6. The Khodel–Shaginyan flat band (Fermi condensate) formed near the saddle point due to interaction between electrons. In the black region all electrons have zero energy. The figure demonstrates the result of the phenomenological Landau model of 2D Fermi liquid \cite{38}. Numerical simulations of the 2D Hubbard model also show that strong interaction leads to the flattening of the spectrum in the vicinity of the saddle point \cite{56}.

Figure 7. The gap equation (top) leads to exponentially suppressed transition temperature in conventional Fermi liquid (left) and to the linear dependence of the superconducting transition temperature on the coupling g in the flat band material (right) \cite{35,38}. The flat band may open the route to room temperature superconductivity.

The momentum space topology provides the other sources of the flat band, which do not depend on interaction. The flat band emerges due to the correspondence between the topology in bulk and the topology of spectrum on the surface (bulk-surface correspondence), or within the topological object (bulk-vortex correspondence). Let us consider the formation of the topological flat band on example of the Kopnin–Salomaa flat band of Andreev–Majorana fermions in the vortex core of Weyl superfluids \cite{37} (see figure 8 and \cite{39}).

If the vortex is oriented along the z-axis, then p_z is a good quantum number both for the bulk states and the bound states in the vortex core. So one can consider the problem at fixed value of $p_z = \text{const}$ as a parameter. In other words we have a set of 2D fermionic systems numerated by the parameter p_z, with the bulk spectrum $E_R(p_x, p_y)$.

If the plane $p_z = \text{const}$ does not contain the Weyl point, at which $E_R(p_x, p_y) = 0$, this plane represents the fully gapped 2D superfluid. Such a superfluid is characterized by the topological invariant N_1 in figure 8 (bottom) \cite{10–14}. The value of this invariant depends on p_z. For $|p_z| < p_0(0) |\cos \lambda|$, $N_1(p_z) = 1$, which means that for these p_z the 2D superfluids are topological, while for $|p_z| > p_0(0) |\cos \lambda|$ the 2D superfluids are topologically trivial with $N_1(p_z) = 0$. Point vortex in the topologically non-trivial chiral 2D superfluids has the Majorana mode with exactly zero energy \cite{59,60}. That is why the vortex line in the original 3D system has the dispersionless branch of Majorana modes, $E_{\text{bound}}(p_z) = 0$, for all p_z in the interval $|p_z| < p_0(0) |\cos \lambda|$. This is the flat band.

The flat band terminates at points where it merges with the bulk spectrum $E_R(p_x, p_y)$, i.e. the boundary of the flat band are determined by the positions $p_0(0)$ of the Weyl point in p-space.

In a similar manner the flat band appears on the surface of the 3D system, if the bulk contains topologically protected lines of zeroes (Dirac lines) \cite{52,53,61–65}. According to the bulk-surface correspondence, the boundaries of the flat band are determined by the projection of the Dirac line to the surface. In the lower dimension the same effect leads to the 1D flat band on the zig-zag boundary of 2D graphene \cite{61}.

Recently another possible source of the topological flat band has been discussed in two materials: highly oriented pyrolytic Bernal graphite (HOPG) \cite{66} and heterostructures SnTe/PbTe, PbTe/PbS, PbTe/PbSe, and PbTe/YbS consisting of a topological crystalline insulator and a trivial insulator \cite{67}. In both cases the flat band comes from the misfit dislocation array, which is spontaneously formed at the interface between two crystals due to the lattice mismatch. In \cite{66} the lattice of screw dislocations has been considered, which emerges at the interface between two domains of HOPG with different orientations of crystal axes. In \cite{67} the misfit dislocation array is formed at the interface between topological and trivial insulators. The topological origin of the flat bands in these systems can be understood in terms of the overlapping of the 1D flat bands formed within the dislocations.

The above two systems exhibit similar phenomenon. In both cases the surface superconductivity is reported, which is concentrated at the interfaces. The reported transition temperature essentially exceeds the typical transition temperature expected for the bulk materials. The possible origin of this phenomenon is the flat band at the interfaces, where the transition temperature could be proportional to the coupling constant and the area of the flat band (see figure 7). This suggests to seriously reconsider different publications reporting superconducting-like signals up to room temperature in graphite-based samples (see \cite{68} and references therein).
Topologically protected Kopnin–Salomaa flat band in vortex core of Weyl superfluid

![Diagram of vortex core with topologically protected flat band](image)

The vortex is oriented along the axis z. The angle λ is the polar angle of the position $p^{(0)}$ of the Weyl point in p-space. The planes $p^{(0)} = \text{const}$ represent the 2D superfluids. For $|p| > p^{(0)} \cos \lambda$, the energy spectrum $E(p, p^{(0)})$ is fully gapped. For $|p| < p^{(0)} \cos \lambda$ the 2D superfluids are topological, since their topological invariant on the bottom of the figure is $N_z(p) = 1$. The vortex core in the topological 2D superfluid contains the Andreev–Majorana bound state with zero energy [59, 60]. The set of the Andreev–Majorana bound states form the flat band in the interval $|p| < p^{(0)} \cos \lambda$. The flat band terminates at points where the bulk spectrum has zero, that is why it represents the string in the p-space, which is terminated by monopole in bulk in figure 3 (bottom right).

Figure 8. Topological origin of the Kopnin–Salomaa flat band of Majorana fermions in the core of a vortex in Weyl superfluid/superconductor [37]. The vortex is oriented along the axis z. The angle λ is the polar angle of the position $p^{(0)}$ of the Weyl point in p-space. The planes $p^{(0)} = \text{const}$ represent the 2D superfluids. For $|p| > p^{(0)} \cos \lambda$, the energy spectrum $E(p, p^{(0)})$ is fully gapped. For $|p| < p^{(0)} \cos \lambda$ the 2D superfluids are topological, since their topological invariant on the bottom of the figure is $N_z(p) = 1$. The vortex core in the topological 2D superfluid contains the Andreev–Majorana bound state with zero energy [59, 60]. The set of the Andreev–Majorana bound states form the flat band in the interval $|p| < p^{(0)} \cos \lambda$. The flat band terminates at points where the bulk spectrum has zero, that is why it represents the string in the p-space, which is terminated by monopole in bulk in figure 3 (bottom right).

References

[1] Volovik G E 1987 Zeroes in the fermionic spectrum in superfluid systems as diabolical points JETP Lett. 46 98–102
[2] Froggatt C D and Nielsen H B 1991 Origin of Symmetry (Singapore: World Scientific)
[3] Volovik G E 2003 The Universe in a Helium Droplet (Oxford: Clarendon)
[4] von Neumann J and Wigner E P 1929 Phys. Z. 30 467
[5] Novikov S P 1981 Magnetic Bloch functions and vector bundles. Typical dispersion laws and their quantum numbers Sov. Math. Dokl 23 298–303
[6] Hofava P 2005 Stability of Fermi surfaces and K-theory Phys. Rev. Lett. 95 016405
[7] Wilczek F 2012 Introduction to quantum matter Phys. Scr. T 146 014001
[8] Volovik G E and Zubkov M A 2014 Emergent Weyl spinors in multi-fermion systems Nucl. Phys. B 881 514–38
[9] Niu Q, Thouless D J and Wu Y-S 1985 Quantized Hall conductance as a topological invariant Phys. Rev. B 31 3372–7
[10] So H 1985 Induced topological invariants by lattice fermions in odd dimensions Prog. Theor. Phys. 74 585–93
[11] Ishikawa K and Matsuyama T 1986 Magnetic field induced multi component QED in three-dimensions and quantum Hall effect Z. Phys. C 33 41–45
[12] Ishikawa K and Matsuyama T 1987 A microscopic theory of the quantum Hall effect Nucl. Phys. B 280 523–48
[13] Volovik G E 1988 An analog of the quantum Hall effect in a superfluid 3He film JETP 67 1804–11
[14] Volovik G E and Yakovenko V M 1989 Fractional charge, spin and statistics of solitons in superfluid 3He film J. Phys.: Condens. Matter 1 5263–74
[15] Yakovenko V M 1989 Spin, statistics and charge of solitons in (2+1)-dimensional theories Fizika (Zagreb) 21 231
[16] Golterman M F L, Jansen K and Kaplan D B 1993 Chern–Simons currents and chiral fermions on the lattice Phys. Lett. B 301 219–23
[17] Grinevich P G and Volovik G E 1988 Topology of gap nodes in superfluid 3He: π_4 homotopy group for 3He-B disclination J. Low Temp. Phys. 72 371–80
[18] Essin A M and Gurarie V 2011 Bulk-boundary correspondence of topological insulators from their Green’s functions Phys. Rev. B 84 125132
[19] Gurarie V and Essin A M 2013 Topological invariants for the fractional quantum Hall states JETP Lett. 97 233–8
[20] Volovik G E 1989 Fractional statistics and analogs of quantum Hall effect in superfluid 3He films AIP Conf. Proc. 194 136–46
[21] Volovik G E 2000 Momentum-space topology of standard model J. Low Temp. Phys. 119 241–47
[22] Volovik G E 2010 Topological invariants for standard model: from semi-metal to topological insulator JETP Lett. 91 55–61
[23] Liu Z K et al 2014 A stable three-dimensional topological Dirac semimetal Cd3As2 Nat. Mater. 13 677–81
