Rapid compact jet quenching in the Galactic black hole candidate X-ray binary MAXI J1535-571

Russell, T.D.; Lucchini, M.; Tetarenko, A.J.; Miller-Jones, J.C.A.; Sivakoff, G.R.; Krauß, F.; Mulaudzi, W.; Baglio, M.C.; Russell, D.M.; Altamirano, D.; Ceccobello, C.; Corbel, S.; Degenaar, N.; van den Eijnden, J.; Fender, R.; Heinz, S.; Koljonen, K.I.I.; Maitra, D.; Markoff, S.; Migliari, S.; Parikh, A.S.; Plotkin, R.M.; Rupen, M.; Sarazin, C.; Soria, R.; Wijnands, R.

DOI 10.1093/mnras/staa2650

Publication date
2020

Document Version
Final published version

Published in
Monthly Notices of the Royal Astronomical Society

Citation for published version (APA):
Russell, T. D., Lucchini, M., Tetarenko, A. J., Miller-Jones, J. C. A., Sivakoff, G. R., Krauß, F., Mulaudzi, W., Baglio, M. C., Russell, D. M., Altamirano, D., Ceccobello, C., Corbel, S., Degenaar, N., van den Eijnden, J., Fender, R., Heinz, S., Koljonen, K. I. I., Maitra, D., Markoff, S., ... Wijnands, R. (2020). Rapid compact jet quenching in the Galactic black hole candidate X-ray binary MAXI J1535-571. Monthly Notices of the Royal Astronomical Society, 498(4), 5772-5785. https://doi.org/10.1093/mnras/staa2650
Rapid compact jet quenching in the Galactic black hole candidate X-ray binary MAXI J1535−571

T. D. Russell, M. Lucchini, A. J. Tetarenko, J. C. A. Miller-Jones, G. R. Sivakoff, F. Krauß, W. Mulaudzi, M. C. Baglio, D. M. Russell, D. Altamirano, S. Corbel, N. Degenaar, J. van den Eijnden, R. Fender, S. Heinz, K. I. I. Koljonen, D. Maitra, S. Markoff, S. Migliari, A. S. Parikh, R. M. Plotkin, M. Rupen, C. Sarazin, G. R. Sivakoff, D. Altamirano, C. Ceccobello, R. Fender, S. Heinz, K. I. I. Koljonen, D. Maitra, S. Markoff, S. Migliari, A. S. Parikh, R. M. Plotkin, M. Rupen, C. Sarazin, R. Soria, R. Wijnands

Affiliations are listed at the end of the paper

Accepted 2020 August 24. Received 2020 August 18; in original form 2020 May 8

ABSTRACT

We present results from six epochs of quasi-simultaneous radio, (sub-)millimetre, infrared, optical, and X-ray observations of the black hole X-ray binary MAXI J1535−571. These observations show that as the source transitioned through the hard−intermediate X-ray state towards the soft−intermediate X-ray state, the jet underwent dramatic and rapid changes. We observed the frequency of the jet spectral break, which corresponds to the most compact region in the jet where particle acceleration begins (higher frequencies indicate closer to the black hole), evolves from the infrared band into the radio band (decreasing by ∼3 orders of magnitude) in less than a day. During one observational epoch, we found evidence of the jet spectral break evolving in frequency through the radio band. Estimating the magnetic field and size of the particle acceleration region shows that the rapid fading of the high-energy jet emission was not consistent with radiative cooling; instead, the particle acceleration region seems to be moving away from the black hole on approximately dynamical time-scales. This result suggests that the compact jet quenching is not caused by local changes to the particle acceleration, rather we are observing the acceleration region of the jet travelling away from the black hole with the jet flow. Spectral analysis of the X-ray emission shows a gradual softening in the few days before the dramatic jet changes, followed by a more rapid softening ∼1–2 d after the onset of the jet quenching.

Key words: acceleration of particles−accretion, accretion discs−ISM: jets and outflows−submillimetre: general−X-rays: binaries−X-rays: individual (MAXI J1535−571).

1 INTRODUCTION

Accreting stellar-mass black holes (BHs) in X-ray binaries (XRBs) are able to launch powerful, collimated outflows, or jets, which dominate the observed emission at radio to infrared (IR) wavelengths. While there is an observable connection between the processes of accretion and jet production in BH XRBs (e.g. Corbel et al. 2004; Fender, Belloni & Gallo 2004), at present, precisely how these jets are launched and the detailed coupling with the accretion flow remain important yet poorly understood astrophysical questions.

During periods of increased mass accretion on to the BH, XRBs go through phases of bright outburst where they evolve through their distinct modes of accretion on time-scales of weeks to months (or even years). During such outbursts, the observed properties of the jets change dramatically (e.g. Fender 2006). Therefore, simultaneous multiwavelength observations of these systems that monitor both the jets and the accretion flow (observed at optical, X-ray, and higher frequencies) during their outbursts provide a unique view of the accretion−jet evolution, probing the structural changes in the jet and helping to constrain the underlying jet physics (e.g. Corbel et al. 2000, 2003; Markoff, Nowak & Wilms 2005; Chaty, Dubus & Raichoor 2011; Russell et al. 2014b; Ceccobello et al. 2018).

In an outburst, BH XRBs are initially in a hard X-ray spectral state (see Belloni 2010 for a review of the X-ray accretion states), where the X-ray emission is dominated by a power-law component from inverse Compton scattering by hot electrons in the innermost regions (e.g. Narayan & Yi 1995). As the accretion rate increases, the source transitions towards a soft X-ray spectral state, first moving through the hard−intermediate and soft−intermediate states (HIMS and SIMS, respectively). This evolution occurs as the X-ray spectrum becomes progressively more dominated by soft X-ray emission from the accretion disc, while the hard power-law component becomes steeper (softens), due to either the emission region contracting (Kara et al. 2019) or a change in the spectrum as the jet evolves (e.g. Plotkin, Gallo & Jonker 2013). After a few weeks to months (or even years), the mass accretion rate drops and the outburst begins to fade. The XRB then transitions back through the intermediate states to the hard state as the disc cools and the power-law component begins to dominate once again.

Over the transition between the different accretion states, the observed jet properties change dramatically. The hard state is characterized by a steady, partially self-absorbed compact jet (e.g. Corbel et al. 2000; Dhawan, Mirabel & Rodríguez 2000; Fender 2001; Stirling et al. 2001; Fender et al. 2004). Observed from radio
to IR wavelengths, the compact jet exhibits a flat-to-inverted radio to mm spectrum ($\alpha \gtrsim 0$, where the observed flux density, S_ν, scales with frequency, ν, such that $S_\nu \propto \nu^{-\alpha}$; e.g. Fender 2001). The flat spectrum extends up to $\sim 10^{13}$ Hz (e.g. Corbel & Fender 2002; Russell et al. 2013a), above which the jet becomes optically thin and the spectrum is steep ($\alpha \approx 0.6$; e.g. Russell et al. 2013a). This jet spectral break corresponds to the most compact region in the jet where particle acceleration begins (the first acceleration zone; e.g. Markoff, Falcke & Fender 2001; Corbel & Fender 2002; Markoff et al. 2005; Markoff 2010; Romero et al. 2017). The frequency (ν_{break}) and flux density of the jet spectral break are likely set by internal jet plasma properties, and its frequency scales with its distance from the BH (with higher frequencies probing regions closer to the BH; Blandford & Königl 1979). Determining the break’s location and evolution can help to reveal key properties of the jet outflow (e.g. Heinz & Sunyaev 2003; Chaty et al. 2011; Polko, Meier & Markoff 2014; Russell et al. 2014b; Ceccobello et al. 2018).

In the early phase of a typical outburst, as the source transitions through the hard and then the intermediate states, the jet break is believed to gradually shift to lower frequencies, eventually moving through the radio band. One interpretation of this evolution is that the particle-accelerating region moves away from the BH (e.g. Chaty et al. 2011; Russell et al. 2014b; Kylafis & Reig 2018), due to changes in the jet internal properties that in turn dictate where particle acceleration happens (e.g. Malzac 2014). However, the detailed behaviour of the jet break during the rise has not yet been well determined, where the evolution of ν_{break} during the outburst rise has only been inferred from observations of the radio spectrum changing from flat to steep as the jet break moves from above to below the radio band (e.g. Corbel et al. 2013a), van der Horst et al. (2013) presented radio monitoring of MAXI J1659−152 showing that a single power law did not well represent the radio data. Their results suggested that the spectral break was moving from higher frequencies into the radio band and back to higher frequencies on ∼day time-scales as the source transitioned back and forth between the HIMS, SIMS, and soft states.

At some point during the transition from the hard to soft state, the compact jet emission switches off (e.g. Fender et al. 2004), being quenched by at least 3.5 orders of magnitude (Russell et al. 2019). ν_{break} evolving to lower frequencies signals the progressive quenching of the higher energy emission from the compact jet (Miller-Jones et al. 2012; Corbel et al. 2013a; Russell et al. 2014b). However, the complete evolution has not been directly observed. Around the transition to the soft state, a bright, transient jet can also be launched (e.g. Mirabel & Rodríguez 1994; Hjellming & Rupen 1995; Tingay et al. 1995), which is characterized by rapid flaring and an optically thin radio spectrum (Hjellming & Rupen 1995; Fender et al. 1999; Fender 2001). While no compact jet is observed in the soft state, residual radio emission may be observed from ejecta launched from the system around the state transition (transient jet; e.g. Corbel et al. 2002, 2004; Fender et al. 2004; Russell et al. 2019; Bright et al. 2020). Additionally, from IR monitoring of the BH XRB 4U 1543−47, Russell et al. (2020) reported an IR flare as the source briefly returned to the SIMS from the soft state. This flare suggested that the compact jet emission switched back on during this brief (∼5 d) return to the SIMS, before the source transitioned back to the soft state.

Towards the end of an outburst, the source moves back towards the hard state and the compact jet gradually re-establishes over a period of several weeks (Kalemci et al. 2013; Russell et al. 2014b). The jet first brightens at lower frequencies before brightening at IR and optical frequencies (Miller-Jones et al. 2012; Corbel et al. 2013b). This progressive brightening is associated with X-ray spectral hardening, where ν_{break} has been observed to shift to higher frequencies, first through the radio band (as shown by the radio spectrum evolving from steep to flat/inverted; e.g. Corbel et al. 2013b), and then gradually up to IR frequencies (Russell et al. 2013b, 2014b). The best sampled evolution of ν_{break} to date was observed during this phase of an outburst from MAXI J1836−194, where the break was observed to shift gradually by ∼3 orders of magnitude from low to higher frequencies over ∼6 weeks, possibly connected to changes in the source hardness (Russell et al. 2014b).

MAXI J1535−571 is a Galactic BH candidate XRB that was first discovered in 2017 September, in the early phase of its ∼1-yr-long outburst (Markwardt et al. 2017; Negoro et al. 2017). This outburst was extensively monitored at radio (Chauhan et al. 2019; Parikh et al. 2019; Russell et al. 2019), sub-mm (Tetarenko et al. 2017b), IR, and optical (Baglio et al. 2018), and X-ray (Huang et al. 2018; Nakahira et al. 2018; Stevens et al. 2018; Tao et al. 2018; Bhargava et al. 2019; Sreehari et al. 2019, Sridhar et al. 2019) wavelengths. See Tao et al. (2018) and Nakahira et al. (2018) for a full discussion on the X-ray states during the outburst. MAXI J1535−571 is located 4.1±0.5 kpc away (determined via an H I absorption study; Chauhan et al. 2019).

In this work, we present six epochs of quasi-simultaneous (typically ±0.5 d) radio, mm, IR, optical, and X-ray observations of MAXI J1535−571 as it softened through the HIMS and transitioned into the SIMS. To understand the full evolution of the jet and how it is connected to the accretion flow, we model the broad-band spectral evolution of this source. For the first time, we have been able to track the time evolution of the jet spectral break during the rise of an outburst. Our results show a sudden decrease in ν_{break} close to the HIMS to SIMS transition, indicating the onset of rapid compact jet quenching. We discuss the physical implications that arise from this rapid evolution.

2 OBSERVATIONS

2.1 Radio observations

MAXI J1535−571 was monitored in the radio band by the Australia Telescope Compact Array (ATCA) throughout its 2017/2018 outburst and rebrightenings (project codes C2601 and C3057, PI: Russell). See Russell et al. (2019) and Parikh et al. (2019) for the full details of the complete ATCA monitoring of the source during this outburst. In this paper, we use only the radio observations that had quasi-simultaneous sub-mm, IR, and optical observations to infer the evolution of the jet spectral break as the source evolved. Therefore, we discuss six ATCA observations taken between 2017 September 12 and 21 (MJD 58008−58018), during the outburst rise. All observations were taken at central frequencies of 5.5 and 9.0 GHz, 17.0 and 19.0 GHz, or at all four frequencies, where each frequency pair (5.5/9 or 17/19 GHz) was recorded simultaneously. Errors on the absolute flux density scale include conservative systematic uncertainties of 4 per cent (see e.g. Murphy et al. 2010; Partridge et al. 2016).

To explore rapid intra-observational source variability during the September 17 ATCA radio observation, we used UVMULTIFIT (Marí-
Vidal et al. 2014). Fitting for a point source in the uv-plane, we explored flux density variations of the source down to 2 min timescales, separating the 5.5 and 9 GHz data into equally spaced 512 MHz sub-bands, and the 17 and 19 GHz data into 1 GHz sub-bands. For these data, uncertainties were estimated by treating the inner two 17/19 GHz scans of the secondary calibrator as a target and comparing the flux densities of those ‘target’ scans to the calibrator scans. For each of those two scans, the flux density remained within 0.5 per cent of the expected value. Therefore, we apply a 0.5 per cent relative uncertainty to the intra-observational data on September 17. All radio data used in this work are tabulated in Table A1.

2.2 Millimetre/sub-millimetre observations

The Atacama Large Millimetre/submillimetre Array (ALMA) observed MAXI J1535−571 (PI: Tetarenko, project code: 2016.1.00925.T) on 2017 September 11 (MJD 58007.9017−58007.9711) and September 21/22 (MJD 58017.9296−58018.0319 and MJD 58018.9272−58018.9641). Data were taken sequentially in Bands 3, 4, and 6, at central frequencies of 97.5, 145, and 236 GHz, respectively. The ALMA correlator was set up to yield 4×2 GHz wide base bands. During our observations, the 12-m array was in its Cycle 4 C8 configuration, with between 39 and 45 antennas, spending ∼9.8/12.1/18.9 min total on the target source in Bands 3, 4, and 6. The median precipitable water vapour during the observations was 1.01 mm on September 11 and 1.26 mm on September 21/22. We reduced and imaged the data with the Common Astronomy Software Application package (CASA, version 5.1.1; McMullin et al. 2007), using standard procedures outlined in the CASA Guides for ALMA data reduction. We used J1617−5848, J1427−4206, and J2056−4714 as bandpass and flux calibrators, and J1631−5256 as a phase calibrator for all the observations. To image the continuum emission, we performed multifrequency synthesis imaging on the data with the tclean task within CASA, with natural weighting to maximize sensitivity. Multiple rounds of phase-only self-calibration were implemented, down to solution intervals of 20 s. We measured flux densities of the source by fitting a point source in the image plane (with the imfit task).

For the September 12 and 21 ALMA data, the sub-mm emission was variable during the observation. This variability arises from short time-scale brightening and fading of the flat-spectrum compact jet. To account for the full range of flux densities observed, we applied errors of ±10, 15, and 20 mJy to the 97.5, 145, and 236 GHz ALMA data on September 12, respectively. On September 21, we applied errors of 10 and 3 mJy to the 97.5 and 145 GHz data, respectively. These errors are larger than the expected 5 per cent uncertainty for ALMA bands <350 GHz. All ALMA mm/sub-mm fluxes are tabulated in Table A1.

2.3 Near-IR and optical monitoring

Baglio et al. (2018) presented and discussed dense optical, near-IR, and mid-IR monitoring of MAXI J1535−571 during the rise phase of its outburst. In this paper, we take optical and IR observations that were close in time (typically ±0.5 d) to our radio and sub-mm observations. All IR and optical data were dereddened with an N_H of (3.84 ± 0.03) × 1022 cm$^{-2}$ (see Baglio et al. 2018 for full details). Data used are provided in Table A1.

2.4 X-ray observations

The Neil Gehrels Swift Observatory X-ray telescope (XRT) monitored MAXI J1535−571 every ∼1−2 d during the rise of the 2017 outburst. For full details of the Swift-XRT monitoring, see Tao et al. (2018). In this work, we used only the observations closest in time to our ATCA monitoring (+0.5 d). Swift-XRT data were processed, extracted, and analysed with the standard tools in HEASOFT (version 6.25). We ran the xrtpipeline to apply the newest calibration. The target source was extracted with xselect (version 2.4) with a box along the WT read-out strip with a length of 35 (82.506 arcsec). The inner 20 pixels (47.146 arcsec) were excluded in order to eliminate pile-up. The background was extracted with an annulus region centred on the source, with radii of 46 pixels (108.436 arcsec) and 100 pixels (235.731 arcsec).

We note that there appeared to be some discrepancy between spectral results from different X-ray telescopes, in particular an offset in the slope of the X-ray photon index and normalization between Swift-XRT, NuSTAR (Nuclear Spectroscopic Telescope Array), and XMM–Newton X-ray telescopes (for further discussions, see e.g. Kolehmainen, Done & Diaz Trigo 2014; Ingram et al. 2016; Ludlam et al. 2016; Sanna et al. 2017; van den Eijnden et al. 2017). However, the evolution trend of each parameter was the same regardless of the X-ray telescope. Therefore, as we focus on relative changes to the accretion flow properties, our key findings remain unchanged across all X-ray telescopes. Due to its high observing cadence and more complete monitoring, in this work we used X-ray observations taken with Swift-XRT.

3 BROAD-BAND SPECTRAL MODELLING

For the six epochs with quasi-simultaneous, multiwavelength coverage, the broad-band spectral energy distribution (SED) was modelled with the Interactive Spectral Interpretation System (ISIS, version 1.6.2-35; Houck & Denicola 2000). We fit the radio to IR data with a broken power law (representing the optically thick and thin synchrotron emission from the compact jet); we include an artificial exponential cut-off so as not to assume that the optically thin synchrotron emission from the jet contributes to the X-ray emission. The X-ray data were modelled with an absorbed irradiated inner and outer disc (Gierliński, Done & Page 2009). The full multiwavelength model is tbnew*(highecutoff+bknpower+diskir).

The data were fit with the ISIS implementation of a Markov chain Monte Carlo algorithm, based on the PYTHON package by Foreman-Mackey et al. (2013). We use 20 walkers per free parameter and evolve the chain for 10 000 loops, taking the first 4000 to be the ‘burn-in’ period to ensure convergence of the algorithm. We found that this was roughly the time required for the chain to converge, which we define as the point past which the posterior distribution of the parameters stops evolving, and the acceptance rate of the chain stabilizes. We define the best-fitting values as the median of the one-dimensional posterior distribution, and the 1σ uncertainties as the intervals of the posterior distribution in which 68 per cent of the walkers are found. Fits are shown in Fig. 1, with best-fitting parameters given in Table 1.

The broad-band data from each epoch were fit independently, with the exception of the optically thin jet spectral index, α_{thin}, which was tied across the epochs from September 12 to 16, and the fraction of disc luminosity reprocessed in the outer disc, f_{out}, which was tied...
across all epochs. Leaving it free did not improve the quality of the fit, nor change the best-fitting parameter values significantly. We chose to tie these parameters in order to reduce the model’s inherent degeneracy, as both of these parameters set the ratio of emission from the jet or accretion flow to the optical/IR emission on September 12–16. \(N_H\) was free, but tied across all epochs providing a result similar to previously determined values from more comprehensive X-ray studies of this source (e.g. Tao et al. 2018). The temperature

Table 1. Best-fitting parameters from the broad-band radio-to-X-ray modelling of MAXI J1535$-$571 (Fig. 1). The September 12–17 epochs were taken during the HIMS, while the source was in the SIMS on September 21 (Tao et al. 2018). \(\alpha_{\text{thick}}\) is the spectral index of the optically thick synchrotron emission, while \(\alpha_{\text{thin}}\) is the index of the optically thin synchrotron emission. \(v_{\text{break}}\) is the frequency of the jet spectral break, \(kT_{\text{disc}}\) is the disc temperature, \(\Gamma\) is the photon index of the high-energy X-ray emission, and \(L_c/L_{\text{disk}}\) is the fraction of the luminosity emitted in the corona to the total accretion flow luminosity. \(f_{\text{thick}}\), the fraction of disc luminosity reprocessed in the outer disc, was tied across all epochs providing a best-fitting value of \(1.6^{+0.9}_{-0.8} \times 10^{-7}\). \(N_H\), the line-of-sight equivalent hydrogen column density, was also tied across all epochs, giving a best-fitting value of \(5.15^{+0.03}_{-0.02} \times 10^{22}\) cm$^{-2}$. All quoted uncertainties are 1σ. The fits are shown in Fig. 1. The best-fitting statistic is \(\chi^2/\text{d.o.f.} = 2785.075/1490 = 1.87\).

\[
\begin{array}{ccccccccc}
\text{Date} & \alpha_{\text{thick}} & v_{\text{break}} & \alpha_{\text{thin}}^a & f_{\text{thick}} & kT_{\text{disc}} & \Gamma & L_c/L_{\text{disk}} & \text{disk}\text{ir}^b \\
\hline
\text{2017 September 12} & 0.17 \pm 0.02 & (8.6^{+2.6}_{-2.2}) \times 10^{12} & -0.83 \pm 0.09 & 4.29^{+1.29}_{-0.84} & 0.234 \pm 0.004 & 1.74^{+0.01}_{-0.02} & 5.7^{+0.5}_{-0.4} & 1.1^{+0.07}_{-0.06} \\
\text{2017 September 14} & 0.09^{+0.02}_{-0.01} & (1.6^{+0.5}_{-0.4}) \times 10^{13} & -0.83 \pm 0.09 & 1.31^{+0.40}_{-0.27} & 0.245^{+0.003}_{-0.002} & 1.93^{+0.01}_{-0.02} & 1.45^{+0.09}_{-0.07} & 2.9 \pm 0.2 \\
\text{2017 September 15} & 0.17 \pm 0.02 & (7.2^{+1.9}_{-1.7}) \times 10^{12} & -0.83 \pm 0.09 & 4.66^{+1.72}_{-1.94} & 0.236 \pm 0.003 & 1.96^{+0.01}_{-0.02} & 1.39^{+0.11}_{-0.09} & 3.3 \pm 0.3 \\
\text{2017 September 16} & -0.010 \pm 0.005 & (3.4 \pm 0.7) \times 10^{13} & -0.83 \pm 0.09 & 0.22 \pm 0.02 & 0.244^{+0.003}_{-0.002} & 1.86 \pm 0.02 & 2.7 \pm 0.2 & 1.70^{+0.13}_{-0.12} \\
\text{2017 September 17}^b & 0.24^{+0.01}_{-0.02} & (7.9^{+1.0}_{-1.4}) \times 10^{9} & -0.26^{+0.06}_{-0.05} & 14.1^{+3.4}_{-3.3} & 0.241^{+0.002}_{-0.001} & 1.95 \pm 0.01 & 1.75^{+0.10}_{-0.09} & 4.6^{+0.4}_{-0.3} \\
\text{2017 September 21}^c & - & 4.5 \times 10^{9} & -0.52 \pm 0.02 & 37.0^{+2.6}_{-0.9} & 0.09^{+0.07}_{-0.03} & 2.17 \pm 0.01 & 9.3^{+2.3}_{-2.5} & 55.0^{+3.1}_{-2.0} \\
\end{array}
\]

\(^a\)Parameter tied across the first four epochs due to lack of IR data on September 12 and 14.
\(^b\)For this epoch, \(\alpha_{\text{thick}},\) \(v_{\text{break}},\) and \(\alpha_{\text{thin}}\) were determined from our detailed radio analysis (see Section 4.2), although we note that leaving these parameters free in our broadband modelling produced similar results.
\(^c\)For this final multiwavelength epoch, the radio and sub-mm emission originated from optically thin synchrotron emission from the transient jet (Russell et al. 2019).
of the corona was fixed at $T_c = 100$ keV. The remaining parameters of diskir were frozen to $R_{in} = 1.2$, $f_{in} = 0.1$, and $\log(R_{out}) = 4.5$. In principle, the Compton component from diskir can be made up of thermal electrons, non-thermal electrons, or synchrotron self-Compton (due to the presence of a magnetic field). In this work, we do not attempt to distinguish or identify the contribution from different Compton components. Additionally, due to the high line-of-sight absorption, the companion was not detected. Therefore, the IR and optical excess, which exceeded the jet contribution, is due to irradiation of the inner and outer accretion disc.

4 RESULTS

4.1 Source evolution

During the first epoch of multiwavelength monitoring (on 2017 September 12), MAXI J1535−571 was in the HIMS with a relatively hard X-ray spectrum ($\Gamma = 1.74^{+0.02}_{-0.00}$) and a flat to slightly inverted radio spectrum (Table 1). The radio, mm, and IR broad-band data indicated that during this epoch the optically thick synchrotron emission extended beyond the mm band, such that $\nu_{\text{break}} \sim 10^{14}$ Hz.

Our next four multiwavelength epochs were taken on consecutive days, running from 2017 September 14 to 17. For all of these, the source remained within the HIMS. While the X-ray spectrum had softened from the first multiwavelength epoch, during these four consecutive observations the X-ray photon index remained relatively steady ($\Gamma \approx 1.85$–1.95), and, aside from the first epoch, the disc temperature was also stable (where $kT_{\text{disc}} \approx 0.24$ keV). Between September 14 and 16, the compact jet appeared steady, with α_{in} remaining flat to slightly inverted and ν_{break} around 10^{13} Hz. However, for the September 17 epoch, we observed a sudden and dramatic change in the jet emission. Our observations showed ν_{break} had decreased to $7.9_{-1.4}^{+1.9} \times 10^{12}$ Hz, lying within the radio band with evidence that it was decreasing throughout the radio observation (see Section 4.2).

For our final multiwavelength epoch on 2017 September 21, MAXI J1535−571 had transitioned into the SIMS (Tao et al. 2018). The X-ray spectrum had softened ($\Gamma = 2.17 \pm 0.01$). During this epoch, we detect only steep spectrum radio emission originating from a discrete ejection associated with the transient jet (see Russell et al. 2019 for further details).

4.2 ν_{break} within the radio band on 2017 September 17

The radio spectrum on 2017 September 17 was not well represented by a single power law. To investigate this further, we performed a more detailed timing and frequency analysis of these radio data, where we determined the flux densities of the target on 2 min time intervals, and on finer frequency scales (512 MHz sub-bands for the 5.5 and 9 GHz data, and 1 GHz sub-bands for the 17 and 19 GHz radio data; see Appendix B for the full table of results from the short-time interval study). This analysis shows that during our September 17 radio observation the 4.5–6.5 GHz radio emission was inverted, such that $\alpha_{4.5 \text{GHz}} \approx 0.2$ (Fig. 2). While the 4.5–6.5 GHz emission time variable, the variability did not show any clear trends in time or across different frequency bands. At the same time, the 8–10 GHz emission exhibited a steep radio spectrum ($\alpha \approx -0.27$) and the emission appeared to fade towards the end of the 15 min observation (from ≈ 143 to ≈ 130 mJy). The steep spectrum 16–20 GHz emission appeared steady for the first part of the observation, but was observed to be fading steadily during the second part. To check that the variability and observed radio spectrum were intrinsic to the source, for the 4.5–6.5 and 8–10 GHz observations we compared our results to a comparison source that was within...
the field\(^6\) and did not detect similar behaviour. For the 16–20 GHz observations, we did not detect this check source, or any others in the field. Therefore, to test whether the observed variability was intrinsic to MAXI J1535−571 we recalibrated the data treating the inner two scans of the phase calibrator as target scans. As shown in Fig. 2, these two ‘target’ scans remained steady, indicating that the variability was related to MAXI J1535−571 (see Section 2.1 for further details). The shape of the radio spectrum and behaviour of the radio emission during our September 17 ATCA observation implied that the jet spectral break was within or between the 4.5–6.5 and 8–10 GHz observing bands and decreasing in frequency during the September 17 radio observation (Fig. 3 and Table 2).

There was a mid-IR VISIR (J8.9 band, 3.44×10^{13} Hz) observation taken ≈ 12 h before our radio observation on 2017 September 17 (observed between 00:52 and 01:27 UT; see Baglio et al. 2018). This bright mid-IR detection had a dereddened integrated flux density of 141 ± 12 mJy, which indicated that the jet was still bright at mid-IR frequencies ($\sim 3 \times 10^{13}$ Hz) at this time. However, this mid-IR emission faded from ~ 180 to ~ 110 mJy over the 35 min observation (see fig. 3 in Baglio et al. 2018), implying that the IR and optical jet emission was rapidly fading. As a check, assuming that this mid-IR emission was decaying exponentially, fitting and extrapolating the VISIR flux densities to the time of our radio observation suggests that we would expect no jet contribution at mid-IR frequencies by the time of our radio observation. Therefore, we do not include this mid-IR data point in our multiwavelength fit for the September 17 data; instead, we chose to include it in our September 16 data, when the compact jet was still on. Baglio et al. (2018) reported a 45 ± 5 mJy dereddened M-band (6.19×10^{13} Hz) detection of the source ~ 11 h after our September 17 radio epoch. While the detected IR emission at this epoch had faded considerably, there may be some contribution from a jet. However, the authors suggest that the observed IR variations detected appear to be associated with an intermittent jet or flaring from the jet base, and not the steady compact jet detected in the days before (see Baglio et al. 2018 for further discussion). These two mid-IR observations taken $\sim 11–12$ h before and after our radio observation show the jet had faded at IR frequencies over this time, in agreement with our radio results, although the jet base may have been flaring.

We note that the rapid radio variability during our 2017 September 17 epoch will have had some effect on our SED modelling results. However, the key finding of the break residing in the radio band remains.

5 DISCUSSION

With our multiwavelength observations of MAXI J1535−571, we detected the rapid evolution of the compact jet during the HIMS as the source transitioned to the SIMS. In particular, our observations show ν\textsubscript{break} decreased suddenly as the source transitioned from the hard to soft states. In this section, we discuss the implications of this finding for how the compact jet emission is believed to quench.

5.1 Time evolution of ν\textsubscript{break}

Previously, the time evolution of ν\textsubscript{break} during the rise phase of an outburst has only been implied by the change from an optically thick

\(^6\)The nearby field source is located at right ascension 15\(^h\)35\(^m\)11\(^s\)46 and declination: $-57\,10\,46 / 37$ (≈ 160 arcsec to the north-north-west of MAXI J1535−571).
to optically thin radio spectrum, or the rate at which the IR emission fades as the source transits from the hard state to the soft state (through the intermediate states). IR rates of decay have suggested an evolution of \sim1–2 weeks (see Jain et al. 2001; Saikia et al. 2019). With our radio-to-IR coverage, we have been able to accurately track the evolution of v_{break} as the source moved from the HIMS to the SIMS. Our observations show that v_{break} decreased in frequency by \sim3 orders of magnitude (evolving from \sim1013 to \sim1010 Hz) in <24 h (Table 1 and Fig. 1). In fact, the bright, jet-dominated mid-IR detection \sim12 h before our September 17 radio observation suggests that the jet break evolved from the IR to radio band in \sim12 h or less, implying a minimum rate of \sim1 order of magnitude in frequency in <4 h. However, detailed time and frequency analysis of our September 17 radio observation shows v_{break} within the radio band, where we were able to place more stringent constraints, estimating v_{break} to be decreasing at a rate of \sim1.8 GHz over the \sim15 min observation (which approximates to one order of magnitude in $1.4 \, h$ assuming it was decreasing linearly with time).

To estimate the rate at which v_{break} was evolving within the radio, within HIMS, we fit a broken power law to each 2 min time segment of the strictly simultaneous 4.5–10 GHz data (Fig. 3 and Table 2). The changes in the radio data imply that v_{break} decreased by $1.83^{+0.45}_{-0.45}$ GHz over the 15 min observation (Fig. 3 and Table 2).

Recent studies have inferred rapid changes of v_{break} in two other BH candidates, MAXI J1659–152 (van der Horst et al. 2013) and GX 339–4 (Gandhi et al. 2011). In the 2010 outburst of MAXI J1659–152, the jet spectral break was found to be intermittently in the observed radio bands and at (unobserved) higher frequencies, as the source switched back and forth between the SIMS and HIMS, before settling into the soft state. In one such oscillation, it was possible to infer that v_{break} decreased by at least one order of magnitude in less than 3 d (van der Horst et al. 2013). However, v_{break} could not be more precisely constrained at all the epochs in which it fell above the radio bands, because of the lack of mm and IR observations. For GX 339–4, the IR spectrum in the 1013–1014 GHz band changed from optically thick to optically thin between two Wide-Field Infrared Survey Explorer (WISE) observations taken 1.58 h apart in 2010 (Gandhi et al. 2011). This spectral change implies that v_{break} decreased by more than one order of magnitude in <1.8 h, but in that case, too, it was not possible to constrain the rate more precisely because there were no observations above and below the WISE band.

With our multiband study of MAXI J1535–571, we have identified an extremely rapid rate of change of v_{break}, equivalent to one order of magnitude in \sim1.4 h, and a total of three orders of magnitude in \sim1.58 h apart in 2010 (Gandhi et al. 2011). This spectral change implies that v_{break} could not be more precisely constrained at all the epochs in which it fell above the radio bands, because of the lack of mm and IR observations. For MAXI J1535–571’s 2017 outburst. Top panel: The frequency of the jet spectral break. Middle panel: Radius of the first acceleration zone, R_F, in gravitational radii (assuming a 10 M\odot BH). Lower panel: The magnetic field at the jet base, B_F. The grey region marks the HIMS \rightarrow SIMS transition, where the expanse is the uncertainty in the time that it occurred (Tao et al. 2018). The vertical dashed lines show the full range estimated for the ejection of the transient jet knot detected from the system (see Russell et al. 2019). v_{break} shifted by \sim3 orders of magnitude in <1 d, resulting in rapid changes to the radius and magnetic field of the acceleration region.

<1 d. Most importantly, we have been able to, for the first time, pinpoint its location before, during, and after such a rapid transition.

5.2 Radius and magnetic field of the particle acceleration zone

As outlined by Chaty et al. (2011), following Rybicki & Lightman (1979) and Longair (2011), with the frequency and flux density of the jet spectral break we can estimate the radius (R_F) and magnetic field strength (B_F) of the first acceleration zone, which is where particle acceleration begins (Fig. 4). Assuming equipartition between the particle energy and magnetic field energy density, B_F and R_F can be approximated using the frequency and flux density of the spectral break, such that

$$B_F \propto S_{\nu b}^{-2/(p+1)}$$

and

$$R_F \propto S_{\nu b}^{(p+b)/(2p+1)} v_b^{-1},$$
where \(f \) is the break frequency, \(S_{\nu,b} \) is the flux density at the break frequency, and \(p \) is the slope of the electron energy spectrum, such that \(p = 1 - 2\alpha_{\text{min}} \). See Appendix C for the full equations.

From equations (1) and (2), our broad-band modelling implies that during the HIMS when the compact jet appeared to be relatively steady, \(R_F \sim 10^3 - 10^4 R_F \) and \(B_F \sim 10^4 \) G (Fig. 4). Then, as the compact jet began to rapidly fade during the early stages of the jet being quenched, \(R_F \) and \(B_F \) changed significantly in the space of \(\approx 1 \) d. Between September 16 and 17, we estimate that \(R_F \) increased from \(\sim 10^4 R_F \) to \(\sim 10^6 R_F \) (assuming a 10 M\(_{\odot}\) BH). Over the same time, \(B_F \) decreased from \(\sim 10^5 \) to \(\sim 10^4 \) G.

MAXI J1836–194 is the only other case where the time evolution of \(R_F \) and \(B_F \) has been determined (Russell et al. 2014b), in that case during the outburst decay. In that system, the compact jet was observed to re-establish after the peak of the outburst; hence, while the values of \(R_F \) and \(B_F \) are comparable, their evolution was reversed. However, in MAXI J1836–194 that evolution occurred over a period of \(\sim 6 \) weeks, as opposed to the \(\lesssim 1 \) d we determine for MAXI J1535–571.

5.2.1 Adiabatic and radiative cooling time-scales

From the magnetic field and radius estimates (Fig. 4), we can estimate the cooling (adiabatic and radiative) time-scales of the particles in the jet. Assuming a conical jet with a constant jet opening angle and expansion speed of (of the ejected material) \(\beta_{\text{exp}} \), we define the adiabatic time-scale as

\[
\tau_{\text{ad}} = \frac{R_F}{\beta_{\text{exp}} c} = 0.48 \left(\frac{0.1}{\beta_{\text{exp}}} \right) \left(\frac{R_F}{10^4 R_F} \right) \left(\frac{M_{\text{BH}}}{10 M_{\odot}} \right) \text{s},
\]

where \(R_F \) is the radius of the emitting region, \(c \) is the speed of light, and \(M_{\text{BH}}/10 M_{\odot} \) is the mass of the BH in units of 10 M\(_{\odot}\). For a conical jet with a constant opening angle, the emission height above the BH \(z_{\text{em}} = R_F/\beta_{\text{exp}} \) (this can also be thought of as the light traveltime from the BH to the emitting region including a beaming factor). For a given magnetic field \(B_F \), the synchrotron radiative time-scale is

\[
\tau_{\text{syn}} = \frac{3m_e c^2}{4\sigma_T U_b \gamma} = 6\sigma_T \frac{m_e c}{\sigma_T B_F^2 \gamma} \gamma = 7.8 \left(\frac{10^4 \text{G}}{B_F} \right)^2 \left(\frac{1}{\gamma} \right) \text{s},
\]

where \(m_e \) is the mass of the electron, \(\sigma_T \) is the Thomson cross-section, \(U_b = B_F^2/\sigma_T \) is the magnetic energy density, and \(\gamma \) is the electron Lorentz factor. We neglect inverse Compton losses for simplicity and due to lack of observational constraints, although we expect them to be small (Miller-Jones et al. 2004). Fig. 5 shows the evolution over all multiwavelength epochs. During September 12–16, both adiabatic and radiative time-scales are very short, as the optically thin emitting region is very close to the BH. However, this changes dramatically on September 17 as the break frequency shifts into the radio band. On this epoch, the time over which the compact jet was fading at higher frequencies was consistent with our estimates for the dynamical/adiabatic time-scales, while the radiative time-scales are longer by two to three orders of magnitude (even for modest electron Lorentz factors, \(\gamma = 100 \), where the Lorentz factors suggested by our calculated values of \(B_F \) are \(\sim 0.56 \)–\(56 \)). This result implies that the evolution of \(v_{\text{break}} \) and hence the high-energy quenching of the compact jet, was not driven by some local phenomena, like the details of particle acceleration. Instead, a more likely explanation is some major change in the internal properties of the jet, such that the particle

\[7\text{ Emitting at 9 GHz.}\]

8 Radio observations on September 21 show emission from the transient jet and not the compact jet.
(close to – or even below – the jet spectral break). This would result in the optically thin spectrum appearing steeper by $\alpha \sim 1/2$. Then, as the jet emission began to switch off (on September 17) and the cooling time-scales became much longer, the frequency of the synchrotron cooling break, v_{cool}, would be above the observed radio and sub-mm bands, such that α_{disk} would appear shallower (consistent with uncooled optically thin synchrotron emission). Our understanding of the location and evolution of v_{cool} is not well constrained. Studies have suggested that it may lie in the ultraviolet (Γ_{152}) to the X-ray band as the source transitions from the hard state to the soft state (Russell et al. 2014b), before evolving into the X-ray band as the source transitions from the hard state to the soft state (e.g. Pe'er & Markoff 2012; Russell et al. 2013a; Shahbaz et al. 2013). Therefore, with such poor constraints and suggested variability, it is plausible for the synchrotron cooling break to lie at IR frequencies during our September 12–16 observations, evolving to higher energies as the source transitioned towards the HIMS (on September 17 and beyond). However, we are not able to place any constraints on its specific frequency during the observations presented here.

5.3 Connection to the X-ray emission

Interestingly, at the time that the jet dissipation region moved away, we did not detect any sudden and remarkable changes to the soft X-ray count rate, disc temperature, and X-ray photon index (Table 1), although the radio event was rapid, so we may have missed any clear but brief changes in the X-ray emission that occurred outside of the daily Swift X-ray observations. The closest-in-time Swift-XRT observation (which was used for our multiband SED fitting) was taken ~10 hours before we detected the jet spectral break within the radio band. If directly connected, we may expect that those X-ray observations may already have shown a change as the IR observations around the same time as this X-ray observation indicate that the high-energy jet emission was already fading (see IR discussion in Section 4.2, and discussions in Baglio et al. 2018). We also compared our result to the Swift-XRT observation taken on September 18 (Tao et al. 2018), finding that while the disc temperature remained similar, the X-ray photon index did soften from $\Gamma = 1.87_{-0.01}^{+0.02}$ on September 17 to $\Gamma = 2.17_{-0.07}^{+0.06}$ on September 18 (results from Tao et al. 2018, to remain consistent) and the soft X-ray flux increased. The X-ray spectrum then continued to soften considerably in the few days after we detected the changes in the jet spectrum, transitioning from the HIMS to the SIMS between September 18 and beyond (on September 19 08:52 UT). The highest-cadence X-ray monitoring with the Neutron Star Interior Composition Explorer at the same time as the onset of the compact jet quenching (Stevens et al. 2018) showed similar results. The (1–10 keV) source hardness continued to decrease steadily after the first four multiband SED measurements (September 12–16) agree well with the broader population of BH XRBs and active galactic nuclei (AGNs, at lower values of Γ; see Fig. 6). However, as the source softened (on September 17) and the radio jet began to rapidly evolve, v_{break} appeared lower than expected for that value of Γ, which continued to be observed on September 21, when the break was below the radio band.10 Interestingly, our result for this epoch lies in the same region as the results determined for MAXI J1659–152 (van der Horst et al. 2013) during a similar phase of the outburst (Fig. 6), as opposed to the majority of the other measurements that have been taken during the outburst decay phase when the jet is re-igniting. The similarities in the evolution of v_{break} for both MAXI J1535–571 and MAXI J1659–152 suggest that the process driving the changes may be the same between these two sources. However, we note that the relation proposed by Koljonen et al. (2015) used only observations with broad X-ray coverage (much greater than 10 keV) to ensure a well-constrained X-ray photon index. Our X-ray data were only taken between 0.5 and 10 keV and we find discrepancies in Γ with some X-ray telescopes (but not others;}

\footnote{To date, Aquila X-1 is the only neutron star system with constraints on the evolution of the jet spectral break.}

\footnote{As mentioned previously, the September 17 X-ray observation was taken ~10 hours before our radio observation, so we also compared v_{break} to the X-ray photon index measured on September 18, and find a similar result, where v_{break} falls below the expected correlation.}

\footnote{Any value in this section that may be related, the expected time delay between the X-ray–IR (~0.1 s; see Gandhi et al. 2017; Russell et al. 2020) and X-ray–radio (~30 min; see Tetarenko et al. 2019) changes should be much shorter.}

\footnote{Interestingly, at the time that the jet dissipation region moved away, we did not detect any sudden and remarkable changes to the soft X-ray count rate, disc temperature, and X-ray photon index (Table 1), although the radio event was rapid, so we may have missed any clear but brief changes in the X-ray emission that occurred outside of the daily Swift X-ray observations. The closest-in-time Swift-XRT observation (which was used for our multiband SED fitting) was taken ~10 hours before we detected the jet spectral break within the radio band. If directly connected, we may expect that those X-ray observations may already have shown a change as the IR observations around the same time as this X-ray observation indicate that the high-energy jet emission was already fading (see IR discussion in Section 4.2, and discussions in Baglio et al. 2018). We also compared our result to the Swift-XRT observation taken on September 18 (Tao et al. 2018), finding that while the disc temperature remained similar, the X-ray photon index did soften from $\Gamma = 1.87_{-0.01}^{+0.02}$ on September 17 to $\Gamma = 2.17_{-0.07}^{+0.06}$ on September 18 (results from Tao et al. 2018, to remain consistent) and the soft X-ray flux increased. The X-ray spectrum then continued to soften considerably in the few days after we detected the changes in the jet spectrum, transitioning from the HIMS to the SIMS between September 18 and beyond (on September 19 08:52 UT). The highest-cadence X-ray monitoring with the Neutron Star Interior Composition Explorer at the same time as the onset of the compact jet quenching (Stevens et al. 2018) showed similar results. The (1–10 keV) source hardness continued to decrease steadily after the first four multiband SED measurements (September 12–16) agree well with the broader population of BH XRBs and active galactic nuclei (AGNs, at lower values of Γ; see Fig. 6). However, as the source softened (on September 17) and the radio jet began to rapidly evolve, v_{break} appeared lower than expected for that value of Γ, which continued to be observed on September 21, when the break was below the radio band.10 Interestingly, our result for this epoch lies in the same region as the results determined for MAXI J1659–152 (van der Horst et al. 2013) during a similar phase of the outburst (Fig. 6), as opposed to the majority of the other measurements that have been taken during the outburst decay phase when the jet is re-igniting. The similarities in the evolution of v_{break} for both MAXI J1535–571 and MAXI J1659–152 suggest that the process driving the changes may be the same between these two sources. However, we note that the relation proposed by Koljonen et al. (2015) used only observations with broad X-ray coverage (much greater than 10 keV) to ensure a well-constrained X-ray photon index. Our X-ray data were only taken between 0.5 and 10 keV and we find discrepancies in Γ with some X-ray telescopes (but not others;}

MNRA S 498, 5772–5785 (2020)
Rapid compact jet quenching in MAXI J1535–571

Figure 6. Jet break frequency versus X-ray power-law photon index (adapted from Koljonen et al. 2015). Measurements from this work are shown as magenta squares, MAXI J1659–152 results are plotted as blue diamonds, the entire sample of jet break frequency measurements from BH XRBs is plotted as black circles, and AGNs are shown as black triangles. The red line shows the median of the Monte Carlo fit, where the relation is provided in the lower left corner. The increasingly dark shaded regions show the 95, 99, and 99.9 per cent confidence intervals of the linear regression fits (see Koljonen et al. 2015 for full details on the fitting). XRB data with only limits on \(\nu_{\text{break}} \) are shown as vertical bars. For these points, the horizontal marker caps show the 1σ error on \(\Gamma \). Results from our multiwavelength monitoring of MAXI J1535–571 show that our first four \(\nu_{\text{break}} \) measurements broadly agree with the general population. However, as \(\nu_{\text{break}} \) decreased, we observed lower values of \(\Gamma \) than for most systems, occupying a similar parameter space as MAXI J1659–152 (blue diamonds) when \(\nu_{\text{break}} \) was detected within the radio band as the compact jet was beginning to fade.

Section 2.4). Therefore, a caveat to this comparison is the narrow X-ray energy coverage in the Swift data used.

5.4 Connection to the transient jet

Close in time to the onset of the compact jet quenching, MAXI J1535–571 launched a transient jet (Russell et al. 2019), which produced bright optically thin radio flares a few days after our September 17 radio observations (Chauhan et al. 2019; Russell et al. 2019). Due to optical depth effects, the timing of the radio flares is not indicative of the flow of material down the jet (e.g. Fender, Homan & Belloni 2009; Miller-Jones et al. 2012). However, spatially tracking the jet knot as it propagated outwards from the system and extrapolating its motion back in time allowed the launching time to be constrained to between September 12 and 17 (where the extent is shown as the vertical dashed lines in Fig. 4). As such, the timing of the rapid compact jet quenching falls within the range determined for the launching of the transient jet indicating a possible connection between the two events. Vadawale et al. (2003) suggested that the transient jet may arise from the ejection of the corona (see also discussions in Rodriguez, Corbel & Tomsick 2003). Naively, in this scenario the transient jet and quenching of the compact jet would be directly connected, such that the compact jet emission switches off when the corona disappears and a transient jet is launched. However, during the 2011 outburst of MAXI J1836–194, \(\nu_{\text{break}} \) was observed to shift to lower frequencies as the compact jet faded despite the system remaining in the hard/hard–intermediate X-ray spectral states with no ejection events (Russell et al. 2013b, 2014a, 2015). Similarly, despite showing similar \(\nu_{\text{break}} \) behaviour, no ejection were launched from the BH XRB MAXI J1659–152 (Paragi et al. 2013). Radio monitoring also showed \(\nu_{\text{break}} \) to move down into the radio band before shifting back to higher frequencies (van der Horst et al. 2013), highlighting its non-linear evolution. IR observations of GX 339–4 (Gandhi et al. 2011) also implied that \(\nu_{\text{break}} \) had shifted below and above the IR observing band rapidly. These results suggest that while the transient jet may well arise from the ejection of the corona, which may in turn quench the compact jet, the quenching of the compact jet does not strictly require the launching of the transient jet.

Alternatively, as discussed in Section 5.2.1, it may be that the compact jet emission switched off as the jet acceleration region disconnected from the system. If that was occurring, we might speculate that the transient jet ejection may be the now disconnected dissipation region propagating away from the system on the dynamical time-scales of the flow. In such a scenario, for cases where the \(\nu_{\text{break}} \) was observed to evolve to lower and then back to higher frequencies (the acceleration regions moving away from and then back towards the BH; e.g. Gandhi et al. 2011; van der Horst et al. 2013), the acceleration region may not have completely disconnected from the flow, and variations in the flow of material into the jet base re-ignite the jet. As a source moves back out of a typical soft state (lasting a few weeks to months) where the jet emission was not detected, the particle acceleration region may have moved sufficiently far away from the system that it may recover in a different way, resulting in the gradual relaunching of the compact jet (e.g. Kalendra et al. 2013; Russell et al. 2014a). However, this scenario may be difficult to reconcile with multiple jet ejections that may be observed from BH XRBs (e.g. Mirabel & Rodríguez 1994; Fender et al. 1999; Tetarenko et al. 2017a; Miller-Jones et al. 2019). However, speculatively, multiple ejections could result from rapid relaunching and switching off of the compact jet, which could produce short IR flaring events that have been observed. High-resolution very long baseline interferometry tracking ejecta as they are launched or detailed radio monitoring (preferably sensitive to the low surface brightness temperatures of the expanding jet knots) tracking the ejecta as they propagate out (Russell et al. 2019; Bright et al. 2020) will be crucial to understanding whether these events are connected.

5.5 Comparison between the compact jet quenching and relaunching time-scales

At the end of its outburst, MAXI J1535–571 transitioned from the soft to hard state at an unusually low X-ray luminosity (Chauhan et al. 2019; Russell et al. 2019) and no radio emission was detected. Therefore, we were unable to compare the processes of jet quenching and relaunching in this source during its major outburst.

However, MAXI J1535–571 underwent a number of radio and X-ray rebrightenings following the end of its major outburst (Parikh et al. 2019). During these rebrightenings, the source transitioned between the hard and soft states, and during the latter the compact jet was quenched. While lack of multiwavelength monitoring precludes constraints on the frequency of the jet spectral break, dense radio monitoring of the source as it completed a soft to
hard-state rise and decay phases of an outburst (Islam & Zdziarski
in the observed difference in the radio/X-ray coupling during the
anism driving these two processes. Such a difference may result
and relaunching in this outburst is suggestive of a different mech-

The contrast between the time-scales of the compact jet quenching and relaunching in this outburst is suggestive of a different mechan-
ism driving these two processes. Such a difference may result
in the observed difference in the radio/X-ray coupling during
the hard-state rise and decay phases of an outburst (Islam & Zdziarski
2018; Koljonen & Russell 2019). We highlight that with reasonable
constraints, the only two sources, one quenching and the other
relaunching, this observed behaviour may not represent the BH XRB
population. In particular, the outburst of MAXI J1836−194 did not
enter the soft state and the compact jet did not quench (Russell et
al. 2015). Therefore, the slow evolution of v_{break} may have been
related to jet recovery, as opposed to the complete relaunching of
the compact jet. However, while we did not have good multil wavelength
constraints, the slow ∼1-week evolution of the radio spectrum dur-
during soft-state rebrightenings from MAXI J1535−571 (after the major
outburst) does suggest similar behaviour (Parikh et al. 2019). During
these rebrightenings, MAXI J1535−571 did enter the soft state and
the radio jet was not detected. As the reflare faded and the source
returned to a hard state, the radio emission brightened, and slowly
evolved from a steep to inverted radio spectrum over a ∼1-week
time-scale.

A slow evolution of v_{break} was also implied by dense radio
monitoring during the soft-to-hard state transition of the 2011
outburst from GX 339−4, where the radio spectrum showed a smooth
and gradual evolution ($\alpha \approx -0.6$ to $+0.3$) over an ∼2-week period,
with the IR peaking at least a few days later (Corbel et al. 2013b).
This more gradual evolution is also supported by the ∼2-week IR
rise time following the soft → hard state transitions in 4U 1543−47
and XTE J1550−564 (see discussions in Kalemci et al. 2013).
In contradiction, recent monitoring of the BH XRB 4U 1543−47
showed a sudden increase in IR emission during a short (∼5 d) return
back to the SIMS from a soft state.11 Such flaring may indicate that
the compact jet emission had switched back on quickly and the jet
spectral break shifted rapidly back up to the IR band. However,
these campaigns generally lacked comprehensive and simultaneous
multil wavelength support. As such, further observations that include
simultaneous (or as close to simultaneous as possible) radio, mm,
and IR observations of the jet as it is switching off and re-igniting
(preferably after deep quenching in a soft state) are necessary to
understand how jets are launched and quenched by the accretion
flow, and how/whether these two processes differ.

6 CONCLUSIONS

With almost daily multifrequency monitoring of MAXI J1535−571
over its HIMS → SIMS transition, we detected the onset of rapid
compact jet quenching, as the higher energy jet emission faded in

11 Over a soft state → SIMS → soft state transition.

less than 1 d. The jet quenching occurred a few days before the
transition to the SIMS. Over this time, the jet spectral break decreased
in frequency by ∼3 orders of magnitude, from the IR band into the
radio band. While we are unable to identify any direct causal
changes in the X-ray variability, the X-ray photon index and X-ray
spectrum gradually softened leading up to this event, before a more
rapid change in the days afterwards. Therefore, it is possible that
the increase in the soft X-ray photons and decrease in the hard X-
ray emission may be connected to the observed changes in the jet.
We find that the rapid jet quenching began at a similar time to
the launching of a transient jet ejection, possibly connecting the two
events.

From a time and frequency analysis of our radio observations, we
show that on 2017 September 17, v_{break} was within the radio band
and decreased by ∼1.8 GHz over ∼15 min. We argue that the time
evolution of v_{break} was two to three orders of magnitude faster than
expected from synchrotron cooling, but is similar to dynamical times-
scales of material flowing down the jet. Therefore, our results suggest
that the onset of compact jet quenching in MAXI J1535−571 was
not driven by details of local particle acceleration; instead, it appears
as if internal jet properties changed dramatically and the particle
acceleration region suddenly moved away from the BH with the jet
flow.

Our results suggest that the mechanism resulting in the quenching
and relaunching of compact jets from accreting BHs may arise from
different processes. However, a more rapid jet re-ignition may be
possible, but this scenario has not yet been inferred. This work
highlights the need for high-cadence radio, mm, IR, and X-ray
monitoring of these objects during both the outburst rise and decay
to understand how jets are launched and quenched from accretion
flows, and whether that process is universal between different sources
or at different times within the same source.

ACKNOWLEDGEMENTS

We thank the anonymous referee for their helpful comments. We
also thank Jamie Stevens and staff from the Australia Telescope
National Facility for scheduling the ATCA radio observations, as
well as the Swift team for the scheduling of the X-ray observations.
AJT thanks Gerald Schieven for his help configuring and scheduling
the ALMA observations reported in this work. TDR acknowledges
support from the Netherlands Organisation for Scientific Research
(NWO) Veni Fellowship, grant number 639.041.646. ML and
SM are thankful for support from an NWO VICI award, grant
number 639.043.513. JCAM-J is the recipient of an Australian
Research Council Future Fellowship (FT140101082), funded by
the Australian government. AJT acknowledges support for this work
through a Natural Sciences and Engineering Research Council of
Canada (NSERC) Post-Graduate Doctoral Scholarship (PGSD2-
490318-2016). GRS and AJT acknowledge support from an NSERC
Discovery Grant (RGPIN-06569-2016). FK was supported as an
Eberly Research Fellow by the Eberly College of Science at the
Pennsylvania State University. KIIK was supported by the Academy
of Finland project 320085. JvdE, ASP, and ND were supported by
an NWO Vidi grant, awarded to ND. This research has made use of
ISIS functions (ISISscripts) provided by ECP/Remeis Observatory
and MIT (http://www.sternwarte.uni-erlangen.de/isis/). We thank J.
E. Davis for the development of the alxlfieg module that was used
to prepare some of the figures in this work. The ATCA is part of
the Australia Telescope National Facility, which is funded by
the Australian Government for operation as a National Facility managed
by CSIRO. We acknowledge the Gomeri people as the traditional

MNRAS 498, 5772–5785 (2020)
of MAXI J1535−571 on 2017 September 17 (as shown in Fig. 2). The MJD denotes the mid-point of each 2 min interval. Bandwidths of the higher frequency (>15 GHz) radio data are 1 GHz, centred around the tabulated frequency, while the lower frequency (<15 GHz) radio data have bandwidths of 512 MHz. Flux densities have had a 0.5 per cent systematic uncertainty applied (see Section 2.1). Complete tables are available at MNRAS online.

MJD	Central frequency (GHz)	S_v (mJy)
58013.53900	16.5	125.35 ± 0.63
	17.5	123.83 ± 0.62
	18.5	121.68 ± 0.61
	19.5	118.54 ± 0.60
58013.54038	16.5	125.67 ± 0.63
	17.5	123.70 ± 0.62
	18.5	122.24 ± 0.61
	19.5	119.52 ± 0.60
58013.54177	16.5	125.07 ± 0.63
	17.5	123.32 ± 0.62

APPENDIX B: INTRA-OBSERVATIONAL RADIO VARIABILITY FOR 2017 SEPTEMBER 17

Radio intra-observational variability of MAXI J1535−571 from our ATCA observation on 2017 September 17 are provided in Table B1 (Section 4.2).

APPENDIX C: RADIUS AND MAGNETIC FIELD OF THE FIRST ACCELERATION REGION

Derivation of the magnetic field and radius of the first acceleration region as outlined by Chaty et al. (2011). From Rybicki & Lightman (1979) and Longair (2011), for a synchrotron-emitting source with a power-law distribution of electrons with an energy spectrum $N(E)\,dE = k E^{−p} \,dE$, where p is the spectral index of the particle energies, the magnetic field of the first acceleration region, B_p, is related to the frequency and flux density of the jet spectral break (ν_{break} and $S_{\nu_{\text{break}}}$, respectively), such that

$$B_p = \left(\frac{2\mu_0^2 c^4 Ah \nu_{\text{break}}^2}{\pi^3} (D\xi)^{-4/(2p+13)} S_{\nu_{\text{break}}}^{-2/[2/(2p)+13]} \times \sin^{-4p/(2p+5)/[2p/(2p+3)]} \nu_{\text{break}},$$

where

$$A = \frac{\sqrt{3} e^3}{8\pi^2 \epsilon_0 c m_e (p+1)} \left(\frac{m_e^3 c^4}{3e}\right)^{(p-1)/2} \Gamma_f \left(\frac{p}{4} + \frac{19}{12} \right) \Gamma_f$$

and

$$T = \frac{\sqrt{3} e^3 c}{32\pi^2 \epsilon_0^2 m_e} \left(\frac{3e}{2\pi m_e^3 c^4}\right)^{p/2} \Gamma_f \left(\frac{3p+22}{12}\right) \times \Gamma_f \left(\frac{3p+2}{12}\right).$$

Here, μ_0 is the permeability of free space, c is the speed of light, if we assume that the synchrotron emitting accelerating region is a
homogeneous cylinder of radius R_F and height H_F, factor h relates the two such that $H_F = hR_F$, where we assume $h = 1$, and D is the distance to the source. $\xi = 1$ assumes that the energy of the non-thermal electrons equals the magnetic energy density, and a is the pitch angle of the electrons where we average over an isotropic distribution of pitch angles. e and m_e are the charge and mass of an electron, respectively. B is the magnetic field strength, ϵ_0 is the permittivity of free space, Γ_1 is the gamma function, and finally, γ_{min} and γ_{max} are the minimum and maximum Lorentz factors of the electrons, respectively, such that $\gamma_{\text{max}} \gg \gamma_{\text{min}} = 1$.

The cross-sectional area of the first acceleration region, R_F, is described as

$$
R_F = 2\mu_0 c^2 \left(2\mu_0 c^4 m_e^2 \epsilon_0 A h \right)^{-(p+6)/(2p+13)} \Gamma^{-p+5}/(2p+13) (\xi Y)^{-1/(2p+13)}
\times \sin \frac{\pi a}{2} \left(\frac{p+6}{2p+13}\right)^{1/2} \left(\frac{\gamma_{\text{min}}}{\gamma_{\text{max}}} \right)^{-1}.
$$

(C5)

1. Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam, the Netherlands
2. East Asian Observatory, 660 N. A’ohokū Place, University Park, Hilo, HI 96720, USA
3. Department of Physics, University of Alberta, CCIS 4-181, Edmonton, AB T6G 2E1, Canada
4. International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
5. GRAPPA and API, University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam, the Netherlands
6. Department of Astronomy & Astrophysics, Pennsylvania State University, University Park, PA 16802, USA
7. Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa
8. Center for Astro, Particle and Planetary Physics, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
9. INAF, Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807 Merate, LC, Italy
10. School of Physics and Astronomy, University of Southampton, Highfield SO17 1BJ, UK
11. Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala, Sweden
12. AIM, CEA, CNRS, Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
13. Station de Radioastronomie de Nançay, Observatoire de Paris, PSL Research University, CNRS, Univ. Orléans, F-18330 Nançay, France
14. Subdepartment of Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
15. Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter Street, Madison, WI 53706, USA
16. Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Veilinnantie 5, FI-20014, Finland
17. Metsähovi Radio Observatory, Aalto University, Metsähovi 114, FI-02540 Kylmälä, Finland
18. Department of Physics and Astronomy, Wheaton College, Norton, MA 02766, USA
19. XMM–Newton Science Operations Centre, ESAC/ESA, Camino Bajo del Castillo s/n, Urb. Villafranca del Castillo, E-28691 Villanueva de la Cañada, Madrid, Spain
20. Institute of Cosmos Sciences, University of Barcelona, Martí Franquès 1, E-08028 Barcelona, Spain
21. Department of Physics, University of Nevada, Reno, NV 89557, USA
22. National Research Council of Canada, Herzberg Astronomy and Astrophysics, Dominion Radio Astrophysical Observatory, P.O. Box 248, Penticton, BC V2A 6J9, Canada
23. Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904-4325, USA
24. College of Astronomy and Space Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
25. Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, Sydney, NSW 2006, Australia

This paper has been typeset from a TeX/LaTeX file prepared by the author.