Factor driving heterotrophic dinoflagellate in relation to environment conditions in Kerkennah Islands (eastern coast of Tunisia)

Mounir Ben Brahim1,2*, Morsi Feki1,2, Wafa Feki-Sahnoun1,2, Mabrouka Mahfoudi2, Asma Hamza2
1Faculty of Sciences of Sfax, Road of Soukra km 4, BP 802-3038 Sfax, Tunisia
2National Institute of Sciences and Technologies of the Sea, Center of Sfax- BP 1035-CP. 3018. Sfax, Tunisia

1. Introduction

Dinoflagellates are common to abundant in both marine and freshwater environments. They are particularly diverse in the marine plankton where some cause “red tides” and other harmful blooms. Also, dinoflagellates are conventionally categorized into autotrophs and heterotrophs according to the presence or absence of chloroplast pigments. They are biochemically diverse, varying in photosynthetic pigments and toxin production ability[1]. They feed on a broad range of prey species, including phytoplankton, the eggs, early nauplii stages, and adult forms of some metazoans, ciliates, fish bloods and bacteria; at the same time they are important prey for many planktonic consumers, such as some metazoans, ciliates and other dinoflagellates[2]. Heterotrophic dinoflagellates (HDs) categories are prevalent in the marine environments, with an abundance of up to $2 \times 10^5$ cells/L under non-bloom conditions. They play an important role in the carbon cycling and energy flow in the marine planktonic community[3].

Heterotrophic and mixotrophic dinoflagellates were the major contributors to total phytoplankton biomass in the gulf of Gabes[4]. Hassen et al. proved that the nano- and picophytoplankton were the major contributors to the autotrophic biomass in the gulf[5]. This area had heterotrophic microplankton standing stock feeding on a large variety of prey ranging from picoplankton to diatoms.

This study was aimed at evaluating the importance of HD in the ecosystem of Kerkennah Islands by estimating their biomass and comparing it with the biomass of other plankters. Moreover, this study aimed to find an answer to the possible ways through which the seasonal variation of water-column nutrients and HD dynamics were affected in the Island of Kerkennah, Tunisia.

2. Materials and methods

2.1. Study area

The station of Cercina was located in the northern Gulf of Gabes...
and situated in the western coast of the Island of Kerkennah, with depths ranging from 3 to 5 m (Figure 1). It is influenced by regional water circulation[6] and is directly exposed to the arrival of prevailing cold water from the channels of El Louza (north of Sfax) and warmer water from the channel between Sfax and Kerkennah. The sea bottom morphology of the island is highly complex, characterized by mudholes, marine tide channels, and Posidonia oceanica beds of different shapes[7].

2.2. Sampling and laboratory procedures

Samples were collected monthly during 2007. The sampling campaigns were performed at the station of Cercina for 10 successive days. The tidal amplitude of Kerkennah is ≈ 1.60 m[8]. Environmental variables, such as salinity and temperature, were measured in the field concomitantly with phytoplankton sampling. Moreover, nutrient (ammonium, nitrite, nitrate, phosphate, silicate) analysis was performed at a laboratory by using an Auto-analyzer (Luebbe, Germany). Three replicate 1 L water samples were collected by Kuttner bottles and fixed with formaldehyde (5%). Microalgae enumeration was performed with an inverted microscope after fixation with a Lugol solution (final concentration 1% v/v) and settled for 48 h in accordance with the method of Uthermöhl[9]. Abundances were expressed in the number of organisms per liter of sample.

2.3. Statistical analysis

The data recorded for the dinoflagellate were submitted to ANOVA for analysis of difference in terms of abundance rates between seasons. Data were transformed where it is necessary to meet the assumption of homogeneity of variances (homogeneity confirmed by non-significant Cochran’s C-test). Student-Newman-Keuls (SNK) test was employed for a posteriori multiple comparisons of means. A similarity percentage analysis was used to identify the contribution of individual dinoflagellates species with the pattern of similarity and dissimilarity between each season. A One-way analysis of similarity was used to test significant differences in community composition between seasons.

3. Results

A total of 65 species of dinoflagellate were identified in the station of Cercina (Table 1). Among them, 36.92% species had mode of nutrition as heterotrophic, 1.53% species were autotrophic and 1.53% was endosymbionts.

| Table 1 | List of dinoflagellate species found in Cercina station with their mode of nutrition. |
|---------|-------------------------------------------------------------------------------------|
| **Dinoflagellate species** | **Mode of nutrition** |
| Akashiwo sanguinea (K.Hirasaka) G.Hansen & Ø.Moestrup | Mixo-heterotrophic |
| Alexandrium minutum Halim | Mixo-heterotrophic |
| Alexandrium pseudogonyaulax (Biecheler) | Mixo-heterotrophic |
| Alexandrium sp. | Mixo-heterotrophic |
| Amphidinium carterae Hulburt | Mixo-heterotrophic |
| Amphidinium operculatum Herdman | - |
| Amphidinium sp. | - |
| Anyoxa tricarinata (Jörgensen) Sournia | - |
| Ceratium fusus (Ehrenberg) Dujardin | Mixo-heterotrophic |
| Ceratium lineatum var. robustum Cleve | Mixo-heterotrophic |
| Ceratium macroceros (Ehrenberg) Vanhöffen | Mixo-heterotrophic |
| Ceratium furcatus (Ehrenberg) Claparède & Lachmann | Mixo-heterotrophic |
| Coolia monontis Meunier | Mixo-heterotrophic |
| Eubia sp. | Heterotrophic |
| Dinophysis sp. | Endosymbionts |
| Goniodoma rphaericum Murray & Whitting | - |
| Gyraulus polyedra F.Stein | - |
| Gyraulus digitale (Pouchet) Kofoid | - |
| Gyraulus sp. | Mixo-heterotrophic |
| Gymnodinium sp. | Mixo-heterotrophic |
| Gymnodinium catenatum H.W.Graham | - |
| Gyrodinium sp. | - |
| Gymnodinium fastforme Kofoid & Swezy | Mixo-heterotrophic |
| Hersemium sp. | - |
| Heterocapsa sp. | - |
| Karenia zelliformis A.J.Haywood, K.A.Steidinger | - |
| Karldinium veneficum (D.Ballantine) J.Larsen | - |
| Kryptoperidinium foliaceum (F.Stein) Lindemann | - |
| Osteopyle ovata Fukuyo | - |
| Osteopyle sp. | - |
| Oxyrrhis marina Dujardin | Mixo-heterotrophic |
| Peridinium sp. | Autotrophic |
| Podolampas sp. | Heterotrophic |
| P. kofoidii Chatton | Heterotrophic |
| Procentrum compressum (Bailey) Abé ex Dodge | - |
| Procentrum concave Fukuyo | - |
| Procentrum gracile Schütt | - |
| Procentrum limus (Ehrenberg) F.Stein | - |
| Procentrum micans Ehrenberg | Mixo-heterotrophic |
| Procentrum minimum (Pavillard) J.Schiller | Mixo-heterotrophic |
| Procentrum rathmii Loeblich, Shirley & Schmidt | - |
| Procentrum triestinum J.Schiller | - |
| Protoperidinium ovum (Schiller) Balech | - |
| Protoperidinium hisp (Paulsen) Balech | - |
| Protoperidinium conicum (Gran) Balech | - |
| Protoperidinium curvipes (Ostenfeld) Balech | Mixo-heterotrophic |
| Protoperidinium depressum (Bailey) Balech | Mixo-heterotrophic |
| Protoperidinium diabolus (Cleve) Balech | - |
| Protoperidinium divergens (Ehrenberg) Balech | Mixo-heterotrophic |
| Protoperidinium globulus (Stein) Balech | - |
| P. grani (Ostenfeld) Balech | Mixo-heterotrophic |
| Protoperidinium leonis (Pavillard) Balech | - |
| Protoperidinium minutum (Kofoid) Loeblich III | Mixo-heterotrophic |
| Protoperidinium mite (Pavillard) Balech | - |
| Protoperidinium pellucidum Bergh | - |
| Protoperidinium pentagonum (Gran) Balech | - |
| Protoperidinium pyriforme (Paulsen) Balech | Mixo-heterotrophic |
| Protoperidinium quinquecorne (Abé) Balech | - |
| Protoperidinium sp. | - |
| Protoperidinium steini (Jørgensen) Balech | Mixo-heterotrophic |
| Pyrocystis sp. | - |
| Scripsiella spinifera G.Honsell & M.Cabrini | - |
| Scripsiella subulata (Ostenfeld) Steidinger & Balech | - |
| Scrippsiiella trochoidea (Stein) Balech ex Loeblich III | Mixo-heterotrophic |

P. kofoidii: Polykrikos kofoidii; P. grani: Protoperidinium grani.

The highest value of temperature (26.74 °C) was recorded in
summer while the lowest (14.84 °C) value occurred in autumn (Figure 2). The temperature was also noted to vary significantly from season to season. Furthermore, a significant seasonal difference was observed for water salinity (Table 2). In fact, salinity ranged from 41.70 g/L in summer to 38.27 g/L in spring (Figure 3). Nutrients fluctuated between seasons (Figures 4 and 5) and no significant difference was, however, detected for nitrite, nitrate, ammonia, silica and phosphate (Table 3). Abundance of dinoflagellates fluctuated between seasons (Figure 6) with values showing a significant seasonal and monthly difference (Table 4). The highest mean abundance (5600 ± 742.11) was recorded in spring in April, while the lowest abundance [(495.3 ± 60.27) cell/L] was detected in December in winter. SNK test revealed a significant difference among seasons. The highest abundance was registered in spring, summer, winter and autumn respectively. Principal component analysis ordination showed a clear correlation mainly between dinoflagellate and salinity and temperature (Figure 7). The first axis (with 38.93% of variability) showed a correlation of dinoflagellate with salinity, phosphate and nitrite while the second axis (with 22.76% of variability) showed a correlation of dinoflagellate with salinity, phosphate, temperature and nitrite. The main species contributing to the dissimilarity between spring and winter were shown in Table 5 by similarity percentage analysis. P. granii was the main species contributing to the dissimilarity between spring and winter with 13.980% followed by Peridinium sp. with 12.500% of dissimilarity and by Polykrikos sp. with 10.580%. The One way analyses of similarity revealed significant differences between each pair of seasons. The highest values of similarity coefficient R were registered between spring and winter (0.552) and between summer and winter (0.421), whereas the lowest similarity coefficient R values were detected between autumn and summer (0.226) and between summer and spring (0.214).

### Table 2

| Source of variation | Salinity | | | Temperature | | |
|---------------------|----------|---|---|-------------|---|---|
|                     | df | MS | F | P | MS | F | P |
| Season              | 3 | 3.06 | 6.91 | 0.013 | 67.94 | 31.08 | 0.000 |
| Residual            | 8 | 0.44 | 2.18 | | |
| SNK test            | Au = Su > Sp = Wi | Au = Wi < Sp < Su | |

MS: Mean square; Au: Autumn; Su: Summer; Sp: Spring; Wi: Winter.

### Figure 2
Variation of sea water temperature between seasons and months on the station of Cercina.

### Figure 3
Variation of sea water salinity between seasons and months on the station of Cercina.

### Figure 4
Variation of sea water nutrient between seasons and months on the station of Cercina.

### Figure 5
Variation of sea water nutrient between seasons and months on the station of Cercina.

### Figure 6
Seasonal mean abundance of dinoflagellate in the station of Cercina.
The present study provides the first direct measurement of seasonal abundances of HD communities of Cercina in western coast of Kerkennah Islands. The seasonal variability of HD shows an increase during spring and summer compared to winter and fall. This pattern was revealed by Feki-Sahnoun et al. in the same area (southern coast of Tunisia) where dinoflagellate illustrated a marked seasonal cycle opposing winter-spring species to summer-fall species and this was related to the increase of dinoflagellate species abundance during summer and fall[10]. This model illustrates the basic characteristics of phytoplankton succession in temperate coastal waters described elsewhere[11] and mainly justified by the nutrient availability along seasons[12]. Similar result was revealed byLtief et al. in the Gulf of Gabes where obvious proliferation of heterotrophic and mixotrophic dinoflagellates was the distinctive feature of this summer cruise[4]. Also dinoflagellate density was positively correlated to both temperature (Spearman correlation coefficient R = 0.772) and salinity (Spearman correlation coefficient R = 0.765) suggesting a good adaptation of this group to the warm and salty waters in the inshore region. Dominance of dinoflagellates species during spring has been already reported in previous studies in the coastal water and over the continental shelf area of the Gulf of Gabes[13-16]. P. grani was the main HD contributing to the dissimilarity between spring and winter. This species was ascribed by Feki-Sahnoun et al. in the Gulf of Gabes (southern coast of Tunisia) affecting harbors subjected to intense marine traffic of chemical materials and near the discharge point of industrial zone subjected to crude phosphate treatment and chemical industry waste[10]. Its proliferation in spring was coincided by the increased abundance of diatom[15] and so P. grani dynamic was likely to be governed by their feeding preferences, and thus it was likely to be diatom grazers[17-19]. Gribble et al. mentioned that heterotrophic Protoperidinium had the potential to consume 30%–80% of the dinoflagellate or diatom[20]. In addition to food requirements, physical variables such as temperature, salinity and nutrients are superimposed to the dynamic of Protoperidinium population. Temperature may be of secondary importance, however, considering that the majority of Protoperidinium species are widespread in spring and summer in our study area. In general, food availability may be the most important factor regulating seasonal dynamics of individual Protoperidinium species. The genus P. kofoidii was among HD to make seasonal dissimilarity. The high abundance of P. kofoidii in spring was coincided with the high abundance of dinoflagellate [(5 600.20 ± 742.11) cell/L] and diatom. Matsuyama et al. estimate that the pseudocolonial HD P. kofoidii was likely able to prey 2.7 to 16.2 Gymnodinium catenatum in a day and this ability probably contributes to the comparatively high estimate of ingestion rates[21]. This physiological aspect appears to have a significant ecological effect of reducing the grazing pressure during the course of bloom formation in harmful dinoflagellates[19,22].

### Table 3
ANOVA results of nutrient variability among seasons on the station of Cercina.

| Source of variation | PO4 | NH4 | Si(OH)4 | NO3 | NO2 |
|---------------------|-----|-----|---------|-----|-----|
| df | MS | F | P |
| Season | 3 | 0.14 | 3.70 | 0.062 | 6.00 | 1.24 | 0.357 | 9.00 | 1.38 | 0.316 | 0.11 | 0.64 | 0.606 | 0.006 | 0.638 | 0.612 |
| Residual | 8 | 0.038 | 4.83 | - | - | - | - | - | - | - | - | - | - | - | - |
| SNK test | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |

MS: Mean square.

### Table 4
Nested ANOVA results for HD variability during all seasons and months.

| Source of variation | df | MS | F | P |
|---------------------|----|----|----|----|
| Season | 3 | 14.90 | 105.15 | 0.000 |
| Month | 8 | 1.09 | 7.15 | 0.000 |
| Residual | 348 | 0.14 | - | - |
| Cochran’s C-test | C = 0.466 ns |
| Transformation | Lin(x+1) |
| SNK test | Winter < Autumn < Summer < Spring |

MS: Mean square.

### Table 5
Similarity percentage analysis showing the main species contributing to the dissimilarity between spring and winter (cut off at 50% of cumulative).

| Taxon | Contribution | Cumulative % | Mean abundance (Winter) | Mean abundance (Spring) |
|-------|--------------|--------------|-------------------------|------------------------|
| P. grani | 13.980 | 16.06 | 14.7 | 813 |
| Peridinium sp. | 12.500 | 30.42 | 125.0 | 813 |
| P. kofoidii | 10.580 | 42.58 | 139.0 | 530 |
| Protoperidinium sp. | 5.729 | 49.16 | 69.3 | 211 |
| Procentrum micans | 5.429 | 55.40 | 63.3 | 223 |

4. Discussion

The present study provides the first direct measurement of seasonal abundances of HD communities of Cercina in western coast of Kerkennah Islands. The seasonal variability of HD shows an increase during spring and summer compared to winter and fall. This pattern was revealed by Feki-Sahnoun et al. in the same area (southern coast of Tunisia) where dinoflagellate illustrated a marked seasonal cycle opposing winter-spring species to summer-fall species and this was related to the increase of dinoflagellate species abundance during summer and fall[10]. This model illustrates the basic characteristics of phytoplankton succession in temperate coastal waters described elsewhere[11] and mainly justified by the nutrient availability along seasons[12]. Similar result was revealed by Ltief et al. in the Gulf of Gabes where obvious proliferation of heterotrophic and mixotrophic dinoflagellates was the distinctive feature of this summer cruise[4]. Also dinoflagellate density was positively correlated to both temperature (Spearman correlation coefficient R = 0.772) and salinity (Spearman correlation coefficient R = 0.765) suggesting a good adaptation of this group to the warm and salty waters in the inshore region. Dominance of dinoflagellates species during spring has been already reported in previous studies in the coastal water and over the continental shelf area of the Gulf of Gabes[13-16]. P. grani was the main HD contributing to the dissimilarity between spring and winter. This species was ascribed by Feki-Sahnoun et al. in the Gulf of Gabes (southern coast of Tunisia) affecting harbors subjected to intense marine traffic of chemical materials and near the discharge point of industrial zone subjected to crude phosphate treatment and chemical industry waste[10]. Its proliferation in spring was coincided by the increased abundance of diatom[15] and so P. grani dynamic was likely to be governed by their feeding preferences, and thus it was likely to be diatom grazers[17-19]. Gribble et al. mentioned that heterotrophic Protoperidinium had the potential to consume 30%–80% of the dinoflagellate or diatom[20]. In addition to food requirements, physical variables such as temperature, salinity and nutrients are superimposed to the dynamic of Protoperidinium population. Temperature may be of secondary importance, however, considering that the majority of Protoperidinium species are widespread in spring and summer in our study area. In general, food availability may be the most important factor regulating seasonal dynamics of individual Protoperidinium species. The genus P. kofoidii was among HD to make seasonal dissimilarity. The high abundance of P. kofoidii in spring was coincided with the high abundance of dinoflagellate [(5 600.20 ± 742.11) cell/L] and diatom. Matsuyama et al. estimate that the pseudocolonial HD P. kofoidii was likely able to prey 2.7 to 16.2 Gymnodinium catenatum in a day and this ability probably contributes to the comparatively high estimate of ingestion rates[21]. This physiological aspect appears to have a significant ecological effect of reducing the grazing pressure during the course of bloom formation in harmful dinoflagellates[19,22].

### Figure 7
Principal component analysis ordination applied on the abundance of dinoflagellate, abiotic variable (temperature and salinity) and nutrients [PO4, NO3, NO2, Si(OH)4 and NH4+] on the station of Cercina.
On the other hand, recent research has revealed that harmful dinoflagellate blooms are greatly regulated by the co-occurrence of HD [23]. Our study reveals a low abundance of naked dinoflagellate in the study area and this may likely be attributed to considerable predation by Polykrikos kofoidii on a natural Gymnodinium catenatum bloom in geographically distant areas suggesting that populations of toxic dinoflagellates are often regulated by the proliferation of HD predators worldwide.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgments

This study was supported by the National Institute of Marine Sciences and Technologies of the Sea. We would like to express our sincere gratitude to the anonymous reviewers for their helpful comments and suggestions. We would also like to thank the technician at our laboratory for his valuable assistance during the analyses.

References

[1] Jeong HJ, Yoo DY, Kim JS, Seong KA, Kang NS, Kim TH. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J 2010; 45: 65-91.
[2] Yoo YD, Yoon EY, Lee KH, Kang NS, Jeong HJ. Growth and ingestion rates of heterotrophic dinoflagellates and a ciliate on the mixotrophic dinoflagellate Biecheleria cincta. Algae 2013; 28(4): 343-54.
[3] Park J, Jeong HJ, Yoo YD, Yoon EY, Yoon EY. Mixotrophic dinoflagellate red tides in Korean waters: distribution and ecophysiology. Harmful Algae 2013; 30(Suppl 1): 528-40.
[4] Ltaief TB, Drira Z, Hannachi I, Hassen MB, Hamza A, Pagano M, et al. What are the factors leading to the success of small planktonic copepods in the Gulf of Gabes, Tunisia? J Mar Biol Assoc UK 2015; 95: 747-61.
[5] Hassen MB, Drira Z, Hamza A, Ayadi H, Akrouf F, Issaoui H. Summer phytoplankton pigments and community composition related to water mass properties in the Gulf of Gabes. Estuar Coast Shelf Sci 2008; 77: 645-56.
[6] Ismail SB, Sammari C, Gasparini GP, Béранger K, Brahim M, Aleya L. Water masses exchanged through the Channel of Sicily: evidence for the presence of new water masses on the Tunisian side of the channel. Deep Sea Res Part I Oceanogr Res Pap 2012; 63: 65-81.
[7] Hattour MJ, Sammari C, Ben Nassrali S. Hydrodynamics of the Gulf of Gabes deduced from observations of currents and levels. Rev Paralia 2010; 3: 31-45.
[8] United Nations Environment Programme. Progress report on RAC/SPA activities. Tunis: United Nations Environment Programme; 2009. [Online] Available from: http://rac-spa.org/sites/default/files/meetings/npf9/wg_331_04_eng.pdf [Accessed on 18th May, 2015]
[9] Uttermöhl H. [Towards a perfection of quantitative phytoplankton methodology]. Mitt Int Ver Theor Angew Limnol 1958; 9: 1-38. German.
[10] Feki-Sahnoun W, Hamza A, Mahfoudi M, Rebai A, Hassen MB. Long-term microphytoplankton variability patterns using multivariate analyses: ecological and management implications. Environ Pollut Res 2014; 21: 11481-99.
[11] Hällfors H. Studies on dinoflagellates in the northern Baltic Sea, Hanko: University of Helsinki; 2013.
[12] Munir S, Naz T, Burhan ZUN, Siddiqui PJA, Morton SL. Seasonal abundance, biovolume and growth rate of the heterotrophic dinoflagellate Noctiluca scintillans from coastal waters of Pakistan. Pak J Bot 2013; 45: 1109-13.
[13] Feki W, Hamza A, Frossard V, Abdenadher M, Hannachi I, Jacquot M, et al. What are the potential drivers of blooms of the toxic dinoflagellate Karenia seliformis? A 10-year study in the Gulf of Gabes, Tunisia, southwestern Mediterranean sea. Harmful Algae 2013; 23: 8-18.
[14] Hamza A, Feki W, Bel Hassen M. Seasonal patterns of phytoplankton abundance, hydrology and climatic conditions in Gabes gulf in phytoplankton responses to Mediterranean environmental changes. CIESM Workshop Monograph 2010; 40: 33-6.
[15] Ben Brahim M, Feki-Sahnouna W, Feki M, Mahfoudi M, Hamza A. Seasonal and daily fluctuation of diatoms during spring tide periods in Kerkennah Islands. J Coast Life Med 2015; 3(6): 446-52.
[16] Drira Z, Hassen MB, Hamza A, Ayadi H, Rebai A, Bouain A, et al. Spatial and temporal variations of microphytoplankton composition related to hydrographic conditions in the Gulf of Gabes. J Mar Biol Assoc UK 2009; 89: 1559-69.
[17] Kjeret AH, Naustvoll LJ, Paasche E. Ecology of the heterotrophic dinoflagellate genus Protoperidinium in the inner Oslofjord (Norway). Sarsia 2000; 85: 453-60.
[18] Liu T, Gu H, Mertens KN, Lan D. New dinoflagellate species Protoperidinium haizhouense sp. nov. (Peridiniales, Dinophyceae), its cyst-theca relationship and phylogenetic position within the Monovela group. Phycological Res 2013; 62: 109-24.
[19] Yeo HG, Shin EY. Plate patterns of Protoperidinium spp. in Korean coastal waters. Int J Bio-Sci Bio-Technol 2013; 5(4): 91-97.
[20] Gribblel KE, Nolan G, Anderson DM. Biodiversity, biogeography and potential trophic impact of Protoperidinium spp. (Dinophyceae) off the southwestern coast of Ireland. J Plankton Res 2007; 29: 931-47.
[21] Matsuyama Y, Miyamoto M, Kotani Y. Grazing impacts of the heterotrophic dinoflagellate Polynyryskia kofoidii on a bloom of Gymnodinium catenatum. Aquat Microb Ecol 1999; 17: 91-9.
[22] Tillmann U, Hoppenrath M. Life cycle of the pseudocolonial dinoflagellate Polynyzryskia kofoidii (Gymnodiniales, Dinoflagellata). J Phycol 2013; 49: 298-317.
[23] Flores HS, Wikfors GH, Dam HG. Reactive oxygen species are linked to the toxicity of the dinoflagellate Alexandrium spp. to protozonts. Aquat Microb Ecol 2012; 66: 199-209.