Defect \((p, q)\) Five-branes

Tetsuji Kimura

Department of Physics, Tokyo Institute of Technology
Tokyo 152-8551, JAPAN
tetsuji _at_ th.phys.titech.ac.jp

Abstract

We study the local description of composite five-branes of codimension two. The formulation is constructed by virtue of the \(SL(2, \mathbb{Z}) \times SL(2, \mathbb{Z})\) monodromy associated with two-torus. Applying the conjugate monodromy transformations to the complex structures of the two-torus, we obtain the field configuration of the defect \((p, q)\) five-branes. This is the composite state of \(p\) defect NS5-branes and \(q\) exotic \(5^2_2\)-branes. We also obtain a new hyper-Kähler geometry. This is an ALG space, a generalization of an ALF space which asymptotically has a tri-holomorphic two-torus action. This geometry appears in the conjugate configuration of the single defect KK5-brane.
1 Introduction

A Neveu-Schwarz five-brane, called an NS5-brane for short, plays a significant role in string theory. This is a soliton coupled to the B-field magnetically in ten-dimensional spacetime, whereas the fundamental string is coupled to the B-field electrically [1, 2]. The setup of two parallel NS5-branes with various D-branes attached with them is quite an important configuration to explore dualities among supersymmetric gauge theories [3, 4]. The NS5-brane is uplifted to an M5-brane in M-theory, which plays a central role in studying non-perturbative features of gauge theories in lower dimensions [5]. Applying T-duality to the NS5-brane, a Kaluza-Klein monopole [6], or referred to as a KK5-brane, emerges. If one performs another T-duality to the KK5-brane, one finds an exotic 5_2^2-brane [7]. This is a strange object whose background geometry is no longer single-valued. However, this strange object does also contribute to quantum aspects of spacetime [8].

NS5-branes and KK5-branes have been investigated from various viewpoints [9]. In particular, in order to analyze quantum stringy corrections to five-branes, the worldsheet approach to five-branes [2] has been developed in terms of two-dimensional supersymmetric gauge theory, called the gauged linear sigma model (GLSM) [10, 11, 12, 13]. In the case of the exotic 5_2^2-brane, the situation is different. The background geometry is written by multi-valued function because the exotic 5_2^2-brane is codimension two. These days, branes of codimension two are referred to as defect branes [14]. The exotic 5_2^2-brane is the typical example of defect five-branes. Indeed, it was difficult to construct both the worldsheet theory and worldvolume theory for the exotic 5_2^2-brane. However, there was a breakthrough in this topic. The exotic 5_2^2-brane in the GLSM framework was successfully obtained in [15]. This formulation enabled us to study the quantum aspects of the exotic 5_2^2-brane [16] in the same way as the NS5-brane and the KK5-brane [11, 12, 13]. The worldvolume theory for the exotic 5_2^2-brane was also constructed [17, 18] by following the work [19].

In the analyses of five-branes, people often encounter configurations of many number of them. A typical example is the defect (p, q) five-branes. This is the bound state of p defect NS5-branes and q exotic 5_2^2-branes [7, 8]. This is one of the most significant situation to formulate the globally well-defined description of defect five-branes. This resembles to the (p, q) seven-branes in type IIB theory [20, 21, 22, 23]. Unfortunately, the globally well-defined description of defect (p, q) five-branes is still lacking, though the global configuration of the (p, q) seven-branes has been established. So far, when people argue the defect (p, q) five-branes, they have applied string dualities to the description of the (p, q) seven-branes in type IIB theory [24].

It is quite an important task to construct the globally well-defined description of defect (p, q) five-branes. In order to complete this, we study the “local” description of such configurations as the first step. In this paper, we exhaustively utilize the monodromy structures of defect five-branes. Applying the aspects of the monodromy to the field configuration, we obtain the explicit form of the defect (p, q) five-branes. Even though the formulation tells us only the local structure of the five-branes, it would be a big step to find the globally well-defined form. In addition, we find a new hyper-Kähler geometry, as a bonus. This is called an ALG space [25, 26], a generalization of an ALF space which asymptotically has a tri-holomorphic two-torus action. This is the conjugate geometry of the single defect KK5-brane.
The structure of this paper is as follows. In section 2, we review standard five-branes and defect five-branes. First, we exhibit their local descriptions. Next, we discuss the $O(2, 2; \mathbb{Z})$ monodromies of the defect five-branes and mention a non-geometric feature. In section 3, we further study the monodromies of the defect five-branes by virtue of the equivalence $O(2, 2; \mathbb{Z}) = SL(2, \mathbb{Z}) \times SL(2, \mathbb{Z})$. We introduce two complex structures associated with two $SL(2, \mathbb{Z})$. They are the key ingredients to analyze composites of the defect five-branes. In section 4, we investigate conjugate monodromies and construct their corresponding configurations. We find the local descriptions of the conjugate configurations as composites of defect five-branes. In particular, we obtain the formulation of the defect (p, q) five-branes. This is the composite of p defect NS5-branes and q exotic 5_2^2-branes. We also obtain the conjugate configuration of the defect KK5-branes. This provides a new hyper-Kähler geometry as an ALG space. Section 5 is devoted to summary and discussions. In appendix A, we prepare the T-duality transformation rules applied to the field configurations and the monodromy matrices. In appendix B, we discuss another defect KK5-brane which is different from the reduction of the standard KK5-brane, and analyze its conjugate configurations.

2 A review of defect five-branes

2.1 Standard five-branes

In this subsection we briefly mention the explicit description of an H-monopole and a KK-monopole [9]. The H-monopole is the smeared version of a single NS5-brane along the 9-th direction, while the KK-monopole is the T-dualized object of the H-monopole along the 9-th direction. These two objects have been well investigated in the framework of GLSM [11, 12, 13], and doubled formalism [27, 28] (see also [8, 29]).

We begin with the H-monopole. In ten-dimensional spacetime, we describe the background metric G_{MN}, the B-field B_{MN} and the dilaton ϕ as

\[
\begin{align*}
 ds^2 &= ds_{012345}^2 + H \left[(dx^6)^2 + (dx^7)^2 + (dx^8)^2 + (dx^9)^2 \right], \\
 B_{i9} &= V_i, \quad e^{2\phi} = H, \\
 H &= 1 + \frac{\ell_0}{\sqrt{2} |\vec{x}|}, \quad \ell_0 = \frac{\alpha'}{R_0}, \\
 \nabla_i H &= (\nabla \times \vec{V})_i, \quad \vec{V} \cdot d\vec{x} = \frac{\ell_0}{\sqrt{2} |\vec{x}|} \frac{-x^6 dx^8 + x^8 dx^6}{|\vec{x}| + x^7}.
\end{align*}
\]

Here α' is the Regge parameter in string theory. The NS5-brane is expanded in the 012345-directions whose spacetime metric is flat, while the transverse space of the 6789-directions is $\mathbb{R}^3 \times S^1$. The vector \vec{x} lives in the transverse 678-directions \mathbb{R}^3. This five-brane is smeared along the transverse 9-th compact direction whose radius is R_0. This configuration is governed by a harmonic function H. The B-field is given by a function V_i which is subject to the monopole equation (2.1d), where the index i represents the spatial directions $i = 6, 7, 8$.

Next, we consider the KK-monopole, or referred to as the KK5-brane. This is obtained via the
T-duality transformation (see appendix A) along the smeared direction of the H-monopole (2.1),

\[
\begin{align*}
 ds^2 &= ds_{012345}^2 + H[\frac{(dx^6)^2 + (dx^7)^2 + (dx^8)^2}{\ell^2}] + \frac{1}{H}[dy^9 - \vec{V} \cdot dx]^2, \\
 B_{MN} &= 0, \quad e^{2\phi} = 1.
\end{align*}
\]

Due to the T-duality transformation, the B-field in the H-monopole (2.1) is involved into the off-diagonal part of the metric as the KK-vector \(\vec{V} \). We also see that the dilaton becomes trivial. The transverse space of the 6789-directions becomes the Taub-NUT space, a non-compact hyper-Kähler geometry. In order to emphasize the T-duality transformation along the 9-th direction, we refer to this coordinate as \(y^9 \).

2.2 Defect five-branes

In the previous subsection we mentioned two standard five-branes of codimension three. It is interesting to consider five-branes of codimension two, called the defect five-branes [14]. We can easily find defect five-branes from the H-monopole and the KK5-brane if one of the transverse directions is further smeared\(^1\). One of the most interesting defect five-branes is the exotic 5\(_2^2\)-brane. This has been investigated in the various viewpoints [7, 24, 8, 15].

We first discuss a defect NS5-brane smeared along the 8-th direction of the H-monopole (2.1). The configuration is given as

\[
\begin{align*}
 ds^2 &= ds_{012345}^2 + H_\ell \left[(d\rho)^2 + \rho^2 (d\vartheta)^2 \right] + H_\ell \left[(dx^8)^2 + (dx^9)^2 \right], \\
 B_{89} &= V_\ell, \quad e^{2\phi} = H_\ell, \\
 H_\ell &= h + \ell \log \frac{\mu}{\rho}, \quad V_\ell = \ell \vartheta, \quad K_\ell = (H_\ell)^2 + (V_\ell)^2, \\
 x^6 &= \rho \cos \vartheta, \quad x^7 = \rho \sin \vartheta, \quad \ell = \frac{\ell_0}{2\pi R_8}. \quad (2.3a)
\end{align*}
\]

Here \(R_8 \) is the radius of the compact circle along the smeared 8-th direction. We notice that the harmonic function \(H \) is reduced to a logarithmic function. Here \(\mu \) is the renormalization scale and \(h \) is the bare quantity which diverges if we go infinitely away from the five-brane. In this sense the representation (2.3) is valid only close to the defect five-brane.

There exist two isometries along the 8-the and 9-th directions of the defect NS5-brane (2.3). Taking the T-duality transformation along the 9-th direction, we obtain a defect KK5-brane,

\[
\begin{align*}
 ds^2 &= ds_{012345}^2 + H_\ell \left[(d\rho)^2 + \rho^2 (d\vartheta)^2 \right] + H_\ell (dx^8)^2 + \frac{1}{H_\ell} \left[dy^9 - V_\ell dx^8 \right]^2, \\
 B_{MN} &= 0, \quad e^{2\phi} = 1. \quad (2.4a)
\end{align*}
\]

This is also found if the KK5-brane of codimension three (2.2) is smeared along the 8-th direction. Here the B-field and the dilaton are again trivial.

\(^1\)The smearing procedure can be seen in [7, 24, 15] and so forth.
If we take the T-duality transformation along the 8-th direction instead of the 9-th direction of the defect NS5-brane (2.3), we also find the configuration of another defect KK5-brane of different type. This will be discussed in appendix B.

Performing the T-duality transformation along the 8-th direction of the defect KK5-brane (2.4), we obtain the configuration of the exotic 52-brane [7, 24, 8, 15],

\[
ds^2 = ds^2_{012345} + H_\ell \left[(d\vartheta)^2 + \varrho^2 (d\vartheta)^2 \right] + \frac{H_\ell}{K_\ell} \left[(dy^8)^2 + (dy^9)^2 \right],
\]

\[B_{89} = -\frac{V_\ell}{K_\ell}, \quad e^{2\phi} = \frac{H_\ell}{K_\ell}.
\]

Here the B-field and the dilaton are non-trivial as in the configuration of the defect NS5-brane (2.3). However, their features are quite different from the ones in (2.3). Indeed, not only the spacetime metric, but also the B-field and the dilaton are no longer single-valued. It is impossible to remove such features by the coordinate transformations or by the B-field gauge transformation. This is the reason why this configuration is the “exotic” five-brane. In the next subsection we capture the exotic structure by virtue of monodromy.

2.3 \(O(2, 2; \mathbb{Z})\) monodromy

When we go around a defect five-brane along the \(\vartheta\) coordinate in the 67-plane, we can capture monodromy generated by the two-torus \(T^{89}\). The analysis of monodromy is important to investigate the exotic structure of defect five-branes. Now we package the 89-directions of the metric and B-field in a \(4 \times 4\) matrix \(M\) [30]2,

\[M(\vartheta, \vartheta) \equiv \begin{pmatrix} G_{mn} - B_{mp} G_{pq} B_{qn} & B_{mp} G_{pn} \\ -G_{np} B_{pm} & G_{mn} \end{pmatrix}, \quad m, n, \ldots = 8, 9.\]

The matrix \(M\) is restricted to the coset space \(O(2, 2) / [O(2) \times O(2)]\) [31]. The numerator \(O(2, 2)\) is related to the T-duality symmetry \(O(2, 2; \mathbb{Z})\) on the two-torus \(T^{89}\), while the denominator \(O(2) \times O(2)\) describes the local symmetry related to the coordinate transformations and the B-field gauge transformation. When we go around a five-brane along the coordinate \(\vartheta\) from 0 to \(2\pi\), the matrix \(M\) is transformed as

\[M(\vartheta, 2\pi) = \Omega^T M(\vartheta, 0) \Omega.\]

The transformation matrix \(\Omega\) indicates the monodromy of the system. This monodromy takes valued in \(O(2, 2; \mathbb{Z})\). We discuss the monodromy matrix more in detail [31, 32, 33, 34, 29]. The matrix \(\Omega\) is described as [34]

\[\Omega = \begin{pmatrix} A & \beta \\ \Theta & D \end{pmatrix},\]

\(^2\)The matrix \(M\) is called the moduli matrix. These days it is also referred to as the generalized metric in the framework of generalized geometry and double field theory.
where A, D, Θ and β are 2×2 block matrices. The blocks A and D govern the coordinate transformations, while Θ gives rise to the B-field gauge transformation. If the block β exists non-trivially, the T-duality is involved into the geometrical structure. It is called a T-fold \cite{31}. Such a space is locally geometric but globally nongeometric.

Now we analyze the matrices M and Ω of the defect five-branes. The defect NS5-brane (2.3) has the following matrices,

\[
M_{\text{NS}}(\varrho, \vartheta) = \frac{1}{H_\ell} \begin{pmatrix}
K_\ell & 0 & 0 & V_\ell \\
0 & K_\ell & -V_\ell & 0 \\
0 & -V_\ell & 1 & 0 \\
V_\ell & 0 & 0 & 1
\end{pmatrix}, \quad \Omega_{\text{NS}} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -2\pi \ell & 1 & 0 \\
2\pi \ell & 0 & 0 & 1
\end{pmatrix}, \quad (2.8)
\]

We note that the monodromy matrix Ω_{NS} contains the Θ part, while it does not contain the β part. This is consistent with the configuration (2.3), where the 2π shift of the coordinate ϑ is removed by the B-field gauge transformation. When we move around the defect NS5-brane $\vartheta = 0 \to 2\pi n$ with $n \in \mathbb{Z}$, the monodromy is given by $(\Omega_{\text{NS}})^n$. This is equal to the monodromy Ω_{NS} whose components $\pm 2\pi \ell$ are replaced to $\pm 2\pi \ell n$. In the same way, we study the matrices of the defect KK5-brane (2.4),

\[
M_{\text{KK}}(\varrho, \vartheta) = \frac{1}{H_\ell} \begin{pmatrix}
K_\ell & -V_\ell & 0 & 0 \\
-V_\ell & 1 & 0 & 0 \\
0 & 0 & 1 & V_\ell \\
0 & 0 & V_\ell & K_\ell
\end{pmatrix}, \quad \Omega_{\text{KK}} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
-2\pi \ell & 1 & 0 & 0 \\
0 & 0 & 1 & 2\pi \ell \\
0 & 0 & 0 & 1
\end{pmatrix}, \quad (2.9)
\]

The monodromy matrix Ω_{KK} does not contain the Θ part and the β part. This is also consistent with the configuration (2.4), where the 2π shift of the ϑ coordinate can be eliminated by the coordinate transformations. However, the matrices of the exotic 5^*_2-brane (2.5) are different from the ones in the above two systems,

\[
M_{\text{E}}(\varrho, \vartheta) = \frac{1}{H_\ell} \begin{pmatrix}
1 & 0 & 0 & -V_\ell \\
0 & 1 & V_\ell & 0 \\
0 & V_\ell & K_\ell & 0 \\
-V_\ell & 0 & 0 & K_\ell
\end{pmatrix}, \quad \Omega_{\text{E}} = \begin{pmatrix}
1 & 0 & 0 & -2\pi \ell \\
0 & 1 & 2\pi \ell & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}, \quad (2.10)
\]

The monodromy matrix Ω_{E} contains the β part. Indeed, in the configuration (2.5), the 2π shift of the coordinate ϑ cannot be removed by the coordinate transformations and the B-field gauge transformation. This shift is generated by the T-duality symmetry along the two-torus T^{89}. Hence we can interpret that the background geometry of the exotic 5^*_2-brane is a typical example of T-folds \cite{31}.

Monodromy is quite useful to investigate the (non)geometric aspects. Furthermore, if we apply the equivalence $O(2,2;\mathbb{Z}) = SL(2,\mathbb{Z}) \times SL(2,\mathbb{Z})$ to the analysis, we can explore the geometries of defect five-branes in a deeper level. In the next two sections we will carefully analyze the $SL(2,\mathbb{Z}) \times SL(2,\mathbb{Z})$ monodromy and construct new configurations of defect five-branes.
3 $SL(2,\mathbb{Z}) \times SL(2,\mathbb{Z})$ monodromy of defect five-branes

In the previous section we studied the defect five-branes and their $O(2,2;\mathbb{Z})$ monodromy structures. In this section we apply the equivalence $O(2,2;\mathbb{Z}) = SL(2,\mathbb{Z}) \times SL(2,\mathbb{Z})$ to the monodromies of the defect five-branes \[8\].

3.1 Two complex structures

The $O(2,2;\mathbb{Z})$ monodromy is generated by the two-torus T^{89}. Let us study the monodromy by the equivalent group $SL(2,\mathbb{Z}) \times SL(2,\mathbb{Z})$. Each $SL(2,\mathbb{Z})$ should also be governed by the structure of T^{89}. Associated with these two $SL(2,\mathbb{Z})$, we introduce two complex structures τ and ρ. τ is the complex structure of the two-torus T^{89}, while ρ is defined in terms of the B-field and the metric on T^{89} in such a way as \[8\],

$$\rho \equiv B_{89} + i\sqrt{\det G_{mn}}.$$ \hspace{1cm} (3.1a)

In terms of the two complex structures, we can represent the metric G_{mn} and the B-field B_{mn} on the two-torus T^{89}, and the dilaton ϕ,

$$G_{mn} = \frac{\rho_2}{\tau_2} \begin{pmatrix} 1 & \tau_1 \\ \tau_1 & |\tau|^2 \end{pmatrix}, \quad B_{89} = \rho_1, \quad e^{2\phi} = \rho_2,$$ \hspace{1cm} (3.1b)

where $\tau = \tau_1 + i\tau_2$ and $\rho = \rho_1 + i\rho_2$. Then, instead of the analysis of the matrix $M(\rho, \vartheta)$, we will investigate the monodromy structures of the two complex structures τ and ρ of the defect five-branes.

3.2 Monodromy matrices

Let us first analyze the $SL(2,\mathbb{Z})_{\tau} \times SL(2,\mathbb{Z})_{\rho}$ monodromy of the defect NS5-brane. Plugging the configuration (2.3) into the formulation (3.1), we can read off the explicit forms of the two complex structures,

$$\tau = i, \quad \rho = V_\ell + iH_\ell = ih + i\ell \log(\mu/z),$$ \hspace{1cm} (3.2)

where we defined the complex coordinate $z \equiv \rho e^{i\vartheta}$ in the 67-plane. When we go around the defect NS5-brane $z \to z e^{2\pi i}$, the complex structure ρ has the monodromy as $\rho \to \rho + 2\pi\ell$, whilst τ is invariant. The $SL(2,\mathbb{Z})$ descriptions of the monodromy are

$$\tau \to \tau' = \tau, \quad \Omega'^{NS}_\tau \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$ \hspace{1cm} (3.3a)

$$\rho \to \rho' = \rho + 2\pi\ell, \quad \Omega'^{NS}_\rho \equiv \begin{pmatrix} 1 & 2\pi\ell \\ 0 & 1 \end{pmatrix}. \hspace{1cm} (3.3b)$$
It turns out that the two-torus T^{89} is not deformed under the monodromy, while the field configuration of B_{89} is changed. However, this change can be removed by the B-field gauge transformation. Then the configuration (2.3) is invariant under the monodromy transformation. This is consistent with the previous analysis in terms of Ω^{NS} (2.8).

Next, we discuss the $SL(2,\mathbb{Z})_\tau \times SL(2,\mathbb{Z})_\rho$ monodromy of the defect KK5-brane. Substituting the configuration (2.4) into (3.1), the two complex structures are given as

$$\tau = -\frac{V_\ell + iH_\ell}{K_\ell} = \frac{i}{h + \ell \log(\mu/z)}, \quad \rho = i. \quad (3.4)$$

Now ρ becomes trivial. Here it is convenient to introduce $\lambda = -1/\tau = V_\ell + iH_\ell$. Under the shift $z \rightarrow z e^{2\pi i}$, the complex structure λ is transformed as $\lambda \rightarrow \lambda' = \lambda + 2\pi \ell$, while τ is invariant. Their $SL(2,\mathbb{Z})$ representations are given as follows,

$$\tau \rightarrow \tau' = \frac{\tau}{-2\pi \ell \tau + 1}, \quad \Omega^{KK}_\tau \equiv \begin{pmatrix} 1 & 0 \\ -2\pi \ell & 1 \end{pmatrix}, \quad (3.5a)$$

$$\rho \rightarrow \rho' = \rho, \quad \Omega^{KK}_\rho \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \quad (3.5b)$$

This implies that the complex structure of the two-torus T^{89} is changed under the monodromy, while the B-field and the determinant of the metric is invariant. However, we can remove the change of the complex structure by the coordinate transformations. This is also consistent with the previous discussion in terms of Ω^{KK} (2.9).

Finally, we study the $SL(2,\mathbb{Z})_\tau \times SL(2,\mathbb{Z})_\rho$ monodromy of the exotic 5_2^{\pm}-brane. Applying the configuration (2.5) to the complex structures (3.1), we can read off the following forms,

$$\tau = i, \quad \rho = -\frac{V_\ell + iH_\ell}{K_\ell} = \frac{i}{h + \ell \log(\mu/z)}. \quad (3.6)$$

Again the complex structure of the two-torus T^{89} becomes trivial. For convenience, we introduce $\omega \equiv -1/\rho = V_\ell + iH_\ell$. Under the shift $z \rightarrow z e^{2\pi i}$, we see that ω has the monodromy $\omega \rightarrow \omega' = \omega + 2\pi \ell$, while τ is invariant. The $SL(2,\mathbb{Z})$ matrix forms of the monodromy are

$$\tau \rightarrow \tau' = \tau, \quad \Omega^{E}_\tau \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad (3.7a)$$

$$\rho \rightarrow \rho' = \rho, \quad \Omega^{E}_\rho \equiv \begin{pmatrix} 1 & 0 \\ -2\pi \ell & 1 \end{pmatrix}. \quad (3.7b)$$

This behavior implies that the monodromy transformation does not change the complex structure of the two-torus, while the field configuration is changed. Furthermore, caused by the form $\rho' = B_{89}^{\ell} + i\sqrt{\det G_{\ell m}}$, this change cannot be eliminated completely in terms of the coordinate transformations and the B-field gauge transformation. As discussed in the analysis of Ω^{E}, this is nothing but the aspect of T-fold.

In the next section we will investigate conjugates of the $SL(2,\mathbb{Z})_\tau \times SL(2,\mathbb{Z})_\rho$ monodromy. We will find various new configurations of defect five-branes as their composite states.
4 Conjugate configurations

In type IIB theory, there exists a D7-brane which also has the $SL(2,\mathbb{Z})$ monodromy generated by the combination of the dilaton and the axion [20]. Applying a generic $SL(2,\mathbb{Z})$ transformation to the monodromy, we can find conjugate systems of the D7-brane [21, 22]. In the same analogy, the conjugates of the exotic 52_2-brane has been discussed in [24, 8]. In this section, we develop the analyses to the conjugate configurations of the defect five-branes. To do this, we prepare a set of generic $SL(2,\mathbb{Z})_{\tau} \times SL(2,\mathbb{Z})_{\rho}$ matrices,

\[
U_{\tau} \equiv \left(\begin{array}{cc} s' & r' \\ q' & p' \end{array} \right), \quad U_{\rho} \equiv \left(\begin{array}{cc} s & r \\ q & p \end{array} \right), \quad s'p' - r'q' = 1, \quad sp - rq = 1.
\] (4.1a)

By using $U_{\tau,\rho}$, we construct a set of conjugate monodromy matrices $\tilde{\Omega}_{\tau,\rho}$,

\[
\tilde{\Omega}_{\tau,\rho} \rightarrow \tilde{\Omega}_{\tilde{\tau},\tilde{\rho}} = U_{\tau,\rho}^{-1} \tilde{\Omega}_{\tau,\rho} U_{\tau,\rho}.
\] (4.1b)

Simultaneously, we transform the two complex structures τ and ρ in terms of $U_{\tau,\rho}$ to new complex structures $\tilde{\tau}$ and $\tilde{\rho}$. Plugging them into (3.1), we can read off new field configurations \tilde{G}_{mn}, \tilde{B}_{89} and $\tilde{\phi}$.

4.1 Conjugate configuration of defect NS5-brane

First, we investigate conjugate configurations of the defect NS5-brane (2.3). Transforming the original monodromy matrices $\tilde{\Omega}_{\tau,\rho}$ and $\tilde{\Omega}_{\rho}$ (3.3) in terms of the rule (4.1), the conjugate monodromy matrices can be obtained as

\[
\tilde{\Omega}_{\tau,\rho} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \quad \tilde{\Omega}_{\rho} = \left(\begin{array}{cc} 1 + 2\pi\ell pq & 2\pi\ell p^2 \\ -2\pi\ell q^2 & 1 - 2\pi\ell pq \end{array} \right),
\] (4.2)

Here $\tilde{\Omega}_{\tau,\rho}$ is again trivial because the original complex structure τ is trivial $\tau = i$. Compared $\tilde{\Omega}_{\rho}$ with $\tilde{\Omega}_{\rho}^{NS}$ (3.3) and $\tilde{\Omega}_{\rho}^{E}$ (3.7), it turns out that the conjugate system is a composite of p defect NS5-branes and q exotic 52_2-branes [24, 8]. Associated with the transformation rule (4.1), we also arrange the complex structure ρ by means of U_{ρ}^{-1},

\[
U_{\rho}^{-1} = \left(\begin{array}{cc} p & -r \\ -q & s \end{array} \right), \quad \rho \rightarrow \tilde{\rho} \equiv \frac{pp' - rq'}{qq' + s}.
\] (4.3)

Since the monodromy of the original ρ is $\rho \rightarrow \rho' = \rho + 2\pi\ell$ under the shift $z \rightarrow ze^{2\pi i}$, then the new complex structure $\tilde{\rho}$ is transformed as

\[
\tilde{\rho} \rightarrow \tilde{\tilde{\rho}} = \frac{pp' - rq'}{qq' + s} = \frac{(1 + 2\pi\ell pq)\tilde{\rho} + 2\pi\ell p^2}{-2\pi\ell q^2\tilde{\rho} + (1 - 2\pi\ell pq)}.
\] (4.4)

This indicates that the new complex structure $\tilde{\rho}$ reproduces the $SL(2,\mathbb{Z})_{\rho}$ conjugate monodromy $\tilde{\Omega}_{\rho}^{NS}$ (4.2). Then it turns out that $\tilde{\rho}$ denotes the conjugate configuration of the defect NS5-brane (2.3).
We would like to construct the local expression of the conjugate configuration. Substituting the conjugate complex structures \(\tau \) and \(\tilde{\rho} \) (4.3) into (3.1), we can read off the field configuration,

\[
\tilde{C}_{mn} = \frac{H_\ell}{s^2 - 2qsV_\ell + q^2K_\ell} \delta_{mn}, \quad m, n = 8, 9; \quad (4.5a)
\]

\[
\tilde{B}_{89} = \frac{-rs + (ps + qr)V_\ell - pqK_\ell}{s^2 - 2qsV_\ell + q^2K_\ell}, \quad (4.5b)
\]

\[
e^{2\tilde{\phi}} = \frac{H_\ell}{s^2 - 2qsV_\ell + q^2K_\ell}. \quad (4.5c)
\]

This is a generic form of the composite system of \(p \) defect NS5-branes and \(q \) exotic 5\(_2\)-branes under the constraint \(sp - qr = 1 \). The system of a single defect NS5-brane can be realized by setting \((p, q, r, s) = (1, 0, 0, 1)\), while the system of a single exotic 5\(_2\)-brane can be expressed by \((p, q, r, s) = (0, 1, -1, 0)\). In a generic case of non-vanishing \(p \) and \(q \), the expression (4.5) is rather lengthy.

In order to reduce the expression of the generic \((p, q)\) configuration, we rewrite the conjugate complex structure \(\tilde{\rho} \),

\[
\tilde{\rho} = \frac{p(V_\ell + iH_\ell) - r}{-q(V_\ell + iH_\ell) + s} = \frac{1}{-q((-s + qV_\ell) + iqH_\ell)}. \quad (4.6)
\]

Here we removed \(r \) by using \(sp - qr = 1 \). Now \(s \) is no longer constrained by \((p, q)\), then we set \(s \) to zero without loss of generality,

\[
\tilde{\rho} = \frac{p}{q} \frac{1}{q(V_\ell + iH_\ell)}. \quad (4.7)
\]

For convenience, we further introduce a new expression \(\tilde{\omega} \equiv -1/(\tilde{\rho} + \frac{1}{q}) \). This is transformed as \(\tilde{\omega} \rightarrow \tilde{\omega}' = \tilde{\omega} + 2\pi\ell q^2 \) under the shift \(z \rightarrow z e^{2\pi i} \). Then we can read off the monodromy of \(\tilde{\rho} = -1/\tilde{\omega} \) in such a way as

\[
\tilde{\rho} \rightarrow \tilde{\rho}' = \frac{(1 + 2\pi\ell pq)\tilde{\rho} + 2\pi\ell p^2}{-2\pi\ell q^2\tilde{\rho} + (1 - 2\pi\ell pq)}. \quad (4.8)
\]

It turns out that the reduced complex structure \(\tilde{\rho} \) again reproduce the conjugate monodromy \(\tilde{\Omega}_{NS}^p \) (4.3). Throughout the above reduction, the other complex structure \(\tau \) is unchanged. Finally, plugging \(\tau = i \) and \(\tilde{\rho} \) (4.7) into the definition (3.1), we explicitly obtain the defect \((p, q)\) five-branes, i.e, the configuration of \(p \) defect NS5-branes and \(q \) exotic 5\(_2\)-branes,

\[
d\tilde{s}^2 = ds_{012345}^2 + H_\ell [(d\\phi)^2 + q^2(d\\bar{\phi})^2] + \frac{H_\ell}{q^2K_\ell} [(dx^8)^2 + (dx^9)^2], \quad (4.9a)
\]

\[
\tilde{B}_{89} = -\frac{p}{q} \frac{V_\ell}{q^2K_\ell}, \quad e^{2\tilde{\phi}} = \frac{H_\ell}{q^2K_\ell}. \quad (4.9b)
\]

Of course, this configuration satisfies the equations of motion of supergravity theories. Actually, this configuration is desired in the framework of the GLSM [35].

There is a comment. The conjugate complex structure \(\tilde{\rho} \) (4.7) contains a constant term \(-p/q\). Compared this with (3.1), we think that this constant might be eliminated by the B-field gauge symmetry. However, if the term \(-p/q\) in (4.7) is gauged away, the monodromy is reduced to \((\tilde{\Omega}_{\tilde{\rho}}^p)\), which no longer represents the composite system of the defect NS5-branes and the exotic 5\(_2\)-branes.
4.2 Conjugate configuration of defect KK5-brane

Next, we consider the conjugate of the defect KK5-brane (2.4). Applying the transformation rules (4.1) to the monodromies Ω^{KK}_τ and Ω^{KK}_p (3.5), the conjugate monodromy matrices are given as

$$\tilde{\Omega}^{KK}_\tau = \begin{pmatrix} 1 + 2\pi \ell r's' & 2\pi \ell r'^2 \\ -2\pi \ell s'^2 & 1 - 2\pi \ell r's' \end{pmatrix}, \quad \tilde{\Omega}^{KK}_p = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \quad (4.10)$$

We note that the conjugate monodromy $\tilde{\Omega}^{KK}_\rho$ is identical with Ω^{KK}_ρ because the complex structure ρ is trivial (3.4). Compared $\tilde{\Omega}^{KK}_\tau$ with the monodromy matrices Ω^{KK}_τ (3.5) and Ω^{AK}_τ (B.5), the conjugate monodromy $\tilde{\Omega}^{KK}_\tau$ denotes that the system is a composite of $-s'$ defect KK5-branes (2.4) and r' defect KK5-branes of another type (B.1). Let us focus on the complex structure τ. This is also changed in terms of U^{-1}_τ in such a way as

$$U^{-1}_\tau = \begin{pmatrix} p' & -r' \\ -q' & s' \end{pmatrix}, \quad \tau \rightarrow \tilde{\tau} \equiv \frac{p' \tau - r'}{-q' \tau + s'}. \quad (4.11)$$

Since the original τ is transformed as in (3.5) under the shift $z \rightarrow z e^{2\pi i}$, the new complex structure $\tilde{\tau}$ is transformed,

$$\tilde{\tau} \rightarrow \tilde{\tau}' = \frac{(1 + 2\pi \ell r's')\tilde{\tau} + 2\pi \ell r'^2}{-2\pi \ell s'^2\tilde{\tau} + (1 - 2\pi \ell r's')} \quad (4.12)$$

This provides the same conjugate monodromy matrix $\tilde{\Omega}^{KK}_\tau$ (4.10). Plugging $\tilde{\tau}$ (4.11) and $\rho = i$ into the definition (3.1), we find

$$\tilde{G}_{88} = \frac{q'^2 + 2q's'V_\ell + s'^2K_\ell}{H_\ell}, \quad (4.13a)$$
$$\tilde{G}_{89} = \tilde{G}_{98} = -\frac{p'q' + (p's' + r'q')V_\ell + r's'K_\ell}{H_\ell}, \quad (4.13b)$$
$$\tilde{G}_{99} = \frac{p'^2 + 2p'r'V_\ell + r'^2K_\ell}{H_\ell}, \quad (4.13c)$$
$$\tilde{B}_{MN} = 0, \quad e^{2\phi} = 1. \quad (4.13d)$$

This is the generic form of the composite system of $-s'$ defect KK5-branes and r' defect KK5-branes of another type. The system of the single defect KK5-brane (2.4) is obtained by setting $(p', q', r', s') = (-1, 0, 0, -1)$, while the configuration of the single defect KK5-brane of another type (B.1) is realized if $(p', q', r', s') = (0, -1, 1, 0)$. The expression (4.13) is lengthy to describe the generic configuration of non-vanishing parameters $(-s', r')$.

Let us find the simple form of the generic $(-s', r')$, We introduce $\tilde{\lambda} = -1/\tilde{\tau}$. Applying the constraint $s'p' - q'r' = 1$ to this, we obtain

$$\tilde{\lambda} = \frac{s'(V_\ell + iH_\ell) + q'}{r'(V_\ell + iH_\ell) + p'} = \frac{s'}{r'} - \frac{1}{r'[(p' + r'V_\ell) + i(r'H_\ell)]. \quad (4.14a)}$$
4.10

Finally, we investigate the conjugate system of the exotic 52-monodromy matrices $(\hat{\Omega}_{s',r'})$. Then we can set $p' = 0$ without loss of generality,

\[
\hat{\lambda} = -\frac{1}{\hat{\tau}} = \frac{s'}{r'} - \frac{1}{r'^2 (V_\ell + iH_\ell)}.
\] (4.15)

We check the monodromy of the new complex structure $\hat{\tau}$. It is convenient to introduce $\hat{\zeta} \equiv -1 / (\hat{\lambda} - \hat{\tau})$. Since this is transformed as $\hat{\zeta} \rightarrow \hat{\zeta}' = \hat{\zeta} + 2\pi r'^2$ under the shift $z \rightarrow z e^{2\pi i}$, we can immediately read off the transformation of $\hat{\tau} = -1/\hat{\lambda}$ in such a way as

\[
\hat{\tau} \rightarrow \hat{\tau}' = \frac{(1 + 2\pi \ell r's')\hat{\tau} + 2\pi \ell r'^2}{-2\pi \ell s'^2 \hat{\tau} + (1 - 2\pi \ell r's')}.
\] (4.16)

This guarantees that the new complex structure $\hat{\tau}$ also generates the conjugate monodromy (4.10). Plugging $\hat{\tau}$ (4.15) and $\rho = i$ into the definition (3.1), we find the local expression of the metric, the B-field and the dilaton for the composite of $-s'$ defect KK5-branes (2.4) and r' defect KK5-branes of another type (B.1),

\[
ds^2 = ds^2_{1012345} + H_\ell [(d\theta)^2 + \rho^2 (d\theta)^2] + \tilde{\lambda}_2 (dx^8)^2 + \frac{1}{\lambda_2} [dy^9 - \tilde{\lambda}_1 dx^8]^2,
\] (4.17a)

\[
\tilde{B}_{MN} = 0, \quad e^{2\tilde{\phi}} = 1,
\] (4.17b)

\[
\tilde{\lambda}_1 = -\frac{\tilde{\tau}_1}{|\tilde{\tau}_1|^2} = \frac{s'}{r'} - \frac{V_\ell}{r'^2 K_\ell}, \quad \tilde{\lambda}_2 = \frac{\tilde{\tau}_2}{|\tilde{\tau}_2|^2} = \frac{H_\ell}{r'^2 K_\ell}.
\] (4.17c)

This configuration also satisfies the equations of motion of supergravity theories. We note that the transverse space of 6789-directions in (4.17) is Ricci-flat. Since this configuration preserves a half of supersymmetry, the transverse space is also hyper-Kähler. Indeed this belongs to a class of ALG spaces [25, 26]3.

The conjugate system can also be obtained from the conjugate configuration of the defect NS5-brane (4.9) via the T-duality transformation along the 9-th direction with relabeling $(p, q) = (-s', r')$. The exchange of the conjugate complex structures $(\tau, \hat{\rho})$ in (4.9) and $(\rho, \hat{\lambda})$ in (4.17) also occurs.

We notice that the constant term s'/r' in the conjugate complex structure $\hat{\tau}$ (4.15) should not be eliminated in terms of the coordinate transformations. If we remove s'/r', the complex structure produces the monodromy $(\Omega_{\tau}^{AK})^{r'}$ (B.5) rather than the conjugate monodromy $\hat{\Omega}_{\tau}^{KK}$ (4.10).

4.3 Conjugate configuration of exotic 5^2-brane

Finally, we investigate the conjugate system of the exotic 5^2-brane. The $SL(2,\mathbb{Z})_\tau \times SL(2,\mathbb{Z})_{\hat{\rho}}$ monodromy matrices (3.7) are transformed by using (4.1),

\[
\tilde{\Omega}_\tau^E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \tilde{\Omega}_{\hat{\rho}}^E = \begin{pmatrix} 1 + 2\pi \ell rs & 2\pi \ell r^2 \\ -2\pi \ell s^2 & 1 - 2\pi \ell rs \end{pmatrix}.
\] (4.18)

3The transverse space of the defect KK5-brane (2.4) is also an ALG space.
Recall that the original ρ is transformed as in (3.7) under $z \rightarrow z e^{2\pi i}$. Then the new complex structure $\tilde{\rho}$ is also transformed as

$$\tilde{\rho} \rightarrow \tilde{\rho}' = \frac{(1 + 2\pi \ell rs)\tilde{\rho} + 2\pi \ell r^2}{-2\pi \ell s^2 \tilde{\rho} + (1 - 2\pi \ell rs)}.$$

This reproduces the conjugate monodromy $\tilde{\Omega}_\rho^E$ (4.18). The complex structures τ and $\tilde{\rho}$ gives rise to the configuration of the metric, the B-field and the dilaton,

\begin{align}
\tilde{C}_{mn} &= \frac{H_\ell}{q^2 + 2qsV_\ell + s^2 K_\ell} \delta_{mn}, \quad m, n = 8, 9, \\
\tilde{B}_{89} &= -\frac{pq + (ps + rq)V_\ell + rs K_\ell}{q^2 + 2qsV_\ell + s^2 K_\ell}, \\
e^{2\tilde{\phi}} &= \frac{H_\ell}{q^2 + 2qsV_\ell + s^2 K_\ell}.
\end{align}

This contains the case of the single exotic 52_2-brane (2.5) by setting $(p, q, r, s) = (-1, 0, 0, -1)$ and the case of the single defect NS5-brane by $(p, q, r, s) = (0, -1, 1, 0)$. However, in the case of a generic $(r, -s) \neq (0, 0)$, the expression (4.21) is cumbersome. Fortunately, as in the previous configurations, we can reduce (4.21). For convenience, let us introduce $\tilde{\omega} = -1/\tilde{\rho}$,

$$\tilde{\omega} = \frac{s(V_\ell + iH_\ell) + q}{r(V_\ell + iH_\ell) + p} = \frac{s}{r} - \frac{1}{r[(p + rV_\ell) + irH_\ell]},$$

where we used $sp - qr = 1$ to remove q. Since the parameter p is now arbitrary without any constraints, we can set the following form without loss of generality,

$$\tilde{\omega} = -\frac{1}{\tilde{\rho}} = \frac{s}{r} - \frac{1}{r^2(V_\ell + iH_\ell)}.$$

We check the monodromy of the new complex structure $\tilde{\rho}$. For convenience, we define $\tilde{\zeta} \equiv -1/(\tilde{\omega} - \frac{s}{r})$. This is transformed as $\tilde{\zeta} \rightarrow \tilde{\zeta}' = \tilde{\zeta} + 2\pi \ell r^2$ under the shift $z \rightarrow z e^{2\pi i}$. Then we can read off the monodromy of $\tilde{\rho} = -1/\tilde{\omega}$ in such a way as

$$\tilde{\rho} \rightarrow \tilde{\rho}' = \frac{(1 + 2\pi \ell rs)\tilde{\rho} + 2\pi \ell r^2}{-2\pi \ell s^2 \tilde{\rho} + (1 - 2\pi \ell rs)}.$$

Thus we confirm that the new complex structure $\tilde{\rho}$ is subject to the conjugate monodromy (4.18). Applying $\tau = i$ and $\tilde{\rho}$ (4.23) to the definition (3.1), it turns out that the conjugate configuration is described as

$$ds^2 = ds^2_{012345} + H_\ell [(d\theta)^2 + q^2 (d\varphi)^2] + \frac{\tilde{\omega}^2}{|\tilde{\omega}|^2} \left((dy^8)^2 + (dy^9)^2 \right),$$

13
This is the local expression of the defect \((r, -s)\) five-branes, i.e., the composite of \(r\) defect NS5-branes \((2.3)\) and \(-s\) exotic 5\(2^2\)-branes. This is similar to the previous form \((4.9)\), while the roles of conjugate complex structures are different. Indeed, the configuration \((4.25)\) is generated via the T-duality transformations along the 8-th and 9-th direction of \((4.9)\), with relabeling \((p, q)\) to \((-s, r)\). Simultaneously, the complex structures \((\tau, \hat{\rho})\) in \((4.9)\) are changed to \((\tau, \hat{\omega})\) in \((4.25)\).

\[B_{89} = -\hat{\omega}_1/|\hat{\omega}|^2, \quad e^{2\hat{\phi}} = \hat{\omega}_2/|\hat{\omega}|^2, \quad \hat{\omega}_1 = -\hat{\rho}_1/|\hat{\rho}|^2 = \frac{s}{r} - \frac{V_{\ell}}{r^2 K_{\ell}}, \quad \hat{\omega}_2 = \hat{\rho}_2/|\hat{\rho}|^2 = \frac{H_{\ell}}{r^2 K_{\ell}}. \]

(4.25b) (4.25c)

5 Summary and discussions

In this paper, we studied the \(SL(2, \mathbb{Z}), SL(2, \mathbb{Z})_p\) monodromy structures of various defect five-branes. We also investigated the conjugate configurations of them by virtue of the conjugate monodromy matrices and the corresponding complex structures. Once we found the explicit forms of the complex structures which reproduce the conjugate monodromies, we immediately constructed the field configurations of the conjugate system. In this process we constructed the metric, the B-field and the dilaton for the defect \((p, q)\) five-branes, i.e., the composite of \(p\) defect NS5-branes and \(q\) exotic 5\(2^2\)-branes, in a concrete manner. Since the configuration of the single defect five-brane is not globally well-defined, the expression of the composite system would be quite helpful to find the globally well-defined formulation of defect five-branes, as in the case of seven-branes in type IIB theory. If we find the global description for defect five-branes, we will understand the importance of the exotic 5\(2^2\)-brane in a deeper level. In this work we also obtained the new hyper-Kähler geometry \((4.17)\) as the conjugate system of the defect KK5-branes. This is an ALG space, a generalization of an ALF space which asymptotically has a tri-holomorphic two-torus \(T^{89}\) action \([25, 26]\). Since this is originated from the Taub-NUT space via the smearing and the conjugating, we can interpret this as the conjugated defect Taub-NUT space.

There are several discussions. First, all of the conjugated configurations represent the composites of coincident defect five-branes. In order to find a further general configuration where each defect five-brane is located at arbitrary point in the 67-plane, we should introduce new parameters into the system. In the case of multi-centered five-branes of codimension three, We have already known the harmonic function,

\[H = 1 + \frac{\ell_0}{\sqrt{2|x|}} \to 1 + \sum_k \frac{\ell_0}{\sqrt{2|x - \tilde{q}_k|}}, \]

(5.1)

where \(\tilde{q}_k\) is the position of the \(k\)-th five-brane in the 678-directions. In the case of defect five-branes, however, it is difficult to recognize the sum of the harmonic functions for the single defect five-brane as the one for multiple defect five-branes. This is because the individual harmonic function involves the renormalization scale \(\mu\). Then we have to control many number of scale parameters in order that the harmonic function is well-defined in the whole region of the 67-plane. This estimate is too naive to describe a number of separated defect five-branes. In order to acquire the consistent form.
for such a configuration, we have to find the globally well-defined function as the modular invariant function for seven-branes in type IIB theory. Nevertheless, the local descriptions of composite defect five-branes would be helpful to construct the globally well-defined function.

Apart from the above current difficulty, we can still study other topics. (i) In the previous work [35], we tried to construct the GLSM for two defect five-branes. Since we obtained the explicit configuration for them in the current work, it can be possible to find the improved version of [35]. In particular, it would be quite interesting to construct string worldsheet theories for ALG spaces related to the previous work [15], by virtue of the T-duality transformation rules on the GLSM [36, 37]. (ii) In the system of the defect \((p, q)\) five-branes (4.9), the 9-th direction is compactified and smeared. Let us consider the string worldsheet instanton corrections along the 9-th direction. From the viewpoint of the defect NS5-branes, the worldsheet instanton corrections to the 9-th direction can be interpreted as the KK momentum corrections [11, 12, 13]. On the other hand, from the viewpoint of the exotic \(5_2^2\)-branes, the worldsheet instanton corrections can be understood as the winding corrections to the configuration [16]. Then, how should we interpret the worldsheet instanton corrections to the defect \((p, q)\) five-branes? This is quite a fascinating question. (iii) There are various hyper-Kähler geometries. If some of them coincide with the conjugate configurations discussed in this paper, we would be able to find a novel relation among various five-branes from the (non)geometrical viewpoint [18, 38].

Acknowledgements

The author would like to thank Shin Sasaki and Masaya Yata for valuable discussions and comments. This work is supported in part by the Iwanami-Fujukai Foundation.

Appendix

A T-duality

In this appendix we exhibit the T-duality transformations in two ways. The first expression is the Buscher rule [39] of the T-duality transformation along the \(n\)-th direction,

\[
G'_{MN} = G_{MN} - \frac{G_{nM}G_{nN} - B_{nM}B_{nN}}{G_{nn}}, \quad G'_{nN} = \frac{B_{nN}}{G_{nn}}, \quad G'_{nn} = \frac{1}{G_{nn}}, \quad (A.1a)
\]

\[
B'_{MN} = B_{MN} + \frac{2G_{n[M}B_{N]n}}{G_{nn}}, \quad B'_{nN} = \frac{G_{nN}}{G_{nn}}, \quad (A.1b)
\]

\[
\phi' = \phi - \frac{1}{2} \log(G_{nn}) . \quad (A.1c)
\]

In the main part of this paper we frequently utilize this rule. The explicit form is necessary for avoiding any sign ambiguities from involution of the B-field.
The second expression is a part of the monodromy transformations (2.6). The T-duality transformations along the 8-th and 9-th directions are represented in terms of 4×4 matrices $U_{8,9}$ in such a way as

$$U_8 = \begin{pmatrix} 1 - T_8 & -T_8 \\ -T_8 & 1 - T_8 \end{pmatrix}, \quad T_8 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad (A.2a)$$

$$U_9 = \begin{pmatrix} 1 - T_9 & -T_9 \\ -T_9 & 1 - T_9 \end{pmatrix}, \quad T_9 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad (A.2b)$$

$$U_{89} = \begin{pmatrix} 1 - T_8 - T_9 & -T_8 - T_9 \\ -T_8 - T_9 & 1 - T_8 - T_9 \end{pmatrix} = U_8 U_9 = U_9 U_8. \quad (A.2c)$$

In terms of these matrices, we can see the T-duality relations among the monodromies Ω_{NS}, Ω^{KK} and Ω^{E},

$$\Omega^{\text{KK}} = U_9^T \Omega_{\text{NS}} U_9, \quad \Omega^{\text{E}} = U_8^T \Omega^{\text{KK}} U_8, \quad (A.3)$$

The matrix description of the T-duality transformations can be also seen in [40, 24], and so forth.

B Another configuration of defect KK5-brane

In this appendix, we discuss another defect KK5-brane of different type\(^4\). If we take T-duality along the 8-th direction of the defect NS5-brane (2.3), we obtain the following configuration,

$$ds^2 = ds^2_{012345} + H_\ell \left[(d\theta)^2 + \rho^2 (d\vartheta)^2 \right] + H_\ell (dx^9)^2 + \frac{1}{H_\ell} [dy^8 + V_\ell dx^9]^2, \quad (B.1a)$$

$$B_{MN} = 0, \quad e^{2\phi} = 1. \quad (B.1b)$$

This is similar to the defect KK5-brane (2.4), while the structure of the two-torus T^{89} is different. In order to study the structure of the defect KK5-brane (B.1), we analyze the matrix M^{AK} and the $O(2,2;\mathbb{Z})$ monodromy Ω^{AK} defined in (2.6),

$$M^{\text{AK}}(\vartheta, \vartheta) = \frac{1}{H_\ell} \begin{pmatrix} 1 & V_\ell & 0 & 0 \\ V_\ell & K_\ell & 0 & 0 \\ 0 & 0 & K_\ell & -V_\ell \\ 0 & 0 & -V_\ell & 1 \end{pmatrix}, \quad \Omega^{\text{AK}} = \begin{pmatrix} 1 & 2\pi \ell & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -2\pi \ell & 1 \end{pmatrix}. \quad (B.2)$$

The $O(2,2;\mathbb{Z})$ monodromy matrix Ω^{AK} is related to the monodromy of the defect NS5-brane Ω^{NS} (2.8) and of the exotic 5^3_2-brane Ω^{E} (2.10) under the T-duality transformations (A.2),

$$\Omega^{\text{AK}} = U_8^T \Omega^{\text{NS}} U_8, \quad \Omega^{\text{E}} = U_9^T \Omega^{\text{AK}} U_9. \quad (B.3)$$

We can also discuss the $SL(2,\mathbb{Z})_\tau \times SL(2,\mathbb{Z})_\rho$ monodromy by virtue of the two-torus T^{89} and two complex structures τ and ρ defined by (3.1). Plugging (B.1) into (3.1), we find

$$\tau = V_\ell + iH_\ell = ih + i\ell \log(\mu/z), \quad \rho = i. \quad (B.4)$$

\(^4\)We note that the GLSM formulation is mentioned in appendix B of [15].
Their monodromy transformations by the shift \(z \to z e^{2\pi i} \) are given as

\[
\tau \to \tau' = \tau + 2\pi \ell, \quad \Omega^\text{AK}_\tau \equiv \begin{pmatrix} 1 & 2\pi \ell \\ 0 & 1 \end{pmatrix}, \quad (B.5a)
\]

\[
\rho \to \rho' = \rho, \quad \Omega^\text{AK}_\rho \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \quad (B.5b)
\]

This is similar to the monodromy matrices of the defect KK5-brane \((3.5)\). The slight difference of \(\Omega^\text{AK}_\tau\) from \(\Omega^\text{KK}_{\tau}\) originates in the difference of the involution of the KK-vector \(\vec{V}\) into the off-diagonal part of the metric on the two-torus.

Let us now study the conjugate system by transformations of the monodromy matrices via \((4.1)\),

\[
\tilde{\Omega}^\text{AK}_\tau = \begin{pmatrix} 1 + 2\pi \ell p'q' & 2\pi \ell p'q' \\ -2\pi \ell q'q^2 & 1 - 2\pi \ell p'q' \end{pmatrix}, \quad \tilde{\Omega}^\text{AK}_\rho = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \quad (B.6)
\]

Simultaneously, we also transform the complex structure \(\tau\) in the following way,

\[
U^{-1}_\tau = \begin{pmatrix} p' & -r' \\ -q' & s' \end{pmatrix}, \quad \tau \to \tilde{\tau} = \frac{p'\tau - r'}{-q'\tau + s'}. \quad (B.7)
\]

Since the original \(\tau\) is transformed as \(\tau \to \tau' = \tau + 2\pi \ell\) under the shift \(z \to z e^{2\pi i}\), then we can read off the monodromy of the new complex structure \(\tilde{\tau}\) in such a way as

\[
\tilde{\tau} \to \tilde{\tau}' = \frac{p'\tilde{\tau}' - r'}{-q'\tilde{\tau}' + s'} = \frac{(1 + 2\pi \ell p'q')\tilde{\tau} + 2\pi \ell p'q^2}{-2\pi \ell q'^2\tilde{\tau} + (1 - 2\pi \ell p'q')} \quad (B.8)
\]

This indicates that \(\tilde{\tau}\) is also subject to the conjugate monodromy \((B.6)\). Then we find the generic form of the metric, the B-field and the dilaton for the composite configuration of \(q'\) defect KK5-branes \((2.4)\) and \(p'\) defect KK5-branes \((B.1)\),

\[
\begin{align*}
\tilde{G}_{88} &= \frac{s'^2 - 2q's'V_\ell + q'^2K_\ell}{H_\ell}, \quad (B.9a) \\
\tilde{G}_{89} &= \tilde{G}_{98} = -\frac{r's' - (p's' + r'q')V_\ell + p'q'K_\ell}{H_\ell}, \quad (B.9b) \\
\tilde{G}_{99} &= \frac{r'^2 - 2p'r'V_\ell + p'^2K_\ell}{H_\ell}, \quad (B.9c) \\
\tilde{B}_{MN} &= 0, \quad e^{2\tilde{\phi}} = 1. \quad (B.9d)
\end{align*}
\]

We note that the single defect KK5-brane \((2.4)\) is realized by setting \((p', q', r', s') = (0, 1, -1, 0)\), and the single defect KK5-brane of another type \((B.1)\) is obtained by \((p', q', r', s') = (1, 0, 0, 1)\). However, the expression \((B.9)\) is redundant for the case of generic \((q', p') \neq (0, 0)\). In order to find the reduced form for the generic \((q', p')\) configuration, we rewrite the complex structure \(\tilde{\tau}\),

\[
\tilde{\tau} = \frac{p'(V_\ell + iH_\ell) - r'}{-q'(V_\ell + iH_\ell) + s'} = -\frac{p'}{q'} - \frac{1}{q'((-s' + q'V_\ell) + iq'H_\ell)}. \quad (B.10)
\]
Here we used \(s'p' - q'r' = 1 \) to eliminate \(r' \). Now the parameter \(s' \) is arbitrary without any constraints from \((q', p') \). Then we can set \(s' = 0 \) without loss of generality,

\[
\hat{\tau} \equiv -\frac{p'}{q'} - \frac{1}{q'^2(V_\ell + iH_\ell)}. \tag{B.11}
\]

For convenience, we define \(\hat{\zeta} \equiv -1/(\hat{\tau} + \frac{p'}{q'}) \). This is transformed as \(\hat{\zeta} \to \hat{\zeta}' = \hat{\zeta} + 2\pi \ell q'^2 \) under the shift \(z \to z e^{2\pi i} \). Then we can read off the transformation of \(\hat{\tau} \) in such a way as

\[
\hat{\tau} \to \hat{\tau}' = \frac{(1 + 2\pi \ell p'q')\hat{\tau} + 2\pi \ell p'^2}{-2\pi \ell q'^2\hat{\tau} + (1 - 2\pi \ell p'q')} . \tag{B.12}
\]

Then we find that \(\hat{\tau} \) is the conjugate complex structure of the conjugate monodromy (B.6). Substituting \(\rho = i \) and \(\hat{\tau} \) (B.11) into the definition (3.1), we also find the local expression of the conjugate system,

\[
d s^2 = d s^2_{012345} + H_\ell \left[(d\varphi)^2 + q^2 (d\theta)^2 \right] + \frac{1}{\hat{\tau}_2} \left[d\gamma^8 + \hat{\tau}_1 (d\varphi)^2 \right] + \hat{\tau}_2 (d\varphi)^2 , \tag{B.13a}
\]

\[
\hat{B}_{MN} = 0 , \quad e^{2\hat{\phi}} = 1 , \tag{B.13b}
\]

\[
\hat{\tau}_1 = -\frac{p'}{q'} - \frac{V_\ell}{q'^2 K_\ell} , \quad \hat{\tau}_2 = \frac{H_\ell}{q'^2 K_\ell} . \tag{B.13c}
\]

Close to the situation of (4.17), the transverse space of the 6789-directions is also a hyper-Kähler geometry of ALG type [25, 26]. This system is also found via the T-duality transformation along the 8-th direction of the conjugate system of the defect NS5-brane (4.9), where we also relabel \((p, q)\) in (4.9) to \((p', q')\) in (B.13).

References

[1] A. Strominger, Heterotic solitons, Nucl. Phys. B 343 (1990) 167 [Erratum-ibid. B 353 (1991) 565].

[2] C. G. Callan, Jr., J. A. Harvey and A. Strominger, Worldsheet approach to heterotic instantons and solitons, Nucl. Phys. B 359 (1991) 611.

[3] A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230].

[4] A. Giveon and D. Kutasov, Brane dynamics and gauge theory, Rev. Mod. Phys. 71 (1999) 983 [hep-th/9802067].

[5] D. Gaiotto, \(\mathcal{N} = 2 \) dualities, JHEP 1208 (2012) 034 [arXiv:0904.2715 [hep-th]].

[6] R. D. Sorkin, Kaluza-Klein monopole, Phys. Rev. Lett. 51 (1983) 87.

[7] J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521 [hep-th]].
[8] J. de Boer and M. Shigemori, *Exotic branes in string theory*, Phys. Rept. **532** (2013) 65 [arXiv:1209.6056 [hep-th]].

[9] R. Gregory, J. A. Harvey and G. W. Moore, *Unwinding strings and T-duality of Kaluza-Klein and H-monopoles*, Adv. Theor. Math. Phys. **1** (1997) 283 [hep-th/9708086].

[10] K. Hori and A. Kapustin, *Worldsheet descriptions of wrapped NS five-branes*, JHEP **0211** (2002) 038 [hep-th/0203147].

[11] D. Tong, *NS5-branes, T-duality and worldsheet instantons*, JHEP **0207** (2002) 013 [hep-th/0204186].

[12] J. A. Harvey and S. Jensen, *Worldsheet instanton corrections to the Kaluza-Klein monopole*, JHEP **0510** (2005) 028 [hep-th/0507204].

[13] K. Okuyama, *Linear sigma models of H and KK monopoles*, JHEP **0508** (2005) 089 [hep-th/0508097].

[14] E. A. Bergshoeff, T. Ortín and F. Riccioni, *Defect branes*, Nucl. Phys. B **856** (2012) 210 [arXiv:1109.4484 [hep-th]].

[15] T. Kimura and S. Sasaki, *Gauged linear sigma model for exotic five-brane*, Nucl. Phys. B **876** (2013) 493 [arXiv:1304.4061 [hep-th]].

[16] T. Kimura and S. Sasaki, *Worldsheet instanton corrections to 5_{2}^{3}-brane geometry*, JHEP **1308** (2013) 126 [arXiv:1305.4439 [hep-th]].

[17] A. Chatzistavrakidis, F. F. Gautason, G. Moutsopoulos and M. Zagermann, *Effective actions of non-geometric fivebranes*, Phys. Rev. D **89** (2014) 066004 [arXiv:1309.2653 [hep-th]].

[18] T. Kimura, S. Sasaki and M. Yata, *World-volume effective actions of exotic five-branes*, JHEP **1407** (2014) 127 [arXiv:1404.5442 [hep-th]].

[19] E. Bergshoeff, B. Janssen and T. Ortin, *Kaluza-Klein monopoles and gauged sigma models*, Phys. Lett. B **410** (1997) 131 [hep-th/9706117].

[20] B. R. Greene, A. D. Shapere, C. Vafa and S. T. Yau, *Stringy cosmic strings and noncompact Calabi-Yau manifolds*, Nucl. Phys. B **337** (1990) 1.

[21] O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, *Uncovering the symmetries on $[p,q]$ sevenbranes: beyond the Kodaira classification*, Adv. Theor. Math. Phys. **3** (1999) 1785 [hep-th/9812028].

[22] O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, *Uncovering infinite symmetries on $[p,q]$ 7-branes: Kac-Moody algebras and beyond*, Adv. Theor. Math. Phys. **3** (1999) 1835 [hep-th/9812209].

[23] E. A. Bergshoeff, J. Hartong, T. Ortín and D. Roest, *Seven-branes and supersymmetry*, JHEP **0702** (2007) 003 [hep-th/0612072].
[24] T. Kikuchi, T. Okada and Y. Sakatani, Rotating string in doubled geometry with generalized isometries, Phys. Rev. D 86 (2012) 046001 [arXiv:1205.5549 [hep-th]].

[25] S. A. Cherkis and A. Kapustin, Nahm transform for periodic monopoles and $N = 2$ super Yang-Mills theory, Commun. Math. Phys. 218 (2001) 333 [hep-th/0006050].

[26] S. A. Cherkis and A. Kapustin, Hyperkähler metrics from periodic monopoles, Phys. Rev. D 65 (2002) 084015 [hep-th/0109141].

[27] S. Jensen, The KK-monopole/NS5-brane in doubled geometry, JHEP 1107 (2011) 088 [arXiv:1106.1174 [hep-th]].

[28] D. S. Berman and F. J. Rudolph, Branes are waves and monopoles, arXiv:1409.6314 [hep-th].

[29] D. Andriot and A. Betz, NS-branes, source corrected Bianchi identities, and more on backgrounds with non-geometric fluxes, JHEP 1407 (2014) 059 [arXiv:1402.5972 [hep-th]].

[30] J. Maharana and J. H. Schwarz, Noncompact symmetries in string theory, Nucl. Phys. B 390 (1993) 3 [hep-th/9207016].

[31] C. M. Hull, A geometry for non-geometric string backgrounds, JHEP 0510 (2005) 065 [hep-th/0406102].

[32] A. Lawrence, M. B. Schulz and B. Wecht, D-branes in nongeometric backgrounds, JHEP 0607 (2006) 038 [hep-th/0602025].

[33] C. M. Hull, Global aspects of T-duality, gauged sigma models and T-folds, JHEP 0710 (2007) 057 [hep-th/0604178].

[34] G. Dall’Agata, N. Prezas, H. Samtleben and M. Trigiante, Gauged supergravities from twisted doubled tori and non-geometric string backgrounds, Nucl. Phys. B 799 (2008) 80 [arXiv:0712.1026 [hep-th]].

[35] T. Kimura and S. Sasaki, Worldsheet description of exotic five-brane with two gauged isometries, JHEP 1403 (2014) 128 [arXiv:1310.6163 [hep-th]].

[36] T. Kimura and M. Yata, Gauged linear sigma model with F-term for A-type ALE space, PTEP 2014 (2014) 7, 073B01 [arXiv:1402.5580 [hep-th]].

[37] T. Kimura and M. Yata, T-duality transformation of gauged linear sigma model with F-term, Nucl. Phys. B 887 (2014) 136 [arXiv:1406.0087 [hep-th]].

[38] T. Kimura, S. Sasaki and M. Yata, Hyper-Kähler with torsion, T-duality, and defect (p, q) five-branes, arXiv:1411.3457 [hep-th].

[39] T. H. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194 (1987) 59.

[40] C. Albertsson, T. Kimura and R. A. Reid-Edwards, D-branes and doubled geometry, JHEP 0904 (2009) 113 [arXiv:0806.1783 [hep-th]].