Role of MicroRNA in Osteoarthritis

Mingcai Zhang¹, Kate Lygrisse¹ and Jinxix Wang¹,²

¹Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, Kansas, USA
²Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA

Abstract

Although the potential effect of aberrant expression of catabolic and anabolic genes on the development of osteoarthritis (OA) is well-documented, the regulatory mechanism for the expression of these genes in articular chondrocytes remains to be elucidated. The recent advances in epigenetic studies have identified microRNA (miRNA) as one of the epigenetic mechanisms for the regulation of gene expression. This mini review highlights the role of miRNA in the regulation of gene expression in articular chondrocytes and its significance in the pathogenesis of OA. Further investigations are required to determine the specificity, sensitivity, and efficacy of miRNA for clinical applications.

Keywords: MicroRNA; Osteoarthritis; Epigenetics; Gene expression; Biomarker

Abbreviations
OA: Osteoarthritis; miRNA: MicroRNA; ncRNA: Non-coding RNA; MRNA: Messenger RNA; siRNA: Short Interfering RNA; piRNA: Piwi-interacting RNA; ECM: Extracellular matrix; ADAMTS: A Disintegrin and Metalloproteinase with Thrombospondin Motifs; MMP13: Matrix Metalloproteinase 13; COL2: Type II Collagen; IL-1β: Interlukin 1-β; COL9: Type IX Collagen; TNF-α: Tumor Necrosis Factor-α; Runx2: Runt-Related Transcription Factor 2; NFAT: Nuclear Factor of Activated T-cells.

Introduction

In contrast to genetics which is the study of heritable variation in DNA sequences, epigenetics refers to the study of the changes in gene transcriptional activity caused by mechanisms other than changes in DNA sequences. Traditional epigenetic covalent modifications include DNA methylation and histone protein modifications (e.g. acetylation, methylation, phosphorylation, ubiquitination and sumoylation). Recently, non-coding RNAs (ncRNAs) that possess epigenetic-like properties in the regulation of gene expression have also been considered as one of the epigenetic mechanisms [1,2]. With the use of high-throughput technologies, comprehensive assessment of the quantity of transcriptional molecules, including protein-coding messenger RNAs (mRNA) and ncRNAs, is now an area of rapid expansion in biomedical research of common diseases, such as Osteoarthritis (OA).

OA is the most common form of arthritis and is the leading cause of chronic disability in middle-aged and older populations [3]. Aberrant gene expression in articular chondrocytes of OA joints has been well documented in both animal and humans studies. However, the underlying regulatory mechanism that causes aberrant gene expression in OA cartilage has not yet been elucidated.

This review will first highlight the role of microRNA (miRNA), one of the most studied ncRNAs, in the regulation of aberrant gene expression in articular chondrocytes as it relates to the pathogenesis of OA, and then discuss the potential use of miRNA as a biomarker and potential therapeutic target for OA.

miRNA and OA

Biogenesis of miRNA

Classically, a gene is assumed to be transcribed into an mRNA and then translated into a protein; however, the discovery of genes encoding ncRNAs has extended the definition of a gene. The ncRNA genes produce transcripts functioning as structural, catalytic, or regulatory RNAs rather than being translated into proteins. Based on their length, ncRNAs can be divided into short ncRNAs (<30 nucleotides) and long ncRNAs (lncRNAs, >200 nucleotides). Short ncRNAs include miRNAs, short interfering RNAs (siRNAs), and piwi-interacting RNAs (piRNAs) [4]. MiRNAs are transcribed from miRNA genes as long primary transcripts (pri-miRNAs) characterized by a hairpin structure and are processed as pre-miRNAs (around 70-nucleotides long) in the nucleus. After being transported into the cytoplasm, pre-miRNAs are cleaved by Dicer and then matured into miRNA of 22-24 nucleotides [5].

Aberrant gene expression in OA cartilage

Adult articular cartilage is an avascular tissue in which chondrocytes are the only cellular component. Articular chondrocytes maintain the low-turnover of the extracellular matrix (ECM) by delicately regulating the expression of catabolic and anabolic genes. Progressive degradation of articular cartilage ECM is the major pathophysiological feature of OA. Increased expression of catabolic genes and decreased expression of anabolic genes are usually observed in OA chondrocytes, which disrupt the metabolic balance in articular cartilage.

A number of catabolic genes have been proposed to be involved in the development of OA, including the genes encode: 1) Aggrecanases, such as ADAMTS (a disintegrin and metalloproteinase with...
thrombospondin motifs)-4 and -5, two major aggrecanases which have been shown, particularly MMP (matrix metalloproteinase)-13, a major type II collagen (COL2A1)-degrading collagenase, which contributes to the initiation and progression of OA [10,11]; 3) Pro-inflammatory cytokines, such as IL (interleukin)-1β, IL-6, and TNF-α (tumor necrosis factor)[12,13]; 4) RunX2 (Runt-related transcription factor 2), which contributes to the pathogenesis of OA by promoting chondrocyte hypertrophy and matrix breakdown in articular cartilage. Runx2+/− mice exhibit decreased cartilage destruction and osteophyte formation, along with reduced expression of type X collagen and MMP-13, as compared with wild-type mice [14]. Upregulation of these catabolic genes contributes to the increased degradation of articular cartilage ECM.

A number of anabolic genes have been proposed to be involved in the structure and function of articular cartilage, including the genes encode: 1) Aggrecan, a major proteoglycan in articular cartilage [15,16]; decreased aggrecan expression is often evident in OA cartilage [17,18]. 2) Collagens, collagen type II is one of the major ECM components of the articular cartilage. Mice bearing a small deletion mutation in type II collagen gene developed OA-like lesions [19]. 3) SOX9 (SRY-Box 9), SOX9 is a master transcription factor for chondrogenesis during the development of the skeletal system, in cooperation with SOX5 and SOX6 [20,21]. Although mice with conditional postnatal deletion of SOX9 in chondrocytes do not develop OA [22], later OA usually is associated with decreased SOX9 expression [23]. 4) NFAT1 (Nuclear Factor of Activated T-cells 1), which is a member of the NFAT transcription factor family originally identified as a regulator of the expression of cytokine genes during the immune response [24,25].

NFAT1 has recently been shown to play an important role in maintaining the permanent cartilage phenotype in adult mice. Nfat1 knockout (Nfat1−/−) mice exhibit normal skeletal development, but display over-expression of numerous matrix-degrading proteinases and pro-inflammatory cytokines, as well as loss of collagen-2 and aggrecan during the early stage of OA. These initial changes are followed by articular chondrocyte clustering, formation of chondro-osteophytes, progressive articular surface destruction, formation of subchondral bone cysts, and exposure of thickened subchondral bone, all of which resemble human OA [26]. Dowm regulation of these anabolic genes contributes to the decreased ECM synthesis, impairing the repair ability of articular cartilage.

Regulation of gene expression in OA by miRNAs

The importance of epigenetic regulation of gene expression to the development of OA has recently been reported [27-29]. A number of miRNAs have been identified to be involved in the pathogenesis of OA in recent epigenetic studies. miRNAs may directly bind to catabolic and anabolic miRNAs to regulate their expression at a post-transcriptional level in cytoplasm with a complimentary sequence to induce cleavage and degradation, or block translation [30-32]. New findings indicate that regulatory effect of miRNAs on the expression of catabolic and anabolic genes in OA may take place at upstream levels prior to their transcription. First, miRNAs target upstream signaling pathways or transcription factors. The activity of several signaling pathways, such as NF-kappaB pathway [33,34], Wnt/β-catenin pathway [35], SIRT1/p53 pathway [36] and SDF1/CXCR4 pathway [37], were found to be modulated by miRNAs in chondrocytes during the development of OA. Moreover, miRNAs have also been reported to regulate transcription factor SOX9 in the development of OA [38,39]. Second, miRNAs target upstream epigenetic factors. Histone deacetylase-2 [40], -4 [41-43], and NAD-dependent deacetylase sirtuin-1 [44] have been found to be regulated by miRNAs in OA cartilage, indicating that the interaction among different epigenetic mechanisms is involved in OA pathogenesis.

miRNA and treatment of OA

The development of disease-modifying pharmacologic therapy for OA currently faces major obstacles largely because the pathogenesis of OA remains unclear. The aberrant expression catabolic and anabolic genes are a well-characterized molecular finding in OA; however, clinical trials targeting a single inflammatory mediator or proteinase did not slow the progression of OA [45-47]. This is probably due to the involvement of multiple factors in the pathogenesis of OA. In this regard, upstream molecular regulators would be more favorable therapeutic targets.

MiRNAs could be potential upstream targets for treatment of OA as one miRNA may regulate several genes. Furthermore, miRNAs regulate gene expression in OA cartilage at multiple levels and in a sequence-specific manner [48,49]. However, a large number of miRNAs have recently been identified in OA joint tissues, and one gene may be regulated by several miRNAs (Table 1).

Further investigations are needed to identify the articular cartilage specific miRNA(s) and to validate their efficacy in animal models of OA and in patients with OA. Specific transcription factors that regulate multiple catabolic and anabolic genes, such as NFAT1 [26,27,29], could also be potential upstream targets for treatment of OA.

miRNA and OA biomarker

Currently, X-ray and MRI (magnetic resonance imaging) are the established methods for the diagnosis of OA in clinical practice [30-49]. However, specific blood testing that can be used to aid in the diagnosis and monitoring of OA progression is still under development. Clinicians and scientists are striving for a novel molecule(s) which can be used as a biomarker for early OA detection and for monitoring the progression of OA [50].

Given the high frequency of miRNAs expression in OA and the remarkably stable form of miRNAs present in clinical samples of plasma and serum [51,52], miRNAs could be ideal blood-based biomarkers for OA [53]. However, more studies are needed to identify the OA-specific miRNAs with high sensitivity to OA changes.

Conclusion

The recent advances in epigenetic studies have shed light on the importance of miRNAs in regulation of gene expression at multiple levels related to the pathogenesis of OA [54-65]. This warrants the potential of miRNAs as therapeutic targets for OA. The tissue-specificity and high frequency of miRNA expression in OA renders miRNAs novel molecules as potential biomarkers for diagnosing OA, monitoring OA progression, and evaluating treatment efficacy.

Further studies are required to identify which miRNAs out of the large number of miRNAs reported in the literature (Table 1) have high specificity, sensitivity and efficacy and could be used for clinical validation in OA patients [66-78].
Table 1: Summary of differentially expressed miRNAs and their target(s) in OA cartilage.

miRNA	Species	Change in OA	Target gene	Reference
miR-125b	H		ADAMTS4	[54]
miR-140	M			
Has-miR-15a	H		ADAMTS5	[31,55,56]
miR-30a	H			
miR-98	R		Bcl2	[57]
miR-199a	H		COX2	[58]
miR-210	R		DR6	[34]
miR-221-3p	H		Est-1	[59]
miR-138-5p	H		FOXC1	[60]
miR-21	H		GDF5	[61]
miR-92a-3p	H		HADC2	[62]
miR-365	H		HDAC4	[43]
miR-142-3p	M		HMGB1	[63]
miR-140	H		IGFBP-5	[64]
miR-27a	H			
miR-381a-3p	H		IKBalpha	[65]
Has-miR26a-5p	H		INOS	[66]
miR-26a	H		KPN3	[60]
miR-26b	H			
miR-139	H		MCP1P	[67]
miR-373	H		MECP-2	[68]
miR-27a	H		MMP-13	[30,64,69,70]
miR-27b	H			
miR-127-5p	H			
miR-320	H			
miR-9	H		NF-kappaB1	[33]
miR-634	H		PIK3R1	[71]
miR-221-3p	H		SDF1	[37]
miR-370	H		SHMT-2	[68]
miR-34a	H		SIRT1	[36,44]
miR-449q	H			
miR-145	H		SMAD3	[72]
miR-146a	R		SMAD5	[73]
miR-101	R		SOX9	[39,74]
miR-30a	H			
miR-125b-5p	H		SYVN1	[75]

References

1. Saetrom P, Snove O, Jr, Rossi JJ (2007) Epigenetics and miRNAs. Pediatr Res 61: 17r-23r.
2. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150: 12-27.
3. Murphy L, Helmick CG (2012) The impact of osteoarthritis in the United States: a population-health perspective. Am J Nurs 112: S13-S19.
4. Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15 Spec No 1: R17-R29.
5. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nature reviews Molecular biology 8: 509-524.
6. Tortorella MD, Malfait AM, Deccico C, Arner E (2001) The role of ADAM-TS4 (aggrecanase-1) and ADAM-TSS (aggrecanase2) in a model of cartilage degradation. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society 9: 539-552.
7. Glasson SS, Askew R, Sheppard B, Carito B, Blanche T, et al. (2005) Deletion of active ADAMT5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434: 644-648.
8. Stanton H, Rogerson FM, East CJ, Golub SB, Lawlor KE, et al. (2005) ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434: 648-652.
9. Rogerson FM, Stanton H, East CJ, Golub SB, Tutolo L, et al. (2008) Evidence of a novel aggrecan- degrading activity in cartilage: Studies of mice deficient in both ADAMTS-4 and ADAMTS-5. Arthritis and rheumatism 58: 1664-1673.
10. Little CB, Barai A, Burkhartd D, Smith SM, Fosang AJ, et al. (2009) Matrix metalloproteinase 13- deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis and rheumatism 60: 3723-3733.
11. Neuhold LA, Killar L, Zhao W, Sung ML, Warner L, et al. (2001) Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J Clin Invest 107: 35-44.
12. Goldring MB (2000) Osteoarthritis and cartilage: the role of cytokines. Curr Rheumatol Rep 2: 459-465.
13. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H, et al. (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nature reviews Rheumatology 7: 33-42.
14. Kamekura S, Kawasaki Y, Hoshi K, Shimoaka T, Chikuda H, et al. (2006) Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. Arthritis and rheumatism 54: 2462-2470.

Acknowledgments

This work was supported by the U.S. National Institute of Health (NIH) under the Award Number R01 AR059088 (to J. Wang).
Malfait AM, Liu RJ, Jirik K, Komiya S, Tortorella MD (2002) Inhibition of ADAM-TS4 and ADAM-TS5 prevents aggrecan degradation in osteoarthritic cartilage. The Journal of biological chemistry 277: 22201-22208.

Song RH, Tortorella MD, Malfait AM, Alston JT, Yang Z, et al. (2007) Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis and rheumatism 56: 575-585.

Eid K, Thornhill TS, Glowacki J (2006) Chondrocyte gene expression in osteoarthritis: Correlation with disease severity. Journal of orthopaedic research 24: 1062-1068.

Chambers MG, Kuffner T, Cowan SK, Cheah KS, Mason RM, et al. (2002) Expression of collagen and aggrecan genes in normal and osteoarthritic murine knee joints. Osteoarthrosis and cartilage / OARS, Osteoarthrosis Research Society 10: 51-61.

Sazmanan AK, Salmon HI, Dean PB, De Crombrugghe B, Vuorio EL, et al. (2000) Osteoarthritis-like lesions in transgenic mice harboring a small deletion mutation in type II collagen gene. Osteoarthritis and cartilage / OARS, Osteoarthrosis Research Society 8: 248-257.

Lefebvre V, Li P, de Crombrugghe B (1998) A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. Embo J 17: 5718-5733.

Bi W, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B (1999) Sox9 is required for cartilage formation. Nat Genet 22: 85-89.

Henry SP, Liang S, Akdemir KC, de Crombrugghe B (2012) The postnatal role of Sox9 in cartilage. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 27: 2511-2525.

Lee JS, Im GI (2011) SOX trio decrease in the articular cartilage with the advancement of osteoarthritis. Connect Tissue Res 52: 496-502.

Hodge MR, Ranger AM, Charles de la Brousse F, Hoej T, Grusby MJ, et al. (1996) Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. Immunity 4: 397-405.

Xanthoudakis S, Viola JP, Shaw KT, Luo C, Wallace JD, et al. (1996) An enhanced immune response in mice lacking the transcription factor NFAT1. Science 272: 892-895.

Wang J, Gardner BM, Lu Q, Rodova M, Woodbury BG, et al. (2009) Transcription factor Nfat1 deficiency causes osteoarthritis through dysfunction of adult articular chondrocytes. J Pathol 219: 163-172.

Rodova M, Lu Q, Li Y, Woodbury BG, Crist JD, et al. (2011) Nfat1 regulates adult articular chondrocyte function through its age-dependent expression mediated by epigenetic histone methylation. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 26: 1974-1986.

Zhang M, Egan B, Wang J (2015) Epigenetic mechanisms underlying the aberrant catabolic and anabolic activities of osteoarthritic chondrocytes. The international journal of biochemistry & cell biology 67: 101-109.

Zhang M, Lu Q, Egan B, Zhong XB, Brandt K, et al. (2016) Epigenetically mediated spontaneous reduction of NFAT1 expression causes imbalanced metabolic activities of articular chondrocytes in aged mice. Osteoarthritis and cartilage 24: 1274-1283.

Lu X, Lin J, Jin J, Qian W, Weng X (2016) Hsa-miR-15a exerts protective effects against osteoarthritis by targeting aggrecanase-2 (ADAMTS5) in human chondrocytes. International journal of molecular medicine 37: 509-516.

Wang G, Zhang Y, Zhao X, Meng C, Ma L, et al. (2015) MicroRNA-411 inhibited matrix metalloproteinase 13 expression in human chondrocytes. American journal of translational research 7: 2000-2006.

Gu R, Liu N, Luo S, Huang W, Zha Z, et al. (2016) MicroRNA-9 regulates the development of knee osteoarthritis through the NF-kappaB1 pathway in chondrocytes. Medicine 95: e4315.

Zhang D, Cao X, Li J, Zhao G (2015) MiR-210 inhibits NF-kappaB signaling pathway by targeting TR6 in osteoarthritis. Scientific reports 5:12775.
51. Beyer C, Zampetaki A, Lin NY, Kleyer A, Perricone C, et al. (2015) Signature of circulating microRNAs in osteoarthritis. Arthritis research & therapy 17: 215.

52. Bernard NJ (2014) Osteoarthritis: circulating miRNAs-early osteoarthritis biomarkers? Nature reviews Rheumatology 10: 197.

53. Matsukawa T, Sakai T, Yonezawa T, Hiraïwa H, Hamada T, et al. (2013) MicroRNA-122b regulates the expression of aggrecanase-1 (ADAMTS-4) in human osteoarthritic chondrocytes. Arthritis research & therapy 15: R28.

54. Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, et al. (2010) MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes & development 24: 1173-1185.

55. Ji Q, Xu X, Zhang Q, Kang L, Xu Y, et al. (2016) The IL-1beta/AP-1/miR-30a/ADAMTS-5 axis regulates cartilage matrix degradation in human osteoarthritis. Journal of molecular medicine (Berlin, Germany) 94: 771-785.

56. Wang J, Chen L, Jin S, Lin J, Zheng H, et al. (2016) MiR-98 promotes chondrocyte apoptosis by decreasing Bcl-2 expression in a rat model of osteoarthritis. Acta biochimica et biophysica Sinica 48: 923-929.

57. Akhtar N, Haqqi TM (2012) MicroRNA-199a regulates the expression of genes by directly targeting histone deacetylase 2 in human chondrocytes. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society 20: 2003-2011.

58. Xu J, Liu Y, Deng M, Li J, Cai H, et al. (2016) MicroRNA221-3p modulates Ets-1 expression in synovial fibroblasts from patients with osteoarthritis of temporomandibular joint. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society 24: 2003-2011.

59. Yuan Y, Zhang GQ, Chai W, Ni M, Xu C, et al. (2016) Silencing of microRNA-138-5p promotes IL-1beta-induced cartilage degradation in human chondrocytes by targeting FOXC1; miR-138 promotes cartilage degradation. Bone & joint research 5: 523-530.

60. Zhang Y, Jia J, Yang S, Liu X, Ye S, et al. (2014) MicroRNA-21 controls the development of osteoarthritis by targeting GDF-5 in chondrocytes. Experimental & molecular medicine 46: e79.

61. Mao G, Zhang Z, Huang Z, Chen W, Huang G, et al. (2017) MicroRNA-92a-3p regulates the expression of cartilage-specific genes by directly targeting histone deacetylase 2 in chondrogenesis and degradation. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society 25: 521-532.

62. Wang X, Guo Y, Wang C, Yu H, Xu Y, et al. (2016) MicroRNA-142-3p Inhibits Chondrocyte Apoptosis and Inflammation in Osteoarthritis by Targeting HMGB1. 39: 1718-1728.

63. Tardif G, Hum D, Pelletier JP, Duval N, Martel-Pelletier J, et al. (2009) Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC musculoskeletal disorders 10: 148.

64. Xia S, Yan K, Wang Y (2016) Increased miR-381a-3p Contributions to Osteoarthritis by Targeting JakBal. Annals of clinical and laboratory science 46: 247-253.

65. Rasheed Z, Al-Shobaili HA, Rasheed N, Mahmood A, Khan MI, et al. (2016) MicroRNA-26a-5p regulates the expression of inducible nitric oxide synthase via activation of NF-kappaB pathway in human osteoarthritic chondrocytes. Archives of biochemistry and biophysics 594: 61-67.

66. Makki MS, Haqqi TM (2015) miR-139 modulates MCPIP1/IL-6 expression and induces apoptosis in human OA chondrocytes. Experimental & molecular medicine 47: e189.

67. Song J, Kim D, Chun CH, Jin EJ (2015) miR-370 and miR-373 regulate the pathogenesis of osteoarthritis by modulating one-carbon metabolism via SHMT-2 and MEP2-C, respectively. Aging cell 14: 826-837.

68. Akhtar N, Rasheed Z, Ramamurthy S, Anbazhagan AN, Voss FR, et al. (2010) MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritic chondrocytes. Arthritis and rheumatism 62: 1361-1371.

69. Park SJ, Cheon EJ, Lee MH, Kim HA (2013) MicroRNA-127-5p regulates matrix metalloproteinase 13 expression and interleukin-1beta-induced catabolic effects in human chondrocytes. Arthritis and rheumatism 65: 3141-3152.

70. Cui X, Wang S, Cai H, Lin Y, Zheng X, et al. (2016) Overexpression of microRNA-634 suppresses survival and matrix synthesis of human osteoarthritic chondrocytes by targeting PIK3R1. Scientific reports 6: 23117.

71. Yang B, Kang X, Xing Y, Dou C, Kang F, et al. (2014) Effect of microRNA-145 on IL-1beta-induced cartilage degradation in human chondrocytes. FEBS letters 588: 2344-2352.

72. Li J, Huang J, Dai L, Yu D, Chen Q, et al. (2012) miR-146a, an IL-1 beta-responsive miRNA, induces vascular endothelial growth factor and chondrocyte apoptosis by targeting Smad4. Arthritis research & therapy 14: R75.

73. Dai L, Zhang X, Hu X, Zhou C, Ao Y (2012) Silencing of microRNA-101 prevents IL-1beta-induced extracellular matrix degradation in chondrocytes. Scientific reports 2: 681.

74. Ge FK, Li H, Yin X (2017) Upregulation of microRNA-125b-5p is involved in the pathogenesis of osteoarthritis by downregulating SYVN1. Oncology reports 37: 2490-2496.

75. Li ZC, Han N, Li X, Li G, Liu YZ, et al. (2015) Decreased expression of microRNA-130a correlates with TNF-alpha in the development of osteoarthritis. International journal of clinical and experimental pathology 8: 2555-2564.

76. Wang GJ, Zhao XW, Zhang YG, Kong Y, Niu SS, et al. (2017) Effects of miR-145 on the inhibition of chondrocyte proliferation and fibrosis by targeting TNFRSF11B in human osteoarthritis. Molecular medicine reports 15: 75-80.

77. Zhang G, Sun Y, Wang Y, Liu R, Bao Y, et al. (2016) MiR-502-5p inhibits IL-1beta-induced chondrocyte injury by targeting TRAF2. Cellular immunology 302: 50-57.