Propofol as an agonist of GABA_A receptor has a rewarding and discriminative stimulus effect. However, which subtype of the GABA_A receptor is involved in the discriminative stimulus effects of propofol is still not clear. We observed the effects of an agonist or an antagonist of the subtype-selective GABA_A receptor on discriminative stimulus effects of propofol. Male Sprague-Dawley rats were trained to discriminate 10 mg/kg (intraperitoneal) propofol from intralipid under a fixed-ratio 10 schedule of food reinforcement. We found that propofol produced dose-dependent substitution for propofol at 10 mg/kg, with response rate reduction only at a dose above those producing the complete substitution. CL218,872 (1–3 mg/kg, intraperitoneal), an α₁ subunit-selective GABA_A receptor agonist, and SL651,498 (0.3–3 mg/kg, intraperitoneal), an α2/3 GABA_A receptor selective agonist, could partially substitute for the discriminative stimulus effects of propofol (40–80% propofol-appropriate responding). Meanwhile, L838,417 (0.2–0.6 mg/kg, intravenous), a α2/3/5 GABA_A receptor selective agonist, could produce near 100% propofol-appropriate responding and completely substitute for propofol effects. Moreover, the administration of L655,708, the α5 GABA_A receptor inverse agonist, could dose dependently attenuate the discriminative stimulus of propofol. In contrast, the α1 GABA_A receptor antagonist β-CCT (1–3 mg/kg) combined with propofol (10 mg/kg) failed to block the propofol effect. The data showed that propofol produces discriminative stimulus effects in a dose-dependent manner and acts mainly on the α5 GABA_A to produce the discriminative stimulus effect. NeuroReport 29:347–352 Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc.

Keywords: GABA_A receptor, propofol, reinforcement

Propofol has been used widely for clinic anesthesia and sedation because of short-acting and quick effectiveness. Clinical data indicate that propofol may make individuals feel good, relaxed, and euphoric [1]. Also, the rewarding characteristics of propofol have been reported in studies using conditioned place preference [2,3] and self-administration [4,5]. These results of studies indicate that propofol has psychic dependence and abuse potential.

In a drug-discriminative paradigm, the subjects recognize the effects of a drug by behavioral responses emitted to obtain reward. Propofol is an agonist of GABA_A receptor, and also exerts discriminative stimulus (DS) effects [6]. We had found that GABA_A receptors may be involved in propofol self-administration [7]. The GABA_A receptors are assembled from a repertoire of at least 19 subunits, and the majority of GABA_A receptors contain at least one α, β, and γ subunit. GABA_A receptor subtypes have different functions that are determined mainly by a subunit. Several studies have shown that α1 GABA_A receptor exerts a sedative effect, the α2/3 GABA_A receptor is involved in anxiolytic effects, and the α5 GABA_A receptor is mainly involved in the memory processes [8,9] and chronic pain [10]. The action of α5 GABA_A receptors is greater than that of α1 GABA_A receptors in a rhesus alcohol discrimination model [11], whereas the α1 GABA_A receptor plays a major role in the muscle relaxant carisoprodol discriminative effect [12]. However, the contribution of the GABA_A receptor subtypes toward DS effects of propofol is still unclear. The aim of this study was to investigate the characteristics of different α subunits of the GABA_A receptor in the DS effects of propofol.

Materials and methods

Animals

One hundred and fifty-six male Sprague-Dawley rats (14 weeks of age) were obtained from the Experimental
Animal Center of Zhejiang Province (Hangzhou, China). All rats were housed individually in home cages and maintained on a 12/12-h dark/light cycle with light on from 8:00 a.m. to 8:00 p.m. The animal weights were maintained at 250–300 g and water was provided freely. We followed the Principle of Laboratory Animal Care (NIH publication no. 86-23, 1996). All housing and procedures were approved by the Ningbo Addiction Research and Treatment Center (Ningbo, China).

Drugs
Propofol (10 mg/ml, Diprivan; AstraZeneca, Basiglio, Italy) was prepared immediately in 20% intralipid before use and injected intraperitoneally at 1 ml volume. According to the earlier study [6], the dose of propofol (10 mg/kg, intraperitoneal) was chosen for the discrimination testing. β-CCt (Cat. No. SML0249), L655,708 (L9787), and L838,417 (L9169) were obtained from Sigma-Aldrich Inc. (St Louis, Missouri, USA). CL218,872 (1709) or SL651,498 was purchased from Tocris Inc. (Minneapolis, Minnesota, USA) or Sanofi-Aventis Inc. (Paris, France), respectively. β-CCt and L838,417 were dissolved in 50% propylene glycol in a 50% saline solution; CL218,872, L655,708, and SL651,498 were diluted to an 80% propylene glycol and 20% saline solution.

Nose-poke discrimination test
The procedure for training and experimental sessions was performed in ventilated and sound-attenuating Plexiglas chambers. Each chamber was equipped with two nose-poke holes, both of which contained a photocell and a yellow cue light. Between the holes was a tray for food delivery. A computer controlled the scheduling of reinforcement contingencies, reinforcement delivery, and data recording. Before discrimination training, each rat was exposed to a fixed-ratio (FR) schedule of food reinforcement after an injection of propofol, and conversely, another poke to produce a food pellet after injection of vehicle. Training was started under an FR-1 schedule and the FR value increased gradually to FR-10 until they fulfilled the training criteria (the errorless propofol-appropriate poking responding > 80%). Every session ended after delivering 100 food pellets or ending after 30 min.

Substitute testing
Once the discrimination procedure was performed, rats were surgically implanted with catheters in the external jugular vein to administer the testing drugs intravenously using a previously described method [13]. After recovery from surgery, all rats restarted the discrimination drug test till they fulfilled the criterion of 80% accuracy under the FR-10 schedule [11,14]. Once the rats reliably discriminated propofol from intralipid for two consecutive training sessions, dose–response effects of propofol were tested. The rats were divided into four groups (n = 8) randomly to test with intralipid or 5.0, 7.5, 10, and 15 mg/kg propofol by an intraperitoneal injection. The test session was the same as the training sessions, except that 10 successive poking on either hole led to a food pellet delivery. Other rats (n = 6, each group) were tested with the GABA_A receptor agonists that were administered 30 min before the test: CL218,872 (1–3 mg/kg, intraperitoneal), L838,417 (0.2–0.6 mg/kg, intravenous), and SL651,498 (0.3–3 mg/kg, intraperitoneal).

Antagonism testing
Antagonism testing (n = 6 per group) was performed as follows: propofol (10 mg/kg, intraperitoneal) was injected at 20 min before testing and β-CCt (1.0–3 mg/kg, intravenous) or L655,708 (0.5–2 mg/kg, intravenous) was administered 5 min before the start of testing, respectively.

Statistical analysis
Drug-discrimination data are expressed as the mean percentage of responses on the propofol-appropriate poke in each test period. Response rate was expressed as a function of the number of responses made divided by the total session time. To assess the degree of similarity in DS effects, complete substitution was defined as at least 80% propofol-appropriate responding and not statistically different from training propofol, and partial substitution as at least 40% and less than 80% propofol-appropriate responding [15]. Data were analyzed using a one-way analysis of variance and the significance level in all analyses was set at P value less than 0.05.
Results
The discriminative stimulus effects of propofol
Thirty-two subjects discriminated reliably propofol (10 mg/kg, intraperitoneal) from vehicle (20% intralipid) in 42.7 ± 1.3 session. In the last session of training, the percentage responding on the propofol-associated pokes was 99.7 ± 0.3% and the response rate was 0.68 ± 0.02. Meanwhile, the percentage responding on the propofol-associated pokes of vehicle training was only 2.5 ± 0.6% and the response rate was 0.83 ± 0.05. Under test conditions, cumulative doses of propofol from 5 to 15 mg/kg increased in the percentage responding on the propofol-associated pokes in a dose-dependent manner (Fig. 1a). The percentage responding on the propofol-associated pokes of propofol at doses of 5, 7.5, 10, or 15 mg/kg was 50.79 ± 12.07, 67.46 ± 13.08, 99.74 ± 0.09, and 99.40 ± 0.15%, respectively. As shown in Fig. 1b, the statistics indicated a significant difference in the response rate among the groups [F(3,31) = 10.09, P < 0.05] and multiple comparison showed a significant reduction in the response rate of propofol at 15 mg/kg. Therefore, propofol at 10 mg/kg was selected for use in the subsequent substitution tests.

Substitutive effects of GABA_A receptor subtype agonists for propofol
As shown in Fig. 2a, pretreatment with CL218,87, a selective agonist of the α1 GABA_A receptor at doses of 1.0–3.0 mg/kg, could be substituted partially for the DS effects of propofol (10 mg/kg). The statistical analysis indicated a significant difference in propofol-appropriate responding after treatment with CL218,872 [F(3,23) = 9.30, P < 0.01]. Pretreatment with L838,417, a selective agonist of the α2/3 GABA_A receptor (0.3–3 mg/kg), could partially substitute for the DS effects of propofol [F(3,23) = 96.08, P < 0.01], but the substitutive effect less than 80% of propofol-appropriate responding in Fig. 2c.

Antagonism effects of antagonist or inverse agonist on the α1 or the α5 GABA_A receptor
Combined with propofol (10 mg/kg), β-CC_t, an antagonist of the α1 GABA_A receptor, at doses from 1 to 3 mg/kg partially the DS effects of propofol decreased, but there was no significant difference among the groups [F(3,23) = 2.99, P = 0.055] as shown in Fig. 3a. In contrast, L655,708, an inverse agonist of the α5 GABA_A receptor, inhibited markedly the propofol responding in a dose-dependent manner [F(3,23) = 106.027, P < 0.001] as shown in Fig. 3b.

Discussion
Drug discrimination has remained an important technique in behavioral pharmacology for testing drugs’ abuse liability. Here, the DS effects of propofol were investigated in rats trained to discriminate 10 mg/kg propofol from intralipid under a two-poke FR-10 schedule of food reinforcement. Propofol produced dose-dependent substitution for the training dose of 10 mg/kg propofol with response rate reductions only at doses above those

Fig. 1

(a) Discriminative stimulus effects of propofol. Percentage responding decreased at the low dose of propofol shown in (a). The rate of responding reduced at a dose of 15 mg/kg propofol (b). Data are shown as mean±SEM, n = 8 for each group. Compared with the 10 mg/kg propofol group, *P < 0.05.
producing complete substitution. The result is in agreement with other studies showing the DS effect of propofol [6], and is similar to GABA_A receptor agonist muscimol [16] and carisoprodol [12]. Previous studies showed that subanesthetic doses of propofol can acquire self-administration behavior [7]; thus, both reinforcement and discriminative effects identified could contribute toward the abuse potential of propofol.

The distribution of heterogeneously constituted GABA_A receptor complexes may exert different pharmacological properties upon stimulation by GABA or its agonists. The α1 GABA_A receptor is the major subtype, contributing toward about 60% of all GABA_A receptors in the brain. The evidence confirms the essential roles of α1 GABA_A in sedation, anxiety, and sleep [17]. In the present study, the α1 GABA_A receptor agonist CL218,872 only partly replaced (40–80%) the DS effects of propofol. Similarly, CL218,872 has been shown to partially reproduce the DS effects of ethanol [11], and the α1 GABA_A agonist zolpidem partially reproduced the DS effects of ethanol [18, 19]. Zolpidem also significantly abolishes methamphetamine conditioned place preference formation, indicating that α1 GABA_A receptors may be strongly implicated in drug-associated rewarding memories [20]. The present study showed that the α1 receptor antagonist β-CCt failed to antagonize the DS effects of propofol, which is consistent with the previous studies [11,14,21]. Meanwhile, α2/3 receptor agonists only partly replaced the propofol DS effects. GABA_A receptors containing the α2 or the α3 subunit account for the anxiolytic/
anticonvulsant effects, and the GABAA α2 agonist in the ventral hippocampus inhibits anxiety [22]. Thus, the present data suggested that the DS effects of propofol may not be dependent mainly on the activation of α1, α2, or α3 subunit GABAA receptor.

The sustained increase in α5 GABAA activity impairs memory performance, and inhibition of the α5 GABAA receptor completely reverses the memory deficits after anesthesia [23]. The α5 receptor inverse agonist selectively attenuates the effects of GABA at α5 GABAA receptors and enhances performance in learning and memory [24]. The α5 receptor inverse agonist L655,708 reduces the potentiation of GABA-evoked current by inhaled anesthetics [25]. The present data showed that the α2/3/5 receptor agonist could completely replace the DS effects of propofol and α5 receptor inverse agonist blocked the DS effects of propofol. These results are in agreement with findings that L655,708 completely reverses the DS effects of ethanol [11]. Similarly, other α5 GABA A agonists also substitute fully for the DS effects of ethanol [11]. Together, these results suggested that α5 subunits of GABA A play a more important role than α1 and α2/3 subunits in the DS effects of propofol.

Conclusion

These results indicate the pharmacological specificity of propofol discrimination by showing that a direct agonist or an inverse agonist for the α5 GABA A receptor produces complete substitution or deletes the DS effects of propofol, suggesting that activation of the α5 GABA A receptor by propofol contributes toward the discriminative effects.

Acknowledgements

The project was supported by NSFC (81271469) and NSF of Zhejiang Province (Z2101211) to Lian Q.; WZKJ (Y20140692) MHP of Zhejiang (2014KYB161) to Wang B., and NSFC (81471350) to Zhou W.

Conflicts of interest

There are no conflicts of interest.

References

1. Roussin A, Montastruc JL, Lapeyre-Mestre M. Pharmacological and clinical evidences on the potential for abuse and dependence of propofol: a review of the literature. *Fundam Clin Pharmacol* 2007; 21:459–466.

2. Pain L, Oberling P, Sandner G, di Scala G. Effect of propofol on affective state as assessed by place conditioning paradigm in rats. *Anesthesiology* 1996; 85:121–128.

3. Pain L, Oberling P, Sandner G, di Scala G. Effect of midazolam on propofol-induced positive affective state assessed by place conditioning in rats. *Anesthesiology* 1997; 87:935–943.

4. LeSage MG, Stafford D, Glowa JR. Abuse liability of the anesthetic propofol: self-administration of propofol in rats under fixed-ratio schedules of drug delivery. *Psychopharmacology (Berl)* 2011; 22:718–722.

5. Yang B, Wang BF, Lai MJ, Zhang FQ, Yang XW, Zhou WH, et al. Differential involvement of GABA A and GABA B receptors in propofol self-administration in rats. *Acta Pharmacol Sin* 2011; 32:1460–1465.

6. McKean RM, Rosahl TW, Reynolds DS, Sur C, Walford KA, Atack JR, et al. Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA A receptor alpha1 subtype. *Nat Neurosci* 2000; 3:587–592.

7. Collinson N, Kuenzi FM, Jarolimek W, Maubach KA, Cohlfiff R, Sur C, et al. Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the alpha 5 subunit of the GABA A receptor. *J Neurosci* 2002; 22:5572–5580.

8. Bravo-Hernandez M, Corleto JA, Barragan-Iglesias P, Gonzalez-Ramirez R, Pineda-Farias JB, Felix R, et al. The alpha5 subunit containing GABAA receptors contribute to chronic pain. *Pain* 2016; 157:613–626.
11 Platt DM, Duggan A, Spealman RD, Cook JM, Li X, Yin W, et al. Contribution of alpha 1GABAA and alpha 5GABAA receptor subtypes to the discriminative stimulus effects of ethanol in squirrel monkeys. J Pharmacol Exp Ther 2005; 313:658–667.

12 González LA, Gatch MB, Taylor CM, Bell-Horner CL, Forster MJ, Dillon GH. Carisoprodol-mediated modulation of GABAA receptors: in vitro and in vivo studies. J Pharmacol Exp Ther 2009; 329:827–837.

13 Yoon SS, Lee BH, Kim HS, Choi KH, Yun J, Ju YE, et al. Potential roles of GABA receptors in morphine self-administration in rats. Neurosci Lett 2007; 428:35–37.

14 Lelas S, Rowlett JK, Spealman RD, Cook JM, Ma C, Li X, et al. Role of GABAA/benzodiazepine receptors containing alpha 1 and alpha 5 subunits in the discriminative stimulus effects of triazolam in squirrel monkeys. Psychopharmacology (Berl) 2002; 161:180–188.

15 Young R. Drug discrimination. In: Buccafusco JJ, editor. Methods of behavior analysis in neuroscience. Boca Raton, FL: CRC Press/Taylor & Francis; 2009. pp. 71–80.

16 Jones HE, Balster RL. Muscimol-like discriminative stimulus effects of GABA agonists in rats. Pharmacol Biochem Behav 1998; 59:319–326.

17 Ye GL, Baker KB, Mason SM, Zhang W, Kirkpatrick L, Lanthorn TH, et al. GABAA receptor α1 subunit (Gabra1) knockout mice: review and new results. In: Kalúeff AV, Bergner CL, editors. Transgenic and mutant tools to model brain disorders. New York: Humana Press; 2010. pp. 65–90.

18 Bienkowski P, Iwinska K, Stefanski R, Kostowski W. Discriminative stimulus properties of ethanol in the rat: differential effects of selective and nonselective benzodiazepine receptor agonists. Pharmacol Biochem Behav 1997; 58:969–973.

19 Sanger DJ. The effects of new hypnotic drugs in rats trained to discriminate ethanol. Behav Pharmacol 1997; 8:287–292.

20 Jian DL, Liu Y, Long JD, Du J, Ju YY, Zan GY, et al. Involvement of dorsal striatal alpha1-containing GABAA receptors in methamphetamine-associated rewarding memories. Neuroscience 2016; 320:230–238.

21 Rowlett JK, Spealman RD, Lelas S, Cook JM, Yin W. Discriminative stimulus effects of zolpidem in squirrel monkeys: role of GABA(A)alpha1 receptors. Psychopharmacology (Berl) 2003; 165:209–215.

22 McEown K, Treit D. Alpha2 GABAA receptor sub-units in the ventral hippocampus and alpha5 GABAA receptor sub-units in the dorsal hippocampus mediate anxiety and fear memory. Neuroscience 2013; 252:169–177.

23 Zurek AA, Yu J, Wang DS, Haffey SC, Bridgwater EM, Penna A, et al. Sustained increase in alpha5GABAA receptor function impairs memory after anesthesia. J Clin Invest 2014; 124:5437–5441.

24 Dawson GR, Maubach KA, Collinson N, Cobain M, Evenitt BJ, MacLeod AM, et al. An inverse agonist selective for alpha5 subunit-containing GABAA receptors enhances cognition. J Pharmacol Exp Ther 2006; 316:1335–1345.

25 Lecker I, Yin Y, Wang DS, Orser BA. Potentiation of GABAA receptor activity by volatile anaesthetics is reduced by alpha5GABAA receptor-prefering inverse agonists. Br J Anaesth 2013; 110 (Suppl 1):73–81.