Abstract: Each of the descriptions of vertices, edges, and facets of the order and chain polytope of a finite partially ordered set are well known. In this paper, we give an explicit description of faces of 2-dimensional simplex of each polytope. These results mean a generalization in the case of 2-faces of the characterization known in the case of edges.

Keywords: order polytope; chain polytope; partially ordered set

MSC: primary: 52B05; secondary: 06A07

1. Introduction

The combinatorial structure of the order polytope $O(P)$ and the chain polytope $C(P)$ of a finite poset (partially ordered set) P is explicitly discussed in [1]. Moreover, in [2], the problem when the order polytope $O(P)$ and the chain polytope $C(P)$ are unimodularly equivalent is solved. It is also proved that the number of edges of the order polytope $O(P)$ is equal to that of the chain polytope $C(P)$ in [3]. In the present paper we give an explicit description of faces of 2-dimensional simplex of $O(P)$ and $C(P)$ in terms of vertices. In other words, we show that triangles in 1-skeleton of $O(P)$ or $C(P)$ are in one-to-one correspondence with faces of 2-dimensional simplex of each polytope. These results are a direct generalizations of [4] (Lemma 4, Lemma 5).

2. Definition and Known Results

Let $P = \{x_1, \ldots, x_d\}$ be a finite poset. To each subset $W \subset P$, we associate $\rho(W) = \sum_{i \in W} e_i \in \mathbb{R}^d$, where e_1, \ldots, e_d are the canonical unit coordinate vectors of \mathbb{R}^d. In particular $\rho(\emptyset)$ is the origin of \mathbb{R}^d.

A poset ideal of P is a subset I of P such that, for all x_i and x_j with $x_i \in I$ and $x_j \leq x_i$, one has $x_j \in I$. An antichain of P is a subset A of P such that x_i and x_j belonging to A with $i \neq j$ are incomparable. The empty set \emptyset is a poset ideal as well as an antichain of P. We say that x_j covers x_i if $x_i < x_j$ and $x_i < x_k < x_j$ for no $x_k \in P$. A chain $x_{j_1} < x_{j_2} < \cdots < x_{j_q}$ of P is called saturated if x_{j_q} covers $x_{j_{q-1}}$ for $1 < q \leq \ell$. A maximal chain is a saturated chain such that x_{j_1} is a minimal element and x_{j_ℓ} is a maximal element of the poset. The rank of P is $\gamma(C) - 1$, where C is a chain with maximum length of P.

The order polytope of P is the convex polytope $O(P) \subset \mathbb{R}^d$ which consists of those $(a_1, \ldots, a_d) \in \mathbb{R}^d$ such that $0 \leq a_i \leq 1$ for every $1 \leq i \leq d$ together with

$$a_i \geq a_j$$

if $x_i \leq x_j$ in P.

Received: 11 August 2019; Accepted: 10 September 2019; Published: 14 September 2019
The chain polytope of P is the convex polytope $\mathcal{C}(P) \subset \mathbb{R}^d$ which consists of those $(a_1, \ldots, a_d) \in \mathbb{R}^d$ such that $a_i \geq 0$ for every $1 \leq i \leq d$ together with

$$a_i + a_{i+1} + \cdots + a_k \leq 1$$

for every maximal chain $x_1 < x_2 < \cdots < x_k$ of P.

One has $\dim(\mathcal{C}(P)) = \dim(\mathcal{O}(P)) = d$. The vertices of $\mathcal{O}(P)$ are those $\rho(I)$ for which I is a poset ideal of P (Lemma 1 (1) (Corollary 1.3)) and the vertices of $\mathcal{C}(P)$ is those $\rho(A)$ for which A is an antichain of P (Lemma 2.2). It then follows that the number of vertices of $\mathcal{O}(P)$ is equal to that of $\mathcal{C}(P)$. Moreover, the volume of $\mathcal{O}(P)$ and that of $\mathcal{C}(P)$ are equal to $e(P)/d!$, where $e(P)$ is the number of linear extensions of P (Lemma 4.2). It also follows from Lemma 1 that the facets of $\mathcal{O}(P)$ are the following:

- $x_i = 0$, where $x_i \in P$ is maximal;
- $x_i = 1$, where $x_i \in P$ is minimal;
- $x_i = x_j$, where x_j covers x_i,

and that the facets of $\mathcal{C}(P)$ are the following:

- $x_i = 0$, for all $x_i \in P$;
- $x_i + \cdots + x_k = 1$, where $x_1 < \cdots < x_k$ is a maximal chain of P.

In [4] a characterization of edges of $\mathcal{O}(P)$ and those of $\mathcal{C}(P)$ is obtained. Recall that a subposet Q of finite poset P is said to be connected in P if, for each x and y belonging to Q, there exists a sequence $x = x_0, x_1, \ldots, x_s = y$ with each $x_i \in Q$ for which x_{i-1} and x_i are comparable in P for each $1 \leq i \leq s$.

Lemma 1 ([4] (Lemma 4, Lemma 5)). Let P be a finite poset.

1. Let I and J be poset ideals of P with $I \neq J$. Then the convex hull of $\{\rho(I), \rho(J)\}$ forms an edge of $\mathcal{O}(P)$ if and only if $I \subset J$ and $J \setminus I$ is connected in P.
2. Let A and B be antichains of P with $A \neq B$. Then the convex hull of $\{\rho(A), \rho(B)\}$ forms an edge of $\mathcal{C}(P)$ if and only if $(A \setminus B) \cup (B \setminus A)$ is connected in P.

3. Faces of 2-Dimensional Simplex

Using Lemma 1, we show the following description of faces of 2-dimensional simplex.

Theorem 1. Let P be a finite poset. Let $I, J,$ and K be pairwise distinct poset ideals of P. Then the convex hull of $\{\rho(I), \rho(J), \rho(K)\}$ forms a 2-face of $\mathcal{O}(P)$ if and only if $I \subset J \subset K$ and $K \setminus I$ is connected in P.

Proof. (“Only if”) If the convex hull of $\{\rho(I), \rho(J), \rho(K)\}$ forms a 2-face of $\mathcal{O}(P)$, then the convex hulls of $\{\rho(I), \rho(J)\}$, $\{\rho(J), \rho(K)\}$, and $\{\rho(I), \rho(K)\}$ form edges of $\mathcal{O}(P)$. It then follows from Lemma 1 that $I \subset J \subset K$ and $K \setminus I$ is connected in P.

(“If”) Suppose that the convex hull of $\{\rho(I), \rho(J), \rho(K)\}$ has dimension 1. Then there exists a line passing through the lattice points $\rho(I), \rho(J),$ and $\rho(K)$. Hence $\rho(I), \rho(J),$ and $\rho(K)$ cannot be vertices of $\mathcal{O}(P)$. Thus the convex hull of $\{\rho(I), \rho(J), \rho(K)\}$ has dimension 2.

Let $P = \{x_1, \ldots, x_d\}$. If there exists a maximal element x_i of P not belonging to $I \cup J \cup K$, then the convex hull of $\{\rho(I), \rho(J), \rho(K)\}$ lies in the facet $x_i = 0$. If there exists a minimal element x_j of P belonging to $I \cap J \cap K$, then the convex hull of $\{\rho(I), \rho(J), \rho(K)\}$ lies in the facet $x_j = 1$. Hence, working with induction on $d \geq 2$, we may assume that $I \cup J \cup K = P$ and $I \cap J \cap K = \emptyset$.

Suppose that $\emptyset = I \subset J \subset K = P$ and $K \setminus I = P$ is connected.

Case 1. $\sharp(J) = 1$.

Let $J = \{x_i\}$ and $P' = P \setminus \{x_i\}$. Then P' is a connected poset. Let x_{i_1}, \ldots, x_{i_t} be the maximal elements of P and $A_{i_j} = \{y \in P' \mid y < x_{i_j}\}$, where $1 \leq j \leq t$. Then we write

$$b_k = \begin{cases}
\mathbb{I}(\{i_j \mid x_k \in A_{i_j}\}) & \text{if } k \notin \{i_1, \ldots, i_t, i_j\} \\
0 & \text{if } k = i_j \\
-\mathbb{I}(A_{i_j}) & \text{if } k \in \{i_1, \ldots, i_t\}
\end{cases}.$$

We then claim that the hyperplane \mathcal{H} of \mathbb{R}^d defined by the equation $h(x) = \sum_{k=1}^d b_k x_k = 0$ is a supporting hyperplane of $\mathcal{C}(P)$ and that $\mathcal{H} \cap \mathcal{C}(P)$ coincides with the convex hull of $\{\rho(\mathcal{C}), \rho(\mathcal{I}), \rho(P)\}$. Clearly $h(\rho(\mathcal{C})) = h(\rho(\mathcal{I})) = 0$ and $h(\rho(P)) = b_i = 0$. Let I be a poset ideal of P with $I \neq \emptyset$, $I \neq P$ and $I \neq J$. We have to prove that $h(\rho(I)) > 0$. To simplify the notation, suppose that $I \cap \{x_{i_1}, \ldots, x_{i_t}\} = \{x_{i_1}, \ldots, x_{i_u}\}$, where $0 \leq r < q$. If $r = 0$, then $h(\rho(I)) > 0$. Let $1 \leq r < q$, $I' = I \setminus \{x_i\}$, and $K = \bigcup_{j=1}^u (A_{i_j} \cup \{x_j\})$. Then I' and K are poset ideals of P and $h(\rho(K)) = h(\rho(I')) = h(\rho(I))$. We claim $h(\rho(K)) > 0$. One has $h(\rho(K)) \geq 0$. Moreover, $h(\rho(K)) = 0$ if and only if no $z \in K$ belongs to $A_{i_{u+1}} \cup \cdots \cup A_{i_q}$. Now, since P' is connected, it follows that there exists $z \in K$ with $z \in A_{i_{u+1}} \cup \cdots \cup A_{i_q}$. Hence $h(\rho(K)) > 0$. Thus $h(\rho(I)) > 0$.

Case 2. $\mathbb{I}(J) = d - 1$.

Let $P \setminus J = \{x_i\}$ and $P' = P \setminus \{x_i\}$. Then P' is a connected poset. Thus we can show the existence of a supporting hyperplane of $\mathcal{C}(P)$ which contains the convex hull of $\{\rho(\mathcal{C}), \rho(\mathcal{I}), \rho(P)\}$ by the same argument in Case 1.

Case 3. $2 \leq \mathbb{I}(J) \leq d - 2$.

To simplify the notation, suppose that $J = \{x_1, \ldots, x_t\}$. Then $P \setminus J = \{x_{i+1}, \ldots, x_d\}$. Since J and $P \setminus J$ are subposets of P, these posets are connected. Let x_{i_1}, \ldots, x_{i_r} be the maximal elements of J and $x_{i_{r+1}}, \ldots, x_{i_{r+t}}$ the maximal elements of $P \setminus J$. Then we write

$$A_{i_{s,j}} = \begin{cases} \{y \in J \mid y < x_{i_{s,j}}\} & \text{if } 1 \leq s \leq t \\
\{y \in P \setminus J \mid y < x_{i_{s,j}}\} & \text{if } q + 1 \leq s \leq r \end{cases}$$

and

$$b_k = \begin{cases} \mathbb{I}(\{i_{s,j} \mid x_k \in A_{i_{s,j}}\}) & \text{if } k \notin \{i_1, \ldots, i_{r+t}, i_{s,j}\} \\
-\mathbb{I}(A_{i_{s,j}}) & \text{if } k \in \{i_1, \ldots, i_{r+t}, i_{s,j}\}
\end{cases}.$$

We then claim that the hyperplane \mathcal{H} of \mathbb{R}^d defined by the equation $h(x) = \sum_{k=1}^d b_k x_k = 0$ is a supporting hyperplane of $\mathcal{C}(P)$ and $\mathcal{H} \cap \mathcal{C}(P)$ coincides with the convex hull of $\{\rho(\mathcal{C}), \rho(\mathcal{I}), \rho(P)\}$. Clearly $h(\rho(\mathcal{C})) = h(\rho(\mathcal{I})) = 0$, then $h(\rho(P)) = h(\rho(I)) + h(\rho(P \setminus J)) = 0$. Let I be a poset ideal of P with $I \neq \emptyset$, $I \neq P$ and $I \neq J$. What we must prove is $h(\rho(I)) > 0$.

If $I \subseteq J$, then I is a poset ideal of J. To simplify the notation, suppose that $I \cap \{x_{i_1}, \ldots, x_{i_t}\} = \{x_{i_1}, \ldots, x_{i_s}\}$, where $0 \leq s < q$. If $s = 0$, then $h(\rho(I)) > 0$. Let $1 \leq s < q$, $K = \bigcup_{j=1}^s (A_{i_j} \cup \{x_j\})$. Then K is a poset ideal of I and $h(\rho(K)) \leq h(\rho(I))$. Thus we can show $h(\rho(K)) > 0$ by the same argument in Case 1 (Replace r with s and P' with J).

If $J \subseteq I$, then $I \setminus J$ is a poset ideal of $P \setminus J$. To simplify the notation, suppose that $(I \setminus J) \cap \{x_{i_{r+1}}, \ldots, x_{i_{r+t}}\} = \{x_{i_{r+1}}, \ldots, x_{i_{r+t}}\}$, where $0 \leq t < r$. If $t = 0$, then $h(\rho(I)) = h(\rho(I)) + h(\rho(J)) = h(\rho(I \setminus J)) > 0$. Let $1 \leq t < r$, $K = \bigcup_{j=t+1}^{r+t} (A_{i_j} \cup \{x_j\})$. Then K is a poset ideal of $P \setminus J$ and $h(\rho(K)) \leq h(\rho(I \setminus J)) = h(\rho(I)).$ Thus we can show $h(\rho(K)) > 0$ by the same argument in Case 1 (Replace r with $q + t$, q with $q + r$ and P' with $P \setminus J$). Consequently, $h(\rho(I)) > 0$, as desired.

Let $A \triangle B$ denote the symmetric difference of the sets A and B, that is $A \triangle B = (A \setminus B) \cup (B \setminus A)$.

Theorem 2. Let P be a finite poset. Let A, B, and C be pairwise distinct antichains of P. Then the convex hull of $\{\rho(A), \rho(B), \rho(C)\}$ forms a 2-face of $\mathcal{C}(P)$ if and only if $A \triangle B$, $B \triangle C$ and $C \triangle A$ are connected in P.
Proof. (“Only if”) If the convex hull of \(\{\rho(A), \rho(B), \rho(C)\} \) forms a 2-face of \(\mathcal{V}(P) \), then the convex hulls of \(\{\rho(A), \rho(B)\} \), \(\{\rho(B), \rho(C)\} \), and \(\{\rho(A), \rho(C)\} \) form edges of \(\mathcal{V}(P) \). It then follows from Lemma 1
that \(A \triangle B, B \triangle C \) and \(C \triangle A \) are connected in \(P \).

(“If”) Suppose that the convex hull of \(\{\rho(A), \rho(B), \rho(C)\} \) has dimension 1. Then there exists a line passing through the lattice points \(\rho(A), \rho(B), \) and \(\rho(C) \). Hence \(\rho(A), \rho(B), \) and \(\rho(C) \) cannot be vertices of \(\mathcal{V}(P) \). Thus the convex hull of \(\{\rho(A), \rho(B), \rho(C)\} \) has dimension 2.

Let \(P = \{x_1, \ldots, x_d\} \). If \(A \cup B \cup C \neq P \) and \(x_i \notin A \cup B \cup C \), then the convex hull of \(\{\rho(A), \rho(B), \rho(C)\} \) lies in the facet \(x_i \), \(x_i = 0 \). Furthermore, if \(A \cup B \cup C = P \) and \(A \cap B \cap C \neq \emptyset \), then \(x_j \in A \cap B \cap C \) is isolated in \(P \) and \(x_j \) itself is a maximal chain of \(P \). Thus the convex hull of \(\{\rho(A), \rho(B), \rho(C)\} \) lies in the facet \(x_j = 1 \). Hence, working with induction on \(d \geq 2 \), we may assume that \(A \cup B \cup C = P \) and \(A \cap B \cap C = \emptyset \). As stated in the proof of [3] ([Theorem 2.1]), if \(A \triangle B \) is connected in \(P \), then \(A \) and \(B \) satisfy either (i) \(B \subset A \) or (ii) \(y < x \) whenever \(x \in A \) and \(y \in B \) are comparable. Hence, we consider the following three cases:

(a) If \(B \subset A \), then \(A \triangle B = A \setminus B \) is connected in \(P \), and thus \(\sharp(A \setminus B) = 1 \). Let \(A \setminus B = \{x_k\} \).

If \(C \cap A \neq \emptyset \), then \(C \cap A = \{x_k\} \), since \(A \cap B \cap C = C \cap B = \emptyset \). Namely \(x_k \) is isolated in \(P \).

Hence \(B \triangle C = B \cup C = A \cup B \cup C \) cannot be connected. Thus \(C \cap A = \emptyset \). In this case, we may assume \(z < x \) if \(x \in A \) and \(z \in C \) are comparable. Furthermore, \(P \) has rank 1.

(b) If \(B \subset A \) and \(B \cap A \neq \emptyset \), then we may assume \(y < x \) if \(x \in A \) and \(y \in B \) are comparable.

If \(C \subset B \) with \(C \cap A \cap B = \emptyset \), then as stated in (a), \(C \triangle A \) cannot be connected. Since \(C \nsubseteq B \), we may assume \(z < y \) if \(y \in B \) and \(z \in C \) are comparable. If \(C \cap B \neq \emptyset \), then \(C \cap A = \emptyset \) and \(P \) has rank 1 or 2. Similarly, if \(C \cap B = \emptyset \), then \(C \cap A = \emptyset \) and \(P \) has rank 2.

(c) Let \(B \subset A \) and \(B \cap A = \emptyset \). We may assume that if \(x \in A \) and \(y \in B \) are comparable, then \(y < x \). If \(C \subset B \), then we regard this case as equivalent to (a). Let \(C \subset B \). We may assume \(z < y \) if \(y \in B \) and \(z \in C \) are comparable. Moreover, if \(C \cap B \neq \emptyset \), then we regard this case as equivalent to (b).

If \(C \cap B = \emptyset \), then \(C \cap A = \emptyset \) and \(P \) has rank 2.

Consequently, there are five cases as regards antichains for \(\mathcal{V}(P) \).

Case 1. \(B \subset A, \ C \cap A = \emptyset \), and \(C \cap B = \emptyset \).

For each \(x_i \in B \) we write \(b_i \) for the number of elements \(z \in C \) with \(z < x_i \). For each \(x_i \in C \) we write \(c_j \) for the number of elements \(y \in B \) with \(x_j < y \). Let \(a_k = 0 \) for \(A \setminus B = \{x_k\} \). Clearly \(\sum_{x \in B} b_i = \sum_{x \in C} c_j = q \) where \(q \) is the number of pairs \((y, z) \) with \(y \in B, z \in C \) and \(z < y \). Let \(h(x) = \sum_{x \in B} b_i x_i + \sum_{x \in C} c_j x_j + a_k x_k \) and let \(\mathcal{H} \) be the hyperplane of \(\mathbb{R}^d \) defined by \(h(x) = q \). Then \(h(\rho(A)) = h(\rho(B)) = h(\rho(C)) = q \). We claim that, for any antichain \(D \) of \(P \) with \(D \neq A, D \neq B, \) and \(D \neq C \), one has \(h(\rho(D)) < q \). Let \(D = B_1 \cup C_1 \) or \(D = \{x_k\} \cup C_1 \) with \(B_1 \subset B \) and \(C_1 \subset C \). Suppose \(D = B_1 \cup C_1 \). Since \(B \triangle C \) is connected and since \(D \) is an antichain of \(P \), it follows that \(\sum_{x \in B_1} b_i + \sum_{x \in C_1} c_j < q \). Thus \(h(\rho(D)) < q \). Suppose that \(D = \{x_k\} \cup C_1 \). It follows that \(\sum_{x \in C_1} c_j + a_k = \sum_{x \in C_1} c_j < \sum_{x \in C} c_j = q \). Thus \(h(\rho(D)) < q \).

Case 2. \(B \subset A, \ B \cap A \neq \emptyset, \ C \subset B, \ C \cap B \neq \emptyset, \ C \cap A = \emptyset \), and \(P \) has rank 1.

We define four numbers as follows:

\[
\alpha_i = \sharp\{y \in B \setminus A \mid y < x_i, x_i \in A \setminus B\};
\]

\[
\beta_j = \sharp\{x \in A \setminus B \mid x_j < x, x_j \in B \setminus A\};
\]

\[
\gamma_k = \sharp\{z \in C \setminus B \mid z < x_k, x_k \in B \setminus C\};
\]

\[
\delta_\ell = \sharp\{y \in B \setminus C \mid x_\ell < y, x_\ell \in C \setminus B\}.
\]
Since P has rank 1, $B \subset A \cup C = P$. It follows that $A = (A \setminus B) \cup (B \setminus C)$, $C = (B \setminus A) \cup (C \setminus B)$. Then

$$
\sum_{x_i \in A} \alpha_i = \sum_{x_i \in A \setminus B} \alpha_i + \sum_{x_i \in B \setminus C} \alpha_i = q;
$$

$$
\sum_{x_i \in B \setminus A} \gamma_j + \sum_{x_i \in B \setminus C} \alpha_k = q;
$$

$$
\sum_{x_i \in C} \gamma_u = \sum_{x_i \in B \setminus A} \gamma_j + \sum_{x_i \in B \setminus C} \gamma_k + \sum_{x_i \in C \setminus B} \gamma_\ell = q,
$$

where q_1 is the number of pairs (x, y) with $x \in A \setminus B, y \in B \setminus A$ and $y < x$, q_2 is the number of pairs (y, z) with $y \in B \setminus C, z \in C \setminus B$ and $z < y$, and $q = q_1 + q_2$. Let

$$
h(x) = \sum_{x_i \in A} \alpha_i x_i + \sum_{x_i \in C} \gamma_u x_u
$$

and H the hyperplane of \mathbb{R}^d defined by $h(x) = q$. Then $h(\rho(A)) = h(\rho(B)) = h(\rho(C)) = q$. We claim that, for any antichain D of P with $D \neq A$, $D \neq B$ and $D \neq C$, one has $h(\rho(D)) < q$. Let $D = D_1 \cup D_2$ with D_1 is an antichain of $A \triangle B$ and D_2 is an antichain of $B \triangle C$. Since $A \triangle B, B \triangle C$ are connected, it follows that $h(\rho(D_1)) < q_1$ and $h(\rho(D_2)) < q_2$. Thus $h(\rho(D)) = h(\rho(D_1)) + h(\rho(D_2)) < q_1 + q_2 = q$.

Case 3. $B \subset A, B \cap A \neq \emptyset, C \subset B, C \cap B \neq \emptyset, C \cap A = \emptyset$, and P has rank 2.

For each $x_i \in P$ we write $c(i)$ for the number of maximal chains, which contain x_i. Let q be the number of maximal chains in P. Since each $x_i \in A$ is maximal element and each $x_k \in C$ is minimal element, $\sum_{x_i \in A} c(i) = \sum_{x_k \in C} c(k) = q$. Then

$$
\sum_{x_j \in B} c(j) = \sum_{x_j \in B \setminus A} c(s) + \sum_{x_j \in B \setminus C} c(t) + \sum_{x_j \in B \setminus (A \cup C)} c(u)
$$

$$
= \sum_{x_j \in B \setminus A} c(s) + \sum_{x_j \in B \setminus C} c(t) + \left(\sum_{x_j \in A \setminus B} c(v) - \sum_{x_j \in B \setminus C} c(t) \right)
$$

$$
= \sum_{x_j \in A} c(i) = q.
$$

Let $h(x) = \sum_{x_j \in P} c(i) x_i$ and H the hyperplane of \mathbb{R}^d defined by $h(x) = q$. Then $h(\rho(A)) = h(\rho(B)) = h(\rho(C)) = q$. We claim that, for any antichain D of P with $D \neq A, D \neq B$ and $D \neq C$, one has $h(\rho(D)) < q$. $D = A_1 \cup B_1 \cup C_1$ with $A_1 \subset A \setminus B, B_1 \subset B$, and $C_1 \subset C \setminus B$. Now, we define two subsets of B:

$$
B_2 = \{ x_j \in B \mid x_j < x_i, x_i \in A_1 \};
$$

$$
B_3 = \{ x_j \in B \mid x_k < x_j, x_k \in C_1 \}.
$$

Then $B_1 \cap B_2 = B_1 \cap B_3 = B_2 \cap B_3 = \emptyset$ and $B_1 \cup B_2 \cup B_3 \subset B_3$. Let $\sum_{x_j \in A} c(i) = q_{1}, \sum_{x_j \in B_1} c(j) = q_{2}, \sum_{x_j \in C_1} c(k) = q_{3}, \sum_{x_j \in B_2} c(i) = q_{1}', \sum_{x_j \in B_3} c(j) = q_{2}'$. Since $A \triangle B, B \triangle C$ are connected, it follows that $q_1 < q_1'$ and $q_3 < q_3'$. Hence

$$
h(\rho(D)) = \sum_{x_j \in A_1} c(i) + \sum_{x_j \in B_1} c(j) + \sum_{x_j \in C_1} c(k)
$$

$$
= q_1 + q_2 + q_3 < q_1' + q_2 + q_3'
$$

$$
= \sum_{x_j \in B_2} c(j) + \sum_{x_j \in B_1} c(j) + \sum_{x_j \in B_3} c(j) \leq \sum_{x_j \in B} c(j) = q.$$
Thus \(h(p(D)) < q \).

Case 4. \(B \notin A, B \cap A \neq \emptyset, C \cap B = \emptyset, \) and \(C \cap A = \emptyset \).

Since \(P \) has rank 2, we can show \(h(p(D)) < q \) by the same argument in Case 3 (Suppose \(C \cap B = \emptyset \)).

Case 5. \(B \notin A, B \cap A = \emptyset, C \cap B = \emptyset \) and \(C \cap A = \emptyset \).

Since \(P \) has rank 2, we can show \(h(p(D)) < q \) by the same argument in Case 3 (Suppose \(B \cap A = C \cap B = \emptyset \)).

In conclusion, each \(\mathcal{H} \) is a supporting hyperplane of \(\mathcal{C}(P) \) and \(\mathcal{H} \cap \mathcal{C}(P) \) coincides with the convex hull of \(\{p(A), p(B), p(C)\} \), as desired. \(\Box \)

Corollary 1. Triangles in 1-skeleton of \(\mathcal{O}(P) \) or \(\mathcal{C}(P) \) are in one-to-one correspondence with faces of 2-dimensional simplex of each polytope.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Stanley, R. Two poset polytopes. *Discrete Comput. Geom.* **1986**, *1*, 9–23. [CrossRef]
2. Hibi, T.; Li, N. Unimodular equivalence of order and chain polytopes. *Math. Scand.* **2016**, *118*, 5–12. [CrossRef]
3. Hibi, T.; Li, N.; Sahara, Y.; Shikama, A. The numbers of edges of the order polytope and the chain polytope of a finite partially ordered set. *Discret. Math.* **2017**, *340*, 991–994. [CrossRef]
4. Hibi, T.; Li, N. Cutting convex polytopes by hyperplanes. *Mathematics* **2019**, *7*, 381. [CrossRef]