Amlodipine Inhibits Pro-inflammatory Cytokines and Free Radical Production and Inducible Nitric Oxide Synthase Expression in Lipopolysaccharide/Interferon-γ-Stimulated Cultured Vascular Smooth Muscle Cells

Tz-Chong Chou¹*, Shih-Ping Yang² and Dee Pei³

¹Graduate Institute of Medical Sciences, National Defense Medical Center, No 161, Min-Chuan E. Rd. Sec. 6, Taipei, Taiwan
²Division of Cardiology, and ³Division of Endocrinology and Metabolism, Tri-Service General Hospital, Taipei, Taiwan

Received January 15, 2002 Accepted March 13, 2002

ABSTRACT—Overproduction of nitric oxide (NO) from inducible nitric oxide synthase (iNOS) is importantly involved in the pathogenesis of endotoxemia and atherosclerosis. Calcium antagonists are commonly used as cardiovascular drugs and have a beneficial effect on prolonging survival in various models of endotoxin shock. The present study was to investigate the effect of a calcium antagonist amlodipine on nitrite, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) formation and iNOS induction both in lipopolysaccharide (LPS) and interferon-γ (IFN-γ)-treated rat aortic smooth muscle cells (RASMC) and in a rat model of endotoxemia. Incubation with amlodipine (0.1 – 10 μM) for 24 h resulted in a significant and dose-dependent attenuation in medium nitrite, TNF-α and IL-1β formation as well as iNOS protein expression in LPS/IFN-γ-treated RASMC. In addition, amlodipine inhibited leucigenin-induced superoxide formation in RASMC. In the rat endotoxic model, the serum nitrite/nitrate, TNF-α and IL-1β levels as well as iNOS protein expression of lungs were also suppressed by administration of amlodipine (50 μg/kg, i.v.). These results suggest that amlodipine may exert vascular beneficial effects by suppressing pro-inflammatory cytokines and free radical generation as well as iNOS induction in smooth muscle cells during activation of inflammatory mechanism.

Keywords: Amlodipine, Inducible nitric oxide synthase, Lipopolysaccharide, Cytokine, Free radical
inhibition of overproduction of NO. To further evaluate the mechanisms involved, we investigated effects of amlodipine on pro-inflammatory cytokines and free radical formation and iNOS induction in LPS/IFN-γ stimulated rat aortic smooth muscle cells (RASMC). We next investigated these effects of amlodipine in rat model of endotoxemia.

MATERIALS AND METHODS

Materials
LPS from Escherichia coli (serotype 0127:B8) was purchased from Sigma (St. Louis, MO, USA). Rat recombinant IFN-γ was obtained from Genzyme (Cambridge, MA, USA). Amlodipine was a gift from Pfizer (Sandwich, UK). Reagents used in the assay of iNOS western blot were purchased from Amersham (Buckinghamshire, UK). Other reagents used in this study were purchased from Sigma.

Cell culture
RASMC were cultured and prepared as previously described (14). To examine the effects of amlodipine, RASMC were treated with LPS (100 μg/mL) and IFN-γ (100 U/mL) for 24 h in the presence or absence of amlodipine (0.1–10 μM). The culture medium of Dulbecco’s Minimum Essential Medium (DMEM) without phenol red was used for nitrite and cytokines determination, and the cells were collected for iNOS induction and superoxide production assay. To assess whether amlodipine affects the iNOS activity, after RASMC were preincubated with LPS and IFN-γ for 24 h, fresh medium containing amlodipine (0.1–10 μM) and cycloheximide (4 μM) was added, and the nitrite concentration of medium was measured after a further 24 h.

In vivo study
Male Sprague-Dawley rats were anesthetized with urethane (0.6 g/kg, i.p.) and the carotid artery was cannulated for blood collection. A jugular vein was also cannulated for i.v. bolus administration of vehicle (saline) or agents. At 30 min after injection of the vehicle (saline) or amlodipine (50 μg/kg, i.v.), the rats received LPS (10 mg/kg, i.v.). Blood samples (0.5 mL) for the measurement of TNF-α and nitrite + nitrate (NO₃) were withdrawn from a catheter placed in the carotid artery at 1 and 4 h after injection of LPS, respectively. The lungs were removed at 4 h after injection of LPS for iNOS protein expression assay.

Measurement of nitrite and plasma NOₓ levels
Medium nitrite and serum NOₓ were determined by using the Griess reagent and a Sievers Nitrite Oxide Analyzer (Sievers 280 NOA; Sievers, Boulder, CO, USA), respectively, as previously described (14).

Western blotting analysis
Cells or tissues homogenates containing 10 μg protein were denatured and an equal amount of protein were loaded on a 7.5% SDS-PAGE gel. After electrophoresis, the gel was transferred to nitrocellulose membrane using the PharmSystem (Pharmacia Biotech, Uppsala, Sweden). The membrane was blocked with 1% BSA in a Tris-buffer solution (TBS, pH 8.0) containing 0.1% Tween-20 for 2 h at room temperature. Next, the membrane was incubated overnight at 4°C with mouse monoclonal anti-iNOS antibody (1:2000 dilution; Transduction Laboratories, Lexington, KY, USA) in TBS containing 0.1% Tween-20. Then, the membrane was washed and finally incubated with a 1:1000 dilution of anti-mouse IgG conjugated to horse-radish peroxidase for 1 h at room temperature. After successive washes with TBS, the immunocomplexes were detected using an enhanced horseradish peroxidase/luminol chemiluminescence reaction (Amersham) and exposed to X-ray film for 3–5 min (15).

Measurement of cytokines level
The amount of TNF-α and IL-1β was measured by using a rat EIA kit (Genzyme Corporation).

Measurement of superoxide formation
Production of superoxide was measured by the lucigenin-enhanced chemiluminescence response as described previously (16). The counts of RASMC (2 × 10⁴/mL) induced by lucigenin (0.25 mM) were obtained by luminometer (Lumicon; Packard, Meriden, CT, USA) reported by RLU (relative light units) emitted, which was integrated over 20-s intervals for 5 min. Background counts (determined in cell-free preparations) were subtracted, and values were normalized to cell number.

Cell viability
Cell viability was assessed by the mitochondrial-dependant reduction of MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] to formazan. After incubation of amlodipine with cells for 24 h, the culture medium was removed and the MTT (0.4 mg/mL) was added for another 60 min incubation at 37°C. Then, the culture medium was removed by aspiration and the cells were solubilized in DMSO. The extent of reduction of MTT to formazan within the cells was quantified by measurement of OD₅₅₀. Formazan production is expressed as a percentage of the values obtained form cells treated with LPS plus IFN-γ.

Statistics
Data were expressed as the mean ± S.E.M. All results were analyzed by one-way ANOVA followed by a multiple
comparison test (Scheffe test). A P value less than 0.05 was considered statistically significant.

RESULTS

Effect of amlodipine on NO production in vitro and in vivo

Incubation with LPS (100 μg/mL) and IFN-γ (100 U/mL) in RASMC for 24 h induced a ten-fold increase in nitrite accumulation compared with that of basal cells. Amlodipine (0.1 – 10 μM) caused a significant and dose-dependent attenuation of nitrite accumulation in LPS/IFN-γ treated RASMC (Fig. 1A). However, if iNOS were already induced by LPS and IFN-γ for 24 h and any possible further protein synthesis was blocked by cycloheximide (4 μM), the amlodipine had no inhibitory effect on nitrite production (Fig. 1B). Similarly, in the in vivo study, pretreatment with amlodipine (50 μg/kg, i.v.) significantly inhibited the serum NOX levels compared with that of untreated LPS-rats (Fig. 1C).

Effect of amlodipine on iNOS protein expression in vitro and in vivo

The basal RASMC showed barely detectable iNOS protein. In contrast, stimulation with LPS and IFN-γ for 24 h induced a marked increase of iNOS protein expression. When amlodipine (0.1 – 10 μM) was added, the LPS/IFN-γ-induced expression of iNOS protein was dose-dependently attenuated (Fig. 2A). Similarly, administration with amlodipine (50 μg/kg, i.v.) reduced the iNOS expression of lungs in rat model of endotoxemia (Fig. 2B).

Effect of amlodipine on cytokines production in vitro and in vivo

In LPS/IFN-γ treated RASMC, amlodipine (0.1 – 10 μM) dose-dependently inhibited the TNF-α and IL-1β production (Fig. 3). In LPS-treated rats, our unpublished data showed the injection of LPS resulted in bell-shape changes in the serum TNF-α level that reached a peak at 1 h after LPS injection and subsequently decreased slowly. Therefore, serum TNF-α was measured at the 1-h time point. Other cytokines including IL-1β was measured at 4 h after injection of LPS. Similarly, treatment of LPS-rats with amlodipine (50 μg/kg, i.v.) significantly decreased the serum TNF-α and IL-1β levels compared with that of untreated LPS-rats (Fig. 4).

Effect of amlodipine on superoxide formation

As shown in Fig. 5, in the RASMC, lucigenin-enhanced superoxide generation was about 3.5 times higher than resting state. Incubation with amlodipine caused a significant inhibition of lucigenin-induced superoxide formation.

Effect of amlodipine on cell viability

Amlodipine alone did not significantly diminish cell respiration at the concentrations (0.1 – 10 μM) studied with
cell viability above 95% of the control cells. In addition, there was no difference of the cell viability between with or without amlodipine (0.1–10 μM) in LPS/IFN-γ-treated RASMC.

DISCUSSION

The present study clearly demonstrates that amlodipine significantly inhibits nitrite formation in LPS/IFN-γ-treated RASMC accompanied by attenuation of pro-inflammatory cytokines as well as superoxide formation and suppressing of iNOS induction. Similarly, in the rat endotoxic model, the serum NOx, TNF-α and IL-1β levels as well as iNOS expression of lungs were also suppressed by administration of amlodipine.

It has been demonstrated that in response to LPS and cytokines, the iNOS of macrophages and smooth muscle cells is induced and sequentially leads to NO overproduction. Our results showed that amlodipine significantly inhibited the nitrite formation in LPS/IFN-γ-treated RASMC. To further examine whether amlodipine causes direct inhibition of iNOS activity, amlodipine was added into RASMC preincubated with LPS and IFN-γ for 24 h to induce iNOS expression and further protein synthesis was inhibited by cycloheximide; under this condition, no inhibitory effect of amlodipine on nitrite formation was found (Fig. 1B). Based on the temporal relationship between the different time of amlodipine added and nitrite formation, we propose that the inhibition of nitrite formation by amlodipine may be mainly due to attenuation of iNOS induction rather than direct inhibition of iNOS activity. It is strongly supported by the fact that amlodipine significantly inhibited LPS/IFN-γ-induced iNOS protein expression both in RASMC and lungs of the rat endotoxic model.

The mechanism(s) by which amlodipine prevents the induction of iNOS are unclear and warrant further investi-
Amlodipine Inhibits iNOS Induction in VSMC

Pro-inflammatory cytokines including TNF-α and IL-1β etc. produced by LPS appear to be a key factor contributing to the induction of iNOS in many cells and tissues through activation of nuclear factor-κB (NF-κB), an important nuclear transcription factor for iNOS and many other pro-inflammatory cytokines transcription (17, 18). This is supported by the observation that TNF-α antisera or antibodies attenuate the lethality of sepsis and endotoxin (19). Our results first demonstrated that the inhibitory effect of amlodipine on pro-inflammatory cytokines production in vitro and in vivo may account for its beneficial effects in sepsis and inflammation.

Although iNOS can bind calmodulin tightly without a requirement of elevated intracellular Ca$^{2+}$ for iNOS activity, the role of intracellular Ca$^{2+}$ on iNOS induction in murine macrophages or smooth muscle cells is still unclear. Previous studies have demonstrated that UTP, acting via pyrimidinoceptors, can stimulate phosphoinositide breakdown and increase intracellular Ca$^{2+}$ levels (20). Although UTP alone had no effect, UTP potentiated the LPS-induced NO production, activation of transcription factor NF-κB and iNOS expression in mouse J774 macrophages (21). However, when cells were treated with the intracellular Ca$^{2+}$ chelator BAPTA/AM before stimulation with LPS plus UTP or thapsigargin, a specific and potent endoplasmic reticulum Ca$^{2+}$-ATPase inhibitor, and subsequently lead to increase of intracellular free Ca$^{2+}$, the potentiation of nitrite production by UTP or thapsigargin was completely inhibited (22, 23). Moreover, it was demonstrated that UTP or thapsigargin potentiated the LPS-induced activation of NF-κB and iNOS induction via a Ca$^{2+}$/calmodulin-dependent protein kinase pathway (21). These observations indicated that the increase of intracellular Ca$^{2+}$ has a crucial priming effect on iNOS expression, especially in the endotoxic state. Our finding, inhibition by amlodipine of iNOS induction in the endotoxic condition, is in agreement with other dihydropyridine calcium antagonists (24). However, other structurally unrelated calcium channel antagonists like verapamil and diltiazem exerted much less inhibition on NO formation than that of dihydropyridine calcium antagonists (10). These results seem to indicate that the inhibitory effect on iNOS induction may be a class effect for the dihydropyridine calcium antagonists and is independent of the action on L-type calcium channels. On the other hand, Ikeda et al. (25) reported that amlodipine increased NO synthesis in IL-1β-stimulated cultured smooth muscle cells. It is proposed that the site of amlodipine action may be upstream of IL-1β production. However, the true mechanism is still unknown. Many studies have shown that a synergistic action of IL-1β, IFN-γ, TNF-α and LPS on iNOS expression was observed in smooth muscle cells and other cells (26, 27). Thus, we speculate that the discrepancy of iNOS expression by amlodipine may be due to treatment with different stimulators or combination of cytokines and LPS, and some unknown...
mechanisms are involved in the effect of amlodipine on NO synthesis.

Oxidative stress has been proposed to play a key role on the NF-κB activation and iNOS induction (28). Our results showed that amlodipine significantly inhibited the luecogin-enhanced superoxide anion formation in RASMC, which is consistent with other dihydropyridine-type calcium antagonists such as felodipine inhibiting cyclooxygenase/LPS-induced superoxide anion production in human aortic smooth muscle cells (29). Calcium antagonists have also been shown to prevent glutathione loss (30). Intracellular thiols regulate NF-κB activation at one or more levels in the signal transduction cascade. High intracellular thiol levels could influence protein folding or enzyme activation and thus block the activation of protein kinases (e.g., protein kinase C) that phospholylate the IκB (inhibitor of κB)/NF-κB complex and liberate activated NF-κB (31). These results suggest the possibility that calcium antagonists inhibit NF-κB activation. Recently, it was reported that nifedipine and amlodipine with less inhibitory potency inhibit activation of NF-κB both in a human epithelium-like lung carcinoma cell line and the RAW 264.7 macrophage cell line (32). The fact that amlodipine inhibited induction of iNOS further support the notion that amlodipine acts as an antioxidant and NF-κB inhibitor, which may be associated with the inhibition of LPS-induced iNOS expression.

In conclusion, this study demonstrates that amlodipine significantly inhibits NO production both in LPS/IFN-γ-stimulated RASMC and in the rat model of septic shock accompanied by suppression of iNOS induction. Furthermore, attenuation of pro-inflammatory cytokines and free radical formation by amlodipine may be involved in the attenuation of iNOS induction and NO overproduction. Our results may explain some of the beneficial effects of amlodipine on endotoxemia, cardiovascular and inflammatory diseases accompanied by overproduction of NO.

Acknowledgments

This study was partly supported by a research grant from the National Science Council of Taiwan (NSC 88-2314-B016-072) and grant from National Defense Medical Center (DOD-89-28), Taiwan.

REFERENCES

1 Moncada S, Palmer RMJ and Higgs EA: Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43, 109 – 142 (1991)
2 Xie QW, Kashiwabara Y and Nathan C: Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem 269, 4705 – 4708 (1996)
3 Forstermann U, Schmidt HHW, Pollock JS, Sheng H, Mitchell JA, Warner TD, Nakane M and Murand R: Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem Pharmacol 42, 1849 – 1857 (1991)
4 Szabó C: Alterations in nitric oxide production in various forms of circulatory shock. New Horizons 3, 2 – 32 (1995)
5 Kilbourn RG and Griffith OW: Overproduction of nitric oxide in cytokine-mediated and septic shock. J Natl Cancer Inst 84, 827 – 877 (1992)
6 Vane JR, Mitchell JA, Appleton I, Tomlinson A, Bishop-Bailey D, Croxall J and Willoughby DA: Inducible isomers of cyclooxygenase and nitric oxide synthase in inflammation. Proc Natl Acad Sci USA 91, 2046 – 2050 (1994)
7 Winlaw DS, Smythe GA, Keogh AM, Schyvens CG, Spratt PM and Macdonald PS: Nitric oxide production and heart failure. Lancet 345, 390 – 391 (1995)
8 Bosson S, Kuenzig M and Swartz SI: Verapamil improves cardiac function and increases survival in canine E. coli endotoxin shock. Circ Shock 16, 307 – 316 (1985)
9 Lee HC and Lum BKB: Protective action of calcium entry blockers in endotoxin shock. Circ Shock 18, 193 – 205 (1986)
10 Szabo C, Mitchell JA, Gross SS, Thiemermann C and Vane JR: Nifedipine inhibits the induction of nitric oxide synthase by bacterial lipopolysaccharide. J Pharmacol Exp Ther 265, 674 – 680 (1993)
11 Pieper JA: Evolving role of calcium channel blockers in heart failure. Pharmacotherapy 16, 435 – 495 (1996)
12 Wang WZ, Matsumori A, Yamada T, Shioi T, Okada I, Matsui S, Sato Y, Suzuki H, Shiota K and Sasayama S: Beneficial effects of amlodipine in a murine model of congestive heart failure induced by viral myocarditis: a possible mechanism through inhibition of nitric oxide production. Circulation 95, 245 – 251 (1997)
13 Packer M, O’connor CM, Ghali JK, Pressler ML, Carson PE, Belkin RN, Miller AB, Neuberg GW, Fried D, Wertheimer JM, Cripp AB and Demets DL: Effect of amlodipine on morbidity and mortality in severe chronic heart failure: Prospective Randomized Amlodipine Survival Evaluation Study Group. N Engl J Med 335, 1107 – 1114 (1996)
14 Chou TC, Li CY, Wu TM, Tang ST, Lee AR and Ding YA: Beneficial effect of HCL-31D in murine models of endotoxaemia. Naunyn Schmiedebergs Arch Pharmacol 364, 213 – 219 (2001)
15 Chou T-C, Yen M-H, Li C-Y and Ding Y-A: Alterations of nitric oxide synthase expression with aging and hypertension in rats. Hypertension 31, 643 – 648 (1998)
16 Ōhara Y, Peterson TE and Harrison DG: Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 91, 2546 – 2551 (1993)
17 Busse R and Mulch A: Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. FEBS Lett 275, 87 – 90 (1990)
18 Xie Q: A novel lipopolysaccharide-response element contributes to induction of nitric oxide synthase. J Biol Chem 272, 14867 – 14872 (1997)
19 Thiemermann C, Wu C-C, Szabó C, Perretti M and Vane JR: Role of tumour necrosis factor in the induction of nitric oxide synthase in a rat model of indotoxin shock. Br J Pharmacol 110, 177 – 182 (1993)
20 Lin W-W and Lee Y-T: Pyrimidinoceptor-mediated activation of phospholipase C and phospholipase A2 in RAW 264.7 macrophages. Br J Pharmacol 119, 261 – 268 (1996)
21 Chen BC, Chou CF and Lin WW: Pyrimidinoceptor-mediated potentiation of iNOS induction in J774 macrophages: role of
intracellular calcium. J Biol Chem 273, 29754–29763 (1998)
22 Park YC, Jun CD, Kang HS, Kim HD, Kim HM and Chung HT: Intracellular Ca\(^{2+}\) pool deplection is linked to the induction of nitric oxide synthesis in murine peritoneal macrophages. Biochem Mol Biol Int 36, 949 – 955 (1995)
23 Park YC, Jun CD, Kang HS, Kim HD, Kim HM and Chung HT: Role of intracellular calcium as a priming signal for the induction of nitric oxide synthesis in murine peritoneal macrophages. Immunology 87, 296 – 302 (1996)
24 Hattori Y, Kasai K, So S, Hattori S, Banba N and Shimoda SI: Effect of calcium channel antagonists on the induction of nitric oxide synthase in cultured cells by immunostimulants. Life Sci 57, 1833 – 1840 (1995)
25 Ikeda U, Shimpo M, Ohki R, Takahashi M, Yamamoto K, Ikeda M, Minota S and Shimada K: Amlodipine increases nitric oxide synthase in cytokine-stimulated cultured vascular smooth muscle cells. J Hypertens 18, 1597 – 1604 (2000)
26 Marumo T, Nakaki T, Nagata K, Miyata M, Adachi H, Esumi H, Suzuki H, Saruta T and Kato R: Dexamethasone inhibits nitric oxide synthase mRNA induction by interleukin-1 alpha and tumor necrosis factor-alpha in vascular smooth muscle cells. Jpn J Pharmacol 63, 361 – 367 (1993)
27 Marumo T, Nakaki T, Adachi H, Esumi H, Suzuki H, Saruta T and Kato R: Nitric oxide synthase mRNA in endothelial cells: synergistic induction by interferon-gamma, tumor necrosis factor-alpha and lipopolysaccharide and inhibition by dexamethasone. Jpn J Pharmacol 63, 327 – 334 (1993)
28 Wang S, Leonard SS, Castranova V, Vallyathan V and Shi X: The role of superoxide radical in TNF-alpha induced NF-kappaB activation. Ann Clin Lab Sci 29, 192 – 199 (1999)
29 Hishikawa K and Luscher TF: Felodipine inhibits free-radical production by cytokines and glucose in human smooth muscle cells. Hypertension 32, 1011 – 1015 (1998)
30 Mark IT and Weglicki WB: Antioxidant activity of calcium channel blocking drugs. Methods Enzymol 234, 620 – 630 (1994)
31 Staal FJT, Roederer M and Herzenberg LA: Intracellular thiols trigulaate activation of nuclear factor Kappa B and transcription of human immunodeficiency virus. Proc Natl Acad Sci USA 87, 9943 – 9947 (1990)
32 Matsumori A, Nunkawa Y and Sasayama S: Nifedipine inhibits activation of transcription factor NF-xB. Life Sci 67, 2655 – 2661 (2000)