On the gradient of Schwarz symmetrization of functions in Sobolev spaces

Marco Bramanti
Dipartimento di Matematica, Politecnico di Milano. Via Bonardi 9. 20133 Milano. Italy.

Sunto. Sia S uno spazio di Sobolev o Orlicz-Sobolev di funzioni non necessariamente nulle al bordo del dominio. Si danno condizioni sufficienti su una funzione non negativa in S affinché la sua simmetrizzazione di Schwarz appartenga ancora ad S. Questi risultati sono ottenuti per mezzo di disuguaglianze isoperimetriche relative e generalizzano in un certo senso un noto teorema di Polya-Szego. Si dimostra anche che il riarrangiamento di una qualsiasi funzione in S è localmente in S.

Abstract. Let S be a Sobolev or Orlicz-Sobolev space of functions not necessarily vanishing at the boundary of the domain. We give sufficient conditions on a nonnegative function in S in order that its spherical rearrangement ("Schwartz symmetrization") still belongs to S. These results are obtained via relative isoperimetric inequalities and somewhat generalize a well-known Polya-Szego's theorem. We also prove that the rearrangement of any function in S is locally in S.

If u is a nonnegative function in $H^1,2(\mathbb{R}^n)$, u has compact support, and \bar{u} denotes the Schwarz symmetrization of u, then a well known theorem by Polya-Szego states that \bar{u} belongs to $H^1,2(\mathbb{R}^n)$ and:

$$
\int |D\bar{u}|^2 \, dx \leq \int |Du|^2 \, dx.
$$

(Henceforth, we will indicate with D the gradient of a function of n variables or the derivative of a function of one real variable).

In particular, this formula holds for $u \in H^1,2(\Omega)$, where Ω is a bounded domain of \mathbb{R}^n, the first integral is taken on the ball Ω having the same measure of Ω and the second is taken on Ω.

If u is a function in $H^1,2(\Omega)$, not necessarily vanishing at the boundary, or if u belongs to $H^1,2(\Omega)$ but assumes also negative values (and so does \bar{u}), then inequality (*) can actually fail, and \bar{u} does not necessarily belong to $H^1,2(\Omega)$ (see examples below). So, a natural question is under which additional assumptions a nonnegative function in $H^1,2(\Omega) \setminus H^1,2(\Omega)$ has Schwarz symmetrization in $H^1,2(\Omega)$. In section 1 we will prove some different sufficient conditions (in terms of the size of the set on which u vanishes) in order to a Polya-Szego-type estimate holds, that is:

$$
\int_{\Omega} |D\bar{u}|^2 \, dx \leq (\text{const.}) \int_{\Omega} |Du|^2 \, dx.
$$

Moreover, we will prove that whenever u is an $H^1,2(\Omega)$ function (even of changing sign), \bar{u} belongs to $H^1,2(\Omega)$ and for any ball Ω, concentric to Ω and with measure $|\Omega| - \epsilon$, one has:

$$
\int_{\Omega_\epsilon} |D\bar{u}|^2 \, dx \leq c(\epsilon) \int_{\Omega} |Du|^2 \, dx.
$$

where c does not depend on u. (See section 2). All these results can naturally be generalized to Orlicz-Sobolev spaces. This will be done in section 3.

The interest in studying properties of the rearrangement of functions in $H^1,2(\Omega)$, or vanishing on part of the boundary, comes from the application of symmetrization techniques to elliptic or parabolic P.D.E. with boundary conditions of Neumann or mixed type: so thm. 2.1 and corollary 2.2 have been used in investigating parabolic Neumann problems, see [2]. We also mention [8], in which a similar result to thm. 1.3 is stated, in a different context: this result is related to the study of elliptic mixed problems, which is carried out in [13].

Some notations and examples

If u is a real measurable function defined on Ω, we define:

the distribution function of u:

$$
\mu(t) = \left| \left\{ x \in \Omega : u(x) > t \right\} \right| \quad \text{for } t \in \mathbb{R}
$$

(\cdot denotes Lebesgue measure);
the decreasing rearrangement of u:

$$u^*(s) = \inf \left\{ \mu(t) : \mu(t) \leq s \right\} \text{ for } s \in [0, |\Omega|];$$

(0.2)

the Schwarz symmetrization of u:

$$\bar{u}(x) = u^* \left(c_n \left| x \right| \right) \text{ for } x \in \bar{\Omega},$$

(0.3)

where $\bar{\Omega}$ is the sphere centred at the origin with the same measure of Ω; c_n is the measure of the unit ball in \mathbb{R}^n.

For general properties of these functions, see [12]; note that, in our definition, u^* and \bar{u} assume also negative values, if u is a function of changing sign, whereas rearrangements are sometimes defined for $|u|$.

From (0.3) it follows:

$$\left| \nabla \bar{u}(x) \right| = n c_n \left| \nabla u^* \left(c_n \left| x \right| \right) \right| \cdot \left| x \right|^{n-1}$$

$$\int_{\Omega} \left| \nabla \bar{u}(x) \right|^2 dx = (n c_n^{1/n})^2 \int_0^{\Omega} \left| \nabla u^*(s) \right|^2 s^{2-2/n} ds. \quad (0.4)$$

Hence, if $\bar{u} \in H^{1,2}(\bar{\Omega}), u^* \in H^{1,2}(\epsilon, |\Omega|)$ for any $\epsilon > 0$, so that $u^* \in AC(\epsilon, |\Omega|)$ for any $\epsilon > 0$.

For better understanding the problem of assuring integrability of $\left| \nabla \bar{u} \right|^2$, let us consider the case of a radially symmetric and increasing function u defined on a ball Ω, i.e.:

$$u(x) = u^* \left(\left| \Omega \right| - c_n \left| x \right| \right). \quad (0.5)$$

In this case one has:

$$\int_{\Omega} \left| \nabla u(x) \right|^2 dx = \frac{(n c_n^{1/n})^2}{4} \int_0^{\Omega} \left| \nabla u^*(s) \right|^2 \left(\left| \Omega \right| - s \right)^{2-2/n} ds. \quad (0.6)$$

Comparing (0.4) and (0.6) one sees how it may happen that $u \in H^{1,2}(\Omega)$ but $\bar{u} \notin H^{1,2}(\bar{\Omega})$. Take, for instance, $u^*(s) = \sqrt{\left| \Omega \right|} - s$ and u as in (0.5). Then:

$$\int_{\Omega} \left| \nabla u(x) \right|^2 dx = \frac{(n c_n^{1/n})^2}{4} \int_0^{\Omega} s^{2-2/n} ds < \infty \text{ for every } n \geq 2,$$

while:

$$\int_{\Omega} \left| \nabla \bar{u}(x) \right|^2 dx = \frac{(n c_n^{1/n})^2}{4} \int_0^{\Omega} \frac{s^{2-2/n}}{|\Omega|^2} ds = \infty \text{ for every } n.$$

Similarly, if one defines: $u^*(s) = \sqrt{\left| \Omega \right|} - s - \sqrt{\left| \Omega \right|} \text{ and } u$ as in (0.5), one has an example of a (negative) function $u \in H^{1,2}_0(\Omega)$ such that $\bar{u} \notin H^{1,2}(\bar{\Omega})$.

Remark 0.1. The above example works for $n \geq 2$. If $n = 1$ inequality (*) can actually be proved for any nonnegative function in $H^{1,2}(\Omega)$. (See [6], p.35). So in this paper we will always consider $n \geq 2$.

1. Isoperimetric inequalities and L^2 norm of the gradient of \bar{u}

Here we want to obtain a proof of integrability of $\left| \nabla \bar{u} \right|^2$ without assuming that u vanishes at the boundary of Ω. In what follows u will be a nonnegative function defined on Ω. A first basic tool we need is Federer's "coarea formula", as appears in [11]:

if $f \in L^1(\mathbb{R}^n)$ and v is a nonnegative Lipschitz function with compact support, then:

$$\int_{\mathbb{R}^n} f(x) \left| \nabla v(x) \right| dx = \int_0^{\infty} dt \int_{\left\{ x : v(x) = t \right\}} f(x) dH_{n-1}(x). \quad (1.1)$$

(Here and below, H_{n-1} stands for (n − 1)-dimensional Hausdorff measure).

Let us consider a nonnegative Lipschitz function u defined on Ω. If Ω is Lipschitz, we can extend u to a compact supported Lipschitz function on \mathbb{R}^n. Then, if $f \in L^1(\Omega)$ and we put $f \equiv 0$ outside Ω, (1.1) becomes:

$$\int_{\Omega} f(x) \left| \nabla u(x) \right| dx = \int_0^{\infty} dt \int_{\left\{ x : u(x) = t \right\}} f(x) dH_{n-1}(x). \quad (1.2)$$

From (1.2) it follows in particular:

$$\int_{\left\{ x \in \Omega : u(x) > t \right\}} \left| \nabla u(x) \right| dx = \int_t^{\infty} \left| H_{n-1} \left\{ x \in \Omega : u(x) = \xi \right\} \right| d\xi. \quad (1.3)$$
Note that:
\[\{ x \in \Omega: \{ x \in \Omega: \{ u(x) = \xi \} \} \} \ni \Omega, \text{ and:} \]
\[H_{n-1}\{ x \in \Omega: u(x) = \xi \} \geq P_{\Omega}\{ x \in \Omega: u(x) > \xi \}. \] (1.4)

Here \(P_{\Omega} \) stands for the perimeter, in the sense of De Giorgi, relative to \(\Omega \). For a definition of this concept in the general case, see [9]. However, we will only use the fact that \(P_{\Omega}(E) \leq H_{n-1}(\partial E) \cap \Omega \) for every measurable subset \(E \) of \(\Omega \), and, if \(\partial E \) is sufficiently smooth, this is an equality. (See [4]). The perimeter of \(E \), \(P(E) \), is equal to \(P_{\Omega}(E) \) when \(\Omega = \mathbb{R}^n \). We recall De Giorgi's isoperimetric inequality in \(\mathbb{R}^n \):
\[P(E) \geq n c_{n}^{1/n} | E |^{1-1/n}. \]

The next theorem points out the role of isoperimetric inequalities in Polya-Szego-type estimates.

Theorem 1.1. Let \(\Omega \) be a bounded Lipschitz domain in \(\mathbb{R}^n \), \(n \geq 2 \), \(u \in \text{Lip}(\Omega) \), \(u \geq 0 \) in \(\Omega \), and assume that \(u \) satisfies:
\[P_{\Omega}\{ x \in \Omega: u(x) > \xi \} \geq \gamma(1/t)^{1-1/n} \] (1.5)
for some positive constant \(\gamma \), any \(t \geq 0 \). (Here and below, \(\mu \) is the distribution function of \(u \), defined in (0.1)). Then \(\bar{u} \in \text{Lip}(\overline{\Omega}) \), and:
\[\int_{\Omega} | D\bar{u} |^2 \, dx \leq \left(\frac{u_{\infty}}{\gamma} \right)^2 \int_{\Omega} | Du |^2 \, dx. \] (1.6)

Proof. (Here we revise an argument of [11]). Let us prove that \(\bar{u} \) is Lipschitz. If \(L \) is a constant such that \(| Du(x) | \leq L \) in \(\Omega \), and \(t, h \) such that \(0 < h < t \), then:
\[L(\mu(t-h) - \mu(t)) \geq \int_{\{ x \in \Omega: \bar{u}(x) < t \}} | Du(x) | \, dx = (\text{by (1.3), (1.4)}) \]
\[= \int_{t-h}^{t} P_{\Omega}\{ x \in \Omega: u(x) > \xi \} \, d\xi \geq (\text{by (1.5)}) \gamma \int_{t-h}^{t} \mu(\xi)(1-1/n) \, d\xi \geq \gamma h \mu(t)^{1-1/n}. \]

Hence \(\mu \) is strictly decreasing in \((0, \| u \|_{\infty}) \), so that \(u^* \) is continuous and satisfies:
\[u^*(s) - u^*(s+k) \leq \frac{L}{k} s^{-1+1/n} \cdot k \]
for any \(k > 0 \), \(s + k \in (0, \| \Omega \|) \). Therefore \(u^* \in AC(\epsilon, \| \Omega \|) \) for any \(\epsilon > 0 \) and:
\[0 \leq - \frac{du}{ds}(s) \leq \frac{L}{k} s^{-1+1/n}. \] (1.7)

By the definition of \(\bar{u} \) and (1.7) one can compute:
\[| \bar{u}(x) - \bar{u}(y) | = | \int_{|x-y|}^{\epsilon |x-y|} \frac{du}{ds}(s) \, ds | \leq L \frac{\epsilon^{1/n}}{\gamma} \cdot | y - x | \]
that is \(\bar{u} \) is Lipschitz in \(\Omega \).

Let us prove now that (1.6) holds. From (1.3)-(1.4) it follows:
\[- \frac{d}{dt} \int_{\{ x \in \Omega: u(x) > t \}} | Du(x) | \, dx = P_{\Omega}\{ x \in \Omega: u(x) > t \} \geq (\text{by (1.5)}) \gamma \mu(t)^{1-1/n}. \] (1.8)

From (1.2) it follows that:
\[\varphi(t) \equiv \int_{\{ x \in \Omega: u(x) > t \}} | Du(x) |^2 \, dx = \int_{t}^{+\infty} d\xi \int_{\{ x \in \Omega: u(x) = \xi \}} | Du | \, dH_{n-1}(x) \]
from which one reads that \(\varphi \) is absolutely continuous, so that:
\[\int_{\Omega} | Du |^2 \, dx = \varphi(0) = \int_{0}^{+\infty} \varphi(t) \, dt. \] (1.9)

Writing differential quotients and applying Holder's inequality one has:
\[-\varphi'(t) \geq \frac{1}{\mu(t)} \left[-\frac{d}{dt} \int_{\{x \in \Omega: u(x) > t\}} |Du(x)| \, dx \right]^2. \] \hspace{1cm} (1.10)

From (1.8), (1.9), (1.10) it follows:

\[\int_{\Omega} |Du|^2 \, dx \geq \gamma^2 \int_0^{\infty} \frac{\mu(t)^{2-2n}}{\mu(t)} \, dt. \] \hspace{1cm} (1.11)

Now consider \(\bar{u} \). Since its level sets are balls, in (1.10) the equal sign holds, and (1.8) becomes:

\[-\frac{d}{dt} \int_{\{x \in \Omega: \bar{u}(x) > t\}} |D\bar{u}| \, dx = n \, c_n^{1/n} \mu(t)^{1-1/n} \]

Hence:

\[\int_{\Omega} |D\bar{u}|^2 \, dx = \left(n \, c_n^{1/n} \right)^2 \int_0^{\infty} \frac{\mu(t)^{2-2n}}{\mu(t)} \, dt. \] \hspace{1cm} (1.12)

From (1.11)-(1.12) it follows estimate (1.6).

Now we are interested in discussing sufficient conditions in order that (1.5) holds. In the following the function \(u \) is still supposed nonnegative and Lipschitz in \(\overline{\Omega} \).

(i) If \(u = 0 \) on \(\partial\Omega \), we obtain Polya-Szego's theorem, since:

\[P_\Omega \left\{ x \in \Omega: u(x) > t \right\} = P \left\{ x: u(x) > t \right\} \geq n \, c_n^{1/n} \mu(t)^{1-1/n}, \]

by the isoperimetric inequality in \(\mathbb{R}^n \). So \(\gamma = n \, c_n^{1/n} \), and (1.6) holds with constant equal to 1.

(ii) Suppose that: \(\text{support of } u \leq \frac{\|\Omega\|}{2} \). The relative isoperimetric inequality of \(\Omega \) says that:

\[Q \cdot P_\Omega(E) \geq \min \left(|E|, \frac{\|\Omega\|}{2} - |E| \right)^{1/n} \] \hspace{1cm} (1.13)

for some constant \(Q > 0 \), any measurable set \(E \subseteq \Omega \). (Such an inequality certainly holds if \(\Omega \) is Lipschitz). Then:

\[P_\Omega \left\{ x \in \Omega: u(x) > t \right\} \geq Q^{-1} \mu(t)^{1-1/n}, \] \hspace{1cm} (1.14)

and (1.5) holds with \(\gamma = Q^{-1} \).

(iii) More generally, suppose that:

\[\left| \left\{ x \in \Omega: u(x) = 0 \right\} \right| = \epsilon \]

with \(0 < \epsilon < \frac{\|\Omega\|}{2} \). Fix \(t > 0 \). If \(\mu(t) \leq \frac{\|\Omega\|}{2} \), (1.14) still holds. Otherwise, from (1.13) we get:

\[Q \cdot P_\Omega \left\{ x \in \Omega: u(x) > t \right\} \geq \left(\frac{\|\Omega\|}{2} - \mu(t) \right)^{1-1/n} \geq \left[\alpha \mu(t) \right]^{1-1/n} \]

with \(\alpha = \frac{\epsilon}{\|\Omega\| - \epsilon} \). Hence (1.5) holds with:

\[\gamma = Q^{-1} \alpha^{1-1/n} = Q^{-1} \left(\frac{\epsilon}{\|\Omega\| - \epsilon} \right)^{1-1/n} \]

and (1.6) holds with constant:

\[\left(\frac{Q \, n \, c_n^{1/n}}{\alpha^{1-1/n}} \right)^2. \]

(iv) Now, suppose that:

\[H_{n-1} \left\{ x \in \partial\Omega: u(x) = 0 \right\} = \epsilon > 0. \]

We also suppose that \(\Omega \) satisfies the following geometric property (this already appears in [10]):

\[H_{n-1} \left(\partial E \cap \partial \Omega \right) \leq C \cdot P_\Omega(E) \] \hspace{1cm} (1.15)
for some positive constant \(c \), for any measurable \(E \subseteq \Omega \) such that \(|E| \leq \frac{|\Omega|}{2} \). (If \(\Omega \) is Lipschitz, (1.15) actually holds).

Fix \(t > 0 \). Again, we consider the case \(\mu(t) > \frac{|\Omega|}{2} \); then, by (1.15):

\[
H_{n-1}\left(\partial \left\{ x \in \Omega : u(x) \leq t \right\} \right) \cap \partial \Omega \leq C \cdot \mathcal{P}_\Omega \left\{ x \in \Omega : u(x) \leq t \right\}.
\]

Hence:

\[
\mathcal{P}_\Omega \left\{ x \in \Omega : u(x) > t \right\} = \mathcal{P}_\Omega \left\{ x \in \Omega : u(x) \leq t \right\}
\geq \frac{1}{\varepsilon} H_{n-1}\left(\partial \left\{ x \in \Omega : u(x) \leq t \right\} \right) \cap \partial \Omega \geq \frac{1}{\varepsilon} H_{n-1}\left\{ x \in \partial \Omega : u(x) = 0 \right\} = \varepsilon \geq \varepsilon \left(\frac{\mu(t)}{|\Omega|} \right)^{\frac{1}{1-1/n}}.
\]

So (1.5) holds with:

\[
\gamma = \min \left(Q^{-1}, \frac{\varepsilon}{c^{1/n}} \right)
\]

and (1.6) holds with constant:

\[
\max \left\{ \left(Q \cdot c^{1/n} \right), \left(\frac{Q \cdot c^{1/n} |\Omega|^{1-1/n}}{\varepsilon} \right) \right\}^2.
\]

Note that:

\[
\frac{nc^{1/n} |\Omega|^{1-1/n}}{\varepsilon} \leq \frac{H_{n-1}(\partial \Omega)}{\varepsilon},
\]

which is a more expressive ratio.

(v) Suppose that \(E = \left\{ x \in \Omega : u(x) = 0 \right\} \) is such that its projection on at least one hyperplane has positive \((n - 1)\)-dimensional Hausdorff measure, in symbols:

\[
H_{n-1}\left(\Pi(E) \right) = \epsilon > 0 \text{ for some projection } \Pi.
\]

For any \(t > 0 \), the set \(A = \{ u \leq t \} \) contains \(E \), so:

\[
\mathcal{P}(A) = H_{n-1}(\partial A) \geq H_{n-1}\left(\Pi(A) \right) \geq H_{n-1}\left(\Pi(E) \right) = \epsilon.
\]

Now, if \(\mu(t) > \frac{|\Omega|}{2} \), one has:

\[
\mathcal{C} \cdot \mathcal{P}_\Omega \{ u > t \} \geq H_{n-1}\left(\partial \left\{ u \leq t \right\} \right) \cap \partial \Omega).
\]

Hence:

\[
\mathcal{P}_\Omega \{ u > t \} \geq \frac{1}{\epsilon^{1/n}} \mathcal{P}\{ u \leq t \} \geq \frac{\epsilon^{1/n}}{\epsilon^{1/n}} \geq \frac{\epsilon^{1/n}}{\epsilon^{1/n} \mu(t)^{1/n}} \quad \frac{\mu(t)^{1/n}}{\mu(t)^{1/n}}
\]

So (1.5) holds with:

\[
\gamma = \min \left(Q^{-1}, \frac{\epsilon}{(c^{1/n})^{1-1/n}} \right).
\]

Now we state separately the results obtained from (iii)-(iv)-(v).

Theorem 1.2. Let \(\Omega \) be a bounded Lipschitz domain in \(\mathbb{R}^n \), \(n \geq 2 \); let \(u \in H^{1,2}(\Omega) \), \(u \geq 0 \) in \(\Omega \), and suppose that \(\text{support of } u = |\Omega| - \epsilon \) for some \(\epsilon > 0 \). Then \(\tilde{u} \in H^{1,2}_0(\Omega) \) and:

\[
\int_\Omega |D \tilde{u}|^2 \, dx \leq L^2 \int_\Omega |Du|^2 \, dx \quad (1.16)
\]

with \(L = \left(\frac{Q \cdot c^{1/n}}{\varepsilon} \right) \), where \(Q \) is as in (1.13) and: \(\alpha = \frac{\epsilon}{|\Omega|^{1/n}} \) if \(\epsilon \leq \frac{|\Omega|}{2} \); \(\alpha = 1 \) otherwise.
Theorem 1.3. Let \(\Omega \) be as above, let \(u \geq 0, u \in \mathcal{H} \), where \(\mathcal{H} \) is the closure in \(H^{1,2} \)-norm of the space:

\[
\mathcal{H} = \{ \varphi \in \text{Lip}(\Omega) : \text{supp} \varphi \cap F = \emptyset \}
\]

and \(F \) is a fixed closed subset of \(\partial \Omega \) with \(H_{n-1}(F) = \epsilon > 0 \). Then \(\bar{u} \in H^{1,2}_0(\Omega) \) and (1.16) holds with:

\[
L = \max \left\{ \left(Q n c_n^{1/n} \right), \left(\frac{(C + 1) n c_n^{1/n} \| \Omega \|^{-1/n}}{\epsilon} \right) \right\}
\]

(1.17)

and \(C \) as in (1.15).

Theorem 1.4. Let \(\Omega \) be as above, let \(u \geq 0, u \in \mathcal{H} \), where \(\mathcal{H} \) is the closure in \(H^{1,2} \)-norm of the space:

\[
\mathcal{H} = \{ \varphi \in \text{Lip}(\Omega) : \text{supp} \varphi \subseteq \Omega \setminus F \}
\]

where \(F \) is a closed subset of \(\Omega \) with the property stated in (\(\nu \)). Then \(\bar{u} \in H^{1,2}_0(\Omega) \) and (1.16) holds with:

\[
L = \max \left\{ \left(Q n c_n^{1/n} \right), \left(\frac{(C + 1) n c_n^{1/n} \| \Omega \|^{-1/n}}{\epsilon} \right) \right\}
\]

Remark 1.5. We note that the spaces \(\mathcal{H} \) defined in thms. 1.3-1.4 are properly contained in \(H^{1,2}(\Omega) \) whenever \(F \) has positive capacity. This is the case, in particular, if \(F \) has positive \((n-1)\)-measure. Moreover, if \(F \) has (positive and) finite \((n-1)\)-measure and is a regular set in the sense of geometric measure theory (that is a.e. \((H_{n-1}) \) point of \(F \) is a density point in sense \(H \)) then property (\(\nu \)) is certainly satisfied. (See \([5]\), p.87).

Proof of theorem 1.2. If \(u \in H^{1,2}(\Omega), u \geq 0 \) and \(\Omega \) is Lipschitz, \(u \) may be approximated in \(H^{1,2} \)-norm with smooth functions \(u_n \) in \(\Omega \). (See \([1]\), thm. 3.18). Moreover, if the support of \(u \) has measure \(\| \Omega \| - \epsilon \), then for any \(\epsilon_1 \in (0,\epsilon) \{u_n\} \) can be chosen such that:

\[
|\{x \in \Omega : u_n(x) = 0\}| \geq \epsilon_1.
\]

Hence, for every \(m, u_n \) satisfies (1.16) (with \(\epsilon \) replaced by \(\epsilon_1 \)), so that \(\{u_n\} \) is a bounded sequence in \(H^{1,2}_0(\Omega) \). Let \(\bar{u}_n \) be a subsequence converging to some \(v \in H^{1,2}_0(\Omega) \) weakly in \(H^{1,2} \) and strongly in \(L^2 \). By [3], \(u_n \rightharpoonup u \) in \(L^2(\Omega) \) implies \(\bar{u}_n \rightharpoonup \bar{u} \) in \(L^2(\Omega) \), so \(v \equiv \bar{u} \) and \(\bar{u} \in H^{1,2}_0(\Omega) \). Then from weak convergence it follows that \(u \) satisfies (1.16) for any \(\epsilon_1 < \epsilon \), and hence for \(\epsilon, \) too.

Proof of theorem 1.3. If \(u_n \in \mathcal{H}, u_n \rightharpoonup u \) in \(H^{1,2}(\Omega) \), then \(u_n \) satisfies (1.16)-(1.17). Hence arguing as above, it follows that these hold for \(u \). Note that the condition \(\text{supp} u_n \cap F = \emptyset \) implies that \(|\text{supp} u_n| < \| \Omega \| \) and so does \(u \).

In a similar way it follows theorem 1.4. Incidentally, we note that a Sobolev embedding theorem for functions vanishing on part of the boundary can be derived from thm. 1.3:

Corollary 1.6. Let \(u \in \mathcal{H} \), where \(\mathcal{H} \) is as in theorem 1.3 or 1.4. Then the following estimate holds:

\[
\| u \|_{L^p(\Omega)} \leq \text{const.} \| D u \|_{L^{r}(\Omega)}.
\]

(1.18)

Proof. It is sufficient to prove (1.18) for \(u \geq 0 \). Then \(\bar{u} \in H^{1,2}_0(\Omega) \), so by Sobolev's embedding theorem and theorem 1.3 (or 1.4) one has:

\[
\| u \|_{L^p(\Omega)} = \| u \|_{L^p(\Omega)} \leq C \| D u \|_{L^{r}(\Omega)} \leq C \| D u \|_{L^{r}(\Omega)}
\]

2. Local integrability of \(| D u |^2 \) for \(u \in H^{1,2}(\Omega) \)

Theorem 1.2 allows us to prove the following result, which holds for \emph{any} function \(u \in H^{1,2}(\Omega) \) (even assuming negative values):

Theorem 2.1. Let \(\Omega \) be as in theorem 1.2, \(u \in H^{1,2}(\Omega) \). Then \(\bar{u} \in H^{1,2}_0(\Omega) \) and, for any \(\epsilon > 0 \), one has:
\[\int_{\tilde{\Omega}_r} |D\mu|^2 \, dx \leq c(\epsilon) \left(Q_n c_n^{1/n} \right)^2 \int_{\Omega} |Du|^2 \, dx \]

where \(\tilde{\Omega}_r \) is the sphere centred at the origin with measure \(| \Omega | - \epsilon \) and:

\[c(\epsilon) = \left(\frac{|\Omega| - \epsilon}{\epsilon} \right)^{2-2/n} \quad \text{if} \quad \frac{|\Omega|}{2} \leq |\Omega| - \epsilon, \quad c(\epsilon) = 1 \quad \text{otherwise}. \]

Moreover, \(u^* \in AC(\epsilon, | \Omega | - \epsilon) \).

Proof. Put \(h = u \left(\frac{|\Omega|}{2} \right) \), and let \(u_1, u_2 \) be the positive and negative parts of \((u - h)\). Then \(u_i \in H^{1,2}(\Omega) \), \(|\text{supp } u_i| \leq \frac{|\Omega|}{2} \) \((i = 1, 2)\). So by theorem 1.2 \(\tilde{u}_i \in H^{1,2}_0(\tilde{\Omega}) \) and:

\[\int_{\tilde{\Omega}} |D\tilde{u}_i|^2 \, dx \leq \left(Q_n c_n^{1/n} \right)^2 \int_{\Omega} |Du_i|^2 \, dx. \]

In particular, \(u^*_i \in AC(\epsilon, | \Omega | - \epsilon) \) for any \(\epsilon > 0 \). Now, noting that:

\[
(v^+)^+(s) = (v^*)^+(s) \tag{2.1}
\]
\[
(v^-)^+(s) = (v^*)^-(s) \tag{2.2}
\]

one has:

\[
(u^* - h)^+ \in AC(\epsilon, | \Omega |), \quad (u^* - h)^- \in AC(0, | \Omega | - \epsilon), \quad \text{so that:}
\]

\[u^* \in AC(\epsilon, | \Omega | - \epsilon) \quad \text{for any } \epsilon > 0. \tag{2.3} \]

Note also that:

\[
(u - h)^+ = (u - h)^+	ag{2.4}
\]

whereas the same is *not* true for the negative part. To handle the gradient of \((u - h)^-\), let us observe that, for any \(\epsilon > 0 \), one has, by (0.4):

\[
\int_{\tilde{\Omega}} |D(u - h)^-|^2 \, dx = \left(n c_n^{1/n} \right)^2 \int_{\tilde{\Omega}} \left| \frac{|\Omega| - \epsilon}{|\Omega|} \right| s^{2-2/n} \, |Du^*(s)|^2 \, ds \tag{2.5}
\]

while, by (0.4) and (2.2):

\[
\int_{\tilde{\Omega}} |D(u - h)^-|^2 \, dx = \left(n c_n^{1/n} \right)^2 \int_{\tilde{\Omega}} \left| \frac{|\Omega| - \epsilon}{|\Omega|} \right| s^{2-2/n} \, |Du^*(s)|^2 \, ds = \tag{2.6}
\]

Comparing (2.5) and (2.6) we can write:

\[
\int_{\tilde{\Omega}} |D(u - h)^-|^2 \, dx \leq \left(\frac{|\Omega| - \epsilon}{\epsilon} \right)^{2-2/n} \int_{\tilde{\Omega}} |D(u - h)^-| \, dx. \tag{2.7}
\]

Finally, we can estimate:

\[
\int_{\tilde{\Omega}} |D\mu(x)|^2 \, dx \leq \int_{\tilde{\Omega}} |D\mu(x)|^2 \, dx \leq \int_{\tilde{\Omega}} |D\mu(x)|^2 \, dx + \int_{\tilde{\Omega}} |D\mu(x)|^2 \, dx \leq b(y) \tag{2.8}, (2.7)
\]

\[
\leq \left(Q n c_n^{1/n} \right)^2 \cdot \max \left\{ 1, \left(\frac{|\Omega| - \epsilon}{\epsilon} \right)^{2-2/n} \right\} \left\{ \int_{\tilde{\Omega}} |Du_1|^2 \, dx + \int_{\tilde{\Omega}} |Du_2|^2 \, dx \right\} = \tag{2.9}
\]

\[
\left(Q n c_n^{1/n} \right)^2 \cdot \max \left\{ 1, \left(\frac{|\Omega| - \epsilon}{\epsilon} \right)^{2-2/n} \right\} \int_{\tilde{\Omega}} |Du|^2 \, dx. \]

7
So the theorem is completely proved.

From the previous theorem it follows the next estimate, giving an approximation result for rearrangements:

Corollary 2.2. Let \(\Omega \) be as above, \(u, v \in H^{1,2}(\Omega) \). Then for any \(\epsilon > 0 \) one has:

\[
\sup_{s \in (\epsilon, |\Omega| - \epsilon)} | (u^* - v^*)(s) | \leq c_1(n, Q, |\Omega|) \| u - v \|_{2} + \\
+ c_2(\epsilon, n, Q, |\Omega|) \| u - v \|_{2}^{1/2} \left\{ \| Du \|_{2} + \| Dv \|_{2} \right\}^{1/2}.
\]

In particular, if \(u_m \) is a sequence of \(H^{1,2} \) functions converging to \(u \) in \(H^{1,2}(\Omega) \), then \(u_m^* \) converges to \(u^* \) uniformly in \((\epsilon, |\Omega| - \epsilon)\) for any \(\epsilon > 0 \).

Proof. We start by noting that if \(\varphi \) is an absolutely continuous function on \([a,b]\), then:

\[
\varphi(s) = \left(u_m^*(s) - u^*(s) \right)^2
\]

for every \(s \in [a,b] \). Applying this formula to the function:

\[
\varphi(s) = \left(u_m^*(s) - u^*(s) \right)^2
\]

we have, by Hölder's inequality:

\[
\left(u_m^*(s) - u^*(s) \right)^2 \leq \frac{1}{|\Omega| - 2\epsilon} \int_\Omega |u_m^*(\sigma) - u^*(\sigma)|^2 \, d\sigma + \\
+ 2 \left(\int_\Omega |u_m^*(\sigma) - u^*(\sigma)| \, d\sigma \right)^{1/2} \left(\int_\Omega |\varphi'(\sigma)| \, d\sigma \right)^{1/2} \\
\equiv A_m + 2B_m C_m.
\]

Now:

\[
A_m \leq \frac{1}{|\Omega| - 2\epsilon} \| u_m - u \|_{2}^{2}
\]

and:

\[
B_m \leq \epsilon^{-1+1/n} \| u_m - u \|_{2},
\]

while:

\[
C_m \leq \left(\int_\Omega |u_m^*(\sigma) - u^*(\sigma)| \, d\sigma \right)^{1/2} \left(\int_\Omega |\varphi'(\sigma)| \, d\sigma \right)^{1/2} \\
= \left(\int_\Omega |D u_m| \, d\sigma \right)^{1/2} \left(\int_\Omega |D u| \, d\sigma \right)^{1/2} \leq (by thm. 2.1) \\
\leq c(n, Q, |\Omega|) \left\{ \| D u_m \|_{2} + \| D u \|_{2} \right\}.
\]

Collecting (2.8), (2.9), (2.10), (2.11) one gets the result.

3. Extension to Orlicz-Sobolev spaces

Let \(A: [0, +\infty) \rightarrow [0, +\infty) \) be an "N-function" (see [7]), that is \(A \) is an increasing continuous convex function, such that:

\[
\lim_{t \to 0} \frac{A(t)}{t} = 0; \quad \lim_{t \to +\infty} \frac{A(t)}{t} = +\infty.
\]

By Jensen's inequality, we can repeat the proof of theorem 1.1 and obtain, under the same assumptions:

\[
\int_\Omega \ A(|Du(x)|) \, dx \geq \int_0^{+\infty} A \left(\frac{\gamma(t)}{\mu(t)} \right) (- \mu(t)) \, dt
\]

and:

\[
\int_\Omega \ A(|D\bar{u}(x)|) \, dx = \int_0^{+\infty} A \left(\frac{\alpha(t)}{\mu(t)} \right) (- \mu(t)) \, dt
\]

We can rewrite (3.1)-(3.2) replacing \(A(t) \) with \(A(\lambda t) \) for any fixed \(\lambda > 0 \).
Then, choosing $\lambda_0 = \frac{n \epsilon^{1/n}}{\gamma}$ we get:

$$\int_\Omega A(\frac{|Du|}{\lambda_0}) \, dx \leq \int_\Omega A(\frac{|Du|}{\gamma}) \, dx. \quad (3.3)$$

Now, recall that the natural norm in the Orlicz space:

$$L^*_A(\Omega) \equiv \left\{ u: \Omega \to \mathbb{R}, u \text{ measurable such that } \int_\Omega A(\frac{|u|}{\lambda}) \, dx < +\infty \text{ for some } \lambda > 0 \right\}$$

is: $\| u \|_A \equiv \inf \left\{ \lambda > 0 : \int_\Omega A(\frac{|u|}{\lambda}) \, dx \leq 1 \right\}$.

Rewriting again (3.3) with $A(r)$ replaced by $A(\frac{r}{\gamma})$, and choosing $\lambda = \| Du \|_A$ we get:

$$\int_\Omega A(\frac{|Du|}{\lambda}) \, dx \leq 1. \text{ Hence:}$$

$$\| Du \|_{L^*_A(\Omega)} \leq \left(\frac{n \epsilon^{1/n}}{\gamma} \right) \| Du \|_{L^*_A(\Omega)}. \quad (3.4)$$

So we have proved the following:

Theorem 3.1. Let Ω and A be as above, let u be a nonnegative Lipschitz function in Ω, such that one of the following holds:

(i) $u = 0$ in $E \subseteq \Omega$ with $\| E \| = \epsilon > 0$

(ii) $u = 0$ in $F \subseteq \partial \Omega$ with $H_{n-1}(F) = \epsilon > 0$

(iii) $u = 0$ in $G \subseteq \Omega$ with $H_{n-1}(\Pi(G)) = \epsilon > 0$ for some projection Π (see section 1).

Then $u \in \text{Lip}(\Omega)$ and (3.4) holds, with γ possibly depending on $n, C, Q, |\Omega|, \epsilon$.

Remark 3.2. We did not state the previous theorem for $u \in H^1L^*_A(\Omega)$ because to apply a limit process as in the proof of theorems (1.2)-(1.3)-(1.4) we have to know that a bounded sequence in $H^1L^*_A(\Omega)$ has a weakly converging subsequence. This cannot be assured without further assumptions on A. To discuss this fact, we recall some results from the theory of Orlicz-Sobolev spaces. (See [1]).

We say that A satisfies a "global Δ_2-condition" if:

$$A(2t) \leq \delta A(t) \text{ for some } \delta > 0, \text{ any } t > 0. \quad (3.5)$$

We say that A satisfies a "Δ_2-condition near infinity" if (3.5) holds only for any $t \geq t_0$, for some $t_0 > 0$. We say that (A,Ω) is Δ-regular if: A satisfies a global Δ_2-condition, or: A satisfies a Δ_2-condition near infinity and $|\Omega| < +\infty$. If (A,Ω) is Δ-regular, then $L^*_A(\Omega)$ and $H^1L^*_A(\Omega)$ are reflexive spaces; if Ω is Lipschitz then $C^\infty(\Omega)$ is dense in $H^1L^*_A(\Omega)$; if $|\Omega| < +\infty$ then $L^*_A(\Omega)$ is continuously embedded in $L^1(\Omega)$. Using these facts one can repeat the proofs of theorems (1.2)-(1.3)-(1.4) to get the following:

Theorem 3.3. Let Ω, A be as above. Suppose that A satisfies a Δ_2-condition near infinity, and let u satisfy the assumptions of one of theorems 1.2, 1.3, 1.4, with $H^{1,2}(\Omega)$ replaced by $H^1L^*_A(\Omega)$. Then $u \in H^{1,2}_0L^*_A(\Omega)$ and (3.4) holds, with γ possibly depending on $n, C, Q, |\Omega|, \epsilon$.

Example. An example of Orlicz-Sobolev space which does not reduce to a standard Sobolev space and satisfies the previous theorem is the one defined by $A(r) = r^p \log(1 + r)$ with $p \geq 1$.

Now we are interested in stating an analogue of theorem 2.1 for Orlicz-Sobolev spaces. We first consider the case of a Lipschitz function u. The analogue of formula (0.4) is:

$$\int_\Omega A(|Du(x)|) \, dx = \int_0^{[\Pi]} A \left(n c_n^{1/n} |Du^*(s)| s^{1-1/n} \right) ds.$$

Arguing as in section 2 one gets:

$$\int_\Omega A \left(|D(u - h)| \right) \, dx = \int_{[\Pi]-\epsilon}^{[\Pi]} A \left(n c_n^{1/n} |Du^*(s)| s^{1-1/n} \right) ds \quad (3.6)$$
\[
\int_{\Omega} \mathcal{A} \left(\left| D(u - h) - \right| \right) \, dx = \int_{\frac{1}{\epsilon} \Omega} \mathcal{A} \left(n c_n^{1/n} \left| Du^+ (s) \right| \left(\left| \Omega \right| - s \right)^{-1/n} \right) \, ds. \tag{3.7}
\]

Comparing (3.6)-(3.7) one can write:

\[
\int_{\Omega} \mathcal{A} \left(\frac{|D(u - h)|}{\lambda} \right) \, dx \leq \int_{\Omega} \mathcal{A} \left(\left| D(u - h) - \right| \right) \, dx \tag{3.8}
\]

with \(\lambda = \left(\frac{|\Omega|}{c_n} \right)^{1/n} \) (we take \(\epsilon < \frac{|\Omega|}{c_n} \), so \(\lambda > 1 \)).

Applying (3.3) to the positive and negative parts of \((u - h) \) we get, by (3.8):

\[
\int_{\Omega} \mathcal{A} \left(\frac{|D(u - h)|}{\lambda} \right) \, dx = \int_{\Omega} \mathcal{A} \left(\frac{|D(u - h)|}{\lambda} \right) \, dx \leq \int_{\Omega} \left\{ \mathcal{A} \left(\left| D(u - h) \right| \right) + \mathcal{A} \left(\left| D(u - h)^- \right| \right) \right\} \, dx \leq \int_{\Omega} \left\{ 2 \lambda_0 \left| D(u - h)^- \right| \right\} \, dx = \int_{\Omega} \mathcal{A} (\lambda_0 \left| Du \right|) \, dx \quad \text{with} \quad \lambda_0 = Q n c_n^{1/n}.
\]

Again, rewriting the previous inequality for \(\mathcal{A}(\frac{x}{p}) \) instead of \(\mathcal{A}(x) \) and choosing \(\rho = \lambda_0 \| Du \|_{\mathcal{A}} \) we find:

\[
\| Du \|_{\mathcal{L}_{\mathcal{A}}(\tilde{\Omega})} \leq \left(Q n c_n^{1/n} \right) \left(\frac{|\Omega|}{\epsilon} \right)^{1/n-1} \| Du \|_{\mathcal{L}_{\mathcal{A}}(\Omega)} \tag{3.9}
\]

for every \(\epsilon \in (0, \frac{|\Omega|}{c_n}) \).

This holds for every Lipschitz function \(u \) defined in \(\Omega \). From this fact we get, by approximation with smooth functions:

Theorem 3.4. Let \(\Omega, A \) be as in theorem 3.3. If \(u \in H^1 \mathcal{L}_{\mathcal{A}}(\Omega) \) then \(\tilde{u} \in H^1_{\text{loc}} \mathcal{L}_{\mathcal{A}}(\Omega) \) and (3.9) holds. Moreover, \(u^+ \in AC_{\text{loc}}(\epsilon, |\Omega| - \epsilon) \) for every \(\epsilon > 0 \).

References

[1] Adams. Sobolev spaces. Academic Press, 1975.
[2] Bramanti. Symmetrization in parabolic Neumann problems. Applicable Analysis, 40, n.1 (1991), 21-39.
[3] Chiti. Rearrangements of functions and convergence in Orlicz spaces, Applicable Analysis, 9 (1979), 23-27.
[4] De Giorgi. Su una teoria generale della misura (r - 1)-dimensionale in uno spazio a r dimensioni. Annali di Mat., IV 36 (1954), 191-213.
[5] Falconer. Fractal geometry. John Wiley & Sons, 1990, Chichester.
[6] Kawohl. Rearrangements and convexity of level sets in PDE. Lecture notes in Mathamatics, 1150. Springer-Verlag.
[7] Krasnosel'skii-Rutickii. Convex functions and Orlicz spaces. 1961 Noordhoff Ltd. - Groningen - The Netherlands.
[8] Lions-Pacella-Tricarico. Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions. Indiana University Mathematics Journal, vol. 37, No. 2 (1988).
[9] Maderna-Salsa. Symmetrization in Neumann problems, Applicable Analysis, 9 (1979), 247-256.
[10] Maderna-Salsa. A priori bounds for nonlinear Neumann problems. Bollettino U.M.I. (5), 16-B (1979) 1144-1153.
[11] Talenti. Best constants in Sobolev inequalities, Annali Mat. Pura e Appl., 110, (1976), 353-372.
[12] Talenti. Elliptic equations and rearrangements. Ann. Sc. Norm. Sup. Pisa, 3 (1976), 697-718.

[13] Pacella-Tricarico. Symmetrization for a class of elliptic equations with mixed boundary conditions. Atti Sem. Mat. Fis. Univ. Modena, 24 (1985-86), 75-94.