Analysis of soil-structure interaction in buildings with deep foundation

Análises de interação solo-estrutura em edifícios com fundação profunda

Abstract

In this paper it is presented how the influence of soil-structure interaction (SSI) interferes on reinforced concrete structures in small buildings with deep foundations, with the objective of analyzing the influence of SSI on the loads and repressions, global stability and costs of materials. The analysis were based on numerical-computational simulations of a commercial building using CAD/TQS commercial software. The building was simulated with 4, 6 and 8 floors with 3 different profiles of soils, generating 8 case studies. When considering SSI, the loads and repressions did not present significant variations and the parameters of global instability were within the normative recommendations. Among the variables analyzed, the material cost of the structure was the least affected item with the SSI consideration.

Keywords: drilled pile, reinforced concrete, group effect, global stability.

Resumo

Neste artigo é apresentado como a influência da interação solo-estrutura (ISE) interfere nas estruturas de concreto armado em edifícios de pequeno porte com fundações profundas, com o objetivo de analisar a influência da ISE nas cargas e recalques de pilares, estabilidade global e custos dos materiais. As análises basearam-se em simulações numérico-computacional de uma edificação comercial com o emprego do software comercial CAD/TQS. O edifício foi simulado com 4, 6 e 8 pavimentos com 3 perfis diferentes de solos, gerando 8 estudos de casos. Quando considerada a ISE, as cargas e recalques não apresentaram variações significativas e os parâmetros de instabilidade global ficaram dentro das recomendações normativas. Dentre as variáveis analisadas, o custo dos materiais da estrutura foi o item menos afetado com a consideração da ISE.

Palavras-chave: estacas escavadas, concreto armado, efeito de grupo, estabilidade global.
1. Introdução

Segundo a NBR 6122 da Associação Brasileira de Normas Técnicas [1], interação solo-estrutura é o mecanismo de análise estrutural que considera a deformabilidade das fundações juntamente com a superestrutura.

Conforme Kausel [2], os estudos sobre Interação Solo-Estrutura (ISE) se desenvolveram gradualmente nas primeiras décadas da primeira metade do século XX e na segunda metade do mesmo século progrediu rapidamente pelo estímulo de obras offshore e nucleares, com análises realizadas por meio do método dos elementos finitos e computadores de melhor desempenho com o objetivo de melhorar a segurança sísmica.

No Brasil, estudos da ISE em fundações superficiais contemplam o maior número de pesquisas sobre o assunto e, também, foram as primeiras a serem realizadas. Por exemplo, ao prescrever que Iwamoto [3], Antoniazzi et al. [4] e Pavan et al. [5] desenvolveram estudos de ISE em fundações por sapatas, Lima et al. [6] com fundações em radiers e, ainda, Rosa et al. [7] em fundações mistas. Trabalhos envolvendo fundações profundas são em menor número e foram desenvolvidos somente nos últimos 15 anos. Esse tipo de fundação apresenta maior complexidade de simulação numérica-computacional e foi pesquisada, por exemplo, por Savaris et al. [8], Mota [9] e Borges [10].

Internacionalmente as pesquisas sobre ISE tem se concentrado nos aspectos dinâmicos, conforme Schepers [11], Restrepo e Jaramillo [12], Papadopoulos et al. [13] e Carbonari et al. [14]. Segundo Gusmão [15], na maioria dos projetos estruturais, a ISE não é considerada, ou seja, os pilares das edificações são tratados como tendo seus apoios considerados desílocáveis. Tal fato foi constatado em pesquisa nacional feita com profissionais que elaboram projetos de obras de arte, industriais e de edificações, em que apenas 3% levam em consideração a ISE regularmente. Venanzi, Salciarini e Tamagnini [16] também relatam que edifícios destruturais são frequentemente projetados sem a consideração da ISE em situações envolvendo análise dinâmica.

Além de ser interdisciplinar, os principais motivos para a não consideração da ISE em projetos se deve ao pouco tempo hábil para simulações computacionais no âmbito de projeto e, também, ser de difícil simulação numérica. Torna-se, portanto, importante que sejam desenvolvidas pesquisas que demonstrem o comportamento de estruturas de diferentes portes, com diferentes tipos de fundações, quando considerada a ISE. Isso é reforçado pelo fato da transição da maioria dos projetos estruturais, a ISE não sendo considerada, ou seja, os pilares das edificações são tratados como tendo seus apoios considerados desílocáveis. Tal fato foi constatado em pesquisa nacional feita com profissionais que elaboram projetos de obras de arte, industriais e de edificações, em que apenas 3% levam em consideração a ISE regularmente. Venanzi, Salciarini e Tamagnini [16] também relatam que edifícios destruturais são frequentemente projetados sem a consideração da ISE em situações envolvendo análise dinâmica.

Além de ser interdisciplinar, os principais motivos para a não consideração da ISE em projetos se deve ao pouco tempo hábil para simulações computacionais no âmbito de projeto e, também, ser de difícil simulação numérica. Torna-se, portanto, importante que sejam desenvolvidas pesquisas que demonstrem o comportamento de estruturas de diferentes portes, com diferentes tipos de fundações, quando considerada a ISE. Isso é reforçado pelo fato da transição da maioria dos projetos estruturais, a ISE não sendo considerada, ou seja, os pilares das edificações são tratados como tendo seus apoios considerados desílocáveis. Tal fato foi constatado em pesquisa nacional feita com profissionais que elaboram projetos de obras de arte, industriais e de edificações, em que apenas 3% levam em consideração a ISE regularmente. Venanzi, Salciarini e Tamagnini [16] também relatam que edifícios destruturais são frequentemente projetados sem a consideração da ISE em situações envolvendo análise dinâmica.

2. Procedimentos metodológicos

2.1 Análise do maciço de solo e carga admissível das estacas escavadas

Para a caracterização do solo argiloso residual de basalto, pertencente à formação geológica Serra Geral, na região da Bacia do Paraná, que abrange parte no Norte do Rio Grande do Sul, mais da metade de Santa Catarina e Sul e Sudoeste do Paraná, foram estudadas 215 campanhas de sondagem de simples reconhecimento, fornecidas por uma empresa especializada em ensaios SPT (Standard Penetration Test), totalizando 816 furos. O objetivo dessa coleta foi qualificar o solo desta região com cunho probabilístico ou inferencial, em torno de uma média, obtendo-se três perfis de solo para dimensionamento de estacas com pequena, média e alta capacidade de carga. As características geotécnicas analisadas foram o índice de resistência à penetração (NSPT) a cada metro, as profundidades do lençol freático e do impenetrável. Utilizaram-se nesta análise somente sondagens que caracterizassem o uso de fundações profundas, ou seja, com diversas camadas de solo argiloso, característica comum da região em estudo, e com o impenetrável à percussão em profundidade maior que 20 m. A infraestrutura adotada foi composta por blocos de coroamento e estacas escavadas por trato mecânico. Para a determinação da...
capacidade de carga das estacas, foi utilizado o método de Aoki e Velloso [25] e fixou-se a tensão máxima de compressão das estacas em valores menores que 5 MPa, critério este para evitar o uso de armaduras ao longo do fuste das estacas. A armadura usual utilizada no topo das estacas, para a transmissão das cargas e ligação com o bloco de coroamento, foi considerada igual em todas as análises realizadas e, portanto, não foi considerada como elemento de comparação de custos.

O comprimento máximo das estacas foi limitado a 20 m. O critério para a definição do diâmetro da estaca foi estabelecido considerando a mais solicitada em cada bloco de coroamento no estado limite último, de modo que a carga característica atuante fosse no

Figura 1
Edifício comercial com 4, 6 e 8 pavimentos
máximo 10% maior do que a carga admissível. Esse procedimento foi adotado para evitar o superdimensionamento das estacas, um vez que os valores dos diâmetros empregados foram múltiplos de 10 cm.

2.2 Análise da superestrutura e fundações

A estrutura analisada foi um exemplo de um edifício de uso comercial, com planta retangular (Figura 1), onde foram realizadas análises com 4, 6 e 8 pavimentos. A classe do concreto utilizada para pilares, vigas e lajes foi a C25. O concreto utilizado para os blocos de coroamento foi o de classe C25 e para as estacas o C20.

Nas situações em que aconteceram interferências entre os blocos de coroamento ou que o espaçamento entre o eixo das estacas foram menores que 3 vezes o seu diâmetro não foram consideradas nas análises.

Para a superestrutura, os únicos elementos que tiveram suas dimensões modificadas, em função do número de pavimentos, foram os pilares. As dimensões dos pilares em cada uma das três situações analisadas são apresentados na Tabela 1.

Como o uso da edificação foi comercial a carga acidental considerada foi de 0,30 kN/m² e a carga de revestimento foi de 0,15 kN/m². Os parâmetros para a consideração dos esforços do vento na estrutura estão apresentados na Tabela 2.

A simulação computacional consistiu na comparação dos modelos estruturais tendo seus pilares apoiados em fundações indeslocáveis (sem ISE) com seus pilares apoiados em fundações flexíveis, tanto de rotação como translação (com ISE). Para o procedimento descrito, foi utilizado o software CAD/TQS com o módulo SISEs. As vigas e pilares foram simulados como elementos de barra, formando pórticos espaciais. As lajes foram simuladas como grelhas constituídas de elementos de barras. O efeito de diafragma rígido representado pela laje no pórtico espacial foi considerado de forma simplificada, através do aumento da inércia lateral das vigas. Os blocos foram definidos como elementos rígidos e as estacas como elementos de barras ligadas a molas, que representam o maciço de solo.

Para a superestrutura foi dimensionada com a simulação sem ISE, tendo seus apoios indeslocáveis, de onde foram extraídas as cargas nas fundações no estado limite último. Com as cargas nas fundações definidas, foram dimensionados as estacas e os blocos de coroamento.

Tabela 1

Dimensão dos pilares da superestrutura

Pilar	Dimensão dos pilares dosedifícios de 4 pavimentos (cm)	Dimensão dos pilares dosedifícios de 6 pavimentos (cm)	Dimensão dos pilares dosedifícios de 8 pavimentos (cm)
1	20 x 20	25 x 25	25 x 25
2	30 x 25	30 x 30	30 x 30
3	30 x 25	30 x 30	30 x 30
4	20 x 20	25 x 25	25 x 25
5	25 x 25	30 x 25	30 x 30
6	45 x 30	55 x 30	65 x 35
7	40 x 30	55 x 30	65 x 35
8	25 x 25	30 x 25	30 x 30
9	25 x 25	30 x 25	30 x 30
10	30 x 45	30 x 55	35 x 65
11	30 x 45	30 x 55	35 x 65
12	25 x 25	30 x 25	30 x 30
13	25 x 25	30 x 25	30 x 30
14	45 x 30	55 x 30	65 x 35
15	45 x 30	55 x 30	65 x 35
16	25 x 25	30 x 25	30 x 30
17	20 x 20	25 x 25	25 x 25
18	30 x 25	40 x 35	40 x 30
19	20 x 20	25 x 25	25 x 25

Tabela 2

Parâmetros para carregamento de vento

Velocidade básica Vo	Fator do terreno S1	Categoria de rugosidade S2	Fator estatístico S3	Classe da edificação
45 m/s	1	IV	1	B

Fonte: Adaptado de Penna [27]

Descrição do tipo de solo	Valores típicos (KN/m²)
Argila mofo (SPT ≤ 2)	1000
Argila mofo (SPT 2 a 5)	2000
Argila média (SPT 6 a 10)	5000
Argila rija (SPT 11 a 19)	8000
Argila dura (SPT > 19)	15000
Para a simulação com ISE, foram seguidos os seguintes passos:
a) Com a superestrutura e suas fundações definidas, foram obtidas as reações com e sem vento para a estrutura calculada com seus apoios indeslocáveis;
b) Com as cargas do caso de carregamento sem vento, foram calculados os recalques (deslocamentos na ponta da estaca mais o encantamento elástico do fuste da estaca), considerando os efeitos de grupo. Os recalques nas pontas das estacas foram calculados pelo método de Aoki e Lopes [26]. Calcularam-se as rigidezes equivalentes, dividindo as forças (reações de apoio) aplicadas pelos respectivos recalques. Os parâmetros utilizados foram o módulo de deformabilidade (Tabela 3) e o coeficiente de Poisson (Tabela 4);
c) Procedeu-se o redimensionamento da estrutura, com as estacas devidamente discretizadas até a base com os Coeficientes de Reações Verticais (CRV’s) e Coeficientes de Reações Horizontais (CRH’s) através de vínculos elásticos conforme ilustrado na Figura 2.

Na extração dos resultados das análises realizadas, o software forneceu automaticamente as cargas nas fundações, parâmetros de estabilidade global e deslocamentos horizontais no topo do edifício. Os recalques não são fornecidos de maneira automática para os casos sem ISE. Para os casos com ISE, foi realizada a leitura dos recalques dos pilares diretamente nos pórticos espaciais após o processamento do modelo integrado super x infraestrutura. Para extraírem-se os recalques dos casos sem ISE, as estruturas simuladas com ISE foram duplicadas e, posteriormente, foram excluídas todas as lajes, vigas e pilares da estrutura. O procedimento seguinte consistiu em acrescentar-se manualmente somente as cargas para o caso sem ISE nas fundações que contêm todas as estacas e blocos definidos. Nesses modelos resultaram somente as estacas e blocos com as cargas aplicadas em seu topo. O procedimento final foi o processamento dessa infraestrutura e a leitura dos recalques no sistema estrutural formado pelas estacas e blocos. Ressalta-se que a etapa descrita acima não faz parte do algoritmo do programa CAD/TQS, pois os apoios indeslocáveis não apresentam recalques.

Figura 2
Representação das estacas discretizadas
Fonte: TQS Informática [28]

Figura 3
Perfis geotécnicos

Descrição do tipo de solo	\(u \)
Argila muito mole (SPT ≤ 2)	0,24
Argila mole (SPT 2 a 5)	0,23
Argila média (SPT 6 a 10)	0,22
Argila rija (SPT 11 a 19)	0,21
Argila dura (SPT > 19)	0,21

Fonte: Adaptado de TQS Informática [28]
2.3 Análise de custos dos materiais

O dimensionamento, detalhamento e quantitativo de aço, concreto e formas das lajes, vigas, pilares e blocos foram realizados automaticamente pelo programa CAD/TQS. Para as estacas esses cálculos foram realizados manualmente. Para a composição dos custos de concreto, formas e aço, foram utilizados os dados do Sistema Nacional de Pesquisa de Custos e Índices da Construção Civil (SI-NAPI). A partir desses dados foram comparados os custos considerando os modelos com e sem ISE, quanto aos seguintes aspectos:

a) Custo do concreto, forma e aço;

b) Custo dos elementos estruturais da superestrutura;

c) Custo dos elementos estruturais da infraestrutura;

d) Custo total da superestrutura e da infraestrutura;

e) Custo global (infraestrutura mais superestrutura).

3. Resultados e discussões

3.1 Análise do solo e carga admissível das estacas

Os perfis geotécnicos médios obtidos de acordo com a metodologia descrita anteriormente, a partir das 215 campanhas de sondagem, são apresentados na Figura 3.

A Tabela 5 apresenta as cargas admissíveis das estacas em função de seus diâmetros e com seus valores majorados em 10%, juntamente com as diferenças percentuais entre os solos. O fator de segurança global utilizado foi igual a 2.

Para a estaca de diâmetro de 30 cm no perfil de sondagem 3, com 20 m de profundidade, a tensão de compressão ultrapassou o valor de 5 MPa, assim a mesma não foi utilizada no dimensionamento.

Diâmetro (cm)	Perfil de sondagem 1 (+10%)	Perfil de sondagem 2 (+10%)	Perfil de sondagem 3 (+10%)	Variação da carga admissível (%)
30	279.95	363.88	—	23.07
40	396.22	515.13	638.66	23.08
50	524.15	681.34	841.50	23.07
60	663.52	862.51	1061.61	23.07
70	814.44	1058.75	1299.99	23.08
80	976.80	1269.84	1553.75	23.08
Variação média (%)				23.07

Variação da carga admissível (%)

23.07

Tabela 6

Dados das fundações do edifício de 8 pavimentos

Perfil de sondagem 2	Dimensões do bloco L x C x H (cm)	Ø (cm)	Prof. (m)
P1	90 x 90 x 90	1 Ø 60	20
P2	310 x 100 x 120	2 Ø 70	20
P3	310 x 100 x 120	2 Ø 70	20
P4	90 x 90 x 90	1 Ø 60	20
P5	270 x 90 x 110	2 Ø 60	20
P6	310 x 310 x 160	4 Ø 70	20
P7	350 x 350 x 180	4 Ø 80	20
P8	310 x 100 x 120	2 Ø 70	20
P9	270 x 90 x 110	2 Ø 60	20
P10	310 x 310 x 160	4 Ø 70	20
P11	310 x 310 x 160	4 Ø 70	20
P12	270 x 90 x 110	2 Ø 60	20
P13	270 x 90 x 110	2 Ø 60	20
P14	350 x 350 x 180	4 Ø 80	20
P15	310 x 310 x 160	4 Ø 70	20
P16	270 x 90 x 110	2 Ø 60	20
P17	100 x 100 x 100	1 Ø 70	20
P18	350 x 110 x 140	2 Ø 80	20
P19	100 x 100 x 100	1 Ø 70	20

Perfil de sondagem 3	Dimensões do bloco L x C x H (cm)	Ø (cm)	Prof. (m)
P1	80 x 80 x 80	1 Ø 50	20
P2	270 x 90 x 120	2 Ø 60	20
P3	270 x 90 x 120	2 Ø 60	20
P4	80 x 80 x 80	1 Ø 50	20
P5	230 x 80 x 110	2 Ø 50	20
P6	270 x 270 x 150	4 Ø 60	20
P7	270 x 270 x 150	4 Ø 60	20
P8	270 x 90 x 120	2 Ø 60	20
P9	230 x 80 x 110	2 Ø 50	20
P10	270 x 270 x 150	4 Ø 60	20
P11	270 x 270 x 150	4 Ø 60	20
P12	230 x 80 x 110	2 Ø 50	20
P13	230 x 80 x 110	2 Ø 50	20
P14	310 x 310 x 160	4 Ø 70	20
P15	270 x 270 x 150	4 Ø 60	20
P16	230 x 80 x 110	2 Ø 50	20
P17	90 x 90 x 90	1 Ø 60	20
P18	310 x 100 x 120	2 Ø 70	20
P19	90 x 90 x 90	1 Ø 60	20
Tabela 7
Dados das fundações do edifício de 6 pavimentos

Perfil de sondagem 1	Perfil de sondagem 2	Perfil de sondagem 3			
Pilar	**L x C x H (cm)**	**Estacas**	**Pilar**	**L x C x H (cm)**	**Estacas**
	Ø (cm)	Prof. (m)		Ø (cm)	Prof. (m)
P1	90 x 90 x 90	1 Ø 60 20	P1	80 x 80 x 80	1 Ø 50 20
P2	310 x 100 x 120	2 Ø 70 20	P2	270 x 90 x 110	2 Ø 60 20
P3	310 x 100 x 120	2 Ø 70 20	P3	270 x 90 x 110	2 Ø 60 20
P4	90 x 90 x 90	1 Ø 60 20	P4	80 x 80 x 80	1 Ø 50 20
P5	270 x 90 x 105	2 Ø 60 20	P5	230 x 80 x 100	2 Ø 50 20
P6	310 x 310 x 165	4 Ø 70 20	P6	270 x 270 x 160	4 Ø 60 20
P7	350 x 350 x 185	4 Ø 80 20	P7	270 x 270 x 160	4 Ø 60 20
P8	270 x 90 x 105	2 Ø 60 20	P8	230 x 80 x 100	2 Ø 50 20
P9	270 x 90 x 105	2 Ø 60 20	P9	230 x 80 x 100	2 Ø 50 20
P10	310 x 310 x 165	4 Ø 70 20	P10	270 x 270 x 160	4 Ø 60 20
P11	270 x 270 x 145	4 Ø 60 20	P11	230 x 230 x 140	4 Ø 50 20
P12	270 x 90 x 105	2 Ø 60 20	P12	230 x 80 x 100	2 Ø 50 20
P13	270 x 90 x 105	2 Ø 60 20	P13	230 x 80 x 100	2 Ø 50 20
P14	350 x 350 x 185	4 Ø 80 20	P14	270 x 270 x 160	4 Ø 60 20
P15	310 x 310 x 165	4 Ø 70 20	P15	270 x 270 x 160	4 Ø 60 20
P16	270 x 90 x 105	2 Ø 60 20	P16	230 x 80 x 100	2 Ø 50 20
P17	100 x 100 x 100	1 Ø 70 20	P17	90 x 90 x 90	1 Ø 60 20
P18	350 x 110 x 140	2 Ø 80 20	P18	270 x 90 x 105	2 Ø 60 20
P19	100 x 100 x 100	1 Ø 70 20	P19	80 x 80 x 80	1 Ø 50 20

Tabela 8
Dados das fundações do edifício de 4 pavimentos

Perfil de sondagem 1	Perfil de sondagem 2	Perfil de sondagem 3			
Pilar	**L x C x H (cm)**	**Estacas**	**Pilar**	**L x C x H (cm)**	**Estacas**
	Ø (cm)	Prof. (m)		Ø (cm)	Prof. (m)
P1	70 x 70 x 70	1 Ø 40 20	P1	60 x 60 x 60	1 Ø 30 20
P2	230 x 80 x 100	2 Ø 50 20	P2	190 x 70 x 90	2 Ø 40 20
P3	230 x 80 x 100	2 Ø 50 20	P3	190 x 70 x 90	2 Ø 40 20
P4	70 x 70 x 70	1 Ø 40 20	P4	60 x 60 x 60	1 Ø 30 20
P5	230 x 80 x 100	2 Ø 50 20	P5	190 x 70 x 70	2 Ø 40 20
P6	350 x 110 x 140	4 Ø 80 20	P6	310 x 100 x 120	2 Ø 70 20
P7	390 x 120 x 150	4 Ø 90 20	P7	310 x 100 x 120	2 Ø 70 20
P8	230 x 80 x 100	2 Ø 50 20	P8	190 x 70 x 70	2 Ø 40 20
P9	190 x 70 x 70	2 Ø 40 20	P9	190 x 70 x 70	2 Ø 40 20
P10	110 x 350 x 140	2 Ø 80 20	P10	100 x 310 x 120	2 Ø 70 20
P11	100 x 340 x 140	2 Ø 80 20	P11	90 x 270 x 100	2 Ø 60 20
P12	190 x 70 x 70	2 Ø 40 20	P12	150 x 60 x 60	2 Ø 30 20
P13	190 x 70 x 70	2 Ø 40 20	P13	190 x 70 x 70	2 Ø 40 20
P14	390 x 120 x 150	2 Ø 90 20	P14	310 x 100 x 120	2 Ø 70 20
P15	350 x 110 x 140	2 Ø 80 20	P15	310 x 100 x 120	2 Ø 70 20
P16	190 x 70 x 70	2 Ø 40 20	P16	190 x 70 x 70	2 Ø 40 20
P17	80 x 80 x 80	1 Ø 50 20	P17	70 x 70 x 70	1 Ø 40 20
P18	270 x 90 x 110	2 Ø 60 20	P18	230 x 80 x 100	2 Ø 50 20
P19	80 x 80 x 80	1 Ø 50 20	P19	70 x 70 x 70	1 Ø 40 20
Análise da superestrutura e fundações

Na Tabela 6 são mostradas as dimensões dos blocos e o número de estacas, com seus respectivos diâmetros e profundidades, para o edifício de 8 pavimentos, determinados com as cargas aplicadas nas fundações resultantes da análise sem ISE. Para este número de pavimentos, quando se utilizou o Perfil 1 de sondagem, houve interferências de estacas, devido à capacidade das mesmas não ser elevada, sendo que então esta condição não foi considerada conforme explicado no item 2.2.

Na Tabela 7 são mostradas as dimensões dos blocos, número de estacas e suas respectivas profundidades, para o edifício de 8 pavimentos, determinados com as cargas aplicadas nas fundações resultantes da análise sem ISE. Para este número de pavimentos, quando se utilizou o Perfil 1 de sondagem, houve interferências de estacas, devido à capacidade das mesmas não ser elevada, sendo que então esta condição não foi considerada conforme explicado no item 2.2.

Tendência geral	Maior var. de carga (%)	Maior recalque sem ISE (mm)	Maior recalque com ISE (mm)	
8 pavimentos – perfil de sondagem 2	Yes	6,49	22,10	21,48
8 pavimentos – perfil de sondagem 3	Yes	5,55	22,43	21,53
6 pavimentos – perfil de sondagem 1	Yes	5,31	17,16	16,83
6 pavimentos – perfil de sondagem 2	Yes	5,01	17,70	17,26
6 pavimentos – perfil de sondagem 3	Yes	7,07	18,97	18,40
4 pavimentos – perfil de sondagem 1	No	3,50	11,85	11,76
4 pavimentos – perfil de sondagem 2	No	2,95	11,95	11,85
4 pavimentos – perfil de sondagem 3	No	6,75	12,61	12,73

Figura 4
Curva de recalques para o caso edifício 8 pavimentos
estacas e suas respectivas profundidades para o edifício de 6 pavimentos, dimensionados com as cargas aplicadas nas fundações resultantes da análise sem ISE. Para o edifício de 4 pavimentos, os resultados do dimensionamento dos blocos de coroamento e estacas são apresentados na Tabela 8. Na Tabela 9 é mostrado o resumo do comportamento das cargas e recalques para as simulações sem ISE e com ISE. A tendência geral, de redução das cargas e recalques dos pilares centrais e aumento nos da períferia, deixou de existir quando o número de pavimentos diminuiu. Tal fenômeno acontece para edificações relativamente baixas, pois não se formam vigas vierendeel funcionando à flexão nos primeiros pavimentos. A explicação desse fenômeno é

Figura 5
Curva de recalques para o caso edifício 6 pavimentos
dada por Crespo [23], o qual descreve o comportamento de vigas viereendeel em relação à altura da edificação.

Em geral, as maiores variações das cargas aconteceram nos edifícios com maior número de pavimentos e não tiveram alterações significativas, sendo que a maior variação foi de 7,07% conforme a Tabela 9. As variações descritas acima foram pequenas pois os edifícios analisados não tinham vigas de transição de elevada rigidez. Outro fator é que, embora utilizados 3 perfis geotécnicos diferentes, estes não apresentavam variações em planta, nos pontos de apoios dos pilares, fazendo com que os recalques não apresentassem diferenças significativas, diminuindo assim o efeito da ISE.

![Figura 6](attachment:curva_recalques.png)

Figura 6
Curva de recalques para o caso edifício 4 pavimentos
A bacia de recalques para o Edifício de 8 Pavimentos tornou-se mais suave após a consideração da ISE, tanto para o caso sem vento como o caso com vento conforme mostra a Figura 4 onde pegou-se como exemplo os pilares P18, P15, P11, P07 e P3. Percebe-se que os recalques diferenciais diminuíram após a consideração da ISE, onde os pilares centrais tiveram diminuição dos recalques e os da periferia tiveram aumento.

Analogamente ao que ocorreu com o edifício de 8 Pavimentos, constatou-se também com o edifício de 6 pavimentos conforme mostra a Figura 5 para os pilares P18, P15, P11, P07 e P3. Quanto ao edifício de 4 pavimentos, a tendência geral deixou de existir como mostra a Figura 6. Para esse edifício, os recalques tiveram um comportamento aleatório.

Quanto ao parâmetro de instabilidade, o Gama Z sempre aumentou depois de considerada a ISE. Em geral, a variação do Gama Z aumentou para solos mais resistentes e para os edifícios com menor número de pavimentos conforme a Tabela 10. A maior variação encontrada foi de 8,77%. Isso ocorre pois na consideração da ISE, os apoios deixam de ser indeslocáveis, aumentando assim os deslocamentos horizontais que influenciam diretamente no parâmetro de instabilidade global Gama Z. Entretanto, os mesmos atenderam aos limites prescritos pela NBR 6118/2014.

3.3 Custos dos materiais

A Tabela 11 apresenta a influência da ISE nos custos dos elementos estruturais da infraestrutura. A ISE não influenciou no custo das estacas, pois mesmo com as alterações das cargas, as tensões ficaram abaixo de 5 MPa. Quanto aos blocos não encontrou-se uma tendência para a variação, pois no dimensionamento desses elementos, o resultado final depende da envoltória dos esforços finais, os quais, variaram entre favoráveis e desfavoráveis, porém foram relativamente pequenas.

A Tabela 12 apresenta a influência da ISE nos custos dos elementos estruturais da superestrutura. As lajes e escadas não tiveram seus custos alterados. Quanto às vigas não encontrou-se uma tendência para a variação, pois no dimensionamento desses elementos, o resultado final depende da envoltória dos esforços finais que ora foram favoráveis e outras desfavoráveis, porém foram relativamente pequenas. Os pilares sempre tiveram seus cus-

Tabela 10

Variação do parâmetro de instabilidade Gama Z	Perfil de sondagem 1	Perfil de sondagem 2	Perfil de sondagem 3					
Sem ISE	Com ISE	Variação (%)	Sem ISE	Com ISE	Variação (%)	Sem ISE	Com ISE	Variação (%)
8 pavimentos — — — 1,19 1,24 4,20	1,19 1,25 5,04							
6 pavimentos	1,19 1,26 5,88							
4 pavimentos	1,14 1,24 8,77							

Tabela 11

| Custo dos elementos estruturais da infraestrutura e suas respectivas variações |
|-------------------------------|-----------------|------------------|
	Estacas	Blocos				
	Sem ISE	Com ISE	Var. (%)	Sem ISE	Com ISE	Var. (%)
8 pav. – perfil de sondagem 2 102514,97 102514,97 0,00 71691,34 71102,96 -0,82						
8 pav. – perfil de sondagem 3 73551,27 73551,27 0,00 51941,38 51333,72 -1,17						
6 pav. – perfil de sondagem 1 98979,81 98979,81 0,00 64739,00 64701,91 -0,06						
6 pav. – perfil de sondagem 2 66548,80 66548,80 0,00 43499,83 43614,59 0,26						
6 pav. – perfil de sondagem 3 47540,96 47540,96 0,00 31399,57 31387,60 -0,04						
4 pav. – perfil de sondagem 1 60779,13 60779,13 0,00 24963,51 25047,32 0,34						
4 pav. – perfil de sondagem 2 42202,43 42202,43 0,00 17325,35 17325,35 0,00						
4 pav. – perfil de sondagem 3 33255,06 33255,06 0,00 14584,74 14584,74 0,00						

Tabela 12

| Custo dos elementos estruturais da superestrutura e suas respectivas variações |
|-------------------------------|-----------------|------------------|
| | Custo da Infraestrutura | Custo da Superestrutura |
| | S/ ISE | C/ ISE | Var. (%) | S/ ISE | C/ ISE | Var. (%) |
| 8 pav. – perfil de sondagem 2 157802,12 157388,94 -0,26 69890,93 71102,96 -0,82 |
| 8 pav. – perfil de sondagem 3 157802,12 157388,94 -0,26 69890,93 71102,96 -0,82 |
| 6 pav. – perfil de sondagem 1 120257,41 120066,44 -0,16 41157,29 41674,71 1,26 |
| 6 pav. – perfil de sondagem 2 120257,41 120201,48 -0,05 41010,70 41105,02 0,23 |
| 6 pav. – perfil de sondagem 3 120257,41 120536,27 0,23 41072,02 41592,07 1,27 |
| 4 pav. – perfil de sondagem 1 85725,14 85601,62 -0,14 20839,41 21462,25 2,99 |
| 4 pav. – perfil de sondagem 2 85725,14 85701,48 -0,03 20772,54 20950,66 0,86 |
| 4 pav. – perfil de sondagem 3 85725,14 85819,74 0,11 20790,65 21037,68 1,19 |
tos aumentados, pois as estruturas sempre apresentaram maiores deslocamentos após a consideração da ISE, fazendo com que os esforços de segunda ordem aumentassem e, consequentemente, a quantidade de aço também.

Na Tabela 13 são mostrados os custos da infraestrutura, superestrutura e custo global. O tipo de solo não influenciou significativamente no custo da estrutura após a análise com a ISE, pois quando a resistência do solo era menor as fundações exigiram estacas e blocos com maiores dimensões, compensando assim o grau de rigidez das mesmas. A infraestrutura teve seu custo levemente diminuído em 6 dos 8 casos analisados. A infraestrutura dos edifícios tiveram seus custos diminuídos após a consideração da ISE, pois ao considerar os recalques nas fundações, os momentos fletores nas mesmas diminuíram. Por consequência, a superestrutura teve que se tornar mais rígida, absorvendo parte dos esforços que seriam transferidos para as fundações e ficaram com seus custos aumentados. Quanto à superestrutura, ela teve sempre seu custo aumentado, também com variações relativamente pequenas.

O custo global dos edifícios analisados sempre aumentou após a consideração da ISE, porém as variações foram relativamente baixas, com a maior diferença ficando 0,17%. Isso se deve ao fato de que a infraestrutura teve variações negativas e a superestrutura variações positivas, tendo-se assim uma compensação de valores.

4. Conclusões

Neste artigo foram analisados edifícios em concreto armado com fundações por estacas escavadas e blocos de coroamento gerando 8 estudos de casos com e sem a consideração da ISE. Os resultados mostraram que:

- O custo das estruturas não foi influenciado significativamente pelo tipo de solo. Ainda, de modo geral, a infraestrutura dos edifícios tiveram seus custos levemente diminuídos e o custo global apresentou um pequeno acréscimo, com variação máxima de 0,17%.

Para edifícios de pequeno porte, com fundações em estacas profundas, quando o projeto das fundações for efetuado com eficiência, os efeitos da ISE não são significativos, e podem ser considerados incluídos nas incertezas intrínsecas do processo de projeto das superestruturas e fundações, que estão consideradas nos coeficientes de segurança internos previstos na NBR 6118 e NBR 8661.

5. Agradecimentos

Os autores agradecem à Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ) pelo incentivo para a realização desse trabalho e também à TQS Informática Ltda. pelo empréstimo do software CAD/TQS.

6. Referências bibliográficas

[1] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Projeto e Execução de Fundações. - NBR 6122, Rio de Janeiro, 2010.
[2] KAUSEL, E. Early history of soil–structure interaction. Soil Dynamics and Earthquake Engineering, v.30, 2010; p. 822–832.
[3] GUSMÃO, A. D. Estudo da interação solo-estrutura e sua influência em recalques de edificações, Rio de Janeiro, 1990. Dissertação (mestrado) – Universidade Federal do Rio de Janeiro, 165 p.
[4] ANTONIAZZI, J. P.; ALVA, G. M. S.; SOARES, J. M. D. Metodologia simplificada para a construção da interação solo-estrutura em edificações com fundações em sapatas isoladas. Engenharia Estudo e Pesquisa, Santa Maria, v. 10, n. 2, p. 3-14, abr./dez. 2010.
[5] PAVAN, R. C.; COSTELLA, M. F.; GUARNIERI, G. Interação solo-estrutura para sistemas estruturais reticulados sobre fundações raras. Revista IBRACON de Estruturas e Materiais, v. 7, n. 2, 2014; p. 260-285.
[6] LIMA, A. I. C.; SILVA R. J. C.; SILVA FILHO, F. C. Influência dos recalques do radier na edificação. In: Congresso Brasileiro do Concreto CBC, 49º, Bento Gonçalves, 2007, Anais, Rio Grande do Sul, 2007.

[7] ROSA, L. M. P.; DANZIGER, B. R.; CARVALHO, E. M. L. Interação solo-estrutura: análise contemplando fluência e retração do concreto. Revista IBRACON de Estruturas e Materiais, v. 11, n. 3, 2018; p. 564-585.

[8] SAVARIS, G.; HALLAK, P. H.; MAIA, P. C. Influence of foundation settlements in load redistribution on columns in a monitoring construction – case study. Revista IBRACON de Estruturas e Materiais, v. 3, n. 3, 2010; p. 346-356.

[9] MOTA, M. M. C. Interação solo-estrutura em edifícios com fundação profunda: método numérico e resultados observados no campo, São Carlos, 2009, Tese (doutorado) – Universidade de São Paulo, 221 p.

[10] BORGES, A. C. L. Metodologia para avaliação do comportamento estrutural de edifícios altos em concreto armado com consideração da interação solo-estrutura, Recife, 2009, Tese (doutorado) – Universidade de São Paulo, 221 p.

[11] SCHEPERS, W. Fast 3D FEM-BEM coupling for dynamic soil-structure interaction. In: X International Conference on Structural Dynamics, EURODYN 2017, Berlim, 2017, Anais, Germany, 2017, p. 391-396.

[12] RESTREPO, L. R.; JARAMILLO, J. D.; Identificação de propriedades dinâmicas de estruturas considerando efeitos de interação suelo-estrutura (caso de studio). Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, v. 8, n. 2, 2008; p. 135-150.

[13] PAPADOPOULOS, M.; VAN BEEUMEN, R.; FRANÇOIS, S.; DEGRANDE, G.; LOMBART, G. Computing the modal characteristics of structures considering soil-structure interaction effects. In: X International Conference on Structural Dynamics, EURODYN 2017, Berlim, 2017, Anais, Germany, 2017, p. 391-396.

[14] CARBONARI, S.; DEZI, F.; LEONI, G. Linear soil-structure interaction of coupled wall-frame structures on pile foundations. Soil Dynamics and Earthquake Engineering. v. 31, 2011; p. 1296-1309.

[15] GUSMÃO, A. D. A interface entre a engenharia geotécnica e a estrutural. In: Encontro Nacional de Engenharia e Consultoria Estrutural, 17º, São Paulo, 2014, Anais, São Paulo, 2014.

[16] VENANZI, I.; SALCIARINI, D.; TAMAGNINI, C. The effect of soil-foundation-structure interaction on the wind-induced response of tall buildings. Engineering Structures. v. 79, 2014; p. 117-130.

[17] ROBERTO, L.; SOLA, F. Influência de la interacción dinámica suelo-estructura en la respuesta dinámica de las estructuras. Construcción y tecnología en concreto, Mayo, 2013.

[18] IWAMOTO, R. K. Alguns aspectos dos efeitos da interação solo-estrutura em edifícios de múltiplos andares com fundação profunda, São Paulo, 2000, Dissertação (mestrado) – Universidade de São Paulo, 157 p.

[19] ANTONIAZZI, J. P. Interação solo estrutura de edifícios com fundações superficiais, Santa Maria 1995, Dissertação (mestrado) - Universidade Federal de Santa Maria, 138 p.

[20] MENDES, R. S. Interação solo-estrutura e sua influência na análise estrutural de edifícios em concreto armado. Revista Especialize On-line IPOG, v. 01, Dez. 2015.

[21] JORDÃO, D. R. Estabilidade global de edifícios sobre fundações profundas, considerando a interação estrutura-solo, São Paulo, 2003, Dissertação (mestrado) - Universidade de São Paulo, 132 p.

[22] DELALIBERA, R. G. et al. Estabilidade global de edifícios de concreto armado: análise dos métodos P-Δ e yz considerando a deformabilidade da fundação. In: Congresso Brasileiro Do Concreto, 47º., 2005, Recife, Anais, São Paulo, 2005.

[23] CRESPO, V. A. S. Estudo da sensibilidade de edificações em relação ao solo, Rio de Janeiro, 2004, Dissertação (mestrado) - Universidade Estadual do Norte Fluminense Darcy Ribeiro, Goytacazes, 84 p.

[24] MEDEIROS, D. S. Análise tridimensional da interação solo-estrutura em fundações de concreto armado pelo método dos elementos finitos, Porto Alegre, 2006, Dissertação (mestrado) - Universidade Federal do Rio Grande do Sul, 171 p.

[25] AOKI, N.; VELLOSO, D. A. An approximate method to estimate the bearing capacity of piles. Proceedings, 5th Panamerican Conference on Soil Mechanics and Foundation Engineering, Buenos Aires, Argentina, v. 5, p. 367-376, 1975.

[26] AOKI, N.; LOPES, F. R. Estimating stresses and settlements due to deep foundations by the Theory of Elasticity. Proceedings, 5th Pan American CSMFE, Buenos Aires, v.1, p. 377-386, 1975.

[27] PENNA, Antônio Sérgio Damasco. Elementos estruturais de fundações: Transparências de apoio às aulas de fundações. São Paulo: Programa de Educação Continuada da Engenharia da Escola Politécnica da Universidade de São Paulo, 2004.

[28] TQS INFORMÁTICA LTDA. Manual teórico: sistema de interação solo-estrutura. São Paulo: TQS Informática Ltda, 2015.