Data S1. Supplemental Methods and Results

Mathematical description of the model

An outline of the probabilistic model used in our study is presented in Figure 1 and the Methods section in the main text. Here, we describe the model in detail using mathematical terms. Table S3 contains a list definitions used in the following formulae.

First, we defined a function to estimate the change of disability-adjusted life days (DALDs) associated with transport to the nearest comprehensive stroke center (CSC) as compared to the nearest primary stroke center (PSC) as a function of demographic, clinical, and geographic input parameters:

$$\Delta = f \left(\ldots, t, t, t \right).$$

The total change of DALDs is calculated as the weighted mean of the change of DALDs associated with transport to the nearest CSC for patients in each of the four final diagnostic categories:

$$\Delta DALD = \sum_{d \in D}(\Delta DALD_d \times p_d^{RISK}).$$

For patients with hemorrhagic stroke (HS) and stroke mimic (SM), we assumed no change of DALDs associated with transport to the nearest CSC as compared to transport to the nearest PSC:

$$\Delta DALD_{HS,SM} = 0.$$

For patients with acute ischemic stroke (AIS) without large vessel occlusion (LVO), the loss of DALDs associated with transport to the nearest CSC is calculated as:

$$\Delta DALD_{AIS\text{ without LVO}} = \left(\min \left(t^{SCS}_{IVT}, t^{max}_{IVT} \right) - \min \left(t^{PSC}_{IVT}, t^{max}_{IVT} \right) \right) \times e^{WHSS,age,sex}_{AIS\text{ without LVO}}.$$

For patients with AIS with LVO, recanalization can occur after i.v. thrombolysis (IVT), after mechanical thrombectomy (MT), or not at all. Thus, we calculate the expected time of recanalization, depending on the transport destination, as:

$$t^{PSC}_R = \begin{cases} \mathcal{P}^{IVT}_R \times \left(1 - \mathcal{P}^{MT}_R \right) \times \left(o_{TEMS} + t^{PSC}_{IVT} + t^{IVT}_R / 2 \right) + \ldots, \\ \left(1 - \mathcal{P}^{IVT}_R \right) \times \mathcal{P}^{MT}_R \times \left(o_{TEMS} + t^{PSC}_{IVT} + DO + t_{transfer} + DTG + GTR \right) + \ldots, \\ (1 - \mathcal{P}^{IVT}_R) \times (1 - \mathcal{P}^{MT}_R) \times \left(t^{max}_{GP} + GTR \right) \end{cases}$$

$$t^{CSC}_R = \begin{cases} \mathcal{P}^{IVT}_R \times \left(1 - \mathcal{P}^{MT}_R \right) \times \left(o_{TEMS} + t^{CSC}_{IVT} + t^{IVT}_R / 2 \right) + \ldots, \\ \left(1 - \mathcal{P}^{IVT}_R \right) \times \mathcal{P}^{MT}_R \times \left(o_{TEMS} + t^{CSC}_{IVT} + NTG + GTR \right) + \ldots, \\ (1 - \mathcal{P}^{IVT}_R) \times (1 - \mathcal{P}^{MT}_R) \times \left(t^{max}_{GP} + GTR \right) \end{cases}$$
In addition, the time window for IVT to take effect (t_{R}^{IVT}) and the probability of early recanalization after IVT (P_{R}^{IVT}) is adjusted if recanalization from MT would be expected to be achieved shortly after administration of IVT. If the expected time-to-IVT or time-to-groin puncture are greater than t_{R}^{max} and t_{MT}^{max}, respectively, then the corresponding probabilities to achieve recanalization with IVT or MT are set to zero.

Accordingly, the gain of DALDs for patients with AIS and LVO is estimated as:

$$\Delta DALD_{AIS with LVO} = \left(\min(t_{R}^{PSC}, t_{GP}^{max} + GTR) - \min(t_{R}^{CSC}, t_{GP}^{max} + GTR)\right) \times E_{AIS with LVO}^{NHSagesex}.$$

Second, we calculated two-dimensional prehospital triage strategy paradigm-specific transport destination decision rule maps for each geography according to Figure 2 in the main text. These maps determine if a given patient at one of the sampled locations should be transported to the nearest PSC or CSC, taking into account demographic (age, sex), clinical (stroke symptom severity), geographic parameters (transport times, transfer time) and treatment time performance metrics. For triage strategy paradigms V and VI, estimated outcome as outlined above was used to determine transport destination. For the following, let $t_{S}^{age,sex}$ denote the transport decision for a given patient at the sampled point s under triage strategy paradigm Z.

Third, we estimated the population-wide impact of different prehospital triage strategies. Let \mathcal{S} be the set of sampled points in a given geography, \mathcal{U} the set of the statistical geographical units for which data on the sex-specific age distribution was available (one single unit in abstract scenarios), and $n_{sex,age}^{U}$ the total number of individuals of a given age and sex living in a given statistical geographical unit. In addition, let $m_{u \in \mathcal{U}}$ be the total number of sampled points belonging to a given statistical geographical unit.

The following function was used to estimate the annual incidence of acute stroke as a function of age and sex (m: male, f: female) in a given statistical geographical unit:

$$I_{stroke}^{age,sex,u} = \left((sex = m) \times 0.0671 \times \text{age}^{5.946} \times n_{m,age}^{U} + (sex = f) \times 6.95 \times \text{age}^{4.844} \times n_{f,age}^{U}\right) \times 10^{-12}.$$

The annual incidence of acute stroke in each statistical geographical unit and in the whole region was then calculated as:

$$I_{stroke}^{u} = \sum_{age=35}^{100} (I_{stroke}^{age,m,u} + I_{stroke}^{age,f,u}),$$

$$I_{stroke} = \sum_{u \in \mathcal{U}} I_{stroke}^{u}.$$

The annual incidence of EMS-calls for suspected acute stroke was derived from the annual incidence of acute stroke in each statistical geographical unit and in the whole region was then estimated using the following formula:

$$\Delta DALYs =$$

$$I_{stroke}/PF \times P_{IVT} \times \sum_{sex \in \mathcal{S}} \sum_{age=35}^{100} \sum_{RACE=0}^{9} (t_{S}^{age,sex} = CSC) \times \Delta DALD \times \frac{I_{stroke}^{age,sex,u}}{I_{stroke}^{u}} \times \frac{m_{u(s)}}{m_{u}} \times P_{R=\text{RACE}}.$$
Sampling of data points and calculation of transport times

Using the R package osrm-r for each real-world geographic scenario the boundary of the region of interest was defined as a spatial polygon. 10,000 points were then sampled from a regular spatial grid restricted to this polygon. For each point the Euclidean distance to the nearest location accessible by car was computed and points were discarded if that distance exceeded the spatial granularity of the sampling grid. The remaining points thus avoided uninhabited and unreachable areas such as parks and lakes as well as islands without road connection and were used as simulated stroke incident locations. OSRM with a custom transport profile representing the driving speeds and accessibility restrictions of an emergency vehicle (Table S5) was used to compute travel times between stroke locations and stroke centers as well as transport times between PSCs and CSCs.

In addition to osrm-r, the following R packages were used in the analysis: leaflet, rgdal, OpenStreetMap, raster, gdata, sf, geosphere, cleangeo, mapview, ggsci, RColorBrewer, webshot, and scales.

1.3 Calculation of transport times in abstract geographic scenarios

For the estimation of transport times in abstract geographic scenarios, we randomly sampled points in the specific urban and specific rural geographic scenario and calculated both Euclidean distances in km and transport times in minutes to all available stroke centers. Data were fitted using a one-term power series model. Results of the fit were used to convert Euclidean distances to transport times in the abstract geographic scenarios (Figure S5).

1.4 Model parameters

See Tables S1 and S2 and Figures S1 – S4.

1.5 Geographic scenarios

See Table S4.

1.6 Prehospital stroke triage strategy paradigm-associated transport destination decision rules in abstract geographic scenarios

See Figure S6.

1.7 Univariate sensitivity analyses: door-out time

See Figures S7 – S9.

1.8 Numerical results

See Tables S6 – S8.
Table S1. Model parameters – 1

Parameter	Base case value, 95% CI	Distr. in PSA	Distribution parameters	Comment
Probability of patients seen by EMS for suspected acute stroke having final diagnosis of ‘AIS with LVO’, per RACE score category			A: 2; B: 63	See Figure S1.
RACE 0: 0.03			A: 2; B: 158	
RACE 1: 0.01			A: 10; B: 223	
RACE 2: 0.04			A: 13; B: 146	
RACE 3: 0.08			A: 21; B: 146	
RACE 4: 0.13			A: 36; B: 114	
RACE 5: 0.24			A: 63; B: 162	
RACE 6: 0.28			A: 62; B: 93	
RACE 7: 0.40		Beta	A: 58; B: 77	
RACE 8: 0.43			A: 42; B: 42	
RACE 9: 0.50				
Probability of patients seen by EMS for suspected acute stroke having final diagnosis of ‘AIS without LVO’, per RACE score category		Beta	A: 37; B: 28	See Figure S1.
RACE 0: 0.57			A: 98; B: 62	
RACE 1: 0.61			A: 123; B: 110	
RACE 2: 0.53			A: 73; B: 86	
RACE 3: 0.46		Beta	A: 77; B: 90	
RACE 4: 0.46			A: 56; B: 94	
RACE 5: 0.37			A: 59; B: 166	
RACE 6: 0.26			A: 42; B: 113	
RACE 7: 0.27			A: 36; B: 99	
RACE 8: 0.27			A: 13; B: 71	
RACE 9: 0.15				
Probability of patients seen by EMS for suspected acute stroke having final diagnosis of ‘hemorrhagic stroke’, per RACE score category		Beta	A: 3; B: 62	See Figure S1.
RACE 0: 0.05			A: 15; B: 145	
RACE 1: 0.09			A: 19; B: 214	
RACE 2: 0.08			A: 29; B: 130	
RACE 3: 0.18			A: 34; B: 133	
RACE 4: 0.20			A: 38; B: 112	
RACE 5: 0.25			A: 81; B: 144	
RACE 6: 0.36		Beta	A: 40; B: 115	
RACE 7: 0.26			A: 37; B: 98	
RACE 8: 0.27			A: 23; B: 61	
RACE 9: 0.27				
Parameter	Base case value, 95% CI	Distr. in PSA	Distribution parameters	Comment
--	--------------------------	---------------	-------------------------	---------
Probability of patients seen by EMS for suspected acute stroke having final diagnosis of ‘stroke mimic’, per RACE score category	RACE 0: 0.35 RACE 1: 0.28 RACE 2: 0.35 RACE 3: 0.28 RACE 4: 0.21 RACE 5: 0.13 RACE 6: 0.10 RACE 7: 0.07 RACE 8: 0.03 RACE 9: 0.07	Beta	A: 23; B: 42 A: 45; B: 115 A: 81; B: 152 A: 44; B: 115 A: 35; B: 132 A: 20; B: 130 A: 33; B: 203 A: 11; B: 144 A: 4; B: 131 A: 6; B: 78	See Figure S1.
Probability of RACE score 0 – 9 per EMS call for suspected stroke	RACE 0: 0.06 RACE 1: 0.13 RACE 2: 0.18 RACE 3: 0.11 RACE 4: 0.11 RACE 5: 0.09 RACE 6: 0.13 RACE 7: 0.08 RACE 8: 0.07 RACE 9: 0.04	Beta	A: 85; B: 1448 A: 198; B: 1335 A: 273; B: 1260 A: 175; B: 1358 A: 172; B: 1361 A: 144; B: 1389 A: 200; B: 1333 A: 127; B: 1406 A: 101; B: 1432 A: 57; B: 1476	See Figure S2 for details on adjustment for selective recruitment of more severely affected patients.
National Institutes of Health Stroke Scale score per RACE score category	RACE 0: 3.40 RACE 1: 3.65 RACE 2: 5.11 RACE 3: 7.83 RACE 4: 10.05 RACE 5: 12.35 RACE 6: 17.37 RACE 7: 18.15 RACE 8: 19.26 RACE 9: 19.71	Gamma	k: 1.14; θ: 2.97 k: 2.36; θ: 1.55 k: 1.44; θ: 3.55 k: 1.91; θ: 4.09 k: 2.30; θ: 4.39 k: 2.19; θ: 5.64 k: 4.52; θ: 3.84 k: 11.21; θ: 1.62 k: 18.26; θ: 1.06 k: 19.96; θ: 1.16	See Figure S3.

Data from Carrera et al.\(^5\). CI stands for confidence interval; PSA, probabilistic sensitivity analysis; EMS, emergency medical services; AIS, acute ischemic stroke; LVO, large vessel occlusion; RACE, rapid arterial occlusion evaluation scale (score).
Parameter	Base case value, 95% CI	Distribution type	Distribution parameters	Reference	Comment
Probability of eligibility for i.v. thrombolysis	25%			Carrera et al.⁵	Eligibility assumed to be ascertainable prehospitalistically.
Probability of early recanalization of LVO within 70 minutes after i.v. thrombolysis	20% (15 – 26%)	Beta	A: 60.63; B: 237.70	Seners et al.⁶, Holodinsky et al.⁷	Linear adjustment for shorter time periods, i.e. expected recanalization through MT achieved less than 70 minutes after start of i.v. thrombolysis
Probability of successful recanalization of LVO following MT	80% (70 – 90%)	Beta	A: 53.34; B: 13.56	Holodinsky et al.⁷	Width of confidence interval estimate based on professional experience due to lack of data.
Door-to-needle time at primary stroke centers	30 min (20 – 60 min)	Gamma	k: 26.85; θ: 1.13		Additional constraint in PSA that door-to-needle time at primary stroke centers is at least as long as door-to-needle time at comprehensive stroke centers.
Door-to-needle time at comprehensive stroke centers	30 min (20 – 60 min)	Gamma	k: 26.85; θ: 1.13		
Needle-to-groin puncture time at comprehensive stroke centers	30 min (20 – 60 min)	Gamma	k: 26.85; θ: 1.13		
Door-to-groin puncture time at comprehensive stroke centers after secondary transfer from a primary stroke centers	30 min (20 – 60 min)	Gamma	k: 26.85; θ: 1.13		
Groin puncture-to-recanalization time (if MT is technically successful)	30 min (20 – 60 min)		k: 26.85; θ: 1.13	Holodinsky et al.⁷	
Parameter	Base case value, 95% CI	Distribution type	Distribution parameters	Reference	Comment
--	--------------------------	-------------------	-------------------------	-----------------	---
Door-out time at primary stroke centers before secondary transfer (time	I: 45 min (30 – 60 min)	Gamma	k: 37.55; θ: 1.21	Carrera et al. 5	The impact of shorter door-out times (II) was explored in univariate
recognition of LVO through imaging / administration of i.v. thrombolysis	II: 15 min (5 – 20 min)		k: 15.00; θ: 1.00		sensitivity analyses.
and departure of the patient to the comprehensive stroke center)					
Maximum time from symptom onset-to-i.v. thrombolysis	270 min			Powers et al. 8	
Maximum time from symptom onset-to-groin puncture	360 min			Powers et al. 8	

CI stands for confidence interval; PSA, probabilistic sensitivity analysis; EMS, emergency medical services; AIS, acute ischemic stroke; LVO, large vessel occlusion; RACE, rapid arterial occlusion evaluation scale (score); MT, mechanical thrombectomy
Table S3. Definitions

Def.	Parameter	Def.	Parameter
DTN	door-to-needle time	D	Set of possible final diagnoses: AIS with LVO, AIS without LVO, hemorrhagic stroke, stroke mimic
DO	door-out time	\(d \in \Delta\)	Relative frequency of one of the four final diagnoses in each RACE score category 0 – 9.
DTG	door-to-groin puncture time	\(P_{R=X}\)	Relative frequency of patients with a RACE score of X among patients seen by EMS personnel for suspected acute stroke.
NTG	needle-to-groin puncture time	\(\text{Gain of DALDs per minute faster recanalization of LVO.}\)	
GTR	groin puncture-to-reperfusion time	\(\text{Gain of DALDs per minute faster access to IVT.}\)	
OTEMS	onset-to-EMS time	\(P_{IVT}\)	Probability of achieving recanalization of LVO with IVT
\(t_{\max}^\text{IVT}\)	Maximum time from symptom onset-to-IVT	\(t_{IVT}\)	Time window within which recanalization of LVO after IVT can occur.
\(t_{\max}^\text{GP}\)	Maximum time from symptom onset-to-groin puncture	\(P_{MT}\)	Probability of achieving recanalization of LVO with MT
RACE	Rapid arterial occlusion evaluation scale (score)	\(P_{IVT}\)	Relative frequency of eligibility for IVT
\(t_{\text{PSC}}^\text{IVT}\)	Time-to-thrombolysis at the nearest PSC (transport time + DTN)		
\(t_{\text{CSC}}^\text{IVT}\)	Time-to-thrombolysis at the nearest CSC (transport time + DTN)		
\(t_{\text{transfer}}\)	Transport time from nearest PSC to CSC		

See Tables 1, S1, and S2 and Figures S1 – S4 for values. IVT stands for i.v. thrombolysis; AIS, acute ischemic stroke; LVO, large vessel occlusion; EMS, emergency medical services; DALDs, disability-adjusted life days; NIHSS, National Institutes of Health Stroke Scale (score).
Parameter	Specific real-world urban scenario: Berlin I (‘as is’)*	Specific real-world urban scenario: Berlin II (theoretical, centralized MT-services)*	Abstract urban scenario	Specific real-world rural scenario: Schleswig-Holstein†	Abstract rural Scenario†
Surface area – km²	852 km²	852 km²	(15 km)² x π = 706 km²	15,763 km²	(70 km)² x π = 15,394 km²
Total population – n	3.6 Mio	3.6 Mio	3.6 Mio	2.9 Mio	2.9 Mio
Mean population density – km⁻²	4,052	4,052	5,099	182	188
Estimated annual incidence of acute stroke‡	9,328	9,328	9,328	7,586	7,586
Estimated annual incidence of Code Stroke activation by EMS§	2,292	2,292	2,292	1,864	1,864
Spatial granularity of population data	447 statistical units (Lebensweltlich orientierte Räume)	447 statistical units (Lebensweltlich orientierte Räume)	1, spatially homogenous population	1,112 communities (Gemeinden)	1, spatially homogenous population
Total number of PSC / CSCs	4 / 10	11 / 3	1 – 5 / 1 - 5	7 / 6	1 – 5 / 1 - 5

*Geographic and demographic data for Berlin from (9) and (10). The distribution of MT-capable stroke centers in the scenario ‘Berlin I’ corresponds to the current situation, in ‘Berlin II’ to a theoretical setting with centralized MT-services. †Geographic and demographic data for Schleswig-Holstein from (11) and (12). ‡Annual incidence of acute stroke per 1,000,000 estimated as 0.00000006708 × age⁵.₉⁴⁶ for men and 0.000000695 × age⁴.₃₄₄ for women. §Estimated under the assumption that the annual incidence of Code Stroke activation by EMS is proportional to the annual incidence of acute stroke, and that an estimated annual incidence of acute stroke of 15,473 corresponds to 3,900 Code Stroke activations by EMS (data from the region of Catalonia, Spain⁵, 1₃). EMS stands for emergency medical services; PSC, primary stroke center; CSC, comprehensive stroke center.
Road type	Driving speed (km h\(^{-2}\))
Motorway	140
Motorway link	80
Trunk	120
Trunk link	60
Primary	100
Primary link	50
Secondary	80
Secondary link	40
Tertiary	60
Tertiary link	30
Unclassified	40
Residential	40
Living street	30
Service	25
Table S6. Patient-related outcome measures outcome measures in specific real-world geographic scenarios, including univariate and probabilistic sensitivity analyses.

Scenario I	Drip-‘n’-ship (reference)	-	-	12.69 (3.33-31.84)	6.16 (2.93-12.35)	2.62 (-1.81-13.01)	2.34 (-3.24-12.15)			
Scenario II	Mothershipe	17.90 (8.74-33.06)	14.38 (6.33-30.49)	14.15 (3.58-27.38)	10.07 (1.35-21.21)	6.16 (2.93-12.35)	3.17 (-0.74-11.30)	4.35 (0.49-9.67)		
Scenario III	Additional transport time threshold	17.90 (8.74-33.06)	14.15 (3.58-27.38)	13.07 (1.35-21.21)	12.69 (3.33-31.84)	6.16 (2.93-12.35)	3.17 (-0.74-11.30)	4.35 (0.49-9.67)		
Scenario IV	Fixed cutoff score	16.06 (8.22-28.56)	14.64 (7.03-27.75)	15.80 (7.17-31.06)	16.06 (8.22-28.56)	14.64 (7.03-27.75)	15.80 (7.17-31.06)	6.19 (3.87-10.90)	4.76 (1.95-11.87)	5.44 (1.99-12.53)
Scenario V	Fixed cutoff score with probabilistic outcome determination	16.06 (8.22-28.56)	14.64 (7.03-27.75)	15.80 (7.17-31.06)	16.06 (8.22-28.56)	14.64 (7.03-27.75)	15.80 (7.17-31.06)	6.19 (3.87-10.90)	4.76 (1.95-11.87)	5.44 (1.99-12.53)
Scenario VI	Optimal variable cutoff scores	18.24 (9.35-33.24)	15.91 (7.85-30.94)	17.15 (8.24-34.06)	6.01 (4.22-12.57)	5.10 (2.66-13.64)	6.14 (3.42-14.20)			
Scenario VII	Optimal LVO detection device	19.80 (10.77-34.84)	19.14 (10.52-33.87)	22.27 (11.82-38.81)	8.06 (5.34-14.23)	7.39 (4.76-15.65)	8.83 (5.75-17.14)			
Scenario IX	Mobile IVT unit	25.64 (15.58-41.17)	25.47 (15.52-45.10)	39.73 (23.82-57.83)	13.91 (10.57-26.02)	13.72 (10.38-29.16)	22.31 (17.88-36.68)			
Scenario X	Mobile MT unit	30.29 (18.49-50.69)	32.09 (19.22-57.53)	55.76 (34.22-83.37)	18.56 (14.13-37.22)	20.33 (15.41-42.39)	34.16 (26.78-56.64)			

Population-wide total gain of DALYs
Scenario I I
Scenario II
Scenario III
Scenario IV
Scenario V
Scenario VI
Scenario VII
Scenario IX
Scenario X
Scenario X
Table S6. Patient-related outcome measures outcome measures in specific real-world geographic scenarios (continued)

Additional population-wide total gain of DALYs in addition to less complex triage strategies	Univariate sensitivity analysis: I	Univariate sensitivity analysis: II				
	Berlin I	Berlin II	Schleswig-Holstein	Berlin I	Berlin II	Schleswig-Holstein
Scenario I Drip-'n'-ship (reference)	-	-	-	-	-	-
Scenario II Mothership	8.48 (0.14-13.15)	18.22 (2.48-30.24)	9.85 (2.51-20.83)	2.92 (0.22-4.68)	3.33 (-2.30-9.06)	1.55 (-2.15-5.20)
Scenario III Additional transport time threshold	0.00 (0.00-0.00)	-0.29 (-2.11-0.47)	0.30 (-6.54-3.57)	0.00 (0.00-0.00)	0.69 (-0.94-0.80)	1.34 (-0.66-1.34)
Scenario IV Fixed cutoff score	-0.87 (-1.91-0.00)	0.33 (-2.88-2.32)	2.12 (-0.53-3.21)	0.02 (-0.37-0.44)	2.02 (-0.44-2.46)	0.72 (0.10-1.00)
Scenario V Fixed cutoff score with probabilistic outcome determination	-0.87 (-1.91-0.00)	0.00 (-2.88-0.00)	0.00 (-0.53-0.37)	0.00 (-0.37-0.03)	0.04 (-0.44-0.54)	0.19 (0.00-0.72)
Scenario VI Optimal variable cutoff scores	0.16 (0.00-0.37)	1.61 (0.04-2.41)	1.05 (0.24-2.00)	0.29 (0.00-0.29)	0.39 (0.18-0.78)	0.28 (0.14-0.52)
Scenario VII Optimal LVO detection device	0.74 (0.00-0.98)	4.10 (0.19-5.36)	3.98 (1.17-5.29)	0.59 (0.03-0.74)	2.90 (0.71-3.39)	1.78 (0.77-2.06)
Scenario IX Optimal LVO detection device with probabilistic outcome determination	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)
Scenario IX Mobile IVT unit	2.77 (0.07-3.81)	8.02 (1.59-11.16)	13.56 (4.98-18.85)	2.77 (0.26-3.59)	8.02 (5.25-9.85)	8.94 (5.00-11.35)
Scenario X Mobile MT unit	2.20 (0.06-3.13)	8.38 (1.08-11.94)	12.44 (4.70-17.84)	2.20 (0.19-2.81)	8.38 (3.88-11.45)	7.87 (4.03-11.05)

Time to IVT per AIS patient in the equipoise region

	Scenario I Drip-'n'-ship	Scenario II Mothership	Scenario III Additional transport time threshold	Scenario IV Fixed cutoff score with probabilistic outcome determination	Scenario V Fixed cutoff score with probabilistic outcome determination	Scenario VI Optimal variable cutoff scores	Scenario VII Optimal LVO detection device with probabilistic outcome determination
	68 (61-82)	68 (61-82)	83 (76-96)	70 (63-83)	70 (63-83)	70 (63-83)	69 (62-83)
	72 (65-85)	77 (70-90)	100 (92-113)	72 (68-85)	72 (68-85)	72 (68-85)	69 (62-83)
	72 (65-85)	75 (68-88)	87 (79-100)	72 (68-85)	72 (68-85)	72 (68-85)	69 (62-83)
	70 (63-83)	72 (65-86)	90 (83-103)	70 (65-83)	72 (66-85)	83 (76-96)	71 (65-84)
	70 (63-83)	72 (65-86)	90 (83-101)	70 (65-83)	71 (66-85)	81 (76-94)	81 (74-94)
	71 (64-84)	73 (67-87)	90 (85-102)	70 (66-84)	72 (67-84)	82 (76-94)	81 (74-94)
	69 (62-83)	71 (64-85)	88 (81-101)	69 (65-83)	71 (65-84)	81 (74-94)	81 (74-94)
	69 (62-83)	71 (64-85)	88 (81-101)	69 (65-83)	71 (65-84)	81 (74-94)	81 (74-94)
	60 (49-73)	60 (49-73)	60 (49-73)	60 (49-73)	60 (49-73)	60 (49-73)	60 (49-73)
	60 (49-73)	60 (49-73)	60 (49-73)	60 (49-73)	60 (49-73)	60 (49-73)	60 (49-73)
Table S6. Patient-related outcome measures in specific real-world geographic scenarios (continued)

Scenario I	Berlin I	Berlin II	Schleswig-Holstein	Univariate sensitivity analysis: I	Berlin I	Berlin II	Schleswig-Holstein
Time to MT per AIS patient with LVO in the equipoise region							
Scenario I	Drip-'n'-ship	153 (137-182)	158 (143-192)	190 (174-217)	123 (114-142)	128 (119-146)	145 (135-163)
Scenario II	Mothership	102 (93-121)	107 (98-126)	130 (120-148)	102 (95-117)	107 (98-122)	119 (110-135)
Scenario III	Additional transport time threshold	102 (93-121)	110 (102-178)	150 (139-209)	102 (95-117)	108 (101-124)	124 (116-140)
Scenario IV	Fixed cutoff score	112 (102-130)	117 (107-137)	142 (132-160)	106 (98-122)	111 (103-127)	124 (115-141)
Scenario V	Fixed cutoff score with probabilistic outcome determination	112 (102-130)	117 (107-137)	142 (132-161)	106 (98-122)	111 (103-128)	126 (116-143)
Scenario VI	Optimal variable cutoff scores	103 (93-122)	110 (100-128)	136 (125-155)	103 (96-119)	110 (99-127)	124 (113-141)
Scenario VII	Optimal LVO detection device	102 (93-121)	107 (98-126)	130 (120-148)	102 (95-117)	107 (98-122)	119 (110-135)
Scenario IX	Optimal LVO detection device with probabilistic outcome determination	102 (93-121)	107 (98-126)	130 (120-148)	102 (95-117)	107 (98-122)	119 (110-135)
Scenario IX	Mobile IVT unit	102 (93-121)	107 (98-126)	130 (120-148)	102 (95-117)	107 (98-122)	119 (110-135)
Scenario X	Mobile MT unit	90 (74-109)	90 (74-109)	90 (74-109)	90 (74-105)	90 (74-105)	90 (74-105)

For a description of triage strategy paradigms, see Figure 2 in the main text. DALD stands for disability-adjusted life day; EMS, emergency medical services; IVT, i.v. thrombolysis; DALY, disability-adjusted life year; LVO, large vessel occlusion; AIS, acute ischemic stroke.
Table S7. Health system-related outcome measures in specific real-world geographic scenarios, including univariate and probabilistic sensitivity analyses.

Scenario	Proportion of patients triaged to a primary stroke center	Proportion of patients triaged to a comprehensive stroke center (without secondary transfers)					
	Univariate sensitivity analysis: I	Univariate sensitivity analysis: II					
	Berlin I	Berlin II	Schleswig-Holstein	Berlin I	Berlin II	Schleswig-Holstein	
Scenario I	Drip-'n'-ship	0.30 (0.01-0.30)	0.81 (0.07-0.81)	0.61 (0.23-0.61)	0.30 (0.01-0.30)	0.81 (0.24-0.81)	0.52 (0.20-0.52)
Scenario II	Mothership	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)
Scenario III	Additional transport time threshold	0.00 (0.00-0.00)	0.06 (0.06-0.06)	0.22 (0.22-0.22)	0.00 (0.00-0.00)	0.06 (0.06-0.06)	0.09 (0.09-0.09)
Scenario IV	Fixed cutoff score	0.18 (0.00-0.18)	0.48 (0.04-0.49)	0.36 (0.14-0.37)	0.18 (0.01-0.18)	0.48 (0.14-0.49)	0.31 (0.12-0.31)
Scenario V	Fixed cutoff score with probabilistic outcome determination	0.18 (0.00-0.18)	0.48 (0.04-0.49)	0.36 (0.14-0.39)	0.18 (0.01-0.18)	0.48 (0.14-0.54)	0.32 (0.12-0.36)
Scenario VI	Optimal variable cutoff scores	0.05 (0.00-0.08)	0.27 (0.02-0.35)	0.24 (0.08-0.31)	0.09 (0.00-0.12)	0.39 (0.05-0.50)	0.27 (0.06-0.33)
Scenario VII	Optimal LVO detection device	0.25 (0.00-0.25)	0.67 (0.05-0.68)	0.50 (0.19-0.51)	0.25 (0.01-0.25)	0.67 (0.20-0.67)	0.43 (0.17-0.43)
Scenario IX	Optimal LVO detection device with probabilistic outcome determination	0.25 (0.00-0.25)	0.67 (0.05-0.68)	0.50 (0.19-0.51)	0.25 (0.01-0.25)	0.67 (0.20-0.67)	0.43 (0.17-0.43)
Scenario IX	Mobile IVT unit	0.25 (0.00-0.25)	0.67 (0.05-0.68)	0.50 (0.19-0.51)	0.25 (0.01-0.25)	0.67 (0.20-0.67)	0.43 (0.17-0.43)
Scenario X	Mobile MT unit	0.25 (0.00-0.25)	0.67 (0.05-0.68)	0.50 (0.19-0.51)	0.25 (0.01-0.25)	0.67 (0.20-0.67)	0.43 (0.17-0.43)

Proportion of patients triaged to a comprehensive stroke center (without secondary transfers):

Scenario I	Drip-'n'-ship	0.70 (0.70-0.99)	0.19 (0.19-0.93)	0.39 (0.39-0.77)	0.70 (0.70-0.99)	0.19 (0.19-0.76)	0.48 (0.48-0.80)
Scenario II	Mothership	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)
Scenario III	Additional transport time threshold	1.00 (1.00-1.00)	0.94 (0.94-0.94)	0.78 (0.78-0.78)	1.00 (1.00-1.00)	0.94 (0.94-0.94)	0.91 (0.91-0.91)
Scenario IV	Fixed cutoff score	0.82 (0.82-1.00)	0.52 (0.51-0.96)	0.64 (0.63-0.86)	0.82 (0.82-0.99)	0.52 (0.51-0.86)	0.69 (0.69-0.88)
Scenario V	Fixed cutoff score with probabilistic outcome determination	0.82 (0.82-1.00)	0.52 (0.51-0.96)	0.64 (0.61-0.86)	0.82 (0.82-0.99)	0.52 (0.46-0.86)	0.68 (0.64-0.88)
Scenario VI	Optimal variable cutoff scores	0.95 (0.92-1.00)	0.73 (0.65-0.98)	0.76 (0.69-0.92)	0.91 (0.88-1.00)	0.61 (0.50-0.95)	0.73 (0.67-0.94)
Scenario VII	Optimal LVO detection device	0.75 (0.75-1.00)	0.33 (0.32-0.95)	0.50 (0.49-0.81)	0.75 (0.75-0.99)	0.33 (0.33-0.80)	0.57 (0.57-0.83)
Scenario IX	Optimal LVO detection device with probabilistic outcome determination	0.75 (0.75-1.00)	0.33 (0.32-0.95)	0.50 (0.49-0.81)	0.75 (0.75-0.99)	0.33 (0.33-0.80)	0.57 (0.57-0.83)
Scenario IX	Mobile IVT unit	0.75 (0.75-1.00)	0.33 (0.32-0.95)	0.50 (0.49-0.81)	0.75 (0.75-0.99)	0.33 (0.33-0.80)	0.57 (0.57-0.83)
Scenario X	Mobile MT unit	0.75 (0.75-1.00)	0.33 (0.32-0.95)	0.50 (0.49-0.81)	0.75 (0.75-0.99)	0.33 (0.33-0.80)	0.57 (0.57-0.83)
Table S7. Health system-related outcome measures in specific real-world geographic scenarios, including univariate and probabilistic sensitivity analyses (continued).

Scenario	Berlin I	Berlin II	Schleswig-Holstein	Berlin I	Berlin II	Schleswig-Holstein	
Total number of secondary transfers (patients with acute ischemic stroke and large vessel occlusion triaged to a primary stroke center)							
Scenario I	Drip-'n'-ship	492 (9.533)	1316 (114-1427)	801 (298-869)	492 (22-537)	1316 (385-1437)	685 (262-748)
Scenario II	Mothership	0 (0-0)	0 (0-0)	0 (0-0)	0 (0-0)	0 (0-0)	0 (0-0)
Scenario III	Additional transport time threshold	0 (0-0)	91 (83-99)	288 (263-314)	0 (0-0)	91 (83-99)	124 (113-135)
Scenario IV	Fixed cutoff score	97 (2-130)	261 (21-347)	159 (57-211)	97 (5-132)	261 (83-353)	136 (57-184)
Scenario V	Fixed cutoff score with probabilistic outcome determination	97 (2-130)	261 (21-347)	159 (57-240)	97 (5-132)	284 (83-474)	183 (57-288)
Scenario VI	Optimal variable cutoff scores	13 (0-22)	94 (2-150)	91 (21-169)	32 (1-65)	216 (19-433)	143 (25-250)
Scenario VII	Optimal LVO detection device	0 (0-0)	0 (0-0)	0 (0-0)	0 (0-0)	0 (0-0)	0 (0-0)
Scenario VIII	Optimal LVO detection device with probabilistic outcome determination	0 (0-0)	0 (0-0)	0 (0-0)	0 (0-0)	0 (0-0)	0 (0-0)
Scenario IX	Mobile IVT unit	0 (0-0)	0 (0-0)	0 (0-0)	0 (0-0)	0 (0-0)	0 (0-0)
Scenario X	Mobile MT unit	0 (0-0)	0 (0-0)	0 (0-0)	0 (0-0)	0 (0-0)	0 (0-0)

Proportion of patients with LVO in the equipoise region triaged correctly	Berlin I	Berlin II	Schleswig-Holstein	Berlin I	Berlin II	Schleswig-Holstein	
Scenario I	Drip-'n'-ship	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.02)
Scenario II	Mothership	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (0.98-1.00)
Scenario III	Additional transport time threshold	1.00 (1.00-1.00)	0.93 (0.16-0.93)	0.64 (0.05-0.64)	1.00 (1.00-1.00)	0.93 (0.77-0.93)	0.82 (0.54-0.84)
Scenario IV	Fixed cutoff score	0.80 (0.75-0.85)	0.80 (0.75-0.85)	0.80 (0.75-0.85)	0.80 (0.75-0.81)	0.80 (0.75-0.81)	0.80 (0.75-0.81)
Scenario V	Fixed cutoff score with probabilistic outcome determination	0.80 (0.75-0.85)	0.80 (0.75-0.85)	0.80 (0.70-0.85)	0.80 (0.75-0.81)	0.78 (0.64-0.81)	0.73 (0.58-0.80)
Scenario VI	Optimal variable cutoff scores	0.97 (0.95-1.00)	0.93 (0.88-0.98)	0.89 (0.80-0.95)	0.94 (0.87-0.97)	0.84 (0.67-0.95)	0.79 (0.63-0.91)
Scenario VII	Optimal LVO detection device	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (0.98-1.00)
Scenario VIII	Optimal LVO detection device with probabilistic outcome determination	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)
Scenario IX	Mobile IVT unit	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)
Scenario X	Mobile MT unit	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)
For a description of triage strategy paradigms, see Figure 2 in the main text.

Table S7. Health system-related outcome measures in specific real-world geographic scenarios, including univariate and probabilistic sensitivity analyses (continued).

Proportion of patients without LVO in the equipoise region triaged correctly	Univariate sensitivity analysis: I	Univariate sensitivity analysis: II				
Berlin I	Berlin II	Schleswig-Holstein	Berlin I	Berlin II	Schleswig-Holstein	
Scenario I	Drip-‘n’-ship	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)
Scenario II	Mothership	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)
Scenario III	Additional transport time threshold	0.00 (0.00-0.00)	0.07 (0.07-0.84)	0.36 (0.36-0.95)	0.00 (0.00-0.00)	0.07 (0.07-0.23)
Scenario IV	Fixed cutoff score	0.73 (0.69-0.76)	0.73 (0.69-0.76)	0.73 (0.69-0.76)	0.73 (0.71-0.76)	0.73 (0.71-0.76)
Scenario V	Fixed cutoff score with probabilistic outcome determination	0.73 (0.69-0.76)	0.73 (0.69-0.76)	0.73 (0.69-0.77)	0.73 (0.71-0.76)	0.73 (0.72-0.78)
Scenario VI	Optimal variable cutoff scores	0.23 (0.04-0.39)	0.43 (0.16-0.55)	0.51 (0.32-0.62)	0.40 (0.23-0.51)	0.60 (0.25-0.72)
Scenario VII	Optimal LVO detection device	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)
Scenario IX	Additional transport time threshold	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)
Scenario X	Mobile IVT unit	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)
Scenario XII	Mobile MT unit	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)	0.00 (0.00-0.00)

For a description of triage strategy paradigms, see Figure 2 in the main text.
Table S8. Theoretical outcome measures in specific real-world geographic scenarios, including univariate and probabilistic sensitivity analyses.

	Univariate sensitivity analysis: I	Univariate sensitivity analysis: II	
	Berlin I	Berlin II	Schleswig-Holstein
Relative size of the equipoise region, calculated according to estimated number of Code Stroke activations by EMS	0.3 (0.01-0.3)	0.81 (0.2-0.81)	0.61 (0.28-0.61)
Relative size of the equipoise region	identical to analysis I		
Spatial frequency of optimal variable cutoff score (% of the equipoise region, triage strategy paradigm VI)	0.92 (0.78-1.00)	0.83 (0.54-1.00)	0.70 (0.53-1.00)
Optimal variable cutoff score < 5	0.00 (0.00-0.01)	0.00 (0.00-0.11)	0.07 (0.00-0.26)
Optimal variable cutoff score = 5	0.08 (0.00-0.22)	0.17 (0.00-0.43)	0.23 (0.00-0.35)
Optimal variable cutoff score > 5	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1.00 (0.93-1.00)
Spatial frequency of fixed cutoff score = 5 (% of the equipoise region, triage strategy paradigm V)	1.00 (0.91-1.00)	0.95 (0.79-1.00)	0.93 (0.78-1.00)
Fixed cutoff score = 5	0.09 (0.00-0.15)	0.21 (0.00-0.62)	0.22 (0.10-0.50)
	0.39 (0.06-0.47)	0.29 (0.04-0.40)	

For a description of triage strategy paradigms, see Figure 2 in the main text. EMS stands for emergency medical services.
Figure S1. Probability density functions of probabilities for final diagnoses according to RACE score.

Gray boxes represent 95% probability mass intervals. AIS stands for acute ischemic stroke; LVO, large vessel occlusion; HS, hemorrhagic stroke; SM, stroke mimic; RACE, rapid arterial occlusion evaluation scale. Based on data from Carrera et al.5
Based on data from Carrera et al.5 In this study, patients with more severe stroke symptoms (higher RACE/NIHSS scores) were more likely to receive a RACE score evaluation and be included in the study. To compensate for this effect, we applied a linear correction factor to the reported frequencies of patient in each RACE score category:

\[f = -0.068 \times RACE + 0.728. \]

The correction factor was chosen such that the overall mean stroke symptom severity would match that of the entire population of patients with Stroke Code Activation by EMS, including patients that did not receive a RACE score evaluation in the study. Gray boxes represent 95% probability mass intervals. RACE stands for rapid arterial occlusion evaluation scale; NIHSS, National Institutes of Health Stroke Scale.

Figure S2. Probability density functions of the relative frequencies of each RACE score category encountered by emergency medical services (EMS) personnel in the prehospital setting.
Figure S3. Probability density functions of National Institutes of Health Stroke Scale (NIHSS) scores according to RACE score.

Gray boxes represent 95% probability mass intervals. RACE stands for rapid arterial occlusion evaluation scale. Based on data from Carrera et al.5
Figure S4. Reduction of DALDs per minute faster treatment for acute ischemic stroke patients.

Upper left: Reduction of disability-adjusted life days (DALDs) per minute faster access to successful recanalization for female acute ischemic stroke (AIS) patients with large vessel occlusion (LVO). **Upper right:** Reduction of DALDs per minute faster access to successful recanalization for male AIS patients with LVO. **Lower left:** Reduction of DALDs per minute faster access to i.v. thrombolysis for female AIS patients without LVO. **Lower right:** Reduction of DALDs per minute faster access to i.v. thrombolysis for male AIS patients without LVO. The upper and lower surface in each panel represent boundaries of the 95% probability mass intervals, the middle surface the mean.

Based on data from Meretoja et al.14,15 (Point estimates fitted using a locally weighted smoothing linear regression [span 0.2]). NIHSS stands for National Institutes of Health Stroke Scale.
Figure S5. Fit of transport times vs. Euclidean distances in specific real-world geographic scenarios.

The grey areas represent the 95% non-simultaneous prediction intervals for a given observation.
Figure S6. Prehospital stroke triage strategy paradigm-associated transport destination decision rule maps in abstract urban and rural geographic scenarios.

Shown are results for an exemplary 70-year-old male patient with suspected acute stroke in abstract urban (half radius 7.5 km) and rural (half radius 35 km) geographic scenarios. Patients with a RACE score greater than or equal to the color-coded RACE cutoff score would be transported to the nearest CSC instead of the nearest PSC. A dash ‘-’ signifies transport of all patients to the nearest CSC due to lack of equipoise because of a shorter transport time (light color) or PSC (‘RACE cutoff score ≥ 10’, dark color). For a detailed description of the three shown triage strategy paradigms (TSP III, V, and VI), see Figure 2 in main text.

RACE stands for rapid arterial occlusion evaluation scale; TSP, triage strategy paradigm; CSC, comprehensive stroke center; PSC, primary stroke center.
Figure S7. Impact of prehospital triage strategy paradigms on patient-centered outcome parameters in specific real-world geographic scenarios

Boxplots show data for prehospital triage strategy paradigms I – X from probabilistic sensitivity analyses; vertical extent of the boxes represent the interquartile range, the horizontal line the base case result, the whiskers extend to include 95% of all values. Currently available triage strategy paradigms (I – VI) are shown in shades of blue, the remaining paradigms (VII – X) in shades of red. Gain of DALYs is calculated with reference to triage strategy paradigm I (drip-'n'-ship approach). The last row depicts the additional gain in DALYs associated with each triage strategy paradigm over and above all less complex triage strategy paradigms. For a description of triage strategy paradigms, see Figure 2 in the main text.

Panel A represents the base case scenario with a door-out time of 45 minutes, Panel B a door-out time of 15 minutes.

DALY stands for disability-adjusted life year; IVT, i.v. thrombolysis; MT, mechanical thrombectomy.
Figure S8. Impact of prehospital triage strategy paradigms on health system-related outcome parameters in specific real-world geographic scenarios

Boxplots show data for prehospital triage strategy paradigms I – X from probabilistic sensitivity analyses; vertical extent of the boxes represent the interquartile range, the horizontal line the base case result, the whiskers extend to include 95% of all values. Currently available triage strategy paradigms (I – VI) are shown in shades of blue, the remaining paradigms (VII – X) in shades of red. Gain of DALYs is calculated with reference to triage strategy paradigm I (drip-’n’-ship approach). The last row depicts the additional gain in DALYs associated with each triage strategy paradigm over and above all less complex triage strategy paradigms. For a description of triage strategy paradigms, see Figure 2 in the main text.

Panel A represents the base case scenario with a door-out time of 45 minutes, Panel B a door-out time of 15 minutes.

DALY stands for disability-adjusted life year; IVT, i.v. thrombolysis; MT, mechanical thrombectomy.
Boxplots show results for prehospital triage strategy paradigms I – X from repeated random generation of abstract rural and urban geographic scenarios with between 1 – 5 primary stroke centers and 1 – 5 comprehensive stroke centers according to the relative size of the equipoise region (ER). Vertical extent of the boxes represent the interquartile range, the horizontal line the mean, the whiskers extend to include 95% of all values. Currently available triage strategy paradigms (I – VI) are shown in shades of blue, the remaining paradigms (VII – X) in shades of red. In the first row, gain of DALYs is calculated with reference to triage strategy paradigm I (drip-‘n’-ship approach). The second row depicts the additional gain in DALYs associated with each triage strategy paradigm over and above all less complex triage strategy paradigms. For a description of triage strategy paradigms, see Figure 2 in the main text.

Panel A represents the base case scenario with a door-out time of 45 minutes, Panel B a door-out time of 15 minutes.

PSC stands for primary stroke center; CSC, comprehensive stroke center.
Supplemental References:

1. Kolominsky-Rabas PL, Sarti C, Heuschmann PU, Graf C, Siemonsen S, Neundoerfer B, Katalinic A, Lang E, Gassmann KG, von Stockert TR. A prospective community-based study of stroke in Germany—the Erlangen Stroke Project (ESPRO): Incidence and case fatality at 1, 3, and 12 months. *Stroke*. 1998;29:2501-2506.

2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jimenez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER, 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB, American Heart Association Statistics Committee, Stroke Statistics Committee. Heart disease and stroke statistics—2016 update: A report from the American Heart Association. *Circulation*. 2016;133:e38-360.

3. Luxen D, Vetter C. Real-time routing with OpenStreetMap data. *Proceedings of the 19th ACM SIGSPATIAL international conference on advances in geographic information systems*. 2011:513-516.

4. R Core Team. R: A language and environment for statistical computing. 2015.

5. Carrera D, Gorchs M, Querol M, Abilleira S, Ribo M, Millan M, Ramos A, Cardona P, Urra X, Rodriguez-Campello A, Prats-Sanchez L, Purroy F, Serena J, Canovas D, Zaragoza-Brunet J, Krupinski JA, Ustrrell X, Saura J, Garcia S, Mora MA, Jimenez X, Davalos A, Perez de la Ossa N, Catalan Stroke C, Reperfusion C. Revalidation of the race scale after its regional implementation in Catalonia: A triage tool for large vessel occlusion. *J Neurointerv Surg*. 2018 Dec 22. [Epub ahead of print].

6. Seners P, Turc G, Maier B, Mas JL, Oppenheim C, Baron JC. Incidence and predictors of early recanalization after intravenous thrombolysis: A systematic review and meta-analysis. *Stroke*. 2016;47:2409-2412.

7. Holodinsky JK, Williamson TS, Kamal N, Mayank D, Hill MD, Goyal M. Drip and ship versus direct to comprehensive stroke center: Conditional probability modeling. *Stroke*. 2017;48:233-238.

8. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk BM, Hoh B, Jauch EC, Kidwell CS, Leslie-Mazwi TM, Ovbiagele B, Scott PA, Sheth KN, Southerland AM, Summers DV, Tirschwell DL, American Heart Association Stroke C. 2018 guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2018;49:e46-e110.

9. Meretoja A, Keshtkaran M, Saver JL, Tatlisumak T, Parsons MW, Kaste M, Davis SM, Donnan GA, Churilov L. Stroke thrombolysis: Save a minute, save a day. *Stroke*. 2014;45:1053-1058.

10. Meretoja A, Keshtkaran M, Tatlisumak T, Donnan GA, Churilov L. Endovascular therapy for ischemic stroke: Save a minute-save a week. *Neurology*. 2017;88:2123-2127.