DEVELOPMENT AND EVALUATION OF MICROSATELLITE MARKERS FOR Acer miyabei (Sapindaceae), a Threatened Maple Species in East Asia

IKUYO SAEKI²,³,⁵, AKIRA S. HIRAO⁴, AND TANAKA KENTA⁴

²Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-8-3 Kasuga, Tsukuba, Ibaraki 305-0821, Japan; ³Makino Herbarium, Tokyo Metropolitan University, Tokyo, Japan; and ⁴Sugadaira Montane Research Center, University of Tsukuba, 1278-294 Sugadaira-kogen, Ueda, Nagano 386-2204, Japan

• Premise of the study: Twelve microsatellite markers were developed and characterized in a threatened maple species, Acer miyabei (Sapindaceae), for use in population genetic analyses.

• Methods and Results: Using Ion Personal Genome Machine (PGM) sequencing, we developed microsatellite markers with perfect di- and trinucleotide repeats. These markers were tested on a total of 44 individuals from two natural populations of Acer miyabei subsp. miyabei f. miyabei in Hokkaido Island, Japan. The number of alleles per locus ranged from two to eight. The observed and expected heterozygosities per locus ranged from 0.05 to 0.75 and from 0.05 to 0.79, respectively. Some of the markers were successfully transferred to the closely related species A. campestre, A. platanoides, and A. pictum.

• Conclusions: The developed markers will be useful in characterizing the genetic structure and diversity of Acer miyabei and will help to understand its spatial genetic variation, levels of inbreeding, and patterns of gene flow, thereby providing a basis for conservation.

Key words: Acer miyabei; Ion PGM sequencing; maple; microsatellite; Sapindaceae; threatened species.

Acer miyabei Maxim. (Sapindaceae) is a deciduous tree species that grows in temperate forests in East Asia. The species comprises three infraspecific taxa: A. miyabei Maxim. subsp. miyabei f. miyabei, A. miyabei subsp. miyabei f. shibatae (Nakai) K. Ogata, and A. miyabei subsp. miaotaiense (Tsongo) A. E. Murray. Each subspecies has a characteristic distribution (Ogata, 1965; van Gelderen et al., 1994). Acer miyabei subsp. miyabei f. miyabei grows in Hokkaido and northern and central Honshu, Japan. Its occurrence is strongly associated with river floodplain ecosystems, and some of the isolated southern populations are considered a relic of glacial times. Acer miyabei subsp. miyabei f. shibatae is also endemic to Japan, although its range is restricted to parts of Honshu. Acer miyabei subsp. miaotaiense was found in 1954 in Shaanxi Province in northwestern China (Tsongo, 1954). The discovery of this taxon is important because its distribution is likely a biogeographic stepping stone to A. campestre L., a morphologically similar European species (Ogata, 1967). Yet, the phylogenetic relationships among the subspecies, forms, and their related species have not been examined at the molecular level. Because of their limited range and habitat decline, all three infraspecific taxa of A. miyabei are listed in national or IUCN Red Lists (Ministry of the Environment, Government of Japan, 2012; IUCN, 2014). Natural populations of A. miyabei in Japan are typically fragmented by urban and rural development, which affects seed production and gene flow (Hotta, 2004; Nagamitsu et al., 2014).

Here, we present 12 microsatellite markers for A. miyabei to facilitate evolutionary and conservation studies. These markers were developed from two forms of A. miyabei subsp. miyabei, and tested on two natural populations of A. miyabei subsp. miyabei f. miyabei and an individual of A. miyabei subsp. miaotaiense. We also examined the transferability of the markers to three species that belong to the same section (sect. Platanoidae) as A. miyabei (Renner et al., 2007; Grimm and Denk, 2014): A. campestre, A. platanoides L., and A. pictum Thunb.

METHODS AND RESULTS

Microsatellite markers were developed for A. miyabei with an Ion Personal Genome Machine (PGM; Life Technologies, Carlsbad, California, USA). Library preparation, PGM sequencing, and genotyping were conducted at the Sugadaira Montane Research Center, University of Tsukuba, Japan. Total genomic DNA was extracted from dried leaves of a single A. miyabei subsp. miyabei f. miyabei individual from Sugadaira with a DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany). The voucher specimen was stored at the Herbarium of Sugadaira Montane Research Center (no. 05507). The concentration of genomic DNA was determined with a Qubit 2.0 Fluorometer (Life Technologies). Microsatellite markers were kindly provided by the University of British Columbia Botanical Garden. This research was funded by the Japan Society for the Promotion of Science (grant no. 25890002) and the Fujiwara Natural History Foundation.

doi:10.3732/apps.1500020

1 Manuscript submitted 27 February 2015; revision accepted 24 April 2015.

The authors thank S. Yamaguchi, Y. Yamaguchi, O. Harada, R. Oyama, Dr. S. Kondoh, Dr. T. Hiura, Dr. T. Nagamitsu, Dr. H. Matsumura, and Dr. B. V. Barnes for their valuable support. The leaf specimen of Acer miyabei subsp. miaotaiense was kindly provided by the University of British Columbia Botanical Garden. This research was funded by the Japan Society for the Promotion of Science (grant no. 25890002) and the Fujiwara Natural History Foundation.

3 Author for correspondence: saeki.ikuyo.ge@u.tsukuba.ac.jp

Applications in Plant Sciences 2015 3(6): 1500020; http://www.bioone.org/loi/apps © 2015 Saeki et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY-NC-SA).
and purification of the ligated DNA were conducted with an Ion Plus Fragment Library Kit (Life Technologies). Fragments of 300–350 bp were selected with an E-Gel Agarose Gel Electrophoresis System (Life Technologies), followed by library amplification with an Ion Plus Fragment Library Kit. The library was assessed and quantified with a BioAnalyzer (Agilent Technologies, Palo Alto, California, USA), and then diluted to 26 pM for template preparation. The library was enriched with an Ion PGM Template OT2 400 kit (Life Technologies) and sequenced with an Ion PGM Sequencing 400 Kit (Life Technologies) according to the manufacturer’s protocol. Single processing and base calling were performed using Torrent Suite 3.6 (Life Technologies), and a library-specific FASTQ file was generated. A total of 557,106 reads were obtained and registered in the DNA Data Bank of Japan (DDBJ) Sequence Read Archive (DRA001873).

The data sets were collated and applied to the QDD bioinformatics pipeline (Meglécz et al., 2010) to filter sequences containing microsatellites with appropriate flanking sequences to define PCR primers. QDD detected 4909 loci, each containing a microsatellite consisting of at least five repeats. Based on this information, we chose 58 primer pairs for loci consisting of either di- or trinucleotide repeats. For initial primer screening by PCR, we used four DNA samples from three A. miyabei subsp. miyabei individuals from the Bibi, Kushiro, and Sugadaira populations and one A. miyabei subsp. miyabei f. shibatae individual from the Sugadaira population (Appendix 1).

Each forward primer was labeled with either FAM, HEX, or TAMRA fluorescent dye. We also prepared unlabeled forward primers and mixed them with fluorescent ones. The ratio was initially set at 1 (fluorescent) to 24 (unlabeled) but was changed later as described below, following Suyama (2012). All reverse primers used in PCR contained a fluorescent dye and were labeled with either FAM, HEX, or TAMRA.

Table 1. Characteristics of 12 polymorphic microsatellite markers developed for *Acer miyabei*.

Locus	Primer sequences (5’-3’)	Repeat motif	Allele size (bp)	T_a (°C)	Fluorescent dye^a (Multiplex set no.)	Primer ratio^b	GenBank accession no.
Acni2	F: TCACTCCACCTCTCTCT+CTCA	(CT)₁₅	108	60	HEX (1)	1:39	KP825168
Acni3	F: GTTCTCTGAGAAATGTTTGTG	(AG)₁₆	147	60	HEX (2)	1:39	KP825169
Acni4	F: GCATATGATGGTAGTGGCAAA	(AG)₁₄	151	60	PET (2)	1:39	KP825170
Acni5	F: TACAGGCTGTTGAATGTC	(AT)₁₂	226	60	HEX (2)	1:39	KP825172
Acni6	F: TGGAGAAAGAGAGAGGAG	(AG)₁₀	137	60	FAM (2)	1:1.5	KP825176
Acni7	F: CATTGCTGATTCATCATTCA	(TCT)₁₁	111	60	FAM (1)	1:79	KP825175
Acni8	F: TTTCCCTGCAACATGTTTGTG	(CT)₁₂	217	60	HEX (1)	1:4	KP825177
Acni9	F: TTTCTGTAATGCTGATGCG	(AT)₁₀	218	60	PET (1)	1:0.25	KP825178
Acni10	F: AACAGTACACCACATCTTATCAG	(AT)₁₀	218	60	PET (1)	1:0.25	KP825178
Acni11	F: TCTACTAGCATAAACCAAC	(AT)₁₀	268	60	PET (2)	1:9	KP825179

^aFluorescent label used for two sets of multiplex PCR.

^bRatio of fluorescent and unlabeled forward primers for multiplex PCR. See text for details.

Table 2. Genetic diversity of 12 microsatellite loci in two natural populations of *Acer miyabei* (Bibi and Kyouwa) in Hokkaido, Japan.

Locus	Bibi (n = 22)	Kyouwa (n = 22)	Overall (n = 44)										
Acni2	3	0.500	0.637	0.119	4	0.364	0.388	−0.000	5	0.432	0.560	0.134	110−122
Acni3	4	0.909	0.754	−0.105	3	0.591	0.63	0.038	4	0.750	0.738	−0.013	134−149
Acni10	4	0.818	0.698	−0.090	3	0.364	0.369	−0.012	5	0.591	0.581	−0.001	153−181
Acni11	6	0.818	0.789	−0.034	5	0.455	0.508	0.061	8	0.636***	0.774	0.103	159−179
Acni23	2	0.409	0.333	−0.113	2	0.409	0.511	0.099	2	0.409	0.468	0.062	225−228
Acni28	2	0.364	0.406	0.044	3	0.409	0.443	0.085	3	0.386	0.557	0.184	274−284
Acni29	3	0.682	0.524	−0.151	4	0.136	0.133	−0.026	4	0.409	0.364	−0.066	266−280
Acni33	2	0.091	0.089	−0.014	1	0	0	—	2	0.045	0.045	−0.004	100−103
Acni38	3	0.591	0.545	−0.052	4	0.864*	0.701	−0.131	4	0.727	0.673	−0.040	130−136
Acni45	5	0.500*	0.682	0.131	6	0.810	0.769	−0.041	8	0.651*	0.790	0.080	211−229
Acni46	4	0.864	0.687	−0.125	6	0.636	0.643	−0.004	7	0.750	0.681	−0.055	218−230
Acni53	3	0.409	0.464	0.081	3	0.682	0.63	−0.063	3	0.545	0.565	0.009	269−273

Note: A = number of alleles; H_e = expected heterozygosity; H_o = observed heterozygosity; Null = null allele frequency estimate (Marshall et al., 1998; Kalinowski et al., 2007).

* Asterisks indicate significant deviation from Hardy–Weinberg equilibrium after Bonferroni correction (*$P < 0.05$, **$P < 0.01$, ***$P < 0.001$). Note that there were no deviations at the $P < 0.01$ level.
primers were PIG-tailed by adding GTTTCTT to obtain consistent addition of adenine by Taq DNA polymerase (Brownstein et al., 1996). DNA (ca. 10 ng) was placed into wells of 96-well plates and dried at room temperature over several hours. Singleplex PCR was performed with a single pair of primers in 2 μl of 1× Type-It Multiplex PCR Kit Master Mix (QIAGEN) and 0.2 μM of each primer, overlaid with 6 μl of mineral oil as described in Kenta et al. (2008). The thermal cycler program was 95°C for 5 min; followed by 35 cycles of 95°C for 30 s, 60°C for 90 s, and 72°C for 30 s, and 72°C for 30 min. PCR products were mixed with 0.25 μl of GeneScan 500 LIZ Size Standard (Applied Biosystems) and 9.25 μl of Hi-Di formamide (Applied Biosystems). Samples were run on an ABI 3130 Genetic Analyzer (Applied Biosystems), and PCR products were examined in GeneMapper ver. 4.0 (Applied Biosystems). If fluorescent signal intensity was too high or too low, the ratio of the fluorescent forward primer to the unlabeled one was optimized (Table 1). However, even at high ratios of fluorescent forward primers, products labeled with TAMRA were relatively poorly detectable, and thus we excluded the corresponding loci. Screening resulted in 18 primer pairs that consistently amplified clear bands. High ratios of fluorescent forward primers, products labeled with TAMRA were nearly zero or negative (Appendix 1). Polymorphic variation was consistently detected in 10 microsatellite loci in A. miyabei. These markers will help to characterize the genetic structure and diversity of the species. They will also help to understand its spatial genetic variation, levels of inbreeding, and patterns of gene flow, thereby providing a basis for conservation. Some of the markers were successfully transferred to closely related species. High transferability to A. campestre agrees with its morphological similarity to A. miyabei.

Table 3. Cross-amplification of 12 microsatellite loci in species closely related to *Acer miyabei.*

Locus	A. campestre (n = 4)	A. platanoides (n = 4)	A. pictum (n = 4)						
	A	H_e	H_o	A	H_e	H_o	A	H_e	H_o
Acmi2	5	0.500	0.857	5	0.750	0.857	5	0.750	0.786
Acmi8	—	—	—	—	—	—	—	—	—
Acmi10	5	0.500	0.857	2	0	0.571	—	—	—
Acmi11	5	0.750	0.893	3	0.750	0.607	—	—	—
Acmi23	—	—	—	—	—	—	—	—	—
Acmi28	5	1.000	0.857	—	—	—	—	—	—
Acmi33	4	0.500	0.821	4	0.750	0.750	4	0.500	0.786
Acmi38	2	0	0.533	—	—	—	—	—	—
Acmi45	5	0.750	0.786	—	—	—	3	0.250	0.750
Acmi46	3	0.500	0.679	3	1.000	0.750	—	—	—
Acmi53	2	0.250	0.250	3	1.000	0.750	6	1.000	0.929
Average	3.800	0.525	0.696	3.400	0.650	0.707	4.500	0.625	0.813

Note: — = amplification failed or nonspecific (three or more polymorphic bands detected); A = number of alleles; H_e = expected heterozygosity; H_o = observed heterozygosity.

*Testing for Hardy–Weinberg equilibrium and estimation of null allele frequency were not performed because of small sample sizes.

CONCLUSIONS

Using next-generation sequencing with the Ion PGM system, we developed 12 microsatellite markers for the threatened maple *A. miyabei*. These markers will help to characterize the genetic structure and diversity of the species. They will also help to understand its spatial genetic variation, levels of inbreeding, and patterns of gene flow, thereby providing a basis for conservation. Some of the markers were successfully transferred to closely related species. High transferability to *A. campestre* agrees with its morphological similarity to *A. miyabei*.

LITERATURE CITED

Brownstein, M. J., J. D. Carpenter, and J. R. Smith. 1996. Modulation of non-templated nucleotide addition by Taq DNA polymerase: Primer modifications that facilitate genotyping. BioTechniques 20: 1004–1006, 1008–1010.

Grimm, G. W., and T. Denk. 2014. The Colchic region as refuge for relic tree lineages: Cryptic speciation in field maples. Turkish Journal of Botany 38: 1050–1066.

Hotta, M. 2004. Effects of habitat fragmentation on reproductive success and genetic diversity of an endangered maple, *Acer miyabei*. Master’s Thesis, Hokkaido University, Sapporo, Japan.

IUCN (INTERNATIONAL UNION FOR CONSERVATION OF NATURE). 2014. The IUCN Red List of Threatened Species, Version 2014.3. Website http://www.iucnredlist.org/ [accessed 25 March 2015].

Kalnowski, S. T., M. L. Taper, and T. C. Marshall. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16: 1099–1106.

Kenta, T., J. Gratten, N. S. Haigh, G. N. Hinten, J. Slate, R. K. Butlin, and T. Burke. 2008. Multiplex SNP-SCALE: A cost-effective medium-throughput single nucleotide polymorphism genotyping method. Molecular Ecology Resources 8: 1230–1238.

Marshall, T. C., J. Slate, L. E. B. Krauk, and J. M. Pemberton. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology 7: 639.

Miegéz, E., C. Costedoat, V. Dubut, A. Gilles, T. Malaua, N. Peich, and J.-F. Martin, 2010. QDD: A user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26: 403–404.
MINISTRY OF THE ENVIRONMENT, GOVERNMENT OF JAPAN. 2012. Red list of vascular plants in Japan. Website https://www.env.go.jp/press/15619.html [accessed 26 March 2015] (in Japanese).

NAGAMITSU, T., S. KUCHI, M. HOTTA, T. KENTA, AND T. HIURA. 2014. Effects of population size, forest fragmentation, and urbanization on seed production and gene flow in an endangered maple (Acer miyabei). American Midland Naturalist 172: 303–316.

OGATA, K. 1965. A dendrological study on the Japanese Aceraceae, with special reference to the geographical distribution. Bulletin of the Tokyo University Forests 60: 1–99.

OGATA, K. 1967. A systematic study of the genus Acer. Bulletin of the Tokyo University Forests 63: 89–206.

RAYMOND, M., AND F. ROUSSET. 1995. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248.

RENNER, S. S., L. BEENKEN, G. W. GRIMM, A. KOCYAN, AND R. E. RICKLEFS. 2007. The evolution of dioecy, heterodichogamy, and labile sex expression in Acer. Evolution 61: 2701–2719.

SUYAMA, Y. 2012. SSR genotyping method. In Y. Tsumura and Y. Suyama [eds.], Molecular ecology in forest ecosystems, 291–323. Bun-ichi Sogo Shuppan, Tokyo, Japan (in Japanese).

TSOONG, P. C. 1954. A new Acer from China. Kew Bulletin 9: 83.

VAN GELDEREN, D. M., P. C. DE JONG, AND H. J. OTERDOM. 1994. Maples of the world. Timber Press, Portland, Oregon, USA.

APPENDIX 1. Voucher information for species used in the development and evaluation of microsatellite markers for Acer miyabei.

Taxon	Population	Location	Geographic coordinates	N	Voucher no.*
A. miyabei Maxim. subsp. miyabei f. miyabei	Bibi	Bibi, Chitose, Hokkaido, Japan	42.80°N, 141.72°E	22	IOS10138–IOS10159
	Kyouwa	Kyouwa, Chitose, Hokkaido, Japan	42.88°N, 141.76°E	22	IOS10160–IOS10181
	Kushiro	Onbetsu, Kushiro, Hokkaido, Japan	43.00°N, 143.89°E	1	IOS10182
	Sugadaira	Sugadaira, Ueda, Nagano, Japan	36.52°N, 138.34°E	1	IOS10183
			36.53°N, 138.31°E	1	IOS10184
A. miyabei subsp. miyabei f. shibatae (Nakai) K. Ogata	Cultivar	University of British Columbia Botanical Garden, Vancouver, Canada. (Living specimen grown from seeds collected in Tianshui, Gansu, China.)	—	1	NACPEC11-064
A. campestre L.	Tiefenbronn	Tiefenbronn, Germany	48.82°N, 8.80°E	1	IOS10185
	Mühlhausen	Mühlhausen, Germany	48.80°N, 8.82°E	1	IOS10186
	Lichtenstein Strasse	Traifelberg, Germany	48.41°N, 9.27°E	1	IOS10187
	Kandern	Johannes-August-Sutter Strasse, Kandern, Germany	47.71°N, 7.67°E	1	IOS10188
A. platanoides L.	Pforzheim	Pforzheim, Germany	48.87°N, 8.72°E	1	IOS10189
	Stuttgart-Weilimdorf	Stuttgart-Weilimdorf, Germany	48.82°N, 9.12°E	1	IOS10190
	Château du Haut	Château du Haut Koenigsbourg, France	48.25°N, 7.34°E	1	IOS10191
	Koenigsbourg	Stoffelberg, Germany	—	1	IOS10192
A. pictum Thunb.	Ikawa	Ikawa University Forest (University of Tsukuba), Shizuoka, Japan	35.34°N, 138.23°E	2	IOS10193–IOS10194
	Yatsugatake	Yatsugatake University Forest (University of Tsukuba), Nagano, Japan	35.93°N, 138.50°E	1	IOS10195
	Shizunai	Hokkaido University Shizunai Livestock Farm, Hokkaido, Japan	42.43°N, 142.480°E	1	IOS10196

Note: — = unknown; N = number of samples.

*All vouchers except for Acer miyabei subsp. miaotaiense were deposited at Makino Herbarium (MAK), Tokyo Metropolitan University, Japan. Acer miyabei subsp. miaotaiense is a living specimen.