SOMETHING YOU ALWAYS WANTED TO KNOW ABOUT REAL POLYNOMIALS (BUT WERE AFRAID TO ASK)

VLADIMIR P. KOSTOV AND BORIS Z. SHAPIRO

Abstract. The famous Descartes’ rule of signs from 1637 giving an upper bound on the number of positive roots of a real univariate polynomials in terms of the number of sign changes of its coefficients, has been an indispensable source of inspiration for generations of mathematicians. Trying to extend and sharpen this rule, we consider below the set of all real univariate polynomials of a given degree, a given collection of signs of their coefficients, and a given number of positive and negative roots. In spite of the elementary definition of the main object of our study, it is a non-trivial question for which sign patterns and numbers of positive and negative roots the corresponding set is non-empty. The main result of the present paper is a discovery of a new infinite family of non-realizable combinations of sign patterns and the numbers of positive and negative roots.

1. Introduction

This paper continues the line of study of Descartes’ rule of signs initiated in [4]. The basic set-up under consideration is as follows.

Consider the affine space \(\text{Pol}_d \) of all real monic univariate polynomials of degree \(d \). Below we concentrate on polynomials from \(\text{Pol}_d \) with all non-vanishing coefficients. An arbitrary ordered sequence \(\sigma = (\sigma_0, \sigma_1, \ldots, \sigma_d) \) of \(\pm \)-signs is called a sign pattern. When working with monic polynomials we will use their shortened sign patterns \(\hat{\sigma} \) representing the signs of all coefficients except the leading term which equals 1. For the actual sign pattern \(\sigma \), we write \(\sigma = (1, \hat{\sigma}) \) to emphasise that we consider monic polynomials.

Given a shortened sign pattern \(\hat{\sigma} \), we call by its Descartes’ pair \((p_{\hat{\sigma}}, n_{\hat{\sigma}}) \) the pair of non-negative integers counting sign changes and sign preservations of \(\sigma = (1, \hat{\sigma}) \). By Descartes’ rule of signs, \(p_{\hat{\sigma}} \) (resp. \(n_{\hat{\sigma}} \)) gives the upper bound on the number of positive (resp. negative) roots of any monic polynomial from \(\text{Pol}_d(\hat{\sigma}) \). (Observe that, for any \(\hat{\sigma} \), \(p_{\hat{\sigma}} + n_{\hat{\sigma}} = d \).) To any monic polynomial \(q(x) \) with the sign pattern \(\sigma = (1, \hat{\sigma}) \), we associate the pair \((\text{pos}_q, \text{neg}_q) \) giving the numbers of its positive and negative roots counted with multiplicities. Obviously the pair \((\text{pos}_q, \text{neg}_q) \) satisfies the standard restrictions

\[
\text{pos}_q \leq p_{\sigma}, \quad \text{pos}_q \equiv p_{\sigma} \pmod{2}, \quad \text{neg}_q \leq n_{\sigma}, \quad \text{neg}_q \equiv n_{\sigma} \pmod{2}.
\]

We call pairs \((\text{pos}, \text{neg}) \) satisfying (1) admissible for \(\sigma \). Conversely, for a given pair \((\text{pos}, \text{neg}) \), we call a sign pattern \(\sigma \) such that (1) is satisfied admitting the latter pair. It turns out that not for every pattern \(\sigma \), all its admissible pairs \((\text{pos}, \text{neg}) \) are realizable by polynomials with the sign pattern \(\sigma \). Namely, D. J. Grabiner [5] found the first example of non-realizable combination for polynomials of degree 4. He has shown that the sign pattern \(+, -, -, +\) does not allow to realize the pair \((0, 2)\).
and the sign pattern \((+, +, -, +, +)\) does not allow to realize \((2, 0)\). Observe that their Descartes’ pairs equal \((2, 2)\).

His argument is very simple. (Due to symmetry induced by \(x \mapsto -x\) it suffices to consider only the first case.) Observe that a fourth-degree polynomial with only two negative roots for which the sum of roots is positive could be factored as \(a(x^2 + bx + c)(x^2 - sx + t)\) with \(a, b, c, s, t > 0\), \(s^2 < 4t\), and \(b^2 \geq 4c\). The product of these factors equals \(a(x^4 + (b - s)x^3 + (t + c - bs)x^2 + (bt - cs)x + ct)\). To get the correct sign pattern, we need \(b < s\) and \(bt < cs\), which gives \(b^2t < s^2c\) and thus \(b^2/c < s^2/t\). But we have \(b^2/c \geq 4 > s^2/t\).

The following basic question and related conjecture were formulated in [4]. (Apparently for the first time Problem 1 was mentioned in [4].)

Problem 1. For a given sign pattern \(\overline{\sigma}\), which admissible pairs \((\text{pos}, \text{neg})\) are realizable by polynomials whose signs of coefficients are given by \(\overline{\sigma}\)?

Observe that we have the natural \(\mathbb{Z}_2 \times \mathbb{Z}_2\)-action on the space of monic polynomials and on the set of all sign patterns respectively. The first generator acts by reverting the signs of all monomials in second, fourth etc. position (which for polynomials means \(P(x) \mapsto (-1)^d P(-x)\)); the second generator acts by reading the pattern backwards (which for polynomials means \(P(x) \mapsto x^d P(1/x)\)). If one wants to preserve the set of monic polynomials one has to divide \(x^d P(1/x)\) by its leading term. We will refer to the latter action as the standard \(\mathbb{Z}_2 \times \mathbb{Z}_2\)-action. (Up to some trivialities) the properties we will study below are invariant under this action. The following initial results were partially proven in [3, 11] and in complete generality in [4].

Theorem 2. (i) Up to degree \(d \leq 3\), for any sign pattern \(\overline{\sigma}\), all admissible pairs \((\text{pos}, \text{neg})\) are realizable.

(ii) For \(d = 4\), (up to the standard \(\mathbb{Z}_2 \times \mathbb{Z}_2\)-action) the only non-realizable combination is \((1, -, -, -, +)\) with the pair \((0, 2)\);

(iii) For \(d = 5\), (up to the standard \(\mathbb{Z}_2 \times \mathbb{Z}_2\)-action) the only non-realizable combination is \((1, -, -, -, +)\) with the pair \((0, 3)\);

(iv) For \(d = 6\), (up to the standard \(\mathbb{Z}_2 \times \mathbb{Z}_2\)-action) the only non-realizable combinations are \((1, -, -, -, -, +)\) with \((0, 2)\) and \((0, 4)\); \((1, +, +, +, -, +, +)\) with \((2, 0)\); \((1, +, -, -, -, -, +)\) with \((0, 4)\).

The next two results can be found in [4] and [5].

Theorem 3. For \(d = 7\), among the 1472 possible combinations of a sign pattern and a pair (up to the standard \(\mathbb{Z}_2 \times \mathbb{Z}_2\)-action), there exist exactly 6 which are non-realizable. They are:

\[
\begin{align*}
(1, +, -, -, -, -, +) & \quad \text{with} \quad (0, 5); \quad (1, +, -, -, -, +, +) \quad \text{with} \quad (0, 5), \\
(1, +, +, +, +, +) & \quad \text{with} \quad (3, 0); \quad (1, +, +, -, -, +, +) \quad \text{with} \quad (0, 5), \\
(1, - , -, -, - , +) & \quad \text{with} \quad (0, 3) \text{ and } (0, 5).
\end{align*}
\]

Theorem 4. For \(d = 8\), among the 3648 possible combinations of a sign pattern and a pair (up to the standard \(\mathbb{Z}_2 \times \mathbb{Z}_2\)-action), there exist exactly 13 which are non-realizable. They are:

\[
\begin{align*}
(1, +, -, -, -, -, +, +) & \quad \text{with} \quad (0, 6); \quad (1, -, -, -, -, -, +, +) \quad \text{with} \quad (0, 6), \\
(1, +, +, -, -, +, +) & \quad \text{with} \quad (0, 6); \quad (1, +, +, -, -, -, +) \quad \text{with} \quad (0, 6), \\
(1, +, +, +, +, +, +, +) & \quad \text{with} \quad (2, 0); \quad (1, +, +, +, +, +, -, +, +) \quad \text{with} \quad (2, 0), \\
(1, +, +, +, -, +, +, +, +) & \quad \text{with} \quad (2, 0) \text{ and } (4, 0); \quad (1, -, -, -, +, -, -, -, +) \quad \text{with} \quad (0, 2) \text{ and } (0, 4), \quad (1, -, -, -, -, -, -, +) \quad \text{with} \quad (0, 2), (0, 4), \text{ and } (0, 6).
\end{align*}
\]
Based on Theorems 2–4 we formulated in [4] the following guess.

Conjecture 5. For an arbitrary sign pattern \(\sigma \), the only type of pairs \((\text{pos}, \text{neg}) \) which can be non-realizable has either \(\text{pos} \) or \(\text{neg} \) vanishing. In other words, for any sign pattern \(\sigma \), each pair \((\text{pos}, \text{neg}) \) satisfying (1) with positive \(\text{pos} \) and \(\text{neg} \) is realizable.

At the moment Conjecture [5] has been verified by computer-aided methods up to \(d = 10 \). The main result of the present paper is a discovery of a new infinite series of non-realizable patterns which supports Conjecture 5. (Two other series can be found in [4].) Namely, for a fixed odd degree \(d \geq 5 \) and \(1 \leq k \leq (d - 3)/2 \), denote by \(\sigma_k \) the sign pattern beginning with two pluses followed by \(k \) pairs “−,” “+” and then by \(d - 2k - 1 \) minuses. Its Descartes’ pair equals \((2k + 1, d - 2k - 1)\).

Theorem 6. (i) The sign pattern \(\sigma_k \) is not realizable with any of the pairs \((3, 0), (5, 0), \ldots, (2k + 1, 0)\); (ii) the sign pattern \(\sigma_k \) is realizable with the pair \((1, 0)\); (iii) the sign pattern \(\sigma_k \) is realizable with any of the pairs \((2\ell + 1, 2r), \ell = 0, 1, \ldots, k, r = 1, 2, \ldots, (d - 2k - 1)/2\).

Notice that Cases (i), (ii) and (iii) exhaust all possible admissible pairs \((\text{pos}, \text{neg}) \). It is also worth mentioning that the only non-realizable case for degree 5 (up to the \(\mathbb{Z}_2 \times \mathbb{Z}_2 \)-action) and the third and the last two non-realizable cases for degree 7 mentioned above are covered by Theorem 6.

The structure of the paper is as follows. In §2 we present a proof of Theorem 6. In §3 we present the detailed structure of the discriminant loci and (non)realizable patterns for polynomials of degrees 3 and 4.

Acknowledgements. The first author is grateful to the Mathematics Department of Stockholm University for the hospitality.

2. Proofs

Proof of Theorem 6. Part (i): Suppose that a polynomial \(P := \sum_{j=0}^{d} a_j x^{d-j} \) has the sign pattern \(\sigma_k \) and realizes the pair \((2s + 1, 0), 1 \leq s \leq k\). Denote by

\[
P_{e} := \sum_{\nu=0}^{(d-1)/2} a_{2\nu+1} x^{d-2\nu-1} \quad \text{and} \quad P_{o} := \sum_{\nu=0}^{(d-1)/2} a_{2\nu} x^{d-2\nu}
\]

its even and odd parts respectively. In each of the sequences \(\{a_{2\nu+1}\}_{\nu=0}^{(d-1)/2} \) and \(\{a_{2\nu}\}_{\nu=0}^{(d-1)/2} \) there is exactly one sign change. Therefore each of the polynomials \(P_{e} \) and \(P_{o} \) has exactly one real positive root (denoted by \(x_{e} \) and \(x_{o} \) respectively) which is simple. The polynomial \(P_{e} \) (resp. \(P_{o} \)) is positive and increasing on \((x_{e}, \infty)\) (resp. on \((x_{o}, \infty))\) and negative on \([0, x_{e})\) (resp. on \([0, x_{o})).\)

The polynomial \(P \) has at least three distinct positive roots. Denote the smallest of them by \(0 < \xi_1 < \xi_2 < \xi_3 \). Hence at any point \(\zeta \in (\xi_1, \xi_2) \) one has the \(P(\zeta) > 0 \); clearly \(P \) is negative on \((\xi_2, \xi_3)\). One can choose \(\zeta \neq x_{e} \) and \(\zeta \neq x_{o} \). Hence it is impossible to have \(P_{e}(\zeta) < 0 \) and \(P_{o}(\zeta) < 0 \). It is also impossible to have \(P_{e}(\zeta) > 0 \) and \(P_{o}(\zeta) > 0 \). Indeed, this would imply that \(x_{e} < \zeta \) and \(x_{o} < \zeta \). Thus one would get \(P_{e}(x) > 0 \) and \(P_{o}(x) > 0 \), i.e. \(P(x) > 0 \), for \(x \in (\xi_2, \xi_3) \) – a contradiction.

The two remaining possibilities are:
a) \(P_{e}(\zeta) > 0, P_{o}(\zeta) < 0 \);
b) \(P_{e}(\zeta) < 0, P_{o}(\zeta) > 0 \).

The first one is impossible because it would imply that

\[
P(-\zeta) = P_{e}(\zeta) - P_{o}(\zeta) > 0,
\]
and since $P(0) < 0$ and $P(x) \to -\infty$ for $x \to -\infty$, the polynomial P would have at least one negative root in $(-\infty, -\zeta)$ and at least one in $(-\zeta, 0)$ – a contradiction.

So suppose that possibility b) takes place. In this case one must have $x_\sigma < \zeta < x_\nu$. Without loss of generality one can assume that $\xi_1 = 1$; this can be achieved by a rescaling $x \mapsto ax$ with $a > 0$. Hence $P_\nu(1) = \beta > 0$ and $P_\nu(1) = -\beta$. Considering the polynomial P/β instead of P, one can assume that $\beta = 1$. Lemma 7 below immediately implies that there are no real roots of P larger than 1 which is a contradiction finishing the proof of Part (i).

Lemma 7. Under the above assumptions, $P^{(m)}(1) > 0$, for any $m = 1, 2, \ldots, d$.

Proof of Lemma 7. For any $m = 1, 2, \ldots, d$, it is true that if the sum of the coefficients $\delta := a_2 + a_4 + \cdots + a_{d-1}$ is fixed (recall that all these coefficients are negative), then $P^{(m)}(1)$ is minimal for $a_2 = \delta$, $a_4 = a_6 = \cdots = a_{d-1} = 0$. Indeed, when taking derivatives and computing their values at $x = 1$, the monomial with the largest degree in x is multiplied by the largest factor (equal to this degree). Therefore in what follows we assume that $a_4 = a_6 = \cdots = a_{d-1} = 0$, and hence $a_2 = 1 - a_0 < 0$.

Similarly, consider $P^{(m)}_e(1)$. Recall that $a_1 > 0$, $a_3 > 0, \ldots, a_{2k+1} > 0$, $a_{2k+3} < 0$, $a_{2k+5} < 0, \ldots, a_d < 0$. Hence for fixed sums $\delta_* := a_1 + a_3 + \cdots + a_{2k+1}$ and $\delta_{**} := a_{2k+3} + a_{2k+5} + \cdots + a_d$, the value of $P^{(m)}_e(1)$ is minimal if

$$
\begin{align*}
\{a_1 = \cdots = a_{2k-1} = 0, & \quad a_{2k+1} = \delta_* \\
& \quad a_{2k+3} = \cdots = a_d = 0, \quad a_{2k+5} = \delta_{**}\}
\end{align*}
$$

(2)

Let us now assume that conditions (2) are valid. Thus $P_e := a_{2k+1}x^{d-2k-1} + a_{2k+3}x^{d-2k-3}$ and $a_{2k+1} + a_{2k+3} = -1$. One can further decrease $P^{(m)}_e(1)$ by assuming that $a_{2k+1} = 0, a_{2k+3} = -1$. Thus $P(x) = a_0x^2 + a_2x^d - x^{d-2k-3}$ and $a_0 + a_2 = 1$.

But then $P^{(m)}(x) = u_m a_0 x^{d-m} + v_m a_2 x^{d-2-m} - w_m x^{d-2k-3-m}$ and $P^{(m)}(1) = u_m a_0 + v_m a_2 - w_m$ for some numbers $0 \leq w_m \leq v_m < u_m$. Therefore

$$
P^{(m)}(1) = \begin{cases} u_m a_0 + a_2 - 1 + (v_m - w_m)(a_0 + a_2) + (u_m - v_m) a_0 \\ (v_m - w_m)(a_0 + a_2) + (u_m - v_m) a_0 > 0. \end{cases}
$$

□

Proof of Part (ii): The polynomial $x^d - 1$ has the necessary signs of the leading coefficient and of the constant term. It has a single real simple root at 1. One can construct a polynomial of the form $S := x^d - 1 + \varepsilon \sum_{j=1}^{d-1} c_j x^j$, where $c_j = 1$ (resp. $c_j = -1$) if the sign at the corresponding position of σ_2 is + (resp. −). For a small enough $\varepsilon > 0$, the polynomial S has a single simple real root close to 1, and its coefficients have the sign pattern σ.

Finally, our approach how to settle Part (iii) is based on the following lemma borrowed from [4]. For a monic polynomial we might write 1 instead of the first + sign in its sign pattern. Recall that the shortened sign pattern of a monic polynomials is what remains from its sign pattern when this initial 1 is deleted.

Lemma 8 (See Lemma 14 in [4]). Suppose that the monic polynomials P_1 and P_2 of degrees d_1 and d_2 with sign patterns $\sigma_1 = (1, \sigma_1)$ and $\sigma_2 = (1, \sigma_2)$, respectively, realize the pairs $(\text{pos}_1, \text{neg}_1)$ and $(\text{pos}_2, \text{neg}_2)$.

Then

(i) if the last position of σ_1 is +, then for any small enough $\varepsilon > 0$, the polynomial $\varepsilon^{d_1} P_1(x) P_2(x/\varepsilon)$ realizes the sign pattern $(1, \sigma_1, \sigma_2)$ and the pair $(\text{pos}_1 + \text{pos}_2, \text{neg}_1 + \text{neg}_2)$.

(ii) if the last position of \(\sigma_1 \) is \(-\), then for any \(\varepsilon > 0 \) small enough, the polynomial \(\varepsilon^{d_2} P_1(x)P_2(x/\varepsilon) \) realizes the sign pattern \((1, \sigma_1, \sigma_2)\) and the pair \((pos_1 + pos_2, neg_1 + neg_2)\). (Here \(-\sigma\) is the sign pattern obtained from \(\sigma\) by changing each \(+\) by \(-\) and vice versa.)

Remark 9. Example 15 in [4] explains some of the possible applications of Lemma 8. We present and extend this example below. If

\[P_2 = x - 1 \quad , \quad x + 1 \quad , \quad x^2 + 2x + 2 \quad , \quad x^2 + 2x + 0.5 \quad , \quad x^2 - 2x + 2 \quad or \quad x^2 - 2x + 0.5 \quad , \]

then \((pos_2, neg_2) = (1, 0), (0, 1), (0, 0), (0, 2), (0, 0)\) and \((2, 0)\) respectively. Denote by \(\tau\) the last entry of \(\sigma_1\). When \(\tau = +\), then one has respectively \(\sigma_2 = (-), (+), (+, +), (+, -)\) and \((-; +)\) and the sign pattern of \(\varepsilon^{d_2} P_1(x)P_2(x/\varepsilon)\) equals

\[(1, \sigma_1, -) \quad , \quad (1, \sigma_1, +) \quad , \quad (1, \sigma_1, +, +) \quad , \quad (1, \sigma_1, +, +) \quad , \quad (1, \sigma_1, -, +) \quad or \quad (1, \sigma_1, -; +) .
\]

If \(\tau = -\), then \(\sigma_2 = (+), (-), (-, -), (+, -)\) and \((+; +), (-; +)\) and the sign pattern of \(\varepsilon^{d_2} P_1(x)P_2(x/\varepsilon)\) equals

\[(1, \sigma_1, +) \quad , \quad (1, \sigma_1, +, -) \quad , \quad (1, \sigma_1, +, -) \quad , \quad (1, \sigma_1, +, -) \quad or \quad (1, \sigma_1, +; -) .
\]

Proof of Part (iii): Recall that the sign pattern \(\sigma_k\) ends with \(d - 2k + 1\) minuses. Set \(\sigma_k = (+, +, \sigma^*, \sigma^1)\), where the sign patterns \(\sigma^* \) (resp. \(\sigma^1\)) consist of a minus followed by \(k\) pairs \((+,-)\) (resp. of \(d - 2k - 2\) minuses).

The sign pattern \((+, +)\) is realizable by the polynomial \(x + 1\) (hence with the pair \((0, 1)\)). To obtain a polynomial realizing the sign pattern \((+, +, \sigma^*)\) with the pair \((2\ell + 1, 1)\) one applies Lemma 8 first \(k - \ell\) times with \(P_2 = x^2 - 2x + 2\), and then \(2\ell + 1\) times with \(P_2 = x - 1\). After this one applies Lemma 8 first \(2r - 1\) times with \(P_2 = x + 1\), and then \((d - 2k - 1)/2 - r\) times with \(P_2 = x^2 + 2x + 2\) to realize the sign pattern \(\sigma_k\) with the pair \((2\ell + 1, 2r)\). \(\square\)

3. Discriminant Loci of Cubic and Quartic Polynomials under a Microscope

The goal of this section is mainly pedagogical. For the convenience of our readers, we present below detailed descriptions and illustrations of cases of (non)realizability of sign patterns and admissible pairs for polynomials of degree up to 4.

Define the standard real discriminant locus \(D_d \subset Pol_d\) as the subset of all polynomials having a real multiple root. (Detailed information about a natural stratification of \(D_d\) can be found in e.g., [9].) It is a well-known and simple fact that \(Pol_d \setminus D_d\) consists of \(2^2\) + 1 components distinguished by the number of real simple roots. Moreover, each such component is contractible in \(Pol_d\). Obviously, the number of real roots in a family of monic polynomials changes if and only if this family crosses the discriminant locus \(D_d\).

3.1. Degrees 1 and 2. Clearly, a polynomial \(x + u\) has a single real root \(-u\) whose sign is opposite to the sign of the constant term. For degrees 2, 3 and 4 we will use the invariance of the zero set of the family of polynomials \(x^n + a_1x^{n-1} + \cdots + a_n\) with respect to the group of quasi-homogeneous dilatations \(x \mapsto tx, \ a_j \mapsto t^{\ell}a_j\), to set the subdominant coefficient to 1. Thus for \(n = 2\), we consider the family \(P_2 := x^2 + x + a\). For \(a \leq 1/4\), it has two real roots; for \(a < 1/4\), these are distinct. For \(a \in (0, 1/4)\), they are both negative while for \(a < 0\), they are of opposite signs.

3.2. Degree 3. For \(n = 3\), we consider the family \(P_3 := x^3 + x^2 + ax + b\). Its discriminant locus \(\Sigma\) is defined by the equation \(4a^3 - a^2 + 4b - 18ab + 27b^2 = 0\). This is a curve shown in Fig. 11. It has an ordinary cusp for \((a, b) = (1/3, 1/27)\) and an ordinary tangency to the \(a\)-axis at the origin. In the eight regions of the complement to its union with the coordinate axes, the polynomial has roots as
indicated in Fig. 1. (Here (0, 1) means 0 positive and 1 negative real roots hence there exists a complex conjugate pair as well.) The point of the cusp corresponds to a triple root at $-1/3$, the upper arc corresponds to the case of one double real root to the right and a simple one to the left (and vice versa for the lower arc).

$3.3. \textbf{Degree 4.} \quad \text{For } n = 4, \text{ we consider the family } P_4 := x^4 + x^3 + ax^2 + bx + c. \quad \text{In Fig. 2 we show the projection } \tilde{\Phi} \text{ of its discriminant locus } \Phi \text{ in the } (a, b)-\text{plane. (For the other sets their projections in } (a, b) \text{ are denoted by the same letters with tilde.) By the dashed line we show the set } \Sigma \text{ for the family } P_3. \text{ One has }$

$$\Phi \cap \{c = 0\} = \Sigma \cup \{b = c = 0\}.$$

By the solid line we represent the projection

$$\Lambda : 64a^3 - 18a^2 + 54b - 216ab + 216b^2 = 0$$

of the subset $\Lambda \subset \Phi$ for which the polynomial P_4 has a real root of multiplicity at least 3. The ordinary cusp point of Λ is the projection of the point $(3/8, 1/16, 1/256)$ which defines the polynomial $x^4 + x^3 + 3x^2/8 + x/16 + 1/256 = (x + 1/4)^4$ to the plane (a, b).

At this point the set Φ has a swallowtail singularity, see e.g. [2]. On the upper arc of Λ the polynomial P_4 has one triple root to the right and a simple one to the left (and vice versa for the lower arc). The upper arc of Λ has an ordinary tangency to the a-axis at the origin. Along the curve Λ the intersections of the hypersurface Φ with planes transversal to Λ have cusp points.
SOMETHING YOU ALWAYS WANTED TO KNOW ABOUT REAL POLYNOMIALS

Figure 3. Intersections of the discriminant locus of \(x^4 + x^3 + ax^2 + bx + c \) with the planes \(a = -0.1 \) (the first three pictures); \(a = 0.15 \) (the fourth and the fifth pictures); and \(a = 0.26 \) (the last picture).

The cusp point of \(\Sigma \) belongs to \(\Lambda \). At this point \(\Lambda \) intersects the \((a, b)\)-plane. The tangent line \(\tilde{L} : b = a/2 - 1/8 \) to \(\tilde{\Lambda} \) at its cusp at \((3/8, 1/16)\) is tangent to the curve \(\Sigma \) at \((1/4, 0)\). (\(\tilde{L} \) is shown by the dotted line.) The set \(L \) corresponds to polynomials having two double roots. For \(a < 3/8 \), these roots are real, and for \(a > 3/8 \), they are complex conjugate. The curve \(L \) is tangent to the \((a, b)\)-plane at the point \((1/4, 0, 0)\). It belongs to the half-space \(\{c \geq 0\} \).

Now we consider the intersections of \(\Phi \) with the planes parallel to the \((b, c)\)-plane. For \(a < 3/8 \), they have two ordinary cusps (which are the points of \(\Lambda \)) and a transversal self-intersection point (which belongs to \(L \)). The first three pictures in Fig. 3 show this intersection with the plane \(a = -0.1 \) in different scales. The curves are tangent to the \(a \)-axis. Inside the curvilinear triangle (denoted by \(H_4 \))
the polynomial has four distinct real roots. In the domain H_2 which surrounds H_4, the polynomial P_4 has two distinct real roots and a complex conjugate pair. In the domain H_0 above the self-intersection point it has two complex conjugate pairs. These domains are defined in the same way for all $a < 3/8$. For $a > 3/8$, the domain H_4 does not exist.

![Figure 4](image_url)

Figure 4. The intersection of the discriminant locus of $x^4 + x^3 + ax^2 + bx + c$ with the planes $a = 0.29; 0.31; 0.335; 0.4$.

The set $\Phi \cap \{a < 0, b < 0, c > 0\}$ divides the set $\{a < 0, b < 0, c > 0\}$ into four sectors, see the first picture in Fig. 3. The intersection $\{a < 0, b < 0, c > 0\} \cap H_2$ consists of two contractible components. They correspond to the two cases $(0,2)$ (the right sector, bordering $\{a < 0, b > 0, c > 0\}$) and $(2,0)$ (the left sector) realizable with the sign pattern $(+,+,-,-,+)$. The other two cases realizable in $\{a < 0, b < 0, c > 0\}$ are $(2,2)$ (the sector below) and $(0,0)$ (the sector above).

For $a < 0$, $b > 0$, $c > 0$, and when the polynomial P_4 belongs respectively to H_4, H_2 or H_0, it realizes the cases $(2,2)$, $(0,2)$ and $(0,0)$. The set $\{a < 0, b > 0, c > 0\} \cap H_2$ is contractible, so only one of the cases $(0,2)$ and $(2,0)$ (namely, $(0,2)$) is realizable with the sign pattern $(+,+,-,+)$ (see the first picture in Fig. 3).

In $\{a < 0, b < 0, c < 0\}$ one can realize the cases $(1,3)$ and $(1,1)$. They correspond to the domains $\{a < 0, b < 0, c < 0\} \cap H_4$ (the curvilinear triangle) and $\{a < 0, b < 0, c < 0\} \cap H_2$ (its complement).

In $\{a < 0, b > 0, c < 0\}$ one can similarly realize the cases $(3,1)$ (the curvilinear triangle) and $(1,1)$ (its complement).

On the fourth and fifth pictures in Fig. 3 we present the intersection of Φ with the plane $\{a = 0.15\}$. The figures are quite similar to the first three pictures in Fig. 3 and the realizable pairs are the same with one exception. Namely, for $a > 0$, $b > 0$, $c > 0$ in the domain H_4 it is the pair $(0,4)$ which is realized. And, clearly, the third component of the sign patterns changes from $-$ to $+$.
The intersections of \(\Phi \) with the planes \(\{ a = 0.26 \}, \{ a = 0.29 \}, \{ a = 0.31 \} \) and \(\{ a = 0.335 \} \) are shown on the last picture in Fig. 3 and in Fig. 4. For \(a_0 > 0.375 \), the intersections of \(\Phi \) with the planes \(\{ a = a_0 \} \) resemble the lower right picture in Fig. 4.

4. Final Remarks

The following important and closely related to the main topic of the present paper questions remained unaddressed above.

Problem 10. Is the set of all polynomials realizing a given pair \((\text{pos}, \text{neg})\) and having a sign pattern \(\sigma \) path-connected (if non-empty)?

Given a real polynomial \(p \) of degree \(d \) with all non-vanishing coefficients, consider the sequence of pairs

\[
\{(\text{pos}_0(p), \text{neg}_0(p)), (\text{pos}_1(p), \text{neg}_1(p)), (\text{pos}_2(p), \text{neg}_2(p)), \ldots, (\text{pos}_{d-1}(p), \text{neg}_{d-1}(p))\},
\]

where \((\text{pos}_j(p), \text{neg}_j(p))\) is the numbers of positive and negative roots of \(p^{(j)} \) respectively. Observe that if one knows the above sequence of pairs, then one knows the sign pattern of a polynomial \(p \) which is assumed to be monic. Additionally it is easy to construct examples when the converse fails.

Problem 11. Which sequences of pairs are realizable by real polynomials of degree \(d \) with all non-vanishing coefficients?

Notice that a similar problem for the sequence of pairs of real roots (without division into positive and negative) was considered in [7]. One can find easily examples of non-realizable sequences \(\{(\text{pos}_j(p), \text{neg}_j(p))\}_{j=0}^{d-1} \). E. g. for \(d = 4 \) this is the sequence \((2, 0), (2, 1), (1, 1), (0, 1)\). Indeed, the sign pattern must be \((+, +, -, +, +)\) about which we know that it is not realizable with the pair \((2, 0)\). However it is not self-evident that all non-realizable sequences are obtained in this way.

Our final question is as follows.

Problem 12. Is the set of all polynomials realizing a given sequence of pairs as above path-connected (if non-empty)?

References

[1] A. Albouy, Y. Fu, Some remarks about Descartes’ rule of signs, Elemente der Mathematik, 69 (2014), pp. 186–194.
[2] V. I. Arnold, The Theory of Singularities and Its Applications, Cambridge, UK: Cambridge University Press, 1993.
[3] B. Anderson, J. Jackson, M. Sitharam, Descartes’ rule of signs revisited, The American Mathematical Monthly 105 (1998) pp. 447–451.
[4] J. Forsgård, Vl. Kostov, B. Shapiro, Could René Descartes have known this? Experimental Mathematics, vol 24, issue 4, (2015) 438–448.
[5] D. J.Grabiner, Descartes Rule of Signs: Another Construction, The American Mathematical Monthly 106 (1999) pp. 854–856.
[6] B. Khesin and B. Shapiro, Swallowtails and Whitney umbrellas are homeomorphic, J. Algebraic Geom. 1(4), (1992), 549–560.
[7] V. P. Kostov, Topics on hyperbolic polynomials in one variable. Panoramas et Synthèses 33 (2011), vi + 141 p. SMF.
[8] V. P. Kostov, On realizability of sign patterns by real polynomials, arXiv:1703.09313.