Evidence for the accelerated expansion of the Universe from weak lensing tomography with COSMOS

T. Schrabback et al. 2010
arXiv:0011.0053 (submitted to A&A)

“Cosmic acceleration confirmed”
A. Lopes 2010, Nature 464, 694
Abstract

・COSMOSのHST/ACS撮像データとphoto-zデータを用いてWeak Lensing Tomographyを行った。

・その結果、Weak Lensing Tomographyで初めて宇宙の加速度膨張を発見した。
INTRODUCTION
宇宙の加速度膨張 $\ddot{a} > 0$

・加速度膨張

→ 距離を遠くする、密度揺らぎの進化を弱める。
→ SNⅠa、BAO、CMBによって確認

・通常の物質では加速度膨張は引き起こせない

→ 宇宙定数、dark energy、修正重力 etc

・加速度膨張の原因究明が観測的宇宙論の最大目標の一つ
α₁ ≠ α₂ では矢印の大きさ、方向が変わる
WEAK LENSING

κ > 0
κ < 0

\[\gamma \propto \frac{(\chi_s - \chi_l)\chi_l}{a(z_s)\chi_s} \delta(\chi_l) \]

シグナルは密度と距離比に比例

加速度膨張していると・・・ 距離比↑、密度揺らぎ↓

2010年6月8日火曜日
WEAK LENSING TOMOGRAPHY

LSS (z=3)
LSS (z=2)
LSS (z=1)
LSS (z=0)

(a) Galaxy Distribution
(b) Lensing Efficiency

振幅の比で宇宙膨張を測る
Cosmic Evolution Survey
COSMOSとは

・遠方銀河、AGNや大規模構造の形成・進化を探るサーベイ

・HSTで観測された連続領域で最大
（77'×77'=1.64deg² = HST/ACS 579 shot）

・Spitzer, GALEX, XMM(space), Subaru, VLA, VLT...etc(ground)の多波長観測

\[\gamma + z \]
• **data**
 HST/ACS 1.64deg\(^2\); 446,934 gals=76/arcmin\(^2\) with \(i_{814} < 26.7\)

• **shape measurement**
 KSB+ (Kaiser+95, Luppino+97, Hoekstra+98) & STEP2
 empirical calibration

• **PSF modeling**
 PCA(Principle Component Analysis) from star field

• **other correction**
 CTI (Charge Transfer Inefficiency) modeling
γの精度チェック

・E/B分解
・star-gal相関

no B-mode
no correlation

Massey+07
\[z \]

\[i^+ < 25 \quad (43\% \) \text{ has individual photo-z} \]

- COSMOS-30 catalogue (30band + Le Phare code)
- \(\sigma_{\Delta z/(1+z)} = 0.012 \) for \(i^+ < 24 \) and \(z < 1.25 \) thanks to IR band
- \(\sigma_{\Delta z/(1+z)} = 0.06 \) for \(i^+ \sim 24 \)

\[i^+ > 25 \] galaxies use estimated distribution

- redshift distribution をパラメータ化し \(i^+ < 25 \)から外挿

\[
p(z|i_{814}) \propto \left(\frac{z}{z_0} \right)^\alpha \left[\exp \left(-\left(\frac{z}{z_0} \right)^\beta \right) + cu^d \exp \left(-\left(\frac{z}{z_0} \right)^y \right) \right]
\]
Weak lensing tomography (1)

• photo-zがある銀河を5つのビンに分ける(1~5)

• photo-zが無い銀河も含めて一つのビン(6)
Weak Lensing Tomography (2)

\[\xi^{kl}(\theta) = \frac{\sum_{i,j}(\gamma_{t,i}^k \gamma_{t,j}^l \pm \gamma_{x,i}^k \gamma_{x,j}^l) \Delta_{ij}}{\sum_{i,j} \Delta_{ij}} \]

- \(k,l = \text{bin index} \)
- \(i,j = \text{galaxy index} \)

• signalの赤方偏移依存性、角度依存性ともに理論予言と無矛盾

2010年6月8日火曜日
パラメータ評価

\[\ln P(d|p) = -\frac{1}{2} [d - m(p)]^t C^{-1} [d - m(p)] \]

- \(P \): likelihood function
- \(C = C_{\text{int}} + C_{\text{cv}} \): covariance matrix; CV from ray-tracing
- \(d = \xi_{\pm}^{k\ell}(\theta) \): data vector
- \(m = \xi_{+/-}^{k\ell}(\theta) = \frac{1}{2\pi} \int_0^\infty \ell J_{0/4}(\ell \theta) P_k^{k\ell}(\ell) \): parameter-dependent model
- \(p = (\Omega_{\text{DE}}, \Omega_m, \sigma_8, h, w, f_z) \): parameter
加速度膨張の再発見

減速パラメータ \(q_0 = -\ddot{a}/\dot{a}^2 \)

SNIaに遅れる事12年、初めてWeak Lensing Tomographyで宇宙の加速度膨張を独立に発見

※flatを仮定せず
他の宇宙論パラメータ

\[w = \frac{p}{\rho} \quad \Omega_m - \sigma_8 \]

\[w < -0.41 \text{ for } w \in [-2:0] \]
\[w < -0.78 \text{ for } w \in [-3.5:0.5] \]

prior依存が大きく、全く制限はついていない

CFHTLS(Fu+08), cluster counts (Mantz+09) と1σで一致
まとめ

・COSMOSのHST/ACS撮像データとphoto-zデータを用いてWeak Lensing Tomographyを行った。

・その結果、Weak Lensing Tomographyで初めて宇宙の加速度膨張を発見した。

・Weak Lensing Tomographyが暗黒エネルギー探査に有効である事を示した。
FUTURE SURVEY

• 前から知られていたものを確認しただけではないか？

• 今回はWeak Lensing Tomographyのデモ（たった2平方度）

• HSCなどの将来サーベイではa few×1000平方度!!

→ 暗黒エネルギーの正体解明へ

http://hep.phys.s.u-tokyo.ac.jp/TokuteiDE/purpose/