Adropin and Irisin in Patients with Cardiac Cachexia

Ali Kemal Kalkan,1 Huseyin Altug Cakmak,2 Mehmet Erturk,1 Kübra Erol Kalkan,3 Fatih Uzun,1 Omer Tasbulak,3 Vesile Ornek Diker,4 Suleyman Aydin,5 Ahmet Celik6

Mehmet Akif Ersoy Thoracic and Cardiovascular Disease Education and Training Hospital, Department of Cardiology,1 Istanbul, Turkey
Mustafakemalpasa State Hospital, Department of Cardiology,2 Bursa, Turkey
Şişli Haydutte Ethal Education And Research Hospital, Department of Internal Medicine,3 Istanbul, Turkey
Mehmet Akif Ersoy Thoracic and Cardiovascular Disease Education and Training Hospital, Department of Biochemistry,4 Istanbul, Turkey
First University, School of Medicine, Department of Clinical Biochemistry,5 Elazig, Turkey
Mersin University, School of Medicine, Department of Cardiology,6 Mersin, Turkey

Resumo

Fundamento: A caquexia cardíaca é um importante preditor de redução de sobrevida em pacientes com insuficiência cardíaca com fração de ejeção reduzida (ICFER). O objetivo deste estudo foi avaliar os níveis de adropina e irisina em pacientes com ICFER caquéticos e não caquéticos, assim como a relação entre os níveis dessas proteínas e os parâmetros clínicos e laboratoriais nesses pacientes.

Objetivos: Os objetivos do presente estudo foram avaliar os níveis de adropina e irisina em indivíduos caquéticos e não caquéticos e as relações entre os níveis dessas proteínas e os parâmetros clínicos e laboratoriais em pacientes com ICFEN.

Métodos: Os prontuários de pacientes atendidos no ambulatório de cardiology para ICFER foram triados. Aqueles com ICFER caquéticos foram identificados e constituiram o grupo de estudo (n = 44; idade média, 65,4 ± 11,2 anos; 61,4% de homens). Aqueles com ICFER e sem perda de peso foram arrolados como grupo controle (n = 42; idade média, 61,0 ± 16,5 anos; 64,3% de homens). Os níveis séricos de adropina e irisina de todos os pacientes foram medidos. Considerou-se significativo um p-valor < 0,05.

Resultados: Os níveis séricos de adropina e irisina foram significativamente mais altos nos pacientes caquéticos do que nos controles [adropina (ng/L): 286,1 (231,3-404,0) vs 213,7 (203,1-251,3); p < 0,001; irisina (μg/mL): 2,6 (2,2-4,4) vs 2,1 (1,8-2,4); p = 0,001]. Os níveis séricos de adropina e irisina correlacionaram-se positivamente com os níveis de peptídeo natriurético cerebral (BNP) e a classe funcional da New York Heart Association (NYHA), e negativamente com o índice de massa corporal (IMC) e os níveis séricos de albumina (todos os p- valores: < 0,001). Na análise multivariada, a adropina foi o único preditor independente de caquexia nos pacientes com ICFER (OR: 1,021; IC 95%: 1,004–1,038; p = 0,017).

Conclusões: Os resultados sugerem que a adropina e a irisina possam ser novos marcadores de caquexia cardíaca em pacientes com ICFER. Adropina e irisina estão relacionadas com a gravidade da insuficiência cardíaca. (Arq Bras Cardiol. 2018; 111(1):39-47)

Palavras-chave: Caquexia / complicações, Insuficiência Cardíaca / fisiopatologia, Hipertrofia Ventricular Esquerda, Função Ventricular Esquerda, Adropina, Peptídeos, Hormônios.

Abstract

Background: Cardiac cachexia is an important predictive factor of the reduction in survival of patients with heart failure with reduced ejection fraction. The aims of the present study were to evaluate adropin and irisin levels in cachectic and non-cachectic subjects and the relationships between the levels of these proteins and the clinical and laboratory parameters in patients with HFrEF.

Methods: The clinical records of patients who were admitted to the cardiology outpatient clinic for heart failure with reduced ejection fraction were screened. Cachectic patients were identified and assigned to the study group (n = 44, mean age, 65.4 ± 11.2 y; 61.4% men). Heart failure with reduced ejection fraction patients without weight loss were enrolled as the control group (n = 42, mean age, 61.0 ± 16.5 y; 64.3% men). The serum adropin and irisin levels of all patients were measured. A p-value < 0.05 was considered significant.

Results: Serum adropin and irisin levels were significantly higher in the cachexia group than in the controls [adropin (ng/L): 286.1 (231.3-404.0) vs 213.7 (203.1-251.3); p < 0.001, Irisin (μg/mL): 2.6 (2.2-4.4) vs 2.1 (1.8-2.4); p = 0.001]. Serum adropin and irisin levels were positively correlated with brain natriuretic peptide (BNP) levels and New York Heart Association (NYHA) class and negatively correlated with body mass index (BMI) and serum albumin levels (all p-values: < 0.001). In a multivariate analysis, adropin was the only independent predictor of cachexia in the heart failure with reduced ejection fraction patients (OR: 1.021; 95% CI: 1.004–1.038; p = 0.017).

Conclusions: The results suggest that adropin and irisin may be novel markers of cardiac cachexia in heart failure with reduced ejection fraction patients. Adropin and irisin are related with the severity of heart failure. (Arq Bras Cardiol. 2018; 111(1):39-47)

Keywords: Cachexia / complications; Heart Failure / physiopathology, Hypertrophy, Left Ventricular, Ventricular Function, Left; Adropin; Peptides; Hormones.
Introdução

A insuficiência cardíaca com fração de ejeção reduzida (ICFER), uma doença multifatorial e comum, é considerada um importante problema de saúde pública no mundo todo. A caquexia cardíaca, caracterizada por perda muscular, com ou sem perda de massa gorda, é uma complicaçãograve da ICFER e representa risco de morte. Além disso, alguns estudos mostraram ser um importante e independente fator prognóstico de mortalidade cardiovascular após ajuste para idade, fração de ejeção ventricular esquerda e capacidade funcional para a prática de atividade física.1-6 A adropina é uma nova proteína ligada à membrana, que contêm 76 aminoácidos, sendo codificada pelo gene envolvido na homeostase energética.7 É predominantemente expressa no fígado, cérebro, artérias coronárias, endotélio vascular e coraçãotodas as camadas.8 Um estudo recente relatou que níveis plasmáticos elevados de adropina em pacientes com ICFER foram positivamente correlacionados com a gravidade da doença, classificada segundo a New York Heart Association (NYHA).9 A irisin é uma proteína termogênica, expressa no tecido adiposo, músculo cardíaco, coração e outros tecidos periféricos. As principais funções da irisin são o consumo de energia ao converter tecido adiposo branco em tecido adiposo marrom e a regulação do metabolismo de carbohidratos, resultando em melhor homeostase da glicose e sensibilidade à insulina, além de perda de peso.6-11

A caquexia cardíaca na ICFER associa-se com comprometimento da homeostase energética devido ao desequilíbrio anabólico e catabólico, e os níveis séricos de adipona e irisin desempenham importante papel no equilíbrio energético e metabolismo. Com base nisso, levantamos a hipótese de que os níveis séricos de adipona e irisin difeririam entre pacientes com ICFER caquéticos e não caquéticos.

Este estudo teve como objetivos: 1) investigar os níveis séricos de adipona e irisin em pacientes com ICFER caquéticos e não caquéticos e 2) investigar a relação entre os níveis séricos de adipona e irisin e os parâmetros clínicos e laboratoriais em pacientes com ICFER.

Métodos

Seleção de pacientes e protocolo do estudo

Para identificar pacientes caquéticos, triam os prontuários médicos de pacientes atendidos no ambulatório de cardiologia de um hospital universitário para o diagnóstico ou tratamento de ICFER. Subsequentemente, os pacientes foram contatados por telefone e solicitados a comparecer ao ambulatório. Aqueles com ICFER sem perda de peso foram arrolados como grupo controle.

Os critérios de inclusão foram o diagnóstico de ICFER de acordo com a Diretriz para Diagnóstico e Tratamento de Insuficiência Cardiaca Aguda e Crônica da ESC de 2012 e tratamento para ICFER por pelo menos 6 meses antes do arrolamento no estudo.12 Os critérios de exclusão foram os seguintes: insuficiência cardíaca aguda descompensada, insuficiência cardíaca com fração de ejeção preservada, hospitalização por síndrome coronariana aguda, valvulopatia cardíaca primária, doença pulmonar obstrutiva crônica, doença vascular periférica, doença musculoesquelética, doença inamlatória ou infecciosa aguda/crônica, doenças do tecido conjuntivo, neoplasias, cardiopatia congênita, insuficiência hepática, insuficiência renal aguda ou crônica terminal, trauma ou grande cirurgia recente e gravidez.

Dados demográficos, clínicos e laboratoriais e os tratamentos médicos administrados a cada paciente durante sua hospitalização-índice foram registrados em uma revisão sistemática dos prontuários médicos. Para determinar os valores da fração de ejeção ventricular esquerda, todos os indivíduos foram submetidos a ecocardiografia transtorácica (Vivid S5; General Electric, Wisconsin, EUA) por um profissional experiente. Determinou-se a fração de ejeção ventricular esquerda com o método de discos de Simpson e a ecocardiografia bidimensional.

Todos os pacientes tinham mais de 18 anos e assinaram o termo de consentimento livre e informado, que foi um pré-requisito para o arrolamento. O estudo estava de acordo com a Declaração de Helsinque, e o protocolo do ensaio foi aprovado pelo Comitê de Ética local.

Medidas laboratoriais

As amostras de sangue foram obtidas por punção venosa em tubos contendo o anticoagulante ácido etilenodiamino tetra-acético (EDTA). As amostras foram colhidas da veia antecubital, com o paciente sentado, após jejum noturno de 12 horas. O soro foi obtido por centrífugação a 4000 rpm a 4°C por 20 minutos, sendo então armazenado a -80°C até a análise. Todos os parâmetros bioquímicos e hematológicos de rotina foram medidos no mesmo dia da coleta. Os parâmetros bioquímicos, incluindo glicemia de jejum, creatinina, colesterol total, colesterol da lipoproteína de alta densidade (HDL), colesterol da lipoproteína de baixa densidade (LDL) e triglicérides (TG), foram medidos usando um auto-analisador com kits comerciais Abbott Diagnostics C8000i (Abbott, Alemanha). O colesterol-LDL foi estimado aplicando-se a fórmula de Friedewald para amostras com TG ≤ 400 mg/dl. Os parâmetros hematológicos foram obtidos usando-se o analisador hematológico Coulter LH 780 (Beckman Coulter Ireland, Inc., Mervue, Galway, Irlanda). Os níveis séricos do peptídeo natriurético (BNP) (pg/ml) foram medidos com os kits comerciais (Phoenix Pharmaceuticals, Inc., Burlingame, CA, EUA).

Os níveis séricos de adipona foram medidos com kits comerciais usando o método enzyme-linked immunosorbent assay (ELISA) (Human adiponectin ELISA kit, catálogo no.ck-e90267, Hangzhou Eastbiopharm Co., Blue Ocean International Times Mansion, China), com um baixo limite de sensibilidade de 2,49 ng/ml. Todas as amostras foram medidas em duplicata em um único experimento. Os coeficientes de variação intra- e intercepto desse kit foram < 10% e < 12%, respectivamente. O intervalo de detecção da adipona foi 5-1000 ng/l. Os níveis séricos de irisin foram detectados com um kit comercial, usando o método ELISA (Human irisin ELISA kit, catálogo no. CK-E90905, Hangzhou Eastbiopharm Co., Blue Ocean International Times Mansion, China). O limite de sensibilidade foi 0,023 μg/ml, e os coeficientes
de variação intra-e inter-ensaio desse kit foram < 10% e < 12%, respectivamente. O intervalo de detecção da irisina foi 0,05-15 μg/ml.

Definições

A caquexia cardíaca pode ser definida como doença subjacente e perda de peso involuntária não edematosa ≥ 6% nos 6-12 meses anteriores.12,13

Diagnosticou-se hipertensão se a pressão arterial sistólica fosse superior a 140 mmHg, a pressão arterial diastólica fosse superior a 90 mmHg, ou o paciente estivesse usando anti-hipertensivos. Definiu-se hiperlipidemia como níveis séricos de jejum de colesterol total > 200 mg/dl, LDL colesterol > 130 mg/dl, TG > 180 mg/dl ou uso de hipolipemiantes. Definiu-se diabetes mellitus como história prévia da doença, uso de insulina ou hipoglicemiantes orais, ou glicemia de jejum ≥ 126 mg/dl em duas ocasiões em pacientes não tratados previamente.14 Usaram-se medidas antropométricas para determinar índice de massa corporal (IMC), espessura da prega cutânea tricipital (PCT) e circunferência do braço (CB). Mediu-se a espessura da PCT com um plicômetro do tipo Holtain. A área muscular do braço (AMB) foi calculada pela fórmula (CB-PCT × π) 2/4 × π, sendo considerada um indicador de massa muscular corporal.15 As alturas e os pesos dos participantes do estudo foram medidos, sendo o IMC calculado pela divisão do peso corporal em quilograma pelo quadrado da altura em metro (kg/m²).

Análise estatística

As análises descritivas foram apresentadas como médias e desvios-padrão ou mediana e intervalo interquartil (IQ), variando do percentil 25 ao 75). O tamanho do efeito padrão do qui-quadrado foi usado para comparar as variáveis categóricas entre os dois grupos. Curvas 'receiver operating characteristic' foram construídas para BNP, adipona e irisina. Ao se observar um ponto de corte significativo, registraram-se a sensibilidade, a especificidade e os valores preditivos positivo e negativo. Realizou-se análise de correlação de Spearman para determinar a associação dos níveis de adropina e irisina com as variáveis examinadas. Análises de regressão logística múltipla foram realizadas para identificar os fatores de risco independentes associados com caquexia. As variáveis que se mostraram estatisticamente significativas nas análises univariadas foram introduzidas na análise de regressão logística múltipla. Um nível geral de erro tipo I de 5% foi usado para inferir significância estatística, sendo um valor de p < 0,05 considerado significativo. As análises estatísticas foram realizadas usando-se a versão 20.0 do programa Statistical Package for Social Sciences (IBM SPSS 17 Statistics for Windows, Armonk, NY, EUA).

Resultados

O presente estudo incluiu 86 pacientes com ICFER: 44 com caquexia cardíaca (idade média, 65,4 ± 11,2 anos; 61,4% de homens) e 42 com peso corporal normal (idade média, 61 ± 16,5 anos; 64,3% de homens). A Figura 1 mostra a diferença de peso entre os dois grupos. A Tabela 1 apresenta as características basais demográficas e clínicas dos grupos do estudo. Como esperado, IMC, PCT e AMB foram significativamente menores no grupo de caquexia cardíaca do que no não caquetudo. Além disso, a classe funcional segundo NYHA dos grupos diferiu significativamente, com mais pacientes do grupo de caquexia cardíaca classificados como classe funcional III e IV da NYHA, e mais pacientes do grupo não caquetudo classificados como classe funcional I e II da NYHA.

A Tabela 1 apresenta as características laboratoriais basais dos dois grupos. Os níveis de hemoglobina, albumina e HDL colesterol foram significativamente mais altos nos indivíduos não caquetéicos do que nos caquetéicos. Ademais, os níveis séricos de BNP, adipona e irisina foram significativamente maiores no grupo caquetéico do que no não caquetudo (adropina (ng/l): 286,1 (231,3-404,0) vs 213,7 (203,1-251,3), p < 0,001; irisina (μg/ml): 2,6 (2,2-4,4) vs 2,1 (1,8-2,4), p = 0,001; BNP (pg/ml): 698,0 (340,0-1517,0) vs 1408,5 (725,0-4041,0), p < 0,001). A análise da associação entre os níveis de adropina e irisina e os parâmetros clínicos e laboratoriais dos pacientes (Tabela 2) revelou que a classe funcional da NYHA e os níveis de BNP correlacionaram-se de maneira significativa e positiva com os níveis de adipona e irisina. Entretanto, IMC, AMB, PCT e albumina sérica, que foram significativamente indicadores clínicos e laboratoriais indiretos de caquexia cardíaca, correlacionaram-se de maneira significativa e inversa com os níveis de adipona e irisina. Além disso, os níveis de adipona e irisina correlacionaram-se diretamente com a ICFER, e os níveis de creatinina correlacionaram-se positivamente com os de irisina.

Para investigar o valor discriminativo dos níveis séricos de BNP, adipona e irisina em pacientes com ICFER caquetéicos e não caquetéicos, construiu-se uma curva ‘receiver operating characteristic’ para sensibilidade e especificidade, usando-se as respectivas áreas sob a curva (AUC) (Figura 2 e Tabela 3). Os resultados indicaram que os níveis de adipona superiores a 229,4 pg/ml tinham sensibilidade de 77,3% e especificidade de 64,3% para caquexia cardíaca em pacientes com ICFER (AUC: 0,770; intervalo de confiança (IC) 95%: 0,668-0,872; p < 0,001). Ademais, a sensibilidade dos níveis de irisina superiores a 2,2 pg/ml foi de 75,0%, enquanto a especificidade foi de 52,4% para caquexia (AUC: 0,705; IC 95%: 0,596-0,815; p < 0,001).

As variáveis que se mostraram estatisticamente significativas nas análises univariadas foram introduzidas na análise de regressão logística multivariada, na qual a adropina (odds ratio (OR) 1,021; IC 95%: 1,004–1,038; p = 0,017) foi o único preditor independente da presença de caquexia nos pacientes com ICFER (Tabela 4).
Discussão

Os principais achados deste estudo foram: 1) níveis séricos de adropina e irisina significativamente mais altos no grupo de caquexia do que no não caquético; 2) classe funcional da NYHA e níveis de BNP, que são indicadores validados da gravidade da ICFER, significativa e positivamente associados com os níveis de adropina e irisina; 3) relação direta entre os níveis de adropina e irisina; 4) sensibilidades de adropina e de irisina mais altas do que suas especificidades para predizer caquexia cardíaca, além de sensibilidades de adropina e de irisina mais altas do que a sensibilidade do BNP; e 5) a adropina foi o único preditor independente da presença de caquexia em pacientes com ICFER.

A incidência anual de caquexia cardíaca em pacientes com classe funcional III-IV da NYHA foi relatada em 10%, sendo a prevalência de 12-15% entre aqueles com classe funcional II-IV da NYHA. Vários fatores, incluindo comprometimento da ingestão e absorção de alimentos, ativação imunológica e neuro-hormonal, disfunção endotelial, aumento da resistência insulinica, desencadeamento da produção de citocinas pró-inflamatórias e desequilíbrio anabólico e catabólico, desempenham papel fundamental no processo de caquexia cardíaca, além de malnutrição e perda de massa esquelética.

Isso se associa com mau prognóstico de curto e longo prazo, resposta desfavorável ao tratamento medicamentoso e má qualidade de vida. Estudos prévios relataram elevação dos níveis de alguns hormônios e peptídeos, como adiponectina, grelina, leptina e melanocortina, em pacientes caquéticos com ICFER. Entretanto, não há estudos sobre os níveis de adropina e irisina nesses pacientes. No presente estudo, os níveis foram significativamente elevados nos pacientes com ICFER e caquexia cardíaca em comparação aos daqueles não caquéticos.

Sente et al. relataram que a deficiência energética cardíaca e muscular esquelética tem importante papel na fisiopatologia da insuficiência cardíaca, resultando em um estado hiperadrenérgico. Os níveis séricos dos ácidos graxos livres aumentam com o estado hiperadrenérgico e inibem a glicólise e a captação de glicose no coração e no músculo esquelético, com subsequentes elevações da glicemia. Injúria pancreática multifatorial, associada à hiperlipidemia, causa resistência insulinica sistêmica e miocárdica. O conceito de insuficiência metabólica na ICFER inclui excesso de reatividade catabólica (lipólise) e deficiência anabólica, com o excesso de reatividade catabólica ativando as vias glicolítica e lipolítica, enquanto que a deficiência anabólica induz perda de massa e função do músculo esquelético.

A adropina é uma proteína recentemente identificada, implicada na manutenção da homeostase energética. Um estudo de camundongos com deficiência de adropina sugeriu que esse hormônio peptídico seja necessário à manutenção da sensibilidade insulinica e proteção contra a intolerância à glicose. Portanto, levantamos a hipótese de que os níveis de adropina possam aumentar como consequência de resistência insulinica em pacientes com ICFER.

Kumar et al. relataram que a superexpressão ou administração sistêmica de adropina em camundongos com obesidade induzida por dieta resultou em significativa melhora...
Tabela 1 – Características basais demográficas, clínicas e laboratoriais dos grupos do estudo

	ICC sem caquexia (n = 42)	ICC com caquexia (n = 44)	p valor
Idade, (anos), média (DP)	61,0 (16,47)	65,4 (11,18)	0,179
Sexo masculino, n (%)	27 (64,3)	27 (61,4)	0,779
NYHA, classe I-II, n (%)	30 (60)	20 (40)	0,015
classe III-IV, n (%)	12 (33,3)	24 (66,7)	
Etiologia isquêmica, n (%)	28 (66,7)	26 (59,1)	0,468
FEVE, n (%)			
Parâmetros antropométricos			
Parâmetros laboratoriais			
Glicemia (mg/dl), média (DP)	155,3 (78,5)	150,3 (48,3)	0,685
Creatinina (mg/dl), média (DP)	1,15 (0,63)	1,19 (0,8)	0,997
Hemoglobina (%), média (DP)	11,9 (1,36)	11,3 (1,34)	0,049
Leucócitos (mg/l), média (DP)	8,35 (4,2)	8,45 (3,98)	0,742
Adropina (ng/l) mediana (IIQ)	213,7 (203,1-251,3)	286,1 (231,3-404,0)	< 0,001*
Irisina (μg/ml), mediana (IIQ)	2,1 (1,8-2,4)	2,6 (2,2-4,4)	0,001*
BNP (pg/ml), mediana (IIQ)	688,0 (340,0-1517,0)	1408,5 (725,0-4041,0)	0,001*
Albumina (mg/dl), média (DP)	3,3 (0,46)	3,12 (0,36)	0,041
Sódio (mEq/l), média (DP)	138,7 (10,1)	135,7 (8,7)	0,136
Colesterol total (mg/dl), média (DP)	164,5 (44,1)	153,2 (44,4)	0,240
LDL-colesterol (mg/dl), média (DP)	108,4 (40,5)	101,1 (32,7)	0,366
HDL-colesterol (mg/dl), média (DP)	36,2 (10,4)	31 (9,1)	0,015
Triglicerídeos (mg/dl), média (DP)			
Terapia medicamentosa			
Furosemida, n (%)	35 (83,3)	40 (90,9)	0,283
IECA/BRA, n (%)	20 (47,8) / 11 (26,2)	28 (63,6) / 11 (25,2)	0,136
Estatinas, n (%)	26 (61,9)	30 (68,2)	0,542
Betabloqueador, n (%)	16 (38,1)	18 (40,9)	0,790
Ivabradina, n (%)	33 (78,6)	39 (88,6)	0,206
TRC, n (%)	9 (21,4)	6 (13,8)	0,341

n: número; DP: desvio-padrão; IIQ: intervalo interquartil; NYHA: New York Heart Association; FEVE: fração de ejeção ventricular esquerda; IMC: índice de massa corporal; PCT: prega cutânea tricipital; AMB: área muscular do braço; BNP: peptídeo natriurético cerebral; LDL: lipoproteína de baixa densidade; HDL: lipoproteína de alta densidade; IECA: inibidor da enzima de conversão da angiotensina; BRA: bloqueador do receptor de angiotensina; TRC: terapia de ressincronização cardíaca.

*: teste U de Mann-Whitney.
Tabela 2 – Correlações de adropina e irisina com os parâmetros clínicos e laboratoriais dos pacientes

	Idade	IMC	AMB	PCT	Albumina	BNP	NYHA	Irisina	FEVE	Creatinina
Adropina	r	0,077	-0,463	-0,386	-0,415	0,676	0,762	0,669	-0,042	0,177
	p	0,480	<0,001	<0,001	<0,001	0,02	<0,001	<0,001	0,02	0,704
Irisina	r	0,044	-0,384	-0,279	-0,374	-0,323	0,403	0,523	0,123	0,232
	p	0,687	<0,001	<0,001	<0,001	0,002	<0,001	<0,001	0,259	0,031

IMC: índice de massa corporal; AMB: área muscular do braço; PCT: prega cutânea tricipital; BNP: peptídeo natriurético cerebral; NYHA: New York Heart Association; FEVE: fração de ejeção ventricular esquerda.

Figura 2 – Curva receiver-operating characteristic para valor discriminativo dos níveis séricos de adropina, irisina e BNP em pacientes com ICFER sistólica com e sem caquexia.

Na sensibilidade insulínica e perda de peso. Logo, a perda de peso em pacientes caquéticos com ICFER poderia contribuir para a elevação dos níveis séricos de adropina. Os achados deste estudo apontam para a associação metabólica de aumento da adropina sérica com perda muscular e lipólise em pacientes caquéticos com ICFER.

Além dos importantes efeitos metabólicos da adropina, Lovren et al., atribuíram um potencial papel endotelial protetor à essa proteína que é provavelmente mediada pela superexpressão da sintase de óxido nítrico endotelial (eNOS). Aqueles autores sugeriram que a adropina possa auxiliar na proteção contra doenças vasculares ao elevar de maneira significativa a expressão da eNOS das células endoteliais das artérias coronárias. Topuz et al., relataram níveis reduzidos de adropina em pacientes com diabetes tipo 2 e disfunção endotelial. Wu et al., mostraram uma associação inversa e independente entre os níveis de adropina e a gravidade da aterosclerose coronariana em pacientes diabéticos. Zhang et al., apresentaram resultados similares para pacientes com doença arterial coronariana estável. Esses mesmos autores, em outro estudo, relataram uma importante associação entre os níveis reduzidos de adropina, a alta pontuação no escore SYNTAX e a gravidade da doença arterial coronariana estável. Yu et al., examinaram o papel da adropina no infarto agudo do miocárdio (IAM) e mostraram redução dos níveis séricos de adropina em casos de IAM.

Ao elevar a eNOS, a adropina pode melhorar a disfunção endotelial, o que foi amplamente relatado em pacientes com ICFER, assim como desacelerar a disfunção ventricular esquerda na ICFER. Lian et al., correlacionaram os níveis elevados de adropina na ICFER com a gravidade da ICFER de acordo com a classe da NYHA e os níveis de BNP. O presente estudo revelou achados e relações similares em pacientes caquéticos com ICFER. Diferentemente do estudo de Lian et al., no qual os níveis de adropina e o IMC correlacionaram-se diretamente entre si, houve uma relação inversa entre os níveis de adropina e o IMC na caquexia cardíaca no presente estudo, como esperado.
Tabela 3 – Análise da curva receiver-operating characteristic de adropina, irisina e peptídeo natriurético cerebral (BNP) para predição de caquexia

Variável	AUC	EP	IC 95%	P valor	Sensibilidade	Especificidade	VPP	VPN
Adropina	0,770	0,052	0,668-0,872	0,0001	77,3	64,3	69,4	73,0
Irisina	0,705	0,056	0,596-0,815	0,001	75,0	52,4	62,3	66,7
BNP	0,700	0,056	0,590-0,811	0,001	72,7	61,9	66,7	68,4

AUC: área sob a curva (area under the curve); EP: erro-padrão; VPP: valor preditivo positivo; VPN: valor preditivo negativo.

Tabela 4 – Análises de regressão logística para identificar os fatores de risco independentes associados com caquexia cardíaca

	Unvariada			Multivariada		
	p OR IC 95%	p OR IC 95%				
Albumina	0,044	0,331	0,113-0,972	0,387	0,571	0,161-2,029
BNP	0,013	1,000	1,000-1,001	0,770	1,000	1,000-1,000
Idade	0,151	1,023	0,992-1,056	0,770	1,000	1,000-1,000
Sexo	0,779	1,133	0,472-2,720	0,776	0,880	0,378-2,047
Irisina	0,025	1,865	1,081-3,218	0,776	0,880	0,378-2,047
Adropina	0,002	1,016	1,006-1,026	0,017	1,021	1,004-1,038
Creatinina	0,790	1,098	0,604-1,994	0,880	1,000	1,000-1,000
Glicose	0,720	0,999	0,992-1,005	0,880	1,000	1,000-1,000
FEVE	0,880	0,996	0,939-1,056	0,880	1,000	1,000-1,000
Colesterol total	0,239	0,994	0,984-1,004	0,880	1,000	1,000-1,000
Triglicerídeos	0,302	0,996	0,987-1,004	0,880	1,000	1,000-1,000
LDL	0,363	0,995	0,983-1,006	0,880	1,000	1,000-1,000
HDL	0,022	0,941	0,893-0,991	0,102	0,950	0,893-1,010
NYHA III - IV	0,016	3,000	1,226-7,339	0,463	0,550	0,111-2,717

BNP: peptídeo natriurético cerebral; FEVE: fração de ejeção ventricular esquerda; LDL: lipoproteína de baixa densidade; HDL: lipoproteína de alta densidade; NYHA: New York Heart Association.

Embora a irisina seja predominantemente expressa no músculo e diretamente associada com a massa muscular, pode ser expressa em diferentes tecidos. Sabe-se que o tecido adiposo marrom dissipa energia na forma de calor através da ativação da proteína 1 desacopladora. Esse processo aumenta o gasto energético, reduz o peso corporal e melhora os parâmetros metabólicos, como a sensibilidade à insulina. No tecido adiposo branco, a irisina estimula as alterações fenotípicas BAT-like (tipo tecido adiposo marrom) através de um processo conhecido como ‘tornar amarronzado’. Com base nessas propriedades, propôs-se que a irisina fosse um possível novo tratamento para diabetes e obesidade. Embora alguns estudos tenham relatado correlações positivas entre irisina e IMC, outros obtiveram resultados contraditórios. O presente estudo revelou uma correlação inversa entre irisina e IMC. Além disso, AMB, PCT e níveis séricos de albumina foram inversamente relacionados com irisina. Em pacientes com ICFER, perdas muscular, adiposa e óssea foram associadas com piores desfechos. Ademais, um estudo recente demonstrou uma redução gradual nos níveis de irisina em pacientes com IAM, sugerindo que a irisina possa ser um novo marcador diagnóstico nesse contexto. Em um estudo recentemente publicado, Shen et al. relataram níveis séricos de irisina significativamente mais altos em pacientes que morreram por insuficiência cardíaca aguda (ICA) em comparação aos daqueles que sobreviveram à ICA, sendo preditores de mortalidade por todas as causas em 1 ano em pacientes com ICA. Naquele estudo, determinaram-se a irisina e o NT-pró-BNP por análise da curva ROC. O NT-pró-BNP (AUC: 0,670) apresentou apenas valor prognóstico moderado para risco de mortalidade por ICA em comparação ao nível sérico de irisina (AUC: 0,753). Os achados daquele estudo são similares aos nossos. Isso pode ser consequência do metabolismo do tecido adiposo e da resistência insulínica. Estudos são necessários para determinar se os níveis de irisina resultam da reduzida massa muscular periférica em pacientes caquetos com ICFER. Além disso, o nosso estudo mostrou que a adropina é melhor preditor do que a irisina e o BNP. No nosso estudo, apenas a adropina mostrou ser preditor independente de caquexia em pacientes com insuficiência cardíaca. Ainda que a irisina tenha predito caquexia cardíaca na análise univariada, não o fez na análise multivariada. A irisina mostrou-se um biomarcador preditivo de mortalidade por todas as causas em 1 ano no estudo de Shen et al. Tal diferença pode dever-se ao fato de que a molécula de adropina não foi usada na análise multivariada desse estudo. Investigação adicional é necessária para examinar essa relação.
À semelhança da adropina, a irisina correlacionou-se de maneira significativa e positiva com os níveis de BNP e a classe funcional da NYHA. Os peptídeos natriuréticos, como BNP, além dos peptídeos diuréticos e vasodilatadores, desencadeiam lipólise em seres humanos e desempenham um papel no metabolismo da gordura. Logo, levantamos a hipótese de que a lipólise pelo BNP deve estar associada com a síntese de adropina e irisina em pacientes caquéticos com ICFER. Estudo adicional se faz necessário para elucidar o mecanismo preciso da liberação de adropina e irisina em pacientes com caquexia cardíaca.

Limitações do estudo

O presente estudo tem limitações. Em primeiro lugar, sua amostra foi relativamente pequena. Entretanto, os resultados apontam para uma importante relação entre os níveis de adropina e irisina e a caquexia cardíaca em pacientes com ICFER. Em segundo, a falta de dados de seguimento sobre futuros eventos cardiovasculares adversos maiores, incluindo mortalidade ou hospitalização por ICFER, indica que o valor prognóstico dos níveis das duas proteínas não pôde ser avaliado.

Conclusões

O presente estudo mostrou níveis séricos de adropina e irisina significativamente elevados nos pacientes caquéticos com ICFER, e que tais níveis estavam significativamente associados com marcadores previamente validados de gravidade da ICFER, como nível de BNP e classe funcional da NYHA. Esses resultados sugerem que a adropina e a irisina possam ser novos marcadores de caquexia cardíaca em pacientes com ICFER. A adropina e a irisina estão relacionadas com a gravidade da insuficiência cardíaca.

Referências

1. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, et al; American College of Cardiology; American Heart Association Task Force on Practice Guidelines; American College of Chest Physicians; International Society for Heart and Lung Transplantation; Heart Rhythm Society. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation. 2005;112(12):e154-235.

2. Pureza V, Florea VG. Mechanisms for cachexia in heart failure. Curr Heart Fail Rep. 2013;10(4):307-14.

3. von Haehling S, Doehner W, Anker SD. Nutrition, metabolism, and the complex pathophysiology of cachexia in chronic heart failure. Cardiovasc Res. 2007;73(2):298-309.

4. Anker SD, Chua TP, Porikoski P, Harrington D, Swan IW, Kos WJ, et al. Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation. 1997;96(2):526-34.

5. Kumar KG, Tvebakks JL, Lam DD, Sutton GM, Koza RA, Choulenko VN, et al. Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism. Cell Metab. 2008;8(6):468-81.

6. Aydin S. Three new players in energy regulation: preptin, adropin and irisin. Peptides. 2014 Jun;56:94-110.

7. Lian W, Gu X, Qin Y, Zheng X. Elevated plasma levels of adropin in heart failure patients. Intern Med. 2011;50(15):1523-7.

8. Wu L, Fang J, Chen L, Zhao Z, Luo Y, Lin C, et al. Low serum adropin is associated with coronary atherosclerosis in type 2 diabetic and non-diabetic patients. Clio Chem Lab Med. 2014;52(5):751-8.

9. Topuz M, Celik A, Aslanitas T, Demir AK, Aydin S, Aydin S. Plasma adropin levels predict endothelial dysfunction like flow-mediated dilatation in patients with type 2 diabetes mellitus. J Investig Med. 2013;61(8):1161-4.

10. Celik A, Balin M, Kobat MA, Erdem K, Baydas A, Bulut M, et al. Deficiency of a new protein associated with cardiac syndrome X; called adropin. Cardiovasc Thes. 2013;31(3):174-8.

11. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-dependent myokine that drives brown-fat-like development of white fat. Nature. 2012;481(7382):463-8.

12. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, et al. ESC Committee for Practice Guidelines. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2012;14(8):803-69. Erratum in: Eur J Heart Fail. 2013;15(3):361-2.
13. Okoshi MP, Romeiro FG, Paiva SA, Okoshi K. Heart failure-induced cachexia. Arq Bras Cardiol. 2013;100(5):476-82.

14. Perk J, De Backer G, Graham I, Reiner Z, Verschuren WM, et al. European Guidelines on Cardiovascular disease prevention in clinical practice (version 2012): the Fifth Joint Task Force of the European Society of Cardiology and other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur J Prev Cardiol. 2012;19(4):585-667.

15. Kyle UC, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gomez J, et al. Bioelectrical impedance analysis: utilization in clinical practice. Clin Nutr. 2004;23(6):1430-53.

16. Pardo M, Crujeiras AB, Amil M, Aquera Z, Jimenez-Murcia S, Botella C, et al. Association of irisin with fat mass, resting energy expenditure, and daily activity in conditions of extreme body mass index. Int J Endocrinol. 2014;2014:857270. doi:10.1155/2014/857270. Epub 2014 Apr 22.

17. Invernizzi M, Carda S, Cisari C; Società Italiana per lo Studio della Sarcopenia e della Disabilità Muscolo-Scheletrica (SISDIM). Possible synergism of physical exercise and ghrelin-agonists in patients with cachexia associated with chronic heart failure. Aging Clin Exp Res. 2014;26(4):341-51.

18. Doehner W, Frenneaux M, Anker SD. Metabolic impairment in heart failure: the myocardial and systemic perspective. J Am Coll Cardiol. 2014;64(13):1388-400.

19. Szent T, Scherbakov N, Sandek A, Kung T, von Haehling S, Lainscak M, et al. Plasma adiponectin in heart failure with and without cachexia: catabolic signal linking catabolism, symptomatic status, and prognosis. Nutr Metab Cardiovasc Dis. 2014;24(1):50-6.

20. Zhonghua Yi Xue Za Zhi. 2014;94(16):1255-7.

21. Sente T, Van Berendocks AM, Hoymans VY, Vrints CJ. Adiponectin resistance in skeletal muscle: pathophysiological implications in chronic heart failure. J Cachexia Sarcopenia Muscle. 2016;7(3):261-74.

22. Ashrafian H, Frenneaux MP, Ojie LH. Metabolic mechanisms in heart failure. Circulation. 2007;116(4):434-48.

23. Butler AA, Tam CS, Stanhope KL, Wolfe BM, Ali MR, O’ Keeffe M, et al. Low circulating adipron concentrations with obesity and aging correlate with risk factors for metabolic disease and increase after gastric bypass surgery in humans. J Clin Endocrinol Metab. 2012;97(10):3783-91.

24. Loven F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta M, et al. Adiponin is a novel regulator of endothelial function. Circulation. 2010;122(11 Suppl):S185-92.

25. Zhang C, Zhao L, Xu W, Li J, Wang B, Gu X, et al. (Correlation of serum adiponin level with coronary artery disease). Zhonghua Yi Xue Za Zhi. 2014;94(16):1255-7.

26. Zhao L, Xu W, Wang L, You T, Chan SP, Zhao X, et al. Serum adiponin level in patients with stable coronary artery disease. Heart Lung Circ. 2015;24(10):975-9.

27. Yu HY, Zhao P, Wu MC, Liu J, Yin W. Serum adiponin levels are decreased in patients with acute myocardial infarction. Regul Pept. 2014;190:191-46-9.

28. Kubo SH, Rector TS, Bank AJ, Williams RE, Heifetz SM. Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulation. 1991;84(1):1583-96.

29. Sente T, Van Berendocks AM, Hoymans VY, Vrints CJ. Adiponectin resistance in skeletal muscle: pathophysiological implications in chronic heart failure. J Cachexia Sarcopenia Muscle. 2016;7(3):261-74.