Japanese structure survey of radiation oncology in 2010

Hodaka Numasaki1,*, Teruki Teshima2, Tetsuo Nishimura3, Keizo Akuta4, Yutaka Ando5, Hiroshi Ikeda6, Norihiko Kamikonya7, Masahiko Koizumi8, Tomonari Sasaki9, Kenji Sekiguchi10, Masao Tago11, Atsuro Terahara12, Katsumasa Nakamura13, Masamichi Nishio14, Masao Murakami15, Yoshimasu Mori16, Kazuhiko Ogawa17, and the Japanese Society for Radiation Oncology Database Committee

1Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
2Department of Radiation Oncology, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka-shi, Osaka, 541-8567, Japan
3Division of Radiation Oncology, Shizuoka Cancer Center Hospital, 1007 Shimonakagubuo, Nagazumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
4Department of Radiology, Japanese Red Cross Otsu Hospital, 1-1-35 Nagara, Otsu-shi, Siga, 520-0000, Japan
5Department of Radiation Oncology, Saitama Medical Center, 4-9-3 Kitaurawa, Urawa-ku, Saitama-shi, Saitama, 330-0074, Japan
6Department of Radiation Oncology, Sakai City Medical Center, 1-1-1 Ebara-cho, Nishi-ku, Sakai-shi, Osaka, 593-8304, Japan
7Department of Radiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya-shi, Hyogo, 663-8501, Japan
8Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
9Division of Medical Quantum Science, Department of Health Sciences, Kyushu University Faculty of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan
10Sonoda-kai Radiation Oncology Clinic, 3-4-19 Hikoma, Adachi-ku, Tokyo, 121-0064, Japan
11Department of Radiology, Tohoku University Mizonokuchi Hospital, 5-1-1 Futako, Takatsu, Kawasaki-shi, Kanagawa, 213-8507, Japan
12Department of Radiology, Tokio University Omori Medical Center, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
13Department of Radiation Oncology, Hamamatsu University Hospital, 1-20-1 Handayama, Higashi-ku, Hamamatsu-shi, Shizuoka, 431-3192, Japan
14Hokkaido Cancer Center, 2-3-54 Kikusui 4yo, Sapporo-shi, Hokkaido, 062-0084, Japan
15Southern TOHOKU Proton Therapy Center, 172-7 Yatsuyamada, Koriyama-shi, Fukushima, 963-8563, Japan
16Department of Radiology and Radiation Oncology, Aichi Medical University, 1-1 Yazakokaramita, Nagakute-ku, Aichi, 480-1195, Japan
17Department of Radiation Oncology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
*Corresponding author. Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-shi, Osaka 565-0871, Japan. Tel/Fax: +81-66-879-2575; Email: numasaki@sahs.med.osaka-u.ac.jp

(Received 16 April 2018; editorial decision 24 April 2018)

ABSTRACT

We evaluated the evolving structure of radiation oncology in Japan in terms of equipment, personnel, patient load, and geographic distribution to identify and overcome any existing limitations. From March 2011 to June 2013, the Japanese Society for Radiation Oncology conducted a questionnaire based on the Japanese national structure survey of radiation oncology in 2010. Data were analyzed based on the institutional stratification by the annual number of new patients treated with radiotherapy per institution. The estimated annual numbers of new and total (new plus repeat) patients treated with radiation were 211,000 and 251,000, respectively. Additionally, the estimated cancer incidence was 805,236 cases, with ~26.2% of all newly diagnosed patients being treated with radiation. The types and numbers of treatment devices actually used included linear accelerator (LINAC; n = 829), telecobalt (n = 9), Gamma Knife (n = 46), 60Co remote afterloading system (RALS; n = 28), and 137Ir RALS (n = 131). The LINAC system used dual-energy functions in 586 units, three-dimensional conformal radiotherapy functions in 663, and intensity-modulated radiotherapy (IMRT) functions in 337. There were 564 JASTRO-certified radiation oncologists, 959.2 full-time equivalent (FTE) radiation oncologists, 1841.3 FTE radiotherapy technologists, 131.3 FTE medical physicists, 121.5 FTE radiotherapy quality managers, and 649.6 FTE nurses. The frequency of IMRT use significantly increased during this year. To conclude, although there was a shortage of personnel in 2010, the Japanese structure of radiation oncology has clearly improved in terms of equipment and utility.

Keywords: structure survey; radiotherapy institution; radiotherapy personnel; radiotherapy equipment
PREFACE
We greatly appreciate the substantial contributions of the many radiation oncologists (ROs), radiation technologists, and other staff to the national structure survey of radiation oncology. Despite some delays, the updated Japanese national structure survey data for radiation oncology in 2010 is now available.

Since 1991, the Japanese Society for Radiation Oncology (JASTRO) has conducted national structure surveys every 2 years [1–24]. From March 2011 to June 2013, the Japanese Society for Radiation Oncology conducted a questionnaire based on the Japanese national structure survey of radiation oncology in 2010, which included the number of treatment systems by type, number of personnel by category, and number of patients by type, site, and treatment modality. To measure variables over a longer time period, data for the year 2010 were also considered. In total, 70% of 780 active institutions attempted the survey; the response rate was 90.4%.

The current report analyzes these institutional structure data (equipment, personnel, patient load, and geographic distribution) based on institutional stratification according to the annual number of new patients treated with radiotherapy at each institution. The clinical working hours of each staff member performing radiation therapy were derived from full-time equivalent (FTE; 40 h per week for radiation oncology work only) data. The Japanese Blue Book Guidelines (JBBG) [25, 26] were used for comparison with the results of this study. These guidelines pertain to the structure of radiation oncology in Japan based on the Patterns of Care Study (PCS) [27, 28] data. The standard guidelines were set at 250–300 (warning level, 400) for annual patient load per external beam machine, at 200 (warning level, 300) for annual patient load per FTE RO, and at 120 (warning level, 200) for annual patient load per FTE radiotherapy technologist. Furthermore, we analyzed data from the designated cancer care hospitals accredited by the Ministry of Health, Labor, and Welfare. As at 1 August 2013, Japan had 397 designated cancer care hospitals [29]. Twenty-three institutions did not return the survey; therefore, the structure data for 374 designated cancer care hospitals were analyzed and compared with the data for all radiotherapy hospitals. The analysis was conducted in two groups: institutions with <1.0 FTE RO and those with ≥1.0 FTE RO.

Here, preliminary results have been presented as tables and figures (Tables 1–18 and Figs 1–6). We have briefly summarized the Japanese national structure survey of radiation oncology for 2010. In total, 780 radiotherapy institutions were surveyed, and the estimated number of new patients was ~211 000; the estimated total number of patients (new plus repeat) was 251 000. In 2010, based on Japanese cancer registries, the cancer incidence was estimated at 805 236 cases [30], with 26.2% (211 000 of 805 236) of all newly diagnosed patients being treated with radiation. Overall, 829 linear accelerators (LINACs), 9 telecobalt units, 46 Gamma Knife, 28 60Co remote afterloading systems (RALS) and 131 192Ir RALS were actually used. The LINAC system used dual-energy functions in 586 units, three-dimensional conformal radiotherapy functions in 663, and intensity-modulated radiotherapy (IMRT) functions in 337. There were 564 JASTRO-certified ROs, 959.2 FTE ROs, 1841.3 FTE radiotherapy technologists, 131.3 FTE medical physicists, 121.5 FTE radiotherapy quality managers, and 649.6 FTE nurses. Approximately 50.0% of all radiotherapy institutions had >200 new radiotherapy patients per year, whereas 31.6% of the institutions had >300. Additionally, 47.5% of all radiotherapy institutions had <1.0 FTE ROs. We expect that this updated national structure survey of radiation oncology for 2010 will aid the continuous improvement of all aspects of radiation oncology in Japan.

CONFLICT OF INTEREST
The authors state that there are no conflicts of interest.

FUNDING
This study was supported by the JASTRO and Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science [JSPS KAKENHI Grant No. JP16K45678].

Table 1. Categories of radiotherapy institution

Institution category	Description
U:	university hospital
G:	cancer center (including national cancer center)
N:	national hospital organization (excluding national cancer center)
P:	public hospital (excluding national cancer center), red cross hospital, saiseikai hospital, company hospital, public corporation hospital, national health insurance hospital
O:	social insurance hospital, mutual insurance hospital, industrial accident hospital, association hospital, Japan agricultural cooperatives hospital
H:	medical corporation hospital, medical association hospital, private hospital, other hospitals
Table 2. Number of radiotherapy institutions by scale classification and institution category

Scale category (annual number of new patients)	Institution category	Total	Institution ratio [%]					
	U	G	N	P	O	H		
A (1–99)	5	2	14	44	35	23	123	17.6
B (100–199)	11	1	27	80	70	38	227	32.4
C (200–299)	14	3	12	41	36	23	129	18.4
D (300–399)	14	5	7	20	25	15	86	12.3
E (400–499)	16	1	1	10	8	9	45	6.4
F (500–)	51	17	2	7	5	13	95	13.6
Total (705)	111	29	63	202	179	121	705	100.0
Institution ratio [%]	15.7	4.1	8.9	28.7	25.4	17.2	100.0	

Table 3. Annual number of new patients by scale classification and institution category

Scale category (number of institutions)	Institution category (number of institutions)	Total (705)	Average					
U (111)	G (29)	N (63)	P (202)	O (179)	H (121)			
A (123)	162	101	750	2677	2498	1475	8897	72.3
B (227)	1573	106	4138	12 067	10 050	5693	33 627	148.1
C (129)	3601	831	2734	10 009	8679	5527	31 381	243.3
D (86)	4774	1656	2318	6700	8521	5012	28 981	337.0
E (45)	7134	476	433	4266	3377	4114	19 800	440.0
F (95)	36 908	14 665	1290	4054	3245	8708	68 870	724.9
Total (705)	54 152	17 835	11 663	39 773	36 370	30 529	190 322	270.0
Average	492.3	615.0	185.1	196.9	203.2	252.3	270.0	

Table 4. Annual number of total (new plus repeat) patients by scale classification and institution category

Scale category (number of institutions)	Institution category (number of institutions)	Total (705)	Average					
U (111)	G (29)	N (63)	P (202)	O (179)	H (121)			
A (123)	178	110	949	3042	2871	1747	8897	72.3
B (227)	1713	147	4809	13 784	11 366	7188	39 007	171.8
C (129)	4288	1096	3111	12 118	9991	6408	37 012	286.9
D (86)	5496	2050	2588	7853	10 327	6443	34 757	404.2
E (45)	8498	583	490	5188	4214	5293	24 266	539.2
F (95)	44 624	17 686	1678	4653	3609	10 662	82 912	872.8
Total (705)	64 797	21 672	13 625	46 638	42 378	37 741	226 851	321.8
Average	583.8	747.3	216.3	230.9	236.7	311.9	321.8	
Table 5. Number of treatment devices and their functions by scale classification

Treatment devices and their functions	Scale category (number of institutions)	Total (705)					
	A (123)	B (227)	C (129)	D (86)	E (45)	F (95)	
LINAC							
with dual-energy function	63	149	105	83	54	152	606
with 3DCRT function (MLC width ≤ 1.0 cm)	83	167	109	93	65	184	701
with IMRT function	17	51	54	66	40	147	375
with cone-beam CT or CT on rail	15	42	37	41	33	71	239
with treatment position verification system (X-ray perspective image)	14	42	44	39	33	74	246
with treatment position verification system (other than those above)	19	49	30	31	17	68	214
Annual no. patients/LINAC	76.0	183.1	280.4	344.1	351.7	420.9	273.6
CyberKnife*	3	5	1	2	2	4	17
Novalis*	1	2	4	5	4	9	25
Tomotherapy*	3	2	1	4	2	3	15
Particle	0	0	0	0	0	7	7
Microtron	0	5	1	0	2	5	13
Telecobalt (actual use)	3 (3)	4 (3)	1 (0)	2 (1)	0 (0)	2 (2)	12 (9)
Gamma knife*	3	11	10	7	6	9	46
Other accelerator	0	0	3	1	0	3	7
Other external irradiation device	0	1	2	0	0	4	7
New type 60Co RALS (in actual use)	0 (0)	3 (3)	4 (3)	3 (3)	2 (2)	6 (6)	18 (17)
Old type 60Co RALS (in actual use)	2 (0)	7 (2)	4 (3)	4 (3)	3 (2)	1 (1)	19 (11)
192Ir RALS (in actual use)	0 (1)	8 (6)	21 (18)	20 (20)	17 (17)	70 (70)	136 (131)
137Cs RALS (in actual use)	0 (0)	0 (0)	0 (0)	1 (1)	0 (0)	0 (0)	1 (1)

Fig. 1. Estimate of increase in demand for radiotherapy in Japan, based on statistical correction of annual change in the number of new patients per year at Patterns of Care Study survey facilities [25]. Crosses and circles denote the estimated numbers of total (new plus repeat) and new patients, respectively, from the results in the structure surveys by the JASTRO.

Fig. 2. Distribution of annual total (new plus repeat) patient load per LINAC in radiotherapy institutions. Horizontal axis represents institutions arranged in order of increasing total annual number of patients per LINAC within the institution. Q1: 0–25%, Q2: 26–50%, Q3: 51–75%, Q4: 76–100%.
Table 6. Numbers of treatment-planning equipment and accessories by scale classification

Treatment-planning equipment and accessories	Scale category (number of institutions)	Total (705)					
	A (123)	B (227)	C (129)	D (86)	E (45)	F (95)	
X-ray simulator	58	105	54	40	21	70	348
CT simulator	91	189	117	86	46	104	633
RTP computer (2 or more)	128 (13)	262 (34)	192 (38)	192 (46)	144 (29)	463 (86)	1 381 (246)
X-ray CT (2 or more)	219 (79)	491 (172)	357 (113)	275 (80)	172 (44)	456 (89)	1 970 (577)
for RT only	40 (34)	105	84	66	35	95	425
MRI (2 or more)	153	321 (89)	227 (87)	173 (69)	107 (41)	271 (80)	1 252 (400)
for RT only	1 (34)	2	6	3	1	3	16
Computer use for RT recording	96	186	109	76	40	86	593
Water phantom (2 or more)	119 (17)	236 (41)	165 (41)	111 (29)	65 (17)	174 (44)	870 (189)
Film densitometer (2 or more)	38 (1)	89 (1)	63 (2)	63 (4)	34 (2)	98 (14)	385 (24)
Dosimeter (3 or more)	311 (56)	690 (130)	482 (80)	358 (59)	203 (33)	564 (78)	2 608 (436)

The numbers in parentheses indicate the number of institutions. CT = computed tomography, RTP = radiotherapy planning, MRI = magnetic resonance imaging, RT = radiotherapy.

Table 7. Numbers of personnel and annual patients by scale classification

Scale (annual no. of new patients)	Scale category (number of institutions)	Total (705)					
	A (123)	B (227)	C (129)	D (86)	E (45)	F (95)	
Institution ratio [%]	≤99	100–199	200–299	300–399	400–499	500≤	
New patients	7663	33 627	31 381	28 981	19 800	68 870	
New patients/institution	62.3	148.1	243.3	337.0	440.0	724.9	
Total patients	8897	39 007	37 012	34 757	24 266	82 912	
Total patients/institution	72.3	171.8	286.9	404.2	539.2	872.8	
Beds	39 816	94 885	61 173	48 128	29 179	71 577	
Institutions with RT beds [%]	18 (14.6)	45 (19.8)	38 (29.5)	40 (46.5)	21 (46.7)	68 (71.6)	230 (32.6)
RT beds	85.0	183.0	204.0	259.5	191.0	982.4	
RT beds/total beds [%]	0.2%	0.2%	0.3%	0.5%	0.7%	1.4%	
RT beds/institution	0.7	0.8	1.6	3.0	4.2	10.3	
RT beds/institution with RT beds	4.7	4.1	5.4	6.5	9.1	14.4	
JRS-certified institutions (%)	13 (10.6)	40 (17.6)	57 (44.2)	55 (64)	36 (80)	79 (83.2)	280 (39.7)
JRS-cooperation institutions (%)	28 (22.8)	94 (41.4)	33 (25.6)	21 (24.4)	8 (17.8)	10 (10.5)	194 (27.5)
JASTRO-certified institutions (%)	2 (1.6)	37 (16.3)	60 (46.5)	57 (66.3)	35 (77.8)	84 (88.4)	275 (39)

Continued
Scale category (number of institutions)	Total (705)
JRS membership (full-time)	69 (123)
JRS-certified ROs (full-time)	57 (227)
JASTRO membership (full-time)	37 (129)
JASTRO-certified ROs (full-time)	13 (86)
Institutions with full-time RO (%)	56 (45.5)
ROs (full-time)	85 (147)
ROs (full-time)/institution	0.7 (109)
FTE RO (full-time)	34.3 (120.6)
FTE RO (full-time)/institution	0.28 (1.2)
ROs (part-time)	107 (131)
ROs (part-time)/institution	0.87 (0.72)
FTE RO (part-time)	16.6 (16.5)
FTE RO (part-time)/institution	0.1 (0.1)
FTE RO (full-time plus part-time)	50.9 (137.0)
FTE RO (full-time plus part-time)/institution	0.41 (1.06)
Radiologists (full-time)	174.9 (377.4)
Radiologists (part-time)	132.7 (203.7)
RTTs (full-time)*	346 (479)
FTE RTT	155.7 (282.5)
Medical physicists (full-time)*	22 (64)
FTE medical physicist	6.5 (21.2)
RT quality manager (full-time)*	29 (87)
FTE RT quality manager	6.7 (25.8)
Dosimetrists (full-time)*	12 (18)
FTE dosimetrist	2.2 (4.1)
Craftworkers (full-time)*	35 (32)
FTE craftworker	6.8 (6.3)
Nurses (full-time)	100 (220)
FTE nurses	44.76 (114.5)
Nursing assistants	5.2 (9.6)
Clerks	29.85 (53.55)

*Overlap is included in the total number of each staff (radiotherapy technologist, medical physicist, and radiotherapy quality manager). RT = radiotherapy, JRS = Japan Radiological Society, RO = radiation oncologist, JASTRO = Japanese Society for Radiation Oncology, FTE = full-time equivalent, RTT = radiotherapy technologist.
Prefecture	Population ($\times 10^3$)	Institutions	New patients	New patients/institution	Total patients	Total patients/institution
Hokkaido	5 506	30	9 520	317.3	12 200	406.7
Aomori	1 373	9	2 049	227.7	2 281	253.4
Iwate	1 330	8	1 684	210.5	1 868	233.5
Miyagi	2 348	11	4 123	374.8	5 758	523.5
Akita	1 086	10	1 787	178.7	2 167	216.7
Yamagata	1 169	6	1 308	218.0	1 570	261.7
Aomori	2 029	10	3 071	307.1	3 524	352.4
Ibaraki	2 970	15	3 638	242.5	4 444	296.3
Tochigi	2 008	8	2 751	343.9	3 534	441.8
Gunma	2 008	13	3 769	289.9	4 271	328.5
Saitama	7 195	20	7 070	353.5	8 990	449.5
Chiba	6 216	23	7 398	321.7	9 034	392.8
Tokyo	13 159	67	23 116	345.0	27 951	417.2
Kanagawa	9 048	39	12 597	323.0	14 331	367.5
Niigata	2 374	15	3 930	262.0	4 410	294.0
Toyama	1 093	8	1 542	192.8	1 761	220.1
Ishikawa	1 170	7	1 994	284.9	2 386	340.9
Fukui	806	6	1 250	208.3	1 487	247.8
Yamanashi	863	4	1 140	285.0	1 338	334.5
Nagano	2 152	15	3 331	222.1	3 940	262.7
Gifu	2 081	12	3 245	270.4	4 244	353.7
Shizuoka	3 765	23	6 019	261.7	7 569	329.1
Aichi	7 411	37	10 113	273.3	12 088	326.7
Mie	1 855	12	1 853	154.4	2 116	176.3
Shiga	1 411	10	1 832	183.2	2 238	223.8
Kyoto	2 636	13	4 032	310.2	4 710	362.3
Osaka	8 865	51	13 528	265.3	15 835	310.5
Hyogo	5 588	32	8 096	253.0	9 294	290.4
Nara	1 401	8	2 200	275.0	2 499	312.4
Wakayama	1 002	10	1 717	171.7	2 063	206.3
Tottori	589	7	968	138.3	1 149	164.1
Shimane	717	5	986	197.2	1 099	219.8
Okayama	1 945	11	2 772	252.0	3 271	297.4

Continued
Table 8. Continued

Prefecture	Population (×10³)	Institutions	New patients	New patients/institution	Total patients	Total patients/institution
Hiroshima	2 861	20	5 128	256.4	6 220	311.0
Yamaguchi	1 451	14	1 991	142.2	2 247	160.5
Tokushima	785	5	1 436	287.2	1 664	332.8
Kagawa	996	6	1 194	199.0	1 266	211.0
Ehime	1 431	11	2 277	207.0	2 631	239.2
Kochi	764	6	1 220	203.3	1 379	229.8
Fukuoka	5 072	26	8 585	330.2	9 903	380.9
Saga	850	4	901	225.3	1 017	254.3
Hyogo	1 427	8	2 343	292.9	2 726	340.8
Kagoshima	1 817	13	3 209	246.8	3 717	285.9
Wita	1 217	5	1 616	146.9	1 913	173.9
Miyazaki	1 706	12	2 671	222.6	2 888	240.7
Okinawa	1 393	7	1 802	257.4	2 028	289.7
Total	128 057	705	190 322	270.0	226 851	321.8

Table 9. Population size and numbers of patients, radiation oncologists, and patient load according to prefecture

Prefecture	Population (×10³)	Total patients	JASTRO-certified RO	FTE RO	Total patients/FTE RO
Hokkaido	5 506	12 200	32	51.1	238.7
Aomori	1 373	2 281	7	9.0	253.4
Iwate	1 330	1 868	5	8.0	233.5
Miyagi	2 348	5 758	11	17.9	321.7
Akita	1 086	2 167	2	8.4	258.0
Yamagata	1 169	1 570	5	8.6	182.6
Fukushima	2 029	3 524	5	14.8	238.1
Ibaraki	2 970	4 444	8	15.1	294.3
Tochigi	2 008	3 534	8	14.8	238.8
Gunma	2 008	4 271	21	29.9	142.8
Saitama	7 195	8 990	18	27.0	333.0
Chiba	6 216	9 034	29	48.6	185.8
Tokyo	13 159	27 951	76	119.0	235.0
Kanagawa	9 048	14 331	35	53.0	270.4
Niigata	2 374	4 410	8	16.6	265.7

Continued
Table 9. Continued

Prefecture	Population ($\times 10^3$)	Total patients	JASTRO-certified RO	FTE RO	Total patients/FTE RO
Toyama	1 093	1 761	5	7.0	251.6
Ishikawa	1 170	2 386	4	6.7	356.1
Fukui	806	1 487	5	8.2	181.3
Yamanashi	863	1 338	6	7.3	183.3
Nagano	2 152	3 940	6	11.2	353.4
Gifu	2 081	4 244	5	9.1	466.4
Shizuoka	3 765	7 569	18	26.4	286.7
Aichi	7 411	12 088	21	49.8	242.7
Mie	1 855	2 116	4	9.8	215.9
Shiga	1 411	2 238	7	11.0	203.5
Kyoto	2 636	4 710	18	26.3	179.1
Osaka	8 865	15 835	44	77.2	205.2
Hyogo	5 588	9 294	27	43.7	212.9
Nara	1 401	2 499	8	12.4	201.5
Wakayama	1 002	2 063	4	10.0	206.3
Tottori	589	1 149	1	4.3	267.2
Shimane	717	1 099	6	8.3	132.4
Okayama	1 945	3 271	8	17.9	182.7
Hiroshima	2 861	6 220	21	26.2	237.9
Yamaguchi	1 451	2 247	4	10.8	208.1
Tokushima	785	1 664	4	8.2	202.9
Kagawa	996	1 266	3	6.5	194.8
Ehime	1 431	2 631	8	13.3	197.8
Kochi	764	1 379	4	3.9	353.6
Fukuoka	5 072	9 903	24	41.8	236.9
Saga	850	1 017	3	4.8	211.9
Nagasaki	1 427	2 726	4	8.1	336.5
Kumamoto	1 817	3 717	5	15.4	241.4
Oita	1 197	1 913	3	9.6	199.3
Miyazaki	1 135	1 832	4	6.2	295.5
Kagoshima	1 706	2 888	5	10.7	269.9
Okinawa	1 393	2 028	5	5.5	368.7
Total	128 054	226 851	564	959.2	236.5

JASTRO = Japanese Society for Radiation Oncology, RO = radiation oncologist, FTE = full-time equivalent.
Prefecture	Total patients	FTE RTT	Total patients/FTE RTT	FTE MP	FTE RTQM
Hokkaido	12 200	72.3	168.7	6.8	7.1
Aomori	2 281	22.1	103.2	2.6	1.6
Iwate	1 868	18.7	99.9	0.1	0.4
Miyagi	5 758	31.5	182.8	0.1	1.8
Akita	2 167	19.9	108.9	0.5	1.3
Yamagata	1 570	13.2	118.9	0.9	1.4
Fukushima	3 524	30.8	114.4	2.9	1.3
Ibaraki	4 444	42.2	105.3	1.1	1.5
Tochigi	3 534	25.9	136.4	1.6	3.1
Gunma	4 271	38.9	109.8	3.5	3.0
Saitama	8 990	50.3	178.7	2.2	4.2
Chiba	9 034	74.2	121.8	4.4	3.0
Tokyo	27 951	228.4	122.4	14.3	9.0
Kanagawa	14 331	125.3	114.4	6.9	8.3
Niigata	4 410	47.7	92.5	2.1	0.7
Toyama	1 761	21.8	80.8	0.8	1.4
Ishikawa	2 386	19.2	124.3	2.9	1.8
Fukui	1 487	15.7	94.7	1.6	0.9
Yamanashi	1 338	7.0	191.1	0.1	0.6
Nagano	3 940	31.1	126.7	2.2	1.6
Gifu	4 244	27.2	156.0	2.1	1.7
Shizuoka	7 569	71.4	106.0	5.5	4.2
Aichi	12 088	100.3	120.5	6.2	4.6
Mie	2 116	25.0	84.6	1.0	1.4
Shiga	2 238	24.3	92.1	2.1	2.0
Kyoto	4 710	33.3	141.4	5.7	4.7
Osaka	15 835	141.7	111.8	19.7	13.5
Hyogo	9 294	82.2	113.1	6.1	4.7
Nara	2 499	22.9	109.1	0.9	2.2
Wakayama	2 063	17.2	119.9	0.0	0.4
Tottori	1 149	12.3	93.4	0.3	2.1
Shimane	1 099	11.9	92.4	0.3	1.3
Okayama	3 271	30.4	107.6	1.7	2.9

Continued
Table 10. Continued

Prefecture	Total patients	FTE RTT	Total patients/FTE RTT	FTE MP	FTE RTQM
Hiroshima	6220	43.9	141.7	2.6	3.0
Yamaguchi	2247	22.0	102.1	0.8	1.6
Tokushima	1664	12.3	135.3	0.0	2.0
Kagawa	1266	10.6	119.4	0.8	0.2
Ehime	2631	21.2	124.1	2.6	2.3
Kochi	1379	10.0	137.9	1.6	0.7
Fukuoka	9903	67.1	147.6	4.2	5.1
Saga	1017	7.6	133.8	0.0	0.5
Nagasaki	2726	15.6	174.7	2.6	1.5
Kumamoto	3717	28.0	132.8	2.5	2.4
Oita	1913	21.1	90.7	1.9	1.3
Miyazaki	1832	14.4	127.2	1.1	0.9
Kagoshima	2888	20.1	143.7	1.0	0.0
Okinawa	2028	11.1	182.7	0.6	0.4
Total	226851	1841.3	123.2	131.3	121.5

FTE = full-time equivalent, RTT = radiotherapy technologist, MP = medical physicist, RTQM = radiotherapy quality manager, NS = nurse.

Table 11. Numbers of institutions and patients receiving special radiotherapy by scale classification

Specific therapy	2010	2009						
	A (123)	B (227)	C (129)	D (86)	E (45)	F (95)	Total (705)	Total (700)
Intracavitary radiotherapy								
Treatment institutions	0	10	23	25	21	73	152	151
Patients	0	107	335	393	329	2081	3245	3139
Interstitial radiotherapy								
Treatment institutions	1	8	17	18	12	59	115	109
Patients	41	66	319	550	305	2913	4194	4070
Radioactive iodine therapy for prostate								
Treatment institutions	1	4	16	17	11	52	101	96
Patients	41	44	312	485	215	2018	3115	3080
Radioactive iodine therapy for hyperthyroidism								
Treatment institutions	0	5	11	7	11	25	59	97
Patients	0	62	427	100	377	1114	2080	4478

Continued
Specific therapy	2010				2009			
	A (123)	B (227)	C (129)	D (86)	E (45)	F (95)	Total (705)	
Total body radiotherapy								
Treatment institutions	9	20	25	31	28	73	186	180
Patients	57	148	254	171	294	1 013	1 937	1 790
Intraoperative radiotherapy								
Treatment institutions	1	1	2	5	5	10	24	28
Patients	2	1	5	18	25	110	161	173
Stereotactic brain radiotherapy								
Treatment institutions	12	40	37	42	28	52	211	202
Patients	511	2 364	2 108	2 629	2 214	3 974	13 800	13 855
Stereotactic body radiotherapy								
Treatment institutions	5	29	35	45	22	67	203	165
Patients	120	205	482	603	307	1 819	3 536	2 537
IMRT								
Treatment institutions	4	13	17	25	14	63	136	101
Patients	165	503	780	1 049	646	3 213	6 356	4 296
Thermoradiotherapy								
Treatment institutions	1	2	7	2	3	5	20	20
Patients	9	6	38	11	184	111	359	391
Sr-90 radiotherapy for pterygia								
Treatment institutions	0	0	2	2	0	1	5	11
Patients	0	0	8	14	0	11	33	90
Internal 89Sr radiotherapy								
Treatment institutions	4	25	22	29	15	47	142	
Patients	12	111	80	172	83	335	793	
Internal Y-90 radiotherapy								
Treatment institutions	1	3	1	4	4	20	33	
Patients	1	8	3	11	8	122	153	

IMRT = intensity-modulated radiotherapy, Sr = strontium, Y = yttrium.
Table 12. Annual numbers of new patients by disease sitea

Primary site	\(n \)	%
Cerebrospinal	8 065	4.4
Head and neck (including thyroid)	17 513	9.6
Esophagus	10 207	5.6
Lung, trachea and mediastinum	35 149	19.3
Lung	32 540	17.8
Breast	43 315	23.7
Liver, biliary tract, pancreas	6 835	3.7
Gastric, small intestine, colorectal	8 741	4.8
Gynecologic	8 563	4.7
Urogenital	25 832	14.2
Prostate	20 303	11.1
Hematopoietic and lymphatic	8 587	4.7
Skin, bone and soft tissue	4 601	2.5
Other (malignant)	2 377	1.3
Benign tumors	2 706	1.5
Pediatric \(\leq 15 \) years (included in totals above)	858	0.5
Total	182 491	100

aThe total numbers of new patients in Table 3 differ from these data, because no data on primary sites were reported by some institutions.

Table 13. Annual number of total patients (new plus repeat) treated for brain metastasis and bone metastasis by scale classification

Metastasis	Scale category (number of institutions)	Total (705)						
	A (123)	B (227)	C (129)	D (86)	E (45)	F (95)		
	\(n \)	\%	\(n \)	\%	\(n \)	\%	\(n \)	\%
Brain	761	8.6	4 504	11.5	3 345	9.0	3 622	10.4
			4 812	13.8	2 317	9.5	7 216	8.7
					2 629	10.8	9 235	11.1
Bone	1 414	15.9	5 847	15.0	5 059	13.7	4 812	13.8
			4 812	13.8	2 629	10.8	9 235	11.1

Data presented as number of patients, with percentages in parentheses.
Table 14. Classification of institutions by number of FTE radiation oncologists in all radiotherapy institutions and designated cancer care hospitals

Institution category	Description	Institutions
RH-A	All radiotherapy hospitals (FTE RO \geq 1.0)	374
RH-B	All radiotherapy hospitals (FTE RO $<$ 1.0)	331
Total		705
DCCH-A	Designated cancer care hospitals (FTE RO \geq 1.0)	260
DCCH-B	Designated cancer care hospitals (FTE RO $<$ 1.0)	114
Total		374

FTE = full-time equivalent, RO = radiation oncologist.

Table 15. Annual numbers of patients receiving radiotherapy, numbers of LINACs, numbers of staff, patient load per LINAC, and patient load per member of staff according to institution category shown in Table 14; all radiotherapy hospitals

Institution category	RH-A (374)	RH-B (331)	Total (705)			
	Average per hospital	Total number	Average per hospital	Total number	Average per hospital	Total number
Total patients	456.5	170 739	169.5	56 112	321.8	226 851
New patients	379.4	141 879	146.4	48 443	270.0	190 322
LINACs	1.4	514	1.0	315	1.2	829
Annual total no. of patients / LINAC	332.2	178.1	273.6			
Annual no. of new patients / LINAC	276.0	153.8	229.6			
FTE ROs	2.2	819.0	0.4	140.2	1.4	959.2
JASTRO-certified ROs (full time)	1.3	503	0.2	61	0.8	564
Annual total no. of patients / FTE RO	208.5	400.3	236.5			
Annual no. of new patients / FTE RO	173.2	345.6	198.4			
FTE RT technologists	3.5	1297.1	1.6	544.2	2.6	1841.3
Annual total no. of patients / FTE RTT	131.6	103.1	123.2			
Annual no. of new patients / FTE RTT	109.4	89.0	103.4			
FTE RT technologists / LINAC	2.5	1.7	2.2			
FTE medical physicists	0.28	103.9	0.08	27.5	0.19	131.3
Annual total no. of patients / FTE MP	1644.1	2044.2	1727.7			
Annual no. of new patients / FTE MP	1366.2	1764.8	1449.5			
FTE RT quality managers	0.24	90.0	0.10	31.5	0.17	121.5
Annual total no. of patients / FTE RTQM	1897.1	1781.3	1867.1			
Annual no. of new patients / FTE RTQM	1576.4	1537.9	1566.4			
FTE RT quality managers / LINAC	0.18	0.10	0.15			
Table 16. Annual numbers of patients receiving radiotherapy, numbers of LINACs, numbers of staff, patient load per LINAC, and patient load per member of staff according to institution category shown in Table 14; designated cancer care hospitals

	DCCH-A (260)	DCCH-B (114)	Total (374)			
	Average per hospital	Total number	Average per hospital	Total number	Average per hospital	Total number
Total patients	529.8	137 744	203.8	23 234	430.4	160 978
New patients	440.8	114 609	178.0	20 295	360.7	134 904
LINACs	1.5	401	1.0	117	1.4	518
Annual total no. of patients / Linac	343.5	198.6		310.8		
Annual no. of new patients / Linac	285.8	173.5		260.4		
FTE ROs	2.5	637.5	0.5	62.4	1.9	699.9
JASTRO-certified ROs (full time)	1.6	426	0.2	28	1.2	454
Annual total no. of patients / FTE RO	216.1	372.6		230.0		
Annual no. of new patients / FTE RO	179.8	325.5		192.8		
FTE RT technologists	3.9	1013.1	1.9	219.9	3.3	1233.0
Annual total no. of patients / FTE RTT	136.0	105.7		130.6		
Annual no. of new patients / FTE RTT	113.1	92.3		109.4		
FTE RT technologists / LINAC	2.5	1.9			2.4	
FTE medical physicists	0.31	80.9	0.05	5.6	0.23	86.5
Annual total no. of patients / FTE MP	1702.6	4186.3		1862.1		
Annual no. of new patients / FTE MP	1416.7	3656.8		1560.5		
FTE RT quality managers	0.27	70.9	0.11	12.6	0.22	83.5
Annual total no. of patients / FTE RTQM	1944.2	1844.0		1929.0		
Annual no. of new patients / FTE RTQM	1617.6	1610.7		1616.6		
FTE RT quality managers / LINAC	0.18	0.11			0.16	

LINAC = linear accelerator, FTE = full-time equivalent, RO = radiation oncologist, RTT = radiotherapy technologist, MP = medical physicist, RTQM = radiotherapy quality manager.

Table 17. Number of items of equipment and their functions according to institution category showing Table 14

	RH-A (n = 374)	RH-B (n = 331)	Total (n = 705)			
	n	%	n	%	n	%
LINAC	514	95.7	315	93.7	829	94.8
with dual-energy function	397	82.6	209	62.5	606	73.2
with 3DCRT function (MLC width ≤ 1.0 cm)	475	89.3	226	68	701	79.3
with IMRT function	310	57.8	65	19.6	375	39.9
with cone-beam CT or CT on rail	190	41.4	49	14.8	239	28.9
with treatment position verification system (X-ray perspective image)	192	39	54	15.7	246	28.1
with treatment-position verification system (other than those above)	148	32.6	66	19.9	214	26.7
CT simulator	365	90.4	268	76.1	633	83.7
Table 1. Distribution of annual total (new plus repeat) patient load per full-time equivalent (FTE) radiation oncologist (RO) in all radiotherapy institutions.

LINAC	DCCH-A (n = 260)	DCCH-B (n = 114)	Total (n = 374)			
	n	%	n	%		
LINAC						
with dual-energy function	301	98.8	117	99.1	418	98.9
with 3DCRT function (MLC width ≤ 1.0 cm)	301	99.1	114	99.1	415	99.1
with IMRT function	301	99.1	114	99.1	415	99.1
with cone-beam CT or CT on rail	301	99.1	114	99.1	415	99.1
with treatment-position verification system (X-ray perspective image)	301	99.1	114	99.1	415	99.1
with treatment-position verification system (other than those above)	301	99.1	114	99.1	415	99.1
CT simulator	301	99.1	114	99.1	415	99.1

LINAC = linear accelerator, 3DCRT = three dimensional conformal radiotherapy, MLC = multileaf collimator, IMRT = intensity-modulated radiotherapy, CT = computed tomography.

Fig. 3. Distribution of annual total (new plus repeat) patient load per full-time equivalent (FTE) radiation oncologist (RO) in all radiotherapy institutions. Horizontal axis represents institutions arranged in order of increasing total annual number of patients per FTE RO within the institution. Q1: 0–25%, Q2: 26–50%, Q3: 51–75%, Q4: 76–100%.

Fig. 5. Distribution of annual total (new plus repeat) patient load per full-time equivalent (FTE) radiation oncologist (RO) in designated cancer care hospitals. Horizontal axis represents institutions arranged in order of increasing value of total annual number of patients per FTE RO within the institution. Q1: 0–25%, Q2: 26–50%, Q3: 51–75%, Q4: 76–100%.

Fig. 4. Distribution of annual total (new plus repeat) patient load per full-time equivalent (FTE) radiotherapy technologist (RTT) in all radiotherapy institutions. Horizontal axis represents institutions arranged in order of increasing total annual number of patients per FTE RTT within the institution. Q1: 0–25%, Q2: 26–50%, Q3: 51–75%, Q4: 76–100%.

Fig. 6. Distribution of annual total (new plus repeat) patient load per full-time equivalent (FTE) radiotherapy technologist (RTT) in designated cancer care hospitals. Horizontal axis represents institutions arranged in order of increasing total annual number of patients per FTE RTT within the institution. Q1: 0–25%, Q2: 26–50%, Q3: 51–75%, Q4: 76–100%.
Table 18. Numbers of radiotherapy institutions and treatment devices, and patient load and personnel trend 1990–2010

Survey year	1990	1993	1995	1997	1999	2001	2003	2005	2007	2009	2010
Institution	378	629	504	568	636	726	712	721	700	705	
Response rate	48.5%	88.3%	73.9%	78.6%	86.3%	85.3%	100%	96.9%	94.2%	90.9%	90.4%
New patients	62 829	71 696	84 379	107 150	118 016	149 793	156 318	170 229	182 390	190 322	
Total patients	191 173	205 087	217 829	226 851	236 851	246 821	256 793	266 765	276 737	286 709	
Average no. of new patients	166	142	149	168	196	206	220	236	261	270	
Treatment device (in actual use)											
LINAC	311	508	407	475	626	626	744	765	807	816	829
Telecobalt	170	213	127	98	83	45	11	15	11	9	
192Ir RALS	29	50	73	93	117	119	123	130	131		
Full-time ROs	547	748	821	889	925	878	921	1 003	1 007	1 085	1 123
FTE ROs	774	826	939	959							
Full-time JASTRO-certified ROs	308	369	426	477	529	564					
FTE RT technologists	592	877	665	733	771	918	1 555	1 635	1 634	1 836	1 841
Treatment-planning equipment											
X-ray simulators	295	430	394	452	512	464	532	502	445	361	348
CT simulators	30	75	55	96	164	247	329	407	497	575	633
RTP computers	238	468	374	453	682	680	874	940	1 070	1 271	1 381

LINAC = linear accelerator, Ir = iridium, RO = radiation oncologist, FTE = full-time equivalent, JASTRO = Japanese Society for Radiation Oncology, RT = radiotherapy, JRS = Japan Radiological Society, JASTRO = Japanese Society for Radiation Oncology, CT = computed tomography, RTP = radiotherapy planning.
REFERENCES

1. Tsunemoto H. Present status of Japanese radiation oncology: national survey of structure in 1990 [in Japanese]. J Jpn Soc Ther Radiol Oncol (Special Report) 1992;1:1–30.
2. Sato S, Nakamura Y, Kawashima K et al. Present status of radiotherapy in Japan—a census in 1990—finding on radiotherapy facilities [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 1994;6:83–9.
3. Morita K, Uchiyama Y. Present status of radiotherapy in Japan—the second census in 1993 [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 1995;7:251–61.
4. JASTRO Database Committee. Present status of radiotherapy in Japan—the regular census in 1995 [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 1997;9:231–53.
5. JASTRO Database Committee. Present status of radiotherapy in Japan—the regular census in 1997 [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2001;13:175–82.
6. JASTRO Database Committee. Present status of radiotherapy in Japan—the regular census in 1999 [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2001;13:227–35.
7. JASTRO Database Committee. Present status of radiotherapy in Japan—the regular census in 2001 [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2003;15:51–9.
8. JASTRO Database Committee. Present status of radiotherapy in Japan—the regular census in 2003 [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2005;17:115–21.
9. Shibuya H, Tsuji H. The structural characteristics of radiation oncology in Japan in 2003. Int J Radiat Oncol Biol Phys 2005;62:1472–6.
10. Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2005 [first report] [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2007;19:181–92.
11. Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2005 [second report] [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2007;19:193–205.
12. Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2005 based on institutional stratification of patterns of care study. Int J Radiat Oncol Biol Phys 2008;72:144–52.
13. Numasaki H, Teshima T, Shibuya H et al. National structure of radiation oncology in Japan with special reference to designated cancer care hospitals. Int J Clin Oncol 2009;14:237–44.
14. Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2007 (first report) [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2009;21:113–25.
15. Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2007 (second report) [in Japanese with an English abstract]. J Jpn Soc Ther Radiol Oncol 2009;21:126–38.
16. Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2007 based on institutional stratification of patterns of care study. Int J Radiat Oncol Biol Phys 2010;72:144–52.
17. Numasaki H, Teshima T, Shibuya H et al. Japanese structure survey of radiation oncology in 2007 with special reference to designated cancer care hospitals. Strahlenther Onkol 2011;187:167–74.
18. Numasaki H, Shibuya H, Nishio M et al. National medical care system may impede fostering of true specialization of radiation oncologists: study based on structure survey in Japan. Int J Radiat Oncol Biol Phys 2012;82:e111–7.
19. Teshima T, Numasaki H, Nishimura T et al. Japanese Structure Survey of Radiation Oncology in 2009 (First Report) [in Japanese]. http://www.jastro.or.jp/aboutus/datacenter.php (1 November 2013, date last accessed).
20. Teshima T, Numasaki H, Nishimura T et al. Japanese Structure Survey of Radiation Oncology in 2009 (Second Report) [in Japanese]. http://www.jastro.or.jp/aboutus/datacenter.php (1 November 2013, date last accessed).
21. Teshima T, Numasaki H, Shibuya H et al. Japanese structure survey of radiation oncology in 2009 based on institutional stratification of patterns of care study. J Radiat Res 2012;53:710–72.
22. Numasaki H, Teshima T, Shibuya H et al. Japanese structure survey of radiation oncology in 2009 with special reference to designated cancer care hospitals. Int J Clin Oncol 2013;18:775–783.
23. Teshima T, Numasaki H, Shibuya H et al. Japanese Structure Survey of Radiation Oncology in 2010 (First Report) [in Japanese]. http://www.jastro.or.jp/aboutus/datacenter.php (1 June 2017, date last accessed).
24. Teshima T, Numasaki H, Shibuya H et al. Japanese Structure Survey of Radiation Oncology in 2010 (Second Report) [in Japanese]. http://www.jastro.or.jp/aboutus/datacenter.php (1 June 2017, date last accessed).
25. Japanese PCS Working Group. Radiation oncology in multidisciplinary cancer therapy—basic structure requirement for quality assurance of radiotherapy based on Patterns of Care Study in Japan. Ministry of Health, Labor, and Welfare Cancer Research Grant Planned Research Study 14-6, 2005.
26. Japanese PCS Working Group. Radiation oncology in multidisciplinary cancer therapy—basic structure requirement for quality assurance of radiotherapy based on Patterns of Care Study in Japan. Ministry of Health, Labor, and Welfare Cancer Research Grant Planned Research Study 18-4, 2010.
27. Tanisada K, Teshima T, Ohno Y et al. Patterns of Care Study quantiative evaluation of the quality of radiotherapy in Japan. Cancer 2002;95:164–71.
28. Teshima T; Japanese PCS Working Group. Patterns of Care Study in Japan. Jpn J Clin Oncol 2005;35:497–506.
29. The Designated Cancer Hospitals, Ministry of Health, Labor and Welfare: A List of Designated Cancer Hospitals (Point in time: 1 August 2013). http://www.mhlw.go.jp/ (1 November 2013, date last accessed).
30. Cancer Registry and Statistics. Cancer Information Service, National Cancer Center, Japan. http://ganjoho.jp/reg_stat/statistics/dl/index.html (1 October 2014, date last accessed).