SHORT COMMUNICATION

WINTER SEASON BLOOMER Hairy BERGENIA BERGENIA CILIATA (HAW.) STERNB. (SAXIFRALES: SAXIFRAGACEAE), AN IMPORTANT WINTER FORAGE FOR DIVERSE INSECT GROUPS

Aseesh Pandey, Ravindra K. Joshi & Bhawana Kapkoti Negi

26 May 2019 | Vol. 11 | No. 7 | Pages: 13937–13940
DOI: 10.11609/jott.4268.11.7.13937-13940
Winter season bloomer Hairy Bergenia Bergenia ciliata (Haw.) Sternb. (Saxifragales: Saxifragaceae), an important winter forage for diverse insect groups

Aseesh Pandey1, Ravindra K. Joshi2 & Bhawana Kapkoti Negi3

1 G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Sikkim Regional Centre, Pangthang, Gangtok, Sikkim 737101, India.
2 G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-katarmal, Almora, Uttarakhand 263643, India.
3 Ministry of Environment Forest and Climate Change, Indira Paryavan Bhawan, Jor Bagh Road, New Delhi 110003, India.
1 draseeshpandey@gmail.com (corresponding author), 2 rhinoraboo@yahoo.com, 3 bhawanakapkoti@yahoo.com

Abstract: Pollinators can play an important role in production improvement in organic farming. It is, therefore, essential to ensure their year-round availability, particularly in winter season in Sikkim Himalaya. Thus, attempts were made to explore resources which could support and provide switching over platforms to pollinators during the winter season. Among the few observed forage species, Bergenia ciliata was found to be an important species that supports a diverse group of pollinators by providing the necessary forage. Therefore, B. ciliata is to be protected and managed to provide forage to pollinator insects during winter season.

Keywords: Eastern Himalaya, insect diversity, pollination management.
pollinator dependency (Pratap et al. 2012; Gaira et al. 2016).

Being the first organic state of the country, Sikkim has to evolve methods that can compensate the input costs without hampering the yield. Garibaldi et al. (2016) have demonstrated how ecological intensification can create synchronous biodiversity and yield outcomes in small and large farms of pollinator-dependent crop systems. Although the state policy has provisions that can be considered pollinator friendly, yet it lacks any mention of pollinators, pollination services and pollination management (SPOF 2015). As agro-ecosystems are turning into more profitable cultivation of cash crops largely comprising entomophilous ones, the management of pollination services has become a cause for concern in recent times. It has been observed that flowering resources not in synchrony with crop bloom can play a crucial role in pollination management and need to be identified because year-round availability of foraging resources is important to maintain the pollinator abundance and richness (Kapkoti et al. 2016a). In view of the above this study was attempted to find such important non-crop forage species which can be managed along the agro-ecosystems to support sustaining pollinator population.

MATERIALS AND METHODS

During the winter months (i.e., January–March), different surveys were conducted in nearby areas of Fambong Lho Wildlife Sanctuary (27°21’50.89”N and 88°34’07.54”E; 2,025m), East Sikkim, eastern Himalaya, India. Among the few blooming forage species, *Bergenia ciliata* Sternb (Saxifragaceae), locally known as Pakhanbhed was observed to be visited by a diverse group of insects. Data on insect visitation was recorded to assess the importance of *B. ciliata* as a potential winter forage resource by following Kapkoti et al. (2016b) with some modifications. Populations of *B. ciliata* were identified near the Fambong Lho Wildlife Sanctuary and weekly data on visiting insect diversity and visitation pattern were collected for one month. Observations were recorded for 30 minutes each during 11.00–11.30 h and during 16.00–16.30 h on both sunny and cloudy days. A total of 500 flowers were monitored during the main flowering period of *B. ciliata* and insect visitors were photographed for identification.

RESULT AND DISCUSSION

The flowers of *B. ciliata* were visited by a diverse group of insects (Fig. 1, Image 1). A total of eight insect visitors were observed within the monitoring time (Table 1). Maximum number of forager species were recorded on sunny days. Mostly the flies, *Musca domestica* and *Aglais cashmirensis* visited the flowers to forage on cloudy days (Fig. 1). Overall, the maximum average density and flower visitation time was recorded for insects belonging to the order Diptera (Table 1). Species belonging to order Diptera are reported to visit more than 550 species of flowering plants regularly and considered potential (Larson et al. 2001) or primary pollinators for many plant species, both wild and cultivated (Ssymank & Kearns 2009). *Bergenia ciliata* blooms in winter with an extended flowering time from January–April, this provides a valuable alternative to foraging pollinators, when resources start dwindling and become scare successively in winter. The flowering in *B. ciliata* continues to support till spring, when resources like, large cardamom and others start flowering. Kapkoti et al. (2016b) stated that non-cropping species play a key role in ensuring pollinator abundance and existence of natural habitats that help in the proliferation of diverse floral elements with variation in flowering phenologies. In this context, it is appropriate to recommend *B. ciliata* for cultivation across the farms to play its role in ensuring pollinator availability in the habitat.

Besides, *B. ciliata* is also a well-recognized herbal medicine and widely used in the local traditional medicinal practices across Bhutan, India Nepal, Pakistan and some other countries (Shrestha & Joshi 1993; Rai et al. 2000). This deciduous medicinal herb grows up to 50cm tall in rocky and stony habitats with an extensive distribution range from 1,500–3,000 m in Sikkim and other temperate regions of Himalaya (Rai et al. 2000; Sanghamitra et al. 2001). Terrace cropping system is commonly opted in Sikkim and the habitat characters of *B. ciliata* can be utilized to manage this species along the fringes of agricultural terraces in integrated cropping mode. This approach will create an opportunity for the

Table 1. Insect visitors of *Bergenia ciliata*

Common name	Scientific name	Order	Family
Honey Bee	Apis cerana	Hymenoptera	Apidae
Bumble Bee	Bombus sp.	Hymenoptera	Apidae
Wasp	Vespuca sp.	Hymenoptera	Vespidae
Syrphid	Eristalis tenax	Diptera	Syrphidae
Hoverfly	-	Diptera	Syrphidae
House Fly	Musca domestica	Diptera	Muscidae
Painted Lady	Cynthia cardui	Lepidoptera	Nymphalidae
Tortoise Shell	Aglais cashmirensis	Lepidoptera	Nymphalidae
farmers to succeed. This integrated management plan can be implemented between 1500m and 3000m to cover attitudinally diverse crops and to address the issue of the organic produce and sustainable utilization of *B. ciliata*.

Recommendations

A cautious approach is required to ensure year-round availability of pollinators along the agro-ecosystems. We recommend inclusion of crop-pollinator interactions in the Sikkim state policy on organic farming, with clear mention of pollination and pollinators to strengthen its second principle i.e. ecology (management of ecological processes), which is essential for fruit and seed set.
Furthermore, a comprehensive calendar of non-crop foraging resources needs to be developed, with special mention of high value species like *B. ciliata*, which could benefit the community with multiple ways through provisioning of improved goods and services.

REFERENCES

Gaira, K.S., R.S. Rawal & K.K. Singh (2016). Variations in pollinator density on large cardamom (*Amomum subulatum Roxb.*) crop yield in Sikkim Himalaya, India. *Journal of Asia-Pacific Biodiversity* 9(1): 17–21.

Gallai, N., J.M. Salles, J. Settele & B.E. Vaissiere (2009). Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. *Ecology and Economics* 68(3): 810–821.

Garibaldi, L.A., L.G. Carvalheiro, B.E. Vaissiere, B. Gemmill-Herren, J. Hipolito, B.M. Freitas, H.T. Ngo, N. Azzu, A. Saez, J. Astrom, J. An, B. Blochtein, D. Buchori, F.J. Chamorro Garcia, F.O. da Silva, K. Devkota, M. de Fatima Ribeiro, L. Freitas, M.C. Gaglianone, M. Gross, M. Irshad, M. Kasina, A.J.S.P. Filho, L.H. P. Kill, P. Kwapong, G.N. Parra, C. Pires, V. Pires, R.S. Rawal, A. Rizali, A.M. Saraiva, R. Veldman, B.F. Viana, S. Witter & H. Zhang (2016). Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. *Science* 351(6271): 388–391.

Kapkoti, B., R.K. Joshi & R.S. Rawal (2016a). Thistle (*Cirsium verutum*): An Important Forage for Pollinators in Kumaun, West Himalaya. *National Academy Science Letters* 39(5): 395–399; https://doi.org/10.1007/s40009-016-0501-y

Kapkoti, B., R.S. Rawal & R.K. Joshi (2016b). Insect Pollinators of *Brassica campestris* in Kumaun, West Himalaya: Influence of Crop Composition, Altitude and Flowering Phenology. *National Academy Science Letters* 39(5): 389–394. https://doi.org/10.1007/s40009-016-0500-y

Klein, A.M., B.E. Vaissiere, J.H. Cane, I. Steffan-Dewenter, S.A. Cunningham, C. Kremen & T.D. Tscharntke (2007). Importance of pollinators in changing landscapes for world crops. *Proceedings of the Royal Society B: Biological Sciences* 274: 303–313. https://doi.org/10.1098/rspb.2006.3721

Kumar, P.S. (2012). Impact of climate change and adaptation measures in dairy sector of Sikkim, p219–231. In: Arrawatia, M.L. & S. Tambe (eds.). *Biodiversity of Sikkim: Exploring and Conserving a Global Hotspot*. Gangtok, Sikkim: Information and Public Relations Department, Government of Sikkim.

Larson, B.M.H., P. Kevan & D.W. Inouye (2001). Flies and flowers: taxonomic diversity of antho-philes and pollinators. *Canadian Journal of Entomology* 133: 439–465.

Myers, N., R.A. Mittermeier, C.G. Mittermeier, G.A.B. da Fonseca & J. Kent (2000). Biodiversity hotspots for conservation priorities. *Nature* 403: 853–858

Pandey, A., H.K. Badola, S. Rai & S.P. Singh (2018). Timberline structure and woody taxa regeneration towards treeline along latitudinal gradients in Kanchendzonga National Park, Eastern Himalaya. *PLoS ONE* 13(11): e0207762

Pratap, U., T. Pratap, H.K. Sharma, P. Phartiyal, A. Marma, N.B. Tamang, T. Ken & M.S. Munawar (2012). Value of insect pollinators to Himalayan agricultural economics. International Center for Integrated Mountain Development (ICIMOD), Kathmandu, 55pp.

Rai, L.K., P. Prasad & E. Sharma (2000). Conservation threats to some important medicinal plants of the Sikkim Himalaya. *Biological Conservation* 93: 27–33.

Sanghamitra, S., T.M.K. Maiti, J.R. Gayen, P. Basudeb, M. Pal & B.P. Saha (2001). Antibacterial activity of *Bergenia ciliata* rhizome. *Fitoterapia* 72: 550–552.

SBAP (2012). Sikkim Biodiversity Action Plan. Gangtok, Sikkim: Sikkim Biodiversity Conservation and Forest Management Project (SBFP), and Forest Environment and Wildlife Management Department, Government of Sikkim.

Shrestha, I. & N. Joshi (1993). Medicinal plants of the Lele village of Lalitpur District, Nepal. *International Journal of Pharmacognosy* 31(2): 130–134.

Sharma, G., U. Partap, E. Sharma, G. Rasul & R.K. Awasethe (2016). Agrobiodiversity in the Sikkim Himalaya: Sociocultural significance, status, practices, and challenges. ICIMOD Working Paper 2016/5 Kathmandu: ICIMOD

SPOF (2015). State Policy on Organic Farming, Government of Sikkim. Sikkim Organic Mission, FS&AD and H&CCD Departments of the Government of Sikkim, Kathmandu, 55pp.

Ssymank, A. & C. Kearns (2009). Conservation threats to some Himalayan agricultural economics. International Center for Integrated Mountain Development (ICIMOD), Kathmandu, 55pp.

Tamang, T. Ken & M.S. Munawar (2012). Value of insect pollinators to Himalayan agricultural economics. International Center for Integrated Mountain Development (ICIMOD), Kathmandu, 55pp.
The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

May 2019 | Vol. 11 | No. 7 | Pages: 13815–13950
Date of Publication: 26 May 2019 (Online & Print)
DOI: 10.11609/jott.2019.11.7.13815-13950

www.threatenedtaxa.org

Articles

Cats, canines, and coexistence: dietary differentiation between the sympatric Snow Leopard and Grey Wolf in the western landscape of Nepal Himalaya
– Anil Shrestha, Kanchan Thapa, Samundra Ambuhang Subba, Maheshwar Dhakal, Bishnu Prasad Devkota, Gokarna Jung Thapa, Sheren Shrestha, Sabita Malla & Kamal Thapa, Pp. 13815–13821

Genetic diversity among the endemic barb *Barbodes tumba* (Teleostei: Cyprinidae) populations from Mindanao, Philippines
– Onaya P. Abdulmalik-Labe & Jonas P. Quilang, Pp. 13822–13832

The importance of conserving fragmented forest patches with high diversity of flowering plants in the northern Western Ghats: an example from Maharashtra, India
– Amol Kishor Kasodekar, Amol Dilip Jadhav, Rani Babanrao Bhagat, Rakesh Mahadev Pawar, Vidya Shrikant Gupta & Narendra Yeshwant Kadoo, Pp. 13833–13849

Communications

First assessment of bird diversity in the UNESCO Sheka Forest Biosphere Reserve, southwestern Ethiopia: species richness, distribution and potential for avian conservation
– Mattias Van Opstal, Bernard Oosterlynck, Million Belay, Jesse Erens & Matthias De Beenhouwer, Pp. 13850–13867

Roadkill of animals on the road passing from Kalaburagi to Chincholi, Karnataka, India
– Shankerappa Shantveerappa Hatti & Heena Mubeen, Pp. 13868–13874

Ceriagrion chromothorax sp. nov. (Odonata: Zygoptera: Coenagrionidae) from Sindhudurg, Maharashtra, India
– Shantanu Joshi & Dattaprasad Sawant, Pp. 13875–13885

The diversity and distribution of polypores (Basidiomycota: Aphyllorophorales) in wet evergreen and shola forests of Silent Valley National Park, southern Western Ghats, India, with three new records
– C.K. Adarsh, K. Vidyasagar & P.N. Ganesh, Pp. 13886–13909

Short Communications

Recent photographic records of Fishing Cat *Prionailurus viverrinus* (Bennett, 1833) (Carnivora: Felidae) in the Ayeyarwady Delta of Myanmar
– Naing Lin & Steven G. Platt, Pp. 13910–13914

Rediscovery of Van Hasselt’s Mouse-eared Bat *Myotis hasseltii* (Temminck, 1840) and its first genetic data from Hanoi, northern Vietnam
– Vuong Tan Tu, Satoru Arai, Fuka Kikuchi, Chu Thi Hang, Tran Anh Tuan, Gábor Csorba & Tamás Görfl, Pp. 13915–13919

Notes on the diet of adult Yellow Catfish *Aspistor luniscutis* (Pisces: Siluriformes) in northern Rio de Janeiro State, southeastern Brazil
– Ana Paula Madeira Di Benedetto & Maria Thereza Manhães Tavares, Pp. 13920–13924

Waterbirds from the mudflats of Thane Creek, Mumbai, Maharashtra, India: a review of distribution records from India
– Omkar Dilip Adhikari, Pp. 13925–13930

Moths of the superfamily Tineoidea (Insecta: Lepidoptera) from the Western Ghats, India
– Amit Katewa & Prakash Chand Pathania, Pp. 13931–13936

Winter season bloomer Hairy Bergenia *Bergenia ciliata* (Haw.) Sternb. (Saxifragales: Saxifragaceae), an important winter forage for diverse insect groups
– Aseesh Pandey, Ravindra K. Joshi & Bhawana Kapkoti Negi, Pp. 13937–13940

Notes

Kerala state bird checklist: additions during 2015 – May 2019
– Abhinand Chandran & J. Praveen, Pp. 13941–13946

What is in a name? The birthright of *Oxyopes nilgiricus* Sherriffs, 1955 (Araneae: Oxyopidae)
– John T.D. Caleb, P. 13947

Book Review

Study on biological and ecological characteristics of mudskippers
– Ali Reza Radkhah & Soheil Eagderi, Pp. 13948–13950