Dynamical Origin of Seesaw

Jiří Hošek

Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež (Prague), Czech Republic

In anomaly free gauged three-flavor $SU(3)_f \times SU(2)_L \times U(1)_Y$ model of Yanagida with fermion and gauge boson masses described by conveniently chosen elementary scalar Higgs fields the neutrino mass matrix comes out in the seesaw form. Following Yanagida’s suggestion we demonstrate that no Higgs fields are needed. Strong flavor gluon interactions themselves, treated in a separable approximation, result in universally split lepton and quark masses calculated in terms of a few parameters. While the realistic splitting of charged lepton and quark masses requires the electroweak and QCD radiative corrections the neutrino seesaw mass matrix comes out exact.

PACS numbers: 11.15.Ex, 12.15.Ff, 12.60.Fr

I. INTRODUCTION

Understanding the measured wide and irregular charged lepton and quark mass spectrum is a nightmare of theoretical elementary particle physics. Understanding the extreme lightness of the observed neutrinos is its almost unbearable stage. Description of these phenomena, however, does exist. The charged lepton and quark masses are described in the Standard model by the Higgs mechanism [1], and the extremely light neutrinos are described in its minimal extension by the seesaw [2].

It amounts to postulating superheavy Majorana masses M_M of three right-handed sterile neutrinos ν_R: the observed neutrino spectrum is given by the diagonalized 6×6 symmetric matrix

$$
\begin{pmatrix}
0 & m_D \\
M^T_D & M_M
\end{pmatrix}
$$

where m_D are three Dirac neutrino masses generated by the ordinary Higgs mechanism. As a result the physical neutrino spectrum consists of three superheavy Majorana neutrinos with masses M_M, and three active Majorana neutrinos with masses $m_\nu \sim m_D^2/M_M$. Choosing the free parameters m_D and M_M appropriately we obtain the masses of three active (Majorana) neutrinos at will.

This elegant phenomenological construction rises questions. First, are there deeper reasons for postulating superheavy sterile neutrinos? If not, the very explanation of extreme lightness of the observed neutrinos by postulating the existence of unobservably heavy ones does not seem very deep. Second, why zero in the left upper corner instead of the Majorana mass matrix m_M of the left-handed neutrinos of the Standard model?

The existence of superheavy right-handed sterile neutrinos is perfectly justified in the gauged three-flavor $SU(3)_f \times SU(2)_L \times U(1)_Y$ model of T. Yanagida [3]. First, the very existence of right-handed neutrinos is enforced by the strong theoretical requirement of anomaly freedom. Second, their massiveness is enforced by the experimental fact that the gauge flavor $SU(3)_f$ symmetry is badly broken and yet unobserved. The spontaneous breakdown of the gauge chiral $SU(3)_f \times SU(2)_L \times U(1)_Y$ symmetry down to $U(1)_{em}$ is phenomenologically described by the following weakly interacting condensing Higgs fields: (1) The field $\chi^{ab}(6,1,0)$ gives rise to huge different masses of all eight flavor gluons. Its Yukawa coupling with sterile right-handed neutrinos and their charge conjugates generates their huge Majorana masses. (2) The fields $\phi^{6}(8,2,1)$ and $\phi^{1}(1,2,1)$ are responsible mainly for the electroweak symmetry breakdown. The values in parentheses are the representation dimensions of $SU(3)_f$, $SU(2)_L$ and the values of the weak hypercharge, respectively. The Majorana mass matrix m_M of the left-handed neutrinos stays zero because the elementary Higgs field $\phi(6,3,-2)$ which would generate it was deliberately not introduced.

In conclusion of [3] Yanagida notices that his model "is a possible candidate for the spontaneous mass generation by dynamical symmetry breaking [3]". Indeed, without scalar sector the gauge $SU(3)_f \times SU(2)_L \times U(1)_Y$ model would yield the fermion mass spectrum calculable in terms of a few free parameters: (1) The coupling constant h of the strongly coupled $SU(3)_f$ or, due to the dimensional transmutation, its scale Λ. (2) The coupling constants g and g' of the weakly coupled $SU(2)_L$ and $U(1)_Y$, respectively. The numerical values of weak hypercharges Y_f, $f = l_L, e_R, \nu_R, q_L, u_R, d_R$ of the chiral electroweakly interacting fermion fields f are not free parameters. They are uniquely fixed by their electric charges $Q = T_3 + \frac{1}{2}Y$:

$$
Y(l_L) = -1, \quad Y(e_R) = -2, \quad Y(\nu_R) = 0
$$

$$
Y(q_L) = \frac{1}{3}, \quad Y(u_R) = \frac{4}{3}, \quad Y(d_R) = -\frac{2}{3}.
$$

We have demonstrated in detail elsewhere [4] that the strong exchanges of the dynamically massive flavor gluons indeed play the role of the extended Higgs sector of the Yanagida model. Here we emphasize their selective dynamical role which results in the computable neutrino mass spectrum in the seesaw form.
II. FERMION MASS SPECTRUM

Our task is to generate the fermion proper self-energy $\Sigma(p)$ in the full fermion propagator

$$S^{-1}(p) = p - \Sigma(p) \quad (2)$$

dynamically by the strong flavor gluon interactions of $SU(3)_f$. In general $\Sigma(p)$ is a complex 3×3 matrix, the solution of the Schwinger-Dyson equation [2].

$$\Sigma(p) = 3 \int \frac{d^4k}{(2\pi)^4} \frac{\bar{h}_{ab}^2((p - k)^2)}{(p - k)^2} T_a(R)\Sigma(k)[k^2 - \Sigma^+(k)\Sigma(k)]^{-1}T_b(L) \quad (3)$$

depicted in Fig. 1.

To make the formidable task of the dynamical fermion mass generation tractable we resort to approximations. First, without loss of generality we fix the external (Euclidean) momentum as $p = (p, 0)$, and integrate over angles. Integration over the momenta only up to Λ means that the resulting model is not asymptotically, but strictly free above this scale:

$$\Sigma(p) = \int_0^\Lambda k^3dkK_{ab}(p, k)T_a(R)\Sigma(k)[k^2 + \Sigma^+\Sigma]^{-1}T_b(L). \quad (4)$$

Because of the unknown behavior of \bar{h}_{ab}^2 below Λ the kernel $K_{ab}(p, k)$, separately symmetric in momenta and flavor octet indices, is entirely unknown. Second and most important, for this unknown kernel we make a separable Ansatz

$$K_{ab}(p, k) = \frac{3}{4\pi^2} \frac{g_{ab}}{pk}. \quad (5)$$

It is conceptually quite similar to the separable Ansatz for the potential in the BCS superconductor which leads to the explicit solution of the BCS gap equation [8]. Why the simple separable approximation taking into account only the opposite momenta around Fermi surface is phenomenologically so successful was a mystery for years. It was theoretically clarified much later by Polchinski [9].

Here g_{ab} are the effective dimensionless low-energy parameters which characterize the complete spontaneous breakdown of the gauge $SU(3)_f$. Very important question is how many independent parameters are necessary for such a breakdown. We believe the answer is three. We present two independent explicit illustrations of this statement.

First illustration is provided by the Higgs mechanism for $SU(3)_f$ with the condensing scalar sextet χ, the complex symmetric 3×3 matrix M^2 [10]. Here the spontaneous gauge boson and fermion mass generations are two generically independent phenomena: (i) Eight different gauge boson masses squared are expressed in terms of three parameters (v_1, v_2, v_3), the diagonal vacuum expectation values of χ:

\[
M^2 \approx \begin{pmatrix}
(v_1 + v_2)^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & (v_1 - v_2)^2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2(v_1^2 + v_2^2) & (v_1 + v_3)^2 & 0 & 0 & 0 & \frac{2}{\sqrt{3}}(v_1^2 - v_2^2) \\
0 & 0 & 0 & (v_1 + v_3)^2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & (v_2 + v_3)^2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & (v_2 - v_3)^2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & (v_2 - v_3)^2 & \frac{2}{\sqrt{3}}(v_1^2 + v_2^2 + 4v_3^2) \\
0 & 0 & 0 & \frac{2}{\sqrt{3}}(v_1^2 - v_2^2) & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]
(with diagonalization of the $(3,8)$ block understood). (ii) The $SU(3)_f$ invariant Yukawa interaction with the sextet χ gives rise to three different Majorana masses to chiral neutrinos proportional to v_t provided they transform as a triplet of $SU(3)_f$.

Second illustration is provided by spontaneous breakdown of the gauge $SU(3)_f$ by the dynamically generated Majorana masses of neutrinos transforming as the triplet \tilde{R}. Here the phenomena of spontaneous generation of the gauge and the fermion masses are self-consistently related. Three different Majorana masses are found by solving the SD equation, and eight gauge boson masses are the functions of these three Majorana masses computed by the Pagels-Stokar formula.

We conclude that the matrix g_{ab} in the present ‘semimicroscopic’ approach should be expressible as a function of three dimensionless parameters. The matrix $g \sim M^2/\Lambda^2$ is the simplest weak-coupling prototype of such a relation, with positive-definiteness relaxed. Ultimately, however, because the group $SU(3)$ is simple, even these three parameters should be calculable.

In separable approximation the SD equation is immediately formally solved:

$$\Sigma(p) = \frac{\Lambda^2}{p} T_a(R)\Gamma_{ab} T_b(L) \equiv \frac{\Lambda^2}{p} \sigma$$

(6)

The difficult part is that the numerical matrix Γ has to fulfil the homogeneous nonlinear algebraic self-consistency condition (gap equation).

The obtained momentum dependence of $\Sigma(p) \sim 1/p$ is not without support. Because the masses of flavor gluons come out huge it is justified to think heuristically of the dynamically generated fermion masses in terms of the four-fermion interaction of Nambu and Jona-Lasinio [3]. In a series of papers [10] Philip Mannheim argues that the theoretically consistent treatment of the fermion mass generation by the four-fermion dynamics should result in $\Sigma(p) \sim 1/p$.

1. Fermion masses with flavor mixing

For the right-handed neutrinos the effective Majorana mass term has the form

$$\mathcal{L}_{\text{Majorana}} = -\frac{1}{2}(\bar{\nu}_R \Sigma_M(p)(\nu_R)^C + h.c.)$$

(7)

In flavor space it therefore transforms as

$$\bar{\tilde{3}} \times \tilde{3} = 3_a + \bar{6}_a$$

(8)

where the subscripts abbreviate the antisymmetric (a) and symmetric (s) representations.

Because of the Pauli principle σ_M in (3) is a general complex symmetric 3×3 matrix of the sextet. It can be put into a positive-definite real diagonal matrix γ^M by a constant transformation

$$\sigma_M = U^+ \gamma^M U^*.$$ \hspace{1cm} (9)

Then, the gap equation becomes

$$\gamma^M = U T_a(R) U^+ g_{ab} I(\gamma^M) U^* T_b(L) U^T$$

(10)

where

$$I(\gamma) = \frac{3}{16\pi^2} \gamma \int_0^1 \frac{dx}{x + \gamma^2} = \frac{3}{16\pi^2} \gamma \ln \frac{1 + \gamma^2}{\gamma^2}.$$ \hspace{1cm} (11)

The diagonal entries of the equation (10) determine the sterile neutrino masses, the nondiagonal entries provide relations for the mixing angles and the new CP-violating phases. These phases are most welcome as a source of an extra CP violation needed for understanding of the baryon asymmetry of the Universe [11]. Because ν_R transforms as a triplet, $T_a(R) = \frac{1}{2}\lambda_a$. The charge-conjugate ν_R is a left-handed field i.e., $(\nu_R)^C = (\nu^C_L)$. Because charge conjugation is essentially the hermitian conjugation, $T_b(L) = -\frac{1}{2}\lambda^b = -\frac{1}{2}\lambda^b$ are the generators of antitriplet.

For Dirac fermions the effective Dirac term has the form

$$\mathcal{L}_{\text{Dirac}} = -(\bar{f}_R \Sigma_D(p) f_L + h.c.)$$

(12)

In flavor space it therefore transforms as

$$\bar{\tilde{3}} \times \tilde{3} = 3_a + \bar{6}_a$$

(13)

The general complex 3×3 matrix σ_D can be put into a positive-definite real diagonal matrix γ^D by a constant bi-unitary transformation:

$$\sigma_D = U^+ \gamma^D V.$$ \hspace{1cm} (14)

The gap equation becomes

$$\gamma^D = U T_a(R) U^+ g_{ab} I(\gamma^D) V T_b(L) V^+.$$ \hspace{1cm} (15)

The diagonal entries of the equation (15) determine the fermion masses, the nondiagonal entries provide relations for the CKM mixing angles and the SM CP-violating phase. Because all chiral fermion fields of the model transform as triplets, $T_a(R) = \frac{1}{2}\lambda_a$ and $T_b(L) = \frac{1}{2}\lambda_b$.}

2. Majorana masses M_M and Dirac masses m_D

In the following we set the fermion mixing matrices to the unit matrix and show that the Majorana masses M_M of the right-handed neutrinos come out naturally huge of order Λ, whereas the Dirac masses of the fermions of the
model are naturally small compared to Λ. 'Naturally' means that in the Lagrangian there are no parameters (effective couplings g_{ab}) which would differ by many orders of magnitude. Huge mass ratios emerge only in solutions of the underlying field equations.

Without mixing the Majorana and Dirac gap equations are

$$
\gamma^M = -\frac{1}{4} \lambda_\alpha g_{ab} I(\gamma^M) \lambda_b^T
$$

and

$$
\gamma_D = \frac{1}{2} \lambda_\alpha g_{ab} I(\gamma^D) \lambda_b,
$$

respectively. Because $\Sigma(p) \equiv \frac{\Delta^2}{p} \gamma$, the fermion mass, both Dirac and Majorana, defined as a pole of the full fermion propagator is

$$
m = \Sigma(p^2 = m^2) = \Lambda \gamma^{1/2}
$$

With $g_{11}, g_{22}, g_{33}, g_{38}, g_{44}, g_{45}, g_{66}, g_{77}, g_{88}$ different from zero the right hand sides of equations (16) and (17) are the diagonal matrices. The equations themselves can be rewritten as

$$
\gamma_i^{D/M} = \sum_{k=1}^{3} \alpha_k^{D/M} \gamma_k^{D/M} \ln \frac{1 + (\gamma_k^{D/M})^2}{(\gamma_k^{D/M})^2}
$$

where

$$
\alpha_k^{D/M} = \frac{3}{64\pi^2} \left(\pm \begin{pmatrix} g_{33} + \frac{2}{\sqrt{3}} g_{38} + \frac{1}{3} g_{88} \\ g_{22} \pm g_{11} \\ g_{55} \pm g_{44} \end{pmatrix}
ight)
$$

and the upper and lower signs correspond to the Dirac fermion masses and the Majorana neutrino masses, respectively.

The form of the matrix α suggests simplifications. In the following we take only

$$g_{33}, g_{38}, g_{88}; g_{11} = -g_{22}, g_{44} = -g_{55}, g_{66} = -g_{77}$$

different from zero (and expect that they are not independent).

(A) The matrix gap equation for the Dirac masses m_{1D} becomes diagonal and decoupled, and it is easily solved. Provided the combinations

$$
\alpha_1 = \frac{3}{64\pi^2}(g_{33} + \frac{2}{\sqrt{3}} g_{38} + \frac{1}{3} g_{88})
\alpha_2 = \frac{3}{64\pi^2}(g_{33} - \frac{2}{\sqrt{3}} g_{38} + \frac{1}{3} g_{88})
\alpha_3 = \frac{3}{64\pi^2} \frac{4}{3} g_{88}
$$

are all positive and all $\alpha_i \ll 1$, the resulting universal flavor-splitting Dirac mass formula is

$$m_{1D} = \Lambda \exp(-1/4\alpha_1).$$

(B) Finding the solution for the Majorana masses is less straightforward and we have to resort to simple numerical demonstration. First, for $g_{11} = g_{44} = g_{66} = 0$, the gap equations for the Majorana masses have no solution because of the minus sign in front of the α_i. Consequently, $(g_{11}, g_{44}, g_{66}) \neq 0$. Second, in the case of sterile Majorana neutrinos we are not aware of the necessity of the hierarchical mass spectrum. With the constants α_i fixed by the numerical values of the Dirac masses the equations (18) for γ_i^M can be viewed as a system of three inhomogeneous linear equations for the unknown (g_{11}, g_{44}, g_{66}):

$$
-\frac{1}{2} \begin{pmatrix} I(\gamma_1^M) & I(\gamma_2^M) & 0 \\ I(\gamma_1^M) & 0 & I(\gamma_3^M) \\ 0 & I(\gamma_1^M) & I(\gamma_2^M) \end{pmatrix} \begin{pmatrix} g_{11} \\ g_{44} \\ g_{66} \end{pmatrix} = \begin{pmatrix} \gamma_1^M + \frac{16\pi^2}{3} \alpha_1^{D/M} I(\gamma_1^M) \\ \gamma_2^M + \frac{16\pi^2}{3} \alpha_2^{D/M} I(\gamma_2^M) \\ \gamma_3^M + \frac{16\pi^2}{3} \alpha_3^{D/M} I(\gamma_3^M) \end{pmatrix}.
$$

This set of equations has a solution for any set of $\gamma_i^M > 0$.

For illustration that

$$M_{1M} \sim \Lambda$$

(21)
we put \((\gamma_1^M, \gamma_2^M, \gamma_3^M) = (0.1, 0.2, 0.3)\) and
\((\gamma_1^D, \gamma_2^D, \gamma_3^D) = (10^{-20}, 10^{-22}, 10^{-26})\). This cor-
sponds approximately to the hierarchy for charged
leptons provided \(\Lambda = 10^{10} \text{ GeV}\). Then

\[g = \begin{pmatrix}
8.08101 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -8.08101 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1.7425 & 0 & 0 & 0 & 0 & 0 & 0.0899893 \\
0 & 0 & 0 & -21.8124 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 21.8124 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -34.029 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 34.029 & 0 & 0 \\
0 & 0 & 0 & 0.0899893 & 0 & 0 & 0 & 1.31887 & 0
\end{pmatrix} \]

It is important that the precise size and hierarchy of \(\gamma_i^D\)
does not play any important role for the numerical values
of \(\gamma_i^M\).

It is easy to understand qualitatively the enormous,
yet natural difference between the huge Majorana masses
\(M_R\) of the right-handed neutrinos and the tiny Dirac
masses \(m_D\) of leptons and quarks: The difference be-
tween \(3 \times 3\) and \(3 \times 3\) translates into different combina-
tions of parameters in \(g_{ab}\) which determine \(M_R\) and \(m_D\),
respectively.

3. Why not \(m_M\) ?

The dynamically generated fermion masses in the chiral
\(SU(3)_f \times SU(2)_L \times U(1)_Y\) gauge model imply sponta-
neous breakdown of this symmetry down to the unbro-
ken \(U(1)_{em}\). Consequently, there must be exactly \(8 + 3\)
‘would-be’ NG bosons. With the weakly coupled Higgs
sector in the Yanagida model they are pre-prepared in
the elementary scalar Higgs fields \(\phi^{ab}(6, 1, 0), \phi^a(8, 2, 1)\) and
\(\phi^0(1, 2, 1)\). We have confirmed in [4] by analyzing the
symmetry structure of the NG poles in Ward-Takahashi
identities that these ‘would-be’ NG bosons are in fact
parts of the fermion-antifermion composites

\[\chi^{ab}(6, 1, 0) \sim \nu_R^a (\nu_R^b)^{CB} \]

\[\phi^a(8, 2, 1) \sim (\bar{d}_R \lambda^a q_L + \bar{e}_R \lambda^a l_L) \]

\[\phi^0(1, 2, 1) \sim (\bar{d}_R q_L + \bar{e}_R l_L) \]

formed by strong exchanges of dynamically massive flavor
gluons. The remaining components show up in the
spectrum as massive composite Higgs-like particles.

Why not the elementary Higgs field \(\phi(6, 3, -2)\) ?
Simply because such a decision is solely in hands of the
model builder.

In model with the Higgs sector replaced by strong ex-
changes of dynamically massive flavor gluons the situa-
tion is entirely different. If allowed these exchanges would
obviously generate \(m_M = M_M\) which would entirely
ruin the seesaw construction. We are obliged to assume
the dynamical generation of \(m_M\) and check, if possible,
whether such an assumption is theoretically consistent.
Symmetry considerations themselves cannot replace the
issues of dynamics.

(i) The assumption implies specific pattern of sponta-
neous breakdown of \(SU(3)_f \times SU(2)_L \times U(1)_Y\) symmetry.

(ii) Pauli principle and the symmetry structure of
the NG poles in the WT identity suggest that the NG bosons
are the composites of the lepton doublet and its charge
conjugate

\[\phi^{ab}(6, 3, -2) \sim (\bar{l}_L)^{Ca} i T^a \bar{t}_L^b \]

carrying the electric charges \((0, +, +, +)\).

(iii) Strong Coulomb repulsion in the doubly charged
component \(\phi(6, 3, -2)\) suggests that the compo-
site \(\phi(6, 3, -2)\) should not be formed. Consequently,
neither the condensate of its neutral component, \(m_M\),
should be dynamically generated.

(iv) It is mandatory to check whether the dynamical
argument applies also to other composite NG bosons. In
\(\chi\) all constituents are electrically neutral and there is no
problem. In singly charged components of both \(\phi^a\) and
\(\phi\) made of a neutrino and a charged lepton there is no
problem. In their singly charged quark components there is
a strong Coulomb repulsion in \((\bar{d} u)\). It is, however, safely
overwhelmed by the QCD confining force as in ordinary
electrically charged hadrons.

III. CONCLUSION

Not surprisingly, the obtained flavor splitting of the fem-
ron masses [20] is universal for all types of fermions.
With electroweak gauge interactions not actively in-
volved there is nothing in the model which would dis-
tinguish between fermions with different weak hyper-
charges or electric charges i.e., in given generation all
Dirac masses must come out equal. This is, nevertheless, enough to break down spontaneously the gauge symmetry $SU(3)_f \times SU(2)_L \times U(1)_Y$ down to $U(1)_{em}$. The electroweak gauge interactions, treated as weak external perturbations, thus become short-range: W and Z absorb the underlying composite multi-component 'would-be' NG bosons as their longitudinal polarization states and the Weinberg relation $m_W/m_Z = \cos \theta_W$ is exact.

Since the electroweak gauge interactions remain weak up to the Planck scale they themselves cannot generate the fermion masses dynamically as suggested long ago [12]. They do, however, provide electroweak radiative corrections to the kernel of the SD equation which distinguish the masses m_d of charged leptons and masses m_{u} and m_{d} of quarks with charges $2/3$ and $-1/3$, respectively. At short distances there is also the universal positive QCD radiative correction which makes quarks in given generation heavier than the corresponding leptons. It is important that these corrections do not contain any new free parameters [13]. We believe that they should be greatly amplified by the exponentials in the universal formula [20]. How to incorporate them into the separable Ansatz in the SD equation remains to be demonstrated.

We do know, however, that the radiative corrections mentioned above vanish for the Dirac neutrino masses: $Y(\nu_R) = 0$ and there are no QCD corrections. Therefore, within the given rules of the game the computation of m_{1D} is the exact computation of the Dirac neutrino mass matrix. Because of sterility there are no electroweak corrections to M_M either. Hence the computation of the whole neutrino seesaw mass matrix by strong flavor gluon exchanges treated in a separable approximation is ‘exact’.

I am grateful to Philip Mannheim for interest in the model, and to Michal Malinský for valuable comments.

* Electronic address: hosek@ujf.cas.cz

[1] P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964); F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964).
[2] P. Minkowski, Phys. Lett. B67 (1977) 421; T. Yanagida, in Proceedings of the workshop on unified theory and baryon number in the universe (Tsukuba, Japan, 1979), O. Sawata and A. Sugamoto eds., KEK report 79-18 (Tsukuba, Japan, 1979); S. L. Glashow, in Quarks and leptons, Proceedings of the Advanced Study Institute (Cargese, Corsica, 1979), M. Levy et al. eds. (Plenum Press, New York, U.S.A., 1980); M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity, D. Z. Freedman and F. van Nieuwenhuizen eds. (North Holland, Amsterdam, The Netherlands, 1979); R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44 (1980) 912.
[3] T. Yanagida, Phys. Rev. D20, 2986 (1979).
[4] J. Schechter and J. W. F. Valle, Phys.Rev. D22, 2227, (1980); M. Magg and C. Wetterich, Phys. Lett. B94, 61, (1980); T. F. Cheng and L.-F. Li, Phys. Rev. D22, 2860, (1980); R. N. Mohapatra and G. Senjanovic, Phys. Rev. D23, 165, (1981).
[5] Y. Nambu and G. Jona-Lasinio, Phys. Rev. D22, 345 (1961).
[6] J. Hosek, A model that underlies the Standard model, [arXiv:1606.03292]
[7] H. Pagels, Phys. Rev. D21, 2336 (1980).
[8] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill Company, New York 1971, Chapter 37.
[9] J. Polchinski, Effective Field Theory and the Fermi Surface, arXiv: [hep-th/9210046]
[10] P. Mannheim, Phys. Rev. D10, 3311 (1974); Phys. Rev. D12, 1772 (1975); Phys. Rev. D14, 2072 (1976).
[11] M. Fukugita and T. Yanagida, Phys. Lett. B174, 45 (1986).
[12] K. T. Mahanthappa and J. Randa, Phys. Rev. D27, 2500 (1983); K. Huang and R. Mendel, MIT Report No. CPT 876 (1980) (unpublished).
[13] J. Hosek, Phys. Rev. D36, 2993 (1987).