Publisher Correction: Is DNA methylation the new guardian of the genome?

Robert M. Hoffman1,2

Correction
In the original publication of this article [1] the figures and the captions of 3 figures do not match correctly due to a typographical error. In this correction article the corrected figures and captions for Figs. 1, 2 and 3 are shown. The publisher apologizes to the readers and authors for the inconvenience.

Received: 21 May 2018 Accepted: 22 May 2018
Published online: 13 June 2018

Reference
1. Hoffman RM. Mol Cytogenet. 2017;10(11) https://doi.org/10.1186/s13039-017-0314-8.
Fig. 1 Rates of transmethylation of human tumor cell lines and normal human fibroblast cell strains. All cells were labeled with 100 µM \(^{35}S \)-methionine-containing medium (25 µCi/ml) for 24 h. Periodate-oxidized 3-deazaadenosine was added to a concentration of 10 µM and the accumulation of \(^{35}S \) AdoHcy was measured at half-hour intervals. Solid lines are human cancer cell lines. Dashed lines are human normal cell strains [38].

Fig. 2 Recombinant methioninase (rMETase) traps cancer cells in S/G2 phase. Time-course imaging of HeLa-FUCCI cells treated with rMETase (1.0 unit/ml). Kinetics of rMETase trapping of cells in S/G2. Images were acquired with the FV1000 confocal microscope (Olympus, Tokyo, Japan). In the FUCCI system, the cells in G0/G1, S, or G2/M phases appear red, yellow, or green, respectively [66].
Fig. 3 Efficacy of recombinant methioninase (rMETase) on growth of human colon tumors HCT 15 in nude mice. rMETase (5 or 10 units/g every 8 h) was administered by i.p. injection in nude mice with human colon tumor HCT 15, growing s.c. [54]