On the existence and uniqueness of minima and maxima on spheres of the integral functional of the calculus of variations

BIAGIO RICCIERI

Abstract: Given a bounded domain $\Omega \subset \mathbb{R}^n$, we prove that if $f : \mathbb{R}^{n+1} \to \mathbb{R}$ is a C^1 function whose gradient is Lipschitzian in \mathbb{R}^{n+1} and non-zero at 0, then, for each $r > 0$ small enough, the restriction of the integral functional $u \to \int_\Omega f(u(x), \nabla u(x))dx$ to the sphere $\{u \in H^1(\Omega) : \int_\Omega (|\nabla u(x)|^2 + |u(x)|^2)dx = r\}$ has a unique global minimum and a unique global maximum.

Key words: Sobolev space; integral functional; minimum; maximum; sphere; existence; uniqueness.

2000 Mathematics Subject Classification. 49K27.

Introduction

Here and in the sequel, $\Omega \subset \mathbb{R}^n$ is a bounded domain, and $f : \mathbb{R}^{n+1} \to \mathbb{R}$ is a C^1 function whose gradient is non-constant and Lipschitzian (with respect to the Euclidean metric).

We will consider the Sobolev space $H^1(\Omega)$ endowed with the norm

$$\|u\| = \left(\int_\Omega (|\nabla u(x)|^2 + |u(x)|^2)dx\right)^{\frac{1}{2}}$$

which is induced by the scalar product

$$\langle u, v \rangle = \int_\Omega (\nabla u(x) \nabla v(x) + u(x)v(x))dx .$$

The linear growth of ∇f (coming from its Lipschitzianity) implies that the functional

$$u \to J(u) := \int_\Omega f(u(x), \nabla u(x))dx$$

is (well-defined and) C^1 on $H^1(\Omega)$, with derivative given by

$$\langle J'(u), v \rangle = \int_\Omega (f_\xi(u(x), \nabla u(x))v(x) + \nabla_\eta f(u(x), \nabla u(x))\nabla v(x))dx$$

for all $u, v \in H^1(\Omega)$ ([2], p. 249).
Let $r > 0$. We are interested in minima and maxima of the restriction of the functional J to the sphere $S_r := \{u \in H^1(\Omega) : \|u\| = r\}$.

In the present setting, there is no evidence of their existence and uniqueness. In fact, with regard to the existence aspect, not only S_r is not weakly compact but also, if $f(\xi, \cdot)$ is neither convex nor concave in \mathbb{R}^n, the functional J is neither lower nor upper weakly semicontinuous. But, even when J is sequentially weakly continuous, it may happen that J has no minima and/or maxima on S_r.

In this connection, consider the following simple and enlightening situation. Assume that f depends only on the first variable and that has a unique global maximum in \mathbb{R}, say ξ_0. So, $J(u) = \int_{\Omega} f(u(x))dx$. Then, it is clear that the constant function $x \to \xi_0$ is the unique maximum of the functional J. In this case, J turns out to be sequentially weakly continuous, thanks to the Rellich-Kondrachov theorem. Then, by Lemma 2.1 of [1], the function $\rho \to \sup_{S_\rho} J$ is non-decreasing in $]0, +\infty[$. Consequently, if $r > |\xi_0|(\text{meas}(\Omega))^\frac{1}{2}$, $J|_{S_r}$ has no maxima.

Nevertheless, we will show that if $\nabla f(0) \neq 0$ then $J|_{S_r}$ possesses exactly one minimum and exactly one maximum for each $r > 0$ small enough.

The result

To shorten the statement of our result, let us introduce some further notations. In the sequel, $g : \mathbb{R}^{n+1} \to \mathbb{R}$ is another C^1 function which is non-negative, with $g(0) = 0$, and whose gradient is Lipschitzian, with Lipschitz constant $\nu < 2$. We set

$$I(u) = \int_{\Omega} g(u(x), \nabla u(x))dx$$

for all $u \in H^1(\Omega)$.

Moreover, V is a closed linear subspace of $H^1(\Omega)$ with the following property: there exists $v_0 \in V$ such that

$$\int_{\Omega} (f_{\xi}(0)v_0(x) + \nabla_\eta f(0)\nabla v_0(x))dx \neq 0.$$

Finally, if L is the Lipschitz constant of ∇f, we denote by S the set (possibly empty) of all global minima of the restriction to V of the functional

$$u \to \|u\|^2 + I(u) + \frac{2-\nu}{L} J(u).$$

Then, with the convention $\inf \emptyset = +\infty$, our result reads as follows:
THEOREM 1. - Under the above assumptions, one has

\[\delta := \inf_{u \in S} (\|u\|^2 + I(u)) > 0 \]

and, for each \(r \in]0, \delta[\), the restriction of the functional \(J \) to the set

\[C_r := \{ u \in V : \|u\|^2 + I(u) = r \} \]

has a unique global minimum.

PROOF. Let \(\mu \geq 0 \) and let \(u, v, w \in H^1(\Omega) \), with \(\|w\| = 1 \). Using Cauchy-Schwartz and Hölder inequalities, we have

\[|\langle I'(u) + \mu J'(u) - I'(v) - \mu J'(v), w \rangle| \leq \int_{\Omega} \left| (g_\xi(u, \nabla u) - g_\xi(v, \nabla v))w + (\nabla_\eta g(u, \nabla u) - \nabla_\eta g(v, \nabla v))\nabla w \right| dx + \\
+ \mu \int_{\Omega} \left| (f_\xi(u, \nabla u) - f_\xi(v, \nabla v))w + (\nabla_\eta f(u, \nabla u) - \nabla_\eta f(v, \nabla v))\nabla w \right| dx \leq \\
\leq \int_{\Omega} \left((|g_\xi(u, \nabla u) - g_\xi(v, \nabla v)|^2 + |\nabla_\eta g(u, \nabla u) - \nabla_\eta g(v, \nabla v)|^2) \right)^{\frac{1}{2}} \left(|w|^2 + |\nabla w|^2 \right)^{\frac{1}{2}} dx + \\
+ \mu \int_{\Omega} \left((|f_\xi(u, \nabla u) - f_\xi(v, \nabla v)|^2 + |\nabla_\eta f(u, \nabla u) - \nabla_\eta f(v, \nabla v)|^2) \right)^{\frac{1}{2}} \left(|w|^2 + |\nabla w|^2 \right)^{\frac{1}{2}} dx \leq \\
\leq (\nu + \mu \lambda) \|u - v\| .

Hence, the derivative of the functional \(I + \mu J \) is Lipschitzian, with constant \(\nu + \mu \lambda \). As a consequence, if \(0 \leq \mu < \frac{2-\nu}{\lambda} \), the functional \(u \rightarrow \|u\|^2 + I(u) + \mu J(u) \) is strictly convex and coercive. To see this, it is enough to show that its derivative is strongly monotone ([3], pp. 247-248). Indeed, if \(\Phi(\cdot) := \|\cdot\|^2 \), we have for all \(u, v \in H^1(\Omega) \)

\[\langle \Phi'(u) + I'(u) + \mu J'(u) - \Phi'(v) - I'(v) - \mu J'(v), u - v \rangle \geq \\
\geq 2\|u - v\|^2 - \|I'(u) - J'(v) + \mu (I'(v) - J'(v))\| \cdot \|u - v\| \geq (2 - \nu - \mu \lambda) \|u - v\|^2 .

Clearly, this shows also the convexity of the functional \(\Phi + I + \frac{2-\nu}{\lambda} J \). Assume \(S \neq \emptyset \). Then, \(S \) is closed and convex, and so there exists a unique \(\hat{u} \in S \) such that

\[\|\hat{u}\|^2 + I(\hat{u}) = \delta . \]
Observe that \(\|u\|^2 + I(u) > 0 \) for all \(u \in V \setminus \{0\} \). So, \(\delta \geq 0 \). Arguing by contradiction, assume \(\delta = 0 \). Then, it would follow \(\hat{u} = 0 \). Hence, since \(0 \in S \), we would have

\[
\langle \Phi'(0) + I'(0) + \frac{2 - \nu}{L} J'(0), v \rangle = 0
\]

for all \(u \in V \) and so, since \(\Phi'(0) + I'(0) = 0 \) (being 0 the global minimum of \(\Phi + I \)), it would follow

\[
\int_{\Omega} (f_\xi(0)v(x) + \nabla_{\eta} f(0)\nabla v(x))dx = 0
\]

for all \(v \in V \), against one of the hypotheses. Hence, we have proven that \(\delta > 0 \). Now, fix \(r \in [0, \delta] \) and consider the function \(\Psi : V \times [\frac{L}{2 - \nu}, +\infty[\to \mathbb{R} \) defined by

\[
\Psi(u, \lambda) = J(u) + \lambda(\|u\|^2 + I(u) - r)
\]

for all \((u, \lambda) \in V \times [\frac{L}{2 - \nu}, +\infty[\). As we have seen above, \(\Psi(\cdot, \lambda) \) is continuous and convex for all \(\lambda \geq \frac{L}{2 - \nu} \) and coercive for all \(\lambda > \frac{L}{2 - \nu} \), while \(\Psi(u, \cdot) \) is continuous and concave for all \(u \in V \), with \(\lim_{\lambda \to +\infty} \Psi(0, \lambda) = -\infty \). So, we can apply to \(\Psi \) a classical saddle-point theorem ([3], Theorem 49.4) which ensures the existence of \((u^*, \lambda^*) \in V \times [\frac{L}{2 - \nu}, +\infty[\) such that

\[
J(u^*) + \lambda^*(\|u^*\|^2 + I(u^*) - r) = \inf_{u \in V} (J(u) + \lambda(\|u\|^2 + I(u) - r)) =
\]

\[
= J(u^*) + \sup_{\lambda \geq \frac{L}{2 - \nu}} \lambda(\|u^*\|^2 + I(u^*) - r) .
\]

Of course, we have \(\|u^*\|^2 + I(u^*) \leq r \), since the sup is finite. But, if it were \(\|u^*\|^2 + I(u^*) < r \), we would have \(\lambda^* = \frac{L}{2 - \nu} \). This, in turn, would imply that \(u^* \in S \), against the fact that \(r < \delta \). Hence, we have \(\|u^*\|^2 + I(u^*) = r \). Consequently

\[
J(u^*) + \lambda^* r = \inf_{u \in V} (J(u) + \lambda^*(\|u\|^2 + I(u))) .
\]

From this, we infer that \(\lambda^* > \frac{L}{2 - \nu} \) (since \(r < \delta \)), that \(u^* \) is a global minimum of \(J_{|C_r} \) and that if each global minimum of \(J_{|C_r} \) is a global minimum in \(V \) of the functional \(u \to \|u\|^2 + I(u) + \lambda^* J(u) \). Since \(\lambda^* > \frac{L}{2 - \nu} \), this functional is strictly convex and so \(u^* \) is its unique global minimum in \(V \). The proof is complete. \(\triangle \)

REMARK 1. It is almost superfluous to remark that the conclusion of Theorem 1 may fail if the assumption that involves \(V \) and \(\nabla f(0) \) is not satisfied. In this connection, consider, for instance, the case \(f(\sigma) = -|\sigma|^2 \), with \(g = 0 \). This assumption, however, serves only to ensure that \(\delta > 0 \). So, it becomes superfluous, in particular, when \(S = \emptyset \).

Now, denote by \(S_1 \) the set (possibly empty) of all global minima of the restriction to \(V \) of the functional

\[
u \to \|u\|^2 + I(u) - \frac{2 - \nu}{L} J(u) .
\]

Clearly, applying Theorem 1 also to \(-f \), we get
THEOREM 2. - Under the assumptions of Theorem 1, one has

$$\delta_1 := \min \left\{ \inf_{u \in S} (\|u\|^2 + I(u)), \inf_{u \in S_1} (\|u\|^2 + I(u)) \right\} > 0$$

and, for each $r \in [0, \delta_1]$, the restriction of the functional J to the set

$$\{ u \in V : \|u\|^2 + I(u) = r \}$$

has a unique global minimum and a unique global maximum.

References

[1] M. SCHECHTER and K. TINTAREV, *Spherical maxima in Hilbert space and semi-linear elliptic eigenvalue problems*, Differential Integral Equations, 3 (1990), 889-899.

[2] M. STRUWE, *Variational methods*, Springer-Verlag, 1996.

[3] E. ZEIDLER, *Nonlinear functional analysis and its applications*, vol. III, Springer-Verlag, 1985.

Department of Mathematics
University of Catania
Viale A. Doria 6
95125 Catania
Italy
e-mail address: ricceri@dmi.unict.it