An Essential Role for Nuclear Factor κB in Promoting Double Positive Thymocyte Apoptosis

By Thor H. Ettmann,* Joseph Di Donato,‡ Michael Karin,‡ and Jeffrey M. Leiden*

From the *D epartments of Medicine and Pathology, University of Chicago, Chicago, Illinois 60637; and the ‡D epartment of Pharmacology, University of California San Diego, San Diego, California 92093

Summary
To examine the role of nuclear factor (NF)-κB in T cell development and activation in vivo, we produced transgenic mice that express a superinhibitory mutant form of inhibitor κB-α (IκB-α, A32/36) under the control of the T cell–specific CD2 promoter and enhancer (mutant [m]IκB-α mice). Thymocyte development proceeded normally in the mIκB-α mice. However, the numbers of peripheral CD8+ T cells were significantly reduced in these animals. The mIκB-α thymocytes displayed a marked proliferative defect and significant reductions in interleukin (IL)-2, IL-3, and granulocyte/macrophage colony-stimulating factor production after cross-linking of the T cell antigen receptor. Perhaps more unexpectedly, double positive (CD4+CD8+) DP thymocytes from the mIκB-α mice were resistant to α-CD3-mediated apoptosis in vivo. In contrast, they remained sensitive to apoptosis induced by γ-irradiation. Apoptosis of wild-type DP thymocytes after in vivo administration of α-CD3 mAb was preceded by a significant reduction in the level of expression of the antiapoptotic gene, bcl-xL. In contrast, the DP mIκB-α thymocytes maintained high level expression of bcl-xL after α-CD3 treatment. Taken together, these results demonstrated important roles for NF-κB in both inducible cytokine expression and T cell proliferation after TCR engagement. In addition, NF-κB is required for the α-CD3-mediated apoptosis of DP thymocytes through a pathway that involves the regulation of the antiapoptotic gene, bcl-xL.

Key words: nuclear factor κB • inhibitor κB-αA32/36 • thymocytes • apoptosis • bcl-xL

The mammalian nuclear factor (NF)-κB1 transcription factors, NF-κB1 (p50/p105), NF-κB2 (p52/p100), RELA (p65), c-REL, and RELB are involved in the regulation of immune and inflammatory responses, cellular proliferation, and cell death (for review see references 1–4). NF-κB proteins modulate these diverse biological processes by regulating the expression of a wide variety of genes encoding cytokines and cytokine receptors, chemokines, cell adhesion molecules, cell-surface receptors, hematopoietic growth factors, acute phase proteins, and other transcription factors. Transcriptional activation or repression of NF-κB target genes requires binding of NF-κB dimers to κB DNA binding sites. Although p50/p65 heterodimers are considered the prototypical NF-κB dimer, many different combinations of NF-κB homo- and heterodimers exist (5) and there is evidence to suggest that these different NF-κB dimers regulate the expression of different genes (6).

In most cells, the transcriptional activity of NF-κB proteins is controlled at the posttranslational level by regulated associations with members of the inhibitor (IκB) family of inhibitory proteins. NF-κB proteins are retained in the cytoplasm of unstimulated cells and thus rendered inactive via interactions with one or more of the seven known IκB proteins: IκB-α, IκB-β, IκB-γ, Bcl-3, IκB-ε, p105, and p100 (3, 7). In response to a wide variety of stimuli, including antigen receptor cross-linking, and exposure to cytokines (TNF-α, IL-1), bacterial components (LPS), viruses, ionizing radiation, or oxidative stress, IκB-α and -β proteins are phosphorylated and degraded and cytoplasmic NF-κB dimers released from their inhibitory proteins are rapidly translocated to the nucleus where they regulate the transcription of genes containing κB binding sites (8–11). Recent studies have demonstrated that phosphorylation of Ser32 and Ser36 and subsequent polyubiquitination of IκB-α...
NF-κB proteins are thought to play important roles in T cell activation and development (19, 20). Functionally important κB binding sites have been identified in a large number of T cell transcriptional regulatory elements, including the IL-2, IL-2Rα, G-CSF, and macrophage inflammatory protein (MIP)-2 promoters (1). Preformed NF-κB proteins are present in the cytoplasm of thymocytes and resting peripheral T cells (21). TCR engagement results in the rapid phosphorylation of IκB-α and the concomitant nuclear migration of active NF-κB dimers (19, 22, 23). Despite these findings, it has been difficult to precisely elucidate the role of NF-κB in regulating T cell development, activation, and apoptosis in vivo. During the last several years, gene targeting experiments have demonstrated that RelB, c-Rel, and NF-κB1 each play important but distinct roles in regulating the development and function of the mammalian immune system. NF-κB1-deficient mice displayed defects in B cell proliferation in response to the mitogen LPS but not to IgM cross-linking (24, 25). R eLB is required for the differentiation and/or survival of dendritic cells and thymic medullary epithelial cells and R eLB−/− mice displayed severely defective cellular immune responses (26, 27). The immune dysfunction observed in R eLB−/− mice was worsened in N F-κB1/R eLB double knockout mice, suggesting that the lack of R eLB is compensated for by other N F-κB1-containing dimers (28). c-R eL-deficient mice displayed defective B and T cell proliferation in response to mitogen stimulation as well as markedly decreased IL-2 production after TCR engagement (29). In contrast, mice lacking R eLA died on embryonic day 15 from massive hepatocyte apoptosis (30, 31). However, progenitor cells derived from R eLA−/− mice were able to give rise to normal T cells, suggesting that R eLA is not required for T cell development (30, 32).

Recent studies have suggested that, in addition to regulating lymphocyte function, NF-κB proteins might play a critical role in protecting cells against apoptosis. Support for this model came both from the finding of hepatocyte apoptosis in the R eLA−/− mice and from experiments demonstrating that overexpression of a dominant-negative form of the IκB-α protein in transgenic mice (33) and several cell lines promoted apoptosis in vitro (34–39). However, other studies have suggested that N F-κB can also function in a proapoptotic fashion. For example, induction of apoptosis in 293 cells after serum withdrawal requires R eLA activation (40). Similarly, radiation-induced apoptosis in ataxia telangiectasia cells is suppressed by dominant-negative IκB-α proteins (41) and inhibition of N F-κB activation prevents apoptosis in cultured human thymocytes (42). Finally, N F-κB activation promotes apoptosis in neural cells (43) and T cell hybridomas (44), and high levels of c-R eL induce apoptosis in avian embryos and in bone marrow cells in vitro (45).

Although gene targeting experiments have been useful for identifying the essential nonredundant roles of individual NF-κB transcription factors in T cell development and function, the interpretation of these experiments can be obscured by functional redundancies of related gene products in the mutant animals and by embryonic lethal phenotypes that preclude a complete analysis of lymphoid development and function. Moreover, in some cases it can be difficult to distinguish cell autonomous and non–cell autonomous phenotypes because mutant animals lack expression of the targeted gene in all cell lineages. We and others (33, 46) have used a complementary approach that circumvents these potential problems to study the role of N F-κB in T cell development, activation, and apoptosis in vivo. Specifically, we have generated transgenic mice that express a mutant superinhibitory form of the IκB-α protein under the control of the T cell–specific CD2 promoter and enhancer. This superinhibitory form of IκB-α cannot be phosphorylated on Ser32 and Ser36 and degraded in response to TCR cross-linking and would therefore be expected to constitutively inhibit the nuclear translocation of N F-κB proteins after T cell activation. Studies of the mIκB−/− mice revealed several important functions for N F-κB in T cells in vivo. First, N F-κB is required to develop or maintain normal numbers of peripheral CD8+ T cells. Second, N F-κB activation is necessary for both cytokine production and thymocyte proliferation after TCR engagement. Finally and somewhat unexpectedly, N F-κB is required for α-CD3-mediated apoptosis of double positive (DP) thymocytes in vivo via a pathway that involves downregulated expression of the antiapoptotic gene bcl-xL in DP thymocytes.

Materials and Methods

Transgenic C onstruction and G eneration of T ransgenic M ice. The construction of the hemagglutinin (HA)-tagged IκB-α cDNA with Ser to Ala substitutions at positions 32 and 36 has been described previously (47). The mutant IκB-α cDNA was inserted into the XhoI site of pTEX (provided by Dr. M. O’wen, Imperial Cancer Research Fund, London, UK), which contains the promoter, polyadenylation site, and locus control region elements from the human CD2 gene (48). Transgenic DNA was microinjected into the male pronucleus of fertilized single cell embryos of C57BL/6 mice. Microinjected eggs were transferred to pseudopregnant CD1 foster mothers. EcorI-digested tail DNA from 12-14-d-old pups was hybridized to a radiolabeled 0.8-κb IκB-α-specific probe, and the transgene copy number was determined using a PhosphorImager (Molecular Dynamics).

Cell C ulture. Single cell suspensions of thymocytes and spleenocytes were cultured at 37°C, 5% CO2 in RPMI 1640 medium containing 10% heat inactivated FCS, 100 U/ml penicillin/streptomycin, 2 mM glutamine, 0.1 mM nonessential amino acids, 5.5 x 10−5 M β-2-ME (all from Gibco BRL). Thymocyte proliferation assays were performed in 96-well plates (Becton Dickinson) that had been coated overnight with α-CD3 mAb (145-2C11; PharMingen) and/or α-CD28 mAb (37.51; PharMingen) at a concentration of 16 µg/ml. Stimulation with PMA (Sigma Chemical Co.) and ionomycin (Calbiochem) was performed at 5 ng/ml and 0.25 μg/ml, respectively. After stimulation for 48 h,
cells (0.5 × 10^9/ml) were pulsed for 18 h at 37°C with [3H]thymidine (1 μCi/ml; Amersham). Cells were transferred onto glass fiber filter mats and radioactive incorporation was measured with a beta scintillation counter.

Fetal thymic organ culture. Fetuses of CD1 and mlαβ-α mice were obtained at embryonic day 17.5 of pregnancy, counting the day of vaginal plug as embryonic day 1. Equally sized thymic lobes were cultured in 24-well Transwell dishes (Costar Corp.) containing complete DMEM-10 medium. The samples were maintained in an atmosphere of 5% CO_2 for 72 h and treated with α-CD3 mAb (145-2C11) as described in the text.

ELISA assays. For ELISA assays, 96-well plates (Dynatech Labs.) were coated overnight at 4°C with α-IL-2 (JES5-1A12), α-IL-3 (MP2-8F8), or α-α-GM-CSF (MP1-22E9) mAbs (PharMingen). Serial dilutions of supernatants from thymocytes stimulated in culture for 48 h were added to the antibody-coated plates and incubated for 18 h at 4°C. Biotinylated antibodies against IL-2 (JES5-SH4), IL-3 (MP2-43D11), or GM-CSF (MP1-31G6) were then added to the plates and incubated for 2 h at room temperature. Avidin peroxidase (Sigma Chemical Co.) and ABTS (3-ethylbenzothiazoline-6-sulfonic acid) were added to the wells and enzymatic reactions were quantitated in a microplate reader (Dynatech Labs.). All samples were assayed in triplicate.

Western Blot Analysis. Cytoplasmic and nuclear thymocyte extracts were prepared as previously described (49). In brief, thymocytes were washed with PBS, incubated in buffer A (10 mM Hapes, pH 7.9, 1.5 mM MgCl_2, 10 mM KCl, 0.5 mM dithiothreitol, and 0.2 mM phenylmethylsulfonyl fluoride) for 10 min at 4°C and centrifuged to separate nucleus (pellet) from cytoplasmic proteins (supernatant). Nuclei were lysed by incubation with buffer C (20 mM Hapes, pH 7.9, 25% glycerol, 420 mM NaCl, 1.5 mM MgCl_2, 0.2 mM EDTA, 0.5 mM dithiothreitol, 0.2 mM phenylmethylsulfonyl fluoride, 10 mg/ml aprotinin, and 10 mg/ml leupeptin) at 4°C and lysates were cleared by centrifugation. Nuclear and cytoplasmic extracts were frozen at −70°C. Protein concentrations were determined using a commercially available kit (Bio-Rad). For Western blot analysis, 15 μg of cytoplasmic extracts were fractionated by SDS-PAGE in 10% polyacrylamide gels and transferred to PVDF membranes (Millipore). Western blots were probed with a rabbit polyclonal antibody against MAD-3 (1:2,000 dilution; nomenclature of DiDonato et al. [ref-12]). Blots were developed with goat α-rabbit (1:2,000 dilution; Amersham) or rat α-mouse (1:5,000 dilution; Kirkegaard and Perry Labs) secondary antibodies and a commercially available chemiluminescence kit according to the manufacturer’s instructions (Pierce Chemical Co.).

Results

Production of mlαβ-α transgenic mice. To inhibit inducible Nf-κB activity in thymocytes in vivo, we produced transgenic mice that expressed a “superinhibitory” form of IκB-α under the control of the T cell-specific CD2 promoter and enhancer (mlαβ-α mice). We chose to use an IκB-α transgene because previous studies have demonstrated that IκB-α plays a critical role in regulating inducible Nf-κB expression (for review see references 2–4, 52). The superinhibitory mlαβ-α transgene containing Ser32 and Ser36 to Ala substitutions cannot be phosphorylated and degraded in response to TCR engagement and would therefore be expected to constitutively inhibit Nf-κB activity in both resting and activated thymocytes and T cells. The CD2 promoter and enhancer (48, 53; Fig. 1 A) were used in these studies because (a) they program T cell–specific transgene expression and (b) they are expressed at high levels in all thymocyte subsets including double negative (CD4−CD8−), DN, DP (CD4+CD8+), and single positive (CD4+ or CD8+) SP cells (54). The transgene construct also contained three copies of an 11-amino acid influenza virus HA epitope tag (55) that allowed us to distinguish the transgene-encoded protein from endogenous murine IκB-α. A line of mIκB-α mice containing ~12 copies of the transgene was produced by injection of this construct into fertilized CD1 mouse embryos (Fig. 1 B). Homozygous transgenic mice were generated by breeding heterozygous littermates in order to obtain maximal levels...
of IκB-ακA32/36 protein expression, an important consideration in producing a dominant-negative phenotype. A second line of transgenic mice expressing the IκB-ακA32/36 cDNA under the control of the proximal IκB promoter and the CD2 enhancer was also produced (data not shown). Similar phenotypes were observed in both lines of transgenic mice and are therefore not distinguished in the results described below.

Endogenous IκB-α is phosphorylated and degraded after treatment of T cells with the NF-κB inducer, TNF-α (47). To analyze the relative levels of endogenous and transgene-encoded IκB-α and to study the differential regulation of the two proteins in response to TNF-α, we performed Western blot analyses using whole cell extracts from mIκB-α and control thymocytes that had been treated for different times with TNF-α (Fig. 2 A). Basal levels of the IκB-ακA32/36 protein as detected with both the α-HA and α-IκB-α (α-MAD) antibodies slightly exceeded levels of the endogenous IκB-α protein in the mIκB-α thymocytes. In both wild-type and mIκB-α thymocytes, endogenous IκB-α was almost completely degraded after 15 min of TNF-α treatment and remained undetectable until ∼30 min after treatment. As previously reported (9, 15), endogenous IκB-α was reexpressed between 30 and 60 min after TNF-α treatment (data not shown). This reexpression reflects NF-κB-mediated activation of the IκB-α promoter. In marked contrast, levels of the transgene-encoded IκB-ακA32/36 were unchanged by TNF-α treatment at all time points (Fig. 2 A). Activation of mIκB-α thymocytes with PMA plus ionomycin or TCR cross-linking resulted in a similar degradation of endogenous IκB-α, whereas the levels of IκB-ακA32/36 remain unaffected (data not shown).

To analyze the effects of IκB-ακA32/36 expression on the nuclear translocation of NF-κB proteins after T cell activation, we performed electrophoretic mobility shift assays (EMSA) using nuclear extracts prepared from both resting thymocytes and thymocytes activated in vivo by intraperitoneal injection of an α-CD3 mAb (Fig. 2 B). As reported previously, nuclear extracts from unstimulated wild-type and mIκB-α thymocytes both contained p50 homodimers that bound to the radiolabeled κB probe (22, 56). The presence of such p50 homodimers in uninduced thymic nuclear extracts probably reflected the fact that p50 binds to IκB proteins with lower affinity and therefore is not quantitatively retained in the cytoplasm of either wild-type or mIκB-α thymocytes (57). Because p50 homodimers do not contain a transcriptional activation domain they are thought to repress κB-dependent gene expression (58). After activation with α-CD3 mAb, the level of p50 homodimers increased equivalently in the wild-type and mIκB-α thymocyte nuclear extracts. In addition, an inducible low mobility κB binding complex appeared in the nuclear extracts of wild-type thymocytes. Antibody supershift experiments demonstrated that this complex contained predominantly p50/p65 heterodimers as well as smaller amounts of c-Rel and RelB-containing heterodimers (Fig. 2 B). The induction of this low mobility κB binding activity was markedly inhibited after α-CD3-mediated activation of the mIκB-α thymocytes (Fig. 2 B). Taken together, these Western blotting and EMSA experiments demonstrated that thymocytes from the mIκB-α transgenic animals expressed high levels of cytoplasmic IκB-ακA32/36 protein that was not degraded after TCR engagement in vivo. Moreover, constitutive expression of the IκB-ακA32/36 protein significantly reduced the induction of nuclear p50/p65, c-Rel/p50, and RelB/p50 NF-κB heterodimers after either TNF-α or α-CD3-mediated activation of the mIκB-α thymocytes.

Normal Thymocyte Ontogeny in the mIκB-α Transgenic Mice. To investigate T cell development in the mIκB-α mice, thymocytes and peripheral T cells from transgenic and wild-type animals were analyzed by flow cytometry using antibodies specific for a variety of developmentally regulated T cell surface antigens (Fig. 3). Thymi from the mIκB-α animals contained normal populations of DN, DP, and SP cells. Levels of CD3 and TCR-α/β expression were also indistinguishable on wild-type and mIκB-α thymocytes (Fig. 3 B), as were expression of TCR-γ/δ and heat-shock antigen (data not shown). Thus, expression of IκB-ακA32/36 did not appear to perturb thymocyte ontogeny. Total numbers of SP peripheral T cells in both the spleen and the lymph nodes were normal in mIκB-α mice as were...
Impaired Proliferation and Cytokine Production by mIκB-α transgenic thymocytes. To assess the effects of IκB-α expression on cytokine production and proliferation, thymocytes from mIκB-α and wild-type control littermates were activated in vitro for 72 h with PMA plus ionomycin, α-CD3 mAb, or α-CD3 plus α-CD28 mAbs. When compared with wild-type thymocytes, proliferation of the mIκB-α thymocytes was reduced by 63% in response to PMA plus ionomycin and by 78% after activation with α-CD3 mAb (Fig. 4). Previous studies have suggested that CD28 costimulation may function, at least in part, through an NF-κB-dependent pathway (59). Therefore, we tested the ability of CD28 costimulation to rescue the defect in α-CD3-mediated thymocyte proliferation seen in the mIκB-α thymocytes. Interestingly, the observed reductions in thymocyte proliferation were partially, but not completely, rescued by α-CD28 costimulation (Fig. 4). Thus, the CD28 signaling pathway can at least partially bypass the requirement for NF-κB activation in thymocyte activation by TCR engagement.

Many cytokine genes including IL-2, IL-3, and GM-CSF are potential targets for NF-κB (60). However, the role of NF-κB in regulating activation-specific cytokine expression in vivo, particularly the expression of the IL-2 gene, remains controversial. Therefore, we compared cytokine production by the wild-type and mIκB-α thymocytes after activation with α-CD3 plus α-CD28 mAbs (Fig. 5). As compared with wild-type thymocytes, the mIκB-α thymocytes displayed significantly decreased production of IL-2, IL-3, and GM-CSF after α-CD3 plus α-CD28 activation (Fig. 5). IL-2 production was most significantly reduced (28% of wild-type levels), whereas GM-CSF and IL-3 production were less dramatically inhibited (Fig. 5). Taken together, these experiments demon-
NF-κB is required both for the induction of multiple cytokines and for normal thymocyte proliferation after TCR cross-linking.

DP IκB-αA32/36 Thymocytes Are Protected against α-CD3–mediated Apoptosis In Vivo. Systemic administration of α-CD3 mAb has been shown to result in the rapid depletion of >90% of DP thymocytes by apoptosis (61). NF-κB positively regulates the expression of death-rescuing genes, thereby preventing TNF-α–induced apoptosis at least in certain cell types (34–39). Based upon these findings, it was reasonable to hypothesize that DP thymocytes from the mIκB-α mice that failed to activate NF-κB normally would display increased apoptosis after systemic administration of α-CD3 mAb. To directly test the role of NF-κB in mediating the α-CD3–mediated apoptotic death of DP thymocytes, ακB–α and wild-type animals were injected intraperitoneally with α-CD3 mAb and thymocyte subsets were assessed by flow cytometry 48 h after injection. As shown in Fig. 6 and consistent with previous reports (62, 63), treatment of wild-type animals with α-CD3 mAb resulted in dose-dependent reductions in the size of the DP thymocyte population. Wild-type animals treated with 40 μg of α-CD3 mAb displayed a 98% reduction in DP thymocytes within 48 h after α-CD3 administration. Somewhat surprisingly, this α-CD3–mediated loss of DP thymocytes was completely and reproducibly prevented in the mIκB-α mice even after administration of 40 μg of α-CD3 mAb (Fig. 6). Similar reductions in DP thymocyte apoptosis were observed at both 24 and 48 h after injection and after administration of either 20 or 40 μg of α-CD3 mAb (Fig. 6 and data not shown).

To confirm the protective effects of IκB-αA32/36 expression on DP thymocyte apoptosis in vivo, we performed TUNEL assays on thymi from wild-type and mIκB-α mice after intraperitoneal injection of α-CD3 mAb (Fig. 7). Large numbers of apoptotic cells were seen in wild-type thymi after treatment with α-CD3 mAb as compared with littermates treated with an isotype-matched control antibody. In contrast, the frequency of apoptotic cells in the mIκB-α thymi was dramatically reduced as compared with that observed in wild-type thymi after treatment with similar amounts of α-CD3 mAb (Fig. 7).

Figure 5. Reduced cytokine production by mlκB-α transgenic thymocytes. Cultured thymocytes from wild-type (white bars) and transgenic IκB-αA32/36 mice (black bars) were stimulated with immobilized α-CD3 plus α-CD28 antibodies (16 μg/ml). The levels of IL-2, GM-CSF, and IL-3 in the culture supernatants were assayed by ELISA 48 h after stimulation.

Figure 6. Decreased α-CD3–mediated deletion of DP thymocytes in mlκB-α transgenic mice. (A) 3–7-wk-old wild-type (WT) or mlκB-α transgenic mice (Tg) were injected intraperitoneally with 200 μl of PBS containing either 0 (Control), 20, or 40 μg of α-CD3 mAb. Freshly isolated thymocytes from these animals were analyzed by flow cytometry with PE–α-CD4 and FITC–α-CD8 48 h after α-CD3 administration. (B) Absolute numbers of thymocytes in wild-type (n = 3) and mlκB-α transgenic (n = 4) animals 48 h after intraperitoneal injection with PBS or 40 μg of α-CD3 mAb. The data are shown as mean ± SEM. (C) 3–7-wk-old wild-type (WT) or mlκB-α transgenic mice (Tg) were treated with whole body γ irradiation (500 RADS). Freshly isolated thymocytes from these animals were analyzed by flow cytometry with PE–α-CD4 and FITC–α-CD8 12 h after γ irradiation.
The Bcl-2 family of proteins is comprised of multiple members that function either as pro- or antiapoptotic proteins. Two antiapoptotic members of this family, Bcl-xL and Bcl-2, are expressed in a reciprocal pattern during thymocyte development. Bcl-2 is expressed at high levels in immature DN thymocytes. Its expression is downregulated in DP cells and is then reexpressed in these cells mature to SP thymocytes and peripheral T cells (66, 67). Conversely, Bcl-xL is expressed at low or undetectable levels in immature DN cells. Its expression is significantly upregulated in DP thymocytes, and it is then downregulated as these cells progress to the SP stage of thymocyte ontogeny (68, 69). Interestingly, DP thymocytes from transgenic mice that overexpress Bcl-2 or Bcl-xL are protected from multiple proapoptotic stimuli, including CD3 treatment, which might account for their decreased susceptibility to proapoptotic stimuli. Accordingly, we used an RNAse protection assay to directly monitor the expression of Bcl-2-related genes in thymocytes from wild-type and mIκB-α transgenic mice. As shown in Fig. 9 A, both basal and CD3-treated levels of bfl-1, bak, bax, bd-2, and bad mRNAs were equivalent in wild-type and mIκB-α thymocytes. Similarly, we failed to detect differential expression of mRNAs encoding Fas, Fas-L, TRAF, TRADD, FADD, RIP, and FLICE in either unstimulated or CD3-3-treated wild-type and mIκB-α thymocytes (data not shown). Basal levels of bd-xL were equivalent in wild-type and mIκB-α thymocytes. However, after CD3 treatment, the expression of bd-xL was significantly decreased in the wild-type cells but was maintained at pretreatment levels in the mIκB-α thymocytes (Fig. 9 A).

Because Bcl-xL is the predominant antiapoptotic protein expressed in DP thymocytes, the preferential loss of Bcl-xL...
from wild-type thymocytes after α-CD3 administration might have simply reflected the death of these DP cells. To confirm that the pattern of Bcl-xL protein expression paralleled that of the mRNA and to assess the possibility that the observed changes in bcl-xL mRNA levels in the WT thymocytes that was prevented in the mIκB-α thymocytes. We performed Western blot analyses on thymocyte extracts 18 and 39 h after administration of a-CD3 mAb. As shown in Fig. 9 B, levels of Bcl-xL protein were significantly reduced in wild-type thymocytes at both 18 and 39 h after α-CD3 treatment. In contrast, levels of Bcl-xL protein were maintained at unstimulated levels in the mIκB-α thymocytes at both time points. Because there is not a significant loss of DP thymocytes 18 h after α-CD3 treatment, these results indicated that the loss of Bcl-xL protein precedes thymocyte apoptosis and is prevented in the mIκB-α DP thymocytes. We confirmed this result by performing intracellular staining of viable DP thymocytes using Bcl-xL-specific antibodies (Fig. 9 C). 24 h after α-CD3 administration, viable DP thymocytes displayed a significant decrease in intracellular Bcl-xL as measured by flow cytometry. In contrast, DP thymocytes from the mIκB-α mice failed to downregulate intracellular Bcl-xL expression. In control experiments, SP CD4+ thymocytes from these same wild-type and mIκB-α animals both failed to demonstrate altered levels of intracellular Bcl-xL after α-CD3 administration (Fig. 9 D). Taken together, these results demonstrated that the in vivo administration of α-CD3 mAb resulted in the specific downregulation of the antiapoptotic gene bcl-xL in DP thymocytes and that this reduced expression of Bcl-xL was, in turn, associated with subsequent apoptotic cell death. In contrast, DP thymocytes from mIκB-α mice failed to downregulate Bcl-xL and were protected from α-CD3–mediated programmed cell death.

Discussion
In the studies described in this report, we have used transgenic mice expressing a superinhibitory form of IκB-α to study the function of NF-κB in T cells in vivo. The dominant-negative approach used in these studies circumvents potential problems of functional redundancy and embryonic lethality that can complicate the analysis of gene
targeting experiments. In addition, because the transgene is only expressed in thymocytes and T cells we can conclude that the observed defects in T cell function are thymocyte or T cell autonomous. Our results have revealed several important roles for NF-κB proteins in T cell development and function. First, in agreement with previous reports (33, 46) we showed that NF-κB is required for the development and/or survival of normal numbers of peripheral CD8+ T cells, for the inducible expression of multiple cytokine genes, and for normal T cell proliferation in response to TCR-mediated T cell activation. However, our studies have also revealed an unexpected and novel role for NF-κB proteins in DP thymocyte apoptosis in response to α-CD3 mAb administration in vivo.

Effective T lymphocyte proliferation and cytokine production in the mlkB-α mice. TCR engagement leads to the precisely orchestrated transcriptional induction of >100 new genes whose expression together determines the activated T cell phenotype. Several inducible transcription factors have been implicated as critical early regulators of activation-specific T cell gene expression. These include NF-AT, CREB, AP1, and NF-κB (60). Three of these, NF-AT, CREB, and NF-κB, are present in an inactive form in resting T cells and are activated by posttranslational phosphorylation or dephosphorylation in response to TCR cross-linking. The precise role of each of these transcription factors in regulating T cell activation remains unclear because many T cell genes contain binding sites for multiple inducible transcription factors, and because it has been difficult to extrapolate from the results of transient transfection assays performed in immortalized T cell lines to in vivo transcripitional regulatory pathways. Thus, for example, NF-AT, AP1, and NF-κB transcription factors can each bind to functionally important sites in the IL-2 promoter in vitro (71–74). Moreover, transient transfection assays have suggested that each of these transcription factors may play an important role in regulating the expression of this T cell cytokine (75–76). However, gene targeting experiments have thus far failed to demonstrate a critical role for NF-AT in positively regulating IL-2 expression and T cell proliferation in normal T cells (77, 78). T to circumvent these problems, we used a genetic approach involving overexpression of IκBαA32/36 in transgenic mice to directly study the role of NF-κB proteins in the development and activation of normal T cells in vivo. Our results demonstrated that NF-κB is required for the inducible expression of the IL-2, IL-3, and GM-CSF genes and for subsequent T cell proliferation in response to TCR stimulation. These findings are consistent with previous reports demonstrating that NF-κB proteins can positively regulate apoptosis in certain cell types in vitro including thymocytes and T cell hybridomas (42, 44). The different findings of these studies may reflect the fact that NF-κB can regulate the expression of distinct proapoptotic and antiapoptotic programs in different cell lineages, at different developmental stages of a single lineage, and/or in response to different extracellular signals.

At least three different apoptotic pathways have been identified in thymocytes: (a) a TCR-mediated pathway (63, 88); (b) a glucocorticoid-responsive pathway (89, 90); and (c) a γ irradiation-sensitive pathway (64). Recent evidence has suggested that these pathways can be distinguished at a molecular level. Thus, for example, γ irradiation-induced thymocyte apoptosis requires p53 and does not occur in p53-deficient thymocytes. In contrast, α-CD3-mediated thymocyte apoptosis is p53 independent (64, 91). Our results are consistent with such a model in that the mlkB-α DP thymocytes were protected from α-CD3-induced apoptosis but remained sensitive to programmed cell death induced by γ irradiation. Thus, we would suggest that NF-κB is not required for p53-dependent thymocyte apoptosis but is a critical positive regulator of at least one p53-independent path-
way of programmed cell death in DP thymocytes. In this regard, it will be of interest to study DP thymocyte apoptosis in p53-deficient, mlkB-α transgenic mice.

Our results suggest that NF-κB mediates α-CD3-mediated apoptosis in wild-type DP thymocytes by downregulating the expression of the antiapoptotic gene bd-xL. Because bd-xL is the predominant antiapoptotic gene expressed in DP thymocytes (68, 69) it is not surprising that its downregulation would predispose these cells to apoptosis. Such a model is also consistent with previous studies that have demonstrated that constitutive expression of a bd-xL transgene in DP thymocytes protects them from α-CD3-mediated apoptosis (69). Recently, an alternatively spliced form of bd-xL called bd-xS has been shown to be expressed in DP thymocytes and to be regulated in response to TCR stimulation (92). Because the Bcl-xL and Bcl-xS proteins are virtually identical in size and are both recognized by the anti-Bcl-xL antibodies and probes used in our studies, we cannot distinguish them by R N Ase protection, Western blotting, or intracellular flow cytometry. Thus, it is possible that one or both isoforms of Bcl-x contribute to the antiapoptotic effects of the IκB-αs23,36 transgene. The effect of NF-κB on Bcl-xL expression in DP thymocytes may be direct or indirect. That is, NF-κB proteins might bind directly to the bd-xL promoter and downregulate its activity, or alternatively, might control the expression of other (positive and/or negative) regulators of the bd-xL gene in thymocytes. In this regard, it will be of interest to further characterize the bd-xL promoter and to study its regulation by NF-κB proteins.

It is important to emphasize that at present, we cannot conclude that the proapoptotic effects of NF-κB in DP thymocytes are thymocyte autonomous. For example, it is possible that α-CD3 administration causes peripheral T cell activation resulting in cytokine expression that in a paracrine fashion causes DP thymocyte toxicity (93). In such a model, decreased cytokine production by peripheral mlkB-α T cells in response to α-CD3 treatment could account for the decreased DP thymocyte apoptosis seen in these animals. Indeed our results demonstrate decreased cytokine production by thymocytes after TCR cross-linking (Fig. 5). However, this non-thymocyte-autonomous model is less likely to account for the resistance to α-CD3-induced thymocyte death seen in the mlkB-α mice because DP thymocytes from the mlkB-α mice are also resistant to α-CD3-mediated killing in FTOC. Thus, it would appear more likely that NF-κB expression in DP thymocytes is directly required for α-CD3-induced apoptosis.

During the last several years, there has been considerable interest in developing inhibitors of NF-κB for the treatment of both autoimmune diseases and cancer. In the case of cancer, such inhibitors might function to increase the sensitivity of tumor cells to apoptotic cell death induced both by cytokines such as TNF-α and by CTLs. In patients with autoimmune disease, such inhibitors might function by suppressing T cell activation in response to self-antigens. Our finding that NF-κB can function to potentiate apoptosis in certain cell types and specifically in DP thymocytes raises several potential concerns about the systemic administration of NF-κB inhibitors. First, it is possible that some tumor cells and/or virus-infected cells, like DP thymocytes, may actually demonstrate decreased apoptosis in response to NF-κB inhibitors. Thus, it is possible that potent NF-κB inhibitors might potentiate tumorgenesis in some tissues and might also reduce host responses against viral pathogens by decreasing susceptibility to apoptosis. Similarly, our finding that NF-κB inhibitors protect DP thymocytes from apoptosis suggests the possibility that the administration of such inhibitors to patients with autoimmune diseases might result in a failure in the negative selection of some DP thymocytes, thereby potentially increasing the generation of autoreactive T cell clones. Given these possibilities, it will be important to carefully assess the effects of NF-κB inhibitors on the apoptotic potential of different human tumor and virus-infected cells and on the negative selection of DP thymocytes before their widespread use in human therapy.

We thank C. Clendenin for help with the production of transgenic mice, J. Auger for technical assistance with FACS® analyses, and P. Lawrey and L. Gottschalk for help with the preparation of the manuscript and illustrations.

Thore Hettmann is a Terry Fox Research Fellow. This work was supported in part by a grant from the NIAID to J.M. Leiden (2 R37 A129637-07) and by the Cancer Center of the University of Chicago, and by a grant from the NIAID to M. Karin (R01 AI43477-01).

Address correspondence to Jeffrey M. Leiden, University of Chicago, Rm. B608 MC 6080, 5841 South Maryland Ave, Chicago, IL 60637. Phone: 773-702-1919; Fax: 773-702-1385; E-mail: jleiden@medicinebsd.uchicago.edu

Received for publication 6 July 1998 and in revised form 5 October 1998.

References

1. Grilli, M., J.J.-S. Chiu, and M.J. Lenardo. 1993. NF-κB and Rel: participants in a multifactor transcriptional regulatory system. Int. Rev. Cytol. 143:1–62.
2. Baeuerle, P.A., and T. Henkel. 1994. Function and activation of NF-kappa B in the immune system. Annu. Rev. Immunol. 12:141-179.
3. Baldwin, A.S. 1996. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649-681.
4. Ghosh, S., M. J. May, and E. B. Kopp. 1998. NF-κB and Rel proteins: evolutionary conserved mediators of immune responses. Annu. Rev. Immunol. 16:225–260.

5. Siebenlist, U., G. Franzoso, and K. Brown. 1994. Structure, regulation and function of NF-κB family: intimate tales of association and dissociation. Genes Dev. 9:2723–2735.

8. Beg, A.A., T.S. Finco, P.V. Nantem, and A.S. Baldwin, Jr. 1993. Tumor necrosis factor and interleukin-1 lead to phosphorylation and loss of IκB alpha: a mechanism for NF-κB activation. Mol. Cell. Biol. 13:3301–3310.

12. Alkalay, I., A. Yaron, A. Hatzubai, S. Jung, A. Avraham, O. Wilk, and P.A. Baeuerle. 1995. Phosphorylation and loss of IκB alpha: a mechanism for NF-κB activation. Proc. Natl. Acad. S. U. A. 92:2532–2536.

15. Brown, K., S. Park, T. Kanno, G. Franzoso, and U. Siebenlist. 1993. Mutual regulation of the transcriptional activator NF-κB and its inhibitor, IκB alpha. Proc. Natl. Acad. S. U. A. 90:2532–2536.

20. Wei, F., D. Carrasco, S.K. Durham, D.S. Barton, C.A. Rizzo, R.P. Ryeck, S.A. Lira, and R. Bravo. 1995. Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of Rel-B, a member of the NF-κB/Rel family. Cell. 80:331–340.

22. Chen, D., and E.V. Rothenberg. 1993. Molocular basis for developmental changes in Interleukin-2 gene inducibility. Mol. Cell. Biol. 13:228–237.

25. Snapper, C.M., P. Zelazowski, F.R. Rosas, M.R. Kehry, M. Tian, D. Baltimore, and W.C. Sha. 1996. B cells from p50/50 NF-κB knockout mice have selective defects in proliferation, differentiation, germ-line CH transcription, and Ig class switching. J. Immunol. 158:183–191.

26. Burkly, L., C. Hession, L. Ogata, C. Reilly, L.A. Marconi, D. Olson, R. Tizard, R. Cate, and D. Lo. 1995. Expression of reB is required for the development of thymic medulla and dendritic cells. Nature. 373:531–536.
murine B cells. Mol. Cell. Biol. 16:5015–5025.
36. Beg, A.A., and D. Baltimore. 1996. An essential role for NF-κB in preventing TNF-α-induced cell death. Science. 274:782–784.
37. Van Antwerp, D., S. Martin, T. Kafri, D.R. Green, and I.M. Verma. 1996. Suppression of TNF-α-induced apoptosis by NF-κB. Science. 274:787–789.
38. Wang, C.-Y., M.W. Mayo, and A.S. Baldwin. 1996. TNF-α and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science. 274:784–786.
39. Liu, Z.-g., H. Hu, D.V. Goeddel, and M. Karin. 1996. Dissection of TNF receptor 1 effector functions JNK activation is not linked to apoptosis while NF-κB activation prevents cell death. Cell. 87:565–576.
40. Grimm, S., M.K. Bauer, P.A. Baeuerle, and K. Schulze-Osthoff. 1996. Bcl-2 down-regulates the activity of transcription factor NF-kappaB induced upon apoptosis. J. Cell Biol. 134:13–23.
41. Jung, M., Y. Zhang, S. Lee, and A. Dritschilo. 1995. Correction of radiation sensitivity in ataxia telangiectasia by a truncated IkB-α. Science. 268:1619–1621.
42. Bessho, R., K. Matsubara, M. Kubot, K. Kuwatoko, H. Hirotta, Y. Wakaono, Y. Wei Lin, A. O kuda, M. Kawai, R. Nishikomori, and T. Hekke. 1994. Pyrimidine dithiocarbamate, a potent inhibitor of nuclear factor κB (NF-κB) activation, prevents apoptosis in human promyelocytic leukemia HL-60 cells and thymocytes. Biochem. Pharmacol. 48:1883–1889.
43. Grilli, M., M. Pizzi, M. Memo, and P.F. Spano. 1996. N europroduction by aspirin and sodium salicylate through blockade of NF-κB activation. Science. 274:1383–1385.
44. Ivanov, V.N., R.K. Lee, E.R. Podack, and T.R. M alek. 1997. Regulation of Fas-dependent activation-induced T cell apoptosis by cAMP signaling: a potential role for transcription factor NF-κB. 0. N orgene. 14:2455–2464.
45. Abbadi, C., N. Kabrun, F. Bouali, J. Smardova, D. Stehelin, B. Banderbunder, and P.J. Enrietto. 1993. High level of c-R el expression are associated with programmed cell death in the developing avian embryo and in bone marrow cells in vitro. Cell. 75:899–912.
46. Esslinger, C.W., A. Wilson, B. Sordat, F. Beermann, and C.V. Jongeneel. 1997. Abnormal T cell development induced by targeted overexpression of IκBα. J. Immunol. 158:5075–5078.
47. DiDonato, J., F. Mercurio, C. Rossette, J. Wu-Li, H. Suyang, S. Ghosh, and M. Karin. 1996. Mapping of the inducible IκBκB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol. 16:1295–1304.
48. Lake, R.A., D. Wotton, and M. J. Owen. 1990. A 3′ transcriptional enhancer regulates tissue-specific expression of the human CD2 gene. EMBO (Eur. Mol. Biol. Organ.) J. 9:3129–3136.
49. Wang, C.-Y., A.G. Basuk, L.H. Boise, C.B. Thompson, R. Bravo, and J.M. Leiden. 1994. Activation of the granulocytemacrophage colony-stimulating factor promoter in T cells requires cooperative binding of Elf-1 and AP-1 transcription factors. Mol. Cell. Biol. 14:1153–1159.
50. Ballard, D.W., W.H. Walker, S. Doerre, P. Sista, J.A. Mlitor, E.P. Dixon, N.J. Peffer, M. Hanhinn, and W.C. Greene. 1990. The v-rel oncogene encodes a kappa B enhancer binding protein that inhibits NF-κB function. Cell. 63:803–814.
51. Gabrieli, Y., Y. Sherman, and S.A. Ben-Sasson. 1992. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119:493–501.
52. Finco, T.S., and A.S. Baldwin. 1995. Mechanistic aspects of NF-κB regulation: the emerging role of phosphorylation and proteolysis. Immunity. 3:263–272.
53. Lang, G., D. Wotton, M.J. Owen, W.A. Sewell, M.H. Brown, D.Y. Maon, M.J. Crompton, and D. Klousis. 1988. The structure of the human CD2 gene and its expression in transgenic mice. EMBO (Eur. Mol. Biol. Organ.) J. 7:1675–1682.
54. Owen, M.J., E.J. Jenkinson, M.H. Brown, W.A. Sewell, G.W. Kissansen, M.J. Crompton, and J.J. Owen. 1988. Murine CD2 gene expression during fetal thymus ontogeny. Eur. J. Immunol. 18:187–189.
55. Kolodziej, P.A., and R.A. Young. 1991. Epitope tagging and protein surveillance. Methods Enzymol. 194:508–516.
56. M oore, N.C., J. Girdlestone, G. Anderson, J.T. Owen, and E.J. Jenkinson. 1995. Stimulation of thymocytes before and after positive selection results in the induction of different NF-κB/R eB protein complexes. J. Immunol. 152:4643–4660.
57. Nolan, G.P., T. Fujita, K. Bhatia, C. Huppi, H.C. Liou, M.L. Scott, and D. Baltimore. 1993. The bcl-3 proto-oncogene encodes a nuclear I kappa B-like molecule that preferentially interacts with N F-kappa B p50 and p52 in a phosphorylation-dependent manner. Mol. Cell. Biol. 13:3557–3566.
58. Plaksin, D., P.A. Baeuerle, and L. Eisenbach. 1993. NF-kB(I) (p50 NF-kappa B homodimer) acts as a repressor of H-2κB gene expression in metastatic tumor cells. J. Exp. Med. 177:1651–1662.
59. Verweij, C.L., M. Geerts, and L.A. Aarden. 1991. Activation of interleukin-2 gene transcription via the T-cell surface molecule CD28 is mediated through an NF-κB-like response element. J. Biol. Chem. 266:14179–14182.
60. Crabtree, G.R., and N.A. Clipstone. 1994. Signal transmis-

156 NF-κB and Thymocyte Apoptosis
survival of double-positive thymocytes. Proc. Natl. Acad. Sci. USA. 92:4763-4767.

69. Grillot, D.A., R. Merino, and G. Nunez. 1995. Bcl-X displays restricted distribution during T cell development and inhibits multiple forms of apoptosis but not clonal deletion in transgenic mice. J. Exp. Med. 182:1973-1983.

70. Chao, D.T., G.P. Linette, L.H. Boise, L.S. White, C.B. Thompson, and S.J. Korsmeyer. 1995. Bcl-X L displays restricted distribution during T cell development and inhibits multiple forms of apoptosis but not clonal deletion in transgenic mice. J. Exp. Med. 182:1973-1983.

71. Durand, D.B., J.-P. Shaw, M.R. Bush, R.E. Replogle, R. Belagave, and G.R. Crabtree. 1988. Characterization of antigen receptor response elements within the interleukin-2 enhancer. Mol. Cell. Biol. 8:1715-1720.

72. Ballard, D.W., E. Bohnlein, M. Siekevitz, and W.C. Greene. 1989. kB-specific DNA binding proteins: a role in the regulation of human interleukin-2 gene expression. Science. 244:457-459.

73. Serfling, E., A. Avots, and M. Neumann. 1995. The architecture of the interleukin-2 promoter: a reflection of T lymphocyte activation. Biochem. Biophys. Res. Commun. 211:883-889.

74. Jain, J., C. Loh, and A. Rao. 1995. Transcriptional regulation of the interleukin 2 gene. Curr. Opin. Immunol. 7:333-342.

75. Shaw, J.P., P.J. Utz, D.B. Durand, J.J. Toole, E.A. Emmel, and G.R. Crabtree. 1988. Identification of a putative regulator of early T cell activation genes. Science. 241:202-205.

76. Jain, J., Z. Miner, and A. Rao. 1993. Analysis of the preexisting and nuclear forms of nuclear factor of activated T cells. J. Immunol. 151:837-848.

77. Hodge, M.R., A.M. Ranger, F.C. de la Brousse, T. Hoey, M. Grusby, and L.H. Glimcher. 1996. Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. Science. 276:2057-2062.

78. Yang, X.-F., G.F. Weber and H. Cantor. 1997. A novel Bcl-x isoform connected to the T cell receptor regulates apoptosis in T cells. Immunity. 7:629-639.

79. Lenardo, M.J. 1991. Interleukin-2 programs mouse B lymphocytes for apoptosis. Nature. 353:858-891.

80. Haskill, S., A.A. Beg, S.M. Tompkins, J.S. Morris, A.D. Yurochko, A. Sampson-Johannes, K. Mondal, P. R alph, and A.S. Baldwin, Jr. 1991. Characterization of an immediate-early gene induced in adherent monocytes that encodes I kappa B-like activity. Cell. 65:1281-1289.
