Recent developments in Polymer Matrix Composites – A review

M Ravichandran¹, M Balasubramanian², C Anand Chairman³, D Pritima⁴, V Dhinakaran⁵ and B Stalin⁶

¹ Department of Mechanical Engineering, K.Ramakrishnan College of Engineering, Tiruchirappalli -621 112, Tamil Nadu, India.
²Department of Mechanical Engineering, University College of Engineering, Ramanathapuram Campus, Anna University, Ramanathapuram-623 513, Tamil Nadu, India.
³Department of Mechanical Engineering, K.Ramakrishnan College of Engineering, Tiruchirappalli -621 112, Tamil Nadu, India.
⁴Department of Mechatronics Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, Tamil Nadu, India
⁵Centre for Applied Research, Department of Mechanical Engineering, Chennai Institute of Technology, Kundrathur, Chennai-600 069, Tamil Nadu, India.
⁶Department of Mechanical Engineering, Anna University, Regional Campus Madurai, Madurai-625 019, Tamil Nadu, India.

* Corresponding author: smravichandran@hotmail.com

Abstract This paper presents the recent developments in polymer matrix composites (PMC). Polymer-based composites are widely used materials since the materials have good mechanical properties with low density. Polymer-based materials are used for many applications such as the aerospace industry, automobile industry, sports equipment, construction, and packaging industries. Recently nature fibers have been used as reinforcement materials to synthesize PMCs effectively. Polymer-based materials have been used in biomedical applications. This paper displays the summaries of synthesis, microstructure, and properties of recently reported various PMCs.

1. Introduction

The demands for the materials with specific and special properties are still live. The industries still looking for materials with good properties for various applications in different functioning environments [1]. Composite materials are the one class of materials that satisfy the requirement of industry people [2]. These materials are designed according to the required properties to be obtained [3]. Based on the type of matrix materials, composites are classified as a metal matrix, ceramic matrix, and polymer matrix composites [4]. Among the other type of composite materials, polymer one plays a huge role in the present technology due to its excellent physical, mechanical, and thermal properties [5-10]. Generally, PMCs posses better mechanical property, stiffness, eco-friendly, recyclable, and high surface to volume ratio [11-16]. A variety of fibers is used as reinforcement...
materials for developing the PMCs [17-21]. Recently natural fibers are introduced to develop those composites and much attention is given to natural-based bio-composites [22]. The selection of fibers and polymers is important in developing the PMCs with suitable properties [22-24]. Figure 1 displays the types of polymers used for the fabrication of PMCs.

Figure 1. Types of polymers

2. Natural fibers - polymer composites

Recently natural fiber reinforced polymer composites are possessing much attention among researchers. This section focuses on some of the natural fiber composites and their properties. Wang et al developed polymer composite reinforced by natural fibers and studied the machining behavior of the composites. They compared the conventional machining process with the ultrasonic machining process [25]. Fiore et al reported the effect of Na$_2$CO$_3$ treatment on the properties of the polymer-based composite which is reinforced by natural fibers. They tested the composites under marine conditions to apply these materials for marine applications [26]. Arrakhiz et al analyzed the properties of the polyethylene composites reinforced by natural fibers and reported the thermal and mechanical behavior of the composites. They suggested these composites can be used for low-density applications. They reported the alkali-treated fibers provided better bonding and thus the improved properties have been achieved [27]. Yicheng Du et al produced polymer composite (thermoset) with natural fibers and studied the creep behavior of the developed composites. They recommended these composites for light weight applications [28]. Tidarut Jirawattanasomkul et al produced natural fiber reinforced polymer composites and studied the structural characteristics of the same. They also compared their results obtained experimentally with standard codes of Japan [29]. Faissal Chegdani et al studied the impact of the orientation of fibers in natural fiber reinforced polymer composites during machining. They concluded that fiber orientation affects the cutting characteristics and chip formations during the machining of the composites [30]. Behnaz Baghaei et al reported the properties of thermoplastic composites reinforced by natural fibers with various weave patterns. They concluded that the satin fabric composite provided better mechanical and water absorption property [31].
3. Effect of fillers in PMCs
In addition to various fibers, recently filler materials are added to PMCs to improve the properties of the composites. Priyadarshi Tapas Ranjan Swaina and Sandhyarani Biswas reported the wear property of the epoxy-based composites reinforced with jute fibers. They studied the microstructure of the composites. They reported that the chemical treatment of jute fibers improved the wear properties of the composites [32]. Rakshit et al studied the epoxy-based composites reinforced by Mother of Pearl fillers and they reported that the addition of fillers improved the tension, flexural, and vibration property [33]. Ramazan Dalmis et al introduced Hierochloe Odarata fibers as reinforcememt to produce the polymer-based composites. They reported that it has 2.56 GPa of modulus and 105.7 MPa of tensile strength [24]. Hesham Moustafa et al studied the effect of fillers from seashell waste in the ABS composites on the mechanical and other properties. They reported that good mechanical and thermal properties have been obtained for the seashell filled composites [2]. Madhu et al produced Prosopis juliflora fibers reinforced polymer composites and reported that better properties can be achieved when the fibers are alkali-treated [34]. Abinash Panigrahi et al prepared epoxy jute composites with clams shell and reported that the introduction of fillers leads to a reduction of impact strength. They used a hand layup process to manufacture these composites [35]. Arul Sujin Jose et al analyzed the impact of aspect ratio on the mechanical properties of phenol formaldehyde composites fabricated with Prosopis juliflora fibers. They analyzed the microstructure of the composites using SEM [36].

4. Application of PMCs
PMCs have been widely used for various applications because of their excellent properties. The selection of matrix and fibers are important to achieve suitable properties. Figure 2 displays the types of factors that decide the performance of the composites. Faris AL Oqla and Sapuan reported the applicability of date palm fillers reinforced polymer-based composites for the automobile industry. They used natural fibers for fabricating the composites regarding the environmental aspects. Date palm fillers improved the mechanical properties and these have economical advantages also [22]. Mansor et al manufactured polymer-based composites for automobile brake applications. They used analytical methods and sensitivity analysis to find the most influencing parameters for composite fabrication [37]. Manojkumar et al used Prosopis juliflora as reinforcement in Glass-epoxy-based composite and reported that the addition of juliflora improved the mechanical properties and these composites could
be applied in structural applications [38]. Ananthu et al reported the mechanical properties of the PMMA composite which is reinforced by seashell. They recommended this composite for medical applications and suggested these composites are bio-nano composites. They concluded that this composite has better wear properties [39].

5. Conclusions
Properties and development of some recently developed PMCs have been discussed in this review paper. The mechanical properties of natural fiber-reinforced composites have been reported. The effects of various fillers and fibers on the properties of some composites are discussed. The various applications of the PMCs are discussed with respect to the properties and manufacturing methods of the composites. PMCs could be replaced with conventional materials because of their low weight and high strength.

6. References
[1] K.J. Nagarajan, A.N. Balaji, K.S. Basha, N.R. Ramanujam, R.A. Kumar, Effect of agro waste α-cellulosic micro filler on mechanical and thermal behavior of epoxy composites, *Int. J. Biol. Macromol.* 152 (2020) 327–339. https://doi.org/10.1016/j.ijbiomac.2020.02.255.

[2] N.M. Barkoula, B. Alcock, N.O. Cabrera, T. Peijs, Flame-Retardancy Properties of Intumescent Ammonium Poly(Phosphate) and Mineral Filler Magnesium Hydroxide in Combination with Graphene, *Polym. Polym. Compos.* 16 (2008) 101–113. https://doi.org/10.1002/pc.

[3] K. Vigneshwaran, N. Venkateshwaran, S.P. Srinivasan, Mechanical, thermal and vibration characteristics of Dosinia exoleta dispersed polymer composites, *Int. J. Polym. Anal. Charact.* 23 (2018) 646–656. https://doi.org/10.1008/1023666X.2018.1490563.

[4] M. Ravichandran, A. Naveen Sait, V. Anandakrishnan, Synthesis and forming characteristics of Al-TiO$_2$ powder metallurgy composites during cold upsetting under plane stress state conditions, *J. Sandw. Struct. Mater.* 17 (2015). https://doi.org/10.1177/1099636214565762.

[5] N. Nagaraj, S. Balasubramaniam, V. Venkataraman, R. Manickam, R. Nagarajan, I. Sikiru Oluwarotimi, Effect of cellulotic filler loading on mechanical and thermal properties of date palm seed/vinyl ester composites, *Int. J. Biol. Macromol.* 147 (2020) 53–66. https://doi.org/10.1016/j.ijbiomac.2019.11.247.

[6] B.Stalin, N.Nagaprasad, V.Vignesh, M.Ravichandran, N.Rajini, S.O.Ismail, F.Mohammad (2020), “Evaluation of mechanical, thermal and water absorption behaviors of Polyalthia longifolia seed reinforced vinyl ester composites”, *Carbohydrate Polymers*, Vol. 248, 116748.

[7] K.Arun, C.Ramesh Kannan, B.Stalin (2020), The effect of cryogenically treated drilling tool on GFRP composite drilling holes-A comparative study, *Mater. Today: Proc.* https://doi.org/10.1016/j.matpr.2020.07.579

[8] B. Stalin, N. Nagaprasad, V. Vignesh, M. Ravichandran (2019), “Evaluation of Mechanical and Thermal Properties of Tamarind Seed Filler Reinforced Vinyl Ester Composites”, *Journal of Vinyl & Additive Technology*, Vol.25, no.S2 pp. E114–E128, DOI: 10.1002/vnl.21701.

[9] K. Ansal Muhammed, C. Ramesh Kannan, B. Stalin, M. Ravichandran (2020), “Experimental investigation on AW 106 Epoxy/E-Glass fiber/ Nano clay composite for wind turbine blade”, *Materials Today: Proceedings*, Vol.21, pp. 202–205, DOI: 10.1016/j.matpr.2019.04.221.

[10] B.Stalin and A.Athijayamani (2015), “Investigation on the Mechanical Behavior of Randomly Oriented Coir and Bagasse Fibers Reinforced Vinyl Ester Hybrid Composite” *International Journal of Applied Engineering Research*, Vol.10, No.55, pp.4035–4038.

[11] K. Shiva Kumar, A. Chennakesava Reddy, Investigation on mechanical properties and wear performance of Nylon-6/Boron Nitride polymer composites by using Taguchi Technique, *Results Mater.* 5 (2020) 100070. https://doi.org/10.1016/j.rinma.2020.100070.
[12] A. Athijayamani, B. Stalin, S. Sidhardhan and C. Boopathi (2016), “Parametric Analysis of Mechanical Properties of Bagasse Fiber-Reinforced Vinyl ester Composites”, Journal of Composite Materials, Vol. 50, no.4, pp. 481-493. https://doi.org/10.1177/0021998315576555

[13] B. Stalin and A. Athijayamani (2016), “The performance of bio waste fibers reinforced polymer hybrid composite”, International Journal of Materials Engineering Innovation, Vol. 7, no.1, pp. 15-25. https://doi.org/10.1504/IJIMEI.2016.077312

[14] A. Athijayamani, B. Stalin, S. Sidhardhan and A. Alavudeen (2016), “Mechanical Properties of Unidirectional Aligned Bagasse Fibers/Vinyl Ester Composite”, Journal of Polymer Engineering, Vol. 36, no.2, pp. 157-163. https://doi.org/10.1515/polyeng-2014-0325

[15] B. Stalin, A. Athijayamani and V. Ayyar (2015), “Evaluation of Mechanical Properties of Bio-Waste Fibers and Alumina Particulate Reinforced Vinyl Ester Composite” International Journal of Applied Engineering Research, Vol. 10, No. 55, pp. 3554-3557.

[16] S. Jasper, B. Stalin and M. Ravichandran (2018), “Experimental investigation and Taguchi optimization of turning process parameters for glass fiber reinforced plastics (GFRP)”, International Journal of Advanced Technology and Engineering Exploration, Vol. 5, no.47, pp. 394-399. (ISSN: 2394-7454)

[17] B. Stalin, A. Athijayamani, R. Sridhar and D. S. Samuvel Prem Kumar (2015), “Investigation of Physical and Mechanical Characteristics of Bio – FRP Composites” International Journal of Applied Engineering Research, Vol. 10, No. 55, pp. 4008-4012.

[18] S. Rajamuneeswaran, J. Vairamuthu, S. Nagarajan, B. Stalin, S. Jayabal (2020), A comparative study on mechanical properties of coir fiber reinforced polymer composites filled with calcium carbonate particles, Mater. Today: Proc. https://doi.org/10.1016/j.matpr.2020.08.366

[19] B. Stalin and R. Ramkumar (2015), “Mechanical Properties of Bauhinia Racemosa Fiber Reinforced with Polymer Composites”, International Journal of Applied Engineering Research, Vol. 10, No. 51, pp. 701–705. (ISSN: 0973-4562).

[20] R. Sridhar, A. Athijayamani, B. Stalin and R. Sankar Ganesh (2015), “Characterization of Fish Scale Reinforced Composites”, International Journal of Applied Engineering Research, Vol. 10, No. 55, pp. 4076–4080.

[21] B. Stalin, R. Dheivendran and B. Nagaraja Ganesh (2015), “Evaluation of Mechanical Properties of Chicken Feather and Bast Fiber Reinforced Composites”, International Journal of Applied Engineering Research, Vol. 10, No. 55, pp. 4005–4008. (ISSN: 0973-4562).

[22] F. M. Al-Oqla, S. M. Sapuan, Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry, J. Clean. Prod. 66 (2014) 347–354. https://doi.org/10.1016/j.jclepro.2013.10.050.

[23] A. Porras, A. Maranon, I. A. Ashcroft, Thermo-mechanical characterization of Manicaria Saccifera natural fabric reinforced poly-lactic acid composite lamina, Compos. Part A Appl. Sci. Manuf. 81 (2016) 105–110. https://doi.org/10.1016/j.compositesa.2015.11.008.

[24] R. Dalmis, S. Köktaş, Y. Seki, A. Ç. Kılıç, Characterization of a new natural cellulose based fiber from Hierochloe Odarata, Cellulose. 27 (2020) 127–139. https://doi.org/10.1007/s10570-019-02779-1.

[25] D. Wang, P. Y. Onawumi, S. O. Ismail, H. N. Dhakal, I. Popov, V. V. Silberschmidt, A. Roy, Machinability of natural-fibre-reinforced polymer composites: Conventional vs ultrasonically-assisted machining, Compos. Part A Appl. Sci. Manuf. 119 (2019) 188–195. https://doi.org/10.1016/j.compositesa.2019.01.028.

[26] V. Fiore, C. Sanfilippo, L. Calabrese, Influence of sodium bicarbonate treatment on the aging resistance of natural fiber reinforced polymer composites under marine environment, Polym. Test. 80 (2019). https://doi.org/10.1016/j.polymertesting.2019.106100.

[27] F. Z. Arrakhiz, M. El Achaby, M. Malha, M. O. Bensalah, O. Fassi-Fehri, R. Bouhfid, K. Bennoussa, A. Qais, Mechanical and thermal properties of natural fibers reinforced polymer composites: Doum/low density polyethylene, Mater. Des. 43 (2013) 200–205.
[28] Y. Du, N. Yan, M.T. Kortschot, An experimental study of creep behavior of lightweight natural fiber-reinforced polymer composite/honeycomb core sandwich panels, *Compos. Struct.* 106 (2013) 160–166. https://doi.org/10.1016/j.compstruct.2013.06.007.

[29] T. Jirawattanasomkul, S. Likitlersuang, N. Wuttiwanasak, T. Ueda, D. Zhang, M. Shono, Structural behaviour of pre-damaged reinforced concrete beams strengthened with natural fibre reinforced polymer composites, *Compos. Struct.* 244 (2020) 112309. https://doi.org/10.1016/j.compstruct.2020.112309.

[30] F. Chegdani, B. Takabi, M. El Mansori, B.L. Tai, S.T.S. Bukkapatnam, Effect of flax fiber orientation on machining behavior and surface finish of natural fiber reinforced polymer composites, *J. Manuf. Process.* 54 (2020) 337–346. https://doi.org/10.1016/j.jmapro.2020.03.025.

[31] B. Baghaei, M. Skrifvars, L. Berglin, Characterization of thermoplastic natural fibre composites made from woven hybrid yarn prepregs with different weave pattern, *Compos. Part A Appl. Sci. Manuf.* 76 (2015) 154–161. https://doi.org/10.1016/j.compositesa.2015.05.029.

[32] P.T.R. Swain, S. Biswas, Abrasive wear behaviour of surface modified jute fiber reinforced epoxy composites, *Mater. Res.* 20 (2017) 661–671. https://doi.org/10.1590/1980-5373-MR-2016-0541.

[33] A. Rakshit, M.B. Davanageri, R. Hanuamnthuraya, K.C. Babishha, Deeksha Shetty, A Study on Mechanical and Vibration Characteristics of Mother of Pearl Filled Fibre Reinforced Epoxy Composite, *Journal of Mechanical Engineering and Automation* 7 (2017) 72–76. https://doi.org/10.5923/j.jmea.20170703.02.

[34] P. Madhu, S. Pradeep, M.R. Sanjay, S. Siengchin, Characterization of raw and alkali treated prosopis juliflora fibers for potential polymer composite reinforcement, *IOP Conf. Ser. Mater. Sci. Eng.* 51 (2013) 484–492. https://doi.org/10.1088/1742-6596/51/1/012016.

[35] A. Panigrahi, H. Jena, B. Surekha, Effect of Clams Shell in Impact Properties of Jute Epoxy Composite, *Mater. Today Proc.* 5 (2018) 19997–20001. https://doi.org/10.1016/j.matpr.2018.06.366.

[36] A. Sujin Jose, A. Athijayamani, K. Ramanathan, S. Sidhardhan, Effects of aspect ratio and loading on the mechanical properties of prosopis juliflora fibre-reinforced phenol formaldehyde composites, *Fibres Text. East. Eur.* 25 (2017) 59–64. https://doi.org/10.5604/01.3001.0010.2664.

[37] M.R. Mansor, S.M. Sapuan, E.S. Zainudin, A.A. Nuraini, A. Hambali, Hybrid natural and glass fibers reinforced polymer composites material selection using Analytical Hierarchy Process for automotive brake lever design, *Mater. Des.* 51 (2013) 484–492. https://doi.org/10.1016/j.matdes.2013.04.072.

[38] G. Manoj Kumar, C. Uthranarayan, D.J. Joseph Jebaraj, S. Keerthana, N. Ganesh, Exploration of tensile, flexural and hardness test properties of prosopis juliflora / glass / epoxy hybrid composite laminates, *J. Phys. Conf. Ser.* 1362 (2019). https://doi.org/10.1088/1742-6596/1362/1/012015.

[39] M. Ananthu, M. Shamnad, P.N. Dileep, Experimental Evaluation on Mechanical Properties and Wear Resistance in PMMA Seashell Bionanocomposite for Medical Application, *Mater. Today Proc.* 5 (2018) 25657–25666. https://doi.org/10.1016/j.matpr.2018.11.007.