Octupole states in 207Tl studied through β decay

T. A. Berry, Zs. Podolyák, R. J. Carroll, R. Lich, B. A. Brown, H. Grawe, Ch. Sotty, N. K. Timofeyuk, T. Alexander, A. N. Andreyev, S. Ansari, M. J. G. Borge, M. Brunet, J. R. Cresswell, C. Fahlander, L. M. Fraile, H. O. U. Fynbo, E. Gamba, W. Gelletly, R.-B. Gerst, M. Görska, A. Gredley, P. Greenlees, L. J. Harkness-Brennan, M. Huysse, S. M. Judge, D. S. Judson, J. Konki, M. Kowalska, J. Kurcewicz, I. Kutí, S. Lalkovski, I. Lazarus, M. Lund, M. Madurga, N. Marginean, R. Marginean, I. Marroquin, C. Mihai, R. E. Mihai, E. Nácher, A. Negret, S. Noe, C. Nitić, S. Pacsu, R. D. Page, Z. Patel, A. Perea, J. Phrompao, M. Pierson, V. Pucknell, P. Rahkila, E. Rapsisarda, P. H. Regan, F. Rotaru, M. Rudigier, C. M. Shand, R. Shearman, E. C. Simpson, S. Stegemann, T. Stora, O. Tengblad, A. Turturica, P. Van Duppen, V. Vedia, P. M. Walker, N. Warr, F. P. Wearing, and H. De Witte

Introduction: One of the most prominent features of the well-studied stable doubly-magic 208Pb nucleus is its octupole vibrational first excited state at an energy of 2614.5 keV with a reduced transition strength $B(E3; 3^- \rightarrow 0^+) = 33.8(6)$ W.u. The excitation arises as a result of the collective behaviour of a number of $\Delta j = \Delta \lambda = 3$ particle-hole excitations across the proton and neutron closed shells. Such collective octupole excitations are observed in a number of neighbouring nuclei [2, 3], including the single-proton-hole nucleus 207Tl.
It is expected that the composition of the collective octupole excitation in terms of shell model wave functions is reflected in its behaviour when coupling to those orbitals. Knowledge of the composition of this phonon is of interest. While large-scale shell model calculations are able to describe the collective octupole and double-octupole states around 208Pb [4, 5], the energies of the octupole states are not reproduced accurately, indicating a possible gap in our knowledge. Experimental data on coupled states are therefore needed. The single-proton-hole nucleus 207Tl is expected to feature a number of states resulting from coupling between the octupole phonon and the $\pi s_{1/2}$, $\pi d_{3/2}$, and $\pi h_{11/2}$ states in the 2–4 MeV energy region. The capability of β decay to populate a number of excited states in the 2.5–4.0 MeV energy region [6] means that β^- decay from the parent nucleus 207Hg ($J_{\text{gs.}}^n = (9/2)^+$, $Q_{\beta} = 4550(30)$ keV [4, 8]) should populate a number of these coupled states in allowed and first-forbidden decays.

The β decay of 207Hg has been studied once before [6] and a level scheme was produced. The scheme includes the four states lowest in energy corresponding to the single-proton-hole states (lowest to highest in energy) $\pi s_{1/2}$, $\pi d_{3/2}$, $\pi h_{11/2}$, and $\pi d_{5/2}$. Above these states lie a number of uncharacterised states expected to result from coupling between those low-lying single-particle states and the 3^-, 4^- and 5^- excitations observed in 208Pb. Fifteen states up to an energy of 3592 keV, and 32 transitions were observed [6]. In addition, a state containing significant $\pi g_{7/2}$ strength has been placed at 3474(6) keV in a number of particle transfer experiments [9, 15]. Also, a deep-inelastic reaction experiment [4] observed a number of high-spin yrast and near-yrast states with excitation energies between 3.8 and 7.0 MeV, including the 3813 keV $17/2^+\pi h_{11/2}^{-1}/3^-$ octupole-coupled state.

Experimental details: Two experiments took place at the CERN-ISOLDE facility. In both experiments, a molten lead target coupled to a VD5 FEBIAD [16] ion source was bombarded by a 1.4 GeV beam of protons and singly-charged 207Hg was extracted. The reaction mechanism of 207Hg production is not clear. A secondary (n,2p) reaction was assumed previously [6]. However, more recent population of $N > 126$ nuclei using a thin target [17] suggests an alternative production mechanism, where the role of the Δ resonance [18] should be considered. While the reaction mechanism leading to the population of 207Hg does not affect the results presented here, its understanding is important for planning future experiments.

In the first experiment the beam was extracted down the ISOLDE beam-line with a potential of 30 kV. Ions with mass $A = 207$ were selected by the General Purpose Separator (GPS) and deposited upon the tape at the ISOLDE Decay Station (IDS), at a rate of up to 5×10^4 pps. The four resident four-crystal HPGe clover detectors were combined with a single Miniball cluster detector [19] along the beam axis for improved total γ efficiency (22% at 100 keV, 8% at 1 MeV). Three plastic scintillator detectors were used for β gating (total β efficiency $\sim 30\%$). In the second experiment, aimed at $\gamma\gamma$ angular correlation measurements, the beam was extracted at 50 kV, separated with GPS and deposited at IDS at a higher rate of up to 2×10^5 pps. The four IDS clovers were combined with a fifth (TIGRESS [20]) clover positioned off-axis (total γ efficiency 11% at 100 keV, 4% at 1 MeV). β gating using a plastic scintillating block and photomultiplier tube surrounding the tape was switched off during the experiment as high count rates led to significant dead-time. The triggerless total data readout (TDR) system [21] at IDS was used for data acquisition.

Efficiency calibration of the array of germanium detectors was performed using 152Eu and 60Co sources. Extension of this calibration up to an energy of 2614 keV utilised the known ratio [1] between the intensities of the 583 keV and 2614 keV transitions in 208Pb following β^- decay of 207Tl on the tape, measured during a separate run on the $A = 208$ separator setting. For angular correlations the relative efficiencies of individual detectors must be known to a high precision. Individual detectors were efficiency-calibrated as above, and were further calibrated by adjusting for relative peak intensities of un gated single transitions in 207Tl measured during the run.

Matrices of $\beta\gamma$ and $\beta\gamma\gamma$ coincidences were obtained using data from the first experiment. These were used to establish transition energies and intensities. The effect of the condition of β detection on the determined γ-ray intensities was investigated, and no systematics bias was found. Intensity balances could also be used to determine $\log ft$ values for each state.

In order to characterise observed states, spin-parity assignments must be made. Angular correlation measurements are one method and have not previously been performed at the IDS. The probability distribution for emission of a γ ray at an angle θ relative to a coincident γ ray directly preceding or following it is given by the equation

$$W(\theta) = \sum_{k=0}^{k_{\text{max}}} A_k Q_k P_k(\cos \theta)$$

where, for $I_1 \rightarrow L_1 \pi L_1' \rightarrow I_2 \rightarrow L_2 + L_2' \rightarrow I_3$ (L is the angular momentum of the photon): k is an even integer for which $k_{\text{max}} = \min(2I_2, 2L_1', 2L_2')$; $P_k(\cos \theta)$ are Legendre polynomials; Q_k are solid angle correction coefficients; and A_k are the angular correlation coefficients which can be related to the spins, multipolarities and mixing ratios through angular momentum considerations (see ref. [22]). Here $k > 4$ is safely ignored. Fits of $W(\theta)$ normalised to A_0 may be compared with theoretical A_2, A_4 values to support or rule out certain combinations of level spins. The added degrees of freedom caused by mixing...
TABLE I. Number of crystal-crystal pairs per 5° angular bin for the asymmetric five-clover detector configuration at IDS, used here for angular correlation measurements. Angles are symmetric around 90°, so e.g. 0–5° also includes 175–180°.

| Angle | 0–5° | 5–10° | 10–15° | 15–20° | 20–25° | 25–30° | 30–35° | 35–40° | 40–45° | 45–50° | 50–55° | 55–60° | 60–65° | 65–70° | 70–75° | 75–80° | 80–85° | 85–90° |
|-------|------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Pairs | 0 | 1 | 2 | 1 | 1 | 3 | 3 | 7 | 10 | 2 | 14 | 12 | 15 | 8 | 19 | 24 | 18 | 20 |

mean that the method is most effective when applied to stretched electric transitions, which can generally be assumed to be unmixed.

Angular correlation measurements were performed using data from the second experiment (five clover detectors) in order to support spin-parity assignments. Correlations were calculated between individual HPGe crystals in order to reduce solid angle spreading and increase the number of detector-detector angles. Placing the fifth detector off-axis reduced the symmetry of the system and as a result gave an increase in the number of angles. The angles available in the data set of 320 crystal-crystal pairs are summarised in Table I. Add-back was performed by assuming the crystal of greatest energy deposition to be the initial point of interaction of the γ ray. The solid angle correction coefficients Q_k were calculated using the integration method [23], and the approach was verified using coincidences in the decay of 152Eu. More details are given in ref. [24].
TABLE II: Full list of transitions observed in 207T1 in this analysis. $I_{\gamma,\text{rel.}}$ is the relative intensity of the γ-ray emission (without electron conversion correction) with respect to intensity 100 for the 351 keV transition populating the ground state. $B_{\text{est.}}(\sigma L)$ is the calculated Weisskopf strength of a given transition assuming a certain ‘typical’ strength (written in bold) for a different transition de-populating the same state. For details see text.

E_γ / keV	J_γ	E_1 / keV	J_1	E_2 / keV	J_2	E_3 / keV	J_3	σL	$I_{\gamma,\text{rel.}}$	$B_{\text{est.}}(\sigma L)$ / W. u.	
351.2	3/2+	0.0	1/2+	351.2	2(2)	M1	100(5)	--	--	--	
1348.3	11/2-	351.2	3/2+	997.2(2)	M4	103(7)	--	--	--	--	
1682.8	5/2+	351.2	3/2+	1331.8(2)	M1	4.8(4)	0.08	0.0	1682.8(3)	0.93(8)	
2676.0	7/2-	1682.8	5/2+	993.4(2)	E1	2.9(2)	3×10^{-4}	0.37(4)	0.5	2676.1(4)	0.14(1)
2709.3	5/2-	351.2	3/2+	2358.6(3)	E1	0.28(3)	119.1(2)	0.22(5)	2708.5(5)	0.012(3)	
2912.6 (9/2-)	1348.3	11/2-	1564.2(3)	M1	20(2)	2 $\times 10^{-4}$	0.73(1)	1.6(1)	2708.5(5)	0.012(3)	
2985.8 (9/2-)	2912.6	(9/2-)	73(1)	M1	1.3(3)	0.9		0.02	2985.8(3) 2676.0	0.006(2) 1682.8 (5/2+) 1348.3 0.014(7)	
3013.8 (7/2-)	1682.8	5/2-	1331.2(2)	E1	0.60(5)	1 $\times 10^{-4}$	0.73(1)	1.6(1)	3013.6(5) 351.2	0.0024(6)	
3104.9 (9/2-)	2985.8	(9/2-)	119.1(2)	M1	0.22(5)	7 $\times 10^{-3}$	0.73(1)	1.6(1)	2985.8(3) 2912.6	0.019(3)	
3143.2 (9/2-)	2985.8	(9/2-)	157.7(2)	M1	0.45(3)	0.7		0.3	2912.6(3) 2676.0	0.019(3)	
3197.2 (5/2-)	351.2	3/2+	2846.1(4)	E1	0.006(1)	--		--	3013.6(5) 351.2	0.0024(6)	
3273.5 (7/2-)	3013.8	(7/2-)	256.2(2)	M1	0.24(1)	0.3		0.7	2985.8(3) 2912.6	0.010(2)	
3296.2 (9/2-)	3143.2	(9/2-)	152.7(2)	M1	0.024(2)	0.1		0.7	2985.8(3) 3104.9	0.010(2)	
3336.5 (9/2-)	3197.3	(5/2-)	139.8(4)	E2	0.0018(5)	5		0.7	3143.2(2) 3104.9	0.010(2)	
	3143.2	(9/2-)	192.8(2)	M1	0.17(1)	0.01		0.7	2985.8(3) 2912.6	0.010(2)	
	3104.9	(9/2-)	231.6(2)	M1	0.17(1)	7 $\times 10^{-3}$		0.7	2985.8(3) 2912.6	0.010(2)	
	2985.8	(9/2-)	350.8(2)	M1	0.51(3)	6 $\times 10^{-3}$		0.7	2985.8(3) 2912.6	0.010(2)	
	2912.6	(9/2-)	423.9(2)	M1	0.84(5)	5 $\times 10^{-3}$		0.7	2985.8(3) 2912.6	0.010(2)	
	2709.3	5/2-	626.8(3)	E2	0.017(2)	0.03		0.7	2985.8(3) 2912.6	0.010(2)	
	2676.0	7/2-	660.4(2)	M1	0.17(1)	3 $\times 10^{-4}$		0.7	2985.8(3) 2912.6	0.010(2)	
Results: A level scheme for 207Tl below $Q_\beta = 4550(30)$ keV has been built using β-gated γ and $\gamma\gamma$ coincidence spectra. The full level scheme is shown in Fig. 1 and the full list of observed transitions and intensities is recorded in Table II. Data from the 2014 experiment were used due to the comparatively lower level of background in the spectra and the ability to gate on β signals, further improving the quality of the spectra. Examples of γ-ray transitions are shown in coincidences with the 351 keV and 1683 keV transitions. As well as observing fifteen previously-known transitions between states were analysed in coincidence with the 351 keV and 1683 keV transitions. Transitions were verified by cross-comparison with the 2016 data. All possible transitions between states were analysed in coincidence spectra. As well as observing fifteen previously-known states [7], eleven new states and 78 new transitions have been placed in this analysis. These states lie at energies of 3013.8, 3197.3, 3430.5, 3493.6, 3569.7, 3581.3, 3633.6, 3644.2, 3800.0, 3850.0, 3940.0.

Energy (keV)	Multipolarity	J$^\pi$	Intensity (arb. units)	Branching Ratio
3358.7	(9/2$^-$)	3/2$^+$	0.008	0.2
3430.5	(7/2$^-$)	3/2$^+$	3/2$^+$ 1.0	0.3
3493.6	(5/2$^-$)	3/2$^+$	3/2$^+$ 9.0	0.9
3597.9	(11/2$^-$)	3/2$^+$	3/2$^+$ 7.0	0.3
3592.4	(7/2$^-$)	3/2$^+$	3/2$^+$ 7.0	0.3
3633.6	(11/2$^-$)	3/2$^+$	3/2$^+$ 7.0	0.3
3644.2	(11/2$^-$)	3/2$^+$	3/2$^+$ 7.0	0.3
3800.0*	(9/2,11/2)	3/2$^+$	3/2$^+$ 7.0	0.3
3850.0*	(7/2,9/2)	3/2$^+$	3/2$^+$ 7.0	0.3
3940.0*	(9/2,11/2)	3/2$^+$	3/2$^+$ 7.0	0.3

* Positive parity is assumed for branching ratio calculations.
FIG. 1. Level scheme for 207Tl observed in this work.
Electron conversion coefficients are dependent on transition multipolarities and multipolarity mixing ratios. It is possible to infer conversion ratios indirectly by gating on the initial gamma ray in a $\gamma-\gamma-\gamma$ cascade and attributing any intensity imbalance after correcting for efficiency between the second and third transitions to electron conversion. From the 1591–1332–351 keV and 1910–1332–351 keV coincidences we obtain the total internal conversion coefficient $\alpha(351.2 \text{ keV}) = 0.23(5)$. The result is in agreement with a previous result $\alpha_K(351.2 \text{ keV}) = 0.204(37)$ measured by Gorodetzky et al. [25], and corresponds to the mixing ratio $|\beta_{M1+E2}(351.2 \text{ keV})| \leq 0.8$.

Values of log ft have been calculated for each observed state, taking into account ingoing and outgoing internal transition intensities (conversion-corrected [26] assuming zero mixing, except in the case of the 351.2 keV transition where the measured value is used) and assuming that the remainder populating intensity comes from direct β-decay population. A spin and parity of $J^\pi=(9/2^+)$ is assumed for the decaying ground state of ^{207}Bi [7]. The results are shown in Table III. These are used to support spin-parity assignments given their close empirical relation to the degree of forbiddenness of a decay [27].

Transition strengths in terms of the single-particle Weisskopf estimates may be calculated exactly but this requires a knowledge of level lifetimes. However, if the single-particle strength of one transition de-populating a state can be assumed, the relative strengths of other transitions de-populating the same state may be deduced using the relative intensities. These assumed strengths take into account the systematics of this region in the nuclear chart. The magnetic transitions do not exhibit any useful trends, but the electric transitions do, as described in the following paragraph.

Several E1 transitions connecting single-particle and octupole states have been observed in the neighbouring ^{207}Pb [28] and ^{209}Bi [29] nuclei. All measured $B(E1)$ transition strengths are in the range of 10^{-3}–10^{-5} W.u., and so $B(E1)\approx10^{-4}$ W.u. is used as an approximation. E2 transitions have strengths of roughly 0.1–3 W.u. [7] [29, 30] and so $B(E2)\approx1.0$ W.u. is used. The 2614.5 keV octupole transition in ^{208}Pb has an established strength $B(E3)\approx33.8(6)$ W.u. [11] and is observed with similar strength in nearby one- and two-particle nuclei, while non-collective E3 transitions have strengths within an order of magnitude of 1 W.u. [7] [29, 30]. Therefore in this work $B(E3)=30$ W.u. is used for assigned collective octupole transitions, and $B(E3)=1$ W.u. is used for non-collective octupole transitions.

The relative transition strength estimates are shown in Table III with bold values indicating the assumed strength. Spin-parity assignments which give unphysically large transition strengths using this method have been ruled out.

Experimental spin-parity assignments: We discuss the spin-parity assignment for each state individually. These are largely based on experimental considerations. The branching ratios (and consequently the relative transition strengths) are considered. Realistically, in the absence of isomers, only E1, M1, E2, M2 and E3 transitions can occur, with M2 and E3 transitions only at high energies ($\gtrsim1$ MeV). We note that the E3 transition strength can be quite high: $B(E3)\approx30$ W.u. [11] in this mass region due to the presence of the collective octupole phonon. The log ft results are also used, and are summarised in Table III. Often, theoretical considerations must be applied in spin-parity determination. Naively, the lowest-energy positive-parity states, other than the well-known single

Level energy / keV	J^π	I_B / %	log ft
0.0	1/2$^+$	0	
351.2(2)	3/2$^+$	-5(9)	
1348.3(2)	11/2$^-$	11(7)	7.2(4)
1682.8(2)	5/2$^+$	-0.1(3)	
2676.0(2)	7/2$^-$	0.3(2)	7.8(3)
2709.3(6)	5/2$^-$	0.12(2)	> 8.7
2912.6(3)	9/2$^-$	6(2)	6.3(2)
2985.8(3)	9/2$^-$	40(5)	5.42(7)
3013.8(3)	7/2$^-$	0.21(5)	7.7(2)
3104.9(3)	9/2$^-$	21(3)	5.58(8)
3143.2(3)	9/2$^-$	8(1)	5.95(7)
3197.3(5)	5/2$^-$	0.001(1)	> 9.5
3273.5(2)	7/2$^-$	2.3(3)	6.34(8)
3296.2(3)	9/2$^-$	3.2(4)	6.17(8)
3336.5(2)	9/2$^-$	6.5(6)	5.81(7)
3358.7(2)	9/2$^-$	3.8(4)	6.01(7)
3430.5(2)	7/2$^-$	0.70(8)	6.65(8)
3493.6(5)	5/2$^-$, 7/2	0.0060(9)	8.83(9)
3569.7(4)	11/2	0.12(2)	7.21(10)
3581.3(2)	9/2$^-$	0.20(2)	6.97(8)
3592.4(4)	7/2$^-$	0.14(2)	7.11(9)
3633.6(3)	11/2$^-$	0.70(8)	6.34(8)
3644.2(3)	11/2$^-$	0.28(4)	6.72(9)
3800.0(3)	9/2, 11/2	0.041(5)	7.27(9)
3850.0(4)	7/2, 9/2	0.022(6)	7.4(2)
3940.3(3)	9/2, 11/2	0.031(4)	7.08(10)
FIG. 2. β-gated γ-ray spectra, in coincidence with (top) the 351 keV $3/2^+ \rightarrow 1/2^+$ transition and (bottom) the 1683 keV $5/2^+ \rightarrow 1/2^+$ transition. Peak energies (keV) are labelled.
particle states, are expected at around 4 MeV arising from the coupling of the h_{11/2} proton hole (1.348 MeV in 207Tl) to the 3− octupole phonon (2.614 MeV in 208Pb). This is supported by the results of shell model calculations. As a result all states below 3.4 MeV are considered to have negative parity.

The 0 keV, 351 keV, 1348 keV and 1683 keV states are single-particle states with well-established character. Their properties, including unambiguous spin-parity assignments of 1/2+, 3/2+, 11/2− and 5/2+, respectively, were determined from single-proton transfer reactions [13,14,31].

The 2676 keV state is assigned 7/2−. It populates both the 11/2− and 1/2+ states, fixing the spin-parity to 7/2−. The angular correlation of the 993 keV transition with the 2635 keV (E3) transition (Fig. [3](i)) supports stretched dipole character for the former transition.

The 2709 keV state is assigned 5/2−. It populates the 3/2+ and 1/2+ states only and is populated weakly by higher-lying states, implying low spin. Population by (9/2−) states from above allows (5/2,7/2). The log ft result is consistent with unique first-forbidden decay and would be unusually high for first-forbidden decay when compared to the surrounding states. The 5/2− assignment is motivated by the predicted energy of the s_{1/2}×3− doublet.

The 2913 keV (9/2−) state populates the 11/2− state and the 3/2+ state. This allows a 7/2− or 9/2− assignment. Due to the strong branching to the 11/2− state and the lack of branching to the 5/2+ and 1/2+ states, a 9/2− assignment is preferred. The log ft result is consistent with allowed or first-forbidden decay. Angular correlation of the 2561 keV transition with the 351 keV M1+E2 transition (Fig. [3](ii)) supports the assignment. Angular correlations of the 1564 keV transition with the 423 keV (Fig. [3](iii)) and 446 keV (ref. [32]) (M1+E2) transitions feeding from (9/2−) states are slightly inconsistent with the alternative 7/2− spin-parity assignment.

The 2986 keV (9/2−) state populates the 11/2− state and the 3/2+ state. This allows a 7/2− or 9/2− assignment. Due to the strong branching to the 11/2− state and the lack of branching to the 5/2+ and 1/2+ states, a 9/2− assignment is preferred. The log ft result is consistent with allowed or first-forbidden decay. Angular correlation of the 2635 keV (E3) transition with the 351 keV M1+E2 transition (Fig. [3](iv)) is consistent with either assignment.

The 3014 keV (7/2−) state populates both the 11/2− and 1/2+ states. This suggests a 7/2− spin-parity assignment. It also populates the 5/2+ state strongly as would be expected for a J < 9/2 state. The similarity of these decays to those of the 2676 keV state supports a 7/2− assignment. The angular correlation of the 1331 keV (E1) transition with the 1683 keV E2 transition (ref. [32]) supports stretched dipole character for the former transition.

The 3105 keV (9/2−) state strongly populates the 11/2− state and the 3/2+ state. This allows a 7/2− or 9/2− assignment. Due to the strong branching to the 11/2− state and the lack of branching to the 5/2+ and 1/2+ states, a 9/2− assignment is preferred. Angular correlations of the 428 keV transition with the 993 keV (E1) transition, and of the 2753 keV transition with the 351 keV M1+E2 transition (ref. [32]), support a 9/2− assignment.

The 3143 keV (9/2−) state populates the 11/2− state and the 3/2+ state. This allows a 7/2− or 9/2− assignment. The branching to the 3/2+ state is significantly weaker than for other nearby (7/2,9/2)− states, and so a 9/2− assignment is thought to be more likely.

The 3197 keV (5/2−) state populates the 3/2+ state only, suggesting a low spin (J < 7/2). It is populated weakly by the (9/2−) states at 3337 keV and 3430 keV. This rules against a J = 3/2 assignment, leading to J = (5/2−). The log ft result is also consistent with unique first-forbidden decay.

The 3274 keV (7/2−) state populates the 11/2− state and the 1/2+ state. This allows a 7/2− assignment. The log ft result is consistent with first-forbidden decay. Angular correlation of the 1591 keV transition with the 1683 keV E2 transition (Fig. [3](v)) suggests stretched dipole character for the former, supporting a 7/2− assignment. Angular correlation of the 2922 keV transition with the 351 keV M1+E2 transition (Fig. [3](vi)) supports a 7/2− assignment.

The 3296 keV (9/2−) state populates both the 11/2− and 3/2+ states. This allows a 7/2− or 9/2− assignment. A J = 7/2 assignment is considered unlikely due to the branching ratio of these transitions and the minimal population of low-spin states, leaving 9/2− as the favoured assignment.

The 3337 keV (9/2−) state populates the 11/2− and 3/2+ states. This allows a 7/2 or 9/2− assignment. A J = 7/2 assignment is considered unlikely due to the branching ratio of these transitions and the minimal population of low-spin states, leaving 9/2− as the favoured assignment.

The 3359 keV (9/2−) state populates the 11/2− and 3/2+ states. This allows a 7/2 or 9/2− assignment. Angular correlation of the 446 keV transition with the 1564 keV transition (Fig. [3](iii)) is consistent with the assignment.

The 3431 keV (7/2−) state populates the 11/2− and 3/2+ states allowing J^π = (7/2,9/2−). The strength of the transition feeding 11/2− does not support a 7/2+ assignment. The relatively large branching ratio of the 1747 keV (E1) transition to the 5/2+ state is similar to the (7/2−) states at 2676 keV and 3274 keV and so 7/2− is favoured for this state.

The 3494 keV (5/2−,7/2) state populates only the 3/2+ state and so J > 7/2 is ruled out. The log ft result is too low for second-forbidden decay, restricting the assignment to J = (5/2−,7/2). The possibility of this state being identical to the 3474(6) keV 7/2− state observed previously [7] has been considered [32] but is thought to be unlikely due to the energy difference.

The 3570 keV (11/2) state is identified only by a
FIG. 3. Examples of angular correlation plots of $W(\theta)$ against $\cos^2(\theta)$ for $\gamma\gamma$ coincidences in 207Tl, discussed in text. Pairs of γ-ray transitions are (i) 993–1683 keV, (ii) 2561–351 keV, (iii) 424–1564 keV, (iv) 2635–351 keV, (v) 1591–1683 keV, (vi) 2922–351 keV, (vii) 648–1638 keV and (viii) 648–2635 keV. Fit lines are plotted alongside relevant theoretical $W(\theta)$ trends. Shaded regions indicate ranges of possible A_2 values, where mixing ratios of magnetic transitions are unconstrained.
transition feeding the 11/2− isomer, thought to indicate $J > 9/2$. Its log ft result is too low for a second-forbidden decay, and is consistent with either an allowed or first-forbidden decay.

The 3581 keV (9/2−) state populates the 11/2− and 3/2+ states allowing $J^* = (7/2, 9/2−)$. The lack of branching to $J < 7/2$ states favours a 9/2− assignment.

The 3592 keV (7/2−) state populates the 5/2+, 3/2+ and 1/2− states along with the 3105 keV (9/2−) state, allowing $J = (5/2, 7/2−)$. The measured log ft value is too low for second-forbidden decay. Angular correlation of the 1909 keV transition with the 1683 keV E2 transition (ref. [32]) establishes stretched dipole character for the former, supporting a 7/2− assignment over 5/2−.

The 3644 keV (11/2−) state populates 7/2−, 9/2− and 11/2− states. A low log ft result rules out second-forbidden and unique first-forbidden decay, leaving $J = (7/2, 9/2, 11/2)$ as possibilities. $J = 7/2$ is considered unlikely with no observed branching to $J < 7/2$ states. Angular correlations of the 648 keV transition with the 1638 keV (M+1+E2) and 2635 keV (E3) transition (Fig. 3(vii),(viii)) do not support 11/2− assignment, suggesting $J^* = (9/2, 11/2)$ for this state. Theory predicts multiple 11/2− states to exist in this energy region, so this assignment is preferred.

The 3800 keV (9/2−, 11/2−) state populates the 9/2− and 11/2− states. A low log ft result rules out second-forbidden and unique first-forbidden decay, leaving $J = (7/2, 9/2, 11/2)$ as possibilities. $J = 7/2$ is considered unlikely with no observed branching to $J < 9/2$ states. Theory predicts multiple 11/2− states to exist in this energy region, so this assignment is preferred.

The 3850 keV (7/2−, 9/2−) state populates only (9/2−) and 11/2− states. The log ft result rules out second-forbidden and unique first-forbidden decay. The lack of transitions to states of lower spin suggests $J > 7/2$, leading to the assignment $J = (9/2, 11/2)$. There is a preference for a positive-parity assignment, given that each of the depopulating transitions would be E1 in nature. Results from shell model calculations suggest that the 7/2+, 9/2+, 11/2− πh11/2 × 3− octupole-coupled states lie in this energy region.

The 3950 keV (7/2, 9/2−) state populates only (7/2−) and (9/2−) states and has a log ft result consistent with allowed or first-forbidden decay, leading to the assignment $J = (7/2, 9/2)$. The 3940 keV (9/2, 11/2−) state populates a (9/2−) state and the 11/2− state. The log ft result rules out second-forbidden and unique first-forbidden decay. The lack of transitions to states of lower spin suggests $J > 7/2$, leading to the assignment $J = (9/2, 11/2)$.

Our spin-parity assignment is at odds with the most recent Nuclear Data Sheets compilation [7] in some cases. For the 2676 keV state our 7/2− assignment is in agreement with the suggestion of [6]. The (5/2+) assignment of the compilation is based on the (pol d, 3He) transfer reaction of [15], which reports a small d5/2 contribution, however the fit with the experimental data is clearly not good. Similarly, (9/2) + is suggested by the compilation for the 2986 and 3105 keV states, with the parity assignment based on the (d, 3He) measurement of [12] reporting a g+10%d component for a group of unresolved states around this energy. In contrast, reference [13] cannot confirm this character. In all three excited states discussed, the misinterpretation was probably due to the (partially) octupole character of these states, with the collective octupole phonon having components from a large number of orbital pairs.

Shell-model calculations: The experimental findings are compared to shell-model calculations using the KHM3Y interaction. The latter has previously been successful in describing the octupole phonon (and double octupole excitation) in 208Pb [3] and in describing nuclei consisting of the 208Pb core plus several particles/holes [33]. The calculation has previously been applied to 207Tl and compared to the findings of an experiment studying high-energy yrast states [4].

A large model space is used around the 208Pb shell gaps, covering the ranges $Z = 50–126$, $N = 82–184$. The proton model space includes the orbitals 1g7/2, 2d5/2, 1h11/2, 2d3/2 and 3s1/2 below $Z = 82$ and 1h9/2, 2f7/2, 1i13/2, 2f5/2, 3p3/2 and 3p1/2 above. The neutron model space includes the orbitals 2f7/2, 1h9/2, 3p1/2, 2f5/2, 3p3/2 and 1i13/2 below $N = 126$ and 2g9/2, 1i11/2, 1j15/2, 3d5/2, 4s1/2, 2g7/2 and 3d3/2 above. Cross-shell two-body matrix elements (TBMEs) are based on the M3Y interaction [31], and neutron-proton particle-particle and hole-hole TBMEs use the Kuo-Herling interaction [35] as modified in ref. [33].

Relative to a closed-shell configuration for 208Pb, the configurations were truncated to have one-hole (1h) $π^{-} (t=0)$, or one-particle two-hole (1p-2h) $π^{+}π^{-}$ and $ν^{+}ν^{-}ν^{-}$ (t=1). Mixing between $t=0$ and $t=1$ was not taken into account. With this truncation the single-particle and single-hole energies are given by experimental separation energies for $A = 207$ and $A = 209$ relative to 208Pb as shown in Fig. 1 of [33].

Discussion: The relation of the experimental level scheme to calculated levels is shown in Fig. 4. The differences between experimental and theoretical state energies are plotted in Fig. 5. We discuss octupole state assignments here.

The pair of states at 2676 keV and 2709 keV has previously been assumed [6] to correspond to the doublet of $πh_{11/2} × 3−$ octupole-coupled states owing to their energies and tentative spin-parities. This analysis supports the tentative assignments and asserts the octupole character. As further evidence supporting the respective 7/2− and 5/2− spin-parity assignments, the relative strengths of the E1 and E3 transitions de-populating these states agree with those calculated by Hamamoto [34]. Experimentally and theoretically the states are separated in energy from the states lying above by around 200 keV. These states are predicted by the KHM3Y cal-
calculation to lie at 2453 keV and 2489 keV respectively. This gives respective observed energy shifts \(\Delta E_{\text{M3Y}} = E_{\text{exp}} - E_{\text{KHM3Y}} = +0.223 \text{ MeV} \) and +0.256 MeV.

Placing the \(\pi d_{3/2}^{-1} \times 3^{-} \) octupole-coupled states is less clear and so remains tentative. These have spin-parities \(3/2^{-}, 5/2^{-}, 7/2^{-} \) and \(9/2^{-} \), and would be expected to lie close to 3 MeV in energy if coupling is weak as for the \(\pi s_{1/2} \times 3^{-} \) states. The strength of the transition directly de-exciting the coupled phonon state (populating the \(3/2^{+} \) state at 351 keV) is expected to be stronger than the corresponding transition for a non-collective state. KHM3Y shell model calculations predict state energies, transition strengths and wave functions. The wave functions clearly differentiate between calculated octupole and non-octupole states, with octupole state wave functions dominated by contributions from \(\Delta l = \Delta j = 3 \) excitations across the shell gaps.

The search for the \(3/2^{-} \) and \(5/2^{-} \) \(d_{3/2} \) octupole-coupled states is hindered by a lack of statistics due to both lower spin and greater \(\beta \)-decay forbiddenness. Apart from the \(5/2^{-} \) state at 2709 keV, these two are the only \(J < 7/2 \) states expected to exist between 2.5 and 3.5 MeV in energy. A single candidate state is observed: the 3197 keV state is assigned \((5/2^{-}) \) here. It is thought that the \(3/2^{-} \) state remains unobserved, populated negligibly in \(\beta \) decay and with very little internal population from higher-spin states lying above. The \(5/2^{-} \) state is predicted by the KHM3Y calculation to lie at an energy of 2911 keV, giving an observed energy shift \(\Delta E_{\text{M3Y}} = +0.286 \text{ MeV} \).

Four \((7/2^{-}) \) states are observed above the \(7/2_{1}^{-} \) state, lying at 3014 keV, 3274 keV, 3431 keV and 3592 keV. The \(7/2_{2}^{-} \) state is predicted by the KHM3Y calculations to have octupole character and to lie at an energy of 2784 keV. Experimentally this would correspond to the 3014 keV state, but the 3274 keV state is also considered based on its energy. Each of the \((7/2^{-}) \) states populates the \(5/2^{+} \) state at 1683 keV with an (E1) transition and the \(\pi d_{3/2}^{-1} \) state at 351 keV with an \((M2+E3) \) transition. The latter would be expected to be enhanced for the octupole state. The relative transition strength of the \((M2+E3) \) transition from the 3014 keV state, when using the (E1) transition as a benchmark, is around 60% greater than that of the corresponding transition from the 3274 keV state. This supports tentative assignment of collective octupole character to the 3014 keV state, and given the relative energies of the states, this appears likely. However, it is also possible that the octupole strength might instead be split, most likely between the 3014 keV and 3274 keV states, rather than concentrated in one state as predicted by the KHM3Y calculation. This could be attributed to the underestimate of the octupole energy by several hundred keV: the energy difference \(E(7/2_{2}^{-}) - E(7/2_{1}^{-}) \) is calculated to be 0.61 MeV whereas it is observed to be 0.26 MeV. As the octupole states are higher in energy than predicted by the calculations they are closer to the multitude of states with equal \(J^{e} \), increasing the degree of mixing.

The density of observed \(9/2^{-} \) states (eight placed in the energy range 2.9–3.5 MeV) makes exact assignment difficult, with increased uncertainty over predicted configuration mixing. The KHM3Y calculations predict the \(9/2^{-} \) state to have octupole character, which here would correspond to the 2913 keV state. The 2986 keV and 3105 keV states are considered to be the next-most likely candidates owing to energy ordering and strong octupole-de-exciting transitions. Each of these three states populates both the \(11/2^{-} \) isomer with an \(M1+E2 \) transition and the \(3/2^{-} \) \(\pi d_{3/2}^{-1} \) state with an E3 transition. Calculation of octupole relative transition strengths, using the isomer-populating M1+E2 transition as a benchmark, suggests that the 2635 keV transition (depopulating the 2986 keV state) is the strongest. This supports tentative assignment of \(d_{3/2} \)-coupled octupole character to the 2986 keV state. However, as for the \(7/2^{-} \) states, this is not robust evidence. The phonon strength could also be split between the three states at 2913, 2986 and 3105 keV. \(E(9/2_{2}^{-}) - E(9/2_{1}^{-}) \) is calculated to be 0.27 MeV whereas it is observed to be 0.07 MeV.

The final octupole-coupled states considered are the \(\pi d_{11/2}^{-1} \times 3^{-} \) states. Of those expected to be populated, the \(7/2^{+} \) state is calculated to lie the lowest in energy, at 3679 keV, with the \(9/2^{+} \) and \(11/2^{+} \) states lying around 100–200 keV higher. The \(17/2^{+} \) state has been observed at 3813 keV [1], giving \(\Delta E_{\text{M3Y}} = +0.132 \text{ MeV} \). This is in line with results for \(\pi d_{1/2}^{-1} \) coupled states in this analysis. The observed 3800, 3850 and 3940 keV states are not assigned parity and lie in this energy region, and so are candidates for octupole character. Previously a state at 3987 keV, not observed in this work, was assigned \(L = 4 \) and some \(\pi g_{7/2}^{-1} \) strength [13], making this more likely to correspond to the \(7/2^{+} \) octupole-coupled state.

Characterisation of states not resulting from octupole coupling here is difficult as they are less easy to identify through any particular multipole enhancement. The experimentally observed states with tentative spin-parities not assigned octupole character are assigned to calculated states in order of energy. The 3634 keV and 3644 keV (\(11/2^{-} \)) states are assigned to the calculated \(11/2_{1}^{-} \) and \(11/2_{3}^{-} \) states due to the similarities in energy separation. The states at 3494, 3570, 3800, 3850 and 3940 keV are not assigned exact spin-parities.

Fig. 5 shows that the KHM3Y calculations consistently underestimate the energy of the octupole phonon states by around 0.25 MeV and overestimate the energy of other coupled states by around 0.2 MeV. The energy of the 3813 keV \(17/2^{+} \) state in \(^{207}\text{TI} \) observed in a previous experiment [1] was also underestimated by 0.13 MeV. When the results of the calculation are compared with known single-octupole-coupled states in nuclei adjacent to \(^{208}\text{Pb} \) [11 29], all energies are under-estimated by between 0.0 and 0.3 MeV.

The differences between theory and experiment are probably related to the truncation made in the calcu-
lations. As a start, mixing between \(t=0 \) and \(t=1 \) should be taken into account. This was not done since it requires the determination of a new Hamiltonian in which all of the single-particle energies are readjusted to reproduce the experimental separation energies for \(A=207 \) and \(A=209 \) relative to \(^{208}\text{Pb} \). This, of course, requires calculations for all of these nuclei. Mixing between \(t=0 \) and \(t=1 \) lowers the energies of the states dominated by \(t=0 \), i.e. they get pushed down due to mixing with the higher energy \(1p-2h \) states. This will increase the relative energies of the \(t=1 \) states. Mixing with \(t=2 \) states is expected to reduce the energies of the \(t=1 \) states, but would also reduce the energy of the ground state as \(0^+ \) nucleon pairs are easier to excite across the shell gap. Finally, mixing with \(t=3 \) states would be expected to reduce the energies of \(t=1 \) states. It is likely that \(t=2 \) (2p-3h) and \(t=3 \) (3p-4h) would be needed to achieve energy convergence at the level of about 100 keV. A previous investigation in the smaller model space around \(^{98}\text{Cd} \) found that the inclusion of mixing up to \(t=3 \) is necessary to ameliorate the difference between measurement and theory. Including this amount of configuration mixing for the region around \(^{208}\text{Pb} \) is not computationally feasible at this time.

To address the discrepancy between octupole and non-octupole predictions in this analysis, the \(t=2 \) mixing would need to have a relatively smaller effect on the collective octupole-coupled states. The mechanism for this difference is not clear, although it could relate to weak coupling of the collective phonon with \(t=0 \) states. Spin is not thought to have a significant effect, since these states are all of similar, relatively low, spin. Wilson et al. discussed the rectifying effect of \(t=2 \) mixing on high-spin states.

Conclusions: The \(\gamma \)-decay scheme of \(^{207}\text{Tl} \) has been investigated following population through \(\beta \) decay from the \(J^\pi = (9/2^+) \) ground state in \(^{207}\text{Hg} \). An extended level scheme has been established containing several newly observed states and transitions and through a combination of approaches, including angular-correlation measurements, spin-parities have been suggested for most states. States resulting from coupling between \(t=0 \) single-proton-hole states and the collective octupole phonon have been identified where possible. Comparison with the results of state-of-the-art shell model calculations, using an extensive model space, indicate a discrepancy between the energy predictions of octupole-coupled states and other non-collective coupled states. This is also the case for collective states observed in other nuclei neighbouring \(^{208}\text{Pb} \). We speculate that a reduction in the degree to which the collective states couple to \(t=2 \) excitations could resolve this difference.

Acknowledgements: The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 654002. Support from the European Union seventh framework through ENSAR contract no. 262010, the Science and Technology Facilities Council (UK), the MINECO projects FPA2015-64969-P and FPA2017-87568-P (Spain), FWO-Vlaanderen (Belgium), GOA/2015/010 (BOF KU Leuven), the Excellence of Science programme (EOS-FWO), the Interuniversity Attraction Poles Programme initiated by the Bel-
gian Science Policy Office (BriX network P7/12), the German BMBF under contract 05P18PKCIA + "Verbundprojekt 05P2018", the Polish National Science Centre under Contract No. UMO-2015/18/M/ST2/00523 and UMO-2019/33/N/ST2/03023, and NSF (US) grant PHY-1811855 is acknowledged. PHR and SMJ acknowledge support from the UK Department for Business, Energy and Industrial Strategy via the National Measurement Office.

[1] M. J. Martin, Nucl. Data Sheets 108, 1583 (2007).
[2] M. Rejmund et al., Eur. Phys. J. A 8, 161 (2000).
[3] Z. Podolyák et al., J. Phys. Conf. Ser. 580, 012010 (2015).
[4] E. Wilson et al., Phys. Lett. B 747, 88 (2015).
[5] B. A. Brown, Phys. Rev. Lett. 85, 5390 (2000).
[6] B. Jonson et al., CERN 81-09, 640 (1981).
[7] F. G. Kondev and S. Lalkovski, Nucl. Data Sheets 112, 707 (2011).
[8] G. Wang et al., Chin. Phys. C 41, 030003 (2017).
[9] O. Hansen et al., Nucl. Phys. A 127, 71 (1969).
[10] P. Barnes et al., Phys. Rev. C 1, 228 (1970).
[11] E. R. Flynn et al., Nucl. Phys. A 279, 394 (1977).
[12] H. Langevin-Joliot et al., J. Phys. G: Nucl. Phys. 10, 1435 (1984).
[13] P. Grabmayr et al., J. Phys. G 18, 1753 (1992).
[14] I. Bobeldijk et al., Phys. Lett. B 356, 13 (1995).
[15] M. Hunyadi et al., Nucl. Phys. A 731, 49 (2004).
[16] R. Bailey, CERN 2013-007, 331 (2013).
[17] A. I. Morales et al., Phys. Rev. C 84, 011601 (2011).
[18] Z. Podolyák et al., Phys. Rev. Lett. 117, 222302 (2016).
[19] N. Warr et al., Eur. Phys. J. A 49, 40 (2013).
[20] H. Scraggs et al., Nucl. Instr. Meth. Phys. Res. A 543, 431 (2005).
[21] I. Lazarus et al., IEEE Trans. Nucl. Sci. 48, 567 (2001).
[22] H. W. Taylor et al., Nucl. Data Tables A9, 1 (1971).
[23] M. E. Rose, Phys. Rev. 91, 610 (1953).
[24] T. A. Berry, Ph.D. thesis, University of Surrey (2019).
[25] S. Gorodetskzy, F. Beck, and A. Knipper, Nucl. Phys. 82, 275 (1966).
[26] T. Kibédi et al., Nucl. Instr. Meth. Phys. Res. A 589, 202 (2008).
[27] B. Singh et al., Nucl. Data Sheets 84, 487 (1998).
[28] M. Kadi et al., Phys. Rev. C 61, 034307 (2000).
[29] J. Chen and F. Kondev, Nucl. Data Sheets 126, 373 (2015).
[30] F. G. Kondev, Nucl. Data Sheets 109, 1527 (2008).
[31] R. Neveling et al., Phys. Rev. C 66, 034602 (2002).
[32] T. A. Berry et al., Phys. Lett. B 793, 271 (2019).
[33] E. K. Warburton and B. A. Brown, Phys. Rev. C 43, 602 (1991).
[34] G. Bertsch et al., Nucl. Phys. A 284, 399 (1977).
[35] G. H. Herling and T. T. S. Kuo, Nucl. Phys. A 181, 113 (1972).
[36] I. Hamamoto, Nucl. Phys. A 205, 225 (1973).
[37] A. Blazhev et al., Phys. Rev. C 69, 064304 (2004).