Rad9 plays an important role in DNA mismatch repair through physical interaction with MLH1

Wei He1,2, Yun Zhao1,2, Chunbo Zhang1,3, Lili An1,2, Zhishang Hu1,2, Yuheng Liu1,2, Lu Han1,2, Lijun Bi4, Zhensheng Xie5, Peng Xue5, Fuquan Yang5 and Haiying Hang1,2,*

1National Laboratory of Biomacromolecules, 2Center for Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, 3College of Life Sciences, Capital Normal University, Beijing 100037, 4Center for Systems Biology and 5Proteomics Platform, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 and China

Received July 5, 2008; Revised and Accepted September 24, 2008

ABSTRACT

Rad9 is conserved from yeast to humans and plays roles in DNA repair (homologous recombination repair, and base-pair excision repair) and cell cycle checkpoint controls. It has not previously been reported whether Rad9 is involved in DNA mismatch repair (MMR). In this study, we have demonstrated that both human and mouse Rad9 interacts physically with the MMR protein MLH1. Disruption of the interaction by a single-point mutation in Rad9 leads to significantly reduced MMR activity. This disruption does not affect S/M checkpoint control and the first round of G2/M checkpoint control, nor does it alter cell sensitivity to UV light, gamma rays or hydroxyurea. Our data indicate that Rad9 is an important factor in MMR and carries out its MMR function specifically through interaction with MLH1.

INTRODUCTION

Errors and damage of genomic DNA occur during normal cellular activities or when cells are exposed to genotoxins. Cells manage DNA errors and damage using an intricate network consisting of many proteins including cell cycle checkpoint proteins and DNA repair factors. The main DNA repair mechanisms include homologous recombination (HR), nonhomologous end-joining, base excision, nucleotide excision, direct reversal and mismatch repair (MMR) (1,2). When DNA is damaged, the progress of cells through the cell cycle is arrested or slowed down to allow time for DNA repair (2,3). Cell cycle checkpoint proteins Rad9, Rad1 and Hus1 play important roles in both cell cycle checkpoint control and DNA repair (2,4,5). These three proteins are evolutionarily conserved in eukaryotes, and can form a ring-shaped heterotrimer, dubbed the 9-1-1 complex (6–11). The deletion of each of the three genes for these proteins in the fission yeast Schizosaccharomyces pombe inactivates S/M, intra-S and G2/M checkpoint controls, and sensitizes fission yeast cells to killing by UV light, γ-rays and the replication inhibitor hydroxyurea (HU) (12–15). Disruption of the mouse ortholog of Rad9 or Hus1 also sensitizes mouse cells to UV light, γ-rays and HU, and leads to genome instability (16,17).

MMR is an important repair mechanism that maintains genomic stability. It plays key roles in the repair of base—base mismatches and insertion/deletion mispairs generated during DNA replication and recombination. MMR also functions in preventing HR and in DNA damage signaling in eukaryotic cells (18–21). In vitro reconstitution biochemical studies indicate that MutS, MutL, RPA, EXOI, HMGB1, PCNA, replication factor C (RFC), polymerase and DNA ligase I play important roles in MMR (22–24). EXOI is only partially responsible for excision enzyme activity in MMR (25,26). A recent study showed that regulatory factor X has a stimulatory role in mismatch-dependent 5’ to 3’ excision activity (27). hMRE11 was found to play a role in mismatch-dependent 3’ to 5’ excision (28). Furthermore, the excision of reconstituted MMR proteins is less specific than in cell extracts, suggesting that one or more additional regulatory factors are required for the accuracy of the excision step (22,29). Therefore, other protein components are required for MMR to work efficiently and accurately under various in vivo conditions.

In this study, Rad9 was found to physically interact with mammalian MLH1, a protein essential for DNA MMR. A single amino acid residue mutation (S160A) on Rad9 drastically weakened its interaction with MLH1 and cellular mismatch repair activity. The mutation did
not affect cell sensitivity to UV light, gamma rays or HU, and neither S/M or G2/M checkpoint controls, the typical phenotypes of Rad9-deleted cells (17), suggesting that Rad9 functions in MMR specifically through its interaction with MLH1.

MATERIALS AND METHODS

Antibodies

Anti-hRad9 polyclonal antibody was obtained by immunizing mice with purified MBP-hRad9 protein. Anti-hMLH1 monoclonal antibody (554 073) was from BD Biosciences Pharmingen, monoclonal anti-His antibody, anti-FLAG antibody (F7425) and anti-γ-tubulin monoclonal antibody were obtained from Sigma–Aldrich, and anti-HA antibody was obtained from Santa Cruz Technology.

Cell culture

Human HeLa and HEK 293T cells were cultured in DMEM (Invitrogen, CA) supplemented with 10% fetal bovine serum (Hyclone) and 100 U/ml penicillin/streptomycin. The 293T cells stably expressing FLAG-hRad9 constructed in our laboratory were cultured in DMEM with 10% FBS and 50 µg/ml Hygromycin B to keep the plasmid pFLAG-CMV2-hRad9 in the cells. Methyl methanesulfonate (MMS) and N-nitroso-N-methylurea (MNU), the alkylation agents for cell treatment, were purchased from Sigma–Aldrich (St. Louis, MO). After HeLa cells reached 80% confluence and were rinsed twice with PBS, the cells were incubated with 10% FBS and 50 µg/ml Hygromycin B to maintain the transfection genes in the cells.

Methyl methanesulfonate (MMS) and N-nitroso-N-methylurea (MNU), the alkylation agents for cell treatment, were purchased from Sigma–Aldrich (St. Louis, MO). After HeLa cells reached 80% confluence and were rinsed twice with PBS, the cells were incubated with 10% FBS and 50 µg/ml Hygromycin B to maintain the transfection genes in the cells.

Mass spectrometry

FLAG-hRad9 was immunopurified from 1 x 10^8 293 T cells stably expressing FLAG-hRad9 using 200 µl anti-FLAG M2 agarose (Sigma). After extensive washings with lysis buffer (150 mM NaCl, 50 mM Tris–HCl, pH 7.5, 10% glycerol, 0.5% NP-40) containing a protease inhibitor cocktail (Roche, Indianapolis, IN), the bound proteins were eluted with 200 µg/ml FLAG peptide (Sigma) in PBS. Eluted proteins were resolved by SDS–PAGE and revealed by Coomassie blue staining or silver staining. The apparent bands were excised, in-gel digested with trypsin, and analyzed by LC-MS/MS on a ProteomeX-LTQ mass spectrometer (Thermo Fisher Scientific, Waltham, USA) to identify the protein bands.

Co-immunoprecipitation

Two vectors, pCDNA3-6HA (30) and pFLAG-CMV2 (Sigma, St Louis, MO), were used to construct plasmids capable of expressing hMLH1 in human cells. To make pCDNA3-6HA-hMLH1, pFLAG-CMV2-hMLH1, the cDNA of the hMLH1 gene was amplified by PCR from the plasmid pEGFP-hMLH1 (a kind gift from Dr. Lene Juel Rasmussen, Roskilde University, Denmark). The sequences of forward and reverse primers for these PCR reactions are given in Table 1. The hMLH1 gene was cloned between the EcoRI and BamHI sites of pFLAG-CMV2, and in the EcoRI site of pCDNA3-6HA. The pCDNA3-6HA and pFLAG-CMV2 constructs bearing the Hus1, Rad1 or Rad9 open reading frame were constructed previously (30).

Human embryonic kidney 293T cells were transfected with the plasmids of interest using Lipofectamine plus (Invitrogen, USA). Cells were grown to 60–80% confluence in 60 mm tissue culture dishes and transfected with 1.5 µg pFLAG-CMV2 DNA and 1.5 µg pCDNA3-6HA DNA following the procedure described by Invitrogen.

Table 1. Primers used to amplify cDNA for constructing plasmids

Plasmids	Primer	Restriction sites
pFLAG-CMV2-hMLH1	5'-ATACGCCGAATTCATCGTCTGCGAGGAGGTTAT-3'	EcoRI
pCDNA3-6HA-hMLH1	5'-ATACGCCGAATTCATCGTCTGCGAGGAGGTTAT-3'	EcoRI
(1-270)	5'-ATACGCCGAATTCATCGTCTGCGAGGAGGTTAT-3'	EcoRI
(271-391)	5'-ATACCCCTGCAGATGCTTACCGAGGAGGTTAT-3'	EcoRI
pGEX-6P-1-hRad9	5'-ATACCCCTGCAGATGCTTACCGAGGAGGTTAT-3'	EcoRI
(1-130)	5'-ATACCCCTGCAGATGCTTACCGAGGAGGTTAT-3'	EcoRI
pGEX-6P-1-hRad9	5'-ATACCCCTGCAGATGCTTACCGAGGAGGTTAT-3'	EcoRI
(131-270)	5'-ATACCCCTGCAGATGCTTACCGAGGAGGTTAT-3'	EcoRI
pGEX-6P-1-hRad9	5'-ATACCCCTGCAGATGCTTACCGAGGAGGTTAT-3'	EcoRI
(161-270)	5'-ATACCCCTGCAGATGCTTACCGAGGAGGTTAT-3'	EcoRI
R9160A-F	5'-ATACCCCTGCAGATGCTTACCGAGGAGGTTAT-3'	EcoRI
R9160A-R	5'-ATACCCCTGCAGATGCTTACCGAGGAGGTTAT-3'	EcoRI
PET24a (+)-mMLH1	5'-ATACCCCTGCAGATGCTTACCGAGGAGGTTAT-3'	EcoRI
Immunoprecipitation and Western blotting were performed as described previously (31).

Construction of the hRad9 S160A mutant

pGEX-6P-1-hRad9 (S160A) was derived from pGEX-6P-1-hRad9 following the QuickChange mutagenesis procedure (Stratagene). The primers for the mutagenesis PCR of S160A were R9160A-F and R9160A-R in Table 1. The mutant was confirmed by DNA sequencing. The plasmid of S160A were R9160A-F and R9160A-R in Table 1. The plasmid of hRad9 (S160A) was constructed by cutting from pGEX-6P-1-hRad9 (S160A) and inserting into the XhoI site of pZeoSV2 (Invitrogen, USA).

In vitro pull-down tests

The full-length hRad9 cDNA removed from pCDNA3-6HA-hRad9 using XhoI was inserted into the XhoI site of pGEX-6P-1 (GE Health) to make pGEX-6P-1-hRad9. The hMLH1 open reading frame was cut from pCDNA3-6HA-hMLH1 using EcoRI and inserted into the EcoRI site of pET24a (+) (Novagen) to make pET24a (+)-hMLH1, and inserted in pGEX-6P-1 to make pGEX-6P-1-hMLH1. The truncated hRad9 and hMLH1 constructs were amplified by PCR using template pGEX-6P-1-hRad9. The primers are listed in Table 1. The PCR products of hRad9 were digested with XhoI and ligated with XhoI-digested pGEX-6P-1 to yield pGEX-6P-1-hRad9 plasmids containing hRad9 (1–130), hRad9 (131–270) and hRad9 (161–270). The truncated hRad9 (1–130), hRad9 (131–270) and hRad9 (161–270) plasmids were digested from pCDNA3-6HA-hRad9 (1–270) and pCDNA3-6HA-hRad9 (271–391) in the same way as described above. Cloned sequences were confirmed by DNA sequencing. Mouse MLH1 cDNA was amplified from mouse ES cell cDNA and inserted into BamHI and EcoRI sites of pET24a (+) to make pET24a (+)-mMLH1.

For the expression of GST tagged hRad9 fragments and His-hMLH1, Rosetta cells (Invitrogen) harboring harboring expression plasmids were cultured in LB broth containing 100 μg/ml of ampicillin for GST tagged proteins or 50 μg/ml of kanamycin for His-hMLH1 at 37°C. Protein expression was induced at an A600 of 0.6 by the addition of isopropylthiogalactoside (IPTG) to a final concentration of 0.4 mM and cells were grown at 16°C for 24 h. After sonication, the solution was centrifuged at 10 000 g for 5 min, the pellets were washed five times with 500 μl of binding buffer at 4°C and fractionated on a 10% SDS–polyacrylamide gel. Western blots for hMLH1 were probed with anti-hMLH1 antibody (BD Biosciences Pharmingen, Franklin Lake, NJ). A control of immobilized GST alone was run concurrently.

Yeast two-hybrid analysis

The matchmaker LexA two-hybrid system from Clontech was used to determine the interaction of hMLH1 and hRad9. pLexA and pB42AD plasmids containing the hRad9 sequence were constructed previously (30). The full-length coding sequence of hMLH1 was amplified by PCR from pACJ112 (a gift from Dr Lene Juel Rasmussen, Roskilde University, Denmark). The PCR product was digested with EcoRI and inserted into the EcoRI sites of pLexA and pB42AD. Yeast two-hybrid analyses were performed using a previously published procedure (30).

Tests for MMR activity

A method developed by Lei et al. (32) to detect MMR activity in living cells was used with minor modifications. The DNA substrates, homoduplex and heteroduplex EGFP plasmids, were prepared in the same way as Lei et al. (32). Lipofectamine reagents (Invitrogen) were used to transfect DNA into cultured cells. Cells were plated on 60-mm dishes at a density of 5 × 105 cells/dish. Transfection was performed the following day according to the manufacturer’s protocols. Homoduplex or heteroduplex EGFP plasmid measuring 0.2 μg was co-transfected with 0.2 μg red fluorescent protein (RFP) expression plasmid pmRFP-C1 (a kind gift from Dr. Liusheng He, St Jude Children’s Research Hospital, Memphis, TN, USA). pmRFP-C1 was used to ascertain that the transfection efficiencies of the EGFP plasmids were comparable. The cells were trypsinized 20 h after transfection, and resuspended in PBS at a concentration of 5 × 105 cells/ml. 30 000 cells were measured for their fluorescence intensities at wavelengths of 530/30 nm (green) and above 670 nm (red) using a FACSCalibur flow cytometer (Becton Dickinson). MMR activity was calculated using a formula developed by Lei et al. (32). HCT116 cells do not express functional hMLH1 and therefore have an impaired MMR system. HCT116 cells transfected with pFLAG-CMV2 and pFLAG-CMV2 -hMLH1 were used as negative and positive MMR controls. Mouse ES cells were transfected in the same way as described above for HCT116 cells except for the use of a specialized medium for culture of ES cells (17).
ES cell survival and cell cycle checkpoint assays

Mouse ES cells were seeded at various concentrations in duplicate on gelatinized tissue culture dishes. Sensitivities to 250 μM HU, 254-nm UV light at 10 J/m² and 60Co gamma rays at 6 Gy were tested as described previously (17). Survival against MMS and MNU were evaluated by counting colonies formed with and without mutagen treatment. Cells were incubated for 24 h after seeding in duplicated 60-mm dishes and then exposed to various concentrations of MMS or MNU for 1 h at 37°C in an incubator. The medium was removed, the cells were rinsed once with PBS, and fresh medium was added. Colonies formed after 1 week of growth were stained with Giemsa and counted. Relative colony formation (%) was expressed as colonies per treatment level/colonies that appeared in the control.

The assay for G2/M checkpoint control of mouse ES cells induced by gamma rays was conducted as described in a previous study (17). A previously developed method was utilized to evaluate S/M checkpoint function (33). Briefly, 1 mM HU was added to ES cells when they were grown to 70% confluence. Cells were incubated at 37°C under 5% CO2 for designated times, then processed and suspended in PBS. The cells were probed with rabbit anti-phospho-histone H3 (Upstate)/FITC-conjugated anti-rabbit antibodies (Jackson ImmunoResearch Laboratories, INC), and stained with PI followed by flow cytometric analysis.

RESULTS

hRad9 interacts physically with hMLH1

Lindsey-Boltz et al. (34) reported that when FLAG tagged hRad9 expressed in HEK293T cells was purified with anti-FLAG agarose, carbamoyl phosphate synthetase/aspartate transcarbamoylase/dihydroorotase (CAD) and HSP110 were copurified with hRad9. Since mammalian Rad9 plays critical roles in multiple formats of DNA repair and cell cycle checkpoint control, Rad9 is very likely to interact with other proteins that are important for DNA repair and cell cycle checkpoint control. Therefore, we performed a similar but more careful immunoprecipitation assay to search for human proteins capable of interacting with hRad9. To enhance the sensitivity and reduce background noise, we established HEK293T cell clones stably expressing FLAG-tagged hRad9 and picked a clone that expressed FLAG-hRad9 at a level lower than the endogenous hRad9 level (data not shown). The affinity-purified proteins associated with FLAG-hRad9 were fractioned by SDS–PAGE and revealed by silver staining (Figure 1A). The bands of interest which were not seen in the affinity-purified extracts

Figure 1. hRad9 associates with hMLH1. (A) Silver-staining of hRad9-associated proteins. 293T cells stably expressing FLAG-hRad9 were immunoprecipitated with antibody against FLAG M2. Samples were resolved by 10% SDS-PAGE and visualized by silver staining (lane 2). Lane 1 is a negative control in which the immunoprecipitation was performed in 293T cells stably expressing FLAG-GFP. The bands of interest were cut and analyzed by a Mass-Spectrometer, hMLH1 (arrow) was identified to be one of the partners of hRad9. The protein bands of CAD, HSP110, hRad9, hHus1 and hRad1 are also indicated. (B) Co-immunoprecipitation of hRad9 and hMLH1. In the upper panel, endogenous hRad9 was immunoprecipitated with an anti-hMLH1 antibody from cell extracts of 10⁶ HeLa cells, but not with pre-immune antiserum (lane 2). The immunoprecipitated proteins were detected with antibodies against hMLH1 (upper) and hRad9 (lower). Ten percent of the lysate was used for the loading control and the remaining 90% for co-immunoprecipitation. In the lower panel, endogenous hMLH1 was immunoprecipitated from cell extracts of 10⁶ HeLa cells with an anti-hRad9 antibody (lane 3), but not with pre-immune serum (lane 2). The immunoprecipitated proteins were visualized by western blot analysis with antibodies against hMLH1 (upper) and hRad9 (lower).
from control HEK293T cells stably expressing FLAG-GFP, were cut out, digested and analyzed with LC-MS/MS. LC-MS/MS analysis of hRad9-copurified bands revealed that besides CAD and HSP110, there were other proteins not previously reported to interact with hRad9. One of these proteins was hMLH1, a protein essential for DNA MMR. hRad9 has been reported to interact with several DNA repair proteins involved in HR repair and base-excision repair (35–45), but none of the proteins involved in MMR have previously been found to associate with Rad9. Therefore, we chose to characterize this interaction and its functional significance further.

To confirm the association of hMLH1 and hRad9 in vivo, co-immunoprecipitation was performed using an anti-hMLH1 monoclonal antibody or anti-hRad9 polyclonal antibodies. hRad9 and hMLH1 were immunoprecipitated together from the extracts of HeLa cells by either the anti-hMLH1 antibody or the anti-hRad9 antibodies, but not by pre-immune serum (Figure 1B). This result indicates that hRad9 and hMLH1 are associated together in cells.

We next determined whether the interaction between hRad9 and hMLH1 was direct, rather than being mediated via accessory proteins. GST pull-down was performed to test whether purified recombinant hRad9 and hMLH1 could interact directly in vitro. GST-hMLH1 fusion protein bound to glutathione-Sepharose was incubated with purified His-hRad9 protein. As shown in Figure 2A, hRad9 could be pulled down by GST-hMLH1 (lane 3), while hRad9 did not bind to GST alone (lane 2). Furthermore, a yeast two-hybridization assay was also performed to assess the interaction of hRad9 and hMLH1. Co-expression of pLexA-hMLH1 and pB42AD-hRad9 supported yeast growth and turned colorless X-gal into blue product (Figure 2B), while the yeast cells containing pLexA-hMLH1 and pB42AD or pLexA and pB42AD-hRad9 did not grow and remained colorless. As a positive control, yeast cells bearing pLexA-hHus1 and pB42AD-hRad9 grew and turned blue as expected (30). These results again support the idea that hRad9 interacts with hMLH1 directly. It is noteworthy that the yeast bearing pLexA-hRad9 and pB42AD-hMLH1 did not grow and remained colorless, suggesting that hRad9 and hMLH1 interact physically only when the protein contact is in the right direction.

Figure 2. hRad9 interacts with hMLH1 directly. (A) GST pull-down assay. One microgram GST-hMLH1 (lane 3) or an equal amount of GST alone (lane 2) was immobilized on glutathione-Sepharose and incubated with purified His-hRad9 (100 ng) in binding buffer for 2 h at 4°C. The Sepharose was washed five times with binding buffer. The purified proteins were subjected to western blot analysis and probed with the hRad9 antibody. Lane 1 contains 10 ng (10% of the total input) of His-hRad9. Unlike GST (lane 2), GST-hMLH1 (lane 3) was able to pull down His-hRad9. (B) Interactions of hRad9 and hMLH1 in a yeast two-hybrid assay. The pairs of two-hybrid recombinant proteins tested in each population of *Saccharomyces cerevisiae* EGY48 host cells were arranged as follows: (left) pLexA-gene 1/(right) pB42AD-gene 2. BD-hMLH1 was able to interact specifically with AD-hRad9.

Figure 3. hMLH1 is not associated with hRad1 or hHus1. pCDNA3.0-6HA-hMLH1 (1.5 μg) was transfected into 293T cells along with 1.5 μg pFLAG-CMV2-hRad1 (lanes 1 and 4), 1.5 μg pFLAG-CMV2-hRad9 (lanes 2 and 5) and 1.5 μg pFLAG-CMV2-hHus1 (lanes 3 and 6), respectively. Ten percent of the lysate was used for the loading control and the remaining 90% for co-immunoprecipitation. The lysate was immunoprecipitated with anti-FLAG antibody, and the western blot membrane was probed with an antibody against HA (upper) and against FLAG (lower). The anti-FLAG antibody was able to precipitate HA-hMLH1 mediated only by FLAG-hRad9.

hMLH1 does not interact with hRad1 and hHus1

Given that hMLH1 interacts with hRad9, we asked whether hMLH1 interacted with hRad1 and hHus1, the two other proteins that form a heterotrimer (the 9-1-1 complex) with hRad9 (7–11,30,46–48). A co-immunoprecipitation assay showed that overexpressed HA-tagged hRad1 and hHus1 did not interact with FLAG-tagged hMLH1, while as a positive control, HA-hRad9 was found to interact with FLAG-hMLH1 (Figure 3). These findings suggest that hMLH1 binds to free hRad9 but not to hRad9 within the 9-1-1 complex.
Mapping hRad9 domains required for its interaction with hMLH1

To investigate which region of the hRad9 protein was responsible for mediating the interaction with hMLH1, a series of hRad9 deletion mutants were generated and tested for their abilities to interact with full-length hMLH1 in a GST pull-down assay, in which GST-tagged fragments of hRad9 were immobilized on glutathione-Sepharose and incubated with His-hMLH1, and as a negative control, GST alone with His-hMLH1 was included. Experimental results show that the hMLH1-interacting region of hRad9 is localized to residues 131–160 (Figure 4A and B). To narrow down which of these amino acid residues was important for the interaction of hRad9 with hMLH1, each of the polar amino acids on hRad9 in this region was mutated into alanine residues separately, and the mutants were subjected to a GST pull-down assay with His-hMLH1 (Figure 4C). We chose to only mutate polar residues to avoid disrupting the integrity of protein domains in hRad9. The results from the GST pull-down assay indicate that S160 of hRad9 (marked with a star in Figure 4A) is important for the hMLH1–hRad9 interaction, and Ser160 was shown to be critical for the hRad9–hMLH1 interaction (data not shown). In one of the following sections, we used mRad9+/− mouse ES cells to test the functional importance of hRad9 in MMR, thus we also examined the interaction between human hRad9 and mouse mMLH1. As with hMLH1, mouse mMLH1 interacted directly with wild type hRad9, but not with mutant S160A hRad9 (Figure 4D), suggesting conservation of Rad9–MLH1 interaction from mouse to human.

DNA mismatch-damage stimulates the hRad9–hMLH1 interaction

N-nitroso-N-methylurea (MNU) is an S-N1 DNA-alkylating agent which produces high levels of O6-methylguanine (O6-meG) on DNA in cells. The resulting O6-meG lesions are recognized and/or repaired by MMR proteins (49). Methyl methanesulfonate (MMS), a SN2 DNA-alkylating-agent, produces high levels of N7-methylguanine (N7-meG) and N3-methyladenine (N3-meA), which can lead to the formation of promutagenic abasic sites. MMR pathways also play a role in the repair of MMS-induced DNA lesions (50,51). To find out whether the activation of DNA MMR influences the interaction between hRad9 and hMLH1, we tested whether increases in cellular DNA lesions incurred by incubating HeLa cells with MNU and MMS would enhance hRad9–hMLH1 interactions. Indeed, the interaction between hRad9 and hMLH1 was enhanced by either MNU or MMS treatment (Figure 5). The protein loading control using 10% lysate indicates that hRad9 and hMLH1 did not change within the experimental period, and thus the higher amount of hRad9 copurified with hMLH1 was due to higher affinity in the presence of MMS or MNU. This enhancement of hMLH1-hRad9 interaction in response to MMS or MNU treatment implies that the hMLH1–hRad9 interaction is an important step in MMR.

Rad9-deleted ES cells are defective in MMR

To address the question of whether hRad9 acts together with MLH1 in MMR, an assay using a T:G mismatch-corrupted start codon in the EGFP gene transfected into tested cells was performed to quantitatively measure MMR activity in living cells (32). The T:G mismatch can be corrected to T:A by MMR, thus MMR activity can be determined by flow cytometry measuring the number of EGFP-positive cells and the intensity of EGFP expression (refer to ‘Materials and methods’ section). Lei et al. (32) reported that HCT116 cells did not express hMLH1 and did not repair the T:G mismatch
efficiently, but transfection with hMLH1 into the cells compensated for the defect, leading to an increased number of EGFP-positive cells and enhanced intensity of EGFP expression. We were able to repeat this experiment as a positive control (Figure 6A and B). The MMR activity reflected by EGFP expression efficiency in FLAG-hMLH1-expressing HCT116 cells was 4.7 times that of parent HCT116 cells containing empty plasmid pFLAG-CMV2 (Figure 6B). Using this assay, we found that mRad9-deleted mouse ES cells (mRad9−/− cells) had a significantly lower MMR activity than wild-type mouse ES cells (mRad9+/+ cells), and ectopic expression in mRad9−/− ES cells of mRad9 at a level comparable to that in mRad9+/+ cells (data not shown) restored the MMR activity to the level of mRad9+/+ cells (Figure 6A and C). Ectopic expression of human Rad9 in mRad9−/− cells also complemented the loss of MMR activity resulting from mRad9 deletion (Figure 6A and C). Taken together, these data demonstrate that Rad9 plays an important role in MMR in mammalian cells.

The Ser160-mediated hRad9–hMLH1 interaction is important in MMR activity

The functional significance of the interaction between hRad9 and hMLH1 was tested with the assay described above. We picked mRad9−/− cell clones that expressed wild type hRad9 (3 clones) and Ser160Ala hRad9 (3 clones) at levels close to the endogenous mRad9 level in mRad9+/+ cells (data not shown), and compared their MMR activities with those of mRad9−/− and mRad9+/+ cells (Figure 6C and D). Ectopic expression of wild type hRad9 in mRad9−/− cells resulted in dramatically increased MMR activity as shown previously (Figures 6C and Figure 7), but expression of Ser160Ala hRad9 only increased MMR activity slightly (Figure 7). As shown previously, the Ser160Ala mutation severely demolished the hRad9–mMLH1 interaction (Figure 4). Taken together, these results suggest that hRad9 functions in the MMR pathway through its interaction with MLH1.

It has been reported that cells deficient in MMR are more tolerant to S N1 type DNA methylation agents than their parental cells (18,19,52–55). To investigate whether mRad9−/− cells are resistant to such DNA methylators or not, the ES cells mentioned above were examined for sensitivity to MNU. As expected, mRad9−/− cells were more resistant to MNU than mRad9+/+ cells (Figure 8D), consistent with previous studies (18,19,52–55). On the other hand, mRad9+/+ cells were more sensitive to MMS than mRad9+/+ cells (Figure 8E), this may be due to the fact that MMS is a S N2 type methylating agent producing far fewer O 6mG adducts (0.3%) and a greater proportion of N 3mA (10%) and N 7mG adducts (87%) than S N1 families (56,57). N 3mA (10%)...
and N\(^7\)mG adducts are repaired through base-excision repair pathway (55), so the damage induced by MMS is repaired mainly by BER rather than by MMR.

In order to confirm whether the S160A mutation of hRad9 specifically influences MMR function, we tested the effect of the S160A mutation on the known functions of hRad9, such as sensitivity to HU, 254-nm UV light and gamma rays as well as S/M and G2/M checkpoint controls. This mutation did not sensitize ES cells to DNA-damaging agents (Figure 8A), nor lead to S/M or G2/M checkpoint deficiency (Figure 8B and C), suggesting that the overall structural integrity of hRad9 is not affected by the S160A mutation, and that hRad9 plays a role in MMR specifically via the hRad9–hMLH1 interaction.

DISCUSSION

hRad9 is critical for cell cycle checkpoint control (17,58) and for HR repair (40) and base-pair excision repair (35,38). In this study we have shown that hRad9 directly interacts with hMLH1 (Figures 1 and 2), and this interaction is important for DNA MMR (Figures 4, 6 and 7). Recent studies have shown that mismatch proteins function as sensors for cell cycle checkpoint controls. Mismatch protein MSH2 (MutS homolog 2) can interact with ATR, and MutSalpha and MutLalpha are required to activate ATR to phosphorylate Chk1 and promote cell cycle checkpoint control in response to MNNG-caused DNA methylation damage (59,60). This study shows that Rad9 plays an important role in MMR via a direct
Whether there is a signaling flow from cell cycle checkpoint via checkpoint protein Rad9 toward mismatch repair is currently unclear. The current prevailing view is that hRad9, hRad1 and hHus1 form a PCNA-like ring structure, the 9-1-1 complex (6–11), and in this heterotrimer form function in cell cycle checkpoint control and DNA repair (61,62). PCNA itself can also interact with hMLH1 and play a role in 3' to 5' excision in MMR (22). However, unlike either hRad1 or hHus1, hRad9 is able to immunoprecipitate hMLH1 (Figure 3). This implies that hRad9's function in MMR is not in the 9-1-1 complex form. A hRad9 mutant that contains point mutations that affect interactions with hHus1 and/or hRad1 would be useful to further clarify if hRad9 plays a role in MMS independent of the 9-1-1 complex.

hRad9 has been reported to possess 3' to 5' nuclease activity (63) and this feature of hRad9 is compatible with its role in MMR. Four redundant exonucleases (I, VII, X and RecJ) have been identified in *Escherichia coli* MMR (19), whereas only ExoI has been experimentally implicated as an MMR-associated 5'-directed exonuclease in eukaryotic cells (26,64). The effects of ExoI deficiency on MMR in both yeast and mice are moderate compared to those of Msh2 or Mlh1, and this suggests the existence of more functionally redundant exonucleases in these organisms (26,64). Recent studies have shown that regulatory factor X (RFX) and MRE11 play roles in MMR. RFX stimulates mismatch-dependent 5' to 3' excision activity (27), and MRE11 possesses mismatch-dependent 3' to 5' excision activity (65). Since hRad9 has 3' to 5' nuclease activity (63), hRad9 is likely to also function in mismatch-dependent 3' to 5' excision. However, the 3' to 5' nuclease activity of hRad9 is weaker than would be expected if hRad9's 3' to 5' nuclease activity is important in MMR. We cannot exclude the possibility that hRad9 may function in MMR through the other unknown ways. Nevertheless, this hypothesis that hRad9 plays a role in MMR-dependent 3' to 5' nuclease activity merits future experimental studies.

The Rad9–MLH1 interaction might be a hot spot for mutation in tumor cells. The hMLH1 mutation leads to hereditary nonpolyposis colorectal cancer (HNPCC) and various other types of tumor (66–69). Mice with an mRad9 deletion in skin keratinocytes are susceptible to developing skin tumors (70). The deletion of *mRad9* in all cell types causes mouse embryonic lethality, possibly due to the loss of its many important functions including cell cycle checkpoint control, base-excision repair and DNA double-strand break repair. In this study, we have shown that the Ser160Ala mutation of hRad9 leads to drastic reduction of the hRad9–hMLH1 interaction and MMR activity (Figures 4 and 6), but has no impact on cell cycle checkpoint control and cellular sensitivity to gamma rays, UV-light and DNA replication inhibitor HU. Cells with this type of mutation may easily survive and possess a mutator phenotype, thus developing into tumors.
Figure 8. The Ser160Ala mutation of hRad9 does not affect the known roles of hRad9. (A) Comparison of the sensitivities of mRad9+/+ ES cells, mRad9−/− ES cells and the two mRad9−/− ES cells that stably express hRad9-WT and hRad9-S160A, respectively. The four types of cells were treated with mock treatment, 250 μM HU for 24 h, 10 J/m² and 6 Gy gamma rays, respectively, and then allowed to grow for 10 days to form cell colonies. The survival level stands for the ratio of the number of colonies formed from treated cells compared with the number of colonies formed from untreated cells. Results presented are the averages of three independent experiments, and each experimental data point is the average of duplicate cell samples. (B) The S/M checkpoint. The four types of cells described above were incubated in medium containing 1 mM HU for 0, 8 and 12 h, and then prepared for S/M checkpoint analysis by flow cytometry. The mRad9−/− ES cells stably expressing either hRad9-WT or hRad9-S160A showed intact S/M checkpoint while mRad9−/− ES cells containing the empty vector demonstrated prematured chromosome condensation (arrows) after incubation with HU for 8 or 12 h. (C) G2/M checkpoint. The four types of cells described above were irradiated with 10 Gy gamma rays and then grown for 0, 8 and 12 h. mRad9−/− ES cells were arrested in the G2/M border 8 h after irradiation, and only a small population of the cells from the last cell cycle moved into the G1 phase 12 h after irradiation. mRad9−/− ES cells were unable to arrest at the G2/M border and moved into the G1 phase (arrow) 8 h after irradiation, and cells from the last cell cycle had already moved into the S phase (arrow) 12 h after irradiation. To confirm that the mRad9−/− ES cells in G1 and S phases 8 and 12 h after irradiation were from the last cycle, 50 ng/ml colcemid was added to one set of cells to block cells in the M phase. Indeed, colcemid was able to block the cells in the M phase 8 and 12 h after irradiation, suggesting that they came from the last cell cycle. The mRad9−/− ES cells stably expressing either hRad9-WT or hRad9-S160A showed intact G2/M checkpoint control. (D) The different cell lines were incubated in serum-free medium containing various concentrations of MNU at 3°C for 1 h. After rinsing, fresh medium was added to form colonies, and survival rates were determined. Results presented are the means of three separate experiments performed in duplicate. (E) The MMS-resistant experiment was carried out in the same way as that in (D).
open access charges: National Natural Science Foundation of China (30530180).

Conflict of interest statement. None declared.

REFERENCES

1. Errol,C., Friedberg,G.C.W. and Wolfram,S. (1995) DNA Repair and Mutagenesis. ASM press, Washington, D.C.
2. Sancar,A., Lindsey-Boltz,L.A., Unsal-Kacmaz,K. and Linn,S. (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. *Ann. Rev. Biochem.*, 73, 39–85.
3. Gary,S., Stein,R.B., Antonio Giodano, and Denhardt,D.T. (1999) The Molecular Basis of Cell Cycle and Growth Control. John Wiley, & Sons, New York.
4. Hartwell,L.H. and Weinert,T.A. (1989) Checkpoints: controls that ensure the order of cell cycle events. *Science*, 246, 629–634.
5. Paulovich,A.G. and Hartwell,L.H. (1995) A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. *Cell*, 82, 841–847.
6. Venclovas,C. and Thelen,M.P. (2000) Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes. *Nucleic Acids Res.*, 28, 2481–2493.
7. Lindsey-Boltz,L.A., Bermudez,V.P., Hurwitz,J. and Sancar,A. (2001) Purification and characterization of human DNA damage checkpoint Rad complexes. *Proc. Natl Acad. Sci. USA*, 98, 11236–11241.
8. Roos-Mattjus,P., Vroman,B.T., Burdett,V. and Modrich,P.L. (2006) DNA mismatch repair: functions and mechanisms. *Chem. Rev.*, 106, 53–62.
9. Modrich,P. (2006) Mechanisms in eukaryotic mismatch repair. *J. Biol. Chem.*, 281, 30305–30309.
10. Shiomi,Y., Shinozaki,A., Nakada,D., Sugimoto,K., Usukura,J., Wolgemuth,D.J., Joyner,A.L. and Lieberman,H.B. (2004) Deletion of mouse rad9 causes abnormal cellular responses to DNA damage, checkpoint Rad1-Rad9, Hus1/Rad1/Rad9 with DNA base excision repair enzyme MutY and checkpoint proteins Rad9-1-1 complexes visualized by glycerol spray/low voltage microscopy. *J. Biol. Chem.*, 279, 15233–15236.
11. Shiomi,Y., Shinozaki,A., Nakada,D., Sugimoto,K., Usukura,J., Obuse,C. and Tsurimoto,T. (2002) Clamp and clamp loader structures of the human checkpoint protein complexes, Rad9-1-1 and Rad17-RFC. *Genes Cells*, 7, 861–868.
12. Murray,J.M., Carr,A.M., Lehmann,A.R. and Watts,F.Z. (1991) Cloning and characterisation of the rad9 DNA repair gene from Schizosaccharomyces pombe. *Mol. Cell. Biol.*, 11, 3750–3760.
13. Murray,J.M., Carr,A.M., Lehmann,A.R. and Watts,F.Z. (1991) Cloning and characterisation of the rad9 DNA repair gene from Schizosaccharomyces pombe. *Nucleic Acids Res.*, 19, 3525–3531.
14. Lieberman,H.B., Hopkins,K.M., Laverty,M. and Chu,H.M. (1992) Molecular cloning and analysis of *Schizosaccharomyces pombe* rad9, a gene involved in DNA repair and mutagenesis. *Mol. Gen. Genet.*, 232, 367–376.
15. Enoch,T., Carr,A.M. and Nurse,P. (1992) Fission yeast genes involved in coupling mitosis to completion of DNA replication. *Genes Dev.*, 6, 2035–2046.
16. Weiss,R.S., Enoch,T. and Leder,P. (2000) Inactivation of mouse Hus1 results in genomic instability and impaired responses to genotoxic stress. *Genes Dev.*, 14, 1886–1898.
17. Hopkins,K.M., Auerbach,W., Wang,X.Y., Hane,M.P., Hang,H., Wolgemuth,D.J., Joyner,A.L. and Lieberman,H.B. (2004) Deletion of mouse rad9 causes abnormal cellular responses to DNA damage, genomic instability, and embryonic lethality. *Mol. Cell. Biol.*, 24, 7235–7248.
18. Kunke,T.A. and Eric,D.A. (2005) DNA mismatch repair. *Annu. Rev. Biochem.*, 74, 681–710.
19. Iyer,R.R., Pluciennik,A., Burdett,V. and Modrich,P.L. (2006) DNA mismatch repair: functions and mechanisms. *Chem. Rev.*, 106, 840–847.
20. Modrich,P. (2006) Mechanisms in eukaryotic mismatch repair. *J. Biol. Chem.*, 281, 30305–30309.
41. Giannattasio, M., Lazzaro, F., Longhese, M.P., Plevani, P. and Muzi-Falconi, M. (2004) Physical and functional interactions between nucleotide excision repair and DNA damage checkpoint. *EMBO J.*, **23**, 429–438.

42. Wu, X., Shell, S.M., Yang, Z. and Zou, Y. (2006) Phosphorylation of nucleotide excision repair factor xeroderma pigmentosum group A by ataxia telangiectasia mutated and Rad3-related-dependent checkpoint pathway promotes cell survival in response to UV irradiation. *Cancer Res.*, **66**, 2997–3005.

43. Wang, W., Lindsey-Boltz, L.A., Sancar, A. and Bambara, R.A. (2006) Mechanism of stimulation of human DNA ligase I by the Rad9-Rad1-Hus1 checkpoint complex. *J. Biol. Chem.*, **281**, 20865–20872.

44. Smirnova, E., Toueille, M., Markkanen, E. and Hubscher, U. (2005) The human checkpoint sensor and alternative DNA clamp Rad9-Rad1-Hus1 modulates the activity of DNA ligase I, a component of the long-patch base excision repair machinery. *Biochem. J.*, **389**, 13–17.

45. Toueille, M., El-Andaloussi, N., Frouin, I., Freire, R., Funk, D., Shevelev, I., Friedrich-Heineken, E., Villani, G., Hottiger, M.O. and Hubscher, U. (2004) The human Rad9-Rad1-Hus1 damage sensor clamp interacts with DNA polymerase beta and increases its DNA substrate utilisation efficiency: implications for DNA repair. *Nucleic Acids Res.*, **32**, 3316–3324.

46. St Onge, R.P., Udell, C.M., Casselman, R. and Davey, S. (1999) The mammalian 9-1-1 checkpoint complex. *J. Biol. Chem.*, **274**, 25903–25909.

47. Bermudez, V.P., Lindsey-Boltz, L.A., Cesare, A.J., Maniya, Y., Griffith, J.D., Hurwitz, J. and Sancar, A. (2003) The loading of the human 9-1-1 checkpoint complex ontoto DNA by the checkpoint clamp loader Rad17-replication factor C complex in vitro. *Proc. Natl Acad. Sci. USA*, **100**, 1633–1638.

48. Karran, P. and Bignami, M. (1992) Self-destruction and tolerance in resistance of mammalian cells to alkylating damage. *Nucleic Acids Res.*, **20**, 2933–2940.

49. Frosina, G., Fortini, P., Rossi, O., Carrozzino, F., Raspaglio, G., Cox, L.S., Lane, D.P., Abbondandolo, A. and Dogliotti, E. (1996) Two pathways for base excision repair in mammalian cells. *J. Biol. Chem.*, **271**, 9573–9578.

50. Biade, S., Sobol, R.W., Wilson, S.H. and Matsumoto, Y. (1998) Impairment of proliferating cell nuclear antigen-dependent apurinic/apyrimidinic site repair on linear DNA. *J. Biol. Chem.*, **273**, 898–902.

51. Aquilina, G., Cecotti, S., Martinelli, S., Hampel, H., Sancar, A. and Bignami, M. (1998) N-(2-chloroethyl)-N’-cyclohexyl-N-nitrosourea sensitivity in mismatch repair-defective human cells. *Cancer Res.*, **58**, 135–141.

52. Stojic, L., Brun, R. and Jiricny, J. (2004) The multifaceted mismatch-repair system. *Nat. Rev.*, **7**, 335–346.

53. Li, L., Taverna, P., Whitacre, C.M., Chatterjee, S. and Gerson, S.L. (1999) Pharmacologic disruption of base excision repair sensitizes mismatch repair-deficient and -proficient colon cancer cells to methylating agents. *Clin. Cancer Res.*, **5**, 2908–2917.

54. Aktas, D., Ozturk, T., Uzun, H. and Altan-Bonnet, N. (2008) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. *Adv. Enzyme Regul.*, **48**, 27–55.

55. Chunbo Zhang, C.X., He, Y. and Hang, H. (2008) Phosphorylation sites on Tyr28 and the C-terminus of Rad9 are required for inhibition of premature chromosomal condensation across the entire S phase. *Cell. Physiol. Biochem.*, **22**, 295–306.

56. Wang, Y. and Qin, J. (2003) MSH2 and ATR form a signaling module and regulate two branches of the damage response to DNA methylation. *Proc. Natl Acad. Sci. USA*, **100**, 15387–15392.

57. Delacouix, S., Wagner, J.M., Kobayashi, Y., Yamamoto, K. and Karran, P. (2007) The Rad9-Hus1-9-1-1 clamp activates checkpoint signaling via TopBP1. *Genes Dev.*, **21**, 1472–1477.

58. Peltomaki, P. and Vasen, H. (2004) Mutations associated with hereditary nonpolyposis colorectal cancer syndrome. Part II. The utility of microsatellite instability testing for screening colorectal cancer patients at risk for HNPCC predisposition – Update of ICG-HNPCC/INSIGHT relationships: the combined effects of multiple drugs or enzyme inhibitors. *Adv. Enzyme Regul.*, **48**, 27–55.

59. Zhao, N., Zha, F., Yuan, F., Haick, A.K., Fukushige, S., Gu, L. and Her, C. (2008) The interplay between hMLH1 and hMRE11: role in MMR and the effect of the hMLH1 mutations. *Biochem. Biophys. Res. Commun.*, **370**, 338–343.

60. Raveaara, T.E., Korhonen, M.K., Lohi, H., Hampel, H., Lynch, E., Lonqvist, K.E., Holinski-Feder, E., Sutter, C., McKinnon, W., Duraisamy, S. et al. (2005) Functional significance and clinical phenotype of nontruncating mismatch repair variants of MLH1. *Gastroenterology*, **129**, 537–549.

61. Zhang, L. (2008) Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part II. The utility of microsatellite instability testing. *J. Mol. Diagn.*, **10**, 301–307.

62. Avdicvich, E., Reiss, C., Scherer, S.J., Zhang, Y., Maier, S.M., Jin, B., Hou, H., Jr, Rosenwald, A., Riedmiller, H., Kucherlapati, R. et al. (2008) Distinct effects of the recurrent Mlh1G67R mutation on MMR functions, cancer, and meiosis. *Proc. Natl Acad. Sci. USA*, **105**, 4247–4252.

63. Peltomaki, P. and Vasen, H. (2004) Mutations associated with HNPCC predisposition – Update of ICG-HNPCC/INSIGHT mutation database. *Dis. Markers*, **20**, 269–276.

64. Zhishang Hu, Y.L., Zhao, Y., Han, L., Yang, L., Hopkins, K.M., Yang, X., Lieberman, H.B. and Hang, H. (2008) Targeted deletion of Rad9 in mouse skin keratinocytes enhances genotoxin-induced tumor development. *Cancer Res.*, **68**, 1–10.