Chemical Recognition of Active Oxygen Species on the Surface of Oxygen Evolution Reaction Electrocatalysts

Chunzhen Yang, Olivier Fontaine, Jean-Marie Tarascon, and Alexis Grimaud*

Abstract: Owing to the transient nature of the intermediates formed during the oxygen evolution reaction (OER) on the surface of transition metal oxides, their nature remains largely elusive by the means of simple techniques. The use of chemical probes is proposed, which, owing to their specific affinities towards different oxygen species, unravel the role played by these species on the OER mechanism. For that, tetraka...
activities of Fe-free and Fe-containing amorphous films, we demonstrate that these interactions only occur for Fe-containing Ni(Fe)OOH catalysts. By blocking these active surface oxygens with adsorbed TAA\(^{+}\) cations, we reveal the interactions occurring at the catalyst–water interface, where modifying the structure of the interfacial water and the proton diffusion properties lead to drastic modifications of the OER mechanism and activity.

The oxidation behavior of the electrodeposited nickel oxyhydroxide films was studied by cyclic voltammetry in Fe-free 0.1m MOH solution, with M being Li\(^{+}\), Na\(^{+}\), K\(^{+}\), TBA\(^{+}\), and TMA\(^{+}\) (Figure 1a). No modification of the Ni\(^{2+}\) to Ni\(^{3+}\) oxidation potential is observed for Li\(^{+}\), Na\(^{+}\), and K\(^{+}\), while a moderate shift towards greater potential is observed for TBA\(^{+}\) and TMA\(^{+}\). For Fe-containing films, the Ni\(^{3+}/Ni^{2+}\) redox peak is largely influenced by the nature of the cation, and a shift towards greater potential as large as 78 mV was measured between K\(^{+}\) and TMA\(^{+}\) (Figure 1b,d). Knowing that the difference in \(E_{1/2}\) measured for Li\(^{+}\), Na\(^{+}\), and K\(^{+}\) alkaline cations is negligible (Figure 1d), the shift in standard potential cannot be simply ascribed to different solvation strengths for the different cations. The large shift of the redox potential between organic TAA\(^{+}\) cations (TMA\(^{+}\) and TBA\(^{+}\)) and alkaline cations (Li\(^{+}\), Na\(^{+}\), K\(^{+}\)) could indicate that Fe-free and Fe-containing films have different affinities towards TBA\(^{+}\) and TMA\(^{+}\) cations, from weak (Fe-free) to strong (Fe-containing).

In situ UV/Vis spectroscopy was then employed to further visualize the interaction between the amorphous films and TMA\(^{+}\) cations. Similar electrochemical behaviors were found for purified KOH and TMAOH as well as for Fe-containing KOH solutions, with a clear decrease of the transmission correlated to the oxidation of Ni\(^{2+}\) to Ni\(^{3+}\) and the deprotonation of the film (Supporting Information, Figures S6, S7). However, while the transmission loss reaches 10\% for these solutions, this value is lower when measured in Fe-containing TMAOH solution. This difference further reinforces that the Fe-containing films specifically interact with TMA\(^{+}\) cations during the deprotonation/oxidation step. Looking in greater details to the Ni\(^{3+}/Ni^{2+}\) redox waves, the pure NiOOH films show, independently of the cation, a potential–pH dependence value close to ~60 mV/pH indicating a ratio proton to electron exchange close to unity. For the Fe-containing films, the potential–pH dependence becomes close to ~90 mV/pH for pH > 12.5. This value, characteristic of a super-Nernstian potential–pH shift corresponding to the exchange of 2 electrons and 3 protons (ratio of H\(^{+}/e^{-}\) involved equals to 1.5),\([17,23]\) indicate a different deprotonation/oxidation mechanism for Fe-containing film. Hence, depending on the deprotonation process, different oxygen species are formed on the surface of the films that show, or not, specific interaction with TMA\(^{+}\) cation, as visualize by Raman spectroscopy (Supporting Information, Figure S8). This conclusion is in agreement with previous spectroscopic evidences showing the generation of negatively charged sites for Fe-containing films.\([18]\)

Now turning to the OER activity, it is found to be nearly identical for pure NiOOH when using K\(^{+}\) and TMA\(^{+}\) (Figure 1c). The Tafel slope is also found to be identical and equal to circa 60 mV/decade, indicating a one-electron transfer occurring before the chemical turnover-limiting step (TLS). In contrast, the OER activity for Ni(Fe)OOH films decreases between alkaline cations (K\(^{+}\) and Na\(^{+}\)) and TMA\(^{+}\) (Figure 1c; Supporting Information, Figure S9). Moreover, a change in the Tafel slope from 35 mV/decade to 55 mV/decade is observed from alkaline cations (Na\(^{+}\) and K\(^{+}\)) to TMA\(^{+}\) cations (Figure 1c; Supporting Information, Figure S9). This observation confirms that TMA\(^{+}\) can selectively modify the OER mechanism depending on its interaction with the film. Furthermore, the pH dependence for the OER activity of the Ni(Fe)OOH films was studied for TMA\(^{+}\) and compared with the non-interacting K\(^{+}\) cation (Supporting Information, Figure S10). For a pH value above about 12, the OER activity as well as the Tafel slopes remain constant for both cations (Tafel slopes of approx. 30 mV/decade for K\(^{+}\) and approx. 60 mV/decade for TMA\(^{+}\)). Moreover, above pH 12, \((\partial E/\partial pH)\) = 0 giving a rate order for H\(^{+}\) of 0 on the RHE scale, which would indicate a proton-coupled electron transfer (PCET)\([26]\) independent of the nature of the cation. Below this pH value, the OER activity decreases and the Tafel slope is found to increase up to a value close to 90 mV/decade for TMA\(^{+}\) and 60 mV/decade for K\(^{+}\), indicating chemical limitations related to the deprotonation of surface oxygen and/or the proton diffusion, as recently discussed for buffered neutral solution.\([27]\)
To obtain further information on the OER mechanism and the role of hydrogen bonding network (Figure 2), measurements were then carried out in H$_2$O and D$_2$O solutions. For Fe-free films, switching from proton to deuterium does not modify the OER activity (Figure 3). However, for Fe-containing films, the use of deuterated water significantly decreases the OER activity in KOH solution. Not only the OER activity decreases, but also the Tafel slope increases when using deuterated water. Bearing in mind that a PCET mechanism is presumably at play independently of the use of TMA$^+$, the isotopic effect indicates that hydrogen bonds network must be influencing the OER kinetics by modifying either the number of active sites or the interactions of intermediates with adsorbed water. Expressing the OER current density as $j = nFk_0 \frac{\Delta G}{RT}$, with θ_{act} being the concentration of active sites and ΔG the enthalpy of formation of the intermediate governing the rate of the reaction, the change in Tafel slope observed for Ni(Fe)OOH films when changing from H$_2$O to D$_2$O suggest a difference in the enthalpy of formation of the intermediate that governs the reaction rate. We therefore hypothesize that introducing deuterated water modifies the “O···HO” interactions between active oxygen species and OH$^-$ and eventually the enthalpy of formation of the intermediate that governs the reaction rate (presumably the formation of O···O bond).

In light of these results, we propose that the specific interaction of TMA$^+$ and active oxygen species displaces this equilibrium by stabilizing the active oxygen species and therefore controls the rate of the reaction. These results revealed the critical role played by the interfacial interactions on the OER kinetics.

Aside from modifying the hydrogen bonding network, cations also possess different enthalpy of hydration (Supporting Information, Table S1). Therefore, to discriminate the effects induced by specific interactions from effects induced by the modification of the solvation strength, we employed (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) as a soluble molecular probe (Figure 4; Supporting Information, Figure S11). We first demonstrate the instability of the oxidized
form of TEMPO in alkaline solution by using UV/Vis, as well as the effect of cation on this instability. For that, we followed the decrease of the UV absorbance at approximatively 430 nm corresponding to the oxidized form of TEMPO (Figure 4). More specifically, the drop of absorbance was measured to be dependent on the cation, with TMA⁺ and K⁺ showing a fast drop of the signal corresponding to a decay of the concentration in TEMPO⁺ (Figure 4a and b), while the decrease was found much slower for Li⁺ (Figure 4c). We estimated the kinetic rate constant to be rather similar for K⁺ and TMA⁺ ($k = 0.18$ s⁻¹ and 0.12 s⁻¹, respectively), and slower when using Li⁺ ($k = 0.02$ s⁻¹; Supporting Information, Figure S11). This indicates that the kinetics associated with the nucleophilic attack of water on oxidized electrophilic species is decreased when increasing the solvation strength from K⁺ (or TMA⁺) to Li⁺ (Supporting Information, Table S1). Bearing in mind that the OER kinetics measured for Fe-free NiOOH films was found identical in KOH and TMAOH (Figure 1c), modification of the hydration strength can be ruled out as the origin for the modifications of the OER activity of Fe-containing films when introducing TMA⁺.

In conclusion, we demonstrate that due to the specific interactions of TMA⁺ cations with active oxygen species formed upon deprotonation,[29] its presence on the surface of Fe-containing films disrupts the hydrogen bonds network with interfacial water. Hence, we experimentally reveal that the OER mechanism and activity is sensitive to these specific interactions (Figure 1c). We further postulate that the O–O bond formation on the surface of amorphous film, which is often considered as rate determining step for the OER, is sensitive to the distribution and the energy of the active oxygen species formed after a deprotonation step and that act as active sites. This conclusion is further supported by the H/D isotopic effect (Figure 4), which suggests that the introduction of iron in the Ni oxyhydroxide films induces a change in the interaction between active oxygen species and OH⁻ groups in the inner Helmholtz plane. This effect is complementary with the modification of the electronic properties previously unraveled. Hence, these findings allow us to confirm that the large difference observed between pure NiOOH and Fe-containing Ni(Fe)OOH films is not related to the interlayer distance and an increase of active sites concentration.[32] This large increase in activity is most certainly due to the modification of the interfacial interactions which govern the reaction pathway.

While the introduction of TMA⁺ cations in practice reduces the OER activity for these model catalysts, tuning the double layer structure should be seen as a blessing to tune the selectivity of other reactions such as alcohol oxidation but also oxygen reduction or CO₂ reduction by modifying the reaction landscape.

Acknowledgements

We thank M.-L. Doublet, J.-S. Fillhol, M. Saubanère, and C. Robert-Labertey for fruitful discussions. We would also like to thank Nenad Markovic for insightful comments. C.Y., J.-M.T., and A.G. acknowledge funding from the European Research Council (ERC) (FP2014)/ERC Grant-Project 670116-ARPEMA.

Conflict of interest

The authors declare no conflict of interest.

Keywords: deprotonation · isotopic effect · nickel oxyhydroxide · oxygen evolution reaction

How to cite: Angew. Chem. Int. Ed. 2017, 56, 8652–8656
Angew. Chem. 2017, 129, 8778–8782

[1] W. Hong, M. Risch, K.A. Stoerzinger, A.J.L. Grimaud, J. Sunitivich, Y. Shao-Horn, Energy Environ. Sci. 2015, 8, 1404–1427.
[2] H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan, P. Strasser, ChemCatChem 2010, 2, 724–761.
[3] J. Herranz, J. Durst, E. Fabbri, A. Patru, X. Cheng, A.A. Pernymakova, T. J. Schmidt, Nano Energy 2016, 29, 4–28.
[4] M. Risch, A. Grimaud, K.J. May, K.A. Stoerzinger, T.J. Chen, A.N. Mansour, Y. Shao-Horn, J. Phys. Chem. C 2013, 117, 8628–8635.
[5] K.J. May, C.E. Carlton, K.A. Stoerzinger, M. Risch, J. Sunitivich, Y. Lee, A. Grimaud, Y. Shao-Horn, J. Phys. Chem. Lett. 2012, 3, 3264–3270.
[6] T.A. Betley, Q. Wu, T. Van Voorhis, D.G. Nocera, Inorg. Chem. 2008, 47, 1894–1891.
[7] M.G. Mavros, T. Tschumi, T. Kowalczyk, A. Misaalac, L. Wang, T. Van Voorhis, Inorg. Chem. 2014, 53, 6386–6397.
[8] I.C. Man, H.-Y. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martinez, N.G. Inoglu, J. Kitchin, T.F. Jaramillo, J.K. Nørskov, J. Rossmeisl, ChemCatChem 2011, 3, 1159–1165.
[9] A. Grimaud, W.T. Hong, Y. Shao-Horn, J.M. Tarascon, Nat. Mater. 2016, 15, 121–126.
[10] A. Grimaud, O. Diaz-Morales, B. Han, W.T. Hong, Y.-L. Lee, L. Giordano, K.A. Stoerzinger, M.T.M. Koper, Y. Shao-Horn, Nat. Chem. 2017, 9, 457–465.
[11] J.T. Mefford, X. Rong, A.M. Abakumov, W.G. Hardin, S. Dai, A.M. Kolpak, K.P. Johnston, K.J. Stevenson, Nat. Commun. 2016, 7, 11053.
[12] A. Grimaud, A. Demortiere, M. Saubanère, W. Dachraoui, M. Duchamp, M. Doublet, J. Tarascon, Nat. Energy 2016, 2, 16189.
[13] T. Binninger, R. Mohamed, K. Walter, E. Fabbri, P. Levecque, R. Kötz, T.J. Schmidt, Sci. Rep. 2015, 5, 12167.
[14] X. Rong, J. Parolin, A.M. Kolpak, ACS Catal. 2016, 6, 1153–1158.
[15] D.K. Bediako, Y. Sureshnanath, D.G. Nocera, J. Am. Chem. Soc. 2013, 135, 3662–3674.
[16] O. Diaz-morales, D. Ferrus-Suspedra, M.T.M. Koper, Chem. Sci. 2016, 7, 2639–2645.
[17] M. Gorlin, J. Ferreira de Araujo, H. Schmies, D. Bernsmieier, S. Dresp, M. Gliech, Z. Jusys, P. Chernye, R. Kraehnert, H. Dau, et al., J. Am. Chem. Soc. 2017, 139, 2070–2082.
[18] B.J. Trzesniewski, O. Diaz-Morales, D.A. Vermaas, A.L. Longo, W. Bras, M.T.M. Koper, W.A. Smith, J. Am. Chem. Soc. 2015, 137, 15112–15121.
[19] L. Trotchaud, J.K. Ranney, K.N. Williams, S.W. Boettcher, J. Am. Chem. Soc. 2012, 134, 17253–17261.
[20] F. Dionigi, P. Strasser, Adv. Energy Mater. 2016, 6, 1600621.
[21] D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai, A.M. Wise, M.J. Cheng, D. Sokaras, T.C. Weng, R. Alonso-Mori, et al., J. Am. Chem. Soc. 2015, 137, 1305–1313.
[22] L. Trotchaud, S.L. Young, J.K. Ranney, S.W. Boettcher, J. Am. Chem. Soc. 2014, 136, 6744–6753.
[23] V. R. Stamenkovic, D. Strmcnik, P. P. Lopes, N. M. Markovic, Nat. Mater. 2016, 16, 57–69.

[24] A. Fortunelli, W. A. Goddard III, L. Sementa, G. Barcaro, Nanoscale 2015, 7, 4514–4521.

[25] R. L. Doyle, I. J. Godwin, M. P. Brandon, M. E. G. Lyons, Phys Chem. Chem. Phys. 2013, 15, 13737–13783.

[26] L. Giordano, B. Han, M. Risch, W. T. Hong, R. R. Rao, K. A. Stoerzinger, Y. Shao-Horn, Catal. Today 2016, 262, 2–10.

[27] D. K. Bediako, C. Costentin, E. C. Jones, D. G. Nocera, J.-M. Savéant, J. Am. Chem. Soc. 2013, 135, 10492–10502.

[28] P. K. Glasoe, F. A. Long, J. Phys. Chem. 1960, 64, 188–190.

[29] H. B. Srmemann, G. Braun, W. Brijoux, R. Brinkmann, A. S. Tilling, K. Seevogel, K. Siepen, J. Organomet. Chem. 1996, 520, 143–162.

Manuscript received: February 23, 2017
Accepted manuscript online: May 31, 2017
Version of record online: June 21, 2017