The reliable solution and computation time of variable parameters Logistic model

Wang Pengfei1,2 Pan Xinnong3,4

1. Center for Monsoon System Research, Institute of Atmospheric Physics (CMSR), Chinese Academy of Sciences, Beijing 100190, China

2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. Key Laboratory for Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Corresponding author address: Dr. Pengfei Wang, CMSR&LASG/IAP/CAS, P. O. Box 9804, Beijing 100029, China. Email: wpf@mail.iap.ac.cn
Abstract

The reliable computation time (RCT, marked as Tc) when applying a double precision computation of a variable parameters logistic map (VPLM) is studied. First, using the method proposed, the reliable solutions for the logistic map are obtained. Second, for a time-dependent non-stationary parameters VPLM, 10000 samples of reliable experiments are constructed, and the mean Tc is then computed. The results indicate that for each different initial value, the Tcs of the VPLM are generally different. However, the mean Tc trends to a constant value once the sample number is large enough. The maximum, minimum and probable distribution function of Tc is also obtained, which can help us to identify the robustness of applying a nonlinear time series theory to forecasting while using the VPLM output. In addition, the Tc of the fixed parameter experiments of the logistic map was obtained, and the results suggested that this Tc matches the theoretical formula predicted value.

Keywords: Reliable computation time, Logistic map, non-stationary time series
1 introduction

The logistic map was originally introduced to study biological growth in ecology, and, currently, it has become a classical chaotic system in the study of chaotic dynamics and nonlinear prediction (May 1976). In recent years, along with the development of non-stationary theory, the variable parameters logistic map (VPLM) was introduced and used to study the effects of non-stationary forcings and their predictability (Wang 2010). Studies indicate that many climate systems have non-stationary phenomena; therefore, the investigation of this simple driven forcing model is valuable for helping to understand the rules of the real climate system.

The classical logistic model is \(x_{i+1} = ax_i (1 - x_i) \). When this model is applied to investigations, the influence of rounding errors is often ignored. Oteo (2007) studied the influence of a double-precision floating-point computation for a fixed parameter \(a=4 \) logistic map. He found that when \(i \) is above 50, the result of double precision deviates from the correct result. Oteo’s work suggests that we can use a quantitative experiment to study the effects of rounding errors for a discrete dynamical system. In addition, this experiment can be used to analyze the reliable computation time of the logistic map in a double precision computation environment.

Previous studies mainly focus on the fixed parameters logistic map system (i.e., \(a \) is constant). However, in practical applications, we will consider a logistic map that controls parameters that are time-varying when considering the external driving force (Wang et al. 2010, 2011).
\[x_{i+1} = u_i x_i \left(1 - x_i\right), \quad (1) \]

\[u_i = 3.95 - 0.4e^{-\frac{4.5\pi}{25000}}, \quad (i=1,2,\ldots,2000) \quad (2) \]

This type of VPLM system will also be affected by rounding errors when simulated in a double precision environment; however, generally the changing rule of this map is more complicated than that of the fixed parameters map. If we do not achieve the reliable numerical solution and know its effective computing time, we may misunderstand the conclusions deduced from the VPLM output. In this study, we apply the reliable computation method to obtain its reliable solutions, and then we obtain its mean effective computation time using 10000 samples for a double-precision float-point computation.

2 method

To address the lack of float-point computation accuracy, researchers have developed a software library named 'MP' (multiple precision)(Brent 1978; Oyanarte 1990). Wang et al.(Wang et al. 2006; Wang et al. 2012) applied this MP tool to investigate the Lorenz equation, and their results indicate that increasing the float-point precision is valuable to obtain the reliable solution for a chaotic system. To obtain the reliable solution for the VPLM system, we use the 2000 bits (or above) precision MP program for computation. This procedure is the same as the procedure we applied for the fixed parameters logistic map. Once we obtain the reliable solution for the VPLM, we then apply it to evaluate the reliable computation time (Tc) in a double precision computation environment.
There are two ways to obtain the reliable computation time of a chaotic system. One is the theoretical analysis, and the other is by numerical experiments. The previous studies indicate that when $a=4.0$, the Lyapunov exponent of the logistic map $(x_{i+1} = ax_i (1 - x_i))$ is 0.693[9]. The analytical solution for this map (Oteo et al. 2007) is $x_n = \sin^2 \left(2^n \arcsin \sqrt{x_0} \right)$, which can be regarded as the cross-point of the continuous functions $x(t) = \sin^2 \left(2^n \arcsin \sqrt{x_0} \right)$ and $y(t) = t$ for positive integer numbers. The subscript i in function x can be regarded as time (unit: second). Once we know the above relations, we can apply the theoretical formula between the reliable computation time T_c and the Lyapunov exponents to compute the T_c of the logistic map. Wang, et al. (Wang et al. 2014) show that the relationship of T_c and the Lyapunov exponents is $T_c \approx \frac{\ln B}{\lambda} K$, where B is the base number of the float-point computation. For example, $B=2$ is binary, $B=10$ is decimal and K is the number of significant digits in each system. For a double precision computation in which $B=2$ and $K=53$, after substituting these values into the formula, we obtain $T_c \approx \frac{\ln 2}{0.693} 53 \approx 53$, which indicates that the maximum effective computation time of the logistic map is approximately 53 seconds in a double precision computation. We will validate its correctness in an experiment in section 3.

Different from the fixed parameters logistic map, the difficulty in calculating T_c in the VPLM system is that the Lyapunov exponents of this system vary with time; therefore, we cannot obtain their values from the theoretical formula, but we can obtain them from numerical experiments. For the result to have statistical meaning, we ran 10000 experiments as individual samples. Because the solution range of the
VPLM is within [0, 1], we can obtain 10000 initial values, which are uniformly distributed in this interval. For each initial value, we compute the solution by a double precision (DP) and multi-precision (MP) computation simultaneously. The difference between the DP and MP solutions begins at zero and increases over time. When the error reaches the tolerance \(\delta = 0.1 \), we denote this time as the reliable computation time, corresponding to this initial value. Finally, we obtain 10000 \(T_c \) values for 10000 samples and then can obtain the mean reliable computation time.

3 result

We use the initial value \(x_0 = 0.1 \) to compute the logistic map

\[
x_{i+1} = 4x_i(1 - x_i).
\]

First, we apply a double precision computation to obtain a series of \(x_i \) (i = 1, 2,..., 2000) and then, using the MP program, compute the corresponding reliable solution as the reference solution. In this experiment, the computation precision is set as 4096, which is sufficient to theoretically obtain the first 2000 reliable data (in Table 1, we only listed the first 100 values. All of our programs are written in C language and run on a Linux system. The DP solution was computed by C language internal functions, and the MP solution was computed by the MP library).

As shown in table 1, when \(i = 51, 52, 53 \), the solution of the DP computation is significantly different than the MP solution. This fact indicates that after that moment, the double precision solution is no longer reliable, and, thus, \(T_c \) can be regarded as 53. This value matches the theoretical result well. In Figure 1b, we plotted an instance of
the first 100 steps for DP and MP. The blue curve represents the DP computation, and the red curve represents the MP computation. The absolute error between DP and MP is shown in figure 1a, and it continues to increase from 10^{-15} to 10^{-1} and then oscillates at approximately 10^{-1}.

When a is a constant smaller than 4.0, the Lyapunov exponent of the logistic map is generally smaller than 0.693. However, as long as the system is in the chaotic region, the maximum Lyapunov exponent is generally a positive constant. Thus, we can address these cases with a similar procedure as for $a=4$.

The methods referenced in section 2 are applied to obtain the reliable computing time of the non-stationary time series outputted by the VPLM (equation 1-2). The solutions for the two different initial values (from 10000 initial values) are listed in table 2 and 3. From these results, we found that by using different initial values, the T_c values of the VPLM are different as well. Thus, to obtain a statistically meaningful result, we should use sufficient samples to calculate the mean T_c. In figure 2, we have plotted the first 300 steps of the DP and MP computations for the VPLM (see FIG. 2b and 2d for the different initial values). The absolute error between the DP and MP computation is shown in figure 2a and 2c. The error reaches 10^{-15} after 50 steps and then increases to 10^{-1} slowly. In addition, the error curve in figure 2a and 2c are not exactly the same, which means that they have different T_c values.

The PDF distribution of T_c for 10000 samples is shown in figure 3, in which most of the T_c values are located in [190-270]. The maximum T_c is 303, the minimum T_c is 168 and the statistical mean of T_c is 231.66 (the author used 10^5 samples to compute
the mean Tc, and the result is 231.10, which is almost same as that of the 10th samples. Therefore, we can conclude that 10000 samples are sufficient. The mean Tc (231.66) indicates that when the computation time is beyond 231.66, the double precision solution is no longer credible. In other words, the 231 (at most 303) continuous steps in the solution series follow the VPLM rules, and once the data is beyond, these steps tend to become unrelated (although we know they are not accurate, we still cannot determine the error at each step, and the only way to estimate the error is using a numerical experiment). Therefore, using these 2000 double precision solutions as time series to study nonlinear prediction problems will cause the data quality to be questionable.

In summary, for any initial value of the VPLM map, we can obtain two series of data by the DP and MP method. One series is a not very accurate double precision solution (accurate data is obtained only when using continuous 231 steps, and data is generally accurate beyond 303 steps as shown in figure 3), and another is a reliable series for all 2000 steps. We hope researchers apply this reliable series of the VPLM to further research and make the results more reliable and convincing.
Acknowledgements

This work is supported by the National Natural Sciences Foundation of China (41375112 and 41530426) and the CAS Key Technology Talent Program.
References

May, R. M.. 1976. "Simple mathematical models with very complicated dynamics". Nature 261: 459-467.

Wang, G., and P. Yang. 2010. "A recent approach incorporating external forces to predict nonstationary processes". Atmos. Oceanic Sci. Lett 3: 151-154.

Oteo, J. and J. Ros. 2007. "Double precision errors in the logistic map: Statistical study and dynamical interpretation". Physical Review E 76:036214.

Wang, G., P. Yang, et al.. 2011. "A novel approach in predicting non-stationary time series by combining external forces". Chinese Science Bulletin 56: 3053-3056.

Brent, R.P..1978. "A Fortran multiple-precision arithmetic package". ACM Transactions on Mathematical Software (TOMS) 4: 57-70.

Oyanarte, P., 1990. "MP-A multiple precision package". Computer Physics Communications 59: 345-358.

Wang, P.F., G. Huang, and Z.Z. Wang, 2006. "Analysis and application of multiple-precision computation and round-off error for nonlinear dynamical systems". Advances in Atmospheric Sciences 23: 758-766.

Wang, P. F., J.P. Li, and Q. Li. 2012. "Computational uncertainty and the application of a high-performance multiple precision scheme to obtaining the correct reference solution of Lorenz equations". Numerical Algorithms 59: 147-159.

Wolf, A., et al.. 1985. "Determining Lyapunov exponents from a time series". Physica D: Nonlinear Phenomena 16: 285-317.

Wang, P. and J. Li, 2014. "On the relation between reliable computation time,
"float-point precision and the Lyapunov exponent in chaotic systems". arXiv preprint arXiv:1410.4919.
Table 1. The first 100 steps of Logistic map for $x_0 = 0.1$ and $a=4$.

i	DP	MP
0	0.100000000000000	0.100000000000000
1	0.360000000000000	0.360000000000000
2	0.921600000000000	0.921600000000000
3	0.289013760000000	0.289013760000000
4	0.821939226122650	0.821939226122650
5	0.585420537834197	0.585420537834197
6	0.970813326249438	0.970813326249438
7	0.113392473037671	0.113392473037671
8	0.401973849297512	0.401973849297512
9	0.961563495113813	0.961563495113813
10	0.000246304781624	0.000246304781619
11	0.000984976462315	0.000984976462296
12	0.003936025134734	0.003936025134657
13	0.015682131363489	0.015682131363186
14	0.061744808477550	0.061744808476377
15	0.231729548414484	0.231729548410370
16	0.71212859224412	0.712128592215584
17	0.82001387390967	0.820013873905948
18	0.966373040596098	0.966373040623825
19	0.999936025134734	0.999936025134657
20	0.999938420012499	0.999938420012500
21	0.000026304781624	0.000026304781619
22	0.000984976462315	0.000984976462296
23	0.003936025134734	0.003936025134657
24	0.015682131363489	0.015682131363186
25	0.061744808477550	0.061744808476377
26	0.231729548414484	0.231729548410370
27	0.71212859224412	0.712128592215584
28	0.82001387390967	0.820013873905948
29	0.966373040596098	0.966373040623825
30	0.999936025134734	0.999936025134657
31	0.000026304781624	0.000026304781619
32	0.000984976462315	0.000984976462296
33	0.003936025134734	0.003936025134657
34	0.015682131363489	0.015682131363186
35	0.061744808477550	0.061744808476377
36	0.231729548414484	0.231729548410370
37	0.71212859224412	0.712128592215584

DP and *MP* refer to the decimal and mantissa parts, respectively.
	0.006316538249856	0.006317348161538	88	0.954517231698025	0.624155617743659
39	0.025106558377575	0.025109757094974	89	0.173656344358254	0.938341530330762
40	0.097904876416033	0.097917028774422	90	0.573999273689525	0.231426811149144
41	0.353278046359976	0.35331737001643	91	0.978096429973691	0.711473768921930
42	0.913890673280218	0.913936550810420	92	0.085695214585646	0.821115380231816
43	0.314778042286590	0.314626127612689	93	0.313406179131106	0.587539650314059
44	0.862771305523247	0.862546109744532	94	0.860730984054127	0.969347238491397
45	0.473587919555836	0.47421273236424	95	0.479492628573366	0.118852678882000
46	0.997209608026444	0.997345951982078	96	0.998317790868680	0.418906878418289
47	0.011130422744760	0.010588016188163	97	0.006717517215034	0.973695622528535
48	0.044026145737131	0.041903640405449	98	0.026689568709997	0.102449828789213
49	0.168351376914654	0.160590901304880	99	0.103908942528286	0.367815445481095
50	0.372447496763758	0.372447496763758	100	0.372447496763758	0.930108974186555
Table 2. The first 300 steps (interval 5) for VPLM with $x_0 = 0.1$.

i	DP	MP	i	DP	MP
0	0.100000000000000	0.100000000000000	155	0.857821626017957	0.857821909330965
5	0.832592851312631	0.832592851312630	160	0.535112449500775	0.535110168030664
10	0.543381756879222	0.543381756879222	165	0.871584758242825	0.871581509329935
15	0.889167004162284	0.889167004162284	170	0.411382702016328	0.41144567709174
20	0.371262401351000	0.371262401351000	175	0.891043235648514	0.891101146029621
25	0.808210315973505	0.808210315973508	180	0.30755675733818	0.307706004445068
30	0.493520322668974	0.493520322668974	185	0.907610248538264	0.907516514654172
35	0.880720968984047	0.880720968984047	190	0.505630697151845	0.503674463640026
40	0.344514552359543	0.344514552359542	195	0.825715927618323	0.825110829796234
45	0.371262401351000	0.371262401351000	200	0.891043235648514	0.891101146029621
50	0.543381756879222	0.543381756879222	205	0.30755675733818	0.307706004445068
55	0.889167004162284	0.889167004162284	210	0.30755675733818	0.307706004445068
60	0.371262401351000	0.371262401351000	215	0.891043235648514	0.891101146029621
65	0.803664822317961	0.803664822317961	220	0.30755675733818	0.307706004445068
70	0.476822440123461	0.476822440123461	225	0.891043235648514	0.891101146029621
75	0.881249771116667	0.881249771116667	230	0.30755675733818	0.307706004445068
80	0.335983844868298	0.335983844868298	235	0.891043235648514	0.891101146029621
85	0.849305654962446	0.849305654962446	240	0.30755675733818	0.307706004445068
90	0.545717901170099	0.545717901170099	245	0.891043235648514	0.891101146029621
95	0.893869699914088	0.893869699914088	250	0.891043235648514	0.891101146029621
100	0.360317549873014	0.360317549873014	255	0.891043235648514	0.891101146029621
105	0.791035408101544	0.791035408101544	260	0.891043235648514	0.891101146029621
110	0.398014367631752	0.398014367631752	265	0.891043235648514	0.891101146029621
115	0.847201585829368	0.847201585829368	270	0.891043235648514	0.891101146029621
120	0.575362825035316	0.575362825035316	275	0.891043235648514	0.891101146029621
125	0.897456100113565	0.897456100113565	280	0.891043235648514	0.891101146029621
130	0.37805022881996	0.37805022881996	285	0.891043235648514	0.891101146029621
135	0.799985544913794	0.799985544913794	290	0.891043235648514	0.891101146029621
140	0.461259918019212	0.461259918019212	295	0.891043235648514	0.891101146029621
145	0.881745862476446	0.881745862476446	300	0.362922589329766	0.439826720591001
150	0.327704384756794	0.327704384756794			
Table 3. The first 300 steps (interval 5) for VPLM with $x_0 = 0.6$.

i	DP	MP	i	DP	MP
0	0.600000000000000	0.600000000000000	155	0.379315744903887	0.379315717127178
5	0.380275886117672	0.380275886117672	160	0.80233063477705	0.802329191728238
10	0.813747928284932	0.813747928284932	165	0.48255700231579	0.482554591306503
15	0.513031780808352	0.513031780808351	170	0.847606678155340	0.84761743433552
20	0.882776067652321	0.882776067652321	175	0.61106990260610	0.611056879154665
25	0.348109006292028	0.348109006292028	180	0.831884841964112	0.832043962837539
30	0.835161337909997	0.835161337909998	185	0.644851604897976	0.645025950622436
35	0.556298328300335	0.556298328300334	190	0.767487963778570	0.767597929156230
40	0.891744714450323	0.891744714450324	195	0.303679969208342	0.303485506961593
45	0.374724087810298	0.374724087810300	200	0.909342022583631	0.909245300737688
50	0.804636682562754	0.804636682562755	205	0.533468011769676	0.531327324789789
55	0.479964749321297	0.479964749321301	210	0.850981111722547	0.846993653809646
60	0.881696083660928	0.881696083660927	215	0.621633988051341	0.641980708338287
65	0.337818000131651	0.337818000131652	220	0.801059396282309	0.757899798173127
70	0.848068286414706	0.848068286414703	225	0.480425307518706	0.34130839310297
75	0.542381878128891	0.542381878128890	230	0.86739715592924	0.777559693054478
80	0.892240765947636	0.892240765947644	235	0.604003887225542	0.302849243722797
85	0.356087782990957	0.356087782991019	240	0.86739715592924	0.91349234124305
90	0.799789651568964	0.799789651568882	245	0.491764355139892	0.605781247588618
95	0.455542260881015	0.455542260880479	250	0.788430125316397	0.863983545725774
100	0.89291817866280	0.89291817866644	255	0.366033267615156	0.539483465449693
105	0.350227999728279	0.350227999725469	260	0.761916085661156	0.83850770956294
110	0.802646029881655	0.80264602987644	265	0.308511981622180	0.69737686087326
115	0.477238556594887	0.477238556554562	270	0.905464647051804	0.91572904268197
120	0.871430513957365	0.871430513986760	275	0.408532232663635	0.646963784101408
125	0.39716570828442	0.397165705580933	280	0.90395308242515	0.738716952924999
130	0.847663050479794	0.847663049834265	285	0.485242724850372	0.568578491215288
135	0.583308293106579	0.583308293106572	290	0.761749450179490	0.90377890996209
140	0.891620997474507	0.891620993130455	295	0.304159596724964	0.360082686274566
145	0.32336739100731	0.323367371492267	300	0.914437554171898	0.741677426184428
150	0.874508295910031	0.874508361230068			
Figure 1. Numerical solution of the fixed parameters logistic map. The initial value is 0.1. (a) The logarithm of the absolute error between DP and MP for the first 100 steps (log\(_{10}\)); (b) The solution of DP and MP for the first 100 steps; the blue and red curves represent DP and MP, respectively.
Figure 2. Numerical solution of VPLM; the initial value of (a, b) is 0.1. (a) The logarithm of the absolute error between the DP and MP computations for the first 300 steps (log$_{10}$), (b) the solution of the DP and MP computations for the first 300 steps; blue and red curves represent the DP and MP computations, respectively; (c, d) is same as (a, b), but for the initial value setting of 0.6.
Figure 3. The PDF distribution of the reliable computation time for the VPLM.