Telomere length is not a main factor for the development of islet autoimmunity and type 1 diabetes in the TEDDY study

Carina Törn1,2, Xiang Liu2, Suna Onengut-Gumuscu3, Kevin M. Counts2, Jose Leonardo Moreno2, Cassandra L. Remedios2, Wei-Min Chen3, Jonathon LeFaire4, Martha D. Butterworth2, Beena Akolkar5, Jeffrey P. Krischer2, Åke Lernmark6, Marian Rewers6, Jin-Xiong She7, Jorma Toppari8,9, Anette-Gabriele Ziegler10,11,12, Aakrosh Ratan3, Albert V. Smith4, William A. Hagopian13, Stephen S. Rich3, Hemang M. Parikh2,5 & The TEDDY Study Group

The Environmental Determinants of Diabetes in the Young (TEDDY) study enrolled 8676 children, 3–4 months of age, born with HLA-susceptibility genotypes for islet autoimmunity (IA) and type 1 diabetes (T1D). Whole-genome sequencing (WGS) was performed in 1119 children in a nested case-control study design. Telomere length was estimated from WGS data using five tools: Computel, Telseq, Telomerecat, qMotif and Motif_counter. The estimated median telomere length was 5.10 kb (IQR 4.52–5.68 kb) using Computel. The age when the blood sample was drawn had a significant negative correlation with telomere length (P = 0.003). European children, particularly those from Finland (P = 0.041) and from Sweden (P = 0.001), had shorter telomeres than children from the U.S.A. Paternal age (P = 0.019) was positively associated with telomere length. First-degree relative status, presence of gestational diabetes in the mother, and maternal age did not have a significant impact on estimated telomere length. HLA-DR4/4 or HLA-DR4/X children had significantly longer telomeres compared to children with HLA-DR3/3 or HLA-DR3/9 haplogenotypes (P = 0.008). Estimated telomere length was not significantly different with respect to any IA (P = 0.377), IAA-first (P = 0.248), GADA-first (P = 0.248) or T1D (P = 0.861). These results suggest that telomere length has no major impact on the risk for IA, the first step to develop T1D. Nevertheless, telomere length was shorter in the T1D high prevalence populations, Finland and Sweden.

Telomeres consist of repetitive nucleoprotein tracts of sequence (TTAGGG)n that cap the ends of linear chromosomes. Telomeres prevent the loss of coding sequences and hinder major chromosomal rearrangements. Each cell division causes progressive attrition (around 50–200 bp of the telomeres) and is part of determining the lifespan of cells. Rapidly dividing cell types are those within the immune system that proliferate not only to self-renew but also to perform their biological function.
Telomere length is, in part, inherited with a stronger influence on variation in telomere length from the father, defined by the stronger correlation in telomere length between father-son and father-daughter^{3,4}. In addition, paternal age is positively correlated with longer telomeres^2. At the population level, there is no difference in telomere length at birth between boys and girls^5; however, in young children^6 and young adults (around 30 years), telomeres are longer in women than in men, although the attrition rate is higher in women^7. The preservation of telomeres in women may, therefore, occur during the first two decades of life^8.

In healthy subjects, HLA-DRB1*04 alleles have been shown to be associated with shorter telomeres in CD4+ T-cells, although the difference in telomere length between HLA-DR4+ and HLA-DR4− subjects was not identified at birth. Thus, during the first 20 years of life, telomere attrition may be accelerated in subjects with HLA-DR4+^10.

Several mechanisms may contribute to the attrition of telomeres, but there is only one known mechanism in healthy individuals, beyond embryogenesis, that counteracts the shortening of telomeres. Some cell types, such as lymphocytes, are capable of activating telomerase, an enzyme that can elongate telomere sequences and thereby modulate cellular lifespan. Certain hormones can also stimulate telomerases. For example, estrogens have been shown to activate telomerase activity^11 while cortisol can decrease telomerase activity. In vitro experiments have shown that high concentrations of hydrocortisone (comparable to cortisol levels that may occur in vivo due to stress) can reduce telomerase activity by up to 50%^12. Women with gestational diabetes (GDM), a condition of altered glucose metabolism and hormonal patterns during pregnancy, is associated with shorter telomeres in girls born to GDM mothers, but not in boys^8.

Telomere length exhibits disease-specific patterns in different autoimmune diseases^2,4,5,15. Shorter telomere length in leukocytes has been reported in subjects with type 1 diabetes (T1D) compared to controls, although shorter telomere length was not associated with the duration of T1D^16. In T1D, all-cause mortality is also associated with a shorter telomere length^17.

Here, we utilize the TEDDY nested case-control (NCC) cohort to estimate telomere length from whole-genome sequencing (WGS) data. Analyses of telomere length were performed to find out if there was a relation to the development of islet autoimmunity (IA), type 1 diabetes (T1D), or both, as well as its association with HLA-DR-DQ haplogenotypes. Primary end-points in TEDDY included any IA, micro insulin autoantibody (mIAA)-first, the 65 kDa glutamate decarboxylase autoantibody (GADA)-first, or T1D.

**Methods**

**Study design.** Screening of 421,047 newborn children for high-risk genotypes was performed at six clinical sites, three in the U.S.A. (Colorado (CO), Georgia (GA) and Washington (WA)) starting on 1 September 2004 and ending on 28 February 2010 as previously reported^18.

The high-risk human leukocyte antigen (HLA)-haplogenotypes were as follows: HLA-DR3/4, HLA-DR4/4, HLA-DR4/8 or HLA-DR3/3 (Supplementary Table S1). HLA-DRB1*04 subtyping was performed to exclude those from the general population with HLA-DRB1*04:03. HLA-DQB1*03:04 also qualified for inclusion into the TEDDY study. HLA subtyping was not performed, so there was an inability to distinguish between HLA-DQB1*02 and HLA-DQA1*03 subtypes. In the HLA-DQB1*05:01 subtype, only HLA-DRB1*01 was included, while HLA-DRB1*10 was excluded.

The first blood sample for HLA-screening was obtained either as cord blood in the maternity clinic or as a dry blood spot (DBS) on day three or four. If the child was eligible for TEDDY, the family was contacted by a study nurse and invited to participate in the 15-year follow-up study with blood sampling for determining islet autoantibody (GADA, islet antigen-2 antibody (IA-2A) and mIAA) status every three months between 3 and 48 months of child’s age and every six months thereafter (while a child with islet autoantibody positivity remained on the three months visit schedule). HLA-haplogenotypes were confirmed in a second blood sample at the 9-month visit. For the present study, blood samples were taken at the median age of 0.82 years (interquartile range (IQR) 0.75–5.43 years) for extraction of DNA and subsequent sequencing.

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committees and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All procedures were approved by the ethics committees/institutional review boards including Colorado Multiple Institutional Review Board (04-0361); Medical College of Georgia Human Assurance Committee (2004–2010)/Georgia Health Sciences University Human Assurance Committee (2011–2012)/Georgia Regents University Institutional Review Board (2013–2017)/Augusta University Institutional Review Board (2017-present) (HAC 0405380); University of Florida Health Center Institutional Review Board (IRB2016002777); Washington State Institutional Review Board (2004–2012)/Western Institutional Review Board (2013–present) (20130211); Ethics Committee of the Hospital District of Southwest Finland (Dnr168/2004); Bayerischen Landesärztekammer (Bavarian Medical Association) Ethics Committee (04089); and Regional Ethics Board in Lund, Section 2 (2004–2012)/Lund University Committee for Continuing Ethical Review (2013-present) (217/2004). In addition, TEDDY is monitored by an external evaluation committee formed by the National Institutes of Health, Bethesda, MD, U.S.A. Informed consent was obtained for all individual participants included in the study from a parent or primary caretaker, separately for genetic screening and participation in the prospective follow-up and WGS.

**Study outcomes: IA and T1D.** The primary outcome of the TEDDY study is the development of persistent confirmed IA assessed every three months. In the U.S.A., all sera were assayed at the Barbara Davis Center for Childhood Diabetes at the University of Colorado, Denver, CO; in Europe all sera were assayed at the University of Bristol, Bristol, U.K. GADA, IA-2A and mIAA were all measured using radio-binding assays^19–21. IA was confirmed if an autoantibody was identified in a sample at both Reference Laboratories. All samples positive for IA and 5% of negative samples were re-tested for confirmation in both Reference Laboratories.
In FASTQ format to a telomeric reference sequence. Analysis was used to compare performance of these tools against each other. All subsequent statistical analysis was performed by utilizing the University of Michigan’s (UM) Docker-alignment pipeline (https://github.com/statgen/docker-alignment) based on Burrows-Wheeler Aligner (BWA)26. Variant concordance analysis was performed in a 1:1 format (one control was matched to each case).

Estimation of telomere length from the WGS data. WGS was performed on the subjects in two nested case–control (NCC) studies: one for IA and the other for T1D (Table 1). In the NCC study, the “cases” were those subjects that had developed any IA or T1D as of 30 June 2018 and “controls” were randomly selected from those autoantibody-negative or non-T1D children in the index case’s risk set, matched for sex, clinical site and first-degree relative status23. Matching was performed in a 1:1 format (one control was matched to each case).

Extraction of DNA was performed by the Center for Public Health Genomics at the University of Virginia, VA, U.S.A. The WGS data were generated on the Illumina HiSeq X Series platform with paired-end 2 × 150 bp reads with targeted 30× coverage by Macrogen, Inc, Rockville, MD, U.S.A. FastQC, MultiQC24 and FastQScreen25 were used to identify low-quality sequences and contaminants in the raw sequence data. The raw sequences were aligned to the Genome Reference Consortium Build 37 (GRCh37d5) for Computel, Telseq, Telomerecat and Motif_counter. Post-alignment processing was performed by utilizing the University of Michigan’s (UM) Docker-alignment pipeline (https://github.com/statgen/docker-alignment) based on Burrows-Wheeler Aligner (BWA)26. Variant concordance analysis was performed by comparing the variants identified from the WGS data to the T1DExomeChip array (Illumina, CA) data to determine mislabeled, swapped or contaminated samples.

Estimation of the telomere length from the WGS data was performed using five different tools: Computel, Telseq, Telomerecat, qMotif and Motif_counter (Supplementary methods). Pairwise Spearman correlation analysis was used to compare performance of these tools against each other. All subsequent statistical analysis on telomere length was conducted using estimates from Computel which is based on aligning raw sequence data in FASTQ format to a telomeric reference sequence.

**Table 1.** Length of telomeres (kb) in study subjects by the status of islet autoimmunity (IA) and type 1 diabetes (T1D) in the Environmental Determinants of Diabetes in the Young (TEDDY) study. Telomere length data were available on both case and matched control subjects in 389 IA pairs and 118 T1D pairs. Computel was used to estimate the telomere length from the whole-genome sequence (WGS) data. Telomere length is presented as mean ± standard deviation (S.D.) in kb.

| Parameter | Islet autoimmunity (IA) | Type 1 diabetes (T1D) |
|-----------|-------------------------|-----------------------|
| Country   | Matched pairs n (%)     | IA cases (in kb)      | IA controls (in kb) | Matched pairs n (%) | T1D cases (in kb) | T1D controls (in kb) |
| Finland   | 63 (16.20%)             | 5.07 ± 0.76           | 5.22 ± 0.77         | 23 (19.49%)          | 5.09 ± 0.78       | 5.02 ± 0.93          |
| Germany   | 13 (3.34%)              | 5.13 ± 0.65           | 5.52 ± 1.08         | 5 (42.4%)            | 5.39 ± 0.96       | 5.40 ± 0.27          |
| Sweden    | 182 (46.78%)            | 5.13 ± 0.76           | 4.94 ± 0.84         | 49 (41.53%)          | 5.22 ± 0.87       | 5.05 ± 1.05          |
| U.S.A.    | 131 (33.68%)            | 5.24 ± 0.78           | 5.35 ± 0.84         | 41 (34.74%)          | 5.16 ± 0.73       | 5.09 ± 0.84          |

Family history of T1D

| Parameter         | Matched pairs n (%) | IA cases (in kb) | IA controls (in kb) | Matched pairs n (%) | T1D cases (in kb) | T1D controls (in kb) |
|-------------------|---------------------|------------------|---------------------|---------------------|-------------------|---------------------|
| First-degree relative | 79 (20.31%)        | 5.19 ± 0.64     | 5.19 ± 0.81         | 25 (21.19%)         | 5.27 ± 0.84       | 5.07 ± 0.81          |
| General population | 310 (79.69%)       | 5.15 ± 0.79     | 5.13 ± 0.87         | 93 (78.81%)         | 5.16 ± 0.80       | 5.07 ± 0.96          |

Sex

| Parameter | Matched pairs n (%) | IA cases (in kb) | IA controls (in kb) | Matched pairs n (%) | T1D cases (in kb) | T1D controls (in kb) |
|-----------|---------------------|------------------|---------------------|---------------------|-------------------|---------------------|
| Female    | 169 (43.44%)        | 5.23 ± 0.73     | 5.21 ± 0.88         | 52 (44.07%)         | 5.28 ± 0.75       | 5.09 ± 0.96          |
| Male      | 220 (56.56%)        | 5.10 ± 0.78     | 5.10 ± 0.84         | 66 (55.93%)         | 5.10 ± 0.84       | 5.06 ± 0.91          |
SNPs associated with the telomere length. Single nucleotide polymorphisms (SNPs) were genotyped by the Center for Public Health Genomics at the University of Virginia, VA, U.S.A., using the T1DExomeChip array on the full TEDDY cohort (n = 8093) (Fig. 1). The T1DExomeChip is a custom genotyping array with more than 90,000 custom content SNPs added to the Infinium® CoreExome-24 v.1.1 BeadChip (Illumina, CA). Genotype calling and the following quality control steps were applied to the dataset: (1) individuals with low call rate (<95%), or discordance with reported sex and prior genotyping were not considered in the analysis, (2) SNPs with low call rates (<95%) were excluded, (3) SNPs from autosomal chromosomes with allele distributions strongly deviating from Hardy–Weinberg equilibrium in controls with the European ancestry (P < 10–6) were discarded (except for chromosome 6 with the Hardy–Weinberg equilibrium in controls with the European ancestry (P < 10–20) due to HLA eligibility requirements), (4) SNPs on chromosome X were excluded with heterozygosity >1% in men, (5) SNPs on chromosome Y were excluded with genotypes >2% in women, (6) Monomorphic SNPs were excluded, (7) SNPs were discarded for which the concordance rate among duplicates was < 99% and (8) SNPs with missingness difference between IA or T1D cases and controls subjects assessed by the Fisher’s exact test (P < 10–4). From literature, there were 835 SNPs associated with telomere length on the T1DExomeChip27–38.

Statistical analyses. Multiple linear regression analysis was performed to examine the association between the telomere length and other factors including HLA-categories (HLA-DR3/3 or HLA-DR3/9 (as reference), HLA-DR3/4 and HLA-DR4/4, HLA-DR4/X), sex, parental age, mother’s gestational diabetes status, FDR status and the country of residence. The age at sample collection and the indicator of the long-distance protocol sample collection (yes vs. no) were also included in the model. Potential variation introduced by batches was taken account by a random intercept. Telomere length data were available on a total of 1119 TEDDY children.

Primary analyses were focused on examining the association between telomere length with the risk of any IA and/or T1D. A conditional logistic regression model was used to consider the matching criteria in the NCC study for any IA or T1D, adjusting for the HLA-categories (HLA-DR3/3 or HLA-DR3/9 (as reference), HLA-DR3/4 and HLA-DR4/4, HLA-DR4/X). In the analysis, telomere length was age-adjusted by using the residuals from the linear regression of telomere length on the age at sample collection. Subgroup analyses were conducted with respect to the type of first appearing autoantibody (mIAA-first and GADA-first). The magnitude of the association was estimated by odds ratio (OR), with 95% confidence interval (CI).

Secondary analyses were performed to examine the effect of SNPs associated with telomere length on the risk of any IA, mIAA-first, GADA-first and T1D (Supplementary Table S2). A total of 236 SNPs with minor allele frequency (MAF) > 0.05 were included (Fig. 1). Cox proportional hazard models were used to study the
The association between each SNP and the risk of any IA, mIAA-first, GADA-first and T1D, respectively, adjusting for sex, the country of residence, FDR, HLA-haplogenotype and accounting for population stratification (ancestral heterogeneity) (using the top three principal components estimated from the T1DExomeChip). Of the 8676 enrolled children, 583 were excluded: indeterminate autoantibody statuses (n = 14), HLA ineligible (n = 112), and no SNP data available (n = 457). A total of 7093 families had one child, 476 families had 2 children, and 16 families had 3 children who were included in the analysis. A robust variance estimate was used to account for the dependence within families in the Cox proportional hazard model. The magnitude of each estimated association was defined by the Hazard ratio (HR), with 95% confidence intervals (CIs). To correct for multiple hypothesis testing, the false discovery rate adjusted P-values were calculated. SNPs with nominal significance can be found in Supplementary Table S4 through S7.

Statistical analyses were performed using Statistical Analysis Software (Version 9.4, SAS Institute, Cary, North Carolina, U.S.A.) and R (Version 4.0.2). For the multiple linear regression analysis, estimates with P < 0.05 were considered as statistically significant.

### Results

Telomere lengths from the WGS data were calculated from 1119 TEDDY children (Fig. 1). Descriptive data on the estimation of the telomere lengths is shown by the status of IA and T1D in Table 1. The estimated median telomere length was 5.10 kb (IQR 4.52–5.68 kb) using Computel. The estimations of the telomere lengths were strongly correlated between Computel and Telseq (r = 0.97, P < 0.001) as well as between Computel and Motif_counter (r = 0.93, P < 0.001) (Supplemental Fig. S1).

### Association between telomere length and other phenotypes.

The age of the child when the sample was drawn for WGS had a significant impact on the length of telomeres. There was a significant negative association between age of the children and telomere length (P = 0.003) (Table 2). Children that carried HLA-DR4/4 or HLA-DR4/X had significantly longer telomeres compared to children with HLA-DR3/3 or HLA-DR3/9 haplogenotypes (P = 0.008). European children, particularly those from Finland (P = 0.041) and from Sweden (P = 0.001), had longer telomeres than children from the U.S.A. Though the paternal age (in years) did not differ between the countries (Analysis of variance (ANOVA) P = 0.102) as shown in Supplementary Table S3. Paternal age (P = 0.019) and the female sex of the child (P = 0.069; although not significant) were positively associated with telomere length. FDR status, presence of GDM in the mother, and maternal age did not have a significant impact on estimated telomere length (Table 2).

### Association between telomere length and the risk of any IA, mIAA-first, GADA-first and T1D.

Estimated telomere length was not significantly different with respect to any IA (OR = 0.91, 95% CI
T1D. SNPs associated with telomere length and the risk of any IA, mIAA-first, GADA-first and T1D in relation to HLA haplogenotypes. Complete data were available on 389 nested case–control (NCC) pairs for IA and on 118 matched pairs for T1D. Telomere length was adjusted for age when the sample was drawn. Significant values are in [bold).

| HLA status | Odds ratio (95% CI) | P-value |
|------------|---------------------|---------|
| Any IA (n = 389 NCC pairs) | | |
| Age-adjusted telomere length | 0.91 (0.75–1.12) | 0.377 |
| HLA-DR3/3 or HLA-DR3/9 | Reference | Reference |
| HLA-DR3/4 | 1.85 (1.23–2.78) | 0.003 |
| HLA-DR4/4 or HLA-DR4/X | 1.30 (0.84–2.02) | 0.236 |
| mIAA-first (n = 159 NCC pairs) | | |
| Age-adjusted telomere length | 1.23 (0.87–1.73) | 0.248 |
| HLA-DR3/3 or HLA-DR3/9 | Reference | Reference |
| HLA-DR3/4 | 3.73 (1.70–8.17) | 0.001 |
| HLA-DR4/4 or HLA-DR4/X | 2.59 (1.16–5.78) | 0.020 |
| GADA-first (n = 158 NCC pairs) | | |
| Age-adjusted telomere length | 0.83 (0.60–1.14) | 0.248 |
| HLA-DR3/3 or HLA-DR3/9 | Reference | Reference |
| HLA-DR3/4 | 0.91 (0.51–1.63) | 0.762 |
| HLA-DR4/4 or HLA-DR4/X | 0.69 (0.36–1.33) | 0.266 |
| T1D (n = 118 NCC pairs) | | |
| Age-adjusted telomere length | 1.03 (0.75–1.42) | 0.861 |
| HLA-DR3/3 or HLA-DR3/9 (Reference) | Reference | Reference |
| HLA-DR3/4 | 2.22 (0.97–5.10) | 0.060 |
| HLA-DR4/4 or HLA-DR4/X | 1.63 (0.71–3.73) | 0.249 |

Table 3. Association between age-adjusted telomere length in subjects by the status of islet autoimmunity (IA, GADA-first or mIAA-first) and T1D in relation to HLA haplogenotypes. Complete data were available on 389 nested case–control (NCC) pairs for IA and on 118 matched pairs for T1D. Telomere length was adjusted for age when the sample was drawn. Significant values are in [bold].

SNPs associated with telomere length and the risk of any IA, mIAA-first, GADA-first and T1D. We selected 236 SNPs previously reported to be associated with telomere length (see Material and methods). A total of 31 SNPs in 13 regions were nominally associated with risk of developing any IA, mIAA-first, GADA-first or T1D; however, none of these associations withstood correction for multiple hypothesis testing (Supplementary Table S4 through S7). Six SNPs had nominally significant associations to more than one endpoint. rs11082257, an intronic SNP in PKN3C3 on chromosome 18q12.3, was associated with decreased risk for any IA (HR = 0.88, 95% CI 0.87–0.99, P = 0.031), mIAA-first (HR = 0.79, 95% CI 0.65–0.97, P = 0.022), rs3017077 in RAD50 on chromosome 4q25 (HR = 0.79, 95% CI 0.65–0.97, P = 0.038), rs75245322, an intronic SNP in RAD50 on chromosome 18q12.3, was associated with decreased risk for any IA (HR = 1.23, 95% CI 0.87–1.73, P = 0.248), GADA-first (OR = 0.83, 95% CI 0.60–1.14, P = 0.248) or T1D (OR = 1.03, 95% CI 0.75–1.42, P = 0.861) (Table 3). There was a significantly increased risk for children with HLA-DR3/4 (OR = 1.85, 95% CI 1.23–2.78, P = 0.003) to develop IA regardless of type of islet autoantibody (any IA) as compared with those with HLA-DR3/3 or HLA-DR3/9 haplogenotypes. The risk to develop mIAA as the first autoantibody was significantly increased for children with HLA-DR3/4 (OR = 3.73, 95% CI 1.70–8.17, P = 0.001) and HLA-DR4/4 or HLA-DR4/X (OR = 2.59, 95% CI 1.16–5.78, P = 0.020) as compared to those with HLA-DR3/3 or HLA-DR3/9. The risk to develop GADA as the first autoantibody was not associated with any of the HLA-DR-DQ haplogenotypes (Table 3).

Discussion
The key finding in this study was that children from high incidence countries for T1D i.e., Finland and especially from Sweden had shorter telomeres in white blood cells as compared to children from other TEDDY sites (Germany and three sites in the U.S.A.). The age when the blood sample was drawn had a significant negative correlation with telomere length, consistent with previous reports41. Interestingly, children that carried HLA-DR4/4 or HLA-DR4/X had significantly longer telomeres compared to children with HLA-DR3/3 or HLA-DR3/9 haplogenotypes. Also, paternal age was significantly correlated with telomere length. Children with HLA-DR3/4 had a significantly increased risk to develop any IA as compared to children with HLA-DR3/3 or HLA-DR3/9 haplogenotypes. Moreover, there were significantly increased risks for children with HLA-DR3/4
and HLA-DR4/4 or HLA-DR4/X to develop mIAA as the first autoantibody as compared to those with HLA-
DR3/3 or HLA-DR3/9 haplogenotypes. In contrast, GADA as the first autoantibody was not associated with any of
the HLA-DR-DQ haplogenotypes.

To our knowledge, there has been no reports on the risk for IA, mIAA-first or GADA-first in relation to
telomere length. The estimations of the telomeres were highly correlated between Computel, Telseq and Motif,
counter with $R^2$ values ranging from 0.85 to 0.94 (Supplemental Fig. 1). The finding of similar telomere lengths
in young boys and girls confirms a previous study of telomere length taken at birth. There has been a previous
report on shorter telomere length in children with T1D, a finding that was not reproduced here. This discrep-
ancy could be explained by the older age of the participants in the previous report (17–48 years), compared
with the TEDDY study in which the oldest children with T1D were 14.16 years. We could not reproduce the
findings of shorter telomeres in children born to mothers with GDM, although this could be due to the older age
(9–16 years) in the earlier study. In addition, we detected a significant effect of paternal age but not maternal age
on the length of telomeres. The SNPs that had nominally significant association to our primary and secondary
outcomes—any IA, mIAA-first or T1D—were mainly from genes coding for proteins involved in
double DNA strand repair and maintenance of telomeres ($MRE11$ and $RAD50$), DNA replication and repair
($BLM$), genome stability ($ATM$) or degradative endocytic trafficking ($PIK3C3$). The $BLM$ gene has gene
ontology including nucleic acid binding and ATPase activity also involved in DNA replication and repair.

The major strength of the present study is the use of both IA and T1D as endpoints. Additional strengths of
this study are the inclusion of unrelated subjects from both the general population and FDRs without islet
autoantibodies or T1D from the same countries in the same age ranges as the subjects with outcome events. One
limitation of the present study is the relatively low number of subjects with IA, particularly those with GADA-
first or with T1D, raising concerns for statistical power of the association analysis. Nevertheless, the screening
of more than 400,000 newborns in four different countries to identify those with an increased genetic risk for
T1D, defined by high-risk HLA-DR-DQ haplogenotypes, followed with blood draws every three months for the
first four years and every six months thereafter is a unique effort. The proportional hazard ratio identifies
risk for time-to-event in this longitudinal study, thereby increasing the power compared with cross-sectional
case–control study design.

We concluded that genes in the HLA-region particularly HLA-DR3/4 and HLA-DR4/4, HLA-DR4/X remain
the most important genetic risk factors for IA, the first step towards T1D. Children with the high-risk genotypes
for T1D from Finland and Sweden had shorter telomeres and telomere length is associated with HLA-DR4/4 or
HLA-DR4/X haplogenotypes as compared to HLA-DR3/4 or HLA-DR3/9. Moreover, paternal age was positively
associated with telomere length.

Data availability

The datasets generated and analyzed during the current study will be made available in the NIDDK Central
Repository at https://repository.niddk.nih.gov/studies/teddy/. The TEDDY Whole Genome Sequencing (WGS)
data that support the findings of this study have been deposited in NCBI’s database of Genotypes and Phenotypes
(dbGaP) with the primary accession code phs001442.v3.p2.

Code availability

The bioinformatics analysis code is available on the GitHub page: https://github.com/USF-HII/pub-teddy-
human-wgs-telomere.

Received: 26 October 2021; Accepted: 1 March 2022
Published online: 16 March 2022

References

1. Blackburn, E. H. Telomeres. Trends Biochem. Sci. 16, 378–381. https://doi.org/10.1016/0167-4781(91)90155-o (1991).
2. Goronzy, J. J., Fujii, H. & Weyand, C. M. Telomeres, immune aging and autoimmunity. Exp. Gerontol. 41, 246–251. https://doi.
org/10.1016/j.exger.2005.12.002 (2006).
3. Gardner, M. et al. Gender and telomere length: Systematic review and meta-analysis. Exp. Gerontol. 51, 15–27. https://doi.org/10.
1016/j.exger.2013.12.004 (2014).
4. Nordfjall, K., Larefalk, A., Lindgren, P., Holmberg, D. & Roos, G. Telomere length and heredity: Indications of paternal inheritance.
Proc. Natl. Acad. Sci. U S A 102, 16374–16378. https://doi.org/10.1073/pnas.0501724102 (2005).
5. Broer, L. et al. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a
paternal age effect. Eur. J. Hum. Genet. 21, 1163–1168. https://doi.org/10.1038/ejhg.2012.303 (2013).
6. Okada, K. et al. Telomere length in the newborn. Pediatr. Res. 52, 377–381. https://doi.org/10.1203/00006450-200209000-00012
(2002).
7. Ly, K. et al. Telomere length in early childhood is associated with sex and ethnicity. Sci. Rep. 9, 10359. https://doi.org/10.1038/s41598-019-46338-x (2019).
8. Kark, J. D., Goldberger, N., Kimura, M., Sinnreich, R. & Aviv, A. Energy intake and leukocyte telomere length in young adults.
Am. J. Clin. Nutr. 95, 479–487. https://doi.org/10.3945/ajcn.111.012452 (2012).
9. Dalgard, C. et al. Leukocyte telomere length dynamics in women and men: Menopause vs age effects. Int. J. Epidemiol. 44, 1688–1695.
https://doi.org/10.1093/ije/dyw165 (2015).
10. Schonland, S. O. et al. Premature telomere loss in rheumatoid arthritis is genetically determined and involves both myeloid and
lymphoid cell lineages. Proc. Natl. Acad. Sci. U S A 100, 13471–13476. https://doi.org/10.1073/pnas.2233561100 (2003).
11. Kyo, S. et al. Estrogen activates telomerase. Cancer Res. 59, 5917–5921 (1999).
12. Choi, J., Fauche, S. R. & Effros, R. R. Reduced telomerase activity in human T lymphocytes exposed to cortisol. Brain Behav. Immun.
22, 600–605. https://doi.org/10.1016/j.bbi.2007.12.004 (2008).
13. Hjort, L. et al. Telomere length is reduced in 9- to 16-year-old girls exposed to gestational diabetes in utero. Diabetologia 61, 870–880.
https://doi.org/10.1007/s00125-018-4549-7 (2018).
14. Andrews, N. P., Fujii, H., Goronzy, J. J. & Weyand, C. M. Telomeres and immunological diseases of aging. Gerontology 56, 390–403. https://doi.org/10.1159/000268620 (2010).

15. Hohensinner, P. J., Goronzy, J. J. & Weyand, C. M. Telomere dysfunction, autoimmunity and aging. Aging Dis. 2, 524–537 (2011).

16. Jeanlou, E. et al. Shortened telomere length in white blood cells of patients with IDDM. Diabetes 47, 482–486. https://doi.org/10.2337/diabetes.47.3.482 (1998).

17. Astrup, A. S. et al. Telomere length predicts all-cause mortality in patients with type 1 diabetes. Diabetologia 53, 45–48. https://doi.org/10.1007/s00125-009-1542-1 (2010).

18. Hagopian, W. A. et al. The Environmental Determinants of Diabetes in the Young (TEDDY): Genetic criteria and international diabetes risk screening of 421 000 infants. Pediatr. Diabetes 12, 733–743. https://doi.org/10.1111/j.1399-5448.2011.00774.x (2011).

19. Babaya, N. et al. Comparison of insulin autoantibody: Polyleucine glycol and micro-IAA 1-day and 7-day assays. Diabetes Metab. Res. Rev. 25, 665–670. https://doi.org/10.1002/dmrr.1014 (2009).

20. Bonifacio, E. et al. Harmonization of glutamic acid decarboxylase and islet antigen-2 autoantibody assays for national institute of diabetes and digestive and kidney diseases consortia. J. Clin. Endocrinol. Metab. 95, 3360–3367. https://doi.org/10.1210/jc.2010-00293 (2010).

21. Torn, C. et al. Diabetes Antibody Standardization Program: Evaluation of assays for autoantibodies to glutamic acid decarboxylase and islet antigen-2. Diabetologia 51, 846–852. https://doi.org/10.1007/s00125-008-0969-7 (2008).

22. Dantonio, P. et al. Proficiency testing of human leukocyte antigen-DR and human leukocyte antigen-DQ genetic risk assessment for type 1 diabetes using dried blood spots. J. Diabetes Sci. Technol. 4, 929–941. https://doi.org/10.1177/193229681000400424 (2010).

23. Lee, H. S. et al. Biomarker discovery study design for type 1 diabetes in The Environmental Determinants of Diabetes in the Young (TEDDY) study. Diabetes Metab. Res. Rev. 30, 424–434. https://doi.org/10.1002/dmrr.2510 (2014).

24. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048. https://doi.org/10.1093/bioinformatics/btw354 (2016).

25. Wingett, S. W. & Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality control. PLoS ONE 7, 1338. https://doi.org/10.1326/9781605089312 (2018).

26. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1745–1746. https://doi.org/10.1093/bioinformatics/btp324 (2009).

27. Bodelon, C. et al. On the interplay of telomeres, nevi and the risk of melanoma. PLoS ONE 7, e52466. https://doi.org/10.1371/journal.pone.0052466 (2012).

28. Codd, V. et al. Common variants near TERC are associated with mean telomere length. Nat. Genet. 42, 197–199. https://doi.org/10.1038/ng.532 (2010).

29. Codd, V. et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat. Genet. 45, 422–427. https://doi.org/10.1038/ng.2528 (2013).

30. Delgado, D. A. et al. The contribution of parent-to-offspring transmission of telomeres to the heritability of telomere length in humans. Hum. Genet. 138, 49–60. https://doi.org/10.1007/s00439-018-1964-2 (2019).

31. Dorajoo, R. et al. Loci for human leukocyte telomere length in the Singaporean Chinese population and trans-ethnic genetic studies. Nat. Commun. 10, 2491. https://doi.org/10.1038/s41467-019-10443-2 (2019).

32. Fang, J. et al. Functional characterization of a multi-cancer risk locus on chr5p15.33 reveals regulation of TERT by ZNF148. Nat. Commun. 8, 15034. https://doi.org/10.1038/ncomms15034 (2017).

33. Kuo, C. L., Pilling, L. C., Kuchel, G. A., Ferrucci, L. & Melzer, D. Telomere length and aging-related outcomes in humans: A Mendelian randomization study in 261,000 older participants. Aging Cell 18, e13017. https://doi.org/10.1111/acel.13017 (2019).

34. Lee, J. H. et al. Genome wide association and linkage analyses identified three loci -4q5, 17q23.2, and 10q11.21-associated with variation in leukocyte telomere length: The Long Life Family Study. Front. Genet. 4, 310. https://doi.org/10.3389/fgene.2013.00310 (2013).

35. Liu, Y. et al. A genome-wide association study identifies a locus on TERT for mean telomere length in Han Chinese. PLoS ONE 9, e85043. https://doi.org/10.1371/journal.pone.0085043 (2014).

36. Maginno, M. et al. DCAF4, a novel gene associated with leukocyte telomere length. J. Med. Genet. 52, 157–162. https://doi.org/10.1136/jmedgenet-2014-102681 (2015).

37. Mangino, M. et al. A genome-wide association study identifies a novel locus on chromosome 18q12.2 influencing white cell telomere length. J. Med. Genet. 46, 451–454. https://doi.org/10.1136/jmg.2008.064956 (2009).

38. Walsh, K. M. et al. Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk. Nat. Genet. 46, 731–735. https://doi.org/10.1038/ng.3004 (2014).

39. Wei, L. J., Liu, D. Y. & Weissfeld, J. L. Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J. Am. Stat. Assoc. 84, 1065–1073. https://doi.org/10.2307/2290084 (1989).

40. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300. https://doi.org/10.1046/j.1467-9868.1995.tb02031.x (1995).

41. Turner, K. J., Vasu, V. & Griffin, D. K. Telomere biology and human phenotype. Cells https://doi.org/10.3390/cells8010073 (2019).

42. Paul, T. T. & Gellert, M. The 3’ to 5’ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol. Cell 1, 969–979. https://doi.org/10.1016/s1097-2765(00)00097-0 (1998).

43. Manthei, K. A. & Keck, J. L. The BLM dissolvasome in DNA replication and repair. Cell Mol. Life Sci. 70, 4067–4084. https://doi.org/10.1007/s00018-013-1325-1 (2013).

44. Lavin, M. F. et al. ATM signaling and genomic stability in response to DNA damage. Mutat. Res. 569, 123–132. https://doi.org/10.1016/j.mrmm.2004.04.020 (2005).

45. Munson, M. J. & Ganley, I. G. MTOR, PI3K3, and autophagy: Signaling the beginning from the end. Autophagy 11, 2375–2376. https://doi.org/10.1080/15548627.2015.1106668 (2015).
Author contributions
C.T., X.L., B.A., J.P.K., Å.L., M.R., J-X.S., J.T., A-G.Z., W.A.H., S.S.R., H.M.P. provided conception and design of the study. B.A., J.P.K., Å.L., M.R., J-X.S., J.T., A-G.Z., W.A.H. participated in patient recruitment and diagnosis, sample collection, and generation of the TEDDY metadata. S.O-G., S.S.R. processed the samples and generated the whole-genome sequencing (WGS) data. S.O-G., W-M.C., S.S.R. processed the samples and generated the TEDDY-T1DExomeChip data. S.O-G., K.M.C., J.L.M., C.L.R., J.L., A.V.S., H.M.P. performed QC and alignments of the WGS data. X.L., S.O-G., K.M.C., J.L.M., W-M.C., M.D.B., H.M.P. performed QC and analysis of the TEDDY-T1DExomeChip data. C.T., X.L., K.M.C., J.L.M., C.L.R., J.L., M.D.B., A.R., A.V.S., S.S.R., H.M.P. performed analysis to estimate the telomere length from the WGS data. X.L., M.D.B., H.M.P. conducted statistical analyses and researched the telomere length and TEDDY-T1DExomeChip data. C.T., X.L., H.M.P. wrote the manuscript. All authors contributed to critical revisions and approved the final manuscript.

Funding
Open access funding provided by Lund University.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-08058-7.

Correspondence and requests for materials should be addressed to C.T. or H.M.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

The TEDDY Study Group
Colorado Clinical Center
Aaron Barbour6, Kimberly Bautista6, Judith Baxter6, Daniel Felipe-Morales6, Brigitte I. Frohnert9, Marisa Stahl6, Patricia Gesualdo6, Rachel Haley6, Michelle Hoffman5, Rachel Karban6, Edwin Liu6, Alondra Munoz6, Jill Norris6, Stesha Peacock6, Hanan Shorrosh6, Andrea Steck6, Megan Stern6 & Kathleen Waugh6

Finland Clinical Center
Olli G. Simell9, Annika Adamsson8, Sanna-Mari Aaltonen8, Suvi Ahonen16,18, Mari Åkerlund14,16,18, Leena Hakola14,16, Anne Hekkala15,17, Henna Holappa15,17, Heikki Hyöty14,16, Anni Ikonen15,17, Jorma Ilonen9,19, Sanna Jokipuu8, Leena Karlsson8, Jukka Kero8,9, Miia Kähönen15,17, Mikael Knip14,16, Minna-Liisa Koivikko15,17, Katja Kokkonen14,16, Merja Koskinen14,16, Mirva Koreasalo14,16,18, Kalle Kurppa14,16, Salla Kusula14,16, Jarita Kytölä14,16, Sinikka Lahtinen14,16, Jutta Lahto14, Tiina Latva-aho15,17, Laura Leppänen15,17, Katri Lindfors14, Maria Lönnrot14,16, Elina Mäntymäki9, Markus Mattila14,16, Maija Miettinen18, Katja Multaus15,17, Teija Mykkänen15,17, Tiina Niininen14,16, Sari Niinistö18, Mia Nyblom14,16, Sami Oikarinen14,16, Paula Ollikainen15,17, Zhan Othmani9, Sirpa Pohjola15,17, Jenna Rautanen16,18, Anne Riikonen15,16,18, Minna Romo8, Satu Simell6, Aino Stenius15,17, Päivi Tossavainen15,17, Mari Vähä-Mäkiä9, Eeva Varjonen8, Riitta Veijola15,17, Irene Viinikangas15,17 & Suvi M. Virtanen14,16,18
14Tampere University, Tampere, Finland. 15University of Oulu, Oulu, Finland. 16Tampere University Hospital, Tampere, Finland. 17Oulu University Hospital, Oulu, Finland. 18Finnish Institute for Health and Welfare, Helsinki, Finland. 19University of Kuopio, Kuopio, Finland.

Georgia/Florida Clinical Center

Desmond Schatz20, Diane Hopkins7, Leigh Steed7, Jennifer Bryant7, Katherine Silvis7, Michael Haller20, Melissa Gardner7, Richard McIndoe7, Ashok Sharma7, Stephen W. Anderson715, Laura Jacobsen20, John Marks20 & Paula D. Towe20

21Pediatric Endocrine Associates, Atlanta, GA, USA.

Germany Clinical Center

Ezio Bonifacio22, Cigdem Gezgine10,11,12, Anja Heublein10,11,12, Eva Hohoff23, Sandra Hummel10,11,12, Annette Knopf10,11,12, Charlotte Koch10,11,12, Sibylle Koletzko24, Claudia Ramminger10,11,12, Roswith Roth10,11,12, Jennifer Schmidt10,11,12, Marlon Scholz10,11,12, Joanna Stock10,11,12, Katharina Warncke10,11,12, Lorena Wendel10,11,12 & Christiane Winkler10,11,12

11Forscherguppe Diabetes, Technical University of Munich, Klinikum Rechts der Isar, Munich, Germany. 12Forscherguppe Diabetes e.V. at Helmholtz Zentrum München, Munich, Germany. 22Center for Regenerative Therapies, TU Dresden, Dresden, Germany. 23Department of Nutritional Epidemiology, University of Bonn, Bonn, Germany. 24Department of Gastroenterology, Dr. Von Hauner Children's Hospital, Ludwig Maximillians University Munich, Munich, Germany.

Sweden Clinical Center

Daniel Agardh1, Carin Andrén Aronsson1, Maria Ask1, Rasmus Bennet1, Corrado Cilio1, Susanne Dahlberg1, Malin Goldman Tsubarah1, Emelie Ericson-Hallström1, Annika Björne Fors1, Lina Fransson1, Thomas Gard1, Monika Hansen1, Susanne Hyberg1, Berglind Jonsdottir1, Helena Elding Larsson1, Marielle Lindström1, Markus Lundgren1, Marlena Maziarz1, Maria Månsson Martinez1, Jessica Melin1, Zeliha Mestan1, Caroline Nilsson1, Yohanna Nord1, Kobra Rahmati1, Anita Ramelius1, Falustin Salami1, Anette Sjöberg1, Ulrika Ulvenhag1, Terese Wiktorsson1 & Åsa Wimar1

Washington Clinical Center

Michael Killian13, Claire Cowen Crouch13, Jennifer Skidmore13, Christian Chamberlain13, Brelon Fairman13, Arlene Meyer13, Jocelyn Meyer13, Denise Mulenga13, Nole Powell13, Jared Radtke13, Shreya Roy13, Davey Schmitt13 & Sarah Zink13

Pennsylvania Satellite Center

Dorothy Becker25, Margaret Franciscus25, MaryEllen Dalmagro-Elias Smith25, Ashi Daftary25, Mary Beth Klein25 & Chrystal Yates25

25Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.

Data Coordinating Center

Rajesh Adusumali2, Sarah Austin-Gonzalez2, Maryouri Avendano3, Sandra Baethke2, Brant Burkhardt3, Nicholas Cadigan2, Joanna Clasen2, Laura Gandolfo2, Jennifer Garneslon2, Veena Gowda2, Belinda Hsiao2, Christina Karges2, Shu Liu2, Kristian F. Lynch2, Jamie Malloy2, Cristina McCarthy2, Michael Shaffer2, Susan Smith2, Noah Sulman2, Roy Tamura2, Dena Tewey2, Michael Toth2, Ulla M. Uusitalo2, Kendra Vehik2, Ponni Vijayakandipan2, Melissa Wrobles2, Jimin Yang2 & Kenneth Young2
Past staff

Michael Abbondondolo2, Lori Ballard2, Rasheedah Brown2, David Cuthbertson2, Stephen Dankyi2, Christopher Eberhard2, Steven Fiske2, David Hadley2, Kathleen Heyman2, Francisco Perez Laras2, Hye-Seung Lee2, Qian Li2, Colleen Maguire2, Wendy McLeod2, Aubrie Merrell2, Steven Meulemans2, Ryan Quigley2 & Laura Smith2

Autoantibody Reference Laboratories

Liping Yu26, Dongmei Miao26, Kathleen Gillespie27, Alistair Williams27, Kyla Chandler27, Ilana Kelland27, Yassin Ben Khoud27 & Matthew Randell27

26Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Denver, CO, USA. 27Bristol Medical School, University of Bristol, Bristol, UK.

Genetics Laboratory

Emily Farber3, Rebecca Roche Pickin3, Jonathan Davis3, Jordan Davis3, Dan Gallo3, Jessica Bonnie3 & Paul Campolieto3

HLA Reference Laboratory

Christian Chamberlain13, Jared Radtke13, Sarah Zink23, Previously Henry Erlich28, Steven J. Mack28 & Anna Lisa Fear28

28Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, USA.

Repository

Sandra Ke29 & Niveen Mulholland29

29NIDDK Biosample Repository at Fisher BioServices, Germantown, MD, USA.

Other contributors

Thomas Briese30, Todd Brusko30, Suzanne Bennett Johnson31, Eoin F. McKinney32,33,34, Tomi Pastinen35 & Eric W. Triplett36

30Pediatric Endocrinology, University of Florida, Gainesville, FL, USA. 31Columbia University Medical Center, Columbia University, New York, NY, USA. 32Florida State University College of Medicine, Tallahassee, FL, USA. 33Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK. 34Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK. 35Cambridge Centre for Artificial Intelligence in Medicine, University of Cambridge, Cambridge, UK. 36The Children's Mercy Hospital, Kansas City, MO, USA. 36Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.