EQUIVARIANT EMBEDDINGS OF MANIFOLDS INTO EUCLIDEAN SPACES

ZHONGZI WANG

Abstract. Suppose a finite group G acts on a manifold M. By a theorem of Mostow, also Palais, there is a G-equivariant embedding of M into the m-dimensional Euclidean space \mathbb{R}^m for some m. We are interested in some explicit bounds of such m.

First we provide an upper bound: there exists a G-equivariant embedding of M into $\mathbb{R}^{d(G) + 1}$, where $\vert G \vert$ is the order of G and M embeds into \mathbb{R}^d. Next we provide a lower bound for finite cyclic group action G: If there are l points having pairwise co-prime lengths of G-orbits greater than 1 and there is a G-equivariant embedding of M into \mathbb{R}^m, then $m \geq 2l$.

Some applications to surfaces are given.

1. Introduction

In this note, we assume that M is a compact and connected polyhedron and G is a finite group which acts faithfully on M. We often call such M and G a pair (M, G). Recall \mathbb{R}^m is the m-dimensional Euclidean space, and $SO(m)$ is the m-dimensional special orthogonal group, which acts on \mathbb{R}^m canonically. We use $\vert G \vert$ to denote the order of a finite group G and F_g to denote the closed orientable surface of genus g.

Definitions: Let (M, G) be a pair with the action of G on M given by a representation $\rho : G \to \text{Homeo}(M)$, where $\text{Homeo}(M)$ is the group of homeomorphisms on M. Call an embedding $e : M \to \mathbb{R}^m$ G-equivariant, if there is an orthogonal representation $\tilde{\rho} : G \to SO(m)$ such that

$$e \circ \rho(g) = \tilde{\rho}(g) \circ e$$

for any $g \in G$.

When G is a finite cyclic group generated by a periodic map f on M, we often call G-action as f-action and G-equivariant as f-equivariant.

The existence of G-equivariant embedding for pair (M, G) follows from the work of Mostow, also Palais, see [Mos Theorem 6.1] and [Pal Theorem].
Question 1.1. For a given pair \((M, G)\), to find some concrete small \(n\), or stronger, the minimal \(n\), so that there is a \(G\)-equivariant embedding \(M \to \mathbb{R}^n\).

There are some systematic studies on \(G\)-equivariant embeddings for graphs and surfaces into \(\mathbb{R}^3\) and \(S^3\), see [Cos], [FNPT], [WWZZ1], [WWZZ2] and the references therein. Those studies rely on the geometry and topology of 3-manifolds developed in the last several decades, as well as on our 3-dimensional intuition. Once we know that there is a \(G\)-equivariant embedding \(M \to \mathbb{R}^3\), then the integer 3 is often the minimal \(n\) for the pair \((M, G)\) in Question 1.1, since usually graphs and surfaces themselves can not be embedded into \(\mathbb{R}^2\).

If there is no \(G\)-equivariant embedding \(M \to \mathbb{R}^3\) for a pair \((M, G)\), then Question 1.1 becomes more complicated. Some results for \(G\)-equivariant embeddings \(M \to \mathbb{R}^n\) to high dimensional Euclidean space appear recently, see [Zi], [Wa].

In this note, we try to give some general explicit bounds for Question 1.1.

First we give an upper bound in terms of \(|G|\), and the dimension of Euclidean space that \(M\) embeds. We state the smooth version. The topological version follows by just ignoring the smoothness in both the statement and its proof.

Proposition 1.2. Suppose \(M\) is a closed smooth manifold and there is a smooth finite group action \(G\) on \(M\). If there is a smooth embedding of \(M\) into \(\mathbb{R}^d\), then there exists a \(G\)-equivariant smooth embedding of \(M\) into \(\mathbb{R}^{d|G|+1}\).

Then we give a lower bound for finite cyclic group actions in terms of periods of periodic points for periodic maps. Suppose \(G = \mathbb{Z}_n\) is generated by a periodic map \(f\) of order \(n\) on \(M\). Under \(f\)-action each point of \(M\) has its \(f\)-orbit with length dividing \(n\).

Proposition 1.3. Suppose \(f\) is a periodic map on \(M\) and there are \(l\) points having pairwise co-prime lengths of \(f\)-orbits greater than 1. If there is an \(f\)-equivariant embedding \(e: M \to \mathbb{R}^m\), then \(m \geq 2l\).

Finite group actions on surfaces are keeping to be an active topic since the work of Hurwitz [Hu]. Some applications to finite group actions on surfaces are given below.

By Hurwitz theorem the order of any orientation-preserving finite group action on \(F_g\), \(g > 1\), is bounded by \(84(g - 1)\) [Hu]. Since \(F_g\) embeds into \(\mathbb{R}^3\) and \(84(g - 1) \times 3 = 252(g - 1)\), by Proposition 1.2 we have

Corollary 1.4. For any orientation-preserving finite group action \(G\) on \(F_g\), \(g > 1\), \(F_g\) can be \(G\)-equivariantly embedded into \(\mathbb{R}^{252(g - 1) + 1}\).

The next result is a corollary of Proposition 1.3.

Corollary 1.5. For any given integer \(m > 0\), there is a periodic map \(f\) on a closed orientable surface \(F\) such that there is no \(f\)-equivariant embedding \(e: F \to \mathbb{R}^m\).
Proposition 1.2, Proposition 1.3 and Corollary 1.5 will be proved in Sections 2, 3, 4 respectively.

Acknowledgement: We thank the referee for the advice.

2. An upper bound for finite group actions

Proof of Proposition 1.2 Suppose the smooth action of G on M is given by the representation

$$\rho : G \to \text{Diff}(M)$$

where $\text{Diff}(M)$ is the group of diffeomorphisms on M. and the smooth embedding of M into \mathbb{R}^d is given by

$$e : M \to \mathbb{R}^d.$$

We may assume $G = \{1, 2, ..., n\}$. With these notations we define a map

$$\tilde{e} : M \to \mathbb{R}^d | G$$

as follows: for any $x \in M$,

$$\tilde{e}(x) = (e(\rho(1)(x)), e(\rho(2)(x)), ..., e(\rho(n)(x))).$$

We will prove \tilde{e} is a smooth embedding. Since $\rho(1)$ is a diffeomorphism of M onto itself, the first component \tilde{e}_1 of the mapping \tilde{e}, where $\tilde{e}_1 = e \circ \rho(1)$, is a smooth embedding. By the same reason, all components \tilde{e}_j of \tilde{e}, $\tilde{e}_j = e \circ \rho(j)$ are smooth. Hence \tilde{e} is smooth and injective. The rank of the Jacobi matrix of \tilde{e} at each point $x \in M$ is not less than the rank of the Jacobi matrix of \tilde{e}_1, the first component of \tilde{e}, which equals the dimension of M since \tilde{e}_1 is an embedding. Thus \tilde{e} is also an immersion, and is hence a smooth embedding.

We have smoothly embedded M into $\mathbb{R}^d | G$ and we next prove that \tilde{e} is a G-equivariant embedding. Recall that $O(m)$ is the m-dimensional orthogonal group. We construct a natural group action $\tilde{\rho}$ of G on $\mathbb{R}^d | G$, that is to define an embedding

$$\tilde{\rho} : G \to O(d|G)$$

by

$$\tilde{\rho}(j)(y_1, y_2, ..., y_n) = (y_{1*}, y_{2*}, ..., y_{n*}),$$

where each element $\tilde{\rho}(j)$ acts as an orthogonal transformation. It suffices to show that the image of M under the embedding \tilde{e} is invariant under the group action $\tilde{\rho}$ on $\mathbb{R}^d | G$ and the actions $\tilde{\rho}$ and ρ are commutative by the embedding \tilde{e}. If $y = \tilde{e}(x)$ where $x \in M$, then

$$\tilde{\rho}(j)(\tilde{e}(x)) = \tilde{\rho}(j)(e(\rho(1)(x)), e(\rho(2)(x)), ..., e(\rho(n)(x)))$$

$$= (e(\rho(1*j)(x)), e(\rho(2*j)(x)), ..., e(\rho(n*j)(x)))$$

$$= (e(\rho(1)(\rho(j)(x))), e(\rho(2)(\rho(j)(x))), ..., e(\rho(n)(\rho(j)(x))))$$

$$= \tilde{e}(\rho(j)(x)).$$
which implies \(\tilde{\rho}(j)(y) \in \tilde{e}(M) \) and thus \(\tilde{e}(M) \) is invariant under each \(\rho(j) \), and is hence invariant under \(\bar{\rho} \) of \(G \). We conclude

\[
\tilde{\rho}(g) \circ \tilde{e} = \tilde{e} \circ \rho(g)
\]

for all \(g \in G \). Moreover the restriction of the action \(\bar{\rho} \) on \(\tilde{e}(M) \) is the action \(\rho \).

If \(\bar{\rho}(G) \subset SO(d|G|) \), then we finish the proof. Otherwise let

\[
\bar{\rho}^* : G \to SO(d|G| + 1)
\]

be a group homomorphism defined as

\[
\bar{\rho}^*(g) = (\bar{\rho}(g), \det(\bar{\rho}(g))Id_{\mathbb{R}}),
\]

where \(\det(\bar{\rho}(g)) \) is 1 if \(\bar{\rho}(g) \) is orientation preserving and \(-1\) otherwise.

Now let

\[
\bar{e}^* : M \to \mathbb{R}^{d|G|+1} = \mathbb{R}^{d|G|} \times \mathbb{R},
\]

be defined as

\[
\bar{e}^*(x) = (\bar{e}(x), 0).
\]

Then \(\bar{e}^* \) is an embedding. Moreover

\[
\bar{\rho}^*(g) \circ \bar{e}^*(x) = \bar{\rho}^*(g)(\bar{e}(x), 0) = (\bar{\rho}(g) \circ \bar{e}(x), 0) = (\bar{e} \circ \rho(g)(x), 0) = \bar{e}^* \circ \rho(g)(x)
\]

for all \(x \in M \) and \(g \in G \). Proposition 1.2 is proved.

\[\square\]

3. A LOWER BOUND FOR FINITE CYCLIC GROUP ACTIONS

Lemma 3.1. Let \(A \) be an orientation-preserving isometry of \(\mathbb{R}^m \) with a fixed point (i.e., \(A \in SO(m) \)). Assume that there are \(s \) points in \(\mathbb{R}^m \) having pairwise coprime lengths of \(A \)-orbits greater than 1. Then \(m \geq 2s \).

Proof. Denote by \(w_1, \ldots, w_s > 1 \) the pairwise coprime lengths. Take any \(j = 1, \ldots, s \). Take \(x_j \in \mathbb{R}^m \) such that \(A^{w_j}x_j = x_j \). Define

\[
\overline{x}_j = \frac{x_j + Ax_j + \ldots + A^{w_j-1}x_j}{w_j}.
\]

Then \(A\overline{x}_j = \overline{x}_j \). So for \(u_j := x_j - \overline{x}_j \) we have \(u_j + Au_j + \ldots + A^{w_j-1}u_j = 0 \). Hence

\[
\det \left(id + A + \ldots + A^{w_j-1} \right) = \det \prod_{k=1}^{w_j-1} \left(A - e^{2\pi ik/w_j}Id \right) = 0.
\]

So \(A \) has an eigenvalue \(e^{2\pi ik_j/w_j} \) for some \(1 \leq k_j \leq w_j - 1 \). Since \(w_1, \ldots, w_s \) are pairwise coprime, all these \(s \) eigenvalues are pairwise distinct.

Since \(A \) is a real operator, for odd \(w_j \) the conjugate \(e^{-2\pi ik_j/w_j} \) is also an eigenvalue of \(A \). Observe that \(n \) is not smaller than the number of eigenvalues of \(A \).

If every \(w_j \) is odd, then \(n \geq 2s \).
If some \(w_j \) is even, then such \(j \) is unique. If further \(n < 2s \), then \(n = 2s - 1 \), and the eigenvalues of \(A \) are \(e^{\pm 2\pi it/w_t} \) for \(t \neq j \), together with the eigenvalue \(-1\) corresponding to the even \(w_j \). This is impossible because the product of the eigenvalues is \(\det A > 0 \).

Proof of Proposition 1.3. Suppose \(f \) is a periodic map on \(M \) and there are \(l \) points having pairwise coprime lengths of \(f \)-orbits greater than 1. Suppose \(A : \mathbb{R}^m \to \mathbb{R}^m, A \in SO(m) \), extends \(f \) for some embedding \(e : M \to \mathbb{R}^m \). Then there are \(s \) points having pairwise coprime lengths of \(A \)-orbits greater than 1. By Lemma 3.1, \(m \geq 2l \).

4. Applications to surfaces

Proof of Corollary 1.5. It follows from Proposition 1.3 and the following Proposition 4.1.

Proposition 4.1. For each given integer \(l > 0 \), there is a periodic map \(f \) on a closed orientable surface \(F \) so that there are \(l \) points having pairwise coprime lengths of \(f \)-orbits greater than 1.

Proof. We will use the Hurwitz type construction to get such a periodic map \(f \). The theories of 2-orbifolds, especially those of fundamental groups and covering spaces, are parallel to those of 2-manifolds, see [Sc].

Let \(p_1, ..., p_l \) be the first \(l \) prime numbers and \(P_l = p_1p_2...p_l \) be their product, and \(\delta_j = \frac{P_l}{p_j} \). Let \(O_l \) be the 2-orbifold having underlying space the 2-sphere, and two singular points of index \(\delta_j \) for each \(j \in \{1, 2, ..., l\} \). Then we have its orbifold fundamental group presentation

\[
\pi_1(O_l) = \left\langle x_1, x'_1, x_2, x'_2, ..., x_l, x'_l | \prod_{j=1}^l x_j x'_j = 1, x^\delta_j = x'^\delta_j = 1, j \in \{1, 2, ..., l\} \right\rangle.
\]

Now define a homomorphism

\[
\phi : \pi_1(O_l) \to \mathbb{Z}_{P_l} = \langle f | f^{P_l} = 1 \rangle
\]

by

\[
\phi(x_j) = f^{p_j}, \quad \phi(x'_j) = f^{-p_j},
\]

where \(f \) is a generator of the cyclic group \(\mathbb{Z}_{P_l} \) for this moment.

Since \(p_1, p_2, ..., p_l \) are pairwise co-prime, \(\phi \) is surjective by Chinese Remainder Theorem.

Since all torsion subgroups in \(\pi_1(O_l) \) are conjugated to those finite cyclic groups \(\langle x_j \rangle \) and \(\langle x'_j \rangle \), \(j = 1, ..., l \) [Gr], and those \(\langle x_j \rangle \) and \(\langle x'_j \rangle \) inject into \(\mathbb{Z}_{P_l} \) under \(\phi \), we conclude that the kernel of \(\phi \) is torsion free [Ha], and hence the kernel of \(\phi \) is the fundamental group of a surface \(F \). Hence we have a short exact sequence

\[
1 \to \pi_1(F) \to \pi_1(O_l) \to \langle f | f^{P_l} = 1 \rangle \to 1,
\]
where f acts on F as a cyclic group action of order P_l, and we have a cyclic branched cover

$$p: F \to F/f = O_l.$$

Since the orbifold O_l is closed and orientable, the surface F is closed and orientable. There is a one-to-one correspondence between singular points of index δ_j on O_l and the f-orbits on F of length p_j. We conclude that there are l points having the first l primes as their lengths of f-orbits. Noting that the first l primes are pairwise coprime and greater than 1, we have proved Proposition 4.1.

References

[Co] A. Costa, *Embeddable anticonformal automorphisms of Riemann surfaces*. Comment. Math. Helv. 72 (1997), no. 2, 203-215.

[Hu] A. Hurwitz, *Ueber Riemann'sche Flachen mit gegebenen Verzweigungspunkten*. (German) Math. Ann. 39 (1891), no. 1, 1-60.

[FNPT] E. Flapan, R. Naimi, J. Pommersheim, H. Tamvakis, *Topological symmetry groups of graphs embedded in the 3-sphere*. Comment. Math. Helv. 80 (2005), no. 2, 317-354.

[GP] V. Guillemin, A. Pollack, *Differential topology*. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974.

[Ha] W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. Oxford Ser. (2) 17 (1966), 86-97.

[Gr] L. Greenberg, *Finiteness theorems for Fuchsian and Kleinian groups*. Discrete groups and automorphic functions (Proc. Conf., Cambridge, 1975), pp. 199-257. Academic Press, London, 1977.

[Mos] G. D. Mostow, *Equivariant embeddings in Euclidean space*. Ann. of Math. (2) 65 (1957), 432-446.

[Pa] R.S. Palais, *Imbedding of compact, differentiable transformation groups in orthogonal representations*. J. Math. Mech. 6 (1957), 673-678.

[Sc] P. Scott, *The geometries of 3-manifolds*. Bull. London Math. Soc. 15 (1983), no. 5, 401–487.

[WWZZ1] C. Wang, S.C. Wang, Y.M. Zhang, B. Zimmermann, *Extending finite group actions on surfaces over S^3*. Topology Appl. 160 (2013), no. 16, 2088-2103.

[WWZZ2] C. Wang, S.C. Wang, Y.M. Zhang, B. Zimmermann, *Embedding surfaces into S^3 with maximum symmetry*. Groups Geom. Dyn. 9 (2015), no. 4, 1001-1045.

[Wa] Z. Z. Wang, *The Minimal Dimension of a Sphere with an Equivariant Embedding of the Bouquet of g Circles is $2g – 1$*. Discrete & Computational Geometry volume 67, 1257-1265 (2022)

[Zi] B. Zimmermann, *On large groups of symmetries of finite graphs embedded in spheres*. J. Knot Theory Ramifications 27 (2018), no. 3, 1840011, 8 pp.