Neuroprotective role of herbal alternatives in circumventing Alzheimer’s disease through multi-targeting approach - a review

Sunil K Raviab, Balenahalli Narasingappa Rameshb, Shilpa Kijac, Jagadesha Poyya¾, Jyothsna Karanthd, N.G Rajue and Chandrashekhar G Joshi¾

Department of Research & Studies in Biochemistry, Mangalore University, P.G. Centre, Chikka Aluvara, Kodagu, India; Department of Applied Botany, Mangalore University, Mangalagangothri, Mangalore, India; Department of Biotechnology, Government Women’s Science College, Mandya, India; Department of Biotechnology, Karnataka State Open University, Mysore, India

ABSTRACT
Alzheimer’s disease (AD) is a common form of dementia affecting the elderly worldwide. It is a multifactorial neurodegenerative disorder with no known preventive therapy. Many of the drugs used in the treatment of AD, such as galantamine, rivastigmine, and donepezil, have unpleasant side effects, and hence physicians are keen to find alternatives. Research has shown that plants and their phytochemicals can alleviate AD. These plant products can act through various modes, such as inhibition of amyloid β, acetylcholine, and γ-secretase, modulation of antioxidants, and α-secretase activation, which are known to involve in the improvement of brain functions. A recent approach that has garnered the attention of many researchers in designing a drug against AD is the multi-target-directed ligand (MTDL), wherein the same molecule act on multiple targets. Many studies have reported the potential of herbs to act on multiple targets and display biological properties. The current review summarizes the ongoing evidence on the use of herbs and their derived bioactive molecules in the treatment of AD and in relieving disease-associated pathological events. Currently available plant-derived MTDLs for the treatment or slowing down of the progression of AD are also discussed.

Introduction
Alzheimer’s disease (AD) is an irreversible, chronic neurodegenerative disorder characterized by deterioration of cognitive functions and behavioral disturbances [1]. Globally, AD is the most common cause of dementia, affecting approximately 46.8 million people and expected to increase up to 131.5 million by 2050 [2]. The probability of AD aggressively increases with age, more particularly after the age of 65. Thus, age is the primary risk factor for AD development [3]. AD developed after 65 years of age is referred to as ‘sporadic’ (or late-onset), whereas AD developed before 65 is classified as ‘familial’ (or early-onset). Several complex pathogenic pathways are involved in the progression and development of the disease, including plaque formation, inflammatory cascade, oxidative stress, and cholinergic deficit [4]. These cognitive deficits lead to memory-related clinical symptoms, such as loss of episodic and newly learned memories [5].
Acetylcholine- and glutamate-producing neurons are known to be damaged during AD, thereby affecting the synapses associated with them. This is in agreement with the early cognitive symptoms observed in AD [6]. The main factor for the degeneration of neurons is due to the increased activity of cholinesterases (ChEs), which leads to a decrease in acetylcholine (ACh) levels, which in turn stops the neuronal transmission signals [7]. Studies have also established that acetylcholinesterase (AChE) promote Aβ aggregation and a notable increase in the cortical levels of butyrylcholinesterase (BuChE), which is related to the formation of Aβ plaques and neurofibrillary tangles (NFTs) [8–10].

Many natural compounds are known to have neuroprotective effects during AD. A large family of plant isolates has proven to be a modality for treatment by their inhibitory effect on Aβ, cholinesterase, beta, and gamma secretases. Potent activation of alpha secretases by plant products also substantiates the neuroprotective effect. This review gives a detailed insight into the list of plants and their isolates as neuroprotective agents during AD.

Molecular mechanism of AD

The formation of NFTs and senile plaques are the main histopathological hallmarks of AD [11]. The senile plaques contain amyloid-beta (Aβ) peptide, which consists of 37–49 amino acid residues and are formed by the extracellular and transmembrane domains of amyloid precursor protein (APP) [12]. In plaques, the oligomers might be trapped in fibrillar aggregates. Oligomers may be the hazardous Aβ species that contribute to signaling pathway deregulation (Fyn, FAK, GSK3b, and CDK5), causing changes in cytoskeletal and synaptic proteins, as well as synaptic and neural damage [13] (Figure 1). During sporadic AD, APP is cleaved by gamma and beta secretases to form 4 kDa Aβ peptide. The cleavage product has a strong tendency to form aggregates. Aβ

![Figure 1. Formation of neurofibrillary tangles (NFTs) and senile plaques. The senile plaques contain amyloid beta (Aβ) peptide, which consists of 37–49 amino acid residues and are formed by the extracellular and transmembrane domains of amyloid precursor protein (APP). Oligomers may be the hazardous Aβ species that contribute to signaling pathway deregulation (Fyn, FAK, GSK3b, and CDK5), causing changes in cytoskeletal and synaptic proteins, as well as synaptic and neural damage.](image-url)
accumulation has been one of the major pathological events resulting from an imbalance between production and clearance [14]. The Aβ aggregation process initiates by self-assembling of Aβ monomers into low molecular weight oligomers, which in turn results in the formation of high molecular weight oligomers known as soluble aggregation intermediates. These further aggregate to form fibrils and accumulate in the brain [15,16]. It is believed that microglia and astrocytes then mount an inflammatory response to clear the amyloid aggregates, and this inflammation likely causes the destruction of adjacent neurons and their neurites.

Other than plaques, the presence of NFTs is considered another characteristic feature in the neuropathological event of AD [17]. These NFTs are insoluble twisted fibers formed by abnormal hyperphosphorylation of a microtubule-associated protein called ‘tau’. NTF in normal form serves as a microtubule-stabilizing protein and plays a role in intracellular (axonal and vesicular) transport [18]. NFT may interfere with the regular axonal transport of components necessary for proper neuronal function and survival, eventually causing neurons to die. In addition, Aβ is thought to trigger neuronal cell death via controlling apoptosis inducers, generating oxidative stress, and increasing free radical-mediated pathways[11].

Methodology

A detailed literature survey was performed using both offline and online resources. Data were mainly collected from various journal publishers, including Elsevier, Springer Nature, Taylor & Francis, Cambridge University Press, Oxford University Press, BioMed Central, and PLOS (Public Library of Science). The online databases such as Google Scholar, Pubget, Medline, PubMed, EMBASE, Mendeley, ScienceDirect, Scopus, and SpringerLink were also used to retrieve literature. The results were then cross-referred to generate the list of references (up to 2018) cited in this review. The Current review methodically summarizes the neuroprotective effects of phytochemicals in various models. Herbal extracts, bioactive constituents, and herbal formulations were included to provide references in the future.

Natural products in AD

Since time immemorial, natural products have been used as medicine for many ailments. Natural products are molecules with diverse functions and have been the source of most active constituents in medicine [19,20]. They are said to be the most successful basis of drug leads with lesser toxicity [21,22]. Natural products may be derived from plants, animals, or microorganisms. Most herbal medicines are complex and constitute many chemical components, which possess diverse biological and pharmacological activities.

Medicinal plants are nature’s gift that remains unexplored. The active component present in herbal medicine may serve as the basis for preparing synthetic drugs [22]. Plants can synthesize chemical compounds involved in preventing or curing various diseases, including memory dysfunction and age-related disorders. In modern medicine, plants occupy a very significant place as a source of raw material for synthetic drugs [23].

Cholinesterase inhibitors

The important etiological factor in the pathogenesis of memory deficit in AD is the impairment in cholinergic transmission [24]. The inhibition of AChE increases the levels of acetylcholine in the brain and thus improves the cholinergic functions in AD patients 25. Hence, cholinesterase inhibitors are currently used as standard drugs for treating AD. Tacrine was the first AChE inhibitor drug approved for AD treatment [26]. Later, many other AChE inhibitors such as rivastigmine, galantamine, and donepezil were also developed and approved by the
FDA. These drugs alleviate the symptoms but are associated with side effects when used for an extended period [27]. As AD has reached a state of public health burden, the ever-increasing reports of side effects from these synthetic and hybrid drugs have driven the research for a novel and safe AchE inhibitors from plant sources.

Plants continue to be the unvaryingly abundant source of therapeutic drugs for AD treatment because of their AchE inhibitory activity. Several plant extracts of various solvents have been reported to show anticholinesterase activity. Aqueous and methanolic root extracts of *Acacia nilotica* and *Withania somnifera* possessed moderate anticholinesterase activity (IC50 values of 0.079 and 33.38 µg/ml, respectively) [28,29]. Much lesser inhibitory activity was observed in hydroethanolic seed extracts of *Myristica fragrans*, which showed 50% enzyme inhibition at a concentration range between 100 and 150 µg/mL [30]. Also, *Pinus nigra* was used to extracting essential oils possessing 94.4 µg/mL activity [31]. Similarly, different extracts of plants belonging to varied plant families have shown considerable cholinesterase inhibitory activity, which is listed in (Table 1).

Alkaloids derived from various plant extracts show immense potential for AchE inhibitory activity. However, significantly few isolated compounds have been utilized for research and therapeutic purposes. Many isolated compounds from different classes of alkaloids have been considered and tabulated in (Table 2).

γ- and β-secretase inhibitors

Many plant extracts and their derived compounds are found to influence the Aβ production pathways, mainly by interacting with brain enzymes like β- and γ-secretases [112,113]. As explained earlier, both β- and γ-secretases are involved in the synthesis of Aβ. β-secretase cleaves the APP to form a transmembrane C-99 fragment with the N-terminus of the Aβ peptide (Figure 2) followed by the action of γ-secretase, which cleaves C-99 fragment in the transmembrane domain to make the C-terminus of Aβ [112].

In addition to β-APP processing, γ-secretase also plays a vital role in the cleavage of the Notch family of cell-surface receptors, a protein mainly required for transcriptional regulation during neuron development [114]. As a result, the use of γ-secretase inhibitors has provided insights into proteolytic activity and suggests that such inhibition might be a useful strategy for AD therapeutics [115]. A triterpene isolated from *Actaea racemosa* reduced the formation of Aβ toxicity through the modulation of γ-secretase activity. Thus, it suggests that the isolated compound may bind to γ-secretase APP complex, modulating the cleavage of APP and hence lowering the formation of Aβ peptides. 116, demonstrated that the use of green tea polyphenol epigallocatechin-3-gallate (EGCG) inhibited LPS-induced Aβ elevation levels through the suppression of LPS-induced β- and γ-secretase activities [116]. However, the inhibition of Notch protein by γ-secretase inhibitors affects neuronal development, as Notch has multiple substrates that are involved in neuronal development [117]. Hence, β-secretase, also referred to as β-site APP cleaving enzyme 1 (BACE-1), a transmembrane aspartic protease secreted in almost all tissues but present in higher amounts in neurons of the brain [115], is considered as the most promising target for pharmaceutical research on AD, compared to γ-secretase.

α-secretase activators

α-secretase enzyme proteolytically cleaves the APP via the non-amyloidogenic pathway at L688 residue located within the Aβ sequence and thereby preventing the formation of Aβ (Figure 2). The first enzyme for α-secretase was proposed in 1998, when ADAM17, also known as tumor necrosis factor-converting enzyme (TACE), was reported to possess α-secretase activity [118]. Later, ADAM9 and ADAM10
Table 1. Plants with potential AChE inhibitory activity.

Plant Family and Botanical Name	Type of Extract	Plant’s parts	References
Acanthaceae			
Acanthus ebracteatus	MeOH	Aerial	[32]
Andrographis paniculata	H₂O:EtOH	Aerial	[30]
Amaranthaceae			
Salsola oppositifolia	Alkaloids	Aerial	[33]
Salsola soda			
Salsola tragu			
Amaryllidaceae			
Crinum jagus	MeOH	Leaf	[34]
Crinum jagus	MeOH	Bulb	[35]
Crinum bulbispermum			
Hippeastrum barbatum			
Hippeastrum puniceum			
Zephyranthes carinata			
Crinum moorei	MeOH	Bulb	[36]
Sternbergia candida	MeOH, CHCl₃	Root, Bulb	[37]
Anacardiaceae			
Harpephyllum caffrum	MeOH, DCM	Leaf, Stem, bark	[Moy38]
Sclerocarya birrea			
Pistacia atlantica	H₂O	Leaf	[39]
Pistacia lentiscos			
Semecarpus anacardium	MeOH	Seed, Bark	[29]
Spindias mombin	MeOH	Root, Bark	[34]
Araliaceae			
Acanthopanax henryi	MeOH	Leaf	[40]
Eleutherococcus sessiliflorus	EtOH, CHCl₃	Root	[41]
Eleutherococcus gracilistylus			
Eleutherococcus senticosus			
Eleutherococcus setchuenensis			
Emmenopterys henyi			
Eurybia divaricatus			
Asteraceae			
Arnica chamissonis	MeOH, Hexane	Flower	[42]
Artemisia annua	EtOH	Leaf, twig	[43]
Chromolaena tequendamensis	MeOH	Whole plant	[44]
Schistocarpa sinforosi	MeOH	Whole plant	[44]
Pulicaria stephanocarpa	CHCl₃	Leaf	[45]
Caprifoliaceae			
Nardostachys jatamansi	Methanolic	Rhizome	[29]
Scabiosa arenaria	EtOH, Butanol	Fruit, stem, leaf	[29]
Chenopodiaceae			
Atriplex lacinaria	MeOH, CHCl₃, H₂O, Ethyacetate	Whole plant	[47]
Convolvulaceae			
Evalvulus alsinoides	H₂O:EtOH	Whole plant	[30]
Ipomoea asarifolia	MeOH	Leaf	[48]
Elaeocarpaceae			
Aristotelia chilensis	H₂O:EtOH	Leaf	[49]
Ericaceae			
Cephalocroton socotranus	CHCl₃	Bark	[45]
Euphorbia characias	H₂O, EtOH	Leaf, stem	[50]
Jatropha gossypifolia	DCM, MeOH	Stem, bark roots	[51]
Rhododendron luteum	CHCl₃:MeOH (1:1)	Whole plant	[52]
Rhododendron ponticum			
Euphorbiaceae			
Alchornea laxiflora	MeOH	Leaf	[34]
Fabaceae			
Acacia nilotica	H₂O	Root	[28]
Acacia raddiana	H₂O	Bark	[39]

(Continued)
Plant Family and Botanical Name	Type of Extract	Plant's parts	References
Albizia adianthifolia	MeOH, Ethylacetate, CHCl₃ fraction	Leaf	[53]
Albizia procera	MeOH	Bark	[32]
Cassia obtusifolia	EtOH	Seed	[54]
Genista tenera	EtOH	Aerial	[55]
Lathyrus cicero	MeOH	Aerial	[56]
Lathyrus digitatus	EtOH	(Except seed)	
Senna alata	EtOH	Leaf	[48]
Trigonella foenum-graecum	EtOH	Seed	[57]
Fumariaceae			
Fumaria capreolata	CHCl₃:MeOH (1:1)	Whole plant	[52]
Fumaria cilica			
Fumaria judiaca			
Fumaria vailantii			
Hypericaceae			
Hypericum ambysepalum	MeOH	Flower, fruit, seed	[58]
Hypericum humifusum	MeOH	Aerial	[59]
Lamiaceae			
Cyclotrichium niveum	EtOH, DCM	Whole plant	[52]
Hyssopus officinalis	Hexane	Whole plant	[42]
Leonurus sibiricus	MeOH	Aerial	[60]
Mentha longifolia,	EtOH	Leaf	[61]
Mentha x piperita,		Aerial	
Salvia officinalis		Leaf	
Satureja montana,		Aerial	
Teucrium arduini,		Aerial	
Teucrium chamaedrys		Aerial	
Teucriumpolium		Aerial	
Thymus vulgaris		Aerial	
Tsentonis montanum		Aerial	
Mimosa pudica	MeOH	Whole	[32]
Pycnostachys reticulata	MeOH:EtOH (1:1)	Leaf	[62]
Salvia fruticose	DCM	Whole plant	[63]
Salvia millionhiza	H₂O₂, EOH	Root	[64]
Salvia officinalis	EtOH	Whole plant	[27]
Salvia tiliifolia	MeOH	Whole plant	[126]
Stachys guayoniana	MeOH, CHCl₃, Butanol, Ethylacetate	Aerial	[65]
Mentha aquatica		Aerial	
Leguminosae			
Butea superba	MeOH	Root, bark	[32]
Cassia fistula		Root	
Cassia obtusifolia	MeOH	Seed	[66]
Chamaecrista mimosoides	MeOH	Root	[126]
Liliaceae			
Habranthus tubispathus	Alkaloid	Aerial	[67]
Habranthus jamesonii			
Lycopodiaceae			
Huperzia squarrosa	EtOH fraction	Aerial	[68]
Menispermaceae			
Stephania pierrei	EtOH	Tuber	[69]
Stephania suberosa	MeOH	Root	[32]
Tiliacora triandra	CHCl₃:MeOH (1:1)	Root	[29]
Tinospora cordifolia	MeOH	Stem	[29]
Moraceae			
Ficus religiosa	MeOH	Stem, bark	[29]
Morus alba	EtOH, MeOH, H₂O	Aerial	[70]
Streblus asper	MeOH	Seed	[32]

(Continued)
Plant Family and Botanical Name	Type of Extract	Plant's parts	References	
Myristicaceae Myristica fragrans	H2O:EtOH	Seed	[30]	
Myrsinaceae Embelia ribes	Methanolic	Root	[29]	
Myrtaceae Eugenia dysenterica	H2O	Leaf	[71]	
Nymphaeaceae				
Nelumbo nucifera	H2O:EtOH	Rhizome	[30]	
Orchidaceae Vanda roxburghii	Methanol	Root	[72]	
Paeoniaceae Paonia lactiflora	H2O, EtOH	Root	[64]	
Papaveraceae				
Corydalis intermedia	MeOH, H2O	Whole plant,	[73]	
Corydalis solida		Tuber		
Pedaliaceae Harpagophyton procumbens	MeOH	Hairy root	[74]	
Pinaceae Pinus halepensis	EtOH	Needle	[75]	
Pinus nigra	Essential oil	Needle	[31]	
Poaceae Cymbopogon schoenanthus	Hexane, DCM,	Shoot	[76]	
Polypalmaeae Polygala tenuifolia	H2O	Root	[27]	
Olax subscropioidea	H2O	Leaf	[77]	
Securidaca longipendunculata				
Polygonaceae Rheum palmatum	H2O, EtOH	Root, Rizhome	[64]	
Fallopia multiflora	EtOH	Aerial	[78]	
Ruprechtia apetala				
Rosaceae				
Crataegus pinnatifida	EPHF extract	Fruit	[79]	
Rubus coreanus	EtOH	Whole plant	[80]	
Rubiaceae				
Paedaria linearis	MeOH	Whole plant	[32]	
Sarcopodium latifolius	EtOH	Bark	[81]	
Rutaceae				
Aegle marmelos	MeOH	Fruit pulp	[32]	
Ruta graveolens	MeOH, Hexane	Whole plant	[42]	
Sapotaceae				
Mimusops elengi	MeOH	Flower	[32]	
Scrophulariaceae Bacopa Monniera	Ethanol	Whole plant	[82]	
Solanaceae				
Withania somnifera	MeOH	Root	[29]	
Tamaricaceae				
Valerianaceae				
Nardostachys jatamansi	H2O:EtOH, MeOH	Rhizome	[30]	
Zingiberaceae	EtOH	Rhizome	[69]	
Kaempfera parviflora				
Isolated compound	Classification	Plants	Family	References
-------------------	----------------------	-------------------------	-----------------	------------
1-epi-malycorin A	Lycopodium alkaloids	*Phlegmariurus henryi*	Lycopodiaceae	[83]
1-epi-17S-hydroxymalycorin A				
16-hydroxylycodine				
1-epi-17S-hydroxymalycorin A	Steroidal alkaloids	*Buxus macowanii*	Buxaceae	[84]
6α-hydroxyphlegmariurine				
16α-hydroxymacowanitriene				
Macowanamine				
31-hydroxybuxatrienone	Quinoline alkaloids	*Skimmia laureola*	Rutaceae	[Atta-ur 85]
3,4,5,6-tetrahydro-2 H-pyano(3,2-c) quinoline-5-one,				
3-hydroxy-2,2,6-trimethyl-				
7-O-angeloyllycopsamined	Pyrrolizidine alkaloids	*Echium confusum*	Boraginaceae	[39]
7-O-angeloyllycopsamine N-oxide				
Echimid N-oxide,				
Echimid 7-O angeloyltronecine =				
Berberine	ISOquinoline alkaloids	*Coptis Chinensis*	Ranunculaceae	[27]
Palmatine	ISOquinoline alkaloids	*Coptis chinensis*	Ranunculaceae	[86]
Columbamine	ISOquinoline alkaloids	*Coptis chinensis*	Ranunculaceae	[86]
Jatroprhizine	ISOquinoline alkaloids	*Coptis chinensis*	Ranunculaceae	[86]
Coptisine	ISOquinoline alkaloids	*Coptis chinensis*	Ranunculaceae	[86]
Coronarine	ISOquinoline alkaloids	*Coptis chinensis*	Ranunculaceae	[86]
Voacangine	ISOquinoline alkaloids	*Coptis chinensis*	Ranunculaceae	[86]
Voacangine hydroxyindolenine	ISOquinoline alkaloids	*Coptis chinensis*	Ranunculaceae	[86]
Dehydroevodiamine-	Quinazolinocarboline alkaloids	*Evodia rutaecarpa*	Rutaceae	[88]
Fumaricine	ISOquinoline alkaloids	*Fumaria officinalis*	Papaveraceae	[89]
Fumarostrejidine	ISOquinoline alkaloids	*Fumaria officinalis*	Papaveraceae	[89]
Geissospermine	Indole alkaloid	*Geissospermum vellosii*	Apocynaceae	[90]
Hookerianamide H and I	Steroidal alkaloids	*Sarcococca hookeriana*	Buxaceae	[91]
Isotalatazidine hydrate	Diterpenoid alkaloid	*Delphinium denudatum*	Ranunculaceae	[92]
Juliflorine	Pipieridinum alkaloid	*Prosopis juliflora*	Papilionaceae	[93]
Kokusaginine	Furoquinoline Alkald	*Evodia lepta*	Rutaceae	[94]
Melineurine	Furoquinoline Alkald	*Evodia lepta*	Rutaceae	[94]
Lycorine	Pyrralo(de) phenanidine alkaloid	*Narcissus pseudonarcissus*	Amaryllidaceae	[95]
Mulberrofuran G	Benzyl isoquinoline alkaloids	*Morus alba*	Moraceae	[70]
Albanol B	ISOquinoline alkaloids	*Morus alba*	Moraceae	[70]
Kuwanon G	ISOquinoline alkaloids	*Morus alba*	Moraceae	[70]
Berberine	ISOquinoline alkaloids	*Morus alba*	Moraceae	[70]
Physostigmine	Indole alkaloid	*Physostigma venenosum*	Fabaceae	[96]
Rauwolfine C	Indole alkaloids	*Rauwolfia reflexa*	Apocynaceae	[97]
3-methyl-10,11-dimethoxy-6-methoxycarbonyl-β-carboline				
Saligenanamides-C, E and F, Axillarine-C	Steroidal alkaloids	*Sarcococca saligna*	Buxaceae	[91]
Saligcinamidate				
Vaganine-A				
5,6-dehydroasarconidine				
2-hydroxysaligamine-E				
2-hydroxysaligamine-E				
Epipachysamine-D				
Dictyophlebine				
Iso-H-formylichomorphine				
Axillaridine-A				

(Continued)
were also shown to have α-secretase activity [119]. These three proteins belong to the ADAM (a disintegrin and metalloprotease) family. It is reported that mutations in ADAM10 alter the processing of APP and lead to AD by increasing Aβ levels [120]. Thus, a promising yet underestimated approach to overcome AD would be, activating α-secretase processing of βAPP.

Moderate overexpression of ADAM10 in an APP mouse model showed a decreased level of Aβ, and prevented its accumulation. Such
decreased levels of Aβ are found to alleviate cognitive deficits [121,122]. Various studies have corroborated that several drugs currently used in the treatment of AD promote α-secretase activity by activating associated signaling cascades. Thus, it has been considered as one of the best therapeutic approaches in AD [123–125].

Aβ inhibitors

Bioactivity-guided isolation has led to the discovery of novel bioactive compounds from plants, which are useful in preventing Aβ-induced neuronal cells [126]. *In vitro* assays were widely used to assess the activity of isolated compounds. It is observed that phenolic compounds, alkaloids, and glycosides comprise the major part of the isolated compounds with Aβ inhibitory activity. Their antioxidant activity and lipophilicity make it easy for them to cross the blood-brain barrier [126]. A list of compounds with Aβ inhibitory activity is provided in (Table 3 and 4).

Antioxidants in AD

Oxidative stress is a process of ROS generation, which plays a central role in cellular injuries and various clinical disorders, including neurodegen

Figure 2. β- and γ-secretases are involved in the synthesis of Aβ. β-secretase cleaves the APP to form transmembrane C-99 fragment with the N-terminus of the Aβ peptide. This is followed by the action of γ-secretase, which cleaves C-99 fragment in the transmembrane domain to make the C-terminus of Aβ.
Plants	Families	Type of extract	Models or assays	Key mechanism	References
Alpinia galanga	Zingiberaceae	CHCl₃, Hexane, Ethyl acetate fractions	*In vivo* Swiss albino mice	Increased Free radical scavenging activity, Na⁺/K⁺ ATPase activity and exhibit AChE inhibition	[127]
Angelica gigas	Umbelliferae	EtOH	*In vivo* ICR mice	Inhibition of AChE and possesses rich antioxidant activity	[128]
Bacopa monnieri	Plantaginaceae	Ethyl	*In vitro* Primary cortical neurons	Inhibition of amyloid peptide activated intracellular AChE activity and Regulation of neuronal transcription protein	[129]
Bambusae concretio	Gramineae	H₂O	*In vitro* Cortical astrocyte cells	Attenuation of lipid peroxidation product and protection of antioxidant enzymes	[130]
Caesalpinia cristata	Fabaceae	H₂O	*In vitro* ThT and microscopic analysis	Inhibition of Aβ aggregation and disaggregation of preformed fibrils	[131]
Capsicum annum	Solanaceae	MeOH	*In vitro* MC65 and SH-SYSY neuroblastoma cells	Significantly inhibited β-secretase and unveil dis-aggregation of preformed Aβ₄₀ fibrils	[132]
Centella asiatica	Apiaceae	H₂O	*In vitro* PC 12 cells In vivo SXFAD mice	Prevented Aβ-induced decreases in ATP and induced the expression of mitochondrial genes and proteins in both cell lines	[133]
Cinnamomum zeylanicum	Lauracea	H₂O	*In vitro* ThT, PC 12 cells In vivo SXFAD mice	Inhibition of fibril formation and destabilization of pre-formed fibrils, reduction of Aβ deposition	[134]
Crocus sativus	Iridaceae	H₂O:EtOH	*In vitro* ThT, DNA binding shift assay In vivo SXFAD mice	Binding to the hydrophobic regions of the Aβ through the hydrophobic carotene backbone and inhibiting fibril formation Increased Aβ cleavage across the BBB through up-regulation Pgp and LRP1, NEP, and up-regulation of the ApoE-Clearance pathway	[135,136]
Ecklonia cava	Lessoniaceae	Butanol	*In vitro* Primary cortical neurons, HEK293 cells	Exhibit rich antioxidant activity, prevention of Aβ oligomer and fibril formation	[137]
Eleutherococcus senticosus	Araliaceae	Ethyl acetate, Butanol H₂O fractions from the MeOH extract	*In vitro* Primary cortical neurons	Prevention of Aβ₂₅₋₃⁵ induced axonal atrophy	[138]
Ficus macrophylla	Leguminosae	EtOH, Ethylacetate, MeOH fraction,	*In vitro* swAPP-N2a cells	Inhibition of β-secretase and activation of insulin degrading enzyme	[139]
Ganoderma lucidum	Ganodermataceae	H₂O	*In vitro* Primary cortical neurons	Reduction of Aβ-induced synaptotoxicity, inhibition of Aβ-induced DEVD cleavage activity and reduction of the phosphorylation of c-Jun and p38 MAP kinase and c-Jun n-terminal kinase	[140]
Ginkgo biloba	Ginkgoaceae	flavonoids and terpenoids extract (EGb 761)	*In vitro* Hippocampal primary cultured cells	Attenuation of Aβ₂₅₋₃⁵ induced apoptosis	[141]
Glycyrrhiza uralensis	Fabaceae	H₂O	*In vitro* Primary cortical neurons	Suppression of Aβ induced apoptosis and ROS generation	[11]
Grewia tiliaefolia	Tiliaceae	MeOH	*In vitro* ThT, microscopic analysis	Preventing the oligomerization of Aβ₂₅₋₃⁵	[142]

(Continued)
Plants	Families	Type of extract	Models or assays	Key mechanism	References
Houttuynia cordata	Saunuraceae	H₂O	In vitro Primary cortical neurons	Attenuation of Aβ₂₅₋₃₅ induced elevation of intracellular ROS, calcium, caspase-3 activation and mitochondrial membrane disruption	[143]
Humulus japonicus	Cannabaceae	MeOH	In vivo Tg-APP/PS1 mice	Decreased the Aβ and neurofibrillary tangles and also decreased mRNA expression (TNF-α, IL-1β, IL-6) levels	[144]
Hypericum perforatum	Hypericaceae	H₂O:EtOH (1:1)	In vitro Microglial cell line BV2	Attenuation of Aβ-induced ROS generation and membrane fluidity increase	[145,146]
		H₂O	In vivo Aβ143 induced rat		
Lycium barbaryum	Solanaceae	Alkaline extract	In vitro Primary cortical neurons	Attenuation of caspase-3 activity triggered by Aβ and stimulation of the Akt survival pathway	[147]
Melissa officinalis	Magnoliaceae	EtOH	In vivo ICR mice	Inhibition of Aβ₁₋₄₂ induced ROS generation and neuronal cell death	[148]
Mansonnia angustifolia	Geraniaceae	EtOH	In vitro HeLa cells and In vivo in vivo Tg2576 mice	Reduced the level of insoluble Aβ₄₂ in brain regions and increased memory function.	[149]
Paeonia suffruticosa	Paeonaceae	EtOH, MeOH, H₂O	In vitro ThT	Inhibition of fibril formation and destabilization of pre-formed fibrils, Inhibition of Aβ plaque formation	[150]
Piper nigrum	Piperaceae	MeOH	In vivo Aβ₁₋₄₂ induced AD model	improves amyloid beta(1-42)-induced spatial memory impairment by inhibiting oxidative stress in the rat hippocampus	[151]
Pterocarpus erinaceus	Fabaceae	H₂O	In vitro CHO-K1 cells	Inhibition of γ-secretase activity at the γ-site where Aβ is produced	[152]
Psychotropia olacoides	Orlaceaee	EtOH	In vivo CF1 albino mice	Inhibition of Aβ₁₋₄₂-induced cytotoxicity and AChE activity	[153]
Rhodanac acori	Acoraceae	H₂O	In vitro PC12 cells	Inhibition of cytoxic action of Aβ₁₋₄₀	[154]
Salvia sahendica	Lamiaceae	MeOH	In vivo Aβ micro injected rats	Decrease in levels of Ca²⁺/cAMP-response element binding	[155]
Satureja bachtiarica	Lamiaceae	MeOH	In vivo Aβ microinjected rat model	Improved Aβ induced cognitive impairment and cholinergic loss and decreased oxidative stress	[156]
Schisandra chinensis	Schisandraceae	Hexane: EtOH (9:1)	In vivo ICR mice	Inhibition of AChE increasing levels of glutathione in cortex and hippocampus and reduction in the levels of β-secretase	[157]
Smilacis chinensis	Liliaceae	MeOH	In vivo Rat cerebral cortical neurons	Blockage of (Ca²⁺) increase, glutamate release, ROS generation and caspase-3 activation	[158]
Trigonella foenum-graecum	Fabaceae	Seed powder	In vivo Aβ143 induced rat model	Suppresses aluminium overload, Aβ accumulation, and apoptosis through activating Aβ/GSK3β pathway	[159]
Uncaria rhynchophylla	Rubiaceae	H₂O	In vitro ThT	Inhibition of Aβ fibril formation	[160]
Zingiber officinale	Zingiberaceae	Seed	In vitro ThT and primary hippocampal neuron	Prevented the formation of oligomers and dis-aggregated the pre formed fibrils. Also, inhibited AChE activity and increased Aβ induced cell survival	[161]

(Continued)
Plants	Families	Type of extract	Models or assays	Key mechanism	References
Ziziphus mucronata	Rhamnaceae	EtOH	In vitro neuroblastoma SH-SY5Y cells	Attenuated the effects of Aβ induced neuronal cell death	[162]
Lannea schweinfurthii	Anacardiaceae Combretaceae				
Terminalia sericea	Amaryllidaceae				
Cinnum bulbispernum					
Compounds	Plants and Family	Models/assays	Key mechanism	References	
--------------------	-----------------------	----------------------------	---	------------	
Alkaloid Berberine	*Coptis chinensis*	*in vivo* TgCRND8 mice	N2a-SwedAPP cells regulation of the processing of amyloid precursor protein.	[163]	
Caffeine	*Coffee arabica*	*in vitro* neuroblastoma 2a cells *in vivo* APP transgenic mice	Reduces levels of Aβ in neuroblastoma 2a cells stably expressing human Swedish mutant Prevents and reverses cognitive impairment in young and aged Swedish mutant APP transgenic mice.	[95,164]	
Dehydroevodiamine	*Evodia rutaecarpa*	*in vivo* Aβ1-42 infused rat model	Rescued Aβ induced neurotoxicity decreased ROS, and intracellular calcium levels	[88]	
Huperzine A	*Huperzia serrata*	*in vitro* Sprague Dawley rats	Inhibition of Aβ induced down regulation of APP secretion and protein kinase C	[165]	
Nicotine	*Nicotiana tabacum*	*in vivo* mice model	Enhances cholinergic function, and it binds to Aβ and blocks its aggregation.	[166]	
Rhynchophylline	*Uncaria rhynchophylla*	*in vitro* PC12 cells	Rescue PC12 cells from cell death after Aβ challenge. Inhibits caspase-3, increases the ratio of Bcl-2/Bax protein expression, and stabilizes mitochondrial membrane potential. Also, reduction of Ca^{2+} overload and tau protein hyperphosphorylation.	[167,168]	
Tetrandrine	*Stephania tetrandra*	*in vivo* Sprague Dawley rats	Inhibition of NF-κB activity and downregulation of IL-1β and TNF-α expression.	[169]	
Vincamine	*Vinca minor*	*in vitro* PC12 cells	Protects Aβ25-35 induced cell death via upregulation of SOD and activation of PI3K/Akt pathway.	[170]	
Z-ligustilide	*Umbellifers*	*in vitro* Aβ induced PC12 and SH-SYSY human neuroblastoma cells	Protects against Aβ fibrils-induced neurotoxicity via inhibition of p38 and activation of PI3-K/Akt signaling pathways.	[171]	
Amino acids	*Camellia sinensis*	*in vivo* S1cICR mice	Suppression of extracellular signal-regulated kinase/p38 and NF-κB induced by Aβ1-42 and prevents lipid damage in the brain.	[172]	
L-Theanine	(Theaceae)				
Cannabinoids	*Cannabis sativa*	*in vitro* PC12 cells	Attenuation of phosphorylated form of p38 MAP kinase and NF-κB activation.	[173]	
Cannabidiol	(Cannabaceae)				
Carotenoids	*Crocus sativus*	*in vitro* ThT, DNA binding shift assay	Inhibition of Aβ aggregation and fibrillogenesis.	[135]	
Dimethylcrocetin	(Iridaceae)				
Fucoxanthin	*Sargassum horneri*	*in vitro* ThT and microsopical studies *in vivo* Aβ1-42 microinjected mice	Effectively inhibited Aβ assembly, Reversed cognitive impairments through inhibiting oxidative stress, increasing BDNF expression and elevating cholinergic system.	[174]	
Flavonoids	*Smilacis chiniae*	*in vitro* Primary cortical neurons	Reduced increase in (Ca2+) and inhibition of glutamate release, caspase-3 activity and ROS generation.	[175]	

(Continued)
Table 4. (Continued).

Compounds	Plants and Family	Models/assays	Key mechanism	References
7-Demethylageconylavone A, Tricin, Ageconylavone A, Corylin, Nectandrin B, 4-Ketopinoresinoside	*Eragrostis ferruginea* (Poaceae)	PC12 cells	Protects Aβ induced toxicity	[176]
Aceragenin A	*Acer maximowiczianum* (Sapindaceae)	*In vitro* HT22 cells	Prevents glutamate-induced oxidative damage. HO-1 induction through PI3K/Akt and Nrf2 pathways	[177]
Apigenin	*Elsholtzia rugulosa* (Lamiaceae)	*In vitro* APPsw cells	Attenuation of intracellular ROS generation, preserved mitochondrial function and regulation of apoptotic pathways	[178]
Biochanin A	*Trifolium pretense* (Fabaceae)	PC12 cells	Protective effect against Aβ25–35 and attenuated PC12 cell injury and apoptosis by preventing mitochondrial dysfunction. Also, estoration of Bcl-2/Bax and Bcl-xl/Bax ratio.	[179]
Caffeic acid	*Solanum tuberosum* (Solanaceae)	*In vitro* PC12 cells	Reduced levels of intracellular calcium and tau phosphorylation	[180]
Catechin	*Hypericum perforatum* (Hypericaceae)	*In vitro* Microglial cell line BV2, N11 cells	Reduction of Aβ induced ROS generation and increase of membrane fluidity	[146]
Chlorogenic acid		PC12 cells	Attenuates Aβ-induced neurotoxicity by reducing apoptotic effect and inhibiting calcium influx by Aβ	[181]
Curcumin	*Curcuma longa* (Zingiberaceae)	*In vivo* APPswe/PS1dE9dtg mice	Reduced the expressions of hippocampal Aβ40, Aβ42 and ADDLs in brains	[182]
Decursin	*Angelica gigas* (Apiaceae)	PC12 cells	Significantly inhibited Aβ25–35-induced cytotoxicity and apoptosis	[183]
Ellagic acid	*Rubus idaeus* (Rosaceae)	*In vivo* Aβ25–35 microinjected rats	Atenuated oxidative stress and modulation of NF-κB/Nrf2/TLR4 signaling pathway.	[184]
Emodin	*Polygonum cuspidatum* (Polygonaceae)	*In vitro* Cultured cortical neurons	Up regulation of B-cell lymphoma-2, activation of ER/P13 K/Akt pathway and inhibition of JNK1/2 phosphorylation	[83]
Epicatechin	*Hypericum perforatum* (Hypericaceae)	*In vitro* Microglial cell line BV2, N11 Cells	Inhibition of Aβ induced ROS generation and increase of membrane fluidity	[146]
Epigallocatechin-3-gallate	*Camellia sinensis* (Theaceae)	*In vivo* ICR mice	Attenuation of LPS induced β- and γ-secretase activity, expression of inflammatory proteins, inducible cyclooxygenase-2 and nitric oxide synthetase	[116]
Eugenol	*Rhizoma aconi* (Anaceae)	*In vitro* PC12 cells	Inhibition of Aβ induced Ca2+ intake	[154]
-Viniferin	*Vitis vinifera* (Vitaceae)	*In vitro* PC12 cells	ROS Scavenging activity and inhibition of Aβ fibrilization	[185]
Ferulic acid		PSAPP mouse model	Significantly decreased Aβ production and reduced amyloidogenic APP proteolysis. Also acts as β-secretase modulators.	[186]
Compounds	Plants and Family	Models/assays	Key mechanism	References
--------------------	----------------------------	---------------------	---	------------
Gallic acid	*Sanguisorba officinalis* (Rosaceae)	*In vitro* Primary cortical neurons	Attenuation of Aβ25–35 induced elevation of cytosolic Ca²⁺ concentration, ROS and glutamate release	[187]
Gingerol	*Zingiber officinalis* (Zingiberaceae)	*In vitro* SH-SYSY human neuroblastoma cells	Attenuation of intracellular ROS and/or reactive nitrogen species and subsequent oxidative and/or nitrosative damages	[181]
Isofraxidin	*Eleutherococcus senticosus* (Analiaceae)	*In vitro* Primary cortical neurons	Prevention of Aβ25–35 induced axonal and dendritic atrophy	[138]
Justicidin A	*Mansonia angustifolia* (Geraniaceae)	*In vitro* HeLa cells	Decreased formation of Aβ in APPsw-transfected cells	[149]
Luteolin	*Elsholtzia rugulosa* (Lamiaceae)	*In vitro* SH-SYSY human neuroblastoma cells	Suppression of Aβ protein precursor expression, regulation of redox imbalance and attenuation of caspase family related apoptosis	[188]
Methyl 3,4-Dihydroxybenzoate	*Kalimeris indica* (Asteraceae)	*In vitro* SH-SYSY human neuroblastoma cells	Attenuate neuronal cell death, reduce oxidative stress and inhibit apoptosis in cells.	[189]
Nobiletin	*Citrus depressa* (Rutaceae)	*In vivo* APP-SL 7–5 transgenic Mice	Increased extracellular signal regulated kinase phosphorylation and attenuation of Aβ-induced inflammation	[190]
Oroxylin A	*Scutellaria baicalensis* (Lamiaceae)	*In vivo* ICR mice	Suppression of Aβ25–35 induced astrocyte and microglia activation, iNOS expression and lipid peroxidation	[191]
Paeoniflorin	*Paeoniae alba* (Paeoniaceae)	PC12 cells	Attenuated neuronal cell death induced by Aβ25–35 via preventing mitochondrial dysfunction, increased cytochrome c as well as caspase 3 and 9 activity	[192]
p-Coumaric acid	*Corni fructus* (Cornaceae)	PC12 cells	Attenuated Aβ25–35 induced toxicity via NF-κB signaling pathway	[193]
Penta-o-gallyl-beta-D glucopyranose	*Paeonia suffruticosa* (Paeoniaceae)	*In vitro* ThT, and neuroblastoma SK-N-SH cells *In vivo* Transgenic 2576 mice	Inhibition of oligomer and fibril formation from monomer and destabilization of pre-formed fibrils Inhibition of Aβ production in the rat brain	[150]
Phenolics				
Pomiferin	*Ficus macrophylla* (Moraceae)	*In vitro* swAPP-N2a cells	Modification of Aβ accumulation by activation of insulin degrading enzyme	[139]
Puerarin	*Pueraria lobata* (Fabaceae)	PC12 cells	Protect against Abeta25–35 induced neuronal cell death. Also, found to increase the Bcl-2/Bax ratio and reduce caspase-3 activation	[194]
Rosmarinic acid	*Salvia officinalis* (Lamiaceae)	*In vitro* PC12 cells	Inhibition of Aβ-induced ROS formation, lipid peroxidation, DNA fragmentation, caspase-3 activation and tau protein hyperphosphorylation	[195]
4-O-methylhonokiol	*Melissa officinalis* (Lamiaceae)	*In vivo* ICR mice, *In vitro* PC 12 cells	Inhibition of Aβ1–42 induced ROS generation and neuronal cell death. Also attenuated the formation of Aβ aggregation/fibrillization	[148]
Rutin	*Ginkgo biloba* (Ginkgoaceae)	*In vitro* SH-SYSY human neuroblastoma cells	Inhibit Aβ42 fibrillization and attenuate Aβ42-induced cytotoxicity dose dependently	[196]
Salvianolic acid B	*Salvia miltiorrhiza* (Lamiaceae)	*In vivo* ICR mice	Reduced levels of Aβ25–35 induced nitric oxide synthase, cyclooxygenase-2 expression and lipid peroxidation product	[197]

(Continued)
Compounds	Plants and Family	Models/assays	Key mechanism	References
Silybinin	*Silybum marianum* (Asteraceae)	*In vitro* SH-SYSY human neurobloma cells	Prevention of oxidative damage in the hippocampus, Inhibition of Aβ aggregation and attenuation of Aβ-induced H$_2$O$_2$ Production	[198,199]
Sulfuretin	*Albizia julibrissin* (Fabaceae)	*In vitro* SH-SYSY human neurobloma cells	Protection against Aβ induced neurotoxicity. nuclear factor erythroid 2-related factor 2 (Nrf2), a downstream target of PI3K/Akt	[200]
Tannic acid	*Plantago Lanceolata* (Plantaginaceae)	*In vitro* PSAPP mouse model	Significantly reduced both Aβ$_{40}$ and Aβ$_{42}$ production and inhibited β-Secretase activity.	[186]
α-Mangostin	*Garcinia mangostana* (Clusiaceae)	*In vitro* primary cortical neurons	Reduction in the Aβ production via inhibiting β-secretase γ-secretase	[201]
Saponins				
Akebia saponin B	*Dendrocalamus asper* (Poaceae)	*In vitro* PC12 cells	Inhibition of excessive Ca$^{2+}$ influx, reduction of LDH leakage and prevention of loss of cell viability	[202]
Cotalinoside A	*Polaskia chichipe* (Cactaceae)	*In vitro* SH-SYSY human neurobloma cells	Inhibited Aβ aggregation in Aβ$_{40}$ and Aβ$_{42}$	[203]
Chikusetsusaponin V				
Sugars				
Bajjiasu (β-D-fructofuranosyl (2→2) β-D-fructofuranosyl)	*Marinda officinalis* (Rubiaceae)	PC12 cells	Neuroprotective against Aβ$_{25–35}$ induced neurotoxicity in PC12 cells, likely by protecting against oxidative stress and ensuing apoptosis likely by expression levels of p21, CDK4, E2F1, Bax, NF-jB p65, and caspase-3	[204]
Fucoidan	*Laminaria japonica* (Laminariaceae)	*In vivo* Sprague-Dawley rats	Decrease in oxidative stress and inhibition of acetylcholinesterase	[205]
α-D-(1→4)-glucan	*Loniceria japonica* (Caprifoliaceae)	*In vitro* TH and human neurobloma cells	Inhibited Aβ42 aggregation, Also, attenuate the cytotoxicity induced by Aβ42 aggregation in cell type.	[206]
Steroids				
Acteoside				
Eleutherococcus senticosus (Atalilaeae)	*Verbascum sinuatum* (Scrophulariaceae)	*In vitro* human neurobloma cells	Modulation of the apoptotic signal pathway via Bcl-2 family, caspase-3 cytochrome c inhibition of ROS production	[207]
Eleutherococcus senticosus (Atalilaeae)	*Eleutherococcus senticosus* (Atalilaeae)	*In vitro* Primary cortical neurons	Prevention of Aβ(25–35) induced axonal and dendritic atrophy	[138]
Ginkgolide				
Rhaponticin	*Panax ginseng* (Araliaceae)	*In vitro* PC12 cells	Reduction of Aβ-induced cell death	[208]
Rhamnoligoside	*Rhizome rhei* (Polygonaceae)	*In vitro* IMR-32 cells	Reduction of the pro-apoptotic Bax/Bax homodimers through the formation of Bcl-2/Bax heterodimers	[209]
Salidroside	*Rhodiola rosea* (Crassulaceae)	*In vitro* SH-SYSY human neurobloma cells	Induction of antioxidant enzymes, downregulation of pro-apoptotic protein Bax and upregulation of anti-apoptotic protein Bcl-extra large	[194]
Withanamide C	*Withania somnifera* (Solanaceae)	*In vitro* PC12 cells	Inhibition of free radical generation and fibril formation	[210]

(Continued)
Compounds	Plants and Family	Models/assays	Key mechanism	References
Xylocoside G	*Itoa orientalis* (Flacourtiaceae)	*In vitro* SH-SYSY human neuroblastoma cells	Downregulation of cyclooxygenase-2, attenuation of release of inflammatory factors and repression of caspase-3 activation	[211]
Terpenoids				
Alantolactone	*Inula helenium* (Asteraceae)	*In vitro* cortical neurons	Attenuated intracellular ROS and superoxide anion in Aβ25−35 induced cortical neurons. Reversed cognitive deficit induced by scopolamine	[212]
Isoalantolactone		*In vivo* scopolamine induced Nrf2−/− mice		
Carnosic acid	*Rosmarinus officinalis* (Lamiaceae)	Aβ induced toxicity rats	Increased the learning and behavior and increased healthy neurons in CA region in brain	[213]
Cryptotanshinone	*Salvia miltiorrhiza* (Lamiaceae)	*In vivo* APP/PS1 transgenic mice	Swe/APP cortical neurons increased release of sAPP and reduction in levels of Aβ	[214]
Eugenol	*Acorus calamus* (Acoraceae)	*In vitro* PC12 cells	Inhibition of Aβ-induced Ca²⁺ intake	[154]
erative diseases [215]. The brain cells are continuously exposed to a surplus of free radicals, which leads to oxidative stress. Thus, ROS-induced oxidative stress in the brain is one of the most common etiologies of neurodegenerative disorders, including AD [216,217]. The oxidative stress not only mediates neurotoxicity induced by Aβ, but also enhances the production of Aβ [218]. Thus, oxidative stress is a prime contributing factor for AD development, and antioxidants can be considered therapeutic approaches.

MTDL: A new therapeutic approach for AD

For 15 years, AD had been treated symptomatically, and the therapeutic approaches are of modest efficacy [219]. The approved drugs fall into two categories: AChE inhibitors and N-methyl D-aspartate (NMDA) receptor antagonists, with four and one drug in each group, respectively [220,221]. These cholinergic drugs increased cholinergic system deficiency by inhibiting the AChE enzyme, which degrades acetylcholine. One of the important drugs belonging to this class is donepezil. Many evidence infers that AChE inhibition reinstates the cholinergic system and mediates the disease progression [222].

On the other hand, the excessive NMDA glutamate receptor activity observed in AD was inhibited by a low-affinity, non-competitive and open channel blocker, memantine, which is frequently used with AChE inhibitors [219]. These drugs are insufficient for AD therapy, and this warrants more research towards finding drugs against AD. 223, suggested that identification of Aβ or tau proteins as a target in AD created two groups of researchers, referred to as ‘baptists’ and ‘tausists’ [223]. However, both these groups failed to develop the potential drugs which can cure the disease. Moreover, along with Aβ, antagonistic AChE also targets other aspects of AD.

Over the past nine decades, researchers have been targeting one factor at a time, which did not result in any drug to cure AD. Efficient pharmacotherapy may require simultaneous action on several targets involved in its pathogenesis due to the complexity of AD. Such effects may be achieved by administering a drug cocktail or a multicomponent drug. Besides AD, other neurological disorders such as depression, allergies, hypertension, schizophrenia, inflammation, and metabolic diseases can also be treated by this combination of drugs [224]. But, this approach carries the risk of potentially hazardous drug-drug interactions caused by specific pharmacokinetic and pharmacodynamic properties of individual components. It would be ideal if a single molecule could simultaneously act on multiple targets with greater efficacy and safety profile. In 2005, Morphy and Rankovic proposed this innovative strategy to develop MTDLs as potential drug candidates. This approach can be more relevant and practical since AD is a complex neurological disorder with multiple causative factors.

Further, to reduce the side effects, many reports suggest using herbal alternatives to enhance the efficacy of the therapy in the future [225]. Thus, identifying novel pharmacological neuroprotective MTDLs from plants is the new hope for treating AD. These natural products can simultaneously act on multiple targets associated with AD (enhance α-secretase activity; decrease β- and γ-secretase activity; inhibit Aβ; prevent oxidative stress and inflammation). Some plant products possessing multiple targets against AD are presented in tabulated in Table 5. The summary of the role of plant extracts and their phytochemicals in circumventing AD is represented in Figure 3.

Conclusion and prospects

Natural products have tremendous potential to act against AD and have given hope to the scientific fraternity as sources of drugs. Though the cause of AD is not clearly understood, natural products with multiple activities like AChE inhibition, NMDAR antagonist, antioxidant ability, amyloid inhibition, and anti-inflammation have the potential to be used as drugs. The healing power of culinary herbs and medicinal plants
Table 5. Plant products with multiple targets against AD.

Compounds	Mechanisms	References
Asiatic acid	BACE-1 inhibitor, anti-inflammatory, anti-apoptotic, kinase modulator, α-secretase inhibitor	[226–228]
Berberine	IMAO, anti-neuroinflammatory, cholesterol regulator, insulin regulator	[229,230]
Curcumin	Anti-inflammatory, BACE-1 inhibitor, tau dimerization inhibitor, NMDA receptor modulator (antagonistic), α-secretase inhibitor, metal chelator	[231–236]
Enscalin	Serotonin 5-HT1A agonist, NMDA receptor modulator (antag.), dopamine D2 receptor antagonist	[237,238]
Epigallocatechin gallate	BACE-1 inhibitor, α-secretase inhibitor, kinase modulator, metal chelator, α-synuclein inhibitor, anti-inflammatory	[239–242]
Ferulic acid	BACE-1 inhibitor, protective against PSEN1 expression	[186,243,244]
Honokiol, Magnolol	Anti-apoptotic, neuroprotective	[245]
Myricetin	Anti-neuroinflammatory, NMDA receptor modulator, BACE-1 inhibitor	[246,247]
Nicotine	Adenosine A2 receptor antagonist, IMAO-B	[230]
Osmotin	BACE-1 expression, phosphorylation of p-PI3K, p-Akt and p-GSK3β	[248,249]
Quercetin	Inhibitors of NF-κB induced cytokine production, potential anti-AChE activity	[71,250]
Resveratrol	SIRT1-ROCK1 signaling pathway regulatoBACE-1 in, hibitor, apoptosis modulator, anti-inflammatory	[251; 236, 252–254]
Tannic acid	BACE-1 inhibitor, apoptosis modulator, anti-inflammatory	[255]
Vincamine	SOD and activation of PBK/Akt pathway, brain circulation modulator, voltage Na+ channel modulator	[170]
has attracted the researcher’s attention to study natural products as a potentially valuable resource for drug discovery against AD. Several natural products are used alone or in combination with some other neuroprotective agents to enhance memory and cognitive dysfunction and prevent AD.

Theoretically, phytochemical-based treatments against cognitive deficit could prove beneficial in clinical trials on humans due to their low toxicity and high bioavailability. The use of recent pharmaceutical technologies and developments in medicinal chemistry is to design novel drugs based on natural templates, which act on multiple targets, opens up a new window to using natural products in therapeutics against AD.

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

[1] Christidi F, Migliaccio R, Santamaría-García H, et al. Social cognition dysfunctions in neurodegenerative diseases: neuroanatomical correlates and clinical implications. Behav Neurol. 2018;2018:1849794.
[2] Więckowska A, Kolaczkowski M, Bucki A, et al. Novel multi-target-directed ligands for Alzheimer’s disease: combining cholinesterase inhibitors and 5-HT6 receptor antagonists. Design, synthesis and biological evaluation. Eur J Med Chem. 2016;124:63–81.

[3] Guerreiro R, Bras J. The age factor in Alzheimer’s disease. Genome Med. 2015;7(1):106.

[4] Münch G, Schinzel R, Losce C, et al. Alzheimer’s disease – synergistic effects of glucose deficit, oxidative stress and advanced glycation end-products. J Neural Transm. 1998;105(4):439–461. DOI:10.1007/s007020050069.

[5] LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci. 2007;8(7):499–509.

[6] Kandimala R, Reddy PH. Therapeutics of neurotransmitters in Alzheimer’s Disease. J Alzheimers Dis. 2017;57(4):1049–1069.

[7] Colovic MB, Krstic DZ, Lazarevic-Pasti TD, et al. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropsychopharmacol. 2013;11(3):315–335. DOI:10.2174/1570159X1131103006.

[8] Alvarez A, Opazo C, Alarcón R, et al. Acetylcholinesterase promotes the aggregation of amyloid-beta-peptide fragments by forming a complex with the growing fibrils. J Mol Biol. 1997;272(3):348–361. DOI:10.1006/jmbi.1997.1245.

[9] Darvesh S, Cash MK, Reid GA, et al. Butyrylcholinesterase is associated with β-amyloid plaques in the transgenic APPSWE/PSEN1ΔE9 mouse model of Alzheimer disease. J Neuropathol Exp Neurol. 2012;71(1):2–14. DOI:10.1097/NEN.Ob013e31823cc7a6.

[10] Inestrosa NC, Alvarez A, Pérez CA, et al. Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron. 1996;16(4):881–891. DOI:10.1016/0896-6273(96)80108-7.

[11] Ahn JY, Kim S, Jung SE, et al. Effect of licorice (Glycyrrhiza uralensis fisch.) on amyloid-β-induced neurotoxicity in PC12 cells. Food Sci Biotechnol. 2010;19(5):1391–1395. DOI:10.1007/s10068-010-0198-4.

[12] Chen GF, Xu TH, Yan Y, et al. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin. 2017;38(9):1205–1235. DOI:10.1038/aps.2017.28.

[13] Crews L, Masliah E. Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum Mol Genet. 2010;19(R1):R12–20.

[14] Selkoe DJ, Hardy J, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8(6):595–608.

[15] Morphy R, Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem. 2005;48(21):6523–6543.

[16] Moreira PI, Carvalho C, Zhu X, et al. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta. 2010;1802(1):2–10. DOI:10.1016/j.bbadis.2009.10.006.

[17] Ittner LM, Ke YD, Delerue F, et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell. 2010;142(3):387–397. DOI:10.1016/j.cell.2010.06.036.

[18] Mietelska-Porowska A, Wasik U, Goras M, et al. Protein modifications and interactions: their role in function and dysfunction. Int J Mol Sci. 2014;15(3):4671–4713. DOI:10.3390/ijms15034671.

[19] Butler MS. Natural products to drugs: natural product-derived compounds in clinical trials. Nat Prod Rep. 2008;25(3):475–516.

[20] Sengupta T, Vinayagam J, Singh R, et al. Plant-derived natural products for Parkinson’s disease therapy. Adv Neurobiol. 2016;12:415–496.

[21] Harvey A. Natural products in drug discovery. Drug Discov Today. 2008;13(19–20):894–901.

[22] Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. J Nat Prod. 2007;70(3):461–477.

[23] Prakash S, Jain A. Antifungal activity and preliminary phytochemical studies of leaf extract of Solanum nigrum Linn. Int J Pharm Sci. 2011;3:352–355.

[24] Nampoothiri M, John J, Kumar N, et al. Modulatory role of Simvastatin against aluminium chloride-induced behavioural and biochemical changes in rats. Behav Neurol. 2015;2015:1–9.

[25] Murray AP, Faraoni MB, Castro MJ, Alza NP, and Cavallaro V. Natural AChE inhibitors from plants and their contribution to Alzheimer’s disease therapy. Curr. Neuropsychopharmacol. 2013;1;11(4):388–413.

[26] Ved HS, Best JM, and Dave JR. Comparative inhibition of acetylcholinesterase by Tacrine, Physostigmine and Huperzine in the adult rat brain. In Enzymes of the Cholinesterase Family, 1995 pp. 477–478. Boston, MA: Springer.
[27] Howes MJR, Perry NSL, Houghton PJ. Plants with traditional uses and activities, relevant to the management of Alzheimer’s disease and other cognitive disorders. Phytother Res PTR. 2003;17(1):1–18.

[28] Crowch CM, Okello EJ. Kinetics of acetylcholinesterase inhibitory activities by aqueous extracts of Accacia nilotica (L.) and Rhhamnus prinoides (L’Her.). Afr J Pharm Pharmacol. 2009. [accessed May 4, 2020]. https://eprint.ncl.ac.uk/153908.

[29] Vinutha B, Prashanth D, Salma K, et al. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J Ethnopharmacol. 2007;109(2):359–363. DOI:10.1016/j.jep.2006.08.014.

[30] Mukherjee PK, Kumar V, Houghton PJ. Screening of Indian medicinal plants for acetylcholinesterase inhibitory activity. Phytother Res. 2007;21(12):1142–1145.

[31] Bonesi M, Menichini F, Tundis R, et al. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of Pinus species essential oils and their constituents. J Enzyme Inhib Med Chem. 2010;25(5):622–628. DOI:10.3109/1475636903389856.

[32] Ingkaninan K, Temkitthawon P, Chuenchom K, et al. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J Ethnopharmacol. 2003;89(2–3):261–264. DOI:10.1016/S0378-8741(03)00243-2.

[33] Tundis R, Menichini F, Conforti F, et al. A potential role of alkaloid extracts from Salsola species (Chenopodiaceae) in the treatment of Alzheimer’s disease. J Enzyme Inhib Med Chem. 2009;24(3):818–824. DOI:10.1080/14756360802399662.

[34] Elufoye TO, Obuotor EM, Sennuga AT, et al. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some selected Nigerian medicinal plants. Rev Bras Farmacogn. 2010;20(4):472–477. DOI:10.1590/S0102-695X2010000400002.

[35] Cortes N, Posada-Duque RA, and Alvarez R, et al. Neuroprotective activity and acetylcholinesterase inhibition of five Amaryllidaceae species: a comparative study. Life Sci. 2015 Feb 1;122:42–50.

[36] Fawole OA, Amoo SO, Ndhlala AR, et al. Anti-inflammatory, anticholinesterase, antioxidant and phytochemical properties of medicinal plants used for pain-related ailments in South Africa. J Ethnopharmacol. 2010;127(2):235–241. DOI:10.1016/j.jep.2009.11.015.

[37] Haznedaroglu MZ, Gokce G. Comparison of anti-acetylcholinesterase activity of bulb and leaf extracts of Sternbergia candida Mathew & T. Baytop. Acta Biol Hung. 2014;65(4):396–404.

[38] Moyo M, Ndhlala AR, Finnie JF, et al. Phenolic composition, antioxidant and acetylcholinesterase inhibitory activities of Sclerocarya birrea and Harpephyllum caffrum (Anacardiaceae) extracts. Food Chem. 2010;123(1):69–76. DOI:10.1016/j.foodchem.2010.03.130.

[39] Benamar H, Tomassini L, Venditti A, et al. Acetylcholinesterase inhibitory activity of pyrrolizidine alkaloids from Echium confusum Coincy. Nat Prod Res. 2017;31(11):1277–1285.

[40] Zhang XD, Liu XQ, Kim YH, et al. Chemical constituents and their acetyl cholinesterase inhibitory and antioxidant activities from leaves of Acanthopanax henryi: potential complementary source against Alzheimer’s disease. Arch Pharm Res. 2014;37(5):606–616. DOI:10.1007/s12272-013-0252-x.

[41] Zaluski D, Kuźniewski R. In vitro Anti-AChE, Anti-BuChE, and Antioxidant Activity of 12 extracts of Eleutherococcus species. Oxid Med Cell Longev. 2016;2016:4135135.

[42] Wszelaki N, Kucian A, Kiss AK. Screening of traditional European herbal medicines for acetylcholinesterase and butyrylcholinesterase inhibitory activity. Acta Pharm Zagreb Croat. 2010;60(1):119–128.

[43] Chougouo RDK, Nguekeu YMM, Dzoyem JP, et al. Anti-inflammatory and acetylcholinesterase activity of extract, fractions and five compounds isolated from the leaves and twigs of Artemisia annua growing in Cameroon. SpringerPlus. 2016;5(1):1525.

[44] Niño J, Hernández JA, Correa YM, et al. In vitro inhibition of acetylcholinesterase by crude plant extracts from Colombian flora. Mem Inst Oswaldo Cruz. 2006;101(7):783–785. DOI:10.1590/S0070-02762006000700013.

[45] Bakhtha H, Awadhali NA, Arnold N, et al. Anticholinesterase activity of endemic plant extracts from Soqatra. Afr J Tradit Complement Altern Med. 2011;8(3):296–299. DOI:10.4314/ajtcam.v8i3.65292.

[46] Besbes Hilla M, Omri A, Ben Jannet H, et al. Phenolic composition, antioxidant and anti-acetylcholinesterase activities of the
[47] Kamal Z, Ullah F, and Ayaz M, et al. Anticholinesterase and antioxidant investigations of crude extracts, subsequent fractions, saponins and flavonoids of atriplex laciniata L.: potential effectiveness in Alzheimer’s and other neurological disorders. Biol Res. 2015 Dec;48(1):21. DOI:10.1186/s40465-015-0011-1.

[48] Feitosa CM, Freitas RM, Luz NNN, et al. Acetylcholinesterase inhibition by somes promising Brazilian medicinal plants. Braz J Biol Rev Brasileira Biol. 2011;71(3):783–789.

[49] Cespedes CL, Balbontin C, Avila JG, et al. Inhibition on cholinesterase and tyrosinase by alkaldoids and phenolics from Aristotelia chilensis leaves. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2017;109(Pt 2):984–995. DOI:10.1016/j.jftc.2017.05.009.

[50] Pisano MB, Cosentino S, Viale S, et al. Biological Activities of aerial parts Extracts of Euphorbia characias. BioMed Res Int. 2016;2016:1538703.

[51] Saleem H, Ahmad I, Shahid MN, et al. In vitro acetylcholinesterase and butyrylcholinesterase inhibitory potentials of jatropha gossypifolia plant extracts. Acta Pol Pharm. 2016;73(2):419–423.

[52] Orhan I, Sener B, Choudhary MI, et al. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants. J Ethnopharmacol. 2004;91(1):57–60. DOI:10.1016/j.jep.2003.11.016.

[53] Sonibare MA, Ayoola IO, Elufouye TO. Antioxidant and acetylcholinesterase inhibitory activities of leaf extract and fractions of Albizia adianthifolia (Schumach) W.F. Wright J Basic Clin Physiol Pharmacol. 2017;28(2):143–148.

[54] Kim JS, Kuk E, Yu KN, et al. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med. 2007;3(1):95–101. DOI:10.1016/j.nano.2006.12.001.

[55] Rauter AP, Martins A, Lopes R, et al. Bioactivity studies and chemical profile of the antidiabetic plant Genista tenera. J Ethnopharmacol. 2009;122(2):384–393. DOI:10.1016/j.jep.2008.10.011.

[56] Llorent-Martinez EJ, Ortega-Barrales P, Zengin G, et al. Evaluation of antioxidant potential, enzyme inhibition activity and phenolic profile of Lathyrus cica and Lathyrus digitatus: potential sources of bioactive compounds for the food industry. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2017;107(Pt B):609–619. DOI:10.1016/j.jct.2017.03.002.

[57] Satheeshkumar N, Mukherjee PK, Bhadra S, et al. Acetylcholinesterase enzyme inhibitory potential of standardized extract of Trigonella foenum graecum L and its constituents. Phytomedicine Int J Phytother Phytopharm. 2010;17(3–4):292–295.

[58] Keskin C. Antioxidant, anticancer and anticholinesterase activities of flower, fruit and seed extracts of Hypericum ambysepalum HOCHST. Asian Pac J Cancer Prev APJCP. 2015;16(7):2763–2769.

[59] Béjaoui A, Ben Salem I, Rokbeni N, et al. Bioactive compounds from Hypericum humifusum and Hypericum perfoliatum: inhibition potential of polyphenols with acetylcholinesterase and key enzymes linked to type-2 diabetes. Pharm Biol. 2017;55(1):906–911. DOI:10.1080/13880209.2016.1270973.

[60] Zachow LL, Avila JM, Saldanha GA, et al. Chemical composition and evaluation of prolyl oligopeptidase and acetylcholinesterase inhibitory activities of Leonurus Sibiricus L. from Brazil. Nat Prod Res. 2017;31(12):1459–1463. DOI:10.1080/14786419.2016.1255890.

[61] Vladimir-Knezevic S, Blazekovic B, Kindl M, et al. Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Mol Basel Switz. 2014;19(11):767–782.

[62] Loizzo MR, Menichini F, Conforti F, et al. Chemical analysis, antioxidant, antiinflammatory and anticholinesterase activities of Origanum ehrenbergii Boiss and Origanum syriacum L. essential oils. Food Chem. 2009;117(1):174–180. DOI:10.1016/j.foodchem.2009.03.095.

[63] Şenol FS, Orhan I, Celep F, et al. Survey of 55 Turkish Salvia taxa for their acetylcholinesterase inhibitory and antioxidant activities. Food Chem. 2010;120(1):34–43. DOI:10.1016/j.foodchem.2009.09.066.

[64] Lin HQ, Ho MT, Lau LS, et al. Anti-acetylcholinesterase activities of traditional Chinese medicine for treating Alzheimer’s disease. Chem Biol Interact. 2008;175(1–3):352–354. DOI:10.1016/j.cbi.2008.05.030.

[65] Ferhat M, Erol E, Beladjila KA, et al. Antioxidant, anticholinesterase and antibacterial activities of Stachys guyoniana and Mentha aquatica. Pharm Biol. 2017;55(1):324–329. DOI:10.1080/13880209.2016.1238488.
[66] Jung HA, Ali MY, Jung HJ, et al. Inhibitory activities of major anthraquinones and other constituents from Cassia obtusifolia against β-secretase and cholinesterases. J Ethnopharmacol. 2016;191:152–160.

[67] Cavallaro V, Alza NP, Murray MG, et al. Alkaloids from Habranthus tubispatus and H. jamesonii, two amaryllidaceae with acetyland butyrylcholinesterase inhibition activity. Nat Prod Commun. 2014;9(2):159–162.

[68] Tung BT, Hai NT, Thu DK. Antioxidant and acetylcholinesterase inhibitory activities in vitro of different fraction of Huperzia squarrosa (Forst.) Trevis extract and attenuation of scopolamine-induced cognitive impairment in mice. J Ethnopharmacol. 2017;198:24–32.

[69] Tappayuthpijarn P, Itharat A, Makchuchit S. Acetylcholinesterase inhibitory activity of Thai traditional nootropic remedy and its herbal ingredients. J Med Assoc Thail Chotmihet Thangphaet. 2011;94(7):S183–S189.

[70] Kuk EB, Jo AR, Oh SI, et al. Anti-Alzheimer’s disease activity of compounds from the root bark of Morus alba L. Arch Pharm Res. 2017;40(3):338–349. DOI:10.1007/s12272-017-0891-4.

[71] Gasca CA, Castillo WO, Takahashi CS, et al. Assessment of anti-cholinesterase activity and cytotoxicity of cagaita (Eugenia dysenterica) leaves. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2017;109(2):996–1002. DOI:10.1016/j.fct.2017.02.032.

[72] Uddin MN, Afrin R, Uddin MJ, et al. Vanda roxburghii chloroform extract as a potential source of polyphenols with antioxidant and cholinesterase inhibitory activities: identification of a strong phenolic antioxidant. BMC Complement Altern Med. 2015;15(1):195. DOI:10.1186/s12906-015-0728-y.

[73] Adsersen A, Gauguin B, Gudiksen L, et al. Screening of plants used in Danish folk medicine to treat memory dysfunction for acetylcholinesterase inhibitory activity. J Ethnopharmacol. 2006;104(3):418–422. DOI:10.1016/j.jep.2005.09.032.

[74] Georgiev MI, Alipieva K, Orhan IE. Cholinesterases inhibitory and antioxidant activities of Harpagophytum procumbens from in vitro systems. Phytother Res PTR. 2012;26(2):313–316.

[75] Ustun O, Senol FS, Kurkcucoglu M, et al. Investigation on chemical composition, anticholinesterase and antioxidant activities of extracts and essential oils of Turkish Pinus species and pycnogenol. Ind Crops Prod. 2012;38:115–123.

[76] Khadri A, Neffati M, Smiti S, et al. Antioxidant, antiacetylcholinesterase and antimicrobial activities of Cymbopogon schoenanthus L. Spreng (lemon grass) from Tunisia. LWT - Food Sci Technol. 2010;43(2):331–336. DOI:10.1016/j.lwt.2009.08.004.

[77] Saliu JA, Olabiyyi AA. Aqueous extract of Securidaca longipendunculata Oliv. and Olax subsanpoidae inhibits key enzymes (acetylcholinesterase and butyrylcholinesterase) linked with Alzheimer’s disease in vitro. Pharm Biol. 2017;55(1):252–257.

[78] Carpinella MC, Andrione DG, Ruiz G, et al. Screening for acetylcholinesterase inhibitory activity in plant extracts from Argentina. Phytother Res PTR. 2010;24(2):259–263. DOI:10.1002/ptr.2923.

[79] Wu P, Li F, Zhang J. Phytochemical compositions of extract from peel of hawthorn fruit, and its antioxidant capacity, cell growth inhibition, and acetylcholinesterase inhibitory activity. BMC Complement Altern Med. 2017;17(1):151.

[80] Kim CR, Choi SJ, Oh SS, et al. Rubus coreanus Miquel inhibits acetylcholinesterase activity and prevents cognitive impairment in a mouse model of dementia. J Med Food. 2013;16(9):785–792. DOI:10.1089/jmf.2012.2663.

[81] Osaka A, Awadelkarim S, Ali A. Antioxidant activity, acetylcholinesterase inhibitory potential and phytochemical analysis of Sarcocephalus latifolius Sm. bark used in traditional medicine in Sudan. BMC Complement Altern Med. 2017;17(1):270.

[82] Das A, Shanker G, Nath C, et al. A comparative study in rodents of standardized extracts of Bacopa monniera and Ginkgo biloba: anticholinesterase and cognitive enhancing activities. Pharmacol Biochem Behav. 2002;73(4):893–900. DOI:10.1016/S0091-3057(02)00940-1.

[83] Liu YC, Su J, Wu XD, et al. Five new Lycopodium alkaloids from the aerial parts of Phlegmariurus henryi. Fitoterapia. 2016;115:148–154.

[84] Lam CW, Wakeman A, James A, et al. Bioactive steroidal alkaloids from Buxus macowanii Oliv. Steroids. 2015;95:73–79.

[85] Rahman A-U, Khalid A, Sultana N, et al. New natural cholinesterase inhibiting and calcium channel blocking quinoline alkaloids. J Enzyme Inhib Med Chem. 2006;21(6):703–710. DOI:10.1080/14756360600889708.
[86] Zhao H, Zhou S, Zhang M, et al. An in vitro AChE inhibition assay combined with UF-HPLC-ESI-Q-TOF/MS approach for screening and characterizing of AChE inhibitors from roots of *Coptis chinensis*. Franch J Pharm Biomed Anal. 2016;120:235–240.

[87] Andrade MT, Lima JA, Pinto AC, et al. Indole alkaloids from *Tabernaemontana australis* (Mueil. Arg) Miers that inhibit acetylcholinesterase enzyme. Bioorg Med Chem. 2005;13 (12):4092–4095. DOI:10.1016/j.bmc.2005.03.045.

[88] Shin KY, Kim KY, Suh YH. Dehydroevodiamine·HCl enhances cognitive function in memory-impaired rat models. Korean J Physiol Pharmacol Off J Korean Physiol Soc Korean Soc Pharmacol. 2017;21 (1):55–64.

[89] Chlebek J, Novák Z, Kassemová D, et al. Isoquinoline Alkaloids from *Fumaria officinalis* L. and their biological activities related to Alzheimer’s disease. Chem Biodivers. 2016;13 (1):91–99. DOI:10.1002/cbiv.201500033.

[90] Lima JA, Costa RS, Epifânio RA, et al. *Geissospermum vellosii* stem bark: anticholinesterase activity and improvement of scopolamine-induced memory deficits. Pharmacol Biochem Behav. 2009;92 (3):508–513. DOI:10.1016/j.pbb.2009.01.024.

[91] Khalid A, Anjum S, Khan , MR, et al. Kinetics and structure-activity relationship studies on pregnane-type steroidal alkaloids that inhibit cholinesterases. Bioorg Med Chem. 2004 May;12(9):1995–2003. DOI:10.1016/j.bmc.2004.03.002.

[92] Ahmad H, Ahmad S, Khan E, et al. Isolation, crystal structure determination and cholinesterase inhibitory potential of isotalatizidine hydrate from *Delphinium denudatum*. Pharm Biol. 2017;55(1):680–686. DOI:10.1080/13880209.2016.1240207.

[93] Choudhary MI, Nawaz SA, Azim , MK, et al. Juliflorine: a potent natural peripheral anionic-site-binding inhibitor of acetylcholinesterase with calcium-channel blocking potential, a leading candidate for Alzheimer’s disease therapy. Biochem Biophys Res Commun. 2005 Jul;332(4):1171–1177.

[94] Sichaem J, Rojpiritkul T, Sawasdee P, et al. Furoquinoine Alkaloids from the Leaves of *Evodia lept*a as potential Cholinesterase inhibitors and their molecular docking. Nat Prod Commun. 2015;10(8):1359–1362.

[95] Dall’Ignha OP, Fett P, Gomes MW, et al. Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25–35)-induced cognitive deficits in mice. Exp Neurol. 2007;203 (1):241–245. DOI:10.1016/j.expneurol.2006.08.008.

[96] Triggle DJ, Mitchell JM, Filler RB. The Pharmacology of Physostigmine.1998. [accessed May 10, 2020]. https://www.semanticscholar.org/paper/The-Pharmacology-of-Physostigmine-Triggle-Mitchell/.

[97] Fadaeinasab M, Basiri A, Kia Y, et al. New Indole Alkaloids from the Bark of *Rauvolfia Reflexa* and their Cholinesterase Inhibitory Activity. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2015;37(5):1997–2011. DOI:10.1159/000438560.

[98] Sichaem J, Ingkaninan K, Tip-Pyang S. A novel pyrrole alkaloid from the fruit peels of *Strychnos nux-blanda*. Nat Prod Res. 2017;31 (2):149–154.

[99] Rollinger JM, Schuster D, Baier E, et al. Taspine: bioactivity-guided isolation and molecular ligand-target insight of a potent acetylcholinesterase inhibitor from *Magnolia x soulangiana*. J Nat Prod. 2006;69(9):1341–1346. DOI:10.1021/np060268p.

[100] Nguyen DH, Seo UM, Zhao BT, et al. Ellagitannin and flavonoid constituents from *Agrimonia pilosa Ledeb*. with their protein tyrosine phosphatase and acetylcholinesterase inhibitory activities. Bioorg Chem. 2017;72:293–300.

[101] Labed A, Ferhat M, Labed-Zouad I, et al. Compounds from the pods of *Astragalus armatus* with antioxidant, anticholinesterase, antibacterial and phagocytic activities. Pharm Biol. 2016;54(12):3026–3032. DOI:10.1080/13880209.2016.1200632.

[102] Heo HJ, Kim MJ, Lee JM, et al. Naringenin from *Citrus junos* has an inhibitory effect on acetylcholinesterase and a mitigating effect on amnesia. Dement Geriatr Cogn Disord. 2004;17(3):151–157. DOI:10.1159/000076349.

[103] Pereira VV, Duarte LP, Silva RR, et al. New jasarane glucoside from *Jacaranda oxyphylla* leaves. Nat Prod Res. 2016;30(21):2421–2428. DOI:10.1080/14786419.2016.1195378.

[104] Ren Y, Houghton PJ, Hider RC, et al. Novel diterpenoid acetylcholinesterase inhibitors from *Salvia miltiorrhiza*. Planta Med. 2004;70 (3):201–204.
[105] Kang YQ, Zhou JC, Fan PH, et al. Scapaundulina C, a novel labdane diterpenoid isolated from Chinese liverwort Scapania undulate, inhibits acetylcholinesterase activity. Chin J Nat Med. 2015;13(12):933–936. DOI:10.1016/S1875-5364(15)30100-X.

[106] Chung YK, Heo HJ, Kim EK, et al. Inhibitory effect of ursolic acid purified from Origanum majorana L on the acetylcholinesterase. Mol Cells. 2001;11(2):137–143.

[107] Chen HW, He XH, Yuan R, et al. Sesquiterpenes and a monoterpensoid with acetylcholinesterase (AChE) inhibitory activity from Valeriana officinalis var. latifolia in vitro and in vivo. Fitoterapia. 2016;110:142–149.

[108] Miyazawa M, Watanabe H, Kameoka H. Inhibition of Acetylcholinesterase activity by Monoterpoids with a p-Menthane skeleton. J Agric Food Chem. 1997;45(3):677–679.

[109] Dzoyem JP, Tsamo AT, Melong R, et al. Cytotoxicity, nitric oxide and acetylcholinesterase inhibitory activity of three limonoids isolated from Trichilia welwitschii (Meliaceae). Biol Res. 2015;48(1):57. DOI:10.1186/s40465-015-0049-0.

[110] Alves CQ, Lima LS, David JM, et al. In vitro acetylcholinesterase activity of peptide derivatives isolated from two species of Leguminosae. Pharm Biol. 2013;51(7):936–939. DOI:10.3109/13880209.2013.770536.

[111] Hou YC, Chao PD, Chen SY. Honokiol and magnolol increased hippocampal acetylcholine release in freely-moving rats. Am J Chin Med. 2000;28(3–4):379–384.

[112] Kwak HM, Jeon SY, Sohng BH, et al. beta-Secretase (BACE1) inhibitors from pomegranate (Punica granatum) husk. Arch Pharm Res. 2005;28(12):1328–1332. DOI:10.1007/BF02977896.

[113] O M, Mp L, B A, et al. Plants and their chemical compounds affecting beta-amyloid and secretase activity as potential sources of neuroprotective herbal medicinal products. Part 1. Herba Pol. 2010. [(accessed 2020 May 10). http://agro.icm.edu.pl/agro/element-bwmeta1-element-agro/].

[114] Okello EJ, Savelev SU, Perry EK. In vitro anti-beta-secretase and dual anti-cholinesterase activities of Camellia sinensis L. (tea) relevant to treatment of dementia. Phytother Res PTR. 2004;18 (8):624–627.

[115] Hardy J. Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci. 1997;20 (4):154–159.

[116] Lee YK, Yuk DY, Lee JW, et al. (-)-Epigallocatechin-3-gallate prevents lipopolysaccharide-induced elevation of beta-amyloid generation and memory deficiency. Brain Res. 2009;1250:164–174.

[117] Descamps O, Spilman P, Zhang Q, et al. AβPP-selective BACE inhibitors (ASB1): novel class of therapeutic agents for Alzheimer’s disease. J Alzheimers Dis JAD. 2013;37(2):343–355. DOI:10.3233/JAD-130578.

[118] Buxbaum JD, Liu KN, Luo Y, et al. Evidence that tumor necrosis factor alpha converting enzyme is involved in regulated alpha-secretase cleavage of the Alzheimer amyloid protein precursor. J Biol Chem. 1998;273(43):27765–27767. DOI:10.1074/jbc.273.43.27765.

[119] Allinson TMJ, Parkin ET, Turner AJ, et al. ADAMs family members as amyloid precursor protein α-secretases. J Neurosci Res. 2003;74 (3):342–352. DOI:10.1002/jnr.10737.

[120] Suh J, Choi SH, Romano DM, et al. ADAM10 missense mutations potentiate β-amyloid accumulation by impairing prodomain chaperone function. Neuron. 2013;80(2):385–401. DOI:10.1016/j.neuron.2013.08.035.

[121] Lichtenthaler SF. α-secretase in Alzheimer’s disease: molecular identity, regulation and therapeutic potential. J Neurochem. 2011;116 (1):10–21.

[122] Postina R, Schroeder A, Dewachter I, et al. A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest. 2004;113(10):1456–1464. DOI:10.1172/JCI20864.

[123] Bandyopadhyay S, Goldstein LE, Lahiri DK, et al. Role of the APP non-amyloidogenic signaling pathway and targeting alpha-secretase as an alternative drug target for treatment of Alzheimer’s disease. Curr Med Chem. 2007;14 (27):2848–2864. DOI:10.2174/092986707782300606.

[124] De Strooper B, Vassar R, Golde T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neuroul. 2010;6 (2):99–107.

[125] Hong-Qi Y, Zhi-Kun S, Sheng-Di C. Current advances in the treatment of Alzheimer’s disease: focused on considerations targeting Aβ and tau. Transl Neurodegener. 2012;1(1):21.

[126] Adewusi EA, Steenkamp V. Medicinal plants and their derivatives with amyloid beta inhibitory activity as potential targets for drug discovery. Asian Pac J Trop Dis. 2015;5(6):430–440.
[127] Hanish Singh JC, Alagarsamy V, Diwan PV, et al. Neuroprotective effect of Alpinia galanga (L) fractions on Aβ(25–35) induced amnesia in mice. J Ethnopharmacol. 2011;138(1):85–91. DOI:10.1016/j.ejep.2011.08.048.

[128] Yan JJ, Kim DH, Moon YS, et al. Protection against beta-amyloid peptide-induced memory impairment with long-term administration of extract of Angelica gigas or decursinol in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(1):25–30. DOI:10.1016/S0278-5846(03)00168-4.

[129] Limpeanchob N, Jaipan S, Rattanakaruna S, et al. Neuroprotective effect of Bacopa monnieri on beta-amyloid-induced cell death in primary cortical culture. J Ethnopharmacol. 2008;120(1):112–117. DOI:10.1016/j.ejep.2008.07.039.

[130] Jeong JC, Yoon CH, Lee WH, et al. Effects of Bambusae concretio Salicea (Chunchukhwang) on amyloid beta-induced cell toxicity and antioxidative enzymes in cultured rat neuronal astrocytes. J Ethnopharmacol. 2005;98 (3):259–266. DOI:10.1016/j.ejep.2004.12.034.

[131] Ramesh BN, Indi SS, Rao K SJ. Anti-amyloidogenic property of leaf aqueous extract of Caesalpinia crista. Neurosci Lett. 2010;475(2):110–114.

[132] Ogunruku OO, Oboh G, Passamonti S, et al. Capsicum annuum var. grossum (Bell Pepper) Inhibits β-Secretase Activity and β-Amyloid 1–40 Aggregation. J Med Food. 2017;20(2):124–130. DOI:10.1089/jmf.2016.0077.

[133] Gray NE, Sampath H, Zweig JA, et al. Centella asiatica Attenuates Amyloid-β-Induced oxidative stress and mitochondrial dysfunction. J Alzheimers Dis JAD. 2015;45(3):933–946. DOI:10.3233/JAD-142217.

[134] Frydman-Marom A, Levin A, Farfara D, et al. Orally administrated cinnamon extract reduces β-amyloid oligomerization and corrects cognitive impairment in Alzheimer’s disease animal models. PloS One. 2011;6(1):e16564. DOI:10.1371/journal.pone.0016564.

[135] Papandreou MA, Kanakis CD, Polissiou MG, et al. Inhibitory activity on amyloid-beta aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. J Agric Food Chem. 2006;54 (23):8762–8768. DOI:10.1021/jf061932a.

[136] Batarseh YS, Bharate SS, Kumar V, et al. Crocus sativus extract tightens the blood-brain barrier, reduces amyloid β Load and related toxicity in SXFAD Mice. ACS Chem Neurosci. 2017;8(8):1756–1766. DOI:10.1021/acscn.7b00101.

[137] Kang IJ, Jeon YE, Yin XF, et al. Butanol extract of Ecklonia cava prevents production and aggregation of beta-amyloid, and reduces beta-amyloid mediated neuronal death. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2011;49 (9):2252–2259. DOI:10.1016/j.fct.2011.06.023.

[138] Bai Y, Tohda C, Zhu S, et al. Active components from Siberian ginseng (Eleutherococcus senticosus) for protection of amyloid β(25–35)-induced neuritic atrophy in cultured rat cortical neurons. J Nat Med. 2011;65(3–4):417–423. DOI:10.1007/s11418-011-0509-y.

[139] Lin YL, Tsay HJ, and Liao YF, et al. The components of Flemingia macrophylia attenuate amyloid β-protein accumulation by regulating amyloid β-protein metabolic pathway. Evid-Based Compl Altern Med ECAM. 2012;795843. DOI:10.1155/2012/795843.

[140] Lai CSW, Yu MS, Yuen WH, et al. Antagonizing beta-amyloid peptide neurotoxicity of the anti-aging fungus Ganoderma lucidum. Brain Res. 2008;1190:215–224.

[141] Bastianetto S, Ramassamy C, Doré S, et al. The Ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by beta-amyloid. Eur J Neurosci. 2000;12 (6):1882–1890. DOI:10.1046/j.1460-9568.2000.00069.x.

[142] Sheeja Malar D, Beema Shafreen R, Karutha Pandian S, et al. Cholinesterase inhibitory, anti-amyloidogenic and neuroprotective effect of the medicinal plant Grewia tiliaefolia - An in vitro and in silico study. Pharm Biol. 2017;55 (1):381–393. DOI:10.1080/13880209.2016.1241811.

[143] Park H, Oh MS. Houttuyniae Herba protects rat primary cortical cells from Aβ(25–35)-induced neurotoxicity via regulation of calcium influx and mitochondria-mediated apoptosis. Hum Exp Toxicol. 2012;31(7):698–709.

[144] Park TS, Ryu YK, Park HY, et al. Humulus japonicus inhibits the progression of Alzheimer’s disease in a APP/PS1 transgenic mouse model. Int J Mol Med. 2017;39(1):21–30. DOI:10.3892/ijmm.2016.2804.

[145] Cao Z, Wang F, Xiu C, et al. Hypericum perforatum extract attenuates behavioral, biochemical, and neurochemical abnormalities in Aluminum chloride-induced Alzheimer’s disease rats. Biomed Pharmacother Biomedicine Pharmacother. 2017;91:931–937.
[146] Kraus B, Wolff H, Heilmann J, et al. Influence of Hypericum perforatum extract and its single compounds on amyloid-beta mediated toxicity in microglial cells. Life Sci. 2007;81 (11):884–894. DOI:10.1016/j.lfs.2007.07.020.

[147] Ho YS, Yu MS, Lai CSW, et al. Characterizing the neuroprotective effects of alkaline extract of Lycium barbarum on beta-amyloid peptide neurotoxicity. Brain Res. 2007;1158:123–134.

[148] Lee JW, Lee YK, Lee BJ, et al. Inhibitory effect of ethanol extract of Magnolia officinalis and 4-O-methylhonokiol on memory impairment and neuronal toxicity induced by beta-amyloid. Pharmacol Biochem Behav. 2010;95(1):31–40. DOI:10.1016/j.pbb.2009.12.003.

[149] Chun YS, Kim J, Chung S, et al. Protective roles of Monsonia angustifolia and its active compounds in experimental models of Alzheimer’s disease. J Agric Food Chem. 2017;65 (15):3133–3140. DOI:10.1021/acs.jafc.6b04451.

[150] Fujiwara H, Tabuchi M, Yamaguchi T, et al. A traditional medicinal herb Paonia suffruticosa and its active constituent 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose have potent anti-aggregation effects on Alzheimer’s amyloid beta proteins in vitro and in vivo. J Neurochem. 2009;109(6):1648–1657. DOI:10.1111/j.1471-4159.2009.06069.x.

[151] Hritcu L, Noumedem JA, Cioanca O, et al. Methanol extract of Piper nigrum fruits improves memory impairment by decreasing brain oxidative stress in amyloid beta(1–42) rat model of Alzheimer’s disease. Cell Mol Neurobiol. 2014;34(3):437–449. DOI:10.1007/s10571-014-0028-y.

[152] Hage S, Kienlen-Campard P, Octave JN, et al. In vitro screening on β-amyloid peptide production of plants used in traditional medicine for cognitive disorders. J Ethnopharmacol. 2010;131 (3):585–591. DOI:10.1016/j.jep.2010.07.044.

[153] Figueiró M, Ilha J, Linck VM, et al. The Amazonian herbal Marapuama attenuates cognitive impairment and neurogenic degeneration in a mouse Alzheimer model. Phytomedicine Int J Phytother Phytopharm. 2011;18(4):327–333.

[154] Irie Y, Keung WM. Rhizoma acori graminei and its active principles protect PC-12 cells from the toxic effect of amyloid-beta peptide. Brain Res. 2003;963(1–2):282–289.

[155] Khodagholi F, Ashabi G. Dietary supplementation with Salvia sahendica attenuates memory deficits, modulates CREB and its down-stream molecules and decreases apoptosis in amyloid beta-injected rats. Behav Brain Res. 2013;241:62–69.

[156] Soodi M, Saeidnia S, Sharifzadeh M, et al. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer’s disease. Metab Brain Dis. 2016;31 (2):395–404. DOI:10.1007/s11011-015-9773-y.

[157] Jeong EJ, Lee HK, Lee KY, et al. The effects of lignan-riched extract of Shisandra chinensis on amyloid-β-induced cognitive impairment and neurotoxicity in the cortex and hippocampus of mouse. J Ethnopharmacol. 2013;146 (1):347–354. DOI:10.1016/j.jep.2013.01.003.

[158] Ban JY, Cho SQ, Koh SB, et al. Protection of amyloid beta protein (25–35)-induced neurotoxicity by methanol extract of Smilacis chinea rhizome in cultured rat cortical neurons. J Ethnopharmacol. 2006;106(2):230–237. DOI:10.1016/j.jep.2005.12.034.

[159] Prema A, Thenmozhi AJ, Manivasagam T, et al. Fenugreek seed powder nullified aluminium chloride induced memory loss, biochemical changes, Aβ burden and apoptosis via regulating Akt/GSK3β signaling pathway. PloS One. 2016;11(11):e0165955. DOI:10.1371/journal.pone.0165955.

[160] Fujiwara H, Iwasaki K, Furukawa K, et al. Uncaria rhynchophylla, a Chinese medicinal herb, has potent antiaggregation effects on Alzheimer’s beta-amyloid proteins. J Neurosci Res. 2006;84 (2):427–433. DOI:10.1002/jnr.20891.

[161] Mathew M, Subramanian S. In vitro evaluation of anti-Alzheimer effects of dry ginger (Zingiber officinale Roscoe) extract. Indian J Exp Biol. 2014;52(6):606–612.

[162] Adewusi EA, Fouche G, Steenkamp V. Effect of four medicinal plants on amyloid-β induced neurotoxicity in SH-SY5Y cells. Afr J Tradit Complement Altern Med. 2013;10(4):6–11.

[163] Durairajan SSK, Yuan Q, Xie L, et al. Salvianolic acid B inhibits Abeta fibril formation and disaggregates preformed fibrils and protects against Abeta-induced cytotoxicity. Neurochem Int. 2008;52(4–5):741–750. DOI:10.1016/j.neuint.2007.09.006.

[164] Chu YF, Chang WH, Black RM, et al. Crude caffeine reduces memory impairment and amyloid β(1–42) levels in an Alzheimer’s mouse model. Food Chem. 2012;135 (3):2095–2102. DOI:10.1016/j.foodchem.2012.04.148.
Zhang HY, Yan H, Tang XC. Huperzine A enhances the level of secretory amyloid precursor protein and protein kinase C-alpha in intracerebroventricular beta-amyloid-(1–40) infused rats and human embryonic kidney 293 Swedish mutant cells. Neurosci Lett. 2004;360(1–2):21–24.

Shim SB, Lee SH, Chae KR, et al. Nicotine leads to improvements in behavioral impairment and an increase in the nicotine acetylcholine receptor in transgenic mice. Neurochem Res. 2008;33(9):1783–1788. DOI:10.1007/s11064-008-9629-5.

Xian YF, Lin ZX, and Mao QQ, et al. Bioassay-guided isolation of neuroprotective compounds from Uncaria rhynchophylla against beta-amyloid-induced neurotoxicity. Evid-Based Compl Altern Med ECAM. 2012 1;802625. DOI:10.1155/2012/802625.

Xian YF, Lin ZX, Mao QQ, et al. Protective effect of iso-rhynchophylline against β-amyloid-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol. 2012;32(3):353–360. DOI:10.1007/s10571-011-9763-5.

He FQ, Qiu BY, Zhang XH, et al. Tetrandrine attenuates spatial memory impairment and hippocampal neuroinflammation via inhibiting NF-κB activation in a rat model of Alzheimer’s disease induced by amyloid-β(1–42). Brain Res. 2011;1384:89–96.

Han J, Qu Q, Qiao J, et al. Vincamine alleviates amyloid-β 25–35 Peptides-induced cytotoxicity in PC12 cells. Pharmacogn Mag. 2017;13 (49):123–128. DOI:10.4103/0973-1296.196309.

Xu W, Yang L, Li J. Protection against β-amyloid-induced neurotoxicity by naturally occurring Z-ligustilide through the concurrent regulation of p38 and PI3-K/Akt pathways. Neurochem Int. 2016;100:44–51.

Kim TI, Lee YK, Park SG, et al. L-Theanine, an amino acid in green tea, attenuates beta-amyloid-induced cognitive dysfunction and neurotoxicity: reduction in oxidative damage and inactivation of ERK/p38 kinase and NF-kappaB pathways. Free Radic Biol Med. 2009;47(11):1601–1610. DOI:10.1016/j.freeradbiomed.2009.09.008.

Esposito G, De Filippis D, Maiuri MC, et al. Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in beta-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-kappaB involvement. Neurosci Lett. 2006;399(1–2):91–95. DOI:10.1016/j.neulet.2006.01.047.

Xiang S, Liu F, Lin J, et al. Fucoxanthin inhibits β-amyloid assembly and attenuates β-amyloid oligomer-induced cognitive impairments. J Agric Food Chem. 2017;65(20):4092–4102. DOI:10.1021/acs.jafc.7b00805.

Ban JY, Cho SO, Jeon SY. 3,4-dihydroxybenzoic acid from Smilacis chinensis rhizome protects amyloid beta protein (25–35)-induced neurotoxicity in cultured rat cortical neurons. Neurosci Lett. 2007;420(2):184–188.

Na CS, Hong SS, Choi YH, et al. Neuroprotective effects of constituents of Eragrostis ferruginea against Aβ-induced toxicity in PC12 cells. Arch Pharm Res. 2010;33(7):999–1003. DOI:10.1007/s12272-010-0704-5.

Lee DS, Cha BY, Woo JT, et al. Acerogenin A from acer nikoense maxim prevents oxidative stress-induced neuronal cell death through Nrf2-mediated heme oxygenase-1 expression in mouse hippocampal HT22 cell line. Mol Basel Switz. 2015;20(7):12545–12557.

Zhao L, Wang JL, Wang YR, et al. Apigenin attenuates copper-mediated β-amyloid neurotoxicity through antioxidation, mitochondrion protection and MAPK signal inactivation in an AD cell model. Brain Res. 2013;1492:33–45.

Tan JW, Kim MK. Neuroprotective effects of biochanin A against β-amyloid-induced neurotoxicity in PC12 cells via a mitochondrial-dependent apoptosis pathway. Mol Basel Switz. 2016;21(5):548.

Sul D, Kim HS, Lee D, et al. Protective effect of caffeic acid against beta-amyloid-induced neurotoxicity by the inhibition of calcium influx and tau phosphorylation. Life Sci. 2009;84(9–10):257–262. DOI:10.1016/j.lfs.2008.12.001.

Lee C, Park GH, Kim C-Y, et al. [6]-Gingerol attenuates β-amyloid-induced oxidative cell death via fortifying cellular antioxidant defense system. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2011;49(6):1261–1269.

Feng HL, Fan H, Dang HZ, et al. Neuroprotective effect of curcumin to Aβ of double transgenic mice with Alzheimer’s disease. J Chin Mater Medica. 2014;39(19):3846–3849.

Li L, Du J, Zou L, et al. The Neuroprotective effects of decursin isolated from Angelica gigas Nakai Against Amyloid β-protein-induced apoptosis in PC 12 Cells via a mitochondria-related caspase pathway. Neurochem Res. 2015;40 (8):1555–1562. DOI:10.1007/s11064-015-1623-0.

Kiasalari Z, Heydarifard R, Khalili M, et al. Ellagic acid ameliorates learning and memory deficits in a rat model of Alzheimer’s disease:
an exploration of underlying mechanisms. Psychopharmacology (Berl). 2017;234 (12):1841–1852. DOI:10.1007/s00213-017-4589-6.

[185] Richard T, Poupard P, Nassra M, et al. Protective effect of ε-viniferin on β-amyloid peptide aggregation investigated by electrospray ionization mass spectrometry. Bioorg Med Chem. 2011;19(10):3152–3155. DOI:10.1016/j.bmc.2011.04.001.

[186] Mori T, Koyama N, Guillot-Sestier MV, et al. Ferulic acid is a nutraceutical β-secretase modulator that improves behavioral impairment and Alzheimer-like pathology in transgenic mice. PloS One. 2013;8(2):e55774. DOI:10.1371/journal.pone.0055774.

[187] Ban JY, Nguyen HTT, Lee HJ, et al. Neuroprotective properties of gallic acid from Sanguisorbae radix on amyloid beta protein (25–35) - induced toxicity in cultured rat cortical neurons. Biol Pharm Bull. 2008;31 (1):149–153. DOI:10.1248/bpb.31.149.

[188] Liu R, Meng F, Zhang L, et al. Luteolin isolated from the medicinal plant Elsholtzia rugulosa (Labiatae) prevents copper-mediated toxicity in β-amyloid precursor protein Swedish mutation overexpressing SH-SY5Y cells. Mol Basel Switz. 2011;16(3):2084–2096.

[189] Cai L, Wang LF, Pan JP, et al. Neuroprotective effects of methyl 3,4-Dihydroxybenzoate against TBHP-induced oxidative damage in SH-SY5Y cells. Mol Basel Switz. 2016;21(8):1071.

[190] Onozuka H, Nakajima A, Matsuzaki K, et al. Nobiletin, a citrus flavonoid, improves memory impairment and Abeta pathology in a transgenic mouse model of Alzheimer’s disease. J Pharmacol Exp Ther. 2008;326 (3):739–744. DOI:10.1124/jpet.108.140293.

[191] Kim DH, Kim S, Jeon SJ, et al. The effects of acute and repeated oroxylin A treatments on Abeta(25–35)-induced memory impairment in mice. Neuropharmacology. 2008;55(5):639–647. DOI:10.1016/j.neuropharm.2008.05.019.

[192] Li J, Ji X, Zhang J, et al. Paeoniflorin attenuates Aβ25–35-induced neurotoxicity in PC12 cells by preventing mitochondrial dysfunction. Folia Neuropathol. 2014;52(3):285–290. DOI:10.5114/fn.2014.45569.

[193] Yoon JH, Youn K, Ho CT. p-Coumaric acid and ursolic acid from Corni fructus attenuated β-amyloid(25–35)-induced toxicity through regulation of the NF-κB signaling pathway in PC12 cells. J Agric Food Chem. 2014;62 (21):4911–4916.

[194] Zhang L, Yu H, Zhao X, et al. Neuroprotective effects of salidroside against beta-amyloid-induced oxidative stress in SH-SYSY human neuroblastoma cells. Neurochem Int. 2010;57 (5):547–555. DOI:10.1016/j.neuint.2010.06.021.

[195] Luvone T, De Filippis D, Esposito G, et al. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid-beta peptide-induced neurotoxicity. J Pharmacol Exp Ther. 2006;317(3):1143–1149. DOI:10.1124/jpet.105.099317.

[196] Wang S, Wang YJ, Su Y, et al. Rutin inhibits β-amyloid aggregation and cytotoxicity, attenuates oxidative stress, and decreases the production of nitric oxide and proinflammatory cytokines. Neurtoxicology. 2012;33 (3):482–490. DOI:10.1016/j.neuro.2012.03.003.

[197] Lee YW, Kim DH, Jeon SJ, et al. Neuroprotective effects of salvianolic acid B on an Aβ25–35 peptide-induced mouse model of Alzheimer’s disease. Eur J Pharmacol. 2013;704(1–3):70–77. DOI:10.1016/j.ejphar.2013.02.015.

[198] Lu P, Mamiya T, Lu LL, et al. Silibinin attenuates amyloid beta(25–35) peptide-induced memory impairments: implication of inducible nitric-oxide synthase and tumor necrosis factor-alpha in mice. J Pharmacol Exp Ther. 2009;331(1):319–326. DOI:10.1124/jpet.109.155069.

[199] Yin F, Liu J, Ji X, et al. Silibinin: a novel inhibitor of Aβ aggregation. Neurochem Int. 2011;58 (3):399–403. DOI:10.1016/j.neuint.2010.12.017.

[200] Kwon SH, Ma SX, Hwang JY, et al. Involvement of the Nr2f2/HO-1 signaling pathway in sulfur- etin-induced protection against amyloid beta 25–35 neurotoxicity. Neuroscience. 2015; 304:14–28.

[201] Zhao LX, Wang Y, Liu T, et al. α-Mangostin decreases β-amyloid peptides production via modulation of amyloidogenic pathway. CNS Neurosci Ther. 2017;23(6):526–534. DOI:10.1111/cns.12699.

[202] Zhou YQ, Yang ZL, Xu L, et al. Akebia saponin D, a saponin component from Dipsacus asper Wall, protects PC 12 cells against amyloid-beta induced cytotoxicity. Cell Biol Int. 2009;33 (10):1102–1110. DOI:10.1016/j.cellbi.2009.06.028.

[203] Fujihara K, Koike S, Ogasawara Y, et al. Inhibition of amyloid β aggregation and protective effect on SH-SYSY cells by triterpenoid saponins from the cactus Polaskia chichipe. Bioorg Med Chem. 2017;25(13):3377–3383. DOI:10.1016/j.bmc.2017.04.023.
through upregulating alpha-secretase in vivo and in vitro. Neurosci Lett. 2009;452(2):90–95. DOI:10.1016/j.neulet.2009.01.013.

[215] Azadmehr A, Oghyanoos KA, Hajiahaee R, et al. Antioxidant and neuroprotective effects of Scrophularia striata extract against oxidative stress-induced neurotoxicity. Cell Mol Neurobiol. 2013;33(8):1135–1141. DOI:10.1007/s10571-013-9979-7.

[216] Chen X, Guo C, Kong J. Oxidative stress in neurodegenerative diseases. Neural Regen Res. 2012;7(5):376–385.

[217] Liu Z, Zhou T, and Ziegler AC, et al. Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxid Med Cell Longev. 2017 Oct;2525967. DOI:10.1155/2017/2525967.

[218] Paola D, Domenicotti C, Nitti M, et al. Oxidative stress induces increase in intracellular amyloid beta-protein production and selective activation of betal and betall PKCs in NT2 cells. Biochem Biophys Res Commun. 2000;268(2):642–646. DOI:10.1006/bbrc.2000.2164.

[219] Hampel H, Pruvolovic D, Teipel S, et al. The future of Alzheimer’s disease: the next 10 years. Prog Neurobiol. 2011;95(4):718–728. DOI:10.1016/j.pneurobio.2011.11.008.

[220] Wilkinson D. Pharmacotherapy of Alzheimer’s disease. Psychiatry. 2005;4(1):43–47.

[221] Witt A, Macdonald N, Kirkpatrick P. Memantine hydrochloride. Nat Rev Drug Discov. 2004;3(2):109–110.

[222] Lleo A, Greenberg SM, Growdon JH. Current pharmacotherapy for Alzheimer’s disease. Annu Rev Med. 2006;57(1):513–533.

[223] Mudher A, Lovestone S. Alzheimer’s disease—do tauists and baptists finally shake hands? Trends Neurosci. 2002;25(1):22–26.

[224] Costantino L, Barlocco D. Designed multiple ligands: basic research vs clinical outcomes. Curr Med Chem. 2012;19(20):3353–3387.

[225] Cavalli A, Bolognesi ML, Minarini A, et al. Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem. 2008;51(3):347–372. DOI:10.1021/jm7009364.

[226] Nasir MN, Abdullah J, Habsah M, et al. Inhibitory effect of asatic acid on acetylcholinesterase, excitatory post synapticpotential and locomotor activity. Phytomedicine. 2012;19(3–4):311–316. DOI:10.1016/j.phymed.2011.10.004.

[227] Patil SP, Maki S, Khedkar SA, et al. Withanolide A and asatic acid modulate multiple targets associated with amyloid-beta precursor
protein processing and amyloid-beta protein clearance. J Nat Prod. 2010;73(7):1196–1202. DOI:10.1021/np900633.

[228] Zhang X, Wu J, Dou Y, et al. Asiatic acid protects primary neurons against C2-ceramide-induced apoptosis. Eur J Pharmacol. 2012;679 (1–3):51–59. DOI: 10.1016/j.ejphar.2012.01.006.

[229] Jia L, Liu J, Song Z, et al. Berberine suppresses amyloid-beta-induced inflammatory response in microglia by inhibiting nuclear factor-kappaB and mitogen-activated protein kinase signalling pathways. J Pharm Pharmacol. 2012;64 (10):1510–1521. DOI: 10.1111/j.2042-7158.2012.01529.x.

[230] Ji HF, Shen L. Berberine: a potential multipotent natural product to combat Alzheimer’s disease. Mol Basel Switz. 2011;16(8):6732–6740.

[231] Baum L, Ng A. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J Alzheimers Dis JAD. 2004;6(4):367–377–449.

[232] Hamaguchi T, Ono K, Yamada M. REVIEW: curcumin and Alzheimer’s disease. CNS Neurosci Ther. 2010;16(5):285–297.

[233] Jaques JADS, Rezer JFP, Carvalho FB, et al. Curcumin protects against cigarette smoke-induced cognitive impairment and increased acetylcholinesterase activity in rats. Physiol Behav. 2012;106(5):664–669. DOI: 10.1016/j.physbeh.2012.05.001.

[234] Mutsuga M, Chambers JK, Uchida K, et al. Binding of curcumin to senile plaques and cerebral amyloid angiopathy in the aged brain of various animals and to neurofibrillary tangles in Alzheimer’s brain. J Vet Med Sci. 2012;74(1):51–57. DOI: 10.1292/jvms.11-0307.

[235] Narasingapa RB, Jargaval MR, Pullabhata S, et al. Activation of α-secretase by curcumin-aminoacid conjugates. Biochem Biophys Res Commun. 2012;424(4):691–696. DOI: 10.1016/j.bbr.2012.07.010.

[236] Villaflores OB, Chen YJ, Chen CP, et al. Curcuminoids and resveratrol as anti-Alzheimer agents. Taiwan J Obstet Gynecol. 2012;51(4):515–525. DOI: 10.1016/j.tjog.2012.09.005.

[237] Hoerr R, Noeldner M. Ensaculin (KA-672 HCl); a multitransmitter approach to dementia treatment. CNS Drug Rev. 2002;8(2):143–158.

[238] Teismann P, Ferger B. Effects of ensaculin on dopamine metabolite levels and K(+)-induced glutamate release. Eur J Pharmacol. 2000;398 (2):247–250.

[239] Bieschke J, Russ J, Friedrich RP, et al. EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc Natl Acad Sci U S A. 2010;107 (17):7710–7715. DOI: 10.1073/pnas.0910723107.

[240] Jeon SY, Bae K, Seong YH, et al. Green tea catechins as a BACE1 (beta-secretase) inhibitor. Bioorg Med Chem Lett. 2003;13(22):3905–3908. DOI: 10.1016/j.bmcl.2003.09.018.

[241] Mandel SA, Amit T, Weinreb O, et al. Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci Ther. 2008;14 (4):352–365. DOI: 10.10111/j.1755-5949.2008.0060.x.

[242] Smith A, Giunta B, Bickford PC, et al. Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int J Pharm. 2010;389(1–2):207–212. DOI: 10.1016/j.ijpharm.2010.01.012.

[243] Jiang H, Wang X, Huang L, et al. Benzenediol-berberine hybrids: multifunctional agents for Alzheimer’s disease. Bioorg Med Chem. 2011;19(23):7228–7235. DOI: 10.1016/j.bmc.2011.09.040.

[244] Yan JJ, Jung JS, Kim TK, et al. Protective effects of ferulic acid in amyloid precursor protein plus presenilin-1 transgenic mouse model of Alzheimer disease. Biol Pharm Bull. 2013;36 (1):140–143. DOI: 10.1248/bpb.b12-00798.

[245] Hoi CP, Ho YP, Baum L, et al. Neuroprotective effect of honokiol and magnolol, compounds from Magnolia officinalis, on beta-amyloid-induced toxicity in PC12 cells. Phytother Res PTR. 2010;24(10):1538–1542. DOI: 10.1002/ptr.3178.

[246] Ono K, Li L, Takanura Y, et al. Phenolic compounds prevent amyloid β-protein oligomerization and synaptic dysfunction by site-specific binding. J Biol Chem. 2012;287(18):14631–14643. DOI: 10.1074/jbc.M111.325456.

[247] Shimmyo Y, Kihara T, Akaie A. Three distinct neuroprotective functions of myricetin against glutamate-induced neuronal cell death: involvement of direct inhibition of caspase-3. J Neurosci Res. 2008;86(8):1836–1845.

[248] Ali T, Yoon GH, Shah SA, et al. Osmotin attenuates amyloid beta-induced memory impairment, tau phosphorylation and neurodegeneration in the mouse hippocampus. Sci Rep. [Internet]. 2015;5(1). 10.1038/srep11708.
[249] Shah SA, Yoon GH, Chung SS, et al. Osmotin reduced amyloid beta (Aβ) burden by inhibiting SREBP2 expression in APP/PS1 mice. Mol Psychiatry. 2017;22(3):323. DOI:10.1038/mp.2017.12.

[250] Kim J, Lee HJ, Lee KW. Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J Neurochem. 2010;112 (6):1415–1430.

[251] Choi CW, Choi YH, Cha MR, et al. In vitro BACE-1 inhibitory activity of resveratrol oligomers from the seed extract of Paeonia lactiflora. Planta Med. 2011;77(4):374–376. DOI:10.1055/s-0030-1250370.

[252] Feng X, Liang N, Zhu D, et al. Resveratrol inhibits β-amyloid-induced neuronal apoptosis through regulation of SIRT1-ROCK1 signaling pathway. PloS One. 2013;8(3):e59888. DOI:10.1371/journal.pone.0059888.

[253] Frozza RL, Bernardi A, Hoppe JB, et al. Neuroprotective effects of resveratrol against Aβ administration in rats are improved by lipid-core nanocapsules. Mol Neurobiol. 2013;47 (3):1066–1080. DOI:10.1007/s12035-013-8401-2.

[254] Vingtdeux V, Dreses-Werringloer U, and Zhao H, et al. Therapeutic potential of resveratrol in Alzheimer’s disease. BMC Neurosci. 2008 Dec;9 (2):S6. DOI:10.1186/1471-2202-9-S2-S6.

[255] Braidy N, Jugder B-E, Poljak A, et al. Molecular targets of tannic acid in Alzheimer’s Disease. Curr Alzheimer Res. [Internet]. 2017;14(8). 10.2174/1567205014666170206163158.