Effect of lung function disorders and physical activity on smoking and non-smoking students

AMELIA LORENSIA1, CYNTHIA MARISCA MUNTU2, RIVAN VIRLANDO SURYADINATA1, ROSLIN SEPTIANI4
1 Department of Clinical-Community Pharmacy, Faculty of Pharmacy, Universitas Surabaya (UBAY A), Indonesia;
2 Department of Pharmaceutical, Faculty of Pharmacy, Universitas Surabaya (UBAY A), Indonesia;
3 Department of Public Health, Faculty of Biotechnology, Universitas Surabaya (UBAY A), Indonesia;
4 Bachelor Student of Faculty of Pharmacy, Faculty of Pharmacy, Universitas Surabaya (UBAY A), Indonesia

Keywords
Physical activity • Lung function • Smokers • Non-smokers • Spirometry

Background. The number of young smokers is increasing, and hence their risk of respiratory problems. This risk is exacerbated by their low level of physical activity, which also reduces lung function. This study aimed to determine differences in lung function and levels of physical activity between smokers and non-smokers.

Method. This research was conducted from October 2019 to January 2020. The research design was cross-sectional, and a purposive sampling method was used. Pulmonary function was measured by means of spirometry, while physical activity was measured through a modified International Physical Activity Questionnaire (IPAQ).

Introduction
Lung dysfunction is one of the top five causes of death due to non-communicable diseases in Indonesia [1]. Lung function disorders are closely related to smoking. Indonesia has the third largest cigarette consumption in the world [2], and smoking is common among people of all ages, especially the young ones. Most teenagers have already consumed cigarettes, and many are habitual smokers [3]. Students who smoke admit that they are aware of the harmful effects of smoking on health, but they still ignore these effects, claiming to be “less certain” of the dangers of smoking. Cigarettes contain nicotine, tar and carbon monoxide [4]. Nicotine and carbon monoxide in the bloodstream thicken the blood and narrow the arteries. Moreover, the tar contained in cigarettes can coat the lung tissues and reduce the elasticity of the air sacs, making breathing difficult [5]. Lung volume is measured to evaluate the normality of respiratory function [3]. A tool that is commonly used for this purpose is spirometer, which measures the forced expiratory volume in the first second (FEV1) and the forced vital capacity (FVC) [6]. Many students say that they do not have enough time to do physical activities, as they think that the time devoted to such activities would reduce the time available for learning. What they do not realize, however, is that physical exercise can have beneficial effects on their cognitive ability (attention, memory, concentration) and maintain mental health [7, 8]. In 2013, 26.1% of Indonesians were classified as having an insufficient level of physical activity.

Results. We enrolled 124 university students: 62 smokers and 62 non-smokers. A significant difference in lung function values (<70 vs ≥70) was observed between smokers and non-smokers (p = 0.00). No difference (p = 0.907) in the level of physical activity was seen between smokers and non-smokers, with most subjects in both groups displaying moderate levels.

Conclusions. Students who smoked had more respiratory problems than those who did not. Although the level of physical activity did not correlate with respiratory problems, these problems were more common in the vigorous category.

By 2018, this percentage had risen to an estimated 33.5%. Similarly, in East Java, the prevalence of people who did not do physical activity was around 28.5%. Various studies have reported that people of all ages in almost all countries are too sedentary [9]. According to Basic Health Research, the prevalence data show that many people do not engage in physical activity, despite its importance for health. Physical activities have beneficial effects on the respiratory system [10], improving lung function [11] and increasing the vital capacity. Indeed, an individual who takes regular physical exercise can train the respiratory muscles, with the result that a greater volume of oxygen can enter the pulmonary capillaries, and lungs capacity increases [12-14]. Moreover, intense physical activity can reduce systemic and bronchial inflammation, improving both lung function and quality of life [15]. Previous studies have found that smokers are physically less active than non-smokers [16, 17]. The present study investigated the effect of impaired lung function and physical activities in smoking and non-smoking students. The questionnaire used to measure physical activities was adapted from the International Physical Activity Questionnaire (IPAQ) [18, 19]. In order to measure lung function, a handheld spirometer was used. A handheld device was chosen because it was light and easy to carry, and because the results would be immediately available. Previous research conducted in Jordan by Banur et al. [20] and Nawafleh et al. [21] found that smokers and non-smokers differed in terms of their lung function (FEV1/FVC).
Method

RESEARCH DESIGN
The research design was cross-sectional. Data were collected through questionnaires administered from November 2019 to January 2020 in Surabaya. The ethics committee of the University of Surabaya approved the study protocols (No. 120/KE/XII/2019).

RESEARCH VARIABLE
In this study, the independent variables were smokers and non-smokers, while the dependent variables were lung function and physical activities. Impaired lung function was defined as an FEV1/FVC value less than 0.7 [22]. Lung function was tested by means of the Contec SP10 Spirometer.

Physical activity is any activity or movement carried out by the body as a result of energy expenditure by the skeletal muscles [23]. The questionnaire referred to physical activity carried out during the course of a week. Respondents were divided into categories according to their physical activity: Mild Physical Activity (< 600 METs), Moderate Physical Activity (600-1,500 METs), and Vigorous Physical Activity (> 1,500 METs) [24]. In this study, the intensity of physical activity was measured in METs (metabolic equivalents of task). Physical activities were calculated by means of the METs level (physical activity intensity) multiplied by the length of time (minutes) spent on the activity in a week [18, 19].

POPULATION AND SAMPLE RESEARCH
The study population consisted of male students attending a private university in Rungkut sub-district, Surabaya. The inclusion criteria were: age > 18 years and absence of respiratory or cardiovascular diseases which might affect the measurement of lung function and physical activities. A purposive sampling method was used.

DATA COLLECTION
Subjects who stated that they were willing to participate in the study and filled in the informed consent form were immediately asked to complete a physical activity questionnaire consisting of the modified IPAQ questions; their lung function was then measured by means of spirometry.

DATA ANALYSIS
Differences in lung function and physical activity between smokers and non-smokers were determined by means of the chi-square test. Subjects were described in terms of age and body mass index (BMI).

Results
Subjects were grouped according to sex, age and treatment history. Table I shows the number of respondents (124), subdivided into non-smokers (62) and smokers (62). In the group of smokers, the degree of smoking was assessed by means of the Brinkman index, which is calculated by multiplying the number of cigarettes smoked per day by the duration of smoking in years [26]. The index has 3 categories: light smokers (0-199), moderate smokers (200-600), and heavy smokers (> 600) [26]. All our smokers fell into the light category and smoked filter cigarettes of various brands (62 of 62).

The results of lung function testing are shown in Table II. Most of the subjects (42 of 62 smokers and 60 of 62 non-smokers) did not experience respiratory problems, though the results of the chi-square test revealed a significant difference (p = 0.00) between the two groups.

The profile of the physical activities carried out by the subjects is shown in Table III. Physical activity was divided into 3 categories: mild (< 600 MET-minutes/week), moderate (600-1500 MET-minutes/week) and vigorous (> 1,500 MET-minutes/week). Most of the subjects (26 smokers and 27 non-smokers) reported moderate levels of physical activity. The chi-square test results showed no difference (p = 0.907) in the level of physical activity between smokers and non-smokers (Tab. IV).

Tab. V shows that almost one third of the smokers (20/62) had respiratory problems, and that more than half of these (11/20) engaged in moderate physical activity. Only 2 of the non-smokers had respiratory problems, and that more than half of these (11/20) engaged in moderate physical activity. Only 2 of the non-smokers had respiratory problems, both of whom were in the light activity category).

| Respondents' characteristics | Smokers (n: 62) | Non-smokers (n: 62) |
|-----------------------------|----------------|---------------------|
|                             | Number | Percentage (%) | Number | Percentage (%) |
| Age (years)                 |        |                |        |                |
| 18-19                       | 8      | 12.90          | 12     | 19.55          |
| 20-21                       | 17     | 27.42          | 21     | 33.87          |
| 22-23                       | 22     | 35.48          | 25     | 40.33          |
| 24-25                       | 15     | 24.20          | 4      | 6.45           |
| BMI (kg/m²) [25]            |        |                |        |                |
| Underweight (< 18.5)        | 10     | 16.10          | 9      | 14.52          |
| Normal (18.5 ≤ 25)          | 47     | 75.81          | 45     | 72.58          |
| Overweight (25 ≤ 27)        | 3      | 4.84           | 2      | 3.23           |
| Overweight (≥ 27)           | 2      | 3.23           | 6      | 9.68           |

BMI: Body Mass Index.
### Tab. II. Lung function values in smokers and non-smokers.

| Lung function value | Smoker group (n: 62) | Non-smoking group (n: 62) | P value |
|---------------------|----------------------|---------------------------|---------|
|                     | Frequency | Percentage (%) | Frequency | Percentage (%) |         |
| FEV1/FVC value (%)  |           |                |           |                |         |
| $< 70$ (with respiratory problems) | 20       | 32.26          | 2         | 3.23           | 0.00    |
| $\geq 70$ (without respiratory problems) | 42       | 67.74          | 60        | 96.77          |         |

### Tab. III. Profile of type of physical activity.

| N. | Type of physical activity | Duration (minutes) | Smokers (n: 62) | Non-smokers (n: 62) |
|----|--------------------------|--------------------|----------------|--------------------|
| 1  | Walking 100 m            |                    |                |                    |
|    |                          | 5                  | 3              | 4.84               | 1       | 1.61 |
|    |                          | 10                 | 5              | 8.06               | 3       | 4.84 |
|    |                          | 15                 | 7              | 11.30              | 26      | 41.94 |
|    |                          | 20                 | 3              | 4.84               | 2       | 3.23 |
|    |                          | 30                 | 26             | 41.94              | 11      | 17.74 |
|    |                          | 40                 | 1              | 1.61               | 0       | 0     |
|    |                          | 60                 | 17             | 27.42              | 16      | 25.81 |
|    |                          | Not done           | 0              | 0                  | 3       | 4.84 |
| 2  | Walking > 100 m          |                    |                |                    |
|    |                          | 10                 | 1              | 1.61               | 5       | 8.06 |
|    |                          | 15                 | 6              | 9.68               | 11      | 17.74 |
|    |                          | 30                 | 18             | 29.03              | 13      | 20.97 |
|    |                          | 40                 | 1              | 1.61               | 0       | 0     |
|    |                          | 45                 | 2              | 3.23               | 1       | 1.61 |
|    |                          | 60                 | 23             | 37.10              | 23      | 31.10 |
|    |                          | 120                | 2              | 3.23               | 0       | 0     |
|    |                          | Not done           | 9              | 14.52              | 9       | 14.52 |
| 3  | Driving vehicles (cars, motorbikes) |            |                |                    |
|    |                          | 10                 | 1              | 1.61               | 0       | 0     |
|    |                          | 15                 | 5              | 8.06               | 2       | 3.23 |
|    |                          | 20                 | 1              | 1.61               | 5       | 8.06 |
|    |                          | 30                 | 6              | 9.68               | 6       | 9.68 |
|    |                          | 35                 | 3              | 4.84               | 0       | 0     |
|    |                          | 60                 | 21             | 33.87              | 19      | 30.64 |
|    |                          | 120                | 10             | 16.13              | 13      | 20.97 |
|    |                          | 180                | 3              | 4.84               | 7       | 11.29 |
|    |                          | 240                | 6              | 9.68               | 4       | 6.45 |
|    |                          | Not done           | 6              | 9.68               | 3       | 4.84 |
| 4  | Cycling                  |                    |                |                    |
|    |                          | 10                 | 2              | 3.23               | 1       | 1.61 |
|    |                          | 30                 | 2              | 3.23               | 3       | 4.84 |
|    |                          | 60                 | 4              | 6.45               | 1       | 1.61 |
|    |                          | 120                | 1              | 1.61               | 2       | 3.23 |
|    |                          | 180                | 2              | 3.23               | 1       | 1.61 |
|    |                          | Not done           | 51             | 82.26              | 54      | 87.10 |
| 5  | Cooking                  |                    |                |                    |
|    |                          | 10                 | 4              | 6.45               | 10      | 16.15 |
|    |                          | 15                 | 3              | 4.84               | 7       | 11.29 |
|    |                          | 30                 | 7              | 11.29              | 6       | 9.68 |
|    |                          | 60                 | 3              | 4.84               | 4       | 6.45 |
|    |                          | Not done           | 45             | 72.58              | 35      | 56.45 |
| 6  | Washing                  |                    |                |                    |
|    |                          | 5                  | 1              | 1.61               | 5       | 4.84 |
|    |                          | 10                 | 2              | 3.23               | 6       | 9.68 |
|    |                          | 15                 | 6              | 9.68               | 3       | 4.84 |
|    |                          | 30                 | 10             | 16.13              | 13      | 20.98 |
|    |                          | 60                 | 10             | 16.13              | 8       | 12.90 |
|    |                          | 120                | 2              | 3.23               | 3       | 4.84 |
|    |                          | Not done           | 31             | 50.00              | 26      | 41.95 |

Continues
Discussion

Most subjects, whether smokers or non-smokers, did not experience respiratory problems (Tab. II). This was probably due to their young age, in that their exposure to cigarette smoke had not yet impaired their lung function. Nevertheless, a significant difference ($p = 0.00$) was seen between the two groups in terms of lung function values. The results of the present study are similar to those of the research conducted in Jordan by Banur et al. [20] and
Nawafleh et al. [21], who also observed differences in lung function (FEV1/FVC) between smokers and non-smokers. Cigarettes contain harmful chemicals, such as carbon monoxide, which can enter the bloodstream and bind hemoglobin. Hemoglobin should bind to oxygen. However, when the carbon monoxide content exceeds that of oxygen, it binds the hemoglobin. This can disrupt the pulmonary blood vessels, which become narrower and less elastic, causing the lungs to expand [27].

In this study, lung function was measured by means of hand-held spirometers, which are small, portable and inexpensive. Moreover, spirometry results can be screened simply and accurately [22].

Several factors can affect lung function:
• **age**: lung function tends to decline with aging [28]. Lung function continues to increase up to the age of 25 years, and then remains stable for approximately 5-10 years. Subsequently, lung function begins to decrease after the age of about 40 years [29, 30]. Indeed, with aging, the muscles of the diaphragm decrease, and the lung tissue that helps keep the ducts open can lose elasticity, reducing the caliber of the airways [31];

  • **gender**: pulmonary development continues throughout childhood and adolescence [32]. Women’s lungs are smaller than men’s, and have fewer bronchioles [33]. For this reason, and because most smokers are male [34], we enrolled only male subjects in the present study;

  • **smoking**: cigarette smoke contains around 4,000 chemical compounds, more than 100 of which are carcinogenic and mutagenic and harmful to health [35]. The damage caused depends on the length of exposure; the longer the exposure, the greater the effect will be [36]. Thus, over time, the lung function of a smoker will deteriorate in comparison with that of a non-smoker [37]. According to some studies, many people think that light smoking has no harmful effects. In one such study, however, it was found that former smokers and those who smoked less than 5 cigarettes per day had already done moderate damage to their lungs, and that, in two-thirds of cases, chronic obstructive pulmonary disease (COPD) could well ensue [38]. Light smoking can impair lung function within 1 year, while heavy smokers can suffer the same effect within 9 months. The respondents involved in this study smoked filter cigarettes of different brands and with different levels of nicotine and tar. However, the cigarette brand did not affect the results of the study. Indonesian Government Regulation number 81 of 1999, regarding smoking and health, states that cigarettes are allowed to contain no more than 1.5 mg of nicotine and 20 mg of tar. The filters used in cigarettes can significantly reduce the tar and nicotine content of the smoke. According to previous research, the nicotine content in unfiltered cigarette smoke is greater than that of filtered cigarette smoke [38, 39];

  • **physical activity**: regular physical activity increases respiratory efficiency, improving the functioning both of the lungs and of the other organs of the body. Swimming and gymnastics are particularly beneficial, the latter being an aerobic exercise that can easily be performed [40, 41].

This study involved respondents aged 18-25 years, which means that their lung function was still maturing [30]. If smoking begins at that age or less, it can have serious consequences and may be a risk factor for COPD [42]. In the present study, all subjects were less than 60 years old, and none were classified as geriatric (Tab. I). Thus, the age factor did not affect our results. BMI can also affect the functioning of the lung, and respiratory dysfunction due to obesity can affect FVC and FEV1 [43]. However, as most of our respondents had normal BMI values (Tab. I), the BMI factor did not affect this study.

| Physical activity classification | Smokers (n:62) | Non-smokers (n:62) | P value |
|--------------------------------|---------------|--------------------|---------|
|                                | Number | Percentage (%) | Number | Percentage (%) |       |
| Category                       |        |               |        |               |       |
| Light                          | 14    | 22.58         | 12    | 19.35         | 0.907  |
| Moderate                       | 26    | 41.94         | 27    | 43.55         |        |
| Vigorous                       | 22    | 35.48         | 23    | 37.10         |        |
| Total                          | 62    | 100           | 62    | 100           |        |

| Physical activity classification | Smokers (n: 62) | Non-smokers (n: 62) | Total |
|----------------------------------|-----------------|---------------------|-------|
|                                 | With respiratory problems | Without respiratory problems | With respiratory problems | Without respiratory problems |       |
| Category                         | Light           | Moderate            | Vigorous | Light           | Moderate            | Vigorous | Light           | Moderate            | Vigorous |       |
|                                 | 9               | 15                 | 18       | 5               | 11                 | 4        | 26               |                      |         |       |
| With respiratory problems        |                |                    |          | With respiratory problems |                      |         |       |
| Without respiratory problems     |                |                    |          | Without respiratory problems |                      |         |       |
| With respiratory problems        | 10              | 27                 | 23       | 2               |                      |         |       |
| Without respiratory problems     | 2               | 0                  | 0        | 2               |                      |         |       |
| Total                            | 42              | 20                 | 60       | 2               |                      |         | 124              |                      |         |       |
The study involved 124 subjects, who were equally divided into 2 groups: smokers and non-smokers. We chose to enroll male students, since previous research has indicated that men are physically more active than women [44]. As shown in Tables IV and V, 26 smokers (41.94%) engaged in moderate physical activity; 22 (35.48%) in vigorous activity, and 14 (22.58%) in light activity. Similarly, 27 non-smokers (43.55%) engaged in moderate physical activity, 23 (37.10%) in vigorous activity, and 10 (19.35%) in light activity. Research conducted by Kwan et al. [45] has shown that physical activity tends to decline among young adults, particularly university students.

Physical activity has various beneficial effects on health, such as maintaining/losing body weight, strengthening bones and muscles, and reducing depression and stress. It can also prevent several diseases, including heart disease and stroke, and reduce the risk of high blood pressure, diabetes and several cancers, such as breast and colon cancers [46, 47].

The five physical activities most frequently carried out by the participants in our study were: walking more than 100 m; driving vehicles (cars, motorbikes); washing; sweeping and cleaning rooms/houses; carrying water. This study involved respondents aged 18-25 years. They can at least perform physical activities for 150 minutes at moderate intensity throughout the week, or perform physical activities for 75 minutes with heavy intensity throughout the week, or a combination of moderate activity and strenuous activity (Not clear. Perhaps you mean: the WHO recommends that such subjects carry out moderate-intensity physical activity for at least 150 minutes per week, or strenuous activity for 75 minutes, or a combination of moderate and strenuous activity) [23]. In the present study, the physical activity carried out by both smokers and non-smokers was of moderate intensity. Several factors can act upon a person’s physical activity [48], including:

- **intrinsic factors**: these refer to the person’s internal motivation, and are often connected with the good or bad feelings elicited by physical activity;
- **environmental factors**: the individual’s surroundings, including the weather, can encourage or discourage physical activity;
- **physical considerations**: those who take regular physical exercise tend both to look and to feel good; they will therefore be motivated to continue their physical activity. Conversely, tiredness and lack of fitness will discourage physical activity;
- **routine factors**: the routine necessities of everyday life will obviously impact on the time and energy that an individual is able or willing to devote to physical activities.

Physical activity can be measured by means of accelerometers and pedometers and through self-report questionnaires (IPAQ-S, RPAQ, PAR). In this study, we used only self-report questionnaires, which have the advantage of being economical and easy to administer; admittedly, however, the data obtained will depend on what respondents remember [49].

The present study has some limitations. Firstly, the sample was relatively small. Secondly, smoking habits and the intensity and duration of the various physical activities were referred subjectively. However, the answers to types of physical activity such as carrying water were clear, i.e. lifting large 19 L water containers or medium-sized 10 L containers. Finally, in establishing the exclusion criteria, information on medical history was provided only by the respondents themselves and a complete medical examination was not carried out.

**Conclusions**

Most subjects (60/62 non-smokers and 42/62 smokers) had no respiratory problems, though the chi-square test results showed a significant difference (p = 0.00) between the two groups in terms of lung function values (< 70 vs ≥ 70). Most subjects (26/62 smokers and 27/62 non-smokers) had moderate levels of physical activity. The chi-square test results showed no difference (p = 0.907) between smokers and non-smokers in terms of their level of physical activity.

**Acknowledgements**

Funding sources: this research was funded by the Institute of Research and Community Service of the Universitas Surabaya.

**Conflicts of interest statement**

The authors declare no conflict of interest.

**Authors’ contributions**

All authors discussed the results and contributed to the final manuscript.

**References**

[1] Kementerian Kesehatan Republik Indonesia. Penyakit Tidak Menular (PTM) Penyebab Kematian terbanyak di Indonesia; 2011. Available from: https://www.kemkes.go.id/article/view/1637/penyakit-tidak-menular-ptm-penyebab-kematian-terbanyak-di-indonesia.html

[2] Kementerian Kesehatan RI. INFODATIN: Pusat Data dan Informasi Kementerian Kesehatan RI; 2018. Available from: https://pusdatin.kemkes.go.id/folder/view/01/structure-publikasi-pusdatin-info-datim.html

[3] Tantisuwat A, Thaveeattitham P. Effects of smoking on chest expansion, lung function, and respiratory muscle strength of youths. J Phys Ther Sci 2014;26:167-70. https://doi.org/10.1589/jpts.26.167

[4] Morgan JC, Byron MJ, Baig SA, Stepanov I, Brewer NT. How people think about the chemicals in cigarette smoke: a systematic review. J Behav Med 2017;40:553-64. https://doi.org/10.1007/s10865-017-9823-5

[5] Durmic T, Lazovic B, Djelic M, Lazic JS, Zicic D, Zugic V,
LUNG FUNCTION DISORDERS AND PHYSICAL ACTIVITY

Dekleva M, Mazic S. Influencias específicas do esporte nos padrões respiratórios em atletas de elite. J Bras Pneumol 2015;41:516-22.

Cheung HJ, Cheung L. Coaching patients during pulmonary function testing: a practical guide. Can J Respir Ther 2015;51:65-8.

Hyndman B, Lecturer S. Move it, Move it: how physical activity at school helps the mind (as well as the body). The Conversation; 2018. Available from: https://theconversation.com/move-it-move-it-how-physical-activity-at-school-helps-the-mind-as-well-as-the-body-100175

Liposek S, Planinscic J, Leskoske B, Pajtler A. Physical activity of university students and its relation to physical activity of university students and its relation to physical fitness and academic. Annales Kinesiologiae 2019;9:89-104.

Jajat, Sulton K, Suherman A. Barriers to physical activity on university student. IOP Conf. Ser.: Mater Sci Eng 2017;180:1-4.

Tremblay MS, Colley RC, Saunders TJ, Healy GN, Owen N. Physiological and health implications of a sedentary lifestyle. Applied Physiology, Nutrition and Metabolism 2010;35:725-40.

Luzak A, Kerrasch S, Thorand B, Nowak D, Holle R, Peters A, Arvey, Ruiz-González, Juan Carlos, Ortega-Hernández, Ana María, & Ortiz-González, Deisy Carolina. Effect of a respiratory muscle training program on lung function, respiratory muscle strength and resting oxygen consumption in sedentary young people. Revista de la Facultad de Medicina 2018;66:605-10.

Loponen J, Ilmarinen P, Tuomisto LE, Haanpää J, Kankaanranta H. Daily physical activity and lung function decline in adult-onset asthma: a 12-year follow-up study. Eur Cln Respi J 2018;5:1533753. https://doi.org/10.1001/jrhep16101747

Hernández-Alvarez, Edgar Debray, Guzmán-David, Cristian Arvey, Ruiz-González, Juan Carlos, Ortega-Hernández, Ana María, & Ortiz-González, Deisy Carolina. Effect of a respiratory muscle training program on lung function, respiratory muscle strength and resting oxygen consumption in sedentary young people. Revista de la Facultad de Medicina 2018;66:605-10.

Heydari G, Hosseini M, Yousefifard M, Asady H, Baikpour M, Barat A. Smoking and physical activity in healthy adults: results from the KORA FF4 study. BMC Pulm Med 2017;17:215. https://doi.org/10.1186/s12890-017-0562-8

Álvarez-Herms J, Juliá-Sánchez S, Corbi F, Odrozio-Zapata E, Bartscher M. Putative role of respiratory muscle fatigue in endurance performance in hypoxia: a review. Front Physiol 2019;9:1970. https://doi.org/10.3389/fphys.2018.01970

Okryzmowska P, Kurczaj M, Seidel W, Rożek-Piechura K. Eight weeks of inspiratory muscle training improves pulmonary function in disabled smokers—a randomized trial. Int J Environ Res Public Health 2019;16:1747. https://doi.org/10.3390/ijerph16101747

Lorensia A, Wahyudi M, Yudiaro A, Kurnia SED. Effect of illness perception on improving asthma symptoms with omega-3 fish oil therapy: pre-post design study. J Appl Pharm Sci 2020;10:62-71.

Ostrowski S, Barud W. Factors influencing lung function: are the predicted values for spirometry reliable enough? J Physiol Pharmacol 2006;57(Suppl 4):263-71.

Roman MA, Rossiter HB, Casaburi R. Exercise, ageing and the lung. Eur Respir J 2016;48:1471-86. https://doi.org/10.1183/13993003.00347-2016

Carey MA, Card JW, Volf JW, Barnes SJ Jr, Germolec DR, Karakash KS, Zeldin DC. It’s all about sex: gender, lung development and lung disease. Trends Endocrinol Metab 2017;8:308-13. https://doi.org/10.1016/j.tem.2007.08.003

Lomaoa A, Aliveri A. Sex differences in respiratory function. Breathe 2018;14:131-40.

Lorensia A, Yudiaro A, Pratama AM. Interpretative phenomenological analysis: pharmacy student perceptions of cigarette smoking of health awareness in smoking cessation. ANIMA Indonesian Psychological Journal 2016;31:170-9.

Suryadinata RV, Lorensia A, Sari RK. Differences in nutrition food intake and body mass index between smoker and non-smoker in adult. Indonesian Journal of Clinical Pharmacy. 2017;6:171-80.

Fitria, Triandhini RINKR, Manginibukde JC, Karwur FF. Merokok dan Oksidasi DNA. Sains Medika 2013;5:113-20.

Tommola M, Ilmarinen P, Tuomisto LE, Niemelä O, Kankaanranta H. Daily physical activity and lung function decline in former smokers and low-intensity current smokers: a secondary data analysis of the NHLBI Pooled Cohorts Study. Lancet Respir Med 2020;8:34-44. https://doi.org/10.1016/S2213-2600(19)30276-0

Kogevinas M, Henderson J, Kankaanranta T, Niemelä O, Kankaanranta H. The effect of smoking on lung function: a clinical study of adult-onset asthma. Eur Respir J 2016 Nov;48(5):1298-1306. https://doi.org/10.1183/13993003.00850-2016

Oelsner EC, Balte PP, Bhatt SP, Cassano PA, Couper D, Folsom AR, Freedman ND, Jacobs DR Jr, Kalhan R, Mathew AR, Krommal RA, Loehr LR, London SJ, Newman AB, O’Connor GT, Schwartz JE, Smith LJ, White WB, Yende S. Lung function decline in former smokers and low-intensity current smokers: a secondary data analysis of the NHLBI Pooled Cohorts Study. Lancet Respir Med 2020;8:34-44. https://doi.org/10.1016/S2213-2600(19)30276-0

Taghavi S, Khashyarmanesh Z, Moalemzadeh-Haghifi H, Nasiri H, Eshraghi P, Jalali N, Hassanzeadeh-Khayat M. Nicotine content of domestic cigarettes, imported cigarettes and pipe tobacco in Iran. Addict Health. 2012 Winter-Spring;4(1-2):28-35. PMID: 24494133; PMCID: PMC3905555.

Font-Ribera L, Villanueva CM, Nieuwenhuijzen MJ, Zock JP, Kogevinas M, Henderson J. Swimming pool attendance, asthma, allergies, and lung function in the Avon Longitudinal Study.
of Parents and Children cohort. Am J Respir Crit Care Med 2011;183:582-8. https://doi.org/10.1164/rccm.201005-0761OC

[41] Valeriani F, Protano C, Vitali M, Romano Spica V. Swimming attendance during childhood and development of asthma: meta-analysis. Pediatr Int 2017;59:614-21. https://doi.org/10.1111/ped.13230

[42] Bhatt SP, Kim YI, Harrington KF, Hokanson JE, Lutz SM, Cho MH, DeMeo DL, Wells JM, Make BJ, Rennard SI, Washko GR, Foreman MG, Tashkin DP, Wise RA, Dransfield MT. Smoking duration alone provides stronger risk estimates of chronic obstructive pulmonary disease than pack-years. Thorax 2018;73:414-21. https://doi.org/10.1136/thoraxjnl-2017-210722

[43] Mafort TT, Rufino R, Costa CH, Lopes AJ. Obesity: systemic and pulmonary complications, biochemical abnormalities, and impairment of lung function. Multidiscip Respir Med 2016;11:28. https://doi.org/10.1186/s40248-016-0066-z

[44] Fagaras SP, Radu LE, Vanvu G. The level of physical activity of university students. Procedia - Social and Behavioral Sciences. 2015;197:1454-7.

[45] Kwan MY, Cairney J, Faulkner GE, Pullenayegum EE. Physical activity and other health-risk behaviors during the transition into early adulthood: a longitudinal cohort study. Am J Prev Med 2012;42:14-20. https://doi.org/10.1016/j.amepre.2011.08.026

[46] Suryadinata RV, Wirjatmadi B, Adriani M, Lorensia A. Effect of age and weight on physical activity. J Public Health Res 2020;9:1840. https://doi.org/10.4081/jphr.2020.1840

[47] Suryadinata RV, Lorensia A, Tangkilisan EC. Effect of physical activity and vitamin D status on geriatrics obesity. Global Medical & Health Communication 2019;7:1.6.

[48] McArthur D, Dumas A, Woodend K, Beach S, Stacey D. Factors influencing adherence to regular exercise in middle-aged women: a qualitative study to inform clinical practice. BMC Womens Health 2014;14:49. https://doi.org/10.1186/1472-6874-14-49

[49] Ndahimana D, Kim EK. Measurement methods for physical activity and energy expenditure: a review. Clin Nutr Res 2017;6:68-80. https://doi.org/10.7762/cnr.2017.6.2.68

Received on August 8, 2020. Accepted on January 4, 2021.

Correspondence: Amelia Lorensia, Fakultas Farmasi Universitas Surabaya (UBAY A), Jl. Raya Kalirungkut Surabaya 60293, Indonesia - E-mail: amelia.lorensia@gmail.com - amelia.lorensia@staff.ubaya.ac.id

How to cite this article: Lorensia A, Muntu CM, Suryadinata RV, Septiani R. Effect of lung function disorders and physical activity on smoking and non-smoking students. J Prev Med Hyg 2021;62:E89-E96. https://doi.org/10.15167/2421-4248/jpmh2021.62.1.1763

© Copyright by Pacini Editore Srl, Pisa, Italy

This is an open access article distributed in accordance with the CC-BY-NC-ND (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International) license. The article can be used by giving appropriate credit and mentioning the license, but only for non-commercial purposes and only in the original version. For further information: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en