Case report

Case of progressive hyperopia due to flattening of cornea

Hiromasa Hirai, Shinji Maruoka, Tadanobu Yoshikawa, Nahoko Ogata

Department of Ophthalmology, Nara Medical University, Nara, Japan

ARTICLE INFO

Keywords:
- Hyperopia
- Irregular astigmatism
- Flattened cornea
- Anterior segment optical coherence tomography
- Higher order aberrations

ABSTRACT

Purpose: To report a case that had a progressive decrease in the visual acuity caused by a progressive increase in the hyperopia due to a flattening of the cornea.

Observations: A 50-year-old woman complained of decreased vision in both eyes. Her decimal best-corrected visual acuity was 1.2 in the right and 0.9 in the left eyes, and the refractive error (spherical equivalent) was +3.75 diopters (D) for the right eye and +6.5 D for the left eye. Slit-lamp examinations showed clear corneas but Descemet's folds and fine pigments and opacities were present beneath the corneal epithelium in both eyes. Analysis of the corneal shape by anterior segment optical coherence tomography showed that the corneas were flattened, and the corneal refractive power was decreased in both eyes. The large values of the higher-order aberration in the cornea and total eye displayed bilateral irregular astigmatism. She obtained good vision by wearing hard contact lenses but her refractive power continued to decrease for at least 1 year.

Conclusions: and Importance: We report a rare case of progressive hyperopia and irregular astigmatism due to a flattening of the cornea. Folds were present in Descemet's membrane but the cornea was not edematous.

1. Introduction

Progressive myopia caused by changes in the corneal curvature is well known as in cases of keratoconus. However, progressive hyperopia is rare and has not been reported except after refractive surgery or due to corneal scars. We report a case of progressive hyperopia due to a flattening of the cornea that presented with no corneal edema but with Descemet's folds.

1.1. Case report

A 50-year-old woman noticed a progressive decrease in her vision in both eyes beginning 2 years before our initial examination. She was prescribed +1.0 diopters (D) spectacles and obtained good vision but her visual acuity progressively decreased even while wearing the glasses. She visited our hospital to try to determine the cause of her progressive decrease in her vision.

Our initial examination showed that she had no history of ocular or systemic diseases. Her decimal best-corrected visual acuity (BCVA) was 1.2 with +2.50–1.25 × 90 in the right eye and 0.5 with +6.50–1.25 × 90 in the left eye. The intraocular pressure was normal in both eyes. The refractive error (spherical equivalent) determined by an auto refractometer (ARK1α, NIDEK, Aichi, Japan) was +3.75 diopters (D) for the right eye and +6.5 D for the left eye. Slit-lamp examinations showed clear corneas although Descemet's folds and fine pigments and opacities were almost clear with no edema. However, Descemet's folds were present in the central area and fine pigments and opacities were detected in the superficial stroma of the cornea in both eyes (Fig. 1). The anterior chamber was of normal depth and clear, the lens was transparent, and no abnormalities were observed in the fundus of both eyes.

Anterior segment optical coherence tomography (AS-OCT, Spectralis OCT®, Heidelberg Engineering, Heidelberg, Germany) showed several hyperreflective regions beneath the corneal epithelium and deep corneal stroma in both eyes (Fig. 2). The central corneal thickness was 541 μm in the right eye and 539 μm in the left eye as determined by a single rotating Scheimpflug camera (Pentacam®, Oculus, Wetzlar, Germany, Fig. 3). Both values were within the normal range. The refractive power in the central portion of the cornea was 40.3 D in the right eye and 37.5 D in the left eye as determined by a wavefront analyzer (KR-1W®, TOPCON, Tokyo, Japan, Fig. 5). She was prescribed hard contact lenses and her BCVAs improved to 1.0 in both eyes.

After one year, a progression of the decrease in the corneal refractive power was determined in both eyes. The refractive power in the central portion decreased from 40.3 D to 37.6 D in the right eye and...
37.5 D to 36.1 D in the left eye. These results demonstrated that the corneal flattening was continuing in spite of the hard contact lens wear (Fig. 4C and D).

2. Discussion

Our results showed that a flattening of the anterior surface of the cornea in both eyes leading to the hyperopia and irregular astigmatism. These changes were the cause of the decreased visual acuities. A search of the PubMed and Medline database failed to find any similar progressive flattening of the cornea.

It is relatively common for hyperopic shifts to occur in eyes with corneal scars such as that after bacterial keratitis or herpetic keratitis or tuberculosis. However, these keratitis are usually unilateral and our
patient presented with fine pigmentations and fine opacities in the corneal stroma bilaterally. Interstitial keratitis due to syphilis is usually bilateral but our patient was negative by blood examinations.

The flattening of the central corneas might result in excessive Descemet’s membranes causing the folds in Descemet’s membrane. It is well known that Descemet’s folds with corneal edema occurs in cases of cataract surgery or infectious keratitis. However, our patient had no history of ocular or systemic diseases, and she never had any injuries of both eyes.

The hyperreflective regions observed by AS-OCT may be due to corneal fibrosis. Central toxic keratopathy (CTK), a rare complication after laser in situ keratomileusis (LASIK) or photorefractive keratectomy (PRK), is characterized by central corneal opacities and hyperopic shifts. Tissue destruction due to abnormal secretion of MMPs has been suggested to be the pathogenesis of CTK. Our patient had not undergone LASIK or PPK but similar processes of tissue destruction might have occurred. The abnormal secretion of enzymes or proteins from stromal cells, e.g., TGFβ-induced proteins (TGFβIp), MMPs, and TIMPs could promote corneal fibrosis which could then result in a flattening of the cornea.

3. Conclusions

We report a rare case of progressive hyperopia and irregular astigmatism due to a flattening of the cornea.

Patient consent

Consent to publish the case report was obtained. This report does not contain any personal information that could lead to the identification of the patient.

Acknowledgments and disclosures

Funding.

No funding or grant support.

Authorship

All authors attest that they meet the current ICMJE criteria for Authorship.

Conflicts of interest

The authors have no financial disclosures relating this topic.

Acknowledgements

None.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.ajoc.2018.02.013.

References

1. Soiberman U, Foster JW, Jun AS, et al. Pathophysiology of keratoconus: what do we know today. Open Ophthalmol J. 2017;11:252–261.
2. Jin KW, Shin VJ, Hyon JY. Effects of chalazia on corneal astigmatism: large-sized chalazia in middle upper eyelids compress the cornea and induce the corneal astigmatism. BMC Ophthalmol. 2017;17:36.
3. Abdelmaksoud A, Khoo NT, Hansot H, et al. Bilateral central toxic keratopathy after laser in situ keratomileusis. BMJ Case Rep. 2015;10:212423.
4. Davey N, Aslanides IM, Selimis V. A case report of central toxic keratopathy in a patient post TransPRK (followed by corneal collagen cross-linking). Int Med Case Rep J. 2017;15:131–138.
5. Murugan E, Venkatraman A, Lei Z, et al. pH induced conformational transitions in the transforming growth factor β-induced protein (TGFβIp) associated corneal dystrophy mutants. Sci Rep. 2016;6:23836.
6. Kenney MC, Chwa M, Alba A, et al. Localization of TIMP-1, TIMP-2, TIMP-3, gelatinase A and gelatinase B in pathological human corneas. Curr Eye Res. 1998;17:238–246.