FLAT BUNDLES WITH COMPLEX ANALYTIC
HOLONOMY

I. CHATTERJI, G. MISLIN, AND CH. PITTET

Abstract. Let G be a connected complex Lie group. We show that any flat principal G-bundle over any finite CW-complex pulls back to a trivial bundle over some finite covering space of the base space if and only if each real characteristic class of positive degree of G vanishes. A third equivalent condition is that the derived group of the radical of G is simply connected. As a corollary, the same conditions are equivalent if G is a connected amenable Lie group. In particular, if G is a connected compact Lie group then any flat principal G-bundle over any finite CW-complex pulls back to a trivial bundle over some finite covering space of the base space.

1. Introduction

Let G be a Lie group. A principal G-bundle over a connected CW-complex X is called flat, if there is a homomorphism

$$\rho : \pi_1(X) \to G,$$

the holonomy of the flat bundle, such that the given bundle is equivalent to the G-bundle $\tilde{X} \times_\rho G \to X$ canonically associated with the universal cover \tilde{X} of X; the notation $\tilde{X} \times_\rho G$ refers to the orbit space of $\tilde{X} \times G$ under the $\pi_1(X)$-action given by

$$\gamma(x, g) = (\gamma x, \rho(\gamma)g).$$

Flat G-bundles are characterized by the fact that the classifying map $\theta : X \to BG$ factors as

$$X \to B\pi_1(X) \to BG,$$

where the first arrow classifies the universal cover of X and the second one is $B\rho$. Equivalently, if G^δ denotes the group G with the discrete topology and $\iota : G^\delta \to G$ denotes the identity map, a principal G-bundle over X is flat, if and only if it is classified by a map $\theta : X \to BG$ which factors through

$$B\iota : BG^\delta \to BG.$$

We refer the reader to [15] for more details on the above facts.
A principal G-bundle over X is called virtually trivial if its pull-back to some finite covering space of X is trivial.

Under which conditions on a connected Lie group G is any flat principal G-bundle, over any finite CW-complex, virtually trivial?

A necessary condition is that each real characteristic class of G in $H^*(BG^δ, \mathbb{R})$, in the sense of [11, p. 23], of positive degree vanishes; that is the map

$$H^*(BG, \mathbb{R}) \to H^*(BG^δ, \mathbb{R})$$

induced by $B\iota$ is zero if $* > 0$. This necessary condition is fulfilled if G is a complex reductive group; this follows from a result of Kamber and Tondeur [16, Theorem 3.5]. A well-known result of Deligne and Sullivan states that any flat principal $GL(n, \mathbb{C})$-bundle over any finite CW-complex is virtually trivial [5].

Before we state our main result, we recall that the radical R of a connected Lie group G is its maximal connected normal solvable subgroup. It is always a closed subgroup of G but its commutator subgroup $[R, R]$ is in general not closed in G.

Theorem 1.1. Let G be a connected complex Lie group. The following conditions are equivalent.

1. Any flat principal G-bundle over any finite CW-complex is virtually trivial.
2. The map $H^*(BG, \mathbb{R}) \to H^*(BG^δ, \mathbb{R})$ is zero in positive degree.
3. The map $H^2(BG, \mathbb{R}) \to H^2(BG^δ, \mathbb{R})$ is zero.
4. The derived subgroup $[R, R]$ of the radical R of G is simply connected.

According to Gotô [10, Theorem 25], a connected solvable Lie group R is linear if and only if the closure of its derived subgroup is simply connected. As the map between fundamental groups

$$\pi_1([R, R]) \to \pi_1([R, R])$$

induced by the inclusion, is one-to-one, it follows that a connected complex Lie group G whose radical is linear satisfies the equivalent conditions of the theorem. The chain of implications (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) holds for any connected Lie group. The proof of (3) \Rightarrow (4) is given in [3, Proof of Theorem 2.2] and is based on a construction of Goldman [9]. Hence, in order to prove the theorem, it is enough to show that if G is a connected complex Lie group and if the derived subgroup of the radical of G is simply connected then any flat principal G-bundle over any finite CW-complex is virtually trivial.
The main steps in the proof are the following. All real characteristic classes of a connected Lie group G are bounded, when viewed as classes in $H^*(BG^d, \mathbb{R})$, if and only if the derived subgroup of the radical of G is simply connected [3]. Combining this fact with Gromov’s *Mapping Theorem* [11, Section 3.1], we reduce the problem to the case of semisimple groups. A connected complex semisimple Lie group C has a unique complex algebraic structure and there exists a Chevalley integral group scheme $G_\mathbb{Z}$, whose set of \mathbb{C}-points $G_\mathbb{Z}(\mathbb{C})$ in its Lie group topology, $G_\mathbb{Z}(\mathbb{C})_{\text{Lie}}$, is as a complex Lie group isomorphic to C (for the existence of $G_\mathbb{Z}$ see [6]; see also [8]). As explained in [7], this opens the way to the application of Sullivan’s completion techniques, in a similar way as in [5]: the Hasse principle applies and solves the problem.

In Lemma 5.1 below, we show that if G is a connected amenable Lie group, then its universal complexification $\gamma_G : G \to G^+$, (see Section 5 below) is one-to-one and is a homotopy equivalence (these two properties on the universal complexification characterize connected amenable Lie groups among connected Lie groups, but we won’t need this fact). As a consequence, Theorem 1.1 has the following corollary. (Notice that none of the conditions in Theorem 1.1 refers to a complex structure on the Lie group.)

Corollary 1.2. For a connected amenable Lie group, the four conditions in Theorem 1.1 are equivalent.

The proof of Corollary 1.2 is explained in Section 5 below. In [9], Goldman proved $(1) \iff (4)$ for connected solvable Lie groups. The finiteness assumption on the CW-complex which is the base of the bundle is not stated explicitly in [9] but is necessary, as the following example shows: the flat principal S^1-bundle over $K(\mathbb{Q}/\mathbb{Z}, 1)$ with classifying map induced by the inclusion $\mathbb{Q}/\mathbb{Z} \subset S^1$ is not virtually trivial because its classifying map $K(\mathbb{Q}/\mathbb{Z}, 1) \to BS^1 = K(\mathbb{Z}, 2)$ corresponds to an element of infinite order in $H^2(K(\mathbb{Q}/\mathbb{Z}, 1), \mathbb{Z}) \cong \lim_{\leftarrow} \mathbb{Z}/n\mathbb{Z}$.

That $(2) \iff (4)$ for connected solvable Lie groups follows from [3, Theorem 1.1] because a solvable group with the discrete topology is amenable and the real cohomology of amenable groups vanishes [17].

A compact Lie group is amenable as a Lie group, and the radical of a compact Lie group is abelian, hence the above corollary implies the following.
Corollary 1.3. Let G be a connected compact Lie group. Then any flat principal G-bundle over any finite CW-complex is virtually trivial.

A flat bundle whose holonomy is non-amenable and has no complex structure may fail to be virtually trivial even if all its real characteristic classes vanish in positive degree. The cohomology ring

$$H^*(BSO(2n+1), \mathbb{R})$$

is generated by Pontrjagin classes [19, Theorem 15.9] and Pontrjagin classes of flat $GL(n, R)$-bundles vanish [19, Appendix C, Corollary 2] hence

$$H^*(BSL(2n+1), \mathbb{R}) \to H^*(BSL^\delta(2n+1), \mathbb{R})$$

vanishes in positive degree. But Millson [18] and Deligne [4] have constructed, for each $n \geq 3$, flat principal $SL(n, R)$-bundles over finite CW-complexes which are not virtually trivial.

The paper is organized as follows. In Section 2 we prove Theorem 1.1 for the case of a complex semisimple Lie group. In Section 3 we prove a lemma closely related to Goldman’s result [9], the main difference being that it also applies to bundles which are not necessarily flat. In Section 4 we explain how the results of the previous sections imply Theorem 1.1 in full generality. In Section 5 we prove Corollary 1.2.

2. The complex semisimple case

First, we fix some notation and recall some facts concerning Sullivan’s completion functor [20]. Let p be a prime. We can think of Sullivan’s p-adic completion as a functor $X \mapsto \hat{X}_p$ on the homotopy category of connected CW-complexes, together with a natural transformation $X \to \hat{X}_p$ which for X a simply connected CW-complex of finite type induces isomorphisms

$$\pi_i(X) \otimes \hat{\mathbb{Z}}_p \to \pi_i(\hat{X}_p), \ i \geq 2,$$

with $\hat{\mathbb{Z}}_p$ denoting the ring of p-adic integers. We will need the following basic fact.

Lemma 2.1. [20, Thm. 3.2]. Let X be a finite CW-complex and Y a simply connected CW-complex of finite type. A map

$$f : X \to Y$$

is homotopic to a constant map if and only if for every prime p the map

$$\hat{f}_p : X \to Y \to \hat{Y}_p$$

is homotopic to a constant map.
The point here is that the space \(X \) in the lemma does not need to be simply connected (or nilpotent).

Lemma 2.2. Let \(C \) be a connected complex semisimple Lie group and \(X \) a connected finite CW-complex. Let \(P : E \to X \) be a flat principal \(C \)-bundle. Then \(P \) is virtually trivial.

Proof. We can assume that \(C \) is isomorphic to \(G_{\mathbb{Z}}(\mathbb{C})_{\text{Lie}} \) for some Chevalley group scheme \(G_{\mathbb{Z}} \). Let \(\psi : \overline{X} \to X \to BC \) be the classifying map for \(P \) pulled back to a finite covering space \(\overline{X} \) of \(X \). Because \(BC \) is simply connected and of finite type and \(\overline{X} \) is a finite complex, we can prove that \(\psi \) is homotopic to a constant map for a particular \(\overline{X} \) by showing that for every prime \(p \), the map \(\hat{\psi}_p : \overline{X} \to \overline{BC}_p \) into the \(p \)-adic completion of \(BC \) is homotopic to a constant map (Lemma 2.1). Let \(\pi \) be the fundamental group of \(X \) and \(\rho : \pi \to C = G_{\mathbb{Z}}(\mathbb{C})_{\text{Lie}} \) the holonomy of the bundle \(P \). Since \(\pi \) is finitely generated, there exist a subring \(\Lambda \subset \mathbb{C} \) of finite type over \(\mathbb{Z} \) such that the image of \(\rho \) is contained in \(G_{\mathbb{Z}}(\Lambda) \). Choose a maximal ideal \(m \subset \Lambda \) such that the finite field \(\mathbb{F} = \Lambda/m \) has characteristic \(q \) different from any torsion prime occurring in the finite torsion subgroup of \(\bigoplus \mathbb{Z} H^i(X, \pi_{i-1}(C)) \). Let \(\overline{\mathbb{F}} \) be an algebraic closure of \(\mathbb{F} \) and \(H \subset \mathbb{C} \) a strict Henselization of \(\Lambda \) in \(\mathbb{C} \), with residue field \(\mathbb{F} \). We then obtain a diagram of group homomorphisms

\[
\begin{array}{cccccc}
\pi & \longrightarrow & G_{\mathbb{Z}}(\Lambda) & \longrightarrow & G_{\mathbb{Z}}(H) & \longrightarrow & G_{\mathbb{Z}}(\mathbb{C}) & \longrightarrow & C \\
\phi & & & & \downarrow & & \simeq & \downarrow & \left((BG_{\mathbb{F}})_{\text{et}} \right)_{\ell} \\
& & \simeq & & & & & \\
& & G_{\mathbb{Z}}(\overline{\mathbb{F}}) & & & & & \\
\end{array}
\]

such that the image of the composite map \(\phi : \pi \to G_{\mathbb{Z}}(\overline{\mathbb{F}}) \) is finite, because \(\pi \) is finitely generated and \(G_{\mathbb{Z}}(\overline{\mathbb{F}}) \) is a locally finite group. Let \(\overline{X} \) be the finite covering space of \(X \) corresponding to the kernel of \(\phi \). We will show that the bundle \(P \) pulled back to \(\overline{X} \) is trivial. Let \(\psi : \overline{X} \to BC \) be the classifying map for that bundle. For every prime \(\ell \) different from the characteristic \(q \) of \(\mathbb{F} \) the map \(\hat{\psi}_\ell : \overline{X} \to \overline{BC}_\ell \) is homotopically trivial, because up to homotopy it can be factored through the homotopically trivial map \(\overline{X} \to BG_{\mathbb{Z}}(H) \to BG_{\mathbb{Z}}(\overline{\mathbb{F}}) \), using natural maps

\[
\begin{array}{cccccc}
\overline{X} & \longrightarrow & BG_{\mathbb{Z}}(\Lambda) & \longrightarrow & BG_{\mathbb{Z}}(H) & \longrightarrow & BG_{\mathbb{Z}}(\mathbb{C}) & \longrightarrow & \overline{BC}_\ell \\
\downarrow & & & \downarrow & & \simeq & \downarrow & & \\
BG_{\mathbb{Z}}(\mathbb{F}) & \longrightarrow & ((BG_{\mathbb{F}})_{\text{et}})_{\ell} & & & & & & \\
\end{array}
\]
For the maps and notation see page 432 of [7]. It remains to deal with the prime $\ell = q$: we need to show that $\hat{\psi}_q : \overline{X} \to \overline{BC}_q$ is homotopically trivial too. Because the bundle P is flat with connected complex reductive structure group, the rational characteristic classes of P are all zero (the map $H^*(BC, \mathbb{Q}) \to H^*(X, \mathbb{Q})$ is zero in positive degrees cf. Theorem 3.5 of Kamber-Tondeur [16]). As a result, the obstructions to trivializing the \hat{C}_q-fibration classified by $X \to \overline{BC}_q$, are all q-torsion. These obstructions lie in the group $\bigoplus_i H^i(X, \pi_{i-1}(C) \otimes \mathbb{Z})$, but this group is torsion-free by the choice of q. We conclude that the map $\hat{\psi}_q : \overline{X} \to \overline{BC}_q$ is homotopically trivial and the Hasse principle (Lemma 2.1) applied to the map $\psi : \overline{X} \to BC$ implies therefore that ψ must be homotopically trivial too.

\[\square\]

3. Bundles with solvable holonomy

The following is a characterization of virtually trivial principal bundles over finite connected CW-complexes, in case the structural group is a connected solvable Lie group. It can be viewed as a variation of a theorem due to Goldman [9], but without assuming that the bundle in question is flat.

Lemma 3.1. Let R be a solvable connected Lie group and $P : E \to X$ a principal R-bundle over the connected CW-complex X, with $\psi : X \to BR$ the classifying map. Assume that $H_1(X, \mathbb{Z})$ is finitely generated. Then the bundle P is virtually trivial if and only if $\psi^* : H^2(BR, \mathbb{R}) \to H^2(X, \mathbb{R})$ is the 0-map.

Proof. If $\psi^* \neq 0$ then for any finite covering space $\pi : \overline{X} \to X$ the composition

$$H^2(BR, \mathbb{R}) \xrightarrow{\psi^*} H^2(X, \mathbb{R}) \xrightarrow{\pi^*} H^2(\overline{X}, \mathbb{R})$$

is non-zero too, because $\pi^* : H^*(X, \mathbb{R}) \to H^*(\overline{X}, \mathbb{R})$ is injective. It follows that P cannot pull back to a trivial bundle on some finite covering space of X. Conversely, assume that $\psi^* = 0$. Because R is homotopy equivalent to a maximal compact subgroup $T \subset R$, T a torus, BR is homotopy equivalent to $K(\mathbb{Z}^n, 2)$ where $\pi_1(T) \cong \mathbb{Z}$. It follows that there is a single obstruction $\omega \in H^2(X, \pi_1(R))$ to the existence of a section for P. Because of our assumption on X, the kernel of the natural map $H^2(X, \mathbb{Z}) \to H^2(X, \mathbb{R})$ is finite (isomorphic to the torsion subgroup of $H_1(X, \mathbb{Z})$) and thus the hypothesis that $\psi^* = 0$ implies that ω must be a torsion class. From the universal coefficient theorem...
we see that therefore
\[\omega \in \text{Ext}(H_1(X,\mathbb{Z}),\pi_1(R)) \rightarrow H^2(X,\pi_1(R)) \rightarrow \text{Hom}(H_2(X,\mathbb{Z}),\pi_1(R)). \]
Let \(\text{Tor} \subset H_1(X,\mathbb{Z}) \) be the finite torsion subgroup and choose a surjection \(\theta : \pi_1(X) \rightarrow \text{Tor} \). Let \(f : \overline{X} \rightarrow X \) denote the covering space corresponding to the kernel of \(\theta \). It follows that
\[f^*(\omega) = 0 \in \text{Ext}(H_1(\overline{X},\mathbb{Z}),\pi_1(R)). \]
But \(f^*(\omega) \) is the only obstruction to the existence of a section for the principal \(R \)-bundle \(f^*P : f^*E \rightarrow \overline{X} \), showing that \(f^*P \) is trivial and thus completing the proof of the lemma. \(\square \)

4. Proof of Theorem 1.1

We will need the following two auxiliary results.

Lemma 4.1. Let \(R \) be a solvable connected Lie group and let \(P : E \rightarrow Z \) be a principal \(R \)-bundle over the finite connected complex \(Z \), classified by \(\kappa : Z \rightarrow B R \). Let \(G \) be a connected Lie group containing \(R \) as a normal, closed subgroup and denote by \(\iota : R \rightarrow G \) the inclusion. Assume that the principal \(G \)-bundle over \(Z \) classified by \((B\iota) \circ \kappa : Z \rightarrow BG \) satisfies \(\kappa^* \circ (B\iota)^* = 0 : H^2(BG,\mathbb{R}) \rightarrow H^2(Z,\mathbb{R}) \). Then the principal \(R \)-bundle \(P \) is virtually trivial.

Proof. Let \(Q = G/R \). Since for any connected Lie group the second homotopy group vanishes and the fundamental group is abelian, we have a short exact sequence of abelian groups
\[0 \rightarrow \pi_1(R) \rightarrow \pi_1(G) \rightarrow \pi_1(Q) \rightarrow 0, \]
inducing a split short exact sequence of \(\mathbb{R} \)-vector spaces
\[0 \rightarrow \text{Hom}(\pi_1(Q),\mathbb{R}) \rightarrow \text{Hom}(\pi_1(G),\mathbb{R}) \xrightarrow{\Phi} \text{Hom}(\pi_1(R),\mathbb{R}) \rightarrow 0. \]
For any connected Lie group \(L \), the group \(H_2(BL,\mathbb{R}) \) is naturally isomorphic to \(H_1(L,\mathbb{R}) \cong \pi_1(L) \otimes \mathbb{R} \). It follows that the natural map \((B\iota)^* : H^2(BG,\mathbb{R}) \rightarrow H^2(BR,\mathbb{R}) \) corresponds to the surjective map \(\Phi \). Therefore, the vanishing of
\[\kappa^* \circ (B\iota)^* : H^2(BG,\mathbb{R}) \rightarrow H^2(Z,\mathbb{R}) \]
implies the vanishing of
\[\kappa^* : H^2(BR,\mathbb{R}) \rightarrow H^2(Z,\mathbb{R}). \]
Using Lemma 3.1 we conclude that the principal \(R \)-bundle \(P \) is virtually trivial. \(\square \)
Lemma 4.2. Let G be a connected Lie group and let R be its radical. Suppose that its derived group $[R, R]$ is simply connected in its Lie group topology and that G/R has a finite fundamental group. Let G^δ denote the group G with the discrete topology. Then the identity map on the underlying sets $\iota_G : G \to G$ induces the zero map $\iota_\ast_G : H^2(BG, \mathbb{R}) \to H^2(BG^\delta, \mathbb{R})$.

Proof. There is a short exact sequence of Lie groups

\[0 \to R \xrightarrow{\iota} G \xrightarrow{\pi} Q \to 0 \]

with R the radical of G and Q semisimple.

Split case. We first assume that the short exact sequence (1) is split, with $\sigma : Q \to G$ a splitting. For a discrete group D we write $H^*_{\text{b}}(D, \mathbb{R})$ for its bounded real cohomology and we denote by $\theta_D : H^*_{\text{b}}(D, \mathbb{R}) \to H^*(D, \mathbb{R})$ the forgetful map. Because R^δ is an amenable discrete group, the inflation map $\pi_\ast : H^*_{\text{b}}(Q^\delta, \mathbb{R}) \to H^*_{\text{b}}(G^\delta, \mathbb{R})$ is an isomorphism (cf. Ivanov [14, Theorem 3.8.4], see also Gromov’s Mapping Theorem [11, Section 3.1]).

Therefore, the induced maps

\[\pi_\ast : H^*_{\text{b}}(Q^\delta, \mathbb{R}) \to H^*_{\text{b}}(G^\delta, \mathbb{R}), \quad \sigma_\ast : H^*_{\text{b}}(G^\delta, \mathbb{R}) \to H^*_{\text{b}}(Q^\delta, \mathbb{R}) \]

are inverse isomorphisms. We write

\[\pi_\ast : H^*(Q^\delta, \mathbb{R}) \to H^*(G^\delta, \mathbb{R}), \quad \sigma_\ast : H^*(G^\delta, \mathbb{R}) \to H^*(Q^\delta, \mathbb{R}) \]

and

\[\pi_\ast : H^*(BQ, \mathbb{R}) \to H^*(BG, \mathbb{R}), \quad \sigma_\ast : H^*(BG, \mathbb{R}) \to H^*(BQ, \mathbb{R}) \]

for the maps induced by σ respectively π in these cohomology groups.

We then have a commutative diagram

\[
\begin{array}{ccc}
H^2(BG, \mathbb{R}) & \xrightarrow{\iota_{\ast_B}} & H^2(BQ, \mathbb{R}) \\
\downarrow_{\theta_G} & & \downarrow_{\theta_Q} \\
H^2(BG^\delta, \mathbb{R}) & \xleftarrow{\pi_\ast} & H^2(BQ^\delta, \mathbb{R}) \\
\end{array}
\]

Let $x \in H^2(BG, \mathbb{R})$. We need to show that $\iota_{\ast_B}^*(x) = 0$. Since $[R, R]$ is simply connected, $\iota_{\ast_B}^*(x)$ is bounded, meaning that it lies in the image
of θ_G (see Theorem 1.1 of [3]). By assumption, $\pi_1(Q)$ is finite. Thus $H^2(BQ, \mathbb{R}) \cong \text{Hom}(\pi_1(Q), \mathbb{R}) = 0$ which implies that $\iota^*_Q = 0$ in the diagram above. Choose y such that $\theta_G(y) = \iota^*_G(x)$. Because $y = \pi^*_1\sigma^*_y(y)$, we have

$$\iota^*_G x = \theta_G y = \theta_G(\pi^*_1\sigma^*_y y) = \pi^*_1\theta_Q\sigma_y = \pi^*_1\sigma_y^*(\theta_G y) =$$

$$= \pi^*_1(\sigma^*_y\iota^*_G x) = \pi^*_1(\iota^*_Q\sigma_{\text{top}}^*x) = 0,$$

because $\iota^*_Q = 0$.

Non-split case. Suppose that the exact sequence (1) is non-split. Let $\tilde{Q} \to Q$ be the universal cover. The pull-back of $G \to Q$ over \tilde{Q} yields a short exact sequence of Lie groups

$$R \to \tilde{G} \to \tilde{Q}$$

which is split because \tilde{Q} is simply connected (see Lemma 14 of [2]). The natural map $\tilde{p} : \tilde{G} \to G$ is a surjective homomorphism of connected Lie groups with finite kernel K isomorphic to $\pi_1(Q)$. Since BK is \mathbb{R}-acyclic, the induced maps

$$p^*_\text{top} : H^*(BG, \mathbb{R}) \xrightarrow{\cong} H^*(B\tilde{G}, \mathbb{R}) \quad \text{and} \quad p^*_\delta : H^*(BG^\delta, \mathbb{R}) \xrightarrow{\cong} H^*(B\tilde{G}^\delta, \mathbb{R})$$

are isomorphisms. From the split case we infer that $\iota^*_G : H^2(B\tilde{G}, \mathbb{R}) \to H^2(B\tilde{G}^\delta, \mathbb{R})$ is the zero map, and thus the corresponding map ι^*_G is zero too.

Proof of Theorem 1.1.

Let G be a connected complex Lie group. Its radical R is a complex Lie subgroup and G/R is complex semisimple and has therefore a finite fundamental group [12, Chapter XVII, Theorem 2.1]. As explained in the introduction, in order to prove the theorem, it is enough to assume that $[R, R]$ is simply connected (in its Lie group topology) and to show that if $P : E \to X$ is a flat principal G-bundle over a connected finite complex X, with classifying map $\alpha : X \to BG$, then there is a finite connected covering space $\beta : Y \to X$, such that the bundle P pulled back to Y is trivial, i.e. such that the map $\alpha \circ \beta : Y \to BG$ is homotopic to a constant map. Let $p : G \to Q$ be the projection and put $\gamma = Bp : BG \to BQ$. Then the map $\gamma \circ \alpha : X \to BQ$ classifies a principal Q-bundle over X which is flat because P is flat and the diagram

$$\begin{array}{ccc}
BG & \longrightarrow & BQ \\
\downarrow & & \downarrow \\
BG & \longrightarrow & BQ
\end{array}$$
commutes. By Lemma 2.2 we can find a finite connected covering space \(\delta : Z \to X \) such that the bundle classified by \(\gamma \circ \alpha \circ \delta : Z \to BQ \) is trivial. The lifting property of the fibration \(BR \to BG \to BQ \) implies that \(\alpha \circ \delta : Z \to BG \) factors through \(\epsilon = Bi : BR \to BG \), where \(i : R \to G \) stands for the inclusion. In other words, there is a map \(\kappa : Z \to BR \), with \(\epsilon \circ \kappa : Z \to BG \) homotopic to \(\alpha \circ \delta : Z \to BG \). We claim that the (not necessarily flat) principal \(R \)-bundle classified by \(\kappa : Z \to BR \) is virtually trivial. By Lemma 4.1 it suffices to show that

\[
(\epsilon \circ \kappa)^* = (\alpha \circ \delta)^* = 0 : H^2(BG, \mathbb{R}) \to H^2(Z, \mathbb{R}) .
\]

As \(P \) is flat, \(\alpha^* : H^2(BG, \mathbb{R}) \to H^2(X, \mathbb{R}) \) factors through \(H^2(BG^\delta, \mathbb{R}) \) and since by assumption \([R, R]\) is simply connected and \(Q \) is complex semisimple, Lemma 4.2 applies and implies that

\[
H^2(BG, \mathbb{R}) \to H^2(BG^\delta, \mathbb{R})
\]

is the zero map. Thus \((\alpha \circ \delta)^* = 0 \) and therefore, by Lemma 4.1, the bundle classified by \(\kappa : Z \to BR \) is virtually trivial. We now choose a finite connected covering space \(\mu : Y \to Z \) on which the \(R \)-bundle pulls back to a trivial bundle, i.e. \(\kappa \circ \mu \simeq \ast \). It then follows that the original \(G \)-bundle over \(X \) pulls back to the trivial bundle over the finite covering space \(\beta = \delta \circ \mu : Y \to X \).

The following diagram, with commuting squares up to homotopy, depicts, for the convenience of the reader, the maps described above:

\[
\begin{array}{cccc}
Y & \xrightarrow{\mu} & Z & \xrightarrow{\kappa} & BR \\
\downarrow & & \downarrow \delta & & \downarrow \epsilon \\
X & \xrightarrow{\alpha} & BG & \xrightarrow{\gamma} & BQ \\
\end{array}
\]

\(\square \)

5. Proof of Corollary 1.2

We first recall some facts on the complexification of a connected Lie group \(G \). We follow the notation used in Hochschild [13]; (see also Bourbaki [1, Chapter III, §6, Prop. 20]). To any Lie group corresponds a complex Lie group \(G^+ \) and a homomorphism of Lie groups

\[
\gamma_G : G \to G^+,
\]

called the universal complexification of \(G \), with the property that, for every continuous homomorphism \(\eta \) of \(G \) into a complex Lie group \(H \),
there is one and only one complex analytic homomorphism $\eta^+ : G^+ \to H$ such that $\eta = \eta^+ \gamma_G$. In general γ_G is not injective. Its kernel is a central (not necessarily discrete) subgroup of G. Let $R < G$ denote the radical of the connected Lie group G and $L < G$ a Levi subgroup (a maximal connected semisimple subgroup). Then $G = RL$ and in case $L < G$ is closed, the kernel of γ_G coincides with the kernel of γ_L and is discrete in G (see [13, Theorem 4]). Also, if G is linear, γ_G is injective and for G compact, γ_G maps G isomorphically onto a maximal compact subgroup of G. Therefore, for compact G, the map γ_G is a homotopy equivalence. As explained in [13], in the case R is a connected solvable Lie group (not necessarily linear), γ_R is injective and induces an isomorphism between fundamental groups $\pi_1(R) \to \pi_1(R^+)$. The universal covers of the solvable Lie groups R and R^+ being contractible, it follows that $\gamma_R : R \to R^+$ is a homotopy equivalence.

Lemma 5.1. Let G be a connected amenable Lie group. Then the complexification map $\gamma_G : G \to G^+$ is one-to-one and a homotopy equivalence.

Proof. A connected Lie group G is amenable if and only if it fits in a short exact sequence

$$\{1\} \to R \to G \to Q \to \{1\},$$

where R denotes the radical of G and the quotient Q is compact semisimple [21, Corollary 4.1.9]. Let $L < G$ be a Levi subgroup. Since $G/R = Q$ is compact and semisimple, its fundamental group is finite. Thus $L \to Q$, induced by the projection $G \to Q$, is a finite covering space and it follows that L is compact, thus closed in G. Moreover, L is linear and we conclude that $\gamma_L : L \to L^+$ is one-to-one. According to [13, Theorem 4, (2) ⇔ (5)], we conclude that γ_G is injective too. Consider the commutative diagram

$$\begin{array}{ccc}
R & \xrightarrow{\iota} & G \\
\gamma_R \downarrow & & \downarrow \gamma_G \\
R^+ & \xrightarrow{\iota^+} & G^+ \xrightarrow{\pi^+} Q^+ \xrightarrow{\gamma_Q} Q.
\end{array}$$

As remarked above, γ_R and γ_Q are injective maps and homotopy equivalences. By [13, Theorem 4], ι^+ maps R^+ isomorphically onto the radical of G^+. We claim that G^+/R^+ it is isomorphic to Q^+. To see this, we need to verify that this quotient has the universal property of Q^+. Let $\nu : G \to G^+ \to G^+/R^+$ be the natural map. Since $R \subset \ker \nu$, we obtain an natural map $\overline{\nu} : Q \to G^+/R^+$. Let $f : Q \to C$ be an analytic homomorphism into a complex Lie group C. Then $f \circ \pi : G \to Q \to C$
is trivial on R and extends therefore uniquely to a complex analytic homomorphism $G^+ \to C$ which vanishes on R^+. It follows that the original map f factors uniquely through $\overline{\nabla} : Q \to G^+/R^+$, showing that $G^+/R^+ \cong Q^+$. Note that both horizontal lines in the diagram above are fibration sequences. We conclude that γ_G must be a homotopy equivalence too. \[\square\]

The following lemma is a general fact about universal complexifications of connected solvable Lie groups. It will be useful in the proof of Corollary 1.2.

Lemma 5.2. Let R be a connected solvable Lie group. Then

$$[R, R]^+ = [R^+, R^+]$$

That is, the universal complexification of the derived subgroup of R is isomorphic to the derived subgroup of the universal complexification of R.

Proof. As R is solvable, γ_R is one-to-one hence so is its restriction $\eta : [R, R] \to [R^+, R^+]$ to $[R, R]$. The universal property of

$$\gamma_{[R,R]} : [R, R] \to [R, R]^+,$$

implies the existence of a complex analytic homomorphism

$$\eta^+ : [R, R]^+ \to [R^+, R^+]$$

such that $\eta^+ \gamma_{[R,R]} = \eta$. Taking derivatives at the identities and using the fact that for any real Lie algebra \mathfrak{r} we have

$$[\mathfrak{r} \otimes \mathbb{C}, \mathfrak{r} \otimes \mathbb{C}] = [\mathfrak{r}, \mathfrak{r}] \otimes \mathbb{C},$$

we deduce that η^+ is a local isomorphism, hence a covering homomorphism. This proves the lemma in the case R is simply connected. Indeed, the inclusion $\gamma_R : R \to R^+$ is a homotopy equivalence, hence R^+ is also simply connected, and according to [2, Lemma 6] we have

$$\pi_1([R^+, R^+]) = \pi_1(R^+) \cap [R^+, R^+]$$

This shows that $[R^+, R^+]$ is also simply connected, hence η^+ is a global isomorphism. To handle the general case, let us show that the discrete kernel of η^+ is trivial. To that end, we show that the natural embeddings of fundamental groups in the centers of universal covers coincide. Let \tilde{R} be the universal cover of R. It is obvious from the construction of the universal complexification that the universal cover \tilde{R}^+ of R^+
FLAT BUNDLES WITH COMPLEX ANALYTIC HOLONYOMY 13

coincides with \((\tilde{R})^+)\). We have:

\[
\pi_1([R, R]^+) = \pi_1([R, R]) = \pi_1(R) \cap [\tilde{R}, \tilde{R}] \\
= \pi_1(R) \cap [\tilde{R}, \tilde{R}]^+ = \pi_1(R^+) \cap [\tilde{R}, \tilde{R}]^+ \\
= \pi_1(R^+) \cap [(\tilde{R})^+, (\tilde{R})^+] = \pi_1(R^+) \cap [\tilde{R}, \tilde{R}]^+ \\
= \pi_1([R^+, R^+]).
\]

The first equality (as well as the fourth one) is true because the embedding of a connected solvable Lie group in its universal complexification is a homotopy equivalence, the second equality (as well as the last one) is a general fact (see [2, Lemma 6]) about closed normal subgroups in Lie groups, the third equality follows from the fact that

\([\tilde{R}, \tilde{R}]^+ \cap \tilde{R} \subset [\tilde{R}, \tilde{R}]\)

which is deduced from the corresponding inclusion between Lie algebras. The fifth equality is true because we have already proved the lemma for simply connected solvable Lie groups hence

\([\tilde{R}, \tilde{R}]^+ = [(\tilde{R})^+, (\tilde{R})^+]\). □

Proof of Corollary 1.2. As explained in the introduction, in order to prove that the four conditions are equivalent, it is enough to show that if \(G\) is a connected amenable Lie group with radical \(R\) such that \([R, R]\) is simply connected, then any flat principal \(G\)-bundle over a finite \(CW\)-complex is virtually trivial. As we have observed earlier, the complexification map \(R \to R^+\) is injective and, applying again [13, Theorem 4, (2) \(\iff\) (5)], we see that as \(G/R\) is compact semisimple, \(R^+\) maps isomorphically onto the radical of \(G^+\). As we have seen in the course of the proof of Lemma 5.1, the map \(\gamma_G\) restricted to \(R\) agrees with \(\gamma_R\). Thus, as \([R, R]\) is simply connected by hypothesis, and as \([R^+, R^+]\)/\(\gamma_G[R, R]\) is simply connected according to [13, Theorem 3] and Lemma 5.2, we deduce that \([R^+, R^+]\) is simply connected too. Let \(f : X \to BG\) classify a flat principal \(G\)-bundle over the finite connected \(CW\)-complex \(X\). Since \([R^+, R^+]\) is the commutator subgroup of the radical of \(G^+\) and \([R^+, R^+]\) is simply connected, we conclude by Theorem 1.1 that the flat bundle classified by \(B\gamma_G \circ f : X \to BG^+\) is virtually trivial. Because \(B\gamma_G\) is a homotopy equivalence (Lemma 5.1), the bundle classified by \(f\) is virtually trivial too. □

References

[1] Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 1–3. Elements of Mathematics, Springer-Verlag, Berlin, 1998. Translated from the French; Reprint of the 1989 English translation.

[2] Indira Chatterji, Guido Mislin, Christophe Pittet, and Laurent Saloff-Coste, A geometric criterion for the boundedness of characteristic classes, Math. Ann. 351 (2011), no. 3, 541–569.
[3] Indira Chatterji, Yves de Cornulier, Guido Mislin, and Christophe Pittet, *Bounded characteristic classes and flat bundles; to appear in JDG.*

[4] Pierre Deligne, *Extensions centrales non résiduellement finies de groupes arithmétiques*, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 4, A203–A208 (French, with English summary).

[5] Pierre Deligne and Dennis Sullivan, *Fibrés vectoriels complexes à groupe structural discret*, C. R. Acad. Sc. Paris, Série A 281, 1081–1083.

[6] Michel Demazure and Alexander Grothendieck, *Schémas en Groupes III*, Lecture Notes in Mathematics, Springer-Verlag, Volume 153 (1970).

[7] Eric M. Friedlander and Guido Mislin, *Locally finite approximation of Lie groups, I*, Invent. math. 83 (1986), 425-436.

[8] Eric M. Friedlander and Brian Parshall, *Etale cohomology of reductive groups*, Lecture Notes in Mathematics, Springer-Verlag, Volume 854 (1981), 127-140.

[9] William M. Goldman, *Flat bundles with solvable holonomy. II. Obstruction theory*, Proc. Amer. Math. Soc. 83 (1981), no. 1, 175–178.

[10] Morikuni Gotô, *Faithful representations of Lie groups. II*, Nagoya Math. J. 1 (1950), 91–107.

[11] Michael Gromov, *Volume and bounded cohomology*, Inst. Hautes Études Sci. Publ. Math. 56 (1983), 5–99.

[12] Gerhard Hochschild, *The Structure of Lie Groups*, Holden-Day Series Mathematics, 1965.

[13] ———, *Complexification of real analytic groups*, Trans. Amer. Math. Soc. 125 (1966), no. 3, 406-413.

[14] Nikolai V. Ivanov, *Foundations of the theory of bounded cohomology*, (Russian, English summary), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 143 (1985), 69-109, 177-178.

[15] Franz Kamber and Philippe Tondeur, *Flat manifolds*, Lecture Notes in Mathematics, No. 67, Springer-Verlag, Berlin, 1968.

[16] ———, *The characteristic homomorphism of flat bundles*, Topology 6 (1967), 153–159.

[17] Barry Edward Johnson, *Cohomology in Banach algebras*, American Mathematical Society, Providence, R.I., 1972. Memoirs of the American Mathematical Society, No. 127.

[18] John Millson, *Real vector bundles with discrete structure group*, Topology 18 (1979), 83-89.

[19] John W. Milnor and James D. Stasheff, *Characteristic classes*, Princeton University Press, Princeton, N. J., 1974. Annals of Mathematics Studies, No. 76.

[20] Dennis Sullivan, *Genetics of homotopy theory and the Adams conjecture*, Ann. of Math. 100 (1974), 1-89.

[21] Robert J. Zimmer, *Ergodic Theory and Semisimple Groups*, Monographs in Mathematics, Birkhäuser, 1984.
LATP UMR 7353 CNRS Aix-Marseille Université

E-mail address: pittet@cmi.univ-mrs.fr