Charge ordering in half-doped manganites: Weak charge disproportion and leading mechanisms

Dmitri Volja1,2, Wei-Guo Yin1(a) and Wei Ku1,2(b)

1 Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory
Upton, NY 11973, USA
2 Physics Department, State University of New York - Stony Brook, NY 11790, USA

received 23 November 2009; accepted in final form 5 January 2010
published online 2 February 2010

PACS 75.47.Lx – Magnetic oxides
PACS 71.45.Lr – Charge-density-wave systems
PACS 71.10.Fd – Lattice fermion models (Hubbard model, etc.)

Abstract – The apparent contradiction between the recently observed weak charge disproportion and the traditional Mn3+/Mn4+ picture of the charge-orbital orders in half-doped manganites is resolved by a novel Wannier states analysis of the LDA+U electronic structure. Strong electron itinerancy in this charge-transfer system significantly delocalizes the occupied low-energy “Mn3+” Wannier states such that charge leaks into the “Mn4+”-sites. Furthermore, the leading mechanisms of the charge order are quantified via our first-principles derivation of the low-energy effective Hamiltonian. The electron-electron interaction is found to play a role as important as the electron-lattice interaction.

Copyright © EPLA, 2010

Introduction. – The exploration of interplay among distinct orders lies in the heart of condensed-matter physics and materials science, as this interplay often gives rise to tunable properties of practical applications, such as exotic states and colossal responses to external stimuli. Manganese oxides such as La1−xCaxMnO3, which host rich charge, orbital, spin, and lattice degrees of freedom, have thus attracted great attention [1]. In particular, the vastly interesting colossal magnetoresistance (CMR) effect for x ~ 0.2–0.4 exemplifies rich physics originating from the proximity of competing orders. In a slightly more doped system (x = 0.5), all these orders coexist in an insulating state [2], providing a unique opportunity for a clean investigation of the strength and origin of each order. Therefore, the study of half-doped manganites is key to a realistic understanding of the physics of manganites in general and the CMR effect in particular [3,4].

The peculiar multiple orders in half-doped manganites have long been understood in the Goodenough model [2] of a Mn 3+/4+ checkerboard charge order (CO) with the occupied Mn3+ eg orbitals zigzag ordered in the CE-type antiferromagnetic background [2]. Pertaining to CMR, it is broadly believed that a key is the emerging of nanoscale charge-ordered insulating regions of Goodenough type at intermediate temperatures, which could melt rapidly in the magnetic field [4,5].

Nonetheless, the simple yet profound Goodenough picture has been vigorously challenged thanks to recent experimental observations of nearly indiscernible charge disproportion (CD) in a number of half-doped manganites [6–13]. Such weak CD has also been observed in first-principles computations [14,15] and charge transfer between Mn and O sites was reported as well [15]. In essence, these findings have revived a broader discussion on the substantial mismatch of valence and charge in most charge-transfer insulators. Indeed, extensive experimental and theoretical effort has been made in light of the novel Zener-polaron model [9,16] in which all the Mn sites become equivalent with valence being +3.5. Amazingly, most of these investigations concluded in favor of two distinct Mn sites as predicted in the Goodenough model [11–13,17,18], calling for understanding the emergence of weak CD within the 3+/4+ valence picture.

Another closely related crucial issue is the roles of different microscopic interactions in the observed charge-orbital orders, in particular the relevance of electron-electron (e-e) interactions in comparison with the well-accepted electron-lattice (e-l) interactions. For example, Δn, the difference in the electron occupation number between

(a)E-mail: wyin@bnl.gov
(b)E-mail: weiku@bnl.gov
Mn$^{3+}$ and Mn$^{4+}$ states, was shown to be small in an e-e only picture [19]; this is however insufficient to explain the observed weak CD, since the established e-t interactions will cause a large Δn [20]. Moreover, despite the common belief that e-t interactions dominate the general physics of e_g electrons in the manganites [2,21], a recent theoretical study [22] showed that e-e interaction plays an essential and leading role in ordering the e_g orbitals in the parent compound. It is thus important to quantify the leading mechanisms in the doped case and uncover the effects of the additional charge degree of freedom in general.

In this letter, we present a general, simple, yet quantitative picture of doped holes in strongly correlated charge-transfer systems, and apply it to resolve the above contemporary fundamental issues concerning the charge order in half-doped manganites. Based on recently developed first-principles Wannier states (WSs) analysis [22–24] of the LDA+U electronic structure in prototypical Ca-doped manganites, the doped holes are found to reside primarily in the oxygen atoms. They are entirely coherent in short range [25], forming a Wannier orbital of Mn e_g symmetry at low-energy scale. This hybrid orbital, together with the unoccupied Mn 3d orbital, forms the effective “Mn e_g” basis in the low-energy theory with conventional 3$+$/4$+$ valence picture, but simultaneously results in a weak CD owing to the similar degree of mixing with the intrinsic Mn orbitals, thus reconciling the current conceptual contradictions. Moreover, our first-principles derivation of the low-energy interacting Hamiltonian reveals a surprisingly essential role of e-e interactions in the observed charge order, contrary to the current lore. Our theoretical method and the resulting simple picture provide a general framework to utilize the powerful valence picture even with weak CD, and can be directly applied to a wide range of doped charge-transfer insulators.

Small CD vs. 3$+$/4$+$ valence picture. To proceed with our WSs analysis, the first-principles electronic structure needs to reproduce all the relevant experimental observations, including a band gap of ~1.3 eV, CE-type magnetic and orbital orders, and weak CD, as well as two distinct Mn sites. We find that the criteria are met by the LDA+U (8 eV) [14,26] band structure of the prototypical half-hopped manganite La$_{1/2}$Ca$_{1/2}$MnO$_3$ based on the realistic crystal structure [27] supplemented with assumed alternating La/Ca order. Hence, a proper analysis of this LDA+U electronic structure is expected to illustrate the unified picture of weak CD with the Mn$^{3+}$/Mn$^{4+}$ assignment, which can be easily extended to other cases. In practice, we shall focus on the most relevant low-energy (near the Fermi level E_F) bands — they are 16 “e_g” spin-majority bands (corresponding to 8 “spin-up” Mn atoms in our unit cell) spanning an energy window of 3.2 eV, as clearly shown in fig. 1(a). For short notation, the Mn bridge- and corner-sites in the zigzag ferromagnetic chain are abbreviated as B- and C-sites, respectively.

The simplest yet realistic picture of the CO can be obtained by constructing occupation-resolved WSs (ORWSs) from the four fully occupied bands, each centered at one B-site as illustrated in fig. 1(a). This occupied B-site e_g Wannier orbital of $3z^2-r^2$ or $3y^2-r^2$ symmetry (so formal valency is 3$+$) contains in its tail
the integrated-out O 2p orbitals with considerable weight, indicative of the charge-transfer nature [15]. Moreover, this “molecular orbital in the crystal” extends significantly to neighboring C-sites on the same zigzag chain. Therefore, although by construction the C-site e_g ORWSs (not shown) are completely unoccupied (so formal valency is 4+), appreciable charge is still accumulated within the C-site Mn atomic sphere owing to the large tails of the two occupied ORWSs centered at the two neighboring B-sites. Integrating the charges within the atomic spheres around the B- and C-site Mn atoms leads to a CD of mere 0.14 e, in agreement with experimental 0.1–0.2 e [7–12]. In this simple picture, one finds a large difference in the occupation numbers of the ORWSs at the B- and C-sites ($\Delta n = 1$), but a small difference in real charge. That is, the convenient 3+/4+ picture is perfectly applicable and it allows weak CD, as long as the itinerant nature of the charge-transfer in the system renders it inappropriate to associate CD with the difference in the occupation numbers of atomic-like states.

Furthermore, we find that the above conclusions are generic in manganites by also looking into the two end limits of La$_{1-x}$Ca$_x$MnO$_3$ ($x = 0, 1$). As shown in fig. 2, Mn d charge (within the Mn atomic sphere) is found to change only insignificantly upon doping, in agreement with experiments [7,28]. This indicates that doped holes reside primarily in the oxygen atoms, but are entirely coherent in short-range and form additional effective “Mn e_g” orbitals in order to gain the most kinetic energy from the d-p hybridization, as shown in fig. 1(a), (b), in spirit similar to hole-doped cuprates [25]. This justifies the present simplest description of the charge-orbital orders with only the above Mn-centering e_g WSs [29].

Leading mechanisms. – To identify the leading mechanisms of the charge-orbital orders in a rigorous formalism, we proceed to derive a realistic effective low-energy Hamiltonian, H^eff, following our recently developed first-principles WS approach [22,24]. As clearly shown in fig. 1, the low-energy physics concerning charge and orbital orders is mainly the physics of one zigzag part in addition to the elastic energy $K(\{Q_i\})$. Here $d_{i\uparrow}$ and $d_{i\downarrow}$ are the electron creation and annihilation operators at site i with “pseudo-spin” γ defined as $\uparrow = |3z^2 - r^2\rangle$ and $|\downarrow\rangle = |y^2 - x^2\rangle$ AWSs, corresponding to pseudo-spin operators $T^\uparrow_i = (d^\uparrow_{i\uparrow} + d^{\downarrow}_{i\downarrow})/2$ and $T^\downarrow_i = (d^\uparrow_{i\downarrow} - d^{\downarrow}_{i\uparrow})/2$. $n_i = d_{i\uparrow}^\dagger d_{i\uparrow} + d_{i\downarrow}^\dagger d_{i\downarrow}$ is the electron occupation number. The in-plane hoppings are basically symmetry related: $t^\downarrow_{ij} = t/4$, $t^\uparrow_{ij} = 3t/4$, $t'^\downarrow_{ij} = t'^\uparrow_{ij} = \pm \sqrt{3}t/4$, where the signs depend on hopping along the x- or y-direction. E_z stands for the oxygen octahedral-tilting-induced crystal field. U_{eff} and V are effective on-site and nearest-neighbor e-e interactions, respectively. g is the e-l coupling constant. $Q_i = (Q_{1i}, Q_{2i}, Q_{3i})$ is the standard octahedral-distortion vector, where Q_{1i} is the breathing mode (BM), and Q_{2i} and Q_{3i} are the Jahn-Teller (JT) modes [19,20,30–32]. Here the electron-lattice couplings are constrained to be cubic group invariant [32].

The effective Hamiltonian is determined by matching its self-consistent Hartree-Fock (HF) expression with

![Fig. 2: (Colour on-line) The calculated d charge within the Mn atomic sphere for La$_{1-x}$Ca$_x$MnO$_3$ ($x = 0, 1/2, 1$). The results are shown in terms of i) B-site (filled symbols), C-site (empty symbols), and site-average (half-filled symbols); ii) spin-majority (up triangles), spin-minority (down triangles), and total charge (diamonds). The lines are guides to eye.](image-url)
$H^{\text{LDA+U}}$ [22,24] owing to the analytical structure of the LDA+U approximation\(^1\). An excellent mapping results from $t = 0.6 \text{ eV}$, $E_z = -0.08 \text{ eV}$, $U_{\text{eff}} = 1.65 \text{ eV}$, $V = 0.44 \text{ eV}$, and $g = 2.35 \text{ eV/Å}$. These numbers are close to those obtained for undoped LaMnO$_3$ [22] (excluding V, which is inert in the undoped case), and indicates that the spin-majority e_g electrons in the manganites are still in the intermediate c-e interaction regime with comparable c-l interaction. Note that U_{eff} should be understood as an effective repulsion of corresponding Mn-centered WS playing the role of “d” states, rather than the “bare” d-d interaction $U = 8 \text{ eV}$ [22]. Furthermore, the rigidity of the low-energy parameters upon significant ($x = 0.5$) doping verifies the validity of using a single set of parameters for a wide range of doping levels, a common practice that is not a priori justified for low-energy effective Hamiltonians. Clearly, the observed optical gap energy scale of 1.5 eV originates mainly from U_{eff} instead of the JT splitting.[5,21].

Now based on the AWSs, CO is measured by $\Delta n = \langle n_{i\text{B}} \rangle - \langle n_{i\text{C}} \rangle = 0.6$. It deviates from unity because the kinetic energy ensures that the ground state is a hybrid of both B- and C-site AWSs, like in the usual tight-binding modeling based on atomic orbitals. However, since the AWSs considerably extend to neighboring oxygen atoms, the actual CD is much smaller than Δn.

With the successful derivation of H^{eff}, the microscopic mechanisms of the charge-orbital orders emerge. First of all, note that the kinetic term alone is able to produce the orbital ordered insulating phase [19,31]: Since the intersite interorbital hoppings of the Mn e_g electrons along the x and y directions have opposite signs, the occupied bonding state is gapped from the unoccupied nonbonding and antibonding states (by t and $2t$, respectively) in the enlarged unit cell. As for orbital ordering, the Mn $d_{g_{2}-z^2}$ ($d_{2z^2-r^2}$) orbital on any B-site bridging two C-sites along the (y)-direction is irrelevant, due to the hopping integrals involving it is vanishing. That is, only the $d_{g_{2}-z^2}$ ($d_{3y^2-r^2}$) orbital on that B-site is active and the B-sites on the zigzag FM chains have to form an “ordered” pattern of alternating $(3x^2-r^2)/(3y^2-r^2)$ orbitals. However, the kinetic term alone give only $\Delta n = 0$. Clearly, CO is induced by the interactions, U_{eff}, V, or g.

To quantify their relative importance for CO, we calculate their individual contributions to the total energy gain with respect to the aforementioned $\Delta n = 0$ but orbital-ordered insulating state in the self-consistent mean-field theory. The results are listed in table 1. The first row obtained without lattice distortions provides a measure of the purely electronic mechanisms for CO. Interestingly, although the tendency is weak (−13 meV), c-e interactions all together are sufficient to induce a CO, consistent with the results of our first-principles calculations. The second row is obtained for the realistic lattice distortions, which shows a dramatic enhancement of CO by the JT

\[^1\]Unlike the local interactions, the intersite interactions in LDA + U is treated via LDA functional, which has dominant Hartree contribution that we used for this mapping.

Table 1: Contributions of different terms to the energy gain (in units of meV per Mn) due to the CO formation in self-consistent mean-field theory. BM (JT) denotes the contribution from electronic coupling to the breathing (Jahn-Teller) mode. K denotes that from the elastic energy.

Q_i	Total	U_{eff}	V	t	BM	JT	K
Realistic	-127	-22	-42	71	-42	-113	24

Distortions (−113 meV), given that only half of the Mn atoms are JT active. Together with a −42 meV gain from the BM distortion, the c-l interactions overwhelm the cost of the kinetic (71 meV) and elastic (24 meV) energy by −63 meV, further stabilizing the observed CO. Nevertheless, the −64 meV energy gain from the overall c-e interactions accounts for half of the total energy gain, illustrating clearly their importance to the realization of the resulting $\Delta n = 0.6$. Indeed, a further analysis reveals that c-l couplings alone ($U_{\text{eff}} = V = 0$) produce $\Delta n \approx 0.3$, only half of the realistic Δn, manifesting the necessity of including c-e interactions.

Further insights can be obtained by considering the individual microscopic roles of these interactions acting to the kinetic-only starting point. First, infinitesimal U_{eff} or g can induce CO, as a result of exploiting the fact that the B- (C-) site has one (two) active e_g orbital: i) U_{eff} has no effect on the B-sites; therefore, U_{eff} pushes the e_g electrons to the B-sites, in order to lower the Coulomb energy on the C-sites [19]. This is opposite to its normal behavior of favoring charge homogeneity in systems such as straight FM chains (realized in the C-type antiferromagnet). ii) It is favorable to cooperatively induce the $(3x^2-r^2)/(3y^2-r^2)$-type JT distortions on the B-sites and the BM distortions on the C-sites in order to minimize elastic energy [2]. These lattice distortions lower the relative potential energy of the active orbitals in the B-sites, also driving the e_g electrons there. Hence, U_{eff} and c-l interactions work cooperatively in the CO formation.

Unexpectedly, we find that V alone must be larger than $V_c \approx 0.8 \text{ eV}$ to induce CO. This is surprising in comparison to the well-known $V_c = 0$ for straight FM chains. The existence of V_c is in fact a general phenomenon in a “pre-gapped” system. Generally speaking, in a system with a charge gap, Δ_0, before CO takes place (e.g. the zigzag chain discussed here), forming CO always costs non-negligible kinetic energy due to the mixing of states across the gap. As a consequence, unlike the first order energy gain from U_{eff} and g, the second order energy gain from V is insufficient to overcome this cost until V is large enough (of order Δ_0). In this specific case, $V = 0.44 \text{ eV}$ is insufficient to induce CO by itself, but it does contribute significantly to the total energy gain once CO is triggered by U_{eff} or g, as discussed above.

It is worth mentioning that the contribution from the $E_2 T_2$ term is neglected from table 1 because of the small
coefficient of $E_z \simeq 8$ meV, consistent with the previous study for undoped LaMnO$_3$ [22]. In perovskites, the tilting of the oxygen octahedra could yield the Jahn-Teller-like distortion of GdFeO$_3$ type, which can be mathematically described by the $E_z T_z$ or $E_x T_z$ term. However, in the perovskite manganites these terms are shown here and in ref. [22] to be negligibly small. In addition, in half-doped manganites, the pattern of the orbital order is predominantly pinned by the zigzag pathway of the itinerant electrons and thus the effect of tilting is less relevant. On the other hand, the $E_z T_z$ is very effective to explain the zigzag orbital ordering of $(x^2 - z^2)/(y^2 - z^2)$ pattern in half-doped layered manganites, such as La$_{0.5}$Sr$_{1.5}$MnO$_4$ ref. [33], where pseudo-spin-up (the $3z^2 - r^2$ orbital) is favored by a much stronger E_z due to the elongation of the oxygen octahedral along the c-axis. Described via the pseudo-spin angle, $\theta = \arctan(T_z/T_x)$ [22], E_z significantly reduces θ from $\pm 120^\circ$ (i.e., $(3x^2 - r^2)/(3y^2 - r^2)$) to $\pm 30^\circ$ (i.e., $(x^2 - z^2)/(y^2 - z^2)$).

The present results would impose stringent constraints on the general understanding of the manganites. For example, Zener polarons were shown to coexist with the CE phase within a purely electronic modeling of near half-doped manganites [34]. However, to predict the realistic phase diagram of the manganites, one must take into account the lattice degree of freedom. In fact, when proposing the CE phase, Goodenough considered its advantage of minimizing the strain energy cost. Note that the previous HF theory indicated a decrease of the total energy by 0.5 eV per unit cell with Zener-polaron-like displacement [15]. The present LDA + U calculations reveal an increase of the total energy by 1.07 eV per unit cell with the same Zener-polaron-like displacement. This discrepancy is quite understandable from the characteristics of the LDA functional, which favors covalent bond, while the HF approximation tends to over localize the orbital and disfavor bonding. To resolve the competition between the CE phase and the Zener polaron phase, real structural optimization is necessary and will be presented elsewhere. As another example, in the absence of c-t interactions the holes were predicted to localize in the B-site--type region (i.e., the straight segment portion of the zigzag FM chain) in the C_xE_{1-x} phase of doped E-type manganites [32]. However, since the B-sites are susceptible to the JT distortion, they are more likely to favor electron localization instead; future experimental verification is desirable.

Summary. – A general first-principles Wannier-function--based method and the resulting valence picture of doped holes in strongly correlated charge-transfer systems are presented. Application to the charge order in half-doped manganites reconciles the current fundamental contradictions between the traditional 3+/4+ valence picture and the recently observed small charge disproportion. In essence, while the doped holes primarily resides in the oxygen atoms, the local orbital are entirely coherent following the symmetry of Mn e_g orbital, giving rise to an effective valence picture with weak CD. Furthermore, our first-principles derivation of realistic low-energy Hamiltonian reveals a surprisingly important role of electron-electron interactions in ordering charges, contrary to current lore. Our theoretical method and the resulting flexible valence picture can be applied to a wide range of doped charge-transfer insulators for realistic investigations and interpretations of the rich properties of the doped holes.

We thank E. DAGOTTO for stimulating discussions and V. FERRARI and P. B. LITTLEWOOD for clarifying their Hartree-Fock results [15]. The work was supported by U.S. Department of Energy under Contract No. DE-AC02-98CH10886 and DOE-CMSN.

REFERENCES

[1] DAGOTTO E., Nanoscale Phase Separation and Colossal Magnetoressistance (Springer-Verlag, Berlin) 2002.
[2] GOODENOUGH J., Phys. Rev., 100 (1955) 564.
[3] ARAHOSHI D. et al., Phys. Rev. Lett., 90 (2003) 177203.
[4] MATHIEU R. et al., Phys. Rev. Lett., 93 (2004) 227202.
[5] TAKESHITA N. et al., Phys. Rev. B, 69 (2004) 180405(R);
[6] ALVAREZ G. et al., Phys. Rev. B, 73 (2006) 224426.
[7] MOREO A. et al., Science, 283 (1999) 2034.
[8] SEN C. et al., Phys. Rev. Lett., 98 (2007) 127202.
[9] COEY M., Nature, 430 (2004) 155.
[10] TYSON T. A. et al., Phys. Rev. B, 60 (1999) 4665.
[11] GARCIA J. et al., J. Phys.: Condens. Matter, 13 (2001) 3229.
[12] DAOU-ALADINE A. et al., Phys. Rev. Lett., 89 (2002) 097205.
[13] THOMAS K. J. et al., Phys. Rev. Lett., 92 (2004) 237204.
[14] GRENIER S. et al., Phys. Rev. B, 69 (2004) 134419.
[15] HERRERO-MARTÍN J. et al., Phys. Rev. B, 70 (2004) 024408.
[16] GOFF R. J. et al., Phys. Rev. B, 55 (1997) 15494.
[17] FERRARI V. et al., Phys. Rev. Lett., 91 (2003) 277202.
[18] JOOSS CH. et al., Proc. Natl. Acad. Sci. U.S.A., 104 (2007) 13597.
[19] TROKINER A. et al., Phys. Rev. B, 74 (2006) 092403.
[20] PATTERSON C. H., Phys. Rev. B, 72 (2005) 085125.
[21] VAN DEN BRINK J. et al., Phys. Rev. Lett., 83 (1999) 5118.
[22] POPOVIĆ Z. and SATPATHY S., Phys. Rev. Lett., 88 (2002) 197201.
[23] MILLIS A. J., Nature, 392 (1998) 147.
[24] YIN W.-G. et al., Phys. Rev. Lett., 96 (2006) 116405.
[25] KU W. et al., Phys. Rev. Lett., 89 (2002) 167204.
[26] YIN W.-G. and KU W., Phys. Rev. B, 79 (2009) 214512.
[27] ZHANG F. C. and RICE T. M., Phys. Rev. B, 37 (1988) 3759.
[26] The WIEN2k (Blažej P. et al., Comput. Phys. Commun., 147 (2002) 71) implementation of the full potential LAPW method is employed.

[27] Radaelli P. G. et al., Phys. Rev. B, 55 (1997) 3015.

[28] Herrero-Martín J. et al., Phys. Rev. B, 72 (2005) 085106.

[29] For explicit inclusion of the oxygen orbitals in a more complete model, see Mostovoy M. V. and Khomskii D. I., Phys. Rev. Lett., 92 (2004) 167201.

[30] Hotta T. et al., Phys. Rev. B, 62 (2000) 9432.

[31] Solovyev I. V. and Terakura K., Phys. Rev. Lett., 83 (1999) 2825.

[32] Allen P. B. and Perebeinos V., Phys. Rev. B, 60 (1999) 10747.

[33] Huang D. J. et al., Phys. Rev. Lett., 92 (2004) 087202.

[34] Efremov D. V. et al., Nat. Mater., 3 (2004) 853.

[35] Hotta T. et al., Phys. Rev. Lett., 90 (2003) 247203.