Personalized Entity Search by Sparse and Scrutable User Profiles

Ghazaleh H. Torbati
ghazaleh@mpi-inf.mpg.de
Max Planck Institute for Informatics
Saarbrücken, Germany

Andrew Yates
ayates@mpi-inf.mpg.de
Max Planck Institute for Informatics
Saarbrücken, Germany

Gerhard Weikum
weikum@mpi-inf.mpg.de
Max Planck Institute for Informatics
Saarbrücken, Germany

ABSTRACT
Prior work on personalizing web search results has focused on considering query-and-click logs to capture users’ individual interests. For product search, extensive user histories about purchases and ratings have been exploited. However, for general entity search, such as for books on specific topics or travel destinations with certain features, personalization is largely underexplored. In this paper, we address personalization of book search, as an exemplary case of entity search, by exploiting sparse user profiles obtained through online questionnaires. We devise and compare a variety of re-ranking methods based on language models or neural learning. Our experiments show that even very sparse information about individuals can enhance the effectiveness of the search results.

CCS CONCEPTS
• Information systems → Personalization.

KEYWORDS
personalized entity search, sparse user profile, knowledge graph

1 INTRODUCTION
Motivation and Problem: Personalization to improve web search result ranking has been a long-standing theme in information retrieval [34, 36]. With the increasing availability of individual users’ online traces and derived traits, personalization is again gaining importance for chatbots, recommender systems, product search, and more. [5] has formulated a vision and research agenda for constructing and leveraging personal knowledge graphs (PKG’s) in such settings. In this paper, we investigate the role of PKG’s for topical entity search, with the challenging case that the only per-user knowledge is a sparse profile obtained from a short questionnaire. In contrast to the “data-hungry” approaches of prior works, we focus on this “minimal PKG” case to strengthen the user’s ability to understand and control her user profile, similar to what major search engines offer for controlling the personalization of ads (e.g., adssettings.google.com). Note that our case is more ambitious, though: minimal-PKG profiles aim to capture the bare necessities, whereas ads controls often comprise a hundred or more tags for the same user. The fewer traits the profile contains and the more explicit they are (as opposed to learned latent models), the more scrutable and actionable the personalization model becomes from a user perspective.

State of the Art and its Limitations: The most important line of exploiting user information for general web search is based on query-and-click logs (e.g., [30, 34]). This helps in interpreting user interests and intents for ambiguous queries as well as for identifying salient pages for popular queries, and for suggestions for query auto-completion (e.g., [29]). In all this, cues about the user’s location and daytime are a major asset, too (e.g., [8]). Recommender systems have incorporated personalization as well, for ads, products and other contents (e.g., [17, 26, 31]). Here, structured data is leveraged, most notably, purchases or ratings of products, likes of news, YouTube videos, Instagram photos, etc. This field has recently paid attention to scrutable recommendations that are comprehensible by end-users and pinpoint the specific data that explains how the recommended item was computed [6, 25, 38]. However, these approaches are at least as “data-hungry” as the search engines, and require extensive user-specific data.

Entity search about people, products or events has received great attention and has been incorporated into major search engines (see, e.g., [4, 7] and further references there). This methodology leverages large knowledge graphs to infer the focus of the query and/or return crisp entities as answers. However, except for special cases such as music recommendation [13] and consumer product search [2], there is hardly any work on personalized entity search with individual user traits.

Approach: This paper explores the direction of personalized entity search, relying solely on a “minimal-PKG” user profile for scrutability. The requirement is that users can fully understand and control the information that drives the personalization (e.g., modify or revoke pieces of a profile), and that this is as sparse as possible while still giving benefits. We consider online questionnaires as a source of sparse and scrutable user profiling.

Example: Figure 1 shows an excerpt of a questionnaire, obtained by hiring crowd workers at Amazon MTurk. It captures demographic attributes (age, gender, location etc.), personal tastes regarding books, movies and music, and hobbies – all entered as free-form text (as opposed to guiding users through menus which may create bias). The questionnaire has only 10 questions, and users spent 7 minutes, on average, to fill in their answers. For entity search, we consider medium-grained query topics about books: finer-grained
We cast this background knowledge into user-specific language way, we derive a suite of re-ranking methods for pools of candidate answers obtained by running a standard search engine on the book community portal goodreads.com, which has both content summaries for millions of books and comments from nearly 100 million users. The key hypothesis that we test in this study is that even a very small PKG about a user can improve the quality of search answers as assessed by the user herself. To this end, we hired the same MTurk workers for judgements of interestingness who contributed their questionnaire answers. In total, we evaluated 115 user-query pairs from 33 distinct users.

Our experiments compare a variety of re-ranking methods, with different degrees of incorporating sparse user profiles. The results are preliminary, as the study is limited in scale and scope. Nevertheless, our findings indicate that even sparse profiles yield statistically significant benefits over not personalizing at all.

2 RELATED WORK

Prior works covered two major dimensions [16]:

1. Creating user models from explicit signals like queries, clicks, likes, social links, etc. [1] or/and rich contents like email histories or desktop data [14, 22].

2. Leveraging this background knowledge for answer ranking, query expansion, and auto-completion suggestion [12, 24, 29].

On the first dimension, [34] pioneered the analysis of user interests and activities reflected in query, click and mail histories, and possibly even other online contents written or read by the user [28].

On the second dimension, prior works explored personalization for ranking as well as query expansion and query suggestions. For personalized ranking, [32] developed methods for incorporating user-specific priors into language models. The interplay of a user’s long-term behavior and short-term context for personalized ranking has been investigated in [8, 10]. [35] and [9] addressed the issue of selective personalization: when to incorporate user profiles.

On the second dimension, prior works explored personalization for ranking as well as query expansion and query suggestions. For personalized ranking, [32] developed methods for incorporating user-specific priors into language models. The interplay of a user’s long-term behavior and short-term context for personalized ranking has been investigated in [8, 10]. [35] and [9] addressed the issue of selective personalization: when to incorporate user profiles.

Another line of research addresses query expansion for personalization. [11, 39] utilize folksonomy data, like user-provided tags in social bookmarking communities, as a source for expanding a user’s queries. [22] personalizes email search via word embeddings learned from email histories. [14] proposes methods for harnessing a user’s desktop files (incl. email). The viability of all these methods relies on the availability of large collections of user data.

The same assumption holds for prior work on query auto-completion [12, 29], perhaps the most successful line of personalization in major search engines. The underlying user data ranges from long-term query-and-click histories to browser histories to email contents, in addition to location and time as short-term context.

For entity search, to the best of our knowledge, prior work on personalization is scarce. CLEF had a series of competitions on book recommendations [21], but this relied on posts, tags, reviews
and ratings by many users in the LibraryThing community and the Amazon shop. The closest to our work is [3] on personalized product search. It is based on learning embeddings for users and items in the same semantic space, by leveraging user-written reviews on item pages. However, such rich data about individual users is not easily available for general entity search.

3 Methodology

This section discusses how we cast user input from questionnaires into user profiles, and how these are incorporated into different kinds of rankers: language models, BM25, and neural methods.

3.1 User Profiles

In contrast to prior works based on extensive logs of user queries, clicks and other activities, we focus on sparse and concise models of user-specific interests and tastes. To this end, we designed a small questionnaire and hired crowd workers at MTurk to fill in their answers. As shown in Figure 1, these profiles cover basic demographics and personal attributes like hobbies, favorite books and book genres, favorite movies and movie genres, and favorite singers or music bands. The advantage of this "minimal-PKG" approach is that such a profile is easily comprehensible by the respective user, and easy to control as the user may want to change it when her interests evolve or she becomes concerned about privacy. This kind of scrutability and controllability is impossible with a huge log and latent models derived from massive user data.

As most fields in the questionnaire are free-form text, we treat the profiles as text documents, like a statistical language model, or a bag-of-words model, or a term-sequence model, depending on which ranking method is adopted.

Incorporating Entity Descriptions: The user profiles include named entities like favorite books, movies and musicians. To take advantage of the sparse data to its fullest potential, we employ named entity disambiguation to link the entity mentions to their respective entries in the Yago knowledge base and in Wikipedia. Our implementation uses the AIDA tool [19]; for experiments we manually checked (and corrected a few of) the computed links to eliminate a potential source of erroneous drift. For the user models (language model or other), we did not include the entity names themselves to avoid overfitting to specific entities. Instead, we incorporated the descriptions of these entities from the knowledge base and Wikipedia. For the test case of books, we selected the first paragraph of each book’s Wikipedia article. Typically, this gives summary information about the book’s story.

3.2 Ranking Methods

Given a pool M of non-personalized results for a query q and a user u, we want to re-rank the results such that the ranking reflects the user’s individual interests. All ranking methods treat query answers as text documents about specific entities. In our experiments, these are pages from goodreads.com, each featuring a single book — typically in the form of a content summary and user comments.

3.2.1 Statistical Language Models. This method adopts a query-likelihood model where the score of document $d \in M$ for query q is proportional to the Kullback-Leibler divergence between the language models of q and d. As we want to capture the interestingness of a document for a user, rather than general relevance for the query, we incorporate the user profile as another language model. We use a mixture model over the estimated language models θ_q, θ_d, θ_u for the query, document and user, respectively, and a general background model θ_C (based on ClueWeb09) for smoothing.

Incorporating Word Embeddings: Optionally, we integrate word embeddings; our implementation uses pre-computed word2vec vectors. The language model is augmented by a translation model, largely following [23]. Using the cosine between word-embedding vectors as term-term similarity sim. In the following ranking equation, div is the Kullback–Leibler divergence, $p(w|u) = \sum_{w' \in V_d} \text{sim}(w,w')$ are the probabilities for the word-word relatedness model, V_q and V_u denote the query and user vocabularies, $p(w|\theta)$ are the estimated probabilities of word w in each language model θ, μ is the Dirichlet smoothing parameter, and λ determines the relative weight of the query and user models.

$$\text{rank}(q,d) \propto \lambda \text{div}(\theta_q||\theta_d,\mu) + (1 - \lambda) \text{div}(\theta_u||\theta_d,\mu) = \\
\lambda \sum_{w \in V_q} p(w|\theta_q) \log \frac{p(w|\theta_q)}{\sum_{w \in V_d} p(w|\theta_d) p(w|\theta_u) + p(w|\theta_C)} + \\\n(1 - \lambda) \sum_{w \in V_u} p(w|\theta_u) \log \frac{p(w|\theta_u)}{\sum_{w \in V_d} p(w|\theta_d) p(w|\theta_u) + p(w|\theta_C)}$$

3.2.2 BM25 Ranking. To personalize the BM25 scoring, we use query expansion, treating the user profile as a bag-of-words. As we use it only for re-ranking a pool of candidate results, the query is fixed and the user profile becomes the actual query. When incorporating entity descriptions, they are included in this query.

3.2.3 Neural Ranking. We adopted the state-of-the-art methods DRMM [18] and PACCR [20] as representatives for neural ranking. Analogously to BM25, we focus on re-ranking and thus treat the user profile as the query, as a term sequence where each term is represented as an embedding vector using word2vec.

4 Experiments

Research Questions

Our experiments target the following research questions.

RQ1: To what extent can sparse user profiles improve rankings towards individual interests? We compare non-personalized and personalized versions of all ranking methods of Section 3.2.

RQ2: Do entity descriptions improve the ranking? We investigate ranking variants with and without entity models (except for neural methods which cannot handle long text as query input).

RQ3: Do word embeddings improve the ranking by semantic similarities between terms? We examine this by running the language-model-based ranker with and without embeddings.

Data

We conducted an Amazon MTurk study in which we recruited 33 people for a two-stage task. In the first stage, users create sparse profiles via questionnaires as explained in Section 3.1. In the second stage, for search-result evaluation, we asked the same workers for their judgements of interestingness on results of a small set of self-selected queries (which they deemed of personal interest). Queries were medium-grained gathered by crowdsourcing. Examples from a total set of 50 queries are: african books, greek mythology, historical fiction, memoirs and autobiography, novels made into movies,
scandinavian suspense, sword and sorcery, time travel, true crime, and victorian society.

The judgements were graded “not interesting” (0), “interesting” (1), “very interesting” (2) or “don’t know” (discarded). To ensure fair judgements, we required a justification sentence for each judgement; examples are shown in Figure 2. Our pool of results contained 50 queries and 100 results to be judged per query. As it was not feasible to evaluate all 100 results for each user and query, we randomly selected 20 answers per query for per-user assessment. We did not choose the top 20 results from a baseline ranking (or pool rankings) in order to reduce bias towards (global) popularity as a ranking criterion. We obtained judgements for 115 user-query pairs by 33 users with 47 distinct queries – 2163 judged items in total.

Experimental Setup

To investigate the utility of sparse user profiles for our setting, we evaluated a range of retrieval methods both with and without the user profiles. The methods’ performance was evaluated using normalized Discounted Cumulative Gain (nDCG@5 and nDCG@20) and Precision@1 (P@1) applied to condensed lists, with all unjudged results filtered out. This follows [27], which argues that this approach to handling partial judgements is preferable to other metrics. To compute precision, a result was considered good when deemed “very interesting” or “interesting” by the respective judge.

Due to the limited size of our dataset (despite considerable spending on MTurk), we minimized the tuning of hyper-parameters and picked reasonable defaults where possible. With the neural models, we used ten-fold cross-validation (with each of the ten folds containing unique queries): eight folds for training and the remaining two for validation and testing. These models were trained with a softmax loss over pairs of documents. Due to the substantial increase in query length, we do not consider using entity descriptions with neural models. We used the following hyper-parameters:

- \(\lambda \) determines the relative influence of query and user models. To test extreme cases, we either set \(\lambda = 0 \) or \(\lambda = 1 \).
- \(\mu \), the Dirichlet prior parameter for smoothing, was set to the average document length for each query.
- N-gram order in the language model approach is set to 1.
- When incorporating embedding similarity into the language model, we discarded terms with a similarity below \(T = 0.5 \).
- \(\theta_C \) is the background model, for which we use ClueWeb09.
- We set \(k_1 = 1.5 \) and \(b = 0.75 \) with BM25, after determining that a grid search on our folds could not improve results.
- DRMM used an IDF gate with LCH-normalized histograms.
- PACRR used unigrams through trigrams, 32 filters, a k-max of 2, and a combination layer of size 32.

5 RESULTS

The results are shown in Table 1 (LM denotes the language model method, LM+WV additionally uses word2vec embeddings). As a reference point, we include the quality of the original ranking obtained from a commercial search engine.

Regarding RQ1, we observe that incorporating sparse user profiles consistently improves results across methods and across metrics, with the exception of LM+WV. We performed a paired t-test over all samples of non-personalized vs. personalized rankings; the p-values for the hypothesis that personalization is beneficial were below 0.01 for all metrics.

Regarding RQ2 and RQ3, neither word embeddings nor entity descriptions helped to improve rankings, though. Their performance even dropped below the non-personalized baselines. We believe that the word2vec embeddings are too broad and diluted the focus of our queries. This would call for user-specific embeddings, but it is an open question on how to obtain these. The negative impact of entity descriptions is due to the breadth of entities including locations, movies, books and general concepts. Analyzing incorrectly high-ranked results indicated that cues from the out-of-scope entity descriptions can be misleading due to the ambiguity of words. This calls for extending our model to consider other metrics such as entity specificity (i.e. selectively using entities and descriptions).

Ablation Study

We performed an ablation study with further restriction of user profiles, to investigate how minimal the PKG could be while still being beneficial. We evaluated two variants: 1) omitting the book-related fields from questionnaires (but keeping fields on movies and music), and 2) keeping solely the demographic attributes and the hobbies field. The first restriction led to a notable loss in nDCG and precision, but still gave decent quality, whereas the variant with minimal profiles degraded. For example, when using the BM25 ranker with 80% nDCG@20 and 81% precision@1 with full profiles, leaving out the book fields gave 79% nDCG@20 and 77% precision@1. Capturing the user’s interests and tastes is crucial, but does not have to be domain-specific, like books.

6 CONCLUSION

Given the limited scope and scale of our study, the results and findings are preliminary. Nevertheless, they indicate that even sparse user profiles have potential to improve ranking quality through personalization. Our work in progress involves comparisons to richer profiles obtained by gathering chat-like user-to-user conversations. The overriding goal is to understand upper bounds of personalized quality and gain insight on how well these can be approximated with different extents of user profiling.
