Abstract

In this paper we prove that \(\ell\)-group tensor product of archimedean \(f\)-rings is an \(f\)-ring. We will use this result to characterize multiplicative \(\ell\)-bimorphisms between unital \(f\)-rings.

1 Introduction

Since Martinez in [15], constructed the \(\ell\)-group tensor product, several authors studied the tensor product of ordered structures, namely Fremlin in the framework of Riesz spaces (see [11]) and Banach Lattices (see [12]). Buskes And Van Rooij used the Fremlin tensor product to reconstruct the \(\ell\)-group tensor product. (see [8]). In this end, they used the Lattice cover of \(\ell\)-groups (see [10]).

Recently, Azouzi, Ben Amor and Jaber (see [2]) and separately Buskes and Wicksted (see [9]) proved that the Riesz (Fremlin) tensor product of archimedean \(f\)-algebras is an \(f\)-algebra.

In this work we will use the recent works in the framework of \(f\)-algebras to prove that the \(\ell\)-group tensor product of archimedean \(f\)-rings is an \(f\)-ring. We will use this tensor product to generalize a result of Ben Amor and Boulabiar in [1].

We assume that the reader is familiar with the basic concepts of the theory of lattice ordered groups (\(\ell\)-groups) and \(f\)-rings. For unexplained terminology and notations we refer to the books [1], [5] and [16].

2 Tensor product of \(f\)-rings

Theorem 1 If \(G\) is an archimedean \(f\)-ring then the vector lattice cover of \(G\), \(R[G]\), is an \(f\)-algebra.

Proof. According to [10], \(R[G]\) is the \(\ell\)-subspace of \(\overline{G^d}\) generated by \(G\), where \(\overline{G^d}\) is the Dedekind-MacNeille completion of the divisible hull \(G^d\).
G^d is obviously an archimedean f-ring, this with the lemma 3 in [14] lead to G^d is an archimedean f-ring. Since $R[G]$ is the ℓ-subspace of the f-ring G^d generated by the f-ring G, $R[G]$ is itself an f-ring and then an f-algebra (see Theorem 3.3 in [13]).

Corollary 1. If G is a unital archimedean f-ring with e_G as unit then the vector lattice cover of G, $R[G]$, is a unital f-algebra with the same unit.

Proof. We proved in Theorem 1 that $R[G]$ is an f-ring. It remains to prove that e_G is a unit in $R[G]$. The map

$$\pi_e : R[G] \to R[G] \quad g \mapsto g.e_G$$

is an ℓ-homomorphism which extends the canonical embedding of G in $R[G]$. Then, according to Theorem 2 in [6], π_e is the identity and e_G is the unit element of the f-algebra $R[G]$.

Theorem 2. Let G and H be two f-rings, then the archimedean ℓ-group tensor product $G \otimes H$ is itself an f-ring.

Proof. In [8], Buskes and Van Rooij stated that the archimedean ℓ-group tensor product $G \otimes H$ is the ℓ-subgroup of $R[G \otimes H]$ generated by the algebraic tensor product $G \otimes H$. But according to the same paper (Proposition 8), $R[G \otimes H]$ is group and lattice isomorphic to $R[G] \otimes R[H]$. So we can consider that $G \otimes H$ is the ℓ-subgroup of $R[G] \otimes R[H]$ generated by the algebraic tensor product $G \otimes H$. Theorem 1 with [2] lead to $R[G] \otimes R[H]$ is a f-subring. Using another time Theorem 3.3 in [13], we can conclude that $G \otimes H$ is an f-ring which ends the proof.

Corollary 2. Let G and H be two unital f-rings with unit element e_G and e_H respectively, then the archimedean ℓ-group tensor product $G \otimes H$ is itself a unital f-ring with $e_G \otimes e_H$ as unit element.

Proof. According to corollary 1 $R[G]$ and $R[H]$ are unital f-algebras with e_G and e_H as unit element respectively. Theorem 8 in [2] lead to $R[G] \otimes R[H]$ is a unital f-algebra with $e_G \otimes e_H$ as unit element. Since $G \otimes H$ is an f-subring of $R[G] \otimes R[H]$, the result follows immediately.

3 An application

Let G, H and K be archimedean f-rings. We recall that a biadditive map $b : G \times H \to K$ is said ℓ-bimorphism if the maps:

$$b_1 : G \to K \quad g \mapsto b(g, b)$$
and

\[b_2 : \quad H \rightarrow K \]
\[h \mapsto b(a, h) \]

are lattice homomorphisms for all \(a \in G \) and \(b \in H \).

An \(\ell \)-bimorphism \(b : G \times H \rightarrow K \) is said to be multiplicative if

\[b(ac, bd) = b(a, b)c(d) \]

for all \(a \) and \(c \) in \(G \) and \(b \) and \(d \) in \(H \).

Boulabiar and Toumi proved in [7] that if \(G \) and \(H \) are archimedean \(\Phi \)-algebras (that is untital \(f \)-algebras) with \(e_G \) and \(e_H \) as units, and \(K \) is semiprime (that is \(K \) has no idempotent element) then the positive bilinear map \(b \) is multiplicative if and only if \(b \) is an \(\ell \)-bimorphism and \(b(e_G, e_H) \) is idempotent.

We will generalize this result in two directions. First we will deal with \(f \)-rings rather than \(f \)-algebras. Finally, we shall prove that the range \(f \)-ring need not be reduced, which is, we believe, an important improvement.

We pointed out that the tensor product we asked about in Theorem 2 is the \(\ell \)-group tensor product that Buskes and Van Rooij studied in [8] and earlier Martinez in [13]. The following universal propriety is still valid. Let \(G \) and \(H \) two archimedean \(f \)-rings. For any archimedean \(f \)-ring \(K \) and every \(\ell \)-bimorphism \(\varphi : G \times H \rightarrow K \) there exists an \(\ell \)-group homomorphism \(\Phi : G \otimes H \rightarrow K \) such that \(\varphi(a, b) = \Phi(a \otimes b) \) for every \(a \) in \(G \) and \(b \) in \(H \).

The next proposition is a generalization of the Theorem 3.2 in [4] and it will play a key role in the generalization of Boulabiar-Toumi’s theorem.

Proposition 1 Let \(G \) be a unital \(f \)-ring with unit element \(e_G \), \(H \) be an archimedean \(f \)-ring and \(T \) be a positive homomorphism between \(G \) and \(H \). Then \(T \) is a ring homomorphism if and only if \(T \) is an \(\ell \)-homomorphism and \(T(e_G) \) is idempotent.

Proof. The "Only if" part is unchanged from Theorem 3.2 in [4]. Only the "if" part needs some details. Since \(T \) is a ring homomorphism then \(T(e_G) \) is an idempotent element and for every \(a \) in \(G \) we have \(T(a) = T(e_G)T(a) \). This means that the range of \(T \) is included in the set \(T(e_G)^{\perp \perp} \) which is an \(f \)-ring with \(T(e_G) \) as unit element (see for example Lemma 3.4 and 3.5 in [3]). Now, Take \(a \) and \(b \) in \(G \) such that \(a \wedge b = 0 \). From

\[0 = T(ab) = T(a)T(b), \]

and the fact that \(T(e_G)^{\perp \perp} \) is reduced, we can affirm that \(T(a) \wedge T(b) = 0 \). And we are done. ■

We have now gathered all the ingredients we need to prove the following Theorem.
Theorem 3 Let G and H be archimedean unital f-rings with unit element e_G and e_H respectively and K be an archimedean f-ring. Let $b : G \times H \rightarrow K$ be a positive biadditive homomorphism. The following conditions are equivalent:

i) b is multiplicative.

ii) b is an ℓ-bimorphism and $b(e_G, e_H)$ is idempotent.

Proof.

i) \rightarrow ii) Since b is multiplicative then so are the two positive homomorphisms b_1 and b_2, where

$$b_1 : \ G \rightarrow K \quad g \mapsto b(g, e_H)$$

and

$$b_2 : \ H \rightarrow K \quad h \mapsto b(e_G, h).$$

Proposition 1 yields to b_1 and b_1 are ℓ-homomorphisms. Which means that b is an ℓ-bimorphism. $b(e_G, e_H)$ is idempotent follows immediately.

ii) \rightarrow i) Let $\Phi : G \otimes H \rightarrow K$ be the ℓ-homomorphism such that

$$b(a, b) = \Phi(a \otimes b)$$

for every a in G and b in H. Corollary 2 yields to $G \otimes H$ is a unital archimedean f-ring with $e_G \otimes e_H$ as a unit element. This, with Theorem 3.2 in [4] show that Φ is multiplicative. The result follows immediately since

$$b(ac, bd) = \Phi(ac \otimes bd) = \Phi(a \otimes b)\Phi(c \otimes d) = b(a, b)b(c, d)$$

for every a and c in G and every b and d in H. ■

References

[1] M. Anderson and T. Feil. A first course in abstract algebra. CRC Press, Boca Raton, FL, third edition, 2015. Rings, groups, and fields.

[2] Y. Azouzi, M. A. Ben Amor, and J. Jaber. The tensor product of f-algebras. Quaest. Math., to appear.

[3] Youssef Azouzi and Mohamed Amine Ben Amor. On von Neumann regular elements in f-rings. Algebra Universalis, 78(1):119–124, 2017.

[4] M. A. Ben Amor and K. Boulabiar. Almost f-maps and almost f-rings. Algebra Universalis, 69(1):93–99, 2013.

[5] A Bigard, K. Keimel, and S. Wolfenstein. Groupes et anneaux réticulés. Lecture Notes in Mathematics, Vol. 608. Springer-Verlag, Berlin-New York, 1977.
[6] R. D. Bleier. Minimal vector lattice covers. *Bull. Austral. Math. Soc.*, 5:331–335, 1971.

[7] K. Boulabiar and M. A. Toumi. Lattice bimorphisms on f-algebras. *Algebra Universalis*, 48(1):103–116, 2002.

[8] G. J. H. M. Buskes and A. C. M. van Rooij. The Archimedean l-group tensor product. *Order*, 10(1):93–102, 1993.

[9] G. J. H. M. Buskes and A. W. Wickstead. Tensor products of f-algebras. *Mediterr. J. Math.*, 14(2):Art. 63, 10, 2017.

[10] P. F. Conrad. Minimal vector lattice covers. *Bull. Austral. Math. Soc.*, 4:35–39, 1971.

[11] D. H. Fremlin. Tensor products of Archimedean vector lattices. *Amer. J. Math.*, 94:777–798, 1972.

[12] D. H. Fremlin. Tensor products of Banach lattices. *Math. Ann.*, 211:87–106, 1974.

[13] M. Henriksen and J. R. Isbell. Lattice-ordered rings and function rings. *Pacific J. Math.*, 12:533–565, 1962.

[14] D. G. Johnson. The completion of an archimedean f-ring. *J. London Math. Soc.*, 40:493–496, 1965.

[15] J. Martinez. Tensor products of partially ordered groups. *Pacific J. Math.*, 41:771–789, 1972.

[16] S. A. Steinberg. *Lattice-ordered rings and modules*. Springer, New York, 2010.