The effect of nuclear gas distribution on the mass determination of supermassive black holes

J. E. Mejia-Restrepo¹, P. Lira¹, H. Netzer², B. Trakhtenbrot³, D. M. Capellupo⁴

¹Departamento de Astronomía, Universidad de Chile, Camino el Observatorio 1515, Santiago, Chile. ²School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel. ³Institute for Astronomy, Dept. of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland. ⁴Department of Physics, McGill University, Montreal, Quebec, H3A 2T8, Canada.

Supermassive black holes reside in the nuclei of most galaxies. Accurately determining their mass is key to understand how the population evolves over time and how the black holes relate to their host galaxies⁴. Beyond the local universe, the mass is commonly estimated assuming virialized motion of gas in the close vicinity to the active black holes, traced through broad emission lines⁵. However, this procedure has uncertainties associated with the unknown distribution of the gas clouds. Here we show that the comparison of black hole masses derived from the properties of the central accretion disc with the virial mass estimate provides a correcting factor, for the virial mass estimations, that is inversely proportional to the observed width of the broad emission lines. Our results suggest that line-of-sight inclination of gas in a planar distribution can account for this effect. However, radiation pressure effects on the distribution of gas can also reproduce our findings. Regardless of the physical origin, our findings contribute to mitigate the uncertainties in current black hole mass estimations and, in turn, will help to further understand the evolution of distant supermassive black holes and their host galaxies.

Active Supermassive black holes (SMBHs) are powered by accretion flows, probably in the form of accretion discs (ADs) that convert gravitational energy into radiation⁶. Gas in the Broad Line Region (BLR), located in the vicinity of the SMBH and moving at Keplerian velocities of thousands of kilometres per second, is photo-ionized by the AD producing broad emission lines. Under virial equilibrium, the observed width of these lines (in terms of full width at half maximum, FWHMobs) can be used as a proxy for the virial velocity (V_{BLR}) and M_{BH} can be expressed as:

$$M_{BH} = G^{-1} R_{BLR} V^2_{BLR} = f G^{-1} R_{BLR} \text{FWHM}^2_{obs}$$ (1)

Here, G is the gravitational constant, R_{BLR} is the mean BLR distance to the SMBH and f is the virial factor that accounts for the differences between the unknown V_{BLR} and FWHMobs that are mostly caused by the BLR gas distribution of each object. Since even in the closest active galaxies the BLR cannot be resolved with current capabilities, R_{BLR} is estimated from reverberation mapping (RM) experiments that show a strong correlation between the typical distance to the Hß emitting region and the continuum luminosity (the $R_{BLR} - L$ relation⁷) f is assumed to be constant for all systems and is usually determined by requiring RM-based masses (from Equation 1) to agree, on average, with masses estimated from the relation between M_{BH} and the stellar velocity dispersion found in local galaxies⁸. This indirect technique to determine M_{BH} is known as the "single epoch virial method"⁹.

Unfortunately, the virial method is subject to biases and uncertainties associated with our ignorance of the dependence of f on additional physical properties. These could include radiation pressure perturbations⁸, non-virial velocity component⁹, the relative thickness (H/R_{BLR}) of the Keplerian BLR orbital plane⁸ and the line-of-sight inclination angle (θ)¹⁰ of this plane. An analytical expression for f in the case of a planar BLR of thickness H/R_{BLR} is given by:

$$f = \left[4 \left(\sin^2 i + (H/R_{BLR})^2\right)\right]^{-1}$$ (2)

where $\sin^2 i$ accounts for the line-of-sight projection of the Keplerian velocity of the BLR orbital plane¹¹. The nature of the velocity component responsible for the thickness of the BLR in unclear. However, ideas such as non-coplanar orbits, accretion disc radiation pressure, induced turbulence and outflowing disc winds have been suggested in the literature as plausible mechanisms to puff up the BLR. Given all these, the assumption of an universal f introduces an uncertainty in the
single epoch method which is estimated to be at least a factor of 2-3.

Recently, we used an alternative method to estimate M_{BH} by fitting the AD spectra of 37 active galaxies at $z\approx 1.5$ (about 1/3 of the current age of the universe), observed using the ESO X-Shooter spectrograph which provides simultaneous, very wide wavelength coverage of the AD emission (see supplementary information for sample description). The spectra were fitted with standard, geometrically thin, optically thick AD models including general relativistic and disc atmosphere corrections. In our modelling we made sure to avoid known model uncertainties that affect the short wavelength region ($\lambda < 1216\AA$, see supplementary information). Each model is determined by several properties, mainly its M_{BH} ($M_{\text{AD}}^{\text{BH}}$), the normalized accretion rate (expressed as the Eddington ratio $\lambda_{\text{Edd}} = L/L_{\text{Edd}}$), the black hole spin ($a_*$) and the disc inclination to the line of sight (see supplementary information for model description). Crucially, this method only relies on our ability to model the AD. As a result, the derived masses are independent of the BLR geometry and kinematics, and therefore of any assumptions on the f factor. For this sample, we also previously estimated the associated single epoch black hole masses ($M_{\text{BH}}^{\text{SE}}$) from the Hα, Hβ, Mg II and C IV broad emission line (23). As the $R_{\text{BLR}} - L$ relation has only been robustly established for the Hβ line, the Hα, Mg II and C IV single epoch masses are cross-calibrated to agree on average with the H_2 mass estimations.

M_{BH} determinations from these two methods are compared in Figure 1. The approaches yield masses in very good agreement with each other (suggesting that AD and SE masses have comparable accuracies) albeit with significant scatter of a factor of about two (23). In this letter we looked for possible drivers for this scatter and found a strong gradient in $F_{\text{FWHM}}^{\text{obs}}$ across the relation, as can be seen by the colour of the data points in Figure 1.

The ratio between M_{BH} and $M_{\text{BH}}^{\text{SE}}/f = G^{-1}R_{\text{BLR}}F_{\text{FWHM}}^{\text{obs}}$ allows us to determine a proxy for the virial factor f which we define as $f_{\text{AD}}(\text{line}) = M_{\text{BH}}/G^{-1}R_{\text{BLR}}(F_{\text{FWHM}}^{\text{obs}}(\text{line}))^2$. In Figure 2 we show $f_{\text{AD}}(\text{line})$ as a function of the $F_{\text{FWHM}}^{\text{obs}}$ for the Hα, Hβ, Mg II and C IV broad emission lines. Strong anti-correlations between f_{AD} and $F_{\text{FWHM}}^{\text{obs}}$ are present for all lines. These correlations are found to be significantly stronger than the expected correlations between f_{AD} and $G^{-1}R_{\text{BLR}}F_{\text{FWHM}}^{\text{obs}}$ (see Table 1 and see supplementary information for details). We can conclude that the $F_{\text{FWHM}}^{\text{obs}}$ of the broad lines drives the discrepancies between M_{BH} and $M_{\text{BH}}^{\text{SE}}$.

We also determined how $M_{\text{BH}}^{\text{SE}}$ depends on $F_{\text{FWHM}}^{\text{obs}}$ and L_λ (see supplementary information). The dependence on $F_{\text{FWHM}}^{\text{obs}}$ is close to linear and, therefore, very different from the expected squared dependency found in Equation (1). The dependence on the monochromatic luminosities is consistent, within errors, with that found for single epoch calibrations (i.e., $M_{\text{BH}} \propto R_{\text{BLR}}$). This indicates that L_λ has no impact on the scatter between $M_{\text{BH}}^{\text{SE}}$ and $M_{\text{BH}}^{\text{AD}}$ and that f can be expressed as a single function of the $F_{\text{FWHM}}^{\text{obs}}$ of the broad emission lines. As can be seen in Table 1 our measurements are consistent within uncertainties with $f_{\text{AD}} \propto F_{\text{FWHM}}^{\text{obs}}^{-1}$ for all lines.

Previous works attempted to derive f by comparing single epoch SMBH mass estimations with masses obtained from alternative methods. For instance, from the scaling relations between the black hole mass and the luminosity (23) or the stellar dispersion (24) of the host galaxy spheroidal components as well as from the amplitude of the excess X-ray variability variance that is found to be inversely anti-correlated with the black hole mass (25). The results of these works also exhibit an anti-correlation between f and the $F_{\text{FWHM}}^{\text{obs}}$ of the broad emission lines and were understood as an effect of line of sight inclination of the BLR. However, these works applies the same prescription to all systems, assuming that all objects are well represented by the median trend of the scaling relations, and do not take into account the large intrinsic scatter in such relations. This is in contrast with our sample where $M_{\text{BH}}^{\text{AD}}$ is independently obtained for each object through individual spectral fitting of the accretion disc emission.

The high quality spectra in our sample and the careful modelling of its broad emission lines allow us to explore in detail whether the line of sight inclination in a disc-like BLR can reproduce the observed trends. For this purpose we prefer to use the data and correlations determined from the Hα line because of its high signal-to-noise ratio (24). We define $F_{\text{FWHM}}^{\text{int}}$ as the intrinsic full width at half maximum of the virialized velocity component of the BLR. To recover the virial expectation $M_{\text{BH}} \propto (F_{\text{FWHM}}^{\text{int}})^2$ given by Equation (1) we use our result that $f \propto F_{\text{FWHM}}^{\text{obs}}(\text{H}_\alpha)$ (or equivalently $M_{\text{BH}} \propto F_{\text{FWHM}}^{\text{obs}}$) implying that, on average, $F_{\text{FWHM}}^{\text{int}} \propto F_{\text{FWHM}}^{\text{obs}}/2$. First, we adopt a model of a thin BLR (assuming that $H/R \rightarrow 0$ in Equation (3)) and use Monte Carlo simulations to find the $F_{\text{FWHM}}^{\text{int}}$ distribution that, after taking into account the line-of-sight inclination effects for randomly orientated BLRs, reproduces the cumulative $F_{\text{FWHM}}^{\text{obs}}$ (Hα) distribution (see supplementary information for further details). Next, we generate a large population of objects drawn from the $F_{\text{FWHM}}^{\text{int}}$ distribution and determine for each of these f and $F_{\text{FWHM}}^{\text{obs}}$. Finally, we compare the bi-dimensional f–$F_{\text{FWHM}}^{\text{obs}}$ distribution obtained from our data with that generated from the simulations. We find that we are able to reproduce not only the mean trend of the observed correlation, but also the density distribution of data points, as can be seen in Figure 3. Furthermore, our simulations can recover the expected $F_{\text{FWHM}}^{\text{int}} \propto F_{\text{FWHM}}^{\text{obs}}/2$ correlation (see extended data Figure S3). These results strongly indicate that line-of-sight inclination effects cause the observed f–$F_{\text{FWHM}}^{\text{obs}}$ anti-correlation.

We also considered the combined effect of inclination and BLR thickness by assuming an universal H/R within the range 0-1. We find that a wide range in thickness ratios ($H/R \lesssim 0.5$) can repro-
duce the cumulative distribution function of FWHM_{obs}(H\alpha), but only relatively thin BLRs (H/R \lesssim 0.1) can reproduce the observed bi-dimensional distribution of f_{AD} and FWHM_{obs}(H\alpha), and the predicted FWHM_{int} \propto FWHM_{obs}^{1.2} dependence.

Table 1 | The virial factor as a function of FWHM_{obs} for the broad emission lines. FWHM_{obs}^0 and \beta are best fit parameters found for f_{AD} = (FWHM_{obs}^0 / FWHM_{obs})^\beta, r_s and P_s are the Spearman correlation coefficient and associated null-hypothesis probability for the f_{AD} vs FWHM_{obs} (†) and f_{AD} vs G^{-1}R_{BLR}FWHM_{obs}^2 (‡) correlations.

Broad line	FWHM_{obs}^0 [km s^{-1}]	\beta	r_s	P_s	G^{-1}R_{BLR}FWHM_{obs}^2 (‡)	
H\alpha	4000\pm 700	-1.00\pm 0.10	-0.85	4 \times 10^{-11}	-0.44	5 \times 10^{-3}
H\beta	4550\pm 1000	-1.17\pm 0.11	-0.84	8 \times 10^{-11}	-0.48	2 \times 10^{-3}
Mg II \lambda 2798	3200\pm 800	-1.21\pm 0.24	-0.75	9 \times 10^{-8}	-0.23	2 \times 10^{-1}
CIV \lambda 1549	5650\pm 3000	-1.29\pm 0.35	-0.61	6 \times 10^{-5}	-0.25	1 \times 10^{-1}

Figure 3 | Virial factor-FWHM_{obs} bi-dimensional distribution. Predicted bi-dimensional probability distribution function of the virial factor versus FWHM_{obs} for a thin BLR (H/R = 0) modified by line-of-sight inclination is shown in gray. The darkest regions represent the most probable combinations of these quantities as quantified in the colour bar. The thin, black lines are the 25%, 50% and 75% and 99% confidence limit contours centred around the maximum probability point. The thick yellow line is the median of the f-FWHM_{obs} distribution derived from a quantile non-parametric spline regression. The open-blue circles are data taken from Figure 2 for the H\alpha line. The magenta thick line is the derived relation f = (FWHM_{obs}(H\alpha) / 4000 km s^{-1}) and the shaded region the associated uncertainties. The yellow and magenta lines are in very good agreement within uncertainties. Additionally, the distribution of the data points shows a good agreement with the predicted bi-dimensional distribution confidence limits. Explicitly, we find 21% of the points inside the central 25% confidence level region, 51% inside the 50% confidence level region, 78% inside the 75% confidence level region and 87% inside the 99% confidence level region. The error bars for f_{AD} and FWHM_{obs} are described in the legend of Figure 2.

We have also examined possible alternative scenarios. In particular, the effects of radiation pressure force in a gravitationally bound BLR can predict f \propto FWHM_{obs}^{-1} for some configuration. This model predicts that the scatter in the relation will depend on the luminosity of the sources (see supplementary information). However, we do not find clear indications for this in our observations, as can be seen by the colour coded data points in Figure 2 where no clear gradient in L_{5100} is found across the f-FWHM_{obs} correlation. Note however that given the relatively narrow range in L_{5100} covered by our sample (a factor of 80), and the uncertainties in our estimations of f, radiation pressure remains an intriguing mechanism that should be explored further in the future (see Extended data figure E4).

Regardless of its physical origin, the dependence of f on FWHM_{obs}(H\alpha) implies that M_{BH} has been, on average, systematically overestimated for systems with large FWHM_{obs}(H\alpha) (> 4000 km s^{-1}) and underestimated for systems with small FWHM_{obs}(H\alpha) (< 4000 km s^{-1}). The range of f_{AD} values presented in Figure 2 which are associated with FWHM_{obs}(H\alpha) = 1600-8000 km s^{-1} imply a range in f, and hence M_{BH}, of factor ~6. However, this range should not be taken as representative of the entire population of AGN since our sample is too small (37 objects) and was not defined to be complete in terms of BLR properties.

Even though our sample is selected at a specific epoch (z \sim 1.5), the physics of a compact region such as the BLR is likely to remain constant over time. This has important implications for the study of active SMBHs at low and high redshifts. For example, the lowest M_{BH} sources at z \sim 0 typically show relatively narrow BLR profiles (1000 km s^{-1} \lesssim FWHM_{obs}(H\alpha) \lesssim 2000 km s^{-1}). In this case, M_{BH} should be about 2-4 times larger than current estimates, and consequently M_{BLR} should be smaller by the same factor. Another example is related to the mass of the most massive young known quasars found at z \gtrsim 6. Our proposed dependence of f with FWHM_{obs}(Mg II) reduces the mass of the brightest known systems by up to a factor 2, as they typically show lines with FWHM_{obs}(Mg II) \gtrsim 3000 km s^{-1}, somewhat alleviating the tension between their outstandingly large masses and the very early epochs at which they have been discovered.

1. Ferrarese, L. & Merritt, D. A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. Astrophys. J. 539, L9–L12 (2000). [astro-ph/0006053]
2. Xiao, T. et al. Exploring the Low-mass End of the M_{BH}–σ Relationship with Active Galaxies. Astrophys. J. 739, 28 (2011). [1106.6322]
3. Kormendy, J. & Ho, L. C. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. ARA&A 51, 511–565 (2013). [1304.7762]
4. Trakhtenbrot, B. & Netzer, H. Black hole growth to z = 2 - I. Improved virial methods for measuring M_{BH} and L/BH. Mon. Not. R. Astron. Soc. 427, 3081–3102 (2012). [1209.1096]
5. Shen, Y. The mass of quasars. Bulletin of the Astronomical Society of India 41, 51–115 (2013). [1302.2643]
6. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).
7. Kaspi, S. et al. Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei. Astrophys. J. 553, 631–649 (2000). [astro-ph/9911478]
8. Bentz, M. C. et al. The Low-luminosity End of the Radius-Luminosity Relationship for Active Galactic Nuclei. Astrophys. J. 767, 149 (2013). [1303.1742]
9. Onken, C. A. et al. Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for

1. Ferrarese, L. & Merritt, D. A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. Astrophys. J. 539, L9–L12 (2000). [astro-ph/0006053]
2. Xiao, T. et al. Exploring the Low-mass End of the M_{BH}–σ Relationship with Active Galaxies. Astrophys. J. 739, 28 (2011). [1106.6322]
3. Kormendy, J. & Ho, L. C. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. ARA&A 51, 511–565 (2013). [1304.7762]
4. Trakhtenbrot, B. & Netzer, H. Black hole growth to z = 2 - I. Improved virial methods for measuring M_{BH} and L/BH. Mon. Not. R. Astron. Soc. 427, 3081–3102 (2012). [1209.1096]
5. Shen, Y. The mass of quasars. Bulletin of the Astronomical Society of India 41, 51–115 (2013). [1302.2643]
6. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).
7. Kaspi, S. et al. Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei. Astrophys. J. 553, 631–649 (2000). [astro-ph/9911478]
8. Bentz, M. C. et al. The Low-luminosity End of the Radius-Luminosity Relationship for Active Galactic Nuclei. Astrophys. J. 767, 149 (2013). [1303.1742]
9. Onken, C. A. et al. Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for
Figure E1 | Cumulative distribution functions for the observed and simulated FWHM$_{\text{obs}}$ for H\textalpha. The cumulative distribution function (CDF) of FWHM$_{\text{obs}}$(H\textalpha) is the thin magenta line. The magenta shadowed region shows the Poissonian uncertainties. The thick orange line and yellow stars are the modelled CDF for a thin (H/R = 0) and thick (H/R = 0.5) BLR, respectively. In both cases we assumed a truncated Gaussian distribution for the intrinsic FWHM$_{\text{int}}$(H\textalpha) convolved with a sin i distribution. The cyan dashed line is a Gaussian distribution with no truncation. The dark blue dashed line is the CDF for FWHM$_{\text{int}}$ = 8170 km s$^{-1}$ and FWHM$_{\text{std}}$ = 0, as modelled in other works. We observe that the modelled CDFs are generally in good agreement with the observed CDF for the thin and thick BLR models, but the thick BLR fails to reproduce the observed CDF at small FWHM$_{\text{obs}}$(H\textalpha) values.
Figure E2 | Virial factor–FWHM_{\text{obs}} bi-dimensional distributions for a thin and thick BLR. Predicted bi-dimensional probability distribution functions of the virial factor and FWHM_{\text{obs}} for a thin BLR (left) and a thick BLR (right), as predicted by the best-fit models shown in Figure E1 are shown in gray. The darkest regions represent the most probable combinations of these quantities as quantified in the colour-bar. The thin black lines are the 25%, 50% and 75% and 99% confidence limit contours centred around the maximum probability point. The thick yellow lines are the median of the \(f \text{–FWHM}_{\text{obs}} \) distributions derived from a quantile non-parametric spline regression. The open-blue circles are data from Figure 2 for the Hα line. The magenta lines are the derived relation \(f = (\text{FWHM}_{\text{obs}}(\text{H}\alpha)/4000 \text{ km s}^{-1}) \) and the shadowed regions the associated uncertainties. The thin blue-dashed lines are the 25%, 50% and 75% quantiles of the observational distribution after accounting for the measurement errors in \(f_{AD} \) and FWHM_{\text{obs}}(Hα). We see that for the thin BLR the 50%-quantile (median) of the theoretical and observational distributions are in very good agreement with each other. Additionally, the distribution of the data points shows good agreement with the predicted bi-dimensional distribution confidence limits. Explicitly, we find that 21% of the points fall inside the central 25% confidence level region, 51% fall inside the 50% confidence level region, 78% fall inside the 75% confidence level region, and 87% fall inside the 99% confidence region level. On the other hand, the thick BLR model cannot reproduce the bi-dimensional \(f \text{–FWHM}_{\text{obs}} \) distribution. The errors bars for \(f_{AD} \) and FWHM_{\text{obs}} are described in the legend of Figure 2.
Figure E3 | FWHM$_{\text{obs}}$–FWHM$_{\text{int}}$ bi–dimensional distributions for a thin and thick BLR. Bi–dimensional probability distribution of the intrinsic and observed FWHM$_{\text{obs}}$(Hα) for a thin BLR (left) and a thick BLRs (right) as predicted by the best–fit models shown in Figure E1. The darkest regions show the most probable combinations of FWHM$_{\text{int}}$ and FWHM$_{\text{obs}}$ values as quantified in the colour–bar. The thick black line is the 1:1 correlation. The thin black lines are the 68%, 95% and 99% confidence limit contours centred around the maximum of the probability distribution. The magenta line is the relation FWHM$_{\text{int}}$ \propto FWHM$_{\text{obs}}^{1/2}$ and the width of the magenta shadowed region accounts for the uncertainties in that relation. The solid yellow line is the 50% regression quantile of FWHM$_{\text{int}}$ as a function of FWHM$_{\text{obs}}$ for the theoretical probability density distribution and the yellow shaded region covers the 25% to 75% percentiles. We can see that inclination closely reproduces the expected relation FWHM$_{\text{int}}$ \propto FWHM$_{\text{obs}}^{1/2}$ for the thin BLR but fails to reproduce it for the thick BLR case.
Figure E4 | Radiation pressure in a gravitationally bound BLR. The observed virial factor vs FWHM$_{\text{obs}}$ for the Hα line is shown (black squares). The magenta line is the derived relation $f = (\text{FWHM}_{\text{obs}}(\text{H}$ $\alpha) / 4000 \text{ km s}^{-1})$ and the width of the shadowed region accounts for the uncertainties in that relation. The filled points represent the modelled f_{rad} from the best fit model for radiation pressure in a gravitationally bound BLR. The colour of the points scales with the measured monochromatic luminosity at 5100Å (L_{5100}) for each object, as indicated by the colour bar. Redder (bluer) points correspond to larger (smaller) values of L_{5100}. As can be observed, the model predicts that the scatter in f_{rad} (coloured points) is driven by L_{5100} (see Equation 9). This dependence is not seen in our data (black squares) as shown in Figure 2. Nevertheless, the relatively large errors in f_{AD} and the weak dependence of f_{rad} in L_{5100} may probably hide the expected dependence from this radiation pressure model. The error bars for f_{AD} and FWHM$_{\text{obs}}$ are described in the legend of Figure 2.
Figure E5 | Dependency of $M_{\text{BH}}^{\text{AD}}$ on the adopted values of f and σ_{MBH}. Original $M_{\text{BH}}^{\text{AD}}$ values (from Paper III) vs Recalculated $M_{\text{BH}}^{\text{AD}}$ values obtained using different values for f_{FWHM} and the scatter in M_{BH} (σ_{MBH}, as shown in the legend). The solid line represents the 1:1 relation and the dashed lines represent $f = 0.4$ and $f = 2.5$. As σ_{MBH} increases $M_{\text{BH}}^{\text{AD}}$ values get closer to the 1:1 relation (with just one exception at the lowest mass). This indicates that $f = 1$ is an appropriate initial choice. The cross symbol in the bottom right corner represents a typical error bar in our $M_{\text{BH}}^{\text{AD}}$ estimations that accounts for the central 68% of the marginalized posterior probability distribution.
Figure E6 | M_{AD}^B versus AD inclination. Posterior bidimensional probability distribution of the accretion disc inclination versus the black hole mass in 36 objects of the sample. Red, orange, cyan and blue lines represent the central 25, 50, 75 and 99 percentiles around the most probable point. The colour represents the relative probability normalized to the maximum probability for each object.
Figure E7 | M_{AD}^BH versus the black hole spin. Posterior bidimensional probability distribution of the spin (a_*) versus the black hole mass in 36 objects of the sample. Red, orange, cyan and blue lines represent the central 25, 50, 75 and 99 percentiles around the most probable point. The color represents the relative probability normalized to the maximum probability for each object.
Table E1 | Properties of different correlations found for the emission lines of interest. Column [1]: power-law coefficient from reverberation mapping experiments (see Equation 3). Columns [2]-[4]: best fit parameters for linear regressions of the expression $\log M_{BH}^{AD}(\text{FWHM}, L_{\lambda}) = \alpha_{AD} \log (L_{\lambda}) + E \log \text{FWHM (line)} + F$. Column [5]: R^2 values of the linear regressions. Columns [6] and [7]: scatter in the M_{BH}^{AD} vs M_{BH}^{SE} and M_{BH}^{AD} vs M_{BH}^{SE} (corr) correlations.

Line	α_{line}	α_{AD}	E	F	R^2	M_{BH}^{AD} vs M_{BH}^{SE}	M_{BH}^{AD} vs M_{BH}^{SE} (corr)
H\text{\AA}	0.63 0.66±0.03	1.00±0.10	7.42±0.07	0.948	0.17	0.09	
H\beta	0.65 0.69±0.04	0.82±0.11	7.43±0.09	0.943	0.24	0.12	
MgII	0.61 0.68±0.05	0.78±0.24	7.40±0.15	0.850	0.22	0.16	
CIV	0.60 0.61±0.06	0.69±0.36	7.29±0.27	0.770	0.24	0.20	
Supplementary Information

1 Sample description

The sample we use in this letter consists of 39 type-I AGN selected to be within a narrow redshift range around \(z \approx 1.55 \). For this sample we obtained high signal to noise (S/N) spectroscopic observations using the VLT/X-Shooter spectrograph. At the selected narrow redshift range, the X-Shooter spectrograph covers a wide range from \(\sim 1200 \) Å to \(\sim 9200 \) Å in the rest-frame. The sample was selected to homogeneously map the parameter space of \(M_{BH} \) and \(\alpha_{Edd} = L/L_{Edd} \) within the sampled region. The initial values of these quantities were obtained from single-epoch (SE) calibration\(^{[2]}\) of the H\(\alpha \) broad emission line and its adjacent continuum.

The broad spectral coverage and the high S/N in our sample allowed us to (1) re-calibrate, compare and test the performance of the different SE \(M_{BH} \) estimators using H\(\alpha \), H\(\beta \), Mg II and CIV\(^{[2]}\), and (2) model and confidently constrain the observed Spectral Energy Distributions (SEDs) in 37 out of 39 objects using standard thin accretion disc models\(^{[2]}\). The output of the SED fitting provided alternative estimations for \(M_{BH} \), \(M \), \(\alpha_{Edd} \) and a realistic estimate of \(a_\ast \). For the sake of simplicity, hereafter when referring to paper I, II and III we will be citing references 23, 26 and 24, respectively.

2 Estimating \(M_{BH} \)

In this section we briefly describe the two alternative approaches that we followed to derive \(M_{BH} \) and comment on the sources of uncertainties of each method.

2.1 Single Epoch \(M_{BH} \) estimates We used the black hole masses obtained in paper II from the new calibrations of the single epoch (SE) black hole mass estimators for the broad H\(\alpha \), H\(\beta \), Mg II and CIV emission lines. In particular, we used the coefficients of the first two columns of Table 7 in Paper II. The underlying assumption in SE estimations is that Equation\(^{[1]}\) holds for all broad emission lines and \(V_{BLR} \) can be estimated from the FWHM\(_{\text{obs}}\) of the line in question using Equation\(^{[1]}\). We used \(f = 1 \) as suggested from \(M_{BH} \)-Stellar dispersion calibration\(^{[3]}\).

\[R_{BLR} = R_{BLR}^{0} \left(\frac{L_{\lambda}}{10^{41} \text{erg s}^{-1}} \right)^{0.1} \]

(3)

where, \(R_{BLR}^{0} \) is the normalization constant which for the case of the H\(\beta \) line, and for \(\lambda = 5100 \) Å, is 538 light-day\(^{[3]}\).

As we briefly discussed in the letter, the simple SE mass determination method is limited in various important ways:

1. The \(R_{BLR} - L \) relation has been obtained from a relatively small sample of low-z \((z < 0.3) \) Seyfert I galaxies and low luminosity quasars \((L_{5100} < 10^{46} \text{erg s}^{-1}, \text{where } L_{5100} \equiv 5100 \; \lambda (5100 \; \text{Å}))\). Therefore, extrapolation of the \(R_{BLR} - L_{5100} \) relation is needed to estimate \(M_{BH} \) in high luminosity objects at high-z. Moreover, the intrinsic scatter in the \(R_{BLR} - L_{5100} \) relation is affected by intrinsic luminosity variations as well as by the disc inclination to the line-of-sight\(^{[2]}\).

2. The re-calibration of the H\(\beta \)-based single epoch method to other broad emission lines like H\(\alpha \), Mg II \#2798 and CIV \#1549 induces intrinsic dispersion that can be as high as 0.5 dex for the CIV \#1549 line\(^{[2]}\).

3. The dependence of \(f \) on inclination is a major source of uncertainty. This has been explored in numerous papers. A recent paper used a sample of about 600 local SDSS type-I AGN to compare the \(M_{BH} \) estimations derived from the \(M_{BH} \)-stellar dispersion relation \((M_{BH}^{\ast})\) with those derived from the single epoch method\(^{[2]}\).

They found that \(f_{\ast} \equiv M_{BH}^{\ast}/(G^{-1} R_{BLR} F_{\text{FWHM obs}}(H\beta)^{2}) \) is anti-correlated with \(F_{\text{FWHM obs}}(H\beta) \), and argued that this is a manifestation of the line-of-sight inclination in a flat, disc-like BLR. Earlier works also suggested an anti-correlation between the radio loudness of sources and the observed \(F_{\text{FWHM obs}}(H\beta) \). Assuming that radio jets in AGN are aligned with the axis of symmetry of the BLR and that the flat BLR is aligned with the disc, their results strongly suggests that the BLR in radio-loud AGN are considerably flattened.

4. There are questions regarding the validity of virial equilibrium of the BLR material. Earlier results about AGN with multiple emission measurements (i.e., NGC3783, NGC5548, NGC7469 and 3C390.3) show that the velocity radial profiles that are in good agreement with the expectations for a Keplerian system\(^{[4]}\) (i.e., \(V_{BLR}(r) \propto r^{-1/2} \)). Additionally, in some velocity resolved RM experiments, the blue wing of the H\(\beta \) line has been observed to lag behind the red wing, which generally rules out significant outflow of both high- and low-ionization lines\(^{[2]}\). However, more recent RM observations revealed diverse kinematics of the BLR including inflows, outflows and virialized gas\(^{[5]}\).

5. The use of a single value of \(f \) for measuring \(M_{BH} \) in sources that are not part of RM samples introduces an additional uncertainty which results from the fact that the \(F_{\text{FWHM obs}} \) measured from single-epoch spectra are systematically larger than those measured from the RMS profiles during a RM campaign\(^{[2]}\). This can be easily verified by comparing the RMS \(F_{\text{FWHM obs}}(H\beta) \) with the one measured from the mean spectrum of the same source\(^{[4]}\). This is also true when the standard deviation of the lines \((\sigma_{\text{obs}})\) is used instead of the \(F_{\text{FWHM obs}} \) and has not been taken into account, properly, in many studies. For example, from the results published in a recent paper\(^{[3]}\) we obtain \(F_{\text{FWHM obs}}/F_{\text{FWHM rms}} = 1.17^{+0.37}_{-0.15} \).

6. The line shape parameter \(F_{\text{FWHM obs}}/\sigma_{\text{obs}} \) provides information on the structure and kinematics of the BLR. For instance, \(F_{\text{FWHM obs}}/\sigma_{\text{obs}} \sim 3.4 \) is found for a spherical shell of clouds moving with a fixed speed and random orientations, \(F_{\text{FWHM obs}}/\sigma_{\text{obs}} \sim 3 \) is found for a face-on rotating ring with fixed velocity, \(F_{\text{FWHM obs}}/\sigma_{\text{obs}} = 2.35 \) corresponds to Gaussian profiles, \(F_{\text{FWHM obs}}/\sigma_{\text{obs}} \sim 2 \) is found for a face on rotating Keplerian disc, \(F_{\text{FWHM obs}}/\sigma_{\text{obs}} \sim 1 \) \((\sim 0 \)) corresponds to Lorentzian profiles due, for example, to turbulent motions, as well as logarithmic profiles which can be caused by in-outflow motions, and \(F_{\text{FWHM obs}}/\sigma_{\text{obs}} \sim 0.98 \) corresponds to exponential profiles caused by electron scattering within the photo-ionized BLR gas\(^{[3]}\). \(F_{\text{FWHM obs}}/\sigma_{\text{obs}} \) is known to vary within a significant range\(^{[3]} \), suggesting that BLR profiles are not universal and that the virial factor is far from being a constant value.

2.2 Black Hole Mass Estimates from SED fitting As previously mentioned, in papers I and III we recently implemented an alternative method to estimate the black hole mass in type-I-AGN based on the fitting of the SED of the accretion discs, using a geometrically thin, optically thick accretion disc model, and obtained successful fits in 37 out of 39 objects in our sample. The model is fully determined by \(M_{BH}^{AD} \), \(\alpha \), \(M \), the AD inclination with respect to the line-of-sight \((i_{AD} - i_{BLR})\), and intrinsic \(K_{V} \). The procedure consisted of a Bayesian minimization over a grid of models covering a range in values for these parameters. We assumed Gaussian priors for \(M_{BH}^{AD} \) (H\(\alpha \), L\(2600 \)) and \(M_{SE} \). Means were given by the single-epoch estimations for each
object and standard deviations of 0.3 and 0.2 dex were adopted, respectively. \(M_{\text{BH}}^{\text{FWHM}}(\text{H} \alpha, L_{\text{2000}}) \) and \(M_{\text{SE}}^{\text{F}} \) were calculated assuming a virial factor \(f_{\text{FWHM,se}} = 1 \). Flat priors were assumed for the remaining model parameters. The role of the priors is to penalize models which deviate significantly from the observational estimations of \(M_{\text{BH}}^{\text{F}}(\text{H} \alpha) \) and \(M_{\text{SE}}^{\text{F}} \), but allow a symmetric parameter search on either side of the means. In the analysis presented in this letter we use the results obtained in paper III. To completely avoid complications in SED fittings resulting from unknown opacity and other effects in the disc atmosphere, for our Bayesian fitting we used only the X-shooter spectra with \(\lambda > 1200 \AA \). At such wavelengths, our models are adequate and spectral features that may influence the spin parameter determination are not included in the fit.

We have investigated the possibility that our initial choices of \(f_{\text{FWHM,se}} \) and the standard deviation in \(M_{\text{BH}}^{\text{F}}(\text{H} \alpha, L_{\text{2000}}) \) (\(\sigma_{\text{FWHM}} \)), affect the resulting \(M_{\text{BH}}^{\text{AD}} \). As shown in Figure E6, this is not the case. In this Figure, we compare the resulting \(M_{\text{BH}}^{\text{AD}} \) for a large range of initial guesses in \(f \) and \(\sigma_{\text{FWHM}} \). In all cases we recover the anti-correlation between the means. In the analysis presented in this letter we use the results obtained in paper III. To completely avoid complications in SED fittings resulting from unknown opacity and other effects in the disc at-

In Table I we present the correlation coefficients of the \(f_{\text{AD}}-\text{FWHM}_{\text{obs}} \) and \(f_{\text{AD}}-R_{\text{BLR}}\text{FWHM}_{\text{obs}}/G \) correlations for all the broad emission lines considered here. In all cases we find that the correlations associated with the FWHM are stronger than those associated with \(R_{\text{BLR}}\text{FWHM}_{\text{obs}}/G \). This suggests that the FWHM are not inherited from the definition of \(f_{\text{AD}} \). In order to prove this we conducted the Williams’s Test[22]. Given a sample size, this test computes the statistical significance of the difference between the correlation coefficients of two correlations that have one variable in common. In this case the two dependent correlations are \(f_{\text{AD}}-\text{FWHM}_{\text{obs}} \) and \(f_{\text{AD}}-R_{\text{BLR}}\text{FWHM}_{\text{obs}}/G \), while the common variable is \(f_{\text{AD}} \). Our results indicate very different correlation coefficients for the \(f_{\text{AD}}-\text{FWHM}_{\text{obs}} \) and the \(f_{\text{AD}}-R_{\text{BLR}}\text{FWHM}_{\text{obs}}/G \) correlations (see Table I), with a 5-\(\sigma \) significance for the H \(\alpha \) line, 4-\(\sigma \) significance for the H \(\beta \) and the Mg ii \(\lambda 2798 \) lines and a 3-\(\sigma \) significance for the C IV \(\lambda 1549 \) line. This confirms that the correlations associated with the FWHM are indeed much stronger than those that by definition are associated with \(R_{\text{BLR}}\text{FWHM}_{\text{obs}}/G \).

Single epoch \(M_{\text{BH}} \) can also be estimated using \(\sigma_{\text{FWHM}} \) instead of \(\text{FWHM}_{\text{obs}} \). Obviously, in that case the virial factor has a different numerical value since FWHM can be significantly different from \(\sigma_{\text{FWHM}} \) (e.g., for a Gaussian line profile \(\text{FWHM}_{\text{obs}} = 2.35 \sigma_{\text{FWHM}} \)). We tested whether the associated \(f_{\text{AD}} (\sigma_{\text{FWHM}}) \equiv M_{\text{BH}}^{\text{AD}} / (G^{-1} R_{\text{BLR}} \sigma_{\text{FWHM}}^{2}) \) is also anti-correlated with \(\sigma_{\text{FWHM}} \) and confirmed statistically significant anti-correlations using all four emission lines. However, in this case there is no statistical difference between the \(f_{\text{AD}}-\sigma_{\text{FWHM}} \) and \(f_{\text{AD}}-R_{\text{BLR}}\text{FWHM}_{\text{obs}}/G \) correlations. This is most likely due to the larger uncertainties associated with the measurement of \(\sigma_{\text{FWHM}} \) in our sample.

To determine how \(M_{\text{BH}}^{\text{AD}} \) depends on the FWHM of the lines and the associated \(L_{\lambda} \) used in single epoch mass determinations methods, we used the following expression:

\[
\log M_{\text{BH}}^{\text{AD}}(\text{FWHM}, L_{\lambda}) \equiv \alpha_{\text{AD}} \log (L_{\lambda}) + E \log \text{FWHM} (\text{line}) + F
\]

and implemented an ordinary bi-variate least square linear regression to determine the coefficients in the equation. We summarize the results in Table E1 where we also show \(\alpha_{\text{line}} \), which represents the slope of the power-law coefficient of \(L_{\lambda} \) in Equation[3]. We also list the scatter between \(M_{\text{BH}}^{\text{AD}} \) and \(M_{\text{SE}}^{\text{F}} \) (FWHM, \(L_{\lambda} \)) as well as the scatter between \(M_{\text{BH}}^{\text{AD}} \) and the corrected \(M_{\text{BH}}^{\text{F}} \) (FWHM, \(L_{\lambda} \)) after the dependency of \(f_{\text{AD}} \) on FWHM is taken into account. In the case of the Balmer lines, the scatter is reduced by about a factor 2. Thus, correcting for the correlation between \(\log f_{\text{AD}} \) and the FWHM of the Balmer lines provides an important improvement in our \(M_{\text{BH}} \) estimations.

The results of the linear regressions presented in Table E1 highlight two important findings. First, \(\alpha_{\text{AD}} \) and \(\alpha_{\text{line}} \) are basically indistinguishable from each other. This indicates that \(\alpha_{\text{AD}} \) is mostly independent of \(\alpha_{\text{FWHM}} \). As a consequence, the derived disc inclinations are very uncertain and are not good indicators of the real inclinations of the disc and consequently of the flat BLRs. Therefore, these values are not used as proxies for the inclination of the BLR and the determination of the virial factor. Finally, our results also show that the derived \(M_{\text{BH}} \) is mostly independent of \(\alpha_{\text{FWHM}} \). This is confirmed in Figure E7 that shows the posterior bi-dimensional probability distribution of \(\alpha_{\text{FWHM}} \) versus \(M_{\text{BH}} \) in 36 out of 37 objects of our sample. It can be observed that although the spin is not tightly constrained, the black hole mass is restricted to a narrow range. This indicates that our AD mass determinations are not degenerated with \(\alpha_{\text{FWHM}} \). The reason for this is that the spin affects mostly the ionizing UV continuum emission while the mass depends mainly on the optical part of the AD spectrum.
4 Inclination as the source of the f–FWHM$_{\text{obs}}$ correlation

In this section we present different tests that we carried out to determine whether inclination is driving the correlation between f and FWHM$_{\text{obs}}$.

Hereafter when referring to log f_{AD}, M_{BH}^obs (FWHM, L_α) and FWHM$_{\text{obs}}$ we mean log f_{AD} (H_α), M_{BH}^obs (FWHM$_{\text{obs}}$ (H_β)) and the observed value of FWHM$_{\text{obs}}$(H_α), unless otherwise specified. The reason to select the H_α line instead of the H_β line for the following analysis is the better S/N and hence more accurate measurements of FWHM$_{\text{obs}}$(H_α) in our sample. As shown in earlier works, FWHM$_{\text{obs}}$ in both Balmer lines are the same within uncertainties.

The anti-correlation between log f_{AD} and FWHM$_{\text{obs}}$ could be explained by the inclination of the axis of symmetry of a disc-like BLR with respect to the line-of-sight (LOS). If we consider the median LOS inclination, i_{median}, at which Type-1 AGN are typically observed, we can also define a median virial factor f_{median} at which the SE M_{BH} calibration represents an accurate black hole mass for objects observed at i_{median}. Objects with narrower than usual broad emission lines are more likely observed at $i < i_{\text{median}}$ (face-on orientations) and objects with broader than usual emission are more likely observed at $i > i_{\text{median}}$ (edge-on orientations). This will produce too large (too small) SE mass estimates for objects with very broad (very narrow) emission lines, and would translate into a virial factor that anti-correlates with the line FWHMs.

The inclination hypothesis is also consistent with recent work that found that $f_{\text{obs}} \equiv M_{\text{BH}}^\text{obs} / (G^{-1} R_{\text{BLR}} \sigma_{\text{FWHM}} (H_\beta)^3)$ is anti-correlated with FWHM$_{\text{obs}}$(Hβ) [22, 23]. Here, M_{BH}^obs is the black hole mass obtained from the correlation between M_{BH} and the stellar dispersion of the spheroidal component in galaxies. Analogously, an earlier work compared the virial black hole masses with black hole mass estimations obtained from the relation between black hole mass and the luminosity of the host-galaxy spheroidal component [24]. Their results also show a clear anti-correlation between f and the FWHM$_{\text{obs}}$ of the broad emission lines that is interpreted by the authors as a BLR line-of-sight inclination bias.

There is further evidence that favours the hypothesis that LOS inclination is biasing SE M_{BH} estimations. As already pointed out, previous works found that the FWHM$_{\text{obs}}$(Hβ) is significantly anti-correlated with radio core dominance in radio-loud quasars [25, 26]. This is consistent with Hβ emitting gas in a flattened configuration. In this scenario core-dominated objects (with their radio emission being Doppler-boosted along the LOS) correspond to face-on discs that typically show narrow Hβ profiles, while lobe-dominated objects (lacking Doppler-boosting) correspond to edge-on discs, that typically show broad Hβ profiles. In this scenario, the BLR is flat and the general plane of motion is similar to the plane of rotation of the central disc. In addition to this, there is accumulated evidence in the literature favouring a disc-like geometry for the BLR [27, 28, 29].

For a disc-like BLR with a thickness ratio H/R and inclination i with respect to the line-of-sight we will have FWHM$_{\text{obs}} = \text{FWHM}_{\text{int}} \times \sqrt{\sin^2(i) + (H/R)^2}$. Thus, for an ensemble of randomly oriented BLRs the final distribution of FWHM$_{\text{int}}$ will depend on (1) the intrinsic FWHM$_{\text{int}}$ distribution and (2) the range of possible random orientations at which the BLR can be observed, both of which are, a priori, not known.

To check the inclination hypothesis we first need to determine the distribution of FWHM$_{\text{int}}$ that is consistent with the probability density distribution (PDF) of the observed FWHM$_{\text{obs}}$. We then need to test whether it is possible to recover the anti-correlation of f with FWHM$_{\text{obs}}$ and the linear dependence of M_{BH} on FWHM$_{\text{obs}}$ as derived in this letter. In other words, we need to test whether a population of randomly generated inclinations and FWHM$_{\text{int}}$ that satisfy the PDF of FWHM$_{\text{obs}}$ can also account for:

$$f \propto \text{FWHM}_{\text{obs}}^{-1}$$

and at the same time:

$$\text{FWHM}_{\text{int}} \propto \text{FWHM}_{\text{obs}}^{1/2}$$

It is important to note that both predictions should be satisfied to guarantee inclination as the driving mechanism of the observed correlation between f and FWHM$_{\text{obs}}$. The reason for this is that each of these expressions tests the dependency between FWHM$_{\text{obs}}$ and the two independent distributions determined to reproduce FWHM$_{\text{obs}}$: $\sin(i)$ and FWHM$_{\text{int}}$. While Equation (5) tests the dependency between FWHM$_{\text{obs}}$ and $\sin^{-2}(i)$ (which is proportional to f), Equation (6) tests the dependency between FWHM$_{\text{obs}}$ and FWHM$_{\text{int}}$.

We first assumed a thin BLR by taking $H/R = 0$. We computed the PDF as the product of two independent random variables [30] and applied it to the special case where FWHM$_{\text{obs}} = \text{FWHM}_{\text{int}} \times \sin (i^2)$. For the FWHM$_{\text{int}}$ distribution, we assumed an underlying truncated normal distribution with certain mean (FWHM$_{\text{mean}}$) and dispersion (FWHM$_{\text{std}}$). Our normal distribution was truncated to allow FWHM$_{\text{int}}$ to vary between 1000 and 30000 km s$^{-1}$. We also assumed that our sample is limited to objects with line-of-sight inclination angles between $i_{\text{min}} = 0^\circ$ and $i_{\text{max}} = 70^\circ$, with i_{max} determined by the torus opening angle. For an optimal exploration of the parameter space we ran a Monte Carlo Markov Chain simulation using the python code EMCEE [31]. For the simulation we used 20 independent walkers and 5000 iterations that mapped a total of 10^9 models.

In the left panel of Figure 3[17] we compare the observed cumulative PDF (FWHM$_{\text{obs}}$) and its uncertainty (magenta thin line and shaded region, respectively) with the predicted cumulative PDF from the model with the highest posterior probability (black line). The parameters of this model are: $i_{\text{min}} = 19^\circ$, $i_{\text{max}} = 45^\circ$, FWHM$_{\text{mean}} = 8500$, FWHM$_{\text{std}} = 2150$, FWHM$_{\text{min}} = 4200$ and FWHM$_{\text{max}} = 30000$. Our model successfully reproduces the observed cumulative PDF. However, a simple normal distribution (red dashed line) is also consistent with the data and cannot be rejected. We also determined the best fit model for a distribution with FWHM$_{\text{std}} = 0$, i.e., effectively a single velocity. This model (dashed blue-line) is able to reproduce the distribution at low values of FWHM$_{\text{obs}}$, but it is unable to account for the distribution at large velocity widths.

First, we tested whether our thin BLR model is successful in reproducing the f–FWHM$_{\text{obs}}$ distribution seen in the data (i.e., Equation 5). In the left panel of Figure 3[17] we show the predicted bi-dimensional probability density distribution of the viral factor and the observed FWHM$_{\text{obs}}$(H_α) as predicted by the thin BLR model. The Figure includes contours showing 25%, 50%, 75% and 99% confidence limits contours (black-thin lines) centred around the maximum probability point. We also superposed the data from in Figure 2 (open-blue circles). The magenta line represents the derived relation $f = (\text{FWHM}_{\text{obs}} (H_\alpha) / 4000 \text{ km s}^{-1})$. The thick yellow line is the median of the f–FWHM$_{\text{obs}}$ distributions derived using a quantile non-parametric spline regression [32]. Analogously, the blue-dashed lines represent the 25%, 50% and 75% quantiles of the observational distribution. To obtained these quantiles, for each observed data we randomly generated 1000 points following the error distributions in f_{AD} and FWHM$_{\text{obs}}$(H_α) and then applied the COBS method to characterize the resulting distribution. We can notice that the median (50%-quantile) of the theoretical and observational distributions are in very good agreement. The scattered open-blue circles also show excellent agreement with the the bi-dimensional probability density function from the best model. Explicitly, we find that from our 37 objects, 21% fall inside
the central 25% confidence level region, 51% fall inside the 50% confidence level region, 74% fall inside the 75% confidence level region, and 85% fall inside the 99% confidence level region.

Next, we tested for the same thin BLR model whether it is possible to recover the predicted relation between FWHM_{obs} and FWHM_{int} (i.e., Equation 6). In the left panel of Figure 15 we show the predicted bi-dimensional probability distribution of FWHM_{int} versus FWHM_{obs} using the model with the highest posterior probability. The magenta solid line and magenta shaded region represent the expected FWHM_{int} \propto FWHM_{obs}^{1/2} relation and 1-σ uncertainties, respectively. The solid-yellow line and yellow shaded region represent the median FWHM_{int}–FWHM_{obs} and errors from the simulated bi-dimensional distribution. A good agreement is found between the simulations and the predicted relations. This implies that we are also able to recover the relation FWHM_{int} \propto FWHM_{obs}^{1/2} for the thin BLR model.

In order to test the effects introduced by a thick BLR (0 < H/R < 1), we assumed a single H/R for all objects and followed the same steps outlined for the case of a thin BLR. We found that a wide range in BLR thickness ratios (H/R < 0.5) is able to reproduce the cumulative FWHM_{obs} PDF. However, objects with large thickness ratios clearly fail to reproduce the bi-dimensional distributions of f–FWHM_{obs} and FWHM_{int}–FWHM_{obs}, as can be seen in the right panels of Figures 16 and 17. We generally find that only relatively thin BLRs, i.e., those with H/R < 0.1, are able to reproduce both bi-dimensional distributions and the cumulative FWHM_{obs}PDF. In particular, for a BLR with H/R → 0, we find that the derived f_{AD} values constrain the range of inclinations at which the BLR is observed in our sample to 15° < i < 50°. This upper limit is consistent with typical expectations of a central torus hiding the BLR. We also find that the median virial factor in our sample, f = 0.95, corresponds to a median orientation of median_{median} = 31°.

In summary, our results show that a population of randomly oriented, thin BLRs can successfully reproduce our observations. We can thus conclude that inclination is very likely the main reason for the observed f–FWHM_{obs} correlations.

5 Radiation pressure effects

We finally considered the possibility that non-virial BLR motions or winds induced by radiation pressure force might cause the observed f_{AD}–FWHM_{obs} dependency. We first tested a simple model that assumes that the BLR is composed of homogenous clouds that are optically thick to ionizing radiation but optically thin to electron scattering. The model predicts a dependency between the virial factor and the median

\[\lambda_{Edd} \]

of the form: \(f = f_1 [1 + K \lambda_{Edd}] \), where \(f_1 \) is the true virial factor and \(K \) depends on the fraction of ionizing radiation and the column density of the gas clouds that is assumed constant along the entire BLR. From this expression we can see that \(M_{BH}^{Med} \) underestimates the actual \(M_{BH} \) as \(\lambda_{Edd} \) increases. Equivalently, \(f_{AD} \) should increase as \(\lambda_{Edd} \) increases. However, we find no clear correlation between \(\lambda_{Edd} \) and \(f_{AD} \) in our data (\(r_a = 0.2, P = 0.23 \)), and therefore radiation pressure effects, as prescribed by this model, are not present in our objects. Note however that our sample is restricted to a relatively small range of \(\lambda_{Edd} \) (from \(\lambda_{Edd} = 0.01 \) to \(\lambda_{Edd} = 0.3 \), corresponding to a variation by a factor of 30).

A more recent model considers the effects of radiation pressure in a more realistic BLR composed of pressure confined clouds, hence allowing the gas density of individual clouds to decrease with distance to the central black hole. In this model the system is still bound by gravity and FWHM_{obs} becomes smaller with increasing \(\lambda_{Edd} \). The reason for this trend is that as \(\lambda_{Edd} \) increases, the clouds spend more time at large distances from the black hole, therefore increasing the median \(R_{HBLR} \) and decreasing the median BLR Keplerian velocities. To account for this effect, the authors of this model proposed a modified expression for \(R_{BLR} \):

\[R_{BLR} = R_{BLR}^0 [a_1 L_{\lambda}^{alpha} + a_2 (L_{\lambda}/M_{BH})] \]

(7)

where \(a_1 \) and \(a_2 \) are constants. The first term accounts for the observational relation described in Equation 3 and the second term represents a radiation pressure perturbation quantified by \(L_{\lambda}/M_{BH} \). When replaced into the virial mass equation (Equation 1) this relation leads to a simple quadratic equation on \(M_{BH} \) with solution:

\[M_{BH}^{rad} = \frac{a_{10}}{2} L_{\lambda}^{alpha} FWHM_{obs}^2 \left[1 + \sqrt{1 + \frac{4 a_{20} L_{\lambda}^{alpha}/M_{BH}}{a_{10}^2 FWHM_{obs}^2}} \right] \]

(8)

or equivalently:

\[f_{rad} \propto \left[1 + \sqrt{1 + \frac{4 a_{20} L_{\lambda}^{alpha}/M_{BH}}{a_{10}^2 FWHM_{obs}^2}} \right] \]

(9)

where \(M_{BH}^{rad} \) and \(f_{ad} \) are the black hole mass and virial factor for a radiation pressure dominated BLR. \(a_{10} = a_1 f_{BLR}^0 G^{-1}, a_{20} = a_2 f_{BLR}^0 G^{-1}, \) and \(f_{BLR} \) is a normalization constant. In the case when \(4 a_{20} L_{\lambda}^{alpha}/M_{BH} \) \(\gg 1 \) this would result in a close agreement with the inverse proportionality between \(f_{AD} \) and FWHM_{obs} found in our data. Given that \(\alpha_{line} \) is found to be \(\sim 0.6 \) for all lines (Table 1), this would translate into an explicit dependency of \(f \) on \(L_{\lambda} \). We would then expect that the scatter in the \(f_{AD}–FWHM_{obs} \) relation should be driven by \(L_{\lambda} \). In Figure 2 larger (smaller) values of \(L_{5100} \) are represented by redder (bluer) colours. We can see that there is no clear suggestion that the scatter in driven by \(L_{5100} \) in any of the lines. Note however that the relatively narrow range in \(L_{5100} \) covered by our sample (from \(L_{5100} = 2.0 \times 10^{44} \) to \(L_{5100} = 1.6 \times 10^{46} \) erg/s, corresponding to a factor of 80), together with the uncertainties in our estimations of \(f \), do not allow us to rule out this mechanism.
of the broad line. This method takes advantage of the scattering in the dusty structure of the light coming from the BLR. The radial velocity gradient in the BLR induces a gradient in the position angle of polarization across the broad emission line profiles. The advantage of this method is that it provides M_{BH} estimations that are independent of the BLR inclination. Therefore, the application of this method will eventually allow us to differentiate between the effects of inclination and radiation pressure.