Supplemental information

Ultrasensitive detection of exosomal miRNA
with PMO-graphene quantum dots-functionalized
field-effect transistor biosensor

Kun Li, Jiyuan Tu, Yulin Zhang, Dan Jin, Tingxian Li, Jiahao Li, Wei Ni, Meng-Meng Xiao, Zhi-Yong Zhang, and Guo-Jun Zhang
Table S1. Sequences and involved oligonucleotide probes. Related to STAR Methods.

Probe name	Sequences (5’- 3’)
PMO probe	NH₂-TCAACATCAGTCTGATAAGCTA
PMO-Cy5 probe	NH₂-TCAACATCAGTCTGATAAGCTA-Cy5
miRNA21	UAGCUUAUCAUGACUGAUUGUUGA
OM-miRNA21	UAGCUUAUCAUGACUGAUUGUUGA
TM-miRNA21	UUGCUCUAUCAUGACUGAUCAUUGA
miRNA10b	UACCCUGUAGAACCAGAAUUGUG
Table S2. Performance comparison of different sensing methods for detection of miRNA. Related to Figure 4.

Method	Detection Range	LOD	Reference
AuNPs decorated Graphene FET sensor	1 fM to 100 pM	0.37 fM	Li et al., 2021
Flexible graphene FET sensor	10 fM to 100 pM	10 fM	Gao et al., 2020
PASE modified Graphene nanosheet FET sensor	10 fM to 10 nM	10 fM	Kim et al., 2021
Graphene Oxide/Graphene Layered Structure FET sensor	10 fM to 100 pM	10 fM	Huang et al., 2021
CRISPR/Cas12a mediated electrochemiluminescence sensor	1 fM to 10 nM	0.331 fM	Wang et al., 2021
Microgels Fluorescence sensor	10 fM to 10 nM	10 fM	Caputo et al., 2019
liquid-phase SERS biosensor	100 fM to 5 nM	1.45 fM	Wu et al., 2021
Surface acoustic wave sensor	0.5 nM to 5 nM	0.19 nM	Cogal et al., 2021
GQDs-PMO functionalized Graphene FET sensor	**100 aM to 1 nM**	**0.085 fM**	This work
Figure S1. Raman spectra of RGO and RGO-PLL. Related to Figure 3.

Figure S2. AFM images before and after functionalization of GQDs-PMO. (a) The PLL-RGO surface. (b) The GQDs-PMO modified surface. Scale bar, 200 nm. Related to Figure 3.
Figure S3. Optimization of experimental parameters. (a) The ratio of GQDs to PMO (PMO concentration from 0.5 to 2.5 μM). (b) The concentration of the PLL film dropped on the RGO-FET chip surface. (c) Hybridization time for GPPR-FET and target miR21. (d) Hybridization temperature between target miR21 and GPPR-FET. Error bars represent the standard errors (n = 3). Related to Figure 4.
Figure S4. Response of the PMO-functionalized G-FET sensor to varying concentrations of miR21 (from 1 fM to 1 nM). Error bars represent the standard errors (n = 3). Related to Figure 4.

Figure S5. Stability of GPPR-FET sensor. Error bars represent the standard errors (n = 3). Related to Figure 4.
Figure S6. The 7 days stability of GPPR-FET sensor. Error bars represent the standard errors (n = 3). Related to Figure 4.