TECHNICAL NOTE

Arteria: An automation system for a sequencing core facility

Johan Dahlberg1,*, Johan Hermansson1, Steinar Sturlaugsson1, Mariya Lysenkova1, Patrik Smeds2, Claes Ladenvall1, Roman Valls Guimera3, Florian Reisinger3, Oliver Hofmann3 and Pontus Larsson1

1Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC 751 44, Uppsala, Sweden; 2Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Rudbecklaboratoriet, 751 84, Uppsala, Sweden and 3University of Melbourne Center for Cancer Research, University of Melbourne, Victorian Comprehensive Cancer Centre, Level 10, UMCCR, 305 Grattan St, Melbourne VIC 3000, Australia

*Correspondence address. Johan Dahlberg, Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC 751 44, Uppsala, Sweden. E-mail: johan.dahlberg@medsci.uu.se http://orcid.org/0000-0001-6962-1460

Abstract

Background: In recent years, nucleotide sequencing has become increasingly instrumental in both research and clinical settings. This has led to an explosive growth in sequencing data produced worldwide. As the amount of data increases, so does the need for automated solutions for data processing and analysis. The concept of workflows has gained favour in the bioinformatics community, but there is little in the scientific literature describing end-to-end automation systems. Arteria is an automation system that aims at providing a solution to the data-related operational challenges that face sequencing core facilities.

Findings: Arteria is built on existing open source technologies, with a modular design allowing for a community-driven effort to create plug-and-play micro-services. In this article we describe the system, elaborate on the underlying conceptual framework, and present an example implementation. Arteria can be reduced to 3 conceptual levels: orchestration (using an event-based model of automation), process (the steps involved in processing sequencing data, modelled as workflows), and execution (using a series of RESTful micro-services). This creates a system that is both flexible and scalable. Arteria-based systems have been successfully deployed at 3 sequencing core facilities. The Arteria Project code, written largely in Python, is available as open source software, and more information can be found at https://arteria-project.github.io/.

Conclusions: We describe the Arteria system and the underlying conceptual framework, demonstrating how this model can be used to automate data handling and analysis in the context of a sequencing core facility.

Keywords: automation; sequencing; orchestration; workflows

Received: 21 May 2019; Revised: 19 September 2019; Accepted: 22 October 2019

© The Author(s) 2019. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Findings

Challenges in, and approaches to, processing sequencing data

Nucleotide sequencing is the practice of determining the order of bases of the nucleic acid sequences that form the foundation of all known forms of life. It has been hugely successful as a research tool, used to understand basic biology [1–3], and is also applied as a tool for precision medicine [4]. Major technological advances during the past decade have enabled high-throughput approaches for massively parallel sequencing (MPS) [5]. The amount of data generated globally from MPS has boomed in recent years and has been projected to reach a yearly production of 10^{21} bp per year by 2025, demanding 2–40 exabytes (10^{18}) per year of storage [6]. This massive expansion places new demands on how data are analysed, stored, and distributed.

Much of this nucleotide sequencing is carried out at sequencing core facilities, which perform sequencing as a service. The kinds of services provided vary widely, but most facilities provide at least some processing of raw sequencing data, typically conversion to a standard FASTQ format at a minimum [7]. More advanced bioinformatic analysis may involve passing the data through a pipeline of software processes. Such processes often require manual initiation or intervention, creating a significant overhead of labor and increased turnaround times.

Automation of both laboratory and computational procedures is crucial in order for a sequencing facility to scale the number of samples processed. Furthermore, automated processes reduce the risk of human errors, which contributes to higher quality data.

However, there are challenges to automating these processes. Despite the high standardization of laboratory protocols, a number of factors create a combinatorial situation that makes every laboratory unique, including small variation in procedures, infrastructure, and surrounding systems. This requires the development of bespoke solutions to manage specific situations. One example of these custom solutions is laboratory information management systems (LIMS), which are used to track the laboratory procedures that a sample is subjected to, and to perform surrounding utility tasks such as generating instruction files for pipetting robots. LIMS are often based on extensible platforms in which specific laboratory protocols can be implemented.

The potential complexity in the laboratory will often extend into the computational environment. The specific nature of the infrastructure and services offered places wide-ranging demands on the computational systems developed to support management and high-throughput analysis of sequencing data. This has led most sequencing core facilities to develop their own custom solutions to this problem, and these are often highly coupled to the infrastructure and process of that particular core facility [8].

These systems need to be designed not only to support the analysis of data but to address additional aspects associated with operating a sequencing facility. Examples include automatically starting data processing when a sequencing run has finished, archiving of data to remote storage, and selective data removal. These operational aspects have not been thoroughly investigated in the scientific literature but are essential when taking a bird’s-eye view of the complete process of refining raw MPS data to scientific results on a high-throughput scale. Tackling these issues involves examination of how higher level orchestration, integration, and management of workflows can be done in an efficient yet flexible manner, while providing a clear enough understanding of the system so that changes can be implemented with minimal mental overhead and risk of breaking existing functionality.

Arteria fills a niche by providing a systematic way of approaching the operational aspects of data management and analysis of MPS data.

In recent years there has been an increased interest in workflow systems, both in academia [8–11] and in industry [12, 13]. Typically, these systems model a workflow as a directed acyclic graph of dependencies between computational tasks. The core concepts that define workflows, as used here, are defined in Table 1.

These workflows are often designed to be executed on a per-project or per-sample level, with parameters being provided manually by the operator. Furthermore, they typically focus on tying together command line programs that have files as inputs and outputs. This model is well suited for processing large amounts of data, where all samples in a project can be analysed the same way. However, for institutions that provide sequencing as a service to multiple users or projects, this type of system does not scale well, due to the need for manual intervention at different stages of the process. Additionally, many sequencing core facilities will have workflows where file input/output is not the most natural solution. For example, updating a database or emailing reports will not generate files by default. Thus there is a need for systems to address these challenges, which can be thought of as operational rather than analytical.

One example of a system addressing the operational challenges outlined above in the context of a sequencing core facility is described by Cuccuru et al. [14]. They describe a system with a central automator that handles orchestration of the processes in an event-based manner, using the Galaxy platform [15] as a separate workflow manager. The Galaxy platform provides a web-based interface, making bioinformatic analysis accessible to users who lack the training to use command line tools. The system’s automator is based on daemons monitoring a RabbitMQ [16] based event queue. While this system shares ideas with the Arteria system, it does not have the same focus on decoupling the system from the implementation at the facility in question. Furthermore, the Arteria system benefits from building on top of existing industry standards for event-based automation systems rather than building these from scratch.

Herein, we describe the automation system Arteria, which is available as open source software at GitHub [17]. Arteria uses the open source automation platform StackStorm [18] for event-based orchestration, the Mistral [19] workflow engine for process modelling, and Python micro-services for action execution. Arteria has been successfully implemented at 3 separate sequencing core facilities to date: the SNP&SEQ Technology Platform at Science For Life Laboratory, Clinical Genomics Uppsala at Science For Life Laboratory, and the University of Melbourne Center for Cancer Research.

System overview

The Arteria system is built with 2 existing open source technologies at its core: the StackStorm automation platform [18] and the Mistral workflow service [19]. By adopting existing open source solutions and extending them for our domain, we are able to leverage the power of a larger open source community. This has allowed us to focus on our specific use case: automation of sequencing data processing.

The Arteria system can be divided into 3 conceptual levels, a model that has been adopted from StackStorm: the orchestration level, the process level, and the execution level (Fig. 1). For
Table 1: Definitions

Term	Description
Action	A computational unit of work, e.g., processing a file or inserting data into a database. This is sometimes referred to as a task.
Process	A set of steps that have to be finished to achieve a particular goal, e.g., delivering data to a user. A process can include automated and manual steps.
Workflow	A workflow models a process, as a number of "actions" following each other. This can be described by a directed acyclic graph.

Event-based orchestration

At the orchestration level, Arteria uses StackStorm to coordinate tasks. A core concept of StackStorm is its event-based model of automation (see Fig. 2). It uses sensors to detect events from the environment. A typical example is a sequencing instrument finishing a run. The event parameters are then passed through a rule layer that decides which, if any, action or workflow should be started. If an action or workflow should be started, sufficient parameters need to be passed on by the rule layer. This simple yet powerful abstraction makes the Arteria system and its behaviour simple to understand. In addition to triggering actions in response to sensor events, an operator can manually initiate an action via a command line or web interface. When manually initiating an action, the operator must provide the parameters necessary to start the action, as well as any other optional parameters to modify the action’s default behaviour.

Furthermore, StackStorm provides per-action monitoring capabilities. Each action taken by the Arteria system is assigned a unique ID, allowing operators to follow the progress of processes in the system. An additional advantage is the ability to create audit trails, which are both useful internally and required to accredit systems; e.g., it is required by the European quality standard ISO/IEC 17025 [20] under which the SNP&SEQ Technology Platform operates. Finally, providing a centralized interface to the underlying processes means that operators require less knowledge of the underlying components and direct access to fewer systems, which is an advantage from a security perspective.

Modelling processes as workflows

At the process level, the process of a particular use case is modelled using the Mistral workflow language. Mistral uses a declarative yaml syntax to define a workflow, which allows for the definition of complicated dependency structures. It supports the use of conditionals, forking (defining multiple tasks that must be run after the completion of a given task), and joining (the synchronization of multiple parallel workflow branches and aggregation of their data). It will execute actions that do not have dependencies on each other concurrently. This simple and powerful syntax has the additional advantage of serving as a human-readable documentation of the modelled process. Modelling a process as a workflow can mean formalizing the documentation of an existing process into a Mistral workflow, thus reducing the amount of manual work required as well as reducing the risk of human errors.

Micro-services provide a flexible execution model

Finally, at the execution level, any action that needs to be carried out by the system is performed. Arteria favours the use of single-purpose micro-service executors, and these provide the actual functionality and logic for performing the actions. These micro-
services are invoked from the process level through an HTTP API, making the communication simple and allowing for easy integration with other services. An example of such a micro-service is the one provided by Arteria to run the preprocessing program Illumina bcl2fastq [21], which processes the raw data produced by an Illumina sequencing instrument and converts it to the industry standard FASTQ format. However, a micro-service is not required; the Arteria approach is flexible enough that it supports running a shell command or invoking another service, e.g., a LIMS.

Using micro-services as the primary execution mode increases the flexibility of the Arteria system as the implementation details of how something is run are decoupled from when it is run. Furthermore, such micro-services can be reused across systems, or even centers, creating an avenue for reuse and collaboration, which sets the Arteria approach apart from other sequencing core facility systems that are typically tightly coupled to the process and infrastructure of the sequencing core facility that developed them.

Finally, decoupling the execution layer has allowed us to build simple interfaces for existing software, thus significantly reducing the burden of having to re-implement components that have been used reliably for a long time in operation.

Implementation

Arteria is made up of publicly available software packages, written largely in Python, that can be grouped into 2 components. The first component is arteria-packs, a plugin for the orchestration engine Stackstorm, which acts as a starting template for individual core facilities to build their own implementations.

The second component is a series of single-responsibility REST micro-services, made up of both general-interest packages that can be reused across sequencing core facilities and tailor-made services that cater to a single facility’s specific needs. These provide specific functionality, such as running the Illumina bcl2fastq program, checking whether a runfolder is ready to be analysed, or removing data once certain criteria are met. These micro-services, and others, are available from GitHub [17].

The package arteria-packs is available for download at GitHub [22] (the accompanying README provides detailed installation instructions). The purpose of this package is two-fold: first, to act as a demonstration illustrating a minimal but complete Arteria system; second, to serve as a template for sequencing core facilities to build upon in developing their own Arteria implementations.

During the set-up process for arteria-packs, Docker is used to create an environment that comprises Stackstorm, its dependencies, and 3 general-interest Arteria micro-services: arteria-runfolder, arteria-bcl2fastq, and checkQC.

The repository provides the sample units detailed in Table 2. The workflow, defined in workflows/bclfastq_and_checkqc.yaml, outlines the following actions to detect and process a runfolder:

- get_runfolder_name
- mark_as_started
- start_bcl2fastq
- poll_bcl2fastq
- checkqc
- mark_as_done
- mark_as_error

In arteria-packs, the example workflow operates as follows. The runfolder_sensor routine polls the arteria-runfolder service to retrieve information about unprocessed runfolders. When the service returns the runfolder_ready event, the Stackstorm sensor rule when_runfolder_is_ready_start_bcl2fastq is triggered, initiating arteria-bcl2fastq, which demultiplexes data and converts the binary base call (BCL) format to FASTQ. The Stackstorm instance will poll arteria-bcl2fastq until it receives a “done” status. Following this, a set of quality criteria are checked against the data using checkqc. The arteria-runfolder service is then invoked to mark the runfolder with the state of “done” or “error.”

To test the workflow, a runfolder containing Illumina-generated sequencing data may be placed in the “docker-mountpoints/monitored-folder” directory (see sample runfolder [23]). A command can then be run to initiate the workflow manually. Alternatively, the rule when_runfolder_is_ready_start_bcl2fastq can be enabled, allowing automatic processing of any ready runfolder. Refer to the repository README for details.

The arteria-packs repository serves as a starting point for a sequencing core facility to implement its own actions, workflows, sensors, and rules.

Deployment scenario and usage statistics

SNP&SEQ Technology Platform

The SNP&SEQ Technology Platform sequencing core facility at Science for Life Laboratory provides sequencing and genotyping as a service to the Swedish research community. Projects from a wide variety of fields are accepted, ranging from clinical research projects to environmental sciences. In addition, the facility provides a large number of assays; some examples are DNA, RNA, and bisulfite-converted library preparations and sequencing, as well as the sequencing of libraries prepared by users.

At the SNP&SEQ Technology Platform, the Arteria system is deployed in a distributed environment (see Fig. 3) and orchestrates actions across a local cluster of 10 nodes used for storage and preliminary analysis with 208 cores and 120 TB of storage capacity, as well as an HPC cluster at the Uppsala Multi-disciplinary Center for Advanced Computational Science (UPPMAX) HPC center with 4,000 cores and 2.1 PB storage. This system is fully capable of supporting the fleet of 8 Illumina sequencers (2 NovaSeq, 3 HiSeqX, 1 HiSeq 2500, 1 MiSeq, and
Table 2: Descriptions of concepts in arteria-packs sample implementation

Concept	Definition	arteria-packs implementation
Actions	Encapsulate system tasks	Micro-services arteria-runfolder, arteria-bcl2fastq, and checkQC
Workflows	Tie actions together	Mistral workflow defined in workflow.bcl2fastq_and_checkqc.yaml
Sensors	Pick up events from the environment	RunfolderSensor defined in runfolder_sensor.yaml, which detects runfolders ready for processing
Rules	Parse events from sensors and determine whether an action or a workflow should be initiated	Defined in when_runfolder_is_ready_start_bcl2fastq.yaml; fires bcl2fastq workflow when a runfolder is ready

Figure 3: Schematic view of a system deployment scenario, showing how data are written to the local storage and compute nodes from the sequencing machines, and how the system uses information and resources from multiple sources to coordinate the process. The operator can then monitor and control the processes from the single interface provided at the master automation node.

Adopting Arteria at the SNP&SEQ Technology platform has reduced the amount of manual work required to process sequencing data. It has also provided a convenient interface through which most of our internal processes can now be monitored. Furthermore, the detailed process and error logs provided by Arteria are used to build reporting dashboards, allowing staff to see which processes are bottlenecks and to set concrete, quantitative automation goals.

Since being deployed at the SNP&SEQ Technology Platform, the Arteria system has been used to process >50,000 samples and 715 projects, which corresponds to ~1,213 terabases of sequencing data.

Clinical Genomics, Uppsala
At the Clinical Genomics Uppsala (Science for Life Laboratory) MPS analyses are developed and implemented for clinical use with the aim to improve diagnostics and allow for targeted treatments. The turnaround time for certain samples must be short, preferably 1–2 hours from when the facility obtains raw data to when processed data are sent to clinical staff for manual interpretation and reporting.

Raw sequence data are produced at the Uppsala University Hospital, but at present the hospital lacks the capacity to analyse MPS data within the required time. To overcome this, the bioinformatic processing is performed on a private cluster with 8 nodes at Uppsala University. Because of this set-up our analy-
Discussion and Conclusion

In this article, we describe the automation system Arteria, which is built on top of the StackStorm automation platform and the Mistral workflow service. Arteria has successfully been adopted by 3 separate sequencing core facilities, where it forms a crucial part of their infrastructure, thus demonstrating the usefulness of the approach.

Arteria presents an approach to managing the full breadth of the operational aspects surrounding sequencing center operations. It manages when as well as how certain processes are to be carried out. Through the use of StackStorm as the orchestration engine, we have both a framework for the development of new functionality and a unified user interface for the system operators. The use of workflows at the process level, through Mistral, reduces the need for additional documentation and lowers the risk of human errors. Furthermore, the use of workflows allows for changes to the process to be code reviewed, in accordance with best practices in software development. Finally, the use of micro-services at the execution level has enabled a greater degree of flexibility in the execution model, a clear separation of responsibilities between services, as well as the integration of existing software. Being able to easily integrate existing software into the system has enabled quicker implementation because it lowers the burden of validation for, e.g., the ISO/IEC 17025 standard accreditation.

Arteria takes advantage of existing open source tools and aims at creating an avenue for collaboration between sequencing core facilities. We believe that decoupling process from execution, especially the micro-services developed within the Arteria project, could serve as fertile ground for collaboration. The stand-alone nature of the micro-services means that it should be possible for anyone interested to pick them up and include them in their own operations. Prior to beginning work on Arteria in 2015 we carried out an informal survey of possible systems to build upon. The main contender to StackStorm at the time appeared to be Airflow [13]. However, we judged that StackStorm had better documentation, which would make it a better choice of platform for us.

One important aspect when adopting novel software is whether the software can be expected to be maintained over time. While there is currently no explicit funding for the Arteria project, it is already being used across multiple sequencing core facilities. This means that there is already an existing community that can be approached for support. Furthermore, by building Arteria on larger and company-backed projects (i.e., Stackstorm and Mistral), the maintenance burden for most of the underlying functionality is deferred to those projects and should mitigate the risk of the Arteria project being abandoned. Finally, the separation of the systems into independent components means that different parts of the system, e.g., the micro-services, can still be used, even if support for other parts were to be discontinued. In fact, the different parts of the system, e.g., the workflow engine, are themselves interchangeable; thus, the
entire project does not rest on the continued maintenance of a single component in it.

It should be noted that because the Arteria project does not provide out-of-the-box solutions, but rather demonstrates how facilities can build their own to suit their particular process, adopters of the Arteria system should expect to update their own systems as necessary. This includes StackStorm, workflows, and the micro-services being used.

We recognize that this type of approach has a higher initial overhead than, e.g., an orchestration system based on scripts and cron-tab entries. This overhead includes additional hardware requirements (current production hardware requirements are a quad core CPU, >16 GB RAM, 40G of storage) and increased system complexity. The increased complexity means that personnel resources, with experience in Linux systems and software development, must be dedicated to the development and maintenance of an Arteria system. This is particularly true in the initial implementation phase of a new system. We estimate that to implement Arteria at the SNP&SEQ Technology Platform we dedicated 2 full-time-equivalents (FTE) over a period of 1.5 years. This has since decreased, and we estimate that today we dedicate 0.5 FTEs to developing and maintaining the system. The exact time spent per month varies widely, from close to 0 in months when we only apply minor upstream updates to StackStorm to 1 FTE in months when we add new functionality.

Considering the costs of both hardware and personnel, a core facility considering implementing an Arteria system (or any similar system) needs to weigh the costs versus the benefits of adopting it. In our opinion, important things to consider include:

- the number of sequencing runs that need to be processed in a year
- the amount of manual work that can be accepted per sequencing run
- turnaround time requirements (e.g., time to response to a clinician in clinical sequencing applications)
- diversity of processes, e.g., supporting many different sequencing applications that require different processing workflows
- complexity of workflows, i.e., how many tasks make up a workflow, and whether the workflows contain branching, conditionals, etc.
- the need for traceability, i.e., how important it is to be able to log each action taken in the system for future audit

Considering the above, there are multiple scenarios in which it could be a good idea to adopt an Arteria system because it may help in dealing with these issues. For example, a sequencing facility having a large number of sequencing runs per year, e.g., 1 per day, and high demands on rapid turnaround time, may benefit from using this approach. Another example could be that a sequencing facility has few sequencing runs but many processes and complex workflows. Also in this scenario, an Arteria system might be a good option. Note that the amount of data is not a primary consideration in this decision. Many small sequencing runs tend to produce more work than few large ones.

There are situations where spending the required resources does not make sense. For example, if you need to process relatively few sequencing runs, e.g., 1 per week, and all those runs can be processed in a relatively straightforward manner, the additional overhead introduced by adopting an Arteria system may not be worth the investment.

However, under the right circumstances, we are confident that the additional overhead pays off, by proving a solid and extensible framework for developing new functionality in accordance with a core facility's needs, without requiring extensive changes to the existing infrastructure.

In the future we expect to keep improving on the Arteria system. In particular we aim at improving the micro-services. Two improvements we are planning on are (i) the standardization of the micro-services APIs and (ii) the implementation of https support in the micro-services, to ensure that communication to and
from the services is encrypted. However, we still recommend running the micro-services behind a reverse proxy, in order to handle authentication/authorization, and encryption at a central point. Furthermore, we recommend that Arteria be run in a private network (physical or virtual), for increased security. A complete discussion on the securing of web applications is, however, out of scope for this article, and we recommend that any deployment of an Arteria system be secured according to industry standards.

In conclusion, the Arteria system presents a scalable and flexible solution to the operational issues of data management and analysis faced by sequencing core facilities. All components of Arteria are open source and available to the wider community [17], and the validity of the approach is demonstrated by the fact that multiple centers have Arteria systems handling their operations. Finally, we hope that the design described here can be instructive for anyone who needs to implement an orchestration system in the context of a sequencing core facility, or elsewhere.

Availability of Supporting Source Code and Requirements
Project name: The Arteria project
Project home page: https://arteria-project.github.io/
Operating system(s): Linux
Programming language: Python
Other requirements: Docker, Docker Compose, make
License: MIT
SciCrunch RRID:SCR_017460
The package arteria-packs, which features Docker images for the system described in this article, is available for download at: https://github.com/arteria-project/arteria-packs.

Availability of Supporting Data and Materials
The data set supporting the results of this article, “Reduced size Illumina NovaSeq runfolder,” is available in the Zenodo repository [23]. A snapshot of the code is also available via the GigaScience GigaDB repository [27].

Additional files
Supplementary Figure 1. Example of information flow between levels in Arteria workflow.

Abbreviations
API: Application Programming Interface; bp: base pairs; CD: continuous delivery; CI: continuous integration; CPU: central processing unit; FTE: full-time equivalent; HPC: high-performance computing; LIMS: laboratory information management system; MPS: massively parallel sequencing; REST: Representational State Transfer; UMCCR: University of Melbourne Center for Cancer Research; WGS: whole-genome sequencing; WTS: whole-transcriptome sequencing.

Competing Interests
The authors declare that they have no competing interests.

Funding
This work was supported by the R&D group at the SNP&SEQ Technology Platform in Uppsala. This facility is part of the National Genomics Infrastructure (NGI) Sweden and Science for Life Laboratory. The SNP&SEQ Platform is also supported by the Swedish Research Council and the Knut and Alice Wallenberg Foundation. UMCCCR work was funded through the Australian Genomics Health Alliance, which is supported by the National Health and Medical Research Council (GNT1115531). Clinical Genomics Uppsala is part of the Diagnostics Development platform within Science for Life Laboratory. Work at the Clinical Genomics Uppsala facility was also supported by grants from the Akademiska University Hospital (ALF-717721).

Authors’ contributions
J.D., J.H., S.S., and P.L. conceptualized the system. J.D., J.H., S.S., M.L., P.S., R.V.G., and P.L. contributed source code. All authors have contributed to writing the manuscript. All authors read and approved the final manuscript.

Acknowledgements
The entire bioinformatics team at the SNP&SEQ Technology Platform has contributed to the Arteria project with feedback during its adoption. Especially Monika Brandt, Matilda Åslin, and Sara Ekberg have provided extremely useful feedback based on their daily operations of the system, as well as contributing code to the project. Parts of the computations for the Arteria Project were performed on resources provided by SNIC through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX).

We would like to acknowledge Samuel Lampa and Jessica Nordlund for reading this text and providing highly valuable comments, which have been instrumental in developing this manuscript.

References
1. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature 2001;409: 860–921.
2. Spang A, Saw JH, Jørgensen SL, et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 2015;521:173–9.
3. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation. Nature 2015;526:68–74.
4. Ashley EA. Towards precision medicine. Nat Rev Genet 2016;17:507–22.
5. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 2016;17:333–51.
6. Stephens ZD, Lee SY, Faghi F, et al. Big Data: astronomical or genomical? PLoS Biol 2015;13:e1002195.
7. Spjuth O, Bongcam-Rudloff E, Dahlberg J, et al. Recommendations on e-infrastructures for next-generation sequencing. Gigascience 2016;5:26.
8. Spjuth O, Bongcam-Rudloff E, Hernández GC, et al. Experiences with workflows for automating data-intensive bioinformatics. brief Direct 2015;10:43.
9. Lampa S, Alvarsson J, Spjuth O. Towards agile large-scale predictive modelling in drug discovery with workflow-based programming design principles. J Cheminform 2016;8:67.
10. Leipzig J. A review of bioinformatic pipeline frameworks. Brief Bioinform 2017;18:530–6.
11. Amstutz P, Crusoe MR, Tijanić N, et al. Common Workflow Language, v1.0. Figshare 2016, doi:10.6084/m9.figshare.3115156.v2.
12. Spotify. Luigi. GitHub. 2017. https://github.com/spotify/luigi. Accessed 24 January 2017.
13. Apache. GitHub. 2017. https://github.com/apache/incubator-airflow. Accessed 24 January 2017.
14. Cuccuru G, Leo S, Lianas L, et al. An automated infrastructure to support high-throughput bioinformatics. In: 2014 International Conference on High Performance Computing & Simulation (HPCS), Bologna, Italy. IEEE; 2014: 600–7.
15. Afgan E, Baker D, van den Beek M, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 2016;44:W3–10.
16. RabbitMQ - Messaging that just works. 2018. http://www.rabbitmq.com/. Accessed 7 February 2018.
17. The Arteria Project. 2019. https://github.com/arteria-project. Accessed 5 November 2019.
18. StackStorm. StackStorm/st2. GitHub. 2017. https://github.com/StackStorm/st2. Accessed 24 January 2017.
19. Mistral. 2019. https://docs.openstack.org/mistral/latest. Accessed 5 November 2019.
20. ISO/IEC 17025:2005 - General requirements for the competence of testing and calibration laboratories. 2014. https://www.iso.org/standard/39883.html. Accessed 10 April 2017.
21. Illumina bcl2fastq and bcl2fastq2 Conversion Software. https://emea.support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html. Accessed 5 November 2019.
22. Arteria Packs. arteria-project/arteria-packs. 2019. https://github.com/arteria-project/arteria-packs. Accessed 5 November 2019.
23. Dahlberg J, Larsson P, Liljedahl U. Reduced size Illumina NovaSeq runfolder. Zenodo 2018, doi.org/10.5281/zenodo.1204292.
24. Chapman B. bcbio-nextgen. https://github.com/chapmanb/bcbio-nextgen. Accessed 8 February 2018.
25. Nakken S, Fournous G, Vodák D, et al. Personal Cancer Genome Reporter: variant interpretation report for precision oncology. Bioinformatics 2018;34(10):1778–80.
26. Personal Cancer Genome Reporter deployment recipes. https://github.com/umccr/pcgr-deploy. Accessed 8 February 2018.
27. Dahlberg J, Hermansson J, Sturlaugsson S, et al. Supporting data for “Arteria: An automation system for a sequencing core facility.” GigaScience Database 2019. http://dx.doi.org/10.5524/100666.