GC-MS analysis of *Abelmoschus manihot* (L.) Medik (Malvaceae) leaves

Divya Selvaraj 1, Arivoli Subramanian 1, * and Tennyson Samuel 2

1 Department of Zoology, Thiruvalluvar University, Vellore 632 115, Tamil Nadu, India.
2 Department of Zoology, Madras Christian College, Chennai 600 059, Tamil Nadu, India.

Publication history: Received on 27 January 2020; revised on 12 February 2020; accepted on 14 February 2020

Article DOI: https://doi.org/10.30574/wjarr.2020.5.2.0025

Abstract

Plants are a rich source of bioactive phytochemicals which provide health benefits for humans further than those attributed to macronutrients and micronutrients. The phytochemical compounds isolated and purified are employed in a wide range of applications. In the present study, the bioactive compounds of *Abelmoschus manihot* benzene, chloroform, methanol and ethanol leaf extracts via GC-MS was analyzed and its biological properties being available in pure form, being nontoxic with a wide spectrum of biological functions, may find its application in the formation of various medicinal products.

Keywords: *Abelmoschus manihot*; Leaf extracts; GC-MS; Phytochemical compounds

1. Introduction

Plants of the genus *Abelmoschus* belong to the family of flowering plants called Malvaceae. This genus, also known as okra is composed of numerous species of flowering plants in the mallow family and are native to tropical and sub-tropical areas [1]. Interest in this genus is due principally to the high protein and mineral salt content of the pods, making okra a very good vegetable. Studies have shown that the daily consumption of 100g of okra provides 20, 15 and 50% calcium, iron, and Vitamin C of human dietary requirements respectively [2]. Onakpa [3] and Patil et al. [4] have documented the ethnomedicinal, phytochemical and pharmacological profile of the genus *Abelmoschus*. The species *Abelmoschus manihot* is cultivated mainly in the Far East, but also in the Indian sub-continent and northern Australia. It is less frequently found in America and tropical Africa. On the latter continent, Chevalier [5] described the variety zenkeri in Cameroon and the variety caillei in West Africa. The latter has also been observed in Zaire [6]. This species contains various chemical ingredients including flavonoids, organic acids, steroids, volatile constituents, coumarins, aliphatic hydrocarbons and nitrogenous compounds [7]. It has been used for treatment of chronic renal disease, mouth ulcers, and burns [8-10]. This plant species is also reported to possess analgesic [11], anti-inflammatory [12], antiviral [13], antibacterial [14], anticoagulant [15], larvicidal [16], wound healing [12] and osteoporosis [17, 18] properties. In the present study, the GC-MS analysis of this plant species has been analyzed as studies reported above have shown that there is scope to use this plant as a source of medicinal agent.

2. Material and methods

2.1. Plant collection and preparation of extracts

Mature and healthy leaves of *Abelmoschus manihot* were located and collected from in and around of Unaivaniyambadi village, Vellore district, Tamil Nadu, India (12.8730° N, 78.9714° E). Taxonomical identity of the plant was confirmed at the Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India. Leaves were then washed under running tap water, air dried and shade dried for 10-15 days. The leaves were powdered using an electronic...
blender and sieved to get fine powder. The powdered leaves (500 g) were macerated with various solvents (1.5 L) each, viz., benzene, chloroform, methanol and ethanol using a Soxhlet apparatus [19] with their respective temperatures. The crude extract thus obtained was concentrated by evaporation and the yield was used for further phytochemical analysis.

2.2. GC-MS Analysis

GC-MS analysis was carried out at the Sophisticated Instrumentation Facility (SIF), Chemistry division, School of Advanced Science, VIT University, Vellore, Tamil Nadu, India. The Clarus 680 GC used in the analysis employed a fused silica column, packed with Elite-5MS (5 % biphenyl 95 % dimethylpolysiloxane, 30 m × 0.25 mm ID × 250 μm df) and the components were separated using Helium as carrier gas at a constant flow of 1 mL/minute. The injector temperature was set at 260 °C during the chromatographic run. The extract sample (1 μL) injected into the instrument with the oven temperature was as follows: 60 °C (2 minutes); followed by 300 °C at the rate of 10 °C min⁻¹; and 300 °C, where it was held for six minutes. The mass detector conditions were: transfer line temperature 240 °C; ion source temperature 240 °C; and ionization mode electron impact at 70 eV, a scan time 0.2 seconds and a scan interval of 0.1 seconds. The fragments were from 40 to 600 Da. The spectrums of the components were compared with the database of spectrum of known components stored in the GC-MS NIST library.

3. Results

The phytochemical compounds via GC-MS of the benzene leaf extract of *Abelmoschus manihot* indicated the presence of phytol, palmitic acid, linoleic acid, dioctyl phthalate, tocopherol, Urs-12-en-28-ol, (2E,4E)-2,4-heptadecadienoic acid and stigmast-4-en-3-one (Table 1; Figure 1). The GC-MS of chloroform extract revealed the presence of phytol, methyl isopalmitate, palmitic acid, linoleic acid, 25-hydroxycholesterol, DL-α-tocopherol acetate, 3,5-di-tert-butylbenzaldehyde, 12-hydroxy-8,10-heptadecadienoic acid, 22,23-dibromostigmasterol acetate and cholest-4-en-3-one (Table 2; Figure 2). The phytochemical compounds in the methanol leaf extract specified the presence of phytol, 2,3-dimethyl-8-oxo-non-2-enal, palmitic acid, 1,1'-bi(cyclohexyl), DL-α-tocopherol acetate, Urs-12-en-3-ol-acetate-(3β), 12-hydroxy-8,10-heptadecadienoic acid and fludrocortisone acetate (Table 3; Figure 3). The GC-MS study of ethanol extract showed presence of phytol, palmitic acid, linoleic acid, 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester, DL-α-tocopherol acetate, β-amyrone, 12-hydroxy-8,10-heptadecadienoic acid and stigmast-4-en-3-one (Table 4; Figure 4).

Table 1 Phytochemical compounds in the benzene leaf extract of *Abelmoschus manihot*

Compound Name	Retention Time	Molecular Weight (g/mol)	Molecular Formula	Structure
Phytol	16.514	296.531	C₂₀H₄₀O	![Structure](phytol.png)
Palmitic acid	18.024	256.424	C₁₆H₃₂O₂	![Structure](palmitic.png)
Linoleic acid	19.620	280.445	C₁₈H₃₂O₂	![Structure](linoleic.png)

The mass detector conditions were: transfer line temperature 240 °C; ion source temperature 240 °C; and ionization mode electron impact at 70 eV, a scan time 0.2 seconds and a scan interval of 0.1 seconds. The fragments were from 40 to 600 Da. The spectrums of the components were compared with the database of spectrum of known components stored in the GC-MS NIST library.
Compound	Molar Mass	Formula	Molecular Structure
Dioctyl phthalate	22.756	C_{24}H_{38}O_{4}	![Dioctyl Phthalate](image)
Tocopherol	27.183	C_{29}H_{50}O_{2}	![Tocopherol](image)
Urs-12-en-28-ol	29.164	C_{30}H_{50}O	![Urs-12-en-28-ol](image)
(2E,4E)-2,4-heptadecadienoic	29.739	C_{17}H_{30}O_{2}	![2E,4E)-2,4-heptadecadienoic acid](image)
Stigmast-4-en-3-one	30.839	C_{29}H_{48}O	![Stigmast-4-en-3-one](image)
Figure 1 GC-MS chromatogram of benzene leaf extract of *Abelmoschus manihot*

#	RT	Scan	Height	Area	Area %	Norm %
1	16.514	2742	1,716,226,304	76,951,480.0	18.433	100.00
2	16.769	2793	292,744,608	12,344,304.0	2.957	16.04
3	16.969	2833	475,076,000	17,730,502.0	4.247	23.04
4	18.024	3044	507,284,352	73,028,112.0	17.493	94.90
5	19.620	3363	236,198,192	13,875,433.0	3.324	18.03
6	19.705	3380	295,806,080	59,129,820.0	14.164	76.84
7	22.756	3990	1,090,984,832	37,132,468.0	8.895	48.25
8	27.183	4875	124,673,560	16,795,720.0	4.023	21.83
9	29.164	5271	134,499,904	23,895,588.0	5.724	31.05
10	29.739	5386	411,425,792	57,607,016.0	13.799	74.86
11	30.839	5606	138,842,016	28,982,470.0	6.942	37.66

Table 2 Phytochemical compounds in the chloroform leaf extract of *Abelmoschus manihot*

Compound Name	Retention Time	Molecular Weight (g/mol)	Molecular Formula	Structure
Phytol	16.514	296.531	C₂₀H₄₀O	![Phytol Structure](image)
Methyl isopalmitate	17.504	270.45	C₁₇H₃₄O₂	![Methyl Isopalmitate Structure](image)
Palmitic acid	18.024	256.424	C₁₆H₃₂O₂	![Palmitic Acid Structure](image)
Linoleic acid
\[\text{C}_{18}\text{H}_{32}\text{O}_2\]
\[
\begin{array}{c}
\text{OH} \\
\text{C} \\
\text{H} \\
\text{O} \\
\end{array}
\]

25-Hydroxycholesterol
\[\text{C}_{27}\text{H}_{46}\text{O}_2\]
\[
\begin{array}{c}
\text{OH} \\
\text{C} \\
\text{H} \\
\text{O} \\
\end{array}
\]

DL-\(\alpha\)-tocopherol acetate
\[\text{C}_{31}\text{H}_{52}\text{O}_3\]
\[
\begin{array}{c}
\text{OH} \\
\text{C} \\
\text{H} \\
\text{O} \\
\end{array}
\]

3,5-Di-tert-butylbenzaldehyde
\[\text{C}_{15}\text{H}_{22}\text{O}\]
\[
\begin{array}{c}
\text{OH} \\
\text{C} \\
\text{H} \\
\text{O} \\
\end{array}
\]

12-hydroxy-8,10-heptadecadienoic acid
\[\text{C}_{17}\text{H}_{30}\text{O}_3\]
\[
\begin{array}{c}
\text{OH} \\
\text{C} \\
\text{H} \\
\text{O} \\
\end{array}
\]
22,23-dibromostigmasterol acetate

	RT	Scan	Height	Area	Area %	Norm %
1	16.494	2738	5,332,435,968	199,765,216.0	18.764	100.00
2	16.749	2789	760,535,616	25,432,190.0	2.389	12.73
3	16.949	2829	1,245,597,696	43,947,284.0	4.128	22.00
4	17.979	3035	2,091,796,352	151,928,192.0	14.271	76.05
5	19.555	3350	676,800,768	38,003,944.0	3.570	19.02
6	19.635	3366	989,754,816	160,485,808.0	15.075	80.34
7	22.736	3986	2,544,867,840	80,274,888.0	7.540	40.18
8	27.168	4872	446,307,072	56,145,404.0	5.274	28.11
9	29.154	5269	365,878,112	59,010,672.0	5.543	29.54
10	29.739	5386	1,129,086,336	164,345,792.0	15.437	82.27
11	30.819	5602	383,930,848	85,270,976.0	8.010	42.69

Figure 2 GC-MS chromatogram of chloroform leaf extract of *Abelmoschus manihot*
Compound Name	Retention Time	Molecular Weight (g/mol)	Molecular Formula	Structure
Phytol	16.514	296.531	C_{20}H_{40}O	![Phytol structure](image)
2,3-Dimethyl-8-oxo-non-2-enal	16.694	182.259	C_{11}H_{18}O_{2}	![2,3-Dimethyl-8-oxo-non-2-enal](image)
Palmitic acid	18.024	256.424	C_{16}H_{32}O_{2}	![Palmitic acid structure](image)
1,1′-bi(cyclohexyl)	19.635	166.303	C_{12}H_{22}	![1,1′-bi(cyclohexyl) structure](image)
DL-α-tocopherol acetate	27.193	472.743	C_{31}H_{52}O_{3}	![DL-α-tocopherol acetate structure](image)
Urs-12-en-3-ol, acetate, (3,β)-	29.194	468.754	C_{32}H_{52}O_{2}	![Urs-12-en-3-ol, acetate, (3,β)- structure](image)
12-hydroxy-8,10-heptadecadienoic acid	29.759	282.418	C_{17}H_{30}O_{3}	![12-hydroxy-8,10-heptadecadienoic acid structure](image)
Fludrocortisone acetate 30.910 422.487

\[\text{C}_{23}\text{H}_{31}\text{FO}_6 \]

Figure 3 GC-MS chromatogram of methanol leaf extract of *Abelmoschus manihot*

	RT	Scan	Height	Area	Area %	Norm %
1	16.534	2746	420,916,928	16,048,945.0	6.381	23.95
2	16.789	2797	121,285,480	4,035,635.5	1.605	6.02
3	16.984	2836	176,739,520	5,988,394.5	2.381	8.94
4	17.504	2940	116,851,536	5,817,687.5	2.313	8.68
5	18.069	3053	377,771,200	66,083,348.0	26.275	98.61
6	19.650	3369	196,293,456	10,834,127.0	4.308	16.17
7	19.740	3387	276,188,416	67,011,896.0	26.644	100.00
8	25.162	4471	65,625,952	4,790,231.0	1.905	7.15
9	27.193	4877	42,989,608	5,609,520.5	2.230	8.37
10	29.184	5275	94,510,936	14,102,153.0	5.607	21.04
11	29.759	5390	243,846,832	34,815,536.0	13.843	51.95
12	30.494	5537	52,523,988	7,831,631.5	3.114	11.69
13	30.909	5620	39,656,244	8,534,596.0	3.393	12.74
Table 4 Phytochemical compounds in the ethanol leaf extract of *Abelmoschus manihot*

Compound Name	Retention Time	Molecular Weight (g/mol)	Molecular Formula	Structure
Phytol	16.514	296.531	C_{20}H_{40}O	![Phytol](image)
Palmitic acid	18.024	256.424	C_{16}H_{32}O_{2}	![Palmitic acid](image)
Linoleic acid	19.620	280.445	C_{18}H_{32}O_{2}	![Linoleic acid](image)
1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester	22.736	278.344	C_{16}H_{22}O_{4}	![Benzenedicarboxylic acid](image)
DL-α-tocopherol acetate	27.193	472.743	C_{31}H_{52}O_{3}	![Tocopherol acetate](image)
β-amyrone	29.154	424.702	C_{30}H_{40}O	![Amyrone](image)
12-hydroxy-8,10-heptadecadienoic acid
29.759 282.418 C_{17}H_{30}O_{3}

Stigmast-4-en-3-one
30.839 412.691 C_{29}H_{48}O

Figure 4 GC-MS chromatogram of ethanol leaf extract of *Abelmoschus manihot*
4. Discussion

Plants are a rich source of bioactive phytochemicals which provide health benefits for humans further than those attributed to macronutrients and micronutrients. Todarwal et al. [20] have reviewed the ethnobotany, phytochemistry and pharmacological properties of *Abelmoschus manihot*. This plant is known for secondary metabolites like flavonoids [21] and steroids [12]. The phytochemical constituents obtained via GC-MS from different solvent leaf extracts of *Abelmoschus manihot* from the present study were found to have various biological properties reported elsewhere, viz., antimicrobial, anti-inflammatory, antioxidant, antidiuretic, antifungal, anticezemic, antiacne, antiarthritic, anticonorinary, antiseptic, antidermic, antispasmodic, antbranchitic, antidiabetic, antiandrogenic, antitumour, hypcholeterolemic, hepatoprotective, hypoglycemic, lubricant, nematicide and pesticide. Besides these, this plant is popular for its young, tender, juicy pods which can be consumed in different forms like boiled, fried or cooked [22, 23]. High protein source due to high lysine level in seeds make this plant as an alternative to soybean and therefore could be used as a supplement to cereal based diets [24, 25]. In medical application, it has been found as a good component for plasma replacement or blood volume expander [26-29]. It also has been reported as medicine for the control of fertility, childbirth and also to act as a stimulator in milk production for lactating mothers [30-33].

5. Conclusion

Studies on phytoprinciples from *Abelmoschus manihot* need to be evaluated in a scientific manner so as to identify potential lead compounds for further development, as ethnobotanical and traditional uses of natural compounds, especially those of plant origin, are often very effective and generally believed to be safe for human use.

Compliance with ethical standards

Acknowledgments

The authors thank the Chemistry division, School of Advanced Science, VIT University, Vellore, Tamil Nadu, India in providing their help with regard to GC-MS analysis.

Disclosure of conflict of interest

The authors declare that there is no conflict of interest.

References

[1] Charrier A. (1984). Genetic resources of the genus *Abelmoschus* Med. (Okra). International Board for Plant Genetic Resources, Rome, Italy.

[2] Grubben GJH. (1977). Tropical vegetables and their genetic resources. (H.D. Tindall and J.T. Williams, eds.) IBPGR, Rome, 197.

[3] Onakpa MM. (2013). Ethnomedicinal, phytochemical and pharmacological profile of genus *Abelmoschus*. Phytopharmacology, 4(3), 648-663.

[4] Patil P, Sutar S, John JK, Malik S, Rao S, Yadav S and Bhat KV. (2015). A systematic review of the genus *Abelmoschus* (Malvaceae). Rheedea, 25(1), 14-30.

[5] Chevalier A. (1940). L'origine, la culture et les usages de cinq Hibiscus de la section *Abelmoschus*. Review of Botanical Applications, 20, 319-328.

[6] Hauman L. (1963). La Flore du Congo, du Rwanda et du Burundi, 142-145.

[7] Wang Y, Wang B, Lu B, Li P, Yang B, Ji W and Meng Q. (2015). Analysis of volatile constituents from *Abelmoschus manihot* by GC-MS. Asian Journal of Chemistry, 27(10), 3684-3686.

[8] Han XL and Situ ML. (1997). 82 cases of canker treated with cataplasm made from the flower of *Abelmoschus manihot*. Clinical Journal of Chinese Traditional Medicine, 9, 308.

[9] Zhang SH. (1997). Outer treatment of small area burn applied with oil of *Abelmoschus manihot*. Lishizhen Medicine and Material Medica Research, 8, 96-103.
[10] Chen D. (2001). Effect observation of Huangkuai capsule on chronic nephritis. Chinese Journal of Integrative and Traditional Western Nephrology, 2, 299-300.

[11] Jain PS, Todarwal AA, Bari SB and Surana JS. (2011). Analgesic activity of Abelmoschus manihot extracts. International Journal of Pharmacology, 7, 505-520.

[12] Jain PS and Bari SB. (2009). Isolation of Stigmasterol and γ-Sitosterol from petroleum ether extract of woody stem of Abelmoschus manihot. Asian Journal of Biological Sciences, 2, 112-117.

[13] Lin-lin WU, Yang X, Huang Z, Liu H and Guang WU. (2007). In vivo and in vitro antiviral activity of hyperoside extracted from Abelmoschus manihot L. Medic. Acta Pharmacologica Sinica, 28, 404-409.

[14] Yao YM. (1994). Inhibition effect of the flower of Abelmoschus manihot extraction on Diplococcus gonorrhoeae. Jiangsu Journal of Traditional Chinese Medicine, 15, 43-49.

[15] Gu HZ and Song JB. (1998). Progress of studies on Abelmoschus manihot (L.) Medic. Journal of Chinese Medicine Materials, 21, 158-160.

[16] Dua VK, Pandey AC, Alam ME and Dash AP. (2006). Larvicidal activity of Hibiscus abelmoschus Linn. (Malvaceae) against mosquitoes. Journal of the American Mosquito Control Association, 22, 155-157.

[17] Puel C, Mathey J, Davicco MJ, Lebecque P, Chanteranne B, Horcajada MN and Coxam V. (2005). Preventive effect of Abelmoschus manihot (L) Medik on bone loss in the overiectomised rats. Journal of Ethnopharmacology, 99, 655-660.

[18] Cheng XP, Qin S, Dong LY and Zhou JN. (2006). Inhibitory effect of total flavone of Abelmoschus manihot L. Medic on NMDA receptor-mediated current in cultured rat hippocampal neurons. Neuroscience Resources, 55, 142-145.

[19] Vogel. (1978). Textbook of practical organic chemistry, London, 1368.

[20] Todarwal A, Jain P and Bari S. (2011). Abelmoschus manihot Linn: ethnobotany, phytochemistry and pharmacology. Asian Journal of Traditional Medicines, 6(1), 1-7.

[21] Xian YL, Zhao YY and Liang H. (2007). A flavonoid glucuronide from Abelmoschus manihot (L) Medik. Biochemical Systematics and Ecology, 35(12), 891-893.

[22] Ndunguru J and Rajabu AC. (2004). Effect of okra mosaic virus disease on the above-ground morphological yield components of okra in Tanzania. Scientia Horticulturae, 99, 225-235.

[23] Akintoye HA, Adebayo AG and Aina OO. (2011). Growth and yield response of okra intercropped with live mulches. Asian Journal of Agricultural Research, 5, 146-153.

[24] Karakoltsidis PA and Constantinides SM. (1975). Okra seeds: A new protein source. Journal of Agricultural and Food Chemistry, 23(6), 1204-1207.

[25] Al-Wandawi H. (1983). Chemical composition of seeds of two okra cultivars. Journal of Agricultural and Food Chemistry, 31(6), 1355-1358.

[26] Savello PH, Martin FW and Hill JM. (1980). Nutritional composition of okra seed meal. Journal of Agricultural and Food Chemistry, 28, 1163-1166.

[27] Markose BL and Peter KV. (1990). Okra: Review of research on vegetable and tuber crops. Kerala Agricultural University Press, Kerala, India.

[28] Lengsfeld C, Titgemeyer F, Faller G and Hensel A. (2004). Glycosylated compounds from okra inhibit adhesion of Helicobacter pylori to human gastric mucosa. Journal of Agricultural and Food Chemistry, 52, 1495-1503.

[29] Kumar S, Dagnoko S, Haougui A, Ratnadass A, Pasternak D and Kouame C. (2010). Okra (Abelmoschus spp.) in West and Central Africa: potential and progress on its improvement. African Journal of Agricultural Research, 5, 3590-3598.

[30] Powell JM. (1976). Ethnobotany. Part III of New Guinea Vegetation (K. P. Paijmans, ed.) CISRO/ ANU Press, Canberra, Australia, 106-183.

[31] Perry L. (1980). Medicinal plants of east and southeast Asia- attributed properties and uses. MIT Press, Cambridge, Massachusetts.

[32] Bourdy G and Walter A. (1992). Maternity and medicinal plants in Vanuatu. I. The cycle of reproduction. Journal of Ethnopharmacology, 37, 179-196.
[33] Salomon-Nekiriai C. (1995). Medical knowledge and know-how to kanak women. ESK/CORDET, Noumea, New Caledonia.

How to cite this article
Divya S, Arivoli S and Tennyson S. (2020). GC-MS analysis of Abelmoschus manihot (L.) Medik (Malvaceae) leaves. World Journal of Advanced Research and Reviews, 5(2), 67-79.