DIMENSION OF THE SPACE OF CONICS ON FANO HYPERSURFACES

KATSUHISA FURUKAWA

Abstract. R. Beheshti showed that, for a smooth Fano hypersurface X of degree ≤ 8 over the complex number field \mathbb{C}, the dimension of the space of lines lying in X is equal to the expected dimension.

We study the space of conics on X. In this case, if X contains some linear subvariety, then the dimension of the space can be larger than the expected dimension.

In this paper, we show that, for a smooth Fano hypersurface X of degree ≤ 6 over \mathbb{C}, and for an irreducible component R of the space of conics lying in X, if the 2-plane spanned by a general conic of R is not contained in X, then the dimension of R is equal to the expected dimension.

1. Introduction

Let $X \subset \mathbb{P}^n$ be a hypersurface of degree d over the complex number field \mathbb{C}. We define $R_e(X)$ to be the space of smooth rational curves of degree e in \mathbb{P}^n lying in X, which is an open subscheme of the Hilbert scheme $\text{Hilb}^{e+1}(X)$. The number

$$(n + 1 - d)e + n - 4$$

is called the expected dimension of $R_e(X)$, where the dimension of $R_e(X)$ at C is greater than or equal to this number if there exists $C \in R_e(X)$ such that X is smooth along C.

The space of rational curves on a general Fano hypersurface have been studied by many authors ([5], [8], [9], [14], [4], [12] in characteristic zero; [10, V, §4], [7] in any characteristic). At least for $e = 1, 2$, it is well known that $R_e(X)$ has the expected dimension if X is a general Fano hypersurface.

On the other hand, it is difficult to know about $R_e(X)$ for any smooth $X \subset \mathbb{P}^n$. For n exponentially large in d, T. D. Browning and P. Vishe [5] showed that the space of rational curves of any degree e on smooth X has the expected dimension.

For any n in the case of $e = 1$, as an answer of the question which was asked by O. Debarre and J. de Jong independently, R. Beheshti [2] showed that $R_1(X)$ has the expected dimension if $X \subset \mathbb{P}^n$ is a smooth Fano hypersurface of degree $d \leq 6$.
J. M. Landsberg and C. Robles [11] gave another proof for the same degree \(d \leq 6 \). Beheshti [3] later showed the same statement for \(d \leq 8 \).

In the case of \(e = 2 \), A. Collino, J. P. Murre, G. E. Welters [6] studied \(R_2(X) \) for a smooth quadric 3-fold \(X \subset P^4 \); in this case, \(R_2(X) \) has the expected dimension. Note that \(\text{Hilb}^{2d+1}(X) \) is connected for any smooth hypersurface \(X \subset P^n \) if the expected dimension is positive [7, Proposition 5.6].

In this paper, we study the dimension of \(R_2(X) \) for a smooth Fano hypersurface of degree \(d \leq 6 \). Our main result is the following.

Theorem 1.1. Let \(X \subset P^n \) be a smooth Fano hypersurface of degree \(d \leq 6 \) over \(\mathbb{C} \). Let \(R \neq \emptyset \) be an irreducible component of \(R_2(X) \) such that

\[\langle C \rangle \not\subset X \text{ for general } C \in R, \]

where \(\langle C \rangle = P^2 \subset P^n \) is the 2-plane spanned by \(C \). Then \(\dim(R) \) is equal to the expected dimension \(3n - 2d - 2 \).

The dimension of \(R_2(X) \) can be greater than the expected one when \(X \) contains certain linear varieties (see Example 3.17); this is the reason why we assume the condition (1). The statement of Theorem 1.1 does not hold for \(d \geq 10 \) (see Example 3.18); thus it may need some conditions stronger than (1) for larger \(d \).

The paper is organized as follows. We assume that \(\dim R \) is greater than the expected dimension, and take \(Y := \text{Loc}(R) \subset X \) to be the locus swept out by conics of \(R \). The codimension of \(Y \) is \(\geq 2 \) in \(X \) due to a result of Beheshti [3] (see Remark 2.2). Then it is sufficient to investigate the case when \((d, \dim Y) = (6, n - 3) \). In [2] we consider the linear subvariety \(\langle Y \rangle \subset P^n \) spanned by \(Y \), and show that the codimension of \(\langle Y \rangle \) is \(\leq 1 \) in \(P^n \) by using projective techniques (Proposition 2.6). Let \(T_xX \subset P^n \) be the embedded tangent space to \(X \) at \(x \). In [33], considering the subset \(R_2^x \subset R \) consisting of conics \(C \) such that \(x \in C \subset T_xX \), we show that \(\langle \text{Loc}(R_2^x) \rangle \) is an \((n - 3)\)-plane (Proposition 3.6), and show that \(\text{Loc}(R_2^x) \) is a quadric hypersurface in \(\langle \text{Loc}(R_2^x) \rangle = P^{n-3} \) (Corollary 3.9). In particular, our problem is reduced to the case \(n = d = 6 \). Using such quadrics, we give the proof of Theorem 1.1 step by step.

Acknowledgments. The author would like to thank Professor Hiromichi Takagi for many helpful comments and advice. The author was supported by the Grant-in-Aid for JSPS fellows, No. 16J00404.

2. The Locus Swept Out by Conics

We use the following notations. For a Fano hypersurface \(X \subset P^n \) of degree \(d \leq 6 \), we take an irreducible component \(R \neq \emptyset \) of \(R_2(X) \) such that \(\langle C \rangle \not\subset X \) for
general $C \in R_2(X)$. We denote by \tilde{R} the closure in $\text{Hilb}^{2+1}(X)$. Let

$$\mathcal{U} := \{ (C, x) \in R \times X \mid x \in C \}$$

be the universal family of R, and let $\pi : \mathcal{U} \to R$ and $\text{ev} : \mathcal{U} \to X$ be the first and second projections. For a subset $A \subset R$, we write $\mathcal{U}_A := \pi^{-1}(A)$ and $\text{Loc}(A) := \text{ev}(\mathcal{U}_A) = \bigcup_{C \in A} C \subset X$.

We write $R_x \subset R$ to be the set of $C \in R$ passing through $x \in X$, and write $R_{xy} = R_x \cap R_y \subset R$, the set of $C \in R$ passing through $x, y \in X$.

We set $\langle S_1 \cdots S_m \rangle \subset \mathbb{P}^n$ to be the linear variety spanned by subsets $S_1, \ldots, S_m \subset \mathbb{P}^n$. For example, $\langle xy \rangle \subset \mathbb{P}^n$ is the line passing through $x, y \in \mathbb{P}^n$, and $\langle C \rangle \subset \mathbb{P}^n$ is the 2-plane spanned by C for a conic $C \subset \mathbb{P}^n$.

The condition (1) in Theorem 1.1 gives the following basic property for R_{xy}.

Lemma 2.1. Let R'_{xy} be an irreducible component of R_{xy} such that $\langle C \rangle \not\subset X$ for general $C \in R'_{xy}$. Then

$$\mathcal{U}_{R'_{xy}} \to \text{Loc}(R'_{xy}) \subset X$$

is generically finite; moreover a fiber at $z \in \text{Loc}(R'_{xy})$ is of positive dimension only if $\langle xyz \rangle \subset X$. In particular, $\dim \text{Loc}(R'_{xy}) = \dim(R'_{xy}) + 1$.

Proof. If $\dim R'_{xy} = 0$, then the assertion follows immediately. Assume $\dim R'_{xy} \geq 1$. Then $\dim \text{Loc}(R'_{xy}) \geq 2$. Take $C \in R'_{xy}$ and $z \in C$ such that $M := \langle xyz \rangle = \langle C \rangle \not\subset X$. Then $M \cap X$ is a union of finitely many curves. Since any conic $\tilde{C} \in \pi(\text{ev}^{-1}(z) \cap \mathcal{U}_{R'_{xy}})$ satisfies $\tilde{C} \subset M$, it coincides with a component of $M \cap X$. Hence the fiber $\text{ev}^{-1}(z) \cap \mathcal{U}_{R'_{xy}}$ must be a finite set. \qed

We set $Y := \text{Loc}(R) \subset X$, the locus swept out by conics $C \subset R$, which is non-linear since $\langle C \rangle \not\subset X$ for general C. Let us consider the projection

$$\text{ev}^{(2)} : \mathcal{U} \times R \mathcal{U} \simeq \{ (C, x, y) \in R \times Y \times Y \mid x, y \in C \} \to Y \times Y$$

whose fiber at $(x, y) \in Y \times Y$ is isomorphic to R_{xy}. Considering $\mathcal{U} \times_R \mathcal{U} \to R$, we have $\dim \mathcal{U} \times_R \mathcal{U} = r + 2$. Note that $\text{ev}^{(2)}$ is dominant if and only if $\text{Loc}(R_x) = Y$ holds for general $x \in Y$.

Remark 2.2. Assume that $\dim R$ is greater than the expected dimension. Then the locus Y is much smaller than X. More precisely, by a result of R. Beheshti [3, Theorem 3.2(b)], it holds that $\dim Y \leq n - 3$.

We immediately have $\dim Y \leq n - 2$; this is because if $X = Y = \text{Loc}(R)$ (i.e., $\dim Y = n - 1$) in characteristic zero, then R has a free curve C and then R must have expected dimension. Beheshti’s result gives the inequity which is sharper than this.
Lemma 2.3. If \(d \leq 6 \) and \(r = \dim R \) is greater than the expected dimension, then \((d, \dim Y) = (6, n - 3)\).

Proof. We have \(\dim Y \leq n - 3 \) due to Beheshti’s result as we saw in Remark 2.2. Let \((C, x, y) \in \mathcal{U} \times_R \mathcal{U}\) be general. Since \(\text{Loc}(R_{xy}) \subset Y \), it follows from the morphism \([2]\) and Lemma 2.1 that \((r + 2 - 2 \dim(Y)) + 1 \leq \dim(Y)\). Hence \(r + 3 - 3 \dim(Y) \leq 0 \). By assumption, \(r \geq 3n - 13 \). Thus

\[
3n - 2d + 2 - 3 \dim(Y) \leq 0.
\]

Since \(\dim Y \leq n - 3 \), we have \(11 - 2d \leq 0 \); hence \(d = 6 \). Therefore \(n - 10/3 \leq \dim(Y) \); hence \(\dim(Y) = n - 3 \). □

By the above lemma, let us study the case \((d, \dim Y) = (6, n - 3)\), and assume that \(r := \dim R \) is greater than the expected dimension, that is to say,

\[
(3) \quad r \geq 3n - 13.
\]

Lemma 2.4. \(\text{ev}^{(2)} \) is dominant. Therefore \(\text{Loc}(R_x) = Y \) for general \(x \in Y \).

Proof. For general \((x, y) \in \text{im}(\text{ev}^{(2)})\), we have \(\dim R_{xy} = (r + 2) - \dim(\text{im}(\text{ev}^{(2)})) \), which implies \(\dim R_{xy} + \dim(\text{im}(\text{ev}^{(2)})) = (r + 2) \geq 3n - 11 \).

Suppose that \(\text{ev}^{(2)} \) is not dominant, that is, \(\dim(\text{im}(\text{ev}^{(2)})) < 2(n - 3) \). Then \(\text{Loc}(R_{xy}) \neq Y \), which implies \(\dim R_{xy} + 1 < \dim Y = n - 3 \) because of Lemma 2.1. Then \(\dim R_{xy} + \dim(\text{im}(\text{ev}^{(2)})) \leq (n - 5) + (2(n - 3) - 1) = 3n - 12 \), a contradiction. □

Note that for any \(x, y \in Y \)

\[
(4) \quad \dim R_{xy} \geq r + 2 - 2 \dim(Y) \geq n - 5.
\]

Hereafter we will use several projective techniques in order to study \(Y \).

Remark 2.5. We sometimes consider the Gauss map of a variety \(Z \subset \mathbb{P}^n \), which is a rational map

\[
\gamma_Z : Z \dasharrow \mathbb{G}(\dim Z, \mathbb{P}^n),
\]

sending a smooth point \(x \in Z \) to the embedded tangent space \(T_x Z \subset \mathbb{P}^n \) at \(x \). A general fiber of \(\gamma_Z \) is a linear variety of \(\mathbb{P}^n \) in characteristic zero (in particular, irreducible). The map \(\gamma_Z \) is a finite morphism if \(Z \) is smooth. See [15, I, §2].

We write \((\mathbb{P}^n)^\vee = \mathbb{G}(n - 1, \mathbb{P}^n) \), the space of hyperplanes of \(\mathbb{P}^n \). For a linear subvariety \(A \subset \mathbb{P}^n \), we denote by \(A^* \subset (\mathbb{P}^n)^\vee \) the set of hyperplanes containing \(A \). In addition, for a subset \(B \subset \mathbb{P}^n \), we set \(\text{Cone}_A(B) := \bigcup_{x \in B} \langle A, x \rangle \subset \mathbb{P}^n \), the cone of \(B \) with vertex \(A \).

Let us consider the linear variety \(\langle Y \rangle \subset \mathbb{P}^n \) spanned by the locus \(Y \subset X \). The following proposition states \(\langle Y \rangle \) cannot be so small in \(\mathbb{P}^n \).
Proposition 2.6. Assume \((d, \dim Y) = (6, n - 3)\) and the formula \([3]\). Then \(\langle Y \rangle\) is of dimension \(\geq n - 1\).

Proof. Since \(Y\) is non-linear, we immediately have \(\dim(\langle Y \rangle) > n - 3\). Now assume that \(\langle Y \rangle\) is an \((n - 2)\)-plane. We need to show two claims.

Claim 2.7. It holds that \(Y = \langle Y \rangle \cap X\) and \(\dim(\text{Sing}(Y)) \leq 1\). In particular,
\(Y \subset \langle Y \rangle = \mathbb{P}^{n-2}\) is a hypersurface whose degree is equal to \(\deg X = d = 6\).

Proof. For \(x \in \langle Y \rangle \cap X\), it holds that \(x \in \text{Sing}(\langle Y \rangle \cap X)\) if and only if \(\langle Y \rangle \subset T_x X\). It means that \(\gamma_X(\text{Sing}(\langle Y \rangle \cap X)) \subset \langle Y \rangle^*\) for the Gauss map \(\gamma_X : X \to (\mathbb{P}^n)^v\), where \(\langle Y \rangle^* \subset (\mathbb{P}^n)^v\) is the set of hyperplanes containing \(\langle Y \rangle\). Since \(X\) is smooth, \(\gamma_X\) is a finite morphism. Since \(\dim(\langle Y \rangle^*) = 1\), we have \(\dim(\text{Sing}(\langle Y \rangle \cap X)) \leq 1\). If there exists an irreducible component \(Y' \subset \langle Y \rangle \cap X \subset \langle Y \rangle = \mathbb{P}^{n-2}\) such that \(Y' \neq Y\), then we have \(\dim(Y' \cap Y) \geq n - 4 \geq 2\), which is a contradiction since \(Y' \cap Y \subset \text{Sing}(\langle Y \rangle \cap X)\). Thus \(\langle Y \rangle \cap X = Y\). \(\square\)

Claim 2.8. A general \(C \in R\) satisfies \(C \cap \text{Sing}Y \neq \emptyset\).

Proof. Suppose that a general conic \(C \in R\) satisfies \(C \cap \text{Sing}Y = \emptyset\). Since \(Y = \text{Loc}(R)\) and the characteristic is zero, \(C\) is free in \(Y\). Then \(R_2(Y)\) is smooth at \(C\) and has the expected dimension \(3(n - 2) - 2\deg Y - 2\). This contradicts that \(R \subset R_2(Y)\) is of dimension \(> 3n - 2d - 2\), where \(\deg Y = \deg X = d\) because of Claim 2.7. \(\square\)

From Claim 2.8, we may indeed assume
\[(5) \quad C \cap S \neq \emptyset\]
for an irreducible component \(S \subset \text{Sing}Y\). Note that \(\dim S \leq 1\).

First we consider the case \(n > 6\). Let \(C_0 \in R\) be a general conic such that \(\langle C_0 \rangle \not\subset X\), and take \(x, y \in C_0 \setminus S\) be general. From \([4]\) we have \(\dim R_{xy} \geq n - 5 \geq 2\). Let \(R_{xy}' \subset R_{xy}\) be an irreducible component containing \(C_0\), and take \((R_{xy}')^0 \subset R_{xy}' \subset X\) to be the set of \(C\) satisfying \(\langle C \rangle \not\subset X\). Then, for any \(C \in (R_{xy}')^0\) and \(s \in C \cap S\), we have \(\langle xys \rangle = \langle C \rangle \not\subset X\). From Lemma 2.1 for the morphism \(\tilde{ev} : \text{ev} \big|_{U(R_{xy}')^0} : U(R_{xy}')^0 \to \text{Loc}(R_{xy}')\), the preimage \(\tilde{ev}^{-1}(S)\) is of dimension \(\leq 1\). Since \(\dim R_{xy}' \geq 2\), we have \(\pi(\tilde{ev}^{-1}(S)) \neq R_{xy}'\), which means that \(C \cap S = \emptyset\) for general \(C \in R_{xy}'\), a contradiction.

Next we consider the case \(n = 6\), and complete the proof in the following four steps. Note that \(\langle Y \rangle = \mathbb{P}^4 \subset \mathbb{P}^6\).

Step 1. We show that \(S \not\subset \langle C_0 \rangle\) for general \(C_0 \in R\), and also show that \(S \not\subset M\) for a general 3-plane \(M \subset \langle Y \rangle\) containing \(C_0\).
Suppose \(S \subset \langle C_0 \rangle \) for general \(C_0 \in R \), and take \(x, y \in Y \) be general points. We can assume \(y \notin \text{Cone}_x(S) \). Since \(\dim R_{xy} \geq n - 5 \geq 1 \), taking general \(C, C' \in R_{xy} \) with \(C \neq C' \), we have \(S \subset \langle C \rangle \cap \langle C' \rangle = \langle xy \rangle \), a contradiction.

If \(S \subset M \) for a general 3-plane \(M \) containing \(C_0 \), then we can also take another general \(\tilde{M} \neq M \), and then \(\langle C_0 \rangle = M \cap \tilde{M} \supset S \), a contradiction.

Step 2. We consider \(\langle Y \rangle^\vee := \mathbb{G}(3, \langle Y \rangle) \), the set of 3-planes in \(\langle Y \rangle = \mathbb{P}^4 \). Let

\[
W = \{ (C, M) \in R \times \langle Y \rangle^\vee \mid C \subset M \},
\]

which is a \(\mathbb{P}^1 \)-bundle over \(R \); in particular, \(\dim W \geq 6 \). Let \(\text{pr}_2 : W \to \langle Y \rangle^\vee \) be the projection to the second factor.

For general \((C_0, M) \in W\), take \(R^M \) to be an irreducible component of \(R \cap R_2(M) \) containing \(C_0 \). We may assume that a general conic \(C \in R^M \) satisfies \(\langle C \rangle \nsubseteq X \). Since \(R \cap R_2(M) \simeq \text{pr}_2^{-1}(M) \), we can assume \(\dim R^M \geq 6 - \dim(\text{pr}_2(W)) \). We set the surface

\[
Y^M := \text{Loc}(R^M) \subset Y \cap M.
\]

Step 3. Assume \(\dim \text{pr}_2(W) \leq 3 \). Then we have \(\dim R^M \geq 3 \), which implies that \(R^M \to \mathbb{G}(2, M) = (\mathbb{P}^3)^\vee : C \mapsto \langle C \rangle \) is dominant. From Step 1, \(S \cap M \) is a set of finite points. Thus \(L \cap S = \emptyset \) for a general 2-plane \(L \subset M \). Taking a general \(C \in R^M \) such that \(\langle C \rangle = L \), we find that \(C \cap S = \emptyset \), which contradicts the condition \([5]\).

Step 4. Assume \(\dim \text{pr}_2(W) = 4 \), that is, \(\text{pr}_2(W) = \langle Y \rangle^\vee \). For general \((C_0, M) \in W\), since \(M \) is general in \(\langle Y \rangle^\vee \), \(Y \cap M \) is irreducible. Then \(Y^M = Y \cap M \subset M = \mathbb{P}^3 \), which is a surface whose degree is equal to \(\deg Y = 6 \).

Since \(S \cap M \) is a finite set, we may assume that there exists \(s \in S \cap M \) such that \(s \in C \) for general \(C \in R^M \). This implies that \(R^M \subset R_s \). Considering \(U_{R^M} \to Y^M \), we find that \(\dim(R^M \cap R_s) \geq 1 \) for general \(x \in Y^M \). Since \(Y^M \) is surface, \(Y^M = \text{Loc}(R^M \cap R_s) = \text{Loc}(R^M \cap R_{xs}) \).

For general \(C \in R^M \), we show that \(\langle C \rangle \cap Y^M \) is scheme-theoretically equal to \(C \), as follows. Write \((\langle C \rangle \cap Y^M)_{\text{red}} = C \cup \bigcup E_i \) with the irreducible components \(E_i \)'s. Take a general \(x \in C \setminus \bigcup E_i \) and take a general \(y \in E_1 \setminus (C \cup \langle xs \rangle) \). Taking the closure

\[
\overline{R^M \cap R_{xs}} \subset \text{Hilb}^{2t+1}(X)
\]

and consider the surjective map \(U_{R^M \cap R_{xs}} \to Y^M \), we find \(\tilde{C} \in \overline{R^M \cap R_{xs}} \) such that \(x, y, s \in \tilde{C} \). Then \(\langle \tilde{C} \rangle = \langle yxs \rangle = \langle C \rangle \), which implies that \(\tilde{C} \subset Y^M \cap \langle C \rangle \).

By the choice of \(x \), it follows \(C \subset \tilde{C} \). Then \(C = \tilde{C} \), which implies \(y \in C \), a contradiction.
Thus \((\langle C \rangle \cap Y^M)_{\text{red}} = C\). Suppose that \(\langle C \rangle \cap Y^M\) is non-reduced, which means that \(C\) is a contact locus on \(Y^M\) of \(\langle C \rangle\), i.e., \(\gamma(C) = \langle C \rangle \in \mathbb{G}(2, M)\) for the Gauss map

\[
\gamma = \gamma_{Y^M} : Y^M \rightarrow \mathbb{G}(2, M)
\]

sending \(x \mapsto T_x Y^M\). Then \(\dim \gamma(Y^M) = 1\). Since \(Y^M = \text{Loc}(R^M)\), \(\langle C \rangle \in \gamma(Y^M)\) is a general point if so is \(C \in R^M\). As in Remark 2.5, the general fiber \(\gamma^{-1}(\langle C \rangle)\) is a linear variety, which contradicts \(\langle C \rangle \subset \gamma^{-1}(\langle C \rangle)\).

Thus \(\langle C \rangle \cap Y^M = C\) scheme-theoretically. This contradicts \(\deg Y^M = 6\). \(\square\)

3. Special point of a conic: the embedded tangent space at the point containing the conic

We use the notations of §2. From Lemma 2.3, we may assume \((d, \dim Y) = (6, n - 3)\) and the formula (3).

Lemma 3.1. Let \((C, x) \in \mathcal{U}\). Then the following holds.

- (a) \(C \not\subset T_x X\) if and only if \(T_x X \cap C = \{x\}\)
- (b) \(C \subset T_x X\) if and only if one of the following conditions holds: (i) \(\langle C \rangle \subset X\); (ii) \(\langle C \rangle \cap X\) is non-reduced along \(C\); (iii) \(x \in C \cap E\) for some irreducible component \(E \neq C\) of \(\langle C \rangle \cap X\).

Proof. (a) Since \(X \subset \mathbb{P}^n\) is a hypersurface and \(C\) is a smooth conic, if \(C \not\subset T_x X\), then we have \(T_x X \cap C \subset T_x X \cap (\langle C \rangle \cap C) = T_x C \cap C = \{x\}\).

(b) It is sufficient to consider the case when \(\langle C \rangle \not\subset X\). If \(C \subset T_x X\), then \(\langle C \rangle \subset T_x X\), and then \(\langle C \rangle \cap X\) is singular at \(x\). This means that (ii) or (iii) holds. \(\square\)

For a smooth conic \(C \subset X\), we always have a point \(x \in C\) satisfying \(C \subset T_x X\), as follows. Since \(\deg(X) = 6\), if (i) and (ii) does not hold, then we have a curve \(E \neq C\) in \(\langle C \rangle \cap X\), and have a point \(x \in C \cap E \subset \langle C \rangle = \mathbb{P}^2\) as in (iii).

Definition 3.2. We set \(\mathcal{U}^* \subset \mathcal{U}\) to be an irreducible component of \(\{ (C, x) \in \mathcal{U} \mid C \subset T_x X \}\) such that \(\mathcal{U}^* \rightarrow R\) is dominant, and set \(R^*_x := \pi(\text{ev}^{-1}(x) \cap \mathcal{U}^*)\), which consists of conics \(C \subset X\) such that \(x \in C \subset T_x X\). Note that \(\text{Loc}(R^*_x) \subset T_x X\).

Lemma 3.3. \(\mathcal{U}^* \neq \mathcal{U}\).

Proof. We consider the Gauss map \(\gamma : X \rightarrow (\mathbb{P}^n)^\vee\). If \(\mathcal{U}^* = \mathcal{U}\), then it follows from Lemma 2.4 that \(Y = \text{Loc}(R_x) = \text{Loc}(R^*_x) \subset T_x X\) for general \(x \in Y\), and then \(T_x X = \langle Y \rangle \subset \mathbb{P}^n\) because of Proposition 2.6. Then \(\gamma(Y) = \langle Y \rangle \in (\mathbb{P}^n)^\vee\), which contradicts that \(\gamma\) is a finite morphism as we mentioned in Remark 2.5. \(\square\)

Lemma 3.4. Let \(x \neq y \in Y\) satisfy \(y \in T_x X\). Then \(C \subset T_x X\) for any \(C \in R_{xy}\).
Proof. Take \(C \in R_{xy} \) and suppose \(C \not\subset T_x X \). Since \(\langle C \rangle \not\subset T_x X, \langle C \rangle \cap T_x X \) is the line passing through \(x \) and \(y \). On the other hand, we have \(\langle C \rangle \cap T_x X = T_x C \), which does not intersect with any point of \(C \) except \(x \) since \(C \) is a smooth conic, a contradiction. Thus we have \(C \subset T_x X \). \(\square \)

By Lemma 3.3, we may assume that \(U^* \neq U \). Then \(\dim U^* = \dim R = r \). We take the projection

\[
\mu : U^* \times_R U \simeq \{ (C, x, y) \in R \times Y \times Y \mid (C, x) \in U^*, (C, y) \in U \} \to \text{ev}(U^*) \times Y,
\]

such that \(\mu(C, x, y) = (x, y) \), where \(\text{ev} : U \to Y \) is the second projection.

Let \((C, x, y) \in U^* \times_R U \) be general. (Then \(x, y \in C \subset T_x X \).) We can take the unique irreducible component \(R_{xy}' \subset R_x^* \) containing \(C \), and take the unique irreducible component \(R_{xy}^* \subset R_{xy} \) containing \(C \). (The uniqueness comes from the general choice of \(C \).)

Lemma 3.5. In the above setting, we have \(R_{xy}^* \subset R_x^* \).

Proof. It follows from Lemma 3.4. \(\square \)

Moreover, we have the following key proposition, where for the projection, \(\text{im}(\mu) \to \text{ev}(U^*) : (x, y) \mapsto x \), we also consider the following fiber product

\[
\text{im}(\mu) \times_{\text{ev}(U^*)} \text{im}(\mu) \simeq \{ (x, y, z) \in \text{ev}(U^*) \times Y \times Y \mid (x, y), (x, z) \in \text{im}(\mu) \}.
\]

Note that, for an element \((x, y, z)\) of the above set, there exists conics \(C_1, C_2 \subset T_x X \) such that \(x, y \in C_1 \) and \(x, z \in C_2 \). The projection \(\text{im}(\mu) \times_{\text{ev}(U^*)} \text{im}(\mu) \to Y \times Y \) is dominant.

Proposition 3.6. Assume \((d, \dim Y) = (6, n - 3)\) and the formula \([3]\). Then the following holds.

(a) \(\text{Loc}(R_x^*) = \text{Loc}(R_{xy}) \) and the dimension is \(n - 4 \) for general \((C, x, y) \in U^* \times_R U \).

(b) \(\text{Loc}(R_x^*) \) is an \((n - 3)\)-plane of \(\mathbb{P}^n \) for general \((C, x) \in U^* \).

(c) The projection \(U^* \times_R U \times_R U \to \text{im}(\mu) \times_{\text{ev}(U^*)} \text{im}(\mu) \) defined by \((C, x, y, z) \mapsto (x, y, z) \) is dominant.

(d) Let \((C, x, y, z) \in U^* \times_R U \times_R U \) be general (here, \(x, y, z \in C \subset T_x X \)). Then \(\text{Loc}(R_{xy}^*) = \text{Loc}(R_{yz}'), \) where \(R_{yz}' \subset R_{yz} \) is the unique irreducible component containing \(C \).

From (a) and (b), we have that \(\text{Loc}(R_x^*) \) is a hypersurface of \(\text{Loc}(R_x^*) = \mathbb{P}^{n-3} \). Moreover, as a corollary, later we will show that \(\text{Loc}(R_x^*) \) is a quadric hypersurface, and also will see our problem is reduced to the case of \(n = 6 \) (Corollary 3.9).

Remark 3.11.

In order to prove this proposition, we show the following two lemmas.
Lemma 3.7. \(\text{ev}(U^*) \subset Y \) is of dimension \(\geq n - 5 \). Hence \(\text{Loc}(R_x^*) \neq Y \) for general \(x \in \text{ev}(U^*) \).

Proof. Let \((C, x, y) \in U^* \times_R U \) be general such that \(\langle C \rangle \not\subset X \). Considering the morphism \(\mu, R_x^* \cap R_y \subset R_{xy} \) is of dimension \(\geq r + 1 - \dim \text{ev}(U^*) - \dim Y \). From Lemma 2.1, \(r + 2 - \dim \text{ev}(U^*) - \dim Y \leq \dim Y \). Hence \(\dim \text{ev}(U^*) \geq r + 2 - 2 \dim(Y) \), where the right hand side is \(\geq n - 5 \).

Since \(n \geq 6 \), \(\text{ev}(U^*) \) has positive dimension. On the other hand, we have \(\# \{ x \in \text{ev}(U^*) \mid \text{Loc}(R_x^*) = Y \} \leq \infty \) as follows. If \(\text{Loc}(R_x^*) = Y \), then \(Y \subset T_x X \) and then \(\langle Y \rangle = T_x X \) because of Proposition 2.6. Hence, by the finiteness of the Gauss map of smooth \(X \), we have the assertion. \(\square \)

Lemma 3.8. Let \(S \subset \mathbb{P}^n \) be a non-linear projective variety. Assume \(\text{Cone}_x S = \text{Cone}_y S \) for general \(x, y \in S \). Then \(\langle S \rangle \subset \mathbb{P}^n \) is a \((\dim(S) + 1) \)-plane.

Proof. Take a general point \(x \in S \) and consider the linear projection \(\pi_x : \mathbb{P}^n \rightarrow \mathbb{P}^{n-1} \) from \(x \). Then we have

\[
\pi_x(S) = \pi_x(\text{Cone}_x S) = \pi_x(\text{Cone}_y S) = \text{Cone}_{\pi_x(y)}(\pi_x(S))
\]

for general \(y \in S \). Hence \(\pi_x(S) = \text{Cone}_{y'}(\pi_x(S)) \) for general \(y' \in \pi_x(S) \). This means that \(\pi_x(S) \) is a \((\dim(S)) \)-plane. Hence \(\text{Cone}_x S \) is a \((\dim(S) + 1) \)-plane, which implies the assertion. \(\square \)

Proof of Proposition 3.6. (a) We may assume \(\langle C \rangle \not\subset X \). From Lemma 2.1 and the formula \((4) \), we have \(\dim \text{Loc}(R_{xy}^*) \geq n - 4 \). On the other hand, Lemma 3.7 implies \(\dim \text{Loc}(R_{xy}^*) \leq n - 4 \). Hence Lemma 3.5 implies \(\text{Loc}(R_{xy}^*) = \text{Loc}(R_x^*) \) and the dimension is \(n - 4 \).

(b) From (a), for general \(y \in \text{Loc}(R_x^*) \), it follows \(\text{Loc}(R_x^*) = \text{Loc}(R_{xy}^*) \), where the right hand side is the closure of \(\bigcup_{C \in R_{xy}} \langle C \rangle \subset \mathbb{P}^n \). Since \(\text{Cone}_x C = \langle C \rangle \) is irreducible, it is sufficient to show that, for general \(x \in \text{ev}(U^*) \) and for general \(y, z \in \text{Loc}(R_x^*) \), there exists \(C \) such that \(\langle C, x, y, z \rangle \in U^* \times_R U \times_R U \).

(c) Since \(\text{im}(\mu) \times_{\text{ev}(U^*)} \text{im}(\mu) \) is irreducible, it is sufficient to show that, for general \(x \in \text{ev}(U^*) \) and for general \(y, z \in \text{Loc}(R_x^*) \), there exists \(C \) such that \(\langle C, x, y, z \rangle \in U^* \times_R U \times_R U \).

First we can take a general \(\langle C_0, x, y \rangle \in U^* \times_R U \) with some \(C_0 \in R_x^* \). From (a), we have \(\text{Loc}(R_{xy}^*) = \text{Loc}(R_{xy}^*) \). Since \(z \in \text{Loc}(R_x^*) \) is general, we have a general \(C \in R_{xy}^* \) such that \(z \in C \).

(d) Consider the projection

\[
\text{pr}_{34} : U^* \times_R U \times_R U \rightarrow Y \times Y
\]
sending \((C, x, y, z) \mapsto (y, z)\). Let \(F_{yz}\) be an irreducible component of the fiber of \(\text{pr}_{34}\) at a general \((y, z) \in Y \times Y\). We identify \(F_{yz}\) and its image in \(U^*\) under the projection \(\text{pr}_{12} : (C, x, y, z) \mapsto (C, x)\).

Let us consider
\[
\bigcup_{(C, x) \in F_{yz} : \text{general}} \text{Loc}(R_x^{*'}) \subset \bigcup_{(C, x) \in F_{yz} : \text{general}} \langle \text{Loc}(R_x^{*'}) \rangle.
\]

Suppose that the closure of the left hand side is equal to \(Y\). Then (b) implies
\[
\text{Cone}_y Y = \text{Cone}_y \bigcup_{(C, x) \in F_{yz} : \text{general}} \text{Loc}(R_x^{*'}) = \bigcup_{(C, x) \in F_{yz} : \text{general}} \langle \text{Loc}(R_x^{*'}) \rangle.
\]

In the same way, \(\text{Cone}_z Y = \bigcup_{(C, x) \in F_{yz} : \text{general}} \langle \text{Loc}(R_x^{*'}) \rangle\). Hence \(\text{Cone}_y Y = \text{Cone}_z Y\). Since \(y, z \in Y\) are general, Lemma 3.8 implies that \(\langle Y \rangle \subset \mathbb{P}^n\) is an \((n-2)\)-plane, which contradicts Proposition 2.6.

Hence the closure of \(\bigcup_{(C, x) \in F_{yz} : \text{general}} \text{Loc}(R_x^{*'})\) is not equal to \(Y\). Since \(\text{Loc}(R_x^{*'})\) is of codimension 1 in \(Y\), it means that \(L := \text{Loc}(R_x^{*'})\) is constant for general \((C, x) \in F_{yz}\). Then \(\text{Loc}(R_{yz}^{*'}) = \bigcup_{(C, x) \in F_{yz} : \text{general}} C \subset L\). Since \(\dim \text{Loc}(R_{yz}^{*'}) \geq n-4\), the assertion follows.

Corollary 3.9. Assume \((d, \dim Y) = (6, n-3)\) and the formula \([3]\). Then the following holds.

(a) For general \((C, x) \in U^*\), \(\text{Loc}(R_x^{*'}) \subset \langle \text{Loc}(R_x^{*'}) \rangle = \mathbb{P}^{n-3}\) is a quadric hypersurface.

(b) The projection to the second factor
\[
q : \{ (C, H) \in R \times (\mathbb{P}^n)^\vee \mid C \subset H \} \rightarrow (\mathbb{P}^n)^\vee
\]
is dominant. (In particular, a general fiber of \(q\) is of dimension \(r-3\).)

Proof. (a) Let \(y, z \in \text{Loc}(R_x^{*'})\) be general. Let \(M \subset \langle \text{Loc}(R_x^{*'}) \rangle\) be a general 2-plane such that \(y, z \in M\).

From Proposition 3.6(c), \((C_0, x, y, z)\) is general in \(U^* \times_R U \times_R U\) with some \(C_0\). From Proposition 3.6(d), it holds that \(\text{Loc}(R_{yz}^{*'}) = \text{Loc}(R_x^{*'})\). We consider
\[
R_{yz}^{*'} \rightarrow \langle yz \rangle^* : C \mapsto \langle C \rangle,
\]
which is generically finite, where \(\langle yz \rangle^* \subset G(2, \langle \text{Loc}(R_x^{*'}) \rangle)\) is the set of 2-planes containing the line \(\langle yz \rangle\). Since \(\dim R_{yz}^{*'} \geq n-5 = \dim \langle yz \rangle^*\), this morphism is dominant.
Thus we can take a general $\tilde{M} \in \langle yz \rangle^* \subset \mathbb{C}^2, \langle \text{Loc}(R^*_y) \rangle$ near M such that $\tilde{M} = \langle \tilde{C} \rangle$ for some $\tilde{C} \in R^*_y$. By generality, $\tilde{M} \cap \text{Loc}(R^*_x)$ is irreducible. Hence $\tilde{C} = \tilde{M} \cap \text{Loc}(R^*_x)$, which means that $\deg(\text{Loc}(R^*_x)) = 2$.

(b) For M in (a) above, we can take a hyperplane $H \subset \mathbb{P}^n$ containing \tilde{M} as a general element of $(\mathbb{P}^n)^\vee$, and then $(\tilde{C}, H) \in R \times (\mathbb{P}^n)^\vee$, which means that q is dominant.

Considering the projection to the first factor, we find that the dimension of the left hand side of q is $r + n - 3$. Thus a general fiber of q is of dimension $r - 3$. □

Remark 3.10. It is known that if a smooth hypersurface in \mathbb{P}^n of degree > 2 contains an m-dimensional quadric hypersurface, then $m \leq (n - 1)/2$. Thus Corollary 3.9(a) implies $n \leq 7$.

Remark 3.11. By induction on n, it is sufficient to show Theorem 1.1 in the case of $n = 6$. We see the details in the following. Let $n > 6$ and let $R \subset R_2(X)$ be an irreducible component.

Assume $(d, \dim Y) = (6, n - 3)$ and the formula (3) i.e., $r := \dim R$ is greater than the expected one. Since q is dominant as in Corollary 3.9(b), a fiber of q at general $H \in (\mathbb{P}^n)^\vee$, which identified with $R \cap R_2(X \cap H)$, is of dimension $r - 3$. Again since q is dominant, we may take a conic $C \subset H$ as a general member of R. Then we may take an irreducible component R' of $R_2(X \cap H)$ containing C such that $\dim R' \geq r - 3 \geq 3n - 16$. Since C satisfies $\langle C \rangle \not\subset T_x X$, we have $\langle C \rangle \not\subset T_x X \cap H = T_x (X \cap H)$. Then a general $\tilde{C} \in R'$ satisfies $\langle \tilde{C} \rangle \not\subset T_x (X \cap H)$.

Since H is general, $X \cap H \subset H = \mathbb{P}^{n-1}$ is smooth. Once Theorem 1.1 is proved for $n - 1$, we have a contradiction since $\dim R'$ must be equal to the expected dimension $3(n - 1) - 14$.

Using the above results and notations, we now prove the main theorem.

Proof of Theorem 1.1. Let $R \not= \emptyset$ be an irreducible component of $R_2(X)$ satisfying the condition (1) and assume that $r := \dim R$ is greater than the expected dimension. From Lemma 2.3, Corollary 3.9(b), and Remark 3.11 we may assume $n = d = 6$ and $\dim Y = 3$. Then $r \geq 5$.

Claim 3.12. $\deg(Y) = 3$ or 4 and $\dim \langle Y \rangle \geq 5$.

Proof. From Proposition 2.6 we have $\dim \langle Y \rangle \geq 5$. In particular, $\deg(Y) \geq 3$. Let $H \subset \mathbb{P}^6$ be a general hyperplane, and set $Y' = Y \cap H$. It follows from Corollary 3.9(b) again that $R \cap R_2(Y')$ is of dimension ≥ 2. It is classically known that, if a surface Y' has a 2-dimensional family of conics, then Y' is projectively equivalent to either the Veronese surface $\mathbb{P}^2 \hookrightarrow \mathbb{P}^5$ or its image under linear projections (see [13, p. 130, p. 157]). Hence $\deg(Y) = \deg(Y') \leq 4$. □

Our first goal is to show that $\langle Y \rangle \subset \mathbb{P}^6$ is of dimension 5. Set $Q_{yz} \subset Y$ to be the surface $\text{Loc}(R^*_y)$ for general $(C, y, z) \in U \times_R U$.

Claim 3.13. Q_{yz} is a quadric surface, and $Q_{yz} = Q_{\tilde{y}}$ holds for general $(\tilde{C}, \tilde{y}) \in U_{R_{yz}}$.

Proof. Since $(\tilde{C}, y, z, \tilde{y})$ is general in $U \times_R U \times_R U$, R'_{yz} (resp. R_{yz}) is the unique irreducible component of R_{yz} (resp. R_{yz}) containing \tilde{C}. We can take $x \in \tilde{C}$ such that (\tilde{C}, x) is general in U^\ast. Then [Proposition 3.6(d)] implies $Q_{yz} = \text{Loc}(R^\ast_{\tilde{y}}) = Q_{\tilde{y}}$, which is a quadric as in Corollary 3.9.

For general $y, z_1, z_2 \in Y$ (with some C_i such that (C_i, y, z_i) is general in $U \times_R U$), we write

$$K_{yz}^{z_1z_2} := T_yQ_{yz_1} \cap T_yQ_{yz_2} \subset T_yY = \mathbb{P}^3,$$

whose dimension is ≥ 1. Then $y \in K_{yz}^{z_1z_2} \subset \langle Q_{yz_1} \rangle \cap \langle Q_{yz_2} \rangle$. (Here we do not know “$z_i \in K_{yz}^{z_1z_2}$”.)

Claim 3.14. $\dim(\langle Q_{yz_1} \rangle \cap \langle Q_{yz_2} \rangle) = 1$. Hence $K_{yz}^{z_1z_2} = \langle Q_{yz_1} \rangle \cap \langle Q_{yz_2} \rangle$.

Proof. Suppose $\dim(\langle Q_{yz_1} \rangle \cap \langle Q_{yz_2} \rangle) \geq 2$ for general $y, z_1, z_2 \in Y$. First we take general points $y_0, z_1, z_2 \in Y$. By generality, $z_1 \notin \langle Q_{yz_2} \rangle$. For general $y \in Q_{yz_2}$, we have $\langle Q_{yz_2} \rangle = \langle Q_{y^0z_2} \rangle$ because of Claim 3.13. Consider an open subset $Y^0 \subset Y$ containing y_0 such that $\dim(\langle Q_{yz_1} \rangle \cap \langle Q_{yz_2} \rangle) \geq 2$ for $y \in Y^0$.

Since $Y = \bigcup_{y \in Q_{yz_2} \cap Y^0} Q_{yz_2}$, we have

$$\text{Cone}_{z_1} Y = \bigcup_{y \in Q_{yz_2} \cap Y^0} \langle Q_{yz_1} \rangle,$$

where the right hand side contains Q_{yz_2}; in fact, it contains the 3-plane $\langle Q_{yz_2} \rangle$ since each $\langle Q_{yz_1} \rangle$ satisfies $\dim(\langle Q_{yz_1} \rangle \cap \langle Q_{yz_2} \rangle) \geq 2$. Hence $\text{Cone}_{z_1} Y = \text{Cone}_{z_1} \langle Q_{yz_2} \rangle$, which is a 4-plane, a contradiction to $\dim(Y) \geq 5$.

Claim 3.15. $K_{yz}^{z_1z_2} \subset Q_{yz_1}$. Hence there exists an irreducible component $K_{yz}^{z_1}$ of $Q_{yz_1} \cap T_yQ_{yz_2} \subset \langle Q_{yz_1} \rangle$ such that $K_{yz}^{z_1} = K_{yz}^{z_1z_2}$ for general $z_2 \in Y$.

Proof. Suppose $K_{yz}^{z_1z_2} \subset Q_{yz_1}$. Let $z, w \in Y$ be general such that $w \notin Q_{yz}$. For general $\tilde{y} \in Q_{yz}$, we have $Q_{yz} = Q_{\tilde{y}}$.

Since Y is the closure of $\bigcup_{\tilde{y} \in Q_{yz} : \text{general}} Q_{\tilde{y}w}$, we have that $\text{Cone}_w Y$ is the closure of $\bigcup_{\tilde{y} \in Q_{yz} : \text{general}} \langle Q_{\tilde{y}w} \rangle$. Since $\tilde{y} \in K_{\tilde{y}w}^{z_1}$, we have $Q_{yz} \subset \bigcup_{\tilde{y} \in Q_{yz} : \text{general}} K_{\tilde{y}w}^{z_1}$. Moreover, since Q_{yz} is codimension one in $\langle Q_{yz} \rangle$, and since $K_{\tilde{y}w}^{z_1} \subset \langle Q_{yz} \rangle$, we have

$$\langle Q_{yz} \rangle \subset \bigcup_{\tilde{y} \in Q_{yz} : \text{general}} K_{\tilde{y}w}^{z_1}.$$
and the right hand side is of dimension 4. It holds that Cone, Y is a 4-plane, a contradiction.

Note that, since \(K_y^{z_1 + z_2} \) is contained in \(Q_{yz_1} \cap \mathbb{T}_y Q_{yz_1} \subset \langle Q_{yz_1} \rangle \), there exists an irreducible component of \(Q_{yz_1} \cap \mathbb{T}_y Q_{yz_1} \) which is equal to \(K_y^{z_1 + z_2} \) for general \(z_2 \in Y \). Hence the latter statement holds. \(\square \)

Claim 3.16. \(\langle Y \rangle \subset \mathbb{P}^6 \) is of dimension 5.

Proof. Let \(y, z_1 \in Y \) be general. Since \(Y \) is the closure of \(\bigcup_{z_2 \in Y; \text{ general}} Q_{yz_2} \), it follows that Cone, \(Y \) is the closure of \(\bigcup_{z_2 \in Y; \text{ general}} \langle Q_{yz_2} \rangle \). Since \(K_y^{z_1} = K_y^{z_1 + z_2} \subset \langle Q_{yz_2} \rangle \) for general \(z_2 \in Y \), we have that Cone, \(Y \) is a cone with vertex \(K_y^{z_1} = \mathbb{P}^1 \).

Let \(\tilde{y}, \tilde{z}_1 \in Y \) be general. We may assume \(\tilde{y} \notin K_y^{z_1} \) and \(y \notin K_y^{z_1} \). We show the statement in the following two steps.

Step 1. Suppose that two lines \(K_y^{z_1} \) and \(K_y^{z_2} \) intersect at a point \(v \). Then, for general \(s, t \in Y \), the line \(K_s^t \) also intersects with each of \(K_y^{z_1} \) and \(K_y^{z_2} \). If \(v \notin K_s^t \), then \(s \in K_s^t \subset \langle K_y^{z_1}, K_y^{z_2} \rangle \); hence we have \(Y \subset \langle K_y^{z_1}, K_y^{z_2} \rangle = \mathbb{P}^2 \), a contradiction.

If \(v \in K_s^t \), then since \(s \in Y \) is general and \(\overline{sv} = K_s^t \subset Y \), it follows that \(Y \) is a cone with vertex \(v \); hence \(Y \subset \mathbb{T}_v X \), which implies \(\langle Y \rangle = \mathbb{T}_v X = \mathbb{P}^5 \).

Step 2. Suppose \(K_y^{z_1} \cap K_y^{z_2} = \emptyset \). We have \(K_y^{z_1} = K_y^{z_1 + \tilde{y}} \subset Q_{\tilde{y}y} \subset \langle Q_{\tilde{y}y} \rangle \). In the same way, \(K_y^{z_2} \subset Q_{\tilde{y}y} \). Since \(K_y^{z_1} = \langle Q_{\tilde{y}z_1} \rangle \cap \langle Q_{\tilde{y}y} \rangle \), we have

\[K_y^{z_1} \cap \langle Q_{\tilde{y}z_1} \rangle = K_y^{z_1} \cap K_y^{z_2} = \emptyset. \]

For the linear projection \(\pi_y : \mathbb{P}^6 \dashrightarrow \mathbb{P}^5 \), we consider \(\pi_y(\langle Y \rangle) = \pi_y(\text{Cone}, Y) \), a cone with vertex \(w := \pi_y(K_y^{z_1}) \). Since \(w \notin \pi_y(\langle Q_{\tilde{y}z_1} \rangle) \) and since \(\pi_y(\langle Q_{\tilde{y}z_1} \rangle) \) is of codimension 1 in \(\pi_y(\langle Y \rangle) \), it follows that \(\pi_y(\langle Y \rangle) \) is a cone of the quadric \(\pi_y(\langle Q_{\tilde{y}z_1} \rangle) \) with vertex \(w \). Then \(\langle \pi_y(Y) \rangle = \mathbb{P}^4 \). Since \(y \in Y \) is general, it follows that \(Y \) is a 3-fold of degree 3 in \(\langle Y \rangle = \mathbb{P}^5 \). \(\square \)

Let us complete the proof. By the above claim, \(\langle Y \rangle = \mathbb{P}^5 \). Take \(X' := X \cap \langle Y \rangle \). Since the Gauss map \(\gamma = \gamma_X : X \rightarrow (\mathbb{P}^6)^{\vee} \) is finite, \(X' \) is singular at most finitely many points \((X')' \) is singular at \(x \) if and only if \(\gamma(x) \in \langle Y \rangle \subset (\mathbb{P}^6)^{\vee} \). In particular, \(X' \) is irreducible. (This is because, if \((X')' = X'_1 \cup X'_2 \subset \langle Y \rangle = \mathbb{P}^5 \), then \(X'_1 \cap X'_2 \subset \text{Sing} X' \).) Here \(Y \subset X' \subset \langle Y \rangle \).

Take a general hyperplane \(M \subset \langle Y \rangle = \mathbb{P}^5 \) such that \(X'' := X' \cap M \) is smooth. Then we have

\[Y \cap M \subset X'' \subset M = \mathbb{P}^4, \]

where \(Y \cap M \) is a surface of degree \(\leq 4 \) as in Claim 3.12 and \(X'' \) is a smooth 3-fold of degree 6 in \(\mathbb{P}^4 \). This is a contradiction since \(\text{Pic}(\mathbb{P}^4) \simeq \mathbb{Z} \rightarrow \text{Pic}(X'') : \mathcal{O}_\mathbb{P}(1) \rightarrow \mathcal{O}_\mathbb{P}(1)|_{X''} \) is isomorphic due to the Lefschetz theorem. \(\square \)
Example 3.17. Let $X \subset \mathbb{P}^7$ be the Fermat hypersurface of degree 6. Then $\mathbb{P}^3 \subset X$. Thus $R_2(\mathbb{P}^3) \subset R_2(X)$ is of dimension 8, and the expected dimension of $R_2(X)$ is $3n - 2d - 2 = 7$. For a general hyperplane $\mathbb{P}^6 \subset \mathbb{P}^7$, we have $\mathbb{P}^2 \subset X_1 := X \cap \mathbb{P}^6$. Then $R_2(\mathbb{P}^2) \subset R_2(X_1)$ is of dimension 5 and the expected dimension of $R_2(X_1)$ is 4.

In these examples, each $C \in R_2(\mathbb{P}^3)$ (resp. $C \in R_2(\mathbb{P}^2)$) satisfies $\langle C \rangle \subset \mathbb{P}^3 \subset X$ (resp. $\langle C \rangle = \mathbb{P}^2 \subset X_1$).

Example 3.18. Let $X \subset \mathbb{P}^{10}$ be the smooth hypersurface of degree 10 defined by the following polynomial,

$$f := x_0^8(x_0^2 + x_1^2 + x_2^2) + \sum_{i=1}^{5} x_i^{10} - \sum_{i=1}^{5} x_{i+5}^{10}.$$

Then the expected dimension of $R_2(X)$ is 8. We consider the 5-plane

$$M := \bigcap_{i=1}^{5} (x_i - x_{i+5} = 0) = \mathbb{P}^5 \subset \mathbb{P}^{10},$$

and take $Y \subset X \cap M$, to be the zero set of $x_0^2 + x_1^2 + x_2^2$ in M. Since Y is a cone of the conic $(x_0^2 + x_1^2 + x_2^2 = 0) \subset \mathbb{P}^2$, we have a birational map $R_2(Y) \to G(2, \mathbb{P}^5) : C \mapsto \langle C \rangle$. In particular, $\dim R_2(Y) = 9$. Thus, for an irreducible component $R \subset R_2(X)$ containing $R_2(Y)$, the dimension of R is greater than the expected dimension.

References

[1] W. Barth and A. Van de Ven. Fano varieties of lines on hypersurfaces. Arch. Math. (Basel) 31 (1978/79), 96–104.

[2] R. Beheshti. Lines on projective hypersurfaces. J. Reine Angew. Math. 592 (2006), 1–21.

[3] R. Beheshti. Hypersurfaces with too many rational curves, Math. Ann. 360 (2014), 753–768.

[4] R. Beheshti and N. M. Kumar. Spaces of rational curves in complete intersections, Compositio Mathematica 149 (2013), 1041–1060.

[5] T. D. Browning and P. Vishe. Rational curves on smooth hypersurfaces of low degree, Algebra and Number Theory 11 (2017), 1657-1675.

[6] A. Collino, J. P. Murre, G. E. Wolters. On the family of conics lying on a quartic threefold, Rend. Sem. Mat. Univ. Politec. Torino 38 (1980), 151–181.

[7] K. Furukawa. Rational curves on hypersurfaces, J. reine angew. Math. 665 (2012), 157-188.

[8] J. Harris, M. Roth, and J. Starr. Rational curves on hypersurfaces of low degree. J. Reine Angew. Math. 571 (2004), 73–106.

[9] J. Harris and J. Starr. Rational curves on hypersurfaces of low degree. II. Compos. Math. 141 (2005), 35–92.

[10] J. Kollár. Rational curves on algebraic varieties, Ergeb. Math. Grenzgeb. (3) 32, Springer-Verlag, Berlin 1996.

[11] J. M. Landsberg and C. Robles. Fubini’s theorem in codimension two. J. Reine Angew. Math. 631 (2009), 221–235.
[12] E. Riedl and D. Yang, Kontsevich spaces of rational curves on Fano hypersurfaces, arXiv:1409.3802.

[13] J. G. Semple and L. Roth, Introduction to algebraic geometry, Clarendon Press, Oxford, 1949.

[14] J. Starr. The Kodaira dimension of spaces of rational curves on low degree hypersurfaces, arXiv:math/0305432.

[15] F. L. Zak, Tangents and secants of algebraic varieties. Transl. Math. Monographs 127, Amer. Math. Soc., Providence, 1993.

Graduate School of Mathematical Sciences, the University of Tokyo, Tokyo, Japan
E-mail address: katu@ms.u-tokyo.ac.jp