Microalgal growth enhancement by levoglucosan isolated from the green seaweed *Monostroma nitidum*

Hai Quoc Luyen · Ji-Young Cho · Hyun-Woung Shin · Nam Gyu Park · Yong-Ki Hong

Received: 16 June 2006 / Revised and Accepted: 11 August 2006 / Published online: 21 November 2006
© Springer Science + Business Media B.V. 2006

Abstract Microalgal growth was enhanced by the addition of levoglucosan to the culture medium. The growth-enhancing compound levoglucosan was isolated from the green seaweed *Monostroma nitidum* using water extraction, molecular fractionation, DEAE-cellulose column chromatography, and high-performance liquid chromatography. Yield of the compound from seaweed powder was $5 \times 10^{-3}\%$ (w/w). At 10 mM concentration, levoglucosan enhanced cell growth and the specific growth rate of all feed microalgal species tested (*Chaetoceros gracilis*, *Chlorella ellipsosidea*, *Dunaliella salina*, *Isochrysis galbana*, *Nannochloris oculata*, *Navicula incerta*, *Pavlova lutheri*, *Tetraselmis suecica*) in most culture media by approximately 150%. Cellular fatty acid profiles and cell size differed marginally between cultures with and without levoglucosan.

Key words algal growth enhancer · Chlorophyta · levoglucosan · microalgal growth · *Monostroma nitidum*

Introduction

The mass culture of microalgae as feed for molluscs, crustaceans, and fish is an important component of the mariculture industry (Pulz & Gross, 2004). Microalgal feeds are especially valuable for early stages of marine species with fastidious dietary requirements that cannot be met by formulations of traditional agricultural products. Microalgal diets commonly have specific nutritional qualities and are in great demand because of their composition of protein, vitamins, pigments, and large amounts of docosahexaenoic acid [DHA; 22:6(n-3)] and eicosapentaenoic acid [EPA; 20:5(n-3)] (Mansour et al., 2005). Insufficient amounts of highly unsaturated fatty acids, especially DHA and EPA, cause high mortality and low growth rates, particularly during larval and early juvenile periods (Om et al., 2003; Park et al., 2006). Some microalgae have not been used extensively as nutritional diets because of difficulties in achieving high-density cultures, resulting in unreliable production (Wikfors & Ohno, 2001). The development of conventional photo-bioreactors would be one way to solve this problem (Pulz, 2001). Another way is to develop cell-growth-enhancing
substances to increase cell biomass and thus the economic feasibility of small-scale production. Previous screening of seaweed extracts in our laboratory has shown that the aqueous extract from the green seaweed *Monostroma nitidum* Wittrock activates cell growth in several microalgae (Cho et al., 1999). In an attempt to identify the microalgal growth enhancer, we isolated the compound levoglucosan, which enhances cell growth in several microalgae in various culture media.

Materials and methods

Monostroma nitidum

Thalli of the green seaweed *M. nitidum* Wittrock (Monostromaceae, Ulvales) were collected in March 2004 and March 2005 from the upper intertidal zone of calm inlets at Imwhe (34°22′23″ N, 126°15′16″ E), Jindo Island, Korea. Seaweed thalli were dried completely for 1 week at room temperature and then ground to a powder for 5 min using a coffee grinder. The powder was stored at −20°C until use.

Isolation of the active compound

M. nitidum powder (100 g) was extracted three times with 5 L 100% methanol. The residual methanol was evaporated from the powder sample, after which 5 L distilled water was added to extract the water-soluble fraction for 1 day (once). The aqueous extract was evaporated using a rotary evaporator at 40°C (800 mg). The extract was then dissolved in 0.1 M Tris buffer (pH 8.0) and separated by molecular size fractionation using an Amicon diafilter membrane (Danvers, MA). An active fraction smaller than MW 500 was loaded onto a DEAE-cellulose column (50 g; 30 × 6 cm; Sigma, St. Louis, MO) equilibrated with the same Tris buffer. Elution was carried out with 500 mL of the equilibration buffer, followed by 500 mL 0.1 M NaCl in the same buffer. The 0.1 M NaCl fraction (121 mg) was separated by reverse-phase high-performance liquid chromatography (HPLC) using a μBondapak C-18 column (3.9 mm ID × 30 cm; Waters, Milford, MA). Analysis was performed on a Waters 600 gradient liquid chromatograph monitored at 220 nm. The mobile phase consisted of two solvent systems: acetonitrile with 0.1% TFA and distilled water with 0.1% TFA. Elution was performed using a linear gradient of 0 to 100% acetonitrile over 50 min at a flow rate of 1 mL min⁻¹ for the first pass, and a linear gradient of 0 to 30% acetonitrile over 30 min for the second pass. The active growth-enhancer peak was eluted at 16% acetonitrile.

Analytical methods

The purified compound smaller than MW 500 was analyzed using a Jeol JNM-ECP 400 NMR spectrometer (Tokyo, Japan), operating at 400 and 100 MHz for ¹H and ¹³C, respectively, using methanol-d (CD₃OD). The GC-MS spectrum was analyzed using a Shimadzu GC-MS-QP5050A (Kyoto, Japan). The identity of the purified compound was confirmed by comparison with spectral data in Pfeffer et al. (1979) and Lafont et al. (1989).

Microalgal culture

To isolate the active compound, compare media, and analyze fatty acids, the axenic prasinophyte flagellate *Tetraselmis suecica* (Kylin) Butcher (CCAP-66; P-4) was cultured in f/2 medium (Guillard & Ryther, 1962) with an initial cell density of 1.2 × 10⁵ cells mL⁻¹. Purified compound (10 mM) was added to the medium and cultured under 70 μmol m⁻² s⁻¹ light intensity at 18°C for 4 days. Cells were counted under a microscope using a hemocytometer. Specific growth rate (λ) was calculated as a cell growth against the cultured day: log N−log N₀ = λ(T−T₀)/2.303, where N = cell numbers at day T, and N₀ = cell numbers at day T₀. Relative growth enhancement (%) was expressed as a relative rate: (L/N) × 100, where L = cell numbers cultured with levoglucosan, and N = cell numbers cultured without levoglucosan. To examine the effect of levoglucosan, *T. suecica* cell growth was compared in six different media (100 mL): f/2, ESM, MF, MKM, M-ASP7, and W-ESM (Kasai et al., 2006).
for fatty acid analysis, extraction of lipids and methylation were performed using methanolic boron trifluoride (Xu et al., 1998). Cells (∼5 × 10^6) were collected from 500 mL culture by centrifugation at 1,000 g for 10 min. The algal pellet was immediately sonicated with a mixture of 8 mL water, 10 mL chloroform, and 20 mL methanol for 10 min. Then, 10 mL chloroform and 10 mL water were added and the mixture was sonicated for 10 min, respectively. After centrifugation, the lower chloroform layer was removed and evaporated under a vacuum. Lipids were methylated in 5 mL of a mixture of BF_3 (14% BF_3 in methanol), benzene and methanol (5:4:11). The tube was flushed with nitrogen gas and sealed tightly before heating at 90°C for 30 min. Fatty acid methyl esters were extracted with GC-grade hexane and analyzed on a Shimadzu GC-MS QP5050A chromatograph equipped with a flame ionization detector.

Statistics

Each independent assay was repeated at least three times with separate cultures. Treatment means were compared to controls using Student’s t-test.

Results

Purification and identification of the active compound

The active compound was isolated as a white powdery compound (5 mg) from M. nitidum powder (100 g). The yield from the seaweed powder was 5 × 10^{-3}%. The mass spectrum of the purified compound showed a molecular ion peak [M+] at m/z 162, which corresponded with the molecular formula C_6H_{10}O_5. The fragmentation pattern was compared to a library and found to match well with levoglucosan (Figure 1). The 13C NMR spectrum showed the presence of six oxygenated carbons (δC 68.5, 67.8, 71.6, 72.2, 82.1, and 107.8). These oxygenated carbons were determined based on chemical shift. The 1H NMR spectrum revealed the presence of five oxygenated methine protons and an additional methylene proton (δH 3.40, 3.49, 3.73, 3.97, 4.98, and 3.86). Based on these spectral data, the compound was identified as levoglucosan and confirmed to be identical to data for authentic levoglucosan.

Effect of levoglucosan on microalgal growth

Tetraselmis suecica attained the stationary phase of growth within 8 days in f/2 medium under 70 μmol

Medium	No levoglucosan	Levoglucosan	Specific growth rate per day	
ESM	2.1 ± 0.1	3.1 ± 0.2	0.54	0.96
F/2	1.6 ± 0.2	2.3 ± 0.2	0.44	1.02
MF	1.9 ± 0.1	2.4 ± 0.1	0.98	1.66
MKM	3.0 ± 0.8	3.9 ± 0.2	0.18	0.30
W-ASP7	1.5 ± 0.1	2.0 ± 0.1	0.28	0.68
W-ESM	2.7 ± 0.1	4.0 ± 0.3	1.70	2.06
The half-life of the exponential phase was approximately 4 days; thus, cell numbers were counted at 4 days to determine growth enhancement. The purified levoglucosan compound was tested at different concentrations in f/2 medium using *T. suecica* (Figure 2). At 10 mM, levoglucosan demonstrated strong growth enhancement of up to 169% relative to the reference culture (i.e., from 1.3×10⁶ to 2.2×10⁶ cells mL⁻¹), and this concentration was used in all subsequent experiments. To confirm the effect in various culture media, 10 mM levoglucosan (Acros organics, New Jersey, USA) was added to *T. suecica* in six different media (100 mL): f/2, ESM, MF, MKM, M-ASP7 and W-ESM, and cultured for 4 days. *Tetraselmis suecica* overall cell numbers were increased by the addition of levoglucosan to the culture media (*P* < 0.1; Table 1). Levoglucosan was most effective in media such as ESM, W-ESM and f/2, which are commonly used for marine microalgae. Both cell counts and specific growth rates of the cultures increased (*P* < 0.1). The addition of levoglucosan in f/2 and W-ASP7 increased the specific growth rate of the microalga almost two-fold in the early growth phase between 3 and 4 days. Cell size (approximately 20 μm in diameter) was similar in cultures with and without levoglucosan. Other useful feed microalgae were also tested to determine the growth enhancement effectiveness of levoglucosan (Table 2). Levoglucosan enhanced the cell growth of all tested feed microalgae, especially *T. suecica*, *Isochrysis galbana* Parke, and *Chlorella ellipsoidea* Gerneck [K&H], with approximately 1.5-fold increases in cell density.

Fatty acid composition

Cellular fatty acid profiles were determined to ascertain whether the addition of levoglucosan caused changes in the lipid quality of the microalga as a feed organism. Polyunsaturated fatty acids (PUFA) are especially important in determining the nutritional value of diets for the survival and development of fish larvae. The proportions of PUFA, such as linoleic acid, linolenic acid, and EPA, differed marginally between cultures of *T. suecica* grown with and without levoglucosan (Table 3).

Discussion

Live algae are produced mainly in outdoor tanks or fermenters for limited local use, and the risk of contamination and maintenance costs are high. Until now, much attention has been focused on the development of new biofermenter designs (Pulz, 2001), storage methods after harvest (Lim & Park, 1998), and the improvement of nutritional value (Lopez Alonso et al., 1992). Little has been done to...

Table 2 Effect of levoglucosan on cell growth enhancement for various microalgae.

Microalga	No levoglucosan	Levoglucosan	Relative growth enhancement (%)
Chaetoceros gracilis	1.2 ± 0.1	1.6 ± 0.1	133
Chlorella ellipsoidea	1.6 ± 0.3	2.3 ± 0.4	144
Dunaliella salmon	1.0 ± 0.3	1.3 ± 0.1	130
Isochrysis galbana	1.3 ± 0.2	1.9 ± 0.1	146
Nannochloris oculata	1.6 ± 0.1	2.2 ± 0.1	138
Navicula incerta	1.4 ± 0.2	1.8 ± 0.2	129
Pavlova lutheri	1.9 ± 0.4	2.6 ± 0.3	137
Tetraselmis suecica	1.2 ± 0.2	1.9 ± 0.2	158

Values of cell numbers are mean × 10⁶ ± SD (*n* ≥ 3); *P* < 0.1. Each microalga was cultured for 4 days in f/2 medium with and without 10 mM levoglucosan.

Table 3 Profile of major fatty acids (% of total fatty acids) in *Tetraselmis suecica* cultured for 4 days in f/2 medium with and without 10 mM levoglucosan.

Fatty acids	No levoglucosan	Levoglucosan
14:0	2.8	3.2
16:0	21.9	22.7
17:0	2.7	2.9
18:0	47.1	49.4
18:1 (n-9)	1.9	1.7
18:2 (n-6)	2.0	1.7
18:3 (n-3)	14.5	13.2
20:5 (n-3)	2.7	2.5

Peaks of <1% of the total area are omitted.
develop growth enhancers to increase the productivity of live feed microalgae. We found that the cell count of cultured microalgae increased by approximately 50% when levoglucosan was added to the culture medium. However, little change occurred in the cellular fatty acid profiles and cellular size with the addition of levoglucosan. Previous research has determined that the gross biochemical composition and digestion efficiency were similar between cultures of *Isochrysis galbana* grown with and without *M. nitidum* crude extract (Cho et al., 1999). Among the 27 species of seaweed tested, only two—*M. nitidum* and *Grateloupia turuturu*—enhanced microalgal growth.

The seaweed *M. nitidum* is distributed in rocky areas in the upper intertidal zone of calm inlets. It grows during winter and early spring. It begins to mature, showing yellowish-green tissues along the thallus margin in February. Thalli are largest in March, at approximately 8 cm in length, 9 cm in width, and 2 g in wet weight. Frond cells form a monolayer. The fronds are edible and can be aquacultured using the same nets used for *Porphyra* (Kida, 1990). The aqueous extract inhibits the growth of the green alga *Enteromorpha prolifera* (Cho et al., 2001), decreases the total cholesterol and low-density lipoprotein in mouse (Jung et al., 1997), and enhances the cell growth of microalgae (Cho et al., 1999).

We isolated levoglucosan as the main active growth-enhancing compound from *M. nitidum*; the compound enhances growth for diverse microalgal species and in various culture media. Levoglucosan (CAS RN 498-07-7) contains an intramolecular glucosidic bond and has synonyms of 1,6-anhydro-β-d-glucopyranose, 1,6-anhydro-β-d-glucose, and anhydro-d-mannosan. Although levoglucosan can be easily hydrolyzed to glucose using an acid, none of the yeast and fungal strains tested showed levoglucosan hydrolyzing activity (Kitamura et al., 1991). In contrast, the formation of glucose 6-phosphate by an induced levoglucosan kinase was observed in reactions with cell extracts of levoglucosan-assimilating yeasts and fungi. Many eukaryotic microorganisms can utilize levoglucosan as a carbon and energy source for growth (Prosen et al., 1993; Zhuang et al., 2001). Very few prokaryotic organisms were found to use levoglucosan (Nakahara et al., 1994; Khiyami et al., 2005). Even though levoglucosan metabolism in microalgae has not been verified, its possible uses in microalgal culture are promising because most prokaryotic microorganisms are unable to metabolize levoglucosan, whereas all microalgae tested thus far have some ability to use it as a metabolite.

Acknowledgments This research was supported by a grant (B-2004-01) from the Marine Bioprocess Research Center of the Marine Bio 21 Project funded by MOMAF, Korea.

References

Cho JY, Jin HJ, Lim HJ, Whyte JNC, Hong YK (1999) Growth activation of the microalga *Isochrysis galbana* by the aqueous extract of the seaweed *Monostroma nitidum*. J Appl Phycol 10:561-567

Cho JY, Kwon EH, Choi JS, Hong SY, Shin HW, Hong YK (2001) Antifouling activity of seaweed extracts on the green alga *Enteromorpha prolifera* and the mussel *Mytilus edulis*. J Appl Phycol 13:117-125

Guillard RL, Ryther JH (1962) Studies of marine planktonic diatoms. I. *Cyclotella nana* Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229-239

Jung Y, Cho YC, Park IS, Ahn SH, Kim JT, Kang YJ, Hong YK (1997) Effect of the seaweed (*Monostroma nitidum*) extract on Triton WR-1339 induced hyperlipidemia in mice. J Kor Fish Soc 30:850-858

Kasai F, Kawachi M, Erata M, Watanabe MM (2004) NIES Collection List of Strains. 7th ed., Microalgae and Protozoa. National Institute for Environmental Studies, Tsukuba, Japan, p 246

Khiyami MA, Pometto AL, Brown RC (2005) Detoxification of corn stover and corn starch pyrolysis liquors by *Pseudomonas putida* and *Streptomyces setonii* suspended cells and plastic compost support biofilms. J Agric Food Chem 53:2978-2987

Kida W (1990) Culture of the seaweed *Monostroma*. Mar Behav Physiol 16:109-131

Kitamura Y, Abe Y, Yasui T (1991) Metabolism of levoglucosan (1,6-anhydro-beta-d-glucopyranose) in microorganisms. Agric Biol Chem 55:515-521

Lafont D, Boullanger P, Cadas O, Descotes G (1989) A mild procedure for the preparation of 1,6-anhydro-beta-d-hexopyranoses and derivatives. Synthesis 78:191-194

Lim HJ, Park SR (1998) Changes in survival rate, nutritional value and fatty acid profile of concentrated food phytoplanktons by cold storage. J Kor Fish Soc 31:567-573

Lopez Alonso D, Molina Grima E, Sanchez Perez JA, Garcia Sanchez JL, Garcia Camacho F (1992) Isolation of clones of *Isochrysis galbana* rich in eicosapentaenoic acid. Aquaculture 102:363-371

Mansour MP, Frampton DMF, Nichols PD, Volkman JK, Blackburn SI (2005) Lipid and fatty acid yield of nine stationary-phase microalgae: applications and unusual C24-C28 polyunsaturated fatty acids. J Appl Phycol 17:287-300

Nakahara K, Kitamura Y, Yamagishi Y, Shoun H, Yasui T (1994) Levoglucosan dehydrogenase involved in the
assimilation of levoglucosan in \textit{Arthrobacter} sp. 1-552. Biosci Biotechnol Biochem 58:2193–2196

Om AD, Ji H, Umino T, Nakagawa H, Sasaki T, Okada K, Asano M, Nakagawa A (2003) Dietary effects of eicosa-pentaenoic acid and docosahexaenoic acid on lipid metabolism in black sea bream. Fish Sci 69:1182–1193

Park HG, Puvanendran V, Kellett A, Parrish CC, Brown JA (2006) Effect of enriched rotifers on growth, survival, and composition of larval Atlantic cod (\textit{Gadus morhua}). J Mar Sci 63:285–295

Pfeffer PE, Valentine KM, Parrish FW (1979) Deuterium-induced differential isotope shift 13C NMR-resonance reassignments of mono- and disaccharides. J Am Chem Soc 101:1265–1274

Prosen EM, Radlein D, Piskorz J, Scott DS (1993) Microbial utilization of levoglucosan in wood pyrolysate as a carbon and energy source. Biotechnol Bioeng 42:538–541

Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

Wikfors GH, Ohno M (2001) Impact of algal research in aquaculture. J Phycol 37:968–974

Xu XQ, Beardall J, Hallam ND (1998) Modification of fatty acid composition in halophilic Antarctic microalgae. Phytochemistry 49:1249–1252

Zhuang XL, Zhang HX, Tang JJ (2001) Levoglucosan kinase involved in citric acid fermentation by \textit{Aspergillus niger} CBX-209 using levoglucosan as sole carbon and energy source. Biomass Bioenerg 21:53–60