APIEnet+: high bandwidth 3D torus direct network for petaflops scale commodity clusters

R Ammendola¹, A Biagioni², O Frezza², F Lo Cicero², A Lonardo², P S Paolucci², D Rossetti², A Salamon¹, G Salina¹, F Simula³, L Tosoratto² and P Vicini²

¹ INFN Tor Vergata, Roma
² INFN Roma, Roma
³ Sapienza Università di Roma, Roma

E-mail: francesca.locicero@roma1.uniroma1.it, piero.vicini@roma1.infn.it

Abstract.

We describe herein the APElink+ board, a PCIe interconnect adapter featuring the latest advances in wire speed and interface technology plus hardware support for a RDMA programming model and experimental acceleration of GPU networking; this design allows us to build a low latency, high bandwidth PC cluster, the APIEnet+ network, the new generation of our cost-effective, tens-of-thousands-scalable cluster network architecture.

Some test results and characterization of data transmission of a complete testbench, based on a commercial development card mounting an Altera® FPGA, are provided.

1. Introduction

The Array Processor Experiment (APE) is a custom design for HPC targeting the field of Lattice QCD, started by the Istituto Nazionale di Fisica Nucleare and partnered by a number of physics institutions all over the world, that since its start in 1984 has developed four generations of custom machines [1, 2, 3, 4]. Leveraging on the acquired know-how in networking and re-employing the gained insights, a spin-off project called APIEnet [5, 6] developed an interconnect board that allows assembling a PC cluster à la APE with off-the-shelf components.

Following further developments funded by EU projects (FP 6 SHAPES [7, 8] and FP 7 EURETILE), the APIEnet project evolved into APIEnet+ [9]; its achievement is the design of the APElink+ host adapter, which integrates both a network interface and a switching component, bringing in state-of-the-art wire speeds for the links and a PCIe X8 gen2 host interface. With this latest push to higher bandwidth, low power and low cost of the data transmission system, we are encompassing not only a broader range of intensive numerical algorithms (Lattice QCD is our primary but not exclusive concern), but also the field of acquisition systems for modern particle and astroparticle experiments (sLHC, ILC, CLIC, NA62...).

The outlook of this article is as follows: the first section explains the global network architecture; the second one gives the details of the host board; the third one outlines the software stack provided by the programming environment; the fourth one sketches the current deployment of APIEnet+ hardware in the framework of our QUOnG HPC initiative; the fifth and final one gives conclusions and outlines to future work.
2. The APEnet+ hardware

The APEnet+ interconnect is our low latency, high bandwidth packet-based direct network, supporting state-of-the-art link wire speeds and a PCIe X8 gen2 host connection. On this network, the computing host — e.g. a multi-core CPU optionally paired with GPU — is equipped with one APElink+ board and made into a node of the cluster. The nodes are connected by point-to-point links to form a 3D torus in a cubic mesh; each node communicates with each of its 6 neighbours along the \(X^+\), \(X^-\), \(Y^+\), \(Y^-\), \(Z^+\) and \(Z^-\) directions by bi-directional full-duplex communication channels.

Size envelope (header+footer) of packets is hard-coded and fixed, while payload size is variable; packets are auto-routed to their final destinations according to wormhole dimension-ordered static routing, with the system taking care of dead-lock avoidance.

The hardware block structure, depicted in Figure 1, is split into a so called network interface — the packet injection and processing logic comprising PCIe, TX/RX logic, etc. — a router component and multiple torus links.

![Figure 1. Internal FPGA block architecture.](image)

The APElink+ network interface has basically two main tasks:

- On the transmit data path, it gathers data coming in from the PCI-express port, fragmenting the data stream into packets which are forwarded to the relevant destination ports, depending on the requested operation.
- On the receive side, it provides hardware support for the RDMA programming model, implementing the basic RDMA capabilities (PUT and GET semantics) at the firmware level.

Within this block, the addition of a NIOS II 32 bit embedded micro-controller — a standard Altera® Intellectual Property — simplifies some tasks along the path of the received packets.

The routing block takes care of examining the packet header and resolving the destination address into a proper path across the switch according to the chosen routing algorithm.

The torus link block manages the data flow by encapsulating the APEnet+ packets into a light, low-level, word-stuffing protocol able to detect transmission errors via CRC. It implements two virtual channels [10] and proper flow-control logic on each RX link block to guarantee deadlock-free operations.

3. The APElink+ card

For the design of the building brick of the APEnet+ infrastructure we leveraged on the most recent advances in host interface technology, physical link speed and connector mechanics; the result is the latest generation of our hardware, the APElink+ card — see Table 1. —

The APElink+ card is a single FPGA-based PCI Express board; the employed FPGA device is the EP4SGX290, which is part of the Altera® 40 nm Stratix IV device family and comes
equipped with 36 full-duplex CDR-based transceivers, supporting data rates up to 8.5 Gbps each. It also provides a PCIe X8 gen2 interface, which is complemented by a commercial PCIe core to allow communication between the host processor and the network.

Moreover, an Ethernet port is foreseen in order to build an additional, secondary network with an offload engine for collective communication tasks.

3.1. APElink+ physical links
In the global network structure, each card stands as a vertex of a 3D torus mesh network with 6 independent point-to-point multiple links channel (i.e. the links between mesh sites). Each link is made up of 4 bi-directional lanes bonded together; the automatic alignment logic is our original addition.

Four links out of six are hosted on the main board; two more, say Z^+ and Z^-, are located in a detachable, small daughter-card on the upper level. In this way, the complete card takes on two PCI standard slots in a PC chassis, maintaining the chance, if four links are enough, to use it in a single slot wide configuration.

The torus links are 6 independent blocks with 2 virtual channel receive buffers each, added to manage deadlock prevention. Proper flow control is maintained via credits handshake between a local RX block and the remote TX block; this handshake is embedded in the link protocol data layer. The torus link is able to autonomously re-transmit the header and the footer in case of transmission errors. Therefore, the protocol assures the delivery of the packet, avoiding nonrecoverable situations where badly corrupted packets (with errors in the header or footer) pose a threat to the global routing. Packets with payload errors (signaled by the footer) must be instead handled at the software level. The chosen CRC polynomial generator is the industry-standard, well-known CRC-32.

3.2. APElink+ routing capabilities
The router comprises a fully connected, 7-ports-in/7-ports-out switch, plus routing and arbitration blocks. The routing block examines the header of each packet and translates its destination address to a proper path across the switch; the routing is dimension-ordered, with a measured latency of 60 ns.

FPGA component	APElink	APElink+
# links	6	4/6
link technology	external National ser/des	embedded Altera transceivers
link cables	LVDS	QSFP+ standard
raw link speed	6 Gbps	34 Gbps
host interface	PCI-X 133 MHz	PCIe X8 Gen2
peak host BW	1GB/s	4+4GB/s

3.3. Test bed and preliminary results
A schematic view of the complete APEnet+ board is visible in Figure 2. The prototypes will be available at February 2011.
A test system has been built in order to develop the FPGA firmware, the PCIe interface and the physical layer interconnection technology [11]. We used a commercial Altera® development kit (equipped with a smaller Altera® Stratix IV GX 230) and a custom-designed daughter-card (an HSMC mezzanine designed at Labe in INFN-Roma) hosting 3 QSFP+ connectors and some SMA test points. This setup allows us to test the complete communication chain up to a bitrate of 24 Gbps for each link. Signal integrity was checked connecting to dedicated SMA test points, straight at the output of the FPGA transceivers (see Figure 4) and on the mezzanine card (see Figure 5) after one Samtec® connector, two QSFP+ connectors and 1 m of copper QSFP+ cable.

The link was successfully tested up to 3 Gbps data rate (compared to 8.5 Gbps achievable with the Stratix IV embedded transceivers). Above this limit we found some signal degradation probably caused by the tower connector between the Altera development kit and the test mezzanine. Investigation is in progress; a likely culprit is the reduced bandwidth (below 5 GHz) of the 19 mm QTH Samtec® connector, which would be substituted anyway by higher bandwidth connectors in the production release of the communication card [12].

Characterization of signal integrity (and maximum achievable bandwidth) versus serial transceivers pre-emphasis and equalization is still in progress.

Recovered clock stability was checked transmitting a pseudorandom data stream organized in 128 bit wide words over 1 m copper QSFP+ cable and checking the relative phase between the input and the output clocks (see Figure 6). Recovered clock was found stable and in phase with the input clock up to 400 MHz.

Latency was checked transmitting a pseudorandom sequence over 1 m QSFP+ copper cable...
and rising a flag every time a fixed test word is transmitted and received by the serializer and the deserializer respectively (see Figure 7). Transmission system latency was found stable up to 160 MHz transmitting clock.

Figure 6. Recovered clock stability check at 40 MHz.
Figure 7. Latency measurement at 40 MHz.

4. The APEnet+ software stack
All APEnet+ software is available under the GNU GPL Licence and spans across four major topics: the firmware software running on the FPGA embedded processor, the Linux kernel driver, the application level RDMA library and a MPI implementation, these latter three developed and tested under RedHat Enterprise Linux 5.

Communication primitives \(\text{rdma}_\text{put}() \), \(\text{rdma}_\text{get}() \), \(\text{rdma}_\text{send}() \), buffer registration primitives \(\text{register}_\text{buffer}() \), \(\text{unregister}_\text{buffer}() \) and synchronization primitives \(\text{wait}_\text{event}() \) covering a custom subset of the low-level RDMA APIs are made available to the application programmer as a highly optimized C language library. On top of these, we built a native APEnet+ BTL module for OpenMPI 1.X.

Work is underway [13] on the hardware and software features needed for GPU-initiated communications, e.g. providing, using so called PCIe peer-to-peer transactions, a CUDA-enabled [14] version of the \(\text{rdma}_\text{put}() \) primitive, in order to avoid intermediate copies onto CPU memory buffers. To further reduce overhead, another development oversees the delivery of RDMA events by the APElink+ hardware in CPU memory in a way that is accessible from within CUDA kernels.

Another research topic is exposing GPU memory areas as RDMA buffers, in such a way they can be target of RDMA PUT and GET operations, even more reducing the latency of network operations. To this end, discussions are ongoing with some GPU vendors.

The firmware software running on the FPGA embedded processor is currently in charge of managing the RDMA virtual-to-physical address translation table, but we are exploring new ways to exploit it for higher-level tasks.

5. The deployment initiative
We are currently exploring interconnection of GPU-equipped systems by means of APEnet+ (QUOnG project) to reach the PetaFLOPs range in aggregated computing power and working on some GPU-related driver optimizations. For the 2011, our road-map foresees the integration of a QUOnG rack, a mesh of computing nodes which are rack-mounted 1U systems – based on a commodity Intel CPU Xeon 5650 – accelerated via high-end GPUs (Nvidia Tesla C1060/M2050) interconnected with the APEnet+ hardware. This system, housed in a single rack of 42U, will show a peak performance exceeding 60 TeraFLOPs and a power consumption of less than 26 KW. Leveraging on APEnet+ network, multiple QUOnG racks can be assembled to push up the complete system to PetaFLOPs scale.
6. Conclusions and future developments

A first mini-cluster is being assembled together with GPUs and the APElink+ version with 3 links, for final validation of the firmware, the interconnection and the complete software stack on a small size network (2-8 nodes). Synthetic tests, as well as real life simulations, will be performed, so to be ready with the 6-links prototype release and eventually a bigger cluster deployment.

The presence on the APEnet+ card of a programmable component of considerable power will allow us to explore reconfigurable computing, e.g. accelerating some tasks directly in hardware.

The needs of a large scale deployment make it necessary for APEnet+ to employ fault-tolerance features; we will be adding support for links’ self-diagnosis and the capability of routing around faulty nodes [15, 16].

7. Acknowledgments

The authors would like to thank the Electronics Laboratory at INFN Sezione di Roma [17] for technical support with the design, production and assembly of the test board used in this work.

This work was partially supported by the EU Framework Programme 7 project EURETILE under grant number 247846.

References

[1] http://apegate.roma1.infn.it/APE
[2] Bodin F et al., The APENEXT project, Proceedings of Lattice2001 conference (2002), Nucl.Phys.Proc.Suppl. 106, 173-176
[3] Ammendola R et al., Status of the apeNEXT project (2003), Proceeding of Lattice2002 conference, Nucl.Phys.Proc.Suppl. 119, 1038-1040.
[4] Belletti F et al., Computing for LQCD: apeNEXT (2006), Computing in Science Engineering, 8 18-29 [doi:10.1109/MCSE.2006.4].
[5] Ammendola R, Guagnelli M, Mazza G, Palombi F, Petronzio R, Rossetti D, Rossetti A, Salamon A, Vicini P, APEnet: LQCD clusters a la APE (2005), Proceedings of Lattice2004, Nucl.Phys.B - Proc.Suppl. 140, 826-828 [arXiv:hep-lat/0409071v1].
[6] Ammendola R, Petronzio R, Rossetti D, Salamon A, Tantalo N and Vicini P, Status of the APEnet project, Proceedings of Lattice2005 conference.
[7] Paolucci P S, Jerraya A A, Leupers R, Thiele L and Vicini P, Shapes: a tiled scalable software hardware architecture platform for embedded systems (2006), Proceedings of the 4th international Conference on Hardware/Software Codesign and System Synthesis CODES ’06 (Seoul, Korea), ACM Press, 167-72.
[8] Paolucci P S, Vicini P et al., Introduction to the Tiled HW Architecture of SHAPES (2007), Proc. Design, Automation and Test in Europe (DATE’07) 1, 77-82.
[9] Ammendola R et al., APEnet+: a 3D toroidal network enabling petaFLOPS scale Lattice QCD simulations on commodity clusters, to appear in proceedings of XXVIIIth International Symposium on Lattice Field Theory, 14-19 June 2010 Villasimius, Sardinia, Italy.
[10] Dally W J and Seitz C L, Deadlock-Free Message Routing in Multi-processor Interconnection Networks (1987), IEEE Trans. Comput. 36, 547-53
[11] Ammendola R et al., High Speed Data Transfer with FPGAs and QSFP+ modules, Journal of Instrumentation (JINST).
[12] http://www.samtec.com/ProductInformation/TechnicalSpecifications/Overview.aspx?series=SEAF
[13] Ammendola R et al., Mastering Multi-GPU Computing on a Torus Network, poster at NVidia GPU Technology Conference 2010, San Jose (CA)
[14] NVIDIA Corporation, NVIDIA CUDA Programming Guide, 2010; http://developer.download.nvidia.com/compute/cuda/3_2/prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
[15] Boppana Rajendra V, Fault-Tolerant Communication with Partitioned Dimension-Order Routers (1999), IEEE Trans. Parallel Distrib. Syst. 10, 1026-39
[16] Chalasani Suresh and Boppana Rajendra V, Fault-Tolerant Wormhole Routing in Tori (1994), Proceedings of 8th international conference on Supercomputing, 146-55.
[17] http://maclabe.roma1.infn.it