Research Paper
Hemodynamic Status in Electroconvulsive Therapy Patients

Robabeh Soleimani1, Samaneh Ghazanfar Tehran2, Habib Esfahanikenarsari2, Batul Montazery4, Samin Khoshnoud Speily4, Samira Mirzabanabaei5, Fatemeh Baghernejad5, Ebrahim Haddad Komleh4, *Gelareh Biazar2, *Sahar Erabi5

1. Department of Psychiatry, Kavosh behavioral, Cognitive and Addiction Research Center, Shafa Hospital, Guilan University of Medical Sciences, Rasht, Iran.
2. Anesthesiology Research Center, Department of Anesthesiology, Alzahra Hospital, Guilan University of Medical Sciences, Rasht, Iran.
3. Clinical Research Development Unit of Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran.
4. Shafa Hospital, Guilan University of Medical Sciences, Rasht, Iran.
5. Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.

ABSTRACT

Background: Electroconvulsive therapy (ECT) is a safe and practical treatment method for patients with severe, refractory, or emergency psychiatric disorders. However, ECT is often associated with hemodynamic fluctuations.

Objective: This study aims to investigate the patterns of hemodynamic changes in patients undergoing ECT.

Methods: This longitudinal study was conducted in Shafa Hospital, a referral and academic center in Rasht City, Iran, in 2020. The hemodynamic parameters, including heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) were recorded before the induction of anesthesia (T0), 1 min after the induction of anesthesia (T1), 1 min after the seizure (T2), and 15 min after the wakefulness (T3). The trend of changes of these parameters was compared in the above-mentioned time intervals.

Results: The data from 126 patients were analyzed. Most of the cases were diagnosed with a psychotic disorder of schizophrenia (59.5%) and a minority had major depression (14.3%). Meanwhile, 15.9% of the patients suffered from comorbidities. In terms of SBP, DBP, and MAP, the trend of changes was significant (P=0.0001) at four measurement point times, but this was not true for HR (P=0.74). However, all changes in the hemodynamic parameters were kept in the normal range.

Conclusion: Our study showed that despite the fluctuations in the hemodynamic parameters during ECT, patient management was acceptable as a result of the teamwork and appropriate interaction of psychiatric and anesthesia teams.
Extended Abstract

Introduction

Electroconvulsive therapy (ECT) is widely used as an effective treatment option in psychiatric patients, especially in conditions such as refractory cases, risk of suicide, and any situations with the need for immediate therapeutic response [1-3]. During the procedure, a series of generalized epileptic seizures are induced under general anesthesia (GA) [4, 5]. Although ECT is considered a low-risk procedure, managing these cases can be highly challenging for the anesthesiologist and is not comparable to other conditions [6]. Before the time that ECT was performed safe and acceptable under GA, it was not considered humane [7]. In this process, the anesthesiologist should be aware of the potential adverse effects of ECT on the cardiovascular and nervous systems. During the procedure, significant hemodynamic fluctuations occur because of stimulating the sympathetic and parasympathetic nervous systems [8].

The cardiovascular response to ECT is initially a brief parasympathetic activity leading to bradycardia, with the possibility of asystole. This phase is immediately accompanied by marked sympathetic stimulation, an acute increase in plasma epinephrine, and norepinephrine concentrations [9].

This stimulation can cause hemodynamic instability. Several case reports have demonstrated severe morbidity and even mortality in ECT patients [10]. Therefore, it is necessary to maintain hemodynamic stability during and after the procedure [11, 12]. So far, several studies have been performed to maintain hemodynamic stability in ECT patients. However, no study has investigated the hemodynamic status of ECT patients in Shafa Hospital, the only referral and academic center for all types of psychiatric disorders in Guilan.

Study Objective

This study aims to evaluate the patterns of hemodynamic changes in ECT patients in Shafa Hospital, Rasht City, Iran.

Methods

This longitudinal study was conducted in the Shafa Hospital in Rasht City, Iran in 2020.

The inclusion criteria comprised the following items: patients over the age of 18 years undergoing ECT treatment, having the consent of the legal guardian of the patient, and having the physical status classifications of I & II according to the American Society of Anesthesiologists (ASA).

The exclusion criteria were any change in the type of anesthesia or any unexpected event during the procedure.

A fasting time of 6 to 8 h was considered for all the patients and they were visited by the anesthesiologist before the procedure. To prevent bradycardia and salivation, atropine sulfate (0.01 mg/kg, IM) was administrated 30 min before admission. All patients underwent standard monitoring, including an electrocardiogram (ECG), a saturation of peripheral oxygenation (SpO₂), and noninvasive blood pressure (NIBP). After the induction of anesthesia with propofol 1 mg/kg and confirmation of the ability of proper mask ventilation, 0.5 mg/kg succinylcholine (500 mg/10 mL, Caspian Tamin Co, Iran) was injected. At first, the patient was pre-oxygenated with oxygen 100% via an appropriate face mask followed by active hyperventilation at a rate of 40 to 50 breaths per minute. Before the seizure induction, bitemporal electrodes and a mouth grad were placed. Next, a brief grand mal seizure was produced and 70 to 120 V were applied resulting in approximately 800 mA of direct current for a duration of 100 milliseconds to 6 s. At the end of the seizure stimulation, the mouth guard was removed and an airway was replaced. Then, the face mask ventilation was started until the spontaneous respiration returned. Hemodynamic parameters, including heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP) were recorded before the induction of anesthesia (T0), 1 min after the induction of anesthesia (T1), 1 min after the seizure (T2), and 15 min after the wakefulness (T3). The trend of changes in these parameters was determined during the above-mentioned time intervals. The obtained data were analyzed by the IBM SPSS Statistics software version 22.0 for Windows operating system (IBM Corp., Armonk, NY, USA).

Repeated measures analysis of variance and the Bonferroni tests were used to compare the mean of study variables at different time points.

Results

The data from 126 patients with a mean age of 43.14±10.46 were analyzed. A total of 50.8% of our patients were men and 50.8% were in the range of 19 to 25 kg/m². Most of the cases were diagnosed with a psychotic disorder of schizophrenia (59.5%) and a minority had...
major depression (14.3%). Also, 15.9% of the patients suffered from comorbidities. In terms of SBP, DBP, and MAP, the trend of changes was significant (P=0.0001) at four intervals, but this was not true for HR (P=0.74). However, all changes in the hemodynamic parameters were kept in the normal range (Figure 1). The trend of changes in HR during the measured times was significantly related to gender (P=0.009) and in terms of MAP, it was significantly related to body mass index (P = 0.003).

Discussion

ECT causes significant hemodynamic fluctuations because of parasympathetic and sympathetic system activation which can expose the patients to cardiovascular and cerebrovascular fatal complications [9]. In this regard, several studies have focused on maintaining hemodynamic stability during the ECT process [9, 11, 13]. The results of this study showed that the trend of changes in SBP, DBP, and MAP values from T0 to T3 was statistically significant. Regarding HR, although the trend of changes was not significant, it was different between men and women, which was higher in men compared to women.

This study showed that, despite the changes that occurred in the hemodynamic parameters, the values remained within the normal range which indicates the acceptable performance of the treatment team in the ECT ward. One of the key interventions in this process is the use of the preparation checklist that helps patients receive ECT under optimal conditions. This checklist which is prepared by the anesthesia team provided the opportunity to determine the underlying diseases and the need for further clinical and paraclinical examinations. Another strength of the treatment team is the presence of an anesthesiologist at all stages of the process, from the beginning to the transfer of the patient to the recovery ward. Therefore, there was strict control over the exact determination of the type of drugs, dosage, and timing. Meanwhile, standard monitoring was considered for all cases. The safe and successful management of these patients was the result of proper communication between anesthesia and psychiatry teams along with the good cooperation of the ECT staff and nurses. In summary, despite maintain-

![Figure 1](image)

Figure 1. Changes in Mean Heart Rate, Systolic Blood Pressure, Diastolic Blood Pressure, and Mean Arterial Blood Pressure During the Investigated Time Periods

Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial blood pressure

Notes: T0 is before the induction of anesthesia, T1 is after the induction of anesthesia, T2 is during the procedure and T3 is during the recovery. Meanwhile, values are shown as the mean with a 95% confidence interval.
ing the hemodynamic parameters relatively in the stable range, because of the observed significant fluctuations, it is necessary to consider appropriate premedication in the elderly with comorbidities. In addition, the arrangements for any emergency intervention to control blood pressure levels should be readily available.

Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Ethics Committee of the Guilan University of Medical Sciences (Ethics Code: IR.GUMS.REC.1399.451). All ethical principles were considered in this research. The study participants were aware of the research process. The patient’s information was kept confidential.

Funding

This study was supported by the Deputy for Research and Technology of Guilan University of Medical Sciences.

Authors’ contributions

Study concept and design: Gelareh Biazar, Robabeh Soleimani; Data acquisition, analysis, and interpretation: Batul Montazery, Samin Khoshnoud Speily Samira Mirzababaei, Fatemeh Baghernezhad, Ebrahim Haddad Komleh; Drafting of the manuscript: Samaneh Ghazanfar Tehran; Editing and review: Sahar Erabi; Investigation and resources: Gelareh Biazar; Statistical analysis: Habib Eslami Kenarsari, Samaneh Ghazanfar Tehran; Study supervision: Robabeh Soleimani.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

The authors would like to thank the personnel of the Anesthesiology Research Center of Guilan University of Medical Sciences for their collaboration in this study.
موضوع: همودینامیک در بیماران دریافت کننده الکتراوکتیو

پیشینه

الکتراوکتیو یک درمان مؤثر، ایمن و کاربردی برای بیماران با اختلالات روانی است. ولی اغلب با تغییرات همودینامیک همراه است.

هدف از این مطالعه ارزیابی الگوی تغییرات همودینامیک در بیماران کاندید الکتراوکتیو است.

مواد و روش‌ها

پارامترهای همودینامیک شامل ضربان قلب، فشار خون سیستولیک، فشار خون دیاستولیک و فشار متوسط شریانی بودند. در طول و در انتظار الکتراوکتیو، قبلاً و بعد از الکتراوکتیو، اطلاعات ثبت شده از همودینامیک بیماران در زمان‌های ذکر شده در بیمارستان آموزشی درمانی شفا رشت ثبت نموده شد.

نتایج

بیشتر بیماران مبتلا به اختلال روانی اسکیزوفرنی بودند. روند تغییرات فشار خون سیستولیک، فشار خون دیاستولیک و فشار متوسط شریانی در طول و در انتظار الکتراوکتیو، معنی‌دار بود.

کلیدواژه‌های

درمان الکتراوکتیو، همودینامیک، بیماران روان

پیشنهاد سرشناس:

دکتر گلاره بی‌آزار

رتبه‌بندی:

8/17

گلاره بی‌آزار

gelarehbiazar1386@gmail.com
مقدمه
الکتروشوک درمانی، عبارت از ایجاد تشنج کنترل شده توسط تحریک الکتریکی مغز است که برای اولین بار در سال 1934 توسط روش تخته کنترل شده توسط تحریک الکتریکی مغز درمانی معرفی شد. این روش به عنوان یک درمان مؤثر، ایمن و کاربردی برای بیماران با ایجاد اختلالات مزاجی و افسردگی از سال 1983 تاکنون به عنوان اسکایلار اکسپریسیون آسیب دیده شده و در مواردی که نیاز به پاسخ درمانی فوری وجود دارد، از این روش استفاده می‌شود.

مکانیسم عمل الکتروشوک درمانی دقیقاً روشن نیست. تا کنون، تئوری‌های متعددی پیشنهاد شده است. این درمان اجزای متعدد سیستم عصبی مرکزی شامل هورمون‌ها، نوروپپتیدها، فاکتورهای نوروتروفیک و نوروترانسمیترها را تحت تأثیر قرار می‌دهد که به فرآیندهای نوروفیزیولوژیک، نوروبیوشیمیایی و نوروپلاستیک طبقه‌بندی می‌شوند.

الکتروشوک درمانی با ایجاد تغییرات همودینامیک در حین انجام پروسیجر همراه است که این تغییرات برای چندین دقیقه بعد از پایان پروسیجر ادامه می‌یابد. پاسخ قلبی عروقی ایجاد شده توسط این تکنیک، تحریک سمپاتیک به دنبال تحریک مختصر پاراسمپاتیک در حین تشنج است. در مرحله اولیه که تحریک پاراسمپاتیک ایجاد می‌شود، تحریک سمپاتیک به دنبال این تحریک پاراسمپاتیک می‌گردد که به طور مشخص با افزایش حاد سطوح کاتکولامین‌ها همراه است که سبب بی‌ثباتی همودینامیک، افزایش ضربان قلب و فشار متوسط شریان‌ها می‌شود.

در مطالعات انجام شده، بیشترین تغییرات ایجاد شده در پارامترهای همودینامیک در فاصله زمانی بلافاصله پس از انجام الکتروشوک گزارش شده است. این بیماران گاهی آن قدر شدید است که باعث عوارض قلبی شامل آسیستول، پارگی قلب و انفارکتوس میوکارد و عوارض مغزی شامل هماتوم ساب دورال و خونریزی ساب آراکنوئید می‌شود. این عوارض به ویژه در سالمندان شایع تر است.

تکنیک‌ها و روش‌های مکانیس الکتروشوک درمانی

در مطالعات انجام شده، بیشترین تغییرات ایجاد شده در پارامترهای همودینامیک در حین انجام الکتروشوک درمانی شامل کاهش ضربان قلب، افزایش فشار متوسط شریان‌ها و کاهش فشار خون سکته‌سازی می‌باشد.

روش‌های بیهوشی

تکنیک‌های بیهوشی مختلطی به‌منظور ایجاد کنترل مناسب و حفظ نشانه‌ها، کنترل بخش قبلی، کنترل بخش بعدی و کنترل بخش پایانی انجام می‌شود. اکثریت تکنیک‌های بیهوشی عموماً برای بیمارانی است که سبب نیاز به راهنما و کنترل مناسب دیگر است. حفظ نشانه‌ها بطور خاص در حین الکتروشوک به‌کار می‌رود.

در مطالعات انجام شده، بیشترین تغییرات ایجاد شده در پارامترهای همودینامیک در حین انجام الکتروشوک درمانی شامل کاهش ضربان قلب، افزایش فشار متوسط شریان‌ها و کاهش فشار خون سکته‌سازی می‌باشد.
پایه سیلیکات و همکاران، بررسی همودینامیک در بیماران دریافت کننده الکتروشوک

۱۴۶ بیمار وارد مطالعه شدند. بررسی‌های بیهوشی، بیمارانی که دارای حالت توده بدن و بیمارانی که مصرف کافی و غیر مناسبی از داروهای جاری داشتند از مطالعه حذف شدند. در پیشنهاد کردن مواردی که بیماران به صورت مقایسه می‌شودند، با توجه به سه دسته از داروهای جاری، یکی از داروهای ژئوریال و دو دیگر از داروهای همودینامیکی گزارش شد. نتایج نشان داد که در بیمارانی که دارای حالت توده بدن بودند، شرایط همودینامیکی در بیمارانی که دارای حالت توده بین
علاوه بر بهبود هوشیاری، این دارو سبب ورود به حالت مایل به آرامی نیز می‌شود و در این حالت، ریکاوری با آن سریع است. عوارض جانبی شایع این دارو شامل: دپرسیون قلبی عروقی، برادیکاردی و آپنه در عرض چند دقیقه بعد از ایداکشن است. در بیماران کاندید الکتروشوک نیز ساکسینیل کولین است که بر گیرنده‌های نیکوتینی و موسکارینی استیل کولین اثر می‌گذارد و می‌تواند سبب آریتمی های جان‌سوزی و برادیکاردی شود.

مطالعه ما نشان داد میانگین فشار خون سیستولیک، فشار خون دیاستولیک و فشار متوسط شریانی در زمان‌های مطالعه تفاوت آماری معنی‌داری نداشت. پژوهشگران مثل کولین فشار خون در حین انجام وریدرس نیز از سایر زمان‌های مطالعه بیشتر بود.

در مطالعه چندرو و همکاران [17] میزان فشار خون بیشتر در گروه پروپوفول، اتومیدیت و تیوپنتال در مطالعه ما نشان ندادند. در مطالعه آن‌ها، میزان فشار خون بیشتر در گروه پروپوفول و اتومیدیت بود و در گروه تیوپنتال کاهش یافت.

پژوهشگران به منظور بررسی تغییرات همودینامیک در بیماران کاندید الکتروشوک درمانی بررسی کردند. در مطالعه رابین، پروپوفول توانست تغییرات همودینامیک را کاهش داد. همچنین در مطالعه چندرو و همکاران، فشار خون در حین انجام الکتروشوک در گروه پروپوفول کاهش یافت. در مطالعه ما، میزان فشار خون بیشتر در گروه پروپوفول بود.

در مطالعه ملکی و همکاران [20]، فشار خون متوسط شریانی پس از انجام الکتروشوک در گروه پروپوفول کاهش یافت. در مطالعه آن‌ها، میانگین فشار خون بیشتر در گروه پروپوفول بود.

در مطالعه زاهاوی و همکاران، تغییرات همودینامیک در بیماران کاندید الکتروشوک نیز کاهش یافت. در این مطالعه، میانگین فشار خون سیستولیک، فشار خون دیاستولیک و فشار متوسط شریانی در حین انجام الکتروشوک در گروه پروپوفول کاهش یافت. در مطالعه آن‌ها، میزان فشار خون بیشتر در گروه پروپوفول بود.

در مطالعه نیز، تغییرات همودینامیک در بیماران کاندید الکتروشوک نیز کاهش یافت. در این مطالعه، میانگین فشار خون سیستولیک، فشار خون دیاستولیک و فشار متوسط شریانی در حین انجام الکتروشوک در گروه پروپوفول کاهش یافت.

در مطالعه نیز، تغییرات همودینامیک در بیماران کاندید الکتروشوک نیز کاهش یافت. در این مطالعه، میانگین فشار خون سیستولیک، فشار خون دیاستولیک و فشار متوسط شریانی در حین انجام الکتروشوک در گروه پروپوفول کاهش یافت.
قبلا، بیماران کاندید الکتروشوک درمانی شدند. در بررسی رابطه میان فاکتورهای سن، جنسیت، ایندکس توده بدنی، بیماری های مزمن زمینه ای و بیماری روان پزشکی با پارامترهای همودینامیک در بیماران، مشخص شد که میانگین ضربان قلب، فشار خون سیستولیک، دیاستولیک و متوسط شریانی در پس از الکتروشوک درمانی، بیش از پیش افزایش یافته است.

متغیر	انحراف معیار ± میانگین	P
ضربان قلب (بیهوشی)		
قبل از الکتروشوک (T0)		
بعد از الکتروشوک (T1)		
حین پروسیجر (T2)		
بعد از پروسیجر (T3)		
فشار خون سیستولیک		
قبل از الکتروشوک (T0)		
بعد از الکتروشوک (T1)		
حین پروسیجر (T2)		
بعد از پروسیجر (T3)		
فشار خون دیاستولیک		
قبل از الکتروشوک (T0)		
بعد از الکتروشوک (T1)		
حین پروسیجر (T2)		
بعد از پروسیجر (T3)		
فشار متوسط شریانی		
قبل از الکتروشوک (T0)		
بعد از الکتروشوک (T1)		
حین پروسیجر (T2)		
بعد از پروسیجر (T3)		

نتایج آزمون تبعیض بونفرونی نشان می‌دهد که افزایش ضربان قلب و فشار خون سیستولیک و فشار خون دیاستولیک در پس از الکتروشوک درمانی، مشخص است. در پوسته بیماران، فشار متوسط شریانی در پس از الکتروشوک نیز افزایش یافت.

تصویر 1: نگرش رانندگان، فشار خون سیستولیک، فشار خون دیاستولیک و فشار خون متوسط شریانی در پس از الکتروشوک درمانی.
در نتیجه ممکن است بتوان علت دنبال آن کاهش حجم ضربه‌ای و کاهش برون‌ده قلبی، کاهش از ایندکش بیهوشی به علت کاهش قابلیت انقباض قلب و به‌روش تغییرات میانگین ضربان قلب، فشار خون سیستولیک، دیاستولیک و متوسط شریانی در طی مقاطع زمانی مورد بررسی به تفکیک جنسیت، سن، رده‌های جیوه، شاخص توده و نیز بیماری زمینه ای به‌روش تجزیه‌بندی انجام می‌گیرد. در مطالعات گذشته می‌تواند بیشترین نتیجه از اینکه افزایش فشار خون بعد از الکتروشوک می‌تواند باعث افزایش شاخص جیوه و شاخص توده شود.

حسین	مرد	متوسط فشار خون سیستولیک	متوسط فشار خون دیاستولیک	متوسط فشار خون متوسط	میانگین ضربان قلب	میانگین ضربان قلب	میانگین ضربان قلب
99	78	120	80	99	78	120	80
97	74	118	76	97	74	118	76
96	72	117	75	96	72	117	75
95	71	116	74	95	71	116	74
94	70	115	73	94	70	115	73

توجه به پیش‌چیزهای نسبت به بیماران با ایندکس توده پدیده نرمال می‌شود. در مطالعات گذشته می‌تواند بیشترین نتیجه از اینکه افزایش فشار خون بعد از الکتروشوک می‌تواند باعث افزایش شاخص جیوه و شاخص توده شود. البته این مورد در مطالعه ما در بیماران با ایندکس بدنی بالاتر دچار افزایش فشار خون بیشتری بعد از الکتروشوک شدند. در مطالعه‌ای که تاکیوگ و همکارانش، به منظور بررسی ارتباط نیروی درون‌کننده جسمانی الکتروشوک و ایندکس توده پدیده نرم‌داری، مشخص شد بیماران با ایندکس توده پدیده بالای الکتروشوک دچار فشار خون می‌شود. البته این نتیجه به‌روش مطالعه‌ای در بیماران با ایندکس
در مطالعه ما در بیماران تحت الکتروشوک، مقدار افزایش فشار خون در وتوده بدنی بالاتر از ۳۰ تا ۲۵ درصد بود. این تغییرات در فشار خون، احتمالاً به علت نمودار ملبس به توده بدنی بیماران و افزایش ضغط توده بدنی باعث شد. در مطالعه ما نیز مشابه با مطالعات قبلی، تغییرات پارامترها همودینامیک در مرحله اجرا الکتروشوک رخ داد، اما این تغییرات در بیماران مبتلا به موارد مزمن در این بخش مشاهده نشد. یکی از مواردی که افزایش توده بدنی می‌تواند تأثیر بیماران را به سیستم همدوزی برگرداند، به عنوان یکی از باعثات بهداشت می‌باشد.

در مطالعه ما نیز مشابه با مطالعات قبلی، تغییرات پارامترها همودینامیک در مرحله اجرا الکتروشوک رخ داد، اما این تغییرات در بیماران مبتلا به موارد مزمن در این بخش مشاهده نشد. یکی از مواردی که افزایش توده بدنی می‌تواند تأثیر بیماران را به سیستم همدوزی برگرداند، به عنوان یکی از باعثات بهداشت می‌باشد.

در این مطالعه، نیاز به پیشنهاد و نکاتی در رابطه با تغییرات پارامترها همودینامیک در مرحله الکتروشوک وجود داشت. این نکات شامل پیشنهاداتی است که بهبود بهداشت بیماران را بهبود در زمینه های دیگر می‌تواند ارائه دهد. بهترین وضعیت برای بیماران در این مرحله شامل پیشنهاداتی است که بهبود بهداشت بیماران را بهبود در زمینه های دیگر می‌تواند ارائه دهد. بهترین وضعیت برای بیماران در این مرحله شامل پیشنهاداتی است که بهبود بهداشت بیماران را بهبود در زمینه های دیگر می‌تواند ارائه دهد.
References

[1] Liu CC, Qian XY, An JX, Yu ZL, Wu JP, Wen H, et al. Electroconvulsive therapy under general anesthesia with cisatracurium, laryngeal mask airways, and bispectral index. The Journal of ECT. 2016; 32(1):17-9. [DOI:10.1097/YCT.0000000000000251] [PMID]

[2] Luccarelli J, Fernandez-Robles C, Fernandez-Robles C, Horvath RJ, Berg S, McCoy TH, et al. Modified anesthesia protocol for electroconvulsive therapy permits reduction in aerosol-generating bag-mask ventilation during the covid-19 pandemic. Psychotherapy and Psychosomatics. 2020; 89(5):314-9. [DOI:10.1159/000509113] [PMID] [PMCID]

[3] Coffey MJ, Cooper JJ. Electroconvulsive therapy in anti-N-methyl-d-aspartate receptor encephalitis: A case report and review of the literature. The Journal of ECT. 2016; 32(4):225-9. [DOI:10.1097/YCT.0000000000000334] [PMID]

[4] Sackeim HA. Modern electroconvulsive therapy: Vastly improved yet greatly underused. JAMA Psychiatry. 2017; 12(4):49-53. [Link]

[5] Bryson EO, Aloysi AS, Farber KG, Kellner CH. Individualized anesthetic management for patients undergoing electroconvulsive therapy: A review of current practice. Anesthesiology. 2017; 124(6):1943-56. [DOI:10.1213/ANE.0000000000001873] [PMID]

[6] Mirzakhani H, Guchelaar HJ, Welch CA, Cusin C, Doran ME, MacDonald TO, et al. Minimum effective doses of succinylcholine and rocuronium during electroconvulsive therapy: A prospective, randomized, crossover trial. Anesthesiology & Analgesia. 2016; 123(3):587-96. [DOI:10.1213/ANE.0000000000001218] [PMID]

[7] Puffer CC, Wall CA, Huxsahl JE, Frye MA. A 20 year practice review of electroconvulsive therapy for adolescents. Journal of Child and Adolescent Psychopharmacology. 2016; 26(7):632-6. [DOI:10.1089/cap.2015.0139] [PMID]

[8] Yen T, Khafaja M, Lam N, Crambacher J, Schrader R, Rask J, et al. Post-electroconvulsive therapy recovery and reorientation time with methohexital and ketamine: A randomized, longitudinal cross-over design trial. The Journal of ECT. 2015; 31(1):20. [DOI:10.1097/YCT.0000000000000132] [PMID] [PMCID]

[9] Singh A, Kar SK. How electroconvulsive therapy works?: Understanding the neurobiological mechanisms. Clinical Psychopharmacology and Neuroscience. 2017; 15(3):210-21. [DOI:10.9758/cpn.2017.15.3.210] [PMID] [PMCID]

[10] Sable AA, Khamborkar A, Govekar S. To compare the efficacy of thiopentone versus propofol as anaesthetic agents and compare haemodynamic changes and recovery profile caused by them on patients undergoing ECT (Electroconvulsive therapy). Indian Journal of Applied Research. 2019; 9(11):70-3. [Link]

[11] Wajima Zi. Anesthesia management of special patient populations undergoing electroconvulsive therapy: A review. Journal of Nippon Medical School. 2019; 86(2):70-80. [DOI:10.1272/jnms.JNMS.2019_86-202] [PMID]

[12] Gundogdu O, Avci O, Gunsoy S, Kaygusuz K, Kol IO. The effects of hyperventilation on seizure length and cerebral oxygenation during electroconvulsive therapy. Northern Clinics of Istanbul. 2020; 7(3):246-54. [DOI:10.14744/ncli.2019.70893] [PMID] [PMCID]

[13] Parikh DA, Garg SN, Dalvi NP, Surana PP, Sannakki D, Tendolkar BA. Outcome of four pretreatment regimes on hemodynamics during electroconvulsive therapy: A double-blind randomized controlled crossover trial. Annals of Cardiac Anesthesia. 2017; 20(1):93-9. [DOI:10.4103/0971-9784.197844] [PMID] [PMCID]

[14] Maleki S YR, Hojjati M, Mobasher M, Sharifinia H. Comparison of hemodynamic changes before and after electroconvulsive therapy [Persian]. Journal of Health and Care. 2010; 12(4):49-53. [Link]

[15] Bahramarsi S, Modir H, Mosheri E, Jamilian H, Mohammadbeigi A. Comparing the premedication effects of dexmedetomidine, remifentanil and labetalol before electroconvulsive therapy on haemodynamic responses and seizure duration in psychotic patients: A double-blinded clinical trial. Advances in Human Biology. 2020; 10(2):65-70. [DOI:10.4103/AIHBB.AIHBB.121_19]

[16] Kayalha H, Khezri M, Rastak Sh MPH, Sofiabadi M. Comparison of the hemodynamic effects of two anesthetics; sodium thiopental and propofol in patients undergoing electroconvulsive therapy [Persian]. Journal of Ardabil University of Medical Sciences. 2018; 18(3):357-66. [DOI:10.29252/jarums.18.3.357]

[17] Zahavi GS, Dannon P. Comparison of anesthetics in electroconvulsive therapy: An effective treatment with the use of propofol, etomidate, and thiopental. Neuropsychiatric Disease and Treatment. 2014; 10:383-9. [DOI:10.2147/NDDT.S8330] [PMID] [PMCID]

[18] Bowman-Dalley C, Hilliard JG. Perioperative challenges during electro convulsive therapy (ECT). In: Brambrink AM, Kirsch JR, editors. Essentials of neurosurgical anesthesia & critical care. Cham: Springer; 2020. [DOI:10.1007/978-3-030-17410-1_42]

[19] Shastry SB, Gowda HN, Rao DG. Comparison of propofol and etomidate on hemodynamic characteristics and seizure duration in electroconvulsive therapy. National Journal of Physiology, Pharmacy and Pharmacology. 2021; 11(12):1389-93. [DOI:10.5455/njppp.2021.11.0723720211507021]

[20] Degannwa ML, Sharma R, Khare A, Sharma D. Effect of premedication with oral clonidine on hemodynamic response during electroconvulsive therapy. Anesthesia, Essays and Researches. 2017; 11(2):354-8. [DOI:10.4103/0971-9784.196599] [PMID] [PMCID]

[21] Takagi S, Iwata K, Nakagawa A. Relationship between body mass index and blood pressure elevation during electroconvulsive therapy. Japanese Journal of Clinical Anesthesia. 2012; 24(1):33-7. [DOI:10.1016/j.jclinane.2011.05.004] [PMID]

[22] Domi R, Laho H. Anesthetic challenges in the obese patient. Journal of Anesthesia. 2012; 26(5):758-65. [DOI:10.1007/s00540-012-1408-4] [PMID]
[23] Bansal S, Surve RM, Dayananda R. Challenges during electroconvulsive therapy-A review. Journal of Neuroanaesthesiology and Critical Care. 2021; 26:758-65. [DOI:10.1055/s-0041-1731627]

[24] Subsoontorn P, Lekprasert V, Waleeprakhon P, Ittasakul P, Laopuangsak A, Limpoon S. Premedication with dexmedetomidine for prevention of hyperdynamic response after electroconvulsive therapy: A cross-over, randomized controlled trial. BMC Psychiatry. 2021; 21(1):408. [DOI:10.1186/s12888-021-03406-9] [PMID] [PMCID]