Morphology, anatomy and essential oil characterization of Pinus radiata needles in the conditions of the Southern Coast of the Crimea

Yu V Plugatar, T M Sakhno, I V Bulavin, O M Shevchuk and S A Feskov

Nikitsky Botanical Garden – National Scientific Center of the RAS, 52 Spusk Nikitsky, Nikita, Yalta, 298648, Russian Federation

E-mail: sahno_tanya@mail.ru

Abstract. The paper presents data on the dendrometric parameters, a needle anatomy and an essential oil characterization of a radiate pine (Pinus radiata D. Don) in the conditions of the Southern Coast of the Crimea. The research was carried out on the model trees (age 70-80 years) growing in the territory of the Montedor Park. For research collected pine needles radiant cuts were made on the freezing microtome (MZ-2, Ukraine), were stained with Sudan III and examined with a light microscope Mikmed-5 (LOMO, Russia) equipped with a digital camera MS-3 (LOMO, Russia). The essential oil from the needles was extracted by hydrodistillation on Ginsberg devices and examined on a gas chromatograph 6890N (Agilent Technology, USA). The studies showed that radiata pine trees achieve their genetically determined parameters, compared to those in the nature habitats in Monterey (California, USA). A needle anatomical investigation clearly demonstrated typical structure. In the essential oil composition, predominance of monoterpenes, in particular α- and β-pinenes with a large content of the latter was demonstrated. The peculiarity of P. radiata essential oil under the conditions of the Southern Coast of the Crimea, compared to some other regions, was the presence of limonene, which determined the stronger coniferous smell.

1. Introduction

Radiata pine (Pinus radiata D. Don) is a representative of the Trifoliae Duhamel section and Attenuatae Van Der Burgh subsection, an endemic species of California flora, naturally grows in the hazy belt at an altitude of 400 m above the sea level. The area of natural populations of P. radiata is no more than 8,000 ha [1, 2], however, this species is the most widespread throughout the world [3]. Due to its adaptation potential to arid conditions and rapid growth, P. radiata is widely cultivated outside its natural area in Australia, New Zealand, Spain, Argentina, Chile, Uruguay, Kenya and South Africa [4]. For the Southern Coast of the Crimea (SCC), as a moisture-deficient region, it is of particular importance to search for promising tree introduced species that can be successfully cultivated in the climatic conditions with the increased thermal regime and a low water ability [5]. The early polycyclic P. radiata growth observed before [6] was characteristic of ability to respond to various fluctuations of climatic phenomena, which is of considerable interest for studying the growth characteristics of this species under introduction [7].

Needles are the most important assimilating organs that determine the productivity and vital state of trees. Essential oil is the product of secondary metabolism, formed mainly in the process of
photosynthesis, accumulates inside needle tissues. All the representatives of the genus Pinus are characterized by accumulation of α-, and β-pinene [8], which have broad pharmacological properties (fungicidal, antimicrobial, antiviral anti-inflammatory, analgesic, etc.) [9]. Both the adaptation ability and presence of essential oil with useful characteristics, are determined the prospect of P. radiata usage in landscaping. Therefore, the objective of our investigation was to study biological aspects of P. radiata plantings, the accumulation of essential oil in needles and its component composition in the conditions of the SCC.

2. Materials and methods
The studies were conducted on the model trees (age 70-80 years), growing in the territory of Montedor Park (Nikitsky Botanical Garden). For the investigations, the needles from pine radiata trees were collected and processed on freezing microtome (MZ-2, Ukraine). Obtained sections were stained with Sudan III and investigated under Mikmed-5 light microscope (Lomo, Russian Federation) equipped with MC-3 camera (Lomo, Russian Federation). On sections quantitative parameters as well as inclusion square with essential oil were determined in UTHSCSA ImageTool software version 3.0. The essential oil from the needles was isolated by hydrodistillation on Ginsberg devices and investigated on 6890N gas chromatograph (Agilent Technology, USA) with 5973N mass-spectrometry detector (Agilent Technology, USA). Data were analyzed statistically with PAST software [10].

3. Results and discussion
At the SCC, Pinus radiata trees grow as separated individuals or in groups. The dendrometric investigation showed that the highest tree was 19 m in height with the diameter 0.59 m, the mean values was 9.9 ± 0.87 m and 0.27 ± 0.03 m respectively. Mean crown size was 4.7 ± 0.5 × 6.1 ± 0.6 m (n = 10). All radiata pine trees were characterized by a good living condition. Shoots were formed annually, conifers with seeds also were observed. The anatomical investigation revealed semi-oval (from binate fascicle) or triangle needle form (from ternate fascicle) and typical pine structure that shown on Figure 1. Epidermis with thick cell walls had well developed cuticle on periphery. Under epidermis, hypodermis cells joined into 2 or 2-4 layers in the corners were revealed. In mesophyll (2-3 layers) with plicate cells, two, rarely three, resin ducts were observed. In the central part of a needle section, endodermis and transfusion tissue with two bundles differentiated into xylem and phloem was.

![Figure 1. Needle cross-sections of Pinus radiata: a – semi-oval form; b – sectorial form, Ep – epidermis, Hyp – hypodermis, Mc – mesophyll cells, Rd – resin duct, End – endodermis, Tt – transfusion tissue, Xy – xylem, Ph – phloem (light microscopy, × 100).](image-url)
In P. radiata, analysis of the needle quantitative parameters revealed its variations. The most changed parameters were resin duct area (29.7 ± 0.7%) and bundle area (25.1 ± 2.2%), other were characterized by lower coefficient of variation in range 11-17% (Table 1). In needles, essential oil was detected with Sudan III as oval, brown-colored inclusions in mesophyll cells, lining cells of resin ducts and bundles (Figure 2).

Table 1. Anatomical parameters of the pine needle cross-sections (mm).

Parameter	2015	2016	2017	2018	Statistical score
Number of resin ducts	2.03 ± 0.003	2.03 ± 0.003	2.00 ± 0.003	2.03 ± 0.003	M ± m CV%
Cross-section area	8.57	8.57	20.26	8.57	CV%
Central cylinder area	0.90 ± 0.002	0.88 ± 0.004	0.97 ± 0.005	1.06 ± 0.003	M ± m CV%
Bundle area	11.95	11.91	15.52	10.21	CV%
Resin duct thickness (vertical)	0.18 ± 0.005	0.19 ± 0.006	0.22 ± 0.005	0.28 ± 0.004	M ± m CV%
Mesophyll thickness (horizontal)	0.18 ± 0.010	0.18 ± 0.006	0.16 ± 0.008	0.19 ± 0.004	M ± m CV%
Mesophyll thickness (horizontal)	17.46	19.07	19.51	12.45	CV%
Resin duct area	0.34 ± 0.001	0.33 ± 0.003	0.35 ± 0.003	0.34 ± 0.003	M ± m CV%

Figure 2. Needle transversal section fragments of Pinus radiata: Mc – mesophyll cells, Lc – lining cells, Tt – transfusion tissue cells, Vb – vascular bundles. Arrows indicate inclusions with essential oil (light microscopy, Sudan-III staining). Bars – 50 µm.

Square inclusion measurement (n = 50) showed that its size was 3.8 ± 0.39 µm² that reached 5.02 ± 0.44% from cell with mean value 2.529.41 ± 191.58 µm². In the essential oil of P. radiata 64 components were identified (Table 2). The major components were β-pinene with a specific content of 29.57%, α-pinene – 21.2%, and limonene – 12.41%. Also, in composition α-terpeniol, β-myrcene, pinocarveol, mirtenol, δ-kadinen, germacren D and γ-3-karen were revealed.

The stand dendrometric parameters are determined by species genetics and also influenced by other endo/exogenous factors. The growth rate of radiata pine in nature is slow, compared with its growth in plantations outside their natural habitats. In Monterey (California, USA) the heights of mature 20 years old trees were in the range 9-37 m, with the tallest trees occurring on better soils in gullies. For
comparison, the tallest trees on Guadalupe (French) and Cedros Islands (United Mexican States) were 33 and 32 m, respectively. 35-years-old unmanaged first-rotation stands in central North Island (Seychelles), New Zealand were characterized by top height of 42 m [4]. At the SCC, age of pine trees was 70-80 years and according to our data, they achieved their genetically determined parameters, compared to natural habitats in Monterey.

Table 2. The composition of the Pinus radiata essential oil in the conditions of the Southern Coast of Crimea.

No.	Component	RI	Pinus radiata D. Don
1	ethanol	819	3.01
2	tricycylene	931	0.17
3	α-tuyen	934	0.05
4	α-pinene	940	**21.20**
5	camphene	947	0.80
6	1-isopropyl-4-methylenebicyclo[3.1.0]hex-2-ene	950	0.12
7	sabinen	966	0.12
8	β-pinene	970	**29.57**
9	β-myrcene	981	1.84
10	γ3-caren	996	2.05
11	α-terpineolate	1001	0.14
12	p-cymene	1004	0.18
13	β-phellandrene	1010	0.79
14	limonene	1013	**12.41**
15	trans-otsimen	1030	0.85
16	γ-terpinene	1038	0.13
17	limonene oxide	1046	0.11
18	terpinolen	1065	0.75
19	α-thujone	1072	0.33
20	epoksiterpinolen	1076	0.71
21	β-thujone	1083	0.07
22	fenhol	1086	0.36
23	α-kamfolenal	1090	0.29
24	pinon	1092	0.27
25	camphor	1103	0.14
26	pinocarveol	1108	1.86
27	verbenol	1116	0.43
28	pinocamphone	1133	0.25
29	isoborneol	1136	0.64
30	terpinen-4-ol	1148	0.46
31	myrtenal	1152	0.83
32	α-terpineol	1161	4.51
33	myrtenol	1167	1.50
34	fenhyl acetate	1191	0.12
35	methylthymol	1204	0.18
36	bornyl acetate	1254	0.14
37	mirtenyl acetate	1292	0.10
38	α-ilangen	1330	0.10
39	α-copaen	1354	0.21
Our needle anatomical data of radiate pine was compared to those from Monterey (USA) [11] and Kaingaro (New Zealand) [12]. Its common anatomical structures were similar, that is normal and evidence of a genetic stability manifestation. The secondary needles were two or more per fascicle and semi-oval or sectorial in cross-sections. The uniform, thick-walled epidermis was separated from plicate mesophyll cells by one or more hypodermal layers. There are usually two medial resin canals. However, in needle cross-section from the SCC accession of radiate pine three canals were noted occasionally. A uniform layer of endodermal cells bounds the stellar portion with two vascular bundles embedded in transfusion tissue. The quantitative parameters were not compared due to absent of the similar data.

P. radiata as a representative of Attenuatae sub-section of Trifoliae section of the genus Pinus is characterized by predominance of monoterprenes in essential oil [8], in particular α- and β-pinenes with a large specific weight of the latter. Thus, when cultivated in Greece and Ecuador, the amount of pinenes was 56.6% [8], and 57.1% [13], respectively. This trend can also be seen in the results of our research (under the conditions of the SCC, the amount of pinenes is 50.77%) and is consistent with the data obtained by other authors [14]. The peculiarity of P. radiata essential oil under the conditions of the SCC is the presence of limonene (12.41%), which determines the stronger coniferous smell of the essential oil. Diterpenes and sesquiterpenes in P. radiata essential oil are present in small amounts under different environmental conditions. Comparing the available data, we can conclude that the component composition of this type of essential oil is quite stable.

No.	Component	RI	Pinus radiata D. Don
			The quantitative content (% rel.) of the identified components in the essential oil
41	β-bourbonen	1361	0.05
42	β-cubeben	1366	0.06
43	β-elemens	1368	0.11
44	trans-karyofillen	1392	1.04
45	bergamotene	1412	0.23
46	cubeben	1420	0.10
47	humulene	1423	0.22
48	β-cadinenne	1443	0.14
49	germacren D	1448	2.48
50	bicyclo sesqui phelanderen	1456	0.24
51	germakren B	1462	0.56
52	α-muurolen	1470	0.42
53	α-amorphene	1478	0.30
54	γ-cadinene	1480	0.24
55	kalamene	1482	0.20
56	δ-cadinene	1488	1.14
57	cadina-1,4-diene	1495	0.12
58	nerolidol	1526	0.14
59	spatuenol	1529	0.55
60	caryophyllene oxide	1531	0.27
61	cubenol	1575	0.24
62	tau muurolol	1586	1.23
63	α-cadinol	1595	1.10
64	manoyl oxide	1778	0.58

Note: RI – component retention index.
4. Conclusion

Our data showed that P. radiata trees grown in groups or as simple specimen at the Southern Coast of the Crimea achieved their genetically determined parameters compared to those in the nature habitats in Monterey. The needles’ anatomical structures were similar, that was normal and evidence of the genetic stability manifestation. However, on the cross-sections of one, two, three-years old needles, variations of the anatomical structure sizes were revealed with the higher coefficients for resin ducts and vascular bundles.

On the needle cross-sections, essential oil was detected as oval, brown-colored inclusions in mesophyll cells, lining cells of resin ducts, bundles and biochemically was characterized by a predominance of monoterpens, in particular α- and β-pinenes with a large specific weight of the latter. Diterpenes and sesquiterpenes in P. radiata essential oil were present in small amounts. The peculiarity of P. radiata essential oil under the conditions of the SCC is the presence of limonene, which determines the stronger coniferous smell of the essential oil.

References

[1] Offord H R 1964 Diseases of Monterey Pine in Native Stands of California and in Plantations of Western North America (Berkeley: USDA Forest Service, Pacific Southwest Forest and Range Experiment Station) p 37
[2] Libby W J, Bannister M H and Linhart Y B 1968 J. For. 66(11) 846-853
[3] Critchfield W and Little E 1966 USDA Forest Service Miscellaneous Publication 991 1-97
[4] Mead D 2013. Sustainable Management of Pinus Radiata Plantations Forestry Paper No. 170 (Rome: FAO) p 265
[5] Pashtetsky A V, Plugatar Y V, Ilnitsky O A and Korsakova S P 2019 Acta Hortic 1263 199-206
[6] Hayhoe K et al. 2004 PNAS USA 101(34) 12422-12427
[7] Xiao Y 2003 Tree Physiol. 23 463–471
[8] Ioannou E, Koutsaviti A, Tzakou O and Roussis V 2014 Phytochem Rev. 13(4) 741–768
[9] Salehi B et al. 2019 Biomolecules 9(11) 738
[10] Hammer Ø, Harper D A T, Ryan P D 2001 Palaeontol. Electron. 4(1) 1–9
[11] Forde M B 1964 New N. Z. J. Bot. 2(4) 459–485
[12] Riding R T and Aitken J 1982 Bot. Gaz. 143(1) 52–62
[13] Sacchetti G, Maietti S, Muzzoli M, Scaglianti M, Manfredini S, Radice M and Bruni R 2005 Food Chem. 91 621–632
[14] Petraskis P V, Tsisimpikou C, Tzakou O, Couladis M, Vagias C and Roussis V 2001 Flavour Fragr. J. 16(4) 249–252