Analysis the agronomic character and inheritance of fragrant genes in F2 progenies of Sigupai and Yinzhan

M Jalil1, B Basyah2, E Idris2, M Sari2, S Zakaria2*

1Doctoral Program of Agricultural Science, Post Graduate Program, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia.
2Department of Agrotechnology, Faculty of Agriculture, Universitas Syiah Kuala, Darussalam, Banda Aceh 23111, Indonesia.
3Department of Agrotechnology, Faculty of Agriculture, Universitas Teuku Umar, Aceh Barat 23615, Indonesia.

*E-mail: zaksabar@unsyiah.ac.id

Abstract. Sigupai is one of Aceh's local rice that highly popular because of the distinctive scent. Sigupai is still widely grown by the farmers in the southern western region of Aceh. However, this local rice has inferior production, height plant architecture, deep age and the average of production about 4 tons ha-1. The improvement of Sigupai local rice from the agronomic character and the harvest age can be done through crosses with Yinzhan varieties that carry sd-1 genes. The study aims to analyze changes in agronomic character and fragrant gene inheritance in Sigupai/Yinzhan F2 derived. Analysis of agronomic character is carried out by observing harvest age, plant height, weight of 1000 grains, grain weight per clump and yield potential per hectare. The planting material used was F2 derivative of Sigupai/Yinzhan as many as 104 individuals planted in pots. PCR analysis was conducted to analyze the presence of fragrant genes in F2 progenies of Sg/Yz. The data was analyzed with Chi-Square analysis. The results showed 104 plant genotypes analyzed by PCR, 64.42% of F2 progenies Sigupai/Yinzhan inherited the fragrant gene. The results of analysis of agronomic character showed 62 genotypes there were 95.08% of ripening aged, 59.01% had a short stem architecture and 6 genotypes (9.83%) had a potential yield of 4.04,-5.33 tons ha-1.

1. Introduction
Sigupai is one of Aceh's local rice which is still grown in the South-West of Aceh Province, Indonesia. Sigupai produces rather long rice seeds with fragrant, soft and tasty rice quality, resistant to drought, gives a distinctive fragrant scent and flavor to cooked, but has low yields with harvest life of in 5-6 months as well as height plant architecture (>150 cm) [1]. The scent in the seeds becomes one of the most valuable quality results and has high demand by the consumers [2,3].

The improvement of Sigupai rice quality into plants with short plant architecture (semidwarf) with good grain quality can be done by inserting the sd-1 gene through a series of breeding processes and molecular biology. The semi-dwarf gene (sd-1) is the most important gene for rice repair in Indonesia. Gen sd-1 is recessive which results in shorter stems, a high harvest index and improves response to the use of nitrogen fertilizers [4]. One of the introduced rice varieties that have the gene semidwarf (sd-1),
is the Yinzhan variety with the lifespan of the ripening plant (101 DAS), the architecture of the short plant (114) and the estimated of the highest production is > 8 tons [5].

Plants that have the sd-1 gene will have a shorter stem architecture than plants that do not have the sd-1 gene so it can play a role in preventing plants from lying in a state of high nitrogen fertilization and can improve plant architecture but not reduce the number of saplings, seed size and number of seeds [6]. The result of Sigupai and Yinzhan crossing, besides having the sd-1 gene also have inherited the fragrant gene inherited from the Sigupai elder. Sigupai has a fragrant *Pandanus amaryllifolius* Roxb. scent caused by the presence of fragrant genes from Sigupai elders, this is reinforced by the scent of the sigupai plant on the field [2].

The Fragrant gene is a carrier of the fragrant scent properties of rice as one of the quality properties of grains that are important in rice. The identification of fragrant germplasm and the proper development of polymorphic molecular markers are critical in the success of MAS (Marker Assisted Selection) technology. Badh2 is a molecular marker that has been developed by MAS from the scent gene [7]. Fragrant rice is famous for the unique scent characteristics, and the market price is higher than regular rice. Recently, Basmati rice is Indian and Pakistani, and Jasmine-type rice in Thailand is sold in the worldwide. Therefore, the selection and cultivation of fragrant rice is one of the important aspects in modern rice breeding programs to increase the economic value of rice [8].

Selection of agronomic character is usually held by visual; the plant architecture, seed shape, quality of results and components of results so that new superior varieties are obtained. Selection and identification used based on the molecular marker selection that can reduce the population required for each generation of selection [9]. The used of molecular marker to analyze the presence of genes in individual plants which influences the increasing precision of selection results from the breeding program developed [10].

The utilization of molecular marker is thought to save the time and be more accurate. Several superior rice varieties assembled through selection using molecular marker have been produced. The supreme varieties are evidence of the success of the utilization of molecular marker in support of the assembly of superior varieties. Molecular marker technology has made a real contribution and supports national food security. This research aims to analyze the character of agronomy and inheritance of genotype properties by analyzing the existence of sd-1 and fragrant genes by using molecular marker, that prespective plants are obtained to be continue to the next generation.

2. Materials and Methods

2.1. Research implementation and genetical resources.

The research was conducted in experimental farm and Plant Breeding Laboratory, Faculty of Agriculture, Syiah Kuala University, Darussalam Banda Aceh, Indonesia from September 2018 to January 2019. The seeds used in this study were F$_2$ seeds from crossbreeding from introduced local varieties of Sigupai and variety Yinzhan (F$_2$ Sg/Yz). Sigupai was used as female recurrent parent. Sigupai and Yinzhan were also used as comparison for plant arsitecture and yield.

2.2. Plants cultivation technique

F$_2$ seed were transplanted in soil mix with manure with ratio 2:1 after 15 days of sowing. In one pot contained 5 kg soil and manure were planted 2 seedling with 1 seedling in each planting hole. The basal fertilizer where used NPK and Urea 2.6 g (450 kg ha$^{-1}$) and 0.6 g (100 kg ha$^{-1}$) respectively one day before transplanting. Additional fertilizers were applied at 14, 28, and 42 days after transplanting (DAT) by using only Urea each 0.6 g pot$^{-1}$.

2.3. DNA extraction

The DNA was extracted from the leaves of each 2 weeks-old rice plant sample using a modified protocol as described by [11]. Taken samples of rice plants about 0.1- 0.2 g of young leaves were cut and put inside the 2 ml microcentrifuge tube containing one stainless steel bead. Then the tube containing the
leaves of the sample plant were inserted in a microtube box and then stored in the freezer temperature -86 °C for 24 hours. Then the sample of the rice plant is destroyed by shaking the sample box containing the microcentrifuge tube 20-30 times until the rice leaf sample was destroyed. Then add 200-400 μl TPE buffers into each tube containing the crushed sample and the samples were incubated in water bath with a temperature of 65 °C for 20 minutes. After the incubation, then the sample were separated by centrifuge with 13,000 g for 10 minutes. Then the supernatant containing DNA as much as 100 μl was inserted in a 1.5 ml microtube.

2.4. **Molecular marker and Polimerase Chain Reaction (PCR) amplification**

The molecular marker used in this study was dominant STS (Sequence-Tagged Site) marker RM Fmbadh-E4-5 gene analysis [12]. Oligo primers for PCR amplification of the molecular markers had DNA sequence Uni F (5' TGC TGG ATG CTT TGA GTA 3') and Uni R (5' GTT TAG CAC ACC TGA AGG ACC A 3'). PCR was performed using EmeraldAmp PCR Master Mix (Takara). For the PCR reactions, the mixtures were initially denatured at 94°C for 120 second followed by 30 cycles of PCR amplification with the following parameters: a 45 s of denaturation at 94°C, a 45 s of annealing at 55 °C, and 60 seconds of primer extension at 72°C. Finally, the reaction mixture was maintained at 72°C for 8 min before completion. The amplified product was electrophoretically resolved on 1.5 % agarose gel in 0.5×TAE buffer. The Electrophoresis monitor was set up with 100 Volt PAC power for 38 minutes. DNA were visualized under UV transilluminator light and documented with a Canon G11 camera.

2.5. **Agronomic character analysis**

Agronomic performance of F$_2$ progenies for each plant in each genotype were collected from experiment field in dry season (September 2018). Analysis of plant phenotypic character was done on flowering and harvesting time. Others variables analysed including plant height at harvesting time, weight of seed per hill, and estimated potential yield ha$^{-1}$.

2.6. **Marker analysis**

The clearly resolved amplicons of STS were scored manually as homozygote for the allele for fgr gene from local rice parent and heterozygote carrying the alleles from both parents in the data sheet. Chi-square (χ^2) test was performed to test the goodness of fit of the F$_2$ population for the phenotypic and marker data by comparing an observed frequency distribution with an expected one.

3. **Results and discussion**

3.1. **Analysis the presence of Badh gene in F2 progenies of Sg/Yz**

Molecular analysis the presence of Fragrant gene in F2 progenies of Sg/Yz for 104 plant genotype is shown in Figure 1.
Figure 1. Genetic analysis of Fragrant gene from Sigupai, Yinzhan, and F2 progenis Sg/Yz.

The results of the molecular analysis using the STS (Sequence-Tagged Site) marker RM Fmbadh-E4-5 contained 67 F2 progenis of the Sg/Yz Fragrant gene (64.42%). The genotypes that show the Fragrant gene are plants: #1, 3, 4, 6, 8, 10, 12, 13, 14, 16, 17, 18, 20, 21, 22, 24, 25, 29, 30, 31, 36, 38, 40, 41, 42, 48, 49, 50, 55, 58, 59, 60, 61, 62, 64, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 101, 102, and 104. This shows that more than half of the F2 progenis Sg/Yz progenies utilize the Fragrant gene as a gene inherited by Sigupai elders, as shown in the picture above, Sigupai analysis has Fragrant gene donors with comparison varieties, namely Sigipai and Yinzhan elders. Chi-square analysis of molecular analysis of the presence of the Fragrant gene F2 progenies Sg/Yz can be is shown in Table 1.

Table 1. Chi-Square analysis of the F2 Sg/Yz progenies with Sequence-Tagged Site (STS) marker RM Fmbadh-E4-5.

Category	Observed genotype	Expected genotype (1:3)	(O-E)^2	(O-E)^2/E	χ²	P
Fragrance	67	78,00	121	1,55	6,205	0,000
Non Fragrance	37	26,00	121	4,65		
Total	104					

*χ² = Chi-Square ; P = Chi-Square table

Table 1 of the results of Chi-square analysis shows that the relative observations of 67 plants have DNA bands, which indicates the presence of a genotype that inherits the Fragrant gene that carries fragrance properties in F2 progenies of Sg/Yz with the gene code carried is fgr. Plants that do not show DNA bands have 37 genotypes, but these plants may carry other donor genes. The results of the analysis
show that the F2 progenies of Sg/Yz carry a fully dominant gene (monohybrid) in a ratio of (3:1) which is a gene that completely covers the effect of its recessive allele so that the recessive allele does not appear on the genotype display [13].

3.2. Phenotypic performance of agronomy character in F2 progenies Sg/Yz

The performance of flowering age, harvest age and plant height at harvest of F2 progenies Sg/Yz plants as well as Sigupai and Yinzhan elders are shown in Table 2.

Genotypes	Harvesting Time (DAS)	Plant Height (cm)	Genotypes	Harvesting Time (DAS)	Plant Height (cm)
Sigupai	136	157	Sg/Yz T37	110	104
Yinzhan	101	115	Sg/Yz T38	111	113
Sg/Yz T1	123	108	Sg/Yz T39	112	116
Sg/Yz T2	112	102	Sg/Yz T40	113	117
Sg/Yz T3	111	107	Sg/Yz T41	112	105
Sg/Yz T4	123	106	Sg/Yz T42	112	105
Sg/Yz T5	123	108	Sg/Yz T43	137	110
Sg/Yz T6	122	102	Sg/Yz T45	113	102
Sg/Yz T7	111	107	Sg/Yz T46	113	106
Sg/Yz T8	111	112	Sg/Yz T47	112	111
Sg/Yz T10	123	106	Sg/Yz T48	112	113
Sg/Yz T11	137	108	Sg/Yz T49	110	111
Sg/Yz T13	112	104	Sg/Yz T50	110	106
Sg/Yz T14	111	103	Sg/Yz T51	111	113
Sg/Yz T15	137	114	Sg/Yz T52	112	108
Sg/Yz T16	110	95	Sg/Yz T56	126	131
Sg/Yz T17	109	100	Sg/Yz T58	122	159
Sg/Yz T18	112	99	Sg/Yz T71	111	150
Sg/Yz T20	109	102	Sg/Yz T73	124	175
Sg/Yz T21	110	102	Sg/Yz T75	113	131
Sg/Yz T22	110	103	Sg/Yz T76	122	124
Sg/Yz T23	111	106	Sg/Yz T93	124	143
Sg/Yz T24	112	97	Sg/Yz T94	124	142
Sg/Yz T25	112	102	Sg/Yz T95	109	145
Sg/Yz T26	112	92	Sg/Yz T97	122	123
Sg/Yz T27	117	107	Sg/Yz T98	113	137
Sg/Yz T28	113	105	Sg/Yz T99	110	118
Sg/Yz T30	109	109	Sg/Yz T102	123	138
Sg/Yz T31	112	102	Sg/Yz T103	113	155
Sg/Yz T33	111	108	Sg/Yz T104	121	165
Sg/Yz T34	112	110	Mean	115.36	114.66
Sg/Yz T35	113	100	Min	109.00	92.00
Sg/Yz T36	110	92	Maks	137.00	175.00

Table 2 shows that from 61 F2 progenies Sg/Yz, there were 58 genotypes (95.08%) of plants that followed Yinzhan's parents, as seen from the harvest age range of 110 to 125 DAP. The height of rice plants of F2 progenies Sg/Yz has different appearances of expressed and unexpressed phenotypic characters [14]. This is because the genetic composition of rice plants varies in each individual, so that their response to the environment is different, this is clearly seen in the appearance of the plant itself [15]. Chi-square analysis of harvest age at F2 progenies Sg/Yz can be is shown in Table 3.
Table 3. Chi-Square analysis harvesting time of F2 progenies Sg/Yz.

Category	Observed genotype	Expected genotype (3:1)	(O-E)2	(O-E)2/E	χ^2	P
Genjah	58	45,75	150,0625	3,28	13,120	0,000
Sedang	3	15,25	150,0625	9,84		
Total	61					

* χ^2 = Chi-Square ; P = Chi-Square table

Table 4. Chi-Square analysis plant height of F2 progenies Sg/Yz.

Category	Observed genotype	Expected genotype (1:2:1)	(O-E)2	(O-E)2/E	χ^2	P
Semidwaf Plant	36	15,25	430,56	28,2336	38,97	0,00
Intermediate Plant	13	30,50	306,25	10,0410		
Tall Plant	12	15,25	10,56	0,6926		
Total	61					

* χ^2 = Chi-Square ; P = Chi-Square table

The high plant architecture causes the plant to fall easily so that the potential for yield loss. Classification of plant height at harvest based on IPBGR standards there are 3 categories, namely, low (<110 cm), medium (110-130 cm) and Height> 130 cm. The value of observations on the Chi-squared plant height at harvest can be seen in table 4, there are 12 plants in the tall category, namely with a height of >130 following Elder Sigupai, there are 13 plants that have a moderate value following the height at harvest, Elder Yinzhan and there are 36 plants in the category of plant height at harvest time. low harvest.

The ratio of plant height characters is 1 low: 2 moderate: 1 high, which means that the height character of the Sg/Yz-derived F2 rice plant is controlled by one dominant gene imperfectly. A ratio of 1:2:1 indicates a semi-dominance event. This event occurs when a dominant gene does not completely cover the effect of its recessive allele so that an intermediate trait will appear [16]. It can be seen that there is a trait between the two dominant traits, namely the moderate nature of the plant height at harvest.

The performance of 1000 grain grain weight, cluster grain weight and pe Ha production in Sigupai, Yinzhan and 61 Sg/Yz-derived F2 plants can be is shown in Table 5. Table 5 shows the weight of grain per clump directly affects the high and low potential yield of rice plants. The weight of the grain in the clump of 61 phenotypes was 99% below the weight of the grain per clump of the two parents, which was under 20 g [17]. In production per ha, it can be seen that there are 6 plants that have moderate production criteria, namely 4-6 tons per ha. Plants that have moderate production criteria are Plants #7, 21, 31, 45, 47 and 48. While other plants have production <4 tons per ha.

Production yields on F2 progenies of Sg/Yz were low due to lack of nutrient intake in field planting due to one pot planted with 2 samples so that there was a lack of available nutrients and a lack of space for plant growth. The high and low crop production was related to other variables such as the number...
of productive tillers and the weight of 1000 grains. Based on these data, it can be said that the increase in the amount of production is related to the large number of productive tillers and the high yield of grain/clump weight. The potential yield of rice plants is determined by the number of productive tillers, the number of grains per panicle, the percentage of pithy grain and the weight of 100 grains [18].

Table 5. Agronomic character analysis of F2 progenies Sg/yz for 61 plant genotype.

Genotypes	Weight of 1000 grains	Weight of filled grains per plant (g)	Estimated yield (t/ha)	Genotypes	Berat 1000 Butir	Weight of filled grains per plant (g)	Estimated yield (t/ha)
Sigupai	18.88	20.56	5.14	Sg/Yz T37	19.50	10.72	2.68
Yinzhan	20.15	33.85	8.46	Sg/Yz T38	19.70	12.98	3.25
Sg/Yz T1	18.60	12.42	3.11	Sg/Yz T39	19.30	8.40	2.10
Sg/Yz T2	19.50	9.68	2.42	Sg/Yz T40	19.30	12.40	3.10
Sg/Yz T3	19.57	19.26	4.82	Sg/Yz T41	18.90	13.40	3.35
Sg/Yz T4	20.50	13.65	3.41	Sg/Yz T42	19.90	8.56	2.14
Sg/Yz T5	19.10	12.58	3.15	Sg/Yz T43	19.90	11.38	2.85
Sg/Yz T6	19.80	9.45	2.36	Sg/Yz T45	19.80	16.23	4.06
Sg/Yz T7	20.10	21.33	5.33	Sg/Yz T46	18.70	11.46	2.87
Sg/Yz T8	22.30	16.82	4.21	Sg/Yz T47	19.60	16.25	4.06
Sg/Yz T10	16.90	13.69	3.42	Sg/Yz T48	19.80	18.00	4.50
Sg/Yz T11	14.20	11.21	2.80	Sg/Yz T49	19.50	8.82	2.21
Sg/Yz T12	18.70	9.44	2.36	Sg/Yz T50	20.00	7.45	1.86
Sg/Yz T13	18.50	15.44	3.86	Sg/Yz T51	19.30	8.06	2.02
Sg/Yz T14	19.30	13.62	3.41	Sg/Yz T52	20.50	8.45	2.11
Sg/Yz T15	19.70	1.97	0.49	Sg/Yz T53	22.70	7.84	1.96
Sg/Yz T16	18.50	12.12	3.03	Sg/Yz T54	16.60	2.13	0.53
Sg/Yz T17	18.00	1.62	0.41	Sg/Yz T55	21.10	9.35	2.34
Sg/Yz T18	19.70	6.53	1.63	Sg/Yz T56	18.50	6.41	1.60
Sg/Yz T19	19.60	18.14	4.54	Sg/Yz T57	20.20	8.05	2.01
Sg/Yz T20	19.00	9.60	2.40	Sg/Yz T58	21.60	6.41	1.60
Sg/Yz T21	17.90	11.78	2.95	Sg/Yz T59	21.20	10.35	2.59
Sg/Yz T22	18.90	10.79	2.70	Sg/Yz T60	13.30	0.28	0.07
Sg/Yz T23	19.70	11.22	2.81	Sg/Yz T61	26.10	6.19	1.55
Sg/Yz T24	21.10	6.73	1.68	Sg/Yz T62	16.90	7.47	1.87
Sg/Yz T25	19.80	12.82	3.21	Sg/Yz T63	16.60	9.44	2.36
Sg/Yz T26	19.80	4.36	1.09	Sg/Yz T64	22.40	8.38	2.10
Sg/Yz T27	19.50	15.52	3.88	Sg/Yz T65	25.60	4.50	1.13
Sg/Yz T28	20.00	16.17	4.04	Sg/Yz T66	24.20	12.48	3.12
Sg/Yz T29	17.10	8.33	2.08	Sg/Yz T67	19.40	6.39	1.60
Sg/Yz T30	18.70	11.23	2.81	Mean	19.55	10.50	2.63
Sg/Yz T31	19.30	12.68	3.17	Min	13.30	0.28	0.07
Sg/Yz T32	19.20	12.16	3.04	Maks	26.10	21.33	5.33

4. Conclusions
The results showed 104 plant genotypes analyzed by PCR, 64.42% of F2 progenies Sigupai/Yinzhan inherited the fragrant gene. The results of analysis of agronomic character showed 62 genotypes there were 95.08% of ripening aged, 59.01% had a short stem architecture and 6 genotypes (9.83%) had a potential yield of 4.04, -5.33 tons ha⁻¹.
References

[1] Bakhtiar B, Kesumawati E, Hidayat T and Rahmawati M 2011 Karakterisasi Plasma Nutfah Padi Lokal Aceh untuk Perakitan Varietas Adaptif pada Tanah Masam J. Agrista 15(3) 79–86
[2] Darmadi D and Mirza I 2015 Eksporasi dan inventarisasi padi lokal sigupai: Aromatik pandan, rasa nasi pulen, efisiensi pupuk, berumur sedang, disukai petani dan pedagang Pros. Semin. Nas. Biot. 121–5
[3] Kovach M J, Calingacion M N, Fitzgerald M A and McCouch S R 2009 The origin and evolution of fragrance in rice (Oryza sativa L.) Proc. Natl. Acad. Sci. U. S. A. 106
[4] Hedden P 2003 The genes of the Green Revolution Trends Genet. 19
[5] Spielmeyer W, Ellis M H and Chandler P M 2002 Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene Proc. Natl. Acad. Sci. U. S. A. 99
[6] Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H and Matsuoka M 2002 Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice “green revolution” Breed. Sci. 52
[7] Jin Q, Waters D, Cordeiro G M, Henry R J and Reinke R F 2003 A single nucleotide polymorphism (SNP) marker linked to the fragrance gene in rice (Oryza sativa L.) Plant Sci. 165
[8] Lu Yan-Ting, Liu Qing-Long, Wang Jun-Min, Yan Wen-Chao, Yu Fa-Ming J Q-S 2008 Detection of Rice Fragrant Gene by Allele-Specific Amplification ACTA Agron. Sin. 34
[9] Munawar A A and Sabaruddin Z 2021 Fast classification of rice (Oryza sativa) cultivars based on fragrance and environmental origins by means of near infrared spectroscopy IOP Conf. Ser. Earth Environ. Sci. 644 012003
[10] Utami D W, Kristamtini , and KS. P Al 2015 Karakterisasi Plasma Nutfah Padi Beras Merah Lokal Asal Propinsi Daerah Istimewa Yogyakarta Berdasarkan Karakter Morfo-Agronomi dan Marka SSRs Zuriat 20
[11] Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L M, Kamoun S and Terauchi R 2013 QTIL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations Plant J. 74
[12] Shao G N, Tang A, Tang S Q, Luo J, Jiao G A, Wu J L and Hu P S 2011 A new deletion mutation of fragrant gene and the development of three molecular markers for fragrance in rice Plant Breed. 130
[13] Carsono N 2008 Peran Pemuliaan Tanaman dalam Meningkatkan Produksi Pertanian di Indonesia Semin. Agric. Sci.
[14] Hayati R, Synthia D, Marliah A and Munawar A A 2021 Water sorption isotherm of Aceh Rice (Oryza sativa): Study on chemical properties and characteristics Int. J. Agric. Technol. 17 1753–66
[15] Kristamtini, Sutarno, Wiranti E W and Widyayanti S 2016 Kemajuan Genetik dan Heritabilitas Karakter Agronomi Padi Beras Hitam pada Populasi F2 Genetic Advance and Heritability of Agronomic Characters of Penelit. Pertan. Tanam. Pangan 35
[16] Napitupulu M and Damanhuri 2018 Keragaman genetik, Fenotipe dan Heritabilitas pada generasi F2 hasil persilangan tanaman padi (Oryza sativa L.) Produksi Tanam. 6
[17] Helmi H, Munawar A A, Bakhtiar B and Zulfahmi Z 2021 Comparisons among soil tillage system and their impacts to the tested rice varieties on lowland rainfed alluvial in aceh jaya Food Res. 5 173–8
[18] Ma J, MA W bo, MING D feng, YANG S ming and ZHU Q sen 2006 Characteristics of Rice Plant with Heavy Panicle Agric. Sci. China 5