High-quality permanent draft genome sequence of *Ensifer* sp. PC2, isolated from a nitrogen-fixing root nodule of the legume tree (Khejri) native to the Thar Desert of India

Hukam Singh Gehlot¹, Julie Ardley², Nisha Tak³, Rui Tian³, Neetu Poonar¹, Raju R. Meghwal¹, Sonam Rathi¹, Ravi Tiwari², Wan Adnawani², Rekha Seshadri³, T. B. K. Reddy³, Amrita Pati³, Tanja Woyke³, Manoj Pillay⁴, Victor Markowitz⁴, Mohammed N. Baeshen⁵, Ahmed M. Al-Hejin⁵, Natalia Ivanova³, Nikos Kyrpides³⁵ and Wayne Reeve²

Abstract

Ensifer sp. PC2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a nitrogen-fixing nodule of the tree legume *P. cineraria* (L.) Druce (Khejri), which is a keystone species that grows in arid and semi-arid regions of the Indian Thar desert. Strain PC2 exists as a dominant saprophyte in alkaline soils of Western Rajasthan. It is fast growing, well-adapted to arid conditions and is able to form an effective symbiosis with several annual crop legumes as well as species of mimosoid trees and shrubs. Here we describe the features of *Ensifer* sp. PC2, together with genome sequence information and its annotation. The 8,458,965 bp high-quality permanent draft genome is arranged into 171 scaffolds of 171 contigs containing 8,344 protein-coding genes and 139 RNA-only encoding genes, and is one of the rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal.

Keywords: Root-nodule bacteria, Nitrogen fixation, Symbiosis, *Ensifer*, *Prosopis*

Introduction

The genus *Prosopis* (family *Leguminosae*, sub-family *Mimosoideae* [1]) comprises about 44 species that are widely distributed in the world’s semi-arid regions, mostly in North and South America with a few species found in Africa and south west Asia [2–4]. Several species have been widely introduced throughout the world over the last 200 years [5]. *Prosopis* may have evolved from *P. africana* (Guill. & Perr.) Taub., in which various character traits and small genome size (392–490 Mbp) indicate that it is a primitive species [2]. According to Burkart [2], *Prosopis* is an old genus that diverged early into several principal lineages, with some of these lineages producing more recent episodes of speciation. This is supported by a recent molecular dating analysis that places the divergence of the New World *Prosopis* Sections during the Oligocene (33.9 to 23.03 Mya) [6], which is remarkably ancient considering that the sub-family *Mimosoideae* originated between 42–50 Mya [7]. Section Prosopis consists of three species, *Prosopis cineraria* (L.) Druce, *P. farcta* (Banks et Sol.) Eig. and *P. koelziana* Burkart, which are native to North Africa and Asia [6].

P. cineraria is endemic to arid and semi-arid regions of the Indian Thar Desert and is designated as the state tree of Rajasthan [8]. It symbolizes the sacred mythological “Kalpa Vriksh” (wish tree) of the desert and is historically important, as it has been worshiped since ancient times by many rural communities in these arid regions. *P. cineraria* is a multipurpose tree used as food,
fodder, shelter and medicine by the local inhabitants. It
is an important component of agro forestry, agrisilvicul-
tural and silvopastoral systems in the alkaline soil of the
Thar Desert. The tree is extremely drought and salt tol-
erant, having a deep root system (>100 metres) that
helps in acquiring nutrients and moisture from deeper
soil layers. It produces green pods that are rich in nutri-
ents and antioxidants and eaten as a vegetable in the hot
summer [9]. P. cineraria is a good candidate for rehabili-
tation of dry, marginal or degraded lands of low fertility
and/or high salinity. It plays a vital role as a soil binder
in the stabilization of sand dunes and enriches poor desert
soil by fixing atmospheric nitrogen in association
with its rhizobial endosymbionts [10–13].

Prosopeis is a promiscuous genus, being nodulated by a
wide range of taxonomically diverse rhizobia. Mesquite
(Torr.) in the Sonoran Desert, California is nodulated by
diverse strains of fast- and slow-growing rhizobia [14].
Mesorhizobium chacoense CECT 5336T is a microsymb-
biont of Prosopis alba Griseb. growing in the Chaco
Arido region in Argentina [15], whereas in Spain is
nodulated by strains of Ensifer medicae, E. meliloti and
Rhizobium giardinii [16]. In Africa, the introduced Pro-
sopis species P. chilensis (Molina) Stuntz, P. cineraria, P.
juliflora (Sw.) DC. and P. pallida (Willd.) Kunth are re-
ported to nodulate with strains of Ensifer arboris, E. kos-
tiene, E. saheli and E. terangae [17, 18] and P. juliflora
also forms effective symbioses with strains of Mesorhizo-
bium plurifarium [19] and Rhizobium etli [20]. Nodula-
tion of P. cineraria growing in its native range was first
described by Basak and Goyal [10]. Recently, P. cineraria
and other native legumes growing in the alkaline soils of
the Thar desert have been reported to nodulate with a
dominant novel group of Ensifer strains (PC2, TW10,
TP13, RA9, TV3 and TF7) that are closely related to
African and Australian Ensifer strains on the basis of
16S rRNA sequence similarity, but form a distinct, well-
separated cluster [21, 22].

The indigenous rhizobia of wild tree legumes growing
in such arid and harsh environments have superior
tolerance to abiotic factors such as salt stress,
elevated temperatures and drought and can be used
as inoculants for wild as well as crop legumes culti-
vated in reclaimed desert lands [10]. Because of its
ability to nodulate the keystone species P. cineraria
as well as crop legumes such as Vigna radiata (L.)
R.Wilczek and V. unguiculata (L.) Walp. [21], strain
PC2 has therefore been selected as part of the DOE
Joint Genome Institute 2010 Genomic Encyclopedia
for Bacteria and Archaea-Root Nodule Bacteria
(GEBA-RNB) sequencing project [23]. Here we
present a summary classification and a set of general
features for Ensifer sp. strain PC2, together with a de-
scription of its genome sequence and annotation.

Organism information
Classification and features
Ensifer sp. PC2 is a motile, Gram-negative strain in the
order Rhizobiales of the class Alphaproteobacteria. The
rod shaped form (Fig. 1 Left and Center) has dimensions
of approximately 0.3-0.5 μm in width and 1.25-1.5 μm in
length. It is fast growing, forming colonies within 3–4
days when grown on half strength Lupin Agar [24],
tryptone-yeast extract agar (TY) [25] or a modified
yeast-mannitol agar (YMA) [26] at 28 °C. Colonies on
½LA are white, opaque, slightly domed and slightly mu-
coid with smooth margins (Fig. 1 Right).

Figure 2 shows the phylogenetic relationship of Ensifer
sp. PC2 in a 16S rRNA sequence based tree. This strain
is the most similar to Ensifer saheli LMG 7837T based
on the 16S rRNA gene alignment, with sequence iden-
tities of 99.41 % over 1,366 bp, as determined using the

![Fig. 1 Images of Ensifer sp. PC2 using scanning (Left) and transmission (Center) electron microscopy and the appearance of colony morphology on solid media (Right)](image-url)

EzTaxon-e database, which contains the sequences of validly published type strains [27]. The PC2 16S rRNA gene sequence has 100% sequence identity with that of another Indian Thar Desert rhizobial strain, *Ensifer* sp. TW10, isolated from a nodule of the perennial legume *Tephrosia wallichii* [22]. Minimum Information about the Genome Sequence for PC2 is provided in Table 1 and Additional file 1: Table S1.

Symbiotaxonomy
Ensifer sp. strain PC2 is able to nodulate and fix nitrogen with both mimosoid and papilionoid legume hosts. It is interesting to note that sp. PC2 is able to nodulate and fix nitrogen with *Acacia saligna* (Labill.) Wendl., a promiscuous legume tree that mainly nodulates with species in its native southwestern Australia range [28]. PC2 also effectively nodulates the Central American mimosoid tree *Leucaena leucocephala* (Lam.) de Wit. PC2 appears to be a relatively promiscuous strain that has potential to be used as an inoculant for crop legumes species such as *Vigna radiata* (L.) Wilczek and *V. unguiculata* (L.) Walp.. The symbiotic characteristics of sp. strain PC2 on a range of selected hosts are summarised in Additional file 2: Table S2.

Genome sequencing information

Genome project history
This organism was selected for sequencing on the basis of its environmental and agricultural relevance to issues in global carbon cycling, alternative energy production, and biogeochemical importance, and is part of the *Genomic Encyclopedia of Bacteria and Archaea, The Root Nodulating Bacteria* chapter project at the U.S. Department of Energy, Joint Genome Institute. The genome project is deposited in the Genomes OnLine Database [29] and a high-quality permanent draft genome sequence is deposited in IMG [30]. Sequencing, finishing and annotation were performed by the JGI [31]. A summary of the project information is shown in Table 2.

Growth conditions and genomic DNA preparation
Ensifer sp. PC2 was streaked onto TY solid medium [25, 32] and grown at 28 °C for three days to obtain well grown, well separated colonies, then a single colony was selected and used to inoculate 5 ml TY broth medium. The culture was grown for 48 h on a gyratory shaker (200 rpm) at 28 °C. Subsequently 1 ml was used to inoculate 60 ml TY broth medium and grown on a
Gyratory shaker (200 rpm) at 28 °C until OD$_{600nm}$ 0.6 was reached. DNA was isolated from 60 ml of cells using a CTAB bacterial genomic DNA isolation method [http://jgi.doe.gov/collaborate-with-jgi/pmo-overview/protocols-sample-preparation-information/]. Final concentration of the DNA was 0.5 mg ml$^{-1}$.

Genome sequencing and assembly

The draft genome of sp. PC2 was generated at the JGI using the Pacific Biosciences (PacBio) technology. A PacBio SMRTbell™ library was constructed and sequenced on the PacBio RS platform, which generated 403,200 filtered subreads totaling 1.1 Gbp. All general aspects of library construction and sequencing performed at the JGI can be found on the JGI website [http://jgi.doe.gov/]. The raw reads were assembled using HGAP (version: 2.0.12.0.1) [33]. The final draft assembly contained 171 contigs in 171 scaffolds, totalling 8.5 Mbp in size. The input read coverage was 181.5x.

Genome annotation

Genes were identified using Prodigal [34] as part of the DOE-JGI genome annotation pipeline [35, 36]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information nonredundant database, UniProt, TIGRFam, Pfam, KEGG, COG, and InterPro databases. The tRNAscanSE tool [37] was used to find tRNA genes, whereas ribosomal RNA genes were found by searches against models of the ribosomal RNA genes built from SILVA [38]. Other non–coding RNAs such as the RNA components of the protein secretion complex

MIGS ID	Property	Term	Evidence codea
	Current classification	Domain Bacteria	TAS [49]
		Phylum Proteobacteria	TAS [50, 51]
		Class Alphaproteobacteria	TAS [52, 53]
		Order Rhizobiales	TAS [54]
		Family Rhizobiaceae	TAS [55]
		Genus Ensifer	TAS [56–58]
		Species Ensifer sp.	IDA
		Strain: PC2	TAS [21]
	Gram stain	Negative	IDA
	Cell shape	Rod	IDA
	Motility	Motile	IDA
	Sporulation	Non-sporulating	NAS
	Temperature range	10-40 °C	IDA
	Optimum temperature	28 °C	IDA
	pH range; Optimum	5-9.5, 6.5-8	IDA
	Carbon source	Mannitol, tryptone, yeast extract	TAS [21]
	Habitat	Soil; root nodule on host (Prosopis (L.) Druce)	TAS [21]
MIGS-6	Salinity	0.89-2.0 % (w/v)	NAS
MIGS-22	Oxygen requirement	Aerobic	TAS [21]
MIGS-15	Biotic relationship	Free living, symbiotic	TAS [21]
MIGS-14	Pathogenicity	Biosafety level 1	TAS [59]
MIGS-4	Geographic location	Jodhpur, Indian Thar Desert	TAS [21]
MIGS-5	Sample collection	October, 2009	TAS [21]
MIGS-4.1	Latitude	26.27061	TAS [21]
MIGS-4.2	Longitude	73.021177	TAS [21]
MIGS-4.3	Depth	0-10 cm	NAS
MIGS-4.4	Altitude	234 m	TAS [21]

a Evidence codes – IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [60], [http://geneontology.org/page/guide-go-evidence-codes].
and the RNase P were identified by searching the genome for the corresponding Rfam profiles using INFERNAL [39]. Additional gene prediction analysis and manual functional annotation was performed within the Integrated Microbial Genomes platform [40] developed by the Joint Genome Institute, Walnut Creek, CA, USA [41].

Genome properties
The genome is 8,458,965 nucleotides with 61.32 % GC content (Table 3) and comprised of 171 scaffolds of 171 contigs. From a total of 8,483 genes, 8,344 were protein encoding and 139 RNA only encoding genes. The majority of protein-coding genes (76.34 %) were assigned a putative function whilst the remaining genes were annotated as Table 4 Number of genes of sp. PC2 associated with general COG functional categories

Code	Value	% of total	Description
J	236	4.01	Translation, ribosomal structure and biogenesis
A	0	0.00	RNA processing and modification
K	514	8.74	Transcription
L	172	2.92	Replication, recombination and repair
B	2	0.03	Chromatin structure and dynamics
D	47	0.80	Cell cycle control, cell division, chromosome partitioning
Y	0	0.00	Nuclear structure
V	115	1.95	Defense mechanisms
T	271	4.61	Signal transduction mechanisms
M	331	5.63	Cell wall/membrane/envelope biogenesis
N	101	1.72	Cell motility
Z	0	0.00	Cytoskeleton
W	44	0.75	Extracellular structures
U	132	2.24	Intracellular trafficking, secretion, and vesicular transport
O	213	3.62	Posttranslational modification, protein turnover, chaperones
C	351	5.97	Energy production and conversion
G	548	9.31	Carbohydrate transport and metabolism
E	598	10.16	Amino acid transport and metabolism
F	116	1.97	Nucleotide transport and metabolism
H	277	4.71	Coenzyme transport and metabolism
I	227	3.86	Lipid transport and metabolism
P	309	5.25	Inorganic ion transport and metabolism
Q	171	2.91	Secondary metabolite biosynthesis, transport and catabolism
R	593	10.08	General function prediction only
S	395	6.71	Function unknown
X	120	2.04	Mobilome: prophages, transposons
-	3,278	38.64	Not in COGS
Insights from the genome sequence

With a genome totaling 8.5 Mbp in size, *Ensifer* sp. PC2 is approximately 25% larger than the average *Ensifer* genome in GenBank. Although PC2 shares 100% 16S rRNA sequence identity and 99.17 Average Nucleotide Identity with *Ensifer* sp. TW10, also isolated from a Thar Desert woody legume, the genome of TW10 has a smaller size of 6.8 Mbp. PC2 contains over 1,000 genes that are not found in TW10, including two plasmid replication initiator proteins and a suite of genes (vir/trb) involved in conjugative transfer. From this it is assumed that the PC2 genome is multipartite and contains at least one conjugative plasmid. In PC2, 38.64% of genes have not been assigned to a COG functional category, whereas in TW10, only 31.55% have not been assigned to a COG functional category. Compared with TW10, PC2 has a much higher number of genes assigned to the mobilome category (54 and 120 genes, respectively) and to extracellular structures (29 and 44 genes, respectively).

Conclusion

Based on the 16S rRNA gene alignment, *Ensifer* sp. PC2 is most closely related to *Ensifer* sp. TW10 and *Ensifer* sp. WSM1721, two strains isolated from perennial legumes growing in arid climates and alkaline soils in India and Australia, respectively [21, 42]. *Ensifer fredii* strains isolated from Chinese soybean were also superdominant in sampling sites with alkaline-saline soils [43], which suggests that the biogeographic distribution of several *Ensifer* spp. is linked to their adaptation to alkaline soils. Further, this suggests that the symbiotic associations formed by promiscuous legumes, such as *Prosopis*, are likely to vary depending on which rhizobial genera are best adapted to the edaphic conditions in which the host is growing.

The ability of PC2 to fix nitrogen with both *P. cineraria* (L.) Druce and the crop legumes *Vigna radiata* (L.) R.Wilczek and *V. unguiculata* (L.) Walp. makes it a valuable inoculant strain for use in arid, alkaline regions such as the Thar desert. Analysis of the PC2 sequenced genome and comparison with the genomes of sequenced *Ensifer* spp. and other rhizobia will provide insights into the molecular basis of the patterns seen in rhizobial biogeographic distributions and associations with plant hosts and into the molecular determinants of rhizobial tolerance to arid and alkaline environments.

Additional files

| Additional file 1: Table S1. Associated MIGS record for PC2 (DOCX 19 kb) |
| Additional file 2: Table S2. Nodulation and N₂ fixation properties of *Ensifer* sp. PC2 on selected legume hosts (DOCX 17 kb) |

Abbreviations

ANI: Average nucleotide identity; GEBA-RNB: Genomic encyclopedia for bacteria and archaea-root nodule bacteria; IMG: Integrated microbial genomes.

Acknowledgements

This work was performed under the auspices of the US Department of Energy’s Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH12311. We thank Gordon Thomson (Murdoch University) for the preparation of SEM and TEM photos. We would also like to thank the Center of Nanotechnology at King Abdulaziz University for their support and acknowledge King Abdulaziz University Vice President for Educational Affairs Prof. Abdulrahman O. Alyoubi for his support. We sincerely acknowledge funding received from University Grant Commission, New Delhi, India for UGC-SAPII-CAS-IV, UGC-BSR Research Start-Up Grant (F.30-16/2014-BSR); Department of Biotechnology, Govt. of India (BT/PR11461/AGR/21/270/2008). We also thank the Crawford Fund Award-ATSE, Australia for funding HG and NT to conduct research at the CRIS.

Authors’ contribution

HG supplied the strain, DNA and background information for this project, TR supplied DNA to JGI and performed all imaging, JA and NT drafted the paper, MNB and AMA-H provided financial support and all other authors were involved in sequencing the genome and/or editing the final paper. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Author details

1. BNF and Stress Biology Lab., Department of Botany, J.N. Vyas University, Jodhpur 342001, India. 2. Centre for Studies, Murdoch University, Murdoch, Western Australia, Australia. 3. DOE Joint Genome Institute, Walnut Creek, California, USA. 4. Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA.

Received: 4 September 2015 Accepted: 18 May 2016
Published online: 23 June 2016

References

1. Lewis G, Schrire B, Mackinder B, Lock M. Legumes of the World. Richmond, Surrey: Royal Botanic Gardens, Kew; 2005.
2. Burkart A. A monograph of the genus Prosopis (Leguminosae Subfam, Mimosoideae). J Arnold Arbor. 1976;57:219–49. 450–525.
3. Felker P. Unusual physiological properties of the arid adapted tree legume Prosopis and their applications in developing countries. In: De la Barra E, Smith WK, editors. Perspectives in Biophysical Plant Ecophysiolog: A Tribute to Park S Nobel. Mexico City: Universidad Nacional Autónoma de Mexico; 2009. p. 221–55.
4. Sprent J. Nodulation in Legumes. Richmond, Surrey: Royal Botanic Gardens, Kew; 2001.
5. Pasiecznik NM, Harris PJ,C, Smith SJ. Identifying tropical Prosopis species: a field guide. Coventry: Henry Doubleday Research Association; 2003
6. Cattaneo SA, Villard JC, Tasto D, Saldman BO. Molecular phylogeny and diversification history of Prosopis (Fabaceae: Mimosoideae). Biol J Linnnean Soc. 2008;93:621–40.
7. Lavin M, Herendeen PS, Wojciechowski MF. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst Biol. 2005;54:575–94.
8. Bhandari MM. Flora of the Indian Desert. Jodhpur: MPS Repros; 1990.
51. Garrity GM, Bell JA, Phylum LT, XIV. Proteobacteria phyl. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey's Manual of Systematic Bacteriology, vol. 2. 2nd ed. Springer, New York: Part B; 2005. p. 1.
52. List of new names and new combinations previously effectively, but not validly, published. International Journal of Systematic and Evolutionary Microbiology 2006, 56:1–6.
53. Garrity GM, Bell JA, Lilburn T. Class I. Alphaproteobacteria class. nov. In Bergey's Manual of Systematic Bacteriology. Second edition. Edited by Garrity GM, Brenner DJ, Krieg NR, Staley JT. New York: Springer; 2005
54. Kuykendall LD. Order VI. Rhizobiales ord. nov. In Bergey's Manual of Systematic Bacteriology. Second edition. Edited by Garrity GM, Brenner DJ, Krieg NR, Staley JT. New York: Springer; 2005: 324
55. Kuykendall LD. Family I. Rhizobaceae. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey's Manual of Systematic Bacteriology. New York: Springer; 2005.
56. Kuykendall LD, Hashem FM, Wang ET. Genus VII. Ensifer. In Bergey's Manual of Systematic Bacteriology. Volume 2. Edited by Garrity GM, Brenner DJ, Krieg NR, Staley JT. New York: Springer; 2005: 358–361
57. Judicial Commission of the International Committee on Systematics of Prokaryotes. The genus name Sinorhizobium Chen et al. 1988 is a later synonym of Ensifer Casida 1982 and is not conserved over the latter genus name, and the species name 'Sinorhizobium adhaerens' is not validly published. Opinion 84. Int J Syst Evol Microbiol. 2008;58:1973.
58. Casida LE. Ensifer adhaerens gen. nov., sp. nov.: a bacterial predator of bacteria in soil. Int J Syst Bacteriol. 1982;32:339–45.
59. Biological Agents: Technical rules for biological agents. [http://www.baua.de/en/Topics-from-A-to-Z/BiologicalAgents/TRBA/TRBA.html]. Accessed 24 May 2016.
60. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium Nat Genet. 2000;25:25–9.