The main object of this paper is to investigate spacetimes admitting concircular curvature tensor in $f(R)$ gravity theory. At first, concircularly flat and concircularly flat perfect fluid spacetimes in $f(R)$ gravity are studied. In this case, the forms of the isotropic pressure p and the energy density σ are obtained. Next, some energy conditions are considered. Finally, perfect fluid spacetimes with divergence free concircular curvature tensor in $f(R)$ gravity are studied; amongst many results, it is proved that if the energy-momentum tensor of such spacetimes is recurrent or bi-recurrent, then the Ricci tensor is semi-symmetric and hence these spacetimes either represent inflation or their isotropic pressure and energy density are constants.

Keywords: perfect fluid, energy-momentum tensor, concircular curvature tensor, $f(R)$ gravity theory, energy conditions in modified gravity

1 INTRODUCTION

A concircular transformation was first coined by Yano in 1940 [1]. Such a transformation preserves geodesic circles. The geometry that deals with a concircular transformation is called concircular geometry. Under concircular transformation the concircular curvature tensor \mathcal{M} remains invariant. Every spacetime M has vanishing concircular curvature tensor is called concirculary flat. A concircularly flat spacetime is of constant curvature. As a result, the deviation of a spacetime from constant curvature is measured by the concircular curvature tensor \mathcal{M}. Researchers have shown the curial role of the concircular curvature tensor in mathematics and physics (for example, see [2–6] and references therein).

In Einstein’s theory of gravity, the relation between the matter of spacetimes and the geometry of the spacetimes is given by Einstein’s field equations (EFE)

$$R_{ij} - \frac{1}{2}g_{ij}R = \kappa T_{ij},$$

with κ being the Newtonian constant and T_{ij} is the energy-momentum tensor [7]. These equations imply that the energy-momentum tensor T_{ij} is divergence-free. This condition is satisfied whenever $\nabla_{j}T_{ij} = 0$, where ∇_{j} denotes the covariant differentiation. There are many modifications of the standard relativity theory. The $f(R)$ gravity theory is the most popular of such modification of the standard theory of gravity. This important modification was first introduced in 1970 [8]. This modified theory can be obtained by replacing the scalar curvature R with a generic function $f(R)$ in the Einstein-Hilbert action. The field equations of $f(R)$ gravity are given as
where \(f(R) \) is an arbitrary function of the scalar curvature \(R \) and \(f'(R) = \frac{df}{dR} \) which must be positive to ensure attractive gravity [9]. The \(f(R) \) gravity represents a higher order and well-studied theory of gravity. For example, an earlier investigation of quintessence gravity theory as a higher order and well-studied theory of gravity represents a higher order and well-studied theory of gravity [9].

In a series of recent studies, weakly Ricci symmetric spacetimes (WRS)_k, almost pseudo-Ricci symmetric spacetimes(APRS)_k, and conformally flat generalized Ricci recurrent spacetimes are investigated in \(f(R) \) gravity theory [12–14]. Motivated by these studies and many others, the main aim of this paper is to study concircularly flat and concircularly flat perfect fluid spacetimes in \(f(R) \) gravity. Also, spacetimes with divergence free concircular curvature tensor in \(f(R) \) gravity are considered.

In view of corollary 1, the field Eq. 1.1 in \(f(R) \) gravity become

\[
\mathcal{R}_{ij} - \frac{f}{2T} g_{ij} = \frac{\kappa}{f'} T_{ij},
\]

In vacuum case, we have

\[
\mathcal{R}_{ij} - \frac{f}{2T} g_{ij} = 0.
\]

Contracting with \(g^{ij} \) and integrating the result, one gets

\[
f = \lambda R^3,
\]

where \(\lambda \) is a constant.

Conversely, if Eq. 2.5 holds, then

\[
T_{ij} = 0.
\]

We can thus state following theorem:

Theorem 2. A concircularly flat spacetime in \(f(R) \) gravity is vacuum if and only if \(f = \lambda R^3 \).

The vector field \(\xi \) is called Killing if

\[
\mathcal{L}_\xi g_{ij} = 0,
\]

whereas \(\xi \) is called conformal Killing if

\[
\mathcal{L}_\xi g_{ij} = 2\phi g_{ij},
\]

where \(\mathcal{L}_\xi \) is the Lie derivative with respect to the vector field \(\xi \) and \(\phi \) is a scalar function [15–17]. The symmetry of a spacetime is measured by the number of independent Killing vector fields the spacetime admits. A spacetime of maximum symmetry has a constant curvature.

A spacetime \(M \) is said to admit a matter collineation with respect to a vector field \(\xi \) if the Lie derivative of the energy-momentum tensor \(T \) with respect to \(\xi \) satisfies

\[
\mathcal{L}_\xi T_{ij} = 0.
\]

It is clear that every Killing vector field is a matter collineation, but the converse is not generally true. The energy-momentum tensor \(T_{ij} \) has the Lie inheritance property along the flow lines of the vector field \(\xi \) if the Lie derivative of \(T_{ij} \) with respect to \(\xi \) satisfies [15–17].

\[
\mathcal{L}_\xi T_{ij} = 2\phi T_{ij}.
\]

Now using Eq. 2.3 in Eq. 2.4, one gets

\[
\left(\frac{R}{n} - \frac{f}{2T} \right) g_{ij} = \frac{\kappa}{f'} T_{ij}.
\]

In a concircularly flat spacetime the scalar curvature \(R \) is constant, and hence \(f \) and \(f' \) are also constants. Now, we consider a non-vacuum concircularly flat spacetime \(M \). Therefore the Lie derivative \(\mathcal{L}_\xi \) of Eq. 2.10 implies that

\[
\left(\frac{R}{n} - \frac{f}{2T} \right) \mathcal{L}_\xi (g_{ij}) = \frac{\kappa}{f'} \mathcal{L}_\xi T_{ij}.
\]
Assume that the vector field ξ is Killing on M, that is, Eq. 2.6 holds, thus we have

$$\mathcal{L}_\xi T_{ij} = 0.$$

Conversely, if Eq. 2.8 holds, then form Eq. 2.11 it follows that

$$\mathcal{L}_\xi g_{ij} = 0.$$

We thus motivate to state the following theorem:
Theorem 3. Let M be a concircularly flat spacetime satisfying $f(R)$ gravity, then the vector field ξ is Killing if and only if M admits matter collineation with respect to ξ.

The isometry of spacetimes prescribed by Killing vector fields represents a very important type of spacetime symmetry. Spacetimes of constant curvature are known to have maximum such symmetry, that is, they admit the maximum number of linearly independent Killing vector fields. The maximum number of linearly independent Killing vector fields in an n-dimensional spacetime is $\frac{n(n+1)}{2}$. The reader is referred to [18–22] and references therein for a more discussion on this topic). This fact with the above theorem leads to the following corollary.

Corollary 3. A non-vacuum concircularly flat spacetime satisfying $f(R)$ gravity admits the maximum number of matter collinations $\frac{n(n+1)}{2}$.

Let ξ be a conformal Killing vector field, that is, Eq. 2.7 holds. Eq. 2.11 implies

$$\mathcal{L}_\xi T_{ij} = 2\varphi T_{ij}.$$

Conversely, assume that Eq. 2.9 holds, then from Eq. 2.11 we obtain

$$\mathcal{L}_\xi g_{ij} = 2\varphi g_{ij}.$$

Hence, we can state the following theorem:

Theorem 4. Let M be a concircularly flat spacetime satisfying $f(R)$ gravity, then M has a conformal Killing vector field ξ if only if the energy-momentum tensor T_{ij} has the Lie inheritance property along ξ.

The covariant derivative of both sides of Eq. 2.10 implies that

$$V_k T_{ij} = 0.$$

(2.12)

Since in a concircularly flat spacetime R is constant, then f and f' are constant. Inserting Eq. 2.4 in Eq. 2.12, we get

$$V_k R_{ij} = 0.$$

Thus, we have:

Theorem 5. Let M be a concircular flat spacetime satisfying $f(R)$ gravity, then M is Ricci symmetric.

3 CONCIRCULARLY FLAT PERFECT FLUID SPACETIMES IN $f(R)$ GRAVITY

In a perfect fluid 4-dimensional spacetime, the energy-momentum tensor T_{ij} obeys

$$T_{ij} = (p + \sigma)u_i u_j + \rho g_{ij},$$

(3.1)

where p is the isotropic pressure, σ is the energy density, and u_i is a unit timelike vector field [7, 23].

Making use of Eq. 3.1 in Eq. 2.4, we get

$$R_{ij} = \frac{k}{f}[u_i u_j + \rho g_{ij}] + \frac{f}{2f'} g_{ij}.$$

(3.2)

The use of Eq. 2.3 implies that

$$R = \frac{1}{4}g_{ij} = \frac{k}{f}[u_i u_j + \rho g_{ij}] + \frac{f}{2f'} g_{ij}.$$

(3.3)

Contracting Eq. 3.3 with u^i, we get

$$\sigma = \frac{2f - Rf'}{4k}.$$

(3.4)

Transvecting Eq. 3.3 with g^{ij} and using Eq. 3.4, one obtains

$$p = \frac{2f - Rf'}{4k}.$$

(3.5)

In consequence of the above we can state the following theorem:

Theorem 6. In a concircularly flat perfect fluid spacetime obeying $f(R)$ gravity, the isotropic pressure p and the energy density σ are constants and $p = \frac{1}{2(f - Rf')}$ and $\sigma = \frac{2f - Rf'}{4k}$.

Combining Eq. 3.6 and Eq. 3.5, one easily gets

$$p + \sigma = 0,$$

(3.6)

which means that the spacetime represents dark matter era or alternatively the perfect fluid behaves as a cosmological constant [24]. Thus we can state the following theorem:

Theorem 7. A concircularly flat perfect fluid spacetime obeying $f(R)$ gravity represents dark matter era.

In radiation era $\sigma = 3p$, therefore the energy-momentum tensor T_{ij} takes the form

$$T_{ij} = 4pu_i u_j + \rho g_{ij}.$$

(3.7)

Eq. 3.6 implies that $p = 0$. It follows that

$$T_{ij} = 0,$$

(3.8)

which means that the spacetime is devoid of matter.

Thus we motivate to state the following corollary:

Corollary 4. Let M be a concircularly flat spacetime obeying $f(R)$ gravity, then the Radiation era in M is vacuum.

In pressureless fluid spacetime $p = 0$, the energy-momentum tensor is expressed as [25].

$$T_{ij} = \omega u_i u_j.$$

(3.8)

From Eq. 3.6 it follows that $\sigma = 0$. And consequently from Eq. 3.8 we infer

$$T_{ij} = 0,$$

which means that the spacetime is vacuum.

We thus can state the following:
Corollary 5. Let M be a concircularly flat dust fluid spacetime obeying $f(R)$ gravity, then M is vacuum.

3.1 Energy Conditions in Concircularly Flat Spacetime

In this subsection, some energy conditions in concircularly flat spacetimes obeying $f(R)$ gravity are considered. Indeed, energy conditions serve as a filtration system of the energy-momentum tensor in standard theory of gravity and the modified theories of gravity.[12–14]. In [26], the authors studied weak energy condition (WEC), dominant energy conditions (DEC), null energy conditions (NEC), and strong energy conditions in two extended theories of gravity. As a starting point, we need to determine the effective isotropic pressure p_{eff} and the effective energy density σ_{eff} to state some of these energy conditions.

Eq. 2.4 may be rewritten as

$$R_{ij} - \frac{1}{2}Rg_{ij} = \frac{\kappa}{T} T_{ij}^{\text{eff}}, \quad (3.9)$$

where

$$T_{ij}^{\text{eff}} = T_{ij} + \frac{f - Rf'}{2\kappa} g_{ij}.$$

This leads us to rewrite Eq. 3.1 in the following form

$$T_{ij}^{\text{eff}} = (p_{\text{eff}} + \sigma_{\text{eff}}) u_i u_j + T_{ij}^{\text{eff}} g_{ij},$$

where

$$p_{\text{eff}} = p + \frac{f - Rf'}{2\kappa} \quad \text{and} \quad \sigma_{\text{eff}} = \sigma - \frac{f - Rf'}{2\kappa}.$$

The use of Eq. 3.4 and Eq. 3.5 entails that

$$p_{\text{eff}} = \frac{Rf'}{4\kappa},$$

$$\sigma_{\text{eff}} = \frac{Rf'}{4\kappa}.$$

Let us investigate certain energy conditions of a perfect fluid type effective matter in $f(R)$ gravity theory [12, 26, 27]:

1) Null energy condition (NEC): it says that $p_{\text{eff}} + \sigma_{\text{eff}} \geq 0$.
2) Weak energy condition (WEC): it states that $\sigma_{\text{eff}} \geq 0$ and $p_{\text{eff}} + \sigma_{\text{eff}} \geq 0$.
3) Dominant energy condition (DEC): it states that $\sigma_{\text{eff}} \geq 0$ and $p_{\text{eff}} + 3\sigma_{\text{eff}} \geq 0$.
4) Strong energy condition (SEC): it states that $\sigma_{\text{eff}} + 3p_{\text{eff}} \geq 0$ and $p_{\text{eff}} + \sigma_{\text{eff}} \geq 0$.

In this context, all mentioned energy conditions are consistently satisfied if $Rf' \geq 0$. As mentioned earlier, f' must be positive to ensure attractive gravity. Therefore, the previous energy conditions are always satisfied if $R \geq 0$.

4 SPACETIMES WITH DIVERGENCE FREE CONCIRCULAR CURVATURE TENSOR IN $F(R)$ GRAVITY

The divergence of the concircular curvature tensor, for $n = 4$, is given by [28].

$$\nabla_{k} M_{klm}^{h} = \nabla_{k} R_{klm}^{h} - \frac{1}{12} [g_{lm} \nabla_{k} R - g_{km} \nabla_{l} R]. \quad (4.1)$$

It is well-known that

$$\nabla_{k} R_{klm}^{h} = \nabla_{k} R_{lm} - \nabla_{l} R_{km}. \quad (4.2)$$

The use of Eq. 4.2 in Eq. 4.1 implies that

$$\nabla_{k} M_{klm}^{h} = \nabla_{k} R_{lm} - \nabla_{l} R_{km} - \frac{1}{12} [g_{lm} \nabla_{k} R - g_{km} \nabla_{l} R]. \quad (4.3)$$

Assume that the concircular curvature tensor is divergence free, that is $\nabla_{k} M_{klm}^{h} = 0$, then

$$\nabla_{k} R_{lm} - \nabla_{l} R_{km} - \frac{1}{12} [g_{lm} \nabla_{k} R - g_{km} \nabla_{l} R] = 0. \quad (4.4)$$

Contracting with g_{km} and using $\nabla_{l} R_{j}^{l} = \frac{1}{2} \nabla_{l} R$, we obtain

$$\nabla_{k} R = 0. \quad (4.5)$$

Utilizing (4.5) in Eq. 4.4, we have

$$\nabla_{k} R_{lm} = \nabla_{l} R_{km}, \quad (4.6)$$

which means that the Ricci tensor is of Codazzi type [29]. The converse is trivial. Thus we can state the following theorem:

Theorem 8. Let M be a spacetime with concircular curvature tensor, then M has Codazzi type of Ricci tensor if and only if the concircular curvature tensor is divergence free.

In view of Eq. 4.5, the field Eq. 1.1 in $f(R)$ gravity are

$$R_{ij} - \frac{f}{2T} g_{ij} = \frac{\kappa}{T} T_{ij}. \quad (4.7)$$

Using Eq. 4.7 in Eq. 4.6, we get

$$\nabla_{k} T_{lm} = \nabla_{l} T_{km}.$$

Hence, we have the following corollary:
Corollary 6. The energy-momentum tensor of a spacetime with divergence free concircular curvature tensor obeying $f(R)$ gravity is of Codazzi type.

The spacetime M is called Ricci semi-symmetric [30] if

$$\nabla_h \nabla_k - \nabla_k \nabla_h) R_{ij} = 0, \quad (4.8)$$

whereas the energy-momentum tensor is called semi-symmetric if

$$\nabla_h \nabla_k - \nabla_k \nabla_h) T_{ij} = 0. \quad (4.9)$$

Now, Eq. 4.7 implies

$$(\nabla_h \nabla_k - \nabla_k \nabla_h) R_{ij} = \frac{\kappa}{f} (\nabla_h \nabla_k - \nabla_k \nabla_h) T_{ij}.\quad (4.10)$$

Thus, we can state the following theorem:

Theorem 9. Let M be a spacetime with divergence free concircular curvature tensor satisfying $f(R)$ gravity, then M is Ricci semi-symmetric if and only if the energy-momentum tensor of M is semi-symmetric.

The energy-momentum tensor T_{ij} is called recurrent if there exists a non-zero 1-form λ_k such that

$$\nabla_k T_{ij} = \lambda_k T_{ij},\quad (4.11)$$

where T_{ij} is called bi-recurrent if there exists a non-zero tensor ϵ_{hk} such that

$$\nabla_h T_{ij} = \epsilon_{hk} T_{ij}. \quad (4.12)$$

In view of the above definition, it is clear that every recurrent tensor field is bi-recurrent.

Now assume that T_{ij} is any $(0,2)$ symmetric recurrent tensor, that is,

$$\nabla_k T_{ij} = \lambda_k T_{ij}. \quad (4.13)$$

Contracting with g^{ij}, we obtain

$$\lambda_k = \frac{1}{T} \nabla_k T, \quad (4.14)$$

where $T = g^{ij} T_{ij}$.

Applying the covariant derivative on both sides and using Eq. 4.11, we find

$$\nabla_i \lambda_k + \lambda_k \lambda_i = \frac{1}{T} \nabla_i \nabla_k T. \quad (4.15)$$

Taking the covariant derivative of Eq. 4.10 and utilizing Eq. 4.12, we get

$$\nabla_i \nabla_k T_{ij} = \left(\frac{1}{T} \nabla_i \nabla_k T\right) T_{ij}. \quad (4.16)$$

It follows that

$$\left(\nabla_i \nabla_k - \nabla_k \nabla_i\right) T_{ij} = 0. \quad (4.17)$$

Similarly, the same result holds for a bi-recurrent $(0,2)$ symmetric tensor. In view of the above discussion, we have the following:

Lemma 1. A (bi-)recurrent $(0,2)$ symmetric tensor is semi-symmetric.

Assume that the energy-momentum tensor T_{ij} is recurrent or bi-recurrent, it follows form Lemma one that T_{ij} is semi-symmetric. Consequently, M is Ricci semi-symmetric.

Theorem 10. Let M be a spacetime with divergence free concircular curvature tensor obeying $f(R)$ gravity. If the energy-momentum (Ricci) tensor is recurrent or bi-recurrent, then the Ricci (energy-momentum) tensor is semi-symmetric.

Let us now consider that M be a perfect fluid spacetime with divergence free concircular curvature tensor obeying $f(R)$ gravity. If the energy-momentum (Ricci) tensor is recurrent or bi-recurrent, then the use of Case 1.

Similarly, the same result holds for a bi-recurrent $(0,2)$ symmetric tensor. In view of the above definition, it is clear that every recurrent tensor field is bi-recurrent.

Now assume that T_{ij} is any $(0,2)$ symmetric recurrent tensor, that is,

$$\nabla_k T_{ij} = \lambda_k T_{ij}. \quad (4.18)$$

Contracting with g^{ij}, we obtain

$$\lambda_k = \frac{1}{T} \nabla_k T, \quad (4.19)$$

where $T = g^{ij} T_{ij}$.

Applying the covariant derivative on both sides and using Eq. 4.11, we find

$$\nabla_i \lambda_k + \lambda_k \lambda_i = \frac{1}{T} \nabla_i \nabla_k T. \quad (4.20)$$

Taking the covariant derivative of Eq. 4.18 and utilizing Eq. 4.19, we get

$$\nabla_i \nabla_k T_{ij} = \left(\frac{1}{T} \nabla_i \nabla_k T\right) T_{ij}. \quad (4.21)$$

It follows that

$$\left(\nabla_i \nabla_k - \nabla_k \nabla_i\right) T_{ij} = 0. \quad (4.22)$$

Similarly, the same result holds for a bi-recurrent $(0,2)$ symmetric tensor. In view of the above discussion, we have the following:

Lemma 1. A (bi-)recurrent $(0,2)$ symmetric tensor is semi-symmetric.

Assume that the energy-momentum tensor T_{ij} is recurrent or bi-recurrent, it follows form Lemma one that T_{ij} is semi-symmetric. Consequently, M is Ricci semi-symmetric.
In virtue of Eq. 4.16 and Eq. 4.17 we have

\[\frac{p}{\sigma} = \frac{2f'R - 3f}{3f}. \]

In view of the previous theorem we can state the following: Remark 1. According to the different states of cosmic evolution of the Universe we can conclude that the spacetime with \(V_kM_{\ell m} = 0 \) obeying \(f(R) \) gravity either represents inflation or

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary material, further inquiries can be directed to the corresponding authors.

REFERENCES

1. Yano K. Concircular Geometry I. Concircular Transformations. *Proc Imperial Acad* (1940) 16:195–200. doi:10.3792/pia/1195579139
2. De UC, Shenawy S, Ünal B. Concircular Curvature on Warped Product Manifolds and Applications. *Bull Malays Math Sci Soc* (2020) 43:3395–409. doi:10.1007/s40840-019-00874-x
3. Blair DE, Kim J-S, Tripathi MM. On the Concircular Curvature Tensor of a Contact Metric Manifold. *J Korean Math Soc* (2005) 42:883–92. doi:10.1143/jkms.2005.42.5.883
4. Majhi P, De UC. Concircular Curvature Tensor on K-Contact Manifolds. *Acta Mathematica Academiae Paedagogicae Nyregyhazensis* (2013) 29:89–99.
5. Olszak K, Olszak Z. On Pseudo-riemannian Manifolds with Recurrent Concircular Curvature Tensor. *Acta Math Hung* (2012) 137:64–71. doi:10.1007/s10474-012-0216-5
6. Vanli AT, Ünal I. Conformal, Concircular, Quasi-Conformal and Conharmonic Flatness on normal Complex Contact Metric Manifolds. *Int J Geom Methods Mod Phys* (2017) 14:1750067. doi:10.1142/s0219887417500670
7. O’Neill B. Semi-semi-Riemannian Geometry with Applications to Relativity. New York-London: Academic Press (1983).
8. Buchdahl HA. Non-linear Lagrangians and Cosmological Theory. *Monthly Notices R Astronom Soc* (1970) 150:1–8. doi:10.1093/mnras/150.1.1
9. Capozziello S, Manica CA, Molinari LG. General Properties of \(f(R) \) Gravity Vacuum Solutions. *Int J Mod Phys D* (2020) 29:2050089. doi:10.1142/s0218202720500893
10. Capozziello S. Curvature Quintessence. *Int J Mod Phys D* (2002) 11:483–91. doi:10.1142/s0218271602002025
11. Capozziello S, Manica CA, Molinari LG. Cosmological Perfect Fluids in Higher-Order Gravity. *Gen Relativity Gravitation* (2020) 52:1–9. doi:10.1007/s10714-020-06290-2
12. De A, Loo T-H, Arora S, Sahoo P. Energy Conditions for a \((Wrs)_4\) of \((wrs)_4\) Spaceetime in \(f(R) \)-Gravity. *The Eur Phys J Plus* (2013) 131:1–10. doi:10.1140/epjp/i13360-021-01216-2
13. De A, Loo T-H. Almost Pseudo-ricc Symmetric Spaceetime Solutions in \(f(R) \)-Gravity. *Gen Relativity Gravitation* (2021) 53:1–14. doi:10.1007/s10714-020-02775-y
14. De A, Loo T-H, Solanki R, Sahoo PK. A Conformally Flat Generalized Ricci Recurrent Spaceetime in \(f(R) \)-Gravity. *Phys Scr* (2021) 96:085001. doi:10.1088/1402-4896/abf9d2
15. Abu-Donia H, Shenawy S, Syied AA. The \(W^+ \) – Curvature Tensor on Relativistic Space-Times. *Kyanggook Math J* (2020) 60:185–95. doi:10.5666/KMJ.2020.60.1.185
16. Mallick S, De UC. Spacetimes Admitting \(W_2 \)-Curvature Tensor. *Int J Geom Methods Mod Phys* (2014) 11:1450030. doi:10.1142/s0219887814500303
17. Zengin FO. M-projectively Flat Spacetimes. *Math Rep* (2012) 14:363–70.
18. De U, Shenawy S, Ünal B. Sequential Warped Products: Curvature and Conformal Vector fields. *Filomat* (2019) 33:4071–83. doi:10.2298/fil191071d

AUTHOR CONTRIBUTIONS

Conceptualization and methodology, SS, UD, AS, NT, HA-D, and SA; formal analysis, SS, UD and AS; writing original draft preparation, SS, AS and NT; writing-review and editing, SS, UD, HA-D, and SA; supervision, SS and UD; project administration, NT and AS; and funding acquisition, NT and SA. All authors have read and agreed to the published version of the manuscript.

FUNDING

This project was supported by the Researchers Supporting Project number (RSP2022R413), King Saud University, Riyadh, Saudi Arabia.

19. El-Sayed H, Shenawy S, Syied N. Conformal Vector fields on Doubly Warped Product Manifolds and Applications. *Adv Math Phys* (2016) 2016:6508309. doi:10.1155/2016/6508309
20. El-Sayed HK, Shenawy S, Syied N. Symmetries Off-associated Standard Static Spacetimes and Applications. *J Egypt Math Soc* (2017) 25:414–8. doi:10.1016/j.joems.2017.07.002
21. El-Sayed HK, Shenawy S, Syied N. On Symmetries of Generalized Robertson-walker Spacetimes and Applications. *J Dynamical Syst Geometric Theories* (2017) 15:51–69. doi:10.1080/1726073X.2017.1323418
22. Shenawy S, Ünal B. 2-killing Vector fields on Warped Product Manifolds. *Int J Math* (2013) 26:1550065. doi:10.1142/s0129167x15500652
23. Blaga AM. Solitons and Geometrical Structures in a Perfect Fluid Spacetime. *Rocky Mountain J Math* (2020) 50:41–53. doi:10.1216/rmj.2020.50.41
24. Stephani H, Kramer D, MacCallum M, Hoenselaers C, Herlt E. *Exact Solutions of Einstein’s Field Equations*. Cambridge, United Kingdom: Cambridge University Press (2009).
25. Srivastava SK. *General Relativity and Cosmology*. New Delhi, Delhi: PHI Learning Pvt. Ltd. (2008).
26. Capozziello S, Lobo FSN, Mimoso JP. Generalized Energy Conditions in Extended Theories of Gravity. *Phys Rev D* (2015) 91:124019. doi:10.1103/physrevd.91.124019
27. Santos J, Alcaniz J, Reboucas M, Carvalho F. Energy Conditions in \(f(R) \) Gravity. *Phys Rev D* (2007) 76:083513. doi:10.1103/physrevd.76.083513
28. Ahsan Z, Siddiqui SA. Concircular Curvature Tensor and Fluid Spacetimes. *Int J Theor Phys* (2009) 48:3202–12. doi:10.1007/s10773-009-0121-z
29. Gray A. Einstein-like Manifolds Which Are Not Einstein. *Geometriae dedicata* (1978) 7:239–80. doi:10.1007/bf01015125
30. Inan Ü. On Metric Contact Pairs with Certain Semi-symmetry Conditions. *Politeknik Dergisi* (2021) 24:333–8. doi:10.2339/politeknik.769662

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 De, Shenawy, Abu-Donia, Turki, Alsaeed and Syied. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.