NEW SHARP CUSA–HUYGENS TYPE INEQUALITIES FOR TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS

Abstract. We prove that for $p \in (0, 1]$, the double inequality

$$
\frac{1}{3}p \cos px + 1 - \frac{1}{3}p < \frac{\sin x}{x} < \frac{1}{3}p \cos qx + 1 - \frac{1}{3}q
$$

holds for $x \in (0, \pi/2)$ if and only if $0 < p \leq p_0 \approx 0.77086$ and $\sqrt{15}/5 = q_1 \leq q \leq 1$. While its hyperbolic version holds for $x > 0$ if and only if $0 < p \leq p_1 = \sqrt{15}/5$ and $q \geq 1$. As applications, some more accurate estimates for certain mathematical constants are derived, and some new and sharp inequalities for Schwab-Borchardt mean and logarithmic means are established.

1. Introduction

The Cusa and Huygens (see, e.g., [1]) states that for $x \in (0, \pi/2)$, the inequality

$$
\frac{\sin x}{x} < \frac{2 + \cos x}{3}
$$

holds true. Its version of hyperbolic functions refers to (see [2]) the inequality

$$
\frac{\sinh x}{x} < \frac{2 + \cosh x}{3}
$$

holds for $x > 0$, and it is known as hyperbolic Cusa–Huygens inequality (see [2]).

There are many improvements, refinements and generalizations of (1.1) and (1.2), see [3], [4], [5], [6], [7], [8], [9]; [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21].

Now we focus on the bounds for $(\sin x)/x$ in terms of $\cos px$, where $x \in (0, \pi/2)$, $p \in (0, 1]$. In 1945, Iyengar [22] (also see [23, subsection 3.4.6]) proved that for $x \in (0, \pi/2)$,

$$
\cos px \leq \frac{\sin x}{x} \leq \cos qx
$$

holds with the best possible constants

$$p = \frac{1}{\sqrt{3}} \quad \text{and} \quad q = \frac{2}{\pi} \arccos \frac{2}{\pi}.
$$

Moreover, the following chain of inequalities hold:

$$
\cos x \leq \frac{\cos x}{1 - x^2/3} \leq (\cos x)^{1/3} \leq \cos \frac{x}{\sqrt{3}} \leq \frac{\sin x}{x} \leq \cos qx \leq \cos \frac{x}{2} \leq 1.
$$

Qi et al. [24] showed that

$$
\frac{\cos^2 x}{2} < \frac{\sin x}{x}
$$

Date: April 10, 2014.

2010 Mathematics Subject Classification. Primary 26D05, 26D15; Secondary 33B10, 26E60.

Key words and phrases. Trigonometric function, hyperbolic function, inequality, mean.

This paper is in final form and no version of it will be submitted for publication elsewhere.
holds for \(x \in (0, \pi/2) \). Klén et al. [25, Theorem 2.4] pointed out that the function \(p \mapsto (\cos px)^{1/p} \) is decreasing on \((0, 1)\) and for \(x \in \left(-\sqrt{27/5}, \sqrt{27/5}\right) \)

\[
\cos^2 \frac{x}{2} \leq \frac{\sin x}{x} \leq \cos^3 \frac{x}{3} \leq \frac{2 + \cos x}{3}
\]

are valid. Subsequently, Yang [8] (also see [26]) gave a refinement of (1.6), which states that for \(p, q \in (0, 1) \) the double inequality

\[
(\cos px)^{1/p} < \frac{\sin x}{x} < (\cos qx)^{1/q}
\]

holds for \(x \in (0, \pi/2) \) if and only if \(p \in \left[p_0^*, 1\right) \) and \(q \in (0, 1/3) \), where \(p_0^* \approx 0.3473 \). Moreover, the double inequality

\[
\left(\cos \frac{x}{3}\right)^{\alpha} < \frac{\sin x}{x} < \left(\cos \frac{x}{3}\right)^{3}
\]

with the best exponents \(\alpha = 2 \frac{\ln \pi - \ln 2}{\ln 4 - \ln 3} \approx 3.1395 \) and 3. Also, he pointed out that the value range of variable \(x \) such that (1.6) holds can be extended to \((0, \pi)\). Very recently, Yang [21] gave another improvement of (1.6), that is, for \(x \in (0, \pi/2) \) the inequalities

\[
\sin \frac{x}{x} < \left(\frac{3}{2} \cos \frac{x}{2} + \frac{1}{3}\right)^2 < \cos^3 \frac{x}{3} < \frac{2 + \cos x}{3}
\]

are true.

An important improvement for the inequality in (1.5) is due to Neuman [2]:

\[
\cos^{4/3} \frac{x}{2} = \left(\frac{1 + \cos x}{2}\right)^{2/3} < \frac{\sin x}{x}, \; x \in (0, \frac{\pi}{2}).
\]

Lv et al. [27] showed that for \(x \in (0, \pi/2) \) inequalities

\[
\left(\cos \frac{x}{2}\right)^{4/3} < \frac{\sin x}{x} < \left(\cos \frac{x}{2}\right)^{\theta}
\]

hold, where \(\theta = 2 \frac{\ln \pi - \ln 2}{\ln 2} = 1.3030... \) and 4/3 are the best possible constants. By constructing a decreasing function \(p \mapsto (\cos px)^{1/(3p^2)} \) \((p \in (0, 1]) \), Yang [9] showed that the double inequality

\[
(\cos p^*_1 x)^{1/(3p^*_1)} < \frac{\sin x}{x} < \cos^{5/3} \frac{x}{\sqrt{5}}
\]

is true for \(x \in (0, \pi/2) \) with the best constants \(p^*_1 \approx 0.45346 \) and \(1/\sqrt{5} \approx 0.44721 \).

It follows that

\[
(\cos x)^{1/3} < \cos^{1/2} \frac{\sqrt{5}x}{3} < \cos^{2/3} \frac{x}{\sqrt{2}} < \cos \frac{x}{\sqrt{3}} < \cos^{4/3} \frac{x}{2} < (\cos p^*_1 x)^{1/(3p^*_1)}
\]

\[
\sin \frac{x}{x} < \cos^{5/3} \frac{x}{\sqrt{5}} < \cos \frac{x}{\sqrt{6}} < \cos^3 \frac{x}{3} < \cos^{16/3} \frac{x}{4} < e^{-x^2/6} < \frac{2 + \cos x}{3}
\]

are valid for \(x \in (0, \pi/2) \).

For the bounds for \((\sinh x) / x \) in terms of \(\cosh px \), it is known that the inequalities

\[
\frac{\sinh x}{x} < \cosh^3 \frac{x}{3} < \frac{2 + \cosh x}{3}
\]

holds true for \(x > 0 \) (see [18]), which is exactly derived by the inequalities for means

\[
L < A_{1/3} < \frac{2G + A}{3}
\]
(see e.g. [28], [29], [30]), where L, A_p, G and A stand for the logarithmic mean, power mean of order p, geometric mean and arithmetic mean or positive numbers a and b defined by

$$
L(a, b) = \frac{a - b}{\ln a - \ln b} \quad \text{if } a \neq b \text{ and } L(a, a) = a,
$$

$$
A_p(a, b) = \left(\frac{a^p + b^p}{2}\right)^{1/p} \quad \text{if } p \neq 0 \text{ and } A = A_0(a, b) = \sqrt{ab},
$$

$G = A_0$ and $A = A_1$, respectively. Zhu in [31] proved that for $p > 1$ or $p \leq 8/15$, and $x \in (0, \infty)$, the inequality

$$
\left(\sinh \frac{x}{x}\right)^q > p + (1 - p) \cosh x
$$

is true if and only if $q \geq 3(1 - p)$. It follows by letting $p = 1/2$ and $q = 3/2$ that

$$
\frac{\sinh x}{x} > \cosh^{4/3} \frac{x}{2}
$$

holds for $x > 0$ (also see [2, (2.8)]). Yang [19] showed that the inequality

$$
\sinh \frac{x}{x} > \left(\cosh px\right)^{1/(3p^2)}
$$

holds for all $x > 0$ if and only if $p \geq 1/\sqrt{5}$ and its reverse holds if and only if $0 < p \leq 1/3$. And, the function $p \mapsto \left(\cosh px\right)^{1/(3p^2)}$ is decreasing on $(0, \infty)$.

The aim of this paper is to determine the best p such that the inequalities

$$
\frac{\sin x}{x} < (>) \frac{1}{3p^2} \cos px + 1 - \frac{1}{3p^2}, \quad p \in (0, 1), \quad x \in (0, \pi/2),
$$

$$
\frac{\sinh x}{x} < (>) \frac{1}{3q^2} \cosh px + 1 - \frac{1}{3q^2}, \quad p, x \in (0, \infty)
$$

hold true.

Our main results are contained in the following theorems.

Theorem 1. For $p \in (0, 1]$ and $x \in (0, \pi/2)$, the double inequality

$$
\frac{1}{3p^2} \cos px + 1 - \frac{1}{3p^2} < \frac{\sin x}{x} < \frac{1}{3q^2} \cos qx + 1 - \frac{1}{3q^2}
$$

holds if and only if $0 < p \leq p_0 \approx 0.77086$ and $0.77460 \approx \sqrt{15}/5 = p_1 \leq q \leq 1$, where p_0 is the unique root of the equation

$$
F_p \left(\frac{\pi}{2}\right) = \frac{2}{\pi} - \left(\frac{1}{3p^2} \cos \frac{\pi}{2} + 1 - \frac{1}{3p^2}\right) = 0
$$

on $(0, 1)$. And, the bound for $(\sin x)/x$ given in (1.14) is increasing with respect to parameters p or q.

Theorem 2. For $p, x > 0$, the double inequality

$$
\frac{1}{3p^2} \cosh px + 1 - \frac{1}{3p^2} < \frac{\sinh x}{x} < \frac{1}{3q^2} \cosh qx + 1 - \frac{1}{3q^2}
$$

holds if and only if $0 < p \leq p_1 = \sqrt{15}/5$ and $q \geq 1$. And, the bound for $(\sinh x)/x$ given in (1.16) is increasing with respect to parameters p or q.

Remark 1. The weighted basic inequality of two positive numbers of \(a\) and \(b\) tell us that for \(\alpha \in [0,1]\), the inequality \(a^\alpha (1-\alpha) b \geq a^\alpha b^{1-\alpha}\). It is reversed if and only if \(\alpha \geq 1\) or \(\alpha \leq 0\) (see [22]). Hence, taking into account (1.11) and (1.14) we see that

(i) if \(p \in [p^*_1, 1/\sqrt{3}]\), where \(p^*_1 \approx 0.45346\), then
\[
\sin{x}{x} > (\cos{px})^{1/(3p^2)} > \frac{1}{3p^2} \cos{px} + 1 - \frac{1}{3p^2};
\]

(ii) if \(p \in (1/\sqrt{3}, p_0)\), where \(p_0 \approx 0.77086\), then
\[
\sin{x}{x} > \frac{1}{3p^2} \cos{px} + 1 - \frac{1}{3p^2} > (\cos{px})^{1/(3p^2)}.
\]

In the same way, (1.15) together with (1.10) leads us to

(iii) if \(p \in [1/\sqrt{5}, 1/\sqrt{3}]\), then
\[
\sinh{x}{x} > (\cosh{px})^{1/(3p^2)} > \frac{1}{3p^2} \cosh{px} + 1 - \frac{1}{3p^2};
\]

(iv) if \(p \in (1/\sqrt{3}, \sqrt{15}/5)\), then
\[
\sinh{x}{x} > \frac{1}{3p^2} \cosh{px} + 1 - \frac{1}{3p^2} > (\cosh{px})^{1/(3p^2)}.
\]

Taking \(p = 3/4, 1/\sqrt{7}, 2/3, 1/\sqrt{3}\) and \(q = \sqrt{3}/5, \sqrt{2}/3, \sqrt{3}/2, 1\) in Theorem [1] we have

Corollary 1. For \(x \in (0, \pi/2)\), the inequalities
\[
(1.17) \cos{\frac{x}{\sqrt{3}}} < \frac{3}{4} \cos{\frac{2x}{\sqrt{3}}} + \frac{1}{4} < \frac{4}{5} \cos{\frac{3x}{\sqrt{2}}} + \frac{1}{5} < \cos{\frac{4x}{\sqrt{2}}} + \frac{1}{11} < \frac{\sin{x}}{x}
\]
\[
< \frac{5}{9} \cos{\frac{5x}{\sqrt{2}}} + \frac{4}{9} < \cos^2{\frac{x}{\sqrt{6}}} + \frac{1}{9} \cos{\frac{6x}{\sqrt{2}}} + \frac{5}{9} < \frac{1}{3} \cos{x} + \frac{2}{3}.
\]

Putting \(p = \sqrt{3}/5, 3/4, 1/\sqrt{2}, 2/3, 1/\sqrt{3}\) and \(q = 1, 2/\sqrt{3}\) in Theorem [2] we have

Corollary 2. For \(x > 0\), the inequalities
\[
(1.18) \cosh{\frac{x}{\sqrt{3}}} < \frac{3}{4} \cosh{\frac{2x}{\sqrt{3}}} + \frac{1}{4} < \frac{4}{5} \cosh{\frac{3x}{\sqrt{2}}} + \frac{1}{5} < \cosh{\frac{4x}{\sqrt{2}}} + \frac{1}{11} \cosh{\frac{5x}{\sqrt{2}}} + \frac{4}{9} < \frac{\sinh{x}}{x} < \frac{1}{3} \cosh{x} + \frac{2}{3} < \frac{1}{2} \cosh^2{\frac{x}{\sqrt{3}}} + \frac{1}{2}.
\]

2. Proof of Theorem 1

In order to prove Theorem [1] we need some lemmas.

Lemma 1. For \(x \in (0, \pi/2)\), the function \(p \mapsto U_p(x)\) defined on \([0,1]\) by
\[
U_p(x) = \frac{1}{3p^2} \cos{px} + 1 - \frac{1}{3p^2} \quad \text{if } p \in (0,1) \quad \text{and } U_0(x) = 1 - \frac{x^2}{6}
\]
is increasing.

Proof. Differentiation yields
\[
\frac{\partial U_p}{\partial p} = \frac{1}{3p^3} (2 - 2 \cos{px} - px \sin{px}) = \frac{12px}{3p^3} \left(\frac{\sin{\frac{px}{2}}}{\frac{px}{2}} - \cos{\frac{px}{2}} \right) \sin{\frac{px}{2}} > 0,
\]
which completes the proof. \(\square\)
Lemma 3. Let the function F_p be defined on $(0,\pi/2)$ by

\begin{equation}
F_p(x) = \frac{\sin x}{x} - \left(\frac{1}{3p^2} \cos px + 1 - \frac{1}{3p^2}\right) \text{ if } p \in (0,1] \text{ and } F_0(x) = \frac{\sin x}{x} - 1 + \frac{x^2}{2}.
\end{equation}

(i) If $F_p(x) < 0$ for all $x \in (0,\pi/2)$, then $p \in [p_1, 1]$, where $p_1 = 15/2 = 0.77460$.

(ii) If $F_p(x) > 0$ for all $x \in (0,\pi/2)$, then $p \in [0,p_0]$, where $p_0 \approx 0.77086$.

Proof. (i) If $F_p(x) < 0$ for all $x \in (0,\pi/2)$, then we have

\begin{equation}
\lim_{x \to 0} \frac{\sin x}{x} - \left(\frac{1}{3p^2} \cos px + 1 - \frac{1}{3p^2}\right) = -\frac{1}{360} (5p^2 - 3) \leq 0,
\end{equation}

which leads to $p \in (\sqrt{15}/5, 1]$.

(ii) If $F_p(x) > 0$ for all $x \in (0,\pi/2)$, then we have

$F_p\left(\frac{\pi}{2}\right) = \frac{2}{3} - \left(\frac{1}{3p^2} \cos \frac{p\pi}{2} + 1 - \frac{1}{3p^2}\right) > 0.$

From Lemma we see that the function $p \mapsto F_p(\pi/2^-)$ is decreasing on $[0,1]$, which together with the facts

$F_{1/2}\left(\frac{\pi}{2}\right) = \frac{2}{\pi} - \frac{2}{3}\sqrt{2} + \frac{1}{3} > 0 \text{ and } F_1\left(\frac{\pi}{2}\right) = \frac{2}{\pi} - \frac{2}{3} < 0$

gives that there is a unique number $p_0 \in (1/2, 1)$ such that $F_p(\pi/2^-) > 0$ for $p \in (0,p_0)$ and $F_p(\pi/2^-) < 0$ for $p \in (p_0,1)$. Solving the equation $F_p(\pi/2^-) = 0$ for p by mathematical computer software we find that $p_0 \approx 0.77086$.

This completes the proof.

□

Lemma 3. Let $c \in (0,3/5]$ and let the sequence $(a_n(c))$ be defined by

\begin{equation}
a_n(c) = 3 - (2n+1)e^{n-1}.
\end{equation}

Then (i) $a_n(c) \geq 0$ for $n \in \mathbb{N}$; (ii) for $n \geq 3$, we have

\[1 < \frac{a_{n+1}(c)}{a_n(c)} \leq \frac{a_{n+1}(3/5)}{a_n(3/5)} \leq \frac{11}{5}.\]

Proof. (i) We first show that $a_n(c) \geq 0$ for $n \in \mathbb{N}$.

A simple computation leads to

\[a_{n+1}(c) - a_n(c) = (2n+1)e^{n-1} - (2n+3)e^n = e^{n-1}(2n+1) - (2n+3)c \geq 0,
\]

which implies that $a_{n+1}(c) \geq a_n(c) \geq a_1(c) = 0$.

(ii) Since $a_1(c) = 0$, $a_2(c) = 3 - 5c \geq 0$, $a_n(c) > 0$ for $n \geq 3$, if we can show that the function

\[(c,n) \mapsto \frac{a_{n+1}(c)}{a_n(c)} = \frac{3 - (2n+3)c^n}{3 - (2n+1)c^{n-1}}\]

is increasing in c on $(0,3/5]$ and decreasing in $n \geq 3$, then we have

\[1 = \frac{a_{n+1}(0)}{a_n(0)} < \frac{a_{n+1}(c)}{a_n(c)} < \frac{a_{n+1}(3/5)}{a_n(3/5)} \leq \frac{a_{n+1}(3/5)}{a_n(3/5)} = \frac{11}{5},\]
Proof of Theorem 1. Expanding in power series gives
\[
2^n a_n^2 (c) \left(\frac{a_{n+1} (c)}{a_n (c)} \right)' = (4n^2 + 8n + 3) c^n - 3n (2n + 3) c + (6n^2 - 3n - 3) := h_n (c),
\]
where
\[
h_n' (c) = -n (2n + 3) (3 - (2n + 1) c^{n-1}) = -n (2n + 3) a_n (c) < 0,
\]
which is clearly positive due to that $h_3 (3/5) = 876/125 > 0$ and $(4n^2 - 14n - 5) = n(4n - 14) - 5 \geq 3$ for $n \geq 4$. This reveals that $h_n' (c) > 0$, that is, $(c, n) \mapsto a_{n+1} (c) / a_n (c)$ is increasing in c on $(0, 3/5)$.

On the other hand, we have
\[
\frac{a_{n+1} (c)}{a_n (c)} - \frac{a_{n+2} (c)}{a_{n+1} (c)} = c^n - 4c^{n+1} + 6 (c - 1)^2 n + 15c^2 - 18c + 3 \geq \frac{c^n}{a_n (c) a_{n+1} (c)} \left(4c^{n+1} + 6 (c - 1)^2 \times 3 + 15c^2 - 18c + 3 \right) \geq \frac{c^n}{a_n (c) a_{n+1} (c)} (4c^{n+1} + 33 (\frac{7}{11} - c) (1 - c)) > 0,
\]
where the first inequality holds due to $a_n (c) > 0$ for $n \geq 3$, while the last one holds since $c \in (0, 3/5]$. This means that $(c, n) \mapsto a_{n+1} (c) / a_n (c)$ is decreasing with $n \geq 3$.

Thus we complete the proof of this assertion. \qed

Now we are in a position to prove Theorem 1.

Proof of Theorem 1. Expanding in power series gives
\[
F_p (x) = \frac{\sin x}{x} - \left(\frac{1}{3p^2} \cos px + 1 - \frac{1}{3p^2} \right) = \sum_{n=0}^\infty (-1)^n \frac{x^{2n}}{(2n+1)!} \left(\frac{1}{3p^2} \sum_{n=0}^\infty (-1)^n \frac{(px)^{2n}}{(2n)!} + 1 - \frac{1}{3p^2} \right)
\]
\[
= \sum_{n=2}^\infty (-1)^n \frac{3 - (2n + 1) p^{2n-2} x^{2n}}{3 (2n + 1)!},
\]
where $a_n (c)$ is defined by (2.3). Considering the function $f_p (x) = x^{-4} F_p (x)$, we have
\[
(2.4) \quad f_p (x) = x^{-4} F_p (x) = \frac{3 - 5p^2}{360} + \sum_{n=3}^\infty (-1)^n \frac{a_n (p^2)}{3 (2n + 1)!} x^{2n-4},
\]
and differentiation yields
\[f_p'(x) = \sum_{n=3}^{\infty} (-1)^n \frac{(2n-4) a_n (p^2)}{3(2n+1)!} x^{2n-5} \]
\[= \sum_{n=3}^{\infty} (-1)^n u_n(x), \]
where
\[u_n(x) = \frac{(2n-4) a_n (p^2)}{3(2n+1)!} x^{2n-5}. \]

Utilizing Lemma 3 we get that for \(p^2 \in (0, 3/5] \) and \(n \geq 3, \)
\[\frac{u_{n+1}(x)}{u_n(x)} = \frac{(2n-2) a_{n+1} (p^2)}{3(2n+3)!} x^{2n-3} \times \frac{(2n-4) a_n (p^2)}{3(2n+1)!} x^{2n-5} \]
\[< \frac{1}{(2 \times 3 - 4) (2 \times 3 + 3)} \times 1 \times \frac{11}{5} \times \frac{\pi^2}{4} = \frac{11\pi^2}{360} < 1, \]
which implies that the power series \(\sum_{n=3}^{\infty} (-1)^n u_n(x) \) is a Leibniz type alternating one, and so \(f_p'(x) < 0 \) for \(p^2 \in (0, 3/5]. \)

(i) We first prove the second inequality in (1.14) holds, where \(p_1 = \sqrt{15}/5 \) is the best. As shown previously, we see that \(f_{p_1} \) is decreasing on \((0, \pi/2) \), and therefore,
\[f_{p_1}(x) < f_{p_1}(0^+) = \lim_{x \to 0^+} (x^{-4} F_{p_1}(x)) = \frac{1}{360} (3 - 5p_1^2) = 0, \]
which together with (2.21) yields \(F_{p_1}(x) < 0 \) for \(x \in (0, \pi/2) \).

Next we prove \(p_1 = \sqrt{15}/5 \) is the best. If there is another \(p_1' < p_1 \) such that the second inequality in (1.14) holds for \(x \in (0, \pi/2) \), then by Lemma 2 there must be \(p_1' \in [p_1, 1] \), which yields a contradiction. Therefore, \(p_1 = \sqrt{15}/5 \) can not be replaced with other smaller ones.

(ii) Now we prove the first inequality in (1.14) holds with the best constant \(p_0 \approx 0.77088 \). Since \(p_0^2 \in (0, 3/5] \), \(f_{p_0} \) is also decreasing on \((0, \pi/2) \), and so
\[f_{p_0}(x) > f_{p_0}\left(\frac{\pi}{2}\right) = \lim_{x \to \pi/2^-} (x^{-4} F_{p_0}(x)) = \left(\frac{\pi}{2}\right)^{-4} F_{p_0}\left(\frac{\pi}{2}\right) = 0, \]
where the last equality is true due to \(p_0 \) is the unique root of the equation (1.15) on \((0, 1) \). It together with (2.24) gives \(F_{p_0}(x) > 0 \) for \(x \in (0, \pi/2) \).

Lastly, we show that \(p_0 \) is the best. Assume that there is another \(p_0' > p_0 \) such that \(F_{p_0'}(x) > 0 \) for \(x \in (0, \pi/2) \). Then by Lemma 2 there must be \(p_0' \in [0, p_0] \), which is clear a contradiction. Consequently, \(p_0 \) can not be replaced by other larger numbers.

Thus the proof is complete. \(\square \)

Remark 2. Application of the conclusion that \(f_p'(x) < 0 \) for \(x \in (0, \pi/2) \) if \(p^2 \in (0, 3/5] \) gives \(f_p(X) = f_p(x) < f_p(0^+) \), that is,
\[\left(\frac{\pi}{2}\right)^{-4} F_p\left(\frac{\pi}{2}\right) < x^{-4} F_p(x) < \lim_{x \to 0^+} x^{-4} F_p(x) = \frac{3 - 5p^2}{360}. \]
which can be changed into

\[(2.5) \left(\frac{1}{3p^2} \cos px + 1 - \frac{1}{3p^2} \right) + c_0(p) x^4 < \frac{\sin x}{x} < \left(\frac{1}{3p^2} \cos px + 1 - \frac{1}{3p^2} \right) + c_1(p) x^4,\]

where \(c_0(p) = (\pi/2)^{-4} F_p(\pi/2^-)\) and \(c_1(p) = (3 - 5p^2) / 360\) are the best constants. Then

(i) when \(p = p_1 = \sqrt{15}/5\), we have

\[c_0(p_1)x^4 + \left(\frac{1}{3p_1^2} \cos p_1x + 1 - \frac{1}{3p_1^2} \right) < \frac{\sin x}{x} < \left(\frac{1}{3p_1^2} \cos p_1x + 1 - \frac{1}{3p_1^2} \right),\]

where \(c_0(p_1) = (\pi/2)^{-4} F_{p_1}(\pi/2^-) \approx -7.2618 \times 10^{-5}\) and \(c_1(p_1) = 0\) are the best possible constants;

(ii) when \(p = p_0 \approx 0.77086\), we get

\[\left(\frac{1}{3p_0} \cos p_0x + 1 - \frac{1}{3p_0^2} \right) < \frac{\sin x}{x} < \left(\frac{1}{3p_0} \cos p_0x + 1 - \frac{1}{3p_0^2} \right) + c_1(p_0) x^4,\]

where \(c_0(p_0) = 0\) and \(c_1(p_0) = (3 - 5p_0^2) / 360 \approx 8.0206 \times 10^{-5}\) are the best constants.

3. Proof of Theorem 2

For proving Theorem 2 we first give the following lemmas.

Lemma 4. For \(x \in (0, \infty)\), the function \(p \mapsto V_p(x)\) defined on \([0, \infty)\) by

\[V_p(x) = \frac{1}{3p^2} \cosh px + 1 - \frac{1}{3p^2}\]

if \(p \neq 0\) and \(V_0(x) = 1 + \frac{x^2}{6}\)

is increasing.

Proof. Differentiation yields

\[
\frac{\partial V_p}{\partial p} = \frac{1}{3p^4} \left(px \sinh px - 2 \cosh px + 2 \right)
\]

\[= \frac{2x}{3p^2} \left(\cosh \frac{px}{2} - \frac{\sinh \frac{px}{2}}{\frac{px}{2}} \right) \sinh \frac{px}{2} > 0,
\]

which completes the proof. \(\square\)

Lemma 5. Let the function \(G_p\) be defined on \((0, \infty)\) by

\[G_p(x) = \frac{\sinh x}{x} - \left(\frac{1}{3p^2} \cos px + 1 - \frac{1}{3p^2} \right)\]

if \(p \neq 0\) and \(G_0(x) = \frac{\sinh x}{x} - 1 - \frac{x^2}{3p^2}\).

(i) If \(G_p(x) < 0\) for all \(x \in (0, \infty)\), then \(p \geq 1\).

(ii) If \(G_p(x) > 0\) for all \(x \in (0, \pi/2)\), then \(p \leq p_1 = \sqrt{15}/5 \approx 0.77460\).

Proof. In order to prove the desired results, we need the following two relations:

\[(3.1) \quad \lim_{x \to 0} \frac{G_p(x)}{x^4} = -\frac{1}{360} (5p^2 - 3),\]

\[(3.2) \quad \lim_{x \to \infty} \frac{G_p(x)}{e^{px}} = \begin{cases} -\frac{1}{6p^2} & \text{if } p > 1, \\
-\frac{1}{6} & \text{if } p = 1, \\
\infty & \text{if } 0 < p < 1, \\
\infty & \text{if } p = 0.\end{cases}\]

The first one follows by expanding in power series:

\[G_p(x) = -\frac{1}{360} (5p^2 - 3)x^4 + o(x^6).\]
To obtain the second one, it needs to note that
\[e^{-px}G_p(x) = e^{(1-p)x} \frac{1-e^{-2px}}{2x} - \frac{1-e^{-2px}}{3p} \left(1 - \frac{1}{3p}\right) e^{-px}, \]
which gives (3.2).

(i) If \(G_p(x) < 0 \) for all \(x \in (0, \infty) \), then we have \(\lim_{x \to 0} x^{-4}G_p(x) \leq 0 \) and \(\lim_{x \to \infty} e^{-px}G_p(x) \leq 0 \). These together with (3.1) and (3.2) give \(p \geq 1 \).

(ii) If \(G_p(x) > 0 \) for all \(x \in (0, \infty) \), then we have \(\lim_{x \to 0} x^{-4}G_p(x) \geq 0 \) and \(\lim_{x \to \infty} e^{-px}G_p(x) \geq 0 \). These together with (3.1) and (3.2) indicate \(p \leq 1 \). \(\square \)

We now can prove Theorem 2.

Proof of Theorem 2. The necessity follows by Lemma 5. To prove the sufficiency, we expanding \(G_p(x) \) in power series to get
\[G_p(x) = \sinh x - (\frac{1}{3p} \cosh px + 1 - \frac{1}{3p}) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n+1)!} - \left(\frac{1}{3p^2} \sum_{n=0}^{\infty} \frac{(px)^{2n}}{(2n)!} + 1 - \frac{1}{3p^2}\right) \]
\[= \sum_{n=2}^{\infty} \frac{3 - (2n + 1)p^{2n-2}}{3(2n + 1)!} x^{2n} = \sum_{n=2}^{\infty} \frac{a_n(p^2)}{3(2n + 1)!} x^{2n}. \]
It is derived from Lemma 3 that \(a_n(p^2) \geq 0 \) if \(0 < p \leq \sqrt{15}/5 \), and clearly, \(a_n(p^2) < 0 \) if \(p \geq 1 \). \(\square \)

4. Applications

As simple applications of main results, we present some precise estimations for certain special functions and constants in this section.

The sine integral is defined by
\[\text{Si}(t) = \int_0^t \frac{\sin x}{x} dx. \]
Some estimates for sine integral can be seen \([33, 34, 35, 26, 9]\). Now we give a new result.

Proposition 1. For \(t \in (0, \pi/2) \) and \(p \in (0, \sqrt{15}/5) \), we have
\[\sin pt + \left(1 - \frac{1}{3p^2}\right) t + \frac{c_0(p) t^5}{5} < \text{Si}(t) < \sin pt + \left(1 - \frac{1}{3p^2}\right) t + \frac{c_1(p) t^5}{5}, \]
where \(c_0(p) = (\pi/2)^{-4} F_p(\pi/2) \) and \(c_1(p) = (3 - 5p^2)/360 \), here \(F_p(\pi/2) \) is defined by (1.15). Particularly, putting \(p = 0^+, 2/3 \), we have
\[\frac{t}{18} - \frac{1}{18} t^3 + \frac{2\pi^3 - 48\pi + 96}{15\pi^3} t^5 < \text{Si}(t) < \frac{t}{18} - \frac{1}{18} t^3 + \frac{1}{600} t^5, \]
\[\frac{9}{8} \sin t - \frac{3}{4} t + \frac{2(16 - 5\pi)}{5\pi^5} t^5 < \text{Si}(t) < \frac{9}{8} \sin t + \frac{3}{4} t + \frac{7}{16200} t^5, \]
and then,
\[1.3705 \approx \frac{2}{5} \pi - \frac{1}{300} \pi^3 + \frac{1}{5} < \text{Si} \left(\frac{\pi}{2}\right) < \frac{2}{5} \pi - \frac{1}{144} \pi^3 + \frac{1}{19 \times 200} \pi^5 \approx 1.3714, \]
\[1.3706 \approx \frac{1}{16} \pi + \frac{9\sqrt{3}}{16} + \frac{1}{5} < \text{Si} \left(\frac{\pi}{2}\right) < \frac{1}{8} \pi + \frac{7}{518400} \pi^5 + \frac{9\sqrt{3}}{16} \approx 1.3711. \]
Proof. Integrating each sides in (2.5) over $[0, t]$ yields (4.1). Taking the limits of the left and right hand sides in (4.1) as $p \to 0^+$ gives (4.2), and putting $p = 2/3$ in (4.1) leads to (4.3). Substituting $t = \pi/2$ into (4.2) and (4.3) we get the last two approximations of $\text{Si} \left(\frac{\pi}{2} \right)$.

It is known that
\[
\int_0^\infty x \sinh x \, dx = \frac{1}{2} \psi'(\frac{1}{2}) = \frac{\pi^2}{4},
\]
where ψ' is the tri-gamma function defined by
\[
\psi'(t) = \int_0^\infty \frac{xe^{-tx}}{1-e^{-x}} \, dx.
\]
We define
\[
Sh(t) = \int_0^t \frac{x}{\sinh x} \, dx.
\]
Then by (1.16) we have
\[
3 \cosh x + 2 < \frac{x}{\sinh x} < \frac{9}{5 \cosh(\sqrt{15}x/5) + 4}.
\]
Integrating over $[0, t]$ and calculating lead to

Proposition 2. For $t > 0$, we have
\[
\sqrt{3} \ln \left(\frac{\sqrt{3}-\sqrt{15}+2}{\sqrt{3}+\sqrt{15}+2} \right) - \sqrt{3} \ln \left(2 - \sqrt{3} \right) < Sh(t) < 2\sqrt{15} \arctan \left(\frac{5e^{\sqrt{15}/5} + 4}{3} \right) - 2\sqrt{15} \arctan 3.
\]
In particular, we have
\[
4.5621 \approx 2\sqrt{3} \ln \left(2 + \sqrt{3} \right) < \psi'(\frac{1}{2}) < 2\sqrt{15} \pi - 4\sqrt{15} \arctan 3 \approx 4.9845.
\]

The Catalan constant [36]
\[
G = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2} = 0.9159655941772190...
\]
is a famous mysterious constant appearing in many places in mathematics and physics. Its integral representations contain the following [37]
\[
G = \frac{1}{\pi} \int_0^\infty \frac{\arctan x}{x} \, dx = \frac{1}{2} \int_0^{\pi/2} \frac{x}{\sin x} \, dx = \frac{\pi^2}{16} - \frac{\pi}{4} \ln 2 + \int_0^{\pi/4} \frac{x^2}{\sin^2 x} \, dx.
\]
We present an estimation for G below.

Proposition 3. We have
\[
0.91586 \approx \frac{\sqrt{15}}{\pi} \ln \left(\frac{4 \cos \frac{\sqrt{15}}{5} + 3 \sin \frac{\sqrt{15}}{5} + 5}{4 \cos \frac{\sqrt{15}}{5} - 3 \sin \frac{\sqrt{15}}{5} + 5} \right) < G < \frac{\sqrt{15}}{\pi} \ln \left(\frac{11\sqrt{2-2\sqrt{2-3\sqrt{2+3\sqrt{2+3+32}}}}}{11\sqrt{2-2\sqrt{2-3\sqrt{2+3\sqrt{2+3+32}}}}} \right) \approx 0.91675,
\]
Proof. From the fourth and fifth inequalities in (1.17) we obtain that for $x \in (0, \pi/2)$, the two-side inequality
\[
\frac{1}{9} \cos \frac{\sqrt{15}}{5} + \frac{4}{9} < \frac{x}{\sin x} < \frac{1}{12} \cos \frac{4\pi}{5} + \frac{1}{17},
\]
holds true. Integrating both sides over \([0, \pi/2]\) yields
\[
\int_0^{\pi/2} \frac{dx}{\sin x} < \int_0^{\pi/2} \frac{x}{\cos \frac{x}{2} + \frac{4}{3}} \, dx < \int_0^{\pi/2} \frac{dx}{\cos \frac{x}{2} + \frac{4}{3}}.
\]
Direct computations give
\[
\int_0^{\pi/2} \frac{dx}{\cos \frac{15x}{5} + \frac{4}{3}} = \frac{\sqrt{15}}{2} \ln \frac{4 \cos \frac{3x}{20} - 3 \sin \frac{3x}{20} + 5}{4 \cos \frac{3x}{20} + 3 \sin \frac{3x}{20} + 5} \approx 1.8317,
\]
\[
\int_0^{\pi/2} \frac{dx}{\cos \frac{3x}{4} + \frac{11}{27}} = \frac{2\sqrt{15}}{5} \ln \frac{11\sqrt{2-\sqrt{15}}\sqrt{2+3\sqrt{2}+32}}{11\sqrt{2-\sqrt{15}}\sqrt{2+3\sqrt{2}+32}} \approx 1.8335.
\]
Utilizing the the second formula in (4.5) (4.4) follows. □

We close this paper by giving some inequalities for bivariate means.

The Schwab-Borchardt mean of two numbers \(a \geq 0\) and \(b > 0\), denoted by \(SB(a, b)\), is defined as [38, Theorem 8.4], [39, (2.3)]

\[
SB(a, b) = \begin{cases}
\sqrt{\frac{b}{a}} - a^2 \arccos(a/b) & \text{if } a < b, \\
\frac{a}{\sqrt{b^2 - a^2}} & \text{if } a = b, \\
\sqrt{\frac{b}{a}} - b^2 \arccosh(a/b) & \text{if } a > b.
\end{cases}
\]

The properties and certain inequalities involving Schwab-Borchardt mean can be found in [40], [41]. We now establish a new inequality for this mean.

For \(a < b\), letting \(x = \arccos(a/b)\) in the fourth inequality of (1.17) and using half-angle and triple-angle formulas for cosine function, and multiplying two sides by \(b\), we get

\[
SB(a, b) \geq \frac{16b}{27} \left(\sqrt{1 + \frac{1+4(a/b)^3-3a/b}{2}} + \frac{11b}{27} \right)
\]

\[
= \frac{16b}{27} \left(\sqrt{2(b-2a)^2(a+b) + 2b^{3/2}} \right)^{1/2} b^{1/4} + \frac{11b}{27}.
\]

For \(a > b\), letting \(x = \arccosh(a/b)\) in the inequality connecting the fourth and sixth members of (1.17) and using half-angle and triple-angle formulas for hyperbolic cosine function, and multiplying two sides by \(b\), we get the same inequality as above.

Proposition 4. For \(a, b > 0\), we have

\[
(4.7) \quad SB(a, b) \geq \frac{8\sqrt{b}}{27} \left(|b-2a| \sqrt{\frac{a+b}{2} + b^{3/2}} \right)^{1/2} b^{1/4} + \frac{11b}{27}.
\]

Remark 3. From the inequality (4.7), it is easy to get

\[
SB(a, b) \geq \frac{11 + 8\sqrt{2}}{27} b \approx 0.82643 \times b
\]
due to \(|b-2a| \geq 0\). It seems to new and interesting.

For \(a, b > 0\), with \(x = (1/2) \ln (a/b)\), we have

\[
\frac{\sinh x}{x} = \frac{L(a, b)}{G(a, b)} \quad \cos px = \frac{(a^p + b^p) / 2}{\left(\sqrt{ab} \right)^p} = \frac{A_p(a, b)}{G_p(a, b)},
\]
and by Theorem 2 we immediately get the following

Proposition 5. For $a, b > 0$ with $a \neq b$, the double inequality

$$(4.8) \quad \frac{1}{5} A^{\sqrt{5}/5} G^{1-\sqrt{5}/5} + \frac{4}{5} G < L < \frac{1}{3} A + \frac{2}{3} G$$

holds with the best constants $p_1 = \sqrt{15}/5$ and 1. And, the function

$$p \mapsto \frac{1}{3p^2} A^p G^{1-p} + \left(1 - \frac{1}{3p^2}\right) G$$

if $p \neq 0$ and $G + \frac{(\ln b - \ln a)^2}{24}$ if $p = 0$

is increasing on \mathbb{R}.

Remark 4. Accordingly, Corollary 3 can be changed into the chain of inequalities for means:

$$A^{1/\sqrt{3}} G^{1-1/\sqrt{3}} < \frac{2}{5} A^{2/3} G^{1/3} + \frac{1}{5} G < \frac{2}{3} A^{1/\sqrt{3}} G^{1-1/\sqrt{3}} + \frac{1}{3} G$$

$$< \frac{16}{5} A^{3/4} G^{1/4} + \frac{11}{20} G < \frac{2}{5} A^{\sqrt{15}/5} G^{1-\sqrt{15}/5} + \frac{4}{5} G < L$$

$$< \frac{1}{3} A + \frac{2}{3} G < \frac{1}{2} A^{2/\sqrt{3}} G^{1-2/\sqrt{3}} + \frac{1}{2} G.$$

Remark 5. In [19], Yang obtained a sharp lower bound $A_{q_0}^{1/(3q_0)} G^{1-1/(3q_0)}$ for the logarithmic mean L, where $q_0 = 1/\sqrt{5}$, and pointed out that this one seems to be superior to most of known ones. Now, we derive a new sharp lower bound $\frac{5}{9} A^{p_1} G^{1-p_1} + \frac{2}{9} G$ for L, where $p_1 = \sqrt{15}/5$. We claim that the latter is better than the former. In fact, we have

$$(4.9) \quad L > \frac{5}{9} A^{p_1} G^{1-p_1} + \frac{2}{9} G > A_{q_0}^{1/(3q_0)} G^{1-1/(3q_0)}$$

if and only if $q \geq q_0 = 1/\sqrt{5}$. In order for the second inequality in (4.9) to hold, it suffices that for $x > 0$

$$D(x) = \frac{1}{5p^2} \cosh p_1 x + 1 - \frac{1}{3p^2} - (\cosh qx)^{1/(3q^2)} > 0$$

if and only if $q \geq q_0 = 1/\sqrt{5}$.

The necessity can be obtained by $\lim_{x \to 0} x^{-4} D(x) \geq 0$, which follows by expanding in power series

$$D(x) = \frac{1}{72} x^4 \left(p_1^2 + 2q^2 - 1\right) + o(x^6).$$

Then, $q \geq \sqrt{(1 - p_1^2)/2} = 1/\sqrt{5}$.

Since $q \mapsto (\cosh qx)^{1/(3q^2)}$ is decreasing on $(0, \infty)$ proved in [19] Lemma 2], to prove $D(x) \geq 0$ if $q \geq q_0$, it suffices to show that $D(x) \geq 0$ when $q = q_0$.

Differentiation yields

$$D'(x) = \frac{1}{3p_1} \sinh p_1 x - \frac{1}{3q_0} \cosh^{1/(3q_0^2)} - q_0 x \sinh q_0 x$$

$$= \frac{\sinh q_0 x}{3q_0} \left(\frac{q_0 \sinh p_1 x}{p_1 \sinh q_0 x} \cos^{1/(3q_0^2)} - q_0 x \right) - \frac{\sinh q_0 x}{3q_0} \times L \left(\frac{q_0 \sinh p_1 x}{p_1 \sinh q_0 x} \cos^{1/(3q_0^2)} - q_0 x \right) \times D_1(x),$$

where

$$D_1(x) = \ln \left(\frac{q_0 \sinh p_1 x}{p_1 \sinh q_0 x} \right) - \left(\frac{1}{3q_0^2} - 1 \right) \ln \cosh q_0 x.$$
Differentiating $D_1(x)$ gives

$$D'_1(x) = \frac{D_2(x)}{6q_0 \sinh 2q_0x \sinh p_1x},$$

where

$$D_2(x) = 4(-\sinh p_1x \sinh^2 q_0x - 3q_0^2 \cosh^2 q_0x \sinh p_1x$$

$$+ 3q_0 \sinh p_1x \sinh^2 q_0x + 3p_1q_0 \cosh p_1x \cosh q_0x \sinh q_0x).$$

Utilizing "product into sum" formulas and expanding in power series lead to

$$D_2(x) = -2\left(6q_0^2 - 1\right) \sinh p_1x + (3p_1q_0 - 1) \sinh (p_1x + 2q_0x)$$

$$+ (3p_1q_0 + 1) \sinh (2q_0x - p_1x)$$

$$= \sum_{n=1}^{\infty} d_n \frac{p_1^{2n-1}x^{2n-1}}{(2n-1)!},$$

where

$$d_n = (3p_1q_0 - 1) \left(1 + \frac{2q_0}{p_1}\right)^{2n-1} + (3p_1q_0 + 1) \left(\frac{2q_0}{p_1} - 1\right)^{2n-1} - 2 \left(6q_0^2 - 1\right)$$

Now we show that $d_n \geq 0$ for $n \geq 1$. A simple verification yields $d_1 = d_2 = 0$, $d_3 = 64/45 > 0$. Suppose that $d_n > 0$ for $n > 3$, that is,

$$(3p_1q_0 + 1) \left(\frac{2q_0}{p_1} - 1\right)^{2n-1} > 2 \left(6q_0^2 - 1\right) - (3p_1q_0 - 1) \left(1 + \frac{2q_0}{p_1}\right)^{2n-1}.$$ Then,

$$d_{n+1} = (3p_1q_0 - 1) \left(1 + \frac{2q_0}{p_1}\right)^{2n+1} + (3p_1q_0 + 1) \left(\frac{2q_0}{p_1} - 1\right)^{2n+1} - 2 \left(6q_0^2 - 1\right)$$

$$\times \left(\frac{2q_0}{p_1} - 1\right)^{2} - 2 \left(6q_0^2 - 1\right)$$

$$= 8q_0 \frac{p_1}{p_1^2} \left(p_1 (3p_1q_0 - 1) \left(1 + \frac{2q_0}{p_1}\right)^{2n-1} - (6q_0^2 - 1) (p_1 - q_0)\right).$$

Since $(3p_1q_0 - 1) = (3\sqrt{3} - 5) / 5 > 0$, using binomial expansion we get

$$\frac{p_1^2}{8q_0} d_{n+1} > p_1 (3p_1q_0 - 1) \left(1 + (2n - 1) \frac{2q_0}{p_1}\right) - (6q_0^2 - 1) (p_1 - q_0)$$

$$= 2q_0 (3p_1q_0 - 1) (2n - 1) + q_0 (3p_1^2 + 6q_0^2 - 6p_1q_0 - 1)$$

$$= 2q_0 (3p_1q_0 - 1) (2n - 1) - 2q_0 (3p_1q_0 - 1)$$

$$= 4q_0 (3p_1q_0 - 1) (n - 1) > 0,$$

where the third equality holds due to $3p_1^2 + 6q_0^2 = 3$. By mathematical induction, we have proven $D_2(x) \geq 0$ for $n \geq 1$. It follows that $D'_1(x) > 0$, which means that D_1 is increasing on $(0, \infty)$, and then $D_1(x) > \lim_{x \to 0^+} D(x) = 0$. This in turn implies that D is increasing on $(0, \infty)$, and therefore, $D(x) \geq D(0^+) = 0$, which proves the sufficiency.
References

[1] C. Huygens, *Oeuvres Completes* 1888–1940, Société Hollondaise des Science, Haga.
[2] E. Neuman and J. Sándor, On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker and Huygens inequalities, *Math. Inequal. Appl.* 13, 4 (2010), 715–723.
[3] J. Sándor and M. Benzece, On Huygens’s trigonometric inequality, *RGMIA Research Report Collection* 8, 3 (2005); available online at http://www.ajmaa.org/RGMIA/papers/v8n3/Huygens.pdf.
[4] L. Zhu, A source of inequalities for circular functions, *Comput. Math. Appl.* 58 (2009), 1998–2004.
[5] C.-P. Chen and W.-S. Cheung, Sharp Cusa and Becker-Stark inequalities, *J. Inequal. Appl.* 2011 (2011): 136.
[6] C. Mortitc, The natural approach of Wilker-Cusa-Huygens inequalities, *Math. Inequal. Appl.* 14 (2011), 535-541.
[7] E. Neuman, On Wilker and Huygens type inequalities, *Math. Inequal. Appl.* 15, 2 (2012), 271–279.
[8] Zh.-H. Yang, New sharp Jordan type inequalities and their applications, arXiv:1206.5502 [math.CA], http://arxiv.org/pdf/1206.5502v1.pdf.
[9] Zh.-H. Yang, Refinements of a two-sided inequality for trigonometric functions, *J. Math. Inequal.* 7, 4 (2013), 601-615.
[10] Zh.-H. Yang, Sharp bounds for Seiffert mean in terms of weighted power means of arithmetic mean and geometric mean, *Math. Inequal. Appl.* 17, 2 (2014), 499–511.
[11] L. Zhu, Some new inequalities for means in two variables, *Math. Inequal. Appl.* 11, 3 (2008), 443–448.
[12] L. Zhu, Some new Wilker-type inequalities for circular and hyperbolic functions, *Abstr. Appl. Anal.* 2009, Art. ID 485842.
[13] L. Zhu, Some new inequalities of the Huygens type, *Comput. Math. Appl.* 58 (2009), 1180–1182.
[14] L. Zhu, Inequalities for hyperbolic functions and their applications, *J. Inequal. Appl.* 2010, Article ID 130821, 10 pages, doi: 10.1155/2010/130821.
[15] J. Sándor, Trigonometric and hyperbolic inequalities, arXiv: 1105.0859v1 [math.CA] 2 May 2011, http://arxiv.org/pdf/1105.0859v1.pdf.
[16] E. Neuman, Refinements and generalizations of certain inequalities involving trigonometric and hyperbolic functions, *Adv. Inequal. Appl.* 1, 1 (2012), 1-11.
[17] S.-H. Wu and L. Debnath, Wilker-type inequalities for hyperbolic functions, *Appl. Math. Lett.* 25, 5 (2012), 837–842.
[18] E. Neuman and J. Sándor, Inequalities for hyperbolic functions, *Appl. Math. Comp.* 218 (2012), 9291–9295.
[19] Zh.-H. Yang, New sharp bounds for logarithmic mean and identric mean, *J. Inequal. Appl.* 2013 (2013): 116.
[20] Ch.-P. Chen and J. Sándor, Inequality chains for Wilker, Huygens and Lazarević type inequalities, *J. Math. Inequal.* 8, 1 (2014), 55–67.
[21] Zh.-H. Yang, Three families of two-parameter means constructed by trigonometric functions, *J. Inequal. Appl.* 2013 (2013): 541.
[22] K.S.K. Iyengar, B.S. Madhava Rao and T.S. Nanjundiah, Some trigonometrical inequalities, *Half-Yearly J. Mysore Univ. Sect. B., N. S.* 6 (1945), 1-12.
[23] D. S. Mitrić, *Analytic Inequalities*, Springer-Verlag, Berlin, 1970.
[24] F. Qi, L.-H. Cui and S.-L. Xu, Some inequalities constructed by Tchebyshoff’s integral inequality, *Math. Inequal. Appl.* 2, 4 (1999), 517-528.
[25] R. Klén, M. Visuri and M. Vuorinen, On Jordan type inequalities for hyperbolic functions, *J. Inequal. Appl.* 2010 (2010), Art. ID 362548, 14 pages, doi:10.1155/2010/362548.
[26] Zh.-H. Yang, New sharp Jordan type inequalities and their applications, *Gulf J. Math.* 2, 1 (2014), 1-10.
[27] Y.-P. Lv, G.-D. Wang and Y.-M. Chu, A note on Jordan type inequalities for hyperbolic functions, *Appl. Math. Lett.*, 25 (2012), 505-508.
[28] T.-P. Lin, The power mean and the logarithmic mean, *Amer. Math. Monthly* 81 (1974), 879–883.
NEW SHARP CUSA–HUYGENS TYPE INEQUALITIES

[29] B. C. Carlson, The logarithmic mean, Amer. Math. Monthly 79 (1972), 615-618.
[30] The log-convexity of another class of one-parameter means and its applications, Bull. Korean Math. Soc. 49, 1 (2012), 33–47.
[31] L. Zhu, Generalized Lazarevic’s inequality and its applications—Part II, J. Inequal. Appl. 2009 (2009): 379142, doi: 10.1155/2009/379142.
[32] Zh.-H. Yang, Reversed basic inequality and its applications, College Mathematics, 23, 5 (2007), 147–151. (Chinese)
[33] F. Qi, Extensions and sharpenings of Jordan’s and Kober’s inequality, Journal of Mathematics for Technology 12, 4 (1996), 98–102. (Chinese)
[34] Sh.-H. Wu and L. Debnath, A new generalized and sharp version of Jordan’s inequality and its applications to the improvement of the Yang Le inequality, Appl. Math. Letters 19, 12 (2006), 1378–1384.
[35] Sh.-H. Wu, Sharpness and generalization of Jordan’s inequality and its application, Taiwanese J. Math. 12, 2 (2008), 325–336.
[36] E. Catalan, Recherches sur la constante G, et sur les intégrales eulériennes, Mémoires de l’Academie imperiale des sciences de Saint-Pétersbourg, Ser. 31, 7 (1883).
[37] D. M. Bradley, Representations of Catalan’s constant, 2001, available online at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.1879.
[38] M. Biernacki and J. Krzyz, On the monotonicity of certain functionals in the theory of analytic functions, Annales Universitatis Mariae Curie-Skłodowska 9 (1995) 135–147.
[39] B. C. Carlson, Algorithms involving arithmetic and geometric means, Amer. Math. Monthly 78 (1971), 496–505.
[40] E. Neuman and J. Sándor, On the Schwab-Borchardt mean, Math. Pannon. 14 (2003), 253–266.
[41] E. Neuman, Inequalities for the Schwab-Borchardt mean and their applications., J. Math. Inequal. 5, 4 (2011), 601–609.

Power Supply Service Center, ZPEPC Electric Power Research Institute, Hangzhou, Zhejiang, China, 310009
E-mail address: yzhkm@163.com