RISK RELEVANCE AND VOLATILITY OF OTHER COMPREHENSIVE INCOME IN THE BANKING SECTOR: EVIDENCE FROM EUROPEAN COUNTRIES

Manuela Lucchese *, Ferdinando Di Carlo **, Alberto Incollingo ***

* Department of Economics, University of Campania “Luigi Vanvitelli”, Naples, Italy
** Corresponding author, Department of Mathematics, Computer Science and Economics, University of Basilicata, Potenza, Italy
*** Department of Political Science, University of Campania “Luigi Vanvitelli”, Naples, Italy

Abstract

The aim of this study is to examine the relationship between the risk measures and the volatility of total comprehensive income (TCI), other comprehensive income (OCI), and single OCI components in the European context. Previous studies only cover reporting jurisdictions such as the United States and Canada but never the EU. Based on these premises, this research uses a sample of 166 listed banks, selected from 15 European countries. The results show that there is a significant positive association between the stock return volatility and the volatility of TCI, of OCI, and some of the single OCI components. This study contributes to the international debate on the risk relevance of TCI and its components, observing, in addition to previous research, the association not only between the risk measures and the volatility of TCI and OCI but also between the risk measures and the volatility of single OCI components.

Keywords: Total Comprehensive Income, Financial Reporting, Risk Relevance, Volatility, Banks

Authors' individual contribution: Conceptualization – M.L., F.D.C., and A.I.; Methodology – M.L. and F.D.C.; Formal Analysis – M.L.; Investigation – F.D.C.; Writing – Original Draft – M.L. and F.D.C.; Writing – Review and Editing – M.L., F.D.C., and A.I.; Supervision – A.I.

Declaration of conflicting interests: The Authors declare that there is no conflict of interest.

1. INTRODUCTION

This study follows a call for action concerning the direction for future research about the usefulness of total comprehensive income (TCI), other comprehensive income (OCI) and components of OCI for investor and contracting purposes (Black, 2016; Khan & Bradbury, 2016). Specifically, the paper examines the relation between risk measures and the volatility of TCI, OCI and single OCI components in the European context, following recent suggestions for future research according to which many studies in finance use earnings or operating income volatility as a measure of firm risk, so future research might consider how incorporating OCI into these measures will potentially lead to different conclusions (Bao, Billett, Smith, & Unlu, 2020).

Easton and Zmijewski (1989) state that the association between earnings and returns varies with the persistence of earnings and the firm’s exposure to systematic risk in the equity market. Thus, an examination of the association between the time-series volatility of financial statements items (TCI, OCI, and single components) and the time-series volatility of the stock/equity return tries to provide evidence for the effects of price moments that does not depend on transitory innovation in the financial statement items (i.e., news about firm fundamentals).

In this manner, the study seeks to provide evidence on the risk relevance or, in other words, on
the price movements that may not cause a deviation from the mean return that would cause volatility (Black, 2016). In previous studies, the volatility of time-series equity returns is used as the benchmark for whether OCI volatilities are associated with the total risk of a firm (FASB, 2010; Ryan, 2012; Black, 2014). In doing so, researchers assume that investors efficiently impound the risk-relevant information into equity share prices and that equity share prices represent the investors’ future cash flows (Black, 2016).

TCI and OCI are considered to be the earning measures that, under the requirements of IAS I-revised, should provide additional disclosure to better understand or predict the progress of firm performance for the near future. Specifically, in revising this standard and through the debate originating from the submission of the joint FASB-IASB discussion paper “Preliminary view on financial statement presentation” regard to providing just a single statement of comprehensive income or two, respondents highlight that the single item of OCI are volatile. According to them, the inclusion of OCI components with core business results is going to confuse the users of financial statements and lead to significant misinterpretation of an entity’s performance (Khan & Bradbury, 2016). Investors consider the OCI items to be a transitory and noisy figure to ignore (Chasan, 2014), while they prefer net income and its derived metrics, such as earnings per share (EPS), as the more effective measures for understanding the earnings originating from a firm’s core business activities or operations rather than a figure that reflects the holding gains and losses. Another study on the use of financial statements (Cascino et al., 2013), demonstrates that investors consider the net income characteristics to be more consistent with the aim of financial reporting than the TCI ones because net income allows them to understand sustainability and the going concern of a firm. In addition, the majority of investors think that the increased TCI volatility in comparison to that of net income (NI) is going to confound risk assessment, arguing that this volatility does not reflect management performance, as it is induced by market forces that cannot be controlled by managers (Hirst & Hopkins, 1998; IASB, 2010).

On the basis of these assumptions, this study contributes specifically to the international debate on the risk relevance (considered as a driver of the value relevance) of TCI and its components (Black, 2016). More generally, this research contributes to the current debate among financial statement users as to whether TCI/OCI has any robust conceptual foundation or not, where the general perception is that the standard setters require the use of OCI principally as a practical expedient to reduce the volatility of net income that espouses the more critical OCI items (CFA Institute, 2015).

Few studies in existing literature examine the volatility of TCI providing evidence for the higher volatility of TCI than of NI, and even fewer studies examine the volatility of this “all-inclusive” income and related consequences (Barth, Landsman, & Wahlen, 1995; Hodder, Hopkins, & Wahlen, 2006; Khan & Bradbury, 2014, 2016). In addition to previous research, this paper observes not only whether there is an association between the risk measures and the volatility of TCI and OCI but also between the risk measures and the volatility of single OCI components that often reflect the core business of a financial firm (Black, 2016).

Moreover, the present study examines the risk relevance of TCI in the European context while most prior research analyses this specific topic by providing evidence for the United States and New Zealand firms. It is obvious that the evidence gathered from the United States data is largely applicable to countries under the IASs/IFRSs, but it is necessary to underline that there are OCI components that differ between the US GAAP and the IFRS GAAP (Bradbury, 2016). Additionally, there are significant differences regarding the recycling mechanism. Thus, it is important to provide evidence about the real experience of the countries under the IASB standards.

A sample of listed banks from 15 European countries is employed to measure the earning volatility over the 2010-2015 period.

Attention is focused on banks, other than the lack of literature on this specific sector, for the following reasons. First of all, because of their fundamental role in the economic system, as well as their significant impact in terms of capitalization: this means that their performance significantly affects not only the stock exchanges but the entire economies of the countries and consequently also the wealth of investors and savers, such as the recent financial crisis of 2008 has shown. Secondly, because these institutions have a large asset and liability amounts with gains or losses recorded in OCI statements. In the banking sector, available-for-sale (AFS) securities and cash-flow hedges are the main OCI items because they represent the regulatory instruments of risk management and earnings/accounting management in banks. For example, recognising a financial asset as a financial instrument through profit and loss or as an AFS by banks might be used to smooth the regulatory capital. Investors could ignore important information, such as the realised and unrealised gains and losses, which might affect the evaluation of periodic business activity (CFA Institute, 2015). Finally, our study could support bank regulators for finalising Basel III post-crisis reforms regarding regulatory capital calculations to consider OCI components of accumulated other comprehensive income (Black, 2014; Bratten, Causholli, & Khan, 2016).

The remainder of this paper is organised as follows. Section 2 describes the background and hypotheses development. Section 3 describes the methodology. Section 4 reports the results. The last section concludes the study.

2. LITERATURE REVIEW AND HYPOTHESES DEVELOPMENT

In recent years, there is an increasing interest in academic studies on the usefulness of OCI components, both total and line items. Several of these papers mainly focus on the economic information content of OCI components and the valuation relevance of OCI line items.

From the perspective of economic research, the format of accounting information presentation should be irrelevant as long as the same items are included. However, empirical and experimental accounting research shows that the presentation...
format might influence the investors’ decisions (e.g., Hirst & Hopkins, 1998; Maines & McDaniel, 2000). Consequently, the usefulness of presenting the TCI instead of net income as the bottom line of the income statement has been the research focus of many empirical studies (Xu & Qi, 2017; Lin, Martinez, Wang, & Yang, 2018; Wang, Jiang, & Lu, 2019).

Many other studies examine the value relevance of TCI, OCI and OCI line items, covering various reporting jurisdictions (e.g., the United States, Canada, UK, and the European Union). They observe the predictive value (Dhaliwal, Subramanyam, & Trezevant, 1999; Kanagaretnam et al., 2009; Biddle & Choi, 2006; Evans, Hodder, & Hopkins, 2014; Incollingo, Lucchese, & Di Carlo, 2014; Bataineh & Rababah, 2016), the persistence (Jones & Smith, 2011; Campbell, 2015; Bratten et al., 2016) and the value relevance of TCI and the OCI, including both its single components and totals (O’Hanlon & Pope, 1999; Cahan, Courtenay, Gronnewoller, & Upton, 2000; Chambers, Linsmeier, Shakespeare, & Sougiannis, 2007; Goncharov & Hodgson, 2011; Mechelli & Cimini, 2014; Kim, 2017; Jahmani, Choi, Park, & Jiayun Wu, 2017; Yousefidejad, Ahmad, & Embong, 2017; D’Achille, 2018; Elshamy, Alyousef, & Al-Mudhaf, 2019).

There is little academic evidence, instead, for the risk relevance of TCI and its special OCI items (Barth et al., 1995; Hodder et al., 2006; Khan & Bradbury, 2014, 2016) and the majority of studies that do provide such evidence using US data. Barth et al. (1995) do not examine TCI specifically, but they do compare the volatility of fair value-based earnings to the historical cost-based earnings. They use a sample of 137 US banks and their findings show that the volatility of fair value-based earnings is higher than that of historical cost-based earnings and that the share price does not reflect this incremental volatility.

Hodder et al. (2006) examine a sample of 202 US commercial banks. They explore the risk relevance of the standard deviation of three different performance measures: NI, TCI, and another income measure, full fair value (FFV) income, that includes the unrealised fair value gains and losses of the financial instruments and derivatives for a bank (including the gain and losses of held-to-maturity securities, loans deposits, other financial liabilities, and certain types of derivatives). Their findings highlight that TCI is more volatile than net income and that both TCI volatility and NI volatility are positively associated with stock return volatility and long-term interest beta. They also find that TCI volatility presents a significant negative association with equity market beta, while NI volatility presents an insignificant negative association with equity market beta. In this study, the authors also show that incremental TCI volatility is not associated with the implied cost of equity.

Khan and Bradbury (2014) observe risk relevance on a sample of 2,519 non-financial US firms. They find that TCI is more volatile than NI and that TCI volatility is associated with market measures of risk (volatility of stock returns and beta). Instead, the volatility of the TCI incremental to net income is not associated with market risk.

Khan and Bradbury (2016) explore the risk relevance of comprehensive income in a sample of 92 non-financial firms from New Zealand. This study differs from the previous one because it observes the volatility of OCI volatility in a country that determines the TCI under IAS/IFRS where TCI excludes property, plant and equipment revaluation adjustments, which are allowed under the US GAAP. The authors show that TCI is more volatile than NI, while the TCI incremental to NI is not related to market risk. Furthermore, the incremental volatility of TCI does not modify the pricing of net income.

On the other hand, Black (2014) focuses his study on the association between the OCI component volatility and the investors’ returns volatility. He uses a sample of bank holding companies from the US S&P 500 Index. The findings show that the volatilities of unrealised gains and losses on AFS securities and cash-flow hedges are negatively associated with risk, while the volatilities of other-than-temporary impairment (OTTI) losses are positively associated with risk. The authors indicate that the volatility of non-OTTI AFS unrealised gains and losses as an informative signal is relatively less risk-relevant than the volatility of OTTI losses as an informative signal about risk.

To increase the comprehension of previous literature results about the risk relevance of TCI and its components primary information is summarized in Table 1 below.

Authors	Sample	Country	Observation period	Results
Hodder et al. (2006)	202 Banks	United States	1995-2004	- TCI more volatile than NI;
				- oSR positively associated with eNI;
				- oSR positively associated with eTCI;
				- oSR positively associated with eFFV;
				- oSR positively associated with eFFV - eNI;
				- BETA negatively associated with eTCI;
				- BETA negatively associated with eFFV;
				- BETA negatively associated with eTCI - eNI;
				- BETA negatively associated with eFFV - eNI;
Khan and Bradbury (2014)	2519 non-financial firms	United States	2005-2010	- TCI more volatile than NI;
				- oSR positively associated with eNI;
				- oSR positively associated with eTCI;
				- BETA positively associated with eNI;
				- BETA positively associated with eTCI;
Khan and Bradbury (2016)	92 non-financial firms	New Zealand	2003-2010	- TCI more volatile than NI;
				- oSR positively associated with eNI;
				- oSR positively associated with eTCI;
				- oSR positively associated with eACL;
It is a widely held opinion that the inclusion of OCI with core business results may confuse the users of financial statements and lead to significant misinterpretation of firm performance. The main causes of this misinterpretation derive from the fact that the OCI items are different in nature, less controllable, difficult to predict and not attributable to management performance. Indeed, OCI includes unrealised items that are not a part of the NI but are added to it, giving the user a bigger, more comprehensive picture of the entity performance, both actual and prospective. These transactions are often referred to as “dirty surplus (non-all-inclusive) components of income for the period”. Since its inception, TCI has been considered to be strongly subject to high volatility – because this aspect, as has been sustained by Bamber, Jiang, Petroni, and Wang (2010), represents one of the main reasons for the aversion to the adoption of TCI as a principal result of external financial information even if it seems to be more predictive than net income. Indeed, the main opinion among users is that OCI items are infrequent, transitory and price-sensitive and that including them with core earnings is going to make TCI volatile in relation to net income. This leads to our first hypothesis:

H1: Total comprehensive income (TCI) is more volatile than net income (NI).

Assuming that TCI results in additional volatility, then a second important question is raised regarding whether this increased volatility confounds the risk assessment. Is OCI volatility more “beyond the control of management” than NI volatility? The increased volatility of TCI is an important issue because it implies a perception of increased risk. Accounting measures reflect both systematic and firm-specific risk components. Beaver, Kettler, and Scholes (1970) find a high degree of contemporaneous association between accounting and market risk measures. Subsequent studies investigate the relation between the market risk and accounting risk measures, by incorporating additional or different accounting measures of risk. This leads to the second hypothesis:

H2: The volatility of total comprehensive income (TCI), incremental to net income (NI), is associated with an entity risk measure.

Black (2016), when recommending areas for future research on risk relevance of TCI, gives evidence of different behaviours of single OCI components that are related to risk and advice on how the managers could read it. This leads to the third hypothesis:

H3: The volatility of single OCI components is associated with an entity risk measure.

3. SAMPLE AND MODEL SPECIFICATION

The initial sample for this study included all the banks listed on the stock exchanges of 15 European countries (Austria, Belgium, Germany, Denmark, Spain, Finland, France, the United Kingdom, Greece, Ireland, Italy, Luxemburg, Netherlands, Portugal, and Sweden) over the 2011-2015 period.

The analysis takes into consideration only banks because OCI components are more significant to the investors making economic decisions in this sector, than in non-financial firms. In fact, the AFS and cash-flow hedges re-measurements, as OCI statement items, have economic information content and are predictive of future cash flows. Specifically, a bank’s balance sheets, particularly the commercial ones, consist almost entirely of financial instruments. Thus, an analysis of how different income metrics could contribute to providing different pictures of profitability and income volatility over time is relevant. It is important to remember that NI includes many, but not all, effects of the core banking activities (interest revenues and expenses, credit losses, realised gains and losses on investments, operating expenses, fees, and taxes. TCI is a more complete measure of performance than net income (it includes fair value gains and losses on AFS investment securities and on cash-flow hedges), but not the most complete one (it excludes fair-value gains and losses on financial instruments such as held-to-maturity securities, loans, financial liabilities, and non-term deposit) (Hodder et al., 2006).

For this reason, an analysis of the single OCI components was performed in this study and the sample results are composed in Table 2 as follows.
Austria	Spain	United Kingdom	Italy
Raiffeisen Bank International AG	Banco Bilbao Vizcaya Argentaria SA	Aberdeen Asset Management Plc	Mediobanca SpA
BKS Bank AG	Bankinter SA	Bankers Investment Trust Plc	Banca Popolare di Milano ScArl
Oberbank AG	Banco Popular Espanol SA	Brewin Dolphin Holdings Plc	Banca popolare dell'Emilia Romagna
Bank für Tirol und Vorarlberg AG-BTV (3 Banken Gruppe)	Banco de Sabadell SA	Rathbone Brothers Plc	Brioschi Sviluppo Immobiliare S.P.A.
Erste Group Bank AG	Banco Santander SA	Schroders Plc	Intesa Sanpaolo
Wiener Privatbank SE	CaixaBank, S.A.	Electra Private Equity Plc	Banca Intermobiliare di Investimenti e Gestioni
Volksbank Vorarlberg e.Gen.	Renta 4 Banco, S.A.	Foreign & Colonial Investment Trust Plc (The)	Banca Finant Euramerica SpA

Belgium	Finland	Standard Chartered Plc	Banca Popolare di Sondrio
KBC Groep NV/ KBC Groep SA-KBC Group	Alandbanken Abp-Bank of Aland Plc	Private & Commercial Finance Group Plc	Banco di Sardegna SpA
Dexia SA	et Plc	Polar Capital Technology Trust Plc	Banca Generali SpA-Generbanca

Germany	France	Dunedin Enterprise Investment Trust plc	Banca Profilo SpA
Deutsche Bank AG	Aktia Bank Plc	HSBC Holdings Plc	Banca di Desio e della Brianza SpA-Banco Desio
Aareal Bank AG	Rothschild & Co	Murray International Trust Plc	Dea Capital Spa
Comdirect Bank AG	Allianz SE	RIT Capital Partners Plc	Mittel SpA
MLP Ag	Foncière de Paris SIIC	Close Brothers Group Plc	Credito Emiliano SpA-EDICEM
Deutsche Postbank AG	Union Financière de France Banque SA	Arbuthnot Banking Group Plc	Banca Ifs SpA
DVB Bank SE	Euronic S.A.	Lloyds Banking Group Plc	Azimut Holding SpA
Wienerwurttembergische	SOFINUS Patrimoine SA	Blackrock Throgmorton Trust PLC	Unione di Banche Italiane SpA-UBI Banka
Oldenburgische Landesbank OL	Credit Agricole Alpes Provence	Witan Investment Trust Plc	Conafi Prestito SpA
HSBC Trinkaus & Burkhardt AG	Credit agricole mutuel de Normandie-Seine	Barclays Plc	Mid Industry Capital

Grenke Ag	Credit Agricole S.A.	ICAP Plc	Gruppo Mutuonline S.P.A.
Commerzbank AG	Credit Agricole de Tille-et-Vilaine	London Capital Group Holdings Plc	Georgcapital S.P.A.

Denmark	Luxembourg	Banca Mediolanum SpA	Banca National Denise
Credit Agricole Loire Haute Loire	Alliance Trust Plc	London Capital Group Holdings Plc	
Nordfyns Bank A/S	Credit Agricole de la Touraine et du Poitou	Investec Plc	Gabetti Property Solutions S.P.A.
Salling Bank A/S	Credit Agricole Sud Rhône Alpes	International Personal Finance Plc	Monte dei Paschi di Siena
Oestjylland Bank A/S	Credit Agricole d'Ile-de-France	Bi Group plc	Banca Carige SpA
Lønn & Spar Bank A/S	Credit Agricole Mutuel Toulouse 31 CIU	Provident Financial Plc	Luxembourg
Bank of Greenland	Credit Agricole du Morbihan	Paragon Group of Companies Plc	Quinvest SA

Netherlands	Banca Nationsl NV	Banca della Fiera
Viel & Compagnie SA	Secure Trust Bank Plc	IdB Holdings SA

Skn Bank	Natrios SA	Royal Bank of Scotland Group Plc (The)	Van Lamsot NV
Vestjysk Bank A/S	Locrinus S.A.	Jupiter UK Growth Investment Trust Plc	BinckBank NV
Ipsyke Bank A/S (Group)	Groupe IRD	Rasmala Plc	Kas Bank NV
Sydbank A/S	Société Générale SA	Henderson Group Plc	Delta Lloyd NV

Alm. Brand A/S	BNP Paribas	Jing Groep NV

Zollands Bank A/S	Credit Agricole Atlantique Vendée	Artica Bank SA-Bank of Attica SA
Norrbysske Bank A/S	Crédit Agricole Nord de France	National Bank of Greece SA
Spar Nord Bank	ABC Arbitrage SA	Bank of Greece
Totalbanken A/S	Crédit Industriel et Commercial SA - CIC	Piraeus Bank SA
Moens Bank A/S	Crédit Agricole Mutuel du Languedoc SC	Alpha Bank AE
Hvidbjerg Bank Aktieselskab	Crédit Agricole Brie Picardie	Martin Investment Group Holdings SA
Dansklands Bank A/S	Eurobank Ergasias SA	Svenska Handelsbanken

| Fynskes Bank A/S | Banco BPI SA | Permanent Tsb Group Holdings P.L.C. |

| BankNordik P/F | Sociedad Comercial Ores Antunes, S.A. | Allied Irish Banks plc |

The research for the study was conducted over the 2011-2015 period. This period was selected to eliminate the misrepresenting and negative effects on the financial statements from our dataset, which were produced since the 2007-2008 period due to the financial crisis and the requirements of the IASB and UE regarding fair value and classification of financial asset and liabilities.
The data analysis was conducted in two phases that are linked to the specified research questions. The first phase explored whether the volatility of TCI is higher than the volatility of retained income, that in this case has been likened to a specific version of net income, independent from any contamination, to provide consistency for the assumptions of this study in the banking sector through the empirical findings from previous literature. The following regression models were employed:

Model 1

\[
\text{MEASURE RISK}_{it} = \beta_0 + \beta_1 \sigma \text{IVOL}_{it} + \beta_2 \text{BTM}_{it} + \beta_3 \text{LEV}_{it} + \epsilon_{it}
\]

(1)

Model 2

\[
\text{MEASURE RISK}_{it} = \beta_0 + \beta_1 \sigma \text{RI}_{it} + \beta_2 \sigma \text{INC_VOL}_{it} + \beta_3 \text{BTM}_{it} + \beta_4 \text{LEV}_{it} + \beta_{20-23} \text{Country}_{it} + \beta_{20-30} \text{Year}_{it} + \epsilon_{it}
\]

(2)

Model 3

\[
\text{RISK MEASURE}_{it} = \beta_0 + \beta_1 \sigma \text{RI}_{it} + \beta_2 \sigma \text{TRANS}_{it} + \beta_3 \sigma \text{AFS}_{it} + \beta_4 \sigma \text{HEDGE}_{it} + \beta_5 \sigma \text{OTHERHEDGE}_{it} + \beta_6 \sigma \text{REV}_{it} + \beta_7 \sigma \text{PENS}_{it} + \beta_8 \sigma \text{EQMETH}_{it} + \beta_9 \sigma \text{OTHER}_{it} + \beta_{10} \text{BTM}_{it} + \beta_{11} \text{LEV}_{it} + \beta_{22-23} \text{Country}_{it} + \beta_{22-30} \text{Year}_{it} + \epsilon_{it}
\]

(3)

In consistency with previous literature, the risk measure is considered to be a proxy of the volatility of stock return and beta, while IVOL is an income volatility measure (Hodder et al., 2006; Khan & Bradbury, 2014).

When the effects of accounting data on the volatility of the stock return were tested, a random effect regression was employed after carrying out the Hausman and the Breush-Pagan Lagrange multiplier tests. When the effects of accounting data on the volatility of beta were tested, a pooled regression was employed.

All variables included in the regression models are defined in Table 3, specifying the source of data.

Table 3. Definition of variables included in the regression model

Variables	Description
\(\sigma\text{TCI}\)	The volatility of TCI, measured by the rolling standard deviation of comprehensive divided by average total assets over the last three years (source: Orbis Bank Focus).
\(\sigma\text{RI}\)	The volatility of RI, measured by the rolling standard deviation of retained income divided by average total assets over the last three years (source: Orbis Bank Focus).
\(\sigma\text{TRANS}\)	The volatility of foreign currency translation gains and losses, measured by the rolling standard deviation of this OCI item divided by average total assets over the last three years (source: Orbis Bank Focus).
\(\sigma\text{AFS}\)	The volatility of AFS investment adjustment, measured by the rolling standard deviation of this OCI item divided by average total assets over the last three years (source: Orbis Bank Focus).
\(\sigma\text{HEDGE}\)	The volatility of net gains/losses to the cash-flow hedging reserve from changes in fair value, measured by the rolling standard deviation of this OCI item divided by average total assets over the last three years (source: Orbis Bank Focus).
\(\sigma\text{OTHERHEDGE}\)	The volatility of other changes to cash-flow hedging reserve, measured by the rolling standard deviation of this OCI item divided by average total assets over the last three years (source: Orbis Bank Focus).
\(\sigma\text{REV}\)	The volatility of revaluation of property and other fixed assets, measured by the rolling standard deviation of this OCI item divided by average total assets over the last three years (source: Orbis Bank Focus).
\(\sigma\text{PENS}\)	The volatility of minimum pension liability adjustment, measured by the rolling standard deviation of this OCI item divided by average total assets over the last three years (source: Orbis Bank Focus).
\(\sigma\text{EQMETH}\)	The volatility of OCI/loss of associates and joint ventures share accounted for by the equity method, measured by the rolling standard deviation of this OCI item divided by average total assets over the last three years (source: Orbis Bank Focus).
\(\sigma\text{OTHER}\)	The volatility of other TCI gains/losses, measured by the rolling standard deviation of this OCI item divided by average total assets over the last three years (source: Orbis Bank Focus).
BTM	Book-to-market, measured by book value on price ratio (source: Datastream).
LEV	Leverage, measured by debt on equity ratio (source: Datastream).
INC_VOL	Incremental volatility of TCI compared to the volatility of RI, measured by the difference between \(\sigma\text{TCI}\) and \(\sigma\text{RI}\).
\(\sigma\text{STOCK RETURN}\)	The volatility of the stock return, measured by the rolling standard deviation of the average of daily percentage stock price variations per year over three years (source: Datastream).
BETA	The market beta of the single firm (source: Datastream).
Year dummy	Dummy variable for each year considered in the sample.
Country dummy	Dummy variable for each country considered in the sample.

4. RESULTS: ASSOCIATION BETWEEN COMPREHENSIVE INCOME AND MARKET RISK

Panel A in Table 4 provides descriptive statistics of firm-specific volatility of income measures. The mean (median) of \(\sigma\text{RI}\) is 0.4786 (0.00329), and of \(\sigma\text{TCI}\) is 0.6964 (0.00433). The rolling standard deviation of TCI is higher than the rolling standard deviation of RI. To assess the relative \(\sigma\text{TCI}\) in comparison to \(\sigma\text{RI}\), a standard deviation ratio \((\sigma\text{TCI}/\sigma\text{RI})\) is determined. The mean standard deviation ratio of TCI to retained income is 2.0711 showing that TCI is 100% more volatile than RI. Considering that the
total number of observations is 498, the σ_{TCI} is observed to be higher than the σ_{RI} in 335 (67.3%) observations and lower in 162 (32.5%) observations. The standard deviation ratio is equal to 1 (0.2%) for only one observation.

Hence, the $H1$ is confirmed, which is consistent with previous literature that affirms the higher volatility of TCI in comparison to RI.

Table 4. Descriptive statistics

Variable	Mean	Std. Dev.	Min	1st quartile	Median	3rd quartile	Max
σ_{TCI}	0.6963951	5.996452	0	0.0017432	0.0045346	0.0185474	39.71556
σ_{RI}	0.4766709	4.304429	0	0.0011602	0.0032983	0.0141944	18.65782
σ_{OTR}	2.071094	4.349175	0.265413	0.3260441	1.023048	1.708952	24.43142

Moreover, Panel B in Table 4 shows that the mean (median) for the volatility of stock return is 0.00611 (0.00094), and the mean (median) for the beta is 0.8685987 (0.75). The mean (median) for the beta is, on average, lower than the market-wide of 1, suggesting that the sample of banks has, on average, less volatility than the market.

Table 5. Pearson correlation

Variable	σ_{SR}	σ_{TCI}	σ_{RI}	σ_{TRANS}	σ_{AFS}	σ_{OTH}	σ_{REV}	σ_{PENS}	σ_{EQM}	σ_{OT}	BTM	LEV
σ_{SR}	1.00000											
σ_{TCI}	0.0335	1.00000										
σ_{RI}	-0.0131	-0.0463	0.8942*	1.00000								
σ_{TRANS}	0.0256	0.0378	0.1261*	1.00000								
σ_{AFS}	0.0081	-0.0049	0.7436*	0.3779	0.0408	1.00000						
σ_{OTH}	0.0073	0.0069	0.6788	0.3493	-0.0060	0.0070	1.00000					
σ_{REV}	0.0700	0.0217	0.0888	0.0601	0.5342*	0.0144	-0.0042	1.00000				
σ_{PENS}	-0.0389	-0.0348	0.0533	0.0358	0.4324*	0.0091	-0.0191	0.2531	1.00000			
σ_{EQM}	-0.0288	0.2861	0.7167	0.7631	-0.0190	0.3549*	0.4756	-0.0108	-0.284*	1.00000		
σ_{OT}	0.0423	0.0353	0.0675	0.1182	0.9200	0.0208	-0.0070	0.6675	0.4353*	-0.0182	-0.0060	1.00000
BTM	0.1111	-0.0247	0.0066	0.0045	-0.0114	0.0060	0.0044	-0.0080	-0.0432	-0.0281	0.0058	0.0129
LEV	0.0045	0.0445	0.1056	0.1119	0.9293	0.1174	0.0991	-0.1345	-0.0079	0.0835	0.0924	0.0551

Notes: * $p < 0.10$; ** $p < 0.05$; *** $p < 0.01$.

Table 5 shows the Pearson correlation statistics between the income volatility measures and the market-based ones. It indicates a higher significant correlation between TCI and RI. The σ_{TCI} presents a positive not significant correlation with the σ_{SR}, while the σ_{RI} presents a negative not significant correlation with the σ_{SR}. Both the σ_{TCI} and σ_{RI} present a negative not significant correlation with the beta.

To verify the $H2$, Panel C and D in Table 6 provide regression coefficients from Equations 1a and 1b, (2) and (3) in which the risk measures that are the dependent variables are represented by the stock return and beta, respectively.

It is important to remember that the stock return is considered to be a proxy for the total firm risk, while the beta is a proxy for the systematic risk.

In Panel C, the findings in column 1a exhibit a significant positive association between the volatility of stock return and the volatility of TCI. The findings in column 1b show a significant negative association between the $\sigma_{STOCK\ RETURN}$ and the σ_{RI}. These results are substantially consistent with previous literature (Hodder et al., 2006; Khan & Bradbury, 2014, 2016) and seem to confirm $H2$, suggesting that TCI volatility can provide incremental risk-relevant information.

The findings in column 2b, of Panel D, show that both the σ_{TCI} and σ_{RI} are significantly negatively associated with the BETA. These results are only consistent with the literature that observes a sample of banks (Hodder et al., 2006), at least in terms of the association between the volatility of TCI and beta. Such data suggest that any of the income
volatility measures provide incremental risk-relevant information. These results could depend on the fact that the beta captures the volatility of a security or a portfolio. Thus, when the sample selected regards just one sector, future income measures volatility cannot express the volatility of the systemic risk of a market, as demonstrated in Khan and Bradbury (2014, 2016) that observed a sample of non-financial firms operating in different industries.

Model (2) of Panel C indicates a significant negative relation between the volatility of stock return and the volatility of RI, while the incremental volatility between the σTCI and the σRI is significantly positively associated with the volatility of stock return. The additional volatility between the σTCI and the σRI can represent a proxy of the OCI volatility. These assumptions can affirm that the incremental volatility of TCI provides additional risk-relevant information for the systematic risk, being partially not consistent with any previous literature on the volatility of single OCI components.

To the scope to confirm H3, this study explored the association between the volatility of the market risk and the single OCI components. Panel C reveals that there is a significant positive association between the standard deviation of the market risk and the σAFS and σHEDGE. The findings further show that the σAFS and the σHEDGE provide incremental risk-relevant information for the entire risk, remembering the crucial role of these two OCI components in the assessment of financial information for banks. In this case, as there is not any previous literature on the volatility of single OCI elements, we can’t have any consistency with other authors on the issue.

Panel D exhibits a significant positive association between the BETA and the σOTHERHEDGE that suggests that the volatility of other changes to cash flow hedging reserve, different from fair value, provides incremental risk-relevant information for the systematic risk.

| Table 6. Regressions of market risk measures on the accounting-based risk measures |
|-----------------------------------|---------|---------|---------|
| **Panel C: Regression results of stock return volatility on accounting-based risk measures** |
Model	Intercept	σTCI	σRI
1a	0.0241948 (4.99)***	0.0001045 (2.17)**	-0.000941 (-0.56)
1b	0.0311167 (8.08)***	0.0243764 (4.89)***	-0.0091744 (-4.25)***
2	0.0228085 (5.58)***	0.0268246 (1.53)	0.0056208 (4.43)***
3	-0.0376665 (-2.22)**	0.0034257 (1.63)*	-0.473712 (-1.11)
B	0.0010183 (3.35)***	0.0013389 (5.46)***	-0.0009753 (3.36)***
C	0.0000196 (1.93)**	0.0000946 (3.37)***	0.0000121 (-3.95)***
d_Country	YES	YES	YES
d_Year	YES	YES	YES
Chi-value	741.23***	139.44***	765.48***
R-sq	30.50%	25.68%	32.13%

| **Panel D: Regression results of beta on accounting-based risk measures** |
|-----------------------------------|---------|---------|---------|
| Model | Intercept | σTCI | σRI |
| **1a** | 0.3514042 (1.67)*** | 0.4621209 (8.84)*** | 0.532167 (9.93)*** |
| **1b** | 0.4621209 (8.84)*** | 0.00089317 (6.73)*** | -0.0165261 (-2.23)** |
| **2** | 0.0352571 (2.21)** | 0.0357728 (-3.94)*** | 0.04407991 (1.29) |
| **3** | -0.3972147 (-1.00) | -0.2959755 (-0.87) | -0.4797569 (-1.65) |
| **B** | 0.0010183 (3.35)*** | 0.0013389 (5.46)*** | -0.0009753 (3.36)*** |
| **C** | 0.0000196 (1.93)** | 0.0000946 (3.37)*** | 0.0000121 (-3.95)*** |
| **d_Country** | YES | YES | YES |
| **d_Year** | YES | YES | YES |
| **R-sq** | 30.50% | 25.68% | 32.13% |

Notes: * p < 0.10; ** p < 0.05; *** p < 0.01.
5. CONCLUSION

The TCI, and consequently the OCI, are a widely debated and controversial income figure that, according to IFRSs and SFASs, should have to represent the accounting value, which synthesizes the firm future cash flow perspectives. The debate on the real definition of new performance measures and specifically on the concept behind the formation of TCI is still open, as demonstrated by the IASB “Disclosure Initiative – Principles of Disclosures” project. Even the latest version of the IASB Conceptual Framework does not resolve the main conceptual problems about the notion of performance, giving more discretion to the preparers about the collocation of the single income elements. Despite these uncertainties about the correct definition of the income measures, literature, and practice investigated this topic focusing on the usefulness and the impact of it (predictability, value relevance, readers’ perspective).

This study examines whether the volatility of the TCI, OCI, and individual OCI components, affect the risk relevance of the firm risk measures (stock return and beta). Many studies in finance use earnings and operating income volatility as a measure of firm risk (Easton & Zmijewski, 1989; FASB, 2010; Ryan, 2012; Black 2014; Bao et al., 2020). Thus, this work considers how incorporating TCI and OCI in these measures will potentially lead to different conclusions. Notably, starting from the assumption that FASB and IASB calculate the comprehensive income slightly differently, the study focuses on the European banking sector that provides our financial reporting under IFRSs to compare the results with the previous studies mostly conducted on the US.

The findings show that the higher volatility of the TCI and the OCI is positively associated with the stock return volatility. That suggests that TCI, and specifically OCI, provide risk-relevant information about the specific condition of the entity, useful for investors and bank regulators. In financial firms, as we already said, the OCI statement contains the accounting value of some items that are strategic for their business performance. Thus, the higher volatility of TCI than NI demonstrated in the first part of the work might justify how the volatility of the accrual estimates – provided by the OCI section – influence the perception of the firm global risk.

The negative association between the volatility of TCI and OCI and the beta provides some evidence about the ability of the volatility of TCI and OCI to capture the firm-specific risk and not the systemic risk that depends only on the market risk. The beta represents a risk measure of a security or a portfolio; therefore, in our analysis, in which we observe a specific sector, these income measures do not absorb a different level of risk in an industry substantially homogeneous. The findings are consistent with the conclusion of Hodder et al. (2006); differently, they are inconsistent with Khan and Bradbury (2014), but their results, for the reasons set out above, could depend on the fact that the sample comprises different sectors.

The study also examines the association between the volatility of the individual OCI components and the risk measures. The findings show a positive association both between AFS and the stock return volatility, and net gains/losses to the cash-flow hedging reserve from changes in fair value volatility and the stock return volatility. This result might confirm that in the banking sector, AFS and HEDGE are more significant OCI components observed by investors. Thus these unrecognized fair-value changes in financial instruments seem useful to capture the firm-specific risk.

Finally, this study does not suffer some limitations. First, we select a sample of European banks, including just fifteen countries that represent mainly Western Europe. Future studies might consider all the other European countries banks that employ IFRSs. Second, we measure the volatility as the rolling measure calculated over the last three years. Future studies might consider a rolling measure calculated during the previous five years.

Despite these limitations, we believe these results are useful to capital-markets participants and researchers that aim to explain stock returns and risks in banks and in firms that provide their financial reports according to IFRSs. Further, we expect these findings to help support the Basel III approach in including accumulated other comprehensive income in Tier 1 Capital (Bratten et al., 2016) contradicting criticism regarding the inclusion of OCI in regulatory capital showing that OCI captures the firm-specific risk of an entity.

REFERENCES

1. Bamber, L. S., Jiang, J., Petroni, K. R., & Wang, I. Y. (2010). Comprehensive income: Who’s afraid of performance reporting? The Accounting Review, 85(1), 97-126. https://doi.org/10.2308/accr.2010.85.1.197
2. Bao, M. X., Billett, M. T., Smith, D. B., & Unlu, E. (2020). Does other comprehensive income volatility influence credit risk and the cost of debt? Contemporary Accounting Research, 37(1), 457-484. https://doi.org/10.1111/1911-3846.12548
3. Barth, M. E., Landsman, W. R., & Wahlen, J. M. (1995). Fair value accounting: Effects on banks’ earnings volatility, regulatory capital, and value of contractual cash flows. Journal of Banking & Finance, 19(3-4), 577-605. https://doi.org/10.1016/0378-4266(94)00141-0
4. Bataineh, A., & Rababah, A. (2016). Comprehensive income and net income, which is more powerful in predicting future performance. International Journal of Academic Research in Accounting, Finance and Management Sciences, 6(2), 114-120. https://doi.org/10.6007/IJARAFMS/V6/i2/2077
5. Beaver, W., Kettler, P., & Scholes, M. (1970). The association between market determined and accounting determined risk measures. The Accounting Review, 45(4), 654-682.
6. Biddle, G. C., & Choi, J.-H. (2006). Is comprehensive income useful? Journal of Contemporary Accounting & Economics, 2(1), 1-32. https://doi.org/10.1016/S1815-5609(10)70015-1
7. Black, D. E. (2014). Essays on other comprehensive income (Doctoral dissertation, Duke University and Dartmouth College).
8. Black, D. E. (2016). Other comprehensive income: A review and directions for future research. *Accounting & Finance, 56*(1), 9-45. https://doi.org/10.1111/afci.12186
9. Bratten, B., Causholli, M., & Khan, U. (2016). Usefulness of fair values for predicting banks' future earnings: Evidence from other comprehensive income and its components. *Review of Accounting Studies, 21*(1), 280-315. https://doi.org/10.1007/s11142-015-9346-7
10. Cahan, S. F., Courtenay, S. M., Gronnewoller, P. L., & Upton, D. R. (2000). Value relevance of mandated comprehensive income disclosures. *Journal of Business Finance & Accounting, 27*(9-10), 1233-1265. https://doi.org/10.1111/1468-5957.00356
11. Campbell, J. L. (2015). The fair value of cash flow hedges, future profitability, and stock returns. *Contemporary Accounting Research, 32*(1), 243-279. https://doi.org/10.1111/1911-3846.12069
12. Cascino, S., Clatworthy, M., Osma, B. G., Gassen, J., Imam, S., & Jeanjean, T. (2013). The use of information by capital providers: Academic literature review. Edinburgh: The Institute of Chartered Accountants of Scotland and the European Financial Reporting Advisory Group (ICAS-EFRAG).
13. CFA Institute. (2015). Analyzing bank performance: role of comprehensive income. https://www.cfainstitute.org/-/media/documents/article/position-paper/analyzing-bank-performance-role-of-comprehensive-income.pdf
14. Chambers, D., Linsmeier, T. J., Shakespeare, C., & Sougiannis, T. (2007). An evaluation of SFAS No. 130 comprehensive income disclosures. *Review of Accounting Studies, 12*(4), 537-593. https://doi.org/10.1007/s11142-007-9043-2
15. Chasan, E. (2014, February 13). Accounting ‘dumping ground’ headed for clean up. *Wall Street Journal*. Retrieved from https://blogs.wsj.com/cfo/2014/02/13/accounting-dumping-ground-headed-for-clean-up
16. D’Achille, A. (2018). The value relevance of comprehensive income in the European banking sector. *International Review of Business Research Papers, 14*(1), 94-108. https://doi.org/10.21102/irbrp.2018.03.141.06
17. Dhaliwal, D., Subramanyam, K. R., & Trezevant, R. (1999). Is comprehensive income superior to net income as a measure of firm performance? *Journal of Accounting and Economics, 26*(1-3), 43-67. https://doi.org/10.1016/S0165-4101(98)00033-0
18. Easton, P. D., & Zmijewski, M. E. (1989). Cross-sectional variation in the stock market response to accounting earnings announcements. *Journal of Accounting and Economics, 11*(2-3), 117-141. https://doi.org/10.1016/0165-4101(89)90003-7
19. Elshamy, M., Alyousef, H. Y., & Al-Mudhaf, J. (2019). Is comprehensive income superior to net income in equity valuation? Evidence from the capital market of Kuwait. *Journal of Applied Business Research (JABR), 35*(4), 97-108. https://doi.org/10.15666/jabr/35/4.10304
20. Evans, M. E., Hodder, L., & Hopkins, P. E. (2014). The predictive ability of fair values for the future financial performance of commercial banks and the relation of predictive ability to banks’ share prices. *Contemporary Accounting Research, 31*(1), 13-44. https://doi.org/10.1111/1911-3846.12028
21. Financial Accounting Standards Board (FASB). (2010). *Conceptual Framework for Financial Reporting* (Statement of financial accounting concepts No. 8). Retrieved from https://www.fasb.org/resources/ccurl/515/412/Concepts%20Statement%20No%208.pdf
22. Goncharov, I., & Hodgson, A. (2011). Measuring and reporting income in Europe. *Journal of International Accounting Research, 10*(1), 27-59. https://doi.org/10.2308/jiar.2011.10.1.27
23. Hirst, D. E., & Hopkins, P. E. (1998). Comprehensive income reporting and analysts’ valuation judgments. *Journal of Accounting Research, 36*, 47-77. https://doi.org/10.2307/2491306
24. Hodder, L. D., Hopkins, P. E., & Wahlen, J. M. (2006). Risk-relevance of fair-value income measures for commercial banks. *The Accounting Review, 81*(2), 337-375. https://doi.org/10.2308/acrrev.2006.81.2.337
25. Incollingo, A., Lucchese, M., & Di Carlo, F. (2014). The (un) usefulness of comprehensive income in explaining future cash flows: Evidence from Italy. *Italian Journal of Accounting and Economia Aziendale-International Area, 78*(8), 9.
26. International Accounting Standards Board. (IASB). (2010). *The conceptual framework for financial reporting*. Retrieved from https://people.unica.it/gianluigiorobo/files/2015/09/Conceptual-Framework-IASB-2010-1.pdf
27. Jahmani, Y., Choi, H. Y., Park, Y., & Jiayun Wu, G. (2017). The value relevance of other comprehensive income and its components. *Revista Internacional Administracion & Finanzas, 9*(1), 1-11.
28. Jones, D. A., & Smith, K. J. (2011). Comparing the value relevance, predictive value, and persistence of other comprehensive income and special items. *The Accounting Review, 86*(2), 2047-2073. https://doi.org/10.2308/accr-10133
29. Kanagaretam, K., Mathieu, R., & Shehata, M. (2009). Usefulness of comprehensive income reporting in Canada. *Journal of Accounting and Public Policy, 28*(4), 349-365. https://doi.org/10.1016/j.jaccpubpol.2009.06.004
30. Khan, S., & Bradbury, M. E. (2014). Volatility and risk relevance of comprehensive income. *Journal of Contemporary Accounting & Economics, 10*(1), 76-85. https://doi.org/10.1016/j.jace.2014.01.001
31. Khan, S., & Bradbury, M. E. (2016). The volatility of comprehensive income and its association with market risk. *Accounting & Finance, 56*(3), 727-748. https://doi.org/10.1111/afci.12108
32. Kim, J. H. (2017). Value relevance of other comprehensive income after accounting standards update 2011-05. *Academy of Accounting and Financial Studies Journal, 21*(3), 1-13. Retrieved from https://www.abacademies.org/articles/value-relevance-of-other-comprehensive-income-after-accounting-standards-update-201105-6736.html
33. Lin, S., Martinez, D., Wang, C., & Yang, Y.-W. (2018). Is other comprehensive income reported in the income statement more value relevant? The role of financial statement presentation. *Journal of Accounting, Auditing & Finance, 33*(4), 624-646. https://doi.org/10.1017/148558X10670779
34. Maines, L. A., & McDaniel, L. S. (2000). Effects of comprehensive-income characteristics on nonprofessional investors’ judgments: The role of financial-statement presentation format. *The accounting review, 75*(2), 179-207. https://doi.org/10.2308/accr.2000.75.2.179
35. Mechelli, A., & Cimini, R. (2014). Is comprehensive income value relevant and does location matter? A European study. *Accounting in Europe, 11*(1), 59-87. https://doi.org/10.1080/17449480.2014.890777

36. O’Hanlon, J. F., & Pope, P. F. (1999). The value-relevance of UK dirty surplus accounting flows. *The British Accounting Review, 31*(4), 459-482. https://doi.org/10.1006/bare.1999.0116

37. Ryan, S. G. (2012). Risk reporting quality: Implications of academic research for financial reporting policy. *Accounting and Business Research, 42*(3), 295-324. https://doi.org/10.1080/00014788.2012.681855

38. Wang, X., Jiang, H., & Lu, M. (2019). Does the reporting location of other comprehensive income matter? The investor’s perspective. *Australian Accounting Review, 29*(3), 546-555. https://doi.org/10.1111/auar.12230

39. Xu, W., & Qi, M. (2017). Presentation pattern and the value relevance of comprehensive income –Evidence from China. *International Journal of Economics and Finance, 9*(6), 31-37. https://doi.org/10.5539/ijef.v9n6p31

40. Yousefinejad, M., Ahmad, A., & Embong, Z. (2017). Value relevance of other comprehensive income and its available-for-sale financial instruments (AFS) and revaluation surplus of property, plant and equipment (REV) components. *Asian Journal of Accounting and Governance, 8*, 133-143. Retrieved from http://journalsarticle.ukm.my/13301/1/19770-80928-1-PB.pdf