Anisotropic dependence of radiation from excitons in Ga$_2$O$_3$/MoS$_2$ heterostructure†

Zexiang Deng $^{a, b, \dagger}$

The anisotropic dependence of radiation arising from exciton recombination in the Ga$_2$O$_3$/MoS$_2$ heterostructure is investigated, using density functional theory and the Bethe-Salpeter equation. The wurtzite (WZ) and zinc blende (ZB) structures of the Ga$_2$O$_3$ monolayer with ferroelectric (FE) properties are assembled with a MoS$_2$ monolayer. Projected band structure, charge transfer and life time of excitons are discussed, to analyze which transition may be important to the creation of excitons from the electron–hole pair. A general formula of the angle-dependent intensities of radiation is derived. The characteristics of angle-dependent intensities that are closely related to the dipole moment of excitons are discussed, from the viewpoint of in-plane and out-of-plane polarizations. These predictions on radiation of the Ga$_2$O$_3$/MoS$_2$ heterostructure should guide exciton dynamics in low dimensional systems and rational design of optoelectronic devices.

1 Introduction

The applications of deep-ultraviolet photodetectors have made great progress in recent years. As one of the ultra-wide band gap (4.6–4.9 eV)7,8 materials, gallium oxide (Ga$_2$O$_3$) has very unique electronic and optical properties, which make it suitable to be the building blocks of solar-blind photodetectors$^{9-11}$ and power devices.7,8 According to different crystal structures, it can be classified as five different polymorphs (α, β, γ, δ, ε).$^{9-11}$

Among them, the stable β-Ga$_2$O$_3$ based semiconductor materials, are suitable for applications in next-generation power electronic and optoelectronic devices. It is reported that Schottky interfaces based on β-Ga$_2$O$_3$ can realize a large Schottky barrier height, which makes high-temperature operation possible.12 A vertical-type Schottky photodetector based on a (100)-oriented β-Ga$_2$O$_3$ substrate has been fabricated with simple processes of thermal annealing and vacuum evaporation.13 Optoelectronic analysis reveals that the heterojunction device is virtually blind to light illumination with wavelength longer than 280 nm, assembled by coating multilayer graphene on β-Ga$_2$O$_3$ wafer.14 Self-powered solar-blind photodetectors based on diamond/β-Ga$_2$O$_3$ heterojunctions have been fabricated successfully. These photodetectors can exhibit repeatability and stability without any external power supply.15 What’s more, a deep UV photodiode is fabricated using a heterojunction between β-Ga$_2$O$_3$ and GaN. The response time of the photodiode is in the order of sub-milliseconds.16

Besides the bulk β-Ga$_2$O$_3$, with the rapidly growing synthesis technology in recent years, as one of the building blocks of functional devices, the two-dimensional (2D) van der Waals materials have been regarded as a promising material for the breathtaking through of nanotechnology and its applications. β-Ga$_2$O$_3$ films are grown on SrTiO$_3$ (100) substrate by a high-vacuum MOCVD system.17 As the similar way in graphene, mechanical exfoliation of the bulk β-Ga$_2$O$_3$ by using an adhesive tape is followed by plasma etching to tune its thickness.18 Feng et al. report the successful fabrication of 2D Ga$_2$O$_3$ from the corresponding GaSe nanosheets and a solar blind photodetector based on 2D Ga$_2$O$_3$. The as-prepared 2D β-Ga$_2$O$_3$ is polycrystalline and has a thickness of less than 10 nm.19 As its unusual asymmetrical structure of 2D Ga$_2$O$_3$, by using selected surface orientations, improving the selectivity and sensitivity of gas sensors and release controlled by a ferroelectric switch become possible.$^{20-22}$ Meng et al. predict a stable hexagonal phase of 2D Ga$_2$O$_3$ and In$_2$O$_3$, by using a global searching method based on an evolutionary algorithm, combined with density functional theory (DFT) simulations.23

The devices based on van der Waals heterostructures widely broaden the applications of these 2D ferroelectric materials. E.g., high breakdown electric field in β-Ga$_2$O$_3$/graphene vertical barrister heterostructure,24 Ga$_2$O$_3$/GaN heterostructural ultraviolet photodetectors,25 deep-ultraviolet photodetection using single-crystalline β-Ga$_2$O$_3$/NiO heterojunctions,26 ultrahigh deep-UV sensitivity in graphene-gated β-Ga$_2$O$_3$ photo-transistors,7 and PdCoO$_2$/β-Ga$_2$O$_3$ Schottky diodes for high-temperature operation.12

Another emerging 2D semiconductors with a sizable direct bandgap and novel physical properties are monolayer group VI transition metal dichalcogenides (TMDs).$^{27-28}$ Both theoretically
and experimentally, light emitting devices based on TMDs have been demonstrated low threshold.29 2D \textit{WS}_2, \textit{WS}_2, and \textit{MoSe}_2 and \textit{MoS}_2 monolayers can be flexibly exfoliated onto the same SiO\textsubscript{2}/Si substrate,33 which makes it suitable to be the building blocks of heterostructures.

Based on \textit{In}_2\textit{Se}_3 and other \textit{III}_2–\textit{VI}_3 van der Waals materials, using first-principles calculations, Ding et al.34 discover a branch of the 2D materials family, which exhibits room-temperature ferroelectricity (FE) with reversible spontaneous electric polarization in both out-of-plane and in-plane orientations.35 In addition, a novel 2D \textit{Ga}_2\textit{O}_3 monolayer is constructed and systematically investigated by first-principles calculations. The 2D \textit{Ga}_2\textit{O}_3 monolayer has an asymmetric configuration with a quintuple-layer (QL) atomic structure, the same as the well-studied \textit{z-In}_2\textit{Se}_3,32 and is expected to be experimentally synthesized.36 What’s more, the mismatch of crystal lattice between \textit{Ga}_2\textit{O}_3 and \textit{MoS}_2 monolayer is less than 3\% 37,38,39

In material engineering, one of the difficult task is combining the best of different ingredients into one ultimate device. Thereby, in this study, we propose a model of \textit{Ga}_2\textit{O}_3/\textit{MoS}_2 heterostructure, using DFT and Bethe–Salpeter equation.36–38 The wurtzite (WZ) and zinc blende (ZB) structures of \textit{Ga}_2\textit{O}_3 monolayer with ferroelectric (FE) properties are assembled with \textit{MoS}_2 monolayer. The projected band structure and charge transfer are discussed, and explain the life time of radiation from exciton recombination. The angle-dependent intensities of radiation are derived, which is general and can be applied to other similar systems. Finally, the characteristics of angle-dependent intensities including in-plane and out-of-plane polarization, are presented, which can be measured in future experiments.

2 Methods

According to the Fermi’s golden rule, the transition from excited state \(|S\rangle \) to ground state \(|G\rangle \), arising from the electron–photon interaction \(H^{\text{int}} \) can be written as,

\[
\gamma = \frac{2\pi}{\hbar} |\langle G|H_{\text{int}}|S\rangle|^2 \delta(E_S - h\omega_k)
\]

(1)

where \(\gamma \) represents the rate of emission of a photon with angular frequency \(\omega_k \), and \(E_S \) is the exciton energy. The Hamiltonian describing the electron–photon interaction can be expressed as,39

\[
H_{\text{int}} = -\frac{e}{m} \int dr \psi^\dagger(r) A(r) \cdot \mathbf{p} \psi(r)
\]

(2)

where \(\mathbf{p} \) is the electron momentum operator and the vector-potential operator \(A(r) \) is,40

\[
A(r) = \sum_k \sum_{l=1,2} \frac{\hbar}{2\epsilon_0 V_0 \omega_k} \hat{a}^\dagger_{kl} e^{-ik \cdot r} + \text{h.c.}
\]

(3)

where \(\hat{a}^\dagger_{kl} \) and \(\hat{a}_{kl} \) denote the creation and annihilation operators for a photon of with momentum \(\mathbf{k} \) and vibrating direction \(\mathbf{e}_l \).

With the relation between operators \(\mathbf{r} \) and \(\mathbf{p} = -i\hbar[\mathbf{H}, \mathbf{r}] \), inserting eqn (3) into (2), the rate in eqn (1) can be written as,

\[
\gamma = \frac{E_S^2 e^2}{8\pi^2\hbar^5} \int d\Omega |\epsilon_{kl} \cdot \langle G|r|S\rangle|^2
\]

(4)

In general, the unit vector of light propagating direction can be set as \(\mathbf{e}_l = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) \). As the intensity of emitting light with a given angle is proportional to the rate of radiation, eqn (5) can provide angle-dependent polar plots of the photoluminescence (PL) spectroscopy in experiments. Furthermore, the contributions of intensity can be measured experimentally in-plane (IP) and out-of-plane (OP) directions, respectively, as shown in eqn (6). The rate \(\gamma \) of radiation can be expressed as,

\[
\gamma = \gamma_0 \int d\Omega \; Y(\theta, \phi), \quad \gamma_0 = \frac{E_S^2 e^2 \mu^2}{8\pi^2\hbar^5\epsilon_0^2}.
\]

(5)

Here, \(\int d\Omega = \int \sin \theta d\theta d\phi \) is the integral over solid angle. \(\gamma_0 \) is the rate constant independent of radiation angles, with \(\mu = \langle G|r|S\rangle \). And the angle-dependent function \(Y(\theta, \phi) \) is denoted as,

\[
Y(\theta, \phi) = \sum_{l} |\epsilon_{kl} \cdot \epsilon_{\mu l}|^2 = Y_{\text{IP}}(\theta, \phi) + Y_{\text{OP}}(\theta, \phi),
\]

(6)

with the unit vector of in-plane polarization \(\epsilon_{\mu l} = (\sin \phi_l - \cos \phi_l, 0) \) and the unit vector of out-of-plane polarization \(\epsilon_{\mu l} = (\cos \phi_l \cos \theta, \cos \phi_l \sin \theta, -\sin \phi_l) \).

Finally, the difficulty is to evaluate \(|\langle G|r|S\rangle| \), which is closely related to the dipole moment of exciton. Based on the expansion coefficient \(A^S_{\text{m}_n\kappa} \) by solving the Bethe–Salpeter equation (BSE), implemented in the BerkeleyGW codes,36–38 the wave function of an exciton is expressed as a linear combinations of electron–hole transitions,

\[
|S\rangle = \sum_{\text{m}_n\kappa} A^S_{\text{m}_n\kappa} \hat{c}_{\text{m}_n\kappa} \hat{c}_{\text{m}_n\kappa}^\dagger |0\rangle
\]

(7)

where \(\hat{c}_{\text{m}_n\kappa}^\dagger \) and \(\hat{c}_{\text{m}_n\kappa} \) denote the creation and annihilation operators for an electron in the \(n \)-th electronic state with momentum \(\mathbf{k} \). The indices \(m \) and \(n \) run over all the conduction and valence bands, respectively. Overall, with the exciton wave function, the dipole moment of exciton can be obtained. The detail derivatives of the above equations can be found in the ESL.\textsuperscript{\dagger}

3 Results and discussions

In this study, two kinds of \textit{Ga}_2\textit{O}_3 monolayers with ferroelectric (FE-WZ and FE-BZ) phases are included. As shown in Fig. 1b and c, these two structures with five-atomic-layers QL stacking, are demonstrated stable in \textit{In}_2\textit{Se}_3.32 In addition, it is necessary to considering the conventional ‘lattice mismatch’ issue, when constructing vertical heterostructures using different 2D materials. The optimized lattice parameters of FE-ZB \textit{Ga}_2\textit{O}_3 are \(a = 3.08 \) Å with GGA-PBE.43 For the bulk \textit{MoS}_2, the lattice parameter is \(a = 3.16 \) Å,44,45 which means that the mismatch rate of \textit{MoS}_2 and \textit{Ga}_2\textit{O}_3 monolayers should be less than 3\%. The energy-distance (between \textit{MoS}_2 and \textit{Ga}_2\textit{O}_3 monolayer) curve is also plotted in Fig. 1a. In our calculations, the distance for the
relaxed FE-ZB/MoS2 (Fig. 1d) and FE-WZ/MoS2 (Fig. 1e) heterostructures are 3.58 Å and 3.51 Å, respectively.

3.1 Electronic structures and crystal stability

Before the investigations of excited states, it is necessary to understand the electronic structures from the viewpoint of DFT. To better study the electronic structure of Ga2O3/MoS2 heterostructures, the atom-projected band structures and partial density of states (PDOS) for both FE-ZB/MoS2 and FE-WZ/MoS2 heterostructures are exhibited in Fig. 2. As reported in previous literature, both FE-ZB and FE-WZ Ga2O3 monolayers have indirect band gaps. For the FE-ZB/MoS2 heterostructure, it is still an indirect-band-gap semiconductor, the minimum of conduction band (CBM) locates at G point, while the maximum of valence band (VBM) locates at K point. In the FE-WZ/MoS2 heterostructure, both CBM and VBM locate at K point, which make it a direct-band-gap semiconductor with smaller gaps. We notice that, in the Ga2O3/MoS2 heterostructure, the predominant contribution of the conduction band comes from Mo atoms of MoS2, while for the valence band, the oxygen atoms of Ga2O3 make the main contribution. This point can also be verified by the corresponding PDOS in the right panel of Fig. 2. This means that, in this Ga2O3/MoS2 heterostructures, it seems that, the electron should lie in the conduction band of MoS2, while the hole should come from the valence band in Ga2O3. To verify the stability of the heterostructure, the phonon band structures are presented in Fig. 3. We notice that there are totally 24 phonon branches, as there are 8 atoms in the unit cell. In the plot of phonon band, the absence of imaginary phonon modes indicates that, the crystal structure of the heterostructure of FE-ZB/MoS2 and FE-WZ/MoS2 heterostructures could be dynamically stable.

3.2 Charge transfer and life time

As is known to all, the formation of exciton is closely related to the electron–hole pairs, which can be reflected by the distribution of charge density in the heterostructure and its interface. The charge density difference $\Delta \rho$ is defined as:

$$\Delta \rho = \rho_{\text{all}} - \rho_{\text{Ga}_2\text{O}_3} - \rho_{\text{MoS}_2}$$

Fig. 1 (a) Energy-distance (between MoS2 and Ga2O3 monolayer) curve for FE-ZB/MoS2 and FE-WZ/MoS2 heterostructure, marked with red and blue point line, respectively. Top and side view crystal structure of FE-ZB (b) and FE-WZ (c) Ga2O3 monolayer. Side view of FE-ZB/MoS2 (d) and FE-WZ/MoS2 (e) heterostructure. The red, green, violet and yellow balls denote O, Ga, Mo and S atoms, respectively.

Fig. 2 Band structure and PDOS of (a) FE-ZB/MoS2 and (b) FE-WZ/MoS2 heterostructures. The maximum of valence band (VBM) is set at zero. Atom-projected band structures and PDOS are highlighted with red, green, violet and yellow colors for O, Ga, Mo and S elements, respectively.

Fig. 3 Phonon band structure of (a) FE-ZB/MoS2 and (b) FE-WZ/MoS2 heterostructures.
where ρ_{all} represents the charge density of the G2O3/MoS2 heterostructure, while ρ_{Ga2O3} and ρ_{MoS2} denote the charge density of G2O3 and MoS2 monolayers, respectively. From the side view of charge density difference in Fig. 4, the charge transfer mainly happens in MoS2 monolayer. The charge moves from the outside part of MoS2, and accumulates in the interface, near the inside part of MoS2. Compared with MoS2, the charge density difference of G2O3 monolayer changes very little, and mainly happens on the lowest oxygen layer, close to the interface.

As a supplement to the charge density difference, the exciton wave functions are provided. Taking the Tamm–Dancoff approximation by considering only valence to conduction band transitions, the wave function in real space can be expressed as:

$$\psi(r_e, r_h) = \sum_{i,k} A_{i \rightarrow k} \psi_i^*(r_h) \psi_k(r_e).$$

Here, r_e and r_h denote the position of electron and hole in an electron–hole pair. As shown in Fig. 5, the wave function of exciton mainly locates on the Ga2O3 monolayer, in both the lowest-energy S_1 and second-lowest S_2 exciton states. This point is demonstrated by the charge density difference $\Delta \rho$, which happens mostly in the same monolayer of the heterostructure, rather than interlayer. Compared with the flat and spreading status of S_1, the wave function of S_2 appears much more localized, with two accumulation center in the supercell of 10×10.

The radiative life time ($1/\gamma$) of the lowest S_1 and second S_2 lowest-energy excited states for FE-ZB/MoS2 and FE-WZ/MoS2 heterostructures are summarized in Table 1. The radiation of exciton is closely related to the lower-energy bright states. In our Ga2O3/MoS2 heterostructure, the S_1 is nondegenerate, while S_2 and S_3 are doubly degenerate. As comparison, the lowest-energy exciton states (S_1 and S_3) of Ga2O3 monolayer are doubly degenerate (for FE-ZB Ga2O3 monolayer $E_{S_1} = E_{S_3} = 3.15$ eV, for FE-WZ Ga2O3 monolayer $E_{S_1} = E_{S_3} = 3.38$ eV), which is related to the two equivalent K and K' points in the reciprocal lattice. Compared with the large exciton energy (more than 3.0 eV) in Ga2O3 monolayer, the energy of S_1 in the heterostructure is about 1.2–1.3 eV. And as the doubly degenerate property and larger exciton energy, the life time of S_2 (∼90 ns) is much shorter than that of S_1 (∼500 ns) in both FE-ZB/MoS2 and FE-WZ/MoS2 heterostructures. In spite that our calculation can not give exact quantitative results, it still can provide qualitative guidance in future experiments.

3.3 Angle dependence of radiation

To further understand the anisotropic radiation of exciton, the angle-dependent intensity is investigated, the results of which can be compared with that in experiments. In a polar coordinate system, the propagating direction of light with k vector can be written as, $e_k = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$, with polar angle θ.

![Fig. 4](image1.png) Side view of calculated charge density difference of (a) FE-ZB/MoS2 and (b) FE-WZ/MoS2 heterostructures. The yellow and cyan colors represent charge accumulation and loss, respectively.

![Fig. 5](image2.png) Top and side view of calculated exciton wave functions of FE-ZB/MoS2 heterostructures for the lowest-energy S_1 (a) and second-lowest S_2 (b) exciton states. The position of hole is fixed in the center of MoS2 monolayer of the heterostructure. The wave function is visualized in a supercell of 10×10.

System	E_i (eV)	Lifetime (ns)
FE-ZB/MoS2	S_1 (1.27)	554
	S_2 (2.00)	93
FE-WZ/MoS2	S_1 (1.23)	519
	S_2 (1.95)	90
and azimuth angle ϕ. As shown in Fig. 1, the x and y axes are on the plane of MoS$_2$ and G$_2$O$_3$ monolayers. The polarization direction e_{kl} of the light can be expressed as the in-plane (IP) and out-of-plane (OP) unit vectors, with $e_{IP} = (\sin \phi, -\cos \phi, 0)$, and $e_{OP} = (\cos \theta \cos \phi, \cos \theta \sin \phi, -\sin \theta)$. In general, the contribution from IP and OP polarizations can be written as:

$$
\gamma_{IP}(\theta, \phi) = \gamma_0 \left| \frac{\mu_x}{\mu} \sin \phi - \frac{\mu_y}{\mu} \cos \phi \right|^2,
$$

(10)

$$
\gamma_{OP}(\theta, \phi) = \gamma_0 \left| \frac{\mu_x}{\mu} \cos \theta \cos \phi + \frac{\mu_y}{\mu} \cos \theta \sin \phi - \frac{\mu_z}{\mu} \sin \theta \right|^2.
$$

(11)

Fig. 6 shows the polar plots of the angle-dependent intensities for radiation of the lowest-energy exciton, with specific polar angle ($\theta = 0^\circ, 45^\circ, 135^\circ$ for FE-ZB/MoS$_2$ and FE-WZ/MoS$_2$ heterostructures, respectively). The maximum scale range of the intensities in the polar plots is 2×10^{-3} ns$^{-1}$. The life time of doubly degenerate $S_2 (\sim 90$ ns) is much shorter than that of $S_1 (\sim 500$ ns) in both FE-ZB/MoS$_2$ and FE-WZ/MoS$_2$ heterostructures. The charge transfer and wave function of exciton reveal that, the charge density distribution happens mainly in the same monolayer of the heterostructure. The life time of doubly degenerate $S_2 (\sim 90$ ns) is much shorter than that of $S_1 (\sim 500$ ns) in both FE-ZB/MoS$_2$ and FE-WZ/MoS$_2$ heterostructures. The charge transfer and wave function of exciton reveal that, the charge density distribution happens mainly in the same monolayer of the heterostructure. The life time of doubly degenerate $S_2 (\sim 90$ ns) is much shorter than that of $S_1 (\sim 500$ ns) in both FE-ZB/MoS$_2$ and FE-WZ/MoS$_2$ heterostructures. The charge transfer and wave function of exciton reveal that, the charge density distribution happens mainly in the same monolayer of the heterostructure. The life time of doubly degenerate $S_2 (\sim 90$ ns) is much shorter than that of $S_1 (\sim 500$ ns) in both FE-ZB/MoS$_2$ and FE-WZ/MoS$_2$ heterostructures. The charge transfer and wave function of exciton reveal that, the charge density distribution happens mainly in the same monolayer of the heterostructure. The life time of doubly degenerate $S_2 (\sim 90$ ns) is much shorter than that of $S_1 (\sim 500$ ns) in both FE-ZB/MoS$_2$ and FE-WZ/MoS$_2$ heterostructures. The charge transfer and wave function of exciton reveal that, the charge density distribution happens mainly in the same monolayer of the heterostructure. The life time of doubly degenerate $S_2 (\sim 90$ ns) is much shorter than that of $S_1 (\sim 500$ ns) in both FE-ZB/MoS$_2$ and FE-WZ/MoS$_2$ heterostructures. The charge transfer and wave function of exciton reveal that, the charge density distribution happens mainly in the same monolayer of the heterostructure. The life time of doubly degenerate $S_2 (\sim 90$ ns) is much shorter than that of $S_1 (\sim 500$ ns) in both FE-ZB/MoS$_2$ and FE-WZ/MoS$_2$ heterostructures.

4 Conclusions

We have investigated the anisotropic dependence of radiation arising from exciton recombination in Ga$_2$O$_3$/MoS$_2$ heterostructure, using density functional theory and Bethe–Salpeter equation. The FE-ZB and FE-WZ structures of Ga$_2$O$_3$ monolayer with ferroelectric properties are assembled with MoS$_2$ monolayer. From the projected band structure, we find that the predominant contribution of the conduction band comes from Mo atoms of MoS$_2$, while for the valence band, the oxygen atoms of Ga$_2$O$_3$ make the main contribution. The charge transfer and wave function of exciton reveal that, the charge density distribution happens mainly in the same monolayer of the heterostructure. The life time of doubly degenerate $S_2 (\sim 90$ ns) is much shorter than that of $S_1 (\sim 500$ ns) in both FE-ZB/MoS$_2$ and FE-WZ/MoS$_2$ heterostructures. The charge transfer and wave function of exciton reveal that, the charge density distribution happens mainly in the same monolayer of the heterostructure. The life time of doubly degenerate $S_2 (\sim 90$ ns) is much shorter than that of $S_1 (\sim 500$ ns) in both FE-ZB/MoS$_2$ and FE-WZ/MoS$_2$ heterostructures. The charge transfer and wave function of exciton reveal that, the charge density distribution happens mainly in the same monolayer of the heterostructure. The life time of doubly degenerate $S_2 (\sim 90$ ns) is much shorter than that of $S_1 (\sim 500$ ns) in both FE-ZB/MoS$_2$ and FE-WZ/MoS$_2$ heterostructures. The charge transfer and wave function of exciton reveal that, the charge density distribution happens mainly in the same monolayer of the heterostructure. The life time of doubly degenerate $S_2 (\sim 90$ ns) is much shorter than that of $S_1 (\sim 500$ ns) in both FE-ZB/MoS$_2$ and FE-WZ/MoS$_2$ heterostructures. The charge transfer and wave function of exciton reveal that, the charge density distribution happens mainly in the same monolayer of the heterostructure.

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

This work was supported by the Guangxi Natural Science Foundation (Grant No. 2021GXNSFAA220129), the Project of Improving the Basic Scientific Research Ability of Young and Middle-aged Teachers in Universities of Guangxi (Grant No. 2022KY0784), the Foundation of Guilin University of Aerospace
Technology (Grant No. 2021BJXM019), the High-Performance Servers of Guilin University of Aerospace Technology.

Notes and references

1 S. Stepanov, V. Nikolaev, V. Bougrov and A. Romanov, Rev. Adv. Mater. Sci., 2016, 44, 63–86.
2 K. A. Mengle, G. Shi, D. Bayerl and E. Kioupakis, Appl. Phys. Lett., 2016, 109, 212104.
3 S. Kim, S. Oh and J. Kim, ACS Photonics, 2019, 6, 1026–1032.
4 S. Pearton, J. Yang, P. H. Cary IV, F. Ren, J. Kim, M. J. Tadjer and M. A. Mastro, Appl. Phys. Rev., 2018, 5, 011301.
5 H. Chen, K. Liu, L. Hu, A. A. Al-Ghamdi and X. Fang, Mater. Today, 2015, 18, 493–502.
6 L. Sang, M. Liao and M. Sumiya, Sensors, 2013, 13, 10482–10518.
7 K. Arora, N. Goel, M. Kumar and M. Kumar, ACS Photonics, 2018, 5, 2391–2401.
8 W. Guo, Y. Guo, H. Dong and X. Zhou, Phys. Chem. Chem. Phys., 2015, 17, 5817–5825.
9 D. Kaur and M. Kumar, Adv. Opt. Mater., 2021, 9, 2002160.
10 J. Zhang, J. Shi, D.-C. Qi, L. Chen and K. H. Zhang, Appl. Mater. Interfaces, 2020, 8, 020906.
11 T. Gake, Y. Kumagai and F. Oba, Phys. Rev. Mater., 2019, 3, 044603.
12 T. Harada, S. Ito and A. Tsukazaki, Sci. Adv., 2019, 5, eaaax5733.
13 T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira and S. Fujita, Appl. Phys. Express, 2008, 1, 011202.
14 W.-Y. Kong, G.-A. Wu, K.-Y. Wang, T.-F. Zhang, Y.-F. Zou, D.-D. Wang and L.-B. Luo, Adv. Mater., 2016, 28, 10725–10731.
15 Y.-C. Chen, Y.-J. Lu, C.-N. Lin, Y.-Z. Tian, C.-J. Gao, L. Dong and C.-X. Shan, J. Mater. Chem. C, 2018, 6, 5727–5732.
16 S. Nakagomi, T.-a. Sato, Y. Takahashi and Y. Kokubun, Sens. Actuators, A, 2015, 232, 208–213.
17 D. Wang, X. Ma, H. Xiao, R. Chen, Y. Le, C. Luan, B. Zhang and J. Ma, Mater. Res. Bull., 2021, 111718.
18 Y. Kwon, G. Lee, S. Oh, J. Kim, S. J. Pearton and F. Ren, Appl. Phys. Lett., 2017, 110, 131901.
19 W. Feng, X. Wang, J. Zhang, L. Wang, W. Zheng, P. Hu, W. Cao and B. Yang, J. Mater. Chem. C, 2014, 2, 3254–3259.
20 J. Zhao, X. Huang, Y. Yin, Y. Liao, H. Mo, Q. Qian, Y. Guo, X. Chen, Z. Zhang and M. Hua, J. Phys. Chem. Lett., 2021, 12, 5813–5820.
21 C. Jin, X. Tang, X. Tan, S. C. Smith, Y. Dai and L. Kou, J. Mater. Chem. A, 2019, 7, 1099–1106.
22 X. Tang, J. Shang, Y. Gu, A. Du and L. Kou, J. Mater. Chem. A, 2020, 8, 7331–7338.
23 R. Meng, M. Houssa, K. Iordanidou, G. Pourtois, V. Afanasiev and A. Stesmans, J. Appl. Phys., 2020, 128, 034304.
24 X. Yan, I. S. Esqueda, J. Ma, J. Tice and H. Wang, Appl. Phys. Lett., 2018, 112, 032101.
25 R. Tang, G. Li, Y. Jiang, N. Gao, J. Li, C. Li, K. Huang, J. Kang, T. Wang and R. Zhang, ACS Appl. Electron. Mater., 2021, 4, 188–196.
26 K.-H. Li, N. Alfaraj, C. H. Kang, L. Braic, M. N. Hedhili, Z. Guo, T. K. Ng and B. S. Ooi, ACS Appl. Mater. Interfaces, 2019, 11, 35095–35104.
27 K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Phys. Rev. Lett., 2010, 105, 136805.
28 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, Nat. Nanotechnol., 2012, 7, 699–712.
29 X. Meng, R. R. Grote, W. Jin, J. I. Dadap, N. C. Panoiu and R. M. Osgood, Opt. Lett., 2016, 41, 2636–2639.
30 K. Novoselov, o. A. Mishchenko, o. A. Carvalho and A. Castro Neto, Science, 2016, 353, aac9439.
31 J. Jadczyk, J. Kutrowska-Giryczka, P. Kapuściński, Y. Huang, A. Wojs and z. Bryja, Nanotechnology, 2017, 28, 395702.
32 W. Ding, J. Zhu, Z. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang and W. Zhu, Nat. Commun., 2017, 8, 1–8.
33 Y. Liao, Z. Zhang, Z. Gao, Q. Qian and M. Hua, ACS Appl. Mater. Interfaces, 2020, 12, 30659–30669.
34 J. Yu, C. Xia, Z. Hu, X. Hao, L. Wang, Q. Fang, et al., Phys. Chem. Chem. Phys., 2022, 24, 3289–3295.
35 C. Adessi, S. Pecorario, S. Thebaud and G. Bouzerar, Phys. Chem. Chem. Phys., 2020, 22, 15048–15057.
36 M. S. Hybertsen and S. G. Louie, Phys. Rev. B: Condens. Matter Mater. Phys., 1986, 34, 5390.
37 M. Rohlfling and S. G. Louie, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, 62, 4927.
38 J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen and S. G. Louie, Comput. Phys. Commun., 2012, 183, 1269–1289.
39 F. Wu, D. Roccia and Y. Ping, J. Mater. Chem. C, 2019, 7, 12891–12897.
40 R. Loudon, The Quantum Theory of Light, Oxford University Press, 2000.
41 S. Balendhran, S. Walia, H. Nili, J. Z. Ou, S. Zhuiykov, R. B. Kaner, S. Sriram, M. Bhaskaran and K. Kalantar-zadeh, Adv. Funct. Mater., 2013, 23, 3952–3970.
42 S. Sugai and T. Ueda, Phys. Rev. B: Condens. Matter Mater. Phys., 1982, 26, 6554.