Locating Dominating Sets in local tournaments

Thomas Bellitto, Caroline Brosse, Benjamin Lévêque, Aline Parreau

September 8, 2021

Abstract

A dominating set in a directed graph is a set of vertices S such that all the vertices that do not belong to S have an in-neighbour in S. A locating set S is a set of vertices such that all the vertices that do not belong to S are characterized uniquely by the in-neighbours they have in S, i.e. for every two vertices u and v that are not in S, there exists a vertex $s \in S$ that dominates exactly one of them. The size of a smallest set of a directed graph D which is both locating and dominating is denoted by $\gamma^{LD}(D)$. Foucaud, Heydarshahi and Parreau proved that any twin-free digraph D satisfies $\gamma^{LD}(D) \leq \frac{n}{5} + 1$ but conjectured that this bound can be lowered to $\frac{n}{2}$. The conjecture is still open. They also proved that if D is a tournament, i.e. a directed graph where there is one arc between every pair of vertices, then $\gamma^{LD}(D) \leq \lceil \frac{n}{2} \rceil$.

The main result of this paper is the generalization of this bound to connected local tournaments, i.e. connected digraphs where the in- and out-neighbourhoods of every vertex induce a tournament. We also prove $\gamma^{LD}(D) \leq \frac{n}{2}$ for all quasi-twin-free digraphs D that admit a supervising vertex (a vertex from which any vertex is reachable). This class of digraphs generalizes twin-free acyclic graphs, the most general class for which this bound was known.

1 Introduction

In this paper we consider loopless and finite digraphs. Our terminology is consistent with [2]. Especially, we refer the reader to this book for further information about the classes of digraphs we consider. The order of a digraph is its number of vertices. A digraph D is simple if there is at most one arc between two
vertices x and y. A digraph D is called connected, if for every vertices x and y of D there exists a (non necessarily directed) path from x to y. A digraph D is called strongly connected (or strong for short), if for every vertices x and y of D, there exists a directed path from x to y and a directed path from y to x.

Let x, y be distinct vertices of a digraph D. If there is an arc from x to y, we say that x dominates y and denote it by $x \rightarrow y$. We say that y is an out-neighbor of x, and that x is an in-neighbor of y. The open in-neighborhood and the open out-neighborhood of a vertex v, denoted by $N^-(v)$ and $N^+(v)$ respectively, are the set of in-neighbors of v and the set of out-neighbors of v, respectively. A source is a vertex with no in-neighbors, and a sink is a vertex with no out-neighbors. We use the notations $d^-(v) = |N^-(v)|$ and $d^+(v) = |N^+(v)|$ to denote the in-degree and the out-degree of v. Further, the closed in-neighborhood of v is $N^-[v] = N^-(v) \cup \{v\}$ and the closed out-neighborhood of v is $N^+[v] = N^+(v) \cup \{v\}$. Two vertices are called twins if $N^-(x) = N^-(y)$ or if $N^-[x] = N^-[y]$, and quasi twins if $N^-(x) = N^-[y]$ or $N^-(y) = N^-[x]$.

A digraph is twin-free (resp. quasi-twin-free) if it contains no twins (resp. no twins nor quasi-twins). A dominating set S of a digraph D is a set of vertices such that any vertex not in S is dominated by a vertex in S. The smallest size of a dominating set of D is called its domination number, and is denoted by $\gamma(D)$. A locating set S of D is a subset of vertices such that for every pair of vertices x and y not in S, there exists a vertex s in S that dominates exactly one vertex among x and y. The smallest size of a locating set of D is denoted by $\gamma^L(D)$. A locating-dominating set of D is a set of vertices that is both locating and dominating. The minimum size of a locating-dominating set of D is called the location-dominating number, denoted by $\gamma^{LD}(D)$. Note that at most one vertex of D is not dominated by a locating set of D, ensuring that:

$$\gamma^L(D) \leq \gamma^{LD}(D) \leq \gamma^L(D) + 1$$

Locating-dominating sets in digraphs have been introduced in [3] [7] and further studied in [5] where some upper bounds on the location-dominination number of digraphs have been proved. If D contains at least one edge, then for any vertex x that is not isolated, the set $V(D) \setminus \{x\}$ is locating-dominating and thus, if D has order n, then $\gamma^{LD}(D) \leq n - 1$. This bound is tight and a complete characterization of the digraphs reaching it is given in [5]. However, all these digraphs contain many pairs of twins. The authors of [5] showed that any twin-free digraph D of order n satisfies $\gamma^{LD}(D) \leq \frac{4n}{3} + 1$. Note that similar questions were first considered in the non-oriented case for which it is conjectured that any twin-free graph has a locating-dominating set of size $\frac{n}{2}$ [1] [8].

The authors of [5] lowered the general upper bound $\frac{4n}{3} + 1$ for special cases. A digraph D is a tournament if there is exactly one arc between every pair of distinct vertices of D. In particular, it is proven in [5] that for a tournament D, the upper bound on the location-dominination number can be lowered to $\gamma^{LD}(D) \leq \lceil \frac{2n}{3} \rceil$. We extend this last result to a larger class of digraphs. A digraph D is a local tournament if it is simple and if the in-neighborhood and
the out-neighbourhood of every vertex of D induce tournaments. The main result of the current paper is the following theorem.

Theorem 1. A connected local tournament D of order n satisfies $\gamma^{LD}(D) \leq \lceil \frac{n}{2} \rceil$.

Note that an edgeless graph of order n is a local tournament for which $\gamma^{LD}(D) = n - 1$. So if one removes the ”connected” hypothesis in Theorem 1 then the conclusion does not hold.

In [5], the authors asked if the general upper bound $\frac{4n}{3} + 1$ for twin-free graphs can be lowered to $\frac{2n}{3}$, for which some tight constructions are known (see Figure 1 for the tight strongly connected example given in [5]). They proved that it is the case for quasi-twin-free acyclic digraphs. We extend these results by proving that if a quasi-twin-free digraph D contains a supervising vertex, that is a vertex from which there exists a directed path to all the other vertices of the graph, then $\gamma^{LD}(D) \leq \frac{2n}{3}$. In particular, this bound is true (and asymptotically tight) for quasi-twin-free strongly connected digraphs and quasi-twin-free local-in semi-complete digraphs (i.e. digraphs, not necessarily simple, where two in-neighbours of a common vertex are connected).

![Figure 1: A strongly connected twin-free and quasi-twin-free digraph of order n with location-domination number $\frac{2(n-2)}{3}$, with a locating-dominating set in gray.](image)

After giving some preliminary results on local tournaments in Section 2 we prove Theorem 1 in two steps in Sections 3 and 4. In Section 5 we prove the general upper bound for digraphs that contain a supervising vertex.
2 Preliminaries

In order to prove the upper bound on the location-domination number of local tournaments, we start by exposing some useful properties of local tournaments.

Lemma 2. A connected local tournament is twin-free.

Proof. Consider a connected local tournament D and suppose by contradiction that there exist two distinct vertices x, y of D such that x, y are twins.

Suppose first that x, y have some in-neighbours, then they have a common in-neighbour z. Since x, y are both in the out-neighbourhood of z, there is an arc between them, a contradiction.

Suppose now that x, y have no in-neighbours. Since D is connected, we can consider a shortest (non necessarily directed) path $P = v_1, \ldots, v_k$ between x, y, such that $v_1 = x$ and $v_k = y$. Note that $k \geq 3$. By assumption, we have $v_1 \rightarrow v_2$ and $v_k \rightarrow v_{k-1}$. Thus there exists $1 \leq i < k$ such that $v_{i-1} \rightarrow v_i$ and $v_{i+1} \rightarrow v_i$. So v_{i-1} and v_{i+1} are both in the in-neighbourhood of v_i and thus there is an arc between them, contradicting the fact that P is a shortest path.

The structure of local tournaments has been studied in [1]. In particular, the authors introduce the round decomposition, which will be crucial in our proofs. Therefore, let us have a closer look at the construction of such a decomposition.

We call a digraph D on r vertices round if its vertices can be labelled v_1, \ldots, v_r in such a way that $N^-(v_i) = \{v_{i-d-(v_i)}, \ldots, v_{i-1}\}$ and $N^+(v_i) = \{v_{i+1}, \ldots, v_{i+d+(v_i)}\}$ (indices are understood modulo r). One can easily check that a simple round digraph is a local tournament.

Let R be a digraph on r vertices and L_1, \ldots, L_r be a collection of r digraphs. Then $R[L_1, \ldots, L_r]$ is the digraph obtained from R by replacing each vertex v_i of R with L_i, and adding an arc from every vertex of L_i to every vertex of L_j if and only if $v_i \rightarrow v_j$ is an arc of R. A local tournament D is said to be roundable if it can be written as $R[T_1, \ldots, T_r]$ where R is a round simple digraph on $r \geq 2$ vertices, and T_1, \ldots, T_r are (non empty) strong tournaments. The decomposition $R[T_1, \ldots, T_r]$ is called a round decomposition of D.

Given a round decomposition $R[T_1, \ldots, T_r]$ of a roundable local tournament D, if there is an arc between a vertex in T_i and a vertex in T_j, then all the arcs between T_i and T_j are present in D, and we write $T_i \Rightarrow T_j$. If $T_i \Rightarrow T_j$ and $i < j$, then for all $k \in \{i+1, \ldots, j-1\}$, we have $T_i \Rightarrow T_k$ and $T_k \Rightarrow T_j$. If $T_i \Rightarrow T_j$ and $j < i$, then for all $k \in \{1, \ldots, j-1\} \cup \{i+1, \ldots, s\}$, we have $T_i \Rightarrow T_k$ and $T_k \Rightarrow T_j$.

Suppose that D is a roundable connected local tournament that is not strongly connected. Then, as proved in [1], there is a unique round decomposition $R[T_1, \ldots, T_r]$ of D such that $T_i \Rightarrow T_j$ only happens if $i < j$. We often consider this particular round decomposition in this case, that we call the canonical round decomposition of D. When D is a roundable strong local tournament, there is a unique round decomposition up to cyclic permutation.
3 Roundable local tournaments

This section is devoted to the study of roundable connected local tournaments. Consider a roundable connected local tournament D and a round decomposition $R[T_1, \ldots, T_r]$ of D that is canonical if D is not strong.

Lemma 3. For $1 \leq i < r$, we have $T_i \Rightarrow T_{i+1}$.

Proof. Suppose by contradiction that there exists $1 \leq i < r$ such that we don’t have $T_i \Rightarrow T_{i+1}$. Then there is no arc $v_i \to v_{i+1}$ in R and so by definition of round, we have $d^+(v_i) = 0$. For $1 \leq k \leq i < \ell \leq r$, there is no arc $v_k \to v_{\ell}$ as such an arc implies an arc $v_i \to v_{\ell}$. Since v_i is a sink, the digraph D is not strong and the decomposition is canonical. So there is no edge between $V(T_1) \cup \cdots \cup V(T_i)$ and $V(T_{i+1}) \cup \cdots \cup V(T_r)$, contradicting the fact that D is connected. \[\square\]

We define the sequence of integers $(i_k)_{0 \leq k \leq t}$ as follows (see Figure 2). Let $i_0 = 0$. If i_k is defined and $i_k < r$, then we define i_{k+1} as the greatest integer $i_k + 1 < i_{k+1} \leq r$ such that $T_{i_k+1} \Rightarrow T_{i_{k+1}}$ (note that this integer exists by Lemma 3). This procedure stops when some i_t is defined equal to r. For $1 \leq k \leq t$, let $D_k = D[T_{i_k+1} \cup \cdots \cup T_r]$. Note that D_k is a tournament for all k.

![Figure 2: Illustration of the definition of the subgraphs D_k. The dashed arc means that there is no arc between the subgraphs, whereas thick arcs means that there are all the arcs between the two subgraphs.](image)

Step by step, from $k = t$ to $k = 1$, we define a set S of vertices of D that will be our candidate for a locating-dominating set of D. We consider the following three different cases:

- **Case 1:** $k = t$, or $k < t$ and $S \cap V(D_{k+1})$ is assumed to be a dominating set of D_{k+1}.

 If $|V(D_k)|$ is even, we add to S a minimum locating-dominating set of D_k, otherwise we add to S a minimum locating set of D_k.

- **Case 2:** $k < t$, the set $S \cap V(D_{k+1})$ is not assumed to be a dominating set of D_{k+1}, and $|V(T_{i_k})| = 1$.

 Let v be the unique vertex of T_{i_k} and $D_k' = D_k \setminus \{v\}$. We add v to S. Moreover we add to S a minimum locating-dominating set of D_k' when
$|V(D'_k)|$ is even, or a minimum locating set of D'_k when $|V(D'_k)|$ is odd. (Note that the set of D_k that is added to S, including v, is a dominating set of D_k when $|V(D'_k)|$ is odd.)

- **Case 3:** $k < t$, the set $S \cap V(D_{k+1})$ is not assumed to be a dominating set of D_{k+1}, and $|V(T_{i_k})| > 1$.

We add to S a minimum locating-dominating set of D_k.

Note that in all the three cases we add to S a set of vertices of D_k that is a locating set of D_k, even in Case 2 since a locating set of D'_k plus v forms a locating set of D_k.

In the next lemmas we prove some properties of the set S.

Lemma 4. For $1 \leq i \leq r$, the set $S \cap V(T_i)$ is a locating set of T_i, in particular if T_i has at least 2 vertices, then $S \cap V(T_i) \neq \emptyset$.

Proof. Let $1 \leq i \leq r$. If $V(T_i) \setminus S$ has size 1, then $S \cap V(T_i)$ is a locating set of T_i (even if empty) and the conclusion holds. So we can assume that $V(T_i) \setminus S$ has size at least 2. Let x, y be two distinct vertices of $V(T_i) \setminus S$. Since S is a locating set of D_k, there exists a vertex s in $S \cap V(D_k)$ that dominates exactly one vertex among x and y. Since $R[T_1, \ldots, T_r]$ is a round decomposition, all the vertices of D_k not in T_i dominates either all or none of the vertices of T_i. So $s \in V(T_i)$. Therefore $S \cap V(T_i)$ is a locating set of T_i and $S \cap V(T_i) \neq \emptyset$. \qed

Lemma 5. For $1 \leq k \leq t$, if $S \cap V(D_k)$ is a dominating set of D_k, then $S \cap V(T_{i_{k-1}}) \neq \emptyset$. Otherwise, there is exactly one vertex of D_k that is not dominated by $S \cap V(D_k)$ and this vertex is in $V(T_{i_{k-1}})$.

Proof. Let $1 \leq k \leq t$. By definition of i_k, all the vertices of $T_{i_{k-1}+1}$ dominates $D_k \setminus V(T_{i_{k-1}+1})$, so there is no arc from $V(D_k) \setminus V(T_{i_{k-1}+1})$ to $V(T_{i_{k-1}+1})$ (since R is simple). Thus, if $S \cap V(D_k)$ is a dominating set of D_k, then S must contains a vertex of $V(T_{i_{k-1}+1})$.

Suppose now that there exists a vertex of D_k that is not dominated by $S \cap V(D_k)$. Since $S \cap V(D_k)$ is a locating set of D_k, there is at most one vertex that is not dominated by $S \cap V(D_k)$, and thus exactly one such vertex v. If there exists a vertex u in $S \cap V(T_{i_{k-1}+1})$, then u dominates $D_k \setminus V(T_{i_{k-1}+1})$, so $v \in V(T_{i_{k-1}+1})$. If there is no vertices in $S \cap V(T_{i_{k-1}+1})$, then the vertices of $T_{i_{k-1}+1}$ are not dominated by $S \cap V(D_k)$, so $V(T_{i_{k-1}+1}) = \{v\}$. \qed

Lemma 6. There is at most one vertex of D that is not dominated by S, and if it exists, it is a vertex of T_1.

Proof. Assume by contradiction that there exists a vertex x of D that is not dominated by S and x is not in D_1. Let $2 \leq k \leq t$ such that $x \in D_k$. By Lemma 4 vertex x is in $T_{i_{k-1}+1}$. If $T_{i_{k-1}}$ contains a unique vertex v, then, at step $k-1$ of the construction of S we are in Case 2 and v is added to S. If $T_{i_{k-1}}$ contains at least two vertices, then, by Lemma 4 it contains a vertex of S. In both cases, $S \cap V(T_{i_{k-1}}) \neq \emptyset$. By Lemma 3 we have $T_{i_{k-1}} \Rightarrow T_{i_{k-1}+1}$, so x is dominated by S, a contradiction.
Thus all the vertices that are not dominated by \(S \) are in \(D_1 \). By Lemma 5 there is at most one such vertex and if it exists it is a vertex of \(T_i \).

Lemma 7. Suppose that there exists a pair \(\{ x, y \} \) of vertices of \(V(D) \setminus S \) not located by \(S \). Then, \(D \) is strongly connected, and one of \(x, y \) is in \(T_1 \) and is the only vertex of \(D_1 \) not dominated by \(S \cap V(D_1) \).

Proof. Let \(1 \leq k \leq t, 1 \leq \ell \leq t \) such that \(x \in V(D_k) \) and \(y \in V(D_\ell) \). Let \(1 \leq i \leq r, 1 \leq j \leq r \) such that \(x \in V(T_i) \) and \(y \in V(T_j) \). Recall that for all \(1 \leq m \leq t \), \(S \cap V(D_m) \) is a locating set of \(D_m \), so \(k \neq \ell \) and \(i \neq j \). Since a local tournament is simple, we can assume, w.l.o.g., that \(y \) does not dominate \(x \).

Suppose by contradiction that there exists \(s \in S \cap V(D_\ell) \) that dominates \(y \). Let \(m \) be such that \(s \in T_m \). Since \(s, y \) are vertices of \(D_\ell \), we have \(1 \leq m \leq j \leq r \).

Since \(k \neq \ell \), we know that \(T_m, T_j \) and \(T_i \) appear in this order along the cyclic order \(T_1, \ldots, T_r \) (with maybe \(m = j \)). Since \(y \) does not dominate \(x \), the vertex \(s \) does not dominate \(x \) by definition of round. Thus \(s \) separates \(x \) and \(y \), a contradiction. So \(S \cap V(D_\ell) \) does not dominate \(y \) and by Lemma 5 \(y \) is the only vertex of \(D_\ell \) that is not dominated by \(S \cap V(D_\ell) \) and \(y \in T_{i_{\ell-1}+1} \).

Suppose by contradiction that \(\ell > 1 \). We use an argument that is similar to the proof of Lemma 6. If \(T_{i_{\ell-1}} \) contains a unique vertex \(v \), then, at step \(\ell - 1 \) of the construction of \(S \) we are in Case 2 and \(v \) is added to \(S \). If \(T_{i_{\ell-1}} \) contains at least two vertices, then, by Lemma 4 it contains a vertex of \(S \). In both cases, \(S \cap V(T_{i_{\ell-1}}) \neq \emptyset \). Let \(s' \in S \cap V(T_{i_{\ell-1}}) \). By Lemma 3 we have \(T_{i_{\ell-1}} \Rightarrow T_{i_{\ell-1}+1} \), so \(s' \) dominates \(y \). Since \(x \) and \(y \) are not located by \(S \), vertex \(s' \) dominates \(x \). Hence, \(T_{i_{\ell-1}}, T_{i_{\ell-1}+1}, T_i \) appear in this order along the cyclic order \(T_1, \ldots, T_r \) (with maybe \(i_{\ell-1} = i \)). Since \(x \) is dominated by \(s' \) and not by \(y \), we have \(i_{\ell-1} = i \). Thus both \(x \) and \(s' \) are in \(V(T_{i_k}) \) and \(y \) is in \(V(T_{i_{k+1}}) \). At step \(k \) of the construction of \(S \), we are in Case 3, and so \(S \cap V(D_k) \) is a dominating set of \(D_k \). By Lemma 5 the set \(S \) contains a vertex of \(V(T_{i_{k-1}+1}) \). By definition of \(i_k \), this vertex dominates \(x \in V(T_{i_k}) \) but not \(y \in V(T_{i_{k+1}}) \), a contradiction. So \(\ell = 1 \), \(y \in T_1 \) and \(y \) is the only vertex of \(D_1 \) that is not dominated by \(S \cap V(D_1) \).

Suppose by contradiction that \(S \) is not strongly connected, then the round decomposition is canonical and there is no vertex of \(D \setminus V(D_1) \) that can dominate \(y \). So \(y \) is not dominated by \(S \) and by Lemma 5 vertex \(x \) is dominated by \(S \), a contradiction. So \(S \) is strongly connected.

We now need to slightly modify \(S \) in a particular case. If \(S \cap V(D_1) \) is not a dominating set of \(D_1 \), then by Lemma 5 let \(z \in T_1 \) be the unique vertex of \(D_1 \) not dominated by \(S \cap V(D_1) \). In this case, let \(S^+ = S \cup \{ z \} \), otherwise, let \(S^+ = S \). We are now able to prove the locating-dominating property of \(S^+ \).

Lemma 8. The set \(S^+ \) is a locating-dominating set of \(D \).

Proof. Suppose first that \(S \cap V(D_1) \) is a dominating set of \(D_1 \). Then \(S^+ \) is a dominating set of \(D \) by Lemma 5 and a locating set of \(D \) by Lemma 7. Suppose now that \(S \cap D_1 \) is not a dominating set. Recall that \(z \) is the only vertex of \(D_1 \) not dominated by \(S \cap D_1 \). By Lemma 5 there is a unique vertex that is
not dominated by S and this vertex is in T_1, so this vertex is z. So S^+ is a dominating set of D. By Lemma 7, vertex z is in all the pairs of vertices of $V(D) \setminus S$ not located by S. Thus S^+ is locating.

By Lemma 8 we have defined a locating-dominating set of D. We now have to bound its size. For that purpose we use the following theorem from [5]:

Theorem 9 ([5]). A tournament D of order n satisfies $\gamma^{LD}(D) \leq \left\lceil \frac{n}{2} \right\rceil$ and $\gamma^L(D) \leq \left\lfloor \frac{n}{2} \right\rfloor$.

We use Theorem 9 to first bound the size of S and then of S^+. At each step k of the construction of S, since D_k is a tournament, the theorem gives an upper bound on the size of the set that is added to S:

Lemma 10. For $1 \leq k \leq t$, the set of vertices of D_k that is added to S at step k of the construction of S has size at most $\left\lfloor |V(D_k)|/2 \right\rfloor$ when it is assumed to be a locating-dominating set of D_k and size at most $\left\lceil |V(D_k)|/2 \right\rceil$ when it is assumed to be a locating set of D_k.

Proof. Let $1 \leq k \leq t$. The lemma is clear by Theorem 9 if we are in Cases 1 or 3 at step k of the construction of S. Consider now that we are in Case 2. If $|V(D'_k)|$ is even (i.e. $|V(D_k)|$ is odd), then $S \cap V(D_k)$ is composed of a minimum locating-dominating set of D'_k plus the unique vertex of T_{2k}.

Thus, by Theorem 9, $S \cap V(D_k)$ is a locating-dominating set of D_k of size at most $\left\lfloor (|V(D_k)| - 1)/2 \right\rfloor + 1 = \left\lfloor |V(D_k)|/2 \right\rfloor$. If $|V(D'_k)|$ is odd (i.e. $|V(D_k)|$ is even), then $S \cap V(D_k)$ is composed of a minimum locating set of D'_k plus the unique vertex of T_{2k}. Thus, similarly, $S \cap V(D_k)$ is a locating set of D_k of size at most $\left\lfloor (|V(D_k)| - 1)/2 \right\rfloor + 1 = \left\lceil |V(D_k)|/2 \right\rceil$.

For every $1 \leq k \leq t$, let $n_k = |V(D_k)| + \cdots + |V(D_t)|$. In the following lemma, we bound the size of a minimum locating-dominating set of a subgraph of D.

Lemma 11. For $1 \leq k \leq t$, the size of $S \cap (V(D_k) \cup \cdots \cup V(D_t))$ is at most $\left\lceil \frac{2n_k}{n_{k+1}} \right\rceil$.

Proof. We prove the lemma by induction on k from t down to 1.

At step t of the construction of S, we are in Case 1. If $|V(D_t)|$ is even, then $S \cap V(D_t)$ is a minimum locating-dominating set of D_t of size at most $\left\lfloor |V(D_t)|/2 \right\rfloor = \left\lfloor n_t/2 \right\rfloor$ by Theorem 9. If $|V(D_t)|$ is odd, then $S \cap V(D_t)$ is a minimum locating set of D_t of size at most $\left\lfloor n_t/2 \right\rfloor$ by Theorem 9.

Let us now fix $1 \leq k < t$. We assume that the lemma holds for all j with $k+1 \leq j \leq t$ and we prove that it holds for k. If $V(D_k)$ has even size or $S \cap V(D_k)$ is not assumed to dominate D_k, then by Lemma 11, $|S \cap V(D_k)| \leq \left\lfloor |V(D_k)|/2 \right\rfloor$ and it follows that the lemma holds for k. So we can now suppose that $V(D_k)$ has odd size and $S \cap V(D_k)$ is assumed to dominate D_k. Thus, we are in Case 2 or 3 at step k and $S \cap V(D_{k+1})$ is not assumed to dominate D_{k+1}. Then, at step $k+1$, we are either in Case 1 with $V(D_{k+1})$ has odd size, or in Case 2 with $V(D_{k+1})$ has even size, $k+1 < t$ and $S \cap V(D_{k+1})$ is not assumed to
dominate D_{k+2}. In the second case, again it means that at step $k + 2$ we are in the same situation, i.e. we are either in Case 1 with $V(D_{k+2})$ has odd size, or in Case 2 with $V(D_{k+2})$ has even size, $k + 2 < t$ and $S \cap V(D_{k+3})$ is not assumed to dominate D_{k+3}. We can repeat this argument until we actually encounter a step ℓ of the construction of S such that we are in Case 1 at step ℓ with $V(D_{\ell})$ has odd size (we assume ℓ is the first such step from $k+1$ towards t). Note that for $k + 1 \leq j \leq \ell$, $S \cap V(D_j)$ is not assumed to dominate D_j. To summarize, we have:

- $1 \leq k < \ell \leq t$
- $V(D_k)$ and $V(D_\ell)$ have odd sizes
- $V(D_j)$ has even size for $k + 1 \leq j \leq \ell - 1$,
- $S \cap V(D_k)$ is assumed to dominate D_k
- $S \cap V(D_j)$ is not assumed to dominate D_j for $k + 1 \leq j \leq \ell$.

Thus, by Theorem 9 we obtain the following:

\[
|S \cap (V(D_1) \cup \ldots \cup V(D_\ell))| \\
\leq (|V(D_k)| + 1)/2 + |V(D_{k+1}) \cup \ldots \cup V(D_{\ell-1})|/2 + (|V(D_\ell)| - 1)/2 \\
\leq \lceil |V(D_k) \cup \ldots \cup V(D_\ell)|/2 \rceil
\]

If $\ell = t$, then the lemma holds for k and we are done. If $\ell < t$, then we use the induction hypothesis that the lemma holds for $\ell + 1$ to conclude. \hfill \Box

A corollary of Lemma 11 is that the size of S is at most $\lceil n/2 \rceil$. We are now able to bound $|S^+|$.

Lemma 12. The size of S^+ is at most $\lceil n/2 \rceil$.

Proof. By Lemma 11, we have $|S| \leq \lceil n/2 \rceil$. Thus if $S = S^+$, then the lemma holds. Thus we can assume that $S \neq S^+$, i.e. $S \cap V(D_1)$ is not a dominating set of D_1 and $S^+ = S \cup \{z\}$. If n is odd, then $|S^+| = |S| + 1 \leq \lceil n/2 \rceil + 1 = \lceil n/2 \rceil$ and we are done. So we can assume that n is even.

By Lemma 11 the size of $S \cap V(D_1)$ is at most $\lceil |V(D_1)|/2 \rceil$

By construction of S, at step 1, we are either in Case 1 with $|V(D_1)|$ is odd, or in Case 2 with $|V(D_1)|$ is even, $1 < t$ and $S \cap V(D_2)$ is not assumed to dominate D_2. We consider this two different cases below.

Consider first that we are in Case 1. Since $|V(D_1)|$ is odd and n is even, we have $1 < t$ and \(n_2 = n - |V(D_1)|\) is odd. By Lemma 11 the size of $S \cap (V(D_2) \cup \ldots \cup V(D_\ell))$ is at most $\lceil n_2/2 \rceil = (n_2 - 1)/2$. Moreover $S \cap V(D_1)$ has size at most $\lceil |V(D_1)|/2 \rceil = (|V(D_1)| - 1)/2$. So in total S has size at most $n/2 - 1$. Therefore S^+ has size at most $n/2$ and we are done.

Consider now that we are in Case 2 of the construction at step 1. As in the proof of Claim 11 let D_ℓ be the first step from 2 towards t such that we are in Case 1 at step ℓ of the construction of S with $V(D_\ell)$ has odd size. Then, we have:
• 2 ≤ ℓ ≤ t
• V(Dj) has even size for 1 ≤ j ≤ ℓ − 1,
• V(Dℓ) has odd size
• S ∩ V(Dj) is not assumed to dominate Dj for 1 ≤ j ≤ ℓ,

Thus, by Theorem 9, we obtain the following:

|S ∩ (V(D1) ∪ ⋯ ∪ V(Dℓ))| ≤ |V(D1) ∪ ⋯ ∪ V(Dℓ−1)|/2 + (|V(Dℓ)| − 1)/2

Since n is even and |V(D1) ∪ ⋯ ∪ V(Dℓ)| is odd, we have ℓ < t and nℓ+1
is odd. By Lemma 11 the size of S ∩ (V(Dℓ+1) ∪ ⋯ ∪ V(Dt)) is at most
|(nℓ+1)/2| = (nℓ+1 − 1)/2. So again S has size at most n/2 − 1 and S⁺ has size
at most n/2.

By combining the results of this section we obtain the following:

Lemma 13. The set S⁺ is a locating dominating set of D of size at most \lfloor n/2 \rfloor.
Moreover, if D is not strongly connected, then S is a locating set of D of size
at most \lfloor n/2 \rfloor.

Proof. The first part is a consequence of Lemmas 8 and 12. The second part is
a consequence of Lemmas 7 and 11.

As a corollary, this proves Theorem 1 for connected roundable local tournaments:

Lemma 14. A connected roundable local tournament D of order n satisfies
γLD(D) ≤ \lceil n/2 \rceil. Moreover if D is not strongly connected, then γL(D) ≤ \lfloor n/2 \rfloor.

4 Non-roundable local tournaments

In the previous section, we proved the upper bound γLD(D) ≤ \lceil n/2 \rceil when D is
a connected roundable local tournament. By Theorem 5 this result is also true
for tournaments. In order to prove Theorem 6 we can now restrict ourselves to
connected local tournaments which are not tournaments and not roundable.

Consider a connected local tournament D that is not a tournament and not
roundable. By [1, Corollary 3.2], every connected local tournament that is not
strong is roundable, so D is strongly connected. Then, by [1, Corollary 3.2,
Lemmas 3.4 and 3.5], there exists a set of vertices X of V(D) such that:
• D \setminus X is not strongly connected and X is minimal for this property
• D \setminus X is a connected local tournament that is not a tournament
• D[X] is a tournament
Let $R[T_1, \ldots, T_r]$ be the canonical round decomposition of $D \setminus X$, then $r \geq 3$ and there are all the arcs from $V(T_r)$ to X, and from X to $V(T_1)$.

Let $Y = V(D) \setminus X$ and $Z = Y \setminus V(T_r)$. See Figure 3 for an illustration of the decomposition of D. Let $D_1 = D[Y]$ and $D_2 = D[Z]$. For $i \in \{1, 2\}$, let n_i be the order of D_i. Note that since $r \geq 3$, the digraph D_2 is also a connected local tournament that is not strong with canonical round decomposition $R[T_1, \ldots, T_{r-1}]$. So we can apply on D_1 and D_2 the method and results of Section 3. For $i \in \{1, 2\}$, let S_i be the set that is defined on D_i exactly as S is defined on D in Section 3. By Lemma 13, the set S_i is a locating set of D_i of size $\lfloor n_i/2 \rfloor$. We will moreover need some particular properties obtained in Section 3, namely Lemmas 4 and 6.

Using these definitions of S_1 and S_2 we are now able to define a set of vertices S of D that will be our candidate for a locating-dominating set of D. We consider the following four cases (see Figure 4 for an illustration):

- **Case 1:** $|V(T_r)| = 1$ and $|X| = 1$
 Let S be the union of $V(T_r)$ and a minimum locating-dominating set of D_2.

- **Case 2:** $|V(T_r)| = 1$ and $|X| > 1$
 Let S be the union of $V(T_r)$, S_2, and a minimum locating set of $D[X]$.

- **Case 3:** $|V(T_r)| > 1$ and $|X| = 1$
 Let S be the union of S_1 and X.

- **Case 4:** $|V(T_r)| > 1$ and $|X| > 1$
 Let S be the union of S_1 and a minimum locating-dominating set of $D[X]$.

Lemma 15. The set S is a locating-dominating set of D.

Proof. *(Case 1)* Let x be the only vertex of X and t be the only vertex of T_r. The set S contains a locating-dominating set of D_2 so all the vertices of $Y \setminus S$ are dominated by S. Moreover x is dominated by t. So the set S is a dominating set of D.

Figure 3: Decomposition of non-roundable local tournaments
Every pair of vertices of $Y \setminus S$ is separated by S. Since the round decomposition is canonical, there is no arc from t to Z, so t separates x from any vertex of $Y \setminus S$. Hence S is a locating set of D.

(Case 2) As previously, let t be the only vertex of T_r. By Lemma [6] applied on S_2, there is at most one vertex of Z that is not dominated by S_2, and if it exists, it is a vertex of T_1. However, by assumption, $|X| > 1$, so a locating set of $D[X]$ contains at least one vertex of X. Thus S contains at least one vertex s of X. Since there are all the arcs from X to $V(T_1)$, all the vertices of T_1 are dominated by s. All the vertices of X are dominated by t. So S is a dominating set of D.

Every pair of vertices of $X \setminus S$ and every pair of vertices of $Z \setminus S$ are separated by S. There are all the arcs from t to X and no arc from t to $Y \setminus \{t\}$. Hence, t separates the vertices of X from the vertices of Z, and S is a locating set of D.

(Case 3) Let x be the only vertex of X. By Lemma [6] applied on S_1, there is at most one vertex of Y that is not dominated by S_1, and if it exists, it is a vertex of T_1. Since $x \in S$ and there are all the arcs between x and T_1, then every vertex of T_1 is dominated by x. Hence S is a dominating set of D.

By definition of S, all the pairs of vertices of $Y \setminus S$ are separated by S and $x \in S$. So S is a locating set of D.

(Case 4) Note that, since S contains a locating set of X and $|X| > 1$, the set S contains at least one vertex of X. Then the proof that S is a dominating set of D is exactly the same as in Case 3.
By definition of S, every pair of vertices of $X \setminus S$ and every pair of vertices of $Y \setminus S$ are separated by S. Now consider $x \in X \setminus S$ and $y \in Y \setminus S$ and let us show that x and y are separated by S. We consider the following two cases:

- **Case A :** $y \in T_r$
 Since S contains a dominating set of $D[X]$, there is a vertex x' of $X \cap S$ that dominates x in D. Since there are all the arcs from $V(T_s)$ to X, there is an arc from y to x'. Since we are considering a simple digraph, there is no arc from x' to y, so x' separates x and y.

- **Case B :** $y \notin T_r$
 By Lemma 4 applied on S_1, there exists a vertex y' in $S \cap T_r$. Since the round decomposition is canonical, there is no arc from y' to y. Plus, there are all the arcs from $V(T_r)$ to X, and there is an arc from y' to x. Hence y' separates x and y.

Therefore S is a locating-dominating set of D.

Lemma 16. The size of S is at most $\lceil \frac{n}{2} \rceil$.

Proof. (Case 1) By Lemma 14, a minimum locating-dominating set of D_2 has size at most $\lfloor \frac{n}{2} \rfloor$. So S has size at most $\lfloor \frac{n}{2} \rfloor + 1 = \lceil \frac{n}{2} \rceil + 1 = \lceil \frac{n}{2} \rceil$.

(Case 2) By Lemma 13, the size of S_2 is at most $\lfloor \frac{n}{2} \rfloor = \lfloor \frac{n-1-|X|}{2} \rfloor$. By Theorem 9, a minimum locating set of $D[X]$ has size at most $\lceil \frac{|X|}{2} \rceil$. So S has size at most $\lfloor \frac{n-1-|X|}{2} \rfloor + \lceil \frac{|X|}{2} \rceil + 1 \leq \lfloor \frac{n}{2} \rfloor$ (check all the parity cases for the last inequality).

(Case 3) By Lemma 13, the size of S_1 is at most $\lfloor \frac{n}{2} \rfloor$. So S has size at most $\lfloor \frac{n}{2} \rfloor + 1 \leq \lfloor \frac{n}{2} \rfloor$.

(Case 4) By Lemma 13, the size of S_1 is at most $\lfloor \frac{n}{2} \rfloor$. By Theorem 9, a minimum locating-dominating set of $D[X]$ has size at most $\lceil \frac{|X|}{2} \rceil$. So S has size at most $\lfloor \frac{n-1-|X|}{2} \rfloor + \lceil \frac{|X|}{2} \rceil \leq \lfloor \frac{n}{2} \rfloor$ (check all the parity cases for the last inequality).

By combining the results of this section we obtain the following:

Lemma 17. A connected local tournament D of order n that is not roundable satisfies $\gamma^{LD}(D) \leq \lceil \frac{n}{2} \rceil$.

Proof. By Lemmas 15 and 16, the set S is a locating dominating set of D of size at most $\lceil n/2 \rceil$.

Theorem 1 is a direct consequence of Lemmas 14 and 17.
5 Supervising vertex

From now on, we consider digraphs that are not necessarily simple. In a digraph D, a supervising vertex is a vertex s of D such that, for any vertex v, there exists a directed path from s to v. In this section we prove the following theorem.

Theorem 18. Let D be a twin-free digraph on n vertices containing a supervising vertex, then $\gamma^{LD}(D) \leq \frac{3n}{4}$. Moreover, if D is quasi-twin-free, then $\gamma^{LD}(D) \leq \frac{2n}{3}$.

To prove Theorem 18, we will adapt the method used in [4] and [5] to prove general upper bounds on γ^{LD}. Let S be a set of vertices of a digraph D. The S-partition of D, denoted \mathcal{P}_S, is the partition of $V(D) \setminus S$ where two vertices are in the same part if and only if they have the same set of in-neighbours in S.

We have the following lemma.

Lemma 19. Let D be a twin-free digraph on n vertices and S a dominating set of D such that $|\mathcal{P}_S| \geq |S| - 1$. Then, $\gamma^{LD}(D) \leq \frac{3n}{4}$. Moreover, if D is quasi-twin-free, then $\gamma^{LD}(D) \leq \frac{2n}{3}$.

This result is proved in [5] when $|\mathcal{P}_S| \geq |S| - 1$ (Theorem 8 for $x = 1$). The proof can be adapted if we only have $|\mathcal{P}_S| \geq |S| - 1$.

Proof. Let $\mathcal{P}_S = P_1 \cup \cdots \cup P_{n_1} \cup Q_1 \cup \cdots \cup Q_{n_2}$, where P_1, \ldots, P_{n_1} are the parts of size 1 and Q_1, \ldots, Q_{n_2} are the parts of size at least 2.

If $n_2 = 0$, then S is a locating-dominating set of D. Since all the parts of \mathcal{P}_S have size 1, $|V(D)| = |S| + |\mathcal{P}_S| \geq 2|S| - 1$. Thus $|S| \leq \frac{n + 1}{2}$ and we are done. Thus in the following we assume that $n_2 > 0$.

We assume that S is maximal with the property that \mathcal{P}_S has at least $|S| - 1$ parts (this is ensured by adding vertices to S while this property holds).

Now, let $X_1 = S \cup P_1 \cup \cdots \cup P_{n_1}$. We have the following property:

Claim 20. Two vertices in $V(D) \setminus X_1$ are located by X_1, unless they form a pair of quasi-twins.

Proof of claim. If two vertices are in different parts of \mathcal{P}_S, they are located by some vertices in S. Thus, by contradiction, let q_1 and q_2 be two vertices of $V(D) \setminus X_1$ belonging to some part Q_i of \mathcal{P}_S that are not quasi-twins but are not located by X_1. Since D is twin-free, there is a vertex q_3 in $V(D) \setminus S$ that can locate q_1 and q_2: without loss of generality q_3 is an in-neighbour of q_1 but not q_2. By our assumption $q_3 \notin X_1$. Now, consider $S' = S \cup \{q_3\}$, and the corresponding S'-partition $\mathcal{P}_{S'}$ of $V(D) \setminus S'$. Since $q_3 \in \bigcup_i Q_i$, any part of $\mathcal{P}_{S'}$ still correspond to some part in \mathcal{P}_S. But Q_i has been split into two parts so $\mathcal{P}_{S'}$ has at least one more part than \mathcal{P}_S, and thus $|\mathcal{P}_{S'}| \geq |S'| - 1$. This contradicts the choice of S, which we assumed to be maximal with this property. (c)

Since X_1 is a dominating set, Claim 20 shows that in the absence of quasi-twins, X_1 is locating-dominating. Next claim is proved in [5] Claim 8.B] to deal with quasi-twins.
Claim 21. Any two pairs of quasi-twins in $V(D) \setminus X_1$ are disjoint.

For each pair of quasi-twins in $V(D) \setminus X_1$, we add one of the vertices of the pair in X_1. By Claims 20 and 21, the resulting set X'_1 is a locating-dominating set and has size at most $|S| + n_1 + (n - |S| - n_1)/2 = (n + |S| + n_1)/2$.

Consider now the set X_2 of size $n - n_1 - n_2$ consisting of $V(D)$ without one vertex from each part of P_S. Then all the vertices of $V(D) \setminus X_2$ are located and dominated by S and thus X_2 is a locating dominating set.

Assume now that D has no quasi-twins. Then X_1 and X_2 are two locating-dominating sets of D. If $|X_2| \leq 2n/3$ we are done. Thus we assume that $|X_2| > 2n/3$ which means that $|P_S| < n/3$. Therefore,

$$|X_1| = |S| + n_1$$
$$\leq |P_S| + n_1 + 1$$
$$\leq |P_S| + (n_1 + n_2) \quad \text{since } n_2 \geq 1$$
$$\leq 2|P_S|$$
$$\leq 2n/3$$

and we are done.

If D has some quasi-twins, we use the locating-dominating sets X'_1 and X_2.
Again, if $|X_2| \leq 3n/4$, we are done. So, assume that $|X_2| > 3n/4$. Then, $|P_S| < n/4$.

Therefore,

$$|X'_1| = \frac{|S| + n + n_1}{2}$$
$$\leq \frac{|P_S| + 1 + n + n_1}{2}$$
$$\leq \frac{|P_S| + n + n_1 + n_2}{2}$$
$$\leq |P_S| + \frac{n}{2}$$
$$\leq \frac{3n}{4}$$

and we are done.

To apply Lemma 19, we prove that such a set S exists when there is a supervising vertex.

Lemma 22. If a digraph D contains a supervising vertex s, then, there exists a dominating set S such that $|P_S| \geq |S| - 1$.

Proof. Consider a supervising vertex s of D. For $i \geq 0$, let V_i be the set of vertices of D such that the shortest directed path from s to v has length i.

15
Let k be the smallest integer such that V_{k+1} is empty. Since s is supervising, V_0, \ldots, V_k form a partition of $V(D)$ where the vertices are sorted according to their distance from s. If $k = 0$, then D contains s as a unique vertex and the set $S = \emptyset$ satisfies the lemma. So from now we assume that $k > 0$.

We build the set S by the following method. Let S be a set of vertices of V_{k-1} that dominates V_k and that is minimal for this property. Then, step by step, for $i = 1$ to $k-1$, we assume that S is a set of vertices of $V_{k-1} \cup \ldots \cup V_{k-i}$ that dominates $V_k \cup \ldots \cup V_{k-i+1}$ and we add to S a set of vertices of V_{k-i-1} that dominates $V_{k-i} \setminus S$ and that is minimal for this property. We continue the process until $i = k - 1$.

At each step i, by minimality of the choosen set, when a vertex v of V_{k-i-1} is added to S one can choose a vertex $f(v)$ in $V_{k-i} \setminus S$ whose in-neighbourhood in $V_{k-i-1} \cap S$ is exactly v. By doing so, at the end of the procedure, each vertex of $f(S)$ has different in-neighbours in S. So $|P_S| \geq |S|$.

Finally if s is not already dominated by S, then we add it to S so that S is a dominating set of $V(D)$. This might increase the cardinality of S by 1 and in the end S is a dominating set such that $|P_S| \geq |S| - 1$.

Then Theorem [13] is direct consequence of Lemmas [19] and [22].

Since all the vertices in a strongly connected digraph are supervising, we have the following corollary:

Corollary 23. Let D be a twin-free strongly connected digraph on n vertices, then $\gamma_{LD}(D) \leq \frac{3n}{4}$. Moreover, if D is quasi-twin-free, then $\gamma_{LD}(D) \leq \frac{2n}{3}$.

Note that the second bound is asymptotically tight (see Figure 11). A digraph is called semicomplete if there is at least one arc between every pair of vertices. A digraph D is locally in-semicomplete if the in-neighbourhood of every vertex x of D induces a semicomplete digraph. Note that semicomplete digraphs are a generalization of tournaments and thus, locally in-semicolonate digraphs naturally generalize local tournaments.

Lemma 24. A locally in-semicolonate digraph has a supervising vertex.

Proof. Suppose by contradiction, that there exists a locally in-semicolonate digraph D with no supervising vertex. Consider a vertex of D, such that the set S of vertices v of $V(D)$ for which there exists a directed path from s to v has maximum size, i.e. s is supervising a set of vertices of maximum size. Note that $s \in S$ since s forms a directed path of length zero from itself to itself. Since D contains no supervising vertices, we know that $V(D) \setminus S$ is nonempty. Plus, all the edges between $V(D) \setminus S$ and S are oriented from $V(D) \setminus S$ to S. Since D is connected, there exists at least such an edge from a vertex u of $V(D) \setminus S$ to a vertex of S. Recall that u has no in-neighbour in S. Let v be a vertex of S that is an out-neighbour of u and such that the length of a shortest directed path P from s to v has minimum length. By the choice of v, no vertex of P distinct from v is an out-neighbour of u. Note that v is distinct from s, since otherwise u is supervising more vertices than s, contradicting the choice of s. Let w be the in-neighbour of v along P. Both w and u are in the in-neighbourhood of v.
Hence, by in-semicompleteness of D, there must be an arc between them, which is a contradiction.

A consequence of Lemma 24 and Theorem 18 is the following corollary.

Corollary 25. Let D be a twin-free locally in-semi-complete digraph on n vertices, then $\gamma^L_D(D) \leq \frac{2n}{3}$. Moreover, if D is quasi-twin-free, then $\gamma^L_D(D) \leq \frac{2n}{3}$.

Consider the digraph D obtained from a vertex whose out-neighbourhood is made of k disjoint oriented triangles (see Figure 5). On this example, D is a quasi-twin-free locally in-semi-complete digraph on $3k+1$ vertices. Note that $\gamma^L_D(D) = 2k$ and $\frac{2n}{3} = 2k + 1$. So we are at distance 1 from the bound given by Corollary 25 and thus asymptotically tight.

![Figure 5: Disjoint oriented triangles forming the out-neighbourhood of an extra vertex. A locating dominating set of minimum size is given by gray vertices.](image)

Note that a similar method cannot be applied for locally out-semi-complete digraphs (digraphs where all the out-neighbourhoods are semi-complete). Indeed, there are twin-free locally out-semi-complete digraphs for which the minimum dominating set has size $2(n - 1)/3$ (see for example the reverse of the digraph of Figure 5). Thus, there is no dominating set S such that $|P_S| \geq |S| - 1$ and Theorem 19 cannot be applied.

References

[1] J. Bang-Jensen, Y. Guo, G. Gutin, L. Volkmann, *A classification of locally semicomplete digraphs*, Discrete Mathematics 167-168 (1997) 101-114.

[2] J. Bang-Jensen and G. Gutin. *Digraphs: Theory, Algorithms and Applications*. Springer-Verlag, London, 2nd edition, 2009.

[3] I. Charon, O. Hudry, and A. Lobstein. *Identifying and locating-dominating codes: Np-completeness results for directed graphs*. IEEE Transactions on Information Theory,48(8):2192–2200, 2002

[4] F. Foucaud, M. A. Henning, C. Löwenstein and T. Sasse. Locating-dominating sets in twin-free graphs. *Discrete Applied Mathematics* 200:52–58:2016.
[5] F. Foucaud, S. Heydarshahi, A. Parreau, *Domination and location in twin-free digraphs*, Discrete Applied Mathematics 284 (2020) 42-52.

[6] D. Garijo, A. Gonzalez and A. Marquez. The difference between the metric dimension and the determining number of a graph. *Applied Mathematics and Computation* 249:487–501, 2014.

[7] R. D. Skaggs. *Identifying vertices in graphs and digraphs*. PhD thesis, University of South Africa, 2007