Overexpression of DA41 in v-Ha-ras-3Y1 Cells Causes Growth Suppression

Toshinori Ozaki,1 Yohko Nakamura, Eiji Hanaoka, Akira Nakagawara and Shigeru Sakiyama

Division of Biochemistry, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuoh-ku, Chiba 260-8717

We have recently found that DA41 exhibits marked homology with mouse PLIC-1, PLIC-2, frog XDRP1 and yeast DSK2. XDRP1 has been shown to be associated with cyclin A, and blocks cell division of frog embryo. In the present study, we examined the biological role(s) of DA41 in mammalian cells by overexpressing it in v-Ha-ras-transformed 3Y1 cells (ras-3Y1). Transfectants which expressed a high level of DA41 mRNA exhibited a decrease in growth rate, a reduction in saturation density, and a suppression of colony formation in soft agar medium. To clarify the molecular mechanism(s) by which DA41 affects cell growth, the effect of DA41 expression on the levels of various cell cycle-regulatory proteins was examined. The forced expression of DA41 gene resulted in a remarkable reduction in CDK2 activity, while the amount of CDK2 did not change. These observations indicate that DA41 is involved in cell cycle regulation in ras-3Y1 cells.

Key words: DA41 — Growth suppression — ras — 3Y1

We have previously shown that rat DAN protein suppresses the malignant phenotypes of v-src-transformed 3Y1 cells (SR-3Y1) and also negatively regulates cell cycle progression at the G1/S boundary.1, 2) DAN is a secreted glycoprotein3, 4) with a characteristic cysteine-knot structure common to the DAN/Cerberus family, which includes Gremlin/Drm.5) Injection studies in frog embryos have suggested that the DAN/Cerberus family acts as an antagonist regulating BMP signalling.6) The interaction between DAN and DA41 is mediated through the NH2-terminal domain and the cysteine-knot region of DAN. The expression of DA41 gene was ubiquitous in adult rat tissues. Interestingly, the amount of DA41 mRNA started to increase at the late G1 phase and the same level was maintained until the onset of the S phase of the cell cycle, raising the possibility that DA41 might have some regulatory role(s) in cell cycle progression.6) Additionally, we have reported that human DA41 was mapped to chromosome 9q21.2-q21.3, a position overlapping the candidate tumor suppressor locus for bladder cancer.7)

A recent search of the databases for DA41-related protein(s) identified mouse PLIC-1, PLIC-2, frog XDRP1 and yeast DSK2.7,8) PLIC-1 and PLIC-2 interact with the cytoplasmic tail of integrin-associated protein (IAP) and mediate the interaction between IAP and vimentin-containing intermediate filaments.8) On the other hand, XDRP1 associates with the NH2-terminal region of cyclin A and inhibits the degradation of cyclin A.9) Microinjection of recombinant XDRP1 into fertilized frog eggs blocked the cell division, suggesting a cell cycle-regulatory role of XDRP1.10) Furthermore, overproduction of DSK2 induced a mitotic defect with a short spindle.10)

In the present study, we examined the role(s) of DA41 in mammalian cells by overexpressing it in v-Ha-ras-transformed 3Y1 cells (ras-3Y1). As described previously, the expression of DA41 was significantly lower in ras-3Y1 cells compared with that in the parental rat fibroblast 3Y1 cells.9) Overexpression of DA41 caused a significant suppression of transformed phenotypes of ras-3Y1 cells, accompanied with a remarkable reduction of CDK2 activity. These results indicate that DA41 might participate in the growth-regulatory machinery.

MATERIALS AND METHODS

Cell culture and transfection Rat fibroblast 3Y1 and v-Ha-ras-transformed 3Y1 (ras-3Y1) cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% heat-inactivated fetal calf serum (FCS) and antibiotics. Cells were incubated in a humidified atmosphere with 5% CO2 at 37°C.

A rat DA41 cDNA, which contains the entire open reading frame (ORF), was inserted into the EcoRI site of the mammalian expression vector pMEXneo in a forward orientation (pMEXneo-DA41). For transfection, ras-3Y1 cells were subcultured to 50% confluency 1 day before transfection. Ten micrograms of pMEXneo-DA41 and 30 µg of lipofectin reagent were used following the protocol from GIBCO-BRL (Grand Island, NY). Cells were incubated for 12 h in serum-free medium containing DNA and lipofectin, and then transferred to growth medium containing G418 at a concentration of 400 µg/ml. After 2 weeks
of culture, G418-resistant colonies were picked up with a cloning cylinder and expanded into cell lines.

β-Galactosidase assay ras-3Y1 cells (at a density of 5×10^3 cells/dish) were transfected with either an empty vector (pMXNeo) or pMXNeo-DA41 together with the reporter plasmid (pCH110), which encoded β-galactosidase, by using the standard calcium phosphate-DNA precipitation procedure. Twelve or 24 h after transfection, cells were washed twice with 1× PBS (10 mM sodium phosphate, pH 7.2, 150 mM NaCl) and fixed with 0.25% glutaraldehyde for 10 min at 4°C. Cells were then washed twice with 1× PBS and soaked in the solution containing 5 mM K_2[Fe(CN)_4], 3 H_2O, 5 mM K_2[Fe(CN)_6], 200 μM MgCl_2, 10 mg/ml of 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside for 12 h at 37°C. Cells were washed four times with 1× PBS and fixed with 3.7% formaldehyde for 30 min at room temperature, and the numbers of β-galactosidase-positive cells were scored.

Northern blot hybridization Ten micrograms of total cellular RNA prepared by the guanidine thiocyanate method was separated on a 1% agarose gel containing 0.5% low-melting-point agarose and the same medium. After electrophoresis, proteins were electro-transferred to a nitrocellulose membrane for 1 h. The membrane was blocked in TBS (100 mM Tris-Cl, pH 7.5, 150 mM NaCl) containing 5% nonfat dried milk and 0.05% Tween 20 for 1 h. The membrane was incubated with anti-Ras (Seikagaku Corp., Tokyo), anti-c-Raf1 (Transduction Laboratories, Lexington, KY), anti-ERK2 (Transduction Laboratories, Santa Cruz, CA) or anti-p27kip1 (Santa Cruz Biotechnology) in TBS containing 0.05% Tween 20 for 1 h at room temperature and then washed with TBST solution (TBS containing 0.05% Tween 20) for 30 min. Horseradish peroxidase-conjugated goat anti-rabbit or anti-mouse secondary antibody (GIBCO-BRL) was then applied to the membrane for 1 h in TBST. The protein of interest was then visualized by using chemiluminescence (ECL) reagent (Amersham, Arlington Heights, IL) followed by exposure to an X-ray film.

In vitro kinase reaction The cell lysate containing 400 μg of protein was treated with 50 μl of protein A/protein G Sepharose on a rotator for 30 min at 4°C and the Sepharose beads were pelleted by centrifugation for 5 min. The supernatant was then mixed and incubated with 25 μl of anti-CDK2 (Santa Cruz Biotechnology) for 2 h at 4°C. Then 20 μl of protein A/protein G Sepharose was added to the reaction mixture and the whole was incubated overnight at 4°C. The Sepharose beads were recovered by centrifugation, washed twice with lysis buffer, three times with kinase buffer [50 mM Tris-Cl, pH 7.2, 10 mM MgCl_2, 1 mM dithiothreitol (DTT)], and resuspended in 25 μl of kinase buffer containing 50 μg/ml histone H1 (Boehringer Mannheim, GmbH, Germany). The kinase reaction was allowed to proceed for 30 min at 30°C in the presence of [γ-32P]ATP and was stopped by the addition of SDS sample buffer. After having been boiled for 5 min, the mixture was analyzed on a 10–20% SDS-polyacrylamide gradient gel. The gel was then dried and exposed to an X-ray film.

RESULTS

Ectopic expression of DA41 gene As described previously, the expression of DA41 gene was sharply down-regulated in v-Ha-ras-transformed 3Y1 cells (ras-3Y1). In order to examine the biological role(s) of DA41 in mammalian cells, we constructed an expression vector encod-
ing rat DA41 (pMEXneo-DA41) and ras-3Y1 cells were transiently transfected with empty vector (pMEXneo) or pMEXneo-DA41 together with a reporter plasmid encoding β-galactosidase (pCH110) to identify transfected cells. Numbers of β-galactosidase-positive cells were scored at 12–48 h post transfection. As shown in Fig. 1, overexpression of DA41 resulted in a remarkable growth inhibition of the recipient cells. In order to analyze molecular event(s) induced by the overexpression of DA41, we generated stable transfectants (R3, R5 and R6) which constitutively expressed DA41 mRNA in ras-3Y1 cells (Fig. 2). As described previously, two specific DA41 transcripts (2.4 and 3.2 kb) were detected in 3Y1 and also in various transformed 3Y1 cells. Since the DA41 cDNA (approximately 2.2 kb in length) used in this study might be derived from the 2.4 kb transcript, the level of the 2.4 kb mRNA was expected to be increased by the transfection. The largest amount of DA41 mRNA was detected in R6 cells. As the levels of DA41 mRNA in two other clones (R1 and R2) were the same as that of ras-3Y1 cells, we used them as negative controls in the experiments described below.

**Reversion of the transformed phenotypes by DA41-overexpression** As shown in Fig. 3, a significant morphological reversion was observed in R6 cells, while the morphological phenotype was retained in the control transfecants (R1 and R2). No clear morphological changes could be observed in R3 and R5 cells. We then examined whether the increased level of DA41 is directly related to the inhibition of cell growth. As shown in Table I, both the growth rate and the saturation density of the DA41-overexpressing cells (R3, R5 and R6) were reduced compared with those of the parental ras-3Y1 cells and the control transfecants. Most importantly, the ability to grow in soft agar was significantly decreased in these DA41-overexpressing cells.

**Cell cycle distribution of DA41-overexpressing cells** Asynchronous cultures of the transfecants, 3Y1 and ras-3Y1 cells were collected and their cell cycle distributions were analyzed by flow cytometry. The G1 fraction observed in 3Y1 cells was 46.5%, whereas the rapidly growing cells (ras-3Y1, R1 and R2) exhibited decreased G1 fractions (Table II). Interestingly, the stable transfecants that overexpressed DA41 displayed a significant increase in the percentage of cells at the G1 phase (47–51% G1).

**Effects of DA41 overexpression on the levels of growth regulators** As the ectopic overexpression of DA41 suppressed the growth of ras-3Y1 cells, it is important to investigate whether DA41 overexpression modulates the levels of Ras and molecules involved in its downstream signalling. Western blot analysis revealed that the levels of Ras, c-Raf1 and ERK2 (extracellular signal-regulated kinase 2) were little changed by the constitutive expres-
Therefore, we tested whether the protein levels of CDK2 (cyclin-dependent protein kinase 2) and p27kip1 and the activity of CDK2 change in DA41-overexpressing clones.

Table I. Growth Properties of Each Clone

| Cell line | Doubling time (h) | Saturation density (10^6 cells) | Growth efficiency in soft agar (%) |
|-----------|------------------|-------------------------------|----------------------------------|
| 3Y1       | 18.0             | 1.6                           | 0                                |
| ras-3Y1   | 14.8             | 14.0                          | 44.4                             |
| R1        | 16.5             | 11.0                          | 43.4                             |
| R2        | 15.1             | 12.0                          | 37.0                             |
| R3        | 20.6             | 8.0                           | 7.7                              |
| R5        | 20.5             | 7.5                           | 10.2                             |
| R6        | 20.6             | 6.5                           | 3.4                              |

Table II. Effects of DA41 Overexpression on Asynchronous Cells

| Cells       | G1b            | S       | G2/M     |
|-------------|----------------|---------|----------|
| 3Y1         | 46.5           | 41.0    | 12.5     |
| ras-3Y1     | 35.5           | 48.0    | 16.5     |
| R1          | 35.5           | 47.0    | 17.0     |
| R2          | 36.5           | 48.0    | 15.0     |
| R3          | 48.0           | 39.5    | 12.0     |
| R5          | 47.0           | 38.0    | 14.5     |
| R6          | 51.0           | 33.5    | 15.0     |

Therefore, we tested whether the protein levels of CDK2 (cyclin-dependent protein kinase 2) and p27kip1 and the activity of CDK2 change in DA41-overexpressing clones.

As shown in Figs. 5 and 6, the levels of CDK2 and p27kip1 were unchanged among the transfectants, though a remarkable reduction in CDK2 activity was detected in DA41-overexpressing transfectants compared with the parental cells and the control transfectants.
DISCUSSION

When DA41 gene was overexpressed in ras-3Y1 cells, a remarkable growth suppression was observed in the recipient cells. Colony formation efficiency in soft agar medium was significantly reduced in the stable transfectants, which expressed a large amount of DA41 mRNA. Cell cycle analysis demonstrated that DA41-overexpression was accompanied with an increase in the percentage of cells at the G1 phase of the cell cycle, suggesting that DA41 can inhibit the cell cycle progression from G1 to S phase. It is intriguing to note that only R6, which exhibited the highest level of DA41 expression, showed morphological reversion suggesting that the threshold level of DA41 to counteract the transformed phenotype is higher than that of other cell growth-related factors.

The mammalian cell cycle is regulated by the sequential activation of cyclin-dependent kinases (CDKs). The activity of CDKs is dependent on cyclin binding and phosphorylation mediated by the CDK-activating kinase (CAK). Alternatively, CDK activity is regulated by interaction with CDK inhibitors. The active cyclin E-CDK2 and cyclin A-CDK2 complexes appear during the G1 phase and the G1/S transition, respectively. The inhibition of CDK2 complexes may be sufficient for cell cycle arrest in a variety of cells. Blain et al. reported that p27kip1 can interact with cyclin A-CDK2 complex and inhibit its kinase activity, whereas the activity of CDK4 or CDK6 complex is not inhibited by p27kip1. In this study, we found that DA41-induced growth suppression in ras-3Y1 cells was correlated with a remarkable reduction of CDK2 activity. This down-regulation of CDK2 activity was not correlated with a change in the amount of CDK2 or p27kip1. As described previously, CDK2 is phosphorylated by CAK, leading to an increase in its histone H1 kinase activity. In our experiments, CDK2 was detected as a doublet band, which may be generated by the phosphorylation state of CDK2. Additionally, CDK2 in control transfectants might be phosphorylated by CAK to generate histone H1 kinase activity, suggesting that DA41 inhibits CDK2 after the onset of CDK2 activation. Recently, Chen and Hitomi reported that VP16-induced growth arrest of v-src-transformed fibroblasts was associated with a decrease in CDK2 kinase activity. In their experimental systems, the overall levels of CDK2 and p27kip1 did not change upon treatment with VP16, though there was a significant
decrease in the amount of cyclin A-associated CDK2. Although the exact molecular mechanism(s) involved in the down-regulation of CDK2 activity in DA41-transfected cells is unclear, dissociation of cyclin A from CDK2 complex might contribute to the significant reduction of CDK2 activity in DA41-transfected cells. Interestingly, Funakoshi et al. identified a frog protein, XDRP1, that can bind to cyclin A and inhibit the degradation of cyclin A. XDRP1 showed marked sequence homology with DA41 and overexpression of XDRP1 in frog embryos blocked embryonic cell division. The N-terminal ubiquitin-like domain of XDRP1 (amino acid residues 1–76) was necessary for the interaction with cyclin A. The corresponding region of DA41 was highly related to that of XDRP1 (Fig. 7), indicating that DA41 possesses a function similar to that of XDRP1. The rapid degradation of cyclins, which is mediated by the ubiquitin-dependent proteasome pathway, is required for cell cycle progression. It is possible that, like XDRP1, DA41 can block the degradation of cyclin A and inhibit the cell cycle progression. In this connection, it would be important to examine whether the interaction of DA41 with cyclin A results in the dissociation of cyclin A from CDK2.

As described previously, DA41 was initially discovered as a DAN-binding protein using a yeast two-hybrid screening strategy. Recent work in our laboratory demonstrated that the majority of DAN is secreted into the culture medium and might act extracellularly to exert its growth-suppressive activity. Interestingly, Hsu et al. found that DAN can associate with BMP2 and antagonize its activity in frog early embryos. However, we have not been able to detect a direct interaction between DAN and DA41 in mammalian cells. Considering that DAN acts outside the cells, the DA41-induced growth inhibition observed in ras-3Y1 cells might take place in the absence of physical interaction with DAN. Studies are under way to elucidate the precise function of DA41 and the molecular mechanism of the DA41-mediated inhibition of CDK2 activity.

ACKNOWLEDGMENTS

We are grateful to Mr. M. Hirose (Chiba Cancer Center) for the flow cytometric analysis. We thank Dr. M. Takahashi (Chiba Cancer Center) for statistical analysis. This work was supported by a Grant-in-Aid from the Ministry of Health and Welfare for the New 10-Year Strategy for Cancer Control of Japan and also by a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Science, Sports and Culture of Japan.

(Received May 19, 2000/Revised July 14, 2000/Accepted July 24, 2000)

REFERENCES

1) Ozaki, T. and Sakiyama, S. Tumor-suppressive activity of N03 gene product in v-src-transformed rat 3Y1 fibroblasts. Cancer Res., 54, 646–648 (1994).
2) Ozaki, T., Nakamura, Y., Enomoto, H., Hirose, M. and Sakiyama, S. Overexpression of DAN gene product in normal rat fibroblasts causes retardation of the entry into the S phase. Cancer Res., 55, 895–900 (1995).
3) Nakamura, Y., Ozaki, T., Nakagawara, A. and Sakiyama, S. A product of DAN, a novel candidate tumor suppressor gene, is secreted into culture medium and suppresses DNA synthesis. Eur. J. Cancer, 33, 1986–1990 (1997).
4) Stanley, E., Biben, C., Kotecha, S., Fabri, L., Tajbakhsh, S., Wang, C.-C., Hatzistavrou, T., Roberts, B., Drinkwater, C., Lah, M., Buckingham, M., Hilton, D., Nash, A., Mohun, T. and Harvey, R. P. DAN is a secreted glycoprotein related to Xenopus cerberus. Mech. Dev., 77, 173–184 (1998).
5) Hsu, D. R., Economides, A. N., Wang, X., Eimon, P. M. and Harland, R. M. The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol. Cell, 1, 673–683 (1998).
6) Ozaki, T., Hishiki, T., Toyama, Y., Yuasa, S., Nakagawara, A. and Sakiyama, S. Identification of a new cellular protein which can interact specifically with DAN. DNA Cell Biol., 16, 985–991 (1997).
7) Hanoaka, E., Ozaki, T., Ohira, M., Nakamura, Y., Suzuki, M., Takahashi, E., Moriya, H., Nakagawara, A. and Sakiyama, S. Molecular cloning and expression analysis of the human DA41 gene and its mapping to chromosome 9q21.2-q21.3. J. Hum. Genet., 45, 188–191 (2000).
8) Wu, A.-L., Wang, J., Zheleznyak, A. and Brown, E. J. Ubiquitin-related proteins regulate interaction of vimentin intermediate filaments with the plasma membrane. Mol.
Growth-suppressive Activity of DA41

9) Funakoshi, M., Geley, S., Hunt, T., Nishimoto, T. and Kobayashi, H. Identification of XDRP1; a Xenopus protein related to yeast Dsk2p binds to the N-terminus of cyclin A and inhibits its degradation. *EMBO J.*, 18, 5009–5018 (1999).

10) Biggins, S., Ivanovska, I. and Rose, M. D. Yeast ubiquitin-like genes are involved in duplication of the microtubule organizing center. *J. Cell Biol.*, 133, 1331–1346 (1996).

11) Chen, C. and Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. *Mol. Cell. Biol.*, 7, 2745–2752 (1987).

12) Sambrook, J., Fritsch, E. F. and Maniatis, T. “Molecular Cloning: A Laboratory Manual,” 2nd Ed. (1989). Cold Spring Harbor Laboratory Press, New York.

13) Tate, E. H., Wilder, M. E., Cram, S. and Wharton, W. A. A method for staining 3T3 cell nuclei with propidium iodide in hypotonic solution. *Cytometry*, 4, 211–215 (1983).

14) Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature*, 227, 680–685 (1970).

15) Akiyama, T., Ohuchi, T., Sumida, S., Matsumoto, K. and Toyoshima, K. Phosphorylation of the retinoblastoma protein by cdk2. *Proc. Natl. Acad. Sci. USA*, 89, 7900–7904 (1992).

16) Norbury, C. and Nurse, P. Animal cell cycles and their control. *Annu. Rev. Biochem.*, 61, 441–470 (1992).

17) Draetta, G., Luca, F., Westendorf, J., Brizuela, L., Ruderman, J. and Beach, D. cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF. *Cell*, 56, 829–838 (1989).

18) Pines, J. and Hunter, T. Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34^cdki. *Cell*, 58, 833–846 (1989).

19) Solomon, M. J., Lee, T. and Kirschner, M. W. Role of phosphorylation in p34^cdki activation: identification of an activating kinase. *Mol. Biol. Cell*, 3, 13–27 (1992).

20) Sherr, C. J. and Roberts, J. M. Inhibitors of mammalian G1 cyclin-dependent kinases. *Genes Dev.*, 9, 1149–1163 (1995).

21) Sherr, C. J. Mammalian G1 cyclins. *Cell*, 73, 1059–1065 (1993).

22) Blain, S. W., Montalvo, E. and Massague, J. Differential interaction of the cyclin-dependent kinase (Cdk) inhibitor p27^kip1 with cyclin A-Cdk2 and cyclin D2-Cdk4. *J. Biol. Chem.*, 272, 25863–25872 (1997).

23) Makela, T. P., Tassan, J.-P., Nigg, E. A., Frutiger, S., Hughes, G. J. and Weinberg, R. A. A cyclin associated with the CDK-activating kinase MO15. *Nature*, 371, 254–257 (1994).

24) Chen, G. and Hitomi, M. Dissociation of CDK2 from cyclin A in response to the topoisomerase II inhibitor etoposide in v-src-transformed but not normal NIH3T3 cells. *Exp. Cell Res.*, 249, 327–336 (1999).

25) Sudakin, V., Ganoth, D., Dahan, A., Heller, H., Hershko, J., Luca, F. C., Ruderman, J. V. and Hershko, A. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. *Mol. Biol. Cell*, 6, 185–198 (1995).