Anticancer and anticholesterol attributes of sea cucumbers: An opinion in terms of functional food applications

Netty Salindeho1*, Fahrl Nurkolis2†, William Ben Gunawan3, Matthew Nathaniel Handoko3, Mrinal Samtiya4 and Rendy Dijaya Muliadi5

1Fishery Products Technology Study Program, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University, Manado, Indonesia, 2Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia, 3Nutrition Science Department, Faculty of Medicine, Diponegoro University, Semarang, Indonesia, 4Department of Nutrition Biology, Central University of Haryana, Mahendragarh, India, 5Health and Nutrition Science Executive, Nutrifood Research Center, PT Nutrifood Indonesia, Kawasan Industri Pulogadung, Jakarta, Indonesia

Introduction

Sea cucumbers, marine invertebrates belonging to the phylum Echinodermata and specifically to the class Holothuroidea, are fishery products that possess a high economic value and potent medicinal properties (1, 2). In terms of physical appearance, sea cucumbers are tube-like marine animals with skin that resembles a leathery material (2). As of late, research has been conducted on sea cucumbers, especially on their role as a functional food. Sea cucumbers, especially Actinopyga mauritiana, contain a high percentage of protein or peptides (63.3 ± 0.43%), with glycine as its most abundant amino acid. A. mauritiana also possesses a low lysine:arginine ratio. Both properties are shown to exert hypcholesterolemic effects (3). Sea cucumbers also contain certain proteins (bioactive peptides), polysaccharides, and saponins, and when extracted, these compounds are shown to exert anticancer effects (4, 5). Saponins from sea cucumbers promote osteoblast differentiation or osteogenic differentiation from pre-osteoblasts by activating molecular pathways of BMP2/Smad3 activation in MC3T3-E1 cells (6). More interestingly, sulfated polysaccharides in sea cucumber have the potential to be used as health-improving agents and processed through technology and combining (7), such as into functional food. Sea cucumber is a potential functional food based on the medicinal properties mentioned above. Hence, this article’s main aim is to interpret the latest findings on potential applications of sea cucumbers as a functional food.

Sea cucumbers in general

Sea cucumbers, also known as teripang, “trepa,” or “beche-de-mer,” are marine invertebrates that belong to the phylum Echinodermata and the class Holothuroidea. Sea cucumbers can be found in deep seas and have a long history of being used as food and medicine in the Middle East and Asia (1). It possesses a tube-like soft body with leathery
skin. The shape of sea cucumbers resembles that of a cucumber, hence the name (1, 3). Currently, there are about 1,716 species of sea cucumbers in the world, and the most biodiverse of sea cucumbers are located in the Asia Pacific region (3). Some commonly consumed sea cucumbers that possess health benefits are Holothuria leucospilota, Bohadschia argus, Pseudonotonia graeffei, Holothuria polii, Colochirus bengalensis, Holothuria arenicola, Cucumaria japonica, and several others (4). Sea cucumbers contain numerous bioactive compounds such as chondroitin sulfates, saponins, peptides, and glycosaminoglycan, and these compounds possess anticoagulation, antiangiogenesis, anticancer, antidiabetic, and antibacterial activities (5). Besides, sea cucumbers also contain micronutrients such as thiamine or vitamin B1, B2 or riboflavin, B3 (niacin), vitamin A (retinol, retinyl esters), calcium, iron, zinc, and magnesium (4).

Anticancer property of sea cucumbers

As mentioned previously, sea cucumbers exhibit an anticancer activity. Anticancer activities can be achieved through cytotoxic activity, apoptosis induction, cell cycle arrest, tumor growth reduction, metastasis inhibition, and drug resistance inhibition methods (Figure 1) (4). Cytotoxic activity is achieved by blockage or growth prevention of cancer cells. Holothuria scabra species produce bioactive carbohydrate compounds such as holothurin A3 and A4 that were shown to be cytotoxic in hepatocellular carcinoma (Hep-G2) and epidermoid carcinoma (KB) cell lines (8). In the apoptosis induction aspect, Frondanol A5, a compound obtained from Cucumaria frondosa extract, caused apoptosis in 2013 and AsPC pancreatic cancer cells (9). Cell cycle arrest is also a potential mechanism for inhibiting cancer cell growth. Pseudonotonia graeffei contains Ds-echinoside A and Echinoside A that disrupt the G0/G1 cell cycle process of liver carcinoma cells (Hep-G2), disrupting the preparation for DNA replication (10). Penatcta quadrangulari possesses a tumor growth reduction ability because of its saponin content, specifically Philinopsides E and A in sarcoma 180 and hepatoma 22 mouse models (11, 12). P. graeffei contains Ds-echinoside A, which prevents cell migration and invasion, and adhesion of hepatocellular carcinoma (Hep-G2) cells, hence reducing the probability of metastasis (development of new cancer site) of cancer cells (13). Cancer cells could develop drug resistance; hence drug resistance inhibition is crucial in chemotherapy (4). Cucumariaokhotensis possesses a type of saponin named Frondoside A that inhibits autophagy to survive in human urothelial carcinoma cell lines. Hence, cancer drug resistance is inhibited (14).

Anticholesterol property of sea cucumbers

Diverse sea cucumbers have demonstrated that they could be an intriguing natural source of useful substances because they contain amino acids, vitamins, triterpene glycosides, PUFAs, flavonoids, polysaccharides, carotenoids, minerals, collagen, gelatin, phenolic, saponin, and bioactive peptides (3, 15). From a nutritional standpoint, sea cucumber is the perfect food with medical significance, since it includes more proteins and less fats than most other foods. Bioactive compounds and pigments in sea cucumbers exhibit an antioxidant activity, which may have the potential to improve cholesterol and reduce the possibility of atherosclerosis using many capable mechanisms (Figure 1) (16). Polysaccharides from Apostichopus japonicus also have antihyperlipidemic and antioxidant attributes (17). Triterpene glycosides (or triterpene saponin) exhibit hypolipidemic (18), anti-inflammatory (19), immunomodulatory (20), and wound-healing properties (21), which indirectly contribute to dyslipidemia. Triterpene glycosides are also known to interact with sterol in the membrane of sea cucumbers as a self-defense mechanism against saponin (22, 23). In obese mouse models, sterol sulfate significantly reduced insulin resistance with inflammation induced by high-fat, high-fructose diets (24). The saponin from sea cucumbers has been proved to suppress adipose accumulation (Figure 1) (25), lower lipid levels, and attenuate atherosclerosis (26). Saponin can also modulate cholesterol metabolism in Thelenota ananas (27). These facts stated the health-related beneficial effects of the both saponin and the sterol in sea cucumbers.

The lipid content of Australostichopus mullis consists of high levels of 54% PUFA compared to MUFA (23%) and SFA (24%), with arachidonic acid followed by eicosapentaenoic acid as the dominant PUFA (28). Replacing SFAs with PUFAs was known to reduce total cholesterol levels and provide beneficial cardio-metabolic effects (29–31). Wen et al. (32) also found that arachidonic acid was the dominant composition of PUFAs in many species of sea cucumbers. They further elaborated that while fatty acid profiles varied between species, amino acid levels were comparable. These facts suggest the potential of sea cucumbers as a high-protein source with low total fat and high unsaturated fatty acid contents. The sea cucumber powder (33) and dietary glycosylceramide from sea cucumber (34) also significantly decreased the cholesterol level in mice models fed with high-fat-enriched diet.
Future functional food product development of sea cucumbers

Significant efforts have been made to identify more therapeutic-related food and their pharmaceutical applications, along with the growing understanding of the health-beneficial properties of compounds derived from sea cucumbers. The numerous therapeutic benefits of sea cucumbers and their valuable bioactive components have shown their potential as both functional meals and a natural source of novel multifunctional medications (35). However, despite high hopes, only a few foodstuffs made from sea cucumbers are available in the food and medical industries now. One of the techniques to utilize sea cucumbers as a functional food product would be to fortify food and health products with sea cucumbers to increase the customer acceptability of sea cucumbers effectively. Moreover, depending on seasonal fluctuations, geographic location, and feeding practices, sea cucumbers' proximate composition varies significantly, resulting in sea cucumbers being versatile food ingredients to be utilized for a specific health benefit or personalized nutrition (15). Xu et al. (36) also emphasized that the potential for creating high-quality nutraceutical products by extraction and purification of bioactive chemicals found in sea cucumbers has not been completely explored.

Discussions

The morbidity due to cancer has increased daily in both developed and developing nations, and it is one of the major causes of death, as nearly ten million deaths are caused by cancer every year worldwide (37). Another illness condition is high body cholesterol, which also affects people universally and may
be a primary cause of several disorders such as atherosclerosis, and cardiovascular diseases. Therefore, there is an urgent need for a remedy that can be used to treat these ailments. Marine organisms are augmented for development of drugs; about 10% of these creatures’ extracts contain anticancer attributes. In addition, the organisms’ extracts are categorized by reduced drug resistance, lower toxicity, safety, and high efficiency (5). Sea cucumber has been explored for its anticancer and cholesterol-lowering activities due to the presence of potential bioactive components (Figure 1). For instance, sea cucumber (golden) contains several bioactive components such as saponin, flavonoids, docosahexaenoic and eicosapentaenoic acid (EPA-DHA), proteoglycans, mucopolysaccharide, heparin sulfate, heparin, dermanatan sulfate, chondroitin sulfate, hyaluronic acid, glycosaminoglycan, collagen, and glycoprotein and has several promising attributes beyond its nutritional qualities (38–40). In conclusion, the opinion suggested that sea cucumber and its derived bioactive peptide and carbohydrate components could be a point of great interest for future research as a potential treatment for cancer and cholesterol illnesses (Figure 1). It is just an opinion that summarizes sea cucumber’s potential effect, but for validation of these health benefits, there is a need to perform extensive studies (especially in vivo and clinical trials); after that, it may be further considered for development of functional foods or nutraceuticals.

Author contributions

NS, FN, MH, and WG contributed to the conception and design of the opinion-study and drafted the manuscript first.

References

1. Bordbar S, Ansar F, Saari N. High-value components and bioactives from sea cucumbers for functional foods - a review. Mar Drugs. (2011) 9:1761–805. doi: 10.3390/md9101761
2. Manuputty GD, Pattinasarany MM, Limmon GV, Latumaras A. Diversity and abundance of sea cucumber (Holothuroidea) in seagrass ecosystem at Sui Village, Maluku, Indonesia. IOP Conf Ser Earth Environ Sci. (2019) 339:012032. doi: 10.1088/1755-1315/339/1/012032
3. Pangelinetti R, Ariffin Z. Medical and health benefit effects of functional sea cucumbers. J Trad Complement Med. (2018) 8:341–51. doi: 10.1016/j.jtcme.2017.06.007
4. Wargaseta TL, Widodo. Mechanisms of cancer cell killing by sea cucumber-derived compounds. Invest New Drugs. (2017) 35:820–6. doi: 10.1007/s10637-017-0505-5
5. Ru R, Guo Y, Mao J, Yu Z, Huang W, Cao X, et al. Cancer cell inhibiting sea cucumber (Holothuria leucospilota) protein as a novel anti-cancer drug. Nutrients. (2022) 14:786. doi: 10.3390/nu14040786
6. Li R, Meng J, Shi H, Wang C, Li Z, Xue C, et al. Dietary supplementation with sea cucumber saponins and exercise can significantly suppress adipose accumulation in mice fed with high-fat diet. J Ocean Univ China. (2021) 20:629–40. doi: 10.1007/s11802-021-4577-7
7. Li Y, Li M, Xu B, Li Z, Qi Y, Song Z, et al. The current status and future perspective in combination of the processing technologies of sulfated polysaccharides from sea cucumbers: a comprehensive review. J Funct Foods. (2021) 87:104744. doi: 10.1016/j.jff.2021.104744
8. Nguyen HD, Van Thanh N, Van Kiern P, Le MH, Chau VM, Young HK. Two new triterpene glycosides from the Vietnamese sea cucumber Holothuria scabra. Arch Pharm Res. (2007) 30:1387–91. doi: 10.1007/BF02977361
9. Roginsky AB, Ding XZ, Woodward C, Ujiki MB, Singh B, Bell RH, et al. Anti-pancreatic cancer effects of a polar extract from the edible sea cucumber, cucumaria frondosa. Funct Biomater. (2019) 9:1–27. doi: 10.1016/j.fbm.2018.09.001
10. Zhao Q, Xue Y, Wang J, Li H, Long T, Li Z, et al. In vitro and in vivo anti-tumour activities of echinoside A and ds-echinoside A from Pearsanothuria graeffei. J Sci Food Agric. (2012) 92:965–74. doi: 10.1002/jsfa.4678
11. Tong Y, Zhang X, Tian F, Yi Y, Xu Q, Li L, et al. Phlinopside A, a novel marine-derived compound possessing dual anti-angiogenic and anti-tumor effects. Int J Cancer. (2005) 114:843–53. doi: 10.1002/ijc.20804
12. Tian F, Zhu CH, Zhang XW, Xue X, Xin XL, Yi VH, et al. Phlinopside E, a new sulfated saponin from sea cucumber, blocks the interaction between kinase insert domain-containing receptor (KDR) and avb3 integrin via binding to the extracellular domain of KDR. Mol Pharmacol. (2007) 72:545–52. doi: 10.1124/mol.107.036350

Acknowledgments

Thanks to Prof. Dr. Nurpudji Astuti Taslim, MD, MPH, Sp.GK(K), who provided suggestions, input and reviews on the draft of this article. He is the Chairperson of the Indonesian Association of Clinical Nutrition Specialists, and declares that there is no conflict of interest whatsoever in reviewing the draft of this article. Thanks also to the Sam Ratulangi University (Especially to Faculty of Fisheries & Marine Sciences) and the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
13. Zhao Q, Liu ZD, Xue Y, Wang JF, Li H, Tang QJ, et al. Ds-echinoside A, a new triterpene glycoside derived from sea cucumber, exhibits antimetastatic activity via the inhibition of NF-κB-dependent MMP-9 and VEGF expressions. *J Zhejiang Univ Sci B*. (2011) 12:534–44. doi: 10.1016/j.jzus. B1000217.

14. Dyshloev SA, Madanchi R, Hauschild J, Otte K, Alsdorf WH, Schumacher U, et al. The marine triterpene glycoside frondoside A induces p53-independent apoptosis and inhibits autophagy in uterine cervical carcinoma cells. *BMC Cancer*. (2017) 17:93. doi: 10.1186/s12885-017-3085-z.

15. Oh GW, Ko SC, Lee DH, Heo SJ, Jung WK. Biological activities and potential medicinal of sea cucumber (*Stichopus japonicus*): a review. *Fish Aquat Sci*. (2017) 20:1–17. doi: 10.1243-017-0071-y.

16. Malekmohammad K, Sewell RDE, Rafieian-Kopaei M. Antioxidants and atherosclerosis: mechanistic aspects. *Biomolecules*. (2019) 9:301. doi: 10.3390/biom9030301.

17. Liu X, Sun Z, Zhang M, Meng X, XIA Y, Yuan W, et al. Antioxidant and antihyperlipidemic activities of polysaccharides from sea cucumber *Apostichopus japonicus*. *Carbohydr Polym.*. (2012) 90:1664–70. doi: 10.1016/j.carbpol.2012.07.047.

18. Olivera-Castillo L, Davalos A, Grant G, Valadez-Gonzalez N, Montero J, Barrera-Perez HAM, et al. Diets containing sea cucumber (*Isostichopus badionotus*) meals are hypocholesterolemic in young. *PLoS ONE*. (2013) 8:e6979446. doi: 10.1371/journal.pone.0079446.

19. Sharipov A, Tursunov K, Faizullakh F, Azimova B, Razzokov J. Hypoglycemic and anti-inflammatory effects of triterpene glycoside fractions from arctic hippocastanum seeds. *Molecules*. (2021) 26:3784. doi: 10.3390/molecules26133784.

20. Aminin D. Immunomodulatory properties of sea cucumber triterpene glycosides. *Toxicon*. (2014) 1–17. doi: 10.1016/j.toxicon.2013.08.024.

21. Agra LC, Ferro JNS, Barbosa FT, Barreto E. Triterpenes from sea cucumber on plasma and liver lipids in cholesterol-fed mice. *Biosynthesis of saponin defensive compounds in sea cucumbers*. (2010) 90:2469–74. doi: 10.1002/jsfa.4108.

22. Thimmappa R, Wang S, Zheng M, Misra RC, Huang AC, Saalbach G, et al. Biosynthesis of saponin defensive compounds in sea cucumbers. *Nat Chem Biol*. (2021) 17:534–42. doi: 10.1038/s41557-021-0055-y.

23. Zhang HJ, Chen C, Ding L, Shi HH, Wang CC, Xue CH, et al. Sea cucumbers-derived sterol sulfate alleviates insulin resistance and inflammation in high-fat-high-fructose diet-induced obese mice. *Pharmacol Res*. (2020) 160:105191. doi: 10.1016/j.phrs.2020.105191.

24. Li Z, Tian Y, Ma H, Wang M, Yan Z, Xue C, et al. Saponins from the sea cucumber promote the osteoblast differentiation in MG63-E1 cells through the activation of the BMP2/Smads pathway. *Curr Pharm Biotechnol*. (2022) 22:1942–52. doi: 10.2174/138920212266620051913546.

25. Ding L, Zhang TT, Che HX, Zhang LY, Xue CH, Chang YG, et al. Saponins of sea cucumber attenuate atherosclerosis in ApoE−/− mice via lipid-lowering and anti-inflammatory properties. *J Funct Foods*. (2018) 48:490–7. doi: 10.1016/j.jff.2018.07.046.

26. Han QA, Li K, Dong X, Luo Y, Zhu B. Function of *Thelenotia annas* saponin desulfiloholesterol A in modulating cholesterol metabolism. *Sci Rep*. (2018) 8:9306. doi: 10.1038/s41598-018-27932-x.

27. Liu F, Zanora L, Jevity A, Quy SY. Biochemical composition of the Australasian sea cucumber, *Australostichopus mollis*, from a nutritional point of view. *Nutrire*. (2017) 42:12. doi: 10.1186/s41110-017-0036-z.

28. Ramprasath VR, Jones PH, Buckley DD, Woollett LA, Heubi JE. Decreased plasma cholesterol concentrations after pufa-rich diets are not due to reduced cholesterol absorption/synthesis. *Lipids*. (2012) 47:1063– 71. doi: 10.1177/0007114512070880.

29. Qian E, Korat AA, Malik Y, Hu FB. Metabolic effects of monounsaturated fatty acid-enriched diets compared with carbohydrate or polyunsaturated fatty acid-enriched diets in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. *Diabetes Care*. (2016) 39:1448– 57. doi: 10.2337/dc16-0513.

30. Gaundal L, Myhrstad M CW, Leder I, Bygfelt MG, Gjovag T, Rud I, et al. Beneficial effect on serum cholesterol levels, but not glycemic regulation, after replacing SFA with PUFA for 3 d: a randomised crossover trial. *Br J Nutr*. (2021) 125:915–25. doi: 10.1017/S0007114520003402.

31. Wen J, Hu C, Fan S. Chemical composition and nutritional quality of sea cucumbers. *J Sci Food Agric*. (2010) 90:2469–74. doi: 10.1002/jsfa.4108.

32. Gangadaran S, Cheema SK. A high-fat diet enriched with sea cucumber gut powder provides cardio-protective and anti-obesity effects in C57BL/6 mice. *Food Res Int*. (2017) 99:799–806. doi: 10.1016/j.foodres.2017.06.066.

33. Hessaini Z, Sugawara T, Aida K, Hirata T. Effect of dietary glucosylceramide from sea cucumber on plasma and liver lipids in cholesterol-fed mice. *Fish Sci*. (2011) 77:1081–5. doi: 10.1007/s12262-011-0407-y.

34. Shi S, Feng W, Hu S, Liang S, An N, Mao Y. Bioactive compounds of sea cucumbers and their therapeutic effects. *Chin J Oceanol Limnol*. (2016) 34:549– 58. doi: 10.1007/s00343-016-4334-8.

35. Xu C, Zhang R, Wen Z. Bioactive compounds and biological functions of sea cucumbers as potential functional foods. *J Funct Foods*. (2018) 49:73– 84. doi: 10.1016/j.jff.2018.08.009.

36. Siegel RL, Kimberly DM, Hannah EF, Ahmedin J. Cancer statistics, 2021. *CA Cancer J Clin*. (2021) 71:7–33. doi: 10.3322/caac.21654.

37. Saffiari J, Parwanto B, Rochyani L, Prabowo GL, Suknaya D. Effect of *Stichopus hermanni* extract on fasting blood glucose and skeletal muscle glucose on type 2 diabetes mellitus rats model effect of *Stichopus hermanni* extract on fasting blood glucose and skeletal muscle glucose on type 2 diabetes mellitus rats model. *IOP Conf Ser Earth Environ Sci*. (2019) 217:012025. doi: 10.1088/1755-1315/217/1/012025.

38. Prawitasari DS, Saffiari J, Notopuro H. Effects of golden sea cucumber extract (*Stichopus hermanni*) on fasting blood glucose, plasma insulin, and mda level of male rats (*Rattus norvegicus*) induced with streptozotocin. *Fol Med Indones*. (2019) 55:107–11. doi: 10.20473/fmi.v55i2.14336.

39. Hartono F, Mukono IS, Rochmanti M. Effects of golden sea cucumber (*Stichopus hermanni*) ethanol extracts on cholesterol levels of hypercholesterolemic rats. *Ind J Public Health Res Dev*. (2020) 11:650–4. Available online at: https://www.iphrd.com/scripts/IJPHRD%20May%2020%2012.pdf.