Rubinosporus auriporus gen. et sp. nov. (Boletaceae: Xerocomoideae) from Tropical Forests of Thailand, Producing Unusual Dark Ruby Spore Deposits

Santhiti Vadthanarat 1,2,3, Olivier Raspé 3,* and Saisamorn Lumyong 1,2,4,*

Abstract: Rubinosporus, a new bolete genus from tropical forests of Thailand is introduced with R. auriporus as the type species. The genus is unique among Xerocomoideae in producing dark ruby spore deposits. It can be differentiated from all other Boletaceae genera by the following combination of characters: pileus surface evenly covered with matted tomentum; stipe surface with evenly scattered minute squamules; golden yellow tubular hymenophore, which is relatively thin especially when young; unchanging surfaces and context when bruised or cut; smooth, broadly ellipsoid basidiospores; and dark ruby spore deposits. The Boletaceae-wide and Xerocomoideae-wide phylogenetic analyses based on four-gene data sets (atp6, cox3, rpb2, and tef1) support Rubinosporus as monophyletic and places it in Boletaceae subfamily Xerocomoideae. Full descriptions and illustrations of the new genus and species are presented.

Keywords: fungal diversity; multigene phylogeny; new genus; taxonomy

1. Introduction

The family Boletaceae has been widely studied for over one hundred years. The former traditional taxonomy was based only on morphological characters. However, since molecular techniques and phylogenetic analyses have been developed and used as an advanced tool for the modern concepts in systematics and taxonomy, many genera, and species in Boletaceae have been recognized and described as new, e.g., [1–3]. In the last five years only, nine new Boletaceae genera have been described worldwide, namely Afrocastellana M.E. Smith & Orihara, Cacaoporus Raspé & Vadthanarat, Carolinigaster M.E. Sm. & S. Cruz, Erythrophylloporus Min Zhang & T.H. Li, Indoporus A. Parihar, K. Das, Hembrom & Vizzini, Ionosporus O. Khmelnitsky, Phylloporopsis Angelini, A. Farid, Gelardi, M.E. Smith, Costanzo, & Vizzini, Spongispora G. Wu, S.M.L. Lee, E. Horak & Zhu L. Yang, and Longistriata Sulzbacher, Orihara, Grebenc, M.P. Martín & Baseia [4–12]. Five of those genera were described from tropical to subtropical Asia, where high fungal diversity has been reported, but yet, remains poorly known to science, e.g., [13,14].

Based on the current multiple gene phylogenies, the Boletaceae are classified into six sub-families and one phylogenetically unsupported group [2,3]. Xerocomoideae is one of the six sub-families, which consists of nine genera namely Alessioporus Gerlardi, Vizzini & Simonini, Aureoboletus Pouzar, Boletellus Murrill, Heimioporus E. Horak, Hemileccinum Šutara, Hourangia Xue T. Zhu & Zhu L. Yang, Phylloporus Quél., Pulchroboletus Gerlardi, Vizzini & Simonini, and Xeroconus Quél [2,3]. Two additional genera, Corneroboletus and Sinoboletus, were also described in the subfamily but were later synonymized with Hemileccinum
and *Aureoboletus*, respectively [3]. Typical characters of this subfamily are boletoid or phylloporoid basidiomata; dry or viscid pileus with smooth or subtomentose to tomentose pellis; absent or rarely present veil; yellowish to yellow context; often bluing or sometimes redding or unchanging; smooth or ornamented stipe surface; basidiospores with bacillate, reticulate, longitudinally striate, or pitted ornamentations, or occasionally smooth; spore deposit with more or less olive-brown tint [2,3,15].

We have carried out surveys of the diversity of boletes in Thailand since 2010. Some collections with striking morphological characters were made and carefully studied. The collections combined typical characters of two genera that are widely distributed in tropical to subtropical regions, *Aureoboletus* with a golden yellow hymenium, and *Baorangia* G. Wu & Zhu L. Yang, which has a thin hymenophoral layer [3,16,17]. However, the collections showed a surprising dark ruby spore deposit, which is clearly distinct from the two genera and other genera in Boletaceae. Therefore, family-wide and subfamily-wide phylogenies were performed and showed that the collections belong in a generic lineage different from other genera in Boletaceae. Consequently, a new genus and a new species are introduced, with full descriptions and illustrations.

2. Materials and Methods

2.1. Specimens Collecting

The specimens were collected during the rainy season, from May to June, between 2015 and 2017, in Chiang Mai Province, northern Thailand. The specimens were wrapped in aluminum foil and taken to the laboratory for morphological description. After the description of macroscopic characters, the specimens were dried in an electric drier at 45–50 °C for 24 h or until dried properly. Then, they were deposited in the following herbaria: Chiang Mai University (CMUB), and Meise Botanic Garden (BR) [18].

2.2. Morphological Study

The macroscopic descriptions were made based on detailed field notes and photos of fresh basidiomata taken in the habitat and the laboratory. Color codes were given based on a Methuen Handbook of Colour [19]. Chemical solutions including 10% potassium hydroxide (KOH) and 28–30% ammonium hydroxide (NH₄OH), were used to determine the chemical reactions (color reactions) of the pileus, pileus context, stipe, stipe context, and hymenophore. For the microscopical study, the dried specimens were observed using 5% KOH, NH₄OH, Melzer’s reagent, or stained with 1% ammoniacal Congo red. A minimum of 50 basidiospores, 20 basidia, and 20 cystidia were randomly measured under a Nikon Eclipse Ni microscope using the NIS-Elements D software. The notation ‘[m/n/p]’ represents the number of basidiospores “m” measured from “n” basidiomata of “p” collections. Dimensions of microscopic structures are presented in the following format: (a–)b–c–d(–e), in which “c” represents the average, “b” the 5th percentile, “d” the 95th percentile, “a” the minimum, and “e” the maximum. Q, the length/width ratio, is presented in the same format. Section of the pileus surface was radially and perpendicularly cut to the surface at a point halfway between the center and margin of the pileus. Sections of stipitpellis were taken from halfway up the stipe and longitudinally cut perpendicularly to the surface. All microscopic features were drawn by freehand using an Olympus Camera Lucida model U–DA fitted to Olympus CX31 compound microscope. For scanning electron microscopy (SEM), a spore print was mounted onto an SEM stub with double-sided carbon tape. The sample was coated with gold, then examined and photographed with a JEOL JSM–5910 LV SEM (JEOL, Tokyo, Japan).

2.3. DNA Extraction, PCR Amplification and DNA Sequencing

Genomic DNA was extracted from about 10–15 mg of dried specimen or fresh tissue preserved in cetyltrimethylammonium bromide (CTAB), using a CTAB isolation procedure adapted from Doyle and Doyle [20]. Portions of the genes *atp6, cox3, rpb2*, and *tef1* were amplified by polymerase chain reaction (PCR) and sequenced by Sanger sequencing. The
primer pairs ATP6-1M40F/ATP6-2M [21], COX3M1-F/COX3M1-R [11], bRPB2-6F/bRPB2-7.1R [22], and EF1-983F/EF1-2218R [23] were used to amplify \textit{atp6}, \textit{cox3}, \textit{rpb2}, and \textit{tef1}, respectively. PCR products were purified by adding 1 U of exonuclease I and 0.5 U FastAP alkaline phosphatase (Thermo Scientific, St. Leon-Rot, Germany) and incubated at 37 °C for 1 h, followed by inactivation at 80 °C for 15 min. Standard Sanger sequencing was performed in both directions by Macrogen with PCR primers, except for \textit{atp6}, for which universal primers M13F-pUC(−40) and M13F(−20) were used; for \textit{tef1}, additional sequencing was performed with two internal primers, EF1-1577F and EF1-1567R [23].

2.4. Alignment and Phylogeny Inference

The two reads of newly generated sequences were assembled in GENEIOUS Pro v. 6.0.6 (Biomatters). A Boletaceae-wide sequence dataset, including selected sequences representative of the whole family, downloaded from GenBank, was aligned using MAFFT [24] on the server accessed at \url{http://mafft.cbrc.jp/alignment/server/} (accessed on 19 December 2021). For this dataset, the introns in \textit{rpb2} and \textit{tef1} were removed based on the amino acid sequence of previously published sequences. Maximum likelihood (ML) phylogenetic inference was performed using RAxML on the CIPRES web portal (RAxML-HPC2 on XSEDE) [25,26]. The phylogenetic tree was inferred by a single analysis with four partitions (one for each gene), using the general time reversible computerized adaptive testing (GTRCAT) model with 25 categories. The outgroup consisted of two \textit{Buchwaldoboletus} and seven \textit{Chalciporus} species from sub-family Chalciporoideae, based on previous phylogenies e.g., [1–3,11]. Statistical support of clades was obtained with 1000 rapid bootstrap replicates. For Bayesian Inference (BI), the best-fit model of substitution among those implementable in MrBayes was estimated separately for each region using jModeltest [27] on the CIPRES portal, based on the Bayesian Information Criterion (BIC). The selected models were HKY + I + G for \textit{atp6}, GTR+I+G for \textit{cox3} and \textit{tef1} exons, and K80 + I + G for \textit{rpb2} exons. Partitioned Bayesian analysis was performed with MrBayes 3.2.6 software for Windows [28]. Two runs of five chains were run for 11,000,000 generations and sampled every 1000 generations. The chain temperature was decreased to 0.02 to improve convergence. At the end of the run, the average deviation of split frequencies was 0.008614. A total of 8252 trees were used to construct a 50% majority rule consensus tree and calculate the Bayesian posterior probabilities (BPP).

For a subfamily Xerocomoideae-wide tree, all selected taxa in Xerocomoideae were aligned using the MAFFT online software (introns included). ML phylogenetic tree was inferred by a single analysis with five partitions (\textit{atp6}, \textit{cox3}, \textit{rpb2} exons, \textit{tef1} exons, and intron of \textit{rpb2} + introns of \textit{tef1}) (one for each gene), outgroup were four \textit{Butyriboletus} species in \textit{Pulveroboletus} group, using the same analytical software and model used for family Boletaceae-wide tree. For BI, the same analytical software for family Boletaceae-wide tree was used. However, the selected models were GTR+I+G for \textit{atp6}, \textit{cox3}, and intron of \textit{rpb2} + introns of \textit{tef1}, K80 + I + G for \textit{rpb2} exons, and SYM+I+G for \textit{tef1} exons. Two runs of five chains were sampled every 200 generations and stopped after 800,000 generations. At the end of the run, the average deviation of split frequencies was 0.007928. A total of 2709 trees were used to construct a 50% majority rule consensus tree and calculate the BPPs.

3. Results

3.1. Phylogenetic Analyses

A total of fourteen sequences were newly generated in this study and deposited in GenBank (Table 1). For the Boletaceae-wide tree, the alignment contained 776 sequences comprising four genes (162 for \textit{atp6}, 133 for \textit{cox3}, 231 for \textit{rpb2}, 250 for \textit{tef1}) from 257 voucher specimens corresponding to 252 taxa, and was 2946 characters long (TreeBase number: 28,349). The sequences of \textit{Rubinosporus} voucher SV0934 (\textit{atp6} and \textit{cox3}) were not added to the analyses because they were identical to the holotype (SV0090). Maximum likelihood and BI trees of the combined four-gene dataset were similar in topology, without any supported conflict (BS ≥ 70% and PP ≥ 0.90). The phylogram of RAxML bipartition
(Figure 1) retrieved the six subfamily clades, namely Austroboletoideae (BS = 99% and PP = 1), Boletoideae (BS = 54% and PP = 0.93), Chalciporoideae (BS = 100% and PP = 1), Leccinoideae (BS = 99% and PP = 1), Xerocomoideae (BS = 99% and PP = 1), and Zan-gioideae (BS = 100% and PP = 1). The *Pulveroboletus* group of Wu et al. [2,3] was not monophyletic, like in previously published phylogenies. However, the monophyly of each genus in this group was highly supported. The selected *Rubinosporus auriporus* specimens were monophyletic (BS = 100% and PP = 1) and clustered in the highly supported Xerocomoideae clade.

Table 1. List of collections used for phylogenetic analyses, with origin, GenBank accession numbers, and reference(s).

Species	Voucher	Origin	ATP6	COX3	rpb2	tef1	Reference(s)
Afroboletus aff.	JD671	Burundi	MH614651	MH614794	MH614747	MH614700	[11]
Aphroboletus costatisporus	ADK4644	Togo	KT823958	MH614795*	KI823991	KT824024*	[21], [11]*
Aphroboletus luteolus	ADK4844	Togo	MH614652	MH614796	MH614748	MH614701	[11]
Aurubolotus	CFMR-BOS-699	USA	–	–	–	–	[29]
Aurubolotus catenarius	HKAS54467	China	–	–	–	–	[3]
Aurubolotus duplicatorpus	HKAS50498	China	–	–	KFI12754	KFI12230	[2]
Aurubolotus fumarosus	GDGM44441	China	–	–	–	–	[30]
Aurubolotus glutinosus	GDGM4447	China	–	–	MT007229	MH002053	[31]
Aurubolotus innixus	CPMR-BOS-544	USA	–	–	–	–	[21], [11]*
Aurubolotus moravicus	VDKOI1120	Belgium	–	–	MG212528	MG212573*	[32], [11]*
Aurubolotus nephrusporus	HKAS74929	China	–	–	KT903935	KT907021	[3]
Aurubolotus projectellus	AFOTL-ID-713	USA	DQ534604*	–	–	–	[33], [11]*
Aurubolotus raphanecus	GDGM 53127	China	–	–	MNS49706	MNS49676	[31]
Aurubolotus singeri	CFMR-BOS-468	Belize	–	–	MK672674	MK721065	[29]
Boletellus aff.	OR0245	Thailand	KT823961	MH614797*	KI823994	KT824027*	[21], [11]*
Boletellus aff.	OR0369	Thailand	MH614654	MH614800	MH614750	MH614703	[11]
Boletellus aff.	HKAS54461	China	–	–	KT291754	KT291749	[30]
Boletellus aff.	VDKOI1120	Belgium	–	–	MK766276	MK721061	[21], [11]*
Boletellus aff.	VDKOI1120	Belgium	–	–	MG212528	MG212573*	[32], [11]*
Boletellus aff.	OR0045	Thailand	KT823966	MH614802*	KT823999	KT824032*	[21], [11]*
Boletellus aff.	OR00573	Thailand	MH614656	MH614803	MH614752	MH614705	[11]
Boletellus aff.	HKSAS7757	China	–	–	KFI12764	KFI12212	[2]
Boletellus aff.	OR0891	Thailand	KT823970	MH614806*	KT824030	KT824036	[21], [11]*
Boletellus aff.	OR0361	Thailand	KT823973	MH614810*	KT824046	KT824039*	[21], [11]*
Boletellus aff.	VDKOI1120	Belgium	–	–	MG212529	MG212574*	[32], [11]*
Boletellus aff.	OR0621	Thailand	MG212529	MH614808*	MG212616	MG212574*	[32], [11]*
Boletellus aff.	VDKOI1055	Belgium	MG212530	MH614809*	MG212617	MG212575*	[32], [11]*
Boletellus aff.	OR0131	Thailand	KT823973	MH614810*	KT824046	KT824039*	[21], [11]*
Boletellus aff.	VDKOI0869	Belgium	MG212531	MH614811*	MG212618	MG212576*	[32], [11]*
Boletellus rubriceps	VDKOI087	USA	–	–	MK766284	MK721076	[29]
Boletus aff.	OR0446	China	MG212532	MH614813*	KFI12703	MG212577*	[32], [11]*
Boletus aff.	OR0345	Thailand	MH614660	MH614814	MH614755	MH614709	[11]
Boletus aff.	VDKOI1140	Belgium	MH614661	MH614815	MH614756	MH614710	[11]
Boletus aff.	VDKOI0193b	Belgium	MG212537	MH614816*	MG212624	MG212582*	[32], [11]*
Boletus aff.	OR0230	China	KT823974	MH614819*	KT824007	KT824040*	[21], [11]*
Boletus aff.	BOS-617	Belize	–	–	MK766287	MK721079*	[29]
Species	Voucher	Origin	atp6	cox3	rpl2	tef1	Reference(s)
-------------------------	---------	-----------	--------	-------	-------	--------	--------------
Butyriboletus frostii	NY815462	USA	–	–	–	–	[2]
Butyriboletus pseudoregious	VDKO0925	Belgium	MG212538	MH614817	–	–	[32], [11]*
Butyriboletus roseopurpureus	BOTH4497	USA	MG897418	MH614818	–	–	[35], [11]*
Butyriboletus subsplendidus	HKAS50444	China	–	–	–	–	[3]
Butyriboletus yicibus	HKAS55413	China	–	–	–	–	[2]
Cacaoporus pallidicarneus	SV0221	Thailand	MK372262	MK372299	MK372286	MK372273	[11]
Cacaoporus tenebrosus	SV0223	Thailand	MK372266	MK372303	MK372290	MK372277	[11]
Caloboletus calopus	ADK4087	Belgium	MG212539	MH614820	KF035030	KJ845666	
Caloboletus firmus	BOS-372	Belize	–	–	–	–	[29]
Caloboletus inedulis	BOTH3963	USA	MG897414	MH614821	–	–	[35], [11]*
Caloboletus radicans	VDKO1187	Belgium	MG212540	MH614822	–	–	[32], [11]*
Caloboletus sp.	OR0068	Thailand	MH614662	MH614823	–	–	[32]
Caloboletus yunnanensis	HKAS9214	China	–	–	–	–	[36], [3]
Chamonixia brevicolumna	DBG_F28707	USA	–	–	–	–	[29]
Chamonixia caespitosa	OSC117571	USA	–	–	–	–	[29]
China sp.	OR0139	China	MH614663	–	–	–	[11]
China viridula	OR0266	China	MG212541	MH614828	–	–	[32], [11]*
Crocinoboletus cf.	OR0576	Thailand	KT823975	MH614832	–	–	[21], [11]*
Cyanoboletus brunneocruher	RW109	Belgium	KT823980	MH614835	–	–	[32], [11]*
Cyanoboletus sinopulverulentis	HKAS59609	China	–	–	–	–	[3]
Cyanoboletus sp.	OR0257	Thailand	MH614673	MH614837	–	–	[32]
Cyanoboletus sp.	OR0322	Thailand	MH614675	MH614839	–	–	[41]
Erythrophylloporus fagicola	OR0233	China	MG212542	MH614834	–	–	[2]
Erythrophylloporus fagisolanus	REH9860	Australia	MH614676	MH614840	–	–	[11]
Erythrophylloporus rivetarius	REH8288	Australia	–	–	–	–	[40]
Fumago setiferus	REH8962	Australia	–	–	–	–	[40]
Heimioporus australis	HXAS0527	China	–	–	–	–	[3]
Heimioporus cooloolae	REH9817	Australia	–	–	–	–	[40]
Heimioporus japonicus	OR0114	Thailand	KT823971	–	–	–	[21]
Heimioporus mandarinus	OR0218	Thailand	MG212546	–	–	–	[32]
Heimioporus subcostatus	SV0235	Thailand	MH614675	MH614839	–	–	[41]
Heimioporus yunnanensis	HKAS9214	China	–	–	–	–	[36], [3]
Hemileccinum depilatum	REH9880	Australia	MH614676	MH614840	–	–	[11]
Hemileccinum hortonii	REH8620	Costa Rica	–	–	–	–	[40]
Heimioporus japonicus	SV0236	Thailand	MH614672	MH614832	–	–	[39]
Heimioporus rubropunctum	ADK4078	Belgium	MG212548	MH614844	–	–	[32], [11]*
Heimioporus similisulcatus	OR0863	Thailand	MH614677	MH614845	–	–	[11]
Heimioporus virens	OR0141	China	MH614665	MH614827	–	–	[11]
Heimioporus rugosus	OR0141	China	MH614665	MH614827	–	–	[11]
Cyanoboletus sp.	OR0322	Thailand	MH614673	MH614837	–	–	[32]
Cyanoboletus sp.	OR0322	Thailand	MH614675	MH614839	–	–	[41]
Cyanoboletus sp.	OR0322	Thailand	MH614675	MH614839	–	–	[41]
Cyanoboletus sp.	OR0322	Thailand	MH614675	MH614839	–	–	[41]
Species	Voucher	Origin	atp6	cox3	rpl2	tef1	Reference(s)
---------	---------	--------	------	------	------	------	--------------
Hemileccinum	MIC:KLU-07230802	USA	–	–	–	MK763000	MK721092
	MICH:KLU-08240502	USA	–	–	–	MK763002	MK721094
Hortiboletus	HKAS54166	China	–	–	KT90416	KT907089	
Hortiboletus	HKAS59608	China	–	–	–	KF12696	KFI12285
Hortiboletus	VDKO0403	Belgium	M614679	M614847	M614747	–	[11]
Hourangia	OR0762	Thailand	M614680	M614848	M614775	M614728	[11]
Hourangia	OR0026	China	–	–	–	KFI12773	KFI12286
Hourangia	OR0053	Thailand	M614680	M614848	M614775	M614728	[11]
Hourangia	OR0052	Thailand	M614684	M614855	M614779	M614732	[11]
Leccinellum aff. crocipodium	HKAS76658	China	–	–	–	KFI12778	KFI12225
Leccinellum aff. grisum	KPM-NC-0017382	Japan	–	–	–	JN378450	unpublished, [42]
Leccinum cremeum	HKAS90639	China	–	–	–	K990420	K990781
Leccinum scabrum	VDKO0938	Belgium	M614681	M614850	M614776	M614729	[11]
Leccinum sp.	OR0285	China	–	–	–	KFI12697	KFI12283
Neoboletus brunneissimus	OR0249	China	M614681	M614850	M614776	M614729	[11]
Neoboletus ferruginus	HKAS77718	China	–	–	–	M614847	KFI12697
Neoboletus flavidus	HKAS59443	China	–	–	–	M614847	KFI12697
Neoboletus hainanensis	HKAS53738	China	–	–	–	M614847	KFI12697
Neoboletus obscurumbrinus	AF2292	France	M614682	M614850	M614776	M614729	[11]
Neoboletus cantanecios	HKAS75045	China	–	–	–	M614847	KFI12697
Mycenastrum cambodgeensis	SV0197	Thailand	–	–	–	M614850	This study
Octaviania decimae	KPM-NC-0017763	Japan	–	–	–	JN378438	[43], [42]
Octaviania ferrugineus	KPM-NC-0017763	Japan	–	–	–	JN378438	[43], [42]
Octaviania aff. griseum	KPM-NC-0017763	Japan	–	–	–	JN378438	[43], [42]
Octaviania pumila	KPM-NC-0017763	Japan	–	–	–	JN378438	[43], [42]
Porphyrellus aff. nigropurpureus	OR0263	China	–	–	–	KFI12697	KFI12283
Porphyrellus aff. nigropurpureus	OR0050	Thailand	M614680	M614848	M614775	M614728	[11]
Porphyrellus castaneiceps	OR0052	Thailand	M614684	M614855	M614779	M614732	[11]
Porphyrellus castaneiceps	OR0057	Thailand	M614684	M614855	M614779	M614732	[11]
Porphyrellus castaneiceps	OR0285	China	–	–	–	M614847	KFI12697
Porphyrellus castaneiceps	OR0285	China	–	–	–	M614847	KFI12697
Porphyrellus castanopsidis	OR0285	China	–	–	–	M614847	KFI12697
Porphyrellus castanopsidis	OR0285	China	–	–	–	M614847	KFI12697
Porphyrellus castanopsidis	OR0285	China	–	–	–	M614847	KFI12697

Table 1. Cont.
Table 1. Cont.

Species	Voucher	Origin	atp6	cox3	rpb2	tef1	Reference(s)
Porphyrellus	MB97 023	Germany	–	–	–	–	[33], [45]
Porphyrellus sp.	JDE99	Burundi					
Porphyrellus sp.	OR0222	Thailand	–	–	–	–	[11]
Pulchroboletus selerotiorum	FLAS F 60333	USA	–	–	–	–	[46]
Pulveroboletus selerotiorum	FLAS F 60333	USA	–	–	–	–	[46]
Pulveroboletus aff. raveneli	ADK4360	Togo	K823957	H614882	–	K823990	K824023 [21], [11]
Pulveroboletus aff. raveneli	ADK4650	Togo	K823959	H614883	–	K824029	K824025 [21], [11]
Pulveroboletus brunnepunctatus	HKAS55369	China	–	–	–	–	[2]
Retiboletus fuscosus	OR0231	China	MG212556	H614887	–	MG212642	MG212600 [32], [11]
Retiboletus griseus	MB03 079	USA	K823964	H614888	–	K823997	K824030 [30], [11]
Retiboletus kauffmani	OR0278	China	MG212557	H614889	–	MG212423	MG212601 [32], [11]
Retiboletus nigerrimus	HKAS53418	China	–	–	–	–	[2]
Rhodactina himalaengensis	CML25117	Thailand	MG212558	–	–	–	[32]
Rossececrea cryptocyanina	KPM-NC17843	Japan	–	–	–	–	[43]
Rossececrea griseovolutina	TNS-F-36988	Japan	–	–	–	–	[43]
Rossececrea pachydermis	KPM-NC23336	New Zealand	KJ001064	–	–	–	[43]
Rubroboletus satanas	VDKO0968	Belgium	K823986	H614892	–	K824019	K824052 [21], [11]
Rubroboletus andinus	REH7705	Costa rica	–	–	–	–	[29]
Rubroboletus brunneoporus	HKAS83209	China	–	–	–	–	[17]
Rubroboletus extemorientialis	OR0406	Thailand	MG212562	H614893	–	MG212647	MG212607 [32], [11]
Singerocorus inaudibilis	TW191199	Guyana	MG65588	H645609	LC043090	MG65596	[47], [11]
Singerocorus rubriflatus	TWH19085	Guyana	MG65589	H645610	MG65597	MG65597	[11]
Spongiforma thailandica	DED7973	Thailand	MG212563	H614904	–	MG212648	KG030436 [1], [32], [11]
Strobilomyces echinocephalus	OR0243	China	MG212564	–	–	–	MG212608 [32]
Strobilomyces ficoceus	RW103	Belgium	K823978	H614895	–	K824011	K824044 [21], [11]
Strobilomyces mirandus	OR0115	China	K823972	H614896	–	K824005	K824038 [21], [11]
Strobilomyces sp.	OR0259	China	MG212565	H614897	–	MG212650	MG212609 [32], [11]
Strobilomyces sp.*	OR0319	China	MG61490	H614898	MG614785	MG614785	[11]
Strobilomyces sp.*	OR0778	Thailand	MG212566	H614909	–	MG212651	MG212610 [32], [11]
Strobilomyces sp.*	OR0192	China	MG61491	H614900	MG614786	MG614793	[11]
Strobilomyces verruculosus	HKAS55389	China	–	–	–	–	[2]
Suiellia turidis	VDKO0241b	Belgium	K823981	H614901	–	K824014	K824047 [21], [11]
Suiellia queletii	VDKO1185	Belgium	MG614590	H645611	H645604	H645598	[11]
Suiellia subumbellatidus	HKAS57262	China	–	–	–	–	[2]
Sutorius australiensis	REH9441	Australia	MG212567	H836576	–	MG212652	JQ287029 [48], [32], [11]
Sutorius eximius	REH9400	USA	MG212568	H414902	–	MG212653	JQ287029 [48], [32], [11]
Sutorius pachydermus	OR0411	Thailand	MN067465	–	–	–	MN067484 [49]
Sutorius pseudotylopilus	OR0378B	Thailand	MG16490	H614903	–	MG164787	MG164740 [11]
Sutorius rubinosus	OR0379	Thailand	MG16493	H614904	–	MG164788	MG164741 [11]
Sutorius subumbellatus	SV0032	Thailand	MN067472	–	–	–	MN067491 [49]
Tangeloboletus gutinosus	HKAS53425	China	–	–	–	–	[2]
Tangeloboletus reticulatus	HKAS53426	China	–	–	–	–	[2]
Turmalina persicina	KPM-NC1801	Japan	K852130	–	–	–	[43]
Turmalina yasavonis	KPM-NC18011	Japan	K852138	–	–	–	[43]
Table 1. Cont.

Species	Voucher	Origin	atp6	cox3	rpb2	tef1	Reference(s)
Tylopilus balloui s.l.	OR0039	Thailand	KT823965	MH614905 *	KT823998	KT824031	[21], [11] *
Tylopilus felleus	VDKK0092	Belgium	KT823987	MH614906 *	KT824020	KT824053 *	[21], [11] *
Tylopilus ferrugineus	BOTH3639	USA	MH614694	MH614907	MH614789	MH614742 *	[11]
Tylopilus otsuensis	HKAS5340	China			KF112797	KF112224	[3]
Tylopilus sp.	JD398	Gabon	MH614695	MH614908	MH614790	MH614743 *	[11]
Tylopilus sp.	OR0252	China	MG212569	MH614909 *	MG212654	MG212611 *	[32], [11] *
Tylopilus sp.	OR0542	Thailand	MG212570	MH614910 *	MG212655	MG212612 *	[11]
Tylopilus sp.	OR1009	Thailand	MH614697	MH614911	MH614791	–	[11]
Tylopilus vinaceipallidus	OR0137	China	MG212571	MH614912 *	MG212656	MG212613 *	[32], [11] *
Tylopilus violaceobrunneus							
Veloporphyrellus conicus	REH8510	Belize	MH614698	MH614913	MH614792	MH614745 *	[11]
Veloporphyrellus graciloides					KF112734	KF112210	[3]
Veloporphyrellus pseudovelutatus		China	JX984519	–	–	JX984553 *	[50]
Veloporphyrellus velatus	HKAS6368	USA	JX984523	–	–	JX984544 *	[50]
Xanthoconium affine	NY08015099	USA	–	–	KF119048	KT9908520	[3]
Xanthoconium purpureum	MIC:K.UO-07061405	USA	–	–	MK766372	MK721170	[29]
Xanthoconium sinense	HKAS77651	China	–	–	KF119048	KT990853 *	[3]
Xerocomellus chrysenteron	VDKK00821	Belgium	KT823984	MH614914 *	KT824017	KT824050 *	[21], [11] *
Xerocomellus cicalpinus	ADK4864	Belgium	KT823960	MH614915 *	KT823993	KT824026 *	[21], [11] *
Xerocomellus communis	HKAS50457	China	–	–	KF119049	KT990858	[3]
Xerocomellus riparicola	VDKK00404	Belgium	MH614699	MH614916	MH614793	MH614746	[11]
Xerocomus ferrugineus	CFMR-BOS-545	USA	–	–	MK766375	MK721173	[29]
Xerocomus fulpices	HKAS76666	China	–	–	KF112789	KF112292	[3]
Xerocomus magniporus	HKAS58000	China	–	–	KF112781	KF112293	[3]
Xerocomus puniceiporus	HKAS80683	China	–	–	KUF794146	KUF794138	[3]
Xerocomus ruscicollis	HKAS58865	China	–	–	KF112784	KF112294	[3]
Xerocomus s.s. sp.	OR0237	China	MHS80796	–	MHS80835	MHS80816	[44], [11] *
Xerocomus s.s. sp.	OR0053	Thailand	MHS80795	MHS801918 *	MHS80834	MHS80815	[44], [11] *
Xerocomus spadiceus var.	MIC:K.UO-07080702	USA	–	–	MK766378	MK721176	[29]
Xerocomus submentosus*	VDKK00987	Belgium	MG212572	MH614919 *	MG212657	MG212614	[32], [11] *
Xerocomus tenax*	MIC:K.UO-08241404	USA	–	–	MK766379	MK721177	[29]
Zangia citrina*	HKAS52684	China	HQ326850	–	–	HQ326872	[51]
Zangia olivaceobrunnea*	HKAS2272	China	HQ326857	–	–	HQ326876	[51]
Zangia roseola*	HKAS51137	China	HQ326858	–	–	HQ326877	[51]

The Xerocomoideae-wide alignment contained 243 sequences comprising four genes (42 for atp6, 38 for cox3, 81 for rpb2, 82 for tef1) from 86 voucher specimens corresponding to 82 taxa and was 3176 characters long (TreeBase number: 28350). ML and BI trees showed similar topologies without any supported conflict. The phylogram of RAxML bipartition (Figure 2) retrieved nine highly supported generic clades, for which BS = 100% and PP = 1 for six clades, Aureoboletus, Pulchroboletus, Heimioporus, Hemileccinum, Hourangia, and the new genus Rubinosporus, while the others had only slightly less support, Boletellus (BS = 85% and PP = 1), Phylloporus (BS = 99% and PP = 1), and Xerocomus (BS = 75% and PP = 1).

3.2. Taxonomy

Rubinosporus Vadthanarat, Raspé & Lumyong, gen. nov.

Typus generis—*Rubinosporus auriporus* Vadthanarat, Raspé & Lumyong

MycoBank—MB840262

Etymology—from Latin “rubineus” and “sporus” referring to its production of dark ruby spore deposits.

Diagnosis—Distinguished from the other genera in Boletaceae by the following combination of characters: pileus surface even, with matted, cracked tomentum; stipe surface even, scattered with minute squamules, golden yellow tubular hymenophore which is relatively thin, especially when young; unchanging surfaces and context when touched or cut; smooth, broadly ellipsoid basidiospores; dark ruby spore deposit.
Figure 1. Boletaceae-wide Maximum Likelihood phylogenetic tree inferred from the four-gene dataset (atp6, cox3, rpl2, and tef1) (introns excluded), showing position of the new genus *Rubinosporus* in Xerocomoideae. Bootstrap support values (BS ≥ 70%) and the corresponding Bayesian posterior probabilities (PP ≥ 0.90) are shown above the supported branches. The two *Buchwaldoboletus* and seven *Chalciporus* species (subfamily Chalciporoideae) were used as the outgroup. All taxa belonging to subfamilies Austroboletoideae, Boletoideae, Chalciporoideae, Leccinoideae, and Zangioideae were collapsed into subfamily clades. All generic clades in subfamily Xerocomoideae and *Pulveroboletus* group that were highly supported were also collapsed.
Figure 2. Xerocomoideae-wide phylogenetic tree inferred from the four-gene dataset (atp6, cox3, rpb2, and tef1) (introns included), including new genus Rubinosporus and selected Xerocomoideae using Maximum Likelihood and Bayesian Inference methods (ML tree is presented). The four Butyriboletus species in Pulveroboletus group were used as the outgroup. Bootstrap support values (BS ≥ 70%) and posterior probabilities (PP ≥ 0.90) are shown above the supported branches.
Description—Basidiomata stipitate-pileate with tubular hymenophore, medium-sized. Pileus hemispherical at first then convex to plano-convex or planar in age; margin inflexed to deflexed, exact to slightly exceeding; surface even to subrugulose at places, dull, greyish red to pastel red to reddish brown, with greyish yellow, greyish orange to brownish orange to brown matted, cracked tomentum; context firm, off-white to yellowish white, unchanging when cut. Stipe central, terete, or sometimes slightly compressed, cylindrical or subcylindrical with slightly wider base; surface topography even, yellowish white to pinkish white at places, scattered yellowish white to orange to light brown minute squamules, to bright yellow near the top; basal mycelium yellowish white; context solid, off-white to yellowish white, unchanging when cut. Hymenophore tubulate, narrowly adnate, mostly segmentiform to subventricose. Tubes relatively thin, especially when young, golden yellow becoming orange-yellow, separable from the pileus context, unchanging when bruised. Pores topography subirregular, irregularly arranged, roundish to slightly angular composite pores; golden yellow at first, golden yellow to greyish yellow with irregularly reddish brown大街 in places, unchanging when touched. Odor mild fungoid. Taste mild to slightly sweet. Spore print dark ruby in mass. Basidiospores broadly ellipsoid, thin-walled, smooth, yellowish to brownish hyaline in water, yellowish hyaline in KOH or NH₄OH, yellowish to reddish in Melzer’s reagent (weakly dextrinoid). Basidia 4-spored, clavate without basal clamp connection. Cheliocystidia clavate with rounded apex or fusiform to broadly fusiform or utriform, thin-walled, hyaline to yellowish hyaline in KOH or NH₄OH. Pleurocystidia fusiform with narrower apex, thin-walled, hyaline to yellowish hyaline in KOH or NH₄OH. Pileipellis a tomentum to intricate trichoderm, composed of moderately interwoven thin-walled hyphae; terminal cells cylindrical with obtuse apex, hyaline to yellowish at places in KOH. Stipitipellis a tomentum composed of loosely to moderately interwoven cylindrical hyphae, anastomosing at places, scattered with groups of rising cells to clusters of basidiole-like cells mixed with caulocystidia, and rarely with caulobasidia, hyaline to yellowish hyaline in KOH or NH₄OH. Clamp connections were not seen in any tissue.

Known distribution—Currently known only from Thailand.

Notes—The morphologically closely resembling genera are *Aureoboletus* and *Baorangia*, the former sharing the bright yellow to golden yellow hymenium, and the latter sharing the thin hymenophore [3,17,31]. However, *Rubinosporus* is easily distinguished from those two genera by the dark ruby spore deposit, which has an olive brown tint in *Aureoboletus* and *Baorangia*.

Rubinosporus auriporus Vadthanarat, Raspé & Lumyong, sp. nov. Figures 3–5

MycoBank—MB840263

Holotype—THAILAND, Chiang Mai Province, Mae Taeng District, 19°06′37.′′ N–98°44′40.′′ E, elev. 1,090 m, 2 June 2015, Santhiti Vadthanarat, SV0090 (CMUB; isotype BR).

Etymology—from Latin referring to the golden yellow hymenophore.
tiform to subventricose. Tubes (0.8)2–4.5(7) mm long half-way to the margin, relatively thin when young 1/4 to 1/5 times then 1/2 to 1/3 times that of the pileus context when mature, golden yellow (3A7) becoming orange yellow (4B7), separable from the pileus context, unchanging when bruised. Pores 0.4–0.8(1) mm wide at mid-radius, topography subirregular, irregularly arranged, composite pores composed of roundish to slightly angular pores in age, golden yellow (3–4A8) at first, golden yellow to greyish yellow (4A/B/C7) with irregularly reddish brown (8E/F8) at places in age, unchanging when touched. Odor mild fungoid. Taste mild to slightly sweet. Spore print dark ruby (12F7) in mass.

Macrochemical reactions: KOH, yellow to orange on cap, stipe, and hymenium; none or yellowish on pileus context and stipe context; NH₄OH, yellow to orange to brown on cap, stipe and hymenophore; none or yellowish on pileus context, stipe context and hymenium.

Figure 3. Fresh basidiomata of Rubinosporus auriporus: (A,B) SV0090 (Holotype); (C,D) SV0394, spores deposit on the cap showing dark ruby color (white arrow); (E) SV0396; (F) the golden yellow pores, irregularly reddish brown at places in (SV0394)—Bars (A–E) = 1, (F) = 5 mm.
Figure 3. Fresh basidiomata of Rubinosporus auriporus: (A,B) SV0090 (Holotype); (C,D) SV0394, spores deposit on the cap showing dark ruby color (white arrow); (E) SV0396; (F) the golden yellow pores, irregularly reddish brown at places in (SV0394)—Bars (A–E) = 1, (F) = 5 mm.

Figure 4. Scanning electron micrographs of Rubinosporus auriporus basidiospores from the holotype—Bar = 1 µm.

Figure 5. Microscopic features of Rubinosporus auriporus: (A) Basidiospores; (B) Basidia; (C) Two shapes of cheilocystidia; (D) Caulocystidia; (E) Pileipellis; (F) Stipitipellis.—Bars A–D = 10 µm, E,F = 50 µm. All drawings were made from the type (SV0090).

4. Discussion

The new genus Rubinosporus is distinguished from other Boletaceae by a combination of striking characters, i.e., a golden yellow tubular hymenophore that is relatively thin especially when young, and dark ruby spore deposits. The character of golden yellow tubular hymenophore is also found in Aureoboletus, Alessioporus, and Pulchroboletus, which also belong to the subfamily Xerocomoideae. However, Aureoboletus species differ from Rubinosporus in usually having a viscid pileus surface especially when moist, olive brown spore deposit, and subfusiform or oblong ovoid to subglobose basidiospores [3,16,31]. Alessioporus is clearly different by the reticulated stipe occasionally with a granular ring-like zone in the middle or lower half of the stipe; rapidly bluing hymenophore, stipe surface, and context when bruised or exposed; sub-ellipsoid to fusiform, ellipsoid to subcylindrical basidiospores; olive brown spore deposit; and distribution in Mediterranean Italy and subtropical USA [54,55]. Pulchroboletus differs by the stipe surface with scattered red to reddish brown punctae, occasionally with reticulum or longitudinal striations, and with a pseudo-annulus; hymenophore and context usually intensively staining blue when bruised or exposed.
Spores [293/5/2] (6.5–)7.1–7.9–8.7(–9.3) × (4.4–)5.2–5.8–6.4(–6.9) μm Q = (1.19–)1.25–1.36–1.52(–1.68). From the type (7–)7.1–7.7–8.6(–9) μm, N = 60, broadly ellipsoid, thin-walled, smooth, yellowish to brownish hyaline in water, yellowish hyaline in KOH or NH₄OH, yellowish to reddish in Melzer’s reagent (inamyloid to weakly dextrinoid). Basidia 4-spored, (18–)19–24–27(–28) × (9–)9–11–12(–12) μm, clavate without basal clamp connection, hyaline to yellowish brownish hyaline in KOH or NH₄OH; sterigmata up to 4 μm long. Cheilocystidia of two types, (1) clavate with rounded apex, frequent, (14–)15–25–36(–38) × (9–)10–12–16(–16) μm, thin-walled, hyaline to yellowish brownish hyaline in KOH or NH₄OH, and (2) fusiform to broadly fusiform or utriform, frequent, (21–)22–34–41(–41) × (10–)10–12–15–16(–16) μm, thin-walled, hyaline to yellowish brownish hyaline in KOH or NH₄OH. Pleurocystidia (29–)30–47–58(–61) × (9–)9–12–16(–18) μm, frequent and more near the pores, fusiform with narrower apex, thin-walled, hyaline to yellowish brownish hyaline in KOH or NH₄OH. Hymenophoral trama divergent, 57–106 μm wide, with 16–32 μm wide of subregular mediostratum, composed of cylindrical, 4–12 μm wide hyphae, slightly yellowish to yellowish brownish hyaline in KOH or NH₄OH. Pileipellis a tomentum to intricate trichoderm, 125–230 μm thick, composed of moderately interwoven thin-walled hyphae; terminal cells 21–68 × 3.5–9 μm, cylindrical with obtuse apex, hyaline to yellowish at places in KOH. Pileus context made of strongly interwoven, thin-walled, hyaline hyphae, 7–23 μm wide, hyaline in KOH. Stipitipellis a tomentum composed of loosely to moderately interwoven cylindrical hyphae (3–9 μm wide), anastomosing at places, scattered with groups of rising cells to clusters of basidiole-like cells ((14–)15–23–38(–39) × (5–)6–8–10(–11) μm) mixed with two types of caulocystidia, and rarely with caulobasidia, 120–170 μm thick (including the height of rising cells), hyaline to yellowish brownish hyaline in KOH or NH₄OH; terminal cells 24–81 × 5–9 μm, more or less parallel to the surface of the stipe, thin-walled, elongated cylindrical with obtuse to slightly swollen apex. Caulocystidia of two types, (1) fusiform, not frequent, (25–)26–45–72(–76) × (9–)9–14–18(–18) μm, thin-walled, hyaline to yellowish brownish hyaline in KOH, and (2) broadly clavate, not frequent, (14–)14–23–34(–34) × (10–)10–15–21(–21) μm, thin-walled, hyaline to yellowish brownish hyaline in KOH. Stipe context composed of parallel, 6–18(23) μm wide hyphae, hyaline to yellowish brownish hyaline in KOH or NH₄OH. Clamp connections were not seen in any tissue.

Habitat and distribution—Gregarious (up to 6 basidiomata) to fasciculate of 2–4 basidiomata, on soil in hill evergreen forest dominated by Fagaceae mixed with Dipterocarpaceae: Dipterocarpus obtusifolius, D. costatus, Shorea siamensis, Hopea sp. Currently known only from the type locality in Chiang Mai Province, northern Thailand.

Specimens examined—THAILAND, Chiang Mai Province, Mae Taeng District, 19°06′32″ N–98°44′33.3″ E, elev. 1,070 m, 4 Jun 2015, Santhiti Vadthanarat, SV0101 (CMUB, BR); ibid. 19°06′33.8″ N–98°44′20.9″ E, elev. 1,110 m, 23 May 2017, Santhiti Vadthanarat, SV0394 (CMUB, BR); ibid. 19°06′36.2″ N–98°44′41.1″ E, elev. 1,080 m, 23 May 2017, Santhiti Vadthanarat, SV0396 (CMUB, BR).

Notes—In the new species, the hymenophoral cystidia contained greenish yellow (1A8) pigments when fresh specimens were observed in water under a compound microscope. However, the pigment was discolored when the cystidia were observed in KOH or NH₄OH, or after treatment of the specimen with heat (drying at 45–50 °C).

A macro-morphologically similar species, Butyriboletus roseoflavus (Hai B. Li & Hai L. Wei) D. Arora & J.L. Frank originally described from China, has a similar color tone of basidiomata with a light pink, light purplish red to rose-red pileus; and lemon-yellow, olive-yellow or honey-yellow hymenophore. However, it can be differentiated from R. auriporus by having a yellower and reticulate stipe which is lemon-yellow or light yellow with almost entirely reticulate stipe or at least in lower part; yellower context which is lemon-yellow and also variable staining reaction in response to bruising, bruising blue slowly or unchanging; bruising blue promptly hymenophore; subfusiform basidiospores; olive brown spore deposit; and the habitat in Pinus or mixed forests dominated by Pinus [52,53].

The chemical reaction of basidiospores with Melzer’s reagent which was negative to weakly dextrinoid in R. auriporus is also present in two Xerocomoideae species, Alessioporus
ichnusanus (Alessio, Galli & Littini) Gelardi, Vizzini & Simonini, and Pulcroboletus roseoalbidus (Alessio & Littini) Gelardi, Vizzini & Simonini. However, the two species are different from R. auriporus by their basidiospore shapes, which are sub-cylindrical or ellipsoid or ellipsoid-fusoid, the strong discoloration (bluing or darkening) in parts of basidiomata, and olive-brown spore deposit [54].

4. Discussion

The new genus Rubinosporus is distinguished from other Boletaceae by a combination of striking characters, i.e., a golden yellow tubular hymenophore that is relatively thin especially when young, and dark ruby spore deposits. The character of golden yellow tubular hymenophore is also found in Aureoboletus, Alessioporus, and Pulcroboletus, which also belong to the subfamily Xerocomoideae. However, Aureoboletus species differ from Rubinosporus in usually having a viscid pileus surface especially when moist, olive brown spore deposit, and dark ruby spore deposit; and distribution in Mediterranean Europe and subtropical America [54,55]. Pulcroboletus differs by the stipe surface with scattered red to reddish brown punctae, occasionally with reticulum or longitudinal striations, and with a pseudo-annulus; hymenophore and context usually intensively staining blue when bruised or cut; ellipsoid to ellipsoid-fusoid basidiospores; olive brown colored spore deposit; so far found in Mediterranean Europe and tropical to subtropical America [46,54,56].

The thin hymenophore is also present in Baorangia and Lanmaoa G. Wu & Zhu L. Yang, which both belong to the Pulveroboletus group. They have a very thin hymenophore, with a tube length 1/3 to 1/5 times the thickness of the pileus context. However, Baorangia and Lanmaoa differ from Rubinosporus by having yellow hymenium (not golden or bright yellow) that immediately turns light blue to greenish blue when touched; olive-brown spore deposit; and subfusiform to elongated subfusiform basidiospores [5,17,35].

Although the color of spore deposit in Rubinosporus is somewhat similar to the color tone in Austroboletus (Corner) Wolfe and Ionosporus Khmeln., Austroboletus has a rufous madder to chocolate to chocolate to purplish vinaceous spore deposit which is browner than in Rubinosporus. Also, Austroboletus species produce basidiomata with pileipellis markedly exceeding pileus margin, embracing the stipe in young basidiomata, whitish to pinkish hymenium, and ornamented basidiospores [3,57,58]. Ionosporus has pale violet to reddish brown spore deposit. However, their basidiospores have an obvious reaction in potassium hydroxide solution, turning deep purple violet. The basidiospores also have granulose pitted surface under SEM. Moreover, Austroboletus and Ionosporus phylogenetically belong to different subfamilies, the Austroboletoideae and Leccinoideae, respectively [2,10]. The color of spore deposit is one of the important character used to differentiate mushroom genera, both in the Agaricales and Boletales. Several previous studies used this character to differentiate new genera. For example, Tylopilus eximius (Peck) Singer, which has a reddish-brown spore deposit, was separated from Tylopilus (having a pinkish spore deposit), and placed in a new genus, Sutorius [48]. Cacaoporus is distinguished from the most similar genus Sutorius by its dark brown spore deposit while the genus Sutorius has a reddish-brown spore deposit [11]. Moreover, they were all supported by the phylogenies.

Most morphological characters of Rubinosporus fit the typical characters of Xerocomoideae genera, as described in Wu et. al. [2,3] and Zhu et al. [15]. However, the color of the spore deposit, which in all Xerocomoideae so far described has an olive-brown tint, is dark ruby in Rubinosporus. The differences in spore deposit color between genera within the same subfamily in Boletaceae, are also found in Boletoideae which varies from olive green (Boletus), blackish brown (Strobilomyces), light yellow or yellow golden (Xanthoconium), pinkish (Tylopilus) e.g., [2,3,59,60]. Spore print color, however, is mostly conserved at genus level, with only slight variations. Most Xerocomoideae genera, i.e.,
Boletellus, Hemileccinum, Heimioporus, Hourangia, Phylloporus, Xerocomus and some species in Aureoboletus produce ornamented basidiospores [3,15,40,61–64]. Exceptions exist, however, e.g., in Phylloporus and Xerocomus [44]. Smooth basidiospores are found in Alessioporus, Pulchroboletus, most species in Aureoboletus [3,31,46,54,55], and the new genus Rubinosporus. The basidiospores of the single Rubinosporus species, R. auriporus showed a weakly dextrinoid reaction in Melzer’s reagent, similar to two species in Alessioporus and Pulchroboletus, namely A. ichnusanus and P. roseoalbidus whereas the other species in the two latter genera are not dextrinoid [46,54–56]. Therefore, the character cannot be considered typical for Rubinosporus.

In the Xerocomoideae-wide phylogeny obtained in this study, the monophy of all genera was highly supported. However, no sequences of Alessioporus were added in the phylogeny because among the genes that were used to infer our phylogeny, only a partial tef1 sequence of A. ichnusanus was available in GenBank. However, in ITS and combined ITS+ LSU+tef1 phylogenies of previous studies, Alessioporus was sister to Pulchroboletus [46,54,56]. In this study, Pulchroboletus was sister to Aureoboletus with high support, and distant from Rubinosporus. Moreover, Alessioporus is morphologically clearly different from Rubinosporus as discussed above. The relationship of Rubinosporus to the other genera within Xerocomoideae remains unclear. It formed a clade close to Hemileccinum with poor support. More species, genes, phylogenies are needed to reveal the sister relationship of Rubinosporus. In addition, the three genera Phylloporus, Hourangia, and Xerocomus formed a highly supported clade. Phylloporus formed a clade sister to Xerocomus, and both genera are sisters to Hourangia. The result is slightly different from Wu et al. [3] phylogeny (based on 28S, tef1, rpb1, and rpb2), in which the three genera also formed a highly supported clade but Phylloporus was sister to Hourangia, not Xerocomus like in this study.

Most of the Boletaceae genera have been recognized as important ectomycorrhizal fungi in forest ecosystems [65,66]. Rubinosporus also presumably forms ectomycorrhizal relationships with either Dipterocarpaceae or Fagaceae, or both. These two tree families were dominant around the area where the genus was found. However, further research is needed to confirm the ectomycorrhizal host species of Rubinosporus.

Rubinosporus is the third novel bolete genus described from Thailand, after Spongiforma Desjardin, Manfr. Binder, Roekring & Flegel, and Cacaoporus Raspé & Vadthanarat were described in 2009 and 2019, respectively [11,67]. Prior to this study, Boletaceae subfamily Xerocomoideae consisted of nine genera [2,3]. Based on the morphological and phylogenetic results in the present study, the tenth genus, Rubinosporus is introduced in the subfamily Xerocomoideae.

Author Contributions: Conceived and designed study, O.R., S.V. and S.L.; analyzed data, S.V. and O.R.; collected specimens, S.V.; performed experiments, S.V. and O.R.; wrote the manuscript, S.V. and O.R.; reviewed and edited the manuscript, all authors. All authors have read and agreed to the published version of the manuscript.

Funding: This research work was partially supported by Chiang Mai University, and also supported by a Postdoctoral Fellowship from Mae Fah Luang University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can be found here: (https://www.ncbi.nlm.nih.gov/; http://purl.org/phylo/treebase, submission ID 28349 and 28350; accessed on 1 December 2021).

Conflicts of Interest: The authors declare no conflict of interest.
References

1. Nuhn, M.E.; Binder, M.; Taylor, A.F.S.; Halling, R.E.; Hibbett, D.S. Phylogenetic overview of the Boletineae. Fungal Biol. 2013, 117, 479–511. [CrossRef] [PubMed]

2. Wu, G.; Feng, B.; Xu, J.; Zhu, X.T.; Li, Y.C.; Zeng, N.K.; Hosen, I.; Yang, Z.L. Molecular phylogenetic analyses redefine seven major clades and reveal 22 new generic clades in the fungal family Boletaceae. Fungal Divers. 2014, 69, 93–115. [CrossRef]

3. Wu, G.; Li, Y.C.; Zhu, X.T.; Zhao, K.; Han, L.H.; Cui, Y.Y.; Li, F.; Xu, J.P.; Yang, Z.L. One hundred noteworthy boletes from China. Fungal Divers. 2016, 81, 25–188. [CrossRef]

4. Orihara, T.; Smith, M.E. Unique phylogenetic position of the African truffle-like fungus, Octaviaenia ivoryana (Boletaceae, Boletales), and the proposal of a new genus, Afrocastellanea. Mycologia 2017, 109, 323–332. [CrossRef]

5. Crous, P.W.; Luangsa-ard, J.J.; Wingfield, M.J.; Carnegie, A.J.; Hernández-Restrepo, M.; Lombard, L.; Groenewald, J.Z. Fungal Planet description sheets: 785–867. Persoonia 2018, 41, 238–417. [CrossRef]

6. Farid, A.; Gelardi, M.; Angelina, C.; Franck, A.R.; Costanzo, F.; Kaminsky, L.; Ercole, E.; Baroni, T.J.; White, A.L.; Garey, J.R.; et al. Phylloporus and Phylloboleletales are no longer alone: Phylloporopsis gen. nov. (Boletaceae), a new smooth-spored lamellate genus to accommodate the American species Phylloporus boletinoides. Fungal Syst. Evol. 2018, 2, 341–359. [CrossRef]

7. Ming, Z.; Hui, T.L. Erythroporales (Boletaceae, Boletales), a new genus inferred from morphological and molecular data from subtropical and tropical China. Mycosystema 2018, 37, 1111–1126.

8. Parihar, A.; Hembrom, M.E.; Vizzini, A.; Das, K. Indoporus shoreae gen. et sp. nov. (Boletaceae) from tropical India. Cryptogam. Mycol. 2018, 39, 447–466. [CrossRef]

9. Wu, G.; Li, Y.C.; Zhu, X.T.; Zhao, K.; Han, L.H.; Cui, Y.Y.; Li, F.; Xu, J.P.; Yang, Z.L. One hundred noteworthy boletes from China. Fungal Divers. 2015, 81, 1–24. [CrossRef]

10. Thiers, B. Continuously Updated—Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New York Botanical Garden’s Virtual Herbarium. Available online: http://sweetgum.nybg.org/science/ih/ (accessed on 8 March 2022).

11. Kornerup, A.; Wanscher, J.H. Methuen Handbook of Colour. 3rd ed.; Eyre Methuen Ltd.: London, UK, 1978; pp. 1–252.

12. Doyle, J.J.; Doyle, J.L. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–15.

13. Raspé, O.; Vadhthanarat, S.; Raspé, O. Cacaporus, a new Boletaceae genus, with two new species from Thailand. MycoKeys 2015, 29, 1–29. [CrossRef]

14. Sulzbacher, M.A.; Orihara, T.; Grebenc, T.; Wartchow, F.; Smith, M.E.; Martin, M.P.; Giachini, A.J.; Baseia, I.G. Longistriata flava (Boletaceae, Basidiomycota)—A new monotypic sequestrate genus and species from Brazilian Atlantic Forest. MycoKeys 2020, 62, 53–73. [CrossRef]

15. Thongbai, B.; Koh, K.; Raspé, O. High undescribed diversity of Amanita section Vaginatae in northern Thailand. Mycosphere 2018, 9, 462–494. [CrossRef]

16. Zhu, X.T.; Wu, G.; Zhao, K.; Halling, R.E.; Yang, Z.L. Hourangia, a new genus of Boletaceae to accommodate Xerocomus cheoi and its allied species. Mycol. Proc. 2015, 14, 37. [CrossRef]

17. Pouzar, Z. Nova genera macromycetum I. Ceská Mykol. 1957, 11, 48–50.

18. Wu, G.; Zhao, K.; Li, Y.C.; Zeng, N.K.; Feng, B.; Halling, R.E.; Yang, Z.L. Four new genera of the fungal family Boletaceae. Fungal Divers. 2015, 81, 1–24. [CrossRef]

19. Thiers, B. Continuously Updated—Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New York Botanical Garden’s Virtual Herbarium. Available online: http://sweetgum.nybg.org/science/ih/ (accessed on 8 March 2022).

20. Kornerup, A.; Wanscher, J.H. Methuen Handbook of Colour, 3rd ed.; Eyre Methuen Ltd.: London, UK, 1978; pp. 1–252.

21. Doyle, J.J.; Doyle, J.L. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–15.

22. Raspé, O.; Vadhthanarat, S.; De Kesel, A.; Degreef, J.; Hyde, K.D.; Lumyong, S.; Perera, R.H.; Thongbai, B.; et al. Thailand’s amazing diversity: Up to 96% of fungi in northern Thailand may be novel. Fungal Divers. 2018, 93, 215–239. [CrossRef]

23. Matheny, P.B. Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). Mol. Phylogenet. Evol. 2005, 35, 1–20. [CrossRef]

24. Rehner, S.A.; Buckley, E. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005, 97, 84–98. [CrossRef]

25. Katoh, K.; Standley, D.M. MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [CrossRef]

26. Stamatakis, A. RAxML-vi-hpc: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [CrossRef]

27. Miller, M.A.; Holder, M.T.; Vos, R.; Midford, P.E.; Liebowitz, T.; Chan, L.; Hoover, P.; Warnow, T. The CIPRES portals. CIPRES. 2009. Available online: http://www.phylo.org/portal2/home (accessed on 19 December 2021).

28. Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.; Darling, A.; Höhna, S.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [CrossRef]
30. Zhang, M.; Li, T.H.; Wang, C.Q.; Song, B.; Xu, J. *Aureoboletus formosus*, a new bolete species from Hunan Province of China. *Mycol. Prog.* 2015, 14, 118. [CrossRef]

31. Zhang, M.; Li, T.H.; Wang, C.Q.; Zeng, N.K.; Deng, W.Q. Phylogenetic overview of *Aureoboletus* (Boletaceae, Boletales), with descriptions of six new species from China. *Mycol. Prog.* 2019, 61, 111–145. [CrossRef]

32. Vadthananarat, S.; Raspé, O.; Lumyong, S. Phylogenetic affinities of the sequestrate genus *Rhodactina* (Boletaceae), with a new species, *R. rostratispora* from Thailand. *Mycol. Prog.* 2018, 10, 63–80. [CrossRef]

33. Binder, M.; Hibbett, D.S. Molecular systematics and biological diversification of Boletales. *Mycologia* 2006, 98, 971–981. [CrossRef]

34. Sato, H.; Hattori, T. New species of *Butyriboletus* section *Butyriboletus* (Boletaceae, Boletales) from Japan, *B. aureocontextus* sp. nov. and *B. areolatus* sp. nov. *PLoS ONE* 2015, 10, e0128184.

35. Phookamsak, R.; Hyde, K.D.; Jeewon, R.; Bhat, D.J.; Jones, E.B.G.; Maharachchikumbura, S.S.N.; Raspé, O.; Karunarathna, S.C.; Wanasinghe, D.N.; Hongsanan, S.; et al. Fungal diversity notes 929–1035: Taxonomic and phylogenetic contributions on genera and species of fungi. *Fungal Divers.* 2019, 95, 1–273. [CrossRef]

36. Zhao, K.; Wu, G.; Feng, B.; Yang, Z.L. Molecular phylogeny of *Caloboletus* (Boletales) and a new species in East Asia. *Mycol. Prog.* 2014, 13, 1127–1136. [CrossRef]

37. Zhao, K.; Wu, G.; Yang, Z.L. A new genus, *Rubroboletus*, to accommodate *Boletus sinicus* and its allies. *Phytotaxa* 2014, 188, 61–77. [CrossRef]

38. Gelardi, M.; Simonini, G.; Ercole, E.; Davoli, P.; Vizzini, A. *Cupreoboletus* (Boletaceae, Boletineae), a new monotypic genus segregated from *Boletus* sect *Luridi* to reassign the Mediterranean species *B. poikilochromus*. *Mycologia* 2015, 107, 1254–1269.

39. Vadthananarat, S.; Amalfi, M.; Halling, R.E.; Bandala, V.; Lumyong, S.; Raspé, O. Two new *Erythrophylloporus* species (Boletaceae) from Thailand, with two new combinations of American species. *Mycologia* 2019, 55, 29–57. [CrossRef]

40. Halling, R.E.; Fechner, N.; Nuhn, M.; Osmundson, T.; Soytong, K.; Arora, D.; Binder, M.; Hibbett, D. Evolutionary relationships of *Heimioporus* and *Boletellus* (Boletales), with an emphasis on Australian taxa including new species and new combinations in *Aureoboletus, Hemileccinum* and *Xerocomus*. *Aust. Syst. Bot.* 2015, 28, 1–22. [CrossRef]

41. Vadthananarat, S.; Lumyong, S.; Raspé, O. *Heimioporus subcostatus*, a new Boletaceae species from northern and northeastern Thailand. *Phytotaxa* 2020, 475, 018–028. [CrossRef]

42. Orihara, T.; Smith, M.E.; Shimomura, N.; Iwase, K.; Maekawa, N. Diversity and systematics of the sequestrate genus *Octaviania* in Japan: Two new subgenera and eleven new species. *Persoonia* 2012, 28, 85–112. [CrossRef]

43. Orihara, T.; Lebel, T.; Ge, Z.W.; Smith, M.E.; Maekawa, N. Evolutionary history of the sequestrate genus *Rossbeevera* (Boletaceae) reveals a new genus *Turmalinea* and highlights the utility of ITS minisatellite-like insertions for molecular identification. *Persoonia* 2016, 37, 173–198. [CrossRef]

44. Chuankid, B.; Vadthananarat, S.; Hyde, K.D.; Thongklang, N.; Zhao, R.; Lumyong, S.; Raspé, O. Three new *Phylloporus* species from tropical China and Thailand. *Mycol. Prog.* 2019, 18, 603–614. [CrossRef]

45. Binder, M.; Larsson, K.H.; Matheny, B.P.; Hibbett, D.S. Amylocorticaleae ord. nov. and Jaapialea ord. nov.: Early diverging clades of Agaricomycetidae dominated by corticioid forms. *Mycologia* 2010, 102, 865–880. [CrossRef]

46. Crous, P.W.; Wingfield, M.J.; Lombard, L.; Roets, F.; Swart, W.; Alvarado, P.; Groenewald, J.Z. Fungal Planet description sheets: 951–1041. *Persoonia* 2019, 43, 223–425. [CrossRef]

47. Henkel, T.W.; Obase, K.; Hubsbands, D.; Uehling, J.K.; Bonito, G.; Aime, M.C.; Smith, M.E. New Boletaceae taxa from Guyana: *Bideroboletus segoi* gen. and sp. nov., *Guyanaporus albipodus* gen. and sp. nov., *Sutorius rubriflavus* gen. and sp. nov., and a new combination for *Xerocomus inunudus*. *Mycologia* 2016, 108, 157–173. [CrossRef]

48. Halling, R.E.; Nuhn, M.; Fechner, N.A.; Osmundson, T.W.; Soytong, K.; Arora, D.; Hibbett, D.S.; Binder, M. *Sutorius*: A new genus for *Boletus ebinus*. *Mycologia* 2012, 104, 951–961. [CrossRef]

49. Vadthananarat, S.; Halling, R.E.; Amalfi, M.; Lumyong, S.; Raspé, O. An unexpectedly high number of new *Sutorius* (Boletaceae) species from northern and northeastern Thailand. *Front. Microbiol.* 2021, 12, 1–27. [CrossRef]

50. Li, Y.C.; Ortiz-Santana, B.; Zeng, N.K.; Feng, B. Molecular phylogeny and taxonomy of the genus *Veloporphyrellus*. *Mycologia* 2014, 106, 291–306. [CrossRef]

51. Li, Y.C.; Feng, B.; Yang, Z.L. *Zangia*, a new genus of Boletaceae supported by molecular and morphological evidence. *Fungal Divers.* 2011, 49, 125–143. [CrossRef]

52. Li, H.; Wei, H.; Peng, H.; Ding, H.; Wang, L.; He, L.; Fu, L. *Boletus roseoflavus*, a new species of *Boletus* in section *Appendiculati* from China. *Mycol. Prog.* 2013, 13, 21–31. [CrossRef]

53. Arora, D.; Frank, J.L. Clarifying the butter Boletes: A new genus, *Butyriboletus*, is established to accommodate *Boletus* sect. *Appendiculati*, and six new species are described. *Mycologia* 2014, 106, 464–480. [CrossRef]

54. Gelardi, M.; Simonini, G.; Ercole, E.; Vizzini, A. *Alessioporus* and *Pulchroboletus* gen. nov. (Boletaceae, Boletineae), two novel genera to accommodate *Xerocomus ichnusanus* and *X. roseoalbidus* from European Mediterranean basin: Molecular and morphological evidence. *Mycologia* 2014, 106, 1168–1187. [CrossRef] [PubMed]

55. Frank, J.L.; Bessette, A.R.; Bessette, A.E. *Alessioporus rubriflavus* (Boletaceae), a new species from the eastern United States. *N. Am. Fungi.* 2017, 12, 1–8.

56. Farid, A.; Franck, A.R.; Garey, J.R. *Boletus rubricitrinus* belongs in *Pulchroboletus* (Boletaceae). *Czech Mycol.* 2017, 69, 143–162. [CrossRef]
57. Horak, E. Revision of Malaysian Species of Boletales s.l. (Basidiomycota) Described by Corner EJH (1972, 1974); Forest Research Institute and Ministry of Natural Resources and Environment: Selangor, Malaysia, 2011; pp. 1–283.

58. Fechner, N.; Bonito, G.; Bougher, N.L.; Lebel, T.; Halling, R.E. New species of Austroboletus (Boletaceae) in Australia. Mycol. Prog. 2017, 16, 769–775. [CrossRef]

59. Halling, R.E.; Desjardin, D.E.; Fechner, N.; Arora, D.; Soytong, K.; Dentinger, B.T.M. New porcini (Boletus sect. Boletus) from Australia and Thailand. Mycologia 2014, 106, 830–834. [CrossRef]

60. Han, L.H.; Hao, Y.J.; Liu, C.; Dai, D.Q.; Zhao, K.; Tang, L.Z. Strobilomyces rubrobrunneus (Boletaceae), a new species with reddish brown scales from eastern China. Phytotaxa 2018, 376, 167–176. [CrossRef]

61. Horak, E. Heimioporus E. Horak gen. nov.—Replacing Heimiella Boedijn (1951, syn. post., Boletales, Basidiomycota). Sydowia 2004, 56, 237–240.

62. Šutara, J. Xerocomus s. l. in the light of the present state of knowledge. Czech Mycol. 2008, 60, 29–62. [CrossRef]

63. Neves, M.A.; Halling, R.E. Study on species of Phylloporus I: Neotropics and North America. Mycologia 2010, 102, 923–943. [CrossRef]

64. Neves, M.A.; Binder, M.; Halling, R.; Hibbett, D.; Soytong, K. The phylogeny of selected Phylloporus species inferred from NUC-LSU and ITS sequences, and descriptions of new species from the Old World. Fungal Divers. 2012, 55, 109–123. [CrossRef]

65. Tedersoo, L.; Smith, M.E. Lineages of ectomycorrhizal fungi revisited: Foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol. Rev. 2013, 27, 83–99. [CrossRef]

66. Husbands, D.R.; Henkel, T.W.; Bonito, G.; Vilgalys, R.; Smith, M.E. New species of Xerocomus (Boletales) from the Guiana Shield, with notes on their mycorrhizal status and fruiting occurrence. Mycologia 2013, 105, 422–435. [CrossRef]

67. Desjardin, D.E.; Binder, M.; Roekring, S.; Flegel, T. Spongiforma, a new genus of gasteroid boletes from Thailand. Fungal Divers. 2009, 37, 1–8.