Antileishmanial activity of terpenylquinones on *Leishmania infantum* and their effects on *Leishmania* topoisomerase IB

Yolanda Pérez-Pertejo, José M. Escudero-Martínez, Rosa M. Reguera, Rafael Balaña-Fouce, Pablo A. García, Pablo G. Jambrina, Arturo San Feliciano, María-Ángeles Castro

Departamento de Ciencias Biomédicas. Campus de Vegazana, University of León, León, Spain

Departamento de Ciencias Farmacéuticas, Área de Química Farmacéutica, Facultad de Farmacia, CIETUS, IBSAL, Campus Miguel de Unamuno, University of Salamanca, Salamanca, Spain

Departamento de Ciencias Farmacéuticas, Área de Química Farmacéutica, University of Salamanca, Salamanca, Spain

Abstract — *Leishmania* is the aetiological agent responsible for the visceral leishmaniasis, a serious parasite-borne disease widely spread all over the World. The emergence of resistant strains makes classical treatments less effective; therefore, new and better drugs are necessary. Naphthoquinones are interesting compounds for which many pharmacological properties have been described, including antileishmanial activity. This work shows the antileishmanial effect of two series of terpenyl-1,4-naphthoquinones (NQ) and 1,4-anthraquinones (AQ) obtained from natural terpenoids, such as myrcene and myrciocommunic acid. They were evaluated both in vitro and ex vivo against the transgenic *iRFP-Leishmania infantum* strain and also tested on liver HepG2 cells to determine their selectivity indexes. The results indicated that NQ derivatives showed better antileishmanial activity than AQ analogues, and among them, compounds with a dicarbethoxylated hydroquinone moiety provided better results than their corresponding quinones. Regarding the terpenic precursor, compounds obtained from the monoterpene myrcene displayed good antiparasitic efficiency and low cytotoxicity for mammalian cells, whereas those derived from the diterpenoid showed better antileishmanial activity without selectivity. In order to explore their mechanism of action, all the compounds have been tested as potential inhibitors of *Leishmania* type IB DNA topoisomerases, but only some compounds that displayed the quinone ring were able to inhibit the recombinant enzyme in vitro. This fact together with the docking studies performed on LTopIB suggested the existence of another mechanism of action, alternative or complementary to LTopIB inhibition. In silico druglikeness and ADME evaluation of the best leishmanicidal compounds has shown good predictable druggability.

1. Introduction

Visceral leishmaniasis (VL) is a serious parasite-borne disease widely spread all over the World and responsible of ca. 400,000 new cases per year, mostly in Eastern Africa and Indian subcontinent (Dorlo et al., 2017). *Leishmania donovani* and *L. infantum* are the pathogens responsible of VL in the Old World, whereas *L. (V. simiae) infantum chagasi* is the pathogen responsible in the New World. The first-line treatment against VL is based on compounds of pentavalent antimony (SbV5), as meglumine antimonate and sodium stibogluconate, whose treatment against VL is based on compounds of pentavalent antimony activity is decreasing due to its massive use and other environmental factors in the Indian subcontinent (Burza et al., 2018). Therefore, the emergence of resistant strains of *L. donovani* in the northeastern Indian state of Bihar, recommended the substitution of SbV5-based drugs by the administration of a single dose of the polyene antifungal amphotericin B (AMB) formulated in liposomes (Sundar et al., 2010). Nowadays, despite the efforts made by all the stakeholders involved, there is not an antileishmanial drug free of side effects, easily administrable and affordable for the impoverished economies of the endemic countries (Monge-Maillo and López-Vélez, 2013; Shyaka et al., 2011; Ait-Oudhia et al., 2011). Drugs for Neglected Diseases initiative (DNDI), an International organization founded by “Médecins sans Frontières” and the
public sector of some endemic countries, has promoted the application of several treatments based on the specific target profiles of the disease in Africa and India, using combinations of the current drugs in clinical use. Far to be a definitive solution, novel and more friendly medicines are urgently needed to face this disease (Barrett and Croft, 2012).

The identification of primary and selective drug targets is in the pipeline of early drug discovery against VL (Reguera et al., 2014; Balaña-Fouce et al., 2019). Naphthoquinones (NQs) are natural compounds found in different families of plants, including Bignoniaceae and Verbenaceae. These substances contain a double conjugated α,β-dienedione (quinone) system in a base skeleton of naphthalene. Lapachol, α-lapachone and β-lapachone are well known NQs used in medicinal chemistry studies (De Moura et al., 2001; Pinto and de Castro, 2009). Such compounds, besides being obtained from natural sources, can be easily synthesized and have inspired the synthesis of many other substances with potential pharmacological activities, including some drug candidates against neglected diseases (Ferreira et al., 2011; Castro et al., 2013b). The oxidant stress activity of quinone-bearing compounds is well-known and can partly explain the leishmanicidal of these compounds (Araújo et al., 2017; Teixeira et al., 2001; Ali et al., 2011). However, it has been reported that certain NQs can primary interact with eukaryotic type IB DNA topoisomerases (TopIB), which may lead to apoptosis-like death in *Leishmania* (Araújo et al., 2019).

Two reasons support the robustness of TopIB as an attractive druggable target in *Leishmania* (Bodley et al., 2003): i) *Leishmania* TopIB (LTopIB) is differentially expressed during the infection process within the host, and more striking ii) LTopIB differs in structure from its human counterpart (Balaña-Fouce et al., 2014; Reguera et al., 2006; Villa et al., 2003). Fig. 1A shows the active site of LTopIB superimposed to human TopIB (hTopIB) in the presence of camptothecin (CPT, Fig. 1B) a specific TopIB poison (Ioanoviciu et al., 2005; Pommier et al., 2010).

Several reports show that NQs, such as the anticancer drugs of natural origin shikonin and plumbagin (Fig. 1B) are good inhibitors of TopIB preventing the formation of the enzyme-DNA covalent complex and inducing apoptosis (Chen et al., 2013; Zhang et al., 2013; Beretta et al., 2017). Similarly, β-lapachone and lapachol inhibited TopIB but did not stabilize the cleavable complex, indicating a mechanism of action associated to catalytic inhibition (Li et al., 1993; Xu et al., 2016; Zhang et al., 2016).

Thus, the present study aims to evaluate the leishmanicidal activity of terpenyl-1,4-NQ, 1,4-anthraquinone (1,4-AQ) and benzoacridine-quinone (BAcQ) derivatives and several related naphthalene and anthracene analogues previously synthesized at our laboratory (Castro et al., 2013a; Castro et al., 2015; Miguel del Corral et al., 1998; Miguel del Corral et al., 2001; Miguel del Corral et al., 2007; Chamorro, 2002; Rodríguez, 2006). In this study, we assess the antileishmanial effects of these compounds against both stages – free-living promastigotes and intracellular amastigotes – of *L. infantum*, one of the aethiological agent responsible for VL in humans and dogs in the Old World. For this purpose, an intracellular screening on macrophages isolated from infected BALB/c mice with an infrared-emitting *L. infantum* strain was used (Calvo-Álvarez et al., 2015b). This method has the advantage of using host-infected cells under natural conditions, where the immune cells of spleen are still playing their role (Calvo-Álvarez et al., 2015a). Furthermore, we have explored the potential role played by LTopIB as putative target of these compounds.

2. Material and methods

2.1. Chemistry

The structures of quinone and hydroquinone derivatives evaluated in this work are summarized in Tables 1 and 2. The syntheses of these compounds were made according to previous reports. Compounds showed in Table 1 are derived from myrcene. Derivatives 1–20 and 25 were obtained after an initial catalysed Diels-Alder condensation between myrcene and p-benzoquinones (Castro et al., 2013a; Castro et al., 2015; Miguel del Corral et al., 1998), generating terpenyl-1,4-naphthoquinones (NQ, 1–6), terpenyl-1,4-naphthohydroquinones (NHQ, 7–11), 1,4-anthraquinones (1,4-AQ, 12–17), 1,4-anthrahydroquinones (1,4-AHQ, 18–20) and compound 25. Similar condensation between 1,4-NQ and myrcene led to 9,10-anthroquinone derivatives (9,10-AQ, 21–24).
Compounds shown in Table 2 were similarly obtained from the Diels-Alder condensation between the diterpenoid myrceocomonic acid and p-benzoquinone or 1,4-NQ generating diterpenylnaphthohydroquinone derivatives (DNHQ, \(26–37\)) (Miguel del Corral et al., 2001; Miguel del Corral et al., 2007; Chamorro, 2002; Rodríguez, 2006).

2.2. In vitro assays

All compounds were assayed in vitro against *L. infantum* BCN150 IRFP promastigotes (iRFP-*L. infantum*), a genetically modified strain that constitutively produces the infrared fluorescent protein (iRFP) for near infrared detection (Calvo-Álvarez et al., 2015b). Promastigotes were cultured in M199 medium (Gibco), supplemented with 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) pH 6.9, 7.6 mM hemin, 10 mM glutamine, 0.1 mM adenosine, 0.01 mM folic acid, 1xRPMI 1640 vitamin mix (Sigma), 10% (v/v) heat inactivated foetal bovine serum (FBS) (Gibco), 50 U/mL penicillin and 50 μg/mL streptomycin. Cultures of iRFP-*L. infantum* promastigotes with a density

Comp.	Type	R	R1	R2	EC50 (μM)	CC50 (μM)	SIp	SIa	IC50 (μM)		
1	NQ	I	Cl		22.8 ± 0.6	> 100	50.1 ± 2.4	2.2	< 0.50	23.5 ± 1.3	
2	NQ	I	Br		11.7 ± 0.1	90.0 ± 4.3	14.7 ± 0.8	1.3	0.16	13.5 ± 0.6	
3	NQ	I	Br		> 100	12.8 ± 1.5	160 ± 12	< 1.6	12	> 100	
4	NQ	I	H		0.57 ± 0.04	7.74 ± 0.07	10.8 ± 0.8	18.9	1.4	50.1 ± 5.0	
5	NQ	II	Cl		18.8 ± 0.6	> 100	104 ± 8	5.5	< 1.0	> 100	
6	NQ	II	Cl		11.4 ± 0.5	28.8 ± 1.4	131 ± 6	11.5	4.5	> 100	
7	NHQ	II	H		7.19 ± 0.17	7.18 ± 0.28	4.33 ± 0.28	0.6	0.60	> 100	
8	NHQ	II	CH3		12.7 ± 0.3	5.71 ± 0.59	28.0 ± 1.2	11.5	4.5	> 100	
9	NHQ	II	OCH3		10.9 ± 0.5	3.61 ± 0.69	> 200	> 18.3	> 55	> 100	
10	NHQ	(5,8-dihydro)	II	CH3		18.8 ± 0.6	104 ± 8	5.5	< 1.0	> 100	
11	NHQ				11.4 ± 0.5	28.8 ± 1.4	131 ± 6	11.5	4.5	> 100	
12	1,4-AQ	–	H		1.20 ± 0.08	23.0 ± 2.1	13.4 ± 1.3	11.2	0.58	10.7 ± 2.2	
13	1,4-AQ	–	OCH3		7.56 ± 0.14	14.2 ± 2.5	29.7 ± 1.3	3.9	2.1	91.8 ± 8.2	
14	1,4-AQ	–	OEt		16.1 ± 0.8	14.8 ± 1.9	199 ± 14	12.4	13	> 100	
15	1,4-AQ	–	NHEt		19.9 ± 1.7	33.8 ± 5.2	149 ± 9	7.5	4.4	> 100	
16	1,4-AQ	–	NHEt	Cl	12.5 ± 0.0	66.6 ± 3.3	> 200	16.0	> 3.0	> 100	
17	1,4-AQ	–			13.5 ± 0.4	16.3 ± 2.1	> 200	14.8	> 12	> 100	
18	1,4-AHQ	(9,10-dihydro)	–	H		15.9 ± 1.1	1.22 ± 0.01	37.0 ± 2.1	2.3	30	> 100
19	1,4-AHQ	–	H		3.3 ± 0.1	2.64 ± 0.01	5.94 ± 0.31	1.8	2.3	> 100	
20	1,4-AHQ	–	OCH3		16.6 ± 0.4	19.3 ± 1.6	54.6 ± 5.3	3.3	2.8	> 100	
21	9,10-AQ	II	H		18.2 ± 1.1	21.5 ± 1.1	57.8 ± 1.7	3.2	2.7	57.9 ± 4.1	
22	9,10-AQ	–	H		57.5 ± 0.2	44.8 ± 1.6	147 ± 11	2.5	3.3	> 100	
23	9,10-AQ	(4a,9a-dihydro)	II	H		69.6 ± 8.4	> 100	82.9 ± 5.3	1.2	> 0.83	> 100
24	9,10-AQ	(4a,9a-dihydro)	–	H		85.4 ± 2.5	21.6 ± 2.4	> 200	2.3	> 9.3	> 100
25	BAcQ	–			39.0 ± 4.3	24.9 ± 0.30	124 ± 8	3.2	5.0	41.4 ± 7.4	

SLp: Selectivity Index for promastigotes (CC50 HepG2/EC50 promastigotes); SLa: Selectivity Index for amastigotes (CC50 HepG2/EC50 amastigotes); MTF: Miltefosine; AMB: Amphotericin B deoxycholate; nt: not tested; un: undefined. Significant values (EC50: ≤ 10 μM; SI: ≥ 10, and CC50 ≥ 100 μM) are bolded for comparison purposes.

21–24. Compounds shown in Table 2 were similarly obtained from the Diels-Alder condensation between the diterpenoid myrceocomonic acid and p-benzoquinone or 1,4-NQ generating diterpenylnaphthohydroquinone derivatives (DNHQ, \(26–37\)) (Miguel del Corral et al., 2001; Miguel del Corral et al., 2007; Chamorro, 2002; Rodríguez, 2006).
Table 2
Structures and bioactivity data for terpenyl-quinone/hydroquinone derivatives obtained from diterpenoids.

Comp.	Type	R	EC₅₀ (µM) L. infantum promastigotes	CC₅₀ (µM) L. infantum amastigotes	Human HepG2	Leishmanial TopIB		
26	DNHQ		11.7 ± 0.3	4.01 ± 0.50	10.5 ± 0.7	0.9	2.6	> 100
27	DNHQ		0.33 ± 0.01	4.34 ± 0.49	1.95 ± 0.26	5.9	0.45	> 100
28	DNHQ		0.29 ± 0.01	2.56 ± 0.16	3.38 ± 0.33	11.6	1.3	> 100
29	DNHQ		0.66 ± 0.04	1.23 ± 0.05	2.24 ± 0.38	3.4	1.8	78.4 ± 17.1
30	DNHQ		3.45 ± 0.03	1.43 ± 0.06	1.59 ± 0.08	0.5	1.1	> 100
31	DNHQ		0.29 ± 0.01	4.24 ± 0.53	3.40 ± 0.36	11.7	0.80	> 100
32	DNHQ		2.28 ± 0.02	2.46 ± 0.10	0.95 ± 0.06	0.4	0.39	> 100
33	DNHQ		2.95 ± 0.20	1.92 ± 0.01	11.3 ± 2.0	3.8	5.9	> 100
34	DNHQ		76.0 ± 8.1	54.6 ± 5.6	182 ± 6	2.4	3.3	> 100
35	DNHQ		5.97 ± 0.13	11.8 ± 1.6	10.4 ± 0.9	1.7	0.88	> 100
36	DAQ		> 100	30.9 ± 3.7	96.6 ± 5.9	< 1	3.1	> 100
37	HetNQ		14.0 ± 0.5	7.23 ± 0.23	87.6 ± 4.3	6.3	12	> 100

| MTF | 5.9 ± 1.4 | 2.40 ± 0.21 | 50.4 ± 4.3 | 8.5 | 21 | nt |
| AMB | 0.77 ± 0.15 | 0.32 ± 0.05 | nt | un | un | nt |

SIₚ: Selectivity Index for promastigotes (CC₅₀ HepG2/EC₅₀ promastigotes); SIₐ: Selectivity Index for amastigotes (CC₅₀ HepG2/EC₅₀ amastigotes); MTF: Miltefosine; AMB: amphotericin B deoxycholate; nt: not tested; un: undefined. Significant values (EC₅₀: ≤10 µM, SI: ≥ 10 and CC₅₀ > 100 µM) are bolded for comparison purposes.
of 1 × 10⁶ cells/mL were dispensed into 96-well optical bottom black plates (Thermo Scientific), 180 μL per well. Each compound was tested adding 20 μL of different stock solutions to the inoculated wells. Stock solutions were prepared in dimethylsulfoxide (DMSO) and serially diluted in M199 media (0.01–200 μM final concentrations). The viability of promastigotes to calculate the 50% effective concentration (EC₅₀) values was assessed measuring their fluorescence at 713 nm in an Odyssey (Li-Cor) infrared imaging system after 72 h exposure at 26 °C. All compounds and controls were assayed by triplicate. Plots were fitted by nonlinear analysis using the Sigma Plot 10.1 statistical package.

2.3. Ex vivo murine splenic explant cultures

Primary infected splenic explants were obtained inoculating intraperitoneally 10⁸ *L. infantum* metacyclic promastigotes to female BALB/c mice. After five weeks, mice were sacrificed and spleens were aseptically extracted, washed with cold phosphate-buffered saline (PBS), cut in small pieces and incubated with 5 mL of 2 mg/mL collagenase D (Sigma) prepared in buffer (10 mM HEPES, pH 7.4, 150 mM NaCl, 5 mM KCl, 1 mM MgCl₂ and 1.8 mM CaCl₂) for 20 min, so as to obtain a single cell suspension. The cell suspension was passed through a 100 μm-mesh cell strainer, harvested by centrifugation (500 × g for 7 min at 4 °C), washed twice with PBS and resuspended in RPMI medium (Gibco), supplemented with 10 mM HEPES, 1 mM sodium pyruvate, 1xRPMI 1640 vitamin mix, 10% (v/v) FBS, 50 U/mL penicillin and 50 μg/mL streptomycin. Different concentrations of the tested compounds (0.01–200 μM) were added to these cells seeded in 384-well black optical bottom plates at 37 °C under 5% CO₂ atmosphere. The viability of *L. infantum* amastigotes infecting macrophages was calculated by recording the fluorescence at 713 nm by an Odyssey (Li-Cor) infrared imaging system. The EC₅₀ value was calculated by plotting the infrared fluorescence emitted by viable amastigotes against different concentrations of the tested compounds after 72 h of exposure. Plots were fitted by nonlinear analysis using the Sigma Plot 10.1 statistical package.

2.4. Selectivity index (SI) determination

Each compound was tested on human hepatocarcinoma cell HepG2 line (ATCC HB-8065) as a suitable in vitro toxicity model system of human hepatocytes. HepG2 cells were seeded in 96-well plates at 37 °C under 5% CO₂ atmosphere. The Glutamax Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco) was used as cultured medium, supplemented with 10% (v/v) FBS, 50 U/mL penicillin and 50 μg/mL streptomycin. Serial dilutions of each compound ranging from 0.01 to 200 μM were added to the cultures and the viability of HepG2 cells after 72 h of exposure was measured using the Alamar Blue staining method, according to manufacturer’s recommendations (Invitrogen). The resulting plots of cell viability vs the concentration of each compound were adjusted by non-linear analysis using the Sigma Plot 10.1 statistical package and used to calculate the 50% cytotoxic concentration (CC₅₀). Selectivity indexes (SI) for each compound were calculated as the ratio between the CC₅₀ values obtained for HepG2 cells and the EC₅₀ values for promastigotes (SIₚ) and for amastigotes obtained with ex vivo murine splenic explant cultures (SIₐ).

2.5. Purification of leishmanial DNA topoisomerase IB (LTopIB)

Expression and purification of LTopIB was carried out as described previously (Villa et al., 2003). Briefly, LTopIB was purified from yeast strain EKY3 deficient in TopIB activity (MATα, ura3-52, his3Δ200, leu2A1, trp1Δ63, top1Δ:TRP1), that carries the bicistronic expression vector pEESC-URA containing both subunits of LTopIB. Yeast were grown in yeast synthetic drop-out medium without uracil (Sigma) supplemented with 2% raffinose (w/v) to OD₆₀₀=0.8–1 and induced for 10 h with 2% galactose (w/v). Cells were harvested, washed with cold TEEG buffer (50 mM Tris–HCl pH 7.4, 1 mM EDTA, 1 mM EGTA, 10% glycerol) and resuspended in 15 μL of 1 x TEEG buffer supplemented with 0.2 M KCl and a protease inhibitors cocktail (Thermo Scientific). Protein extract, obtained lysing yeast cells, was loaded on a 5 mL P-11 phosphocellulose column (Whatman International Ltd. England). LTopIB protein was eluted at 4 °C with a discontinuous gradient of KCl (0.2, 0.4, 0.6 M) in TEEG buffer. The fractions eluted with 0.6 M KCl in TE EG buffer were supplemented with 50% glycerol and stored at −20 °C prior to using in enzyme assays.

2.6. TopIB relaxation activity assay

LTopIB activity was measured by the relaxation of supercoiled plasmid DNA. One unit of purified LTopIB (enzyme needed to relax 0.5 μg of supercoiled DNA during 30 min at 37 °C) was incubated with different concentrations of each compound for 15 min at 4 °C. Then, in a final volume of 20 μL was added the reaction mixture containing 0.5 μg of supercoiled pBluescript SK(−) plasmid, 10 mM Tris-HCl buffer pH 7.5, 5 mM MgCl₂, 0.1 mM EDTA, 15 μg/mL bovine serum albumin and 150 mM KCl. Reaction mixtures were incubated 30 min at 37 °C and stopped by the addition of 4 μL loading buffer (5% sarcosyl, 0.12% bromophenol blue, 25% glycerol). The topoisomers were resolved in 1% agarose gels by electrophoresis in 0.1 M Tris borate EDTA buffer (pH 8.0) at 2 V/cm for 16 h and visualized with UV illumination after ethidium bromide (0.5 μg/mL) staining. The 50% inhibition concentration (IC₅₀) values of LTopIB inhibition were determined as the 50% reduction of supercoiled DNA, plotting the percentage of supercoiled DNA vs drug concentrations. Plots were fitted by nonlinear analysis using the Sigma Plot 10.1 statistical package.

2.7. Molecular docking studies

Our model for LTopIB was based on the PDB structure 1T8I (Staker et al., 2005) corresponding to the ternary complex of hTopIB-DNA-CPT. Homology modeling of the two subunits of LTopIB was carried out using SWISS-Model (Bienert et al., 2017; Waterhouse et al., 2018) and the aforementioned 1T8I structure as a template. The LTopIB-DNA-CPT complex was placed in the centre of a cubic water box large enough to contain the protein complex and at least 15 Å of solvent on all sides. To mimic the intracellular conditions, K⁺ and Cl⁻ were added to the system to account for a 0.15 M KCl concentration. Coordinates of the hydrogen atoms were generated with CHARMM (Brooks et al., 2009) using standard protonation states for all the titrable residues, and molecular dynamics (MD) simulations were run using NAMD (Phillips et al., 2005), the CHARMM36 force-field (Hart et al., 2012; Best et al., 2012), and Particle Mesh Ewald method to account for the electrostatics of the periodic boundary conditions (Darden et al., 1993). A 2 fs time step and the ShakeH algorithm were used (Ryckaert et al., 1977). Throughout the 20 ns of MD simulations at constant temperature (303.15 K) and pressure (1 bar) the structure was stable, and CPT did not leave its pocket, intercalated between the DNA chains. The coordinates of the protein and DNA chains of last frame of the MD simulations were extracted for the subsequent docking stage.

Docking of compounds 1–25 was carried out using Autodock-Vina (Trott and Olson, 2010). To further validate our model, we extracted the coordinates or the most stable poses for AQ 12 and AQ 17 to carry out further 50 ns MD simulations for the AQ 12 (or AQ 17)-TopIB-DNA complex at the same conditions described above. Throughout these simulations the ligands remained in the active site, close to their docking conformations (in particular AQ 17 as its size is significantly larger). Parameters for CPT, AQ 12, and AQ 17 were assigned using ParamChem (accessible at https://cgenff.umd.edu) (Vanommeslaeghe et al., 2010).
3. Results and discussion

3.1. Activity of terpenylquinones against L. infantum

A family of thirty-seven NQ, AQ and BAcQ derivatives synthesized and previously evaluated as antifungals and antineoplastics (Castro et al., 2013a; Castro et al., 2015; Miguel del Corral et al., 1998; Miguel del Corral et al., 2001; Miguel del Corral et al., 2007; Chamorro, 2002; Rodríguez, 2006) were assessed in vitro against free-living axenic promastigotes and ex vivo against amastigotes infecting mouse splenic cells. In this regard, we used a recombinant IRFP-L. infantum strain that constitutively produces the infrared fluorescent protein (iRFP) and emits near infrared fluorescence at 713 nm without the necessity of adding external substrates. The ability of this parasitic strain to evaluate the in vitro and ex vivo efficacy of other series of compounds has been proven in previous works by the authors (Escudero-Martínez et al., 2017).

To go further into the potential usefulness of these quinone/hydroquinones as antileishmanial agents, the viability of mammalian HepG2 cancer cell line, a human model for studies of liver drug toxicity, was assessed after exposing the cells to the compounds and the corresponding cytotoxic concentration CC50 values were determined. Ex vivo infected splenocytes, free-living promastigotes and HepG2 liver cells were incubated with the testing compounds as described in Materials and methods. After drug treatments, the parasite viability was determined by the infrared fluorescence emitted by living parasites, whereas Alamar Blue was added to assess the percentage of viable hepatic cells. The EC50 values, defined as the concentrations of the compounds that resulted in 50% parasite growth arrest, were compared to the CC50 values obtained from HepG2 cells to calculate selectivity index values (SI) (Tables 1 and 2).

Compounds tested are listed in Tables 1 and 2 grouped according their terpenic precursor (monoterpenoid or diterpenoid) and their quinone/hydroquinone nature. Table 1 includes terpenylnaphthoquinones/hydroquinones (NQ/NHQs 1–11), anthra-quinones/hydroquinones (1,4-AQ/1,4-AHQs 12–20, 9,10-AQs 21–24) and the benzocridinequinone (BAcQ) 25, all of them obtained from the monoterpenoid myrcene. Considering as potential “hit” those compounds that inhibit the 50% growth of intra-macrophage amastigotes at concentrations below 10 μM, six compounds out of twenty-five (4, 7, 8, 10, 18 and 19) were able to arrest the growth of this parasite form. In addition, derivatives 4, 7 and 19 together with three other compounds (11–13) showed EC50 values below 10 μM for promastigotes.

Considering the oxidation degree of the quinone moiety, the diacetylated hydroquinone derivatives, NHQs and 1,4-AHQs, provided better results than those analogues with an unmodified quinone ring, NQs, 1,4-AQs and 9,10-AQs. Five out of those six hits mentioned above belong to the NHQ and 1,4-AHQ groups. The NHQs 7 (EC50 = 7.18 μM), 8 (EC50 = 5.71 μM) and 10 (EC50 = 3.61 μM) and more actively, the 1,4-AHQs 18 (EC50 = 1.22 μM) and 19 (EC50 = 2.64 μM) reduced the amastigotes growth below 10 μM and, in addition, compound 18 was twice as potent as mitofosine (MTP) used as reference drug against amastigotes. Interestingly, the 2-methyl-NHQ 10 and the 1,4-AHQ 18 were relatively safe with CC50 > 200 μM and 37.0 μM respectively, for host’s HepG2 cells, yielding SIa values > 55 and 30. In addition to their significance about the relative toxicity of the compounds tested, the SI values turn out to be useful to make comparisons of bioactivity within each and between both series of compounds. Compounds with SI greater than 10 can be considered possible candidates to be optimized in order to improve their efficacy and selectivity, and thus be included in future biopharmaceutical and preclinical studies (Katsuno et al., 2015).

Among the NQ and AQ derivatives, only NQ 4, bearing a di-methoxyphenoxy substituent, had an EC50 below 10 μM, being much more potent against promastigotes (EC50 = 0.57 μM) than against intracellular amastigotes (EC50 = 7.74 μM). In fact, the potency of this compound against promastigotes was in the same range as that of AMB, the most potent antileishmanial reference drug used in the study.

Regarding the size of the quinone moiety, the introduction of an additional ring, from NQ to AQ systems either 1,4-AQ or 9,10-AQ, did not enhance the antiparasitic activity. In general, the compounds tested were barely toxic on HepG2 hepatocytes, being of interest those compounds with SI values over 10, as the already mentioned compounds 10 and 18 with SIa > 55 and 30 on the amastigote form of the parasite, respectively. Other interesting derivatives were the NQ 3 and the 1,4-AQs 14 and 17 with SIa values of 12, 13 and > 12 respectively, despite presenting EC50 values on amastigotes over 10 μM (EC50 = 12.8, 14.8 and 16.3 μM, respectively); so they could be considered relatively safe for human HepG2 cells (CC50 > 200 μM). Compounds 10, 14 and 17 had also a SI > 10 on promastigotes with values of SIa > 18.3, 12.4 and 14.8, respectively.

The structures of those naphthohydroquinone derivatives obtained from the diterpenoid myrceocharmonic acid are listed in Table 2 (DNHQs 26–37). Different modifications were introduced in the diterpenyl moiety, mainly in the carboxylic group at C-4 position, in the double bond Δ10(17) and in the chain joining the decaline rest to the naphthohydroquinone core.

With the exception of 36, the only AQ derivative in this series, all of them were active against both promastigotes and amastigotes within the μM or lower range. Unfortunately, the cytotoxicity of these compounds for host HepG2 cells was undifferentiable from the effect on the parasite forms, yielding SI values around one. Only the DNHQ 28 and 31 showed a SIa value close to 12. Table 2 include also the pyrazole-fused NQ 37, which is the only derivative in this series with an interesting SIa value of 12.

3.2. Inhibition of leishmanial DNA topoisomerase IB

The presence of polycyclic systems in the structure of these compounds aimed us to assess their inhibitory potential on purified recombinant LTopIB measuring the relaxation of supercoiled plasmid DNA as described in Material and methods section. In this regard, all terpenylquinone derivatives were assessed for LTopIB inhibition through the prevention of DNA relaxation of a circular plasmid DNA. All compounds were tested at a single concentration of 100 μM, to discard those compounds that did not prevent DNA relaxation by LTopIB. After this initial test, potential inhibitors dose/response curves were performed to obtain their IC50 values.

First, as it could be expected, only some compounds that conserve the oxidized quinone system were able to prevent the relaxation of supercoiled DNA, but none of the diacetylated hydroquinones inhibited the enzyme (Tables 1 and 2). Considering the terpenylquinone derivatives obtained from myrcene, the group with more inhibitors found was the integrated by NQ derivatives. Within this group, four out of six molecules were LTopIB inhibitors, getting the best IC50 value for the dimbrominated NQ 2 (IC50 = 13.5 μM) followed by the anilino-chloro disubstituted NQ 1 (IC50 = 23.5 μM). Among the compounds with some LTopIB inhibition effect, the lowest IC50 value corresponded to the unsubstituted 1,4-AQ 12 (IC50 = 10.7 μM). Any structural modifications applied to this molecule led to a reduction of the LTopIB inhibition. The NQ 4, the 9,10-AQ 21 and the BAcQ 25 weakly inhibited LTopIB in vitro, being the weakest inhibitors NQ 6 and 1,4-AQ 13. Several efforts to find correlations between antileishmanial activity and LTopIB inhibition were unsuccessful, with only NQ 4 showing a good leishmanicidal activity with weak LTopIB inhibition. These facts suggest the probable existence of alternative mechanisms of action or different targets that need further research.

3.3. Molecular docking study on LTopIB

Attempting to prove if the planar or quasi-planar quinonic compounds could intercalate into DNA and simultaneously inhibit the...
Autodock-Vina (Trott and Olson, 2010), obtaining the results displayed in Table 3 and Table S1 (Supplementary material) and Figs. 2 through molecular dynamics (MD) simulations. Details of the system (PDB code: 1T8I (Staker et al., 2005), and was further equilibrated

Compd.	H-bonds	Other binding contacts*	ΔG (kcal/mol)	IC50 (μM)			
		A	B	C	D		
1	Arg190	+	-	+	+	-9.5	23.5 ± 1.3
2	-	+	+	-	-	+8.8	13.5 ± 0.6
4	-	+	-	+	+	-10.6	50.1 ± 5.0
6	Arg190	-	+	+	+	-10.2	73.5 ± 3.4
12	Arg190	+	+	+	-	-10.6	10.7 ± 2.2
13	Arg190	+	+	-	+	-10.2	91.8 ± 8.2
14	Arg190	+	-	+	+	-10.3	> 100
15	Arg190	+	+	-	+	-10.2	> 100
17	Arg190	+	+	+	+	-11.6	> 100
Am221	+	+	+	+	+	-11.6	> 100
21	Arg190	-	-	-	+	-8.7	57.9 ± 4.1
25	Arg190	-	+	-	+	-11.5	41.4 ± 7.4
CPT	Arg190	-	+	-	+	-12.2	2.8*
Asp353							

* Enzyme fragments involved in LTopIB - quinine contacts: region A: Ala177-Lys200; region B: Thr217-Asn221; region C: Met250-Pro257; region D: Lys352-Asp353. See Suppl. Material, Table S1 and Fig. S1, for more detailed information.

** Best free energy values and best experimental results are in bold for better comparisons. *CPT IC50 was obtained from reference (Roy et al., 2008).

catalytic effect of LTopIB, and trying to understand the lack of correlations between the antileishmanial activity and the LTopIB inhibition, the terpenylquinones derived from myrcene 1-25 were subjected to a molecular docking analysis on a model system of LTopIB. This model was built using the ternary complex of TopIB-DNA-CPT as a template (PDB code: 1T8I (Staker et al., 2005), and was further equilibrated through molecular dynamics (MD) simulations. Details of the system preparation are described in Material and methods section.

Docking of the terpenylquinones 1-25 was carried out using Autodock-Vina (Trott and Olson, 2010), obtaining the results displayed in Table 3 and Table S1 (Supplementary material) and Figs. 2-5 and Figs. S1-S2. Most of the compounds behaved as virtual intercalating agents similar as CPT, where the aromatic rings of the terpenylquinones interact strongly with the DNA base pairs through π-π stacking interactions. Accordingly, terpenylquinones could be considered as enzymatic agents similar as CPT, where the aromatic rings of the terpenylquinones form catalytic e...
Throughout the simulations the ligands did not move outside the active site, and the interaction energies calculated showed that the interaction between AQ 17 and the DNA-LTopIB complex is stronger than between AQ 12 and the complex (104 ± 9 kcal/mol vs 60 ± 5 kcal/mol respectively). We compared these results with the interaction energies obtained for a model system where the ligand was located in the centre of a cubic box of water. In the latter case the interaction energies between the ligands and water were −88 ± 9 kcal/mol for AQ 17 and only −44 ± 5 kcal/mol for AQ 12. The large difference between these two values could be explained in terms of the relatively large difference of size between the two ligands. If we calculate the ratio between the interaction energies in LTopIB and water we obtain 1.18 for AQ 17 and 1.35 for AQ 12, showing that the equilibrium is more displaced towards the formation of the complex for AQ 12 than for AQ 17. This simple analysis does not consider the effect of the entropy. To take it into account we should carry out binding free energy simulations that are beyond the scope of the present work. In addition, we must consider that there could be another, yet undefined, alternative or complementary mechanism of action for those quinones experimentally active as LTopIB inhibitors, but with low calculated binding energy values, as NQs 1, 2 and 12; whereas for those inactive and less active quinones displaying high binding energy values, as AQ 17 and BAcQ 25, possible difficulties of accessing to the Top IB-DNA interaction site could be the reason. In all, further virtual and experimental confirming studies, including the consideration red-ox and Michael electron-acceptor properties of quinones, should be done in order to characterize completely the mechanism of action for this family of compounds.

3.4. In silico pharmacokinetic and toxicity evaluation

Compounds with best leishmanicidal activity and weak cytotoxic effect on HepG2 cells (SI > 10) were submitted to in silico pharmacokinetic properties and adverse effects prediction. To predict the druggability of the selected hits, we analysed the parameters related to Lipinski’s rule of five, absorption, metabolism and toxicity, provided by SwissADME (http://www.swissadme.ch/index.php), preADMET (https://preadmet.bmdrc.kr/) and admetSAR (http://lmmd.ecust.edu.cn/admetsar1/predict/) servers, freely accessible web-based applications. The data obtained are collected in Table S2 (supplementary material). All the compounds showed good druggability since they fulfilled Lipinski’s rule of five and showed acceptable non-rotatable bond (n-ROTB) values (≤10). Predicted human intestinal absorption (HIA) and Caco2 absorbability were positive for all compounds. In the case of metabolism, various isoforms of cytochrome P450 (CYP) were evaluated, showing different patterns for NQ 3, NHQ 10, AQS 14 and 17 than for AHQ 18 and pyrazole-fused NQ 37. In terms of toxicity, none of the compounds showed mutagenic toxicity in the AMES test nor rodent carcinogenic effects.

4. Conclusions

In summary, the antileishmanial properties of a family of
terpenylquinone/hydroquinone derivatives were examined both in vivo and ex vivo against the transgenic iRFP-L. infantum strain. As a general conclusion, the NQ/NHQ derivatives showed better antileishmanial activity than the larger AQ/AHQ derivatives, and among them, those compounds with an acetylated hydroquinone moiety provided better results than those corresponding unaltered quinones. Regarding the size of the terpenic precursor, those compounds obtained from the commercial monoterpenoid myrcene displayed good antiparasitic efficiency and low cytotoxicity for mammalian cells, whereas those derived from the isolated natural diterpenoid myrciocommunic acid showed better antileishmanial activity, but without selectivity.

Parallel studies were carried out to explore their mechanism of action. To this end, all the compounds were tested as potential inhibitors of LTopIB, but only several quinones were able to inhibit the recombinant enzyme in vitro. The compounds that inhibited LTopIB were those that displayed less safety in vitro, thus pointing to a common interaction target in both Leishmania and host cells. Attempts to correlate the antileishmanial properties of the compounds tested with the LTopIB inhibition were unsuccessful, and only NQ 4 resulted as good antileishmanial against both stage of L. infantum and weak LTopIB inhibitor simultaneously. Several docking studies performed on LTopIB concluded that those terpenylquinones with the best binding energies were the NQs 4 and 6, the AQs 13, 14, 15 and 17, and the BAQ 25. Regrettably most of them showed low or null experimental inhibition of LTopIB despite having similar interactions at the active site compared with CPT used as model. These results clearly suggest that inhibition of LTopIB is just a complementary/additional target in killing Leishmania parasites and a major mechanism of action, probably affecting the parasite anti-oxidant toolbox, is involved (García-Barrantes et al., 2013; Bolton et al., 2000; Awashtha et al., 2016).

Moreover, the compounds of choice displayed good predictable druggability and low in vivo toxicity, as reflected by the absence of genotoxicity and carcinogenicity and the fulfillment of the ADMET properties. Finally, it should be mentioned that further studies are necessary to determine their exact mechanisms of action and consider the possibility to improve efficiency using them in combined therapies.

Supplementary data

Supplementary data to this article (Table S1, Table S2, Fig. S1 and Fig. S2) can be found online.

Fig. 5. Superimposed docking complexes of the 1,4-AQ 17, the 9,10-AQ 21 and CPT (left column) and BAQ 25 and CPT (right column) with DNA-LTopIB complex. Structures are colored according to Figs. 3–4. Images in the bottom row represent the CPT as a surface to better observe the arrangement of the three different quinones 17, 21 and 25 in the space delimited by the docked reference drug.

Note

Supplementary data associated with this article.

Acknowledgments

Financial support came from Spanish MINECO (CTQ2015-68175-R, AGL2016-79813-C2-1-R, AGL2016-79813-C2-2-R and SAF2017-83575-R), ISCIII-RICET Network (RD12/0018/0002) and Consejería de Educación de la Junta de Castilla y León (LEO201P17) co-financed by the Fondo Social Europeo of the European Union (FEDER-EU). P. G. J. acknowledges funding by Fundación Salamanca Ciudad de Cultura y Saberes (“Programme for attracting scientific talent to Salamanca”)

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijpddr.2019.10.004.

References

Aït-Oudhia, K., Gazanioni, E., Vergnes, B., Oury, B., Sereno, D., 2011. Leishmania anti-mycobacterial activity: what we know what we can learn from the field. Parasitol. Res. 109, 1225–1232.
Ali, A., Assimopoulos, A.N., Papageorgiou, V.P., Kolodziej, H., 2011. Structure/anti-leishmanial activity relationship study of naphthoquinones and dependency of the mode of action on the substitution patterns. Planta Med. 77, 2003–2012.
Araújo, I.A.C., de Paula, R.C., Alves, C.L., Faria, K.F., Oliveira, M.M., Mendes, G.G., Dias, E.M.F.A., Ribeiro, R.R., Oliveira, A.B., Silva, S.M.D., 2019. Efficacy of lapachol on treatment of cutaneous and visceral leishmaniasis. Exp. Parasitol. 199, 67–73.
Awashtha, B.P., Kathuria, M., Pant, G., Kumari, N., Mitra, K., 2016. Plumbagin, a plant-derived naphthoquinone metabolite induces mitochondria mediated apoptosis-like cell death in Leishmania donovani: an ultrastructural and physiological study. Apoptosis 21, 941–953.
Balaña-Fouce, R., Aït-Oudhia, K., Gazanion, E., Vergnes, B., Oury, B., Sereno, D., 2011. Leishmania anti-mycobacterial activity: what we know what we can learn from the field. Parasitol. Res. 109, 1225–1232.
Ali, A., Assimopoulos, A.N., Papageorgiou, V.P., Kolodziej, H., 2011. Structure/anti-leishmanial activity relationship study of naphthoquinones and dependency of the mode of action on the substitution patterns. Planta Med. 77, 2003–2012.
Araújo, I.A.C., de Paula, R.C., Alves, C.L., Faria, K.F., Oliveira, M.M., Mendes, G.G., Dias, E.M.F.A., Ribeiro, R.R., Oliveira, A.B., Silva, S.M.D., 2019. Efficacy of lapachol on treatment of cutaneous and visceral leishmaniasis. Exp. Parasitol. 199, 67–73.
Awashtha, B.P., Kathuria, M., Pant, G., Kumari, N., Mitra, K., 2016. Plumbagin, a plant-derived naphthoquinone metabolite induces mitochondria mediated apoptosis-like cell death in Leishmania donovani: an ultrastructural and physiological study. Apoptosis 21, 941–953.
Balaña-Fouce, R., Aït-Oudhia, K., Gazanioni, E., Vergnes, B., Oury, B., Sereno, D., 2011. Leishmania anti-mycobacterial activity: what we know what we can learn from the field. Parasitol. Res. 109, 1225–1232.
Ali, A., Assimopoulos, A.N., Papageorgiou, V.P., Kolodziej, H., 2011. Structure/anti-leishmanial activity relationship study of naphthoquinones and dependency of the mode of action on the substitution patterns. Planta Med. 77, 2003–2012.
Araújo, I.A.C., de Paula, R.C., Alves, C.L., Faria, K.F., Oliveira, M.M., Mendes, G.G., Dias, E.M.F.A., Ribeiro, R.R., Oliveira, A.B., Silva, S.M.D., 2019. Efficacy of lapachol on treatment of cutaneous and visceral leishmaniasis. Exp. Parasitol. 199, 67–73.
Awashtha, B.P., Kathuria, M., Pant, G., Kumari, N., Mitra, K., 2016. Plumbagin, a plant-derived naphthoquinone metabolite induces mitochondria mediated apoptosis-like cell death in Leishmania donovani: an ultrastructural and physiological study. Apoptosis 21, 941–953.
Balaña-Fouce, R., Aït-Oudhia, K., Gazanioni, E., Vergnes, B., Oury, B., Sereno, D., 2011. Leishmania anti-mycobacterial activity: what we know what we can learn from the field. Parasitol. Res. 109, 1225–1232.
Darden, T., York, D., Pedersen, L., 1993. Particle mesh Ewald: an N·log(N) method for
Chamorro, P., 2002. Síntesis, reordenamiento y evaluación citotóxica de nuevas di-
Calvo-Álvarez, E., Stamatakis, K., Punzón, C., Álvarez-Velilla, R., Tejería, A., Escudero-
Burza, S., Croft, S.L., Boelaert, M., 2018. Leishmaniasis. Lancet 392, 951
Calvo-Álvarez, E., Álvarez-Velilla, R., Fernández-Prada, C., Balaña-Fouce, R., Reguera,
Bodley, A.L., Chakraborty, A.K., Xie, S., Chipot, C., Skeld, R.D., Kalé, L., Schulten, K. 2005. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802.
Pinto, A.V., de Castro, S.L., 2009. The trypanosomal activity of naphthoquinones: a review. Molecules 14, 4570–4590.

Pommer, Y., Leo, E., Zhang, H., Marchand, C., 2010. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 17, 421–433.
Reguera, R.M., Calvo-Alvarez, E., Alvarez-Velilla, R., Balaná-Fouce, R., Falcão, R., 2014. Target-

based vs. phenotypic screenings in Leishmania drug discovery: a marriage of con-
venience or a dialogue of the deaf? Int. J. Parasitol. Drugs Drug Resist. 4, 355–357.
Reguera, R.M., Redondo, C.M., Gutiérrez de Prado, R., Pérez-Pérez, Y., Balaña-Fouce, R., 2009. DNA topoisomerase I from Leishmania infantum: a potential target for che-
motherapy. Biochim. Biophys. Acta 1759, 117–131.
Rodríguez, M.L., 2006. Síntesis de nuevas naphthoquinonas citotóxicas a partir de diterpe-
noides naturales. PhD Thesis. University of Salamanca, Salamanca, Spain.
Ray, D., Basu, A., Ganguly, A., Bose-Dagupta, S., Khakhoo, N., Pal, C., Dey, S., Giri, V.S., Jaisankar, P., Dey, S., Majumder, I.B., 2008. An insight into the mechanism of inhibition of unusual bi-subunit topoisomerase I from Leishmania donovani by 3'-di-
indolylmethane, a novel DNA topoisomerase I poison with a strong binding affinity to the enzyme. Biochem. J. 409, 611–622.

Rycykjaert, J.P., Ciccotti, G., Berendes, H.J.C., 1977. Numerical integration of the cart-
esian equations of motion for a system with constraints: molecular dynamics of n-al-
kanes. J. Comput. Phys. 32, 327–341.
Shakya, N., Bajpai, P., Gupta, S., 2017. Therapeutic switching in leishmania chem-
otherapy: a distinct approach toward unsatisfied treatment needs. J. Parasit. Dis. 35, 104–112.
Staker, B.F., Feuer, M.D., Cushman, M., Stewart, L., Burgin, A.B., 2005. Structures of three classes of anticancer agents bound to the human to-
poisomerase I–DNA complex. J. Med. Chem. 48, 2336–2345.
Sundar, S., Chakravarty, J., Agarwal, D., Rai, M., Murray, H.W., 2010. Single-dose lipo-
amphotericin B for visceral leishmaniasis in India. N. Engl. J. Med. 359, 504–512.
Teixeira, M.J., de Almeida, V.M., Viana, J.R., Holanda Filha, J.G., Rodrigues, T.P., Prata
Monge-Maillo, B., López-Vélez, R., 2013. Therapeutic options for visceral leishmaniasis. J. Antimicrob. Chemother. 72, 3131–3138.

Tost, O., Olson, A.J., 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficiency and multithreading. J. Comput. Chem. 31, 455–461.

Venomneslaeegh, K., Hatcher, E., Acharya, C., Kundu, S., Zong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., Mackerrell Jr., A.D., 2010. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-
tatom additive biological force fields. J. Comput. Chem. 31, 671–690. CGenFF in-

terface is accessible at paramchem.org: http://cgenff.umm.edu/alternativa.

Villa, H., Otero-Marcos, A.R., Reguera, R.M., Balaña-Fouce, R., García-Estrada, C., Pérez-
Pérez, Y., Tekwani, B.L., Myler, P.J., Stuart, K.D., Bjornstig, M.A., Ordóñez, D., 2003. A novel active DNA topoisomerase I in Leishmania donovani. J. Biol. Chem. 278, 3521–3526.
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer,
F.T., de Beer, T.A.P., Remm, P., Bordoli, L., Lepore, R., Schwede, T., 2018. SWISS-
MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303.
Xu, H., Chen, Q., Wang, H., Xu, P., Yuan, R., Li, X., Bai, L., Xue, M., 2016. Inhibitory effects of lapachol on rat C6 glioma in vitro and in vivo by targeting DNA topoi-

somerase I and topoisomerase II. PLoS One 35, 178, 571–5786.
Zhang, F., Wang, P., Liu, Y.H., Liu, B., Liu, X.B., Li, X., Xue, Y.X., 2012. Topoisomerase I inhibitors, shikonin and topotecan, inhibit growth and induce apoptosis of glioma cells and glioma stem cells. PLoS One 8, e81185.