Research on the Development Path and Growth Mechanism of Unicorn Enterprises

Kai Guo¹,² and Tiantian Zhang¹

¹School of Management, Henan University of Science and Technology, Luoyang, Henan, China
²Henan Collaborative Innovation Center of Nonferrous Metals, Luoyang, Henan, China

Correspondence should be addressed to Kai Guo; guokai@haust.edu.cn

Received 15 March 2021; Revised 13 April 2021; Accepted 20 April 2021; Published 11 May 2021

Academic Editor: Sang-Bing Tsai

Copyright © 2021 Kai Guo and Tiantian Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Combining with the growth environment of Unicorns, from the aspects of emerging industries, business environment, platform support, and financial support, we propose an overall analysis framework for the existence or absence of Unicorns, use the fuzzy set qualitative comparative analysis (fsQCA) method to carry out configuration analysis on the status quo of Unicorns in 40 cities in China, and analyze the cultivation path of Unicorns. The research results indicate that the synergy of emerging industries, business environment, platform support, and financial support can foster Unicorns. According to the differences in the core conditions in the configuration and the characteristics of the cases contained, it is divided into two cultivation paths, which are driven by emerging industries and supported by the business environment; combining with the status quo and characteristics of the cities where Unicorns are missing, it provides suggestions for the selection of the cultivation path of Unicorns in different regions.

1. Introduction

The number of Unicorns reflects the development trend of local enterprises and represents the level of regional innovation and development at the same time. Unicorns not only develop themselves but also effectively promote the innovative development of upstream industry, downstream industry, and even cross-border industry, so as to improve the level of regional innovation and enhance regional economic strength. However, as of 2018, only 26 of 233 regions in the world have Unicorns, that is, about 89% of regions do not have Unicorns. What is the reason that these regions cannot cultivate Unicorns? What kind of cultivation path does the existing Unicorns grow up according to? Why can their regions cultivate a large number of Unicorns? As well as the function mechanism of growth environment factors on each country and the region Unicorn growth is worth our thorough research.

Therefore, from the perspective of the growth environment of Unicorns, this paper puts forward the analysis framework of the existence or absence of Unicorns and uses the qualitative comparative analysis method to analyze the condition path of the absence of Unicorns in the region, combined with the analysis of the existence path of Unicorns, so as to provide policy basis for each region to match the cultivation path of Unicorns and built a good environment to promote the development of Unicorns.

2. Research Review and Analysis Framework

2.1. Review of Related Research. Existing research on Unicorns mainly includes the relevant geographical experience, risk management, valuation, and environment for the cultivation of Unicorns.

In terms of research on the regional experience and solution strategies of Unicorn growth, McNeill found that venture capital and angel capital occupy an important position in start-up capital. They even gradually participate in the upgrading of labor, housing, and public transportation markets in the cities where the companies are located, which has an important impact on the growth and cultivation of Unicorns.
local Unicorns [1]. Feldman found that among the more than 4000 technology start-ups in Utah, at least four start-ups are Unicorns. Through analysis, it can be seen that Utah’s cultural atmosphere, talent base, capital base, and other resources are all necessary conditions for the cultivation of local Unicorns [2]. Ren analyzed the entrepreneurial ecosystem of Shenyang from seven aspects: market, human resources, finance, service, government, education, and culture. The study found that Shenyang must pay attention to talent training, avoid brain drain, and encourage local entrepreneurs who start their own businesses to invest and start a business in order to cultivate more Unicorns [3].

In terms of research on risks and risk management methods for Unicorns, Fan first proposed that Unicorns have regulatory risks. They believe that Unicorns have greater influence on shareholders, employees, and the country’s economy, so they must require Unicorns disclose relevant information in a timely manner to reduce the investment transaction risks of Unicorns [4]. Govindarajan believed that Unicorns are at risk in terms of continuous innovation. Taking the financial services company Square as an example, it was found that after Square grew into a Unicorn through the best ideas, it did not continue to innovate before its competitors caught up and did not meet the expectations of sustained advantages [5]. Wu elaborated on the four modes of privatization, direct listing, issuance of depositary receipts, and share swaps for Unicorns returning to listing and then proposed that the return of Unicorns to listing has market investor protection issues and market monopoly risks [6].

In terms of Unicorn valuation research, Jacobius pointed out that, in the first half of 2016, about 30% of American venture capital was invested in Unicorns, and the amount of its venture capital is still increasing, but the valuation of Unicorns is gradually declining [7]. Song analyzed the game motivation of investors, entrepreneurial teams, and the public and regulatory authorities for the valuation of Unicorns. It also improves the valuation basis and framework of Unicorns from five new elements: media reports, dynamic development and transformation of enterprise types, lineage, community and institutional environment, and institutional entrepreneurship [8]. Lu, based on the characteristics of Unicorns, took Xiaomi group as an example to conduct a case study and found that the income method is the best method for Unicorn valuation. At the same time, in the valuation process, we must fully consider the influence of industry characteristics, business conditions, cultural concepts, and equity structure [9].

The research on the characteristics and growth environment of Unicorns is mainly carried out from the microlevel and macrolevel.

At the microlevel, scholars analyze the growth and cultivation of Unicorns from the internal characteristics of enterprises through case analysis. Kowanda took Tokopedia, an e-commerce Unicorn, as an example and then found that the key to the success of e-commerce enterprises is availability and security. In terms of usability, Tokopedia not only provides access to technology but also provides banking partners and logistics services; in terms of security, Tokopedia retains the money paid by the buyer and transfers it to the seller only after the buyer receives the goods. Therefore, Tokopedia can rapidly grow into a Unicorn [10]. Mo, from the perspective of a complete scene, found that through technology or business model innovation, start-ups provide consumers with novel and high-quality products and services, so as to occupy the market, improve people’s quality of life, and rapidly grow into Unicorns [11]. Xue took Xiaohongshu, a Unicorn, as a case study, found that the company builds Xiaohongshu app as a sharing community with high credibility, and then advocated bloggers to combine descriptive self-disclosure with high-cost products to generate the most positive product attitude, so as to improve users’ purchase intention and promote the rapid growth of the enterprise [12]. Lee took the Unicorns in the solid oxide fuel cell industry as an example. Through empirical research, it is found that there are five steps for a start-up with sustainable innovation technology to transform into a Unicorn: checking the technical knowledge, experience, resources, and key points of the enterprise; determining the core value of the patent; creating the patent value higher than that of its competitors; establishing a globally competitive patent portfolio; and raising funds through the growth of the number of patents [13].

At the macrolevel, scholars mainly focus on the analysis of the influence mechanism of the following four factors on the growth and cultivation of Unicorns.

Research on the influence of venture capital on the growth and cultivation of Unicorns from the capital level: Rungi took 10 start-ups from Silicon Valley and Estonia as samples. Through case studies, it was found that all the sample enterprises had grown into Unicorns after 2–4 years of growth through a large amount of financing [14]. Hogarth took 23andMe as an example and found that the increase of private investment capital in Silicon Valley can promote the growth of enterprises [15]. Chen found that regions with obvious advantages in capital support, human resources, national policies, cultural atmosphere, and other innovation environment can cultivate a large number of Unicorns [16]. Oliveira believed that start-ups need universal financing in order to grow into Unicorns [17]. Bai thought that we should optimize the financing environment of Unicorns in China and support the development of Unicorns from the aspect of financial support [18]. Moosup conducted a case study on the development, sales, and other global value chains of eight South Korean Unicorns and found that six of them promoted their rapid growth by attracting foreign investment [19].

The level of urban economic development and its international market position affect the growth and cultivation of Unicorns. Jones found three key measures for the rapid growth of start-ups by analyzing the characteristics of Unicorns in Thailand: obtaining financial support, improving the company’s ability, and connecting with global communities [20]. Liu analyzed the growth trend of the number of Chinese Unicorns in recent years and found that the rise of Chinese Unicorns is closely related to the economic transformation and promotion of China’s economic growth in the past five years [21]. Li pointed out that Unicorns are mainly distributed
in regions with strong economic and resource base and believed that China needs to accelerate the cultivation of Unicorns in the field of manufacturing, enhance the internationalization degree of Unicorns, and protect the intellectual property rights of Unicorns [22].

Research on the influence of human resources and related policies on the growth and cultivation of Unicorns: Chu analyzed the regional distribution status of Unicorns and the characteristics of their industries. At the same time, taking 35 cities in China as research samples, through principal component analysis and cluster analysis, she found the important role of human resources in the cultivation of Unicorns [23]. Delermann developed a hybrid intelligence method based on the concept of human-computer complementarity to identify whether a start-up has grown into a Unicorn and pointed out that talent and policy resources are the most important input elements [24]. Stemler took the Unicorn Airbnb as a case study and then found that cumbersome enterprise regulatory rules hindered its rapid growth. The government needs to formulate effective policies and laws according to the situation of enterprises, so as to promote the growth and cultivation of Unicorns [25].

Research on the influence of emerging industries on the growth and cultivation of Unicorns: Lee believed that the birth of “super Unicorn” needs to conform to the epoch-making trend of science and technology [26]. De Massis systematically analyzed 146 Unicorns published by the “Wall Street Journal” and found that digital innovation around the focus direction is one of the basic characteristics of all Unicorns [27]. Shin, through the analysis of the United States Unicorn, Coinbase, found that it mainly focuses on cryptocurrency business, and in the case of actively participating in technological innovation, which has great growth potential [28]. Say took China’s bike-sharing Unicorns as an example and found that bike-sharing start-ups use technological innovation to meet the needs of users and fill the market gap. This new business model under the sharing economy makes it grow rapidly [29]. AGUS found that Gojek, an Indonesian Unicorn, developed the application Gojek after understanding Indonesia’s weak transportation infrastructure and its high economic and environmental costs. Through the program, it provides people with preferential and convenient travel and leisure services, in order to achieve the purpose of rapid growth [30].

The existing literature plays a positive role in exploring the elements needed for the growth environment of Unicorns and their cultivation in the region. However, there are still some deficiencies: firstly, most of the existing studies focus on the areas where Unicorns are well developed, but they do not pay enough attention to the areas where there are few or even missing Unicorns; secondly, the existing studies only use qualitative research methods to explore the reasons for the lack of Unicorns and do not use quantitative methods to study the development of Unicorns; thirdly, the existing research has discussed the influence of many factors on the growth of Unicorns, but how to comprehensively consider the interaction and dependence between various environmental factors as well as the influence of the complex comprehensive mechanism between factors on the cultivation of Unicorns have not been studied; the existing research is still in its infancy.

In view of this, this paper takes 40 cities including “existence of Unicorns” and “absence of Unicorns” as samples, fully considers the areas where Unicorns exist and lack, introduces qualitative comparative analysis methods, and then analyzes the conditions and paths of existence and absence of Unicorns through empirical research. Comprehensive consideration of the interaction and dependence between various environmental factors as well as the influence of the complex comprehensive mechanism between factors on the cultivation of Unicorns should be done, in order to enrich Unicorn-related research. According to the current situation and characteristics of Unicorns’ missing cities, we should match the appropriate cultivation path of Unicorns and provide strategic support for the cultivation of Unicorns in various regions of the world.

2.2. Analysis Framework of the Unicorn Cultivation Path

Unicorn is the result of incubation of start-ups. When start-ups grow into Unicorns at a high speed, they will be affected by various environmental factors. The comprehensive effect of these factors determines the cultivation path of Unicorns. Considering the representativeness of the influencing factors of Unicorns’ growth environment and the availability of data, as well as the rules and requirements of using fsQCA3.0 to analyze data, four influencing factors, namely, emerging industries, business environment, platform support, and financial support, are finally determined. The analysis framework of Unicorns’ cultivation path is shown in Figure 1.

2.2.1. Emerging Industries. Enterprise innovation in emerging industries generally includes a certain degree of scientific and technological innovation, which has great growth potential in enterprise development and can lead the long-term development of the regional economy. Taking the distribution of Unicorns in the global automobile transportation industry in the whole industry in 2018 as an example, the number of Unicorns in the industry is among the top, with 42. Among them, Didi Travel is the representative enterprise of the industry. Didi Travel takes emerging industries as the development field and then takes sharing economy and Internet as the platform, reflecting the advanced concept of modern sharing economy. The sharing economy platform is closely related to computer network technology. Through fine-tuning matching algorithm and other technologies, it can bring data network effect, provide better user experience, help sharing economy companies gain market competitiveness [11], and rapidly grow into Unicorns.

2.2.2. Business Environment. The current situation of the business environment in the region reflects the economic development in the region, as well as the possession and utilization of international market resources. Therefore, it can affect the introduction and development of start-up
enterprises and human resources in the region, thus affecting the cultivation path of Unicorns in the region [4]. On the one hand, the economic and market foundation of the region where the start-ups are located is relatively strong. At the same time, through breakthrough innovation in emerging industries, they can occupy the market in a short time, obtain a large number of users, achieve high valuation, and grow into Unicorns [9]. On the other hand, resources in the international market include users and funds. The possession and utilization of resources affect the growth speed and development prospects of enterprises. More than 80% of Israel’s high-growth technology-based small- and medium-sized enterprises have international users and finance globally to promote the growth of enterprises [31]. Therefore, in the cultivation path of Unicorns, enterprises should acquire talents, customers, and capital resources from a global perspective on the basis of the regional economy and their own ability development, establish R&D, production, and marketing bases, and then enhance the international discourse of enterprises, so as to boost the cultivation of Unicorns.

2.2.3. Platform Support. Platform support elements can be analyzed from three aspects: human resources, science and technology support, and policy support. An important factor for the rapid growth of start-ups into Unicorns is that they have excellent partners and teams, strong professional ability, and excellent management ability, which is conducive to the formation of a more efficient technological innovation and collaborative innovation network. At the same time, as a start-up enterprise, it has great difficulties in site and capital. Government support is mainly based on laws, regulations, and administrative rules issued by governments at all levels. It provides convenience for start-ups in terms of infrastructure, preferential policies, business processes, etc., and plays an irreplaceable supporting role in the growth of start-ups [4]. Therefore, Unicorns tend to start businesses in areas with rich educational technology resources and strong support from relevant industrial policies.

2.2.4. Financial Support. If a start-up wants to grow into a Unicorn, it not only needs to have absolute advantages in business model, technology, and resources but also needs to obtain sufficient financial support to provide economic support for its later R&D, production, sales, and other key steps so that it can quickly occupy the market and grow into a Unicorn [6]. But nowadays, commercial banks prefer large enterprises with low risk. However, due to the small scale of the start-ups, there are great risks and uncertainties in their innovation activities, so it is difficult to get the support of bank loans. Therefore, venture capital and angel investment have become the main ways for start-ups to obtain financial support [4].

According to previous studies, emerging industries, business environment, platform support, and financial support do not affect the existence of Unicorns in regions alone, but jointly influence the growth and cultivation of Unicorns in regions on the basis of interaction. Therefore, from the perspective of configuration, this paper empirically studies the influence mechanism of emerging industries, business environment, platform support, and financial support on the existence and absence of Unicorns in different regions, as well as the cultivation path selection of Unicorns in different regions.

3. Research Methods and Variable Measurement

3.1. Method Selection. Qualitative comparative analysis (QCA) is a method developed by Ragin based on fuzzy set mathematics and sociology. Theory guides many key steps of qualitative comparative analysis, including condition selection in model establishment, measurement and calibration of condition variables, and case selection [32]. Different from the traditional variable-oriented and case-oriented social science research methods, QCA focuses on the case as a whole and regards cases as different configurations of variables. The QCA method analyzes the specific situation of different cases. It thinks that different variable configurations may produce the same result, that is, multiple concurrent causality. At the same time, assuming the asymmetry between cause and effect, it is considered that the “non” of the combination of conditions leading to a certain result does not necessarily lead to the “non” of the result.

In this study, first of all, the existence or absence of Unicorns in the region is not the independent effect of individual factors, nor the simple accumulation of multiple factors, but the result of the interaction between various factors. Then, different cities have different situations in different influencing variables, and there are also different paths for cities to produce Unicorns’ existence or absence of results. Then, the causes of the existence or absence of Unicorns in the city are not simple “non” operation relationship, but cause and effect asymmetry. Finally, the sample size of this study is 31, which belongs to small sample size, while the traditional regression analysis is suitable for large sample size. The QCA method can avoid the negative effects of autocorrelation and multicollinearity due to its quantitative analysis and the emphasis on case analysis.

Because of the above advantages, the QCA method has recently been applied to economic management and other fields by most scholars, but few scholars use the QCA method to study the factors influencing the growth environment of Unicorns from an overall perspective [33–36]. Therefore, this paper intends to use the method of fuzzy set
3.2. Variable Measure

3.2.1. Sample and Result Variable Selection. This paper takes 40 cities in China as research samples, selects "existence of Unicorns" and "absence of Unicorns" as outcome variables, and uses the number of existing Unicorns in each city to measure the outcome variables. According to the Research Report on Chinese Unicorns in 2018, in terms of result variables, there are 16 cities with "existence of Unicorns" and 24 cities with "absence of Unicorns." The number of existing Unicorns in Chinese cities is shown in Table 1.

3.2.2. Measure of the Conditional Variable

(1) Emerging Industries. The number of leading industries in regional high-tech zones includes strategic emerging industries, which can reflect the status and development potential of emerging industries in the region. At the same time, the development of emerging industries at the regional level needs to be based on the manufacturing industry. When the manufacturing industry develops well, it can increase the possibility of the rapid development of emerging industries at the regional level. Therefore, the number of emerging industries in leading industries of national high-tech zones in 2018 and the added value of the secondary industry are selected as the secondary index to measure emerging industries.

(2) Business Environment. The total economic volume reflects the economic development foundation of a region. The total import and export volume of goods and the number of foreign-invested enterprises reflect the international market situation of the region. This paper selects the total economic volume, the total import and export volume of goods, and the number of foreign-invested enterprises of the region in 2018 as the secondary index to measure the business environment.

(3) Platform Support. The number of students in colleges can reflect the talent base of a region. The amount of patent authorization in that year represents the scientific and technological development of the region. In the national maker space and high-tech zone, there are a lot of infrastructure and policies to support the development of new ventures, which can provide the innovation space for startups and support the development of emerging industries. Therefore, the number of Unicorns cultivated in the national maker space and high-tech zone accounts for 70% of the number of Unicorns in China. However, considering that there is only one high-tech zone in most regions, the number of high-tech zones in the region cannot measure the current situation of the cultivation advantages of Unicorns in the region, so this paper uses the maturity of high-tech zones as an index to measure the advantages of regional high-tech zones in cultivating Unicorns. Determine the establishment time of the regional high-tech zone, and calculate the year difference between it and the time studied in this paper, which is the maturity of the high-tech zone [27]. If there are more than one high-tech zone in a region, the average maturity of the high-tech zone is calculated:

\[
C = \frac{\sum_{j=1}^{n} (2019 - y_j)}{n}
\] \hspace{1cm} (1)

In formula (1), \(C\) represents the maturity of the high-tech zones in the region, \(j\) is the number of high-tech zones in the region, and \(y_j\) is the year in which the \(j\)th high-tech zone in the region is approved to be established, and the average of the maturity scores of all the high-tech zones in the region is the maturity of the high-tech zones in the region. Therefore, the maturity of the national high-tech zone is selected as one of the secondary indexes to measure the platform support indicators of the region together with the number of students in colleges, authorized patents, and national maker space in 2018.

(4) Financial Support. In this paper, the number of venture capital enterprises and angel investment enterprises, the number of investment events, and the amount of investment in 2018 are selected as the secondary index to measure venture capital. The relevant data are obtained through the IT orange query. All sample data were obtained through the statistical bulletin of each city in 2018, national data, and IT orange query. In this paper, according to spss19.0, principal component analysis is used to process the secondary index of four independent variables, and the weight of each secondary indicator in the corresponding primary indicator is obtained. In this paper, the \(p\) value of principal component analysis is close to 0, and the extraction degree of variables is above 80%. Through the standardized analysis of the secondary index, the first level index is calculated according to the weighted sum of the secondary index. The specific situation of each indicator and its weight is shown in Table 2.

3.2.3. Data Calibration. In this paper, the method of fuzzy set qualitative comparative analysis (fsQCA) is used, and fsQCA3.0 software is used for analysis. According to the theoretical knowledge, three thresholds were set for each variable: Completely Subordinate (1), Maximum Fuzzy Intersection (0.5), and Completely Non-Subordinate (0). All the research data were calibrated from 0 to 1. In this paper, the Completely Subordinate is calibrated to 0.95, and the Completely Non-Subordinate is calibrated to 0.05. Therefore, the highest value of the index is taken as the full membership value, and the lowest value is taken as the full nonmembership value. Because there are very high or very low values in the indicators after the principal component analysis, there is a certain impact on the data calibration. Therefore, when determining the three thresholds, we must first exclude the very high and very low values, then set the other highest and lowest values as the Completely Subordinate value and the Completely Non-Subordinate value, respectively, and set the average of these values as the Maximum Fuzzy Intersection [37–40]. The thresholds calibrated in this paper are shown in Table 3.
4. Qualitative Comparative Analysis Results of Fuzzy Sets

4.1. Necessity Detection of the Single Antecedent Variable

Truth table analysis is essentially a sufficient condition analysis. Before truth table analysis, it is necessary to detect the necessary conditions of the single variable and remove the necessary conditions from the truth table analysis program. In fsQCA3.0 software, necessary conditions’ analysis was performed on the data after calibration, and the consistency score of the single antecedent variable was obtained, as shown in Table 4. According to previous studies, the threshold value of the consistency score is 0.9. When the consistency score is greater than 0.9, it is considered that the condition is a necessary condition for the result [38].

It can be seen from the data in the table that, in the case of studying the “existence of Unicorns” in cities, the highest consistency score of a single antecedent variable is “high financial support” (cf), whose consistency score is 0.834246, less than 0.9, so there is no necessary condition for the “existence of Unicorns” in cities. In the case of “absence of Unicorns” in the city, the consistency score of “low business environment” (~CF) is the highest, which is 0.846850, less than 0.9, so there is no necessary condition for “absence of

City	Number of Unicorns						
Beijing	87	Shanghai	41	Shenzhen	16	Hangzhou	24
Guangzhou	6	Nanjing	6	Wuhan	4	Chengdu	4
Zuhai	3	Dongguan	2	Qingdao	2	Chongqing	2
Wu xi	1	Guiyang	1	Suzhou	1	Hefei	1
Tianjin	0	Xiamen	0	Xian	0	Changsha	0
Ningbo	0	Fuzhou	0	Zhengzhou	0	Dalian	0
Nanchang	0	Jinan	0	Shaoxing	0	Taiyuan	0
Shijiazhuang	0	Haerbin	0	Shenyang	0	Foshan	0
Kunming	0	Changchun	0	Lanzhou	0	Nanjing	0
Lasa	0	Wuhu	0	Yinchuan	0	Xining	0

Table 1: Sample cities and the number of Unicorns.

First level index	Secondary index	Indicator unit	Secondary index weight	
Emerging industries	The added value of the secondary industry	100 million yuan	0.5	
	The number of emerging industries included in leading industries of national high-tech zones	Piece	0.5	
Business environment	GDP	The total value of import and export volume of goods	100 million yuan	0.316
	The number of foreign investment enterprises	Piece	0.346	
Platform support	The number of students in ordinary colleges	10 thousand people	0.240	
	The number of authorized patents	Piece	0.249	
	The number of national maker space	Piece	0.251	
	The maturity of the regional high-tech zone	Year	0.260	
Financial support	The number of venture capital enterprises and angel investment enterprises	Piece	0.298	
	The amount of investment	100 million yuan	0.349	
	The number of investment events	Piece	0.353	

Table 2: Index construction of growth environment influencing factors of Unicorns.

Threshold	Dependent variable	Independent variable			
	The number of Unicorns	Emerging industries	Business environment	Platform support	Financial support
Completely Subordinate	4	1.463	0.4765	0.8897	0.3502
Maximum Fuzzy Intersection	0.538462	−0.06934	−0.3475	−0.23408	−0.26349
Completely Non-Subordinate	0	−1.5744	−0.7794	−1.1629	−0.3563

Table 3: Threshold of data calibration.

4. Qualitative Comparative Analysis Results of Fuzzy Sets
Unicorns” in the city. Therefore, the existence or absence of Unicorns is not the result of a single condition. We can make a further analysis from the perspective of multiple factors affecting the existence and absence of Unicorns.

4.2. Truth Table Construction. The truth tables constructed using the existence and absence of Unicorn companies as the result variables are shown in Tables 5 and 6. In the truth table, the values of variables with membership scores greater than 0.5 are assigned to 1, and the values of variables with membership scores less than 0.5 are assigned to 0. Each research sample belongs to only one conditional configuration, that is, only one membership score is greater than 0.5 [38].

Take the number of cases as 1 and the consistency as 0.75 to analyze the sufficient condition configuration of the result of “existence of Unicorn” [38], and take the number of cases as 1 and the consistency as 0.8 to analyze the sufficient condition configuration of the result of “absence of Unicorn.”

4.3. Sufficient Condition Configuration Analysis. After obtaining the truth table, “Standard Analysis” is carried out in fsQCA3.0 software; then, three solutions are obtained, namely, “Complex Solution,” “Simplified Solution,” and “Intermediate Solution.” Among them, the “Complex Solution” is the result configuration generated only according to the current situation of sample cases, and the resulting configuration is relatively complex; the “Simplified Solution” is the result configuration generated by analyzing the “Logical Remainder” which is easy and difficult, and the conclusion is too simple, while the “Intermediate Solution” is to use the easy “Counterfactual Analysis” to generate the result configuration including core conditions and edge conditions [41]. Referring to the research of Fiss [42], this paper defines the condition that appears in the “Intermediate Solution” and the “Simplified Solution” as the “Core Condition.” Only the “Intermediate Solution” exists, but the missing condition in the “Simplified Solution” is determined as the “Edge Condition.” If it does not appear, it shows that it has no effect on the result variables. According to the analysis, the condition configuration for enterprises to achieve “existence of Unicorns” and “absence of Unicorns” is shown in Table 7.

“Overall Solution Consistency” in the table indicates the degree to which the conditional configurations obtained by all operations can reflect the actual situation, that is, the degree to which cases belonging to the same configuration show the same results (existence/absence of Unicorns). “Overall Solution Coverage” refers to the degree to which all conditional configurations interpret their corresponding results (existence/absence of Unicorns). When it is close to 1, the result is the best. In this paper, the total consistency is about 0.78 and 0.84, respectively, in the case of the existence and absence of Unicorns, which shows that the conditional configurations obtained in this study are acceptable.

4.3.1. Configuration Analysis of Sufficient Conditions with “Existence of Unicorns” as the Result Variable. When qualitative comparative analysis is conducted based on the “existence of Unicorns,” two kinds of conditional configurations that can produce the result of “existence of Unicorns” are obtained, that is, two cultivation paths of unicorns. Cities that meet the conditional configurations can cultivate Unicorns. It can be seen from the contents in Table 7 that no matter which cultivation path the region wants to take, it cannot be at a low level in terms of emerging industries, platform support, business environment, and financial support. According to the different core conditions of different paths, regions can choose the appropriate cultivation path combined with their own advantages. According to the specific situation of each cultivation path, the analysis is as follows:

(1) Emerging Industry-Driven. (IF * SF * BF * CF) Cultivation Path. This condition configuration is a path to promote the cultivation of Unicorns in the region with “high emerging industries” and “high platform support” as the core conditions and “high business environment” and “high financial support” as the edge conditions. Choosing this path to cultivate Unicorns must have a strong industrial foundation and pay attention to the development of emerging industries. In terms of platform support, we should have sufficient human resources, policy resources, and incubation environment resources to ensure the rapid growth of start-ups. At the same time, it is necessary to meet the basic needs of business environment and financial support of start-ups in the region, so as to successfully cultivate Unicorns. The probability of successful cultivation of Unicorns is about 63% in the regions that choose this cultivation path. In the 16 sample cases of “existence of Unicorns,” 67% of the regions successfully cultivated Unicorns by choosing this cultivation path.

The representative case of this condition configuration is Suzhou. The results show that the membership degree of Suzhou in this configuration is 0.58, and its consistency in the results is 0.91. According to the statistical data, Suzhou ranks the third and the first in the index value of emerging industries and platform support in all samples, respectively. In terms of emerging industries, the added value of the secondary industry in Suzhou in 2018 is 893.328 billion yuan, which has a solid foundation for industrial development. At the same time, the leading industries in Suzhou high-tech zone and Suzhou Industrial Park are electronic information, equipment manufacturing, new energy, electronic information, machinery manufacturing, biomedicine, artificial intelligence, and nanotechnology, among which new energy, biomedicine, and artificial intelligence are emerging industries, reflecting the city’s attention to the development of emerging industries. At the end of 2018, there is a Unicorn in Suzhou, which meets its membership degree in the condition configuration and consistency in the result condition.

(2) Business Environment-Supporting. (BF * SF * If * CF) Cultivation Path. This condition configuration is a path to promote the cultivation of Unicorns in the region with “high business environment” and “high platform support” as the core conditions and “high emerging industries” and “high
financial support” as the edge conditions. To choose this path to cultivate Unicorns, the region must have a strong economic foundation and a large scale of import and export trade, create a good business environment, and drive the growth and cultivation of start-ups to Unicorns with the support of talents, policies, and other platform resources.

Influencing factor variables	Existence of Unicorns (af)	Absence of Unicorns (~af)		
	Consistency	Coverage	Consistency	Coverage
High emerging industries (if)	0.750000	0.553590	0.478346	0.614257
Low emerging industries (~if)	0.477397	0.344708	0.652362	0.819486
High business environment (bf)	0.771918	0.743404	0.281890	0.472295
Low business environment (~bf)	0.452055	0.265701	0.846850	0.865942
High platform support (sf)	0.789726	0.589469	0.433071	0.562372
Low platform support (~sf)	0.413699	0.295499	0.683858	0.849804
High financial support (cf)	0.834246	0.644786	0.380315	0.511382
Low financial support (~cf)	0.367808	0.254382	0.735827	0.885362

Table 4: The necessary condition test of the single antecedent variable on the existence and absence of Unicorns.

Influencing factor variables	Existence of Unicorns (af)	Absence of Unicorns (~af)		
	Consistency	Coverage	Consistency	Coverage
High emerging industries (if)	0.750000	0.553590	0.478346	0.614257
Low emerging industries (~if)	0.477397	0.344708	0.652362	0.819486
High business environment (bf)	0.771918	0.743404	0.281890	0.472295
Low business environment (~bf)	0.452055	0.265701	0.846850	0.865942
High platform support (sf)	0.789726	0.589469	0.433071	0.562372
Low platform support (~sf)	0.413699	0.295499	0.683858	0.849804
High financial support (cf)	0.834246	0.644786	0.380315	0.511382
Low financial support (~cf)	0.367808	0.254382	0.735827	0.885362

Table 5: The truth table constructed when analyzing “the existence of Unicorns.”

Influencing factor variables	Existence of Unicorns (af)	Absence of Unicorns (~af)		
	Consistency	Coverage	Consistency	Coverage
High emerging industries (if)	0.750000	0.553590	0.478346	0.614257
Low emerging industries (~if)	0.477397	0.344708	0.652362	0.819486
High business environment (bf)	0.771918	0.743404	0.281890	0.472295
Low business environment (~bf)	0.452055	0.265701	0.846850	0.865942
High platform support (sf)	0.789726	0.589469	0.433071	0.562372
Low platform support (~sf)	0.413699	0.295499	0.683858	0.849804
High financial support (cf)	0.834246	0.644786	0.380315	0.511382
Low financial support (~cf)	0.367808	0.254382	0.735827	0.885362

Table 6: The truth table constructed when analyzing “the absence of Unicorns.”

Influencing factor variables	Existence of Unicorns (af)	Absence of Unicorns (~af)		
	Consistency	Coverage	Consistency	Coverage
High emerging industries (if)	0.750000	0.553590	0.478346	0.614257
Low emerging industries (~if)	0.477397	0.344708	0.652362	0.819486
High business environment (bf)	0.771918	0.743404	0.281890	0.472295
Low business environment (~bf)	0.452055	0.265701	0.846850	0.865942
High platform support (sf)	0.789726	0.589469	0.433071	0.562372
Low platform support (~sf)	0.413699	0.295499	0.683858	0.849804
High financial support (cf)	0.834246	0.644786	0.380315	0.511382
Low financial support (~cf)	0.367808	0.254382	0.735827	0.885362

Table 7: Sufficient condition configuration for the existence and absence of the Unicorn.

Influencing factor variables	Existence of Unicorns (af)	Absence of Unicorns (~af)		
	Consistency	Coverage	Consistency	Coverage
Emerging industries (if)	0.630199	0.763139	0.887706	0.865343
Business environment (bf)	0.674658	0.706164	0.656693	0.635039
Platform support (sf)	0.0136986	0.0452055	0.0488189	0.0712599
Financial support (cf)	0.367808	0.254382	0.735827	0.885362

Table 8: Mathematical Problems in Engineering

The existence of core conditions; • The existence of edge conditions; ⊗ The absence of core conditions; ⋆ The absence of edge conditions.
The probability of successful cultivation of Unicorns is about 76% in the regions that choose this cultivation path. In the 16 sample cases of “existence of Unicorns,” 70% of the regions successfully cultivated Unicorns by choosing this cultivation path.

The representative case of this condition configuration is Shenzhen. The results show that the membership degree of Shenzhen in this configuration is 0.95, and its consistency in the results is 1. In 2018, Shenzhen’s GDP was 2422198 million yuan, the total import and export of goods was 2998.374 billion yuan, and the actual utilization of foreign capital was 8.203 billion US dollars, ranking third, second, and sixth, respectively, in the above three secondary indexes, which means that Shenzhen has great advantages in the business environment. At the end of 2018, there are 16 Unicorns in Shenzhen, which meets its membership degree in the condition configuration and consistency in the result condition.

4.3.2. Configuration Analysis of Sufficient Conditions with “Absence of Unicorns” as the Result Variable. Based on the qualitative comparative analysis of “absence of Unicorns” as the result variable, three conditional configurations are obtained, namely, three Unicorn missing paths, which are mainly divided into the following two categories.

(1) Business Environment-Missing (bf sf/bf* if) Conditional Path. Configurations 3 and 4 both take the low business environment as the core condition. Configuration 3 indicates that “low business environment” and “low platform support” lead to the “absence of Unicorns” in cities. Yinchuan, Lanzhou, Nanning, and other cities are the representative cases. The number of national incubators and students in these cities is small, and the start-ups are difficult to meet the needs in terms of policies, infrastructure, talents, etc. Configuration 4 indicates that “low business environment” and “low emerging industries” lead to the lack of Unicorns in cities. Wuhu, Foshan, Shaoxing, Harbin, and other cities are the representative cases. These cities are at a disadvantage in terms of industrial foundation and attention to emerging industries. At the same time, the above two configurations reflect the significant influence of the low business environment on the “absence of Unicorns.”

(2) Financial Support-Missing (cf * sf * IF) Conditional Path. Configuration 5 indicates that the core conditions of “low financial support” plus the upper edge conditions of “low platform support” and “high emerging industries” lead to the “absence of Unicorns” in the city. In the process of rapid growth from start-ups to Unicorns in the region, the demand for capital of enterprises is at a high level. Even if the region focuses on promoting the development of emerging industries, low financial support will also inhibit the growth of start-ups to Unicorns, resulting in the region unable to cultivate Unicorns. The representative cases are Nanchang and Taiyuan. There was only one investment event in Taiyuan in 2018, with an investment amount of only 3 million yuan, which is at a very low level in the country, hindering the cultivation of Unicorns in the city.

4.4. Robustness Test. By changing the calibration threshold of the platform support variables, 1.9103 is set as the “Completely Subordinate Value,” 0.036085676 is set as the “Maximum Fuzzy Intersection Value,” and −1.2410 is set as the “Completely Non-Subordinate Value.” Using the changed threshold to carry out fuzzy set qualitative comparative analysis on the original samples, the threshold value of case frequency is still set to 1, and the consistency value is set to 0.75. The results of software operation are shown in Table 8. Taking “existence of Unicorns” as the result variable, the total consistency of the results is 0.79, and the total coverage rate is 0.63. Taking “absence of Unicorn” as the result variable, the total consistency of the results is 0.89, and the total coverage rate is 0.75. Therefore, the analysis results are reliable. Because the analysis results after eliminating the cases are the same as the above analysis results, it proves that the above analysis results are robust.

5. Conclusion and Prospect

Taking 40 cities in China as an example, this paper studies the conditional path of the existence or absence of Unicorns in the region from the perspective of configuration and tests the robustness of the research results from the perspective of set theory. The results are as follows.

Firstly, the two core conditions of “high emerging industries” and “high platform support” are combined with the two marginal conditions of “high business environment” and “high financial support” to form the “emerging industry-driven cultivation path,” and the
“business environment-supporting cultivation path,” which is composed of the abovementioned core conditions and the two marginal conditions of “high emerging industries” and “high financial support,” can cultivate Unicorns in the region. At the same time, cities should reasonably choose the cultivation path of Unicorns according to their own status and advantages.

Secondly, the core conditions of “low business environment” are, respectively, combined with the marginal conditions of “low platform support” and “low emerging industries” to form the “business environment-missing conditional path,” and the “financial support-missing conditional path,” which is composed of the “low financial support” and the two marginal conditions of “low platform support” and “high emerging industries,” will lead to the region that cannot cultivate Unicorns.

Thirdly, by comparing the conditional paths of existence and absence of Unicorns, we can see that the conditional configuration of “existence of Unicorns” and “absence of Unicorns” in the province is not a simple “non” relationship, that is, the research results are asymmetric.

Fourthly, according to the path of the existence and absence of Unicorns, if the regions belong to the sample case of lack of the business environment, it is difficult to develop the disadvantages of the business environment into absolute advantages, so we must choose the “emerging industry-driven cultivation path.” For regions with financial support deficiency, if their business environment is better than the current situation of emerging industries, they can choose the “business environment-supporting cultivation path.” If the development of emerging industries is slightly dominant, they should choose the “emerging industry-driven cultivation path.” Fifthly, for the regions that choose the “emerging industry-driven cultivation path,” the government must vigorously promote the enterprises to move closer to strategic emerging industries and promote the entrepreneurial enterprises to grow into Unicorns. The regions that choose the “business environment-supporting cultivation path” should focus on improving the regional social demand and foreign trade scale, expanding the global market, building a good market environment and economic foundation, driving the rapid growth of startups, and promoting the cultivation of Unicorns in the region.

There are also some shortcomings in this paper, such as using cross-sectional data to analyze, without considering the time factor and the dynamic changes of the research variables; at the same time, this paper does not consider the influencing factors of the existence or absence of Unicorns in the region from the micro perspective, so we can carry out more in-depth and detailed research from these directions in the future.

Data Availability
The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Acknowledgments
This work was supported by National Natural Science Foundation of China: Research on Mining and Dynamic Optimization of Machinery Manufacturing Process Supporting the Integration of Process Planning and Workshop Scheduling (ID: U1904186), National Natural Science Foundation of China (ID: 71801085), Henan Province Soft Science Research Project: Construction and Management Countermeasures of Henan Technological Innovation Center in the new era (ID: 212400410019), Henan Province Soft Science Research Project: Evaluation and Countermeasures of Technology Transfer Status in Henan Province (ID: 202400410211), and Henan Province Major Project of Applied Research on Philosophy and Social Sciences (2018-yyzd-04).

References
[1] D. Mcneill, “Governing a city of unicorns: technology capital and the urban politics of San Francisco,” Urban Geography, vol. 37, no. 4, pp. 494–513, 2016.
[2] A. Feldman, Silicon Slopes vs. Silicon Valley: Four Tech Unicorns, Thousands of Start-Ups, No Frenzy, Forbes.com, New York, NY, USA, 2017.
[3] S. C. Ren and C. Hu, “Entrepreneurial ecosystem construction path of unicorn enterprise cultivation: research based on fuzzy set qualitative comparative analysis,” Technology Economics, vol. 38, no. 7, pp. 46–55, 2019.
[4] J. Fan, “Regulating Unicorns: disclosure and the new private economy,” Boston College Law Review, vol. 57, no. 2, pp. 583–642, 2016.
[5] V. Govindarajan, T. Govindarajan, and Stepinski, “Why unicorns are struggling,” Harvard Business Review Digital Articles, vol. 1, no. 10, pp. 2–4, 2016.
[6] J. Wu, “Research on investor protection issues of “unicorns” returning to domestic listings——from the perspective of share swap mergers,” South China Finance, vol. 7, no. 10, pp. 81–91, 2018.
[7] A. Jacobius, “Plunging “unicorn” valuations spell double trouble,” Pensions & Investments, vol. 44, no. 16, p. 2, 2016.
[8] L. F. Song, D. W. Qi, and Y. F. Song, “China’s emerging unicorn enterprise valuation comparison basis and analysis framework,” Science & Technology Progress and Policy, vol. 36, no. 3, pp. 70–76, 2019.
[9] M. M. Lv and Y. E. Yang, “Analysis on the influencing factors of unicorns value evaluation in China,” Appraisal Journal of China, vol. 2, no. 5, pp. 27–34, 2019.
[10] D. Kowanda, M. Firdaus, R. B. F. Pasaribu et al., “Lesson from Tokopedia.com: E-commerce success factor analysis: a case study from Indonesian unicorn,” in Proceedings of the 2018 International Conference on Information Management and Processing (ICIMP), pp. 61–65, London, UK, January 2018.
[11] Z. Z. Mo and J. Wang, “Scene: new economic innovation generator,” Economy and Management, vol. 32, no. 6, pp. 51–55, 2018.
[12] H. Xue, “Persuaded by electronic word of mouth (eWOM): network coproduction model on Chinese social-e-commerce
[11] D. Lee and K.-C. Lin, “How to transform sustainable energy technology into a unicorn start-up: technology review and case study,” Sustainability, vol. 12, no. 7, p. 3018, 2020.

[12] P. Aku, M. Saks, and K. Tiusu, “Financial and strategic impact of VCs on start-up development: silicon valley decumns vs. Northern-European experience,” in Proceedings of the 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 452–456, IEEE, Bali, Indonesia, December 2016.

[13] S. Hogarth, “Valley of the unicorns: consumer genomics, venture capital and digital disruption,” New Genetics and Society, vol. 36, no. 3, pp. 250–272, 2017.

[14] Q. Chen, Y. T. Xiao, and X. Liu, “A comparative study on the growth environment of unicorn enterprises in Beijing and Shanghai—from the perspective of urban innovation and entrepreneurship ecosystem,” Journal of Tongji University (Social Science Section), vol. 29, no. 5, pp. 106–114, 2018.

[15] M. Au-Yong-Oliveira, J. P. Costa, R. Gonçalves, and F. Branco, “The rise of the unicorn: shedding light on the creation of technological enterprises with exponential valuations,” in Trends and Advances in Information Systems and Technologies, pp. 967–977, Springer, Cham, Switzerland, 2018.

[16] X. Bai, “Promoting the growth of unicorns with financial supply side reform,” People’s Tribune, vol. 25, no. 23, pp. 56–57, 2019.

[17] J. Moosup, “Case study of GVC participation with Korean unicorn,” Korean Academy of International Business Management Journal, vol. 3, no. 4, pp. 187–198, 2019.

[18] C. Jones, P. Pimdee, and P. Pimdee, “Innovative ideas: Thailand 4.0 and the fourth industrial revolution,” Asian International Journal of Social Sciences, vol. 17, no. 1, pp. 4–35, 2017.

[19] L. Xin, “The league of Chinese “unicorns”” China Today, vol. 1, no. 8, pp. 45–47, 2018.

[20] J. Li, “Development and cultivation of China’s champion enterprises and unicorn enterprises,” Journal of Shenzhen University (Humanities & Social Sciences), vol. 36, no. 1, pp. 68–76, 2019.

[21] T. Chu and T. Song, “Spatial distribution and influence factors of unicorn companies in China,” World Regional Studies, vol. 26, no. 6, pp. 101–109, 2017.

[22] D. Dellermon, N. Lipusch, P. Ebel, K. M. Popp, and J. M. Leimeister, “Finding the unicorn: predicting early stage startup success through a hybrid intelligence method,” in Proceedings of the International Conference on Information Systems (ICIS), Seoul, South Korea, December 2017.

[23] A. Stemler, “The myth of the sharing economy and its implications for regulating innovation,” Emory Law Journal, vol. 67, no. 2, pp. 197–241, 2017.

[24] A. Lee, Welcome to the Unicorn Club: Learning from Billion-Dollar Start-Ups, Cowboy Ventures (Blog), Palo Alto, CA, USA, 2013.

[25] A. De Massis, F. Federico, and Q. Franco, “What Big Companies Can Learn from the Success of the Unicorns”, Harvard Business Review, Brighton, MA, USA, 2016.

[26] L. Shin, Coinbase Becomes First Crypto Unicorn, Raises $100 Million in Funding Amid ICO Craze, Forbes.com, New York, NY, USA, 2017.

[27] A. L. Say, R. Guo, and C. Chen, “Disruption or new order? the emergence of the unicorn bike-sharing entrepreneurship in China,” in Proceedings of the 2018 Portland International Conference on Management of Engineering and Technology (PICMET), Honolulu, HI, USA, August 2018.

[28] A. A. Agus, A. Y. Arafah, I. Suprayana et al., “The leap of GOJEK: unfolding a unicorn startup journey,” Academy of Asian Business Review, vol. 5, no. 1, pp. 55–80, 2019.

[29] B. Jeff and S. Omri, “A large number of Israeli “unicorns” come,” Directors & Boards, vol. 10, no. 49, pp. 82–83, 2015.

[30] B. Rihoux and C. C. Rasin, Configurational Comparative Methods: Qualitative Comparative Analysis (QCA) and Related Techniques, SAGE, Thousand Oaks, CA, USA, 2009.

[31] S. Furnari, D. Crilly, V. F. Misangyi et al., “Capturing causal complexity: heuristics for configurational theorizing,” Academy of Management Review, vol. 5, 2020.

[32] M. Zhang and Y. Z. Du, “Qualitative comparative analysis of the role of cognition and capabilities in U.S. defense firms’ responses to 9/11,” Academy of Management Journal, vol. 61, no. 2, pp. 379–404, 2018.

[33] J.-P. Vergne and C. Depewye, “How do firms adapt? a fuzzy-set analysis of the role of cognition and capabilities in U.S. defense firms’ responses to 9/11,” Academy of Management Journal, vol. 59, no. 5, pp. 1653–1680, 2016.

[34] C. Lee, G. Park, and J. Kang, “The impact of convergence between science and technology on innovation,” The Journal of Technology Transfer, vol. 43, no. 2, pp. 522–544, 2018.

[35] C. C. Ragin, “The comparative method: moving beyond qualitative and quantitative strategies,” Social Forces, vol. 67, no. 3, 1989.

[36] Y. Z. Du and L. D. Jia, “Configuration perspective and qualitative comparative analysis (QCA): a new way of management research,” Chinese Journal of Management, vol. 6, pp. 155–167, 2017.

[37] M. Zhang and Y. Z. Du, “Qualitative comparative analysis (QCA) in management and organization research: position, tactics, and directions,” Chinese Journal of Management, vol. 16, pp. 1312–1323, 2019.

[38] M. Kim, “Many roads lead to Rome: implications of geographic scope as a source of isolating mechanisms,” Journal of International Business Studies, vol. 44, no. 9, pp. 898–921, 2013.

[39] P. C. Fiss, “Building better causal theories: a fuzzy set approach to typologies in organization research,” Academy of Management Journal, vol. 54, pp. 393–420, 2011.