Near-Optimal No-Regret Learning for General Convex Games

Gabriele Farina*1, Ioannis Anagnostides*2, Haipeng Luo3, Chung-Wei Lee4, Christian Kroer5, and Tuomas Sandholm6

1,2,6Carnegie Mellon University
5Columbia University
3,4University of Southern California
6Strategy Robot, Inc.
6Optimized Markets, Inc.
6Strategic Machine, Inc.
{gfarina,ianagnos}@cs.cmu.edu, {haipengl,leechung}@usc.edu,
christian.kroer@columbia.edu and sandholm@cs.cmu.edu

Abstract

A recent line of work has established uncoupled learning dynamics such that, when employed by all players in a game, each player’s regret after T repetitions grows polylogarithmically in T, an exponential improvement over the traditional guarantees within the no-regret framework. However, so far these results have only been limited to certain classes of games with structured strategy spaces—such as normal-form and extensive-form games. The question as to whether O(polylog T) regret bounds can be obtained for general convex and compact strategy sets—which occur in many fundamental models in economics and multiagent systems—while retaining efficient strategy updates is an important question.

In this paper, we answer this in the positive by establishing the first uncoupled learning algorithm with O(log T) per-player regret in general convex games, that is, games with concave utility functions supported on arbitrary convex and compact strategy sets. Our learning dynamics are based on an instantiation of optimistic follow-the-regularized-leader over an appropriately lifted space using a self-concordant regularizer that is, peculiarly, not a barrier for the feasible region. Further, our learning dynamics are efficiently implementable given access to a proximal oracle for the convex strategy set, leading to O(log log T) per-iteration complexity; we also give extensions when access to only a linear optimization oracle is assumed. Finally, we adapt our dynamics to guarantee O(√T) regret in the adversarial regime. Even in those special cases where prior results apply, our algorithm improves over the state-of-the-art regret bounds either in terms of the dependence on the number of iterations or on the dimension of the strategy sets.

1 Introduction

Regret minimization is a celebrated framework that has been central in the development of online learning and the theory of multiagent systems. Indeed, fundamental connections have been forged between no-regret learning and game-theoretic solution concepts [Freund and Schapire, 1999, Hart and Mas-Colell, 2000, Foster and Vohra, 1997, Roughgarden, 2015]. More broadly, regret is an intrinsic measure of performance in online learning and games. Furthermore, regret minimization algorithms have enjoyed a remarkable practical success, being a primary component in recent landmark results in AI [Bowling et al., 2015, Moravčík et al., 2017, Brown and Sandholm, 2017, 2019]. These advances were guided by game-theoretic principles, and

*Equal contribution.
made possible by training the AI agents using self-play and regret-minimizing algorithms. Nevertheless, the traditional no-regret framework is overly pessimistic, insisting on modeling the environment in a fully adversarial way. While this well-understood worst-case view might be justifiable for applications such as a security games, it could be far from optimal in more benign and predictable environments, including the setting of training agents using self-play. This begs the question: What are the optimal performance guarantees we can obtain when learning agents are competing against each other in general games?

This fundamental question was first formulated and addressed by Daskalakis et al. [2011] within the context of zero-sum games. Since then, there has been a considerable interest in extending their guarantee to more general settings [Rakhlin and Sridharan, 2013, Syrgkanis et al., 2015, Foster et al., 2016, Chen and Peng, 2020, Daskalakis and Golowich, 2022, Piliouras et al., 2021]. In particular, Daskalakis et al. [2021] recently established that when all players in a general normal-form game employ an optimistic variant of multiplicative weights update (MWU), the regret of each player grows nearly-optimally as $O(\log^4 T)$ after T repetitions of the game, leading to an exponential improvement over the guarantees obtained using traditional techniques within the no-regret framework. However, while normal-form games are a common way to represent strategic interactions in theory, most settings of practical significance inevitably involve more complex strategy spaces. For those settings, any faithful approximation of the game using the normal form is typically inefficient, requiring an action space that is exponential in the natural parameters of the problem, thereby limiting the practical implications of those prior results. This motivates our central question:

Can we establish near-optimal, efficiently implementable, and strongly uncoupled no-regret learning dynamics in general convex games? (⋆)

Convex games are a rich class of games wherein the strategy space of each player is an arbitrary convex and compact set, while the utility of each player is an arbitrary concave function (see Section 2 for a formal description). As such, convex games encompass normal-form and extensive-form games, but go well-beyond to many other fundamental settings in economic theory including routing games, resource allocation problems, and competition between firms. Our primary contribution in this paper is to substantially extend prior results to all such games, addressing Question (⋆).

1.1 Our Contributions

In this paper we introduce a novel no-regret learning algorithm, which we coin lifted log-regularized optimistic follow the regularized leader (LRL-OFTRL). LRL-OFTRL settles Question (⋆) in the positive, as summarized in the following theorem.\(^1\)

Theorem 1 (Detailed version in Theorem 4). Consider any general convex game. When all players employ our strongly uncoupled learning dynamics (LRL-OFTRL), the regret of each player grows as $O(\log T)$. At the same time, if the player is facing adversarial utilities we guarantee $O(\sqrt{T})$ regret.

Importantly, our learning dynamics are efficiently implementable given access to a **proximal oracle** for the set (Equation (6)), requiring only $O(\log \log T)$ operations per-iteration (Theorem 5); such an oracle is weaker than the—relatively standard in convex optimization—quadratic optimization oracle. We also point out extensions under a weaker linear optimization oracle, albeit with a worse per-iteration complexity (Theorem 6). Our no-regret learning dynamics imply the first efficiently implementable and near-optimal regret guarantees in general convex games, significantly extending the scope of prior $O(\text{polylog } T)$-regret guarantees [Daskalakis et al., 2021, Farina et al., 2022]; a comparison with prior approaches is included in Table 1. We remark that Theorem 1 establishes near-optimal regret both under self-play, and in the adversarial regime: the latter feature of adversarial robustness has been a central desideratum in this line of work.

Our proposed learning dynamics lie within the general framework of optimistic no-regret learning, pioneered by Chiang et al. [2012] and Rakhlin and Sridharan [2013]. We leverage the OFTRL algorithm

\(^1\)For simplicity in the exposition we use the $O(\cdot)$ notation in our introduction to suppress time-independent parameters that depend (polynomially) on the game; precise statements are deferred to Section 3.
of Syrgkanis et al. [2015], but with some important twists. First, as detailed in Algorithm 1, the OFTRL optimization step is performed over a “lifted” space. This lifting ensures that the regret incurred by OFTRL is nonnegative (Theorem 2). Further, we employ a logarithmic self-concordant regularizer; interestingly, and perhaps surprisingly, this is not a barrier for the underlying feasible set. This deviates substantially from the typical use of self-concordant regularization (especially within the bandit setting [Abernethy et al., 2008, Wei and Luo, 2018, Bubeck et al., 2019]). A pictorial overview of our construction is given in the caption of Algorithm 1.

The use of the logarithmic regularizer serves two main purposes. First, we show that it guarantees multiplicative stability of the strategies, a refined notion of stability that is also leveraged in the work of Daskalakis et al. [2021]. Nonetheless, we are the first to leverage such properties in general domains, going well beyond the guarantees of (Optimistic) MWU on the simplex [Daskalakis et al., 2021]. Further, the local norm induced by the logarithmic regularizer enables us to cast regret bounds from the lifted space to the original space, while preserving the RVU property [Syrgkanis et al., 2015, Definition 3]. In turn, this implies near-optimal regret by establishing that the second-order path lengths up to time T are bounded by $O(\log T)$ (Theorem 3), building on a recent technique of Anagnostides et al. [2022a] which crucially leverages the nonnegativity of swap regret.\footnote{To see why nonnegativity is crucial, note that the RVU bound implies optimal sum of players’ regrets [Syrgkanis et al., 2015]. Thus, nonnegativity would imply the same bound for each player’s regret.}

1.2 Further Related Work

The rich line of work pursuing improved regret guarantees in games was pioneered by Daskalakis et al. [2011]. Specifically, they developed strongly uncoupled learning dynamics so that the players’ regrets grow as $O(\log T)$, an exponential improvement over the guarantee one could hope for in adversarial environments [Shalev-Shwartz, 2012, Cesa-Bianchi and Lugosi, 2006]. Their result was significantly simplified by Rakhlin and Sridharan [2013]—again in zero-sum games—who introduced a simple variant of mirror descent with a recency bias—a.k.a. optimistic mirror descent (OMD). It is worth noting that, beyond the benefits of optimism from an optimization standpoint [Polyak, 1987], recency bias has been experimentally documented in natural learning environments in economics [Fudenberg and Peysakhovich, 2014].

Method	Uncoupled	Applies to	Regret bound	Cost per iteration		
OFTRL / OMD	✓	General convex set	$O(\sqrt{nRT^{1/4}})$	Regularizer- & oracle-dependent		
[Syrgkanis et al., 2015]						
OMWU	✓	Simplex Δ^d	$O(n \log d \log^4 T)$	$O(d)$		
[Daskalakis et al., 2021]						
Clairvoyant MWU	✓	Simplex Δ^d	$O(n \log d)$			
[Piliouras et al., 2021]						
Kernelized OMWU	✓	Polytope $\Omega = \text{co}\mathcal{V}$ with $\mathcal{V} \subseteq (0,1)^d$	$O(n \log	\mathcal{V}	\log^4 T)$	$d \times \text{cost of kernel}$
[Farina et al., 2022]						
LRL–OFTRL	✓	General convex set	$O(nd\|\mathcal{X}\|_1 \log^2 T)$	Oracle-dependent:		
[This paper]				$\bullet O(\log \log T)$ proximal oracle calls		
				$\bullet O(\text{poly} T)$ linear opt. oracle calls		

Table 1: Comparison of prior results on minimizing external regret in games. For simplicity, we have suppressed dependencies on the smoothness and the range of the utilities. We use n to denote the number of players; T to denote the number of repetitions; \mathcal{R} to indicate a parameter that depends on the regularizer; $\text{co}\mathcal{V}$ to denote the convex hull of \mathcal{V}; and $\|\mathcal{X}\|_1$ to denote a bound on the maximum ℓ_1 norm of any strategy. \dagger Piliouras et al. [2021, Remark 5] suggest that some of their techniques could apply beyond simplex domains, though it is unclear whether the regret bound and efficient implementation of the dynamics would transfer. \ddagger It is not clear how to compare the per-iteration cost of Clairvoyant MWU with the other methods as the former is not uncoupled and therefore does not perform parallel strategy updates.
Subsequently, Syrgkanis et al. [2015] crystallized the RVU property, an adversarial regret bound applicable for a broad class of optimistic no-regret learning algorithms. Using that property, they showed that the individual regret of each player grows as $O(T^{1/4})$ in general games, thereby converging to the set of coarse correlated equilibria with a rate of $O(T^{-3/4})$. A near-optimal bound of $O(\text{polylog}(T))$ in normal-form games was finally established by Daskalakis et al. [2021], while Farina et al. [2022] generalized that result in a class of polyhedral games that includes extensive-form games. Some extensions of the previous results have also been established for the stronger notion of no-swap-regret learning dynamics in normal-form games [Chen and Peng, 2020, Anagnostides et al., 2022b]. In particular, our work builds on a very recent technique of Anagnostides et al. [2022a], which established $O(\log T)$ swap regret in normal-form games using as a regularizer a self-concordant barrier function. On the other hand, establishing even sublinear $o(T)$ swap regret in extensive-form games is a notorious open question. Finally, an interesting new approach for obtaining near-optimal external regret in normal-form games was recently proposed by Piliouras et al. [2021]. Nevertheless, their proposed dynamics are not uncoupled; hence, their regret bounds are not comparable with the aforementioned results.

Games with continuous strategy spaces have received a lot of attention in the literature; e.g., see [Roughgarden and Schoppmann, 2015, Even-Dar et al., 2009, Harks and Klimm, 2011, Hsieh et al., 2021, Mertikopoulos and Zhou, 2019, Stein et al., 2011, Stoltz and Lugosi, 2007], and references therein. Such games encompass a wide variety of applications in economics and multiagent systems; we give several examples in Section 2. Indeed, in many applications of interest a faithful approximation of the game requires an extremely large or even infinite action space; such settings could be abstracted as Littlestone games in the sense of the recent work of Daskalakis and Golowich [2022].

2 No-Regret Learning and Convex Games

In this section we review the general setting of convex games\(^4\) which encompasses a number of important applications, as explained in Section 2.2. We then formally define the framework of uncoupled and online no-regret learning in games in Section 2.3.

Notation We let $\mathbb{N} = \{1, 2, \ldots\}$ be the set of natural numbers. For a vector $x \in \mathbb{R}^d$ we denote by $x[r]$ its r-th coordinate, for some index $r \in [d] := \{1, 2, \ldots, d\}$. We will typically represent the players using subscripts; superscripts are reserved for the time index, denoted by the variable t.

2.1 Convex Games

Let $[n] := \{1, 2, \ldots, n\}$ be a set of players, with $n \in \mathbb{N}$. In a convex game, every player $i \in [n]$ has a nonempty convex and compact set of strategies $X_i \subseteq \mathbb{R}^d$. For a joint strategy profile $x = (x_1, \ldots, x_n) \in X_1 \times \cdots \times X_n$, the reward of player i is given by a continuously differentiable utility function $u_i : X_1 \times \cdots \times X_n \rightarrow \mathbb{R}$ subject to the following standard assumption.

Assumption 1 (Convex games). The utility function $u_i(x_1, \ldots, x_n)$ of any player $i \in [n]$ satisfies the following properties:

1. (Concavity) $u_i(x_i, x_{-i})$ is concave in x_i for $x_{-i} = (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n) \in X_{j \neq i}$;

2. (Bounded gradients) for any $(x_1, \ldots, x_n) \in X_1 \times \cdots \times X_n$, $\|\nabla x_i u_i(x_1, \ldots, x_n)\|_{\infty} \leq B$, for some parameter $B > 0$; and

3. (L-smoothness) there exists $L > 0$ so that for any two joint strategy profiles $x, x' \in X_1 \times \cdots \times X_n$,

$$\|\nabla x_i u_i(x) - \nabla x_i u_i(x')\|_{\infty} \leq L \sum_{j \in [n]} \|x_j - x'_j\|_1.$$

\(^3\)During the preparation of this manuscript we were informed about a concurrent revision of the preprint by Piliouras et al. [2021] introducing an uncoupled variant of Clairvoyant OMU. This will be addressed in a future version of this manuscript.

\(^4\)Sometimes these are referred to as concave games [Rosen, 1965] or continuous games [Hsieh et al., 2021].
2.2 Applications and Examples of Convex Games

Here we discuss several different classes of games which can all be analyzed under the common framework of convex games. For simplicity, we describe Cournot competition in the one-dimensional setting, but it can be readily generalized in more general domains. For more examples, we refer to [Even-Dar et al., 2009, Hsieh et al., 2021], and references therein.

Normal-Form Games In normal-form games (NFGs) every player $i \in [n]$ has a finite and nonempty set of strategies A_i. Player i’s strategy set contains all probability distributions supported on A_i; that is, $X_i = \Delta(A_i)$. The utility of player i can be expressed as the multilinear function $u_i(x) := \mathbb{E}_{a \sim x}[U_i(a)]$, for some arbitrary function $U_i : \times_{j=1}^n A_j \rightarrow \mathbb{R}$.

Extensive-Form Games Extensive-form games (EFGs) generalize NFGs by capturing both sequential and simultaneous moves, stochasticity from the environment, as well as imperfect information. EFGs are abstracted on a directed tree. Once the game reaches a terminal (or leaf) node $z \in \mathcal{Z}$, each player $i \in [n]$ receives a utility $U_i(z)$, for some $U_i : \mathcal{Z} \rightarrow \mathbb{R}$. The strategy space of each player $i \in [n]$ can be compactly represented using the sequence-form polytope \mathcal{Q}_i [Romanovskii, 1962, Koller et al., 1996]. If $p_z(z)$ is the probability of reaching terminal node $z \in \mathcal{Z}$ over “chance moves”, the utility of player i can be expressed as $u_i(q) := \sum_{z \in \mathcal{Z}} p_z(z)U_i(z)\prod_{j \in [n]} q_j[\sigma_{j,z}]$, where $q = (q_1, \ldots, q_n) \in X^n$. $U_i(z)$ is the joint strategy profile, and $\sigma_{j,z}$ is the probability mass assigned to the last sequence $\sigma_{j,z}$ encountered by player j before reaching z. The smoothness and the concavity of the utilities follow directly from multilinearity; for a more detailed account on EFGs we refer the interested reader to the excellent book of Shoham and Leyton-Brown [2008].

Splittable Routing Games In these games [Roughgarden and Schoppmann, 2015] every player has to route a flow f_i from a source to a destination in an undirected graph $G = (V,E)$. Every edge $e \in E$ is associated with a latency function $\ell_e(f_e)$ mapping the amount of flow passing through the edge to some latency. The set of strategies of player i corresponds to the possible ways of “splitting” the flow f_i into paths from the source to the destination. Under suitable restrictions on the latency functions, those games satisfy Assumption 1 (see [Syrgkanis et al., 2015]).

Cournot Competition This game is played among n firms (players). Every firm i decides the quantity $x_i \in S_i \subseteq \mathbb{R}_{\geq 0}$ of a common good to produce, where S_i is an interval. Further, a cost function $c_i : S_i \rightarrow \mathbb{R}$ assigns a production cost to a given quantity, while $p : \times S_i \rightarrow \mathbb{R}_{\geq 0}$ is the price of the good determined by the the joint choice of quantity $s = (s_1, \ldots, s_n)$ across the firms. Then, the utility of firm i is defined as $u_i(s) := s_i p(s) - c_i(s_i)$. In linear Cournot competition, $p(s) := a - b(\sum_{i=1}^n s_i)$, for some $a, b > 0$, while the cost functions c_i are assumed to be smooth and convex [Even-Dar et al., 2009].

2.3 Online Linear Optimization and No-Regret Learning

In the online learning framework a learning agent has to select a strategy $x^{(t)} \in \mathcal{X} \subseteq \mathbb{R}^d$ at every time $t \in \mathbb{N}$. Then, in the full information model, the learner receives as feedback from the environment a linear utility function $x \mapsto \langle x, u^{(t)} \rangle$, for some vector $u^{(t)} \in \mathbb{R}^d$. The canonical measure of performance is the notion of regret, defined for a time horizon $T \in \mathbb{N}$ as follows.

$$\text{Reg}^T := \max_{x^* \in \mathcal{X}} \left\{ \sum_{t=1}^T \langle x^*, u^{(t)} \rangle \right\} - \sum_{t=1}^T \langle x^{(t)}, u^{(t)} \rangle. \quad (1)$$

That is, the performance of the agent is compared to the optimal fixed strategy in hindsight. It is important to note that regret can be negative. In the context of convex games, it is assumed that every player $i \in [n]$ receives at time t the “linearized” utility function $x_i \mapsto \langle x_i, u_i^{(t)} \rangle$, where $u_i^{(t)} := \nabla_{x_i} u_i(x^{(t)})$. By concavity (Assumption 1),

$$\max_{x_i^* \in \mathcal{X}_i} \sum_{t=1}^T (u_i(x_i^*, x^{(t)}_i) - u_i(x^{(t)})) \leq \max_{x_i^* \in \mathcal{X}_i} \sum_{t=1}^T \langle x_i^* - x_i^{(t)}, \nabla_{x_i} u_i(x^{(t)}) \rangle.$$
As a result, a regret bound on the linearized regret—in the sense of (1)—automatically translates to a regret bound in the convex game.

Strongly Uncoupled Learning Dynamics In this setting, all learning dynamics are *uncoupled* in the sense of Hart and Mas-Colell [2003]: every player is oblivious to the other players’ utilities. In fact, players need not have any prior knowledge about the game whatsoever, even about their own utilities; this essentially captures the condition of *strong uncoupledness* of Daskalakis et al. [2011].

For simplicity, and without loss of generality, for the rest of this paper we will assume that \(\|u_i^{(t)}\|_\infty\|x_i\|_1 \leq 1\), for any time \(t \in \mathbb{N}\), player \(i \in [n]\), and \(x_i \in \mathcal{X}_i\).

3 Near-Optimal No-Regret Learning in Convex Games

In this section we describe our algorithm, *Log-Regularized Lifted Optimistic FTRL* (henceforth *LRL-OFTRL*). The central result of this section, Theorem 4, asserts that when all players learn using *LRL-OFTRL*, their regret only grows logarithmically with respect to the number of repetitions of the game. Detailed proofs for this section are available in Appendix A.

3.1 Setup

In the sequel, we will define and analyze the regret cumulated by *LRL-OFTRL* from the perspective of a generic player, omitting player subscripts.

We denote the set of strategies of the player by \(\mathcal{X} \subseteq \mathbb{R}^d\). Without loss of generality, we will assume that \(\mathcal{X} \subseteq [0, +\infty]^d\); otherwise, it suffices to first shift the set. Furthermore, we assume without loss of generality that there is no index \(r \in [d]\) such that \(x[r] = 0\) for all \(x \in \mathcal{X}\)—if not, dropping the identically-zero dimension would not alter regret. We define the lifting of set \(\mathcal{X}\) as the following set:

\[
\mathbb{R}^{d+1} \supseteq \tilde{\mathcal{X}} := \{ (\lambda, y) : \lambda \in [0, 1], y \in \lambda \mathcal{X} \}.
\]

Further, we define the \(\ell_1\)-norm \(\|\mathcal{X}\|_1\) of \(\mathcal{X}\) as the maximum \(\ell_1\)-norm of any vector \(x \in \mathcal{X}\), that is, \(\|\mathcal{X}\|_1 := \max_{x \in \mathcal{X}} \|x\|_1\); for example, \(\|\Delta\|_1 = 1\).

The *logarithmic regularizer* for \(\mathbb{R}^{d+1}\) is the function

\[
R(\lambda, y) := -\log \lambda - \sum_{r=1}^d \log y[r], \quad \forall (\lambda, y) \in \mathbb{R}_{>0}^{d+1}.
\]

Given any vector \((\lambda, y) \in \tilde{\mathcal{X}} \cap \mathbb{R}_{>0}^{d+1}\), we denote with \(\|\cdot\|_{(\lambda, y)}\) and \(\|\cdot\|_{*,(\lambda, y)}\) the *local norms centered at \((\lambda, y)\)* induced by \(R(\lambda, y)\), defined as

\[
\left\| \begin{pmatrix} a \\ z \end{pmatrix} \right\|_{(\lambda, y)} := \sqrt{\frac{(a \lambda)^2}{(z \lambda)^2} + \sum_{r=1}^d \left(\frac{z[r]}{y[r]} \right)^2}, \quad \left\| \begin{pmatrix} a \\ z \end{pmatrix} \right\|_{*,(\lambda, y)} := \sqrt{(a \lambda)^2 + \sum_{r=1}^d (z[r] y[r])^2}
\]

for any \((a, z) \in \mathbb{R}^{d+1}\). These are the norms induced by the Hessian matrix of \(R\) at \((\lambda, y)\) and its inverse. It is a well-known fact that \(\|\cdot\|_{*,(\lambda, y)}\) is the dual norm of \(\|\cdot\|_{(\lambda, y)}\), and vice versa.

3.2 Overview of Our Algorithm

Our algorithm (Algorithm 1) leverages *optimistic follow the regularized leader* (*OFTRL*), a simple variant of *FTRL* introduced by Syrgkanis et al. [2015], but with some important twists. First, the optimization is performed over the lifting \(\tilde{\mathcal{X}}\) of the set \(\mathcal{X}\). More precisely, at every iteration the observed utility \(u_i^{(t)} \in \mathbb{R}^d\) will be transformed to \(\tilde{u}_i^{(t)} \in \mathbb{R}^{d+1}\) according to Line 6; this ensures that \(\tilde{u}_i^{(t)}\) is orthogonal to the vector
(1, x⁽t⁾). Then, this utility vector \(\tilde{u}^{(t)} \) is given as input to a regret minimizer operating over \(\tilde{X} \), employing \textsc{OFTRL} under the logarithmic regularizer \(\mathcal{R}(\lambda, y) \); this step is described in Line 3. We discuss how such an optimization problem can be solved efficiently in Section 3.5. Below we point out that Line 3 is indeed well-defined.

Proposition 1. For any \(\eta \geq 0 \) and at all times \(t \in \mathbb{N} \), the \textsc{OFTRL} optimization problem on Line 3 of Algorithm 1 admits a unique optimal solution \((\lambda^{(t)}, y^{(t)}) \in \tilde{X} \cap \mathbb{R}^{d+1} \).

Finally, given the iterate \((\lambda^{(t)}, y^{(t)}) \) output by the \textsc{OFTRL} step at time \(t \), our regret minimizer over \(\mathcal{X} \) selects the next strategy \(x^{(t)} := y^{(t)}/\lambda^{(t)} \) (Line 3): this is indeed a valid strategy in \(\mathcal{X} \) by definition of \(\tilde{X} \) in (2), as well as the fact that \(\lambda^{(t)} > 0 \) as asserted in Proposition 1.

Algorithm 1: Log-Regularized Lifted Optimistic FTRL (LRL-OFTRL)

```
Data: Learning rate \( \eta \)
1. Set \( \tilde{U}^{(1)}, u^{(0)} \leftarrow 0 \in \mathbb{R}^{d+1} \)
2. for \( t = 1, 2, \ldots, T \) do
3.   set \( \left( \lambda^{(t)}, y^{(t)} \right) \leftarrow \arg \max_{(\lambda, y) \in \tilde{X}} \{ \eta \left\langle \tilde{U}^{(t)} + \tilde{u}^{(t-1)}, \left( \lambda \right) \right\rangle + \log \lambda + \sum_{r=1}^{d} \log y^{(r)} \} \) \[\text{OFTRL}\]
4.   play strategy \( x^{(t)} := \frac{y^{(t)}}{\lambda^{(t)}} \in \mathcal{X} \) \[\text{Normalization}\]
5.   observe \( u^{(t)} \in \mathbb{R}^{d} \)
6.   set \( \tilde{u}^{(t)} \leftarrow -\left\langle u^{(t)}, x^{(t)} \right\rangle \) \[\text{Lifting}\]
7.   set \( \tilde{U}^{(t+1)} \leftarrow \tilde{U}^{(t)} + \tilde{u}^{(t)} \)
```

3.3 Regret Analysis

In this section, we study the regret of \textsc{LRL-OFTRL} under the idealized assumption that the optimization problem on Line 3 (\textsc{OFTRL} step) is solved exactly at each time \(t \). In Section 3.5 we will relax that assumption, and study the regret of \textsc{LRL-OFTRL} when the solution to Line 3 is approximated using variants of Newton’s method.

To study the regret \(\text{Reg}^{T} \) of \textsc{LRL-OFTRL}, defined in (1), it is useful to introduce the quantity \(\tilde{\text{Reg}}^{T} \), which measures the regret incurred by the internal \textsc{OFTRL} algorithm (Line 3) up to a time \(T \in \mathbb{N} \) in the lifted space \(\tilde{X} \), i.e.,

\[
\tilde{\text{Reg}}^{T} := \max_{(\lambda^*, y^*) \in \tilde{X}} \sum_{t=1}^{T} \left\langle \tilde{u}^{(t)}, \left(\lambda^{(t)} \right) \right\rangle - \left(\lambda^{(t)} \right).
\]

As the following theorem clarifies, there is a strong connection between \(\tilde{\text{Reg}}^{T} \) and \(\text{Reg}^{T} \).

Theorem 2. For any time \(T \in \mathbb{N} \) it holds that \(\tilde{\text{Reg}}^{T} = \max \{ 0, \text{Reg}^{T} \} \). In particular, it follows that \(\tilde{\text{Reg}}^{T} \geq 0 \) and \(\text{Reg}^{T} \leq \tilde{\text{Reg}}^{T} \) for any \(T \in \mathbb{N} \).
The nonnegativity of $\hat{\text{Reg}}_T$ will be a crucial property in establishing Theorem 3. Further, Theorem 2 implies that a guarantee over the lifted space can be automatically translated to a regret bound over the original space \mathcal{X}. Now let
\[
\| \cdot \|_t := \| \cdot \|_{(\lambda^{(t)}, y^{(t)})} \quad \text{and} \quad \| \cdot \|_{\ast,t} := \| \cdot \|_{\ast,(\lambda^{(t)}, y^{(t)})}
\]
be the local norms centered at point $(\lambda^{(t)}, y^{(t)})$ produced by OFTRL at time t (Line 3). In the next proposition we establish a refined RVU (Regret bounded by Variation in Utilities) bound in terms of this primal-dual norm pair. Before we proceed with its statement, we recall the assumption that $\|u^{(t)}\|_{\infty}\|x\|_1 \leq 1$, which will be tacitly assumed throughout this section.

Proposition 2 (RVU bound of OFTRL in local norms). Let $\hat{\text{Reg}}_T$ be the regret cumulated up to time T by the internal OFTRL algorithm. Then, for any time horizon $T \in \mathbb{N}$ and learning rate $\eta \leq \frac{1}{27}$,
\[
\hat{\text{Reg}}_T \leq 4 + \frac{(d + 1) \log T}{\eta} + 5\eta \sum_{t=1}^{T} \| \hat{u}^{(t)} - \hat{u}^{(t-1)} \|_{\ast,t}^2 - \frac{1}{27\eta} \sum_{t=1}^{T-1} \| (\lambda^{(t+1)} - \lambda^{(t)}) \|_t^2.
\]

(We recall that $\hat{u}^{(0)} := 0.$) Proposition 2 differs from prior analogous results in that the regularizer is not a barrier over the feasible set. Next, we show that the iterates produced by OFTRL satisfy a refined notion of stability, which we refer to as multiplicative stability.

Proposition 3 (Multiplicative Stability). For any time $t \in \mathbb{N}$ and learning rate $\eta \leq \frac{1}{27}$,
\[
\left\| \left(\begin{array}{c} \lambda^{(t+1)} \\ y^{(t+1)} \end{array} \right) - \left(\begin{array}{c} \lambda^{(t)} \\ y^{(t)} \end{array} \right) \right\|_t \leq 22\eta.
\]

Intuitively, this property ensures that coordinates of successive iterates will have a small multiplicative deviation. We leverage this refined notion of stability to establish the following crucial lemma.

Lemma 1. For any time $t \in \mathbb{N}$ and learning rate $\eta \leq \frac{1}{27}$,
\[
\| x^{(t+1)} - x^{(t)} \|_1 \leq 4\| \lambda^{(t)} \|_1 \left\| \left(\begin{array}{c} \lambda^{(t+1)} \\ y^{(t+1)} \end{array} \right) - \left(\begin{array}{c} \lambda^{(t)} \\ y^{(t)} \end{array} \right) \right\|_t.
\]

Combining this lemma with Proposition 2 allows us to obtain an RVU bound for the original space \mathcal{X}, with no dependencies on local norms.

Corollary 1 (RVU bound in the original (unlifted) space). For any time $T \in \mathbb{N}$ and $\eta \leq \frac{1}{276}$,
\[
\hat{\text{Reg}}_T \leq 6 + \frac{(d + 1) \log T}{\eta} + 16\eta\| \lambda^{(t)} \|_1^2 \sum_{t=1}^{T-1} \| u^{(t)} - u^{(t-1)} \|_\infty^2 - \frac{1}{512\eta\| \lambda^{(t)} \|_1^2} \sum_{t=1}^{T-1} \| x^{(t+1)} - x^{(t)} \|_1^2.
\]

3.4 Main Result

So far, in Section 3.3, we have performed the analysis from the perspective of a single player, obtaining regret bounds that apply under an arbitrary sequence of utilities. Next, we assume that all players follow our dynamics such that the variation in one’s utilities is now related to the variation in the joint strategies based on the smoothness condition of the utility function, connecting the last two terms of the RVU bound. Further leveraging the nonnegativity of the regrets in the lifted space, we establish that the second-order path lengths of the dynamics up to time T are bounded by $O(\log T)$.

Theorem 3. Suppose that Assumption 1 holds for some parameter $L > 0$. If all players follow LRL-OFTRL with learning rate $\eta \geq \frac{1}{256 \max_{i \in [n]} \| \lambda_i \|_1}$, where $\| \lambda \|_1 := \max_{i \in [n]} \| \lambda_i \|_1$, then
\[
\sum_{t=1}^{T} \sum_{i=1}^{n} \| x^{(t+1)}_i - x^{(t)}_i \|_1^2 \leq 6144n\eta\| \lambda \|_1^2 + 1024n(d + 1)\| \lambda \|_1^2 \log T.
\]
We leverage this theorem to establish Theorem 1, the detailed version of which is given below.

Theorem 4 (Detailed Version of Theorem 1). Suppose that Assumption 1 holds for some parameter $L > 0$. If all players follow LRL–OFTRL with learning rate $\eta = \min \left\{ \frac{1}{256}, \frac{1}{128nL\|x\|_2^2} \right\}$, then for any $T \in \mathbb{N}$ the regret Reg_i^T of each player $i \in [n]$ can be bounded as

$$\text{Reg}_i^T \leq 12 + 256(d + 1) \max \left\{ nL\|x\|_1^2, 2 \right\} \log T. \quad (4)$$

Furthermore, the algorithm can be adaptive so that if player i is instead facing adversarial utilities, then $\text{Reg}_i^T = O(\sqrt{T})$.

Recall that we have assumed that $\|u_i^{(t)}\|_\infty \|x_i\|_1 \leq 1$; instead, if we only knew that $\|u_i^{(t)}\|_\infty \leq B$ (Assumption 1), the aforementioned assumption can be met by rescaling the utilities by $1/(B\|x\|_1)$, introducing an additional multiplicative factor of $B\|x\|_1$ in the regret bounds (see Table 1). For clarity, below we cast (4) of Theorem 4 in normal-form games with utilities normalized in $[-1, 1]$.

Corollary 2 (Normal-form Games). Suppose that all players in a normal-form game with $n \geq 2$ follow LRL–OFTRL with learning rate $\eta = \frac{1}{128n}$. Then, for any $T \in \mathbb{N}$ and player $i \in [n]$,

$$\text{Reg}_i^T \leq 12 + 256n(d + 1) \log T.$$

3.5 Implementation and Iteration Complexity

In this section, we discuss the implementation and iteration complexity of LRL–OFTRL. The main difficulty in the implementation is the computation of the solution to the strictly concave nonsmooth constrained optimization problem in Line 3. We start by studying how the guarantees laid out in Theorem 4 deteriorate by an additive factor proportional to the sum of the tolerances $\sum_{t=1}^{T} \epsilon^{(t)}$. As an immediate corollary, when $\epsilon^{(t)} := \epsilon := 1/T$, the conclusion of Theorem 4 applies even when the solution to the optimization problem on Line 3 is only approximated up to ϵ tolerance. Therefore, to complete our construction, it suffices to show that it is indeed possible to efficiently compute approximate solutions to the OFTRL step. In the remainder of this section, we show that this is indeed the case assuming access to two different type of oracles.

Proximal Oracle First, we will assume access to a proximal oracle in local norm for the set \hat{X}, that is, to a function that is able to compute the solution to the (positive-definite) quadratic optimization problem

$$\Pi_w(\hat{g}) := \arg \min_{\hat{x} \in \hat{X}} \left\{ \hat{g}^T \hat{x} + \frac{1}{2} \| \hat{x} - \hat{w} \|^2_w \right\} = \arg \min_{\hat{x} \in \hat{X}} \left\{ \hat{g}^T \hat{x} + \frac{1}{2} \sum_{r=1}^{d+1} \left(\frac{\hat{x}[r]}{w[r]} - 1 \right)^2 \right\} \quad (6)$$
for arbitrary centers \(\tilde{w} \in \mathbb{R}_{>0}^{d+1} \) and gradients \(\tilde{g} \in \mathbb{R}^{d+1} \). For certain sets \(X \subseteq \mathbb{R}^d \), exact proximal oracles with polynomial complexity in the dimension \(d \) can be given. In particular, we show that this is the case when \(X \) is the strategy set of normal-form and extensive-form games by extending a technique of Gilpin [2009, pp. 128-133], as formalized below.

Proposition 4. Let \(X \subseteq \mathbb{R}^d \) be the polytope of sequence-form strategies for a player in a perfect-recall extensive-form game. Then, the local proximal oracle \(\Pi_{\tilde{w}}(\tilde{g}) \) defined in (6) can be implemented exactly in time polynomial in the dimension \(d \) for any \(\tilde{w} \in \mathbb{R}_{>0}^{d+1} \) and \(\tilde{g} \in \mathbb{R}^{d+1} \).

We provide the details and a more precise statement in Appendix B. In this context, the following guarantee employs the proximal Newton algorithm of Tran-Dinh et al. [2015]; see Algorithm 2.

Theorem 5 (Proximal Newton). Given any \(\epsilon > 0 \), it is possible to compute \((\lambda^{(t)}, y^{(t)}) \in \tilde{X} \cap \mathbb{R}^{d+1}_{>0} \) such that (5) holds for \(\epsilon^{(t)} = \epsilon \) using \(O(\log \log(1/\epsilon)) \) operations and \(O(\log \log(1/\epsilon)) \) calls to the proximal oracle defined in Equation (6).

Linear Maximization Oracle Moreover, we consider having access to a weaker linear maximization oracle (LMO) for the set \(X' \):

\[
L_X(u) := \arg \max_{x \in X} \langle x, u \rangle.
\]

(7)

Such an oracle is more realistic in many settings [Jaggi, 2013], and it is particularly natural in the context of games, where it can be thought of as a best response oracle. We point out that an LMO for \(X' \) automatically implies an LMO for \(X \). The following guarantee follows readily by applying the Frank-Wolfe (projected) Newton method [Liu et al., 2020, Algorithms 1 and 2].

Theorem 6 (Frank-Wolfe Newton). Given any \(\epsilon > 0 \), it is possible to compute \((\lambda^{(t)}, y^{(t)}) \in \tilde{X} \cap \mathbb{R}^{d+1}_{>0} \) such that (5) holds for \(\epsilon^{(t)} = \epsilon \) using \(O(\text{poly}(1/\epsilon)) \) operations and \(O(\text{poly}(1/\epsilon)) \) calls to the LMO oracle defined in Equation (7).

4 Conclusions

In this paper we developed LRL-0FTRL, a novel no-regret learning algorithm. We showed that when all players in a general convex game employ LRL-0FTRL, the regret of each player grows only as \(O(\log T) \), thereby significantly extending and strengthening the scope of all prior work. Further, our uncoupled no-regret learning dynamics can be efficiently implemented using, for example, a proximal oracle for the underlying feasible set.

One caveat of our framework applied to the special case of normal-form games is that the dependence on the dimension is linear (Corollary 2) as opposed to logarithmic [Daskalakis et al., 2021]. Whether the entropic regularizer—which induces OMU—can be incorporated into our framework is an important open question. Another interesting avenue for future research would be to explore having access to different types of oracles. For example, is it possible to extend Theorem 4 using a separation oracle for the underlying set of strategies? If so, the ellipsoid algorithm [Bubeck, 2015] would be the obvious candidate en route to implementing LRL-0FTRL.

Acknowledgments

This material is based on work supported by the National Science Foundation under grants IIS-1718457, IIS-1901403, IIS-1943607, and CCF-1733556, and the ARO under award W911NF2010081. Christian Kroer is supported by the Office of Naval Research Young Investigator Program under grant N00014-22-1-2530.
References

Yoav Freund and Robert Schapire. Adaptive game playing using multiplicative weights. Games and Economic Behavior, 29:79–103, 1999.

Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated equilibrium. Econometrica, 68:1127–1150, 2000.

Dean Foster and Rakesh Vohra. Calibrated learning and correlated equilibrium. Games and Economic Behavior, 21:40–55, 1997.

Tim Roughgarden. Intrinsic robustness of the price of anarchy. J. ACM, 62(5):32:1–32:42, 2015.

Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit hold’em poker is solved. Science, 347(6218), January 2015.

Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial intelligence in heads-up no-limit poker. Science, May 2017.

Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit poker: Libratus beats top professionals. Science, page eaao1733, Dec. 2017.

Noam Brown and Tuomas Sandholm. Superhuman AI for multiplayer poker. Science, 365(6456):885–890, 2019.

Constantinos Daskalakis, Alan Deckelbaum, and Anthony Kim. Near-optimal no-regret algorithms for zero-sum games. In Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2011.

Alexander Rakhlin and Karthik Sridharan. Optimization, learning, and games with predictable sequences. In Advances in Neural Information Processing Systems, pages 3066–3074, 2013.

Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E Schapire. Fast convergence of regularized learning in games. In Advances in Neural Information Processing Systems, pages 2989–2997, 2015.

Dylan J. Foster, Zhiyuan Li, Thodoris Lykouris, Karthik Sridharan, and Éva Tardos. Learning in games: Robustness of fast convergence. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, pages 4727–4735, 2016.

Xi Chen and Binghui Peng. Hedging in games: Faster convergence of external and swap regrets. In Proceedings of the Annual Conference on Neural Information Processing Systems (NeurIPS), 2020.

Constantinos Daskalakis and Noah Golowich. Fast rates for nonparametric online learning: from realizability to learning in games. In STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 846–859. ACM, 2022.

Georgios Piliouras, Ryann Sim, and Stratis Skoulakis. Optimal no-regret learning in general games: Bounded regret with unbounded step-sizes via clairvoyant mwu. arXiv preprint arXiv:2111.14737, 2021.

Constantinos Daskalakis, Maxwell Fishelson, and Noah Golowich. Near-optimal no-regret learning in general games. In Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, pages 27604–27616, 2021.

Gabriele Farina, Chung-Wei Lee, Haipeng Luo, and Christian Kroer. Kernelized multiplicative weights for 0/1-polyhedral games: Bridging the gap between learning in extensive-form and normal-form games. arXiv preprint arXiv:2202.00237, 2022.
Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin, and Shenghuo Zhu. Online optimization with gradual variations. In *Conference on Learning Theory*, pages 6–1, 2012.

Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient algorithm for bandit linear optimization. In *Proceedings of the 21st Annual Conference on Learning Theory (COLT)*, 2008.

Chen-Yu Wei and Haipeng Luo. More adaptive algorithms for adversarial bandits. In *Conference On Learning Theory, COLT 2018*, volume 75 of *Proceedings of Machine Learning Research*, pages 1263–1291. PMLR, 2018.

Sébastien Bubeck, Yuanzhi Li, Haipeng Luo, and Chen-Yu Wei. Improved path-length regret bounds for bandits. In *Conference on Learning Theory, COLT 2019*, 25–28 June 2019, volume 99 of *Proceedings of Machine Learning Research*, pages 508–528. PMLR, 2019.

Ioannis Anagnostides, Gabriele Farina, Christian Kroer, Chung-Wei Lee, Haipeng Luo, and Tuomas Sandholm. Uncoupled learning dynamics with $O(\log T)$ swap regret in multiplayer games, 2022a.

Shai Shalev-Shwartz. Online learning and online convex optimization. *Foundations and Trends in Machine Learning*, 4(2), 2012. ISSN 1935-8237.

Nicolo Cesa-Bianchi and Gabor Lugosi. *Prediction, learning, and games*. Cambridge University Press, 2006.

Boris T Polyak. Introduction to optimization. optimization software. *Inc., Publications Division, New York*, 1:32, 1987.

Drew Fudenberg and Alexander Peysakhovich. Recency, records and recaps: Learning and non-equilibrium behavior in a simple decision problem. In *Proceedings of the Fifteenth ACM Conference on Economics and Computation*, EC ’14, page 971–986, New York, NY, USA, 2014. Association for Computing Machinery.

Ioannis Anagnostides, Constantinos Daskalakis, Gabriele Farina, Maxwell Fishelson, Noah Golowich, and Tuomas Sandholm. Near-optimal no-regret learning for correlated equilibria in multi-player general-sum games. In *STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing*, pages 736–749. ACM, 2022b.

Tim Roughgarden and Florian Schoppmann. Local smoothness and the price of anarchy in splittable congestion games. *J. Econ. Theory*, 156:317–342, 2015.

Eyal Even-Dar, Yishay Mansour, and Uri Nadav. On the convergence of regret minimization dynamics in concave games. In Michael Mitzenmacher, editor, *Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009*, pages 523–532. ACM, 2009. doi: 10.1145/1536414.1536486.

Tobias Harks and Max Klimm. Demand allocation games: Integrating discrete and continuous strategy spaces. In Ning Chen, Edith Elkind, and Elias Koutsoupias, editors, *Internet and Network Economics - 7th International Workshop, WINE 2011*, volume 7090 of *Lecture Notes in Computer Science*, pages 194–205. Springer, 2011.

Yu-Guan Hsieh, Kimon Antonakopoulos, and Panayotis Mertikopoulos. Adaptive learning in continuous games: Optimal regret bounds and convergence to nash equilibrium. In Mikhail Belkin and Samory Kpotufe, editors, *Conference on Learning Theory, COLT 2021*, volume 134 of *Proceedings of Machine Learning Research*, pages 2388–2422. PMLR, 2021.

Panayotis Mertikopoulos and Zhengyuan Zhou. Learning in games with continuous action sets and unknown payoff functions. *Math. Program.*, 173(1-2):465–507, 2019.

Noah D. Stein, Pablo A. Parrilo, and Asuman E. Ozdaglar. Correlated equilibria in continuous games: Characterization and computation. *Games Econ. Behav.*, 71(2):436–455, 2011.
Gilles Stoltz and Gábor Lugosi. Learning correlated equilibria in games with compact sets of strategies. *Games Econ. Behav.*, 59(1):187–208, 2007.

J. B. Rosen. Existence and uniqueness of equilibrium points for concave n-person games. *Econometrica*, 33(3):520–534, 1965.

I. Romanovskii. Reduction of a game with complete memory to a matrix game. *Soviet Mathematics*, 3, 1962.

Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. Efficient computation of equilibria for extensive two-person games. *Games and Economic Behavior*, 14(2), 1996.

Yoav Shoham and Kevin Leyton-Brown. *Multiagent systems: Algorithmic, game-theoretic, and logical foundations*. Cambridge University Press, 2008.

Sergiu Hart and Andreu Mas-Colell. Uncoupled dynamics do not lead to Nash equilibrium. *American Economic Review*, 93:1830–1836, 2003.

Andrew Gilpin. *Algorithms for abstracting and solving imperfect information games*. Doctoral dissertation, Computer Science Department, Carnegie Mellon University, Pittsburgh, 2009.

Quoc Tran-Dinh, Anastasios Kyrillidis, and Volkan Cevher. Composite self-concordant minimization. *J. Mach. Learn. Res.*, 16:371–416, 2015.

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In *Proceedings of the 30th International Conference on Machine Learning, ICML 2013*, volume 28 of *JMLR Workshop and Conference Proceedings*, pages 427–435. JMLR.org, 2013.

Deyi Liu, Volkan Cevher, and Quoc Tran-Dinh. A newton frank-wolfe method for constrained self-concordant minimization. *CoRR*, abs/2002.07003, 2020.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. *Found. Trends Mach. Learn.*, 8(3-4):231–357, 2015.

Samid Hoda, Andrew Gilpin, Javier Peña, and Tuomas Sandholm. Smoothing techniques for computing Nash equilibria of sequential games. *Mathematics of Operations Research*, 35(2), 2010.
A Omitted Proofs

In this section we include all of the proofs omitted from the main body. For the convenience of the reader, we will restate each claim before proceeding with its proof.

A.1 Preliminary Proofs

We commence with the proof of Proposition 1.

Proposition 1. For any $\eta \geq 0$ and at all times $t \in \mathbb{N}$, the OFTRL optimization problem on Line 3 of Algorithm 1 admits a unique optimal solution $(\lambda^{(t)}, y^{(t)}) \in \tilde{X} \cap \mathbb{R}_{> 0}^{d+1}$.

Proof. Uniqueness follows immediately from strict convexity. In the rest of the proof we focus on the existence part.

We start by showing that there exists a point $\tilde{x} \in \tilde{X}$ whose coordinates are all strictly positive. By hypothesis (see Section 3.1), for every coordinate $r \in [d]$, there exists a point x_r such that $x_r[r] > 0$. Hence, by convexity of $X \subseteq [0, +\infty)^d$ and by definition of \tilde{X}, the point

$$(1, \bar{x}) := \left(1, \frac{1}{d} \sum_{r=1}^{d} x_r\right),$$

is such that $(1, \bar{x}) \in \tilde{X} \cap \mathbb{R}_{> 0}^d$.

Let now M be the ℓ_{∞} norm of the linear part in the OFTRL step (Line 3 of Algorithm 1). Then, a lower bound on the optimal value v^* of objective is obtained by plugging in the point $(1, \bar{x})$ at least

$$v^* \geq -M(1 + \|X\|_1) + \sum_{r=1}^{d} \log \bar{x}[r]. \quad (8)$$

Let now

$$m := \exp \left\{-2M + d \right\} > 0. \quad (9)$$

We will show that any point $(\lambda, y) \notin [m, +\infty) \cap \tilde{X}$ cannot be optimal for the OFTRL objective. Indeed, take a point $(\lambda, y) \notin [m, +\infty) \cap \tilde{X}$. Then, at least one coordinate of (λ, y) is strictly less than m. If $y[s] < m$ for some $s \in [d]$, then we can upper bound the objective value at (λ, y) as

$$M + M\|X\|_1 + \log M + \sum_{r=1}^{d} \log y[r] \leq M(1 + \|X\|_1) + \log M + \sum_{r=1}^{d} \log \|X\|_1$$

$$\leq M(1 + \|X\|_1) + \log M + d(\|X\|_1 - 1)$$

$$< (M + d)(1 + \|X\|_1 + \log m)$$

$$= -M(1 + \|X\|_1) + \sum_{r=1}^{d} \log y[r] \quad \text{(from } (9)\text{)}$$

$$\leq v^*, \quad \text{(from } (8)\text{)}$$

where the first inequality follows from upper bounding any coordinate of y with $\|X\|_1$, and the second inequality follows from using the inequality $\log z \leq z - 1$, valid for all $z \in (0, +\infty)$. Similarly, if $y[s] < m$ for some $s \in [d]$, then we can upper bound the objective value at (λ, y) as

$$M + M\|X\|_1 + \log 1 + \sum_{r=1}^{d} \log y[r] \leq M(1 + \|X\|_1) + \log M + \sum_{r=1}^{d} \log \|X\|_1$$

$$\leq M(1 + \|X\|_1) + (d - 1)(\|X\|_1 - 1) + \log m$$

$$< (M + d)(1 + \|X\|_1 + \log m) \leq v^*.$$
So, in either case, we see that no optimal point can have any coordinate strictly less than \(m \). Consequently, the maximizer of the OFTRL step lies in the set \(S := [m, +\infty)^{d+1} \cap \mathcal{X} \). Since both \([m, +\infty)^{d+1} \) and \(\mathcal{X} \) are closed, and since \(\mathcal{X} \) is bounded by hypothesis, the set \(S \) is compact. Furthermore, note that \(S \) is nonempty, as \((1, \mathbf{x}^o) \in S\), as for any \(s \in [d] \)

\[
\log m = -(2M + d)(1 + \|\mathcal{X}\|_1) + \sum_{r=1}^{d} \log \mathbf{x}^o[r] \\
\leq -(2M + d)(1 + \|\mathcal{X}\|_1) + \log \mathbf{x}^o[s] + (d - 1) \log \|\mathcal{X}\|_1 \\
\leq -(2M + d)(1 + \|\mathcal{X}\|_1) + \log \mathbf{x}^o[s] + (d - 1)(\|\mathcal{X}\|_1 - 1) \\
\leq \log \mathbf{x}^o[s],
\]

implying that \((1, \mathbf{x}^o) \in [m, +\infty)^{d+1} \). Since \(S \) is compact and nonempty and the objective function is continuous, the optimization problem attains an optimal solution on \(S \) by virtue of Weierstrass’ theorem.

\[\textbf{Theorem 2.} \] For any time \(T \in \mathbb{N} \) it holds that \(\tilde{\text{Reg}}^T = \max\{0, \text{Reg}^T\} \). In particular, it follows that \(\tilde{\text{Reg}}^T \geq 0 \) and \(\text{Reg}^T \leq \tilde{\text{Reg}}^T \) for any \(T \in \mathbb{N} \).

\[\text{Proof.}\] First, by definition of \(\tilde{\mathbf{u}}^{(t)} \) in Line 6, it follows that for any \(t \),

\[
\langle \tilde{\mathbf{u}}^{(t)} , \lambda^{(t)} \rangle = \langle \tilde{\mathbf{u}}^{(t)} , \lambda^{(t)} \rangle = 0.
\]

As a result, we have that \(\max\{0, \text{Reg}^T\} \) is equal to

\[
\max \left\{ 0, \max_{\mathbf{x}^* \in \mathcal{X}} \sum_{t=1}^{T} \langle \mathbf{u}^{(t)} , \mathbf{x}^* - \mathbf{x}^{(t)} \rangle \right\} = \max \left\{ 0, \max_{\mathbf{x}^* \in \mathcal{X}} \sum_{t=1}^{T} \langle \tilde{\mathbf{u}}^{(t)} , \mathbf{x}^* - \mathbf{x}^{(t)} \rangle \right\}
\]

\[
= \max \left\{ 0, \max_{\lambda^* \in \hat{\mathcal{X}}} \sum_{t=1}^{T} \langle \tilde{\mathbf{u}}^{(t)} , \lambda^* \rangle \right\} = \max_{(\lambda^*, \mathbf{y}^*) \in \hat{\mathcal{X}}} \sum_{t=1}^{T} \langle \tilde{\mathbf{u}}^{(t)} , \lambda^* \rangle = \tilde{\text{Reg}}^T,
\]

as we wanted to show. \[\square\]

\section{A.2 Analysis of OFTRL with Logarithmic Regularizer}

For notational convenience, we define the log-regularizer \(\psi : \hat{\mathcal{X}} \to \mathbb{R}_{\geq 0} \) as

\[
\psi(\hat{\mathbf{x}}) := -\frac{1}{\eta} \sum_{r=1}^{d+1} \log \hat{\mathbf{x}}[r],
\]

and its induced Bregman divergence

\[
D_\psi(\hat{\mathbf{x}} \parallel \hat{\mathbf{z}}) := \frac{1}{\eta} \sum_{r=1}^{d+1} h\left(\frac{\hat{\mathbf{x}}[r]}{\hat{\mathbf{z}}[r]} \right), \quad \text{where } h(a) = a - 1 - \ln(a).
\]

Moreover, we define

\[
\hat{\mathbf{x}}^{(t)} = \arg \max_{\hat{\mathbf{x}} \in \hat{\mathcal{X}}} -F_t(\hat{\mathbf{x}}) = \arg \min_{\hat{\mathbf{x}} \in \hat{\mathcal{X}}} F_t(\hat{\mathbf{x}}), \quad \text{where } F_t(\hat{\mathbf{x}}) = -\left\langle \tilde{U}^{(t)} + \tilde{\mathbf{u}}^{(t-1)}, \hat{\mathbf{x}} \right\rangle + \psi(\hat{\mathbf{x}}).
\]
We note that F_t is a convex function for each t and $\tilde{x}^{(t)}$ is exactly equal to $\begin{pmatrix} \lambda^{(t)} \\ y^{(t)} \end{pmatrix}$ computed by Algorithm 1. Further, we define an auxiliary sequence $\{\tilde{z}^{(t)}\}_{t=1,2,\ldots}$ defined as follows.

\[
\tilde{z}^{(t)} = \arg\max_{\tilde{x} \in \tilde{X}} -G_t(\tilde{x}) = \arg\min_{\tilde{x} \in \tilde{X}} G_t(\tilde{x}), \quad \text{where} \quad G_t(\tilde{x}) = -\left\langle \tilde{U}^{(t)}, \tilde{x} \right\rangle + \psi(\tilde{x}).
\]

(11)

Similarly, G_t is a convex function for each t. We also recall the primal and dual norm notation:

\[
\|\tilde{z}\|_t = \sum_{r=1}^{d+1} \left(\frac{\tilde{z}[r]}{\tilde{x}^{(t)}[r]} \right)^2, \quad \|\tilde{z}\|_{s,t} = \sum_{r=1}^{d+1} \left(\tilde{x}^{(t)}[r] \tilde{z}[r] \right)^2.
\]

Finally, for a $(d + 1) \times (d + 1)$ positive definite matrix M, we use $\|\tilde{z}\|_M$ to denote the induced quadratic norm $\sqrt{\tilde{z}^T M \tilde{z}}$. We are now ready to establish Proposition 2.

Proposition 2 (RVU bound of OFTRL in local norms). Let $\tilde{\text{Reg}}_T$ be the regret cumulated up to time T by the internal OFTRL algorithm. Then, for any time horizon $T \in \mathbb{N}$ and learning rate $\eta \leq \frac{1}{\lambda_{\text{max}}}$,

\[
\tilde{\text{Reg}}_T \leq 4 + \frac{(d + 1) \log T}{\eta} + 5\eta \sum_{t=1}^{T-1} \|\tilde{u}^{(t)} - \tilde{u}^{(t-1)}\|_{2,\beta}^2 - \frac{1}{2\eta} \sum_{t=1}^{T-1} \left\| \left\langle \frac{\lambda^{(t+1)}}{y^{(t+1)}}, \left\langle \frac{\lambda^{(t)}}{y^{(t)}}, \tilde{x}^{(t)} \right\rangle \right\| \right\|^2.
\]

Proof of Proposition 2. For any comparator $\hat{x} \in \hat{X}$, define $\hat{x}' = \frac{T-1}{T} \cdot \hat{x} + \frac{1}{T} \cdot \hat{x}^{(1)} \in \hat{X}$, where we recall $\hat{x}^{(1)} = \arg\min_{\hat{x} \in \hat{X}} F_1(\hat{x}) = \arg\min_{\hat{x} \in \hat{X}} \psi(\hat{x})$. Then, we have

\[
\sum_{t=1}^{T} \left\langle \hat{x} - \hat{x}^{(t)}, \tilde{u}^{(t)} \right\rangle = \sum_{t=1}^{T} \left\langle \hat{x} - \hat{x}', \tilde{u}^{(t)} \right\rangle + \sum_{t=1}^{T} \left\langle \hat{x}' - \hat{x}^{(t)}, \tilde{u}^{(t)} \right\rangle
\]

\[
= \frac{1}{T} \sum_{t=1}^{T} \left\langle \hat{x} - \hat{x}^{(1)}, \tilde{u}^{(t)} \right\rangle + \sum_{t=1}^{T} \left\langle \hat{x}' - \hat{x}^{(t)}, \tilde{u}^{(t)} \right\rangle
\]

\[
\leq 4 + \sum_{t=1}^{T} \left\langle \hat{x}' - \hat{x}^{(t)}, \tilde{u}^{(t)} \right\rangle,
\]

where the last inequality follows from Cauchy-Schwarz together with the assumption that $\parallel u^{(t)} \parallel_\infty \leq \frac{1}{\lambda_{\text{max}}}$. Now, by standard Optimistic FTRL analysis (see Lemma 2), the last term $\sum_{t=1}^{T} \left\langle \hat{x}' - \hat{x}^{(t)}, \tilde{u}^{(t)} \right\rangle$ (cumulative regret against \hat{x}') is bounded by

\[
\sum_{t=1}^{T} \left\langle \hat{x}' - \hat{x}^{(t)}, \tilde{u}^{(t)} \right\rangle \leq \psi(\hat{x}') - \psi(\hat{x}^{(1)}) + \sum_{t=1}^{T} \left\langle \tilde{z}^{(t+1)} - \hat{x}^{(t)}, \tilde{u}^{(t)} - \tilde{u}^{(t-1)} \right\rangle
\]

\[
- \sum_{t=1}^{T} \left(D_\psi \left(\hat{x}^{(t)} \parallel \tilde{z}^{(t)} \right) + D_\psi \left(\tilde{z}^{(t+1)} \parallel \hat{x}^{(t)} \right) \right).
\]

For the term $\psi(\hat{x}') - \psi(\hat{x}^{(1)})$, a direct calculation using definitions shows

\[
\psi(\hat{x}') - \psi(\hat{x}^{(1)}) = \frac{1}{\eta} \sum_{t=1}^{d+1} \log \frac{\hat{x}^{(1)}[t]}{\hat{x}'[t]} \leq \frac{d + 1}{\eta} \log T.
\]

For the other terms, we apply Lemma 3 and Lemma 5, which completes the proof.

\[\square\]
Lemma 2. The update rule (10) ensures the following for any $\tilde{x} \in \tilde{X}$:

$$
\sum_{t=1}^{T} \langle \tilde{x} - \tilde{x}^{(t)}, \tilde{u}^{(t)} \rangle \leq \psi(\tilde{x}) - \psi(\tilde{x}^{(1)}) + \sum_{t=1}^{T} \left(\tilde{z}^{(t+1)} - \tilde{x}^{(t)}, \tilde{u}^{(t)} - \tilde{u}^{(t-1)} \right) - \sum_{t=1}^{T} \left(D_{\psi} \left(\tilde{x}^{(t)} \| \tilde{z}^{(t)} \right) + D_{\psi} \left(\tilde{z}^{(t+1)} \| \tilde{x}^{(t)} \right) \right).
$$

Proof. First note that for any convex function $F : \tilde{X} \to \mathbb{R}$ and a minimizer \tilde{x}^*, we have for any $\tilde{x} \in \tilde{X}$:

$$
F(\tilde{x}^*) = F(\tilde{x}) - \langle \nabla F(\tilde{x}^*), \tilde{x} - \tilde{x}^* \rangle - D_{F}(\tilde{x}, \tilde{x}^*) \leq F(\tilde{x}) - D_{F}(\tilde{x}, \tilde{x}^*)
$$

where D_F is the Bregman Divergence induced by F and the inequality is by the first-order optimality. Using this fact and the optimality of $\tilde{x}^{(t)}$, we have

$$
G_t(\tilde{z}^{(t)}) \leq G_t(\tilde{x}^{(t)}) - D_{\psi} \left(\tilde{x}^{(t)} \| \tilde{z}^{(t)} \right) = F_t(\tilde{x}^{(t)}) + \left(\tilde{x}^{(t)}, \tilde{u}^{(t-1)} \right) - D_{\psi} \left(\tilde{x}^{(t)} \| \tilde{z}^{(t)} \right)
$$

Similarly, using the optimality of $\tilde{x}^{(t)}$, we have

$$
F_t(\tilde{x}^{(t)}) \leq F_t(\tilde{z}^{(t+1)}) - D_{\psi} \left(\tilde{z}^{(t+1)} \| \tilde{x}^{(t)} \right) = G_{t+1}(\tilde{z}^{(t+1)}) + \left(\tilde{z}^{(t+1)}, \tilde{u}^{(t)} - \tilde{u}^{(t-1)} \right) - D_{\psi} \left(\tilde{z}^{(t+1)} \| \tilde{x}^{(t)} \right)
$$

Combining the inequalities and summing over t, we have

$$
G_1(\tilde{z}^{(1)}) \leq G_{T+1}^{(T+1)} \left(\tilde{x}(T+1) \right) + \sum_{t=1}^{T} \left(\left(\tilde{x}(t), \tilde{u}(t) \right) + \left(\tilde{z}(t), \tilde{u}(t) - \tilde{u}(t-1) \right) \right) + \sum_{t=1}^{T} \left(-D_{\psi} \left(\tilde{x}^{(t)} \| \tilde{z}^{(t)} \right) - D_{\psi} \left(\tilde{z}^{(t+1)} \| \tilde{x}^{(t)} \right) \right)
$$

Observe that $G_1(\tilde{z}^{(1)}) = \psi(\tilde{x}^{(1)})$ and $G_{T+1}(\tilde{z}^{(T+1)}) \leq -\left(\tilde{x}, \tilde{U}(T+1) \right) + \psi(\tilde{x})$. Rearranging then proves the lemma. \(\square\)

Lemma 3. If $\eta \leq \frac{1}{50}$, then we have

$$
\left\| \tilde{z}^{(t+1)} - \tilde{x}^{(t)} \right\|_t \leq 5\eta \left\| \tilde{u}^{(t)} - \tilde{u}^{(t-1)} \right\|_t, \leq 10\sqrt{7} \eta \leq 15\eta, \tag{12}
$$

$$
\left\| \tilde{x}^{(t+1)} - \tilde{x}^{(t)} \right\|_t \leq 5\eta \left\| 2\tilde{u}^{(t)} - \tilde{u}^{(t-1)} \right\|_t \leq 15\sqrt{7} \eta \leq 22\eta. \tag{13}
$$

Proof. The second part of both inequalities is clear by definitions:

$$
\left\| \tilde{u}^{(t)} - \tilde{u}^{(t-1)} \right\|^2_\ast \leq (\lambda(t) \left(\left(\tilde{x}^{(t)}, \tilde{u}^{(t)} \right) - \left(\tilde{x}^{(t-1)}, \tilde{u}^{(t-1)} \right) \right))^2 + \sum_{r=1}^{d} \left(y^{(t)}[r] \left(\tilde{u}^{(t)}[r] - \tilde{u}^{(t-1)}[r] \right) \right)^2
\leq 4(\lambda(t))^2 + \frac{4}{\|x\|^2} \sum_{r=1}^{d} \left(y^{(t)}[r] \right)^2 \leq 8,
$$
where we use \(\langle x^{(\tau)}, u^{(\tau)} \rangle \leq \|x^{(\tau)}\|_1 \|u^{(\tau)}\|_{\infty} \leq 1 \) and \(|u^{(\tau)}[r]| \leq \frac{1}{\|w\|_1} \) for any time \(\tau \) and any coordinate \(r \) by the assumption, and similarly,

\[
\left\| 2 \tilde{u}^{(t)} - \tilde{u}^{(t-1)} \right\|_{*,t}^2 = \left(\lambda(t) \left(2 \left(x^{(t)}, u^{(t)} \right) - \left(x^{(t-1)}, u^{(t-1)} \right) \right) \right)^2 + \sum_{r=1}^d \left(y(t)[r] \left(2 u^{(t)}[r] - u^{(t-1)}[r] \right) \right)^2 \\
\leq 9(\lambda(t)^2 + \frac{9}{\|\lambda\|^2} \sum_{r=1}^d \left(y(t)[r] \right)^2) \leq 18
\]

To prove the first inequality in Eq. (12), let \(\mathcal{E}_t = \{ \tilde{x} : \|\tilde{x} - \tilde{x}^{(t)}\|_t \leq 5\eta \|\tilde{u}^{(t)} - \tilde{u}^{(t-1)}\|_{*,t} \} \). Noticing that \(\tilde{z}^{(t+1)} \) is the minimizer of the convex function \(G_{t+1} \), to show \(\tilde{z}^{(t+1)} \in \mathcal{E}_t \), it suffices to show that for all \(\tilde{x} \) on the boundary of \(\mathcal{E}_t \), we have \(G_{t+1} (\tilde{x}) \geq G_{t+1} (\tilde{z}^{(t)}) \). Indeed, using Taylor’s theorem, for any such \(\tilde{x} \), there is a point \(\xi \) on the line segment between \(\tilde{x}^{(t)} \) and \(\tilde{x} \) such that

\[
G_{t+1} (\tilde{x}) = G_{t+1} (\tilde{z}^{(t)}) + \langle \nabla G_{t+1} (\tilde{z}^{(t)}), \tilde{x} - \tilde{z}^{(t)} \rangle + \frac{1}{2} \left\| \tilde{x} - \tilde{z}^{(t)} \right\|_{\nabla^2 G_{t+1} (\xi)}^2 \\
= G_{t+1} (\tilde{z}^{(t)}) - \left\| \tilde{u}^{(t)} - \tilde{u}^{(t-1)} \right\|_{*,t} \left\| \tilde{x} - \tilde{z}^{(t)} \right\|_t + \frac{1}{2} \left\| \tilde{x} - \tilde{z}^{(t)} \right\|_{\nabla^2 \psi (\xi)}^2 \\
\geq G_{t+1} (\tilde{z}^{(t)}) - \left\| \tilde{u}^{(t)} - \tilde{u}^{(t-1)} \right\|_{*,t} \left\| \tilde{x} - \tilde{z}^{(t)} \right\|_t + \frac{1}{9\eta} \left\| \tilde{x} - \tilde{z}^{(t)} \right\|_t^2 (\ast) \\
= G_{t+1} (\tilde{z}^{(t)}) + \frac{5}{9\eta} \left\| \tilde{u}^{(t)} - \tilde{u}^{(t-1)} \right\|_{*,t}^2 \\
\geq G_{t+1} (\tilde{z}^{(t)})
\]

Here, the inequality (\ast) holds because Lemma 4 (together with the condition \(\eta \leq \frac{1}{50} \)) shows \(\frac{1}{2} \tilde{x}^{(t-1)}[i] \leq \tilde{x}[i] \leq \frac{3}{4} \tilde{x}^{(t)}[i] \), which implies \(\frac{1}{2} \tilde{x}^{(t-1)}[i] \leq \xi[i] \leq \frac{3}{4} \tilde{x}^{(t)}[i] \) as well, and thus \(\nabla^2 \psi (\xi) \geq \frac{4}{9} \nabla^2 \psi (\tilde{z}^{(t)}) \). This finishes the proof for Eq. (12). The first inequality of Eq. (13) can be proven in the same manner. \(\square \)

Proposition 3 (Multiplicative Stability). For any time \(t \in \mathbb{N} \) and learning rate \(\eta \leq \frac{1}{90} \),

\[
\left\| \left(\lambda(t+1) \right) \left(y(t+1) \right) \right\|_t - \left(\lambda(t) \right) \left(y(t) \right) \leq 22\eta.
\]

Proof. The statement is proved in Lemma 3. \(\square \)

Lemma 4. If \(\tilde{x} \) satisfies \(\| \tilde{x} - \tilde{x}^{(t)} \|_t \leq \frac{1}{2} \), then \(\frac{1}{2} \tilde{x}^{(t-1)}[i] \leq \tilde{x}[i] \leq \frac{3}{4} \tilde{x}^{(t)}[i] \) for every coordinate \(i \).

Proof. By definition, \(\| \tilde{x} - \tilde{x}^{(t)} \|_t \leq \frac{1}{2} \) implies for any \(i \), \(\frac{|\tilde{x}[i] - \tilde{x}^{(t)}[i]|}{\tilde{x}^{(t-1)}[i]} \leq \frac{1}{2} \), and thus \(\frac{1}{2} \tilde{x}^{(t-1)}[i] \leq \tilde{x}[i] \leq \frac{3}{4} \tilde{x}^{(t)}[i] \). \(\square \)

Lemma 5. If \(\eta \leq \frac{1}{50} \), then we have

\[
\sum_{t=1}^T \left(D_{\psi} \left(\tilde{x}^{(t)} \right) \left\| \tilde{z}^{(t)} \right\| + D_{\psi} \left(\tilde{z}^{(t+1)} \right) \left\| \tilde{x}^{(t+1)} \right\| \right) \geq \frac{1}{2T\eta} \sum_{t=1}^{T-1} \left\| \tilde{x}^{(t+1)} - \tilde{x}^{(t)} \right\|_t^2.
\]
Proof. Recall \(h(a) = a - 1 - \ln(a) \) and \(D_\psi (\tilde{x} \parallel \tilde{z}) = \frac{1}{\eta} \sum_{i=1}^{d+1} h \left(\frac{\tilde{x}^{(t)}[i]}{\tilde{z}^{(t)}[i]} \right) \). We proceed as

\[
\sum_{t=1}^{T} \left(D_\psi (\tilde{x}^{(t)} \parallel \tilde{z}^{(t)}) + D_\psi (\tilde{z}^{(t+1)} \parallel \tilde{x}^{(t)}) \right) \\
\geq \sum_{t=1}^{T-1} \left(D_\psi (\tilde{x}^{(t+1)} \parallel \tilde{z}^{(t+1)}) + D_\psi (\tilde{z}^{(t+1)} \parallel \tilde{x}^{(t)}) \right) \\
= \frac{1}{\eta} \sum_{t=1}^{T-1} \sum_{i=1}^{d+1} \left(h \left(\frac{\tilde{x}^{(t+1)}[i]}{\tilde{z}^{(t+1)}[i]} \right) + h \left(\frac{\tilde{z}^{(t+1)}[i]}{\tilde{x}^{(t)}[i]} \right) \right) \\
\geq \frac{1}{6\eta} \sum_{t=1}^{T-1} \sum_{i=1}^{d+1} \left(\frac{\left(\tilde{x}^{(t+1)}[i] - \tilde{z}^{(t+1)}[i] \right)^2}{\left(\tilde{z}^{(t+1)}[i] \right)^2} + \frac{\left(\tilde{z}^{(t+1)}[i] - \tilde{x}^{(t)}[i] \right)^2}{\left(\tilde{x}^{(t)}[i] \right)^2} \right) \\
= \frac{2}{27\eta} \sum_{t=1}^{T-1} \sum_{i=1}^{d+1} \left(\frac{\left(\tilde{x}^{(t+1)}[i] - \tilde{z}^{(t+1)}[i] \right)^2}{\left(\tilde{x}^{(t)}[i] \right)^2} \right) \leq \frac{1}{27\eta} \sum_{t=1}^{T-1} \sum_{i=1}^{d+1} \left(\frac{\left(\tilde{x}^{(t+1)}[i] - \tilde{z}^{(t+1)}[i] \right)^2}{\left(\tilde{x}^{(t)}[i] \right)^2} \right).
\]

Here, the second and the third inequality hold because by Lemma 3 and Lemma 4, we have \(\frac{1}{3} \leq \frac{\tilde{z}^{(t+1)}[i]}{\tilde{x}^{(t)}[i]} \leq \frac{2}{3} \), and thus \(\frac{1}{3} \leq \frac{\tilde{z}^{(t+1)}[i]}{\tilde{x}^{(t+1)}[i]} \leq 3 \).

A.3 RVU Bound in the Original Space

Next, we establish an RVU bound in the original (unlifted) space, namely Corollary 1. To this end, we first proceed with the proof of Lemma 1, which boils down to the following simple claim.

Lemma 6. Let \((\lambda, y), (\lambda', y') \in \hat{X} \cap \mathbb{R}_{>0}^{d+1}\) be arbitrary points such that

\[
\left\| \begin{pmatrix} \lambda' \\ y' \end{pmatrix} - \begin{pmatrix} \lambda \\ y \end{pmatrix} \right\|_{(\lambda, y)} \leq \frac{1}{2}.
\]

Then,

\[
\left\| \frac{y}{\lambda} - \frac{y'}{\lambda'} \right\|_1 \leq 4\|x\|_1 \cdot \left\| \begin{pmatrix} \lambda' \\ y' \end{pmatrix} - \begin{pmatrix} \lambda \\ y \end{pmatrix} \right\|_{(\lambda, y)}.
\]

Proof. Let \(\mu \) be defined as

\[
\mu := \max \left\{ \left| \frac{\lambda'}{\lambda} - 1 \right|, \max_{r \in [d]} \left\| \frac{y'[r]}{y[r]} - 1 \right\| \right\}.
\]

By definition,

\[
\left| \frac{\lambda'}{\lambda} - 1 \right| \leq \mu,
\]

which in turn implies that

\[
(1 - \mu)\lambda \leq \lambda' \leq (1 + \mu)\lambda.
\]

Similarly, for any \(r \in [d] \),

\[
(1 - \mu)y[r] \leq y'[r] \leq (1 + \mu)y[r].
\]

As a result, combining (15) and (16) we get that for any \(r \in [d] \),

\[
\frac{y'[r]}{\lambda'} - \frac{y[r]}{\lambda} \leq \left(\frac{1 + \mu}{1 - \mu} - 1 \right) \frac{y[r]}{\lambda} \leq 4\mu\frac{y[r]}{\lambda} = 4\mu x[r],
\]
since $\mu \leq \frac{1}{2}$. Similarly, by (15) and (16),
\[\frac{y[r]}{\lambda} - \frac{y'[r]}{\lambda'} \leq \left(1 - \frac{1 - \mu}{1 + \mu}\right) \frac{y[r]}{\lambda} \leq 2\mu \frac{y[r]}{\lambda} = 2\mu x[r]. \]
Thus, it follows that
\[\left| \frac{y'[r]}{\lambda'} - \frac{y[r]}{\lambda} \right| \leq 4\mu x[r], \]
in turn implying that
\[\|x' - x\|_1 = \sum_{r=1}^d \left| \frac{y'[r]}{\lambda'} - \frac{y[r]}{\lambda} \right| \leq 4\mu \sum_{r=1}^d x[r] \leq 4\mu \|X\|_1. \tag{17} \]
Moreover, by definition of (14),
\[(\mu)^2 \leq \left\| \begin{pmatrix} \lambda' \\ \lambda \end{pmatrix} - \begin{pmatrix} \lambda \\ y \end{pmatrix} \right\|^2. \]
Finally, combining this bound with (17) concludes the proof. \hfill \Box

Lemma 1. For any time $t \in \mathbb{N}$ and learning rate $\eta \leq \frac{1}{50}$,
\[\|x^{(t+1)} - x^{(t)}\|_1 \leq 4\|X\|_1 \left\| \begin{pmatrix} \lambda^{(t+1)} \\ \lambda^{(t+1)} \end{pmatrix} - \begin{pmatrix} \lambda^{(t)} \\ y^{(t)} \end{pmatrix} \right\|_t. \]

Proof. Since $\eta \leq \frac{1}{50}$ by assumption, we have
\[\left\| x^{(t+1)} - x^{(t)} \right\|_t \leq 22\eta < \frac{1}{2}. \]
Hence, we are in the domain of applicability of Lemma 6, which immediately yields the statement. \hfill \Box

Corollary 1 (RVU bound in the original (unlifted) space). For any time $T \in \mathbb{N}$ and $\eta \leq \frac{1}{512}$,
\[\hat{\text{Reg}}^T \leq 6 + \frac{(d + 1) \log T}{\eta} + 16\|X\|_1^2 \sum_{t=1}^{T-1} \|u^{(t+1)} - u^{(t)}\|^2 - \frac{1}{512\eta\|X\|_1^2} \sum_{t=1}^{T-1} \|x^{(t+1)} - x^{(t)}\|_1^2. \]

Proof. First, by definition of the induced dual local norm in (3),
\[\|\tilde{x}^{(t+1)} - \tilde{x}^{(t)}\|_{s,t}^2 \leq \left(\langle x^{(t)}, u^{(t)} \rangle - \langle x^{(t-1)}, u^{(t-1)} \rangle\right)^2 \langle \lambda^{(t)} \rangle^2 + \sum_{r=1}^d \left| \frac{y[r]}{\lambda} \right|^2 \left(u^{(t)} - u^{(t-1)} \right)^2 \]
\[\leq \left(\langle x^{(t)}, u^{(t)} \rangle - \langle x^{(t-1)}, u^{(t-1)} \rangle\right)^2 + \sum_{r=1}^d \left| \frac{x[r]}{\lambda} \right|^2 \left(u^{(t)} - u^{(t-1)} \right)^2 \]
\[\leq \left(\langle x^{(t)}, u^{(t)} \rangle - \langle x^{(t-1)}, u^{(t-1)} \rangle\right)^2 + \|X\|_1^2 \|u^{(t)} - u^{(t-1)}\|_\infty^2, \tag{18} \]
for any $t \geq 2$. Further, by Young’s inequality,
\[\left(\langle x^{(t)}, u^{(t)} \rangle - \langle x^{(t-1)}, u^{(t-1)} \rangle\right)^2 \leq 2 \left(\langle x^{(t)}, u^{(t-1)} - u^{(t-1)} \rangle\right)^2 + 2 \left(\langle x^{(t)} - x^{(t-1)}, u^{(t-1)} \rangle\right)^2 \]
\[\leq 2 \|X\|_1^2 \|u^{(t)} - u^{(t-1)}\|_\infty^2 + \frac{2}{\|X\|_1^2} \|x^{(t)} - x^{(t-1)}\|_1^2. \]
Combining with (18),
\[\|\tilde{x}^{(t+1)} - \tilde{x}^{(t)}\|_{s,t}^2 \leq 3\|X\|_1^2 \|u^{(t)} - u^{(t-1)}\|_\infty^2 + \frac{2}{\|X\|_1^2} \|x^{(t)} - x^{(t-1)}\|_1^2, \]
\[\text{RVU bound in the original (unlifted) space.} \]
for $t \geq 2$, since $\|u\|_\infty \leq \frac{1}{\eta}$ (by assumption). Further, $\|(\hat{u}^{(1)} - \hat{u}^{(0)})_t\|^2_{\sum_i} = \|(\hat{u}^{(1)})_t\|^2_{\sum_i} \leq 2$. Combining with Proposition 2 and Lemma 1, we get that $\hat{\text{Reg}}^T_i$ is upper bounded by

$$\leq 6 + \frac{(d + 1) \log T}{\eta} + 16\eta \|\mathcal{X}\|^2_1 \sum_{t=1}^{T-1} \|u^{(t+1)} - u^{(t)}\|^2_{\infty} + \frac{1}{\|\mathcal{X}\|^2_1} \left(10\eta - \frac{1}{432\eta}\right) \sum_{t=1}^{T-1} \|x^{(t+1)}_i - x^{(t)}_i\|^2_1.$$

A.4 Main Result: Proof of Theorem 4

Finally, we are ready to establish Theorem 4. To this end, the main ingredient is the bound on the second-order path lengths predicted by Theorem 3, which is recalled below.

Theorem 3. Suppose that Assumption 1 holds for some parameter $L > 0$. If all players follow LRL–OFTRL with learning rate $\eta \leq \min \left\{\frac{1}{256nL\|\mathcal{X}\|^2_1} \right\}$, where $\|\mathcal{X}\|_1 := \max_{i \in [n]} \|\mathcal{X}_i\|_1$, then

$$\sum_{t=1}^n \sum_{i=1}^{T-1} \|x^{(t+1)}_i - x^{(t)}_i\|^2_1 \leq 6144n\eta \|\mathcal{X}\|^2_2 + 1024n(d + 1)\|\mathcal{X}\|^2_1 \log T.$$

Proof. By Assumption 1, it follows that for any player $i \in [n],$

$$\left(\|u^{(t+1)}_i - u^{(t)}_i\|_{\infty}\right)^2 \leq \left(L \sum_{j=1}^n \|x^{(t+1)}_j - x^{(t)}_j\|_1 \right)^2 \leq L^2 n \sum_{j=1}^n \|x^{(t+1)}_j - x^{(t)}_j\|^2_1,$$

by Jensen’s inequality. Hence, by Corollary 1 the regret $\hat{\text{Reg}}^T_i$ of each player $i \in [n]$ can be upper bounded by

$$6 + \frac{(d + 1) \log T}{\eta} + 16\eta \|\mathcal{X}\|^2_1 \sum_{t=1}^n \sum_{j=1}^{T-1} \|x^{(t+1)}_j - x^{(t)}_j\|^2_1.$$

Summing over all players $i \in [n]$, we have that

$$\sum_{i=1}^n \hat{\text{Reg}}^T_i \leq 6n + \frac{(d + 1) \log T}{\eta} + \sum_{i=1}^n \left(16\eta \|\mathcal{X}\|^2_1 L^2 n^2 - \frac{1}{512\eta \|\mathcal{X}\|^2_1}\right) \sum_{t=1}^{T-1} \|x^{(t+1)}_i - x^{(t)}_i\|^2_1,$$

since $\eta \leq \frac{1}{256nL\|\mathcal{X}\|^2_1}$. Finally, the theorem follows since $\sum_{i=1}^n \hat{\text{Reg}}^T_i \geq 0$, which in turn follows directly from Theorem 2. \qed

Theorem 4 (Detailed Version of Theorem 1). Suppose that Assumption 1 holds for some parameter $L > 0$. If all players follow LRL–OFTRL with learning rate $\eta = \min \left\{\frac{1}{256nL\|\mathcal{X}\|^2_1}, \frac{1}{128nL\|\mathcal{X}\|^2_1} \right\}$, then for any $T \in \mathbb{N}$ the regret $\hat{\text{Reg}}^T_i$ of each player $i \in [n]$ can be bounded as

$$\hat{\text{Reg}}^T_i \leq 12 + 256(d + 1) \max \{nL\|\mathcal{X}\|^2_1, 2\} \log T.$$

Furthermore, the algorithm can be adaptive so that if player i is instead facing adversarial utilities, then $\hat{\text{Reg}}^T_i = O(\sqrt{T}).$
Proof. First of all, by Assumption 1 we have that for any player \(i \in [n] \),
\[
\|u_i^{(t+1)} - u_i^{(t)}\|_\infty^2 \leq \left(L \sum_{t=1}^{n} \|x_i^{(t+1)} - x_i^{(t)}\|_1 \right)^2 \leq L^2 n \sum_{j=1}^{n} \|x_j^{(t+1)} - x_j^{(t)}\|_1^2.
\]
Hence, summing over all \(t \in [T] \),
\[
\sum_{t=1}^{T-1} \|u_i^{(t+1)} - u_i^{(t)}\|_\infty^2 \leq L^2 n \sum_{t=1}^{T-1} \sum_{j=1}^{n} \|x_j^{(t+1)} - x_j^{(t)}\|_1^2 \\
\leq 6144n^2L^2 \eta \|\mathcal{X}\|_1^2 + 1024n^2L^2(d + 1) \|\mathcal{X}\|_1^2 \log T,
\]
where the last bound uses Theorem 3. As a result, from Corollary 1, if \(\eta = \frac{1}{128nL\|\mathcal{X}\|_1^2} \),
\[
\tilde{\text{Reg}}_i^T \leq 6 + \frac{(d + 1) \log T}{\eta} + 16n \|\mathcal{X}\|_1^2 \sum_{t=1}^{T-1} \|u_i^{(t+1)} - u_i^{(t)}\|_\infty^2 \\
\leq 12 + 256(d + 1)nL \|\mathcal{X}\|_1^2 \log T.
\]
Thus, the bound on \(\text{Reg}_i^T \) follows directly since \(\text{Reg}_i^T \leq \tilde{\text{Reg}}_i^T \) by Theorem 2. The case where \(\eta = \frac{1}{256} \) is analogous.

Next, let us focus on the adversarial bound. Each player can simply check whether there exists a time \(t \in [T] \) such that
\[
\sum_{\tau=1}^{T-1} \|u_i^{(\tau+1)} - u_i^{(\tau)}\|_\infty^2 > 6144n^2L^2 \eta \|\mathcal{X}\|_1^2 + 1024n^2L^2(d + 1) \|\mathcal{X}\|_1^2 \log t.
\]
In particular, we know from Theorem 3 that when all players follow the prescribed protocol (19) will never by satisfied. On the other hand, if there exists time \(t \) so that (19) holds, then it suffices to switch to any no-regret learning algorithm tuned to face adversarial utilities. \(\square \)

A.5 Extending the Analysis under Approximate Iterates

In this subsection we describe how to extend our analysis, and in particular Theorem 4, when the OFTRL step of Algorithm 1 at time \(t \) is only computed with tolerance \(\epsilon^{(t)} \), in the sense of (5). We start by extending Proposition 2 below.

Proposition 5 (Extension of Proposition 2). Let \(\tilde{\text{Reg}}_i^T \) be the regret cumulated up to time \(T \) by the internal OFTRL algorithm producing approximate iterates \((\lambda^{(t)}, y^{(t)}) \in \mathcal{X} \), for any \(t \in [T] \). Then, for any \(T \in \mathbb{N} \) and learning rate \(\eta \leq \frac{1}{256} \),
\[
\tilde{\text{Reg}}_i^T \leq 4 + \frac{(d + 1) \log T}{\eta} + 5\eta \sum_{\tau=1}^{T-1} \left\| \tilde{u}^{(\tau)} - \tilde{u}^{(\tau-1)} \right\|_{*,t}^2 - \frac{1}{27\eta} \sum_{\tau=1}^{T-1} \left\| \lambda^{(\tau+1)} - \lambda^{(\tau)} \right\|_{(\lambda^{(\tau)}, y^{(\tau)})} \\
+ 2 \sum_{\tau=1}^{T} \left\| \lambda^{(\tau)} - \lambda^{(\tau)} \right\|_{(\lambda^{(\tau)}, y^{(\tau)})},
\]
where
\[
\left(\lambda^{(\tau)}, y^{(\tau)} \right) := \arg\max_{(\lambda, y) \in \mathcal{X}} \left\{ \eta \left(\tilde{f}^{(\tau)} + \tilde{\tilde{u}}^{(\tau-1)} \right), \left(\lambda \right) \right\} + \log \lambda + \sum_{r=1}^{d} \log y[r] \}
\]
Proof. Fix any \((\lambda^*, y^*) \in \tilde{X}\). Then,

\[
\sum_{t=1}^{T} \left\langle \tilde{u}^{(t)} - (\lambda^{(t)})^*, \lambda^{(t)} - (\lambda^{(t)})^* \right\rangle = \sum_{t=1}^{T} \left\langle \tilde{u}^{(t)} - (\lambda^{(t)})^*, \lambda^{(t)} - (\lambda^{(t)})^* \right\rangle + \sum_{t=1}^{T} \left\langle \tilde{u}^{(t)} - (\lambda^{(t)})^*, \lambda^{(t)} - (\lambda^{(t)})^* \right\rangle
\]

\[
\leq \sum_{t=1}^{T} \left\langle \tilde{u}^{(t)} - (\lambda^{(t)})^*, \lambda^{(t)} - (\lambda^{(t)})^* \right\rangle + 2 \sum_{t=1}^{T} \left\| \lambda^{(t)} - (\lambda^{(t)})^* \right\|_{(\lambda^{(t)}, y^{(t)})},
\]

where the last inequality uses Hölder’s inequality along with the fact that \(\|\tilde{u}^{(t)}\|_{*,(\lambda^{(t)}, y^{(t)})} \leq 2\), which in turn follows since \(\|u^{(t)}\|_{\infty} \|x\|_1 \leq 1\) (by assumption). Finally, the proof follows as an immediate consequence of Proposition 2.

We next proceed with the extension of Lemma 1.

Lemma 7 (Extension of Lemma 1). Suppose that \(\epsilon^{(t)} \leq \frac{1}{8}\), for any \(t \in \mathbb{Z}\). Then, for any time \(t \in [T - 1]\) and learning rate \(\eta \leq \frac{1}{2\sqrt{T}}\),

\[
\|x^{(t+1)} - x^{(t)}\|_1 \leq 8\|x\|_1 \left\langle \left(\lambda^{(t+1)} \lambda^{(t)} \right) - \left(\lambda^{(t)} \lambda^{(t)} \right) \right\|_{(\lambda^{(t)}, y^{(t)})} + 16\|x\|_1 \epsilon^{(t+1)} + 8\|x\|_1 \epsilon^{(t)},
\]

where \(x^{(t)} := y^{(t)} / \lambda^{(t)}\).

Proof. First, by the triangle inequality,

\[
\left\| \lambda^{(t+1)} - \lambda^{(t)} \right\|_{(\lambda^{(t)}, y^{(t)})} \leq \left\| \lambda^{(t+1)} - \lambda^{(t)} \right\|_{(\lambda^{(t)}, y^{(t)})}.
\]

Now given that \(\eta \leq \frac{1}{2\sqrt{T}}\), it follows from Proposition 3 that

\[
\left\| \lambda^{(t+1)} - \lambda^{(t)} \right\|_{(\lambda^{(t)}, y^{(t)})} \leq \frac{1}{2},
\]

which in turn—combined with Lemma 4—implies that

\[
\left\| \lambda^{(t+1)} - \lambda^{(t)} \right\|_{(\lambda^{(t)}, y^{(t)})} \leq 2\left\| \lambda^{(t+1)} - \lambda^{(t)} \right\|_{(\lambda^{(t)}, y^{(t)})}.
\]

Similarly, since \(\epsilon^{(t)} \leq \frac{1}{8}\), it follows that

\[
\left\| \lambda^{(t+1)} - \lambda^{(t)} \right\|_{(\lambda^{(t)}, y^{(t)})} \geq \frac{1}{2\left\| \lambda^{(t+1)} - \lambda^{(t)} \right\|_{(\lambda^{(t)}, y^{(t)})}.
\]

As a result,

\[
\left\| \lambda^{(t+1)} - \lambda^{(t)} \right\|_{(\lambda^{(t)}, y^{(t)})} \geq \frac{1}{2\left\| \lambda^{(t+1)} - \lambda^{(t)} \right\|_{(\lambda^{(t)}, y^{(t)})} - 2\epsilon^{(t+1)} - \epsilon^{(t)}. \quad (20)
\]

23
Next, we will prove that
\[
\max \left\{ \left| \frac{\lambda^{(t+1)}}{\lambda^{(t)}} - 1 \right|, \max_{r \in [d]} \left| \frac{y^{(t+1)}[r]}{y^{(t)}[r]} - 1 \right| \right\} \leq \frac{1}{2}. \tag{21}
\]
Indeed, since \(\epsilon(t), \epsilon^{(t+1)} \leq \frac{1}{8} \), it holds that
\[
\left| 1 - \frac{\lambda^{(t)}}{\lambda^{(t)}} \right| \leq \frac{1}{8} \implies \frac{7}{8} \lambda^{(t)} \leq \lambda^{(t)} \leq \frac{9}{8} \lambda^{(t)},
\]
and
\[
\left| 1 - \frac{\lambda^{(t+1)}}{\lambda^{(t+1)}} \right| \leq \frac{1}{8} \implies \frac{7}{8} \lambda^{(t+1)} \leq \lambda^{(t+1)} \leq \frac{9}{8} \lambda^{(t+1)}.
\]
Furthermore, for \(\eta \leq \frac{1}{256} \),
\[
\left| 1 - \frac{\lambda^{(t+1)}}{\lambda^{(t)}} \right| \leq \frac{1}{10} \implies \frac{9}{10} \lambda^{(t)} \leq \lambda^{(t+1)} \leq \frac{11}{10} \lambda^{(t)},
\]
by Proposition 3 and Lemma 4. Thus,
\[
\frac{2}{3} \lambda^{(t+1)} \leq \frac{7}{8} \frac{10}{9} \lambda^{(t+1)} \leq \lambda^{(t)} \leq \frac{9}{8} \frac{10}{7} \lambda^{(t+1)} \leq \frac{3}{2} \lambda^{(t+1)},
\]
in turn implying that
\[
\left| 1 - \frac{\lambda^{(t+1)}}{\lambda^{(t)}} \right| \leq \frac{1}{2}.
\]
Similarly, we conclude that for any \(r \in [d] \),
\[
\left| 1 - \frac{y^{(t+1)}[r]}{y^{(t)}[r]} \right| \leq \frac{1}{2},
\]
confirming (21). Hence, following the proof of Lemma 6, we derive that
\[
\left\| \left(\frac{\lambda^{(t+1)}}{y^{(t+1)}} \right) - \left(\frac{\lambda^{(t)}}{y^{(t)}} \right) \right\|_{(\lambda^{(t)}, y^{(t)})} \geq \frac{1}{4\|\mathcal{X}\|_1} \left\| y^{(t+1)} - y^{(t)} \right\|_{\lambda^{(t+1)}} = \frac{1}{4\|\mathcal{X}\|_1} \| x^{(t+1)} - x^{(t)} \|_1.
\]
Combining this bound with (20) concludes the proof. \(\square\)

We also state the following immediate implication of Lemma 7.

Corollary 3. Suppose that \(\epsilon(t) \leq \frac{1}{8} \), for any \(t \in [T] \). Then, for any \(t \in [T - 1] \) and learning rate \(\eta \leq \frac{1}{256} \),
\[
\| x^{(t+1)} - x^{(t)} \|^2 \leq 192\|\mathcal{X}\|^2 \left(\left(\frac{\lambda^{(t+1)}}{y^{(t+1)}} \right) - \left(\frac{\lambda^{(t)}}{y^{(t)}} \right) \right)^2 + 768\|\mathcal{X}\|^2 (\epsilon^{(t+1)})^2 + 192\|\mathcal{X}\|^2 (\epsilon^{(t)})^2,
\]
where \(x^{(t)} := y^{(t)}/\lambda^{(t)} \).

As a result, combining this bound with Proposition 5 extends Corollary 1 with an error term proportional to \(\sum_{t=1}^{T} \epsilon^{(t)} \). Finally, the rest of the extension is identical to our proof of Theorem 4.

B Implementation via Proximal Oracles

In this section we provide the omitted proofs from Section 3.5 regarding the implementation of LRL-OFTRL using proximal oracles (recall Equation (6)).
B.1 The Proximal Newton Method

In this subsection we describe the proximal Newton algorithm of Tran-Dinh et al. [2015], leading to Theorem 5 we presented in Section 3.5. More precisely, Tran-Dinh et al. [2015] studied the following composite minimization problem:

\[
\min_{\bar{x} \in \mathbb{R}^{d+1}} \{ F(\bar{x}) := f(\bar{x}) + g(\bar{x}) \},
\]

where \(f \) is a (standard) self-concordant and convex function, and \(g : \mathbb{R}^{d+1} \to \mathbb{R} \cup \{+\infty\} \) is a proper, closed and convex function. In our setting, we will let \(g \) be defined as

\[
g(\bar{x}) := \begin{cases}
0 & \text{if } \bar{x} \in \hat{X}, \\
+\infty & \text{otherwise}.
\end{cases}
\]

Further, for a given time \(t \in \mathbb{N} \), we let

\[
f : \hat{x} \mapsto -\eta \left(\bar{U}^{(t)} + \bar{u}^{(t-1)}, \bar{x} \right) - \sum_{r=1}^{d+1} \log \bar{x}[r].
\]

Before we describe the proximal Newton method, let us define \(\hat{s}_k \) as follows.

\[
\hat{s}_k := \arg \min_{\hat{x} \in \hat{X}} \left\{ f(\hat{x}_k) + (\nabla f(\hat{x}_k))^\top (\hat{x} - \hat{x}_k) + \frac{1}{2} (\hat{x} - \hat{x}_k)^\top \nabla^2 f(\hat{x}_k)(\hat{x} - \hat{x}_k) \right\},
\]

for some \(\hat{x}_k \in \mathbb{R}^{d+1}_{>0} \). We point out that the optimization problem (23) can be trivially solved when we have access to a (local) proximal oracle—given in Equation (6).

In this context, the proximal Newton method of Tran-Dinh et al. [2015] is given in Algorithm 2. Their algorithm proceeds in two phases. In the first phase we perform damped steps of proximal Newton until we reach the region of quadratic convergence. Afterwards, we perform full steps of proximal Newton until the desired precision \(\epsilon > 0 \) has been reached. Below we summarize the main guarantee regarding Algorithm 2, namely [Tran-Dinh et al., 2015, Theorem 9].

Theorem 7 ([Tran-Dinh et al., 2015]). Algorithm 2 returns \(\hat{x}_K \in \mathbb{R}^{d+1}_{>0} \) such that \(\| \hat{x}_K - \hat{x}^* \|_{\hat{x}} \leq 2\epsilon \) after at most

\[
K = \left[\frac{f(\hat{x}_0) - f(\hat{x}^*))}{0.017} \right] + \left[1.5 \ln \left(\frac{0.28}{\epsilon} \right) \right] + 2
\]

iterations, for any \(\epsilon > 0 \), where \(\hat{x}^* = \arg \min_{\hat{x}} F(\bar{x}) \), for the composite function \(F \) defined in (22).

To establish Theorem 5 from this guarantee, it suffices to initialize Algorithm 2 at every iteration \(t \geq 2 \) with \(\hat{x}_0 := \hat{x}^{(t-1)} = (\lambda^{(t-1)}, y^{(t-1)}) \). Then, as long as \(\epsilon^{(t-1)} \) is sufficiently small, the number of iterations predicted by Theorem 7 will be bounded by \(O(\log \log (1/\epsilon)) \), in turn establishing Theorem 5.

B.2 Proximal Oracle for Normal-Form and Extensive-Form Games

In order to show that the proximal oracle of Section 3.5 can be implemented efficiently for probability simplexes (i.e., the strategy sets of normal-form games) and sequence-form strategy spaces (i.e., the strategy sets of extensive-form games), we will prove a slightly stronger result concerning treeplex sets, of which sequence-form strategy spaces are instances.

Definition 1. A set \(Q \subseteq [0, +\infty]^d \), \(d \geq 1 \), is treeplex if it is:

1. a simplex \(Q = \Delta^d \);
2. a Cartesian product of treeplex sets \(Q_1 \times \cdots \times Q_K \); or
Algorithm 2: Proximal Newton [Tran-Dinh et al., 2015]

Data: Initial point \tilde{x}_0
Precision $\epsilon > 0$
Constant $\sigma := 0.2$

for $k = 1, \ldots, K$ do

1. Obtain the proximal Newton direction $\tilde{d}_k \leftarrow \tilde{s}_k - \tilde{x}_k$, where \tilde{s}_k is defined in (23)
2. Set $\lambda_k \leftarrow \|\tilde{d}_k\|_{\tilde{x}_k}$
3. if $\lambda_k > 0.2$ then
4. $\tilde{x}_{k+1} \leftarrow \tilde{x}_k + \alpha_k \tilde{d}_k$, where $\alpha_k := (1 + \lambda_k)^{-1}$ [Damped Step]
5. else if $\lambda_k > \epsilon$ then
6. $\tilde{x}_{k+1} \leftarrow \tilde{x}_k + \tilde{d}_k$ [Full Step]
7. else
8. return \tilde{x}_k

3. (Branching operation) a set of the form

$$\triangle(Q_1, \ldots, Q_K) := \{(x, x[1]q_1, \ldots, x[K]q_K) : x \in \Delta^K, q_k \in Q_k \text{ } \forall k \in [K]\},$$

where Q_1, \ldots, Q_K are treeplex.

We will show that any treeplex Q is such that $[0,1]Q$ admits an efficient (positive-definite) quadratic optimization oracle. This is sufficient, since it is well-known that every sequence-form strategy space \mathcal{X} is treeplex (e.g., Hoda et al. [2010]) and therefore, by definition, so is the set $\{(1, x) : x \in \mathcal{X}\}$.

Introduce the value function

$$V_Q(t; g, w) := \min_{x \in Q} \left\{-g^T x + \frac{1}{2} \sum_{r=1}^{d} \left(\frac{x[r]}{w[r]}\right)^2\right\} \quad (t \geq 0, w > 0)$$

(note the rescaling by t in the domain of the minimization). We will be interested in the derivative of $V_Q(t; g, w)$, which we will denote as

$$\lambda_Q(t; g, w) := \frac{d}{dt} V_Q(t; g, w).$$

Preliminaries on strictly monotonic piecewise-linear (SMPL) functions

Definition 2 (SMPL function and standard representation). Given an interval $I \subseteq \mathbb{R}$ and a function $f : I \to \mathbb{R}$, we say that f is SMPL if it is strictly monotonically increasing and piecewise-linear on I.

Definition 3 (Quasi-SMPL function). A quasi-SMPL function is a function $f : \mathbb{R} \to [0, +\infty)$ of the form $f(x) = [g(x)]^+$ where $g(x) : \mathbb{R} \to \mathbb{R}$ is SMPL and $[\cdot]^+ := \max\{0, \cdot\}$.

Definition 4. Given a SMPL or quasi-SMPL function f, a standard representation for it is an expression of the form

$$f(x) = \zeta + \alpha_0 x + \sum_{s=1}^{S} \alpha_s [x - \beta_s]^+,$$

For $t = 0$ we define $\lambda_Q(t; g, w)$ in the usual way as

$$\lambda_Q(0; g, w) = \lim_{t \to 0^+} \frac{V_Q(t; g, w) - V_Q(0; g, w)}{t} = \lim_{t \to 0^+} \frac{V_Q(t; g, w)}{t}.$$
valid for all \(x \) in the domain of \(f \), where \(S \in \mathbb{N} \) and \(\beta_1 < \cdots < \beta_S \). The size of the standard representation is defined as the natural number \(S \).

We now mention four basic results about SMPL and quasi-SMPL functions. The proofs are elementary and omitted.

Lemma 8. Let \(f : I \to \mathbb{R} \) be SMPL, and consider a standard representation of \(f \) of size \(S \). Then, for any \(\zeta \in \mathbb{R} \) and \(\alpha \geq 0 \), a standard representation for the SMPL function \(I \ni x \mapsto \zeta + \alpha f(x) \) can be computed in \(O(S + 1) \) time.

Lemma 9. The sum \(f_1 + \cdots + f_n \) of \(n \) SMPL (resp., quasi-SMPL) functions \(f_i : I \to \mathbb{R} \) is a SMPL (resp., quasi-SMPL) function \(I \to \mathbb{R} \). Furthermore, if each \(f_i \) admits a standard representation of size \(S_i \), then a standard representation of size at most \(S_1 + \cdots + S_n \) for their sum can be computed in \(O((S_1 + \cdots + S_n + 1) \log n) \) time.

Lemma 10. Let \(f : \mathbb{R} \to \mathbb{R} \) be SMPL, and consider a standard representation of \(f \) of size \(S \). Then, for any \(\beta \in \mathbb{R} \), a standard representation of size at most \(S \) for the quasi-SMPL function \(I \ni x \mapsto |f(x) - \beta| \) can be computed in \(O(S + 1) \) time.

Lemma 11. The inverse \(f^{-1} : \text{range}(f) \to \mathbb{R} \) of a SMPL function \(f : I \to \mathbb{R} \) is SMPL. Furthermore, if \(f \) admits a standard representation of size \(S \), then a standard representation for \(f^{-1} \) of size at most \(S \) can be computed in \(O(S + 1) \) time.

Lemma 12. Let \(f : \mathbb{R} \to [0, +\infty) \) be quasi-SMPL. The restricted inverse \(f^{-1} : (0, +\infty) \to \mathbb{R} \) of \(f \) is SMPL, where we restrict the domain to \((0, +\infty)\) because \(f^{-1}(0) \) may be multivalued. Furthermore, if \(f \) admits a standard representation of size \(S \), then a standard representation of size at most \(S \) for \(f^{-1} \) can be computed in \(O(S + 1) \) time.

Proof. We have \(f(x) = [g(x)]^+ \) where \(g \) is SMPL. It follows that the function \(\tilde{g} : I \to \mathbb{R} \) defined as \(\tilde{g}(x) = g(x) \) for the interval \(I = \{x : g(x) > 0\} \) is SMPL as well. For any \(x \) such that \(f(x) > 0 \) we have \(x \in I \), and thus \(f^{-1} = g^{-1} \), and it follows from Lemma 11 that \(f^{-1} \) is SMPL.

Lemma 13. Let \(f : [0, +\infty) \to \mathbb{R} \) be a SMPL function, and consider the function \(g \) that maps \(y \) to the unique solution to the equation \(x = [y - f(x)]^+ \). Then, \(g \) is quasi-SMPL and satisfies \(g(y) = [(x + f)^{-1}(y)]^+ \), where \((x + f)^{-1} \) denotes the inverse of the SMPL function \(x \mapsto x + f([x]^+) \).

Proof. For any \(y \in \mathbb{R} \), the function \(h_y : x \mapsto x - [y - f(x)]^+ \) is clearly SMPL on \([0, +\infty)\). Furthermore, \(h_y(0) \leq 0 \) and \(h_y(+\infty) = +\infty \), implying that \(h_y(x) = 0 \) has a unique solution. We now show that \(g(y) = [(x + f)^{-1}(y)]^+ \) is that solution, that is, it satisfies \(g(y) = [y - f(g(y))]^+ \) for all \(y \in \mathbb{R} \). Fix any \(y \in \mathbb{R} \) and let

\[
\tilde{g} := (x + f)^{-1}(y) \iff \tilde{g} + f([\tilde{g}]^+) = y \iff \tilde{g} = y - f([\tilde{g}]^+) \tag{25}
\]

There are two cases:

- If \(\tilde{g} \geq 0 \), then \(g(y) = [\tilde{g}]^+ = \tilde{g} \), and so we have

\[
g(y) = [\tilde{g}]^+ = [y - f([\tilde{g}]^+)]^+ = [y - f(g(y))]^+,
\]

as we wanted to show.

- Otherwise, \(\tilde{g} < 0 \) and \(g(y) = 0 \). From (25), the condition \(\tilde{g} < 0 \) implies \(y < f([\tilde{g}]^+) = f(0) \). So, it is indeed the case that

\[
0 = g(y) = [y - f(0)]^+ = [y - f(g(0))]^+,
\]

as we wanted to show.

Finally, we note that the function \((x + f)^{-1} : \mathbb{R} \to \mathbb{R} \) is SMPL due to Lemma 11, implying that \(g(y) \) is quasi-SMPL.

\[
\text{27}
\]
Central result The following result is central in our analysis.

Lemma 14. For any treplex \(Q \subseteq \mathbb{R}^d \), gradient \(\mathbf{g} \in \mathbb{R}^d \), and center \(\mathbf{w} \in \mathbb{R}^d_{\geq 0} \), the function \(t \mapsto \lambda_Q(t; \mathbf{g}, \mathbf{w}) \) is SMPL, and a standard representation of it of size \(d \) can be computed in polynomial time in \(d \).

Proof. We will prove the result by structural induction on \(Q \).

- First, we consider the case where \(Q \) is a Cartesian product,
 \[Q = Q_1 \times \cdots \times Q_K. \]
 In that case, the value function decomposes as follows
 \[V_Q(t; \mathbf{g}, \mathbf{w}) = \sum_{k=1}^K \min_{\mathbf{x}_k \in Q_k} \left\{ -g_k^T \mathbf{x}_k + \frac{1}{2} \sum_{r=1}^{d_k} \left(\frac{x_k[r]}{w_k[r]} \right)^2 \right\} = \sum_{k=1}^K V_{Q_k}(t; g_k, w_k). \]
 By linearity of derivatives, we have
 \[\lambda_Q(t; \mathbf{g}, \mathbf{w}) = \sum_{k=1}^K \lambda_{Q_k}(t; g_k, w_k). \]
 From Lemma 9, we conclude that \(\lambda_Q(t; \mathbf{g}, \mathbf{w}) \) is a SMPL function with domain \([0, +\infty)\) which admits a standard representation of size at most \(d = d_1 + \cdots + d_K \) computable in time \(O(d \log K) \) starting from the standard representation of each of the \(\lambda_{Q_k}(t; g_k, w_k) \).

- Second, consider the case where \(Q \) is a simplex or the result of a branching operation
 \[\triangle(Q_1, \ldots, Q_K) = \{ (\mathbf{x}, \mathbf{x}[1]q_1, \ldots, \mathbf{x}[K]q_K) : \mathbf{x} \in \Delta^K, q_k \in Q_k \ \forall k \in [K] \}, \]
 where \(Q_k \subseteq \mathbb{R}^{d_k} \). With a slight abuse of notation, we will treat the two cases together, considering the \(K \)-simplex \(\Delta^K \) as a branching operation over empty sets \(Q_k = \emptyset \).
 In this case, we can write
 \[\mathbf{g} = (g_1[1], \ldots, g_K[1], g_1 \in \mathbb{R}^{d_1}, \ldots, g_K \in \mathbb{R}^{d_K}), \text{ and} \]
 \[\mathbf{w} = (w_1[1], \ldots, w_K[1], w_1 \in \mathbb{R}^{d_1}_{\geq 0}, \ldots, w_K \in \mathbb{R}^{d_K}_{\geq 0}). \]
 The value function then decomposes recursively as
 \[V_Q(t; \mathbf{g}, \mathbf{w}) = \min_{\mathbf{x}_* \in \Delta^K} \left\{ \left(-\sum_{r=1}^K g_*[r]x_*[r] + \frac{1}{2} \sum_{r=1}^K \left(\frac{x_*[r]}{w_*[r]} \right)^2 \right) \right. \]
 \[+ \sum_{k=1}^K \min_{\mathbf{x}_k \in \Delta^{d_k}} \left\{ -g_k^T \mathbf{x}_k + \frac{1}{2} \sum_{r=1}^{d_k} \left(\frac{x_k[r]}{w_k[r]} \right)^2 \right\} \}
 \[= \min_{\mathbf{x}_* \in \Delta^K} \left\{ \left(-\sum_{r=1}^K g_*[r]x_*[r] + \frac{1}{2} \sum_{r=1}^K \left(\frac{x_*[r]}{w_*[r]} \right)^2 \right) \right. \]
 \[+ \sum_{k=1}^K \min_{\mathbf{x}_k \in \Delta^{d_k}} \left\{ -g_k^T \mathbf{x}_k + \frac{1}{2} \sum_{r=1}^{d_k} \left(\frac{x_k[r]}{w_k[r]} \right)^2 \right\} \}
 \[= \min_{\mathbf{x}_* \in \Delta^K} \left\{ \left(-\sum_{r=1}^K g_*[r]x_*[r] + \frac{1}{2} \sum_{r=1}^K \left(\frac{x_*[r]}{w_*[r]} \right)^2 \right) \right. \]
 \[+ V_{Q_*}(t; g_*[k], w_*[k]). \] (26)
 Suppose that for each \(k \in [K] \), \(\lambda_{Q_*}(t; g_*[k], w_*[k]) \) is piecewise linear and monotonically increasing in \(t \). Now we consider the KKT conditions for \(\mathbf{x}_* \) in Equation (26):
 \[-g_*[k] + \frac{x_*[k]}{w_*[k]^2} + \lambda_{Q_*}(x_*[k]; g_*[k], w_*[k]) = \lambda_\bullet + \mu[k] \ \forall k \in [K] \] (Stationarity)
 \[\mathbf{x}_* \in t \cdot \Delta^K \] (Primal feasibility)
 \[\lambda_\bullet \in \mathbb{R}, \mu \in \mathbb{R}^{d_0}_{\geq 0} \] (Dual feasibility)
 \[\mu[k]x_*[k] = 0 \ \forall k \in [K] \] (Compl. slackness)
Solving for $\mathbf{x}_*\{k\}$ in the stationarity condition, and using the conditions $\mathbf{x}_*\{k\}\mathbf{\mu}\{k\} = 0$ and $\mathbf{\mu}\{k\} \geq 0$, it follows that for all $k \in [K]$

$$
\mathbf{x}_*\{k\} = \mathbf{w}_*\{k\}^2 \left(\mathbf{\lambda}_* + \mathbf{\mu}\{k\} + \mathbf{g}_*\{k\} - \mathbf{\lambda}_{Q_k}(\mathbf{x}_*\{k\}; g_k, w_k) \right) = \mathbf{w}_*\{k\}^2 \left[\mathbf{\lambda}_* + \mathbf{g}_*\{k\} - \mathbf{\lambda}_{Q_k}(\mathbf{x}_*\{k\}; g_k, w_k) \right]^+.
$$

(27)

Strict monotonicity and piecewise-linearity of $\mathbf{x}_*\{k\}$ as a function of $\mathbf{\lambda}_*$. Given the preliminaries on SMPL functions, it is now immediate to see that $\mathbf{x}_*\{k\}$ is unique as a function of $\mathbf{\lambda}_*$. Indeed, note that (27) can be rewritten as

$$
\mathbf{x}_*\{k\} = \left[(\mathbf{w}_*\{k\}^2)\mathbf{\lambda}_* - \mathbf{w}_*\{k\}^2 (-\mathbf{g}_*\{k\} + \mathbf{\lambda}_{Q_k}(\mathbf{x}_*\{k\}; g_k, w_k)) \right]^+,
$$

which is a fixed-point problem of the form studied in Lemma 13 for $y = (\mathbf{w}_*\{k\}^2)\mathbf{\lambda}_*$ and function f_k defined as

$$
f_k(\mathbf{x}_*\{k\}) = \mathbf{w}_*\{k\}^2 (-\mathbf{g}_*\{k\} + \mathbf{\lambda}_{Q_k}(\mathbf{x}_*\{k\}; g_k, w_k)),
$$

which is clearly SMPL by inductive hypothesis. Hence, the unique solution to the previous fixed-point equation is given by the quasi-SMPL function

$$
g_k : \mathbf{\lambda}_* \mapsto \frac{1}{\mathbf{w}_*\{k\}^2 \left[\mathbf{x}_*\{k\} + f_k(\mathbf{\lambda}_*) \right]^+},
$$

a standard representation of which can be computed in time $O(d + 1)$ by combining the results of Lemmas 8, 10 and 11 given that a standard representation of $\mathbf{\lambda}_{Q_k}(t; g_k, w_k)$ of size d is available by inductive hypothesis.

Strict monotonicity and piecewise-linearity of $\mathbf{\lambda}_*$ as a function of t. At this stage, we know that given any value of the dual variable $\mathbf{\lambda}_*$, the unique value of the coordinate $\mathbf{x}_*\{k\}$ that solves the KKT system can be computed using the SMPL function g_k. In turn, this means that we can remove the primal variables \mathbf{x}_* from the KKT system, leaving us a system in $\mathbf{\lambda}_*$ and t only. We now show that the solution $\mathbf{\lambda}_*^t$ of that system is a SMPL function of $t \in [0, +\infty)$.

Indeed, the value of $\mathbf{\lambda}_*^t$ that solves the KKT system has to satisfy the primal feasibility condition

$$
t = \sum_{k=1}^K \mathbf{x}_*\{k\} = \sum_{k=1}^K g_k(\mathbf{\lambda}_*).
$$

Fix any $t > 0$. The right-hand side of the equation is a sum of quasi-SMPL functions. Hence, from Lemma 9, we have that the right-hand side has a standard representation of size at most $K + \sum_{k=1}^K d_k = d$ can be computed in time $O(d \log K)$. Furthermore, from Lemma 12, we have that the $\mathbf{\lambda}_*^t$ that satisfies the equation is unique, and in fact that the mapping $(0, +\infty) \ni t \mapsto \mathbf{\lambda}_*^t$ is SMPL with standard representation of size at most d.

Relating $\mathbf{\lambda}_*$ and $\mathbf{\lambda}_{Q}(t; g, w)$. Since $\mathbf{\lambda}_*^t(t)$ is the coefficient on t in the Lagrangian relaxation of (26), it is a subgradient of $V_{Q}(t; g, w)$, and since there is a unique solution, we get that it is the derivative, that is,

$$
\mathbf{\lambda}_*^t(t) = \mathbf{\lambda}_{Q}(t; g, w)
$$
for all \(t \in (0, +\infty) \). To conclude the proof by induction, we then need to analyze the case \(t = 0 \), which has so far been excluded. When \(t = 0 \), the feasible set \(tQ \) is a singleton, and \(V_Q(0; g, w) = 0 \). Since \(V_Q(t; g, w) \) is continuous on \([0, +\infty)\), and since \(\lim_{t \to 0^+} \lambda_Q(t; g, w) = \lambda(t) \) exists since \(\lambda(t) \) is piecewise-linear, then by the mean value theorem,

\[
\lambda_Q(0; g, w) = \lim_{t \to 0^+} \lambda(t),
\]

that is, the continuous extension of \(\lambda(t) \) must be (right) derivative of \(V_Q(t; g, w) \) in 0. As extending continuously \(\lambda(t) \) clearly does not alter its being SMPL nor its standard representation, we conclude the proof of the inductive case.

Lemma 14 also provides a constructive way of computing the argmin of (24) in polynomial time for any \(t \in [0, +\infty) \). To conclude the construction of the proximal oracle, it is then enough to show how to pick the optimal value of \(t \in [0, 1] \) that minimizes

\[
\min_{x \in [0, 1]^d} \left\{ -g^\top x + \frac{1}{2} \sum_{r=1}^{d} \left(\frac{x[r]}{w[r]} \right)^2 \right\} = \min_{t \in [0, 1]} V_Q(t; g, w).
\]

That is easy starting from the derivative \(\lambda_Q(t; g, w) \), which is a SMPL function by Lemma 14. Indeed, if \(\lambda_Q(0; g, w) \geq 0 \), then by monotonicity of the derivative we know that the optimal value of \(t \) is \(t = 0 \). Else, if \(\lambda_Q(1; g, w) \leq 0 \), again by monotonicity we know that the optimal value of \(t \) is \(t = 1 \). Else, there exists a unique value of \(t \in (0, 1) \) at which the derivative of the objective is 0, and such a value can be computed exactly using Lemma 11.