Cooperative control mechanism of key objects and key nodes of dry bulk terminal

Hankun Shi¹, Xuelin Wang²*, Zhaolun Zhang³

¹ China Waterborne Transport Research Institute, Beijing, China
² China Waterborne Transport Research Institute, Beijing, China
³ China Waterborne Transport Research Institute, Beijing, China
*Corresponding author’s e-mail: wangxuelin@wti.ac.cn

Abstract. Based on the operation process of dry bulk terminal and according to the unique process characteristics of dry bulk terminal, this study combs the specific distribution of key objects and key nodes of dry bulk terminal. Based on the analysis of the process mechanism and interactive information of dry bulk terminal, the collaborative control mechanism of key objects and key nodes is studied, which creates a certain theoretical framework for the automation and intelligent design of dry bulk terminal.

1. Introduction
Foreign ports have advanced research and application concepts in dry bulk intelligent technology, and introduce advanced computer and information technology to reduce logistics costs and improve operation efficiency. For example, Newcastle port in Australia is the world’s largest coal export port[1]. Unmanned operation has been realized in the coal stacking link for a long time, so as to improve the coal stacking efficiency and reduce the operation cost. Rotterdam port in the Netherlands is committed to promoting the process of port digitization and improving port operation efficiency and service level through the application of modern information technology and artificial intelligence technology[2-3]. Rotterdam port uses Ethernet, cloud computing, mobile terminal equipment, Internet of things, GIS, video monitoring system, etc. to establish the port operation management system, realize the seamless connection between the information system instructions and the terminal machinery and equipment control functions, and make the efficient and reasonable allocation and scheduling of various port resources[4]. Shanghai Luojing phase II bulk cargo terminal has a set of full-automatic bridge grab ship unloader, full-automatic stacker reclaimers and full-automatic ship loader, all of which are remotely controlled through the central control room[5]. Huanghua port coal terminal has realized the operation of automatic coal terminal by integrating visualization system, monitoring and early warning system and emergency disposal system, and has become the first coal terminal in China to realize the whole process remote operation[6-7]. The remote operation system is introduced into the coal terminal of Huangye port to uniformly dispatch the dumper operation, stacker operation, reclaimer operation and loading operation of the coal terminal[8]. The Nanjiang bulk cargo terminal of Tianjin Port has completed the transformation of the automatic terminal, adopted a new automatic shipping system, scanned the hull through lidar, and then carried out the shipping work, so as to realize the automatic shipping operation under unmanned conditions[9-10]. It can be seen that in the future, the deep
integration of process flow, equipment, system and new technology is the core path for the construction and development of automatic dry bulk terminal.

After comparing and analyzing the intelligent technology application of several dry bulk cargo terminals, it is analyzed that the problems existing in the current intelligent and automation direction of dry bulk cargo terminals mainly include the following two aspects: the first aspect is that bulk cargo terminals have the characteristics of wide variety of goods, huge quantity and complex operation process. Many links need to rely on manual experience, and the degree of intelligence is low, the upgrading of control technology can not catch up with the development of information technology. The second aspect is the lack of deep integration between new technologies and traditional systems. The integration of emerging technologies such as artificial intelligence, big data, blockchain and information physics system with port business scenarios and key equipment systems is far from enough to support the future development needs of container terminal intelligence and automation. Therefore, starting from the basic theory and overall architecture, it is very important to find the key objects and key nodes of dry bulk terminal, and deeply analyze the cooperative control mechanism between them.

2. Distribution of key objects and key nodes of dry bulk terminal
Dry bulk terminal has the characteristics of rich types of equipment and systems, non centralized goods, complex technology and so on. Therefore, before studying the cooperative control mechanism of dry bulk terminal, it is particularly important to sort out the key objects and key nodes in many equipment and systems, complex processes. The key objects of dry bulk cargo terminal are divided into five categories from the perspective of equipment types, namely terminal loading and unloading equipment, terminal loading and unloading equipment, terminal yard equipment, terminal horizontal transportation equipment and terminal operation auxiliary equipment. The equipment under these five types of equipment together constitute the key objects of dry bulk cargo terminal, as shown in Table 1. The organic cooperation between them determines the normal and orderly operation of dry bulk terminal production.

Wharf type	Equipment type	Key object
Dry bulk terminal	Dock loading and unloading equipment	Mobile ship loader, swing ship loader, fixed ship loader, ship boom, ordinary gantry crane, bucket gantry crane, loading bridge
		Chain ship unloader, bucket wheel ship unloader, screw ship unloader, belt unloader, buried scraper ship unloader and pneumatic conveyor
	Dock loading and unloading equipment	Bridge crane grab, portal crane grab, loading and unloading bridge grab, single bucket loader, elevated bin hopper belt conveyor system, dumper, screw unloader, chain bucket unloader, bottom door dump truck, crane grab and simple push rod unloader
Wharf yard equipment	Stacker, reclaimer, stacker reclaimer	
Wharf horizontal transportation equipment	Belt conveyor, clamp belt conveyor, chain conveyor, buried scraper conveyor, screw conveyor, bucket elevator, bracket elevator	
Auxiliary equipment for wharf operation	Electronic belt scale, funnel metering device, track scale, underground scale, water gauge measurement, bucket leveler, straight belt leveler, curved belt leveler, feeder, scraper, rake, shovel, bucket truck, wind and dust prevention net,	
sprinkler, hot air thawing device, steam heating pipe thawing device, gas or infrared thawing device, air blowing arch breaking device, arch breaking device of coal conveyor.

The key nodes of dry bulk terminal are divided into four categories from the core system, namely automatic control system, management information system, remote control system and support system. The subsystems under these four types of systems together constitute the key nodes of dry bulk terminal, as shown in Table 2. The cooperation and interconnection between them assisted the normal operation of the key equipment of the dry bulk terminal, realized the business operation and the exchange and sharing of information and data, and improved the work efficiency of the dry bulk terminal.

Table 2. Key nodes of dry bulk terminal

Wharf type	Core system	Key node
Automatic control system	Automatic control system of bulk cargo handling machinery	Tally management system
	Automatic control system of bulk cargo conveying machinery	Stockpile management system
	Dust removal automatic control system	Equipment management system
	Automatic lighting control system	Energy consumption management system
	Operation information monitoring system	Production and operation management system
	Inventory information monitoring system	Gate control system
	Equipment condition monitoring system	Statistical analysis management system
	Energy consumption monitoring system	Basic information management system
Management information system	Remote control system of wharf ship handling equipment	Wireless intercom system
	Remote control system of wharf yard equipment	Port video surveillance system
		Ship dynamic monitoring system based on electronic chart
		Meteorological information management system
		Positioning and navigation system
		Online service system
		Large screen display system
		Data center system
Remote control system		
Support system		

3. Cooperative control mechanism of key objects and key nodes of dry bulk terminal

On the basis of focusing on the material movement process mechanism of dry bulk terminal and fully mastering the material movement interaction information of dry bulk terminal, this study combs out the control logic structure required to achieve the remote real-time online movement control function on the basis of ensuring the safe and stable operation of the terminal, starting from the level of key objects and key nodes, as shown in Figure 1.
Figure 1. Remote real-time online material movement control logic of dry bulk terminal

Combined with the above control logic, the control mechanism of coordination and cooperation between key nodes and key objects of dry bulk terminal (between systems, between systems and equipment, between equipment and equipment) is shown in Table 3. The interaction mechanism between systems can open up the flow path of decision information between systems in the process of terminal operation. The interaction mechanism between system and equipment can integrate the internal relationship between information flow and physical flow, and the interaction mechanism between equipment can determine the optimal structure of equipment in geospatial layout.

Table 3. Cooperative control mechanism between key objects and key nodes of dry bulk terminal

Interaction category	Information flow	Interactive information
Interaction between systems	1	A-B Work order
		B-A Work order execution status
	2	B-C Work order
		Work order execution status
		C-B Work status
		Work intervention request
Interaction between system and equipment	3	B-a Detailed work instructions
		a-B Fault information
		Work status
		Work order execution status
		Abnormal operation instruction execution
	4	B-b Detailed work instructions
		b-B Fault information
		Work status
		Work order execution status
	5	B-c Detailed work instructions
		c-B Fault information
		Work order execution status
---	-------	
6	B-d	Work status
		Abnormal operation instruction execution
	d-B	Fault information
		Work order execution status
		Work status
		Abnormal operation instruction execution
7	B-e	Work order
	e-B	Fault information
		Work order execution status
		Work status
8	f-A	Driver identification information, truck or train number
9	C-a	Remote operation instruction
	a-C	Work status
10	C-c	Remote operation instruction
	c-C	Work status
11	C-d	Remote operation instruction
	d-C	Work status

Interactions between devices

12	a-b	Interlocking control signal
	b-a	Interlocking control signal
13	c-b	Interlocking control signal
	b-c	Interlocking control signal

4. Conclusions

The analysis of key objects and key nodes of dry bulk terminal and the corresponding cooperative control mechanism can lay a theoretical foundation for the construction of dry bulk terminal control model and digital twin. On the basis of focusing on the material movement process mechanism and fully mastering the interactive information of material movement, combined with the actual needs and process characteristics of each dry bulk terminal, a system design scheme and engineering application guidance for automated dry bulk terminal can be created in the future.

This paper belongs to the research results of the national key research and development project "Theories and methods of super-large comprehensive port operation prediction based on cyber-physical integration" (2020YFB1710801)

References

[1] Ma Zuqi (translation). Australia: 1.2 billion national construction funds injected into railway construction [J]. World rail transit, 2009 (4): 2

[2] Zhang Zhiming. Key technology for design of 400000 t Ore Wharf in Dongjiakou port area of Qingdao port [J]. Water transportation engineering, 2013 (S1): 48-55

[3] Lei Wenwen. Design of intelligent control system for bulk cargo operation at dry bulk terminal [J]. Port loading and unloading, 2020 (4): 4

[4] Yuan Hang, Cao Yanjie, Yang Duobing. Research and development of intelligent reclaiming system for dry bulk terminal [C] // Proceedings of application technology exchange meeting for automated container terminal. 2015

[5] Gao Yujun, Sun Bo, Chu Yangang, et al. Application of automatic operation technology of stacker reclaimer in Dongjiakou Ore Terminal [J]. Automation technology and application, 2019, 38 (11): 4
[6] Li Weibo. Research on the integration of management and control of coal terminal in Huanghua port [J]. Science and technology and innovation, 2016 (issue 16): 61-63
[7] Meng Wenjun. Development status and Prospect of dry bulk cargo terminals in Chinese ports [J]. Chinese ports, 2012 (10): 4
[8] Liu Lin. Practice of intelligent transformation of coal port in Huanghua port [J]. Port science and technology, 2020 (12): 4
[9] Zhang Maolin, Qi Jian. Conception and practice of intelligent construction of bulk cargo terminal [J]. 2021 (2013-1): 31-36
[10] Shen Bo. Research and design of integrated production management system for bulk cargo terminal of Tianjin port [D]. Tianjin University, 2015