CHARACTERIZATION OF LACTOBACILLUS SPECIES PROPOSED AS PROBIOTICS

Saad Sabah Fakhry, Farqad Abdullah Rashid, Maha Muhamed Khudiar, Lubna Ayad Ismail, Sarah Khattab Ismail, Reema Jawad Kazem

ABSTRACT
An isolated Lactobacillus from several various sources were identified depending on morphological, microscopical, and biochemical tests in vitro analysis of probiotic properties that included: an ability to tolerate in different concentrations of bile salt, survival in acidic conditions, their antimicrobial activity, and S-layer characterizations were carried out. It was noticed that isolates of Lactobacillus rhamnosus and L. delbrueckii have a broad activity of antimicrobial and found the isolate L. rhamnosus represented with a survival percentage of 6.9% at pH 4.5 and 5.1% at pH 2.0) also L. rhamnosus (5.7% at pH 4.5 and 4.9% at pH 2.0) tolerated acidic media, Lactobacillus spp. has antimicrobial activity against all gram-positive and negative tested isolates. 70 KDa of S-layer protein bands were detected with whole-cell SDS-PAGE analysis, and it's predominant in cells of isolates grown in MRS broth anaerobically. It was noticed that the collected Lactobacillus isolates could be used as pprobiotics

Keywords: Lactobacillus spp.; acidic tolerance; bile tolerance; S-Layer.

INTRODUCTION
All types of bacteria in the gastrointestinal tract (GIT) are influenced by the most important conditions; physiologic, e.g. (acidity, enzymes, and bile salt), and the existence of normal inhabitant bacteria of GIT. Since gastric juice is composed of acids, salts, and enzymes, it provides a chemical environment in the stomach that devastates the microorganisms found naturally there (Falk et al., 1998; Sghir et al., 2000). Lactic acid bacteria were found in a minor proportion with a hundred species of bacteria that were included in the complex microbial community of GIT. Lactobacillus species are non-pathogenic bacteria, positively react to Gram stain, and represent necessary microbiota in the lumen of the intestinal tract. The occurrences of Lactobacillus have been widely studied concerning their health-promoting effects and their role in maintain normally GIT habitat microbial balance and protects the intestine from infection. Moreover, the role of lactobacilli in reliefs of lactose intolerance improves food nutritional value, supports nonspecific immunity, and reduces serum cholesterol levels (Hooper et al., 1999; Perdigon et al., 2000; Suvarna and Boby, 2005; Kim et al., 2008). The benefits of Lactobacillus bacteria that are classified as probiotic in the Generally Recognized as Safe list (GRAS) to the host body have been extensively discussed in the literature. Their probiotic's beneficial properties have been proposed including their ability to produce the antimicrobial substance, their antagonism activity, their role to improve non-specific immunity, and their influence on gut metabolic activities (Marteau and Rambaud, 2002). The majority of Lactobacillus spp. have been characterized as probiotics ability which has been isolated from humans and animals. These isolated species are considered to be a starter culture for fermented foods, particularly milk or milk-derived products (Caplice and Fitzgerald, 1999). Recently, different kinds of plants such as vegetables, fruits, medicinal plants, grains, and cereals have been produced and marketed in the form of lactic acid fermented plant beverages (FPBs) or foods for health-promoting in Thailand (Duangjitcharoen et al., 2009). Currently, Lactobacillus strains are predominantly administered as probiotic remedies in pharmaceutical forms of capsules or powders as well sold out as enriched yogurt or milk in the dairy and food markets (Sanders and Klaenhammer, 2001; De Roos, 2000). Bacterial strains of probiotic colonized GIT are dependent on their ability to adhere to intestinal epithelial cells through adherent factors. The process is mediated either non-specifically via physico-chemical factors such as hydrophobicity or specifically by adhesive bacterial surface molecules and epithelial receptor molecules such as S-layer, fibronectin, and mucin binding proteins, which is essential for adherent and colonization (Altermann et al., 2004; Holzapfel et al., 1998). S-layers monomolecular crystalline arrays and recognized in many different species of Bacteria and Archaea as an outermost structure of the cell envelope (Sára and Sleytr, 2000). A few pathogenic bacteria including Clostridium difficile, and Bacillus anthracis possess S-layer protein consisting of two types of S-layer subunits (Takeoka et al., 1991; Mesnage et al., 1997). Whereas among the lactic bacteria spp., S-
layers have been found in most species of the genus \textit{Lactobacillus} (Masuda, 1992; Yasui, Yoda and Kamiya, 1995). The S-layer represents a typical surface structure in a lot of Lactobacilli spp. and has been demonstrated probiotic properties for human and animal consumers (Avall-Jääskeläinen and Palva, 2005; Bernardeau et al., 2000). Thus, S-layers will be targeted in the future for their great potential roles in applications of Nanobio technologies.

Scientific hypothesis

The hypothesis of this work is to select qualified \textit{Lactobacillus} spp. bacteria to propose as probiotic, and spotlight on particular properties such as S-layer and other properties that make \textit{Lactobacillus} suitable candidates for probiotics.

MATERIAL AND METHODOLOGY

The study was done in laboratories of the Food Contamination Research Center/Iraq Ministry of Science and Technology. Fifty food samples (Dairy milk and cheese) were collected from local markets in Baghdad. The process was sampling and it lasted from February 2019 to September 2019.

\textbf{Lactobacillus isolation}

\textit{Lactobacillus} isolation from food sources was performed following (Perelmuter et al., 2008); one g of food sample was mixed in 10mL of sterile normal saline then, stirred vigorously and let the suspension settle for 10 min at room temperature. One hundred μL of the suspension was spread on previously prepared and sterile MRS medium (Oxoid LTD, limited, Hamshire, UK), all inoculated plates were incubated at 37 °C under aerobic conditions for 24 – 48 h. The growth colonies were purified and picked up for further analysis.

\textbf{Lactobacillus Biochemical characterization}

\textit{Lactobacillus} isolates were tested to be based on utilizing various carbohydrates according to (Kandler and Weiss, 1986). The bio-chemical identification of the obtained isolates at the genus/species level was performed according to established phenotypic criteria, and for acid and gas production from glucose, arginine hydrolysis, and fermentation of L-arabinose, lactose, mannitol, melibiose, raffinose, ribose, sucrose, sorbitol, xylose, and salicin (Merk) as described by (Samells et al., 1995).

\textbf{Bile salt and acidic tolerance}

The minimal inhibitory concentration (MIC) of bile salt was evaluated for each of the \textit{Lactobacillus} isolates, Then 20 μL of bacterial growth, 1 x 10^8 (cfu.mL^{-1}), of each collected isolates were transferred to 980 μL of newly prepared sterile MRS broth containing 3% bile salts and incubated at 37 °C for 2 h. For bacteria survival rate examination under the acidic condition at 37 °C, all isolates were tested following (Perdigon et al., 2002); about 20 μL of 1 x 10^8 (cfu.mL^{-1}) of each fresh isolates were moved to 980 μL of an acidic buffer consisting of 3.5 g of D-glucose, 2.05 g from NaCl and 0.6 g of KH_{2}PO_{4}, 0.11 g of CaCl_{2} and 0.37 g of KCl per liter, with adjusted pH to 2.0 and 4.5. Then, isolates were examined for tolerance to bile salt and acid when samples were taken at 0 min and 2 h and plated on freshly prepared sterile MRS agar plates after making of serial dilution, and plates were incubated at 37 °C for 48 h, the plates were enumerated by choosing a couple of plates (30 – 300 colony) for each dilution.

\textbf{Antimicrobial Activity}

\textit{Lactobacillus} antimicrobial activity was determined through the agar spot method, following (Casey et al., 2004; Baccigalupi et al., 2005), with minor modifications; briefly, about 5 μL of (1 x 10^8 cfu.mL^{-1}) of freshly prepared growth to each obtained isolate was plated into agar spots made previously on the MRS agar plate. All inoculated plates were incubated at 37 °C for the development of spots. Each of the indicator bacteria (bacteria spp. used is mentioned below) was inoculated on Luria broth and incubated overnight at 37 °C with shaking. Then, the bacteria were mixed with 15 mL of Luria soft agar (0.7% agar, w/v) and dispensed onto MRS agar plates that were full of grown colonies of \textit{Lactobacillus}. All plates were incubated overnight at 37 °C and the inhibition zones were subjected to measure and record (Bauer et al., 1996). The indicators were \textit{Shigella dysenteriy}, \textit{Staphylococcus aureus}, \textit{Pseudomonas aeruginosa}, \textit{Salmonella typhi}, and \textit{Escherichia coli}.

\textbf{Antibiotics Susceptibility of \textit{Lactobacillus} isolates}

Anti-Bacterial sensitivity of \textit{lactobacilli} in vitro was studied via the disc diffusion method according to the guidelines of the National Committee for Clinical Laboratory Standards (Wayne, 2015). It was studied against eight antibiotics: Ampicillin 25 μg, Chloramphenicol 50 μg, Gentamycin 10 μg Carbenicillin 100 μg, Nalidixic acid 30 μg, Methenamine Mandelate 3 μg, and Cortimoxazole 25 μg.

\textbf{Protein extraction and SDS-PAGE}

For extraction of S-layer, \textit{Lactobacillus} spp. was cultivated anaerobically in MRS broth at 37 °C. In general, 100 mL of pre-warmed MRS medium was inoculated 1: 100 (v/v) with an overnight culture and cultivated until the optical density at 600 nm reached 0.4 and 0.7. Cells were harvested by centrifugation at 12000 ×g for 15 min at 4 °C. The cells were washed twice with 100 mL of ice-cold water. The cell pellet was extracted with 0.1 volume of 4 M guanidine hydrochloride (pH 7) for one hour at 37 °C and centrifuged at 12000 ×g for 15 min. The supernatant, containing S-layer protein monomers, was dialyzed against water at 4 °C for 16 – 24 h (Boot et al., 1993). The dialyzed extracts were analyzed by SDS-PAGE (Smit et al., 2001). SDS-PAGE of protein samples was carried out using Precision Plus Protein Standard (low molecular weight marker (10 – 250 kDa) – Hi-media). The samples were run on 12% polyacrylamide gel at 100 V. Protein bands were visualized by Coomassie blue staining. Protein concentration was determined according to Bradford's method (Bradford, 1976). For normalization of the measured absorption values, BSA (Hi-media) was used. Finally, all samples were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) following Laemmli method on a vertical Slab gel.
(Laemmli, 1970); Acrylamide gel in form of resolving 12% and stacking gel 4% was prepared and the samples were run at 100 V. Protein bands were seen after gel stained with Coomassie Brilliant Blue stain (Merck) R-250 (Dunn, 1993).

Statistical Analysis
The percentage of survival rate and the mean cell forming units were implemented by using EXEL 2010 software.

RESULTS AND DISCUSSION
Isolation and identification of Lactobacillus
Based on the isolation of Lactobacillus spp., the bacteria were positive to grow on MRS selective media, and when examined under the light microscope, all isolates acquired blue-purple stain hence they react positively when stained with Gram. Also, based on biochemical tests displayed in Table 1, all isolates were negatively reacting with Catalase.

Results of gas production from glucose to all inoculated test tubes after observation for 2 – 3 days showed that all isolates were positive for gas production from glucose fermentation. Findings of Carbohydrates fermentation analysis were listed in positive and negative reactions. Outcomes of testing the ability of isolates to grow at different temperatures showed the ability of all isolates to grow at 45 °C whereas no growth was seen at 10 °C and 15 °C.

Bile and acid tolerance
From the different concentrations of bile salts taken, 3% bile salts in MRS broth was the minimal inhibitory concentration of bile from most Lactobacillus isolates as shown in Table 2 and Figure 1, hence the survival of Lactobacillus post 2 h. Incubation in MRS containing 3% bile salts was analyzed and the results are shown in Table 2, isolate of L. delbrueckii showed an excellent survival of 89%, LGG showed the ratio of survival 91%. Also, lactobacillus survival rates in acidic buffer with pH 4.5 and 2.0 were examined by the difference in viable cell counts following 0 min 2 h of incubation as shown in Table 3 and Figure 2. The isolated L. rhamnosus 6.90% at pH 4.5, 5.12% at pH 2.0, showed the highest survival in acidic pH, immediately followed by L. plantarum, L. delbrueckii, and L. fermentum 5.70, 5.40 and 4.03% at pH 4.5, 4.90, 4.31 and 2.33% at pH 2.0 respectively.

Table 1 Biochemical stresults of collected Lactobacillus isolates.

Biochemical test	Collected Lactobacilli isolates			
	L. delbrueckii	L. fermentum	L. plantarum	L. rhamnosus
Catalase	-	-	-	-
Gas from glucose	+	+	+	+
Ammonia from Arginine	-	+	+	-
Growth at 10°C	-	-	-	-
Growth at 15°C	-	-	-	-
Growth at 45°C	+	+	+	+
Glucose	+	+	+	+
Xylose	+	D	+	+
Ribose	+	+	+	+
Melezitose	-	-	-	-
Arabinose	+	D	+	+
Mannitol	ND	-	-	-
Trehalose	d	d	d	d
Melibiose	+	+	+	+
Raffinose	+	+	+	+
Galactose	+	+	+	+
Salicin	-	-	-	-
Maltose	+	+	+	+
Sucrose	+	+	+	+
Mannose	D	W	-	+
Fructose	+	+	+	+
Lactose	+	+	+	+
Rhamnose	-	-	-	-
Sorbitol	ND	ND	-	-

Note: Symbols: w – weak positive reaction; ND – no data available; d – different.

Table 2 Concentration and survival rate of Lactobacillus isolates in the presence of 3% bile salts.

Isolates	Pre-incubation	Bile tolerance		
	Mean * 10⁵ cfu.mL⁻¹	Survival rate	Mean * 10⁵ cfu.mL⁻¹	Survival rate
LGG	6.57	100	6.30	91%
L. delbrueckii	6.43	100	6.11	89%
L. fermentum	5.93	100	4.85	82%
L. plantarum	6.18	100	5.1	82%
L. rhamnosus	6.19	100	4.98	80%
Figure 1 Concentration and survival rate of *Lactobacillus* isolates rate in the presence of 3% bile salts.

Figure 2 Concentration and survival rate of *Lactobacillus* isolates at the acidic condition.

Table 3 Concentration and survival rate of *Lactobacillus* isolates at the acidic condition.

Isolates	pH 4.5 Mean *10^7 cfu.mL^{-1}	pH 4.5 Survival rate %	pH 2.0 Mean *10^7 cfu.mL^{-1}	pH 2.0 Survival rate %
LGG	4.57	1.0	4.54	0.91
L. delbrueckii	5.18	5.40	5.07	4.31
L. fermentum	4.53	4.03	4.29	2.33
L. plantarum	4.95	5.70	4.88	4.90
L. rhamnosus	5.05	6.90	4.92	5.12
Tolerance to acid and alkaline conditions
Based on bile salt and acid tolerance: different concentrations of bile salt in MRS broth were prepared and tested on lactobacillus isolates to determine the minimal inhibitory concentration of bile salt tolerance as shown in Table 2 and Figure 1. Results showed that MIC was 3%.

The viability of lactobacillus post 2 h, incubation in MRS containing 3% bile salts that L. delbrueckii showed an excellent survival ratio of 89%, LGG showed a ratio of survival 91%. Also, lactobacilli survival rates in acidic buffer with pH 4.5 and 2.0 were examined by the difference in viable cell counts following 0 min 2 h, incubation as shown in Table 3 and Figure 2.

The isolated L. rhamnosus showed the highest survival in acidic pH; 6.90% at pH 4.5, 5.12% at pH 2.0, immediately followed by L. plantarum, L. delbrueckii, and L. fermentum showed; 5.70, 5.40 and 4.03 % at pH4.5, 4.90, 4.31 and 2.33% at pH 2.0, respectively. Lactobacillus bacteria colonized the hindgut region in the human host and should be able to survive with the acid condition and bile salt before reaching the target tissue.

Therefore, tolerance of Lactobacillus to acid and bile salt equally is an important issue to select Lactobacillus bacteria as a probiotic.

Table 4 Antimicrobial substances activity exhibited by Lactobacillus isolates.

Strains	E. coli	Salmonella typhi	Pseudo. aeruginosa	Staph. aureus	Shigella dysenteriae
LGG	++	+	+	+++	+++
L. delbrueckii	++	++	++	+++	+++
L. fermentum	+++	+	-/+	+++	+++
L. plantarum	+++	++	-/+	+++	+++
L. rhamnosus	+++	++	+	+++	+++

Table 5 The antibiotic susceptibility test of Lactobacillus isolates.

Antibiotics [μg]	L. delbrueckii	L. fermentum	L. plantarum	L. rhamnosus
Ampicillin 5	-	-	-	-
Chloramphenicol 50	+	+	+	+
Nitrofurantion 50	-	-	-	-
Gentamicin 10	-	-	-	-
Carbenicillin 100	-	-	-	-
Nalidixic Acid 30	-	-	-	-
Cotrimoxazole 25	-	-	-	-
MethenamineMandelate 3 mg	-	-	-	-

Note: + Resistance, - Sensitive.

Figure 3 SDS-PAGE protein profiles of Lactobacillus isolates and the reference molecular protein marker. Note: lane 6: reference protein marker; lane 1: L. rhamnosus; lane 2: L. fermentum; lane 4: L. delbrueckii.
Our result of this study agreed with the outcomes of other researches, they reported a survival rate of *Lactobacillus* isolates in pH 2.5 (Kim et al., 2007; Perelmuter et al., 2008). Nevertheless, the survival rate of *Lactobacillus* has not been more than 0.2%.

Antimicrobial test

The findings of antimicrobial activity are presented in Table 4; all collected *Lactobacillus* isolates showed antagonistic activity in various degrees when examined against gram-negative bacteria and gram-positive bacteria. The standard strain LGG and the *Lactobacillus* isolates showed the highest inhibitory activity against *Staphylococcus aureus*, and *Shigella dysenteriae* whereas, only *L. fermentum*, *L. fermentum*, and *L. rhamnosus* displayed the highest inhibitory activity against *E. coli*. Strain LGG and the collected isolate *L. rhamnosus* belong to the same species, but they showed a difference in their antimicrobial activity since antimicrobial characteristics should be of a specific strain. Once they colonize the hindgut of the human intestine, they lose their antimicrobial activity in the acidic environment (Perelmuter et al., 2008; Enan et al., 2013). They are isolated, identified, and characterized seven small peptides by LGG that have a mass of about 1 kDa and that exert a bactericidal action against both Gram-positive and Gram-negative bacteria (Lu et al., 2009). While *Lactobacillus* spp. suppose to be getting their opportunity to display their antimicrobial activity due to production elements as; lactic acid, H₂O₂, and bacteriocins other antibacterial molecules (Eschenbach et al., 1989; Kučerová et al., 2007).

The result of this study agrees with that recorded by (Perelmuter et al., 2008; Casey et al., 2004), they had been observed a range of lactobacilli antimicrobial responses towards *E. coli* and bacteria besides, they approved the inhibitory activity of *Lactobacillus* spp. affected by the acidic environment. These results are following those reported by (Rodes et al., 2013).

Antibiotics Susceptibility Patterns:

Outcomes of antibacterial sensitivity of *Lactobacillus* isolates were revealed in Table 5: all collected isolates of food source were resistant to Chloramphenicol 50 μg whereas, all of them showed high sensitivity to; Ampicillin 5 μg, Nitrofurantoin 50 μg, Gentamicin 10 μg, Carbenicillin 100 μg, Nalidixic Acid 30 μg, Cotrimoxazole 25 μg and Methenamine Mandelate 3 mg. The safety of *Lactobacillus* isolates must be carefully evaluated. One safety aspect is the transfer or acquisition of antibiotic resistance. Because nonpathogenic enteric bacteria may also be a source for resistance genes that may spread to potential pathogens. Therefore, investigation activities to obtain *Lactobacillus* isolates for probiotic uses should include nonpathogenic as well as pathogenic bacteria (Katla et al., 2001). *Lactobacillus* isolates were collected in this research qualified to use as probiotics because they exhibited minor antibiotic resistance. Thus, it is most important for the selection of probiotic strains without any highly transferable antibiotic resistance or especially virulence mechanisms (Klein et al., 2000). Results obtained in this study agree with the findings reported by (Katla et al., 2001; Klein et al., 2000).

The S-layer protein profile:

The result of the detection S-layer protein profile through SDS-PAGE has demonstrated in Figure 3: SDS-PAGE protein of *Lactobacillus* isolates was quite similar except the *L. rhamnosus* produced patterns containing band about 37 – 40 kDa., according to the previous studies, one dominant band of 43 – 46 kDa, which is known as the S-protein (Boot et al., 1993; Smit et al., 2001). In our study, S-layer extraction was carried out according to Boot's method (Boot et al., 1993). The S-layer proteins characterized from the genus *Lactobacillus* range from 25 to 71 kDa in size (Sára and Sleytr, 2000). The Putative S-layer protein was detected by whole-cell SDS-PAGE analysis. S-layer analysis revealed the presence of a unique and single S-layer with an oblique structure. The whole-cell protein patterns of the *Lactobacillus* isolates are fairly homogeneous with some variability, primarily localized in the molecular mass region estimated 30 – 70 kDa.

CONCLUSION

This preliminary study was evaluated the presence of *Lactobacillus* spp. in foods and also it identified, and characterized some strains. Furthermore, it assessed collected isolates to determine their qualified characteristic to use as probiotics. The bacterial surface layer (S-layer) is an excellent candidate for *In vivo* and *In vitro* biotechnological applications. It had been shown to function as an adhesive, mediating binding of Lactobacilli to the host epithelial. The S-layer had been identified in several *Lactobacillus* spp. So, further investigations of *Lactobacillus* populations are necessary to obtain relevant data to be included in an important assessment that is related to food production.

REFERENCES

Altermann, E., Buck, B. L., Cano, R., Klaenhammer, T. R. 2004. Identification and phenotypic characterization of the cell-division CdpA. *Gene*, vol. 342, no. 1, p. 189-197. https://doi.org/10.1016/j.gene.2004.08.004

Åvall-Jääskeläinen, S., Palva, A. 2005. *Lactobacillus* surface layers and their applications. *FEMS Microbiology Reviews*, vol. 29, no. 3, p. 511-529. https://doi.org/10.1016/j.femsre.2005.04.003

Baccigalupi, L., Di Donato, A., Parlatò, M., Luongo, D., Carbone, V., Rossi, M., Ricca, E., De Felice, M. 2005. Small surface-associated factors mediate adhesion of a food isolated strain of *Lactobacillus fermentum* Caco-2 cells. *Research in Microbiology*, vol. 156, no. 7, p. 830-836. https://doi.org/10.1016/j.resmic.2005.05.001

Bauer, A. W., Kirby, W. M. M., Sherins, J. C., Turek, M.1996. Antibiotic Susceptibility testing by a standardized single disc method. *American Journal of Clinical Pathology*, vol. 45, no. 4, p. 493-496. https://doi.org/10.1093/ajcp/45.4.ts.493

Bernardeau, M., Vernoux, J. P., Henri-Dubernet, S., Guéguen, M. 2000. *International Journal Food Microbiology*, vol. 126, no. 3, p. 278-285. https://doi.org/10.1016/j.ijfoodmicro.2007.08.015

Boot, H. J., Kolen, C. P. A. M., van Noort, J. M., Pouwels, P. H. 1993. S-Layer Protein of Lactobacillus acidophilus ATCC 4356: purification, expression in Escherichia coli, and nucleotide sequence of the corresponding genet. *The Journal of Bacteriology*, vol. 175 no. 19 p. 6089-6096. https://doi.org/10.1128/jb.175.19.6089-6096.1993
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye-binding. Analytical Biochemistry, vol. 72, no. 1-2, p. 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Caplice, E., Fitzgerald, G. F. 1999. Food fermentations: role of microorganisms in food production and preservation. International Journal of Food Microbiology, vol. 50, no. 1-2, p. 131-49. https://doi.org/10.1016/S0168-1605(99)00082-3

Casey, P. G., Casey, G. D., Gardiner, G. E., Tanney, M., Stanton, C., Ross, R. P., Hill, C., Fitzgerald, G. F. 2004. Isolation and Characterization of anti –Salmonella lactic acid bacteria from the porcine gastrointestinal tract. Letters in Applied Microbiology, vol. 39, no. 5, p. 431-438. https://doi.org/10.1111/j.1365-2672.2004.01603.x

De Roos, N. M., Katan, M. B. 2000. Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. The American Journal of Clinical Nutrition, vol. 71, no. 2, p. 405-411. https://doi.org/10.1093/ajcn/71.2.405

Dunn, M. J. 1993. Gel Electrophoresis: proteins. Oxford. United Kingdom : Bios Scientific Publishers Limited, p. 176. ISBN 9781483193540.

Enan, G., Abdel-Shafi, S., Ouda, S., Negm, S.2013. Novel antibacterial activity of Lactococcus lactis subspecies lactis z11 isolated from zabady. International Journal of Biomedical Science, vol. 9, no. 3, p. 74-80.

Eschenbach, D. A., Davick, P. R., Williams, B. L., Klebanoff, S. J., Young-Smith, K., Critchlow, C. H., Holmes, K. 1989. In Prevalence of Hydrogen peroxide producing Lactococcus species in normal women and women with bacterial vaginosis. Journal of Clinical Microbiology, vol. 27, no. 2, p. 251-256. https://doi.org/10.1128/JCM.27.2.251-256.1989

Falk, P. G., Hooper, L. V., Midveldt, T., Gordon, J. I. 1998. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from Gnotobiology. Molecular Biology Review, vol. 62, no. 4, p. 1157-1170. https://doi.org/10.1112/MBBR.62.4.1157-1170.1998

Holzapfel, W. H., Harberer, P., Snel, J., Schillinger, U., Huisin’t Veld, J. J. H. 1998. Overview of gut flora and probiotics. International Journal of Food Microbiology, vol. 41, no. 2, p. 85-101. https://doi.org/10.1016/S0168-1605(98)00044-0

Hooper, L. V., Xu, J., Falk, P. G., Midveldt, T., Jeffry, I. 1999. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proceeding of the NationalAcademy of Science of United State of America, vol. 96, no. 17, p. 9833-9838. https://doi.org/10.1073/pnas.96.17.9833

Kandler, O., Weiss, N.1986. Regular nonsporing Gram positive rods. In Sneath, P. H. A., Mair, N. S., Sharpe, M. E., Holt, J. H. Bergey’s Manual of Systematic bacteriology. Pennsylvania, USA : Williams and Wilkins, p. 1208-1234. ISBN 0683078933.

Katla, A. K., Kruse, H., Johnsen, G., Herikstad, H. 2001. Antimicrobial susceptibility of starter culture bacteria used in Norwegian dairy products. InternationalJournal of Food Microbiology, vol. 67, no. 1-2, p. 147-152. https://doi.org/10.1016/S0168-1605(00)00522-5

Kim, P. I., Jung, M. Y., Chang, Y. H., Kim, S. J., Park, Y. H. 2007. Probiotic properties of Lactobacillus and Bifidobacterium strains isolated from porcine gastrointestinal tract. Applied of Microbiology and Biotechnology, vol. 74, p. 1103-1111. https://doi.org/10.1007/s00253-006-0741-7

Kim, Y., Kim, S. H., Whang, K. Y., Kim, Y. J., Oh, S. 2008. Inhibition of Escherichia coli O157:H7 attachment by interactions between lactic acid bacteria and intestinal epithelial cells. Journal of Microbiology and Biotechnology, vol.18, p. 1278-1285.

Klein, G., Hallmann, C., Casas, I. A., Abad, J., Louwers, J., Reuter, G. 2000. Exclusion of Van A, Van B and Van C type lipopolysaccharides in strains of Lactobacillus reuteri and L. Rhamnosus used as probiotics by polymerase chain reaction and hybridization methods. Journal of Applied Microbiology, vol. 89, no. 5, p. 815-821. https://doi.org/10.1111/j.1365-2672.2000.01187.x

Kuczerová, K., Chumchalová, J., Miková, K., Cupáková, S., Karpíšková, R., Ho, L. 2007. Screening of lactic acid bacteria for antimicrobial properties from mayonnaise-based products and raw materials. European Food Research and Technology, vol. 226, p. 265-272. https://doi.org/10.1007/s00217-006-0535-2

Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature, vol. 227, p. 680-685. https://doi.org/10.1038/227680a0

Lu, R., Fasano, S., Madayiputhiya, N., Morin, N. P., Nataro, J., Fasano, A. 2009. Isolation, Identification, and Characterization of Small bioactive Peptides from Lactobacillus GG conditional media that exert both anti-Gram-negative and Gram-positive Bacterial Activity. The Journal of Pediatric Gastroenterology and Nutrition, vol. 49, no.1, p.23-30. https://doi.org/10.1097/MPG.0b013e3181924d1e

Marteau, P., Rambaud, J. C. 2002. Probiotics and health: new facts and ideas. Current Opinion in Biotechnology, vol. 13, no. 5, p. 486-489. https://doi.org/10.1016/S0958-1669(02)00368-3

Masuda, K. 1992. Heterogeneity of S-layer proteins of Lactobacillus acidophilus strains. Microbiology and Immunology, vol. 36, no. 3, p. 297-301. https://doi.org/10.1111/j.1348-0421.1992.tb01666.x

Mesnage, S., Tosi-counter, E., Mock, M., Gounon, P., Fout, A. 1997. Molecular characterization of the Bacillus anthracis main S-layer component: evidence that it is the major Cell-associated antigen. Molecular Microbiology, vol. 23, p. 1147-1155. https://doi.org/10.1046/j.1365-2958.1997.2941659.x

Perdigon, G., Maldonado Galdeano, C., Valdez, J. C., Medici, M. 2002.Interaction of lactic acid bacteria with the gut immune system. European Journal of Clinical Nutrition, vol. 56, no. 4 p. S21-S26. https://doi.org/10.1038/sj.ejcn.1601658

Perdigon, G., Mdina, M., Vintiň, E., Valdez, J. C. 2000. Intestinal pathway of internalization of lactic acid bacteria and gut mucosal immunostimulation. International Journal of Immunopathology and Pharmacology, vol. 13, no. 3, p. 141-150.

Perelmuter, K., Fraga, M., Zunino, P. 2008.In vitro activity of potential probiotic Lactobacillus murinus isolated from the dog. Journal of Applied Microbiology, vol. 104, no. 6, p. 1718-1725. https://doi.org/10.1111/j.1365-2672.2007.03702.x

Rodes, L., Khan, A., Paul, A., Coussa-Charley, M., Marinescu, D., Tomaro-Duchesneau, C., Shao, W., Kahoulì, I., Prakash, S. 2013. Effect of Probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharides and inflammatory cytokines: an in vitro study using a human colonic microbiota model. Journal of Microbiology and
Potravinarstvo Slovak Journal of Food Sciences

Biotechnology, vol. 23, no. 4 p. 518-26.
https://doi.org/10.4014/jmb.1205.05018
Samells, J., Taakalidion, E., Metaxopoulos, J., Kalantzopoulos, G. 1995. Differentiation of Lactobacillus sake and Lact. curvatus isolated from naturally fermented Greek dry Salami by SDS-PAGE of whole-cell proteins. Journal of Applied Bacteriology, vol. 78, no. 2, p. 157-163.
https://doi.org/10.1111/j.1365-2672.1995.tb02836.x
Sanders, M. E., Klaenhammer, T. R. 2001. Invited Review: The Scientific basis of Lactobacillus Acidophilus NCFM functionality as a probiotic. Journal of Dairy Science, vol. 84, no. 2, p. 319-331. https://doi.org/10.3168/jds.S0022-0302(01)74481-5
Sára, M., Sleyrtr, U. B. 2000. S-layer proteins. Journal of Bacteriology, vol. 182, no. 4, p. 859-868. https://doi.org/10.1128/JB.182.4.859-868.2000
Sghir, A., Gramet, G., Saau, A., Rochet, V., Pochert, P., Dore, J. 2000. Quantification of bacterial groups within human facial flora by oligonucleotide probe hybridization. Applied and Environmental Microbiology, vol. 66, no. 5, p. 2263-2266. https://doi.org/10.1128/AEM.66.5.2263-2266.2000
Smit, E., Oling, F., Demel, R., Martiez, B., Pouwels, P. H. 2001. The S-layer protein of Lactobacillus acidophilus ATCC 4356: Identification and characterization of domains responsible for S-protein assembly and cell wall binding. Journal of Molecular Biology, vol. 305. no. 2, p. 245-257. https://doi.org/10.1006/jmbi.2000.4258
Suvarna, V. C., Boby, V. U. 2005. Probiotics in human health: a current assessment. Current Science, vol. 88, no. 11, p. 1744-1748.
Takeoka, A., Takumi, K., Koga, T., Kawata, T. 1991. Purification and characterization of S-layer proteins from Clostridium difficile GAI 0714. Journal of Genetic Microbiology, vol. 137 no. 2, p. 261-267. https://doi.org/10.1099/00221287-137-2-261
Wayne, P. 2015. Performance standards for antimicrobial susceptibility testing; twenty-five informational supplement. CLSI DocumentM100-S25. Clinical and Laboratory Standards Institute.
Yasui, T., Yoda, K., Kamiya, T. 1995. Analysis of S-layer proteins of Lactobacillus brevis. FEMS MicrobiologyLetters, vol. 133, no. 1-2, p. 181-186. https://doi.org/10.1111/j.1574-6968.1995.tb07881.x

Funds:
This research received no external funding.

Acknowledgments:
We would like to express our deepest thanks to chief of Food Contamination Research Center, Environment and water Directorate, Ministry of Science and Technology, Iraq. For taking part in useful decision and giving necessary advices and guidance and arranged all facilities to make the work easier.

Conflict of Interest:
The authors declare no conflict of interest.

Ethical Statement:
This article does not contain any studies that would require an ethical statement.

Contact address:
*Saad Sabah Fakhry, Ministry of Science and Technology, Food Contamination Research Center, Directorate of environment and water, Al Jadyria-Baghdad- Iraq. Tel.: +96477112112150, Email: saadalatem@yahoo.com
ORCID: https://orcid.org/0000-0003-1606-0940
Farqad Abdullah Rashid, Food Contamination Research Center, Directorate of environment and water, Al Jadyria-Baghdad- Iraq. Tel.: +96477290047, Email: hightower3274@gmail.com
ORCID: https://orcid.org/0000-0002-7857-2725
Maha Muhammed Khudiar, Ministry of Science and Technology, Food Contamination Research Center, Directorate of environment and water, Al Jadyria-Baghdad- Iraq. Tel.: +9647705027040, Email: maha.mohamaaed1202a@csw.uobaghdad.edu.iq
ORCID: https://orcid.org/0000-0002-8470-3576
Lubna Ayad Ismail, Ministry of Science and Technology, Food Contamination Research Center, Directorate of environment and water, Al Jadyria-Baghdad- Iraq, Tel.:+9647706154544, Email: bygv306@gmail.com
ORCID: https://orcid.org/0000-0002-8537-4395
Sarah Khattab Ismail, Ministry of Science and Technology, Food Contamination Research Center, Directorate of environment and water, Al Jadyria-Baghdad- Iraq. Tel.: +964771119107, Email: mm6800369@gmail.com
ORCID: https://orcid.org/0000-0002-4670-6872
Reema Jawad Kazem, Ministry of Science and Technology, Food Contamination Research Center, Directorate of environment and water, Al Jadyria-Baghdad- Iraq. Tel.: +9647813711875, Email: Reemajwa710@gmail.com
ORCID: https://orcid.org/0000-0002-4064-122X

Corresponding author: *