SUPPORTING INFORMATION

Gauge Effects in Local Hybrid Functionals Evaluated for Weak Interactions and the GMTKN30 Test Set

Kolja Theilacker, Alexei V. Arbuznikov* and Martin Kaupp*

Institut für Chemie, Technische Universität Berlin,
Theoretische Chemie, Sekr. C7, Straße des 17. Juni 135, D-10623, Berlin, Germany
Table S1. List of semi-empirical parameters used in the local hybrids validated in this worka

Method	Parameters
Lh-LSDA, t-LMF	$b = 0.48$
Lh-LSDA, s-LMF	$b_s = 0.22$
Lh-LSDA, ct-LMF	$b = 0.534$
Lh-LSDA, ζ-t-LMF	$b = 0.446$, $d = 0.0531$
Lh-LSDA, ζ-s-LMF	$b = 0.197$, $d = 0.0423$
Lh-LSDA-SIF-SRc	$b = 0.709$
	$\mu = 0.8$, $\lambda = 1.0$
Lh-LSDA-SIR-SRc	$b = 0.646$
	$\mu = 0.8$, $\lambda = 0.646$
Lh-BLYP-CG	$b = 0.488$, $nlx = 0.206$, $nlc = 0.497$
	CG: $\eta = 0.5$, $c = -0.000894$
Lh-PBE-CG	$b = 0.50$, $nlx = 0.507$, $nlc = 0.451$
	CG: $\eta = 0.12$, $c = -0.00238$

a nlx and nlc are the coefficients of GGA corrections to exchange and correlation [eq. (14) in main text], respectively. b_s is the prefactor of the s-LMF [eq. (8)], b that of the t-LMF [eqs. (5,6,9)], c is the prefactor of the calibration function [eq. (14)], d controls the spin polarization contribution to the ζ-t-LMF [eq. (9)], μ is the range-separation parameter for correlation eq. (11) and λ is the prefactor of the short-range correlation SIE correction [eq. (11)].
Table S2. MAE/MSE values for a selection of functionals (in kcal/mol) for eight subsets of the GMTKN30 database concerning “basic properties” (atomization energies, reaction barriers, ionization potentials, electron and proton affinities, etc.), with and without DFT-D3 corrections.

	MB08-165	W4-08	G21IP	G21EA	PA	SIE11	BHPERI	BH76
global and double hybrids								
B3LYP +D3	8.14/-6.79	3.94/-2.35	3.55/-0.09	1.92 / 0.48	2.23 / 1.90	7.63 / 6.17	5.80 / 5.36	4.67/-4.57
	6.38/-3.97	3.86/-2.14	3.55/-0.10	1.93 / 0.48	2.38 / 2.06	8.70 / 7.32	2.78 / 2.18	5.21/-5.14
PBE0 +D3	8.65/-0.42	3.70/-1.88	3.68 / 0.03	2.61 /-0.46	2.66 / 2.66	7.13 / 6.38	2.37 / 1.07	4.11/-3.86
	8.66 / 1.30	3.67/-1.76	3.69 / 0.02	2.61 /-0.46	2.76 / 2.76	7.79 / 7.06	2.58 /-2.12	4.43/-4.20
PW6B95 +D3	4.78/-0.77	2.38/-0.87	2.78 / 0.99	1.24 / 0.06	2.45 / 2.30	7.02 / 6.21	3.53 / 2.98	3.21/-3.14
	4.69 / 0.53	2.37/-0.77	2.78 / 0.99	1.25 / 0.06	2.52 / 2.37	7.54 / 6.76	2.34 / 1.55	3.47/-3.40
DSD-BLYP +D3	4.15/-3.90	2.49/-1.70	2.06/-0.92	1.98/-1.52	1.19 / 1.01	3.01 / 0.71	1.91 / 1.16	1.18 / 0.00
	3.38 /-2.89	2.45/-1.61	2.06/-0.92	1.98/-1.51	1.24 / 1.06	3.10 / 1.15	1.19 / 0.04	1.21/-0.21
Local hybrids								
Lh-LSDA, t-LMF +D3	8.79/-4.31	3.46/-1.50	4.57 / 3.64	4.11 / 4.11	1.48 / 0.12	6.39 / 4.75	5.90 / 5.48	2.55/-2.00
	7.31/-0.68	3.49/-1.17	4.58 / 3.63	4.12 / 4.11	1.55 / 0.38	7.69 / 6.27	1.92 / 0.99	3.19/-2.85
Lh-LSDA, s-LMF +D3	9.34/-7.89	4.13/-1.19	4.00 / 2.25	3.39 / 3.38	1.72 / 0.90	6.75 / 4.95	6.20 / 5.34	3.39/-3.01
	6.64/-2.12	4.29/-0.48	3.99 / 2.24	3.41 / 3.40	1.89 / 1.44	8.82 / 7.30	2.14/-1.88	4.76/-4.51
Table S2 continued…..

	MB08-165	W4-08	G21IP	G21EA	PA	SIE11	BHPERI	BH76
local hybrids								
\(L_h\)-LSDA, *ct*-LMF +D3	10.77 /-6.32	2.98 / 0.54	5.11 / 4.76	4.89 / 4.89	1.59 / 0.67	5.78 / 3.79	7.48 / 7.31	1.69 /-0.68
	8.70 /-1.99	3.12 / 0.90	5.11 / 4.75	4.89 / 4.89	1.66 / 0.92	7.72 / 5.64	2.75 / 2.50	2.15 /-1.58
\(L_h\)-LSDA, *\(\zeta\)-t*-LMF +D3	7.68 /-2.95	2.74 /-1.03	4.47 / 3.49	4.14 / 4.14	1.53 /-0.24	6.94 / 5.45	4.98 / 4.33	2.95 /-2.62
	6.74 / 0.08	2.73 /-0.78	4.47 / 3.48	4.14 / 4.14	1.51 /-0.04	8.02 / 6.70	1.84 / 0.64	3.53 /-3.28
\(L_h\)-LSDA, *\(\zeta\)-s*-LMF +D3	8.43 /-6.30	3.18 /-0.51	3.94 / 2.09	3.47 / 3.41	1.62 / 0.51	7.35 / 5.62	5.27 / 4.12	3.85 /-3.63
	6.61 /-1.48	3.36 /-0.01	3.94 / 2.08	3.48 / 3.42	1.69 / 0.90	9.10 / 7.63	2.08 /-1.88	4.92 /-4.81
\(L_h\)-LSDA-SIF-SRc +D3	9.48 /-5.85	3.69 /-1.51	3.41 / 1.65	2.56 / 2.39	1.71/-0.90	4.58 / 1.66	7.53 / 7.25	1.79 / 1.43
	6.63 / 1.30	4.04 /-0.13	3.37 / 1.67	2.60 / 2.45	1.69 / 0.17	6.90 / 4.73	2.77 /-2.07	1.98 /-0.84
\(L_h\)-LSDA-SIR-SRc +D3	9.73 /-5.91	3.13 /-0.65	3.81 / 2.74	3.40 / 3.39	1.59/-0.36	4.98 / 2.42	6.92 / 6.69	1.55 / 0.67
	6.53 / 0.82	3.68 / 0.65	3.79 / 2.75	3.45 / 3.44	1.67 / 0.65	7.30 / 5.28	2.59 /-2.11	2.25 /-1.47
\(L_h\)-BLYP-CG +D3	6.89 /-2.49	2.69 /-1.98	3.35 /-0.26	1.95 / 1.00	2.02 /-1.16	6.87 / 5.39	3.03 / 2.33	3.22 /-2.94
	6.17 / 0.18	2.60 /-1.78	3.36 /-0.26	1.96 / 1.00	2.01 /-0.99	7.80 / 6.45	1.15 /-0.85	3.72 /-3.49
\(L_h\)-PBE-CG +D3	5.98 /-0.50	3.42 /-2.85	4.46 / 3.46	3.84 / 3.75	1.40 / 0.71	6.98 / 5.98	1.33 / 0.44	3.16 /-2.83
	5.83 / 1.23	3.35 /-2.73	4.47 / 3.46	3.84 / 3.75	1.44 / 0.80	7.60 / 6.65	1.60 /-1.57	3.46 /-3.17
Table S3. MAE/MSE values for a selection of functionals (in kcal/mol) for twelve subsets of the GMTKN30 database concerning “reaction energies”, with and without DFT-D3 corrections.

	BH76RC	RSE43	O3ADD6	G2RC	AL2X	NBPRC	ISO34	ISOL22	DC9	DARC	ALK6	BSR36	
global and double hybrids													
B3LYP	2.32/-0.24	2.37/-2.37	1.99/-0.88	2.64/0.46	8.46/-8.46	4.78/3.99	2.28/-0.23	9.08/-5.53	15.10/6.92	15.28/15.28	9.23/-9.14	11.32/-11.32	6.00/-6.00
+D3	2.25/-0.28	1.97/-1.97	2.75/-2.75	2.76/0.21	4.28/-4.28	3.02/1.67	1.86/-0.09	6.96/-4.39	11.92/4.68	10.11/10.11	4.82/-4.63		
PBE0	2.52/-0.01	2.00/-2.00	4.81/-4.59	6.47/-3.52	2.68/-1.80	2.61/0.19	1.81/-0.22	4.15/-1.87	10.41/1.89	3.52/-0.00	2.42/-0.81	8.24/-8.24	
+D3	2.55/-0.03	1.76/-1.76	5.71/-5.71	6.77/-3.67	1.89/0.75	3.27/-1.21	1.61/-0.14	2.94/-1.18	9.36/0.45	3.32/-3.19	3.50/3.33	4.73/-4.73	
PW6B95	1.53/0.12	2.63/-2.63	3.52/-3.47	3.21/-1.15	2.33/-1.59	2.07/0.74	1.36/-0.50	5.52/-3.50	8.42/3.23	5.84/5.76	2.79/2.51	6.63/-6.63	
+D3	1.56/0.10	2.44/-2.44	4.31/-4.31	3.36/-1.26	1.25/0.36	1.80/-0.36	1.20/-0.44	4.57/-2.96	6.96/2.22	3.61/3.41	4.73/4.73	4.06/-4.06	
DSD-BLYP	0.99/-0.12	0.95/-0.23	2.03/-0.24	1.85/-0.98	2.30/-2.12	1.32/1.12	1.06/-0.39	3.85/-2.08	4.04/1.58	3.96/-3.96	2.36/-1.73	2.93/-2.93	
+D3	1.01/-0.14	0.85/-0.08	2.38/-0.42	1.89/-1.07	0.95/-0.63	0.83/-0.27	0.96/-0.43	3.08/-1.66	3.04/-0.83	2.23/2.16	1.22/0.06	1.10/-1.10	
local hybrids													
Lh-LSDA, t-LMF	2.96/-0.93	1.92/-1.92	1.64/0.08	2.60/0.42	8.13/-8.13	5.56/4.54	1.73/-0.60	6.97/-4.51	8.68/6.48	11.18/11.18	7.43/-7.43	6.41/-6.38	0.48/-0.15
+D3	2.78/-0.99	1.34/-1.32	2.45/-2.43	2.79/0.00	3.14/-3.14	2.28/1.40	1.33/-0.40	4.27/-2.87	5.20/3.59	4.14/4.14	3.42/3.16		
Lh-LSDA, s-LMF	3.01/-0.86	2.22/-2.22	1.82/-1.09	2.81/-0.09	9.89/-9.89	5.35/4.91	1.92/-0.56	6.78/-4.52	9.32/-7.09	10.09/10.09	9.14/-9.14	10.33/-10.33	
+D3	2.84/-0.93	1.32/-1.32	3.19/-3.05	3.64/-0.91	2.97/-2.97	0.98/0.01	1.40/-0.32	2.91/-1.56	5.59/2.44	1.79/-0.92	3.71/-1.64	2.06/-2.06	
Lh-LSDA, ct-LMF	2.31/-0.63	2.26/-2.26	1.49/-1.39	3.07/-1.23	9.72/-9.72	7.23/-5.79	1.85/-0.67	7.50/-5.11	9.19/7.23	13.65/13.65	8.98/-8.98	7.05/-7.01	
+D3	2.11/-0.69	1.65/-1.62	1.52/-1.43	2.84/0.84	3.40/-3.40	3.53/2.21	1.41/-0.48	4.56/-3.34	4.52/4.08	6.04/6.04	4.64/-1.28	0.99/0.50	
Table S3 continued..

	BH76RC	RSE43	O3ADD6	G2RC	AL2X	NBPRC	ISO34	ISOL22	DC9	DARC	ALK6	BSR36
Local hybrids												
Lh-LSDA, \(\zeta-t\)-LMF +D3												
2.39/ -0.62	2.08/ -2.08	1.96/ -0.75	2.74/ -0.09	7.14/ -7.14	4.51/ -3.75	1.67/ -0.56	6.66/ -4.14	8.17/ -5.82	9.62/ 9.62	6.45/ -6.45	6.00/ -5.98	
2.25/ -0.67	1.58/ -1.58	2.83/ -2.83	3.07/ -0.41	2.72/ -2.72	2.04/ -1.15	1.31/ -0.38	4.30/ -2.81	5.83/ 3.29	3.64/ 3.64	2.91/ -2.88	0.68/ -0.52	
Lh-LSDA, \(\zeta-s\)-LMF +D3												
2.35/ -0.45	2.46/ -2.46	2.18/ 0.29	3.37/ -0.51	8.81/ -8.81	4.48/ 4.09	1.92/ -0.53	6.50/ -3.87	9.20/ 6.46	8.77/ 8.61	8.14/ -8.14	9.56/ -9.56	
2.27/ -0.51	1.68/ -1.68	3.19/ -3.07	4.05/ -1.10	2.56/ -2.56	0.98/ -0.06	1.42/ -0.30	3.14/ -1.66	6.44/ 2.69	1.82/ -0.55	3.53/ -2.05	1.85/ -1.85	
Lh-LSDA-SIF-SRe +D3												
2.21/ -1.03	2.28/ -2.28	2.94/ 2.58	2.85/ -0.68	11.13/ -11.13	8.23/ 7.01	2.28/ -3.33	6.31/ -4.09	8.80/ 8.61	11.42/ 11.42	10.45/ -10.45	5.81/ -5.63	
1.82/ -1.16	1.38/ -1.28	4.07/ -3.46	3.83/ -2.31	3.47/ -2.96	2.27/ -0.81	1.88/ -0.15	2.39/ -0.28	7.35/ 1.02	4.11/ -4.11	4.02/ -0.10	3.14/ 3.14	
Lh-LSDA-SIR-SRe +D3												
2.23/ -0.88	2.29/ -2.29	2.42/ 2.16	2.54/ 0.00	10.61/ -10.61	7.85/ 6.56	2.01/ -0.44	6.70/ -4.45	7.89/ 7.29	12.22/ 12.22	9.91/ -9.91	6.23/ -6.10	
1.81/ -1.00	1.40/ -1.33	3.97/ -3.51	3.09/ -1.54	3.38/ -3.09	1.97/ 0.74	1.58/ -0.01	2.39/ -0.86	6.82/ 1.28	2.39/ -2.39	3.58/ -0.23	1.95/ 1.95	
Lh-BLYP-CG +D3												
2.30/ -0.61	1.91/ -1.91	2.86/ -1.91	2.52/ -0.25	6.79/ -6.79	4.11/ 3.43	1.58/ -0.50	6.67/ -3.98	7.91/ 5.37	9.57/ 9.57	7.43/ -7.43	5.81/ -5.80	
2.19/ -0.66	1.49/ -1.48	3.72/ -3.72	2.73/ -0.51	2.80/ -2.80	1.95/ 1.17	1.21/ -0.33	5.27/ -1.89	4.94/ 3.07	4.30/ -4.30	4.21/ -4.21	0.92/ -0.84	
Lh-PBE-CG +D3												
2.10/ -0.45	1.48/ -1.46	4.08/ -3.71	3.34/ -0.83	4.10/ -4.07	2.46/ 1.99	1.44/ -0.60	5.43/ -3.31	6.54/ 3.19	5.55/ 5.52	2.81/ -2.81	5.94/ -5.94	
2.08/ -0.48	1.24/ -1.21	4.88/ -4.88	3.58/ -0.97	1.66/ -1.44	1.57/ 0.55	1.22/ -0.49	4.03/ -2.61	5.86/ 1.64	2.60/ 2.14	1.24/ -0.52	2.33/ -2.33	
Table S4. MAE/MSE values for a selection of functionals (in kcal/mol) for ten subsets of the GMTKN30 database concerning energies of non-covalent interactions, with and without DFT-D3 corrections.

	IDISP	WATER27	S22	ADIM6	RG6	HEAVY2	PCONF	ACONF	SCONF	CYCONF
Global hybrids										
B3LYP +D3	17.46/ 3.75	6.50/ 6.20	3.79/ -3.79	5.02/ -5.02	0.80/ -0.80	1.37/ -1.37	3.98/ -3.98	0.96/ 0.96	0.98/ -0.70	0.46/ -0.38
	4.26/ 4.12	0.36/ 0.17	0.43/ 0.43	0.07/ 0.01	0.16/ -0.05	0.34/ -0.26	0.14/ 0.14	0.52/ -0.52	0.24/ -0.14	
PBE0 +D3	10.59/ 0.78	2.80/ -0.76	2.38/ -2.34	3.41/ -3.41	0.43/ -0.43	0.66/ -0.66	3.33/ -3.33	0.64/ 0.64	0.47/ -0.39	0.58/ 0.36
	3.48/ 0.70	0.57/ 0.29	0.36/ 0.36	0.03/ 0.03	0.17/ 0.11	0.89/ -0.89	0.10/ 0.10	0.32/ -0.30	0.55/ 0.49	
PW6B95 +D3	8.19/ 1.78	5.91/ -5.74	1.95/ -1.95	2.01/ -2.01	0.39/ -0.37	0.68/ -0.68	1.24/ -1.24	0.21/ 0.21	0.51/ -0.37	0.31/ 0.22
	3.54/ 1.77	1.66/ -0.96	0.34/ -0.13	0.58/ 0.58	0.03/ 0.02	0.13/ -0.03	0.51/ 0.37	0.15/ -0.15	0.31/ -0.27	0.31/ 0.30
DSD-BLYP +D3	5.05/ 0.40	2.54/ -2.19	1.04/ -1.04	1.89/ -1.89	0.32/ -0.32	0.42/ -0.42	1.17/ -1.17	0.32/ 0.32	0.53/ -0.32	0.15/ -0.15
	1.37/ 0.36	1.50/ 1.22	0.28/ 0.27	0.13/ -0.13	0.07/ -0.01	0.11/ 0.09	0.16/ 0.03	0.06/ 0.06	0.25/ -0.23	0.09/ -0.08
Local hybrids										
Lh-LSDA, t-LMF +D3	15.92/ 2.35	17.00/ -16.98	4.92/ -4.92	6.64/ -6.64	1.10/ -1.10	1.88/ -1.88	4.57/ -4.57	1.27/ 1.27	1.02/ -0.54	0.52/ -0.14
	2.93/ 2.22	0.33/ -0.06	0.17/ -0.01	0.25/ -0.25	0.44/ -0.44	0.34/ -0.10	0.19/ 0.19	0.32/ -0.22	0.31/ 0.20	
Lh-LSDA, s-LMF	19.74/	22.79/ -22.76	6.27/ -6.27	8.76/ -8.76	1.30/ -1.30	2.24/ -2.24	6.31/ -6.31	1.61/ 1.61	1.34/ -0.71	0.70/ -0.06
+D3	2.17	3.48/-3.00	0.31/-0.01	0.64/-0.64	0.24/-0.14	0.28/-0.13	0.82/-0.80	0.04/-0.03	0.82/ 0.13	0.55/ 0.53
---------	-------	------------	------------	------------	------------	------------	------------	------------	------------	------------
Lh-LSDA, ct-LMF	17.81/2.68	22.92/-22.92	5.69/-5.69	7.44/-7.44	1.24/-1.24	2.19/-2.19	4.83/-4.83	1.44/ 1.44	1.44/-0.75	0.56/-0.40
+D3	3.47/ 2.35	8.89/-8.88	0.54/-0.31	0.46/-0.46	0.42/ 0.12	0.38/-0.05	0.43/ 0.28	0.29/ 0.29	0.36/-0.35	0.31/-0.06

Table S4 continued…

IDISP	WATER27	S22	ADIM6	RG6	HEAVY2/8	PCONF	ACONF	SCONF	CYCONF

Local hybrids

| Lh-LSDA, ζ-t-LMF | 14.73/2.14 | 13.31/-13.24 | 4.44/-4.44 | 6.13/-6.13 | 1.00/-1.00 | 1.68/-1.68 | 4.42/-4.42 | 1.16/1.16 | 0.75/-0.40 | 0.51/ 0.02 |
| +D3 | 3.19/ 2.18 | 2.25/-1.77 | 0.27/ 0.00 | 0.17/ 0.08 | 0.24/-0.24 | 0.43/ 0.43 | 0.41/-0.29 | 0.25/ 0.25 | 0.35/-0.22 | 0.46/ 0.33 |

| Lh-LSDA, ζ-s-LMF | 18.30/1.96 | 19.35/-19.26 | 5.83/-5.83 | 8.37/-8.37 | 1.26/-1.26 | 2.10/-2.10 | 6.12/-6.12 | 1.48/1.48 | 0.98/-0.52 | 0.75/ 0.14 |
| +D3 | 1.86/ 1.54 | 3.08/-2.38 | 0.29/-0.01 | 0.67/-0.67 | 0.24/-0.20 | 0.31/-0.22 | 0.86/-0.83 | 0.08/ 0.08 | 0.70/ 0.03 | 0.64/ 0.59 |

| Lh-LSDA-SIF-SRc | 19.39/1.38 | 32.11/-32.11 | 7.00/-7.00 | 9.23/-9.23 | 1.59/-1.59 | 2.89/-2.89 | 5.72/-5.72 | 1.77/1.77 | 1.85/-0.72 | 0.61/-0.42 |
| +D3 | 3.20/-0.13 | 5.75/-5.53 | 0.47/-0.09 | 0.76/-0.76 | 0.39/-0.37 | 0.53/-0.51 | 0.57/-0.47 | 0.13/-0.13 | 1.31/ 0.53 | 0.65/ 0.65 |

| Lh-LSDA-SIR-SRc | 19.50/1.91 | 28.85/-28.85 | 6.54/-6.54 | 8.59/-8.59 | 1.46/-1.46 | 2.67/-2.67 | 5.41/-5.41 | 1.65/1.65 | 1.73/-0.84 | 0.59/-0.41 |
| +D3 | 4.08/-3.84 | 0.44/-0.11 | 0.68/-0.68 | 0.37/-0.37 | 0.50/-0.49 | 0.60/-0.56 | 0.14/- | 1.35/ 0.59 | 0.60/ 0.60 |
	+D3	2.41/ 1.76					0.14			
\(Lh \)-BLYP-CG +D3	13.76/ 2.09	9.49/-3.99	3.99/-3.99	5.70/-5.70	0.95/-0.95	1.61/-1.61	4.15/-4.15	1.04/ 1.04	0.50/-0.27	0.43/ 0.03
	8.54/ 8.26	1.62/ 0.97	0.28/ 0.10	0.20/ 0.13	0.25/-0.25	0.49/-0.49	0.43/-0.34	0.22/ 0.22	0.37/-0.17	0.45/ 0.32
\(Lh \)-PBE-CG +D3	10.36/ 1.79	5.07/-4.69	2.71/-2.71	3.81/-3.81	0.56/-0.56	0.87/-0.87	3.17/-3.17	0.71/ 0.71	0.40/-0.31	0.39/ 0.10
	2.93/ 1.81	2.79/ 2.58	0.25/ 0.12	0.36/ 0.36	0.12/-0.11	0.22/-0.12	0.56/-0.56	0.16/ 0.16	0.31/-0.27	0.38/ 0.26
Table S5. Deviations from S22 reference values (in kcal/mol) for two uncalibrated and two calibrated local hybrids, with and without D3 corrections.

	ref. values^a	Lh-LSDA-SIF-SRc +D3	Lh-LSDA-SIR-SRc +D3		
H-bonded complexes					
(NH$_3$)$_2$	-3.17	3.29	2.99	0.83	
(H$_2$O)$_2$	-5.02	2.79	2.48	0.40	
formic acid dimer	-18.80	5.33	-0.77	4.82	-0.87
formamide dimer	-16.12	6.30	-0.16	5.79	-0.25
uracil dimer	-20.69	7.22	-0.05	6.72	-0.07
2-pyridoxine-2-aminopyridine	-17.00	7.78	-0.11	7.24	-0.13
adenine*thymine WC	-16.74	8.99	0.72	8.39	0.67
dispersion-dominated complexes					
(CH$_4$)$_2$	-0.53	2.12	0.82	1.94	0.73
(C$_2$H$_4$)$_2$	-1.50	4.38	0.47	4.05	0.42
benzene*CH$_4$	-1.45	4.14	0.60	3.86	0.57
PD benzene dimer	-2.62	9.46	0.47	8.90	0.55
pyrazine dimer	-4.20	10.08	0.21	9.48	0.33
stacked uracil dimer	-9.74	13.51	-0.76	12.72	-0.52
stacked indole*benzene	-4.59	13.34	0.25	12.61	0.45
stacked adenine*thymine	-11.66	19.00	-0.88	17.95	-0.50
mixed complexes					
ethene*ethine	-1.51	2.28	0.51	2.10	0.45
benzene*H$_2$O	-3.29	3.65	-0.35	3.37	-0.36
benzene*NH$_3$	-2.32	3.87	0.08	3.60	0.07
benzene*HCN	-4.55	4.77	-0.58	4.47	-0.51
T-shaped benzene dimer	-2.71	6.05	0.16	5.69	0.20
T-shaped indole benzene	-5.62	7.86	-0.54	7.43	-0.44
phenol dimer	-7.09	7.85	0.31	7.33	0.29

cont....
Table S5 continued…

	ref. values^a	\(Lh \)-BLYP-CG	\(Lh \)-PBE-CG
		+D3	+D3
H-bonded complexes			
\((\text{NH}_3)_2\)	-3.17	1.43	0.52
\((\text{H}_2\text{O})_2\)	-5.02	0.72	-0.01
formic acid dimer	-18.80	1.05	-1.35
formamide dimer	-16.12	2.32	-0.31
uracil dimer	-20.69	3.04	-0.29
2-pyridoxine-2-aminopyridine	-17.00	3.55	-0.40
adenine*thymine WC	-16.74	4.45	0.12
dispersion-dominated complexes			
\((\text{CH}_4)_2\)	-0.53	1.26	-0.26
\((\text{C}_2\text{H}_4)_2\)	-1.50	2.53	-0.11
benzene*\text{CH}_4\	-1.45	2.53	-0.18
PD benzene dimer	-2.62	6.30	-0.06
pyrazine dimer	-4.20	6.60	-0.02
stacked uracil dimer	-9.74	8.73	0.76
stacked indole*benzene	-4.59	9.02	-0.16
stacked adenine*thymine WC	-11.66	12.49	0.49
mixed complexes			
ethene*ethine	-1.51	1.22	-0.12
benzene*\text{H}_2\text{O}\	-3.29	1.96	0.42
benzene*\text{NH}_3\	-2.32	2.29	0.13
benzene*\text{HCN}\	-4.55	2.79	-0.04
T-shaped benzene dimer	-2.71	3.91	-0.21
T-shaped indole benzene	-5.62	5.13	-0.18
phenol dimer	-7.09	4.44	-0.03

^a Relative energies were calculated as \(\text{E(dimer)} - \Sigma \text{E(monomers)} \).