Anti-fungal activity of a novel triazole, PC1244, against emerging azole-resistant *Aspergillus fumigatus* and other species of *Aspergillus*

Thomas Colley†, **Cheshta Sharma**‡†, **Alexandre Alanio**3–5, **Genki Kimura**6, **Leah Daly**1, **Takahiro Nakaoki**6, **Yuki Nishimoto**6, **Stéphane Bretagne**3–5, **Yasuo Kizawa**6, **Pete Strong**1, **Garth Rapeport**1, **Kazuhiro Ito**1*, **Jacques F. Meis**7,8 and **Anuradha Chowdhary**2

1Pulmocide Ltd, London, UK; 2Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India; 3Institut Pasteur, CNRS, Molecular Mycology Unit, French National Reference Center for Invasive Mycoses & Antifungals, URA3012, Paris, France; 4Paris Diderot, Sorbonne Paris Cité University, Paris, France; 5Parasitology-Mycology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; 6Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University, Funabashi, Japan; 7Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands; 8Center of Expertise in Mycology Radboudumc/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands

*Corresponding author. Tel: +44 20 3763 9484; E-mail: kaz@pulmocide.com
†These authors contributed equally to this work.
‡Present address: Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA.

Received 25 February 2019; returned 2 April 2019; revised 10 May 2019; accepted 14 June 2019

Objectives: The growing emergence of azole-resistant *Aspergillus fumigatus* strains worldwide is a major concern for current systemic antifungal treatment. Here we report antifungal activities of a novel inhaled triazole, PC1244, against a collection of multi-azole-resistant *A. fumigatus* strains.

Methods: MICs of PC1244 were determined for *A. fumigatus* carrying TR34/L98H (*n* = 81), TR46/Y121F/T289A (*n* = 24), M220 (*n* = 6), G54 (*n* = 11), TR15 (*n* = 1), TR63/Y121F/T289A (*n* = 2), G448S (*n* = 1), G432C (*n* = 1) and P216S (*n* = 1) resistance alleles originating from either India, the Netherlands or France. The effects of PC1244 were confirmed in an *in vitro* model of the human alveolus and *in vivo* in temporarily neutropenic, immunocompromised mice.

Results: PC1244 exhibited potent inhibition [geometric mean MIC (range), 1.0 mg/L (0.125 to 8 mg/L)] of growth of *A. fumigatus* strains carrying cyp51A gene mutations, showing much greater potency than voriconazole [15 mg/L (0.5 to 16 mg/L)], and an effect similar to those on other azole-susceptible *Aspergillus* spp. (*Aspergillus flavus, Aspergillus terreus, Aspergillus tubingensis, Aspergillus nidulans, Aspergillus niger, Aspergillus nomius, Aspergillus tamarii*) (0.18–1 mg/L). In *TR34/L98H* and *TR46/Y121F/T289A* A. *fumigatus*-infected in vitro human alveolar models, PC1244 achieved superior inhibition (IC50, 0.25 and 0.34 mg/L, respectively) compared with that of voriconazole (IC90, >3 mg/L and >10 mg/L, respectively). In *in vivo*, once-daily intranasal administration of PC1244 (0.56–70 µg/mouse) to the *A. fumigatus* (AF91 with M220V)-infected mice reduced pulmonary fungal load and serum galactomannan more than intranasal posaconazole.

Conclusions: PC1244 has the potential to become a novel topical treatment of azole-resistant pulmonary aspergillosis.

Introduction

The widespread use of azole antifungal agents, both in the clinic and in agriculture, has led to a growing and problematic emergence of resistant mycoses.1—3 Azole resistance is not limited to one particular *Aspergillus* disease entity but can occur in all of the three major forms of aspergillosis: invasive aspergillosis (IA), chronic pulmonary aspergillosis (CPA) and allergic bronchopulmonary aspergillosis (ABPA).4 *Aspergillus fumigatus* isolates with environmentally acquired resistance mechanisms, including *TR34/L98H* and *TR46/Y121F/T289A*, were first discovered in the Netherlands in 1998 but are now recognized to be a worldwide...
Effects of PC1244 on azole-resistant A. fumigatus

Antifungal activity against A. fumigatus infection in an in vitro model of the human alveolus

The effect of PC1244 on inhibition of A. fumigatus penetration through a bilayer of human cells was evaluated using an in vitro model of the human alveolus. Construction of the cell bilayer was performed as described previously. Briefly, human pulmonary artery endothelial cells (HPAEC) (Lonza, Basel, Switzerland) were diluted to 1×10⁵ cells/mL in EGM-2 (Endothelial basal medium (EBM) supplemented with ascorbic acid, heparin, hydrocortisone, human endothelial growth factor (EGF), 2% FBS, vascular EGF, human fibroblast growth factor-B, R3-insulin-like growth factor-1, and gentamicin; Lonza, Basel, Switzerland). Transwells (#3415; Sigma–Aldrich, Dorset, UK) were inverted and cell suspension (100 µL/well) was applied to the base of each transwell. The inverted transwells were incubated at room temperature within a flow hood for 2 h, after which they were turned upright. EGM-2 was added to the lower (600 µL/well) and upper (100 µL/well) compartments and the transwells were incubated for 48 h (37°C, 5% CO₂). The EGM-2 medium in the lower chamber was then replaced with fresh EGM-2. A549 cells were diluted to 5×10⁵ cells/mL in EB1 supplemented with 10% FBS and added to the upper chamber (100 µL/well) of all transwells and the plates were incubated for 72 h (37°C, 5% CO₂). On the day of inoculation, transwells were pre-treated with test and reference agents for 1 h prior to infection with itraconazole-susceptible (NCPF2010) or multi-azole-resistant (TR₃₄/L₉₈H or TR_${_{53}}$; Y121F/T289A A. fumigatus conidia (1×10⁵ spores/mL; 10 µL/well). Fungal invasion into the lower chamber was determined after 24 h incubation at 35°C, 5% CO₂, by measuring galactomannan (GM) concentrations, using Platelia GM-EIA kits (lot 62794, Bio-Rad Laboratories). The percentage inhibition for each well was calculated using following formula: % inhibition = 100×(1 - [GM (OD) in treated group]/[GM (OD) in control infection group]); GM was measured in the bottom chamber as the marker of invasion.

The IC₅₀ and IC₉₀ values were calculated from the concentration-response curve generated for each test compound using a four-parameter logistic equation (Dotmatics, Bishops Stortford, UK).

In vivo antifungal activity against azole-resistant A. fumigatus infection (M220V)

As previously reported, we tested antifungal effects of compounds on A. fumigatus-infected, temporarily neutropenic mice. Specific pathogen-free 129/Sv mice (male, 5 weeks, N = 30) were used for A. fumigatus infection as they have been described to be more susceptible to A. fumigatus infection. Animals were then injected with hydrocortisone (Sigma H4881, 125 mg/kg, subcutaneously) on days 3, 2 and 1 before infection, and with cyclophosphamide (Sigma C0768; 250 mg/kg, intraperitoneally) 2 days before infection to induce temporary neutropenia. Both hydrocortisone and cyclophosphamide were diluted with physiological saline. To avoid bacterial infection during immunosuppression, drinking water was supplemented with tetracycline hydrochloride (Sigma T7660; 1 µg/mL) and ciprofloxacin (Fluka, lot 17850; 64 µg/mL). Conidia of A. fumigatus (NCPF7100 (AF911)) were aseptically dislodged from the malt agar plates and suspended in sterile distilled water with 0.05% Tween 80 and 0.1% agar. On the day of infection, 30 µL (15 µL in each nostril) of the conidia suspension (1.67×10³/mL in physiological saline) was administered intranasally under isoflurane.

As PC1244 and posaconazole have limited water solubility (Table S1, available as Supplementary data at JAC Online), both were suspended in physiological saline and administered intranasally (35 µL in total, ~17.5 µL each in each nostril) as an aqueous suspension, once daily, on days 1, 2 and 3 post-infection. As the injection volume was fixed and body weight changed every day, especially after infection, the accurate dose unit was µg/mouse. However, as the average body weight after immunosuppression and just before infection was 20 g, we also calculated estimated dose as mg/kg. Therefore, 35 µL injections of 0.016, 0.08, 0.4 and 2.0 mg/mL were
Strain Resistance mechanism formula: COI was provided as a ‘cut-off index’ (COI), which was calculated by the as previously reported. We confirmed that the cfu level was not significantly anaesthetized 6 h after the last dose of drug was administered on day 3. The volume inserted intranasally is reported to achieve almost 60% deposition into the lung.17

Statistical analysis

Results

Comparison of in vitro antifungal activity of PC1244 against azole-resistant A. fumigatus with registered antifungal drugs

Firstly, we evaluated antifungal activity of PC1244 against representative azole-resistant A. fumigatus strains, along with that of conventional antifungal agents, using quantitative spectrophotometer growth assessment. PC1244 was found to be the most potent agent, with 50% growth inhibition [IC50 (OD)] and 90% inhibition [IC90 (OD)] evaluated against itraconazole/voriconazole-resistant (TR46/L98H) and itraconazole/voriconazole/posaconazole-resistant (TR46/Y121F/T289A) A. fumigatus strains (Table 1, Figure 1a–c). Voriconazole was ineffective against either TR46/L98H or TR46/Y121F/T289A strains up to 1 mg/L. PC1244 showed potent inhibitory activity (IC50: 0.024–0.17 mg/L), being 4–to >42-fold more potent than itraconazole and 1.7- to 4-fold more potent than posaconazole.

In a standard CLSI assay, the activity of PC1244 against A. fumigatus isolates with WT cyp51A (geometric mean MIC: 0.21 mg/L) was found to be significantly superior to voriconazole (geometric mean MIC: 0.48 mg/L) and comparable to that of posaconazole (geometric mean MIC: 0.18 mg/L) (Table 2). For comparison, the antifungal activity of PC1244 was evaluated against clinically isolated A. fumigatus carrying the TR34/L98H (n = 73), TR46/Y121F/T289A (n = 24), M220 (n = 6), G54 (n = 11), TR53 (n = 1), TR46/Y121F/T289A (n = 2), G448S (n = 1), G432C (n = 1) or P216S (n = 1) resistance alleles originating from either India, the Netherlands or France. PC1244 showed different susceptibility to different mutants (Table 2) but, overall (in all mutations), PC1244 exhibited much greater potency (geometric mean MIC range, 1.0 mg/L (0.125 to >8) than voriconazole (15 mg/L (0.5 to >16)) and comparable to posaconazole [0.94 mg/L (0.125 to >8)]. The antifungal activity of PC1244 against cyp51A mutants was also found to be only 4.8-fold weaker than the activity against isolates with WT cyp51A (n = 17), whereas a 15-fold reduction of antifungal activity was observed for voriconazole.

For TR34/L98H strains, two isolates had high MICs (>8 mg/L) for posaconazole and also two isolates showed high MICs for PC1244, but those strains were not cross-resistant to posaconazole or PC1244, suggesting PC1244 and posaconazole can be subject to different mechanisms of resistance (Figure 1d). In addition, in eight TR34/L98H strains obtained from France, the performance of PC1244 [geometric mean MIC (range), 0.16 mg/L (0.075–0.5)] was confirmed to be superior to voriconazole and comparable to posaconazole when assayed using the EUCAST method (Table 2), as observed in strains from the Netherlands and India.

TR46/Y121F/T289A strains were also completely resistant to voriconazole in the CLSI assay (Table 2, Figure 1c). Althoughposaconazole was ineffective against one strain, PC1244 inhibited the growth of all isolates consistently (Figure 1e). For M220, PC1244 showed a slightly lower GM-MIC versus posaconazole. However,
against G54 isolates voriconazole outperformed both PC1244 and posaconazole, and there was good correlation between the effects of PC1244 and those of posaconazole (Figure 1f).

During this assay, the quality control strain *A. fumigatus* ATCC 204305 was used for validation, yielding an MIC of 0.25 mg/L for posaconazole and 1 mg/L for voriconazole.

Comparison of in vitro antifungal activity of PC1244 against other *Aspergillus* species

We also evaluated the antifungal activity of PC1244 against *Aspergillus flavus*, *Aspergillus terreus*, *Aspergillus tubingensis*, *Aspergillus nidulans*, *Aspergillus niger*, *Aspergillus nomius* and *Aspergillus tamarii* using the CLSI method. PC1244 showed potent activity against these azole-susceptible *Aspergillus* spp. with geometric mean MIC of 0.18–1 mg/L (Table 3), comparable to posaconazole (geometric mean MIC: 0.13–0.37 mg/L) and voriconazole (geometric mean MIC: 0.29–0.76 mg/L).

Antifungal activity against *Aspergillus in an in vitro infection model of the human alveolus*

An *in vitro* model of human alveoli, consisting of a bilayer of human alveolar epithelial and endothelial cells, was used to investigate the antifungal activity of PC1244 versus penetration of the bilayer by either azole-susceptible *A. fumigatus* (NCPF2010) or azole-resistant (TR34/L98H or TR46/Y121F/T289A) *A. fumigatus* strains. All compounds were added to the upper chamber of the transwell to mimic topical treatment to the lung. As shown in Figure 2a, 1 day after inoculation of azole-susceptible *A. fumigatus* NCPF2010, the control showed a GM measurement in the bottom chamber of OD >8 or 16, and PC1244 inhibited the GM level in a concentration-dependent manner. A concentration–response curve (with % inhibition) demonstrated that in this model with azole-susceptible *A. fumigatus* (Figure 2b, Table 4), voriconazole weakly inhibited the invasion (determined by GM in the endothelial compartment) but, in contrast, PC1244 and posaconazole were observed to show potent inhibition of the *A. fumigatus* penetration of the cellular bilayer. Voriconazole had no effect on the invasion of TR34/L98H (Figure 2c) and TR46/Y121F/T289A (Figure 2d) azole-resistant *A. fumigatus*, nor *A. flavus* up to 1 mg/L (Table 4), although both PC1244 and posaconazole demonstrated concentration-dependent inhibition of these strains’ penetration through the cellular bilayer, and PC1244 was 2-fold more potent than posaconazole at inhibiting penetration by TR46/Y121F/T289A A. *fumigatus* (Table 4).

In vivo antifungal activity against itraconazole-resistant *A. fumigatus*-infected mice

An aqueous suspension of PC1244 in isotonic saline (0.56, 2.8, 14 and 70 µg/mouse = approximately 0.028, 0.14, 0.7 and 3.5 mg/kg,
respectively) was dosed by intranasal injection once daily on days 1, 2 and 3 post-infection as the 'late intervention' regimen. PC1244 was found to inhibit fungal load in the lung (cfu) and GM in serum in a dose-dependent manner and the ID$_{50}$ values were 13.8 µg/mouse (0.69 mg/kg) and 20.1 µg/mouse (1.01 mg/kg), respectively (Figure 3a and b). In comparison, posaconazole, at a dose of 350 µg/mouse (17.5 mg/kg), achieved only 47% inhibition of fungal load. The ID$_{50}$ values of posaconazole were 375 µg/mouse (18.8 mg/kg) and 305 µg/mouse (15.3 mg/kg) for lung cfu and serum GM, respectively, and 27- and 15-fold higher than those of PC1244.

Table 2. Antifungal effects of PC1244 and known antifungal agents in azole-resistant strains of A. fumigatus carrying mutations in cyp51A gene

Resistance mechanism	n	PC1244	Voriconazole	Posaconazole
		Meana MIC$_{50}$ MIC$_{90}$ range	Meana MIC$_{50}$ MIC$_{90}$ range	Meana MIC$_{50}$ MIC$_{90}$ range
CLSI				
WT	17	0.21b 0.25 0.35 0.125–1	0.48 0.25 16 0.25–16	0.18 0.125 0.6 0.063–1
TR$_{34}$/L98H	73	1.1c 1 2 0.25 to >8	8.7 8 >16 1 to >16	0.94 1 1 0.125 to >8
TR$_{34}$/Y121F/T289A	24	0.87d 1 1 0.25–2	>16 >16 >16 to >16	0.89 1 1 0.5 to >8
G54	11	4.5e >8 >8 0.125 to >8	1.4 1 4 0.5 to >16	5.5 >8 >8 0.5 to >8
M220	6	0.89b 1 1 0.5–1	>16 >16 >16 8 to >16	0.89 1 1 0.5–1
TR$_{53}$	1	N/A N/A N/A	8 N/A N/A N/A	2 N/A N/A N/A
P216S	1	0.5 N/A N/A N/A	1 N/A N/A N/A	0.5 N/A N/A N/A
TR$_{34}$/Y121F/T289A	2	N/A N/A 1–1	>16 N/A N/A >16 to >16	1 N/A N/A 1–1
G448S	1	N/A N/A N/A	>16 N/A N/A N/A	1 N/A N/A N/A
G432C	1	N/A N/A N/A	>16 N/A N/A N/A	1 N/A N/A N/A
total (mutant only)	120	1.0c 1 2 0.125 to >8	15 16 >16 0.5 to >16	0.94 1 1 0.125 to >8
EUCAST				
TR$_{34}$/L98Hd	8	0.16b 0.125 0.25 0.125–0.25	2.4 2 5.2 1–8	0.23 0.25 0.33 0.125–0.5

N/A, not applicable.
All MICs (µg/L) were read visually (and also confirmed by OD reading for EUCAST); MIC$_{50}$ and MIC$_{90}$ values (µg/L) represent the lowest concentrations of the compound at which 50% and 90% of the isolates are inhibited, respectively.
aGeometric mean. If $n=1$ or $n=2$, determined value or average of two values were provided.
bP<0.05 versus voriconazole.
cP<0.01 versus voriconazole (both with no significant difference versus posaconazole).
dIsolated in France.

Table 3. Antifungal effects of PC1244 and known antifungal agents in Aspergillus spp.

Species	n	PC1244	Voriconazole	Posaconazole
		Meana MIC$_{50}$ MIC$_{90}$ range	Meana MIC$_{50}$ MIC$_{90}$ range	Meana MIC$_{50}$ MIC$_{90}$ range
A. flavus	29	0.24 0.25 0.5 0.125–0.5	0.38 0.5 0.5 0.25–0.5	0.13 0.125 0.25 0.031–0.25
A. terreus	15	0.26 0.25 0.4 0.125–0.5	0.48 0.5 0.5 0.25–0.5	0.20 0.25 0.25 0.125–0.25
A. tubingensis	15	0.33 0.25 0.5 0.125–1	0.69 0.5 1 0.25–16	0.35 0.25 0.5 0.25–1
A. nidulans	9	1 0.5 >16 0.5 to >16	0.29 0.125 16 0.125–16	0.37 0.125 >16 0.125 to >16
A. niger	6	0.18 0.19 0.25 0.125–0.25	0.32 0.25 0.5 0.25–0.5	0.22 0.25 0.25 0.125–0.25
A. nomius	5	0.44 0.5 0.5 0.25–0.5	0.76 1 1 0.5–1	0.29 0.25 0.5 0.25–0.5
A. tamarii	4	0.25 0.25 0.5 0.125–0.5	0.42 0.5 0.5 0.25–0.5	0.18 0.19 0.25 0.125–0.25

All MICs (µg/L) were read visually using the CLSI method; MIC$_{50}$ and MIC$_{90}$ values (µg/L) represent the lowest concentrations of the compound at which 50% and 90% of the isolates are inhibited, respectively.
aGeometric mean. If $n=1$ or $n=2$, determined value or average of two values were provided.

Discussion

We demonstrated antifungal effects of a novel inhaled triazole, PC1244, against a wide range of azole-resistant A. fumigatus strains, which was more potent than those of voriconazole and was comparable to posaconazole in the in vitro systems. However, when treating temporarily neutropenic mice infected with A. fumigatus carrying the M220V mutation, with either PC1244 or posaconazole intranasally, PC1244 exhibited much more potent antifungal activity. This may reflect the fact that PC1244 has been optimized for a long residence time in the lung, as previously reported.

...
Figure 2. Efficacy of PC1244 on invasion of azole-susceptible and -resistant A. fumigatus in a human alveolus model. Concentration-dependent effects of PC1244 on GM (OD) in the endothelial compartment 24 h post-inoculation with azole-susceptible A. fumigatus NCPF2010 to the epithelial cell compartment (a). Comparison of concentration-dependent inhibitory effects of PC1244 with those of voriconazole and posaconazole on penetration of azole-susceptible A. fumigatus NCPF2010 (b), azole-resistant A. fumigatus TR34/L98H (c) and TR46/Y121F/T289A (d) into the endothelial compartment 24 h post-inoculation. Compounds were treated apically.

Table 4. Antifungal effects of PC1244 and known antifungal agents against azole-susceptible and -resistant strains of A. fumigatus and A. flavus in an in vitro model of the human alveolus

Species	Strain number	Resistance mechanism	IC_{50} (IC_{90}) values for agent indicated (mg/L)\(^a\)
A. fumigatus	NCPF2010	none	0.11 (0.13) PC1244, 0.61 (0.91) voriconazole, 0.11 (0.15) posaconazole
A. fumigatus	L98H (F)	TR_{34}/L98H	0.25 (0.38) PC1244, >3 (>3) voriconazole, 0.26 (0.49) posaconazole
A. fumigatus	TR_{46} (H)	TR_{46}/Y121F/T289A	0.34 (0.66) PC1244, >10 (>10) voriconazole, 0.69 (1.27) posaconazole
A. flavus	ATCC 204304	none	0.055 (0.12) PC1244, 0.31 (0.58) voriconazole, 0.036 (0.072) posaconazole

\(^a\)IC_{50} and IC_{90} values (mg/L) were determined from OD measurements of GM in the endothelial compartment.

F, France (clinical); H, Himachal Pradesh, India (environmental).
Azole resistance in *A. fumigatus* has emerged as a global health problem, threatening the management of diseases caused by *Aspergillus*. As we have previously reported, PC1244 showed greater potency against the AF91 (M220V mutation) *A. fumigatus* strains than voriconazole. These observations were confirmed in this study using a large collection of clinical isolates from India and the Netherlands (Table 2) including those with the TR3/L98H and TR46/Y121F/T289A mutations. PC1244 demonstrated much more potent activity than voriconazole against TR3/L98H in both French (with EUCAST) and Indian/Dutch isolates (with CLSI). The activity of PC1244 (GM-MIC) was comparable to posaconazole, but strains resistant to posaconazole had low PC1244 MICs and vice versa (Figure 1d and e). Thus, resistance to PC1244 and posaconazole can apparently arise from different mechanisms, although both are CYP51A inhibitors.

There are also other azole-resistant strains reported. A G448S amino acid substitution in the azole target (CYP51A) of *A. fumigatus* was identified as the cause of the resistance phenotype to voriconazole, although posaconazole retained good efficacy. Other resistant clinical and environmental isolates with promoter repeats of 53 bp (TR53) were isolated in the Netherlands and Colombia, and TR46/Y121F/T289A, with a triple 46 bp promoter repeat, causing high cyp51A gene expression levels, was isolated in the Netherlands. All tested mutants with cyp51A promoter repeats have lower MICs of PC1244 than voriconazole.

Although microdilution tests to evaluate fungal susceptibility to antifungal drugs have been standardized for fermentative yeasts and filamentous fungi, they do not reflect a real-world, multicellular environment. IA is characterized by growth of *Aspergillus* species within the lung followed by penetration of the vascular system and infection of other host organs via the blood. Using an *in vitro* model of the human alveolus, consisting of a bilayer of human alveolar epithelial and endothelial cells, we were able to track penetration of *A. fumigatus* into the endothelial compartment (lower chamber). GM was measured in the bottom chamber after inoculation of *A. fumigatus* into the epithelial compartment (upper chamber). PC1244 effectively inhibited the invasion of azole-resistant *A. fumigatus* (TR3/L98H, TR46/Y121F/T289A), where voriconazole was ineffective, which further demonstrated the strong antifungal activity of PC1244 on azole-resistant strains.

We previously reported that, when administered intranasally, PC1244 was 6- to 15-fold more potent in reducing lung fungal load and serum GM than posaconazole in temporarily neutropenic mice infected with azole-susceptible *A. fumigatus*, despite comparable MIC values *in vitro*. The excellent *in vivo* effects of PC1244 were believed to be due to its persistence in bronchial cells, accumulation of PC1244 after repeat dosing and its optimized properties for inhalation delivery. In this study, we have demonstrated that PC1244, when applied intranasally, exhibited 15- to 27-fold more potent antifungal activities than posaconazole against an itraconazole-resistant strain (AF91, M220V), again despite comparable MIC values *in vitro* testing (Figure 3). Baistrrocci et al. reported the recruitment of posaconazole-loaded granulocytes at the site of *Aspergillus* infection and demonstrated enhanced synergistic antifungal effects by exposure of *Aspergillus* to cellular posaconazole during phagocytosis. Considering the persistent action of PC1244, it is likely that granulocytes/macrophages containing PC1244 contributed to further enhancement of the antifungal effect *in vivo*. The effects might be more apparent for the itraconazole-resistant strain compared with the itraconazole-susceptible strain, as observed in our bilayer model work (Table 4, Figure 2).

The idea of delivering an antifungal agent directly to the airway or to the fungus is intuitively appealing and aims to deliver a high concentration of drug to the site of infection whilst avoiding systemic toxicity. In particular, this inhalation approach is an attractive option for delivering drug to an anastomotic site, which is poorly vascularized and hence difficult to access via a parenteral route of administration. In fact, this is an important strategy for avoiding the development of resistance during treatment to ensure that the ratio of peak concentration to MIC is adequate. The frequently exploited oral and systemic routes of delivery are poor for treating airway disease, since drug concentrations achieved at the site of infection tend to be lower than those in...
other, healthy organs. Delivery of antifungals directly to the lung enables high AUC/MIC ratios to be achieved locally, reducing the risk of resistance development. The benefits of inhaled administration for the treatment of invasive pulmonary aspergillosis has also been shown in numerous studies involving amphotericin B, itraconazole and voriconazole.

However, these repurposed compounds were not optimized for inhalation therapy so consequently had shorter-than-ideal lung residence times.

This study had several limitations. Firstly, we used two different methods (EUCAST and CLSI) of broth microdilution, which might cause difficulties in direct comparison of the data. The EUCAST method was used for assays performed in Europe and the CLSI method for those performed in India. For the TR34-L98H strain shown in Table 2, no substantial difference in the geometric mean MIC has been observed although French strains (EUCAST) seem to be more susceptible to azoles than Indian TR34-L98H strains. For bridging, we tested three strains (NCPC2010, TR46/Y121F/T289A from Himachal, India, TR34-L98H from France) using both EUCAST and CLSI, and we did not observe a big difference between the MICs by each method (PC1244 MIC in EUCAST and CLSI, respectively: NCPC2010 (0.031 and 0.016 mg/L); TR34-L98H (France) (0.125 and 0.125 mg/L); TR46/Y121F/T289A (Himachal) (0.25 and 0.125 mg/L)).

Secondly, we compared the in vivo performance of PC1244 with posaconazole, which has not been optimized for topical treatment and its physicochemical properties are not identical to that of PC1244. However, the data shown in Table S1 demonstrate that PC1244 is less aqueous-soluble than posaconazole, so both were dosed as aqueous suspensions rather than solutions. Neither posaconazole nor PC1244 are Lipinski-compliant, but have similar molecular weights, topological polar surface area (TPSA) and log P values, and are both markedly different from voriconazole. Thus, posaconazole and PC1244 possess similar physicochemical properties. As previously reported,8 preliminary studies using non-infected mice dosed intratracheally with 40 μL of a 2 mg/mL aqueous suspension of PC1244, plasma concentrations ranged between 41.5 and 50.7 ng/mL 24 h post-dose despite decent in vivo effects after once-daily treatment, which were similar to those for posaconazole (plasma: 15.6–125 ng/mL 24 h post-dose), although the in vivo activity of PC1244 was superior to that of posaconazole. As PC1244 has much less oral availability than posaconazole (Pulmocide Ltd, unpublished data), the exposure results from absorption through the respiratory tract (not by accidental ingestion of compound during dosing). Overall, we do not, therefore, believe that the different water solubility of the compound is a viable explanation for the superior performance of PC1244 relative to posaconazole. As discussed above, PC1244 has been optimized for a long residence time in the lung and this property is a key component for superior in vivo performance. Further studies to identify the molecular mechanism of longer lung residency is required.

Thirdly, this model is unlike a natural infection setting. Patients who are infected naturally are likely to be treated later in the course of disease, with greater disease severity. In addition, patients might be treated by inhalation as PC1244 is designed to be delivered to the lung via inhalation. Therefore, it may be inappropriate to directly extrapolate the results of the study to a clinical setting. However, based on this result, prophylaxis or empirical treatment (even intranasally) will be an option for PC1244.

Fourthly, as PC1244 has not been dosed to humans as yet, we don’t have any data to demonstrate that the concentrations shown in this study could be achievable in humans. However, we have some data to support that the concentrations would be achievable in humans, based on our in vivo animal studies and experiences with our first development candidate PC945 (Phase 2a),5,32 which is an inhaled medicine with similar physicochemical properties to PC1244. In preclinical safety studies with PC945, the lung:plasma concentration ratio was found to be ~7000. As previously published,8 in non-infected mice dosed intratracheally (40 μL of a 2 mg/mL aqueous suspension of PC1244), plasma concentrations of PC1244 ranged from 111 to 303 ng/mL 2 h post-dose and from 249 to 339 ng/mL 8 h post-dose. If PC1244 were to show similar properties to PC945, the lung concentrations achieved should comfortably exceed those required to deliver the activity described in this study. Further preclinical pharmacokinetic and clinical studies will be required to clarify this.

Taken together, PC1244 therefore has the potential to be developed as a new topical antifungal for the treatment of pulmonary azole-resistant A. fumigatus infections.

Acknowledgements

We are grateful to Dr Gurpreet Sehr (Pulmocide Ltd) for assistance in the in vitro study, and Drs Mihiro Sunose and Steve St-Gallay (Sygnature Discovery Ltd, Nottingham, UK) for aqueous solubility prediction using ICM (MolSoft) v3.8-7b software.

Funding

Y. K., J. F. M. and A. C. have received funds for research from Pulmocide Ltd on a fee-for-service basis.

Transparency declarations

K. I., P. S. and G. R. are employees of Pulmocide Ltd and (co)-founders of Pulmocide Ltd. K. I. and G. R. retain an honorary contract with Imperial College. T. C. and L. D. are employees of Pulmocide Ltd. J. F. M. received grants from Astellas, Basilea and Pulmocide and has been a consultant to Astellas, Basilea, Scynexis and Merck and received speaker’s fees from Merck, United Medical, TEVA and Gilead Sciences. All other authors: none to declare.

Supplementary data

Table S1 is available as Supplementary data at JAC Online.

References

1 Snelders E, van der Lee HA, Kuipers J et al. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med 2008; 5: e219.
2 Snelders E, Camps SM, Karawajczyk A et al. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS One 2012; 7: e31801.
3 Chowdhary A, Kathuria S, Xu J et al. Emergence of azole-resistant Aspergillus fumigatus strains due to agricultural azole use creates an increasing threat to human health. PLoS Pathog 2013; 9: e1003633.
4 Verweij PE; Chowdhary A; Melchers WJG et al. Azole resistance in Aspergillus fumigatus: can we retain the clinical use of mold-active antifungal azoles? Clin Infect Dis 2016; 62: 362–8.

5 Lestraide PPA; Meis JF; Melchers WJG et al. Triazole resistance in Aspergillus fumigatus: recent insights and challenges for patient management. Clin Microbiol Infect. 2018; S1198-743X: 30780–8.

6 Bader O; Tunnermann J; Dudakov A et al. Environmental isolates of azole-resistant Aspergillus fumigatus in Germany. Antimicrob Agents Chemother 2015; 59: 4356–9.

7 Sharma C; Hagen F; Moroti R et al. Triazole-resistant Aspergillus fumigatus harbouring G54 mutation: is it de novo or environmentally acquired? J Glob Antimicrob Resist 2015; 3: 69–74.

8 Colley T; Sehra G; Chowdhary A et al. In vitro and in vivo efficacy of a novel and long-acting fungicidal azole, PC1244, on Aspergillus fumigatus infection. Antimicrob Agents Chemother 2018; 62: e01941-17.

9 Rocchi S; Doignonau E; Grenouillet F et al. Azole-resistant Aspergillus fumigatus isolate with the TR34/L98H mutation in both a fungicide-sprayed field and the lung of a hematopoietic stem cell transplant recipient with invasive aspergillosis. J Clin Microbiol 2014; 52: 1724–6.

10 Colley T; Alonio A; Kelly SL et al. In vitro and in vivo antifungal profile of a novel and long-acting inhaled azole, PC945, on Aspergillus fumigatus infection. Antimicrob Agents Chemother 2017; 61: e02280-16.

11 Buil JB; Hagen F; Chowdhary A et al. Itraconazole, voriconazole, and posaconazole CLSI MIC distributions for wild-type and azole-resistant Aspergillus fumigatus isolates. J Fungi (Basel) 2018; 4: pii E103.

12 Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi—Approved Standard, Second Edition: M38-A2. CLSI, Wayne, PA, USA, 2008.

13 Arendrup C; Guinea J; Cuenca-Estrella M et al. EUCAST Definitive Document E.9.3: Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia forming moulds, 2015. http://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/

14 Hope WW; Kruhlak MJ; Lyman CA et al. Pathogenesis of Aspergillus fumigatus and the genetics of galactomannan in an in vitro model of early invasive pulmonary aspergillosis: implications for antifungal therapy. J Infect Dis 2007; 195: 455–66.

15 Box H; Negri C; Livermore J et al. Pharmacodynamics of voriconazole for invasive pulmonary aspergillosis. Antimicrob Agents Chemother 2018; 62: e02516-17.

16 Zaas AK; Liao G; Chien JW et al. Plasminogen alleles influence susceptibility to invasive aspergillosis. PLoS Genet 2008; 4: e1000101.

17 Southam DS; Dolovich M; O’Byrne PM et al. Distribution of intranasal instillations in mice: effects of volume, time, body position, and antifungal activity. Am J Physiol Lung Cell Mol Physiol 2002; 282: L833–9.

18 Kimura G; Ueda K; Eto S et al. Toll-like receptor 3 stimulation causes corticosteroid-refractory airway neutrophilia and hyperresponsiveness in mice. Chest 2013; 144: 99–105.

19 Chowdhary A; Sharma C; Hagen F et al. Exploring azole antifungal drug resistance in Aspergillus fumigatus with special reference to resistance mechanisms. Future Microbiol 2014; 9: 697–711.

20 Chowdhary A; Sharma C; Meis JF. Azole-resistant aspergillosis: epidemiology, molecular mechanisms, and treatment. J Infect Dis 2017; 216: S436–S44.

21 Ullmann AJ; Aguado JM; Arikan-Akdagli S et al. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 2018; 24 Suppl 1: e1–e38.

22 Krishnan Natesan S; Wu W; Cutright JL et al. In vitro-in vivo correlation of voriconazole resistance due to G448S mutation (cyp51A gene) in Aspergillus fumigatus. Diagn Microbiol Infect Dis 2012; 74: 272–7.

23 Pelaez T; Gijón P; Bunsow E et al. Resistance to voriconazole due to a G448S substitution in Aspergillus fumigatus in a patient with cerebral aspergillosis. J Clin Microbiol 2012; 50: 2531–4.

24 Alvarez-Moreno C; Lavergne RA; Hagen F et al. Azole-resistant Aspergillus fumigatus harboring TR34/L98H, TR46/Y121F/T289A and TR53 mutations related to flower fields in Colombia. Sci Rep 2017; 7: 45631.

25 Meis JF; Chowdhary A; Rhodes JL et al. Clinical implications of globally emerging azole resistance in Aspergillus fumigatus. Phil Trans R Soc Lond B Biol Sci 2016; 371: 20150460.

26 Zhang J; Snelders E; Zwaan BJ et al. A novel environmental azole resistance mutation in Aspergillus fumigatus and a possible role of sexual reproduction in its emergence. MBio 2017; 8: e00791-17.

27 Baistrocchi SR; Lee MJ; Lehoux M et al. Posaconazole-loaded leukocytes as a novel treatment strategy targeting invasive pulmonary aspergillosis. J Infect Dis 2017; 215: 1734–41.

28 Blaser J; Stone BB; Groner MC et al. Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. Antimicrob Agents Chemother 1987; 31: 1054–60.

29 Tolman JA; Wiederhold NP; McConville JT et al. Inhaled voriconazole for prevention of invasive pulmonary aspergillosis. Antimicrob Agents Chemother 2009; 53: 2613–5.

30 McConville JT; Overhoff KA; Sinswat P et al. Targeted high lung concentrations of itraconazole using nebulized dispersions in a murine model. Pharm Res 2006; 23: 901–11.

31 Monforte V; Uissetti P; Lopez R et al. Nebulized liposomal amphotericin B prophylaxis for Aspergillus infection in lung transplantation: pharmacokinetics and safety. J Heart Lung Transplant 2009; 28: 170–5.

32 Pagani N; Murray A; Strong P et al. PC945, a novel inhaled azole for treatment of fungal tracheobronchitis post-lung transplantation: a case report. F1000Research 2019; doi:10.7490/f1000research.1116740.1.