A VERY RADIO LOUD NARROW-LINE SEYFERT 1: PKS 2004—447

A. Y. K. N. OSHLACK
School of Physics, University of Melbourne, Parkville, Victoria, Australia, 3010; aoshlack@physics.unimelb.edu.au

R. L. WEBSTER
School of Physics, University of Melbourne, Parkville, Victoria, Australia, 3010; rwebster@physics.unimelb.edu.au
AND
M. T. WHITING
School of Physics, University of Melbourne, Parkville, Victoria, Australia, 3010; mwhiting@physics.unimelb.edu.au

Received 2001 April 6; accepted 2001 May 11

ABSTRACT

We have discovered a very radio loud narrow-line Seyfert 1 candidate: PKS 2004—447. This Seyfert is consistent with the formal definition for NLS1s, although it does not have quite the same spectral features as some typical members of this subclass. Only ROSAT survey data is available at X-ray wavelengths, so it has not been possible to compare this source with other NLS1’s at these wavelengths. A full comparison of this source with other members of the subclass will improve our physical understanding of NLS1’s. In addition, using standard calculations, we estimate the central black hole to have a mass of $\sim 5 \times 10^6 M_\odot$. This does not agree with predictions in the literature, that radio-loud active galactic nuclei host very massive black holes.

Subject headings: galaxies: active — galaxies: Seyfert — quasars: individual (PKS 2004—447)

1. INTRODUCTION

The radio-loud source PKS 2004—447, $z = 0.24$, was identified as a candidate narrow-line Seyfert 1 (NLS1) from low-resolution optical spectra of a subsample of quasars identified in the Parkes Half-Jansky Flat-Spectrum Sample (hereafter PHFS, Drinkwater et al. 1997). The PHFS is designed to efficiently select radio-loud active galactic nuclei (AGNs) by looking for flat or inverted radio spectra over the range of 2.7 and 5.0 GHz. It contains 323 radio bright (greater than 0.5 Jy at 2.7 GHz), generally compact, radio sources. Higher resolution spectroscopy of this object was obtained giving more accurate velocity widths of the emission lines indicating this may be a NLS1, but more accurate spectroscopy is still needed to be able to clearly separate the broad and narrow components of H$\beta$. In any case this object has very interesting implications for the study of AGNs.

NLS1’s are generally considered to be an extreme but common subclass of AGNs. They are defined by their optical emission line properties, such that the H$\beta$ line is both strong (with a flux ratio $\left[\text{O III}\right]/H\beta < 3$, similar to Seyfert 1 galaxies) and narrow (the H$\beta_{\text{FWHM}} < 2000$ km s$^{-1}$) (Osterbrock & Pogge 1985). These properties are correlated with strong Fe $\Pi$ emission and a strong soft X-ray excess, amongst other properties, for most objects in the subclass. NLS1’s do not appear to form a distinct class but are instead connected to the “standard” broad-line Seyfert population through a continuum of properties. Boroson & Green (1992) have shown that NLS1’s cluster at one end of the region defined by the first principal component described in their study of the optical spectra of 87 low-redshift BQS quasars. The first principal component is thought to describe the major physical property in quasar structure that is responsible for spectral differences between AGNs, independent of orientation. Boroson & Green (1992) suggest that the physical parameter driving this eigenvector is $M/M_{\text{Edd}}$, where $M$ is the rate of mass accretion onto the central massive object. NLS1’s are thought to be accreting at a rate closer to the Eddington limit ($M_{\text{Edd}}$) (Boroson & Green 1992; Laor et al. 1997). NLS1’s are generally radio-quiet objects, with only three previously identified radio-loud objects, PKS 0558—504 (Remillard et al. 1986), RGB J0044 + 193 (Siebert et al. 1999), and J0134.2—4258 (Grupe et al. 2000). Boroson & Green (1992) find that radio-loud QSOs and the NLS1’s (with a strong, soft X-ray excess) lie at opposite ends of the primary eigenvector. Although the criteria for NLS1’s are well defined, it is unclear whether these phenomenological attributes reflect a single underlying physical mechanism. Thus, the discovery of a very radio-loud NLS1 may indicate that the observational definition of NLS1’s requires refinement. Alternatively, radio-loud NLS1’s may provide a more stringent test of the models of NLS1’s. Three important consequences of the identification of a radio-loud NLS1 will be considered. First, are the radio-loud NLS1’s the same class of objects as most others in the class. Second, are radio-loud NLS1’s consistent with any of the popular models for NLS1’s and third, do radio-loud quasars require large mass black holes. This object challenges that assertion as is further discussed in §4.

In §2, we present the observational data on PKS 2004—447. In §3, this object is compared to the three other radio-loud NLS1’s which have been identified. The central black hole mass is determined using standard techniques in §4 and possible models for NLS1’s are discussed in §5. Finally our conclusions are presented in §6.

2. OBSERVATIONAL DATA

2.1. Optical Spectrum

PKS 2004—447 was first identified as a NLS1 candidate from a low-resolution spectrum obtained using the RGO/FORS spectrograph at the Anglo-Australian Telescope (AAT) in 1984 and published in Drinkwater et al. (1997). A higher resolution confirmation spectrum was taken using...
the double beam spectrograph (DBS) on the ANU 2.3 m tel-
scope, 2000 August 1, and is shown in Figure 1. The
conditions were not photometric. The spectrum was
reduced using standard procedures in the IRAF. The spec-
trum has a resolution of $\approx 2.2 \, \text{Å}$.

Typically, in NLS1s, Fe II emission contaminates the
spectrum making accurate measurements of H$\beta$ and [O III]
difficult. In order to account for this and to get an estimate
on the strength of the Fe II emission in this object we
employed the Fe II subtraction method introduced by
Boroson & Green (1992) and now commonly used. We use
a template Fe II spectrum taken from the prototype strong
Fe emitter I Zw 1 and scale it and shift it until the width and
intensity match those seen in our object. We did this over
the region 5050–5500 Å using a $\chi^2$-minimization to get the
best value for the scaling. We find that this spectral region
contains very little Fe II emission with an equivalent width
$EW < 10$ Å for the whole Fe II complex in the region 5050–
5450 Å. Compared to values measured in Boroson & Green
(1992), this is extremely low (although we are fitting a slight-
ly different region of the Fe II spectrum). We measured the
line widths and fluxes using Lorentzian fits to the emission
lines and the results are summarized in Table 1. The width
of H$\beta$/H$\beta_{FWHM} = 1447$ km s$^{-1}$ and the flux ratio [O III]/
H$\beta = 1.6$, fit the criteria for classification as a NLS1. The
DBS spectrum does not extend to wavelengths of the Fe II
($\lambda 4570$) lines. However, the previous low-resolution spec-
trum indicates Fe II emission in the region 4435–4700 Å,
blueward of the H$\beta$ line (Fig. 2). The low-resolution spec-
trum also shows strong H$\alpha$ and evidence for H$\gamma$ emission,
and it also indicates that the strength of the H$\beta$ emission,
relative to [O III], has varied between the two epochs.

![Fig. 1.—Rest frame, medium resolution spectrum of PKS 2004–447 from the DBS on the 2.3 m telescope at the Siding Springs Observatory, showing the H$\beta$ and [O III] region (top) and the best-fit rescaled Fe II spectrum shown below it.](image1)

![Fig. 2.—Low-resolution spectrum of PKS 2004–447 from RGO spectrograph on the AAT.](image2)

![Fig. 3.—Spectral energy distribution of PKS 2004–447. Radio data from contemporaneous observations at the ATCA (circles, unpublished data). Optical data from quasi-simultaneous observation at Siding Springs (Francis et al. 2000, squares). X-ray data from ROSAT All Sky Survey (Siebert et al. 1998, line).](image3)

PKS 2004–447 is also optically variable. The magnitude
of this object measured from the COSMOS/UKST Southern Sky Catalogue is $B_j = 18.1$, while more recent
photometry obtained on the ANU 2.3 m telescope gave
$B = 19.5$ (Francis, Whiting, & Webster 2000), indicating a
drop in flux by a factor of $\approx 4$ over an interval of several
years. Simultaneous optical/IR photometry are shown in
Figure 3. The continuum is very red, and there is no evi-
dence of a big blue bump. The absolute magnitude is
between $-19.0$ and $-21.2$, for $q_0 = 0.5$ and $H_0 = 100$,
clearly placing this in the Seyfert luminosity class.

2.2. Radio Emission

Under the selection criteria, the PHFS objects are
detected above 0.5 Jy at 2.7 GHz and with a spectral slope
$\alpha < 0.5$ ($F_{\nu} \propto \nu^{-\alpha}$) taken from nonsimultaneous obser-
vations at 2.7 GHz and 5.0 GHz. Using this method PKS
2004–447 had a 2.7 GHz flux of 0.81 Jy and a spectral
index $\alpha_r = 0.36$. Subsequent simultaneous observations of
this source were taken using the ATCA (1995 November
23), and the radio flux had varied since the Parkes obser-
vations, demonstrating long-term variability at these fre-

![Table 1: Equivalent Widths of the Emission Lines*](image4)

| Parameter | H$\beta$ (4861) | O III (4959) | O III (5007) |
|-----------|----------------|-------------|-------------|
| FWHM (km s$^{-1}$) | 1447 | 951 | 754 |
| Flux relative to H$\beta$ | 1.0 | 0.61 | 1.61 |
| EW (Å) | 31.6 | 19.6 | 50.6 |
| Offset (km s$^{-1}$) | +28 | -78 | 0 |

* Measured from the spectrum in Fig. 1; details are described in the text.
quences as well. The radio spectrum is shown in Figure 3. A power law fitted to the simultaneous data gives a spectral index $\alpha = 0.67$; thus, PKS 2004−447 is actually a steep-spectrum source. Calculating $R$, where $R$ is the ratio of radio-to-optical flux $(f_{\text{4.8GHz}}/f_{\text{R}})$ (Kellerman et al. 1989), gives values in the range $1710 < R < 6320$ depending on the value used for the optical magnitude. Obviously, this source is very radio-loud.

The radio image is unresolved in the ATCA observations. The visibility of PKS 2004−447 was measured using the Parkes-Tidbinbilla Interferometer on a 275 km baseline at 2.3 GHz (Duncan et al. 1993). The average of two measurements gave a visibility of 0.680 corresponding to an angular size of $\sim 0\arcsec036$ or $\sim 85$ pc. Since this source size is derived from a two-element interferometer, it is measured along one baseline.

There are two previous studies of the radio properties of NLS1’s. The most recent and well-defined is that of Moran (2000), who obtained high-resolution observations of 24 NLS1’s at 20 and 3.6 cm using the VLA. All but one of the sources were detected, with 20 cm fluxes up to $10^{23}$ W Hz$^{-1}$, which is higher, on average, than classical Seyferts. Moran found most NLS1’s unresolved at $\sim 1''$, with generally quite steep ($\alpha \approx 1.1$−1.2) radio spectra, though the spectral index of PKS 2004−447 is consistent with the flattest values. In other words, these could be considered as low-luminosity compact steep-spectrum (CSS) sources. There are also a few cases of variability at 20 cm, again, as seen in PKS 2004−447. Thus, PKS 2004−447 is compact, steep-spectrum, and variable in the radio, which are similar properties to other NLS1’s (Moran 2000). This is further discussed in §5.

2.3. X-Ray Emission

NLS1’s have unusual X-ray properties. They generally display a large soft X-ray excess, a steep hard X-ray spectrum, and large-amplitude X-ray variability over short and long timescales. Siebert et al. (1998) investigated the X-ray properties of the PHFS using the ROSAT All Sky Survey. PKS 2004−447 was detected with a total flux in the 0.1−2.4 keV range of $0.427 \pm 0.218 \times 10^{-12}$ ergs cm$^{-2}$ s$^{-1}$ corresponding to $L_X = 2.9 \times 10^{33}$ ergs s$^{-1}$. We find an optical-to-X-ray slope of $\alpha_{OX} = -1.2$. This is consistent with values found by Xu, Wei, & Hu (1999) for a ROSAT-selected sample of NLS1’s.

3. Previous detections of radio-loud NLS1’s

Most NLS1’s are radio-quiet, and only three radio-loud NLS1’s are known (Siebert et al. 1999). PKS 0558−504 was optically identified on the basis of X-ray positions from the High Energy Astronomical Observatory (Remillard et al. 1986). It was noted as not only having very narrow hydrogen emission lines, but also strong Fe II emission. It has a radio flux of 113 mJy at 4.85 GHz, an optical magnitude $m_B = 14.97$ and a redshift $z = 0.137$. This gives $R \approx 27$ (Siebert et al. 1999). This source exhibits strong X-ray variability on medium (months) and short (days, hours) timescales (Gliozzi et al. 2000) and an X-ray flare indicating relativistic beaming (Remillard et al. 1991).

Siebert et al. (1999) identified RGB J0044+193 as a radio-loud NLS1. RGB J0044+193 has only a moderate radio flux, but is calculated to have a radio-to-optical flux ratio $R \approx 31$. It was identified as a radio-loud X-ray source with a redshift of 0.181 in a cross-correlation of the ROSAT All-Sky Survey and the Green Bank 5 GHz radio survey (Laurent-Muehleisen et al. 1998). It has the bluest optical spectrum of any NLS1 observed to date. Siebert et al. (1999) measure an optical continuum slope of $\alpha = 1.3$ redward of 5000 Å and a slope of $-3.1$ blueward of 5000 Å, where $f_\nu \propto \nu^{-\alpha}$. This source was detected in the 87GB survey with $f_{\text{4.85GHz}} = 24$ mJy. A high-resolution follow-up using the VLA at 4.85 GHz gave a flux of only 7 mJy (Laurent-Muehleisen et al. 1997), indicating that this source is extended or variable. The latter is supported by the fact that the radio source is unresolved on the VLA map, and it is not detected at 1.4 GHz in the NROA/VLA Sky Survey, which is sensitive down to 2.5 mJy. It suggests that the classification of the source as radio-loud is uncertain. In all other respects, RGB J0044+193 is indistinguishable from radio-quiet NLS1’s.

RX J0134.2−4258 was discovered by Grupe et al. (2000) to have the stepest soft X-ray spectrum observed during the ROSAT All-Sky Survey. It has an optical magnitude of $m_V = 16.2$ and $z = 0.237$. It was detected in the PMN survey (Wright et al. 1994) with a flux of 0.055 Jy at 4.85 GHz and was subsequently reobserved at the VLA to have a flux of 0.025 Jy at 8.4 GHz. This gives a ratio of $R = 71$ and a radio spectral index of $\alpha = 1.4$ for nonsimultaneous observations. The source is highly variable in the X-ray, and there is evidence for variability at other wavelengths. The Fe II emission is strong, unlike that of PKS 2004−447.

4. BLACK HOLE MASS

There seems to be a growing consensus that a more massive black hole is needed to produce a radio-loud quasar (Laor 2000; Kaspi et al. 2000; McLure & Dunlop 2000; Peterson et al. 2000). PKS 2004−447 appears to directly conflict with this statement. Calculations of the black hole mass rely on the assumption that the dynamics of the broad-line region (BLR) gas are dominated by the central black hole. To calculate the black hole mass for this object we use the results of Kaspi et al. (2000), which are derived from a reverberation study of 17 quasars. Kaspi et al. (2000) empirically determine the linear relationship between $R_{\text{BLR}}$ and the luminosity $(L_d)$, which we use to estimate the radius of the BLR-emitting gas. From equation (5) in Kaspi et al. (2000).

$$R_{\text{BLR}} = (32.9) \left( \frac{\lambda L_d(5100 \text{ Å})}{10^{44} \text{ ergs s}^{-1}} \right)^{0.700} \text{ lt-days.} \quad (1)$$

We use the luminosity taken from a linear interpolation between photometric data points (Francis et al. 2000) at the rest wavelength of 5100 Å. Following Kaspi et al. (2000), the mass of the black hole is given by $M_{\text{BH}} = \rho v^2 r^{-2} G^{-1}$. To determine $v$, we can use $v_{\text{FWHM}}$ of the Hß emission line by a factor of $\sqrt{3}/2$ to account for velocities in three dimensions. The mass is then

$$M = 1.464 \times 10^{-8} \left( \frac{R_{\text{BLR}}}{\text{lt-days}} \right) \left( \frac{v_{\text{FWHM}}}{10^3 \text{ km s}^{-1}} \right)^2 10^6 M_\odot. \quad (2)$$

Using the cosmology $q_0 = 0.5$ and $H_0 = 100$ km s$^{-1}$ Mpc$^{-1}$, this gives us a value for the central black hole mass of 5.4 $\times 10^6 M_\odot$. This mass is 2 orders of magnitude lower than those obtained by other authors for radio-loud quasars. In a study of the black hole masses of quasars from the Boroson & Green (1992) sample, it was found that all quasars with $M_{\text{BH}} < 3 \times 10^6 M_\odot$ are radio-quiet (Laor...
The object’s radio properties fit with the definition of a compact steep-spectrum radio source (CSS) according to the definition from Fanti et al. (1995) of: $P_{10^9} > 10^{26}$ W Hz$^{-1}$; a size smaller or comparable to the optical galaxy scale; and the spectral index $\alpha > 0.5$. The CSS sources tend to have spectra with narrow emission lines typical of radio-galaxies. The broad component of $\mathrm{H}\beta$ seems to be extremely weak or absent (Morganti 1997). Gelderman & Whittle (1994) find an average value $[\mathrm{O~III}]/\mathrm{H}\beta \sim 5$ indicating that the $\mathrm{H}\beta$ flux is too weak to be a NLS1. In the study of Gelderman & Whittle (1994) all CSS sources with measurable $\mathrm{H}\beta$ are of quasar luminosity. So PKS 2004$-$447 is unusual in both categories: first, it has an optical spectrum that is unusual for a CSS source; and second, it has radio power unusual for NLS1’s.

The source is clearly in the Seyfert luminosity range, as are a significant fraction of the sources in PHFS. The differences in optical spectral properties (such as the weakness of the $\mathrm{Fe\,II}$ emission) between PKS 2004$-$447 and NLS1’s in general raise the possibility that the NLS1-defining characteristics of this source are due to a different physical mechanism from other objects in the subclass. This possibility may be resolved when an X-ray spectrum is obtained.

5.2. Physical Models

Finding unusual objects in a particular class is a useful method for distinguishing between different possible physical models. Although there have been a variety of physical models suggested for NLS1’s (see Taniguchi et al. 1999 for a summary), it seems that the model with the strongest observational support is the high accretion rate, low black hole mass model. This model suggests that NLS1’s are objects where the black hole is accreting at a rate closer to the Eddington limit compared to broad-line Seyferts. Since there is a higher rate of accretion, a given luminosity corresponds to a black hole with a smaller mass. If the size of the BLR is determined by the bolometric luminosity, then, at a given radius, the broad line clouds will have slower velocities and the emission lines will be narrower. This model was developed to explain the soft X-ray excess and the steep X-ray power law, by analogy with the X-ray spectra of galactic black hole candidates accreting in their “high” state (Pounds et al. 1995). For high accretion rates, the soft thermal emission from the disk becomes energetically dominant, producing the soft X-ray excess, and the X-ray power–law spectrum can be steepened as a result of Compton cooling of the electrons by the soft X-ray photons.

An alternative model for the narrow hydrogen lines suggests we are viewing the source near the axis of the accretion disk. If the velocity width of the hydrogen emission lines is dominated by the rotation of the accretion disk, then they will appear narrow. The radio emission in PKS 2004$-$447 is a moderately steep spectrum, which weakens the argument that we observe this source near the axis. Indeed, it also weakens arguments which suggest that the radio emission is strongly boosted by beaming. However, the radio source is very compact, with no evidence at any frequency for double-lobed emission.

6. Conclusion

PKS 2004$-$447, detected in the PHFS, is an unusual source. To summarize the major points regarding
PKS 2004 – 447:

1. It has Hβ width and strength consistent with being classified as a NLS1 as defined by Osterbrock & Pogge (1985).

2. Its radio properties are very unusual for a Seyfert galaxy having the following characteristics: very strong radio flux, 0.81 Jy at 2.7 GHz; very radio-loud, $R > 1700$; steep radio spectral index $\alpha_r = 0.67$; compact radio source; some evidence of long-term variability. These properties are consistent with it being classified as a compact steep-spectrum source.

3. It has been detected in the RASS with a flux $0.427 \times 10^{-12}$ ergs cm$^{-2}$ s$^{-1}$ but no spectral information is available.

4. Following the procedure set out by Kaspi et al. (2000), we calculate the black hole mass to be $5.4 \times 10^6 M_\odot$. This mass is more than 2 orders of magnitude lower than those seen previously for radio-loud AGNs and challenges previous results that a large black hole mass is needed to produce radio-loud AGNs.

Additional observations of the X-ray spectrum will further constrain models and may provide evidence that the black hole is accreting at a rate closer to the Eddington limit. This would be an indication that the underlying physical mechanism in this object is similar to those in other NLS1's and that the radio power of the object is actually connected to a different parameter.

We wish to thank Dirk Grupe for providing us with the Fe II template used in the analysis.

REFERENCES

Boroson, T. A., & Green, R. F. 1992, ApJS, 80, 109
Drinkwater, M. J., Webster, R. L., Francis, P. J., Condon, J. J., Ellison, S. L., Jauncey, D. L., Lovell, J., Peterson, B. A., & Savage, A. 1997, MNRAS, 284, 85
Duncan, R. A., White, G. L., Wark, R., Reynolds, J. E., Jauncey, D. L., Norris, R. P., Taaffe, L., & Savage, A. 1993, Proc. Astron. Soc. Australia, 10, 310
Falcke, H., Patnaik, A. R., & Sherwood, W. 1996, ApJ, 473, L13
Fanti, C., Fanti, R., Dallacasa, D., Schilizzi, R. T., Spencer, R. E., & Stanghellini, C. 1995, A&A, 302, 317
Francis, P. J., Whiting, M. T., & Webster, R. L. 2000, Publ. Astron. Soc. Australia, 17, 56
Gelderman, R., & Whittle, M. 1994, ApJS, 91, 491
Glozozi, M., Boller, Th., Brinkmann, W., & Brandt, W. N. 2000, A&A, 356, L17
Grupe, D., Leighly, K. M., Thomas, H.-C., & Laurent-Muehleisen, S. A. 2000, A&A, 356, 11
Kaspi, S., Smith, P. S., Netzer, H., Maoz, D., Jannuzi, B. T., & Giveon, U. 2000, ApJ, 533, 631
Kellerman, K. I., Sramek, R., Schmidt, M., Shaffer, D. B., Green, R. 1989, AJ, 98, 1195
Laor, A. 2000, ApJ, 543, L111
Laor, A., Fiore, F., Elvis, M., Wilkes, B. J., & McDowell, J. C. 1997, ApJ, 477, 93
Laurent-Muehleisen, S. A., Kollgaard, R. I., Ciardullo, R., Feigelson, E. D., Brinkmann, W., & Siebert, J. 1998, ApJS, 118, 127
Laurent-Muehleisen, S. A., Kollgaard, R. I., Ryan, P. J., Feigelson, E. D., Brinkmann, W., & Siebert, J. 1997, A&AS, 122, 235
McLure, R. J., & Dunlop, J. S. 2001, MNRAS, in press (astro-ph/0009406)
Moran, E. C. 2000, NewA Rev., 44, 527
Morganti, R., Tadhunter, C. N., Dickson, R., Shaw, M. 1997, A&A, 326, 130
Osterbrock, D. E., & Pogge, R. W. 1985, ApJ, 297, 166
Peterson, B. M., et al. 2000, ApJ, 542, 161
Pounds, K. A., Done, C., & Osborne, J. P. 1995, MNRAS, 277, L5
Remillard, R. A., Bradt, H. V., Buckley, D. A. H., Roberts, W., Schwartz, D. A., Tuohy, I. R., & Wood, K. 1986, ApJ, 301, 742
Remillard, R. A., Grossan, B., Bradt, H. V., Ohashi, T., & Hayashida, K. 1991, Nature, 350, 589
Siebert, J., Brinkman, W., Drinkwater, M. J., Yuan, W., Francis, P. J., Peterson, B. A., & Webster, R. L. 1998, MNRAS, 301, 261
Siebert, J., Leighly, K. M., Laurent-Muehleisen, S. A., Brinkman, W., Boller, Th., & Matsuoka, M. 1999, A&A, 348, 678
Taniguchi, Y., Murayama, T., & Nagao, T. 1999, preprint (astro-ph/9910036)
Webster, R. L., Francis, P. J., Peterson, B. A., Drinkwater, M. J., & Masci, F. J. 1995, Nature, 375, 469
Wright, A. E., Griffith, M. R., Burke, B. F., & Ekers, R. D. 1994, ApJS, 91, 111
Xu, D. W., Wei, J. Y., & Hu, J. Y. 1999, ApJ, 517, 622