Abstract: Recently, the nullity, the algebraic multiplicity of the number zero in the spectrum of the adjacency matrix, of a molecular graph has received a lot of attention as it has a number of direct applications in organic chemistry. In this regard, many researchers have been trying to find an upper or lower bound for the maximum nullity (minimum rank), \(M(G) \) (\(mr(G) \)), for a graph \(G \). In this paper, using a well-known result which presents the spectrum of a Cayley graph in terms of irreducible characters of the underlying group, and using representation and character of groups, we give a lower bound for the maximum nullity of Cayley graph, \(X_S(G) \), where \(G = \langle a \rangle \) is a cyclic group, or \(G = G_1 \times \cdots \times G_t \) such that \(G_1 = \langle a \rangle \) is a cyclic group and \(G_i \) is an arbitrary finite group, for \(2 \leq i \leq t \), with determine the spectrum of Cayley graphs.
The set of symmetric matrices of graph G is the set $S(G) = \{ A \in S_n(\mathbb{R}) : H(A) = G \}$. The minimum rank of a graph was first introduced by AIM Minimum Rank-Special Graphs Work Group (2008) and is defined to be the minimum cardinality between the rank of symmetric matrices in $S(G)$ and denoted by $mr(G)$. Similarly, the maximum nullity of G is defined to be the maximum cardinality between the nullity of symmetric matrices in $S(G)$ and is denoted by $M(G)$. Clearly, $mr(G) + M(G) = n$.

One of the most interesting problems on minimum rank is to characterize $mr(G)$ for graphs. In this regard, many researchers have been trying to find an upper or lower bound for the minimum rank.

Let G be a group, and let S be a subset of G that is closed under taking inverse and does not contain the identity, e. Then the Cayley graph, $X_S(G)$, is the graph with vertex set G and edge set $E = \{ g_1 \sim g_2 : g_1 g_2^{-1} \in S \}$.

Since S is inverse closed and does not contain the identity, it is a simple fact that $X_S(G)$ is undirected and has no loop.

In Babai (1979) presented the spectrum of a Cayley graph in terms of irreducible characters of the underlying group G. The following important theorem was the result of this paper.

Theorem 1.1 (Babai, 1979) Let G be a finite group of order n whose irreducible characters (over \mathbb{C}) are x_1, \ldots, x_h with respective degree n_1, \ldots, n_h. Then the spectrum of the Cayley graph $X_S(G)$ can be arranged as $\nu = \{ \lambda_{1j} : 1 \leq j \leq h; k = 1, \ldots, n_1 \}$ such that $\lambda_{11} = \ldots = \lambda_{1n_1}$ (this common value will be denoted by λ_{1}), and

$$\lambda_{1} + \ldots + \lambda_{m} = \sum_{\substack{1 \leq i_1 \leq \ldots \leq i_t \leq h}} x_{i_1} \prod_{i=1}^{t} S_{i_1}$$

for any natural number t.

In this paper, using a well-known result of Babai (1979), we give a lower bound for the maximum nullity of Cayley graph $X_S(G)$, where $G = \langle a \rangle$ is a cyclic group, or $G = G_1 \times \cdots \times G_t$ such that $G_1 = \langle a \rangle$ is a cyclic group and G_i is an arbitrary finite group, for some $2 \leq i \leq t$, with determine the spectrum of Cayley graphs.

2. Preliminaries

For any positive integer n, define M"obius number, $\mu(n)$, as the sum of the primitive n^{th} roots of unity. It has values in $\{-1, 0, 1\}$ depending on the factorization of n into prime factors.
(1) \(\mu(1) = 1 \),
(2) \(\mu(n) = 0 \), if \(n \) has a squared factor,
(3) \(\mu(n) = (-1)^k \), if \(n \) is a square free with \(k \) number of prime factors.

Suppose that \(k \) is a positive integer. The number of solutions of \(y_1 + \cdots + y_r = t \) \((mod \ k)\), where \(y_1, \ldots, y_r \) and \(t \) are belonged to the least non-negative residue system modulo \(k \), is obtained in terms of the von sterneck function, \(\Phi(n, k) \). In particular, von Sterneck studied the case where the polynomial resulting from the expansion is reduced modulo a positive integer. This function is used in several equivalent forms and in the form used by Hölder (1936),

\[
\Phi(k, n) = \frac{\phi(n)}{\phi(n/(n, k))} \mu(n/(n, k)),
\]

where \(k \) and \(n \) are positive integers, \((n, k) \) is the greatest common divisor of \(k \) and \(n \), \(\phi(n) \) is the Euler totient, and \(\mu(n) \) is the Möbius number. In the sequel, the following fundamental result is obtained by Hölder.

\[
\Phi(r, n) = \sum_{r, n-1} \exp(2\pi i r k / n).
\]

This properties was also studied by Daublebsky Von Sterneck , (1902), Nicol and Vandiver , (1954), and Apostol (1972).

Suppose that \(B(k, n) = \{ t \in \mathbb{N} : t \leq n \text{, } (t, n) = k \} \), and let \(\omega = \exp(2\pi i / n) \). Then the following function is called Ramanujan sum and is denoted by \(C(r, n) \).

\[
\sum_{k \in B(1, n)} \omega^k, 0 \leq r \leq n - 1,
\]

In Ramanujan (2000), it was obtained that \(C(r, n) \) have only integral values, for some positive integers \(r \) and \(n \). Also, (5) and (6) state that \(\Phi(r, n) = C(r, n) \).

Lemma 2.1 Suppose that \(n > 1 \) and \(d > 1 \) are two positive integers such that \(d | n \). Also, let \(B(d, n) = \{ t \in \mathbb{N} : t \leq n \text{, } (t, n) = d \} \). Then

If \(t \in B(d, n) \), then \(C(t, n) = C(d, n) \),

\[
|B(d, n)| = \phi(n/d).
\]

Proof. The proof is straightforward.

Theorem 2.1 (Adams & Goldstein, 1976) For Euler totient \(\phi \) and positive integer \(n \), we have \(\sum_{d \mid n} \phi(d) = n \).

Lemma 2.2 (James & Liebeck, 1993) The irreducible character of \(G \times H \) is \(\chi \times \psi \) such that \(\chi \) and \(\psi \) are the irreducible characters of \(G \) and \(H \), respectively. The value of \(\chi \times \psi \) for any \(g \in G \) and \(h \in H \) is \((\chi \times \psi)(g, h) = \chi(g) \psi(h) \).

Lemma 2.3 (James & Liebeck, 1993) Let \(G = \langle a \rangle \) be a cyclic group of order \(n \). Then irreducible characters of \(G \) are \(\rho_j(a^k) = \omega^{jk} \), where \(j, k = 0, 1, \ldots, n - 1 \).

3. Main theorems

In the following theorem, we determine the spectrum of Cayley graph \(X_2(G) \) whose \(G \) is a cyclic group of order \(n \). Here, we define \(F(n) = (-1)^k \phi(n)/\phi(n_j) \), where \(k \) is the number of prime factors in the decomposition of \(n_j \).
Theorem 3.1 Let \(n \) be a positive integer and \(D \) be its divisors set. Also, let \(G = \langle a \rangle \) be a cyclic group of order \(n \) and \(S = \{ a^i : i \in B(1, n) \} \). Then

\[
\text{spec}(X_s(G)) = \left[\phi(n)^3, D \sum_{d \mid n} \phi(d), F(d_i), \ldots, F(d_i)^\phi(d_i) \right],
\]

where \(X = \{ d \in D : p^\alpha \mid d \} \), for a prime \(p \); and \(d_i \in D \setminus X \), for some \(1 \leq i \leq t \).

Proof. First, suppose that \(n \) is a prime number. Thus \(X_s(G) \) is isomorphic to the complete graph \(K_{n^2} \) and so

\[
\text{spec}(X_s(G)) = \left[(p - 1)^3, -1^{(p-1)} \right].
\]

(7)

Now, consider the case in that \(n \) is not prime. Let \(\lambda_{\pi} \) be the eigenvalue of \(X_s(G) \) corresponding to character of \(X_{G_{\pi}} \), for some \(d_i \in D \). By Lemma 1.1, \(\lambda_{\pi} \equiv C(n^2, n) \), and by the form used by Hölder in (4), we have

\[
\lambda_{\pi} = \frac{\phi(n)}{\phi(d_i)} \mu(d_i).
\]

(8)

On the other hand, lemma 2.1 implies that the multiplicity of \(\lambda_{\pi} \) is equal to \(\phi(d_i) \). If \(d_i = 1 \), then \(\lambda_{\pi} = \phi(n) \) with multiplicity 1. Also, if \(p^\alpha \mid d_i \), then definition of Möbius number implies that \(\lambda_{\pi} = 0 \). For other cases, \(\lambda_{\pi} = F(d_i) \).

The following theorem, which is proven by Akbari & Vatandoost (2017), help us to make a connection between the multiplicity of the eigenvalues of a graph \(G \) and its maximum nullity \(M(G) \).

Theorem 3.2 (Akbari, Vatandoost & Golkhandy Pour, 2017) Let \(G \) be a graph of order \(n \), and let \(\lambda \) be its eigenvalue with respective multiplicity \(n \), then \(M(G) \geq n \).

As a result, Theorems 3.1 and 3.2, state the following corollary.

Corollary 3.2.1 Let \(n \) be a positive integer and \(D \) be its divisors set. Also, let \(G = \langle a \rangle \) be a cyclic group of order \(n \), and let \(S = \{ a^i : i \in B(1, n) \} \). For some prime \(p \) and \(d_i \in D \), the followings are established.

1. If \(n \) has a squared factor, then \(M(X_s(G)) \geq \max \left\{ \sum_{d_i \mid p} \phi(d_i), \phi(d_i) \right\} \).
2. If \(n \) is a square free, then \(M(X_s(G)) \geq \phi(d_i) \).

Definition 3.1 Let \(G \) be a group, and let \(S \) be a subset of \(G \). Also, let \(\Lambda = \{ \chi_1, \ldots, \chi_r \} \) be the set of irreducible characters of degree 1 of \(G \). A character \(\chi_i \in \Lambda \) is defined to be an \(\varepsilon \)-index character of \(G \), if it has the same value \(\varepsilon \) on all letters in \(S \); in other words, \(\chi_i \in \Lambda \) is an \(\varepsilon \)-index character of \(G \) if \(\chi(S_j) = \varepsilon \), for all \(s_j \in S \). In the sequel, the \(\varepsilon \)-index number of \(G \) is defined to be the number of \(\varepsilon \)-index characters of \(G \) and is denoted by \(N_\varepsilon(G) \).

Theorem 3.3 Let \(n \) be a positive integer whose divisors set is denoted by \(D \). Also, let \(G_s = \langle a \rangle \) be a cyclic group of order \(n \), and let \(S = \{ a^i : i \in B(1, n) \} \). Suppose that \(G_1, \ldots, G_r \) are some arbitrary finite groups, and let \(S_k \) is a subset of \(G_s \), for some \(2 \leq k \leq t \). If \(S = \{ a_1, a_2, \ldots, a_t \} \), then for some prime \(p \) and \(d_i \in D \), the followings are established.
Lemma 2.2 implies that for some \(n \) and if \(n \) is divided by a prime number, then \(n \) has a square factor, then

\[
\lambda_{\frac{\pi}{t}; 1} \cdots j = \sum_{\langle g_1, \ldots, g_{t}\rangle \in S} (\chi_{\frac{\pi}{t}} \times \rho_{g_1} \times \cdots \times \rho_{g_{t}})(g_1, \ldots, g_{t})
\]

(1) If \(n \) has a square factor, then

\[
M(X_{\omega}(G_1 \times \cdots \times G_{t})) \geq \max \left\{ \left(\prod_{n=2}^{t} \left(N_{G_{n}(\epsilon_{\omega})} | S_{n} | \right) \right) \left(\sum_{\phi(\mathcal{J})} \phi(\phi_{\mathcal{J}}) \right) \left(\prod_{n=2}^{t} \left(N_{G_{n}(\epsilon_{\omega})} | S_{n} | \right) \right) \left(\phi(d_{\mathcal{J}}) \right) \right\}.
\]

(2) If \(n \) is a square free, then

\[
M(X_{\omega}(G_1 \times \cdots \times G_{t})) \geq \left(\prod_{n=2}^{t} \left(N_{G_{n}(\epsilon_{\omega})} | S_{n} | \right) \right) \left(\phi(d_{\mathcal{J}}) \right).
\]

Proof. For some \(2 \leq k \leq t \), suppose that \(\rho_{g_{k}} \) are the \(\ell \)-index irreducible characters with degree 1 of \(G_{n} \), and let \(\chi_{\frac{\pi}{t}} \) be an irreducible character of \(G_{t} \). Let \(\lambda_{\frac{\pi}{t}; j} \) and \(\lambda_{\frac{\pi}{t}} \) be the eigenvalues of \(X_{\omega}(G_1 \times \cdots \times G_{t}) \) and \(X_{\omega}(G_{t}) \) corresponding to irreducible characters of \(\chi_{\frac{\pi}{t}} \times \rho_{g_{1}} \times \cdots \times \rho_{g_{t}} \) and \(\chi_{\frac{\pi}{t}} \) respectively. Lemma 2.2 implies that

\[
\lambda_{\frac{\pi}{t}; j} = \sum_{\langle g_1, \ldots, g_{t}\rangle \in S} (\chi_{\frac{\pi}{t}} \times \rho_{g_{1}} \times \cdots \times \rho_{g_{r}})(g_1, \ldots, g_{t})
\]

\[
= \sum_{\langle g_1, \ldots, g_{t}\rangle \in S} (\chi_{\frac{\pi}{t}}(g_1) \times \rho_{g_{2}}(g_{2}) \times \cdots \times \rho_{g_{t}}(g_{t}))
\]

\[
= \left(\prod_{k=2}^{t} \left(N_{G_{k}(\epsilon_{\omega})} | S_{k} | \right) \right) \sum_{s_{j} \in S_{j}} (\chi_{\frac{\pi}{t}}(s_{j})).
\]

We have,

\[
\lambda_{\frac{\pi}{t}; j} = \left(\prod_{k=2}^{t} \left(N_{G_{k}(\epsilon_{\omega})} | S_{k} | \right) \right) (\lambda_{\frac{\pi}{t}}).
\]

Hence, by Theorem 3.1, if \(n \) is a square free, then \(\lambda_{\frac{\pi}{t}; j} \) is an eigenvalue of \(X_{\omega}(G_1 \times \cdots \times G_{t}) \) with multiplicity

\[
\left(\prod_{k=2}^{t} \left(N_{G_{k}(\epsilon_{\omega})} | S_{k} | \right) \right) (\phi(d_{\mathcal{J}})),
\]

(11)

and if \(n \) is divided by a prime number, then \(\lambda_{\frac{\pi}{t}; j} \) is an eigenvalue of \(X_{\omega}(G_1 \times \cdots \times G_{t}) \) with multiplicity

\[
\left(\prod_{k=2}^{t} \left(N_{G_{k}(\epsilon_{\omega})} | S_{k} | \right) \right) (\phi(d_{\mathcal{J}})),
\]

(12)

where \(\lambda_{\frac{\pi}{t}} \neq 0 \), or with multiplicity

\[
\left(\prod_{k=2}^{t} \left(N_{G_{k}(\epsilon_{\omega})} | S_{k} | \right) \right) \left(\sum_{\phi^{\mathcal{J}}} \phi(d_{\mathcal{J}}) \right),
\]

(13)

where \(\lambda_{\frac{\pi}{t}} \neq 0 \). Therefore, theorem 3.2, completed the proof. \(\square \)

We use theorem 3.3 and consider the maximum nullity of dihedral groups \(D_{4r} \) with presentation

\[
\langle a, b : a^{n} = b^{2} = e, (ab)^{2} = e \rangle,
\]

(14)
where \(n = 2m + 1 \) is odd. In this case, \(D_n \) has \(m \) irreducible character of degree 2 and 2 characters of degree 1. See Table 1, for more details.

Example 1 Let \(G = \langle g \rangle \) be a group of odd order \(n \), and let \(S = \{ (g', a') : g' \in G, a' \in D_n, i, j \in B(1, n) \} \). Obviously, \(\chi_{m+1} \) and \(\chi_{m+2} \) are two 1-index irreducible characters of \(D_n \), and so \(N_{D_n}(1) = 2 \). Hence, by Theorem 3.3, we have

\[
M(X_2(G \times D_n)) \geq \max \left\{ 2\phi(n) \left(\sum_{i \neq d_i} \phi(d_i) \right), 2\phi(n) \left(\phi(d_i) \right) \right\}.
\]

(1) If \(n \) has a square factor, then

(2) If \(n \) is square free, then \(M(X_2(G \times D_n)) \geq 2\phi(n) \left(\phi(d_i) \right) \).

Funding
The authors are very grateful to the referee for his/her useful comments. This research was partially supported by the Imam Khomeini International University.

Author details
E. Vatandoost¹
E-mail: vatandoost@sci.ikiu.ac.ir
Y. Golkhandy Pour¹
E-mail: ygolkhandypour@edu.ikiu.ac.ir
¹ Faculty of Science, Department of Mathematics, Imam Khomeini International University, Qazvin, Iran.

Citation information
Cite this article as: Maximum nullity of some Cayley graphs, Y. Golkhandy Pour & E. Vatandoost, Cogent Mathematics & Statistics (2018), 5: 1462658.

References
Adams, W. W., & Goldstein, L. J. (1976). Introduction to Number Theory. Upper Saddle River: Prentice-Hall, Inc.
AIM Minimum Rank-Special Graphs Work Group. (2008). Zero forcing sets and the minimum rank of graphs. Linear Algebra and its Applications, 428, 1628-1648.
Akbari, S., Vatandoost, E., & Golkhandy Pour, Y. (2017). Maximum nullity and zero forcing number on cubic graphs. arxiv:submit/1904157.
Apostol, T. M. (1972). Arithmetical properties of generalized ramanujan sum. Pacific Journal of Mathematics, 41(2), 281-293.
Babai, L. (1979). Spectra of cayley graphs. Journal of Combinatorial Theory, 27, 180-189.
Biggs, N. (1993). Algebraic Graph Theory. London: Cambridge University Press.
Doublesky Von Sterneck, R. (1903). Ein Analogon zur additiven Zahlentheorie. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Math. naturw. Klasse Abt. I, 111, 1567-1601.
Hölder, O. (1936). Zur Theorie der Kreisteilungsungleichung \(K_n(x) = 0 \). Prace Matematyczno Fizyczne, 43, 13-23.
James, G., & Liebeck, M. (1993). Representations and characters of groups. Cambridge: Cambridge University Press.
Nicol, C. A., & Vandiver, H. S. (1954). A Von Sterneck arithmetical function and restricted partitions with respect to a modulus. Proceedings of the National Academy of Sciences, 40, 825-835.
Ramanujan, S. (2000). On certain trigonometrical sums and their applications in the theory of numbers [Trans. Cambridge Philos. Soc. 22 (1918), no. 13, 259–276]. Collected papers of Srinivasa Ramanujan. Providence, RI: AMS Chelsea Publ. (pp. 179–199)
