Vacuum stability of the effective Higgs potential in the Minimal Supersymmetric Standard Model

Markus Bobrowski,1 Guillaume Chalons,1,2 Wolfgang G. Hollik,1,3 and Ulrich Nierste1,4

1 Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology, Engesserstraße 7, 76128 Karlsruhe, Germany
2 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble, France

The parameters of the Higgs potential of the Minimal Supersymmetric Standard Model (MSSM) receive large radiative corrections which lift the mass of the lightest Higgs boson to the measured value of 126 GeV. Depending on the MSSM parameters, these radiative corrections may also lead to the situation that the local minimum corresponding to the electroweak vacuum state is not the global minimum of the Higgs potential. We analyze the stability of the vacuum for the case of heavy squark masses as favored by current LHC data. To this end we first consider an effective Lagrangian obtained by integrating out the heavy squarks and then study the MSSM one-loop effective potential V_{tree}, which comprises all higher-dimensional Higgs couplings of the effective Lagrangian. We find that only the second method gives correct results and argue that the criterion of vacuum stability should be included in phenomenological analyses of the allowed MSSM parameter space. Discussing the cases of squark masses of 1 and 2 TeV we show that the criterion of vacuum stability excludes a portion of the MSSM parameter space in which $|\mu \tan \beta|$ and $|A_{1}|$ are large.

PACS numbers: 12.60.Jv, 14.80.Da

I. INTRODUCTION

The Higgs sector of the Minimal Supersymmetric Standard Model (MSSM) comprises two Higgs doublets H_u and H_d with tree-level Yukawa couplings to up-type and down-type fermions, respectively. Their self-interaction is described by a special version of the Higgs potential of a two-Higgs-doublet model (2HDM) [1, 2]:

$$V = m_{11}^2 H_u^\dagger H_d + m_{22}^2 H_u^\dagger H_u + m_{12}^2 H_u^\dagger H_d + \text{h.c.}$$

$$+ \frac{\lambda_1}{2} |H_u^\dagger H_d|^2 + \frac{\lambda_3}{2} |H_u^\dagger H_u|^2 + \lambda_3 (H_u^\dagger H_u)(H_d^\dagger H_d)$$

$$+ \lambda_4 (H_u^\dagger H_u)(H_d^\dagger H_d) + \left(\frac{\alpha_0}{2} (H_u^\dagger H_d) \right)^2$$

$$- \lambda_6 (H_u^\dagger H_d)(H_u^\dagger H_d) - \lambda_7 (H_u^\dagger H_u)(H_u^\dagger H_d) + \text{h.c.} \right).$$

The neutral components of $H_{u,d}$ acquire vacuum expectation values (vevs) $v_{u,d}/\sqrt{2}$ satisfying $\sqrt{v_u^2 + v_d^2} = v \approx 246$ GeV. In the MSSM the tree-level values for the self-couplings $\lambda_{1,...,4}$ are fixed in terms of small gauge couplings and those of $\lambda_{5,...,7}$ vanish altogether. As a consequence, the mass of the lightest Higgs boson h^0 cannot exceed the Z-boson mass at tree level. Radiative corrections can lift m_{h^0} well above m_Z and must indeed be large, if the discovered Higgs boson with a mass of 125 GeV is identified with h^0. The largest radiative corrections to m_{h^0} involve the top Yukawa coupling Y_t and stem from loop diagrams with stops or tops. Diagrammatic two-loop [3, 4, 8] and three-loop [10, 11] corrections to m_{h^0} are implemented in the public computer programs FeynHiggs [8, 12–15] and H3m [11], respectively. No stops at the LHC have been found, suggesting that the masses m_{t_1}, m_{t_2} of the two stop eigenstates are well above the electroweak scale v. Heavy stops require large values for the bilinear supersymmetry-breaking terms $m_{t_{1,2}}^2$, which are the diagonal elements of the stop mass matrix. In the limit $m_{t_{1,2}}^2 > v$ one can integrate out the heavy stops to find an effective 2HDM Lagrangian $L_{2\text{HDM}} \supset -V$, which encodes the stop effects in terms of effective parameters \tilde{m}_t^2 and $\tilde{\lambda}$. To derive V one must calculate diagrams with two or four external Higgs lines and a stop loop. The λ_i receive shifts proportional to Y_t^4 which are crucial to lift m_{h^0} to the measured value. If $\tan \beta = v_u/v_d$ (or the trilinear supersymmetry-breaking term A_{1}) is large, also bottom loops must be considered. An exhaustive analysis, matching the MSSM with heavy superpartners onto a 2HDM at the full one-loop level can be found in [10]. Denoting the masses of the top and bottom squarks generically with $M_{\tilde{t}}$, the Higgs masses and couplings calculated from the effective 2HDM reproduce the results of the diagrammatic calculation as an expansion in $1/M_{\tilde{t}}^2$. The accuracy of this expansion can be improved by adding terms of higher dimension to [11] obtained from loop diagrams with more external legs as shown in Fig. 1. Effective Lagrangians permit the resummation of large logarithms $\ln(M_{\tilde{q}}/v)$ to all orders in perturbation theory by solving the renormalization-group (RG) equations for the parameters. Note that the top quark is not integrated out, $L_{2\text{HDM}}$ contains the full field content of the 2HDM and e.g. top-loop contributions to the Higgs mass matrix are calculated from $L_{2\text{HDM}}$. The effective 2HDM lagrangian reproduces the low-
energy \((E \ll \tilde{M}_q)\) phenomenology of the MSSM for the case \(v, m_{h^0}, m_{A^0}, m_{H^0}, m_{H^\pm} \ll \tilde{M}_q\). The Yukawa sector of \(\mathcal{L}_{2HDM}\) has been widely studied \([16-33]\), while little attention has been devoted to the Higgs self-interaction in \(V\). Instead, effective-Lagrangian studies (typically addressing calculations of \(m_{h^0}\)) have used a Higgs potential with a single Higgs doublet, describing instead the hierarchy \(v, m_{h^0} \ll m_{A^0}, m_{H^0}, m_{H^\pm}, \tilde{M}_q\), i.e. integrating out the heavy non-standard Higgs fields at the same scale as the heavy superpartners \([34, 35]\). In \([15]\) the diagrammatic two-loop result for \(m_{h^0}\) of \([13]\) is complemented with the leading and next-to-leading logarithms \(\ln(\tilde{M}_q/v)\) of higher orders found from the RG analysis of the single-Higgs-doublet Lagrangian in \([34, 36]\). The corresponding result is implemented in the current version 2.10.0 of \textsc{FeynHiggs}. Other public computer codes incorporating two-loop accuracy for the Higgs boson mass are \textsc{Softsusy} \([37]\), \textsc{SuSpect} \([38]\) and \textsc{SPheno} \([39]\).

Depending on the values of the \(\lambda_i\) the 2HDM potential in \([1]\) may be unbounded from below (UFB) or may develop an unwanted global minimum rendering “our” vacuum state with \(v = 246\) GeV unstable. The parameter ranges complying with vacuum stability have been identified in \([2, 40]\) and the corresponding constraints on \(m^2_{ii}\) and \(\lambda_i\) are routinely included in phenomenological analyses of 2HDM (see e.g. \([41, 44]\)). These vacuum stability constraints can also be imposed on the effective \(\mathcal{L}_{2HDM}\) obtained from the MSSM by integrating out heavy squarks. In this paper we show that there are indeed ranges for the MSSM parameters for which \(V\) in \([1]\) is unbounded from below. However, when \(V\) drops below its local minimum with \(v = 246\) GeV the Higgs fields are so large that the higher-dimensional corrections to \(V\) depicted in Fig. \([1]\) become important. All these contributions can be resummed and constitute a piece of the effective Coleman-Weinberg potential \([45]\). In \([46-48]\) the multiple minima of the full tree-level scalar potential have been surveyed in great detail and strong constraints on their existence were derived. Analyses allowing the electroweak vacuum to be metastable, with a lifetime exceeding the age of the universe, have been performed in \([49-54]\). While the effective Higgs potential for the MSSM has been widely studied \([34, 35, 55-63]\) with focus on Higgs masses, the criterion of vacuum stability of the loop-corrected Higgs potential has previously not been applied to constrain the MSSM parameter space. The studies performed in \([53, 54, 64]\) used the \textsc{Vevacious} code to exploit the vacuum stability constraint on the parameter space. This code makes use of the effective Coleman-Weinberg potential but only in the vicinity of all the vacua found by minimization of the tree-level scalar potential. However, this procedure does not guarantee to find minima induced purely by radiative effects \([53]\), which is precisely the topic we analyze in this paper.

This paper is organized as follows: In Sec. \([II]\) we rederive the effective potential of the MSSM and discuss some of its properties. In Sec. \([III]\) we illustrate the main result of this paper, a novel constraint on the MSSM parameter space from the requirement of vacuum stability. Finally we conclude.
II. EFFECTIVE LAGRANGIAN AND EFFECTIVE POTENTIAL

Once we integrate out the heavy top and bottom squarks we find the effective Lagrangian

\[\mathcal{L}_{\text{Higgs}}^{\text{2HDM}} = \mathcal{L}_{\text{kin}} - V + \mathcal{L}_{\text{der},D \geq 6} - V_{D \geq 6} \]

(2)

with the kinetic term \(\mathcal{L}_{\text{kin}} \), the Higgs potential \(V \) of \([1]\), and the contribution from higher-dimensional operators \(\mathcal{L}_{\text{der},D \geq 6} - V_{D \geq 6} \). The former term \(\mathcal{L}_{\text{der},D \geq 6} \) contains operators of dimension 6 and higher with at least two derivatives acting on the Higgs fields. One effect of \(\mathcal{L}_{\text{der},D \geq 6} \) are contributions suppressed by one or more powers of \(1/M_4^2 \) to the field renormalization constants of the physical Higgs fields. (These renormalization constants can be matrices, permitting kinematic mixing of different Higgs fields.) This effect matters for the expression of the doublet components in terms of physical fields, but is of no relevance for the discussion of global properties of the Higgs potential in this paper. Other ingredients of \(\mathcal{L}_{\text{der},D \geq 6} \) are derivative couplings and couplings to gauge fields, which are also irrelevant for our analysis. The Higgs potential \(V + V_{D \geq 6} \) contains the usual bilinear and quadrilinear tree-level contributions and the loop contributions depicted in Fig. [1]. If the effective Lagrangian is used to calculate Higgs masses and mixing angles, the series of higher-dimensional terms in \(\mathcal{L}_{\text{2HDM}} \) will give corrections which quickly decrease with powers of \(1/M_4^2 \).

Our purpose, however, is to study global properties of \(V + V_{D \geq 6} \) and \(V_{D \geq 6} \) can be sizable in the range of large Higgs field amplitudes. It is well-known how to resum the contributions with \(D = 6, 8, 10 \ldots \), the result is the squark contribution to the effective potential. The concept of the effective potential does not require a mass hierarchy between the particles running in the loop and the external Higgs bosons and indeed the original application of Coleman and Weinberg [15] involves a massless field in the loop. The focus of Fig. 4 is the generation of a small dynamical Higgs mass in a theory with zero tree-level mass through spontaneous symmetry breaking induced by quantum effects, which are subsumed in the effective potential. Instead the scope of our paper is the destabilization of the tree-level MSSM Higgs potential by very heavy particles (top and bottom squarks). Still, as in the original paper we use the effective potential to "survey all possible vacua simultaneously" [45].

In Sec. II A we calculate the higher-dimensional couplings of neutral Higgs bosons in \(V_{D \geq 6} \). In Sec. II B we summarize some of the conceptual aspects of the effective potential and show that the one-loop effective potential of the MSSM [56] indeed reproduces the couplings derived in Sec. II A correctly.

A. Effective 2HDM Lagrangian

The two SU(2) doublet Higgs fields of the MSSM are

\[H_u = \begin{pmatrix} h_u^+ \\ h_u^0 \end{pmatrix}, \quad H_d = \begin{pmatrix} h_d^0 \\ -h_d^- \end{pmatrix} \]

(3)

with hypercharges +1/2 and −1/2, respectively, and vevs \(\langle h_u^0 \rangle = v_u/\sqrt{2} \) and \(\langle h_d^0 \rangle = v_d/\sqrt{2} \). As usual we define their ratio as \(\tan \beta = v_u/v_d \). The most general renormalizable Higgs potential \(V \) of an arbitrary 2HDM [1, 2] is given in (11) above, where \(a \cdot b = a^T b \) and \(\epsilon \) denotes the totally antisymmetric tensor with \(\epsilon_{123} = +1 \). At tree-level, \(V \) is unambiguously determined by \(F \)- and \(D \)-terms and the soft supersymmetry breaking Lagrangian:

\[m_{11}^2 = |\mu|^2 + m_H^2, \quad \lambda_{12}^{\text{tree}} = -\lambda_3^{\text{tree}} = \frac{g^2 + g'^2}{4}, \]

(4)

\[m_{22}^2 = |\mu|^2 + 2m_H^2, \quad \lambda_5^{\text{tree}} = \frac{g'^2}{2}, \]

\[m_{12}^2 = B_{\mu}, \quad \lambda_3^{\text{tree}} = 0. \]

With the minimization conditions one can eliminate \(m_{11}^2 \) and \(m_{22}^2 \) in terms of \(v \) and \(\beta \). At tree-level, these relations read

\[m_{11}^2 = m_{12}^2 \tan \beta - \frac{v^2}{2} \cos(2\beta)\lambda_1^{\text{tree}}, \]

(5)

\[m_{22}^2 = m_{12}^2 \cot \beta + \frac{v^2}{2} \cos(2\beta)\lambda_1^{\text{tree}}. \]

One further has the relation \(2m_{12}^2 = m_{A}^{\text{tree}} \sin(2\beta) \), where \(m_{A}^{\text{tree}} \) is the tree approximation to the mass of the pseudoscalar Higgs boson \(A^0 \). This relation and those in [45] change once radiative corrections are included, e.g. the formulae are affected by loop corrections to \(\lambda_{1\ldots3,5\ldots7} \) (see eqs. (23)–(27) of [10]) and the parameters of \(V_{D \geq 6} \). For the following discussion it is useful to write

\[(V + V_{D \geq 6})_{h_u^+,h_d^-} = V_0 + V_1, \]

(6)

where \(V_0 \) and \(V_1 \) denote the tree and one-loop contributions, respectively, and the subscript on the LHS means that the charged Higgs fields are set to zero. \(V_0 \) equals \(V \) with the parameters in [11], while \(V_1 \) is obtained from the sum of one-loop diagrams in Fig. 11. Neglecting loops with small gauge couplings (which are kept in the tree-level terms) and retaining only the stop loop for the moment the result has the schematic form

\[V_1 = -\sum_{k=0}^{\infty} \sum_{n=0}^{\infty} a_{kn} \left(h^+ \right)^k \left(h_u^0 h_u^0 \right)^n. \]

(7)

Here \(h = h_u^0 - h_u^0 A_i/(\mu^* Y_i) \) is the linear combination of neutral Higgs fields coupling to the stop loop (see Fig. 2) and \(a_{kn} \) is calculated from one-particle irreducible one-
only considered field configurations with \(h_u^+ = h_d^- = 0 \). Relaxing this constraint might exclude additional parts of the MSSM parameter space (corresponding to charge-breaking minima), but according to \([46]\), such minima play no significant role for the analysis. The sbottom contribution (relevant only for large \(\tan \beta \) or large \(A_b \)) adds to \([7]\) an analogous term with \(h \) representing a different linear combination of \(h_u^+ \) and \(h_d^- \) and \(h_u^0 \) replaced by \(h_u^0 \). The coefficients \(a_{kn} \) read

\[
a_{kn} = |\mu|^{2k} |Y_t|^{2n+2k} \frac{1}{k} \sum_{j=0}^{n} \frac{(j+k-1)!}{j!(k-1)!} \frac{(n-j+k-1)!}{(n-j)!(k-1)!} I_{k+j,k+n-j}(M_Q^2, M_t^2) \quad \text{for } n, k \geq 1,
\]

\[
a_{k0} = |\mu|Y_t|^{2k} \frac{1}{k} I_{k,k}(M_Q^2, M_t^2) \quad \text{for } k \geq 1,
\]

\[
a_{0n} = |Y_t|^{2n} \frac{1}{n} \left[I_{n,0}(M_Q^2) + I_{0,n}(M_t^2) \right] \quad \text{for } n \geq 1.
\]

Here \(I_{p,q}(M_Q^2, M_t^2) \) is the result of the one-loop diagram with \(p \) propagators of \(\tilde{t}_L \) and \(q \) propagators of \(\tilde{t}_R \):

\[
I_{p,q}(M_Q^2, M_t^2) = \frac{3}{16\pi^2} \frac{1}{(p-1)!q!-1} \times \frac{\partial^{p-1}}{\partial(M_Q^2)^{p-1}} \frac{\partial^{q-1}}{\partial(M_t^2)^{q-1}} \frac{A_0(M_Q^2) - A_0(M_t^2)}{M_Q^2 - M_t^2} \quad \text{for } q, p \geq 1,
\]

\[
I_{n,0}(M^2) = \frac{3}{16\pi^2} \frac{1}{(n-1)!} \frac{\partial^{n-1}}{\partial(M^2)^{n-1}} A_0(M^2) \quad \text{for } n \geq 1,
\]

\[
I_{0,n}(M^2) = I_{n,0}(M^2).
\]

In this equation \(I_{p,q} \) is expressed in terms of derivatives of the tadpole function, which equals \(A_0(M^2) = M^2(1 - \ln(M^2/Q^2)) \) when evaluated at the scale \(Q \) in the MS/DR scheme. The derivation of \(a_{k0} \) and \(a_{0n} \) is straightforward, the calculation of the combinatorial factors can be found in standard textbooks. To understand \(a_{kn} \) for the case with both non-zero \(k \) and \(n \), consider first a diagram with \(k \neq 0 \) and \(n = 0 \), depicted in the first row of Fig. [1]. There are \(k!(k-1)! \) diagrams (giving identical results for zero external momenta). After dividing off the combinatorial factor \((k!)^2 \) associated with the field monomial in \([7]\), one verifies the factor of \(1/k \) in \([8]\). These loops with only 3-point vertices have \(k \) propagators of \(\tilde{t}_L \) and equally many propagators of \(\tilde{t}_R \). Starting from such a loop we now attach \(n \) four-point vertices to the diagram, i.e. we pass from the first to the third row in Fig. [1]. The sum in \([8]\) takes care of the possibilities to place \(j \) four-point vertices on a \(\tilde{t}_L \) line and \(n-j \) such vertices on a \(\tilde{t}_R \) line. There are \((j+k-1)!/(j!(k-1)!) \) possibilities for the \(j \) placements on a \(\tilde{t}_L \) line, and \((n-j+k-1)!/(n-j)!(k-1)!) \) ways to place the remaining \(n-j \) vertices. (These factors correspond to a standard exercise of combinatorics and count the number of orderless configurations with repetitions of \(j \) balls having \(k \) possible colors.) Finally there are \((n!)^2 \) ways to connect the added 4-point vertices with the external \(h_u^0 \) and \(h_d^0 \) fields, which matches the combinatorial
factor of the field monomial in (7).

The calculation of \(a_{kn} \) and the resummation can be elegantly done with techniques developed in the effective potential approach used in Sec. III B. We nevertheless find it instructive to calculate \(a_{kn} \) explicitly as described above and to verify that the effective-potential method reproduces the result correctly.

B. Effective potential

To resum the series in (7) one defines particle masses which depend on the Higgs fields of the theory. We need the stop mass matrix

\[
\mathcal{M}_t^2 = \begin{pmatrix}
 M_Q^2 + |Y_t h_u^0|^2 & \mu^* Y_t h_d^0 + A_t h_u^0 \\
 -\mu Y_t^* h_d^0 + A_t^* h_u^0 & M_t^2 + |Y_t h_d^0|^2
\end{pmatrix},
\]

where \(M_Q^2 \) and \(M_t^2 \) are the bilinear soft supersymmetry-breaking terms for \(\tilde{Q} = (\tilde{t}, \tilde{b}) \) and \(\tilde{t_R} \), respectively. We have neglected \(D \)-term contributions, which are suppressed by gauge couplings.

A convenient way to perform the summation is to solve

\[
G_1 = -i \frac{\partial}{\partial h} V_1, \quad \Rightarrow \quad \left(\begin{array}{c}
\end{array} \right)
\]

where \(G_1 \) is the Green function of the depicted h tadpole with field-dependent stop mass eigenstates propagating in the loop, with h defined after (7). Integrating (11) w.r.t. h fixes the stop loop contribution \(V_1^t \) to \(V_1 \) up to an arbitrary function of \(h_u^0 \). The correct dependence on \(h_u^0 \) is then found by deriving \(V_1^t \) w.r.t. \(h_u^0 \) and \(h_d^0 \) and comparing the result with the \(h_u^0 h_d^0 \)-two-point function depicted in the second row of Fig. 1. An alternative way to obtain the missing \(h_u^0 \)-dependent piece, which leads to exactly the same result, uses the replacement \(h_u^0 \) by \(h_u^0 - w_u \). In the shifted theory this generates a three point vertex \(\tilde{t}_{L/R}^* - \tilde{t}_{L/R} - h_u^0 \) (and its complex conjugate) generating in turn a tadpole diagram. The final result is found after integration over \(w_u \) and setting back \(w_u = 0 \).

We find:

\[
V_1^t = \frac{3M_t^4}{32\pi^2} \begin{pmatrix}
 (1 + x_t + y_t)^2 \ln (1 + x_t + y_t) \\
 (1 - x_t + y_t)^2 \ln (1 - x_t + y_t) \\
 -(x_t^2 + y_t^2 + 2y_h) \left(3 - 2\ln \left(\frac{\tilde{M}_t^2}{Q^2}\right)\right)
\end{pmatrix},
\]

where the loops have been renormalized in the \(\text{MS}/\text{DR} \) scheme at the scale \(Q \). In (12) we have used the mean soft mass square \(\tilde{M}_t^2 \equiv (M_Q^2 + M_t^2)/2 \) and the dimensionless quantities \(x_t \) and \(y_t \)

\[
x_t = \frac{|A_t h_u^0 - \mu^* Y_t h_d^0|^2}{M_t^4} + \frac{(M_Q^2 - M_t^2)^2}{4M_t^4},
\]

\[
y_t = \frac{|Y_t h_d^0|^2}{M_t^2}.
\]

An analogous expression (with obvious modifications) is found for the sbottom contribution \(V_{s}^{b} \) and is given below. The shape of \(V_{s}^{b} \) depends solely on the dimensionless parameters \(x_t \) and \(y_t \). The summation in (7) converges if \(|x_t + y_t| < 1 \). The points \(x_t + y_t = 1 \) are branch points of the logarithm in the closed result (12), which is the analytic continuation of the sum beyond the radius of convergence. As we will argue below, the interplay between \(V_0 \) and \(V_1 \) can lead to a potential with an unstable vacuum.

So far we have strictly argued along the line of deriving an effective Lagrangian and have resummed the higher-dimensional terms in \(V_{D>6} \subset \mathcal{L}_{2\text{HDM}} \), which arise from integrating out the heavy squarks. As long as one stays in this framework, one can deny any relevance of \(V_1 \) for large \(h_u,d \) amplitudes with \(|x_t - y_t| \geq 1 \), because the series in (7) diverges in this domain.

The justification of the use of \(V_1 \) for \(|x_t - y_t| \geq 1 \) lies in the effective potential definition of Coleman and Weinberg [15], which furthermore does not require the particles running in the loop to be heavy. We will later add the quark loops to \(V_1 \) to get the full one-loop effective potential \(V_{\text{eff}} \) in the sense of Coleman and Weinberg. We briefly recall its derivation. Consider a theory with a complex scalar field \(\phi \). Connected Green functions can be derived by functional variations of a generating functional \(W(J) \) w.r.t. a classical source \(J(x) \). The classical field \(\phi_c \) is defined as the expectation value of the field operator in the Fock vacuum in the presence of the source \(J \):

\[
\phi_c = \frac{\langle 0 | \phi | 0 \rangle}{\langle 0 | 0 \rangle}.
\]

A Legendre transform brings us to the effective action

\[
\Gamma(\phi_c) := W(J) - \int d^4x J(x) \phi_c(x),
\]

which is the generating functional of one-particle irreducible Green functions. The effective potential \(V(\phi_c) \) is defined as the first term of an expansion of \(\Gamma(\phi_c) \) in terms of derivatives of \(\phi_c \):

\[
\Gamma(\phi_c) = \int d^4x \left[-V(\phi_c) + \frac{1}{2} (\partial_\mu \phi_c)^2 Z(\phi_c) + \ldots \right]
\]

Thus the \(n \)-th derivative of \(V(\phi_c) \) is the sum of all one-particle irreducible graphs with \(n \) legs and zero external momenta. \(V(\phi_c) \) can be physically interpreted as follows [69]: The effective potential \(V(\phi_c) \) is the potential energy density of the classical field in the quantized theory, viz. the expectation value of the energy density in the state \(|0 \rangle \) that minimizes \(\langle 0 | H | 0 \rangle \) subject to (13) (where \(H \) is
the Hamiltonian density operator. For vanishing sources $J \rightarrow 0$, the theory’s vacua seek to minimize the potential energy, i.e.

$$\frac{\delta V(\phi_e)}{\delta \phi_e} = 0. \quad (16)$$

If this is the case for $\phi_e = \langle \phi \rangle \neq 0$, the field takes a vacuum expectation value of $\langle \phi \rangle$, and internal symmetries are broken spontaneously. If there is no asymmetric vacuum in the classical potential, spontaneous symmetries breaking may even emerge as a pure quantum effect. The ground state of the theory, the state of lowest energy, lives in the global minimum of the effective potential [67]. Vacua minimizing the potential only locally are unstable and can pass into the ground state. Coleman and Weinberg [45] have considered the gauge theory of a single scalar with self-interactions due to a classical potential.

β-vibrations lives in the global minimum of the effective potential [67].

The ground state of the theory, the state of lowest energy, try breaking may even emerge as a pure quantum effect.

$\langle \phi_e \rangle = \langle \phi \rangle$.

Vacua in the classical potential, spontaneous symmetries are broken spontaneously. If there is no asymmetric vacuum, the Hamiltonian density operator). For vanishing sources $J \rightarrow 0$, the theory’s vacua seek to minimize the potential energy, i.e.

$$\frac{\delta V(\phi_e)}{\delta \phi_e} = 0. \quad (16)$$

If this is the case for $\phi_e = \langle \phi \rangle \neq 0$, the field takes a vacuum expectation value of $\langle \phi \rangle$, and internal symmetries are broken spontaneously. If there is no asymmetric vacuum in the classical potential, spontaneous symmetries breaking may even emerge as a pure quantum effect. The ground state of the theory, the state of lowest energy, lives in the global minimum of the effective potential [67].

Vacua minimizing the potential only locally are unstable and can pass into the ground state. Coleman and Weinberg [45] have considered the gauge theory of a single scalar with self-interactions due to a classical potential energy $V(\phi_e)$. They have found

$$V_{\text{eff}}(\phi_e) = \frac{1}{64\pi^2} \text{Tr} \left[V''(\phi_e) \ln V''(\phi_e) \right] + P(\phi_e), \quad (17)$$

where $P(\phi_e)$ is a polynomial depending on the choice of the renormalization scheme. $V''(\phi_e)$ is the field-dependent mass matrix of the field degrees of freedom circulating in the loop, like the one in [46]. To consistently include all terms involving Y_t into V_{eff} we must add

$$V_{\text{eff}} = V_0 + V_1^t + V_1^b,$$

$$V_{\text{eff}} = V_0 + V_1^t + V_1^b + V_1^b = m_{11}^{2\text{tree}} |h_d|^2 + m_{12}^{2\text{tree}} |h_u|^2 - 2 \text{Re} \left(m_{12}^{2\text{tree}} h_u^0 h_d^0 \right) \frac{g^2 + g'^2}{8} (|h_d|^2 - |h_u|^2)^2$$

$$+ \frac{3M_b^4}{32\pi^2} \left((1 + x_t + y_t)^2 \ln (1 + x_t + y_t) + (1 - x_t + y_t)^2 \ln (1 - x_t + y_t) \right)$$

$$- (x_t^2 + 2y_t) \left(3 - 2 \ln \left(\frac{\tilde{M}_b^2}{Q^2} \right) \right) - 2y_t^2 \ln (y_t) + \{ t \leftrightarrow b \}$$

with $	ilde{M}_b^2 = (M_Q^2 + M_u^2)/2$ and stop-loop parameters x_t and y_t defined as in [13]; similarly, the sbottom-loop parameters are

$$x_b^2 = \frac{|A_b h_d^0 - \mu^* Y_b h_u^0|^2}{M_b^4} + \frac{(M_Q^2 - M_b^2)^2}{4M_b^4},$$

$$y_b = \frac{|Y_b h_d^0|^2}{M_b^2}.$$
III. PHENOMENOLOGY OF THE MSSM VACUUM INSTABILITY

In this section we give explicit examples for MSSM parameters leading to a V_{eff} for which “our” vacuum with $v = 246$ GeV is unstable.

While loop corrections can render the parameters in \mathbf{m} complex \cite{16, 21}, we restrict ourselves to the case of real parameters, with a mass matrix that does not mix CP eigenstates. Writing

\begin{equation}
\begin{aligned}
h_u^0 &= \frac{1}{\sqrt{2}} (v_u + \phi_u + i \chi_u), \\
h_d^0 &= \frac{1}{\sqrt{2}} (v_d + \phi_d + i \chi_d),
\end{aligned}
\end{equation}

we trade two of the mass parameters in \cite{19} for $v_{u,d}$ in analogy to \cite{5}:

$$m_{21}^{\text{tree}} = m_{21}^{\text{tree}} \tan \beta - \frac{v^2}{2} \cos(2\beta) \lambda_1^{\text{tree}} - \frac{1}{v \cos \beta} \frac{\delta}{\delta \phi_d} V_1 \bigg|_{\phi_{u,d} \rightarrow 0},$$

$$m_{22}^{\text{tree}} = m_{22}^{\text{tree}} \cot \beta + \frac{v^2}{2} \cos(2\beta) \lambda_1^{\text{tree}} - \frac{1}{v \sin \beta} \frac{\delta}{\delta \phi_u} V_1 \bigg|_{\phi_{u,d} \rightarrow 0}.$$
FIG. 3. The 1-loop effective potential $V_{\text{eff}} = V_0 + V_1$ for $\tan \beta = 40$ and $m_A = 800$ GeV. Soft supersymmetry-breaking masses as well as the renormalization scale Q have been taken at 1 TeV. The Higgs couplings in the loops with top and bottom squarks involve $\mu = 2.55$ TeV and $A_t \simeq 1.5$ TeV. The hatched area highlights the analytic continuation beyond the branch point at $x - y = 1$. The cases with V_{eff} truncated after terms of dimension $2(k + n) = 4, 8,$ and 12 are shown with dashed lines (from top to bottom).

FIG. 4. The 1-loop effective potential as in Fig.

from the Lagrangian. Here the field-dependent squark mass matrix of \(\begin{bmatrix} 10 \end{bmatrix}\)—which is the second derivative of the scalar potential with respect to the sfermion fields—acquires a negative eigenvalue. If we depicted the sfermion field corresponding to this tachyonic mass eigenstate perpendicular to the drawing plane in Fig. 3, the minimum in the ϕ_u direction is revealed as a local maximum in the sfermion direction (i.e. we encounter a saddle point of the full scalar potential) and the global minimum of the scalar potential will be necessarily a charge and color breaking (CCB) vacuum. The example of Fig. 4 also shows that the existence of an imaginary part in V_{eff} alone does not directly lead to an unstable vacuum.

There exist several criteria in the literature to check whether or not the parameters lead to a CCB vacuum at tree-level. We can easily check, that we are in full agreement with the traditional criterion \(16, 76\) $A_t^2 < 3(M_{\tilde{Q}}^2 + M_{\tilde{t}}^2 + m_{\text{tree}}^2)$. A stronger empirical bound of $A_t^2 + 3\mu^2 < 7.5(M_{\tilde{Q}}^2 + M_{\tilde{t}}^2)$, which our sample point would not pass, has been suggested in \(11\). However, this bound has been critically reviewed in the recent detailed analysis \(52\), which advocates bounds closer to the traditional measure. The criterion of \(52\) translates to $A_t^2 < 3.4(M_{\tilde{Q}}^2 + M_{\tilde{t}}^2) + 60m_{\text{tree}}^2$ in our case and is fulfilled by the parameters of Figs. 3 and 4. We are therefore safe from CCB minima of the tree-level potential.

Whenever the situation depicted in Fig. 3 occurs the corresponding MSSM parameter point is excluded. We show the excluded region of the μ–$\tan \beta$ plane in Fig. 5 for
two values of the squark masses. We stress that the consideration of a single direction in the multi-dimensional space of scalar fields is not sufficient to prove the stability of the electroweak vacuum. I.e. to validate or discard the MSSM parameter point of Fig. one would have to study all directions in the $h_u^0 - h_d^0$ plane. A complete investigation further requires the study of the global minimum of the full scalar potential (including the sfermion fields) with the field-dependent sfermion masses (see [110]): As discussed above in conjunction with the second minimum of V_{eff}, the sfermion potential is non-convex in the region with large Higgs fields with the possibility of a CCB minimum below the desired ground state of the electroweak vacuum. The determination of the global minimum of the loop-corrected full scalar potential is a formidable task and beyond the scope of this paper. An accurate determination of the contours delimiting the allowed parameter space in Fig. may also require to use the renormalization-group improved two-loop result for V_{eff}.

The requirement of a stable vacuum excludes large values of $\mu \tan \beta$. The sample points studied by us also involve a large value of A_t, to accommodate $m_{h^0} = 126$ GeV through sizable stop mixing. This portion of the MSSM parameter space is of interest in flavor physics and has been widely studied: The product $A_t \mu \tan \beta$ governs the size of the chargino contributions to $B(B \to X_s \gamma)$ [22, 73, 75] and the Higgs-mediated contributions to $B(B_{d,s} \to \mu^+ \mu^-)$ and $B_s - B_s$ mixing [16, 24–28, 30, 31, 79] grow with A_t, μ and higher powers of $\tan \beta$ (see [82] for a recent study). Similar to the quark sector, flavor-changing neutral current processes in the lepton sector can be enhanced if $\mu \tan \beta$ is large. Therefore the global minimum of V_{eff} should be checked in MSSM parameter scans of flavor observables.

IV. CONCLUSIONS

The MSSM Higgs potential receives large radiative corrections from loops with stops and (if $\tan \beta$ is large) sbottoms. Squarks which are much heavier than the Higgs bosons can be integrated out resulting in an effective Lagrangian of a two-Higgs-doublet model. The Lagrangian can be systematically improved by higher-dimensional terms suppressed by powers of $1/M_{Q_t}^2$. We have calculated the stop contribution to the effective self-couplings $(h_u^0 h_u^0) d_1 (h_d^0 h_d^0) d_2$ of any number of neutral h_u^0 or h_d^0 fields at the one-loop level using an elementary diagrammatic method. Depending on the MSSM parameters entering the loop diagrams, the Higgs potential of the resulting effective Lagrangian can be unbounded from below or feature a second, unwanted minimum which is deeper than the one with $\sqrt{|h_u^0|^2 + |h_d^0|^2} = v = 246$ GeV. In this paper we have found that one cannot assess the question of vacuum stability from such an effective Lagrangian truncated at a finite dimension $2(d_1 + d_2)$; the critical values of $h_{u,d}$ for which the Higgs potential drops below its value at $v = 246$ GeV are beyond the radius of convergence of the sum over d_1, d_2.

The effective potential V_{eff} sums the squark-induced higher-dimensional Higgs self-couplings to all orders (without the need of any hierarchy between squark and Higgs masses) and permits the proper inclusion of top loops as well. We find that the one-loop MSSM effective potential is bounded from below but develops a second, deeper minimum, if the parameters μ, $\tan \beta$, or A_t governing the squark-Higgs couplings become too large (see Fig. 3). For two values of degenerate squark masses we have determined the region in the $\mu-\tan \beta$ plane corresponding to an unstable vacuum (see Fig. 5). A_t has been chosen to reproduce the correct mass of 126 GeV for the lightest neutral Higgs boson, which drives $|A_t|$ to large values. The excluded region of large $|\mu| \tan \beta$ and large $|A_t|$ is widely studied in flavor physics, since in this region the MSSM contributions to several flavor-changing processes are large. We argue that the criterion of a global minimum of V_{eff} with $v = 246$ GeV should be included in phenomenological analyses determining the allowed parameter space of the MSSM.

ACKNOWLEDGEMENTS

We are grateful for discussions on various aspects of the effective potential with L. Di Luzio, L. Mihaila, S. Pokorski, and M. Zoller. M.B. and W.G.H. acknowledge financial support of Studienstiftung des deutschen Volkes and the DFG-funded Research Training Group GRK 1694. G.C thanks W. Porod for useful discussions and clarifications about the Vevacious code. This work was supported by BMBF under grant no. 05H12VKF and the Theory-LHC-France initiative of the CNRS/IN2P3.

[1] H. E. Haber, in Perspectives on Higgs physics II, edited by Gordon L. Kane (World Scientific, Singapore, 1997), and references therein.
[2] J. F. Gunion and H. E. Haber, The CP conserving two Higgs doublet model: The Approach to the decoupling limit, Phys. Rev. D67 (2003) 075019, [hep-ph/0207010].
[3] H. E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than $m(Z)$?, Phys. Rev. Lett. 66 (1991) 1815–1818.
[4] CMS Collaboration Collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B716 (2012) 30–61, [arXiv:1207.7235].
[5] ATLAS Collaboration Collaboration, G. Aad et al., Observation of a new particle in the search for the...
FIG. 5. Area in the μ–$\tan \beta$ plane for which V_{eff} develops an unwanted minimum as depicted in Fig. [3]. The red, cross-hatched area corresponds to $M_{\tilde{Q}} = M_{\tilde{t}} = M_{\tilde{b}} = Q = 2\,\text{TeV}$; the light blue area is excluded if $M_{\tilde{Q},\tilde{t},\tilde{b}}$ is lowered to 1\,\text{TeV}. $A_t \approx 1.5\,\text{TeV}$ is fitted to reproduce $m_{h^0} = 126\,\text{GeV}$ in both cases; $m_{A^0} = 800\,\text{GeV}$ is chosen to comply with LHC search limits for $A^0 \rightarrow \tau \tau$.

Standard Model Higgs boson with the ATLAS detector at the LHC, Phys.Lett. B716 (2012) 1–29, [arXiv:1207.7214].

[6] R. Hempfling and A. H. Hoang, Two loop radiative corrections to the upper limit of the lightest Higgs boson mass in the minimal supersymmetric model, Phys.Lett. B331 (1994) 99–106, [hep-ph/9401219].

[7] S. Heinemeyer, W. Hollik, and G. Weiglein, QCD corrections to the masses of the neutral CP - even Higgs bosons in the MSSM, Phys.Rev. D58 (1998) 091701, [hep-ph/9803277].

[8] S. Heinemeyer, W. Hollik, and G. Weiglein, Precise prediction for the mass of the lightest Higgs boson in the MSSM, Phys.Lett. B440 (1998) 296–304, [hep-ph/9807423].

[9] S. Heinemeyer, W. Hollik, and G. Weiglein, The Masses of the neutral CP - even Higgs bosons in the MSSM: Accurate analysis at the two loop level, Eur.Phys.J. C9 (1999) 343–366, [hep-ph/9812472].

[10] R. Harlander, P. Kant, L. Mihaila, and M. Steinhauser, Higgs boson mass in supersymmetry to three loops, Phys.Rev.Lett. 100 (2008) 191602, [arXiv:0803.0672].

[11] P. Kant, R. Harlander, L. Mihaila, and M. Steinhauser, Light MSSM Higgs boson mass to three-loop accuracy, JHEP 1008 (2010) 104, [arXiv:1005.5709].

[12] S. Heinemeyer, W. Hollik, and G. Weiglein, FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput.Phys.Commun. 124 (2000) 76–89, [hep-ph/9812320].

[13] G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur.Phys.J. C28 (2003) 133–143, [hep-ph/0212020].

[14] M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, et al., The Higgs Boson Masses and Mixings of the Complex MSSM in the Feynman-Diagrammatic Approach, JHEP 0702 (2007) 047, [hep-ph/0611326].

[15] T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, and G. Weiglein, High-precision predictions for the light CP -even Higgs Boson Mass of the MSSM, Phys.Rev.Lett. 112 (2014) 141801, [arXiv:1312.4943].

[16] M. Gorbahn, S. Jager, U. Nierste, and S. Trine, The supersymmetric Higgs sector and $B - \bar{B}$ mixing for large $\tan \beta$, Phys.Rev. D84 (2011) 034030, [arXiv:0901.2065].

[17] T. Banks, Supersymmetry and the Quark Mass Matrix, Nucl. Phys. B303 (1988) 172.

[18] L. J. Hall, R. Rattazzi, and U. Sarid, The Top quark mass in supersymmetric SO(10) unification, Phys. Rev. D50 (1994) 7048–7065, [hep-ph/9306309].

[19] M. S. Carena, M. Olechowski, S. Pokorski, and C. E. M. Wagner, Electroweak symmetry breaking and bottom top Yukawa unification, Nucl. Phys. B426 (1994) 269–300, [hep-ph/9402253].

[20] T. Blazek, S. Raby, and S. Pokorski, Finite supersymmetric threshold corrections to CKM matrix elements in the large $\tan \beta$ regime, Phys. Rev. D52
(1995) 4151–4158. hep-ph/9504364.

[21] C. Hamzaoui, M. Pospelov, and M. Toharia,
Higgs-mediated FCNC in supersymmetric models with large \tan\beta, Phys. Rev. D59 (1999) 095005,
hep-ph/9807350.

[22] M. Carena, D. Garcia, U. Nierste, and C. E. M. Wagner,
Effective Lagrangian for the \(b \to s \gamma \) decay in the MSSM
and charged Higgs phenomenology, Nucl. Phys. B577 (2000) 88–120,
hep-ph/9912516.

[23] M. S. Carena, D. Garcia, U. Nierste, and C. E. Wagner,
\(b \to s \gamma \) and \(s \gamma \) with large \(\tan\beta \), Phys.Lett. B499 (2001) 141–146,
hep-ph/0010003.

[24] A. J. Buras, P. H. Chankowski, J. Rosiek, and
L. Slawianowska, \(\Delta M_{d,s}, B_{d,s}^0 \to \mu^+\mu^- \) and \(B \to X_s\gamma \) in
Supersymmetry at large \(\tan\beta \), Nucl. Phys. B659 (2003) 3,
hep-ph/0210145.

[25] G. Isidori and A. Retico, Scalar flavour-changing neutral currents in the large-\(\tan\beta \) limit, JHEP 11 (2001) 001,
hep-ph/0101212.

[26] A. J. Buras, P. H. Chankowski, J. Rosiek, and
L. Slawianowska, Correlation between \(\Delta M_s \) and
\(B_{d,s}^0 \to \mu^+\mu^- \) in Supersymmetry at large \(\tan\beta \), Phys. Lett. B546 (2002) 96–107,
hep-ph/0207241.

[27] A. Dedes and A. Pilaftsis, Resummed effective
Lagrangian for FCNC in the MSSM after the Higgs
Discovery at LHC, Preprint hep-ph/0009277.

[28] L. Slawianowska, ∆\(\alpha \) in the MSSM after the Higgs
Discovery at LHC, Preprint hep-ph/0009306.

[29] M. Beneke, P. Ruiz-Femenia, and M. Spinrath,
Higgs couplings in the MSSM at large \(\tan\beta \), JHEP 01 (2009) 031,
arXiv:0810.3769.

[30] A. Crivellin and U. Nierste, Supersymmetric
renormalisation of the CKM matrix and new constraints on the
quark mass matrices, Phys. Rev. D79 (2009) 035018,
arXiv:0810.1613.

[31] L. Hofer, U. Nierste, and D. Scherer, Resummed
tan-beta-enhanced supersymmetric loop corrections beyond the
decoupling limit, JHEP 0910 (2009) 081,
arXiv:0907.5408.

[32] A. Crivellin, Effective Higgs Vertices in the generic
mSSM, Phys.Rev. D83 (2011) 056001,
arXiv:1012.4840.

[33] A. Crivellin, L. Hofer, and J. Rosiek, Complete
resummation of chirally-enhanced loop-effects in the MSSM
with non-minimal sources of flavor-violation, JHEP 1107 (2011) 017,
arXiv:1103.4272.

[34] A. Crivellin and C. Greub, Two-loop SQCD corrections
to Higgs-quark-quark couplings in the generic MSSM,
Phys.Rev. D87 (2013) 015013,
arXiv:1210.7453.

[35] J. Espinosa and M. Quiros, Two-loop radiative
corrections to the mass of the lightest Higgs boson in
supersymmetric standard models, Phys.Lett. B266 (1991) 389–396.

[36] M. S. Carena, H. Haber, S. Heinemeyer, W. Hollik,
C. Wagner, et al., Reconciling the two-loop
diagrammatic and effective field theory computations of the
mass of the lightest CP - even Higgs boson in the MSSM,
Nucl.Phys. B580 (2000) 29–57,
hep-ph/0001002.

[37] H. Abar, D. Castano, B. Keszthelyi, S. Mikaelian,
E. Piard, et al., Renormalization group study of the
standard model and its extensions. I. The Standard
model, Phys.Rev. D46 (1992) 3945–3965.

[38] B. Allanach, SOFTSUSY: a program for calculating
supersymmetric spectra, Comput.Phys.Commun. 143 (2002) 305–331,
hep-ph/0104145.

[39] A. Djouadi, J.-L. Kneur, and G. Moultaqa, Suspect: A
Fortran code for the supersymmetric and Higgs particle
spectrum in the MSSM, Comput.Phys.Commun. 176 (2007) 426–455,
hep-ph/0211331.

[40] W. Porod, Spheno, a program for calculating
supersymmetric spectra, SUSY particle decays and
SUSY particle production at e+ e- colliders,
Comput.Phys.Commun. 153 (2003) 275–315,
hep-ph/0301101.

[41] A. Barroso, P. Ferreira, I. Ivanov, and R. Santos,
Metastability bounds on the two Higgs doublet model,
JHEP 1306 (2013) 045, arXiv:1305.5098.

[42] D. Eriksson, J. Rathsman, and O. Stal, 2HDMC:
Two-Higgs-doublet model calculator,
Comput.Phys.Commun. 181 (2010) 833–834.

[43] M. Krawczyk, D. Sokolowska, and B. wiewska, 2HDM
with \(Z_2 \) symmetry in light of new LHC data,
J.Phys.Conf.Ser. 447 (2013) 012050,
arXiv:1303.7102.

[44] O. Eberhardt, U. Nierste, and M. Wiebusch, Status
of the two-Higgs-doublet model of type II, JHEP 1307 (2013) 118,
arXiv:1305.1649.

[45] J. Baglio, O. Eberhardt, U. Nierste, and M. Wiebusch,
Benchmarks for Higgs Pair Production and Heavy Higgs
Searches in the Two-Higgs-Doublet Model of Type II,
arXiv:1403.1284.

[46] S. R. Coleman and E. J. Weinberg, Radiative
Corrections as the Origin of Spontaneous Symmetry
Breaking, Phys.Rev. D7 (1973) 1888–1910.

[47] J. A. Casas, A. Lleyda, and C. Munoz, Strong
constraints on the parameter space of the MSSM from
charge and color breaking minima, Nucl. Phys. B471 (1996) 3–58,
hep-ph/9507294.

[48] J. Casas and S. Dimopoulos, Stability bounds on flavor
vilating trilinear soft terms in the MSSM, Phys.Lett. B387 (1996) 107–112,
hep-ph/9606237.

[49] J. A. Casas, Charge and color breaking,
hep-ph/9704745.

[50] A. Kusenko, P. Langacker, and G. Segre, Phase
transitions and vacuum tunneling into charge and
color breaking minima in the MSSM, Phys.Rev. D54 (1996)
5824–5834, hep-ph/9602414.

[51] J. E. Camargo-Molina, B. O’Leary, W. Porod, and
F. Staub, On the vacuum stability of SUSY models,
arXiv:1310.1264.

[52] D. Chowdhury, R. M. Godbole, K. A. Mohan, and S. K.
Vempati, Charge and Color Breaking Constraints in MSSM
after the Higgs Discovery at LHC, JHEP 1402 (2014) 110,
arXiv:1310.1932.

[53] N. Blinov and D. E. Morrissey, Vacuum Stability and
the MSSM Higgs Mass, JHEP 1403 (2014) 106,
arXiv:1310.4174.

[54] J. Camargo-Molina, B. O’Leary, W. Porod, and
F. Staub, Vevacious: A Tool For Finding The Global
Minima Of One-Loop Effective Potentials With Many
Scalars, Eur.Phys.J. C73 (2013) 2588,
arXiv:1307.1477.

[55] J. Camargo-Molina, B. Garbrecht, B. O’Leary,
W. Porod, and F. Staub, Constraining the Natural
MSSM through tunneling to color-breaking vacua at zero
and non-zero temperature, arXiv:1405.7376.

[56] Y. Okada, M. Yamaguchi, and T. Yanagida, Upper
bound of the lightest Higgs boson mass in the minimal
supersymmetric standard model, Prog.Theor.Phys. 85(1) (1991) 1–6. http://ptp.oxfordjournals.org/content/85/1/1.full.pdf+html.

[56] J. R. Ellis, G. Ridolfi, and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys.Lett. B257 (1991) 83–91.

[57] R. Barbieri, M. Frigeni, and F. Caravaglios, The Supersymmetric Higgs for heavy superpartners, Phys.Lett. B258 (1991) 167–170.

[58] J. R. Ellis, G. Ridolfi, and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys.Lett. B262 (1991) 477–484.

[59] A. Brignole, J. R. Ellis, G. Ridolfi, and F. Zwirner, The Supersymmetric charged Higgs boson mass and LEP phenomenology, Phys.Lett. B271 (1991) 123–132.

[60] H. E. Haber and R. Hempfling, The Renormalization group improved Higgs sector of the minimal supersymmetric model, Phys.Rev. D48 (1993) 4280–4309, [hep-ph/9307201].

[61] M. S. Carena, J. Espinosa, M. Quiros, and C. Wagner, Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Phys.Lett. B355 (1995) 209–221, [hep-ph/9504316].

[62] M. S. Carena, M. Quiros, and C. Wagner, Effective potential methods and the Higgs mass spectrum in the MSSM, Nucl.Phys. B461 (1996) 407–436, [hep-ph/9508334].

[63] S. P. Martin, Two loop effective potential for the minimal supersymmetric standard model, Phys.Rev. D66 (2002) 096001, [hep-ph/0206136].

[64] J. Camargo-Molina, B. O’Leary, W. Porod, and F. Staub, The Stability Of R-Parity In Supersymmetric Models Extended By U(1)B−L, Phys.Rev. D88 (2013) 015033, [arXiv:1212.4146].

[65] S. Lee and A. M. Sciacca, Evaluation of Higher Order Effective Potentials with Dimensional Regularization, Nucl.Phys. B396 (1975) 435.

[66] M. Sher, Electroweak Higgs Potentials and Vacuum Stability, Phys.Rept. 179 (1989) 273–418.

[67] S. Coleman, Aspects of symmetry : selected Erice Lectures of Sidney Coleman, Cambridge Univ. Pr., Cambridge [u.a.], 5th paperback ed. ed., 1988.

[68] R. Jackiw, Functional evaluation of the effective potential, Phys.Rev. D9 (1974) 1686.