Erratum: Entropy production and coarse-graining in Markov processes

A Puglisi1,2, S Pigolotti3, L Rondoni4 and A Vulpiani5

1 CNR-ISC c/o Dipartimento di Fisica, Università Sapienza, piazzale Aldo Moro 2, 00185 Roma, Italy
2 Istituto Sistemi Complessi (ISC), CNR, via dei Taurini 19 00185 Roma, Italy
3 The Niels Bohr International Academy, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
4 Dipartimento di Matematica and INFN, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
5 Dipartimento di Fisica, INFM-CNR and INFN, Università Sapienza, piazzale Aldo Moro 2, 00185 Roma, Italy

E-mail: andrea.puglisi@roma1.infn.it, simone.pigolotti@gmail.com, lamberto.rondoni@polito.it and Angelo.Vulpiani@roma1.infn.it

Received 9 November 2011
Accepted 9 November 2011
Published 30 November 2011

Online at stacks.iop.org/JSTAT/2011/E11001
doi:10.1088/1742-5468/2011/11/E11001

Keywords: coarse-graining (theory), current fluctuations, large deviations in non-equilibrium systems
Erratum: Entropy production and coarse-graining in Markov processes

Contents

1. Error in appendix B 2
2. Errors in section 2.4 2
 Acknowledgments 3

1. Error in appendix B

An error has been discovered in appendix B. In particular expression (B.3) is not correct and the error propagates down to (B.6). In particular, equation (B.3) should be:

\[P_n = P_{n-1} \frac{W_{n-1 \rightarrow n}}{W_{n \rightarrow n-1}} - \frac{J}{W_{n \rightarrow n-1}} = \ldots = P_n \prod_{k=1}^{N} \frac{W_{k-1 \rightarrow k}}{W_{k \rightarrow k-1}} - J \left(\sum_{j=0}^{N-1} \frac{1}{W_{n-j \rightarrow n-j-1}} \prod_{k=1}^{j} \frac{W_{n-j+k-1 \rightarrow n-j+k}}{W_{n-j+k-1 \rightarrow n-j+k-1}} \right), \]

with the convention that \(\prod_{k=1}^{0} = 1 \).

Consequently, the expression for the current \(J \) becomes:

\[J = \left(\prod_{k=1}^{N} \frac{W_{k-1 \rightarrow k}}{W_{k \rightarrow k-1}} \right) - 1 \]

(2)

We remark that the qualitative conclusion of the appendix is unaltered. Indeed, the numerator of expression (2) is unaffected by decimation, while eliminating a fast state reduces the denominator by an amount \(\Delta D \):

\[\Delta D = D_o - D_d = \sum_{n=1}^{N} \sum_{j=0}^{N-1} 1/W_{n-j \rightarrow n-j-1} \prod_{k=1}^{j} W_{n-j+k-1 \rightarrow n-j+k} \prod_{k=1}^{j} W_{n-j+k-1 \rightarrow n-j+k}. \]

(3)

Thus, we can still conclude that the current in a single loop always increases after decimation.

2. Errors in section 2.4

Three errors have been discovered in section 2.4, where the kinesin model is discussed:

(1) All occurrences of \(t_{\text{max}} \) should be replaced by \(t \).

(2) Three lines from the end: \(W_{25}/W_{52} = 3 \times 10^3 \) is wrong, it should read \(W_{25}/W_{52} = 1.25 \times 10^6 \).

(3) In figure 8, the \(x \)-scale is wrong, it should be multiplied by a factor 10; this error is a consequence of a wrong time-normalization (integrated entropy production has been divided by a time length ten times larger than its correct value).
As is clear from the above description, the three errors have no consequences on any part of the discussion.

Acknowledgments

The authors are indebted to Gaia Tavoni for having discovered the error in appendix B and proposed the correct derivation. The authors also acknowledge Bernhard Altaner for having discovered the errors 2 and 3 in section 2.4.