Correlation functions of the global \(E_8 \) symmetry currents in the Heterotic 5-brane theory.

Morten Krogh

Department of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544, USA

We consider the 5-brane placed at one end of the world in the Heterotic \(E_8 \times E_8 \) theory. The low energy theory is a 6 dimensional \((1, 0)\) superconformal theory with \(E_8 \) as a global symmetry. We calculate the two-point correlator of the \(E_8 \) current in 6 dimensions and in 4 dimensions after compactification on \(T^2 \). This correlator is derived in 3 different ways: From field theory, from 11 dimensional supergravity and from F-theory.

This paper is a written version of the talk given at the 1998 Trieste Conference on Superfivebranes and Physics in 5+1 Dimensions. The talk presented the work of \(\text{[1]} \) where a more elaborate discussion can be found.

1 Introduction

In the past two years, many examples of nontrivial IR fixed points in various dimensions have emerged. Some of the most exciting ones are the 5+1D chiral theories. The first of such theories with \(\mathcal{N} = (2, 0) \) SUSY has been discovered in \(\text{[2]} \) as a sector of type-IIB compactified on an \(A_1 \) singularity. A dual realization was found in \(\text{[3]} \) as the low-energy description of two 5-branes of M-theory. Another theory of this kind arises as an M-theory 5-brane approaches the 9-brane \(\text{[4]} \). When the distance between the 5-brane and 9-brane is zero, the low-energy is described by a nontrivial 5+1D fixed point. This theory is chiral with \(\mathcal{N} = (1, 0) \) SUSY and a global \(E_8 \) symmetry. In \(\text{[5]} \) more examples of \(\mathcal{N} = (1, 0) \) theories have been given. We will use the terminology of \(\text{[5]} \) and call the \(E_8 \) theory \(V_1 \). Many other 5+1D theories have been recently constructed in \(\text{[6]} \).

String theory is a powerful tool to study such theories. The idea is to identify a dual description such that quantum corrections of the original theory appear at the classical level of the dual \(\text{[7]} \). The toroidal compactification of the \(\mathcal{N} = (1, 0) \) 6D theory (and hence \(4D \mathcal{N} = 2 \) QCD) can be studied using the brane-probe technique discovered in \(\text{[8]} \). The world-volume theory on a brane probe in a heterotic string vacuum (which is quantum mechanically corrected) is mapped by duality to a world-volume theory on a brane inside a curved background which is not quantum mechanically corrected. This allows one to
determine the low-energy behavior in 4D. At the origin of the moduli space one obtains an IR fixed point with E_8 global symmetry.

The purpose of the present work is to extract information about the local operators of such theories. The E_8 theory V_1 has a local E_8 current $j^a_\mu(x)$ ($a = 1 \ldots 248$ and $\mu = 0 \ldots 5$). We will be interested in the correlator $\langle j^a_\mu(x)j^b_\nu(0) \rangle$. The strategy will be to couple the theory to a weakly coupled E_8 gauge theory and calculate the effect of V_1 on the E_8 coupling constant. We will study the question both for the 5+1D theory and for the 3+1D conformal theories. We will present three methods for evaluating the correlator. The first method is purely field-theoretic and applies to the 3+1D theories. Deforming the theory with a relevant operator one can flow to the IR where a field-theoretic description of $SU(2)$ or $U(1)$ with several quarks can be found. This will allow us to determine the correlator as a function on the moduli space. From this function we can deduce the high-energy behavior of the correlator and find out how many copies of the E_8 theory can be gauged with an E_8 SYM before breaking asymptotic freedom.

The other two methods for determining the correlators involve M-theory and F-theory. The gravitational field of a 5-brane of M-theory which is close to a 9-brane changes the local metric on the 9-brane. After compactification on a large $K3$ this implies that the volume of the $K3$ at the position of the 9-brane is affected by the distance from the 5-brane (sec 3). This can be interpreted as a dependence of the E_8 coupling constant on the VEV which specifies the position of the 5-brane. From this fact we can extract the current correlator. The third method involves the F-theory realization of the E_8 theory. The V_1 theory is obtained in F-theory compactifications on a 3-fold by blowing up a point in the (two complex dimensional) base. By studying the effect of the size of the blow-up on the size of the 7-brane locus we can again determine the dependence of the E_8 coupling constant on the VEV.

The paper is organized as follows. In section (2) we calculate the current-current correlators in 3+1D using field theory arguments and we argue that 10 copies of the E_8 theory can be coupled to a gauge field. In section (3) we study the effect of a 5-brane on the volume of a 9-brane in M-theory and deduce the correlator from this setting. In section (4) we present the F-theory derivation. In section (5) we conclude.

2 Field theory derivation of the 4 dimensional correlator

In this section we will derive the form of the E_8 current-current correlator for the E_8 conformal theory and as a result we will argue that in 4D one can couple up to 10 copies of the E_8 theory to a $\mathcal{N} = 2$ E_8 Yang-Mills gauge theory.
We start with the E_8 conformal theory in 4 dimensions whose Seiberg-Witten curve is given by

$$y^2 = x^3 + u^5,$$

(1)

u parameterizing the moduli space of the Coulomb branch. We are looking for an expression of the form

$$\langle j^a_\mu(x) j^b_\nu(y) \rangle = \frac{1}{g^2} \eta^{\mu\nu} - \frac{q_\mu q_\nu}{q^2} \delta^{ab} f(q^2, u, \Lambda), \quad a, b = 1 \ldots 248,$$

(2)

where q is the momentum and Λ is some fixed UV-cutoff. This UV-cutoff is not physical. It is just an artifact of the Fourier transform. The space-time correlator $\langle j^a_\mu(x) j^b_\nu(y) \rangle$ does not require a cutoff.

To determine the form of f in (2) for $q^2 = 0$ we can couple the E_8 SCFT to a weakly coupled E_8 gauge field and ask how the E_8 coupling constant changes as a function of u. When the E_8 coupling constant is very small the coupling does not change the curve (1) by much. For a generic value of u the massless modes of the E_8 SCFT are neutral under the global E_8 and the charged matter has a typical energy of order $u^{1/6}$. The $\langle jj \rangle$ correlator will modify the low energy E_8 coupling constant to the form

$$\frac{1}{g(u)^2} = \frac{1}{g_0^2} + f(q^2 = 0, u, \Lambda),$$

where g_0 is the bare coupling constant. On the other hand, standard renormalization arguments require that it should be possible to re-absorb the Λ dependence in the bare coupling constant. Thus, dimensional analysis restricts the form of $f(0, u, \Lambda)$ to

$$f(0, u, \Lambda) = c \log \left(\frac{\Lambda}{|u|^{1/6}} \right).$$

(3)

To determine c we deform the theory by adding a relevant operator to its (unknown) Lagrangian such as to break the global E_8 symmetry down to D_4 ($SO(8)$) by putting Wilson lines on the torus. The advantage is that the D_4 conformal fixed point can be analyzed in standard field-theory. It is the IR free theory of $SU(2)$ coupled to 4 massless quarks.

The global E_8 of the original theory has been broken by the operators to a global $SO(8)$. For the $SO(8)$ theory we can ask what is

$$\langle j^A_\mu(q) j^B_\nu(-q) \rangle, \quad A, B = 1 \ldots 28,$$

(4)

where A, B are $SO(8)$ indices. The point is now that we can calculate this correlator for the $SO(8)$ theory from field theory. The relevant field theory is
SU(2) gauge theory with 4 quarks. From this correlator we can extract the original E_8 correlator. The details can be found in 1. We conclude that for the E_8 theory

$$\langle j^a_\mu(q) j^b_\nu(-q) \rangle = -\frac{3C(\text{fund.})}{4\pi^2} \delta^{ab}(q^2 \eta_{\mu\nu} - q_\mu q_\nu) \log \left| \frac{(\Lambda \lambda^2)^{1/3}}{u^{1/6}} \right|. \quad (5)$$

This means that the value of c in 3 is

$$c = -3 \frac{C(\text{fund. of } SO(8))}{4\pi^2} = - \frac{1}{10} \times \frac{C_2(E_8)}{4\pi^2}.$$

This value of c implies that 10 copies of the E_8 SCFT can be coupled to an E_8 SYM.

3 Derivation from M-theory

The system of the (1, 0) E_8 theory (V_1) coupled to E_8 SYM can be realized in M-theory as a 5-brane which is close to the 9-brane. The modes of the V_1 theory come from the 5-brane bulk and from membranes stretched between the 5-brane and 9-brane while the E_8 SYM comes from the 9-brane bulk. Let us compactify on $K3 \times T^2$.

The effect that we are trying to study corresponds to the following question. The gravitational field of the 5-brane affects the metric at the position of the 9-brane. Thus, as we change the distance of the 5-brane from the 9-brane the volume of the $K3$ changes as a function of x^4. The volume of $K3 \times T^2$ is related to the 3+1D E_8 coupling constant. In field-theory, this is interpreted as a running of the E_8 coupling constant as a result of the change of the VEV of the V_1 theory.

We apply the general setting and formulae of 3 to the case where the distance of the 5-brane from the 9-brane is much smaller than the compactification scale of $K3 \times T^2$ and calculate the effect.

We must also mention that the after compactification of the system of a 5-brane and 9-brane on S^1 we get 4-branes near 8-branes. This setting has been studied in 3 in the context of brane probes, where a related effect is observed. The position of the probe affects the value of a classical field, in that case the dilaton, which is then re-interpreted as a 1-loop effect in field theory. In fact, the relation between the classical supergravity calculation and the 1-loop field-theory calculation follows from perturbative string-theory. The 1-loop result is a loop of DD strings connecting the 4-brane to the 8-brane while the classical supergravity result is the same diagram viewed from the closed string channel.
3.1 Geometrical setup and review

In this section we will examine the theory of a 5-brane in M-theory on $\mathbb{R}^{5,1} \times K3 \times S^1/\mathbb{Z}_2$ and review some relevant facts from $\cite{[1],[4]}$

The geometric setup is as follows. The coordinates $(x^1, x^2, ..., x^6)$ parameterize $\mathbb{R}^{5,1}$, (x^7, x^8, x^9, x^{10}) parameterize K3 and finally x^{11} parameterizes S^1/\mathbb{Z}_2. All 5-branes have their world-volume along $\mathbb{R}^{5,1}$ and are located at a point in $K3 \times S^1/\mathbb{Z}_2$. All configurations will be defined on the whole S^1 and are symmetric under the \mathbb{Z}_2 (working “upstairs” – in the terminology of $\cite{[1]}$). This means, for example, that every time there is a 5-brane between the two fixed planes of the \mathbb{Z}_2 there is also a mirror 5-brane. There would be an equivalent formulation (“downstairs”) where configurations were only defined on the interval between the two “ends of the world”.

We know that M-theory on $\mathbb{R}^{5,1} \times S^1/\mathbb{Z}_2$ is heterotic $E_8 \times E_8$ with one E_8 theory living on each fixed plane of the \mathbb{Z}_2. If we compactify this theory on K3 we need to supply a total of 24 instantons and 5-branes. The theory we are interested in is a single 5-brane coupled to an E_8 gauge theory. To achieve this we need to have no instantons in one of the E_8 theories and one 5-brane close to this “end of the world”. The remaining 23 instantons and 5-branes must therefore be either instantons in the other “end of the world” or 5-branes in the bulk.

In the 6-dimensional description the distance of the 5-brane from the “end of the world,” x, is a modulus. The effective gauge coupling of the E_8 depends on x. From the 6-dimensional point of view certain degrees of freedom connected to the 5-brane act as matter coupled to the E_8 gauge field. Since the couplings and masses of this matter depend on x, the low energy effective E_8 gauge coupling, g, will depend on x. Here we will calculate the x-dependence of g from M-theory or more precisely from 11-dimensional supergravity. For supergravity to be applicable all distances involved in the problem need to be much bigger than the 11-dimensional Planck scale. This means especially that $\text{Vol}(K3) \gg l^4_{\text{Planck}}$. Furthermore we are interested in the behaviour of the theory when it is close to the point with tensionless strings or equivalently with a zero size instanton, which is $x = 0$. To be in that situation we take $x \ll \text{vol}(K3)^{\frac{1}{4}}$. The x-dependence of the 6-dimensional gauge coupling g, comes about because the volume of the K3 at $X^{11} = 0$ depends on x.

To calculate g we need to find the form of the metric as a function of x. The calculation of the metric and of g is described in detail in $\cite{[1]}$. Here we will just state the result, which is

$$\frac{1}{g^2} = \frac{1}{g_0^2} - \frac{1}{8\pi^2} x T_2.$$ (6)
Here T_2 is the tension of the membrane in 11 dimensions. The expression xT_2 is the tension of the strings in the six-dimensional theory. This is because the membrane is stretched with one direction along the 11th direction and two directions along $\mathbb{R}^{5,1}$. Compactifying further down to 4 dimensions on a torus of area A is straightforward

$$\frac{1}{g^2} = \frac{1}{g_0^2} - \frac{1}{8\pi^2} AxT_2. \quad (7)$$

This equation contains the needed information about the 4 dimensional theory. It tells how the gauge coupling in a E_8 gauge theory runs as a result of coupling to the 4 dimensional superconformal theory with E_8 global symmetry. In it is shown how this implies that 10 of these saturate the β-function in complete agreement with the field theory derivation.

4 The 6D current-current correlator from F-theory

In this section, we use the duality between F theory on elliptic Calabi-Yau 3-folds and Heterotic String on $K3$ to compute the effective gauge coupling of heterotic string in six dimensions. We shall see that the result agrees completely with the corresponding M-theory calculation to first order. A second order effect which is suppressed by a factor of the volume of the K3 and by the length of S^1/\mathbb{Z}_2 in calculations in the previous section naturally emerges in the F-theory setting. In the limit in which we extract the correlator for V_1, i.e. taking the volume of K3 and the size of S^1/\mathbb{Z}_2 to infinity, this second order effect vanishes.

We start with V_1 and couple it to a 6D E_8 SYM theory. The gauge theory is defined with a UV cut-off, but this imposes no problem for us since all we need is the dependence of the IR coupling constant on the VEVs of the V_1 theory. To be precise, we take the E_8 UV cut-off to be Λ and fix the E_8 coupling constant at Λ. The Coulomb branch of the V_1 theory has a single tensor multiplet. We denote the VEV of its scalar component by ϕ. ϕ is the tension of the BPS string in $\mathbb{R}^{5,1}$. In M-theory $\phi = xT_2$. The mass scale of the V_1 theory is thus $\phi^{1/2}$. We would like to find the dependence of the IR E_8 coupling constant on ϕ when $\phi \ll \Lambda$. Heuristically speaking, the running E_8 coupling constant will receive contributions from loops of modes from V_1 of mass $\sim \phi^{1/2}$.

The set-up that we have just described arises in the heterotic string compactified on $K3$ with a small E_8 instanton. We take the $(0, 23)$ embedding with a single 5-brane in the bulk close to the 9-brane with unbroken E_8. The F-theory dual has a base B which is the Hirzebruch surface F_{11} with one point.
blown-up. \(F_n \) is a \(P^1 \) bundle over \(P^1 \). Let the area of the fiber \(P^1 \) in \(F_{11} \) (i.e. the Kähler class integrated over the fiber) be \(k_F \) and the area of zero section \(P^1 \) of the fibration be \(k_D \).

We blow-up a point in the zero section of the fibration of \(P^1 \) over \(P^1 \). There are 10 7-branes wrapping that zero-section and passing through a point of the exceptional divisor. These are responsible for the unbroken \(E_8 \) gauge group. Let \(k_E \) be the area of the exceptional divisor. The area of the above mentioned 7-brane locus (part with unbroken \(E_8 \)) is \(k_D \). The Kähler class is

\[
k = (k_F - k_E)E + k_F D + (k_D + k_E - nk_F)F
\]

where \(E, D, F \) are the cohomology classes of the exceptional divisor, base and fiber.

\[
E \cdot E = -1, \quad E \cdot D = F \cdot D = 1, \quad (8)
\]

\[
D \cdot D = n - 1, \quad E \cdot F = F \cdot F = 0. \quad (9)
\]

A 3-brane wrapping the exceptional divisor gives a BPS string in \(\mathbb{R}^{5,1} \) (corresponding to the membrane connecting the M-theory 5-brane to the end of the world). Its tension is given by integrating the D3-brane tension over \(E \).

Using \(18 \)

\[
2 \kappa^2 \tau^2_p = 2\pi(4\pi^2 \alpha')^{3-p}
\]

the tension of the BPS string is simply

\[
\phi = \pi^{1/2} k_E
\]

in the units \(\kappa = 1 \). The volume of the whole base is

\[
V = \frac{1}{2} k \cdot k = k_F (k_D + k_E) - \frac{1}{2} k_E^2 - \frac{n}{2} k_F^2. \quad (11)
\]

This volume is the 6D inverse gravitational constant and we have to keep it fixed. Although the \(V_1 \) modes have an effect on the gravitational constant as well, by dimensional analysis, this effect is much smaller than \(\phi \) and behaves as \(\sim \phi^2 \). How should \(k_F \) depend on \(\phi \), in our setting? \(k_F \) measures the tension of 3-branes wrapped on \(F \). On the heterotic side, these are elementary strings which occupy a point on K3. Their tension is fixed in the heterotic picture. Thus \(k_F \) is independent of \(\phi \).

Now we come to the gauge coupling. To do this calculation it is convenient to imagine that \(E_8 \) is broken down to \(U(8) \subset E_8 \). The gauge kinetic term for
8 unwrapped 7-branes of the same type is
\[\int \tau_7 \frac{(2\pi\alpha')^2}{4} \text{tr}_8 \{ F^2 \} d^8x. \]

We are working in the conventions
\[\text{tr}\{ T^a T^b \} = \delta^{ab}, \quad a, b = 1 \ldots 248. \]

For the \(U(8) \) subgroup this means that
\[\text{tr}_8 \{ T^a T^b \} = \frac{1}{2} \delta^{ab}. \]

This means that for a configuration of 10 7-branes forming an \(E_8 \) gauge theory the gauge kinetic term is:
\[\frac{1}{8} \int (2\pi\alpha')^2 \tau_7 \left(\sum_{a=1}^{248} F^a F^a \right) d^8x. \]

From this we read off (in units where \(\kappa = 1 \))
\[\frac{1}{4g^2} = \frac{1}{8} (2\pi\alpha')^2 \tau_7 = \frac{1}{32} \pi^{-3/2}. \]

Wrapping the 7-branes on \(D \) we get a 5+1D \(E_8 \) gauge theory with coupling constant
\[\frac{1}{4g^2} = \frac{1}{32} \pi^{-3/2} k_D. \]

From \([1] \) we find that when \(V \) and \(k_F \) are kept fixed and \(k_E = \pi^{-1/2} \phi \), the \(E_8 \) coupling constant is
\[\frac{1}{g(\phi)^2} = \frac{1}{8} \pi^{-3/2} [(k_D + k_E) - k_E] = \frac{1}{(g_0)^2} - \frac{1}{8\pi^2} \phi. \quad (12) \]

We have used the fact that \((k_D + k_E) \) is fixed to first order in \(\phi \) when \(V \) is fixed. The other two terms in \(V \) are higher order corrections dual to taking \(K3 \) and the distance between the ends of the world to be large in the M-theory calculations. Eqn.\[12\] describes the running of the \(E_8 \) coupling constant because of the coupling to \(V_1 \). This is in complete agreement with the result obtained from M-theory.
5 Discussion

We have found that for the 3+1D \(E_8 \) super-conformal theory with Seiberg-Witten curve

\[y^2 = x^3 + u^5, \]

the 2-point \(E_8 \) current correlator on the Coulomb branch satisfies:

\[
\langle j^a_\mu(q)j^b_\nu(-q) \rangle = \begin{cases}
\frac{C_2(E_8)}{40\pi^2} \delta^{ab}(q_\mu q_\nu - q^2 \eta_{\mu\nu}) \log \left(\frac{\Lambda}{|u|^{1/6}} \right) & \text{for } |q| \ll |u|^{1/6} \\
\frac{C_2(E_8)}{40\pi^2} \delta^{ab}(q_\mu q_\nu - q^2 \eta_{\mu\nu}) \log \left(\frac{\Lambda}{|q|} \right) & \text{for } |q| \gg |u|^{1/6}
\end{cases}
\]

where \(\Lambda \) is a UV cutoff which is an artifact of Fourier transforming.

We deduced that 10 copies of the \(E_8 \) theory can be coupled as “matter” to an \(\mathcal{N} = 2 \) \(E_8 \) SYM gauge field.

In 5+1D we found the expression for the low-energy limit of the 5+1D correlator of the \(\mathcal{N} = (1,0) \) \(E_8 \) theory on the Coulomb branch and away from the origin:

\[
\langle j^a_\mu(q)j^b_\nu(-q) \rangle = \frac{C_2(E_8)}{240\pi^2} \delta^{ab}(q^2 \eta_{\mu\nu} - q_\mu q_\nu)(\Lambda^2 - \phi) \quad \text{for } |q| \ll \phi.
\]

where \(\phi \) is the VEV of the scalar of the low-energy tensor multiplet.

It would be interesting to determine the correlator in the UV region \(|q| \gg |\phi| \) or, equivalently, at the fixed point \(\phi = 0 \). It seems that the methods presented in this paper are not powerful enough for that purpose.

Acknowledgments

I wish to thank Yeuk-Kwan E. Cheung and Ori J. Ganor with whom this work was done. I furthermore wish to thank Steve Gubser, Igor Klebanov, Sangmin Lee, Sanjaye Ramgoolam and Savdeep Sethi for discussions. I wish to thank the organizers of the 1998 Trieste Conference on Superfivebranes and Physics in 5+1 Dimensions for letting me speak at the conference. This work was supported by the Danish Research Academy.

References

1. Yeuk-Kwan E. Cheung, Ori J. Ganor and Morten Krogh, “Correlators of the global symmetry currents of 4d and 6D superconformal theories,” Nucl. Phys. B 523, 1988 (171), hep-th/9710053
2. E. Witten, “Some Comments on String Dynamics,” contributed to Strings ’95, hep-th/9507121
3. A. Strominger, “Open p-Branes,” Phys. Lett. B 383, 44 (1996), hep-th/9512059
4. E. Witten, “Strong Coupling Expansion Of Calabi-Yau Compactification,” Nucl. Phys. B 471, 135 (1996), hep-th/9602070
5. E. Witten, “Physical Interpretation Of Certain Strong Coupling Singularities,” Mod. Phys. Lett. A11, 2649 (1996), hep-th/9609159
6. D.R. Morrison and C. Vafa, “Compactifications Of F-Theory On Calabi-Yau Threefolds - II,” Nucl. Phys. B 476, 437 (1996) hep-th/9603161
7. P. Horava and E. Witten, “Eleven-Dimensional Supergravity On a Manifold With Boundary,” Nucl. Phys. B 475, 94 (1996) hep-th/9603142
8. O.J. Ganor and A. Hanany, “Small E8 Instantons and Tensionless Non-Critical Strings,” Nucl. Phys. B 474, 122 (1996), hep-th/9602120
9. O.J. Ganor, D.R. Morrison, N. Seiberg, “Branes, Calabi-Yau Spaces, and Toroidal Compactification of the N = 1 Six-Dimensional E8 Theory,” Nucl. Phys. B 487, 93 (1997), hep-th/9610251
10. N. Seiberg and E. Witten, “Comments On String Dynamics In Six-Dimensions,” Nucl. Phys. B 471, 121 (1996), hep-th/9603003
11. C. Vafa, “Evidence For F-Theory,” Nucl. Phys. B 469, 403 (1996) hep-th/9602022
12. T. Banks, M.R. Douglas and N. Seiberg, “Probing F-theory With Branes,” Phys. Lett.B 387, 278 (1996) hep-th/9605199
13. N. Seiberg, “IR Dynamics on Branes and Space-Time Geometry,” Phys. Lett.B 384, 81 (1996), hep-th/9606017
14. J.D. Blum and K. Intriligator, “New Phases of String Theory and 6d RG Fixed Points via Branes at Orbifold Singularities,” Nucl. Phys. B 506, 199 (1997) hep-th/9705044
15. K. Intriligator, “New String Theories in Six Dimensions via Branes at Orbifold Singularities,” hep-th/9708117
16. E. Witten, “Phase Transitions In M-Theory And F-Theory,” Nucl. Phys. B 471, 195 (1996) hep-th/9603150
17. N. Seiberg, “Five Dimensional SUSY Field Theories, Non-trivial Fixed Points AND String Dynamics,” Phys. Lett.B 388, 753 (1996) hep-th/9608111
18. J. Polchinski, “TASI Lectures on D-Branes,” hep-th/9611050
19. S. Kachru and C. Vafa, “Exact Results For N = 2 Compactifications Of Heterotic Strings,” Nucl. Phys. B 450, 1995 (69), hep-th/9505105