Supporting Information

for *Adv. Funct. Mater.*, DOI: 10.1002/adfm.201909005

How Much Oxygen Can a MXene Surface Take Before It Breaks?

Ingemar Persson, Joseph Halim, Thomas W. Hansen, Jakob B. Wagner, Vanya Darakchieva, Justinas Palisaitis, Johanna Rosen, and Per O. Å. Persson
Supplementary Information for

How much oxygen can a MXene surface take before it breaks?

I. Persson,¹ J. Halim,¹ T.W. Hansen,² J. Wagner,² V. Darakchieva,³ J. Palisaitis,¹ J. Rosen¹ and P.O.Å. Persson¹

¹ Thin Film Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden
² Center for Electron Nanoscopy, DTU Danchip/CEN, DK-2800, Kgs. Lyngby, Denmark
³ Semiconductor Materials Division, Department of Physics Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden

Figure S1. EELS spectra of Ti-L2,3(456 eV), O-K (529 eV) and F-K (680 eV) prior to O₂ exposure. The fluorine has been removed by the high temperature treatment.
Figure S2. HRTEM overview (25 nm x 25 nm) of the lattice out of which selections are presented in figure 1a-f in the manuscript. A close inspection reveals that O\textsubscript{2} exposure results in a gradual decrease in hexagonal ordering from a) RT to b-d) 400 °C, this is also seen at larger scale and not just local effect. e) False color HRTEM image at 400 °C after 2 mbar O\textsubscript{2} exposure that depicts the final disordered surface before breakdown. f) False color HRTEM image at 450 °C after 2 mbar O\textsubscript{2} exposure confirm the presence of nanoparticles and the hexagonal lattice has completely degraded.
Figure S3. An overview images of the flake investigated in the ETEM before and after O$_2$ exposure at 450 °C. Note that the 2D flake remains intact although the MXene structure is amorphized.
Figure S4. EELS spectra of Ti-L_{2,3} edges acquired from Ti_3C_2T_X flakes after exposure to 2 mbar O_2 gas for 0.5 h, at RT, 100 °C, 150 °C, 175 °C, 250 °C, 350 °C, 400 °C and 450 °C.
To rule out the possible contribution of trapped and/or intercalated species as a contributor to the O-K quantification EELS spectra is presented on pure O\textsubscript{2} and compared to the signal of terminating O on Ti\textsubscript{3}C\textsubscript{2}T\textsubscript{X}.

![EELS spectra](image)

Figure S5: EELS spectra showing the O-K signal for; O\textsubscript{2} during 2 mbar exposure, and Ti\textsubscript{3}C\textsubscript{2}T\textsubscript{X} in high vacuum at RT (before O\textsubscript{2} exposure), 375 °C, and 450 °C after O\textsubscript{2} exposure.
Figure S5 presents an electron diffraction (ED) pattern acquired after exposure to O$_2$ at 450 °C. A number of additional diffraction spots are observed in contrast to the pattern presented in figure 2b at lower temperatures.

Figure S6. ED pattern of the Ti$_3$C$_2$Tx flake after exposure to O$_2$ at 450 °C

In order to index the reflections, rotational averaging was performed using built-in routines in Gatan Digital Microscopy Suite and ED patterns were simulated with CrystalMaker using standard crystal models of Ti$_3$C$_2$Tx, TiC, TiO$_2$ (brookite, anatase, rutile).
Table S1. List of measured distances for lattice spacings and simulated d-spacings resulting in a close match.

Measured d-spacings (Å)	Simulated d-spacings	MXene	TiO₂	
5.38				
4.16	011 anatase (3.516)			
3.66	110 rutile (3.249)			
3.42	111 brookite (3.462)			
3.11		111 rutile (2.187)	221 brookite (2.131)	
2.74	010 T₃C₂Tₓ (2.672)			
2.12	020 anatase (1.892)	120 rutile (2.055)	302 brookite (1.967)	
1.98	110 rutile (2.187)			
1.78	015 anatase (1.700)	121 rutile (1.688)	402 brookite (1.711)	
1.68	121 anatase (1.666)	220 rutile (1.624)	230 brookite (1.689)	
1.54	110 T₃C₂Tₓ (1.543)	123 anatase (1.493)		
1.43	024 anatase (1.481)	130 rutile (1.453)	213 brookite (1.437)	
1.32	200 T₃C₂Tₓ (1.336)	220 anatase (1.338)	112 rutile (1.346)	213 brookite (1.437)