The influence of initial parameters of pneumatic accumulator on the dynamic characteristics of the actuator during braking back pressure

Andrey Sirotenko and Svetlana Partko
Don State Technical University, Rostov-on-Don, Russian Federation

E-mail: parlana@rambler.ru

Abstract. A pneumatic drive with back pressure braking is considered. The braking energy is recovered to the pneumatic accumulator. A schematic diagram of a regenerative pneumatic drive is given. The question of the influence of the initial parameters of the pneumatic accumulator on the dynamic characteristics of the pneumatic actuator is considered. The following initial parameters were set in the pneumatic accumulator: volume; pressure. The following were evaluated in a pneumatic drive: pressure in cavities before and after braking; output link speed. The energy consumption and speed of the pneumatic drive were determined critically. Graphic dependencies of the dynamic processes of the pneumatic drive are presented. The relationship of the initial parameters of the pneumatic accumulator with the criteria of energy consumption and speed is established.

1. Introduction
Pneumatic drive is actively used in industry. This is due to such advantages as the availability and environmental friendliness of the working environment, ease of automation and mechanization, centralization of the energy source, speed [1], [2]. However, the inertia of the output links, the compressibility of the working medium, and, as a result, the impact or “overrun” of the output link at the breakpoint forces it to significantly limit its speed [1], [2]. To ensure an unstressed stop, specialized changes are made to the design of the air motor, and the air compressed during braking is released [2].

A variety of approaches to solving this problem leads to the presence of a large number of ways to set the law of braking of the output link of the pneumatic drive [3], [4], [5], [6], [7]. The most promising of them is the method of braking the output link in the brake cavity of the air motor. This method has several advantages, the main of which is the possibility of energy recovery, therefore, the braking of the output link of the pneumatic actuator with backpressure reduces energy consumption due to the subsequent use of compressed air during braking [1], [2], [7]. The use of a pneumatic accumulator in the implementation of this method allows not only to increase energy recovery, but also to expand the range of control of the braking parameters of the pneumatic drive. Changing the initial parameters of the pneumatic accumulator allows you to provide rational energy-speed characteristics of the pneumatic actuator [8], [9], [10].

The aims of the work are as follows: to study the influence of the initial parameters of the pneumatic accumulator on the energy-speed characteristics of the pneumatic actuator during braking...
by the backpressure method, and to establish a mathematical relationship between the initial parameters of the pneumatic accumulator and the criteria for speed and energy consumption.

2. The main part of the research

A schematic diagram of a pneumatic drive with energy recovery to the pneumatic accumulator is shown in Figure 1. The output link is braked by completely blocking the pressure and exhaust lines with a distributor (D1). At this point, a pneumatic accumulator (AV) with a predetermined volume and initial pressure in it is connected to the exhaust manifold. Further, the movement of the output link is accompanied by compression of the air in the brake cavity of the air motor and the pneumatic accumulator connected to it with a simultaneous drop in pressure in another expanding cavity of the air motor. The potential energy of compressed air during braking is recovered in the pneumatic accumulator. The accumulated energy is used to reverse the movement of the air motor without load. The fixation of the executive body is carried out by a pneumofitsirovannym emphasis on the "rebound" of the rod (not shown in the figure).

![Figure 1. Principal circuit of the pneumatic drive with energy recuperation in the pneumatic accumulator.](image)

By setting the initial parameters of the pneumatic accumulator, pressure and volume, the braking force on the piston of the air motor is regulated, which allows not only to perform an unstressed stop of the actuator, but also to ensure rational speed and energy consumption of the pneumatic actuator [8], [9], [10]. The initial parameters of the pneumatic accumulator are set by switching the distributor (D2), from the line, in which the pressure is set by a pressure reducing valve (RV). Switching to braking of valves D1,2 is carried out by limit sensor S2. Sensor S1 signals that the rod has reached the initial position of the air motor.

After confirming the adequacy of the mathematical model that describes the dynamic processes in the proposed pneumatic actuator [11], [12], [13], [14], a computational experiment [15] was conducted. The volume of the pneumatic accumulator (h) and the initial pressure in the pneumatic accumulator (p) were taken as controlled and independent from each other factors affecting the speed and energy consumption. Factors varied at five levels. As a performance criterion (Y1), the working
stroke time of the output link of the pneumatic drive \((t \text{ (s)})\) was taken. For the criterion of energy consumption \((Y_2)\), the ratio of the product of the volume of the pneumatic accumulator and the initial pressure in it to the product of the final pressure in the brake cavity and the total volume of the brake cavity was used. Based on the results of the analysis of the experimental data, the regression equations were compiled and solved:

\[
Y_1 = 0.934 + 9.9166 \cdot 10^{-2} (h - 0.3) - 4.1666 \cdot 10^{-8} (p - 300000) - \\
6.875 \cdot 10^{-8} (h \cdot p - 300000 h - 0.3 p + 90000) + 7.5 \cdot 10^{-2} (h^2 - 0.6 h + 0.09) + \\
+ 2.125 \cdot 10^{-13} (p^2 - 600000 p + 9 \cdot 10^{10}) \\
Y_2 = 2.2395 - 3.6988 (h - 0.3) + 1.5074 \cdot 10^{-7} (p - 300000) - \\
- 2.9559 \cdot 10^{-7} (h \cdot p - 300000 h - 0.3 p + 90000) + 9.50413 \cdot \\
(h^2 - 0.6 h + 0.09) + 2.933 \cdot 10^{-13} (p^2 - 600000 p + 9 \cdot 10^{10})
\]

where \(h \text{ (m)}, p \text{ (Pa)}\) — the amount of additional volume reduced to the area of the piston of the air motor and the absolute initial pressure in the additional volume, respectively.

Graphically, the dependence of the performance and energy consumption criteria of the pneumatic actuator on the parameters of the initial parameters of the battery is shown in figure 2.

Figure 2. The dependence of energy-speed criteria on the initial parameters of the pneumatic accumulator \((p; h)\): a) - speed \((Y_1)\); b) - energy consumption \((Y_2)\).

An analysis of the dependences shown in figure 2 (a, b) obtained after the computational experiment allows us to assess the degree of influence of the experimental factors on the speed of movement of the output link and pressure in the rod and piston cavities of the air motor. Maximum performance is achieved with a minimum pneumatic accumulator volume of 42 cm\(^3\) and a maximum initial absolute pressure in it of \(5 \cdot 10^5\) Pa (figure 2, a). The minimum energy consumption corresponds to the initial parameters of the pneumatic accumulator: pressure \(1 \cdot 10^3\) Pa and volume 210 cm\(^3\) (figure 2, b).

Figure 3 shows graphical dependences of the speed of the output link \((v)\), pressures in the discharge cavity \((P_p)\) and the exhaust cavity \((P_v)\) of the air motor with varying the initial value of the volume of the pneumatic accumulator with a constant absolute initial pressure in it - \(1 \cdot 10^5\) Pa. Figure 3 shows the same dependences as in figure 4, but the initial absolute pressure in the pneumatic accumulator is \(5 \cdot 10^5\) Pa.
Figure 3. The dependence of the parameters of the pneumatic actuator on the parameters of the pneumatic accumulator with an initial absolute pressure of 1×10^5 Pa and initial volumes of 42; 84; 126; 168; 210 cm3: a) - output link speed (v); b) - pressure in the discharge cavity of the pneumatic actuator; c) - pressure in the brake cavity of the pneumatic actuator.

The maximum consumption of compressed air for accelerating the piston of the pneumatic cylinder corresponds to the initial pressure in the pneumatic accumulator - 5×10^5 Pa and the volume of the pneumatic accumulator - 210 cm3 (figure 4). As it can be seen from figure 4, this combination of factors corresponds to the maximum “shelf” of pressure growth in the exhaust cavity (P_v) until switching to braking. The speed of the output link and the greatest force of resistance to movement will be at an initial pressure in the pneumatic accumulator of 5×10^5 Pa and a volume of 210 cm3 (figure 4). The maximum recovery pressure in the pneumatic accumulator is achieved with a volume of 42 cm3 and an initial pressure in it of 5×10^5 Pa (figure 4).
Figure 4. The dependence of the parameters of the pneumatic actuator on the parameters of the pneumatic accumulator with an initial absolute pressure of 5×10^5 Pa and initial volumes of 42; 84; 126; 168; 210 cm3: a) - output link speed (v); b) - pressure in the discharge cavity of the pneumatic actuator; c) - pressure in the brake cavity of the pneumatic actuator.

3. Conclusion
The maximum speed is achieved at an initial pressure in the pneumatic accumulator of 5×10^5 Pa, but the maximum costs of compressed air for accelerating the piston of the pneumatic cylinder are obtained at the same pressure and volume of the pneumatic accumulator of 210 cm3. The minimum energy consumption in the pneumatic actuator corresponds to the initial pressure in the pneumatic accumulator - 2×10^5 Pa and its volume - 210 cm3.

References
[1] Yusop M Y 2006 Energy Saving for Pneumatic Actuation using Dynamic Model Prediction (Wally: Cardiff University)
[2] Filipov I B 1987 Deceleration devices of pneumatic actuator (Leningrad: Machine-building)
[3] Krytikov G, Strizhak M and Strizhak V 2017 The synthesis of structure and parameters of energy efficient pneumatic actuator Eastern-European Journal of Enterprise Technologies 7(85) 38-44
[4] Blagojevic V A and Jankovic P L 2016 Advantages of restoring energy in the execution part of
pneumatic system with semi-rotary actuator *Thermal Science* **20**(5) 1599-609

[5] Blagojevic V, Šešlija D and Stojiljkovic M 2011 Cost effectiveness of restoring energy in execution part of pneumatic system *Journal of Scientific and Industrial Research* **70** 170-6

[6] Dao T A, Sidorenko V S and Dymochkin D D 2015 Study on positioning accuracy of automated pneumatic drive with an outer brake *Vestnik of Don State Technical University* **15**(4) 46-53

[7] Hertz E V 1985 *Dynamics of pneumatic systems of machines* (Moscow: Machine-building)

[8] Diachenko A D, Udovkin A I and Sirotenko A N 2006 Improving Characteristics of Pneumatic Drive of Unit for Liquid Product Pre-Packing and Packing *Improving Processes and Technical Means in Agroindustrial Complex: Collection of Scientific Papers. Ministry of Agriculture and Food of the Russian Federation, Azov and Black Sea Region Academy of Agricultural Mechanization, Zernograd, 2006* pp 79-81

[9] Sirotenko A N and Partko S A 2014 Energy-saving pneumatic actuator of technological equipment *Proceedings of VI Intern. scientific-practical. Conf.: Innovative technologies in machine-building and metallurgy, Rostov-on-Don* pp 173-8

[10] Sirotenko A N and Partko S A 2015 Improvement of characteristics of a pneumodrive of table turn of packaging and filling machine *8 Intern. scientific-practical. Conf. materials: Condition and prospects of development of agricultural machine-building, Within the framework of the 18th Intern. agricultural industry. Sp. "Interagromash 2015", Rostov-on-Don* pp 179-82

[11] Sirotenko A N and Partko S A 2017 Decrease in Power Inputs in Pneumodrive Weighing-and-Packing Machine *International Journal of Applied Engineering Research* **12**(14) 4599-603

[12] Sirotenko A N and Partko S A 2017 Mathematical model of dynamic processes of pneumatic drive during braking by reverse pressure, with recovery of energy into additional volume *Science Review* **21** 67-74

[13] Udovkin A I 2018 Experimental Check of Validity of Mathematical Model of Cost-Efficient Certificate of registration of the computer program RUS 2018613130

[14] Sirotenko A N, Partko S A and Salloum W 2018 Effect of recuperative volume parameters on dynamic characteristics of pneumatic drive underbraking *Vestnik of Don State Technical University* **18**(4) 379-84

[15] Sirotenko A N, Partko S A and Saed B A 2017 Dependence of energy-speed characteristics of pneumatic drive on initial parameters of additional volume under counterpressure braking *Vestnik of Don State Technical University* **17**(4) 69-76