Metallicity dependence of the Hercules stream in Gaia/RAVE data – explanation by non-closed orbits

Kohei Hattori1,*, Naoteru Gouda2,3, Taihei Yano2,3, Nobuyuki Sakai2, Hiromichi Tagawa2,4, Junichi Baba2, Jun Kumamoto2,5

1 University of Michigan, 1085 S. University Ave, Ann Arbor, MI 48109, USA
2 National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588, Japan
3 SOKENDAI (The Graduate University for Advanced Students), Shonan Village, Hayama, Kanagawa 240-0193, Japan
4 Institute of Physics, Eötvös University, Pázmány P.s., Budapest, 1117, Hungary
5 Astronomical Institute, Tohoku University, Sendai, Miyagi 980-8578, Japan

6 April 2018

ABSTRACT

The origin of the Hercules stream, the most prominent velocity substructure in the Solar neighbour disc stars, is still under debate. Recent accurate measurements of position, velocity, and metallicity provided by Tycho Gaia Astrometric Solution (TGAS) and RAdial Velocity Experiments (RAVE) have revealed that the Hercules stream is most clearly seen in the metal-rich region ([Fe/H] \(\gtrsim 0\)), while it is not clearly seen in lower metallicity region ([Fe/H] \(\lesssim -0.25\)). By using a large number of chemo-dynamical 2D test-particle simulations with a rotating bar and/or spiral arms, we find that the observed [Fe/H] dependence of the Hercules stream is a natural consequence of the inside-out formation of the stellar disc and the existence of highly non-closed orbits in the rotating frame of the bar or spiral arms. Our successful models that reproduce the observed properties of the Hercules stream include not only fast-bar-only and fast-bar+spiral models, but also slow-bar+spiral models. This indicates that it is very difficult to estimate the pattern speed of the bar or spiral arms based only on the observations of the Hercules stream in the Solar neighbourhood. As a by-product of our simulations, we make some predictions about the locations across the Galactic plane where we can observe velocity bimodality that is not associated with the Hercules stream. These predictions can be tested by the forthcoming Gaia data, and such a test will improve our understanding of the evolution of the Milky Way stellar disc.

Key words: – Galaxy: disc – Galaxy: kinematics and dynamics – Galaxy: structure – (Galaxy:) solar neighbourhood

1 INTRODUCTION

Since the discovery of the bimodal velocity distribution of the Solar neighbour disc stars (Raboud et al. 1998; Dehnen 1998), many authors have tried to explain the origin of the secondary peak, or the Hercules stream. The stars in the Hercules stream are characterised by small angular momentum and radially outward mean velocity, and their orbits are distinct from the nearly circular orbits of stars in the primary peak (main mode). Since the stars in the Hercules stream show a wide range of stellar ages, metallicities, and element abundances (Bensby et al. 2007), this stream is believed to be formed through some dynamical process.

The pioneering work of Dehnen (2000) demonstrated that the under-dense region between the main mode and the Hercules stream can arise from the outer Lindblad resonance (OLR) of a fast rotating bar. Based on this idea, Dehnen (1999b) estimated the bar’s pattern speed to be \(\Omega_{\text{bar}} = (53 \pm 3)\) km s\(^{-1}\) kpc\(^{-1}\). Dehnen’s explanation of the Hercules stream is so simple, sticky, and easy to be reproduced, that many authors have refined the measurement of \(\Omega_{\text{bar}}\) by using larger samples of nearby stars; and they obtained similar values of \(\Omega_{\text{bar}}\) (Minchev et al. 2007; Antoja et al. 2014; Monari et al. 2017b). Although the detailed explanation may differ from authors to authors (e.g.,

* khattori@umich.edu

© 20xx The Authors
the fast-bar models provide the most successful explanation so far.

With the success of bar-only models, it may be natural to try spiral-only models, but none of them are as successful as bar-only models. For example, Antoja et al. (2009) investigated the effect from steady spiral arms on the local velocity distribution. They found that spiral-only models can sometimes produce bimodal velocity distribution, but the stars associated with the (Hercules-like) secondary peak have zero radial velocity on average. This property of the radial velocity is inconsistent with the observed Hercules stream.

Also, there have been some attempts to consider the perturbation from bar + spiral models to explain the Hercules stream (Quillen 2003; Chakrabarty 2007; Antoja et al. 2009; Quillen et al. 2011; Monari et al. 2017a) or to understand the perturbed velocity distribution of disc stars in general (Monari et al. 2016). These models only sparsely sample the parameters such as the pattern speeds of the bar and spirals, (Ω_{bar}, Ω_s), yet their results roughly agree with each other that fast-rotating bar can (sometimes) reproduce a Hercules-like stream.

Although the fast-bar models are the simplest and yet most successful models to explain the Hercules stream, fast-bar models are inconsistent with a recent claim of the long Galactic bar (half-length of 5 kpc; Wegg et al. 2015). For example, based on a numerical model which is designed to reproduce the observed spatial and velocity distribution of bulge/bar stars, Portail et al. (2017) argued that a slow pattern speed of Ω_{bar} = (39 ± 3.5) km s^{-1} kpc^{-1} is required to sustain the long bar.

This ∼ 30% difference in Ω_{bar} between the fast-bar and slow-bar models is more serious than it sounds. For example, if Ω_{bar} ≃ 39 km s^{-1} kpc^{-1} (slow bar), the OLR is unimportant in the Solar neighbourhood. This means that some other effect induces the bimodality if the slowly rotating bar is responsible for the Hercules stream. For example, Pérez-Villegas et al. (2017) analysed a realistic Milky Way model built from a N-body simulation and claimed that disc stars trapped by the co-rotation of the bar comprise the Hercules stream. Also, Hunt & Bovy (2018) claimed that the velocity bimodality can be caused by a slowly rotating bar if the m = 4 Fourier component of the bar potential is properly taken into account. Although the recent success of slow-bar-only models is promising, it is important to understand to which extent the slow-bar models are successful.\footnote{Interestingly, none of our slow-bar-only models in this paper can reproduce a bimodal velocity distribution (as shown in Section 5.1 and interpreted in Section 6.4 of this paper).} It is worthwhile keeping in mind that the stellar disc is perturbed by not only the bar but also spiral arms. For example, if a slow-bar model relies on a specific resonance to reproduce the Hercules stream, there is a possibility that the additional perturbation from the spirals might destroy the bar’s resonance and the bimodality.

In this paper, we perform test-particle simulations that densely sample the parameter space of the bar and spiral arms. Our models include slow-bar-only, fast-bar-only, spiral-only, and bar + spiral models. One of the key features in our simulations is that we use the semi-analytic model proposed by Sanders & Binney (2015) to take into account the chemo-dynamical evolution of the stellar disc such as the [Fe/H] evolution as a function of time and the Galactocentric radius, or the age-velocity dispersion relationship.

Our models are useful in understanding the rich chemo-dynamical information contained in the combined data of Gaia (Lindegren et al. 2016) and other spectroscopic surveys such as RAdial Velocity Experiments (RAVE) (Kunder et al. 2017). For example, soon after the first data release of Gaia, it has been realised that the observed properties of the Hercules stream depends on [Fe/H], such that the Hercules stream is more prominent in more metal-rich region (Pérez-Villegas et al. 2017; Quillen et al. 2018). The interpretation of this 7D data (6D spatial and velocity data plus 1D metallicity data) in terms of perturbation from bar/spirals has not been possible without sophisticated and homogeneous set of simulations. In this paper, we run a large number of (∼ 200) chemo-dynamical 2D test-particle models that are perturbed by the bar and/or spiral arms in order to investigate the origin of the [Fe/H] dependence of the Hercules stream.

The outline of this paper is as follows. In Section 2, we briefly summarise the observed velocity distribution of the Solar-neighbour disc stars revealed by Gaia and RAVE data. In Section 3, we describe the potential models in our simulations. In Section 4, our prescription for the test-particle simulations is shown. In Section 5, we show the results of simulations for bar-only, spiral-only, and bar + spiral models. In Section 6, we perform orbital analyses to interpret the result of the simulations. In Section 7, we discuss the implication from our calculations, and Section 8 sums up.

2 DATA

Here we explain the observed data with which our models are compared.

First, we cross-match the sample stars in Tycho Gaia Astrometric Solutions (TGAS) from the Gaia Data Release 1 (Lindegren et al. 2016) and RAdial velocity Experiments (RAVE) Data Release 5 (Kunder et al. 2017). Then we use the 5D astrometric data from TGAS and the line-of-sight velocity and [Fe/H] from RAVE to derive the velocity distribution of stars within 200 pc from the Sun. Our sample is defined by the following criteria: (1) positive parallax (π > 0); (2) distance cut (1/π < 200 pc); (3) small fractional error in parallax (δπ/π < 0.2); (4) small line-of-sight velocity error (0 < δvlos/(km s^{-1}) < 5); (5) metallicity cut (−1 < [Fe/H] < 0.5); and (6) large S/N ratio (> 40) in the RAVE spectra. We note that the Solar velocity in the Galactic rest frame is assumed to be (U_0, V_0) = (11.1, 230.24) km s^{-1} (Schönrich et al. 2010; Bovy & Rix 2013). The definition for (U, V) is given in Section 3.1.

Fig. 1 shows the [Fe/H] dependence of the velocity distribution. In each panel with different [Fe/H], the thick contours enclose 10, 20, 30, 40, and 50% of the stars; while the thin contours enclose 60, 70, 80, and 90% of the stars. At the most metal-poor regions (−1 ≤ [Fe/H] ≤ −0.75 and −0.75 ≤ [Fe/H] ≤ −0.5), we see a mono-modal distribution, which is characterised by a large velocity dispersion. As the [Fe/H] increases, the velocity dispersion becomes smaller. At the most metal-rich regions (0 ≤ [Fe/H] ≤ 0.25 and...
0.25 \leq [\text{Fe/H}] \leq 0.5$, we see a clear secondary peak at $(U, V) = (-15, 185)$ km s$^{-1}$ (see also Pérez-Villegas et al. 2017), which lags behind the azimuthal motion of the Sun by about 45 km s$^{-1}$.

Following these observational data, in this paper, we search for models in which their (U, V) distribution is characterised by the following observational properties:

- (P1) The velocity distribution is bimodal at high [Fe/H], but mono-modal at low [Fe/H].
- (P2) Hercules-like secondary peak is located at $V \leq 0.85v_0$.
- (P3) Hercules-like secondary peak is located at $U < 0$.

Here, v_0 is the Local Standard of Rest velocity in the model (see Section 3.3). Throughout this paper, we search for models that reproduce the above-mentioned properties of the Hercules stream. Hereafter, those models that show all of these observational properties (P1)-(P3) are referred to as ‘successful models’, those that satisfy (P1) and (P2) or (P1) and (P3) are referred to as ‘partially successful models’; while the others are referred to as ‘unsuccessful models’.

In the TGAS-RAVE data, the Hercules stream is most prominent at $[\text{Fe/H}] > 0$. However, we do not attempt to find models that show bimodality rigorously at this $[\text{Fe/H}]$ range, since we use a simple prescription to assign $[\text{Fe/H}]$ to each particle in our simulations. Also, we do not take into account the relative strength of the main mode and the Hercules stream when we judge the success of our models, since it depends on various model parameters (see fig. 14 of Fux 2001) which are beyond our interest.

3 POTENTIAL MODELS

We calculate the velocity distribution of disc stars in the 2D velocity space (ignoring the velocity perpendicular to the Galactic disc plane) under the influence of the rigidly rotating bar and/or spiral potentials. To this end, we perform chemo-dynamical 2D test-particle simulations. Here we describe the potential models in our simulations.

3.1 Coordinate systems

3.1.1 Non-rotating coordinate system

We first describe our rest frame (non-rotating) coordinate system. We use a Galactocentric right-handed cartesian coordinate system (x, y, z), in which (x, y) plane corresponds to the Galactic disc plane and the z axis is directed toward the North Galactic Pole. We also use a polar coordinate system (R, ϕ, z), such that it coincides with (x, y, z) at the current epoch ($t = 0$). Similarly, we define the rotating cylindrical coordinate system, $(R, \phi_{\text{rot}}, z)$, such that it coincides with (R, ϕ, z) at $t = 0$.

3.1.2 Rotating coordinate system

In the presence of a rotating bar or spiral arms, it is useful to define the rotating coordinate systems that rotates with the bar or spiral arms. Here, we define the rotating cartesian coordinate system, $(X_{\text{rot}}, Y_{\text{rot}}, z)$, such that the motions of stars are influenced by a slowly growing perturbation (see Section 3.2 for detail).

3.1.3 Positions of the Sun, bar, and spiral arms

We assume that the Sun is currently located at $(R, \phi, z) = (R_0, 180^\circ, 0)$ with $R_0 = 8$ kpc. The Galactic bar is currently oriented along $\phi = \phi_{\text{bar}} = -25^\circ$, and it is always oriented along $\phi_{\text{rot}} = \phi_{\text{bar}}$ in the bar’s rotating frame. One of the spiral arms (mimicking the Perseus Arm) and the Solar circle $(R = R_0)$ intersect at $\phi = \gamma_0 = 135^\circ$ at the current epoch, and they always intersect at $\phi_{\text{rot}} = \gamma_0$ in the spirals’ rotating frame.

3.2 Total potential

We assume that the total gravitational potential of the Milky Way is given by

$$\Phi(R, \phi, t) = \Phi_0(R) + G(t)[\Phi_b(R, \phi, t) + \Phi_s(R, \phi, t)],$$

where Φ_0, Φ_b, and Φ_s are the unperturbed, bar, and spiral potentials, respectively. Here, t is time and the current epoch is assumed to be $t = 0$. The function $G(t)$ is introduced so that the motions of stars are influenced by a slowly growing perturbation (see Section 4.2 for detail).

3.3 Logarithmic potential

We assume that the unperturbed potential of the Milky Way is axisymmetric and has a functional form of

$$\Phi_0(R) = v_0^2 \ln(R/R_0),$$

with $R_0 = 8$ kpc and $v_0 = 220$ km s$^{-1}$. Under this potential, the circular velocity is v_0 at any radius R. Note that the adopted value of v_0 is close to the circular velocity at the Solar circle, (218 ± 10) km s$^{-1}$, estimated by Bovy & Rix (2013).

3.4 Bar potential

Following Dehnen (2000), we adopt a rigidly rotating bar potential of the form

$$\Phi_b(R, \phi, t) = \frac{\alpha}{3} \left(\frac{R}{R_0} \right)^3 f_b(R) v_0^2 \cos[2(\phi + \Omega_{\text{bar}} t - \phi_{\text{bar}})].$$

We fix the current orientation of the bar to be $\phi_{\text{bar}} = -25^\circ$ and the bar strength parameter to be $\alpha = 0.01$. The factor $f_b(R)$ is axisymmetric and has a functional form of

$$f_b(R) = \frac{1}{2} (1 + \cos \gamma) \left(\frac{R}{R_0} \right)^3,$$

where γ is the angle between the major axis of the bar and the major axis of the disk. Note that $f_b(R)$ is defined only for $R \geq R_0$. The factor $f_b(R)$ is axisymmetric and has a functional form of

$$f_b(R) = \frac{1}{2} (1 + \cos \gamma) \left(\frac{R}{R_0} \right)^3,$$

where γ is the angle between the major axis of the bar and the major axis of the disk. Note that $f_b(R)$ is defined only for $R \geq R_0$. The factor $f_b(R)$ is axisymmetric and has a functional form of

$$f_b(R) = \frac{1}{2} (1 + \cos \gamma) \left(\frac{R}{R_0} \right)^3,$$

where γ is the angle between the major axis of the bar and the major axis of the disk. Note that $f_b(R)$ is defined only for $R \geq R_0$. The factor $f_b(R)$ is axisymmetric and has a functional form of

$$f_b(R) = \frac{1}{2} (1 + \cos \gamma) \left(\frac{R}{R_0} \right)^3.$$
\(f_b(R) \) that governs the radial dependence of the potential is given by

\[
f_b(R) = \begin{cases}
 -(R/R_0)^{-3}, & (R \geq R_0) \\
 (R/R_0)^3 - 2, & (R < R_0).
\end{cases}
\]

We use 6 values of the pattern speed of the bar, \(\Omega_{\text{bar}} = 36.11, 39.12, 42.68, 46.95, 49.42, \) and 52.16 (see Table: 1). Note that these values of \(\Omega_{\text{bar}} \) respectively have the OLR radius of \(R_{\text{OLR}}/R_0 = 1.3, 1.2, 1.1, 1.0, 0.95, \) and 0.9, in the limit of weak bar (\(\alpha \to 0 \)). Also, we set the half-length of the bar to be \(R_b = 0.8R_0/\Omega_{\text{bar}} \) (80\% of the co-rotating radius of the bar in the limit of weak bar; see Dehnen 2000). For example, a slow bar with \(\Omega_{\text{bar}} = 36.11 \) is as long as \(R_b = 4.87 \) kpc (which is consistent with the recent claim of \(\sim 5 \) kpc by Wegg et al. 2015); while a fast bar with \(\Omega_{\text{bar}} = 49.42 \) has a half-length of \(R_b = 3.56 \) kpc.

3.5 Spiral potential

We adopt a rigidly rotating logarithmic spiral potential model (see Seigar & James 1998 section 3.4; Binney & Tremaine 2008 equation 8.124) given by

\[
\Phi_s(R, \phi, t) = -v_v^2(R) \times \cos \left[m(\phi + \Omega_s t - \gamma_0) - \frac{m}{\tan(\theta_{\text{pitch}})} \ln \left(\frac{R}{R_0} \right) \right].
\]

Detailed description for the parameters are presented below.

3.5.1 Pattern speed \(\Omega_s \) of the spiral potential

The pattern speed \(\Omega_s \) of spiral arms in the literature are distributed at around \(17 < \Omega_s < 28 \) (Gerhard 2011). In order to cover this range, we adopt 7 values of \(\Omega_s = 17, 19, 20, 21, 23, 25, \) and 28 (see Table 2).

3.5.2 Number and geometry of the spiral arms

We assume that the number of spiral arms is either \(m = 2 \) or \(m = 4 \). The choice of \(m \) is motivated by the observational result that there seem to be four gas-rich spiral arms (Steiman-Cameron et al. 2010) but only two of them (Perseus Arm and Scutum-Centaurus Arm) may be dynamically important since the other two (Sagittarius Arm and Norma/Outer Arm) do not show an over-density of stars along them (Churchwell et al. 2009).

Also, we fix the pitch angle of the spiral \(\theta_{\text{pitch}} = 15^\circ \), and the current position of the spiral arm at the Solar circle \(\gamma_0 = 135^\circ \) to roughly match the observed position of the Perseus Arm (Quillen & Minchev 2005; Churchwell et al. 2009). To put it differently, we locate a Perseus-like logarithmic spiral arm such that it passes through a position...
\((R, \phi) = (R_0, \gamma_0)\) at the current epoch, and symmetrically locate the remaining \((m - 1)\) spiral arm(s).

3.5.3 Radial dependence of the spiral amplitude

The radial dependence of the spiral amplitude is governed by \(v_s(R)\). Here we adopt a functional form of

\[
v_s^2(R) = v_{s,0}^2 \times \begin{cases} \frac{R}{R_0}, & (R > R_3) \\ \exp \left[\frac{R_0 - R}{\sigma_1} \right], & (R < R_3) \end{cases} \quad \text{(6)}
\]

This functional form is inspired by Steiman-Cameron et al. (2010), and thus we adopt \((R_3, \sigma_1, \sigma_2) = (2.9, 0.7, 3.1)\) kpc following their study. Throughout this paper, we adopt two spiral morphologies, namely the SS20m2 model with \((v_{s,0}, m) = (20 \text{ km s}^{-1}, 2)\) and the SS15m4 model with \((v_{s,0}, m) = (15 \text{ km s}^{-1}, 4)\).

4 2D TEST-PARTICLE SIMULATION

We run a large number of chemo-dynamical 2D test-particle simulations under the influence of the rigidly rotating bar and/or spiral arms.

Each simulation is performed in three steps:

- Generating initial condition of stars by using axisymmetric distribution function models.
- Integrating stellar orbits under our model potential.
- Assigning [Fe/H] to the stars.

In the following, we provide the prescription for these steps.

4.1 Initial condition

In our simulations, we assume that the stellar disc is formed at \(t = -12\) Gyr and the star formation rate is constant as a function of \(t\).

For each simulation, we use \(1.2 \times 10^7\) stars. These stars consist of 120 cohorts of coeval stars, such that ith cohort includes \(10^7\) stars with an age of \(\tau_i = (0.1t)\) Gyr \((i = 1, 2, \ldots, 120)\). We assign the initial conditions for each cohort of stars depending on their age in order to realistically model the evolution of the stellar disc. We note that our initial condition depends only on the formation epoch \(T_{\text{form}}\) of the bar and spirals, and it does not depend on the properties of the bar or spirals, \((\Omega_{\text{bar}}, m, \Omega_{\text{sp}})\).

As an example, let us suppose \(T_{\text{form}} = -5\) Gyr. The way we assign the initial condition for ith cohort depends on whether or not the stellar age at the current epoch (\(\tau_i\)) is older than \(-T_{\text{form}}(= 5\) Gyr).

If \(\tau_i \leq -T_{\text{form}}(= 5\) Gyr), i.e., if ith cohort of stars are born after the formation of the bar and spirals, we simply assign the position and velocity of the stars at \(t = -\tau_i\) according to the 2D stellar disc distribution function model introduced by Dehnen (1999a). In this model, the stellar disc surface density profile and radial velocity dispersion profile are described as

\[
\Sigma(R) = \Sigma_0 \exp \left[\frac{R - R_0}{R_d} \right],
\]

\[
\sigma^2_R(R) = \sigma_{R,0}^2 \exp \left[-\frac{R - R_0}{R_d} \right],
\]

and their action distribution is set such that the distribution function model is in a dynamical equilibrium under the axisymmetric potential \(\Phi = \Phi_0\) (equation (2)). Here, we set \(\Sigma_0 = \text{const.}, R_d = R_0/3, R_0 = R_0\), and \(\sigma_{R,0} = 22\) km s\(^{-1}\) = 0.1\(t_0\) independent of \(i\) as long as \(\tau_i \leq -T_{\text{form}}(= 5\) Gyr).

If \(\tau_i > -T_{\text{form}}(= 5\) Gyr), i.e., if ith cohort of stars are born before the formation of the bar and spirals, we assign the position and velocity of stars at \(t = T_{\text{form}}\), not at \(t = -\tau_i\). In this case, at \(t = T_{\text{form}}\), ith cohort \((51 \leq i \leq 120)\) has been evolved in the Milky Way for a period of \(\tau_i = 5\) Gyr, i.e., if \(\tau_i < T_{\text{form}}\) (5 Gyr), i.e., if \(\tau_i > -T_{\text{form}}(= 5\) Gyr), and it does not depend on the velocity dispersion at \(t = T_{\text{form}}\). Thus, we assign the position and velocity of ith cohort of stars by using the same 2D distribution function model with \(\Sigma_0 = \text{const.}, R_d = R_0/3\) and \(R_0 = R_0\) as before, but by adopting

\[
\sigma_{R,0} = (50 \text{ km s}^{-1}) \left(\frac{(\tau_i + T_{\text{form}}) + 0.5\text{ Gyr}}{12.5\text{ Gyr}} \right)^{0.25}
\]

for ith cohort. This functional form is motivated by numerical simulations (Jenkins & Binney 1990; Kokubo & Ida 1992; Hänninen & Flynn 2002; Aumer & Binney 2009; Aumer et al. 2016; Kumamoto et al. 2017). Our prescription for older cohorts makes it easier for us to run realistic test-particle simulations that roughly satisfy the age-velocity dispersion relationship (Nordström et al. 2004).

In order to minimise the computational cost, we generate the initial conditions of test particles only at 3 kpc < \(R < 15\) kpc for each cohort. We have confirmed that this radial range is enough to explore the velocity distribution within a few kpc from the Sun.

4.2 Integration of the orbits

After assigning the initial condition, we integrate the orbit from the initial condition until the current epoch.

In order to make the results of our simulations smooth, we add a noise in the stellar age, such that a star that belongs to the ith cohort has an age of \(\tau_i(\leq t < T + \delta T)\), where \(U(a, b)\) is a uniform random number generator that returns a number between \(0\) and \(1\), and \(\tau_i = T_{\text{form}}\) (5 Gyr). Due to the internal heating (such as that induced by Giant Molecular Clouds, which is not explicitly modelled in our simulations), we expect that older cohorts of stars (cohorts with larger \(i\)) have larger velocity dispersion at \(t = T_{\text{form}}\). For each simulation, we use \(1.2 \times 10^7\) stars. These older cohorts makes it easier for us to run realistic test-particle simulations that roughly satisfy the age-velocity dispersion relationship (Nordström et al. 2004).
that the orbits of young stars (that are designed to be in dynamical equilibrium at birth with the axisymmetric potential Φ_0) are not drastically perturbed just after $t = -\tau$ due to the pre-existing perturbations from bar and spirals.

After adopting $G(t)$ for each star, the stellar orbit is integrated from $t = T$ to $t = 0$. Throughout this paper, orbit integration is always performed with the explicit embedded Runge-Kutta Prince-Dormand (8,9) method (with an adaptive time step; and with the relative tolerance error of 10^{-7}) implemented in GNU Scientific Library (Galassi et al. 2009).

4.3 Chemical evolution model

In order to compare the observed data with our simulation, we assign $[\text{Fe}/\text{H}]$ to our test particles by using the prescription in Sanders & Binney (2015), in which inside-out formation of the Galactic disc is assumed.

Their prescription is useful for our study in two ways. First, they provide an observationally motivated semi-analytic model of the gas-phase metallicity $[\text{Fe}/\text{H}]_{\text{gas}}(\tau, R)$ in the disc as a function of look-back time τ and Galactocentric radius R (see their equation 1). Secondly, they provide a probabilistic formulation that connects the initial azimuthal action J_0^ϕ and the current 3D action $\mathbf{J} = (J_R, J_\theta, J_z)$ of a star due to internal heating with some plausible assumptions. Here, J_R, J_θ, and $J_z \equiv 0$ in our 2D simulations are the (current) radial, azimuthal, and vertical action, respectively. By using their formulation, the probability that a star’s initial azimuthal action is J_0^ϕ given its current action \mathbf{J} and age τ can be expressed as

$$
P(J_0^\phi | \mathbf{J}, \tau) = \frac{G(J_0^\phi, J_0^\phi, \tau) J_0^\phi \exp[-J_0^\phi/(R_0 v_0)]}{J_0^\phi G(J_0^\phi, J_0^\phi, \tau) J_0^\phi \exp[-J_0^\phi/(R_0 v_0)]}$$

(11)

where the potential is $\Phi_0(R)$ and the disc scale length is R_d (see Appendix A for derivation). Here, $G(J_0^\phi, J_0^\phi, \tau)$ is a normalised Green’s function, and is given by equation (23) in Sanders & Binney (2015).

In this paper, the metallicity $[\text{Fe}/\text{H}]$ of a test particle is given by

$$[\text{Fe}/\text{H}] = [\text{Fe}/\text{H}]_{\text{gas}}(\tau, R_b) + N(0, \sigma_{[\text{Fe}/\text{H}]})$$

Here, $[\text{Fe}/\text{H}]_{\text{gas}}$ is the gas-phase metallicity adopted from Sanders & Binney (2015), τ is the stellar age, R_b is the Galactocentric distance at birth, and $N(0, \sigma_{[\text{Fe}/\text{H}]})$ is a Gaussian random number generator with mean 0 and dispersion $\sigma_{[\text{Fe}/\text{H}] \equiv 0.05}$. The value of $\sigma_{[\text{Fe}/\text{H}]$ can be regarded as the intrinsic metallicity scatter of the stars or the observational error on $[\text{Fe}/\text{H}]$.

For old stars with $-\tau < T_{\text{form}}$, we use the azimuthal action J_0^ϕ at $t = T_{\text{form}}$ (the initial condition of the orbit integration) and the stellar age at that moment, $\tau + T_{\text{form}}$, and probabilistically assign the azimuthal action J_0^ϕ at $t = -\tau$. Then we simply set $R_b = J_0^\phi/v_0$, by approximating the born radius by the guiding centre radius at birth.

For young stars with $T_{\text{form}} < -\tau$, we set $R_b = J_0^\phi/v_0$ (the guiding centre radius at birth), where J_0^ϕ is the value of the azimuthal angular momentum at $t = -\tau$. We note that we do not set R_b to be the initial radius at which the star was born, in order to make our prescription for young stars ($T_{\text{form}} < -\tau$) more consistent with that for old stars ($-\tau < T_{\text{form}}$).

5.5 Bar-only models

First, we ran 18 bar-only simulations as shown in Table 1. We find that bar-only models are successful (recovering all the observational properties (P1)- (P3) of the Hercules stream listed in Section 2) if the bar is fast-rotating ($\Omega_{\text{bar}}/(\text{km s}^{-1} \text{kpc}^{-1}) = 49.42, 52.16$) as well as dynamically young ($T_{\text{form}} \approx -1 \text{Gyr}$). One of these successful models is shown on the top row of Fig. 2. In order to make a fair comparison with the observed data in Fig. 1, the thick contours enclose 10, 20, 30, 40, and 50% of the stars; while the thin contours enclose 60, 70, 80, and 90% of the stars in our models.

Previously, many authors have attributed the origin of the Hercules stream to the resonance of the fast-rotating bar whose 2:1 OLR radius is slightly inside the Solar circle (Dehnen 2000). Indeed, both of our successful fast-bar-only models locate the 2:1 OLR radius at around $R \approx 0.8-0.95 R_0$. Intriguingly, our bar-only simulations suggest that the fast-rotating bar has to be as young as $\sim 1 \text{Gyr}$ in order to reproduce the Hercules stream. The success of young, fast-rotating bar models is consistent with many previous

Table 1. Important parameters in the bar-only models

Category	Ω_{bar}	R_b	T_{form}
Slow	36.11	4.87	$-1,-3,-5$
Slow	39.12	4.50	$-1,-3,-5$
Medium	42.68	4.12	-5
Medium	46.95	3.75	-5
Fast	49.42	3.56	$-1,-2,-3,-4,-5$
Fast	52.16	3.37	$-1,-2,-3,-4,-5$

1 Spiral models with $m = 2$ and $m = 4$ are referred to as SS20m2 and SS15m4 models, respectively.

Table 2. Important parameters in the spiral-only models

Category	Ω_{bar}	m	T_{form}
Slow	17	2, 4	$-1,-3,-5$
Slow	19	2, 4	$-1,-3,-5$
Slow	20	2, 4	$-1,-3,-5$
Slow	21	2, 4	$-1,-3,-5$
Slow	23	2, 4	$-1,-3,-5$
Slow	25	2, 4	$-1,-3,-5$
Slow	28	2, 4	$-1,-3,-5$
models, as epitomised by the pioneering works of Dehnen (2000) in which the dynamical age of the bar is \(\sim 0.5 \text{Gyr} \). Our result that old bar-only models can not reproduce the Hercules stream is to some extent consistent with previous study by Monari et al. (2013), in which 3D test-particle simulations were performed with various dynamical age of the bar. Monari et al. (2013) found that the Hercules-like signature is weakened depending on the age of the bar (see their fig. 5). Monari et al. (2013) found that their model with \(T_{\text{form}} \approx -3 \text{Gyr} \) was able to retain Hercules-like structure, and thus they used this model for further investigation. Although it is unclear why our fast-bar model with \(T_{\text{form}} = -3 \text{Gyr} \) is unsuccessful in reproducing the Hercules stream (our speculation is presented in Section 6.3), we note that they use more realistic 3D potential models while we use simple 2D models and that our model take into account [Fe/H] dependence while they do not. In any case, our simulations suggest that the observed properties of the Hercules stream favour a young fast-rotating bar, if the rotating bar is the only source of perturbation in the stellar disc.

It is interesting to note that our slow-bar-only models can not reproduce the Hercules stream independent of the dynamical age of the bar (see top row of Fig. 3). Our results seem to disagree with the study by Pérez-Villegas et al. (2017), in which the co-rotation (CR) resonance of the bar is claimed to cause the Hercules stream. This disagreement might be due to our simpler bar model, or the fact that they do not take into account the chemo-dynamical evolution of the disc. In any case, it is intriguing to note (as we shall see in Sections 5.3 and 6.6) our slow-bar+spiral models can reproduce the Hercules stream.

5.2 Spiral-only models

Next, we ran 42 spiral-only simulations as shown in Table 2. We found that six 4-armed spiral models (SS15m4 models) with \(\Omega_\phi/(\text{km s}^{-1} \text{ kpc}^{-1}) = 20, 21 \) and \(T_{\text{form}}/\text{Gyr} = -1, -3, -5 \); and a 2-armed spiral model with \(\Omega_\phi/(\text{km s}^{-1} \text{ kpc}^{-1}) = 28 \) and \(T_{\text{form}}/\text{Gyr} = -1 \) show a bimodal velocity distribution and reproduce the observed properties (P1) and (P2) in Section 2. As seen in the top row of Figs. 4 and 5, for these (partially successful) models, the Hercules-like secondary peak is more prominent in the metal-rich region and is located at \(U \approx 0 \), which is inconsistent with the observed property (P3). This result of near-zero radial velocity for the secondary peak is consistent with the spiral-only models in Antoja et al. (2009). In any case, these partially successful models with velocity bimodality are still intriguing, since none of our long-standing bar models with \(|T_{\text{form}}| \gtrsim 2 \text{Gyr} \) can reproduce a bimodal structure.

We note that 4-armed spiral models with \(\Omega_\phi = 19 \) also show bimodal structure, but in these models the bimodality is seen not only in the metal-rich region but also in the metal-poor region.

5.3 Bar+spiral models

Lastly, we ran 168 bar+spiral models: we use 4 values for \(\Omega_\phi/(\text{km s}^{-1} \text{ kpc}^{-1}) = 36.11, 39.12, 49.42, \) and 52.16; and for each of these bar models we use 42 spiral models (7 values for \(\Omega_\phi \); 2 values for \(m \); 3 values for \(T_{\text{form}} \)) as in Table 2.

The velocity distribution for some successful bar+spiral models that recover the observed properties (P1)-(P3) are shown on the top row of Figs. 6, 7, and 8. Also, some other successful models are summarised in Table 4. We can immediately see from Table 4 that the Hercules-like stream can be reproduced not only by fast-bar+spiral models but also by slow-bar+spiral models. The fact that the Hercules-like stream can be reproduced with slow-bar+spiral models has a significant implication, since a slowly rotating bar is favoured by recent claims that the Galactic bar is as long as \(\sim 5 \text{kpc} \) in radius (see Wegg et al. 2015). Also, our result is intriguing from a theoretical aspect as well, since the slow-bar-only or spiral-only models in our simulations can not reproduce all of the observed properties (P1)-(P3).

6 INTERPRETATION OF OUR SIMULATIONS

6.1 Simple thought experiments of closed and non-closed orbits in a rotating frame

In this Section, we consider simple thought experiments to demonstrate that analysing closed orbits and non-closed orbits in the rotating frame of the bar or spirals is potentially important in understanding the velocity distribution of the perturbed stellar disc.

In the following thought experiments, we suppose that the Galactic potential is given by a 2D bar-only model, and we consider the 2D orbits of stars at \(t > 0 \) in the rotating frame of the bar\(^2\) (see Section 3.1.2 for the definition of the rotating coordinate system). We focus on orbits of stars that are currently (\(t = 0 \)) located at the position of the Sun, \((R, \phi_{\text{sun}}) = (R_0, 180^\circ) \) in the bar’s rotating frame. Also, we define \(T_{\text{circulation}} \) to be the (typical) time for a star to make one circulation around the bar in the bar’s rotating frame. A co-rotating star do not circulate around the bar, so in such a case we set \(T_{\text{circulation}} = T_R \) where \(T_R \) is the radial period.

\(^2\) We note that similar arguments can be done for spiral-only or bar+spiral models.
Figure 2. Orbital analyses of a successful, fast-bar-only model with $\Omega_{\text{bar}} = 49.42$ km s$^{-1}$ kpc$^{-1}$. We note that this model reproduces observational properties (P1)-(P3) in Section 2. (Top row) The velocity distribution of Solar-neighbour stars in our test-particle simulation at different [Fe/H] regions. The sample size N is shown at the bottom of each panel. (Second row, left) The locations in (U, V)-plane of Solar neighbour disc stars with closed and non-closed orbits mapped by non-closed-ness parameter η defined in equation (13). The blue regions correspond to nearly closed orbits with $\eta < 0.03$, while the black shaded regions correspond to highly non-closed orbits with $\eta > 0.3$. Unmarked (white) regions correspond to intermediate orbits with $0.03 < \eta < 0.3$. (Second row, right) The same as the left-hand panel on the second row, but the simulated velocity distribution of metal-rich stars is plotted as well. Comparison of the panels on the second row enables us to characterise the orbits for each substructure in the velocity space. (Third and fourth rows) Some representative orbits in the bar’s rotating frame $(X_{\text{rot}}, Y_{\text{rot}})$. The corresponding locations in the (U, V) plane are marked in the left-hand panel in the second row. The red dot at $X_{\text{rot}} = -8$ kpc is the current Solar location. The tilted red line segment at the centre represents the length and the current orientation of the bar.
Figure 3. Similar to Fig. 2, but in the case of an unsuccessful slow-bar-only model with $\Omega_{\text{bar}} = 36.11 \text{ km s}^{-1} \text{ kpc}^{-1}$. We note that this model does not show bimodal velocity distribution at any [Fe/H] range (see the observational property (P1) in Section 2). On the left-hand panel of the second row, the five magenta markers at $U/v_0 = -0.1$ correspond to the orbit A, B, C, D, and E (in descending order of V). On the third and fourth row, the bar’s rotating frame ($X_{\text{rot}}, Y_{\text{rot}}$) is used. This slow bar is assumed to be longer than the fast bar in Fig. 2.
Figure 4. Similar to Fig. 2, but in the case of a partially successful, spiral-only model with \((\Omega_s, m) = (21, 4)\). We note that this model reproduces observational properties (P1) and (P2) in Section 2 but not (P3). On the third and fourth row, the spirals’ rotating frame \((X_{rot}, Y_{rot})\) is used. The blue curved lines represents the current location of the spiral arms.
Figure 5. Similar to Fig. 2, but in the case of a partially successful, spiral-only model with $(\Omega, m) = (28, 2)$. We note that this model reproduces observational properties (P1) and (P2) in Section 2 but not (P3). On the left-hand panel of the second row, the five magenta markers at $U/v_0 = 0.05$ correspond to the orbit A, B, C, D, and E (in ascending order of V), while the marker at $U/v_0 = -0.41$ corresponds to the orbit F. On the third and fourth row, the spirals’ rotating frame ($X_{\text{rot}}, Y_{\text{rot}}$) is used. The blue curved lines represent the current location of the spiral arms.
Figure 6. Similar to Fig. 2, but in the case of a successful, fast-bar+spiral model with $(\Omega_{\text{bar}}, m, \Omega_{s}) = (49.42, 4, 21)$. We note that this model reproduces observational properties (P1)-(P3) in Section 2. On the third and fourth row, the bar’s rotating frame $(X_{\text{rot}}, Y_{\text{rot}})$ is used. The spiral arms are not static in this frame, so we do not show spiral arms here.
Figure 7. Similar to Fig. 2, but in the case of a successful, slow-bar+spiral model with \((\Omega_{\text{bar}}, m, \Omega_s) = (36.11, 4, 23) \). We note that this model reproduces observational properties (P1)-(P3) in Section 2. On the third and fourth row, the spirals’ rotating frame \((X_{\text{rot}}, Y_{\text{rot}})\) is used. The bar is not static in this frame, so we do not show the bar here.
Figure 8. Similar to Fig. 2, but in the case of a successful, slow-bar+spiral model with $(\Omega_{\text{bar}}, m, \Omega_s) = (36.11, 4, 20)$. We note that this model reproduces observational properties (P1)-(P3) in Section 2. On the third row, the bar’s rotating frame $(X_{\text{rot}}, Y_{\text{rot}})$ is used. The spiral arms are not static in this frame, so we do not show spiral arms here. The orbit B is an example hot co-rotating orbit discussed in Sections 6.1.3 and 6.6.3.

6.1.1 Stable closed orbits

We suppose that a star, S_{cl}, happens to be on a stable closed orbit in the rotating frame of the bar. In this case, after n circulations around the bar (with $n \sim 1$ a small positive integer), at $t \simeq nT_{\text{circulation}}$, the star S_{cl} comes back to the initial position in the bar’s rotating frame, $(R, \phi_{\text{rot}}) = (R_0, 180^\circ)$, with the same velocity as the initial velocity. Also, those stars whose initial conditions at $t = 0$ are very close to that of S_{cl} (i.e., those stars in an orbit family whose parent orbit is the orbit S_{cl}) come back to the similar positions with similar velocities at $t \simeq nT_{\text{circulation}}$. This indicates that the phase-space density of stars near the initial condition of S_{cl} will not drastically change with a timescale of $\sim T_{\text{circulation}}$ (see similar arguments by Quillen & Minchev 2005).

6.1.2 Highly non-closed orbits

Next, we suppose that another star, S_{non}, happens to be on a highly non-closed orbit. Here we define a highly non-closed orbit as a non-closed orbit that is not associated with any stable closed orbits. (A simple example is a strongly chaotic orbit in the bar’s rotating frame.) In this case, each time the star S_{non} completes a circulation around the bar and comes back to $\phi_{\text{rot}} = 180^\circ$ in the rotating frame, both the Galactocentric radius and the velocity in the rotating frame will not change.
Finally, we suppose that yet another star, \(S_{\text{hot}} \), happens to belong to a horseshoe orbit around the bar’s Lagrange points. We assume that this star is not constrained to a single Lagrange point, but it can travel between Lagrange points due to its kinematically hot orbit (large Jacobi energy) and sometimes it stays near a single Lagrange point for a long time. Although this kind of orbit is a subset of highly non-closed orbits, we hereafter refer to this orbit as a ‘hot co-rotating orbit’ for future use (see Section 6.6.3). Similar to the argument in Section 6.1.2, we expect that the phase-space density near \(S_{\text{hot}} \) would decrease with a timescale of \(T_{\text{circulation}} \) (or the radial period \(T_{\phi} \)). Indeed, there is a possibility that the star \(S_{\text{hot}} \) never comes back again to \(\phi_{\text{rot}} = 180^\circ \) in the rotating frame after being trapped by another (faraway) Lagrange point and staying there for a very long time (e.g., orbit B in Figure 8).

6.1.4 Implications from the thought experiments

Following these simple thought experiments, we expect that a region in the velocity space associated with highly non-closed orbits may experience a shortage of stars for a period of time \(T_{\text{circulation}} \) after the birth of the bar (or spiral arms); and this might explain the origin of the under-dense region between the main mode and the Hercules stream. Of course, these thought experiments may not be very useful in understanding the long-term evolution of the velocity distribution of the perturbed stellar disc. However, it is worthwhile identifying the locations of nearly closed orbits and highly non-closed orbits in the velocity space. In the next section, we will describe the practical way to find the nearly closed orbits and highly non-closed orbits in our model potentials.

6.2 Orbital analyses

In order to identify the locations of closed orbits in the \((U, V)\) space for each potential model, we integrate the orbits of stars located at the position of the Sun at \(t = 0 \) forward in time in a frame that rotates with a pattern speed \(\Omega_p \). In bar-only and spiral-only models, we set \(\Omega_p \) to \(\Omega_{\text{bar}} \) and \(\Omega_{\text{s}} \), respectively. In bar+spiral models, we run the orbital analyses with both rotating frames (bar and spirals) first, and then we choose a rotating frame which is easier to interpret.

We integrate the orbits from \(t = 0 \) to \(T_{\text{max}} \), where we set \(T_{\text{max}} = \min \{ 2.01T_{\phi}, 4 \text{ Gyr} \} \) \((T_{\phi} \text{ is the azimuthal orbital period in the rotating frame}) \), and find the nearly-closed orbits in the rotating frame. Since we integrate orbits at \(t > 0 \), we have \(G(t) = 1 \) in equation (1) and both the bar and spiral perturbations are time-independent in their rotating frames.

For the initial condition at \(t = 0 \), we use \((x, y) = (-R_0, 0)\) and grids of rest-frame velocity \((U, V)\) spanning \(-0.45 < U/V_0 < 0.45 \) and \(0.6 < V/V_0 < 1.1 \). For each orbit, we trace the time evolution of a normalised 4D vector \(\mathbf{w} = (x/R_0, y/R_0, U/V_0, V/V_0) \), and we evaluate the minimum value of \(|\mathbf{w}(t) - \mathbf{w}(0)| \) at \(T_{\text{max}}/4 < t < T_{\text{max}} \). Hereafter we refer to this minimum value as ‘non-closed-ness parameter’, \(\eta \):

\[
\eta = \min_{T_{\text{max}}/4 < t < T_{\text{max}}} |\mathbf{w}(t) - \mathbf{w}(0)|. \quad (13)
\]

We classify those stars with \(\eta < 0.03 \) to be nearly-closed orbits, and those with \(\eta > 0.3 \) to be ‘highly non-closed orbits’.

6.3 Fast-bar-only models

We begin our orbital analyses with fast rotating bar models. As shown in Section 5.1, fast rotating bar models can explain the properties of the Hercules stream if the bar is dynamically as young as 1 Gyr. As an example, we analyse closed orbits in a fast-bar-only model with \(\Omega_{\text{bar}} = 49.42 \). On the left-hand panel in the second row of Fig. 2, we show the distribution of nearly closed orbits (\(\eta < 0.03 \); blue dots) and highly non-closed orbits (\(\eta > 0.3 \); black shaded regions) in \((U, V)\) space.

We see that there are several arc-shaped regions that correspond to closed orbits. In between these arc-shaped regions, there are wider band-like regions that correspond to highly non-closed orbits. For example, the orbit C is located between orbit E (2:1 OLR closed orbit) and orbit B (5:2 OLR closed orbit) in the \((U, V)\) plane, and thus orbit C has both of these characteristics and does not close in the bar’s rotating frame.

On the right-hand panel in the second row of Fig. 2, we also plot the contour map of the velocity distribution of stars with \(0 < [\text{Fe/H}] < 0.25 \) in our simulation with \(\Omega_{\text{bar}} = 49.12 \) and \(T_{\text{form}} = -1 \) Gyr. From this plot, we see that the main mode is characterised by the 2:1 OLR (represented by orbit E) and the Hercules-like stream is characterised by the 5:2 OLR (represented by orbit B). The under-dense region between the main mode and the Hercules-like stream corresponds to a region where highly non-closed orbits (such as orbit C) are distributed. This interpretation is similar to that presented in Dehnen (2000), in which the under-dense region is attributed to unstable (chaotic) orbits due to the perturbation from the rotating bar.

We have performed the same analyses to another successful model with \(\Omega_{\text{bar}} = 52.16 \), and found that the orbital distribution is very similar to that with \(\Omega_{\text{bar}} = 49.42 \). The orbital analyses of our two successful models with \(\Omega_{\text{bar}} = 49.42 \) and 52.16 suggest that if the bimodal velocity distribution in the Solar neighbourhood arises from a young, fast-rotating bar, the Hercules stream (secondary peak) can be attributed to the 5:2 OLR orbit family. To the best of our knowledge, this attribution has not been proposed by other authors. Our result indicates that, if we can map the locations of the Hercules stream across the Galactic plane, we might see a pattern that corresponds to the parent closed orbit of the 5:2 OLR. With this in mind, in Section 7.2, we make some simple prediction of the locations in the Galactic disc plane where velocity bimodality can be seen (Figs. 10(a) and 11). This prediction can be tested with data from Gaia and other spectroscopic surveys.

Based on the results of this young, fast-bar-only model,
we see that a wide region of highly non-closed orbits in the (U, V) space can create an under-dense region in the velocity space that characterise the velocity bimodality. This idea is intuitively understandable as described in Section 6.1: Highly non-closed orbits have very different velocity at $t \sim T_{\text{circulation}}$ (after one or two circulation in the rotating frame of the bar); This rapid dissipation in the velocity space makes a region of highly non-closed orbits an under-dense region in (U, V) plane. With this regard, it is intriguing to note that fast-bar-only models with older dynamical age ($|T_{\text{form}}| \geq 2$ Gyr) are not successful in reproducing the bimodal structure. This result might be due to the fact that the region of highly non-closed orbits in the (U, V) space shows lower phase-space density for only $\sim T_{\text{circulation}}$ after the formation of the bar. After this period, we speculate that some dynamical processes such as the phase mixing might blur the contrast between the over-dense region (Hercules stream) and the under-dense region. Given that it takes $2T_{\text{circulation}} = 691$ Myr for the orbit B to make two circulation around the bar, our result might suggest that the 5:2 OLR orbit family of the Hercules stream in a fast-bar-only model is coherent for $n \leq 3$ circulations around the bar (≤ 1 Gyr) but it begins to lose coherence after $n \geq 6$ circulations (≥ 2 Gyr).

6.4 Slow-bar-only models

As shown in Section 5.1, bar-only models with a slowly rotating bar cannot explain the properties of the Hercules stream. Fig. 3 shows the orbital analyses of one of the unsuccessful bar-only models with $\Omega_{\text{bar}} = 36.11$.

As seen in the second row of Fig. 3, this model gives rise to a lot of closed orbits in the Solar neighbourhood. These closed orbits are associated with relatively high order resonances (e.g., orbit B corresponds to the 4:1 OLR), and thus their locations in the (U, V) plane are close to each other. Due to this densely spaced distribution of closed orbits, highly non-closed orbits occupy narrow regions in the (U, V) space and they are not important near $(U, V) = (0, v_0)$. This is the reason why we see a mono-modal velocity distribution in our simulation (see top panels).

6.5 Spiral-arms-only models

6.5.1 Models with 4-armed spirals with $\Omega = 21$ km s$^{-1}$ kpc$^{-1}$

Fig. 4 shows the orbital analyses of SS15m4 model with $\Omega = 21$. We can see from these plots that the under-dense region around $V \approx 0.85v_0$ corresponds to highly non-closed orbits (represented by orbit C). At $-0.2 < U/v_0 < 0.2$ and $0.75 < V/v_0 < 0.8$, there is a prominent region of nearly closed orbits, which is characterised by the 4:1 inner Lindblad Resonance (ILR) of the spiral arms (represented by orbits A and B). The secondary peak at $V \approx 0.8v_0$ is adjacent to this 4:1 ILR orbit family, and thus this peak is probably associated with this resonance. On the other hand, at $0.9 < V/v_0 < 1.05$, there are many narrow or small regions of nearly closed orbits, such as the 5:1 ILR (orbit D) or the 6:1 ILR (orbit E). Since these closed orbits show a densely spaced distribution, these orbit families altogether form the main mode.

6.5.2 Models with 2-armed spirals with $\Omega = 28$ km s$^{-1}$ kpc$^{-1}$

Fig. 5 shows the orbital analyses of SS20m2 model with $\Omega = 28$. We see from the second row of this figure that a large fraction of (U, V) space at $0.85 < V/v_0 < 1.1$ is filled with nearly closed orbits that are trapped by the co-rotating resonance of the spiral arms. These co-rotating orbits form the main mode of the velocity distribution. On the other hand, at $V/v_0 < 0.8$, there are a few distinct orbit families such as the 8:1 ILR (orbit A) or the 10:1 ILR (orbit B), which altogether form the secondary peak of the velocity distribution (top right panel). In the region between the main mode and secondary mode, we find highly non-closed orbits, which is represented by orbit C.

6.6 Bar+spiral models

In the previous subsections, we have analysed the closed orbits in bar-only and spiral-only models. Here we investigate the bar+spiral models, which is more complicated than bar-only or spiral-only models. The complexity mainly arises from the fact that exact closed orbits does not exist in general if $\Omega_{\text{bar}} \neq \Omega$, since the potential is time-dependent in any rotating frame. Due to this time-dependence, some fraction of disc orbits have chaotic nature; and therefore it is not guaranteed that the integration of orbits for $\sim 2T_\phi$ in our analyses would be helpful in general. However, our orbit analyses turned out to be reasonably helpful to understand of the origin of the Hercules-like stream in bar+spiral models as well. Here we report three representative models that have a prominent Hercules-like structure at the metal-rich end.

6.6.1 Highly non-closed orbits in fast-bar’s rotating frame

Fig. 6 shows a fast bar+spiral models with $(\Omega_{\text{bar}}, m, \Omega_\phi) = (49.42, 4.21)$ and $T_{\text{form}} = -5$ Gyr. We see from the left-hand panel in the second row that there is a prominent region of nearly closed orbits at $(U/v_0, V/v_0) = (-0.1, 0.8)$. By comparing the panels in the second row of this figure, we can see that the locations of main mode and Hercules-like stream correspond to the 2:1 OLR and 3:1 OLR of the bar, respectively. Also, the under-dense region between these two modes corresponds to highly non-closed orbits in the bar’s rotating frame (represented by orbit C).

In the young, fast-bar-only model (Fig. 2), the Hercules stream is associated with the 5:2 OLR of the bar. Although the fast-bar+spiral model presented in Fig. 6 have the same parameters for the bar, the Hercules stream in this model is associated with the 3:1 OLR of the bar. This means that the resonance of the Hercules stream can be affected by additional perturbation from the bar, which complicates the interpretation of the observation of the Hercules stream. However, in both models, the under-dense region between the main mode and the Hercules stream is associated with the highly non-closed orbits. Therefore, it may be better to regard the Hercules stream as the secondary peak in the velocity space that is induced by the under-dense region in the phase space associated highly non-closed orbits.
6.6.2 Highly non-closed orbits in spirals’ rotating frame

Fig. 7 shows a slow-bar+spiral models with \((\Omega_{\text{bar}}, m, \Omega_s) = (36.11, 4.21)\) and \(T_{\text{form}} = -3\) Gyr. By comparing the panels in the second row of this figure, we see that the location of the Hercules-like stream corresponds to the resonant orbits of the 5:1 ILR of the spiral arms (represented by nearly closed orbit A and mildly closed orbit D). Also, the under-dense region between the main mode and the Hercules-like stream corresponds to highly non-closed orbits represented by orbit B.

6.6.3 Highly non-closed (hot co-rotating) orbits in slow-bar’s rotating frame

Fig. 8 shows a slow bar+spiral models with \((\Omega_{\text{bar}}, m, \Omega_s) = (36.11, 4.20)\) and \(T_{\text{form}} = -3\) Gyr. On the left-hand panel in the second row, we see that many families of nearly closed orbits (with different resonant conditions) are densely distributed at \(0.8 < V/v_0 < 1.1\). Also, in between the regions of nearly closed orbits, we see a few regions of highly non-closed orbits. A comparison of the panels in the second row suggests that the Hercules-like stream is composed of resonant orbits of the 8:1 OLR of the bar (orbit A), and the main mode comprises of many orbital families including the 5:1 OLR of the bar (orbit C). In this model, the under-dense region of the velocity distribution seems to arise from highly non-closed orbits, represented by the orbit B. To be more specific, the highly non-closed orbit B can be further classified as the hot co-rotating orbit discussed in Section 6.1.3. This orbit is trapped by co-rotation resonance of the bar, but it can travel from one Lagrange point to another due to its hot kinematics. For example, soon after the orbit integration, orbit B is captured by the Lagrange point far away from the initial position in the co-rotating frame and it stays there for more than 3 Gyr.

We note that similar hot co-rotating orbits are identified in the recent work by Pérez-Villegas et al. (2017). In their fig. 3, the orbits (d) and (h) seem to be hot co-rotating orbits. Interestingly, the velocities of these stars (when they come to the Solar neighbourhood) seem to be located near the under-dense region between the Hercules stream and the main mode, which is consistent with our explanation in the previous paragraph.

6.7 Dynamical origin of the Hercules stream revealed from orbital analyses

In this Section, we have demonstrated that identifying the locations in the \((U, V)\) space of nearly closed orbits and highly non-closed orbits in the rotating frame of the bar or spirals is very informative in understanding the origin of the bimodal velocity distribution. Based on the analyses of successful models (Figs. 2, 6, 7, and 8) and partially successful models (Figs. 4 and 5), we conclude that the under-dense region between the two velocity peaks (main mode and the Hercules-like stream in successful models) are associated with highly non-closed orbits in the rotating frame. This can be physically understood given that nearly closed orbits come back to the original phase-space location (position and velocity in the rotating frame) and retains its phase-space density for some time; while highly non-closed orbits dissipate in the phase-space and the phase-space density decreases relatively quickly (see discussion in Section 6.1).

7 DISCUSSION

7.1 Origin of the \([\text{Fe/H}]\) dependence of the Hercules stream

In Section 5, we showed that some fast-bar-only, fast-bar+spiral, and slow-bar+spiral models successfully recover the observational properties (P1)-(P3) listed in Section 2 of the Hercules stream. In Section 6, we performed some additional orbital analyses to interpret the result in Section 5. This additional analyses provide us with a simple explanation for the dynamical origin of the velocity bimodality and the Hercules stream: The under-dense region between the main mode and the Hercules stream is associated with highly non-closed orbits that dissipate rapidly in the phase-space. In this section, we discuss the origin of the \([\text{Fe/H}]\) dependence of the bimodality.

7.1.1 Useful quantities to understand the \([\text{Fe/H}]\) dependence of the velocity bimodality

In order to understand the observed (or simulated) \([\text{Fe/H}]\) dependence of the velocity bimodality, it is essential to keep in mind the following fact:

- The effect from the non-closed orbits is important only if there are many disc stars associated with these orbits.

This can be intuitively understood with some extreme examples. Suppose that there is a region in the phase space centred at \((U, V) = (u_1, v_1)\) where the corresponding orbits are strongly chaotic. If this region is located at the Local Standard of Rest, \((u_1, v_1) = (0,0)\), this region probably has a strong impact on the velocity distribution, since a lot of disc stars in the Solar neighbourhood are affected by this chaotic region. Depending on the situation, this chaotic region may result in an under-dense region in the \((U, V)\) space to create a bimodal velocity distribution as we have seen in previous Sections. However, if this chaotic region is located at \((u_1, v_1) = (0, -v_0)\) (i.e., circular velocity in the retrograde direction), this chaotic region is not important at all in terms of the disc velocity distribution, since there are few disc stars with retrograde rotation to be affected.

Based on these two extreme examples, it may be naturally understood that the highly non-closed orbits are not important in the following cases:

- (Case 1) When the highly non-closed orbit region is located far away from the region where the majority of disc stars are distributed.

- (Case 2) When the velocity dispersion is so large and the stellar density in the velocity space is so low that the number of disc stars that fall into the highly non-closed orbit region is small.

On the other hand, the velocity bimodality is prominent in the following cases:

- (Case 1') When the median velocity is close to the velocity of highly non-closed orbits.
shows the distribution of azimuthal velocity (see (Case 1') and (Case 2')). This means that our model captures important aspects of the chemo-dynamical evolution of the Galactic stellar disc. On the one hand, in the metal-poor region of $-0.7 < [\text{Fe/H}] < -0.2$ in this model, the velocity dispersion in V decreases as $[\text{Fe/H}]$ increases due to the age-velocity dispersion relationship. As a result of asymmetric drift (see Binney & Tremaine 2008 section 4.4.3), the median value of V increases with increasing $[\text{Fe/H}]$. On the other hand, in the metal-rich region of $-0.2 < [\text{Fe/H}]$, the velocity dispersion is nearly constant as a function of $[\text{Fe/H}]$. The median value of V dramatically decreases with increasing $[\text{Fe/H}]$, since Solar-neighbour stars with higher $[\text{Fe/H}]$ tend to be born in the inner Galaxy and thus tend to have smaller angular momentum.

The red points in the figure shows the locations of the under-dense regions (identified by the kernel density estimation), and their marker size shows the strength of the bimodality (contrast between the over-dense and under-dense regions). As can be seen from this figure, the bimodality is most prominent at $[\text{Fe/H}] \approx 0.15$. At this metallicity, we note that the median value of V roughly coincides with the azimuthal velocity of highly non-closed orbits and the velocity dispersion is not too large, thus the strong bimodality is naturally understood following the discussion in Section 7.1.1 (see (Case 1') and (Case 2')).

Next, let us interpret the velocity distribution at higher metallicity region of $0.15 < [\text{Fe/H}] < 0.25$. Since metal-rich stars are preferentially low-angular momentum stars (as a result of faster chemical evolution in the inner disc), the Hercules stream becomes more dominant at higher metallicity. At such a high metallicity region, the Hercules stream becomes so strong compared to the ‘main’ mode that the velocity distribution looks almost mono-modal.

Then we consider the intermediate metallicity region of $-0.2 < [\text{Fe/H}] < 0.15$. In this intermediate metallicity region, the bimodality becomes weaker as $[\text{Fe/H}]$ decreases, since the median velocity gradually deviates from the velocity of highly non-closed orbits (see (Case 1) in Section 7.1.1).

Lastly, we focus on the metal-poor region of $[\text{Fe/H}] < -0.2$. In this metallicity region, the bimodality becomes weaker as $[\text{Fe/H}]$ decreases, since the velocity dispersion increases (see (Case 2) in Section 7.1.1). In reality, the waning of the Hercules stream at low-metallicity region may be stronger than our simulations, since old and metal-poor stars in the Milky Way tend to have larger vertical velocity dispersion (which is ignored in our 2D simulations). Due to larger vertical motion, these stars may be less affected by the perturbation from the spiral arms or the bar.

To summarise, the observed $[\text{Fe/H}]$ dependence in the

Table 3. Representative bar-only and spiral-only models

Bar	Ω_{bar}	m	Ω_s	T_{form}/Gyr	Hercules-like orbit	Under-dense region orbit	Main mode orbit	Figure	Section
Fast† 49.42	-1	5.2 OLR of bar	highly non-closed	2:1 OLR of bar	2, 9, 10(a), 11	6.3			
Slow† 36.11	-1	–	–	various orbits	3	6.4			
4	21	-3	4:1 ILR of spiral	highly non-closed	various orbits	4	6.5.1		
2	28	-1	high-order ILR of spiral	highly non-closed	CR orbits of spiral	5	6.5.2		

†This young, fast-bar-only model is the only successful model in this table.
‡The slow-bar-only model shows only a mono-modal velocity distribution.

Table 4. Representative bar+spiral models that satisfy observational properties (P1), (P2), and (P3) listed in Section 2

Bar	Ω_{bar}	m	Ω_s	T_{form}/Gyr	Hercules-like orbit	Under-dense region orbit	Main mode orbit	Figure	Section
Fast 49.42	4	21	-5	3:1 OLR of bar	highly non-closed	2:1 OLR of bar		6	6.6.1
Fast 49.42	4	23	-5	4:1 OLR of bar	highly non-closed	2:1 OLR of bar			
Slow 36.11	4	23	-3	5:1 ILR of spiral	highly non-closed	various orbits		7, 10(b), 12	6.6.2
Slow 36.11	4	20	-3	various orbits	hot CR orbits of bar	various orbits		8	6.6.3
Slow 39.12	4	23	-1	CR orbits of bar	hot CR orbits of bar	various orbits			
Slow 39.12	4	20	-5	5:1 OLR of bar	highly non-closed	various orbits			
Slow 36.11	2	25	-3	various orbits	hot CR orbits of spiral	CR orbits of spiral			

7.1.2 $[\text{Fe/H}]$ dependence of the velocity bimodality in a successful model

As an example, let us have a closer look at the young, fast-rotating bar model in Fig. 2. In this model, the highly non-closed orbits are distributed at $V \approx 0.86v_0$ (see orbit C in Fig. 2), and these highly non-closed orbits cause bimodal velocity distribution in the high-metallicity region ($0 \leq [\text{Fe/H}] < 0.25$).

Fig. 9 shows the distribution of azimuthal velocity V in the Solar neighbourhood as a function of $[\text{Fe/H}]$ in this simulation. The trend in this distribution is qualitatively similar to that seen in the observed data (e.g., fig. 7 of Lee et al. 2011). This means that our model captures important aspects of the chemo-dynamical evolution of the Galactic stellar disc. On the one hand, in the metal-poor region of $-0.2 < [\text{Fe/H}] < -0.2$ in this model, the velocity dispersion in V decreases as $[\text{Fe/H}]$ increases due to the age-velocity dispersion relationship. As a result of asymmetric drift (see Binney & Tremaine 2008 section 4.4.3), the median value of V increases with increasing $[\text{Fe/H}]$.

In the following, we shall investigate the median velocity and the velocity dispersion as a function of $[\text{Fe/H}]$ in one of our successful models in order to understand the $[\text{Fe/H}]$ dependence of the Hercules stream.
prominence of the Hercules stream originates from the following mechanisms:

- As a result of [Fe/H] dependence of the disc velocity distribution, the Hercules stream is prominent only at the metal-rich region, where the velocity dispersion is small and the median in-plane velocity is close to that of the highly non-closed orbits.
- The old and metal-poor disc stars are less affected by the perturbation from spiral or bar due to the larger vertical velocity dispersion.

7.2 Velocity bimodality across the Galactic plane

As suggested by Bovy (2010), a powerful way to understand the origin of the Hercules stream is to trace the Hercules stream across the Galactic plane. With the increased data by Gaia and other spectroscopic surveys, mapping the Hercules stream is becoming tractable in these days (Monari et al. 2017b; Hunt et al. 2018; Quillen et al. 2018).

In this paper, we found that the observed properties of the Hercules stream in the Solar neighbourhood can be reproduced by not only fast-bar-only models but also by fast-bar+spiral and slow-bar+spiral models. Therefore, in order to distinguish these ‘successful’ models, we need to know the velocity distribution of disc stars across the Galactic plane.

Fortunately, some successful bar(+spiral) models shown in this paper predict different velocity field. Fig. 10 shows our ‘predictions’ on the locations across the Galactic plane where velocity bimodality can be observed for two of our successful models. In these plots, we first divide the Galactic disc at $5 \leq R/$kpc ≤ 15 into 0.5 kpc cells and combine the cells at (x, y) and $(-x, -y)$ to increase the statistical significance. Then we select those cells that contain at least $N = 1000$ stars within the metallicity range of $-0.5 < [\text{Fe/H}] < 0.5$, and make the density map of (U, V) distribution. Finally, we visually inspect the velocity distribution in each cell to judge if the velocity distribution at each location shows a strong bimodality or not. Those locations (cells) with bimodal velocity distribution are marked by a large filled circle, while those locations with mono-modal velocity distribution are marked by a small plus (+) symbol.

We note that the number of particles in our simulations is sub-optimal in detecting the bimodal velocity especially in the outer disc.

7.2.1 A fast-bar-only model

Fig. 10(a) shows the result for a dynamically-young, fast-bar-only model with $\Omega_{\text{bar}} = 49.42$ and $T_{\text{form}} = -1$ Gyr. In this plot, we also show the locations of the closed 5:2 OLR orbit (dashed magenta line) and the current location of the bar (red tilted line at the centre). We can immediately see from this plot that there are two distinct regions of velocity bimodality.

One region of velocity bimodality is located at around $6 \leq R/$kpc ≤ 8, which roughly coincides with the radial extent of the 5:2 OLR orbit. Since the stars of the Hercules stream in this model mainly belong to the orbit family associated with the 5:2 OLR orbit (see the right-hand panel in the second row of Fig. 7), we regard this region as the trace of the Hercules stream across the Galactic plane. We note that the Hercules stream is more prominent (in terms the strength of the peak) near the direction of minor axis of the bar, $\phi = \phi_{\text{bar}} \pm 90^\circ (= 65^\circ$ and 115°). This spatial dependence on the strength of the Hercules stream is consistent with previous studies, such as fig. 2 of Dehnen (2000) or fig. 2 of Bovy (2010).

Another region of bimodality is located at around $R = 10$ kpc. Contrary to the Hercules stream, this bimodality is stronger near the direction of the major axis of the bar, along $\phi = -25^\circ$ and $155^\circ (= \phi_{\text{bar}} + 180^\circ)$. In order to investigate this bimodal velocity structure at around $R = 10$ kpc, on the top panel of Fig. 11, we show the velocity distribution at $(x, y) = (-10, 0)$ kpc (2 kpc from the Sun in the Galactic anti-centre direction) in this model. We can clearly see a secondary peak at $V \approx 0.75v_0$. The parent orbit for this new stream is shown on the bottom panel of Fig. 11, and can be classified as the 5:3 OLR orbit. This prediction of a new stream may be checked with the forthcoming Gaia Data Release 2. We note that this stream is different from the Hercules stream in the outer disc discussed in Bovy (2010), since his model predicts the Hercules stream to have $V/v_0 = 0.4-0.6$ at $R = 10$ kpc = 1.25k_0 (see fig. 2 of Bovy (2010)).

7.2.2 A slow-bar+spiral model

Fig. 10(b) shows the result for a slow-bar+spiral model with $(\Omega_{\text{bar}}, m, \Omega_c) = (36.11, 4, 23)$ and $T_{\text{form}} = -3$ Gyr. In this plot, we also show the locations of the closed 5:1 ILR orbit in the spirals’ rotating frame (dashed magenta line). We note that the half-length (radius) of the bar is as long as 4.87 kpc. In this model, there are two regions of velocity bimodality.

One region of velocity bimodality is located at around $5 \leq R/$kpc ≤ 8, which roughly coincides with the radial extent of the 5:1 ILR closed orbit. Since the stars of the Hercules stream in this model mainly belong to the orbit family associated with the 5:1 ILR orbit (see the right-hand panel in the second row of Fig. 7), we regard this region as the trace of the Hercules stream across the Galactic plane.

Another region of bimodality is located at around $R = 12$ kpc. In order to investigate this bimodal velocity structure at around $R = 12$ kpc, on the top panel of Fig. 12, we show the velocity distribution at $(x, y) = (-12, 0)$ kpc (4 kpc from the Sun in the Galactic anti-centre direction) in this model. We note that the secondary peak shows $V > v_0$ (larger azimuthal velocity than the circular velocity), and this secondary peak is populated by a family of orbits associated with the 4:1 OLR orbits in the spirals’ rotating frame (see the bottom panel of Fig. 12). (We remind that the location of $R = 12$ kpc is outside the co-rotation radius of the spiral arms with $\Omega_c = 23.$) This secondary peak has not been predicted in previous studies and our prediction may be checked with the Gaia Data Release 2.

8 CONCLUSIONS

As shown in Fig. 1, Gaia DR1/TGAS data combined with RAVE data indicate that the velocity distribution of Solar neighbour disc stars shows a [Fe/H] dependence such that the Hercules stream located at $(U, V) \approx (-15, 185)\text{ km s}^{-1}$ is more prominent at the metal-rich region while the velocity distribution is mono-modal in the
metal-poor region. In order to understand the origin of this [Fe/H] dependence as well as other properties (the properties (P1)-(P3) listed in Section 2), we have performed a large number of (∼200) chemo-dynamical test-particle simulations of 2D stellar disc that is perturbed by various bar and/or spiral models. Our findings can be summarised as follows.

- The observed properties of the Hercules stream can be reproduced by various models (as listed below).
- The observed properties of the Hercules stream can be successfully reproduced by fast-bar-only models ($\Omega_{\text{bar}}/(\text{km s}^{-1} \text{ kpc}^{-1}) = 49.42, 52.16$) if the dynamical age of the bar is as young as ∼ 1 Gyr (Fig. 2). If we additionally take into account the perturbation from the spiral arms, some dynamically-old, fast-bar+spiral models can also successfully recover the observed properties of the Hercules stream (Fig. 6).
- None of our slow-bar-only models reproduce the observed properties of the Hercules stream (Fig. 3). However, some slow-bar+spiral models successfully recover the Hercules stream (Figs. 7 and 8). These successful models with a slowly rotating bar (plus spiral arms) are favoured by the recent claim by Wegg et al. (2015) that the half-length of the Galactic bar is as long as ∼ 5 kpc (since a long-bar needs to be slowly rotating).
- Some spiral-only models are partially successful in reproducing the observed properties of the Hercules stream (Figs. 4 and 5). In these models, the velocity bimodality is more prominent at higher metallicity (consistent with the observations), but the Hercules-like secondary peak shows near zero radial velocity, $\langle U \rangle \approx 0 \text{ km s}^{-1}$ (inconsistent with the observations of $\langle U \rangle \simeq -15 \text{ km s}^{-1}$).
- In most of the successful models, the velocity bimodality arises due to the highly non-closed orbits. These highly non-closed orbits form an under-dense region in the velocity space between the two peaks, while nearly closed orbits form over-dense (peak) regions (e.g., Fig. 2). The prominence of the bimodality at a given [Fe/H] region is governed by the median velocity and the velocity dispersion at that [Fe/H] region. The bimodality is most prominent when the median velocity at that [Fe/H] is close to the velocity of the highly non-closed orbits and the velocity dispersion is relatively small. Both of these conditions are satisfied at the metal-rich region if the Galactic disc was formed inside-out and if the highly non-closed orbits in the Solar neighbourhood show $V/V_0 \simeq (0.8-0.9)$ (Fig. 9).
- The fact that both slow-bar+spiral models and fast-bar+spiral models can reproduce the observed properties of the Hercules stream indicates that it is very difficult to estimate the pattern speeds of the bar or spiral arms, ($\Omega_{\text{bar}}, \Omega_{S}$), based only on the Solar neighbour observations of the Hercules stream. However, by using the velocity distribution across the Galactic plane, it may be possible to disentangle these degeneracies (Figs. 10, 11, and 12).
- Given that the Hercules stream might not be the optimal source of information to estimate Ω_{bar}, it is worthwhile considering other methods to constrain Ω_{bar} such as those using the halo stellar streams (e.g., Hattori et al. 2016; Erkal et al. 2017; Pearson et al. 2017).

ACKNOWLEDGEMENTS

The authors thank Yuciihi Ito for sharing his preliminary work in his Master Thesis. KH thanks Monica Valluri and Leandro Beraldo e Silva for stimulating discussion. KH is supported by NASA-ATP award NNX15AK79G (PI: Monica Valluri). KH is supported by a grant from the Hayakawa Satio Fund awarded by the Astronomical Society of Japan. This project was developed in part at the 2017 Heidelberg Gaia Sprint, hosted by the Max-Planck-Institut für Astronomie, Heidelberg. This work was supported by the JSPS KAKENHI Grant Number 17H02870 (Grant-in Aid for Scientific Research (B)). HT is supported by the funding from the European Research Council under EU’s Horizon 2020 research and innovation programme, grant agreement No 638435. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

MNras 000, 1-23 (20xx)
Figure 10. The locations across the Galactic plane where bimodal velocity distribution is expected for two of our successful models. The large filled circle indicates the location with velocity bimodality (not limited to the bimodality due to the Hercules stream); while the small plus (+) symbol indicates the location with no velocity bimodality. The inner 5 kpc region is omitted, due to our limited predictive power. The current location of the Sun is \((x, y) = (−8, 0) \) kpc (marked by a red dot). These two examples illustrate that different ‘successful’ models predict different locations of strong velocity bimodality across the Galactic plane. (a) Fast-bar-only model with \(\Omega_{\text{bar}} = 49.42 \text{ km s}^{-1} \text{ kpc}^{-1} \) and \(T_{\text{form}} = −1 \) Gyr. Also shown is the 5:2 OLR closed orbit in the bar’s rotating frame that is associated with the Hercules stream (dashed magenta curve). The Hercules stream can be seen at \(6 \leq R/\text{kpc} \leq 8 \), but it is more prominent near the minor axis of the bar (\(\phi = 65^\circ \) and \(−115^\circ \)). In this model, we expect to see velocity bimodality at around \(R = 10 \) kpc which is not relevant to the Hercules stream (see Fig. 11). (b) Slow-bar+spiral model with \((\Omega_{\text{bar}} m, \Omega_s) = (36.11, 4.23) \) and \(T_{\text{form}} = −3 \) Gyr. The blue solid curves represent the location of the spirals’ potential well. Also shown is the 5:1 ILR closed orbit in the spirals’ rotating frame that is associated with the Hercules stream (dashed magenta curve). The Hercules stream can be seen at \(5 \leq R/\text{kpc} \leq 8 \). In this model, we expect to see velocity bimodality at around \(R = 12 \) kpc which is not relevant to the Hercules stream (see Fig. 12).
Figure 11. (Top) Predicted velocity bimodality at \((x, y) = (-10.0, 0)\) kpc in the dynamically-young, fast-bar-only model \((\Omega_{\text{bar}} = 49.42 \text{ km s}^{-1} \text{kpc}^{-1})\) and \(T_{\text{form}} = -1 \text{ Gyr}\). If the Milky Way stellar disc is well described by this model, we expect to observe a new stream at \(V \sim 0.75v_0\). (Bottom) The shape of the 5:3 OLR closed orbit in the bar’s rotating frame, which is the parent orbit of this newly predicted stream. The velocity of this closed orbit at \((x, y) = (-10, 0)\) kpc is marked by the blue cross \((\times)\) in the top panel.

Monari, G., Kawata, D., Hunt, J. A. S., & Famaey, B. 2017, MNRAS, 466, L113
Nordström, B., Mayor, M., Andersen, J., et al. 2004, A&A, 418, 989
Pearson, S., Price-Whelan, A. M., & Johnston, K. V. 2017, Nature Astronomy, 1, 633
Pérez-Villegas, Á., Portail, M., Wegg, C., & Gerhard, O. 2017, ApJ, 840, L2
Portail, M., Gerhard, O., Wegg, C., & Ness, M. 2017, MNRAS, 465, 1621
Quillen, A. C. 2003, AJ, 125, 785
Quillen, A. C., & Minchev, I. 2005, AJ, 130, 576
Quillen, A. C., Dougherty, J., Bagley, M. B., Minchev, I., & Comparateta, J. 2011, MNRAS, 417, 762
Quillen, A. C., De Silva, G., Sharma, S., et al. 2018, arXiv:1802.02924
Raboud, D., Grenon, M., Martinet, L., Fux, R., & Udry, S. 1998, A&A, 335, L61
Sanders, J. L., & Binney, J. 2015, MNRAS, 449, 3479
Seigar, M. S., & James, P. A. 1998, MNRAS, 299, 685

Figure 12. (Top) Predicted velocity bimodality at \((x, y) = (-12.0, 0)\) kpc in the slow-bar+spiral model with \((\Omega_{\text{bar}}, m, \Omega_{\text{s}}) = (36.11, 4, 23)\) and \(T_{\text{form}} = -3 \text{ Gyr}\). If the Milky Way stellar disc is well described by this model, we expect to observe a new stream at \(V \sim 1.1v_0\). (Bottom) The shape of the 4:1 OLR closed orbit in the spirals’ rotating frame, which is the parent orbit of this newly predicted stream. The velocity of this closed orbit at \((x, y) = (-12, 0)\) kpc is marked by the magenta cross \((\times)\) in the top panel.
APPENDIX A: DERIVATION OF EQUATION (11)

A1 Derivation of equation (11)

The probability that a star has an initial azimuthal angular momentum \(J'_\phi \) given the current action \(\textbf{J} = (J_R, J_\phi, J_z) \) and the stellar age \(\tau \) is given by

\[
P(J'_\phi|\textbf{J}, \tau) = \frac{P(\textbf{J}, J'_\phi, \tau)}{P(\textbf{J}, \tau)} = \frac{f(\textbf{J}, J'_\phi, \tau)}{\int dJ'_\phi f(\textbf{J}, J'_\phi, \tau)} \tag{A1}
\]

From Sanders & Binney (2015), the joint distribution of \((\textbf{J}, J'_\phi, \tau) \) is given by

\[
f(J, J'_\phi, \tau) \propto G(J_\phi, J'_\phi, \tau) \frac{\Omega_c(J'_\phi)}{\kappa^2(J'_\phi)} \exp[-R_c(J'_\phi)/R_d]. \tag{A2}
\]

In our case of the singular isothermal potential, the azimuthal frequency, epicycle frequency, and guiding centre radius of a star on a circular orbit with azimuthal action \(J'_\phi \) are respectively given by \((\Omega_c(J'_\phi), \kappa(J'_\phi), R_c(J'_\phi)) = (\nu_0^2/J'_\phi, \sqrt{2\nu_0^2/J'_\phi}, J'_\phi/\nu_0)\). Thus we obtain equation (11).