Network pharmacological investigation into the mechanism of Kaixinsan powder for the treatment of depression

Li-Jing Du1,2,3 · Xin-Ning Zhang2,3 · Sha-Sha Li2 · Yuan-Fang Sun2,3 · Hui-Zi Jin3 · Shi-Kai Yan3 · Chuan-Gang Han1

Received: 24 April 2022 / Accepted: 8 August 2022 / Published online: 7 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Kaixinsan powder (KXS), a classic prescription of traditional Chinese Medicine (TCM), is widely used in the treatment of depression, but its mechanism remains unclear. The network pharmacology method was used to construct the “herb-component-target” network, and elucidated KXS potential mechanisms of action in the treatment of depression. Moreover, molecular docking was applied to validate the important interactions between the ingredients and the target protein. The “herb-component-target” network indicated that the ingredients of Girinimbin, Gomisin B and Asarone, and the protein targets of ESR, AR and NR3C1 mostly contribute to the antidepressant effect of KXS. KEGG pathway analysis highlighted the most significant pathways associated with depression treatment, including neuroactive ligand-receptor interaction pathway, serotonergic synapse pathway, PI3K-Akt signaling pathway and MAPK signaling pathway. Go enrichment analysis indicated that the mechanism of KXS in treating depression was involved in the biological process of GPCR signal transduction, hormone metabolism and nerve cell apoptosis. Moreover, molecular docking results showed that Polygalaxanthone III, Girinimbine and Pachymic acid performed greater binding ability with key antidepressant target 5-HTR. In conclusion, this study preliminarily revealed key active components in KXS, including Gomisin B, Asarone, Ginsenoside Rg1, Polygalaxanthone III and Pachymic acid, could interact with multiple targets (5-HTR, DR, ADRA, AR, ESR, NR3C1) and modulate the activation of multiple pathways (Neuroactive ligand-receptor interaction pathway, serotonergic synapse pathway, PI3K-Akt signaling pathway and MAPK signaling pathway).

Keywords Network pharmacology · Molecular docking · Kaixinsan powder · Depression · TCM

Abbreviations
KXS Kaixinsan powder
TCM Traditional Chinese Medicine
SSRIs Selective serotonin reuptake inhibitors
TCMSP Traditional Chinese Medicine System Pharmacology Database
OB Oral bioavailability

DL Drug-like
PPI Protein-protein interaction
GPCR G protein coupled receptor

Introduction
Depression is a widespread chronic psychiatric complaint, and approximately 3% of the world population suffer from this disease (Kiraly et al. 2017; Nestler et al. 2002). Depressive is often accompanied by negative affective states, painful physical symptoms, cognitive dysfunction, and impaired social function, causing an enormous social and economic burden. In addition, depression is comorbid with other medical conditions and making treatment more difficult (Singh et al. 2017a, b; Singh and Goel 2016, 2021; Pahwa et al. 2022). The etiology and pathophysiology of depression are generally believed to be associated with environmental and genetic factors, neurotransmitter abnormality (5-hydroxytryptamine, norepinephrine, and dopamine), receptor function alterations, inflammation,
neuroendocrine dysfunction (Dean and Keshavan 2017; Ménard et al. 2016). Clinically, selective serotonin reuptake inhibitors (SSRIs), such as Fluoxetine, Paroxetine and Citalopram, are often used to relieve depressive symptoms (Perez-Caballero et al. 2014), but people are gradually aware of its limitations due to the potential side effects and multidrug resistance (David and Gourion 2016b). Therefore, it is of great significance to develop novel effective and safe antidepressant medicine.

In recent years, traditional Chinese medicine (TCM) increasingly draws worldwide attention and is expected to provide an alternative treatment for depression. Kaixinsan powder (KXS), an ancient prescription in Beiji Qianjin Yao Fang, has been used for the treatment of depression for thousands of years (Yan et al. 2016). In 2018, KXS was officially included into the catalogue of Ancient Classic Prescriptions by the State Administration of Traditional Chinese Medicine. KXS is made by mixing the powders of four herbs in a ratio of 1:1:2:1(w/w), including Panax ginseng C. A. Mey (Gingseng), Polygala tenuifolia Willd (milkwort root), Poria cocos (Schw.) Wolf (Poria) and Acorus tatarinowii (Acorus gramineus soland). The significant antidepressant effect of KXS has been confirmed both in the vitro and vivo experiments (Dong et al. 2017; Zhu et al. 2016). The corresponding herbs in KXS are also extensively studied for its multiple activities in the nervous system. For example, Wang et al. indicated that ginsenoside Rg1 (the most important active ingredient of ginseng) could ameliorate neuroinflammation via suppression of Cx43 ubiquitination to attenuate depression. β-asarone is the main active ingredient of Acorus gramineus soland. It exerted an antidepressive effect on a rat model induced by the chronic unpredictable mild stress, and that the underlying molecular mechanism may be related to the activation of the ERK signaling pathway (Dong et al. 2019). Above study could provide evidence for the material basis of KXS against depression. However, the molecular mechanisms of KXS remain unclear.

Network Pharmacology is widely used in the research of TCM, especially in the fields of bioactive compound discovery, target prediction and mechanism exploration (Yu et al. 2018; Xiao et al. 2022). This study aims to explore the molecular mechanism of KXS in the treatment of depression through network pharmacology and molecular docking, which is expected to provide scientific support for further studies of antidepressants.

Materials and methods

Screening of chemical components in KXS

Chemical components of each herb in KXS were collected in the Traditional Chinese Medicine System Pharmacology Database (TCMSP, http://lsp.nwu.edu.cn/). TCMSP is a system pharmacology platform that includes the relationship between chemicals, targets and diseases (Ru et al. 2014). The natural compounds with oral bioavailability (OB) value greater than 0.3 and drug-like (DL) value greater than 0.18 were considered to have good oral absorption and drug-like properties (Xu et al. 2012), but there was also the possibility of losing key ingredients. Chu et al. (Chu et al. 2016) conducted systematic research on the ingredients migrating to blood of KXS and found that the key ingredients of various herbs in KXS, such as Ginsenoside Rg1, Polygalaxanthone III, Pachymic acid, and Asarone. In this study, these reported ingredients of KXS migrating to blood were included into the ingredients database.

Collection of compound-related targets and depression-related targets

Firstly, the SMILES structures of compounds were obtained from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/). Then they were imported into SwissTargetPrediction (http://www.swisstargetprediction.ch/) to predict the potential targets of these active components in KXS. SwissTargetPrediction (http://www.swisstargetprediction.ch/) is one of the most commonly used databases for herbal ingredients targets collection. It allows its users to accurately predict the targets of bioactive molecular by the combination of 2D and 3D similarity measures, with high levels of prediction performance. (Daina et al. 2019). The targets with a probability value greater than 0.01 were all collected in this study.

Depression Targets were collected from four sources including GeneCards database (GC, https://www.genecards.org/) (Rebhan et al. 1997), Online Mendelian Inheritance in Man database (OMIM, https://omim.org/) (Amberger et al. 2015), Comparative Toxicogenomics Database (CTD, http://ctdbase.org/) (Mattingly et al. 2003) and Therapeutic Target Database (TTD, http://db.idrblab.net/TTD/) (Chen et al. 2002). The overlaps of the ingredient targets and the depression targets were the potential targets of KXS in the treatment of depression.

Network construction

The herbs, the chemical ingredients and the potential targets of KXS in the treatment of depression were introduced into Cytoscape3.7.1 software (https://cytoscape.org/) (Lopes et al. 2010) to construct a “herb-component-target” network for visual analysis. In the network, different types of nodes were distinguished by different colors, and the edge between two nodes represents interaction relationship.
GO and KEGG pathway analysis

The potential target genes of KXS in treating depression were introduced into Metascape (https://metascape.org/) (Zhou et al. 2019) for KEGG pathway enrichment analysis. In order to further research the interaction between KEGG pathways, we selected the top ten related KEGG pathways to construct pathway network, which performed on the Omicshare platform (https://www.omicshare.com/).

Then, Metascape was used to establish protein–protein interaction (PPI) network consisted of potential targets above. We adopt the MCODE algorithm to decompose the network and identify the closely connected sub-modules. It is believed that the protein interactions within these sub-modules can undertake specific molecular functions. Therefore, GO enrichment analysis was conducted on each module to determine the GO Biological process that each sub-module participates in.

Molecular docking

The 3D structures of candidate components were downloaded in the TCMSP database, and the crystal structures of candidate protein targets were downloaded from the RCSB PDB database (http://www.rcsb.org/) (Burley et al. 2017). Then the structure files of both the candidate components and protein targets were imported into Discovery studio 2016 software (San Diego, CA, USA) for modifying. It included ligand and water removal, hydrogen addition for protein targets and small molecular conformation optimization. Finally, molecular docking was executed by the LibDock module in Discovery Studio 2016. LibDock is a high-throughput compound virtual screening algorithm, which can accurate dock the ligand into the protein active sites based on the protein site features (polar and nonpolar hot spots). Other docking parameters were set by default. LibDockScore was used to evaluate affinity of the target proteins and its corresponding prototype ligand, and best-scored pose was chosen for each compound.

Results

KXS ingredients and potential targets in depression treatment

After OB and DL screening in the TCMSP database, 16 components in Ginseng, 3 components in milkwort root, 13 components in Poria and 3 components in Acorus gramineus soland were collected (Table S1). It is reported that the main components in KXS, including saponins, xanthones polysaccharides and volatile oils (Zhang et al. 2015). However, some components of high content in KXS could not be included because of lower value of OB and DL recorded in the TCMSP database. Chu et al. (Chu et al. 2016) have conducted systematic research on the ingredients migrating to blood of KXS and found that the key ingredients of various herbs in KXS, such as Ginsenoside Rg1, Polygalaxanthone III, Pachymic acid, and Asarone. In order to fully characterize the pharmacodynamics material basis of KXS, we included the reported ingredients migrating to blood of KXS into the ingredients database of our research (Table S2). At last, 83 ingredients in KXS were collected.

As shown in Fig. 1, the target genes of ingredients in KXS were intersected with depression-related targets collected from the four disease databases. Finally, 142 targets were found to be common targets, which were potential targets of KXS for the treatment of depression.

Network analysis

The corresponding relationships between “herb-component” and “component-target” were imported into Cytoscape software to establish the “herb-component-target” network, as shown in Fig. 2. The red nodes represented medicinal materials (4 in total), the yellow nodes represented active ingredients (83 in total), and the blue nodes represented targets (142 in total). It was found that the network degree values of Asarone (degree = 35) in Acorus tatarus and Girinimbin (degree = 29) and Gomssin B (degree = 29) in Ginseng were higher than other ingredients, which indicated that these three components can interact with most of the targets in the network. Similarly, the degree values of ESR (estrogen receptor, degree = 31), AR (androgen receptor, degree = 29), and NR3C1 (glucocorticoid receptor, degree = 26) were the top three among the protein targets, indicating that these three proteins had interaction relationship with most of the components in the network.

KEGG pathway analysis

In the analysis of KEGG pathways, a total of 158 KEGG pathways were obtained. Then, these entries were sorted in descending order according to the number of enriched genes, and the top 10 pathways were selected as shown in Table 1. In organisms, different genes coordinate with each other to conduct special biological functions. As a result, a KEGG pathway interaction network was established based on the KEGG database (Fig. 3) in order to further explore the core pathways in network. In this network, the nodes represent the KEGG pathway, the size of the node represents the number of genes enriched in the pathway, and the gradient color of the node represents the P value of the KEGG enrichment analysis. The results showed that most genes were enriched in the neuroactive ligand-receptor
interaction pathway, serotonergic synapse pathway and PI3K-Akt signaling pathway. MAPK signaling pathway had the highest network connectivity in the network. It interacted with seven pathways in the network. In general, these four pathways play a vital role in the antidepressant effect of KXS.

Go enrichment analysis

The MCODE algorithm was applied for decomposing the PPI network, and five closely connected sub-modules were identified. The PPI network was shown in Fig. 4. Then, the sub-modules were scored according to their
contribution degree in the network, as shown in Table 2. It is obvious that cluster 1 with the highest score of 7.8 is most important for the PPI network. Besides, Go biological process analysis was conducted on each sub-module to further understand the molecular functions undertaken by them. The results showed that Cluster1, Cluster3 and Cluster5 were all related to the G-protein coupled signaling pathway, while Cluster2 was related to hormone level regulation and metabolic process, and Cluster4 was related to nerve cell apoptosis. In conclusion, the regulation of G-protein-coupled signaling pathway may be closely related to the mechanism of treating depression with KXS, and the active components of KXS may have certain effects on the regulation of hormone levels and nerve cell apoptosis.

Table 1 The top 10 KEGG pathways of KXS in the treatment of depression

KEGG pathways	Enriched genes	Log(p-value)
Neuroactive ligand-receptor interaction	30	-26
Serotonergic synapse	22	-24
PI3K-Akt signaling pathway	22	-14
MAPK signaling pathway	21	-15
Calcium signaling pathway	19	-16
TNF signaling pathway	17	-17
Apoptosis	16	-14
Th17 cell differentiation	15	-14
Neurotrophic signaling pathway	15	-13
IL-17 signaling pathway	14	-14

Fig. 3 KEGG pathway network of top 10

Molecular docking

The network analysis indicated that Girinimbin, Gomssin B and Asarone were the key chemical ingredients in KXS. Furthermore, representative ingredients of each herb in KXS, such as Ginsenoside Rg1 (Li et al. 2022; Wang et al. 2022), Polygalaxanthone III (Tu et al. 2008), Pachymic acid (Zhai et al. 2022), and Asarone (Chellian et al. 2018; Dong et al. 2019), have been reported to have an antidepressant effect. Thus, we included these 6 chemical ingredients into our research for molecular docking. In addition, in the result of KEGG pathway and GO enrichment analysis, we found that the protein target of 5-HTR was the common target of neuroactive ligand-receptor interaction pathway, serotonergic synapse pathway and GPCR signaling pathway. 5-HTR is also an important target of depression drugs. Therefore, we selected 5-HTR as the candidate target for molecular docking. Nefazodone, a positive medicine targeting 5-HTR, was selected as another candidate ingredient for reference. Then, these candidate ingredients and 5-HTR were led into DiscoveryStudio software for molecular docking calculation. Their docking ability was evaluated based on libdock score, hydrogen bond number and Pi-Pi bond, as shown in Table 3. The result showed that Ginsenoside Rg1 and Gomssin B failed to dock with 5-HTR, however, Polygalaxanthone III, Girinimbine and Pachymic acid performed greater binding ability with 5-HTR. For example, Polygalaxanthone III’s libdock score is 150, which was close to the positive drug of Nefazodone. It could interact with protein 5-HTR with 2 hydrogen bonds at the amino acid residues of LEU229, ASP155 and 2 Pi-Pi bonds at PHE340, PHE339. The Molecular docking diagram for 2D and 3D was shown in Fig. 5.
In this study, the key active ingredients including Girinimbine, Gomisin B and Asarone were screened out according to the degree value in the network. These three ingredients have an interaction relationship with 36 targets in total. It is reported that Girinimbine (Mohan et al. 2020) has anti-inflammatory and antioxidant effect. It can effectively reduce the level of NO, IL-6, TNF α in plasma of rats with gastric ulcer symptom to play a gastrointestinal protection role. Inflammation and oxidative stress are related to the pathogenesis of depression closely. Chronic unpredictable stress model rats were found to accompany intestinal inflammation and the injury of intestinal barrier function (Yan et al. 2020). The pharmacological effects of Gomisin B are seldom studied at present. However, Gomisin N, which has a similar structure with Gomisin B, has been proven to relieve depressive symptoms by reducing the inflammation of hypothalamus and amygdala (Araki et al. 2016). As for Asarone, it is the main ingredient in Acorus gramineus soland, which predicted as the key ingredient in KXS during network analysis. Asarone has been found to significantly shorten the fixed time of depression rats in tail suspension test and believed to have obvious antidepressant effect (Chellian et al. 2016).

It is important to note that the representative components migrating to the blood of KXS, including Ginsenoside Rg1, Polygalaxanthone III, Pachymic acid and Asarone (Chu et al. 2016). Cao et al. further ensured the antidepressant activity of these four representative components in vitro cell experiments (Cao et al. 2018). However, they were all excluded when screening chemical ingredient in KXS. This suggests that network pharmacology needs further improvement in component selection. In order to make up for this, we included Ginsenoside Rg1, Polygalaxanthone III, Pachymic acid and Asarone as effective ingredients in KXS when conducting molecular docking study. The molecular docking result showed that Polygalaxanthone III, Girinimbine and Pachymic acid were all have great combining ability with depression target 5-HTR.

KEGG enrichment analysis indicated that neuroactive ligand-receptor interaction pathway, serotonergic synapse pathway, PI3K-Akt signaling pathway...
Table 2 GO enrichment analysis of KXS in treating depression

Score	Enriched genes	Cluster network	GO biological process	Log(p-value)
7.8	ADRA2A, AP, HTR1A, CX, CL8, DRD2, ADR2C, DRD4, HTR1B, DRD3, OPRD1, PK1, BDKR1, MTRN1A, NPY5R, HCA2, P2RY12, CNR1	![Cluster network image]	Adenylate cyclase-modulating G protein-coupled receptor signaling pathway (GO:0007188)	-21
			Adenylate cyclase-inhibiting G protein-coupled receptor signaling pathway (GO:0007193)	-21
			G protein-coupled receptor signaling pathway (GO:0007187)	-21
4.3	PRKCA, MAPK1, STAT3, PT, PN11, BCL2, CASP8, MAPK8, AKT1, FKBP5, FGFR1, JUN, FGFR2, HRAS, PDGFRA, EGFR, PPAR, CYR61, CYP17A1, CYP19A1, PARP1, CYP1A1, CYP1A2, CYP2D6, CYP2C9, CYP2C19	![Cluster network image]	Estrogen metabolic process (GO:0008210)	-13
			Hormone metabolic process (GO:0042445)	-12
			Regulation of hormone levels (GO:0010817)	-12
3.4	GRM1, HCRT2, TACR1, HTR2A, HTR2C, TACR3, HTR2B, F2, GSK3B, ADRA1A, AR, NFE2L2, RELA, RARA, ESR1, MAPK14, NR3C1	![Cluster network image]	Phospholipase C-activating G protein-coupled receptor signaling pathway (GO:0007200)	-18
			Regulation of cytosolic calcium ion concentration (GO:0051480)	-13
			Cellular calcium ion homeostasis (GO:0006874)	-12
2.0	DRD1, DRD5, HTR7, CRHR1, TAAR1	![Cluster network image]	Regulation of neuron death (GO:1901214)	-10
			Positive regulation of cell death (GO:0010942)	-10
			Neuron death (GO:0070097)	-10
1.6	MAP2K1, VCP, JAK2, MAPK3, BCL2L1, NF, MAPT, CASP3, MTP	![Cluster network image]	Activation of adenylyl cyclase activity (GO:0007190)	-8
			G protein-coupled receptor signaling pathway (GO:0007187)	-7
			Regulation of blood vessel size (GO:0050880)	-6
and MAPK signaling pathway were the core pathways of KXS in the treatment of depression. The specific mechanism is shown in the Fig. 6. The target of norepinephrine receptor (ADR), dopamine receptor (DRD) and 5-hydroxytryptophan receptor (5-HTR) were all enriched in the neuroactive ligand-receptor interaction pathway. These three are monoamine neurotransmitter receptors. The disorder of metabolism of monoamine neurotransmitters NE, DA and 5-HT is one of the pathogenesis of depression (Rühé et al. 2007). Monoamine receptor regulating drugs have been applied in the treatment of depression. They can increase the concentration of monoamine neurotransmitters in the brain by antagonizing the monoamine receptor to play an anti-depressive effect (David and Gardier 2016a). Serotonin synaptic pathway enriched the protein target including serotonin transporter (SERT) and monoamine oxidase A (MAOA). They are involved in the transport and metabolism of 5-HT, which are closely related to the maintenance of 5-HT homeostasis. There is evidence to show that increase in MAOA expression is one of important pathogenic factors in depressive disorders (Naoi et al. 2018). The high activity of MAOA increases activities such as decomposition and metabolic inactivation of 5-HT, leading to a decrease in the content of 5-HT in the brain. SERT is mainly responsible for transporting 5-HT in the synaptic cleft, and the expression of SERT in the brain of depressed subjects was found to significantly down-regulated (Newberg et al. 2012), which results in a decrease in the content of 5-HT. Therefore, inhibiting 5-HT metabolism and transport-related target proteins to improve the content of 5-HT in brain is an important mechanism of the antidepressant effect of KXS. In addition, multiple genes were enriched in PI3K-Akt and MAPK signaling pathways. Cao et al. (Cao et al. 2019) found that the expression levels of PI3K and Akt were both decreased in rats with perimenopausal depression. The downstream of the PI3-Akt signaling pathway includes multiple pathways such as mTOR, NF-kB, FOXO and MAPK, which are closely related to the pathogenesis of depression (Guo et al. 2019; Caviedes et al. 2017). Therefore, KXS may play an antidepressant role by regulating the PI3-Akt signaling pathway to affect the expression of mTOR, NF-kB, FOXO and MAPK. Si et al. (Si et al. 2018) have constructed mRNA and miRNA molecular map for the brain of CUMS depression rat, and found that in the ligand-receptor interaction pathway, serotonergic synaptic pathway and MAPK pathway, some genes expression level with significant changes. These results are all consistent with our study.

By splitting the PPI network with the MCODE algorithm, five sub-modules were determined to be mainly responsible for the biological process of the G protein coupled receptor (GPCR) signaling pathway, hormone level regulation and metabolism, and nerve cell apoptosis. Abnormal regulation of GPCR signals has been noted in a variety of early stress models, which considered to be an important participant in abnormal emotional programming (Tiwari et al. 2021). G protein signal can be accidentally duplicate amine neurotransmitter, neuropeptides and many kinds of hormone receptors to involve in regulating the function of the nervous system (Proulx et al. 2014). Various ingredients in KXS have an interaction relationship with multiple GPCRs, such as 5-HTR, DR, ADRA, NPY5R, AR and NR3C1 (Fig. 6). Comprehensive regulation of GPCR mediated signaling pathways may be the basis of antidepressant effect of KXS. In addition, in the “herb-ingredient-target” network, we found that many components in KXS can act on hormone receptors, including AR, ESR and NR3C1. This is consistent with the result of Go analysis that KXS involved in the hormone level regulation process. Depression may cause abnormal expression of hormone receptors or indirectly cause dysfunction of hormone receptors by affecting hormone secretion, resulting in disorders of the hypothalamic–pituitary–adrenal/gonadal (HPA/HPG) axis (Vermeersch et al. 2013; Du et al. 2015) and injury of

Table 3 Molecular docking studies with the 5-HTR

Ingredient	Target	Libdock score	Hydrogen Bond	Hydrogen bonding residues	Pi-Pi Bond	Pi-Pi bonding residues
Girinimbine	5-HTR	103	0	/	7	PHE243 (3), SER159 (2), TRP336 (2)
Asarone	5-HTR	59	1	SER159	1	PHE340
Polygalaxanthone III	5-HTR	150	2	LEU229, ASP155	2	PHE340, PHE339
Pachymic acid	5-HTR	125	2	SER159, VAL156	0	/
Nefazodone	5-HTR	159	0	/	4	PHE340, PHE243, TRP336, PHE339
nerve cells. Ginsenoside Rg1, the main component of KXS, has been proved to improve the levels of NR3C1 and AR of depression rats, which contribute to regulating the disturbance of HPA and HPG axis, and thus significantly improve the depressive symptoms (Mou et al. 2017). Therefore, the regulation of the hormone level of KXS is also an important mechanism of its antidepressant effect.
Conclusion

Based on network pharmacology and molecular docking methods, this study analysed the key components, targets and pathways of KXS in the treatment of depression. The chemical ingredients in KXS, including Gomisin B, Asarone, Ginsenoside Rg1, Polygalaxanthone III and Pachymic acid, can act on 5-HTR, DR, ADRA, AR, ESR, NR3C1 targets to comprehensively regulate the process of GPCR signal transduction, hormone metabolism and nerve cell apoptosis. Neuroactive ligand receptor interaction pathway, serotonergic synapse pathway, PI3K-Akt signaling pathway and MAPK signaling pathway are the key pathways in this regulation process of antidepressant effect of KXS.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11011-022-01067-5.

Acknowledgements This work was financially supported by Scientific Research Project of Health Commission of Hubei Province (WJ2019F034) and Project of Wuhan Health and Family Planning Commission (WX17D37).

Authors’ contributions Y-SK and H-CG provided the concept and designed the study. D-LJ and Z-XN conducted the main experiments and wrote the paper. S-YF participated in data analysis. L-SS and J-HZ supported the research design, reviewed the proposal, and participated in the revision of the manuscript.

Data availability Data will be made available on reasonable request.

Declarations

Consent to publish All the authors listed have approved the manuscript that is enclosed.

Conflicts of interest Declarations of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A (2015) OMIM.org: online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 43(D1):D789–D798. https://doi.org/10.1093/nar/gku1205

Araki R, Hiraki Y, Nishida S, Inatomi Y, Yabe T (2016) Gomisin N ameliorates lipopolysaccharide-induced depressive-like behaviors by attenuating inflammation in the hypothalamic paraventricular nucleus and central nucleus of the amygdala in mice. J Pharmacol Sci 132(2):138–144. https://doi.org/10.1016/j.jphs.2016.09.004

Burley SK, Berman HM, Kleywegt GJ, Markley JL, Nakamura H, Velankar S (2017) Protein Data Bank (PDB): the single global macromolecular structure archive. Methods Mol Biol 1607:627–641. https://doi.org/10.1007/978-1-4939-7000-1_26

Cao C, Xiao J, Liu M, Ge Z, Huang R, Qi M, Zhu H, Zhu Y, Duan J-A (2018) Active components, derived from Kai-xin-san, a herbal...
formula, increase the expressions of neurotrophic factor NGF and BDNF on mouse astrocyte primary cultures via cAMP-dependent signaling pathway. J Ethnopharmacol 224:554–562. https://doi.org/10.1016/j.jep.2016.06.007

Cao LH, Qiao JY, Huang HY, Fang XY, Zhang R, Miao MS, Li XM (2019) PI3K-AKT signaling activation and icarin: the potential effects on the perimenopausal depression-like rat model. Mol 24(20):3700. https://doi.org/10.3390/molecules24203700

Caviedes A, Lafourcade C, Soto C, Wynneken U (2017) BDNF/NF-kB signaling in the neurobiology of depression. Curr Pharm Des 23(21):3154–3163. https://doi.org/10.2174/138161282366170111141915

Chellian R, Pandy V, Mohamed Z (2016) Biphasic effects of α-Arsonase on immobility in the tail suspension test: evidence for the involvement of the noradrenergic and serotonergic systems in its antidepressant-like activity. Front Pharmacol 7:72. https://doi.org/10.3389/fphar.2016.00072

Chellian R, Pandy V, Mohamed Z (2018) Alpha-arsonase attenuates depression-like behavior in nicotine-withdrawn mice: Evidence for the modulation of hippocampal pCREB levels during nicotine-withdrawal. Eur J Pharmacol 818:10–16. https://doi.org/10.1016/j.ejphar.2017.10.025

Chen X, Ji ZL, Chen YZ (2002) TTD: Therapeutic Target Database. Nucleic Acids Res 30(1):412–415. https://doi.org/10.1093/nar/30.1.412

Chu H, Lu S, Kong L, Han Y, Han J, Liu Z, Zhang A, Wang X (2016) Dynamic analysis of the effects of pharmacodynamic constituents of Kai Xin San on Alzheimer’s disease rats based on chinnomedicomics. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology 18(10):1653–1669. https://doi.org/10.11842/wst.2016.10.006

Daina A, Michielin O, Zoete V (2019) Swiss Target Prediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res 47(W1):W357–W364. https://doi.org/10.1093/nar/gkz382

David DJ, Gardier AM (2016a) The pharmacological basis of the serotonin system: application to antidepressant response. Encephale 42(3):255–263. https://doi.org/10.1016/j.encep.2016.03.012

David DJ, Gourion D (2016b) Antidepressant and tolerance: determinants and management of major side effects. Encephale 42(6):553–561. https://doi.org/10.1016/j.encep.2016.05.006

Dean J, Keshavan M (2017) The neurobiology of depression: an integrated view. Asian J Psychiatr 27:101–111. https://doi.org/10.1016/j.ajps.2017.01.025

Dong ZX, Wang DX, Lu YP, Yuan S, Liu P, Hu Y (2017) Antidepressant effects of Kai-Xin-San in fluoxetine-resistant depression rats. Braz J Med Biol Res 50(10):e6161. https://doi.org/10.1590/1414-431X20176161

Dong H, Cong W, Guo X, Wang Y, Tong S, Li Q, Li C (2019) β-arsonase relieves chronic unpredictable mild stress induced depression by regulating the extracellular signal-regulated kinase signaling pathway. Exp Ther Med 18(5):3767–3774. https://doi.org/10.3892/etm.2019.8018

Du X, Pang TY, Mo C, Renoit T, Wright DJ, Hannan AJ (2015) The influence of the HPG axis on stress response and depressive-like behavior in a transgenic mouse model of Huntington’s disease. Exp Neurol 263:63–71. https://doi.org/10.1016/j.expneurol.2014.09.009

Guo LT, Wang SQ, Su J, Xu LX, Ji ZY, Zhang R-Y, Zhao QW, Ma ZQ, Deng XY, Ma SP (2019) Baicalin ameliorates neuroinflammation-induced depressive-like behavior through inhibition of toll-like receptor 4 expression via the PI3K/AKT/FoxO1 pathway. J Neuroinflammation 16(1):1–21. https://doi.org/10.1186/s12974-019-1474-8

Kiraly DD, Horn SR, Van Dam NT, Costi S, Schwartz J, Kim-Schulze S, Patel M, Hodes GE, Russo SJ, Merad M, Iossifescu DV, Charney DS, Murrough JW (2017) Altered peripheral immune profiles in treatment-resistant depression: response to ketamine and prediction of treatment outcome. Transl Psychiatry 7(3):e1065. https://doi.org/10.1038/tj.2017.31

Li J, Gao W, Zhao Z, Li Y, Yang L, Wei W, Ren F, Li Y, Yu Y, Duan W, Li J, Dai, B, Guo R (2022) Ginsenoside Rgl1 reduced microglial activation and mitochondrial dysfunction to alleviate depression-like behaviour via the GAS5/EZH2/SOCS3/NRF2 axis. Mol Neurobiol 59(5):2855–2873. https://doi.org/10.1007/s12035-022-02740-7

Lopes CT, Franz M, Kazi F, Donaldson SL, Morris Q, Bader GD (2010) Cytoscape web: an interactive web-based network browser. Bioinformatics 26(18):2347–2348. https://doi.org/10.1093/bioinformatics/btp430

Mattingly CJ, Colby GT, Forrest JN, Boyer JL (2003) The Comparative Toxicogenomics Database (CTD), Environ Health Perspect 111(6):793–795. https://doi.org/10.1289/ehp.6028

Ménard C, Hodes GE, Russo SJ (2016) Pathogenesis of depression: insights from human and rodent studies. Neuroscience 321:138–162. https://doi.org/10.1016/j.neuroscience.2015.05.053

Mohan S, Hobani YH, Shaheen E, Abou-Elhamd AS, Abdelhaleem A, Alhazmi HA, Abdelwahab SI (2020) Girinimbine from curry leaves promotes gastro protection against ethanol induced peptic ulcers and improves healing via regulation of anti-inflammatory and antioxidant mechanisms. Food Funct 11(4):3493–3505. https://doi.org/10.1039/d0fo00053a

Mou Z, Huang Q, Cui SF, Zhang MJ, Hu JF, Chen NH, Zhang JT (2017) Antidepressive effects of ginsenoside Rg1 via regulation of HPA and HPG axis. Biomed Pharmacother 92:962–971. https://doi.org/10.1016/j.biopha.2017.05.119

Naq M, Maruyama W, Shamoto-Nagai M (2018) Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: from neurotransmitter imbalance to impaired neurogenesis. J Neural Transm 125(1):53–66. https://doi.org/10.1007/s00702-017-1709-8

Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34(1):13–25. https://doi.org/10.1016/S0896-6273(02)00653-0

Newberg AB, Amsterdam JD, Wintemberg N, Justine S (2012) Low brain serotonin transporter binding in major depressive disorder. Psychiatr Res Neuromod 202:161–167. https://doi.org/10.1016/j.pscychresns.2011.12.015

Pahwa P, Singh T, Goel RK (2022) Anticoagulant effect of asparagus racemosus wild: in a mouse model of catamenial epilepsy. Neurochem Res 47(2):422–433. https://doi.org/10.1007/s11064-021-03455-2

Perez-Caballero L, Torres-Sanchez S, Bravo L, Mico JA, Berrocoso E (2014) Fluoxetine: a case history of its discovery and preclinical development. Expert Opin Drug Discov 9(5):567–578. https://doi.org/10.1517/17460441.2014.907790

Proulx É, Suri D, Heximer SP, Vaidya VA, Lambe EK (2014) Early stress prevents the potentiation of muscarinic excitation by calcium release in adult prefrontal cortex. Biol Psychiatry 76(4):315–323. https://doi.org/10.1016/j.biopsych.2013.10.017

Rehan M, Chalifa-Caspi V, Prilusky J, Lancet D (1997) GeneCards: integrating information about genes, proteins and diseases. Trends Genet 13(4):163. https://doi.org/10.1016/S0168-9525(97)10113-7

Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, Xu X, Li Y, Wang Y, Yang L (2014) TCMSp: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 6(3):13. https://doi.org/10.1186/1746-6566-6-13

Ruhé HG, Mason NS, Schene AH (2007) Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 12(4):331–359. https://doi.org/10.1038/sj.mp.4001949
Si Y, Song Z, Sun X, Wang JH (2018) microRNA and mRNA profiles in nucleus accumbens underlying depression versus resilience in response to chronic stress. Am J Med Genet B Neuropsychiatr Genet 177(6):563–579. https://doi.org/10.1002/ajmg.b.32651
Singh T, Goel RK (2016) Adjuvant indoleamine 2,3-dioxygenase enzyme inhibition for comprehensive management of epilepsy and comorbid depression. Eur J Pharmacol 784:111–120. https://doi.org/10.1016/j.ejphar.2016.05.019
Singh T, Goel RK (2021) Epilepsy associated depression: an update on current scenario, suggested mechanisms, and opportunities. Neurochem Res 46(6):1305–1321. https://doi.org/10.1007/s11064-021-03274-5
Singh T, Kaur T, Goel RK (2017a) Adjuvant quercetin therapy for management of depression in epilepsy. Neurochem Int 104:27–33. https://doi.org/10.1016/j.neuint.2016.12.023
Singh T, Kaur T, Goel RK (2017b) Fucolic acid supplementation for management of depression in epilepsy. Neurochem Res 42(10):2940–2948. https://doi.org/10.1007/s11064-017-2325-6
Tiwari P, Fanibunda SE, Kapri D, Vasaya S, Pati S, Vaidya VA (2021) GPCR signaling: role in mediating the effects of early adversity in psychiatric disorders. FEBS J 288(8):2602–2621. https://doi.org/10.1111/febs.15738
Tu H-H, Liu P, Mu L, Liao H-B, Xie T-T, Ma L-H, Liu Y-M (2008) Study on antidepressant components of sucrose ester from Polygala tenuifolia. Zhongguo Zhong Yao Za Zhi 33(11):1278–1280. https://pubmed.ncbi.nlm.nih.gov/18831206/. Accessed 1 June 2008
Vermeersch H, T’sjoen G, Kaufman JM, Houtte MV (2013) ESR1 polymorphisms, daily hassles, anger expression, and depressive symptoms in adolescent boys and girls. Horm Behav 63(3):447–453. https://doi.org/10.1016/j.yhbeh.2012.11.017
Wang H, Yang Y, Yang S, Ren S, Feng J, Liu Y, Chen H, Chen N (2022) Ginsenoside Rgl1 ameliorates neuroinflammation via suppression of connexin43 ubiquitination to attenuate depression. Front Pharmacol 12:709019. https://doi.org/10.3389/fphar.2021.709019
Xiao YG, Wu HB, Chen JS, Li X, Qiu ZK (2022) Exploring the potential antidepressant mechanisms of pinellia by using the network pharmacology and molecular docking. Metab Brain Dis. Online ahead of print. https://doi.org/10.1007/s11011-022-00930-9
Xu X, Zhang W, Huang C, Li Y, Yu H, Wang Y, Duan J, Ling Y (2012) A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci 13(6):6964–6982. https://doi.org/10.3390/ijms13066964
Yan L, Hu Q, Mak MSH, Lou J, Xu SL, Bi CWC, Zhu Y, Wang H, Dong TTX, Tsim KWK (2016) A Chinese herbal decotion, reformulated from Kai-Xin-San, relieves the depression-like symptoms in stressed rats and induces neurogenesis in cultured neurons. Sci Rep 6:30014. https://doi.org/10.1038/srep30014
Yan T, Nian T, Liao Z, Xiao F, Wu B, Bi K, He B, Jia Y (2020) Antidepressive effects of a polysaccharide from okra (Abelmoschus esculentus (L) Moench) by anti-inflammation and rebalancing the gut microbiota. Int J Biol Macromol 144:427–440. https://doi.org/10.1016/j.ijbiomac.2019.12.138
Yu G, Wang W, Wang X, Xu M, Zhang L, Ding L, Guo R, Shi Y (2018) Network pharmacology-based strategy to investigate pharmacological mechanisms of Zuojinin for treatment of gastritis. BMC Complement Altern Med 18(1):292. https://doi.org/10.1186/s12906-018-2356-9
Zhai Y, Liu B, Wu L, Zou M, Mei X, Mo X (2022) Pachymic acid prevents neuronal cell damage induced by hypoxia/reoxygenation via miR-155/NRF2/HO-1 axis. Acta Neurobiol Exp 82(2):197–206. https://doi.org/10.55782/ane-2022-018
Zhang X, Li Q, Lv C, Xu H, Liu X, Sui Z, Bi K (2015) Characterization of multiple constituents in Kai-Xin-San prescription and rat plasma after oral administration by liquid chromatography with quadrupole time-of-flight tandem mass spectrometry. J Sep Sci 38(12):2068–2075. https://doi.org/10.1002/jssc.201500123
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanasechuk O, Bennner C, Chanda SK (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets, Nat Commun 10(1):1523. https://doi.org/10.1038/s41467-019-09234-6
Zhu Y, Duan X, Huang F, Cheng X, Zhang L, Liu P, Shulan S, Duan J-A, Dong TT-X, Tsim KW-K (2016) Kai-Xin-San, a traditional Chinese medicine formula, induces neuronal differentiation of cultured PC12 cells: Modulating neurotransmitter regulation enzymes and potentiating NGF inducing neurite outgrowth. J Ethnopharmacol 193:272–282. https://doi.org/10.1016/j.jep.2016.08.013

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.