\textbf{q-CRYSTALS AND q-CONNECTIONS}

ANDRE CHATZISTAMATIOU

\textbf{Abstract.} We study how the category of q-connections depends on the choice of coordinates. We exploit Bhatt’s and Scholze’s q-crystalline site, which is based on a coordinate free formulation of q-PD structures, in order to relate q-crystals and q-connections in the p-adic setting. This yields a natural equivalence between the categories of q-connections for different choices of coordinates in the p-adic setting. The equivalence can be described explicitly in terms of differential operators.

In order to obtain a global equivalence, we patch the p-adic differential operators to create a global one. The process is not entirely formal, and we are only able to obtain a global equivalence after inverting 2.

\textbf{Introduction}

The subject of this paper are Scholze’s conjectures about q-connections [Sch]. In their simplest form q-connections are modules, satisfying a completeness condition, over a certain subalgebra of the ring of differential operators.

For example, let $R_q = \mathbb{Z}[x][q^{-1}]$, and let $R_q\{\nabla_{x,q}\}$ be the $(q-1)$-completion of the non commutative R_q-algebra generated by $\nabla_{x,q}$ and satisfying $\nabla_{x,q} \cdot x = q \cdot x \cdot \nabla_{x,q} = 1$. This is a q-deformation of the Weyl algebra $\mathbb{Z}[x]\{\nabla_x\}$. It is an arithmetic phenomenon that this deformation depends on the coordinate x. Replacing \mathbb{Z} by \mathbb{Q} would yield the trivial deformation of the Weyl algebra.

The category of $(q-1)$-(derived) complete $R_q\{\nabla_{x,q}\}$-modules is the category of q-connections over $\mathbb{Z}[x]$ with respect to the coordinate x. According to the conjectures of [Sch], this category does not depend on the choice of the coordinate x. For example, there should be a natural equivalence between the category of $(q-1)$-(derived) complete $R_q\{\nabla_{x,q}\}$-modules and $(q-1)$-(derived) complete $R_q\{\nabla_{x-1,q}\}$-modules, where $\nabla_{x-1,q} \cdot (x-1) = q \cdot (x-1) \cdot \nabla_{x-1,q} = 1$.

Our paper exploits the notion of q-crystals introduced in [BS]. Our first equivalence is between q-crystals and q-HPD stratifications (Theorem $1.3.3$). Both notions specialize to the respective classical notions in crystalline theory for $q = 1$, and the proof of the equivalence follows from the crystalline formalism. The main observation, which allows us to run the crystalline formalism, is the existence of local retractions in the q-crystalline site (Proposition $1.1.2$).

By definition, q-HPD stratifications depend on the choice of a “lifting”. Independence of this choice is established via the identification with q-crystals.

The second equivalence is between $(p,q-1)$-completely flat q-HPD stratifications and $(p,q-1)$-completely flat quasi-nilpotent q-connections (Proposition $2.1.4$). Indirectly, it shows the independence of the choice of coordinates for $(p,q-1)$-completely flat quasi-nilpotent q-connections. By using differential operators, we can make this independence explicit and extend it to all q-connections (Proposition $2.3.2$). All this takes place in the p-adic setting and works for all primes.
In order to briefly explain how differential operators are used to transform from coordinates x to coordinates y, let us suppose that q-connections for x (and y) are $A_{\mathcal{p},x}$-modules (and $A_{\mathcal{p},y}$-modules, respectively). Moreover, $A_{\mathcal{p},x}$ and $A_{\mathcal{p},y}$ are subalgebras of $D_{\mathcal{p}}$, (a completion of) the ring of differential operators. We can show that there is a distinguished free left $A_{\mathcal{p},x}$-module and free right $A_{\mathcal{p},y}$-module $M_{\mathcal{p},x}$ contained in $D_{\mathcal{p}}$. A choice of a common generator $D \in M_{\mathcal{p},x}$ yields an isomorphism $\psi_D : A_{\mathcal{p},x} \to A_{\mathcal{p},y}$ defined by $a \cdot D = D \cdot \psi_D(a)$. This isomorphism is well-defined up to inner automorphisms, and induces an equivalence between $A_{\mathcal{p},x}$-modules and $A_{\mathcal{p},y}$-modules up to natural transformation.

To obtain a global result, we use a natural condition to identify the differential operators $M_{\mathcal{p},x}^{\text{global}} \subset M_{\mathcal{p},x}$ that are the image of global ones. This approach does not work for $p = 2$, because $M_{\mathcal{p},x}^{\text{global}} = \emptyset$ in general.

Finally, after inverting 2, we patch $\{M_{\mathcal{p},x}^{\text{global}} \}_{p > 2}$ together to obtain a free left $A_{\mathcal{p},x}$-module and free right $A_{\mathcal{p},y}$-module $M_{\mathcal{p},x}$ contained in the ring of global differential operators D.

1. q-CRYSTALS

This section heavily relies on [BS] §16]. Bhatt and Scholze introduce the notion of a q-divided power algebra [BS Definition 16.2], a q-divided power envelope [BS Lemma 16.10] and the q-crystalline site [BS Definition 16.12]. These are major innovations which allows them to glue a q-de Rham complex, prove some of the conjectures in [Sch], and to relate their previous work on \mathfrak{sl}-complexes to prismatic cohomology.

1.1. The q-crystalline site. We fix a q-PD pair (D, I) and a p-completely smooth and p-complete D/I-algebra R.

Definition 1.1.1 (The q-crystalline site). (See [BS Definition 16.12]) The q-crystalline site of R relative to D, denoted $(R/D)_{q-\text{crys}}$, is the category of q-PD thickenings of R relative to D, i.e. the category of q-PD pairs (E, J) over (D, I) equipped with an isomorphism $R \to E/J$ of D/I-algebras.

An important property of the classical crystalline site and the infinitesimal site for a smooth scheme is the existence of local retractions (see [Gro68 §4.2]). This property is used to relate crystals to more explicit objects like stratifications and connections.

Proposition 1.1.2 (Existence of retractions). Suppose there is $(\hat{R}, I\hat{R})$ in $(R/D)_{q-\text{crys}}$ such that a $(p, [p]_q)$-étale map $\psi : D[x_1, \ldots, x_n]^\wedge \to \hat{R}$ exists.

For every (S, J) in $(R/D)_{q-\text{crys}}$, the coproduct of (S, J) and $(\hat{R}, I\hat{R})$ in $(R/D)_{q-\text{crys}}$ exists. We denote it by $(\hat{S}, \hat{J}) = (S, J) \otimes_{q-\text{crys}} (\hat{R}, I\hat{R})$. The natural morphism

$$(S, J) \xrightarrow{I} (\hat{S}, \hat{J})$$

is $(p, [p]_q)$-faithfully flat. Moreover, there is a section $\hat{S} \to S$ in the category of S-modules.

Proof. We note that $A := D[x_1, \ldots, x_n]^\wedge$, \hat{R}, and S are classically $(p, [p]_q)$-complete [BS Lemma 3.7(1)].
We can find a morphism of D-algebras $\tau': A \to S$ lifting the map $A/I \xrightarrow{\gamma} \tilde{R}/I = R \to S/J$. As a first step, we will extend τ' to \tilde{R}.

We can find a presentation $\tilde{R} = A[y_1, \ldots, y_d]/(f_1, \ldots, f_d)$ such that det$(\partial f_j/\partial y_i)$ is invertible. For $B = A[y_1, \ldots, y_d][z_1, \ldots, z_d]/(f_1 - z_1, \ldots, f_d - z_d)$, there is a ring homomorphism $B \to S$ extending $\tau': A \to S$, mapping z_i to J, and reducing to $R \to S/J$. Indeed, for every $a \in J$, we have $a^p \in (p, [p]_q)$. After mapping all y_i to some lifts, we map z_i to the image of f_i.

Since $A[y_1, \ldots, y_d]/(f_1, \ldots, f_d)$ is étale over A, we can find a morphism of A-algebras $A[y_1, \ldots, y_d]/(f_1, \ldots, f_d) \to B$ such that the composition with $B \to B/(z_1, \ldots, z_d)$ is the identity. The composition with $B \to S$ yields the desired lift $\tau': \tilde{R} \to S$ after completion.

We note that τ' is in general not compatible with the δ-structures. However, there is a δ-structure on $S[[\epsilon_1, \ldots, \epsilon_n]]$ such that $\tau: \tilde{R} \to S[[\epsilon_1, \ldots, \epsilon_n]]$ defined by $x_i \mapsto \tau'(x_i) + \epsilon_i$ is a morphism of δ-rings. In order to define this δ-structure we need to solve $\delta(\tau(x_i)) = (\tau(\delta(x_i)))$. Since

$$\delta(x_i) = x_i \mapsto \sum_I \tau'((\delta(x_i)(I)) \cdot \epsilon_1^{i_1} \cdot \cdots \epsilon_n^{i_n},$$

where the second equation is the Taylor expansion and $\delta(x_i)(I) = (\prod_{j=1}^n \frac{\partial^{i_j}}{\partial x_j^j}) \delta(x_i)$, we have to set

$$\delta(\epsilon_i) = \sum_I \tau'((\delta(x_i)(I)) \cdot \epsilon_1^{i_1} \cdot \cdots \epsilon_n^{i_n} - \delta(x_i)) - \sum_{i=1}^{\text{deg} f} \frac{1}{p} \tau'(x_i)^{p^{i-1}} \cdot \epsilon_1^{i_1} \cdot \cdots \epsilon_n^{i_n}.$$

This extends to a δ-structure on $S[[\epsilon_1, \ldots, \epsilon_n]]$ with the desired properties.

Finally, applying the q-PD envelope [HS Lemma 16.10] construction over (S, J) to the $(p, [p]_q)$-completely flat δ-S-algebra $S[[\epsilon_1, \ldots, \epsilon_n]]$ and the regular sequence $\epsilon_1, \ldots, \epsilon_n$, we obtain (\tilde{S}, \tilde{J}). We denote by $f : (S, J) \to (\tilde{S}, \tilde{J})$ and $\tau : (R, IR) \to (\tilde{S}, \tilde{J})$ the induced morphisms in $(R/D)_{q\text{-crys}}$.

In order to show that (\tilde{S}, \tilde{J}) is the coproduct of (S, J) and (\tilde{R}, IR), we can use the universal property of a q-PD envelope. For morphisms $g_S : S \to T$ and $g_{\tilde{R}} : \tilde{R} \to T$ in $(R/D)_{q\text{-crys}}$, it suffices to show that there is a unique morphism of δ-rings $g : S[[\epsilon_1, \ldots, \epsilon_n]] \to T$ such that $g \circ \tau = g_{\tilde{R}}$, $g \circ f = g_S$, and which maps the ideal $(\epsilon_1, \ldots, \epsilon_n)$ into the q-PD ideal of T. Only the morphism of S-algebras induced by $\epsilon_i \mapsto g_{\tilde{R}}(x_i) - g_S(\tau'(x_i))$ satisfies these properties.

We still need to show the existence of a section $\tilde{S} \to S$ in the category of S-modules. Let $\gamma_p(a) = \frac{\delta(a)}{\partial a} - \delta(a)$, we have $\gamma_p(\tilde{J}) \subset \tilde{J}$. We set $\gamma_1 = \text{id}_S, \gamma_p^k = \gamma_p \circ \gamma_p^{k-1}$, for all $k \geq 1$, and for any positive integer i with p-adic expansion $i = \sum_{k=0}^{\infty} i_k p^k$, we set $\gamma_i(a) = \prod_{k=0}^{\infty} \gamma_p^k(a)^{i_k}$. This defines maps $\gamma_i : \tilde{J} \to \tilde{J}$.

For each $I = (i_1, \ldots, i_n) \in \mathbb{Z}_{\geq 0}^n$, we set

$$(1.1.1) \quad \Gamma_I := \prod_{j=1}^n \gamma_{i_j}(\epsilon_j),$$
and claim that

\[(1.1.2) \quad \left(\bigoplus_{I \in \mathbb{Z}_p^*} S \cdot \Gamma_I \right)^\wedge \to \tilde{S}, \]

is an isomorphism of \(S \)-modules, where the left hand side is the derived \((p, [p]_q)\)-completion. Indeed, \((p, [p]_q)\)-completion is the same as \((p, q-1)\)-completion, and by the derived Nakayama lemma it suffices to show the isomorphism after derived base change \(\otimes_S S/(p,q-1) \). Both modules are \((p, [p]_q)\)-completely flat, hence derived base change reduces to simple base change \(\otimes_S S/(p,q-1) \). After reduction modulo \(q-1 \) the map already becomes an isomorphism. Indeed, \(\tilde{S}/q-1 \) is the \(p \)-completion of the \(\mathrm{pd} \)-envelope of \(S/(q-1)[\epsilon_1, \ldots, \epsilon_n] \) along \((\epsilon_1, \ldots, \epsilon_n) \), and

\[\Gamma_I \equiv \prod_j \epsilon_j^i \mod q-1,\]

where \([n]_p \) denotes the largest \(p \)-power dividing \(n \).

By using (1.1.2) and projecting to the summand corresponding to \(I = 0 \), we obtain the desired section. \(\square \)

1.2. \(q \)-crystals. For a \(D \)-algebra \(E \), we have the abelian category of derived \((p, [p]_q)\)-complete \(E \)-modules \(\text{Mod}^\wedge_E \) at our disposal (see Appendix 3.1.1). For a morphism of \(D \)-algebras \(f : E \to E' \), there is a right exact base change functor \(f^* : \text{Mod}^\wedge_E \to \text{Mod}^\wedge_{E'} \), \(M \mapsto E'^{\otimes} \otimes_{E} M \).

Definition 1.2.1 (\(q \)-crystals). A \(q \)-crystal on \((R/D)_{q\text{-crys}}\) is a derived \((p, [p]_q)\)-complete \(E \)-module \(M_E \) for each \((E, J) \in (R/D)_{q\text{-crys}}\) together with isomorphisms

\[M_f : f^* M_E \to M_{E'},\]

for each \(f : (E, J) \to (E', J') \) in \((R/D)_{q\text{-crys}}\) that satisfy

\[M_{g \circ f} = M_g \circ g^*(M_f)\]

for all \(f : (E, J) \to (E', J') \) and \(g : (E', J') \to (E'', J'') \).

A morphism of \(q \)-crystals \(u \) consists of a morphism of derived \((p, [p]_q)\)-complete \(E \)-modules

\[u_E : M_E \to M'_E\]

for every \((E, J) \in (R/D)_{q\text{-crys}}\) such that

\[u_{E'} \circ M_f = M'_f \circ f^*(u_E)\]

for all \(f : (E, J) \to (E', J') \).

We denote the category of \(q \)-crystals by \(q\text{-Cris}(R/D) \).

A \(q \)-crystal \(M \) is called \((p, [p]_q)\)-completely flat if \(M_E \) is \((p, [p]_q)\)-completely flat for every \((E, J) \in (R/D)_{q\text{-crys}}\) (see Appendix 3.1.4 for the definition of \((p, [p]_q)\)-completely flat modules).
1.3. Let \(\hat{R} \) be as in Proposition 1.1.2. As a first step towards understanding \(q \)-\textit{Cris}(\(R/D \)), we will outline which objects \(q \)-crystals induce on \(\hat{R} \). This will lead to the definition of \(q \)-HPD stratifications. The main result in this section will be an equivalence of categories between \(q \)-crystals and \(q \)-HPD stratifications if coordinates exist. This is analogous to the equivalence for the crystalline theory [BO78, §6].

Consider the diagram

\[
\begin{array}{c}
\hat{R} & \xrightarrow{\delta_0^1} & \hat{R}[\epsilon_1, \ldots, \epsilon_n] & \xrightarrow{\delta_2^1} & \hat{R}[\epsilon_1, \ldots, \epsilon, \tau_1, \ldots, \tau_n],
\end{array}
\]

where \(\delta_0^1(x_i) = x_i + \epsilon_i \), \(\delta_1^1(x_i) = x_i \), and

\[
\begin{align*}
\delta_0^2(x_i) &= x_i + \epsilon_i \\
\delta_1^2(x_i) &= x_i + \tau_i \\
\delta_2^2(x_i + \epsilon_i) &= x_i + \epsilon_i.
\end{align*}
\]

We equip \(\hat{R}[\epsilon_1, \ldots, \epsilon_n] \) and \(\hat{R}[\epsilon_1, \ldots, \epsilon, \tau_1, \ldots, \tau_n] \) with the \(\delta \)-structure that makes all maps in the diagram to maps of \(\delta \)-rings (see the proof of Proposition 1.1.2 for how to make this work).

Next, we apply the \(q \)-PD envelope [BS, Lemma 16.10] construction over \((\hat{R}, I \hat{R}) \) to the \((p, [p]_q) \)-completely flat \(\delta \)-\(R \)-algebras \(\hat{R}[\epsilon_1, \ldots, \epsilon_n] \) and \(\hat{R}[\epsilon_1, \ldots, \epsilon, \tau_1, \ldots, \tau_n] \) for the regular sequences \(\epsilon_1, \ldots, \epsilon_n \) and \(\epsilon_1, \ldots, \epsilon_n, \tau_1, \ldots, \tau_n \), respectively. We denote the resulting objects in \((R/D)_q \)-crystals by \(\hat{R}^{(2)} \) and \(\hat{R}^{(3)} \). By using the universal property of a \(q \)-PD envelope we obtain an induced diagram

\[
\begin{array}{c}
\hat{R} & \xrightarrow{\delta_0^1} & \hat{R}^{(2)} & \xrightarrow{\delta_1^1} & \hat{R}^{(3)},
\end{array}
\]

We have \(\hat{R}^{(2)} = \hat{R} \otimes_{q-\text{crys}} \hat{R} \) and \(\hat{R}^{(3)} = \hat{R} \otimes_{q-\text{crys}} \hat{R} \otimes_{q-\text{crys}} \hat{R} \).

Definition 1.3.1. A \(q \)-HPD stratifications on \((\hat{R}, I \hat{R}) \) is a \((p, [p]_q) \)-derived complete \(R \)-module \(M \) together with an isomorphism of \(\hat{R}^{(2)} \)-modules

\[
e : M \otimes_{\hat{R}, \delta_0^1} \hat{R}^{(2)} \to M \otimes_{\hat{R}, \delta_1^1} \hat{R}^{(2)}
\]

such that the following cocycle condition is satisfied:

\[
e \otimes_{\hat{R}^{(2)}, \delta_2^1} \hat{R}^{(3)} \circ e \otimes_{\hat{R}^{(2)}, \delta_0^1} \hat{R}^{(3)} = e \otimes_{\hat{R}^{(2)}, \delta_1^1} \hat{R}^{(3)}.
\]

We form the category of \(q \)-HPD stratifications in the usual way.

A \(q \)-HPD stratification \((M, e) \) is called \((p, [p]_q) \)-completely flat if \(M \) is a \((p, [p]_q) \)-completely flat \(R \)-module (see Appendix 3.1.3 for the definition of \((p, [p]_q) \)-completely flat modules).

Remark 1.3.2. It follows from the cocycle condition and the existence of an inverse for \(e \) that \(\text{id}_M = e \otimes_{\hat{R}^{(2)}, m} \hat{R} \), where \(m : \hat{R} \otimes_{q-\text{crys}} \hat{R} \to \hat{R} \) is induced by the identity on each factor.

We have a functor

\[
q-\text{Cris}(R/D) \to (q \text{-HPD stratifications on } (\hat{R}, I \hat{R})),
\]
defined by

\[M = (E \mapsto ME, f \mapsto Mf) \mapsto (M_{\tilde{R}}, M_{\tilde{R}}^{-1} \circ M_{\tilde{R}}). \]

Theorem 1.3.3. Let \((\tilde{R}, I \tilde{R})\) be as in Proposition 1.1.2. The functor \(1.3.3\) from \(q\)-crystals to \(q\)-HPD stratifications on \(\tilde{R}\) is an equivalence of categories.

Proof. For \((S, J)\) in \((R/D)_{q-crys}\), Proposition 1.1.2 yields morphisms

\[(S, J) \xrightarrow{\tilde{f}} (\tilde{S}, \tilde{J}) \xleftarrow{\tilde{\delta}} (\tilde{R}, I \tilde{R}) \]

in \((R/D)_{q-crys}\). We define the diagram

\[(1.3.5) \]

\[
\begin{array}{c}
\tilde{S} \\
\downarrow \delta_1^1 \quad \downarrow \delta_2^1 \\
\tilde{S} \otimes_S \tilde{S} \\
\downarrow \delta_1^2 \quad \downarrow \delta_2^2 \\
\tilde{S} \otimes_S \tilde{S} \otimes_S \tilde{S}
\end{array}
\]

in the usual way, that is, \(\delta_1^1(s) = 1 \otimes s\), \(\delta_2^1(s) = s \otimes 1\), and

\[\delta_3^1(s_1 \otimes s_2) = 1 \otimes s_1 \otimes s_2, \quad \delta_4^1(s_1 \otimes s_2) = s_1 \otimes 1 \otimes s_2, \quad \delta_5^1(s_1 \otimes s_2) = s_1 \otimes s_2 \otimes 1. \]

Note that \(\tilde{S} \otimes_S \tilde{S}\) and \(\tilde{S} \otimes_S \tilde{S} \otimes_S \tilde{S}\) are objects in \((R/D)_{q-crys}\). They are \(q\)-PD thickenings of \(S/J\).

Next, we extend \(\tau : \tilde{R} \rightarrow \tilde{S}\) to morphisms \(\tau^{(2)} : \tilde{R}^{(2)} \rightarrow \tilde{S} \otimes_S \tilde{S}\) and \(\tau^{(3)} : \tilde{R}^{(3)} \rightarrow \tilde{S} \otimes_S \tilde{S} \otimes_S \tilde{S}\) in \((R/D)_{q-crys}\). We want

\[\tau^{(2)} \circ \delta_1^1 = \delta_1^1 \circ \tau, \quad \tau^{(2)}(\epsilon_i) = 1 \otimes \tau(x_i) - \tau(x_i) \otimes 1, \]

\[\tau^{(3)} \circ \delta_1^2 = \delta_1^2 \circ \tau^{(2)}, \quad \tau^{(3)}(\tau_i) = 1 \otimes 1 \otimes \tau(x_i) - 1 \otimes \tau(x_i) \otimes 1. \]

This induces well-defined maps, because \(\tilde{S}/\tilde{J} = S/J\) implies \(1 \otimes \tau(x_i) - \tau(x_i) \otimes 1 \in \tilde{J} \otimes_S \tilde{S} + \tilde{S} \otimes_S \tilde{J}\).

By using \(\tau, \tau^{(2)}\), and \(\tau^{(3)}\), we get a morphism of diagrams \((1.3.2) \rightarrow (1.3.5)\). And this yields a functor from \(q\)-HPD stratifications to descent data

\[(q\text{-HPD stratifications on } (\tilde{R}, I \tilde{R})) \rightarrow DD_{\tilde{S}/S}^\wedge, \]

(see Appendix 3.1.1). Proposition 1.1.2 guarantees a section \(\tilde{S} \rightarrow S\) in the category of \(S\)-modules. Proposition 3.1.2 implies \(\text{Mod}^\wedge_{\tilde{S}/S} \cong DD_{\tilde{S}/S}^\wedge\). We will denote by \((f, \tau)^*\) the resulting functor

\[(q\text{-HPD stratifications on } (\tilde{R}, I \tilde{R})) \rightarrow \text{Mod}^\wedge_{\tilde{S}/S}. \]

The next step is to define natural isomorphisms

\[(1.3.6) \]

\[T_{(f_0, \tau_0)^*, (f_1, \tau_1)^*} : (f_0, \tau_0)^* \cong (f_1, \tau_1)^* \]

for two different choices for the retractions in \((1.3.4)\). We will assume that both choices have a section \(\tilde{S}_i \rightarrow S\), \(i = 0, 1\). Taking \(\tilde{S} = \tilde{S}_1 \otimes_S \tilde{S}_0\), \(f = f_1 \otimes 1 = 1 \otimes f_0\), and identifying \(DD^\wedge_{\tilde{S}_1/S} \cong DD^\wedge_{\tilde{S}_0/S} \cong DD^\wedge_{\tilde{S}_0/S}\) we reduce to constructing

\[(f, 1 \otimes \tau_0)^* \cong (f, \tau_1 \otimes 1)^*. \]

To simplify the notation, we will simply write \(\tau_1\) for \(\tau_1 \otimes 1\), and similarly for \(\tau_0\).

We can define \(\mu : \tilde{R}^{(2)} \rightarrow \tilde{S}\) in \((R/D)_{q-crys}\) such that \(\mu \circ \delta_0^1 = \tau_0\) and \(\mu \circ \delta_1^2 = \tau_1\). This gives a natural isomorphism

\[\epsilon \otimes_{\tilde{R}, \mu} \tilde{S} : M \otimes_{\tilde{R}, \tau_0} \tilde{S} \rightarrow M \otimes_{\tilde{R}, \tau_1} \tilde{S}. \]
for all \(q\)-HPD stratifications \((M, \epsilon)\). We claim that this induces an isomorphism of descent data. In other words, we have to prove the equality

\[(\hat{\otimes}_{R(D)}^2, \delta^2_{\mu}) \circ (\hat{\otimes}_{R(D)}^2, \delta^2_{\mu} \circ \hat{\otimes}_{S}^2) = (\hat{\otimes}_{R(D)}^2, \delta^2_{\mu} \circ \hat{\otimes}_{S}^2) \circ (\hat{\otimes}_{R(D)}^2, \delta^2_{\mu} \circ \hat{\otimes}_{S}^2).\]

We can define morphisms in \((R/D)\):
\[
\begin{array}{c}
\hat{R}((3) \quad \mu_0 \quad \mu_1 \quad \hat{S} \hat{S} \\
\end{array}
\]
such that \(\mu_0 \circ \delta^2_0 = \tau^2_{0}, \mu_0 \circ \delta^2_2 = \delta^1_1 \circ \mu_1, \mu_1 \circ \delta^2_2 = \tau^2_{1}, \mu_1 \circ \delta^2_0 = \delta^1_0 \circ \mu_1, \) and \(\mu_0 \circ \delta^2_2 = \mu_1 \circ \delta^2_2.\) After applying \(\otimes_{\hat{R}(3), \mu_0} \hat{S} \hat{S} \hat{S} \) and \(\otimes_{\hat{R}(3), \mu_1} \hat{S} \hat{S} \hat{S}\) to the cocycle condition, we obtain \((1.3.3).\)

At this point we have constructed the natural isomorphisms \((1.3.6).\) Next, we would like to show that

\[(1.3.8) \quad T_{(f_1, \tau_1)^*} \circ T_{(f_0, \tau_0)^*} = T_{(f_1, \tau_1)^*} \circ T_{(f_0, \tau_0)^*} \circ T_{(f_0, \tau_0)^*} \circ (f_1, \tau_1)^*.\]

Again, by considering \(\hat{S} = \hat{S}_2 \hat{S} \hat{S}_1 \hat{S} \hat{S}_0\), we may reduce to the case where the \(\tau_i\) have the same target. Let \(\mu_{(i,j)} : \hat{R}^2 \to \hat{S}\) for \((i,j) = (0,1), (1,2), (0,2),\) be such that \(\mu_{(i,j)} \circ \delta^1_{0} = \tau_i\) and \(\mu_{(i,j)} \circ \delta^1_{1} = \tau_j.\) Let \((M, \epsilon)\) be a \(q\)-HPD stratifications. Showing \((1.3.3)\) for \(M\) is equivalent to showing

\[e \hat{\otimes}_{R(3), \mu_{(i,2)}} \hat{S} \circ e \hat{\otimes}_{R(3), \mu_{(i,1)}} \hat{S} = e \hat{\otimes}_{R(3), \mu_{(i,2)}} \hat{S}.\]

To prove this we define \(\rho : \hat{R}^3 \to \hat{S}\) with \(\rho \circ \delta^2_0 = \mu_{(0,1)}, \rho \circ \delta^2_1 = \mu_{(0,2)}, \) and \(\rho \circ \delta^2_2 = \mu_{(1,2)}\). Applying \(\hat{\otimes}_{R(3), \rho^*} \hat{S}\) to the cocycle condition implies the claim.

We will also need the compatibility of the isomorphisms \((1.3.6)\) with base change. Let \(u : S \to P\) be a morphism in \((R/D)\), we write \(P = S \hat{S} \hat{S}\) and denote by \(u' : \hat{S} \to \hat{P}\) and \(f' : P \to \hat{P}\) the base change of \(u\) and \(f\), respectively. Let \(u^*\) be the base change functor \(\hat{\otimes}_{S} P.\) We can identify \(u^* \circ (f, \tau)^*\) with \((f', u' \circ \tau)^*\). The equality

\[(1.3.9) \quad u^* T_{(f_0, \tau_0)^*} \circ (f_1, \tau_1)^* = T_{u^* \circ (f_0, \tau_0)^*} \circ u^* \circ (f_1, \tau_1)^*\]

follows immediately from the construction of \(T.\)

Finally, we define a quasi-inverse to the functor \((1.3.3).\) For each object \(S\) in \((R/D)\), make a choice \((f_s, \tau_s).\) For a \(q\)-HPD stratification \((M, \epsilon)\) we set \(M_S = (f_s, \tau_s)^*(M).\) For each \(u : P \to S\) we define \(M_u : u^* M_S \to M_P\) by \(M_u := T_{u^* \circ (f_0, \tau_0)^*} \circ (f_1, \tau_1)^*\). By using \((1.3.8)\) and \((1.3.9)\) this defines a functor to \(q\)-crystals. For a different choice of \((f_s, \tau_s)\) we can use \(T\) to construct a natural isomorphism between the functors.

For a \(q\)-crystal \(M,\) the isomorphism

\[\hat{S} \hat{\otimes}_{f, S} M_S \xrightarrow{M} M_S \xrightarrow{M_S^{-1}} \hat{S} \hat{\otimes}_{f, R} M_R\]

is compatible with the trivial descent datum on \(\hat{S} \hat{\otimes}_{S} M_S\) and the descent datum induced by the associated \(q\)-HPD stratification \((M_R, M_R^{-1} \circ M_{R_{\delta}})\) via \(\tau.\) It induces a natural isomorphism.

On the other hand, starting with \(q\)-HPD stratifications, we may simplify the situation by choosing \(R = \hat{S}, f_{\hat{R}} = \text{id},\) and \(\tau = \text{id}_{\hat{R}}.\) For a \(q\)-HPD stratification
which takes a (p, ϵ) with associated q-crystal $(S \mapsto M_S, u \mapsto M_u)$, we get $M = M_R$ and $\epsilon = M_{\delta^{-1}} \circ M_{\delta^1}$.

This shows the equivalence of categories.

\[\square\]

Proposition 1.3.4. The equivalence of categories of Theorem 1.3.3 induces an equivalence between the $(p, [p]_q)$-completely flat objects.

Proof. We only need to show that M is a $(p, [p]_q)$-completely flat q-crystal if and only if M_R is a $(p, [p]_q)$-completely flat R-module. Then use Proposition 1.1.2 together with Lemma 3.1.6, Lemma 3.1.7, and Lemma 3.1.8. \[\square\]

2. q-connections

In this section, we let \tilde{R} be as in Proposition 1.1.2. We will use the notation from §1.3. This section will borrow from [BO78, §4].

Definition 2.0.1. For $(p, [p]_q)$-derived complete \tilde{R}-modules M and N, we define the q-HPD differential operators from M to N by

$$q{-}\text{HPD} \tilde{R}(M, N) = \text{Hom}_{\tilde{R}}((M \otimes_{\tilde{R}, \delta^1} \tilde{R}^{(2)})_{\delta^1}, N),$$

where $(.)_{\delta^1}$ means that we consider it as an \tilde{R}-module via δ^1.

We would like to make $(p, [p]_q)$-derived complete \tilde{R}-modules together with q-HPD differential operators as morphisms into a category. In order to define the composition, we set

$$V = \tilde{R}^{(2)} \otimes_{\delta^1, \tilde{R}, \delta^1} \tilde{R}^{(2)},$$

which is an object in $(R/D)_{q{-}\text{cryst}}$, and note that there is a unique morphism $\theta : \tilde{R}^{(3)} \to V$ in $(R/D)_{q{-}\text{cryst}}$ such that $\theta \circ \delta^2_0 = \text{id}_{\tilde{R}^{(3)} \otimes 1}$ and $\theta \circ \delta^2_1 = 1 \otimes \text{id}_{\tilde{R}^{(2)}}$.

Now, let $f \in q{-}\text{HPD} \tilde{R}(M, N)$ and $g \in q{-}\text{HPD} \tilde{R}(N, P)$, we can form the composition

\[\text{(2.0.1)}\]

$$M \otimes_{\tilde{R}, \delta^1} \tilde{R}^{(2)} \xrightarrow{id_M \otimes \theta \delta^2_0} M \otimes_{\tilde{R}, \delta^1} \tilde{R}^{(2)} \otimes_{\delta^1} \tilde{R}^{(2)} \otimes_{\delta^1} \tilde{R}^{(2)} \xrightarrow{f \otimes \text{id}_{\tilde{R}^{(2)}}} N \otimes_{\tilde{R}, \delta^1} \tilde{R}^{(2)} \xrightarrow{g} P,$$

which is \tilde{R}-linear if we consider the source as an \tilde{R}-module via δ^1. We define $g \circ f$ as the composition \[\text{(2.0.1)}\].

In order to define $\text{id}_M \in q{-}\text{HPD} \tilde{R}(M, M)$, we note that there is a unique morphism $\text{mult} : \tilde{R}^{(2)} \to \tilde{R}$ in $(R/D)_{q{-}\text{cryst}}$ such that $\text{mult} \circ \delta^3_0 = \text{id}_{\tilde{R}} = \text{mult} \circ \delta^3_1$. We take

$$M \otimes_{\tilde{R}, \delta^1} \tilde{R}^{(2)} \xrightarrow{id_M \otimes \text{mult}} M$$

as the identity. This finishes the definition of the category $q{-}\text{HPD} \tilde{R}$.

Next, we define a functor

\[\text{(2.0.2)}\]

$$q{-}\text{HPD} \tilde{R} \to \text{Mod}_D,$$

which takes a $(p, [p]_q)$-derived complete \tilde{R}-module to a $(p, [p]_q)$-derived complete D-module by restriction via $D \to \tilde{R}$. For $f \in q{-}\text{HPD} \tilde{R}(M, N)$ we simply define

$$M \xrightarrow{m \cdot m \delta^1} M \otimes_{\tilde{R}, \delta^1} \tilde{R}^{(2)} \xrightarrow{f} N$$

as the corresponding morphism.
The functor defined in (2.0.2) is not faithful (see [BO78, §4.4]). However, the map
\begin{equation}
q \text{-HPDiff}\hat{\mathcal{R}}(M, N) \to \text{Hom}_D(M, N)
\end{equation}
is injective if \(N \) is \([p]_q\)-torsion free.

2.1. Let \((M, \epsilon)\) be a \(q\)-HPD stratification on \((\hat{\mathcal{R}}, I\hat{\mathcal{R}})\). To simplify the notation, we set \(q\text{-HPDiff}(N) := q\text{-HPDiff}(N, N)\).

By using
\[
M \hat{\otimes}_{R, \delta_1} \hat{\mathcal{R}}^{(2)} \to \text{Hom}_\hat{\mathcal{R}}(q\text{-HPDiff}(\hat{\mathcal{R}}), M)
\]
we get a map
\begin{equation}
(2.1.1)
\text{Hom}_{\hat{\mathcal{R}}^{(2)}}(M \hat{\otimes}_{R, \delta_0} \hat{\mathcal{R}}^{(2)}, M \hat{\otimes}_{R, \delta_1} \hat{\mathcal{R}}^{(2)}) \to \text{Hom}_{\hat{\mathcal{R}}}(q\text{-HPDiff}(\hat{\mathcal{R}}), q\text{-HPDiff}(M)).
\end{equation}
We denote by \(\nabla\) the image of \(\epsilon\). Explicitly, \(\nabla(\xi)(m \otimes t) = (\text{id}_M \hat{\otimes}\xi)(\epsilon(m \otimes t))\).

Lemma 2.1.1. The map \(\nabla\) respects compositions. That is, for any \(\zeta, \xi \in q\text{-HPDiff}(\hat{\mathcal{R}})\) we have \(\nabla(\zeta \circ \xi) = \nabla(\zeta) \circ \nabla(\xi)\).

Proof. Recall that \(V = \hat{\mathcal{R}}^{(2)} \hat{\otimes}_{\delta_1} \mathcal{R}^{(2)}\) and we have \(\theta : \hat{\mathcal{R}}^{(3)} \to V\). As in (2.0.1), we consider
\begin{equation}
(2.1.2)
M \hat{\otimes}_{R, \delta_0} \hat{\mathcal{R}}^{(2)} \hat{\otimes}_{\delta_1} \mathcal{R}^{(2)} \xrightarrow{\nabla(\xi) \hat{\otimes}\text{id}_{\hat{\mathcal{R}}^{(2)}}} M \hat{\otimes}_{R, \delta_0} \hat{\mathcal{R}}^{(2)} \xrightarrow{\nabla(\xi)} M.
\end{equation}
This map can be rewritten as follows
\begin{equation}
(2.1.3)
M \hat{\otimes}_{R, \theta \circ \delta_0 \circ \delta_0} V \xrightarrow{(\theta \circ \delta_0^2)^\ast(\epsilon)} M \hat{\otimes}_{R, \theta \circ \delta_0 \circ \delta_0} V \xrightarrow{(\theta \circ \delta_0^2)^\ast(\epsilon)} M \hat{\otimes}_{R, \theta \circ \delta_0 \circ \delta_0} V \xrightarrow{\text{id}_M \hat{\otimes}\zeta \circ (\xi \hat{\otimes}\text{id}_{\hat{\mathcal{R}}^{(2)}})} M,
\end{equation}
where \(f^\ast(\epsilon) := e \hat{\otimes}_{\hat{\mathcal{R}}^{(2)}, f} V\), and the last arrow is induced by the last two arrows in (2.0.1) for \(f = \xi\) and \(g = \zeta\).

We use the cocycle condition to identify the composition of the first two arrows in (2.1.3) with \((\theta \circ \delta_0^2)^\ast(\epsilon)\). Then the claim follows from the commutativity of the following diagram:
\[
\begin{array}{ccc}
M \hat{\otimes}_{R, \delta_0} \hat{\mathcal{R}}^{(2)} & \xrightarrow{\epsilon} & M \hat{\otimes}_{R, \delta_1} \hat{\mathcal{R}}^{(2)} \\
\text{id}_M \hat{\otimes}\theta \circ \delta_0^2 & & \text{id}_M \hat{\otimes}\theta \circ \delta_0^2 \\
M \hat{\otimes}_{R, \theta \circ \delta_0 \circ \delta_0} V & \xrightarrow{(\theta \circ \delta_0^2)^\ast(\epsilon)} & M \hat{\otimes}_{R, \theta \circ \delta_0 \circ \delta_0} V \\
\text{id}_M \hat{\otimes}\theta \circ \delta_0^2 & & \text{id}_M \hat{\otimes}\theta \circ \delta_0^2 \\
\end{array}
\]
\[
\begin{array}{ccc}
M \hat{\otimes}_{R, \delta_0} \hat{\mathcal{R}}^{(2)} & \xrightarrow{\epsilon} & M \hat{\otimes}_{R, \delta_1} \hat{\mathcal{R}}^{(2)} \\
\text{id}_M \hat{\otimes}\theta \circ \delta_0^2 & & \text{id}_M \hat{\otimes}\theta \circ \delta_0^2 \\
M \hat{\otimes}_{R, \theta \circ \delta_0 \circ \delta_0} V & \xrightarrow{(\theta \circ \delta_0^2)^\ast(\epsilon)} & M \hat{\otimes}_{R, \theta \circ \delta_0 \circ \delta_0} V \\
\text{id}_M \hat{\otimes}\theta \circ \delta_0^2 & & \text{id}_M \hat{\otimes}\theta \circ \delta_0^2 \\
\end{array}
\]
\[
\begin{array}{ccc}
M \hat{\otimes}_{R, \delta_0} \hat{\mathcal{R}}^{(2)} & \xrightarrow{\epsilon} & M \hat{\otimes}_{R, \delta_1} \hat{\mathcal{R}}^{(2)} \\
\text{id}_M \hat{\otimes}\theta \circ \delta_0^2 & & \text{id}_M \hat{\otimes}\theta \circ \delta_0^2 \\
M \hat{\otimes}_{R, \theta \circ \delta_0 \circ \delta_0} V & \xrightarrow{(\theta \circ \delta_0^2)^\ast(\epsilon)} & M \hat{\otimes}_{R, \theta \circ \delta_0 \circ \delta_0} V \\
\text{id}_M \hat{\otimes}\theta \circ \delta_0^2 & & \text{id}_M \hat{\otimes}\theta \circ \delta_0^2 \\
\end{array}
\]

\end{proof}

Definition 2.1.2. A \(q\text{-connection}\) on \(\hat{\mathcal{R}}\) is a \((p, [p]_q)\)-derived complete \(D\)-module \(M\) together with morphism of \(D\)-algebras \(\nabla \in \text{Hom}_D(q\text{-HPDiff}(\hat{\mathcal{R}}), \text{Hom}_D(M, M))\).

Morphisms of \(q\text{-connections}\) are morphisms of \(D\)-modules that are compatible with \(\nabla\) in the obvious way. This defines the category of \(q\text{-connections}\) \(q\text{-Conn}(\hat{\mathcal{R}}, I)\).
Naturally, every \(q \)-connection is an \(\hat{R} \)-module and every morphism of \(q \)-connections is a morphism of \(\hat{R} \)-modules. A \(q \)-connection is called \((p, [p]_q)\)-completely flat if \(M \) is a \((p, [p]_q)\)-completely flat \(\hat{R} \)-module.

Lemma 2.1.4 shows that \((M, \epsilon) \mapsto (M, \nabla) \) from (2.1.1) (and using (2.0.2)) yields a functor

\[
\text{(2.1.4)} \quad \text{\((q\)-HPD stratifications on \((\hat{R}, I\hat{R}) \)) \rightarrow q-\text{Conn}_{(\hat{R}, I)}.}
\]

Our next goal is to show an equivalence between the full subcategories of \((p, [p]_q)\)-completely flat \(q \)-HPD stratifications and \((p, [p]_q)\)-completely flat \(q \)-connections induced by this functor. We will start by finding a nice basis for \(\hat{R}^{(2)} \) lifting the standard basis (given by the coordinates) modulo \(q - 1 \).

Recall that we have \(\hat{R}[\epsilon_1, \ldots, \epsilon_n] \rightarrow \hat{R}^{(2)} \). For \(I \in \mathbb{Z}^n_{\geq 0} \) we set \(\epsilon_I := \prod_{k=1}^n \epsilon_k^{l_k} \), and \([I]_p \) is defined as the largest \(p \)-power dividing \(\prod_{k=1}^n l_k ! \).

As in the proof of Proposition 2.1.2, we can find a sequence \((\Gamma_I)_{I \in \mathbb{Z}^n_{\geq 0}}\) of elements in \(\hat{R}^{(2)} \) such that \([I]_p \cdot \Gamma_I \equiv \epsilon_I \mod (q - 1) \). And we obtain an isomorphism

\[
\left(\bigoplus_{I \in \mathbb{Z}^n_{\geq 0}} \delta_I^1(\hat{R}) \cdot \Gamma_I \right)^{\wedge} \xrightarrow{\approx} \hat{R}^{(2)},
\]

where the source is the derived \((p, [p]_q)\)-completion of the direct sum \(\bigoplus_{I \in \mathbb{Z}^n_{\geq 0}} \delta_I^1(\hat{R}) \cdot \Gamma_I \), but turns out to be the classical \((p, [p]_q)\)-completion, and is automatically the direct sum in the category of \((p, [p]_q)\)-derived complete modules. In particular, if \((\xi_I)_{I \in \mathbb{Z}^n_{\geq 0}}\) denotes the dual basis then

\[
q-\text{HPDiff}(\hat{R}) = \prod_{I \in \mathbb{Z}^n_{\geq 0}} \hat{R} : \xi_I.
\]

Definition 2.1.3. A \((p, [p]_q)\)-completely flat \(q \)-connection \((M, \nabla)\) is called quasi-nilpotent if for each \(m \in M \), we have \(\lim_I \nabla(\xi_I)(m) = 0 \) in the \((p, [p]_q)\)-adic sense.

Proposition 2.1.4. The functor (2.1.4) induces an equivalence between \((p, [p]_q)\)-completely flat \(q \)-HPD stratifications and \((p, [p]_q)\)-completely flat quasi-nilpotent \(q \)-connections.

Proof. Let \(M \) be a \((p, [p]_q)\)-derived complete and \((p, [p]_q)\)-completely flat \(\hat{R} \)-module. Then

\[
\left(\bigoplus_{I \in \mathbb{Z}^n_{\geq 0}} M \otimes \Gamma_I \right)^{\wedge} \xrightarrow{\approx} M \hat{\otimes}_{\hat{R}, \delta_1} \hat{R}^{(2)}
\]

is an isomorphism and the left hand side is the same as the classical completion. Therefore

\[
M \hat{\otimes}_{\hat{R}, \delta_1} \hat{R}^{(2)} \xrightarrow{(\xi_I)_I} \prod_{I \in \mathbb{Z}^n_{\geq 0}} M
\]

is injective and the image equals \(\{(m_I)_I \mid \lim_I m_I = 0\} \), where the limit is in the \((p, [p]_q)\)-adic sense.

Now let \((M, \epsilon)\) be a \(q \)-HPD stratification with associated \(q \)-connection \((M, \nabla)\). By definition, \(\nabla(\xi_I)(m) = \xi_I(\epsilon(m)) \), which implies \(\lim_I \nabla(\xi_I)(m) = 0 \), hence \((M, \nabla)\) is quasi-nilpotent.
Given a quasi-nilpotent \((M, \nabla)\), we can construct \(\epsilon\) as follows. We want
\[
\epsilon(m \otimes 1) = \sum_I \nabla(\xi_I)(m) \otimes \Gamma_I,
\]
which will give a well-defined morphism after showing that
\[
\sum_I \nabla(\xi_I)(a \cdot m) \otimes \Gamma_I = \sum_I \nabla(\xi_I)(m) \otimes \Gamma_I \cdot \delta_0^I(a)
\]
for all \(a \in \tilde{R}\). This is equivalent to
\[
\xi_K(a \cdot m) = \sum_I \xi_K(\Gamma_I \cdot \delta_0^I(a)) \cdot \nabla(\xi_I)(m)
\]
for all \(K\), and follows from
\[
\xi_K \circ a = \sum_I \xi_K(\Gamma_I \cdot \delta_0^I(a)) \cdot \xi_I
\]
in \(-q\text{-HPDiff}(\tilde{R})\). But this just means
\[
(\xi_K \circ a)(\Gamma_I) = \xi_K(\Gamma_I \cdot \delta_0^I(a))
\]
for all \(I\), and holds by definition of the composition in \(-q\text{-HPDiff}(\tilde{R})\).

Now that we have constructed \(\epsilon\), we need to show the cocycle condition. One easily computes
\[
(\delta_2^* \circ \delta_0^*) \circ \epsilon(m \otimes 1) = \sum_{I,J} \nabla(\xi_J)(\nabla(\xi_I)(m)) \otimes \delta_2^I(\Gamma_J) \cdot \delta_0^I(\Gamma_I)
\]
\[
\delta_1^* \circ \epsilon(m \otimes 1) = \sum_K \nabla(\xi_K)(m) \otimes \delta_1^I(\Gamma_K).
\]
We have
\[
\bigg(\bigoplus_{I,J} \delta_2^I(\tilde{R}) \cdot \delta_0^I(\Gamma_I) \delta_2^J(\Gamma_J) \bigg) \wedge \cong \tilde{R}^{(3)},
\]
and the "dual" basis is given by
\[
\tilde{R}^{(3)} \xrightarrow{\delta} V \xrightarrow{\xi_I \circ \text{id}_{\tilde{R}^{(2)}}} \tilde{R}^{(2)} \xrightarrow{\xi_J} \tilde{R}.
\]
Let us write
\[
\delta_2^I(\Gamma_K) = \sum_{I,J} \delta_2^I(t_{I,J}(K)) \cdot \delta_0^I(\Gamma_I) \delta_2^J(\Gamma_J),
\]
which automatically implies \(\lim_{I,J} t_{I,J}(K) = 0\). Then we get
\[
\xi_J \circ \xi_I = \sum_K t_{I,J}(K) \cdot \xi_K
\]
in \(-q\text{-HPDiff}(\tilde{R})\) by definition of the composition. This proves
\[
(\delta_2^* \circ \delta_0^*)(\epsilon)(m \otimes 1) = \delta_1^*(\epsilon)(m \otimes 1),
\]
and the cocycle condition.

The functors are inverse to each other on the nose. \(\square\)
2.2. Our next goal is to understand how the categories of q-connections for two different liftings \tilde{R}_1 and \tilde{R}_2 are related. Theorem 1.3.8 and Proposition 2.1.4 tell us that the full subcategories of $(p, [p]_q)$-completely flat and quasi-nilpotent q-connections are equivalent.

Recall that we work in $(R/D)_{q\text{-crys}}$, with base the q-PD pair (D, I). With lifting we mean $(\tilde{R}_i, I\tilde{R}_i)$ are objects in $(R/D)_{q\text{-crys}}$ such that $\tilde{R}_i/I\tilde{R}_i = R$. In particular, \tilde{R}_i is a $D-\delta$-algebra.

By using the arguments of Proposition 1.1.2 one can find an isomorphism of D-algebras $\tau' : \tilde{R}_1 \to \tilde{R}_2$ inducing the identity modulo I. However, this isomorphism is not compatible with the δ-structures, hence not a morphism in $(R/D)_{q\text{-crys}}$. In general, finding an isomorphism in $(R/D)_{q\text{-crys}}$ is not possible.

Let us consider the classical crystalline situation $q - 1 = 0$ for a moment. This simplifies the situation, because we can drop δ and use PD-ideals only. In this case, \tilde{R}_i is p-torsion free and $I\tilde{R}_i$ is a PD-ideal. Moreover, q–$\text{HPDiff}(\tilde{R}_i)$ becomes the non-commutative \tilde{R}_i-algebra formally generated by $\partial x_1, \ldots, \partial x_n$ for some coordinates x_1, \ldots, x_n (whose existence we assume). Explicitly,

$$q\text{–HPDiff}(\tilde{R}_i) = \prod_{I \in \mathbb{Z}_{\geq 0}} \tilde{R}_i \cdot \partial x_1^I \cdots \partial x_n^I,$$

(to see the independence of the choice of coordinates, we have to use that \tilde{R}_i is classically p-complete.) In this case, we can simply use τ' to construct an isomorphism of D-algebras

$$\tau' : q\text{–HPDiff}(\tilde{R}_1) \cong q\text{–HPDiff}(\tilde{R}_2),$$

which will induce an equivalence of categories $(\tau')^*$ between the q-connections on \tilde{R}_1 and \tilde{R}_2, respectively. For another choice of an isomorphism τ'', there is a natural isomorphism $(\tau')^* \to (\tau'')^*$

Let us go back to the general case (where maybe $q - 1 \neq 0$). Then q–$\text{HPDiff}(\tilde{R}_i)$ depends on the δ-structure of \tilde{R}_i, and τ' cannot be used. However, it is possible to use the construction from Proposition 1.1.2 to define an isomorphism of D-algebras

$$s : q\text{–HPDiff}(\tilde{R}_1) \cong q\text{–HPDiff}(\tilde{R}_2),$$

inducing an equivalence of categories between the categories of q-connections. Again, s is not unique, but two choices are naturally isomorphic. When restricted to $(p, [p]_q)$-completely flat and quasi-nilpotent q-connections this equivalence is compatible with the equivalence from Theorem 1.3.8.

2.3. Let us recall the constructions from Proposition 1.1.2 for $\tilde{R} = \tilde{R}_1$, $S = \tilde{R}_2$. We obtain

$$\xymatrix{ \tilde{S} \ar[rr]^-f \ar[dr]_-\tau' & & \tilde{R}_2 \ar[dl]^-\tau \ar[rr] & & \tilde{R}_1 \ar@{.>}[rr] & & \tilde{R}_2 }$$

where the dotted arrow is an isomorphism, but is not compatible with the δ-structure. Moreover, \tilde{S} is the q-PD-envelope of $\tilde{R}_2[[x_1, \ldots, x_n]]$ for the regular sequence $\epsilon_1, \ldots, \epsilon_n$, and τ and f factor over $\tilde{R}_2[[x_1, \ldots, x_n]]$. Explicitly, we have $\tau(x_i) = \tau'(x_i) + \epsilon_i$, for coordinates x_1, \ldots, x_n, and $f(a) = a$. However, \tilde{S} does not depend on the coordinates (x_i). Even better, it does not depend on τ'. It is the
such that $\rho_{t,s}$ is associative and compatible with the composition on q.

We will modify the constructions which were used to define the algebra structure on q-HPDiff(\hat{R}) in order to obtain

\[(2.3.1) \quad \text{Hom}_{\hat{R}_3} (\hat{R}_2 \otimes_{q\text{-crys}} \hat{R}_3, \hat{R}_3) \times \text{Hom}_{\hat{R}_2} (\hat{R}_1 \otimes_{q\text{-crys}} \hat{R}_2, \hat{R}_2) \rightarrow \text{Hom}_{\hat{R}_3} (\hat{R}_1 \otimes_{q\text{-crys}} \hat{R}_3, \hat{R}_3),\]

which we will write as composition $(t, s) \mapsto t \circ s$.

By using the universal property we get

$$\rho : \hat{R}_1 \otimes_{q\text{-crys}} \hat{R}_3 \rightarrow (\hat{R}_1 \otimes_{q\text{-crys}} \hat{R}_2) \otimes_{\delta_1, \hat{R}_2, \delta_0} (\hat{R}_2 \otimes_{q\text{-crys}} \hat{R}_3)$$

such that $\rho \circ \delta_0 = \delta_0 \circ 1$ and $\rho \circ \delta_1 = 1 \circ \delta_1$. The composition \[(2.3.1)\] is defined by

$$\hat{R}_1 \otimes_{q\text{-crys}} \hat{R}_3 \xrightarrow{\rho} (\hat{R}_1 \otimes_{q\text{-crys}} \hat{R}_2) \otimes_{\delta_1, \hat{R}_2, \delta_0} (\hat{R}_2 \otimes_{q\text{-crys}} \hat{R}_3) \xrightarrow{\hat{\delta} \circ \text{id}} \hat{R}_2 \otimes_{q\text{-crys}} \hat{R}_3 \xrightarrow{\hat{\tau}_0} \hat{R}_3.$$

It is associative and compatible with the composition on q-HPDiff(\hat{R}) introduced in \[(2.0.1)\]. In particular, $\text{Hom}_{\hat{R}_2} (\hat{R}_1 \otimes_{q\text{-crys}} \hat{R}_2, \hat{R}_2)$ is a right q-HPDiff(\hat{R}_1)-module and a left q-HPDiff(\hat{R}_2)-module.

We define

$$\text{SHom}_{\hat{R}_2} (\hat{R}_1 \otimes_{q\text{-crys}} \hat{R}_2, \hat{R}_2) = \{s \in \text{Hom}_{\hat{R}_2} (\hat{R}_1 \otimes_{q\text{-crys}} \hat{R}_2, \hat{R}_2) \mid s(1) = 1, (s \circ \delta_0) \otimes_D D/I = \text{id}_R\}.$$

Note that $s(1) = 1$ implies $s \circ \delta_1 = \text{id}_{\hat{R}_2}$, in other words, s is a section.

We know that $\text{SHom}_{\hat{R}_2} (\hat{R}_1 \otimes_{q\text{-crys}} \hat{R}_2, \hat{R}_2)$ is not empty, because the section constructed in the proof of Proposition \[1.1.2\] satisfies the requirements (indeed, it satisfies $s \circ \delta_0 \otimes_D D/(q - 1) = \tau' \otimes_D D/(q - 1)$, and $\tau' \otimes_D D/I = \text{id}_R$ holds by definition).

The composition \[(2.3.1)\] respects SHom, because $(t \circ s) \circ \delta_0 = (t \circ \delta_0) \circ (s \circ \delta_0)$. Moreover, $\text{SHom}_{\hat{R}_2} (\hat{R} \otimes_{q\text{-crys}} \hat{R}, \hat{R})$ is a multiplicative subgroup of q-HPDiff(\hat{R}), because $I^p \hat{R} \subset (p, [p]_q) \hat{R}$ and the injectivity of the map \[(2.0.3)\] q-HPDiff(\hat{R}) \rightarrow Hom$_D (\hat{R}, \hat{R})$, $\xi \mapsto \xi \circ \delta_1$.

\textbf{Lemma 2.3.1.} For $s \in \text{SHom}_{\hat{R}_2} (\hat{R}_1 \otimes_{q\text{-crys}} \hat{R}_2, \hat{R}_2)$ there exists a unique $t \in \text{SHom}_{\hat{R}_1} (\hat{R}_2 \otimes_{q\text{-crys}} \hat{R}_1, \hat{R}_1)$ such that $s \circ t = 1$ and $t \circ s = 1$.

\textit{Proof.} We know that $\text{SHom}_{\hat{R}_1} (\hat{R}_2 \otimes_{q\text{-crys}} \hat{R}_1, \hat{R}_1)$ is non empty. So we can find some t'. Then $t' \circ s \in \text{SHom}_{\hat{R}_1} (\hat{R}_1 \otimes_{q\text{-crys}} \hat{R}_1, \hat{R}_1)$, and we set $t = (t' \circ s)^{-1} \circ t'$. Now that we have $t \circ s = 1$, we play the same game with t to get u with $u \circ t = 1$, hence $u = u \circ t \circ s = s$. \hfill \Box

\textbf{Proposition 2.3.2.} Every $s \in \text{SHom}_{\hat{R}_2} (\hat{R}_1 \otimes_{q\text{-crys}} \hat{R}_2, \hat{R}_2)$ induces an isomorphism

$$\psi_s : q\text{-HPDiff}(\hat{R}_1) \rightarrow q\text{-HPDiff}(\hat{R}_2).$$
For a second choice $s' \in \text{SHom}_{\tilde{R}_2}(\tilde{R}_1 \otimes_{q-\text{crys}} \tilde{R}_2, \tilde{R}_2)$ there is a $\xi \in \text{SHom}_{\tilde{R}_2}(\tilde{R}_2 \otimes_{q-\text{crys}} \tilde{R}_2, \tilde{R}_2)$ such that $\psi_{s'}(\zeta) = \xi \cdot \psi_s(\zeta) \cdot \xi^{-1}$ for all ζ. In other words, ψ_s is up to conjugation by elements in $\text{SHom}_{\tilde{R}_2}(\tilde{R}_2 \otimes_{q-\text{crys}} \tilde{R}_2, \tilde{R}_2)$ independent of the choice of s.

Proof. We can use Lemma 2.3.1 to find t, and define $\psi_s(\zeta) = s \circ \zeta \circ t$.

Making another choice s', we define $\xi := s' \circ t$. Then $s' = \xi \circ s$ and $\psi_{s'}(\zeta) = \xi \cdot \psi_s(\zeta) \cdot \xi^{-1}$ for all ζ. \hfill \square

Corollary 2.3.3. Let $(\tilde{R}_i, I \tilde{R}_i)$ in $(R/D)_{q-\text{crys}}$, for $i = 0, 1, 2, 3$, be such that $\tilde{R}_i/I \tilde{R}_i = R$, and suppose that $(p, [p]_q)$-etale maps $h_i : D[x_1, \ldots, x_n] \rightarrow R_i$ exist.

For every $s_{2,1} \in \text{SHom}_{\tilde{R}_2}(\tilde{R}_1 \otimes_{q-\text{crys}} \tilde{R}_2, \tilde{R}_2)$ we have an equivalence of categories

$$F_{s_{2,1}} : q-\text{Conn}(\tilde{R}_2, I \tilde{R}_2) \rightarrow q-\text{Conn}(\tilde{R}_1, I \tilde{R}_1)$$

$$(M, \nabla) \mapsto (M, \nabla \circ \psi_s).$$

Between two equivalences of this form there is a natural isomorphism:

$$u_\xi : F_s \rightarrow F_{s'}, \quad u_\xi(M, \nabla)(m) := \nabla(\xi)(m),$$

where ξ is defined by $s' = \xi \circ s$.

For $s_{3,1} \in \text{SHom}_{\tilde{R}_3}(\tilde{R}_1 \otimes_{q-\text{crys}} \tilde{R}_3, \tilde{R}_3)$ and $s_{3,2} \in \text{SHom}_{\tilde{R}_2}(\tilde{R}_2 \otimes_{q-\text{crys}} \tilde{R}_3, \tilde{R}_3)$, we have $F_{s_{2,1}} \circ F_{s_{3,2}} = F_{s_{3,2} \circ s_{2,1}}$. In particular, we have a natural isomorphism

$$t_{3,2,1} : F_{s_{2,1}} \circ F_{s_{3,2}} = F_{s_{3,2} \circ s_{2,1}} \xrightarrow{u_\zeta} F_{s_{3,1}},$$

where ζ is such that $s_{3,1} = \zeta \circ s_{3,2} \circ s_{2,1}$.

Moreover, for all (M, ∇) the following diagram is commutative:

$$F_{s_{1,0}}(F_{s_{2,1}} \circ F_{s_{3,2}}(M, \nabla)) \xrightarrow{F_{s_{1,0}}(t_{3,2,1})} F_{s_{1,0}}(F_{s_{3,1}}(M, \nabla))$$

$$F_{s_{2,0}}(F_{s_{3,2}}(M, \nabla)) \xrightarrow{t_{3,2,0}} F_{s_{3,0}}(M, \nabla).$$

Proof. This follows immediately from Proposition 2.3.2. \hfill \square

Proposition 2.3.4. Assumptions as in Corollary 2.3.3. The following diagram of functors commutes up to natural transformation

$$q-\text{Cris}(R/D)$$

$$\xrightarrow{q-\text{HPD str. on } (\tilde{R}_2, I \tilde{R}_2)}$$

$$\xrightarrow{q-\text{Conn}(\tilde{R}_1, I \tilde{R}_1)}$$

$$q-\text{Conn}(\tilde{R}_2, I \tilde{R}_2)$$

$$\xrightarrow{(q-\text{HPD str. on } (\tilde{R}, I \tilde{R}_1))}$$

$$\xrightarrow{(q-\text{HPD str. on } (\tilde{R}, I \tilde{R}_1))}$$

$$q-\text{Conn}(\tilde{R}_1, I \tilde{R}_1)$$
2.4. The sections in \(\text{SHom}_{\tilde{R}_2}(\tilde{R}_1 \otimes_{q\text{-crys}} \tilde{R}_2, \tilde{R}_2) \) used to define the functor between the categories of \(q \)-connections are \(p \)-adic in nature. For the next section, where we will prove a global version of Corollary 2.3.3, we need to isolate those sections that come from global ones. This will not work for \(p = 2 \).

Recall the setup from Subsection 2.3. The \(D \)-algebra \(\tilde{R}_2[\epsilon_1, \ldots, \epsilon_n] \) together with the ideal \(I + (\epsilon_1, \ldots, \epsilon_n) \) and the morphisms \(f : \tilde{R}_2 \to \tilde{R}_2[\epsilon_1, \ldots, \epsilon_n] \) and \(\tau : \tilde{R}_1 \to \tilde{R}_2[\epsilon_1, \ldots, \epsilon_n] \) does not depend on the choice of the coordinates or \(\tau' \) or the \(\delta \)-structures. More conceptually, it is the coproduct of \(\tilde{R}_1 \) and \(\tilde{R}_2 \) in a suitable category of infinitesimal thickenings of \(R \). We will write

\[
\tilde{R}_1 \otimes_{\text{inf}} \tilde{R}_2 := \tilde{R}_2[\epsilon_1, \ldots, \epsilon_n], \quad J := I \cdot \tilde{R}_2[\epsilon_1, \ldots, \epsilon_n] + (\epsilon_1, \ldots, \epsilon_n),
\]

and \(\delta_1 := f \) and \(\delta_0 := \tau \). Moreover, if \(K \subset \tilde{R}_2 \) is an ideal, then we will use the notation

\[
\text{Diff}_K^\wedge(\tilde{R}_1, \tilde{R}_2) := \{ s \in \text{Hom}_{\tilde{R}_2}(\tilde{R}_1 \otimes_{\text{inf}} \tilde{R}_2, \tilde{R}_2) \mid \lim_k s(J^k) = 0 \quad \text{\(K \)-adically} \}
\]

Actually, we will only consider \(K = (p, [p]_q) \) and \(K = I \). Since \(I^p \subset (p, [p]_q) \), we have an injective map

\[
\text{Diff}_K^\wedge(\tilde{R}_1, \tilde{R}_2) \to \text{Diff}_{(p, [p]_q)}^\wedge(\tilde{R}_1, \tilde{R}_2).
\]

As in (2.3.1), we get composition maps

\[
\text{Diff}_K^\wedge(\tilde{R}_2, \tilde{R}_3) \times \text{Diff}_K^\wedge(\tilde{R}_1, \tilde{R}_2) \to \text{Diff}_K^\wedge(\tilde{R}_1, \tilde{R}_3)
\]

for \(K = (p, [p]_q) \) and \(K = I \). This turns \(\text{Diff}_K^\wedge(\tilde{R}_1, \tilde{R}_2) \) into an algebra.

We set

\[
\text{SDiff}_K^\wedge(\tilde{R}_1, \tilde{R}_2) = \{ s \in \text{Diff}_K^\wedge(\tilde{R}_1, \tilde{R}_2) \mid s(1) = 1, (s \circ \delta_0) \otimes_D D/I = \text{id}_R \}.
\]

Proposition 2.4.1. The map \(\text{Hom}_{\tilde{R}_2}(\tilde{R}_1 \otimes_{q\text{-crys}} \tilde{R}_2, \tilde{R}_2) \to \text{Hom}_{\tilde{R}_2}(\tilde{R}_1 \otimes_{\text{inf}} \tilde{R}_2, \tilde{R}_2), \) induced by \(\tilde{R}_1 \otimes_{\text{inf}} \tilde{R}_2 \to \tilde{R}_1 \otimes_{q\text{-crys}} \tilde{R}_2 \), factors through \(\text{Diff}_{(p, [p]_q)}^\wedge(\tilde{R}_1, \tilde{R}_2) \).

Proof. This follows immediately from \(J^p \subset (p, [p]_q) \), where \(J \subset \tilde{R}_1 \otimes_{q\text{-crys}} \tilde{R}_2 \) is the \(q\text{-PD} \) ideal. \(\square \)

Proposition 2.4.2. Suppose \(p > 2 \) and \((p, [p]_q) \) is a regular sequence in \(D \). Then there exists \(s \in \text{SHom}_{\tilde{R}_2}(\tilde{R}_1 \otimes_{q\text{-crys}} \tilde{R}_2, \tilde{R}_2) \) with image in \(\text{SDiff}_K^\wedge(\tilde{R}_1, \tilde{R}_2) \).

Moreover, if \(\tau' : \tilde{R}_1 \to \tilde{R}_2 \) is an isomorphism of \(D \)-algebras inducing the identity modulo \(I \), then we can find an \(s \) such that \((s \circ \delta_0) \otimes_D D/(q-1)^p-1 = \tau' \otimes_D D/(q-1)^p-1 \).

Proof. Let \(m = p - 1 \), there is \(u \in \mathbb{Z}_p[q - 1] \) such that \(u \equiv 1 \mod q - 1 \) and \(u \cdot [p]_q - p \in (q - 1)^m \mathbb{Z}_p[q - 1] \); we set \(d = u \cdot [p]_q \) and \(x = q - 1 \). Note that \(d - p \in (x^m) \) and \(\phi(x) \subset (x \cdot d) \).

Let \(J \subset \tilde{R}_1 \otimes_{q\text{-crys}} \tilde{R}_2 \) be the \(q\text{-PD} \) ideal. We will define maps \(\gamma_{pk} : J \to J \) by induction on \(k \). For \(k = 0 \), we take \(\gamma_1 = \text{id}_J \). These maps will satisfy \(\phi(\gamma_{pk}(J)) \subset d^{m^k}(\tilde{R}_1 \otimes_{q\text{-crys}} \tilde{R}_2) \).

We define

\[
\gamma_{pk}(a) = -\delta(\gamma_{pk-1}(a)) + \frac{d^{m^k-1} - (d - p)^{m^k-1}}{p} \cdot \phi(\gamma_{pk-1}(a)) \frac{d^{m^k-1}}{d^{m^k-1}}.
\]

\[
\gamma_{pk}(a) = \frac{1}{p} \left(\gamma_{pk-1}(a)^p - (d - p)^{m^k-1} \cdot \phi(\gamma_{pk-1}(a)) \right),
\]

where \(u \) is a unit of the \(D \)-algebra and \(\delta : J \to J \).
and have to show that \(\phi(\gamma_p^k(J)) \subset d^{m^k} \) and \(\gamma_p^k(J) \subset J \). Now, \(\phi(\gamma_p^k(J)) \subset d^{m^k} \)
follows from \(2.4.3\), \(d-p \in (x^m) \), and \((p,d)\) are a regular sequence. For \(\gamma_p^k(J) \subset J \),
we note that by using \(d^{m^{k-1}} - (d-p)^{m^{k-1}} \& \equiv d^{m^{k-1} - 1} \) mod \(x \) and \(x \in J \), we only have
to show \(- \delta(a) + \frac{\phi(a)}{a} \in J\) for all \(a \in J \). Since \(u \equiv 1 \mod q - 1 \), this follows from
the definition of a \(q \)-PD pair.

Find coordinates \(x_1, \ldots, x_n \) for \(R_1 \) and write \(R_1 \otimes_{\text{inf}} R_2 = R_2[\epsilon_1, \ldots, \epsilon_n] \),
with \(\delta_0(x_i) = \tau'(x_i) + \epsilon_i \). We can construct a basis \((\Gamma_I)\) for \(R_1 \otimes_{q-\text{crys}} R_2 \)
and a section \(s \) as was done in the proof of Proposition \(1.1.2\) and by using the newly defined \(\gamma_p^k \).

Evidently, \((s \circ \delta_0) \otimes_D D/x^m = \tau' \otimes_D D/x^m \) holds. Moreover, it is not hard to
find \(n_I \in \mathbb{Z}_p[x] \) such that \(n_I \) is power of \(p \) modulo \(x \), \(n_I \cdot \Gamma_I \subset R_2[\epsilon_1, \ldots, \epsilon_n] \), and
\(n_I \cdot \Gamma_I = \epsilon^I \) modulo \(x^m \), where we used the notation \(\epsilon^I = \epsilon_1^I \ldots \epsilon_n^I \).

Writing \(n_I \Gamma_I = \sum_J B_{J, I} \cdot \epsilon^J \), we get \(B_{J, I} = 1, B_{J, J} \in (x^m) \) for \(I \neq J \), and, by
using \(2.4.3\), \(\lim_I B_{J, I} = 0 \) for the \(x \)-adic topology. Now, writing \(\epsilon^J = \sum_{J} A_{J, I} n_I \Gamma_J \),
it is not hard to conclude \(\lim_I A_{J, I} = 0 \) for all \(J \). Since \(s(\epsilon^I) = A_{0, I} \), we are
done. \(\square \)

2.5. A global approach. In this subsection we are going to patch the functors from Corollary \(2.3.3\) for various primes \(p \)
together in order to obtain a global result on \(q \)-connections. By definition, the category of \(q \)-connections depends on the choice of
coordinates. The study of their independence was initiated by Scholze \(\text{[Sch]} \). Our approach will not be able to include the prime \(2 \),
but we have no doubt that other approaches can prove the results in full generality.

Let \(R \) be smooth over \(\mathbb{Z} \). We set \(R_q = R[[q - 1]] \), and denote by \(R_p \) and \(R_{q,p} \) the
\(p \)-adic completions. If \(\psi : \mathbb{Z}[x_1, \ldots, x_n] \to R \) is étale, then we denote by \(R_{q,p,\psi} \) the \(\mathbb{Z}_p[[q - 1]] \)-algebra \(R_{q,p} \)
together with the \(\delta \)-structure induced by \(\phi(\psi(x_i)) = x_i^p \). We note that \((R_{q,p,\psi}, (q - 1))\) is an object in \((R_p/\mathbb{Z}_p[[q - 1]])_{q-\text{crys}} \).

As in the \(p \)-adic setup, we set \(R_q \otimes_{\text{inf}} R_q = R_q[\epsilon_1, \ldots, \epsilon_n] \), \(\delta_1(a) = a \), for all \(a \in R_q \), and \(\delta_0 \) is induced by \(\delta_0(\psi(x_i)) = \psi(x_i) + \epsilon_i \) for some \(\psi \). Again, we
note that \(R_q \otimes_{\text{inf}} R_q \) together with the ideal \(J = (q - 1, \epsilon_1, \ldots, \epsilon_n) \), \(\delta_0 \), and \(\delta_1 \),
is independent of \(\psi \). It is the coproduct of \(R_q \) with itself in a suitable category of
infinitesimal thickenings of \(R \) over \(\mathbb{Z}[q - 1] \).

We set
\[
\text{Diff}^{\wedge}_{(q-1)}(R_q, R_q) = \{ s \in \text{Hom}_{R_q}((R_q \otimes_{\text{inf}} R_q)_{\delta_1}, R_q) \mid \lim_n s(J^n) = 0 \quad q - 1 \text{-adically} \},
\]
and note that
\[
\text{Diff}^{\wedge}_{(q-1)}(R_q, R_q) \to \text{Hom}_{\mathbb{Z}[q - 1]}(R_q, R_q), \quad s \mapsto s \circ \delta_0
\]
is injective.

Depending on \(\psi \), we have the differential operators \(\nabla_{x,q} \in \text{Diff}^{\wedge}_{(q-1)}(R_q, R_q) \)
from \(\text{[Sch]} \). We will use the notations \(\nabla_{x,q}^I := \prod_{k=1}^n \nabla_{x,k,q}^I \) and
\[
A_{\psi} := \{ \sum_I a_I \cdot \nabla_{x,q}^I \mid a_I \in R_q, \lim_I a_I = 0 \quad q - 1 \text{-adically} \}.
\]
It is a subalgebra of \(\text{Diff}^{\wedge}_{(q-1)}(R_q, R_q) \).

We have the \(p \)-adic completion map
\[
\text{Diff}^{\wedge}_{(q-1)}(R_q, R_q) \to \text{Diff}^{\wedge}_{(q-1)}(R_{q,p}, R_{q,p}),
\]
and define \(A_{\psi,p} \) in a similar way.
Lemma 2.5.1. We have

\[
q^{-}\text{HPDiff}(R_{q,p,\psi}) = \prod_{l \in \mathbb{Z}^+_{p,0}} R_{q,p} \cdot \nabla_{\psi,q}^l,
\]

(2.5.2)

\[
\mathcal{A}_{\psi,p} = \{ s \in q^{-}\text{HPDiff}(R_{q,p,\psi}) \mid s \in \text{Diff}^{\wedge}_{(q-1)}(R_{q,p},R_{q,p}) \}.
\]

Proof. We know \([p]q \cdot x_i^{p-1} \cdot \phi \circ (\nabla_{x_i,q} \circ \delta_0) = (\nabla_{x_i,q} \circ \delta_0) \circ \phi\). This implies

\[
(2.5.3)
\]

as equality of maps \(R_{q,p} \otimes_{\text{inf}} R_{q,p} \rightarrow R_{q,p}\). From (2.5.3) we see that \(\nabla_{x_i,q}\) factors over \(R_{q,p,\psi} \otimes_{q^{-}\text{-crys}} R_{q,p,\psi}\). Since \(\nabla_{x_i,q} \equiv \nabla_{x_i} \mod q - 1\), we have proved (2.5.1).

In fact, it is not hard to compute the basis \((\Gamma_{I})\) dual to \((\nabla_{x_i,q}^{I})\). For \([I]q! := \prod_{k=1}^{n}[I_k]_q!\), we get \([I]q! \cdot \Gamma_I \in R_{q,p} \otimes_{\text{inf}} R_{q,p}\) and \([I]q! \cdot \Gamma_I \in J \sum_{k=1}^{n} I_k\). This proves (2.5.2).

Lemma 2.5.2. The map

\[
\text{Diff}^{\wedge}_{(q-1)}(R_q,R_q)/\mathcal{A}_\psi \rightarrow \bigoplus_{p \text{ prime}} \text{Diff}^{\wedge}_{(q-1)}(R_{q,p},R_{q,p})/\mathcal{A}_{\psi,p},
\]

where \(\bigoplus^{\wedge}\) means the \(q - 1\)-adic completion of the direct sum, is bijective.

Proof. Let us consider the differential operators of finite rank:

\[
\text{Diff}^{\wedge}_{(q-1)}(R_q,R_q) = \left\{ \sum_{I} a_I \cdot \nabla_{\psi,q}^{I} \mid \text{the sum is finite} \right\},
\]

\[
\mathcal{A}_{\psi}^{\text{finite}} = \left\{ \sum_{I} a_I \cdot \nabla_{\psi,q}^{I} \mid \text{the sum is finite} \right\},
\]

and similarly for the \(p\)-adic analogs. Then \(\text{Diff}^{\wedge}_{(q-1)}(R_q,R_q)\) is the \(q - 1\)-adic completion of \(\text{Diff}^{\wedge}_{(q-1)}(R_q,R_q)\), and \(\mathcal{A}_{\psi}^{\text{finite}}\) is the \(q - 1\)-adic completion of \(\mathcal{A}_{\psi}^{\text{finite}}\). And similarly for the \(p\)-adic analogs.

It is clear that

\[
\text{Diff}^{\wedge}_{(q-1)}(R_q,R_q)/\mathcal{A}_{\psi}^{\text{finite}} \rightarrow \bigoplus_{p \text{ prime}} \text{Diff}^{\wedge}_{(q-1)}(R_{q,p},R_{q,p})/\mathcal{A}_{\psi,p}^{\text{finite}}
\]

is bijective. Thus the statement follows by \(q - 1\)-adic completion after observing that \(\text{Diff}^{\wedge}_{(q-1)}(R_q,R_q)/\mathcal{A}_{\psi}^{\text{finite}}\) has no \(q - 1\)-torsion.

Following our convention, we define \(\text{SX} = \{ s \in X \mid s \circ \delta_0 \equiv \text{id} \mod q - 1 \}\), where \(X = \text{Diff}^{\wedge}_{(q-1)}(R_q,R_q)\) or \(X = \mathcal{A}_{\psi}\) etc. We note that \(\text{SX}\) is a group via the multiplication on \(X\).

Corollary 2.5.3. The map

\[
\text{SDiff}^{\wedge}_{(q-1)}(R_q,R_q)/\text{SA}_{\psi} \rightarrow \bigoplus_{p \text{ prime}} \text{SDiff}^{\wedge}_{(q-1)}(R_{q,p},R_{q,p})/\text{SA}_{\psi,p},
\]

where \(\bigoplus^{\wedge}\) means that each element \((s_p)_p\) has only finitely many components \(\neq 1\) after reduction modulo \((q - 1)^m\) for every \(m\).
Definition 2.5.4. A q-connection on (R_q, ψ) is a $q - 1$-derived complete $\mathbb{Z}[q - 1]$-module M together with a morphism of $\mathbb{Z}[q - 1]$-algebras
\[\nabla \in \text{Hom}_{\mathbb{Z}[q - 1]}(A_\psi, \text{Hom}_{\mathbb{Z}[q - 1]}(M, M)). \]

Morphisms of q-connections are morphisms of $\mathbb{Z}[q - 1]$-modules that are compatible with ∇ in the obvious way. This defines the category of q-connections \mathbb{C}.

Automatically, every q-connection is an R_q-module and every morphism of q-connections is a morphism of R_q-modules.

Proposition 2.5.5. Suppose $\frac{1}{2} \in R$. Let $\psi_i : \mathbb{Z}[x_1, \ldots, x_n] \to R$ be two étale maps. There is a unique $s \in \text{SDiff}^{(q - 1)}(R_q, R_q)$ such that
\[s : \text{SHom}_{R_{p,q},\psi_2}(R_{q,p,\psi_1} \otimes_{q-crys} R_{q,p,\psi_2}, R_{q,p}) \cap \text{SDiff}^{(q - 1)}(R_{q,p}, R_{q,p}), \]
for each prime p (with $R_p \neq 0$). Moreover, $sA_{\psi_1} s^{-1} = A_{\psi_2}$.

Proof. We know that
\[\text{SHom}_{R_{p,q},\psi_2}(R_{q,p,\psi_1} \otimes_{q-crys} R_{q,p,\psi_2}, R_{q,p}) \cap \text{SDiff}^{(q - 1)}(R_{q,p}, R_{q,p}) \neq \emptyset \]
by Proposition [2.4.2] and $\frac{1}{2} \in R$.

It is clear that $\text{SHom}_{R_{p,q},\psi_2}(R_{q,p,\psi_1} \otimes_{q-crys} R_{q,p,\psi_2}, R_{q,p}) \cap \text{SDiff}^{(q - 1)}(R_{q,p}, R_{q,p})$ is a right SA_ψ-torsor hence defines an element in $\text{SDiff}^{(q - 1)}(R_{q,p}, R_{q,p})/\text{SA}_\psi$, which is also trivial modulo $(q - 1)^p - 1$ by Proposition [2.4.2]. We can use Corollary [2.5.3] to obtain s and its uniqueness.

Moreover, $sA_{\psi_1} s^{-1} = A_{\psi_2}$ follows from $sA_{\psi_1} s = A_{\psi_2}$ for every p. □

This implies the analog of Proposition [2.5.6].

Corollary 2.5.6. Every s as in Proposition [2.5.6] induces an isomorphism
\[\psi_s : A_{\psi_1} \to A_{\psi_2}, \quad \zeta \mapsto s \cdot \zeta \cdot s^{-1}. \]

For a second choice s' there is a $\xi \in A_{\psi_2}$ such that $\psi_{s'}(\zeta) = \xi \cdot \psi_s(\zeta) \cdot \xi^{-1}$ for all ζ.

Corollary [2.5.6] implies the analog of Corollary [2.3.3]. This yields a natural equivalence between the categories of q-connections for different coordinates.

3. **Appendix**

3.1. **Derived complete modules.** Our reference for derived completion is [Sta20 Tag 091N].

Let A be a commutative ring and I a finitely generated ideal. We denote the category of I-derived complete modules by Mod^I_A. It is a weak Serre subcategory of the category of A-modules Mod_A [Sta20 Tag 091U]. In particular, it is an abelian category and $\text{Mod}^I_A \subset \text{Mod}_A$ is fully faithful and exact. Every classically I-complete A-module is automatically I-derived complete [Sta20 Tag 091T].

For $M, N \in \text{Mod}^I_A$ the A-module $\text{Hom}_{\text{Mod}^I_A}(M, N) = \text{Hom}_A(M, N)$ is I-derived complete Mod^I_A [Sta20 Tag 091E]. The functor $N \mapsto \text{Hom}_R(M, N)$ has a left adjoint functor $N \mapsto N \otimes^I_A M$, which is given by $N \mapsto H^0((M \otimes^I_A N)\wedge)$ with $K \mapsto K\wedge$ being the derived completion [Sta20 Tag 091V]. Indeed, this follows from
\[\text{Hom}(N, R\text{Hom}(M, P)) = \text{Hom}(N \otimes^L M, P) = \text{Hom}((N \otimes^L M)\wedge, P) \]
\[= \text{Hom}((N \otimes^L M)\wedge, P) = \text{Hom}(N \otimes^I M, P), \]
where we used that derived completion behaves like a left derived functor [Sta20, Tag 0AAJ].

The functor $N \mapsto N \hat{\otimes}_A M$ is right exact. We have $N \hat{\otimes}_A M = M \hat{\otimes}_A N$, and $(N \hat{\otimes}_A M) \hat{\otimes}_A P = N \hat{\otimes}_A (M \hat{\otimes}_A P)$.

3.1.1. **Descent.** Let B be a derived I-complete A-algebra. Then $M \mapsto M \hat{\otimes}_A B$ defines a functor $\text{Mod}^\wedge_A \to \text{Mod}^\wedge_B$ that is left adjoint to the forgetful functor $\text{Mod}^\wedge_B \to \text{Mod}^\wedge_A$. Note that the derived completion functor commutes with the forgetful functor from B-modules to A-modules [Sta20, Tag 09ZQ]. In particular, a B-module M is IB-derived complete if and only if it is I-derived complete as an A-module. In order to see that $M \mapsto M \hat{\otimes}_A B$ is the left adjoint, we use

$$\text{Hom}_B(M \hat{\otimes}_A B, N) = \text{Hom}_B(M \otimes_A B, N) = \text{Hom}_A(M, N).$$

We define descent data in the usual way, that is, descent data correspond to (M, θ), where M is an IB-derived complete B-module and θ is a morphism of B-modules

$$M \to M \hat{\otimes}_A B,$$

where $M \hat{\otimes}_A B$ is a B-module via the right factor. Since $M \hat{\otimes}_A B$ is also a B-module via the action on M, we get an induced morphism

$$M \hat{\otimes}_A B \to M \hat{\otimes}_A B.$$

We require that this map is an isomorphism and the cocycle condition is satisfied. The cocycle condition is

$$(\theta \hat{\otimes} \text{id}_B) \circ \theta = (\text{id}_M \hat{\otimes} \delta_0^1) \circ \theta,$$

as equality of morphism $M \to M \hat{\otimes}_A B \hat{\otimes}_A B$ with $\delta_0^1 : B \to B \hat{\otimes} B$ induced by $b \mapsto 1 \otimes b$. We will denote the category of derived complete descent data by $\text{DD}^\wedge_{B/A}$.

As usual, we have the base extension functor

$$(3.1.1) \quad \text{Mod}^\wedge_A \to \text{DD}^\wedge_{B/A}. \quad M \mapsto (M \hat{\otimes}_A B, \text{id}_M \hat{\otimes} \delta_0^1).$$

It has a right adjoint functor given by

$$\text{DD}^\wedge_{B/A} \to \text{Mod}^\wedge_A, \quad (M, \theta) \mapsto \ker(\theta - \iota)$$

where $\iota : M \to M \hat{\otimes}_A B$ is induced by $m \mapsto m \otimes 1$.

Proposition 3.1.2. If there is a section $s : B \to A$ in the category of A-modules then base extension $\text{Mod}^\wedge_A \to \text{DD}^\wedge_{B/A}, M \mapsto M \hat{\otimes}_A B$ is an equivalence of categories.

A quasi-inverse is given by $M \mapsto \ker(\theta - \iota)$.

Proof. The strategy of the proof is taken from [Sta20, Tag 08WE].

Let (M, θ) be a descent datum. We set $f = \theta$, $g_1 = \theta \hat{\otimes} \text{id}_B$ and $g_2 = \text{id}_M \hat{\otimes} \delta_0^1$. We claim that

$$(3.1.2) \quad M \xrightarrow{f} M \hat{\otimes}_A B \xrightarrow{g_1} M \hat{\otimes}_A B \hat{\otimes}_A B \xrightarrow{g_2} M \hat{\otimes}_A B \hat{\otimes}_A B$$

is a split equalizer (see [Sta20, Tag 08WH] for the definition). Indeed, we can take $h : M \hat{\otimes}_A B \xrightarrow{\theta^{-1}} M \hat{\otimes}_A B \to M$, where the last arrow uses the B-module
structure, and \(i : M \otimes_A B \otimes_A B \to M \hat{\otimes}_A B\) is induced by \(\text{id}_M\) and the multiplication \(B \otimes_A B \to B\), in order to split the equalizer. This means

\[
(3.1.3) \quad h \circ f = \text{id}_M, \quad f \circ h = i \circ g_1, \quad i \circ g_2 = \text{id}_{M \hat{\otimes}_A B}.
\]

Furthermore, we claim that the equalizer

\[
\ker(\theta - \iota) \xrightarrow{\iota} M \xrightarrow{\theta} M \hat{\otimes}_A B
\]

is split (in the category \(\text{Mod} \hat{\otimes}_A\)). We note that \(M \xrightarrow{\theta} M \hat{\otimes}_A B \xrightarrow{\text{id}_M \hat{\otimes}_A s} M\), which we denote by \(h'\), factors through \(\ker(\theta - \iota)\). Indeed, we have a commutative diagram

\[
\begin{array}{ccc}
M \hat{\otimes}_A B & \xrightarrow{g_1} & M \hat{\otimes}_A B \\
\text{id}_M \hat{\otimes}_A s & \downarrow & \downarrow \text{id}_M \hat{\otimes}_A s \\
M & \xrightarrow{\theta} & M \hat{\otimes}_A B.
\end{array}
\]

Therefore we may take \(h'\) as section \(M \to \ker(\theta - \iota)\). We use \(\text{id}_M \hat{\otimes}_A s : M \hat{\otimes}_A B \to M\) as the second splitting. The required identities are obvious.

Since split equalizers remain equalizers after application of the functor \(\hat{\otimes}_A\), the map \(\ker(\theta - \iota) \hat{\otimes}_A B \to M\) is an isomorphism. This shows that base extension is essentially surjective.

Now suppose \((M, \theta)\) is the base extension of an \(A\)-module \(M'\). By inspection of \(h'\), we conclude that the natural map \(M' \to \ker(\theta - \iota)\) is surjective. It is also injective, because \(M' \to M' \hat{\otimes}_A B, m' \mapsto m' \hat{\otimes} 1\), has \(\text{id}_{M'} \hat{\otimes}_A s\) as section. Hence it is an isomorphism. This finishes the proof.

\[\square\]

Remark 3.1.3. The functor \(\hat{\otimes}_A B\) is not exact in general, even if \(B\) is an \(I\)-completely flat \(A\)-algebra. We do not know whether there is descent for a \(I\)-completely faithfully flat \(A\)-algebra.

3.1.4. \(I\)-completely flat modules.

Recall from [BS], that a complex \(M\) of \(A\)-modules is \(I\)-completely flat if for any \(I\)-torsion \(A\)-module \(N\), the derived tensor product \(M \hat{\otimes}_A N\) is concentrated in degree 0. This implies in particular that \(M \hat{\otimes}_A^L A/I\) is concentrated in degree 0 and a flat \(A\)-module.

In this section we will only consider the case where \(I\) is generated by two elements. For more general results we refer to [Yek20]. The next proposition may very well follow from [Yek20].

Proposition 3.1.5. Suppose \(I\) is generated by two elements \(p, d\). And suppose that \(d\) is a non-zero divisor of \(A\). If \(M\) is a \((p, d)\)-completely flat complex of \(A\)-modules then the derived completion \(M^\wedge\) is \((p, d)\)-completely flat.

Proof. As a first step, suppose that \(A = A/d\) and \(I\) is principal and generated by \(p\). We claim that if \(M\) is a \(p\)-completely flat complex then \(M^\wedge\) is \(p\)-completely flat.

Let \(\text{cone}(p)\) be the cone of the multiplication by \(p\) endomorphism of \(A\). Because its cohomology is \(p\)-torsion, \(M \hat{\otimes}^L \text{cone}(p)\) is derived \(p\)-complete. Therefore we get

\[
(3.1.4) \quad \text{cone}(M^\wedge \overset{p}{\to} M^\wedge) \cong M \hat{\otimes}^L \text{cone}(p).
\]
Let T be a p-torsion module. The complex $\text{cone}(p) \otimes^L T$ has only cohomology in degree $0, -1$. Since M is p-completely flat, the same holds for $\text{cone}(p) \otimes^L T \otimes^L M$. Now (3.1.5) implies $H^i(M^\wedge \otimes^L T)$ for all $i \neq 0$, because T is p-torsion.

Let us consider the case $I = (p, d)$ now. The (p, d)-complete flatness of M implies the p-complete flatness of $M \otimes^L_A A/d$ as complex of A/d-modules. We already know that the derived p-completion $(M \otimes^L_A A/d)^{\wedge}$ is p-completed flat as complex of A/d-modules. Since $(M \otimes^L_A A/d)^{\wedge}$ is d-torsion, it is automatically (p, d)-complete. Therefore we have an isomorphism

(3.1.5) $\text{cone}(M^\wedge \stackrel{d}{\to} M^\wedge) \cong (M \otimes^L_A A/d)^{\wedge}$.

Let T be a (p, d)-torsion A-module. We have

$$(M \otimes^L_A A/d)^{\wedge} \otimes^L_A T = (M \otimes^L_A A/d)^{\wedge} \otimes^L_A A/d \otimes^L_A/d T =\big((M \otimes^L_A A/d)^{\wedge} [-1] \oplus (M \otimes^L_A A/d)^{\wedge}\big) \otimes^L_A/d T,$$

and this complex has cohomology in degree $0, -1$ only. In view of (3.1.5), we conclude $H^i(M^\wedge \otimes^L_A T)$ for all $i \neq 0$.

Lemma 3.1.6. Let A and B be bounded prisms. Let M be a derived (p, d)-complete and (p, d)-completely flat A-module. Then $M \otimes^L_A B$ is a (p, d)-completely flat B-module and it is the classical (p, d)-completion of $M \otimes^L_A B$.

Proof. The complex of B-modules $M \otimes^L_A B$ is (p, d)-completely flat, hence $(M \otimes^L_A B)^{\wedge}$ is (p, d)-completely flat by Proposition 3.1.6. Now, [BS] Lemma 3.7(2) can finish the proof. □

The next lemma has essentially the same proof.

Lemma 3.1.7. Let A be a bounded prism. Let M, N be derived (p, d)-complete and (p, d)-completely flat A-modules. Then $M \otimes^L_A N$ is (p, d)-completely flat and it is the classical (p, d)-completion of $M \otimes^L_A N$.

Lemma 3.1.8. Let B be a derived (p, d)-complete and (p, d)-completely flat A-algebra. Suppose there is a section $B \to A$ in the category of A-modules. Let M be a derived (p, d)-complete A-module. If $M \otimes^L_A B$ is (p, d)-completely flat as B-module then M is (p, d)-completely flat.

Proof. Since M is a direct summand of $M \otimes^L_A B$, it suffices to consider $(M \otimes^L_A B) \otimes^L_A T = (M \otimes^L_A B) \otimes^L_B (B \otimes^L_A T)$ for (p, d)-torsion A-modules T. Now, $B \otimes^L_A T \cong B \otimes_A T$ is a (p, d)-torsion B-module and we are done. □

References

[BO78] Pierre Berthelot and Arthur Ogus. Notes on Crystalline Cohomology. Princeton University Press and University of Tokyo Press, 1978.

[BS] Bhargav Bhatt and Peter Scholze. Prisms and prismatic cohomology. arXiv:1905.08229.

[Gro68] A. Grothendieck. Crystals and the de Rham cohomology of schemes. In Dix exposés sur la cohomologie des schémas, volume 3 of Adv. Stud. Pure Math., pages 306–358. North-Holland, Amsterdam, 1968. Notes by I. Coates and O. Jussila.

[Sch] Peter Scholze. Canonical q-deformations in arithmetic geometry. arXiv:1606.01796v1.

[Sta20] The Stacks project authors. The stacks project. https://stacks.math.columbia.edu, 2020.

[Yek20] Amnon Yekutieli. Weak prorerunary, derived completion, adic flatness, and prisms, 2020. arXiv:2002.04901.