Pharmacogenetic determinants of outcomes on triplet hepatic artery infusion and intravenous cetuximab for liver metastases from colorectal cancer (European trial OPTILIV, NCT00852228)

Francis Lévi*,1,2,3, Abdoulaye Karaboué1,5, Raphaël Saffroy1,2,3, Christophe Desterke1,2, Valerie Boige6, Denis Smith7, Mohamed Hebbar8, Pasquale Innominato1,4, Julien Taieb9, Carlos Carvalho10, Rosine Guimbaud11, Christian Focan12, Mohamed Bouchahda1,3,13, René Adam1,2,3, Michel Dureux6, Gérard Milano14 and Antoinette Lemoine1,2,3 on behalf of ARTBC International

1INSERM, UMR 935 Team ‘Cancer Chronotherapy and Postoperative Liver Function’, Campus CNRS, 7 rue Guy Môquet, and UMRS 1193 ‘Physiopathology and treatment of Liver diseases’, Paul Brousse Hospital, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France; 2Université Paris Sud, UFR médecine, Institut André Lwoff, Paul Brousse Hospital, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France; 3Assistance Publique-Hopitaux de Paris, Paul Brousse Hospital, Departments of Medical Oncology, Biochemistry and Oncogenetics, and Hepatobiliary Center, 14 avenue Paul-Vaillant-Couturier, 94800 Villejuif, France; 4Cancer Chronotherapy Unit, Warwick Medical School, Warwick University, Gibbet Hill Road, Coventry CV4 7AL, UK; 5AK-SCIENCE, Research and Therapeutic Innovation, 34 Boulevard de Stalingrad, 94400 Vitry-Sur-Seine, France; 6Gustave-Roussy Institute, 114 Rue Edouard Vaillant, 94400 Villejuif, France; 7Saint André Hospital, 1 Rue Jean Burguet, 33000 Bordeaux, France; 8Medical Oncology Unit, Huriez Hospital, 1 rue Polonovski, 59037 Lille, France; 9Georges Pompidou European Hospital, 20 Rue Leblanc, 75015 Paris, France; 10Champalimaud Clinical Centre, Medical Oncology Department, Avenida Brasilia, 1400-038 Lisbon, Portugal; 11Digestive Medical Oncology Unit, Toulouse University Hospital, 170 avenue de Casselardit, 31059 Toulouse, France; 12CHC Saint Joseph Clinics, rue de Hesbaye 75, 4000 Liége, Belgium; 13Ramsay GDS Mousseau Clinics, 2 Avenue de Mousseau, 91035 Evry, France and 14Oncopharmacology Laboratory, EA 3836, Antoine Lacassagne Center, 33, Avenue de Valombreuse, 06189 Nice, France

Background: The hepatic artery infusion (HAI) of irinotecan, oxaliplatin and 5-fluorouracil with intravenous cetuximab achieved outstanding efficacy in previously treated patients with initially unresectable liver metastases from colorectal cancer. This planned study aimed at the identification of pharmacogenetic predictors of outcomes.

Methods: Circulating mononuclear cells were analysed for 207 single-nucleotide polymorphisms (SNPs) from 34 pharmacology genes. Single-nucleotide polymorphisms passing stringent Hardy–Weinberg equilibrium test were tested for their association with outcomes in 52 patients (male/female, 36/16; WHO PS, 0–1).

Results: VKORC1 SNPs (rs9923231 and rs9934438) were associated with early and objective responses, and survival. For rs9923231, T/T achieved more early responses than C/T (50% vs 5%, P = 0.029) and greatest 4-year survival (46% vs 0%, P = 0.006). N-acetyltransferase-2 (rs1041983 and rs1801280) were associated with up to seven-fold more macroscopically complete hepatectomies. Progression-free survival was largest in ABCB1 rs1045642 T/T (P = 0.026) and rs2032582 T/T (P = 0.035). Associations were found between toxicities and gene variants (P < 0.05), including neutropenia with ABCB1 (rs1045642) and SLC0B3 (rs4149117 and rs7311358); and diarrhoea with CYP2C9 (rs1057910), CYP2C19 (rs3758581), UGT1A6 (rs414874) and SLC22A1 (rs72552763).

Conclusions: VKORC1, NAT2 and ABCB1 variants predicted for HAI efficacy. Pharmacogenetics could guide the personalisation of liver-targeted medico-surgical therapies.

*Correspondence: Professor F Lévi; E-mail: F.Levi@warwick.ac.uk

Received 15 May 2017; revised 18 July 2017; accepted 24 July 2017; published online 17 August 2017
The determination of non-invasive biomarkers has long been advocated for improving efficacy or reducing toxicity through helping personalise both drug selection and dose determination in cancer chemotherapy protocols (Hertz and Rae, 2015). Thus, allele frequencies of genes responsible for anticancer drug absorption, distribution, metabolism and elimination (ADME) have been related to pharmacokinetics, toxicities or response (Hertz and Rae, 2015). Classical examples of single-nucleotide polymorphisms (SNPs) associated with individual toxicities of an anticancer drug include genes UDP-glucuronosyltransferase 1A (UGT1A) for irinotecan, and thymidylate synthase and DPYD for fluoropyrimidines (Falvella et al, 2015; Hertz and Rae, 2015; Milano, 2016). However, cancer chemotherapy usually combines several anticancer drugs. As an example, hepatic artery infusion (HAI) of irinotecan, 5-fluorouracil (F) and oxaliplatin (O) (IFO) was recently combined with intravenous cetuximab in previously treated patients with liver metastases from colorectal cancer (LM-CRC) within European Phase II clinical trial OPTILIV (Levi et al, 2016). The conversion rate of previously unresectable LM to curative intent hepatectomy (R0–R1) reached 30%, and overall median survival was 25 months despite protocol application as median third-line chemotherapy (Bouchahda et al, 2016; Levi et al, 2016). Achieving early rather than late tumour shrinkage has indeed become an important goal of chemotherapy of LM-CRC, as it can translate into previously unforeseen surgical resections with prolonged survival or cure (Bismuth et al, 1996; Giacchetti et al, 1999; Adam et al, 2004). Hence, we used a multiple molecular typing method, using the iPLEX Agena Biosciences MassARRAY platform (Williams et al, 2008), in order to identify a possible genetic basis for the efficacy and toxicities of triplet HAI and i.v. cetuximab. No pharmacogenetic study has yet explored such issue for HAI drugs despite its original mechanisms of action involving the direct metastases exposure to anticancer drugs (Kemeny et al, 2006; Bouchahda et al, 2011; D’Angelica et al, 2015; Maeda et al, 2016).

**PATIENTS AND METHODS**

The pharmacogenetic assessment in OPTILIV was approved by the ethical committee and the national regulatory authorities in four countries. It aimed at the identification of those constitutive SNPs that would predict for success in main outcomes on OPTILIV protocol treatment.

**Patients.** Participants in OPTILIV protocol had a histological proof of colorectal cancer, unresectable liver metastases, wild-type KRAS tumour, WHO performance status of 0–1 and adequate biology (Levi et al, 2016). They had received one, two or three prior chemotherapy protocols. They signed informed consent for the pharmacogenetic assessment (Levi et al, 2016).

**Treatment.** All patients received OPTILIV protocol treatment consisting in biweekly administration of hepatic artery infusion of IFO, combined to intravenous infusion of cetuximab. Hepatic artery infusion was administered either as a conventional modality or according to chronomodulated delivery, according to institution experience (Bouchahda et al, 2016; Levi et al, 2016).

**Treatment evaluation.** Blood cell counts, serum chemistries and adverse events were monitored before each treatment course and graded according to NCI-CTCAE vs3.0 criteria. Tumour response imaging was obtained every three courses and classified according to RECIST. Patients were assessed for secondary liver surgery at iterative oncological evaluations after three, six or nine cycles (Bouchahda et al, 2016).

**Pharmacogenetics.** A volume of 10 ml of whole blood was drawn in an EDTA-tube before treatment onset (between 0800 and 1000 hours) and stored at −20 °C. Sampling was occasionally performed at other times for technical reason. Genomic DNA was extracted from blood using a QIAamp DNA mini kit (Qiagen, Courtaboeuf, France). The concentration and purity of the DNA were determined by absorbance at 260 and 280 nm using a Nanovue spectrophotometer (Biochrom, Harvard Bioscience Inc, Holliston, MA, USA). The genotyping to investigate biomarkers associated with drug ADME was performed on the Sequenom Massarray platform (Sequenom, San Diego, CA, USA). The iPLEX ADME PGx panel (Sequenom) screening for 207 polymorphisms in 34 genes and 200 assays developed for screening of known, high-value target genes associated with drug metabolism and toxicity was used with Typer Assay designer software (Agena Bioscience GmbH, Hamburg, Germany) and iPLEX Gold biochemistry (Agena Bioscience GmbH). The PCR primers and the extension primers were mixed in eight unique pools, and used for amplification of target regions and interrogation of the specific base composition at the target site using single base extension.

Multiplexed PCR was performed in 5 μl volumes after DNA dilution. The amplification protocol comprised an initial incubation at 94 °C for 4 min; 45 cycles of denaturation at 95 °C for 20 s, annealing at 62 °C for 30 s and extension at 72 °C for 1 min; and final incubation at 72 °C for 3 min. Unincorporated deoxynucleoside triphosphates were dephosphorylated by the addition of 2 μl of premix including 0.3 U of shrimp alkaline phosphatase (Sequenom). The reaction mixture was incubated at 37 °C for 40 min, after which the phosphatase was inactivated by incubation for 5 min at 85 °C. Final primer extension was carried out using primer extension probes, the appropriate dNTP/ddNTP combination and 0.5 units of Thermosequenase DNA polymerase (Sigma-Aldrich Chimie Sarl, Lyon, France). Reactions were cycled at 94 °C for 2 min, followed by 40 cycles of 94 °C for 5 s and 5 cycles of 52 °C for 5 s and 80 °C for 5 s, and final incubation at 72 °C for 3 min. After addition of a cation exchange resin to remove residual salt form the reactions, 7 nl of the purified primer extension reaction was loaded onto a matrix pad of a spectroCHIP (Sequenom). SpectroCHIPs were analysed using MALDI-TOF mass spectrometer.

**Pharmacokinetics.** Circulating drug and main metabolite levels were determined following iterative blood sampling during the first treatment course of 11 patients on chronomodulated HAI. The serum or plasma concentrations of cetuximab, irinotecan, SN38, total and ultralfiltrated oxaliplatin, and 5-fluorouracil were determined according to Levi et al (2017).

**Statistical considerations.** The association of gene polymorphisms with toxicity and efficacy was first assessed using adequate non-parametric tests (Mann–Whitney U-test, Fisher exact test or Kruskal–Wallis). A P-value of <0.05 was considered as statistically significant. Statistical analyses were performed using SPSS for Windows version 18.0 (SPSS Inc., Chicago, IL, USA).

**Genotypic data analysis.** Genomic coordinates of polymorphisms were annotated on GRCh37.p13 version of the human genome. Genotypic DNA obtained with the Sequenom technology have been formatted to form a compatible matrix with the software SNPAnalyzer (Yoo et al, 2008). Preprocessing of data was performed by removing samples with >50% missing genotype; removing also SNPs with missing genotypes over 10% and SNPs with minor allele frequency <5%. This preprocessing analysis also included a Hardy–Weinberg equilibrium (HWE) test: SNPs with HWE P-value <0.05 were withdrawn from further analysis. Genetic association was validated using Fisher exact test with Bonferroni’s multistestings corrections for controlling for false discovery rate. Analysis of linkage disequilibrium
(LD) was calculated by the LD index $D^*$ and retained significant polymorphisms for Pearson’s correlation coefficients $r > 0.80$. The LD analysis was performed using the method of Gabriel without any limit in genetic distance parameter (Gabriel et al., 2002).

**Pharmacokinetics analyses.** For each drug and for both metabolites, maximum plasma concentration ($C_{\text{max}}$) values were determined, with their time to reach $C_{\text{max}}$ ($t_{\text{max}}$) values. Area under the concentration curves were calculated for each drug (Levi et al., 2017). The relations between these parameters and drug metabolism polymorphisms were statistically validated using analysis of variance.

### RESULTS

**Patient characteristics and outcomes.** Fifty-two out of 64 patients (85%) with unresectable LM-CRC enrolled into the OPTILIV trial consented for and had valid sample for the study (Table 1; Figure 1). All the patients had received one to three chemotherapy protocols before OPTILIV. The main dose-limiting grade 3–4 toxicities on OPTILIV were neutropenia (40.4% of the patients), fatigue (21.2%) and diarrhea (17.3%; Table 2). Twenty patients had an objective

**Figure 1. Consort diagram.** This pharmacogenetic study involved 52 patients out of the 64 who had been registered in OPTILIV for receiving a combination of intravenous cetuximab and HAI of irinotecan, oxaliplatin and 5-fluorouracil (85% of the trial population). Thirty-four drug metabolism genes were analysed for a total of 207 candidate SNPs. Ninety-five of them were polymorphic (49.7%). Their association with clinical outcomes was statistically validated using analysis of variance.

---

**Table 1. Main characteristics of all 52 patients and according to early response and complete macroscopic liver resection**

| Patient characteristics | Early response ($n = 49$)* | Liver resection ($n = 52$) | $P$ |
|-------------------------|-----------------------------|-----------------------------|-----|
| **Age (years)**         |                             |                             |     |
| Median (range)          | 59 (33–76)                  | 57 (33–76)                  | 0.310|
|                         | 60 (40–73)                  | 60 (48–75)                  | 0.003|
| **Sex**                 |                             |                             |     |
| Male                    | 36 (69.2%)                  | 57 (33–76)                  | 0.466|
| Female                  | 16 (30.8%)                  | 27 (81.8%)                  | 9 (56.3%)|
|                         |                             | 11 (68.8%)                  | 7 (43.8%)|
| **Site of primary tumour** |                           |                             |     |
| Colon                   | 40 (76.9%)                  | 30 (78.9%)                  | 0.692|
| Rectum                  | 12 (23.1%)                  | 8 (27.2%)                   | 11 (27.5%)|
|                         |                             | 9 (30.0%)                   | 3 (25.0%)|
| **No. of chemotherapy lines** |                             |                             |     |
| 1                       | 21 (40.4%)                  | 13 (72.2%)                  | 0.503|
| 2–3                     | 31 (59.6%)                  | 25 (80.6%)                  | 10 (47.6%)|
|                         |                             | 4 (12.9%)                   | 11 (52.4%)|
| **WHO performance status** |                           |                             |     |
| WHO PS 0                | 31 (59.6%)                  | 34 (79.1%)                  | 0.605|
| WHO PS 1/2              | 21 (40.4%)                  | 22 (75.9%)                  | 11 (24.4%)|
|                         |                             | 16 (60.0%)                  | 3 (42.9%)|
| **Synchronous metastases** |                         |                             |     |
| Yes                     | 45 (86.5%)                  | 34 (79.1%)                  | 0.605|
| No                      | 7 (13.5%)                   | 4 (66.7%)                   | 11 (24.4%)|
|                         |                             | 3 (42.9%)                   | 3 (55.6%)|
| **Metastases location in liver** |                       |                             |     |
| Unilateral              | 9 (17.3%)                   | 6 (75.0%)                   | 3 (19.4%)|
| Bilateral               | 43 (82.7%)                  | 32 (78.0%)                  | 7 (44.4%)|
|                         |                             | 10 (23.3%)                  | 5 (55.6%)|
| **Liver involvement**   |                             |                             |     |
| <25%                    | 21 (40.4%)                  | 15 (75.0%)                  | 0.740|
| >25%                    | 31 (59.6%)                  | 23 (79.3%)                  | 9 (42.9%)|
|                         |                             | 5 (16.1%)                   | 12 (57.1%)|
| **No. of liver metastases** |                         |                             |     |
| Median (range)          | 9 (1–69)                    | 9 (1–69)                    | 0.169|
|                         | 15 (2–50)                   | 8 (2–50)                    | 0.538|
| **Largest meta diameter (mm)** |                     |                             |     |
| Median (range)          | 56.5 (15–172)               | 59 (18–172)                 | 0.151|
|                         | 37 (15–131)                 | 60 (18–172)                 | 0.076|
| **No. of liver segments involved** |                   |                             |     |
| Median (range)          | 6 (1–8)                     | 6 (1–8)                     | 0.400|
|                         | 6 (2–8)                     | 6 (1–8)                     | 0.159|
| **Sites involved**      |                             |                             |     |
| Liver only              | 30 (57.7%)                  | 23 (85.2%)                  | 0.185|
| Liver + other sitesb    | 22 (42.3%)                  | 15 (68.2%)                  | 8 (26.7%)|
|                         |                             | 6 (27.3%)                   | 22 (73.3%)|

*Three patients were not assessed for response.

b Colon, rectum, lung or lymph node.

---

Abbreviations: PS = performance status; WHO = World Health Organisation.
responses (38.4%), which occurred after up to three courses for eleven of them. Fourteen patients (26.9%) underwent macroscopically complete LM resections (R0–R1). Median progression-free survival (PFS) was 8.6 months (6.6–10.7) and median overall survival was 21.9 months (15.0–28.7), with ten 4-year survivors (19%). Ninety-five polymorphisms were identified within the 207 reference SNPs tested (Supplementary Table S1), with 16 loci (7.7%) in 10 out of 34 ADME genes (29.4%) successfully passing the stringent filtering process, thus undergoing evaluation regarding relations to outcomes.

Association of VKORCI polymorphisms with early response, objective response and overall survival. Two loci (rs9923231 and rs9934438) in VKORCI were robustly associated with both early response and overall objective response, while SNPs in rs9923321 were also associated with overall survival (Figure 2). For rs9923231, T/T (N = 8) as compared to C/T (N = 21) had greatest chance of achieving both early response (50% vs 5%, P = 0.029; Supplementary Table S2) and 5-year survival (46% vs 0%, P = 0.006; Figure 2). Single-nucleotide polymorphisms in rs9923231 further displayed a non-statistically significant association with arterial thrombosis, while SNPs in rs7294 locus were associated with such adverse event. For rs9923231, arterial thrombosis was encountered in 77% of the T/T patients as compared to 30% of the C/C ones (P = 0.04). As a result, the odds ratios clearly revealed that the T/T genotypes of rs9923231 had more early responses, and more catheter thrombosis as well, and displayed a far better survival as compared to the C/T genotyped patients (Figure 2). Single-nucleotide polymorphisms in CYP2C19 (rs12248560) and SLC15A2 (rs1243672) were also associated with early, but not objective response or survival (Supplementary Table S2).

N-acetyltransferase 2 polymorphisms and conversion to resection. Two SNPs within the NAT2 gene (rs1801280 and rs179929) were associated to LM R0 + R1 resection, and further confirmed so, using LD analysis (Figure 3). For rs1041983, the rate of LM resections was as low as 13% and 20% for the patients with C/C and T/T, respectively, as compared to 50% for C/T (P from exact Fischer = 0.024). For rs1801280, the LM resection rate ranged from 6.25% for the C/C patients to 42.8% for the T/T ones (P = 0.055). Univariate analyses indicated that an increased likelihood of achieving R0–R1 resection was significantly associated with both (a) clinical factors, including a male sex, an age ≤ 60 years, a liver involvement ≤ 25%, a number of metastases ≤ 10, a largest metastasis diameter ≤ 53 mm and a single prior systemic chemotherapy protocol, and (b) NAT2 rs1801280 T/T. Multivariate logistic regression identified NAT2 (rs1801280) as the single independent prognostic factor of macroscopically complete LM

### Table 2. Characteristics of patients according main grade 3–4 toxicities over the first six courses

| Patient characteristics | Neutropenia (grade 3–4) | Diarrhoea (grade 3–4) | Fatigue (grade 3–4) | Thrombosis (grade 3–4) |
|-------------------------|-------------------------|-----------------------|---------------------|------------------------|
| Age (years)             |                         |                       |                     |                        |
| Median (range)          | 59 (33–76)              | 60 (33–72)            | 49 (40–76)          | 56 (40–72)             |
| Sex                     |                         |                       |                     |                        |
| Male                    | 35 (68.6%)              | 24 (68.6%)            | 30 (85.7%)          | 31 (88.6%)             |
| Female                  | 16 (31.4%)              | 7 (43.8%)             | 12 (75.0%)          | 10 (62.5%)             |
| Site of primary tumour  |                         |                       |                     |                        |
| Colon                   | 40 (78.4%)              | 22 (55.0%)            | 34 (85.0%)          | 9 (22.5%)              |
| Rectum                  | 11 (21.6%)              | 2 (18.2%)             | 8 (72.2%)           | 8 (72.2%)              |
| No. of chemotherapy lines |                       |                       |                     |                        |
| 1–3                     | 20 (39.2%)              | 6 (15.0%)             | 9 (27.3%)           | 9 (27.3%)              |
| WHO performance status  |                         |                       |                     |                        |
| WHO PS 0                | 30 (58.8%)              | 12 (40.0%)            | 18 (60.0%)          | 6 (20.0%)              |
| WHO PS 1/2              | 21 (41.2%)              | 12 (38.7%)            | 13 (41.3%)          | 6 (24.0%)              |
| Synchronous metastases  |                         |                       |                     |                        |
| Yes                     | 45 (88.2%)              | 25 (60.8%)            | 36 (84.4%)          | 10 (40.0%)             |
| No                      | 6 (11.8%)               | 13 (39.2%)            | 15 (15.6%)          | 6 (20.0%)              |
| Metastases location in liver |                       |                       |                     |                        |
| Unilateral              | 9 (17.6%)               | 7 (47.7%)             | 18 (85.5%)          | 7 (27.2%)              |
| Bilateral               | 42 (82.4%)              | 18 (52.3%)            | 35 (84.5%)          | 12 (72.7%)             |
| Liver involvement       |                         |                       |                     |                        |
| <25%                    | 40 (79.2%)              | 18 (47.7%)            | 35 (83.3%)          | 7 (27.2%)              |
| >25%                    | 16 (30.8%)              | 24 (62.3%)            | 15 (36.5%)          | 3 (12.0%)              |
| No. of liver metastases |                         |                       |                     |                        |
| Median (range)          | 9 (1–49)                | 10 (3–50)             | 10 (1–49)           | 5 (1–12)               |
| Largest meta diameter (mm) |                       |                       |                     |                        |
| Median (range)          | 57 (15–172)            | 57 (18–110)           | 57 (15–172)         | 65 (25–172)            |
| No. of liver segments involved |                   |                       |                     |                        |
| Median (range)          | 6 (1–8)                 | 6 (1–8)               | 6 (1–8)             | 5 (1–8)               |
| Sites involved          |                         |                       |                     |                        |
| Liver only              | 30 (58.8%)              | 14 (48.3%)            | 23 (79.3%)          | 23 (79.3%)             |
| Liver + other sites     | 21 (41.2%)              | 6 (20.7%)             | 19 (66.4%)          | 18 (61.8%)             |

**Abbreviations:** PS = performance status, WHO = World Health Organisation.
*Colon, rectum, lung or lymph node.
Efficacy for three end points in rs9923231 T/T. A full colour version of this figure is available at the www.bjcancer.com | DOI: 10.1038/bjc.2017.278

Figure 2. Associations between VKORC1 SNPs (rs9923231 and rs9934438) and efficacy or tolerability end points of i.v. Cet and triplet HAI protocol. (A) Results from LD analysis on whole study population stratified according to early tumour response. After filtration with HWE test, pairwise analysis was conducted to identify blocks of LD using Gabriel method. Blocks grouping SNPs are represented by geometric triangles in black. Single-nucleotide polymorphisms flagged in blue have a correlation coefficient >0.8 in the pairwise analysis. The more intense the red colour in each heatmap cell, the higher the correlation coefficient between two SNPs in the same group of patients. Note: this analysis revealed that SNPs’ correlation with no distance limit was highest in the early response group (panel on the right) as compared to the non-early response group (panel on the left). The results suggest both least genetic heterogeneity in the early responders and adequate selection of SNPs for such analysis. (B) Column graphs describing the relations of VKORC1 SNPs with early and objective responses. Number of patients with response out of number of patients with corresponding genotype is indicated above each column. P-values are from Fischer exact. (C) Corresponding odds ratios. (D) Overall survival curves according to rs9923231 SNPs. P-value from log-rank test shown for overall comparison. Statistically significant differences in survival curves further documented by inclusion, while no progression was encountered for 29% of the T/T genotype. Multivariate analysis further revealed that ABCB1 (rs2032582) genotype was an independent prognostic factor of PFS, jointly with sex, initial liver involvement and R0–R1 resection (Supplementary Table S3). Interestingly, the other ABCB1 polymorphic SNP (rs1045642) was also associated with severe neutropenia. Thus, 75% of the T/T patients experienced grade 3–4 neutropenia, as compared to 41.9% of the C/T genotype and 9.1% of the C/C one (Supplementary Table S2; Figure 5).

Single-nucleotide polymorphisms associated with main systemic toxicities. Statistically significant associations (P < 0.05) of SNPs with main toxicity outcomes were found for oxdoto-reduction (CYP2E1 and HA thrombosis, CYP2C9 and diarrhea, and CYP2C19 and both diarrhea and fatigue), conjugation (UGT1A6 and diarrhea, and NAT2 and fatigue), and transport (ABCB1 or SLC0B3 and neutropenia, and SLC22A1 and diarrhea; Supplementary Table S2; Figure 5). Interestingly, ABCB1 (rs1045642) was the single-gene polymorphism that was statistically associated with both severe toxicity (grade 3–4 neutropenia) and the plasma pharmacokinetics parameters we determined during the first protocol course (Cmax of oxaliplatin and cetuximab, and estimated AUC of cetuximab) in a subset of 11 of these 52 patients (Supplementary Table S4).
Figure 3. Associations between N-acetyltransferase 2 (NAT2) SNPs (rs1045642 and rs1801280) and macroscopically complete liver metastases resections (R0 + R1) following i.v. Cet and triplet HAI protocol. (A) Results from LD analysis on whole study population stratified according to R0 + R1, after application of Hardy–Weinberg method (see legend of Figure 2A). This display revealed both least genetic heterogeneity in the R0 + R1 resection group (right panel), as compared to the non-resected patient group (left panel), and adequate selection of SNPs for such analysis. (B) Column graphs. Number of patients with R0–R1 resections out of number of patients with corresponding genotype is indicated above each column. P-values are from Fischer exact. A full colour version of this figure is available at the British Journal of Cancer journal online.

DISCUSSION

**VKORC1** and NAT2 SNPs were identified for the first time, as critically influencing the main efficacy end points in patients receiving HAI chemotherapy jointly with i.v. cetuximab for liver metastases from KRAS wild-type colorectal cancer. The translational study population involved 81.2% of the patients registered from nine European cancer centres (Levi et al., 2016). Ninety-five SNPs were found out of the 207 regions in 34 drug metabolism genes, which had been selected in the Sequenom ADME panel. Sixteen SNPs in 10 genes displayed statistically significant relations with efficacy and/or toxicity, using stringent selection methodology, according to best practices for case/control association studies (Clarke et al., 2011). Preprocessing steps involved the removal of monomorphic alleles, samples with low
Two SNPs in the NAT2 gene (rs1041983 and rs1801280) were associated with macroscopically complete liver metastases resection following effective triplet HAI and i.v. cetuximab. The NAT2 gene, located on chromosome 8p22, encodes the enzyme involved in the acetylation of xenobiotics. Polymorphisms in the NAT2 gene influence the slow vs fast acetylator status of individuals (McDonagh et al., 2014). The combination of both SNP genotyping used here displayed similar sensitivity and specificity as the conventional 7-SNP genotyping of NAT2 for the determination of the acetylator phenotype (Selsinski et al., 2011; Suarez-Kurtz et al., 2016). Here the SNP-related differences were large, with R0–R1 LM resections occurring in 50% of the heterozygous C/T genotype and 20% of the homozygous C/C or T/T. Intermediate rates were found for both end points in C/C patients (30% and 18%, respectively). The VKORC1 gene, located on chromosome 16, encodes for an enzymatic protein responsible for both the reduction of vitamin K 2,3-epoxide to the activated form, and the γ-carboxylation of several coagulation factors. VKORC1 is the major pharmacodynamics target of warfarin anticoagulant therapy, with the determination of SNPs at rs9923231 and rs9934438 being recommended for warfarin dose adjustment (Wang et al., 2008; Owen et al., 2010). VKORC1-dependent γ-carboxylated proteins are also involved in bone formation (Johnson et al., 1991; Coutu et al., 2008), signal transduction (Nakano et al., 1997), antioxidant and lipid synthesis (Mukai et al., 1992; Fredericks et al., 2013), and androgen receptor regulation (Tew et al., 2017). The relevance of VKORC1 is currently emerging for prostate cancer, while recent reports support its role for cellular proliferation, reactive oxygen species production and apoptosis (Di et al., 2017).

In summary, the current pharmacogenetic investigation was carried out in previously treated patients receiving triplet HAI and i.v. cetuximab for unresectable LM from KRAS WT within a European prospective trial. The results emphasised critical and consistent roles for SNPs in VKORC1 and NAT2, two genes whose relevance for outcomes in cancer patients had not been reported before. ABCB1 polymorphism was further highlighted as a joint predictor of neutropenia and PFS. Although OPTILIV was a prospective and multicentric trial, and stringent criteria were used for reliably selecting the relevant SNPs, the current study involved a limited size population, hence requiring further confirmation. Indeed, polymorphisms in VKORC1, NAT2 and ABCB1 could help better tailor an aggressive liver-targeted medico-surgical strategy for LM from colorectal cancer.
REFERENCES

Adam R, Delwart V, Pascal G, Valea A, Cassetta D, Azoulay D, Giacchetti S, Paule B, Kunstlinger F, Ghemard O, Levi F, Bismuth H (2004) Rescue surgery for unresectable colorectal liver metastases downstaged by chemotherapy: a model to predict long-term survival. Ann Surg 240(4): 644–657; discussion 657–658.

Bismuth H, Adam R, Levi F, Farabos C, Waechter F, Cassetta D, Majno P, Engerran I (1996) Resection of nonresectable liver metastases from colorectal cancer after neoadjuvant chemotherapy. Ann Surg 224(4): 509–520; discussion 520–522.

Bouchahda M, Boige V, Smith D, Karaboue A, Ducreux M, Hebbar M, Lepere C, Focan C, Guimbaud R, Innominato P, Awad S, Carvalho C, Tumulo S, Truant S, De Baere T, Cassetta D, Rougier P, Morere JF, Taieb J, Adam R, Levi F. International A (2016) Early tumour response as a survival predictor in previously-treated patients receiving triplplet hepatic artery infusion and intravenous cetuximab for unresectable liver metastases from wild-type KRAS colorectal cancer. Eur J Cancer 68: 163–172.

Bouchahda M, Levi F, Adam R, Rougier P (2011) Modern insights into hepatic arterial infusion for liver metastases from colorectal cancer. Eur J Cancer 47(18): 2681–2690.

Clarke GM, Anderson CA, Pettersson FH, Cardon LR, Morris AP, Zondervan KT (2011) Basic statistical analysis in genetic case-control studies. Nat Protoc 6(2): 121–133.

Cortezoso L, Garcia MI, Garcia-Alfonso P, Gonzalez-Haba E, Escolar F, D’Angelica MI, Correa-Gallego C, Paty PB, Cercek A, Gewirtz AN, Chou JF, Fredericks WJ, Sepulveda J, Lai P, Tomaszewski JE, Lin MF, McGarvey T, Falvella FS, Cheli S, Martinetti A, Mazzali C, Iacovelli R, Maggi C, Giacchetti S, Itzhaki M, Gruia G, Adam R, Zidani R, Kunstlinger F, Brienza S, A (2016) Early tumour response as a survival predictor in previously-treated patients receiving triplplet hepatic artery infusion and intravenous cetuximab for unresectable liver metastases from wild-type KRAS colorectal cancer. Eur J Cancer 68: 163–172.

Hertz DL, Rae J (2015) Pharmacogenetics of cancer drugs. Ann Rev Med 66: 65–81.

Innominato PF, Giacchetti S, Moreau T, Smaaland R, Focan C, Bjarnason GA, Garufi C, Iacobelli S, Tampellini M, Tumulo S, Carvalho C, Karaboue A, Levi F. Group AIC (2011) Prediction of survival by neutropenia according to delivery schedule of oxaliplatin-5-Fluouracil-leucovorin for metastatic colorectal cancer in a randomized international trial (EORTC 05963). Chronobiol Int 28(7): 586–600.

Johnson TL, Sakaguchi AY, Lalley PA, Leach RJ (1991) Chromosomal assignment in mouse of matrix Gla protein and bone Gla protein genes. Genomics 11(3): 770–772.

Kasi PM, Kotani D, Cecchini M, Shitara K, Ohtsu A, Ramanathan RK, Hochster HS, Grothey A, Yoshino T (2016) Chemotherapy induced neutropenia at 1-month mark is a predictor of overall survival in patients receiving TAS-102 for refractory metastatic colorectal cancer: a cohort study. BMC Cancer 16: 467.

Kemeny NE, Niedzwiecki D, Hollis DR, Lenz HJ, Warren RS, Naughton MJ, Weeks JC, Sigurdson ER, Herndon 2nd J, Zhang C, Mayer RJ (2006) Hepatic arterial infusion versus systemic therapy for hepatic metastases from colorectal cancer: a randomized trial of efficacy, quality of life, and molecular markers (CALGB 9481). J Clin Oncol 24(9): 1395–1403.

Levi F, Karaboue A, Etienne-Grimaldi MC, Paintaud G, Focan C, Innominato P, Bouchahda M, Milano G, Chatelut E (2017) Pharmacokinetics of irinotecan, oxaliplatin and 5-fluorouracil during hepatic artery chemoembolization transfused chemotherapy: a translational European OPTILIV study. Clin Pharmacokinet 56(2): 165–177.

Levi FA, Boige V, Hebbar M, Smith D, Lepere C, Focan C, Karaboue A, Guimbaud R, Carvalho C, Tumulo S, Innominato P, Ajavon Y, Truant S, Sautreuil De Baere T, Kunstlinger F, Bouchahda M, Afshar M, Rougier P, Adam R, Ducreux M. Association Internationale pour Recherche sur Temps Biologique et C (2016) Conversion to resection of liver metastases from colorectal cancer with hepatic artery infusion of combined chemotherapy and systemic cetuximab in multicenter trial OPTILIV. Ann Oncol 27(2): 267–274.

Maeda T, Shinohara T, Nagatsu A, Futakawa N, Hamada T (2016) Long-term outcomes of patients with unresectable colorectal liver metastases. Ann Oncol 27(Suppl 3): S242–S248.

McDonagh EM, Boukouvala S, Aklillu E, Hein DW, Altman RB, Klein TE (2014) PharmGKB summary: very important pharmacogene information for N-acetyltransferase 2. Pharmacogenet Genomics 24(8): 409–425.

Milano G (2016) Highlight on DPD gene polymorphisms and treatment by capiceptin (, Scand J Clin Lab Invest Supp 245: S30–S33.

Mukai K, Itoh H, Morimoto H (1992) Stopped-flow kinetic study of vitamin E regeneration reaction with biological hydroquinones (reduced forms of ubiquinone, vitamin K, and tocopherolquinone) in solution. J Biol Chem 267(31): 22277–22281.

Nakano T, Kawamoto K, Kishino I, Nomura K, Higashino K, Arita H (1997) Requirement of gamma-carboxyglutamic acid residues for the biological activity of Gas6: contribution of endogenous Gas6 to the proliferation of vascular smooth muscle cells. Biochem J 323(Pt 2): 387–392.

Owen RP, Gong L, Sagreiya H, Klein TE, Altman RB (2010) VKORC1 pharmacogenomics summary. Pharmacogenet Genomics 20(10): 642–644.

Robertson JT, Thorkildsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29(1): 24–26.

Selinski S, Blaszkewicz M, Lehmann ML, Ovsiannikov D, Moorman O, Guballa C, Kress A, Truss MC, Gerullis H, Otto-T, Barski D, Niegisch G, Alpers F, Srees N, Brenner W, Thouroff JW, Angeli-Greaves M, Seidel T, Roth G, Dietrich H, Ebbinghaus R, Prager HM, Bolt HM, Falkenstein M, Zimmermann A, Klein T, Roetzzik T, Roemer HC, Lohlein D, Weistenhofer W, Schops W, Hassan Rivi SA, Aslam M, Banfi G, Romics I, Steffens M, Ekici AB, Winterpacht A, Ikstadt K, Schwender H, Hengstler JG, Golka K (2011) Genotyping NAT2 with only two SNPs (rs10411983 and rs1801280) outperforms the tagging SNP rs1495741 and is equivalent to the conventional 7-NP NAT2 genotype. Pharmacogenet Genomics 21(10): 673–678.

Sauzé-Kurtz G, Fuchshuber-Moraes M, Struchiner CJ, Parra EJ (2016) Single nucleotide polymorphism coverage and inference of N-acetylation transferase 2 acetylator phenotypes in worldwide population groups. Pharmacogenet Genomics 26(8): 363–369.

Tew BY, Hong TB, Otto-Duessel M, Elix C, Castro E, He M, Wu X, Pal SK, Kallum M, Jones J (2017) Vitamin K epoxide reductase regulation of androgen receptor activity. Oncotarget 8(8): 13818–13831.
Wang D, Chen H, Momary KM, Cavallari LH, Johnson JA, Sadee W (2008) Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 (VKORC1) affects gene expression and warfarin dose requirement. Blood 112(4): 1013–1021.

Williams JA, Andersson T, Andersson TB, Blanchard R, Behm MO, Cohen N, Edeki T, Franc M, Hillgren KM, Johnson KJ, Katz DA, Milton MN, Murray BP, Polli JW, Ricci D, Shipley LA, Vangala S, Wrighton SA (2008) PhRMA white paper on ADME pharmacogenomics. J Clin Pharmacol 48(7): 849–889.

Yoo J, Lee Y, Kim Y, Bha SY, Kim Y (2008) SNPAnalyzer 2.0: a web-based integrated workbench for linkage disequilibrium analysis and association analysis. BMC Bioinformatics 9: 290.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License.

Supplementary Information accompanies this paper on British Journal of Cancer website (http://www.nature.com/bjc)