This is a repository copy of Protein-linked glycans in periodontal bacteria: prevalence and role at the immune interface.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/151414/

Version: Published Version

Article:
Settem, R.P., Honma, K., Stafford, G.P. et al. (1 more author) (2013) Protein-linked glycans in periodontal bacteria: prevalence and role at the immune interface. Frontiers in Microbiology, 4. ISSN 1664-302X

https://doi.org/10.3389/fmicb.2013.00310

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Protein-linked glycans in periodontal bacteria: prevalence and role at the immune interface

Rajendra P. Settem, Kiyonobu Honma, Graham P. Stafford and Ashu Sharma

INTRODUCTION

Until relatively recently, protein glycosylation was believed to be restricted only to eukaryotic proteins. However, with the availability of genome-scale information and sophisticated mass spectrometry as well as nuclear magnetic resonance techniques primarily from the past decade it has come to light that protein glycosylation occurs quite frequently in bacteria as well (Nothaft and Szymanski, 2010). More and more bacterial proteins of Gram-positive and Gram-negative origin are frequently being identified with N- and O-linked glycan modifications (Ashline et al., 2005; Beisson et al., 2010; reviewed in Ishikawa et al., 2012, 2013). Moreover, it is becoming apparent that protein glycosylation is also prevalent amongst Archaea (Eischler, 2013; Kundhia and Eischler, 2013). Dedicated computational algorithms have also been developed to predict glycosylated residues in prokaryotic proteins (Chauhan et al., 2012), and a web program, GlycoP at http://www.imtech.res.in/raghava/glycop/index.html, using such algorithms is currently available for predicting N- and O-glycosylation sites in prokaryotic protein sequences with an accuracy of 78-80%. In most cases bacterial glycans are linked directly to asparagine or serine/threonine residues within specific peptide motifs for N- and O-glycosylation, respectively. Proteins such as flagellins, pilins, and surface (S)-layer proteins have been shown to be glycosylated quite extensively in bacteria by dedicated glycosylation systems (Nothaft and Szymanski, 2010). Recent studies have alluded to the role of protein glycosylation in immune modulation in pathogenic as well as commensal bacteria, such as in Neisseria species (Vik et al., 2009), Campylobacter jejuni (Szymanski and Wren, 2005), and Bacteroides fragilis (Flecher et al., 2009), and in attachment and infective ability of Chlamydia trachomatis (Kuo et al., 1996) and C. jejuni species (Szymanski et al., 2002; Karlyshev et al., 2004). In addition, variations in flagellar protein-linked glycans in C. jejuni have been shown to cause phenotypic phase- variations and antigenic diversity, important for the pathogen’s virulence (Guerry et al., 2006; Young et al., 2007; Hitchen et al., 2010).

With respect to the human oral cavity, the niche is colonized with nearly 700 bacterial species with different taxa and phylotypes (Björnstad et al., 2010). Of these diverse bacteria, a select group of Gram-negative anaerobes residing in the subgingival crevices (spaces between the teeth and gums; Figure 1) as biofilms induce one of the most common forms of the inflammatory disease in humans, known as periodontitis. This disease is characterized by the progressive destruction of the tooth supporting apparatus and often leads to tooth loss in adults. In addition, chronic infections with periodontal pathogens have been linked to the risk for systemic health conditions such as cardiovascular, diabetic, respiratory, and arthritic diseases (Beck et al., 2008; Genco, 2009; Gomes Filho et al., 2009; Genco and Van Dyke, 2010; Scher et al., 2012). A group of bacteria known as the “red complex” comprising Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia has been strongly implicated in the initiation and progression of periodontitis (Socransky et al., 1998). We discuss below recent data mainly from studies in T. forsythia and P. gingivalis that suggest these bacteria utilize protein glycosylation for undermining the host immunity to persist in the host and cause periodontal destruction.

Keywords: protein glycosylation, periodontal bacteria, immune response
S-layer proteins in Gram-positive bacteria may be glycosylated at specific three amino acid motifs to appear well conserved across a range of Bacteroidetes species. This is evidenced by elegant transcomplementation experiments in which the T. forsythia S-layer protein was produced and glycosylated at this motif with the B. fragilis specific glycan, and vice versa, i.e., a B. fragilis protein was glycosylated in T. forsythia with the Tannarella glycan (Posch et al., 2013). In fact this has now been shown to be the case in a range of Bacteroides, Prevotella, and Porphyromonas species with biosynthetic (Fletcher et al., 2011) as well as experimental approaches using an antibody against the core component of the Bacteroides group O-glycan (Coyne et al., 2013). This conservation of a general O-glycosylation system in Bacteroidetes is indicative of its potentially essential function in divergent Bacteroidetes species living in wide-ranging niches.

Previous studies have shown that the Tannarella S-layer is capable of mediating bacterial attachment to and invasion of epithelial cells (Lee et al., 2006). Furthermore, for the benefit of the bacterium, the S-layer helps to block the early release of inflammatory cytokines by immune cells. The role of S-layer glycosylation on the bacterium’s ability to directly modulate host immunity to impact its in vivo life-cycle has now come to light. A recent study from our laboratory showed that loss of the terminal trisaccharide branch motif on the S-layer as well as a number of other O-glycosylated surface proteins due to weCC deficiency renders the bacterium increasingly prone to recognition and processing by antigen-presenting cells (Settem et al., 2012). Specifically, the loss of this terminal tri-saccharide branch motif (Figure 2B) promotes phagocytosis of the bacterium by a subset of antigen presenting cells called dendritic cells (DCs) and concurrent induction of Th17-activating cytokines IL-6 and IL-23 (Settem et al., 2012). This modulation of DC responses has major consequences for pathogenesis since DCs reside as immune system sentinels within tissues that constantly encounter invading microbes. In tissues they recognize different pathogen-associated molecular patterns (PAMPs) and act to direct innate and adaptive immune responses locally via pathogen-recognition receptors (PRRs), a group of molecules which include Toll-like receptors (TLRs), nucleotide oligomerization domain receptors (NODs), and C-type lectin-like receptors (CLRs; Takeuchi and Akira, 2010).

It is in the latter of these, the CLRs, which are most pertinent to the recognition of bacterial O-glycans since their function is to act as carbohydrate binding receptors. Thus, surface O-linked glycans, the tri-saccharide motif in particular, impact DC-mediated processing of the bacterium, also impacting the activation of intracellular receptors and inflammasome processing for IL-23 induction. This manipulation of DC behavior via carbohydrate ligands is a growing theme in bacterial pathogen biology and several recent studies indicate that bacterial polysaccharides can block recognition and phagocytosis of microbes by DCs and macrophages (Meijerink et al., 2012). Moreover, microbiota-associated glycans regulate DC maturation and cytokine secretion to affect polarization of naïve T cells into specific subtypes upon microbial infection, with signaling crosstalk between CLRs and
TLRs thought to influence this development (Geijtenbeek and Gringhuis, 2009). In the case of T. forsythia, O-glycan-mediated signaling via a CLR might synergize with TLR2-dependent signaling induced by the bacterium’s virulence factor and TLR2 ligand, the BspA protein (Onishi et al., 2008; Myneni et al., 2012; Figure 2C). Indeed, in line with the above predictions, the terminal O-glycan motif attached to the surface proteins of T. forsythia does seem to be a key factor in influencing T cell polarization during T. forsythia infection. The evidence to support this comes from data generated in mouse models infected with wild-type bacteria (decorated with the O-glycan) which induce robust TLR2-dependent Th2-biased inflammatory responses, leading to alveolar bone resorption (Myneni et al., 2011). Strikingly, this TLR2-Th2 bias is perturbed in response to infection with a bacterial strain lacking the terminal tri-saccharide O-glycan motif attached to the surface proteins of T. forsythia and when mice are infected with the strain lacking this terminal three-sugar branch motif on the O-linked glycan core, T cells polarize into the Th17 subset (Settem et al., 2012). This leads to increased infiltration of neutrophils into the gingival tissues, resulting in reduced alveolar bone loss compared to the mice infected with the wild-type strain (Settem et al., 2012). Taken together, these data suggest that the surface O-glycan motif of T. forsythia is involved in suppressing Th17 responses, which allow increased bacterial persistence, promoting Th2-dependent inflammatory alveolar bone destruction (Figure 2C).

The other “red complex” periodontal pathogen P. gingivalis possesses two types of cell-surface fimbriae, the major fimbria known as FimA and the minor fimbria known as Mfa1. Mfa1 is comprised of a 67-kDa protein with N- and O-linked fucose, mannose, N-acetylglucosamine, and N-acetylgalactosamine sugars (Zeituni et al., 2010). Mfa1 activates DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) lectin on DCs. On the other hand, the 43-kDa major fimbrial protein FimA is non-glycosylated and activates TLR2. Recent studies further suggest that a crosstalk between TLR2 and DC-SIGN signaling due to FimA and Mfa1 fimbria, respectively, modulates the expression of Th cell differentiation cytokines in DCs against P. gingivalis, and is thus thought to orchestrate specific T cell immunity (Zeituni et al., 2010).

Orchestration of Th bias through the mediation of glycan modifications is not confined to periodontal pathogens alone, but is widely observed in the gastrointestinal pathogens and commensals. In the case of C. jejuni, surface capsular polysaccharide modifications with methyl phosphoramidate have been shown to modulate Th17 immunity against the pathogen and thus impact bacterial persistence in the host (Maue et al., 2012). With respect to the ubiquitous commensal and opportunistic pathogen – B. fragilis, the expression of its polysaccharide antigen (PSA) helps to keep inflammatory T cell lineages (e.g., Th17) in check and simultaneously promote IL-10-producing FoxP3(+) Treg cells in the gut (Mazmanian et al., 2008; Ochoa-Reparaz et al., 2010; Surana and Kasper, 2012). This role of PSA in influencing T cell populations is so profound that PSA-deficient bacteria skew the balance so far toward Th17 cells that infected mice develop colitis. Similar types of zwitterionic polysaccharides (ZPS) with immunomodulatory roles have also been identified in bacteria.
such as Streptococcus pneumoniae and Staphylococcus aureus type-5 and -8 (Trzanowski et al., 2000; Gonzalez-Fernandez et al., 2008). A clear mechanistic understanding of how bacterial polysaccharide regulate T cell polarization is lacking in light of the fact that PSAs are generally not presented to T cells (T cell independent) via antigen presenting cells. Rather, it has been demonstrated that ZPS antigens can be presented to T cells by APCs in an major histocompatibility complex class II (MHC-II) restricted manner (Avci and Kasper, 2010). This picture is further complicated by evidence suggesting that many oligosaccharides linked to peptides can directly activate T cells (Avci, 2013). Whether or not Tannerella polysaccharides are recognized by MHC-II or directly activate T cells is currently unknown. Alternatively, modulation of DCs through activation of CLRs such as DC-SIGN by Tannerella glycans could plausibly regulate the secretion of T cell biasing cytokines. In support of this notion, DC-SIGN is known to exhibit crossstalk with TLRs and impact the maturation of DCs and differentially regulate the cytokine environment, promoting polarization of T cells into specific subsets (Geijtenbeek and Grünhuis, 2009; Geijtenbeek et al., 2009; van den Berg et al., 2012).

OTHER GLYCAN-RELATED FACTORS OF PERIODONTAL BACTERIA

It is also worth noting that several glycoproteins with potential roles in bacterial pathogenicity, including the arginine- (RgpB and RgpA) and lysine-specific (Kgp) cysteine proteinases (collectively known as gingipains) and major outer membrane protein 56kDa (OmpA) have been reported in P. gingivalis (Kishi et al., 2012). Gingipain proteases are major virulence factors of P. gingivalis that paralyze host immune defenses by degrading serum complement, antibodies and chemokines, and T cell biasing cytokines (Guo et al., 2010). Although glycans linked to gingipains persist per se do not play any direct role in corrupting host defense molecules, post-translation polysaccharide modifications via a novel protein secretion system (PorSS, Paramonov et al., 2005; Glew et al., 2012) as well as a Vim (virulence modulating) dependent glycosylation system (Avru et al., 2013) play an essential role in the biogenesis of these proteases in P. gingivalis. In addition, recent work of Comstock and colleagues on the general O-glycosylation system in Bacteroidales species suggests the presence of a shared O-glycosylation system in a range of periodontal pathogens including P. gingivalis and at least two Prevotella spp. (Coyne et al., 2013). With respect to another major periodontal pathogen, Treponema denticola, a recent study points to the role of sialic acid modified surface glycoproteins in resisting the serum complement mediated killing of the pathogen (Kurniyati et al., 2013). However, basic information regarding the glycosylation machinery in this important pathogen is currently lacking. It is also worth noting that many species of Campylobacter associated with periodontitis (Mauch and Tanner, 2000), namely, C. rectus, C. showae, and C. concavus appear to possess flagella glycosylation islands based on genome predictions (unpublished).

Furthermore, most intriguing is the presence of myriad glycosidases in the periodontal pathogen T. forsythia (Sharma, 2010), which otherwise depend on host proteinaceous components for growth. These include β-hexosaminidases (Roy et al., 2012) and most prominently sialidases (Brahm and Mondla, 1992; Ishikura et al., 2003; Hotta et al., 2011; Roy et al., 2011; Kurniyati et al., 2013) which appears to play a role in colonization and pathogenesis. We speculate that sialidases of periodontal bacteria could likely be involved in immune regulation as well, as is the case with the pneumococcal sialidase which can potentially induce leukocytes to release proinflammatory cytokines through relieving the dampening effect of Siglec receptors (Chang et al., 2012). Siglec are sialic acid binding lectins on immune cells. Their activation by cognate sialoconjugates causes recruitment of phosphatases to the ITIM domain (immunoreceptor tyrosine-based inhibitory motif), leading to the inhibition of kinase-dependent activation of inflammatory signaling cascade in the cell (Crocker et al., 2007). Thus, hydrolysis of sialic acid from Siglec ligands by bacterial sialidases can potentially mitigate the immunosuppressive activity of Siglec. Alternatively, sialidases may provide sialic acid to periodontal bacteria for incorporation into their cell-surface components, allowing them the ability to under- mine immune system in different ways. In P. gingivalis, a recent study demonstrated that bacterial sialidases play important roles in capsule formation and resistance to complement attack (Li et al., 2012).

GLYCOMIMICRY

Evidencing immune recognition is critical for pathogen survival in the host. Pathogens decorate their surfaces with molecular structures that can mimic host molecules to avoid detection by the immune system. For example, hyaluronic acid and α2–8-linked sialic acid polymers are abundant on capsule polysaccharides of group-A streptococci (GAS) and group-B streptococci (GBS). These structures resemble glycosaminoglycan and glycosylated proteins present on host connective, epithelial and neural tissues respectively. The GBS-expressed polysaccharide mimics a unique glycan structure found in human glycopolypeptides recognized by Siglec, coopting of which by bacterial polysaccharide can lead to dampening of the immune responses including the impairment of neutrophil attack. Likewise, polysaccharides of Neisseria meningitidis and Escherichia coli K1 antigens are structurally similar to those of human fetal neuronal cells (Finne et al., 1987; Robbins et al., 2011). It was also demonstrated that this microbial glycomimicry can mislead the host immune system. For instance, carbohydrate mimicry between C. jejuni lipooligosaccharide and gangliosides has been implicated in the onset of paralytic disorder Guillain–Barre syndrome. In this setting, infection by C. jejuni in humans is believed to induce cross-reactive serum anti- bodies which bind to and damage peripheral nerves resulting in autoimmune disorders (Yolo et al., 2004). Interestingly, T. forsythia terminal sugar pseudaminic acid linked to an O-glycan core at least partially mimics sialic acid structures. Therefore, it is tempting to speculate that by abundantly decorating the surface with modified pseudaminic acid residues the bacterium could avoid immune surveillance and enhance its survival.

CONCLUSION

This review highlights the range and potential for immunomodulation by surface protein glycans in several periodontal bacteria.
We also highlight the action of an exemplar glycan, namely the one that on the Tannerella S-layer that influences immune responses and promotes survival and persistence in the body while promoting bone loss orally. We hypothesize that bacto-
erial glycans might have a prominent role in influenc-
ing local and systemic immunity to affect the persistence and pathogenicity of pathogenic oral communities in peri-
odontal disease. Therefore, the future targeting of such interactions may provide a novel approach for modulating periodontitis.

ACKNOWLEDGMENTS

The work performed in authors’ laboratories was supported by a grant (1F31DE14749 to Ashu Sharma) from the National Institute of Dental and Craniofacial Research (Bethesda, MD) and by The Dunhill Medical Trust grant R185/0211 to Graham P. Stafford.

REFERENCES

Aruna, A. W., Rohla, A., and Fletcher, H. M. (2013). Vianu metabolis multi-
ple functions that control virulence in Porphyromonas gingivalis. Mol.
Oral Microbiol. 28, 107–116. doi: 10.1111/omi.12107
Ashley, D., Singh, S., Hannaham, A., and Rentfeld, V. (2003). Congruent strategies for carbohydrate sequenc-
ing. J. Microub. Biotechnol. 77, 629–662. doi: 10.1016/j.gene.2003.05.109
Auci, F. Y., and Fraser, D. L. (2010). How bacterial carbohydrates influence the adaptive immune system. Annu.
Rev. Immunol. 28, 107–135. doi: 10.1146/annurev-immunol-100909-
101159
Auci, F. Y., Li, L., Tsigi, M., and Cooper, D. L. (2013). Carbohydr-
ates and T cells: a sweet twosome. Semin.
Immunol. 25, 146–151. doi: 10.1016/j.smim.2013.05.005
Beck, J. D., Cooper, D. J., Falkner, K. L., Graham, S. P., Grossi, S. G., Gun-
er, J. C., et al. (2008). The Peri-
odontal bacteria glycans as immunomodulators. Periodontol. 2000
51, 315–331. doi: 10.1111/mmi.12220
Crocker, P. R., Paulson, J. C., and Komorowski, L. E. (2011). Theoretical
and experimental characterization of the scope of protein O-glycosylation in the physiology of a major human intesti-
nal symbiont. J. Biol. Chem. 287, 24605–24617. doi: 10.1074/jbc.
M110.194508
Dunhill Medical T rust grant R185/0211 to Graham P. Stafford.

A. (2011). Theoretical and experimental characteri-
zation of the scope of protein O-glycosylation in the physiology of a major human intesti-
nal symbiont. J. Biol. Chem. 287, 24605–24617. doi: 10.1074/jbc.
M110.194508

Gomes-Filho, I. S., Santos, C. M., Cruz, L. D., et al. (2012). Extreme sweetness:
Pour some sugar on it: the expanding world of bacterial protein O-linked glyco-
confey, J. A., Morris, H. R., Dell, B. Y., Nguyen, K. A., and Potempa, J. (2010). Role of
Campylobacter jejuni flagellin in epithelial cell attachment. Infect.
Immun. 78, 395–401. doi: 10.1128/IAI.00829-10
Ishikura, H., Arakawa, S., Nakajima, T., Tsuchiya, N., and Ishikawa, I. (2003). Cloning of the Tannerella forsythia (Bacteroides forsythii) fimH gene and in the colonization of chicks. Infect.
Immun. 71, 479–480. doi: 10.1128/IAI.01042-05
Guerry, P., Ewing, C. P., Schirm, M., Lorenzo, M., Kelly, J., Pattarini, D., et al. (2006). Changes in flag-
ellin expression affect Campylobact-
eria autosagglutination and virulence. Mol.
Microbiol. 60, 299–311. doi: 10.1111/j.1365-2958.2005.05210.x
Guo, Y., Nguyen, K. A., and Potempa, J. (2010). Dichotomy of lipoprotein action as virulence factors: from cleaving substrates with the pre-
cision of a snake’s knife to a meat chopper-like brutal degrada-
tion of proteins. Periodontol.
2000 7, 479–500. doi: 10.1111/j.1574-6968.2009.12198.x
Karinshak, A. V., Eremont, P., Linton, D., Castrén, S., Newell, D. G., and Wren, B. W. (2004). The Campylobacter jejuni general glyco-
sylation system is important for attachment to human epithelial cells and in the colonization of chickens. Microbiol.
39, 157–165. doi: 10.1111/j.1365-2958.2004.04510.x
Kohli, M., Hapeshi, Y., Nagumo, K., Nakamura, H., Murakami, Y., and Yoshimura, E. (2012). Identification and characterization of novel glyco-
proteins involved in growth and biofilm formation by Porphyromonas gingivalis. Mol.
Oral Microbiol. 27, 408–470. doi: 10.1016/j.micmicro.2011.10.004
Kuo, C., Takahashi, N., Swanson, A. (2011). Role of Troyerella haddisa
NanH sialidase in epithelial cell attachment. Infect.
Immun. 79, 667–674. doi: 10.1128/IAI.00829-10
Kishel, L., and Eisen, J. (2009). Analysis of putative nomenclature and early evolution of the Arcanobacter baumannii
flagellin gene. J. Med.
Microbiol. 58, 14–28. doi: 10.1111/j.1365-2958.2009.05278.x
Kishel, L. A., Vienas, N. E., Kinsella, R. L., and Feldman, M. F. (2013). Porcine saline on the expanding world of bacter-
ial protein O-linked glycosylation system in Arcano-
bacter baumannii and its role in virulence and biofilm forma-
tion. PLoS Pathog. 9, e1002704.
doi: 10.1371/journal.ppat.1002704
Kishel, L. A., Vienas, N. E., Kinsella, R. L., and Feldman, M. F. (2013). Porcine saline on the expanding world of bacter-
ial protein O-linked glycosylation system in Arcano-
bacter baumannii and its role in virulence and biofilm forma-
tion. PLoS Pathog. 9, e1002704.
doi: 10.1371/journal.ppat.1002704
Kishel, L. A., Vienas, N. E., Kinsella, R. L., and Feldman, M. F. (2013). Porcine saline on the expanding world of bacter-
ial protein O-linked glycosylation system in Arcano-
bacter baumannii and its role in virulence and biofilm forma-
tion. PLoS Pathog. 9, e1002704.
doi: 10.1371/journal.ppat.1002704
Kishel, L. A., Vienas, N. E., Kinsella, R. L., and Feldman, M. F. (2013). Porcine saline on the expanding world of bacter-
ial protein O-linked glycosylation system in Arcano-
bacter baumannii and its role in virulence and biofilm forma-
tion. PLoS Pathog. 9, e1002704.
doi: 10.1371/journal.ppat.1002704
Kishel, L. A., Vienas, N. E., Kinsella, R. L., and Feldman, M. F. (2013). Porcine saline on the expanding world of bacter-
ial protein O-linked glycosylation system in Arcano-
bacter baumannii and its role in virulence and biofilm forma-
tion. PLoS Pathog. 9, e1002704.
attachment and infectivity of the microorganism to HeLa cells. J. Clin. Microbiol. 48, 2413–2418. doi: 10.1128/JCIM.19109
Kuriyama, K., Zhang, W., Zhang, K., and Li, C. (2013). A surface-exposed neuraminidase affects complement resistance and virulence of the oral spirochete Treponema denticola. Mol. Microbiol. 89, 842–906. doi: 10.1111/mmi.12315
Lee, S. W., Sabet, M., Um, H. S., Yang, E., Kim, H. C., and Zhu, W. (2016). Identification and characterization of the genes encoding a unique surface (S)-layer of Tannerella forsythia. J. Bacteriol. 198, 102–111. doi: 10.1128/JB.00222-15
Li, C., Kurniawan, B., Rian, J., Sun, J., Zhang, W., et al. (2012). Abrogation of neuraminidase reduces biofilm formation, capsule biosynthesis, and virulence of Porphyromonas gingivalis. J. Bacteriol. 194, 1938–1952. doi: 10.1128/JB.01139-07
Maun, A. C., Mohawk, K. L., Giles, D. M., Mazmanian, S. K., Round, J. L., and Kasper, D. L. (2008). A microbial symbiosis factor prevents intestinal inflammation. Nature 453, 212–216. doi: 10.1038/nature06891
Metcalf, S. K., Boulmond, J. L., and Kaspe, D. L. (2005). A microbial symbiotic factor prevents intestinal inflammatory disease. Nature 439, 426–429. doi: 10.1038/nature04406
Meijerink, M., Ferrando, M. L., Lamers, G., Tanwara, N., Smith, H. E., and Wolla, J. M. (2012). Immunomodulatory effects of type-3 fimbriae capsule of Pasteurella haemolytica. Poly. N. Engl. J. Med. 36, 509–517. doi: 10.1056/nejmsa1200211
Mohan, P., Stover, K., Zarevski, K., and Schaffler, C. (2008). Surface-exposed neuraminidase of Neisseria meningitidis. Mol. Microbiol. 69, 841–851. doi: 10.1111/j.1365-2958.2008.06874.x
Posch, G., Pabst, M., Bruckner, L., Altman, M., Posch, G., Pabst, M., Neumann, E., Corne, M. J., Altman, E., and Maun, A. C. (2011). Capsular polysaccharide vaccines for Group B N. meningitidis, Escherichia coli, and Pasteurella multocida. Adv. Exp. Med. Biol. 674, 198–205. doi: 10.1007/978-1-4614-0241-9_10
Roy, S., Saha, N., Shaw, J. V., Sharma, A., and Stafford, I. L. (2010). The ym antigen of bacterial polysaccharide-kissin-like peptides is a TLR2-interacting protein. J. Biol. Chem. 285, 13177–13187. doi: 10.1074/jbc.M110.113924
Symeansky, S. S., Hiatt, A. D., Gagnon, M. A., Smith, K., and Kett, B. L. R. (1998). Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25, 134–144. doi: 10.1034/j.1600-051X.1998.tb02419.x
Surana, N. K., and Kaspe, D. L. (2012). The ym antigen of bacterial polysaccharide-kissin-like peptides is a TLR2-interacting protein. J. Biol. Chem. 285, 13177–13187. doi: 10.1074/jbc.M110.113924
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Received: 14 August 2013; accepted: 27 September 2013; published online: 17 October 2013.
Citation: Settem RP, Honma K, Saflower GP and Sharma A (2013) Protein-linked glycan in periapical periodontitis: relevance and role at the immune interface. Front. Microbiol. 4, 506. doi: 10.3389/fmicb.2013.00506
This article was submitted to Microbial Immunology, a section of the journal Frontiers in Microbiology. Copyright © 2013 Settem, Honma, Saflower and Sharma. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.