Development of *Mycobacterium avium* complex lung disease in patients with lung cancer on immune checkpoint inhibitors

Kohei Fujita¹, Yuki Yamamoto¹,², Osamu Kanai¹, Misato Okamura¹, Koichi Nakatani¹, Tadashi Mio¹

¹Division of Respiratory Diseases, Center for Respiratory Diseases, National Hospital Organization Kyoto Medical Center, Kyoto, Japan

²Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan

© The Author(s) 2020. Published by Oxford University Press on behalf of Infectious Diseases Society of America.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Abstract

Immunotherapy with immune checkpoint inhibitors (ICIs), though ameliorates lung cancer, can cause infectious diseases, including tuberculosis, in addition to immune-related non-infectious complications. In clinical setting, efficacy of ICIs to treat mycobacterial infection remains controversial. We report three cases of acute *Mycobacterium avium* complex lung disease during immunotherapy with ICIs.

Keywords: *Mycobacterium avium* complex, lung cancer, immune checkpoint inhibitors, nontuberculous mycobacteria
Introduction

Recent advances in immunotherapy with immune checkpoint inhibitors has improved the outcomes of patients with lung cancer [1, 2]. Although immune checkpoint inhibitors manifest drastic effects, unique adverse events, including skin rash, hepatotoxicity, and endocrine disturbances, are known to occur during treatment. These events are termed immune-related adverse events (irAEs). Among the several types of irAEs, cases of infectious diseases have been increasing steadily [3]. Cases of mycobacterial infection have been particularly alarming because of multiple reported cases [4-7].

We experienced three cases of acute development of Mycobacterium avium complex lung disease (MAC-LD) in patients with lung cancer on immune checkpoint inhibitors. These may emerge as thought-provoking cases.
Case presentation and summary

Case 1.

A 66-year-old woman underwent surgical resection of the right lower lobe lung adenocarcinoma. Her adenocarcinoma recurred after 12 years. Computed tomography (CT) images acquired at that time showed no bronchiectasis or nodules in the bilateral lobes. She received 60-Gy stereotactic radiotherapy. On disease progression, she received one cycle of combined carboplatin and pemetrexed as initial therapy. Because of adverse events, her chemotherapy regimen was revised to gemcitabine.

However, her disease progressed. She received nivolumab as the 3rd line therapy. After 15 cycles of nivolumab, she developed wet cough with excessive sputum. CT images showed infiltration in the upper left lung lobe and lingula. Two consecutive sputum cultures were positive for *Mycobacterium intracellulare* at 17th cycle of nivolumab therapy. A diagnosis of MAC-LD was established and specific treatment for MAC was initiated along with continued nivolumab therapy.
Case 2.

An 80-year-old man was diagnosed with stage 3a right upper lobe non-small cell lung cancer by bronchoscopy. Although lung cancer was diagnosed, CT images only showed bilateral emphysema but no bronchiectasis or nodules. Sequential chemoradiotherapy was initiated. He received one cycle of combined carboplatin and nanoparticle albumin-bound paclitaxel (nabPTX) therapy, followed by radiotherapy (66 Gy). He attained 3 years of progression-free survival. However, the cancer recurred because of a single brain metastasis and multiple lower left nodules. He underwent gamma knife therapy for brain metastasis and was initiated on 2nd line systemic immunotherapy with atezolizumab.

At 23rd cycle of atezolizumab therapy, he developed wet cough and excessive sputum production. CT images revealed multiple reticulonodular infiltrates in the lower left lung lobe. Two consecutive sputum cultures at 24th cycle of atezolizumab were positive for *M. avium* and *M. intracellulare*. He was diagnosed with MAC-LD; specific treatment was initiated for MAC alongside the atezolizumab therapy.
Case 3.

A 66-year-old man was diagnosed with stage 4a advanced squamous cell carcinoma of the right upper lung lobe. Although lung cancer was diagnosed, CT images showed bilateral emphysemas but no bronchiectasis or nodules. He received initial therapy with 6 cycles of combined carboplatin and nabPTX. However, tumor progression was confirmed after 3 months. Second line therapy with nivolumab was initiated. However, disease progression was confirmed after 6 cycles of nivolumab therapy. As the 3rd line therapy, he received 7 cycles of docetaxel, and subsequently, 4th line therapy with atezolizumab after docetaxel failure. Concomitantly, he experienced right main bronchus stenosis because of tumor progression, and palliative radiotherapy (37.5 Gy) was administered. CT images acquired during atezolizumab therapy revealed rapidly worsening right lower lobe infiltration.

Two consecutive sputum cultures at the 4th cycle of atezolizumab therapy were positive for *M. intracellulare*, and a diagnosis of MAC-LD was established. However, because of severe debilitation, treatment for MAC-LD was not initiated and atezolizumab immunotherapy was discontinued.
Summary of cases

Table 1 shows the summary of all 3 cases. In this study, CT images were retrospectively reviewed to assess possible changes of MAC-LD predating ICI immunotherapy. All patients had advanced lung cancer and received cytotoxic chemotherapy before treatment with ICIs. Moreover, they received thoracic radiotherapy before the pathogenesis of MAC-LD. ICI immunotherapy was continued in two patients after they were diagnosed with MAC-LD. The median time to MAC-LD diagnosis from induction of initial ICI were 17 months (range, 17–19 months).

Discussion

We experienced three acute cases of MAC-LD during ICI immunotherapy. Previous reports indicate that development of tuberculosis during ICI immunotherapy has become an emerging concern [4-7]. Multiple cases of tuberculosis were suspected reactivation of latent infection. Some authors have suggested the development of tuberculosis to be similar to immune reconstitution inflammatory syndrome [4, 7]. A similar presentation is expected of nontuberculous mycobacterial infection;
however, till date, no paper had reported the development of nontuberculous mycobacterial infection.

In our three cases, no fibro-cavitary or reticulonodular shadow was noted that could indicate nontuberculous mycobacteria (NTM) infection at the initial diagnosis of lung cancer. Therefore, it is unclear whether MAC-LD developed from reactivation of existing disease or whether it was a de novo infection.

Although the precise mechanisms underlying MAC-LD are unknown, anti-PD-1/PD-L1 antibodies are known to have possible anti-microbial effects that are mediated by upregulation of T cell-mediated immunity [8]. A previous report suggested favorable effect of nivolumab for the treatment of *Mycobacterium abscessus* lung disease [9]. Our present cases might partly reflect this paradoxical reaction, i.e., overresponse to mycobacteria. In contrast, Barber et al. reported that PD-1/PD-L1 knockout mice displayed increased susceptibility to tuberculosis through enhanced CD4 T cell-mediated tissue destruction [10]. In patients receiving ICIs, Barber et al. also discovered similar profiles for CD4 T cell, CD8 T cell, and T cell-mediated cytokine dynamics [11]. These data suggested that Th1 function with anti-PD-1/PD-L1 antibodies might cause the development of tuberculosis. In actual clinical settings, treatment with anti-PD-1/PD-L1 antibodies is expected to
show similar responses. Therefore, the effects of ICIs with regard to mycobacterial diseases in clinical setting remains controversial.

Alternatively, ICI immunotherapy might initiate a state of autoimmunity that mimics diseases like rheumatoid arthritis, which are known to be strongly associated with NTM-LD. Well-designed population-based studies are required to investigate such causal associations. Cumulative experience will reveal the complete picture. Presently, all patients had advanced stage lung cancer and received relatively long-term treatment, including cytotoxic chemotherapy; therefore, the influence of both the cancer and the treatment in the development of MAC-LD cannot be ignored. Furthermore, cytotoxic chemotherapy can exacerbate NTM disease [12]. Previous cytotoxic chemotherapy before induction of ICIs might favor the clinical outcome moderately.

The following alternate interpretation is also important. Japan has one of the highest burdens of NTM globally [13, 14]. Moreover, ICI immunotherapy is becoming popular in Japan. Therefore, physicians in high burden of NTM should pay more attention to the development of MAC-LD during immunotherapy regimens with ICIs.
Conclusion

Physicians should be cautious towards the development of MAC-LD in patients on immunotherapy with ICIs, especially in countries such as Japan, which has a high burden of NTM.
Conflicts of interest

All authors declare no conflicts of interest.

Patients consent

We have obtained written consent forms from all patients described in this study.

Financial support

This case study was partly supported by a Grant-in-Aid for Young Scientists (B), KAKENHI, Japan Society for the Promotion of Science, Japan. (Grant Number, 17K16067)
References

(1) Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. *Cancer Cell* 2015;27:450-461.

(2) Granier C, De Guillebon E, Blanc C, Roussel H, Badoual C, Colin E, Saldmann A, Gey A, Oudard S, Tartour E. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. *ESMO Open* 2017;2:e000213-2017.

(3) Fujita K, Kim YH, Kanai O, Yoshida H, Mio T, Hirai T. Emerging concerns of infectious diseases in lung cancer patients receiving immune checkpoint inhibitor therapy. *Respir Med* 2019;146:66-70.

(4) Fujita K, Terashima T, Mio T. Anti-PD1 Antibody Treatment and the Development of Acute Pulmonary Tuberculosis. *J Thorac Oncol* 2016;11:2238-2240.

(5) Chu YC, Fang KC, Chen HC, Yeh YC, Tseng CE, Chou TY, Lai CL. Pericardial Tamponade Caused by a Hypersensitivity Response to Tuberculosis Reactivation after Anti-
PD-1 Treatment in a Patient with Advanced Pulmonary Adenocarcinoma. *J Thorac Oncol* 2017;12:e111-e114.

(6) Picchi H, Mateus C, Chouaid C, Besse B, Marabelle A, Michot JM, Champiat S, Voisin AL, Lambotte O. Infectious complications associated with the use of immune checkpoint inhibitors in oncology: reactivation of tuberculosis after anti PD-1 treatment. *Clin Microbiol Infect* 2018;24:216-218.

(7) Takata S, Koh G, Han Y, Yoshida H, Shiroyama T, Takada H, Masuhiro K, Nasu S, Morita S, Tanaka A, Hashimoto S, Uru K, Suzuki H, Tamura Y, Okamoto N, Nagai T, Hirashima T. Paradoxical response in a patient with non-small cell lung cancer who received nivolumab followed by anti-Mycobacterium tuberculosis agents. *J Infect Chemother* 2019;25:54-58.

(8) Rao M, Valentini D, Dodoo E, Zumla A, Maeurer M. Anti-PD-1/PD-L1 therapy for infectious diseases: learning from the cancer paradigm. *Int J Infect Dis* 2017;56:221-228.
(9) Ishii S, Tamiya A, Taniguchi Y, Tanaka T, Abe Y, Isa SI, Tsuyuguchi K, Suzuki K, Atagi S. Improvement of Mycobacterium abscessus Pulmonary Disease after Nivolumab Administration in a Patient with Advanced Non-small Cell Lung Cancer. *Intern Med* 2018;57:3625-3629.

(10) Barber DL, Mayer-Barber KD, Feng CG, Sharpe AH, Sher A. CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition. *J Immunol* 2011;186:1598-1607.

(11) Barber DL, Sakai S, Kudchadkar RR, Fling SP, Day TA, Vergara JA, Ashkin D, Cheng JH, Lundgren LM, Raabe VN, Kraft CS, Nieva JJ, Cheever MA, Nghiem PT, Sharon E. Tuberculosis following PD-1 blockade for cancer immunotherapy. *Sci Transl Med* 2019;11:10.1126/scitranslmed.aat2702.

(12) Tsuji T, Tsuyuguchi K, Tachibana K, Kimura Y, Kobayashi T, Minomo S, Atagi S, Matsumura A, Hayashi S, Suzuki K. Analysis of the impact of lung cancer treatment on nontuberculous mycobacterial lung diseases. *Respir Investig* 2017;55:45-50.
(13) Morimoto K, Iwai K, Uchimura K, Okumura M, Yoshiyama T, Yoshimori K, Ogata H, Kurashima A, Gemma A, Kudoh S. A steady increase in nontuberculous mycobacteriosis mortality and estimated prevalence in Japan. *Ann Am Thorac Soc* 2014;11:1-8.

(14) Namkoong H, Kurashima A, Morimoto K, Hoshino Y, Hasegawa N, Ato M, Mitarai S. Epidemiology of Pulmonary Nontuberculous Mycobacterial Disease, Japan. *Emerg Infect Dis* 2016;22:1116-1117.
Table 1. Characteristics of the patients who developed *Mycobacterium avium* complex lung disease

	Case 1	Case 2	Case 3
Age at diagnosis of MAC, years	78	80	66
Sex	Female	Male	Male
Smoking status (pack-year)	Never	45	20
Cavities/Bronchiectasis before ICI	None	None	None
Histopathology	Adenocarcinoma	Not otherwise specified	Squamous cell carcinoma
Staging at diagnosis	Post-operative recurrence	cT1bN2M0; stage 3a	cT4N2M1a; stage 4a
Driver oncogene alteration	wild type	wild type	NE
PD-L1 expression	NE	NE	<1%
Type of ICI	Nivolumab	Atezolizumab	Nivolumab + Atezolizumab
Infected MAC strain	*M. intracellulare*	*M. avium + M. intracellulare*	*M. intracellulare*
Time to MAC-LD diagnosis*, month	17	17	19**
Cycles of ICI, number	38	24	6 (nivolumab) + 4 (atezolizumab)
Prior radiotherapy	60 Gy	60 Gy	37.5 Gy
Prior chemotherapy

Line	Treatment 1	Treatment 2	Treatment 3	
1st	Carboplatin + Pemetrexed	Carboplatin + nabPTX	Carboplatin + nabPTX	
2nd	Gemcitabine	-	Nivolumab	
3rd	-	-	Docetaxel	
	Response to MAC treatment	Good	Fair	No medication

MAC, Mycobacterium avium complex; NE, not evaluated; PD-L1, programmed cell death-ligand 1; ICI, immune checkpoint inhibitor; nabPTX, nanoparticle albumin-bound paclitaxel

*Time from initiation of immune checkpoint inhibitor therapy to diagnosis of Mycobacterium avium complex lung disease

**Duration included that of docetaxel treatment