β2-Glycoprotein I Is a Major Protein Associated with Very Rapidly Cleared Liposomes in Vivo, Suggesting a Significant Role in the Immune Clearance of “Non-self” Particles*

(Received for publication, July 17, 1995, and in revised form, August 23, 1995)

Arcadio Chonn§, Sean C. Semple, and Pieter R. Cullis
From the Department of Biochemistry, The University of British Columbia, Vancouver, British Columbia V6P 6P2, Canada

Liposomes recovered from the blood of liposome-treated CD1 mice were previously reported to have a complex protein profile associated with their membranes (Chonn, A., Semple, S. C., and Cullis, P. R. (1992) J. Biol. Chem. 267, 18759–18765). In this study, we have further characterized and identified the major proteins associated with very rapidly cleared large unilamellar vesicles. These liposomes contained phosphatidylinositol, cholesterol, and anionic phospholipids (phosphatidylserine, phosphatidic acid, or cardiolipin) that dramatically enhance the clearance rate of liposomes from the circulation. These anionic phospholipids are normally found exclusively in the interior of cells but become expressed when cells undergo apoptosis or programmed cell death, and thus, they are believed to be markers of cell senescence. Analysis of the proteins associated with these liposomes by SDS-polyacrylamide gel electrophoresis revealed that two of the major proteins associated with the liposome membranes are proteins with electrophoretic mobilities corresponding to M_{r} of 66,000 and 50,000–55,000. The 66-kDa protein was identified to be serum albumin by immunoblot analysis. Using various biochemical and immunological methods, we have identified the 50–55-kDa protein as the murine equivalent of human β2-glycoprotein I. β2-glycoprotein I has a strong affinity for phosphatidylserine, phosphatidic acid, and cardiolipin inasmuch as the levels of β2-glycoprotein I associated with these anionic liposomes approach or even exceed those of serum albumin, which is present in serum at a concentration 200-fold greater than β2-glycoprotein I. Further, we demonstrate that the amount of β2-glycoprotein I associated with liposomes, as quantitated by an enzyme-linked immunosorbent assay, is correlated with their clearance rates; moreover, the circulation residency time of cardiolipin-containing liposomes is extended in mice pretreated with anti-β2-glycoprotein I antibodies. These findings strongly suggest that β2-glycoprotein I plays a primary role in mediating the clearance of liposomes and, by extension, senescent cells and foreign particles.

The clearance of liposomes from the circulation, primarily by phagocytic cells of the reticuloendothelial system, is markedly affected by the lipid composition of the liposomes. Thus, incorporation of normally intracellular occurring phospholipids such as cardiolipin (CL), 1-phosphatidic acid (PA), or phosphatidylserine (PS) markedly enhances the clearance rate of the liposomes. The biochemical and immunological basis for this clearance phenomenon is for the most part poorly understood. However, this clearance is widely believed to involve blood proteins that associate with liposome membranes. To date, few in vivo studies have been reported providing evidence that this may be the case. For example, rat perfusion studies have indicated that in order for significant liposome uptake by liver macrophages (Kupffer cells) to occur, the liposome perfusate must contain plasma proteins (2, 3). Further, we have recently shown using an in vivo mouse animal model that the ability of liposomes to interact with blood proteins is indeed related to their clearance rate from the circulation (4). Liposomes capable of binding the most blood proteins are cleared very rapidly from blood, whereas liposomes that exhibit reduced blood protein binding abilities are cleared at significantly slower rates.

By analyzing the proteins that associate with the liposomes in blood, we and others (4–8) have shown that a myriad of blood proteins associate with rapidly cleared liposomes. We have demonstrated by using immunoblot analysis that liposomes binding high levels of blood proteins are enriched with those blood proteins that function as opsonins, namely complement component C3 fragments and IgG (5). The complexity of the protein profiles associated with the liposome membranes upon exposure to blood would suggest that other proteins may play important roles in the immune recognition of foreign particles. Here, we report the identification of a protein that appears to have a high affinity for liposomes containing CL, PA, or PS. We employed various biochemical and immunological techniques to show that this protein is the murine equivalent of human β2-glycoprotein I (β2-gpl). The predominance of β2-gpl on rapidly cleared membranes strongly suggests that β2-gpl may be a key blood protein involved in the immunological detection of non-self or apoptotic membranes.

EXPERIMENTAL PROCEDURES

Preparation of Liposomes—Large unilamellar vesicles (LUVs) composed of PC:CH (55:45 mol/mol), PC:CH:egg phosphatidylglycerol (35:45:20), or PC:CH:DOPS (35:45:20) were prepared by an extrusion procedure as described in detail elsewhere (5, 9). Liposome suspensions were 20 mM (for experiments) in isotonic Hepes-buffered saline (20 mM Hepes, pH 7.4, 145 mM NaCl) sterilized 1

1 The abbreviations used are: CL, bovine heart cardiolipin; β2-gpl, β2-glycoprotein I; PC, egg phosphatidylcholine; PA, egg phosphatidic acid; PS, bovine liver phosphatidylserine; CH, cholesterol; DO, dioleoyl; LUVs, large unilamellar vesicles; PAGE, polyacrylamide gel electrophoresis.
using Syrfil 0.22-μm filters (Nuclepore, Pleasanton, CA). The concentration of the recovered liposome suspensions was quantitated by using the lipid tracer \(^{1}H \)cholestererylhexadecyl ether (Amersham) as described previously (4, 10). All phospholipids were purchased from Avanti Polar Lipids (Petham, AL) and were used without further purification; cholesterol was purchased from Sigma and was used without further purification. A partial N-terminal region protein sequence was obtained and compared to sequences registered in the Swiss-Prot 23 sequence bank.

Quantitation of \(\beta_2 \) gp Associated with LUVs Using an Enzyme-linked Immunosorbent Assay—LUVs were recovered from isolated normal human serum incubations (120 \(\mu \)L of LUVs, 480 \(\mu \)L of normal human serum, 50 min, 37°C) using spin columns as indicated above. Enzyme-linked immunosorbent assays were performed essentially as described previously (5) with the exception that purified human \(\beta_2 \) gp (1 μg/well, Enzyme Research Labs) in phosphate-buffered saline was bound to 96-well microtiter plates, and rabbit anti-human \(\beta_2 \) gp antibodies (Enzyme Research Labs) were used.

Anti-\(\beta_2 \) gp Antibody Pretreatment of Mice—The rabbit anti-human \(\beta_2 \) gp antibodies obtained commercially (Behring, lot 5506) were dialyzed overnight at 4°C (Spectrapor 2 dialysis membranes, molecular weight cutoff 12,000–14,000; Spectrum, Houston, TX) against a 0.9% sodium chloride irrigation solution (sterile, nonpyrogenic; Baxter, Vancouver) to remove azide. The protein concentration of the dialyzed antibody solution was determined using the bicinchoninic acid protein assay (Pierce). Mice were injected with 100 \(\mu \)L of 200 μg/mL (4 mice) or 20 μg/mL (4 mice) or 0.9% sodium chloride solution (4 mice) via the dorsal tail vein at two given times, minus 6 h and minus 2 h. At time 0, all mice received 200 \(\mu \)L of 20 μg/mL PC:CH:CL (35:45:10) LUVs, containing a trace amount of \(^{3}H \)cholestererylhexadecyl ether, intravenously via the dorsal tail vein. After 30 min, the mice were sacrificed, and plasma samples were collected and analyzed for radioactivity content using standard liquid scintillation methods. The PC-CH:CL LUVs recovered at 30 min in anti-\(\beta_2 \) gp antibody-treated mice were repeated twice.

RESULTS

Detection of the Major Proteins Associated with Rapidly Cleared LUVs—To date, the best-characterized blood proteins that have been described to enhance the rate of phagocytic uptake of foreign particles involve membrane-bound complement component C3 fragments and IgG. In this study, our principal aim was to characterize other blood proteins that may play an important role in the immune recognition of foreign membranes. Our approach was to use liposomes composed of lipids that are known to enhance their immune clearance from the circulation (typically, those lipids that are normally found exclusively in the interior of cells), to recover these liposomes from the blood of liposome-treated mice, and to analyze and identify the blood proteins that associate with their membranes.

Previously, we have demonstrated that LUVs composed of CL, PA, or PS (20 mol % negative charge) bind blood proteins in amounts exceeding 40 g of protein/mol of lipid immediately upon intravenous administration in mice and are cleared very rapidly from the circulation (half-lives of less than 10 min) (4). This suggests that some of the proteins associated with the liposome membranes enhance immune recognition and clearance. Figure 1 depicts the major proteins associated with liposome recovered from the blood of CD1 mice 2 min post-injection. It is immediately clear from Fig. 1 that there are at least two major proteins, having electrophoretic mobilities corresponding to \(M_r \) of approximately 66,000 and 50,000–55,000 that are associated with these anionic membranes. Identification of these proteins was carried out. Based on the apparent \(M_r \) and the fact that albumin is the most abundant protein in plasma (concentration approximately 40 mg/mL), we suspected immediately that the 66,000-Da protein band corresponded to serum albumin. This was confirmed by immunoblot analysis (results not shown).

Identification of the Murine 50–55-kDa Protein—We have observed that one of the most predominant proteins associated with

N-terminal Region Protein Sequence Analysis—Immunoinaffinity-purified murine 50–55-kDa protein was electrophoresed on a homogeneous 12% SDS-PAGE gel as above, blotted onto a polyvinylidene difluoride membrane, and detected by Coomassie staining. The band corresponding to the 50–55-kDa protein was cut from the membrane, and the protein was sequenced using an automated model 477A pulsed liquid phase sequencer (Applied Biosystems) equipped with a model 120A analyzer, a partial N-terminal region protein sequence was obtained and compared to sequences registered in the Swiss-Prot 23 sequence bank.
with these rapidly cleared liposomes is a protein that migrates with an electrophoretic mobility corresponding to a molecular weight of approximately 50,000–55,000. Earlier work by Sommerman (37), employing in vitro incubations of multilamellar vesicles with human serum, demonstrated that a similar protein was associated in large amounts with PS-containing liposomes; that under reducing conditions, this protein migrates with a similar M_r as that under non-reducing conditions; and that by using two-dimensional gel electrophoresis, this protein has several charged forms characteristic of sialoglycosylated or sulfated proteins.

We were not able to identify this protein by immunoblot analysis using antisera to several of the major blood proteins (the so-called “Big Twelve” group) (14). However, by comparing the observed properties of this protein to the reported properties of murine homologue of human gpI (Fig. 2) and suggested that the 50–55-kDa protein was the murine homologue of human gpI.

In subsequent studies, we determined whether this 50–55-kDa protein shared similar biochemical properties to human or rat gpI. Human and rat gpI have been previously reported to be heparin-binding proteins (11, 15–18). To test whether the murine 50–55-kDa protein shared this property, the proteins associated with PC:CH:CL LUVs were solubilized with octylglucoside and chromatographed on a heparin-agarose column. As demonstrated by retention on heparin-agarose (Fig. 3), the murine 50–55-kDa protein also has an affinity for heparin. The 50–55-kDa protein from mouse serum was found to be soluble in 1.0–3.0% perchloric acid, which is in agreement with previous findings for human and rat gpI (11, 15–18).

Finally, to determine conclusively whether 50–55-kDa protein cross-reacting with the anti-human β_2 gpI antibody was the murine homologue of human β_2 gpI, the murine 50–55-kDa protein was purified using an anti-human β_2 gpI affinity column (Fig. 4) and subjected to N-terminal region protein sequence analysis. As shown in Fig. 5, the amino acid sequence in the N-terminal region of the murine 50–55-kDa protein shares a high degree of homology with that of human β_2 gpI and furthermore is identical to the recently published amino acid sequence of murine β_2 gpI.

Level of β_2 gpI Associated with LUVs in Vitro Correlates with Circulation Half-lives—As we have noted previously (4), in vitro total serum protein binding values of LUVs are generally predictive of their clearance behavior in vivo. To determine whether a similar relation holds true for β_2 gpI binding levels and clearance, the amount of β_2 gpI associated with the LUVs recovered from human serum incubations was quantitated us-
liposomes are readily altered and defined; thus, factors such as their lipid composition. Second, the lipid compositions of the clearance properties of liposomes are markedly dependent on proteins that mediate the clearance of foreign particles. In this study, we have employed various biochemical and immunological methods to identify one of the major proteins associated with very rapidly cleared liposomes, and not with slowly cleared liposomes, as being β2-glycoprotein I.

As shown qualitatively in Fig. 1, the levels of β2 gpl binding to CL-, PA-, or PS-containing PC:CH LUVs corresponds to similar or even greater levels than those for albumin. This is significant inasmuch as the reported values for the concentrations of β2 gpl in rats and humans is approximately 0.2 mg/ml plasma (60% is found in the lipoprotein-free δ > 1.2 g/ml bottom fraction after ultracentrifugation, and the remaining 40% is associated with triglyceride-rich lipoproteins) (19, 20). By direct comparison, the reported values for the concentration of albumin in rats and humans is approximately 40 mg/ml, 200-fold greater than the plasma concentration of β2 gpl. If one assumes that the association of albumin to these vesicles is nonspecific (14), then this finding would indicate that β2 gpl is greatly concentrated on these anionic membranes, suggesting that β2 gpl has a high affinity for CL, PA, and PS. Interestingly, apolipoprotein J, which shares some structural similarities to β2 gpl (also known as apolipoprotein H), has no affinity for these anionic LUVs as determined by immunoblot analysis using antibodies to apolipoprotein J.2 This indicates that not all apolipoproteins have an affinity for CL-, PA-, or PS-containing LUVs.

As suggested by these findings, β2 gpl may play a significant role in the clearance of foreign membranes by phagocytic cells of the reticuloendothelial system. To this effect, there appears to be a correlation between the amount of β2 gpl associated with liposomes and their clearance rate. β2 gpl is associated in relatively high amounts with CL-, PA-, or PS-containing liposomes, all of which possess very rapid clearance kinetics; low amounts with phosphatidylglycerol- or phosphatidylinositol-containing or PC:CH (55:45) LUVs, all of which possess moderately slow clearance kinetics; or in very low levels with ganglioside GM1-containing liposomes, which are capable of extended circulation lifetimes (4). Further substantiating a possible role of β2 gpl in vesicle clearance is the finding that β2 gpl exerts a significant effect on triglyceride clearance in rats (21). Perhaps the most suggestive evidence that supports a role of β2 gpl in the clearance of liposomes is our preliminary observation showing that we are able to significantly prolong the circulation half-life of CL-containing LUVs in mice that were pretreated with anti-human β2 gpl antibodies to depress

![Image](59x162 to 283x413)

FIG. 4. Anti-human β2-glycoprotein I affinity chromatography. A, column elution profile of subfractionated murine 50–55-kDa protein (see "Experimental Procedures" for details). The bound protein was eluted from the column with buffer B (50 mM Tris, pH 7.5, 2.5 M MgCl2). B, dot-blot analysis of column fractions.

![Image](125x65 to 475x106)

FIG. 5. Partial N-terminal region sequence analysis of immunoaffinity-purified 50–55-kDa protein. The obtained sequence was compared to the previously reported amino acid sequences of human (35) and murine (36) β2-glycoprotein I.

1 A. Chonn, S. C. Semple, P. R. Cullis, and J. Tschopp, unpublished data.

2 A. Chonn, S. C. Semple, P. R. Cullis, and J. Tschopp, unpublished data.
the circulating levels of β2 gpl.

Our finding that β2 gpl has an affinity for negatively charged phospholipids is consistent with a previous report on the lipid specificity of β2 gpl (16). We have extended these studies here to show that β2 gpl binds to higher levels to liposomes containing specifically CL, PA, or PS. Inasmuch as these phospholipids are not normally expressed on the exterior surfaces of cells, it is interesting to speculate that β2 gpl plays a role in the detection of these "foreign" phospholipids, which are expressed when cells undergo apoptosis or senescence. A recent study has indeed demonstrated a direct relation among PS exposure in the outer leaflet of human red blood cells, cell age, and the propensity for clearance by mononuclear cells (22). As well, PS expression on B cells undergoing apoptosis is enhanced due to loss of membrane phospholipid asymmetry (23). Several investigators have suggested that PS expression is a direct signal for macrophage adhesion and/or internalization via PS or scavenger receptors (24–28). Recognition via the PS receptors has been proposed to be an important phagocytic recognition system even in the absence of specific ligands (24–28). Recognition via the PS receptors has been proposed to be an important phagocytic recognition system even in the absence of specific ligands (24–28).

Acknowledgments—We thank Dr. Rudi Aebersold for determining the N-terminal region protein sequence. We also thank Dr. Charles Pak for helpful discussions.

REFERENCES

1. Senior, J. (1987) Crit. Rev. Ther. Drug Carrier Syst. 3, 123–193
2. Kiwada, H., Miyajima, T., and Kato, Y. (1987) Chem. & Pharm. Bull. 35, 1189–1195
3. Kiwada, H., Obara, S., Nishikawa, H., and Kato, Y. (1986) Chem. & Pharm. Bull. 34, 1249–1256
4. Chonn, A., Semple, S. C., and Cullis, P. R. (1992) J. Biol. Chem. 267, 18759–18765
5. Chonn, A., Semple, S. C., and Cullis, P. R. (1991) Biochim. Biophys. Acta 1070, 215–222
6. Julious, S. A., and Lin, G. (1980) in Liposomes and Immunobiology (Six, H., and Tom, B., eds) pp. 46–66, Elsevier, Amsterdam
7. Bonte, F., and Julious, R. L. (1986) Chem. Phys. Lipids 40, 359–372
8. Bonte, F., Hsu, M. J., Pappo, A., Wu, K., Rees, S. L., and Julious, R. L. (1987) Biochim. Biophys. Acta 900, 1–9
9. Hope, M. J., Bally, M. B., Webb, G., and Cullis, P. R. (1985) Biochim. Biophys. Acta 812, 55–65
10. Stein, Y., Halpern, G., and Stein, O. (1980) FEBS Lett. 111, 104–106
11. Polz, E., Wurm, H., and Kostner, G. M. (1980) Int. J. Biochem. 11, 265–270
12. Axen, R., Parath, J., and Einbakh, S. (1987) Nature 214, 1302–1304
13. Rabilloud, T., Capenartier, G., and Tarroux, P. (1988) Electrophoresis 9, 286–291
14. Andrade, J. D., and Hlady, V. (1987) Ann. N. Y. Acad. Sci. 516, 138–172
15. Finlayson, J. S., and Mushinski, J. F. (1967) Biochim. Biophys. Acta 147, 413–420
16. Wurm, H. (1984) Int. J. Biochem. 16, 511–515
17. McNeil, H. P., Simpson, R. J., Chesterman, C. N., and Krilis, S. A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 4120–4124
18. Galli, M., Confluris, P., Maassen, C., Hemker, H. C., de Baets, M. H., van Breda-Vriesman, P. J. C., Barbui, T., Zwaal, R. F., and Bevers, E. M. (1990) Lancet 335, 1544–1547
19. Polz, E., and Kostner, G. M. (1979) FEBS Lett. 102, 183–186
20. Lee, N. S., Brewer, H. B., Jr., and Osborne, J. C. (1983) J. Biol. Chem. 258, 4785–4770
21. Wurm, H., Beubler, E., Polz, E., Hulasek, A., and Kostner, G. M. (1982) Metabolism 31, 484–486
22. Connor, J. P., Pak, C. P., and Schrott, A. J. (1994) J. Biol. Chem. 269, 2399–2404
23. Koenig, G., Reutelingsperger, C. P., Kuijten, G. A., Keenhen, R. M., Pals, S. T., and van Oers, M. H. (1994) Blood 84, 1415–1420
24. Schrott, A. J., Tanaka, Y., Madsen, J., and Fidler, I. J. (1984) Biol. Cell 51, 227–238
25. Schlegel, R. A., Prendergast, T. W., and Williamson, P. (1985) J. Cell. Physiol. 125, 215–218
26. McDowell, L., Williamson, P., and Schlegel, R. A. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 3331–3335
27. Allen, T. M., Williamson, P., and Schlegel, R. A. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 8067–8071
28. Nonaka, M., Matsuda, Y., Shiroishi, T., Morwaki, K., Nonaka, M., and Natsu, M. (1992) Biochim. Biophys. Acta 1111, 1–6
29. Harris, E. N., Gharavi, A. E., Boey, M. L., Patel, B. M., Mackworth-Young, C. G., Loizou, S., and Hughes, G. R. V. (1993) Lancet 2, 1211–1214
30. Gharavi, A. E., Harris, E. N., Asherson, R. A., and Hughes, G. R. V. (1989) Ann. N.Y. Acad. Sci. 412, 1–6
31. McNeil, H. P., Simpson, R. J., Chesterman, C. N., and Krilis, S. A. (1992) J. Biol. Chem. 148, 125–130
32. Gharavi, A. E., Harris, E. N., Asherson, R. A., and Hughes, G. R. V. (1983) Lancet 8067–8071