On the Numerical Solution of Nonlinear Fractional-Integro Differential Equations

Mehmet ŞENOL and İ. Timuçin DOLAPÇI
Nevşehir Hacı Bektaş Veli University, Department of Mathematics, Nevşehir, Turkey
Celal Bayar University, Department of Mechanical Engineering, Manisa, Turkey
e-mail:msenol@nevsehir.edu.tr, ihsan.dolapci@cbu.edu.tr

July 28, 2016

Abstract

In the present study, a numerical method, perturbation-iteration algorithm (shortly PIA), have been employed to give approximate solutions of nonlinear fractional-integro differential equations (FIDEs). Comparing with the exact solution, the PIA produces reliable and accurate results for FIDEs.

Keywords: Fractional-integro differential equations, Caputo fractional derivative, Initial value problems, Perturbation-Iteration Algorithm.

1 Introduction

Scientists has been interested in fractional order calculus as long as it has been in classical integer order analysis. However, for many years it could not find practical applications in physical sciences. Recently, fractional calculus has been used in applied mathematics, viscoelasticity [1], control [2], electrochemistry [3], electromagnetic [4].

Developments in symbolic computation capabilities is one of the driving forces behind this rise. Different multidisciplinary problems can be handled with fractional derivatives and integrals.

[5] and [6] are studies that describe the fundamentals of fractional calculus give some applications. Existence and uniqueness of the solutions are also studied in [7].

Similar to the studies in physical sciences, fractional order integro differential equations (FIDEs) also gave scientists the opportunity of describing and modeling many important and useful physical problems.

In this manner, a remarkable effort has been expended to propose numerical methods for solving FIDEs, in recent years. Fractional variational iteration method [8,9], homotopy analysis method [10,11], Adomian decomposition method [12,13] and fractional differential transform method [14,16] are among these methods.

In our study, we use the previously developed method PIA, to obtain approximate solutions of some FIDEs. This method can be applied to a wide range of problems without requiring any special assumptions and restrictions.

A few fractional derivative definitions of an arbitrary order exists in the literature. Two most used of them are the Riemann-Liouville and Caputo fractional derivatives. The two definitions are quite similar but have different order of evaluation of derivation.

The Riemann-Liouville fractional integral of order α is described by:

$$J^{\alpha}u(x) = \frac{1}{\Gamma(\alpha)} \int_{0}^{x} (x-t)^{\alpha-1}u(t)dt, \quad \alpha > 0, \quad x > 0.$$ (1)
The Riemann-Liouville and Caputo fractional derivatives of an arbitrary order are defined as the following, respectively

\[\frac{d^m}{dx^m} \left(J^{m-\alpha} \right) \frac{d^m}{dx^m} u(x) \]

\[\alpha = m \]

where \(m - 1 < \alpha \leq m \) and \(m \in \mathbb{N} \).

Due to the appropriateness of the initial conditions, fractional definition of Caputo is often used in recent years.

Definition 1.1 The Caputo fractional derivative of a function \(u(x) \) is defined as

\[D^\alpha u(x) = \left\{ \begin{array}{ll}
\frac{1}{\Gamma(m-\alpha)} \int_0^x (x-t)^{m-\alpha-1} u^{(m)}(t) dt,
& \text{for } m - 1 < \alpha \leq m \\
\frac{d^m}{dx^m} u(x),
& \alpha = m
\end{array} \right. \]

for \(m - 1 < \alpha \leq m \), \(m \in \mathbb{N} \), \(x > 0 \), \(u \in C^{m-1} \).

Following lemma gives the two main properties of Caputo fractional derivative.

Lemma 1.2 For \(m - 1 < \alpha \leq m \), \(u \in C^m \), \(\mu \geq -1 \) and \(m \in \mathbb{N} \) then

\[D^\alpha J^\mu u(x) = u(x) \]

and

\[J^\alpha D^\alpha u(x) = u(x) - \sum_{k=0}^{m-1} u^{(k)}(0^+) \frac{x^k}{k!}, \quad x > 0. \]

After this introductory section, Section 2 is reserved to a brief review of the Perturbation-Iteration Algorithm (PIA), in Section 3 some examples are illustrated to show the simplicity and effectiveness of the algorithm. Finally the paper ends with a conclusion in Section 4.

2 Analysis of the PIA

Differential equations are naturally used to describe problems in engineering and other applied sciences. Searching approximate solutions for complicated equations has always attracted attention. Many different methods and frameworks exist for this purpose and perturbation techniques \([17,19]\) are among them. These techniques can be used to find approximate solutions for both ordinary and partial differential equations.

Requirement of a small parameter in the equation that is sometimes artificially inserted is a major limitation of perturbation techniques that renders them valid only in a limited range. Therefore, to overcome the disadvantages come with the perturbation techniques, several methods have been proposed by authors \([20,29]\). Parallel to these attempts, a perturbation-iteration method has been proposed by Aksoy, Pakdemirli and their co-workers \([33,35]\) previously. A primary effort of producing root finding algorithms for algebraic equations \([30,32]\), finally guided to obtain formulae for differential equations also \([33,35]\). In the new technique, an iterative algorithm is constructed on the perturbation expansion. The present method has been tested on Bratu-type differential equations \([33]\) and first order differential equations \([34]\) with success. Then the algorithms were applied to nonlinear heat equations also \([35]\). Finally, the solutions of the Volterra and Fredholm type integral equations \([36]\) and ordinary differential equation systems \([37]\) have been presented by the developed method.

This new algorithm have not been used for any fractional integro differential equations yet. To obtain the approximate solutions of FIDEs, the most basic perturbation-iteration algorithm PIA(1,1) is employed by taking one correction term in the perturbation expansion and correction terms of only first derivatives in the Taylor series expansion. \([33,35]\).
Take the fractional-integro differential equation.

\[F\left(u^{(\alpha)}, u, \int_0^t g(t, s, u(s)) \, ds, \varepsilon\right) = 0 \] (7)

where \(u = u(t) \) and \(\varepsilon \) is a small parameter. The perturbation expansions with only one correction term is

\[
\begin{align*}
 u_{n+1} &= u_n + \varepsilon (u_c)_n \\
 u'_{n+1} &= u'_n + \varepsilon (u'_c)_n
\end{align*}
\] (8)

Replacing Eq. (8) into Eq. (7) and writing in the Taylor series expansion for only first order derivatives gives

\[
\begin{align*}
 F\left(u^{(\alpha)}_n, u_n, \int_0^t g(t, s, u_n(s)) \, ds, 0\right) \\
 + F_u\left(u^{(\alpha)}_n, u_n, \int_0^t g(t, s, u_n(s)) \, ds, 0\right) \varepsilon (u_c)_n \\
 + F_{u(\alpha)}\left(u^{(\alpha)}_n, u_n, \int_0^t g(t, s, u_n(s)) \, ds, 0\right) \varepsilon (u'_c)_n \\
 + F_u\left(u^{(\alpha)}_n, u_n, \int_0^t g(t, s, u_n(s)) \, ds, 0\right) \varepsilon \int (u_c) \\
 + F_{\varepsilon}\left(u^{(\alpha)}_n, u_n, \int_0^t g(t, s, u_n(s)) \, ds, 0\right) \varepsilon = 0
\end{align*}
\] (9)

or

\[
\left(u_c\right)_n \frac{\partial F}{n \partial u^{(\alpha)}} + (u_c)_n \frac{\partial F}{\partial u} + \left(\int (u_c)_n\right) \frac{\partial F}{\partial (\int u)} + \frac{\partial F}{\partial \varepsilon} + \frac{F}{\varepsilon} = 0
\] (10)

Here \((.)'\) represents the derivative according to the independent variable and

\[
F_{\varepsilon} = \frac{\partial F}{\partial \varepsilon}, \quad F_u = \frac{\partial F}{\partial u}, \quad F_{u'} = \frac{\partial F}{\partial u'}, \ldots
\] (11)

The derivatives in the expansion are evaluated at \(\varepsilon = 0 \). Beginning with an initial function \(u_0(t) \), first \((u_c)_0(t) \) is calculated by the help of (10) and then substituted into Eq. (8) to calculate \(u_1(t) \). Iteration procedure is continued using (10) and (8) until obtaining a reasonable solution.

3 Applications

Example 3.1

Consider the following nonlinear fractional-integro differential equation [38]:

\[
\frac{d^\alpha}{dt^\alpha} u(t) - \int_0^1 ts(u(s))^2 \, ds = 1 - \frac{t}{4}, \quad 0 < t < 1, \quad 0 < \alpha \leq 1
\] (12)

with the initial condition \(u(0) = 0 \) and the known exact solution for \(\alpha = 1 \) is

\[u(t) = t \] (13)

Before iteration process rewriting Eq. (12) with adding and subtracting \(u'(t) \) to the equation gives

\[
\varepsilon \frac{d^\alpha}{dt^\alpha} u(t) - u'(t) + \varepsilon u'(t) - \varepsilon \int_0^1 ts(u(s))^2 \, ds = 1 + \frac{t}{4} = 0
\] (14)

In this case for
\[F(u', u, \varepsilon) = \frac{1}{\Gamma(1 - \alpha)} \varepsilon \int_0^t \frac{u'(s)}{(t-s)\alpha} ds - u_n'(t) + \varepsilon u_n'(t) - \varepsilon \int_0^1 ts(u_n(s))^2 ds - 1 + \frac{t}{4} \] (15)

and the iteration formula
\[u'(t) + \frac{F}{F_u'} u(t) = -\frac{F_r + F}{F_u'} \] (16)

the terms that will be replaced in, are
\[
\begin{align*}
F &= u_n'(t) - 1 + \frac{t}{4} \\
F_u &= 0 \\
F_{u'} &= 1 \\
F_{\varepsilon} &= -u_n'(t) + \frac{1}{\Gamma(1 - \alpha)} \int_0^t \frac{u'(s)}{(t-s)\alpha} ds - \int_0^1 ts(u(s))^2 ds
\end{align*}
\] (17)

After substitution the differential equation for this problem, Eq.(10) becomes
\[\int_0^t (-s + t)^{-\alpha} u_n'(s) ds + (u_n'(t)) = \int_0^1 st(u_n(s))^2 ds + \frac{4 - t + 4(-1 + \varepsilon) u_n'(t)}{4\varepsilon} \] (18)

Appropriate to the initial conditions, chosen \(u_0(t) = 0 \) and, solving Eq.(18) for \(n = 0 \) gives
\[(u_n(c))_0 = t - \frac{t^2}{8} + C_1 \] (19)

This expression written in
\[u_1 = u_0 + \varepsilon (u_n(c))_0 \] (20)

gives
\[u_1(x, t) = u_0(x, t) + \varepsilon (t - \frac{t^2}{8} + C_1) \] (21)

or
\[u_1(x, t) = \varepsilon (t - \frac{t^2}{8} + C_1) \] (22)

Solving this equation for
\[u_1(0) = 0 \] (23)

we obtain
\[C_1 = 0 \] (24)

For this value and \(\varepsilon = 1 \) reorganizing \(u_1(t) \)
\[u_1(t) = t - \frac{t^2}{8} \] (25)

gives the first iteration result. If the iteration procedure is continued in a similar way, we obtain the following iterations.
\[u_2(t) = 2t - \frac{571t^2}{3840} + \frac{t^2 - \alpha (t + 4(-3 + \alpha))}{4\Gamma(4 - \alpha)} \] (26)
The other iterations contain large inputs and are not given. A computational software program could help to calculate the other iterations up to any order. In Table 1, some of the PIA iteration results are compared with the exact solution. The results express that the present method gives highly approximate solutions. Also in Figure 1, the obtained results are illustrated graphically.

Table 1: Numerical results of Example 3.1. for different \(u \) values when \(\alpha = 1 \)

\(t \)	\(u_2 \)	\(u_3 \)	\(u_4 \)	\(u_5 \)	Exact Solution	Absolute Error
0.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.1	0.09976	0.09953	0.09990	0.09981	0.10000	1.872712E-6
0.2	0.19905	0.19981	0.19962	0.19992	0.20000	7.490848E-6
0.3	0.29767	0.29957	0.29915	0.29983	0.30000	1.685440E-5
0.4	0.39620	0.39924	0.39850	0.39970	0.40000	2.996339E-5
0.5	0.49407	0.49882	0.49763	0.49953	0.50000	4.681780E-5
0.6	0.59146	0.59831	0.59662	0.59932	0.60000	6.741763E-5
0.7	0.68838	0.69770	0.69641	0.69908	0.70000	9.176289E-5
0.8	0.78483	0.79696	0.79940	0.79880	0.80000	1.198535E-4
0.9	0.88084	0.89619	0.89924	0.89984	0.90000	1.516896E-4
1.0	0.97630	0.99530	0.99906	0.99981	1.00000	1.872712E-4

Example 3.2 Consider the following system of nonlinear fractional-integro differential equations [39]:

\[
\frac{d^{\alpha_1} u(t)}{d t^{\alpha_1}} = 1 - \frac{1}{2} \left(\frac{d}{d t} \right) k(t)^2 + \int_0^t ((t-s)k(s) + u(s)k(s)) \, ds
\]
\[
\frac{d^{\alpha_2} k(t)}{d t^{\alpha_2}} = 2t + \int_0^t ((t-s)u(s) - k^2(s) + u^2(s)) \, ds \quad 0 < \alpha_1, \alpha_2 \leq 1
\]
Given with \(u(0) = 0, \ k(0) = 1 \) as initial conditions. The exact solution for \(\alpha_1 = \alpha_2 = 1 \) is

\[
\begin{align*}
 u(t) &= \sinh t \\
 k(t) &= \cosh t \\
\end{align*}
\]

Rewriting Eq.(28) in the following for with adding and subtracting \(u'(t) \) and \(k'(t) \) to the equation respectively gives

\[
\begin{align*}
 \varepsilon \frac{d^{\alpha_1} u(t)}{dt^{\alpha_1}} + u'(t) - \varepsilon u'(t) - 1 + \frac{1}{2}(k'(t))^2 - \varepsilon \int_0^t ((t-s) k(s) - u(s) k(s)) ds \\
 \varepsilon \frac{d^{\alpha_2} u(t)}{dt^{\alpha_2}} + k'(t) - \varepsilon k'(t) - 2t - \varepsilon \int_0^t ((t-s) u(s) + k^2(s) - u^2(s)) ds
\end{align*}
\]

In this case for

\[
\begin{align*}
 F(u', u, \varepsilon) &= \frac{1}{\Gamma(1-\alpha_1)} \varepsilon \int_0^t \frac{u'(s)}{(t-s)^{\alpha_1}} ds - \varepsilon \int_0^t ((t-s) k(s) + u(s) k(s)) ds - 1 + \frac{1}{2}(k'(t))^2 \\
 F(k', k, \varepsilon) &= \frac{1}{\Gamma(1-\alpha_2)} \varepsilon \int_0^t \frac{u'(s)}{(t-s)^{\alpha_2}} ds - \varepsilon \int_0^t ((t-s) u(s) - k^2(s) + u^2(s)) ds - 2t
\end{align*}
\]

and the iteration formula

\[
\begin{align*}
 u'(t) + \frac{F u}{F u'} u'(t) &= -\frac{F \varepsilon + \frac{F}{F u'}}{F u'} \tag{32}
\end{align*}
\]

the terms that will be replaced in, are

\[
\begin{align*}
 F &= u'_n(t) - 1 + \frac{k'_n(t)^2}{2} \\
 F_u &= 0 \\
 F_{u'} &= 1 \\
 F_{\varepsilon} &= -u'_n(t) + \frac{1}{\Gamma(1-\alpha_1)} \int_0^t \frac{u'_n(s)}{(t-s)^{\alpha_1}} ds - \int_0^t ((t-s) k_n(s) + u_n(s) k_n(s)) ds \tag{33}
\end{align*}
\]

and the iteration formula

\[
\begin{align*}
 k'(t) + \frac{F_k}{F_{k'}} k'(t) &= -\frac{F \varepsilon + \frac{F}{F_{k'}}}{F_{k'}} \tag{34}
\end{align*}
\]

the terms that will be replaced in, are

\[
\begin{align*}
 F &= k'_n(t) - 2t \\
 F_k &= 0 \\
 F_{k'} &= 1 \\
 F_{\varepsilon} &= -k'_n(t) + \frac{1}{\Gamma(1-\alpha_2)} \int_0^t \frac{k'_n(s)}{(t-s)^{\alpha_2}} ds - \int_0^t ((t-s) u_n(s) - k_n(s)^2 + u_n(s)^2) ds \tag{35}
\end{align*}
\]

After substitution, the system of differential equations for this problem become

\[
\begin{align*}
 \frac{1}{\Gamma(1-\alpha_1)} \int_0^t (-s + t)^{-\alpha_1} u'_n(s) ds + (u'_c(t))_n + \frac{-1 + \frac{1}{2}k'_n(t)^2 + u'_n(t)}{\varepsilon} = \int_0^t k_n(s)(-s + t + u_n(s)) ds + u'_n(t)
\end{align*}
\]
\[
\frac{1}{\Gamma(1 - \alpha_2)} \int_0^t (-s + t)^{-\alpha_2} k_n'(s)ds + (k_c'(t))_n = \int_0^t (-k_n(s)^2 + u_n(s)(-s + t + u_n(s)))ds + \frac{2t + (-1 + \varepsilon)k'(t)}{\varepsilon}
\]

(36)

Appropriate to the initial conditions, chosen \(u_0(t) = 0\) and \(k_0(t) = 1\) and solving Eq. (36) for \(n = 0, 1, 2, 3, \ldots\) the successive iterations are

\[
u_1(t) = \frac{1}{6}(6t + t^3)
\]

(37)

\[
k_1(t) = 1 + \frac{t^2}{2}
\]

(38)

\[
u_2(t) = \frac{1}{504} t (1008 + 168t^2 + 21t^4 + t^6) - \frac{t^2 - \alpha_1 (12 + t^2 + (-7 + \alpha_1) \alpha_1)}{\Gamma(5 - \alpha_1)}
\]

(39)

\[
k_2 (t) = 1 + t^2 + \frac{t^4}{24} + \frac{t^6}{240} + \frac{t^8}{2016} - \frac{t^{3 - \alpha_2}}{\Gamma(4 - \alpha_2)}
\]

(40)

Following in this manner the third iteration results, \(u_3(t)\) and \(k_3(t)\), are calculated. Again Table 2, Figure 2 and Figure 3 prove that PIA give remarkably approximate results. We can say that the higher iterations would give closer results.

\(t\)	PIA \((u_3)\)	Exact Solution	Absolute Error	PIA \((k_3)\)	Exact Solution	Absolute Error
0.0	0.000000	0.000000	0.000000	1.000000	1.000000	0.000000
0.1	0.100166	0.100166	1.591577E-10	1.005004	1.005004	1.191735E-11
0.2	0.201335	0.201336	2.053723E-8	1.020066	1.020066	3.060393E-9
0.3	0.304519	0.304520	3.556439E-7	1.045338	1.045338	7.884730E-8
0.4	0.40749	0.40752	8.714842E-6	1.081073	1.081073	7.934216E-7
0.5	0.521082	0.521095	1.326132E-5	1.127630	1.127625	4.774578E-6
0.6	0.636604	0.636553	4.896392E-5	1.185485	1.185465	2.077300E-5
0.7	0.758434	0.758583	1.490491E-4	1.255241	1.255169	7.230620E-5
0.8	0.87710	0.88105	3.950285E-4	1.337434	1.337434	2.139038E-4
0.9	0.925574	0.926516	9.426045E-4	1.433086	1.433086	5.592545E-4
1.0	1.073128	1.075201	2.072716E-3	1.544097	1.543080	1.327116E-3

4 Conclusion

In this study, Perturbation-Iteration Algorithm was introduced for some Fractional Differential Equations. It is clear that the method is very simple and reliable perturbation-iteration technique and producing very approximate results. We expect that the present method could used to calculate the approximate solutions of other types of fractional differential equations.

References

[1] Z.S. Yu, J.Z. Lin, Numerical research on the coherent structure in the viscoelastic second-order mixing layers, Appl Math Mech-Engl, 19 (1998) 717-723.

[2] B. Senol, A. Ates, B. Baykant Alagoz, C. Yeroglu, A numerical investigation for robust stability of fractional-order uncertain systems, ISA Transactions, 53 (2014) 189-198.
Figure 2: Comparison of the PIA solution \((u_3(t))\) and exact solution for Example 3.2. when \(\alpha_1 = \alpha_2 = 1\)

Figure 3: Comparison of the PIA solution \((k_3(t))\) and exact solution for Example 3.2. when \(\alpha_1 = \alpha_2 = 1\)
[3] K.B. Oldham, Fractional differential equations in electrochemistry, Adv Eng Softw, 41 (2010) 9-12.

[4] O. Heaviside, Electromagnetic theory, Cosimo, Inc.2008.

[5] F. Mainardi, Fractals and fractional calculus in continuum mechanics, Springer Verlag1997.

[6] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic press1998.

[7] A. Yakar, M.E. Koksal, Existence results for solutions of nonlinear fractional differential equations, Abstract and Applied Analysis, Hindawi Publishing Corporation, 2012.

[8] G.-c. Wu, E. Lee, Fractional variational iteration method and its application, Physics Letters A, 374 (2010) 2506-2509.

[9] S. Guo, L. Mei, The fractional variational iteration method using He's polynomials, Physics Letters A, 375 (2011) 309-313.

[10] L. Song, H. Zhang, Application of homotopy analysis method to fractional KdV–Burgers–Kuramoto equation, Physics Letters A, 367 (2007) 88-94.

[11] B. Ghazanfari, F. Veisi, Homotopy analysis method for the fractional nonlinear equations, Journal of King Saud University-Science, 23 (2011) 389-393.

[12] L. Song, W. Wang, A new improved Adomian decomposition method and its application to fractional differential equations, Applied Mathematical Modelling, 37 (2013) 1590-1598.

[13] S. Momani, N. Shawagfeh, Decomposition method for solving fractional Riccati differential equations, Applied Mathematics and Computation, 182 (2006) 1083-1092.

[14] S. Momani, Z. Odibat, V.S. Erturk, Generalized differential transform method for solving a space-and time-fractional diffusion-wave equation, Physics Letters A, 370 (2007) 379-387.

[15] A. Arikoglu, I. Ozkol, Solution of fractional integro-differential equations by using fractional differential transform method, Chaos, Solitons & Fractals, 40 (2009) 521-529.

[16] A. El-Sayed, H. Nour, W. Raslan, E. El-Shazly, A study of projectile motion in a quadratic resistant medium via fractional differential transform method, Applied Mathematical Modelling, (2014).

[17] A.H. Nayfeh, Perturbation methods, John Wiley & Sons2008.

[18] D.W. Jordan, P. Smith, P. Smith, Nonlinear ordinary differential equations, (1987).

[19] A.V. Skorokhod, F.C. Hoppensteadt, H.D. Salehi, Random perturbation methods with applications in science and engineering, Springer Science & Business Media2002.

[20] J.H. He, Iteration Perturbation Method for Strongly Nonlinear Oscillators, J. Sound Vibr. , 7 (2001) 631-642.

[21] R. Mickens, Iteration procedure for determining approximate solutions to non-linear oscillator equations, Journal of Sound and Vibration, 116 (1987) 185-187.

[22] R.E. Mickens, A generalized iteration procedure for calculating approximations to periodic solutions of “truly nonlinear oscillators”, Journal of Sound and Vibration, 287 (2005) 1045-1051.

[23] R. Mickens, Iteration method solutions for conservative and limit-cycle x1/3 force oscillators, Journal of Sound and Vibration, 292 (2006) 964-968.
[24] K. Cooper, R. Mickens, Generalized harmonic balance/numerical method for determining analytical approximations to the periodic solutions of the x 4/3 potential, Journal of Sound and Vibration, 250 (2002) 951-954.

[25] H. Hu, Z.-G. Xiong, Oscillations in an x (2m+ 2)/(2n+ 1) potential, Journal of Sound and Vibration, 259 (2003) 977-980.

[26] S.-Q. Wang, J.-H. He, Nonlinear oscillator with discontinuity by parameter-expansion method, Chaos, Solitons & Fractals, 35 (2008) 688-691.

[27] G. von Groll, D.J. Ewins, The harmonic balance method with arc-length continuation in rotor/stator contact problems, Journal of sound and vibration, 241 (2001) 223-233.

[28] S. Iqbal, A. Javed, Application of optimal homotopy asymptotic method for the analytic solution of singular Lane–Emden type equation, Applied Mathematics and Computation, 217 (2011) 7753-7761.

[29] J.-H. He, Homotopy perturbation method with an auxiliary term, Abstract and Applied Analysis, Hindawi Publishing Corporation, 2012.

[30] M. Pakdemirli, H. Boyaci, Generation of root finding algorithms via perturbation theory and some formulas, Applied Mathematics and Computation, 184 (2007) 783-788.

[31] M. Pakdemirli, H. Boyaci, H. Yurtsever, Perturbative derivation and comparisons of root-finding algorithms with fourth order derivatives, Mathematical and Computational Applications, 12 (2007) 117.

[32] M. Pakdemirli, H. Boyaci, H. Yurtsever, A root-finding algorithm with fifth order derivatives, Mathematical and Computational Applications, 13 (2008) 123.

[33] Y. Aksoy, M. Pakdemirli, New perturbation–iteration solutions for Bratu-type equations, Computers & Mathematics with Applications, 59 (2010) 2802-2808.

[34] M. Pakdemirli, Y. Aksoy, H. Boyaci, A New Perturbation-Iteration Approach for First Order Differential Equations, Mathematical and Computational Applications, 16 (2011) 890-899.

[35] Y. Aksoy, M. Pakdemirli, S. Abbasbandy, H. Boyaci, New perturbation-iteration solutions for nonlinear heat transfer equations, International Journal of Numerical Methods for Heat & Fluid Flow, 22 (2012) 814-828.

[36] İ. T. Dolapci, M. Şenol, M. Pakdemirli, New perturbation iteration solutions for Fredholm and Volterra integral equations, Journal of Applied Mathematics, 2013 (2013).

[37] M. Şenol, İ. T. Dolapci, Y. Aksoy, M. Pakdemirli, Perturbation-Iteration Method for First-Order Differential Equations and Systems, Abstract and Applied Analysis, Hindawi Publishing Corporation, 2013.

[38] J. Hou, B. Qin, C. Yang, Numerical Solution of Nonlinear Fredholm Integro-differential Equations of Fractional Order by Using Hybrid Functions and the Collocation Method, Journal of Applied Mathematics, 2012.

[39] M. Zurigat, S. Momani, A. Alawneh, Homotopy analysis method for systems of fractional integro-differential equations, Neural, Parallel and Scientific Computations, 17(2), 169, 2009.