Data Preservation in High Energy Physics

David M. South, on behalf of the ICFA DPHEP Study Group
Deutsches Elektronen Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
E-mail: david.south@desy.de

Abstract. Data from high–energy physics (HEP) experiments are collected with significant financial and human effort and are in many cases unique. At the same time, HEP has no coherent strategy for data preservation and re–use, and many important and complex data sets are simply lost. In a period of a few years, several important and unique experimental programs will come to an end, including those at HERA, the b–factories and at the Tevatron. An inter-experimental study group on HEP data preservation and long-term analysis (DPHEP) was formed and a series of workshops were held to investigate this issue in a systematic way. The physics case for data preservation and the preservation models established by the group are presented, as well as a description of the transverse global projects and strategies already in place.

1. Introduction

Since the 1950s, physicists have constructed particle colliders to study the building blocks of matter, where technological advances, as well as experimental discoveries, have resulted in the construction of bigger and more powerful accelerators. In most cases the next generation collider operates at a higher energy frontier or intensity than the previous one. This feature is displayed in figure 1, which shows the last 50 years in particle physics, where the clear trend to higher energies is visible in both hadron–hadron and e^+e^- colliders [1].

At the end of the first decade of the 21st century, the focus is firmly on the Large Hadron Collider (LHC) at CERN, which operates mainly as a pp collider, currently at a centre–of–mass energy of 7 TeV, where the first significant physics results are now emerging [2]. At the same time, a generation of other high energy physics (HEP) experiments are concluding their data taking and winding up their physics programmes. These include H1 and ZEUS at the world’s only $e^\pm p$ collider HERA (data taking ended July 2007), BaBar at the e^+e^- collider at SLAC (ended April 2008) and the Tevatron $p\bar{p}$ experiments DØ and CDF, who are now due to stop data taking in September 2011 [3]. The Belle experiment also recently concluded data taking at the KEK e^+e^- collider, where upgrades are now ongoing until 2012 [4].

The experimental data from these experiments still has much to tell us from the ongoing analyses that remain to be completed, but it may also contain things we do not yet know about. The scientific value of long term analysis was examined in a recent survey by the PARSE-Insight project [5], where around 70% of over a thousand HEP physicists regarded data preservation as very important or even crucial. Moreover, the data from in particular the HERA and Tevatron experiments are unique in terms of the initial state particles and are unlikely to be superseded anytime soon, even considering such future projects as the LHeC [6].
It would therefore be prudent for such experiments to envisage some form of conservation of their respective data sets. However, HEP has little or no tradition or clear current model of long term preservation of data in a meaningful and useful way. It is likely that the majority of older HEP experiments have in fact simply lost the data: misplaced, accidentally deleted, or if still existing only in some unusable state. The preservation of and supported long term access to the data is generally not part of the planning, software design or budget of a HEP experiment and for the few known preserved HEP data examples, in general the exercise has not been a planned initiative by the collaboration but a push by knowledgeable people, usually at a later date. The distribution of the data complicates the task, with potential headaches arising from ageing hardware where the data themselves are stored, as well as from unmaintained and outdated software, which tends to be under the control of the (defunct) experiments rather than the associated HEP computing centres.

To address this issue in a systematic way, a study group on Data Preservation and Long Term Analysis in High Energy Physics, DPHEP, was formed at the end of 2008 [7]. The aims of the study group include to confront the data models, clarify the concepts, set a common language, investigate the technical aspects, and to compare with other fields such as astrophysics and those handling large data sets. The experiments BaBar, Belle, BES-III, CLAS, CLEO, CDF, DØ, H1 and ZEUS and the associated computing centres at DESY (Germany), Fermilab (USA), IHEP (China), JLAB (USA), KEK (Japan) and SLAC (USA) are all represented in DPHEP.

A series of workshops [8–11] have taken place over the last two years, beginning at DESY in January 2009 and most recently at KEK in July 2010. The study group is officially endorsed with a mandate by the International Committee for Future Accelerators, ICFA [12] and the first DPHEP recommendations were published in 2009, summarising the initial findings and setting out future working directions [13]. The aims of the study group have also been presented to a wider physics audience via seminars, conferences and publications in periodicals [14–16]. The role of the DPHEP study group is to provide international coordination of data preservation efforts in high energy physics and to provide a set of recommendations for past, present and future HEP experiments.

In the following, the physics case for data preservation is examined, followed by the different models for data preservation identified by the study group. Current inter-experimental data preservation initiatives are then presented, followed by some words on governance and structures, before finally concluding with an outlook and summary of future working directions.
2. The Physics Case for Data Preservation

The motivation behind data preservation in HEP should have its roots in physics. One of the main assumptions concerning experimental HEP data is that older data will always be superseded by that from the next generation experiment, usually at the next energy frontier. However, this is not always the case as illustrated by the two following recent, notable examples of analysis of older HEP data.

The re-analysis of the JADE experimental \(e^+e^-\) data from the PETRA collider (DESY, 1979–1986), using a refined theoretical input, state of the art simulation and new analysis techniques has lead to a significant improvement in the determination of the strong coupling, in an energy range that is still unique [17, 18]. The running of the strong coupling, in agreement with the QCD prediction demonstrates the concept of asymptotic freedom [19,20], as illustrated in figure 3 (left), where the results from a similar analysis by the ALEPH experiment [21] are also shown.

A search for the production and non–standard decay of a Higgs boson in the LEP collider data (CERN, 1989–2000) was recently published by the ALEPH Collaboration [22], where a possible four tau final state is investigated, resulting from the decays of two intermediate pseudoscalars produced via a next–to–minimal supersymmetric Standard Model (NMSSM) Higgs decay [23,24]. For such a model, and for a pseudoscalar mass \(m_a = 10\) GeV, Higgs masses \(m_h < 107\) GeV are excluded at 95% confidence level, as illustrated in figure 3 (right).

As discussed in section 1, the \(e^\pm p\) data from the HERA collider are themselves a unique achievement, and in many analyses the dominant error on the measurement is due to the current theoretical uncertainties. Figure 4 (left) shows a variety of \(\alpha_s(M_Z)\) measurements, as well as the current world average, where it can be seen that for the latest H1 measurements the theoretical uncertainty dominates the error. In a situation that mirrors the above JADE analysis, it is
Figure 4. Examples of analyses of current HEP data with potential future impact. Left: Recent determinations of the strong coupling $\alpha_s(M_Z)$ from a variety of experiments compared to the 2009 world average [25]. Right: A comparison of the predicted inclusive jet production cross sections at the Tevatron and the LHC, as a function of x_T [28].

...
3. Models of Data Preservation

The resurrection of the JADE analysis chain to perform the analyses described above, carried out in the late 1990’s many years after the end of data taking, proved to be an eventful exercise and often a subject of luck rather than careful planning [15]. The general status of the LEP data, which was recorded as recently as the year 2000, is a concern, despite the continued paper output. A recent review of the status of the data of the four experiments identified that efforts are needed to ensure long term access [31]. The implementation of a data preservation model as early as possible in the lifetime of an experiment may greatly increase the likelihood of success, minimise the effort and ease the use of the data in the final years of the collaboration.

In order to identify different models of data preservation, first an important question must be asked: What is HEP data? The data themselves, the digital information in the event files and in databases, are only a small part of the complete picture: data preservation is not just about the data! Indeed, discussions within the DPHEP study group suggest for pre–LHC experiments a total of between one half and a few PB of data should be preserved, such that today’s computing centres are, at least by volume arguments, able to store the data\(^1\). In addition, the various software (simulation, reconstruction, analysis, user) must be considered. Concerning documentation, publications of data analysis or detector studies may be in journals, on SPIRES or arXiv, in HEPDATA or some other database, and may take the form of full papers, notes, manuals or slides. Many types of internal meta-data may also exist. The unique expertise of collaboration members is also at risk, as the person power associated to the experiment decreases. By planning a transition of the collaboration structure to something more suited to an archival mode, this particular loss may be minimised (see section 5).

The different data preservation models established by DPHEP are summarised in table 1, organised in levels of increasing benefit, which comes with increasing complexity and cost. Each level is associated with use cases, and the preservation model adopted by an experiment should reflect the level of analysis expected to be available in the future. More details on each of the preservation levels is given in the first DPHEP publication [13].

Preservation Model	Use Case
1. Provide additional documentation	Publication-related information search
2. Preserve the data in a simplified format	Outreach, simple training analyses
3. Preserve the analysis level software and the format	Full scientific analysis based on existing reconstruction
4. Preserve the reconstruction and simulation software and basic level data	Full potential of the experimental data

Table 1. Various data preservation models, listed in order of increasing complexity. Subsequent models are inclusive: e.g. model 4 also includes the steps and use cases of models 1, 2 and 3.

Past experiences with old HEP data like those described in section 2 indicate that the definition of the data should include all the necessary ingredients to retrieve and understand it in order to perform new analyses and that a complete re–analysis is only possible when all the ingredients can be accounted for. Only with the full flexibility does the full potential of the data remain, equivalent to the DPHEP level 4 data preservation. Accordingly, the majority of participating experiments in the study group plan for a level 4 preservation programme, although different approaches are employed concerning how this goal can be achieved.

Although a level 1 preservation model, to provide additional documentation, is considered the simplest, this still requires some, often substantial, activity by the experiment. The HERA

\(^1\) The collisions recorded by the LHC experiments result in 10’s of TB of data per day, or up to 15 PB per year.
collaborations, as well as BaBar, are all currently involved in dedicated efforts to safeguard and streamline the available documentation concerning their respective experiments. A level 2 preservation, to the conserve the experimental data in simplified format, is considered to be unsuitable for high level analysis, lacking the depth to allow, for example, detailed systematic studies to be performed. However, such a format is ideal of education and outreach purposes, which many experiments in the study group are also actively interested in (see section 4.3).

4. Common Data Preservation Projects
Since the formation of DPHEP, and especially after the initial findings of the group were published, the activities and models of the experiments have aligned to a certain degree and joint initiatives have been launched, related to all four data preservation levels. These projects are described in the following.

4.1. A generic validation suite
For data preservation to be truely useful, not only the data themselves must be preserved, but also the ability to perform some kind of meaningful operation on them. In the case of HEP, this means preserving the software and environment employed to analyse the data (level 3 preservation model), or if the reconstruction software is also included, a model where the data or Monte Carlo maybe reproduced (level 4 preservation model). While freezing the software in the current state is an option, experience has shown that this strategy would sustain analysis capability for only a limited amount of time, as well as introducing limitations by design. In order to preserve analysis capabilities for longer periods it would be beneficial to migrate to the latest software versions and technologies for as long as possible. Given the pace of technological changes, concerning multi–core CPU design, changing storage models and system architectures, as well the dependence on infrastructures such as the GRID or Clouds, and their associated protocols, this is a challenging prospect [32].

It would therefore be beneficial to have a framework to automatically test and validate the software and data of an experiment against changes and upgrades to the environment, as well as changes to the experimental software. As such a framework would examine many facets common to several current HEP experiments interested in a more complete data preservation model, the development of a generic validation suite is favourable. A test version of such a suite, which includes automated software build tools and data validation, is currently implemented at DESY-IT, in co–operation with the HERA experiments [33]. The scheme, which is illustrated in figure 5 is realised using a virtual environment capable of hosting an arbitrary number of virtual machine images, where the inputs to the images are separated into three catagories: experimental software, external software and operating system. An image is built with different configurations of operating systems and the relevant software, and pre-defined tests are then performed to detect migration problems and incoherence, as well as identifying the reasons behind them. Such a framework is by design expandable and able to host and validate the requirements from multiple experiments. A full version of the validation suite may now be implemented at DESY-IT, to safeguard the HERA data for the long term.

4.2. Global documentation initiatives
As well as the aforementioned individual documentation efforts, global information infrastructures in HEP may be beneficial to the data preservation project. INSPIRE [34], the successor to SPIRES, is an existing third-party information system for HEP, and is thus ideally situated to provide external management of experimental documentation. As well as many overall improvements [35] with respect to the ageing SPIRES system, the INSPIRE project is preparing for the ingestion of much more high–level information in addition to the scientific papers themselves. These additions range from simple, documented information from the
Figure 5. A sketch of the proposed experimental software validation scheme at DESY-IT.

experiments about a given analysis, through wikis and news-forums, to even the data themselves, in a storage model where controlled access is possible.

In a collaboration with the H1 experiment, INSPIRE will trial a few projects such as the hosting of H1 internal notes, and the linking of paper histories to publication records. This idea enables the presentation of the full history of a scientific result, from the initial conference presentations and papers, through internal talks and notes, to a final submitted and refereed publication. Another major advantage of such a scheme is that the responsibility of hosting the information passes from a defunct experiment to an active environment. An example of a new INSPIRE publication record [36] is shown in figure 6, where additional information would appear as an extra tab, which may, if desired, be only visible to collaboration members. There are clearly many possibilities for the experiments and INSPIRE to work together, and more fruitful collaborations are expected via the DPHEP study group.

4.3. HEP data for outreach, education and open access

The development of a HEP data format for outreach and education, equivalent to the DPHEP level 2 data preservation model, is an attractive proposition. In most cases such a project would run in parallel to preserving the full re-analysis potential. In recent years there is a notably increased global effort to improve the overall level of education in particle physics and to provide access to HEP to more people than ever before. Websites such as Teilchenwelt [37] or Quarknet [38], as well as the LHC@home project [39], help further the public understanding of science. Tutorials using a simplified format of real HEP data would be the next logical step, presented as HEP data with associated pedagogical exercises. Such a scheme has started within the BaBar Collaboration [40] and following recent discussions within DPHEP about common data formats, a true, global HEP data portal for outreach purposes seems possible. The Belle Collaboration also have an outreach programme, B-Lab, aimed at high school students, which uses real experimental data [41].

The challenge of releasing such formats to the public domain is to provide useful open access of HEP data beyond the walls of the original collaboration. There are however, many issues to consider, such as control of the data, correctness and reputation of the experiment, not to mention a lack of portability and the typical state of the documentation within the collaboration. The implications of open access need to be considered by the collaboration and the importance of a coherent strategy and presentation of the HEP data when it is published must be emphasised.
Figure 6. An example of the new record layout for papers in the INSPIRE database [36]. An additional tab is foreseen for internal information, visible only to the author and/or collaboration.

5. Resources, Governance and Structures
The transition to a data preservation model should be planned in advance of the projected end date of an experiment. An early preparation is needed and sufficient resources should be provided in order to maintain the capability to re-investigate such older data samples. However, the additional resources are estimated to be rather small in comparison to the person power allocated during the running period of an experiment. Typically, a surge of 2–3 FTEs for 2–3 years, followed by steady 0.5–1.0 FTE per year per experiment is required for the implementation of a level 3 or 4 preservation model, which should be compared to 300–500 FTEs per experiment for many years. Therefore, the data preservation cost estimates represent typically much less than 1% of the original investment, for a potential 5–10% increase in physics output.

The future structure of a collaboration should also be considered by HEP experiments. If the transition to a long term analysis model is begun too late the experimental organisation also risks being left in an undefined state. In particular, the scientific supervision of the preserved data sets and decisions regarding authorship and access to data, affecting potential outreach projects, may benefit from a restructuring of the collaboration towards the final years. The presence and influence of DPHEP may facilitate this transition, as an interface to global HEP solutions and as an aid to form common policy and standards.

Support for the DPHEP initiative has been expressed by CERN, DESY, Fermilab, IHEP and SLAC, as well as a variety of HEP committees. The lightweight structure of DPHEP and its interfaces is illustrated in figure 7. Representatives from the laboratories, the experiments and the computing centres, who are officially appointed by their organisations, are present, with one individual appointed by ICFA to take chairmanship of the group. The organisation receives input from an advisory board, representing all stakeholders, and continues to ultimately report to ICFA. The consolidation and continuation of the international cooperation within DPHEP is essential to the success and viability of the the data preservation effort.

6. Conclusions and Outlook
The collection of high energy physics data represents a significant investment and physics cases can be made to demonstrate the potential for scientific results beyond the lifetime of a collaboration. However, until recently no coherent strategy existed regarding long term access
of HEP data and an international study group, DPHEP, was formed to address this issue in a systematic way. Given the current experimental situation, data preservation efforts in HEP are timely, and large laboratories should define and install data preservation projects in order to avoid catastrophic loss of data once major collaborations come to an end. The preservation of the full analysis capability of experiments, including the reconstruction and simulation software, is recommended in order to achieve a flexible and meaningful preservation model. Such a project requires a strategy and well–identified resources, but provides additional research at particularly low cost, enhancing the return on the initial investment in the experimental facilities.

The efforts of the group are best performed within the common organisation at the international level DPHEP, through which there is a unique opportunity to build a coherent structure for the future. Common requirements on data preservation are now evolving via DPHEP into inter–experimental R&D projects, optimising the development effort and potentially improving the degree of standardisation in HEP computing in the longer term. The next DPHEP workshop is at Fermilab in May 2011 and a second publication is expected shortly from the group, describing the current projects in more detail and providing recommendations and guidelines for future HEP experiments.

References
[1] W. K. H. Panofsky 1997 The evolution of particle accelerators and colliders Beam Line, Vol. 27, No. 1 eds M. Riordan et al. p 36
[2] A selection of LHC review talks available here: Conference on LHC First Data, Ann Arbor, December 2010 http://www.umich.edu/mctp/LHC2010
[3] Fermilab Today, Jan. 11 2011 http://www.fnal.gov/pub/today/archive_2011/today11-01-11.html
[4] Z. Doležal 2009 Super KEKB and Belle II: Status of the KEK Super B factory Proc. Europhysics Conference on Higher Energy Physics, HEP-EPS 2009 (Cracow) Preprint arXiv:0910.0388
[5] Parse/Insight FP7 Project http://www.parse-insight.eu
[6] M. Klein and P. Newman 2009 LHeC: Novel designs for electron-quark scattering CERN Courier Vol. 49, No. 3 ed C. Sutton p 22
[7] ICFA Study Group on Data Preservation in High Energy Physics, DPHEP http://dphep.org
