Calculation of Positron States and Annihilation Parameters in Gamma and Amorphous Al$_2$O$_3$

S. ISHIBASHIa,* AND A. UEDONOb

aResearch Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan

bDivision of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan

We calculate positron states and annihilation parameters theoretically in gamma and amorphous Al$_2$O$_3$ and compared with these in alpha Al$_2$O$_3$. They show systematic variations and are investigated in terms of relationships with microscopic structures and densities. Good correlations of the positron annihilation parameters with the density are observed.

DOI: 10.12693/APhysPolA.137.231
PACS/topics: 71.60.+z, 78.70.Bj, 71.55.Jv

1. Introduction

Gallium nitride and related compounds attract much attention because of their applicability not only in light-emitting devices but also in power devices. The quality of gate insulator material plays a crucial role for the device performance and Al$_2$O$_3$ is a promising candidate. It is thought that deposited Al$_2$O$_3$ layers have various structures depending on the preparation method and conditions. The positron annihilation spectroscopy is expected to be applied in evaluating their qualities [1, 2]. Recently, we applied slow positron beams in characterizing gate-stack Al$_2$O$_3$ layers [3].

In the present study, we construct appropriate structural models of gamma (γ-) and amorphous (a-) Al$_2$O$_3$, which are often observed in real insulator layers. Positron states and annihilation parameters (the positron annihilation Doppler broadening S and W parameters as well as positron lifetime τ) therein are calculated and compared with those in alpha (α-) Al$_2$O$_3$.

2. Computational details

Structural models of γ-Al$_2$O$_3$ are prepared by reference to [4]. The γ-Al$_2$O$_3$ crystal has a defect cubic spinel structure. To obtain a stoichiometric Al$_2$O$_3$, three cubic cells are needed. An equivalent hexagonal supercell is used in this study. By removing 8 Al atoms, a stoichiometric Al$_{64}$O$_{96}$ structure is constructed. There are two different crystallographic Al sites in the cubic spinel structure, the octahedral (O) and tetrahedral (T) sites. The theoretical work by Streitz and Mintmire [5] indicated that, although it is energetically favorable when all vacant Al sites are located at O sites, the increase in energy when T sites are occupied with a modest fraction is small. Therefore, we construct 16 different structural models by randomly removing 8 Al atoms from the O sites only or from both the O and T sites.

Structural models of a-Al$_2$O$_3$ are prepared as follows. 64 Al and 96 O atoms are randomly distributed in cubic cells, whose lattice parameters are determined so that the density is 3.0, 3.3, or 3.5 g/cm3. First-principles molecular dynamics (MD) calculations are performed for each system using the Langevin thermostat as follows: (1) $T = 3000$ K, $\Delta t = 0.2$ fs, $\zeta = 10^{-1}$ fs for 0–0.5 ps, (2) $T = 3000$ K, $\Delta t = 0.5$ fs, $\zeta = 10^{-1}$ fs for 0.5–2.0 ps, (3) $T = 3000$ K, $\Delta t = 1.0$ fs, $\zeta = 0.01$ fs for 2.0–10.0 ps, (4) $T = 1500$ K, $\Delta t = 1.0$ fs, $\zeta = 1$ ps for 10.0–14.0 ps, and (5) $T = 1500$ K, $\Delta t = 1.0$ fs, $\zeta = 0.01$ ps for 14.0–22.0 ps, where T, Δt, and ζ represent a temperature, a time interval, and a friction parameter, respectively. From MD runs at 1500 K for each density, snapshots at every 1000 steps (1 ps) are extracted and the atomic positions therein are optimized. The obtained structures are reasonable when compared with previous studies [6, 7].

Structural models of defect-free α-Al$_2$O$_3$ and a system containing N_5, where two Al sites and three O sites are vacant, are also prepared using an orthorhombic supercell equivalent to $2 \times 2 \times 1$ hexagonal unit cells.

On these structural models, positron states and annihilation parameters S, W, and τ are calculated with our computational code QMAS [8]. The S and W parameters are evaluated using spherically averaged momentum densities. As for the enhancement factor, we use the form $\gamma = 1 + (\gamma_{\text{BN}} - 1)(1 - 1/\varepsilon_\infty)$, where γ_{BN} is the Borůvský–Nieminen enhancement factor [9] and ε_∞ is the high-frequency dielectric constant. This form is slightly different from the original semiconductor model [10]. It follows the form in the positron generalized-gradient approximation [11] and is consistent with the scaled positron-electron correlation energy [10]. Further details are described in our recent paper [12]. ε_∞ is set to be 3.0 in the present study.

*corresponding author; e-mail: shoji.ishibashi@aist.go.jp
3. Results and discussion

Figure 1 represents the calculated positron annihilation parameters in 16 [octahedral sites only (O only)] + 16 [octahedral and tetrahedral sites (O + T)] structural models of γ-Al$_2$O$_3$. Some of the positron-lifetime results have been already reported in Ref. [3]. Reflecting variations in their structures, the resultant S, W, and τ show finite distributions. The average (S, W, τ) values are $(0.4376, 0.01533, 239.0 \text{ ps})$ for the “O only” case and $(0.4396, 0.1516, 244.9 \text{ ps})$ for the “O + T” case, respectively. Although the differences between the two cases are not large, it seems slightly more likely that vacant sites are closely located from each other in the “O + T” case.

In Fig. 2, the calculated positron annihilation parameters for structures optimized from snapshots in MD runs at 1500 K are shown as a function of time. Although fluctuations exist, they show clear dependencies on the density. The calculated τ values for α-Al$_2$O$_3$ of the 3.3 or 3.5 g/cm3 cases as well as those in γ-Al$_2$O$_3$ are in good agreement with the values for the shortest component of the experimentally obtained lifetime spectra [3]. The calculated positron annihilation parameters for the defect-free (DF) state and V_5 state in α-Al$_2$O$_3$ are listed in Table I. Although the present τ value for the DF state is slightly longer than the experimental value of 143 ps [13], it is still in a reasonable range.

In Fig. 3, the calculated S and τ values for various structures are plotted for comparison. Several corresponding positron density distributions are also shown. Although there is a small but significant separation between γ- and α-Al$_2$O$_3$, all the points are on roughly the same line, showing a clear correlation between S and τ. On the other hand, a good negative correlation exists between S and W. As mentioned above, finite distributions of these parameters are observed for γ- and α-Al$_2$O$_3$. To make further quantitative statistical analyses, more data are required. The positron density distribution show large variations from a completely delocalized state to a localized state trapped at an open space.

In Fig. 4, the calculated S, W, and τ are represented as a function of the density ρ. The lower bounds of S and τ as well as the upper bounds of W at respective ρ values for α- and α-Al$_2$O$_3$ look to be on the same straight line. If an arbitrary part of the structure is a good representative of the whole structure, it is quite reasonable that the positron annihilation parameters S, W, and τ show clear relationships with ρ. The defect free state of α-Al$_2$O$_3$ and some of α-Al$_2$O$_3$ structures are thought to fulfill such a condition. Positron distributions therein are delocalized, and the resultant positron parameters are expected to bring average information of the system. The V_5 case of α-Al$_2$O$_3$ is completely opposite. The positron distribution is strongly localized, and only information in the vicinity of the vacancy is brought. Therefore, the results for V_5 in Fig. 4 are far off the straight lines. As mentioned above, the structure of γ-Al$_2$O$_3$ is characterized by the presence of the cation-site vacancies, although the degree of localization is weaker that that for the V_5 case in α-Al$_2$O$_3$. Then, the lower or upper bounds for γ-Al$_2$O$_3$ are slightly off the lines.
Calculation of Positron States and Annihilation Parameters in Gamma and Amorphous Al$_2$O$_3$

Fig. 3. S and τ in various structures of Al$_2$O$_3$ and several corresponding positron density distributions. VESTA [14] was used in drawing a part of figure.

Fig. 4. Calculated S (a), W (b), and τ (c) as a function of ρ.

4. Summary

We have successfully modeled reasonable structures of γ- and α-Al$_2$O$_3$. The positron states and annihilation parameters therein are calculated and compared with those in α-Al$_2$O$_3$. As for the S, W, and τ values in γ-Al$_2$O$_3$ and α-Al$_2$O$_3$, finite distributions are observed reflecting variations in their structures. The τ values in γ-Al$_2$O$_3$ and α-Al$_2$O$_3$ with the density of 3.3 or 3.5 g/cm3 are in good agreement with the experimental results. The S, W, and τ values in various phases of Al$_2$O$_3$ show good correlations with one another. They also show characteristic relationships with the density, which can be applied in characterizing Al$_2$O$_3$ insulator layers by the positron annihilation technique.

Since local structures of γ-Al$_2$O$_3$ and α-Al$_2$O$_3$ have an infinite number of possible configurations, it is important to accumulate further results of calculations. Effects of dopants and/or impurities as well as those of thermal history should be investigated as future issues.
Acknowledgments

This work was supported by the MEXT “Program for research and development of next-generation semiconductor to realize energy-saving society”.

References

[1] R. Krause-Rehberg, H.S. Leipner, Positron Annihilation in Semiconductors, Springer, Berlin 1999.
[2] F. Tuomisto, I. Makkonen, Rev. Mod. Phys. 85, 1583 (2013).
[3] A. Uedono, T. Nabatame, W. Egger, T. Koschine, C. Hugenschmidt, M. Dickmann, M. Sumiya, S. Ishibashi, J. Appl. Phys. 123, 155302 (2018).
[4] E. Menéndez-Proupin, G. Gutiérrez, Phys. Rev. B 72, 035116 (2005).
[5] F.H. Streitz, J.W. Mintmire, Phys. Rev. B 60, 773 (1999).
[6] G. Gutiérrez, A.B. Belonoshko, R. Ahuja, B. Johansson, Phys. Rev. E 61, 2723 (2000).
[7] G. Gutiérrez, B. Johansson, Phys. Rev. B 65, 104202 (2002).
[8] S. Ishibashi, T. Tamura, S. Tanaka, M. Kobyama, K. Terakura, Phys. Rev. B 76, 153310 (2007).
[9] E. Boroński, R.M. Nieminen, Phys. Rev. B 34, 3820 (1986).
[10] M.J. Puska, S. Mäkinen, M. Manninen, R.M. Nieminen, Phys. Rev. B 39, 7666 (1989).
[11] B. Barbiellini, M.J. Puska, T. Torsti, R.M. Nieminen, Phys. Rev. B 51, 7341 (1995).
[12] S. Ishibashi, A. Uedono, H. Kino, T. Miyake, K. Terakura, J. Phys. Condens. Matter 31, 475401 (2019).
[13] A. Uedono, K. Ikeuchi, K. Yamabe, J. Appl. Phys. 98, 023506 (2005).
[14] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).