Title:
Cohen-Macaulay \(r \)-partite graphs with minimal clique cover

Author(s):
A. Madadi and R. Zaare-Nahandi
COHEN-MACaulay r-partite graphs with minimal clique cover

A. MADADI AND R. ZAARe-NAHANDI

(Communicated by Bernard Teissier)

ABSTRACT. In this paper, we give some necessary conditions for an r-partite graph such that the edge ring of the graph is Cohen-Macaulay. It is proved that if there exists a cover of an r-partite Cohen-Macaulay graph by disjoint cliques of size r, then such a cover is unique.

Keywords: Primary: 05C25; Secondary: 13F55, 05E40, 05E45.

MSC(2010): Cohen-Macaulay graph, r-partite, clique cover, perfect r-matching.

1. Introduction

Mainly, after using the notion of simplicial complexes and its algebraic interpretation by Stanley in 1970s to prove the upper bound conjecture for number of simplicial spheres [10], this notion has been one of the main streams of research in commutative algebra. In this stream, characterization and classification of Cohen-Macaulay simplicial complexes have been extensively studied in last decades. It is known that the Cohen-Macaulay property of a simplicial complex and complement of its comparability graph coincide [8]. Therefore, to characterize all simplicial complexes which are Cohen-Macaulay, it is enough to characterize all graphs with this property [10].
To examine special classes of graphs, Estrada and Villarreal in [3] found some necessary conditions for bipartite graphs to be Cohen-Macaulay. Finally, Herzog and Hibi in [5] presented a combinatorial characterization for bipartite graphs equivalent to the Cohen-Macaulay property of these graphs. This purely combinatorial method can not be generalized for r-partite graphs in general. Because, as shown in Example 2.3, the Cohen-Macaulay property may depend on characteristics of the base field. In this paper, we consider r-partite graphs with a minimal clique cover and find a necessary condition for Cohen-Macaulay property of these graphs. More precisely, we prove that in a Cohen-Macaulay r-partite graph with a minimal clique cover, there is a vertex of degree $r - 1$ and the cover is unique.

2. Preliminaries

A simple graph is an undirected graph with no loop or multiple edge. A finite graph is denoted by $G = (V(G), E(G))$, where $V(G)$ is the set of vertices and $E(G)$ is the set of edges. Let $|V(G)| = n$. We use $[n] = \{1, 2, \ldots, n\}$ as vertices of G. The complementary graph of G is the graph \overline{G} on $[n]$ whose edge set $E(\overline{G})$ consists of those edges $\{i, j\}$ which are not in $E(G)$. An independent set of vertices is a set of pairwise nonadjacent vertices. An r-partite graph is a graph whose set of vertices can be partitioned into r disjoint subsets such that each set is independent. A subset $A \subset [n]$ is called a minimal vertex cover of G if (i) each edge of G is incident with at least one vertex in A, and (ii) there is no proper subset of A with property (i). It is easy to check that any minimal vertex cover of a graph is the complement set of a maximal independent set of the graph. A graph G is called unmixed (well-covered) if any two minimal vertex covers of G have the same cardinality. A clique in a graph is a set of pairwise adjacent vertices, and by an r-clique we mean a clique of size r. An r-matching in G is a set of pairwise disjoint r-cliques in G and a perfect r-matching is an r-matching which covers all vertices of G.

Let $\omega(G)$ denote the maximum size of cliques in G, which is called the clique number of G. Let $f : V(G) \to [k]$ be a map such that if v_1 is adjacent to v_2 then $f(v_1) \neq f(v_2)$. If such a map exists, we say that G is colorable by k colors. The smallest such k is called the chromatic number of the graph and is denoted by $\chi(G)$. A graph G is called perfect if $\omega(H) = \chi(H)$ for each induced subgraph H of G. The class
of perfect graphs plays an important role in graph theory and most of computations in this class can be done by fast algorithms. L. Lovász in [9] has proved that a graph is perfect if and only if its complement is perfect. M. Chudnovsky et al in [2] have proved that a necessary and sufficient condition for a graph G to be perfect is that G does not have an odd hole (a cycle of odd length greater than 3) or an odd anti-hole (complement of an odd hole) as induced subgraph.

Let G be a graph on $[n]$. Let $S = K[x_1, \ldots, x_n]$, the polynomial ring over a field K. The edge ideal $I(G)$ of G is defined to be the ideal of S generated by all square-free monomials x_ix_j provided that i is adjacent to j in G. The quotient ring $R(G) = S/I(G)$ is called the edge ring of G.

Let R be a commutative ring with an identity. The depth of R, denoted by depth(R), is the largest integer r such that there is a sequence f_1, \ldots, f_r of elements of R such that f_i is not a zero-divisor in $R/(f_1, \ldots, f_{i-1})$ for all $1 \leq i \leq r$, and $(f_1, \ldots, f_r) \neq R$. Such a sequence is called a regular sequence. The depth is an important invariant of a ring. It is bounded by another important invariant, the Krull dimension, the length of the longest chain of prime ideals in the ring. A ring R is called Cohen-Macaulay if depth$(R) = \dim(R)$. A graph G is called Cohen-Macaulay if the ring $R(G)$ is Cohen-Macaulay.

Theorem 2.1. [11, Proposition 6.1.21] If G is a Cohen-Macaulay graph, then G is unmixed.

A simplicial complex Δ on n vertices is a collection of subsets of $[n]$ such that the following conditions hold:
(i) $\{i\} \in \Delta$ for each $i \in [n]$,
(ii) if $E \in \Delta$ and $F \subseteq E$ then $F \in \Delta$.

An element of Δ is called a face and a maximal face with respect to inclusion is called a facet. The set of all facets of Δ is denoted by $\mathcal{F}(\Delta)$. The dimension of a face $F \in \Delta$ is defined to be $|F| - 1$ and dimension of Δ is the maximum of dimensions of its faces. A simplicial complex is called pure if all of its facets have the same dimension. For more details on simplicial complexes see [10].

The clique complex of a finite graph G on $[n]$ is the simplicial complex $\Delta(G)$ on $[n]$ whose faces are cliques of G. Let Δ be a simplicial complex on $[n]$. We say that Δ is shellable if its facets can be ordered as F_1, F_2, \ldots, F_m such that for all $j \geq 2$ the subcomplex $(F_1, \ldots, F_{j-1}) \cap F_j$ is pure of dimension $\dim F_j - 1$. An order of the facets satisfying this condition is called a shelling order. To say that F_1, F_2, \ldots, F_m is a shelling order.
order of Δ is equivalent to say that for all i, $2 \leq i \leq m$ and all $j < i$, there exists $l \in F_i \setminus F_j$ and $k < i$ such that $F_i \setminus F_k = \{l\}$. A graph G is called shellable if $\Delta(G)$ is a shellable simplicial Complex.

Let Δ be a simplicial complex on $[n]$ and I_{Δ} be the ideal of $S = K[x_1, \ldots, x_n]$ generated by all square-free monomials $x_{i_1} \cdots x_{i_t}$, provided that $\{i_1, \ldots, i_t\}$ is not a face of Δ. The ring S/I_{Δ} is called the Stanley-Reisner ring of Δ. A simplicial complex is called Cohen-Macaulay if its Stanley-Reisner ring is Cohen-Macaulay.

Theorem 2.2. [6, Theorem 8.2.6] If Δ is a pure and shellable simplicial complex, then Δ is Cohen-Macaulay.

Estrada and Villarreal in [3] have proved that for a bipartite graph G the Cohen-Macaulay property and pure shellability are equivalent. This is not true in general for r-partite graphs when $r > 2$ (Example 2.3).

Also in bipartite graphs, Cohen-Macaulay property does not depend on characteristic of the ground field. But again, this is not true in general as shown in the following example.

Example 2.3. Let G be the graph in Figure 1. Then, $R(G)$ is Cohen-Macaulay when the characteristic of the ground field K is zero but it is not Cohen-Macaulay in characteristic 2. Therefore the graph G is not shellable ([7]).
3. The Cohen-Macaulay property and uniqueness of perfect \(r\)-matching

M. Estrada and R. H. Villarreal in [3] have proved that if \(G\) is a Cohen-Macaulay bipartite graph and has at least one vertex of positive degree, then there is a vertex \(v\) such that \(\text{deg}(v) = 1\). By \(\text{deg}(v)\) we mean the number of vertices adjacent to \(v\). J. Herzog and T. Hibi in [5] have proved that a bipartite graph \(G\) with parts \(V\) and \(W\) is Cohen-Macaulay if and only if, \(|V| = |W|\) and there is an order on the vertices of \(V\) and \(W\) as \(v_1, \ldots, v_n\) and \(w_1, \ldots, w_n\) respectively, such that:

1) \(v_i \sim w_i\) for \(i = 1, \ldots, n\),
2) if \(v_i \sim w_j\), then \(i \leq j\),
3) for each \(1 \leq i < j < k \leq n\) if \(v_i \sim w_j\) and \(v_j \sim w_k\), then \(v_i \sim w_k\).

R. Zaare-Nahandi in [12] has proved that a well-covered bipartite graph \(G\) is Cohen-Macaulay if and only if there is a unique perfect 2-matching in \(G\).

Let \(\alpha(G)\) denote the maximum cardinality of independent sets of vertices of \(G\). Let \(\mathcal{G}\) be the class of graphs such that for each \(G \in \mathcal{G}\) there are \(k = \alpha(G)\) cliques in \(G\) covering all its vertices. For each \(G \in \mathcal{G}\) and cliques \(Q_1, \ldots, Q_k\) such that \(V(Q_1) \cup \cdots \cup V(Q_k) = V(G)\), we may take \(Q'_1 = Q_1\) and for \(i = 2, \ldots, k\), \(Q'_i\) the induced subgraph on the vertices \(V(Q_i) \setminus (V(Q_1) \cup \cdots \cup V(Q_{i-1}))\). Then \(Q'_1, \ldots, Q'_k\) are \(k\) disjoint cliques covering all vertices of \(G\). We call such a set of cliques, a basic clique cover of the graph \(G\). Therefore any graph in the class \(\mathcal{G}\) has a basic clique cover.

Proposition 3.1. Let \(G\) be an \(r\)-partite, unmixed and perfect graph such that all maximal cliques are of size \(r\). Then \(G\) is in the class \(\mathcal{G}\).

Proof. Let \(V_1, \ldots, V_r\) be parts of \(G\). By [13], \(|V_1| = |V_2| = \cdots = |V_r| = \alpha(G)|\). Also by [9], the complement graph \(\overline{G}\) is perfect. On the other hand, \(V_i\) is a clique of maximal size in \(\overline{G}\) for each \(1 \leq i \leq r\). Therefore, \(\chi(G) = \omega(G) = \alpha(G)|\). This implies that \(\overline{G}\) is \(\alpha(G)\)-partite. Therefore there are \(\alpha(G)\) disjoint maximal cliques in \(G\) covering all vertices. \(\square\)

The converse of the above proposition is not true as the following example shows.

Example 3.2. Let \(G\) be the graph in Figure 2. Then \(G\) is a graph in class \(\mathcal{G}\) which is 4-partite, unmixed and all maximal cliques are of size
4. But the induced subgraph on \{A, B, C, D, E\} is a cycle of length 5 and therefore, by [2], the graph G is not perfect.

An easy computation by Singular [4] shows that the dimension and the depth of the edge ring of G are both 4 and therefore, G is Cohen-Macaulay.

Let H be a graph and v be a vertex of H. Let $N(v)$ be the set of all vertices of H adjacent to v.

Theorem 3.3. [11, Proposition 6.2.4] *If H is Cohen-Macaulay and v is a vertex of H, then $H \setminus (v, N(v))$ is Cohen-Macaulay.*

Theorem 3.4. [13] *Let G be an r-partite unmixed graph such that all maximal cliques are of size r. Then all parts have the same cardinality and there is a perfect 2-matching between each two parts.*

Now, we present the main theorem of this paper which is a generalization of [3, Theorem 2.4].

Theorem 3.5. *Let G be an r-partite graph in the class \mathcal{G} such that each maximal clique is of size r. If G is Cohen-Macaulay then there is a vertex of degree $r - 1$ in G.*

Proof. By Theorem 3.4 all parts have the same cardinality. So there is a positive integer n such that $|V| = rn$. Assume that for all vertices v in G we have $\text{deg}(v) \geq r$. Let $Q_i = \{x_{1i}, x_{2i}, \ldots, x_{ri}\}$ for $i = 1, \ldots, n$ are cliques in a basic clique cover of G. Without loss of generality, assume that v_{11} be a vertex of the minimal degree. If $\text{deg}(v_{11}) = (r - 1)n$ then
$G = K_{n,n,...,n}$ is a complete r–partite graph. Thus G is not Cohen-Macaulay by [1, Exercise 5.1.26] and we get a contradiction. Therefore, $r \leq \deg(v_{11}) \leq (r - 1)n - 1$.

Let $N(v_{11}) = \{v_{21}, \ldots, v_{2l_2}, v_{31}, \ldots, v_{3l_3}, \ldots, v_{r1}, \ldots, v_{rl_r}\}$. We have $\deg(v_{11}) = l_2 + \cdots + l_r$. Without loss of generality, we may assume that $l_2 \leq l_i$ for $i = 3, \ldots, r$. Set $G' = G \setminus (\{v_{11}\}, N(v_{11}))$. The graph G' is Cohen-Macaulay by Theorem 3.3. If $l_2 = 1$, then, there exists $3 \leq i \leq r$ such that $l_i \geq 2$. The sets

$$\{v_{12}, \ldots, v_{1n}, v_{22}, \ldots, v_{2n}, v_{3(3+1)}, \ldots, v_{3n}, \ldots, (v_{i(i+1)}, \ldots, v_{in}), \ldots, v_{r(i+1)}, \ldots, v_{rn}\}$$

and

$$\{v_{12}, \ldots, v_{1n}, v_{3(3+1)}, \ldots, v_{3n}, \ldots, v_{i(i+1)}, \ldots, v_{in}, \ldots, v_{r(i+1)}, \ldots, v_{rn}\}$$

are two minimal vertex covers for G' and their cardinalities are not equal. Here, by $(v_{i(i+1)}, \ldots, v_{in})$ we mean the vertices $v_{i(i+1)}, \ldots, v_{in}$ are removed from the set. This contradicts to Cohen-Macaulay property of G'. Therefore, $l_2 \geq 2$. We claim that

$$\deg(v_{1i}) = l_2 + l_3 + \cdots + l_r = \deg(v_{11}), \quad i = 1, \ldots, l_2.$$

It is enough to show that $\deg(v_{12}) = l_2 + l_3 + \cdots + l_r$ and analogous argument proves the claim. If $\deg(v_{12}) > l_2 + l_3 + \cdots + l_r$, then there is a j_t, $l_t + 1 \leq j_t \leq n$ for some $2 \leq t \leq r$, such that $v_{12} \sim v_{1j_t}$. Without loss of generality we assume that $t = 2$.

If there is j_2, $l_2 + 1 \leq j_2 \leq n$, such that $v_{12} \sim v_{2j_2}$ then there is a minimal vertex cover for G' containing the set

$$\{v_{12}, v_{1(l_2+1)}, \ldots, v_{1n}, v_{3(3+1)}, \ldots, v_{3n}, \ldots, v_{r(l_r+1)}, \ldots, v_{rn}\}.$$

On the other hand, $\{v_{2(2+1)}, \ldots, v_{2n}, \ldots, v_{r(l_r+1)}\} \cup v_{r_{1}}, \ldots, v_{rl_r}\}$ is a minimal vertex cover of G'. By $l_2 \geq 2$ and Theorem 2.1, this contradicts the Cohen-Macaulay property of G'. Therefore $\deg(v_{12}) = l_2 + l_3 + \cdots + l_r$. Thus, for all $1 \leq i \leq l_2$ we have $N(v_{1i}) = \{v_{21}, \ldots, v_{2l_2}, v_{31}, \ldots, v_{3l_3}, \ldots, v_{r1}, \ldots, v_{rl_r}\}$. Consider the graph $H = G \setminus \{v_{2(2+1)}, \ldots, v_{2n}, \ldots, v_{r(l_r+1)}, \ldots, v_{rn}\} \cup N(v_{2(2+1)}) \cup \cdots \cup N(v_{2n}) \cup \cdots \cup N(v_{r(l+1)}) \cup \cdots \cup N(v_{rn})$. By Theorem 3.3, H is Cohen-Macaulay but the complement of H is not connected. This is a contradiction by [1, Exercise 5.1.26].

Theorem 3.5 implies that the perfect r-matching in a Cohen-Macaulay r-partite graph is unique.
Corollary 3.6. Let \(G \) be an \(r \)-partite graph in the class \(\mathcal{G} \) such that all maximal cliques are of size \(r \). If \(G \) is Cohen-Macaulay, then there is a unique perfect \(r \)-matching in \(G \).

Proof. Since \(G \) is in the class \(\mathcal{G} \), there is a perfect \(r \)-matching in \(G \). By Theorem 3.5, there is a vertex \(v \in V(G) \) of degree \(r - 1 \). Therefore, the \(r \)-clique in the \(r \)-matching which contains \(v \), must be in all perfect \(r \)-matchings of \(G \). The graph \(G \backslash \{v, N(v)\} \) is again an \(r \)-partite graph in the class \(\mathcal{G} \) which is Cohen-Macaulay by Theorem 3.3. Continuing this process, we find that the chosen perfect \(r \)-matching is the unique perfect \(r \)-matching in \(G \). \(\square \)

Acknowledgments

The authors wish to thank Abbas Nasrollah Nejad for his help in computational matters.

References

[1] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1938.
[2] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The strong perfect graph theorem, Ann. of Math. (2) 164 (2006), no. 1, 51–220.
[3] M. Estrada and R. H. Villarreal, Cohen-Macaulay bipartite graphs, Arc. Math. 68 (1997), no. 2, 124–128.
[4] G. M. Greuel, G. Pfister and H. Schnemann, (2009b) Singular 3.1.0 - A computer algebra system for polynomial computations, http://www.singular.uni-kl.de.
[5] J. Herzog and T. Hibi, Distributive lattices, bipartite graphs, and Alexander duality, J. Algebraic Combin. 22 (2005), no. 3, 289–302.
[6] J. Herzog and T. Hibi, Monomial Ideals, Springer-Verlag, London, 2011.
[7] M. Katzman, Characteristic-independence of Betti numbers of graph ideals, J. Combin. Theory Ser. A 113 (2006), no. 3, 435–454.
[8] M. Kubitzke and V. Welker, The multiplicity conjecture for barycentric subdivisions, Comm. Algebra 36 (2008), no. 11, 4223–4248.
[9] L. Lovász, A characterization of perfect graphs, J. Combin. Theory Ser. B 13 (1972) 95–98.
[10] R. Stanley, Combinatorics and Commutative Algebra, Birkhäuser Boston, Inc., Boston, 1996.
[11] R. H. Villarreal, Monomial Algebras, Marcel Dekker, Inc., New York, 2001.
[12] R. Zaare-Nahandi, Cohen-Macaulayness of bi-partite graphs, Bull. Malaysian Math. Sci. Soc., accepted.
[13] R. Zaare-Nahandi, Pure simplicial complexes and well-covered graphs, to appear in Rocky Mountain J. Math. arxiv: 1104.4556v2 [math.AC]
(Asghar Madadi) Department of Mathematics, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
E-mail address: a_madadi@znu.ac.ir

(Rashid Zaare-Nahandi) Department of Mathematics, Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan, Iran
E-mail address: rashidzn@iasbs.ac.ir