Supplementary Material

Initial estimate of parameters in the GP and ZIP distributions

For the GP distribution to model HDF counts inside a peak, its parameters were estimated based on number of bins containing at least \(k \) HDFs. Since

\[E(X) = \lambda \]

and

\[Var(X) = \lambda (1 + \phi \lambda)^2. \]

Method of moment gives estimator of \(\alpha \) and \(\lambda \) as:

\[\hat{\lambda} = \bar{X} \quad \text{and} \quad \hat{\phi} = \left(\frac{\bar{X}^2}{\hat{\lambda}} - 1 \right) / \hat{\lambda}. \]

For the ZIP distribution, since \(E(X) = \bar{X}, \quad S^2 = E(X)(1 + \mu - E(X)) \), we have

\[\hat{\mu} = \frac{\bar{X}}{\bar{X} - 1 + \bar{X}} \quad \text{and} \quad \hat{\mu} = \frac{\bar{X}}{\bar{X}}. \]
Table S1. Summary of overlaps among peaks identified by different peaking calling algorithms in NRSF and STAT1 ChIP-seq datasets*.

NRSF

	Peak Finder	MACS	HPeak	FindPeaks	HPeak (chip)	ChIPseeqer	SISSRs	CisGenome
Peak Finder 1,935	100	100	100	100	98.3	99.9	98.7	
MACS 4,679	83.3	87.4	90.2	99.7	87.4	97.8		
HPeak 4,404	91.7	88.7	100	87.3				
FindPeaks 3,445			98.0	100		89.3	99.2	
HPeak (chip) 4,085				86.3		99.2		
ChIPseeqer 2,361						98.9	94.8	
SISSRs 5,243								
CisGenome 2,545								

STAT1

	Peak Finder	MACS	HPeak	FindPeaks	HPeak (chip)	ChIPseeqer	SISSRs	CisGenome
Peak Finder								
MACS 22,402								78.1
HPeak 24,490								85.4
FindPeaks 41,127								92.5
HPeak (chip) 43,443								92.7
ChIPseeqer 11,662								100
SISSRs 9,561								87.3
CisGenome 38,878								

We compare two sets of peaks (generated from two different peak-calling algorithms) to assess how much overlap can be found among them. Numbers displayed is the percentage of peaks in one set that are overlapped with at least one peak in another set. For each pair of peak sets, two percentages can be calculated by switching the order of the two sets. The higher percentage for each pair of peak sets is shown.
Figure S1. Evaluation of the reproducibility of the ChIP-Seq assay. We plot pairs of empirical cumulative density functions (ECDFs, step function) of read start locations on each chromosome. For each plot, similarity of the curves indicates resemblance of the two reads distribution, hence reproducibility. **A.** ECDFs of reads from the STAT1 stimulated sample loaded on lanes 1 (blue) and 2 (red). **B.** ECDFs of reads from STAT1 stimulated sample lane 1 (blue) and unstimulated sample lane 3 (red).

A. Positive strand:
Negative strand:
B. Positive strand:
Negative strand:
Figure S2. Performance comparison between HPeak (using data from both treated and untreated samples or using data from treated sample only) and other ChIP-Seq analysis algorithms. We use the number of motif occurrences in a region 200 bps around each of the peak summit as the evaluating criterion. Higher number indicates more accurate estimation of the peak summit locations. A. NRSF ChIP-Seq data. B. STAT1 ChIP-Seq data.

A.

NRSF - 200 bp around peak summit

B.

STAT1 - 200 bp around peak summit
Figure S3. Histograms of peak lengths in four different ChIP-Seq datasets.
Figure S4. Comparison of model fitting using various distributions (Generalized Poisson (GP), Negative Binomial (NB) and Poisson distribution) to fit observed HDF count data on ChIP-enriched regions on Chromosome 1 of the STAT1 stimulated ChIP-Seq data. Curves shown are cumulative distribution functions (cdfs).
Figure S5. A. Illustration of the Hidden Markov model scheme. B. Illustration of the weighting scheme to account for uncertainties in the length of hypothetical DNA fragments.

A.

B.