AdaFuse: Adaptive Multiview Fusion for Accurate Human Pose Estimation in the Wild

Zhe Zhang† · Chunyu Wang‡ · Weichao Qiu† · Wenhu Qin∗ · Wenjun Zeng‡

Abstract Occlusion is probably the biggest challenge for human pose estimation in the wild. Typical solutions often rely on intrusive sensors such as IMUs to detect occluded joints. To make the task truly unconstrained, we present AdaFuse, an adaptive multiview fusion method, which can enhance the features in occluded views by leveraging those in visible views. The core of AdaFuse is to determine the point-point correspondence between two views which we solve effectively by exploring the sparsity of the heatmap representation. We also learn an adaptive fusion weight for each camera view to reflect its feature quality in order to reduce the chance that good features are undesirably corrupted by “bad” views. The fusion model is trained end-to-end with the pose estimation network, and can be directly applied to new camera configurations without additional adaptation. We extensively evaluate the approach on three public datasets including Human3.6M, Total Capture and CMU Panoptic. It outperforms the state-of-the-arts on all of them. We also create a large scale synthetic dataset Occlusion-Person, which allows us to perform numerical evaluation on the occluded joints, as it provides occlusion labels for every joint in the images. The dataset and code are released at https://github.com/zhezh/adafuse-3d-human-pose.

Keywords Human pose estimation · Multiple camera fusion · Epipolar geometry

Fig. 1 Our approach accurately detects the poses even though they are occluded by leveraging the features in other views. The bottom three rows are images from other view angles of the scene for readers to better perceive the 3D poses of the actors.
1 Introduction

Accurately estimating 3D human pose from multiple cameras has been a longstanding goal in computer vision (Liu et al., 2011; Bo and Sminchisescu, 2010; Gall et al., 2010; Rhodin et al., 2018; Amin et al., 2013; Burenius et al., 2013; Pavlakos et al., 2017; Belagiannis et al., 2014). The ultimate goal is to recover absolute 3D locations of the body joints in a world coordinate system from multiple cameras placed in natural environments. The task has attracted a lot of attention because it can benefit many applications such as augmented and virtual reality (Starnier et al., 2003), human-computer-interaction and intelligent player analysis in sport videos (Bridgeman et al., 2019).

The task is often addressed by a simple two-step framework. In the first step, it tries to detect the 2D poses in all camera views, for example, by a convolutional neural network (Cao et al., 2017; Xiao et al., 2018). Then in the second step, it recovers the 3D pose from the multiview 2D poses either by analytical methods (Burenius et al., 2013; Pavlakos et al., 2017; Belagiannis et al., 2014; Qiu et al., 2019; Amin et al., 2013) or by discriminative models (Iskakov et al., 2019; Tu et al., 2020). The camera parameters are usually assumed known in these approaches. The development of powerful network architectures such as (Newell et al., 2016) has notably improved the 2D pose estimation quality, which in turn reduces the 3D error remarkably. For example, in (Qiu et al., 2019), the 3D error on Human3.6M (Ionescu et al., 2014) decreases significantly from 52mm to 26mm.

However, obtaining small errors on benchmark datasets does not imply that the task has been truly solved unless the challenges such as background clutter, human appearance variation and occlusion encountered in real world applications are well addressed. In fact, a growing amount of efforts (Zhou et al., 2017; Ci et al., 2019; Yang et al., 2018; Rogez and Schmid, 2016; Pavlakos et al., 2018; Ci et al., 2020) have been devoted to improving the pose estimation performance in challenging scenarios, for example, by augmenting the training dataset (Zhou et al., 2017; Yang et al., 2018; Varol et al., 2017) with more images or by using more robust sensors such as IMUs (Trumble et al., 2017). We will discuss about this type of work in more details in section 2.

In this work, we propose to solve the problem in a different way by multiview feature fusion. The approach is orthogonal to the previous efforts. As shown in Figure 1, our approach can accurately detect the joints even when they are occluded in certain views. The motivation behind our approach is that a joint occluded in one view may be visible in other views. So it is generally helpful to fuse the features at the corresponding locations in different views. To that end, we present a flexible multiview fusion approach termed AdaFuse. Figure 2 shows the pipeline. It first uses camera parameters to compute the point-line correspondence between a pair of views. Then it “finds” the matched point on the line by exploring the sparsity of the heatmap representation without performing the challenging point-point matching. Finally, the features of the matched points in different views are fused. The approach can effectively improve the feature quality in occluded views. In addition, for a new environment with different camera poses, we can directly use AdaFuse without re-training as long as the camera parameters are available. This improves the applicability of the approach in real applications.

The performance of AdaFuse is further boosted by learning an adaptive fusion weight for each view to reflect its feature quality. This weight is leveraged in fusion in order to reduce the impact of low-quality views. If a joint is occluded in one view, its features are also likely corrupted. In this case, we hope to give a small weight to this view when performing multiview fusion such that the high-quality features in the visible views are dominant, and are free from being corrupted by low-quality features. We add some simple layers to the pose estimation network to predict heatmap quality based on the heatmap distribution and cross view consistency. We observe in our experiments that the use of adaptive fusion notably improves the performance.

We evaluate our approach on three public datasets including Human3.6M (Ionescu et al., 2014), Total Capture (Trumble et al., 2017) and CMU Panoptic (Joo et al., 2019). It outperforms the state-of-the-arts demonstrating the effectiveness of our approach. In addition, we also compare it to a number of standard multiview fusion methods such as RANSAC in order to give more detailed insights. We evaluate the generalization capability of our approach by training and testing on different datasets. We also create a synthetic human pose dataset in which human are purposely occluded by objects. The dataset allows us to perform evaluation on the occluded joints.

The rest of the paper is organized as follows. In section 2, we discuss the related work on multiview 3D human pose estimation with special focus on the approaches that aim to improve the performance in challenging environments. Section 3 introduces the basics for multiview feature fusion to lay the groundwork for AdaFuse. Then we describe how we learn adaptive weight for each camera view to reflect the feature quality, as well as the details of AdaFuse. In sections 5 and 6, we introduce the experimental datasets and results, respectively. Section 7 concludes this work.

2 Related Work

We first review the related work on multiview 3D human pose estimation in section 2.1. Then section 2.2 summarizes the techniques that are used to improve the in-the-wild performance. Finally, in section 2.3, we discuss the approaches on consensus learning such as RANSAC. This is necessary
2.1 Multiview 3D Human Pose Estimation

We briefly classify the multiview 3D human pose estimation methods into two classes. The first class is model-based approaches which are also known as analysis-by-synthesis approaches (Liu et al., 2011; Gall et al., 2010; Moeslund et al., 2006; Sigal et al., 2010; Perez et al., 2004). They first model human body by simple primitives such as sticks and cylinders. Then the parameters of the model (i.e., poses) are continuously updated according to the observations in multiview images until the model can be explained by the image features. The resulted optimization problem is usually non-convex. So expensive sampling techniques are often used. The main difference among those approaches lies in the adopted image features and the optimization algorithms. We refer the interested readers to earlier survey papers such as (Moeslund et al., 2006).

The advantage of the model-based approaches lies in its capability to handle occlusion because of the inherent structure prior embedded in human model. These approaches aggregate the local features as evidence to infer the global model parameters with the inherent human body structure as constraints. So if a joint is occluded, it can still rely on other joints to guess the possible locations that are consistent with the prior. However, the model-based approaches get larger 3D errors than the model-free approaches due to the difficult optimization problems.

The second class is model-free approaches (Qiu et al., 2019; Iskakov et al., 2019; Burenius et al., 2013; Pavlakos et al., 2017; Dong et al., 2019; Amin et al., 2013; Belagiannis et al., 2014; Xie et al., 2020) which often follow a two-step framework. They first detect 2D poses in images of all camera views. Then with the aid of camera parameters, they recover the 3D pose using either triangulation (Amin et al., 2013; Iskakov et al., 2019) or pictorial structure models (Burenius et al., 2013; Pavlakos et al., 2017; Dong et al., 2019). Recursive pictorial structure model is introduced in (Qiu et al., 2019) to speed up the inference process. The authors in (Iskakov et al., 2019) also propose to use learnable triangulation (Hartley and Zisserman, 2003) for human pose estimation which is more robust to inaccurate 2D poses. If the 2D poses are accurate, the recovered 3D poses are guaranteed to be accurate without worrying about being trapped in local optimum as the model-based methods.

The development of more powerful network architectures (Newell et al., 2016; Sun et al., 2019) has dramatically improved the 2D pose estimation accuracy on benchmark datasets, which in turn also decreases the 3D pose estimation error. For example, on the most popular benchmark Human3.6M (Ionescu et al., 2014), the 3D MPJPE error has decreased to about 20mm which can meet the requirements of many real-life applications.

2.2 Improving “In the Wild” Performance

Sensors Occlusion is probably the biggest challenge for in-the-wild scenarios. One straightforward solution is to use additional sensors such as IMUs (Trumble et al., 2017) and radio signals (Zhao et al., 2019), which are not impacted by occlusion. For example, Roetenberg et al. (Roetenberg et al., 2009) place 17 IMUs at the rigid bones. If the measurements are accurate, the 3D pose is fully determined. In practice, however, the accuracy is limited by the drifting problem. To that end, some approaches (Trumble et al., 2017; von Marcard et al., 2018; Gilbert et al., 2019; Malleson et al., 2017; Zhang et al., 2020) propose to fuse images and IMUs to achieve more robust pose estimation. Some works (Zhao et al., 2019; Li et al., 2019; Zhao et al., 2018) leverage the
fact that wireless signals in the WiFi frequencies traverse walls and reflect off the human body, and propose a radio-based system that can estimate 2D poses even when persons are completely occluded by walls. However, these approaches also have their own problems. For example, how to effectively fuse visual and inertial signals for IMU-based approaches? Besides, wearing sensors on the body is intrusive, and is not acceptable in some scenarios such as football games. On the other hand, the WiFi-based solutions cannot deal with self-occlusion which is a big limitation.

Data Augmentation Collecting more images for model training is an effective approach to improve the generalization performance. For example in (Zhou et al., 2017; Qiu et al., 2019), the authors propose to use the MPII (Andriluka et al., 2014) and the COCO (Lin et al., 2014) datasets to help train the 2D module of the 3D pose estimators which effectively reduces the risk of over-fitting to simple training datasets. However, annotating a sufficiently large pose dataset is expensive and time consuming. So some approaches (Rogez and Schmid, 2016; Varol et al., 2017; Hoffmann et al., 2019; Chen et al., 2016; Lassner et al., 2017) propose to generate synthetic images. The main issue is to bridge the gap between the synthetic and real images such that the model trained on synthetic images can be applied to real images. To that end, some approaches such as (Peng et al., 2018) propose to use generative adversarial networks to generate realistic images.

Spatial-Temporal Context Models Some approaches propose to use spatial-temporal context models to jointly detect all joints in a video sequence such that each joint can benefit from other joints in the same or neighboring frames. Intuitively, if a body joint is occluded thus is difficult to be detected according to its own appearance, they can use the locations of other joints to guess the possible location. For example, in a previous work (Cao et al., 2017; Kreiss et al., 2019), the authors propose to detect body parts, i.e. the links connecting two joints, in addition to the individual joints. This provides a chance to mutually enhance the detection of the two linked joints. In (Cheng et al., 2019; Pavllo et al., 2019), temporal convolution is utilized to deal with occlusion in current frames. Some works such as (Qiu et al., 2019) propose to establish the spatial correspondence across multiple camera views, and leverage multi-view features for robust joint detection. Significant performance improvement has been achieved for the occluded joints on several benchmark datasets. The main drawback of the approach (Qiu et al., 2019) is the lack of flexibility in practice since it needs to train a separate fusion network for every possible camera placement. Our work differs from (Qiu et al., 2019) in that it can be applied to new environments with different numbers of cameras and different camera poses without additional adaptation. We will compare the two methods in the experiments.

2.3 Consensus Learning

A fundamental problem in multi-sensor fusion is to detect and remove outliers as the sensors may produce inconsistent measurements. RANSAC (Fischler and Bolles, 1981) is the most commonly used outlier detection method. The main assumption is that the dataset consists of inliers. It produces reasonable results only with a certain probability which increases as the number of inliers. In practice, when the number of sensors is small, the probability of detecting the real outliers is also small. For example, in multi-view human pose estimation, the number of cameras is only four to eight for most benchmark datasets (Ionescu et al., 2014; Trumble et al., 2017). For such cases, we observe that RANSAC may not be the best option.

In recent years, uncertainty learning (Kendall and Gal, 2017; Gal and Ghahramani, 2015; Lakshminarayanan et al., 2017; Zafar et al., 2019; Lakshminarayanan et al., 2017; Pleiss et al., 2017) has attracted a lot of attention which is particularly important for high-risk applications such as autonomous driving and medical diagnosis (Gal, 2016; Ghahramani, 2016). The main idea is that, when a model makes a prediction, it also outputs a score reflecting the confidence of the prediction. Consider an autonomous car that uses a neural network to detect people. If the network is not confident about the prediction, the car could probably rely on other sensors for making the correct decision. Uncertainty is introduced to computer vision in (Kendall and Gal, 2017; Kreiss et al., 2019; He et al., 2019; Ilg et al., 2018). Another branch of approaches such as (Guo et al., 2017; Pleiss et al., 2017) propose to learn uncertainty by calibration. They propose to train the model such that the probability associated with the predicted class label agrees with its ground truth correctness likelihood.

The concept of uncertainty can be leveraged to reduce the impact of outliers. For example, in (Iskakov et al., 2019), the authors propose to predict an uncertainty score for each joint in each view. The score is used to weigh each view when doing triangulation. This dramatically reduces the 3D pose estimation error. Inspired by the success of uncertainty learning in computer vision tasks, we propose to learn uncertainty for multiview feature fusion. The predicted uncertainty is used as a weight when fusing multiview features. We show this adaptive feature fusion could effectively improve the fusion quality.
3 The Basics for Multiview Fusion

We first introduce the basics for multiview fusion to lay the groundwork for AdaFuse. In particular, we discuss how to establish the point-point correspondence between two views such that the features correspond to the same 3D space point can be fused together. The narrow baseline correspondence can be solved efficiently by local feature matching. However, in the context of multiview human pose estimation where only a small number of cameras are placed far away from each other, the local features cannot be robustly detected and matched especially for texture-less human regions. This poses a serious challenge.

To solve the problem, we present a coarse-to-fine approach to find matched points. It first establishes the point-to-line correspondence between two views by epipolar geometry, and then implicitly determine the point-to-point correspondence by exploring the sparsity of the heatmap representations. The approach notably simplifies the task because it avoids the challenging step of finding the exact correspondence. We first introduce epipolar geometry in section 3.1 in order to determine the point-to-line correspondence. Then in section 3.2, we describe how we adapt epipolar geometry to perform multiview heatmap fusion. Finally, we discuss the side effect caused by the simplified fusion strategy and our solution in section 3.3.

3.1 Epipolar Geometry

Let us denote a point in 3D space as $X \in \mathbb{R}^{3 \times 1}$ as shown in Figure 3. This could be the location of a body joint in the context of pose estimation. Note that homogeneous coordinate and column vector are used to represent a point. The 3D point is imaged in two camera views, at $x = PX$ in the first, and $x' = P'X$ in the second, where x and $x' \in \mathbb{R}^{3 \times 1}$ represent 2D points in images, P and $P' \in \mathbb{R}^{3 \times 4}$ are the projection matrix for each camera. Since the two 2D points correspond to the same 3D point and have the same semantic meanings, their features can be safely fused such that each view benefits from the other view.

The epipolar geometry (Hartley and Zisserman, 2003) between two views is essentially the geometry of the intersection of the image planes with the pencil of planes having the baseline as axis. The baseline is the line joining the camera centers C_1 and C_2. In particular, for each location x in the first view, it helps us to determine the location of the corresponding point x' in the second view without having to know X.

We can see from Figure 3 that the image points x and x', the 3D point X, and the camera centers C_1 and C_2 lie on the same plane π. The plane intersects with the two image planes at epipolar lines I and I', respectively. In particular,

$$I' = Fx$$
$$I = F^T x',$$

(1)

where $F \in \mathbb{R}^{3 \times 3}$ is fundamental matrix which can be derived from P and P'. Readers can refer to (Hartley and Zisserman, 2003) for detail derivation. In addition, the rays back-projected from x and x' intersect at X, and the rays are coplanar, lying in π. It is straightforward to derive that the location of x' which corresponds to x is guaranteed to lie on the epipolar line I'. However, we have to leverage additional information such as appearance to determine the exact location of x' on I'.

In the context of multiview fusion, for every image point x, we need to find the corresponding point x' in the second view so that we can fuse the features at x with those at x' and obtain more robust pose estimations. Since we do not know the depth of X, it could move freely on the line defined by the camera center C_1 and image point x. However, we know that x' cannot span the entire image plane but is restricted to the line I'. In the following section 3.2, we will describe how we perform multiview feature fusion based on epipolar geometry.

Sampson Distance In practice, usually we have 2D measurements x and x' corresponding to the same 3D location X which is unknown. Due to measurement noise and errors,
the line C_1x and C_2x' might not intersect exactly at location X. To obtain the optimal estimation for X, we search for \hat{X} subject to

$$d^2_{\text{Reproj}} = \min_{\hat{X}} d^2(x, P \hat{X}) + d^2(x', P' \hat{X}),$$

(2)

where $d(\cdot)$ denotes Euclidean distance, d_{Reproj} represents the reprojection distance between x and x'. Since there is an optimization process when obtaining d_{Reproj}, we adopt an one-step method which is its first-order approximation (Hartley and Zisserman, 2003). This approximation is also called Sampson distance as

$$d_{\text{Sampson}} = \frac{x'^\top F x}{(Fx)_1^2 + (Fx)_2^2 + (F'x')_1^2 + (F'x')_2^2},$$

(3)

where F is fundamental matrix, the subscript 1 or 2 denotes the first or second element of a vector. By using Sampson distance, we can directly obtain distance between a pair of locations without knowing the intermediate \hat{X}. In AdaFuse, we use Sampson distance to represent to what extent a pair of 2D joint detections support each other.

3.2 Heatmap Fusion

Multiview fusion is applied to heatmaps rather than intermediate features as shown in Figure 2. This is because heatmap has the nice property of sparsity which can simplify the point-point matching. A heatmap produces a per-pixel likelihood for joint locations in the image. Specifically, it is generated as a two-dimensional Gaussian distribution centered at the coordinate of the joint. So it has a small number of large responses near the joint location, and a large number of zeros at other locations. See Figure 4 (a) for an example heatmap of the right knee joint.

The sparse heatmaps allow us to safely skip the exact point-point matching because the features at the “zero” locations on the epipolar line are not contributing to the feature fusion. As a result, instead of trying to find the exact corresponding location in the other view, we simply select the largest response on the epipolar line as the matched point. This is a reasonable simplification because the corresponding point usually has the largest response. For example, in Figure 4, for each location x, we first compute the corresponding epipolar lines in the other two camera views. Then we find the largest responses on the two epipolar lines, respectively and fuse them with the response at x.

Let us denote the heatmap in view ν as H^ν. The epipolar line can be analytically computed based on the camera parameters for every location x. Then we formulate multiview fusion as

$$\hat{H}^\nu(x) = \lambda H^\nu(x) + \frac{1 - \lambda}{N} \sum_{\nu=1}^{N} \max_{x' \in I^\nu(x)} H^\nu(x'),$$

(4)

where λ balances the responses in the current and other views.

3.3 Side Effect and Solution

One side effect caused by the simplified fusion model (i.e. Eq. (4)) is that some background locations may be enhanced undesirably. We visualize an example in the second row of Figure 5. We can see that many background pixels, for example x, have non-zero responses which are caused by fusion. This phenomenon happens because multiple epipolar lines (in other views) may pass the ground truth joint location which has large responses, and some of the epipolar lines actually correspond to background pixels in the current view. This is explained in Figure 5. For a location x in the current view, the corresponding epipolar lines in the other three views are drawn in the first row. We can see that although x is not at a meaningful joint location, the epipolar
line in the first view passes the ground truth knee joint and leads to a large unexpected response for x.

Fortunately, there are patterns for the background pixels that could be undesirably impacted. In general, the pixels that are impacted by a high response location in another view are guaranteed to lie on the same line. More importantly, the lines that correspond to different views do not overlap. It means, for a location x in the background, its response can only be enhanced by at most one view. In contrast, the location which corresponds to meaningful body joints will be enhanced by multiple views. In other words, the correct location is guaranteed to have the largest response for general cases. So we take advantage of this observation and directly apply the SoftMax operator to remove the small responses. See the third row in Figure 5 for the effect. We can see that only the large responses around the joint location are preserved.

3.4 Implementation Details

It is worth noting that the above fusion method does not have learnable parameters. So we only need to train the backbone network such as SimpleBaseline (Xiao et al., 2018) to estimate pose heatmaps. The loss function for training the backbone network is defined as MSE loss between the estimated heatmaps and ground truth heatmaps. In the testing stage, given the heatmaps estimated by SimpleBaseline, we fuse them deterministically by our approach.

4 Adaptive Weight for Multiview Fusion

The fusion strategy introduced in the previous section treats all views evenly without considering the feature quality of each view. Note that the fusion weight is $\frac{1}{N}$ for the N views in Eq. (4). However, the strategy is problematic in some cases where the heatmaps of some camera views are incorrect. This is because those features may undesirably mess up the features in good views, leading to a completely incorrect 2D pose estimation results.

To solve this problem, we present a weight learning network to learn an adaptive weight for each view to faithfully reflect its heatmap quality. It takes inputs of the heatmaps of N-views extracted by the pose estimation network, and regresses N weights ω^v. Then multiview fusion is rewritten to consider the weights as follows

$$
\hat{H}^v(x) = \omega^v H^v(x) + \sum_{u=1}^{N} \omega^u \max_{x \in F^u(x)} H^u(x'),
$$

where $F^u(x)$ is the heatmap of x in the u-th view. The prediction of the adaptive fusion weight ω is implemented by a lightweight neural network as shown in Figure 6. On top of the heatmaps H provided by the pose estimation network, we extract two types of information for making the prediction. The first is the appearance embedding which extracts information such as the distribution characteristics of the heatmaps. The second is the geometry embedding which considers the cross-view location consistency. The two terms are complementary to each other. The proposed weight learning network can be joined with the pose estimation network for end-to-end training without enforcing supervision on the weights.

4.1 The Appearance Embedding

The heatmap of each joint actually contains rich information to infer its heatmap quality. For example, if the predicted heatmap has a desired shape of Gaussian kernel, then in many cases, the heatmap quality is good. In contrast, if the predicted heatmap has random and small responses all over the space (for example, when the joint is occluded), then the quality is likely to be bad.

We propose a simple network to extract appearance embeddings for each joint in each camera view. Figure 7 shows the network structure. Starting from the heatmaps H_v, we apply a convolutional layer to extract features. Then the features are down-sampled by average pooling and fed to a Fully Connected (FC) layer for extracting the appearance embeddings. Different joint types and camera views share the same weights. We only show the network for a single view and a single joint for simplicity. The appearance embedding network is jointly learned end-to-end with the pose estimation network.
4.2 The Geometry Embedding

The appearance embedding alone is not sufficient for some challenging cases where the heatmaps have the desired shape of Gaussian kernel but at the wrong locations. One such example is when the left knee is detected at the location of right knee which is usually known as the “double counting” problem to the community. To solve this problem, we propose to leverage the location consistency information among all camera views. Our core motivation is that the predicted joint location in one camera view is more reliable if it agrees with the locations in other views.

We implement this idea by a geometry embedding network as shown in Figure 8. Starting from the heatmaps H, we first apply the “soft-argmax” operator (Sun et al., 2018) to obtain the location (x, y) of the joint in each view. We also get the heatmap response value s in that location to reflect its confidence. Then we compute the Sampson distance (Hartly and Zisserman, 2003) $\text{dist}_{i \leftrightarrow j}$ between the current view and other views to measure the correspondence or consistency error. A small $\text{dist}_{i \leftrightarrow j}$ means the joint locations in the two views are consistent. Intuitively, the location that is consistent with most views is more reliable. Finally, we propose to use a FC layer to embed the Sampson distance into a feature vector. The feature vectors of all camera pairs are then averaged to obtain the final geometry embedding.

4.3 Weight Learning Network

We propose a simple network consisting of three FC layers to transform the concatenated appearance and geometric embeddings to regress the final weight. It is worth noting that we do not train the weight learning network independently. Instead, we join it with the pose estimation network to minimize the fused 2D heatmap loss without enforcing intermediate supervision on the fusion weights. The first column in Figure 9 shows some example weights predicted by our approach. We can see that when the joints are occluded, and are localized at incorrect locations, the corresponding fusion weights are indeed smaller than other joints.

5 Datasets and Metrics

We introduce the three datasets used for evaluation and the corresponding metrics. We also describe how we construct the synthetic person dataset Occlusion-Person which has a large amount of human-object occlusion.

Table 1

Dataset	Frames	Cameras	Occluded Joints
Human3.6M	784k	4	-
Total Capture	230k	8	-
Panoptic	36k	31	-
Occlusion-Person	73k	8	20.3%

![Fig. 9](image-url) We visualize the predicted fusion weights by the size of the markers in the first column. A large marker denotes a larger weight. The rest two columns show the poses estimated by HeuristicFusion and AdaFuse, respectively. Our AdaFuse has clearly better estimations due to the consideration of the feature quality in every view.
5.1 Datasets

The Human3.6M Dataset (Ionescu et al., 2014) It provides synchronized images captured by four cameras. There are seven subjects performing daily actions. We use a cross-subject evaluation scheme where subjects 1, 5, 6, 7, 8 are used for training and 9, 11 for testing. We also use the MPII dataset (Andriluka et al., 2014) to augment the training data to avoid over-fitting to the simple background. Since the MPII dataset provides only monocular images, we only train the backbone network before multiview fusion.

The Total Capture Dataset (Trumble et al., 2017) It provides synchronized person images captured by eight cameras. Following the dataset convention, the training set consists of “ROM1,2,3”, “Freestyle1,2”, “Walking1,3”, “Acting1,2” and “Running1” on subjects 1, 2 and 3. The testing set consists of “Freestyle3 (FS3)”, “Acting3 (A3)” and “Walking2 (W2)” on subjects 1,2,3,4 and 5.

The CMU Panoptic Dataset (Joo et al., 2019) This recently introduced dataset provides images captured by dozens of cameras. We uniformly select six cameras to evaluate the impact of the number of cameras on 3D pose estimation. In particular, the cameras 1, 2, and 10 are firstly selected to construct a 3-view experiment setting. Then the cameras 13, 19 and 23 are sequentially added to the previous three cameras to construct a four, five and six view experiment setting, respectively. We follow the practice of the previous work (Xiang et al., 2019) to select the training and testing sequences which consist of only one person. Since few works have reported numerical results on this dataset, we only compare our approach to the baselines.

The Occlusion-Person Dataset The previous benchmarks do not provide occlusion labels for the joints in images which prevents us from performing numerical evaluation on the occluded joints. In addition, the amount of occlusion in the benchmarks is limited. To address the limitations, we propose to construct this synthetic dataset Occlusion-Person. We adopt UnrealCV (Qiu et al., 2017) to render multiview images and depth maps from 3D models. In particular, thirteen human models of different clothes are put into nine different scenes such as living rooms, bedrooms and offices. The human models are driven by the poses selected from the CMU Motion Capture database. We purposely use objects such as sofas and desks to occlude some body joints. Eight cameras are placed in each scene to render the multiview images and the depth maps. The eight cameras are placed evenly every 45 degree on a circle of two meters radius at about 0.9 and 2.3 meters high, respectively. We provide the 3D locations of 15 joints as ground truth. Figure 10 shows some sample images from the dataset and spatial configuration of the cameras.

The occlusion label for each joint in an image is obtained by comparing its depth value (available in the depth map), to the depth of the 3D joint in the camera coordinate system. If the difference between the two depth values is smaller than 30cm, then the joint is not occluded. Otherwise, it is occluded. Table 1 compares this dataset to the existing benchmarks. In particular, about 20% of the body joints are occluded in our dataset. We use 75% of the dataset for training and 25% for validation.

5.2 Metrics

2D Metrics The Percentage of Correct Keypoints (PCK) metric introduced in Andriluka et al. (2014) is commonly used for 2D pose evaluation. PCKh@t measures the percentage of the estimated joints whose distance from the ground-truth joints is smaller than t times of the head length. Following the previous works, we report results when t is $\frac{1}{3}$. Since the head length is not provided in the used three benchmarks, we approximately set it to be 2.5% of the human bounding box width for all benchmarks.

3D Metrics The 3D pose estimation accuracy is measured by Mean Per Joint Position Error (MPJPE) between a ground truth 3D pose $y = [p_1^3, \ldots, p_M^3]$ and an estimated 3D pose $\hat{y} = [\hat{p}_1^3, \ldots, \hat{p}_M^3]$; $\text{MPJPE} = \frac{1}{M} \sum_{i=1}^{M} \|p_i^3 - \hat{p}_i^3\|_2$ where M is the number of joints in a pose. We do not align the estimated 3D poses to the ground truth by Procrustes. This is referred to as protocol 1 in some works (Martinez et al., 2017; Tome et al., 2018).
Table 2 The 2D pose estimation accuracy (PCKh@t) of the baseline methods and our approach on the Human3.6M dataset. We report results for each individual joint and the average over all joints.

Methods	Root	Belly	Neck	Nose	Head	Hip	Knee	Ankle	Shlder	Elbow	Wrist	Mean
NoFuse	95.8	77.1	60.4	86.4	86.2	79.3	81.5	58.6	65.1	78.3	70.1	74.8
HeuristicFuse	96.0	79.3	60.7									

Table 3 The 3D pose estimation error (mm) of the baseline methods and our approach on the Human3.6M dataset.

Methods	Belly	Neck	Nose	Head	Hip	Knee	Ankle	Shlder	Elbow	Wrist	Mean
NoFuse	21.6	16.8	15.7	11.3	17.8	25.8	35.8	22.0	26.8	34.1	22.9
HeuristicFuse	21.6	16.8	15.7	11.0	17.9	23.0	32.7	21.9	25.0	25.7	21.0
ScoreFuse	21.4	16.7	15.8	10.9	18.3	21.3	30.8	21.8	23.3	23.2	20.1
RANSAC	21.6	16.8	15.7	11.2	17.9	23.9	34.6	22.0	25.8	28.2	21.8
AdaFuse (Ours)	21.3	16.7	15.8	10.9	18.3	20.6	30.2	21.8	21.3	21.1	19.5

6 Experimental Results

We compare our approach to four baselines. The first is NoFuse which estimates 2D poses independently for each view without multiview fusion. The second is HeuristicFuse which assigns a fixed fusion weight for each view according to Eq. (4). The parameter λ is set to be 0.5 by cross-validation. The third baseline is ScoreFuse which uses the same formulation as AdaFuse, i.e. Eq. (5), for feature fusion. It differs from AdaFuse only in the way we compute ω. In particular, ScoreFuse computes ω as the maximum value of the heatmap H. Our approach is denoted as AdaFuse which uses the predicted weight for fusion as in Eq. (5). All of the four methods use triangulation (Hartley and Zisserman, 2003) to estimate 3D pose from the multiview 2D poses. We also compare to a baseline RANSAC which does not perform multiview fusion, but uses RANSAC to remove the outliers in triangulation.

6.1 Results on Human3.6M

2D Pose Estimation Results The 2D pose estimation results are presented in Table 2. All multiview fusion methods remarkably outperform NoFuse. The improvement is most significant for the Elbow and Wrist joints because they are frequently occluded by human body. The results demonstrate that multiview fusion is an effective strategy to handle occlusion. AdaFuse achieves the highest average accuracy among all fusion methods validating that learning appropriate fusion weights can effectively reduce the negative impact caused by the features of low-quality views.

3D Pose Estimation Results Table 3 shows the 3D pose estimation errors of the baselines and our approach. We can see that NoFuse gets an average error of 22.9mm. This is a very strong baseline whose error is only slightly larger than the state-of-the-arts (see Table 4). On top of this strong baseline, we observe that adding multiview fusion can further reduce the 3D pose estimation errors.

HeuristicFuse gets a smaller error than NoFuse which is consistent with the 2D results in Table 2. The mean error only decreases by 1.9mm because most examples are relatively easy leaving little space for improvement. However, significant improvement is achieved for the challenging joints such as Wrist. The ScoreFuse gets a smaller error than HeuristicFuse. It means assigning small weights to low-quality views helps improve the quality of the fused heatmaps. Finally, our approach AdaFuse, which determines the fusion weight by considering both appearance cues and geometry consistency, notably decreases the average error to 19.5mm. Considering the baseline is already very strong, the improvement is significant. We notice that AdaFuse achieves slightly worse results on a small number of joints such as hip and head. This is mainly because these joints are rarely oc-
cluded in the datasets so the 2D pose estimator can obtain very accurate estimations for them. Further applying cross view fusion will introduce small noise to heatmaps leading to slightly worse 2D pose estimation accuracy. But when occlusion occurs which is often the case in practice, the benefit brought by cross view fusion will be much more significant than the harm caused by the small noise.

RANSAC is the de facto standard for solving robust estimation problems. As shown in Table 3, it outperforms NoFuse by removing some outlier 2D poses in triangulation. However, it is not as effective as the multiview fusion methods because the latter also attempt to refine, in addition to removing, the outlier poses. Another reason is that the number of cameras in this task is small which reduces the chance of finding the true outliers. In addition, we find that RANSAC is very sensitive to the threshold used for determining whether a data point is inlier or outlier. In our experiments, we set the threshold by cross validation.

Fig. 12 We visualize the weights predicted by the ScoreFuse and AdaFuse, respectively. For example, in the first example (left sub-figure), the pose estimation network generates a high response at the wrong location for the first view. Consequently, ScoreFuse undesirably gives a large weight. In contrast, AdaFuse gives a small weight by identifying that its location is inconsistent with other views.

To better understand the improvement brought by AdaFuse, we divide the testing samples of the Human3.6M dataset into six groups according to the 3D errors of NoFuse. Then we compute the average error for each group. Figure 11 shows the results of various baselines. We can see that AdaFuse achieves the most significant improvement when the original error of NoFuse is large. However, even when the pose estimations of NoFuse are already accurate, AdaFuse can still reduce the error slightly.

Ablation Study on Fusion Weights One typical situation where ScoreFuse fails is when the pose estimation network generates large scores at inaccurate locations. In this case, AdaFuse can outperform ScoreFuse by leveraging the multiview geometry consistency. To support this conjecture, we visualize some typical heatmaps and the corresponding fusion weights predicted by the two methods, respectively, in Figure 12. We find that the heatmap responses are large for the four views although the locations are inaccurate for the first and third view. ScoreFuse gives large weights for all views which finally leads to a corrupted heatmap. In contrast, AdaFuse identifies that the predicted locations in the first and third view are inconsistent with the other two views in spite of their large scores. So it decreases the weights to ensure the good quality of the fused heatmap.

In addition, we also conduct ablation study on AdaFuse by using only one of two embedding networks. When we only use either the appearance embedding or geometry embedding, the 3D errors increase to 20.3mm and 19.9mm, respectively. Note that the improvement is actually much larger on those challenging examples. The results validate that the two embeddings are complementary.

Comparison to the State-of-the-arts Table 4 compares our approach to the state-of-the-arts. We can see that our approach outperforms all of them. Note that two approaches, i.e. Triangulation and Volumetric, are used in (Iskakov et al., 2019) to lift 2D poses to 3D. The Triangulation approach is more comparable to ours. Our approach AdaFuse decreases the error of (Iskakov et al., 2019) by about 13% (≈ \(\frac{22.6 - 19.2}{22.6} \)). The improvement is significant considering that the error of the state-of-the-art is already very small.

6.2 Results on Panoptic

We evaluate the impact of the number of cameras on this dataset. Figure 13 shows the mean 3D errors when three to six cameras are used, respectively. In general, the error decreases when more cameras are used for most baselines. However, we observe that the error of NoFuse actually becomes larger when the camera number increases from three to four. This undesirable phenomenon happens because the new camera view is very challenging thus the 2D pose estimation results are inaccurate. However, for our approach AdaFuse, the negative impact of low-quality heatmaps in individual views is limited due to the adaptive multiview fusion. We can see that the error of AdaFuse consistently decreases when the number of cameras increases. Since there is not a commonly adopted evaluation protocol and very few works have reported results on this new dataset, we do not compare our approach to the other approaches.
6.3 Results on Occlusion-Person

2D Pose Estimation Results Table 5 shows the results on the occluded joints. Only about 30.9% of the occluded joints can be accurately detected by NoFuse. The result is reasonable because the features of the occluded joints are severely corrupted. All of the three multiview fusion methods remarkably improve the accuracy. In particular, more than 90% of the occluded joints are correctly detected by AdaFuse. The results demonstrate the advantages of our strategy for learning the fusion weights.

3D Pose Estimation Results We show the 3D pose estimation error (mm) for each joint type in Table 6. NoFuse results in a large error of 48.1mm. By improving the 2D pose estimation results on the occluded joints, the 3D errors are also significantly reduced, especially for the joints on the limbs such as Ankles and Wrists. In particular, our approach decreases the 3D error significantly to 12.6mm.

Impact of Number of Occluded Views We also evaluate the impact of the number of occluded views on this dataset. In particular, we classify each joint into one of five groups according to the number of occluded views, and report the average joint error for each group, respectively. The results are shown in Table 7. We can see that when the joints are visible in all views, the simple baseline NoFuse also achieves a very small error of 13.0mm. However, the error increases dramatically to 82.6mm when four views are occluded. Recall that there are eight views in total for this dataset. In contrast, the multiview fusion methods, especially our AdaFuse, achieves consistently smaller errors than NoFuse. More importantly, the error increase is much slower than NoFuse when more camera views are occluded which validates the robustness of our approach to occlusion.

Generalization Power The only learnable parameters in our fusion approach are in the appearance embedding and geometry embedding networks. In this section, we evaluate whether the AdaFuse weight prediction network learned on Occlusion-Person can be directly applied to the other datasets. In particular, we append the AdaFuse weight prediction network learned on Occlusion-Person to the 2D pose estimators trained on each dataset itself as the final model for evaluation. Table 8 shows the 3D pose estimation results on various datasets. We find that the fusion network learned on the synthetic Occlusion-Person dataset achieves similar performance on the three realistic datasets compared to the networks learned on each of the target dataset, respectively. The promising results validate that the fusion model has strong generalization power. It is also worth noting that our approach can naturally handle different numbers of cameras for two reasons. First, the parameters in the appearance embedding network and the geometry embedding network are shared for all camera views. Second, the “Mean” operator in the geometry embedding network makes it independent of the number of views as shown in Figure 7 and Figure 8. In summary, AdaFuse is ready to be deployed in new environ-
Table 6: The 3D pose estimation error (mm) of the baselines and our approach on the Occlusion-Person dataset. We report the result on each joint individually and also the average over all joints. The second row shows the percentage of the joints that are occluded for each joint type.

Occluded (%)	Root	Belly	Neck	Hip	Kne	Ankle	Shlder	Elbow	Wrist	Mean
NoFuse	5.2	11.6	12.1	18.8	23.5	27.0	27.8	23.2	24.1	15.6
HeuristicFuse	8.3	10.7	12.6	16.7	22.3	28.0	31.7	26.7	27.7	17.1
ScoreFuse	8.9	12.2	14.4	18.5	24.5	30.6	34.7	29.8	30.8	19.7
RANSAC	9.1	13.2	15.8	20.9	26.4	32.8	36.9	32.1	33.1	21.1
AdaFuse (Ours)	7.2	10.6	11.6	17.8	23.8	29.7	33.4	28.8	29.8	19.6

Table 7: The 3D pose estimation error (mm) of the baseline methods and our approach on the Occlusion-Person dataset. We group the 3D joints by number of occluded views (8 views in all). We show each group’s joint number percentage in the second row.

Occluded Views	4	3	2	1	0	Percentage	2%	15%	38%	35%	10%
NoFuse	82.6	70.2	59.7	33.7	13.0	8%	15%	38%	35%	10%	
HeuristicFuse	50.5	39.9	25.9	13.5	11.1	30.5	15.9	13.5	11.1	10.2	
ScoreFuse	25.0	18.1	15.2	13.4	12.6	32.5	24.5	19.4	14.3	11.7	
RANSAC	36.5	24.5	19.4	14.3	11.7	36.5	24.5	19.4	14.3	11.7	
AdaFuse (Ours)	21.7	14.8	12.5	11.5	10.8	21.7	14.8	12.5	11.5	10.8	

Fig. 14: We demonstrate some 3D pose estimation examples obtained by AdaFuse. The last row shows some failure cases.

6.4 Results on Total Capture

We report the 3D pose estimation results on the Total Capture dataset in Table 9. It is worth noting that some methods also use IMUs in addition to the multiview images. We can see that our approach outperforms all of the previous methods. We notice that the error of our approach is slightly larger than LSTM-AE (Trumble et al., 2018) for the “W2 (walking)” action of S4,5. We tend to think it is because LSTM can get significant benefits when it is applied to periodic actions such as “walking”. This is also observed independently in another work (Gilbert et al., 2019).

We show some 3D pose estimation examples in Figure 14. In most cases, our approach can accurately estimate the 3D poses. One typical situation where the approach fails is when 2D pose estimation results are inaccurate for many camera views. For example in the Panoptic dataset, when human begins to enter the dome, they may be occluded in multiple views. In this case, the heatmaps in each view are of low-quality. Therefore the fused heatmaps will also have degraded quality, leading to inaccurate 2D pose estimations.

7 Summary and Future Work

We present a multiview fusion approach AdaFuse to handle the occlusion problem in human pose estimation. AdaFuse has practical values in that it is very simple and can be flexibly applied to new environments without additional adaptation. In addition, it can be combined with any 2D pose estimation networks. We extensively evaluate the effectiveness of the approach on three benchmark datasets. The approach
Table 8 The 3D pose estimation errors MPJPE (mm) when AdaFuse weight prediction network is trained on Occlusion-Person or directly trained on the Evaluation dataset, respectively. The 2D pose estimators for generating the initial heatmaps are trained on each Evaluation dataset separately.

Evaluation Dataset	AdaFuse Trained on Evaluation Dataset	NoFuse	HeuristicFuse	ScoreFuse	RANSAC	
Human3.6M	19.5	19.4	22.9	21.0	20.1	21.8
Panoptic 4 views	14.7	14.6	33.2	22.5	21.9	16.9
Panoptic 6 views	13.6	13.9	29.6	19.8	19.4	15.5
Total Capture	19.2	20.1	29.4	20.0	20.5	20.5

Table 9 The 3D pose estimation errors MPJPE (mm) of different methods on the Total Capture dataset.

Methods	IMUs	Temporal	Subjects(S1,2,3)	Subjects(S4,5)	Mean
(Trumble et al., 2017)	✓	✓	48.3	94.3	122.3
(Wei et al., 2016)			79.0	106.5	112.1
(Gilbert et al., 2019)	✓	✓	19.2	42.3	-48.8
(Trumble et al., 2018)			13.0	23.0	47.0
(Qiu et al., 2019)			19	21	28
NoFuse			15.9	18.5	29.9
HeuristicFuse			7.8	11.6	19.6
ScoreFuse			9.7	13.1	19.9
RANSAC			8.4	11.6	20.5
AdaFuse (Ours)			7.2	10.8	18.5

outperforms the state-of-the-arts remarkably. We also construct a large scale human dataset which has severe occlusion to promote more research along this direction. Our next step of work is to leverage temporal information to further improve the pose estimation accuracy.

References

Amin S, Andriluka M, Rohrbach M, Schiele B (2013) Multi-view pictorial structures for 3D human pose estimation. In: BMVC
Andriluka M, Pishchulin L, Gehler P, Schiele B (2014) 2D human pose estimation: New benchmark and state of the art analysis. In: CVPR, pp 3686–3693
Belagiannis V, Amin S, Andriluka M, Schiele B, Navab N, Ilic S (2014) 3D pictorial structures for multiple human pose estimation. In: CVPR, pp 1669–1676
Bo L, Sminchisescu C (2010) Twin gaussian processes for structured prediction. IJCV 87(1-2):28
Bridgeman L, Volino M, Guillemaut JY, Hilton A (2019) Multi-person 3D pose estimation and tracking in sports. In: CVPRW, pp 0–0
Burenius M, Sullivan J, Carlsson S (2013) 3D pictorial structures for multiple view articulated pose estimation. In: CVPR, pp 3618–3625
Cao Z, Simon T, Wei SE, Sheikh Y (2017) Realtime multi-person 2D pose estimation using part affinity fields. In: CVPR, pp 7291–7299
Chen W, Wang H, Li Y, Su H, Wang Z, Tu C, Lischinski D, Cohen-Or D, Chen B (2016) Synthesizing training images for boosting human 3D pose estimation. In: 3DV, IEEE, pp 479–488
Cheng Y, Yang B, Wang B, Yan W, Tan RT (2019) Occlusion-aware networks for 3D human pose estimation in video. In: ICCV, pp 723–732
Ci H, Wang C, Ma X, Wang Y (2019) Optimizing network structure for 3D human pose estimation. In: ICCV, pp 915–922
Ci H, Ma X, Wang C, Wang Y (2020) Locally connected network for monocular 3D human pose estimation. In: TPAMI
Dong J, Jiang W, Huang Q, Bao H, Zhou X (2019) Fast and robust multi-person 3D pose estimation from multiple views. In: CVPR, pp 7792–7801
Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6):381–395
Gal Y (2016) Uncertainty in deep learning. PhD thesis, PhD thesis, University of Cambridge
Gal Y, Grahramani Z (2015) Dropout as a bayesian approximation: Insights and applications. In: Deep Learning Workshop, ICML, vol 1, p 2
Gall J, Rosenhahn B, Brox T, Seidel HP (2010) Optimization and filtering for human motion capture. IJCV 87(1-2):75
Ghahramani Z (2016) A history of bayesian neural networks. In: NIPS Workshop on Bayesian Deep Learning

Gilbert A, Trumble M, Malleson C, Hilton A, Collomosse J (2019) Fusing visual and inertial sensors with semantics for 3d human pose estimation. IJCV 127(4):381–397

Guo C, Pleiss G, Sun Y, Weinberger KQ (2017) On calibration of modern neural networks. In: ICML, JMLR. org, pp 1321–1330

Hartley R, Zisserman A (2003) Multiple view geometry in computer vision. Cambridge university press

He Y, Zhu C, Wang J, Savvides M, Zhang X (2019) Bounding box regression with uncertainty for accurate object detection. In: CVPR, pp 2888–2897

Hoffmann DT, Tzionas D, Black MJ, Tang S (2019) Learning to train with synthetic humans. In: German Conference on Pattern Recognition, Springer, pp 609–623

Ilg E, Cicek O, Galasso S, Klein A, Makansi O, Hutter F, Brox T (2018) Uncertainty estimates and multi-hypotheses networks for optical flow. In: ECCV, pp 652–667

Ionescu C, Papava D, Olaru V, Sminchisescu C (2014) Human3.6m: Large scale datasets and predictive methods for 3D human sensing in natural environments. T-PAMI pp 1325–1339

Iskakov K, Burkov E, Lempitsky V, Malkov Y (2019) Learnable triangulation of human pose. arXiv preprint arXiv:190505754

Joo H, Simon T, Li X, Liu H, Tan L, Gui L, Banerjee S, Godisart T, Nabbe B, Matthews I, et al. (2019) Panoptic studio: A massively multiview system for social interaction capture. T-PAMI 41(1):190–204

Kendall A, Gal Y (2017) What uncertainties do we need in bayesian deep learning for computer vision? In: NIPS, pp 5574–5584

Kreiss S, Bertoni L, Alahi A (2019) Pifpaf: Composite fields for human pose estimation. In: CVPR, pp 11977–11986

Lakshminarayanan B, Pritzel A, Blundell C (2017) Simple and scalable predictive uncertainty estimation using deep ensembles. In: NIPS, pp 6402–6413

Lassner C, Romero J, Kiefel M, Bogo F, Black MJ, Gehler PV (2017) Unite the people: Closing the loop between 3d and 2d human representations. In: CVPR, pp 6050–6059

Li T, Fan L, Zhao M, Liu Y, Katabi D (2019) Making the invisible visible: Action recognition through walls and occlusions. In: ICCV, pp 872–881

Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: Common objects in context. In: ECCV, Springer, pp 740–755

Liu Y, Stoll C, Gall J, Seidel HP, Theobalt C (2011) Markerless motion capture of interacting characters using multi-view image segmentation. In: CVPR, IEEE, pp 1249–1256

Malleson C, Gilbert A, Trumble M, Collomosse J, Hilton A, Volino M (2017) Real-time full-body motion capture from video and imus. In: 3DV, IEEE, pp 449–457

von Marcard T, Henschel R, Black MJ, Rosenhahn B, Pons-Moll G (2018) Recovering accurate 3d human pose in the wild using imus and a moving camera. In: ECCV, pp 601–617

Martinez J, Hossain R, Romero J, Little JJ (2017) A simple yet effective baseline for 3D human pose estimation. In: ICCV, p 5

Moelslund TB, Hilton A, Krüger V (2006) A survey of advances in vision-based human motion capture and analysis. Computer vision and image understanding 104(2-3):90–126

Newell A, Yang K, Deng J (2016) Stacked hourglass networks for human pose estimation. In: ECCV, Springer, pp 483–499

Pavlakos G, Zhou X, Derpanis KG, Daniilidis K (2017) Harvesting multiple views for marker-less 3D human pose annotations. In: CVPR, pp 1253–1262

Pavlakos G, Zhou X, Daniilidis K (2018) Ordinal depth supervision for 3D human pose estimation. In: CVPR, pp 7307–7316

Pavllo D, Feichtenhofer C, Grangier D, Auli M (2019) 3D human pose estimation in video with temporal convolutions and semi-supervised training. In: CVPR, pp 7753–7762

Peng X, Tang Z, Yang F, Feris RS, Metaxas D (2018) Jointly optimize data augmentation and network training: Adversarial data augmentation in human pose estimation. In: CVPR, pp 2226–2234

Perez P, Vermaak J, Blake A (2004) Data fusion for visual tracking with particles. Proceedings of the IEEE 92(3):495–513

Pleiss G, Raghavan M, Wu F, Kleinberg J, Weinberger KQ (2017) On fairness and calibration. In: NIPS, pp 5680–5689

Qiu H, Wang C, Wang J, Wang N, Zeng W (2019) Cross view fusion for 3d human pose estimation. In: ICCV, pp 4342–4351

Qiu W, Zhong F, Zhang Y, Qiao S, Xiao Z, Kim TS, Wang Y (2017) Unrealcv: Virtual worlds for computer vision. In: Proceedings of the 25th ACM international conference on Multimedia, ACM, pp 1221–1224

Rhodin H, Spörri J, Katirciouglu I, Constantin V, Meyer F, Müller E, Salzmann M, Fua P (2018) Learning monocular 3d human pose estimation from multi-view images. In: CVPR, pp 8437–8446

Roetenberg D, Luinge H, Slycke P (2009) Xsens mvn: full 6dof human motion tracking using miniature inertial sensors. Xsens Motion Technologies BV, Tech Rep

Rogez G, Schmid C (2016) Mocap-guided data augmentation for 3d pose estimation in the wild. In: NIPS, pp 3108–
Sigal L, Balan AO, Black MJ (2010) Humaneva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. IJCV 87(1-2):4

Starner T, Leibe B, Minnen D, Westyn T, Hurst A, Weeks J (2003) The perceptive workbench: Computer-vision-based gesture tracking, object tracking, and 3d reconstruction for augmented desks. Machine Vision and Applications 14(1):59–71

Sun K, Xiao B, Liu D, Wang J (2019) Deep high-resolution representation learning for human pose estimation. In: CVPR, pp 5693–5703

Sun X, Xiao B, Wei F, Liang S, Wei Y (2018) Integral human pose regression. In: ECCV, pp 529–545

Tome D, Toso M, Agapito L, Russell C (2018) Rethinking pose in 3D: Multi-stage refinement and recovery for markerless motion capture. In: 3DV, pp 474–483

Trumble M, Gilbert A, Malleson C, Hilton A, Collososse J (2017) Total capture: 3D human pose estimation fusing video and inertial sensors. In: BMVC, pp 1–13

Trumble M, Gilbert A, Hilton A, Collososse J (2018) Deep autoencoder for combined human pose estimation and body model upscaling. In: ECCV, pp 784–800

Tu H, Wang C, Zeng W (2020) Voxelpose: Towards multi-camera 3D human pose estimation in wild environment. In: ECCV, pp 1–16

Varol G, Romero J, Martin X, Mahmood N, Black MJ, Laptev I, Schmid C (2017) Learning from synthetic humans. In: CVPR, pp 109–117

Wei SE, Ramakrishna V, Kanade T, Sheikh Y (2016) Convolutional pose machines. In: CVPR, pp 4724–4732

Xiang D, Joo H, Sheikh Y (2019) Monocular total capture: Posing face, body, and hands in the wild. In: CVPR

Xiao B, Wu H, Wei Y (2018) Simple baselines for human pose estimation and tracking. In: ECCV, pp 466–481

Xie R, Wang C, Wang C (2020) Metafuse: A pre-trained fusion model for human pose estimation. In: CVPR

Yang W, Ouyang W, Wang X, Ren J, Li H, Wang X (2018) 3D human pose estimation in the wild by adversarial learning. In: CVPR, pp 5255–5264

Zafar U, Ghafoor M, Zia T, Ahmed G, Latif A, Malik KR, Sharif AM (2019) Face recognition with bayesian convolutional networks for robust surveillance systems. EURASIP Journal on Image and Video Processing 2019(1):10

Zhang Z, Wang C, Qin W, Zeng W (2020) Fusing wearable imus with multi-view images for human pose estimation: A geometric approach. In: CVPR, pp 2200–2209

Zhao M, Li T, Abu Alsheikh M, Tian Y, Zhao H, Torralba A, Katabi D (2018) Through-wall human pose estimation using radio signals. In: CVPR, pp 7356–7365

Zhao M, Liu Y, Raghu A, Li T, Zhao H, Torralba A, Katabi D (2019) Through-wall human mesh recovery using radio signals. In: ICCV, pp 10113–10122

Zhou X, Huang Q, Sun X, Xue X, Wei Y (2017) Towards 3D human pose estimation in the wild: a weakly-supervised approach. In: ICCV, pp 398–407