Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Investor rewards to environmental responsibility: Evidence from the COVID-19 crisis

Alexandre Garela,*, Arthur Petit-Romecb

aAudencia Business School, 8 Route de la Jonelière, 44312 Nantes, France
bTBS Business School, 1 Place Alfonse Jourdain, 31068 Toulouse, France

A R T I C L E I N F O

Keywords:
COVID-19
Financial crisis
Environmental responsibility
Climate change

A B S T R A C T

The COVID-19 shock and its unprecedented financial consequences have brought about vast uncertainty concerning the future of climate actions. We study the cross-section of stock returns during the COVID-19 shock to explore investors’ views and expectations about environmental issues. The results show that firms with responsible strategies on environmental issues experience better stock returns. This effect is mainly driven by initiatives addressing climate change (e.g., reduction of environmental emissions and energy use), is more pronounced for firms with greater ownership by investors with long-term orientation and is not observed prior to the COVID-19 crisis. Overall, the results indicate that the COVID-19 shock has not distracted investors’ attention away from environmental issues but on the contrary led them to reward climate responsibility to a larger extent.

I believe that the pandemic has presented such an existential crisis – such a stark reminder of our fragility – that it has driven us to confront the global threat of climate change more forcefully and to consider how, like the pandemic, it will alter our lives. It has reminded us how the biggest crises, whether medical or environmental, demand a global and ambitious response.’ Larry Fink (2021 Letter to CEOs)

Source: https://www.blackrock.com/corporate/investor-relations/larry-fink-ceo-letter.

1. Introduction

Climate change and the large financial risks it imposes on companies represent a key economic challenge (e.g., Carney, 2015; Litterman, 2017; Nordhaus, 2019). Survey evidence suggests that investors believe that climate risks have financial implications for their portfolio firms and increasingly call for climate risk reporting (e.g., Ilhan et al., 2019; Krueger et al., 2020). While investors,
corporate leaders, policy makers, and other stakeholders were focusing on environmental issues, the COVID-19 crisis came as a complete surprise since pandemic risk was not receiving a lot of attention. Ramelli and Wagner (2020) note that the five risks listed as being most likely to materialize in the World Economic Forum’s Global Risk Report 2020 concern environmental issues whereas infectious diseases were ranked 10 and quite unlikely.

In this paper, we examine whether firms that were getting ready for climate change through the adoption of responsible initiatives on environmental issues experience better stock returns during the COVID-19 crisis. Even though the COVID-19 crisis was not primarily caused by environmental issues or climate change, it may still have led investors to reassess the importance of environmental responsibility. First, as illustrated by the quote from Larry Fink, anecdotal evidence indicates that many investors view a similarity between pandemics and environmental risks in terms of impact and expect that the COVID-19 crisis will strengthen the focus on climate change. A poll conducted by J.P. Morgan Research among investors from 50 global institutions, representing a total of $12.9 trillion in assets under management, further indicates that the large majority of investors expect environmental and climate responsibility to become even more important following the COVID-19 crisis (J.P. Morgan, 2020). More generally, the materialization of pandemic risk and the materialization of climate risk both represent rare disasters. The rare disaster literature highlights how the exposure of firms to tail risk events is difficult to assess empirically because such events rarely materialize (e.g., Ramelli and Wagner, 2020). The experience of a rare disaster (i.e., the pandemic) may have led investors to revise upwards the probability and the expected impact of climate risk, another rare disaster, and hence reassess the value of environmental responsibility. Second, investors may also have anticipated that the COVID-19 crisis will spur a green recovery. As pointed by a PWC’s report, calls are increasing for green recovery packages. Moreover, many citizens across the world are prepared to accept an extraordinary level of government intervention because of the perceived threat level from COVID-19 and expect the protection of the environment to be a priority of recovery plans. If investors expect governments to intervene in favor of climate change, they are likely to revise the value they attach to environmental responsibility. Firms that already emit low carbon emissions, that have undertaken investments to use less and greener energy or resources, and that have already adapted their strategy and disclosures should have an edge in a post-COVID world where public interventions and policies aim to mitigate climate change. If the COVID-19 crisis indeed leads investors to revise the value they attach to environmental responsibility, one would expect firms with greater environmental responsibility during the COVID-19 crisis to experience relatively higher stock returns.

In our empirical analysis, we study the cross-section of stock price reactions to the COVID-19 shock, which, as highlighted by Ramelli and Wagner (2020), provides an opportunity to observe how investors responded to the crisis and what they expect for the future. Specifically, using data from Thomson Reuters Asset4 ESG database for a sample of large U.S. listed companies, we explore whether a firm’s environmental score affects its stock price reaction to the COVID-19 shock. The environmental score measures a firm’s commitment and effectiveness towards adopting responsible initiatives and strategies on environmental issues including the reduction of environmental emissions (e.g., greenhouse gases, ozone-depleting substances) and the efficient use of natural resources in the production process.

We find that firms with good environmental scores have significantly higher stock returns during the COVID-19 crisis (i.e., the period from February 20 to March 20). The results are robust to controlling for industry fixed effects and various firm characteristics known to be related to stock returns. The effect of the environmental score is economically sizeable. A one-standard deviation higher environmental score is associated with stock returns higher by 1.4 percentage points during the COVID-19 shock. The economic significance of the environmental score in explaining the cross-section of returns is almost of the same order of magnitude as the economic significance of cash holdings or long-term debt.

Next, we explore whether our results reflect investors penalizing firms with poor environmental performance or investors rewarding firms with superior environmental performance. Specifically, we assess whether the results are more pronounced at high or low levels of environmental score. We find that the difference in returns between firms in the best and worst quartile in terms of environmental score is statistically significant and equal to about 3.7 percentage points. On the contrary, we find that the differences in returns between firms in the second or third quartile and worst quartile are positive but not statistically different. Our results therefore indicate that investors rewarded firms with superior environmental score during the COVID-19 crisis.

We complement this analysis of the cross-section of stock returns with difference-in-differences regressions at a daily frequency. In this setting, we can include firm fixed effects that capture unobservable and observable persistent firm characteristics. We still find that firms with greater environmental scores have higher returns during the COVID-19 crisis. Our core result is also robust to using an

1. Schoenfeld (2020) finds that managers systematically underestimated their exposure to pandemics in their SEC-mandated risk factors. Loughran and McDonald (2020) document that about 80% of companies had no pandemic risk disclosure in 2018.

2. More specifically, more than 70% of respondents responded that it was “rather likely”, “likely”, or “very likely” that the occurrence of a low probability / high impact risk, such as COVID-19, would increase awareness and actions globally to tackle high impact / high probability risks such as those related to climate change and biodiversity losses.

3. Source: https://www.pwc.co.uk/services/sustainability-climate-change/insights/post-pandemic-world-and-climate-change.html.

4. In a May 2020 poll, three in four people polled across 16 countries expect their government to make protection of the environment a priority of recovery plans. (Source: https://www.ipsos.com/ipsos-mori/en-uk/majority-people-expect-government-make-environment-priority-post-covid-19-recovery).

5. Although the COVID-19 shock led to one of the fastest declines in market valuations with the S&P index taking 16 days in February 2020 to fall by 20%, there is substantial cross-sectional variation in stock price reactions to the COVID-19 shock.

6. It is difficult to set a clear starting date for the COVID-19 crisis. We retain the date of February 20 because we observe graphically that a prolonged decline in major U.S. indices (i.e., Russell, S&P, and Dow Jones) started on February 20 (see Fig. 1).
alternative data source of the computation of environmental scores (KLD).

It could be that investors rewarded firms with greater ESG performance in general and not specifically greater environmental responsibility. Lins et al. (2017) show that firms with high CSR intensity experience higher stock returns during the 2008–2009 financial crisis, consistent with the trust between a firm and its stakeholders, built through investments in CSR, paying off when the level of trust in corporations suffers a negative shock. The roots of the COVID-19 crisis are however fundamentally different from the ones of 2008 global financial crisis (GFC) (Reinhart, 2020). In particular, the COVID-19 crisis started outside the financial sector and was not produced by excessive risk-taking. Hence, the COVID-19 crisis may not represent a negative shock in the level of trust in corporations during which all investments in CSR pay off. Consistent with this view, we find that responsible strategies on social issues have a positive but not statistically significant association with stock returns during the COVID-19 crisis. Our findings are therefore specific to environmental responsibility.

We then examine whether specific components of the environmental score are more important for stock returns. Given the emphasis placed on climate change and, on concerns over global warming linked to CO2 emissions in particular, we expect that responsible initiatives specifically addressing firms’ climate performance are more likely to be rewarded by investors. Consistent with this prediction, we find that the subcomponent related to the reduction of environmental emissions strongly affects stock returns during the COVID-19 shock. This result complements prior studies documenting that carbon emissions increase downside risk (e.g., Ilhan et al., 2019; Ilhan et al., 2021). The other subcomponent that mainly influences stock returns during the COVID-19 shock is a firm’s resource use, which also captures, to some extent, initiatives addressing climate responsibility (e.g., water use and energy use in the supply chain). The decomposition of the environmental score therefore indicates that investors have mainly rewarded initiatives that specifically address climate responsibility.

Investors differ in the importance they place on environmental responsibility. It is therefore unlikely that all investors will reward environmental responsibility to the same extent. Prior evidence suggests that investors with long-term orientation are more concerned with environmental responsibility (e.g., Gibson and Krueger, 2018; Ramelli et al., 2018). We therefore explore whether responsible strategies on environmental issues are rewarded to a larger extent when investors have a long-term orientation. Using two standard measures of investor horizons (based on investors’ portfolio turnover or on long-term orientation associated with specific investor types) at the firm level, we find that the positive effect of the environmental score on stock price reactions to the COVID-19 crisis is significantly more pronounced for firms with greater long-term investor ownership.

The evidence that firms with responsible initiatives on environmental issues experience better stock returns during the COVID-19 crisis indicates that investors expect them to do better in the long-run. It could however be that investors only value environmental responsibility to the extent that it allows firms to generate short-term profits or to access financial resources. We provide two additional tests to assess this possibility. First, we do not find evidence that environmental score is related to financial analysts’ forecast revisions of one-year ahead earnings per share (EPS) during the COVID-19 crisis. However, the environmental score exhibits a positive and statistically significant association with the forecast revision of EPS long-term growth. These results are consistent with survey evidence indicating that investors view that the COVID-19 crisis as a long-term catalyst of environmental and climate responsibility. Second, if firms with high environmental score had better returns during the COVID-19 crisis because they have more financial flexibility or better access to finance, one would expect those firms to benefit less from the news concerning stimulus package and policy responses to the COVID-19 crisis on March 24. We do not find evidence that it is the case.

Overall, our analyses indicate that although the COVID-19 shock and its severe consequences took virtually all investors and companies by surprise, those with high environmental score have significantly higher stock returns. Investors rewarded environmental responsibility such as the reduction of environmental emissions during the COVID-19 crisis. These results suggest that the unprecedented and novel risk posed by the COVID-19 crisis has not led investors to distract their attention away from environmental issues. On the contrary, our results are consistent with the idea that the COVID-19 crisis has renewed the focus on climate change, acting as a wake-up call for decision makers and investors.

Our paper contributes to different streams of the literature. First, our results are closely related to studies analyzing whether corporate social responsibility affects share price resilience during economic shocks (e.g., Albuquerque et al., 2020; Bae et al., 2021; Demers et al., 2020; Ding et al., 2020; Lins et al., 2017). Concurrent studies focusing on the COVID-19 shock provide mixed evidence. Albuquerque et al. (2020) find that stocks with higher ESG scores have significantly higher returns during the COVID-19 crisis while Bae et al. (2021) and Demers et al. (2020) show that ESG scores do not have explanatory power for returns during the COVID-19 shock. Unlike the aforementioned studies, which mainly consider broad ESG scores, we specifically focus on the environmental score and consider the E, S, and G scores separately. Consistent with our motivation and predictions that are centered on environmental responsibility, our results show that only the environmental score but not the social score or governance score is associated with better stock returns during the COVID-19 shock. We deepen the debate about the role of ESG scores during the COVID-19 crisis by highlighting the need to disaggregate broad ESG scores and treat separately the different components to better understand the role of social and environmental responsibility in the COVID-19 crisis.

 argued, some aspects of a firm’s relationships with its customers and workers are likely to play an important role during the COVID-19 crisis. For example, a firm’s ability to switch to online selling and to find innovative ways to maintain service quality or a firm’s effort to efficiently put in place remote working and preserve employee motivation should be very valuable and associated with better performance during the COVID-19 crisis. However, these aspects of employee or customer-related responsibility are not covered by traditional ESG databases such as Asset 4. Relying on measures recently introduced in labor economics, Pagano et al. (2020) show firms that are more resilient to social distancing significantly outperformed those with lower resilience during the COVID-19 outbreak.
Second, our results are related to prior studies specifically focusing on environmental responsibility and analyzing its links with financial performance at the firm level. Prior studies examine the effect of environmental performance or risk on different corporate outcomes. For example, recent articles have looked at how carbon risk and drought risk affect capital structure (e.g., Ginglinger and Moreau, 2019; Nguyen and Phan, 2020). Other studies examine how environmental performance and risk affect the pricing of corporate bonds and the cost of capital (e.g., Chava, 2014; De Angelis et al., 2020; Eichholtz et al., 2019; Huynh et al., 2020; Seltzer et al., 2020). Related studies analyze stock market reaction to different events related to environmental issues8 such as industrial disasters (Capelle-Blancard and Laguna, 2010), the announcement of corporate news related to environment (Flammer, 2013), Donald Trump’s election and his nomination of Scott Pruitt, a climate skeptic, to lead the Environmental Protection Agency (Ramelli et al., 2018), the Paris agreement (Monasterolo and De Angelis, 2020), global climate strikes (Ramelli et al., 2020), and extreme temperatures (Choi et al., 2020). We expand these studies by examining the association between environmental responsibility and stock performance in the COVID-19 shock that was largely unexpected and hit firms with unprecedented force. Our results indicate that the COVID-19 shock has led investors to revise the value attached to environmental responsibility.

Third, our paper contributes to the burgeoning literature on the COVID-19 shock and its consequences on firms. Fahlenbrach et al. (2020) and Ramelli and Wagner (2020) show a negative (positive) relation between stock returns during the COVID-19 shock and leverage (cash holdings). Using stress tests under different scenarios of revenue shortfalls, De Vito and Gómez (2020) investigate how the COVID-19 shock could affect the liquidity of listed firms. Capelle-Blancard and Desroziers (2020) study how stock markets have integrated public information about the COVID-19, the subsequent lockdowns, and the policy reactions. Other papers provide evidence that managers systematically underestimated their exposure to pandemics and that the large majority of companies had no pandemic risk disclosure (Loughran and McDonald, 2020; Schoenfeld, 2020).9

Fourth, our paper relates to the rare disaster literature. This literature shows how some puzzles in finance (e.g., excess volatility and high equity premiums) can be rationalized as an attempt by investors to price the tail risk of future disaster events (e.g., Gabai, 2012; Gourio, 2012; Wachter, 2013). Both the materialization of pandemic risk and the materialization of climate risk represent rare disasters. Studying whether firms that were getting ready for climate risk through the adoption of responsible strategies on environmental issues have better stock returns during the COVID-19 crisis is therefore informative on how the materialization of a rare disaster leads investors to reassess the value of getting ready for another, and probably the next, rare disaster. Our findings offer evidence supporting the view that investors view a similarity between pandemic and environmental risks and expect that the COVID-19 shock will strengthen the focus on environmental issues.

The remainder of the paper is organized as follows. The next section presents the sample construction and the main variables used in the empirical analysis. Section 3 presents the results and robustness tests. We conclude in Section 4.

2. Data, sample and summary statistics

2.1. Data and sample construction

We obtain data on environmental responsibility from Thomson Reuters Asset4 ESG database, which offers one of the most comprehensive ESG databases covering over 70% of global market capitalization, across more than 450 different ESG metrics, with history going back to 2002. Thomson Reuters collects information from a wide variety of data sources (e.g., corporate annual reports, stock exchange filings, corporate socially responsible reports, non-profit organizations, the news media) to produce three pillar scores: Environmental, Social, and Corporate Governance. The pillar scores are based on a large number of individual indicators capturing different aspects of environmental or social responsibility. Many recent studies rely on Asset4 ESG database because it has significantly increased its coverage and contrary to MSCI does not face a major structural break in the series (e.g., Cheng et al., 2014; Dyck et al., 2019; Gonenc and Scholtens, 2017). For robustness purposes, we also compute environmental scores using data from MSCI KLD.

We obtain stock market data and accounting data from Thomson Reuters database (EIKON). Accounting data are based on the last quarter ending at or before the end of 2019. Consensus forecast data are from IBES. We drop financial firms, utilities, not for profit and governmental firms, and firms with non-U.S. headquarters. We also remove stocks with prices of less than $1 (Fahlenbrach et al., 2020). Finally, we drop firms for which information on key control variables, which are described in the next section, is missing. These restrictions result in a final sample of 1626 large U.S. listed firms for which all key variables are available for the COVID-19 crisis period.10

2.2. Main variables

Our main dependent variable is the buy-and-hold stock return during the COVID-19 crisis. Although it is difficult to set a clear

8 Although the COVID-19 crisis was not directly caused by the materialization of environmental risks, it has brought about substantial questions regarding the future of environmental actions. From this perspective, studying the stock market reaction of firms with greater environmental responsibility is informative about the views and anticipations of investors regarding the value attached to environmental responsibility.

9 Schoenfeld (2020) finds that an indicator variable for whether that firm includes pandemics as a risk factor in their risk disclosure is not associated with stock returns during the COVID-19 crisis. Our results are therefore unlikely to be driven by firms with high environmental score being more concerned about pandemic risk.

10 In the online appendix, we provide the list of companies’ Thomson identifiers included in our analysis to ease comparability and replication.
starting date for the COVID-19 crisis, we initially focus on the period from February 20 to March 20 based on what we observe for the time series of index returns. Fig. 1 shows the returns of major U.S. indices (i.e., Russell, S&P, and Dow Jones) since January 2020 and indicates that a prolonged decline in major indices started on February 20. This period is very close to the fever period (i.e., February 24 to March 20) used in Ramelli and Wagner (2020) and starting after the strict lockdown that Italy imposed in Lombardy. In robustness tests, we show that our main results are unchanged if we use the fever period or the period from February 3 to March 23, which corresponds to the collapse period in Fahlenbrach et al. (2020).

Our main independent variable is a firm’s environmental score measured as of 2018, the last available year prior to the COVID-19 outbreak. The environmental score is composed of information on three subcomponents: i) Resource Use, ii) Emission Reduction, and iii) Green Innovation. The resource use subcomponent reflects a company’s performance and capacity to reduce the use of materials, energy or water, and to find more eco-efficient solutions by improving supply chain management. The Emission Reduction subcomponent measures a company’s commitment and effectiveness towards reducing environmental emissions in the production and operational processes. The Green Innovation subcomponent reflects a company’s capacity to reduce the environmental costs and burdens for its customers, thereby creating new market opportunities through new environmental technologies and processes or eco-designed products. A key feature of the Asset4 ESG’s scoring methodology is that the scores are based on relative performance with the company’s sector. Moreover, the scoring methodology accounts for the fact that the importance of ESG factors differ industries by using ESG magnitude (materiality). In our empirical analysis, we use either the overall environmental score or the three subcomponents.

Our set of control variables include three proxies for financial flexibility: cash over assets, short-term debt over assets, and long-term debt over assets. Fahlenbrach et al. (2020) and Ramelli and Wagner (2020) show that companies with higher financial flexibility (i.e., more cash and less debt) did significantly better during the COVID-19 crisis. We further control for firm characteristics known to be related to stock returns. Specifically, we control for the firm’s factor loadings based on the Fama-French three-factor model, momentum (the firm’s raw return over the period November 2019 to January 2020), firm size (the logarithm of total assets), and profitability (the ratio of EBITDA to total assets).

Moreover, we include industry fixed effects in all regressions. Prior studies document significant differences in stock returns during the COVID-19 crisis across industries (e.g., Mazur et al., 2020; Ramelli and Wagner, 2020).

2.3. Summary statistics

Table 1, Panel A provides descriptive statistics for our main variables. All continuous variables are winsorized at the 1st and 99th percentiles. Unsurprisingly, returns during the COVID-19 crisis are negative and large with a mean of $-40.5%$ and a median of $-39.7%$. There is however substantial cross-sectional variation in stock price reactions to the COVID-19 crisis as the interquartile difference is 23.3% and the standard deviation of stock returns is 18.11%. These figures are in line with other studies investigating the determinants of the cross-section of returns during the COVID-19 crisis (e.g., Fahlenbrach et al., 2020; Ramelli and Wagner, 2020). The environmental score has a mean value of 20.91 with a standard deviation of 25.7, indicating substantial cross-sectional variation. A significant portion of companies has an environmental score of 0, indicating that several firms have not taken any responsible initiatives on environmental issues. A closer look indicates that most companies with environmental score of 0 are concentrated in industries in which reporting on environmental issues remains scarce (e.g., Healthcare Equipments & Providers, Software & IT). The average firm in our sample has total assets of 8.85 billion, an equity beta of 1.12, a ratio of long-term debt to total assets of 26%, a profitability of 3%, and a ratio of cash to total assets of 22%.

3. Results

3.1. Environmental score and stock returns during the COVID-19 crisis

We start by providing graphical evidence on the relationship between environmental scores and stock returns during the COVID-19 shock. Fig. 2 shows the average industry-adjusted returns during the COVID-19 shock by quartiles of environmental scores. It suggests that firms with high environmental score performed better during the crisis.

We then formally investigate whether environmental score explains the cross-section of returns to the COVID-19 shock. In Table 2, we estimate regressions of stock returns during the COVID-19 crisis (i.e., over the period February 20–March 20) on pre-crisis environmental score and control variables. All regressions include industry fixed effects to account for the fact that firms in some industries may have been differentially affected by the COVID-19 crisis. Columns 1 and 2 show that, both with and without controls, the coefficient on environmental score is positive and statistically significant at the 1% level, indicating that companies with responsible

11 These three subcomponents aggregate data from numerous individual indicators: https://www.refinitiv.com/content/dam/marketing/en_us/documents/methodology/esg-scores-methodology.pdf.
12 Asset4 ESG’s scoring methodology defines a company’s sector based on TRBC industry groups.
13 These results hold if we exclude firms with an environmental score equal to zero.
14 We include industry fixed effects based on TRBC industry groups because they are the ones used by Asset4 to calculate the environmental score of companies relative to their industry peers. In robustness tests, we check that our results hold when we use industry fixed effects based on other industry classifications.
Fig. 1. U.S. stock market performance in the COVID crisis. Main U.S. indices over 01/2020-04/2020, based at 100 as of the 01/01/2020.
strategies on environmental issues experience better returns during the COVID-19 shock. The effect of environmental score is economically sizeable. According to Column 2, a one-standard deviation higher environmental score is associated with a 1.41% advantage in returns. According to Column 2, a one-standard deviation higher environmental score is associated with a 1.41% advantage in returns. The economic significance in explaining the current cross-section of returns represents respectively 52% of the economic significance of cash holdings and 75% of the economic significance of long-term debt, which are two well-established determinants of the cross-section of returns during the COVID-19 crisis.

In Columns 3 and 4, we reproduce the regression of Column 2 using two alternative dependent variables: stock returns over the collapse period (i.e., February 3 to March 23) used by Fahlenbrach et al. (2020) and the fever period (i.e., February 24 to March 20) used by Ramelli and Wagner (2020). The results show that the environmental score has a positive and significant effect on stock returns over these two alternative periods, indicating that our results are not driven by our choice to use February 20, the day in which major stock indices started to decline, as the start of the COVID-19 shock. Overall, these results are inconsistent with the COVID-19 shock distracting investors' attention away from environmental issues. On the contrary, they support the notion that the COVID-19 crisis has renewed the focus on climate change, acting as a wake-up call for decision makers and investors.

Our results from Table 2, Panel A are equally consistent with investors penalizing companies with poor environmental performance and with investors rewarding firms with superior environmental performance during the COVID-19 crisis. In Panel B, therefore, we analyze whether there are asymmetries in the relation between environmental score and returns during the COVID-19 crisis. We split firms into quartiles based on their environmental score and create indicator variables for each of the four groups. Env score 1 contains all observations whose environmental score is among the 25% lowest. Panel B reports results of regressions in which we replace the environmental score with the quartile indicators. The omitted group is Env score 1, the quartile of firms that have the lowest environmental scores. The results from Column 1, which does not include control variables, show that only the coefficient on Env score 4 is statistically significant, and it is much larger than the other coefficients. The difference in returns during the COVID-19 crisis between firms in the best and worst quartile in terms of environmental score is statistically significant and equal to about 4.3 percentage points.

Table 1
Descriptive statistics.

Variables	#Obs.	Mean	SD	P25	P50	P75
COVID-19 Crisis return (%)	1626	−40.55	18.11	−52.43	−39.69	−29.16
Environmental score	1626	20.91	25.73	0.00	8.57	35.48
Beta MKT	1626	1.12	0.62	0.73	1.08	1.47
Beta HML	1626	0.81	0.96	0.20	0.67	1.31
Beta SMB	1626	0.07	0.98	−0.44	0.10	0.59
Total assets ($Billion)	1626	8.85	30.25	0.59	1.69	5.37
Long-term debt	1626	0.26	0.22	0.06	0.23	0.39
Short-term debt	1626	0.01	0.02	0.00	0.00	0.00
Profitability	1626	0.03	0.19	0.02	0.07	0.11
Cash holdings	1626	0.22	0.26	0.03	0.10	0.29
Momentum	1626	5.65	20.83	−5.58	4.42	13.65
Institutional ownership	1626	83.78	21.56	72.94	89.29	98.92
Nb. antitakeover devices	1621	6.67	1.98	5.00	7.00	8.00
Ln(Stock price)	1615	2.16	0.24	1.95	2.20	2.30
% Independent board members	1626	79.61	12.15	75.00	83.33	88.89
CEO duality dummy	1618	0.54	0.50	0.00	1.00	1.00
Governance score	1626	45.48	22.97	26.47	44.93	63.83
Social score	1626	39.93	20.56	23.57	36.09	52.63
Resource use score	1626	24.38	31.21	0.00	4.82	46.69
Emission score	1626	20.81	28.75	0.00	3.88	35.29
Green innovation score	1418	17.89	27.68	0.00	0.00	35.29
Crisis return (Fahlenbrach et al., 2020)	1626	−39.06	19.24	−52.06	−38.67	−27.27
Incubation (Ramelli and Wagner, 2020)	1626	2.29	8.85	−2.05	1.70	5.95
Outbreak (Ramelli and Wagner, 2020)	1626	−1.89	12.76	−9.09	−2.14	5.30
Fever (Ramelli and Wagner, 2020)	1626	−37.95	18.34	−49.90	−36.75	−26.12
Aid plan	1626	10.70	8.18	5.43	9.56	14.56
Fed intervention	1626	3.84	4.72	0.75	3.32	6.14
Investor turnover (%)	1626	40.03	10.79	32.49	37.74	45.38
Pct. LT ownership (%)	1626	5.74	7.18	2.76	4.10	5.57
Median LTG forecast revision (%)	697	−1.02	8.42	−1.51	0.00	0.80
Median EPS forecast revision 1	1568	0.12	0.89	−0.12	0.07	0.35
Median EPS forecast revision 2	1562	0.17	0.65	−0.07	0.10	0.37
HP HHI	1449	0.28	0.25	0.10	0.19	0.37
HP SIM	1449	7.25	14.80	1.12	1.56	3.31
KLD environmental strengths	1409	0.35	0.73	0.00	0.00	0.00
KLD environmental strengths minus concerns	1409	0.33	0.70	0.00	0.00	0.00

This table presents descriptive statistics for the main variables used in the empirical analysis. The main sample consists of 1626 firms. Variable definitions are in Appendix A. All variables are winsorized at the 1st and 99th percentile.
Adding control variables attenuates the effect to a certain extent. However, in Column 2, which includes the same control variables as in Panel A, the coefficient on Env score 4 is still statistically significant at the 1% level and equal to 3.3. In Columns 3 and 4, we reproduce the same analysis for stock returns computed over the collapse period (i.e., February 3 to March 23) used by Fahlenbrach et al. (2020) and the fever period (i.e., February 24 to March 20) used by Ramelli and Wagner (2020). In both cases, the results show that firms with superior environmental score experience higher stock returns during the COVID-19 crisis.

We complement this analysis of the cross-section of stock returns with difference-in-differences regressions of daily stock returns. Table 2, Panel C presents regressions of daily stock returns on the interaction between High Environmental Score (i.e., a dummy variable that takes the value of one if a firm has an environmental score in the top quartile of the distribution) and COVID Crisis (i.e., a dummy variable that takes the value of one for the crisis period) and control variables. The results in Columns 1 and 2 show that, both with and without control variables, the coefficient on the interaction COVID Crisis X High Environmental Score is positive and statistically significant at the 5% level, indicating that firms with high environmental score have better daily stock returns during the COVID crisis. Importantly, the coefficient on High Environmental Score is not statistically significant, indicating that firms with high environmental score do not have better stock returns before the COVID crisis. In Column 3, we further include interactions between High Environmental Score and all the other control variables. In Columns 4 and 5, we replace industry fixed effects with firm fixed effects. Firm fixed effects absorb the effect of all control variables as well as of High Environmental Score. In Column 4, we include day fixed effects. In Column 5, we include the COVID Crisis dummy rather than day fixed effects. In both columns, the results show that the coefficient on the interaction COVID Crisis X High Environmental Score is positive and statistically significant at the 1% level, indicating that firms with high environmental score have better daily stock returns during the COVID crisis. The results of the difference-in-differences analysis confirm our baseline results and further indicate that firms with greater environmental score have better stock returns during the COVID-19 crisis.

3.2. Environmental subcomponents, social responsibility, and corporate governance

So far, our analysis suggests that the COVID-19 outbreak has not distracted investors’ attention away from environmental issues but has rather reinforced the extent to which investors reward responsible strategies on environmental issues. However, it could be that investors rewarded firms with high ESG scores in general and not environmental responsibility. Lins et al. (2017) show firms with high CSR intensity experience better stock returns during the 2008 global financial crisis. As they explain, their evidence suggests that the trust between a firm and its stakeholders, built through investments in CSR, pays off when the overall level of trust in corporations suffers a negative shock. In Table 3, we reproduce our regressions from Table 2 replacing the environmental score by the social score. Column 2 shows that the coefficient on social score is positive but statistically not significant. In Column 3, we find similarly that the coefficient on governance score is positive but statistically not significant. The results from Column 4 show that the environmental score

Fig. 2. Industry-adjusted crisis returns by quartile of environmental score.
This figure shows average crisis returns by quartile of environmental scores. Crisis returns are computed over the February-20 to March-20 period. Returns are computed in excess of companies’ industry returns (TRBC industry groups).

Adding control variables attenuates the effect to a certain extent. However, in Column 2, which includes the same control variables as in Panel A, the coefficient on Env score 4 is still statistically significant at the 1% level and equal to 3.3. In Columns 3 and 4, we reproduce the same analysis for stock returns computed over the collapse period (i.e., February 3 to March 23) used by Fahlenbrach et al. (2020) and the fever period (i.e., February 24 to March 20) used by Ramelli and Wagner (2020). In both cases, the results show that firms with superior environmental score experience higher stock returns during the COVID-19 crisis.

We complement this analysis of the cross-section of stock returns with difference-in-differences regressions of daily stock returns. Table 2, Panel C presents regressions of daily stock returns on the interaction between High Environmental Score (i.e., a dummy variable that takes the value of one if a firm has an environmental score in the top quartile of the distribution) and COVID Crisis (i.e., a dummy variable that takes the value of one for the crisis period) and control variables. The results in Columns 1 and 2 show that, both with and without control variables, the coefficient on the interaction COVID Crisis X High Environmental Score is positive and statistically significant at the 5% level, indicating that firms with high environmental score have better daily stock returns during the COVID crisis. Importantly, the coefficient on High Environmental Score is not statistically significant, indicating that firms with high environmental score do not have better stock returns before the COVID crisis. In Column 3, we further include interactions between High Environmental Score and all the other control variables. In Columns 4 and 5, we replace industry fixed effects with firm fixed effects. Firm fixed effects absorb the effect of all control variables as well as of High Environmental Score. In Column 4, we include day fixed effects. In Column 5, we include the COVID Crisis dummy rather than day fixed effects. In both columns, the results show that the coefficient on the interaction COVID Crisis X High Environmental Score is positive and statistically significant at the 1% level, indicating that firms with high environmental score have better daily stock returns during the COVID crisis. The results of the difference-in-differences analysis confirm our baseline results and further indicate that firms with greater environmental score have better stock returns during the COVID-19 crisis.

3.2. Environmental subcomponents, social responsibility, and corporate governance

So far, our analysis suggests that the COVID-19 outbreak has not distracted investors’ attention away from environmental issues but has rather reinforced the extent to which investors reward responsible strategies on environmental issues. However, it could be that investors rewarded firms with high ESG scores in general and not environmental responsibility. Lins et al. (2017) show firms with high CSR intensity experience better stock returns during the 2008 global financial crisis. As they explain, their evidence suggests that the trust between a firm and its stakeholders, built through investments in CSR, pays off when the overall level of trust in corporations suffers a negative shock. In Table 3, we reproduce our regressions from Table 2 replacing the environmental score by the social score. Column 2 shows that the coefficient on social score is positive but statistically not significant. In Column 3, we find similarly that the coefficient on governance score is positive but statistically not significant. The results from Column 4 show that the environmental score

15 The crisis period corresponds to the period February 20–March 20 and we consider the same number of days for the pre-crisis period.
16 Both regressions include day fixed effects which absorb the effect of the dummy variable COVID Crisis.
Table 2
Environmental score and stock returns during the COVID-19 crisis.

Panel A: Environmental score and stock returns in the COVID-19 crisis

Crisis return (%)	(1) COVID-19 crisis returns (February 20–March 20)	(2) COVID-19 crisis returns (February 20–March 20)	(3) Fahlenbrach et al.’s (2020) collapse period (February 3–March 23)	(4) Ramelli and Wagner’s (2020) fever period (February 24–March 20)
Environmental score	0.068*** (0.016)	0.055*** (0.019)	0.045** (0.020)	0.053*** (0.019)
Beta MKT	−3.788*** (0.775)	−3.535*** (0.808)	−3.231*** (0.755)	
Beta HML	−2.175*** (0.565)	−1.631*** (0.611)	−2.090*** (0.563)	
Beta SMB	−1.163*** (0.590)	−1.310*** (0.640)	−1.241*** (0.581)	
Ln(Total assets)	−0.158 (0.385)	−0.158 (0.401)	−0.014 (0.382)	
Long-term debt	−8.630*** (2.471)	−9.565*** (2.508)	−9.454*** (2.491)	
Short-term debt	−22.469 (14.677)	−23.489 (14.803)	−27.123*** (14.995)	
Cash holdings	10.401*** (2.780)	13.181*** (2.896)	12.131*** (2.696)	
Profitability	19.373*** (3.549)	19.487*** (3.703)	20.788*** (3.430)	
Momentum	−0.018 (0.025)	0.011 (0.025)	−0.013 (0.024)	
Observations	1626	1626	1626	1626
Industry dummies	Yes	Yes	Yes	Yes
Adjusted R-squared	0.195	0.266	0.276	0.262

Panel B: Environmental score quartiles and stock returns in the COVID-19 crisis

Crisis return (%)	(1) COVID-19 crisis returns (February 20–March 20)	(2) COVID-19 crisis returns (February 20–March 20)	(3) Fahlenbrach et al.’s (2020) collapse period (February 3–March 23)	(4) Ramelli and Wagner’s (2020) fever period (February 24–March 20)
Environmental score 2	0.727 (1.470)	0.713 (1.408)	0.006 (1.433)	0.782 (1.434)
Environmental score 3	4.306*** (1.171)	3.313* (1.332)	2.580 (1.409)	3.278** (1.335)
Beta MKT	−3.829*** (0.755)	−3.561*** (0.809)	−3.272*** (0.756)	
Beta HML	−2.191*** (0.566)	−1.642*** (0.612)	−2.105*** (0.564)	
Beta SMB	−1.157* (0.590)	−1.306** (0.641)	−1.234* (0.581)	
Ln(Total assets)	−0.047 (0.370)	−0.072 (0.386)	0.092 (0.367)	
Long-term debt	−8.614*** (2.494)	−9.599*** (2.528)	−9.432*** (2.515)	
Short-term debt	−20.908 (14.757)	−22.408 (14.858)	−25.509* (15.063)	
Cash holdings	10.818*** (2.787)	13.399*** (2.920)	12.583*** (2.715)	
Profitability	19.250*** (3.559)	19.433*** (3.712)	20.658*** (3.443)	
Momentum	−0.018 (0.025)	0.011 (0.025)	−0.013 (0.024)	
Observations	1626	1626	1626	1626
Industry dummies	Yes	Yes	Yes	Yes
Adjusted R-squared	0.193	0.264	0.274	0.261

Panel C: Difference-in-differences regressions of daily stock returns

Daily returns (%)	(1) COVID-19 crisis returns (February 20–March 20)	(2) COVID-19 crisis returns (February 20–March 20)	(3) Fahlenbrach et al.’s (2020) collapse period (February 3–March 23)	(4) Ramelli and Wagner’s (2020) fever period (February 24–March 20)
High environmental score	0.005 (0.024)	0.030 (0.031)	−0.291 (0.516)	−1.951*** (0.032)
COVID-19 crisis × High environmental score	0.113** (0.052)	0.110** (0.052)	0.110** (0.052)	0.109** (0.055)
Beta MKT	−0.100*** (0.020)	−0.090*** (0.021)	−0.042*** (0.010)	
Beta HML	0.016*** (0.003)	0.015*** (0.003)	−0.046*** (0.009)	
Beta SMB	−0.139*** (0.061)	−0.140*** (0.068)	−0.013 (0.014)	
Ln(Total assets)	0.000 (0.011)	−0.013 (0.014)	−0.139*** (0.061)	
Long-term debt	−0.139*** (0.061)	−0.140*** (0.068)	−0.013 (0.014)	
Short-term debt	−0.046*** (0.009)	−0.042*** (0.010)	−0.046*** (0.009)	
Cash holdings	0.234*** (0.087)	0.175* (0.093)	0.138 (0.092)	
Profitability	0.164* (0.088)	0.138 (0.092)	0.003*** (0.001)	
Momentum	0.003*** (0.001)	0.003*** (0.001)	0.003*** (0.001)	
Observations	64,442	64,442	64,442	64,442
Industry fixed effects	Yes	Yes	Yes	No

(continued on next page)
Table 2 (continued)

Panel C: Difference-in-differences regressions of daily stock returns

Daily returns (%)	(1)	(2)+Controls	(3)+Interactions with controls	(4)+Firm fixed effects	(5)+Firm fixed effects
Firm fixed effects	No	No	No	Yes	Yes
Time fixed effects	Yes	Yes	Yes	Yes	No
Interaction with controls	No	No	Yes	Yes	Yes
Adjusted R-squared	0.505	0.505	0.505	0.509	0.05

Panel A presents regression estimates of stock returns during the COVID-19 crisis on environmental score and control variables. Panel B presents regression estimates of stock returns during the COVID-19 crisis on dummy variables denoting whether a firm’s environmental score is in the second, third, or top quartile and control variables. In both tables, we use different definitions of the COVID-19 crisis period. In columns 1 and 2, we use the February-20 to March-20 period (based on the observation of stock market index returns in Fig. 1). In columns 3 and 4, we use the crisis period definitions of Fahlenbrach et al. (2020) and Ramelli and Wagner (2020), respectively. Panel C reports the results of difference-in-differences estimation of daily stock returns. The crisis period corresponds to the period February 20–March 20 and we consider the same number of days for the pre-crisis period. The main independent variable is the interaction between High Environmental Score (i.e., a dummy variable that takes the value of one if a firm has an environmental score in the top quartile of the distribution) and COVID Crisis (i.e., a dummy variable that takes the value of one for the crisis period). Variables are winsorized at the 1st and 99th percentiles. All regressions in Panels A and B include industry fixed effects based on TRBC industry group classifications. Regressions in Panel C include day fixed effects and industry or firm fixed effects. Variables are defined in Appendix A. Constants are not reported. Heteroskedasticity-consistent standard errors are presented in parentheses. ***, **, and * indicate that the parameter estimate is significantly different from zero at the 1%, 5%, and 10% level, respectively.

Table 3
ESG pillars and stock returns during the COVID-19 crisis.

COVID-19 crisis returns (February 20–March 20)	(1)	(2)	(3)	(4)
Environmental score	0.055*** (0.019)	0.035 (0.024)	0.016 (0.021)	0.060** (0.025)
Social score	0.018 (0.025)	0.131 (0.395)	0.324 (0.357)	-0.132 (0.410)
Governance score	-3.788*** (0.755)	-3.842*** (0.755)	-3.874*** (0.756)	-3.789*** (0.755)
Beta MKT	-2.175*** (0.565)	-2.257*** (0.562)	-2.289*** (0.563)	-2.175*** (0.566)
Beta HML	-1.163*** (0.590)	-1.147* (0.590)	-1.153* (0.592)	-1.164** (0.591)
Ln(Total assets)	-0.158 (0.385)	0.131 (0.395)	0.324 (0.357)	-0.132 (0.410)
Long-term debt	-8.630*** (2.471)	-8.886*** (2.473)	-8.950*** (2.481)	-8.630*** (2.478)
Short-term debt	-22.469 (14.677)	-21.617 (14.578)	-21.268 (14.662)	-22.459 (14.714)
Cash holdings	10.401*** (2.780)	10.763*** (2.775)	10.793*** (2.784)	10.363*** (2.781)
Profitability	19.373*** (3.549)	19.273*** (3.558)	19.036*** (3.570)	19.367*** (3.559)
Momentum	-0.018 (0.025)	-0.017 (0.025)	-0.017 (0.025)	-0.018 (0.025)
Observations	1626	1626	1626	1626
Industry dummies	Yes	Yes	Yes	Yes
Adjusted R-squared	0.266	0.263	0.263	0.265

This table presents regression estimates of stock returns during the COVID-19 crisis (i.e., February 20–March 20, 2020) on environmental score, social score, governance score, and control variables. All variables are winsorized at the 1st and 99th percentiles. All regressions include industry fixed effects based on TRBC industry group classifications. Variables are defined in Appendix A. Constants are not reported. Heteroskedasticity-consistent standard errors are presented in parentheses. ***, **, and * indicate that the parameter estimate is significantly different from zero at the 1%, 5%, and 10% level, respectively.

has a positive effect on stock returns during the COVID-19 shock after controlling for the social score and the governance score.

Several factors may contribute to explain the predominant role played by environmental responsibility during the COVID-19 crisis. First, as stressed by Reinhart (2020) among others, the causes and scope of COVID-19 crisis are fundamentally different from the ones of the 2008 global financial crisis (GFC). Contrary to the GFC, the COVID-19 crisis started outside the financial sector and was not produced by financial imbalances and risks growing over many years. Moreover, while the GFC affected firms through its impact on financial intermediaries and credit markets, the COVID-19 crisis has much more severe direct consequences as many firms experience a sudden stop in their ability to generate revenues. From this perspective, it is not clear whether the COVID-19 crisis represents a negative shock in the level of trust in corporations which investments in social capital have not paid off in this shock. Second, investor awareness on environmental and climate issues are much more pronounced today than it was in 2008. In particular, the COP 21 Paris agreement in 2015 played an important part in raising awareness on climate issues (Andersson et al., 2016). Recent survey evidence confirms that institutional investors have growing concerns about climate risks and that they believe these risks have already begun to
materialize (Krueger et al., 2020). Given that many investors seem to view pandemics and environmental risks as similar in terms of impact, the COVID-19 crisis is likely to have led investors to revise the value they attach to responsible initiatives aiming at tackling environmental and risks. On the contrary, while social responsibility, in particular when it relates to employees, has clear implications for stock returns (e.g., Edmans, 2011; Green et al., 2019), the COVID-19 crisis does not necessarily trigger a revision of investor awareness and concerns about social risks.\footnote{Some aspects of a firm’s relationships with its customers and workers are likely to play an important role during the COVID-19 crisis. For example, using measures recently introduced in labor economics, Pagano et al. (2020) show firms that are more resilient to social distancing significantly outperformed those with lower resilience during the COVID-19 outbreak. However, these aspects of employee or customer-related responsibility are not covered by traditional ESG databases such as Asset 4.}

Next, we examine whether specific components of the environmental score are more important for stock returns. Given the emphasis placed on climate change and the large financial risks it imposes on companies, we expect that responsible initiatives specifically addressing firms’ climate performance are more likely to be rewarded by investors. As explained in Section 2, the environmental score is composed of three subcomponents: i) Resource Use, ii) Emission Reduction, and iii) Green Innovation. Given that concerns over global warming linked to CO2 emissions have become salient, the Emission Reduction is the subcomponent that most specifically addresses climate responsibility. To a lower extent, the Resource Use subcomponent may also capture initiatives addressing climate responsibility (e.g., water use and energy use in the supply chain).

In Table 4, we estimate regressions of stock returns during the COVID-19 crisis (i.e., over the period February 20–March 20) on the different subcomponents of the environmental score and control variables. The results from Column 1 show that the coefficient on Emission Reduction is positive and statistically significant at the 5% level, suggesting a firm’s capacity to reduce the use of materials, energy or water, and to find more eco-efficient solutions by improving supply chain management is associated with better stock returns during the COVID-19 crisis. The results from Column 2 show that the coefficient on Emission Reduction is positive and statistically significant at the 1% level, suggesting that companies with responsible strategies to reduce emissions experience better stock returns during the COVID-19 crisis. This result is consistent with prior studies documenting that carbon emissions increase downside risk (Ilhan et al., 2021). Finally, the results in Column 3 show that the green innovation subcomponent is not statistically associated with stock returns during the COVID-19 crisis. The green innovation subcomponent captures a firm’s ability to create new market opportunities through new environmental technologies or eco-designed, dematerialized products with extended durability. Contrary to the other two subcomponents, it does not capture a firm’s effort and ability to tackle environmental risks. A non-mutually exclusive explanation for the insignificant results of the green innovation component is that this component is more intangible and therefore harder to value for investors when comparing to the other two components. Recent studies indicate that when investors care about climate risks, they mainly focus on carbon emissions (e.g., Bolton and Kacperczyk 2020).

Overall, the results from Table 4 indicate that the effect of the environmental score on the stock returns during the COVID-19 crisis is mainly driven by initiatives that specifically address climate responsibility. These results further indicate that the COVID-19 outbreak has renewed the focus on climate change and that investors anticipate that issues related to climate change will be more important than ever with the COVID-19 crisis.

3.3. Environmental score and stock returns before the COVID-19 crisis

Our results that environmental score is positively associated with stock returns during the COVID-19 crisis are consistent with the view that the COVID-19 has renewed the focus on climate change with investors drawing a parallel between pandemics and environmental risks. If the COVID-19 outbreak indeed served as a wake-up call for environmental and climate risks, we do not expect to find a similar effect of environmental scores on stock returns in January 2020 when attention to the COVID-19 was still limited.\footnote{The results from the difference-in-differences regressions reported in Table 2, Panel C already suggest that environmental scores are associated with better stock returns during the COVID-19 crisis but not before. We nonetheless further examine the effect of environmental score on stock returns in the pre-crisis periods focusing on the cross-section of returns.}

To explore this issue, in Table 5, we examine whether environmental scores affect stock returns in January 2020 as well as during the periods from January 2 to January 17 and from January 20 to February 21, corresponding respectively to the incubation period and the outbreak period in Ramelli and Wagner (2020). During these periods, attention to the COVID-19 among U.S. firms was still very low. Ramelli and Wagner (2020) highlight that the first conference call discussing the COVID-19 took place on January 22 (i.e., the one of United Airlines).

The results show that a firm’s environmental score is not statistically associated with its stock returns during these three periods, suggesting that the COVID-19 shock has reinforced the extent to which investors reward companies with responsible strategies on environmental issues. Ramelli and Wagner’s (2020) find that cash holdings and debt only started to affect stock returns during the fever period, suggesting that the health crisis has morphed into a possible financial crisis. The results therefore indicate that investors started to reward firms with good environmental score only when it became clear that the COVID-19 crisis would have severe financial consequences.

3.4. Do all investors reward environmental responsibility during the COVID-19 crisis?

Investors differ in the importance they place on environmental responsibility. It is therefore unlikely that all investors will reward
term horizons sell their stockholdings to a larger extent than investors with long-term horizons during episodes of market turmoil (Cella following common approach in the literature (e.g., Gaspar et al., 2005; Derrien et al., 2013), we capture an institutional investor for firms with greater ownership by investors with long-term horizon. We use two alternative proxies for investor horizons. First, computing the portfolio turnover of each institutional investor. At the firm level, we then compute the weighted average of the portfolio turnover ratios of a firm

Subdimensions of environmental score	(1)	(2)	(3)
Resource use score	0.037*** (0.015)	0.046*** (0.017)	0.012 (0.016)
Emission reduction score	-3.810*** (0.754)	-3.795*** (0.753)	-4.713*** (0.850)
Green innovation score	-2.209*** (0.565)	-2.185*** (0.565)	-2.803*** (0.623)
Beta MKT	-1.166** (0.591)	-1.175** (0.590)	-1.036 (0.680)
Ln(Total assets)	-0.044 (0.379)	-0.116 (0.388)	0.260 (0.348)
Long-term debt	-8.724*** (2.472)	-8.630*** (2.468)	-9.998*** (2.449)
Short-term debt	-21.164 (14.697)	-22.019 (14.568)	-26.523* (14.565)
Cash holdings	10.506*** (2.783)	10.344*** (2.782)	12.303*** (2.953)
Profitability	19.403*** (3.555)	19.335*** (3.546)	21.061*** (4.665)
Momentum	-0.017 (0.025)	-0.018 (0.025)	-0.013 (0.030)
Observations	1626	1626	1418
Industry dummies	Yes	Yes	Yes
Adjusted R-squared	0.265	0.266	0.293

This table presents regression estimates of stock returns during the COVID-19 crisis (i.e., February 20–March 20, 2020) on the subdimensions of the environmental score (i.e., resource use, emission reduction, and green innovation) and control variables. All variables are winsorized at the 1st and 99th percentiles. All regressions include industry fixed effects based on TRBC industry group classifications. Variables are defined in Appendix A. Constants are not reported. Heteroskedasticity-consistent standard errors are presented in parentheses. ***, **, and * indicate that the parameter estimate is significantly different from zero at the 1%, 5%, and 10% level, respectively.

environmental responsibility to the same extent. In this section, we explore whether some investors are more likely than others to reward environmental responsibility. Prior evidence suggests that investors with a long-term orientation are more concerned with climate responsibility (e.g., Gibson and Krueger, 2018; Ramelli et al., 2018). Moreover, prior studies show that investors with short-term horizons sell their stockholdings to a larger extent than investors with long-term horizons during episodes of market turmoil (Cella et al., 2013). From this perspective, we expect that investors with long-term horizons are more likely to reward environmental responsibility.

In Table 6, we examine whether the effect of environmental score on stock returns during the COVID-19 crisis is more pronounced for firms with greater ownership by investors with long-term horizon. We use two alternative proxies for investor horizons. First, following common approach in the literature (e.g., Gaspar et al., 2005; Derrien et al., 2013), we capture an institutional investor's investment horizon through its portfolio turnover. Although investor horizons are not directly observable, the rationale behind this approach is that an investor which changes very frequently the composition of its portfolio is more likely to have a shorter investment horizon. In line with existing literature, we compute measures of investor horizons only for institutional investors covered by the 13F Thomson Files, for which data on stock portfolio composition is available over time. Following Derrien et al. (2013), we start by computing the portfolio turnover of each institutional investor. At the firm level, we then compute the weighted average of the portfolio turnover ratios of a firm's investors. Higher values of the average turnover therefore indicate shorter investor horizons. Second, as an alternative measure of long-term investor ownership, we sum the ownership by institutional investors which are likely to

Crisis return (%)	(1) January 2020	(2) Ramelli and Wagner (2020): Incubation (02/01/2020–17/01/2020)	(3) Ramelli and Wagner (2020): Outbreak (20/01/2020–21/02/2020)
Environmental score	0.007 (0.010)	0.008 (0.008)	0.010 (0.014)
Observations	1626	1626	1626
Control variables	Yes	Yes	Yes
Industry dummies	Yes	Yes	Yes
Adjusted R-squared	0.410	0.259	0.132

This table presents regression estimates of stock returns during the pre-COVID-19 crisis period on environmental score and control variables. In Column 1, the dependent variable is the stock return over January 2020. In Column 2, the dependent variable is the stock return over the period January 2 to January 17, which corresponds to the incubation period in Ramelli and Wagner (2020). In Column 3, the dependent variable is the stock return over the period January 20 to February 21, which corresponds to the outbreak period in Ramelli and Wagner (2020). All variables are winsorized at the 1st and 99th percentiles. All regressions include industry fixed effects based on TRBC industry group classifications. Variables are defined in Appendix A. Constants are not reported. Heteroskedasticity-consistent standard errors are presented in parentheses. ***, **, and * indicate that the parameter estimate is significantly different from zero at the 1%, 5%, and 10% level, respectively.
have a long-term orientation (i.e., pension funds, endowment funds, foundation funds, insurance companies, and sovereign funds). Investor variables are measured as of end of 2019. All the sample according to the median of ownership by investors with a long-term orientation. The group of investors with a long-term orientation consists of pension funds, endowment, foundation, insurance companies, and sovereign funds. Investor variables are measured as of end of 2019. All variables are winsorized at the 1st and 99th percentiles. All regressions include industry fixed effects based on TRBC industry group classifications.

This table presents regression estimates of stock returns during the COVID-19 crisis (i.e., February 20–March 20, 2020) on environmental score and control variables. In columns 1 and 2, we split the sample according to median share-weighted average investor turnover. In column 3 and 4, we split the sample according to the median of ownership by investors with a long-term orientation. The group of investors with a long-term orientation consists of pension funds, endowment, foundation, insurance companies, and sovereign funds. Investor variables are measured as of end of 2019. All variables are winsorized at the 1st and 99th percentiles. All regressions include industry fixed effects based on TRBC industry group classifications. Variables are defined in Appendix A. Constants are not reported. Heteroskedasticity-consistent standard errors are presented in parentheses. ***, **, and * indicate that the parameter estimate is significantly different from zero at the 1%, 5%, and 10% level, respectively.

Table 6 reports regressions of stock returns during the COVID-19 crisis on pre-crisis environmental score and control variables estimated separately for subsamples sorted by our two proxies for long-term investor ownership. The results from Columns 1 and 2 indicate that the positive and significant association between environmental score and stock returns during the COVID-19 crisis is driven by the group of firms with below-median average investor turnover (i.e., with greater long-term investor ownership). The Wald test of coefficient equality shows that the difference between coefficients is statistically significant. Similarly, the results from Columns 3 and 4 show that the effect of environmental score on stock returns during the COVID-19 crisis is more pronounced for the group of firms with above-median ownership by institutional investors with a long-term orientation. The Wald test of coefficient equality shows that the difference between coefficients is again statistically significant.

Overall, the results from Table 6 indicate that responsible strategies on environmental issues are rewarded to a larger extent when investors have a long-term orientation. This result is consistent with the evidence in Ramelli et al. (2018) that although Donald Trump’s election and his nomination of Scott Pruitt, a climate skeptic, to lead the Environmental Protection Agency drastically downshifted expectations on U.S. climate-change policy, long-term investors actually rewarded climate-responsible companies. In both cases, long-term institutional investors reward firms with responsible strategies on environmental issues presumably because they are anticipating the long-term consequences of environmental responsibility (Ramelli et al., 2018).

3.5. Environmental score, EPS revisions during the COVID-19 crisis, and stock reaction to policy responses

The evidence that firms with responsible strategies on climate change experience better stock returns during the COVID-19 crisis is consistent with the idea that investors, in particular those with a long-term orientation, have started to reward to larger extent responsible initiatives on environmental issues and except firms with good environmental scores to do better in the long run. It could however be that the greater stock returns of firms with responsible initiatives on environmental issues reflect the fact that investors consider these firms to be better able to generate short-term profits or to access to financial resources.

In this section, we provide two additional tests suggesting that firms with responsible initiatives on environmental issues are rewarded during the COVID-19 crisis because investors expect them to do better in the long-run rather than because they are in a better position to improve their immediate financial conditions. First, we examine whether environmental score is related to financial analysts’ forecast revisions. In Table 7, we estimate regressions of the analysts’ median forecast revision of one-year ahead EPS (Column 1), two-year ahead EPS (Column 2), and EPS long-term growth (Column 3) between January 2020 and March 2020 on pre-crisis environmental score and control variables. The results from Columns 1 and 2 show that the coefficient on Environmental score is very small and not statistically significant, indicating that financial analysts do not expect firms with responsible strategies on environmental issues to generate higher earnings at a one-year or two-year horizon. On the contrary, the results from Column 3 show the

19 The universe of investor types as identified by Thomson Reuters consists of: Bank and Trust, Corporation, Endowment Fund, Foundation, Hedge Fund, Holding Company, Individual Investor, Insurance Company, Investment Advisor, Investment Advisor/Hedge Fund, Other Insider Investor, Pension Fund, Private Equity, Research Firm, Sovereign Wealth Fund, and Venture Capital.

20 Cheng et al. (2014) show that superior performance on corporate social responsibility (CSR) strategies leads to better access to finance.

21 Landier and Thesmar (2020) assess the economic impact of the COVID-19 crisis using analyst forecasts which provide a direct measure of revisions in beliefs at the firm level.
Table 7
Environmental score and one-year-ahead EPS consensus forecast revision.

Environmental score	(1) Median EPS forecast revision 1	(2) Median EPS forecast revision 2	(3) Median LTG forecast revision	(4) Median EPS forecast revision 1	(5) Median EPS forecast revision 2
Observations	-0.000 (0.002)	-0.001 (0.001)	0.033** (0.016)	0.001 (0.001)	-0.000 (0.001)
Control variables	Yes	Yes	Yes	Yes	Yes
Industry dummies	Yes	Yes	Yes	Yes	Yes
Adjusted R-squared	0.114	0.177	0.0201	0.0911	0.133

This table presents regression estimates of EPS consensus forecast revision between end of January and end of March 2020 on environmental score and control variables. Median EPS Forecast Revision 1 is the difference between the latest consensus forecast for one-year-ahead EPS in January and the latest consensus forecast for one-year-ahead EPS in March. Median EPS Forecast Revision 2 is the difference between the latest consensus forecast for two-year-ahead EPS in January and the latest consensus forecast for one-year-ahead EPS in March. Median LTG Forecast Revision is the difference between the latest consensus forecast for EPS long-term growth in January and the latest consensus forecast for EPS long-term growth in March. In columns 1 to 3, we restrict the regressions to observations for which we can compute Median LTG Forecast Revision. In columns 4 to 5, we relax this restriction. All variables are winsorized at the 1st and 99th percentiles. All regressions include industry fixed effects based on TRBC industry group classifications. Variables are defined in Appendix A. Constants are not reported. Heteroskedasticity-consistent standard errors are presented in parentheses. ***, **, and * indicate that the parameter estimate is significantly different from zero at the 1%, 5%, and 10% level, respectively.

The coefficient on Environmental score is positive and statistically significant, indicating that financial analysts expect firms with responsible strategies on environmental issues to generate higher earnings over the long run. In Columns 1 and 2, we restrict our analysis of one-year ahead EPS and two-year ahead EPS to the subsample of firms for which information on EPS long-term growth is available. In Columns 4 and 5, we relax this restriction and estimate regressions of the analysts’ median forecast revision of one-year ahead EPS or two-year ahead EPS on environmental score and control variables for the full sample. We continue to find that environmental score is not statistically associated with short-term earnings forecasts.

Second, we investigate the possibility that investors may have rewarded firms with high environmental score for their superior access to finance. To do so, we examine whether firms with high environmental score benefit from the news concerning policy responses to the COVID-19 crisis on March 24. As explained by Fahlenbrach et al. (2020), on March 24th, once the approval of a large-scale stimulus became likely, the stock market responded positively with the best one-day performance since 2008.22 If firms with high environmental score had better returns during the COVID-19 crisis because they have more financial flexibility or better access to finance, one would expect those firms to benefit less from the policy changes associated with the stimulus package. Fahlenbrach et al. (2020) show that firms with more cash and less debt experience higher returns during the COVID-19 crisis and benefit less from the policy responses on March 24.

In Table 8, we estimate regressions of the stock return from March 23 to March 24, 2020 on pre-crisis environmental score and control variables. The results show that the coefficient on Environmental score is positive but not statistically significant, indicating that companies with responsible strategies on environmental issues do not benefit from the news concerning policy responses to the COVID-19 crisis on March 24. This finding does not support the notion that firms with high environmental score experience better returns during the COVID-19 crisis because they have more financial flexibility or better access to finance. On April 9, the Fed announced that it took additional actions to provide up to $2.3 trillion in loans to support the economy. In Column 2, we run a regression of the stock return on April 9 on pre-crisis environmental score and control variables. The results show that the coefficient on Environmental score is again not statistically significant, further indicating that environmental scores do not affect stock price reactions to the announcement of news concerning policy responses to the COVID-19 crisis.23

Overall, the results from this section provide evidence to suggest that investors reward firms with responsible initiatives on environmental issues because they expect them to do better in the long-run rather than because these firms are able to generate short-term profits or enjoy a better access to finance.

3.6. Robustness tests

In this section, we present robustness tests we have conducted to demonstrate that the results of our main analysis are not driven by the set of control variables or the empirical specification. First, all regressions include industry fixed effects based on TRBC industry groups because they are the ones used by Asset 4 to calculate the environmental score of companies relative to their sector. In Table 9, Panel A, we reproduce our main regression from Table 2, Panel A including industry fixed effects based on different classifications. Specifically, we consider SIC industry dummies, GICS industry dummies, and NAICS industry dummies. The results show that the

22 The Fed stated that it would buy Treasuries “in the amounts needed to support smooth market functioning and effective transmission of monetary policy to broader financial conditions and the economy” and opened new facilities designed to provide credit to employers and to support the corporate bond market (Fahlenbrach et al., 2020).

23 In unreported tests, we find that our results are similar if we extend the set of control variables to include R&D expenses, advertising expenses, SG&A expenses, capital expenditures, and a dividend dummy.
coefficient on Environmental score is positive and statistically significant in all specifications, indicating that our results are not sensitive to the choice of industry classifications.

Second, the results from Table 3 show that the effect of environmental score on stock returns during the COVID-19 crisis is robust to controlling for the governance score. Previous studies show that a firm’s ownership and corporate governance structure affect stock returns in periods of market turmoil (e.g., Cella et al., 2013; Erkens et al., 2012; Ding et al., 2020). Table 9, Panel B presents the results of estimating our main regression from Table 2, Panel A with additional governance variables. Specifically, we control for several governance variables including institutional ownership, antitakeover devices, board size, board independence, and CEO duality dummy. The results indicate that institutional ownership (CEO duality) is negatively (positively) associated with stock returns during the COVID-19 crisis. Most importantly for our purpose, the coefficient on Environmental score remains statistically significant at the 1% level in all specifications.

Third, we further control for product market competition to alleviate the concern that firms operating in less competitive environments may be better able to both adopt responsible strategies on environmental issues and to resist the COVID-19 shock. Table 9, Panel C presents the results of estimating our main regression from Table 2, Panel A including additional control variables. Specifically, we control for several measures of product market competition as additional control variables. These measures are based on web crawling and text parsing algorithms that process the text in the business descriptions of 10-K annual filings. HP HHI and HP SIM are measures of market structure and market power respectively. The results show that these two measures of product market competition are not statistically associated with stock returns during the COVID-19 crisis. Most importantly for our purpose, the coefficient on Environmental score remains statistically significant at the 1% level in all specifications.

Fourth, we estimate our main regression from Table 2, Panel A including additional control variables, namely R&D expenses, advertising expenses, SG&A expenses, CAPEX, and a dividend dummy. The results show that except for the dividend dummy, the coefficients on those variables are not statistically significant and that the coefficient on Environmental score continues to be positive and statistically significant with a strong stability across the specifications.

Next, we check that our results are not driven by the inclusion of some sectors that are likely to have been particularly affected by the COVID-19 shock. The environment scores provided by Asset 4 are based on relative performance with the company’s sector, which mitigates the concern that some industries that were severely hit by the COVID-19 shock drive our results. However, in Panel E, we estimate our baseline regressions excluding the firms in the energy, transportation, automobile, and personal services sector, respectively. The results show that our main results hold in all subsamples.

Finally, we check that our results hold when computing environmental scores based on an alternative data source. Based on KLD ratings, we construct two alternative measures of environmental responsibility. The first one corresponds to the number of strengths pertaining to the environment (i.e., the number of positive environmental policies). The second one is the number of KLD strengths minus the number of KLD concerns pertaining to the environment. We replace our main measure of environmental score by these two measures and we reestimate our main regressions. The results from Panel F show that the coefficients on the two alternative measures

24 The latest available year for data on product market competition is 2017.
25 The energy sector corresponds to the TRBC sectors “Energy - Fossil Fuels” and “Renewable Energy”, the transportation sector corresponds to the TRBC sector “Transportation”, the automobile sector corresponds to the TRBC sector “Automobiles & Auto Parts”, and the personal services sector corresponds to the TRBC sectors “Cyclical Consumer Services” and “Personal & Household Products & Services”.

Table 8
Environmental score and stock reaction to policy responses to the COVID-19 crisis.

Return	Aid plan	Fed announcement
	24 March 2020	9 April 2020
	1	2
Environmental score	0.005 (0.010)	−0.002 (0.006)
Beta MKT	0.081 (0.363)	0.442* (0.227)
Beta HML	0.458* (0.235)	0.222 (0.157)
Beta SMB	−0.545** (0.255)	0.631*** (0.173)
Ln (Total assets)	0.335* (0.184)	−0.625*** (0.108)
Long-term debt	3.773*** (1.110)	1.496** (0.608)
Short-term debt	3.960 (8.472)	0.536 (5.047)
Cash holdings	−0.370 (1.204)	−2.601*** (0.683)
Profitability	−3.470*** (1.407)	−2.154*** (0.915)
Momentum	0.003 (0.010)	−0.009 (0.007)
Observations	1626	1626
Industry dummies	Yes	Yes
Adjusted R-squared	0.130	0.158

This table presents regression estimates of stock returns from March 23 to March 24, 2020 (in column 1) and of April 9, 2020 (column 2) on environmental score and control variables. All variables are winsorized at the 1st and 99th percentiles. All regressions include industry fixed effects based on TRBC industry group classifications. Variables are defined in Appendix A. Constants are not reported. Heteroskedasticity-consistent standard errors are presented in parentheses. ***, **, and * indicate that the parameter estimate is significantly different from zero at the 1%, 5%, and 10% level, respectively.
Table 9
Robustness tests.

Panel A. Alternative definitions of industry fixed effects

COVID-19 crisis returns (February 20–March 20)	SIC Industry Dummies	GICS Industry Dummies	NAICS Industry Dummies
Environmental score	0.053*** (0.020)	0.040** (0.019)	0.055*** (0.020)
Observations	1626	1626	1626
Control variables	Yes	Yes	Yes
Industry dummies	Yes	Yes	Yes
Adjusted R-squared	0.277	0.277	0.256

Panel B. Additional controls for corporate governance

COVID-19 crisis returns (February 20–March 20)	(1) Environmental score	(2) Institutional ownership	(3) Nb. Antitakeover devices	(4) Ln(Board size)	(5) % Independent board members	(6) CEO duality dummy
Observations	0.052*** (0.019)	−0.045** (0.020)	−0.309 (0.206)	−2.462 (2.091)	−0.031 (0.034)	1.616** (0.802)
Control variables	Yes	Yes	Yes	Yes	Yes	Yes
Industry dummies	Yes	Yes	Yes	Yes	Yes	Yes
Adjusted R-squared	0.268	0.266	0.266	0.266	0.267	0.268

Panel C. Controlling for product market competition

COVID-19 crisis returns (February 20–March 20)	(1) Environmental score	(2) HP HHI	(3) HP SIM	(4) Observations	(5) Control variables	(6) Industry dummies	(7) % Independent board members	(8) CEO duality dummy
Observations	0.052*** (0.019)	0.922 (1.789)	−0.060 (0.065)	1449	Yes	Yes		1.405* (0.804)

Panel D. Other controls

COVID-19 crisis returns (February 20–March 20)	(1) Environmental score	(2) R&D expenses	(3) Advertising expenses	(4) SG&A expenses	(5) CAPEX	(6) Dividend dummy
Observations	0.052*** (0.019)	9.743 (7.283)	−1.745 (16.320)	−3.168 (2.969)	−1.617 (11.475)	2.195** (1.003)
Control as in Table 2	Yes	Yes	Yes	Yes	Yes	Yes
Industry fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Time fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Adjusted R-squared	0.266	0.265	0.266	0.265	0.268	0.268

Panel E. Controlling for the influence of specific sectors

Crisis return (%)	(1) Excluding energy sector	(2) Excluding transportation sector	(3) Excluding automobile sector	(4) Excluding personal services sector
Environmental score	0.049** (0.019)	0.055*** (0.019)	0.055*** (0.019)	0.045** (0.020)
Observations	1512	1575	1594	1484
of environmental responsibility computed with KLD ratings are positive and statistically significant at the 1% level.

4. Conclusion
In recent years, environmental issues and climate change have increasingly become a daily preoccupation for many companies.
While climate change and the large financial risks it imposes were receiving growing attention, the COVID-19 outbreak came as a complete surprise for investors, corporate leaders, and policy makers. Although the near-economic standstill induced by the COVID-19 has immediate positive effects on the environment with levels of pollution and carbon emission dropping everywhere, the need for economic recovery potentially threatens climate actions as governments may be tempted to postpone stricter environmental actions.

While there is still vast uncertainty concerning the financial consequences and the future of climate actions, our work looks at stock price reactions to the COVID-19 crisis, which capture the views and expectations regarding future consequences of the virus. The evidence that firms with good environmental scores have significantly higher returns during the COVID-19 crisis indicates that investors have started to reward companies with responsible strategies on climate change to a larger extent. The view provided by the stock market on what investors expect for the future therefore suggests that companies with responsible strategies on climate issues will do better in the long run.

Future research should examine the realized consequences of the COVID-19 shock regarding environmental issues: Will there be a surge in shareholder activism on environmental issues? Will companies react to the COVID-19 crisis by fostering responsible initiatives on environmental and climate issues? Will customers favor environment-friendly products? Empirical analysis of these questions will be informative on the commitment of different stakeholders to tackle environmental issues and climate change.

Appendix A. Variable definitions

Variables	Definition	Source
% Independent board members	Proportion of independent directors sitting on the board	TR Asset 4
Advertising expenses	Advertising expenses scaled by total assets	TR Fundamentals
Beta HML	Loading on the HML premium based on the Fama-French three factors model estimated over 60 months prior to the crisis. We require at least 12 months of data available.	TR and Kenneth French’s Website
Beta MKT	Loading on the market premium based on the Fama-French three factors model estimated over 60 months prior to the crisis. We require at least 12 months of data available.	TR and Kenneth French’s Website
Beta SMB	Loading on the SMB premium based on the Fama-French three factors model estimated over 60 months prior to the crisis. We require at least 12 months of data available.	TR and Kenneth French’s Website
CAPEX	Capital expenditures scaled by total assets	TR Fundamentals
CEO duality dummy	Dummy variable coding for whether the CEO is also the chairman of the board.	TR Asset 4
COVID-19 crisis return	Buy-and-hold stock return over the period February 20-March 20	TR
Dividend dummy	Dummy variables coding for whether a company pays dividends.	TR Fundamentals
Emission reduction	The Emission Reduction Score measures a company’s commitment and effectiveness towards reducing environmental emission in the production and operational processes.	TR Asset 4
Environmental score	Environmental Score aggregates information on a company’s performance and capacity to reduce the use of materials, energy or water, and to find more eco-efficient solutions by improving supply chain management (Resource Use Score), a company’s commitment and effectiveness towards reducing environmental emission in the production and operational processes (Emission Reduction Score), and a company’s capacity to reduce the environmental costs and burdens for its customers, thereby creating new market opportunities through new environmental technologies and processes or eco-designed products (Green Innovation Score).	TR Asset 4
Governance score	Governance Score aggregates information a company’s commitment and effectiveness towards following best practice corporate governance principles (Management Score), a company’s effectiveness towards equal treatment of shareholders and the use of anti-takeover devices (Shareholders Score), and a company’s practices to communicate that it integrates the economic (financial), social and environmental dimensions into its day-to-day decision-making processes (CSR Strategy Score).	TR Asset 4
Green innovation	The Green innovation Score reflects a company’s capacity to reduce the environmental costs and burdens for its customers, and thereby creating new market opportunities through new environmental technologies and processes or eco-designed products	TR Asset 4
HP HHI	This data is based on web crawling and text parsing algorithms that process the text in the business descriptions of 10-K annual filings on the SEC Edgar website from 2017. HHI is a measure of concentration within TNIC industry classification.	Hoberg’s website
HP SIM	This data is based on web crawling and text parsing algorithms that process the text in the business descriptions of 10-K annual filings on the SEC Edgar website from 2017. SIM is a measure of product differentiation within TNIC industry classification.	Hoberg’s website
Institutional ownership	Percentage of a firm’s common shares outstanding held by institutional investors.	TR
Investor turnover	The shares-weighted average portfolio turnover of a firm’s investor, whereby portfolio turnover is the average investor holding period calculated based on the previous 12 quarters (36 months) of portfolio holdings.	TR
KLD environmental strengths	Sum of KLD environmental strengths (as of end 2018).	MSCI
KLD environmental strengths minus concerns	Sum of KLD environmental strengths minus the sum of JKD environmental concerns (as of end 2018).	MSCI
Ln(Board size)	Natural logarithm of the number of board members	TR Asset 4
Ln(Total assets)	Natural logarithm of total assets	TR Fundamentals
Long-term debt	Long-term debt scaled by total assets	TR Fundamentals
Median EPS forecast revision 1	Difference between the latest consensus forecast for one-year-ahead EPS in January 2020 and the latest consensus forecast for one-year-ahead EPS in March 2020.	IBES

(continued on next page)
References

Albuquerque, R., Koskinen, Y., Yang, S., Zhang, C., 2020. Resiliency of environmental and social stocks: an analysis of the exogenous COVID-19 market crash. Rev. Corp. Financ. Stud. 9 (3), 593-621.

Andersson, M., Bolton, P., Samama, F., 2016. Governance and climate change: a success story in mobilizing investor support for corporate responses to climate change. J. Appl. Corp. Financ. 28 (2), 29-33.

Bae, K.H., El Ghouli, S., Gong, Z.J., Guedhami, O., 2021. Does CSR matter in times of crisis? Evidence from the COVID-19 pandemic. J. Corp. Finan. 67.

Bolton, P., Kacperczyk, M., 2020. Do investors care about carbon risk? (No. w26968). National Bureau of Economic Research.

Bolton, P., Krueger, P., Sautner, Z., Starks, L.T., 2020. The importance of climate risks for institutional investors. Rev. Financ. Stud. 33 (3), 1067-1096.

Erkens, D.H., Hung, M., Matos, P., 2012. Corporate governance in the 2007-2008 financial crisis. J. Corp. Finan. 617. https://doi.org/10.1093/rapstu/raaa016.

Fahlenbrach, R., Ratgekh, K., Stulz, R.M., 2020. How valuable is financial flexibility when revenue stops? Evidence from the COVID-19 crisis. Rev. Financ. Stud. https://doi.org/10.1093/rfs/hhaa134.

Flammer, C., 2013. Corporate social responsibility and shareholder reaction: the environmental awareness of investors. Acad. Manag. J. 56 (3), 758-781.

Galaxy, X., 2012. Variable rare disasters: an exactly solved framework for ten puzzles in macro-finance. Q. J. Econ. 127, 645-700.

Gaspar, J.M., Massa, M., Matos, P., 2005. Shareholder investment horizons and the market for corporate control. J. Financ. Econ. 76 (1), 135-165.

Gibson, R., Krueger, P., 2018. The sustainability footprint of institutional investors. In: Swiss Finance Institute Research Paper, (17-05).

Ginglinger, E., Moreau, Q., 2019. Climate risk and capital structure. In: Université Paris-Dauphine Research Paper, (3327185).

Gomenc, H., Scholten, B., 2017. Environmental and financial performance of fossil fuel firms: a closer inspection of their interaction. Ecol. Econ. 132, 307–328.

Gourio, F., 2012. Disaster risk and business cycles. Am. Econ. Rev. 102, 2754-2766.

Green, T.C., Huang, R., Wen, Q., Zhou, D., 2019. Crowdsourced employer reviews and stock returns. J. Financ. Econ. 134 (1), 236-251.

Hoberg, G., Phillips, J., 2010. Product market synergies and competition in mergers and acquisitions: a text-based analysis. Rev. Financ. Stud. 23 (10), 3773-3811.

Huynh, T.D., Nguyen, T.H., Truong, C., 2020. Climate risk: the price of drought. J. Corp. Finan. 65, 101750.

Ilhan, E., Sautner, Z., Villikko, G., 2021. Carbon Tail Risk. Rev. Financ. Stud. 34 (3), 1540-1571.

Knueger, P., Sautner, Z., Starks, L.T., 2020. The importance of climate risks for institutional investors. Rev. Financ. Stud. 33 (3), 1067-1111.

Landier, A., Thesmar, D., 2020. Earnings expectations during the COVID-19 crisis. Rev. Asset Pric. Stud. 10 (4), 598–617. https://doi.org/10.1093/raps/rzaa016.

Lins, K.V., Servaes, H., Tamayo, A., 2017. Social capital, trust, and firm performance: the value of corporate social responsibility during the financial crisis. J. Financ. 72 (4), 1785-1824.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jcorpfin.2021.101948.
Litterman, B., 2017. Climate Risk: Tail Risk and the Price of Carbon Emissions—Answers to the Risk Management Puzzle. John Wiley & Sons.

Loughran, T., McDonald, B., 2020. Management disclosure of risk factors and COVID-19. Available at SSRN 3575157.

Mazur, M., Dang, M., Vega, M., 2020. COVID-19 and the march 2020 stock market crash. Evidence from S&P1500. Financ. Res. Lett. 101690.

Monasterolo, I., De Angelis, I., 2020. Blind to carbon risk? An analysis of stock market reaction to the Paris agreement. Ecol. Econ. 170, 106571.

Morgan, J.P., 2020. Why COVID-19 Could Prove to Be a Major Turning Point for ESG Investing. URL. https://www.jpmorgan.com/insights/research/covid-19-esg-investing.

Nguyen, J.H., Phan, H.V., 2020. Carbon risk and corporate capital structure. J. Corp. Finan. 64, 101713.

Nordhaus, W., 2019. Climate change: the ultimate challenge for economics. Am. Econ. Rev. 109 (6), 1991–2014.

Pagano, M., Wagner, C., Zechner, J., 2020. Disaster Resilience and Asset Prices. Available at SSRN 3603666.

Ramelli, S., Wagner, A.F., 2020. Feverish stock price reactions to covid-19. Rev. Corp. Financ. Stud. 9 (3), 622–655.

Ramelli, S., Wagner, A.F., Zeckhauser, R., Ziegler, A., 2018. Stock Price Rewards to Climate Saints and Sinners: Evidence from the Trump Election. National Bureau of Economic Research.

Ramelli, S., Ossola, E., Rancan, M., 2020. Climate Sin Stocks: Stock Price Reactions to Global Climate Strikes. Available at SSRN.

Reinhart, C., 2020. This Time Is Truly Different. URL. https://www.project-syndicate.org/commentary/covid19-crisis-has-no-economic-precedent-by-carmen-reinhart-2020-03.

Schoenfeld, J., 2020. The invisible risk: pandemics and the financial markets. Available at SSRN 3567249.

Seltzer, L., Starks, L.T., Zhu, Q., 2020. Climate Regulatory Risks and Corporate Bonds. Available at SSRN 3563271.

Wachter, J.A., 2013. Can time-varying risk of rare disasters explain aggregate stock market volatility? J. Financ. 68, 987–1035.