C-axis optical properties of high T_c cuprates∗

D. van der Marel, A. Tsvetkov, M. Grueninger, D. Dulic, H. J. A. Molegraaf

Laboratory of Solid State Physics
Materials Science Centre, Nijenborgh 4, 9747 AG Groningen, The Netherlands

A review is given of the experimental status of the interlayer coupling energy in the cuprates. A second c-axis plasmon is identified in the double layer compound Y123 for various dopings. The anomalous transport properties along the c-direction and in the planar directions are compared to model calculations based on strongly anisotropic scattering. An excellent description of the optical data at optimal doping is obtained if an anomalously large anisotropy of the scattering rate between cold spots and hot spots is assumed. This raises questions as to the physical meaning of these parameters.

During the past four years the issue whether the mechanism of superconductivity in the cuprates could be a lowering of kinetic energy (as opposed to potential energy in BCS theory) has received considerable attention both theoretically [1–4] and experimentally[9,16,11,10,12–14]. Although originally conceived as an in-plane mechanism in the hole-model of superconductivity[1], attention later was concentrated on the c-axis properties[2] first of all because the c-axis transport of quasiparticles had been found to have a very large scattering rate in the normal state[5] and, rather surprisingly, also in the superconducting state[6], thus providing a channel for kinetic energy lowering for paired charge carriers as soon as they become delocalized as a result of the pairing. A high value of the scattering rate for transport along the c-direction which remains high in the superconducting state appears to be a robust property of the cuprates: It has been reported for La214[6], Y123[7] Tl2201, and Tl2212 . In the second place the kinetic energy lowering is just the Josephson coupling energy (or in any case not larger) in the interlayer tunneling (ILT) model, which suggested a direct experimental way to test the model by measuring both the condensation energy (E_{cond}) and E_J. The ILT hypothesis requires that E_J \approx E_{cond}. To avoid the complexity of having two possible Josephson junctions per unit cell of different strength, single layer cuprates had to be considered. Among those Tl2201 had one of the highest T_c’s (\approx 80 K), and relatively large (though thin along the c-direction) crystals and thin films were available. In the spring of 1996 the first experimental results were presented[9], showing that E_J was at least two orders of magnitude too small to account for the condensation energy. Although these results seemed to rule out ILT as the main mechanism of superconductivity[6] they relied on the non-observance of a plasma-resonance where it should have been in the superconducting state (800 cm\(^{-1}\)).

The issue remained dormant until first λ_c[10] of 17 µm and next the Josephson plasma resonance (JPR)[11] at 28 cm\(^{-1}\) had been observed experimentally, allowing a precise determination of E_J \approx 0.3µeV in Tl2201 with T_c = 80k. This is a factor 400 lower than E_{cond} \approx 100µeV per copper, based either on cV experimental data[16], or on the formula E_{cond} = 0.5N(0)\Delta^2 with N(0) = 1eV\(^{-1}\) per copper, and \Delta \approx 15meV. A c-axis kinetic energy change even smaller than E_J is obtained from estimating the amount of high energy spectral weight transferred to the \delta-function at zero frequency[12]. In the examples studied so far this
gives a value of $\Delta E_{\text{kin,c}}$ which is 0.5 E_J, for the underdoped materials, and less than 0.1 E_J for the optimally doped materials. In Fig. 1 the change in c-axis kinetic energy and the Josephson coupling energies are compared to the condensation energy for a large number of high T_c cuprates. For most materials materials we see, that $E_J < E_{\text{cond}}$, sometimes differing by several orders of magnitude.

![Figure 1. C-axis kinetic energy versus condensation energy. The open symbols represent the most E_J estimated from either the JPR or the c-axis penetration depth. The closed symbols represent the difference in low energy spectral weight between the superconducting and the normal state.](image)

In this plot we have also indicated optimally doped and overdoped Y123. Below T_c we observe a transfer of spectral weight from the FIR not only to the condensate at $\omega=0$, but also to a new peak in the MIR. This peak is naturally explained as a transverse out-of-phase bilayer plasmon by a model for $\sigma(\omega)$ which takes the layered crystal structure into account. With decreasing doping the plasmon shifts to lower frequencies and can be identified with the surprising and so far not understood FIR feature reported in underdoped bilayer cuprates. A second Josephson plasmon has also been reported for the T^* phase La1-xSr_xSmCuO4. For points marked YBCO ΔE_{kin} was calculated from the total superfluid spectral weight of the two plasmons. For optimally doped and overdoped YBCO almost all (at least 95 %) superfluid spectral weight originates from the gap-region, resulting in the solid points.

As mentioned in the beginning of this paper, there is the issue of the very large scattering rate in the normal state and, rather surprisingly, also in the superconducting state. Usually a large scattering rate along the c-axis is interpreted as a form of tunneling with a large scattering of k_\parallel of the charge carriers. The term ‘incoherent’ is usually reserved for non-k_\parallel conserving tunneling. Clearly there must be some degree of k_\parallel conservation in the tunneling, as otherwise the c-axis critical current would be zero due to cancellation of the phases of the d-wave order parameter.

In the first place the tunneling matrix elements depend strongly on k_\parallel: As a result of some peculiarities of the crystal structure of these materials it has zero’s in the zone-diagonal directions. There are indications that the charge carrier scattering rate is also strongly k_\parallel dependend, probably due to coupling to spin-fluctuations. The zone-diagonal directions remain unaffected, while the $(\pi,0)$ directions have a strong scattering. This leads to a simple formula for the in-plane optical conductivity in the normal state

$$\epsilon_{ab}(\omega) = \epsilon_{\infty} - \frac{\omega^2}{\omega^2 + \Gamma^2} \frac{\Gamma}{1 + \Gamma \omega}.$$

Here Γ is the hot-spot scattering rate, $1/\tau$ is the cold-spot scattering rate, and the above expression was derived assuming that the scattering rate varies smoothly between these two extrema along the Fermi-surface. In Fig. 1 we provide reflectivity curves of Bi2201 ($T_c \approx 10K$) taken from Ref. together with the four parameter fits. In the fit...
procedure the value of ω_p was kept fixed at 13700 cm$^{-1}$ at all temperatures, while ϵ_∞, τ and Γ were adjusted to obtain the best fit. It turned out, that $\epsilon_\infty = 4.2 \pm 0.1$ at all temperatures. The temperature dependence of Γ and $1/\tau$ are indicated in the lower panel of Fig. 2. We see, the model leads to a very large anisotropy between these two scattering rates: Γ is almost a constant, while $1/\tau$ has a T^2 temperature dependence on top of a small residual value. In fact the parameters obtained with this fit look quite unreasonable. A scattering rate of almost 1 eV around the hot spots is an order of magnitude larger than typical linewidths observed with ARPES. On the other hand for the optical spectra a rather complete and selfconsistent description is obtained: The optical conductivity along the c-axis is largely determined by the hot-spots, as a result of the strong k-dependence of k_\parallel. The resulting analytical expressions for the c-axis conductivity provide spectra which closely resemble the experimentally observed optical conductivity along c. In the righthand panel of Fig. 3 we display the theoretical curves for the in-plane and c-axis conductivity using the same parameters as above. In the lefthand panel of Fig. 3 the experimental curves for La214 along the two crystallographical directions are displayed [28, 29]. Clearly there is a close resemblance between these data sets. The significance of these results is really not clear at this moment. Questions that need to be answered are:

1. To what extent is k_\parallel conserved in the tunneling, and possible implications for the theory of transport in the cuprates?

2. What is the minimum value of $t_{\bot}(k_\parallel)$? The

![Figure 2](image1.png)

Figure 2. Top: Reflectivity curves of Bi2201 adopted from Ref. [27] (open symbols), and fits to the anisotropic scattering model (solid curves). Bottom: Fit parameters, $\omega_p/2\pi c = 13700$ cm$^{-1}$.

![Figure 3](image2.png)

Figure 3. Left: Experimental σ_{ab} and σ_c of La214 ($T_c = 32$ K), adopted from Refs [28] and [29]. Right: Comparison of σ_\parallel and σ_c using the model expressions of [22], and using the parameters $\hbar\omega_{p,a} = 1.74$ eV, $\hbar\omega_{p,c} = 0.22$ eV, $\hbar\Gamma = 1.24$ eV, and $\hbar/\tau = 12$ meV.
'chemical' arguments mentioned above provide no arguments why it should be exactly zero?

3. Do the minimum value of the hopping parameter, of the scattering rate and of the gap always coincide at exactly the same value of \(k_\parallel \)? This is not dictated by the symmetry of the materials, which is more often than not orthorhombic rather than tetragonal.

4. If the answer to the above is affirmative, what is the microscopic reason?

5. Why are the scattering rate observed with ARPES and transport/optical probes completely different?

REFERENCES

1. J. E. Hirsch, Physica C 201 (1992) 347.
2. P. W. Anderson, Science 268 (1995) 1154.
3. A. J. Leggett, Science 274 (1996) 587.
4. S. Chakravarty, Eur. Phys. J. B 5 (1998) 337.
5. S. L. Cooper, and K.E. Gray, Physical properties of High Temperature Superconductors IV, ed. D. M. Ginsberg (World Scientific, Singapore 1994).
6. J. H. Kim et al., Physica C 247 (1995) 297.
7. A. Hosseini et al., Phys. Rev. Lett. 81 (1998) 1298.
8. D. Dulic et al., Phys. Rev. B, 60 (1999) R15051; A.A. Tsvetkov et al., Phys. Rev. B 60 (1999) 13196.
9. D. van der Marel et al., Proc. 10th Ann. HTS Workshop on Physics, Houston, World Sc. Publ. (1996) 357-370; J. Schuetzmann et al., Phys. Rev. B 55 (1997) 11118.
10. K. A. Moler et al., Science 279 (1998)
11. A. Tsvetkov et al., Nature 395 (1998) 360
12. D. Basov et al., Science 283 (1999) 49
13. J. Kirtley et al., Phys. Rev. Lett. 81 (1998) 2140
14. M.B. Gaifullin et al., Phys. Rev. Lett. 83 (1999) 3928
15. T. Shibauchiet al., Phys. Rev. Lett. 72 (1994) 2263
16. C. Panagopoulos et al., Phys. Rev. Lett. 79 (1997) 2320
17. M. Grueninger et al., Phys. Rev. Lett. 84 (2000) 1575.
18. J. Loram et al., Physica C 235-240 (1994) 134
19. D. Munzar et al., cond-mat/9903291 (1999).
20. H. Shibata, T. Yamada, Phys. Rev. Lett. 81, 3519 (1998).
21. D. van der Marel and A. Tsvetkov, Czech. J. of Phys. 46 (1996) 3165.
22. D. van der Marel, Phys. Rev. B, 60 (1999) R765.
23. Yu. N. Gartstein, M.J. Rice and D. van der Marel. Phys. Rev. B 49 (1994) 63603.
24. B. Stojkovic, and D. Pines, Phys. Rev. B 56, 11931 (1997).
25. L. B. Ioffe, and A. J. Millis, Phys. Rev. B 58, 11631 (1998).
26. S. Chakravarty et al., Science 261, 337 (1993).
27. A.A. Tsvetkov et al., Phys. Rev B 55 (1997) 14152.
28. H.S. Somal et al., Phys. Rev. Letters 76 (1996) 1525; H.S. Somal, Ph D thesis, University of Groningen 1998.
29. M.-U. Gruninger, Ph D thesis, University of Groningen 1999