Geometric Origin of Staggered Fermion: Direct Product K-Cycle

Jian Dai ∗, Xing-Chang Song †
Theory Group, Department of Physics, Peking University
May 14th, 2001

Abstract

Staggered formalism of lattice fermion can be cast into a form of direct product K-cycle in noncommutative geometry. The correspondence between this staggered K-cycle and a canonically defined K-cycle for finitely generated abelian group where lattice appears as a special case is proved.

PACS: 02.40.Gh, 11.15.Ha, 02.20.Bb

Key words: staggered fermion, K-cycle, direct product, finitely generated abelian group

I Introduction and Preliminary

Staggered formalism for lattice fermion is one of the earliest solutions to the puzzle of species doubling in lattice field theory (LFT) [1]: thorough exploration of this formalism were carried out in a series of work, especially on the problems of flavor interpretation and gauge coupling [2]: the dynamical properties of staggered fermion were considered in [3]. Recently, a nontrivial correspondence between staggered Dirac operator and noncommutative geometry (NCG) was figured out [4]; however, this correspondence was still a conjecture in general since rigid proof was

∗E-mail: jdai@mail.phy.pku.edu; Postal address: Room 2082, Building 48, Peking University, Beijing, P. R. China, 100871
†E-mail: songxc@ibm320h.phy.pku.edu.cn; Postal address: Theory Group, Department of Physics, Peking University, Beijing, P. R. China, 100871
just given for lattice whose dimension is one, two or four. In this letter, with the power of NCG being fully employed, a proof of this correspondence for any dimensional lattice is presented. This article is organized in the following way. A concise introduction of the central objects for NCG, K-cycles, and their direct product will be given below. In Sect. II, direct product K-cycle for finitely generated abelian group is introduced, with lattice being treated as a special example. In Sect. III, staggered formalism is also cast in the shape of direct product K-cycle, so the proof of the above-mentioned correspondence is reduced to show that the correspondence exists within each factor. Some remarks and discussions are put in Sect. IV.

Comprehensive introduction to NCG can be found in [5]. Only concepts relevant to our work are recalled below.

Definition 1 An even K-cycle in Connes’ operator-algebraic approach towards NCG is presented as a quadruple $(\mathcal{A}, \mathcal{H}, D, \gamma)$, in which \mathcal{A} is a pre-C^* algebra being represented faithfully and unitarily on a separable Hilbert space \mathcal{H} by π, Dirac operator D is a selfadjoint operator on \mathcal{H} with compact resolvent, and γ is a selfadjoint involution on \mathcal{H}, providing \mathcal{H} with a \mathbb{Z}_2-grading such that $[\pi(\mathcal{A}), \gamma] = 0$, $\{D, \gamma\} = 0$.

A collection of axioms is imposed on every K-cycle, being even or not, such that when \mathcal{A} is commutative, a K-cycle will recover a spin-manifold [3].

Definition 2 Direct product of two even K-cycle $(\mathcal{A}_i, \mathcal{H}_i, D_i, \gamma_i), i = 1, 2$ is another even K-cycle $(\mathcal{A}, \mathcal{H}, D, \gamma)$ where $\mathcal{A} = \mathcal{A}_1 \otimes \mathcal{A}_2$, $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$, $\gamma = \gamma_1 \otimes \gamma_2$, $D = D_1 \otimes I + \gamma_1 \otimes D_2$.

In a rigid sense, axiomatic K-cycle does not exist for finite sets or lattices [7], unless \mathcal{H} is large enough, though being unnatural. Therefore, the term K-cycle in this paper is in a weak form.

II Direct Product K-Cycle over Finitely Generated Abelian Group

Lattice can be fitted into a more general category, the category of finitely generated abelian group (FGAG). Since the classification of FGAG is totally clear in group theory, it is possible to assign canonical K-cycle over this category. In fact, any FGAG can be uniquely decomposed
as a direct product group whose factors are either \(\mathbb{Z} \) or \(\mathbb{Z}_{p^k} \), where \(p \) is a prime number and \(k = 1, 2, 3, \ldots \). Hence, if a canonical \(K \)-cycle is settled for each fundamental block, \(\mathbb{Z} \) and \(\mathbb{Z}_{p^k} \), then \(K \)-cycle for any FGAG can be naturally defined by direct product of \(K \)-cycles of each factor group. Note importantly that \(\mathbb{Z}_2 \) factors will not be considered in this letter, due to their speciality; treatment of differential structure on direct product of \(\mathbb{Z}_2 \) can be found in [9].

Let \(G \) be a FGAG without \(\mathbb{Z}_2 \) factors,

\[
G = \bigotimes_{f=1}^{N} G_f, G_f \in \{ \mathbb{Z}, \mathbb{Z}_{p^k} : k \in \mathbb{N}, \text{if } p > 2; k \in \mathbb{N} \setminus \{1\}, \text{if } p = 2 \}
\]

Fixing one \(f \), a canonical \(K \)-cycle is specified as below. \(A_f \) is the algebra of complex functions over \(G_f \); if \(G_f \) is \(\mathbb{Z} \), then the functions are required to be bounded. \(\mathcal{H}_f = l^2(G_f) \otimes \mathbb{C}^2 \) gives the Hilbert space; the choice of factor \(\mathbb{C}^2 \) will be clarified below. \(A_f \) is represented on \(\mathcal{H}_f \) by multiplication \(\pi_f(u) = u \otimes \text{Id}, \forall u \in A_f \). The generator of \(G_f \) is write as \(T_f \), and it induces the regular representation of \(G_f \) on \(A_f \) in which the image of \(T_f \) is denoted as \(R_{T_f} \). Define formal partial derivatives \(\partial_{T_f} = R_{T_f} - \text{Id} \), and \(\partial_{T_f^{-1}} = R_{T_f^{-1}} - \text{Id} \), then Dirac operator is specified as

\[
\mathcal{D}_f = b^\dagger \partial_{T_f} + b \partial_{T_f^{-1}}
\]

where \(b, b^\dagger \) is a pair of standard fermionic annihilation/creation operators, being represented irreducibly on \(\mathbb{C}^2 \). Grading \(\gamma_f \) is \([b^\dagger, b]/2\). One can verify that \(\mathcal{D}_f^\dagger = \mathcal{D}_f \), \(\mathcal{D}_f^2 = \partial_{T_f} \partial_{T_f^{-1}} \), \([\pi(A_f), \gamma_f] = 0 \), and \(\{\mathcal{D}_f, \gamma_f\} = 0 \). The direct product \(K \)-cycle on \(G \) can be established straightforwardly. Namely following Definition 4, \(\mathcal{A}[G] = \bigotimes_f \mathcal{A}_f \), \(\mathcal{H} = \bigotimes_f \mathcal{H}_f \),

\[
\mathcal{D} = \mathcal{D}_1 \otimes \text{Id} \otimes \text{Id} \otimes \ldots \otimes \text{Id} + \gamma_1 \otimes \mathcal{D}_2 \otimes \text{Id} \otimes \ldots \otimes \text{Id} + \ldots + \gamma_1 \otimes \gamma_2 \otimes \ldots \otimes \gamma_{N-1} \otimes \mathcal{D}_N,
\]

\[
\gamma = \gamma_1 \otimes \gamma_2 \otimes \ldots \otimes \gamma_3.
\]

A \(d \)-dimensional lattice can be considered as \(\mathbb{Z}^d \), so that the above canonical \(K \)-cycle for FGAG can be applied to this lattice simply.
III Staggered Formalism as Direct Product \(K \)-Cycle

Staggered Dirac operator has standard expression

\[
D_S = i\eta^\mu \nabla_\mu
\]

where \(\nabla_\mu \) is symmetric difference operator defined as \((T_\mu - T_{-\mu})/2 \), \(\eta^\mu \) is called staggered phase expressed as \((-)^{\sum_{\nu < \mu} x_\nu} \), and an additional “i” is inserted in this definition since here a selfadjoint convention is adopted instead of an anti-selfadjoint one. The main advantage of staggered formalism is that there exists a chirality \(\gamma_S = (-)^{x_1 + x_2 + \cdots + x_d} \), such that \(\{D_S, \gamma_S\} = 0 \). Observe Eqs.(2) and Eq.(4), staggered formalism can be cast into a direct product \(K \)-cycle in the following way. Let \(\mathbb{Z}_d = \bigotimes_{\mu=1}^d \mathbb{Z}[\mu] \), and for each factor, let \(\mathcal{A}_{[\mu]} \) be algebra of bounded functions on \(\mathbb{Z}_{[\mu]} \), \(\mathcal{H}_{[\mu]} \) be the Hilbert space which is the restriction of \(\mathcal{A}_{[\mu]} \) by \(\ell^2 \)-condition; Dirac operator for \(\mathbb{Z}_{[\mu]} \) is just \(i\nabla_\mu \) and grading is taken to be chirality along \(\mu \)-direction, \(\gamma_{[\mu]} = (-)^x \). Then it is easy to check the direct product property of staggered formalism.

\[
-iD_S = \nabla_1 + \gamma[1] \nabla_2 + \gamma[1] \gamma[2] \nabla_3 + \cdots + \gamma[1] \gamma[2] \cdots \gamma[d-1] \nabla_d
\]

The canonical \(K \)-cycle \((\mathcal{A}[\mathbb{Z}], \mathcal{H}, D, \gamma)\) of d-dimensional lattice defined in the last section is equivalent to the direction product \(K \)-cycle \((\mathcal{A}[\mathbb{Z}], \mathcal{H}_S, D_S, \gamma_S)\) for staggered fermion, if and only if the equivalence holds for each factor, namely Dirac operator defined in Eq.(1) is equivalent to \(i\nabla \) for \(\mathbb{Z} \). However, this statement has been shown in [4] for one-dimensional lattice. For the integrality of this letter, this proof is rewritten below.

Staggered \(K \)-cycle of one-dimensional lattice is \((\mathcal{A}[\mathbb{Z}], \mathcal{A}[\mathbb{Z}], i\nabla, (-)^x)\). The spectral of \(\mathcal{A}[\mathbb{Z}] \) correspondences to \(\mathbb{Z} \) by Gelfand-Naimark theorem [11], namely there is bijection between pure states \(\{|x\}\} \) over \(\mathcal{A}[\mathbb{Z}] \) and \(\mathbb{Z} \). Moreover, \(\{|x\}\} \) also provides the Hilbert space with a basis. Now define fermionic operators \(c^\dagger \) by \(c^\dagger |2n\rangle = \sqrt{2} |2n+1\rangle \), \(c^\dagger |2n+1\rangle = 0 \), and \(c \) by conjugation. It is obvious that \(c^2 = 0 \), \(c^\dagger c = 2 \), \(\{c, c^\dagger\} = 2 \). Reparametrize \(\{|x\}\} \) as \(\{|n\}\} = |2n\rangle, c^\dagger |n\rangle = |2n+1\rangle \), which is the reformulation of well-known “half-spacing transformation” in [2]. Then one can
check that under this parametrization,

$$i \nabla = \frac{i}{2}(c^\dagger \partial_T^\dagger - c \partial_T)$$ \hspace{1cm} (5)

where $\partial_T |n\rangle = |n+1\rangle - |n\rangle$, and $[c, \partial_T] = 0$. So, identify that $c = ib^\dagger$ in Eqs.(1)(5), the correspondence between staggered fermion and NCG is proved for lattice of any dimension d.

IV Geometric Interpretation

1) The result in the last section is not very striking in the sense that a lot of clues have been shown in in [2] where the so-called spin diagonalization tech were adopted extensively. What appears as a surprise is such a simplicity of the proof in the language of direct product K-cycle which is almost a trivial object in NCG.

2) The proof within one factor inspires a geometric interpretation of staggered formalism. In fact, when a continuum space, say \mathbb{R}^4, is discretized, the tangent space at each point of the resulting lattice can be discretized also to be a linear space over character-2 field, namely for each direction, there are only two points in the tangent space, corresponding to two states $|n\rangle, c^\dagger |n\rangle$, for all $n \in \mathbb{Z}$. The chirality can be expressed in operator form $\gamma = e^{i\pi c^\dagger c}$ which is just R-parity in supersymmetry.

3) γ is essentially a distinguish between even and odd numbers, hence only exists globally for prime factor groups \mathbb{Z} and $\mathbb{Z}_{2k}, k = 1, 2,$

Acknowledgements

This work was supported by Climb-Up (Pan Deng) Project of Department of Science and Technology in China, Chinese National Science Foundation and Doctoral Programme Foundation of Institution of Higher Education in China. J.D. is grateful for Dr. B-S. Wang on the help of group theory.

References
[1] T. Banks, L. Susskind, J. Kogut, “Strong-coupling Calculations of Lattice Gauge Theories: (1+1)-dimensional Exercises”, Phys. Rev. D13(1976)1043-1053; L. Susskind, “Lattice Fermions”, Phys. Rev. D16(1977)3031-3039.

[2] H. S. Sharatchandra, H. J. Thun, P. Weisz, “Susskind Fermions on A Euclidean Lattice”, Nucl. Phys. B192(1981)205-236; F. Gliozzi, “Spinor Algebra Of The One-Component Lattice Fermions”, Nucl. Phys. B204(1982)419-428; H. Kluberg-Stern, A. Morel, O. Napoly, B. Petersson, “Flavors of Lagrangian Susskind Fermions”, Nucl. Phys. B220[FS8](1983)447-470; D. Daniel, T. D. Kieu, “On the Flavour Interpretations of Staggered Fermions”, Phys. Lett. B24(1986)73-76.

[3] N. Kawamoto, and J. Smit, “Effective Lagrangian And Dynamical Symmetry Breaking In Strongly Coupled Lattice QCD”, Nucl. Phys. B192(1981)100-124.

[4] J. Dai, X-C. Song, “Noncommutative Geometry of Lattice and Staggered Fermions”, accepted for publication in Phys. Lett. B, hep-th/0101130.

[5] A. Connes, Noncommutative Geometry, 1994 Academic Press; J. M. Gracia-Bondía, J. C. Várilly, H. Figueroa, Elements of Noncommutative Geometry, 2001 Birkhäuser (Boston).

[6] A. Connes, “Gravity coupled with matter and the foundations of non-commutative geometry”, Commun. Math. Phy. 182(1996)155-176, hep-th/9603053.

[7] M. Göckeler, T. Schücker, “Does Noncommutative Geometry Encompass Lattice Gauge Theory”, Phys. Lett. B434(1998)80-82, hep-th/9805077.

[8] D. J. S. Robinson, A Course in the Theory of Groups, 1982 Springer-Verlag (New York), GTM 80.

[9] S. Majid, T. Schücker, “Z₂ × Z₂ Lattice as a Connes-Lott-Quantum Group Model”, hep-th/0101217.

[10] B. Aupetit, A Primer on Spectral Theory, 1991 Springer-Verlag (New York).