Breaking Through the 80% Glass Ceiling: Raising the State of the Art in Word Sense Disambiguation by Incorporating Knowledge Graph Information

Michele Bevilacqua and Roberto Navigli

ACL2020
Overview

• Worse Sense Disambiguation: given a word \(w\) and a context \(c\), predict the sense (synset) of the word.

• This work (EWISER) extends the idea of the EWISE (ACL2019) model in:
 + Computing the unnormalized scores of the words (logits) \(z\).
 + Using synset embeddings \(O\) in the output layer.
\[z_s = h^T g(s) + b^T g(s) \]
EWISER: Baseline

• Use BERT to produce context-aware representations for words.
• The unnormalized scores of the words z are computed by:

\[
B = B_{-4} + B_{-3} + B_{-2} + B_{-1}
\]

\[
H_0 = \text{BatchNorm}(B)
\]

\[
H_1 = \text{swish}(H_0 W + b)
\]

\[
Z = H_1 O
\]
EWISER: Structured logits

• Using Lexical Knowledge Bases (LKBs) with relational information between synsets to obtain different structures.

• The structures are encoded by an adjacency matrix A, which can be learned or fixed during training.

• The score of a word w.r.t a sense (synset) now also depends on the neighbors of the main synset in the structure encoded in A.

$$q_s = z_s + \sum_{s' \in V | (s', s) \in E} w((s', s)) \cdot z_{s'}$$
EWISER: Structured logits

- This work experiments with different relations existing in WordNet to obtain different types of A.

Model Arch.	ALL	No15	No15*
baseline	74.2	73.9	52.2
hyper			
	75.6	75.4	59.8
	75.9	75.5	59.2
hypo			
	74.6	74.4	57.7
	74.6	74.3	54.5
hyper+hypo			
	75.7	75.5	59.8
	75.7	75.4	57.7
hyper*			
	75.2	75.0	58.6
	75.4	75.3	57.7
hyper+hypo*			
	75.4	75.3	59.9
	74.7	74.4	56.5

Table 1: Evaluation of structured logits on English all-words WSD. F1 is reported.
EWISER: Synset Embeddings

- Try different strategies for incorporating the synset embeddings into the network:
 - Init: plain initialization
 - Freeze: Pretrained initialization and freeze.
 - Thaw: Training a freeze model, restore the best checkpoint, further training "thawed".
 - Thaw*: same as "Thaw", but with a smaller learning rate.
EWISER: Synset Embeddings

Model Arch.	ALL	No15	No15^-
baseline	74.2	73.9	52.2
Deconf			
O-init	75.3	75.2	55.2
O-freeze	66.4	66.0	72.2
O-thaw	75.3	75.2	60.5
O-thaw*	73.8	73.7	62.3
LMMS			
O-init	75.5	75.4	55.1
O-freeze	75.9	75.4	59.4
O-thaw	75.4	75.0	57.4
O-thaw*	75.8	75.4	57.3
LMMS + SensEmBERT			
O-init	76.1	76.0	59.4
O-freeze	76.3	76.0	64.7
O-thaw	76.4	76.1	62.3
O-thaw*	**76.7**	**76.6**	**63.4**

Table 2: Evaluation of O initialization and training strategies on English all-words WSD. F1 is reported.
Results

S	G	G⁺	E	System	ALL	No15	No15⁻	S2	S3	S7	S13	S15	N	V	A	R	
✓	✓	-	-	Kumar et al. (2019)	71.8	70.9*	-	73.8	71.1	67.3	69.4	74.5	74.0	60.2	78.0	82.1	
✓	✓	-	-	Loureiro and Jorge (2019)	75.4	75.2*	-	76.3	75.6	68.1	75.1	77.0	-	-	-	-	
✓	-	-	-	Hadiwinoto et al. (2019)	73.7*	73.2*	-	75.5	73.6	68.1	71.1	76.2	-	-	-	-	
✓	✓	-	-	Huang et al. (2019)	77.0*	76.2*	-	77.7	75.2	72.5	76.1	80.4	-	-	-	-	
✓	✓	-	-	Scarlini et al. (2020) - Sup.	-	-	-	-	-	-	-	78.7	80.4	-	-	-	
✓	-	-	-	Vial et al. (2019)	75.6	-	-	-	-	-	-	-	-	-	-	-	
✓	-	-	-	Vial et al. (2019) - ENS	76.7	76.5*	-	77.5	77.4	69.5	76.0	78.3	79.6	65.9	79.5	85.5	
✓	†	-	-	EWISER_{hyper}	77.0*	76.9	60.4	77.5	77.9	71.0	76.4	77.8	79.9	66.4	79.0	85.5	
✓	-	-	-	EWISER_{hyper}	77.5	77.3	68.2	78.4	77.4	71.0	77.4	78.7	80.7	65.1	80.9	86.1	
✓	†	-	-	EWISER_{hyper+hypo}	76.8	76.8	59.5	77.7	77.9	70.3	76.2	76.3	79.4	65.9	80.0	86.7	
✓	✓	-	-	EWISER_{hyper+hypo}	78.3	78.2	69.1	78.9	78.4	71.0	78.9	79.3	81.7	66.3	81.2	85.8	
✓	✓	✓	✓	Vial et al. (2019)	77.1	-	-	-	-	-	-	-	81.7	66.3	81.2	85.8	-
✓	✓	✓	✓	Vial et al. (2019) - ENS	79.0*	78.4*	-	79.7	77.8	73.4	78.7	82.6	81.4	68.7	83.7	85.5	-
✓	✓	✓	✓	EWISER_{hyper}	80.1	79.8	75.2	80.8	79.0	75.2	80.7	81.8	82.9	69.4	83.6	87.3	-
✓	✓	✓	✓	EWISER_{hyper+hypo}	79.8	79.3	75.1	80.2	78.5	73.8	80.6	82.3	82.7	68.5	82.9	87.6	-
-	-	-	-	Scozzafava et al. (2020)	71.7	71.0*	-	71.6	72.0	59.3	72.2	75.8	-	-	-	-	
-	✓	-	-	Scarlini et al. (2020) - KB	-	-	-	-	74.8	-	-	-	75.9	-	-	-	-
Results

- Cross-lingual WSD:

	S13 DE	S13 ES	S13 FR	S13 IT	S15 ES	S15 IT
Scozzafava et al. (2020)	76.4	74.1	70.3	72.1	63.4	69.0
Scarlini et al. (2020)	79.2*	73.4*	77.8*	69.8*	-	-
Ours (baseline)	81.7	76.6	80.8	77.2	67.3	70.6
Ours (EWISER)	80.9	**78.8**	**83.6**	**77.7**	69.5	**71.8**