Lyapunov Event-Triggered Stabilization With a Known Convergence Rate

Anton V. Proskurnikov, Senior Member, IEEE, and Manuel Mazo, Jr., Senior Member, IEEE

Abstract—A constructive tool of nonlinear control system design, the method of control Lyapunov functions (CLFs), has found numerous applications in stabilization problems for continuous-time, discrete-time, and hybrid systems. In this paper, we address the fundamental question: Given a CLF, corresponding to a continuous-time controller with some predefined (e.g., exponential) convergence rate, can the same convergence rate be provided by an event-triggered controller? Under certain assumptions, we give an affirmative answer to this question and show that the corresponding event-based controllers provide positive dwell times between consecutive events. Furthermore, we prove the existence of self-triggered and periodic event-triggered controllers, providing stabilization with a known convergence rate.

Index Terms—Control Lyapunov function (CLF), event-triggered control, nonlinear systems, stabilization.

I. INTRODUCTION

The seminal idea to use the second Lyapunov method as a tool of control design [2] has naturally led to the idea of control Lyapunov function (CLF). A CLF is a function that becomes a Lyapunov function of the closed-loop system under an appropriate (usually nonunique) choice of the controller. The fundamental Artstein theorem [3] states that the existence of a CLF is necessary and sufficient for stabilization of a general nonlinear system by a “relaxed” controller, mapping the system’s state into a probability measure. For an affine unconstrained system, a usual static stabilizing controller can always be found, as shown in the seminal work [4].

In general, to find a CLF for a given control system is a nontrivial problem, since the set of CLFs may have a very sophisticated structure, e.g., be disconnected [5]. However, in some important situations, a CLF can be explicitly found. Examples include some homogeneous systems [6], feedback-linearizable, passive, or feedback-passive systems [7], [8], and cascaded systems [9], for which both CLFs and stabilizing controllers can be delivered by the backstepping and forwarding procedures [10], [11]. The CLF method has recently been empowered by the development of algorithms and software for convex optimization [12], [13] and genetic programming [14].

Nowadays, the method of CLFs is recognized as a powerful tool in nonlinear control system design [8], [10], [11]. A CLF gives a solution to the Hamilton–Jacobi–Bellman equation for an appropriate performance index, giving a solution to the inverse optimality problem [15].

Another numerical method to compute CLFs [16] employs the so-called Zubov equation. The method of CLFs has been extended to uncertain [15], [17], discrete-time [18], time-delay [19], and hybrid systems [20], [21]. Combining CLFs and control barrier functions, correct-by-design controllers for stabilization of constrained (“safety-critical”) systems have been proposed [22]–[24].

For continuous-time systems, CLF-based controllers are also continuous time. Their implementation on digital platforms requires to introduce time sampling. The simplest approach is based on emulation of the continuous-time feedback by a discrete-time control, sampled at a high rate. Rigorous stability analysis of the resulting sampled-time systems is highly nontrivial; we refer the reader to [25] for a detailed survey of the existing methods. A more general framework to sample-time control design, based on a direct discretization of the nonlinear control system and approximating it by a nonlinear discrete-time inclusion, has been developed in [26]–[28]. This method allows to synthesize controllers that cannot be directly redesigned from continuous-time algorithms, but the relevant design procedures and stability analysis are sophisticated.

The necessity to use communication, computational, and power resources parsimoniously has motivated to study digital controllers that are based on event-triggered sampling, which has a number of advantages over classical time-triggered control [29]–[33]. Event-triggered control strategies can be efficiently analyzed by using the theories of hybrid systems [33]–[35], switching systems [36], delayed systems [37], [38], and...
impulsive systems [39]. It should be noticed that the event-triggered sampling is aperiodic, and unlike the classical time-triggered designs, the intersampling interval need not necessarily be sufficiently small: the control can be frozen for a long time, provided that the behavior of the system is satisfactory and requires no intervention. On the other hand, with event-triggered sampling, one has to prove the existence of positive dwell time between consecutive events: even though, mathematically, any non-Zeno trajectory is admissible, in real-time control systems, the sampling rate is always limited.

A natural question arises whether the existence of a CLF makes it possible to design an event-triggered controller. In a few situations, the answer is known to be affirmative. The most studied is the case where the CLF appears to be a so-called input-to-state stability (ISS) Lyapunov function [30], [33] and allows to prove the ISS of the closed-loop system with respect to measurement errors. A more recent result from [40] relaxes the ISS condition to a stronger version of usual asymptotic stability; however, the control algorithm from [40], in general, does not ensure the absence of Zeno solutions. Another approach, based on Sontag’s universal formula [4], has been proposed in [41] and [42]. All of these results impose limitations, discussed in detail in Section II. In particular, the estimation of the convergence rate for the methods proposed in [40]–[42] is a nontrivial problem. In many situations, a CLF can be designed that provides some known convergence rate (e.g., exponentially stabilizing ISS Lyapunov function) and allows to prove the ISS of the closed-loop system with respect to measurement errors. A more recent result from [40] relaxes the ISS condition to a stronger version of usual asymptotic stability; however, the control algorithm from [40], in general, does not ensure the absence of Zeno solutions. Another approach, based on Sontag’s universal formula [4], has been proposed in [41] and [42]. All of these results impose limitations, discussed in detail in Section II. In particular, the estimation of the convergence rate for the methods proposed in [40]–[42] is a nontrivial problem. In many situations, a CLF can be designed that provides some known convergence rate (e.g., exponentially stabilizing ISS Lyapunov function) and allows to prove the ISS of the closed-loop system with respect to measurement errors. A more recent result from [40] relaxes the ISS condition to a stronger version of usual asymptotic stability; however, the control algorithm from [40], in general, does not ensure the absence of Zeno solutions. Another approach, based on Sontag’s universal formula [4], has been proposed in [41] and [42]. All of these results impose limitations, discussed in detail in Section II.

The rest of this paper is organized as follows. Section II gives the definition of CLFs and related concepts and sets up the problem of event-triggered stabilization with a predefined convergence rate. The solution to this problem, being the main result of the paper, is offered in Section III, where event-triggered, self-triggered, and periodic event-triggered stabilizing controllers are designed. In Section IV, the main results are illustrated by numerical examples. Section V concludes this paper. The Appendix contains some technical proofs and discussion on the key assumption in the main result.

II. PRELIMINARIES AND PROBLEM SETUP

Henceforth, $\mathbb{R}^{m \times n}$ stands for the set of $m \times n$ real matrices, $\mathbb{R}^n = \mathbb{R}^{n \times 1}$. Given a function $G : \mathbb{R}^n \rightarrow \mathbb{R}^m$ that maps $x \in \mathbb{R}^n$ into $G(x) = (G_1(x), \ldots, G_m(x))^T \in \mathbb{R}^m$, we use $G'(x) = \left(\frac{\partial G_i(x)}{\partial x_j} \right) \in \mathbb{R}^{m \times n}$ to denote its Jacobian matrix.

A. CLFs in Stabilization Problems

To simplify matters, henceforth, we deal with the problem of global asymptotic stabilization. Consider the following control system:

$$\dot{x}(t) = F(x(t), u(t)), \quad t \geq 0$$

where $x(t) \in \mathbb{R}^d$ stands for the state vector and $u(t) \in U \subseteq \mathbb{R}^m$ is the control input (the case $U = \mathbb{R}^m$ corresponds to the absence of input constraints). Our goal is to find a controller $u(\cdot) = U(x(\cdot))$, where $U : x(\cdot) \mapsto u(\cdot)$ is some causal (nonanticipating) operator, such that for any $x(0) \in \mathbb{R}^d$, the solution to the closed-loop system is forward complete (exists up to $t = +\infty$) and converges to the unique equilibrium $x = 0$.

$$\lim_{t \to +\infty} \|x(t)\| = 0 \quad \forall x(0) \in \mathbb{R}^d, \quad F(0, U(0)) = 0.$$

We now give the definition of CLFs. Following [4], we henceforth assume CLFs to be smooth, radially unbounded (or proper), and positive definite.

Definition 1 (see [4]): A C^1-smooth function $V : \mathbb{R}^d \rightarrow \mathbb{R}$ is called a CLF if

$$V(0) = 0, \quad V(x) > 0 \forall x \neq 0, \quad \lim_{|x| \to \infty} V(x) = \infty$$

$$\inf_{u \in U} V'(x)F(x, u) < 0 \quad \forall x \neq 0.$$

The condition (4), obviously, can be reformulated as follows:

$$\forall x \neq 0 \exists u(x) \in U \text{ such that } V'(x)F(x, u(x)) < 0.$$

If $F(x, u)$ is Lebesgue measurable (e.g., continuous), then the set $\{x \neq 0, u \in U : V'(x)F(x, u) < 0\}$ is also measurable, and the Aumann measurable selector theorem [43, Th. 5.2] implies that the function $u(x)$ can be chosen measurable; however, it can be discontinuous and infeasible (the closed-loop system has no solution for some initial condition). Some systems (1) with continuous right-hand sides cannot be stabilized by usual controllers in spite of the existence of a CLF; however, they can be stabilized by a “relaxed” control [3] $x \mapsto v(x)$, where $v(x)$ is a probability distribution on U.

The situation becomes much simpler in the case of affine system (1) with $F(x, u) = f(x) + g(x)u$. Assuming that $f : \mathbb{R}^d \rightarrow \mathbb{R}^d$ and $g : \mathbb{R}^d \rightarrow \mathbb{R}^{d \times m}$ are continuous and U is convex, the existence of a CLF ensures the possibility to design a controller $u = u(x)$, where $u : \mathbb{R}^d \rightarrow U$ is continuous everywhere except for, possibly, $x = 0$ [3]. While the original proof from [3] was not fully constructive, Sontag [4] has proposed an explicit universal formula, giving a broad class of stabilizing controllers. Assuming that $U = \mathbb{R}^m$, let

$$a(x) \triangleq V'(x)f(x), \quad b(x) \triangleq V'(x)g(x).$$

Then, (4) means that $a(x) < 0$ whenever $b(x) = 0$ and $x \neq 0$. In the scalar case ($m = 1$), Sontag’s controller is

$$u(x) = \begin{cases} \frac{a(x)}{b(x)}, & b(x) > 0 \\ 0, & \text{otherwise} \end{cases}$$

(6)

Here, $q(b)$ is a continuous function; $q(0) = 0$. It is shown [4] that the control (6) is continuous at any $x \neq 0$; moreover, if $a(\cdot)$, $b(\cdot)$, and $q(\cdot)$ are C^0-smooth (respectively, real analytic), the same holds for $u(\cdot)$ in the domain $\mathbb{R}^d \setminus \{0\}$. The global continuity requires an addition “small control” property [4].
Similar controllers have been found for a more general case, where \(m > 1 \) and \(U \) is a closed ball in \(\mathbb{R}^m \) [44].

B. CLF and Event-Triggered Control

Dealing with continuous-time systems (1), the CLF-based controller \(u = \mathcal{U}(x) \) is also continuous time, and its implementation on digital platforms requires time sampling. Formally, the control command is computed and sent to the plant at time instants \(t_0 = 0 < t_1 < \ldots < t_n < \ldots \) and remain constant \(u(t) \equiv u_n \) for \(t \in [t_n, t_{n+1}) \). The approach broadly used in engineering is to emulate the continuous-time feedback by sufficiently fast periodic or aperiodic sampling (the intervals \(t_{n+1} - t_n \) are small). We refer the reader to [25] for the survey of existing results on stability under sampled-time control.

As an alternative to periodic sampling, methods of nonuniform \textit{event-based} sampling have been proposed [29], [30]. With these methods, the next sampling instant \(t_{n+1} \) is triggered by some event, depending on the previous instant \(t_n \) and the system’s trajectory for \(t > t_n \). Special cases are self-triggered controllers [45], [46], where \(t_{n+1} \) is determined by \(t_n \) and \(x(t_n) \), and there is no need to check triggering conditions, and periodic even-triggered control [47], which requires to check the triggering condition only periodically at times \(n \tau \). The advantages of event-triggered control over traditional periodic control, in particular the economy of communication and energy resources, have been discussed in the recent papers [29]–[32]. Event-triggered control algorithms are widespread in biology, e.g., oscillator networks [48].

A natural question arises whether a continuous-time CLF can be employed to design an \textit{event-triggered} stabilizing controller. Up to now, only a few results of this type have been reported in the literature. In [30], an event-triggered controller requires the existence of a so-called ISS Lyapunov function \(V(x) \) and a controller \(u = k(x) \), satisfying the conditions

\[
\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|) \quad \forall x \in \mathbb{R}^d \tag{7}
\]

\[
V'(x)F(x, k(x) + e) \leq -\alpha_3(|x|) + \gamma(|e|) \quad \forall x, e \in \mathbb{R}^d. \tag{8}
\]

Here, \(\alpha_i(\cdot) (i = 1, 2, 3) \) are \(K_\infty \)-functions\(^1\) and the mappings \(k(\cdot) : \mathbb{R}^d \to \mathbb{R}^m, F(\cdot, \cdot) : \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^d, \alpha_3^{-1}(\cdot), \) and \(\gamma(\cdot) : \mathbb{R}_+ \to \mathbb{R}_+ \) are assumed to be locally Lipschitz. Substituting \(e = 0 \) into (8), one easily shows that the ISS Lyapunov function satisfies (4), being thus a special case of CLF: the corresponding feedback \(\mathcal{U}(x) \triangleq k(x) \) not only stabilizes the system, but in fact also provides its ISS with respect to the measurement error \(e \). The event-triggered controller, offered in [30], is as follows:

\[
u(t) = k(x(t_n)), \quad \text{if } t \in [t_n, t_{n+1}) \]

\[
t_0 = 0, \quad t_{n+1} = \inf \{ t > t_n : \gamma(|e(t)|) = \sigma \alpha_3(|x(t)|) \}, \]

\[
e(t) = x(t_n) - x(t), \quad \sigma = \text{const} \in (0, 1). \tag{9}
\]

The controller (9) guarantees a positive \textit{dwell time} between consecutive events \(\tau = \inf_{n \geq 0} (t_{n+1} - t_n) > 0 \), which is uniformly positive for the solutions, starting in a compact set.

\(^1\)A function \(\alpha(\cdot) \) belongs to the class \(K_\infty \) if it is continuous and strictly increasing with \(\alpha(0) = 0 \) and \(\lim_{s \to \infty} \alpha(s) = \infty \).

Whereas the condition (8) holds for linear systems [30] and some polynomial systems [45], in general, it is restrictive and not easy to verify. Another approach to CLF-based design of event-triggered controllers has been proposed in [41] and [42].

Discarding the ISS condition (8), this approach is based on Sontag’s theory [4] and inherits its basic assumptions: first, the system has to be affine \(F(x, u) = f(x) + g(x)u \), where \(f, g \in C^1 \); second, Sontag’s controller is admissible \(u(x) \in U \) for any \(x \). The controllers from [41] and [42] also provide positivity of the dwell time (“minimal intersampling interval”).

An alternative event-triggered control algorithm, substantially relaxing the ISS condition (8) and applicable to \textit{nonaffine} systems, has been proposed in [40] and requires the existence of a CLF, satisfying (7) and (8) with \(e = 0 \)

\[
V'(x)F(x, k(x)) \leq -\alpha_3(|x|). \tag{10}
\]

The events are triggered in a way providing that \(V \) strictly decreases along any nonequilibrium trajectory

\[
t_{n+1} = \inf \{ t \geq t_n : V'(x(t))F(x(t), u_n) = -\mu(|x(t)|) \}. \tag{11}
\]

Here, \(0 < \mu(r) < \alpha_3(r) \) for any \(r > 0 \) and \(\mu \) is \(K_\infty \)-function. As noticed in [40], this algorithm, in general, \textit{does not} provide dwell-time positivity and may even lead to Zeno solutions.

As will be discussed in the following, the conditions (7) and (10) entail an estimate for the CLF’s convergence rate. In this paper, we assume that the CLF satisfies a more general convergence rate condition and design an event-triggered controller that preserves the convergence rate and provides positive dwell time between consecutive switchings. Also, we show that for each bounded region of the state space, self-triggered and periodic event-triggered controllers exist that provide stability for any initial condition from this region. Our approach substantially differs from the previous works [30], [40]–[42], [45]. Unlike [30] and [45], we do not assume that the CLF satisfies the ISS condition (8). Unlike [41] and [42], the affinity of the system is not needed, and the solution’s convergence rate can be explicitly estimated. Unlike [40], the dwell-time positivity is established.

C. CLF With A Known Convergence Rate

Whereas the existence of CLFs typically allows us to find a stabilizing controller, it can potentially be unsatisfactory due to very slow convergence. Throughout this paper, we assume that a CLF gives a controller with a \textit{known convergence rate}.

\textit{Definition 2:} Consider a continuous function \(\gamma : [0; \infty) \to [0; \infty) \), such that \(\gamma(t) \geq t \) \(\forall t > 0 \) (and hence \(\gamma(0) \geq 0 \)). A function \(V(x) \), satisfying (3), is said to be a \(\gamma \)-stabilizing CLF, if there exists a map \(\mathcal{U} : \mathbb{R}^d \to U \), satisfying the conditions

\[
V'(x)F(x, \mathcal{U}(x)) \leq -\gamma(V(x)) \quad \forall x, \quad F(0, \mathcal{U}(0)) = 0. \tag{12}
\]

\textit{Remark 1:} The condition (10), as well as the stronger ISS condition (8), implies that \(V \) is \(\gamma \)-stabilizing CLF with \(\gamma(v) = \alpha_3 \circ \alpha_3^{-1}(v) \) (\(\gamma \) is continuous since \(\alpha_3 \) are \(K_\infty \)-functions). In general, neither \(\gamma \)-CLF \(V(x) \) is a monotone function of the norm \(|x|\) nor \(\gamma \) is monotone. Hence, (12) is more general than
can be treated as some “energy,” stored in \(t (s) = 1/\sigma (s) > 0 \), \(\Gamma \) is increasing, and hence, the limits (possibly, infinite) exist

\[\Gamma \triangleq \lim_{s \to 0} \Gamma (s) < 0, \quad \overline{\Gamma} \triangleq \lim_{s \to \infty} \Gamma (s) > 0. \]

The inverse \(\Gamma^{-1} : (\overline{\Gamma}, \Gamma) \to (0, \infty) \) is increasing and \(C^1 \)-smooth. If \(\overline{\Gamma} > -\infty \), we define \(\Gamma^{-1} (r) \triangleq 0 \) for \(r \leq \overline{\Gamma} \).

To understand the meaning of the function \(\Gamma (s) \), consider now a special situation, where the equality in (12) is achieved

\[V'(x)F(x, \Upsilon (x)) = -\gamma (V(x)) \quad \forall x \in \mathbb{R}^d. \]

The CLF \(V(x(t)) \) can be treated as some “energy,” stored in the system at time \(t \), whereas \(\gamma (V(x(t))) = -V(x(t)) \) can be treated as the energy dissipation rate or “power” consumed by the closed-loop system (“work” done by the system per unit of time) with feedback \(u = \Upsilon (x) \). By noticing that \(\frac{d}{dt} \Gamma (V(x(t)) = \dot{V}(x(t))/\gamma (V(x(t)) = -1 \), the function \(\Gamma \) may be considered as the “energy–time characteristics” of the system: it takes the system time \(t_1 = \Gamma (V_0) - \Gamma (V_1) \) to move from the energy level \(V_0 = V(x(0)) \) to the energy level \(V_1 \).

In general, (12) implies an upper bound for a solution.

Proposition 1: Let the system (1) have a \(\gamma \)-stabilizing CLF \(V \), corresponding to the controller \(\Upsilon \). Let \(x(t) \) be a solution to

\[\dot{x}(t) = F(x(t), u(t)), \quad u(t) \triangleq \Upsilon (x(t)). \]

Then, on the interval of the solution’s existence, the function \(V(t) = V(x(t)) \) satisfies the following inequality:

\[0 \leq V(t) \leq \Gamma^{-1} (\Gamma (V(0)) - t). \]

Proof: If \(V(t) > 0 \) at any time when the solution exists, then

\[\dot{V}(t) = V'(x(t))F(x(t), u(t)) \geq -\gamma (V(t)) < 0 \]

and

\[\frac{d}{dt} \Gamma (V(t)) \leq -1 \implies \Gamma (V(t)) \leq \Gamma (V(0)) - t \]

which implies (16) since \(\Gamma^{-1} \) is increasing. Suppose now that \(V(t) \) vanishes at some \(t \in [0, \delta) \), and let \(t_0 \geq 0 \) be the first such instant. By definition, for \(t \in [0, t_0) \), one has \(V(t) > 0 \), which entails (17) and (16). Since \(V \) is nonincreasing, \(V(t) \equiv 0 \) for \(t \geq t_0 \), and thus, (16) holds also for \(t \geq t_0 \).

Corollary 1: If \(\overline{\Gamma} > -\infty \), then the solution of (15) converges to 0 in **finite time** \(\delta_1 = \Gamma^{-1} (\Gamma (V(0))) \) (provided that it exists on \([0, \delta_1]) \). If \(\overline{\Gamma} = -\infty \) and \(V(t) \) is a forward complete solution to (15), then \(x(t) \) is \(\Gamma \)-convergent to 0.

Depending on the finiteness of \(\overline{\Gamma} \), Proposition 1 explicitly estimates either time or rate of the CLF’s convergence to 0.

Example 1: Let \(\gamma (v) = \varepsilon v \), where \(\varepsilon > 0 \) is a constant. In this case, \(\Gamma (s) = \varepsilon^{-1} \ln s \), \(\overline{\Gamma} = -\infty \), \(\Gamma^{-1} (r) = e^{\varepsilon r} \).

The \(\gamma \)-stabilizing CLF provides **exponential** stabilization (being an ES-CLF [21]). The inequality (16) reduces to

\[0 \leq V(t) \leq \exp \left(\varepsilon (\ln V_0 - t) \right) = V_0 e^{-\varepsilon t}. \]

Example 2: Let \(\gamma (v) = \varepsilon v^a \) with \(\varepsilon > 0, a > 1 \). We have

\[\Gamma (s) = [\varepsilon (a - 1)]^{-1} (1 - s^{1-a}), \quad \overline{\Gamma} = -\infty, \quad \Gamma^{-1} (r) = (1 - \varepsilon (a - 1) r^{1/(1-a)}), \]

and (16) boils down to

\[V(t) \leq (V(0)^{1-a} + t \varepsilon (a - 1))^{1/a}. \]

Example 3: Let \(\gamma (v) = \varepsilon v^a \) with \(\varepsilon > 0, a < 1 \). Similar to the case \(a > 1 \), one has \(\Gamma (s) = [\varepsilon (a - 1)]^{-1} (1 - s^{1-a}), \) and \(\Gamma^{-1} (r) = (1 - \varepsilon (a - 1) r^{1/(1-a)}), \) however, \(\overline{\Gamma} = [\varepsilon (a - 1)]^{-1} > -\infty \). The condition (16) again leads to (19); however, the right-hand side vanishes for \(t \geq t_0 \triangleq \varepsilon (1-a)^{-1} V(0)^{1-a}, \) e.g., the solution converges in finite time \(t_0 \).

Example 3 shows that a CLF can give a controller, solving the problem of **finite-time** stabilization. An event-triggered counterpart of such a controller can be designed, using the procedure discussed in the next section. However, the property of local positivity of dwell time does not hold for such a controller (see Remark 5), and thus, the absence of Zeno trajectories does not follow from our main results. Finite-time event-triggered stabilization is thus beyond the scope of this paper, being a subject of ongoing research.

D. Problem Setup

In this paper, we address the following fundamental question: does the existence of a continuous-time \(\gamma \)-stabilizing CLF allow us to design an **event-triggered** mechanism, providing the same convergence rate as the continuous-time control \(u = \Upsilon (x) \)? Relaxing the latter requirement, we seek for event-triggered controllers whose convergence rates are **arbitrarily close** to the convergence rate of the continuous-time controller.

Problem: Assume that \(V \) is a \(\gamma \)-stabilizing CLF, where \(\gamma (v) \) is a known function, and \(\sigma \in (0, 1) \) is a fixed constant. Design an event-triggered controller, providing the following condition:

\[\dot{V}(x(t)) \leq -\sigma \gamma (V(x(t))) \quad \forall t \geq 0. \]

Applying Proposition 1 to \(\hat{\gamma} (s) = \sigma \gamma (s) \) (which corresponds to \(\hat{\Gamma} (s) = \sigma^{-1} \Gamma (s) \), it is shown that (20) entails that

\[0 \leq V(x(t)) \leq \Gamma^{-1} (\Gamma (V(x(0))) - \sigma t). \]

For instance, in Example 1 considered above, (21) implies exponential convergence with exponent \(\sigma \) (that is, \(V(t) \leq V(0) e^{-\sigma t} \)) (versus the rate \(\kappa \) in continuous time).

Remark 2: In some situations, the CLF serves not only as a Lyapunov function, but also as a **barrier certificate** [22], ensuring that the trajectories do not enter some “unsafe” set \(D \). For instance, suppose that for any point of the boundary \(\xi \in \partial D \), one has \(V(\xi) \geq v_\ast > 0 \). Then, for any initial condition beyond the unsafe set’s closure \(x(0) \notin D \) such that \(V(x(0)) < v_\ast \), the solution of the continuous-time system (15) starting at \(x(0) \) cannot cross the boundary \(\partial D \) and thus cannot enter the unsafe set. The event-triggered algorithm providing (20) preserves the latter property of the CLF and provides thus safety for the aforementioned class of initial conditions.
III. EVENT-TRIGGERED, SELF-TRIGGERED, AND PERIODIC EVENT-TRIGGERED CONTROLLER DESIGNS

Henceforth, we suppose that a continuous strictly positive function $\gamma(\cdot)$, a γ-stabilizing CLF $V(x)$, and the corresponding feedback map $\mathcal{U}: \mathbb{R}^d \to U$ are fixed. All algorithms considered in this paper provide that $u(t) \in \mathcal{U}(\mathbb{R}^d)$; without loss of generality, we assume that $U = \mathcal{U}(\mathbb{R}^d)$. We are going to design an event-triggered algorithm that ensures (20). The input $u(t)$ switches at sampling instants t_0, t_1, \ldots, where $t_0 = 0$ and the next instants t_n depends on the solution, remaining constant $u(t) \equiv u_n = u(t_n)$ on each sampling interval $[t_n, t_{n+1})$.

A. Event-Triggered Control Algorithm Design

The condition (20) can be rewritten as $W(x(t), u(t)) \leq -\sigma_\gamma(V(x(t)))$, where the function W is defined by

$$W(x, u) \triangleq V'(x) F(x, u) \in \mathbb{R}, \quad x \in \mathbb{R}^d, \ u \in U.$$ \hspace{1cm} (22)

At the initial instant $t_0 = 0$, calculate the control input $u_0 \triangleq \mathcal{U}(x(t_0))$. If $V(x(t_0)) = 0$, then the system starts at the equilibrium point and stays there under the control input $u(t) \equiv u_0 \ \forall t \geq t_0$. Otherwise, $W(x(t_0), u(t_0)) \leq -\sigma_\gamma(V(x(t_0))) < -\sigma_\gamma(V(x(t_0)))$ due to (12), and hence, for t sufficiently close to t_0, one has $W(x(t), u(t)) < -\sigma_\gamma(V(x(t)))$. The next sampling instant t_1 is the first time when

$$W(x(t), u_0) = -\sigma_\gamma(V(x(t)))$$

we formally define $t_1 = \infty$ if such an instant does not exist. If $t_1 < \infty$, we repeat the procedure, calculating the new control input $u_1 = \mathcal{U}(x(t_1))$. If $V(x(t_1)) = 0$, then the system has arrived at the equilibrium and stays there under the control input $u(t) \equiv u_1$. Otherwise, $W(x(t_1), u(t_1)) \leq -\sigma_\gamma(V(x(t_1))) < -\sigma_\gamma(V(x(t_1)))$. Hence, for t close to t_1, one has $W(x(t), u_1) < -\sigma_\gamma(V(x(t)))$. The next sampling instant t_2 is the first time $t > t_1$ when $W(x(t), u_1) = -\sigma_\gamma(V(x(t)))$; we define $t_2 = \infty$ if such an instant does not exist. Iterating this procedure, the sequence of sampling instants $t_0 < t_1 < \cdots < t_n < t_{n+1} < \cdots$ is constructed in a way that the control $u(t) = u_n \triangleq \mathcal{U}(x(t_n))$ for $t \in [t_n, t_{n+1})$ satisfies (12). If $V(x(t_n)) > 0$, then t_{n+1} is the first time $t > t_n$ when

$$W(x(t), u_n) = -\sigma_\gamma(V(x(t))).$$ \hspace{1cm} (23)

The sequence of sampling instants terminates if $V(x(t_n)) = 0$ or (23) does not hold at any $t > t_n$; in this case, we formally define $t_{n+1} = \infty$, and the control is frozen $u(t) \equiv u_{\infty} \forall t > t_n$.

The procedure just described can be written as follows:

$$u(t) = \mathcal{U}(x(t_n)) \forall t \in [t_n, t_{n+1}), \quad t_0 = 0$$

$$t_{n+1} = \inf \{ t > t_n : (23) \text{ holds} \}, \quad V(x(t_n)) > 0$$

$$V(x(t_n)) = 0$$ \hspace{1cm} (24)

(where $\inf \emptyset = +\infty$), or in the following “pseudocode form.”

Remark 3: Implementation of Algorithm (24) does not require any closed-form analytic expression for $\mathcal{U}(x)$; it suffices to have some numerical algorithms for computation of the value $u_n = \mathcal{U}(x(t_n))$ at a specific point $x(t_n)$.

Algorithm 1: Algorithm (24) in the Pseudocode Form.

\begin{verbatim}
 n ← 0; t_n ← 0; u_n ← Λ(x(0));
 while V(x(t_n)) > 0 do
 repeat
 u(t) = u_n; \quad \triangleright t is the current time
 until W(x(t), u_n) = −σ_γ(V(x(t)));
 n ← n + 1; t_n ← t; u_n ← Λ(x(t_n));
 end while;
 freeze u(t) ≡ Λ(0); \quad \triangleright stay in the equilibrium
\end{verbatim}

Remark 4: Triggering condition (23) is similar to the condition (11), employed by the algorithm from [40]; however, as explained in Remark 1, in general, the assumptions adopted in [40] do not hold. Furthermore, unlike [40], we give conditions for the positivity of dwell time (to be defined below) and explicitly estimate the convergence rate of the algorithm.

To ensure the practical applicability of algorithm (24), one has to prove that the solution of the closed-loop system is forward complete, thus addressing two problems. The first problem, addressed in Section III-B, is the solution existence between two sampling instants: to show that the event (23) is detected earlier than the solution to the following equation “expodes” (escapes from any compact set):

$$\dot{x}(t) = F(x(t), u_n), \quad u_n = Λ(x(t_n)), \ t \geq t_n.$$ \hspace{1cm} (25)

The second problem, addressed in Section III-C, is to show the impossibility of Zeno solutions.

Definition 3: A solution to the closed-loop system (1), (24) is said to be Zeno or exhibit Zeno behavior if the sequence of sampling instants is infinite and has a limit $t_\infty = \lim_{n \to \infty} t_n = \sup_{n \geq 0} t_n < \infty$; otherwise, the trajectory is said to be non-Zeno.

Although, mathematically, it can be possible to prolong the solution beyond the time t_∞ [49], the practical implementation of algorithm (24) with Zeno trajectories is problematic. Moreover, any real-time implementation of the algorithm imposes an implicit restriction on the minimal time between two consecutive events, referred to as the solution’s dwell time. Since the control commands cannot be computed arbitrarily fast, in practice, the solutions with zero dwell time are also undesirable, even if they are forward complete.

Definition 4: The value $\mathcal{T}(x(0)) = \inf_{n \geq 0} (t_{n+1}(x_0) - t_n(x_0))$ is called the dwell time or the minimal intersampling interval [41] of the solution. Algorithm (24) provides locally uniformly positive dwell time if \mathcal{T} is uniformly positive over all solutions, starting in a compact set $\mathcal{K} =: \inf_{x_0 \in \mathcal{K}} \mathcal{T}(x(0)) > 0$.

\begin{verbatim}
 The proof of locally uniform dwell-time positivity allows us to design self-triggered and periodic event-triggered modifications of (24) that are discussed in Sections III-D and III-E.
\end{verbatim}

Remark 5: By definition of the dwell time, $t_1 - t_0 = t_1 \geq \mathcal{T}(x(0))$. In particular, if $\mathcal{T}(x(0)) \neq 0$, then $x(t) \neq 0$ for $t \in [0, \mathcal{T}(x(0))]$ (when $x = 0$, the control has to be switched to $\mathcal{U}(0)$). For instance, in the situation from Example 3 from previous section, the solution (if it exists) converges to 0 in time, proportional to $V(x(0))$ due to (21). Such a controller
can provide the dwell-time positivity, but not locally uniform positivity since \(\mathcal{T}(x_0) \leq \sigma^{-1} V(x_0) \to 0 \) as \(|x_0| \to 0 \).

Remark 5 may be illustrated by the simple example of the system \(\dot{x} = u \) and a relay control \(\mathcal{U}(x) = \text{sgn} \, x \). Choosing \(V(x) = x^2 \) and \(\gamma(v) = 2\sqrt{v} \), the event-triggered algorithm (24), in fact, coincides with the continuous-time control: the first event is fired at time \(t_0 \) and \(u_0 = \text{sgn} \, x_0 \); if \(x_0 \neq 0 \), the second event occurs at \(t_1 = |x_0| \) and \(u_1 = 0 \).

B. Intersampling Behavior of Solutions

To examine the solutions’ behavior between two sampling instants, we introduce the auxiliary Cauchy problem

\[
\xi(t) = F(\xi(t), u_*), \quad \xi(0) = \xi_0, \quad t \geq 0 \tag{26}
\]

where \(u_* \in U \). To provide the unique solvability of (26), henceforth, the following nonrestrictive assumption is adopted.

Assumption 1: For \(u_* \in U \), the map \(F(\cdot, u_*) \) is locally Lipschitz; in particular, \(W(\cdot, u_*) : \mathbb{R}^d \to \mathbb{R} \) is continuous.

Proposition 2: Under Assumption 1, the Cauchy problem (26) has the unique solution \(\xi(t) = \xi(0, \xi_0, u_*) \), which satisfies at least one of the following two conditions.

1. \(W(\xi(t), u_*) > -\sigma \gamma(V(\xi(t))) \) for some \(t \geq 0 \).
2. The solution is bounded and forward complete.

Proof: The first statement follows from the Picard–Lindelöf existence theorem [8]. Assume that on the interval of the solution’s existence, we have \(V(\xi(t)) = \xi(t) u_* \leq -\sigma \gamma(V(\xi(t))) \) (the first condition does not hold). Then, \(V(t) \leq V(\xi(t)) \), and hence, \(\xi(t) \) also remains bounded on its interval of existence and, hence, is forward complete.

Corollary 2: Under Assumption 1, \(x(t) = \xi(t - t_n) \) is the only solution to the following Cauchy problem:

\[
\dot{x}(t) = F(x(t), u_*), \quad x(t_n) = x_*, \quad t \geq t_n \tag{27}
\]

where \(u_* \in U \). If \(x_n = 0 \) and \(u_* = \mathcal{U}(0) \), then \(\xi(0, 0, u_*) = 0 \).

Corollary 2 allows us to show that the solution to the closed-loop system (1), (24) exists and unique for any initial condition. One can show via induction on \(n \) that the sequence \(\{t_n\} \) is uniquely defined by \(x(0) \) by noticing that \(t_0 = 0 \) is uniquely defined, and if \(t_n < \infty \), then the next instant \(t_{n+1} \leq \infty \) depends only on \(t_n, x_n, u_n \). If \(x_n = 0 \), then algorithms stop and \(t_{n+1} = \infty \). In view of Proposition 2, either event (23) occurs at some time \(t > t_n \) (the first such instant is \(t_{n+1} < \infty \)) or the solution is well defined on \([t_n, \infty) \) and satisfies (20) (in which case \(t_{n+1} = \infty \)). In both situations, the solution is well defined on the \(n \)th sampling interval \([t_n, t_{n+1}) \).

Corollary 3: Let Assumption 1 hold. Then, the sequence of sampling instants \(\{t_n\} \) in algorithm (24) is uniquely defined by the initial condition \(x(0) \), and the solution between them is uniquely defined by the formula

\[
x(t) = \xi(t - t_n) \quad \forall t \in [t_n, t_{n+1}) \tag{28}
\]

where \(\xi(t|0, u_*) \) stands for the solution to (26).

Notice that the solution is automatically forward complete in the case where the sequence \(t_n \) terminates (for some \(n \), we have \(t_{n+1} = \infty \)). This, however, is not guaranteed for the case where infinitely many events occur. To exclude the possibility of Zeno behavior, additional assumptions are required.

C. Dwell-Time Positivity

In this subsection, we formulate our first main result, namely, the criterion of dwell-time positivity in Algorithm (24). This criterion relies on several additional assumptions.

For any \(x \in \mathbb{R}^d \) and \(K \subseteq \mathbb{R}^d \), denote

\[
B(x) \triangleq \{ x : V(x) \leq V(x_0) \}, \quad B(K) \triangleq \bigcup_{x \in K} B(x). \tag{29}
\]

Algorithm (24) implies that \(V(x(t)) \) is nonincreasing due to (12), and hence, \(x(t) \in B(x(s)) \) for \(t \geq s \geq 0 \). In particular, sets \(B(x_s) \) are forward invariant along the solutions of (1) and (24). For any bounded set \(K \), \(B(K) \) is also bounded since

\[
B(K) \subseteq \left\{ x : V(x) \leq \sup_{x \in K} V(x) \right\}.
\]

Accordingly to Assumption 1, the following supremum is finite:

\[
x_* \triangleq \sup_{x_1, x_2 \in B(x), x_1 \neq x_2} \frac{|F(x_1, \mathcal{U}(x_1)) - F(x_2, \mathcal{U}(x_2))|}{|x_2 - x_1|} < \infty
\]

for any \(x \) (in the case where \(x_0 = 0 \) and \(B(x_0) = \{0\} \), let \(x_* \triangleq 0 \)). We adopt a stronger version of Assumption 1.

Assumption 2: The Lipschitz constant \(x_* \) in (30) is a locally bounded function of \(x \).

Assumption 2 holds, for instance, if the mapping \(\mathcal{U} \) is locally bounded and \(\frac{\partial}{\partial u} \mathcal{U}(x, u) \) exists and is continuous in \(x \) and \(u \).

Assumption 3: The gradient \(V'(x) \) is locally Lipschitz.

Assumption 3 is a stronger version of CLF’s smoothness and holds, e.g., when \(V \in C^2 \). Similar to (30), we introduce the Lipschitz constant of \(V' \) on the compact set \(B(x) \) as

\[
\nu(x) \triangleq \sup_{x_1, x_2 \in B(x)} \frac{|V'(x_1) - V'(x_2)|}{|x_2 - x_1|}, \quad \nu(0) \triangleq 0. \tag{31}
\]

Assumption 3 implies that \(\nu \) is locally bounded, since, for any compact \(K \), the set \(B(K) \) is bounded and

\[
\sup_{x \in K} \nu(x) \leq \sup_{x_1, x_2 \in B(K)} \frac{|V'(x_1) - V'(x_2)|}{|x_2 - x_1|} < \infty.
\]

Finally, we adopt an assumption that allows us to establish the relation between the convergence rates of the \(\gamma \)-CLF \(V(x(t)) \) under the continuous-time control \(\mathcal{U} = \mathcal{U}(x) \) and the solution \(x(t) \). Notice that (12) gives no information about the speed of the solution’s convergence, since \(V(x) = V'(x) \dot{x}(t) \) depends only on the velocity’s \(\dot{x}(t) \) projection on the gradient vector \(V'(x) \), whereas its transversal component can be arbitrary. These transversal dynamics can potentially lead to very slow and “nonsmooth” convergence, in the sense that \(|\dot{x}(t)| \gg |V'(x(t))| \). As discussed in Appendix B, in such a situation, the dwell-time positivity cannot be proved. Denoting

\[
\tilde{F}(x) \triangleq F(x, \mathcal{U}(x))
\]
and introducing the angle \(\theta(x) \) between \(\tilde{F}(x) \) and \(V'(x) \) (see Fig. 1), the definition of \(\gamma \)-CLF (12) implies that

\[
\cos(\theta(x)) < 0 \quad \forall x \neq 0.
\]

Our final assumption requires these conditions to hold uniformly in the vicinity of \(x = 0 \) in the following sense.

Assumption 4: The \(\gamma \)-CLF \(V(x) \) and the corresponding controller \(\Omega(x) \) satisfy the following properties:

\[
|\tilde{F}(x)| \leq M_1(x)|V'(x)| \quad \forall x \in \mathbb{R}^d
\]

\[
\cos(\theta(x)) \leq -M_2(x) \quad \forall x \in \mathbb{R}^d \setminus \{0\}
\]

where the functions \(M_1, M_2 \) are, respectively, uniformly bounded and uniformly strictly positive on any compact set. In other words, the angle between the vectors \(\dot{x} = \tilde{F}(x) \) and \(V'(x) \) remains strictly obtuse as \(x \to 0 \).

Assumption 4 can be reformulated as follows.

Lemma 1: For a \(\gamma \)-CLF \(V \), Assumption 4 holds if and only if a locally bounded function \(M(x) > 0 \) exists such that

\[
|V'(x)||\tilde{F}(x)| + |\tilde{F}(x)|^2 \leq M(x)|V'(x)||\tilde{F}(x)| \quad \forall x \in \mathbb{R}^d.
\]

\[
(32) \quad (33)
\]

Proof: For \(M(x) \triangleq (1 + M_1(x))/M_2(x) \), (32) implies

\[
M(x)|V'(x)||\tilde{F}(x)| = M(x)|\cos(\theta(x))||V'(x)||\tilde{F}(x)|
\]

\[
(32) \geq M(x)M_2(x)|V'(x)||\tilde{F}(x)|
\]

\[
(32) \geq |V'(x)||\tilde{F}(x)|^2
\]

proving thus the “only if” part. To prove the “if” part, note that (12) and (33) imply the inequalities

\[
M(x)\cos(\theta(x)) = \frac{M(x)V'(x)||\tilde{F}(x)|}{|V'(x)||\tilde{F}(x)|} \leq -1
\]

\[
|\tilde{F}(x)|^2 \leq M(x)|V'(x)||\tilde{F}(x)| \leq M(x)|V'(x)||\tilde{F}(x)|.
\]

Hence, (32) holds with \(M_1 = M \) and \(M_2 = 1/M \).

We now turn to the key problem of dwell-time estimation for Algorithm (24). In view of (28), to estimate the time elapsed between consecutive events \(t_{n+1} - t_n \), it suffices to study the behavior of the solution \(\xi(t) = \xi(t|x_0, \Omega(x_0)) \) to the Cauchy problem (26) with \(\xi_0 = x_0 \neq 0 \) and \(u_0 = \Omega(x_0) \), namely, to find the first instant \(\tilde{t} \) such that \(W(\xi(\tilde{t}), u_\cdot) = -\sigma(V(\xi(\tilde{t}))) \). The following lemma implies that \(\tilde{t} \geq \tau(x_0) \), where \(\tau(\cdot) \) is some function, uniformly strictly positive on any compact set.

Lemma 2: Let Assumptions 1–4 hold and \(\gamma(\cdot) \) be either non-decreasing or \(C^1 \). Then, a function \(\tau: \mathbb{R}^d \to [0, \infty) \) exists, depending on \(\sigma, \gamma, \kappa, \nu, M \), that satisfies two conditions.

1. \(\tau(\cdot) \) is uniformly strictly positive on any compact set.
2. For any \(x_0 \neq 0 \), the solution \(\xi(t) = \xi(t|x_0, \Omega(x_0)) \) is well defined on the closed interval \([0, \tau(x_0)]\) and

\[
W(\xi(t), \Omega(x_0)) < -\sigma(V(\xi(t))) \forall t \in [0, \tau(x_0)).
\]

(34)

Moreover, if the functions \(\kappa, \nu, M \) are globally bounded, \(\gamma \in C^1 \) and \(\inf_{v \geq 0} \gamma'(v) > -\infty \), then \(\inf_{x \in \mathbb{R}^d} \tau(x_0) > 0 \).

The proof of Lemma 2 will be given in Appendix A; in this proof, the exact expression for \(\tau(\cdot) \) will be found, which involves the functions \(\kappa, \nu, \gamma, M \). Note that Algorithm (24) does not employ \(\tau(\cdot) \), which is needed to estimate the dwell time. Notice that for a fixed \(x_0 \in \mathbb{R}^d \), the value \(\tau(x_0) = \tau(x_0) \) may be considered as a function of the parameter \(\sigma \) from (20). It can be shown that \(\tau(x_0) \to 0 \) as \(\sigma \to 1 \). In other words, if the event-triggered algorithm provides the same convergence rate as the continuous-time control, the dwell time between consecutive events vanishes. Lemma 2 implies our main result.

Theorem 1: Let the assumptions of Lemma 2 hold. Then, the following estimate for the dwell time in (24) holds:

\[
\tau(x_0) \geq \tau_{\min}(x_0) \triangleq \inf_{x \in B(x_0)} \tau(x) > 0
\]

(35)

due to the boundedness of the set \(B(K) \) and local uniform positivity of \(\tau \). Applying Lemma 2 to \(x = x_0 \) and using (28), one shows that if the \(n \)th event is raised at the instant \(t_n < \infty \), the next event cannot be fired earlier than at time \(t_{n+1} + \tau(x_n) \). Since \(x_n \in B(x_0) \), one has \(t_{n+1} \geq t_n + \tau_{\min}(x_0) \), which implies (35) by definition of the dwell time \(\tau(x_0) \).

D. Self-Triggered and Time-Triggered Stabilizing Control

As has been already mentioned, Algorithm (24) requires neither full knowledge of the functions \(\kappa, \nu, M \), nor even upper estimates for them. If such estimates are known, \(\tau(\cdot) \) from Lemma 2 can be found explicitly (see Appendix A), and Algorithm (24) can be replaced by the self-triggered controller:

\[
u(t) = \Omega(x(t_\cdot)), \quad t \in [t_n, t_{n+1})
\]

\[
t_0 = 0, \quad t_{n+1} = \left\{\begin{array}{ll}
t_n + \tau(x(t_n)), & V(x(t_n)) > 0 \\
\infty, & V(x(t_n)) = 0.
\end{array}\right.
\]

(36)

Algorithm (36) requires to compute the value of \(\tau(x_n) \) at each step. Alternatively, if a lower bound \(\tau_s \) for the value of \(\tau_{\min}(x_0) \) from (35) is known \(\tau_{\min}(x_0) \geq \tau_s > 0 \), one may consider...
periodic or aperiodic time-triggered sampling
\[u(t) = \U(x(t_n)), \quad t \in [t_n, t_{n+1}) \]
\[t_0 = 0, \quad 0 < t_{n+1} - t_n \leq \tau_s, \quad \lim_{n \to \infty} t_n = \infty. \quad (37) \]

Here, the sequence \(\{t_n\} \) is independent of the trajectory; often, \(t_n = n\tau_0 \) with some period \(\tau_0 \leq \tau_s \).

Remark 6: Notice that to find a lower estimate for \(\tau_{\min}(x(0)) \), there is no need to know the initial condition \(x_0 \) (which can be uncertain); it suffices to know an upper bound for the value of \(V(x_0) \), which determines the set \(B(x_0) \).

Lemma 2 and (28) yield the following result.

Theorem 2: Under the assumptions of Lemma 2, any solution to the closed-loop system (1), (36) is forward complete and satisfies (20). The same holds for solutions to (1) and (37), whose initial conditions satisfy the inequality \(\tau_{\min}(x(0)) \geq \tau_s \).

Proof: Theorem 2 is proved very similar to Theorem 1, with the only technical difference that (20) is not automatically guaranteed along the trajectories, and thus, forward invariance of the set \(B(x_0) \) still has to be proved. Using induction on \(n = 0, 1, \ldots \), we are going to prove that \(x(t_n) \in B(x(0)) \) for each \(n \). The induction base \(n = 0 \) is obvious. Assuming that \(x(t_n) \in B(x(0)) \), we know that \(t_{n+1} - t_n \leq \tau_s(t(x(t_n))) \) (in the case of (37), this holds since \(\tau_{\min}(x_0) \leq \tau_s(x(t_0))) \). Substituting \(x_n = x(t_n) \) into (34) and using (28), one shows that (20) holds on each sampling interval \([t_n, t_{n+1}] \), and thus, \(x(t_n+1) \in B(x(t_n)) \). This proves the induction step, entailing also that both algorithms ensure (20). The solution thus remains bounded and is forward complete \((t_0, \infty) \).

Remark 7: As follows from Lemma 2, if the functions \(x, v, M \) are globally bounded, \(\gamma \in C^1 \), and \(\inf_{x \geq 0} \gamma'(v) > -\infty \), then for \(0 < \tau_s < \inf_{x \in \mathbb{R}^d} \tau_{\min}(x_0) \), the periodic control (37) provides (20) for any initial condition. In other words, the sampled-time emulation of the continuous feedback at a sufficiently high sampling rate ensures global stability of the closed-loop system with a known convergence rate.

Remark 8: The existing results on stability of nonlinear systems with sampled-time control (37) typically adopt some continuity assumptions on the continuous-time controller. One of the standard assumptions [50, 51] is the Lipschitz continuity of \(\U \) and uniform boundedness of \(\frac{\partial}{\partial x}(F(x, u)) \). The weakest assumption of this type [52] requires the map \((x, x) \to F(x, \U(x)) \) to be continuous (usually, \(\U \) has to be continuous).

Theorem 2 does not rely on any of these conditions; however, \(|F(x, \U(x))| = O(|x|) \) as \(|x| \to 0 \) due to Assumptions 3 and 4. The latter condition fails to hold when the continuous-time control \(u = \U(x) \) provides finite-time stabilization [53, 54]. This agrees with Remark 5, explaining that our procedure of event-triggered controller design cannot guarantee local uniform dwell-time positivity in the latter case.

The strong advantage of the self-triggered and the periodic sampling algorithms is the possibility to schedule communication and control tasks. Such algorithms are more convenient for real-time embedded systems engineering than the event-triggered controller (24), which requires constant monitoring of the solution \(x(t) \) and potentially can use the communication channel at any time. The downside of this is the necessity to estimate the intersampling time \(\tau(\cdot) \). The conservatism of such estimates leads to more data transmissions and control switchings than the event-triggered controller (24) needs.

E. Periodic Event-Triggered Stabilization

A combination of the event-triggered and periodic sampling, inheriting the advantages of both approaches, is referred to as periodic event-triggered control [47, 55]. Unlike usual event-triggered control, the triggering condition is checked periodically with some fixed period \(h > 0 \), i.e., the control input can be recalculated only at time \(kh \), where \(k = 0, 1, \ldots \). This automatically excludes the possibility of Zeno behavior (obviously, \(t_{n+1} - t_n \geq h > 0 \)) and simplifies scheduling of the computational and communication tasks.

The main difficulty in designing the periodic event-triggered controller is to find such a triggering condition that its validity at time \(kh \) automatically implies the desired control goal (20) on the interval \([kh, (k+1)h]\), even if the control input at time \(t = kh \) remains unchanged. Fixing two constants \(\sigma \in (\sigma, 1) \) and \(K > 1 \), we introduce the Boolean function (predicate)

\[
P(x, u) = W(x, u) < \sigma V(x)
\]

\[
\wedge \frac{|V'(x)| |F(x, u)| + |F(x, u)|^2}{M(x)|W(x, u)|} \leq K.
\]

Here, \(M(x) \) is the function from (33). The conditions (12) and (33) imply that \(P(x, u, \U(x)) \) is true for any \(x \neq 0 \) since

\[
W(x, \U(x)) \leq -\sigma V(x) < \sigma V(x).
\]

Choosing the sampling period \(h > 0 \) in a way specified later (see Lemma 3), the following key property can be guaranteed: if \(P(x(t_s), u_s) \) holds for some \(t_s \), then the static control input \(u(t) \equiv u_s \) provides the validity of (20) for \(t \in [t_s, t_s + h] \) (notice that \(P(x(t), u_t) \) need not be true on this interval). This suggests the following periodic event-triggered algorithm. At the initial instant \(t_0 = 0 \), calculate the control input \(u_0 = \U(x(t_0)) \). If \(x(t_0) = 0 \), we may freeze the control input \(u(t) \equiv u_0 \) for \(t \geq 0 \). At any time \(t = kh \), where \(k = 1, 2, \ldots \), the condition \(P(x(kh), u_0) \) is checked, until one finds the first \(k_1 \geq 1 \) such that \(P(x(k_1 h), u_0) \) is false. At the instant \(t_1 = k_1 h \), the control input is switched to \(u_1 = \U(x(t_1)) \), and the procedure is repeated again: if \(x(t_1) = 0 \), one can freeze \(u(t) \equiv u_1 \); otherwise, \(u(t) = u_1 \) until the first instant \(k_2 h \) (with \(k_2 > k_1 \)), where \(P(x(k_2 h), u_1) \) is false, and so on. Mathematically, the algorithm is as follows:

\[
u(t) = u_0 \U(x(k_n h)) \quad \forall t \in [k_n h, k_{n+1} h]; \quad k_0 = 0
\]

\[
k_{n+1} = \min \{k > k_n : -P(x(k h), u_n)\}, \quad x(k_n h) \neq 0
\]

\[
x(k_n h) = 0.
\]

(By definition, \(\min \emptyset = +\infty \).)
Notice that the algorithm (40) implicitly depends on three parameters: \(\sigma \in (0,1) \), \(\hat{\sigma} \in (\sigma,1) \), and \(K > 1 \). The role of the first parameter is the same as in Algorithm (24) (it regulates the converges rate). The parameters \(\hat{\sigma} \) and \(K \) determine the maximal sampling period \(h \): the less restrictive condition \(P(\bar{x}(kh),u_n) \) is, the more often it has to be checked in order to guarantee the desired intersampling behavior, as will be explained in more detail in Remark 9.

The choice of \(h > 0 \) is based on the following lemma, similar to Lemma 2 and dealing with the solution \(\xi(t) = \xi(t|x, u) \) to the Cauchy problem (26). Unlike Lemma 2, \(u_\sigma \not= \Omega(\bar{x}) \).

Lemma 3: Let Assumptions 2–4 be valid, \(\gamma(\cdot) \) be either non-decreasing or \(C^1 \)-smooth, \(\hat{\sigma} \in (\sigma,1) \), and \(K > 1 \). Then, there exists a function \(\tau^0 : \mathbb{R}^d \rightarrow (0,\infty) \) such that:

1. \(\tau^0 \) is uniformly positive on any compact set;
2. if \(x_n \neq 0, x \in B(x_\sigma) \) and \(P(\bar{x}(x_\sigma)) \) is valid, then the solution \(\xi(t) = \xi(t|x, \bar{x}(x_\sigma)) \) is well defined for \(t \in [0,\tau^0(x_\sigma)] \) and the following inequality holds:

\[
W(\xi(t),\bar{x}(x_\sigma)) < -\sigma(V(\xi(t))) \quad \forall t < \tau^0(x_\sigma).
\]

If the functions \(\varphi, v, M \) are globally bounded, \(\gamma \in C^1 \), and \(\inf_{t \geq 0} \gamma'(v) > -\infty \), then \(\tau^0 \) is globally uniformly positive.

Lemma 3 is proved in Appendix A, where an explicit formula for \(\tau^0(\cdot) \) is found. This lemma entails the following result.

Theorem 3: Let the assumptions of Lemma 3 be valid. For any compact set \(\mathcal{K} \subset \mathbb{R}^d \), choose the sampling interval \(h \in (0, \inf_{x \in B(x_\sigma)} \tau^0(x)) \). Then, the periodic event-triggered controller (40) provides the inequality (20) for any \(x(0) \in \mathcal{K} \).

If the functions \(\varphi, v, M \) are globally bounded, \(\gamma \in C^1 \), and \(\inf_{t \geq 0} \gamma'(v) > -\infty \), then the controller (40) provides (20) for any \(x(0) \in \mathbb{R}^d \) whenever \(h < \inf_{x \in \mathcal{B}} \tau^0(x) \).

Proof: Via induction on \(k = 0, 1, \ldots \), we are going to prove that (20) holds on \([kh,(k+1)h)\) (in particular, the solution remains bounded between two sampling instants). The induction base \(k = 0 \) is immediate from Lemma 3 and the definition of \(h \). Since \(h \leq \tau^0(x(0)) \) and \(P(x(0),\bar{x}(x(0))) \) holds thanks to (39), the solution \(x(t) = \xi(t|x_0,u_0) \) satisfies (20) due to (41).

To prove the induction step, suppose that the statement has been proved for \(k \leq k-1 \), in particular, \(V(x(t)) \) is nonincreasing for \(t \in [0,kh] \). By construction of the algorithm, the condition \(P(x(kh),u(kh)) \) is true, where \(u(kh) = \bar{x}(x_k,h) \) and \(k_n \leq k \) (no matter if the control is recalculated at \(t = kh \) or not). Applying Lemma 3 to \(x_k = x(kh) \) and \(\bar{x} = \bar{x}(kh) \in B(x_x) \), one obtains that the solution \(x(t) = \xi(t-kx(kh),\bar{x}(x_k)) \) satisfies (20) for \(t \in [kh,(k+1)h] \) since \(x_k \in B(x(0)) \) and therefore \(h \leq \tau^0(x_k) \). This proves the induction step.

Remark 9: Obviously, the condition \(P(x,u) \) is less restrictive the smaller \((\hat{\sigma} - \sigma) \) is and the greater \(K > 1 \) is. It can be seen, however (see Appendix A) that when \(\hat{\sigma} \rightarrow \sigma \) or \(K \rightarrow \infty \), one has \(\tau^0(x_n) \rightarrow 0 \), i.e., the periodic-event triggered algorithm reduces to the usual event-triggered algorithm (24), continuously monitoring the state. The case where \(K \rightarrow 1 \) and \(\hat{\sigma} \rightarrow 1 \) corresponds to the most restrictive condition \(P(x,u) \). In this case, as can be shown, \(\tau^0(x_n) \rightarrow \tau(x) \) from Lemma 2, and hence, \(\tau(K) \rightarrow \min_{x \in \mathcal{K}} \tau_{\text{min}}(x_0) \).

In the worst-case choice of \(x_0 \in \mathcal{K} \), the algorithm (40) behaves as the special case of time-triggered control (37) with \(t_{n+1} - t_n = \tau_{\text{min}}(x_0) \).

IV. NUMERICAL EXAMPLES

In this section, two examples illustrating the applications of algorithm (24) are considered.

A. Event-Triggered Backstepping for Cruise Control

Our first example illustrates the procedure of event-triggered backstepping with guaranteed dwell-time positivity in the following problem, regarding the design of full-range, or stop and go, adaptive cruise control (ACC) systems [24], [56], [57]. The main purpose of ACC systems is to adjust automatically the vehicle speed to maintain a safe distance from vehicles ahead (the distance to the predecessor vehicle, as well as its velocity, is measured by onboard radars, laser sensors, or cameras). We consider, however, a more general problem that can be solved by ACC, namely, keeping the predefined distance to the predecessor vehicle. Such a problem is natural, e.g., when the vehicle has to safely merge a platoon of vehicles (see Fig. 2), move in a platoon or leave it [58]. In the simplest situation, the platoon travels at constant speed \(v_0 > 0 \). Denoting the desired distance from the vehicle to the platoon by \(d_0 \), the control goal is formulated as follows:

\[
d(t) - d_0 \xrightarrow{t \to \infty} 0, \quad v(t) - v_0 \xrightarrow{t \to \infty} 0.
\]

We consider the standard third-order model of a vehicle’s longitudinal dynamics [35], [59]

\[
\tau(v)a(t) + a(t) = u(t), \quad a(t) = \dot{v}(t).
\]

Here, \(a(t) \) is the controller vehicle’s actual acceleration, whereas \(u(t) \) can be treated as the commanded (desired) acceleration. The function \(\tau(v) \) depends on the dynamics of the servo loop and characterizes the driveline constant, or time lag between the commanded and actual accelerations. We suppose the function \(\tau(v) \) to be known, the vehicle being able to measure \(d(t), v(t), a(t) \) and aware of the platoon’s speed \(v_0 \).

To design an exponentially stabilizing CLF in this problem, we use the well-known backstepping procedure [8], [10]. We introduce the functions \(x_1, x_2, x_3 \) as follows:

\[
x_1(t) \overset{\Delta}{=} d(t) - d_0 \implies \quad x_2(t) \overset{\Delta}{=} x_1(t) + kx_1(t) = (v_0 - v(t)) + kx_1(t)
\]

\[
x_3(t) \overset{\Delta}{=} -x_2(t) + kx_2(t) = -(a(t) + 2k(v_0 - v(t)) + k^2x_1(t)).
\]

By noticing that \(v_0 - v(t) = x_2 - kx_1 \) and \(a(t) = 2kx_2(t) - k^2x_1(t) - x_3(t) \), the equations in (43) are rewritten as
follows:
\[
\begin{align*}
\dot{x}_1 &= x_2 - kx_1 \\
\dot{x}_2 &= x_3 - kx_2 \\
\dot{x}_3 &= k^2[x_2 - kx_1]
\quad + [\tau(v)^{-1} - 2k](2kx_2 - k^2x_1 - x_3) - \tau(v)^{-1}u \\
v &= v_0 - (x_2 - kx_1).
\end{align*}
\]

It can now be easily shown that \(V(x) = \frac{1}{2}(x_1^2 + x_2^2 + x_3^2)\) is the CLF for the system (44) whenever \(k > 1\), corresponding to the feedback controller \(\mathcal{U}(x)\) as follows:
\[
\mathcal{U}(x) = \frac{\tau(v)}{\sigma}[(x_2 - kx_1]
\quad + [1 - 2k\tau(v)](2kx_2 - k^2x_1 - x_3) - \tau(v)(x_1 - kx_3).
\]

Indeed, a straightforward computation shows that
\[
F(x, \mathcal{U}(x)) = (x_2 - kx_1, x_3 - kx_2, x_1 - kx_3)^T
\]
\[
V'(x)F(x, \mathcal{U}(x)) = -2(k - 1)V(x)
\quad - \frac{1}{2}[(x_1 - x_2)^2 + (x_1 - x_3)^2 + (x_2 - x_3)^2]
\]
entailing (18) with \(\sigma = 2(k - 1)\). It can be easily shown that all assumptions of Theorem 1 hold. Algorithm (24) gives an event-triggered ACC algorithm.

In Fig. 3, we simulate the behavior of algorithm (24) with \(\sigma = 0.9\), choosing \(k = 1.01\) and \(\tau = 0.3\) s for two situations. In the first situation (plots on top), the vehicle initially travels with the same speed as the platoon \((v(0) - v_0 = 0)\), but needs to decrease the distance by 10 m, i.e., \(x_1(0) = d(0) - d_0 = 10, x_2(0) = kx_1(0), x_3(0) = k^2x_1(0)\). In the second case (plots at the bottom), the vehicle needs to decrease its speed by 2 m/s, keeping the initial distance to the platoon: \(d_0 = d(0), v(0) - v_0 = 2\), and thus, \(x_1(0) = 0, x_2(0) = v_0 - v(0) = -2, x_3(0) = -4k\). One may notice that the vehicle’s trajectories contain periods of “harsh” braking, which cause discomfort of the human occupants. In this simple example, intended for demonstration of the design procedure, we do not consider realistic constraints on the vehicle’s acceleration and jerk.

One may notice that in both situations, the algorithm produces “packs” of 15–30 close events. In the first case, events are fired starting from \(t_1 = 14.1\) s, the maximal time elapsed between consecutive events is 6.38 s and the minimal time is 0.05 s. The average frequency of events is 3.2 Hz. In the second case, the first event occurs at \(t_1 = 1.5\) s, the maximal time between events is 8.6 s, and the minimal time is 0.04 s. The average frequency of events is 3.6 Hz.

B. Example of Nonexponential Stabilization

Our second example is borrowed from [60] and deals with a two-dimensional homogeneous system
\[
\begin{align*}
\dot{x}_1 &= -x_1^3 + x_1x_2^2 \\
\dot{x}_2 &= x_1x_2^2 + u - x_2^3x_2.
\end{align*}
\]

The quadratic form \(V(x) = \frac{1}{2}[x_1^2 + x_2^3]\) satisfies (12) with \(\gamma(v) = v^2\) and \(\mathcal{U}(x) = -x_2^3 - x_1x_2^2\) since
\[
V'(x)F(x, \mathcal{U}(x)) = -x_1^4 - x_2^4 \leq -V^2/2.
\]

Therefore, the event-triggered algorithm (24) provides stabilization with the convergence rate
\[
V(x(t)) \leq [V(x(0)) + \sigma t/2]^{-1}.
\]

To compare our algorithm with the one reported in [41] and based on the Sontag controller, we simulate the behavior of the system for \(x_1(0) = 0.1, x_2(0) = 0.4\), choosing \(\sigma = 0.9\). The results of numerical simulation (see Fig. 4) are similar to those presented in [41]. Although the convergence of the solution is slow \((V(x(t)) = O(t^{-1})\) and \(|x(t)| = O(t^{-1/2})\), its second component and the control input converge very fast. During the first 200 s, only two events are detected at times \(t_0 = 0\) and \(t_1 \approx 5.26\), after which the control is fixed at \(u(t) \approx -6 \cdot 10^{-7}\).
In this paper, we address the following fundamental question: let a nonlinear system admit a CLF, corresponding to a continuous-time stabilizing controller with a certain (e.g., exponential or polynomial) convergence rate. Does this imply the existence of an event-triggered controller, providing the same convergence rate? Under certain natural assumptions, the answer appears to be “almost” affirmative: an event-triggered controller may provide an arbitrarily close convergence rate, and also the positive dwell time between consecutive events. Moreover, we show that if the initial condition is confined to a known compact set, this problem can also be solved by self-triggered and periodic event-triggered controllers. Our results can also be extended to robust CLFs, extending the concept of CLFs to systems with disturbances.

Analysis of the proofs reveals that the main results of this paper retain their validity in the case where the CLF is proper yet not positive definite, and its compact zero set \(\mathcal{X}_0 = \{ x \in \mathbb{R}^d : V(x) = 0 \} \) consists of the equilibria of the system (15). If our standing assumptions hold, then algorithms (24), (36), (37), and (40) provide that \(V(x(t)) \to 0 \) (with a known convergence rate), and any solution converges to \(\mathcal{X}_0 \) in the sense that \(\text{dist}(x(t), \mathcal{X}_0) \to 0 \). At the same time, Lyapunov stabilization of unbounded sets (e.g., hyperplanes [21]) requires additional assumptions on CLFs; the relevant extensions are beyond the scope of this paper.

Although the existence of CLFs can be derived from the inverse Lyapunov theorems, to find a CLF satisfying Assumptions 2-4 can, in general, be nontrivial; computational approaches to cope with it are subject of ongoing research. Especially challenging are problems of safety-critical control, requiring to design a control Lyapunov-barrier function. Other important problems are event-triggered and self-triggered redesign of dynamic continuous-time controllers (needed, e.g., when the state vector cannot be fully measured) and stabilization with nonsmooth CLFs [61].

APPENDIX A

PROOFS OF LEMMATA 2 AND 3

Henceforth, Assumptions 2-4 are supposed to hold. For \(u_* = \mathcal{U}(x_*) \) and \(\xi_0 \in \mathcal{B}(x_*) \), consider the solution \(\xi(t) = \xi(t|\xi_0, u_*) \) to the Cauchy problem (26). Let \(t_* = t_*(\xi_0, u_*) > 0 \) stand for the first instant when \(V(\xi(t), u_*) = -\sigma_\gamma(V(\xi(t))) \) and \(\Delta_* = \Delta_*(\xi_0, u_*) = [0, t_*] \). If such an instant does not exist, we put \(t_* = \infty \) and \(\Delta_* = [0, \infty) \). Due to Proposition 2, the solution \(\xi(t) \) exists on \(\Delta_* \), and \(\xi(t) \in \mathcal{B}(\xi_0) \).

Proposition 3: For any \(x_0 \in \mathbb{R}^d, \xi_0 \in \mathcal{B}(x_0) \), and \(u_* = \mathcal{U}(x_0) \), the solution \(\xi(t) = \xi(t|\xi_0, u_*) \) satisfies the inequalities

\[
|\xi(t) - \xi_0| \leq c(t, x_0)F(\xi_0, u_*)
\]

\[
|F(\xi(t), u_*)| \leq (1 + \tau(x_0)c(t, x_0))|F(\xi_0, u_*)|
\]

\[
c(t, x_0) := \left(e^{(2\tau(x_0)+1)t} - 1 \right)^{1/2}. \tag{46}
\]

Here, \(\tau(x_0) \) is the Lipschitz constant (30) and \(t \in \Delta_* \).

Proof: Let \(\alpha(t) := |\xi(t) - \xi_0|^2/2 \). By noticing that \(\dot{\alpha}(t) = \langle \xi(t) - \xi_0 \rangle^T F(\xi(t), u_*) \), one arrives at the inequality

\[
\dot{\alpha}(t) = (\xi(t) - \xi_0)^T[F(\xi(t), u_*) - F(\xi_0, u_*)]
\]

\[
+ (\xi(t) - \xi_0)^T F(\xi_0, u_*) \leq 2\tau(x_0)\alpha(t) + \alpha(t) + \frac{|F(\xi_0, u_*)|^2}{2}
\]

(by assumption, \(\xi_0 \in \mathcal{B}(x_0) \) and thus \(\xi(t) \in \mathcal{B}(x_0) \forall t \in \Delta_* \)). The usual comparison lemma [8] implies that \(\alpha(t) \leq \beta(t) \), where \(\dot{\beta}(t) \) is the solution to the Cauchy problem

\[
\dot{\beta}(t) = [2\tau(x_0) + 1] \beta(t) + \frac{|F(\xi_0, u_*)|^2}{2}, \quad \beta(0) = \alpha(0) = 0.
\]

A straightforward computation shows that \(\beta(t) = c(t, x_0)^2 |F(\xi_0, u_*)|^2/2 \), which entails the first inequality in (46). The second inequality is immediate from (30) since \(|F(\xi(t), u_*)| \leq |F(\xi_0, u_*)| + \tau(x_0)|\xi(t) - \xi_0| \).

To simplify the estimates for the minimal dwell time, we will use the following simple inequality for the function \(c(t, x_0) \).

Proposition 4: If \(0 \leq t \leq (1 + 2\tau(x_0))^{-1} \), then

\[
c(t, x_0) \leq \sqrt{te} \leq \sqrt{e}.
\] \hspace{1cm} \tag{47}

Proof: Denoting for brevity \(\varkappa = \varkappa(x_0) \), the statement follows from the mean value theorem, applied to \(e^{(2\tau(x_0)+1)t} \):

\[
\exists \xi_0 \in (0, t) : e^{(2\tau(x_0)+1)t} - 1 = t(2\tau(x_0)+1)e^{(2\tau(x_0)+1)\xi_0} \leq (2\tau(x_0)+1)e,
\]

\[
c(t, x_0)^2 = \frac{e^{(2\tau(x_0)+1)t} - 1}{2\tau(x_0)+1} = te^{(2\tau(x_0)+1)\xi_0} \leq e.
\] \hspace{1cm} \Box
Corollary 4: Let $\xi_0 \in B(x_0)$, $u_s = \Upsilon(x_s)$, and $\xi(t) = \xi(t|\xi_0, u_s)$, where $t \in \Delta_s(\xi_0, u_s) \cap [0, (1 + 2\kappa(x_s))^{-1}]$. Then, we have
\begin{equation}
|W(\xi(t), u_s) - W(\xi_0, u_s)| \\
\leq \sqrt{t}\mu(x_s)|\mathbf{V}'(\xi_0)||\mathbf{F}(\xi_0, u_s)| + |\mathbf{F}(\xi_0, u_s)|^2
\end{equation}
(48)
\[\mu(x_s) \geq \sqrt{t}\max \{\kappa(x_s), \nu(x_s)(1 + \kappa(x_s)\sqrt{t})\}. \quad (49)\]
Here, $\nu(x_s)$ is the Lipschitz constant from (31).

Proof: Recalling that $\xi = \xi(t) \in B(\xi_s)$, one has
\begin{equation}
|W(\xi, u_s) - W(\xi_0, u_s)| \leq |(\mathbf{V}(\xi) - \mathbf{V}(\xi_0))\mathbf{F}(\xi, u_s)|
\end{equation}
(30)
\[\leq \nu(x_s)|\xi - \xi_0||\mathbf{F}(\xi, u_s)| + \kappa(x_s)|\mathbf{V}'(\xi_0)||\xi - \xi_0| \leq \nu(x_s) + \kappa(x_s)(1 + \nu(x_s))|F(\xi_0, u_s)|^2
\end{equation}
(46)
\[\leq \sqrt{t}\nu(x_s)(1 + \kappa(x_s)\sqrt{t})|\mathbf{F}(\xi_0, u_s)|^2
\]
(47)
\[\leq \sqrt{t}\kappa(x_s)|\mathbf{V}'(\xi_0)||\mathbf{F}(\xi_0, u_s)| \leq \sqrt{t}\nu(x_s)|\mathbf{V}'(\xi_0)||\mathbf{F}(\xi_0, u_s)| + |\mathbf{F}(\xi_0, u_s)|^2.
\]
(49)

A. Proof of Lemma 2

In this subsection, $\xi(t) = \xi(t|x, \Upsilon(x_s))$ stands for the solution of the special Cauchy problem (26) with $\xi_0 = x$. For brevity, let $t_*(x) \triangleq t(x, u_s)$ and $\Delta(x) \triangleq \Delta(x_s, u_s)$. To construct $\tau(\cdot)$, introduce an auxiliary function
\[
\tilde{\tau}_s(x_0) \triangleq \min \left\{ \frac{(1 - \sigma)^2}{\mu(x_0)^2}, \frac{1}{1 + 2\kappa(x_0)} \right\} > 0.
\]
(50)
Besides this, in the case where $\gamma \in C^1$ (and the monotonicity of γ is not supposed), we consider an additional function
\[
\tilde{\tau}_s(x) \triangleq \min \left\{ \tilde{\tau}_{s_0}(x), \gamma \right\}
\]
(51)
\[\rho(x) \triangleq \max_{0 \leq \gamma \leq \gamma(x)} \min \{0, -\gamma'(v)\}, \quad \sigma_0 \triangleq \frac{1 + \sigma}{2}.
\]
(51)
We now introduce $\tau(x)$ as follows:
\[
\tau(x) \triangleq \begin{cases}
\tilde{\tau}_s(x), & \gamma \text{ is nondecreasing} \\
\tilde{\tau}_s(x), & \text{otherwise}
\end{cases}
\]
(52)
It can be easily shown that $\tau(\cdot)$ is uniformly positive on any compact set. If the functions x, t, κ, ρ are globally bounded, the same holds for μ, and thus, $\tau(\cdot)$ is uniformly positive.

To prove Lemma 2, it suffices to show that $t_*(x_s) \geq \tau(x_s)$. For $x_s = 0$, $t_*(x_s) = \infty$ and the statement is obvious; otherwise, for any $t \leq \Delta_s(x_s) \subseteq [0, (1 + 2\kappa(x_s))^{-1}]$, one has
\begin{equation}
|W(\xi(t), u_s) - W(x_s, u_s)| \\
\leq \sqrt{t}\mu(x_s)|\mathbf{V}'(\xi_0)||\mathbf{F}(\xi_0, u_s)| + |\mathbf{F}(\xi_0, u_s)|^2
\end{equation}
(33)
\[\leq \sqrt{t}\mu(x_s)|\mathbf{V}'(\xi_0)||\mathbf{F}(\xi_0, u_s)|
\]
(recall that $W(x_s, u_s) = \mathbf{V}'(\xi)(x_s)$). For $t < \tilde{\tau}_s(x_s)$, one has $\sqrt{t}\mu(x_s)|\mathbf{V}'(\xi_0)||\mathbf{F}(\xi_0, u_s)| < 1 - \sigma$. Hence, on the interval $t \in \Delta_s(x_s) \cap [0, \tilde{\tau}_s(x_s)]$, the following inequalities hold:
\begin{equation}
|W(\xi(t), u_s) - W(x_s, u_s)| \\
\leq \sigma W(x_s, u_s) \leq \sigma W(x_0, u_s) \leq \sigma W(x_s, u_s) \leq \sigma W(x_s, u_s) \leq \sigma W(x_s, u_s)
\end{equation}
(54)
\[= (2 - \sigma)W(x_s, u_s).
\]
(54)
Consider first the case where γ is nondecreasing. Since $V(\xi(t)) \leq V(x_s)$ and $\gamma(V(\xi(t))) \geq \gamma(V(x_s))$, one has
\begin{equation}
W(\xi(t), u_s) < -\sigma W(x_s, u_s)
\]
(53)
\[\forall t \in \Delta_s(x_s) \cap [0, \tilde{\tau}_s(x_s)].
\]
By definition of t_s, we have $\Delta(x_s) \subseteq [0, \tilde{\tau}_s(x_s)] \subseteq [0, t_s(x_s)]$, that is, $t_s(x_s) \geq \tilde{\tau}_s(x_s) = \tau(x_s)$, which finishes the proof.
In the case of $\gamma \in C^1$, choose any $t \in \Delta_s(x_s) \cap [0, \tau(x_s)]$. Due to the mean value theorem, $\delta \in (0, t)$ exists such that
\begin{equation}
\gamma(V(x_s)) - \gamma(V(\xi(t))) = t\gamma'(V(\xi(t_0)))W(\xi(t_0), u_s) =
\end{equation}
(51)
\[= t|W(\xi(t_0), u_s)|(-\gamma'(V(\xi(t_0)))) < \frac{1}{2}\rho(x)\mu(x_s)^2
\]
(51)
The latter inequality holds due to the definition of $\rho(x)$ in (51), since $V(\xi(t_0)) \leq V(x_s)$. Applying (54) to $\sigma = \sigma_0$ and recalling that $t < \tilde{\tau}_s(x_s)$, one shows that $|W(\xi(t_0), u_s)| \leq (2 - \sigma_0)|W(x_s, u_s)|$. Since $\gamma(V(x_s)) \leq |W(x_s, u_s)|$, we have
\begin{equation}
\gamma(V(\xi(t))) \leq |W(x_s, u_s)|(1 + t\rho(x_s))\rho(\tau(x_s))(2 - \sigma_0)
\end{equation}
(51)
\[\leq |W(x_s, u_s)|(1 + \tilde{\tau}_s(x_s))\rho(\tau(x_s))(2 - \sigma_0)
\leq \sigma^{-1}\sigma_0|W(x_s, u_s)|.
\]
Using inequality (53) with σ_0 instead of σ, one arrives at
\begin{equation}
W(\xi(t), u_s) < \sigma_0 W(x_s, u_s) \leq \sigma W(x_s, u_s)
\]
(53)
\[\forall t \in \Delta_s(x_s) \cap [0, \tau(x_s)] \subseteq [0, t_s(x_s)], \text{ and hence, } t_s(x_s) \geq \tau(x_s), \text{ which finishes the proof of Lemma 2.}
\]

B. Proof of Lemma 3

In this subsection, we deal with a more general Cauchy problem (26), where $u_s = \Upsilon(x_s)$, but $\xi_0 = \bar{x} \neq x_s$; it is only assumed that $\bar{x} \in B(x_s)$. The proof follows the same line as the proof of Lemma 2 and employs the function
\begin{equation}
\tilde{\tau}_{\sigma, \lambda, \kappa}(x_s) \triangleq \min \left\{ \begin{array}{c}
\frac{(\sigma - \lambda)^2}{\mu(x_s)^2 M(x_s)^2}, \quad \frac{1}{1 + 2\kappa(x_s)}
\end{array} \right\}
\]
(55)
and, in the case where $\gamma \in C^1$, the function
\[
\bar{r}_{\sigma, \bar{\sigma}, K}(x_s) \triangleq \min \left(\bar{r}_{\sigma, \bar{\sigma}, K}(x_s), \frac{\sigma_1 - \sigma}{\sigma(2\bar{\sigma} - \sigma_1)p(x_s)} \right)
\]
\[
\sigma_1 \triangleq \bar{\sigma} + \sigma.
\]
(56)

Similar to (52), we define the function $r_{\sigma, \bar{\sigma}, K}$ as follows:
\[
r^0(x_s) \triangleq \begin{cases}
\bar{r}_{\sigma, \bar{\sigma}, K}(x_s), \\
\bar{r}_{\sigma, \bar{\sigma}, K}(x_s),
\end{cases} \gamma \text{ is nondecreasing}
\]
\[
\gamma \in C^1.
\]

We are going to show that $t_s(\bar{x}, u) \geq r^0(x_s)$ when $\bar{x} \in B(x_s)$ and $P(\bar{x}, u)$ is true. Using the inequality
\[
|V'(\bar{x})| |F(\bar{x}, u)| + |F(\bar{x}, u)|^2 \leq K|W(\bar{x}, u)|
\]
(57)

one shows that for any $t \in \Delta_s(\bar{x}, u) \cap [0, (1 + 2\sigma_1(x_s))^{-1})$, we have
\[
|W(\xi(t), u) - W(\bar{x}, u)| (48), (57)
\]
\[
\leq \sqrt{7} K \mu(x_s) M(x_s)|W(\bar{x}, u)|.
\]

For any $t \in \Delta_s(\bar{x}, u) \cap [0, \bar{r}_{\sigma, \bar{\sigma}, K}(x_s))$, one has $\sqrt{7} K \mu(x_s) M(x_s) < 1 - \sigma \bar{\sigma}^{-1}$, which allows us to prove the following counterparts of the inequalities (53) and (54):
\[
W(\xi(t), u) < W(\bar{x}, u) + (1 - \sigma \bar{\sigma}^{-1})|W(\bar{x}, u)|
\]
\[
= \sigma \bar{\sigma}^{-1} W(\bar{x}, u) \leq -\sigma \gamma(V(\bar{x}))
\]
\[
W(\xi(t), u) > W(\bar{x}, u) - (1 - \sigma \bar{\sigma}^{-1})|W(\bar{x}, u)|
\]
\[
= (2 - \sigma \bar{\sigma}^{-1}) W(\bar{x}, u).
\]
(58)

In the case where γ is nondecreasing, the inequality (58) implies that $W(\xi(t), u) < -\sigma \gamma(V(\xi(t)))$ whenever $t \in \Delta_s(\bar{x}, u) \cap [0, \bar{r}_{\sigma, \bar{\sigma}, K}(x_s))$ since $V(\xi(t)) \leq V(\bar{x})$. This implies that $t_s(\bar{x}, u) \geq \bar{r}_{\sigma, \bar{\sigma}, K}(x_s) = r^0(x_s)$.

The latter inequality holds due to the definition of $\rho(x_s)$ in (51), since $V(\xi(t)) \leq V(\bar{x}) \leq V(x_s)$. Applying (59) to $\sigma = \sigma_1$, one shows that $|W(\xi(t), u)| \leq (2 - \sigma_1 \bar{\sigma}^{-1})|W(\bar{x}, u)|$ whenever $t \leq \bar{r}_{\sigma_1, \bar{\sigma}, K}(x_s)$. The condition $P(\bar{x}, u)$ implies that $\gamma(V(\bar{x})) \leq \bar{\sigma}^{-1}|W(\bar{x}, u)|$. Hence, for any $t \in \Delta_s(\bar{x}, u) \cap [0, r^0(x_s))$, one obtains that
\[
\gamma(V(\xi(t))) \leq |W(\bar{x}, u)|(|\bar{\sigma}^{-1} + \rho(x_s)(2 - \sigma_1 \bar{\sigma}^{-1}))
\]
\[
\leq |W(\bar{x}, u)| \left(|\bar{\sigma}^{-1} + \bar{r}_{\sigma_1, \bar{\sigma}, K}(x_s)p(x_s)(2 - \sigma_1 \bar{\sigma}^{-1}) \right) \leq \bar{\sigma}^{-1} - \sigma_1 |W(\bar{x}, u)|.
\]
(56)

Using inequality (58) for σ_1, one arrives at
\[
W(\xi(t), u) < \sigma_1 \bar{\sigma}^{-1} W(\bar{x}, u) \leq -\sigma \gamma(V(\xi(t))).
\]

This implies that $t_s(\bar{x}, u) \geq \bar{r}_{\sigma_1, \bar{\sigma}, K}(x_s) = r^0(x_s)$, which finishes the proof of Lemma 3 in the second case.

APPENDIX B

DISCUSSION ON ASSUMPTION 4

Assumption 4 complements the Lyapunov inequality (12) in the following sense. Decompose the right-hand side of the continuous-time system $\hat{F}(x) = F(x, U(x))$ into the sum of two vectors, one parallel to the CLF’s gradient $\nabla V(x) = V'(x)^\top$ and the other orthogonal to it
\[
\hat{F}(x) = -\alpha(x) \nabla V(x) + v_1(x)
\]
where $\alpha(x) \in \mathbb{R}$ and $\nabla V(x) \perp v_1(x) \in \mathbb{R}^d \forall x \neq 0$. The Lyapunov inequality (12) gives a lower bound for $\alpha(x)$:
\[
\alpha(x) \geq \frac{\gamma(V(x))}{|V'(x)|^2}
\]
(60)

but neither specifies any upper bound on α nor restricts the transverse component $v_1(x)$ in any way. The definition does not exclude fast-oscillating solutions, changing much faster than the CLF is decaying $|\dot{x}| = |F(x(t))| \gg |V(x(t))|$. This happens, e.g., when the orthogonal component v_\perp (which influences \dot{x}, but does not affect $V(x)$) dominates over the parallel component $(-\alpha \nabla V)$ or when $\alpha(x)$ grows unbounded when $|x| \to 0$. If the continuous-time control $u(t) = U(x(t))$ is also fast changing, it is intuitively clear that no finite sampling rate can appear sufficient to maintain the prescribed convergence rate (an explicit example is given below). The restrictions of Assumption 4 prohibit these pathological behaviors and require, first, that the transverse component of the velocity v_1 is proportional to the gradient component $(-\alpha \nabla V)$, and, second, both components decay as $O(|V'(x)|)$ as $|x| \to 0$. Mathematically, this can be formulated as follows.

Proposition 5: Assumption 4 holds if and only if $\alpha(x)$ is locally bounded and $\hat{F}(x) \leq \hat{M}(x)\alpha(x)|V'(x)|$, where \hat{M} is a locally bounded function.

Proof: Notice that $|V'(x)| \hat{F}(x) = \alpha(x)|V'(x)|^2$ and $\max(\alpha(x)|V'(x)|, |v_1(x)|) \leq |\hat{F}(x)| \leq \alpha(x)|V'(x)| + |v_1(x)|$.

The statement now follows from Lemma 1.

We now proceed with an example, demonstrating that Assumption 4 cannot be fully discarded even in the situation of exponential convergence. Consider a linear planar system
\[
\dot{x}_1 = x_2 + u_1, \quad \dot{x}_2 = -x_1 + u_2, \quad u_1, u_2 \in \mathbb{R}.
\]
(61)

Consider now the exponentially stabilizing controller
\[
\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = U(x) = -\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \frac{1}{\sqrt{x_1^2 + x_2^2}} \begin{pmatrix} x_2 \\ -x_1 \end{pmatrix}, \quad x \neq 0
\]
and $U(0) = 0$. Obviously, for $V(x) = \frac{1}{2}|x|^2$ and $\gamma(v) = 2v$, one has $V'(x) F(x, U(x)) = x^\top u = -|x|^2 = -\gamma(V(x))$, so the continuous-time control exponentially stabilizes the system. Assumption 4 is violated since
\[
|\hat{F}(x)|^2 = 2|x|^2 + 2|x| + 1 \xrightarrow{|x|\to 0} 1.
\]

We are going to show that algorithm (24) cannot provide locally uniformly positive dwell time. To prove this, we introduce the polar coordinates $x_1 = r \cos \varphi, x_2 = r \sin \varphi$, rewriting the
dynamics (61) in the area $\mathbb{R}^2 \setminus \{0\}$ as

$$
\begin{align}
\dot{r} \cos \phi - r \dot{\phi} \sin \phi &= r \sin \phi + u_1 \\
\dot{r} \sin \phi + r \dot{\phi} \cos \phi &= -r \cos \phi + u_2 \\
\dot{\phi} &= -1 + r^{-1} (u_2 \cos \phi - u_1 \sin \phi).
\end{align}
$$

(62)

Suppose that the algorithm starts at some point $x_0 = r_0 (\cos \phi_0, \sin \phi_0)^\top$ with $r_0 = |x_0| \in (0, 1)$, and the initial control input is $u_0 = u(x_0)$. On the interval $(0, t_1)$, where t_1 stands for the instant of first event, one has

$$
\dot{r} = -r_0 \cos (\phi_0 - \phi) + \sin (\phi_0 - \phi)
$$

$$
\dot{\phi} = -1 + r^{-1} r_0 \sin (\phi_0 - \phi) - r^{-1} \cos (\phi_0 - \phi).
$$

(63)

By definition of t_1, the CLF $V(x) = |x|^2 = r^2$ decays on $(0, t_1)$, and thus, $\dot{r}(t) \leq 0$ and $r(t) \leq r_0$. When $\phi(t)$ is close to ϕ_0, one obviously has $\dot{\phi} \leq -1$ since $r_0 \sin (\phi_0 - \phi) < \cos (\phi_0 - \phi)$. Therefore, $\dot{\phi}(t) < \phi_0$, for any $t \in [0, t_1]$. Since $\dot{r} \leq 0$, one has $\sin (\phi_0 - \phi) \leq r_0 \cos (\phi_0 - \phi)$; thus, we have

$$
0 < \phi_0 - \phi(t) \leq \arctan r_0
$$

$$
\sin (\phi_0 - \phi(t)) \leq \frac{r_0}{\sqrt{1 + r_0^2}} \leq r_0 \cos (\phi_0 - \phi(t))
$$

(64)

(65)

on $(0, t_1)$ (inequalities (65) are based on (64) and the decreasing/increasing of \cos / \sin, respectively, on $(0, \pi)$). Hence, we have

$$
\dot{\phi} \leq -1 + \frac{r_0^2 - 1}{r_0 \sqrt{1 + r_0^2}} \leq -1 - \frac{1 - r_0^2}{r_0 \sqrt{1 + r_0^2}}
$$

(66)

on $(0, t_1)$, which entails, accordingly to (64), that

$$
t_1 \leq \frac{r_0 \sqrt{1 + r_0^2} \arctan r_0}{r_0 \sqrt{1 + r_0^2} + 1 - r_0^2} \rightarrow 0.
$$

Therefore, the algorithm does not provide local uniform positivity of the dwell time (this algorithm, in fact, exhibits Zeno behavior, but the proof is omitted due to the page limit).

REFERENCES

[1] A. Proskurnikov and M. Mazo, Jr., "Lyapunov design for event-triggered exponential stabilization," in Proc. 21st Int. Conf. Hybrid Syst.: Comput. Control, 2018, pp. 111–119.

[2] R. Kalman and J. Bertram, "Control system analysis and design via the “Second Method” of Lyapunov. I. Continuous-time systems," J. Basic Eng., vol. 32, pp. 371–393, 1960.

[3] Z. Artstein, "Stabilization with relaxed control," Nonlinear Anal. Theory, Methods Appl., vol. 7, no. 11, pp. 1163–1173, 1983.

[4] E. Sontag, "A universal" construction of Artstein’s theorem on nonlinear stabilization," Syst. Control Lett., vol. 13, pp. 117–123, 1989.

[5] R. Tanzer, "A dual to Lyapunov’s stability theorem," Syst. Control Lett., vol. 42, pp. 161–168, 2001.

[6] A. P. Krook and J. W. Pomet, "Lyapunov functions for homogeneous Jurdjevic-Quinn systems," ESAIM: Control, Optim. Calculus Variations, vol. 5, pp. 293–311, 2000.

[7] P. V. Kokotovic and M. Arcak, "Constructive nonlinear control: A historical perspective," Automatica, vol. 37, no. 5, pp. 677–662, 2001.

[8] H. Khalil, Nonlinear Systems. Englewood Cliffs, NJ, USA: Prentice-Hall, 1996.

[9] L. Praly, B. d’Andr{é}a Novel, and J.-M. Coron, “Lyapunov design of stabilizing controllers for cascaded systems,” IEEE Trans. Autom. Control, vol. 36, no. 10, pp. 1177–1181, Oct. 1991.

[10] M. Kri{ć}i, I. Kanellakopoulos, and P. Kokotovi{ć}, Nonlinear and Adaptive Control Design. Hoboken, NJ, USA: Wiley, 1995.

[11] R. Sepulchre, M. Jankovic’, and P. Kokotovi{ć}, Robust Nonlinear Control Design. State-Space and Lyapunov Techniques. London, U.K.: Springer, 1997.

[12] Z. Wang, X. Liu, K. Liu, S. Li, and H. Wang, “Backstepping-based Lyapunov function construction using approximate dynamic programming and sum of square techniques,” IEEE Trans. Cybern., vol. 47, no. 10, pp. 3393–3403, Oct. 2017.

[13] R. Furqon, Y.-J. Chen, M. Tanaka, K. Tanaka, and H. Wang, “An SOS-based control Lyapunov function design for polynomial fuzzy control of nonlinear systems,” IEEE Trans. Fuzzy Syst., vol. 25, no. 4, pp. 775–787, Aug. 2017.

[14] C. Verdier and M. Mazo, Jr.; “Formal controller synthesis via genetic programming,” IFAC-PapersOnline, vol. 50, no. 1, pp. 7205–7210, 2017.

[15] R. Freeman and P. Kokotovi{ć}, “Inverse optimality in robust stabilization,” SIAM J. Control Optim., vol. 34, pp. 1365–1391, 1996.

[16] R. Freeman and P. Kokotovi{ć}, Robust Nonlinear Control Design. State-Space and Lyapunov Techniques. Cambridge, MA, USA: Birkh"auser, 1996.

[17] C. Kellett and A. Teel, “Discrete-time asymptotic controllability implies smooth control Lyapunov function,” Syst. Control Lett., vol. 52, pp. 349–59, 2004.

[18] M. Iancovici, “Control Lyapunov-Razumikhin functions and robust stabilization of time delay systems,” IEEE Trans. Auton. Control, vol. 46, no. 7, pp. 1048–1060, Jul. 2001.

[19] R. Sanfelice, “On the existence of control Lyapunov functions and state-feedback laws for hybrid systems,” IEEE Trans. Autom. Control, vol. 58, no. 12, pp. 3242–3248, Dec. 2013.

[20] A. Jancovic, K. Galloway, K. Sreenath, and I. Grizzle, “Rapidly exponentially stabilizing control Lyapunov functions and hybrid zero dynamics,” IEEE Trans. Auton. Control, vol. 59, no. 4, pp. 876–891, Apr. 2014.

[21] M. Romdlony and B. Jayawardhana, “Stabilization with guaranteed safety using control Lyapunov—barrier function,” Automatica, vol. 66, pp. 39–47, 2016.

[22] P. Nilsson et al., “Correct-by-construction adaptive cruise control: Two approaches,” IEEE Trans. Control Syst. Technol., vol. 24, no. 4, pp. 1294–1307, Jul. 2016.

[23] A. Jancovic, K. Galloway, K. Sreenath, and I. Grizzle, “Rapidly exponentially stabilizing control Lyapunov functions and hybrid zero dynamics,” IEEE Trans. Auton. Control, vol. 59, no. 4, pp. 876–891, Apr. 2014.

[24] M. Romdlony and B. Jayawardhana, “Stabilization with guaranteed safety using control Lyapunov—barrier function,” Automatica, vol. 66, pp. 39–47, 2016.

[25] H. Khalil, Nonlinear Systems. Englewood Cliffs, NJ, USA: Prentice-Hall, 1996.
PROSKURNIKOV AND MAZO, JR.: LYAPUNOV EVENT-TRIGGERED STABILIZATION WITH A KNOWN CONVERGENCE RATE

[34] R. Goebel, R. Sanfelice, and A. Teel, “Hybrid dynamical systems,” IEEE Control Syst. Mag., vol. 29, no. 2, pp. 28–93, Apr. 2009.

[35] V. Dolk, D. Borgers, and W. Heemels, “Output-based and decentralized dynamic event-triggered control with guaranteed l_2-gain performance and Zeno-freeness,” IEEE Trans. Autom. Control, vol. 62, no. 1, pp. 34–39, Jan. 2017.

[36] A. Selivanov and E. Fridman, “Event-triggered H_{∞} control: A switching approach,” IEEE Trans. Autom. Control, vol. 61, no. 10, pp. 3221–3226, Oct. 2016.

[37] D. Yue, E. Tian, and Q.-L. Han, “A delay system method for designing event-triggered controllers of networked control systems,” IEEE Trans. Autom. Control, vol. 58, no. 2, pp. 475–481, Feb. 2013.

[38] A. Selivanov and E. Fridman, “Distributed event-triggered control of diffusion semilinear PDEs,” Automatica, vol. 68, pp. 344–351, 2016.

[39] B. Liu, D.-N. Liu, and C.-X. Dou, “Exponential stability via event-triggered impulsive control for continuous-time dynamical systems,” in Proc. Chin. Control Conf., 2014, pp. 4346–4350.

[40] A. Seuret, C. Prieur, and N. Marchand, “Stability of nonlinear systems by means of event-triggered sampling algorithms,” IMA J. Math. Control Inf., vol. 31, pp. 415–433, 2014.

[41] N. Marchand, S. Durand, and J. Castellanos, “A general formula for event-based stabilization of nonlinear systems,” IEEE Trans. Autom. Control, vol. 58, no. 5, pp. 1332–1337, May 2013.

[42] W. Heemels, J. Martínez, S. Durand, and J. Guerrero-Castellanos, “Lyapunov event-triggered control: A new event strategy based on the control,” IFAC Proc. Vol., vol. 46, no. 23, pp. 324–328, 2013.

[43] C. Himmelberg, “Measurable relations,” Fundam. Math., vol. 87, no. 1, pp. 53–72, 1975.

[44] Y. Lin and E. Sontag, “A universal formula for stabilization with bounded controls,” Syst. Control Lett., vol. 16, pp. 393–397, 1991.

[45] A. Anta and P. Tabuada, “To sample or not to sample: Self-triggered control for nonlinear systems,” IEEE Trans. Autom. Control, vol. 55, no. 9, pp. 2030–2042, Sep. 2010.

[46] M. Mazo, A. Anta, and P. Tabuada, “An ISS self-triggered implementation of linear controllers,” Automatica, vol. 46, no. 8, pp. 1310–1314, 2010.

[47] W. Heemels and M. Donkers, “Model-based periodic event-triggered control for linear systems,” Automatica, vol. 49, no. 3, pp. 698–711, 2013.

[48] A. Proskurnikov and M. Cao, “Synchronization of pulse-coupled oscillators and clocks under minimal connectivity assumptions,” IEEE Trans. Autom. Control, vol. 62, no. 11, pp. 5873–5879, Nov. 2017.

[49] A. Ames, H. Zheng, R. Gregg, and S. Sastry, “Is there life after Zeno? Taking executions past the breaking (Zeno) point,” in Proc. Amer. Control Conf., 2006, pp. 2652–2657.

[50] P. Hsu and S. Sastry, “The effect of discretized feedback in a closed loop system,” in Proc. IEEE Conf. Decis. Control, 1987, pp. 1518–1523.

[51] L. Burlion, T. Ahmed-Ali, and F. Lamnabhi-Lagarrigue, “On the stability of a class of nonlinear hybrid systems,” Nonlinear Anal.: Theory, Methods Appl., vol. 65, no. 12, pp. 2236–2247, 2006.

[52] D. Owens, Y. Zheng, and S. Billings, “Fast sampling and stability of nonlinear sampled-data systems: Part I. Existence theorems,” IMA J. Math. Control Inf., vol. 7, pp. 1–11, 1990.

[53] S. Bhat and D. Bernstein, “Finite-time stability of continuous autonomous systems,” SIAM J. Control Optim., vol. 38, no. 3, pp. 751–766, 2000.

[54] E. Moulay and P. Perriard, “Finite-time stability and permanence of a class of continuous systems,” J. Math. Anal. Appl., vol. 323, no. 2, pp. 1430–1443, 2006.

[55] W. Heemels, M. Donkers, and A. Teel, “Periodic event-triggered control for linear systems,” IEEE Trans. Autom. Control, vol. 58, no. 4, pp. 847–861, Apr. 2013.

[56] F. Malakkal-Babu, M. Wang, B. van Arem, and R. Happee, “Design and analysis of full range adaptive cruise control with integrated collision a voidance strategy,” in Proc. Int. Conf. Intell. Transp. Syst., 2016, pp. 308–315.

[57] M. Wang, S. Hoogendoorn, W. Duamen, B. van Arem, B. Shyrokau, and R. Happee, “Delay-compensating strategy to enhance string stability of adaptive cruise controlled vehicles,” Transportsmetrica B: Transp. Dyn., vol. 6, pp. 211–229, 2018, doi: 10.1080/21680566.2016.1266973.

[58] C.-C. Chien, Y. Zhang, and M. Lai, “Regulation layer controller design for automated highway systems,” Math. Comput. Model., vol. 22, nos. 4–7, pp. 305–327, 1995.

[59] V. Dolk, J. Ploeg, and W. Heemels, “Event-triggered control for string-stable vehicle platooning,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 12, pp. 3486–3500, Dec. 2017.

[60] A. Anta and P. Tabuada, “Self-triggered stabilization of homogeneous control systems,” in Proc. Amer. Control Conf., 2008, pp. 4129–4134.

[61] M. McConley, M. Dahleh, and E. Feron, “Polytopic control Lyapunov functions for robust stabilization of a class of nonlinear systems,” Syst. Control Lett., vol. 34, pp. 77–83, 1998.

Anton V. Proskurnikov (M’13–SM’18) received the M.Sc. (“Specialist”) and Ph.D. (“Candidate of Sciences”) degrees in applied mathematics from Saint Petersburg State University, Saint Petersburg, Russia, in 2003 and 2005, respectively. He is currently an Assistant Professor with the Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy, and a Part-Time Senior Researcher with the Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, Saint Petersburg. He was an Assistant Professor and Senior Research with Saint Petersburg State University from 2003 to 2010 and a Postdoctoral Researcher with the University of Groningen from 2014 to 2016 and the Delft University of Technology from 2016 to 2018. His research interests include dynamics of complex networks, robust and nonlinear control, optimal control, and control applications to social and biological sciences.

Dr. Proskurnikov is a member of the Editorial Board of the Journal of Mathematical Sociology.

Manuel Mazo, Jr. (S’99–M’11–SM’18) received the M.Sc. and Ph.D. degrees in electrical engineering from the University of California, Los Angeles, CA, USA, in 2007 and 2010, respectively, and the Telecommunications Engineering “Ingieniero” degree from the Polytechnic University of Madrid, Madrid, Spain, and the “Civilingenjöer” degree in electrical engineering from the KTH Royal Institute of Technology, Stockholm, Sweden, both in 2003. He is currently an Associate Professor with the Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands. Between 2010 and 2012, he held a joint postdoctoral position with the University of Groningen and the (now defunct) innovation center INCAS®, The Netherlands. His main research interests include the formal study of problems emerging in modern control system implementations, in particular, the study of networked control systems and the application of formal verification and synthesis techniques to control.

Dr. Mazo, Jr., is the recipient of a University of Newcastle Research Fellowship (2005), the Spanish Ministry of Education/UCLA Fellowship (2005–2009), the Henry Samuell Scholarship from the UCLA School of Engineering and Applied Sciences (2007/2008), and the European Research Council Starting Grant (2017).