Opportunities to mitigate greenhouse gas emission from paddy rice fields in Indonesia

H L Susilawati¹ and P Setyanto²

¹Division of Greenhouse Gas Emission and Absorption, Indonesian Agricultural Environment Research Institute, Jl. Jakenan-Jaken KM 5 Jakenan, Pati, Central Java, 59182, Indonesia
²Directorate of Vegetables and Medicinal Crop, Directorate General of Horticulture. Jl. AUP No. 3 Pasar Minggu, South Jakarta, 12520, Indonesia

Corresponding author: helenalina_s@yahoo.com

Abstract. Human activities including modern agriculture have increased the concentration of atmospheric greenhouse gas (GHG) since the industrial age. The agricultural sector is a source for three primary GHG emissions: methane (CH₄), nitrous oxide (N₂O) and carbon dioxide (CO₂). Numerous management practices can potentially mitigate GHG emissions from rice fields. Before implementing the practices, it is critical to evaluate its impact on GHG emissions and rice production. The aim of this study is to explore the management practices from paddy fields in Indonesia as mitigation of GHG emission without any yield loss. There were some trade-offs between CH₄ and N₂O emissions. Continuous flooding triggered largely CH₄ emissions and reduced N₂O emissions. Organic fertilizer tended to decrease N₂O emissions. Nevertheless, inorganic fertilizer e.g. urea application led to an increase of N₂O emissions. Promising mitigation options of GHG emission from rice cultivation are the application of water management, a nitrification inhibitor, iron supplement, rice cultivars selection, nutrient (organic-inorganic) management, cultivation method. The effectiveness of the GHG mitigation options varied while acceptability of mitigation options will depend on the extent to which sustainable production will be achieved or maintained.

1. Introduction

Indonesia is third-highest rice producer in the world with rice – harvested area approximately 12,250,000 ha in 2017 [1]. Indonesia is the world’s biggest rice consumers; thus rice consumption is higher than rice production (Figure 1). Rice cultivation is one of the main sources of global greenhouse gases (GHG) emissions including methane (CH₄) and nitrous oxide (N₂O). Paddy fields contribute about 5 – 19% of CH₄ emissions to the anthropogenic global CH₄ budget [2]. While fertilized agricultural soils contribute about 13 – 24% of global N₂O emission annually [3]. Due to the wide agricultural areas, nowadays developing countries contribute for three-quarters of GHG emissions and are predicted to be the most rapid sources of GHG emissions in the future [4]. GHG emissions from agriculture in Indonesia accounted for 7.8% to national GHG emissions or estimated approximately 112.727 Gg CO₂e [5]. Indonesia government has declared to achieve 29% emission reduction using national resources compare to usual practice in 2030 and up to 41% with international support. Agricultural sector could be a sector that can reduce GHG emissions through CH₄ and N₂O mitigation, as well as soil carbon sequestration [6]. The agricultural sector in Indonesia should reach the target of emission reduction of about 0.008 Gt CO₂e in 2030 [5].

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
The major sources of CH$_4$ from agriculture are paddy fields, livestock, landfills, natural wetlands and sediments [7]. CH$_4$ is produced by methanogenic bacteria when organic materials decomposed in anaerobic conditions [8]. CH$_4$ productions in the soil were influenced by organic matter content, redox potential, temperature and pH [7]. N$_2$O emission is by-product of biological transformation of nitrogen, i.e., nitrification and denitrification. The soil is one of the main sources of N$_2$O emission and an estimated 65% of total N$_2$O emission [9]. N$_2$O emission from soil is affected by moisture regime, soil pH, oxygen content, soil texture, temperature, fertilizer application, organic amendment and plants [10]. Carbon dioxide (CO$_2$) emission is emitted by microbial decomposition and plant litter burning. Management practices and soil environmental characteristics influence microbial activities and decomposition processes that release CO$_2$. Photosynthesis absorbs CO$_2$ from the atmosphere during the daytime, while respiration release CO$_2$ to the atmosphere during the night [11]. So, if there is a plant, there would be a sink of CO$_2$. GHG emissions from agriculture are complex processes because trade-off could happen between each gas and agricultural production. Balance set of mitigation options should be prepared to minimize GHG emissions trade-off.

Climate change significantly affects agricultural productivity. Several aspects of best management practices in the paddy field have been studied to boost its production. Thus, the aim of this paper is to evaluate the impact of rice management practices that could be implemented as technologies for increasing its production as well as reducing GHG from agriculture.

2. Material and method
The data collected from published papers which studied about technology to reduce GHG emissions from paddy fields in Indonesia, including water management, selection of rice cultivars, nutrient management (organic-inorganic, application of nitrification inhibitor and iron supplement) and cultivation method.

3. Results and discussion
The mitigation options of GHG emissions from paddy fields that investigated in Indonesia were listed in Table 1. Water management, selection of rice varieties, cultivation methods and nutrient management are the proposed options that could be used to reduce GHG emission from rice fields. The options of GHG mitigation cannot give a negative effect to rice production.
Table 1. A list of mitigation options of GHG emissions from rice fields in Indonesia as estimated by different authors

Mitigation options	Location	Range (min-max) of	Rice yield	Details	References	
		CO₂ mg C m⁻² hour⁻¹	CH₄ µg N m⁻² hour⁻¹	N₂O ton ha⁻¹		
		8.04 to 49.63	44.38 to 16.09	1233 to 1108	intermittent drainage could reduce GHG emission around 14.7 to 68.5% compared to CF	[12]
Water management	Sungai Rangas, South Kalimantan Pati, Central Java	- 7.53 to 9.15	14.98 to 4.96	6.87	Alternate wetting and drying (AWD) reduce 33 - 39 % GHG emissions compared to CF and no difference on yield	[13]
	Sukamandi, West Java	- 2.18 to 15.15	-	-	intermittent irrigation and saturated soil have less CH₄ emission around 53-67% than CF	[14]
Rice Cultivars	Taman Bogo, Southern Sumatera Pati, Central Java	- 13.3 to 2.96	-	-	Atomita-4, IR-64, and Bengawan Solo were high yielding cultivars with low CH₄ emission	[15]
	Pati, Central Java	- 10.22 to 13.69	9.07 to 7.12	5.0 to 5.3	IR-64 has the lowest CH₄ emission with no difference in yield compare to Memberamo, Way Apoburu and Cisadane	[16]
Cultivation methods	Pati, Central Java	- 0.11 to 13.96	0.53 to 1.92	4.09 to 9.21	zero tillage resulted less GHG emissions than conventional tillage	[17]
Nutrient management	Pati, Central Java	- 3.14 to 6.43	6.86 to 7.80		steel slag applications decreased the CH₄ and N₂O emissions compared without steel slag application	[18]
	Pati, Central Java	- 2.39 to 4.7	7.80		Applications of fresh and decomposed straw could reduce N₂O emission around 33 and 28% compare without straw application	[19]

3.1. Water management

The effects of different water regimes on CH₄ and N₂O emission from rice fields have been well studied. In Indonesia, intermittent irrigation or alternate wetting and drying (AWD) was better than the
continuous flooding (CF) treatment in term of GHG emission (Table 1). CH$_4$ was produced by methanogenic bacteria in the soil exclusively in anaerobic conditions that resulted from flooding the field. Drainage could improve the aeration and minimize the production of CH$_4$ in the soil. Some studies showed drainage rice fields could reduce CH$_4$ emission: multi-aeration decreased by 12%, without any decreases in rice yield [21], intermittent irrigation decreased to 45% [22] and AWD has the potential to reduce by 73% compared with traditional flooded rice [23]. Somehow water managements show a trade-off between CH$_4$ and N$_2$O emission. Generally, low N$_2$O emission is found during flooded condition. Different water regimes in rice fields caused a sensitive change in N$_2$O emissions due to nitrification and denitrification processes [24]. Alternate anaerobic and aerobic cycling considerably increased N$_2$O emission relative to constant aerobic and anaerobic conditions [25]. However, N$_2$O emission from rice fields could be neglected because N$_2$O emission from rice fields was very low [26].

3.2. Selection of rice varieties
During flooded condition, CH$_4$ is produced in the anaerobic layer of soil and mainly transported to the atmosphere through rice plants through intercellular air spaces (aerenchyma) that connected rhizosphere to the atmosphere. Each of cultivars has different ability to release CH$_4$ based on their morphological and physiological properties, i.e. number of plant tiller, biomass, root exudate that released by the plants [18]. Table 1 shows that IR-64 has the lowest CH$_4$ emission because it has a relatively short growth period, the lowest dry matter weight of biomass and plant tiller [18]. Rice plants are one of the promising strategies to reduce CH$_4$ emission from rice fields through the approach of high yielding rice cultivars with low CH$_4$ emission. High yielding rice cultivars with low CH$_4$ emission will give more benefit to the farmers. Adoption of GHG mitigation option by the farmers depends on the advantages for the farmers and the easiness to be implemented [27].

3.3. Cultivation methods
Table 1 mention that conventional tillage resulted in higher GHG emissions than zero tillage, this likely because conventional tillage causes higher aeration and then results in increasing of N$_2$O emission [28]. Moreover, the intensive soil tillage resulted in rapid decline of soil C content [29]. Conversely, increased soil tillage reduces CH$_4$ emissions, because CH$_4$-oxidising bacteria are negatively affected by soil disturbance [30]. However, some study showed contradictory results that intensification of soil tillage inhibited N$_2$O emission [31].

3.4. Nutrient management
Addition of nutrient in a rice field to achieve sustain rice production affect GHG emission. Chemical fertilizer, i.e., nitrogen fertilizer generally stimulates CH$_4$ and N$_2$O production in soil due to losses of N through nitrification and denitrification. Increasing N uptake and reducing N losses can be achieved using nitrification inhibitors [19]. Application of organic fertilizers for improving soil fertility and enhancing crop productivity release CO$_2$, CH$_4$, and N$_2$O through processes of priming effect, methanogenesis, nitrification, and denitrification because easily decomposable organic substances affect to microbial activity to utilize C and N in soil [32]. Steel slag contains active iron and it could be used as an electron acceptor to decrease methanogenic activity and to suppress CH$_4$ production.

4. Conclusion
Water management, selection of rice cultivars, nutrient management (organic-inorganic, application of nitrification inhibitor and iron supplement) and cultivation method are the promising approach to achieve sustain rice production as well as to reduce GHG emissions from paddy fields. The effectiveness of the GHG mitigation options varied.

References
[1] Ito S 2018 World Rice Statistics an Graphics: Indonesia URL: http://worldfood.apionet.or.jp/graph/num.cgi?byear=1960&eyear=2018&country=INDONE
[1] Ariani M, Yulianingrum Setyanto P, Rosenani A Nugroho S Husin Setyanto P, Pramono A, Adriany T Hadi A, Inubushi K and Yagi K 2010 Effect of water management on greenhouse gas emissions IPCC 1992 Emission Scenarios Evaluation of the IPCC 1992 Emission Scenarios to the fifth assessment report of the intergovernmental panel on climate change Analysis of inventories for anthropogenic sources of NOx, NH3 and N2O in 1990 Environ. Pollut. 102 135–148

[2] Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanенко V, Schneider U and Towprayoon S 2007 Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture Agr. Ecosyst. Environ. 118 6–28

[3] Olivier J G J, Bouwman A F, van der Hoek K W and Berdowski J J M 1998 Global air emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990 Environ. Pollut. 102 65–82

[4] IPCC 2014 Climate Change 2014: Synthesis Report Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change ed. Core Writing Team, R K Pachauri and Meyer L. A (Geneva, Switzerland: Intergovernmental Panel on Climate Change)

[5] Ministry for Environment and Forestry Republic of Indonesia 2015 Indonesia first biennial update report under the United Nations Framework Convention on Climate Change (Jakarta: Directorate General of Climate Change Ministry of Environment and Forestry Republic of Indonesia)

[6] Li C, Salas W, DeAngelbo B and Rose S 2006 Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years J. Environ. Qual. 35 1554–1565

[7] Yang S S and Chang E H 1997 Effect of fertilizer application on methane production in paddy soils of Taiwan Biol. Fertil. Soils 25 245–251

[8] Mosier A R, Duxbury J M, Freney J R, Heinemeyer O, Minami K and Johnson D E 1998 Mitigating agricultural emissions of methane Climatic Change 40 39–80

[9] Prather M, Derwent R, Ehhalt D, Fraser P, Sanhueza E and Zhou X 1995 Other trace gases and atmospheric chemistry Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC 1992 Emission Scenarios ed. J T Houghton, L G Meira Filho, J Bruce, Hoesung Lee, B A Callander, E Haites, N Harris and K Maskell (Cambridge: Cambridge University Press) chapter 2 pp. 77–126

[10] Pathak H 1999 Emissions of nitrous oxide from soil Current science 77 359–69

[11] Miyata A, Leuning R, Denmead O T, Kim J and Harazono Y 2000 Carbon dioxide and methane fluxes from an intermittently flooded paddy field Agric. Forest Meteorol. 102 287–303

[12] Hadi A, Inubushi K and Yagi K 2010 Effect of water management on greenhouse gas emissions and microbial properties from paddy fields of Indonesia and Japan Paddy Water Environ. 8 319–324

[13] Setyanto P, Pramono A, Adriany T A, Susilawati H L, Tokida T, Padre A T and Minamikawa K 2017 Alternate wetting and drying reduces methane emission from a rice paddy in Central Java, Indonesia without yield loss Soil Sci. Plant Nutr. 64 23–30

[14] Husin Y A, Murdyiarso D, Khalil M A K, Rasmussen R A, Shearer M J, Sabiham S, Sunar A and Adjuwana H 1995 Methane flux from Indonesian wetland rice: the effects of water management and rice variety Chemosphere 31 3153–3180

[15] Nugroho S G, Sunyoto, Lumbanraja J, Suprapto H, Ardjaswa W S and Kimura M 1997 Effect of rice variety on methane emission from an Indonesian paddy field Soil Sci. Plant Nutr. 43 799–809

[16] Setyanto P, Rosenani A B, Boer R, Fauziah C I and Kharif M J 2004 The effect of rice cultivars on methane emission from irrigated rice field Indonesian J. Agric. Scie. 5 20–31

[17] Ariani M, Yulianingrum H and Setyanto P 2017 Emisi Gas Rumah Kaca dan Hasil Padi dari Cara Olah Tanah dan Pemberian Herbisida Di Lahan Sawah MK 2015 Jurnal Ilmu Lingkungan 15 74–82

[18] Susilawati H L, Setyanto P, Makarim A K, Ariani M, Ito K and Inubushi K 2015 Effects of steel
slag applications on CH₄, N₂O and the yields of Indonesian rice fields: a case study during 2 consecutive rice-growing seasons at two sites Soil Sci. Plant Nutr. 16 704–718

[19] Wihardjaka A, Tandjung S D, Sunarminto B H and Sugiharto E 2010 Emisi gas dinitrogen oksida pada padi gogorancah oleh pemberian jerami padi dan bahan penghambat nitrifikasi Penelitian Pertanian Tanaman Pangan 29 144–151

[20] Ariani M, Kartikawati R and Setyanto P 2011 Emisi nitro oksida (N₂O) pada sistem pengelolaan tanaman di lahan sawah tadah hujan Jurnal Tanah dan Iklim 34 33–39

[21] Sass R L, Fisher F M, Wang Y B, Turner F T and Jund M F 1992 Methane emission from rice fields: The effect of floodwater management Global Biogeochem. Cycl. 6 249–262

[22] Katayanagi N, Furukawa Y, Fumoto T and Hosen Y 2012 Validation of the DNDC-rice model by using CH₄ and N₂O flux data from rice cultivated in pots under alternate wetting and drying irrigation management Soil Sci. Plant Nutr. 58 360–372

[23] Yagi K, Tsuruta H, Kanda K and Minami K 1996 Effect of water management on methane emission from a Japanese rice paddy field: Automated methane monitoring Global Biogeochem. Cycl. 10 255–267

[24] Zou J, Huang Y, Jiang J, Zheng X and Sass R L 2005 A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: effects of water regime, crop residue, and fertilizer application Global Biogeochem. Cycl. 19

[25] Smith C J and Patrick W H 1983 Nitrous oxide emission as affected by alternate anaerobic and aerobic conditions from soil suspensions enriched with (NH₄)₂SO₄ Soil Biol. Biochem. 15 693–696

[26] Khalil M, Rasmussen R, Wang M, Ren L 1990 Emission of trace gases from Chinese rice fields and biogas generators: CH₄, N₂O, CO, CO₂, chlorocarbons and hydrocarbons Chemosphere 20 207–226

[27] Anas I, Megasari N K, Suprihati and Ohta H 2008 Indonesian farmers can contribute in reducing greenhouse gases emission from wetland rice field Jurnal Tanah dan Lingkungan 10 54–59

[28] Skiba U, van Dijk S, Ball B C 2002 The influence of tillage on NO and N₂O fluxes under spring and winter barley Soil Use Manage. 18 340–345

[29] Soussana J F, Loiseau P, Vuichard N, Ceschia E, Balesdent J, Chevallier T and Arrouays D 2004 Carbon cycling and sequestration opportunities in temperate grasslands Soil Use Manag. 20 219–230

[30] Hutsch B W 2001 Methane oxidation in non-flooded soils as affected by crop production Eur. J. Agron. 14 237–260

[31] Drury C F, Reynolds W D, Tan C S, Welaucky T W, Calder W and McLaughlin N B 2006 Emissions of nitrous oxide and carbon dioxide: influence of tillage type and nitrogen placement depth Soil Sci. Soc. Am. J. 70 570–581

Rochette P, Worth D E, Lemke R L, McConkey B G, Pennock D J, Wagner-Riddle C, Desjardins R J 2008 Estimation of N₂O emissions from agricultural soils in Canada. I. Development of a country-specific methodology. Can. J. Soil Sci. 88 641–654

[32] Thangarajan R, Bolan N S, Tian G, Naidu R and Kunhi Krishnan A 2013 Role of organic amendment application on greenhouse gas emission from soil Scie. Total Environ. 461 72–96