A HARDY SPACE ANALYSIS OF THE BÁEZ-DUARTE CRITERION FOR THE RH

S. WALEED NOOR

Abstract. In this article, methods from sub-Hardy Hilbert spaces such as the de Branges-Rovnyak spaces and local Dirichlet spaces are used to investigate Báez-Duarte’s Hilbert space reformulation of the Riemann hypothesis (RH).

Introduction

A classical reformulation of the Riemann hypothesis by Nyman and Beurling (see [3], [16]) says that all the non-trivial zeros of the \(\zeta \)-function lie on the critical line \(\text{Re}(s) = 1/2 \) if and only if the characteristic function \(\chi_{(0,1)} \) belongs to the closed linear span in \(L^2((0,1)) \) of the set \(\{ f_\lambda : 0 \leq \lambda \leq 1 \} \), where \(f_\lambda(x) = \{ \lambda/x \} - \lambda \{ 1/x \} \) (here \(\{ x \} \) is the fractional part). Almost fifty years later a remarkable strengthening of this result by Báez-Duarte [5] shows that we may replace \(\lambda \in (0,1) \) by \(\lambda = 1/\ell \) for \(\ell \geq 2 \). There is an equivalent version of the Báez-Duarte criterion in the weighted sequence space \(\ell^2_\omega \) with inner product given by

\[
\langle x, y \rangle = \sum_{n=1}^{\infty} \frac{x(n)\overline{y(n)}}{n(n+1)}
\]

for sequences \(x, y \in \mathcal{H} \) (see [7, page 73]). For each \(k \geq 2 \), let \(r_k \) denote the sequence defined by \(r_k(n) = k\{n/k\} \). Then the Báez-Duarte criterion may be stated as follows:

Theorem 1. The RH is true if and only if \(1 := (1,1,1,\ldots) \) belongs to the closure of the linear span of \(\{ r_k : k \geq 2 \} \) in \(\ell^2_\omega \).

The plan of the paper is the following. Let \(\mathcal{N} \) denote the linear span of the functions

\[
h_k(z) = \frac{1}{1-z} \log \left(\frac{1+z+\ldots+z^{k-1}}{k} \right)
\]

for \(k \geq 2 \), which all belong to the Hardy space \(H^2 \) (see Lemma [1]). In Section 2 a unitary equivalent version of Theorem 1 for the Hardy space \(H^2 \) is presented. In particular, the RH holds if and only if the constant 1 belongs to the closure of \(\mathcal{N} \) in \(H^2 \) (see Theorem [9]). Section 3 introduces a multiplicative semigroup of weighted composition operators \(\{ W_n : n \geq 1 \} \) on \(H^2 \) and shows that the constant 1 (appearing in Theorem [6]) may be replaced by any cyclic vector for \(\{ W_n : n \geq 1 \} \) in \(H^2 \). It follows that the RH is equivalent to the density of \(\mathcal{N} \) in \(H^2 \) (see Theorem [8]). Section 4 proves that \((I-S)\mathcal{N} \) is dense in \(H^2 \), where \(S \) is the shift operator on \(H^2 \) (see Theorem [9]). This central result has the following remarkable consequence.

Key words and phrases. Riemann hypothesis, Hardy space, Dirichlet space, de Branges-Rovnyak space, Dilation completeness problem.
That \(\mathcal{N} \) is dense in \(H^2 \) with respect to the compact-open topology (see Theorem 10). Since convergence in \(H^2 \) implies convergence in the compact-open topology, this may be viewed as a weak form of RH. Section 5 shows that \(\mathcal{N}^\perp \) is in a sense small by proving that
\[
\mathcal{N}^\perp \cap D_{\delta_1} = \{0\}
\]
where \(D_{\delta_1} \) is the local Dirichlet space at 1 (which is dense in \(H^2 \)), and in particular that \(\mathcal{N}^\perp \) contains no function holomorphic on a neighborhood of the closed unit disk \(\overline{D} \) (see Theorem 12). Section 6 shows that the cyclic vectors for \(\{W_n : n \geq 1\} \) in \(H^2 \) are properly embedded into the set of all 2-periodic functions \(\phi \) on \((0, \infty) \) having the property that the span of its dilates \(\{\phi(nx) : n \geq 1\} \) is dense in \(L^2(0,1) \) (see Theorem 13). The characterization of all such \(\phi \) is a famous open problem known as the Periodic Dilation Completeness Problem.

1. Background

1.1. The Hardy-Hilbert space. We denote by \(D \) and \(T \) the open unit disk and the unit circle respectively. A holomorphic function \(f \) on \(D \) belongs to the Hardy-Hilbert space \(H^2 \) if
\[
||f||_{H^2} = \sup_{0 \leq r < 1} \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta \right)^{1/2} < \infty.
\]
The space \(H^2 \) is a Hilbert space with inner product
\[
\langle f, g \rangle = \sum_{n=0}^{\infty} a_n \overline{b}_n,
\]
where \((a_n)_{n \in \mathbb{N}}\) and \((b_n)_{n \in \mathbb{N}}\) are the Maclaurin coefficients for \(f \) and \(g \) respectively. Similarly \(H^\infty \) denotes the space of bounded holomorphic functions defined on \(D \). For any \(f \in H^2 \) and \(\zeta \in T \), the radial limit \(f^*(\zeta) := \lim_{r \to 1^-} f(r\zeta) \) exists m.a.e. on \(T \), where \(m \) denotes the normalized Lebesgue measure on \(T \).

1.2. A weighted Bergman space. Let \(A \) be the Hilbert space of analytic functions \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) and \(g(z) = \sum_{n=0}^{\infty} b_n z^n \) defined on \(D \) for which the inner product is given by
\[
\langle f, g \rangle := \sum_{n=0}^{\infty} \frac{a_n \overline{b}_n}{(n+1)(n+2)}.
\]
There also exists an area integral form of the corresponding \(A \)-norm given by
\[
||f||_A^2 = \int_D |f(z)|^2 (1 - |z|^2) dA(z)
\]
where \(dA \) is the normalized area measure on \(D \). Comparing (0.1) with (1.1) shows that the map
\[
\Psi : (x(1), x(2), \ldots) \mapsto \sum_{n=0}^{\infty} x(n+1) z^n
\]
is a canonical isometric isomorphism of \(\ell^2_\omega \) onto \(A \).
The text \[12\] is a modern reference for such weighted Bergman spaces. Also if $\text{Hol}(\mathbb{D})$ is the space of all holomorphic functions on \mathbb{D} and $T : \text{Hol}(\mathbb{D}) \to \text{Hol}(\mathbb{D})$ is an operator defined by

\[
Tg(z) := \frac{\left(1 - z\right)g(z)}{1 - z},
\]

then T restricted to H^2 is an isometric isomorphism onto A (see Lemma 7.2.3 \[13\]). Hence $\Phi := T^{-1} \circ \Psi$ is an isometric isomorphism of ℓ^2_ω onto H^2. Therefore to obtain a reformulation of the Báez-Duarte Theorem in H^2, we need to calculate $\Psi \Phi_1$ and Φ_{r_k} for $k \geq 2$. But to do so we shall need some results about local Dirichlet spaces.

1.3. Generalized Dirichlet spaces. Let μ be a finite positive Borel measure on \mathbb{T}, and let $P \mu$ denote its Poisson integral. The generalized Dirichlet space D_μ consists of $f \in H^2$ satisfying

\[
D_\mu(f) := \int_\mathbb{D} |f'(z)|^2 P\mu(z)\,dA(z) < \infty.
\]

Then D_μ is a Hilbert space with norm $\|f\|_{D_\mu}^2 := \|f\|^2_2 + D_\mu(f)$. If $\mu = \delta_\zeta$, then D_{δ_ζ} is the classical Dirichlet space. If $\mu = \delta_\zeta$ is the Dirac measure at $\zeta \in \mathbb{T}$, then D_{δ_ζ} is called the local Dirichlet space at ζ and in particular

\[
D_{\delta_\zeta}(f) = \int_\mathbb{D} |f'(z)|^2 \frac{1 - |\zeta|^2}{|z - \zeta|^2} \,dA(z).
\]

The recent book \[13\] contains a comprehensive treatment of local Dirichlet spaces and the following result establishes a criterion for their membership.

Theorem 2. (See \[13\] Thm. 7.2.1) Let $\zeta \in \mathbb{T}$ and $f \in \text{Hol}(\mathbb{D})$. Then $D_{\delta_\zeta}(f) < \infty$ if and only if

\[
f(z) = a + (z - \zeta)g(z)
\]

for some $g \in H^2$ and $a \in \mathbb{C}$. In this case $D_{\delta_\zeta}(f) = \|g\|^2_2$ and

\[
a = f^*(\zeta) := \lim_{r \to 1^-} f(r\zeta).
\]

Each local Dirichlet space D_{δ_ζ} is a proper subspace of H^2 and it has the distinctive property that evaluation at the boundary $f \mapsto f^*(\zeta)$ is a bounded linear functional \[13\] Thm. 8.1.2 (ii)].

1.4. The de Branges-Rovnyak spaces. Given $\psi \in L^\infty(\mathbb{T})$, the corresponding Toeplitz operator $T_\psi : H^2 \to H^2$ is defined by

\[
T_\psi f := P_+ (\psi f)
\]

where $P_+ : L^2(\mathbb{T}) \to H^2$ denotes the orthogonal projection of $L^2(\mathbb{T})$ onto H^2. Clearly T_ψ is a bounded operator on H^2 with $\|T_\psi\| \leq \|\psi\|_{L^\infty}$. If $h \in H^\infty$, then T_h is simply the operator of multiplication by h and its adjoint is T_h^*. Given b in the closed unit ball of H^∞, the de Branges-Rovnyak space $\mathcal{H}(b)$ is the image of H^2 under the operator $(I - T_h T_h^*)^{1/2}$. A norm is defined on $\mathcal{H}(b)$ making $(I - T_h T_h^*)^{1/2}$ a partial isometry from H^2 onto $\mathcal{H}(b)$. If $b \equiv 0$ then $\mathcal{H}(b) = H^2$, and if b is inner then $\mathcal{H}(b) = (bH^2)^\perp$ is the model subspace of H^2. The recent two-volume work \[9\] \[10\] is an encyclopedic reference for these spaces.

The general theory of $\mathcal{H}(b)$ spaces divides into two distinct cases, according to whether b is an extreme point or a non-extreme point of the unit ball of H^∞.

We shall only be concerned with the non-extreme case which is best illustrated by the next result (see [9, Chapter 6] and [18, Sects. IV-6 and V-1]).

Theorem 3. Let \(b \in H^\infty \) with \(||b||_{H^\infty} \leq 1 \). The following are equivalent:

1. \(b \) is a non-extreme point of the unit ball of \(H^\infty \),
2. \(\log(1 - |b|^2) \in L^1(\mathbb{T}) \),
3. \(\mathcal{H}(b) \) contains all functions holomorphic in a neighborhood of \(\overline{\mathbb{D}} \).

When \(b \) is non-extreme there exists a unique outer function \(a \in H^\infty \) such that \(a(0) > 0 \) and \(|a^*|^2 + |b|^2 = 1 \) a.e. on \(\mathbb{T} \). In this situation \((b, a)\) is usually called a pair and the function \(b/a \) belongs to the Smirnov class \(N^+ \) of quotients \(p/q \) where \(p, q \in H^\infty \) and \(q \) is an outer function. That all \(N^+ \) functions arise as the quotient of a pair associated to a non-extreme function was shown by Sarason (see [17]).

In [17], Sarason also demonstrated how \(\mathcal{H}(b) \) spaces appear naturally as the domains of some unbounded Toeplitz operators. Let \(\varphi \) be holomorphic in \(\mathbb{D} \) and \(T_\varphi \) the operator of multiplication by \(\varphi \) on the domain

\[
\text{dom}(T_\varphi) = \{f \in H^2 : \varphi f \in H^2\}.
\]

Then \(T_\varphi \) is a closed operator, and \(\text{dom}(T_\varphi) \) is dense in \(H^2 \) if and only if \(\varphi \in N^+ \) (see [17, Lemma 5.2]). In this case its adjoint \(T_\varphi^* \) is also densely defined and closed. In fact the domain of \(T_\varphi^* \) is a de Branges-Rovnyak space.

Theorem 4. *(See [17, Prop. 5.4]*) Let \(\varphi \) be a nonzero function in \(N^+ \) with \(\varphi = b/a \), where \((b, a) \) is the associated pair. Then \(\text{dom}(T_\varphi^*) = \mathcal{H}(b) \).

If \(\varphi \) is a rational function in \(N^+ \) the corresponding pair \((b, a)\) is also rational (see [17, Remark. 3.2]). Recently Constara and Ransford [8] characterized the rational pairs \((b, a)\) for which \(\mathcal{H}(b) \) is a generalized Dirichlet space.

Theorem 5. *(See [8, Theorem 4.1]*) Let \((b, a)\) be a rational pair and \(\mu \) a finite positive measure on \(\mathbb{T} \). Then \(\mathcal{H}(b) = \mathcal{D}_\mu \) if and only if

1. the zeros of \(a \) on \(\mathbb{T} \) are all simple, and
2. the support of \(\mu \) is exactly equal to this set of zeros.

These ideas will be used in Section 5 to investigate the orthogonal complement of the functions \(\{h_k : k \geq 2\} \) in \(H^2 \).

2. The Báez-Duarte criterion in \(H^2 \)

The first main objective is to obtain a unitary equivalent version of Báez-Duarte’s theorem (Theorem 1) in \(H^2 \) upon which to base the rest of our analysis.

Theorem 6. For each \(k \geq 2 \), define

\[
h_k(z) = \frac{1}{1 - z} \log \left(\frac{1 + z + \ldots + z^{k-1}}{k} \right).
\]

Then the Riemann hypothesis holds if and only if the constant 1 belongs to the closed linear span of \(\{h_k : k \geq 2\} \) in \(H^2 \).

In order prove this, we must that \(-1 = \Phi 1 \) and \(h_k = \Phi r_k \) for \(k \geq 2 \), where \(\Phi := T^{-1} \circ \Psi : L^2_{\omega} \to H^2 \) is an isometric isomorphism (see subsection 1.2). We first find \(R := \Psi 1 \) and \(R_k := \Psi r_k \), which belong to the weighted Bergman space \(\mathcal{A} \). Then

\[
R(z) = \frac{1}{1 - z}, \quad R_k(z) = \frac{1}{1 - z} [\log(1 + z + \ldots + z^{k-1})]'.
\]
for each \(k = 2, 3, \ldots \) (note that \(R_1 \equiv 0 \)). The expression for \(R \) is trivial. For \(R_k \)
we first note that the sequence \(r_k(n) = k \{n/k\} \) is periodic with \(k \) distinct integer
terms \(\{1, 2, \ldots, k-1, 0, \ldots\} \). Hence collecting terms with common coefficients gives

\[
R_k(z) = \sum_{n=0}^{\infty} z^{nk} + 2 \sum_{n=0}^{\infty} z^{nk+1} + \ldots + (k-1) \sum_{m=1}^{\infty} m \sum_{n=0}^{\infty} z^{nk+m-1} = \sum_{m=1}^{k-1} m \frac{z^{m-1}}{1-z^k} \sum_{n=1}^{m} m z^{m-1} = \frac{1}{1-z} \left[\frac{(1+z+\ldots+z^{k-1})'}{1+z+\ldots+z^{k-1}} \right]
\]

(2.1) \(= \frac{1}{1-z} \log(1+z+\ldots+z^{k-1})' \).

Next we calculate \(T^{-1}R \) and \(T^{-1}R_k \) in \(H^2 \). It is easy to see that \(T(-1) = R \)
and hence \(-1 = \Phi 1\). But finding the \(T^{-1}R_k \) is not as straightforward because \(T \)
is not injective on \(\text{Hol}(\mathbb{D}) \).

Lemma 7. For each non-zero \(c \) and integer \(k \geq 2 \), define the function

\[
h_{k,c}(z) = \frac{1}{1-z} \log \left(\frac{1+z+\ldots+z^{k-1}}{c} \right).
\]

Then \(Th_{k,c} = R_k \) for each \(c \), but \(h_{k,c} \in H^2 \) if and only if \(c = k \).

Proof. Let \(s_k(z) := \log(1+z+\ldots+z^{k-1}) \) for \(k \geq 2 \). Since \(R_k \) belongs to \(A \) for \(k \geq 2 \), by (1.2), (1.5) and (2.1) we have

\[
D_{\delta_1}(s_k) = \int_0^\infty \left| \log(1+z+\ldots+z^{k-1}) \right|^2 \frac{1-|z|^2}{|z-1|^2} dA(z)
\]

\[
= \int_\mathbb{D} |R_k(z)|^2 (1-|z|^2) dA(z)
\]

\[
= ||R_k||_A^2 < \infty.
\]

Therefore \(s_k \) belongs to the local Dirichlet space \(D_{\delta_1} \). By Theorem 2 there exists \(f_k \in H^2 \) such that \(s_k(z) = s_k^*(1) + (z-1)f_k(z) = \log k + (z-1)f_k(z) \) and it follows immediately that

\[
f_k(z) = \frac{1}{z-1} \log \left(\frac{1+z+\ldots+z^{k-1}}{k} \right).
\]

Hence \(h_{k,k} = -f_k \in H^2 \). Since clearly \(Th_{k,c} = R_k \) for each non-zero \(c \) and \(T \) is
injective on \(H^2 \), therefore \(c = k \) is the only value for which \(h_{k,c} \in H^2 \). \(\square \)

Therefore with \(h_k := h_{k,k} \) for all \(k \geq 2 \) this concludes the proof of Theorem 6.

3. A Weighted Composition Semigroup

In [2] Bagchi showed that in addition to Theorem 1 the RH is equivalent to the
density of \(\text{span}\{r_k : k \geq 2\} \) in \(\ell^2 \). A key ingredient in his proof is a multiplicative
semigroup of operators which leave \(\text{span}\{r_k : k \geq 2\} \) invariant (see [2, Theorem 7]). The relation of invariant subspaces of semigroups to the RH has been evident
since the thesis of Nyman [16] (see also [6] and [15]). In our \(H^2 \) case, a semigroup
of weighted composition operators makes an appearance.
For each $n \geq 1$, let W_n be defined on H^2 by
\begin{equation}
W_n f(z) = (1 + z + \ldots + z^{n-1}) f(z^n) = \frac{1 - z^n}{1 - z} f(z^n).
\end{equation}

Note that each W_n is bounded on H^2, $W_1 = I$ and $W_m W_n = W_{mn}$ for each $m, n \geq 1$. Hence $\{W_n : n \geq 1\}$ is a multiplicative semigroup on H^2. Now if we write
\begin{equation}
h_k(z) = \frac{1}{1 - z} \left(\log(1 - z^k) - \log(1 - z) - \log k \right)
\end{equation}
then it is easy to see that $W_n h_k = h_{nk} - h_n$ for all $k, n \geq 1$ (where $h_1 \equiv 0$). Hence the closure of $\text{span}\{h_k : k \geq 2\}$ is invariant under $\{W_n : n \geq 1\}$. A vector $f \in H^2$ is called a cyclic vector for an operator semigroup $\{S_n : n \geq 1\}$ if $\text{span}\{S_n f : n \geq 1\}$ is dense in H^2. Hence the following combines Bagchi’s result and a generalization of Theorem [9].

Theorem 8. The following statements are equivalent

1. The Riemann hypothesis,
2. the closure of $\text{span}\{h_k : k \geq 2\}$ contains a cyclic vector for $\{W_n : n \geq 1\}$,
3. $\text{span}\{h_k : k \geq 2\}$ is dense in H^2.

Proof. The equivalence $(1) \iff (3)$ is just Bagchi’s result transferred to H^2 via the isomorphism $\Phi : L^2_\omega \to H^2$. The implication $(1) \to (2)$ follows from Theorem [8] and the fact that 1 is a cyclic vector for the semigroup $\{W_n : n \geq 1\}$. Indeed $(W_n 1)(z) = 1 + z + \ldots + z^{n-1}$ for all $n \geq 1$ so $\text{span}\{W_n 1 : n \geq 1\}$ contains all analytic polynomials and is hence dense in H^2. Finally $(2) \to (3)$ because if the closure of $\text{span}\{h_k : k \geq 2\}$ contains a cyclic vector $f \in H^2$, then it also contains the dense manifold $\text{span}\{W_n f : n \geq 1\}$ by the invariance of $\text{span}\{h_k : k \geq 2\}$ under $\{W_n : n \geq 1\}$. \square

In Section 6, we shall see that characterizing the cyclic vectors for $\{W_n : n \geq 1\}$ is intimately related to another famous open problem known as the *Periodic Dilation Completeness Problem* (see [11] and [15]).

4. **The density of $\text{span}\{(I - S) h_k : k \geq 2\}$ in H^2**

Let $S = T_\omega$ be the shift operator on H^2. Since $I - S$ has dense range (because $I - S^*$ is injective), therefore $\text{span}\{(I - S) h_k : k \geq 2\}$ is dense in H^2 under the RH by Theorem [8]. Proving that this statement is unconditionally true is the main objective of this section and it will play a central role in the rest of this work.

Theorem 9. The span of $\{I - S) h_k : k \geq 2\}$ is dense in H^2.

Since convergence in H^2 implies uniform convergence on compact subsets of \mathbb{D}, we obtain a weak version of the RH.

Theorem 10. The span of $\{h_k : k \geq 2\}$ is dense in H^2 with the compact-open topology.

Proof. The formal inverse of $I - S$ is the Toeplitz operator T_φ of multiplication by the function $\varphi(z) = \frac{1}{1 - z}$. Although T_φ is unbounded on H^2 (otherwise Theorem [9] would imply the RH), it is still continuous on H^2 with the compact-open topology. Therefore the result follows immediately from Theorem [9]. \square
Define the multiplicative operator semigroup \(\{T_n : n \geq 1\} \) on \(H^2 \) by
\[
T_n f(z) = f(z^n).
\]
(4.1) Then by (3.1) and (4.1) it is easily seen that
\[
(4.2) T_n(I - S) = (I - S) W_n \quad \forall n \geq 1.
\]
Recall that \(\text{span}\{h_k : k \geq 2\} \) is invariant under \(\{W_n : n \geq 1\} \) (see Section 4), and hence (4.2) implies that \(\text{span}\{(I - S)h_k : k \geq 2\} \) is invariant under \(\{T_n : n \geq 1\} \). So to prove Theorem 9 it is enough to prove that the closure of \(\text{span}\{(I - S)h_k : k \geq 2\} \) contains a cyclic vector for \(\{T_n : n \geq 1\} \). And the cyclic vector we consider is \(1 - z \).

Indeed, if \(f \in H^2 \) is orthogonal to each \(T_n(1 - z) = 1 - z^n \) then \(\hat{f}(0) = \hat{f}(n) \) for all \(n \geq 1 \) and hence \(f \equiv 0 \). Hence the next result completes the proof of Theorem 9.

Lemma 11. The series \(\sum_{k=2}^{\infty} \frac{\mu(k)}{k} (I - S)h_k \) converges to \(1 - z \) in \(H^2 \), where \(\mu \) is the Möbius function.

Recall that the Möbius function is defined on \(\mathbb{N} \) by \(\mu(k) = (-1)^s \) if \(k \) is the product of \(s \) distinct primes, and \(\mu(k) = 0 \) otherwise. In the proof we shall need the Prime Number Theorem in the equivalent forms
\[
\sum_{k=1}^{\infty} \frac{\mu(k)}{k} = 0 \quad \text{and} \quad \sum_{k=1}^{\infty} \frac{\mu(k) \log k}{k} = -1
\]
(see [11, Thm. 4.16] and [14, p. 185, Exercise 16]).

Proof. It is enough to prove that
\[
\left\| \sum_{k=2}^{n} \frac{\mu(k)}{k} (I - S)h_k + z - 1 \right\|_{H^2} \to 0
\]
as \(n \to \infty \). Since \((I - S)h_k(z) = \log(1 - \frac{z^k}{1}) - \log(1 - z) - \log k \) (see (4.2)), we get
\[
\sum_{k=2}^{n} \frac{\mu(k)}{k} (I - S)h_k(z) = \sum_{k=1}^{\infty} \frac{\mu(k)}{k} \log(1 - \frac{z^k}{1}) - \sum_{k=1}^{n} \frac{\mu(k)}{k} \log(1 - z) + \log k.
\]

First note that the last sum on the right of (4.5) tends 1 as \(n \to \infty \) by (3.3). Writing the first sum as a double sum after noting that \(\log(1 - \frac{z^k}{1}) = -\sum_{j=1}^{\infty} \frac{z^{jk}}{j} \), interchanging the order of summation and using the basic identity \(\sum_{d|j} \mu(d) = \frac{1}{j} \) if \(j \geq 1 \) [11, Thm. 2.1] ([x] denotes the integer part of \(x \)), we get
\[
\sum_{k=1}^{n} \frac{\mu(k)}{k} \log(1 - \frac{z^k}{1}) = -\sum_{k=1}^{n} \frac{\mu(k)}{k} \sum_{j=1}^{\infty} \frac{z^{jk}}{j} = -\sum_{k=1}^{n} \mu(k) \sum_{j=1}^{\infty} \frac{z^{jk}}{jk}
\]
\[
= -\sum_{j=1}^{\infty} \frac{z^j}{j} \sum_{d|j, 1 \leq d \leq n} \mu(d) = -\sum_{j=1}^{\infty} \frac{z^j}{j} \sum_{d|j} \mu(d) - \sum_{j=n+1}^{\infty} \frac{z^j}{j} \sum_{d|j, 1 \leq d \leq n} \mu(d)
\]
\[
= -\sum_{j=1}^{n} \frac{z^j}{j} \left[\frac{1}{j} \right] - \sum_{j=n+1}^{\infty} \frac{z^j}{j} \sum_{d|j} \mu(d) - \frac{z^n}{n} \sum_{d|n} \mu(d) = -z - \phi_n(z).
\]
(4.6)
Therefore by (1.5) and (1.6), we will prove (4.4) once we prove that \(||\phi_n||_{H^2} \rightarrow 0 \) as \(n \rightarrow \infty \). Since

\[
\phi_n(z) = \sum_{j=n+1}^{\infty} z^j \sum_{1 \leq d \leq n} \mu(d)
\]

and if \(\sigma(n) \) denotes the number of divisors of \(n \), then it follows that

\[
| \sum_{d|j} \mu(d) | \leq \sum_{d|j} 1 = \sigma(j).
\]

The function \(\sigma \) satisfies the relation \(\sigma(n) = o(n^\epsilon) \) for every \(\epsilon > 0 \) \([11, \text{p. 296}]\). In particular, \(\sigma(n) \lesssim n^\epsilon \) for some \(0 < \epsilon < \frac{1}{2} \), and therefore by (4.7)

\[
||\phi_n||_{H^2}^2 \leq \sum_{j=n+1}^{\infty} \frac{\sigma(j)^2}{j^2} \lesssim \sum_{j=n+1}^{\infty} j^{2\epsilon - 2} \rightarrow 0
\]

as \(n \rightarrow \infty \). This proves (4.4) and hence the lemma. \(\square \)

5. Functions orthogonal to \(\{h_k : k \geq 2\} \)

The RH is equivalent to \(\{h_k : k \geq 2\} \perp \) being trivial \(\{0\} \) (see Theorem 3). The main result of this section shows that \(\{h_k : k \geq 2\} \parallel \) is indeed in a sense very small.

Theorem 12. We have

\[
\{h_k : k \geq 2\} \perp \cap \mathcal{D}_{\delta_1} = \{0\}
\]

where \(\mathcal{D}_{\delta_1} \) is the local Dirichlet space at 1. In particular \(\{h_k : k \geq 2\} \perp \) contains no function holomorphic on a neighborhood of the closed unit disk \(\overline{D} \).

The key idea is to use the formal inverse \(T_\varphi \) of \(I - S \), where \(\varphi(z) = \frac{1}{1-z} \) is clearly an \(N^+ \) function. Then there is a pair \((b,a)\) associated with \(\varphi \) where

\[
a(z) = \frac{\gamma(1-z)}{(\gamma+1)z}
\]

and \(\gamma = \frac{1+\sqrt{5}}{2} \) is the golden ratio (see [17, page 284]). Therefore by Theorem 4, Theorem 5 and (5.1) we immediately see that

\[
\text{dom}(T_\varphi^*) = \mathcal{H}(b) = \mathcal{D}_{\delta_1}
\]

where \(T_\varphi^* \) is the adjoint of \(T_\varphi \) (see subsection 1.4).

Proof. Let \(g_k := (I - S)h_k \) for each \(k \geq 2 \) and note that \(\text{span}\{g_k : k \geq 2\} \) is dense in \(H^2 \) by Theorem 9. Also note \(g_k \in \text{dom}(T_\varphi) \) because \(h_k = T_\varphi g_k \) and by (1.6).

Now let \(p \) be an element in \(\{h_k : k \geq 2\} \perp \cap \text{dom}(T_\varphi^*) \). Hence for each \(k \geq 2 \), we have

\[
\langle T_\varphi^* p, g_k \rangle = \langle p, T_\varphi g_k \rangle = \langle p, h_k \rangle = 0.
\]

Therefore \(T_\varphi^* p \equiv 0 \). But this implies that \(p \equiv 0 \), because

\[
\langle p, T_\varphi f \rangle = \langle T_\varphi^* p, f \rangle = 0
\]

for each \(f \in \text{dom}(T_\varphi) \) and the range of \(T_\varphi \) is all of \(H^2 \) (it is the domain of \(I - S \)). Hence \(\{h_k : k \geq 2\} \parallel \cap \text{dom}(T_\varphi^*) = \{0\} \), (5.2) and Theorem 3 complete the proof. \(\square \)
6. The Periodic Dilation Completeness Problem PDCP

The PDCP asks which 2-periodic functions ϕ on $(0, \infty)$ have the property that
\[\text{span}\{\phi(nx) : n \geq 1\} \]
is dense in $L^2(0,1)$. In this case we shall just say that ϕ is a \textit{PDCP function}.

This difficult open problem was first considered independently by Wintner [19] and Beurling [4]. See [11] and [15] for beautiful modern treatments. The main result of this section shows that the cyclic vectors for $\{W_n : n \geq 1\}$ in H^2 (see Theorem 8) are properly embedded into the PDCP functions.

Theorem 13. There exists an injective linear map $V : H^2 \to L^2(0,1)$ such that if f is a cyclic vector for $\{W_n : n \geq 1\}$ in H^2, then Vf is a PDCP function.

The function $Vf \in L^2(0,1)$ is defined on the whole real line by extending it as an odd 2-periodic function.

Proof. Recall that the semigroups $\{W_n : n \geq 1\}$ and $\{T_n : n \geq 1\}$ satisfy the relation
\[T_n(I - S) = (I - S)W_n \quad \forall \ n \geq 1, \]
where $I - S$ has dense range in H^2 (see (4.2)). It follows that if $\text{span}\{W_n f : n \geq 1\}$ is dense in H^2 for some $f \in H^2$, then $\text{span}\{T_n(I - S)f : n \geq 1\}$ must also be dense.

So $f \mapsto (I - S)f$ maps cyclic vectors for $\{W_n : n \geq 1\}$ to cyclic vectors for $\{T_n : n \geq 1\}$. Let
\[H^2_0 := \{f \in H^2 : f(0) = 0\} = H^2 \ominus \mathbb{C} \]
and note that H^2_0 is a reducing subspace for T_n since $T_n \mathbb{C} \subset \mathbb{C}$ and $T_n H^2_0 \subset H^2_0$. Denote by P the orthogonal projection of H^2 onto H^2_0. It follows that if f is a cyclic vector for $\{T_n : n \geq 1\}$ in H^2 then Pf is a cyclic vector for $\{T_n : n \geq 1\}$ restricted to H^2_0.

Therefore
\[P(I - S) : H^2 \to H^2_0 \]
maps cyclic vectors for $\{W_n : n \geq 1\}$ into cyclic vectors for $\{T_n : n \geq 1\}$ restricted to H^2_0. Finally there is a unitary operator $U : H^2_0 \to L^2(0,1)$ such that f is cyclic for $\{T_n : n \geq 1\}$ in H^2_0 if and only if Uf is a PDCP function (see [15] page 1707). In fact, it is defined by
\[(6.1) \quad U : z^k \mapsto e_k(x) := \sqrt{2} \sin(\pi k x) \]
for each $k \geq 1$, where $(e_k)_{k \geq 1}$ is an orthonormal basis for $L^2(0,1)$. Therefore the operator
\[(6.2) \quad V := UP(I - S) : H^2 \to L^2(0,1) \]
maps cyclic vectors for $\{W_n : n \geq 1\}$ into PDCP functions. It is injective since $\text{Ker}(P) = \mathbb{C}$ and the inverse image of \mathbb{C} under $I - S$ is $\{0\}$. \qed

Finally, we show that not all PDCP functions belong to the range of V (6.2). Wintner [19] showed that for $\text{Re}(s) > 1/2$ the function
\[f_s(x) = \sum_{k \geq 1} k^{-s} \sqrt{2} \sin(\pi k x) \]
is a PDCP function. We give an independent proof that f_1 is a PDCP function and that it does not belong to the range of V.

Theorem 14. f_1 is a PDCP function that does not belong to the range of V.
Proof. Let \(L(z) := \log(1-z) = -\sum_{k \geq 1} z^k / k \) and note that \(U(-L) = f_1 \) (see \((6.1) \)). Hence it is enough to prove that \(L \) is a cyclic vector for \(\{T_n : n \geq 1\} \) in \(H_0^2 \). Note that since \((I - S)h_k(z) = \log(1 - z^k) - \log(1 - z) - \log k \) we have
\[
P(I - S)h_k = T_kL - T_1L
\]
and hence
\[
(6.3) \quad P(\text{span}\{(I - S)h_k : k \geq 2\}) \subset \text{span}\{T_nL : n \geq 1\}.
\]
By Theorem [3], the left side of \((6.3) \) is dense in \(H_0^2 \) and hence \(L \) is cyclic. Therefore \(f_1 \) is a PDCP function. To prove that \(f_1 \) is not in the range of \(V \), we show that \(L \) is not in the range \(P(I - S) \). The functions mapped onto \(L \) by \(P \) are of the form \(\alpha + L \) for some \(\alpha \in \mathbb{C} \). But \(\alpha + L \) does not belong to \((I - S)H^2 \) because \(L^*(1) \) does not exist and \(f^*(1) = 0 \) for all \(f \in (I - S)H^2 \) (see Theorem [4]).

Acknowledgement

This work has been partially supported by a FAPESP grant (17/0933-3).

References

1. T. M. Apostol, Introduction to analytic number theory. UTM Springer, 1976.
2. B. Bagchi, On Nyman, Beurling and Báez-Duarte’s Hilbert space reformulation of the Riemann hypothesis. Proc. Ind. Acad. Sci (Math. Sci.), 116(2), 137-146, 2006.
3. A. Beurling, A closure problem related to the Riemann zeta-function. Proc. Nat. Acad. Sci., 41, 312-314, 1955.
4. A. Beurling, On the completeness of \(\psi(nt) \) on \(L^2(0, 1) \), in Harmonic Analysis, Contemp. Mathematicians, The collected works of Arne Beurling, vol. 2, Birkhauser, Boston, 1989, p. 375-380.
5. L. Báez-Duarte, A strengthening of the Nyman-Beurling criterion for the Riemann hypothesis. Atti Acad. Naz. Lincei 14, 5-11, 2003.
6. L. Báez-Duarte, A Class of Invariant Unitary Operators. Adv. Math. 144 (1999) 1-12.
7. M. Balazard, E. Saias, Notes sur la fonction \(\zeta \) de Riemann 4, Adv. Math. 188 (2004) 69-86.
8. C. Costara, T. Ransford, Which de Branges-Rovnyak spaces are Dirichlet spaces (and vice versa)¿?. J. Funct. Anal. 265(12), 3204-3218 (2010)
9. E. Fricain, J. Mashreghi, The theory of \(H_b \) spaces. Vol. 1, volume 20 of New Mathematical Monographs. Cambridge University Press, Cambridge (2016)
10. E. Fricain, J. Mashreghi, The theory of \(H_b \) spaces. Vol. 2, volume 21 of New Mathematical Monographs. Cambridge University Press, Cambridge (2016)
11. H. Hedenmalm, P. Lindqvist, and K. Seip, A Hilbert space of Dirichlet series and systems of dilated functions in \(L^2(0, 1) \). Duke Math. J., 86:137, 1997. MR 99i:42033
12. H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman spaces, GTM Springer, volume 199, 2000.
13. J. Mashreghi, K. Kelalay, Omar El-Fallah, and T. Ransford, A primer on the Dirichlet space. Cambridge Tracts in Mathematics (203), Cambridge University Press, 2014.
14. H. L. Montgomery, R. C. Vaughan, Multiplicative number theory: 1. Classical theory. Cambridge Studies in Advanced Mathematics (97), Cambridge University Press, 2006.
15. N. Nikolski, In a shadow of the RH: cyclic vectors of the Hardy spaces on the Hilbert multidisc. Ann. Inst. Fourier, 62(5), 1601-1626 (2012).
16. B. Nyman, On some groups and semigroups of translations. Thesis, Uppsala, 1950.
17. D. Sarason, Unbounded Toeplitz operators. Integr. Equ. Oper. Theory. 61(2), 281-298 (2008).
18. D. Sarason, Sub-Hardy Hilbert Spaces in the Unit Disk, John Wiley & Sons Inc., New York, 1994.
19. A. Wintner, Diophantine approximation and Hilbert’s space. Amer. J. Math. 66 (1944), p.564-578.

IMECC, Universidade Estadual de Campinas, Campinas-SP, Brazil.
E-mail address: waleed@ime.unicamp.br