THE SPECTRAL DENSITY FUNCTION FOR THE
LAPLACIAN ON HIGH TENSOR POWERS OF A LINE
BUNDLE.

DAVID BORTHWICK AND ALEJANDRO URIBE

Contents

1. Introduction 1
2. Preliminaries 3
3. Quasimodes on the circle bundle 4
 3.1. The ansatz 4
 3.2. The metric in Fermi coordinates 6
 3.3. Parabolic equations 10
 3.4. Quasimodes 15
4. Spectral density function 16
References 17

1. Introduction

Let X be a compact $2n$-dimensional almost Kähler manifold, with symplectic form ω and almost complex structure J. Almost Kähler means that ω and J are compatible in the sense that

$$\omega(Ju, Jv) = \omega(u, v) \quad \text{and} \quad \omega(\cdot, J\cdot) \gg 0.$$

The combination thus defines an associated Riemannian metric $\beta(\cdot, \cdot) = \omega(\cdot, J\cdot)$. Any symplectic manifold possesses such a structure. We will assume further that ω is ‘integral’ in the cohomological sense. This means we can find a complex hermitian line bundle $L \to X$ with hermitian connection ∇ whose curvature is $-i\omega$.

Recently, beginning with Donaldson’s seminal paper, the notion of “nearly holomorphic” or “asymptotically holomorphic” sections of $L^\otimes k$ has attracted a fair amount of attention. Let us recall that one natural way to define spaces of such sections is by means of an analogue of the $\bar{\partial}$-Laplacian \Box.

Date: January, 2001.
First author supported in part by an NSF postdoctoral fellowship.
Second author supported in part by NSF grant DMS-0070690.
The hermitian structure and connection on L induce corresponding structures on $L^\otimes k$. In combination with β this defines a Laplace operator Δ_k acting on $C^\infty(X; L^\otimes k)$. Then the sequence of operators
\[
D_k = \Delta_k - nk
\]
has the same principal and subprincipal symbols as the d-bar Laplacian in the integrable case; in fact in the Kähler case D_k is the $\overline{\partial}$-Laplacian. (By Kähler case we mean not only that J is integrable but also that L is hermitian holomorphic with ∇ the induced connection.) The large k behavior of the spectrum of Δ_k was studied (in somewhat greater generality) by Guillemin-Uribe [6]. For our purposes, the main results can be summarized as follows:

Theorem 1.1. [6] There exist constants $a > 0$ and M (independent of k), such that for large k the spectrum of D_k lies in (ak, ∞) except for a finite number of eigenvalues contained in $(-M, M)$. The number n_k of eigenvalues in $(-M, M)$ is a polynomial in k with asymptotic behavior $n_k \sim k^n \text{vol}(X)$, and can be computed exactly by a symplectic Riemann-Roch formula.

Furthermore, if the eigenvalues in $(-M, M)$ are labeled $\lambda_j^{(k)}$, then there exists a spectral density function $q \in C^\infty(X)$ such that for any $f \in C(\mathbb{R})$,
\[
\frac{1}{n_k} \sum_{j=1}^{n_k} f(\lambda_j^{(k)}) \to \frac{1}{\text{vol}(X)} \int_X (f \circ q) \frac{\omega^n}{n!},
\]
as $k \to \infty$.

The proof of Theorem 1.1 is based on the analysis of generalized Toeplitz structures developed in [4].

By the remarks above, in the Kähler case all $\lambda_j^{(k)} = 0$, corresponding to eigenfunctions which are holomorphic sections of $L^\otimes k$. Hence $q \equiv 0$ for a true Kähler structure. In general, it is therefore natural to consider sections of $L^\otimes k$ spanned by the eigenvalues of D_k in $(-M, M)$ as being analogous to holomorphic sections.

The goal of the present paper is to derive a simple geometric formula for the spectral density function q. Our main result is:

Theorem 1.2. The spectral density function is given by
\[
q = -\frac{5}{24} |\nabla J|^2
\]

Corollary 1.3. The spectral density function is identically zero iff (X, J, ω) is Kähler.

It is natural to ask if one can choose J so that q is very small, i.e. if the symplectic invariant
\[
j(X, \omega) := \inf \{ \| \nabla J \|^2_\infty ; J \text{ a compatible almost complex structure} \}
\]
SPECTRAL DENSITY FUNCTION

is always zero. We have learned from Miguel Abreu that for Thurston’s manifold \(j = 0 \); it would be very interesting to find \((X, \omega)\) with \(j > 0 \).

The proof of Theorem \ref{1.2} starts with the standard and very useful observation that sections of \(L^\otimes_k \) are equivalent to equivariant functions on an associated principle bundle \(\pi : Z \to X \). We endow \(Z \) with a ‘Kaluza-Klein’ metric such that the fibers are geodesic. Then the main idea exploited in the proof is the construction of approximate eigenfunctions (quasimodes) of the Laplacian \(\Delta_Z \) concentrated on these closed geodesics. Such quasimodes are equivariant and thus naturally associated to sections of \(L^\otimes_k \). Moreover, the value of the spectral density function \(q(x) \) is encoded in the eigenvalue of the quasimode concentrated on the fiber \(\pi^{-1}(x) \subset Z \).

2. Preliminaries

The associated principle bundle to \(L \) is easily obtained as the unit circle bundle \(Z \subset L^* \). There is a 1-1 correspondence between sections of \(L^\otimes_k \) and functions on \(Z \) which are \(k \)-equivariant with respect to the \(S^1 \)-action, i.e.

\[
f(z, e^{i\theta}) = e^{ik\theta} f(z).
\]

The connection \(\nabla \) on \(L \) induces a connection 1-form \(\alpha \) on \(Z \). The curvature condition on \(\nabla \) translates to

\[
d\alpha = \pi^* \alpha,
\]

where \(\pi : Z \to X \). Together with the Riemannian metric on \(X \) and the standard metric on \(S^1 = \mathbb{R}/2\pi \mathbb{Z} \), this defines a ‘Kaluza-Klein’ metric \(g \) on \(Z \) such that the projection \(Z \to X \) is a Riemannian submersion with totally geodesic fibers. With these choices the correspondence between equivariant functions and sections extends to an isomorphism between

\[
L^2(X, L^\otimes_k) \simeq L^2(Z)_k,
\]

where \(L^2(Z)_k \) is the \(k \)-th isotype of \(L^2(Z) \) under the \(S^1 \) action.

The Laplacian on \(Z \) is denoted \(\Delta_Z \). By construction it commutes with the generator \(\partial \theta \) of the circle action, and so it also commutes with the ‘horizontal Laplacian’:

\[
\Delta_h = \Delta_Z + \partial^2 \theta.
\]

The action of \(\Delta_h \) on \(L^2(Z)_k \) is equivalent under \((2.1)\) to the action of \(\Delta_k \) on \(L^2(X, L^\otimes_k) \).

For sufficiently large \(k \), we let \(\mathcal{H}_k \subset L^2(Z)_k \) denote the span of the eigenvectors with eigenvalues in the bounded range \((-M, M)\). The corresponding orthogonal projection is denoted \(\Pi_k : L^2(Z) \to \mathcal{H}_k \). The following fact appears in the course of the proof of Theorem \ref{1.1}.

Lemma 2.1. \[\Box\] There is a sequence of functions \(q_j \in C^\infty(X) \) such that

\[
\| \Pi_k \left(\Delta_h - nk - \sum_{j=0}^N k^{-j} \pi^* q_j \right) \Pi_k \| = O(k^{-(N+1)}).
\]

Moreover, the spectral density function \(q \) in Theorem \ref{1.2} is equal to \(q_0 \).
3. QUASIMODES ON THE CIRCLE BUNDLE

The key to the calculation of the spectral density function at \(x_0 \in X \) is the observation that, with the Kaluza-Klein metric, the assumptions on \(X \) imply the stability of the geodesic fiber \(\Gamma = \pi^{-1}(x_0) \). Thus one should be able to construct an approximate eigenfunction, or quasimode, for \(\Delta_Z \) which is asymptotically localized on \(\Gamma \). The lowest eigenvalue of the quasimode (or rather a particular coefficient in its asymptotic expansion) will yield the spectral density function.

The computation is largely a matter of interpolating between two natural coordinate systems. From the point of view of writing down the Kaluza-Klein metric explicitly, the obvious coordinate system to use is given by first trivializing \(Z \) to identify a neighborhood of \(\Gamma \) with \(S^1 \times U_{x_0} \), where \(U_{x_0} \) is a neighborhood of \(x_0 \) in \(X \) (the base point \(x_0 \) will be fixed throughout this section). On \(U_{x_0} \) we can introduce geodesic normal coordinates centered at \(x_0 \). These coordinates will be denoted \((\theta, x^1, \ldots, x^{2n})\). The base point \(z_0 \in \Gamma \) corresponding to \(\theta = 0 \) is arbitrary. In such coordinates the connection \(\alpha \) takes the form \(\alpha = d\theta + \alpha_j dx^j \).

We will follow the quasimode construction outlined in Babich-Buldyrev [1], which is essentially based in the normal bundle \(N\Gamma \subset TZ \). Let \(\psi : N\Gamma \to Z \) be the map defined on each fiber \(N_x \Gamma \) by the restriction of the exponential map \(\exp_x : T_x Z \to Z \). Of course, \(\psi \) is only a diffeomorphism near \(\Gamma \). The Fermi coordinate system along \(\Gamma \) is defined by the combination of \(\psi \) and the choice of a parallel frame for \(N\Gamma \). Let \(\gamma(s) \) be a parametrization of \(\Gamma \) by arclength, with \(\gamma(0) = z_0, \gamma'(0) = \partial_\theta \). Let \(e_j(s) \) be the frame for \(N_{\gamma(s)} \Gamma \) defined by parallel transport from the initial value \(e_j(0) = \partial_j \). Then the Fermi coordinates are defined by

\[
(s, y^j) \mapsto \psi(y^j e_j(s)).
\]

Note that \(s = \theta \) only on \(\Gamma \).

3.1. The ansatz. Now we can formulate the construction of an asymptotic eigenfunction as a set of parabolic equations on \(N\Gamma \). Let \(\kappa \) be an asymptotic parameter (eventually to be related to \(k \)). Setting \(u = e^{iks}U \) we consider the equation

\[
(\Delta_Z - \lambda)e^{iks}U(s, y) = 0.
\]

Since we are hoping to localize near \(y = 0 \), the ansatz is to substitute \(u^j = \sqrt{\kappa} y^j \) and do a formal expansion

\[
e^{-iks} \Delta_Z e^{iks} = \kappa^2 + \kappa L_0 + \sqrt{\kappa} L_1 + L_2 + \ldots.
\]

This defines differential operators \(L_j \) on a neighborhood of the zero-section in \(N\Gamma \), but since the coefficients are polynomial in the \(y^j \) variables, they extend naturally to all of \(N\Gamma \). We also make an ansatz of formal expansions
for λ and U:

$$\lambda = \kappa^2 + \sigma + \ldots$$

$$U = U_0 + \kappa^{-1}U_1 + \ldots$$

Substituting these expansions into (3.1) and reading off the orders gives the equations

$$\mathcal{L}_0 U_0 = 0$$
$$\mathcal{L}_1 U_0 = 0$$
$$\mathcal{L}_0 U_1 = -(\mathcal{L}_2 - \sigma)U_0$$

(3.3)

Since \mathcal{L}_j is well-defined on NT, we can seek global solutions $U_j(s, y)$, subject to the boundary condition $\lim_{|y| \to \infty} U_j = 0$. It turns out that \mathcal{L}_0 is a very familiar parabolic operator and the second equation is satisfied as a trivial consequence of the first. Solutions of the third equation exist only for a certain value of σ, and the main goal of this section is to compute this quantity.

By pulling back by ψ, we can use (θ, x) as an alternate coordinate system on NT (near the zero section). We’ll use $\tilde{\beta}_{ij}, \tilde{\alpha}_i, \tilde{\omega}_{ij}, \tilde{J}_j$ to denote the various tensors lifted from X and written in these coordinates (so all are independent of θ). We let $\Gamma^\mu_{\mu\nu}$ denote the Christoffel symbols of the Kaluza-Klein metric g in the (θ, x) coordinates. To reduce notational complexity insofar as possible, we will adopt the convention that unbarred expressions involving $\beta_{ij}, \alpha_i, \omega_{ij}, J_j$ and their derivatives are to be evaluated at the base point $x_0 \in X$, e.g. $\beta_{ij} = \tilde{\beta}_{ij}\big|_{x=0}$. The Christoffel symbols of β_{ij} (evaluated at x_0) will be denoted by Γ^i_{jk}, with the same convention for derivatives. (Thus $\Gamma^i_{jk} = 0$, but its derivatives are not zero.) The freedom in the trivialization of Z may be exploited to assume that

$$\alpha_j = 0, \quad \partial_j \alpha_k = \frac{1}{2} \omega_{jk}.$$

We’ll use $g_{\mu\nu}$ to denote the Kaluza-Klein metric expressed in the (θ, x) coordinates (with the convention that Greek indices range over $0, \ldots, 2n$ and Roman over $1, \ldots, 2n$). Let ∂_j denote the vector field $\frac{\partial}{\partial x^j}$ on X. The horizontal lift of ∂_j to Z is then

$$E_j = \partial_j - \bar{\alpha}_j \partial_\theta.$$

(3.4)

The Kaluza-Klein metric is determined by the conditions:

$$g(E_j, \partial_\theta) = 0, \quad g(\partial_\theta, \partial_\theta) = 1, \quad g(E_j, E_k) = \bar{\beta}_{jk}.$$

Substituting in with (3.4) we quickly see that

$$g_{00} = 1, \quad g_{j0} = \bar{\alpha}_j, \quad g_{jk} = \bar{\beta}_{jk} + \bar{\alpha}_j \bar{\alpha}_k.$$

In block matrix form we can write

$$g = \begin{pmatrix} 1 & \bar{\alpha} \\ \bar{\alpha} & \bar{\beta} + \bar{\alpha} \bar{\alpha} \end{pmatrix},$$

(3.5)
from which
\[
g^{-1} = \begin{pmatrix}
1 + \alpha \beta^{-1} \alpha - \beta^{-1} \alpha \\
-\beta^{-1} \alpha - \beta^{-1} \alpha & \beta^{-1}
\end{pmatrix}.
\]

We’ll use \(G_{\mu\nu} \) to denote the Kaluza-Klein metric written in the Fermi coordinates \((s,y)\), i.e.
\[
G_{00} = g(\frac{\partial}{\partial s}, \frac{\partial}{\partial s}), \quad G_{0j} = g(\frac{\partial}{\partial s}, \frac{\partial}{\partial y^j}), \quad G_{ij} = g(\frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^j}).
\]

\(G_{\mu\nu} \) is well-defined in a neighborhood of \(y = 0 \), and with the ansatz above we only need to know its Taylor series to determine \(L_j \). As noted, the heart of the calculation will be the change of coordinates from \((\theta,x)\) to \((s,y)\).

By assumption \(G_{\mu\nu} = \delta_{\mu\nu} \) to second order in \(y \). After the substitution \(u_j = \sqrt{\kappa} y_j \), we can write the Taylor expansions of various components as
\[
G_{00} = 1 + \kappa^{-1} a^{(2)} + \kappa^{-3/2} a^{(3)} + \kappa^{-2} a^{(4)} + \ldots
\]
\[
G_{0j} = \kappa^{-1} b_j^{(2)} + \kappa^{-3/2} b_j^{(3)} + \ldots
\]
\[
G_{jk} = \delta_{jk} + \kappa^{-1} c_{jk}^{(2)} + \ldots,
\]

where \((l)\) denotes the term which is a degree \(l \) polynomial in \(u \). Then using the definition
\[
\Delta Z = -\frac{1}{\sqrt{G}} \partial_\mu \left[\sqrt{G} G^{\mu\nu} \partial_\nu \right],
\]
we can substitute the expansions \((3.7)\) into \((3.2)\) and read off the first few orders in \(\kappa \):
\[
\begin{align*}
\mathcal{L}_0 &= -2i \partial_s - a^{(2)} - \partial_u^2 \\
\mathcal{L}_1 &= -a^{(3)} + 2ib^{(2)} \frac{\partial}{\partial \omega^j} + i(\frac{\partial}{\partial \omega^j} b^{(3)}) \\
\mathcal{L}_2 &= -\partial_s^2 + 2ia^{(2)} \partial_s - a^{(4)} + (a^{(2)})^2 + (b^{(2)})^2 \\
&\quad + i \left[-\frac{1}{2} \partial_s \text{Tr} c^{(2)} + 2b^{(3)} \frac{\partial}{\partial \omega^j} + (\frac{\partial}{\partial \omega^j} b^{(3)}) \right] \\
&\quad + c^{ik} \frac{\partial}{\partial \omega^i} \frac{\partial}{\partial \omega^k} + (\frac{\partial}{\partial \omega^j} c^{ik}) \frac{\partial}{\partial \omega^k} - \frac{1}{2} \partial_s [a^{(2)} + \text{Tr} c^{(2)}] \frac{\partial}{\partial \omega^j}
\end{align*}
\]

3.2. The metric in Fermi coordinates. For use in the calculation, let us first work out some simple implications of \(J^2 = -1 \). Using conventions as above, this means \(J^k_j J^m_j = -\delta^m_j \). Differentiating at the base point \(x_0 \) gives us
\[
(\partial_i J^k_j) J^m_k = -J^k_j (\partial_i J^m_k), \quad J^k_j (\partial_i J^i_k) = 0
\]
The other basic fact is \(d\omega = 0 \), which translates to
\[
\partial_i \omega_{jk} + \partial_j \omega_{ik} + \partial_k \omega_{ij} = 0.
\]

Lemma 3.1.
\[
\partial_i J^i_j = 0.
\]
Proof. Using the fact that \(J_l^j \omega_{jk} \beta^{kl} \) we have
\[
J_j^k (\partial_l J_k^l) = - (\partial_l J_j^k) J_k^l = - (\partial_l \omega_{jk}) \omega^{kl} = - \frac{1}{2} (\partial_l \omega_{jk} - \partial_k \omega_{jl}) \omega^{kl} = \frac{1}{2} (\partial_l \omega_{kl}) \omega^{kl} = - \frac{1}{2} (\partial_l J_k^l) J_k^j = 0
\]

A similar fact, which will also be useful, is:

Lemma 3.2. For any vector \(v^j \) we have
\[
(\partial_l J_j^m) v^j (\omega v)_m = 0.
\]

Proof.
\[
(\partial_l J_j^m) v^j (\omega v)_m = (\partial_l J_j^m) v^j J_m^s v_s = - (\partial_l J_m^s) v^j J_j^m v_s = - (\partial_l \omega_{ms}) (Jv)^m v_s = (\partial_l \omega_{sm}) (Jv)^m v_s = - (\partial_l J_j^m) (\omega v)_m v_s = 0
\]

To proceed, we must determine the terms in the Taylor expansion of \(G_{\mu\nu} \) in terms of the geometric data \(\beta, \omega, J, \alpha \). In terms of \(\partial_j \), let the parallel frame \(e_j(s) \) be written \(T_k^j \partial_k \) (fixing \(j \) for the moment). The parallel condition is
\[
\partial_s T_k^j = - \Gamma_{0l}^k T_j^l,
\]
where
\[
\Gamma_{0l}^k |_{x=0} = \frac{1}{2} \beta^{km} (\partial_l \alpha_m - \partial_m \alpha_l) = \frac{1}{2} \beta^{km} \omega_{lm} = \frac{1}{2} J_l^k.
\]
The solution is
\[
T_j^k = (e^{-\frac{1}{2} J^j})^k_j.
\]
Since this is the matrix relating the \(x \)-frame to the \(y \)-frame at \(x = 0 \), we have \(\frac{\partial z^k}{\partial x^j} = T_j^k \). This makes it convenient to introduce
\[
z^k = T_j^k y^j.
\]
The transformation to Fermi coordinates may now be written as
\[
\theta = s + A(s, z), \quad x^j = z^j + B^j(s, z).
\]
The functions A and B are determined by the condition that the ray $t \mapsto (s, ty)$ be a geodesic. Of course, we are really just interested in the Taylor expansions:

$$A = \kappa^{-1} A^{(2)} + \kappa^{-3/2} A^{(3)} + \kappa^{-2} A^{(4)} + \ldots,$$

$$B^j = \kappa^{-1} B^{j(2)} + \kappa^{-3/2} B^{j(3)} + \ldots,$$

where degrees are labeled as above.

Denoting the t derivative by a dot, the geodesic equations are

$$\ddot{\theta} = -\Gamma^0_{00} \dot{\theta}^2 - 2\Gamma^0_{0l} \dot{\theta} \dot{x}_l - \Gamma^0_{jl} \dot{x}_j \dot{x}_l$$

$$\ddot{x}_k = -\Gamma^k_{00} \dot{\theta}^2 - 2\Gamma^k_{0l} \dot{\theta} \dot{x}_l - \Gamma^k_{jl} \dot{x}_j \dot{x}_l$$

(3.9)

The Christoffel symbols of g_{ij} are

$$\tilde{\Gamma}^0_{00} = \tilde{\Gamma}^j_{00} = 0$$

$$\tilde{\Gamma}^0_{0j} = \frac{1}{2} (\tilde{J} \tilde{\alpha})_j$$

$$\tilde{\Gamma}^0_{jk} = \frac{1}{2} \left[\partial_j \tilde{\alpha}_k + \partial_k \tilde{\alpha}_j + \tilde{\alpha}_j (\tilde{J} \tilde{\alpha})_k + \tilde{\alpha}_k (\tilde{J} \tilde{\alpha})_j \right] - \tilde{F}^l_{jk} \tilde{\alpha}_l$$

$$\tilde{\Gamma}^j_{0k} = -\frac{1}{2} \tilde{J}^j_k$$

$$\tilde{\Gamma}^j_{lk} = -\frac{1}{2} \tilde{J}^l_i \tilde{\alpha}_k - \frac{1}{2} \tilde{J}^l_k \tilde{\alpha}_l + \tilde{F}^j_{lk}$$

Substituting the Taylor expansion of the Christoffel symbols into (3.9) and equating coefficients, we find $A^{(2)} = 0$, $B^{(2)} = 0$,

$$A^{(3)} = - (\partial_m \partial_j \alpha_l) z^m z^j z^l$$

$$A^{(4)} = -\frac{1}{24} (\partial_k \partial_m \partial_j \alpha_l) z^k z^m z^j z^l - \frac{1}{24} (\partial_k F^i_{jl}) z^k z^j z^l (\omega z)_i,$$

$$B^{k(3)} = -\frac{1}{6} (\partial_m F^k_{jl}) z^m z^j z^l.$$

(3.10)

Using $x = z + \kappa^{-3/2} B^{(3)} + \ldots$, we can then determine the coefficients of the expansion of $\tilde{\alpha}_k$:

$$\tilde{\alpha}^{(1)}_k = -\frac{1}{2} (\omega z)_k$$

$$\tilde{\alpha}^{(2)}_k = \frac{1}{2} (\partial_l \partial_m \alpha_k) z^l z^m$$

$$\tilde{\alpha}^{(3)}_k = \frac{1}{6} (\partial_j \partial_l \partial_m \alpha_k) z^j z^l z^m + \frac{1}{12} \omega_{kl} (\partial_m F^i_{jl}) z^m z^j z^l$$

(3.11)

The Fermi coordinate vector fields are

$$\partial_s = (1 + \partial_s A) \partial_0 + (z^l + B^l) \partial_l,$$

$$\frac{\partial}{\partial y^j} = \left(\frac{\partial}{\partial y^j} A \right) \partial_0 + \left(T^j + \frac{\partial}{\partial y^j} B^l \right) \partial_l.$$
Note that $z^j = T_k^j(s)g^k$, so $z'^j = -\frac{1}{2}(Jz)^j$. To compute $a^{(l)}$, we use (3.10) and (B.11) to expand $G_{00} = g(\partial_s, \partial_s)$. The second order term is

$$a^{(2)} = 2\alpha_l^{(1)} z'^j + z'^j z'_l = -\frac{z^2}{4}$$

At third order we have

$$a^{(3)} = 2(A^{(3)})' + 2\alpha_m^{(2)} z'^m$$

$$= -\frac{1}{3} (\partial_j \partial_l \alpha_m)[2z^j z'^l z'^m + z^j z'^l z''_m] + (\partial_j \partial_l \alpha_m)z^j z'^l z'^m$$

$$= \frac{1}{3} (\partial_j \partial_l \alpha_m)(Jz)^j z'^l z'^m - \frac{1}{3} (\partial_j \partial_l \alpha_m)z^j z'^l (Jz)^m$$

$$= -\frac{1}{3} (\partial_l \alpha_m) z^j z'^l (Jz)^m$$

Thus, by Lemma 3.2 we have

$$a^{(3)} = 0.$$

The fourth order term is somewhat more complicated:

$$a^{(4)} = 2A^{(4)} + 2\alpha_m^{(3)} z'^m + 2\alpha_m^{(1)} (B'^m)^{(3)} + z^l (\beta_m^{(2)} + \alpha_m^{(1)} \alpha_m^{(1)}) z'^m + 2z'^m (B'^m)^{(3)}$$

We’ll expand the first term,

$$2A^{(4)} = \frac{1}{24} (\partial_k \partial_m \partial_j \alpha_l)[3z^j z'^m (Jz)^j z'^l + z^j z'^m z'^j (Jz)^l]$$

$$+ \frac{1}{24} (\partial_k F_{jl}^i)[(Jz)^k z'^j z'^l (\omega z)_i + 2z^k z'^j (Jz)^l (\omega z)_i + z^k z'^j z'^l _i]$$

and the second,

$$2\alpha_k^{(3)} z'^k = -\frac{1}{6} (\partial_j \partial_l \partial_m \alpha_k) z^j z'^m (Jz)^k - \frac{1}{12} \omega_{ki}(\partial_m F_{jl}^i)z^m z'^j (Jz)^l$$

The terms involving $\partial_m \alpha_k$ combine to form factors of ω_{mk}:

$$2A^{(4)} + 2\alpha_k^{(3)} z'^k = -\frac{1}{8} (\partial_j \partial_l \omega_{mk}) z^j z'^m (Jz)^k + \frac{1}{24} (\partial_k F_{jl}^i)(Jz)^k z^j z'^l (\omega z)_i$$

$$+ \frac{1}{12} (\partial_k F_{jl}^i) z^k z'^j (Jz)^l (\omega z)_i + \frac{1}{8} (\partial_k F_{jl}^i) z^k z'^j z'^l$$

After noting that $2\alpha_m^{(1)} (B'^m)^{(3)} + 2z'^m (B'^m)^{(3)} = 0$, we are left with the term

$$z'^l (\beta_m^{(2)} + \alpha_m^{(1)} \alpha_m^{(1)}) z'^m = \frac{1}{8} (\partial_j \partial_l \beta_{lm})(Jz)^l z^j z^k (Jz)^m + \frac{z^4}{16}$$
So in conclusion,
\[
a^{(4)} = -\frac{1}{8} (\partial_j \partial_i \omega_{mk}) z^j z^l z^m (J z)^k + \frac{1}{24} (\partial_k F_{jl}^i) (J z)^k z^j z^l (\omega z)_i \\
+ \frac{1}{12} (\partial_k F_{jl}^i) z^k z^j (J z)_i + \frac{1}{8} (\partial_k F_{jl}^i) z^k z^j z^l \\
+ \frac{1}{8} (\partial_j \partial_l \beta_{lm}) (J z)^l z^k (J z)^m + \frac{z^4}{16}
\]

For \(b_j = g(\partial_s, \partial_p) \) the third order term will prove irrelevant, so we compute only
\[
b_j^{(2)} = \partial_j A^{(3)} + \alpha_m^{(2)} T^m_j \\
= -\frac{1}{6} (\partial_k \partial_l \alpha_m) [2 T^k_j z^l z^m + z^k z^l T^m_j] + \frac{1}{2} (\partial_k \partial_l \alpha_m) z^k z^l T^m_j \\
= \frac{1}{3} (\partial_k \partial_l \alpha_m) T^k_j z^l z^m + \frac{1}{3} (\partial_k \partial_l \alpha_m) z^k z^l T^m_j \\
= \frac{1}{3} (\partial \omega_{km}) z^k z^l T^m_j
\]

Finally, we have \(c_{lm} = g(\partial_s, \partial_p) \). It is convenient to insert factors of \(T \):
\[
T^j c_m^{(2)} T^m = \beta_{jk}^{(2)} + \alpha_j^{(1)} \alpha_k^{(1)} + (\partial_s \beta_k^{(3)}) + (\partial_k \beta_j^{(3)}) \\
= \frac{1}{2} (\partial_k \partial_l \beta_{jk}) z^l z^m + \frac{1}{4} (\omega z)_j^l (\omega z)_k^m - \frac{1}{6} (\partial_j F_{ikl}) z^j z^l \\
- \frac{1}{3} (\partial_m F_{jik}) z^m z^l - \frac{1}{6} (\partial_k F_{ijl}) z^j z^l - \frac{1}{3} (\partial_m F_{kij}) z^m z^l
\]

3.3. Parabolic equations. The first of the equations (3.3) involves the operator
\[
\mathcal{L}_0 = -2i \partial_s + \frac{u^2}{4} - \partial_u^2
\]
The equation \(\mathcal{L}_0 U_0 = 0 \) is then instantly recognizable as the Schrödinger equation for a harmonic oscillator. The “ground state” solution
\[
U_0 = e^{-i n s/2} e^{-u^2/4}.
\]
Now \(e^{i k s} U \) is supposed to be periodic, which means we must require
\[
\kappa - \frac{n}{2} = k \in \mathbb{Z}.
\]
A function on \(z \) which is \(e^{i k s} \times \) (periodic) comes from a section of \(L^k \), so this \(k \) is our usual asymptotic parameter, and
\[
k^2 = k^2 + nk + \frac{n^2}{4}
\]
By the standard analysis of the quantum harmonic oscillator, a complete set of solutions to \(\mathcal{L}_0 U = 0 \) can be generated by application of the “creation operator”
\[
\Lambda^*_j = -i e^{-i s/2} (\partial_u - \frac{u_j}{2})
\]
We will need

\[U_{ij} = \Lambda_i^* \Lambda_j^* U_0, \quad U_{ijkl} = \Lambda_i^* \Lambda_j^* \Lambda_k^* \Lambda_l^* U_0, \]

which are easily computed explicitly:

\[U_{ij} = (-u_j u_k + \delta_{ij}) e^{-is} U_0, \]
\[U_{ijkl} = (u_i u_j u_k u_l - \delta_{ij} u_k u_l - \delta_{ik} u_j u_l - \delta_{il} u_j u_k - \delta_{jk} u_i u_l - \delta_{kl} u_i u_j + \delta_{ij} \delta_{kl} + \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}) e^{-2is} U_0. \]

Since \(a^{(3)} = 0 \) and \(\partial_{uj} b^{(2)} = 0 \), the next operator is

\[L_1 = 2ib^{(2)} \frac{\partial}{\partial \sigma}. \]

It then follows from \(b^{(2)} w^j = 0 \) that

\[L_1 U_0 = 0. \]

Moreover, it is easy to check, using the creation operators, that \(U_0 \) is the unique solution of \(L_0 U = 0 \) for which this is true.

Consider finally the third equation

\[(3.19) \]
\[L_0 U_1 = -(L_2 - \sigma) U_0, \]

from which we’ll determine \(\sigma \). Since \(L_2 U_0 \) has coefficients polynomial in \(u_j \) of order no more than four, we can expand

\[(3.20) \]
\[L_2 U_0 = [C^{ijkl} u_i u_j u_k u_l + C^{ij} u_i u_j + C] U_0. \]

Proposition 3.3. The equations (3.3) have a solution \(U_0, U_1 \in C^{\infty}(\Gamma) \) if and only if

\[(3.21) \]
\[\sigma = C + C_t t + 3C_{kk} t, \]

where the coefficients \(C^{ijkl} \) are assumed symmetrized.

Proof. In terms of the basis for the kernel of \(L_0 \) we can rewrite (3.20) as

\[L_2 U_0 = e^{2is} D^{ijkl} U_{ijkl} + e^{is} D^{ij} U_{ij} + DU_0. \]

Observe that

\[L_0(e^{2is} U_{ijkl}) = -4 U_{ijkl}, \quad L_0(e^{is} U_{ij}) = -2 U_{ij}. \]

So the equation \(L_0 U_1 = -(L_2 - \sigma) U_0 \) has a solution only if \(\sigma = D \), in which case we can set

\[U_1 = \frac{1}{4} e^{2is} D^{ijkl} U_{ijkl} + \frac{1}{2} e^{is} D^{ij} U_{ij}. \]

To compute \(D \) we note

\[C^{ij} u_i u_j U_0 = -C^{ij} e^{is} U_{ij} + C_t t U_0, \]
and (with the symmetry assumption),
\[
C_{ijkl} u_i u_j u_k u_l U_0 = C_{ijkl} e^{2i\alpha} U_{ijkl} + \left[6 C_{ijkl} u_k u_l - 3 C_{kk} \right] U_0
\]
\[
= C_{ijkl} e^{2i\alpha} U_{ijkl} + (\ldots) e^{i\alpha} U_{jk} + 3 C_{kk} U_0
\]
This means that
\[
D = C + C_l + 3 C_{kk} u_k.
\]

To conclude the computation, we will examine $L_2 U_0$ piece by piece and form the contractions of coefficients according to (3.21). From (3.8) we break up $L_2 U_0 = W_1 + \ldots W_6$, where
\[
W_1 = [- \partial_s^2 + 2ia^{(2)} \partial_s] U_0
\]
\[
W_2 = [-a^{(4)} + (a^{(2)})^2] U_0
\]
\[
W_3 = (b^{(2)})^2 U_0
\]
\[
W_4 = i \left[- \frac{1}{2} \partial_s \text{Tr} e^{(2)} + 2b^{(3)} \partial_s + \left(\frac{\partial}{\partial u} b^{(3)} \right) \right] U_0
\]
\[
W_5 = \left[e^{jk(2)} \frac{\partial}{\partial u} \frac{\partial}{\partial u} + \left(\frac{\partial}{\partial u} c^{jk(2)} \right) \frac{\partial}{\partial u} \right] U_0
\]
\[
W_6 = - \frac{1}{2} \frac{\partial}{\partial u} \left[a^{(2)} + \text{Tr} c^{(2)} \right] \frac{\partial}{\partial u} U_0
\]
By (3.17) we compute
\[
W_1 = [- \partial_s^2 + 2ia^{(2)} \partial_s] U_0 = \left[\frac{n^2}{4} - \frac{n z^2}{4} \right] U_0
\]
The contribution to σ from W_1 is thus:
\[
(3.22) \quad - \frac{n^2}{4}
\]
For W_2, from the calculations of $a^{(2)}$ and $a^{(4)}$ we have
\[
-a^{(4)} + (a^{(2)})^2 = \frac{1}{8} (\partial_j \partial_k \omega_{mk}) z^j z^l z^m (Jz)^k - \frac{1}{24} (\partial_k F_{ij}^k)(Jz)^l (\omega z)_i
\]
\[
- \frac{1}{12} (\partial_k F_{ij}^k z^k z^j (Jz)^l (\omega z)_i - \frac{1}{8} (\partial_k F_{ij}^k) z^k z^j z^l i
\]
\[
- \frac{1}{8} (\partial_j \partial_k \beta_{lm})(Jz)^l z^j z^k (Jz)^m
\]
We symmetrize and take the contractions to find the contribution to σ:
\[
\frac{1}{8} (\partial^j \partial^k \omega_{mk}) \omega^{kn} + \frac{1}{4} (\partial_j \partial^l \omega_{lk}) \omega^{jk} - \frac{1}{12} (\beta_{lm} \partial_k F_{lm}^k) - \frac{1}{6} (\partial^k F_{kl})
\]
\[
- \frac{1}{4} (\partial_j \partial_k \beta_{lm}) \omega^{jl} \omega^{km} - \frac{1}{8} (\beta_{lm} \partial^k \partial_k \beta_{lm})
\]
Let us simplify this expression. By \(d\bar{\omega} = 0 \) we have

\[
(\partial_j \partial_l \omega_{lk}) \omega^{jk} = \frac{1}{2} (\partial^j \partial_j \omega_{mk}) \omega^{mk}.
\]

From \(\bar{\omega}_{mk} = -\bar{\beta}_{mr} J_k^r \) we derive

\[
(\partial^j \partial_j \omega_{mk}) \omega^{mk} = \beta^{lm} \partial^j \beta_{lm} - (\partial^j \partial_j J_m^m) J^k.
\]

Finally from \(\bar{J}^2 = -1 \) we obtain

\[
(\partial^j \partial_j J_m^m) J^k_m = -(\partial_j J_m^m)(\partial_j J^k_m) = |\nabla J|^2.
\]

Combining these facts gives

\[
\frac{1}{8} (\partial^j \partial_j \omega_{mk}) \omega^{mk} + \frac{1}{4} (\partial_j \partial_l \omega_{lk}) \omega^{jk} = \frac{1}{4} \beta^{lm} \partial^j \beta_{lm} - \frac{1}{4} |\nabla J|^2.
\]

Evaluating the Christoffel symbols gives

\[
\beta^{lm} \partial_k F_{lm}^k = \frac{1}{2} \beta^{lm} \partial^k \beta_{lm} - \frac{1}{2} \beta^{lm} \partial^k \partial^k \beta_{lm}
\]

and

\[
\partial^k F_{kl} = \frac{1}{2} \beta^{lm} \partial^k \beta_{lm}
\]

Thus the final contribution from \(W_2 \) to \(\sigma \) is

\[
(3.23) \quad -\frac{1}{4} |\nabla J|^2 - \frac{1}{4} (\partial_j \partial_k \beta_{lm}) \omega^{ji} \omega^{km} + \frac{1}{12} \beta^{lm} \partial^k \partial_k \beta_{lm} - \frac{1}{12} \partial^j \partial^l \beta_{jl}
\]

By our calculations,

\[
\frac{1}{8}(\partial^2) (\partial \omega_{km}) \omega^{jk} = \frac{1}{9} (\partial_i \omega_{km}) z^k z^j (\partial_j J^m_i) z^j,
\]

which (recalling that \(\partial^j J^m_j = 0 \)) gives a contribution from \(W_3 \) of

\[
\frac{1}{9} (\partial \omega_{km}) (\partial^k \omega^{lm}) + \frac{1}{9} |\nabla J|^2
\]

By \(d\bar{\omega} = 0 \), we have

\[
(\partial \omega_{km}) (\partial^k \omega^{lm}) = -\frac{1}{2} (\partial_k \omega_{ml}) (\partial^k \omega^{lm}) = \frac{1}{2} |\nabla J|^2.
\]

So the contribution from \(W_3 \) simplifies to

\[
(3.24) \quad -\frac{1}{6} |\nabla J|^2
\]

The terms in \(W_4 \) are purely imaginary and therefore must contribute zero because \(\sigma \) is real. This can easily be confirmed explicitly.

To compute \(W_5 \) we need to consider

\[
\omega^{j(2)} \partial_{\omega} \partial_{\omega} U_0 + (\partial_{\omega} \omega^{j(2)}) \partial_{\omega} U_0
\]

Noting that \(\partial_{\omega} U_0 = -\frac{u^k}{U_0} U_0 \), this becomes

\[
\left[\frac{1}{4} \omega^{j(2)} \omega^j U_0 - \frac{1}{2} \beta^{jk} \omega^{j(2)} - \frac{1}{2} u_k (\partial_{\omega} \omega^{j(2)}) \right] U_0
\]
If c^{jk}_2 is written $E^{jk}_{lm} u^l u^m$, then under contraction the contribution is
\[
\frac{1}{4} (\beta^{lm} \beta_{jk} E^{jk}_{lm} + E^{jk}_{jk}) - \frac{1}{2} \beta^{lm} \beta_{jk} E^{jk}_{lm} - \frac{1}{2} (E^{jk}_{jk} + E^{jk}_{kj}) = -\frac{1}{4} (\beta^{lm} \beta_{jk} E^{jk}_{lm} + E^{jk}_{jk})
\]
This is the same as the contribution of
\[
-\frac{1}{4} c^{(2)}_j u^j u^k = -\frac{1}{8} (\partial_j \partial_k \beta_{lm}) z^j z^k z^l z^m + \frac{1}{4} (\partial_m F_{jk}) z^m z^j z^l,
\]
yielding
\[
-\frac{1}{8} \beta^{lm} (\partial_j \partial_k \beta_{lm}) - \frac{1}{4} (\partial^j \partial^k \beta_{jk}) + \frac{1}{4} \beta^{lm} \partial_k F_{lm} + \frac{1}{2} (\partial^m F^k_{mk}),
\]
which vanishes upon substitution of the F. Hence the total contribution of W_5 to σ is zero.

Finally, we evaluate the expression appearing in W_6:
\[
\frac{1}{4} u^j \partial_j [a^{(2)} + \text{Tr} c^{(2)}] = \frac{1}{2} [a^{(2)} + \text{Tr} c^{(2)}] = \frac{1}{4} (\beta^{lm} \partial_j \partial_k \beta_{lm}) - \frac{1}{6} (\beta^j \partial_k F_{ik}) z^j z^k - \frac{1}{3} (\partial_m F^l_{ml} z^m z^i,
\]
The contribution is
\[
\frac{1}{4} (\beta^{lm} \partial^k \partial_k \beta_{lm}) - \frac{1}{6} (\beta^j \partial_k F^l_{ik}) - \frac{1}{3} (\partial^m F^l_{ml}).
\]
This contribution from W_6 can be reduced to
\[
(3.25) \quad \frac{1}{6} (\beta^{lm} \partial^k \partial_k \beta_{lm}) - \frac{1}{6} (\partial^j \partial^k \beta_{kl})
\]
Adding together (3.22), (3.23), (3.24), and (3.25) gives
\[
\sigma = -\frac{n^2}{4} - \frac{1}{12} |\nabla J|^2 - \frac{1}{4} (\partial_j \partial_k \beta_{lm}) \omega^{jl} \omega^{km} + \frac{1}{4} \beta^{lm} \partial^k \partial_k \beta_{lm} - \frac{1}{4} \partial^j \partial^l \beta_{jl}
\]
The last three terms on the right-hand side could be written in terms of the curvature tensors:
\[
-\frac{1}{4} (\partial_j \partial_k \beta_{lm}) \omega^{jl} \omega^{km} + \frac{1}{4} \beta^{lm} \partial^k \partial_k \beta_{lm} - \frac{1}{4} \partial^j \partial^l \beta_{jl} = \frac{1}{4} (R + \frac{1}{2} R_{ljkm} \omega^{lj} \omega^{km}).
\]
To complete the calculation we cite a lemma which can be found, for example, in [7].

Lemma 3.4. For an almost Kähler manifold,
\[
R + \frac{1}{2} R_{ljkm} \omega^{lj} \omega^{km} = -\frac{1}{2} |\nabla J|^2.
\]
This lemma leads us to the final result that
\[
(3.26) \quad \sigma = -\frac{n^2}{4} - \frac{5}{24} |\nabla J|^2
\]
3.4. Quasimodes. Let us introduce the function
\[h(x) = -\frac{5}{24} |\nabla J(x)|^2 \]

Proposition 3.5. Fix \(x_0 \in X \) and let \(\Gamma = \pi^{-1}(x_0) \). There exists a sequence \(\psi_k \in L^2(Z)_k \) with \(\| \psi_k \| = 1 \) such that
\[\| (\Delta h - nk - h(x_0))\psi_k \| = O(k^{-1/2}). \]
Moreover, \(\psi_k \) is asymptotically localized on \(\Gamma \) in the sense that if \(\varphi \in C^\infty(Z) \) vanishes to order \(m \) on \(\Gamma \), then
\[\langle \psi_k, \varphi \psi_k \rangle = O(k^{-m/2}). \]

Proof. Let \(W \) be a neighborhood of \(\Gamma \) in which Fermi coordinates \((s, y)\) are valid, and \(\chi \in C^\infty(Z) \) a cutoff function with \(\text{supp}(\chi) \subset W \) and \(\chi = 1 \) in some neighborhood of \(\Gamma \). Then we define the sequence \(\psi_k \in L^2(Z)_k \) by
\[\psi_k(s, y) = \Lambda_k \chi e^{iks}[U_0 + \kappa^{-1} U_1], \]
where \(U_j(s, y) \) are the solutions obtained above, \(\kappa = k + n/2 \), and \(\Lambda_k \) normalizes \(\| \psi_k \| = 1 \). This could be written as
\[\psi_k(s, y) = \Lambda_k \chi e^{iks} [P_0 + P_2(y) + \kappa P_4(y)] e^{-\kappa y^2/4}, \]
where \(P_l \) is a polynomial of degree \(l \) (with coefficients independent of \(k \)). Since \(P_0 = 1 + O(k^{-1}) \), we have that
\[\Lambda_k \sim \left(\frac{k}{2\pi} \right)^{n/2} \text{ as } k \to \infty. \]
The concentration of \(\psi_k \) on \(\Gamma \) described in \((3.28)\) then follows immediately from \((3.29)\).

By virtue of the factor \(e^{-\kappa y^2/4} \), we can turn the formal considerations used to obtain the operators \(\mathcal{L}_j \) into estimates. With cutoff, \(\chi \mathcal{L}_j \) could be considered an operator on \(Z \) with support in \(W \). By construction we have
\[\chi \left[e^{iks} \Delta Z e^{iks} - \kappa^2 - \kappa \mathcal{L}_0 - \sqrt{\mathcal{L}_1} - \mathcal{L}_2 \right] = \sum_{l, m, |\beta| \leq 2} E_{l, m, \beta}(s, y) \kappa^l \partial_s^m \partial_y^\beta, \]
where \(A_{l, m, \beta} \) is supported in \(W \) and vanishes to order \(2l + |\beta| + 1 \) at \(y = 0 \). We also have
\[(\kappa \mathcal{L}_0 + \sqrt{\kappa} \mathcal{L}_1 + \mathcal{L}_2 - \sigma)(U_0 + \kappa^{-1} U_1) = \kappa^{-1} (\sqrt{\kappa} \mathcal{L}_1 + \mathcal{L}_2 - \sigma) U_1 \]
Combining these facts with the definition of \(\psi_k \) we deduce that
\[(\Delta Z - \kappa^2 - \sigma) \psi_k(s, y) = \Lambda_k \sum_{l \leq 4} k^l F_l(s, y) e^{-\kappa y^2/4}, \]
where \(F_l \) is supported in \(W \) and vanishes to order \(2l + 1 \) at \(y = 0 \). Using this order of vanishing we estimate
\[\left\| \Lambda_k k^l F_l e^{-\kappa y^2/4} \right\|^2 = O(k^{-1}). \]
Noting that $\Delta_Z - \kappa^2 - \sigma = \Delta_h - nk - h(x_0)$ on $L^2(Z)_k$, we obtain the estimate (3.27).

4. Spectral density function

Let $\psi_k \in L^2(Z)_k$ be the sequence produced by Proposition 3.5. As in §2, we let Π_k denote the orthogonal projection onto the span of low-lying eigenvectors of $\Delta_h - nk$. Consider

$$\phi_k = \Pi_k \psi_k \quad \eta_k = (I - \Pi_k) \psi_k.$$

By Theorem 1.1 (for k sufficiently large, which we’ll assume throughout),

$$\| (\Delta_h - nk) \phi_k \| < M, \quad \| (\Delta_h - nk) \eta_k \| > ak \| \eta_k \|.$$

By Proposition 3.5 we have a uniform bound

$$\| (\Delta_h - nk) \psi_k \| \leq C,$$

so these estimates imply in particular that

$$ak \| \eta_k \| < C + M.$$

Hence $\| \eta_k \| = O(k^{-1})$.

From Lemma 2.1 we know that q satisfies

$$\langle \phi_k, (\Delta_h - nk - \pi^* q) \phi_k \rangle = O(1/k).$$

Let $r_k = (\Delta_h - nk + h(x_0)) \psi_k$, which by Proposition 3.5 satisfies $\| r_k \| = O(k^{-1/2})$. So

$$\langle \phi_k, (\Delta_h - nk - \pi^* q) \phi_k \rangle$$

$$= \langle \phi_k, (h(x_0) - \pi^* q) \phi_k \rangle + \langle \phi_k, (\Delta_h - nk - h(x_0)) \phi_k \rangle$$

$$= \langle \phi_k, (h(x_0) - \pi^* q) \phi_k \rangle + \langle \phi_k, r_k \rangle - \langle \phi_k, (\Delta_h - nk - h(x_0)) \eta_k \rangle.$$

The left-hand side is $O(1/k)$, while the second term on the right is $O(k^{-1/2})$. The third term on the right-hand side is equal to

$$\langle (\Delta_h - nk) \phi_k, \eta_k \rangle < M \| \eta_k \| = O(k^{-1}).$$

Therefore, the first term on the right-hand side of (4.1) can be estimated

$$\langle \phi_k, (h(x_0) - \pi^* q) \phi_k \rangle = O(k^{-1/2}).$$

Because $\| \eta_k \| = O(1/k)$ this implies also that

$$h(x_0) - \langle \psi_k, (\pi^* q) \psi_k \rangle = O(k^{-1/2}).$$

Since q is smooth, the localization of ψ_k on Γ from Proposition 3.5 implies that

$$\langle \psi_k, (\pi^* q) \psi_k \rangle = q(x_0) + O(k^{-1/2}).$$

Thus $q(x_0) = h(x_0)$. This proves Theorem 1.2.
REFERENCES

[1] V.M. Babich and V.S. Buldyrev, Short-wavelength diffraction theory: asymptotic methods, Springer-Verlag, Berlin; New York, 1991.
[2] D. Borthwick and A. Uribe, Almost-Complex Structures and Geometric Quantization, Math. Res. Lett. 3 (1996), 845–861.
[3] D. Borthwick and A. Uribe, Nearly Kählerian embeddings of symplectic manifolds, Asian J. Math. 4 (2000), 599–620.
[4] L. Boutet de Monvel and V. Guillemin, The Spectral Theory of Toeplitz Operators, Annals of Mathematics Studies No. 99, Princeton U. Press, Princeton, New Jersey (1981)
[5] S. Donaldson, Symplectic submanifolds and almost complex geometry, J. Diff. Geom. 44 (1996), 666-705.
[6] V. Guillemin and A. Uribe, The Laplace operator on the n-th tensor power of a line bundle: eigenvalues which are uniformly bounded in n, Asymptotic analysis 1 (1988), 105–113.
[7] C.C. Hsiung, Almost Complex and Complex Structures, World-Scientific (1995).

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, EMORY UNIVERSITY, ATLANTA
E-mail address: davidb@mathcs.emory.edu

MATHEMATICS DEPARTMENT, UNIVERSITY OF MICHIGAN, ANN ARBOR
E-mail address: uribe@math.lsa.umich.edu