Cyanobacterial KnowledgeBase (CKB), a Compendium of Cyanobacterial Genomes and Proteomes

Arul Prakasam Peter1*, Karthick Lakshmanan1*, Shylajanaciyar Mohandass1, Sangeetha Varadharaj1, Sivasudha Thilagar2, Kaleel Ahamed Abdul Kareem3, Prabaharan Dharmar1, Subramanian Gopalakrishnan1*, Uma Lakshmanan1*

1 National Facility for Marine Cyanobacteria, Sub-Distributed Bioinformatics Centre (sponsored by Department of Biotechnology, Govt. of India), Department of Marine Biotechnology, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India, 2 Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India, 3 Department of Botany, Jamal Mohammed College, Tiruchirappalli, Tamil Nadu, India

☯ These authors contributed equally to this work.
* lumaprabakar@yahoo.com

Abstract

Cyanobacterial KnowledgeBase (CKB) is a free access database that contains the genomic and proteomic information of 74 fully sequenced cyanobacterial genomes belonging to seven orders. The database also contains tools for sequence analysis. The Species report and the gene report provide details about each species and gene (including sequence features and gene ontology annotations) respectively. The database also includes cyano-BLAST, an advanced tool that facilitates comparative analysis, among cyanobacterial genomes and genomes of E. coli (prokaryote) and Arabidopsis (eukaryote). The database is developed and maintained by the Sub-Distributed Informatics Centre (sponsored by the Department of Biotechnology, Govt. of India) of the National Facility for Marine Cyanobacteria, a facility dedicated to marine cyanobacterial research. CKB is freely available at http://nfmc.res.in/ckb/index.html.

Introduction

Cyanobacteria comprise over 1,600 species with various morphologies and species-specific characteristics, such as cell movement, cell differentiation, and nitrogen fixation [1]. These are the only known oxygenic photosynthetic prokaryotic organisms that inhabit a wide range of ecological habitats (e.g., extreme cold, extreme hot, marine, fresh water, and terrestrial) and exhibit symbiotic associations with other living organisms. These primitive oxygenic Gram negative bacteria are widely used as a valuable model to study the mechanism of carbon fixation and helpful for evolutionary biologists to understand the endosymbiotic theory, as they are considered as the origin of chloroplast. Since these ancient life forms play a major role in
many biogeochemical cycles of the global ecological system, they serve as a study material in diverse fields of life-science research [2].

Cyanobacteria are well-known for the formation of toxic cyanobacterial water blooms in freshwater, brackish and coastal marine ecosystems, which are of vital ecological and human health concerns [3]. However, in recent times, these organisms have captured the attention of the researchers worldwide because of their capability of producing prolific bioactive natural products as secondary metabolites, which are of great economic and medical value [4–6].

The National Facility for Marine Cyanobacteria (Sponsored by the Department of Biotechnology, Govt. of India) is dedicated to cyanobacterial research, especially marine cyanobacteria. One of the principal foci of the facility is to build a dedicated knowledge base for cyanobacteria. The increasing number of completely sequenced cyanobacterial genomes provides wide opportunities for understanding the metabolic organization of the cyanobacterial species in diverse environments. Here we introduce the Cyanobacterial KnowldegeBase (CKB), a freely accessible, comprehensive database resource covering information pertaining to 74 completely sequenced cyanobacterial species. The database also includes an informative tool called cyano-BLAST, which helps in comparative analysis between cyanobacterial genomes and the genomes of pro- and eu-karyote, such as E. coli and Arabidopsis.

Results and Discussion

Organisms

Seventy-four fully sequenced genomes of seven orders are currently included in the CKB database. This comprises 12 species of Chroococcales, 1 of Chroococcidiopsidales, 2 of Gloeobacteriales, 12 of Nostocales, 7 of Oscillatoriales, 2 of Pleurocapsales and 38 of Synechococcales. The web user interface of CKB is shown in (Fig 1) and the complete list of the species exists in the CKB is given in Table 1.

Tools

The database analysis portal provides access to the CKB BLAST tool, as well as tools for pattern and fuzzy searches, and restriction digestion.

The CKB BLAST tool can be used to compare nucleotide or protein sequences, to identify members of gene families, and to infer functional and evolutionary relationships between sequences.

Users are provided with several customized databases for similarity searches within the CKB BLAST analysis tool. This includes a database with information on all cyanobacterial

![Fig 1. CKB web interface.](doi:10.1371/journal.pone.0136262.g001)

Competing Interests: The authors have declared that no competing interests exist.
Table 1. Order wise complete list of species mentioned in CKB. The table provides information related to order, Morphology (Morph.-U: Unicellular, F: Filamentous and F,H: Filamentous Heterocystous), number of chromosomes (Chr.), number of plasmids (Pla.), genome size (Size, MB), GC %, the number of genes (Genes), number of proteins (Proteins), and Biological Resource Centers (BRCs) from which live specimens can be available for each species.

Order	Organism	Morph.	Chr.	Pla.	Size, MB	GC %	Genes	Proteins	BRCs
Chroococcales	Cyanobacterium aponinum PCC 10605	U	1	4.72	60.5	4562	4507	PCC	
	Cyanobacterium staniieri PCC 7202	U	1	4.66	62	4482	4430	PCC	
	Cyanobacterium sp. ATCC 51142	U	1	7.06	38.8	6258	5838	ATCC	
	Cyanobacterium sp. PCC 7424	U	2	5.31	38.1	4797	4511	PCC	
	Cyanobacterium sp. PCC 7425	U	2	7.11	41.4	5813	5710	ATCC; PCC	
	Cyanobacterium sp. PCC 7822	U	1	9.66	39.8	5841	5535	PCC	
	Cyanobacterium sp. PCC 8801	U	1	7.02	42.2	6250	5950	PCC	
	Cyanobacterium sp. PCC 8802	U	1	7.61	42.2	6738	6229	PCC	
	Dactylococcopsis salina PCC 8305	U	1	5.49	38.3	5380	3651	PCC	
	Gloeocapsa sp. PCC 7428	U	1	9.06	41.3	7164	6689	ATCC; PCC	
	Halothece sp. PCC 7418	U	1	6.33	40.4	5538	5237	PCC	
	Microcystis aeruginosa NIES-843	U	1	7.21	41.2	6213	5950	PCC	
	Chroococcidiopsis thermalis PCC 7203	U	1	6.72	41.5	5687	5449	ATCC; PCC	
Chroococcidiopsales	Gloeobacter kilaueensis JS1	U	1	8.73	37.5	6946	6644	NA	
	Anabaena cylindrica PCC 7122	F, H	1	6.79	44.3	6676	6630	ATCC; PCC	
	Anabaena sp. 90	F, H	1	6.76	45.6	6426	5945	NA	
	Anabaena variabilis ATCC 29413	F, H	1	5.62	40.2	5059	4752	ATCC	
	Calothrix sp. PCC 630	F, H	1	4.18	35	3614	3431	ATCC; PCC	
	Calothrix sp. PCC 7507	F, H	1	3.16	38.7	2941	2837	ATCC; PCC	
	Cylindrothecium stagnale PCC 7417	F, H	1	3.34	48.5	3437	3280	ATCC; PCC	
	Nostoc azollae 0708	F, H	2	4.56	38	5364	5303	NA	
	Nostoc punctiforme PCC 73102	F, H	1	6.55	38.5	5942	5710	ATCC; PCC	
	Nostoc sp. PCC 7107	F, H	1	3.79	50.7	5507	5327	ATCC; PCC	
	Nostoc sp. PCC 7120	F, H	1	7.84	39.9	7042	6642	ATCC; PCC	
	Nostoc sp. PCC 7524	F, H	1	3.47	39.8	4169	4367	ATCC; PCC	
	Rivularia sp. PCC 7116	F, H	1	4.8	39.8	4700	4444	NA	
Oscillatoriales	Arthrospira lacustris NIES-39	F	1	3.78	42.4	3684	3337	NIES	
	Crinum episcopum PCC 9333	F	1	4.68	58.5	3912	3815	PCC	
	Geitlerinema sp. PCC 7407	F	1	5.88	43.4	5304	5011	ATCC; PCC	
	Microcoleus sp. PCC 7113	F	1	4.18	42.9	3920	3708	PCC	
	Oscillatoria acuminata PCC 6304	F	1	5.13	43.9	4654	4228	ATCC; PCC	
	Oscillatoria nigro-venosa PCC 7112	F	1	7.97	46.2	6821	6441	PCC	
	Trichodesmium erythraeum IMS101	F	1	5.84	42.3	6364	6312	NCMA	
Pleurocapsales	Pleurocapsa sp. PCC 7327	U	1	7.8	47.6	6100	5796	ATCC; PCC	
Synechococcales	Stanieria cyanophila PCC 7437	U	1	8.27	45.8	7006	6360	ATCC; PCC	
	Acaryochloris marina MBIC11017	U	1	4.89	46.2	4014	3854	NA	
	Chamaesiphon minutus PCC 6605	U	1	2.7	55.5	2581	2522	ATCC; PCC	
	Cyanobium gracile PCC 6307	U	1	2.74	55.5	2715	2662	PCC	
	Synechococcus elongatus PCC 6301	U	1	2.61	52.4	2944	2892	PCC	
	Synechococcus elongatus PCC 7942	U	1	2.51	59.2	2756	2645	ATCC; PCC	
	Synechococcus sp. CC9311	U	1	2.23	54.2	2357	2306	NCMA	
	Synechococcus sp. CC9605	U	1	3.05	58.5	2942	2862	NCMA	
	Synechococcus sp. CC9902	U	1	2.93	60.2	2897	2760	NCMA	
	Synechococcus sp. JA-2-3B(a2–13)	U	1	3.72	48.5	3794	3545	NA	
	Synechococcus sp. JA-3-3Ab	U	1	3.41	49.2	3238	3187	NA	
	Synechococcus sp. PCC 6312	U	1	3.58	40.6	3666	3318	ATCC; PCC	
	Synechococcus sp. PCC 7002	U	1	2.22	60.8	2581	2533	ATCC; PCC	

(Continued)
chromosomes and plasmids. The users have the freedom to restrict their analysis to either chromosomes or plasmids. Furthermore, CKB provides databases that allow users to compare individual organisms, multiple organisms and orders also (Fig 2). As cyanobacteria are prokaryotic photosynthetic organisms, a model prokaryotic genome (E. coli) and a photosynthetic eukaryotic genome (Arabidopsis) are included for advancing comparative analysis.

In addition, pattern and fuzzy search tools are available to help in identifying the patterns present in different cyanobacterial genomes. Furthermore, the restriction digestion tool helps to identify restriction sites within the sequences.

Searching and browsing through the database

The Cyanobacterial KnowledgeBase consists of information related to 74 fully sequenced cyanobacterial species of seven orders, namely Chroococcales, Chroococcidiopsidales, Gloeobacteriales, Nostocales, Oscillatoriales, Pleurocapsales and Synechococcales. The browse option helps with orientation and navigation through the species under each order (Fig 3). The species

Table 1. (Continued)

Order	Organism	Morph.	Chr.	Pla.	Size, MB	GC %	Genes	Proteins	BRCs
Synechococcus	sp. PCC 7502	U	1	0	2.37	60.2	2586	2533	PCC
Synechococcus	sp. RCC307	U	1	0	2.43	59.4	2581	2519	RCC
Synechococcus	sp. WH 7803	U	1	0	3.57	47.7	3219	3170	NCMA
Synechococcus	sp. WH 8102	U	1	4	3.95	47.3	3625	3575	NCMA
Synechocystis	sp. PCC 6803	U	1	7	3.95	47.3	3610	3561	PCC
Synechocystis	sp. PCC 6803	U	1	0	3.57	47.7	3218	3169	PCC
Synechocystis	sp. PCC 6803 substr. GT-I	U	1	0	3.57	47.7	3217	3168	PCC
Synechocystis	sp. PCC 6803 substr. PCC-N	U	1	0	2.59	53.9	2525	2476	PCC
Synechocystis	sp. PCC 6803 substr. PCC-P	U	1	0	2.52	53.8	2400	2231	PCC
Thermosynechococcus elongatus	BP-1	U	1	0	7.75	34.1	5126	4451	NA
Thermosynechococcus sp. NK55	U	1	2	6.69	44.4	6033	5752	NA	
Leptolyngbya sp. PCC 7376	U	1	5	5.54	36.3	5041	4781	PCC	
Pseudanabaena sp. PCC 7367	U	1	0	1.67	31.3	1965	1920	NCMA	
Prochlorococcus marinus str. AS9601	U	1	0	1.69	38	1900	1854	NA	
Prochlorococcus marinus str. MIT 9211	U	1	0	1.74	31.1	2054	1928	NCMA	
Prochlorococcus marinus str. MIT 9215	U	1	0	1.64	31.3	1962	1906	NCMA	
Prochlorococcus marinus str. MIT 9301	U	1	0	2.68	50	3136	2977	NCMA	
Prochlorococcus marinus str. MIT 9312	U	1	0	1.71	31.2	1856	1810	NCMA	
Prochlorococcus marinus str. MIT 9313	U	1	0	2.41	50.7	2330	2269	NCMA	
Prochlorococcus marinus str. MIT 9515	U	1	0	1.7	30.8	1964	1905	NCMA	
Prochlorococcus marinus str. NATL1A	U	1	0	1.86	35	2250	2193	NCMA	
Prochlorococcus marinus str. NATL2A	U	1	0	1.84	35.1	2228	2162	NCMA	
Prochlorococcus marinus subsp. marinus str. CCMP1375	U	1	0	1.75	36.4	1930	1882	NCMA	
Prochlorococcus marinus subsp. pastoris str. CCMP1986	U	1	0	1.66	30.8	1762	1717	NCMA	

The Biological Resource Centers (BRCs) listed (with hyperlinks) includes 1. ATCC (American Type Culture Collection), 2. PCC (Pasteur Culture Collection of Cyanobacteria), 3. NIES (National Institute for Environmental Studies), 4. NCMA (National Center for Marine Algae and Microbiota), 5. RCC (Roscoff Culture Collection) and 6. NA, Not available

doi:10.1371/journal.pone.0136262.t001
The search tool can also be used to retrieve information related to specific genes, functions, or keywords, etc. An example search result for a query keyword "Chaperone" returned 907 entries (Fig 4).

Proteome profiling

The complete gene set of each genome can be accessed under the proteome profiling from the "Species reporter" tool. The table provides a complete gene list with PID gene name (locus_tag), synonym, product name, strand, start and end, length, COG (Clusters of Orthologous Groups) id and GI (Genbank) accession number. Furthermore, the search tool within the table provides an option to search and retrieve the results by specific keyword.

Gene report

Information related to each gene is displayed under five sections. The 'details section' provides brief information related to the gene, and allows the user to navigate to the nearest genes present on either side of the gene of interest (Fig 5). The 'sequence feature section' provides domains, repeats, motif, and binding site information in both graphical and tabular form (Fig 6). The FASTA format of protein and nucleotide sequences are provided at the bottom section with direct links for BLAST analysis. The 'annotation section' displays the functions of the gene with gene ontology and UniProt keywords. The last two sections provide links to other external databases and list of homologous proteins respectively.
The rapidly increasing genomics and proteomics data due to advancements in high throughput data generation has created a need for enhanced data management to empower basic and applied research in cyanobacteria. Many web-based databases and community resources have been created specifically for cyanobacteria to facilitate systems biology analysis using these large data. Table 2 provides the list of databases summarized by Hernández-Prieto et al. [7] which has analytical tools along with the additional web resources and databases that are currently available.

The most comprehensive and widely used web based database is CyanoBase [8], which contains currently sequenced and annotated genome sequences, along with gene annotations and information related to various mutations involved in 39 species of cyanobacteria. It also includes tools such as BLAST for genes and genome similarity searches and KazusaMart which
can be used to convert identifiers from one format to different formats. CYORF is another community annotated database that provides the open reading frame (ORF) list for approximately 33 genomes along with data from KEGG and DBGET at the GenomeNet, Pfam and Prosite motifs, predicted localization sites and protein 3D structures and tools to search for similar sequences [9]. CyanoBIKE is an instance of BioBike which provides web-based programmable knowledge base for genomic, metabolic and experimental data specifically for cyanobacteria. It has the collection of different datasets along with built-in tools for analysis, which require some basic programming skills for its application [10].

Apart from the above three generalized cyanobacterial databases, there are a few more databases which are developed specifically for a particular species or a group of cyanobacteria, which includes Cyanorak [11], SynechoNET [12] and ProPortal [13]. These are dedicated resources with annotations for orthologous sequences of marine picocyanobacteria, protein-protein interaction data for *Synechocystis*, and information related *Prochlorococcus* isolates respectively.

Additionally, many specialized databases that are available focusing on specific protein class or property exclusively for cyanobacterial species. It includes cTFbase, a database containing transcription factors [14], CyanoPhyChe, which contains physico-chemical properties of cyanobacterial proteins [15], CyanoClust, which includes homolog groups in cyanobacteria and plastids produced by the program Gclust [16], CyanoEXpress, with curated genome-wide expression data [17] and CyanoLyase, a database of phycobilin lyase sequences, motifs and functions [18].

Fig 4. Search results. Results for keyword "Chaperone" showing 907 entries.

doi:10.1371/journal.pone.0136262.g004
Along with these online databases, CyanoNews [19], Cyanosite [20], CyanoData [21] and CyanoDB [22] are the major web resources that provide the basic information about cyanobacteria, current happenings in cyanobacterial research, the methods used in cyanobacteriology, bibliography archive, research groups involved in cyanobacterial research, etc. that are extensively referred by cyanobacteriologists.

CKB, the present available database has incorporated all 74 currently fully sequenced genomes of cyanobacteria, including customized tools for inclusive analysis of these genomes. The tool also helps in interpreting newly sequenced genomes by comparing them with the previously annotated cyanobacterial and/or other model organism genomes. The flexibility of defining datasets by either organism or order, or as whole genome or plasmids, helps the user to segregate their search and its results according to their specific needs. An additional significant characteristic is the inclusion of the model prokaryotic genome (E. coli) and presence of a photosynthetic eukaryotic genome (Arabidopsis), which further assists in comparative sequence analysis thereby making CKB a unique and beneficial resource for cyanobacterial genome analysis.

Future Prospects
It is planned to improve and update the content of the database of CKB in the following aspects. First, gene information will be enriched by adding experimentally proven results related to biological functions, expression, and protein-protein interactions by manually
curating the data from peer reviewed literature. In addition, we intend to include or develop further analysis tools to support the analysis of cyanobacterial genomes. The necessary efforts will also be made to ensure the database as user-friendly and efficient as possible, using the reflection and feedback from users of the first version of CKB to guide our efforts.

Fig 6. Sequence features. Graphical and tabular display of sequence features.

doi:10.1371/journal.pone.0136262.g006
Conclusions
Here we present CKB as a knowledge database for the cyanobacteriologists. CKB provides access to information related to fully sequenced genomes and can be utilized for analysis and retrieving information. The CKB database website is freely accessible as a web application at: http://nfmc.res.in/ckb.

Materials and Methods
Data Collection and Organization
The complete genomes of 74 cyanobacteria were downloaded from the NCBI ftp site and their accession numbers are listed in S1 File [23]. Sequence features, annotations, and external links were downloaded from the UniProt database in xml format for each gene [24]. All the downloaded data from NCBI and UniProt databases were converted into csv format and uploaded into a SQL database. The full schema of the database is included as the S1 Fig.
Web Interface and Application

CKB is built on a 64 bit CentOS (version 5) server running WAMPSERVER (V2.2d), which integrates the Apache HTTP Server (V2.2.21) with PHP (V5.3.10) and the MySQL Server (V5.5.20). Complete data related to the sequence and annotations are stored in a MySQL database. The database is designed using PHP, with jQuery JavaScript Library (V1.10), and Cascading Style Sheets (CSS) for the web interface. In addition, a simple gene browser in HTML5 is incorporated into the gene report page, which is provided by Chase Miller [25]. The BLAST 2.2.29+ tool is downloaded from NCBI ftp and pattern and fuzzy search tool and the restriction digestion tools are downloaded from Sequence Manipulation Suite [26–27]. The web server and all information parts of the database are hosted at NFMC portal www.nfmc.res.in.

Supporting Information

S1 Fig. Database schema.
(TIF)

S1 File. List of RefSeq accession numbers.
(DOCX)

Acknowledgments

The authors sincerely thank the Department of Biotechnology, Government of India, New Delhi for funding the Sub-Distributed Bioinformatics Centre (Grant No. BT/BI/04/038/98)

Author Contributions

Conceived and designed the experiments: APP KL. Performed the experiments: APP KL SM UL PD. Analyzed the data: APP KL UL PD SG. Contributed reagents/materials/analysis tools: APP KL UL PD ST KA. Wrote the paper: APP KL SV SM UL PD ST KA SG.

References

1. Bryant DA (1994) The Molecular Biology of Cyanobacteria. Dordrecht: Kluwer Academic Publishers. 613–639. doi:10.1007/978-94-011-0227-8
2. Whitton BA, Potts M (2002) The Ecology of Cyanobacteria, Their Diversity in Time and Space. Kluwer Academic Publisher Dordrecht. 563–589. doi: 10.1007/0-306-46855-7
3. Blaha L, Babica P, Marsalek B (2009) Toxins produced in cyanobacterial water blooms—toxicity and risks. Inter discip Toxicol 2:36–41. PMID: 21217843
4. Tan LT (2007) Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 68: 954–979. PMID: 17336349
5. Burja AM, Banaigs B, Abou-Mansour E, Grant Burgess J, Phillip C, Wright (2001) Marine cyanobacteria—a prolific source of natural products. Tetrahedron 57:9347–9377. doi: 10.1016/S0040-4020(01)00931-0
6. Kehr JC, GattePicchi D, Dittmann E (2011) Natural product biosyntheses in cyanobacteria: A treasure trove of unique enzymes. Beilstein J Org Chem 1622–1635. doi: 10.3762/bjoc.7.191 PMID: 22238540
7. Hernández-Prieto MA, Semeniuk TA, Futschik ME (2014) Toward a systems-level understanding of gene regulatory, protein interaction, and metabolic networks in cyanobacteria. Front Genet. 2014 Jul 2; 5:191. doi: 10.3389/fgene.2014.00191. eCollection 2014. PMID: 25071821
8. Fujisawa T, Okamoto S, Katayama T, Nakao M, Yoshimura H, Kajiya-Kanegae H et al. (2014) CyanoBase and RhizoBase: databases of manually curated annotations for cyanobacterial and rhizobial genomes. Nucleic Acids Res 42: 666–670. doi: 10.1093/nar/gkt1145 PMID: 24276486
9. Furumichi M, Sato Y, Omata T, Masahiko Ikeuchi, Minoru Kanehisa (2002) CYORF: Community Annotation of Cyanobacteria Genes. Genome Informatics 13: 402–403.
10. Elhai J, Taton A, Massar JP, Myers JK, Travers M, Casey J et al. (2009) BioBIKE: a Web-based, programmable, integrated biological knowledge base. Nucleic Acids Res. 2009 Jul; 37(Web Server issue): W28–32. doi:10.1093/nar/gkp354. Epub 2009 May 11. PMID:19433511

11. Cyanorak Database. Accessed: http://www.sb-roscoff.fr/cyanorak

12. Kim WY, Kang S, Kim BC, Oh J, Cho S, Bhak J et al. (2008) SynechoNET: integrated protein-protein interaction database of a model cyanobacterium Synechocystis sp. PCC 6803. BMC Bioinformatics. 2008; 9 Suppl 1:S20. doi: 10.1186/1471-2105-9-S1-S20 PMID: 18315852

13. Kelly L1, Huang KH, Ding H, Chisholm SW. ProPortal: a resource for integrated systems biology of Prochlorococcus and its phage. Nucleic Acids Res. 2012 Jan; 40(Database issue):D632–40. doi:10.1093/nar/gkr1022. Epub 2011 Nov 18. PMID:22102570

14. Wu J, Zhao F, Wang S, Deng G, Wang J, Bai J et al. (2007) cTFbase: a database for comparative genomics of transcription factors in cyanobacteria. BMC Genomics 18:104. doi:10.1186/1471-2164-8-104 PMID: 17439663

15. Arun PV, Bakku RK, Subhashini M, Singh P, Prabhu NP, Suzuki I et al. (2012) CyanophyChe: a database for physico-chemical properties, structure and biochemical pathway information of cyanobacterial proteins. PLoS One 7:e49425. doi: 10.1371/journal.pone.0049425 PMID: 23185330

16. Sasaki NV, Sato N. (2010) CyanoClust: comparative genome resources of cyanobacteria and plastids. Database (Oxford). 2010; 2010:bap025. doi: 10.1093/database/bap025. Epub 2010 Jan 8. PMID: 20428314

17. Hernandez-Prieto MA, Futschik ME. CyanoEXpress: A web database for exploration and visualisation of the integrated transcriptome of cyanobacterium Synechocystis sp. PCC6803. Bioinformation. 2012; 8(13):634–8. doi: 10.6026/97320630008634. Epub 2012 Jul 6. PMID: 22829745

18. Bretaradeau A, Coste F, Humily F, Garcharek L, Le Corguillé G, Six C et al. (2013) CyanoLyase: a database of phycobilin lyase sequences, motifs and functions. Nucleic Acids Res. 2013 Jan; 41(Database issue):D396–401. doi: 10.1093/nar/gks1091. Epub 2012 Nov 21. PMID: 23175607

19. CyanoNews. Accessed: http://www.vcu.edu/cyanonews/

20. Cyanosite. Accessed: http://www-cyanosite.bio.purdue.edu/

21. CyanoData. Accessed: http://www.cyanodata.net/faq.php

22. CyanoDB. Accessed: http://www.cyanodb.cz/

23. FTP site for genome sequence. Accessed: ftp://ftp.ncbi.nlm.nih.gov/genomes/

24. UniProt database. Accessed: http://www.uniprot.org/

25. Miller CA, Anthony J, Meyer MM, Marth G (2013) Scribl: an HTML5 Canvas-based graphics library for visualizing genomic data over the web. Bioinformatics. 29:381–383. doi: 10.1093/bioinformatics/bts677 PMID: 23172864

26. NCBI standalone blast. Accessed: ftp://ftp.ncbi.nlm.nih.gov/blast/

27. Sequence Manipulation Suite. Accessed: http://www.bioinformatics.org/sms2/