Predicting pK$_a$ for proteins using COSMO-RS

We have used the COSMO-RS implicit solvation method to calculate the equilibrium constants, pK$_a$, for deprotonation of the acidic residues of the ovomucoid inhibitor protein, OMTKY3. The root mean square error for comparison with experimental data is only 0.5 pH units and the maximum error 0.8 pH units. The results show that the accuracy of pKa prediction using COSMO-RS is as good for large biomolecules as it is for smaller inorganic and organic acids and that the method compares very well to previous pKa predictions of the OMTKY3 protein using Quantum Mechanics/Molecular Mechanics. Our approach works well for systems of about 1000 atoms or less, which makes it useful for small proteins as well as for investigating portions of larger proteins such as active sites in enzymes.
Martin Peter Andersson*, Jan Halborg Jensen and Susan Louise Svane Stipp

Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, DK-2100, Denmark

*corresponding author: ma@nano.ku.dk
Introduction

Proteins are the basic building blocks of life as we know it. Better understanding of their chemical and physical behavior would open a host of new possibilities in science, medicine and technology. Central to understanding their behavior is a method for describing their properties thermodynamically. The protonation state is one important variable for predicting interaction with fluids and solids because as pH changes and protons attach or detach from the protein as a function of pH and solution composition, charge and adhesion properties are affected. The equilibrium constant that describes protonation, the acidity constant, pK_a, provides a quantification of the protein’s properties and contributes to our ability to predict the outcome of processes such as protein-protein interaction (Muegge et al. 1998; Sheinerman et al. 2000), aggregation (Wang et al. 2010) and interactions with nanoparticles (Bomboi et al. 2013) and surfaces. These processes in turn control biological activity. Considerable effort has gone into research on pK_a to determine values experimentally as well as developing and validating methods to predict them. Many of these are described in a recent review (Alexov et al. 2011). An interesting point throughout is that pK_a values for protonation of amino acid side chains can be significantly shifted from their water reference values. For predicting acidity constants, several approaches have been used: quantum chemical, molecular dynamics, electrostatic (Poisson-Boltzmann and generalized Born) and empirical methods. The empirical methods often outperform more rigorous methods. In a recent blind prediction study (Olsson 2012), the largest deviation from experimental data resulted from a quantum chemical method. Much of the difficulty in reducing uncertainty in protein acidity constants comes from difficulties with configurational sampling, which is crucial for capturing details about structural reorganization and water penetration into the protein.

The turkey ovomucoid inhibitor protein, OMTKY3, has frequently been used as a system for benchmarking pK_a predictions in proteins, in particular quantum mechanical (QM) and combined quantum mechanical/molecular mechanical (QM/MM) methods. Accurate measurements of its five acid residues are available (Schaller & Robertson 1995) and there is a significant spread between the most and the least acidic values. This spread, coupled with the reasonable size of the protein, makes OMTKY3 a very good model for benchmarking theoretical results (Li et al. 2004).

pK_a prediction, using density functional theory (DFT) and the implicit solvent model COSMO-RS, is quite straightforward for acids (Klamt et al. 2003) as well as bases (Eckert & Klamt 2006) and does not require any explicit solvent molecules. The prediction of pK_a values for small inorganic and organic molecules using COSMO-RS is mature, with calculated values matching experimental values with a root mean square error of 0.5 pH units, but how well could pK_a values be predicted when an acid group is part of a protein and both the acid group and the rest of the protein are affected by internal hydrogen bonding and local changes in the environment? In this study, we demonstrate that given a reasonable starting structure based on experimental evidence, a combination of semi-empirical geometry optimization, coupled with single point calculation using DFT, and the implicit solvent model COSMO-RS, gives excellent agreement for the pK_a values of the five acid side chains in OMTKY3. We also provide evidence that the accuracy of protein pK_a predictions using COSMO-RS is equally good for larger biomolecules such as whole or parts of protein molecules that consist of as many as 1000 atoms.
Computational details

Geometry optimization was performed using the program MOPAC2009 (Stewart 2009) with the AM1 (Dewar et al. 1985) and PM6-DH+ (Korth 2011) semi-empirical methods and the linear scaling algorithm MOZYME. The COSMO solvent module with dielectric constant 999.9 was used for the geometry optimization because the COSMO-RS method requires perfect screening as the reference state. We used the LBFGS method for geometry optimization, with GNORM=2.0. All DFT simulations were single point calculations performed with the TURBOMOLE program, v6.3 (Ahrlichs et al. 1989), using the BP functional (Becke 1988; Perdew 1986) and the SVP basis set (Schafer et al. 1992; Weigend & Ahlrichs 2005). The COSMOtherm program with parameterization BP_SVP_C21_0111 was used for all COSMO-RS calculations (Eckert & Klamt 2002; Eckert & Klamt 2013) and all were performed at 298 K. pK_a calculations in COSMO-RS are based on a linear free energy relationship between measured pK_a and the calculated free energy difference between the protonated and the deprotonated forms of the acid (Klamt Eckert Diedenhofen & Beck 2003). There is no need for explicit solvent molecules.

Our starting point for the geometry optimization for the OMTKY3 protein was the experimental structure for 1PPF (Bode et al. 1986), downloaded from the PDB databank. The initial positions of the hydrogen atoms were determined at pH 7, using the WHATIF program (Vriend 1990). We used two approaches for geometry optimization: We first used the AM1 method, with full optimization of the whole protein for each of the protonated states. As a second approach, we used the PM6-DH+ method analogously but we had to make an additional geometry optimization. Before the single point DFT calculations, we froze the entire structure except for the amino acid side chain of interest and re-optimized using AM1. This is a prerequisite for using the COSMO-RS parameterization BP_SVP_C21_0111, for which only the AM1 semi-empirical method gives reliable results.

The initial structure was determined for neutral pH, which means that all aspartic acid, Asp, and glutamic acid, Glu, were deprotonated and negatively charged, whereas lysine, Lys, was protonated and positively charged. All pK_a values were then predicted by adding a single hydrogen atom to each acid group in turn, using only the most stable conformation found. At least two conformations were tested for each acid group by adding a hydrogen atom to either of the acid oxygen atoms. No conformer treatment was made in COSMO-RS.

The calculation time was quite reasonable for a small (805 atoms) protein. The semi-empirical geometry optimization of the experimental structure took about 5 hours on a single core. The next geometry optimizations, where protons were added, took less than an hour each. A single point DFT calculation took about 15 hours (wall time) using 8 cores.

Results and discussion

The optimized geometry and corresponding COSMO surface for the OMTKY3 protein is shown in Figure 1. The predicted pK_a values for the acid side chains of OMTKY3 match very well with experimental data (Table 1) with an RMS error of less than 1 pH unit for both optimization methods. This compares well with previous studies (Forsyth et al. 1998; Havranek & Harbury 1999; Li Robertson & Jensen 2004; Mehler & Guarnieri 1999; Nielsen & Vriend 2001). The PM6-DH+ optimization, where RMS error is 0.5, gives slightly better results than AM1, where RMS is 0.8. This improvement probably comes from the much more accurate treatment of internal
hydrogen bonding with the PM6-DH+ method, which results in a better three-dimensional protein structure. Particularly important is the ability of our method to predict the most acidic pK\textsubscript{a} value of Asp27 with an error of less than 1 pH unit. The excellent agreement implies that pK\textsubscript{a} prediction using COSMO-RS is as good for macromolecules as it is for smaller inorganic and organic compounds, for which the method is parameterized. COSMO-RS has been shown to be as accurate for small bases (Eckert & Klamt 2006) as it is for small acids (Klamt Eckert Diedenhofen & Beck 2003), which suggests that COSMO-RS could also be applied to pK\textsubscript{a} predictions for base side chains of proteins.

OMTKY3 is a small protein but our results suggest that parts of larger proteins, with as many as 1000 atoms (about 50 amino acid residues), for example active sites in enzymes, could be predicted in a similar manner. This would require slightly more complex methods where one might freeze atoms for parts of the protein that are far from the site of interest. Assuming an average protein density of 1.22 g/cm3 (Andersson & Hovmöller 1998) and using polyglycine as an average protein composition and structure, we can construct a model protein with \sim1000 atoms contained within a sphere of radius 13.8 Å. This system is large enough to represent most active sites in enzymes and similar molecules of interest. To use a pure QM method, the molecular structure must be terminated outside the sphere, i.e. by removing atoms more than 13 Å from the center of interest and adding protons to any broken bonds, similar to the approach followed by Li and colleagues (Li Robertson & Jensen 2004). By choosing a QM treatment for a system of as many as 1000 atoms, we can significantly reduce the artifacts that would accompany the need for a QM/MM boundary for a smaller number of atoms.

The COSMO-RS method, using semi-empirical geometry optimization, has an accuracy that is close to much more elaborate QM/MM methods but the computational setup and cost are significantly smaller. For proteins of < 1000 atoms, application of the method is quite straightforward because the whole structure can be considered, with no need to cut bonds. It would be advantageous to have a parameterization of COSMO-RS that is based on geometry from a more accurate semi-empirical method than AM1. From our results, we suggest that the PM6-DH+ method could provide such a framework, considering its good performance for biomolecules (Yilmazer & Korth 2013).

Conclusions

We have predicted pK\textsubscript{a}s for the OMTKY3 protein that is quite close to experimental data. The COSMO-RS implicit solvent model works very well for proteins, where internal hydrogen bonding and local environment modify the pK\textsubscript{a} values from what they would be for the free amino acids. The root mean square error for the five acidic side chains in the OMTKY3 protein was 0.5 pH units, which is comparable to results from previous efforts to predict pK\textsubscript{a}. Our approach works well for systems of about 1000 atoms or less, which makes it useful for small model proteins and for investigating portions of larger proteins such as active sites in enzymes.

Acknowledgements

The computing resources were provided on a system established by the Danish Center for Scientific Computing (DCSC), which is now known as DeIC (Danish e-infrastructure cooperation).
References

TURBOMOLE V6.3 2011, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007.

Ahlrichs R, Bar M, Hase M, Horn H, and Kolmel C. 1989. Electronic-structure calculations on workstation computers - the program system TURBOMOLE. Chemical Physics Letters 162:165-169.

Alexov E, Mehler EL, Baker N, Baptista AM, Huang Y, Milletti F, Nielsen JE, Farrell D, Carstensen T, Olsson MH, Shen JK, Warwicker J, Williams S, Word JM. 2011. Progress in the prediction of pK(a) values in proteins. Proteins-Structure Function and Bioinformatics 79:3260-3275.

Andersson KM, and Hovmöller S. 1998. The average atomic volume and density of proteins. Zeitschrift für Kristallographie - Crystalline Materials 213:369-373.

Becke AD. 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A 38:3098.

Bode W, Wei AZ, Huber R, Meyer E, Travis J, and Neumann S. 1986. X-ray crystal-structure of the complex of human-leukocyte elastase (Pmn Elastase) and the 3rd domain of the turkey ovomucoid inhibitor. EMBO J 5:2453-2458.

Bomboi F, Tardani F, Gazzoli D, Bonincontro A, and La Mesa C. 2013. Lysozyme binds onto functionalized carbon nanotubes. Colloids and Surfaces B-Biointerfaces 108:16-22.

Dewar MJS, Zoebisch EG, Healy EF, and Stewart JJP. 1985. The development and use of quantum-mechanical molecular-modes .76. AM1 - a new general-purpose quantum-mechanical molecular-model. Journal of the American Chemical Society 107:3902-3909.

Eckert F, and Klamt A. 2002. Fast solvent screening via quantum chemistry: COSMO-RS approach. Aiche Journal 48:369-385.

Eckert F, and Klamt A. 2006. Accurate prediction of basicity in aqueous solution with COSMO-RS. Journal of Computational Chemistry 27:11-19.

Eckert F, and Klamt A. 2013. COSMOTHERM Version C3.0, Release 13.01. C3.0, Release 13.01 ed: COSMOlogic GmbH & Co. KG, Leverkusen, Germany.

Forsyth WR, Gilson MK, Antosiewicz J, Jaren OR, and Robertson AD. 1998. Theoretical and Experimental Analysis of Ionization Equilibria in Ovomucoid Third Domain. Biochemistry 37:8643-8652.

Havranek JJ, and Harbury PB. 1999. Tanford–Kirkwood electrostatics for protein modeling. Proceedings of the National Academy of Sciences 96:11145-11150.

Klamt A, Eckert F, Diedenhofen M, and Beck ME. 2003. First principles calculations of aqueous pK(a) values for organic and inorganic acids using COSMO-RS reveal an inconsistency in the slope of the pK(a) scale. Journal of Physical Chemistry A 107:9380-9386.

Korth M. 2011. Third-Generation Hydrogen-Bonding Corrections for Semiempirical QM Methods and Force Fields. Journal of Chemical Theory and Computation 6:3808-3816.

Li H, Robertson AD, and Jensen JH. 2004. The determinants of carboxyl pK(a) values in Turkey ovomucoid third domain. Proteins-Structure Function and Bioinformatics 55:689-704.

Mehler EL, and Guarnieri F. 1999. A Self-Consistent, Microenvironment Modulated Screened Coulomb Potential Approximation to Calculate pH-Dependent Electrostatic Effects in Proteins. Biophysical Journal 77:3-22.
Muegge I, Schweins T, and Warshel A. 1998. Electrostatic contributions to protein-protein binding affinities: Application to Rap/Raf interaction. Proteins: Structure, Function and Genetics 30:407-423.

Nielsen JE, and Vriend G. 2001. Optimizing the hydrogen-bond network in Poisson–Boltzmann equation-based pKa calculations. Proteins: Structure, Function, and Bioinformatics 43:403-412.

Olsson MHM. 2012. Improving the desolvation penalty in empirical protein pK(a) modeling. Journal of Molecular Modeling 18:1097-1106.

Perdew JP. 1986. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Physical Review B 33:8822.

Schafer A, Horn H, and Ahlrichs R. 1992. Fully optimized contracted gaussian-basis sets for atoms Li to Kr. Journal of Chemical Physics 97:2571-2577.

Schaller W, and Robertson AD. 1995. pH, Ionic Strength, and Temperature Dependences of Ionization Equilibria for the Carboxyl Groups in Turkey ovomucoid Third Domain. Biochemistry 34:4714-4723.

Sheinerman FB, Norel R, and Honig B. 2000. Electrostatic aspects of protein-protein interactions. Current Opinion in Structural Biology 10:153-159.

Stewart JJP. 2009. MOPAC2009. 11.053L ed: Stewart Computational Chemistry.

Vriend G. 1990. WHAT IF: A molecular modeling and drug design program. J Mol Graph 8:52-56.

Wang W, Li N, and Speaker S. 2010. External factors affecting protein aggregation. Aggregation of Therapeutic Proteins. Hoboken, New Jersey: John Wiley & Sons.

Weigend F, and Ahlrichs R. 2005. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics 7:3297-3305.

Yilmazer ND, and Korth M. 2013. Comparison of Molecular Mechanics, Semi-Empirical Quantum Mechanical, and Density Functional Theory Methods for Scoring Protein–Ligand Interactions. The Journal of Physical Chemistry B 117:8075-8084.
Table 1 (on next page)

Experimental and calculated pKa values for the acids in OMTKY3.

Experimental and calculated pKa values for the acids in OMTKY3. The method in parenthesis is the method used for the geometry optimization.
Table

Amino acid side chain	Experimental data	This work (AM1)	This work (PM6-DH+/AM1)	Li et al.	Forsyth et al.	Nielsen et al.	Mehler et al.	Havranek et al.
Asp7	2.5	2.7	2.2	2.4	2.9	2.7	2.9	2.1
Glu10	4.1	5.7	3.8	4.3	3.4	3.6	4.1	4.0
Glu19	3.2	3.5	2.6	2.7	3.2	2.7	3.6	3.1
Asp27	2.2	2.6	3.0	1.9	4.0	3.4	3.3	2.9
Glu43	4.8	4.9	4.6	4.5	4.3	4.3	4.4	5.6
RMS Error	0.8	0.5	0.3	0.9	0.7	0.6	0.5	
Max Error	1.6	0.8	0.5	1.8	1.2	1.1	0.8	

2 References a [7]; b [8]; c [24]; d [27]; e [25]; f [26]
Figure 1

Optimized geometry and COSMO surface of the OMTKY3 protein.

Optimized geometry (left) and COSMO surface (right) of the OMTKY3 protein. The PM6-DH+ semi-empirical method was used for the geometry optimization and the BP/SVP/COSMO method was used to create the COSMO surface.