Number of partitions of \(n \) into parts not divisible by \(m \)

Damanvir Singh Binner

Department of Mathematics
Indian Institute of Science Education and Research (IISER)
Mohali, Punjab, India
damanvirbinnar@iisermohali.ac.in

Abstract

In this note, we obtain a formula which leads to a practical and efficient method to calculate the number of partitions of \(n \) into parts not divisible by \(m \) for given natural numbers \(n \) and \(m \). Our formula is a generalization of Euler’s recurrence for integer partitions which can be viewed as the case \(m = 1 \) of our formula. Our approach primarily involves the principle of inclusion and exclusion. We also use our approach to obtain a natural combinatorial proof of a identity of Glaisher which generalizes a classical theorem of Euler.

1 Introduction

Euler [1, Corollary 1.2] proved that the number of partitions of \(n \) into distinct parts is equal to the number of partitions into distinct parts. Glaisher [4, 5] generalized Euler’s result by proving that for any positive integers \(m \) and \(n \), the number of partitions of \(n \) into parts not divisible by \(m \) is equal to the number of partitions of \(n \) with each part appearing less than \(m \) times. In this note, we obtain a formula that helps us to quickly calculate these numbers. Our formula generalizes Euler’s recurrence relation for integer partitions [1, Corollary 1.8].

We use the principle of inclusion and exclusion (PIE) to study these objects, an approach used by the present author and Rattan in the author’s PhD Thesis [2, Section 5.1] to obtain a natural combinatorial proof of Euler’s recurrence. This approach was also used by the present author [3] to obtain a formula for the number of partitions of \(n \) with a given parity of the smallest part.

Note that the calculation of \(p(n) \) is very easy compared to finding all the partitions of \(n \) because of the availability of formulae such as Hardy-Ramanujan-Rademacher formula and recurrences such as Euler’s recurrence. Therefore, Theorem 1 below describes an efficient method to calculate the number of partitions of \(n \) into parts not divisible by \(m \), as demonstrated by examples in Section 4.
2 Main Theorem

Theorem 1. Let $P_m(n)$ denote the number of partitions of n into parts not divisible by m. Then, $P_m(n)$ is given by the following formula.

$$P_m(n) = p(n) + \sum_{k \geq 1} (-1)^k \left(p \left(n - \frac{mk(3k - 1)}{2} \right) + p \left(n - \frac{mk(3k + 1)}{2} \right) \right).$$

Remark 2. For $m = 1$, $P_m(n) = 0$, and Theorem 1 immediately yields Euler’s recurrence.

Proof of Theorem 1. We recall some notation defined in [2, Section 5.1] and define some new notation.

- $A_{j,k}(n)$ is the set of partitions of n having exactly k parts of size j;
- $B_{j,k}(n)$ is the set of partitions of n having at least k parts of size j;
- $C_{j,k}(n)$ is the set of partitions of n having at most k parts of size j.

The following properties of these sets are immediate.

1. $|B_{j,k}(n)| = p(n - jk)$.
2. If $j \neq j'$, then $|B_{j,k}(n) \cap B_{j',k'}(n)| = p(n - jk - j'k')$.
3. $C_{j,k}(n) = B_{j,k+1}(n)$, where the complementation is with respect to the set $\text{Par}(n)$, consisting of all partitions of n.
4. In particular, $A_{j,0}(n) = C_{j,0}(n) = B_{j,1}(n)$.

We also need the following notation.

- \mathcal{D} denotes the set of nonempty distinct partitions.
- For $s \in \mathbb{N}$, T_s denotes the set of partitions into s distinct parts.
- For a partition π, $n(\pi)$ denotes the number of parts in π.
Then using PIE, we have

\[P_m(n) = |A_{m,0}(n) \cap A_{2m,0}(n) \cap A_{3m,0}(n) \cap \cdots | \]
\[= | \cap_{i \geq 1} A_{im,0}(n) | \]
\[= | \cup_{i \geq 1} B_{im,1}^c(n) | \]
\[= \sum_{s \geq 0} (-1)^s \sum_{(i_1, i_2, \ldots, i_s) \in T_s} |B_{i_1m,1}(n) \cap B_{i_2m,1}(n) \cap \cdots \cap B_{i_sm,1}(n)| \]
\[= \sum_{s \geq 0} (-1)^s \sum_{(i_1, i_2, \ldots, i_s) \in T_s} p(n - i_1m - i_2m - \cdots - i_sm) \]
\[= \sum_{s \geq 0} \sum_{\pi \in T_s} (-1)^s p(n - m|\pi|) \]
\[= p(n) + \sum_{s \geq 1} \sum_{\pi \in T_s} (-1)^s p(n - m|\pi|) \]
\[= p(n) + \sum_{\pi \in D} (-1)^{n(\pi)} p(n - m|\pi|), \]

which completes the proof by Euler’s pentagonal number theorem \cite[Theorem 1.6]{1}. Note that here we are able to use PIE even though there are infinitely many sets because all except finitely many are empty. \hfill \Box

3 A proof of Glaisher’s identity

Let \(Q_m(n) \) denote the number of partitions of \(n \) with each part appearing less than \(m \) times. Then using PIE, we have

\[Q_m(n) = | \cap_{i \geq 1} C_{i,m-1}(n) | \]
\[= | \cup_{i \geq 1} B_{i,m}^c(n) | \]
\[= \sum_{s \geq 0} (-1)^s \sum_{(i_1, i_2, \ldots, i_s) \in T_s} |B_{i_1m,1}(n) \cap B_{i_2m,1}(n) \cap \cdots \cap B_{i_sm,1}(n)| \]
\[= \sum_{s \geq 0} \sum_{(i_1, i_2, \ldots, i_s) \in T_s} p(n - i_1m - i_2m - \cdots - i_sm) \]
\[= \sum_{s \geq 0} \sum_{\pi \in T_s} (-1)^s p(n - m|\pi|) \]
\[= p(n) + \sum_{s \geq 1} \sum_{\pi \in T_s} (-1)^s p(n - m|\pi|) \]
\[= p(n) + \sum_{\pi \in D} (-1)^{n(\pi)} p(n - m|\pi|), \]

completing the proof of Glaisher’s generalization of Euler’s identity.
4 Examples

For computational purposes, it is convenient to note a few terms and compare the pattern with the terms appearing in Euler’s recurrence for partitions, which is given as

\[p(n) = p(n - 1) + p(n - 2) - p(n - 5) - p(n - 7) \]
\[+ p(n - 12) + p(n - 15) - p(n - 22) - p(n - 26) + \cdots \]

Then, by Theorem 1, we have the following formula for \(P_m(n) \).

\[P_m(n) = p(n) - p(n - m) - p(n - 2m) + p(n - 5m) + p(n - 7m) \]
\[- p(n - 12m) - p(n - 15m) + p(n - 22m) + p(n - 26m) - \cdots \]

First suppose \(n = 17 \) and \(m = 3 \). Then, we have

\[P_3(17) = p(17) - p(14) - p(11) + p(2) \]
\[= 297 - 135 - 56 + 2 \]
\[= 108. \]

Thus, 108 out of 297 partitions of 17 have parts not divisible by 3 and the remaining 189 partitions have at least one part that is divisible by 3.

Next, suppose \(n = 164 \) and \(m = 7 \). Then, we have

\[P_7(164) = p(164) - p(157) - p(150) + p(129) + p(115) - p(80) - p(59) + p(10) \]
\[= 156919475295 - 80630964769 - 4085325313 \]
\[+ 4835271870 + 1064144451 - 15796476 - 831820 + 42 \]
\[= 41318063280. \]

Thus, 41318063280 out of 156919475295 partitions of 164 have parts not divisible by 7 and the remaining 115601412015 partitions have at least one part that is divisible by 7.

References

[1] G. E. Andrews, The Theory of Partitions, Cambridge Mathematical Library, Reprint of the 1976 original Cambridge University Press, Cambridge, 1998.

[2] D. S. Binner, Combinatorial methods for integer partitions, PhD Thesis, Simon Fraser University, 2021, available online at http://summit.sfu.ca/item/21451.

[3] D. S. Binner, Number of partitions of \(n \) with a given parity of the smallest part, 2022, arXiv preprint, available online at https://arxiv.org/pdf/2204.07218.pdf.

[4] J. W. L. Glaisher, A theorem in partitions, Messenger of Math. 12(1883), 158–170.

[5] I. Konan, Weighted words at degree two, I: Bressoud’s algorithm as an energy transfer, accepted for publication in Ann. of IHP D, available online at https://arxiv.org/pdf/2001.10927.pdf (2021).