An enhanced VOF method coupled with heat transfer and phase change to characterise bubble detachment in saturated pool boiling

Anastasios Georgoulas1*, Manolia Andredaki1 and Marco Marengo1

1 Advanced Engineering Centre, School of Computing, Engineering and Mathematics, Cockcroft Building, Lewes Road, University of Brighton, Brighton, UK, BN2 4GJ; A.Georgoulas@brighton.ac.uk; M.Andredaki@brighton.ac.uk; M.Marengo@brighton.ac.uk

* Correspondence: A.Georgoulas@brighton.ac.uk; Tel.: +44-(0)1273-642900

Abstract: The present numerical investigation identifies quantitative effects of fundamental controlling parameters, on the detachment characteristics of isolated bubbles, in cases of pool boiling in the nucleate boiling regime. For this purpose, an improved Volume of Fluid (VOF) approach, developed previously in the general framework of OpenFOAM CFD Toolbox, is further coupled with heat transfer and phase change. The predictions of the model are quantitatively verified against an existing analytical solution and experimental data in the literature. Following the model validation, four different series of parametric numerical experiments are performed, exploring the effect of the Initial Thermal Boundary Layer (ITBL) thickness for the case of saturated pool boiling of R113 as well as the effects of surface wettability, wall superheat and gravity level for the cases of R113, R22 and R134a refrigerants. It is confirmed that the ITBL is a very important parameter in the bubble growth and detachment process. Furthermore, for all of the examined working fluids the bubble detachment characteristics seem to be significantly affected by the triple-line contact angle (i.e. the wettability of the heated plate) for equilibrium contact angles higher than 45°. As expected, the simulations revealed that the heated wall superheat is very influential for the bubble growth and detachment process. Finally, besides the novelty of the numerical approach, a last finding is the fact that the effect of gravity level variation in the bubble detachment time and volume diminishes with the increase of the ambient pressure.

Keywords: Two-phase flow, VOF method, OpenFOAM, pool boiling, phase change

PACS: J0101

1. Introduction

Boiling heat transfer is encountered in a wide field of applications, ranging from everyday life applications to more complex, industrial applications. Therefore, the exact knowledge and understanding of the boiling process and its fundamental parameters and limitations are necessary for the design and optimization of a wide range of thermal systems and technologies. Another quite important aspect regarding boiling heat transfer is the wide range of dimensional scales in the applications. For example, boiling heat transfer may be used to cool down micro-electronic components. However, boiling also occurs for example in steam generators for power plants. Due to the difficulty of generalizing the various operative conditions, boiling heat transfer has been intensively studied in the past and is still the subject of ongoing research activities in many research groups all over the world.

In spite of the ample past research, many aspects of the boiling phenomena are still not well understood. In the past, many semi-empirical correlations have been developed based on a large
number of experiments for different parameter ranges. Boiling heat convection coefficients can be estimated within these ranges with an accuracy which usually is better than ±30%, when a set of standard influencing variables are considered. However, the number of influencing parameters is very high and is further increased by new experiments deploying new experimental correlations. Therefore, in order to further improve the existing predictive tools, a deeper physical understanding of the boiling processes for the various temporal and spatial scales is necessary [1]. Generally, a comprehensive physical understanding can be achieved by either highly resolved boiling experiments and by highly resolved numerical simulations. These two approaches should not be separated or competing. They should rather be used together, in order to allow a quantitative comparison and a better capacity in designing thermal systems. In the recent years, experimental campaigns and numerical simulations have shown significant progress regarding temporal and spatial resolution as well as accuracy.

One of the earliest experimental works on boiling heat transfer was performed by Jakob and Fritz [2], where the influence of surface roughness and heat flux on the wall temperature during boiling of water was measured and reported. Later on, a theoretical approach to calculate the departure volume of bubbles as a function of the material properties of the boiling fluid and its wetting behavior on the wall was proposed by Fritz [3]. In the same period, Nukiyama [4] established the well-known pool boiling curve, publishing one of the most important papers in boiling research. In the following decades, many experimentally derived correlations have been reported in order to predict the fundamental bubble detachment diameter and frequency (e.g. [5–7]) as well as the heat transfer coefficients (e.g. [8]). All these correlations, have been mainly implemented in 1D numerical models and applied for practical engineering design calculations. However, these are valid only in the limited region of fluid properties, working conditions and geometrical configurations corresponding to the experimental databases to which they were fitted. Using larger lookup tables based on a great number of experiments, a significant range of fluid properties and working conditions can be covered. But the applicability of such modeling methods is still limited to the reference geometry for which they were developed. However, in the absence of more sophisticated predictive models, many of these physical models are still in use for the design of various technical applications. For a more detailed overview of the majority of the experimentally derived correlations, the reader may refer to the work of Carey [9].

During the last decades, the rapid advancement in the experimental technology, led to the development of modern measuring instruments and techniques that significantly increased the spatial and temporal resolutions that can be resolved by laboratory experiments. This enabled the experimental investigation of local and instantaneous quantities such as the local wall temperature underneath a vapor bubble or the instantaneous heat transfer at the bubble foot during the boiling process. In particular, the use of thermo-chromic liquid crystals (TLCs) (e.g. [10–12]), Indium-Tin-Oxide (ITO) transparent heaters in combination with high speed imaging (e.g. [13,14]), high speed infrared thermography and particle image velocimetry (e.g. [15,16]) as well as the use of micro heater arrays to impose constant temperature or constant heat flux boundary conditions (e.g. [17–20]), have offered more detailed insight regarding the transient character of boiling heat transfer. However, all these modern and high resolution techniques are still not sufficient to completely understand the microscale heat transfer in the vicinity of the three-phase contact line (liquid-vapor-solid). In particular the temperature of the liquid surrounding the vapor bubble could not yet be measured with satisfying resolution. The local wall temperature can be measured within a certain distance to the three-phase contact line, while the temperature in the liquid is measured only at certain points in the far-field. However, the use of micro-thermocouples and micro-piezoelectric pressure transducers (e.g. [21,22]) is a quite promising approach to overcome such problems.

With the growing computing capabilities and amount of available computing resources as well as with the rapid development of modern numerical methods for the simulation of multiphase flows, the numerical simulation of boiling heat transfer has become possible, for a wide range of applications as well as spatial and temporal scales. In the recent years, the use of CFD codes has been
extended to the analysis of three-dimensional, multi-phase flows, aiming to overcome the weakness of 1D numerical models.

Typically, up to present, there are two main branches in the literature for the numerical investigation of boiling heat transfer by the use of CFD.

In the first branch, most of the existing open-source, in-house, and especially commercial CFD codes have adopted a Eulerian multiphase flow approach, based on a two-fluid model. With this approach, governing equations for mass, momentum and energy are solved for each phase, separately, weighted by the so-called Volume Fraction, which represents the ensemble averaged probability of occurrence for each phase at a certain point in time and space. Interaction/exchange terms between the phases appear as source/sink terms in the governing equations. These exchange terms normally consist of analytical or empirical correlations, expressing the interfacial forces, as well as heat and mass fluxes, as functions of the average flow parameters. However, most of these correlations are highly problem-specific and therefore their applicability and validity range must be carefully considered. Moreover, for the case of boiling flows, where heat is transferred into the fluid from a heated wall, additional source terms accounting for the underlined physics of these processes at the wall, have to be included. For this purpose these global multi-phase CFD models are usually coupled with appropriate wall boiling sub-models, like the most widely used wall partitioning model of Kurul and Podowski [23]. Some representative and relatively recent numerical investigations in this branch are the works by Steiner et al. [24], Koncar and Krepper [25], Lopez-de-Bertodano et al. [26], Yun et al. [27], and Krepper et al. [28]. Conversely, such wall boiling sub-models require additional closure relationships to predict for example the bubble departure characteristics and the density of the active nucleation sizes, incorporating a number of model constants, the value of which can be found only for specific flow conditions and working fluids. Recently, in the work of Prabhudharwadkar et al. [29] and Cheung et al. [30], the performance of a wide combination range of the existing closure relationships is examined through comparison with a wide range of experimental data. It is stated that no single combination of empirical correlations provides satisfactory predictions covering the entire range of the simulated conditions.

In the second branch, a complete or “direct” numerical simulation of the complex spatial and temporal evolution of the interface between the two phases is followed. The most widely used methods in this direction are Marker and Cell (MAC) method [31], the Front Tracking (FT) method [32], the Arbitrary Lagrangian-Eulerian (ALE) method [33], the Volume-of-Fluid (VOF) method [34] and the Level-Set (LS) method [35].

One of the first boiling simulations, based on the MAC method, was conducted in the work of Madhavan et al. [36]. The originally developed FT method [37] has been further modified by Unverdi and Tryggvason [38] and Tryggvason et al. [32] for the simulation of boiling heat transfer. The method showed very accurate predictions especially in the calculation of the liquid-vapor interface curvature, which is vital for the simulation of boiling flows. However the FT method was mainly used for the simulation of film boiling ([39–42]).

A quite similar numerical method to ALE for the simulation of two-phase flows with phase change, was firstly applied by Welch ([43,44]). The latest ALE method [33] was applied by Rachidi et al. [45], in order to simulate the transient characteristics in pool boiling of binary mixtures. Fuchs, was based on the work by Kern and Stephan ([46,47]), where the heat flow at a growing bubble was calculated by utilizing a boundary-fitted mesh. One important aspect of boundary-fitted meshes is the possibility to treat the liquid-vapor interface as a boundary of the computational domain. This facilitates the estimation of the heat flux at the interface and therefore of the evaporation rate.

The VOF method can be considered as the most popular interface capturing approach and it has been also used so far, for the simulation of boiling flows. Welch and Wilson [48] implemented a phase change model in a VOF method and simulated 1D test cases and film boiling. Welch and Rachidi [49] extended the model by the transient heat conduction in the solid wall and simulated film boiling. Aus der Wiesche [50] used the VOF method to simulate nucleate pool boiling of water. Hardt and Wondra [51] have proposed a method for implementing phase change in a VOF or LS approach and performed simulations of film boiling and droplet evaporation, using a VOF method. Kunugi et al.
[52] simulated sub-cooled pool and flow-boiling problem by the MARS code and Ose and Kunugi in their works ([53,54]) conducted sub-cooled pool boiling simulations and validated the numerical results by their own visualization experimental data. Some more recent works on boiling simulation based on the VOF methods have also been reported ([55,56]). However, none of the aforementioned models based on the VOF method, include any sub-model for evaporation at the 3-phase contact line. In this sense, Kunkelmann et al. [57] implemented a specific sub-model in the VOF solver of the open-source CFD package OpenFOAM [58], that solves incompressible two-phase flow problems. Detailed information on the proposed numerical method can be also found in Kunkelmann’s PhD thesis [59].

Already in the late 1990s, Son and Dhir [60] numerically investigated film boiling and then Son et al. [61] investigated the heat transfer associated with a single bubble during nucleate pool boiling, by application of the LS method. In the same decade, a lot of works have also been conducted by Dhir and co-workers for a variety of boiling flows, summarized in previous similar investigations (e.g. [63]). The advantages of the VOF and LS methods have in many cases been combined in order to be applied for the simulation of boiling heat transfer related problems. This combined method is known as CLSVOF (Combined Level Set and Volume Of Fluid). For example, Shu [64] in his PhD thesis, applied the CLSVOF method to simulate boiling heat transfer using the open-source CFD package OpenFOAM, performing 2D simulations, stating that the extension of the model to 3D simulations was straightforward. Apart from the aforementioned methods, other different approaches like the Lattice Boltzmann method [65] and the Phase Field method [66] have been also applied for the simulation of boiling heat transfer.

In the present investigation, an enhanced VOF-based numerical model that utilises a smoothing technique in order to suppress the development of spurious velocities in the vicinity of the interface that was previously presented, validated and applied to the investigation of adiabatic bubble dynamics in the work of Georgoulas et al. [67], is further extended for the simulation of diabatic, liquid-vapour flows with phase change. In more detail, an energy transport equation and the phase change model, originally proposed by Hardt and Wondra [51], are implemented to a previously improved and validated (against experimental data) adiabatic, VOF solver of OpenFOAM. The proposed phase change model [51] has been also utilised in previous similar investigations (e.g. [58,59,68]). The model is initially verified against an analytical solution for a bubble evaporating in a superheated liquid, for three different working fluids with a very good degree of agreement. Apart from this, the predictions of the proposed model regarding the bubble detachment diameter and time are also validated against literature available experimental results of pool boiling of refrigerants [69]. Then, the validated and optimised version of the model is further applied for the conduction of a wide range of parametric numerical experiments, identifying the effects of the Initial Thermal Boundary Layer (ITBL) thickness, the surface wettability (triple-line contact angle), the plate superheat and the gravity level, on the bubble detachment characteristics.

2. Numerical Method

2.1. Governing Equations

In this section, the governing equations for mass, momentum, energy, and volume fraction are presented. It should be mentioned that liquid and vapour phases are both treated as incompressible, Newtonian fluids. The mass conservation equation is given as:

\[\nabla \cdot (\rho \vec{U}) = \rho, \] \hspace{1cm} (1)

where \(\vec{U} \) is the fluid velocity and \(\rho \) is the bulk density. The source term on the right hand side accounts for the phase change. It should be mentioned that despite of the local source terms the mass is globally conserved since all of the mass that is removed from the liquid side of the interface is added on the vapour side.
The conservation of momentum is given by the following equation:

$$\frac{\partial}{\partial t} (\rho \vec{U}) + \nabla \cdot (\rho \vec{U} \vec{U}) = -\nabla p + \nabla \cdot (\mu \nabla \vec{U}) + \vec{f}_{\text{ext}} + f_{\text{int}},$$ \hspace{1cm} (2)$$

where \(p \) is the pressure and \(\mu \) is the bulk dynamic viscosity. The momentum source terms in the right

hand side of the equation account for the effects of surface tension and gravity, respectively. The

surface tension term is modelled according to the classical approach of Brackbill et al. [70].

The conservation of energy balance is given by the following equation:

$$\frac{\partial}{\partial t} (\rho c_p T) + \nabla \cdot (\rho c_p \vec{U} T) = \nabla \cdot (\lambda \nabla T) + h,$$ \hspace{1cm} (3)$$

where \(c_p \) is the bulk heat capacity, \(T \) the temperature field, and \(\lambda \) is the bulk thermal conductivity. The source term on the right hand side of the equation represents the latent heat of evaporation.

The volume fraction \(\alpha \) is advected by the flow field by the following equation:

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha \vec{U}) - \nabla \cdot (\alpha (1 - \alpha) \vec{U}_r) = \frac{\rho}{\rho} \alpha,$$ \hspace{1cm} (4)$$

Interface sharpening is very important in simulating two-phase flows of two immiscible fluids. In OpenFOAM the sharpening of the interface is achieved artificially by introducing the extra compression term in Equation 4 \((\nabla \cdot (\alpha(1 - \alpha) \vec{U}_r))\). \(\vec{U}_r \) is the artificial compression velocity which is calculated from the following relationship:

$$\vec{U}_r = n_s \min \left[C_\gamma \frac{\phi}{|S_s|}, \max \left(\frac{\phi}{|S_s|} \right) \right]$$ \hspace{1cm} (5)$$

where \(n_s \) is the cell surface normal vector, \(\phi \) is the mass flux, \(S_s \) is the surface area of the cell, and \(C_\gamma \) is a coefficient the value of which can be set between 1 and 4. \(\vec{U}_r \) is the relative velocity between the two fluid phases due to the density and viscosity change across the interface. In Equation (4) the divergence of the compression velocity \(\vec{U}_r \), ensures the conservation of the volume fraction \(\alpha \), while the term \(\alpha (1 - \alpha) \) limits this artificial compression approach only in the vicinity of the interface, where \(0 < \alpha < 1 \) [71]. The level of compression depends on the value of \(C_\gamma \) ([71,72]). For the simulations of the present investigation, initial, trial simulations indicated that a value of \(C_\gamma = 1 \) should be used, in order to maintain a quite sharp interface without at the same time having unphysical results. The source term on the right hand side of the Equation 4 is needed because, due to the local mass source terms, the velocity field is not free of divergence.

It should be mentioned that the VOF method in OpenFOAM does not solve Equation 4 implicitly, but instead applying a multidimensional universal limiter with explicit solution algorithm (MULES). Together with the interface compression algorithm, this method ensures a sharp interface and bounds the volume fraction values between 0 and 1 [73].

Finally, the bulk fluid properties \(\gamma \) are computed as the averages over the liquid (\(\gamma_l \)) and vapour (\(\gamma_v \)) phases, weighted with the volume fraction \(\alpha \).
\[
\gamma = \alpha \gamma_L + (1 - \alpha) \gamma_I
\]

As it is known, the VOF method usually suffers from non-physical spurious currents in the interface region. These spurious velocities are due to errors in the calculation of the normal vectors and the curvature of the interface that are used for the calculation of the interfacial forces. These errors emerge from the fact that in the VOF method the interface is implicitly represented by the volume fraction values that encounter sharp changes over a thin region \[74\].

As previously mentioned in the introduction section of the present paper, the VOF-based solver that is used in the present investigation has been modified accordingly in order to account for an adequate level of spurious currents suppression. The proposed modification involves the calculation of the interface curvature \(\kappa \) using smoothed volume fraction values \(\tilde{\alpha} \) that are obtained from the initially calculated volume fraction field \(\alpha \), smoothing it over a finite region in the vicinity of the interface:

\[
\kappa = \nabla \cdot \left(\frac{\tilde{\alpha}}{|\nabla \tilde{\alpha}|} \right)
\]

All other equations are using the initially calculated (non-smoothed) volume fraction values of \(\alpha \). The proposed smoothing is achieved by the application of a Laplacian filter which can be described by the following equation:

\[
\tilde{\alpha}_p = \frac{\sum \alpha_f \delta_f}{\sum \delta_f},
\]

In Equation 8, the subscripts P and f denote the cell and face index respectively and \(\alpha_f \) is the linearly interpolated value of \(\alpha \) at the face center. The application of the proposed filter can be repeated more than one time in order to obtain an adequately smoothed field. For the applications of the present investigation, initial trial simulations indicated that the filter should applied no more than 2 times, in order to avoid leveling out of high curvature regions. The proposed, enhanced VOF solver has been tested and verified against literature available experimental results in isothermal bubble dynamics with an excellent degree of convergence. More details on the proposed validation as well as on the proposed improved VOF method can be found in the paper by Georgoulas et al. \[67\].

2.2. Phase Change Model

The utilized phase change model that was implemented in the improved OpenFOAM VOF solver that is used in the present investigation, will be described briefly in this section. Supplementary details can be found in the work of Hardt and Wondra \[51\].

The evaporation mass flux at the liquid–vapour interface \(j_{\text{evap}} \) is calculated from the following equation:

\[
j_{\text{evap}} = \frac{T_{\text{int}} - T_{\text{sat}}}{R_{\text{int}} h_v}.
\]

where \(T_{\text{int}} \) is the temperature of the interface, \(T_{\text{sat}} \) is the saturation temperature, \(R_{\text{int}} \) is the interfacial heat resistance and \(h_v \) is the latent heat of evaporation at the saturation temperature.

The interfacial heat resistance is calculated by the following equation based in the considerations of Schrage \[75\].
It is clear that this last equation is in fact a fitting function, due to the uncertainty of the parameter \(\gamma \), which is eventually may vary in the range \(0 < \gamma < 1 \). For the cases that will be presented here, the constant \(\gamma \) that is also known as the evaporation/condensation coefficient is taken equal to unity from the literature ([57–59], [76–78]). \(R_{\text{gas}} \) is the specific gas constant of the working fluid that is calculated from the universal gas constant and the molecular weight of the working fluid. The amount of liquid that evaporates is calculated locally and the resulting source term field is smeared over a few cells in order to avoid numerical instabilities. The evaporating mass is taken away on the liquid side of the interface and reappears on the vapour side. According to previous investigations ([57–59], [76–78]), despite the fact that Eqs. (9) and (10) are derived from considerations on length scales which are several orders smaller than the typical grid size used in the simulations, the proposed evaporation model leads to correct evaporation rates since it acts like a control loop. The more the temperature at the interface deviates from the saturation value, the more liquid evaporates and the more the temperature drops locally. This ensures that the temperature at the liquid–vapour interface always remains close to the saturation temperature.

The evaporating/condensing mass flux is calculated from Eq. (9) and must be incorporated into the conservation equations, by the definition of volumetric source terms. This is done by multiplying the evaporating mass flux at the liquid–vapour interface by the magnitude of the volume fraction gradient, as indicated in the following equation:

\[
\rho_v = j_{\text{evap}} |\nabla a|, \tag{11}
\]

This initial sharp source term field (SSTF) is integrated over the whole computational domain to calculate the “Net Mass Flow” through the entire liquid-vapour interface, using the following equation:

\[
\int \int \int \rho_v dV = m_{\text{int}} \tag{12}
\]

This value is important for the global mass conservation, in order to ensure that the magnitudes of the mass sources in the liquid and vapour parts are equal and correspond to the net evaporation rate. The sharp source term field is then smeared over several cells, by solving the following diffusion equation for the smooth distribution of source terms

\[
\rho_1 - \nabla \cdot [(D \Delta \tau) \nabla \rho_1] = \rho_0, \tag{13}
\]

\(\Delta \tau \) is an artificial time step and Neumann boundary conditions are imposed for the smooth source term field on all boundaries of the domain. Therefore, the integral values of the sharp and the smooth source fields remain the same, in spite of the smearing. The width of the smeared source term field is proportional to the square root of the product of the diffusion constant “D” and the artificial time step “\(\Delta \tau \)”. It should be mentioned that the value of “D” must be adjusted to the mesh resolution such that the source term field is smeared over several cells.

Then, the source terms in all cells that do not contain pure liquid or vapour (\(\alpha < 1 - \alpha_{\text{cut}} \) and \(\alpha > \alpha_{\text{cut}} \), where \(\alpha_{\text{cut}} \) may be set to 0.05) are artificially set to zero. This cropping step ensures that source terms are shifted into the pure vapour and liquid cells only in the vicinity of the interface. The interface therefore is not subjected to any source terms and is only transported by the calculated velocity field. Therefore, the transport algorithm for the volume fraction field as well as the associated interface compression, can work efficiently without any interference with the source term field. The
remaining source term field is scaled individually on the liquid and the vapour side through the application of appropriate scaling coefficients. This scaling step ensures that the mass is globally conserved and that the evaporating or condensing mass flow, corresponds globally to the net mass flow through the interface.

The newly proposed scaling coefficients N_l and N_v are calculated by integrating the smooth source term field in each of the pure phases and comparing it to the net mass flow \dot{m}_{int} (Equation 12), utilizing the following equations:

$$N_l = \frac{\dot{m}_{\text{int}} \int \int (\alpha - 1 + a_{\text{cut}}) \dot{\rho}_1 dV}{1},$$ \hspace{1cm} (14)

$$N_v = \frac{\dot{m}_{\text{int}} \int \int (a_{\text{cut}} - \alpha) \dot{\rho}_1 dV}{1},$$ \hspace{1cm} (15)

Finally, the final source term distribution is calculated using the above scaling factors in the following equation:

$$\dot{\rho} = N_v(a_{\text{cut}} - \alpha)\dot{\rho}_1 - N_l(\alpha - 1 + a_{\text{cut}})\dot{\rho}_1,$$ \hspace{1cm} (16)

An example of the aforementioned final source term distribution is depicted indicatively in Fig. 1 below.

![Figure 1. Distribution of the final source terms in the computational domain for the case of an evaporating bubble.](image)

2.3 Simulation Parameters

As mentioned previously, all the numerical simulations on pool boiling of the present work were performed with the finite-volume-based CFD code OpenFOAM (version 2.2.1) utilizing and enhancing its original VOF-based solver “interFoam”. For pressure–velocity coupling, the PISO (Pressure-Implicit with Splitting of Operators) scheme is applied. The transient terms in the equations are discretized using a second order, bounded, implicit scheme (Euler). The calculation time step is controlled by setting the maximum Courant number to 0.2. With this adaptive time stepping technique, the time step is automatically varied from approximately 10^4 to 10^6 sec, for the overall simulation cases that are presented in the present paper. The gradient terms are discretized using a
second order, Gaussian integration with linear interpolation (Gauss linear). For the divergence terms different discretisation schemes are applied for each term in the equations. In more detail the convection term of Eq. (2) is discretised using a “Gauss upwind” scheme. The \(\nabla \cdot (\alpha \overline{U}) \) term of Eq. (4) is discretised using the “Gauss vanLeer” scheme, while the \(\nabla \cdot (\alpha (1 - \alpha) \overline{U}_x) \) term is discretised using the “Gauss interfaceCompression” scheme that ensures the boundedness of the calculated volume fraction field. Finally, all Laplacian terms are discretised using the “Gauss Linear Corrected” scheme. The divergence term of Eq. (3) is discretised using a “Gauss linear” scheme. Further details regarding the adopted discretization schemes can be found in OpenFOAM Documentation (OpenFOAM, 2013 [73]). It should be mentioned that this was the optimum combination of discretization schemes in order to maintain a balance between accuracy, convergence and numerical stability during the computations.

3. Validation of Numerical Method

3.1 Growth of a Spherical Bubble in a Superheated Liquid

The first test case that was selected in order to validate the previously described implementations in the improved VOF-based numerical model, is the growth of a spherical bubble in an infinitely extended superheated liquid domain. This test case constitutes a widely used test case for the validation of boiling models throughout the literature (e.g. [51], [58], [68], [78–80]).

The growth of the bubble within a superheated liquid domain follows two distinct stages. At the initial stage the bubble growth is mainly controlled by the effects of surface tension and inertia. At the second stage, the growth is controlled only by the heat transfer rate from the superheated liquid to the liquid–vapour interface. During this final stage, it can be assumed that the bulk vapour and the liquid–vapour interface are at saturation temperature. More details regarding the simulated phenomenon are described in detail in the work of Plesset and Zwick [79]. An analytical solution for this situation has been derived by Scriven [80]. According to this analytical solution the bubble radius as a function of time is given by the following equation:

\[
R(t) = 2\beta \sqrt{D t},
\]

(17)

where \(\beta \) is a growth constant, details of which can be found in the work of Scriven [80], and \(D \) is the thermal diffusivity of the liquid. This analytical solution permits the calculation of the initial conditions for the numerical simulations (initial temperature profile at the bubble interface and initial bubble radius), in order to validate the numerical results. Here, all the details for the initial conditions of the simulations that are going to be presented, are taken from the works of Kunkelmann and Stefan [58] and Magnini [78], which were derived from the above mentioned analytical solution [80] for the time instant that the bubble in each case has a radius of 0.1 mm. The geometric characteristics and the initial conditions of the considered physical problem are illustrated schematically in Fig. 2.
2D axisymmetric simulations were performed for three different working fluids, Water and FC-72 liquid at equilibrium with their corresponding vapour phases (saturation point), at a pressure value of 1013 mbar, as well as R134a liquid at equilibrium with its vapour phase at a pressure value of 840 mbar. Uniform hexahedral grids of 1µm cell dimension were used in all three cases. The computational domain and grid that was constructed as well as the applied boundary conditions are depicted in Fig. 3. The initial conditions for the Water liquid/vapour case are illustrated in Fig. 4, while the material properties and the initial conditions for all fluid cases are summarised in Table 1.
Figure 4. Initial conditions for the water liquid/vapour: \(P=1.013 \) bar, 5K of liquid superheat.

Table 1. Material properties and initial conditions for the numerical simulations (validation cases).

Property	Unit	Water	R134a	FC-72			
		Liquid	Vapour	Liquid	Vapour	Liquid	Vapour
Density \(\rho \)	(kg/m\(^3\))	958	0.597	1388	4.43	1621.2	13.491
Specific heat capacity \(c_p \)	(J/kg.K)	4220	2030	1270	720	1106.7	924.81
Thermal conductivity \(k \)	(W/m.K)	0.679	0.025	0.106	0.009	0.054165	0.013778
Dynamic viscosity \(\mu \)	(Pa.s)	2.77x10\(^{-4}\)	1.30x10\(^{-5}\)	4.01x10\(^{-4}\)	9.64x10\(^{-6}\)	4.13x10\(^{-4}\)	1.19x10\(^{-5}\)
Heat of vaporization \(h_{lv} \)	(J/kg)	2257000	219500	83562			
Surface tension \(\sigma \)	(N/m)	0.059	0.016	0.0084			
Saturation temperature \(T_{sat} \)	(K)	373.15	303.15	330.06			
Pressure \(P \)	(bar)	1.013	0.84	1.013			
Growth constant \(\beta \)	(-)	14.59	8.75	7.69			
Initial thermal layer thickness \(\delta_{therm} \)	(m)	7.00x10\(^{-6}\)	1.10x10\(^{-5}\)	1.30x10\(^{-5}\)			
Thermal diffusivity \(D \)	(m\(^2\)/s)	1.68x10\(^{-7}\)	6.01x10\(^{-8}\)	3.02x10\(^{-8}\)			
Superheat \(\Delta T \)	(K)	5	5	5			
Finally, in Fig. 5, the spatial and temporal evolution of the numerically predicted bubble growth is illustrated through the resulted temperature field, at each time instant of the simulation for the Water liquid/vapour case, while in Fig. 6 a quantitative comparison of the numerical predictions with the analytical solution is conducted for all fluid cases.

Figure 5. Bubble evolution with time for the Water Liquid/Vapour simulation (P= 1.013 bar, ΔT = 5K).
Figure 6. Bubble Radius with respect to time for three different fluid cases. Comparison of numerical (present investigation) and analytical predictions [80].

As it can be observed the developed numerical model of the present paper adequately predicts the vapour bubble growth within the superheated liquid domain, for all of the considered fluid cases, in comparison with the proposed analytical solution [80].

3.2 Pool Boiling

3.2.1. Problem Definition

In order to further validate the numerical model, the experiments on single bubble growth in saturated pool boiling on a constant wall temperature boundary condition, reported in the work of Lee et al. [69], were selected among others, since many necessary data used for their numerical reproduction are accurately reported by the authors. In more detail, in the proposed work nucleate pool boiling experiments with constant wall temperatures were performed using R11 and R113 refrigerants, for various saturated conditions. A micro-scale heater array and Wheatstone bridge circuits were used to maintain a constant wall temperature condition and to obtain measurements with high temporal and spatial resolution. Accurate heat flow rate data were obtained from the micro-scale heater array by controlling the surface conditions at a high temporal resolution. Images of the bubble growth were captured using a high-speed CCD camera synchronised with the heat flow rate measurements. The geometry of the bubble was obtained from the images. In the present paper, one specific experimental run for R113 is reproduced numerically and presented as a validation case.

3.2.2. Computational set-up

Since, the processes of bubble growth and detachment in the proposed experiment can be considered to be axisymmetric, an axisymmetric computational domain was constructed for its numerical reproduction. The adopted computational domain, mesh and boundary conditions are illustrated in Fig. 7. As it can be seen, a wedge type geometry was constructed representing a 5° section of the corresponding 3D domain in the considered physical problem. A non-uniform
structured computational mesh with local refinement was used consisting of 400,000 hexahedral cells. A minimum cell size of 2µm and a maximum cell size of 4µm were selected in the bottom left and top right corners of the computational domain respectively, in order for the solution to be mesh-independent. The overall domain size in the XY plane is 2.5 mm x 4 mm. These dimensions were indicated from initial, trial simulations that were conducted in order to determine the minimum distances between the axis of symmetry and the side wall boundary (domain width) as well as between the bottom wall and the outlet (domain height), in order to avoid any influence of these boundaries in the computed bubble growth and detachment process.

At the solid walls, a no-slip velocity boundary condition was used with a fixed flux pressure boundary condition for the pressure values. At the lower wall, a constant contact angle of θ=30° is imposed for the volume fraction field. According to Lee et al. [69], the static equilibrium contact angle of the micro-scale heater array surface was 11.4° for R113. However, the dynamic characteristics of a boiling bubble are supposed to be different with respect to the static equilibrium contact angle, which is usually measured with the sessile drop method, and at ambient temperature and pressure conditions. Therefore, the value of θ=30° that was finally selected for the numerical simulation, was chosen after a series of parametric numerical simulations, where contact angles ranging from 11.4° to 160° were tested. The adopted value of θ=30° indicated closest numerical predictions to the corresponding experimental observations. The proposed parametric analysis is presented in detail in the following section 4.2. For the side wall, a zero gradient boundary condition was used for the volume fraction values. As for the temperature field, a constant temperature of T_w=334.15 K (in accordance to the selected experimental run) was imposed in the bottom wall and a zero gradient boundary condition was used for the sidewall. At the outlet, a fixed-valued pressure boundary condition and a zero-gradient boundary condition for the volume fraction were used, while for the velocity values a special (combined) type of boundary condition was used that applies a zero-gradient when the fluid mixture exits the computational domain and a fixed value condition to the tangential velocity component, in cases that fluid enters the domain. Finally, a zero gradient boundary condition for the temperature field was also prescribed at the outlet boundary. The fluid properties the initial conditions as well as some computational details for the simulation imitating the selected experimental run are summarised in Table 2.
Table 2. Fluid properties and initial conditions.

Phase properties (R113 at 1bar, $T_{sat} = 320.65$K)	ρ (kg/m3)	c_p (J/kgK)	k (W/mK)	ν (m2/s)	σ (N/m)	h_v (J/kg)
Liquid	1508.4	940.3	0.064	3.25x10$^{-7}$	0.015	144350
Vapour	7.4	691.3	0.0095	1.39x10$^{-6}$		

Initial Conditions	Domain size	Simulation Type: axisymmetric	No. of computational cells: 400000
Initial bubble (seed) radius: 50 µm	$\Delta T = 13.5$K	Contact angle: 30°	
Initially developed thermal boundary layer thickness: 352 µm			

The initial temperature of R113 liquid in the computational domain is assumed to be at saturation temperature. Then a single-phase transient solution is started for a certain time period in order for the initial temperature boundary layer to be developed in the vicinity of the heated wall. After the development of a desired temperature boundary layer thickness, an initial seed bubble of 50µm in radius is patched at the bottom wall, as a 5o section of a hemisphere (axisymmetric simulation), which immediately starts to evaporate. The initial condition for the two-phase simulation corresponds to the time when the bubble seed is planted in the domain (Fig. 8).

Figure 8. Initial conditions for the simulation.

At this point it should be mentioned that, since the initial thermal boundary layer thickness was not measured in the experiments of Lee et al. [69], a series of parametric numerical simulations was performed, utilising a wide number of successive thicknesses, developed in the single-phase simulation, at successive time instances. More details regarding the effect of the initially developed boundary layer characteristics on the bubble growth and detachment process are given in section 4.1. A thickness of 352µm, which corresponds to a development time of 0.08s, showed the best match with the corresponding experimental results.

3.2.3 Comparison of numerical and experimental results

In Fig. 9, the reconstructed 3D evolution of the 0.5 volume fraction contour (interface) from the axisymmetric simulation is compared with the corresponding experimental snapshots, for approximately the same time instances that correspond to the bubble detachment stage, while in
Table 3: Predicted (present investigation) and measured [69], bubble detachment characteristics.

	Bubble detachment time (msec)	Equivalent bubble detachment diameter (mm)
Experimental [69]	3.748	0.704
Numerical (present investigation)	3.700	0.740
% Error	1.28	5.11

4. Application of the Validated Numerical Model for the Simulation of Pool Boiling Characteristics

In the current section of the present work, the validated numerical model is further applied for the conduction of four different series of parametric numerical simulations, aiming to identify and quantify the effects of fundamental controlling parameters in the bubble growth and detachment characteristics, identified as being important during the validation process. In more detail, the first series (Series-A) aims to identify the effect of the initial thermal boundary layer, the second (Series-B) the effect of the triple line contact angle (wettability), the third (Series-C) the effect of wall superheat and the fourth (Series-D) the effect of the gravity level, in the bubble growth and detachment characteristics.
In all these simulations, the same computational domain, mesh and boundary conditions with
the validation case presented in the previous section is used. Three different refrigerants were used
as working fluids. R113, as in the validation section of the present paper, is used for Series A, while
R113 as well as R22 and R134a, are used for the numerical simulations of Series B, C and D, since
these are among the most widely used working fluids in boiling applications. The corresponding
fluid properties and initial conditions for the base cases that are used as reference in the proposed
series of parametric numerical simulations, are summarized in Tables 4, 5 and 6, respectively.

Table 4. Fluid properties and initial conditions (Base case for R113 refrigerant, Series A, B, C and D).

Phase properties (R113 at 1bar, \(T_{\text{sat}} = 320.65 \text{ K} \))	\(\rho \) (kg/m\(^3\))	\(c_p \) (J/kgK)	\(k \) (W/mK)	\(\nu \) (m\(^2\)/s)	\(\sigma \) (N/m)	\(h_{lv} \) (J/kg)
Liquid	1508.4	940.3	0.064	3.25x10\(^{-7}\)	0.015	144350
Vapour	7.4	691.3	0.0095	1.39x10\(^{-6}\)		

Initial Conditions	Wall superheat (K): 13.5	Contact angle (\(^o \)): 11.4 (Series A), 30 (Series B, C and D)	Domain size (mm): 2.5x4.0
Initial bubble (seed) radius (µm): 50	Initially developed thermal boundary layer thickness (µm): 352	Simulation Type: Axisymmetric	

Table 5. Fluid properties and initial conditions (Base case for R22 refrigerant, Series B, C and D).

Phase properties (R22 at 1bar, \(T_{\text{sat}} = 232.06 \text{ K} \))	\(\rho \) (kg/m\(^3\))	\(c_p \) (J/kgK)	\(k \) (W/mK)	\(\nu \) (m\(^2\)/s)	\(\sigma \) (N/m)	\(h_{lv} \) (J/kg)
Liquid	1410.0	1089.2	0.1135	2.46x10\(^{-7}\)	0.015	217160
Vapour	4.65	605.61	0.0070	1.88x10\(^{-6}\)		

Initial Conditions	Wall superheat (K): 13.5	Contact angle (\(^o \)): 30	Domain size (mm): 2.5x4.0
Initial bubble (seed) radius (µm): 50	Initially developed thermal boundary layer thickness (µm): 352	Simulation Type: Axisymmetric	
Table 6. Fluid properties and initial conditions (Base case for R134a refrigerant, Series B, C and D).

Phase properties (R134a at 1bar, $T_{sat} = 246.79K$)	Liquid	Vapour
ρ (kg/m³)	1377.5	5.19
c_p (J/kgK)	1280.0	793.19
k (W/mK)	0.104	0.0093
ν (m²/s)		1.39 x10⁻⁶
σ (N/m)	2.76 x10⁻⁷	0.015
h_{lv} (J/kg)		144350

Initial Conditions		
Initial bubble (seed) radius (μm): 50		
Wall superheat (K): 13.5		
Contact angle (°): 30		
Domain size (mm): 2.5x4.0		
Initially developed thermal boundary layer thickness (μm): 352		
Simulation Type: Axisymmetric		
No. of computational cells: 400000		

Figure 10. 3D bubble spatial and temporal evolution (base case, R113).

The temporal and spatial evolution of the bubble growth and detachment process for the base case of Table 4, is depicted indicatively in Fig. 10, where the interface position between the vapour and liquid phases (green surface) is illustrated for successive time instances, from the 3D reconstruction of the axisymmetric simulation results.

As it can be observed the initially seeded bubble nucleus ($t = 0$ ms) grows and finally detaches from the superheated wall. As it was expected, initially, the bubble base diameter increases since the
evaporating meniscus on the bubble foot slides outwards up to a certain point, and finally decreases sliding inwards up to the instance of detachment. After the detachment from the heated wall the bubble rises in the liquid domain due to buoyancy. Furthermore, a characteristic depletion of the thermal boundary layer is observed after the bubble detachment, while the rising bubble curries some heat upwards in its tail. These qualitative observations are in agreement with previous similar investigations (e.g. [58], [81,82]).

4.1 Effect of initial thermal boundary layer – Series A

Since the superheated bulk liquid thermal boundary layer thickness, determines how much heat is stored in the fluid layer in the vicinity of the heated plate, it was deemed appropriate for a parametric study to be conducted, aiming to identify the effect of the Initial Thermal Boundary Layer (ITBL) thickness, on the bubble growth and detachment process. Therefore, in the current sub-section of the present paper, the effect of the ITBL on the bubble detachment characteristics is investigated numerically. For this purpose, the base case of Table 4 is utilised and additional simulations are performed by systematically varying the ITBL that is imposed, as an initial condition, in the vicinity of the heated plate (bottom wall boundary of the computational domain). In more detail, a single-phase transient simulation is first performed and the developed thermal boundary layers are extracted in certain successive time steps. These are then used as the initial condition for the temperature field, in the two-phase numerical simulations that comprise the proposed parametric analysis (Series-A numerical simulations). All the other simulation parameters are kept constant with respect to the base simulation case (Table 4). Details regarding the overall runs conducted are summarised in Table 7.

Run	Time of ITBL development (Single-phase simulation) [sec]	Thickness of ITBL [µm]
A1	0.01	136
A2	0.02	184
A3	0.03	216
A4	0.06	304
A5	0.07	328
A6 (base case, R113)	0.08	352
A7	0.09	376
A8	0.1	392
A9	0.2	552
A10	0.3	680

As it can be observed a total number of nine additional simulations were performed changing in each case the initial temperature field. The reference/base case in Table 7 corresponds to the validation run of Fig. 9. The prescribed ITBL in each case is illustrated diagrammatically in Fig. 11, where the initial variation of temperature with respect to the vertical distance from the heated plate is plotted for each run of Series A numerical simulations.
The spatial evolution of the generated bubbles for each of the above cases at the time of detachment, is depicted in Fig. 12. As it can be observed, there is a substantial increase in the bubble growth and detachment characteristics with respect to the corresponding increase in the thickness of the ITBL. The thicker the ITBL, the bigger the bubble diameter at detachment. These findings are in direct qualitative agreement with previous similar investigations (e.g. [83]).

![Figure 11. ITBL for each run of Series-A parametric numerical simulations.](image)

![Figure 12. Spatial evolution of generated bubble at the time of detachment for each case of Series-A.](image)

The bubble detachment time with respect to the ITBL thickness is plotted in Fig. 13a, while the equivalent bubble detachment diameter with respect to the ITBL thickness is plotted in Fig. 13b. It should be mentioned here that the diameter of a sphere, having the same volume as the corresponding in each case bubble at the time of detachment from the heated plate, is taken as the equivalent bubble detachment diameter.
As it can be observed the increase of the ITBL causes a linear increase in both the bubble detachment time as well as the equivalent bubble detachment diameter. It is characteristic that an increase of the ITBL by a factor of five causes a corresponding increase in the bubble detachment time and the equivalent bubble detachment diameter by a factor of nine and six, respectively. From all the above, it is evident that the ITBL is a very influential and important parameter in the bubble growth and detachment process.

Therefore, it is strongly suggested that the bulk liquid thermal boundary layer thickness should be measured and reported in future experimental studies, since it comprises a required input for the successful numerical simulation of nucleate boiling processes.

4.2 Effect of surface wettability – Series B

Past studies have identified surface wettability as one of the most important factors affecting bubble nucleation, growth and detachment (e.g. [62], [84–86]) provide a good summary of the current understanding. The effect of surface wettability on bubble growth can be incorporated in a numerical model by the imposed contact angle between the vapour/liquid interface and the heated solid surface (triple-line). In the current section of the present paper the effect of wettability on the bubble detachment characteristics, is investigated numerically. For this purpose, the base cases of Tables 4,
5 and 6 are utilised and additional simulations are performed by systematically varying the value of
the triple-line (solid-liquid-vapour) contact angle at the bottom wall boundary of the computational
domain. All the other simulation parameters are kept constant with respect to the base simulation
cases (Tables 4, 5 and 6). Details regarding the overall runs are summarised in Table 8.

Table 8. Varied parameter in Series-B of parametric numerical simulations.

Run	Contact Angle (°)	Working Fluid	Run	Contact Angle (°)	Working Fluid	Run	Contact Angle (°)	Working Fluid
B1	11.4	R113	B16	15	R22	B31	15	R134a
	(Base Case R113)							
B2	15	R113	B17	20	R22	B32	20	R134a
B3	20	R113	B18	25	R22	B33	25	R134a
B4	25	R113	B19	30	R22	B34	30	R134a
	(base case, R22)							
B5	30	R113	B20	35	R22	B35	35	R134a
B6	35	R113	B21	40	R22	B36	40	R134a
B7	40	R113	B22	45	R22	B37	45	R134a
B8	45	R113	B23	50	R22	B38	50	R134a
B9	50	R113	B24	55	R22	B39	55	R134a
B10	55	R113	B25	60	R22	B40	60	R134a
B11	60	R113	B26	65	R22	B41	65	R134a
B12	65	R113	B27	70	R22	B42	70	R134a
B13	70	R113	B28	75	R22	B43	75	R134a
B14	75	R113	B29	80	R22	B44	80	R134a
B15	80	R113	B30	85	R22	B45	85	R134a

As it can be seen, a total of 45 simulations are performed, varying the imposed contact angle at
the bottom wall boundary from 11.4° up to 80° for the case of R113 runs (B1 to B15) and from 15° to
85° for the cases of R22 (B16 to B30) and R134a (B31 to B45). The spatial evolution of the generated
bubbles for each of the above cases, at the time of detachment, is depicted in Figures 14, 15, and 16,
for the R113, R22 and R134a cases, respectively.
Figure 14. Spatial evolution of generated bubble at the time of detachment for each R113 case of Series –B parametric numerical simulations.

Figure 15. Spatial evolution of generated bubble at the time of detachment for each case R22 of Series –B parametric numerical simulations.
As it can be observed from Fig. 14, for the R113 runs, initially the successive increase of the imposed contact angle from 11.4° (case B1) up to 45° (case B8) has a relatively minimal effect in the bubble detachment characteristics. On the other hand, for equilibrium contact angles greater than 45° (cases B9 to B15), the effect of the contact angle in both the bubble detachment volume and the bubble detachment time, appears to be quite more significant. In more detail, the bubble detachment volume slightly decreases (cases B2 and B3) and then remains almost constant (cases B4-B8). However, a slightly different effect can be observed in the predicted bubble detachment times. The bubble detachment time initially shows a small decrease (cases B2 to B4), and then it successively starts to show a small increase again (cases B5 to B8). When the imposed contact angle successively increases above 45° (cases B9-B15), it causes a subsequent increase in the bubble detachment volume. Approximately the same trend can be observed also in the bubble detachment time.

However, it is characteristic that while the bubble detachment time continuously increases with the corresponding increase in the contact angle (cases B9-B12) at a certain point (cases B13 and B14) remains almost constant and then continues to increase (case B15).

Another interesting observation is the fact that for contact angles greater than 70° (cases B14 and B15), the bubble departs from the heated surface leaving behind a small residual bubble nucleus on the surface.

For the R113 runs (Fig. 15), the successive increase of the imposed contact angle from 15° up to 45° (cases B16 to B22) has a relatively small effect in the bubble detachment characteristics. However, as in the case of R113 runs, there is a significantly higher effect of the contact angle increase, in both the bubble detachment time and volume, for contact angles greater than 45°. In more detail, there is a small successive decrease in the bubble detachment volume as the contact angle increases from 15° to 30° (cases B16-B19) and then it remains constant from 35° to 45° (cases B20-B22). For angles greater than 45°, the successive increase of the contact angle causes a significant increase in the bubble detachment volume (B23-B30). A similar behaviour can also be observed for the bubble detachment time.

Finally, for the R134a runs (Fig. 16), an almost negligible effect of the contact angle increase on both the bubble detachment time and bubble detachment volume can be observed for contact angles lower than 45°, while a significant increase in the bubble detachment characteristics is evident with the corresponding increase of the imposed contact angle for values greater than 45°.
As it can also be confirmed by the diagrams of Fig. 17, the bubble detachment characteristics seem to be significantly affected by the imposed contact angle, i.e. the wettability of the heated plate, for values higher than 45° showing an irregular increase. However, the proposed effect is minimal for contact angles lower than this limiting value of 45°. It is important to note that in total, for each of the considered working fluids, increasing the contact angle by an approximate factor of 8 causes a significant increase in the bubble detachment time by a factor of 10, while the equivalent bubble detachment diameter increases by a smaller but still significant factor of approximately 3.

Therefore, it is evident that two distinct behavioral regions can be identified in the diagrams of Fig. 17, that are common for all the three examined working fluids. A “lyophilic” region (θ ≤ 45°) without significant changes in the bubble detachment characteristics and a “lyophobic” region (θ > 45°) were both the bubble detachment time and the equivalent bubble detachment diameter are highly affected by the wettability of the heated plate. According to the authors’ best knowledge there are not, at the moment, any experimental demonstrations of this phenomenon.

Cases with even higher contact angles where also tested, for the case of R113 (up to a value of 160°). For this purpose, a bigger computational domain was constructed (5 mm x 8 mm) keeping the same computational mesh characteristics as the ones described in Section 3.2.2. Some indicative results are depicted in Fig. 18, where the spatial evolution of the generated bubbles after

Figure 17. Effect of contact angle on: (a) the bubble detachment time; (b) the equivalent bubble detachment diameter.
approximately 50 ms from the nucleation time is depicted, for four different cases with corresponding contact angle values of 90°, 115°, 130° and 140°, respectively.

![Image of bubble evolution](image)

Figure 18. Evolution of a R113 bubble, at t=49.40 ms, for equilibrium contact angles higher than 80°.

As it can be observed, as the contact angle increases beyond the value of 80°, the bubble detachment time subsequently increases significantly and especially after a contact angle of 100°, the bubble continuously grows and its initial meniscus continuously slides outwards tending to form a vapour film. This observation is in direct qualitative agreement with previous investigations of pool boiling of water in hydrophilic, hydrophobic and super-hydrophobic surfaces (e.g. [87,88]). An example on the generated bubble before detachment for a hydrophilic (contact angle of 30°) and a hydrophobic (contact angle of 150°) surface, from the work of Malavasi et al. [88], is given in the experimental snapshots of Fig. 19.

![Experimental images of pool boiling](image)

Figure 19. Experimental images of pool boiling of water on hydrophilic and hydrophobic surfaces [88].

As it can be seen, in the case of the hydrophilic surface the shape of the bubble before its detachment is more close to case B4 of the present investigation (Fig. 14) while the case of the hydrophobic surface is in close qualitative agreement with the case of 140° of Fig. 18.

All the above findings indicate that the wettability of the heated surface in nucleate boiling is another quite important factor that significantly affects the bubble growth and detachment characteristics.
4.3 Effect of wall superheat – Series C

In the current sub-section of the present paper the effect of wall superheat on the bubble detachment characteristics, is investigated numerically. For this purpose, the base cases of Table 4, 5 and 6 are utilised and additional simulations are performed by systematically varying the value of the heated plate superheat (bottom wall boundary of the computational domain). All the other simulation parameters are kept constant with respect to the base simulation cases. Details regarding the overall runs conducted are summarised in Table 9.

Table 9. Varied parameter in Series-C of parametric numerical simulations.

Run	Wall Superheat (K)	Working Fluid	Run	Wall Superheat (K)	Working Fluid
C1	5.5	R113	C16	17.5	R22
C2	10.5	R113	C17	18.5	R22
C3	13.5	R113	C18	19.5	R22
	(base case, R113)				
C4	14.5	R113	C19	2.5	R134a
C5	15.5	R113	C20	5.5	R134a
C6	16.5	R113	C21	10.5	R134a
C7	17.5	R113	C22	13.5	R134a
	(base case R134a)				
C8	18.5	R113	C23	14.5	R134a
C9	19.5	R113	C24	16.5	R134a
C10	2.5	R22	C25	17.5	R134a
C11	5.5	R22	C26	18.5	R134a
C12	10.5	R22	C27	19.5	R134a
C13	13.5	R22			
	(base case R22)				
C14	14.5	R22			
C15	16.5	R22			

As it can be seen, a total of 27 simulations are performed, varying the bottom wall superheat from 5.5 K up to 19.5 K for the R113 runs and from 2.5 K up to 19.5 K for the R22 and R134a runs, respectively. It should be mentioned here that as for the validation case (C3) a single-phase transient numerical simulation is initially performed in each of the above cases and the developed ITBL at 0.08s is used as the initial condition for the temperature field in the two-phase simulations. This is done in
In order to start in each case with approximately the same thickness of the ITBL but with a different superheat. The spatial evolution of the generated bubbles for each of the above cases, at the time of detachment, is depicted in Fig. 20, 21 and 22 for the R113, R22 and R134a runs, respectively.

Figure 20. Spatial evolution of generated bubble at the time of detachment for each R113 case of Series –C parametric numerical simulations.

Figure 21. Spatial evolution of generated bubble at the time of detachment for each R22 case of Series –C parametric numerical simulations.
As it can be observed both the bubble detachment time as well as the bubble detachment volume are highly sensitive to the wall superheat. In more detail, a successive increase in the bottom wall superheat causes a quite considerable subsequent increase in the bubble detachment characteristics. But in order to quantify the exact influence of the wall superheat on the bubble detachment characteristics, the diagrams of Fig. 23 are plotted. In more detail, the bubble detachment time with respect to the applied wall superheat is plotted in Fig. 23a, while the equivalent bubble detachment diameter is plotted in Fig. 23b.

Figure 22. Spatial evolution of generated bubble at the time of detachment for each R134a case of Series –C parametric numerical simulations.
As it can be observed the increase of the applied wall superheat causes a subsequent increase in both the bubble detachment time as well as the equivalent bubble detachment diameter, following a power law, for all three of the examined working fluids. It is characteristic that an increase in the applied superheat by a factor of just 3.5, causes a corresponding increase in the bubble detachment time and the equivalent bubble detachment diameter by an approximate factor of 18 and 10 for R113 and 9 and 6 for R22 and R134a. All these findings and observations are in direct qualitative agreement with previous similar investigations (e.g. [89]).

As expected, the value of the heated wall superheat is a very important parameter in the bubble growth and detachment process. Even a temperature variation of a few degrees can significantly alter the bubble detachment characteristics. Therefore, it can be concluded that the accurate measurement of the temperature values in the vicinity of the generated bubbles is quite crucial for the numerical reproduction of experimental results on nucleate boiling.

4.4 Effect of Gravity Level – Series D

In the current sub-section of the present paper the effect of gravity level on the bubble detachment characteristics, is investigated numerically. For this purpose, the base cases of Table 4, 5 and 6 are utilised and additional simulations are performed by systematically varying the value of the gravitational acceleration. Five different gravity levels that correspond to the gravitational acceleration values of all the major planets in the Earth’s solar system are utilised for the proposed parametric analysis. It must be mentioned that the proposed analysis is again performed for the same working fluids (R113, R22 and R134a) but not only for atmospheric pressure conditions (1 bar) but also for 5 bar ambient pressure conditions. Tables 4, 5 and 6 indicate the utilised fluid properties for 1 bar ambient pressure. The corresponding properties and the initial conditions for the base simulation cases in the case of 5 bar ambient pressure, are summarised in Tables 10, 11 and 12, accordingly. Details regarding the varying parameter and the overall runs conducted for Series D of parametric numerical simulations, are summarised in Table 13.
Table 10. Fluid properties and initial conditions (Base case for R113 refrigerant at 5 bar).

Phase properties (R113 at 5 bar) \[T_{sat} = 379.02 K\]	\(\rho (\text{kg/m}^3)\)	\(c_p (\text{J/kgK})\)	\(k (\text{W/mK})\)	\(\nu (\text{m}^2/\text{s})\)	\(\sigma (\text{N/m})\)	\(h_{lv} (\text{J/kg})\)
Liquid	1351.4	1014.9	0.053	\(1.94 \times 10^{-3}\)	0.0086	122950
Vapour	34.1	790.8	0.012	\(3.56 \times 10^{-3}\)		

| Initial Conditions | | | | Initial bubble (seed) radius (\(\mu\text{m}\)): 50 | Wall superheat (K): 13.5 | Contact angle (\(^\circ\)): 30 | Domain size (mm): 2.5x4.0 |
|---|---|---|---|---|---|---|
| | | | | Initially developed thermal boundary layer thickness (\(\mu\text{m}\)): 352 | Simulation Type: Axisymmetric | No. of computational cells: 400000 |

Table 11. Fluid properties and initial conditions (Base case for R22 refrigerant, at 5 bar).

Phase properties (R22 at 5 bar) \[T_{sat} = 273.27 K\]	\(\rho (\text{kg/m}^3)\)	\(c_p (\text{J/kgK})\)	\(k (\text{W/mK})\)	\(\nu (\text{m}^2/\text{s})\)	\(\sigma (\text{N/m})\)	\(h_{lv} (\text{J/kg})\)
Liquid	1281.1	1169.6	0.094687	\(1.68 \times 10^{-3}\)	0.01168	144350
Vapour	21.312	739.50	0.009416	\(5.33 \times 10^{-3}\)		

| Initial Conditions | | | | Initial bubble (seed) radius (\(\mu\text{m}\)): 50 | Wall superheat (K): 13.5 | Contact angle (\(^\circ\)): 30 | Domain size (mm): 2.5x4.0 |
|---|---|---|---|---|---|---|
| | | | | Initially developed thermal boundary layer thickness (\(\mu\text{m}\)): 352 | Simulation Type: Axisymmetric | No. of computational cells: 400000 |

Table 12. Fluid properties and initial conditions (Base case for R134a refrigerant, at 5 bar).

Phase properties (R134a at 1 bar) \[T_{sat} = 246.79 K\]	\(\rho (\text{kg/m}^3)\)	\(c_p (\text{J/kgK})\)	\(k (\text{W/mK})\)	\(\nu (\text{m}^2/\text{s})\)	\(\sigma (\text{N/m})\)	\(h_{lv} (\text{J/kg})\)
Liquid	1240.8	1389.4	0.085126	\(1.76 \times 10^{-3}\)	0.00934	185970
Vapour	24.317	976.12	0.012930	\(4.70 \times 10^{-3}\)		

| Initial Conditions | | | | Initial bubble (seed) radius (\(\mu\text{m}\)): 50 | Wall superheat (K): 13.5 | Contact angle (\(^\circ\)): 30 | Domain size (mm): 2.5x4.0 |
|---|---|---|---|---|---|---|
| | | | | Initially developed thermal boundary layer thickness (\(\mu\text{m}\)): 352 | Simulation Type: Axisymmetric | No. of computational cells: 400000 |
Table 13. Varied parameter in Series-D of parametric numerical simulations.

Run	Gravitational Acceleration (m/s²)	Working Fluid	Run	Gravitational Acceleration (m/s²)	Working Fluid
D1	0.58 (Pluto)	R113	D16	0.58	R113
D2	3.71 (Mars/Mercury)	R113	D17	3.71	R113
D3	8.83 (Venus/Saturn/Uranus)	R113	D18	8.83	R113
D4	9.81 (Earth)	R113	D19	9.81	R113
D5	10.99 (Neptune)	R113	D20	10.99	R113
D6	0.58	R22	D21	0.58	R22
D7	3.71	R22	D22	3.71	R22
D8	8.83	R22	D23	8.83	R22
D9	9.81	R22	D24	9.81	R22
D10	10.99	R22	D25	10.99	R22
D11	0.58	R134a	D26	0.58	R134a
D12	3.71	R134a	D27	3.71	R134a
D13	8.83	R134a	D28	8.83	R134a
D14	9.81	R134a	D29	9.81	R134a
D15	10.99	R134a	D30	10.99	R134a

As it can be seen, a total of 30 simulations are performed. Four additional simulations for each of the considered working fluids (R113, R22 and R134a) are performed initially, changing the value of the gravitational acceleration from 9.81 m/s² in the base cases (D4, D9 and D14, Earth), to 0.58 m/s² (D1, D6 and D11, Pluto), 3.71 m/s² (D2, D7 and D12, Mars/Mercury), 8.83 m/s² (D3, D8 and D13, Venus/Saturn/Uranus) and 10.99 m/s² (D5, D10 and D15, Neptune). Then these simulations are all repeated (D16-D20 for R113, D20-D25 for R22 and D25-D30 for R134a) changing the ambient pressure.
from 1 to 5 bar, and hence the properties of the liquid and vapour phases (as summarised in Tables 10, 11 and 12). The spatial evolution of the generated bubbles for each of the above cases, at the time of detachment, is depicted in Fig. 24 and 25, for the 1 bar ambient pressure cases (D1-D15) and the 5 bar ambient pressure cases (D16-D30), respectively.

Figure 24. Spatial evolution of generated bubble at the time of detachment for each case of Series –D parametric numerical simulations, with 1 bar ambient pressure condition.

Figure 25. Spatial evolution of generated bubble at the time of detachment for each case of Series –D parametric numerical simulations, with 5 bar ambient pressure condition.

As it can be observed from Figure 24, for the cases of 1 bar ambient pressure, both the bubble detachment diameter as well as the bubble detachment time decrease with the corresponding increase of the gravity level. This observation can be explained by the corresponding increase of the acting buoyancy force on the generated in each case bubble. In more details the higher the gravitational acceleration, the higher the acting buoyancy force and therefore the lower the bubble detachment characteristics.

However, it is important to notice that for the cases of 5 bar ambient pressure (Figure 25), both the bubble detachment time as well as the bubble detachment volume seem to be unaffected by the
increase in the applied gravitational acceleration, for all three of the examined working fluids. This can be seen in more detail in the diagrams of Fig. 26 and 27, where the bubble detachment time (Figures 26a and 27a) as well as the equivalent bubble detachment diameter (Figures 26b and 27b) are plotted with respect to the applied gravitational acceleration for the cases of 1 bar (Figure 26) and 5 bar (Figure 27) ambient pressure, respectively.

Figure 26. Effect of gravity level on: (a) the bubble detachment time; (b) the equivalent bubble detachment diameter (cases D1-D15, with 1 bar ambient pressure condition).

As it can be observed from Figure 26a, for all three of the examined working fluids, the bubble detachment time decreases with the corresponding increase on the applied gravitational acceleration, following a power law. It is characteristic to notice that the rate of decrease is initially higher for the case of R134a, while the other two considered refrigerants (R113 and R22) show a similar rate of decrease in the bubble detachment time with respect to the corresponding increase in the gravity level. A similar overall behaviour can be observed for the equivalent bubble detachment diameter (Figure 26b). It is characteristic that a total variation of the gravitational acceleration by a factor of...
almost 19 causes a relatively low variation in the bubble detachment time and equivalent bubble
detachment diameters by a factor of 1.27 and 1.02, respectively.

![Diagram](image)

Figure 27. Effect of gravity level on: (a) the bubble detachment time; (b) the equivalent bubble
detachment diameter (cases D16-D30, with 5 bar ambient pressure condition).

Examine the diagrams of Figure 27, it can be concluded that increasing the ambient pressure
level of the system from 1 bar to 5 bar it seems that the previously identified effects of gravity level
(Figure 26) are diminishing. Furthermore, it is evident that in general, increasing the pressure level
the bubble detachment characteristics decrease significantly.

Finally, in order to compare the relative importance of the overall examined controlling
parameters in the bubble detachment characteristics, Table 14 summarizes the variation factors in the
bubble detachment time and equivalent bubble detachment diameter with respect to the

Table 14. Comparison of relative importance of the effect of the examined controlling parameters in
the bubble detachment characteristics (R113). Resulting change factors in the bubble detachment
characteristics with respect to the maximum variation factors in the examined controlling parameters.
As it can be observed, according to the overall parametric numerical simulations, the heated plate superheat seems to be the most influential parameter in the bubble detachment characteristics. Quite important is also the influence of the ITBL and the surface wettability. Finally, the gravitational acceleration seems to have a minor influence both in the bubble detachment time (T_{det}) as well as in the equivalent bubble detachment diameter (D_{eq}).

5. Conclusions

In the present paper, an enhanced, algebraic VOF (Volume of Fluid) based interface capturing approach that has been already implemented in the CFD ToolBox of OpenFOAM® (v.2.2.1) [67], is further coupled with heat transfer and phase change for the conduction of axisymmetric numerical experiments on pool boiling. The main goal was the identification of the exact quantitative effect of fundamental parameters on the bubble growth dynamics, focusing on the detachment characteristics of isolated vapour bubbles (from inception to departure), emanating from heated plates submerged in saturated liquid pools. Prior to the main applications the development of the proposed enhanced VOF model is quantitatively validated against an existing analytical solution and literature available experimental data, showing an excellent degree of convergence. The optimised and validated version of the numerical model is then applied for the conduction of four wide series of parametric numerical simulations identifying and quantifying the effects of the Initial Thermal Boundary Layer (ITBL) thickness, the surface wettability (triple-line contact angle), the heated plate superheat and the gravity level, on the bubble detachment characteristics. From the overall analysis and discussion of the results the following important conclusions can be withdrawn:

- Among the examined fundamental controlling parameters, it is shown that the heated plate Superheat constitutes the most influential parameter, followed by the ITBL and the heated surface wettability (contact angle). For the examined flow conditions, the less influential parameter seems to be the applied gravitational acceleration.

- Both the bubble detachment diameter as well as the bubble detachment time, linearly increase with respect to the corresponding increase of the ITBL thickness, for the case of the R113 refrigerant. Therefore, it can be concluded that the bulk liquid thermal boundary layer thickness should always be measured and reported in future experimental studies, since it comprises a required input for the successful numerical simulation of nucleate boiling processes.

- For all three of the considered working fluids (R113, R22 and R134a), the bubble detachment characteristics seem to be significantly affected by the imposed contact angle (wettability of the heated plate) for values higher than a critical contact angle, which is for the considered refrigerant equal to 45°. However, the proposed effect is minimal for contact angles lower that this limiting value of 45°. This finding leads to the identification of two distinct regions a “Lyophilic” region for contact angles lower than 45° and a “Lyophobic” region for contact angles higher that 45°.

- It is also found that the increase of the applied wall superheat causes a power law increase in...
both the bubble detachment time as well as the equivalent bubble detachment diameter, for all three of the examined working fluids (R113, R22 and R134a). Temperature variations of even a few degrees, can significantly alter the bubble detachment characteristics. Therefore, it can be concluded that the accurate measurement of the temperature value in the vicinity of the generated bubbles is quite crucial for the numerical reproduction of experimental results on nucleate boiling.

- For all three of the examined working fluids, both the bubble detachment time as well as the equivalent bubble detachment diameter, decrease with the corresponding increase on the applied gravitational acceleration, following a power law. It is quite important that this power law effect on the bubble detachment characteristics, almost disappears at pressure conditions higher than atmospheric. This constitutes a quite useful finding for the design of experimental setups for microgravity and hyper gravity experiments and therefore it worth to further investigate the bubble detachment characteristics for a variety of different pressure levels below and above atmospheric pressure, for the same gravitational acceleration values as the ones considered here.

- It is also interesting in general that, the influence of all of the examined controlling parameters, is higher in the bubble detachment time in comparison to the bubble detachment diameter.

- In comparison, the overall results of the present parametric analysis indicate that the bubble detachment characteristics are more affected by the heated plate Superheat, among the overall examined controlling parameters. The ITBL thickness and the heated surface wettability (contact angle) are the next in turn influential parameters, while the less influential parameter is the applied gravitational acceleration. However, further investigations need to be conducted here, considering the relative effect of gravity level at lower superheats and pressure conditions that the ones considered, in the present parametric analysis.

Summarizing, the present investigation adds significantly to the existing knowledge on bubble growth and detachment, in cases of saturated pool boiling of refrigerants, since a comprehensive examination of the effect of fundamental controlling parameters on the bubble detachment characteristics is conducted (more than 100, high resolution, transient, numerical simulations were conducted for the purposes of the present investigation), identifying their exact quantitative influence on the bubble detachment diameter and time as well as their relative importance. Finally, it can be said that the use of the improved VOF-based interface capturing approach that is proposed, presented, validated and applied in the present investigation, constitutes a quite promising and novel tool for the simulation of bubble growth and detachment processes, providing great insight regarding the complex underlined physics, hydrodynamics and thermodynamics, of such two-phase flow phenomena of significant interest to real technological applications.

Acknowledgments: Part of the results presented in the present paper, constitute part of a wider research work, which was related to the development of a VOF-based flow boiling model, able to predict the bubble detachment characteristics in cases of diesel fuel flow boiling within injector nozzles, and it has received funding from the People Programme (IAPP Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n. 324313. The authors would also like to acknowledge the contribution of the super-computing facilities of CINECA, in Bologna (Italy), for the conduction of the large number of numerical simulations of the present investigation, in a relatively short time. Part of the present work has also been carried forward in the framework of the ESA MAP Project INWIP. Therefore, the authors would also like to thank Dr. Olivier Minster and Dr. Balazs Toth, for their interest and support.

References

1. Nelson, R. A. Do we doubt too little? Examples from the thermal sciences. Exp. Therm. Fluid Sci. 2001, 25, 255–267.
925 2. Jakob, M.; Fritz, W. Versuche über den Verdampfungs vorgang. *Forsch. auf dem Gebiet der Ingenieurwissenschaften* 1931, 2, 435–447.

927 3. Fritz, W. Berechnung des Maximalvolumens von Dampfblasen. *Phys. Zeitschrift* 1935, 36, 379–384.

928 4. Nukiyama, S. The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. *Int. J. Heat Mass Transf.* 1966, 9, 1419–1433.

930 5. Zuber, N. Nucleate boiling. The region of isolated bubbles and the similarity with natural convection. *Int. J. Heat Mass Transf.* 1963, 6, 53–78.

932 6. Cole, R. Bubble frequencies and departure volumes at subatmospheric pressures. *AIChE J.* 1967, 13, 779–783.

933 7. Malenkov, I. G. Detachment frequency as a function of size for vapor bubbles. *J. Eng. Phys.* 1971, 20, 704–708.

934 8. Stephan, K.; Abdelsalam, M. Heat-transfer correlations for natural convection boiling. *Int. J. Heat Mass Transf.* 1980, 23, 73–87.

936 9. Carey, V. P. *Liquid Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Second Edition*; Taylor & Francis, 2007; Vol. 19.

938 10. Kenning, D. B.; Kono, T.; Wiencke, M. Investigation of boiling heat transfer by liquid crystal thermography. *Exp. Therm. Fluid Sci.* 2001, 25, 219–229.

940 11. Sodtke, C.; Kern, J.; Schweizer, N.; Stephan, P. High resolution measurements of wall temperature distribution underneath a single vapour bubble under low gravity conditions. *Int. J. Heat Mass Transf.* 2006, 49, 1100–1106.

942 12. Wagner, E.; Sodtke, C.; Schweizer, N.; Stephan, P. Experimental study of nucleate boiling heat transfer under low gravity conditions using TLCs for high resolution temperature measurements. *Heat Mass Transf.* 2006, 42, 875–883.

943 13. Baldassari, C.; Mameli, M.; Marengo, M. Non-Uniform Onset of Nucleate Flow Boiling of R-134a Inside a Glass Minichannel. *Exp. Heat Transf.* 2014, 27, 316–328.

944 14. Jung, S.; Kim, H. An experimental method to simultaneously measure the dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface. *Int. J. Heat Mass Transf.* 2014, 73, 365–375.

948 15. Duan, X.; Phillips, B.; McKrell, T.; Buongiorno, J. Synchronized High-Speed Video, Infrared Thermometry, and Particle Image Velocimetry Data for Validation of Interface-Tracking Simulations of Nucleate Boiling Phenomena. *Exp. Heat Transf.* 2013, 26, 169–197.

951 16. Hassan, Y. A.; Estrada-Perez, C. E.; Yoo, J. S. Measurement of subcooled flow boiling using Particle Tracking Velocimetry and infrared thermographic technique. *Nucl. Eng. Des.* 2014, 268, 185–190.

953 17. Demiray, F.; Kim, J. Microscale heat transfer measurements during pool boiling of FC-72: effect of subcooling. *Int. J. Heat Mass Transf.* 2004, 47, 3257–3268.

955 18. Myers, J. G.; Yerramilli, V. K.; Hussey, S. W.; Yee, G. F.; Kim, J. Time and space resolved wall temperature and heat flux measurements during nucleate boiling with constant heat flux boundary conditions. *Int. J. Heat Mass Transf.* 2005, 48, 2429–2442.

957 19. Moghaddam, S.; Kiger, K. Physical mechanisms of heat transfer during single bubble nucleate boiling of FC-72 under saturation conditions-1. Experimental investigation. *Int. J. Heat Mass Transf.* 2009, 52, 1284–1294.

959 20. Delgoshaei, P.; Kim, J. Microscale Heat Transfer Measurements During Subcooled Pool Boiling of Pentane: Effect of Bubble Dynamics. In *14th International Heat Transfer Conference*; ASME Digital COllection: Wshington, DC, 2010; pp. 397–405.

961 21. Wagner, E.; Stephan, P.; Koeppen, O.; Auracher, H. High resolution temperature measurements at moving vapor/liquid and vapor/liquid/solid interfaces during bubble growth in nucleate boiling. *Fortschr.-Ber. VDI* 2007, 3, 260–277.

962 22. Sempérgueí, D.; Ribatski, G. Micro-Scale Flow Pattern Classification Based on the K-Means Clustering Algorithm. In *ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting*; Montreal, Quebec, Canada, 2010; pp. 1619–1627.

964 23. Kurul, N.; Podowski, M. Z. Multidimensional effects in forced convection subcooled boiling. In *9th International Heat
24. Steiner, H.; Kobor, A.; Gebhard, L. A wall heat transfer model for subcooled boiling flow. *Int. J. Heat Mass Transf.* **2005**, *48*, 4161–4173.

25. Koncar, B.; Krepper, E. CFD simulation of forced convective boiling in heated channels. *2007*.

26. Lopez-de-Bertodano, M. A.; Prabhudharwadkar, D. CFD Two Fluid Model for Adiabatic and Boiling Bubbly Flows in Ducts. In *Computational Fluid Dynamics (INTECH)*; Hyoun Woo Oh, Ed.; 2010; pp. 29–52.

27. Yun, B.-J.; Splawski, A.; Lo, S.; Song, C.-H. Prediction of a subcooled boiling flow with advanced two-phase flow models. *Nucl. Eng. Des.* **2012**, *253*, 351–359.

28. Krepper, E.; Rzechak, R.; Lifante, C.; Frank, T. CFD for subcooled flow boiling: Coupling wall boiling and population balance models. *Nucl. Eng. Des.* **2013**, *255*, 330–346.

29. Prabhudharwadkar, D.; Lopez-de-Bertodano, M. A.; Hibiki, T.; Buchanan, J. R. Assessment of subcooled boiling wall boundary correlations for two-fluid model CFD. *Int. J. Heat Mass Transf.* **2014**, *79*, 602–617.

30. Cheung, S. C. P.; Vahaji, S.; Yeoh, G. H.; Tu, J. Y. Modeling subcooled flow boiling in vertical channels at low pressures – Part 1: Assessment of empirical correlations. *Int. J. Heat Mass Transf.* **2014**, *75*, 736–753.

31. Harlow, F. H.; Welch, J. E. Numerical Calculation of Time-Dependent Viscous Incompressible Flow with Free Surface. *Phys. Fluids* **1965**, *8*, 2182.

32. Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y.-J. A Front-tracking Method for the Computations of Multiphase Flow. *J. Comput. Phys.* **2001**, *169*, 708–759.

33. Hirt, C.; Amsden, A.; Cook, J. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. *J. Comput. Phys.* **1974**, *14*, 227–253.

34. Hirt, C.; Nichols, B. Volume of fluid (VOF) method for the dynamics of free boundaries. *J. Comput. Phys.* **1981**, *39*, 201–225.

35. Osher, S.; Sethian, J. A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. *J. Comput. Phys.* **1988**, *79*, 12–49.

36. Madhavan, S.; Mesler, R. B. A study of vapor bubble growth on surfaces. In *International Heat Transfer Conference 4*; *1970*; pp. 1–11.

37. Glimm, J.; Grove, J.; Lindquist, B.; McBryan, O. A.; Tryggvason, G. The Bifurcation of Tracked Scalar Waves. *SIAM J. Sci. Stat. Comput.* **1988**, *9*, 61–79.

38. Unverdi, S. O.; Tryggvason, G. A front-tracking method for viscous, incompressible, multi-fluid flows. *J. Comput. Phys.* **1992**, *100*, 25–37.

39. Juric, D.; Tryggvason, G. Computations of boiling flows. *Int. J. Multiph. Flow* **1998**, *24*, 387–410.

40. Esmaeeli, A.; Tryggvason, G. Computations of film boiling. Part I: numerical method. *Int. J. Heat Mass Transf.* **2004**, *47*, 5451–5461.

41. Esmaeeli, A.; Tryggvason, G. Computations of film boiling. Part II: multi-mode film boiling. *Int. J. Heat Mass Transf.* **2004**, *47*, 5463–5476.

42. Esmaeeli, A.; Tryggvason, G. A front tracking method for computations of boiling in complex geometries. *Int. J. Multiph. Flow* **2004**, *30*, 1037–1050.

43. Welch, S. W. J. Local Simulation of Two-Phase Flows Including Interface Tracking with Mass Transfer. *J. Comput. Phys.* **1995**, *121*, 142–154.

44. Welch, S. W. J. Direct simulation of vapor bubble growth. *Int. J. Heat Mass Transf.* **1998**, *41*, 1655–1666.

45. Fuchs, T.; Kern, J.; Stephan, P. A Transient Nucleate Boiling Model Including Microscale Effects and Wall Heat Transfer. *J. Heat Transfer* **2006**, *128*, 1257–1265.

46. Kern, J.; Stephan, P. Investigation of Decisive Mixture Effects in Nucleate Boiling of Binary Mixtures Using a Theoretical Model. *J. Heat Transfer* **2003**, *125*, 1116–1122.
47. Kern, J.; Stephan, P. Theoretical Model for Nucleate Boiling Heat and Mass Transfer of Binary Mixtures. J. Heat Transfer 2003, 125, 1106–1115.

48. Welch, S. W. J.; Wilson, J. A Volume of Fluid Based Method for Fluid Flows with Phase Change. J. Comput. Phys. 2000, 160, 662–682.

49. Welch, S. W. J.; Rachidi, T. Numerical computation of film boiling including conjugate heat transfer. Numer. Heat Transf. Part B Fundam. 2002, 42, 35–53.

50. Wiesche, S. aus der Bubble growth and departure during nucleate boiling: the occurrence of heat flux reversal. 2005.

51. Hardt, S.; Wondra, F. Evaporation model for interfacial flows based on a continuum-field representation of the source terms. J. Comput. Phys. 2008, 227, 5871–5895.

52. Kunugi, T.; Saito, N.; Fujita, Y.; Serizawa, A. Direct numerical simulation of pool and forced convective flow boiling phenomena. Heat Transf. 2002, 3, 497–502.

53. Ose, Y.; Kunugi, T. Numerical Study on Sabcooled Pool Boiling. Prog. Nucl. Sci. Technol. 2011, 2, 125–129.

54. Ose, Y.; Kunugi, T. Development of A Boiling and Condensation Model on Subcooled Boiling Phenomena. Energy Procedia 2011, 9, 605–618.

55. Pan, L.; Tan, Z.; Chen, D.; Xue, L. Numerical investigation of vapor bubble condensation characteristics of subcooled flow boiling in vertical rectangular channel. Nucl. Eng. Des. 2012, 248, 126–136.

56. Jeon, S.-S.; Kim, S.-J.; Park, G.-C. Numerical study of condensing bubble in subcooled boiling flow using volume of fluid model. Chem. Eng. Sci. 2011, 66, 5899–5909.

57. Kunkelmann, C.; Ibrahim, K.; Schweizer, N.; Herbert, S.; Stephan, P.; Gambaryan-Roisman, T. The effect of three-phase contact line speed on local evaporative heat transfer: Experimental and numerical investigations. Int. J. Heat Mass Transf. 2012, 55, 1896–1904.

58. Kunkelmann, C.; Stephan, P. CFD Simulation of Boiling Flows Using the Volume-of-Fluid Method within OpenFOAM. Numer. Heat Transf. Part A Appl. 2009, 56, 631–646.

59. Kunkelmann, C. Numerical Modeling and Investigation of Boiling Phenomena. phdthesis, Technische Universität: Darmstadt, 2011.

60. Son, G.; Dhir, V. K. Numerical Simulation of Film Boiling Near Critical Pressures With a Level Set Method. J. Heat Transfer 1998, 120, 183–192.

61. Son, G.; Dhir, V. K.; Ramanujapu, N. Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface. J. Heat Transfer 1999, 121, 623–631.

62. Dhir, V. K. Numerical simulations of pool-boiling heat transfer. AIChE J. 2001, 47, 813–834.

63. Lee, W.; Son, G.; Yoon, H. Y. Numerical study of bubble growth and boiling heat transfer on a microfinned surface. Int. Commun. Heat Mass Transf. 2012, 39, 52–57.

64. Shu, B.; Ingenieure., V. D. Numerische Simulation des Blasersiedens mit Volume-Of-Fluid- und Level-Set-Methode. THES, VDI Verlag: Dusseldorf, 2010.

65. Hazi, G.; Markus, A. On the bubble departure diameter and release frequency based on numerical simulation results. Int. J. Heat Mass Transf. 2009, 52, 1472–1480.

66. Badillo, A. Quantitative phase-field modeling for boiling phenomena. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 2012, 86, 41603.

67. Georgoulas, A.; Koukouvinis, P.; Gavaises, M.; Marengo, M. Numerical investigation of quasi-static bubble growth and detachment from submerged orifices in isothermal liquid pools: The effect of varying fluid properties and gravity levels. Int. J. Multiph. Flow 2015, 74, 59–78.

68. Magnini, M.; Pulvirenti, B. Height function interface reconstruction algorithm for the simulation of boiling flows. In WIT Transactions on Engineering Sciences; WIT Press, 2011; Vol. 70, pp. 69–80.

69. Lee, H. C.; Oh, B. Do; Bae, S. W.; Kim, M. H. Single bubble growth in saturated pool boiling on a constant wall
temperature surface. *Int. J. Multiph. Flow* **2003**, *9* (2016), 1857–1874.

70. Brackbill, J.; Kothe, D.; Zemach, C. A continuum method for modeling surface tension. *J. Comput. Phys.* **1992**, *100*, 335–354.

71. Hoang, D. A.; van Steijn, V.; Portela, L. M.; Kreutzer, M. T.; Kleijn, C. R. Benchmark numerical simulations of segmented two-phase flows in microchannels using the Volume of Fluid method. *Comput. Fluids* **2013**, *86*, 28–36.

72. Deshpande, S. S.; Anumolu, L.; Trujillo, M. F. Evaluating the performance of the two-phase flow solver interFoam. *Comput. Sci. Discov.* **2012**, *5*, 14016.

73. OpenFOAM, The Open Source CFD Toolbox, User Guide. **2013**.

74. Scardovelli, R.; Zaleski, S. Direct Numerical Simulation of Free-Surface and Interfacial Flow. *Annu. Rev. Fluid Mech.* **1999**, *31*, 567–603.

75. Schrage, R. W. A theoretical study of interphase mass transfer. THES, Columbia University Press: New York, **1953**.

76. Kunkelmann, C.; Stephan, P. Numerical simulation of the transient heat transfer during nucleate boiling of refrigerant HFE-7100. *Int. J. Refrig.* **2010**, *33*, 1221–1228.

77. Kunkelmann, C.; Stephan, P. Modification and extension of a standard volume-of-fluid solver for simulating boiling heat transfer. In *Proceedings ECCOMAS CFD 2010* (---) Fifth European Conference on Computational Fluid Dynamics; **2010**.

78. Magnini, M. CFD Modeling of Two-Phase Boiling Flows in the Slug Flow Regime with an Interface Capturing Technique, University of Bologna, **2012**.

79. Plesset, M. S.; Zwick, S. A. The Growth of Vapor Bubbles in Superheated Liquids. *J. Appl. Phys.* **1954**, *25*, 493.

80. Scriven, L. E. On the dynamics of phase growth: L. E. Scriven, Chem. Engng. Sci.10: 1–13, 1959. *Chem. Eng. Sci.* **1995**, *50*, 3905.

81. Mukherjee, A.; Kandlikar, S. G. Numerical study of single bubbles with dynamic contact angle during nucleate pool boiling. *Int. J. Heat Mass Transf.* **2007**, *50*, 127–138.

82. Gong, S.; Cheng, P. Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method. *Int. J. Heat Mass Transf.* **2015**, *80*, 206–216.

83. Liao, J.; Mei, R.; Klausner, J. F. The influence of the bulk liquid thermal boundary layer on saturated nucleate boiling. *Int. J. Heat Fluid Flow* **2004**, *25*, 196–208.

84. Dhir, V. K. Mechanistic Prediction of Nucleate Boiling Heat Transfer–Achievable or a Hopeless Task? *J. Heat Transfer* **2005**, *128*, 1–12.

85. Bourdon, B.; Rioboo, R.; Marengo, M.; Gosselin, E.; De Coninck, J. Influence of the Wettability on the Boiling Onset. *Langmuir* **2012**, *28*, 1618–1624.

86. Bourdon, B.; Bertrand, E.; Di Marco, P.; Marengo, M.; Rioboo, R.; De Coninck, J. Wettability influence on the onset temperature of pool boiling: Experimental evidence onto ultra-smooth surfaces. *Adv. Colloid Interface Sci.* **2015**, *221*, 34–40.

87. Nam, Y.; Wu, J.; Warrier, G.; Ju, Y. S. Experimental and Numerical Study of Single Bubble Dynamics on a Hydrophobic Surface. *J. Heat Transfer* **2009**, *131*, 121004.

88. Malavasi, I.; Bourdon, B.; Di Marco, P.; de Coninck, J.; Marengo, M. Appearance of a low superheat “quasi-Leidenfrost” regime for boiling on superhydrophobic surfaces. *Int. Commun. Heat Mass Transf.* **2015**, *63*, 1–7.

89. Sanna, A. Numerical investigation of saturated flow boiling on thin walls. **2010**.