A new Helicoverpa armigera Nucleopolyhedrovirus isolate from Heliothis peltigera (Denis & Schiffermuller) (Lepidoptera: Noctuidae) in Turkey

Gözde Büşra EROĞLU, Remziye NALÇACIOĞLU, Zihni DEMİRBAĞ*

Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey

* Correspondence: zihni@ktu.edu.tr

Received: 20.02.2019 • Accepted/Published Online: 17.09.2019 • Final Version: 14.10.2019

Abstract: This study reports a new Helicoverpa armigera nucleopolyhedrovirus (NPV) isolated from Heliothis peltigera (Denis & Schiffermuller), collected in the vicinity of Adana, Turkey. Infection was confirmed by tissue polymerase chain reaction and sequence analysis. Results showed that dead H. peltigera larvae contain Helicoverpa armigera nucleopolyhedrovirus. Thus, the isolate was named as HearNPV-TR. Microscopy studies indicated that occlusion bodies were 0.73 to 1.66 μm in diameter. The nucleocapsids are approximately 184 × 41 nm in size. The genome of HearNPV-TR was digested with KpnI and XhoI enzymes and calculated as 130.5 kb. Phylogenetic analysis showed that HearNPV-TR has close relation with the H. armigera SNPV-1073 China isolate. The Kimura analysis confirmed that the isolate is a variant of H. armigera NPV. Bioassays were performed using six different concentrations (1 × 10³ to 1 × 10⁶ occlusion bodies (OBs)/mL) on 2nd instar larvae of H. peltigera, H. armigera, Heliothis viriplaca, Heliothis nubigera. LC₅₀ values were calculated to be 9.5 × 10³, 1.9 × 10⁴, 8.6 × 10⁴ and 9.2 × 10⁴ OBs/mL within 14 days, respectively. Results showed that it is a promising biocontrol agent against Heliothinae species.

Key words: Safflower, baculovirus, nucleopolyhedrovirus, biocontrol, Heliothis peltigera

1. Introduction

The bordered straw, Heliothis peltigera (Denis & Schiffermuller) is one of the most serious pests infesting various economic crops such as safflower, cotton, soybean, corn, bean, and herbs (Manjunath et al., 1976; Iqbal and Mohyuddin, 1990; Saedi and Adam, 2011). H. peltigera is distributed in the paleosubtropical regions (Hacker, 1989); however, as a result of climatic changes, such as global warming, it is currently becoming a major problem in the European countries (Ragionieri et al., 2017). Cultural methods, natural enemies, and some chemical agents are used in the control of H. peltigera (Simoglu et al., 2017). The application of cultural control methods and natural enemies may be insufficient in epidemics of pest. Additionally, chemical pesticides damage nontarget organisms and environment, and it causes increase of insect resistance against chemicals (French-Constant et al., 2004).

Baculoviruses are important biocontrol agents of insect pests in agriculture due to their narrow host range, persistence in the environment, being eco-friendly, and having high virulence (Fuxa, 2004; Wang et al., 2005). They are divided into two groups as nucleopolyhedrosis viruses (NPV) and granulosis viruses (GV) according to their polyhedrin and granule morphology (Ackermann and Smirnoff, 1983). Molecular classification of baculoviruses is based on the use of conserved gene regions of polyhedrin (polh), late expression factor 8 (lef8), and late expression factor 9 (lef9) (Jehle et al., 2006).

Baculoviruses are used broadly as bio-insecticides to control Heliothinae species in various vegetables and cotton (Ignoffo, 1973; Cunningham, 1998; Yang, 2012; Mironidis et al., 2013). At present, there are many registered products belonging to Helicoverpa armigera and Helicoverpa zea nucleopolyhedroviruses in the world (Erlandson et al., 2007; Yang, 2012). They are both used against their own hosts and other Heliothinae species (Beas-Catena et al., 2014). However, application of exotic virus isolates may cause adverse effects on native isolates (Munoz et al., 1997). Moreover, native isolates can be more pathogenic as per exotic isolates against local populations (Barrera et al., 2011; Cabodevilla et al., 2011). For these reasons, it is important to identify native isolates that indicate high virulence in each geographical region and use them against native pests (Figueiredo et al., 2009).

In this study, a novel H. armigera NPV isolate was recorded the first time in H. peltigera host collected from safflower fields in Adana, Turkey. So far, no record of microbial control agent has been mentioned from this pest. Morphological and molecular features of this isolate were...
determined and insecticidal activity tests, using various concentrations, were performed against all larval stages of four Heliothinae species (H. peltigera, armigera, Heliothis viriplaca, Heliothis nubigera) distributed in Turkey. Results showed that HearNPV-TR isolate is a promising biocontrol agent that could be used to control Heliothinae species.

2. Materials and methods

2.1. Virus detection and propagation

In July 2014, infestations of safflower crops by H. peltigera were observed in the vicinity of Adana, Turkey. Symptoms of larval feeding damage were observed on capitulum of safflower plants. A total of 357 larvae were collected from the field and brought to the laboratory. During laboratory rearing, five larvae died in a short time with typical baculovirus infection signs. Dead larvae were checked for the presence of baculovirus occlusion bodies (OBs) under light microscope (Nikon eclipse E600).

Tissue PCR was performed to confirm the presence of baculovirus infections molecularly. Dead larvae were homogenized in sterile water and filtered through cheesecloth to remove the larval debris. The filtered OBs were purified as described by Munoz et al. (1997). OBs were dissolved using 0.1 M NaOH (pH 12.5) and subsequently, neutralized with 100 mM Tris-HCl (pH 8). The Phire Animal Tissue Direct PCR Kit (Thermo Fisher Scientific, Lithuania) was used to amplify the conserved regions of the baculovirus lef8, lef9, and polh genes. These genes were identified in all completely sequenced baculovirus genomes. Thus, they were detected in baculovirus phylogeny analysis (Jehle et al., 2006). The degenerate primer sets of these genes are shown in Table 1. Tissue-PCR reaction mixture was prepared following the manufacturer’s standard protocol for animal tissues. Amplified PCR products were sequenced by Macrogen Company (the Netherlands). Sequences were first blasted for alignment of the baculoviruses in NCBI (The National Center for Biotechnology Information) web site, subsequently registered to the GenBank.

The virus was propagated freshly in the laboratory in healthy H. peltigera larvae. Insects were infected individually with diet (Poitout and Bues, 1974) discs contaminated with 10 µL virus suspension in a concentration of 10^5 OBs/mL and maintained at 25 °C to develop infection. The OBs were purified from infected larvae as described by Ishii et al. (2003) and stored at –20 °C.

2.2. Electron microscopy studies

OB morphology was studied under scanning electron microscope and transmission electron microscope. Twenty-five microliters of the OB suspension was spread on a stub and dried at 37 °C for 16 h. The stub was covered with gold dust (Quorum Technology SC7620-CF) and examined to measure the sizes of OBs (Agilent Technologies).

For transmission electron microscopic examination, previously isolated OBs were washed twice with PBS and precipitated by high-speed centrifugation. The precipitated OB pellet was fixed in a fixative containing 2% glutaraldehyde, 2% paraformaldehyde in a 0.05 M pH 7.2 cacodylate buffer + 0.001 M CaCl2 for 2 h, postfixed in 1% OsO4 in the same fixative for 1 h, and subsequently embedded in resin. Ultrathin sections were obtained from OB blocks embedded in resin using an Ultracut S Ultramicrotome (Reichert, Munich, Germany). The sections, stained in 1% uranyl acetate and 1% lead citrate, were examined with a transmission (JEOL JEM 1220) electron microscope.

2.3. DNA extraction and restriction endonuclease profile

Viral DNA was extracted according to the method described by Reed et al. (2003) and dialyzed for 24 h at 4 °C against a 0.1 × TE buffer (10mM Tris/HCl, 1mM EDTA, pH 7.5) following phenol:chloroform:isoamyl alcohol extraction. The buffer was changed every 12 h. The extracted DNA was quantified using a spectrophotometer (Thermo Scientific, NanoDrop 2000).

To determine the restriction profile of viral genome, 2 µg of DNA was digested with KpnI and XhoI enzymes for 4 h at 37 °C. The digested fragments were separated in 0.6% agarose gel for 15 V for 16 h. The agarose gel was then stained with ethidium bromide for 15 min and analyzed under UV light.

2.4. Phylogeny and Kimura-2 parameter analysis

In order to show the position of the HearNPV-TR among the other Heliothinae NPVs in GenBank, Kimura-2 parameter analysis was performed. For this reason, polh, lef8, and lef9 genes were amplified and sequenced. The sequences were submitted to GenBank under Accession numbers.

Table 1. Primers of conserved gene regions used for phylogenetic analysis.

Primer	Sequence	Size	Reference
lef8F	5’GTAAAACGACGGCCAGTTTYYCAYGGNGA3’	800 bp	Herniou, 2003
lef8R	5’AACAGTATGACCATGGNAYRTANGGRTC3’		
lef9F	5’CAGGAAACAGCTATGACCAARAAYGGITAYGC3’	350 bp	Lange et al., 2004
lef9R	5’TGTAAACGACGGCCAGTTTYYTTCG3’		
polhF	5’TAYGTGTAYGAYAACAAGT3’	420 bp	de Moraes and Maruniak, 1997
polhR	5’TGTGARAAAGTTCGCCAG3’		
gene sequences of all isolates were concatenated to obtain a single phylogenetic tree of these genes. The nucleotide sequences were assembled and edited using BioEdit version 7.0.5.3 (Hall, 1999). The MEGA program (version 6.0) and the maximum composite likelihood method with 1000 bootstrap replicates were used for phylogenetic analysis. H. armigera granulosis virus isolate was used as an outgroup.

Distance matrices between HearNPV-TR and other Heliothinae species were determined for partial lef8, lef9, and polh sequences using the pairwise distance calculation of MEGA version 6.0 applying the Kimura-2 parameter model. H. armigera granulosis virus, Trichoplusia ni nucleopolyhedrovirus, and Pseudoplusia includens nucleopolyhedrovirus were also included in the Kimura-2 parameter analysis.

2.5. Biological tests

H. peltigera and H. armigera larvae were collected from safflower and sunflower fields, respectively, in Çukurova Region of Turkey. Heliothis viriplaca and Heliothis nubigera larvae, which are legume pests, were collected from the chickpea and lentil fields in the Southeastern Anatolia Region of Turkey, respectively. A generation of each larvae were reared to use for insecticidal tests and to determine the host range of HearNPV-TR in a climate cabinet at 26 °C and 65% humidity. Six different virus concentrations (1 × 10^{3}, 1 × 10^{4}, 1 × 10^{5}, 1 × 10^{6}, 1 × 10^{7}, 1 × 10^{8} OBs/mL) were used for biological tests. Second instar of H. peltigera, H. armigera, H. viriplaca, and H. nubigera larvae were infected with virus contaminated semisynthetic diets. For the control group, sterile water was applied on diet. Thirty larvae were used for each test and the experiments were repeated 3 times. Mortality was assessed daily for 14 days. The mortality rates were determined by Abbott’s formula (Abbott, 1925), and the LC_{50} values were determined using probit regression analysis in SPSS (24.0 version).

3. Results

3.1. Virus detection and microscopy

Light microscopy examinations of dead H. peltigera larvae, collected from safflower fields in Adana, Turkey, showed typical baculovirus OBs as bright crystals. To verify baculovirus infection, partial sequences of lef8, lef9, and polh genes were amplified by tissue PCR. Amplified products of the expected sizes (lef8: 800 bp, lef9: 350 bp, and polh: 420 bp) were sequenced. Blast analysis of sequence results showed that deaths of the H. peltigera larvae were due to H. armigera nucleopolyhedrovirus infection. Thus, we have designated the isolate as HearNPV-TR. The sequences were registered to the GenBank and the accession numbers for lef8 (MG870624), lef9 (MG870625), and polh (MH161372) genes were obtained.

Scanning electron microscopy studies showed that OBs were irregularly shaped and ranged in size from 0.73 to 1.66 μm (Figure 1a). Transmission electron microscopy examinations of HearNPV-TR OBs demonstrated several virions with a single nucleocapsid packaged within a single viral envelope and confirmed that HearNPV-TR was a single nucleocapsid-type virus (SNPV). The dimensions of rod-shaped nucleocapsids were approximately 184 × 41 nm (Figure 1b).

3.2. Restriction endonuclease profile

The DNA of the HearNPV-TR, digested with KpnI and XhoI restriction enzymes, yielded six and seven fragments, respectively. These fragments were designated from A to G on Figure 2. Lambda (λ) DNA, digested with NarI and

Figure 1. Micrographs of HearNPV-TR isolate. (a) Scanning electron micrographs of purified OBs, (b) Transmission electron micrographs of cross section of OBs.
HindIII enzymes, was used as a molecular size marker. The sizes of the fragments relative to λ DNA/NarI and λ DNA/HindIII fragments are given in Table 2. Genome size of HearNPV-TR was calculated to be nearly 130.5 kbp.

3.3. Phylogeny and Kimura-2 parameter analysis
Phylogenetic analysis was performed to indicate the relationship of HearNPV-TR isolated from *H. peltigera* with the other Heliothinae NPVs (Table 3). The phylogenetic tree showed close relation of HearNPV-TR with *H. armigera* SNPV-1073 China isolate (Figure 3).

Kimura-2 parameter analysis of nucleotide distances indicated that the viral isolate in this study is a *H. armigera* NPV isolate. If the value of the nucleotide locus distances is less than 0.015, two baculoviruses are considered to be the same species and more than 0.050 are considered to be different species (Jehle et al., 2006). Distances between HearNPV-TR and other HearNPV isolates in GenBank were less than 0.015. However, distances between *H. armigera* GV and the other NPVs were greater than 0.050 (Table 4).

3.4. Biological tests
To determine virulence of the HearNPV-TR isolate, biological tests have been carried out on both its host (*H. peltigera*) and other three Heliothinae species (*H. armigera*, *H. viriplaca*, *H. nubigera*) distributed in Turkey. The LC50 of HearNPV-TR against the 2nd instar larvae of the *H. peltigera*, *H. armigera*, *H. viriplaca*, and *H. nubigera* were determined to be 9.5×10^3, 1.9×10^4, 8.6×10^4, and 9.2×10^4 OBs/mL, respectively for 14 days (Figure 4, Table 5).

4. Discussion
In this study, we detected a nucleopolyhedrovirus infection in *H. peltigera* larvae. As baculovirus isolates were named according to the host from which they were isolated, the name of this viral isolate was originally thought to be *H.
However, sequence results, phylogenetic analysis, and Kimura-2 parameter test showed that the isolate obtained from *H. peltigera* is a *H. armigera* single nucleopolyhedrovirus isolate. We previously reported another *H. armigera* NPV isolate from *H. armigera* larvae (Eroglu et al., 2018). However, the previous one was determined as a multinucleopolyhedrovirus. Therefore, the current virus isolate is totally different than the previous isolate.

Electron microscopy studies are important for the morphological identification of baculovirus isolates. Scanning electron microscope results indicated HearNPV-TR OBs have sizes between 0.73 and 1.66 μm. When these OB sizes were compared to the OB sizes of other Heliothinae NPV isolates in the literature, it was obvious that HearNPV-TR has OB sizes smaller than those of Indian isolates (Somasekar et al., 1993) and China isolate (Tang et al., 2012). Indian isolates have OB sizes changing between 1.6 and 2.4 mm. China isolate has an OB size of approximately 2 mm. However, OB sizes of HearNPV-TR is larger than the OB size of Argentinian isolate (Ferrelli et al., 2016) which is between 0.6 and 1.2 mm. On the other hand, previous Turkish isolate, *H. armigera* NPV-O1, has OB sizes between 0.85 and 1.25 μm (Eroglu et al., 2018).

TEM results revealed that HearNPV-TR has nucleocapsid sizes of 184 nm in length and 41 nm in width.
Table 4. Kimura-2 parameter analysis of HearNPV-TR.

polh/	leF8/	leF9
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
1	HearNPV-TR															
2	HearMNPV-3154	0.011														
3	HearMNPV-120	0.010	0.009													
4	HearMNPV-1072	0.013	0.002	0.008												
5	HearMNPV-443	0.013	0.007	0.002	0.007											
6	HegeSNPV	0.012	0.005	0.010	0.006	0.009										
7	HzSNPV-1578	0.009	0.006	0.010	0.007	0.010	0.004									
8	HearSNPV-1073	0.007	0.009	0.001	0.008	0.004	0.010	0.010								
9	HearSNPV-138	0.004	0.001	0.009	0.002	0.007	0.005	0.007	0.009							
10	HearSNPV-O1	0.004	0.000	0.009	0.002	0.007	0.005	0.006	0.009	0.000						
11	HearSNPV-126	0.004	0.000	0.009	0.002	0.007	0.005	0.006	0.009	0.000	0.000					
12	HearSNPV-75	0.006	0.004	0.009	0.005	0.008	0.003	0.006	0.009	0.004	0.004	0.004				
13	HearSNPV-1186	0.007	0.005	0.009	0.005	0.009	0.000	0.004	0.009	0.005	0.005	0.005	0.003			
14	HaGV	0.608	0.608	0.608	0.607	0.607	0.608	0.608	0.608	0.607	0.607	0.607	0.610			
15	TnSNPV	0.378	0.380	0.380	0.381	0.381	0.380	0.380	0.380	0.380	0.380	0.585	0.382	0.382		
16	PsinSNPV-IE	0.380	0.381	0.380	0.382	0.383	0.381	0.381	0.381	0.381	0.381	0.595	0.382	0.382	0.123	

Figure 4. Virulence of HearNPV-TR isolate on 2nd instar larvae of H. peltigera (a), H. armigera (b), H. viriplaca (c), and H. nubigera (d).
Nucleocapsid sizes were also compared with the other Heliothinae NPV isolates in the literature. This comparison showed that HearNPV-TR has smaller nucleocapsid size than those of India isolate (Sridhar et al., 2011), China isolate (Tang et al., 2012), and previous Turkish isolate (Eroglu et al., 2018) which have nucleocapsid lengths and widths of 277×41 nm, 230×50 nm, and 279×56 nm, respectively. These results showed that the nucleocapsid size of HearNPV-TR isolate is significantly smaller than those of the other HearNPV isolates. This result suggested that nucleocapsid sizes varied between isolates obtained from different geographical regions.

HearNPV-TR was further characterized by restriction endonuclease digestion of the viral DNA. The size of the genome digested with KpnI and XhoI enzymes calculated to be approximately 130.5 kbp. This size is in accordance with the size of the viral genomes reported for Helicoverpa isolates in GenBank. Digestion with the same restriction enzymes was also reported for HearNPV China isolate (Chen et al., 2000). China isolate has similar restriction profile with HearNPV-TR for KpnI digestion, but digestion with XhoI enzyme produced 7 fragments for HearNPV-TR, 9 fragments for HearNPV China isolate. However, the genome size of HearNPV China isolate (130.1 kb) is almost at the same size with HearNPV-TR genome (130.5 kb).

To see the position of HearNPV-TR between the other Heliothinae species in the GenBank, a phylogenetic tree was constructed using concatenated sequences of partial $\text{lef}8$, $\text{lef}9$, and polh genes. In the tree, HearNPV-TR was located near H. armigera SNPV-1073 China isolate (Rowley et al., 2011). Studies performed in the literature showed that Helicoverpa NPVs obtained from different hosts of Helicoverpa species are actually reported to be variants of each other (Jehle et al., 2006; Rowley et al., 2011; Wennmann et al., 2018). Thus, we concluded that HearNPV-TR was a H. armigera NPV variant. This result was also confirmed by the result of Kimura-2 parameter analysis performed by concatenated sequences of conserved partial genes ($\text{lef}8$, $\text{lef}9$, and polh).

The LC$_{50}$ values of these Heliothinae species were obtained as 9.5×10^{3}, 1.9×10^{4}, 8.6×10^{4}, and 9.2×10^{4} OBs/mL, respectively. Kumar et al. (2011) also mentioned a similar result for their Indian HearNPV isolate which had produced a LC$_{50}$ value of 2.3×10^{4} OBs/mL against the 2nd instar H. armigera larva. Furthermore we have found that HearNPV-TR is highly effective against all Heliothinae species found in Turkey (H. peltigera, H. viriplaca, and H. nubigera). According to these results, it is possible to conclude that HearNPV-TR isolate is an encouraging biological control agent against Heliothinae species.

Table 5. Probit regression analysis values of HearNPV-TR isolate against 2nd instar larvae of H. peltigera, H. armigera, H. viriplaca, and H. nubigera.

Insect	Intercept ± SE	Slope ± SE	LC$_{50}$ (FL, 95%)	χ^2	df
H. peltigera	-2.0 ± 0.3	0.40 ± 0.06	9.5×10^{3}	1.6	4
			($8.9 \times 10^{3} - 1.02 \times 10^{3}$)		
H. armigera	-1.9 ± 0.3	0.45 ± 0.06	1.9×10^{4}	1.8	4
			($1.3 \times 10^{4} - 2.7 \times 10^{3}$)		
H. viriplaca	-1.7 ± 0.3	0.50 ± 0.08	8.6×10^{3}	2.0	5
			($7.8 \times 10^{3} - 9.4 \times 10^{3}$)		
H. nubigera	-1.6 ± 0.3	0.55 ± 0.08	9.2×10^{3}	2.2	5
			($8.7 \times 10^{3} - 9.8 \times 10^{3}$)		

SE: standard error, FL: fiducial limit, χ^2: chi-square, df: degree of freedom.

References

Abbott WS (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265-267. doi: 10.1093/jee/18.2.265a

Ackermann HW, Smirnoff WA (1983). A morphological investigation of 23 baculoviruses. Journal of Invertebrate Pathology 41: 269-280.

Barrera G, Simon O, Villanizar L, Williams T, Caballero P (2011). Spodoptera frugiperda multiple nucleopolyhedrovirus as a potential biological insecticide: Genetic and phenotypic comparison of field isolates from Colombia. Biological Control 58: 113-120. doi: 10.1016/j.biocontrol.2011.04.009
Beas Catena A, Sanchez Miron A, Garcia Camacho F, Contreras Gomez A, Molina Grima E (2014). Baculovirus bio-pesticides: An overview. The Journal of Animal and Plant Sciences 24: 362-373.

Cabodevilla O, Ibanez I, Simon O, Murillo R, Caballero P et al. (2011). Occlusion body pathogenicity, virulence and productivity traits vary with transmission strategy in a nucleopolyhedrovirus. Biological Control 56: 184-192. doi: 10.1016/j.biocontrol.2010.10.007

Chen X, Li M, Sun X, Arif MB, Hu Z et al. (2000). Genomic organization of Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus. Archives of Virology 145: 2539-2555. doi: 10.1007/s007050070007

Cunningham JT (1998). North America. In Hunter Fujita FR, Hall TA (1999). Bioedit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series. 41: 95-98.

Herniou EA (2003). Use of Comparative Genomics and Phylogenetics to study the Evolution of the Baculoviridae. PhD Thesis. Department of Biological Sciences. Imperial College, London, p. 84.

Ignoffo CM (1973). Development of a viral insecticide: Concept to commercialization. Experimental Parasitology 33: 380-406. doi: 10.1016/0014-4894(73)90041-6

Iqbal M, Mohyuddin AI (1990). Eco-biology of Heliothis spp. in Pakistan. Pakistan Journal of Agriculture Research 11: 257-266.

Ishii T, Nakai M, Okuna S, Takatsuka J, Kunimi Y (2003). Characterization of Adoxophyes honmai single nucleocapsid nucleopolyhedrovirus: Morphology, structure, and effects on larvae. Journal of Invertebrate Pathology 83: 206-214.

Jehle JA, Lange M, Wang H, Hu Z, Wang Y et al. (2006). Molecular identification and phylogenetic analysis of baculoviruses from Lepidoptera. Virology 346: 180-193. doi: 10.1016/j.virol.2005.10.032

Kumar CS, Ranga Rao GV, Sireesha K, Kumar PL (2011). Isolation and characterization of baculoviruses from three major lepidopteran pests in the semi-arid tropics of India. Indian Journal of Virology 22: 29-36. doi: 10.1007/s13337-011-0029-0

Lange M, Wang H, Zhihong H, Jehle JA (2004). Towards a molecular identification and classification system of lepidopteran-specific baculoviruses. Virology 325: 36-47. doi: 10.1016/j.virol.2004.04.023

Manjunath TM, Patel RC, Yadav DN (1976). Observations on Heliothis peltigera (Schiff.) (Lep., Noctuidae) and its natural enemies in Anand (Gujarat State, India). Proceedings of Indian Academy of Sciences 83: 55-65. doi: 10.1007/BF03045460

Mironidis GK, Kapantaidaki D, Bentila M, Morou E, Savopoulou Soulntani M et al. (2013). Resurgence of the cotton bollworm Helicoverpa armigera in northern Greece associated with insecticide resistance. Insect Science 20: 505-512. doi: 10.1111/j.1744-7917.2012.01528.x

Munoz D, Vlak JM, Cabellero P (1997). In vivo recombination between two strains of the genus nucleopolyhedrovirus in its natural host, Spodoptera exigua. Applied and Environmental Microbiology 63: 3025-3031.

Poitout S, Bues R (1974). Elevage de chenilles de vingt-huit espèces. Annales de Zoologie Ecologie Animale 6: 431-441 (in French).

Ragionieri L, Ozbagci B, Neupert S, Salts Y, Davidovitch M et al. (2017). Identification of mature peptides from pbm and capa genes of the moths Heliothis peltigera and Spodoptera littoralis. Peptides 94: 1-9. doi: 10.1016/j.peptides.2017.05.004

Reed C, Otvos IS, Reardon R, Ragenovich I, Williams HL (2003). Effects of long-term storage on the stability of OpMNPV DNA contained in TM Biocontrol-1. Journal of Invertebrate Pathology 84: 104-113.
Rowley DL, Popham HJR, Harrison RL (2011). Genetic variation and virulence of nucleopolyhedroviruses isolated worldwide from the heliothine pests Helicoverpa armigera, Helicoverpa zea, and Heliothis virescens. Journal of Invertebrate Pathology 107: 112-126. doi: 10.1016/j.jip.2011.03.007

Saeidi K, Adam NA (2011). A survey on pest insect fauna of safflower fields in the Iranian Province of Kohgiluyeh and Boyerahmad. Journal of Agricultural Research 6: 4441-4446.

Simoglou KB, Anastasiades AI, Baixeras J, Roditakis E (2017). First report of the bordered straw, Heliothis peltigera on sunflower in Greece. Entomologia Hellenica 24: 31. doi: 10.12681/ch.11543

Someskar S, Jayapragasam M, Rabindra RJ (1993). Characterization of five Indian isolates of the nuclear polyhedrosis virus of Helicoverpa armigera. Phytoparasitica 21: 333-337. doi: 10.1007/BF02981052

Sridhar KCh, Ranga GV, Lava Kumar P (2011). Isolation and characterization of baculoviruses from three major Lepidopteran pests in the semi-arid tropics of India. Indian Journal of Virology 22: 29-36. doi: 10.1007/s13337-011-0029-0

Tang P, Zhang H, Li YU, Han B, Wang GZ et al. (2012). Genomic sequencing and analyses of HearMNPV a new multinucleocapsid nucleopolyhedrovirus isolated from Helicoverpa armigera. Virology Journal 9: 168. doi: 10.1186/1743-422X-9-168.

Yang MM (2012). Baculoviruses and insect pests control in China. African Journal of Microbiology Research 6: 214-218. doi: 10.5897/AJMR11.1357

Wang D, An SH, Guo ZJ, Hu HJ, Zhang CX (2005). Characterization of Helicoverpa armigera nucleopolyhedrovirus orf33 that encodes a novel budded virion derived protein, BV-e31. Archives of Virology 150: 1505-1515. doi: 10.1007/s00705-005-0534-9

Wennmann JT, Keilwagen J, Jehle JA (2018). Baculovirus Kimura two-parameter species demarcation criterion is confirmed by the distances of 38 core gene nucleotide sequences. Journal of General Virology 99: 1307-1320. doi: 10.1099/jgv.0.001100