FURSTENBERG ENTROPY VALUES FOR NONSINGULAR ACTIONS OF GROUPS WITHOUT PROPERTY (T)

ALEXANDRE I. DANILENKO

ABSTRACT. Let G be a discrete countable infinite group that does not have Kazhdan’s property (T) and let κ be a generating probability measure on G. Then for each $t > 0$, there is a type III_1 ergodic free nonsingular G-action whose κ-entropy (or the Furstenberg entropy) is t.

0. Introduction

Let G be a discrete countable infinite group. A probability measure κ on G is called generating if the support of κ generates G as a semigroup. Let $T = (T_g)_{g \in G}$ be a nonsingular action of G on a standard probability space (X, \mathcal{B}, μ). The Furstenberg entropy (or κ-entropy) of T is defined by

$$h_{\kappa}(T, \mu) := -\sum_{g \in G} \kappa(g) \int_X \log d\mu \circ T_g(x) d\mu(x)$$

(see [Fu]). Jensen’s inequality implies that $h_{\kappa}(T, \mu) \geq 0$ and that (for generating measures) equality holds if and only if μ is invariant under T. Of course, the κ-entropy is invariant under conjugacy. If $\sum_{g \in G} \kappa(g) \frac{d\mu T_g}{d\mu}(x) = 1$ for a.e. $x \in X$ then T is called κ-stationary. Furstenberg entropy realization problem is to describe all values that κ-entropy takes on the set of κ-stationary actions. The problem appears quite difficult. Some progress was achieved in recent papers [NeZi], [Ne], [Bo], [HaTa]. To state one of the results on the entropy realization problem we first recall that G has Kazhdan’s property (T) if every unitary representation of G which has almost invariant vectors admits a nonzero invariant vector (see [Be–Va]). It was shown in [Ne] that if G has property (T) then for every generating measure κ, the pair (G, κ) has an entropy gap, i.e. there exists some constant $\epsilon = \epsilon(G, \kappa) > 0$ such that $h_{\kappa}(T) > \epsilon$ for each purely infinite ergodic stationary G-action T. We recall that an ergodic action is called purely infinite if it does not admit an equivalent invariant probability measure. In [Bo–Ta] the converse statement was proved: if T does not have property (T) then for each generating measure κ,

$$\inf \{h_{\kappa}(T, \mu) \mid T \text{ is purely infinite, ergodic, } \mu\text{-nonsingular action of } G \} = 0.$$

We note that the authors of [Bo–Ta] consider κ-entropy values on arbitrary (not only stationary as in the other aforementioned papers) purely infinite nonsingular actions. They also show that the entropy gap for (G, κ) established in [Ne] for the stationary actions holds also for all (purely infinite) ergodic nonsingular actions.
In this connection we note that if a purely infinite ergodic G-action is stationary then the space of the action is non-atomic. However, in the general (non-stationary) case considered in [Bo–Ta], there exist purely infinite transitive G-actions on purely atomic measure spaces. In particular, the action of G on itself via rotations is free, nonconservative, ergodic and purely infinite. We consider such actions as pathological. Unfortunately, the proof the main result from [Bo–Ta] does not exclude appearance of pathological actions in (0-1).

Our purpose in the present paper is to refine the main result from [Bo–Ta] in two aspects: to examine all possible values for the κ-entropy and “get rid” of possible pathological actions on which such values are attained. In fact, we show more.

Main Theorem. Let G do not have property (T). Let κ be a generating measure on G. Then the following are satisfied.

1. For each real $t \in (0, +\infty)$, there is a type III_1 ergodic free nonsingular action $T = (T_g)_{g \in G}$ on a standard probability space (X, μ) such that $h_\kappa(T, \mu) = t$.
2. For each real $t \in (0, +\infty)$, there is $\lambda \in (0, 1)$ and a type III_λ ergodic free nonsingular action $T = (T_g)_{g \in G}$ on a standard probability space (X, μ) such that $h_\kappa(T, \mu) = t$.

The proof is based on the measurable orbit theory (see [FeMo], [Sc1] and a survey [DaSi]) and cohomology properties of non-strongly ergodic actions [Sc2], [JoSc].

Acknowledgements. I thanks K. Schmidt and S. Sinelshchikov for their useful remarks that I used in writing Appendix A.

1. Some background on orbit theory

Let T be an ergodic free nonsingular action of G on a standard nonatomic probability space (X, \mathcal{B}, μ). Denote by \mathcal{R} the T-orbit equivalence relation on X. We recall that the full group $[\mathcal{R}]$ of \mathcal{R} consists of all one-to-one nonsingular transformations r of (X, μ) such that the graph of r is a subset of \mathcal{R}. Given a locally compact second countable group H, denote by λ_H a left Haar measure on H. A Borel map $\alpha : \mathcal{R} \to H$ is called a cocycle of \mathcal{R} if $\alpha(x, y) = \alpha(x, z)\alpha(z, y)$ for all points x, y, z from a μ-conull subset of X such that $x \sim \mathcal{R} y \sim \mathcal{R} z$. By $T(\alpha) = (T(\alpha)_g)_{g \in G}$ we denote the α-skew product extension of T, i.e. a G-action on the product space $(X \times H, \mu \times \lambda_H)$:

$$T(\alpha)_g(x, h) = (T_g x, \alpha(T_g x, x) h).$$

It is obvious that $T(\alpha)$ is $(\mu \times \lambda_H)$-nonsingular. We say that α is ergodic if $T(\alpha)$ is ergodic. Consider the H-action on $(X \times H, \mu \times \lambda_H)$ by rotations (from the right) along the second coordinate. It commutes with $T(\alpha)$. The restriction of this action to the sub-σ-algebra of $T(\alpha)$-invariant Borel subsets is called the action of H associated with α. It is ergodic. It is trivial if and only if α is ergodic. If $H = \mathbb{R}_+^*$ and $\alpha(T_g x, x) := \log \frac{d\mu_{T_g x}}{d\mu}(x)$ at a.e. x for each $g \in G$ then α is called the Radon-Nikodym cocycle of \mathcal{R}. It does not depend on the choice of nonsingular group action generating \mathcal{R}. The corresponding associated action of \mathbb{R}_+^* is called the associated flow of T. If two group actions are orbit equivalent then their associated flows are isomorphic. The associated flow is transitive and free if and only if T admits an σ-finite invariant μ-equivalent measure. In this case T is said to be of type II_1. If the invariant measure
is infinite, T is said to be of type II_∞. If T does not admit an invariant equivalent measure then T is said to be of type III. Type III admits further classification into subtypes III_λ, $0 \leq \lambda \leq 1$. If the associated flow of T is periodic with period $-\log \lambda$ for some $\lambda \in (0, 1)$ then T is said to be of type III_λ. If the associated flow is trivial (on a singletone) then T is said to be of type III_1. Equivalently, T is of type III_1 if and only if the Radon-Nikodym cocycle of T is ergodic. If T is of type III but not of type III_λ for any $\lambda \in (0, 1]$ then T is said to be of type III_0.

Lemma 1.1. Let μ be invariant under T. Let H be discrete and countable. Let $\alpha : \mathcal{R} \to H$ be an ergodic cocycle. Then the following holds.

(i) The subrelation $\mathcal{R}_0 := \{(x, y) \in \mathcal{R} | \alpha(x, y) = 1\}$ of \mathcal{R} is ergodic.

(ii) For each $h \in H$, there is an element $r_h \in [\mathcal{R}]$ such that $\alpha(r_h x, x) = h$ for μ-a.e. $x \in X$.

Idea of the proof. Pass to the ergodic skew product extension $T(\alpha)$ and use the following Hopf lemma: if $D = (D_h)_{h \in H}$ is an ergodic H-action of type II and λ is a D-invariant equivalent measure then for all subsets A and B with $\lambda(A) = \lambda(B)$, there is a Borel bijection $\tau : A \to B$ such that the graph of τ is a subset of the D-orbit equivalence relation.

Let S be a nonsingular H-action on a standard probability space (Y, \mathcal{F}, ν). Given a cocycle $\alpha : \mathcal{R} \to H$, we can form a skew product action $T(\alpha, S) = (T(\alpha, S)_g)_{g \in G}$ of G on the product space $(X \times Y, \mu \times \nu)$ by setting

$$T(\alpha, S)_g(x, y) := (T_g x, S_{\alpha(T_g x, x)} y).$$

Then $T(\alpha, S)$ is $(\mu \times \nu)$-nonsingular.

Lemma 1.2. Let T, μ, H be as in Lemma 1.1. If α is ergodic and S is ergodic then $T(\alpha, S)$ is also ergodic. The associated flow of $T(\alpha, S)$ is isomorphic to the associated flow of S. In particular, the type of $T(\alpha, S)$ equals the type of S.

Proof. Let $F : X \times Y \to \mathbb{R}$ be a Borel function. If F is $T(\alpha, S)$-invariant then $F(x, y) = F(x', y)$ if $(x', x) \in \mathcal{R}_0$ for a.e. y. By Lemma 1.1(i), $F(x, y) = f(y)$ for some Borel function $f : Y \to \mathbb{R}$. Lemma 1.1(ii) now yields that f is invariant under S. Since S is ergodic, f is constant mod ν. Thus F is constant mod $\mu \times \nu$. Hence $T(\alpha, S)$ is ergodic.

The second claim of the lemma follows from Lemma 1.1, the fact that \mathcal{R} is generated by \mathcal{R}_0 and the family of transformations $(r_h)_{h \in H}$ and that $r_h[\mathcal{R}_0]r_h^{-1} = [\mathcal{R}_0]$ for each $h \in H$.

We now recall the definition of strongly ergodic actions (see [CoWe], [JoSc] and references therein). Let T be an ergodic nonsingular G-action on non-atomic probability space (X, \mathcal{B}, μ). A sequence $(B_n)_{n \in \mathbb{N}}$ in \mathcal{B} is called asymptotically invariant if $\lim_{n \to \infty} \mu(B_n \triangle T_y B_n) = 0$ for every $g \in G$. If every asymptotically invariant sequence $(B_n)_{n \in \mathbb{N}}$ is trivial, i.e. $\lim_{n \to \infty} \mu(B_n)(1 - \mu(B_n)) = 0$ then T is called strongly ergodic. We note the the strong ergodicity is invariant under the orbit equivalence. We will need the following lemma.

Lemma 1.3.

(i) If G does not have property (T) then there is an ergodic probability preserving free action T of G which is not strongly ergodic [CoWe].
(ii) If T is an ergodic nonsingular free action of G which is not strongly ergodic
then for each countable discrete Abelian group A, there is an ergodic cocycle
of the T-orbit equivalence relation with values in A (see [Sc, Corollary 1.5]
and Theorem A2 below1).

2. Proof of the main result

The following lemma is almost a literal repetition of [Bo-Ta, Lemma 4.1], where
it was proved under an additional assumption that T is measure preserving.

Lemma 2.1 (Entropy addition formula). Let κ be a probability on G and let
T be a nonsingular action of G on a standard probability space (X, \mathcal{B}, μ). Given
a discrete countable group H and a nonsingular action $S = (S_h)_{h \in H}$ of H on a
standard probability space (Y, \mathcal{F}, ν), let κ_x denote the pushforward of κ under the
map $G \ni g \mapsto \alpha(T_g x, x) \in H$ for each $x \in X$. Then

$$h_\kappa(T(\alpha), \mu \times \nu) = h_\kappa(T, \mu) + \int_X h_{\kappa_x}(S, \nu) d\mu(x).$$

Proof.

$$h_\kappa(T(\alpha), \mu \times \nu) = -\sum_{g \in G} \kappa(g) \int_{X \times Y} \log \left(\frac{d(\mu \times \nu) \circ T_g(\alpha)}{d(\mu \times \nu)}(x, y) \right) d\mu(x)d\nu(y)$$

$$= h_\kappa(T, \mu) - \int_X \sum_{g \in G} \kappa(g) \int_Y \log \left(\frac{d\nu \circ S_{\alpha(T_g x, x)}(y)}{d\nu}(y) \right) d\nu(y)d\mu(x)$$

$$= h_\kappa(T, \mu) - \int_X \sum_{h \in H} \kappa_x(h) \int_Y \log \left(\frac{d\nu \circ S_h(y)}{d\nu}(y) \right) d\nu(y)d\mu(x)$$

$$= h_\kappa(T, \mu) + \int_X h_{\kappa_x}(S, \nu) d\mu(x). \quad \square$$

Proof of Main Theorem. We will proceed in two steps. On the first step, for each
$\epsilon > 0$, we construct an ergodic nonsingular G-action of type III_1 (or of type III_λ
for some $\lambda \in (0, 1)$) whose κ-entropy is less then ϵ. On the second step we show
how to change the quasiinvariant measure for the action constructed on the first
step with appropriate equivalent measures to forse the κ-entropy to attain all the
values from the interval $(\epsilon, +\infty)$.

Step 1. Fix $\epsilon > 0$ and $\lambda \in (0, 1)$. Fix an enumeration $G = \{g_n \mid n \in \mathbb{N}\}$ and a
sequence of integers $1 = l_1 \leq l_2 \leq \cdots$ such that $l_{n+1} - l_n \leq 1$ for all $n \in \mathbb{N}$, $l_n \to \infty$
and

$$\sum_{n=1}^{\infty} \kappa(g_n)(l_n + 1) < 2. \quad (2-1)$$

By Lemma 1.3(i), there is a measure preserving free action T of G on a standard
probability space (X, \mathcal{B}, μ) which is not strongly ergodic. Denote by \mathcal{R} the T-orbit

1Since the proof of [Sc, Corollary 1.5] was not completed there we provide a complete proof of
it in Appendix A.
equivalence relation. Let \(F := \bigoplus_{n \in \mathbb{N}} \mathbb{Z}/2\mathbb{Z} \). We consider the elements of \(F \) as \(\mathbb{Z}/2\mathbb{Z} \)-valued functions on \(\mathbb{N} \) with finite support. Given \(f \in F \), we let

\[
\|f\| := \max\{j \in \mathbb{N} \mid f(j) \neq 0\}.
\]

By Lemma 1.3(ii), there exists an ergodic cocycle \(\alpha : \mathcal{R} \to F \). For each \(n \in \mathbb{N} \), we can choose \(M_n \in \mathbb{N} \) such that

\[
\mu\left(\left\{ x \in X \mid \max_{1 \leq t \leq n} \|\alpha(T_g^n x, x)\| < M_n \right\} \right) > 1 - \frac{1}{n2^n}.
\]

Without loss of generality we may assume that \(M_n = M_{n+1} \) if and only if \(l_n = l_{n+1} \) for each \(n \in \mathbb{N} \). Let \(N := \{ f \in F \mid f(M_n) = 0 \text{ for each } n \in \mathbb{N} \} \). Then \(N \) is a subgroup of \(F \). The quotient group \(F/N \) is identified naturally with the “complimentary to \(F \)” subgroup \(\{ f \in F \mid f(n) = 0 \text{ for each } n \neq M_1, M_2, \ldots \} \) which is, in turn, isomorphic to \(F \) in a natural way. Hence passing from \(\alpha \) to the quotient cocycle

\[
\alpha + N : \mathcal{R} \ni (x, y) \mapsto \alpha(x, y) + N \in F/N
\]

means that we may assume without loss of generality that \(M_n = l_n \) for each \(n \in \mathbb{N} \) in (2-2). (We use here a simple fact that \(\alpha + N \) is ergodic whenever \(\alpha \) is.) Therefore applying (2-2) we obtain that

\[
\int_X \|\alpha(T_g^n x, x)\| d\mu(x) = \sum_{s=1}^{\infty} s \mu(\{ x \in X \mid \|\alpha(T_g^n x, x)\| = s \})
\]

\[
\leq l_n + \sum_{s > l_n} s \mu(\{ x \in X \mid \|\alpha(T_g^n x, x)\| = s \})
\]

\[
\leq l_n + \sum_{s > l_n} \frac{1}{2^s}
\]

\[
\leq l_n + 1.
\]

The second inequality here follows from the fact that for each \(s > l_n \), we have \(s = l_m \) for some \(m \geq n \) and hence

\[
\mu(\{ x \in X \mid \|\alpha(T_g^n x, x)\| = s \}) \leq \frac{1}{m2^m} \leq \frac{1}{s2^s}
\]

because \(m \geq l_m = s \).

Now we consider \(F \) as a (dense) subgroup of the compact Abelian group \(K := (\mathbb{Z}/2\mathbb{Z})^\mathbb{N} \) of all \(\mathbb{Z}/2\mathbb{Z} \)-valued functions on \(\mathbb{N} \). Denote by \(S \) the action of \(H \) on \(K \) by translations. Let \(\nu_n \) denote the distribution on \(\mathbb{Z}/2\mathbb{Z} \) such that

\[
\nu_n(0) = \frac{1}{1 + e^{\epsilon_n}}, \quad \nu_n(1) = \frac{e^{\epsilon_n}}{1 + e^{\epsilon_n}}
\]

for some sequence \((\epsilon_n)_{n \in \mathbb{N}} \) of reals such that \(\lim_{n \to \infty} \epsilon_n = 0 \), \(\sum_{n \in \mathbb{N}} \epsilon_n^2 = \infty \) and \(\max\{|\epsilon_n| \mid n \in \mathbb{N} \} < \epsilon \). Let \(\nu = \bigotimes_{n \in \mathbb{N}} \nu_n \). Then \(S \) is \(\nu \)-nonsingular, ergodic and of type \(III_1 \) [ArWo]. Therefore by Lemma 1.2, the skew product \(G \)-action \(T(\alpha, S) \) on
$(X \times K, \mu \times \nu)$ is ergodic and of type III_1. Hence $h_\kappa(T(\alpha, S)) > 0$. To estimate $h_\kappa(T(\alpha, S))$ from above, we first let $N_f := \{ n \in \mathbb{N} \mid f(n) \neq 0 \}$ for $f \in F$. It is obvious that $\#N_f \leq \|f\|$. Since

$$-\int_Y \log \left(\frac{d\nu \circ S_f}{d\nu} \right)(y) d\nu(y) = -\sum_{n \in N_f} \int_{\mathbb{Z}/2\mathbb{Z}} \log \left(\frac{\nu_n(y_n + 1)}{\nu_n(y_n)} \right) d\nu_n(y_n)$$

$$= \sum_{n \in N_f} (\nu_n(1) - \nu_n(0)) \log \frac{\nu_n(1)}{\nu_n(0)},$$

we obtain that for each probability ξ on F,

$$h_\xi(S, \nu) = \sum_{f \in F} \xi(f) \sum_{n \in N_f} (\nu_n(1) - \nu_n(0)) \log \frac{\nu_n(1)}{\nu_n(0)}$$

(2-4)

$$\leq \sum_{f \in F} \xi(f) \sum_{n \in N_f} |\epsilon_n|$$

$$\leq \epsilon \|f\| \sum_{f \in F} \xi(f).$$

Since T preserves κ, it follows that $h_\kappa(T, \mu) = 0$. Then Lemma 2.1, (2-4) and (2-3) yield that

$$h_\kappa(T(\alpha, S), \mu \times \nu) \leq \epsilon \int_X \sum_{f \in F} \kappa(x)(f) \|f\| d\mu(x)$$

$$= \epsilon \sum_{g \in G} \kappa(g) \int_X \|\alpha(T_g x, x)\| d\mu(x)$$

$$\leq \epsilon \sum_{n=1}^\infty \kappa(g_n)(l_n + 1).$$

It now follows from (2-1) that $h_\kappa(T(\alpha, S), \mu \times \nu) \leq 2\epsilon$. Hence

$$\inf\{h_\kappa(A) \mid A \text{ is a type } \text{III}_1 \text{ ergodic free action of } G\} = 0.$$

In a similar way we may show that

(2-5) $$\inf\{h_\kappa(A) \mid A \text{ is a type } \text{III}_\lambda \text{ ergodic free action of } G, \lambda \in (0, 1)\} = 0.$$

For that we argue as above but with a different measure ν. Indeed, let ν_n denote the distribution on $\mathbb{Z}/2\mathbb{Z}$ such that

$$\nu_n(0) = \frac{1}{1 + e^\epsilon}, \quad \nu_n(1) = \frac{e^\epsilon}{1 + e^\epsilon}.$$

Let $\nu = \bigotimes_{n \in \mathbb{N}} \nu_n$. Then S is ν-nonsingular, ergodic and of type $\text{III}_{e^{-\epsilon}}$ [ArWo]. Therefore by Lemma 1.2, the skew product G-action $T(\alpha, S)$ on $(X \times K, \mu \times \nu)$ is ergodic and of type $\text{III}_{e^{-\epsilon}}$. Hence $h_\kappa(T(\alpha, S)) > 0$. As in the III_1-case considered above, we obtain that $h_\kappa(T(\alpha, S), \mu \times \nu) < 2\epsilon$ and hence (2-5) follows.
Step 2. Given $\epsilon > 0$, let ν be a measure on K such that
\[
(2-5) \quad h_{\kappa}(T(\alpha, S), \mu \times \nu) < \epsilon.
\]
We choose $n_0 > 0$ such that
\[
(2-6) \quad \int_X \kappa_x(\{f \in F \mid f(n_0) \neq 0\}) \, d\mu(x) > 0.
\]
It exists because otherwise we would have that κ_x is supported at 0 for a.e. $x \in X$. The latter yields that $\alpha(T_g x, x) = 0$ at a.e. x for all g from the support of κ. Since κ is generating, it follows that α is trivial, a contradiction.

Let ω be a probability on $\mathbb{Z}/2\mathbb{Z}$ supported at $\frac{1}{2}$. For each $\theta \in (0, 1]$, we let
\[
\nu^\theta_n = \begin{cases}
\nu_n, & \text{if } n \neq n_0 \\
\theta \nu_n + (1 - \theta) \omega, & \text{if } n = n_0
\end{cases}
\]
and $\nu^\theta := \bigotimes_{n \in \mathbb{N}} \nu^\theta_n$. Then ν^θ is equivalent to ν and hence $\mu \times \nu^\theta$ is equivalent to $\mu \times \nu$. Therefore the dynamical systems $(T(\alpha, S), \mu \times \nu^\theta)$ and $(T(\alpha, S), \mu \times \nu)$ are of the same Krieger’s type. It follows from the equality in (2-4) that
\[
h_{\kappa_x}(S, \nu) - h_{\kappa_x}(S, \nu^\theta) = \kappa_x(\{f \in F \mid f(n_0) \neq 0\})(\Phi(\nu_n(0)) - \Phi(\nu^\theta_n(0))),
\]
where $\Phi(t) := (1 - 2t) \log \frac{1-t}{t}$, if $t \in (0, 1)$. Therefore the map
\[
(0, 1] \ni \theta \mapsto h_{\kappa}(T(\alpha, S), \mu \times \nu^\theta) = \int_X h_{\kappa_x}(S, \nu^\theta) \, d\mu(x) \in \mathbb{R}
\]
is continuous. In view of (2-6), this map goes to infinity as $\theta \to 0$. Since $\nu^1 = \nu$ and (2-5) holds, it follows that
\[
\{h_{\kappa}(T(\alpha, S), \mu \times \nu^\theta) \mid \theta \in (0, 1]\} \supset (\epsilon, \infty),
\]
as desired. \hfill \Box

Appendix A

Let \mathcal{R} be an ergodic measure preserving countable equivalence relation on a nonatomic standard probability space (X, \mathcal{B}, μ) and let G be a locally compact second countable group. A cocycle $\rho : \mathcal{R} \to G$ is called regular if the action of G associated with ρ is transitive. For instance, an ergodic cocycle is regular. A coboundary is also regular.

Proposition A1. Let A be an amenable discrete countable group and let H be a locally compact second countable amenable group. Let $\alpha : \mathcal{R} \to A$ be a cocycle. If α is not regular then there is an ergodic cocycle of \mathcal{R} with values in H.

Proof. Let \mathcal{A} stand for the “transitive” equivalence relation on A, i.e. $\mathcal{A} = A \times A$. Let λ be a probability measure on A which is equivalent to Haar measure. Then the equivalence relation $\mathcal{R} \times \mathcal{A}$ is an ergodic equivalence relation on the probability $\{0, 1\}$ with addition mod 2.\footnote{We consider the group $\mathbb{Z}/2\mathbb{Z}$ as $\{0, 1\}$ with addition mod 2.}
space \((X \times A, \mu \times \lambda)\). Let \(V = (V_a)_{a \in A}\) denote the nonsingular action of \(A\) on \((X \times A, \mu \times \lambda)\) by right rotations along the second coordinate. Then \(R \times A\) is generated by a subrelation \(R(\alpha)\) and \(V\), i.e., two points \(z_1, z_2 \in X \times A\) are \((R \times A)\)-equivalent if and only if the points \(V_a \cdot z_1\) and \(V_a \cdot z_2\) are \(R(\alpha)\)-equivalent for some \(a_1, a_2 \in A\). Let \(W = (W_a)_{a \in A}\) stand for the action of \(A\) associated with \(\alpha\). Denote by \((\Omega, \nu)\) the space of this action. Then we can assume that there is a Borel map \(\pi : X \times A \to \Omega\) such that \(\nu = (\mu \times \lambda) \circ \pi^{-1}\) and \(\pi \circ V_a = W_a \circ \pi\) for each \(a \in A\). We observe that \(\pi\) is the \(R(\alpha)\)-ergodic decomposition of \(X \times A\). Since \(A\) is amenable, the \(W\)-orbit equivalence relation \(\mathcal{I}\) on \((\Omega, \nu)\) is hyperfinite [Co–We]. It is ergodic. Since \(\alpha\) is not regular, \(\mathcal{I}\) is non-transitive. Hence there is an ergodic cocycle \(\beta : \mathcal{I} \to H\) (see [He] and [GoSi]). We now define a cocycle \(\beta^* : R \times A \to H\) by setting

\[
\beta^*(z_1, z_2) := \beta(\pi(z_1), \pi(z_2)).
\]

Then \(\beta^*\) is well defined. Since \(\pi\) is the \(R(\alpha)\)-ergodic decomposition, it follows that \(\beta^*\) is ergodic. Restricting \(R \times A\) and \(\beta^*\) to the subset \(X \times \{1_A\}\) we obtain \(R\) and a cocycle of \(R\) with values in \(H\) respectively. Of course, this cocycle is also ergodic. \(\square\)

Let \(A\) be an Abelian locally compact noncompact second countable group. For a cocycle \(\alpha : R \to A\), we denote by \(E(\alpha) \subset A \sqcup \{\infty\}\) the essential range of \(\alpha\) (see [Sc1, Definition 3.1]). The following theorem provides a complete proof of [Sc2, Corollary 1.5] (it was assumed additionally in [Sc2] that \(A\) is Abelian).

Theorem A2. Let \(T = (T_g)_{g \in G}\) be an ergodic measure preserving action of \(G\) on a standard nonatomic probability space \((X, \mathcal{B}, \mu)\). Let \(A\) be a countable amenable group. If \(T\) is not strongly ergodic then there is an ergodic cocycle of the \(T\)-orbit equivalence relation \(R\) with values in \(A\).

Proof. Let \(R\) denote the \(T\)-orbit equivalence relation. Let \(K, F, S, N_f\) and \(\|\cdot\|\) denote the same objects as in the proof of Main Theorem. Let \(\lambda_K\) stand for the Haar measure on \(K\). For each \(n \in \mathbb{N}\), denote by \(f_n\) the element of \(F\) such that \(N_{f_n} = \{n\}\). By [JoSc, Lemma 2.4], there are a Borel map \(\pi : X \to K\) and a sequence \((V_n)_{n \in \mathbb{N}}\) of transformations in \([R]\) such that \(\mu \circ \pi^{-1} = \lambda_K\),

\[
\{\pi(T_gx) \mid g \in G\} = \{S_f \pi(x) \mid f \in F\}
\]

and \(\pi(V_nx) = S_{f_n} \pi(x)\) for a.a. \(x \in X\). Denote by \(S\) the \(S\)-orbit equivalence relation on \(K\). We define a cocycle \(\beta : S \to F\) by setting \(\beta(S_{f,y}) := f, y \in Y, f \in F\). By [Sc1, Proposition 3.15], \(E(\beta) = \{0, +\infty\}\). We now define a cocycle \(\beta^* : R \to F\) by setting

\[
\beta^*(T_gx, x) := \beta(\pi(T_gx), \pi(x)),
\]

\(x \in X, g \in G\). Since \(E(\beta^*) \subset E(\beta)\), we obtain that either \(E(\beta^*) = \{0, \infty\}\) or \(E(\beta^*) = \{0\}\). In the latter case, \(\beta^*\) is a coboundary [Sc1]. Hence there is a Borel map \(\xi : X \to K\) such that \(\beta^*(V_nx, x) = \xi(V_nx) - \xi(x)\) for each \(n\) at a.e. \(x \in X\). There is a constant \(C > 0\) and a subset \(X_C \subset X\) such that \(\mu(X_C) > 3/4\) and \(\|\xi(x)\| < C\) for all \(x \in X_C\). It follows that for each \(n\),

\[
\sup_{x \in X_C \cap V_n^{-1}X_C} \|\beta^*(V_nx, x)\| < C.
\]

This contradicts to the fact that \(\|\beta^*(V_nx, x)\| = n\) for a.a. \(x \in X\) and \(n \in \mathbb{N}\). Hence \(E(\beta^*) = \{0, \infty\}\). This yields that \(\beta^*\) is not regular. It remains to apply Proposition A1. \(\square\)
References

[ArWo] H. Araki and E. J. Woods, A classification of factors, Pub. RIMS Kyoto Univ., Ser. A 3 (1968), 51–130.

[Be–Va] B. Bekka, P. de la Harpe and A. Valette, Kazhdan’s property (T), Cambridge University Press, 2008.

[Bo] L. Bowen, Random walks on coset spaces with applications to Furstenberg entropy, Invent. Math. 196 (2014), 485–510.

[Bo–Ta] L. Bowen, Y. Hartman and O. Tamuz, Property (T) and the Furstenberg entropy of nonsingular actions, Proc. Amer. Math. Soc. 144 (2016), 31–39.

[CoWe] A. Connes and B. Weiss, Property T and asymptotically invariant sequences, Israel J. Math. 37 (1980), 209–210.

[Co–We] A. Connes, J. Feldman and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory and Dynamical Systems 1 (1981), 431–450.

[CoWo] A. Connes and E. J. Woods, Approximately transitive flows and ITPFI factors, Ergodic Theory Dynamical Systems 5 (1985), 203–236.

[DaSi] A. I. Danilenko and C. E. Silva, Ergodic theory: nonsingular transformations, Encyclopedia of Complexity and Systems Science, Springer, 2009, pp. 3055–3083.

[FeMo] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), 289–324.

[Fu] H. Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc. 108 (1963), 377–428.

[GoSi] V. Ya. Golodets and S. D. Sinelshchikov, Amenable ergodic group actions and images of cocycles, Dokl. Akad. Nauk SSSR 312 (1990), 1296–1299 (Russian); Soviet Math. Dokl. 41 (1990), 523–526.

[JoSc] V. F. R. Jones and K. Schmidt, Asymptotically invariant sequences and approximate finiteness, American Journal of Mathematics 109 (1987), 91–114.

[HaTa] Y. Hartman and O. Tamuz, Furstenberg entropy realizations for virtually free groups and lamplighter groups, Journal d’Analyse Mathematique 126 (2015), 227–257.

[He] M. Herman, Construction de difféomorphismes ergodiques, preprint (1979).

[Ne] A. Nevo, The spectral theory of amenable actions and invariants of discrete groups, Geom. Dedicata 100 (2003), 187–218.

[NeZi] A. Nevo and R. J. Zimmer, Rigidity of Furstenberg entropy for semisimple Lie group actions, Annales Scientifiques de l’Ecole Normale Superieure 33 (2000), 321–343.

[Sc1] K. Schmidt, Cocycles of ergodic transformation groups, Lecture Notes in Mathematics, Vol. 1, MacMillan (India), 1977.

[Sc2] ______, Cohomology and the absence of strong ergodicity for ergodic group actions, Lecture Notes in Math., vol. 1132, Springer-Verlag, Berlin and New York, 1985, pp. 486–496.

Institute for Low Temperature Physics & Engineering of National Academy of Sciences of Ukraine, 47 Lenin Ave., Kharkov, 61164, UKRAINE

E-mail address: alexandre.danilenko@gmail.com