On recovering Sturm-Liouville differential operators with deviating argument

N. Bondarenko and V. Yurko

Abstract. We consider second-order functional differential operators with a constant delay. Properties of their spectral characteristics are obtained and a nonlinear inverse problem is studied, which consists in recovering the operators from their spectra. We establish the uniqueness and develop a constructive algorithm for solution of the inverse problem.

Keywords: differential operators, deviating argument, nonlinear inverse spectral problem.

AMS Mathematics Subject Classification (2010): 34A55 34K10 34K29 47E05 34B10 34L40

1. Introduction

In various real-world processes, the future behavior of the system depends not only on its present state and rate of change of the state (corresponding to the values of the function and its derivatives at the current point), but also on the states in the past. Such processes are described by functional differential equations with delay, which arise in physics, biology and especially in engineering and control theory (see the monographs [1-2] and the references therein).

This paper concerns an inverse spectral problem for the Sturm-Liouville equation with a constant delay. Inverse problems of spectral analysis consist in recovering operators from their spectral characteristics. Basic results of inverse problem theory for the classical differential Sturm-Liouville equation are contained in the monographs [3-6]. However, operators with a constant delay appear to be more difficult for investigation, and inverse problems for them are studied only in a few special cases (see [7-11]). The standard methods of inverse problem theory, applicable to differential operators (transformation operator method, method of spectral mappings, etc.), do not work for operators with delay, so one needs new approaches to construct a general spectral theory for the latter ones.

In this paper, we consider the boundary value problems $L_j(q)$, $j = 0, 1$, of the form

$$-y''(x) + q(x)y(x-a) = \lambda y(x), \quad x \in (0, \pi),$$

$$y(0) = y^{(j)}(\pi) = 0,$$

where λ is the spectral parameter, $a \in (0, \pi)$, $q(x)$ is a complex-valued function such that $q(x) \in L(a, \pi)$, and $q(x) \equiv 0$ for $x \in [0, a]$. We study the inverse spectral problem of recovering the potential $q(x)$ from the spectra of $L_j(q)$. More precisely, let $\{\lambda_{nj}\}_{n \geq 1},$ $j = 0, 1,$ be the eigenvalues of $L_j(q)$. The inverse problem is formulated as follows.

Inverse problem 1. Given $\{\lambda_{nj}\}_{n \geq 1},$ $j = 0, 1,$ construct $q(x)$.

Note that in the case of “large delay” when $a \geq \pi/2$, the characteristic functions of $L_j(q)$ depend linearly on the potential $q(x)$, i.e. the inverse problem becomes linear. This linear case was studied in [9] and [11]. For $a < \pi/2$ the characteristic functions depend nonlinearly on the potential, i.e. the inverse problem becomes nonlinear. This nonlinear case is essentially more difficult for investigating and constructing the global solution of the inverse problem. In this paper we consider the nonlinear case. For definiteness, let $a \in [2\pi/5, \pi/2)$. The case $a < 2\pi/5$ requires a separate investigation. In this paper we obtain a global constructive procedure for the solution of the inverse problem and establish its uniqueness. The main results of the paper are Theorem 1 and Algorithm 1 (see Section 3 below).
2. Preliminaries

In this section, we study spectral properties of the boundary value problems (1)-(2). Let \(Y(x, \lambda) \) be the solution of Eq. (1) satisfying the initial conditions

\[Y(0, \lambda) = 0, \ Y'(0, \lambda) = 1. \]

The eigenvalues \(\{\lambda_n j\}_{n \geq 1} \) of the boundary value problem \(L_j \) coincide with the zeros of its characteristic function

\[\Delta_j(\lambda) := Y^{(j)}(\pi, \lambda), \quad j = 0, 1. \]

The following two propositions were proved in [7].

Lemma 1. Fix \(j = 0, 1 \). The boundary value problem \(L_j \) has a countable set of eigenvalues \(\{\lambda_n j\}_{n \geq 1} \) (counting with multiplicities), and for \(n \to \infty \):

\[\sqrt{\lambda_n 0} = n + \frac{A_0 \cos na}{2\pi n} + o\left(\frac{1}{n}\right), \]

\[\sqrt{\lambda_n 1} = \left(n - \frac{1}{2}\right) + \frac{A_0 \cos(n - 1/2)a}{2\pi n} + o\left(\frac{1}{n}\right), \]

where \(A_0 = \int_0^\pi q(t) \, dt \).

Lemma 2. The specification of the spectrum \(\{\lambda_n j\}_{n \geq 0} \) uniquely determines the characteristic function \(\Delta_j(\lambda) \) via

\[\Delta_0(\lambda) = \pi \prod_{n=1}^{\infty} \frac{\lambda_n 0 - \lambda}{n^2}, \quad \Delta_1(\lambda) = \prod_{n=1}^{\infty} \frac{\lambda_n 1 - \lambda}{(n - 1/2)^2}. \]

Let us investigate the connection between the characteristic functions \(\Delta_j(\lambda) \) and the potential \(q(x) \). Let \(\lambda = \rho^2 \). The function \(Y(x, \lambda) \) satisfies the integral equation

\[Y(x, \lambda) = \frac{\sin \rho x}{\rho} + \int_a^x g(x, t, \lambda)Y(t - a, \lambda) \, dt, \]

where \(g(x, t, \lambda) = \frac{\sin \rho(x - t)}{\rho} q(t) \). Solving Eq. (6) we get for \(x \geq 2a \):

\[Y(x, \lambda) = Y_0(x, \lambda) + Y_1(x, \lambda) + Y_2(x, \lambda), \]

where

\[Y_0(x, \lambda) = \frac{\sin \rho x}{\rho}, \]

\[Y_1(x, \lambda) = -\frac{\cos \rho(x - a)}{2\rho^2} \int_a^x q(t) \, dt + \frac{1}{2\rho^2} \int_a^x q(t) \cos \rho(x - 2t + a) \, dt, \]

\[Y_2(x, \lambda) = \int_{2a}^x \frac{\sin \rho(x - t)}{\rho} q(t)Y_1(t - a, \lambda) \, dt, \]

and consequently,

\[\Delta_0(\lambda) = \frac{\sin \rho \pi}{\rho} - A_0 \frac{\cos \rho(\pi - a)}{2\rho^2} + \frac{1}{2\rho^2} \int_a^\pi q(t) \cos \rho(2t - \pi - a) \, dt + Y_2(\pi, \lambda), \]

\[\Delta_1(\lambda) = \cos \rho \pi + A_0 \frac{\sin \rho(\pi - a)}{2\rho} + \frac{1}{2\rho} \int_a^\pi q(t) \sin \rho(2t - \pi - a) \, dt + Y_2'(\pi, \lambda). \]
Denote
\[\Delta_0^*(\rho) := 2\rho^2 \left(\Delta_0(\lambda) - \frac{\sin \rho\pi}{\rho} + A_0 \frac{\cos \rho(\pi - a)}{2\rho^2} \right), \quad (9) \]
\[\Delta_1^*(\rho) := 2\rho \left(\Delta_1(\lambda) - \cos \rho\pi - A_0 \frac{\sin \rho(\pi - a)}{2\rho} \right), \quad (10) \]
Then
\[\Delta_0^*(\rho) = \int_a^\pi q(t) \cos(2t - \pi - a) \, dt + \delta_0(\rho), \quad (11) \]
\[\Delta_1^*(\rho) = \int_a^\pi q(t) \sin(2t - \pi - a) \, dt + \delta_1(\rho) \quad (12) \]
where \(\delta_0(\rho) = 2\rho^2 Y_2(\pi, \lambda) \), \(\delta_1(\rho) = 2\rho Y_2'(\pi, \lambda) \). Using (7) and (8) we calculate
\[2\rho \delta_0(\rho) = -A \sin \rho(\pi - 2a) + \frac{1}{2} \int_{-(\pi - 2a)}^{(\pi - 2a)} Q(\xi) \sin \rho\xi \, d\xi, \quad (13) \]
\[2\rho \delta_1(\rho) = -A \cos \rho(\pi - 2a) - \frac{1}{2} \int_{-(\pi - 2a)}^{(\pi - 2a)} Q(\xi) \cos \rho\xi \, d\xi, \quad (14) \]
where
\[A = \int_0^\pi q(t) \, dt \int_a^\pi q(s) \, ds, \quad Q(\xi) = Q_1(\xi/2 + \pi/2 + a) - Q_2(\xi/2 + \pi/2) - Q_3(\xi/2 + \pi/2), \]
\[Q_1(x) = q(x) \int_a^\pi q(s) \, ds, \quad Q_2(x) = q(x) \int_{x+a}^\pi q(s) \, ds, \quad Q_3(x) = \int_{x+a}^\pi q(s)(s-x) \, ds. \]
Note that the characteristic functions \(\Delta_j(\lambda), \ j = 0, 1 \), depend nonlinearly on the potential \(q(x) \).

In order to simplify calculations, we assume that \(q(x) \in AC[a, \pi] \). The general case requires small technical modifications. Denote \(q_1(x) := q'(x) \). Taking (11)-(14) into account and applying integration by parts, we infer
\[4\rho \Delta_0^*(\rho) = B_1 \sin \rho(\pi - a) - 2A \sin \rho(\pi - 2a) - \int_{-(\pi - a)}^{(\pi - a)} q_0(\xi) \sin \rho\xi \, d\xi + \int_{-(\pi - a)}^{(\pi - a)} Q(\xi) \sin \rho\xi \, d\xi, \quad (15) \]
\[4\rho \Delta_1^*(\rho) = B_2 \cos \rho(\pi - a) - 2A \cos \rho(\pi - 2a) + \int_{-(\pi - a)}^{(\pi - a)} q_0(\xi) \cos \rho\xi \, d\xi - \int_{-(\pi - a)}^{(\pi - a)} Q(\xi) \cos \rho\xi \, d\xi, \quad (16) \]
where \(B_1 = 2(q(a) + q(\pi)), \ B_2 = 2(q(a) - q(\pi)), \ q_0(\xi) = q_1(\xi/2 + \pi/2 + a/2) \). Denote
\[d_0(\rho) = 4\rho \Delta_0^*(\rho) - B_1 \sin \rho(\pi - a) + 2A \sin \rho(\pi - 2a), \quad (17) \]
\[d_1(\rho) = 4\rho \Delta_1^*(\rho) - B_2 \cos \rho(\pi - a) + 2A \cos \rho(\pi - 2a). \quad (18) \]
It follows from (15)-(16) and (17)-(18) that
\[d_0(\rho) = -\int_{-(\pi - a)}^{(\pi - a)} R(\xi) \sin \rho\xi \, d\xi, \quad d_1(\rho) = \int_{-(\pi - a)}^{(\pi - a)} R(\xi) \cos \rho\xi \, d\xi, \quad (19) \]
where \(R(\xi) = q_0(\xi) - Q(\xi) \), and \(Q(\xi) \equiv 0 \) outside the interval \(-(\pi - 2a), (\pi - 2a) \). In particular, this yields
\[q_1(x) = R(2x - \pi - a) + Q_1(x + a/2) - Q_2(x - a/2) - Q_3(x - a/2), \ x \in (3a/2, \pi - a/2). \quad (20) \]
3. Inverse problem

In this section, we provide our main results: a constructive procedure for solving Inverse problem 1 and the corresponding uniqueness theorem. The solution of Inverse problem 1 can be constructed by the following algorithm.

Algorithm 1. Let the spectra \(\{\lambda_{nj}\}_{n \geq 1}, \ j = 0, 1, \) be given. We then
1) Construct the characteristic functions \(\Delta_j(\lambda), \ j = 0, 1, \) by (5).
2) Find the constant \(A_0, \) using (3) or (4).
3) Calculate \(\Delta_j(\lambda), \ j = 0, 1, \) according to (9) and (10).
4) Find the constants \(A, B_1 \) and \(B_2, \) using (15) and (16), and calculate \(q(a) = (B_1 + B_2)/4, \ q(\pi) = (B_1 - B_2)/4. \)
5) Construct \(d_0(\rho) \) and \(d_1(\rho) \) via (17) and (18).
6) Calculate \(R(\xi), \) using (19).
7) Find the function \(q_0(\xi) \) for \(\xi \in (-(\pi - a), -(\pi - 2a)) \cup (\pi - 2a, \pi - a), \) by \(q_0(\xi) = R(\xi). \)
8) Calculate \(q_1(x) = q_0(2x - \pi - a) \ \text{for} \ x \in (a, 3a/2) \cup (\pi - a/2, \pi). \)
9) Calculate
\[
q(x) = q(a) + \int_a^x q_1(t) \, dt, \ x \in (a, 3a/2), \quad q(x) = q(\pi) - \int_x^\pi q_1(t) \, dt, \ x \in (\pi - a/2, \pi).
\]
10) Using (20) and knowledge of \(q(x) \) for \(x \in (a, 3a/2) \cup (\pi - a/2, \pi), \) construct the function \(q_1(x) \) for \(x \in (3a/2, \pi - a/2) \) via
\[
q_1(x) = R(2x - \pi - a) + q(x + a/2) \int_a^{x-a/2} q(s) \, ds
\]
\[
- q(x - a/2) \int_x^{\pi} q(s) \, ds - \int_{x+a/2}^{\pi} q(s) q(s - x + a/2) \, ds.
\]
11) Construct \(q(x) \) for \(x \in (3a/2, \pi - a/2). \)

Thus, we have proved the following theorem.

Theorem 1. The specification of two spectra \(\{\lambda_{nj}\}_{n \geq 1}, \ j = 0, 1, \) uniquely determines the potential \(q(x). \) The solution of Inverse problem 1 can be found by Algorithm 1.

Acknowledgments. This research was supported in part by Russian Foundation for Basic Research (Grants 16-01-00015, 17-51-53180) and by the Ministry of Education and Science of Russian Federation (Grant 1.1660.2017/4.6). The author N.P. Bondarenko was also supported by the Russian Federation President Grant MK-686.2017.1.

REFERENCES

[1] Hale J. Theory of functional-differential equations. Springer-Verlag, New York, 1977.
[2] Myshkis A.D. Linear differential equations with a delay argument. Moscow, Nauka, 1972.
[3] Marchenko V.A. Sturm-Liouville Operators and Their Applications, Naukova Dumka, Kiev, 1977; English transl., Birkhäuser, 1986.
[4] Levitan B.M. Inverse Sturm-Liouville Problems, Nauka, Moscow, 1984; Engl. transl., VNU Sci.Press, Utrecht, 1987.
[5] Freiling G. and Yurko V.A. *Inverse Sturm-Liouville Problems and Their Applications*, NOVA Science Publishers, New York, 2001.

[6] Yurko V.A. *Method of Spectral Mappings in the Inverse Problem Theory*, Inverse and Ill-posed Problems Series. VSP, Utrecht, 2002.

[7] Freiling G. and Yurko V.A. *Inverse problems for Sturm-Liouville differential operators with a constant delay*, Appl. Math. Lett. 25 (2012) 1999–2004.

[8] Yang C-Fu. *Trace and inverse problem of a discontinuous Sturm-Liouville operator with retarded argument*. J. Math. Anal. Appl. 395 (2012), no.1, 30-41.

[9] Vladičić, V.; Pikula, M. *An inverse problem for Sturm-Liouville-type differential equation with a constant delay*. Sarajevo J. Math. 12(24), no. 1 (2016), 83–88.

[10] Buterin, S. A.; Pikula, M.; Yurko, V. A. *Sturm-Liouville differential operators with deviating argument*, Tamkang J. Math. 48:1 (2017), 61–71.

[11] Buterin, S. A.; Yurko, V. A. *An inverse spectral problem for Sturm-Liouville operators with a large constant delay*, Anal. Math. Phys. (2017), DOI 10.1007/s13324-017-0176-6.

Natalia Bondarenko
1. Department of Applied Mathematics, Samara National Research University, Moskovskoye Shosse 34, Samara 443086, Russia,
2. Faculty of Mathematics and Mechanics, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia,
e-mail: bondarenkonp@info.sgu.ru

Vjacheslav Yurko
Faculty of Mathematics and Mechanics, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia,
e-mail: yurkova@info.sgu.ru