It’s Easier to Translate *out of* English than *into* it: Measuring Neural Translation Difficulty by Cross-Mutual Information

ACL 2020

Emanuele Bugliarello, Sabrina J. Mielke, Antonios Anastasopoulos, Ryan Cotterell, Naoaki Okazaki
Evaluation Matrix

Translation quality of best system for test set `newstest2019` using metric `BLEU-cased`.

Output Language
Czech 19.3
German 42.8
English 27.4
Finnish 33.0
French 35.0
Gujarati 24.9
Kazakh 30.5
Lithuanian 36.3
Russian 40.2
Chinese 39.9

Scores

- **Czech** to **German**: 20.1
- **English** to **French**: 28.2
- **French** to **Kazakh**: 11.1
- **Kazakh** to **Russian**: 20.1
- **Russian** to **Chinese**: 36.3
- **Italian** to **Greek**: 44.6
| Language | Output Language | Czech | German | English | Finnish | Gujarati | Kazakh | Lithuanian | Russian | Chinese |
|----------|-----------------|-------|--------|---------|---------|----------|--------|------------|---------|---------|
| Input Language | 19.3 | 20.1 | 29.9 | 33.0 | 35.0 | 24.9 | 30.5 | 36.3 | 40.2 | 39.9 |

Is **fi-en** easier than **en-fi**?
Is **fi-en** easier than **en-fi**?

We can’t tell based on BLEU!
BLEU’s shortcomings for cross-linguistic comparisons
BLEU’s shortcomings for cross-linguistic comparisons

BLEU is a precision-based metric
BLEU’s shortcomings for cross-linguistic comparisons

BLEU is a precision-based metric

1. BLEU depends on *tokenization* and the *notion of “word”*!
BLEU’s shortcomings for cross-linguistic comparisons

BLEU is a precision-based metric

1. BLEU depends on *tokenization* and the *notion of “word”*!

 Example:

 “I will have been programming” English
 “Programlayacağım” Turkish
BLEU’s shortcomings for cross-linguistic comparisons

BLEU is a precision-based metric

1. BLEU depends on *tokenization* and the *notion of “word”*!

Example:

“I will have been programming” English
“Programlayacağım” Turkish

More partial credit for English!
BLEU’s shortcomings for cross-linguistic comparisons

BLEU is a precision-based metric

1. BLEU depends on *tokenization* and the *notion of “word”*!

 Example:

 “I will have been programming” English
 “Programlayacağım” Turkish

 → More partial credit for English!

 Remedy: Look at the likelihood
BLEU’s shortcomings for cross-linguistic comparisons

BLEU is a precision-based metric

1. BLEU depends on *tokenization* and the *notion of “word”*

 Example:

 “I will have been programming” English
 “Programlayacağım” Turkish

 ➔ More partial credit for English!

 Remedy: Look at the likelihood

2. We are still measuring: difficulty of *translation and generation*
Mutual Information expresses the act of translation

Entropy:

\[
H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))] \quad \text{uncertainty}
\]

\[
H(T \mid S) = \mathbb{E}_{(s, t) \sim p(S, T)}[-\log_2(p(t \mid s))]
\]
Mutual Information expresses the *act of translation*

\[
\text{Entropy: } H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))] \quad \text{uncertainty about } T \text{ a priori}
\]

\[
H(T \mid S) = \mathbb{E}_{(s, t) \sim p(S, T)}[-\log_2(p(t \mid s))]
\]

\[
\frac{H(T)}{}
\]

\text{uncertainty about } T \text{ a priori}
Mutual Information expresses the act of translation

Entropy:

\[
H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))] \quad \text{uncertainty}
\]

\[
H(T \mid S) = \mathbb{E}_{(s, t) \sim p(S, T)}[-\log_2(p(t \mid s))]
\]

- **\(H(T)\)**: uncertainty about \(T\) *a priori*
- **\(H(T \mid S)\)**: uncertainty about \(T\) *after knowing S*
Mutual Information expresses the act of translation

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty

$H(T | S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t | s))]$

$H(T) - H(T | S)$

- uncertainty about T
 - a priori

- how much knowing S reduced uncertainty about T
Mutual Information expresses the *act of translation*

Entropy: \(H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))] \)
- \(H(T | S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t | s))] \)

\[
\text{MI}(S; T) = H(T) - H(T | S)
\]

- **mutual information** between \(S \) and \(T \)
- uncertainty about \(T \) *a priori*
- uncertainty about \(T \) *after knowing \(S \)*
- how much knowing \(S \) reduced uncertainty about \(T \)
Mutual Information expresses the act of translation

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty

$H(T|S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t|s))]$

$$\text{MI}(S; T) = H(T) - H(T | S)$$

- mutual information between S and T
- uncertainty about T a priori
- uncertainty about T after knowing S
- how much knowing S reduced uncertainty about T

symmetric! assuming all entropies w.r.t. same joint $p(S, T)$
Mutual Information expresses the act of translation

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty

$H(T | S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t | s))]$

$$\text{MI}(S; T) = H(T) - H(T | S)$$

mutual information

uncertainty about T

a priori

uncertainty about T

after knowing S

how much knowing S reduced uncertainty about T

Example: en-zh
Mutual Information expresses the act of translation

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty

$H(T | S) = \mathbb{E}_{(s, t) \sim p(S, T)}[-\log_2(p(t | s))]$

$\text{MI}(S; T) = H(T) - H(T | S)$

- mutual information between S and T
- uncertainty about T before knowing S (a priori)
- uncertainty about T after knowing S
- how much knowing S reduced uncertainty about T

Example: en-zh

| $H(谢谢)$ | uncertainty about “谢谢” | symmetric! assuming all entropies w.r.t. same joint $p(S, T)$ | symmetric! assuming all entropies w.r.t. same joint $p(S, T)$ |

| $H(谢谢)$ | uncertainty about “谢谢” | symmetric! assuming all entropies w.r.t. same joint $p(S, T)$ | symmetric! assuming all entropies w.r.t. same joint $p(S, T)$ |
Mutual Information expresses the act of translation

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty

$H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t \mid s))]$

$$\text{MI}(S; T) = H(T) - H(T \mid S)$$

mutual information between S and T

uncertainty about T

how much knowing S reduced uncertainty about T

Example: en-zh

$H(谢谢)$

uncertainty about “谢谢”

$H(谢谢 \mid \text{Thanks})$

uncertainty about “谢谢” after knowing its translation
Mutual Information expresses the act of translation

Entropy: $H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))]$ uncertainty

$H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t \mid s))]$

$$\text{MI}(S; T) = H(T) - H(T \mid S)$$

- mutual information between S and T
- uncertainty about T
 - a priori
 - after knowing S
- how much knowing S reduced uncertainty about T

Example: en-zh

- $H(谢谢)$ uncertainty about “谢谢”
- $H(谢谢 \mid \text{Thanks})$ uncertainty about “谢谢” after knowing its translation
- $\text{MI}(\text{Thanks};谢谢)$ how much easier it has become to predict “谢谢”
Cross-Mutual Information measures models’ performance on the act of translation

Entropy:

\[
H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))] \quad \text{uncertainty}
\]

\[
H(T \mid S) = \mathbb{E}_{(s, t) \sim p(S, T)}[-\log_2(p(t \mid s))] \quad \text{uncertainty about } T \text{ after knowing } S
\]

Mutual Information (MI):

\[
\text{MI}(S; T) = \underbrace{H(T)}_{\text{uncertainty about } T \text{ a priori}} - \underbrace{H(T \mid S)}_{\text{uncertainty about } T \text{ after knowing } S}
\]

This represents the mutual information between \(S \) and \(T \), which measures how much knowing \(S \) reduced the uncertainty about \(T \).
Cross-Mutual Information measures models’ performance on the act of translation

Entropy: \(H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))] \) uncertainty
\(H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t \mid s))] \)

MI(S; T) = \(H(T) - H(T \mid S) \)

- **mutual information between S and T**
- **uncertainty about T a priori**
- **uncertainty about T after knowing S**
- **how much knowing S reduced uncertainty about T**

Cross-Entropy: \(H_q(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(q(t))] \) how surprised is model q in reality p?
\(H_q(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(q(t \mid s))] \)
Cross-Mutual Information measures models’ performance on the act of translation

Entropy:

\[
H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))] \quad \text{uncertainty}
\]

\[
H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t \mid s))] \quad \text{a posteriori uncertainty}
\]

\[
\text{MI}(S; T) = H(T) - H(T \mid S)
\]

- **Mutual Information (MI)** between S and T:
 - **a priori uncertainty** about T
 - **a posteriori uncertainty** about T
 - how much knowing S reduced uncertainty about T

Cross-Entropy:

\[
H_q(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(q(t))] \quad \text{how surprised is model q in reality p?}
\]

\[
H_q(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(q(t \mid s))] \quad \text{a posteriori uncertainty}
\]

\[
\text{XMI}(S \rightarrow T) := H_{q_{LM}}(T) - H_{q_{MT}}(T \mid S)
\]
Cross-Mutual Information measures models’ performance on the act of translation

Entropy:

\[H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))] \]

\[H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t \mid s))] \]

\[\text{MI}(S; T) = H(T) - H(T \mid S) \]

\[\text{mutual information} \]

\[\text{uncertainty about } T \]

\[\text{a priori} \]

\[\text{uncertainty about } T \]

\[\text{after knowing } S \]

\[\text{how much knowing } S \text{ reduced uncertainty about } T \]

Cross-Entropy:

\[H_q(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(q(t))] \]

\[H_q(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(q(t \mid s))] \]

\[\text{XMI}(S \rightarrow T) := H_{q_{LM}}(T) - H_{q_{MT}}(T \mid S) \]
Cross-Mutual Information measures models’ performance on the act of translation

Entropy: \(H(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(p(t))] \) uncertainty
\(H(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(p(t \mid s))] \)

\[
\text{MI}(S; T) = H(T) - H(T \mid S)
\]

- Mutual information between \(S \) and \(T \)
- \(H(T) \): uncertainty about \(T \) \textit{a priori}
- \(H(T \mid S) \): uncertainty about \(T \) \textit{after knowing} \(S \)
- How much knowing \(S \) reduced uncertainty about \(T \)

Cross-Entropy: \(H_q(T) = \mathbb{E}_{t \sim p(T)}[-\log_2(q(t))] \) how surprised is model \(q \) in reality \(p \)?
\(H_q(T \mid S) = \mathbb{E}_{(s,t) \sim p(S,T)}[-\log_2(q(t \mid s))] \)

\[
\text{XMI}(S \rightarrow T) := H_{q_{LM}}(T) - H_{q_{MT}}(T \mid S)
\]
Experiments
Experiments

Setup

- **Data**: Fully 21-parallel subset of Europarl
- **Models**:
 - 20 [○ → en] Transformers
 - 20 [en → ○] Transformers
Experiments

Setup

- **Data**: Fully 21-parallel subset of Europarl
- **Models**:
 - 20 [$\odot \rightarrow \text{en}$] Transformers
 - 20 [\text{en} \rightarrow \odot] Transformers

Results

- For fixed target, BLEU and XMI correlate well! ✔️
Experiments

Setup

• **Data**: Fully 21-parallel subset of Europarl
• **Models**:
 • 20 [○ → en] Transformers
 • 20 [en → ○] Transformers

Results

• For fixed target, BLEU and XMI correlate well! ✓
• Check our paper for more correlations
It’s Easier to Translate *out of* English than *into* it!
It’s Easier to Translate *out of* English than *into* it!

en-fi is easier than fi-en!
It’s Easier to Translate *out of* English than *into* it!

en- ∘ is easier than ∘ -en!
Correlations with XMI?

The usual: type-token ratio... but on the source side!

Spearman’s ρ	Metric	$\text{∅} \rightarrow \text{en}$	en $\rightarrow \text{∅}$	both
Mielke et al. (2019)	MCC_{src}	nope	nope	maybe?
	MCC_{tgt}	nope	nope	maybe?
	ADL_{src}	nope	nope	nope
	ADL_{tgt}	nope	nope	maybe?
	HPE-mean_{src}	nope	nope	maybe?
	HPE-mean_{tgt}	nope	nope	maybe?
Lin et al. (2019)	genetic	nope	nope	nope
	syntactic	nope	nope	nope
	featural	nope	nope	nope
	phonological	nope	nope	nope
	inventory	nope	nope	nope
	geographic	nope	nope	nope
Lin et al. (2019)	word number ratio	maybe?	nope	maybe?
	TTR_{src}	maybe?	–	-0.51
	TTR_{tgt}	–	nope	maybe?
	d_{TTR}	maybe?	nope	-0.47
	word overlap ratio	nope	nope	nope
Where to go from here?
Where to go from here?

- Cross-mutual information (XMI)
Where to go from here?

- Cross-mutual information (XMI)
 - A metric for translation difficulties between *any* two directions
Where to go from here?

- Cross-mutual information (XMI)
 - A metric for translation difficulties between *any* two directions

- No linguistic correlations, but TTR... again
Where to go from here?

- Cross-mutual information (XMI)
 - A metric for translation difficulties between *any* two directions

- No linguistic correlations, but TTR... again
 - Let’s scale this up and evaluate more pairs!
Where to go from here?

• Cross-mutual information (XMI)
 • A metric for translation difficulties between any two directions

• No linguistic correlations, but TTR... again
 • Let’s scale this up and evaluate more pairs!
 • Let’s build better models!
Where to go from here?

• Cross-mutual information (XMI)
 • A metric for translation difficulties between *any* two directions

• No linguistic correlations, but TTR... again
 • Let’s scale this up and evaluate more pairs!
 • Let’s build better models!

Code available online at https://github.com/e-bug/nmt-difficulty