Antimicrobial Efficacy of *Triphala* and Propolis-modified Glass Ionomer Cement: An *In Vitro* Study

Jessy Paulraj1, Priya Nagar2

ABSTRACT

Background: The antimicrobial activity of restorative materials has a major role in preventing recurrent caries.

Aim: To assess the antimicrobial activity of *triphala* and propolis-modified glass ionomer cement (GIC) against *Streptococcus mutans* and *Lactobacillus*.

Materials and methods: The samples were prepared using cylindrical molds (6 mm in diameter and 2 mm in thickness). A total of 30 samples were prepared containing 10 samples in each group. Group I, 10 samples of glass ionomer with aqueous extract of *triphala* were prepared; group II, 10 samples of glass ionomer with 50% of ethanolic extract of propolis (EEP); and group III as control consisting of 10 samples of glass ionomer. The samples were placed in to agar plates containing inoculum of *S. mutans* and *Lactobacillus* and incubated at 37°C for 48 hours and using a digital caliper, zones of inhibition formed around specimens were measured.

Results: Data obtained were analyzed using nonparametric Kruskal-Wallis test followed by pairwise comparison was done using Dunn-Bonferroni test. Group I and group II showed highest antimicrobial efficacy against *S. mutans* and *Lactobacillus* with no statistical significant difference, i.e., (p value > 0.05) but in both groups I and II, there was a statistical significant difference when comparing with group III i.e., (p < 0.05).

Conclusion: Thus, *triphala* and propolis-modified GIC provided higher antibacterial effect with increased level of inhibition against the *S. mutans* and *Lactobacillus*; hence, it can be used as a choice of restorative material to treat dental caries. Further studies are required to determine the physical and mechanical characteristics of the material.

Keywords: Antibacterial effect, Glass ionomer cement, *Lactobacillus*, Propolis, *S. mutans*, *Triphala*.

International Journal of Clinical Pediatric Dentistry (2020): 10.5005/jp-journals-10005-1806

INTRODUCTION

The cariogenic bacteria responsible for dental caries are fixed in the dental plaque which are predominantly *Streptococcus mutans* and *Lactobacillus acidophilus*. Microbial infection is the main cause for the inflammation of the dental pulp and periodontium. Previous literature indicates the existence of residual traces of infection in the site affects the success of restoration resulting in secondary caries. Secondary caries process is difficult to diagnose and cannot be permanently treated by operative management.

Glass ionomer cements (GICs) are widely used in permanent restorations as a cavity liner, fissure sealants, and adhesives. It releases fluoride ions that act as anticariogenic agent and helps in prevention of oral problems such as enamel demineralization, remineralization, and also interferes with the bacterial growth and metabolism, but it can reduce the microbial count to a certain extent. It is effective against some pathogens but not all oral pathogens causing cariogenic and periodontal problems. With the spectrum of bacteria inhibited by fluoride being inadequate, therefore, a restorative material that can create persistent antimicrobial environment around the restoration would be considerable to provide clinical benefit in reducing dental caries, plaque accumulation, and periodontal problems. Due to increased occurrence of recurrent caries after restorative treatment, much attention is required in the use of direct filling materials. Different modifications of GICs have been suggested in previous literature to enhance its antimicrobial properties. *Triphala* is an ayurvedic herbal formulation contains three medicinal plants *T. chebulica, T. bellerica,* and *Phyllanthus emblica*, which has been proven to have numerous benefits. This magical preparation has action on all the three

© Jaypee Brothers Medical Publishers. 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Another study done by de Carvalho Duailibe et al. proved that extract of propolis has an excellent antimicrobial activity against S. mutans which can be an alternate measure to prevent dental caries. Keeping this in mind, the present study was planned to evaluate the antimicrobial efficacy of GIC-modified triphala and propolis against S. mutans and L. acidophillus.

Materials and Methods

Preparation of Ethanolic Extract of Propolis (EEP)

Propolis was supplied by Hitech Natural Lab, Delhi. The samples were grinded and preserved in container in 10-g portions. Using the magnetic mixer, the grinded samples were dissolved in 20 mL of ethanol. The rough particles were filtered, and the final extract of propolis was obtained.

Preparation of Aqueous Extract of Triphala (AET)

Triphala (IMPCOPS Ltd., Chennai, India) powder was transferred to solution by dissolving with 10% dimethyl sulfoxide (DMSO) (S.D. Fine Chem Pvt. Ltd., India). The previous literature states that pure properties of the herb can be attained even after mixing it with DMSO, as it is a highly polar, aprotic solvent and hence it was used.

Bacterial Strain and Inoculum Preparation

Streptococcus mutans (ATCC 25175) and Lactobacillus acidophilus (ATCC 4356) were obtained from Bioline laboratories, Delhi. The agar well diffusion method was done to test the antimicrobial efficacy of ethanolic extract of propolis (EEP) and aqueous extracts of triphala (EEP) against these bacterial strains.

A sterile complete loop of the pure culture of S. mutans was taken, and the facultative strains of S. mutans were fully grown on brain heart infusion agar. The microorganisms were subcultured in appropriate culture media and under gaseous conditions to improve purity, and it was inoculated individually in tubes containing 5 mL of sterile saline. The suspension was then adjusted to 0.5 Mcfarland scale = 1.5×10^8 colony-forming unit (CFU).

Determination of Minimal Inhibitory Concentration (MIC)

The MIC of EEP and AET against the bacterial strains, i.e., S. mutans and Lactobacillus was determined using the agar dilution method. The solution was serially diluted till the least concentration, the level at which inhibition was achieved toward the growth of S. mutans and L. acidophilus was recorded as the MIC of the extract.

Specimen Preparation

The type IX GIC (GC corporation, Tokyo) was used in the present study.

- Group I: Triphala extract (L_{AET}) mixed with powder (p_{GIC}) and liquid (L_{GIC}) of GIC (p_{GIC}:L_{GIC}:L_{AET} ratio = 1:0.5:0.5)
- Group II: 50% EEP (LEEP) added with powder (p_{GIC}) and liquid (L_{GIC}) of GIC (p_{GIC}:L_{GIC}:LEEP ratio = 1:0.5:0.5)
- Group III: Conventional GIC (p_{GIC}:L_{GIC} ratio = 1:1) (Fig. 1).

After mixing the powder and liquid of conventional GIC, the liquid extract of propolis and triphala was incorporated. The final obtained cement was placed into cylindrical molds measuring diameter of 6 mm and 2 mm in thickness (Fig. 2), and the prepared specimens were carried to the cylindrical wells in less than 1 minute using the sterile cement carrier, and the upper surface of the cement layer was pressed to the equal level using sterile glass slide. After setting of the cement, the disk-shaped specimens were removed from the mold. The precise specimen was measured using calipers and recorded. Overall total of 30 specimens were obtained (Fig. 3).

Antimicrobial Assay Using Agar Disk Diffusion Test

Standard strains S. mutans and Lactobacillus were used to test the antimicrobial efficacy of two different restorative materials. Brain heart infusion broth is used for culture. Ten agar plates were used. Using a sterile swab, the surface of each agar plate was swabbed 3 times to ensure even distribution of the inoculum. After drying the agar plates, three wells of 6 × 2 mm diameter were made in each agar plate using sterile agar punchers, and set disk-shaped specimens were inserted into the wells after which the plates were set for incubation aerobically at 37°C for 48 hours. The zones of inhibition were measured based on the concept of Takahashi et al. Digital caliper was used for measuring the inhibition zones.

Statistical Analysis

The obtained values were entered in MS excel spreadsheet, and the data were imported to SPSS (Statistical Package for Social Sciences) Version 20.1 (Chicago, USA Inc.). The descriptive and analytical statistics were done, and the normality of the data was checked using Kolmogorov-Smirnov test. Since the normality for the distribution was not met, the nonparametric Kruskal-Wallis
test was used to check differences between the groups, and the pairwise comparison was done using Dunn-Bonferroni test. The level of significance was set at <0.05.

Results

MIC Values

For aqueous extract of triphala solution and for ethanolic extract of propolis, inhibition of *S. mutans* and *Lactobacillus* was at 0.15 mg/mL and 0.1 mg/mL, and 0.025 mg/mL and 0.022 mg/mL, respectively. This present study proves superior antimicrobial activity of the triphala and propolis-modified GIC against *S. mutans* and *Lactobacillus* strain. The inhibition zones formed by groups I, II, and III are represented in Figure 4.

Antibacterial Efficacy against *S. mutans*

Antimicrobial efficacy on *S. mutans* between the three groups was tabulated and shown in Table 1. Group I when compared with group II showed effective antimicrobial efficacy without statistical significant difference between the groups (*p* value > 0.05), whereas control group showed least antimicrobial efficacy with the difference being statistically significant (*p* value < 0.05) (Table 2 and Fig. 5).

Antibacterial Efficacy against *Lactobacillus*

Antimicrobial efficacy on *Lactobacillus* between the three groups was tabulated and shown in Table 3. Group I when compared to group II showed highest mean diameter of inhibition zone against *Lactobacillus*, without statistically significant difference between the groups (*p* value > 0.05), while the control group (group III) failed to inhibit growth which showed least antimicrobial efficacy with the difference being statistically significant (*p* value < 0.05). (Table 4 and Fig. 6)

Discussion

Dental caries is the most widespread dental disease in pediatric age group. Dental caries is initiated mainly by two groups of bacteria *S. mutans* and *Lactobacilli*. These bacteria cause carbohydrates mainly sucrose which are sticky in nature to form organic acid which in turn demineralizes and denatures the tooth substance leading to dental caries or cavity. Glucans, which facilitate the attachment of bacteria to the tooth surface, is synthesized by *S. mutans* with the help of glucosyltransferase (GTF). If dental caries is not managed in time, it leads to pain, infection, and in the later stages extraction of teeth which has a direct bearing on child’s esthetics and functional occlusion.

Streptococcus mutans (ATCC 25175) has a profound effect on the incidence of dental decay in the human population; hence, it

Bacteria	GI—GIC added to aqueous extract of *triphala*	GII—GIC added to ethanolic extract of propolis	GIII—Conventional GIC
Streptococcus mutans	![Image](image1.png)	![Image](image2.png)	![Image](image3.png)
Lactobacillus acidophilus	![Image](image4.png)	![Image](image5.png)	![Image](image6.png)

Fig. 2: Cylindrical moulds of 6 × 2 mm
Fig. 3: 30 specimens
*Fig. 4: Zone of inhibition against *S. mutans* and *Lactobacillus* for group I, group II and group III*
Antimicrobial Efficacy of Triphala and Propolis-modified Glass Ionomer Cement

Among the widespread restorative materials used in dentistry, the conventional GICs were selected in this study due to their major advantages of adhesion to tooth structure, fluoride uptakes, and release which can inhibit caries, furthermore the variety of the clinical application of GICs.16 Nakajo et al. concluded S. mutans on the surface of GIC fillings was less than on composite resin fillings.18 Hoszek et al. said that conventional GICs have low bactericide potential which can act against microorganisms to the certain extent. Therefore, the ability of GICs in complete elimination of the plaque proliferation, caries development, and periodontal disease in few patients is still questionable.19 Also, following insertion of GICs in to the cavity, it has been proved that approximate release of fluoride is around 10 ppm which is still considered low for attaining the desired antibacterial effects.16,20 Hence, GIC was not able to hold its acidity and fluoride ion after a particular point of time. Yap et al.21 stated that even with the presence of fluoride content in GIC, the expected efficient antimicrobial property is yet difficult to achieve; hence, the motto of this present study was to improve the antimicrobial characteristics of GIC; therefore, the modification using triphala and propolis was done.

Table 1: Comparison of antimicrobial efficacy on Streptococcus mutants between the three groups—group I (GIC with aqueous extract of triphala), group II (GIC with ethanolic extract of propolis) and control group (plain GIC)

Variables	n	Mean	S.D.	Median	Min–Max	Test statistics	p value
Group I	5	11.60	0.41	11.50	11.00–12.00	9.795	0.007*
Group II	5	11.80	1.15	12.00	10.00–13.00		
Control group	5	05.50	0.50	05.50	05.00–06.00		

*p value derived from Kruskal–Wallis test; *Significant at p < 0.05

Table 2: Pairwise comparison of antimicrobial efficacy on Streptococcus mutants between the three groups—group I (GIC with aqueous extract of triphala), group II (GIC with ethanolic extract of propolis) and control group (plain GIC)

Variables	N	Test statistics	p value
Group I v/s group II	5	−1.400	1.000
Group I v/s control group	5	2.426	0.046*
Group II v/s control group	5	2.925	0.010*

Pairwise comparison done by Dunn–Bonferroni test; *Significant at p < 0.05

In the present study, group I had showed the more inhibition of 12.5 mm, whereas conventional GIC shows inhibition of 5 mm. This confirms the earlier studies that the inhibition of GIC against caries formation is solely due to fluoride release and/or acidity,22 and the inhibition of microorganisms by conventional GICs in cavities is not reliable.23 The antimicrobial efficacy of GIC with triphala may be due to the following reasons, which is proven by numerous literatures:

- **Antibacterial Efficacy of GIC Containing Aqueous Extract of Triphala**

In the main ingredient of Triphala, Terminalia chebula acts as a anticaries agent,24,25 as it prevents sucrose-induced adherence, thereby eliminating the virulence of cavity-inducing organisms. According to Biradar et al., *triphala* can retard the growth of bacteria26 and also Jagtap and Karkera reported that extracts of main ingredient in *triphala*, i.e., Terminalia chebula, prevents the growth and adherence of S. mutans.27

Also, another ingredient Terminalia bellerica (in Triphala), which contains tannic acid, can be adsorbed to the surface of the bacterial cells, resulting in protein denaturation and bacterial cell death.28 Kau et al. reported that tannic acid is bacteriostatic or bactericidal to few pathogens.29 It may be a reason for the present study in the enhancement of antimicrobial activity. The
Table 3: Comparison of antimicrobial efficacy on Lactobacillus between the three groups—group I (GIC with aqueous extract of triphala), group II (GIC with ethanolic extract of propolis) and control group (plain GIC)

Variables	n	Mean	S.D.	Median	Min–Max	Test statistics	p value
Group I	5	11.70	0.83	11.50	11.00–13.00	9.639	0.008*
Group II	5	11.90	0.65	12.00	11.00–12.50		
Control group	5	05.10	0.74	05.00	04.00–06.00		

*p value derived from Kruskal–Wallis test; *Significant at p < 0.05

Clinical Significance
Atraumatic restorative treatment (ART) has been developed for treatment of caries in parts of world with limited access to dental treatment facilities, where demineralized soft carious lesion are excavated and it is restored with suitable adhesive restorative materials. As dental hand instruments solely cannot help in removal of entire carious lesion, there may be chances of remnant cariogenic bacteria which can survive in depth underneath the restorations. Consequently, when the restoration (GIC) is not capable to arrest the carious progression, the restoration will result in failure. As researchers proved that few ART restorations fail because of secondary caries development over a period of 6 years, there lies a need for improvement in filling materials which can overcome the problem resulting in success rate of ART. Hence, the GIC containing propolis and *triphala* will be beneficial to prevent secondary caries formation and would be used as a promising material for restoration. Further extensive research is required in regard to physical, mechanical properties and bonding effects of GIC which can promote a novel natural bioactive restorative material.

Conclusion
The results of this present study proved that modified GIC with *triphala* and propolis had a maximum zone of inhibition proving its higher antimicrobial efficacy against *S. mutans* and *Lactobacillus* when compared to conventional GIC. Therefore, propolis and *triphala* added GIC can be a better replacement for restoring of the dental cavities. Future investigations are required to know about its physical and mechanical properties.

References
1. Carvalho JC, Ekstrand KR, Thylstrup A. Dental plaque and caries on occlusal surfaces of first permanent molar in relation to stage of eruption. J Dental Res 1989;68(5):773–777. DOI: 10.1177/00220345890860005041.
2. Powell LV. Caries prediction: a review of the literature. Commun Dent Oral Epidemiol 1998;26(6):361–371. DOI: 10.1111/j.1600-0528.1998.tb01974.x.
3. Tobias RS. Antibacterial properties of dental restorative materials. Int Endod J 1998;21(2):155–160. DOI: 10.1111/j.1432-0703.1988.tb00696.x.
4. Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials- fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater 2007;23(3):343–362. DOI: 10.1016/j.dental.2006.01.022.
5. Nadkarni AK, Dr. K. M. Nadkarni’s Indian Materia Medica with ayurvedic, unani-tibbi, siddha, allopathic, homeopathic, naturopathic and home remedies, appendices and indexes. 3rd ed., Bombay: Popular Prakashan; 1976. pp. 120–128.
6. Juss SS. Triphala - the wonder drug. Ind Med Gaz 1997;131:194–196.
7. Srinagesh J, Krishnappa P, Somanna SN. Antibacterial efficacy of triphala against oral streptococci: an in vivo study. Indian J Dent Res 2012;23(5):696. DOI: 10.4103/0970-9290.107423.
Antimicrobial Efficacy of Triphala and Propolis-modified Glass Ionomer Cement

8. Kumazawa S, Hamasaka T, Nakayama T. Antioxidant activity of propolis of various geographic origins. Food Chem 2004;84(3):329–339. DOI: 10.1016/S0308-8146(03)00216-4.

9. Kujumgiev A, Tsvetkova I, Serkedjieva Y, et al. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J Ethnopharmacol 1999;64(3):235–240. DOI: 10.1016/S0378-8741(98)00131-7.

10. Russo A, Cardile V, Sanchez F, et al. Chilean propolis: antioxidant activity and antiproliferative action in human tumor cell lines. Life Sci 2004;76(5):545–558. DOI: 10.1016/j.lfs.2004.07.019.

11. Yang HY, Ho WL, Chang CM, et al. Retention of chlorhexidine in the human oral cavity after mouthrinses. Arch Oral Biol 1974;19(3):209–212. DOI: 10.1016/0003-9969(74)90263-5.

12. Uzel A, Sorkun K, Oncag O, et al. Chemical compositions and antimicrobial activities of four different anatolian propolis samples. Microbiol Res 2005;160(2):189–195. DOI: 10.1016/j.micres.2005.01.002.

13. de Carvalho Duailibe SA, Gonçalves AG, Mendes Ahid FJ. Effect of a propolis extract on Streptococcus mutans counts in vivo. J Appl Oral Sci 2007;15(5):420–423. DOI: 10.1590/S1678-77522007000500009.

14. Jacob SW, Herschler R. Biological actions of dimethyl sulfoxide. Ann NY Acad Sci 1975;243:1–508.

15. Biological actions and medical applications of dimethyl sulfoxide. Ann NY Acad Sci 1983;411(1):1–404. DOI: 10.1111/j.1749-6632.1983.tb4772x.

16. Takahashi Y, Imazato S, Kaneshiro AV, et al. Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dent Mater 2006;22(7):647–652. DOI: 10.1016/j.dental.2005.08.003.

17. Tanzer JM, Livingston J, Thompson AM. The microbiology of primary dental caries in humans. J Dent Educ 2001;65(10):1028–1037. DOI: 10.1002/j.0022-0337.2001.tb03446.x.

18. Nakajo K, Imazato S, Takahashi Y, et al. Fluoride released from glass-ionomer cement is responsible to inhibit the acid production of caries-related oral streptococci. Dent Mater 2009;25(6):703–708. DOI: 10.1016/j.dental.2008.10.014.

19. Hoszek A, Ericson D. In Vitro fluoride release and the antibacterial effect of glass ionomers containing chlorhexidine gluconate. Oper Dent 2008;33(6):696–701. DOI: 10.23148/08.20.

20. Mazzoni SA, Burrow MF, Tyas MJ. Fluoride release from glass ionomer cements and resin composites coated with dentin adhesive. Dent Mater 2000;16(3):166–171. DOI: 10.1016/S1034-5640(00)00003-8.

21. Yap AU, Khor E, Foo SH. Fluoride release and antibacterial properties of new-generation tooth-colored restoratives. Oper Dent 1999;24(5):297-305.

22. Marthaler TM. Changes in dental caries 1953–2003. Caries Res 2004;38(3):173–181. DOI: 10.11159/00077752.

23. Van Amerongen WE. Dental caries under glass ionomer restorations. J Public Health Dent 1996;56(3 Spec No):150–154. DOI: 10.1111/j.1752-7325.1996.tb02426.x.

24. Date BB, Kulkarni PH. Assessment of Radiantin in various oral disorders. Ayurveda Res Pap 1995;2:175–197.

25. Bhavikatti SK, Dhamija R, Prabhuji MLV. Triphala: envisioning its role in dentistry. Int Res J Pharm 2015;6(6):309–313. DOI: 10.7897/2230-8407.06667.

26. Bidarar YS, Jagatap S, Khandelwal KR, et al. Exploring of antimicrobial activity of triphala mashi-an ayurvedic formulation. Evid Based Complement Alternat Med 2008;5(1):107–113. DOI: 10.1093/ecam/nem002.

27. Jagtap AG, Karkera SG. Potential of the aqueous extract of Terminalia chebula as an anticaries agent. J Ethnopharmacol 1999;68(3):299–306. DOI: 10.1016/S0378-8741(99)00058-6.

28. Bonesvol P, Lokker P, Rolla G, et al. Retention of chlorhexidine in the human oral cavity after mouthrinses. Arch Oral Biol 1974;19(3):209–212. DOI: 10.1016/0003-9969(74)90263-5.

29. Kau PC. New Chinese Medicine Handbooks 1 Wu B, ed., China: Shing Wen Fang Publishing; 1980. pp. 288–291.

30. Jagadish L, Anand Kumar VK, Kaviyarasan V. Effect of triphala on dental biofilm. Indian J Sci Technol 2009;2(1):30–33. DOI: 10.17485/ijst/2009/v2i1.

31. Prajapati RA, Raol BV. The study on the efficacy of some herbal extracts for the control of dental caries pathogen-Streptococcus mutans. Int J Pharm Sci Health Care 2014;1:49–80.

32. Prabhakar J, Balagopal S, Priya MS, et al. Evaluation of antimicrobial efficacy of triphala (an Indian ayurvedic herbal formulation) and 0.2% chlorhexidine against Streptococcus mutans biofilm formed on tooth substrate: an in vitro study. Indian J Dent Res 2014;25(4):475–479. DOI: 10.4103/0970-9290.142539.

33. Mathew SM, Thomas AM, Koshy G, et al. Evaluation of the microleakage of chlorhexidine-modified glass ionomer cement: an in vivo study. Int J Clin Pediatr Dent 2013;6(1):7–11. DOI: 10.5005/jp-journals-10005-1177.

34. Koo H, Smith VAM, Bowen WH, et al. Effects of apis mellifera propolis on the activities of streptococcal glucosyltransferases in solution and adsorbed onto saliva-coated hydroxyapatite. Caries Res 2000;34(5):418–442. DOI: 10.1159/000166167.

35. Mirzoeva OK, Grishanin RN, Colder PC. Antimicrobial action of propolis and some of its components: the effect on growth, membrane potential and motility of bacteria. Microbiol Res 1997;152(3):239–246. DOI: 10.1016/S0944-5013(97)80034-1.

36. Kosalec I, Bakmaz M, Pepeljnjak S. Analysis of propolis from the continental and Adriatic regions of Croatia. Acta Pharm 2003;53(4):275–285.

37. Havsteen B, Flavonoids, a class of natural products of high pharmacological potency. Biochem Pharmacol 1983;32(7):1141–1148. DOI: 10.1016/0006-2952(83)90262-9.

38. Trusheva B, Trunkova D, Bankova V. Different extraction methods of biologically active components from propolis: a preliminary study. Chem Cent J 2007;1(1):13–17. DOI: 10.1186/1752-153X-1-13.

39. Silva BB, Rosalen PL, Cury JA, et al. Chemical composition and biological origin of red propolis, a new type of Brazilian propolis. Evidence-Based compl Alt Med 2007;5(3):313–316. DOI: 10.1093/ecam/nem059.

40. Kartala M, Yildizb S, Kayaa S, et al. Antimicrobial activity of propolis samples from two different regions of Anatolia. J Ethnopharmacol 2003;86(1):69–73. DOI: 10.1016/S0378-8741(03)00042-4.

41. Topcuoglu N, Ozan F, Ozurt M, et al. In vitro antibacterial effects of glassionomer cement containing ethanolic extract of propolis on Streptococcus mutans. European J Dent 2012;6:428–433.

42. Ophori EA, Eriagbonye BN, Ugbodagba P. Antimicrobial activity of propolis against Streptococcus mutans. Afr J Biotechnol 2010;9(31):4966–4969.

43. Hatunoglu E, Ozturk F, Bilenler T, et al. Antibacterial and mechanical properties of propolis added to glass ionomer cement. Angle Orthodontist 2014;84(2):368–373. DOI: 10.2319/020413-101.1.