Remark on a conjecture of Mukai
Arnaud Beauville

Introduction

The conjecture mentioned in the title appears actually as a question in [M] (Problem 4.11):

Conjecture. Let C be a general curve, and E a stable rank 2 vector bundle on C with $\text{det} \ E = K_C$. The multiplication map $\mu_E : S^2 H^0(C, E) \to H^0(C, S^2 E)$ is injective.

Let \mathcal{M}_K be the moduli space of stable rank 2 vector bundles E on C with $\text{det} \ E = K_C$, and let \mathcal{M}_K^n be the subvariety of \mathcal{M}_K parametrizing bundles with $h^0(E) = n$. As explained in *loc. cit.*, the conjecture implies that \mathcal{M}_K^n is smooth, of codimension $\frac{1}{2} n(n + 1)$; this would give an analogue of the Brill-Noether theory for rank 2 vector bundles with canonical determinant.

In this note we prove the conjecture in a very particular case:

Proposition 1. The conjecture holds if $h^0(E) \leq 6$.

As a corollary we obtain that \mathcal{M}_K^n is smooth of codimension $\frac{1}{2} n(n + 1)$ in \mathcal{M} for $n \leq 6$. Another consequence is that Mukai’s conjecture holds for $g \leq 9$ (see §2).

The idea of the proof is the following. Put $n = h^0(E)$; assume for simplicity that E is generated by its global sections, and that the map μ_E annihilates a non-degenerate (symmetric) tensor. This means that the image of the map $\mathbb{P}_C(E) \to \mathbb{P}^{n-1}$ defined by the tautological line bundle is contained in a smooth quadric; equivalently, the map from C into the Grassmann variety $G(2, n)$ associated to E factors through the orthogonal Grassmannian $GO(2, n)$. Now for $n \leq 6$, the restriction of the Plücker line bundle $\mathcal{O}_G(1)$ to $GO(2, n)$ is the sum of two (possibly equal) globally generated line bundles; pulling back to C we obtain a decomposition of $\text{det} \ E = K_C$ which turns out to contradict Brill-Noether theory for a general curve.

The last part of the argument breaks down for $n \geq 7$, since then the restriction map $\text{Pic}(G(2, n)) \to \text{Pic}(GO(2, n))$ is an isomorphism. In fact we will show that the result cannot be improved without strengthening the hypotheses that we use on C and E.

1. Proof of the main result

We will say that a curve C is *Brill-Noether general* if for any line bundle L...
on \(C \), the multiplication map

\[
H^0(C, L) \otimes H^0(C, K_C \otimes L^{-1}) \longrightarrow H^0(C, K_C)
\]

is injective. A general curve of given genus is Brill-Noether general; if \(S \) is a K3 surface with \(\text{Pic}(S) = \mathbb{Z}[H] \), a general element of the linear system \(|H| \) is Brill-Noether general [L].

We will use this property in the following way:

Lemma 1. Let \(C \) be a Brill-Noether general curve and \(L, L' \) two line bundles on \(C \) such that \(h^0(K_C \otimes (L \otimes L')^{-1}) \geq 1 \). Then:

a) The multiplication map \(H^0(C, L) \otimes H^0(C, L') \rightarrow H^0(C, L \otimes L') \) is injective;

b) If \(L' = L \), we have \(h^0(L) \leq 1 \).

Proof: Choose a non-zero section \(s \in H^0(C, (K_C \otimes (L \otimes L')^{-1})) \), and consider the commutative diagram

\[
\begin{array}{ccc}
H^0(L) \otimes H^0(L') & \longrightarrow & H^0(L \otimes L') \\
1 \otimes s \downarrow & & \downarrow s \\
H^0(L) \otimes H^0(K_C \otimes L^{-1}) & \longrightarrow & H^0(K_C).
\end{array}
\]

By our hypothesis on \(C \) the bottom horizontal map is injective; it follows that the top one is injective.

If \(L' = L \), we get that the map \(H^0(L)^{\otimes 2} \rightarrow H^0(L^{\otimes 2}) \) is injective; if \(H^0(L) \) contains two linearly independent elements \(s, t \), the tensor \(s \otimes t - t \otimes s \) is non-zero and belongs to the kernel of that map, a contradiction.

Let \(E \) be a vector bundle on a curve \(C \). If the multiplication map \(\mu_E \) is injective, the same property holds for all subbundles of \(E \); thus \(E \) satisfies

\((\star)\) For every sub-line bundle \(L \subset E \), the map \(\mu_L : S^2H^0(C, L) \rightarrow H^0(C, L^2) \) is injective.

By [T], this condition is automatically satisfied if \(C \) is general and any sub-line bundle of \(E \) has degree \(\leq g + 1 \). Thus Proposition 1 is a consequence of the following more precise result:

Proposition 2. Let \(C \) be a Brill-Noether general curve, and \(E \) a rank 2 vector bundle on \(C \) with \(\det E = K_C \), satisfying condition \((\star)\). Then any non-zero tensor \(\tau \in S^2H^0(C, E) \) such that \(\mu_E(\tau) = 0 \) has rank \(> 6 \).

Proof: a) The general set-up

Let \(C \) be a curve, \(E \) a rank 2 vector bundle on \(C \) with \(\det E = K_C \), \(\tau \) an element of \(\text{Ker} \mu_E \) of rank \(n \). This means that we can find linearly independent
elements \(s_1, \ldots, s_n \) of \(H^0(C, E) \) such that \(\tau = s_1^2 + \cdots + s_n^2 \). Let \(F \subset E \) be the image of the map \(O^n_C \to E \) defined by \(s_1, \ldots, s_n \). Then \(s_1, \ldots, s_n \) are sections of \(F \) which satisfy \(s_1^2 + \cdots + s_n^2 = 0 \) in \(H^0(C, S^2 F) \). By property (⋆) \(F \) is a rank 2 subsheaf of \(E \), with determinant \(K_C(-A) \) for some effective divisor \(A \).

Let \(P := P_C(F) \), and let \(O_P(1) \) be the tautological line bundle on \(P \). Through the canonical isomorphisms

\[H^0(P, O_P(1)) \isom H^0(C, F) \quad H^0(P, O_P(2)) \isom H^0(C, S^2 F) \]

the multiplication map \(\mu_F \) is identified with \(\mu_{O_P(1)} \); thus we can view \(s_1, \ldots, s_n \) as global sections of \(O_P(1) \), which generate \(O_P(1) \) and satisfy \(s_1^2 + \cdots + s_n^2 = 0 \).

In other words, the image of the morphism \(\varphi : P \to \mathbb{P}^{n-1} \) defined by \((s_1, \ldots, s_n) \) is contained in the smooth quadric \(Q \) defined by \(X_1^2 + \cdots + X_n^2 = 0 \).

Let \(\gamma \) be the map of \(C \) into the Grassmann variety \(G(2, n) \) associated to the surjective homomorphism \(O^n_C \to F \); by definition \(F \) is the pull back of the universal quotient bundle on \(G(2, n) \). The determinant of that bundle is the Plücker line bundle \(O_G(1) \) on \(G(2, n) \), so we get \(\gamma^*O_G(1) \isom K_C(-A) \).

For each \(x \in C \), the point \(\gamma(x) \in G(2, n) \) corresponds to the line \(\varphi(P(F_x)) \) in \(\mathbb{P}^{n-1} \). So the fact that the image of \(\varphi \) is contained in \(Q \) means that \(\gamma \) factors through the orthogonal grassmannian \(GO(2, n) \) of lines contained in \(Q \):

\[\gamma : C \xrightarrow{\gamma_0} GO(2, n) \hookrightarrow G(2, n) . \]

b) The cases \(n = 4 \) and \(n = 5 \)

Now we will assume \(n \leq 6 \) and that \(C \) is Brill-Noether general, and derive a contradiction. The case \(n \leq 3 \) is trivial (\(GO(2, n) \) is empty). Consider the case \(n = 4 \). Then \(GO(2, 4) \) parametrizes the lines in a smooth quadric in \(\mathbb{P}^5 \); it has two components, both isomorphic to \(\mathbb{P}^1 \). Inside \(G(2, 4) \), which is a quadric in \(\mathbb{P}^5 \), each of these components is a conic. Thus \(\gamma \) factors as

\[\gamma : C \xrightarrow{\gamma_0} \mathbb{P}^1 \hookrightarrow G(2, 4) , \]

with \(O_G(1)|_{\mathbb{P}^1} = O_{\mathbb{P}^1}(2) \). Thus \(L = \gamma_0^*O_{\mathbb{P}^1}(1) \) satisfies \(L^2 = K_C(-A) \) and \(h^0(L) \geq 2 \), contradicting Lemma 1 b).

Suppose \(n = 5 \). Let \(V \) be a 4-dimensional vector space, with a non-degenerate alternate form \(\omega \) and an orientation \(\Lambda^4 V \isom C \). The orthogonal \(W \) of \(\omega \) in \(\Lambda^2 V \) is a 5-dimensional vector space with a non-degenerate quadratic form given by the wedge product. The isotropic 2-planes in \(W \) are of the form \(\ell \wedge \ell^\perp \), for \(\ell \in \mathbb{P}(V) \). Thus \(GO(2, 5) \subset G(2, 5) \) is identified with \(\mathbb{P}(V) \) embedded in \(G(2, W) \) by \(\ell \mapsto \ell \wedge \ell^\perp \). The corresponding map from \(\mathbb{P}(V) \) to \(\mathbb{P}(\Lambda^2 W) \) is quadratic, so again \(O_G(1)|_{\mathbb{P}(V)} = O_{\mathbb{P}(V)}(2) \), and we conclude exactly as above.
c) The case $n = 6$

Let again V be a 4-dimensional vector space with an orientation. Then $\Lambda^2 V$ is a 6-dimensional quadratic vector space; the corresponding quadric in $P(V)$ is the Grassmannian $G(2, V)$. The lines contained in $G(2, V) \subset P(\Lambda^2 V)$ correspond to the 2-planes $\ell \cap H \subset \Lambda^2 V$ where $\ell \subset H \subset V$, $\dim \ell = 1$, $\dim H = 3$; thus $GO(2, 6) \subset G(2, 6)$ is identified with the incidence variety $Z \subset P(V) \times P(V^*)$, embedded in $G(2, V)$ by $(\ell, H) \mapsto \ell \cap H$. Fixing ℓ or H one sees that the restriction of $O_G(1)$ to Z is the pull back of $O_P(1) \boxtimes O_P(1)$.

The map $\gamma_O : C \to Z$ gives by projection two maps $u : C \to P(V)$ and $u' : C \to P(V^*)$. Put $L = u^* O_{P(V)}(1)$, $L' = u'^* O_{P(V^*)}(1)$. Then $L \otimes L' \cong K_C(\lambda)$, and we deduce from u and u' two homomorphisms

$$v : V^* \to H^0(C, L) \quad v' : V \to H^0(C, L') .$$

Consider the map

$$V \otimes V^* \xrightarrow{v \otimes v'} H^0(L) \otimes H^0(L') \to H^0(L \otimes L') ;$$

the fact that $(u, u') : C \to P(V) \times P(V^*)$ factors through Z means that the identity element of $V \otimes V^* \cong \text{End}(V)$ goes to zero in $H^0(L \otimes L')$, and therefore already in $H^0(L) \otimes H^0(L')$ by Lemma 1 a).

Put $K = \ker u$, $K' = \ker u'$. The kernel of $v \otimes v'$ is $K \otimes V^* + V \otimes K'$; any element of this kernel has rank $\leq \dim K + \dim K'$. Since the identity tensor has rank 4, we get $\dim K + \dim K' \geq 4$.

Suppose $\dim K = \dim K' = 2$. Identifying again $V \otimes V^*$ to $\text{End}(V)$, we can write $\text{Id}_V = p + q$, with $\text{Im} p \subset K$ and $\text{Ker} q \supset K'^\perp$. This implies that p and q are orthogonal projectors, and therefore that $K' = K^\perp$. Then $P(K) \times P(K^\perp)$ is contained in Z, and γ_O factors as

$$C \xrightarrow{(u, u')} P(K) \times P(K^\perp) \hookrightarrow GO(2, 6) .$$

Let $(\ell, H) \in P(K) \times P(K^\perp)$; then $\ell \subset K$ and $H \supset K$, so the line $P(\ell \cap H)$ in $P(\Lambda^2 V) = P^5$ contains the point $p := P(\Lambda^2 K)$. In other words, the lines in Q parametrized by C all pass through p, hence are contained in the tangent hyperplane $T_p(Q)$. Therefore the scroll $\varphi(P)$ in P^5 is contained in $T_p(Q)$; this is impossible because φ is defined by 6 linearly independent sections of $O_P(1)$.

Suppose now $\dim K = 3$, so that the image of C in $P(V^*)$ is the point $P(K^\perp)$. Then γ_O factors as

$$C \xrightarrow{u} P(K) \hookrightarrow GO(2, 6) ;$$

the image of $P(K)$ in $GO(2, 6)$ is the family of lines contained in $P(\Lambda^2 K) \subset P(\Lambda^2 V) = P^5$. Thus φ maps P to the projective plane $P(\Lambda^2 K)$, which is again impossible. The same argument applies when $\dim K' = 3$. \blacksquare
2. Consequences and comments

The following lemma must be well-known:

Lemma 2. Let C be a Brill-Noether general curve, and E a semi-stable rank 2 vector bundle on C with $\det E = K_C$. Then $h^0(E) \leq \frac{g}{2} + 2$.

Proof: Let L be a sub-line bundle of E of maximal degree. The exact sequence

$$0 \to L \to E \to K_C \otimes L^{-1} \to 0$$

gives $h^0(E) \leq h^0(L) + h^0(K_C \otimes L^{-1})$. Since $h^0(L) h^0(K_C \otimes L^{-1}) \leq g$ and $h^0(L) \leq h^0(K_C \otimes L^{-1})$ by semi-stability, the required inequality holds unless $h^0(L)$ is 0 or 1. In that case we have

$$h^0(L) + h^0(K_C \otimes L^{-1}) = 2h^0(L) + g - 1 - \deg L \leq g + 1 - \deg L$$

and $\deg L \geq \frac{g}{2} - 1$ by [N], hence $h^0(E) \leq \frac{g}{2} + 2$. ■

In particular $g \leq 9$ guarantees $h^0(E) \leq 6$, hence:

Corollary. Mukai’s conjecture holds for $g \leq 9$.

We will show that Proposition 2 cannot be improved without further hypotheses:

Proposition 3. For each integer $s \geq 5$, there exists a Brill-Noether general curve C of genus $g = 2s$ and a stable rank 2 vector bundle E on C with $\det E = K_C$, satisfying \star, such that $\text{Ker} \, \mu_E$ contains a tensor of rank 7.

Proof: We choose a K3 surface S with $\text{Pic}(S) = \mathbb{Z}[H]$, $(H^2) = 4s - 2$, and take for C a general element of the linear system $|H|$. Then C has genus $2s$ and is Brill-Noether general; in particular it admits a finite set \mathcal{P} of line bundles L with $h^0(L) = 2$, $\deg L = s + 1$. Choose one of these line bundles, say L; the Lazarsfeld bundle E_L is defined by the exact sequence

$$0 \to E_L^* \to H^0(C, L) \otimes \mathcal{O}_S \to L \to 0.$$

It turns out that the restriction E of E_L to C does not depend on the choice of $L \in \mathcal{P}$; we have $\det E = K_C$, $h^0(E) = s + 2$ (see [V]), and for each $L \in \mathcal{P}$ an exact sequence

$$0 \to L \to E \to K_C \otimes L^{-1} \to 0.$$

Lemma 3. Let M be a sub-line bundle of E. Then either $M \in \mathcal{P}$, or $h^0(M) \leq 1$ and $\deg M \leq s$.

Proof: Put $M' := K_C \otimes M^{-1}$; we may assume that the E/M is isomorphic to M', so that

$$s + 2 = h^0(E) \leq h^0(M) + h^0(M') = 2h^0(M) + g - 1 - \deg M = 2h^0(M') + g - 1 - \deg M'.$$
As in the proof of Lemma 2 this implies that either $h^0(M)$ or $h^0(M')$ is ≤ 2.

If $h^0(M) \leq 2$, we get $\deg M \leq s + 1$, hence either $M \in \mathcal{P}$, or $\deg M \leq s$ and $h^0(M) \leq 1$.

Assume $h^0(M') \leq 2$, so that $h^0(M) \geq s$. We get again $\deg M' \leq s + 1$, hence $\deg M \geq 3s - 3$. On the other hand the exact sequence preceding the Lemma shows that M injects into $K_C \otimes L^{-1}$ for each $L \in \mathcal{P}$; since Card(\mathcal{P}) ≥ 2 the inclusion must be strict, so $\deg M < \deg K_C \otimes L^{-1} = 3s - 3$, a contradiction.

It follows that E is stable and satisfies condition (\ast). We observe that S^2E is isomorphic to $K_C \otimes \mathcal{E}nd_0(E)$, where $\mathcal{E}nd_0(E)$ is the sheaf of trace 0 endomorphisms of E; thus Serre duality and the stability of E imply $h^1(S^2E) = h^0(\mathcal{E}nd_0(E)) = 0$, hence $h^1(S^2E) = 3g - 3$ by Riemann-Roch.

In $S^2H^0(E)$ the locus of tensors of rank ≤ 7 has dimension $7(s - 1)$, while the kernel of μ_E has codimension $\leq 6s - 3$. Therefore the intersection of these subvarieties is not reduced to 0 – in fact it has dimension $\geq s - 4$. By Proposition 2 all the tensors in this intersection have rank 7.

REFERENCES

[L] R. Lazarsfeld: *Brill-Noether-Petri without degenerations*. J. Differential Geom. 23 (1986), no. 3, 299–307.

[M] S. Mukai: *Vector bundles and Brill-Noether theory*. Current topics in complex algebraic geometry, 145–158; Math. Sci. Res. Inst. Publ. 28, Cambridge Univ. Press, 1995.

[N] M. Nagata: *On self-intersection number of a section on a ruled surface*. Nagoya Math. J. 37 (1970), 191–196.

[T] M. Teixidor: *Injectivity of the symmetric map for line bundles*. Manuscripta Math. 112 (2003), no. 4, 511–517.

[V] C. Voisin: *Sur l’application de Wahl des courbes satisfaisant la condition de Brill-Noether-Petri*. Acta Math. 168 (1992), no. 3-4, 249–272.

Arnaud BEAUVILLE
Institut Universitaire de France
&
Laboratoire J.-A. Dieudonné
UMR 6621 du CNRS
UNIVERSITÉ DE NICE
Parc Valrose
F-06108 NICE Cedex 02