Mammalian RGS Proteins: Barbarians at the Gate*

David M. Berman and Alfred G. Gilman‡

From the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75235

Hundreds or thousands of chemical and physical stimuli regulate the functions of eukaryotic cells by controlling the activities of a surprisingly small number of core signaling units that have been duplicated and adapted to achieve the necessary diversity. The most prevalent of these units, at least in animal cells, are three-protein modules consisting of signal recognition elements (receptors) and signal generators (effectors) whose activities are linked and coordinated by heterotrimeric guanine nucleotide-binding proteins or G proteins. Collectively, mammalian cells contain hundreds of G protein-coupled receptors and dozens of effectors. It is difficult to count functionally distinct G proteins because we do not understand the significance of the heterogeneity offered by the possible combination of 16 α, 5 β, and at least 12 γ subunits (for reviews, see Refs. 1–5).

GDP-bound G protein α subunits have high affinity for a tight complex of β and γ subunits. This interaction of α with βγ occludes the sites of interaction of both of these signaling molecules with downstream effectors, and the inactive state is maintained by an extremely slow rate of dissociation of GDP from the oligomer (k = 0.01/min). An agonist-bound receptor (typically a 35–60-kDa protein with seven plasma membrane-spanning helices) activates an appropriate G protein by poorly understood interactions that promote dissociation of GDP. High intracellular concentrations of GTP ensure a transient existence of the nucleotide-free G protein, and binding of GTP causes conformational changes in α that result in dissociation of GTP-α from βγ. Both of these complexes can then activate or inhibit signaling pathways by engaging in interactions with effectors such as adenylyl cyclases, phospholipases, cyclic nucleotide phosphodiesterases, and ion channels. Termination of signaling is dependent on the GTPase activity of α. Typically slow (kcat ~ 4/min) hydrolysis of GTP to GDP (which remains protein bound) promotes dissociation of α from effectors and reassociation with βγ.

The slow intrinsic rate of GTP hydrolysis by Ga proteins is regulated by interactions with so-called GTPase-activating proteins or GAPs. GAPs were first recognized as regulators of protein synthesis factors and low molecular weight GTPases such as Ras. It is now appreciated that certain effectors in G protein-regulated pathways act as GAPs on cognate Ga proteins (6, 7) and that there exists a large, newly discovered family of GAPs for Ga proteins known as regulators of G protein signaling or RGS proteins. Although one critical biochemical property of this novel RGS protein family has been defined, knowledge of the requisite regulation of these regulators is negligible. There are hints, however, that these proteins may be poised at centers of signaling to intercept activated G proteins, acting, from a G protein’s point of view, as “barbarians at the gate” of cellular signaling.

The RGS Protein Family

RGS proteins were discovered functionally as negative regulators of G protein signaling in Saccharomyces cerevisiae (Sat2p) (reviewed in Ref. 8) and Caenorhabditis elegans (EGL10) (9). This information converged quickly with demonstrations of interaction of a mammalian RGS protein with Goαs in a two-hybrid screen (10); induction of related messages by mitogenic stimuli in human B (11, 12) and T (13) cells; and identification of related sequences by data base searches, application of polymerase chain reaction technology, rescue of the Set2p-deficient phenotype, and homology-based screening (9, 14–18). These developments have been reviewed previously by others (8, 19–21). To date, 19 mammalian genes are known to encode proteins that contain the diagnostic RGS core domain (Fig. 1). Typically, this 120-amino acid core is flanked on both sides by highly variable arms to constitute a 25-kDa protein. However, the RGS core may be split (observed only in lower organisms), and larger family members have been identified (e.g. RGS3, RGS7).

RGS Proteins Are Ga GAPs

Given the genetic evidence that RGS proteins are negative regulators of G protein signaling that act at the level of the dissociated Ga subunit or above (but not on βγ or below), the most obvious hypotheses were that RGS proteins might act as inhibitors of GDP dissociation, blocking G protein activation, or stimulators of GTPase activity, facilitating deactivation. There is no evidence for the former mechanism. However, of the eight mammalian RGS proteins that have been examined biochemically, all act as GAPs (15, 17, 22–24).

In the absence of a receptor, the rate-limiting step in steady-state hydrolysis of GTP by a Ga protein is release of product (GDP dissociation). To examine the effect of an RGS protein on actual hydrolysis of GTP, it is necessary to bypass the rate-limiting step or accelerate it substantially. The first approach requires preparation of substrate, GTP-Gα, by incubation of the Ga protein with GTP in the absence of Mg2+. Catalysis is then initiated by addition of Mg2+ in the presence or absence of an RGS protein, and a single round of GTP hydrolysis is monitored over a typical time course of seconds to minutes. Alternatively, reconstitution of a heterotrimeric G protein with an appropriate receptor in phospholipid vesicles permits addition of a receptor agonist to speed product dissociation; the accelerating effect of a GAP on steady-state GTP hydrolysis can then be measured.

RGS4 is readily expressed in bacteria and purified, and its GAP activity has been studied most extensively. Whatever the actual mechanism for acceleration of GTP hydrolysis, GAPs such as RGS4 can be conceptualized to act as enzymes, binding substrate (e.g. Ga-GTP) and facilitating its conversion to prod-

* This minireview will be reprinted in the 1998 Minireview Compendium, which will be available in December, 1998. This is the second article of three in the “Signaling by Heterotrimeric G Proteins Minireview Series.” Title adapted from Barbarians at the Gate: The Fall of RJR Nabisco (Burrough, B., and Helyar, J. (1991) Harper & Row, New York).

‡ To whom correspondence should be addressed. Tel.: 214-648-2370; Fax: 214-648-8812.

1 The abbreviations used are: G protein, heterotrimeric guanine nucleotide-binding regulatory protein; GAP, GTPase-activating protein; RGS, regulator of G protein signaling; GTPγS, guanosine 5′-3-O-(thio) triphosphate; GAIP, Go-interacting protein, an RGS protein.
protein GAPs are influenced by palmitoylation of Ga, at least in vitro. Thus, palmitoylation of Ga, and Go, decreased their affinities for certain RGS proteins by at least 90%, as well as the maximal rate of GTP hydrolysis (28). These observations are particularly intriguing because palmitoylation of Ga is reversible and, at least in some cases, is regulated in response to activation of cognate receptors.

Berman et al. (26) compared affinities of GTPγS-, GDP-, and GDP-AlF4- bound forms of Ga, for RGS4 by testing their capacity to compete with GTP-Ga, for the GAP. The GDP-AlF4- bound forms of Ga proteins approximate transition-state complexes (29, 30), and RGS4 has markedly higher affinity for this complex than for the substrate or product complexes. Others have made similar observations with different RGS proteins (15, 23, 31, 32). However, preferential affinity for the transition-state complex is not always manifest. A protein designated Ga, GAP, now known to be a member of the RGS family (28), has equally high affinities for both GTPγS-Ga, and GDP-AlF4-Ga, (33).

The high affinity interaction between RGS4 and Ga,–GDP–AlF4 permitted crystallization and solution of the structure of the complex at 2.8-Å resolution (34) (Fig. 1). Only the core domain of RGS4 was visible in the crystal. Importantly, it has been demonstrated that this domain contains all of the crucial elements for GAP activity (10, 17, 35, 36). The core of RGS4 contains a classic right-handed, antiparallel four-helix bundle that interacts (via loops along its base) with switches I, II, and III of Ga,. The switches of Ga proteins are those regions whose conformations are sensitive to the identity of the bound nucleotide (GTP or GDP), and the residues of switches I and II are intimately involved with binding and hydrolysis of GTP. RGS4 does not contribute any residues that interact directly with either GDP or AlF4-. However, a conserved Asn residue in RGS4 (Asn128) may interact in the ground state with the hydrolytic water molecule or with the side chain of Ga, residue Glu204, a critical residue that orients and polarizes the catalytic water in the transition state. It is thus suggested that RGS4 acts as a GAP by stabilizing the flexible switch regions of Ga proteins in conformations resembling those found in the transition state, thus lowering the activation energy barrier; Asn128 may further contribute to the chemistry of hydrolysis by interactions with water or Glu204.

Comparison with RasGAP

Comparisons of the activities and structures of low molecular weight GTPases with those of heterotrimeric G proteins continue to be useful. The basal rate of GTP hydrolysis catalyzed by Ras is 2 orders of magnitude below that catalyzed by a typical Go protein; the rates of GAP-stimulated GTP hydrolysis by both proteins are similar. Much of the difference in the basal activities and, thus, the correspondingly greater efficiency of RasGAP is ascribable to a single Arg residue at the active site of Go protein α subunits. Arg172 in Go, participates directly in catalysis by stabilization of the negative charge on γ-phosphoryl oxygen atoms in the transition state. Ras lacks such a residue and is essentially inactive as a GTPase when compared with Go,1. RasGAP participates directly in GTP hydrolysis by insertion of an “arginine finger” into the active site (37). RasGAP also binds to the mobile switches of Ras, orienting Glu63 appropriately (Gln61 corresponds to Glu204 in Ga,D). The active sites of the transition-state structures of Ras and Ga,D (associated with their respective GAPs) are amazingly similar. In particular, the critical Arg and Glu residues are in nearly identical positions, even though the Arg residues point into the active site from different directions, and one (Go,α1) is contributed in cis, the other in trans (Fig. 2).

Fig. 1. A, primary and secondary structure of RGS4. Only the residues observed in the crystal structure are shown in the alignment, which includes other selected RGS proteins (see Ref. 34). Secondary structure is depicted as either a helix for α-helical residues or a thick line for coil. The RGS box consists of four segments, each defined by the color of its secondary structure: red (segment 1), gold (segment 2), green (segment 3), and blue (segment 4). The same scheme identifies these segments in the tertiary structure of RGS4 (B). Residues highlighted in yellow are conserved and form the hydrophobic core of the RGS box. Residues highlighted in grey are conserved and make direct contacts with Ga,. The numbers beneath the alignment indicate RGS4 residues that contact switch regions of Ga, and the specific switch with which they interact. B, the RGS4-Ga, complex. RGS4 is drawn with the colored segments defined in A. The Ras-like domain of Ga, is drawn in dark grey, whereas the α-helical domain is in light grey. The three switch regions of Ga, are shown in red. GDP-Mg2+, bound in the active site of Ga,D, is shown as a ball-and-stick model. AlF4- is omitted from the figure for clarity. Modified from Ref. 34, with permission.
Minireview: Mammalian RGS Proteins

RGS Proteins May Be Effector Antagonists

As noted above, RGS4 binds to the switch regions of Gα1. Logically, these switches are also involved in effector binding, because effectors interact preferentially with GTP-bound α subunits. This proximity or overlap of binding surfaces raises the possibility that RGS proteins can compete for effector binding to Gα. Such competition has been observed between RGS4 and phospholipase Cβ, which compete for binding to GTPγS-Gαq (38). In addition, both RGS4 and GAIP prevent pertussis toxin-insensitive activation of phospholipase Cβ by GTPγS. Because RGS4 does not stimulate hydrolysis of GTPγS by Gα proteins, a GAP mechanism cannot be operative. Transient expression of RGS4 in COS-7 cells blocked activation of inositol phosphate synthesis by AIFγ, also consistent with an effector-antagonist mechanism (39). Similar observations have been made with RGS proteins, Gαq, and its effector, the γ subunit of a retinal cyclic GMP phosphodiesterase (27, 32).

Competition for effector binding would not be an effective mechanism for negative regulation of G protein-mediated signaling by a protein like RGS4, which is an active GAP. The interaction of RGS4 with Gα proteins is transient and itself sufficient to interrupt signaling via the GAP mechanism. The affinity of RGS4 for GDP-bound Gα proteins is low and presumably insufficient to prevent recycling of Gα. However, it is possible that other members of the RGS protein family might have preferential affinity for GTP- or GDP-bound forms of α, rather than the transition-state complex. These proteins could then, in theory, act as effector antagonists or sequestrants of α such that it could not interact with effectors or βγ. Either of these mechanisms would have consequences substantially different from those of a GAP mechanism. Simple stimulation of the GTPase activity of Gα deactivates the protein and facilitates association with βγ, blocking downstream interactions by both α and βγ. The other two mechanisms would block signaling by α but would leave βγ-mediated signaling intact.

Chatterjee et al. (40) demonstrated that expression of a truncated form of RGS3 (RGS3T) in baby hamster kidney cells impaired stimulation of cyclic AMP accumulation by the calcitonin gene-related peptide or pituitary adenyl cyclase-activating peptide. These peptides are presumably activating Gα coupled receptors, and the question of mechanism is thus of considerable interest. We have tested RGS3T in vitro and detected GAP activity toward Gαi and Gαs, but not Gαq. Direct interactions between RGS3T and Gαq have not yet been examined to evaluate the possibility that this RGS protein might act as an antagonist, blocking the binding of Gαq to adenylyl cyclase. The first crystal structure of a Gα protein associated with an effector has now been solved, that of Gαq, with the catalytic domain of adenylyl cyclase.3\(^2\) Superposition of the structure of Gαq-1 associated with RGS4 on that of Gαq associated with adenylyl cyclase suggests that the interaction of an RGS protein with a G protein α subunit would not block binding of a Gα protein to adenylyl cyclase. Although both RGS4 and adenylyl cyclase bind to switch II of Gα, the structures suggest that the two interactions could be accommodated simultaneously. Speculatively, the GAP activity of certain RGS proteins might be manifest only in the presence of ancillary molecules, such as an effector.

Regulation of RGS Proteins

RGS proteins have voracious catalytic appetites. Their overexpression in various cultured cells demonstrates that they are capable barbarians, in general obliterating the activities of pathways in manners predictable from their specificities in vivo as GAPs. For example, RGS4 and GAIP block Gαi-mediated inhibition of adenylyl cyclase (41), whereas RGS3T, RGS4, and to a lesser extent RGS1 and RGS2 attenuate Gαq- or Gαq-regulated activation of MAP kinase (14, 39, 40). Similarly, RGS3, RGS4, and GAIP suppress Gαq-mediated synthesis of inositol trisphosphate (39–42). To date, the unanticipated result from such studies is attenuation of receptor-mediated activation of adenylyl cyclase by RGS3T, discussed above.

The existence of such activities dictates their scrupulous regulation in cells. Although there are hints, we do not yet know how RGS proteins are regulated in vivo or to what purpose. The most obvious paradigm involves feedback desensitization of activated, G protein-regulated pathways. Such desensitization is, of course, well known in these signaling systems, and regulation is exerted at many levels. The first RGS protein to be characterized, Sst2p in S. cerevisiae, fills this role and is itself regulated by control of gene transcription (36, 43). It is likely that this will be at least a part of the RGS protein story in mammalian cells, but broad adoption of this paradigm is premature. There has been only one example of enhanced tran-
Minireview: Mammalian RGS Proteins

Feedback	Inhibition	Crosstalk
R | R | Other Receptors
G | G |
E | RGS

Fig. 3. Possible roles of RGS proteins in cellular signaling. The activities and/or concentrations of RGS proteins are presumably controlled by both G protein-coupled and other regulatory pathways. The arrows drawn from effectors to RGS proteins could represent transcriptional regulation, covalent modification, localization, or other forms of regulation. RGS proteins, acting as GAPs, can then exert negative regulatory influences on G protein-coupled pathways, functioning either as feedback inhibitors or mediators of cross-talk between regulatory pathways.

A mammalian RGS protein gene in response to activation of a G protein-coupled receptor (14), whereas regulation of transcription of other RGS proteins has been noted in response to expression of p53 (44) or polyclonal activation of T cells and B cells (11–13). The apparently broad specificity of the interactions of many RGS proteins with Go proteins also dictates caution in interpretation of the physiological consequences of RGS protein action. Will RGS proteins act predominantly as feedback inhibitors of activated pathways, transducers of cross-talk between signaling systems, or both?

Even less well understood are potential roles of subcellular localization and posttranslational modification in regulation of RGS protein function. There are indications that these will be fruitful areas for experimentation. Many RGS proteins have no obvious motifs to specify localization at sites of action, but some do and there are suggestions of others. Ret-RGS1 contains a hydrophobic domain near the amino terminus suggestive of localization and posttranslational modification in regulation of transducers of cross-talk between signaling systems, or both?

Although the observations mentioned briefly in the previous paragraph are in some ways disjointed and several of them are quite preliminary, we believe they speak to an exciting future for research in this area. Only simplistic models of RGS protein action can be drawn now (Fig. 3), and we believe they will be proven entirely inadequate. The near future will almost certainly yield a great deal of new information about regulation of RGS protein concentration, activity, and localization. The specificities of their interactions with G protein α subunits will be defined, as will interactions between RGS proteins and other cellular constituents. We suspect that the various members of the family will play broad biological roles, not only in feedback regulation of G protein function but also in coordination of the activities of G protein-regulated signaling systems with other related pathways.

REFERENCES
1. Gilman, A. G. (1987) Annu. Rev. Biochem. 56, 615–649
2. Bourne, H. R., Sanders, D. A., and McCormick, F. (1990) Nature 348, 125–132
3. Simon, M. I., Straathof, M. P., and Gautam, N. (1991) Science 252, 802–808
4. Sigler, P. B. A. (1992) Trends Biochem. Sci. 17, 383–387
5. Neer, E. J. (1995) Cell 80, 249–257
6. Berstein, G., Blank, J. L., Jhon, D. Y., Exton, J. H., Rhee, S. G., and Ross, E. M. (1992) Cell 70, 411–418
7. Arshavsky, V. Y., and Bownds, M. D. (1992) Nature 357, 416–417
8. Dohlman, H. G., and Thorner, J. (1997) J. Biol. Chem. 272, 3871–3874
9. Kaele, M. R. and Horvitz, H. H. (1996) Cell 84, 115–125
10. De Vries, L., Moussi, M., Wasmier, A., and Marquardt, M. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 11916–11920
11. Newton, J. S., Deed, R. W., Mitchell, E. L. D., Murphy, J. J., and Norton, J. D. (1995) Biochim. Biophys. Acta 1216, 314–316
12. Hong, J. X., Wilson, G. L., Fox, C. H., and Kehrl, J. H. (1993) J. Immunol. 150, 3895–3904
13. Siderovski, D. P., Haxmer, S. F., and Fordsyke, D. R. (1994) Mol. Cell. Biol. 13, 125–147
14. Druey, K. M., Blumer, K. J., Kang, V. H., and Kehrl, J. H. (1996) Nature 379, 742–746
15. Chen, C. K., Wieland, T., and Simon, M. I. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 12865–12869
16. Chen, C., Zheng, B., Han, J., and Lin, S.-C. (1997) J. Biol. Chem. 272, 6879–6885
17. Faurobert, E., and Hurley, J. B. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 2945–2950
18. Neer, E. J. (1997) Curr. Biol. 7, E31–E33
21. Keelle, M. R. (1997) Curr. Opin. Cell Biol. 9, 143–147
22. Berman, D. M., Wilkie, T. M., and Gilman, A. G. (1996) Cell 86, 445–452
23. Watson, N., Linder, M. E., Druey, K. M., Kehrl, J. H., and Blumer, K. J. (1996) Nature 383, 172–175
24. Hunt, T. W., Fields, T. A., Case, P. J., and Peralta, E. G. (1996) Nature 383, 175–177
25. Ross, E. M. (1995) Recent Prog. Horm. Res. 50, 207–219
26. Berman, D. M., Kozasa, T., and Gilman, A. G. (1996) J. Biol. Chem. 271, 27299–27302
27. Nekrasova, E. R., Berman, D. M., Rustandi, R. F., Hamm, H. E., Gilman, A. G., and Arshavsky, V. Y. (1997) Biochemistry 36, 7638–7643
28. Sug, B. W., Wang, J., and Ross, E. M. (1997) Science 276, 1122–1135
29. Coleman, D. E., Bergvist, A. M., Lee, E., Linder, M. E., Gilman, A. G., and Sprang, S. R. (1994) Science 265, 1405–1412
30. Sondek, J., Lambricht, D. G., Noel, J. P., Hamm, H. E., and Sigler, P. B. (1994) Nature 372, 276–279
31. Natochin, M., Granovsky, A. E., and Artemyev, N. O. (1997) J. Biol. Chem. 272, 1744–1749
32. Wieland, T., Chen, C.-K., and Simon, M. I. (1997) J. Biol. Chem. 272, 8851–8856
33. Wang, J., Tu, Y. P., Woodson, J., Song, X. L., and Ross, E. M. (1997) J. Biol. Chem. 272, 5732–5740
34. Tesmer, J. G., Berman, D. M., Gilman, A. G., and Sprang, S. R. (1997) Cell 89, 251–261
35. Popov, S., Yu, K., Kozasa, T., and Wilkie, T. M. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 7216–7220
36. Dohlman, H. G., Apanius, D., Chen, Y., Song, J. P., and Nusskern, D. R. (1995) Mol. Cell. Biol. 15, 3635–3643
37. Scheiffele, K., Hambidian, M. R., Kabsch, W., Wiesmuller, L., Lautwein, A., Schmitz, F., and Wittinghofer, A. (1997) Science 277, 333–338
38. Hepler, J. R., Berman, D. M., Gilman, A. G., and Kozasa, T. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 428–432
39. Yan, Y., Chi, P. P., and Bourne, H. R. (1997) J. Biol. Chem. 272, 11924–11927
40. Chatterjee, T. K., Eapen, A. K., and Fisher, B. A. (1997) J. Biol. Chem. 272, 15481–15487
41. Huang, C., Hepler, J. R., Gilman, A. G., and Mumby, S. M. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 6159–6163
42. Nelli, J. D., Duck, L. W., Sellers, J. C., Munsogue, L. C., Scheschonka, A., Druey, K. M., and Kehrl, J. H. (1997) Endocrinology 137, 843–846
43. Dietzel, C., and Kurjan, J. (1987) Science 233, 4169–4177
44. Backhinder, L., Velasco-Miguel, S., Chen, Y., Xu, N., Talbott, R., Gelbert, L., Gao, J., Seizinger, B. R., Guskind, J. S., and Kiley, N. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 7686–7872
45. De Vries, L., Elenko, E., Huhler, L., Jones, T. L. Z., and Farquhar, M. G. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 15205–15208

* G. Walz, personal communication.
* R. K. Sunahara and A. G. Gilman, unpublished observations.
* S. Mualem and T. Wilkie, personal communication.