SUPPLEMENTARY MATERIAL

Two new Polyacetylene glycosides from the roots of \textit{Codonopsis tangshen} Oliv.

Jiayou Suna, Lun Wangb, Mingkui Wangb, Zhizhong Wanga,* and Fu Lib,*

Affiliation

a College of Pharmacy, Ningxia Medical University, Yinchuan 750004, P.R.China;

b Key Laboratory of Mountain Ecological Restoration & Bioresource Utilization, Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R.China

Correspondence

Dr. Zhizhong Wang, College of Pharmacy, Ningxia Medical University, Yinchuan 750004, P.R.China,

Email: pxwzz@163.com; Tel: +86-951-6880582

Dr. Fu Li, Key Laboratory of Mountain Ecological Restoration & Bioresource Utilization, Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R.China

Email: andy197971@163.com; Phone: +86-28-82890820

Acknowledgments

This work was financially supported by the Key Research Program of the Chinese Academy of Sciences (Grant No. KSZD-EW-Z-004) and the National Natural Science Foundation of China (NO. 21372213, 21172214).
ABSTRACT

Two new polyacetylene glycosides, tangshenyne A (1) and tangshenyne B (2), along with six known polyacetylenes were isolated from an 85% MeOH extract of the roots of *Codonopsis tangshen* Oliv. The chemical structures of the new compounds were determined on the basis of extensive spectroscopic analyses, including UV, IR, 1D and 2D NMR (1H-1H COSY, HSQC and HMBC) and HR-ESI-MS.

Keywords: *Codonopsis tangshen* Oliv.; polyacetylene glycosides; tangshenyne A; tangshenyne B
Supplemental file (Figure) legend

Figure S1. 1H-NMR spectrum of Compound 1 (400 MHz, CD$_3$OD)
Figure S2. 13C-NMR spectrum of Compound 1 (100 MHz, CD$_3$OD)
Figure S3. 1H-NMR spectrum of Compound 2 (400 MHz, CD$_3$OD)
Figure S4. 13C-NMR spectrum of Compound 2 (100 MHz, CD$_3$OD)
Figure S5. 1H-NMR spectrum of Compound 3 (400 MHz, CD$_3$OD)
Figure S6. 13C-NMR spectrum of Compound 3 (100 MHz, CD$_3$OD)
Figure S7. 1H-NMR spectrum of Compound 4 (400 MHz, CD$_3$OD)
Figure S8. 13C-NMR spectrum of Compound 4 (100 MHz, CD$_3$OD)
Figure S9. 1H-NMR spectrum of Compound 5 (400 MHz, CD$_3$OD)
Figure S10. 13C-NMR spectrum of Compound 5 (100 MHz, CD$_3$OD)
Figure S11. 1H-NMR spectrum of Compound 6 (400 MHz, CD$_3$OD)
Figure S12. 1H-NMR spectrum of Compound 7 (400 MHz, CD$_3$OD)
Figure S13. 13C-NMR spectrum of Compound 7 (100 MHz, CD$_3$OD)
Figure S14. 1H-NMR spectrum of Compound 8 (400 MHz, CD$_3$OD)
Figure S15. 13C-NMR spectrum of Compound 8 (100 MHz, CD$_3$OD)
Figure S16. The HMBC spectrum of Compound 1
Figure S17. The HSQC spectrum of Compound 1
Figure S18. The 1H-1H COSY spectrum of Compound 1
Figure S19. The HRESIMS spectrum of Compound 1
Figure S20. The HMBC spectrum of Compound 2
Figure S21. The HSQC spectrum of Compound 2
Figure S22. The 1H-1H COSY spectrum of Compound 2
Figure S23. The HRESIMS spectrum of Compound 2
Figure S24 Selected HMBC (arrow) and 1H-1H COSY (bold) correlations for compounds 1 and 2
Figure S3.

Figure S4.
Figure S7.

Figure S8.
Figure S9.

Figure S10.
Figure S11.

![Figure S11](image1)

Figure S12.

![Figure S12](image2)
Figure S21.

Figure S22.
Figure S23.

Figure S24.