Surface temperature changes of the crater of Agung Volcano from Landsat-8 TIRS during 2017-2018 eruption

Suwarsono¹,³,*, D Triyono¹, MR Khomarudin³ and Rokhmatuloh²

¹Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia
²Department of Geography, Faculty of Mathematics and Natural Sciences, Universitas Indonesia
³Remote Sensing Application Center – LAPAN, Indonesia

*suwarsono81@ui.ac.id

Abstract. This paper described the application of Landsat-8 TIRS (Thermal Infra Red Sensor) to analyze the surface temperature changes of the crater region of Agung volcano during early of 2013 until late of 2019. Agung volcano is an active stratovolcano located in Bali island. We processed the brightness temperature from channel-10 of Landsat-8 TIRS during early of 2013 – late of 2019 and analyzed the changes. The results of this research showed that the eruptions that occurred during 2017 - 2018 have indicated highly increasing in the surface temperature of the crater region. The surface temperature changes of the crater region, which can be detected from Landsat-8 TIRS data, can be used as a precursor of an eruption.

1. Introduction
Agung Volcano is a composite stratovolcano that is conical in shape with an open crater[1]. The Agung volcano, located in Bali (Figure 1), erupted in late November 2017 after several years of quiescence. Hundreds of flights have been cancelled because of ash pollution, causing a major air traffic disturbance in Indonesia[2]. Previous eruptions in 1808, 1821, 1843 and 1963 showed similar types, including those that were explosive (eruption, by throwing incandescent rocks, lava fragments, pyroclastic rain and ash), and effusive in the form of hot cloud flow, and lava flow[3]. Bali is the most popular tourist destination in Indonesia, especially for foreign tourists. The eruption of Agung Volcano, which is located in the heart of the island of Bali, from the end of 2017 to the middle of early 2018, of course had an impact on the decreasing number of tourists coming, as a direct impact due to the disruption of transportation wheels, especially air transportation to and from I Gusti Airport Ngurah Rai. In addition, increased volcanic activity has caused evacuation of people living in disaster prone areas. Due to the large impact caused by volcanic eruption, disaster mitigation efforts are more oriented to the development of an early warning system for eruption. This study aims to identify the symptoms or precursors of volcanic eruptions using remote sensing image data, using thermal channels. Image data used in this study were a time series of Landsat-8 TIRS, during eruption and inter-eruption periods. Previous studies have shown that thermal image data is very useful for monitoring and mapping related to volcanic eruption disasters, namely by using Landsat data[4][5][6][7][8][9][10], AVHRR [11], MODIS [12][13][14][15], Himawari[2]and also ASTER[16][17]. The advantage of this study compared to previous studies is the use of medium
resolution TIRS data from Landsat-8, the latest generation of Landsat series, over a long period of
time in time series, which covers eruption and inter-eruption periods.

![Figure 1](https://www.google.co.id/maps) ![Figure 1](http://landsat-catalog.lapan.go.id/)

Figure 1. Agung Volcano, the research location (red rectangle), was lied in Bali island (a). The Agung Volcano seen from Landsat-8, 26 August 2017 (b). Map source: https://www.google.co.id/maps. Image source: http://landsat-catalog.lapan.go.id/.

2. Methods

2.1. Data

61 Landsat-8 TIRS imageries, from early of 2013 to late of 2019 were processed to obtain the band 10 brightness temperature (BT10) of the crater region of Agung volcano. Landsat-8 data were collected through the http://landsat-catalog.lapan.go.id/ from the Remote Sensing Technology and Data Center of the Indonesian National Institute of Aeronautics and Space (LAPAN) and from Google Earth Engine through https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_TOA.

2.2. Data Pre-processing

The Landsat-8 TIRS Imageries were transformed to Spectral Radiance Top of Atmosphere (TOA) (Equation 1) and then converted to TOA brightness temperature(Equation 2)[17]. Then, DOS1 (Dark Object Subtraction 1) was implemented[18].

\[L_\lambda = M_\lambda Q_{cal} + A_\lambda \]

\[T = \frac{K_2}{\ln\left(\frac{K_1}{L_\lambda} + 1\right)} \]

where \(L_\lambda \) is TOA spectral radiance (Watts/(m\(^2\)*sr*μm)), \(M_\lambda \) is a Band-specific multiplicative rescaling factor, \(A_\lambda \) is a Band-specific additive rescaling factor, and \(Q_{cal} \) is the Quantized and calibrated standard product pixel values (DN). \(T \) is the at-satellite brightness temperature (K), \(L_\lambda \) is TOA spectral radiance, and \(K_1 \) and \(K_2 \) are Band-specific thermal conversion constants.

2.3. Data Analyzing

Time series and spatial analyzing of brightness temperature data of crater region was conducted to understand the dynamics of volcanic eruption activity. In this study, the basic concept underlying it is that the increasing of temperature on the crater is one of the precursors of volcano eruption[19].
3. Results

3.1. The temporal dynamic of brightness temperature

Figure 2 showed the dynamic of brightness temperature of Agung Volcano’s crater region from early of 2013 until late of 2019. Based on the graph, it can be seen that generally the increase in eruption activity from 2017 - 2018 shows an highly increasing in the brightness temperature value. Also, it can be identified that from early of 2013 until late of 2019, there were at least seven times periods of marked increase in volcanic activity (marked by dotted black rectangles).

Based on these graph can also be known the condition of volcanic activity of Agung volcano based on the brightness temperature values recorded from Landsat-8 TIRS imagery, namely normal active conditions (the temperature region between the green and red dotted lines, with the average on the blue dotted line). The red dotted line is the threshold of the Agung volcano being in an eruption condition.

3.2. The spatial distribution of the brightness temperature

Figure 3 showed the spatial distribution of the brightness temperature around the crater region during eruption and inter-eruption periods. The images showed the spatial distribution of the brightness temperature around the crater region during eruption and inter-eruption periods, in 2017-2018. From the images (10 June 2018 and 28 July 2018), they appear the increasing of brightness temperature of Agung Volcano’s crater region during eruption periods. Also, it can be identified that, the eruption center of Agung volcano is in the crater region.

3.3. The results of observations at the Post of Merapi Volcano Observation, as confirmation of the results of image analysis

Information on the eruption of Agung volcano on 13 June 2018 and 25 July 2018, confirmed the results of the analysis of the images. It was stated that there was an eruption of Agung volcano on 13 June 2018 at 03:05 GMT with the height of the ash column observed ± 2,000 m above the crater (± 5,142 m above sea level). The gray column was observed with a thick intensity leaning towards the
Southwest and West. This eruption was recorded on a seismogram with a maximum amplitude of 25 mm and a duration of ± 2 minutes 12 seconds[20]. Also, there has been an eruption on 24 July 2018 at 16:41 GMT with the height of the ash column observed ± 700 m above the crater (± 3,842 m above sea level). The ash column was observed to be white to gray with thick intensity leaning East and Southeast. This eruption was recorded on a seismogram with a maximum amplitude of 7 mm and a duration of ± 2 minutes 15 seconds[21].

4. Conclusion
Eruption phase shows an increase in brightness temperature, both temporally and spatially. The eruptions that occurred during 2017 - 2018 have indicated highly increasing in the surface temperature of the crater region. The surface temperature changes of the crater region, by which can be detected from time series Landsat-8 TIRS data, can be used as a precursor during an eruption event. More research needs to be done on the use of TIRS Landsat-8 TIRS data to analyze the precursor of other types volcanoes in Indonesia.

![Figure 3. Spatial distribution of the brightness temperature around the crater region (black rectangles) during eruption (e,f) and inter-eruption periods (a, b, c, d).](image)

Figure 3. Spatial distribution of the brightness temperature around the crater region (black rectangles) during eruption (e,f) and inter-eruption periods (a, b, c, d).

Acknowledgments
This research was supported by research project entitled ‘Development of Remote Sensing Satellite Data Fusion Optical, SAR, LiDAR and/or GPS’, funded by the Program of National Innovation System Research Incentive (INSINAS) in 2019, Ministry of Research Technology and the Higher Education Republic of Indonesia. Thank Dr. Indah Prasasti as Leader and Mr. Suhermanto as the Group Leader in this activity. Thank collegas from Faculty of Mathematics and Natural Sciences,
Remote Sensing Application Center of LAPAN, and Remote Sensing Technology and Data Center of LAPAN who have provided suggestions in the discussions. Landsat 8 OLI/TIRS were provided by Remote Sensing Technology and Data Center, LAPAN and from Google Earth Engine.

References

[1] Pratomo I. Klasifikasi gunung api aktif Indonesia, studi kasus dari beberapa letusan gunung api dalam sejarah. Indones J Geosci 2006;1:209–27. https://doi.org/10.17014/ijog.vol1no4.20065.

[2] Marchese F, Falconieri A, Pergola N, Tramutoli V. Monitoring the Agung (Indonesia) ash plume of November 2017 by means of infrared Himawari 8 data. Remote Sens 2018;10. https://doi.org/10.3390/rs10060919.

[3] Kusumadinata K. Data dasar gunungapi Indonesia = Catalogue of references on Indonesian volcanoes with eruptions in historical time. Departemen Pertambangan dan Energi, Direktorat Jenderal Pertambangan Umum, Direktorat Vulkanologi; 1979.

[4] Harris AJL, Flynn LP, Kesztvely L, Mouginis-Mark PJ, Rowland SK, Resing JA. Calculation of lava effusion rates from Landsat TM data. Bull Volcanol 1998;60:52–71. https://doi.org/10.1007/s004450050216.

[5] Eskandari A, De Rosa R, Amini S. Remote sensing of Damavand volcano (Iran) using Landsat imagery: Implications for the volcano dynamics. J Volcanol Geotherm Res 2015;306:41–57. https://doi.org/10.1016/j.jvolgeores.2015.10.001.

[6] González C, Inostroza M, Aguilar F, González R, Viramonte J, Menzies A. Heat and mass flux measurements using Landsat images from the 2000-2004 period, Lascar volcano, northern Chile. J Volcanol Geotherm Res 2015;301:277–92. https://doi.org/10.1016/j.jvolgeores.2015.05.009.

[7] Urai M. Heat discharge estimation using satellite remote sensing data on the Iwodake volcano in Satsuma-Iwojima, Japan. Earth, Planets Sp 2002;54:211–6. https://doi.org/10.1186/BF03353020.

[8] Mia MB, Fujimitsu Y, Nishijima J. Thermal activity monitoring of an active volcano using Landsat 8/OLI-TIRS sensor images: a case study at the Aso Volcanic area in Southwest Japan. Geosci 2017;7. https://doi.org/10.3390/geosciences7040118.

[9] Blackett M. Early analysis of landsat-8 thermal infrared sensor imagery of volcanic activity. Remote Sens 2014;6:2282–95. https://doi.org/10.3390/rs6032282.

[10] Suwarsono, Hidayat, Suprapto T, Prasasti I, Parwati, Khomarudin MR. Detecting the brightness temperature from landsat-8 thermal infra red scanner preceding the Rinjani Strombolian eruption 2015. AIP Conf Proc 2017;1857. https://doi.org/10.1063/1.4987094.

[11] Harris AJL, Blake S, Rothery DA, Stevens NF. A chronology of the 1991 to 1993 Mount Etna eruption using Advanced Very High Resolution Radiometer data: Implications for real-time thermal volcano monitoring. J Geophys Res Solid Earth 1997;102:7985–8003. https://doi.org/10.1029/96jb03388.

[12] Wright R, Flynn L, Garbeil H, Harris A, Pilger E. Automated volcanic eruption detection using MODIS. Remote Sens Environ 2002;82:135–55. https://doi.org/10.1016/S0034-4257(02)00030-5.

[13] Murphy SW, Wright R, Oppenheimer C, Filho CRS. MODIS and ASTER synergy for characterizing thermal volcanic activity. Remote Sens Environ 2013;131:195–205. https://doi.org/10.1016/j.rse.2012.12.005.

[14] Wright R, Flynn LP, Garbeil H, Harris AJL, Pilger E. MODVOLC: Near-real-time thermal monitoring of global volcanism. J Volcanol Geotherm Res 2004;135:29–49. https://doi.org/10.1016/j.jvolgeores.2003.12.008.

[15] Suwarsono, Hidayat, Suprapto T, Yulianto F, Sari NM. Deteksi gejala erupsi strombolian Gunungapi Raung Jawa Timur menggunakan Normalized Thermal Index dari data MODIS (Detecting the precursor of Raung Volcano strombolian eruption using Normalized Thermal Index from MODIS). Penginderaan Jauh Dan Pengolah Data Citra Digit 2015;12:133–45.
[16] Wright R, Rothery DA, Blake S, Harris AJL, Pieri DC. Simulating the response of the EOS Terra ASTER sensor to high-temperature volcanic targets. Geophys Res Lett 1999;26:1773–6. https://doi.org/10.1029/1999GL900360.

[17] Zanter. K. Landsat 8 (L8) Data Users Handbook Version 1.0. vol. 1. Sioux Falls, South Dakota: United States Geological Survey; 2015.

[18] Pat S. Chavez J. Image-Based Atmospheric Corrections - Revisited and Improved. Photogramm Eng Remote Sens 1996;62:1025–36.

[19] Marshak S. Essentials of Geology. Fourth Edi. W. W. Norton & Company, Inc. 500 Fifth Avenue, New York; 2013.

[20] PVMBG. Informasi Erupsi G. Agung n.d. www.vsi.esdm.go.id/index.php/gunungapi/aktivitas-gunungapi/2622-informasi-erupsi-g-agung (accessed September 14, 2019).

[21] PVMBG. Informasi Erupsi G. Agung n.d. www.vsi.esdm.go.id/index.php/gunungapi/aktivitas-gunungapi/2338-informasi-erupsi-g-agung (accessed September 14, 2019).