Altered $[^{99m}\text{Tc}]\text{Tc-MDP}$ biodistribution from neutron activation sourced ^{99}Mo

Sandor Demeter1,2 · Roman Szweda2,3 · Judy Patterson2 · Marine Grigoryan3

Received: 28 December 2017 / Published online: 29 March 2018 © The Author(s) 2018

Abstract
Given potential worldwide shortages of fission sourced $^{99}\text{Mo}/^{99m}\text{Tc}$ medical isotopes there is increasing interest in alternate production strategies. A neutron activated ^{99}Mo source was utilized in a single center phase III open label study comparing ^{99m}Tc, as $[^{99m}\text{Tc}]\text{Tc-MDP}$, obtained from solvent generator separation of neutron activation produced ^{99}Mo, versus nuclear reactor produced ^{99}Mo (e.g., fission sourced) in oncology patients for which an $[^{99m}\text{Tc}]\text{Tc-MDP}$ bone scan would normally have been indicated. Despite the investigational $[^{99m}\text{Tc}]\text{Tc-MDP}$ passing all standard, and above standard of care, quality assurance tests, which would normally be sufficient to allow human administration, there was altered biodistribution which could lead to erroneous clinical interpretation. The cause of the altered biodistribution remains unknown and requires further research.

Keywords Biodistribution · Radiopharmaceutical · Quality control · Neutron activation · ^{99}Mo · Pertechnetate

Introduction
The majority of diagnostic nuclear medicine studies utilize ^{99m}Tc as the base medical isotope. Until very recently over 70% of the world’s supply of ^{99m}Tc’s parent isotope, ^{99}Mo, was produced as a fission product in two high enriched uranium (HEU) reactors, i.e., the National Research Universal (NRU) reactor at Chalk River, Canada and the high flux reactor (HFL) in the Netherlands [1, 2].

Three major factors have catalyzed a search for alternate sources of $^{99}\text{Mo}/^{99m}\text{Tc}$.

First, both the NRU and HFL reactors are over five decades old and both are nearing, and some would say beyond, their life expectancy. Second, in 2009/10 the world experienced a critical shortage of $^{99}\text{Mo}/^{99m}\text{Tc}$ due to an unplanned shut down of the NRU reactor at the same time as planned maintenance down time of the HFL. This was a wake up call to the world that the existing global production chain could not tolerate such perturbations in supply. Finally, and primarily for nuclear security reasons, the US Department of Energy’s National Nuclear Security Administration has mandated a transition from HEU to low enriched uranium (LEU) $^{99}\text{Mo}/^{99m}\text{Tc}$ production [1–7].

Alternate $^{99}\text{Mo}/^{99m}\text{Tc}$ sources include: low enriched uranium fission products, neutron activation (i.e., $^{98}\text{Mo}(n,\gamma)^{99}\text{Mo}$), linear accelerator (e.g., $^{100}\text{Mo}(\gamma, n)^{99}\text{Mo}$) and cyclotron (e.g., $^{100}\text{Mo}(p, 2n)^{99m}\text{Tc}$) [8–10].

Research was conducted by the prairie isotope production enterprise (PIPE), in Winnipeg, Manitoba, Canada demonstrating proof of principle that neutron activated or LINAC produced ^{99}Mo could be utilized to extract $[^{99m}\text{Tc}]\text{NaTcO}_4$ via liquid–liquid methyl ethyl ketone (MEK) extraction [11]. PIPE then conducted further research to demonstrate commercial viability relative to producing sufficient $^{99}\text{Mo}/^{99m}\text{Tc}$ to meet clinical demands. This later research was to dovetail with a clinical trial.

This paper focuses on the early unexpected results of the clinical trial.
Experimental

Radiochemistry

Procedures for the production of 99Mo by nuclear reactor-irradiation at the Missouri University research reactor (MURR, Columbia, MO) and $[^{99m}\text{Tc}]\text{NaTcO}_4$ solvent extraction have been previously described [12, 13].

Quality control

The emphasis in this section will focus on the products used in the human clinical trial. For a detailed analysis of 99Mo and ^{99m}Tc quality assurance between MURR and commercial generator sources readers are referred to the article by Grigoryan et al. [11].

Methods

QC of $[^{99m}\text{Tc}]\text{NaTcO}_4$ (Pert) eluate for the preparation of $[^{99m}\text{Tc}]\text{Tc-MDP}$

The $[^{99m}\text{Tc}]\text{NaTcO}_4$ (Pert) eluate was analyzed against United States Pharmacopeia (USP) and additional specifications [14].

Radiolabeling of MDP

$[^{99m}\text{Tc}]\text{Tc-MDP}$ was prepared from commercial MDP kits [Edmonton Radiopharmaceutical (15)] by adding 3–12 GBq of freshly eluted Pert to the kit vial. MDP kits were radiolabeled following package insert instruction, and QC performed after reconstitution. A total of 21 $[^{99m}\text{Tc}]\text{Tc-MDP}$ samples were prepared from 6 different batches of neutron activation sourced sodium molybdate and analyzed for animal (mouse) biodistribution. Four separate batches of radiolabeled MDP were used for the human clinical study.

Radiochemical purity of labeled radiopharmaceutical was evaluated using instant thin layer chromatography (iTLC) strips from BIODEX Medical System Inc. (models 150-001 and 1500-005) with Acetone and distilled water as mobile phases. The pH of the tagged radiopharmaceutical was determined using the pH indicator test paper 4.0–7.0 (Merk) and validated with pH meter (Orion, Thermo Scientific).

Sterility

BacT/ALERT® Microbial Detection System and culture bottles (BIOMEREUX INC.) were used in qualitative procedures for enhanced recovery and detection of aerobic and facultative microorganisms (bacteria and fungi) in the fresh eluent and $[^{99m}\text{Tc}]\text{Tc-MDP}$.

Pyrogen content

Bacterial endotoxins were quantified by chromogenic methods using point-of-use test system Endosafe®-PTS (Charles River Laboratory). Samples were diluted 50 times.

Biodistribution study

$[^{99m}\text{Tc}]\text{Tc-MDP}$ was administered intravenously (70–100 MBq in 0.2 mL) in CD1 mice ($n = 24$). The animals were sacrificed at 10 min, and 2 h post injection and organ tissues were removed, washed and weighted. Radioactivity was determined in a gamma counter (HIDEX AMG Automatic Gamma Counter. The results were expressed as a percent of administered dose/organ.

Results

QC of neutron activation sourced $[^{99m}\text{Tc}]\text{NaTcO}_4$ eluate (MURR Pert) for the preparation of $[^{99m}\text{Tc}]\text{Tc-MDP}$

Overall 100 extractions of MURR sourced $[^{99m}\text{Tc}]\text{NaTcO}_4$ (Pert) from 15 batches of sodium molybdate were analyzed.

Results for MURR sourced Pert used for the preparation of MDP samples utilized in clinical trials are summarized in Table 1.

Radio-iTLC results were above the passing 90% limit, with the majority being well above 95%. Aside from two extractions which had pH values above passing specifications (Pert from these extractions were not used in the clinical trial), all others were within the USP range of 4.5–7.5. A trend of decreasing pH with subsequent extractions was observed and the same trend was observed in pertechnetate obtained from the commercial Ultra-Technikov™ V4 generator (Mallinckrodt Pharmaceuticals). All MURR sourced Pert used for the clinical trial passed all quality assurance tests.

99Mo breakthrough results for the MURR Pert were all within the passing specification of < 0.15 kBq 99Mo/MBq. Moly breakthrough was typically higher, but always within specification, for the first extraction of the generator and then decreases through subsequent extractions.

Germanium spectra of the pertechnetate obtained from commercial generator, Fig. 1a and MURR Pert, Fig. 1b, and show no significant observable differences. Both show
main peak at 140 keV and summation peak of 280 keV, which corresponds to ^{99m}Tc, with no other significant peaks (both samples immediately after extraction, i.e. 0 h).

All extractions of pertechnetate passed sterility and pyrogenicity tests.

Radiolabeling of MDP

A total of 21 preparations of MDP using MURR Pert were made which include the 4 radiolabeled products used in the clinical trial (Table 2).

Passing specification for $[^{99m}\text{Tc}][\text{Tc}]-\text{MDP}$ radio-iTLC is $\geq 90\%$. The majority of the acetone and water radio-iTLC results were $> 95\%$ and were similar to results for radiolabeled MDP when pertechnetate from a commercial generator was used. All radiolabeled MDPs had the pH values within the passing specifications of 6–6.5.

Sterility and pyrogenicity

Each extraction of MURR Pert passed tests for sterility and pyrogenicity and all radiolabeled MDPs passed sterility tests.

Animal biodistribution study

$[^{99m}\text{Tc}][\text{Tc}]-\text{MDP}$ at (standard dose of 70–100 MBq) was administered by intravenous tail injection into 24 CD1 mice. Institutional ethical approval1 was obtained for the animal study.

Animals were sacrificed at 10 min, 2, and 4 h post injection and dissected to measure the percent of total activity in each organ using a HIDEX Gamma counter. There were four mice ($n = 4$) done at each time point for both MURR $[^{99m}\text{Tc}][\text{Tc}]-\text{MDP}$ and for commercial $[^{99m}\text{Tc}][\text{Tc}]-\text{MDP}$ as illustrated in Fig. 2a, b and c.

Biodistribution of the MDP is very similar between the two sets of radiopharmaceuticals (MURR and commercial or HSC). Both show a gradual uptake of MDP into the GI tract as time progresses; however with a relative trend of increasing large bowel uptake of MDP for the MURR MDP injected mice.

A two tail Students t test for independence was used to compare organ/tissue uptake at 10 min and 2 and 4 h after tail vein injection. Significant differences, at the $p \leq 0.05$ level, were generally scattered and inconsistent. Results are presented in Fig. 3.

The MURR MDP had significantly decreased femur uptake at 10 min and 2 h but not at 4 h. MURR MDP had significantly increased spine uptake at 2 h but not at the other time points. Relative to the human imaging findings it is notable that the MURR product had significantly increased relative activity in the large intestine at both 2 and 4 h.

Clinical trial

The trial was a prospective single center phase III open label study comparing ^{99m}Tc, as ^{99m}Tc Methylene Diphosphonate ($[^{99m}\text{Tc}][\text{Tc}]-\text{MDP}$), obtained from solvent generator separation of neutron activation produced ^{99}Mo, versus nuclear reactor produced ^{99}Mo (e.g., fission sourced) in oncology patients for which an $[^{99m}\text{Tc}][\text{Tc}]-\text{MDP}$ bone scan would normally have been indicated. The study participants acted as their own controls (i.e., standard of care bone scan first followed by MURR $[^{99m}\text{Tc}][\text{Tc}]-\text{MDP}$ in same patient 3–28 days later). The clinical study was approved by Health Canada and the institutional Research Ethics Board and is listed as “terminated” in https://

1 The University of Winnipeg Animal Care Committee protocol#: AE04358 Institution Approval: 17 February 2015.

Table 1 QC results for MURR $[^{99m}\text{Tc}][\text{NaTcO}_4]$ (Pert) used in radiolabeling of MDP for clinical trial ($n = 4$ study participants)

Tests	Results	Specifications
Lot numbera	M13-16-004	M13-16-007
Radiochemical purity		
Radio-iTLC	99.55%	99.5%
Moly breakthrough	0.00	0.00
Chemical purity		
Aluminum test	Pass	Pass
Iodoform	Pass	Pass
Sterility	Pass	Pass
Pyrogenicity	Pass	Pass
pH	6.34	5.39

aPers used for radiolabeling MDP for patients
clinicaltrials.gov/ under the trial registration number NCT03002454.

Inclusion criteria

1. Male or female patient oncology out-patients in which a standard of care \[^{99m}Tc\]Tc-MDP bone scan has been already been obtained.
2. If female of child-bearing potential is outside of the window of 10 days since the last menstrual period, a negative serum or urine pregnancy test is required.
3. Age greater than or equal to 18 years.
4. Able and willing to follow instructions and comply with the protocol.
5. Deemed competent to provide written informed consent prior to participation in this study.

Exclusion criteria

1. Nursing or pregnant females.
2. Age less than 18 years.
3. No written consent provided.
4. Interval since a prior bone scan less than 3 days or greater than 3 weeks.
5. Identified interval event which could influence/change bone scan uptake (e.g., skeletal trauma, orthopedic surgery, bone infection, or interval therapy (i.e., radiation therapy, non-maintenance chemotherapy).
6. Initial bone scan of suboptimal diagnostic quality relative to non-radiopharmaceutical factors such as, partially interstitial injection or alternated image acquisition parameters (e.g., off peak acquisition).
7. Patients who exceed the safe weight limit of the scanner bed.
8. Patients who have experienced an adverse reaction to fission sourced \[^{99m}Tc\]Tc-MDP.
9. Patients who are deemed not able to tolerate the imaging procedure (e.g., cannot lie still for the duration of image acquisition).

Up to 50 patients were to be enrolled. (Sample size parameters included: anticipated lesion prevalence – 30%, \[^{99m}Tc\]Tc-MDP sensitivity 90%, powered to detect a Kappa of 0.7 for visual equivalence between the set of images [15, 16]).

A set of experienced Canadian Royal College of Physicians and Surgeons certified Nuclear Medicine physicians were to be presented with paired anterior and posterior whole body planar images labeled “A” and “B” representing the neutron activated and commercial generator sourced \(^{99m}Mo/^{99m}Tc\) (randomly assigned to “A” or “B”). The readers were to be presented only with the image data sets and were to be blinded as to the order of the paired images.

Imaging protocol

Administered \(^{99m}Tc\) Methylene Diphosphonate (\[^{99m}Tc\]Tc-MDP) doses were 750 MBq (± 10%). Imaging parameters were the site’s standard dual head whole body bone scan settings which were aligned between the standard of care and the investigational agent bone scans (e.g., specific gamma camera, time between injection and imaging acquisition settings). Two patients were imaged on a Siemens Symbia T6 and two on a GE Hawkeye Infinia systems.

Results

The trial was terminated after the first 4 patients were enrolled due to gross altered biodistribution between the two sets of images. This was noted by the study principal investigator when the image data sets were being prepared for the expert readers. These patients were recruited in a 2 week period and included the investigational agent from two separate neutron activated \(^{99m}Mo\) shipments. There were two females and two males recruited with an average

Lot#	pH (spec. 6.0–6.5)	Radio-iTLC (spec. > 90%)	Sterility	
	(Acetone) %	(Water) %		
MURR13-MDP1	6.29	98.49	99.17	Pass
MURR13-MDP2	6.16	99.55	98.90	Pass
MURR13-MDP3	6.19	99.27	98.32	Pass
MURR14-MDP1	6.30	95.60	98.60	Pass
Fig. 2 Biodistribution (%ID/g) of MURR \([^{99m}\text{Tc}]\text{Tc-MDP}\) and commercial \([^{99m}\text{Tc}]\text{Tc-MDP}\) at various time points: a 10 min; b 2 h; c 4 h. Sample size for each timpoint were \(n = 4\) for injection. The timepoints shown represent the time after administration of the dose.
age of 60.5 and pathologies included: prostate cancer \((n = 2)\), breast cancer \((n = 1)\) and uterine cancer \((n = 1)\).

Figure 4a–d, illustrates consistent altered biodistribution of “bowel like” uptake (arrow) in the right lower quadrant for the four participants (standard of care bone scan on the left and investigational agent on the right).

After a chart review there were no protocol breaches for these participants, no significant interval interventions, no acute symptomatic episodes, and no known interfering medications to account for the findings.

To reiterate, and add to, the previous section, the MURR \([^{99m}\text{Tc}]\text{Tc-MDP}\) passed all quality control parameters including some beyond standard of care testing (e.g., radiotLC (Pert and MDP), pH (Pert and MDP), Germanium spectroscopy (Pert), \(^{99}\text{Mo}\) breakthrough, and mass spectroscopy (Pert)).

Discussion

Elution of generator and radiolabeling of commercial MDP was performed by experienced technologists according to existing SOP’s. Proper handling procedures were proven many times during regular Radiopharmacy production. Intervals between Pert elution were less than 24 h to minimize formation of \(^{99}\text{Tc}\) (i.e., cold pert) that can compete with \(^{99m}\text{Tc}\) for stannous reduction and chelation reactions. All product used in the clinical trial were prepared as specified in the commercial MDP kit monograph.

Radiation can interact with water molecules forming ions, free radicals and peroxides particularly at higher activities and is well described [17–19]. Peroxides and hydroxyl free radicals are capable of oxidizing stannous ion and interact with technetium complexes to cause decomposition and oxidation of reduced technetium resulting in production of free Pert, noting that there was no evidence of free Pert on the study participants images. Peroxides tend to build up over time and may be present in the eluate from a generator with prolonged in-growth time, or Pert aged for several hours since elution. However, ascorbic acid that is present in the MDP kit should substantially reduce radiolytic decomposition.

Galea et al. [20] published on animal \([^{99m}\text{Tc}]\text{Tc-MDP}\) and Tetrofosmin imaging using \(^{99m}\text{Tc}\) derived from either a commercial \(^{99}\text{Mo}\) generator or a linear accelerator (LINAC) source (i.e., \(^{100}\text{Mo}\) (\(\gamma, n\) \(^{99}\text{Mo}\)). No abnormal bowel uptake was noted for the LINAC sourced \([^{99m}\text{Tc}]\text{Tc-MDP}\) although there was altered renal uptake in the non-buffered versus the buffered versions thought to be related to gluconate impurities.

This the first known publication demonstrating altered biodistribution from neutron activated sourced \([^{99m}\text{Tc}]\text{Tc-MDP}\) in humans.

Conclusion

This study illustrates the importance of being vigilant and managing unexpected findings when conducting a clinical trial. Despite the investigational agent passing all standard, and above standard of care, quality assurance tests, which would normally be sufficient to allow human administration, there was altered biodistribution which could lead to erroneous clinical interpretation. The cause of the altered biodistribution remains unknown and requires further research.
Acknowledgements This research was partly supported by funding from Natural Resources Canada under the Non-Reactor Isotope Supply Program and the Isotope Technology Acceleration Program as well as by the Canadian Institute of Health Research (CIHR) Medical Imaging Trial Network of Canada. The Winnipeg HSC Radiopharmaceuticals Research Group is acknowledged for their contributions to this research.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Van Noorden R (2013) The medical testing crisis. 503: 202–204 http://www.nature.com/news/radioisotopes-the-medical-testing-crisis-1.14325
2. Ruth TJ (2014) The medical isotope crisis: how we got here and where we are going. J Nucl Med Technol 42(4):245–248. https://doi.org/10.2967/jnmt.144642

3. Pillai MRA, Dash A, Knapp FF Jr (2013) Sustained availability of 99mTc: possible paths forward. J Nucl Med 54:313–323. https://doi.org/10.2967/jnumed.112.110338
4. Pillai MRA, Dash A, Knapp FF Jr (2015) Diversification of 99Mo/99mTc separation: non-fission reactor production of 99Mo as a strategy for enhancing 99mTc availability. J Nucl Med 56:159–161. https://doi.org/10.2967/jnumed.114.149609
5. Government of Canada. Library of the Parliament. Parliamentary Information and Research Service. The medical isotope shortage: cause, effects and options. In: Zakzouk M (ed) The medical isotope shortage: cause, effects and options. Industry, Infrastructure and Resources Division, Revised 1 September 2009. PRB 09-04E
6. Cutler CS, Schwarz SW (2014) Diversification in the supply chain of 99Mo Ensures a Future for 99mTc. J Nucl Med 55:1–6. https://doi.org/10.2967/jnumed.113.131953
7. GTRI: reducing nuclear threats—fact sheet (April 12, 2013). http://nnsa.energy.gov/mediaroom/factsheets/reducingthreats
8. Khandaker MU, Uddin MS, Kim KS, Lee YS, Kim GN (2007) Measurement of cross-sections for the (p,xn) re-actions in natural molybdenum. Nucl Instrum Methods Phy Res B 262(2):171–181. https://doi.org/10.1016/j.nimb.2007.05.028
9. Uddin MS, Hagiwara M, Tarkanyi F, Ditroiland F, Baba M (2004) Investigation of the proton-induced activation reactions on natural molybdenum. IAERI-Conf. http://www.iaea.org/imis/collection/NCLCollectionStore/_Public/36/116/36116681.pdf

Fig. 4 a–d Whole body bone scans of patients enrolled in the study. The left panel for each patient utilized commercial 99mTc-MDP and the right panel utilized MURR 99mTc-MDP. An enlarged image of the pelvis from the right panel better illustrating the altered biodistribution is provided on the right of each image set.
10. Pillai MRA, Dash A, Knapp FF Jr (2013) Sustained availability of 99mTc: possible paths forward. J Nucl Med 54(2):313–323. https://doi.org/10.2967/jnumed.112.110338 Epub 2012 Dec 19

11. Grigoryan M, Fitzpatrick J, Mangera K (2016) Evaluation of the radionuclidic product profiles of natural molybdenum irradiated using linear accelerator and nuclear reactor technology. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-016-4901-7

12. Zriba R, Mangera K, Fitzpatrick J, Brown JJ, Pellerin E, Barnard J, Saunders C (2014) Solvent extraction of 99mTc from 99Mo(n, γ)99Mo 99Mo, and its evaluation for labeling of radiopharmaceutical kits. J Nucl Med 55(supplement 1):1145

13. Billinghurst MW, Abrams DN, Dupont J (1992) A comparison of radiopharmaceutical labelling efficiency of chromatographic generator versus MEK extraction 99mTc pertechnetate. Int J Radiat Appl Instrum 43(8):1045–1049

14. Jun BJ, Tanimoto M, Kimura A, Hori N, Izumo H, Tsuchiya K (2010) Table 2. Neutron irradiation and testing reactor center, Oarai research and development center. Feasibility study on mass production of (n,γ)99Mo. JAEA-Research 2010-046 http://jolissrch-inter.tokai-sc.jaea.go.jp/pdfdata/JAEA-Research-2010-046.pdf. Accessed 28 Apr 2017

15. MDP-10, KIT for the Preparation of 99mTc Medronate, Edmonton Radiopharmaceutical Centre (2006)

16. Sim J, Wright CC (2005) The Kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys Ther 85:257–268

17. Billinghurst MW, Remple S, Westendorf BA (1979) Radiation decomposition of 99mTc radiopharmaceuticals. J Nucl Med 20:138–143

18. Molinski VJ (1982) A review of 99mTc generator technology. Int J Appl Radiat Isot 33:811–819

19. Kishore R (1979) Radiation decomposition of 99mTc radiopharmaceuticals. J Nucl Med 20:999–1000

20. Galea R, Wells RG, Ross CK, Lockwood J, Moore K et al (2013) A comparison of rat SPECT images obtained using 99mTc derived from 99Mo produced by an electron accelerator with that from a reactor. Phys Med Biol 58:2737–2750