SLOW CONVERGENCE IN BOOTSTRAP PERCOLATION

BY JANKO GRAVNER\(^1\) AND ALEXANDER E. HOLROYD\(^2\)

University of California, Davis and University of British Columbia

In the bootstrap percolation model, sites in an \(L \times L\) square are initially infected independently with probability \(p\). At subsequent steps, a healthy site becomes infected if it has at least two infected neighbors. As \((L, p) \to (\infty, 0)\), the probability that the entire square is eventually infected is known to undergo a phase transition in the parameter \(p \log L\), occurring asymptotically at \(\lambda = \pi^2/18\) [Probab. Theory Related Fields 125 (2003) 195–224]. We prove that the discrepancy between the critical parameter and its limit \(\lambda\) is at least \(\Omega((\log L)^{-1/2})\). In contrast, the critical window has width only \(\Theta((\log L)^{-1})\). For the so-called modified model, we prove rigorous explicit bounds which imply, for example, that the relative discrepancy is at least 1\% even when \(L = 10^{3000}\). Our results shed some light on the observed differences between simulations and rigorous asymptotics.

1. Introduction. The standard bootstrap percolation model on the square lattice \(\mathbb{Z}^2\) is defined as follows. For any set \(K \subseteq \mathbb{Z}^2\), we define

\[
\mathcal{B}(K) := K \cup \{x \in \mathbb{Z}^2 : \#\{y \in K : \|x - y\|_1 = 1\} \geq 2\}
\]

and

\[
\langle K \rangle := \lim_{t \to \infty} \mathcal{B}^t(K),
\]

where \(\mathcal{B}^t\) denotes the \(t\)th iterate of the function \(\mathcal{B}\). The set \(\langle K \rangle\) is the final set of infected sites if we start with \(K\) infected.

Now, fix \(p \in (0, 1)\) and let \(W\) be a random subset of \(\mathbb{Z}^2\) in which each site is included independently with probability \(p\); more formally, let \(P = P_p\) be the product measure with parameter \(p\) on \(\Omega = \{0, 1\}^{\mathbb{Z}^2}\) and define the random variable \(W = W(\omega) := \{x \in \mathbb{Z}^2 : \omega(x) = 1\}\) for \(\omega \in \Omega\). We say that a set \(K \subseteq \mathbb{Z}^2\) is internally spanned if \(\langle K \cap W \rangle \supseteq K\). For \(L \geq 1\), we define the square \(R(L) := \{1, \ldots, L\}^2 \subseteq \mathbb{Z}^2\). The main object of interest is the function

\[
I(L) = I(L, p) := P_p(R(L) \text{ is internally spanned}).
\]
A central result is the following, from [15], which refines earlier results in [3, 20].

Theorem (Phase transition, [15]). Consider the standard bootstrap percolation model. As $L \to \infty$ and $p \to 0$ simultaneously, we have

\[\begin{align*}
& \text{if } \liminf p \log L > \lambda \quad \text{then } I(L, p) \to 1; \\
& \text{if } \limsup p \log L < \lambda \quad \text{then } I(L, p) \to 0,
\end{align*} \]

where $\lambda := \frac{\pi^2}{18}$.

Surprisingly, predictions for the asymptotic threshold λ based on simulation differ greatly from the rigorous result. For example, in [2], the estimate $\lambda = 0.245 \pm 0.015$ is reported (based on simulation of squares up to size $L = 28800$), whereas, in fact, $\lambda = \frac{\pi^2}{18} = 0.548311 \ldots$. This apparent discrepancy between theory and experiment has been investigated using partly nonrigorous methods in [9, 10, 19]. Our aim is to provide some rigorous understanding of the phenomenon. Our main result is the following strengthening of the first assertion in (1).

Theorem 1 (Slow convergence). Consider the standard bootstrap percolation model. There exists $c > 0$ such that, if $L \to \infty$ and $p \to 0$ simultaneously in such a way that

\[p \log L > \lambda - \frac{c}{\sqrt{\log L}}, \]

where $\lambda = \frac{\pi^2}{18}$, then

\[I(L, p) \to 1. \]

(The condition in Theorem 1 may be equivalently expressed as $p \log L > \lambda - c' \sqrt{p}$, for a different constant c'.) Thus, the convergence of the critical value of the parameter $p \log L$ to its limit λ is very slow, with an asymptotic discrepancy of at least $c/\sqrt{\log L}$. (In order to halve the latter quantity, L must be raised to the 4th power.)

On the other hand, the window over which I changes from near 0 to near 1 is much smaller—roughly constant/$\log L$. The precise statement depends on whether we vary p or L, as follows.

For fixed L, and $\alpha \in (0, 1)$, define $p_\alpha = p_\alpha(L) := \sup\{p : I(L, p) \leq \alpha\}$. Since $I(L, p)$ is continuous and strictly increasing in p, we have that p_α is the unique value such that $I(L, p_\alpha) = \alpha$. The following was proven in [6], using a general result from [12].
THEOREM (p-window, [6]). Consider the standard bootstrap percolation model. For any fixed $\epsilon \in (0, 1/2)$, we have
\[
P_{1-\epsilon} \log L - p_{\epsilon} \log L = O\left(\frac{\log \log L}{\log L}\right)
\]
\[
= O(p_{1/2} \log p_{1/2}^{-1}) \quad \text{as } L \to \infty.
\]

More precise estimates on the size of the window are available if we instead vary L. An upper bound was proven in [3]. Here, we use similar methods to obtain matching upper and lower bounds. Since $I(L, p)$ is not necessarily monotone in L, we define, for fixed p and $\alpha \in (0, 1)$,
\[
L_\alpha(p) := \min\{L : I(L, p) \geq \alpha\}
\]
and
\[
L_\alpha := \max\{L : I(L, p) \leq \alpha\}.
\]
Thus, the interval $[L_\epsilon, L_{1-\epsilon}]$ contains all of those L for which $I(L, p) \in [\epsilon, 1 - \epsilon]$.

THEOREM 2 (L-window). Consider the standard bootstrap percolation model. For any fixed $\epsilon \in (0, 1/5)$, we have
\[
p \log L_{1-\epsilon} - p \log L_\epsilon = \Theta(p) = \Theta(1/\log L_{1/2}) \quad \text{as } p \to 0.
\]
Indeed, for p sufficiently small (depending on ϵ), we have
\[
p \log L_{1-\epsilon} - p \log L_\epsilon \in [C_- p, C_+ p],
\]
where $C_\pm = C_\pm(\epsilon) = (1/2 \pm o(1)) \log \epsilon^{-1}$ as $\epsilon \to 0$.

The modified bootstrap percolation model is a variant of the standard model in which we replace the update rule \mathcal{B} with
\[
\mathcal{B}_M(K) := K \cup \{x \in \mathbb{Z}^2 : \{x + e_i, x - e_i\} \cap K \neq \emptyset \text{ for each } i = 1, 2\}
\]
[here, $e_1 := (1, 0)$ and $e_2 := (0, 1)$ are the standard basis vectors] and define $(\cdot)_M$, internally spanned, and $I_M(L, p)$ accordingly. We sometimes omit the subscript M when it is clear that we are referring to the modified model.

THEOREM (Phase transition, modified model, [15]). For the modified bootstrap percolation model, (1) holds with threshold $\lambda_M := \pi^2/6$.

THEOREM 3 (Modified model). Theorem 2 and (2) also hold for the modified model.

In place of Theorem 1, we establish the following stronger version with an explicit error bound.

THEOREM 4 (Explicit bound). For the modified model, if $p \leq 1/10$ and
\[
p \log L \geq \lambda_M - \sqrt{2p + \eta(p)} \quad \text{then } I_M(L, p) \geq 1/2,
\]
where $\lambda_M = \pi^2/6$ and $\eta(p) := 1.8 p \log p^{-1} + 2p$.
One may deduce rigorous numerical bounds such as the following.

Corollary 5. Consider the modified model. We have $p_{1/2} \log L < 0.98 \lambda_M$ when $L = 10^{500}$, and $p_{1/2} \log L < 0.99 \lambda_M$ when $L = 10^{5000}$.

Proof. Take, respectively, $p = 0.0014$ and $p = 0.0002356$ in Theorem 4.

Remarks. Aside from their mathematical interest, bootstrap percolation models have been applied to a variety of physical problems (see, e.g., [1]) and as tools in the study of other models (e.g., [8, 11, 13]).

Several interesting attempts have been made to understand the discrepancy between simulation results (e.g., those of [2]) and the rigorous results in [15]; see, for example, [1, 9, 10, 19]. The present work is believed to be the first fully rigorous progress in this direction. In [19], it is estimated that $p_{1/2} \log L$ may become close to $\frac{\pi^2}{18}$ only beyond about $L = 10^{20}$ (the data given in [2] support a similar conclusion). Current simulations extend only to about $L = 10^5$. A length scale of about $L = 10^{10}$ is relevant to some physical applications. Thus, it is important to understand this issue in more detail.

In particular, it would be of interest to determine the asymptotic behavior of, say, $\lambda - p_{1/2} \log L$ as $L \to \infty$. Theorem 1 gives only a lower bound of $\Omega\left((\log L)^{-1/2}\right)$. In [19], simulation data are fitted to $p_{1/2} \log L = \frac{\pi^2}{18} - 0.45(\log L)^{-0.2}$. In [10], computer calculations, together with a heuristic argument, lead to the estimate $p_{1/2} \log L = \frac{\pi^2}{6} - 3.67(\log L)^{-0.333}$ for the modified model. Since 0.2 and 0.333 are less than $1/2$, these findings appear consistent with Theorem 1.

The phenomenon of a critical window whose width is asymptotically much smaller than its distance from a limiting value has been proven in other settings, including integer partitioning problems [7], but contrasts with more familiar models such as random graphs [18].

Outline of proofs. The idea behind the phase transition result (1) from [15] is as follows. We expect the square $R(L)$ to be internally spanned if and only if it contains at least one internally spanned square of side $B \gg 1/p$ since, with high probability, this will grow indefinitely in the presence of a random background of density p. Such a square is sometimes called a nucleation center or critical droplet. Therefore, the critical regime should be roughly at $L^2 I(B) \approx 1$, that is, $\log L \approx (-\log I(B))/2$, and we need to estimate $I(B)$. First, consider the modified model. One way for $R(B)$ to be internally spanned is for every square with its bottom left corner at $(1, 1)$ to have at least one adjacent occupied site on each its top and right faces—then, every such square will be internally spanned [we can think of an infected square growing from $R(1)$ to $R(B)$]. A straightforward computation shows that the probability of this event is approximately $\exp[-2\lambda_M/p]$, where
λ_M = \pi^2 / 6. This argument proves the first inequality in (1) for the modified model. (The second inequality requires a much more delicate argument; see [15].)

In order to prove the slow convergence result for the modified model, Theorem 4, we consider other ways for a square to be internally spanned. One way is for every site along the main diagonal to be occupied. For a square of size \(A < p^{1/2} \), the latter event has higher probability than the event in the previous paragraph because the probability of growing by one additional row and column is \(p \) versus approximately \((Ap)^2 \). Therefore, let \(A = p^{-1/2} / 2 \) and suppose that \(R(A) \) is internally spanned by this mechanism, while each square from \(R(A) \) to \(R(B) \) has occupied sites on its faces as before. By comparing the two growth mechanisms, we see that, compared with the previous argument, this increases the lower bound on \(I(B) \) by a factor of least \(\left[p / (Ap)^2 \right]^A = \exp[Cp^{-1/2}] \). This argument therefore proves the analogue of Theorem 1 for the modified model. Theorem 4 is proved by a refinement of these ideas (see, in particular, Lemmas 15 and 17). The coefficient \(\sqrt{2} \) of \(\sqrt{p} \) seems to be the best that can be achieved by this method.

The above argument cannot work for the standard bootstrap percolation model. This is because an internally spanned square can grow from a face whenever there is an occupied site within distance 2. Thus, each additional occupied site can allow growth by two rows or two columns, so we do not achieve sufficient saving by considering occupied sites along the diagonal. Instead, we consider another mechanism. Rather than a growing square, we consider a growing rectangle which may change shape when it encounters vacant rows or columns. (Figure 1 illustrates the main idea.) We may describe such growth by means of the path traced by the rectangle’s top right corner. As noted in [15], the probability of such a growth path becomes much smaller if it deviates far from the main diagonal (which corresponds to a growing square). However, it turns out that if the deviations are of scale only \(p^{-1/2} \), then the “entropy factor” (the number of possible deviations) outweighs the “energy cost” (the reduction in probability for each path). This argument yields Theorem 1.

Notation. The following notation and terminology will be used throughout. For integers \(a, b, c, d \), we denote the rectangle \(R(a, b; c, d) := ([a, c] \times [b, d]) \cap \mathbb{Z}^2 \) and write, for convenience, \(R(m, n) = R(1, 1; m, n) \) and \(R(n) = R(n, n) \). The long side of a rectangle is \(\text{long}(R(a, b; c, d)) = \max\{c - a + 1, d - b + 1\} \). A copy of a set \(K \subseteq \mathbb{Z}^2 \) is an image under an isometry of \(\mathbb{Z}^2 \). A site \(x \in \mathbb{Z}^2 \) is occupied if \(x \in W \). A set of sites is vacant if it contains no occupied site.

It will sometimes be convenient to write

\[q = q(p) := -\log(1 - p) \]

and

\[f(z) := -\log(1 - e^{-z}) \]
so that, for any \(K \subset \mathbb{Z}^2 \),
\[
P_p(K \text{ is not vacant}) = 1 - (1 - p)^{|K|} = \exp - f(|K|q).
\]
Note that \(q \geq p \), and \(q \sim p \) as \(p \to 0 \). The function \(f \) is positive, decreasing and convex on \((0, \infty)\).

In Section 3, we will also have occasion to consider the functions
\[
\beta(u) := u + \sqrt{u(4 - 3u)} \quad \text{and} \quad g(z) := -\log \beta(1 - e^{-z}).
\]
The thresholds \(\lambda, \lambda_M \) arise from the integrals
\[
\int_0^\infty f = \lambda = \frac{\pi^2}{6} \quad \text{and} \quad \int_0^\infty g = \lambda = \frac{\pi^2}{18}.
\]
(see [15], also [4, 17]).

2. Critical window. In this section, we present a proof of Theorem 2, together with the extension to the modified model claimed in Theorem 3. The following lemma from [3] is useful.

Lemma 6. Let \(R \) be a rectangle and consider the standard or modified model. If \(R \) is internally spanned, then, for every positive integer \(k \leq \text{long}(R) \), there exists an internally spanned rectangle \(T \subseteq R \) with \(\text{long}(T) \in [k, 2k] \).

Proof. See [3]. \(\square \)

Lemma 7 (Comparison). Consider the standard or modified model. For integers \(L \geq \ell \geq 2 \) and any \(p \in (0, 1) \), we have:
(i)
\[
I(L) \geq (1 - e^{-I(\ell)(L/\ell - 1)^2})(1 - 2L^2 e^{-p\ell});
\]
(ii)
\[
(1 - 2\ell^2 e^{-p(\ell/4 - 1)})I(L) \leq I(\ell) \left(\frac{2L}{\ell - 1} \right)^2.
\]

Proof of Lemma 7(i). Let \(m = \lfloor L/\ell \rfloor \) and consider the \(m^2 \) disjoint squares
\[
S_k = R(\ell) + k\ell, \quad k \in \{0, \ldots, m - 1\}^d.
\]
Let \(E \) be the event that at least one of the \(S_k \) is internally spanned and let \(F \) be the event that every copy of \(R(1, \ell) \) in \(R(L) \) is nonvacant. It is straightforward to see that if \(E \) and \(F \) both occur, then \(R(L) \) is internally spanned. Hence, using the
Harris–FKG inequality (see, e.g., [14]),
\[I(L) \geq \mathbb{P}(E)\mathbb{P}(F) \geq (1 - (1 - I(\ell))^m^2)(1 - 2L^2(1 - p)^\ell) \]
\[\geq (1 - e^{-I(\ell)(L/\ell - 1)^2})(1 - 2L^2e^{-p\ell}). \] □

Proof of Lemma 7(ii). Let \(s = \lfloor \ell/2 \rfloor \) and \(m = \lfloor L/s \rfloor \), and consider the \(m^2 \) overlapping squares
\[S_k = R(\ell) + ks \wedge (L - \ell, L - \ell), \quad k \in \{0, \ldots, m - 1\}^2, \]
where \(\wedge \) denotes coordinatewise minimum. Note that \(\bigcup S_k = R(L) \) and that the overlap between two adjacent squares has width at least \(s \). It follows that any rectangle \(T \subseteq R(L) \) with long \((T) \leq s \) lies entirely within one of the \(S_k \). Hence, using Lemma 6,
\[I(L) \leq \mathbb{P}\left(\exists \text{i.s. } T \subseteq R(L) \text{ with long } (T) \in \left[\left[\frac{s}{2}, s \right] \right] \right) \]
\[\leq \mathbb{P}\left(\bigcup_{k} \exists \text{i.s. } T \subseteq S_k \text{ with long } (T) \in \left[\left[\frac{s}{2}, s \right] \right] \right) \]
\[\leq m^2 \mathbb{P}\left(\exists \text{i.s. } T \subseteq R(\ell) \text{ with long } (T) \in \left[\left[\frac{s}{2}, s \right] \right] \right). \]

On the other hand, considering the event that every copy of \(R(1, \lfloor s/2 \rfloor) \) in \(R(\ell) \) contains at least one occupied site and using the argument from the proof of part (i), we have
\[I(\ell) \geq \mathbb{P}\left(\exists \text{i.s. } T \subseteq R(\ell) \text{ with long } (T) \in \left[\left[\frac{s}{2}, s \right] \right] \right) (1 - 2\ell^2e^{-ps}). \]
Combining this with (4) yields the result. □

Proof of Theorem 2. It follows from (1) that for any \(\alpha \in (0, 1) \), we have
\[p \log L_\alpha(p), \quad p \log L_{\bar{\alpha}}(p) \rightarrow \lambda \quad \text{as } p \rightarrow 0. \]
Therefore, once the first equality is proved, the second follows immediately. To prove the first equality, we will use Lemma 7 to derive upper and lower bounds on
\[p \log L_{1 - \epsilon} - p \log L_\epsilon. \]

For the upper bound, we fix \(\epsilon \) and use Lemma 7(i) with \(L = L_{1 - \epsilon} \) and \(\ell = L_\epsilon \), noting that \(I(L, p) \leq 1 - \epsilon \) and \(I(\ell, p) \geq \epsilon \). By (5), for \(p \) sufficiently small (depending on \(\epsilon \)), we have \(1 - 2L^2e^{-p\ell} \geq 1 - \epsilon^2 \), so we obtain, for \(p \) sufficiently small,
\[1 - \epsilon \geq (1 - e^{-\epsilon(L_{1 - \epsilon}/L_\epsilon - 1)^2})(1 - \epsilon^2). \]
Rearranging gives
\[
\frac{L_{1-\epsilon}}{L_\epsilon} \leq 1 + \sqrt{\frac{1}{\epsilon} \log \frac{1 + \epsilon}{\epsilon}},
\]
hence
\[
p \log L_{1-\epsilon} - p \log L_\epsilon \leq C_+ p,
\]
where \(C_+ = \log(1 + \sqrt{\epsilon^{-1} \log(\epsilon^{-1} + 1)})\) satisfies \(C_+ < \infty\) for all \(\epsilon > 0\) and \(C_+ \leq (\frac{1}{2} + o(1)) \log \epsilon^{-1}\) as \(\epsilon \to 0\).

For the lower bound, we fix \(\epsilon\) and use Lemma 7(ii) with \(L = L_{1-\epsilon}(p) + 1\) and \(\ell = L_\epsilon(p) - 1\), noting that \(I(L, p) > 1 - \epsilon\) and \(I(\ell, p) < \epsilon\). By (5), we have
\[
2\ell^2 e^{-p(\ell/4 - 1)} = o(1)\quad \text{as} \quad p \to 0,
\]
so we obtain
\[
(1 - o(1))(1 - \epsilon) \leq \epsilon \left(\frac{2(L_{1-\epsilon} + 1)}{L_\epsilon - 2} \right)^2.
\]
Rearranging gives
\[
\frac{L_{1-\epsilon} + 1}{L_\epsilon - 2} \geq \sqrt{\frac{(1 - \epsilon)(1 - o(1))}{4\epsilon}}
\]
as \(p \to 0\). For \(p\) sufficiently small, we obtain
\[
p \log L_{1-\epsilon} - p \log L_\epsilon \geq C_- p
\]
for any \(C_-(\epsilon) < \log \sqrt{(1 - \epsilon)/(4\epsilon)}\). Thus, we may take \(C_- > 0\) for all \(\epsilon < 1/5\) and \(C_- \geq (\frac{1}{2} - o(1)) \log \epsilon^{-1}\) as \(\epsilon \to 0\).

\[\square\]

3. Slow convergence. The main step in proving Theorem 1 will be the following.

Proposition 8 (Nucleation centers). Consider the standard bootstrap percolation model. There exist \(p_0 > 0\) and \(c \in (0, \infty)\) such that, for all \(p < p_0\) and \(B \geq 2p^{-1}\),
\[
I(B, p) \geq \exp[-2\lambda/p + c/\sqrt{p}],
\]
where \(\lambda = \pi^2/18\).

Proof of Theorem 1. First, suppose that \((L, p) \to (\infty, 0)\) in such a way that for some \(c_1\),
\[
p \log L > \lambda - c_1/\sqrt{\log L}.
\]
Then, for \(L\) sufficiently large, we have, in particular, \(p \log L > \lambda/2\), so \(1/\sqrt{\log L} < \sqrt{2p/\lambda}\) and hence
\[
p \log L > \lambda - c_2\sqrt{p},
\]
(6)
where $c_2 = c_1 \sqrt{2/\lambda}$.

Therefore, it is enough to prove that for some $c_2 > 0$, if $(L, p) \to (\infty, 0)$ satisfy (6), then $I(L, p) \to 1$. Furthermore, we may assume that we have equality in (6) since, if not, we may find (for p sufficiently small) $p' < p$ such that $p' \log L = \lambda - c_2 \sqrt{p'}$ and then $I(L, p) \geq I(L, p') \to 1$. Therefore, let

$$L = \exp[\lambda/p - c_2/\sqrt{p}] \quad \text{and} \quad B = \lceil p^{-3} \rceil.$$

Using Lemma 7(i),

$$I(L) \geq (1 - e^{-I(B)(L/B - 1)^2}) (1 - 2L^2 e^{-pB}).$$

The above definitions of L and B easily imply that $L^2 e^{-pB} \to 0$ as $p \to 0$, while, by Proposition 8,

$$\log[I(B)(L/B - 1)^2] \leq -2\lambda/p + c/\sqrt{p} + 2(\lambda/p - c_2/\sqrt{p}) + O(\log p^{-1}) \to 0$$

as $p \to 0$, provided $2c_2 > c$. Inequality (7) then gives $I(L, p) \to 1$, as required. □

In order to prove Proposition 8, we consider various ways for $R(B)$ to be internally spanned. The simplest way involves symmetric growth starting from a corner. We say that a sequence of events A_1, A_2, \ldots, A_k has a double gap if there is a consecutive pair A_i, A_{i+1} neither of which occur. For integers $2 \leq a \leq b$, let D^b_a be the event that

$$\{R(i, 1; i - 2, i) \text{ is not vacant}\}_{i=a+1}^{b} \text{ has no double gaps and}$$

$$\{R(i, 1; i, i - 2) \text{ is not vacant}\}_{i=a+1}^{b} \text{ has no double gaps.}$$

See Figure 1(i). Note that if $R(a)$ is internally spanned and D^b_a occurs, then $R(s, t)$ is internally spanned for some $s, t \in \{b - 1, b\}$. Indeed, it is easily seen that we may find a sequence of internally spanned rectangles $R(i, j)$ with $|i - j| \leq 2$, starting with $R(a)$ and ending with $R(s, t)$, with the width or the height increasing by 1 or 2 at each step.

We will also consider the following alternative growth mechanism. For positive integers $a \leq b - 4$, let J^b_a be the event that

$$R(1, a + 1; a - 1, a + 1) \text{ is not vacant,}$$

$$R(a + 1, 1; a + 1, a - 1) \text{ is not vacant,}$$

$$\{R(i, 1; i, a + 1) \text{ is not vacant}\}_{i=a+2}^{b-1} \text{ has no double gaps,}$$

$$(b, 1; b, a + 1) \text{ is not vacant,}$$

$$R(1, a + 2; b - 1, a + 3) \text{ is vacant,}$$

$$(b, a + 3) \text{ is occupied,}$$
FIG. 1. Two possible mechanisms for growth from $R(a)$ to $R(b)$. (i) The event \mathcal{D}_a^b: no two consecutive strips are vacant. (ii) The event \mathcal{J}_a^b: the grey strips are nonvacant, the hatched region is vacant, the black site is occupied and the horizontal/vertical arrows indicate no two consecutive vacant columns/rows, respectively.

\[
\{ R(1, i; b, i) \text{ is not vacant} \}_{i=a+4, \ldots, b-1} \text{ has no double gaps and } \\
R(1, b; b, b) \text{ is not vacant.}
\]

See Figure 1(ii). Note, again, that if $R(a)$ is internally spanned and \mathcal{J}_b^a occurs, then $R(b)$ is internally spanned. In this case, vertical growth is stopped by the two vacant rows, and there is a sequence of horizontally growing, internally spanned rectangles, followed by vertical growth after the occupied site $(b, a+3)$ is encountered.

Now, fix a positive integer B. For positive integers $(a_i, b_i)_{i=1,\ldots,m}$ satisfying $2 \leq a_1 \leq b_1 \leq a_2 \leq \cdots \leq b_m \leq B$ and $b_i - a_i \leq 4 \forall i$, define the event

\[
\mathcal{E}(a_1, b_1, \ldots, a_m, b_m) := \mathcal{D}_a^{a_1} \cap \left(\bigcap_{i=1}^m \mathcal{J}_a^{b_i} \right) \cap \left(\bigcap_{i=1}^{m-1} \mathcal{D}_a^{a_{i+1}} \right) \cap \mathcal{D}_a^{B-1} \\
\cap \{(1, 1), (2, 2), (B, 1), (1, B) \text{ are occupied}\}.
\]

Lemma 9 (Properties of \mathcal{E}).

(i) The various events appearing in the above definition of $\mathcal{E}(a_1, \ldots, b_m)$ are independent.

(ii) If $\mathcal{E}(a_1, \ldots, b_m)$ occurs, then $R(B)$ is internally spanned.

(iii) For different choices of a_1, \ldots, b_m, the events $\mathcal{E}(a_1, \ldots, b_m)$ are disjoint.

Proof. Property (i) is clear from the definitions of the \mathcal{D} and \mathcal{J} events. Property (ii) follows from the earlier remarks on these events: indeed, the squares
$R(2), R(b_1), \ldots, R(b_m), R(B)$ are all internally spanned. To see (iii), fix a configuration and consider sequentially examining the rows $R(1, i; i - 2, i)$ for $i = 3, 4, 5, \ldots$. The presence of two consecutive vacant rows signals an event J_a^b and determines the value of a. If we then follow the upper vacant row to the right until an occupied site is encountered, we discover the corresponding value of b. □

We will obtain a lower bound on the probability that $R(B)$ is internally spanned by bounding the probability of each event E (for certain choices of the a_i, b_i) and bounding the number of possible choices.

We start by estimating the probability of \mathcal{D}_a^b, for which we need the following slight refinement of a result from [15] (see [5] for a much more precise result in the same direction). Recall the function β defined in the Introduction.

Proposition 10 (Double gaps). For independent events A_1, \ldots, A_k whose probabilities $u_i := \mathbb{P}(A_i)$ form an increasing or decreasing sequence, the probability that there are no double gaps is at least $\prod_{i=1}^k \beta(u_i)$.

Lemma 11. For $0 \leq u \leq v \leq 1$, we have $u \beta(v) + (1 - u)v \geq \beta(u) \beta(v)$.

Proof. The function $h(u, v) := u \beta(v) + (1 - u)v - \beta(u) \beta(v) \leq 0$, so it suffices to show that h is decreasing in u for $u \leq v$. But we have $\partial h/\partial u = \beta(v) - v - \beta'(u) \beta(v) \leq 0$, by the elementary computations $\beta'(u) \geq \beta'(v) \geq (\beta(v) - v)/\beta(v)$. □

Proof of Proposition 10. Without loss of generality, suppose the probabilities u_i are decreasing. Let a_k be the probability that the sequence A_1, \ldots, A_k has no double gaps. Then $a_0 = a_1 = 1$, and by conditioning on the last two events we obtain $a_k = u_k a_{k-1} + (1 - u_k) u_{k-1} a_{k-2}$. The result follows by induction, using Lemma 11 as follows: $a_k \geq [u_k \beta(u_{k-1}) + (1 - u_k) u_{k-1}] \prod_{i=1}^{k-2} \beta(u_i) \geq \prod_{i=1}^k \beta(u_i)$. □

Recall the function g from the Introduction and write, for $a \leq b$,

$$G_a^b = G_a^b(p) := \exp \left[- \sum_{i=a}^{b-1} g(iq) \right].$$

Lemma 12 (Diagonal growth).

$$\mathbb{P}_p(\mathcal{D}_a^b \geq (G_{a-1}^{b-1})^2).$$

Proof. This follows immediately from Proposition 10 and the definitions of \mathcal{D}_a^b and g. □

Next, we estimate the relative cost of a J-event.
Lemma 13 (Deviation cost). Fix positive constants $c_- \leq c_+$. For any $p \in (0, 1/2)$ and $a \leq b - 4$ satisfying $a, b \in [c_-/p, c_+/p]$, we have

$$\frac{\mathbb{P}_p(J^b_a)}{(G^{b-1}_{a-1})^2} \geq Cp e^{-C'p(b-a)^2},$$

where $C, C' \in (0, \infty)$ depend only on c_\pm.

Proof. From the definition of J^b_a and Proposition 10, we obtain

$$\mathbb{P}_p(J^b_a) \geq \left[1 - (1 - p)^a \right]^4 (1 - p)^{2b} p \exp[-(b - a)g(aq) - (b - a)g(bq)].$$

Note that g is decreasing and that $(1 - p)^k$ is bounded away from 0 and 1 for $k \in [c_-/p, c_+/p]$, so we deduce

$$\mathbb{P}_p(J^b_a) \geq Cp \exp[-2(b - a)g(aq)]. \quad (8)$$

Also, we have

$$\left(G^{b-1}_{a-1} \right)^2 = \exp \left[-2 \sum_{i=a-1}^{b-2} g(iq) \right] \leq \exp[-2(b - a)g(bq)]. \quad (9)$$

Now, $g(aq) - g(bq) \leq (bq - aq) \max_{z \in [aq, bq]} |g'(z)|$, but the ratio q/p is bounded for $p < 1/2$, hence g' is uniformly bounded over the relevant interval and we obtain $g(aq) - g(bq) \leq C'(b-a)p$. Therefore, dividing (8) by (9) gives the result. \[\square\]

Proof of Proposition 8. Let $m = \lfloor Mp^{-1/2} \rfloor$, where $M < 1/4$ is a constant to be chosen later. Suppose that integers $(a_i, b_i)_{i=1, \ldots, m}$ and B satisfy

$$p^{-1} < a_1 \leq b_1 \leq a_2 \leq \cdots \leq b_m < 2p^{-1} \leq B,$$

$$b_i - a_i \in [4, p^{-1/2}] \forall i. \quad (10)$$

Let C, C' be the constants from Lemma 13 corresponding to $c_- = 1$ and $c_+ = 2$. Then, from the definition of the event E, together with Lemmas 9(i), 12 and 13, we obtain

$$\mathbb{P}_p[\mathcal{E}(a_1, \ldots, b_m)] \geq p^4 \left[Cpe^{-C'p(p^{-1/2})^2} \right]^m \exp \left[-2 \sum_{i=1}^{B-1} g(iq) \right] \quad (11)$$

for C'' a fixed constant. Now, since $mp^{-1/2} < p^{-1/4}$, the number of possible choices of $(a_i, b_i)_{i=1, \ldots, m}$ satisfying (10) is at least

$$\left(\left\lfloor p^{-1} - mp^{-1/2} \right\rfloor \right)^m (p^{-1/2} - 4)^m \geq \frac{(p^{-1/2})^m}{m^m} \frac{(p^{-1/2}/2)^m}{m^m} \quad (12)$$

$$= \left(\frac{1}{4pM} \right)^m$$
for p sufficiently small.

By Lemma 9(ii), (iii) we may multiply (11) and (12) to give, for p sufficiently small and all $B > 2p^{-1}$,

$$I(B) \geq p^4 \left(\frac{C''}{4M} \right)^m (G_1^B)^2.$$

Now, choose $M = C''/8$ (recall that C'' was an absolute constant) so that $C''/(4M) = 2$. Also, note that since g is decreasing,

$$-\log G_1^B = \sum_{i=1}^{B-1} g(iq) \leq q^{-1} \int_0^{Bq} g \leq p^{-1} \int_0^{\infty} g = p^{-1}\lambda.$$

Hence, for p sufficiently small,

$$I(B) \geq p^4 2^{Mp^{-1/2}} \exp[-2p^{-1}\lambda] \geq \exp[-2p^{-1}\lambda + cp^{-1/2}],$$

as required. \square

4. Explicit bound for the modified model. In this section, we prove Theorem 4. Since we always refer to the modified model, we sometimes omit the subscript M in I_M.

Proposition 14 (Nucleation centers). Consider the modified model. For any $p \leq 1/10$ and any $B \geq \sqrt{2/p}$, we have

$$I_M(B) \geq \exp[-2\lambda_M/q + 2\sqrt{2/p - \log p^{-1}} - 3.2],$$

where $\lambda_M = \pi^2/6$.

Lemma 15 (Diagonal spanning). For the modified model, we have, for any positive integer a and any $p \in (0, 1)$,

$$I_M(a) \geq \frac{1}{2} (2p - p^2)^a.$$

Proof. Note that for $a \geq 2$, the square $R(a)$ is internally spanned, provided that $(1, 1)$ is occupied and $R(2, 2; a, a)$ is internally spanned or, alternatively, provided that $(1, a)$ is occupied and $R(2, 1; a, a)$ is internally spanned. Hence,

$$I(a) \geq pI(a - 1) + (1 - p)pI(a - 1) = (2p - p^2)I(a - 1).$$

The result follows by induction. \square

Define

$$F_a^b = F_a^b(p) := \prod_{j=a}^{b-1} (1 - (1 - p)^j) = \exp \left[-\sum_{i=a}^{b-1} f(iq) \right].$$
LEMMA 16 (Growth). Let \(a \leq b \) be integers and let \(p \in (0, 1) \). For the standard or modified model, we have
\[
I(b) \geq I(a)(F_b^b)^2.
\]

PROOF. Let \(F \) be the event that each of the strips
\[
R(j + 1, 1; j + 1, j), \quad j = a, a + 1, \ldots, b,
R(1, j + 1; j, j + 1), \quad j = a, a + 1, \ldots, b,
\]
is nonvacant. It is easily seen that if \(R(a) \) is internally spanned and \(F \) occurs, then \(R(b) \) is internally spanned. Hence,
\[
I(b) \geq P(\{R(a) \text{ is i.s.}\} \cap F) = I(a)P(F) = I(a)(F_b^b)^2.
\]

We next note some elementary bounds. We have
\[
p \leq q \leq p + p^2,
\]
where the second inequality holds provided \(p < 1/2 \). The function \(F_a^b \) satisfies
\[
\exp\left[-\frac{1}{q} \int_{(a-1)q}^{(b-1)q} f \right] \leq F_a^b \leq \exp\left[-\frac{1}{q} \int_{aq}^{bq} f \right]
\]
since \(f \) is decreasing.

Also, note the inequalities
\[
\log \epsilon^{-1} \leq f(\epsilon) \leq \log \epsilon^{-1} + \epsilon,
\]
\[
e^{-K} \leq f(K) \leq e^{-K} + e^{-2K},
\]
where the fourth inequality holds provided \(K > 1/2 \). (The inequalities are useful when \(\epsilon \ll 1 \ll K \).) Hence,
\[
\epsilon \log \epsilon^{-1} + \epsilon \leq \int_0^\epsilon f \leq \epsilon \log \epsilon^{-1} + \epsilon + \frac{1}{2} \epsilon^2,
\]
\[
e^{-K} \leq \int_K^{\infty} f \leq e^{-K} + \frac{1}{2} e^{-2K},
\]
where the fourth inequality holds provided \(K > 1/2 \).

PROOF OF PROPOSITION 14. Fix \(p < 1/10 \) and let \(A \leq B \) be positive integers (later, we will take \(A \approx \sqrt{2/p} \)).

By Lemmas 15 and 16, we have
\[
I(B) \geq \frac{1}{2}(2p - p^2)^A(F_A^B)^2,
\]
so, using (14), (3) and (17) and rearranging,
\[
\log I(B) \geq -\log 2 + A \log(2p - p^2) - \frac{2}{q} \int_{(A-1)q}^{\infty} f
\]
\[
\geq -\log 2 + A \log(2p - p^2) - \frac{2}{q} (\lambda_M - (A-1)q \log[(A-1)q]^{-1} - (A-1)q)
\]
\[
= -\frac{2\lambda_M}{q} + 2(A-1) \log \frac{e \sqrt{2}}{(A-1) \sqrt{p}} + 2(A-1) \log p + A \log \left(1 - \frac{p}{2}\right) + \log p.
\]
where we have written \((2p - p^2) = 2p(1 - p/2)\). By (13), for \(p < 1/2\), we have \(\log(p/q) \geq \log[p/(p + p^2)] = -\log(1 + p) \geq -p\) and \(\log(1 - p/2) \geq -p/2 - p^2/4\), so we obtain
\[
\log I(B) \geq -\frac{2\lambda_M}{q} + 2(A-1) \log \frac{e \sqrt{2}}{(A-1) \sqrt{p}} - 2(A-1)p - A(p/2 + p^2/4) + \log p.
\]
Now, let
\[
A = \lceil \sqrt{2/p} \rceil,
\]
to give, for \(p \leq 1/10\) and \(B \geq A\),
\[
\log I(B) \geq -\frac{2\lambda_M}{q} + 2(\sqrt{2/p} - 1) \cdot 1 - 2\sqrt{2/p}pp - (\sqrt{2/p} + 1)(p/2 + p^2/4) + \log p
\]
\[
\geq -\frac{2\lambda_M}{q} + 2\sqrt{2/p} - \log p^{-1} - 3.2.
\]
Note the nontrivial cancellation between terms in \(p^{-1/2} \log p^{-1}\) implicit in the simplification of the first logarithm, resulting from the choice of \(A\). \(\Box\)

The following variant of Lemma 7(i) allows for better control of the error terms.

Lemma 17 (Scanning estimate). Let \(b, \ell, m\) be positive integers with \(mb < \ell\) and let \(p \in (0, 1)\). For the standard or modified model, we have
\[
I(\ell) \geq (1 - e^{-m^2 I(b)})(F_b F_{\ell - mb})^2 (1 - (1 - p)^{\ell - mb})^\ell.
\]
PROOF. Consider the m^2 disjoint squares
\[S_k := R(b) + bk, \quad k \in \{0, \ldots, m - 1\}^2, \]
and let
\[\{0, \ldots, m - 1\}^2 = \{k(1), k(2), \ldots, k(m^2)\} \]
be the lexicographic ordering of the set on the left-hand side. For $i = 1, \ldots, m^2$ define the event
\[J_i = \{ S_{k(i)} \text{ is internally spanned} \} \]
and let F_i be the event that each of the strips
\[
R(\ell) \cap [bk(i) + R(j + 1, j + 1)] \quad j = b, b + 1, \ldots, \\
R(\ell) \cap [bk(i) + R(1, j + 1; j, j + 1)] \quad j = b, b + 1, \ldots,
\]
that is nonempty is nonvacant. See Figure 2. Also, define the event
\[E = \{ \langle W \cap R(\ell) \rangle \supseteq R(mb + 1, mb + 1; \ell, \ell) \}. \]
It is straightforward to see that for any i, if J_i and F_i occur, then E occurs. Furthermore, for each i, the event F_i is independent of the events J_1, \ldots, J_i.

Hence, we have
\[
\Pr(E) \geq \Pr \left[m^2 \bigcup_{i=1} J_i^C \cap \cdots \cap J_{i-1}^C \cap J_i \cap F_i \right] \\
\geq \sum_{i=1} \Pr(J_1^C \cap \cdots \cap J_{i-1}^C \cap J_i) \Pr(F_i)
\]
(19)
\[
\geq \Pr(J_1 \cup \cdots \cup J_{m^2}) \min_i \Pr(F_i)
\geq (1 - e^{-m^2 I(B)}) (F_{\ell b}^B)^2 (1 - (1 - p)^{\ell - mb})^\ell.
\]

To conclude, let H be the event that each of the strips
\[
R(j, j - 1; j, \ell), \quad j = mb, \ldots, 2, 1, \\
R(j - 1, j; \ell, j), \quad j = mb, \ldots, 2, 1,
\]
is nonvacant. Using the Harris–FKG inequality, we have $I(\ell) \geq \Pr(E \cap H) \geq \Pr(E) \Pr(H) \geq \Pr(E) (F_{\ell - mb}^B)^2$ and combining this with (19) gives the result. \(\square\)

PROOF OF THEOREM 4. Fix $p \leq 10$, let $B \geq \sqrt{2/p}$ and take L and m such that $L \geq mB$. We use Lemma 17 to derive a lower bound for $I(L)$. We obtain
\[
I(L) \geq (1 - e^{-m^2 I(B)}) (F_B^{\infty} F_{L-mB}^{\infty})^2 e^{-L f(|L-mB|q)}.
\]
Consider the first factor above. Take

\[m = \left\lfloor \exp\left(\frac{\lambda M}{q} - \frac{\sqrt{2}}{\sqrt{p}} + \frac{1}{2} \log p^{-1} + 1.8 \right) \right\rfloor. \tag{21} \]

Proposition 14 then implies \(\log(m^2 I(B)) \geq 0.4 \) and therefore

\[1 - e^{-m^2 I(B)} \geq 1 - e^{-0.4}. \]

Turning to the other factors in (20), we have, by (14),

\[
\left(F_B^\infty F_{L-mB}^\infty \right)^2 e^{-LF((L-mB)q)} \\
\geq \exp\left(-\frac{2}{q} \int_0^\infty (B-1)q f - \frac{2}{q} \int_0^\infty (L-mB-1)q f - Lf((L-mb)q) \right) \\
\geq 1 - \frac{2}{q} \int_0^\infty (B-1)q f - \frac{2}{q} \int_0^\infty (L-mB-1)q f - Lf((L-mb)q).
\]

We now set

\[B = 1 + \left\lceil \frac{3 + \log q^{-1}}{q} \right\rceil \quad \text{and} \quad L = mB + 4cq^{-2} \tag{22} \]

for any \(c \geq 1 \). (The latter is simply a convenient way to express \(L \geq mB + 4q^{-2} \).)

It is straightforward to check that for \(p \leq 1/10 \), we have \((L-mB-1)q > (B-1)q > 1/2\), so we may use (16), (18) to bound the above terms as follows:

\[
\frac{2}{q} \int_0^\infty (B-1)q f - \frac{2}{q} \int_0^\infty (L-mB-1)q f \\
\leq \frac{4}{q} \left(e^{-(B-1)q} + e^{-2(B-1)q} \right) \\
\leq 4e^{-3} + 4e^{-6}
\]
and

\[Lf ([L - mB]q) \leq 2Le^{-(L-mB)q} \leq 2(e^{2/q}2q^{-2} + 4cq^{-2} + 1)e^{-4c/q} \]
\[\leq 2(e^{2/q}2q^{-2} + 4q^{-2} + 1)e^{-4q^2/q} \leq e^{-2} \]

since \(m \leq e^{2/q} \) and \(B \leq 2q^{-2} \) for \(p \leq 1/10 \). Hence, returning to (20), for the given choices of \(B, L \), we have

\[I(L) \geq (1 - e^{-0.4})(1 - 4e^{-3} - 4e^{-6} - e^{-2}) > 1/2. \]

From (22), we have shown that \(I(L, p) > 1/2 \), provided \(p \leq 1/10 \) and

\[p \log L \geq p \log (mB + 4q^{-2}) \]
\[= p \log m + p \log B + p \log \left(1 + \frac{4q^{-2}}{mB}\right). \]

Finally, we need to find upper bounds for the terms appearing on the right of (23). By (21), we have

\[p \log m \leq \lambda_M \frac{p}{q} - \sqrt{2p} + \frac{1}{2} p \log p^{-1} + 1.8p + p \log \frac{m}{m-1}. \]

But, for \(p \leq 1/10 \), we have \(p \log(m/(m-1)) = -p \log(1 - 1/m) \leq 2p/m \leq 2pe^{-1/p} \leq 0.001p \), while \(p/q \leq p/(p + p^2/2) \leq 1 - 0.47p \), so

\[p \log m \leq \lambda_M - \sqrt{2p} + \frac{1}{2} p \log p^{-1} + 1.03p. \]

By (22), we have

\[p \log B \leq p \log \left(2 + \frac{3}{q} + \frac{\log q^{-1}}{q}\right) \]
\[\leq p \log (2.6p^{-1.3}) = 0.96p + 1.3p \log p^{-1}. \]

Since \(4q^{-2} > B \) and \(m \geq e^{1/p} \) for \(p \leq 1/10 \), we have

\[p \log \left(1 + \frac{4q^{-2}}{mB}\right) \leq pe^{-1/p} \leq 0.001p. \]

Hence, the right-hand side of (23) is at most

\[\lambda_M - \sqrt{2p} + 1.8p \log p^{-1} + 2p, \]

as required. \(\square \)
5. Open problems.

(i) Prove a complementary bound to Theorem 1. For example, do there exist \(\gamma, c \in (0, \infty) \) such that \((L, p) \to (\infty, 0)\) with \(p \log L < \lambda - c(\log L)^{-\gamma} \) implies \(I \to 0 \)?

(ii) Prove matching upper and lower bounds, for example, involving inequalities of the form \(p \log L \lesssim \lambda - c(\log L)^{\gamma \pm \epsilon} \), or even \(p \log L \lesssim \lambda - (c \pm \epsilon)F(L) \) for some elementary function \(F \).

(iii) Extend the results to other bootstrap percolation models for which sharp thresholds are known to exist—currently those in [16, 17].

(iv) Identify more precisely the width of the critical window as \(p \) varies. Is it the case that \(p_{1-\epsilon} \log L - p_{\epsilon} \log L = \Theta(1/\log L) \) as \(L \to \infty \)?

REFERENCES

[1] Adler, J. and Lev, U. (2003). Bootstrap percolation: Visualizations and applications. *Brazilian J. Phys.* 33 641–644.

[2] Adler, J., Stauffer, D. and Aharony, A. (1989). Comparison of bootstrap percolation models. *J. Phys. A* 22 L297–L301.

[3] Aizenman, M. and Lebowitz, J. L. (1988). Metastability effects in bootstrap percolation. *J. Phys. A* 21 3801–3813. MR0968311

[4] Andrews, G., Eriksson, H., Petrov, F. and Romik, D. (2007). Integrals, partitions and MacMahon’s theorem. *J. Combin. Theory A* 114 545–554. MR2310749

[5] Andrews, G. E. (2005). Partitions with short sequences and mock theta functions. *Proc. Natl. Acad. Sci. USA* 102 4666–4671 (electronic). MR2139704

[6] Balogh, J. and Bollabás, B. (2003). Sharp thresholds in bootstrap percolation. *Phys. A* 326 305–312.

[7] Borgs, C., Chayes, J. and Pittel, B. (2001). Phase transition and finite-size scaling for the integer partitioning problem. *Random Structures Algorithms* 19 247–288. MR1871556

[8] Cancrini, N., Martinelli, F., Roberto, C. and Toninelli, C. (2008). Kinetically constrained spin models. *Probab. Theory Related Fields*. To appear.

[9] De Gregorio, P., Lawlor, A., Bradley, P. and Dawson, K. A. (2005). Exact solution of a jamming transition: Closed equations for a bootstrap percolation problem. *Proc. Natl. Acad. Sci. USA* 102 5669–5673 (electronic). MR2142892

[10] De Gregorio, P., Lawlor, A. and Dawson, K. A. (2006). New approach to study mobility in the vicinity of dynamical arrest; exact application to a kinetically constrained model. *Europhys. Lett.* 74 287–293.

[11] Fontes, L. R., Schonmann, R. H. and Sidoravicius, V. (2002). Stretched exponential fixation in stochastic Ising models at zero temperature. *Comm. Math. Phys.* 228 495–518. MR1918786

[12] Friedgut, E. and Kalai, G. (1996). Every monotone graph property has a sharp threshold. *Proc. Amer. Math. Soc.* 124 2993–3002. MR1371123

[13] Froböse, K. (1989). Finite-size effects in a cellular automaton for diffusion. *J. Statist. Phys.* 55 1285–1292. MR1002492

[14] Grimmett, G. R. (1999). *Percolation*, 2nd ed. Springer, Berlin. MR1707339

[15] Holroyd, A. E. (2003). Sharp metastability threshold for two-dimensional bootstrap percolation. *Probab. Theory Related Fields* 125 195–224. MR1961342

[16] Holroyd, A. E. (2006). The metastability threshold for modified bootstrap percolation in \(d \) dimensions. *Electron. J. Probab.* 11 418–433 (electronic). MR2223042
[17] Holroyd, A. E., Liggett, T. M. and Romik, D. (2004). Integrals, partitions, and cellular automata. Trans. Amer. Math. Soc. 356 3349–3368. MR2052953

[18] Łuczak, T. (1990). Component behavior near the critical point of the random graph process. Random Structures Algorithms 1 287–310. MR1099794

[19] Stauffer, D. (2003). Work described in [1].

[20] Van Enter, A. C. D. (1987). Proof of Straley’s argument for bootstrap percolation. J. Statist. Phys. 48 943–945. MR0914911

Department of Mathematics
University of California
Davis, California 95616
USA
E-mail: gravner@math.ucdavis.edu

Department of Mathematics
University of British Columbia
121-1984 Mathematics Rd
Vancouver, British Columbia
Canada V6T 1Z2
E-mail: holroyd@math.ubc.ca