SARS-CoV-2 infection is associated with an increased risk of idiopathic acute pancreatitis but not pancreatic exocrine insufficiency or diabetes: long-term results of the COVIDPAN study

We recently published in GUT the outcomes of acute pancreatitis (AP) and coexisting SARS-CoV-2 infection. A number of patients who were SARS-CoV-2 positive had AP of unknown aetiology (23%) speculating SARS-CoV-2 as a cause for AP similar to other viruses. However, most patients did not complete investigations to exclude other causes of AP. In addition, SARS-CoV-2 infection may cause aberrant glycometabolic control, however it is unknown if this increases the risk of long-term diabetes mellitus (DM). The follow-up data were collected 12 months from the date of recruitment for 1476 patients (11 patients who were SARS-CoV-2 positive and 1358 patients who were negative) to establish an aetiology for AP and development of DM. Among the 118 patients who were SARS-CoV-2 positive, 35 patients had idiopathic or unknown aetiology AP. Sixteen patients underwent either MRCP (n=13) or EUS (n=4) and the remaining patients underwent biochemical investigations to exclude other causes of AP. The final aetiology of AP was available for 83 (70.3%) patients and included gallstones (56, 47.4%), alcohol (19, 16.1%), post ERCP (2, 1.7%) and other (6, 5.1%). Overall, 23 patients had a change of aetiology, and in 35 (29.7%) patients AP was considered idiopathic. Patients who were SARS-CoV-2 positive were more likely to have idiopathic AP (34.7% vs 13.9%, p<0.001) with over five times increased risk after adjusting for age, smoking status, body mass index and ethnicity (OR: 5.34, p<0.001) (table 1 and online supplemental table S1).

Thirteen (11.0%) patients in the SARS-CoV-2 positive group and 187 (13.8%) patients in the negative group were readmitted with AP (p=0.949). The aetiology and baseline characteristics are summarised in online supplemental table S2. The risk of readmission was higher in younger patients, and lower in those with gallstone and idiopathic aetiology (online supplemental table S3).

Two patients developed DM and nine patients developed pancreatic exocrine insufficiency (PEI) in the SARS-CoV-2 positive group. SARS-CoV-2 did not increase the risk of DM (2.3% vs 2.5%, OR: 0.61, p=0.541) or PEI (OR: 1.11, p=0.828) (p>0.05; table 2).

Mortality after discharge was 12.7% in the SARS-CoV-2 positive group and 5.4% in the negative group (log-rank, p<0.0001; online supplemental figure S1). However, this was not statistically significant in a multivariable Cox-regression model (HR: 1.89, p=0.078).

The higher number of patients with idiopathic AP in the present series raises speculation that SARS-CoV-2 may indeed cause AP. Recently autopsy evidence has identified SARS-CoV-2 virus in the pancreases of infected patients, with focal pancreatitis

Table 1	Comparison of baseline characteristics of all patients in the follow-up cohort by aetiology					
Levels	Known aetiology	Idiopathic	P	Total N	Missing N	
SARS-CoV-2 status	SARS-CoV-2 negative	1107 (94.4)	178 (83.6)	<0.001	1386 (100.0)	0
	SARS-CoV-2 positive	66 (5.6)	35 (16.4)			
Age	Mean (SD)	54.5 (18.1)	56.5 (17.8)	0.14	1376 (99.5)	10
Sex	Female	557 (47.7)	103 (48.6)	0.877	1379 (99.5)	7
	Male	610 (52.3)	109 (51.4)			
Ethnicity	Asian	56 (5.6)	17 (9.6)	0.129	1170 (84.4)	216
	Black	8 (0.8)	3 (1.7)			
	Other	147 (12.8)	22 (12.4)			
	White	781 (78.7)	136 (76.4)			
Premorbid ECOG status	0	690 (62.2)	129 (64.8)	0.462	1309 (94.4)	77
	1	268 (24.1)	45 (22.6)			
	2	103 (9.3)	17 (8.5)			
	3	43 (3.9)	5 (2.5)			
	4	6 (0.5)	3 (1.5)			
Smoking	No	749 (68.5)	147 (76.2)	0.041	1286 (92.8)	100
	Yes	344 (31.5)	46 (23.8)			
Follow-up ferritin	Median (IQR)	234.5 (186.5 to 385.2)	496.0 (343.0 to 649.0)	0.667	12 (0.9)	1374
Follow-up LDH	Median (IQR)	250.0 (187.5 to 455.5)	416.0 (299.0 to 426.0)	0.605	44 (3.2)	1342
Follow-up revised Atlanta Classification	Mild	107 (71.3)	13 (72.2)	0.256	168 (12.1)	1218
	Mod-severe	27 (18.0)	5 (27.8)			
	Severe	16 (10.7)				
Follow-up ARDS	Yes	146 (10.5)				
	No	124 (96.9)	18 (100.0)	1		
Follow-up liver steatosis	No	37 (28.7)	7 (38.9)	0.389	147 (10.6)	1239
	Not reported	70 (54.3)	10 (55.6)			
	Yes	22 (17.1)	1 (5.6)			
Admission BMI	Median (IQR)	27.4 (23.8 to 32.0)	25.6 (22.8 to 29.2)	0.012	774 (55.8)	612
Follow-up necrosectomy	Both	2 (1.2)	0.85	177 (12.8)	1209	
	Neither	157 (98.1)	17 (100.0)			
Percutaneous/MIRP	1 (0.6)					

ARDS, acute respiratory distress syndrome; BMI, body mass index; ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase; MIRP, minimally invasive retroperitoneal pancreatic necrosectomy;
seen in autopsy specimens higher than that is diagnosed clinically. Laboratory evidence further suggests there is expression of ACE 2, TMPRSS and NeureoP1 receptors in exocrine and endocrine cells of pancreas which enables SARS-CoV-2 entry and replication, resulting in elevated cytokine levels causing ribosomal dysfunction and pancreatic injury. Recent series have further shown that AP during SARS-CoV-2 infection is frequent in intensive care unit with a third of critically ill patients developing AP.

Hyperglycaemia frequently noted in SARS-CoV-2 infection is likely from viral replication in beta cells causing impaired glucose-stimulated insulin secretion, with glycemic abnormalities detected for up to 2 months after recovery. In the present series, two patients in the positive group developed DM during follow-up and both had severe AP with necrosis which is likely the cause of DM rather than SARS-CoV-2-induced damage.

We have shown that SARS-CoV-2 infection increases the risk of idiopathic AP but not long-term diabetes. Further laboratory studies that can prove replication of SARS-CoV-2 virus in human pancreas cells with resultant cell injury are warranted to establish SARS-CoV-2 virus as an aetiology for AP. Epidemiological studies are needed that can show an increase in the incidence of AP during the current pandemic to further implicate SARS-CoV-2 infection as a cause for AP and will add indirect evidence. Similarly, larger cohort of patients with SARS-CoV-2 with temporal trends to support or refute the long-term risk of developing DM are warranted.

Table 2 Impact of SARS-CoV-2 on mortality, PEI and DM

SARS-CoV-2 negative	SARS-CoV-2 positive*
12-Month mortality after discharge	Ref
DM	Ref
PEI	Ref

*HR for mortality, and OR for DM and PEI, 95% CI, and p value from adjusted logistic regression models. Mortality adjusted for premorbid ECOG performance status and revised Atlanta classification. DM adjusted for sex and revised Atlanta classification. PEI adjusted for age, sex, premorbid ECOG performance status and revised Atlanta classification.

Keith Roberts,17 Kelvin Wang,24 Krish Ravi29 Maria V Coats,36 Marianne Hollywood,31 Mary Phillips,32 Michael Okocha,33 Michael SJ Wilson,34 Nadeem A Ameer,35 Nagappan Kumar,36 Nehal Shah,37 Pierfrancesco Lapolla,38 Connor Magee,39 Bilal Al-Sarireh,40 Raimundus Ludevicius,41 Rami Benhmida,1 Rishi Singhal,36 Sriniivasan Balachandran,1 Smara Demirli Atici,46 Shameen Jaunoo,47 Simon Dwerryhouse,47 Tamsin Boyce,48 Vasileios Charalampakis,48 Venkat Kanakala,50 Zaigham Abbas,50 Nilanjana Tewari,51 Sanjay Pandanaboyana @52,53 COVIDPAN Collaborative Group

1HPB Unit, Freeman Hospital, Newcastle upon Tyne, UK
2UK
3Faculty of Medical and Health Sciences, Department of Surgery, The University of Auckland, Auckland, New Zealand
4University Hospitals Plymouth NHS Trust, Plymouth, UK
5Manchester Royal Infirmary, Manchester, UK
6Aintree Hospital, Liverpool, UK
7Addenbrooke’s hospital, Cambridge, UK
8Heartland hospital, Birmingham, UK
9Princess Alexandra Hospital, Harlow, Essex, UK
10Whittington hospital, London, UK
11The Royal Liver hospital, Liverpool, UK
12Mater Dei Hospital, Malta
13University Hospital Lewisham, Lewisham, UK
14Nottingham City hospital, Nottingham, UK
15Royal Infirmary of Edinburgh, Edinburgh, UK
16Southampton General hospital, Southampton, UK
17Northampton General hospital, Northampton, UK
18St Thomas Hospital, London, UK
19St James’s University Hospital, Leeds, UK
20Bristol Royal Infirmary, Bristol, UK
21Aberdeen Royal Infirmary, Aberdeen, UK
22Derby Hospital, Derby, UK
23Dumfries and Galloway Royal Infirmary, Dumfries, UK
24Wexham Park Hospital, Slough, UK
25Queen Elizabeth hospital, Birmingham, UK
26Wrightington, Wigan and Leigh NHS Foundation Trust, Wigan, UK
27Cheserfield Royal Hospital NHS Trust, Chesterfield, UK
28Glasgow Royal Infirmary, Glasgow, UK
29Mugrove Park hospital, Taunton, UK
30Royal Surrey County hospital, Surrey, UK
31Southmead Hospital, North Bristol NHS Trust, UK
32Forth Valley Royal Hospital, Larbert, UK
33University Hospital of Coventry and Warwickshire, Coventry, UK
34Northern General Hospital, Sheffield, UK
35Pollicino Umberto I, Sapienza University of Rome, Italy
36Arrowe Park Hospital, Wirral, UK
37Gormiston Hospital, Swansea, UK
38Aintree Hospital, Liverpool, UK
39University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
40Doncaster Royal Infirmary, Doncaster, UK
41Department of General Surgery, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Turkey
42Brighton and Sussex University Hospitals NHS Trust, UK
43Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
44The Royal Gwent hospital, Newport, Wales, UK
45South Warwickshire NHS Foundation Trust, Warwick, UK
46James Cook University Hospital, Middlesborough, UK
47Dr. Ziauddin University Hospital, Clifton Karachi, Pakistan
48University Hospitals Coventry & Warwickshire, Coventry, UK
49HPB and Transplant Unit, Freeman Hospital, Newcastle upon Tyne, UK
50Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
51Correspondence to Sanjay Pandanaboyana, HPB and Transplant Unit, Freeman Hospital, Newcastle upon Tyne, UK; s.pandanaboyana@nhs.net
52Correction notice This article has been corrected since it published Online First. The collaborator group has been updated.

Twitter Manu Nayyar @dromanuknayar, Chris Varghese @chrisvarghese98 and Sanjay Pandanaboyana @sanjay_HPB

Collaborators COVIDPAN Collaborative Group: Abeer Alataf (Department of Gastroenterology, Dr. Ziauddin University Hospital, Clifton Karachi, Pakistan); Alexandra Bell (Northern General Hospital, Sheffield, UK); Aleg Alisoo (Kiapepa University Hospital, Klaipeda, Lithuania); Zuhid Bahl (Altnagelvin Area Hospital, Londonderry, UK); Aman Ahmad (St. James University Hospital, Leeds, UK); Anathanda Madhavan (James cook university hospital, Middlesbrough, UK); Andrea Mingoli (Pollicino Umberto I, Sapienza University of Rome, Italy); Angus White (The Royal Gwent hospital, Newport, Wales); Arthur Cotton (Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK); Ashish Patel (East surrey hospital, Surrey, UK); AYOBAbola A Amapa (Royal Liverpool hospital, Liverpool, UK); Bakhatskayar (Western and Social Care Trust, Alttagelvin, Northern Ireland, UK); Bamidele Famcouwus (Wexham Park Hospital, Slough, UK); Blakey Rybinski (University Hospitals Plymouth NHS Trust, Plymouth, UK); Bruno Cirillo (Pollicino Umberto I, Sapienza University of Rome, Italy); Bryony Ford (University Hospitals Plymouth NHS Trust, Plymouth, UK); Caitlin Jordan (Mugrove Park hospital, Taunton, UK); Caitin Jones (Glasgow Royal Infirmary, Glasgow, UK); Chris Varghese (Auckland University, Auckland, New Zealand); Charalampos Konstantinou (Warwick Hospital, Warwick, UK); Charles Geoffrey, Dermot Stewart (Mugrove Park hospital, Taunton, UK); Colin Wilson (Freeman hospital, Newcastle upon Tyne, UK); Daniel Marshall (St James’ University Hospital, Leeds, UK); David Boume (Freeman hospital, Newcastle upon Tyne, UK); Danny Chandla (University Hospital Coventry and Warwickshire, Coventry, UK); Degeçan Yelil (University of Health Sciences Tepecik Training and Research Hospital, Department of General Surgery, Izmir, Turkey); Dharmed Trivedi (Southampton general hospital, Southampton, UK); Duncan Rutherford (Forth Valley Royal Hospital, Larbert, UK); Ebru Sen Freit (Northampton General Hospital, Northampton, UK); Eleanor Massie (Forth Valley Royal Hospital, Larbert, UK); Elizabeth Ward (Royal Infirmary of Edinburgh, Edinburgh, UK); Ellen Murfitrody
(Royal Infirmary of Edinburgh, Edinburgh, UK); Emily Britton (Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK); Euan J Dickson (Glasgow Royal Infirmary, Glasgow, UK); Evripidis Tokidis (Chesterfield Royal Hospital NHS Trust, Chesterfield, UK); Faris Soliman (Morriston Hospital, Swansea, Wales, UK); Francesco Albo (Mater Dei Hospital, Malta); James Hopkins (Southmead Hospital, Bristol, UK); Mohammed Hammoda (Morriston Hospital, Swansea, Wales, UK); Jahangir Hossain (Heartlands Hospital, Birmingham, UK); Muneeb Zafar (Fr imley Park Hospital, Cambridgeshire, UK); Ghazaleh MOHAMMADI-ZANIANI (Freeman Hospital, Newcastle Upon Tyne, UK); Gregory Gordon (Nottingham city hospital, Nottingham, UK); George Ugwu (Doncaster Royal Infirmary, Doncaster, UK); George Brown (St James hospital, Leeds, UK); Giulia Brachini (Policlinico Umberto I, Sapienza University of Rome, Italy); James Walsmey (Northampton General Hospital, Northampton, UK); Shabuddin Khan (Northampton General Hospital, Northampton, UK); Harriet Wheelie (The Royal Gwent Hospital, Newport, UK); Harry VM Spiers (Addenbrooke’s hospital, Cambridge, UK); Henry D De Ath (Fr imley Park Hospital, Cambridgeshire, UK); Hu Ying Charmaine Chan (Southampton University Hospital, Southampton, UK); Imran Bhatti (Royal Derby Hospital, Derby, UK); Islam Noaman (Royal Infirmary of Edinburgh, Edinburgh, UK); Ismail Sert (University of Health Sciences Tepeck Training and Research Hospital, Department of General Surgery, Izmir, Turkey); James A Gossage (Kings College Hospital, London); Jack Martin (Addenbrooke’s hospital, Cambridge); James Blackwell (Nottingham city hospital, Nottingham, UK); James Williams (Bristol Royal Infirmary, Bristol, UK); Jasmine Grace Moore (Aberdeen Royal Infirmary, Aberdeen, UK); Jonathan Sevel (Addenbrooke’s hospital, Cambridge); Jeremy Fenech (Mater Dei Hospital, Malta); John Leeds (Freeman Hospital, Newcastle Upon Tyne); Kofi Oppong (Freeman Hospital, Newcastle Upon Tyne); Anitha James (Wexham Park Hospital, Slough, UK); Heba Ali (Western Health and Social Care Trust, Altnagelvin, Northern Ireland); Harriet Wheelie (The Royal Gwent Hospital, Newport, UK); Jenny Wheatley (The Royal Gwent Hospital, Newport, UK); Louise Silva (University hospital Lewisham, London, UK); Louise Howse (University Hospital Lewisham, London, UK); Mohammed abousamra (Altnagelvin Area Hospital, Altnagelvin, Northern Ireland); Victoria Morrison-Jones (Southampton General Hospital, Southampton, UK); John Moor (Freeman Hospital, Newcastle Upon Tyne).

Contributors MN and SP were responsible for manuscript preparation, study concept and critical review. CV helped in manuscript preparation and critical review, All COVIDPAN Collaborators recruited patients.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not applicable.

Provenance and peer review Not commissioned; internally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.