A Comprehensive Review of Sign Language Recognition: Different Types, Modalities, and Datasets

M. MADHIARASAN1*, Member, IEEE 1*Department of Computer Science and Engineering, Indian Institute of Technology Roorkee, PARTHA PRATIM ROY2, Member, IEEE 2Department of Computer Science and Engineering, Indian Institute of Technology Roorkee

Abstract—A machine can understand human activities, and the meaning of signs can help overcome the communication barriers between the inaudible and ordinary people. Sign Language Recognition (SLR) is a fascinating research area and a crucial task concerning computer vision and pattern recognition. Recently, SLR usage has increased in many applications, but the environment, background image resolution, modalities, and datasets affect the performance a lot. Many researchers have been striving to carry out generic real-time SLR models. This review paper facilitates a comprehensive overview of SLR and discusses the needs, challenges, and problems associated with SLR. We study related works about manual and non-manual, various modalities, and datasets. Research progress and existing state-of-the-art SLR models over the past decade have been reviewed. Finally, we find the research gap and limitations in this domain and suggest future directions. This review paper will be helpful for readers and researchers to get complete guidance about SLR and the progressive design of the state-of-the-art SLR model.

Index Terms—Artificial Intelligence, Sign Language Recognition, Datasets, and Human-Computer Interaction.

I. INTRODUCTION

According to the WHO (World Health Organization) report, over 466 million people are speech or hearing impaired, and 80% of them are semi-illiterate or illiterate [1]. Non-verbal manner conveys and communicates our views, emotions, and thoughts visually through sign language. Compared to spoken language, sign language grammar is quite different. A sign comprises specific hands, shapes, or signals produced in a particular location on or around the signer’s body combined with a specific movement.

Hand gestures, signals, body movements, facial expressions, and lip movements are the visual means of communication used by the hand-talk community and ordinary people to convey the meaning; We recognize this language as a sign language. Sign language recognition (SLR) is challenging and complex, and many research opportunities are available with the present technology of artificial intelligence. A taxonomy of SLR is shown in Figure 1. It comprises datasets, input modality, features, classification, computational resources, and applications. The dataset is further classified into isolated sign dataset and continuous sign dataset. Vision-based modality and sensor-based modality are the general types of input modality. Hand movement, facial expression, and body movement are the major features that concern SLR. Classification is typified into traditional methods (HMM, RNN, etc.), deep learning (CNN), and hybrid method (combination of traditional and deep learning or combination of deep learning and optimization algorithm).

SLR aims to understand the gestures by suitable techniques, which requires identifying the features and classifying the sign as gesture recognition. In the literature, there is no comprehensive review paper addressing the aspect of the modality (vision and sensor), different types (isolated (manual and no manual) and continuous (manual and no manual)), various sign language datasets, and state-of-the-art methods based studies. This review study focuses on SLR-based research work, recent trends, and barrier concerns to sign language. Different sign languages, modalities, and datasets in sign language have been discussed and presented in tabular form to understand better. From databases like IEEE explore digital library, science direct, springer, web of science, and google scholar, we used the keywords sign language recognition to identify significant related works that exist in the past two decades have included for this review work. We excluded papers other than out-of-scope sign language recognition and not written in English. The contributions to this comprehensive SLR review paper are as follows:

\begin{itemize}
 \item Carried out a review of the past two decades of published related work on isolated manual SLR, isolated non-manual SLR, continuous manual SLR, and continuous non-manual SLR.
 \item Discussed different sensing approaches for sign language recognition and modality
 \item This paper presents SLR datasets concerned with isolated and continuous, various sign languages, and the complexity of the datasets discussed.
 \item Discussed the framework of SLR and provided insightful guidance on SLR
\end{itemize}
Sign Language Recognition

Fig. 1: SLR Taxonomy: the fundamental attributes of SLR like datasets, modality, features, classification, computation resources, and application, along with each attribute’s categorization are shown here. Large-scale datasets and modalities affect the recognition performance. The efficient features extraction method and classification model with efficient power computation resources lead to high performance.

- Point out the limitations related to the dataset and current trends available in the SLR and potential application of SLR with human-computer interaction.
- This paper studied the results of the current state-of-the-art SLR model regarding the various benchmark SLR datasets for isolated and continuous SLR.
- This paper analyzes current SLR issues and advises future SLR research direction.

A. Need of SLR

As per WHO statistics, around 5% of the population in the world suffers from a lack of hearing power. According to the prediction of the United Nations, the number of deaf people in 2050 will be 900 million [1]. Hence, SLR receives a lot of attention at present. SLR can eliminate the communication gap between the hand-talk community (deaf and dumb). Also, SLR helps to improve communication in the following ways.

- It reduces the frustration of the hand-talk community.
- The communication barrier overcome by SLR leads to effective communication.

Much research endeavored to develop high-performance SLR. Despite that, it is challenging, and it is one of the recent research fields with enormous research scope.

B. Challenges

SLR comprises numerous gestures and facial expressions, making it complex and challenging. In addition, to the manual components, lip shapes and eyebrow positions distinguish similar signs; e.g., many manual signs seem to be of a similar pose. However, these can be differentiated with the help of facial expression and lip movement. Sign language comprises hand movement, shape, position, orientation, palm posture, finger movement, facial expression, and body movements. These components highly influence the performance of SLR.

Some of the barriers and problems of SLR are tabulated in Table I. With the advance of hardware, efficient algorithms can improve the processing speed. The scaling and image orientation problems can be resolved with recent deep learning techniques. The illumination problem can be overcome if the RGB is converted to HSV (Hue Saturation Value) or Ycbcr (Luminance Chrominance). Dynamic and non-uniform background environment problems could be resolved using the skin region and background subtraction method.

C. Procedure involved in SLR

The SLR involves data collection, preprocessing, feature extraction, and classification phase. The block diagram of SLR and its general process is demonstrated in Figure 2. These stages are discussed in the following. Note that, for the sensor-based approach, preprocessing and segmentation are optional.

Data Collection: In SLR, the data acquisition is performed using one of two modes; Vision and Sensor. In a vision-based approach, the input is an image or video [2], [3]. A single
TABLE I: SLR Barrier, and Problem: We discussed how the barriers (dynamics, illumination of lights and environment, scaling, and computation time) of SLR cause a problem.

Barrier	Problem
Computation speed and time	Create complexity to the system and take a lot of computation time.
Scaling and image orientation problem	The distance of input data capturing various signers.
Illumination of light	Performance varies with different illumination scenarios because most models use the RGB model. It is highly illumination sensitive.
Dynamic and non-uniform background environment	The noise, improper detection of hand, and face lead to affect the performance and mislead the sign recognition system.

![Diagram](image)

Fig. 2: (a) SLR (b) General process flow of SLR. Figure (a) illustrates the native signer performing sign conversion into text with the help of a human-computer interface, and figure (b) illustrates the procedural stages of SLR. The recognition rate highly depends on the data set, preprocessing, feature extraction, and classifier.

The camera is used to collect standard signs while multiple cameras, active and invasive devices, help collect the depth information. Video camera, webcam, or smartphone device [4], [5], [6], [7] captured the continuous motion. The sensor-based approach collects the signal with the use of the sensor [8], [9], [10], [11].

Image Preprocessing: The performance of the SLR system can be improved by preprocessing methods such as dimension reduction, normalization, and noise removal. [12].

Segmentation: The segmentation stage splits the image into various parts or ROI (Region of Interest) [13], Skin Colour Segmentation [14], HTS (Hands Tracking and Segmentation) [15], Entropy Analysis and PIM (Picture Information Measure) [16]. The background requires the hand gesture extraction to be done effectively by segmentation and tracking process.

Tracking: Tracking of hand position and facial expression from the acquired image/video can be performed using camshaft (continuously adaptive mean shift used to track the head position) [17], Adaboost with HOG (Histogram of the gradient) [18], Particle filtering (KPF-Kalman Particle Filter) [19].

Feature Extraction: Transforming preprocessed input data into the feature space is known as feature extraction. Further, it is discussed in detail in section 2.

Data Base: The acquired data (image/video) is stored in the database and classified into two sets, namely training and testing datasets [20]. The classifier learns by training dataset and the performance is evaluated by testing data.

Classification: The classifiers perform the classification by extracting features and classify the sign gesture. The Hidden Markov Model (HMM) [9], [21], Long-Short Term Memory (LSTM) [22] Deep Learning network [23], and hybrid classifier [2], [24] are used as classifiers to recognize sign language.

Evaluation Stage: The performance of a trained classifier is validated with a testing dataset (unseen data during training) [25]. The error incurred during classification gauges sign recognition performance.

Although there are few review papers in the literature [26], [12], however, they lack focus and understanding of SLR. This paper provides a comprehensive SLR preamble, recent research progress, barriers or limitations, research gap, and future research direction and scope. We organized the rest of the review paper as follows. Section 2 presents sign language modality, preprocessing, and the various feature extraction methods in SLR. Carried out a literature review concerning the manual and non-manual aspects of SLR in Section 3; Section 4 discusses and illustrates the classification architecture of SLR. Section 5 presents various types of SLR, datasets concerning SLR, and reviews work related to the modalities, current state-of-the-art models based on SLR. The recent trends, challenges, and limitations are highlighted in Section 6. Sections 7 and 8 pointed out future research discussion and conclusion, respectively.
TABLE II: The importance of vision-based and sensor-based methods are shown here according to the obstacle, cost, merits, and demerits. Much research work focuses on vision-based SLR because of its feasibility in real-time applications.

Method	Capturing Device	Obstacle	Efficiency	Cost	Limitation	Advantage
Vision-based Method	Video Camera	Environment, disturbance, and noise.	Low (depends on the resolution).	Low	Possess challenging concerns for time, speed, and overlapping. More Feature extraction techniques are required.	Fast Speed.
Sensor-based or gloves-based Method	Sensors and gloves	Environment, disturbance, and noise.	Better than vision-based method (depends on sensor performance).	High	Not suitable for real-time application.	Better performance. Require minimal feature extraction.

Fig. 3: SLR Types: Vision-based SLR and sensor-based SLR are the SLR types. It is further, classified into manual and non-manual, then isolated and continuous.

SLR provides efficient performance.

Vision-based approach: The gestures captured by multiple cameras (or webcam) are recognized using the vision/image-based approach. From the captured image/video, it extracts palm, finger, and hand movement features. With the help of these extracted features, classification was performed. Poor illumination or lighting environment, noisy background, and blurring present in the image result in misclassification. Although vision-based SLR is suitable for real-time conditions, it must adequately care for preprocessing, feature extraction, and classification.

II. Modalities of SLR

SLR is one of the most prominent research areas in computer vision and natural language processing. In concern to the acquisition process, the SLR system is classified as a sensor-based and vision-based approach. Both approaches are next classified as manual and non-manual, and further classified as isolated and continuous. Figure 3 illustrates the SLR types. Much research work focused on isolated manual-based SLR. Only a little research work addressed continuous non-manual SLR.

Sensor-based approach: Physically attached sensors acquire trajectories of the head, finger, and motion of the signer. Sensor-associated gloves track the signer’s hand articulations and recognize the sign. The comparison of SLR methods shown in Table II clarifies vision and sensor-based approaches. In contrast with vision-based SLR, sensor-based approaches are best suited for continuous and isolated. Further, on the basis of the system and the objective, SLR is classified as manual and non-manual. From the collected image/video, it extracts palm, finger, and hand movement features. With the help of these features, classification was performed. Poor illumination or lighting environment, noisy background, and blurring present in the image result in misclassification. Although vision-based SLR is suitable for real-time conditions, it must adequately care for preprocessing, feature extraction, and classification.

Method	Year	Author
FPM (Feature Pooling Module)	2020	Sinic and Keles [27]
Histograms of oriented gradients	2016	Chansri and Srimonchat [28]
Euclidean distance	2016	Pansare and Ingle [29]
DWT (Discrete Wavelet Transform)	2013	Singha and Das [30]
SIFT (Scale Invariant Feature Transform)	2012	Gurbuz et al. [31]
SURF (Speeded Up Robust Feature)	2012	Yao and Li [32]
Fourier Descriptors	2017	Kumar [33]
PCA (Principal Component Analysis)	2015	Shukla et al. [34]
Fuzzy neural network	2016	Duir and Sharma [35]

SLR provides efficient performance.

Vision-based approach: The gestures captured by multiple cameras (or webcam) are recognized using the vision/image-based approach. From the captured image/video, it extracts palm, finger, and hand movement features. With the help of these extracted features, classification was performed. Poor illumination or lighting environment, noisy background, and blurring present in the image result in misclassification. Although vision-based SLR is suitable for real-time conditions, it must adequately care for preprocessing, feature extraction, and classification.

A. Preprocessing

The computational burden of data processing could be reduced by preprocessing methods. Image reduction and image conversion methods do the size reduction and conversion from color to gray scale. Image reduction methods reduce the burden of data processing. The unwanted object can be removed by the histogram equalization [39]. The noise present in the image are removed using the filter, like median, moving average method, and so on [40]. Gaussian average methods are used to remove the image background component [41]. Filters perform removal of the unwanted components and minimize the size of the data with the help of image edge detection algorithm [42]. The filter process speeds up with the help of fast Fourier transformation because instead of an image, the frequency domain is used [43]. The image is split into possible segments [44]; masking is used in segmentation.
to improve processing. Elimination of background effect using binarization histogram equalization aid for better image contrast. Normalization methods can effectively handle the variance in the data [45].

B. Feature Extraction

In SLR, relevant feature extraction plays a vital role. It is crucial for sign language, as irrelevant features lead to misclassification [46]. The feature extraction aid in accuracy improvement, and speed [47]. Some of these feature extraction method include SURF (Speeded Up Robust Feature) [34], speed up robust feature (Laplace of Gaussian with box filter) [34], SIFT (shift-invariant feature transform) [33], PCA (Principal Component Analysis) [37], [4], LDA (Linear Discriminant Analysis) [48], Convexity defects and k-curvature [49], time domain to frequency domain [31], [35], Local binary pattern, etc. The feature extraction methods used for SLR-based study is tabulated in Table III. Various feature extraction methods are showed in Figure 4. Feature vector dimension reduction performed by PCA, LDA, etc. aid in reducing the computational burden on the classifiers. The dimensionality pruning, features reduction, and lowering of the dimension keep the significant features of high variance and minimizing remaining features, thus, reduces the training complexity. Fourier descriptors are noise resistance and invariant to scale, orientation, and normalization is easy. The process of transforming the correlated into an uncorrected value is known as principal component analysis. Original data are linearly transformed effectively, and the feature vectors get reduced.

The preprocessing and feature extraction methods aid the classifier. Also, they reduce the computation burden, avoid overfitting issues, and wrong recognition possibilities. SIFT’s merits are invariant to lighting, orientation, and scale. However, the performance is not satisfactory [33]. Using Histogram of Oriented Gradients (HOG) [28], the unwanted information is removed, keeping the significant features to ease the image processing. The feature vectors are obtained using the computation of gradient margin and angle. As HOG cell size and the number of bins increase, the extracted feature also increases. Larger subdivisions furnish global information, and small subdivisions given local information that is worthwhile. The demerits of both the methods are that they require more memory. SURF is invariant to image transformation and a faster feature extractor than SIFT. Still, it has the requirement of camera setup in horizontal position for better performance, and the disadvantage is illumination-dependent, not rational. Location and frequency captured using a Discrete Wavelet Transform. Temporal resolution is the critical merit of DWT [31], [32].

III. LITERATURE STUDIES ABOUT SLR

Sign language is not generic; it varies according to the region and country [1]. The sign language classification is available in over 300 sign languages worldwide, namely ASL, BSL, ISL, etc. According to Ethnologue 2014 [50] in the United States, ASL is a native language for around 2,500,000-5,000,000 people. Chinese Sign Language is being used in China by approximately 1M to 20M deaf people. Approximately 1,50,000 people in the United Kingdom use British Sign Language (BSL). In Brazil, approximately 3 million signers use Brazilian Sign Language to communicate, like Portuguese Sign Language or French Sign Language. According to Ethnologue 2008 in India, approximately 1.5 million signers use Indo-Pakistani Sign Language.

SLR is not only meant for deaf and mute people. Ordinary people also communicate information in the noisy area of public places and the library without disturbing others. Manuel (communication by hands) and non-manual (communication by body posture or facial expression) medium are usually used in sign language. People use sometimes finger spelling which is communicated by splitting words into letters, then spelling the letter using fingers). Manual and non-manual SLR are discussed in detail in following subsections.

A. Manual SLR

Hand motion, hand posture, hand shape, and hand location are the manual sign components. Figure 5 shows the manual sign components. With one hand or two hands, the signer usually communicates with others. The manual SLR is classified into isolated and continuous.

1) Isolated Manual SLR: The literature work on isolated manual SLR are as follows:

Classical methods: Ong et al. [51] suggested sequential Pattern Tree-based multi-class classifier for DOS (German Sign Language (Deutsche Gebärdensprache) and Greek Sign Language (GSL) recognition. Their proposed SP-Tree Boosting algorithm-based recognition model performs better than the Hidden Markov Model. Chansri and Srinonchat [28] proposed data fusion incurred ANN-based Thai SLR model. They extracted the hand feature using histograms of oriented gradients, and they did classification using a back-propagation algorithm associated with an ANN. Yin et al. [52] performed hand gesture recognition using a joint algorithm based on BP and template matching method combination. The joint algorithm takes computation time as 0.0134 and an accuracy of 99.8% was achieved for isolated hand gesture recognition. Jane and Sasidhar [53] carried out an ANN classifier with an association of data fusion. They performed three hidden layers of artificial neural network with wavelet denoising and TKEO (TeagerKaiser energy operator) methods for a SEE (Signing Exact English). Based on this approach, the recognition rate is 93.27%. Korean finger language recognition model was developed based on ensemble ANN [11]. The performance was
analyzed by varying dataset size (50 to 1500) and classifier (1 to 10). The comparative analysis of eight ANN classifier-associated ensemble models identifies 300 training datasets as an optimal structure to lead to 97.4 % recognition accuracy for Korean finger language recognition.

Almeida et al. [54] extracted seven vision-based features using RGB-D sensor. They recognized Brazilian Sign Language with an average of 80% using the SVM. They did phonological structure-based decomposition and extraction of signs. Hence, they suggested a model suitable for other SLR purposes. Fatmi et al. [9] performed SLR based on ANN and SVM. They have compared their performance with HMM. Comparison with other machine learning techniques to ASL words, higher accuracy achieved by proposing ANN. Lee and Lee [55] developed SVM based on a sign language interpretation device with 98.2 % recognition accuracy. SVM classifier-based sign interpretation device developed system. Wei et al. [10] presented the CSL sign recognition model using a code matching method by including a fuzzy K-mean algorithm. They determined subclass by a fuzzy K-mean algorithm and classification was done with the Code matching method. Li et al. [56] suggested ASL recognition prototype model based on KNN, LDA, and SVM classifiers. They carried out a prototype model based on LDA, KNN, and SVM classifiers using a firmly stretchable strain sensor for ASL 0-9 number sign recognition. The authors reported that the model achieved an average accuracy of 98%.

Yang et al. [57] performed a Chinese Sign Language (CSL) recognition model based on sensor fusion decision tree and Multi-Stream Hidden Markov Models classifier. They developed a wearable sensor associated with the Chinese SLR model with user-dependent and user-independent using Multi-Stream Hidden Markov Models. The searching range improved by optimized tree-structure classification. Dawod and Chakpitak [58] carried out work on real-time recognition model for ASL alphabets and numbers sign recognition. They used RDF (Random Decision Forest) and HCRF (Hidden Conditional Random Field) based classifiers and Microsoft Kinect sensor v2 for the data collection. The HCRF classifier-based recognition model gets the mean accuracy for numbers-based sign recognition as 99.99% and alphabets sign recognition as 99.9%. The RDF-based recognition model achieved mean accuracy for number sign recognition as 96.3% and alphabets sign recognition as 97.7%. Hence, the HCRF based sign recognition model leads to better performance than RDF for both ASL numbers and alphabets recognition. Hřúz et al. [59] presented a Hidden Markov Model-based Czech SLR model with an association of kiosk. Also, they performed SLR, automatic speech recognition, and sign language synthesis.

Mummadi et al. [60] proposed an LSF model based on IMU sensors associated with wearable hand gloves with various classifiers like naïve Bayes, MLP, and RF. Real-time wearable IMU sensor-based glove-associated sign recognition model developed for LSF recognition instead of complimentary filter advanced fusion strategy and the advanced classifier can improve the accuracy rate. Botros et al. [8] presented a comparative analysis of wrist-based gesture recognition using EMG signal. Forearm and wrist level-based gesture are recognized using EMG signal. Gupta and Kumar [61] performed a wearable sensor-based multi-class label incurred SLR model. The LP-based SLR model has a minimal error and computation time than the tree-based, BR (binary relevance), and CC (Classifier Chain) based sign recognition models. Compared to the classic tree classification model, the suggested model performs well with minimal classification errors. Hoang [62] presented a new vision-based captured ASL alphabets sign dataset (HGM-4). With this dataset, using a classifier, developed a contactless SLR system.

Deep learning approaches: Al-Hammadi et al. [46] performed sign dependent and sign independent SLR using three datasets using single and fusion parallel 3DCNN. The proposed model gets a better recognition rate than other considered six existing literature methods. Sincan and Keles [27] performed CNN and LSTM based SLR model for Turkish SLR. The feature extraction improved by FPM (Feature Pooling Module), convergence speeds up using the attention model. Yuan et al. [24] pointed out DCNN (deep convolution neural network and LSTM (long short-term memory) based model for hand gesture recognition. The residual module has overcome the gradient vanishing and overfitting problem. Complex hand gesture long-distance dependency problem addressed by improved deep feature fusion network. Compared to Bayes, KNN, SVM, CNN, LSTM, and CNN-LSTM, the DFFN based model performs well on ASL and CSL datasets.

Aly and Aly [2] designed an Arabic SLR model using BiLSTM (deep Bi-directional Long Short Term Memory recurrent neural network). Convolutional Self-Organizing Map for hand shape feature extraction, and DeepLabv3+ extracts hand regions. The suggested model proved validity on signer-independent real Arabic SLR. The proposed model is suitable for an isolated sign, and continuous sign-based analysis can be a future direction. Rastgoo et al. [3] carried out work on a multi-modal and multi-view hand skeleton-based SLR model. Features fusion and single-view vs. a multi-view projection of hand skeleton-based performance analysis performed. SSD (Single Shot Detector), 2DCNN (2D Convolutional Neural Network), 3DCNN (3D Convolutional Neural Network), and LSTM (long short-term memory) based deep pipe-line architectures were proposed to recognize the hand sign language automatically. Lee et al. [22] designed the k-Nearest-Neighbour method associated with Long-Short Term Memory (LSTM) recurrent neural network-based American SLR model. The leap motion controller is used to gain the sign data. Compared to SVM, RNN, and LSTM models, the proposed model (LSTM with KNN) outperforms 99.44%.

For a clear understanding, the research work related to isolated manual SLR are tabulated in Table IV and graphical representation is shown in Figure 6. The recognition model results in good accuracy for isolated sign recognition, not assured to be generalized for continuous sign recognition with better precision.

2) Continuous Manual SLR: Processing one-dimensional data is simpler compared to handling a high-dimension dataset like video [63]. Continuous SLR with uncontrolled environment-based SLR is quite complex as there is no clear pause after each gesture.
| Year | Author | Method | Pros | Cons | Accuracy or Result | Sensor | Sample and Location Size | Model Type | Dataset | |
|---|---|---|---|---|---|---|---|---|---|---|
| 2021 | Main et al. [24] | CNN (Convolutional Neural Network) and LSTM (Long Short-Term Memory) | Wearable gloves-based head gesture recognition model. Real-time feature-based analysis with the uncontrolled environment not performed to prove the validity. | Recognition accuracy: 98.99% for SSL and 96.1% for CSL. | 2-Dimensional 3D sensor-based glove, gyroscope, accelerometer, and bending sensor. | 20 SSL alphabets, daily activities for SSL, 6 subjects. | American Sign Language. Chinese sign language. | A trial of SSL hand motions of SSL alphabet, 100 daily life activities sign of CSL with a total of 5,492 hand motions. | 21 kipper-signs per participant of 5-single finger, 6 multi-finger gestures, and 6 wrist gestures are collected. |
| 2021 | Motoki et al. [8] | Linear Discriminant Analysis (LDA) used as a classifier. PCA used to reduce the dimension. | The reliable wearable device, less affected by noise. | Classification and feature-based experiments was lacking limited regard to the dataset. | For multi-finger gestures, accuracy: 91.2%, single-finger gesture: 92.1%, and conventional wrist gestures: 94.1%. | EMG sensor | 17 subjects: single-finger, multi-finger, and wrist gestures. | Human-computer interaction: Hand gesture sign. | 21 kipper-signs per participant of 5-single finger, 6 multi-finger gestures, and 6 wrist gestures are collected. |
| 2021 | Lee et al. [22] | K-Nearest-Neighbour method. Long-Short Term Memory (LSTM), and Recurrent Neural Network. | Suitable for real-time environment experimentation. | One sign-based recognition model only considered for real-time. | Recognition accuracy: 93.44% and validation (5-fold cross-validation) for SSL: 91.9%. | Large motion controller. | 20 SSL alphabets, 100 subjects. | American Sign Language. | 2000 samples (26-1000 samples). |
| 2020 | Gupta and Kumar [84] | Multi-sign classification | Computation time is less. Inexpensive and continuous sign based on experimentation was lacking. | LDP-DNN (power cell model) average classification error: 2.1%. | No cameras (front, back, right, and left). Inexpensive vectors. | 4 cameras (front, back, right, and left). Inexpensive vectors. | American Sign Language. | 4,100 samples. |
| 2020 | Ali-Maskiim et al. [40] | Single-SCNN, and PARALLEL SCNN. | Better recognition rate, with multi-threaded well with three datasets. | Optimal selection of hyperparameters proving real-time practical implementation with a live sign was lacking. | Recognition rate for dataset 1 (SSL-ARABIC SIGN LANGUAGE) single SCNN signer-dependent model: 96.99%, signer independent recognition rate: 72.52%, parallel SCNN signer-dependent model: 98.12%, and signer independent recognition rate: 84.89%, for dataset 3 (ARABIC SIGN LANGUAGE) signer-dependent model: 70.67% and signer independent recognition rate: 79%. | Robotic mirrors. | Dataset 1: 20 subjects, 40 gesture classes, dataset 2: 35 subjects, 25 gestures, 100 samples, dataset 3: 43 classes, 40 gestures. | American Sign Language, Arabic Sign Language, Turkish Sign Language. | 6000 samples, signer independent total 6400 videos samples. Dataset 2: signer dependent total 3444 samples, signer independent total 3444 samples. Dataset 2: signer dependent total 280 samples, signer independent total 280 samples. |
| 2020 | Ali and Aly [12] | Convolutional SCNNs, deep Bi-directional LSTM network, and DeepRefNet. | Sign-independent combination sign recognition model. | Experiments performed with a limited number of signs. | Accuracy without segmentation: 69.1% and with segmentation: 99.5%. | Video camera. | 27 words, 150 sign expressions, and 3 subjects. | Arabic sign language. | 300 samples. |
| 2020 | Riasugi et al. [7] | Single-Sensor Algorithm, SSD (Single Shot Detector), SCNN (Convolutional Neural Network), SCNN (3D Convolutional Neural Network), and LSTM (Long Short-Term Memory). | Large-scale hand sign language dataset presented. | Complex model. | Recognition accuracy: 98.24% for the RSA-REHABINATION dataset, 92.16% for Fire-Prevent datasets, and an average estimation error 1.2824 for the NYU dataset. | No-camera (RGB). | 100 sign words, 10 subjects, 10 various environment. | Persian sign language. | Face-Press (of hand gesture, 100 K frames), NYU (36 joints, 81,000 image sequence), and RKS-PERSIANSIGN (100 signs, 10,000 samples) datasets. |
| 2019 | Sinteran and Niles [27] | ONS (Orientation Neural Networks), Features, Scaling Modulo, unidirectional and bidirectional LSTM (Long Short-Term Memory). | New AVASL dataset presented. | Accuracy is lagging state-of-the-art methods but is affected by the dynamic background. | AVASL dataset-based recognition model accuracy: 96.1% and for signer-dependent benchmark dataset accuracy: 92.0%. | No-camera (RGB). | Microsoft Kinect v2. | AllSSL and Montalebano dataset, 200 subjects. | All SSL & 38.56 samples, Montalebano 16480 samples. |
| 2018 | Dostad and Chakravarti [59] | HCRP (Hidden Conditional Random Field), and RDRF (Random Forest). | Higher recognition rates. | The authors fail to perform quantitative-based analysis. | MBP classifier mean accuracy (numbers): 93.99%, and alphabets: 87.78%, FI score: 91.1%, RF method accuracy: 92.95%, and SVM accuracy: 97.7%. | Kinect sensor v2. | A-Z alphabets and 1-20 numbers, 30 subjects (signer). | American Sign Language. | Sign language. | 30,000 distances captured, among 66% used for training and remaining used for testing. |
| 2018 | Jirit et al. [3] | ANN, SVM, and HMM. | Functioning ability on a PC with Bluetooth Low-Energy (BLE) connections. | The limitation is not unstructured non-manual, and dictionary rate is limited. | 4: ANN: 93.95%, 2: HMM: 85.96%, and 3: SVM: 87.04%. | 4 classifiers (3D gyroscope, 3D accelerometer) on mobile devices. | 15 SSL gestures signs, 5 subject. | American Sign Language. | 3,600 sentences captured, among 66% used for training and remaining used for testing. |
| 2018 | Jung et al. [8] | Linear Discriminant Analysis (LDA). | Simplest form to train device. | The limitation is that calibration is required, and dictionary accuracy depends on calibration, and time also elapsed. | Accuracy for sign gestures: 92.69% and for surface gestures: 88.8%. | Mobi Armist (3G voice motion and depth) | 200 SSL alphabets, daily activities for SSL, 6 subjects. | American Sign Language. | Sign language. | 30,000 distances captured, among 66% used for training and remaining used for testing. |
| 2018 | Mannan et al. [60] | Neural Beys, Feed-forward Neural Network (MEP), Random Forest are used as a classifier. A complementary Filter with a coefficient factor of 0.015 was used to obtain low drift and noise data. | 65 millisecond time taken to recognize the sign (setting times and delays are faster and minimized respectively than local fusion algorithm with IMU motion sensor-based methods). | The performance of the model is dependent on sensor noise and delay. Distance between sensor and hand increase, accuracy decreased. | Neural Beys method accuracy: 89.1%, and FI score: 90.87%, MLP method accuracy: 92.2%, and FI score: 91.1%, RF method accuracy: 92.95%, and SVM accuracy: 99.8%. Mean accuracy 92% and mean FI score: 91.9%. | 2D gestures. | 22 hand-gestures, 57 gestures. | Brazilian sign language (LIS). | 1.5 million samples. |
| 2018 | Kim et al. [11] | Esefice Feed-forward Neural Networks. | Easy to wear, adaptable to portable devices. | Selection of hyperparameters was not addressed, and convergence and assimilation problems. | E-ANN with 4 Channels classifier: 97.4%. | ArmPed module (9 channels electromyography (EMG) sensor). | 7 numbers, 17 vowels, 14 consonants, and 17 subjects. | Korean sign language. | 1500 training data. |
| 2018 | Sato and Sashida [53] | Artificial neural networks, wearable sensing techniques, and TKEO (Takagisaka energy operator). | Easy to implement. | Multiaxis independent sign recognition was not addressed. | Average accuracy: 89.1%. | Mobi Armist (3G voice motion and depth) | 1024 electro-wires. | Sizing Board English (SBE-III). | 402 samples, 304 gestures. |
| 2018 | Li et al. [98] | K-Nearest Neighbor, Linear Discriminant Analysis, and Support Vector Machines. | Less interference, cost-effective, and wearable comfort. | The model was not robust in nature. Hyphen characteristics and noise present in the sensor lead to misclassification. | LDA accuracy: 97.81%, KNN accuracy: 97.96%, SVM accuracy: 97.98%, and ASL recognition for 0.9 average accuracy: 98%. | Flexibly stretchable stream sensor (Custom Gloves). | Six subjects 0.9 SSL sign. | American Sign Language. | 10 trials of each gesture by 6 subjects, 540 data samples. |
| Year | Author | Method | Pros | Cons | Accuracy or Result | Sensor | Sample and Lexicon Size | Model Type | Dataset |
|------|--------|--------|------|------|-------------------|-------|------------------------|----------|--------|
| 2018 | Yin et al. [52] | Template Matching, BP neural network, and Combined Model. | High recognition rate data glove. | Dynamic gesture recognition based research was not performed, and data-glove barrier is there; and only a single background effect considered for the experiment fail to generalize in other background. | Template Matching accuracy: 98.7%, 2. Forward Neural Network accuracy: 98.4%, combined model accuracy: 99.8%. | Custom Glove (Flex Sens. x5, Flex Sens. x2), Pressure Sens. (x4), five flex sensors, two pressure sensors, and a three-axis inertial motion sensor. | 26 gesture patterns (26 ASL letters, 2 signs), 12 subject. | Combined model. | 1000 different data for each gesture from 5 different signers, a total of 5000 data. |
| 2018 | Lee and Lee [55] | Support Vector Machines | Oemomemade devices not captured because 3Dprinted based device used. It can fit different sign irrespective of hand and finger sizes. | Without pressure sensor accuracy: 65.7%, with a fusion of pressure sensors accuracy: 98.2%. | Multi-Stream Hidden Markov Models, and Decision Tree classifier. | 42 Channel EMG, 4-axis (gyroscope, accelerometer) sensor. | 51 signs, two-handed 105 signs, 91 two-handed sub-words, 99 hand orientations: 3, hand amplitude levels: 3, 8 subject. | American Sign Language. | 6,480,000 datasets (12 subjects × 20 times × 10 s × 100 Hz × 27 signs). |
| 2017 | Song et al. [57] | Multi-Stream Hidden Markov Models, and Decision Tree classifier. | Time consumption is reduced, and recognition accuracy is improved by the decision tree based classifier. | The proposed model resulted in a high recognition rate and was compared with the literature state-of-the-art accuracy. | User dependent model accuracy: 94.31%, user-independent model accuracy: 87.02%. | 4-channel EMG, 4-axis (gyroscope, accelerometer) sensor. | 141 sign words, 5 subjects. | Chines Sign Language (CSL). | 13750 (2750 sign word samples for each subject). |
| 2016 | Wu et al. [40] | Code matching method and fuzzy K nearest neighbor algorithm. | User’s training burden minimized. | The recognition accuracy of two reference subject is 82.4% ± 13.2%, and 79.7 ± 13.4% and half of the target set: (88 ± 13.7% and 90 ± 13.7%). | Histograms of oriented gradients and artificial neural network (RFP). | 42 Channel EMG, 4-axis (gyroscope, accelerometer). | 101 sign words, 5 subjects. | Chinese Sign Language (CSL). | 13750 (2750 sign word samples for each subject). |
| 2016 | Ohno et al. [51] | Histograms of oriented gradients and artificial neural network (RFP). | Simple model. | The author cannot perform statistical analysis. | AccuRay: 84.05%. | Microsoft Kinect (color and depth). | 82 letters, 29 hand gestures. | Brazilian Sign Language. | 820 hand gesture samples. |
| 2014 | Almeida et al. [28] | Support Vector Machines (SVM). | Simplified model with generic nature. | Fail to address the aspect of feature selection and recognition rate based on uncertainty presented in the suggested model. | Average accuracy: 88%. | Kinect, notCapture Analyze software (RGB-D sensor). | 34 specific sign, 1 subject. | Brazilian Sign Language. | 170 video samples. |
| 2012 | Ong et al. [51] | Sequential Pattern Tree Boosting algorithm. | Runtime complexity is less. | Stability issue. | Accuracy: 55% for the first ranked sign and 97% for within the top 10 signs. | Kinect V2 camera. | 1. 40 signs, 14 subsets, 2. 982 signs, 1 subject. | DGS (German Sign Language) (Dortmuer Geb¨ardensprache), Greek Sign Language (GSL). | 2000 samples for DGS Kinect 40 dataset and 4900 samples for GSL 982 Sign dataset. |
| 2009 | Hafez et al. [59] | Hidden Markov Model, and kiosk. | Less difficult to use. | Installation is long and performance improvement needs more data. | 8 states HMM Model recognition rate: 81.05%. | Camera. | 30 sign, 2 subject. | CJK (Chinese sign language). | 388 samples. |
It makes SLR performance way behind performance of speech recognition. The existing research work on continuous manual SLR are as follows:

Traditional methods: Nayak et al. [64] pointed out the feature extraction approach for continuous sign. Relational distribution is captured from the face and hand present in the images. The parameters are optimized by ICM, so convergence speeds up; they used dynamic time warping for distance computation between two sub-strings. The continuous sign sentence extracts the recurrent features using RD, DWT, and ICM based approaches. Kong and Ranganath [65] performed continuous SLR by merging of CRF (conditional random field) and SVM in a framework of Bayesian network. They performed a semi-Markov CRF decoding scheme-based merge approach for independent continuous SLR. Tripathi and Nandi [4] carried out a gesture recognition model for continuous Indian Sign Language. They extracted meaningful gesture frames using the Key-frame extraction method. The orientation histogram technique extracted each gesture-relevant feature and used the Principal Component Analysis to reduce the feature dimension. They used the distance classifier for classification. According to performance analysis with other considered classifiers, the Correlation and Euclidean distance-based classifier perform with a better recognition rate. Gurbuz et al. [37] developed an ASL model for the RF sensing-based feature fusion approach. They use LDA, SVM, KNN, and RF as classifiers. The random forest classifier-based model for five signs results in 95% recognition accuracy, while 20 signs result in 72%. They can use the deep learning classifier in the future to improve recognition accuracy. Hassan et al. [5] proposed Modified k-Nearest Neighbor and Hidden Markov Models based on Continuous Arabic SLR. Window-based statistical features and 2D DCT transformation extract the features. The proposed model performance analyzed with sensors, vision-based datasets, and motion tracker dataset leads to a better recognition rate. For sentence recognition (MKNM) Modified k-Nearest Neighbor yields the best recognition rate than the HMM-based Toolkit. For word recognition, RASR performs better with a higher recognition rate than MKNN GT2K.

CNN, LSTM and Cross model based related work on continuous manual SLR: Ye et al. [66] pointed out a 3D convolutional neural network (3DCNN) with a fully connected recurrent neural network (FC-RNN) to localize the continuous video temporal boundaries and recognize sign actions using an SVM classifier. Designed Convolutional 3D and recurrent neural network-based integrated SLR model for continuous ASL sign recognition. Al-Hammadi et al. [23] presented a single modality-based feature fusion adopted 3DCNN model for dynamic hand gestures recognition. They captured the hand feature using an open pose framework. MLP and auto-encoder-based feature extracted 3DCNN model with open pose framework based on hand sign capturing model result in good recognition accuracy for KSU-SSL (King Saud University Saudi Sign Language) dataset using a batch size of 16. Gupta and Rajan [67] examined the performance of three models, namely modified time-LeNet, t-LeNet (time-LeNet), and MCDCNN based on Indian SLR. continuous Indian SLR models based on MCDCNN, t-Lenet, and modified t-LeNet classifier using sensor-based dataset presents and performance-based investigation carried out. Pan et al. [68] spatial and temporal fused Attention incurred Bi directional long term memory network-based SLR model developed. They detected captured video key action by optimKCC. Multi-Plane Vector Relation (MPVR) is used to get skeletal features. They performed two dataset-based analyses to prove the validity of continuous Chinese SLR concerns sign independent and dependent cases. Papastratis et al. [69] suggested a cross-modal learning-based continuous SLR model, and they have proved validity with three public datasets, namely RWTH-Phoenix-Weather-2014, RWTH-Phoenix-Weather-2014T, and CSL. They achieved the performance improvement of the suggested model by considering additional modalities.

Table V and Figure 7 provide a better understanding of the literature work regarding continuous manual SLR.

B. Non-Manual SLR

Facial expressions, head movement, mouth movement, eye movement, eyebrow movement, and body posture are the non-
manual sign parameters. Non-manual sign components showed in Figure 8. A facial expression considering the lowering and raising of eyebrows expresses grammatical information and emotions. Signers are good listeners and follow eye contact. Similar hand pose signs can be recognized by considering non-manual features. The isolated and continuous are the two types of non-manual SLR models.

1) Isolated Non-Manual SLR: The study of related research works in isolated non-manual-based SLR as follows:

HMM based work: Von Agris et al. [70] designed Hidden Markov Model-based British SLR with manual and non-manual features. Aran et al. [7] performed a Turkish SLR model using a cluster-based Hidden Markov Model. They proved the validity by cross-validation with eight folds (sign independent) and five folds (sign dependent). Sarkar et al. [71] presented an isolated American SLR model using Hidden Markov Model. They improved the segmentation process by a dynamic programming-based approach. Figiani et al. [72] carried out the Hidden Markov Model-based isolated Italian sign recognition in concern to signer independence. The suggested model gets better accuracy than the support vector machine-based recognition model. Zhang et al. [73] suggested adaptive hidden states incurred Hidden Markov Model for Chinese SLR. The carried-out fusion of trajectories and hand shapes leads to better recognition. Kumar et al. [74] performed an Indian SLR model based on a decision fusion approach with two modalities (facial expression and hand gesture). They used an HMM-based classifier for recognition and used IBCC for decision fusion purposes. They have carried out two modalities (facial expression and hand gesture) associated with IBCC based on HMM classifier decision fusion approach for Indian SLR. Using advanced classifiers and feature extraction algorithms can improve recognition accuracy.

Logistic regression and CNN based work: Sabyrov et al. [75] developed K-RSL (Kazakh-Russian Sign Language) interpreted as a human-robot model using Logistic Regression with incurred non-manual components. Mukushev et al. [76] performed Logistic Regression-based SLR using manual and non-manual features. In the captured video, they got key points using OpenPose. Kishore et al. [77] performed Adaptive Kernels Matching algorithm that incurred 3-D Indian SLR model claims improved classification accuracy compared with state-of-the-art methods. Better classification accuracy achieved by 3D motion capture models than Microsoft Kinect and leap motion sensor-based model. Liu et al. [78] pointed out ST-Net (Spatial-Temporal Net) associated with self-boosted intelligent systems for Hong Kong SLR. Compared to a Kinect-based system, the suggested approach performs well with a better recognition rate. Albanie et al. [6] proposed a Spatio-temporal convolutional neural network-based British SLR model. The pretraining has improved by presenting new larger-scale data, namely BSL-1K.

We perform a comprehensive study of the recent developments concerning non-manual SLR. Table VI and Figure 9 show isolated non-manual SLR-related literature work to make a clear understanding.

2) Continuous Non-Manual SLR: Continuous non-manual SLR is highly complex because the issue related to the context sequence has to be handled appropriately for effective performance or enriched accuracy [79]. The temporal boundaries-related problem makes continuous SLR a complex and arduous task. We discuss the related research work as follows:

Classical methods: Farhadi and Forsyth [80] carried out the HMM-based continuous ASL to English subtitles alignment model. With simple HMMs based on a discriminative word model, they perform word spotting. Infantino et al. [81] developed a common-sense engine integrated self-organizing map (SOM) neural network-based SLR model for LIS (Italian sign language). Sarkar et al. [71] performed a HMM-based continuous ASL. They used a dynamic programming-based approach to improve the segmentation. Forster et al. [21] pointed out the German SLR model using Multi-stream HMMs based on combination methods. Compared to system combination and feature combination approaches, synchronous and asynchronous combination-based models achieved better performance. Yang and Lee [82] presented CRF and SVM associated with a continuous ASL using both manual and non-manual features. BoostMap embeddings verified the hand shape, segmenting done by hierarchical CRF, and recognition was performed using SVM. Zhang et al. [83] suggested a Linear SVM based on an automatic ASL by fusing five modalities. The large-scale dataset-based investigation could be future work to improve recognition accuracy.
TABLE V: Continuous Manual SLR Literature Work. Related work concerning the vision and sensor-based SLR model concerns the continuous manual sign, comprehensively summarized here.

Year	Author	Method	Pros	Cons	Accuracy or Result	Sensor	Sample and Lexicon Size	Model Type	Dataset
2021	Watabe et al. [57]	Principal Component Analysis (PCA), short term Fourier transform, and RBF (Radial Basis Function) associated SVM (Support Vector Machine)	Computation sensing, environment independent	The author cannot perform comparative analysis with the existing method	Recognition accuracy for 30 signs, 1517 motion samples, 72.5% and for 5 signs 95%	RF sensors and Kinect sensor	30-sign, 9 subjects	American SLR	251 samples
2020	Ali-Hammoudi et al. [25]	3D convolutional neural network (3DCNN), auto-encoders, Multi-channel perception, and open pose framework	The expense concerning the training is minimal	Model results in good accuracy for a small batch	MLP based feature extraction model achieved recognition accuracy as 98.6% for sign dependent and 97.5% for sign independent and auto-encoder based feature extraction model achieved recognition accuracy as 98.75% for sign independent and 94.95% for sign independent	RGB video camera	40 dynamic hand gestures, 40 subjects	Saudi Sign Language	8000 data samples
2020	Gupta and Rujan [67]	Modified time-LieNet, MC-DCN (Multi channel deep convolution neural network), t-LeNet (time-limited LeNet), and SGD (stochastic gradient descent)	Sensory-based continuous sign recognition model	Transferable parameters are a large over-fitting problem	MSE(SNN) accuracy: 93.98%, modified t-LeNet accuracy: 81.62%, and t-LeNet accuracy: 78.7%, Wireless IMUs (inertial measurement unit)	11 sentences with 15 words, 10 subjects	Indian Sign Language	1140 samples	
2020	Hapantakis et al. [69]	Central model training approach	Recognition of accuracy improved by input representations	Sensitivity to MLF (multiroll)					
2020	Ria et al. [80]	Attention-based LSTM, RNN, encoder-decoder-based encoder, and MPVR (multi-plane vector relation)	Speed-up convergence	Real-time practical implementations was lacking	Modified LSTM (without optimality KOC and MPVR-based sign recognition model) accuracy: 70.24% (CSL dataset) and 60.31% (DEVISIGN dataset) for sign dependent and 68.32% (CSL dataset) and 56% (DEVISIGN dataset) for sign independent	Kinect-1.0, Kinect-2.0	MSV dataset, 1000 sign words, 8 subjects, CSL dataset, 1100 sign words	Chinese Sign Language	Signs, CSL dataset, 20000 samples
2020	Hanu et al. [5]	Modified 3Nearest Neighbor and Hidden Markov Models (HTK K and KASSR)	Requires less computation time	Robustness needs to be improved	For sentence recognition, KSNN based model: 97.73% (DGS-Villard dataset), and for word recognition RABR based model: 99.12% (DGS-Villard dataset).	Kinect-1.0, Kinect-2.0	MSV dataset, 1000 sign words, 8 subjects, CSL dataset, 1100 sign words	Chinese Sign Language	Signs, CSL dataset, 20000 samples
2020	Ye et al. [86]	SNN (3D recurrent convolutional neural networks) with SVM classifier	RGB, motion and depth channel fusing lead to better accuracy	Fused information was not considered. Hence, the performance is poor	For sentence recognition, KSNN based model: 97.73% (DGS-Villard dataset), and for word recognition RABR based model: 99.12% (DGS-Villard dataset).	Canon, EOS (mirrorless camera)	30-sign, 100-frames, 1 subject	ARIL, (American Sign Language)	1000 words, samples, 400 sentences samples
2015	Vipaloni and Naksh [4]	Off Orientation Hating and PCA (Principal Component Analysis), and distance-based classifier	New ISL continuous dataset presented	Misclassification for a similar type of gesture	Average recognition rate for blackboard distance: 98% (18 bins OH), 91.3% (15 bins OH), and Average recognition rate for correlation: 98% (18 bins OH), 98.9% (15 bins OH).	Canon EOS camera	10 sentences, 5 subjects	Indian Sign Language	Signs, 500 video samples
2014	Kang and Rangarathinam [85]	Semi-Markov CRF decoding scheme based probabilistic approach	Complexity related to decoding reduced	Larger vocabularies, scalability issues	For an unseen sign from considered sign, accuracy: 96.6% and recall rate: 95.5%, for unseen signs: accuracy: 98.9% and recall rate: 96.6%	CyberGlove(2D) and 3D Trackers.	54 samples (102 ISL signs), 8 subjects	American Sign Language	Signs, 2500 sentences and 1082 sign instances
2012	Sagul et al. [84]	Relational Distribution, RNN, tree-based conditional random fields, and DTW (Dynamic Time Warping)	And for faster training set generation	They did not address the amplitude variations of the various input	Accuracy: 65.0% for Person-dependent and an accuracy: 65.8% for Person-independent.	CyberGlove(2D) and 3D Trackers.	54 samples (102 ISL signs), 8 subjects	American Sign Language	Signs, 2500 sentences and 1082 sign instances
TABLE VI: Isolated Non-Manual SLR Literature Work. Related work with regard to vision and sensor based SLR model concern the isolated non-manual sign comprehensively summarized in the tabular form for better understanding.

Year	Author	Method	Pros	Cons	Sample and Lexicon Size	Model Type	Dataset	
2020	Maheswaran et al. [76]	Logistic Regression. Non-manual components considered as input lead to better accuracy.	Need improvement concern to accuracy.	Accuracy: 96.2%. LOGITECH C920 HD PRO WEBCAM.	20 signs, 5 subjects.	K-RSL (Kazakh-Russian sign language)	500 samples.	
2020	Attar et al. [8]	Spatio-temporal convolutional neural network. Large-scale dataset (BSL-1K) presented.	Fails to address visual similarity issue.	Accuracy: 64.9% (WLASL) and 64.7% (MSASL). top-1 case.	Cameras.	MS-ASL: 1000 words. WSASL: 2000 words. 119 subjects. BSL: 1K 1064.	25K BSL-1K 27K.	
2019	Sabyrov et al. [75]	Logistic Regression. Huge dataset not required for human manual robot sign interpreter.	Experiments in real-world is lacking.	For 20 sign dataset accuracy: 7.5% for 2 class accuracy: 80.25%.	LOGITECH C920 HD PRO WEBCAM.	20 signs, 5 subjects.	K-RSL (Kazakh-Russian Sign Language)	300 videos.
2018	Kumar et al. [74]	HMM (Hidden Markov Model) and IBCC (Independent Bayesian Classification Combination). The suggested model performed better than BLSTM-NN.	Possibility to classify wrongly fails to present a comparative analysis based on recent methods for the consulted applications.	Double hand gestures based recognition rate: 94.27% and the single-hand sign based recognition rate: 96.05%.	Large Motion and Kinect sensors.	51 dynamic sign words (51 sign with two hands, 20 sign with a single hand), 10 subjects.	Indian Sign Language (ISL).	400 data samples include both single and two hands sign.
2018	Liu et al. [76]	ST-Net (Spatio-temporal Net). Light-weight and robust.	Require more computation time.	Accuracy: 94.36% for Person dependent and 91.19% for Person independent sign.	Microsoft Kinect.	20K words, 100K words - single hand, 33 words, 2 hands separated, and 108 words 2 hands intersected, 3 subjects based 1002 mouth images.	HKSL (Hong Kong Sign Language).	5251 samples videos.
2018	Kahore et al. [77]	Adaptive Kernels Matching algorithm. Overcome the issue of spatio-temporal misalignment. Small action changes discovered effectively.	The author fails to perform real-time, live data-based analysis.	Accuracy: 98.9%. Kinect and Leap motion sensors.	Free sets of data with 500 signs, 5 subjects each set.	IndianSl (Indian Sign Language).	10,000 signs with 55 variations per sign comprises a testing set.	
2016	Jhang et al. [75]	Adaptive Hidden Markov Models enhanced shape context. Computational cost reduced.	Fail to ensure accuracy for the larger dataset.	Accuracy rate for dataset 1: 93.2% in the top 1, 99% in the top 5, and 100% in the top 10. For dataset 2 accuracy: 96% in the top 1, 96.8% in the top 5, and 98% in the top 10.	Microsoft Kinect.	1. 100 signs 1 subject. 2. 500 signs 5 subjects, 99 signs, 5 subjects.	CIL (Chinese Sign Language).	1. 500 videos. 2. 2500 videos.
2015	Bag katıl et al. [72]	Hidden Markov Models. Easy to implement in real-time case.	Occlusion of fingers.	Average accuracy rate: 43.99%.	Digital Video Camera.	14K signs, 10 subjects.	LIS (Italian Sign language / Lingua Italiana dei segni).	1.971 videos samples (AISL-147).
2011	Sarker et al. [71]	Dynamic programming methods, and Hidden Markov Models.	Adaptable to uncontrolled domain.	Recognition rate: 80%. Video Camera.	147 signs, 10 subjects.	ASL (American Sign Language).	204 samples.	
2009	Amare et al. [7]	Hidden Markov Models with closet algorism.	Clarity the similar sign accurately.	Average accuracy rate: 79.1% (Signer-independent) and 94.21% (Signer-dependent).	Cameras.	19 signs, 8 subjects.	EIS (Estonish sign language).	501 samples for each fold (5 folds for Signer-independent and 5 folds for Signer-dependent).
2008	Von Agis et al. [70]	Hidden Markov Models.	User-friendly.	Average recognition rates: 64.6%.	Video camera.	204 signs, 4 subjects.	BSL (British sign language).	3150 video samples.
TABLE VII: Continuous Non-Manual SLR Literature Work. Related work concerning the vision and sensor-based SLR model concern the continuous non-manual sign, comprehensively summarized here.

Year	Author	Method	Pros	Cons	Accuracy or Result	Sensor	Sample and Lexicon Size	Model Type	Dataset
2020	Brock et al. [84]	Convolutional Neural Network.	Complex linguistic content handling ability.	Expensive.	Average Word Error Rate (WER): 15.71% for Non-Manual Expression label.	Video cameras	1452 signs, 1 subject	BSL (Japanese Sign Language)	DHARC corpus a total of 1432 sequential sign
2020	Zhou et al. [85]	Spatial-temporal multivariate (STM) network, spatial multivariate (SMC) module and a temporal multimodal (TMM) module, joint optimization strategy	Able to handle different cues at the same time.	Training time and complexity is high.	STMC WER: 28.6% (CSLunseen), 20.7% (PHOENIX-2014), 21.0% (PHOENIX-2014-T).	Video cameras	PHOENIX-2014: 9 subjects 1295 sign, PHOENIX-2014-T: 1115 for sign gloss CSL: 10 subjects, 500 words	CSL (Chinese Sign Language), DGS (German Sign Language)	CSL-900 videos, PHOENIX-2014-6401 samples, PHOENIX-2014-T:9257 samples
2020	Koller et al. [87]	Hybrid CNN-LSTM-SSM.	Speeding convergence.	Training is easy.	Recognition accuracy: 62.8%	Video cameras	1.995 sign 9 subjects, 2. 455 sign 1 subjects	DGS (German Sign Language)	One million hand shape images from 23 subjects, Phoenix14/Phoenix 4
2016	Zhang et al. [83]	Linear Support Vector Machine.	Simple concatenation approach.	Unbalancing of data leads to misclassification.	Recognition rate: 36.07% for all lexical items.	Cameras	99 signs, 5 subjects	CSL (Chinese Sign Language)	500 videos sequences (segmented into set of 673 videos clips)
2013	Forster et al. [21]	Multi-stream HMMs based on combination methods	Robust model.	Recognition rate: 84.1%.	Correctly recognized sentence accuracy: 82.3% for Exp 1(30 videos of sentences with 20 signs) and 82.5% for Exp 2080 videos of sentences with 40 signs.	Video cameras	1.565 sign 1 subject, 2. 455 sign 1 subject, 3. 455 sign 25 subjects	DGS (German Sign Language, Deutsches Geb¨ardensprache)	Sign and number of frame and PHOENIX dataset contains 531091 total number of frame and PHOENIX dataset contains 38073 total number of 6 arcs
2011	Sarker et al. [74]	Hidden Markov Model.	Adaptable to uncontrolled domain.	Correct detection 92%	Video Camera.	Video Camera	65 sign 36 subjects	ASL (American sign language)	98 ASL signed sentences
2007	Trifunino et al. [81]	Self-organizing map (SOM) neural network.	Simple and robust.	Selection of input weights is difficult.	Correctly recognized sentence accuracy: 82.3% for Exp 1(30 videos of sentences with 20 signs) and 82.5% for Exp 2080 videos of sentences with 40 signs.	Video cameras	40 signs	LIS (Italian sign language / Linguistica Italiana dei segni)	160 video sample.
2006	Farhadi and Forsyth [80]	Hidden Markov Model.	The simple discriminative word model	The author cannot perform quantitative and qualitative results analy-	Video cameras.	Video cameras	31 words signs	ASL (American sign language)	80000 frames of thin
TABLE VIII: Sensing approach based SLR. Although the sensor-based approach provides better accuracy than the vision-based approach, the sensor-based approach is not an optimal choice in real-time applications.

Sensing Approach	Devices	Year	Authors							
Sensor	3-dimensional flex sensor-based data gloves, gyroscope, accelerometer, and bending sensor	2021	Yuan et al. [24]							
	EMG sensor	2021	Botros et al. [8]							
	Surface electro-myogram and inertial measurement units	2020	Gupta and Kumar [61]							
	4-Channels sEMG-Electromyography, one IMU inertial measurement unit	2018	Jiang et al. [48]							
	3D magnetometer, 3D gyroscope (GYRO), and 3D accelerometer (ACC)	2018	Mummadi et al. [60]							
	Armband module (8-channel electromyography) sensors.	2018	Kim et al. [11]							
	Myo Armband (gyroscope, accelerometer, magnetometer, and sEMG (surface electromyography)) sensors	2018	Jane and Sasidhar [53]							
	Firmly stretchable strain sensor (Custom Glove)	2018	Li et al. [56]							
	Wireless IMUs (inertial measurement units)	2020	Gupta and Rajan [67]							
	CyberGlove (x2) and 3D Trackers	2014	Kong and Ranganath [65]							
Vision	Microsoft Kinect v2	2020	Sincan and Keles [27]							
	Video camera	2020	Aly and Aly [2]							
	Video camera	2020	Rastgoo et al. [3]							
	RGB video camera	2020	Al-Hammadi et al. [23]							
	Laptop camera	2020	Hoang [62]							
	Single camera video	2020	Brock et al. [84]							
	LOGITECH C920 HD PRO WEBCAM	2019	Sabyrov et al. [75]							
	Kinect and leap motion sensors	2018	Kishore et al. [77]							
	Leap Motion and Kinect sensor	2018	Kumar et al. [74]							
	KinectTMcamera	2012	Ong et al. [51]							
	Video camera	2007	Infantino et al. [81]							
Language Level	Language	Dataset	Data Type	Subjects	Classes	Samples	Country	Data Size	Link	Data Availability
---------------	---------	---------	-----------	----------	---------	---------	---------	-----------	------	------------------
Isolated	Indian	IIITA-ROBITA	Videos	-	23	605	India	284 MB	https://robita.iiita.ac.in/dataset.php	SA
		INCLUDE [88]	Videos	7	266	4287	India	35.8 GB	https://zenodo.org/record/4010759#.YdqY9lRfg5k	P
American	Boston	ASL LVD	Videos, multiple angles	6	3300+	9800	United States	1-2 GB	http://www.bu.edu/asllrp/av/dai-asllvd.html	P
		ASLLVD	Videos (multiple angles)	6	3,300	9,800	United States	1-2 GB	http://www.bu.edu/asllrp/av/dai-asllvd.html	P
	Purdue	RVL-SLLL	Videos	14	39	546	United States	-	https://engineering.purdue.edu/RVL/Database/ASL/asl-database-front.htm	OR
		ASLLVD-Skeleton	Skeleton	-	3,300	9,800	United States	1-2 GB	https://www.cin.ufpe.br/~cca5/asllvd-skeleton/index.html	P
	RWTH-BOSTON-50	Videos (multiple angles)	3	50	483	United States	295 MB	https://www-r6.informatik.rwth-aachen.de/aslr/database-rwth-boston-50.php	P	
	WLASL	Videos	100	2,000	21,083	United States	64 GB	https://dxli94.github.io/WLASL/	P	
	MS-ASL [89]	Videos	222	1,000	25,513	United States	1.9 MB	https://www.microsoft.com/en-us/download/details.aspx?id=100121	P	
	Argen-tinian	LSA64	Videos	10	64	3,200	Argen-tinian	1.9 GB	http://facundouq.github.io/datasets/lsa64/	P
	Chinese	Isolated SLR500	Videos & Depth from Kinect	50	500	125,000	China	-	http://home.ustc.edu.cn/~pjh/openresources/cslr-dataset-2015/index.html	PP
		NMI-CSL	RGB videos	10	1,067	32,010	China	-	http://home.ustc.edu.cn/~alexhu/Sources/index.html	SA
	German	DGS Kinect 40	Videos (multiple angles)	15	40	3,000	Germany	39.7 MB	https://www.cvssp.org/data/KinectSign/ webpages/downloads.html	CA
	Greek	GSL isol. & Depth from Real Sense	Videos & Depth from Real Sense	7	310	40,785	Greece	155 KB	https://vcl.iit.gr/dataset/gsl/	P
	Polish	PSL Kinect	Videos & Depth from Kinect	1	30	300	Poland	1.2 GB	http://vision.kia.prz.edu.pl/dynamickinect.php	P
		PSL ToF	Videos & Depth from ToF camera	1	84	1,680	Poland	3.3 GB	http://vision.kia.prz.edu.pl/dynamictof.php	P
	Spanish	LSE-Sign	Videos	-	2,400	2,400	Spain	-	http://lse-sign.bcbl.eu/web-busqueda/	CA
	Turkish	BUHMAP-DB	Videos	11	8	440	Turkey	505 MB	https://www.cmpe.boun.edu.tr/pilab/pilabfiles/databases/buhmap/	P
Language Level	Language	Dataset	Data Type	Subjects	Classes	Samples	Country	Data Size	Link	
----------------	----------	---------------	---------------------	----------	---------	----------	-------------	-----------	---	
Continuous	Indian	ISL-CSLTR	Videos	7	100	700	India	8.29 GB	https://data.mendeley.com/datasets/kcmpdxky7p/1	
		BVCSL3D	Videos (RGB, depth and skeletal)	10	200	20,000	India	256 B	https://ars.eiscdn.com/content/image/1-s2.0-S1045926X18301927-mmc1.xml	
	American	RWTH-BOSTON-104	Videos (multiple angles)	3	104	201	United States	685 MB	https://www-i6.informatik.rwth-aachen.de/aslr/database-rwth-boston-104.php	
		RWTH-BOSTON-400	Videos	5	400	843	United States	-	http://www-i6.informatik.rwth-aachen.de/~dreuw/database.php	
	Chinese	Continuous SLR100	Videos & Depth from Kinect	50	100	25,000	China	-	http://home.ustc.edu.cn/~pjh/openresources/cslr-dataset-2015/index.html	
		DEVISIGN-D	Videos	8	500	6,000	China	-	http://vpl.ict.ac.cn/homepage/ksl/data.html#page2	
		DEVISIGN-G	Videos	8	36	432	China	-	http://vpl.ict.ac.cn/homepage/ksl/data.html#page2	
		DEVISIGN-L	Videos	8	2000	24,000	China	-	http://vpl.ict.ac.cn/homepage/ksl/data.html#page2	
	German	RWTH-PHOENIX-Weather 2014	Videos	9	1,081	6,841	Germany	52 GB	https://www-i6.informatik.rwth-aachen.de/~kollet/RWTH-PHOENIX/	
		SIGNUM	Videos	25	450	33,210	Germany	920 GB	https://www.phonetik.uni-muenchen.de/forschung/Bas/SIGNUM/	
		RWTH-PHOENIX-Weather 2014 T	Videos	-	1,066	8,257	Germany	39 GB	https://www-i6.informatik.rwth-aachen.de/~kollet/RWTH-PHOENIX-2014-T/	
	Greek	GSL SD	Videos & Depth from Real Sense	7	310	10,290	Greece	-	https://vcl.iti.gr/dataset/gsl/	
		GSL SI	Videos & Depth from Real Sense	7	310	10,290	Greece	-	https://vcl.iti.gr/dataset/gsl/	
	Korea	KETI [91]	Videos	14	524	(419 words and 105 sentences)	South Korea	14,672	https://arxiv.org/pdf/1811.11436.pdf	
TABLE X: SLR Datasets Vs. Modality. Highlight the related work in the literature regarding the various datasets and modalities. Dynamics and multi-modality like RGB, depth, and skeleton lead to better recognition rate in SLR.

Year	Authors	Datasets	Modality
2020	Elboushaki et al. [92]	isoGD, SBU, NATOPS, SKIG	RGB, Depth, Dynamic
2020	Rastgoo et al. [3]	RKS-PERSIANSIGN, NYU	RGB, Dynamic
2019	Köpükli et al. [93]	EgoGesture, NVIDIA benchmarks	Depth, Static
2019	Lim et al. [94]	RWTH-BOSTON-50, ASLLVD	Depth, Static
2019	Chen et al. [95]	DHG-14/28 Dataset, SHREC'17 Track Dataset	RGB, Static
2019	Ferreira et al. [96]	Real video samples	RGB, Depth, Static
2019	Gomez-Donoso et al. [97]	STB	RGB, Depth, Static
2018	Spurr et al. [98]	NYU, STB, MSRA, ICVL	RGB, Depth, Static
2018	Kazakos et al. [99]	NYU	RGB, Depth, Static
2018	Li et al. [100]	B2RGB-SH, STB	RGB, Depth, Static
2018	Mueller et al. [101]	EgoDexter, Dexter, STB	RGB, Depth, Static
2017	Victor [102]	Egohands	RGB, Depth, Static
2018	Baek et al. [103]	BigHand2.2M, MSRA, ICVL, NYU	RGB, Depth, Static
2018	Moon et al. [104]	MSRA, ICVL, NYU	RGB, Depth, Static
2018	Ge et al. [105]	MSRA, ICVL, NYU	RGB, Depth, Static
2017	Ge and et. al. [106]	MSRA, NYU	RGB, Depth, Static
2017	Dibra et al. [107]	ICVL, NYU	RGB, Depth, Static
2016	Sinha et al. [108]	NYU	RGB, Depth, Static
2017	Zimmermann and Brox [109]	Dexter, STB	RGB, Depth, Static
2018	Marin-Jimenez et al. [110]	UBC3V, ITOP	RGB, Depth, Static
2017	Deng et al. [111]	NYU	RGB, Depth, Static
2016	Oberweger et al. [112]	MSRA	RGB, Depth, Static
2015	Oberweger et al. [113]	NYU	RGB, Depth, Static
2018	Rastgoo et al. [114]	Massey 2012, ASL, Fingerspelling A, SL Surrey	RGB, Depth, Static
2016	Duan et al. [115]	RGBD-HuDaAct, isoGD	RGB, Depth, Static
2020	Chen et al. [116]	NYU, ICVL, MSRA	RGB, Depth, Static
2019	Dadashzadeh et al. [117]	OUHANDS	RGB, Depth, Static
2018	Wang et al. [118]	Human3.6M	RGB, Depth, Static
2017	Yuan et al. [119]	BigHand2.2M, MSRA, ICVL, NYU	RGB, Depth, Static
2017	Guo et al. [120]	ITOP, MSRA, ICVL, NYU	RGB, Depth, Static
2017	Fang and Lei [121]	ICVL, NYU	RGB, Depth, Static
2017	Madadi et al. [122]	MSRA, NYU	RGB, Depth, Static
2016	Wang et al. [123]	isoGD	RGB, Depth, Static
2016	Haque et al. [124]	EVAL, ITOP	RGB, Depth, Static
2015	Tagliasacchi et al. [125]	Real video samples	RGB, Depth, Static
2020	Rastgoo et al. [126]	isoGD	RGB, Depth, Static
2016	Wei et al. [127]	MPII, FLIC, LSP	RGB, Depth, Static
2016	Newell et al. [128]	MPII, FLIC	RGB, Depth, Static
2015	Koller et al. [129]	RWTH-PHOENIX-Weather	RGB, Depth, Static
2014	Toshev and Szegedy [130]	LSP, FLIC	RGB, Depth, Static
TABLE XI: Study of current state-of-the-art SLR model results with various datasets.

State-of-the-art SLR Model	Author	Year	Results	Datasets
CoT4 CNN	Ravi et al. [131]	2019	Recognition rate -89.69%	BVCSL3D dataset
3D CNN with score level fusion	Gökçe et al. [132]	2020	Accuracy -94.94%	Bosphorus Sign22K
STMC	Zhou et al. [85]	2020	WER- 2.1 for Continuous SLR 100 dataset	
WER-20.7 for RWTH-PHOENIX-Weather 2014
WER - 21.0 for RWTH-PHOENIX-Weather 2014 T | 1. Continuous SLR 100
2. RWTH-PHOENIX-Weather 2014
3. RWTH-PHOENIX-Weight 2014-T |
| TK-3d convNet | Li et al. [133] | 2020 | Recognition accuracy - 77.55% for WLASL 100
and 68.75% for WLASL 200
Recognition accuracy - 83.91% for MSASL 100
and 81.14% for MSASL 200 | 1. WLASL 100
2. WLASL 300
3. MSASL 100
4. MSASL 200 |
| SLRT | Camgoz et al. [134] | 2020 | BLEU 4 scores -21.80 | RWTH-PHOENIX-Weather 2014-T |
| TSPNet –Joint | Li et al. [135] | 2020 | BLEU 4 -13.41 | RWTH-PHOENIX-Weather 2014-T |
| Multi-stream Conv Architecture | Zheng et al. [136] | 2021 | BLEU 4 score – 10.89 (RoI) and 10.73 (stream) | RWTH-PHOENIX-Weather 2014-T |
| DF- WisLR (SVM augmented) | Ahmed et al. [137] | 2021 | Dynamic sign accuracy - 98.5% and Static sign accuracy - 99.9% | Wi-Fi CSI dataset (49 gesture (static and dynamic)) |
| SAN | Slimane and Bouguessa [138] | 2021 | WER – 29.78% | RWTH-PHOENIX-Weather 2014 |
| Initiated deep CNN | Tongt [139] | 2021 | Accuracy -0.75 | SIGNUM |
| GLEN | Hu et al. [140] | 2021 | Accuracy -69.9% for NMFs-CSL and accuracy - 96.8% for Isolated SLR 500 dataset | 1. NMFs-CSL
2. Isolated SLR 500 |
| VTN-PF | De Coster et al. [141] | 2021 | Accuracy 92.92% | AUTSL |
| SAM SLR | Jiang et al. [142] | 2021 | Accuracy -98.42% for RGB and 98.53% for RGB-D | AUTSL |
| SLRGAN | Papastratis et al. [143] | 2021 | Deal-to-Deal SLRGAN WER - 36.05 for GSL SD and WER -2.26 for GSL SI
SLRGAN WER - 2.98 for GSL SI
SLRGAN WER - 37.11 for GSL SD
WER - 23.4 % for RWTH-PHOENIX-Weather 2014-T
WER - 2.1 % Continuous SLR 100 | 1. GSL SD
2. GSL SI
3. RWTH-PHOENIX-Weather 2014-T
4. Continuous SLR 100 |
| VMC | Min et al. [144] | 2021 | WER - 1.6 % for Continuous SLR 100
WER -22.3 % for RWTH-PHOENIX-Weather 2014 | 1. Continuous SLR 100
2. RWTH-PHOENIX-Weather 2014 |
| SMA-SLR- v2 | Jiang et al. [145] | 2021 | Accuracy -98.53 % for AUSTL
Accuracy - 59.39 % WLASL2000 dataset per instance case and 56.63% per class
Accuracy - 99 % for Isolated SLR 500 | 1. AUSTL
2. WLASL 200
3. Isolated SLR 500 |
| SLR-Nets- J+B | Meng and Li [146] | 2021 | Accuracy -98.08% for Isolated SLR -500 and 64.57 % for DEVISION-L | 1. Isolated SLR -500
2. DEVISION-L |
| SVM with RBFK (sEMG and acc) | Pereira-Montiel et al. [147] | 2022 | Accuracy -90.66% | Colombian sign language (3 subjects, 360 signs, 12 words) |
| SPOTER | Boháček and Hruž [148] | 2022 | Accuracy – 100% for LSA64
Accuracy -63.18% for WLASL 100 and 43.78 % for WLASL 300 | 1. LSA64
2. WLASL |
CNN and Hybrid methods: Koller et al. [87] designed a continuous German SLR model using Iterative Expectation Maximization, incurred CNN. They trained the classifier with over a million hand shape sign data. Brock et al. [84] performed Continuous Japanese SLR using CNN. They used frame-wise binary Random Forest for segmentation. The improvement of reliability, accuracy, and robustness for large-scale datasets could be a future research direction. Zhou et al. [85] carried out a continuous SLR model using STMC (Spatial-Temporal Multi-Cue Network) to overcome the vision-based sequence learning problem. Koller et al. [86] proposed a Hybrid CNN-LSTM-HMMs Continuous German SLR model. They performed sign language learning by sequential parallelism and validated it with three public sign language datasets.

The continuous non-manual SLR-related research works are presented in tabular form in Table VII and in graphical chart in Figure 10 for better understating. The research on a continuous sign with a signer independent generic model is important because it has carried very little research on continuous SLR in the past decade.

IV. CLASSIFICATION ARCHITECTURES

The classification is the brain of the SLR model. It aims to classify the sign accurately with minimum error. Researchers used various classifiers, e.g., traditional machine learning-based approach, deep learning-based approach, and hybrid approach.

ANN like back propagation, multi-layer, and recurrent neural networks are employed as classifiers, but handling large data is difficult. It requires enormous data for training to learn to challenge problems using a machine learning-based approach. The complication associated with HMM: 1. Likelihood of observation, 2. Best hidden state sequence decoding, 3. HMM, parameter framing. The parameter need for the 2 DCNN is excessively more, which makes the design process complex; this is the major drawback of 2 DCNN. In 3DCNN, the Spatio-temporal data has directly represented hierarchically, which is one of the unique features of 3 DCNN. Concerns to the long-term temporal dependence sign capturing 3 DCNN cannot assure robustness. LSTM eliminates the long-term dependence problem. The hybrid-based approach is adopted as a classifier to improve the accuracy.

A. Traditional Architectures

The Artificial Neural Network (ANN), Hidden Markov Model (HMM), and Recurrent Neural Network (RNN) are the most widely used classifiers in SLR due to their sequential data processing ability. Fatmi et al. [9], Lee et al. [22], Von Agris et al. [70] carried the general ANN, RNN, and HMM-based SLR work.

B. Deep Learning Architectures

Deep learning makes massive growth in SLR recently. The spatial and temporal features are easy to handle by the deep learning models. LSTM can handle long-term dependence. Figure 11 highlights the deep learning-based SLR architectures, namely Deep CNN and LSTM-CNN Architecture.

C. Evaluation Metrics

Computation of word error rate, accuracy, and recognition rate evaluates SLR models’ performance. The formulations used for evaluation are as follows:

\[
\text{Accuracy} = \frac{\text{TruePositive} + \text{TrueNegative}}{\text{Total}} \tag{1}
\]

\[
\text{WER(WordErrorRate)} = \frac{\text{Numberofsubstitutions} + \text{Numberofdeletions} + \text{Numberofinsertions}}{\text{Totalnumberofwordsinreference}} \tag{2}
\]
RecognitionRate = \left(\frac{\text{Number of correctly identified images}}{\text{Total Number of images}} \right) \times 100 \tag{3}

The cross-validation scheme, namely leave-one-subject-out (LOSO) and k-fold cross-validation, is used to validate the SLR model’s effectiveness. The Area Under the Curve (AUC) and ROC (Receiver Operating Characteristic) curve show the trade-off between true positive rate and false positive rate: it is used to measure the classifier performance. The Bilingual Evaluation Understudy (BLEU) score is used to measure the effectiveness of the translation.

V. DIFFERENT TYPES OF SENSING APPROACH

According to the acquisition, it classifies SLR into two types, vision and sensor-based approaches. Many research works conducted both vision-based and sensor-based SLR to help the hand-talk community. Table VIII depicts sensing approach-based SLR existing work in literature.

Vision-based sensing devices: Types of cameras used for the vision-based approach are as follows:
- Invasive device (body marker method): Examples: LED light, writ band, colored gloves.
- Active devices: Kinect sensor, Leap motion sensor.
- Stereo camera (depth camera): Capture depth information.
- Single-camera: Smartphone, video camera, webcam, thermal camera, etc.

Sensor-based sensing devices: The inexpensive and wearable sensor devices such as ACC (Accelerometer), Gyro (gyroscope), and sEMG (surface electromyogram) make sensor-based SLR a prominent tool for SLR.

A. Various Datasets in SLR

There is a limitation on the datasets because most of the public datasets lack quality and quantity. The datasets are collected from native signers and ordinary people. Imitation of data was acquired to augment the dataset. We summarize the datasets available to SLR in Table IX. The benchmark dataset details, including the URL link, are detailed here.

1) Datasets Vs. Modality: Datasets and modalities affect largely the performance of SLR models. Many researchers have implemented various SLR models using various methods and datasets. Table X shows Datasets Vs. Modality-based study concerns SLR. The RGB, depth, dynamic-based modality facilitates better performance. Hence, modality-based fusion leads to enhanced performance.

2) The Complexities of SLR Datasets: The acquisition of sign language is performed using the camera and sensor-based sensing devices like Kinect and leap motion controllers, armbands, gloves, electrodes (EMGs), etc. All datasets comprise its specific capturing format, modalities, mapping, environment, and illumination specific to the region or country sign language among 300 sign languages. Some of
the complexities in these datasets are as follows:

- Acquire the SLR with various linguistic components based on multiple sensing devices is an arduous task, and the tedious process requires much time and effort.

- Redundant and blur frames in data collection are a significant complexity that affects the SLR model recognition rate.

- Complex background and various lighting are not considered in most datasets and have constraints; therefore, they cannot accurately recognize in a real-time application.

- Most of the datasets were collected with a few native signers, only with a few repetitions. Therefore, it may not guarantee the signer independent recognition performance.

- The signer wearing a long sleeve, occlusion, and object interaction during data collection makes it challenging to preprocessing and recognition.

- The problem of handling real-time applications because most datasets are acquired using the constant background and illumination in a controlled environment.

- Recognition of unseen sign words or sentences is difficult because the limited number of vocabularies and sentences present in the data make them incompatible in the real-time use case.

3) The Solutions to Overcome the SLR Datasets Complexities: The solutions to overcome the SLR datasets complexities are as follows:

- During sign data acquisition, the sample collection must consider various environments, lighting based on multiple times, performing the same words with different signers leads to sign independent SLR model and improves the generic ability.

- The distance between the signers and the recording device should be feasible to overcome the blurring data issue.

- Hand shape-based modality alone is not good enough to recognize the sign; thus, a non-manual feature-based dataset is required to perceive the grammar of the sign language. The isolated and continuous words/sentences include many signers and more repetitions based on a dataset with a more significant number of cues and corpus to improve accuracy, robustness, and generalization.

- Versatile and massive corpus SLR dataset to address all sign components using multi-modal sensing with a complex and more extensive isolated, continuous sign without constraints based on capturing. Thus, it serves as a benchmark for SLR research to validate SLR model validity.

B. Study of current state-of-the-art models for sign language recognition

This paper further explores the state of the models presented in the sign language recognition as follows Ravi et al. [131] performed Indian sign language recognition using RGB-D data using CNN models. They used four-stream inputs for training and tested performance on two streams (RGB spatial and temporal). They got a recognition accuracy rate of 89.69 % for the BVCSL3D dataset. Gökçe et al. [132] carried out an isolated Turkish sign language recognition using 3 D residual CNN with score level fusion and got top 1 accuracy of 94.94 % for the Bosphorus Sign2K dataset. Li et al. [133] presented isolated sign language recognition using TK-3d convNet (transferring cross-domain knowledge-based 3D convolution network). Recognition accuracy of 77.55% for WLASL 100 and 68.75% for WLASL 200, 83.91% for MSASL 100 and 81.14% for MSASL 200 achieved based on the TK-3d convNet SLR model. Camgöz et al. [134] SLRT (Sign language recognition and translation using transformer) applicability verified with RWTH-PHOENIX-Weather 2014-T dataset achieved 21.80 as BLEU 4 score. Li et al. [135] suggested TSPNet – Temporal semantic pyramid network association of hierarchical feature learning based on continuous sign language recognition and result in BLEU 4 of 13.41 for RWTH-PHOENIX-Weather 2014-T dataset.

Zheng et al. [136] suggested a non-independent multi-stream convolutional and RoIs based multi-region convolutional architecture for sign language translation and obtained BLEU 4 scores – 10.89 (RoI) and 10.73 (stream) for RWTH-PHOENIX-Weather 2014-T. Ahmed et al. [137] presented Wi-Fi CSI (channel state information) dataset and developed sign language recognition using device-free Wi-Fi. SVM augmented-based model results with an accuracy of 98.5 % for Dynamic sign and 99.9 % for Static sign. Zhou et al. [85] designed a continuous sign language recognition based on STMC (spatial-temporal multi-cue network). They got the WER (word error rate) of 2.1, 28.6, 20.7, and 21.0 for Continuous SLR 100 dataset Split I case, Split II case, RWTH-PHOENIX-Weather 2014, and RWTH-PHOENIX-Weather 2014 T datasets, respectively. Slimane and Bouguessa [138] performed self-attention network (SAN-sign attention network)-based continuous sign language recognition. They used 2 D CNN with self-attention considered both hand and full-frame as inputs and combined to get final word glosses on evaluation on RWTH-PHOENIX-Weather 2014 dataset achieved WER of 29.78 %. Türki [139] suggested the inflated deep CNN based on isolated SLR. They used the MSASL dataset to transfer the ASL knowledge to recognize GSL (German Sign Language) on the SIGNUM dataset and achieved an accuracy of 0.75 for high target data. Hu et al. [140] pointed out non-manual feature-aware GLEN (Global
local enhancement network) based on the SLR model. They achieved a top 1 accuracy of 69.9% for NMFs-CSL datasets and 96.8% for isolated SLR 500 datasets. De Coster et al. [141] proposed Pose flow and hand cropping associated to video transformer network-based isolated sign language recognition. The VTN-PF (Video Transformer Network with hand cropping and pose) model evaluation on the AUTSL dataset got an accuracy of 92.92%.

Jiang et al. [142] devised a SAM SLR (Skeleton Aware multimodal framework Sign language recognition) concerning isolated sign language recognition. The skeleton-aware multi-modal (SSTCN–Separable spatial-temporal convolution network) results in better accuracy on the AUTSL dataset, with a top 1 accuracy of 98.42% for RGB and 98.53% for RGB RGB-D. Papastratis et al. [143] performed a generative adversarial network with transformer-based continuous sign language recognition. They used four datasets to validate the performance of SLRGAN (sign language recognition generative adversarial network). SLRGAN Deaf-to-Deaf SLRGAN achieves WER of 36.05 for GSL SD, WER of 2.26 for GSL SI, and SLRGAN WER of 2.98 for GSL SI, WER of 37.11 for GSL SD, WER of 23.4% for RWTH-PHOENIX-Weather 2014-T, and WER of 2.1% Continuous SLR 100. Min et al. [144] conducted VMC (visual alignment constraint) associated Resnet 18 backbone based on continuous sign language recognition model validated on Continuous SLR 100, and RWTH-PHOENIX-Weather 2014 datasets obtained a WER of 1.6% and 22.3%, respectively.

Jiang et al. [145] designed SMA-SLR- v2 (Skeleton aware multimodal framework with global ensemble model) based on isolated sign language recognition. They achieved the top 1 accuracy of 98.53% for AUSTL (RGBD all), the top 1 accuracy of 59.39% for the WLASL2000 dataset per instance case, and 56.63% per class, and the top 1 accuracy of 99% accuracy for isolated SLR 500 dataset. Meng and Li [146] presented a GCN (graph convolution network)-based SLR network (dual sign language recognition model). The fusion of the two-stream models is SLR-Net-J+B, which results in the top 1 accuracy of 98.08% for the isolated SLR -500 dataset and 64.57% for the DEVISIGN-L dataset. Pereira-Montiel et al. [147] devised Colombian sign language automatic recognition using SVM (support vector machine) with RBFK (radial basis function kernel) with four channels of sEMG (surface electromyography) and three-axis acc (accelerometer). Achieve accuracy 96.66% for 12-word recognition. Boháček and Hruž [148] performed isolated sign language recognition using SPOTER (Sign pose base transformer) validated with LSA64 and WLASL datasets, resulting in a 100% accuracy for LSA64 and 63.18% and 43.78% accuracy for WLASL 100 and WLASL 300, respectively. The current state-of-the-art SLR model is summarized in a Table XI for better understanding. We hope this review paper sets a baseline for futuristic and advanced research in the SLR domain.

VI. DISCUSSION

Sign language possesses dynamic gestures, trajectory property, and multi-dimensional feature vectors. These factors make it challenging to recognize sign language. Still, many researchers are attempting to develop a generalized, reliable, and robust SLR model. Multi-dimensional features are a novel approach that leads to a better recognition rate. This review paper aims to provide an easy understanding and helpful guidance to the research community. To perform research to develop an effective SLR model to assist the hand-talking community is one of the prominent domains in computer vision, pattern recognition, and natural language processing.

A. Limitation of Current Datasets and their sizes

The ambiguities and lack of training dataset make the SLR vulnerable. Therefore, the standardized and large-scale datasets with manual and non-manual features are important. The limitation of the current datasets and their sizes are as follows:

Barrier concerning the recording/ collection/ measuring equipment:

- Poor camera quality affect the clarity of the sign in the vision-based system when the resolution is reduced leads to decreased accuracy.
- Improper camera setup is another barrier because it leads to loss of important sign information when a sign is dynamic or static, performing the signer.
- If a multi-camera set-up is used to acquire the signer data, the lack of synchronization lead to information loss, leading to poor performance.
- Device dependability should be reliable, cost-effective, and easy to maintenance.

The environment, background, and illumination profoundly affect the dataset preparation.

- When the background setup comprises noise, it creates misclassification and reduces the recognition rate, so it should be properly dealt with to overcome this barrier.
- Improper light and illumination reduce the clarity and also affect accuracy.
- The distance between the camera and the signer should be maintained at a nominal and workable range. Very much closer and farther, much long distance between the signer and the camera affect the performance.

B. Limitation of Current Trends

The limitations of the current trends in SLR are as follows:

The barrier regarding the different signers affects the accuracy:
• Break off between the letter/ sign and speed up sign performing: The speedy, continuous, and frequent sign performed by the signer creates challenges for segmentation and feature extraction.

• Blockage of overlapping, occlusion of hand-face, hand-hand.

• Wearing a dress with long sleeves and wearing colored gloves also affects the sign recognition process.

• High variation concerns the interpersonal: Sign varies between signers and instants.

The barrier concerning the video domain:

• The problem of handling the video data in the limited GPU memory is not tractable. Most CNN techniques are only image-based, videos that have an additional temporal dimension. A simple resizing process may cause a loss of crucial temporal information to perform the fine-tuning and classification process on each frame independently.

The barrier concerning network design in machine learning:

• The recognition and classification ability prevailed by the location, illumination, and so on.

• Higher batch size causes a fall in local convergence instead of global convergence. Smaller batch sizes lead to larger iterations and a rise in training expenses.

• Selection of the loss functions during training cause expenses.

• Selection of optimal hyperparameters.

The active research domain is AI-based realistic modeling SLR translation and production of Avatar modeling (manual and non-manual). Developing AI Sign language learning and translation applications (web-based or smartphone) is one of the current trends. Although the advent of deep learning networks improves SLR accuracy, the limitations mentioned above still need to be addressed in the SLR domain.

C. Other Potential Applications of SLR with Human-Computer Interaction

Some potential applications of SLR with human-computer interaction are as follows:

• Virtual reality: With the help of the electronics equipment, the user experiences artificial simulation of real world.

• Smart home: Home attributes to monitor, access, and control using artificial intelligence and electronics devices. It includes a security and alarm alert system.

• Health care: Intended to assist the patients in a better quality of life and good health care service.

• Social safety: To ensure safe and social engagement and to minimize social threats.

• Telehealth: Remotely accessing clinical contacts and care services to enhance patients’ health care.

• Virtual shopping: To provide hassle-free, more comfortable shopping with virtual stores.

• Digital signature: To transfer the information as an electronics sign.

• Gaming and playing: To facilitate more entertaining, and gaming experience to users.

• Text and voice assistance: To provide better communication using technology and ease of user comfort.

• Education: To facilitate enhanced learning skills using advanced techniques.

VII. FUTURE DIRECTION AND RESEARCH SCOPE

Compared to the recent developmental achievement in automatic speech recognition, SLR is still lagging with a vast gap and remains at an early development stage. According to the literature study, a good number of research exists in SLR. Much research is struggling to achieve a high performance SLR model by exploring advanced techniques like deep learning, machine learning, optimization, and advanced hardware and sensor experimentation. Finally, We need a thorough exploration to solve the following issues in SLR.

• Distinctiveness/contract of sign handling problem.

• Multiple sensors/camera fusion problems.

• Multi-modalities data handling issues.

• Computation problem.

• Consistency issues.

• Difficult to handle a large vocabulary.

• Requirement of standard datasets.

Future Directions

Future directions for SLR are as follows:
• SLR model design needs a better understanding of optimal hyperparameter estimation strategy.

• Building uncontrolled surrounding/environment-based SLR models is a thrust area because researchers develop most of the existing models in the literature with respect to the lab environment-based datasets. Hence, it is demanding.

• Designing a user-friendly, realistic, and robust sign language model is one of the high-scope domains of SLR.

• Design a high-precision sign language capturing device (sensor and camera).

• Devise a novel training strategy to reduce computational training difficulty.

• The lightweight CNN model for SLR is another research scope.

• Develop an SLR with the association multi-modal based leverage to improve recognition accuracy.

• Devising a generic automatic SLR model.

This review paper is presented to provide a complete guide to the research and allow the reader to know about the existing SLR works. It demonstrates challenging problems, research gaps, future research direction, and dataset resources. Therefore, the readers and researchers can move forward towards developing novel models and products to assist the hands-talk community and contribute to social benefits.

VIII. Conclusion

There are several review papers on hand gestures and SLR. Still, existing review papers do not comprehensively discuss facial expression, modality, and dataset-based sign language, lacking in-depth discussion. With this motivation, this review paper studied different types of SLR, various sensing approaches, modalities, and various SLR datasets and listed out the issues of SLR and the future direction of SLR. However, further complete guidance will provide a more precise understanding and acquire knowledge and awareness of the problem’s complexity, state-of-the-art models, and challenges in SLR.

This comprehensive review paper will help to guide upcoming researchers about the SLR introduction, needs, applications, and processes involved in SLR. It discussed various manual and non-manual SLR models. Also, it reviewed isolated and continuous of each type (manual and non-manual) and provided easy understanding to the reader with the help table and diagram. The manual and non-manual type-based SLR present effectively and then examine the works related to the various modalities and datasets. Finally, we reviewed recent research progress, challenges, and barriers of existing SLR models, organized in an informative and valuable manner concerning the various types, modalities, and dataset. The improvisation of accuracy concerns vision-based SLR, one of the ongoing and hot research topics. The sensor-based approach is highly suitable for laboratory-based experimentation. But not an appropriate choice for practical real-time applications. The vision-based SLR model’s accuracy is less than the sensor-based approach and very much less than the speech recognition model. A robust and sophisticated method is essential for extracting manual and non-manual features and overcoming the barriers. Therefore, a lot of scopes are available to the SLR domain. We hope this review paves insight for readers and researchers to propose a state-of-the-art method that facilitates better communication and improves the hand-talk community’s human life.

DECLARATION

Funding- No Funding was received for this work.

Competing interests- The authors declare no conflict of interest.

Availability of data and materials- Not Applicable.

Code availability- Not Applicable.

ACKNOWLEDGMENT

This work of Dr. M. Madhiarasan was supported by the MHRD (Grant No. OH-31-24-200-328) project.

REFERENCES

[1] W. H. Organization. (2018) Deafness and hearing loss. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss

[2] S. Aly and W. Aly, “Deepsrslr: A novel signer-independent deep learning framework for isolated arabic sign language gestures recognition,” IEEE Access, vol. 8, pp. 83199–83212, 2020.

[3] R. Rastgoo, K. Kiani, and S. Escalera, “Hand sign language recognition using multi-view hand skeleton,” Expert Systems with Applications, vol. 150, p. 113336, 2020.

[4] K. Tripathi and N. B. G. Nandi, “Continuous indian sign language gesture recognition and sentence formation,” Procedia Computer Science, vol. 54, pp. 523–531, 2015.

[5] M. Hassan, K. Assaleh, and T. Shanableh, “Multiple proposals for continuous arabic sign language recognition,” Sensing and Imaging, vol. 20, no. 1, p. 4, 2019.

[6] S. Albanie, G. Varol, L. Momeni, T. Afouras, J. S. Chung, N. Fox, and A. Zisserman, “Bsl-1k: Scaling up co-articulated sign language recognition using mouthing cues,” in European Conference on Computer Vision. Springer, 2020, pp. 35–53.

[7] O. Aran, I. Ari, L. Akarun, B. Sankur, A. Benoit, A. Caplier, P. Campr, A. H. Carrillo et al., “Signtutor:
An interactive system for sign language tutoring,” *IEEE Multimedia*, vol. 16, no. 1, pp. 81–93, 2009.

[8] F. S. Botros, A. Phinyomark, and E. J. Scheme, “Electromyography-based gesture recognition: Is it time to change focus from the forearm to the wrist?” *Environments*, vol. 14, p. 15, 2020.

[9] R. Fatmi, S. Rashad, and R. Integlia, “Comparing ANN, SVM, and HMM based machine learning methods for American sign language recognition using wearable motion sensors,” in *2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC)*. IEEE, 2019, pp. 0290–0297.

[10] S. Wei, X. Chen, X. Yang, S. Cao, and X. Zhang, “A component-based vocabulary-extensible sign language gesture recognition framework,” *Sensors*, vol. 16, no. 4, p. 556, 2016.

[11] S. Kim, J. Kim, S. Ahn, and Y. Kim, “Finger language recognition based on ensemble artificial neural network learning using armband EMG sensors,” *Technology and Health Care*, vol. 26, no. S1, pp. 249–258, 2018.

[12] M. J. Cheok, Z. Omar, and M. H. Jaward, “A review of hand gesture and sign language recognition techniques,” *International Journal of Machine Learning and Cybernetics*, vol. 10, no. 1, pp. 131–153, 2019.

[13] S. Kim, Y. Ji, and K.-B. Lee, “An effective sign language learning with object detection based ROI segmentation,” in *2018 Second IEEE International Conference on Robotic Computing (IRC)*. IEEE, 2018, pp. 330–333.

[14] M. P. Paulraj, S. Yaacob, M. S. bin Zanar Azalan, and R. Palaniappan, “A phoneme based sign language recognition system using skin color segmentation,” in *2010 6th International Colloquium on Signal Processing & its Applications*. IEEE, 2010, pp. 1–5.

[15] A. S. Ghotkar and G. K. Kharate, “Vision based real time hand gesture recognition techniques for human computer interaction,” *Int J Comput Appl*, vol. 70, no. 16, pp. 1–8, 2013.

[16] J.-H. Shin, J.-S. Lee, S.-K. Kil, D.-F. Shen, J.-G. Ryu, E.-H. Lee, H.-K. Min, and S.-H. Hong, “Hand region extraction and gesture recognition using entropy analysis,” *IJCSNS International Journal of Computer Science and Network Security*, vol. 6, no. 2A, pp. 216–222, 2006.

[17] R. Akmeliawati, F. Dadgostar, S. Demidenko, N. Gamage, Y. C. Kuang, C. Messom, M. Ooi, A. Sarrafzadeh, and G. SenGupta, “Towards real-time sign language analysis via markerless gesture tracking,” in *2009 IEEE Instrumentation and Measurement Technology Conference*. IEEE, 2009, pp. 1200–1204.

[18] X. Wang, M. Xia, H. Cai, Y. Gao, and C. Cattani, “Hidden-markov-models-based dynamic hand gesture recognition,” *Mathematical Problems in Engineering*, vol. 2012, 2012.

[19] P. Li, T. Zhang, and A. E. Pece, “Visual contour tracking based on particle filters,” *Image and Vision Computing*, vol. 21, no. 1, pp. 111–123, 2003.

[20] R. A. Kadhim and M. Khamees, “A real-time American sign language recognition system using convolutional neural network for real datasets,” *TEM Journal*, vol. 9, no. 3, p. 937, 2020.

[21] J. Forster, C. Oberdörfer, O. Koller, and H. Ney, “Modality combination techniques for continuous sign language recognition,” in *Iberian Conference on Pattern Recognition and Image Analysis*. Springer, 2013, pp. 89–99.

[22] C. K. Lee, K. K. Ng, C.-H. Chen, H. C. Lau, S. Chung, and T. Tsoi, “American sign language recognition and training method with recurrent neural network,” *Expert Systems with Applications*, vol. 167, p. 114403, 2021.

[23] M. Al-Hammadi, G. Muhammad, W. Abdul, M. Alsulaiman, M. A. Bencherif, T. S. Alrayes, H. Mathkour, and M. A. Mekhtiche, “Deep learning-based approach for sign language gesture recognition with efficient hand gesture representation,” *IEEE Access*, vol. 8, pp. 192527–192542, 2020.

[24] G. Yuan, X. Liu, Q. Yan, S. Qiao, Z. Wang, and L. Yuan, “Hand gesture recognition using deep feature fusion network based on wearable sensors,” *IEEE Sensors Journal*, vol. 21, no. 1, pp. 539–547, 2020.

[25] P. Vamplew and A. Adams, “Recognition of sign language gestures using neural networks,” in *European Conference on Disabilities, Virtual Reality and Associated Technologies*, 1996.

[26] K. Kudrinko, E. Flavin, X. Zhu, and Q. Li, “Wearable sensor-based sign language recognition: A comprehensive review,” *IEEE Reviews in Biomedical Engineering*, vol. 14, pp. 82–97, 2020.

[27] O. M. Sincan and H. Y. Keles, “Autsl: A large scale multi-modal turkish sign language dataset and baseline methods,” *IEEE Access*, vol. 8, pp. 181340–181355, 2020.

[28] C. Chansri and J. Srinonchat, “Hand gesture recognition for thai sign language in complex background using fusion of depth and color video,” *Procedia Computer Science*, vol. 86, pp. 257–260, 2016.

[29] J. R. Pansare and M. Ingle, “Vision-based approach for american sign language recognition using edge orientation histogram,” in *2016 International Conference on Image, Vision and Computing (ICIVC)*. IEEE, 2016, pp. 86–90.

[30] J. Singha and K. Das, “Indian sign language recognition using eigen value weighted euclidean distance based classification technique,” *arXiv preprint arXiv:1303.0634*, 2013.

[31] W. Ahmed, K. Chanda, and S. Mitra, “Vision based hand gesture recognition using dynamic time warping for indian sign language,” in *2016 International Conference on Information Science (ICIS)*. IEEE, 2016, pp. 120–125.

[32] M. Prasad, P. Kishore, E. K. Kumar, and D. A. Kumar, “Indian sign language recognition system using new fusion based edge operator,” *Journal of Theoretical & Applied Information Technology*, vol. 88, no. 3, 2016.

[33] K. K. Gurjal, P. “Real time hand gesture recognition using sift,” *Int J Electron Electr Eng*, vol. 2, no. 3,
2012.

[34] Y. Yao and C.-T. Li, “Hand posture recognition using surf with adaptive boosting,” in British Machine Vision Conference, 2012.

[35] N. Kumar, “Sign language recognition for hearing impaired people based on hands symbols classification,” in 2017 International Conference on Computing, Communication and Automation (ICCCA). IEEE, 2017, pp. 244–249.

[36] P. Shukla, A. Garg, K. Sharma, and A. Mittal, “A dtw and fourier descriptor based approach for indian sign language recognition,” in 2015 Third International Conference on Image Information Processing (ICIPH). IEEE, 2015, pp. 113–118.

[37] S. Z. Gurbuguz, A. C. Gurbuguz, E. A. Malaia, D. J. Griffin, C. Crawford, M. M. Rahman, E. Kurtoglu, R. Aksu, T. Macks, and R. Mdrafi, “American sign language recognition using rf sensing,” IEEE Sensors Journal, 2021.

[38] G. Dour and S. Sharma, “Recognition of alphabets of indian sign language by sugeno type fuzzy neural network,” Pattern Recognit Lett, vol. 30, pp. 737–742, 2016.

[39] A. Sethi, S. Hemanth, K. Kumar, N. Bhaskara Rao, and R. Krishnan, “Signpro-an application suite for deaf and dumb,” IJCSET, vol. 2, no. 5, pp. 1203–1206, 2012.

[40] H. Lahiani, M. Elleuch, and M. Kherallah, “Real-time hand gesture recognition system for android devices,” in 2015 15th International Conference on Intelligent Systems Design and Applications (ISDA). IEEE, 2015, pp. 591–596.

[41] J. R. Pansare, S. H. Gawande, and M. Ingle, “Real-time static hand gesture recognition for american sign language (asl) in complex background,” J Signal Inf Process, vol. 3, pp. 364–367, 2012.

[42] R. Lionnie, I. K. Timotius, and I. Setyawan, “Performance comparison of several pre-processing methods in a hand gesture recognition system based on nearest neighbor for different background conditions,” Journal of ICT Research and Applications, vol. 6, no. 3, pp. 183–194, 2012.

[43] Z. Zhang, X. Qin, X. Wu, F. Wang, and Z. Yuan, “Recognition of chinese sign language based on dynamic features extracted by fast fourier transform,” in Pacific Rim Conference on Multimedia. Springer, 2016, pp. 508–517.

[44] A. Zorins and P. Grabusts, “Review of data pre-processing methods for sign language recognition systems based on artificial neural networks.” Information Technology & Management Science (Sciendo), vol. 19, no. 1, 2016.

[45] A. Tsagaris and S. Manitsaris, “Colour space comparison for skin detection in finger gesture recognition,” International Journal of Advances in Engineering & Technology, vol. 6, no. 4, p. 1431, 2013.

[46] M. Al-Hammadi, G. Muhammad, W. Abdul, M. Alsulaiman, M. A. Bencherif, and M. A. Mekhtaric, “Hand gesture recognition for sign language using 3dcnn,” IEEE Access, vol. 8, pp. 79491–79509, 2020.

[47] S. Khalid, T. Khalil, and S. Nasreen, “A survey of feature selection and feature extraction techniques in machine learning,” in 2014 science and information conference. IEEE, 2014, pp. 372–378.

[48] S. Jiang, B. Lv, W. Guo, C. Zhang, H. Wang, X. Sheng, and P. B. Shull, “Feasibility of wrist-worn, real-time hand, and surface gesture recognition via semg and imu sensing.” IEEE Transactions on Industrial Informatics, vol. 14, no. 8, pp. 3376–3385, 2018.

[49] M. Tariq, A. Iqbal, A. Zahid, Z. Iqbal, and J. Akhtar, “Sign language localization: Learning to eliminate language dialects,” in 2012 15th International Multitopic Conference (INMIC). IEEE, 2012, pp. 17–22.

[50] ethnologue. (2014) ethnologue. [Online]. Available: https://www.ethnologue.com/

[51] E.-J. Ong, H. Cooper, N. Pugeault, and R. Bowden, “Sign language recognition using sequential pattern trees,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2012, pp. 2200–2207.

[52] S. Yin, J. Yang, Y. Qu, W. Liu, Y. Guo, H. Liu, and D. Wei, “Research on gesture recognition technology of data glove based on joint algorithm,” in 2018 International Conference on Mechanical, Electronic, Control and Automation Engineering (MECAE 2018). Atlantis Press, 2018, pp. 41–50.

[53] S. P. Y. Jane and S. Sasidhar, “Sign language interpreter: Classification of forearm emg and imu signals for signing exact english,” in 2018 IEEE 14th International Conference on Control and Automation (ICCA). IEEE, 2018, pp. 947–952.

[54] S. G. M. Almeida, F. G. Guimarães, and J. A. Ramírez, “Feature extraction in brazilian sign language recognition based on phonological structure and using rgb-d sensors,” Expert Systems with Applications, vol. 41, no. 16, pp. 7259–7271, 2014.

[55] B. G. Lee and S. M. Lee, “Smart wearable hand device for sign language interpretation system with sensors fusion,” IEEE Sensors Journal, vol. 18, no. 3, pp. 1224–1232, 2018.

[56] L. Li, S. Jiang, P. B. Shull, and G. Gu, “Skinvest: artificial skin for gesture recognition via filmy stretchable strain sensors,” Advanced Robotics, vol. 32, no. 21, pp. 1112–1121, 2018.

[57] X. Yang, X. Chen, X. Cao, S. Wei, and X. Zhang, “Chinese sign language recognition based on an optimized tree-structure framework,” IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 4, pp. 994–1004, 2017.

[58] A. Y. Dawod and N. Chakpitak, “Novel technique for isolated sign language based on fingerspelling recognition,” in 2019 13th International Conference on Software, Knowledge, Information Management and Applications (SKIMA). IEEE, 2019, pp. 1–8.

[59] M. Hruz, P. Campr, and A. Karpov, “Input and output modalities used in a sign-language-enabled information kiosk,” SCREEN, vol. 1, no. C3, p. C2, 2009.

[60] C. K. Mummadi, F. P. P. Leo, K. D. Verma,
S. Kasireddy, P. M. Scholl, J. Kempfle, and K. V. Laerhoven, “Real-time and embedded detection of hand gestures with an imu-based glove,” in Informatics, vol. 5, no. 2. Multidisciplinary Digital Publishing Institute, 2018, p. 28.

[61] R. Gupta and A. Kumar, “Indian sign language recognition using wearable sensors and multi-label classification,” Computers & Electrical Engineering, p. 106898, 2020.

[62] V. T. Hoang, “Hgm-4: A new multi-cameras dataset for hand gesture recognition,” Data in Brief, vol. 30, p. 105676, 2020.

[63] R. Elakkiya, “Machine learning based sign language recognition: A review and its research frontier,” Journal of Ambient Intelligence and Humanized Computing, pp. 1–20, 2020.

[64] S. Nayak, K. Duncan, S. Sarkar, and B. Loeding, “Finding recurrent patterns from continuous sign language sentences for automated extraction of signs,” Journal of Machine Learning Research, vol. 13, pp. 2589—2615, 2012.

[65] W. Kong and S. Ranganath, “Towards subject independent continuous sign language recognition: A segment and merge approach,” Pattern Recognition, vol. 47, no. 3, pp. 1294–1308, 2014.

[66] Y. Ye, Y. Tian, M. Huenerfauth, and J. Liu, “Recognizing american sign language gestures from within continuous videos,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 2064–2073.

[67] R. Gupta and S. Rajan, “Comparative analysis of convolution neural network models for continuous indian sign language classification,” Procedia Computer Science, vol. 171, pp. 1542–1550, 2020.

[68] W. Pan, X. Zhang, and Z. Ye, “Attention-based sign language recognition network utilizing keyframe sampling and skeletal features,” IEEE Access, vol. 8, pp. 215592–215602, 2020.

[69] I. Papastratis, K. Dimitopoulos, D. Konstantinidis, and P. Daras, “Continuous sign language recognition through cross-modal alignment of video and text embeddings in a joint-latent space,” IEEE Access, vol. 8, pp. 91170–91180, 2020.

[70] U. Von Agris, J. Zieren, U. Canzler, B. Bauer, and K.-F. Kraiss, “Recent developments in visual sign language recognition,” Universal Access in the Information Society, vol. 6, no. 4, pp. 323–362, 2008.

[71] S. Sarkar, B. Loeding, R. Yang, S. Nayak, and A. Parashar, “Segmentation-robust representations, matching, and modeling for sign language,” in CVPR 2011 Workshops. IEEE, 2011, pp. 13–19.

[72] M. Fagiani, E. Principi, S. Squartini, and F. Piazza, “Signer independent isolated italian sign recognition based on hidden markov models,” Pattern Analysis and Applications, vol. 18, no. 2, pp. 385–402, 2015.

[73] J. Zhang, W. Zhou, C. Xie, J. Pu, and H. Li, “Chinese sign language recognition with adaptive hmm,” in 2016 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2016, pp. 1–6.

[74] P. Kumar, P. P. Roy, and D. P. Dogra, “Independent bayesian classifier combination based sign language recognition using facial expression,” Information Sciences, vol. 428, pp. 30–48, 2018.

[75] A. Sabyrov, M. Mukushev, and V. Kimmelman, “Towards real-time sign language interpreting robot: Evaluation of non-manual components on recognition accuracy,” in CVPR Workshops, 2019.

[76] M. Mukushev, A. Sabyrov, A. Imashev, K. Koishybay, V. Kimmelman, and A. Sandygulova, “Evaluation of manual and non-manual components for sign language recognition,” in Proceedings of The 12th Language Resources and Evaluation Conference, 2020, pp. 6073–6078.

[77] P. Kishore, D. A. Kumar, A. C. S. Sastry, and E. K. Kumar, “Motionlets matching with adaptive kernels for 3-d indian sign language recognition,” IEEE Sensors Journal, vol. 18, no. 8, pp. 3327–3337, 2018.

[78] Z. Liu, X. Qi, and L. Pang, “Self-boosted gesture interactive system with st-net,” in Proceedings of the 26th ACM International Conference on Multimedia, 2018, pp. 145–153.

[79] R. B. Wilbur, “Phonological and prosodic layering of nonmanuals in american sign language,” in The signs of language revisited. Psychology Press, 2013, pp. 196–220.

[80] A. Farhadi and D. Forsyth, “Aligning asl for statistical translation using a discriminative word model,” in 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2. IEEE, 2006, pp. 1471–1476.

[81] I. Infantino, R. Rizzo, and S. Gaglio, “A framework for sign language sentence recognition by commonsense context,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 37, no. 5, pp. 1034–1039, 2007.

[82] H.-D. Yang and S.-W. Lee, “Robust sign language recognition by combining manual and non-manual features based on conditional random field and support vector machine,” Pattern Recognition Letters, vol. 34, no. 16, pp. 2051–2056, 2013.

[83] C. Zhang, Y. Tian, and M. Huenerfauth, “Multimodality american sign language recognition,” in 2016 IEEE International Conference on Image Processing (ICIP). IEEE, 2016, pp. 2881–2885.

[84] H. Brock, I. Farag, and K. Nakadai, “Recognition of non-manual content in continuous japanese sign language,” Sensors, vol. 20, no. 19, p. 5621, 2020.

[85] H. Zhou, W. Zhou, Y. Zhou, and H. Li, “Spatial-temporal multi-cue network for continuous sign language recognition,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07, 2020, pp. 13009–13016.

[86] O. Koller, N. C. Camgoz, H. Ney, and R. Bowden, “Weakly supervised learning with multi-stream cnns-hmms to discover sequential parallelism in sign language videos,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. 42, no. 9, pp. 2306–2320, 2020.

[87] O. Koller, H. Ney, and R. Bowden, “Deep hand: How to train a cnn on 1 million hand images when your data is continuous and weakly labelled,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 3793–3802.

[88] A. Sridhar, R. G. Ganesan, P. Kumar, and M. Khapra, “Include: A large scale dataset for indian sign language recognition,” in Proceedings of the 28th ACM International Conference on Multimedia, 2020, pp. 1366–1375.

[89] H. R. V. Joze and O. Koller, “Ms-asl: A large-scale data set and benchmark for understanding american sign language,” arXiv preprint arXiv:1812.01053, 2018.

[90] O. Özdemir, A. A. Kındıroğlu, N. Cihan Camgoz, and L. Akarun, “BosphorusSign22k Sign Language Recognition Dataset,” in Proceedings of the LREC2020 9th Workshop on the Representation and Processing of Sign Languages: Sign Language Resources in the Service of the Language Community, Technological Challenges and Application Perspectives, 2020.

[91] S.-K. Ko, C. J. Kim, H. Jung, and C. Cho, “Neural sign language translation based on human keypoint estimation,” Applied Sciences, vol. 9, no. 13, p. 2683, 2019.

[92] A. Elboughaci, R. Hannane, K. Afdel, and L. Koutti, “Multid-cnn: A multi-dimensional feature learning approach based on deep convolutional networks for gesture recognition in rgb-d image sequences,” Expert Systems with Applications, vol. 139, p. 112829, 2020.

[93] O. Köpüklü, A. Gunduz, N. Kose, and G. Rigoll, “Real-time hand gesture detection and classification using convolutional neural networks,” in Proceedings of the 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019). IEEE, 2019, pp. 1–8.

[94] K. M. Lim, A. W. C. Tan, C. P. Lee, and S. C. Tan, “Isolated sign language recognition using convolutional neural network hand modelling and hand energy image,” Multimedia Tools and Applications, vol. 78, no. 14, pp. 19917–19944, 2019.

[95] Y. Chen, L. Zhao, X. Peng, J. Yuan, and D. N. Metaxas, “Construct dynamic graphs for hand gesture recognition via spatial-temporal attention,” arXiv preprint arXiv:1907.08871, 2019.

[96] P. M. Ferreira, J. S. Cardoso, and A. Rebele, “On the role of multimodal learning in the recognition of sign language,” Multimedia Tools and Applications, vol. 78, no. 8, pp. 10035–10056, 2019.

[97] F. Gomez-Donoso, S. Orts-Escolano, and M. Cazorla, “Accurate and efficient 3d hand pose regression for robot hand teleoperation using a monocular rgb camera,” Expert Systems with Applications, vol. 136, pp. 327–337, 2019.

[98] A. Spurr, J. Song, S. Park, and O. Hilliges, “Cross-modal deep variational hand pose estimation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 89–98.

[99] E. Kazakos, C. Nikou, and I. A. Kakadiaris, “On the fusion of rgb and depth information for hand pose estimation,” in 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018, pp. 868–872.

[100] Y. Li, Z. Xue, Y. Wang, L. Ge, Z. Ren, and J. Rodriguez, “End-to-end 3d hand pose estimation from stereo cameras.” in BMVC, vol. 1, 2019, p. 2.

[101] F. Mueller, F. Bernard, O. Sotnycchenko, D. Mehta, S. Sridhar, D. Casas, and C. Theobalt, “Generators for real-time 3d hand tracking from monocular rgb,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 49–59.

[102] D. Victor, “Handtrack: A library for prototyping real-time hand tracking interfaces using convolutional neural networks,” GitHub repository, 2017.

[103] S. Baek, K. I. Kim, and T.-K. Kim, “Augmented skeleton space transfer for depth-based hand pose estimation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 8330–8339.

[104] G. Moon, J. Y. Chang, and K. M. Lee, “V2v-posenet: Voxel-to-voxel prediction network for accurate 3d hand and human pose estimation from a single depth map,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5079–5088.

[105] L. Ge, H. Liang, J. Yuan, and D. Thalmann, “Robust 3d hand pose estimation from single depth images using multi-view cnns,” IEEE Transactions on Image Processing, vol. 27, no. 9, pp. 4422–4436, 2018.

[106] L. Ge and et. al, “3d convolutional neural networks for efficient and robust hand pose estimation from single depth images,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1991–2000.

[107] E. Dibra, T. Wolf, C. Oztiireli, and M. Gross, “How to refine 3d hand pose estimation from unlabelled depth data?” in 2017 International Conference on 3D Vision (3DV). IEEE, 2017, pp. 135–144.

[108] A. Sinha, C. Choi, and K. Ramani, “Deephand: Robust hand pose estimation by completing a matrix imputed with deep features,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4150–4158.

[109] C. Zimmermann and T. Brox, “Learning to estimate 3d hand pose from single rgb images,” in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 4903–4911.

[110] M. J. Marin-Jimenez, F. J. Romero-Ramirez, R. Munoz-Salinas, and R. Medina-Carnicer, “3d human pose estimation from depth maps using a deep combination of poses,” Journal of Visual Communication and Image Representation, vol. 55, pp. 627–639, 2018.

[111] X. Deng, S. Yang, Y. Zhang, P. Tan, L. Chang, and H. Wang, “Hand3d: Hand pose estimation using 3d neural network,” arXiv preprint arXiv:1704.02224, 2017.

[112] M. Oberweger, G. Riegler, P. Wohlhart, and V. Lepetit, “Efficiently creating 3d training data for fine hand pose estimation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.
[113] M. Oberweger, P. Wohlhart, and V. Lepetit, “Hands deep in deep learning for hand pose estimation,” arXiv preprint arXiv:1502.06807, 2015.

[114] R. Rastgoo, K. Kiani, and S. Escalera, “Multi-modal deep hand sign language recognition in still images using restricted boltzmann machine,” Entropy, vol. 20, no. 11, p. 809, 2018.

[115] J. Duan, S. Zhou, J. Wan, X. Guo, and S. Z. Li, “Multi-modality fusion based on consensus-voting and 3d convolution for isolated gesture recognition,” arXiv preprint arXiv:1611.06689, 2016.

[116] X. Chen, G. Wang, H. Guo, and C. Zhang, “Pose guided structured region ensemble network for cascaded hand pose estimation,” Neurocomputing, 2020.

[117] A. Dadashzadeh, A. T. Targhi, M. Tahmasbi, and M. Mirmehdi, “Hgr-net: a fusion network for hand gesture segmentation and recognition,” IET Computer Vision, vol. 13, no. 8, pp. 700–707, 2019.

[118] M. Wang, X. Chen, W. Liu, C. Qian, L. Lin, and L. Ma, “Drpose3d: Depth ranking in 3d human pose estimation,” arXiv preprint arXiv:1805.08973, 2018.

[119] S. Yuan, Q. Ye, B. Stenger, S. Jain, and T.-K. Kim, “Bighand2. 2m benchmark: Hand pose dataset and state of the art analysis,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4866–4874.

[120] H. Guo, G. Wang, X. Chen, and C. Zhang, “Towards good practices for deep 3d hand pose estimation,” arXiv preprint arXiv:1707.07248, 2017.

[121] X. Fang and X. Lei, “Hand pose estimation on hybrid cnn-ae model,” in 2017 IEEE International Conference on Information and Automation (ICIA). IEEE, 2017, pp. 1018–1022.

[122] M. Madadi, S. Escalera, X. Baró, and J. Gonzalez, “End-to-end global to local cnn learning for hand pose recovery in depth data,” arXiv preprint arXiv:1705.09606, 2017.

[123] P. Wang, W. Li, S. Liu, Z. Gao, C. Tang, and P. Ogunbona, “Large-scale isolated gesture recognition using convolutional neural networks,” in 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016, pp. 7–12.

[124] A. Haque, B. Peng, Z. Luo, A. Alahi, S. Yeung, and L. Fei-Fei, “Towards viewpoint invariant 3d human pose estimation,” in European Conference on Computer Vision. Springer, 2016, pp. 160–177.

[125] A. Tagliasacchi, M. Schröder, A. Tkach, S. Bouaziz, M. Botsch, and M. Pauly, “Robust articulated-icp for real-time hand tracking,” in Computer Graphics Forum, vol. 34, no. 5. Wiley Online Library, 2015, pp. 101–114.

[126] R. Rastgoo, K. Kiani, and S. Escalera, “Video-based isolated hand sign language recognition using a deep cascaded model,” Multimedia Tools and Applications, vol. 79, pp. 22965–22987, 2020.

[127] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional pose machines,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4724–4732.

[128] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human pose estimation,” in European Conference on Computer Vision. Springer, 2016, pp. 483–499.

[129] O. Koller, J. Forster, and H. Ney, “Continuous sign language recognition: Towards large vocabulary statistical recognition systems handling multiple signers,” Computer Vision and Image Understanding, vol. 141, pp. 108–125, 2015.

[130] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep neural networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 1653–1660.

[131] S. Ravi, M. Suman, P. Kishore, K. Kumar, A. Kumar et al., “Multi modal spatio temporal co-trained cnns with single modal testing on rgb-d based sign language gesture recognition,” Journal of Computer Languages, vol. 52, pp. 88–102, 2019.

[132] Ç. Gökçe, O. Özdemir, A. A. Kindroğlu, and L. Akarun, “Score-level multi cue fusion for sign language recognition,” in European Conference on Computer Vision. Springer, 2020, pp. 294–309.

[133] D. Li, X. Yu, C. Xu, L. Petersson, and H. Li, “Transferring cross-domain knowledge for video sign language recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 6205–6214.

[134] N. C. Camgoz, O. Koller, S. Hadfield, and R. Bowden, “Sign language transformers: Joint end-to-end sign language recognition and translation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 10 023–10 033.

[135] D. Li, C. Xu, X. Yu, K. Zhang, B. Swift, H. Suominen, and H. Li, “Tspnet: Hierarchical feature learning via temporal semantic pyramid for sign language translation,” arXiv preprint arXiv:2010.05468, 2020.

[136] J. Zheng, Y. Chen, C. Wu, X. Shi, and S. M. Kamal, “Enhancing neural sign language translation by highlighting the facial expression information,” Neurocomputing, vol. 464, pp. 462–472, 2021.

[137] H. F. T. Ahmed, H. Ahmad, K. Narasingamurthi, H. Harkat, and S. K. Phang, “Df-wislr: Device-free wi-fi-based sign language recognition,” Pervasive and Mobile Computing, vol. 69, p. 101289, 2020.

[138] F. B. Slimane and M. Bouguessa, “Context matters: Self-attention for sign language recognition,” in 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021, pp. 7884–7891.

[139] R. Töngi, “Application of transfer learning to sign language recognition using an inflated 3d deep convolutional neural network,” arXiv preprint arXiv:2103.05111, 2021.

[140] H. Hu, W. Zhou, J. Pu, and H. Li, “Global-local enhancement network for nmf-aware sign language recognition,” ACM transactions on multimedia computing, communications, and applications (TOMM), vol. 17,
no. 3, pp. 1–19, 2021.

[141] M. De Coster, M. Van Herreweghe, and J. Dambre, “Isolated sign recognition from rgb video using pose flow and self-attention,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 3441–3450.

[142] S. Jiang, B. Sun, L. Wang, Y. Bai, K. Li, and Y. Fu, “Skeleton aware multi-modal sign language recognition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 3413–3423.

[143] I. Papastratis, K. Dimitropoulos, and P. Daras, “Continuous sign language recognition through a context-aware generative adversarial network,” Sensors, vol. 21, no. 7, p. 2437, 2021.

[144] Y. Min, A. Hao, X. Chai, and X. Chen, “Visual alignment constraint for continuous sign language recognition,” arXiv preprint arXiv:2104.02330, 2021.

[145] S. Jiang, B. Sun, L. Wang, Y. Bai, K. Li, and Y. Fu, “Sign language recognition via skeleton-aware multi-model ensemble,” arXiv preprint arXiv:2110.06161, 2021.

[146] L. Meng and R. Li, “An attention-enhanced multi-scale and dual sign language recognition network based on a graph convolution network,” Sensors, vol. 21, no. 4, p. 1120, 2021.

[147] E. Pereira-Montiel, E. Pérez-Giraldo, J. Mazo, D. Orrego-Metaute, E. Delgado-Trejos, D. Cuesta-Frau, and J. Murillo-Escobar, “Automatic sign language recognition based on accelerometry and surface electromyography signals: A study for colombian sign language,” Biomedical Signal Processing and Control, vol. 71, p. 103201, 2022.

[148] M. Boháček and M. Hruž, “Sign pose-based transformer for word-level sign language recognition,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp. 182–191.

Authors Biography

Dr. M. MADHIARASAN (Member, IEEE) has completed his Bachelor of Engineering degree in Electrical and Electronics Engineering in the year 2010 from Jaya Engineering College, Thiruninravur, under Anna University, Tamil Nadu, India, Master of Engineering degree in Electrical Drives and Embedded Control (Electrical Engineering) in the year 2013 from Anna University, Regional Centre, Coimbatore, under Anna University, Tamil Nadu, India and Ph.D. (Electrical Engineering) in the year 2018 from Anna University, Tamil Nadu, India.

He has worked as an Assistant Professor and R & D In-charge in the Department of Electrical and Electronics Engineering, Bharat Institute of Engineering and Technology, Hyderabad, India, from 2018 to 2020. He is presently working as a Post-Doctoral Fellow at the Department of Computer Science and Engineering, Indian Institute of Engineering and Technology, Hyderabad, India, from 2018 to 2020. He is presently working as a Post-Doctoral Fellow at the Department of Computer Science and Engineering, Indian Institute of Technology, Roorkee (IIT). His research areas include Renewable Energy Systems, Power Electronics and Control, Computer Vision, Human-Computer Interface, Pattern Recognition, Artificial Intelligence, Neural Networks, Optimization, Machine Learning, Deep Learning, Soft Computing, Internet of Things and Modeling and Simulation. He has been a Technical Program Committee Member, International Scientific Committee Member of many international conferences. He acts as an editorial board member and reviewer for many peer-reviewed international journals (Springer, Elsevier, IEEE Access, etc.) and a guest editor of Energy Engineering.

Dr. PARTHA PRATIM ROY (Member, IEEE) was a Postdoctoral Research Fellow with the RFAI Laboratory, France, in 2012, and the Synchronmedia Laboratory, Canada, in 2013. He was with the Advanced Technology Group, Samsung Research Institute, Noida, India, from 2013 to 2014. He is currently an Associate Professor with the Department of Computer Science and Engineering, IIT Roorkee, India. He has authored or coauthored more than 200 articles in international journals and conferences. His research interests are pattern recognition, bio-signal analysis, EEG-based pattern analysis, and multilingual text recognition. He is an Associate Editor of the IET Image Processing, IET Biometrics, IEICE Transactions on Information and Systems and Springer Nature Computer Science.