Supplemental material

Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels

Hafiz A. R. Suleria1,2*, Colin J. Barrow2 and Frank R. Dunshea1,3

1 School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville 3010, VIC, Australia; hafiz.suleria@unimelb.edu.au (H.A.R.S.); fdunshea@unimelb.edu.au (F.R.D.)
2 Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3217, Australia; colin.barrow@deakin.edu.au (C.J.B)
3 Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, United Kingdom.
* Correspondence: hafiz.suleria@unimelb.edu.au; Tel: +61 470 439 670

Received: date; Accepted: date; Published: date

Abstract: Fruit peels have a diverse range of phytochemicals including carotenoids, vitamins, dietary fibres and phenolic compounds, some with remarkable antioxidant properties. Nevertheless, the comprehensive screening and characterization of the complex array of phenolic compounds in different fruit peels is limited. This study aimed to determine the polyphenol content and their antioxidant potential in twenty different fruit peel samples in ethanolic extraction, including their comprehensive characterization and quantification by the LC-MS/MS and HPLC. The obtained results showed that mango peel exhibited the highest phenolic content for TPC (27.51 ± 0.63 mg GAE/g), TFC (1.75 ± 0.08 mg QE/g) while the TTC (9.01 ± 0.20 mg CE/g) was slightly higher in avocado peel than mango peel (8.99 ± 0.15 mg CE/g). In terms of antioxidant potential, grapefruit peel had the highest radical scavenging capacities for the DPPH (9.17 ± 0.19 mg AAE/g), ABTS (10.79 ± 0.56 mg AAE/g), ferric reducing capacity in FRAP (9.22 ± 0.25 mg AA/g) and total antioxidant capacity, TAC (8.77 ± 0.34 mg AAE/g) compared to other fruit peel samples. Application of LC-ESI-QTOF-MS/MS tentatively identified and characterized a total of 176 phenolics including phenolic acids (49), flavonoids (86), lignans (11), stilbene (5) and other polyphenols (25) in all twenty peel samples. From HPLC-PDA quantification, mango peel sample showed significantly higher phenolic content, particularly for phenolic acids (gallic acid, 14.5 ± 0.4 mg/g) and flavonoids (quercetin, 11.9 ± 0.4 mg/g), as compared to other fruit peel samples. These results highlight the importance of fruit peels as a potential source of polyphenols. This study provides supportive information for utilization of different phenolic rich fruit peels as ingredients in the food, feed and nutraceutical.

Keywords: Fruit peels; polyphenols; phenolic acids; flavonoids; flavan-3-ols; hydrolysable and condensed tannins; antioxidant activities; LC-MS and HPLC.
Materials and Methods (Supplementary material)

2.1. Chemicals and Reagents

Most of the chemicals used for extraction and characterization were analytical grade and purchased from Sigma-Aldrich (Castle Hill, NSW, Australia). Folin-Ciocalteu’s phenol reagent, gallic acid, L-ascorbic acid, vanillin, hexahydrate aluminium chloride, sodium phosphate, iron(III) chloride hexahydrate (Fe[III]Cl₃·6H₂O), hydrated sodium acetate, hydrochloric acid, ammonium molybdate, quercetin, catechin, 2,2’-diphenyl-1-picrylhydrazyl (DPPH), 2,4,6-tripyridyl-s-triazine (TPTZ), and 2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) were purchased from the Sigma-Aldrich (Castle Hill, NSW, Australia) for the estimation of polyphenols and antioxidant potential. Reference standards for the HPLC including gallic acid, protocatechuic acid, caftaric acid, p-hydroxybenzoic acid, chlorogenic acid, caffeic acid, syringic acid, coumaric acid, ferulic acid, sinapinic acid, catechin, epicatechin gallate, quercetin-3-galactoside, quercetin-3-glucuronide, quercetin-3-glucoside, quercetin, diosmin, kaempferol and kaempferol-3-glucoside were produced by Sigma-Aldrich (Castle Hill, NSW, Australia) for quantification proposes. Sodium carbonate anhydrous were purchased from Chem-Supply Pty Ltd. (Adelaide, SA, Australia) and 98% sulfuric acid were bought from RCI Labscan (Rongmuang, Thailand). HPLC and LC-MS grade reagents include methanol, ethanol, acetonitrile, formic acid and glacial acetic acid were purchased from Thermo Fisher Scientific Inc (Scoresby, VIC, AU). To perform various in vitro bioactivities and antioxidant assays, 96 well-plates were purchased from Thermo Fisher Scientific (VIC, Australia). Additionally, HPLC vials (1 mL) were purchased from Agilent technologies (VIC, Australia).

2.2. Sample Preparation

Twenty different Australian grown fresh and mature fruits varieties (2-3 kg) including apple (Royal gala), apricot (Mystery), avocado (Hass), banana (Cavendish), custard apple (African Pride), dragon fruit (Red-fleshed), grapefruit (Thompson), kiwifruit (Hayward), mango (Kensington Pride), lime (Tahitian), melon (Rock melons), nectarine (Fantasia), orange (Navels), papaya (Sunrise Solo), passionfruit (Misty Gem), peach (Florda gold), pear (Packham’s Triumph), pineapple (Aussie Rough), plum (Angeleno), and pomegranate (Griffith) were purchased from a local produce market in Melbourne, Australia. The fruits were manually cleaned, peels were removed and cut into desirable slices (0.5 x 1 cm) and frozen at −20 °C for overnight followed by lyophilization at −45 °C/50 MPa using the Dynavac engineering FD3 Freeze Drier (Belmont, W.A., Australia) and Edwards RV12 oil sealed rotary vane pump (Bolton, England). The freeze-dried fruit peels were grounded into a refined powder by electric grinder (Sunbeam Multi Grinder - EM0405, Melbourne, VIC, AU), packed into silver flat Ziplock aluminum foil - vacuum sealing bags (Best supply, NSW, AU) and stored at −20 °C.

2.3. Extraction of Phenolic Compounds

To extract the phenolic compounds, 2.0 ± 0.5 g of each fruit peel powder was mixed with 20 mL 70% ethanol. The samples were homogenized at 10,000 rpm for 30 s using the IKA Ultra-Turrax T25 homogenizer (Rawang, Selangor, Malaysia) and subjected to shaking incubator (ZWYR-240, Labwit, Ashwood, VIC, Australia) at 120 rpm for 12 h (4 °C). After incubation, the extracts were centrifuged with Hettich Refrigerated Centrifuge (ROTINA380R, Tuttingen, Baden-Württemberg, Germany) at 5,000 rpm for 15 min. The supernatants were collected and stored at −20 °C for 2 weeks for antioxidant analysis. For HPLC and LC-MS analysis, the extracts were filtrated through a 0.45 μm syringe filter (Thermo Fisher Scientific Inc., Waltham, MA, USA).

2.4. Estimation of Polyphenols and Antioxidant Potential

For polyphenol estimation in selected fruit peel samples, TPC, TFC, and TTC assays were performed while for measuring their antioxidant potential, four different types of antioxidant assays including DPPH, ABTS, FRAP and TAC were performed by adopting our previously published
methods of Tang, et al. [18]. The data was determined using a Multiskan® Go microplate photometer (Thermo Fisher Scientific, Waltham, MA, USA).

2.4.1. Determination of Total Phenolic Content (TPC)

For the TPC, 25 μL extracts of each peel extract, 200 μL of water and 25 μL of Folin–Ciocalteu reagent solution (1:3 v/v), diluted with water was added to 96 well plate (Corning Inc., Midland, NC, USA) followed by incubation at 25 °C for 5 minutes. After that, 25 μL 10% (w:w) sodium carbonate was added and incubated for 1 h at 25 °C followed by the measurement of absorbance at 765 nm by a spectrophotometer plate reader (Thermo Fisher Scientific, Waltham, MA, USA). The quantification of total phenolic content was based on a standard curve generated from gallic acid with the concentrations from 0 – 200 μg/mL and results were expressed as mass (mg) of gallic acid equivalents (GAE) per weight of sample.

2.4.2. Determination of Total Flavonoids Content (TFC)

For the TFC, 80 μL of each peel extract, 80 μL of 2% (w/v) aluminum chloride solution and 120 μL of 50 g/L sodium acetate solution were added in a 96-well plate followed by incubation at 25 °C for 2.5 h and absorbance was measured at 440 nm. For quantification, a standard curve was made with quercetin (0 – 50 μg/mL) and results were expressed as mass (mg) of quercetin equivalents (QE) per weight of sample.

2.4.3. Determination of Total Tannins Content (TTC)

For the TTC, 25 μL of extract, 150 μL 4% (w/v) vanillin solution and 25 μL of 32% (v/v) sulphuric acid were incubated at 25 °C for 15 min, absorbance was measured at 500 nm. For quantification, a standard curve was generated from catechin using the concentrations of 0 - 1000 μg/mL and results were expressed as mass (mg) of catechin equivalents (CE) per weight of sample.

2.4.4. Determination of 2,2′-Diphenyl-2-picryl-hydrazyl (DPPH) Antioxidant Assay

For the DPPH assays, 40 μL of each fruit peel extract and 260 μL of 0.1 M DPPH radical methanol solution was added into 96-well plate and incubated at 25 °C for 30 min. The absorbance was measured at 517 nm using a microplate reader. A standard curve was generated using 0 - 50 μg/mL ascorbic acid aqueous solution. The results were expressed as mass (mg) of ascorbic acid equivalents (AAE) per weight of sample.

2.4.5. Determination of Ferric Reducing Antioxidant Power (FRAP) Assay

To prepare the FRAP reagent, 300 mM sodium acetate buffer (pH 3.6), 10 mM TPTZ solution, and 20 mM ferric chloride in a ratio of 10:1:1 (v/v/v) was prepared freshly. A 20 μL of peel extracts and 280 μL of freshly prepared FRAP reagent were mixed in a 96 well plate followed by incubation at 37 °C for 10 min, absorbance was measured at 593 nm. A standard curve was achieved using concentrations of 0 - 50 μg/mL ascorbic acid and results were expressed as mass (mg) of AAE per weight of sample.

2.4.6. Determination of 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Assay

The ABTS+ dye was prepared with 5 mL of 7 mM of ABTS solution mixed with 88 μL of 140 mM potassium persulfate solution, incubated in the dark at room temperature for 16 h to generate an ABTS+ free radical solution. Further, ABTS+ stock solution was prepared by diluted with ethanol to gain absorbance of 0.70 at 734 nm. For the ABTS assay, 10 μL fruit peel extract and 290 μL of freshly prepared ABTS+ solution were added in 96 well plate and incubated at 25 °C for 6 min. Subsequently, the absorbance was measured at 734 nm. A standard curve was achieved using concentrations of 0 - 150 μg/mL ascorbic acid and the results were expressed as mass (mg) of AAE per weight of sample.
2.4.7. Determination of Total Antioxidant Capacity (TAC)

For the TAC, 40 μL of each fruit peel extract was added to 260 μL of phosphomolybdate reagent (0.6 M H₂SO₄, 0.028 M sodium phosphate and 0.004 M ammonium molybdate). The mixture was incubated at 95 °C for 10 min, cooled at room temperature and absorbance was measured at 695 nm. A standard curve was generated using concentrations of 0 - 200 μg/mL ascorbic acid and the results were expressed as mass (mg) of AAE per weight of sample.

2.5. Characterization of Phenolic compounds using LC-ESI-QTOF-MS/MS Analysis

The phenolic compound characterization was performed on an Agilent 1200 HPLC with an Agilent 6520 Accurate Mass Q-TOF LC/MS (Agilent Technologies, Santa Clara, CA, USA). The separation was conducted using a Synergi Hydro-RP 80 Å, reverse phase column (250 mm x 4.6 mm, 4 μm particle size) with protected C18 ODS (4.0 x 2.0 mm) guard column (Phenomenex, Lane Cove, NSW, Australia) by adopting our previously published method of Zhong, et al. [19]. In brief, the mobile phase consisted of water/acetic acid (98:2, v/v; eluent A) and acetonitrile/acetic acid/water (50:0.5:49.5, v/v/v; eluent B). The gradient profile was described as follows: 10–25% B (0–25 min), 25–35% B (25–35 min), 35–40% B (35–45 min), 40–55% B (45–75 min), 55–80% B (75–79 min), 80–90% B (79–82 min), 90–100% B (82–84 min), 100–10% B (84–87 min), isocratic 10% B (87–90 min). A 6 μL of each peel extract was injected and the flow rate was set at 0.8 mL/min. Peaks were identified in both positive and negative ion modes with the capillary and nozzle voltage set to 3.5 kV and 500 V, respectively. Additionally, following conditions were maintained; i) nitrogen gas temperature at 300 °C, ii) sheath gas flow rate of 11 L/min at 250 °C, and iii) nitrogen gas nebulisation at 45 psi. A complete mass scan ranging from m/z 50 to 1300 was used, MS/MS analyses were carried out in automatic mode with collision energy (10, 15 and 30 eV) for fragmentation. Peak identification was performed in both positive and negative modes while the instrument control, data acquisition and processing were performed using LC-ESI-QTOF-MS/MS MassHunter workstation software (Qualitative Analysis, version B.03.01, Agilent Technologies, Santa Clara, CA, USA).

2.6. Quantification of Phenolic compounds using HPLC-PDA

The quantitative measurement of targeted phenolic compounds present in different fruit peels samples was performed with an Agilent 1200 HPLC equipped with a photodiode array (PDA) detector by adopting our previously published protocol of Ma, et al. [20]. In brief, the same column and conditions were maintained as described above in LC-ESI-QTOF-MS/MS, except for a sample injection volume of 20 μL. The twenty most abundant phenolic compounds present in the different fruit peels including 10 phenolic acids and 10 flavonoids, were selected for quantification purposes. The phenolic compounds were determined at three different wavelengths, including 280 nm, 320 nm, and 370 nm. The quantification of targeted polyphenols was based on the calibration standard curve and the result was expressed as mg/g of sample. Data collection and processing was performed using Agilent MassHunter workstation software (Agilent Technologies, Santa Clara, CA, USA).

2.7. Statistical Analysis

All analyses were performed in triplicates and the results are presented as mean ± standard deviation (n = 3). The mean differences between different samples were analyzed by one-way analysis of variance (ANOVA) and Tukey’s honestly significant differences (HSD) multiple rank test at p ≤ 0.05. ANOVA was carried out by Minitab for Windows version 19.0 (Minitab, LLC, State College, PA, USA) and GraphPad Prism 7.05 Software for Windows (GraphPad 7.05 Software, San Diego, CA, USA, www.graphpad.com). For correlations between polyphenol content and antioxidant activities by Pearson’s correlation coefficient at p ≤ 0.05 and multivariate statistical analysis including principal component analysis (PCA), XLSTAT – 2019.1.3 were used by Addinsoft Inc. New York, N.Y USA.
Table S1. Characterization of phenolic compounds in different fruit peel samples by LC-ESI-QTOF-MS/MS.

No.	Proposed compounds	Molecular Formula	RT (min)	Ionization (ESI/ESI)	Molecular Weight	Theoretical (m/z)	Observed (m/z)	Error (ppm)	MS² Product ions	Fruit Peels
1	Vanillyl acid 4-sulfate	C₇H₆O₅S	5.068	[M-H]	247.9991	246.9912	246.9911	-2.8	167	*MNG, PER, KWF
2	Gallic acid 4-O-glucoside	C₇H₆O⁵	6.866	[M-H]	332.0743	331.0670	331.0674	1.2	169, 125	*APL, APR, GRF, MNG, ORN, PSN, PER, PIN, PLM, POM
3	Gallic acid	C₇H₆O₃	6.872	**[M-H]**	170.0215	169.0142	169.0146	2.4	125	*MNG, ORN, PER, POM, KWF, LMN
4	Ellagic acid arabinoside	C₇H₆O$_{12}$	7.020	[M-H]	434.4850	433.0412	433.0422	2.3	300	ORN
5	Protocatechuic acid 4-O-glucoside	C₈H₈O₅	7.379	**[M-H]**	316.0794	315.0721	315.0718	-1.0	153	*APL, APR, BNA, GRF, KWF, MNG, ORN, PSN, PEC, PER, PIN, PLM, POM, POM, AVO, AVO, PAP
6	2-Hydroxybenzoic acid	C₇H₆O₃	7.628	**[M-H]**	138.0317	137.0244	137.0244	0.1	93	*APL, APR, BNA, GRF, KWF, MNG, NEC, PEC, PSN, PER, PIN, AVO, AVO, PAP
7	4-Hydroxybenzoic acid 4-O-glucoside	C₇H₆O₅	11.171	[M-H]	300.0845	299.0772	299.0762	-3.3	255, 137	*GRF, MNG, MEL, PER
8	2,3-Dihydroxybenzoic acid	C₇H₆O₃	12.714	[M-H]	154.0266	153.0193	153.0193	0.1	109	*APL, GRF, KWF, NEC, PEC, ORN, PSN, PIN, PLM
9	3-O-Methylgallic acid	C₇H₆O₃	13.079	**[M+H]+**	184.0372	185.0445	185.0452	3.8	170, 142	*KWF, MNG, AVO, DGF, GRF, PEC
10	3,4-Dimethyldiigallic acid	C₇H₆O₅	16.475	**[M+H]+**	198.0528	199.0601	199.0605	2.0	153, 139, 125, 111	*DG, KWF, MNG, ORN, PAP, PEC, AVO, AVO, PAP, CTA
11	Gallic acid 3-O-gallate	C₇H₆O₃	21.104	[M-H]	322.0325	321.0252	321.0240	-3.7	169	*MNG, PER
12	Paeoniflorin	C₇H₆O$_{11}$	58.033	**[M-H]**	480.1632	479.1559	479.1577	3.8	449, 357, 327	*LMN, AVO, DGF
13	1,5-Dicaffeoylquinic acid	C₈H₈O$_{12}$	4.134	**[M-H]**	516.1268	515.1195	515.1198	0.6	353, 335, 191, 179	*NEC, ORN, PSN, AVO, CTA
14	Isoferulic acid 3-sulfate	C₇H₆O$_{5}$	5.341	[M-H]	274.0147	273.0074	273.0067	-2.6	193, 178	PLM
15	Caffeoyl glucose	C₇H₆O₃	7.012	[M-H]	342.0951	341.0878	341.0861	-5.0	179, 161	*BNA, DGF, GRF, KWF, NEC, ORN, PSN, PLM, POM
16	p-Coumaroyl tartaric acid	C₈H₈O₃	8.632	**[M-H]**	296.0532	295.0459	295.0468	3.1	115	*AVO, DGF, PIN, GRF, LMN, ORN, PER
17	Cinnamic acid	C₈H₈O₂	9.351	**[M-H]**	148.0524	147.0451	147.0448	-2.0	103	*APL, APR, BNA, CTA, LMN, PEC, PAP, PIN, PLM, POM, AVO, DGF, MEL
18	Feruloyl tartaric acid	C₇H₆O₃	10.419	[M-H]	326.0638	325.0565	325.0566	0.3	193, 149	*MNG, PER, POM
19	Caffeoyl tartaric acid	C₇H₆O₃	13.765	**[M-H]**	312.0481	311.0408	311.0418	3.2	161	*POM, MNG, ORN, PSN
20	3-Sinapoylquinic acid	C₈H₈O$_{12}$	14.154	**[M-H]**	398.1213	397.1140	397.1144	1.0	233, 179	*CTA, NEC, ORN, AVO, DGF, PAP
21	3-p-Coumaroylquinic acid	C₈H₈O$_{12}$	18.131	**[M-H]**	338.1002	337.0929	337.0924	-1.5	265, 173, 162	*APL, APR, CTA, KWF, NEC, PEC, PSN, PLM, AVO, AVO, DFG, MEL
No.	Compound	Formula	Mass (Da)	Calculated Mass (Da)	P.E.	Retention Time (min)	Ions			
-----	---------------------------------	---------	-----------	----------------------	------	----------------------	--------			
22	Ferulic acid 4-O-glucoside	C₁₀H₁₀O₇	272.096	272.096	0.1	6.01	**(M+H)**			
23	Ferulic acid	C₁₀H₁₀O₇	272.096	272.096	0.1	6.12	**(M+H)**			
24	Hydroxycaffeic acid	C₂₀H₁₈O₈	328.118	328.118	0.1	6.41	**(M+H)**			
25	p-Coumaric acid 4-O-glucoside	C₁₀H₁₀O₇	272.096	272.096	0.1	6.02	**(M+H)**			
26	Caffeic acid 4-O-glucuronide	C₁₀H₁₀O₇	272.096	272.096	0.1	6.12	**(M+H)**			
27	Caffeic acid 3-O-glucuronide	C₁₀H₁₀O₇	272.096	272.096	0.1	6.12	**(M+H)**			
28	Sinapic acid	C₁₀H₁₀O₇	272.096	272.096	0.1	6.12	**(M+H)**			
29	3-Caffeoylquinic acid	C₁₀H₁₀O₇	272.096	272.096	0.1	6.12	**(M+H)**			
30	p-Coumaroyl tyrosine	C₁₀H₁₀O₇	272.096	272.096	0.1	6.12	**(M+H)**			
31	5-S-Dehydrodiferulic acid	C₁₀H₁₀O₇	272.096	272.096	0.1	6.12	**(M+H)**			
32	Rosmarinic acid	C₁₀H₁₀O₇	272.096	272.096	0.1	6.12	**(M+H)**			
33	3-Caffeoylquinic acid	C₁₀H₁₀O₇	272.096	272.096	0.1	6.12	**(M+H)**			
34	Verbascone	C₁₀H₁₀O₇	272.096	272.096	0.1	6.12	**(M+H)**			
35	1,2,2'-Triferuloylgentiobiose	C₁₀H₁₀O₇	272.096	272.096	0.1	6.12	**(M+H)**			
36	Chicoric acid	C₁₀H₁₀O₇	272.096	272.096	0.1	6.12	**(M+H)**			
37	1-Sinapoyl-2,2'-diferuloylgentiobiose	C₁₀H₁₀O₇	272.096	272.096	0.1	6.12	**(M+H)**			
38	p-Coumaroyl malic acid	C₁₀H₁₀O₇	272.096	272.096	0.1	6.12	**(M+H)**			
39	Cinnamoyl glucuronic acid	C₁₀H₁₀O₇	272.096	272.096	0.1	6.12	**(M+H)**			

Hydroxyphenylacetic acids

No.	Compound	Formula	Mass (Da)	Calculated Mass (Da)	P.E.	Retention Time (min)	Ions
44	3,4-Dihydroxyphenylacetic acid	C₁₀H₁₀O₇	272.096	272.096	0.1	6.12	**(M+H)**
45	2-Hydroxy-2-phenylacetic acid	C₁₀H₁₀O₇	272.096	272.096	0.1	6.12	**(M+H)**

Hydroxyphenylpropanoic acids
Flavonoids										
Flavonols										
46	Dihydroferulic acid 4-sulfate	C_{8}H_{12}O_{5}	4.076	[M-H]⁻	276.0304	275.0231	275.0229	-0.7	195, 151, 177	AVO
47	Dihydroferulic acid 4-O-glucuronide	C_{8}H_{12}O_{9}	6.866	[M-H]⁻	372.1056	371.0983	371.0986	0.8	195	*APL, APR, CTA, KWF, NEC, ORN, PSN, PLM
48	3-Hydroxy-3-(3-hydroxyphenyl) propionic acid	O_{6}	10.956	[M-H]⁻	182.0579	181.0506	181.0500	-3.3	163, 135, 119	*GRF, MNG, ORN, PEC, PER
49	Dihydrocaffeic acid 3-O-glucuronide	C_{8}H_{12}O_{9}	22.536	[M-H]⁻	358.0900	357.0827	357.0811	-4.5	181	*GRF, PEC, PER, PIN, POM
Flavones										
50	Prodelphinidin dimer B3	C_{8}H_{12}O_{4}	16.428	**[M+H]**⁺	610.1323	611.1396	611.1367	-4.7	469, 311, 291	*CTA, KWF, PEC, POM, AVO, DGF
51	(+)-Catechin 3-O-gallate	C_{8}H_{12}O_{7}	22.306	**[M+H]**⁺	442.0900	441.0827	441.0805	-5.0	289, 169, 125	*KWF, PER, AVO
52	(-)-Epigallocatechin	C_{8}H_{12}O_{7}	24.121	**[M+H]**⁺	306.0740	305.0667	305.0675	2.6	261, 219	AVO
53	3'-O-Methylcatechin	C_{8}H_{12}O_{6}	24.124	**[M+H]**⁺	304.0947	303.0874	303.0878	1.3	271, 163	*PER, AVO, LMN
54	(+)-Catechin	C_{8}H_{12}O_{6}	26.597	**[M+H]**⁺	290.0790	289.0717	289.0706	-3.8	245, 205, 179	*APL, APR, CTA, GRF, KWF, MNG, PSN, PEC, PER, PLM, POM, AVO, DGF, PAP
55	4''-O-Methylepigallocatechin 3-O-gallate	C_{8}H_{12}O_{5}	27.887	**[M+H]**⁺	472.1006	471.0933	471.0923	-2.1	169, 319	*GRF, POM, AVO
56	Procyanidin trimer C1	C_{8}H_{12}O_{8}	28.966	**[M+H]**⁺	866.2058	865.1985	865.1961	-2.8	739, 713, 695	*APL, CTA, KWF, MNG, PAP, PEC, PLM, POM, AVO, DGF
57	(+)-Gallocatechin 3-O-gallate	C_{8}H_{12}O_{5}	29.655	[M-H]⁻	458.0849	457.0776	457.0777	0.2	305, 169	*AVO, PAP
58	4''-O-Methyl-(-)-epigallocatechin 7-O-glucuronide	C_{8}H_{12}O_{3}	31.732	[M-H]⁻	496.1217	495.1144	495.1123	-4.2	451, 313	*APL, NEC, PEC, AVO, KWF, PER, PLM
59	Cinnamantannin A2	C_{8}H_{12}O_{4}	35.276	**[M+H]**⁺	1154.269	1153.262	1153.260	-1.8	739	*CTA, KWF, PLM, AVO, DGF
60	Procyanidin dimer B1	C_{8}H_{12}O_{2}	37.978	**[M+H]**⁺	578.1424	577.1351	577.1348	-0.5	451	*APL, AVO, CTA, GRF, KWF, NEC, PEC, ORN, PLM, POM, DGF, PAP
Flavones										
61	Apigenin 7-O-(6''-malonyl-apyosyl-glucoside)	C_{8}H_{12}O_{7}	4.416	[M-H]⁻	650.1483	649.1410	649.1429	2.9	605	PEC
62	Gardenin B	C_{8}H_{12}O_{7}	10.234	**[M+H]**⁺	358.1053	359.1126	359.1118	-2.2	344, 329, 311	*CTA, AVO, BNA
63	Cirsilineol	C_{8}H_{12}O_{7}	10.827	**[M+H]**⁺	344.0896	345.0969	345.0970	0.3	330, 312, 297, 284	*DGF, BNA, KWF, LMN
64	7,4'-Dihydroxyflavone	C_{8}H_{12}O_{3}	18.251	[M-H]⁻	254.0579	253.0652	253.0643	-3.5	227, 199, 171	*AVO, PER, PIN
65	Apigenin 7-O-glucuronide	C_{8}H_{12}O_{3}	20.967	**[M+H]**⁺	446.0849	447.0922	447.0910	-2.7	271, 253	*CTA, DGF, PAP, KWF
66	Rhofolin	C_{8}H_{12}O_{4}	27.229	**[M+H]**⁺	578.1636	577.1563	577.1538	-4.3	413, 269	PSN, LMN
67	Apigenin 7-O-apyosylglucoside	C_{8}H_{12}O_{4}	35.572	**[M+H]**⁺	564.1479	565.1552	565.1529	-4.1	296	*LMN, KWF, MNG, PAP
68	Apigenin 6,8-di-C-glucoside	C_{8}H_{12}O_{5}	43.578	**[M+H]**⁺	594.1585	593.1512	593.1527	2.5	503, 473	*APL, APR, GRF, KWF, ORN, PAP, PSN, PEC, PLM, LMN, MEL, PAP
69	Diosmin	C_{8}H_{12}O_{3}	46.538	[M+H]**	608.1741	609.1814	609.1788	-4.3	301, 286	LMN
No.	Compound	Formula	Molecular Weight	Retention Time (Minutes)	Fold Change	LC-MS/MS Method	PLM, LMN, PAP	*APL, APR, BNA, DGF, KWF, ORN, PSN, PEC, PER, PLM, POM, AVO, LMN, MEL, PAP		
-----	----------------------------------	----------	------------------	--------------------------	-------------	-----------------	--------------	--		
70	6-Hydroxyluteolin 7-rhamnoside	C_{3}H_{12}O_{11}	467.58	448.1006	447.0933	447.0928	-1.1	301		
71	Chrysoeriol 7-O-glucoside	C_{24}H_{36}O_{11}	542.26	462.1162	463.1235	463.1255	4.3	445, 427, 409, 381		
72	Apigenin 6-C-glucoside	C_{25}H_{30}O_{13}	557.54	432.1056	431.0983	431.0983	0.1	413, 341, 311		
	Flavanones									
73	Hesperetin 3'-sulfate	C_{16}H_{10}O_{5}S	6.681	382.0359	381.0286	381.0293	1.8	301, 286, 257		
74	Hesperetin 3',7-O-diglucuronide	C_{40}H_{36}O_{18}S	21.163	654.1432	653.1359	653.1361	0.3	477, 301, 286, 242		
75	6-Prenylnaringenin	C_{28}H_{24}O_{6}	35.742	340.1311	341.1384	341.1375	-2.6	323, 137		
76	Narirutin	C_{28}H_{24}O_{6}	38.326	580.1792	579.1719	579.1710	-1.6	271		
77	Neoeocirticrin	C_{31}H_{24}O_{6}	39.899	596.1741	595.1668	595.1684	2.7	431, 287		
78	Hesperidin	C_{40}H_{36}O_{18}	42.745	610.1898	611.1971	611.1956	-2.5	593, 465, 449, 303		
79	Hesperetin 3'-O-glucuronide	C_{28}H_{24}O_{6}	47.521	478.1111	477.1038	477.1033	-1.0	301, 175, 113		
80	Naringin 4'-O-glucoside	C_{20}H_{16}O_{5}	53.036	742.2320	741.2247	741.2249	0.3	433, 271		
	Flavonols									
81	Myricetin 3-O-rutinoside	C_{24}H_{26}O_{7}	8.156	626.1483	625.1410	625.1423	2.1	301		
82	Quercetin 3-O-glucoronide	C_{24}H_{26}O_{7}	12.511	478.0747	477.0674	477.0670	-0.8	301		
83	Myricetin 3-O-arabinoside	C_{26}H_{26}O_{7}	16.496	450.0798	449.0725	449.0716	-2.0	317		
84	3-Methoxyisorinsetin	C_{16}H_{16}O_{5}	16.328	402.1315	403.1388	403.1395	1.7	388, 373, 355, 327		
85	3-Methoxynobiletin	C_{24}H_{26}O_{7}	17.999	432.1420	433.1493	433.1488	-1.2	403, 385, 373, 345		
86	Myricetin 3-O-galactoside	C_{24}H_{26}O_{7}	19.288	480.0904	479.0831	479.0810	-4.4	317		
87	Patuletin 3-O-glucosyl-(1->6)- [apiosyl(1->2)]-glucoside	C_{26}H_{26}O_{7}	26.768	788.2011	787.1938	787.1960	2.8	625, 463, 301, 271		
88	Isorhamnetin	C_{24}H_{26}O_{7}	27.076	316.0583	315.0510	315.0504	-1.9	300, 271		
89	Spinacetin 3-O-(2	C_{24}H_{26}O_{7}	33.242	948.2536	947.2463	947.2456	-0.7	741, 609, 301		
90	Isorhamnetin 3-O-glucuronide	C_{24}H_{26}O_{7}	34.082	492.0904	491.0831	491.0875	3.9	315, 300, 272, 255		
91	Quercetin 3-O-glucosyl-xyloside	C_{24}H_{26}O_{7}	36.319	596.1377	595.1304	595.1311	1.2	265, 138, 116		
92	Kaempferol 3,7-O-diglcuoside	C_{27}H_{26}O_{7}	37.879	610.1534	609.1461	609.1451	-1.6	447, 285		

For more detailed information on the compounds and their properties, please refer to the original article in *Foods* 2020, 9, x FOR PEER REVIEW.
	Quercetin 3-O-xylosyl-rutinoside	Kaempferol 3-O-glucosyl-rhamnosyl-galactoside	Kaempferol 3-O-(2''-rhamnosyl-galactoside) 7-O-rhamnoside	Quercetin 3-O-xylosyl-glucuronide	Myricetin 3-O-rhamnoside	Quercetin 3-O-arabinoside	Quercetin 3-O-(6''-malonyl-glucoside)		
93	C_{17}H_{20}O_{11}	39.018	**[M+H]^+**	742.1956	743.2029	743.2060	4.2	479, 317	*DGF, AVO, CTA, PAP
94	C_{17}H_{20}O_{10}	40.181	**[M+H]^+**	756.2113	755.204	755.2004	-4.8	285	*APL, AVO, MEL, ORN, PSN, PEC, PIN, PLM, POM, LMN
95	C_{17}H_{20}O_{11}	41.953	**[M+H]^+**	740.2164	739.2091	739.2088	-0.4	593, 447, 285	*APR, AVO, LMN, ORN, PAP, PIN, PLM, POM
96	C_{17}H_{20}O_{11}	43.207	**[M+H]^+**	610.1170	611.1243	611.1255	2.0	479, 303, 285, 239	*KWF, GFR, AVO
97	C_{17}H_{20}O_{12}	44.025	**[M+H]^+**	464.0955	463.0882	463.0881	-0.2	317	*APL, BNA, NEC, PEC, ORN, PSN, PEC, PLM, POM, LMN, PAP
98	C_{17}H_{20}O_{12}	46.344	**[M+H]^+**	434.0849	433.0776	433.0776	0.1	301	*APL, GFE, MNG, ORN, PEC, PLM, CTA, DGF, PAP
99	C_{17}H_{20}O_{13}	48.691	[M+H]^+	550.0959	551.1032	551.1074	4.62	303	*CTA, APL, ORN

Dihydrochalones

	3-Hydroxyphloretin 2'-O-xylosyl-glucoside	3-Hydroxyphloretin 2'-O-glucoside	Phloridzin						
100	C_{17}H_{20}O_{10}	37.564	[M-H]^-	584.1741	583.1668	583.1665	-0.5	289	*APL, MNG, PER, PIN
101	C_{17}H_{20}O_{10}	43.048	**[M+H]^+**	452.1319	451.1246	451.1258	2.7	289, 273	*APL, AVO, CTA, DGF, GFR, KWF, MNG, PAP, PER
102	C_{17}H_{20}O_{10}	51.613	**[M+H]^+**	436.1369	435.1296	435.1284	-2.8	273	*APL, CTA, KWF, ORN, PEC, PLM, POM, AVO, DGF, PAP

Dihydroflavonols

	Dihydromyricetin 3-O-rhamnoside	Dihydroquercetin							
103	C_{17}H_{20}O_{12}	21.710	**[M+H]^+**	466.1111	465.1038	465.1021	-3.7	301	*APL, AVO, CTA, KWF, NEC, PEC, PSN, PLM, POM, DGF
104	C_{17}H_{20}O_{10}	31.135	**[M+H]^+**	304.0583	303.0510	303.0504	-2.0	285, 275, 151	*CTA, KWF, MNG, PEC, PER, PAP

Anthocyanins

| | Cyanidin 3-O-diglucoside-5-O-glucoside | Cyanidin 3-O-(6''-p-coumaroyl-glucoside) | Delphinidin 3-O-xyloside | Petunidin 3-O-(6'-acetyl-glucoside) | Isopenidin 3-O-arabinoside | Delphinidin 3-O-glucosyl-galactoside | Peonidin 3-O-sambubioside-5-O-glucoside | Cynidin 3-O-(2-O-(6''-E)-caffeoyl-D-glucoside)-D-glucoside-5-O-D-glucoside | Cynidin 3,5-O-diglucoside | Delphinidin 3-O-glucoside | |
|---|----------------------------------|----------------|-----------------|-----------------|----------------|----------------|---------------------|-------------------|-------------------|-----------------|-----------------|---|
| 105 | C_{17}H_{20}O_{10} | 21.567 | **[M+H]^+** | 773.2140 | 774.2213 | 774.2216 | 0.4 | 610, 464 | *PAP, LMN, DGF |
| 106 | C_{17}H_{20}O_{10} | 22.205 | **[M+H]^+** | 595.1452 | 596.1525 | 596.1553 | 4.7 | 287 | *KWF, APL, MNG, NEC, PEC, PER, PLM, POM, DGF, CTA, AVO, PAP |
| 107 | C_{17}H_{20}O_{11} | 25.983 | **[M+H]^+** | 435.0927 | 434.0854 | 434.0860 | 1.4 | 303 | *MEL, CTA, KWF |
| 108 | C_{17}H_{20}O_{11} | 27.386 | [M+H]^+ | 521.1295 | 522.1368 | 522.1358 | -1.9 | 317 | MEL |
| 109 | C_{17}H_{20}O_{11} | 29.965 | [M+H]^+ | 433.1135 | 434.1208 | 434.1213 | 1.1 | 271, 253, 243 | *MNG, DGF |
| 110 | C_{17}H_{20}O_{11} | 36.884 | **[M+H]^+** | 627.1561 | 628.1634 | 628.1636 | 0.3 | 465, 3030 | AVO |
| 111 | C_{17}H_{20}O_{11} | 37.050 | **[M+H]^+** | 757.2191 | 758.2264 | 758.2263 | -0.1 | 595, 449, 287 | *AVO, LMN, PAP |
| 112 | C_{17}H_{20}O_{14} | 39.696 | [M+H]^+ | 949.2614 | 950.2687 | 950.2690 | 0.3 | 787, 463, 301 | *APL, MNG, ORN, PEC, PER, POM |
| 113 | C_{17}H_{20}O_{12} | 42.367 | **[M+H]^+** | 611.1612 | 612.1685 | 612.1664 | -3.4 | 449, 287 | *AVO, CTA, KWF, LMN, PAP, PEC, DGF |
| 114 | C_{17}H_{20}O_{12} | 45.066 | **[M+H]^+** | 465.1033 | 466.1106 | 466.1114 | 1.7 | 303 | *CTA, AVO, DGF, KWF, PAP, POM |
| 115 | 4-O-Methyldelphinidin 3-O-D-glucoside | C$_{6}$H$_{10}$O$_{2}$ | 48.482 | [M+H]$^+$ | 479.1190 | 480.1263 | 480.1257 | -1.2 | 317, 303, 285, 271 | *DGF, AVO

| 116 | Pelargonidin 3-O-rutinoside | C$_{6}$H$_{14}$O$_{4}$ | 50.950 | [M+H]$^+$ | 579.1714 | 580.1787 | 580.1814 | 4.6 | 271, 433 | LMN

Isoflavonoids

| 117 | 6''-O-Malonylglycitin | C$_{6}$H$_{12}$O$_{3}$ | 7.256 | **[M+H]$^+$** | 532.1217 | 533.1290 | 533.1286 | -0.8 | 285, 270, 253 | *PAP, POM

| 118 | Sativanone | C$_{6}$H$_{12}$O | 9.333 | [M-H]$^-$ | 300.0998 | 299.0925 | 299.0932 | 2.3 | 284, 269, 225 | CTA

| 119 | 2',7-Dihydroxy-4',5'-dimethoxyisoflavone | C$_{6}$H$_{12}$O | 10.651 | **[M+H]$^+$** | 314.0790 | 315.0863 | 315.0868 | 1.5 | 300, 282 | MNG

| 120 | Dihydrobiochanin A | C$_{6}$H$_{12}$O | 15.236 | [M+H]$^+$ | 286.0841 | 287.0914 | 287.0911 | -1.0 | 269, 203, 201, 175 | *AVO, CTA, KWF

| 121 | 6''-O-Malonyldaidzin | C$_{6}$H$_{12}$O$_{2}$ | 16.246 | **[M+H]$^+$** | 502.1111 | 503.1184 | 503.1200 | 3.2 | 255 | *AVO, PSN

| 122 | Glycitin | C$_{6}$H$_{12}$O$_{2}$ | 20.950 | **[M+H]$^+$** | 446.1213 | 447.1286 | 447.1294 | 1.8 | 285 | *CTA, PER

| 123 | Equal | C$_{6}$H$_{12}$O | 21.803 | [M+H]$^+$ | 242.0943 | 243.1016 | 243.1019 | 1.2 | 255, 211, 197 | LMN

| 124 | Violanone | C$_{6}$H$_{16}$O | 25.419 | **[M+H]$^+$** | 316.0947 | 315.0874 | 315.0875 | 0.3 | 300, 285, 135 | *CTA, ORN, PLM, AVO, DGF, LMN

| 125 | 2'-Hydroxyformononetin | C$_{6}$H$_{16}$O$_{2}$ | 28.896 | **[M+H]$^+$** | 284.0685 | 285.0758 | 285.0760 | 0.7 | 270, 229 | LMN

| 126 | 6''-O-Acetyldaidzin | C$_{6}$H$_{16}$O$_{2}$ | 29.504 | **[M+H]$^+$** | 458.1213 | 457.1140 | 457.1121 | -4.2 | 221 | *MNG, PLM, DGF, PAP

| 127 | Dalbergin | C$_{6}$H$_{16}$O$_{2}$ | 30.324 | [M-H]$^-$ | 268.0736 | 267.0663 | 267.0664 | -4.1 | 252, 224, 180 | *DGF, AVO

| 128 | 3',4',7-Trihydroxyisofavanone | C$_{6}$H$_{16}$O$_{3}$ | 31.267 | **[M-H]$^-$** | 272.0685 | 271.0612 | 271.0605 | -2.6 | 177, 151, 119, 107 | *CTA, GFR, PSN, PER, DGF, KWF, LMN

| 129 | Formononetin 7-O-glucuronide | C$_{6}$H$_{16}$O$_{3}$ | 42.450 | **[M+H]$^+$** | 444.1056 | 443.0983 | 443.0973 | -2.3 | 267, 252 | *PAP, AVO, DGF, LMN

| 130 | 5,6,7,3',4'-Pentahydroxyisoflavone | C$_{6}$H$_{16}$O$_{3}$ | 42.893 | **[M+H]$^+$** | 302.0427 | 303.0500 | 303.0487 | -4.3 | 285, 257 | *KWF, MNG, NEC, PEC, ORN, PAP, PLM, AVO, DGF, LMN, PAP, APL, BNA, CTA

| 131 | 6''-O-Acetylglucitinin | C$_{6}$H$_{16}$O$_{3}$ | 43.656 | **[M+H]$^+$** | 488.1319 | 489.1392 | 489.1413 | 4.3 | 285, 270 | *DGF, PAP, LMN

| 132 | 3'-Hydroxygenistein | C$_{6}$H$_{16}$O$_{3}$ | 51.410 | **[M+H]$^+$** | 286.0477 | 287.0550 | 287.0557 | 2.4 | 269, 259 | *AVO, CTA, LMN, PAP, GFR, PLM, POM

| 133 | 6''-O-Malonygenistein | C$_{6}$H$_{16}$O$_{3}$ | 64.297 | [M-H]$^-$ | 518.1060 | 519.1133 | 519.1157 | 4.6 | 271 | AVO

| 134 | 2-Dehydro-O-desmethylangolensin | C$_{6}$H$_{16}$O$_{3}$ | 77.381 | [M-H]$^-$ | 256.0736 | 255.0663 | 255.0656 | -2.7 | 135, 119 | MNG

| 135 | 3'-Hydroxydaidzein | C$_{6}$H$_{16}$O$_{3}$ | 82.152 | [M-H]$^-$ | 270.0528 | 271.0601 | 271.0588 | -4.8 | 253, 241, 225 | *APR, CTA, PIN

Other polyphenols

| 136 | Esculin | C$_{6}$H$_{10}$O$_{5}$ | 13.406 | [M+H]$^+$ | 340.0794 | 341.0867 | 341.0862 | -1.4 | 179, 151 | APR

| 137 | Esculetin | C$_{6}$H$_{10}$O$_{5}$ | 27.821 | [M-H]$^-$ | 178.0266 | 177.0193 | 177.0199 | 3.4 | 149, 133, 89 | CTA

| 138 | Coumarin | C$_{6}$H$_{10}$O$_{5}$ | 32.744 | **[M+H]$^+$** | 146.0368 | 147.0441 | 147.0448 | 4.8 | 103, 91 | *AVO, PLM

| 139 | Scoopoletin | C$_{6}$H$_{10}$O$_{5}$ | 36.851 | **[M+H]$^+$** | 192.0423 | 191.0350 | 191.0345 | -2.6 | 176 | *APR, DGF, LMN

| 140 | Urolithin A | C$_{6}$H$_{10}$O$_{5}$ | 75.771 | [M-H]$^-$ | 228.0423 | 227.0350 | 227.0341 | -3.9 | 198, 182 | *PSN, GFR, PLM

| **Hydroxybenzaldehydes** |
No	Compound	Formula	MW	Purity (%)	RT	Peak Area (μm²)	Characteristics
141	p-Anisaldehyde	C₆H₈O₂	135	122.0124	137.0197	137.0197	0.1
142	4-Hydroxybenzaldehyde	C₆H₆O₆	158	121.0295	121.0301	121.0301	5.0
143	Hydroxybenzoketones						
144	2-Hydroxy-4-methoxyacetophenone 5-sulfate	C₁₅H₁₄O₅	246	263.0147	261.0074	261.0074	-2.7
145	2-Hydroxy-5-prop-1-enylphenol	C₁₅H₁₄O₅	265	164.0837	165.0910	165.0902	-4.8
146	Curcumin	C₂₁H₁₂O₆	368	367.1187	367.1207	367.1207	4.4
147	Bisdemethoxycurcumin	C₂₁H₁₂O₆	308.1049	309.1122	309.1137		4.9
148	Demethoxycurcumin	C₂₁H₁₂O₆	338.1154	337.1081	337.1080		-0.3
149	Isopimpinellin	C₁₉H₁₂O₆	287	246.0528	247.0601	247.0613	4.9
150	Rosmanol	C₁₅H₁₀O₆	225	247.1853	347.1844		-2.6
151	Carnosic acid	C₁₅H₁₀O₆	332.1988	331.1915	331.1905		-3.0
152	Tyrosols						
153	Hydroxytyrosol 4-O-glucoside	C₁₃H₁₂O₇	316	315.1085	315.1092	315.1092	2.2
154	Oleoside 11-methylester	C₁₇H₁₄O₇	404.1319	403.1269	403.1269		4.7
155	3,4-DHPEA-EDA	C₁₅H₁₂O₆	320.126	319.1187	319.1189		0.6
156	Other polyphenols						
157	Lithospermic acid	C₁₇H₁₄O₆	505	538.1111	537.1038	537.1048	1.9
158	Arbutin	C₁₃H₁₀O₇	512	272.0896	271.0823	271.0828	1.8
159	Salvianolic acid B	C₁₃H₁₀O₆	285.98	718.1534	717.1461	717.1436	-3.5
160	Salvianolic acid C	C₁₃H₁₀O₆	32.51	492.1056	491.0983	491.0993	2.0
161	Lignans						
162	Enterolactone	C₁₃H₁₀O₆	425	298.1205	299.1278	299.1283	1.7

* CTA, DGF, KWF, ORN, PAP, PSN, PLM, CTA, NEC, PEC, PER
* BNA, GFR, PSN, PEC, PER, PIN, PLM, POM, AVO, PAP
* CTA, PIN, APR, DGF, KWF, MNG, PAP, PSN
* AVO, BNA, CTA
* APR, AVO, KWF, MEL, PIN, DGF, LMN, MNG, PAP
* DGF, KWF, MNG, ORN, PER, POM, AVO
* CTA, AVO, DGF, KWF
* AVO, BNA, CTA
* APL, CTA, AVO, MEL

[M+H]⁺
Entry	Compound	Molecular Formula	[M-H]	[M+H]	Retention Time (min)	Mass Difference (Da)	Mass Error (ppm)	Abbreviation(s)
162	Sesamin	C_{16}H_{16}O_{6}	354.1103	353.103	353.1020	-2.8	338, 163	*CTA, DGF
163	Schisandrin C	C_{19}H_{18}O_{6}	384.1573	385.1646	385.1652	1.6	370, 315, 300	*CTA, LMN, AVO, PAP
164	Arctigenin	C_{16}H_{16}O_{6}	372.1573	371.15	371.1509	2.4	356, 312, 295	AVO
165	7-Oxomatairesinol	C_{16}H_{16}O_{6}	372.1209	373.1282	373.1297	4.0	358, 343, 328, 325	*LMN, ORN
166	Schisantherin A	C_{20}H_{20}O_{7}	536.2046	537.2115	537.2115	-0.7	519, 415, 385, 371	*KWF, BNA, CTA, PER
167	Pinoresinol	C_{19}H_{18}O_{6}	358.1416	357.1343	357.1336	-2.0	342, 327, 313, 221	*GRF, AVO
168	7-Hydroxymatairesinol	C_{22}H_{24}O_{6}	374.1366	373.1293	373.1283	-2.7	343, 313, 298, 285	*APL, NEC
169	Secoisolaricresinol-sesquilignan	C_{30}H_{38}O_{10}	558.2465	557.2392	557.2387	-0.9	539, 521, 509, 356	*CTA, LMN
170	Schisandrol B	C_{20}H_{20}O_{6}	416.1835	417.1908	417.1929	5.0	224, 193, 165	AVO
171	Schisandrin B	C_{20}H_{20}O_{6}	400.1886	401.1959	401.1949	-2.5	386	CTA
	Stilbenes							
172	Piceatannol 3-O-glucoside	C_{20}H_{22}O_{9}	406.1264	405.1191	405.1172	-4.6	243	*CTA, AVO
173	Resveratrol	C_{14}H_{12}O_{3}	228.0786	227.0713	227.0709	-1.8	212, 185, 157, 143	*CTA, AVO, DGF
174	Resveratrol 5-O-glucoside	C_{20}H_{22}O_{9}	390.1315	389.1242	389.1245	0.8	227	*PSN, POM, KWF
175	3'-Hydroxy-3,4,5,4'-tetramethoxystilbene	C_{17}H_{18}O_{5}	302.1154	303.1227	303.1221	-2.0	229, 201, 187, 175	DGF
176	4-Hydroxy-3,5,4'-trimethoxystilbene	C_{17}H_{18}O_{5}	286.1205	287.1278	287.1280	0.7	271, 241, 225	*CTA, DGF

*Compound was detected in more than one fruit peel samples, data presented in this table are from asterisk sample. **Compounds were detected in both negative [M-H]- and positive [M+H]+ mode of ionization while only single mode data was presented. Fruit peel samples were mentioned in abbreviations. Apple peel “APL”, Apricot peel “APR”, Avocado peel “AVO”, Banana peel “BNA”, Custard apple peel “CTA”, Dragon fruit peel “DGF”, Grapefruit peel “GRF”, Kiwifruit peel “KWF”, Lime peel “LMN”, Mango peel “MNG”, Nectarine peel “NEC”, Orange peel “ORN”, Papaya peel “PAP”, Passionfruit peel “PSN”, Peach peel “PEC”, Pear peel “PER”, Pineapple peel “PIN”, Plum peel “PLM” and Pomegranate peel “POM”
(Apple Peel)

(Apricot peel)

(Avocado peel)

(Banana peel)

(Custard apple peel)

(Dragon fruit peel)

(Grapefruit peel)
Figure S1: Characterization of phenolic compounds in different fruit peels by LC-ESI-QTOF-MS/MS. Base peak chromatogram (BPC) of twenty fruit peel samples in negative mode of ionization.
(Apple Peel)

(Apricot peel)

(Avocado peel)

(Banana peel)

(Custard apple peel)

(Dragon fruit peel)

(Grapefruit peel)
Figure S2: Characterization of phenolic compounds in different fruit peels by LC-ESI-QTOF-MS/MS. Base peak chromatogram of twenty fruit peel samples in positive mode of ionization.