Anterior Cruciate Ligament Reconstruction Using Combined Graft of Hamstring and Fascia Lata With Extra-articular Tenodesis. A Technique in Case of Insufficient Hamstrings

Alejandro Espejo-Reina, M.D., M.Sc., María Josefa Espejo-Reina, M.D., Maximiano Lombardo-Torre, M.D., Joaquina Ruiz-Del Pino, M.D., Ph.D., and Alejandro Espejo-Baena, M.D.

Abstract: A technique for augmentation of the anterior cruciate ligament (ACL) with hamstring graft and lateral extra-articular tenodesis is presented. The patient is positioned supine with the knee flexed 90°. First, intra-articular injuries are addressed arthroscopically, and then autologous hamstring tendons are harvested and measured; the present technique is a resource for cases with a very small graft diameter (less than 8 mm), due to thin tendons or to tendon breakage, even after tripling the hamstring graft, which is prepared using a facia lata strip long enough to fit the lengths of the femoral tunnel, the anterior cruciate ligament graft, and the tibial tunnel. A single femoral tunnel is performed and only 2 interference screws are needed for fixation.

Graft selection is a continuous topic of debate in anterior cruciate ligament (ACL) reconstruction, with a lack of a clear superiority of one over the other. However, the addition of an anterolateral ligament reconstruction or a lateral extra-articular tenodesis has demonstrated a biomechanical improvement and better clinical survival. Hamstring tendons are one of the most popular grafts for ACL reconstruction worldwide. One of the main concerns when using these grafts is the diameter of the graft: the semitendinosus and the gracilis tendons can be torn or spooled during their harvesting, or they can be too thin to achieve a diameter of at least 8 mm, which has been shown to be the threshold for ACL reconstruction survival. Furthermore, if a lateral reinforcement is decided, a small graft could be insufficient for the complete reconstruction.

Several resources could be employed to increase the diameter of the hamstring graft. These maneuvers provide a shorter but wider graft; however, in a few cases, the diameter of the graft may still remain small. The aim of this article is to describe a technique for ACL reconstruction and lateral extra-articular tenodesis (LET) using a triple hamstring graft and a long strip of fascia lata for LET and ACL hamstring graft augmentation.

Technique (With Video Illustration)

Position of the Patient
The patient is positioned supine under regional or general anesthetic. An ischemia cuff is employed on the proximal end of the thigh and the limb is supported on a leg holder with the knee flexed 90° (Fig 1; Table 1: Video 1).

Arthroscopic Exploration
The authors use a central transtendinous portal as the main vision portal for cruciate ligament reconstruction. All intra-articular injuries are assessed and treated with the aid of an anteromedial portal (an additional
anterolateral portal can be used if necessary. The ACL remnants are removed and the lateral wall of the medial femoral condyle is prepared using a radiofrequency probe and a synovial resector.

Graft Harvesting and Preparation

A 3-cm oblique incision is made medial to the anterior tibial tuberosity to harvest the hamstring tendons (semitendinosus and gracilis) and to create the tibial tunnel. The tendons are harvested with a standard tendon stripper. Both tendons are doubled or tripled and both ends are sutured together using a no. 2 absorbable suture (Video 1; Fig 2).

Then, a 10-cm longitudinal incision is performed on the lateral aspect of the knee, beginning 1 cm distal to the lateral epicondyle (Video 1). A 1-cm-wide central strip of fascia lata is obtained (it could be wider if needed) (Fig 3). Sharp dissection is performed subcutaneously in caudal direction from the lateral epicondyle to the Gerdy’s tubercle. Then, the dissection is continued proximally from the lateral epicondyle under direct view using surgical scissors; the length of the graft is calculated measuring the sum of the lengths of both the tibial and femoral tunnels and the length of the intra-articular track of the ACL: this length is added to the distance of the fascia lata from the Gerdy’s tubercle to the lateral epicondyle (Fig 4). The proximal end of the fascia lata graft is prepared with two no. 2 absorbable sutures using Krackow stitches, leaving long threads for traction (Fig 5). After that, the conjoint graft is measured and the adequate diameter obtained is checked (Fig 6). Both grafts (hamstring and fascia lata) are wrapped in independent gauzes soaked with a solution of vancomycin while tunnels are performed.

Tunnel Performance

Both the femoral and tibial tunnels are made using an ACL tibial guide (Stryker Endoscopy, Kalamazoo, MI). Starting with the femoral tunnel, the arthroscope is placed through the anteromedial portal and the guide is set through the central transtendinous portal at an angle that allows the correct positioning of the guide pin just proximal and posterior to the lateral epicondyle (usually 70–75°). A guide pin is set transecting the

Table 1. Step-by-Step Details of the Technique

Step-by-Step Details of the Technique	Patient Positioning and Intra-articular Exploration	Graft harvesting and preparation
Patient positioned supine with the limb in a “L”-shaped leg holder at 90° of knee flexion.	Patient positioned supine with the limb in a “L”-shaped leg holder at 90° of knee flexion.	Semitendinosus and gracilis autologous tendons are harvested.
General or regional anesthetic is provided and a femoral ischemia cuff is applied.	General or regional anesthetic is provided and a femoral ischemia cuff is applied.	Both tendons are doubled or tripled and both ends are sutured together.
Transtendinous and anteromedial portals are used.	Transtendinous and anteromedial portals are used.	A long fascia lata strip is harvested through a longitudinal approach over the lateral epicondyle and its proximal end is prepared with a double Krackow suture.
Arthroscopic exploration is performed to identify ACL rupture.	Arthroscopic exploration is performed to identify ACL rupture.	The diameter of both grafts together is measured.
Graft harvesting and preparation		Both grafts are wrapped in a gauzed soaked with a solution of vancomycin.
Semitendinosus and gracilis autologous tendons are harvested.		
Both tendons are doubled or tripled and both ends are sutured together.		
A long fascia lata strip is harvested through a longitudinal approach over the lateral epicondyle and its proximal end is prepared with a double Krackow suture.		
The diameter of both grafts together is measured.		
Both grafts are wrapped in a gauzed soaked with a solution of vancomycin.		
Intra-articular preparation		
Remnant cleaning		
Footprint of ACL identification		
Femoral tunnel		
Outside-in direction		
A regular tibial guide for ACL reconstruction is employed.		
Same diameter of the graft (usually 8–9 mm)		
Extra-articular entrance: just posterior and proximal to lateral epicondyle		
Intra-articular exit: ACL footprint		
Tibial tunnel		
Outside-in direction		
Same diameter of the graft (usually 8–9 mm)		
The same tibial guide is employed with 55° guide opening.		
Intra-articular end in the center of the ACL footprint		
Graft passage and fixation		
Passage of fascia lata graft in outside-in direction, from femur to tibia		
Passage of hamstring graft in outside-in direction, from femur to tibia		
Femoral fixation in full extension		
Tibial fixation in 30° of knee flexion		

ACL, anterior cruciate ligament.
lateral condyle in outside-in direction, starting on a spot just proximal and posterior to the lateral epicondyle extra-articularly and exiting the lateral condyle intra-articularly on the center of the femoral ACL footprint. The tibial tunnel is performed by returning the arthroscope to the central portal and introducing the same guide through the anteromedial one, at an angle of 55°. A guide pin is inserted in outside-in direction starting extra-articularly at a spot proximal to the hamstring insertion and medial to the anterior tibial tuberosity and finishing intra-articularly on the center of the ACL tibial footprint. Both tunnels are then completed with the aid of a drill bit of the same diameter of the augmented ACL graft (Fig 6).

Graft Passage and Fixation

First, the lateral collateral ligament is dissected and the fascia lata graft is passed deep to it (Fig 7). Then, the traction threads of the fascia lata are introduced
through the femoral tunnel in outside-in direction with the aid of a grasper; then, they are retrieved intra-articularly with a clamp through the anteromedial portal (Fig 8); subsequently, a grasper is inserted through the tibial tunnel to get the traction threads (Fig 9), which are introduced through the tibial tunnel in inside-out direction; the threads are pulled until the graft exits the tibial tunnel. Afterwards, the suture threads of the hamstring graft are inserted in the femoral tunnel in outside-in direction with the aid of a grasper, they are retrieved intra-articularly with a grasper.
clamp through the anteromedial portal, and finally they are introduced through the tibial tunnel with the aid of a grasper in an inside-out direction; the threads are pulled until the end of the graft exits the tibial tunnel (Fig 10). Finally, femoral and tibial fixations are achieved with both interference screws (Biosteon; Stryker), which are 1 mm wider than the diameter of the augmented graft and the tunnel: first, the femoral screw is inserted in outside-in manner, while applying traction from both ends of the fascia lata (from the tibial tunnel) and hamstring autograft (traction is applied from both ends of the graft to maintain tension), with the knee in neutral rotation and full extension (Fig 11); afterwards, the tibial screw is inserted in outside-in direction, while applying traction from the tibial end of the graft, in 30° of knee flexion (Fig 12). Once the graft is fixed, the final outcome is checked arthroscopically (Fig 13).

Discussion

The main advantage of this technique is the possibility to perform an anatomic ACL reconstruction of a

Fig 10. (A) Extra-articular view of the lateral aspect of the right knee. The hamstring graft (HG) is inserted through the femoral tunnel (FT) in cranio-caudal direction (arrow). (B) Intra-articular view of the right knee with the arthroscope set through the central portal. The traction threads of the hamstring graft are introduced intra-articularly with the aid of an arthroscopic grasper through the femoral tunnel, and they are retrieved using forceps introduced through the anteromedial portal. White arrow indicates the traction threads of the hamstring graft. (FLG, fascia lata graft.)

Fig 11. Extra-articular view of the lateral aspect of the right knee. The conjoint graft is fixed proximally in the femoral tunnel (FT) with an interference screw while traction is applied manually from both ends of the graft. Arrow indicates proximal traction threads; double arrow indicates distal traction threads.

Fig 12. Extra-articular view of the anteromedial aspect of the right knee. Distal tibial fixation of the conjoint graft is achieved using an interference screw while pulling the traction threads (arrow). (TT, tibial tunnel.)
sufficient diameter and an LET with fascia lata (Table 2) when a small-diameter hamstring autograft is obtained without damaging any other autograft source and without the need for allografts or artificial grafts, and with a single femoral tunnel.

The diameter of the graft is an important issue that has been related to the survival of ACL reconstruction. If a thin autograft is obtained after harvesting and preparing the patient’s tendons, surgeons must make an effort to increase said diameter, at least, to 8 mm. Different resources have been described to solve this problem; however, to our knowledge, this is the first technique to address the ACL graft augmentation and a LET with the same graft.

In the last few years, techniques for lateral extra-articular tenodesis have regained interest among orthopaedic surgeons due to the still suboptimal outcomes in ACL reconstruction. Lateral extra-articular tenodesis has recently demonstrated better clinical outcomes than ACL reconstruction alone. The technique presented in this article provides the possibility of performing a lateral extra-articular tenodesis even in cases of small-diameter hamstring autograft, using a single femoral tunnel.

The main drawback of the technique is that a longer fascia lata strip is needed, so harvest-site morbidity to the lateral aspect of the knee is increased. However, the integrity of the fascia lata is kept and the incision necessary is only a few centimeters longer than in regular lateral extra-articular tenodesis. Care must be taken to ensure a correct length of the fascia lata graft (Table 3), so the measurement of the full length of both tunnels and the intra-articular portion must be carefully done; if the fascia lata graft is too short, screw insertion could wrinkle and damage it irreversibly, so removal might be needed, making the extra site morbidity useless. The authors recommend to harvest a fascia lata graft 1 cm longer than the length measured.

Table 2. Advantages and Disadvantages

Advantages	Disadvantages
The main advantage of this technique is that an anterolateral reinforcement during ACLR can be achieved even in cases with a too-thin hamstrings autograft, without the need for additional graft source damage. ACLR can be achieved using only 2 arthroscopic portals. The risk of tunnel convergence is avoided in the femur because only one tunnel is drilled. This technique uses only 2 interference screws (one for femoral and one for tibial fixations), which are easily available and inexpensive.	A long incision is needed in the lateral aspect of the knee. Violation of the fascia lata is increased, although efforts should be made to minimize it.

ACLAR, anterior cruciate ligament reconstruction.

References

1. Widner M, Dunleavy M, Lynch S. Outcomes following ACL reconstruction based on graft type: Are all grafts equivalent? Curr Rev Musculoskelet Med 2019;12:460-465.
2. Inderhaug E, Stephen JM, Williams A, Amis AA. Anterolateral tenodesis or anterolateral ligament complex reconstruction: Effect of flexion angle at graft fixation when combined with ACL reconstruction. Am J Sports Med 2017;45:3089-3097.
3. Geeslin AG, Moatshe G, Chahla J, et al. Anterolateral knee extra-articular stabilizers: A robotic study comparing anterolateral ligament reconstruction and modified ilemaire lateral extra-articular tenodesis. Am J Sports Med 2018;46:607-616.
4. Getgood AMJ, Bryant DM, Litchfield R, et al. Lateral extra-articular tenodesis reduces failure of hamstring tendon autograft anterior cruciate ligament reconstruction: 2-year outcomes from the STABILITY study randomized clinical trial. Am J Sports Med 2020;48:285-297.
5. Magnussen RA, Lawrence JTR, West RL, Toth AP, Taylor DC, Garrett WE. Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy 2012;28:526-531.

6. Vinagre G, Kennedy NI, Chahla J, et al. Hamstring graft preparation techniques for anterior cruciate ligament reconstruction. Arthrosc Tech 2017;6:e2079-e2084.

7. Samitier G, Vinagre G. Hamstring braid graft technique for anterior cruciate ligament reconstruction. Arthrosc Tech 2019;8:e815-e820.

8. Pérez-Prieto D, Torres-Claramunt R, Gelber PE, Shehata TMA, Pelfort X, Monllau JC. Autograft soaking in vancomycin reduces the risk of infection after anterior cruciate ligament reconstruction. Knee Surg Sport Traumatol Arthrosc 2016;24:2724-2728.