Examining the effector mechanisms of Xuebijing Injection on COVID-19 based on network pharmacology.

Wenjiang Zheng
Guangzhou University of Chinese Medicine
https://orcid.org/0000-0001-5234-0339

Qian Yan
Guangzhou University of Chinese Medicine

Yongshi Ni
Guangzhou University of Chinese Medicine

Shaofeng Zhan
Guangzhou University of Chinese Medicine

Liuliu Yang
Guangzhou University of Chinese Medicine

Hongfa Zhuang
Guangzhou University of Chinese Medicine

Xiaohong Liu
Guangzhou University of Chinese Medicine

Yong Jiang (jiangyongszzxy@163.com)
https://orcid.org/0000-0002-3609-2280

Research

Keywords: Xuebijing, coronavirus disease 2019, network pharmacology, active ingredient, effector mechanism

DOI: https://doi.org/10.21203/rs.3.rs-26834/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objective: To examine the potential effector mechanisms of Xuebijing (XBJ) on coronavirus disease 2019 (COVID-19) based on network pharmacology.

Methods: We searched Chinese and international papers to obtain the active ingredients of XBJ. Then, we compiled COVID-19 disease targets from the GeneCards gene database and via literature searches. Next, we used the SwissTargetPrediction database to predict XBJ's effector targets and map them to the abovementioned COVID-19 disease targets in order to obtain potential therapeutic targets of XBJ. Cytoscape software version 3.7.0 was used to construct a “XBJ active-compound-potential-effector target” network and protein-protein interaction (PPI) network, and then to carry out network topology analysis of potential targets. We used the ClueGO and CluePedia plugins in Cytoscape to conduct gene ontology (GO) biological process (BP) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis of XBJ’s effector targets.

Results: We obtained 144 potential COVID-19 effector targets of XBJ. Fourteen of these targets—glyceraldehyde 3-phosphate dehydrogenase (GAPDH), albumin (ALB), tumor necrosis factor (TNF), epidermal growth factor receptor (EGFR), mitogen-activated protein kinase 1 (MAPK1), Caspase-3 (CASP3), signal transducer and activator of transcription 3 (STAT3), MAPK8, prostaglandin-endoperoxide synthase 2 (PTGS2), JUN, interleukin-2 (IL-2), estrogen receptor 1 (ESR1), and MAPK14—had degree values >40 and therefore could be considered key targets. They participated in extracellular signal–regulated kinase 1 and 2 (ERK1, ERK2) cascade, the T-cell receptor signaling pathway, activation of MAPK activity, cellular response to lipopolysaccharide, and other inflammation- and immune-related BPs. XBJ exerted its therapeutic effects through the renin–angiotensin system (RAS), nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), MAPK, phosphatidylinositol-4, 5-bisphosphate 3-kinase (PI3K)–protein kinase B (Akt)–vascular endothelial growth factor (VEGF), toll-like receptor (TLR), TNF, and inflammatory-mediator regulation of transient receptor potential (TRP) signaling pathways to ultimately construct a “ingredient-target-pathway” effector network.

Conclusion: The active ingredients of XBJ regulated different genes, acted on different pathways, and synergistically produced anti-inflammatory and immune-regulatory effects, which fully demonstrated the synergistic effects of different components on multiple targets and pathways. Our study demonstrated that existing studies on the pharmacological mechanisms of XBJ in the treatment of sepsis and severe pneumonia, could explain the effector mechanism of XBJ in COVID-19 treatment, and those provided a preliminary examination of the potential effector mechanism in this disease.

1. Introduction

In December 2019, the Huanan Seafood Wholesale Market in Wuhan, Hubei Province, China, became the epicenter of an outbreak of a pneumonia of unknown etiology, which attracted a great deal of attention in China and the rest of the world. Chinese scientists quickly isolated a novel coronavirus from patients,
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19)[1]. As of March 29, 2020, the global number of confirmed cases was 634,835 and the global death toll was 29,891. Currently, scientists around the world are conducting an exhaustive search for effective antiviral drugs. However, the only feasible method at this writing is the use of various broad-spectrum antivirals, such as nucleoside analogs and human immunodeficiency virus (HIV) protease inhibitors[2]. Up to now, no COVID-19 specific antiviral drugs or vaccines have been developed, and the aforementioned drugs can only reduce viral infection[3].

Many results from clinical practice show that TCM plays an important role in COVID-19 treatment and has brought new hope for controlling this disease[4]. Xuebijing (XBJ) was included in the Diagnosis and Treatment Plan for Coronavirus Disease 2019 (interim 7th edition) that was jointly released by the National Health Commission and National Administration of Traditional Chinese Medicine. XBJ is composed of extracts of Carthamus tinctorius, Paeonia anomala, Ligusticum striatum, Salvia miltiorrhiza, and Angelica sinensis[5]. This compound can boost circulation, relieve stasis, and clear blocked meridians, and it is widely used in China to treat active inflammation[6]. In 2004, XBJ was approved by the National Medical Products Administration for the treatment of systemic inflammatory-response syndrome, sepsis, and multiple-organ dysfunction syndrome (MODS)[7, 8]. Studies show that XBJ treatment can reduce the secretion of pro-inflammatory cytokines such as interleukin (IL)-6, IL-13, and tumor necrosis factor alpha (TNF-α) to alleviate inflammation and thereby inhibit liver damage[9]. Chen et al. showed that XBJ treatment can decrease oxidative stress (OS) and levels of pro-inflammatory cytokines[10]. Li et al. showed that XBJ can regulate immune response, including reducing inflammatory mediators and bacterial load, and plays a protective role in bacterial infections, particularly those caused by drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA)[11]. A real-world study also pointed out that the incidence of adverse reactions from XBJ in clinical practice is low (0.3%), and most adverse reactions are mild. Therefore, XBJ could be a safe and effective drug for treating COVID-19, but its specific molecular mechanisms are still unknown.

Network pharmacology (NP) uses drug, compound, gene, and disease database information to construct drug-target, target-disease, and drug-disease interaction networks in order to reveal the complex mechanisms of TCM formulations that have multiple targets and multiple component characteristics[12]. The concepts of NP share many similarities with the holistic view of TCM, as both use systemic methods to treat complex diseases such as cancer. This provides a basis for the transition from empirical medicine to evidence-based medicine[13].

Therefore, we employ NP to initially explore the potential molecular mechanism of XBJ on COVID-19. The basis for our NP study rests on the notions that the proteins that associate with and functionally govern viral infection are localized in the corresponding subnetwork within the comprehensive human interactome network. The latest research shows that host cell pathways regulated by SARS-CoV-2 infection and showed that inhibiting these pathways can prevent virus replication in human cells[14]. A drug with multiple targets, such as XBJ, if it is to be effective against an HCoV, its direct or indirect target
proteins should be within or related to the corresponding subnetwork in the human protein-protein interactome.

In terms of potential therapeutic targets, research shows that the 2019-nCoV/SARS-CoV-2 shares the highest nucleotide sequence identity (79.7%) with SARS-CoV among the six other known pathogenic HCoVs [15]. Full-length genome sequences from five patients at an early stage of COVID-19 outbreak showed that the sequences are almost identical and share a 79.6% sequence identity to SARS-CoV, what’s more, 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus[16], and the amino acid sequences and predicted protein structures of the receptor-binding domain (RBD) of SARS-CoV2 and SARS-CoV share a high similarities[17], all of these indicate that the host proteins of SARS-CoV were considered potential therapeutic targets for COVID-19.

In addition, viruses including coronaviruses like COVID-19 require host cellular factors for successful replication during infection. Study on virus-host protein-protein interactions (PPIs) provides an effective method toward elucidating the mechanisms of viral infection[18, 19], so the virus-host interactome may offer a strategy for the treatment of viral infections, and the human pathogenic coronaviruses SARS-CoV2, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) belong to the family Coronaviridae and the genus Betacoronavirus, with similar infectivity, pathogenicity, and related clinical characteristics. Therefore, in our study, the host proteins of the relevant coronaviruses are considered as potential therapeutic targets for COVID-19. As well as angiotensin-converting enzyme 2 (ACE2) and coronavirus pneumonia related targets.

It is essential to integrate drug-target networks, HCoV-host interactions and human protein-protein interactome network. Based on chemical-matteromics study results for XBJ, we employed NP to construct a “component-target-pathway” network model in order to comprehensively and systematically predict potential effector targets and pathways of this compound's main chemical components in COVID-19 treatment. These findings will provide a scientific basis for further research into effective substances and mechanisms in XBJ treatment of COVID-19.

2. Materials And Methods

2.1 Collection of potential active ingredients of XBJ

We searched the global scientific literature to determine the active ingredients of XBJ. The PubChem database (https://pubchem.ncbi.nlm.nih.gov/, National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, MD, USA) was used for cross-validation and to acquire the molecular structures of potential active chemical components, which we stored in canonical simplified molecular-input line-entry system (SMILES) format.

2.2 Prediction of potential effector targets of XBJ
To predict potential effector targets, we used the SwissTargetPrediction database [20] (STP, http://www.swisstargetprediction.ch, version 2019, designed by Swiss Institute of Bioinformatics, Quartier Sorge - Batiment Amphipole 1015 Lausanne, Switzerland). We input the aforementioned potential active ingredients in SMILES format into this database, with “humans” (*Homo sapiens*) as the study species, to obtain the potential effector targets of the component compounds; results were stored in csv format. After compilation and removal of repetitions, we obtained the potential effector targets of XBJ.

2.3 Screening of potential therapeutic targets of COVID-19

Three sources were used to obtain potential therapeutic targets of COVID-19. **First**, we obtained the COVID-19 disease target set by searching the GeneCards gene database (http://www.genecards.org, designed by The Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot, Israel)[21] on the phrase “coronavirus pneumonia”. **Second**, we searched the literature to collect potential therapeutic targets of COVID-19. ACE is reported to be the receptor for SARS-CoV[22] and is also believed to be that for SARS-CoV-2. We used single-cell sequencing results for colon epithelial cells[23] to extract genes that are co-expressed with ACE2, which we matched with human targets as potential therapeutic targets for COVID-19. **Third**, we downloaded human coronavirus (HCoV)-related host proteins from the appendices of one study[15]. Specifically, these host proteins are either the direct targets of HCoV proteins or are involved in crucial pathways of HCoV infection. By regulating the relevant coronavirus host protein could lead to a therapeutic regimen to treat COVID-19[24]. The relevant coronaviruses include SARS-CoV, MERS-CoV, infectious-bronchitis virus (IBV), mouse hepatitis virus (MHV), HCoV-229E, and HCoV-NL63; the host proteins were considered potential therapeutic targets for COVID-19. Finally, we obtained intersections between the active-ingredient-related targets and the disease-related targets from the three abovementioned sources. Intersectional targets were considered potential therapeutic targets of XBJ in COVID-19.

2.4 Construction of a network of active ingredients and effector targets

We input the abovementioned potential active compounds of XBJ and their potential effector targets into Cytoscape software (http://www.cytoscape.org, Version 3.7.0, designed by Department of Bioengineering, University of California-San Diego, California, USA)[25] to plot a “XBJ active-compound-potential effector target” network analysis map. On this map, different nodes represented potential active compounds and effector targets of XBJ, and the map’s edges showed relationships between these two factors.

2.5 Protein-protein interaction (PPI) analysis and network topology analysis

We input the potential therapeutic targets of XBJ into the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING, https://string-db.org/, supported by ELIXIR, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK)[26] and selected humans as the species to obtain PPI data. Next, we input this data into Cytoscape to plot a PPI network map. The cytoHubba (Predicts and explores important nodes and subnetworks in a given network by several topological algorithms, provided by Institute of
Information Science, Academia Sinica, Taiwan)[27] plugin in Cytoscape was used for network topology analysis, and results were sorted by the degree value.

2.6 Gene functional annotation of potential effector targets

Using the ClueGO(version 2.5.4, creates and visualizes a functionally grouped network of terms/pathways) [28] and CluePedia(version 1.5.4, a ClueGO plugin for pathway insights using integrated experimental and in silico data) (both provided by Laboratory of Integrative Cancer Immunology, Paris, France)[29] plugins in Cytoscape and setting humans as the species, we performed gene ontology (GO) biological process (BP) enrichment analysis[30] and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis[31] of the potential effector targets.

When employed ClueGO and CluePedia, we chose the analysis mode of Functional analysis, load marker list is Homo sapiens (9606) and Symbol ID was input, then we selected “Biological Process-EBI-UniProtGOA-18361 terms/pathways with 18090 available unique genes-27.02.2019”, “KEGG-321 terms/pathways with 7512 available unique genes-27.02.2019”, and “WikiPathways-503 terms/pathways with 6558 available unique genes-27.02.2019” respectively for BP, KEGG and WikiPathways enrichment analysis. Regarding statistical options, we employed two-sided hypergeometric test and bonferroni step down for p value correction. BPs with $P < 0.01$, KEGG pathways with $P < 0.05$, and WikiPathways with $P < 0.01$ were selected.

3. Results

3.1 Network analysis of active ingredients and effector targets

We selected 30 active ingredients of XBJ that had been detected by liquid chromatography-mass spectrometry (LC-MS)[32]. Results are shown in Table 1. 451 targets of XBJ for Homo sapiens were obtained based on Swiss database. We obtained 251 potential therapeutic targets of COVID-19 from the GeneCards database. Single-cell sequencing was used to obtain 3525 gene targets that were co-expressed with ACE, and 119 therapeutic targets were obtained from the systemic literature search. There were 144 potential COVID-19 therapeutic targets and XBJ potential effector targets (Fig. 1). We used Cytoscape to plot a “component-target” network relationship map (Fig. 1). This network included 170 nodes, which were comprised of 26 XBJ components matched to 144 disease-related targets.

Table 1. Potential active ingredients of XBJ.
No.	Compound	Herbs
1	5-hydroxymethyl-furfural	Carthami Flos
2	Albiflorin	Radix Paeoniae Rubra
3	Apigenin	Radix Salviae, Carthami Flos
4	Benzoylpaeoniflorin	Radix Paeoniae Rubra
5	Butylidenephthalide	Chuanxiong Rhizoma, Angelicae Sinensis Radix
6	Caffeic acid	Chuanxiong Rhizoma
7	Catechinic acid	Radix Paeoniae Rubra
8	Chlorogenic acid	Radix Salviae, Carthami Flos
9	Cryptotanshinone	Radix Salviae
10	Ethyl ferulate	Chuanxiong Rhizoma, Angelicae Sinensis Radix
11	Ferulic acid	Angelicae Sinensis Radix, Carthami Flos
12	Gallic acid	Radix Paeoniae Rubra
13	Galuteolin	Radix Salviae, Carthami Flos
14	Hydroxysafflor yellow A	Carthami Flos
15	Hyperoside	Carthami Flos
16	Luteolin	Radix Salviae, Carthami Flos
17	Naringenin	Carthami Flos
18	Oxypaeoniflorin	Radix Paeoniae Rubra
19	Paeonol	Radix Paeoniae Rubra
20	Protocatechuic acid	Radix Salviae
21	Protocatechuic aldehyde	Radix Salviae
22	Quercetin	Carthami Flos
23	Rosmarinic acid	Radix Salviae
24	Rutin	Carthami Flos
25	salvianolic acid A	Radix Salviae
26	Salvianolic acid B	Radix Salviae
27	Senkyunolide I	Chuanxiong Rhizoma, Angelicae Sinensis Radix
28	Sodium Danshensu	Radix Salviae
29	Tanshinol	Radix Salviae
30	Tanshinone II A	Radix Salviae

3.2 Network analysis of potential therapeutic targets

We input the PPI information obtained from STRING into Cytoscape to plot the PPI network, and then we used cytoHubba for network topology analysis. Table 2 shows the results, Figure 4 shows the visualization results, and both show the top 50 potential therapeutic targets by degree values. Glyceraldehyde 3-phosphate dehydrogenase (*GAPDH*), *TNF*, mitogen-activated protein kinase 3 (*MAPK3*), Caspase-3 (*CASP3*), epidermal growth factor receptor (*EGFR*), *MAPK1*, prostaglandin-endoperoxide
synthase 2 (PTGS2), signal transducer and activator of transcription 3 (STAT3), and MAPK8 all had degree values >40, showing that these proteins occupied important positions in the PPI network.

Table 2. Parameter information for network topology analysis of XBJ’s potential therapeutic targets.

No.	Target	Degree	No.	Target	Degree
1	GAPDH	77	26	MCL1	30
2	ALB	73	27	LCK	27
3	TNF	70	28	PARP1	27
4	EGFR	63	29	GSK3B	27
5	MAPK1	61	30	PIK3R1	27
6	CASP3	58	31	SERPINE1	26
7	STAT3	55	32	ABCB1	25
8	MAPK8	49	33	SYK	25
9	PTGS2	48	34	XIAP	25
10	JUN	47	35	SELE	24
11	IL2	43	36	MET	24
12	ESR1	40	37	PRKCA	24
13	MAPK14	40	38	BTK	23
14	RELA	39	39	HSPA5	23
15	BCL2L1	39	40	ABCG2	22
16	ICAM1	38	41	PRKCB	22
17	CTNNB1	38	42	CD38	21
18	MPO	37	43	AGTR1	21
19	FGF2	35	44	FLT3	20
20	PIK3CA	34	45	NOS2	20
21	CASP8	33	46	NFE2L2	19
22	ACE	32	47	ALOX5	19
23	F2	32	48	CTSB	18
24	ITGB1	32	49	HNF4A	18
25	PPARG	31	50	PRKCE	18

3.3 GO gene function and KEGG signaling pathway enrichment analyses

GO BP enrichment analysis showed that the potential therapeutic targets of XBJ involved 228 BPs. This indicated that the active ingredients of XBJ could exert their effects through multiple BPs (Table 2).
KEGG signaling pathway enrichment analysis showed that XBJ acted on COVID-19 mainly through 94 pathways. This indicated that the targets of the active ingredients of XBJ were distributed across different pathways and that XBJ might use multiple pathways to carry out its synergistic effects.

Table 3. GO Biological Process enrichment analysis.

No.	GO ID	GO term	P. Value Corrected with Bonferroni step down
1	GO:0042542	response to hydrogen peroxide	0.002
2	GO:1990776	response to angiotensin	0.004
3	GO:0035924	cellular response to vascular endothelial growth factor stimulus	0.002
4	GO:0002224	toll-like receptor signaling pathway	0.002
5	GO:0061756	leukocyte adhesion to vascular endothelial cell	0.005
6	GO:0001936	regulation of endothelial cell proliferation	0.001
7	GO:0031663	lipopolysaccharide-mediated signaling pathway	0.002
8	GO:0050727	regulation of inflammatory response	0.001
9	GO:0010634	positive regulation of epithelial cell migration	0.008
10	GO:0030335	positive regulation of cell migration	0.001
11	GO:0070371	ERK1 and ERK2 cascade	0.001
12	GO:0050852	T cell receptor signaling pathway	0.001
13	GO:0000187	activation of MAPK activity	0.001
14	GO:0071222	cellular response to lipopolysaccharide	0.000
15	GO:0002526	acute inflammatory response	0.004
16	GO:0050900	leukocyte migration	0.000
17	GO:0001780	neutrophil homeostasis	0.010
18	GO:0036092	phosphatidylinositol-3-phosphate biosynthetic process	0.003
19	GO:2000106	regulation of leukocyte apoptotic process	0.001
20	GO:0019369	arachidonic acid metabolic process	0.001

4. Discussion
XBJ has been approved for the treatment of severe infection (sepsis). For a long period of time in China, it was believed that XBJ could improve prognosis in severe lung infection[33] as well as 28-day mortality rate, Acute Physiologic Assessment and Chronic Health Evaluation (APACHE) II score, white blood cell (WBC) count, and temperature in sepsis patients without causing serious adverse events. A prospective, randomized controlled trial in 33 hospitals in China, published in September 2019, showed that XBJ can significantly improve the primary endpoint of pneumonia severity in patients with severe community-acquired pneumonia, as well as secondary endpoints such as mortality rate, mechanical-ventilation duration, and length of intensive-care unit (ICU) stay[34]. Since the start of the COVID-19 outbreak, XBJ has been recommended as a Chinese patent medicine in local COVID-19 diagnosis and treatment plans released by many provincial health commissions due to its rapid onset and significant efficacy in critically ill patients. This shows that XBJ might have important clinical value in COVID-19 treatment. However, the material bases and molecular effector mechanisms are still unclear. Therefore, analysis of the potential effector mechanisms of XBJ in the treatment of COVID-19, elucidating its potential active ingredients and their potential effector targets, and demonstrating the network effector mechanisms of XBJ on COVID-19, can provide a scientific basis for using XBJ in the clinical treatment of COVID-19.

This study preliminarily demonstrated XBJ’s “multiple component–multiple target–multiple pathway” effector characteristics, and our network topology analysis of potential effector targets identified some critical effector targets of the compound. GO and KEGG enrichment analyses found that the potential targets of XBJ involved multiple inflammation- and immune-related gene functions and signaling pathways, which might be one basis for XBJ treatment in COVID-19.

From a potential active-ingredient perspective, XBJ possesses potential anti-inflammatory and immune-boosting effects[35]. The three active ingredients of *Carthamus tinctorius* have protective effects in lipopolysaccharide (LPS)-induced acute lung injury (ALI)[36]. The potential anti-inflammatory components in XBJ inhibit NF-κB activity; decrease expression of TNF-α, IL-1β, and IL-6[37]; alleviate inflammatory responses; and inhibit secretion of pro-inflammatory cytokines mediated by the high-mobility group box 1 protein (HMGB1)–receptor for advanced glycation endproducts (RAGE) axis, thereby decreasing mortality rate in a mouse model[38]. XBJ also upregulates toll-interacting proteins in septic rats to protect the lungs from permeable leakage and injury[39]. In addition, it prevents cytokine storm, inhibits inflammatory responses, and regulates regulatory T-cell (Treg)–T helper 17 cell (T\textsubscript{h}17) balance to improve survival in septic shock[40]. In addition, XBJ promotes the expression of annexin A1 to inhibit cleavage of pro-inflammatory cytokines and decreases IL-8 and TNF-α levels to protect rats from damage due to *Acinetobacter baumannii* sepsis[41]. SARS-CoV-2 replicates in respiratory-tract epithelial cells to cause acute inflammation and severe respiratory disease. During infection, local production of pro-inflammatory cytokines exacerbates disease progression. Therefore, the anti-inflammatory activity and cytokine-inhibitory effects of XBJ might constitute its potential mechanism in COVID-19 treatment.

In GO BP analysis, the 144 potential therapeutic targets of XBJ involved multiple inflammation- and immune-related BPs such as extracellular signal-regulated kinase 1 and 2 (ERK1, ERK2) cascade, the T-cell receptor signaling pathway, activation of MAPK activity, and cellular response to LPS. This suggests
that the significant anti-inflammatory effects of XBJ are its therapeutic effects in inflammation. Virus-host interactions are an important aspect of viral replication. Ribonucleic acid (RNA) viruses such as influenza, Ebola virus, and SARS-CoV can induce Raf–mitogen-activated protein kinase kinase (MEK)–ERK signal transduction in the MAPK cascade, which is associated with replication of pathogenic RNA viruses in humans and allows for cell differentiation and proliferation[42]. This is consistent with the fact that XBJ targets the ERK1/ERK2 cascade.

Extensive proteinoid and serous exudates are present in the alveoli of COVID-19 patients. These cases also present bilateral diffuse alveolar damage accompanied by fibromyxoid exudates, and both lungs show apparent pulmonary edema, alveolar epithelial detachment, and hyaline-membrane formation[43]. In terms of infection-related serum markers, studies show that C-reactive protein (CRP), IL-6, and erythrocyte sedimentation rate (ESR) are significantly increased in many patients[44]. Severe cytokine storm can appear in severely to critically ill patients, resulting in excessive immune activation and excess production of IL-7, IL-10, granulocyte colony-stimulating factor (GCSF), interferon gamma inducible protein 10 kD (IP-10), monocyte chemoattractant protein 1 (MCP-1), macrophage inflammatory protein 1A (MIP1A), and TNF-α[45]. From this, it can be seen that SARS-CoV-2–mediated inflammation plays an important role in COVID-19 progression, and uncontrollable lung inflammation may be the main cause of death in COVID-19. Therefore, intervention measures to reduce inflammation might help decrease the mortality rate[46].

With regard to effector targets, the degree values of GAPDH, albumin (ALB), TNF, EGFR, MAPK1, CASP3, STAT3, MAPK8, PTGS2, JUN, IL-2, EStrogen Receptor 1 (ESR1), and MAPK14 were all >40, suggesting that in COVID-19 these could be the main therapeutic targets of XBJ’s active ingredients. Wikipathways and KEGG enrichment analysis contained 40 and 94 signaling pathways, showing that the 144 potential XBJ therapeutic targets were involved in many inflammation- and immune-related signaling pathways.

The renin–angiotensin system (RAS), OS and cell death, cytokine storm, and endothelial dysfunction are four main pathways in COVID-19 pathogenesis. ACE is a receptor in the airway, alveoli, and vascular endothelium. COVID-19 uses ACE to enter type II pneumocytes or intestinal epithelial cells in order to induce ACE2 internalization and shedding, resulting in the occurrence and development of acute respiratory distress syndrome (ARDS)[47]. Many of XBJ’s active ingredients act on multiple targets in the RAS, which could potentially interfere with ACE receptors. NF-κB activation exacerbates lung inflammation caused by SARS-CoV infection, and inhibition of NF-κB signaling significantly reduces such inflammation and increases the survival rate of SARS-CoV-infected mice[48, 49]. In addition, NF-κB is an important transcription factor that induces expression of viral genes, and inhibition of NF-κB activation is an immune evasion mechanism of SARS-CoV[50]. Therefore, we speculate that XBJ’s active ingredients might interfere with the NF-κB pathway and regulate innate immunity and inflammation during viral infection to alleviate lung inflammation during COVID-19.

One study has shown that XBJ inhibits MAPK and NF-κB expression and has protective effects in ALI[51]. The compound regulates the NF-κB, MAPK, and PI3K–Akt pathways in mouse macrophages and
downregulates inflammatory cytokines such as IL-6, TNF-α, MCP-1, MIP-2, and serum IL-10 to increase the survival rate of septic mice [15]. XBJ downregulates toll-like receptor 4 (TLR-4) and NF-κB expression to carry out its anti-inflammatory effects. MAPK activation can promote the expression and release of pro-inflammatory cytokines such as TNF-α and IL-1β, -6, and -8; it is a core factor in inflammation regulation. Viruses usually directly or indirectly affect the PI3K–Akt pathway to control intracellular-signaling pathways. EGFR aggregation and binding of influenza virus to cell surfaces might activate Akt. The PI3K–Akt signaling pathway might synergize with the RAS to promote viral entry, which has significant effects in viral infection in humans[52]. TLR-2, TLR-3, and TLR-4 activation by COVID-19 causes the release of inflammatory cytokines such as IL-1β. The binding of SARS-CoV-2 to TLRs causes release of pro-IL-1β, inflammasome activation, and production of mature IL-1β. Pro-inflammatory cytokines are important mediators of local and systemic inflammation. Viral particles first invade the respiratory mucosa before infecting other cells, thereby inducing a series of immune responses leading to cytokine storm[53]. Therefore, XBJ could be used to treat COVID-19 patients due to its anti-inflammatory effects, anti-immune apoptosis, and alleviation of pneumonia-induced multi-organ damage. In addition, we found that critical nodes on our “XBJ active-compound-potential effector target” network analysis map participated in the aforementioned pathways, suggesting that the predictions made in this study are somewhat accurate.

When compared to other research works on NP related to COVID-19 prevention and treatment, some of our research results and conclusions are consistent with the current similar research in some aspects. Qingfei Paidu Decoction(QFPD), a clinically used Chinese medicine for treating COVID-19 patients in China, has been shown by a recent NP research that the therapeutic effects of QFPD against COVID-19 may be attributed to the anti-inflammatory effects related to the thrombin and TLR signaling pathway[54]. What’s more, QFPD could protect COVID-19 injury via anti-Viral, anti-Inflammatory activity and metabolic programming[55]. Another research shows that Pudilan (PDL), clinically used as an anti-SARS-CoV-2 infective agent in China. PDL might moderate the immune system to shorten the course of the disease, delay disease progression, and reduce the mortality rate[56]. Hence, QFPD and PDL, together with XBJ may have a therapeutic effect on COVID-19 through three aspects, including the immune system, anti-inflammation, and anti-virus entry into cells.

However, there are several limitations in the current study. The host proteins and existing targets of the relevant coronaviruses are used to be potential therapeutic targets for COVID-19. Although SARS-CoV-2 shared high nucleotide sequence identity with other HCoVs, our predictions are not SARS-CoV-2 specific by lack of the known host proteins on SARS-CoV-2. In terms of COVID-19 treatment targets, we have an adopted alternative strategy that is currently achievable.

SARS is associated with epithelial-cell proliferation and an increase in macrophages in the lung[57]. And diffuse alveolar damage was seen in COVID-19 cases[58]. Regarding the differences between COVID-19 and SARS. Studies reveal that SARS-CoV-2 is very similar in structure and pathogenicity with SARS-CoV, but the most important structural protein, i.e., the spike protein (S), is slightly different in these viruses. Compared to other beta coronaviruses, the presence of a furin-like cleavage site in SARS-CoV-2 facilitates
the S protein priming and might increase the efficiency of the spread of SARS-CoV-2[59, 60]. COVID-19 has diverse epidemiological and biological characteristics, making it more contagious than SARS-CoV and MERS-CoV. It has affected more people in a short time period compared to SARS-CoV and MERS-CoV, although the fatality rate of MERS-CoV was higher than SARS-CoV and SARS-CoV[61].

We explore the molecular mechanism of Xuebijing injection in COVID-19 based on the premise of host and protein interaction. We use coronavirus-related host proteins as potential targets, which aim to produce an indirect intervention against viral targets for the treatment of COVID-19.

5. Conclusions

XBJ could regulate different genes, act on different pathways, and synergize anti-inflammatory and immunoregulatory effects. This demonstrates the synergy of multiple targets and pathways among different components, as well as the holistic concept of TCM formulations. We examined the “multiple component-multiple target-multiple pathway” effector mechanisms of XBJ, found that existing studies on the pharmacological mechanisms of XBJ in the treatment of sepsis and severe pneumonia, could explain the effector mechanism of XBJ in COVID-19 treatment, and those provided a preliminary examination of the potential effector mechanism in this disease.

Declarations

Ethics approval and consent to participate

Not applicable. This manuscript does not report on or involve the use of any animal or human data or tissue.

Consent for publication

Not applicable. This manuscript does not contain data from any individual person.

Availability of data and materials

All data are available in the manuscript and are shown in tables, figures, and supplemental files.

Competing interests

The authors declare that they have no conflicts of interest.

Funding

This research was funded by grants from the National Natural Science Foundation of China (No.81973814), the Liu Xiao-hong Famous Traditional Chinese Medicine Inheritance Studio from the Traditional Chinese Medicine Bureau of Guangdong Province (No.201805), the Construction Project of the National Clinical Medical Research Center (respiratory department, No.2110200309), the Construction
Project of High Level Hospital on Modified Weijing Granules (No.211010010603), and the Student Learning Team Incubation Project of Innovation Academy from The First Affiliated Hospital of Guangzhou University of Chinese Medicine (No.2018XXTD003), and the Guangdong Provincial Science and Technology Plan Project (South China Traditional Chinese Medicine Collaborative Innovation Center, No.2014b0902002).

Authors’ contributions

Conceptualization, LXH, and JY; methodology, ZWJ, and YQ; software, NYS; formal analysis, ZSF and YLL; investigation, ZWJ; resources, ZHF; data curation, NYS; writing-original draft preparation, ZWJ, and YQ; writing-review and editing, JY; supervision, LXH; project administration, JY; funding acquisition, LXH. All authors have read and agreed to the published version of the manuscript. ZWJ and YQ contributed equally to this work, and they should be regarded as co-first author.

Acknowledgements

We thank LetPub for its linguistic assistance during the preparation of this manuscript.

References

1. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10223):470-3; doi: 10.1016/S0140-6736(20)30185-9.

2. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends. 2020;14(1):69-71; doi: 10.5582/bst.2020.01020.

3. Li H, Zhou Y, Zhang M, Wang H, Zhao Q, Liu J. Updated Approaches against SARS-CoV-2. Antimicrob Agents Chemother. 2020;64(6); doi: 10.1128/AAC.00483-20.

4. Ren JL, Zhang AH, Wang XJ. Traditional Chinese medicine for COVID-19 treatment. Pharmacol Res. 2020;155:104743; doi: 10.1016/j.phrs.2020.104743.

5. Zhang Q, Li J, Liang X, Xie H, Sun H, Lin X, et al. The preventive effect of Chinese herbal preparation Xuebijing against hyperactive inflammation after hepatopancreato-biliary surgery. Ann Transl Med. 2019;7(18):481; doi: 10.21037/atm.2019.07.78.

6. He F, Wang J, Liu Y, Wang X, Cai N, Wu C, et al. Xuebijing injection induces anti-inflammatory-like effects and downregulates the expression of TLR4 and NF-kappaB in lung injury caused by dichlorvos poisoning. Biomed Pharmacother. 2018;106:1404-11; doi: 10.1016/j.biopha.2018.07.111.

7. Yin Q, Li C. Treatment effects of xuebijing injection in severe septic patients with disseminated intravascular coagulation. Evid Based Complement Alternat Med. 2014;2014:949254; doi: 10.1155/2014/949254.

8. Cheng C, Lin JZ, Li L, Yang JL, Jia WW, Huang YH, et al. Pharmacokinetics and disposition of monoterpene glycosides derived from Paeonia lactiflora roots (Chishao) after intravenous dosing of
antiseptic XueBiJing injection in human subjects and rats. Acta Pharmacol Sin. 2016;37(4):530-44; doi: 10.1038/aps.2015.103.

9. Liu MW, Liu R, Wu HY, Zhang W, Xia J, Dong MN, et al. Protective effect of Xuebijing injection on D-galactosamine- and lipopolysaccharide-induced acute liver injury in rats through the regulation of p38 MAPK, MMP-9 and HO-1 expression by increasing TIPE2 expression. Int J Mol Med. 2016;38(5):1419-32; doi: 10.3892/ijmm.2016.2749.

10. Chen Y, Tong H, Pan Z, Jiang D, Zhang X, Qiu J, et al. Xuebijing injection attenuates pulmonary injury by reducing oxidative stress and proinflammatory damage in rats with heat stroke. Exp Ther Med. 2017;13(6):3408-16; doi: 10.3892/etm.2017.4444.

11. Li T, Qian Y, Miao Z, Zheng P, Shi T, Jiang X, et al. Xuebijing Injection Alleviates Pam3CSK4-Induced Inflammatory Response and Protects Mice From Sepsis Caused by Methicillin-Resistant Staphylococcus aureus. Front Pharmacol. 2020;11:104; doi: 10.3389/fphar.2020.00104.

12. Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682-90; doi: 10.1038/nchembio.118.

13. Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med. 2013;11(2):110-20; doi: 10.1016/S1875-5364(13)60037-0.

14. Bojkova D, Klann K, Koch B, Widera M, Krause D, Ciesek S, et al. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature. 2020; doi: 10.1038/s41586-020-2332-7.

15. Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020;6:14; doi: 10.1038/s41421-020-0153-3.

16. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3; doi: 10.1038/s41586-020-2012-7.

17. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265-9; doi: 10.1038/s41586-020-2008-3.

18. Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. Coronavirus - drug discovery and therapeutic options. Nat Rev Drug Discov. 2016;15(5):327-47; doi: 10.1038/nrd.2015.37.

19. Messina F, Giombini E, Agrati C, Vairo F, Ascoli Bartoli T, Al Moghazi S, et al. COVID-19: viral-host interactome analyzed by network based-approach model to study pathogenesis of SARS-CoV-2 infection. J Transl Med. 2020;18(1):233; doi: 10.1186/s12967-020-02405-w.

20. Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019;47(W1):W357-W64; doi: 10.1093/nar/gkz382.

21. Rappaport N, Fishilevich S, Nudel R, Twik M, Belinky F, Plaschkes I, et al. Rational confederation of genes and diseases: NGS interpretation via GeneCards, MalaCards and VarElect. Biomed Eng Online. 2017;16(Suppl 1):72; doi: 10.1186/s12938-017-0359-2.

22. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell.
Wang J, Zhao S, Liu M, Zhao Z, Xu Y, Wang P, et al. ACE2 expression by colonic epithelial cells is associated with viral infection, immunity and energy metabolism. medRxiv. 2020;2020.02.05.20020545; doi: 10.1101/2020.02.05.20020545.

Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020; doi: 10.1038/s41586-020-2286-9.

Su G, Morris JH, Demchak B, Bader GD. Biological network exploration with Cytoscape 3. Curr Protoc Bioinformatics. 2014;47:8 13 1-24; doi: 10.1002/0471250953.bi0813s47.

Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45(D1):D362-D8; doi: 10.1093/nar/gkw937.

Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8 Suppl 4:S11; doi: 10.1186/1752-0509-8-S4-S11.

Bindea G, Molcnic B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091-3; doi: 10.1093/bioinformatics/btp101.

Bindea G, Galon J, Molcnic B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics. 2013;29(5):661-3; doi: 10.1093/bioinformatics/btt019.

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25-9; doi: 10.1038/75556.

Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32(Database issue):D277-80; doi: 10.1093/nar/gkh063.

Zuo L, Sun Z, Hu Y, Sun Y, Xue W, Zhou L, et al. Rapid determination of 30 bioactive constituents in XueBiJing injection using ultra high performance liquid chromatography-high resolution hybrid quadrupole-orbitrap mass spectrometry coupled with principal component analysis. J Pharm Biomed Anal. 2017;137:220-8; doi: 10.1016/j.jpba.2017.01.024.

Li C, Wang P, Zhang L, Li M, Lei X, Liu S, et al. Efficacy and safety of Xuebijing injection (a Chinese patent) for sepsis: A meta-analysis of randomized controlled trials. J Ethnopharmacol. 2018;224:512-21; doi: 10.1016/j.jep.2018.05.043.

Song Y, Yao C, Yao Y, Han H, Zhao X, Yu K, et al. XueBiJing Injection Versus Placebo for Critically Ill Patients With Severe Community-Acquired Pneumonia: A Randomized Controlled Trial. Crit Care Med. 2019;47(9):e735-e43; doi: 10.1097/CCM.0000000000003842.

Liu Y, Tian X, Cui M, Zhao S. Safflower yellow inhibits angiotensin II-induced adventitial fibroblast proliferation and migration. J Pharmacol Sci. 2014;126(2):107-14; doi: 10.1254/jphs.14055fp.
36. Wang YP, Guo Y, Wen PS, Zhao ZZ, Xie J, Yang K, et al. Three Ingredients of Safflower Alleviate Acute Lung Injury and Inhibit NET Release Induced by Lipopolysaccharide. Mediators Inflamm. 2020;2020:2720369; doi: 10.1155/2020/2720369.

37. Jiang M, Zhou M, Han Y, Xing L, Zhao H, Dong L, et al. Identification of NF-kappaB Inhibitors in Xuebijing injection for sepsis treatment based on bioactivity-integrated UPLC-Q/TOF. J Ethnopharmacol. 2013;147(2):426-33; doi: 10.1016/j.jep.2013.03.032.

38. Wang Q, Wu X, Tong X, Zhang Z, Xu B, Zhou W. Xuebijing Ameliorates Sepsis-Induced Lung Injury by Downregulating HMGB1 and RAGE Expressions in Mice. Evid Based Complement Alternat Med. 2015;2015:860259; doi: 10.1155/2015/860259.

39. Liu MW, Wang YH, Qian CY, Li H. Xuebijing exerts protective effects on lung permeability leakage and lung injury by upregulating Toll-interacting protein expression in rats with sepsis. Int J Mol Med. 2014;34(6):1492-504; doi: 10.3892/ijmm.2014.1943.

40. Chen X, Feng Y, Shen X, Pan G, Fan G, Gao X, et al. Anti-sepsis protection of Xuebijing injection is mediated by differential regulation of pro- and anti-inflammatory Th17 and T regulatory cells in a murine model of polymicrobial sepsis. J Ethnopharmacol. 2018;211:358-65; doi: 10.1016/j.jep.2017.10.001.

41. He XD, Wang Y, Wu Q, Wang HX, Chen ZD, Zheng RS, et al. Xuebijing Protects Rats from Sepsis Challenged with Acinetobacter baumannii by Promoting Annexin A1 Expression and Inhibiting Proinflammatory Cytokines Secretion. Evid Based Complement Alternat Med. 2013;2013:804940; doi: 10.1155/2013/804940.

42. Pleschka S. RNA viruses and the mitogenic Raf/MEK/ERK signal transduction cascade. Biol Chem. 2008;389(10):1273-82; doi: 10.1515/BC.2008.145.

43. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-2; doi: 10.1016/S2213-2600(20)30076-X.

44. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13; doi: 10.1016/S0140-6736(20)30211-7.

45. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506; doi: 10.1016/S0140-6736(20)30183-5.

46. Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virol Sin. 2020; doi: 10.1007/s12250-020-00207-4.

47. Sparks MA, South A, Welling P, Luther JM, Cohen J, Byrd JB, et al. Sound Science before Quick Judgement Regarding RAS Blockade in COVID-19. Clin J Am Soc Nephrol. 2020;15(5):714-6; doi: 10.2215/CJN.03530320.

48. Canton J, Fehr AR, Fernandez-Delgado R, Gutierrez-Alvarez FJ, Sanchez-Aparicio MT, Garcia-Sastre A, et al. MERS-CoV 4b protein interferes with the NF-kappaB-dependent innate immune response during...
infection. PLoS Pathog. 2018;14(1):e1006838; doi: 10.1371/journal.ppat.1006838.

49. DeDiego ML, Nieto-Torres JL, Regla-Nava JA, Jimenez-Guardeno JM, Fernandez-Delgado R, Fett C, et al. Inhibition of NF-kappaB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. J Virol. 2014;88(2):913-24; doi: 10.1128/JVI.02576-13.

50. Deng L, Zeng Q, Wang M, Cheng A, Jia R, Chen S, et al. Suppression of NF-kappaB Activity: A Viral Immune Evasion Mechanism. Viruses. 2018;10(8); doi: 10.3390/v10080409.

51. Liu MW, Su MX, Zhang W, Wang YQ, Chen M, Wang L, et al. Protective effect of Xuebijing injection on paraquat-induced pulmonary injury via down-regulating the expression of p38 MAPK in rats. BMC Complement Altern Med. 2014;14:498; doi: 10.1186/1472-6882-14-498.

52. Dunn EF, Connor JH. HijAkt: The PI3K/Akt pathway in virus replication and pathogenesis. Prog Mol Biol Transl Sci. 2012;106:223-50; doi: 10.1016/B978-0-12-396456-4.00002-X.

53. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020;7(1):11; doi: 10.1186/s40779-020-00240-0.

54. Yang R, Liu H, Bai C, Wang Y, Zhang X, Guo R, et al. Chemical composition and pharmacological mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction against Coronavirus Disease 2019 (COVID-19): In silico and experimental study. Pharmacol Res. 2020;157:104820; doi: 10.1016/j.phrs.2020.104820.

55. Chen J, Wang YK, Gao Y, Hu LS, Yang JW, Wang JR, et al. Protection against COVID-19 injury by qingfei paidu decoction via anti-viral, anti-inflammatory activity and metabolic programming. Biomed Pharmacother. 2020;129:110281; doi: 10.1016/j.biopha.2020.110281.

56. Kong Q, Wu Y, Gu Y, Lv Q, Qi F, Gong S, et al. Analysis of the molecular mechanism of Pudilan (PDL) treatment for COVID-19 by network pharmacology tools. Biomed Pharmacother. 2020;128:110316; doi: 10.1016/j.biopha.2020.110316.

57. Nicholls JM, Poon LL, Lee KC, Ng WF, Lai ST, Leung CY, et al. Lung pathology of fatal severe acute respiratory syndrome. Lancet. 2003;361(9371):1773-8; doi: 10.1016/s0140-6736(03)13413-7.

58. Sauter JL, Baine MK, Butnor KJ, Buonocore DJ, Chang JC, Jungbluth AA, et al. Insights into pathogenesis of fatal COVID-19 pneumonia from histopathology with immunohistochemical and viral RNA studies. Histopathology. 2020; doi: 10.1111/his.14201.

59. Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020;176:104742; doi: 10.1016/j.antiviral.2020.104742.

60. Millet JK, Whittaker GR. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci U S A. 2014;111(42):15214-9; doi: 10.1073/pnas.1407087111.

61. Meo SA, Alhowikan AM, Al-Khlaawi T, Meo IM, Halepoto DM, Iqbal M, et al. Novel coronavirus 2019-nCoV: prevalence, biological and clinical characteristics comparison with SARS-CoV and MERS-CoV. Eur Rev Med Pharmacol Sci. 2020;24(4):2012-9; doi: 10.26355/eurrev_202002_20379.
Figure 1

Overall workflow of this study
Figure 2

Schematic diagram of relationship between drug targets (XBJ) and disease (COVID-19-related) potential targets. There are 451 drug targets of XBJ, 251 coronavirus pneumonia associated targets from GeneCards gene database, with 38 overlapping targets, 119 HCoV-associated host proteins, with 10 overlapping targets, 3525 genes that are co-expressed with ACE2, with 113 overlapping targets, there are 144 potential COVID-19 therapeutic targets in total after deduplication.
Figure 3

Potential active-ingredient potential therapeutic-target network analysis. Green triangles represent the 30 potential active ingredients of XBJ. Red squares represent 144 COVID-19-related potential effector targets.
Figure 4

Network topology analysis. Black lines represent protein-protein interactions present. Deeper colors represent higher degree values.
Figure 5

Pathways enrichment analysis based on WikiPathways database. **: P-values ≤ 0.001.
Figure 6

“Active ingredient-effector target-signaling pathway” network plot. Green triangles represent the potential active ingredients of XBJ. Red squares represent COVID-19-related potential effector targets. Blue circles represent signaling pathways in which the target is involved. The p-values of those signaling pathways are all less than 0.05 (p<0.05), and more detailed and specific p-values are shown in the corresponding supplementary materials.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- ThesignificantgenesassociatedwithCOVID19.txt
- ClueGOResultTable1.xls
- ClueGOResultTable0.xls
- Thedetailedtargetinformationoftheingredients.xlsx
- renamed48bf8.xlsx
- renamed1b893.xls
- renamed495b7.xlsx
- renameda5386.xls
- renameda3461.xls
- renamed958f4.xlsx
- renamed639f3.xlsx
- renamedb5c31.xlsx
- renamedb1990.xlsx
- renamedff54e.xlsx