The Diameter of Weighted Random Graphs

Hamed Amini* Marc Lelarge†

Abstract
In this paper we study the impact of the introduction of edge weights on the typical distances in a random graph and, in particular, on its diameter. Our main result consists of a precise asymptotic expression for the maximal weight of the shortest weight paths between a random vertex and all other vertices (the flooding time), as well as the (weighted) diameter of sparse random graphs, when the edge weights are i.i.d. exponential random variables.

Keywords: first passage percolation, weighted diameter, flooding time, random graphs, configuration model, continuous-time branching process.

2010 Mathematics Subject Classification: 60C05, 05C80, 90B15.

1 Introduction and main results

A weighted graph \((G, w)\) is the data of a graph \(G = (V, E)\) and a collection of weights \(w = \{w_e\}_{e \in E}\) associated to each edge \(e \in E\). We suppose that all the edge weights are non-negative. For two vertices \(a, b \in V\), a path between \(a\) and \(b\) is a sequence \(\pi = (e_1, e_2, \ldots, e_k)\) where \(e_i = \{v_{i-1}, v_i\} \in E\) and \(v_i \in V\) for \(i \in \{1, \ldots, k\} =: [1, k]\), with \(v_0 = a\) and \(v_k = b\). We write \(e \in \pi\) if the edge \(e \in E\) belongs to the path \(\pi\), i.e., if \(e = e_i\) for an \(i \in [1, k]\). For \(a, b \in V\), the weighted distance between \(a\) and \(b\) is given by

\[
\text{dist}_w(a, b) = \min_{\pi \in \Pi(a, b)} \sum_{e \in \pi} w_e,
\]

where the minimum is taken over all the paths between \(a\) and \(b\) in the graph. The weighted diameter is then given by

\[
\text{diam}_w(G) = \max \{ \text{dist}_w(a, b), \ a, b \in V, \ \text{dist}_w(a, b) < \infty \},
\]

while the weighted flooding time is

\[
\text{flood}_w(G) = \max \{ \text{dist}_w(a, b), \ b \in V, \ \text{dist}_w(a, b) < \infty \},
\]

where \(a\) is chosen uniformly at random in \(V\).

*INRIA-ENS, Hamed.Amini@ens.fr
†INRIA-ENS, Marc.Lelarge@ens.fr
Configuration model. For \(n \in \mathbb{N} \), let \((d_i)^n \) be a sequence of non-negative integers such that \(\sum_{i=1}^{n} d_i \) is even. By means of the configuration model \([7]\), we define a random multigraph with given degree sequence \((d_i)^n_1\), denoted by \(G^*(n, (d_i)^n_1) \) as follows: to each node \(i \in [1, n] \) we associate \(d_i \) labeled half-edges. All half-edges need to be paired to construct the graph, this is done by randomly matching them. When a half-edge of \(i \) is paired with a half-edge of \(j \), we interpret this as an edge between \(i \) and \(j \). The graph \(G^*(n, (d_i)^n_1) \) obtained following this procedure may not be simple, i.e., may contain self-loops due to the pairing of two half-edges of \(i \), and multi-edges due to the existence of more than one pairing between two given nodes. Conditional on the multigraph \(G^*(n, (d_i)^n_1) \) being a simple graph, we obtain a uniformly distributed random graph with the given degree sequence, which we denote by \(G(n, (d_i)^n_1) \), \([23]\). We consider asymptotics as the numbers of vertices tend to infinity, and thus we assume throughout the paper that we are given, for each \(n \), a sequence \(d(n) = (d_i^n)_{i=1}^n = (d_i)^n \) of non-negative integers such that \(\sum_{i=1}^{n} d_i^{(n)} \) is even. For notational simplicity we will sometimes not show the dependency on \(n \) explicitly.

For \(k \in \mathbb{N} \), let \(u_k^n = |\{i, d_i = k\}| \) be the number of vertices of degree \(k \). From now on, we assume that the sequence \((d_i)^n \) satisfies the following regularity conditions analogous to the ones introduced in \([28]\).

Condition 1.1. For each \(n \), \(d(n) = (d_i^n)_{i=1}^n = (d_i)^n \) is a sequence of positive integers such that \(\sum_{i=1}^{n} d_i \) is even and, for some probability distribution \((p_r)_{r=0}^{\infty}\) over integers independent of \(n \) and with finite mean \(\mu := \sum_{k \geq 0} kp_k \in (0, \infty) \), the following holds:

(i) \(u_k^n / n \rightarrow p_k \) for every \(k \geq 1 \) as \(n \rightarrow \infty \);

(ii) For some \(\epsilon > 0 \), \(\sum_{i=1}^{n} d_i^{2+\epsilon} = O(n) \).

Note that the condition \(d_i \geq 1 \) for all \(i \), is not restrictive since removing all isolated vertices from a graph will not affect its (weighted) diameter or flooding time.

Remark 1.2. The results of this work can be applied to some other random graphs models by conditioning on the degree sequence. In particular, our results will apply whenever the random graph conditioned on the degree sequence has a uniform distribution over all possibilities. Notable examples of such graphs are \(G(n, p) \), the Bernoulli random graph with \(n \) vertices and edge probability \(p \) and \(G(n, m) \), the uniformly random graph with \(n \) vertices and \(m \) edges. For example, for \(G(n, p) \) with \(np \rightarrow \mu \in (0, \infty) \) or \(G(n, m) \) with \(2m/n \rightarrow \mu \), the Condition \([11](i)\) holds in probability with \((p_k)\) a Poisson distribution with parameter \(\mu \), \(p_k = e^{-\mu} \mu^k / k! \). In section \([5]\) we show that thanks to Skorohod coupling theorem \([25]\ Theorem 3.30]) our results still apply in this setting.

Main results. We define \(q = \{q_k\}_{k=0}^{\infty} \) the size-biased probability mass function corresponding to \(p \), by

\[
\forall k \geq 0, \quad q_k := \frac{(k + 1)p_{k+1}}{\mu}, \text{and let } \nu \text{ denote its mean: } \nu = \sum_{k=0}^{\infty} kq_k \in (0, \infty).
\]
The condition $\nu > 1$ is equivalent to the existence of a giant component in the configuration model, the size of which is proportional to n (see e.g., [23, 28]). We will assume that $\nu > 1$ in the rest of the paper.

Let $\phi_p(z)$ be the probability generating function of $\{p_k\}_{k=0}^{\infty}$: $\phi_p(z) = \sum_{k=0}^{\infty} p_k z^k$, and let $\phi_q(z)$ be the probability generating function of $\{q_k\}_{k=0}^{\infty}$: $\phi_q(z) = \sum_{k=0}^{\infty} q_k z^k = \phi_p'(z)/\mu$.

We denote by λ the smallest solution in $[0, 1]$ of the fixed point equation: $\lambda = \phi_q'(\lambda)$. In addition, we introduce

$$\lambda_* = \phi_q'(\lambda) = \sum_{k=1}^{\infty} kq_k \lambda^{k-1}.$$ (2)

The interpretation of the parameters λ and λ_* in term of a branching process is given in Appendix A.1.

We can now state our main theorem.

Theorem 1.3. Consider a sequence of random weighted graphs $(G(n, (d_i)^n_1))$ where $w = \{w_e\}_{e \in E}$ are i.i.d. rate one exponential random variables. Assume Condition 1.1 and that ν defined in (1) is such that $\nu > 1$. Assume that all the graphs have the same minimum degree denoted by $d_{\text{min}} = \min_{i \in [1, n]} d_i$ and moreover that $p_d_{\text{min}} > 0$. Let $\Gamma : \mathbb{N} \to \mathbb{N}$ be defined by:

$$\Gamma(d) := d \mathbb{1}[d \geq 3] + 2(1 - q_1) \mathbb{1}[d = 2] + (1 - \lambda_*) \mathbb{1}[d = 1].$$ (3)

We have

$$\frac{\text{diam}_w(G(n, (d_i)^n_1))}{\log n} \xrightarrow{p} \frac{1}{\nu - 1} + \frac{2}{\Gamma(d_{\text{min}})} \quad \text{and} \quad \frac{\text{flood}_w(G(n, (d_i)^n_1))}{\log n} \xrightarrow{p} \frac{1}{\nu - 1} + \frac{1}{\Gamma(d_{\text{min}})}.$$ (4)

The decomposition of each limit for the weighted diameter and the flooding time in two terms with a common factor $\frac{1}{\nu - 1}$ has a simple interpretation. We now present it with an overview of the proof. The first key idea of the proof is to grow balls centered at all vertices of the graph simultaneously. The time when two balls centered at a and b respectively intersect is exactly the half of the weighted distance between a and b. In what follows, we will sometimes deliberately use the term time instead of the term weighted distance. Hence the weighted diameter becomes twice the time when the last two balls intersect and the flooding time becomes twice the time when the last ball intersects the ball centered at an uniformly chosen vertex. A simple argument shows that any two balls containing (slightly more than) \sqrt{n} vertices will intersect (with high probability) as shown by Proposition 3.1. Hence it will be enough to control the time at which all balls have reached this critical size of order \sqrt{n} in order to prove an upper bound for the weighted diameter and the flooding time. In order to do so, we apply an union bound argument so that we need to find the right time such that the probability that a ball (taken uniformly at random) reaches at that time a size at most \sqrt{n} is of order n^{-1}. In order to do so, we use the second main idea of the proof: we couple the exploration process on the weighted graph with a continuous time Markov branching process. It is simple to guess which branching process approximates the exploration process on the graph. The main difficulty here...
is that since we are interested in events of small probability for this exploration process (of order n^{-1}), we need to show that the coupling introduces errors on the probabilities which are negligible in comparison to n^{-1}. Considering graphs with $d_{\text{min}} = 1$ introduces additional technical difficulties since in this case, the 'giant component' of the graph contains only a fraction of the nodes.

It is instructive to take this coupling as granted and to consider now the large deviation problem for the continuous time Markov process. We consider a general one dimensional continuous time Markov branching process $\{Z(t); t \geq 0\}$ with infinitesimal generating function $f(s) - s$, where $f(s) = \sum_i q_i s^i$ with $q_i \geq 0$ and $\sum_i q_i = 1$ (see e.g., [2]). We recall the construction of the process $\{Z(t)\}$ and introduce some required notations. Let $\{\xi_i, i \geq 1\}$ be a sequence of i.i.d. random variables with generating function f and let $\eta_i = \xi_i - 1$. We define $S_n^k = Z(0) = k$ for $k \geq 1$, and $S_n^k = k + \sum_{i=1}^n \eta_i$ for $n \geq 1$. Let $I := \inf\{n; S_n^k = 0\} \geq 1$. If $S_n^k \neq 0$ for all n, then $I = \infty$. Given the sequence $\{\xi_i\}$, let $\tau_1^k, \ldots, \tau_I^k$ be mutually independent exponential random variables with means

$$E[\tau_j^k \mid \{\xi_i\}] = \frac{1}{S_{j-1}^k}.$$

We define the sequence of split times by $T_0^k = 0$ and $T_n^k = \tau_1^k + \cdots + \tau_n^k$ for $1 \leq n \leq I$, and let

$$Z(t) = \left\{ \begin{array}{ll} S_{n-1}^k & \text{for } T_{n-1}^k \leq t < T_n^k, 1 \leq n \leq I, \\ 0 & \text{for } T_I^k \leq t. \end{array} \right.$$

On the event $I < \infty$, we take the convention $T_n^k = +\infty$ for any $n \geq I + 1$. This event corresponds to the extinction of the branching process. Let λ denote its probability which is the smallest root in $[0,1]$ to $s = f(s)$. We also define $\lambda_* = f'(\lambda)$.

Theorem 1.4 ([1]). In previous setting with $1 < f'(1) < \infty$, we denote $\xi_{\text{min}} = \min\{i, q_i > 0\}$. For any $x > 0$ and $k \geq 1$, we have

$$\lim_{n \to \infty} \frac{1}{\log n} \log \mathbb{P}\left(\infty > T_n^k \geq \left(x + \frac{1}{f'(1) - 1} \right) \log n \right) = -x g(\xi_{\text{min}}, k), \tag{4}$$

with

$$g(\xi_{\text{min}}, k) = k \mathbf{1}(\xi_{\text{min}} \geq 2) + k(1 - q_1) \mathbf{1}(\xi_{\text{min}} = 1) + (1 - \lambda_*) \mathbf{1}(\xi_{\text{min}} = 0).$$

The proof of this theorem can be found in [1]. Coming back to the branching process approximating the exploration process, we should consider the case where k is the degree of the center of the ball hence a random variable with distribution $p = \{p_k\}$ and the distribution $q = \{q_k\}$ is given by [1]. Now k being random, the main contribution in the large deviation [1] will be given by the term with minimal possible value of k, i.e., d_{min}. However ξ_{min} being the minimal offspring, we should have $\xi_{\text{min}} = d_{\text{min}} - 1$. The fact that $\Gamma(d_{\text{min}}) = g(d_{\text{min}} - 1, d_{\text{min}})$ can now be understood easily: it follows from [1] that at time $\frac{1}{2(p-1)} + \Gamma(d_{\text{min}})$ the exploration process reaches size of order \sqrt{n} with probability of order n^{-1}. By previous (heuristic) argument, we know that this is half the value of the diameter.
Outline. In the next section, we consider the exploration process for configuration model which consists in growing balls simultaneously from each vertex. The diameter will be the time the last pair of balls intersect. A precise treatment of the exploration process, resulting in information about the growth rates of the balls are given in this section. In addition, the section provides some necessary notations and definitions that will be used throughout the last three sections. Sections 3 and 4 form the heart of the proof. We first prove that the above bound is an upper bound for the weighted diameter. This will consist in defining the two parameters α_n and β_n with the following significance.

(i) Two balls of size at least β_n intersect almost surely,

(ii) considering the growing balls centered at a vertex in the graph, the time it takes for the balls to go from size α_n to size β_n have all the same asymptotic for all the vertices of the graph, and the asymptotic is half of the typical weighted distance in the graph, and

(iii) the time it takes for the growing balls centered at a given vertex to reach size at least α_n is upper bounded by $(1 + \epsilon)\Gamma(d_{\min})\log n$ for all $\epsilon > 0$ with high probability (w.h.p.). This will show that the diameter is w.h.p. bounded above by $(1 + \epsilon)(\frac{1}{\nu - 1} + 2\Gamma(d_{\min}))\log n$, for all $\epsilon > 0$. The last section provides the corresponding lower bound. To obtain the lower bound, we show that w.h.p. (iv) there are at least two nodes with degree d_{\min} such that the time it takes for the balls centered at these vertices to achieve size at least α_n is worst than the other vertices, and is lower bounded by $(1 - \epsilon)\Gamma(d_{\min})\log n$, for all $\epsilon > 0$. And using this, we conclude that the diameter is w.h.p. bounded below by $(1 - \epsilon)(\frac{1}{\nu - 1} + 2\Gamma(d_{\min}))\log n$, for all fixed $\epsilon > 0$, finishing the proof of our main theorem. The actual values of α_n and β_n will be

$$\alpha_n := \log^3 n, \quad \beta_n := 3\sqrt[\nu - 1]{\mu n \log n}. \quad (5)$$

In Section 5 we show that our results still apply for random graphs $G(n, p)$ and $G(n, m)$ by conditioning on the degree sequence. When $d_{\min} = 1$, the longest shortest path in a random graph will be between a pair of vertices a and b of degree one. Furthermore, this path consists of a path from a to the 2-core, a path through the 2-core, and a path from the 2-core to b. For this, we need to provide some preliminary results on the structure of the 2-core, this is done in Appendix A.2.

Related literature. The typical distance and diameter of non-weighted graphs have been studied by many people, for various models of random graphs. A few examples are the results of Bollobás and Fernandez de la Vega [8], van der Hofstad, Hooghiemstra and Van Mieghem [18], Fernholz and Ramachandran [14], Chung and Lu [10], Bollobás, Janson and Riordan [9] and Riordan and Wormald [29].

The analysis of the asymptotics of typical distances in edge weighted graphs has received much interest by the statistical physics community in the context of first passage percolation problems. First-passage percolation (FPP) describes the dynamics of a fluid spreading within a random medium. This model has been mainly studied on lattices motivated by its subadditive property and its link to a number of other stochastic processes, see e.g., [15, 26, 16] for a more detailed discussion.

First passage percolation with exponential weights has received substantial attention (see [3, 19, 17, 18, 4, 6, 20, 5]), in particular on the complete graph, and, more recently, also on random graphs. In [20], Janson considered the special case of the complete graph with fairly
general i.i.d. weights on edges, including the exponential distribution with parameter one. It is shown that, when n goes to infinity, the asymptotic distance for two given points is $\log n/n$, that the maximum distance if one point is fixed and the other varies (the flooding time) is $2\log n/n$, and the maximum distance over all pairs of points (i.e., the weighted diameter) is $3\log n/n$. He also derived asymptotic results for the corresponding number of hops or hopcount (the number of edges on the paths with the smallest weight). More recently, a number of papers provide a detailed analysis of the scaling behavior of the joint distribution of the first passage percolation and the corresponding hopcount for the complete graph, e.g., [17, 3]. In particular, Bhamadi derives in [3], limiting distributions for the first passage percolation on both the complete graph and dense Erdős-Rényi random graphs with exponential and uniform i.i.d. weights on edges. This extends previous results by van der Hofstad et al. [17] exploring the link between the flooding time and first-passage percolation for both of these graphs with exponential edge-weights.

More closely related to the present work, Bhamidi, van der Hofstad, and Hooghiemstra [6] study first passage percolation on random graphs with finite average degree, minimum degree greater than two and exponential weights, and derive explicit distributional asymptotic for the total weight of the shortest-weight path between two uniformly chosen vertices in the network. Our proofs will show that the analysis made in [6] is not sufficient to obtain results for the diameter. Indeed, we need to use large deviation techniques to control all the vertices and not only the uniformly chosen ones. A lower bound of the weighted diameter in the case of Erdős-Rényi random graphs was given by Bhamidi, van der Hofstad and Hooghiemstra in [4]. In particular, our theorem improves this bound, and gives the correct asymptotic (see Remark 1.2). The base of our method is an extension of that (exploration process) used by Ding, Kim, Lubetzky, and Peres [12] to study the weighted diameter in random regular graphs; the setup and proofs are significantly more involved in the present setting.

Basic notations. For non-negative sequences x_n and y_n, we describe their relative order of magnitude using Landau's $o(.)$ and $O(.)$ notation: We write $x_n = O(y_n)$ if there exist $N \in \mathbb{N}$ and $C > 0$ such that $x_n \leq Cy_n$ for all $n \geq N$. Occasionally, we write $x_n = \Omega(y_n)$ to mean that there exists $N \geq 0$ and $C > 0$ such that for all $n \geq N$, $x_n \geq Cy_n$. If $x_n = O(y_n)$ and $x_n = \Omega(y_n)$, then we write $x_n = \Theta(y_n)$. We write $x_n \sim y_n$ when $x_n/y_n \rightarrow 1$ as $n \rightarrow \infty$. We usually do not make explicit reference to the probability space since it is usually clear to which one we are referring. We say that an event A holds almost surely, and we write a.s., if $\mathbb{P}(A) = 1$. The indicator function of an event A is of particular interest, and it is denoted by $\mathbb{1}[A]$. We consider the asymptotic case when $n \rightarrow \infty$ and say that an event holds w.h.p. (with high probability) if it holds with probability tending to 1 as $n \rightarrow \infty$. We denote by \xrightarrow{d}, and \xrightarrow{p}, convergence in distribution, and in probability, respectively. Similarly, we use o_p and O_p in a standard way. For example, if (X_n) is a sequence of random variables, then $X_n = O_p(1)$ means that "X_n is bounded in probability" and $X_n = o_p(n)$ means that $X_n/n \xrightarrow{p} 0$.
2 First Passage Percolation in $G^*(n, (d_i)_1^n)$

We start this section by introducing some new notations and definitions. Before this, one remark is in order. In what follows, we will sometimes deliberately use the term "time" instead of the term "weighted distance". It will be clear from the context what we actually mean by this.

Let $(G = (V, E), w)$ be a weighted graph. For a vertex $a \in V$ and a real number $t > 0$, the t-radius neighborhood of a in the (weighted) graph, or the ball of radius t centered at a, is defined as

$$ B_w(a, t) := \{ b, \ dist_w(a, b) \leq t \}. $$

The first time t where the ball $B_w(a, t)$ reaches size $k + 1$ will be denoted by $T_a(k)$ for $k \geq 0$, i.e.

$$ T_a(k) = \min \{ t : |B_w(a, t)| \geq k + 1 \}, \quad T_a(0) = 0. $$

If there is no such t, i.e. if the component containing a has size at most k, we define $T_a(k) = \infty$. More precisely, we use I_a to denote the size of the component containing a in the graph minus one, in other words,

$$ I_a := \max \{ |B_w(a, t)|, t \geq 0 \} - 1, $$

so that for all $k > I_a$, we set $T_a(k) = \infty$. Note that there is a vertex in $B_w(a, T_a(k))$ which is not in any ball of smaller radius around a. When the weights are i.i.d. according to a random variable with continuous density, this vertex is in addition unique with probability one. We will assume this in what follows. For an integer $i \leq I_a$, we use $\tilde{d}_a(i)$ to denote the forward-degree of the (unique) node added at time $T_a(i)$ in $B_w(a, T_a(i))$. Recall that the forward-degree is the degree minus one. Define $\hat{S}_a(i)$ as follows.

$$ \hat{S}_a(i) := d_a + \tilde{d}_a(1) + ... + \tilde{d}_a(i) - i, \quad \hat{S}_a(0) = d_a. \quad (6) $$

For a connected graph H, the tree excess of H is denoted by $\text{tx}(H)$, which is the maximum number of edges that can be deleted from H while still keeping it connected. By an abuse of notation, for a subset $W \subseteq V$, we denote by $\text{tx}(W)$ the tree excess of the induced subgraph $G[W]$ of G on W. (If $G[W]$ is not connected, then $\text{tx}(W) := \infty$.) Consider the growing balls $B_w(a, T_a(i))$ for $0 \leq i \leq I_a$ centered at a and let $X_a(i)$ be the tree excess of $B_w(a, T_a(i))$:

$$ X_a(i) := \text{tx}(B_w(a, T_a(i))). $$

We extend the definition of X_a to all the integer values by setting $X_a(i) = X_a(I_a)$ for all $i > I_a$.

The number of edges crossing the boundary of the ball $B_w(a, T_a(i))$ is denoted by $S_a(i)$. A simple calculation shows that

$$ S_a(i) = \hat{S}_a(i) - 2X_a(i). \quad (7) $$

We now consider a random graph $G(n, (d_i)_1^n)$ with i.i.d. rate one exponential weights on its edges, such that the degree sequence $(d_i)_1^n$ satisfies Condition 1.1. We let $m(n)$ be the total degree defined by

$$ m(n) = \sum_{i=1}^n d_i = \sum_{k \geq 0} k u_k^{(n)}. $$

7
One particularly useful property of the configuration model is that it allows one to construct the graph gradually, exposing the edges of the perfect matching one at a time. This way, each additional edge is uniformly distributed among all possible edges on the remaining (unmatched) half-edges. We have the following useful lemma.

Lemma 2.1. For any \(k \leq \frac{m(n) - n}{2} \), we have

\[
P\left(2X_a(k) \geq x \mid \tilde{S}_a(k), I_a \geq k \right) \leq P\left(\text{Bin}\left(\tilde{S}_a(k), \sqrt{\tilde{S}_a(k)/n} \right) \geq x \mid \tilde{S}_a(k) \right).
\]

A proof of this lemma is given in Section A.3.

In the sequel, we will also need to consider the number of vertices of forward-degree at least two in the (growing) balls centered at a vertex \(a \in V \). Thus, for \(i \leq I_a \), define

\[
\gamma_a(i) := \sum_{\ell=1}^i 1[\tilde{d}_a(\ell) \geq 2] = |\{b \in B_w(a, T_a(i)) : b \neq a \text{ and } d_b \geq 3\}|	ag{8}
\]

and extend the definition to all integers by setting \(\gamma_a(i) = \gamma_a(I_a) \) for all \(i > I_a \). Note that \(\gamma_a(0) = 0 \) and \(\gamma_a(i) = i \) if \(d_{\text{min}} \geq 3 \).

Now define \(T_a(k) \) to be the first time where the ball centered at \(a \) has at least \(k \) nodes of forward-degree at least two. More precisely,

\[
T_a(i) := \min\left\{ T_a(\ell) : \ell \text{ such that } \gamma_a(\ell) \geq k \right\}.	ag{9}
\]

The main idea of the proof of Theorem 1.3 consists in growing the balls around each vertex of the graph simultaneously so that the diameter becomes equal to twice the time when the last two balls intersect. In what follows, instead of taking a graph at random and then analyzing the balls, we use a standard coupling argument in random graph theory which allows to build the balls and the graph at the same time. We present this coupling in the next coming section.

2.1 The exploration process

Fix a vertex \(a \) in \(G^*(n, (d_i)_i) \), and consider the following continuous-time exploration process. At time \(t = 0 \), we have a neighborhood consisting only of \(a \), and for \(t > 0 \), the neighborhood is precisely \(B_w(a, t) \). We now give an equivalent description of this process. This provides a more convenient way for analyzing the random variables which are crucial in our argument, e.g., \(S_a(k) \). The idea is that instead of taking a graph at random and then analyzing the balls, the graph and the balls are built at the same time. We will consider a growing set of vertices denoted by \(B \) and a list \(L \) of yet unmatched half-edges in \(B \). Recall that in the usual way of constructing a random graph with given degree sequence, we match half-edges amongst themselves uniformly at random. In the following, by a matching, we mean a pair of matched half-edges.

- Start with \(B = \{a\} \), where \(a \) has \(d_a \) half-edges. For each half edge, decide (at random depending on the previous choices) if the half-edge is matched to a half-edge adjacent to \(a \) or not. Reveal the matchings consisting of those half-edges adjacent to \(a \) which are...
connected amongst themselves (creating self-loops at \(a \)) and assign weights independently at random to these edges. The remaining unmatched half-edges adjacent to \(a \) are stored in a list \(L \). (See the next step including a more precise description of this first step.)

- Repeat the following exploration step as long as the list \(L \) is not empty.
- Given there are \(\ell \geq 1 \) half-edges in the current list, say \(L = (h_1, \ldots, h_\ell) \), let \(\Psi \sim \text{Exp}(\ell) \) be an exponential variable with mean \(\ell^{-1} \). After time \(\Psi \) select a half-edge from \(L \) uniformly at random, say \(h_i \). Remove \(h_i \) from \(L \) and match it to a uniformly chosen half-edge in the entire graph excluding \(L \), say \(h \). Add the new vertex (connected to \(h \)) to \(B \) and reveal the matchings (and weights) of any of its half-edges whose matched half-edge is also in \(B \). More precisely, let \(d \) be the degree of this new vertex and \(2x \) the number of already matched half-edges in \(B \) (including the matched half-edges \(h_i \) and \(h \)). There is a total of \(m - 2x \) unmatched half-edges, \(m \) being the total number of half-edges of the random graph \(G \). Consider one of the \(d - 1 \) half-edges of the new vertex (excluding \(h \) which is connected to \(h_i \)); with probability \((\ell - 1)/(m - 2x - 1) \) it is matched with a half-edge in \(L \) and with the complementary probability it is matched with an unmatched half-edge outside \(L \). In the first case, match it to a uniformly chosen half-edge of \(L \) and remove the corresponding half-edge from \(L \). In the second case, add it to \(L \). We proceed in the similar manner for all the \(d - 1 \) half-edges of the new vertex.

Let \(B(a, t) \) and \(L(a, t) \) be respectively the set of vertices and the list generated by the above procedure at time \(t \), where \(a \) is the initial vertex. Considering the usual configuration model and using the memoryless property of the exponential distribution, we have \(B_{\sigma}(a, t) = B(a, t) \) for all \(t \). To see this, we can continuously grow the weights of the half-edges \(h_1, \ldots, h_\ell \) in \(L \) until one of their rate 1 exponential clocks fire. Since the minimum of \(\ell \) i.i.d exponential variables with rate 1 is exponential with rate \(\ell \), this is the same as choosing uniformly a half-edge \(h_i \) after time \(\Psi \) (recall that by our conditioning, these \(\ell \) half-edges do not pair within themselves). Note that the final weight of an edge is accumulated between the time of arrival of its first half-edge and the time of its pairing (except edges going back into \(B \) whose weights are revealed immediately). Then the equivalence follows from the memoryless property of the exponential distribution.

Note that \(T_a(i) \) is the time of the \(i \)-th exploration step in the above continuous-time exploration process. Assuming \(L(a, T_a(i)) \) is not empty, at time \(T_a(i + 1) \), we match a uniformly chosen half-edge from the set \(L(a, T_a(i)) \) to a uniformly chosen half-edge among all other half-edges, excluding those in \(L(a, T_a(i)) \). Let \(\mathcal{F}_t \) be the \(\sigma \)-field generated by the above process until time \(t \). Given \(\mathcal{F}_{T_a(i)} \), \(T_a(i + 1) - T_a(i) \) is an exponential random variable with rate \(S_a(i) \) given by Equation 4 which is equal to \(\left| L(a, T_a(i)) \right| \) the size of the list consisting of unmatched half-edges in \(B(a, T_a(i)) \). In other words,

\[
(T_a(i + 1) - T_a(i) \mid \mathcal{F}_{T_a(i)}) \overset{d}{=} \text{Exp}(S_a(i)),
\]

this is true since the minimum of \(k \) i.i.d. rate one exponential random variables is an exponential of rate \(k \).

Recall that \(I_a = \min\{i, S_a(i) = 0\} \leq n - 1 \), and set \(S_a(i) = 0 \) for all \(I_a \leq i \leq n - 1 \). We now extend the definition of the sequence \(\tilde{d}(i) \) to all the values of \(i \leq n - 1 \), constructing a
sequence \((\hat{d}_a(i))_{i=1}^{n-1} \) which will coincide in the range \(i \leq I_a \) with the sequence \(\hat{d}_a(i) \) defined in the previous subsection. We first note that in the terminology of the exploration process, the sequence \((\hat{d}_a(i))_{i \leq I_a} \) can be constructed as follows. At time \(T_a(i+1) \), the half-edge adjacent to the \(i+1 \)-th vertex is chosen uniformly at random from the set of all the half-edges adjacent to a vertex outside \(B \) and \(\hat{d}(i+1) \) is the forward-degree of the vertex adjacent to this half-edge. Thus, the sequence \((\hat{d}(i))_{i \leq I_a} \) has the following description.

Initially, associate to all vertex \(j \) a set of \(d_j \) half-edges (corresponding the set of half-edges outside \(B \) and \(L \)). At step 0, remove the half-edges corresponding to vertex \(a \). Subsequently, at step \(k \leq I_a \), choose a half-edge uniformly at random among all the remaining half-edges; if the half-edge is drawn from the node \(j \)’s half-edges, then set \(\hat{d}_a(k) = d_j - 1 \), and remove the node \(j \) and all of its half-edges. Obviously, this description allows to extend the definition of \(\hat{d}_a(i) \) to all the values of \(I_a < i \leq n-1 \). Indeed, if \(I_a < n-1 \), there are still half-edges at step \(I_a + 1 \), and we can complete the sequence \(\hat{d}_a(i) \) for \(i \in [I_a + 1, n - 1] \) by continuing the sampling described above. In this way, we obtain a sequence \((\hat{d}_a(i))_{i=1}^{n-1} \) which coincides with the sequence defined in the previous section for \(i \leq I_a \).

We also extend the sequence \(\hat{S}_a(i) \) for \(i > I_a \) thanks to \(\text{[10]} \). Recall that, we set \(X_a(i) = X_a(I_a) \) for all \(i > I_a \). It is simple to see that with these conventions, the relation \(\text{[7]} \) is not anymore valid for \(i > I_a \) but we still have \(S_a(i) \leq \hat{S}_a(i) - 2X_a(i) \) for all \(i \).

The process \(i \mapsto X_a(i) \) is non-decreasing in \(i \in [1, n-1] \). Moreover, given \(\mathcal{F}_{T_a(i)} \), the increment \(X_a(i+1) - X_a(i) \) is stochastically dominated by the following binomial random variable

\[
X_a(i+1) - X_a(i) \leq_{st} \text{Bin} \left(\hat{d}_a(i+1), \frac{(S_a(i) - 1)^+}{m^{(n)} - 2(X_a(i) + i)} \right), \tag{10}
\]

where \(m^{(n)} = \sum_{i=1}^n d_i \). We recall here that for two real-valued random variables \(A \) and \(B \), we say \(A \) is stochastically dominated by \(B \) and write \(A \leq_{st} B \) if for all \(x \), we have \(\mathbb{P}(A \geq x) \leq \mathbb{P}(B \geq x) \).

If \(C \) is another random variable, we write \(A \leq_{st} (B \mid C) \) if for all \(x \), \(\mathbb{P}(A \geq x) \leq \mathbb{P}(B \geq x \mid C) \) a.s.

We have the following useful lemma.

Lemma 2.2. For \(i < \frac{n}{2} \), we have

\[
X_a(i) \leq_{st} \text{Bin} \left(\max_{\ell \leq i} \hat{S}_a(\ell) + i, \frac{\max_{\ell \leq i} \hat{S}_a(\ell)}{n - 2i} \right). \tag{11}
\]

A proof of this lemma is given in Section A.3. Note that if \(i > I_a \), then \(S_a(i) = 0 \) and \(X_a(i+1) - X_a(i) = 0 \), so that \(\text{[10]} \) is still valid.

An important ingredient in the proof will be the coupling of the forward-degrees sequence \(\{ \hat{d}(i) \} \) to an i.i.d. sequence in the range \(i \leq \beta_n \), that we provide in the next subsection.

Recall that we defined \(\alpha_n \) and \(\beta_n \) as follows (c.f. Equation \(\text{[5]} \))

\[
\alpha_n = \log^3 n, \quad \beta_n = 3 \sqrt{\frac{\mu}{\nu - 1} n \log n}
\]

10
2.2 Coupling the forward-degrees sequence $\hat{d}_a(i)$

We now present a coupling of the variables $\{\hat{d}_a(1), \ldots, \hat{d}_a(k)\}$ valid for $k \leq \beta_n$, where β_n is defined in Equation (5), with an i.i.d. sequence of random variables, that we now define. Let $\Delta_n := \max_{i \in [1,n]} d_i$. Note that by Condition 1.1 (ii), we have $\Delta_n = O(n^{1/2-\epsilon})$.

Denote the order statistics of the sequence of degrees $(d_n(i))$ by $d_n(1) \leq d_n(2) \leq \cdots \leq d_n(n)$. (12)

Define $\pi_k := \sum_{i=1}^{n-\beta_n} \mathbb{1}[d_n(i) = k + 1]$. Similarly, define $\pi_k := \sum_{i=(\beta_n+1)\Delta_n}^{n} \mathbb{1}[d_n(i) = k + 1]$. (13)

Note that by Condition 1.1 we have $\beta_n\Delta_n = o(n)$ which implies that both the distributions $\pi(n)$ and $\pi(n)$ converge to the size-biased distribution q defined in Equation (1) as n tends to infinity.

The following lemma shows that the forward-degree of the i-th vertex given the forward-degrees of all the previous vertices is stochastically between two random variables with lower and upper distributions $\pi(n)$ and $\pi(n)$ defined above, provided that $i \leq \beta_n$. More precisely,

Lemma 2.3. For a uniformly chosen vertex a, we have for all $i \leq \beta_n$,

\[
\mathbb{E}_i^{(n)} \leq \mathbb{E}_i^{(n)} \leq \mathbb{E}_i^{(n)} ,
\]

where $\mathbb{E}_i^{(n)}$ (resp. $\mathbb{E}_i^{(n)}$) are i.i.d. with distribution $\pi_i(n)$ (resp. $\pi_i(n)$). In particular, we have for all $i \leq \beta_n$,

\[
\sum_{k=1}^{i} \mathbb{E}_i^{(n)} \leq \sum_{k=1}^{i} \hat{d}_a(k) \leq \sum_{k=1}^{i} \mathbb{E}_i^{(n)} .
\]

A proof of this lemma is given in Appendix A.5.

3 Proof of the Upper Bound

In this section we present the proof of the upper bound for Theorem 1.3. Namely we prove that for any $\epsilon > 0$, with high probability for all vertices u and v which are in the same component
In particular, \(\text{dist}_w(u, v) < \infty \), we have
\[
\text{dist}_w(u, v) \leq \left(\frac{1}{\nu - 1} + \frac{2}{\Gamma(d_{\min})} \right) (1 + \epsilon) \log n,
\]
where \(\Gamma(d_{\min}) \) is defined in \(\text{Eqn} \).

Recall that we defined \(\alpha_n = (\log n)^3 \) and \(\beta_n = 3 \sqrt{\frac{\mu}{\nu - 1} n \log n} \). The proof will be based on the following two technical propositions. For the sake of readability, we postpone the proof of these two propositions to the end of this section.

The first one roughly says that for all \(u \) and \(v \), the growing balls centered at \(u \) and \(v \) intersect w.h.p. provided that they contain each at least \(\beta_n \) nodes. More precisely,

Proposition 3.1. We have w.h.p.
\[
\text{dist}_w(u, v) \leq T_u(\beta_n) + T_v(\beta_n), \text{ for all } u \text{ and } v.
\]

The above proposition shows that in proving the upper bound, it will be enough to control the random variable \(T_u(\beta_n) \) for each node \(u \) in \(V \). It turns out that in the range between \(\alpha_n \) and \(\beta_n \), in the three cases \(d_{\min} \geq 3 \), \(d_{\min} = 2 \), and \(d_{\min} = 1 \), \(T_u(k) \) have more or less the same behavior, namely, it takes time at most roughly half of the typical (weighted) distance to go from size \(\alpha_n \) to \(\beta_n \). More precisely,

Proposition 3.2. For a uniformly chosen vertex \(u \) and any \(\epsilon > 0 \), we have
\[
\mathbb{P}\left(T_u(\beta_n) - T_u(\alpha_n) \geq \frac{(1 + \epsilon) \log n}{2(\nu - 1)} \mid I_u \geq \alpha_n \right) = o(n^{-1}).
\]

The conditioning \(I_u \geq \alpha_n \) is here to ensure that the connected component which contains \(u \) has size at least \(\alpha_n \). In particular, note that one immediate corollary of the two above propositions is that two nodes whose connected components have size at least \(\alpha_n \) are in the same component (necessarily the giant component), and that the two balls of size \(\beta_n \) centered at these two vertices intersect w.h.p.

Using the above two propositions, we are only left to understand \(T_u(\alpha_n) \), and for this we will need to consider the three cases separately. Before going through the proof of the upper bound in these three cases, we need one more result. Consider the exploration process started at a vertex \(a \). We will need to find lower bounds for \(S_a(k) \) in the range \(1 \leq k \leq \alpha_n \). Recall that we defined \(\gamma_a(k) \) as the number of nodes of forward-degree at least two in the growing balls centered at \(a \), c.f. Equation [8] for the precise definition. These nodes are roughly all the ones which could contribute to the growth of the random variable \(S_a(k) \). Now define the two following events.

\[
R_a := \{ S_a(k) \geq d_{\min} + \gamma_a(k), \text{ for all } 0 \leq k \leq \alpha_n - 1 \},
\]
\[
R_a' := \{ S_a(k) \geq \gamma_a(k), \text{ for all } 0 \leq k \leq \alpha_n - 1 \}.
\]

Lemma 3.3. Assume \(d_a \geq 2 \) and \(\tilde{d}_a(i) \geq 1 \) for all \(1 \leq i \leq \alpha_n \). Then we have
\[
\mathbb{P}(R_a) \geq 1 - o(\log^{10} n/n), \quad (14)
\]
\[
\mathbb{P}(R'_a) \geq 1 - o(n^{-3/2}). \quad (15)
\]

In particular, \(\mathbb{P}(R_a) \geq 1 - o(\log^{10} n/n) \) and \(\mathbb{P}(R'_a) \geq 1 - o(n^{-3/2}) \).
Proof. Since \(\hat{d}_a(i) \geq 1 \), \(\hat{S}_a(k) \) is non-decreasing in \(k \). We have for all \(k \leq \alpha_n \),

\[
d_{\min} + \gamma_a(k) \leq d_a + \gamma_a(k) \leq \hat{S}_a(k) \leq \alpha_n \Delta_n = o(n),
\]
and moreover, \(\max_{k \leq \alpha_n} \hat{S}_a(k) = \hat{S}_a(\alpha_n) \). Since \(d_a \geq 2 \) and \(S_a(k) = \hat{S}_a(k) - 2X_a(k) \), we have

\[
\{ X_a(\alpha_n) = 0 \} \subset R_a, \quad \{ X_a(\alpha_n) \leq 1 \} \subset R'_a.
\]

Note that the inequalities in (16) are true for any sequence such that \(1 \leq \hat{d}_a(i) \leq \Delta_n \). In particular, in the rest of the proof we condition on a realisation of the sequence

\[
d = (d_a, \hat{d}_a(1), \ldots \hat{d}_a(n - 1)).
\]

We distinguish two cases depending on whether or not \(\hat{S}_a(\alpha_n) \) is smaller than \(3\alpha_n \). Denote this event by \(\mathcal{Q} \) (and its complementary by \(\mathcal{Q}^c \)), i.e.,

\[
\mathcal{Q} := \{ \hat{S}_a(\alpha_n) < 3\alpha_n \}.
\]

• **Case 1** \(\hat{S}_a(\alpha_n) < 3\alpha_n \). Conditioning on \(\mathcal{Q} \), by Lemma 2.2 we have

\[
X_a(\alpha_n) \leq_{st} \text{Bin} \left(4\alpha_n, \frac{3\alpha_n}{n - 2\alpha_n} \right).
\]

Thus, we have

\[
\mathbb{P} \left(X_a(\alpha_n) \geq 1 \mid \mathcal{Q}, d \right) \leq \mathbb{P} \left(\text{Bin} \left(4\alpha_n, \frac{3\alpha_n}{n - 2\alpha_n} \right) \geq 1 \right) \leq O(\alpha_n^2/n),
\]

\[
\mathbb{P} \left(X_a(\alpha_n) \geq 2 \mid \mathcal{Q}, d \right) \leq \mathbb{P} \left(\text{Bin} \left(4\alpha_n, \frac{3\alpha_n}{n - 2\alpha_n} \right) \geq 2 \right) \leq O(\alpha_n^4/n^2).
\]

We infer that

\[
\mathbb{P} \left((R_a)^c \mid \mathcal{Q}, d \right) \leq O(\alpha_n^2/n),
\]

\[
\mathbb{P} \left((R'_a)^c \mid \mathcal{Q}, d \right) \leq O(\alpha_n^4/n^2).
\]

• **Case 2** \(\hat{S}_a(\alpha_n) \geq 3\alpha_n \). Note that in this case, we still have \(\max_{k \leq \alpha_n} \hat{S}_a(k) = \hat{S}_a(\alpha_n) \leq \alpha_n \Delta_n = o(n) \). Moreover, there exists \(k \leq \alpha_n \) such that for all \(\ell \leq k \), \(\hat{S}_a(\ell) < 3\alpha_n \) and \(\hat{S}_a(k + 1) \geq 3\alpha_n \). Note that since we have conditioned on the degree sequence \(d \), the value of \(k \) is deterministic (\(k \) is not a random variable). Conditioning on the event \(\mathcal{Q}^c \), we obtain by Lemma 2.2

\[
X_a(k) \leq_{st} \text{Bin} \left(4\alpha_n, \frac{3\alpha_n}{n - 2\alpha_n} \right), \quad \text{and}
\]

\[
X_a(\alpha_n) \leq_{st} \text{Bin} \left(\alpha_n(\Delta_n + 1), \frac{\alpha_n \Delta_n}{n - 2\alpha_n} \right).
\]
By Condition (iii), there exists a $\epsilon > 0$ such that $\Delta_n := O(n^{1/2-\epsilon})$. Let $m = \lceil 2\epsilon^{-1} \rceil$.

Combining the last (stochastic) inequality together with the Chernoff’s inequality applied to the right-hand side binomial random variable, we obtain

$$
P \left(X_a(\alpha_n) \geq m \mid Q^c, d \right) \leq P \left(\text{Bin} \left(\alpha_n(\Delta_n + 1), \frac{\alpha_n \Delta_n}{n - 2\alpha_n} \right) \geq m \right)$$

$$= O \left((\Delta_n^2 \alpha_n^2/n)^m \right) = o(n^{-3}).$$

We notice that for all $\ell > k$, we have $S_a(\ell) \geq 2\alpha_n - 2X_a(\alpha_n)$. Also for n large enough, we have $2\alpha_n - 2m \geq d_{\text{min}} + \gamma_a(\ell)$. Therefore,

$$\{ X_a(k) = 0, X_a(\alpha_n) \leq m, Q^c \} \subset R_a \cap Q^c,$$

and

$$\{ X_a(k) \leq 1, X_a(\alpha_n) \leq m, Q_1^c \} \subset R'_a \cap Q^c.$$

This in turn implies that

$$P \left((R_a)^c \mid Q^c, d \right) \leq P \left(X_a(k) \geq 1 \mid Q^c \right) + P \left(X_a(\alpha_n) \geq m \mid Q^c \right) \leq O(\alpha_n^2/n)$$

$$P \left((R'_a)^c \mid Q^c, d \right) \leq P \left(X_a(k) \geq 2 \mid Q^c \right) + P \left(X_a(\alpha_n) \geq m \mid Q^c \right) \leq O(\alpha_n^4/n^2).$$

In the above inequalities, we used (stochastic) Inequality (17) and Case 1 to bound the terms $P \left(X_a(k) \geq 1 \mid Q^c \right)$ and $P \left(X_a(\alpha_n) \geq 2 \mid Q^c \right)$.

The lemma follows by the definition of α_n. \hfill \square

We are now in position to provide the proof of the upper bound in the three different cases depending on whether $d_{\text{min}} \geq 3$, $d_{\text{min}} = 2$, or $d_{\text{min}} = 1$. Recall, for the ease of reading, the definition of the two events R_a and R'_a that we will use throughout the proof below.

$$R_a = \{ S_a(k) \geq d_{\text{min}} + \gamma_a(k), \text{ for all } 0 \leq k \leq \alpha_n - 1 \},$$

$$R'_a = \{ S_a(k) \geq \gamma_a(k), \text{ for all } 0 \leq k \leq \alpha_n - 1 \}.$$

The proof will be based on the analysis of these events. In particular, to justify that we have to consider these three different cases, we note that in the case $d_{\text{min}} \geq 3$, the value of $\gamma_a(k)$ is always k, while in the case $d_{\text{min}} = 2$ we need to control the length of the paths consisting of the vertices of degree two which contribute to the value of $\gamma_a(k)$, and in the case $d_{\text{min}} = 1$ we need to do a kind of similar analysis as in the case $d_{\text{min}} = 2$ but in a modified configuration model which consists of the 2-core of the graph. We also emphasize that one other important difference between the case $d_{\text{min}} \geq 3$ and the two other cases $d_{\text{min}} = 1, 2$ is that in the former case, as we will prove, the graph is connected with high probability, while in the two later cases $d_{\text{min}} = 1, 2$ we also need to consider the small components of the 2-core. In addition, in the case $d_{\text{min}} = 1$ we need to consider the vertices which are connected to the small components of 2-core and also, the tree components.

In the following, we will use the following property of the exponential random variables, without sometimes mentioning. If Y is an exponential random variable of rate μ, then for any $\theta < \mu$, we have $E \left[e^{\theta Y} \right] = \frac{\mu}{\mu - \theta}$.

14
3.1 Proof of the upper bound in the case \(d_{\text{min}} \geq 3\).

Let \(a\) be a node of the graph. Consider the exploration process defined in Section 2.1. First, note that in this case, the conditions \(\hat{d}_a(i) \geq 1\) of Lemma 3.3 are automatically verified. Thus, as an immediate corollary, we obtain

Corollary 3.4. We have \(\mathbb{P}(I_a \geq \alpha_n) \geq 1 - o(n^{-3/2})\).

Proof. Indeed, for \(d_{\text{min}} \geq 3\), we have \(\gamma_a(k) = k\) so that
\[
R'_a \subseteq \{I_a \geq \alpha_n\} = \{S_a(k) \geq 1, \text{ for all } 0 \leq k \leq \alpha_n - 1\}.
\]

Now apply Lemma 3.3. \(\square\)

We will need the following lemma.

Lemma 3.5. For a uniformly chosen vertex \(a\), and any \(\epsilon, \ell > 0\), we have
\[
\mathbb{P}(T_a(\alpha_n) \geq \epsilon \log n + \ell) = o(n^{-1} + e^{-d_{\text{min}}\ell}).
\]

Proof. Recall that given the sequence \(S_a(k)\), for \(k < I_a\), the random variables \(T_a(k+1) - T_a(k)\) are i.i.d. exponential random variables with mean \(S_a(k)^{-1}\).

Assume first that \(R'_a\) holds and consider the following two cases based on whether the event \(R_a\) holds or not.

- **Case 1) \(R_a\) holds.** By the definition of \(R_a\), we have \(S_a(k) \geq d_{\text{min}} + k\) for all \(k \leq \alpha_n - 1\). Conditioning on \(R_a\), we have for any \(k < \alpha_n\),
 \[
 T_a(k+1) - T_a(k) \leq \epsilon Y_k = \text{Exp}(d_{\text{min}} + k),
 \]
 and the random variables \(Y_k\) are all independent. Hence, we have
 \[
 \mathbb{E}\left[e^{d_{\text{min}}(T_a(\alpha_n) - T_a(1))} \mid R_a\right] \leq \mathbb{E}\left[e^{d_{\text{min}}(\sum_{k=1}^{\alpha_n-1} Y_k)} \mid R_a\right] \leq \prod_{k=1}^{\alpha_n-1} \left(1 + \frac{d_{\text{min}}}{k}\right) \leq \exp \left[d_{\text{min}} \sum_{k=1}^{\alpha_n-1} \frac{1}{k}\right] \leq \alpha_n^{d_{\text{min}}} = (\log n)^{3d_{\text{min}}},
 \]

for \(n\) large enough. Thus, by Markov’s inequality, we have for any \(\epsilon > 0\),
\[
\mathbb{P}(T_a(\alpha_n) - T_a(1) \geq \epsilon \log n + \ell \mid R_a) \leq (\log n)^{3d_{\text{min}}} \exp(-d_{\text{min}}(\epsilon \log n + \ell)) = \frac{(\log n)^{3d_{\text{min}}}}{n^{d_{\text{min}}} \epsilon^{d_{\text{min}}} \ell} = o(e^{-d_{\text{min}}\ell}).
\]

By assumption (since \(R_a\) holds), \(S_a(0) \geq d_{\text{min}}\), and so we also have \(T_a(1) \leq \text{Exp}(d_{\text{min}})\).

Therefore,
\[
\mathbb{P}(T_a(1) \geq \epsilon \log n + \ell \mid R_a) \leq \frac{\exp(-\ell d_{\text{min}})}{n^{d_{\text{min}}}}.
\]
and we conclude
\[P(T_a(\alpha_n) \geq \epsilon \log n + \ell \mid R_a) = o(e^{-d_{\min}}). \]

Case 2) \(R_a \) does not hold. In this case, for any \(k < \alpha_n \), by conditioning on \((R_a)^c \cap R'_a\), we have
\[T_a(k+1) - T_a(k) \leq s \sum_{k=2}^{\alpha_n-1} (1 + 1/(k-1)) \leq \alpha_n = \log^3 n. \]

By Markov’s inequality, we have
\[P(T_a(\alpha_n) - T_a(2) \geq \epsilon \log n + \ell \mid R_a^c \cap R'_a) \leq \log^3 n \exp(-\epsilon \log n - \ell) = o(n^{-\ell/2}). \]

We also have \(T_a(1) \leq \text{Exp}(1) \) and \(T_a(2) - T_a(1) \leq \text{Exp}(1) \), and we conclude in this case
\[P(T_a(\alpha_n) \geq \epsilon \log n + \ell \mid R_a^c \cap R'_a) = o(n^{-\ell/2}). \]

Putting all the above inequalities together, we have
\[P(T_a(\alpha_n) \geq \epsilon \log n + \ell \mid R_a^c \cap R'_a) \leq 1 - P(R_a') + n^{-\ell/2} + o(e^{-d_{\min}}). \]

as desired. \(\square \)

We can now finish the proof of the upper bound. By Proposition 3.1, we have (w.h.p.)
\[
\text{flood}_w(G(n, (d_i)_1^n)) = \max \{ \text{dist}_w(a, b), b \in V, \text{dist}_w(a, b) < \infty \} \leq T_a(\beta_n \land I_a) + \max_b T_b(\beta_n \land I_b)
\]
\[
\text{diam}_w(G(n, (d_i)_1^n)) = \max \{ \text{dist}_w(a, b), a, b \in V, \text{dist}_w(a, b) < \infty \} \leq 2 \max_a T_a(\beta_n \land I_a).
\]

where \(a \) is chosen uniformly at random in \([18] \).

By Proposition 3.2 and Corollary 3.4, and Lemma 3.5 applied to \(\ell = \epsilon \log n \), we obtain that for a uniformly chosen vertex \(a \) and any \(\epsilon > 0 \), we have
\[
P \left(T_a(\beta_n) \geq \frac{1}{2(\nu - 1)} (1 + \epsilon) \log n + 2\epsilon \log n \right) = o(1).
\]
Indeed the above probability can be bounded above by
\[
\mathbb{P}(T_a(\alpha_n) \geq 2\epsilon \log n) + \mathbb{P}\left(\frac{T_a(\beta_n) - T_a(\alpha_n)}{2(\nu - 1)} \log n \mid I_a \geq \alpha_n\right) + \mathbb{P}(I_a < \alpha_n),
\]
and this is \(o(1)\) by the above cited results.

Furthermore, by Proposition 3.2 and Corollary 3.4 and Lemma 3.5 applied to \(\ell = \frac{\log n}{d_{\min}}\), we obtain that for a uniformly chosen vertex \(b\) and any \(\epsilon > 0\), we have
\[
\mathbb{P}\left(T_b(\alpha_n) \geq 1 + \frac{\epsilon}{d_{\min}} \log n\right) + \mathbb{P}\left(T_b(\beta_n) - T_b(\alpha_n) \geq \frac{1 + \epsilon}{2(\nu - 1)} \log n \mid I_b \geq \alpha_n\right) + \mathbb{P}(I_b < \alpha_n),
\]
and this is \(o(n^{-1})\) by the above cited results.

Applying Equation (21) and a union bound over \(b\), we obtain
\[
\mathbb{P}\left(\forall b, T_b(\beta_n) \leq \left(1 + \frac{\epsilon}{d_{\min}}\right)(1 + \epsilon) \log n\right) = 1 - o(1).
\]
(22)

We conclude by Equations (18), (20), and (22) that w.h.p. (for any \(\epsilon > 0\))
\[
\frac{\text{flood}_w(G(n, (d_i)^n_1))}{\log n} \leq (1 + \epsilon)\left(\frac{1}{\nu - 1} + \frac{1}{d_{\min}}\right).
\]

Clearly, the two equations (19) and (22) imply the bound on the diameter, that w.h.p.
\[
\frac{\text{diam}_w(G(n, (d_i)^n_1))}{\log n} \leq (1 + \epsilon)\left(\frac{1}{\nu - 1} + \frac{2}{d_{\min}}\right).
\]

The proof of the upper bound in this case is now complete.

We end this section by the following remark on the connectivity of the random graph. We note that the above arguments show that the graph \(G(n, (d_i)^n_1)\), satisfying Condition 1.1 and \(d_{\min} \geq 3\), is connected w.h.p. Indeed by Lemma 3.3 \(R'_a\) holds with probability at least \(1 - o(n^{-1})\). With probability \(1 - o(n^{-1})\), for a uniformly chosen vertex \(a\), we have \(S_k(a) \geq 1\) for all \(1 \leq k \leq \alpha_n\). By a union bound argument, with probability \(1 - o(1)\) the size of the growing ball centered at node \(a\) reaches \(\alpha_n\) for all nodes \(a\) in the graph. Using Lemma 3.10 shows that for all nodes, this cluster also reaches \(\beta_n\). The connectivity then follows by applying Proposition 3.1.

3.2 Proof of the upper bound in the case \(d_{\min} = 2\)

Consider the exploration process defined in Section 2.1 starting from \(a\). Recall the definitions \(\gamma_a(i)\) and \(\bar{T}_a(k)\): \(\gamma_a(i)\) is the number of nodes with forward-degree (strictly) larger than one until the \(i\)-th exploration step, and \(\bar{T}_a(k)\) is the first time that the \(k\)-th node with the forward-degree
Lemma 3.5 (in the case of the exploration process started at node a. We also define the sets
$$L_a(k) := \{ \ell, S_a(k) \leq T_a(\ell + 1) < T_a(k + 1) \};$$
for $k \geq 0$, and let $n_a(k)$ be the smallest ℓ in $L_a(k)$. Clearly, we have $n_a(k) \geq k - 1$ and
$$\gamma_a^{-1}(k) = L_a(k) = [n_a(k), n_a(k + 1) - 1].$$

For $x, y \in \mathbb{R}$, we denote $x \wedge y = \min(x, y)$. We will need the following lemma, equivalent to Lemma 3.5 (in the case $d_{\min} \geq 3$).

Lemma 3.6. For a uniformly chosen vertex a, any $x > 0$, and any $\ell = O(\log n)$, we have
$$\mathbb{P} \left(T_a(\alpha_n \wedge I_a) \geq x \log n + \ell \right) \leq o(n^{-1}) + o(e^{-2(1-\eta)\ell}).$$

Proof. Recall that given the sequence $S_a(k)$, for $k < I_a$, the random variables $T_a(k + 1) - T_a(k)$ are i.i.d. exponential random variables with mean $S_a(k)$. First write
$$T_a(\alpha_n) = \sum_{0 \leq j < \alpha_n} T_a(j + 1) - T_a(j) \leq \sum_{k \leq K_n} T_a(k + 1) - T_a(k),$$
where K_n is the largest integer such that $n_a(K_n) \leq \alpha_n$.

We now show that for any $x > 0$ and $\ell = O(\log n)$,
$$\mathbb{P} \left(T_a(\alpha_n) \geq x \log n + \ell, R_a \right) = o(e^{-2(1-\eta)\ell}). \quad (23)$$

Remark that a sum of a geometric (with parameter π) number of independent exponential random variables with parameter μ is distributed as an exponential random variable with parameter $(1 - \pi)\mu$. For any $k \leq K_n$, we have:
$$T_a(k + 1) - T_a(k) = \sum_{j \in L_a(k)} T_a(j + 1) - T_a(j)$$
Assume R_a holds, then we have $S_a(j) \geq 2 + k$ for all $j \in [n_a(k), n_a(k + 1) - 1] = L_a(k)$. Thus,
$$T_a(j + 1) - T_a(j) \leq s_t Y_{k,i} \sim \text{Exp}(2 + k),$$
where $i = j - n_a(k) + 1$, and all the $Y_{k,i}$’s are independent. (for $i = 1, \ldots, |L_a(k)|$, $Y_{k,i}$ are exponential random variables with rate $2 + k$.)

For any positive t and θ, we obtain
$$\mathbb{P} \left(T_a(\alpha_n) - T_a(1) \geq t, R_a \right) \leq \mathbb{E} \left[\mathbb{E} \left[\left(R_a \prod_{1 \leq k \leq K_n} e^{\theta(T_a(k+1)-T_a(k))} \right) \left| d_a, \ldots, \hat{d}_a(n-1) \right. \right] \right] e^{-\theta t} \leq \prod_{1 \leq k \leq \alpha_n} \left(1 + \frac{\theta}{(2 + k)(1 - \pi^{(n)}) - \theta} \right) e^{-\theta t},$$
where in the last inequality, we used the fact that the probability for a new node to have forward-degree one is at most $\varepsilon_1^{(n)}$, and so the length $|L_a(k)|$ is dominated by a geometric random variable with parameter $\varepsilon_1^{(n)}$. Taking $\theta = 2(1-\varepsilon_1^{(n)})$ in the above inequality, we get

$$
\mathbb{P}\left(T_a(\alpha_n) - \mathcal{T}_a(1) \geq t, R_a\right) \leq \prod_{1 \leq k \leq \alpha_n} \left(1 + \frac{2(1-\varepsilon_1^{(n)})}{(1-\varepsilon_1^{(n)})k}\right) e^{-2(1-\varepsilon_1^{(n)})t} = \prod_{1 \leq k \leq \alpha_n} (k+2)/k \cdot e^{-2(1-\varepsilon_1^{(n)})t} < \alpha_n^3 e^{-2(1-\varepsilon_1^{(n)})t}.
$$

In the same way, we can easily deduce that

$$(\mathcal{T}_a(1) \mid R_a) \leq_{st} \text{Exp}(2(1-\varepsilon_1^{(n)})).$$

Let $t = x \log n + \ell$, and note that $\ell \leq C \log n$ for some constant $C > 0$ (by assumption $\ell = O(\log n)$). Take any $0 < \epsilon < x(1 - q_1)(C + x)^{-1}$; since for n sufficiently large, we have $\varepsilon_1^{(n)} \leq q_1 + \epsilon$, we obtain

$$\mathbb{P}\left(T_a(\alpha_n) \geq x \log n + \ell, R_a\right) \leq \frac{\alpha_n^3}{n^{2(\alpha(1-q_1-\epsilon)-\epsilon C)}} e^{-2(1-q_1)\ell},$$

and (23) follows. Note that $x(1 - q_1 - \epsilon) - \epsilon C > 0$ by the choice of ϵ.

Assume now that the event $R'_a \cap R_a^c$ holds. Two cases can happen: either $I_a < \alpha_n$ or $I_a \geq \alpha_n$.

If $I_a < \alpha_n$, then by the definition of R'_a, $0 = S_a(I_a) \geq \gamma_a(I_a)$, i.e., $\gamma_a(I_a) = 0$. In other words, the component of a is a union of cycles (or loops) having node a as a common node, and with total number of edges less than α_n. Hence, in this case, we have

$$\mathbb{P}\left(R'_a, R_a^c, I_a < \alpha_n, T_a(I_a) \geq x \log n + \ell\right) \leq \mathbb{P}\left(R_a^c \mid d_a, \ldots, \hat{d}_a(n - 1)\right) \left(\sum_{0 \leq k \leq \alpha_n} (\varepsilon_1^{(n)})^k \int_{x \log n + \ell}^{\infty} t^k e^{-t} dt\right) \leq \frac{\log 10}{n} \left(1 - \varepsilon_1^{(n)}\right)^{-1} \exp\left(-(1 - \varepsilon_1^{(n)})(x \log n + \ell)\right) = o(n^{-1}),$$

where the last inequality follows from Inequality (14) in Lemma 3.3.

In the second case, when $I_a \geq \alpha_n$, let

$$Q = R'_a \cap R_a^c \cap \{ I_a \geq \alpha_n \}.$$

If Q holds, by the definition of R'_a, we have $S_a(j) \geq k$ for all $j \in L_a(k)$. Thus,

$$T_a(j + 1) - T_a(j) \leq_{st} Y_{k,i} \sim \text{Exp}(k),$$

19
where \(i = j - n_a(k) + 1 \), and all the \(Y_{k,i} \)'s are independent. (for \(i = 1, \ldots, |L_a(k)| \), \(Y_{k,i} \) are exponential random variables with rate \(k \).) Hence, by the same argument as above, we have

\[
\mathbb{P} \left(T_a(\alpha_n) - T_a(2) \geq t, Q \right) \leq \mathbb{E} \left[\mathbb{E} \left[\prod_{2 \leq k \leq K_n} e^{\theta(T_a(k+1) - T_a(k))} \mid d_a, \ldots, \widehat{d_a(n-1)} \right] \right] e^{-\theta t}
\]

\[
\leq \mathbb{E} \left[\prod_{2 \leq k \leq K_n} e^{\theta \sum_{i=1}^{L_a(k)} Y_{k,i} \mid d_a, \ldots, \widehat{d_a(n-1)} \}} \right] e^{-\theta t}
\]

\[
\leq \prod_{2 \leq k \leq \alpha_n} \left(1 + \frac{\theta}{k(1 - \pi^{(n)}_k) - \theta} \right) e^{-\theta t} o\left(\frac{\log^{10} n}{n} \right),
\]

where the last inequality follows from Inequality (14) in Lemma 3.3. Thus, taking \(\theta = 1 - \pi^{(n)}_1 \) gives

\[
\mathbb{P} \left(T_a(\alpha_n) - T_a(2) \geq t, Q \right) \leq \prod_{2 \leq k \leq \alpha_n} \left(1 + \frac{1}{k-1} \right) e^{-\left(1 - \pi^{(n)}_1 \right) t} o\left(\frac{\log^{10} n}{n} \right)
\]

\[
\leq \alpha_n e^{-\left(1 - \pi^{(n)}_1 \right) t} o\left(\frac{\log^{10} n}{n} \right) = e^{-\left(1 - \pi^{(n)}_1 \right) t} o\left(\frac{\log^{13} n}{n} \right).
\]

Since \(d_a \geq 2 \), we can easily deduce that

\[
(T_a(2) \mid Q) \leq_{st} \text{Exp}(2(1 - \pi^{(n)}_1)) + \text{Exp}(1 - \pi^{(n)}_1),
\]

with these two exponential being independent and independent of \(Q \). Hence, we have

\[
\mathbb{P} \left(T_a(2) \geq t \mid Q \right) \leq \int_t^{\infty} 2(1 - \pi^{(n)}_1) \left(e^{-\left(1 - \pi^{(n)}_1 \right) x} - e^{-2\left(1 - \pi^{(n)}_1 \right) x} \right) \leq 2e^{-\left(1 - \pi^{(n)}_1 \right) t}.
\]

Thus,

\[
\mathbb{P} \left(T_a(\alpha_n) \geq t, Q \right) \leq e^{-\left(1 - \pi^{(n)}_1 \right) t} o\left(\frac{\log^{13} n}{n} \right).
\]

Similar to the case where \(R_a \) holds (by fixing a constant \(\epsilon \) small enough and using that for \(n \) sufficiently large \(\pi^{(n)}_1 \leq q_1 + \epsilon \) for \(n \) large enough), we get

\[
\mathbb{P} \left(T_a(\alpha_n) \geq x \log n + \ell, Q \right) \leq o\left(\frac{\log^{13} n}{n^{1+(1-q_1-\epsilon)C}} \right) = o(n^{-1}).
\]

Putting all the above arguments together, and considering the three disjoint cases \((R_a')^c \) holds, \(R_a \) holds, and \(R_a' \cap R_a^c \) holds (in which case either \(I_a < \alpha_n \) or \(I_a \geq \alpha_n \)), we conclude that

\[
\mathbb{P} \left(T_a(\alpha_n \cap I_a) \geq x \log n + \ell \right) \leq o(e^{-2(1-q_1)\ell}) + o(n^{-1}) + 1 - \mathbb{P}(R_a) + \mathbb{P}(R_a') \]

To conclude the proof it suffices to use Lemma 3.3.
We can now finish the proof of the upper bound in the case $d_{\min} = 2$. By Proposition 3.2 and Lemma 3.6 applied to $\ell = \frac{\log n}{2(1-q_1)}$, we obtain that for a uniformly chosen vertex a and any $\epsilon > 0$, we have

$$P\left(\infty > T_a(\beta_n \wedge I_a) \geq \left(\frac{1}{2(\nu - 1)} + \frac{1}{2(1-q_1)} \right) (1 + \epsilon) \log n \right) = o(n^{-1}). \tag{24}$$

Indeed the above probability can be bounded above by

$$P\left(T_a(\alpha_n \wedge I_a) \geq \frac{1 + \epsilon}{2(1-q_1)} \log n \right) + P\left(T_a(\beta_n) - T_a(\alpha_n) \geq \frac{1 + \epsilon}{2(\nu - 1)} \log n \mid I_a \geq \alpha_n \right),$$

and this is $o(n^{-1})$ by the above cited results.

Applying Equation (24) (and Lemma 3.6) and a union bound over a, we obtain

$$P\left(\forall a, T_a(\beta_n \wedge I_a) \leq \left(\frac{1}{2(\nu - 1)} + \frac{1}{2(1-q_1)} \right) (1 + \epsilon) \log n \right) = 1 - o(1). \tag{25}$$

Hence by Proposition 3.1, we have w.h.p.

$$\frac{\text{diam}_w(G(n, (d_i)_n))}{\log n} \leq (1 + \epsilon)\left(\frac{1}{\nu - 1} + \frac{1}{1-q_1} \right).$$

This proves the bound on the diameter. To obtain the upper bound for the flooding, we use Equation (25), and proceed as above by applying Proposition 3.2 and Lemma 3.6 applied to $\ell = \epsilon \log n$, to obtain that for a uniformly chosen vertex b, we have

$$P\left(T_b(\beta_n \wedge I_b) \leq \left(\frac{1 + \epsilon}{2(\nu - 1)} + \epsilon \right) \log n \right) = 1 - o(1). \tag{26}$$

Clearly, Equations (25) and (26) imply the bound on the flooding.

The proof of the upper bound in this case is now complete.

3.3 Proof of the upper bound in the case $d_{\min} = 1$

In this section, we will need some results on the 2-core of the graph. Basic definitions and needed results are given in Appendix A.2.

We denote by C_a the event that a is connected to the 2-core of $G_n \sim G(n, (d_i)_n)$. It is well-known (c.f. Section A.2) that the condition $\nu > 1$ ensures that the 2-core of G_n has size $\Omega(n)$, w.h.p. We consider the graph $\tilde{G}_n(a)$ obtained from G_n by removing all vertices of degree one except a until no such vertices exist. If the event C_a holds, $\tilde{G}_n(a)$ consists of the 2-core of G_n and the unique path (empty if a belongs to the 2-core) from a to the 2-core. While, if the event C_a^c holds, then the graph $\tilde{G}_n(a)$ is the union of the 2-core of G_n and the isolated vertex a.

In order to bound the weighted distance between two vertices a and b, in what follows, we will consider two cases depending on whether both the vertices a and b are connected to the 2-core (i.e., the events C_a and C_b both hold), or both the vertices a and b belong to the same tree component of the graph. In the former case, we will show how to adapt the analysis we
made in the case \(d_{\text{min}} = 2\) to this case. And in the latter case, we directly bound the diameter of all the tree components of the graph.

First note that \(\tilde{G}_n(a)\) can be constructed by means of a configuration model with a new degree sequence \(\tilde{d}\), c.f. Section A.2 with \(\tilde{d}_i \geq 2\) for all \(i \neq a\). Consider the exploration process on the graph \(\tilde{G}_n(a)\) and denote by \(\tilde{T}_a(i)\) the first time the ball \(\tilde{B}_w(a, t)\) in \(\tilde{G}_n(a)\) reaches size \(i + 1\). Also, \(\tilde{I}_a\) is defined similarly to \(I_a\) for the graph \(\tilde{G}_n(a)\). We need the following lemma.

Lemma 3.7. For a uniformly chosen vertex \(a\), any \(x > 0\) and any \(\ell = O(\log n)\), we have

\[
P\left(\tilde{T}_a(\alpha_n \wedge \tilde{I}_a) \geq x \log n + \ell \right) \leq o(n^{-1}) + o(e^{-(1-\lambda_x)^\ell}).
\]

Proof. First note that if \(C_a\) does not hold, i.e., if \(a\) is not connected to the 2-core, we will have \(\tilde{I}_a = 0\) (since \(\tilde{d}_a = 0\)), and there is nothing to prove. Now the proof follows the same lines as in the proof of Lemma 3.6. Note that conditional on \(C_a\), we have \(\tilde{d}_a \geq 1\), hence by Lemma 3.3 we have \(P(R_a \mid C_a, \tilde{d}) \geq 1 - o(\log^{10} n/n)\), and similarly for \(R_a'\). The only difference we have to highlight here, compared to the proof of Lemma 3.6 is that conditional on \(R_a \cap C_a\), we have \(\tilde{S}_a(j) \geq 1 + k\) for all \(j \in \tilde{I}_a(k)\), where \(\tilde{S}_a(j)\) and \(\tilde{L}_a(k)\) are defined in the same way as \(S_a(j)\) and \(L_a(k)\) for the graph \(G(a)\). Take now \(\theta = 1 - \tilde{x}^{(n)}(\tilde{a})\) in the Chernoff bound, used in the proof of Lemma 3.6 where \(\tilde{x}^{(n)}(\tilde{a})\) is defined as \(x^{(n)}(\tilde{a})\) for the degree sequence \((d_1^{(n)}, ..., d_n^{(n)})\). The rest of the proof of Lemma 3.6 can then be easily adapted to obtain the same result provided we replace \(2(1 - q_1)\) by \((1 - \lambda_x)\), which is precisely the statement of the current lemma. (Note that \(\lambda_x = \tilde{q}_1\), c.f. Section A.2) \(\square\)

By Proposition 3.2 applied to the graph \(\tilde{G}_n(a)\) (note that \(\tilde{\nu} = \nu\), c.f. see Section A.2, and Lemma 3.7 applied to \(\ell = \log n / 1-\lambda_x\), we obtain that for a uniformly chosen vertex \(a\) and any \(\epsilon > 0\), we have

\[
P\left(\infty > \tilde{T}_a(\beta_n \wedge \tilde{I}_a) \geq \frac{1}{2(\nu - 1)} + \frac{1}{1 - \lambda_x}(1 + \epsilon) \log n\right) = o(n^{-1})). \tag{27}
\]

Indeed the above probability can be bounded above by

\[
P\left(\tilde{T}_a(\alpha_n \wedge \tilde{I}_a) \geq \frac{1 + \epsilon}{1 - \lambda_x} \log n\right) + P\left(\tilde{T}_a(\beta_n) - \tilde{T}_a(\alpha_n) \geq \frac{1 + \epsilon}{2(\nu - 1)} \log n \mid \tilde{I}_a \geq \alpha_n\right),
\]

and this is \(o(n^{-1})\) by the above cited results.

Applying Equation (27) (and Lemma 3.7) and a union bound over \(a\), we obtain

\[
P\left(\forall a, \, \tilde{T}_a(\beta_n \wedge \tilde{I}_a) \leq \left(\frac{1}{2(\nu - 1)} + \frac{1}{1 - \lambda_x}\right) (1 + \epsilon) \log n\right) = 1 - o(1). \tag{28}
\]

To obtain the upper bound for the flooding, we use Equation (28) and proceed as above by using Lemma 3.7 applied to \(\ell = \epsilon \log n\), to obtain that for a uniformly chosen vertex \(b\), we have

\[
P\left(\tilde{T}_b(\beta_n \wedge \tilde{I}_b) \leq \left(\frac{1}{2(\nu - 1)} + \epsilon\right) \log n\right) = 1 - o(1). \tag{29}
\]
Clearly, the two equations (28) and (29) together with Proposition 3.1 (since \(\overline{T}_n(k) \geq T_n(k) \) for all \(k \)), imply the desired upper bound on the (weighted) flooding and (weighted) diameter on the giant component of \(G_n \) and also on every components containing a cycle, i.e., connected to 2-core.

At this point, we are only left to bound the (weighted) diameter and the (weighted) flooding of the tree components. In particular, the following lemma concludes the proof.

Lemma 3.8. For two uniformly chosen vertices \(a, b \), and any \(\epsilon > 0 \), we have

\[
P \left(\frac{1 + \epsilon}{1 - \lambda_s} \log n < \text{dist}_w(a, b) < \infty, \ C_a^c, C_b^c \right) = o(n^{-2}).
\]

Proof. We consider the graph \(\tilde{G}_n(a, b) \) obtained from \(G_n \) by removing vertices of degree less than two except \(a \) and \(b \) until no such vertices exist. As shown in Section A.2, the random graph \(\tilde{G}_n(a, b) \) can be still obtained by a configuration model, and has the same asymptotic parameters as the random graph \(\tilde{G}_n(a) \) in the proof of the previous lemma. We denote again by \(\tilde{d} \), the degree sequence of the random graph \(\tilde{G}_n(a, b) \). Also, \(\tilde{T}_a \) and \(\tilde{I}_a \) are defined similarly for the graph \(\tilde{G}_n(a, b) \).

Trivially, we can assume \(\tilde{d}_a = 1 \) and \(\tilde{d}_b = 1 \), otherwise, either they are not in the same component and so \(\text{dist}_w(a, b) = \infty \), or one of them is in the 2-core, i.e., one of the two events \(C_a \) or \(C_b \) holds. Consider now the exploration process started at \(a \) until time \(k^* \) which is the first time either a node with forward-degree (strictly) larger than one appears or the time that the unique half-edge adjacent to \(b \) is chosen by the process. Let \(v^* \) be the node chosen at \(k^* \). Note that \(\tilde{d}_{v^*} = 1 \) if and only if the half-edge incident to \(b \) is chosen at \(k^* \). We have

\[
P \left(\frac{1 + \epsilon}{1 - \lambda_s} \log n < \text{dist}_w(a, b) < \infty, \ C_a^c, C_b^c \right) = P \left(\tilde{T}_a(k^*) > \frac{1 + \epsilon}{1 - \lambda_s} \log n, v^* = b, \tilde{d}_a = \tilde{d}_b = 1 \right)
\]

\[
\leq P \left(\tilde{T}_a(k^*) > \frac{1 + \epsilon}{1 - \lambda_s} \log n, v^* = b | \tilde{d}_a = \tilde{d}_b = 1 \right)
\]

\[
= P \left(\tilde{T}_a(k^*) > \frac{1 + \epsilon}{1 - \lambda_s} \log n | \tilde{d}_a = \tilde{d}_b = 1 \right) \times \left(\tilde{d}_{v^*} = 1 | \tilde{d}_{v^*} \neq 2, \tilde{d}_a = \tilde{d}_b = 1 \right)
\]

\[
= o(n^{-2}).
\]

To prove the last equality above, first note \(P(\tilde{d}_{v^*} = 1 | \tilde{d}_{v^*} \neq 2, \tilde{d}_a = \tilde{d}_b = 1) = O(1/n) \), this holds since \(\nu = \tilde{\nu} > 1 \) and \(v^* \) will be chosen before \(o(n) \) steps, i.e., \(k^* = o(n) \) (we will indeed prove something much stronger, that \(k^* = O(\log n) \), c.f. Lemma 3.1 in the next section). And second, \(P(\tilde{T}_a(k^*) > \frac{1 + \epsilon}{1 - \lambda_s} \log n | \tilde{d}_a = \tilde{d}_b = 1) = o(1/n) \), this follows by the same argument as in the proof of Lemma 3.7 applied to \(\tilde{G}_n(a, b) \), and by setting \(\ell = \frac{(1+\epsilon)\log n}{1-\lambda_s} \).

The proof of the upper bound in this case is now complete by taking a union bound over all \(a \) and \(b \). We end this section by presenting the proof of Proposition 3.1 and Proposition 3.2 in the next subsection.
3.4 Proof of Proposition 3.1 and Proposition 3.2

We start this section by giving some preliminary results that we will need in the proof of Proposition 3.1 and Proposition 3.2.

Lemma 3.9. Let $D_i^{(n)}$ be i.i.d. with distribution $\pi^{(n)}$. For any $\eta < \nu$, there is a constant $\gamma > 0$ such that for n large enough we have

$$P\left(D_1^{(n)} + \cdots + D_k^{(n)} \leq k\eta\right) \leq e^{-\gamma k}.$$ \hfill (30)

Proof. Let D^* be a random variable with distribution $\mathbb{P}(D^* = k) = q_k$ given in Equation (1) so that $\mathbb{E}[D^*] = \nu$. Let $\phi(\theta) = \mathbb{E}[e^{-\theta D^*}]$. For any $\epsilon > 0$, there exists $\theta_0 > 0$ such that for any $\theta \in (0, \theta_0)$, we have

$$\log \phi(\theta) < (-\nu + \epsilon)\theta.$$

By Condition 1.1 and the fact that $\beta_n \Delta_n = o(n)$, i.e., $\sum_{i=n-\beta_n+1}^{n} d_i^{(n)} = o(n)$, we have for any $\theta > 0$,

$$\lim_{n \to \infty} \phi^{(n)}(\theta) = \phi(\theta),$$

where $\phi^{(n)}(\theta) = \mathbb{E}[e^{-\theta D_i^{(n)}}]$. Also, for $\theta > 0$,

$$P \left(D_1^{(n)} + \cdots + D_k^{(n)} \leq k\eta\right) \leq \exp \left(k (\theta \eta + \log \phi^{(n)}(\theta))\right).$$

Fix $\theta < \theta_0$ and let n be sufficiently large so that $\log \phi^{(n)}(\theta) \leq \log \phi(\theta) + \epsilon$. This yields

$$P \left(D_1^{(n)} + \cdots + D_k^{(n)} \leq k\eta\right) \leq \exp \left(k (\theta \eta + \log \phi(\theta) + \epsilon \theta)\right) \leq \exp \left(k \theta (\eta - \nu + 2\epsilon)\right),$$

which concludes the proof. \hfill \Box

The following lemma is the main step in the proof of both the propositions.

Lemma 3.10. For any $\epsilon > 0$, define the event

$$R''_a := \left\{ S_a(k) \geq \frac{\nu - 1}{1 + \epsilon} \; k, \text{ for all } \alpha_n \leq k \leq \beta_n \right\}.$$

For a uniformly chosen vertex a, we have $\mathbb{P}\left(R''_a \mid I_a \geq \alpha_n\right) \geq 1 - o(n^{-5})$.

Before giving the proof of this lemma, we recall the following basic result and one immediate corollary, for the proof see for example [27, Theorem 1].

Lemma 3.11. Let $n_1, n_2 \in \mathbb{N}$ and $p_1, p_2 \in (0, 1)$. We have $\text{Bin}(n_1, p_1) \leq_{st} \text{Bin}(n_2, p_2)$ if and only if the following conditions hold

(i) $n_1 \leq n_2$,

(ii) $p_1 \leq p_2$.

24
(ii) \((1 - p_1)^n \geq (1 - p_2)^n\).

In particular, we have

Corollary 3.12. If \(x \leq y = o(n)\), we have (for \(n\) large enough)
\[
x - \text{Bin}(x, \sqrt{x/n}) \leq_{st} y - \text{Bin}(y, \sqrt{y/n}).
\]

Proof. By the above lemma, it is sufficient to show
\[
(x/n)^{x/2} \geq (y/n)^{y/2},
\]
and this is true because \(s^*\) is decreasing near zero (for \(s < e^{-1}\)). \(\square\)

Now we go back to the proof of Lemma 3.10.

Proof of Lemma 3.10. By Lemmas 2.3 and 3.9 for any \(\epsilon > 0\), \(k \geq \alpha_n\) and \(n\) large enough, we have
\[
P\left(\hat{d}_a(1) + ... + \hat{d}_a(k) \leq \frac{\nu - 1}{1 + \epsilon/2}k \right) \leq e^{-\gamma k} = o(n^{-6}).
\]

We infer that with probability at least \(1 - o(n^{-6})\), for any \(k \leq \beta_n\),
\[
\frac{\nu - 1}{1 + \epsilon/2}k < d_a + \hat{d}_a(1) + ... + \hat{d}_a(k) - k < (k + 1)\Delta_n = o(n).
\]

By the union bound over \(k\), we have with probability at least \(1 - o(n^{-5})\) that for all \(\alpha_n \leq k \leq \beta_n\),
\[
\frac{\nu - 1}{1 + \epsilon/2}k < \hat{S}_a(k) < (k + 1)\Delta_n = o(n). \tag{31}
\]

Hence in the remaining of the proof we can assume that the above condition is satisfied.

By Lemma 2.1, Corollary 3.12 and Inequalities (31), conditioning on \(\hat{S}_a(k)\) and \(\{I_a \geq k\}\), we have
\[
(S_a(k) | \{I_a \geq k\}) \geq_{st} \frac{\nu - 1}{1 + \epsilon/2}k - \text{Bin}\left(\frac{\nu - 1}{1 + \epsilon/2}k, \sqrt{\left(\frac{\nu - 1}{1 + \epsilon/2}k\right)/n} \right) - k
\]
\[
\geq_{st} \frac{\nu - 1}{1 + \epsilon/2}k - \text{Bin}(\nu k, \sqrt{\nu k/n}).
\]

By Chernoff’s inequality, since \(k\sqrt{k/n} = o(k/\sqrt{\alpha_n})\), we have
\[
P\left(\text{Bin}(\nu k, \sqrt{\nu k/n}) \geq k/\sqrt{\alpha_n} \right) \leq \exp\left(-\frac{1}{3} k/\sqrt{\alpha_n} \right) = o(n^{-6}).
\]

Moreover, conditioned on \(\{I_a \geq k\}\), we have with probability at least \(1 - o(n^{-6})\),
\[
S_a(k) \geq \frac{\nu - 1}{1 + \epsilon/2}k - k/\sqrt{\alpha_n} \geq \frac{\nu - 1}{1 + \epsilon}k,
\]

25
for n large enough. Defining
\[
R'_a(k) := \left\{ S_a(k) \geq \frac{\nu - 1}{1 + \epsilon} k \right\} \text{ for } \alpha_n \leq k \leq \beta_n,
\]
so that $R'_a = \bigcap_{k=\alpha_n}^{\beta_n} R'_a(k)$, we have
\[
\mathbb{P} \left(R'_a(k) \mid I_a \geq k \right) \geq 1 - o(n^{-6}).
\]

Thus, by using the fact that $R'_a(k-1) \subset \{ I_a \geq k \}$, we get
\[
\mathbb{P} \left(R'_a \mid I_a \geq \alpha_n \right) = 1 - \mathbb{P} \left(\bigcup_{k=\alpha_n}^{\beta_n} R'_a(k)^c \mid I_a \geq \alpha_n \right)
\]
\[
= 1 - \mathbb{P} \left(R'_a(\alpha_n)^c \cup \bigcup_{k=\alpha_n+1}^{\beta_n} \left(R'_a(k)^c \cap R'_a(k-1) \right) \mid I_a \geq \alpha_n \right)
\]
\[
\geq 1 - \mathbb{P} \left(R'_a(\alpha_n)^c \cup \bigcup_{k=\alpha_n+1}^{\beta_n} \left(R'_a(k)^c \cap \{ I_a \geq k \} \right) \mid I_a \geq \alpha_n \right)
\]
\[
\geq 1 - \sum_{k=\alpha_n}^{\beta_n} \mathbb{P} \left(R'_a(k)^c \mid I_a \geq k \right)
\]
\[
\geq 1 - o(n^{-5}),
\]
which concludes the proof.

We are now in position to provide the proof of both the propositions.

Proof of Proposition 3.10. Fix two vertices u and v. We can assume that $T_u(\beta_n), T_v(\beta_n) < \infty$, i.e., $I_u, I_v \geq \beta_n$, otherwise the statement of the proposition holds trivially for u and v. Note that dist$_w(u, v) \leq T_u(\beta_n) + T_v(\beta_n)$ is equivalent to
\[
B_w(u, T_u(\beta_n)) \cap B_w(v, T_v(\beta_n)) \neq \emptyset.
\]

Hence, to prove the proposition we need to bound the probability that $B_w(v, T_v(\beta_n))$ does not intersect $B_w(u, T_u(\beta_n))$.

First consider the exploration process for $B_w(u, t)$ until reaching $t = T_u(\beta_n)$. We know by Lemma 3.10 that with probability at least $1 - o(n^{-5}),$
\[
S_u(\beta_n) \geq (\nu - 1 - o(1))\beta_n.
\]
(In other words, there are at least $(\nu - 1 - o(1))\beta_n$ half-edges in $B_w(u, T_u(\beta_n))$.)

Next, begin exposing $B_w(v, t)$. Each matching adds a uniform half-edge to the neighborhood of v. Therefore, the probability that $B_w(v, T_v(\beta_n))$ does not intersect $B_w(u, T_u(\beta_n))$ is at most
\[
\left(1 - \frac{(\nu - 1 - o(1))\beta_n}{m^{\alpha_n}} \right)^{\beta_n} \leq \exp[-(9 - o(1)) \log n] < n^{-4}
\]
for large n (recall that $\beta_n^2 = \frac{9\lambda n \log n}{\nu - 1}$). The union bound over u and v completes the proof.
Proof of Proposition 3.2. Conditioning on the event R''_a defined in Lemma 3.10, we have for any $\alpha_n \leq k \leq \beta_n$,
\[T_a(k + 1) - T_a(k) \leq \sum_{k=\alpha_n}^{\beta_n-1} \frac{s(1 + 2\epsilon)}{(\nu - 1)k} \leq \frac{s(1 + 3\epsilon) \log n}{2(\nu - 1)} \]
and all the Y_k's are independent.

Letting $s = \sqrt{\alpha_n}$, for n large enough we obtain that
\[\mathbb{E} \left[e^{s(T_a(\beta_n) - T_a(\alpha_n))} \mid R''_a \right] \leq \prod_{k=\alpha_n}^{\beta_n-1} \left(1 + \frac{s(1 + 2\epsilon)}{(\nu - 1)k} \right) \leq \exp \left[\frac{s(1 + 3\epsilon) \log n}{2(\nu - 1)} \right] \]
By Markov’s inequality,
\[\mathbb{P} \left(T_a(\beta_n) - T_a(\alpha_n) \geq \frac{(1 + 4\epsilon) \log n}{2(\nu - 1)} \mid I_a \geq \alpha_n \right) \leq 1 - \mathbb{P}(R''_a) + \mathbb{E} \left[e^{s(T_a(\beta_n) - T_a(\alpha_n))} \mid R''_a \right] \exp \left(-\frac{s(1 + 4\epsilon) \log n}{2(\nu - 1)} \right) \leq \exp \left(\frac{s\epsilon \log n}{2(\nu - 1)} \right) + o(n^{-5}) = o(n^{-1}), \]
which concludes the proof.

4 Proof of the Lower Bound

In this section we present the proof of the lower bound for Theorem 1.3. To prove the lower bound, it suffices to show that for any $\epsilon > 0$, there exists w.h.p. two vertices u and v such that
\[\text{dist}(u, v) > (1 - \epsilon) \left(\frac{1}{\nu - 1} + \frac{2}{\Gamma(d_{\min})} \right) \log n. \]

As in the proof of the upper bound, the proof will be different depending whether $d_{\min} = 1, 2,$ or ≥ 3. So we start this section by proving some preliminary results, including some new notations and definitions, that we will need in the proof for these three cases, and then divide the end of the proof into three cases.

Fix a vertex a in $G_n \sim G(n, (d_i)_i^\uparrow)$, and consider the exploration process, defined in Section 2.1. Recall that $T_a(1)$ is the first time when the ball centered at a contains a vertex of forward-degree at least two (i.e., degree at least 3), c.f. Equation-Definition (9). To simplify the notation, we denote by C_a the ball centered at a containing exactly one node (possibly in addition to a) of degree at least 3:
\[C_a := B_w(a, T_a(1)). \]
Note that there is a vertex \(u \) (of degree \(d_u \geq 3 \)) in \(C_a \) which is not in any ball \(B_w(a, t) \) for \(t < T_a(1) \) and we have \(\max_{v \in C_a} \text{dist}_w(a, v) = \text{dist}_w(a, u) \). We define the degree of \(C_a \) as

\[
\deg(C_a) = d_a + d_u - 2.
\] (34)

Remark that at time \(T_a(1) \) of the exploration process defined in Section 2.1 starting from \(a \), we have at most \(\deg(C_a) \) free half-edges, i.e., the list \(L \) contains at most \(\deg(C_a) \) half-edges. (We have the equality if the tree excess until time \(T_a(1) \) is zero.) The following lemma shows that the size of \(C_a \) is relatively small.

Lemma 4.1. Consider a random graph \(G(n,(d_i)_i^{n}) \) where the degrees \(d_i \) satisfy Condition 1.1. There exists a constant \(M > 0 \), independent of \(n \), such that w.h.p. for all the nodes \(a \) of the graph, we have \(|C_a| \leq M \log n \).

Proof. We consider the exploration process, defined in Section 2.1, starting from a uniformly chosen vertex \(a \), and use the coupling of the forward-degrees we described in subsection 2.2. Recall in particular that each forward-degree \(\hat{d}(i) \) conditioned on the previous forward-degrees is stochastically larger than a random variable with distribution \(\pi(n) \). This shows that, at each step of the exploration process, the probability of choosing a node of degree at most two (forward-degree one or zero) will be at most \(\pi(n) + \pi(n) < 1 - \epsilon \), for some \(\epsilon > 0 \) (note that the asymptotic mean of \(\pi(n) \) is \(\nu \), and by assumption \(\nu > 1 \)). We conclude that there exists a constant \(M > 0 \) such that for all large \(n \),

\[
\mathbb{P}(|C_a| > M \log n) = o(n^{-1}).
\]

The union bound over \(a \) completes the proof. \(\Box \)

For two subsets of vertices \(U, W \subset V \), the (weighted) distance between \(U \) and \(W \) is defined as usual,

\[
\text{dist}_w(U, W) := \min \{ \text{dist}_w(u, w) \mid u \in U, w \in W \}.
\]

For two nodes \(a, b \), define the event \(H_{a,b} \) as

\[
H_{a,b} := \left\{ \frac{1 - \epsilon}{\nu - 1} \log n < \text{dist}_w(C_a, C_b) < \infty \right\}.
\] (35)

Note that \(\frac{\log n}{\nu - 1} \) is the typical distance, so the left inequality in the definition of the above event means that \(C_a \) and \(C_b \) have the right typical distance in the graph (modulo a factor \((1-\epsilon) \)). The right inequality simply means that \(a \) and \(b \) belong to the same connected component. The following proposition is the crucial step in the proof of the lower bound, the proof of which is postponed to the end of this section.

Proposition 4.2. Consider a random graph \(G(n, (d_i)_i^{n}) \) with i.i.d. rate one exponential weights on its edges. Suppose that the degree sequence \((d_i)_i^{n} \) satisfies Condition 1.1. Assume that the number of nodes with degree one satisfy \(u_1^{(n)} = o(n) \), and let \(a \) and \(b \) be two distinct vertices such that \(\deg(C_a) = O(1) \), and \(\deg(C_b) = O(1) \). Then for all \(\epsilon > 0 \),

\[
\mathbb{P}(H_{a,b}) = 1 - o(1).
\]

28
Furthermore, the same result holds without the condition \(\text{deg}(C_a) = O(1) \) if the node \(a \) is chosen uniformly at random and \(\text{deg}(C_b) = O(1) \).

Assuming the above proposition, we now show that

(i) If the minimum degree \(d_{\min} \geq 3 \), then there are pairs of nodes \(a \) and \(b \) of degree \(d_{\min} \) such that the event \(\mathcal{H}_{a,b} \) holds and in addition all the weights on the edges adjacent to \(a \) or \(b \) are at least \((1 - \epsilon) \log n/d_{\min} \) w.h.p., for all \(\epsilon > 0 \).

(ii) If the minimum degree \(d_{\min} = 2 \), then there are pairs of nodes \(a \) and \(b \) of degree two such that \(\mathcal{H}_{a,b} \) holds and in addition, the closest nodes to each with forward-degree at least two is at distance at least \((1 - \epsilon) \log n/(2(1 - q_1)) \) w.h.p., for all \(\epsilon > 0 \).

(iii) If the minimum degree \(d_{\min} = 1 \), then there are pairs of nodes of degree one such that \(\mathcal{H}_{a,b} \) holds and in addition, the closest node to each which belongs to the 2-core is at least \((1 - \epsilon) \log n/(1 - \lambda^*) \) away w.h.p., for all \(\epsilon > 0 \).

This will finish the proof of the claimed lower bound.

Proof of the lower bound in the case \(d_{\min} \geq 3 \). Let \(V^* \) be the set of all vertices of degree \(d_{\min} \). We call a vertex \(u \) in \(V^* \) good if \(\bar{T}_u(1) \) is at least \(\frac{1 - \epsilon}{d_{\min}} \log n \), i.e.,

\[
\bar{T}_u(1) \geq \frac{1 - \epsilon}{d_{\min}} \log n,
\]

and if in addition, \(\text{deg}(C_u) \leq K \) for a constant \(K \) chosen as follows. Let \(\hat{D} \) be a random variable with the size-biased distribution, i.e., \(\mathbb{P}(\hat{D} = k) = q_k \). The constant \(K \) is chosen in order to have with positive probability \(\hat{D} \leq d_{\min} - 1 + K \), i.e.,

\[
y = y_K := \mathbb{P} \left(\hat{D} \leq d_{\min} - 1 + K \right) > 0. \quad (36)
\]

It will be convenient to consider the two events in the definition of good vertices separately, namely, for a vertex \(u \in V^* \), define

\[
\mathcal{E}_u := \left\{ \bar{T}_u(1) \geq \frac{1 - \epsilon}{d_{\min}} \log n \right\}, \quad \text{and} \quad (37)
\]

\[
\mathcal{E}'_u := \{ \text{deg}(C_u) \leq K \}. \quad (38)
\]

We note that in the case \(d_{\min} \geq 3 \), the event \(\mathcal{E}_u \) for \(u \in V^* \) is equivalent to having a weight greater than \(\frac{1 - \epsilon}{d_{\min}} \log n \) on all the \(d_{\min} \) edges connected to \(u \), and clearly, the two above events \(\mathcal{E}_u \) and \(\mathcal{E}'_u \) are independent (conditionally on \(u \in V^* \), i.e., \(d_u = d_{\min} \)).

For \(u \in V^* \), let \(A_u \) be the event that \(u \) is good, \(A_u := \mathcal{E}_u \cap \mathcal{E}'_u \), and let \(Y \) be the total number of good vertices, \(Y := \sum_u 1_{A_u} \). In the following, we first obtain a bound for the expected value
of Y, and then use the second moment inequality to show that w.h.p. $Y = \Omega(n^\epsilon)$.

\[
\mathbb{E}[Y] = \sum_{u \in V^*} \mathbb{P}(A_u) = \sum_{u \in V^*} \mathbb{P}(\mathcal{E}_u) \mathbb{P}(\mathcal{E}_u') \\
= \sum_{u \in V^*} n^{\epsilon-1} \mathbb{P}(\mathcal{E}_u') \\
= \sum_{u \in V^*} n^{\epsilon-1}(1 \pm o(1))y \\
= (1 \pm o(1))p_{d_{\min}} n^\epsilon y.
\]

In the equality before last one, we used the coupling argument described in Section 2.2 to bound the forward-degrees from above (and below) by i.i.d. random variables having distributions $\pi(n)$ (and $\hat{\pi}(n)$), and then used the fact that the asymptotic distributions of both $\pi(n)$ and $\hat{\pi}(n)$ coincides with the size biased distribution \{q_k\}. This is where the factor $(1 \pm o(1))y$ in the above equality comes from. The last equality is simply obtained from Condition 1.1, which implies that $|V^*| = (1 \pm o(1))p_{d_{\min}} n$.

We now show that $\text{Var}(Y) = o(\mathbb{E}[Y]^2)$. Applying the Chebyshev inequality, this will show that $Y \geq \frac{\epsilon}{2} p_{d_{\min}} n^\epsilon$ with high probability.

We have

\[
\mathbb{E}[Y^2] = \mathbb{E} \left[(\sum_{u \in V^*} \mathbf{1}_{A_u})^2 \right] = \mathbb{E} \left[\sum_{u, v \in V^*} \mathbf{1}_{A_u} \mathbf{1}_{A_v} \right] \\
= \mathbb{E} \left[\sum_{u, v \in V^*: C_u \cap C_v \neq \emptyset} \mathbf{1}_{A_u} \mathbf{1}_{A_v} + \sum_{u, v \in V^*: C_u \cap C_v = \emptyset} \mathbf{1}_{A_u} \mathbf{1}_{A_v} \right] \\
= \mathbb{E} \left[\sum_{u \in V^*} \mathbf{1}_{A_u} \sum_{v \in V^*: C_u \cap C_v \neq \emptyset} \mathbf{1}_{A_v} + \sum_{u \in V^*: C_u \cap C_v = \emptyset} \sum_{v \in V^*: C_u \cap C_v = \emptyset} \mathbf{1}_{A_u} \mathbf{1}_{A_v} \right] \\
\leq \mathbb{E} \left[\sum_{u \in V^*} \mathbf{1}_{A_u} (K + 2) + \sum_{u \in V^*: C_u \cap C_v = \emptyset} \mathbf{1}_{A_u} \mathbf{1}_{A_v} \right] \\
= (K + 2) \mathbb{E}[Y] + \mathbb{E} \left[\sum_{u, v \in V^*: C_u \cap C_v = \emptyset} \mathbf{1}_{A_u} \mathbf{1}_{A_v} \right],
\]

where to obtain the inequality above we used the fact that for each node u, when the event A_u holds, the degree of C_u is at most K and so $C_u \cap C_v \neq \emptyset$ happens at most for $(K + 2)$ nodes v. Indeed, each C_v consists of v and another node of the graph. A simple analysis shows that such a v either belongs to C_u (two possibilities) or is among the neighbors of C_u (at most K choices).

Moreover, for any pair of vertices $u, v \in V^*$, such that $C_u \cap C_v = \emptyset$, conditioning on A_u does not have much effect on the asymptotic of the degree distribution. Indeed, by the coupling
argument of Section 2.2, we have for \(u, v \in V^* \) such that \(C_u \cap C_v = \emptyset \),

\[
P(A_v \mid A_u) = P(E_v \mid A_u)P(E'_v \mid A_u) = P(E_v)P(E'_v \mid A_u) \geq P(\text{Exp}(d_{\min}) \geq \frac{1 - \epsilon}{d_{\min}} \log n) P(D^{(n)} \leq d_{\min} - 1 + K)
\]

where \(D^{(n)} \) is a random variable with distribution \(\pi^{(n)} \). Similarly, we have

\[
P(A_v \mid A_u) \leq P(\text{Exp}(d_{\min}) \geq 1 - \epsilon d_{\min} \log n) P(D^{(n)} \leq d_{\min} - 1 + K),
\]

where \(D^{(n)} \) is a random variable with distribution \(\pi^{(n)} \). We infer that

\[
P(A_v \mid A_u) = (1 \pm o(1)) y n^{-1+\epsilon},
\]

and then using the estimate \(P(A_v) = (1 \pm o(1)) y n^{\epsilon-1} \) we obtained above, we obtain (conditioned on \(C_u \cap C_v = \emptyset \))

\[
P(A_v \cap A_u) = (1 \pm o(1)) P(A_u) P(A_v).
\]

This shows that

\[
E \left[\sum_{u,v \in V^*: C_u \cap C_v = \emptyset} 1_{A_u} 1_{A_v} \right] \leq (1 + o(1)) \sum_{u,v \in V^*} P(A_u) P(A_v)
\]

\[
= (1 + o(1)) E[Y]^2.
\]

Hence, we have

\[
\text{Var}[Y] = E[Y^2] - E[Y]^2 \leq (K + 2) E[Y] + o(E[Y]^2) = o(E[Y]^2).
\]

This finishes the proof of the fact that \(Y \geq \frac{2}{3} p_{d_{\min}} n^\epsilon \) with high probability.

We consider first the flooding, and obtain the corresponding lower bound. Let \(Y' \) denote the number of good vertices that are at distance at most \(\frac{1 - \epsilon}{d_{\min}} \log n + \frac{1 - \nu}{\nu - 1} \log n \) from a vertex \(a \) (chosen uniformly at random). It is clear that the lower bound follows by showing that \(Y' < Y \) with high probability, i.e., \(Y - Y' > 0 \) w.h.p. To show this, we will bound the expected value of \(Y' \) and use Markov’s inequality.

Since by Condition 1.1 \(V^* \) has size linear in \(n \) by applying Proposition 4.2 we obtain that for a uniformly chosen vertex \(u \in V^* \), conditioning on \(A_u \), we have \(P(H_{a,u}) = 1 - o(1) \). Indeed, the two events \(H_{a,u} \) and \(E_u \) are independent, and conditioning on \(E'_u \) is the same as conditioning on \(\deg(C_u) \leq K = O(1) \). Therefore, for a uniformly chosen vertex \(u \) in \(V^* \), we have

\[
P(A_u \cap H_{a,u}^c) = o(P(A_u)),
\]

where \(H_{a,i}^c \) denotes the complementary event of \(H_{a,i} \), i.e., the event that \(H_{a,i} \) does not occur. Thus, a straightforward calculation shows that

\[
E[Y'] = o(E[Y]) = o(n^\epsilon).
\]
By Markov’s inequality, we conclude that $Y' \leq \frac{1}{\nu}p_{d_{\min}} n^\epsilon$ w.h.p., and hence $Y - Y'$ is w.h.p. positive. This implies the existence of a vertex u whose distance from a is at least $\left(\frac{1}{\nu - 1} + \frac{1}{d_{\min}}\right)(1 - \epsilon) \log n$. Hence for any $\epsilon > 0$ we have w.h.p.

$$\text{flood}_w(G_n) \geq \max_{u \in V^*} \text{dist}_w(a, u) \geq \left(\frac{1}{\nu - 1} + \frac{1}{d_{\min}}\right)(1 - \epsilon) \log n.$$

We now turn to the proof of the lower bound for the (weighted) diameter of the graph. The proof will follow the same strategy as for the flooding, but this time we need to consider the pairs of good vertices. Let R denote the number of pairs of distinct good vertices. Recall we proved above that w.h.p. $Y \geq \frac{2}{3}E[Y]$. Thus,

$$R = Y(Y - 1) \geq \frac{2}{3}E[Y]\left(\frac{2}{3}E[Y] - 1\right) > \frac{1}{4}E[Y]^2.$$

The probabilities that u and v are both good and $\mathcal{H}_{u,v}$ does not happen can be bounded as follows.

$$P(A_u \cap A_v \cap \mathcal{H}_{u,v}^c) = P(A_u \cap A_v)P(\mathcal{H}_{u,v}^c | A_u, A_v) = P(A_u \cap A_v)P(\mathcal{H}_{u,v}^c | \deg(C_u) \leq K, \deg(C_v) \leq K)$$

(We used the independence of $\mathcal{H}_{u,v}$ and \mathcal{E}_u and \mathcal{E}_v)

$$= o(P(A_u \cap A_v)).$$ \hspace{1cm} (39)

The last equality follows from Proposition 4.2, since C_u and C_v are of degree $O(1)$.

To conclude, consider R' the number of pairs of good vertices that are at distance at most $(1 - \epsilon)(2\log n/d_{\min} + \log n/\nu - 1)$. By using Equation (39), we have $E R' = o(E[Y]^2)$. Applying Markov’s inequality, we obtain that w.h.p. $R' \leq \frac{1}{6}(E[Y])^2$, and thus, $R - R'$ is w.h.p positive. This implies that for any $\epsilon > 0$, we have w.h.p.

$$\text{diam}_w(G_n) \geq \max_{u, v \in V^*} \text{dist}_w(u, v) \geq \left(\frac{1}{\nu - 1} + \frac{2}{d_{\min}}\right)(1 - \epsilon) \log n.$$

Proof of the lower bound in the case $d_{\min} = 2$. Let V^* be the set of vertices with degree two. Again we call a vertex u in V^* *good* if both the events \mathcal{E}_u and \mathcal{E}_u' hold. Recall the definition of the two events

\begin{align*}
\mathcal{E}_u &:= \left\{ T_u(1) \geq \frac{1 - \epsilon}{2(1 - q_1)} \log n \right\}, \quad \text{and} \quad (40) \\
\mathcal{E}_u' &:= \{ \deg(C_u) \leq K \}. \quad (41)
\end{align*}

where in this case we choose K in such a way that

$$y := P\left(\hat{D} \leq 1 + K | \hat{D} \geq 2 \right) > 0.$$ \hspace{1cm} (42)

The random variable \hat{D} has the size-biased distribution $\{q_k\}$. For a vertex u of degree two, we denote as in the previous case by A_u the event that u is good, and define $Y := \sum_u 1_{A_u}$ to
be the number of good vertices. The strategy of the proof will be the same as in the previous case, the details change. So we will obtains bounds for the expected value and the variance of \(Y \), and then use the second moment method to show that w.h.p \(Y = \Omega(n^\epsilon) \). The rest of the proof will be similar to the case \(d_{\min} \geq 3 \) (based as before on the use of Proposition 4.2).

Consider the exploration process defined in Section 2.1, starting from a node \(u \in V^* \). At the beginning, each step of the exploration process is an exponential with parameter two (since there are two yet-unmatched half-edges adjacent to the explored vertices). In each step, the probability that the new half-edge of the list \(L \) does not match to the other half-edge of \(L \) (which of course corresponds to the case that \(u \) is not in the giant component) is at least \(1 - \frac{1}{n} \). This follows by observing that there are at least \(n \) yet-unmatched half-edges (by \(\nu > 1 \)), and by using Lemma 4.1 (which says that before \(M \log n \) steps the exploration process meets a vertex of forward-degree at least two). By the forward-degree coupling arguments of Section 2.2, the probability that a new matched node be of forward-degree one is at least \(\pi(n) \). This shows that, with probability at least \((1 - \frac{1}{n}) \pi(n)\), the exploration process adds a new node of forward-degree one. This shows that the first step in the exploration process a vertex of forward-degree at least two is added will be stochastically bounded below by a geometric random variable of parameter \((1 - \frac{1}{n}) \pi(n)\). Each step takes rate two exponential time. Therefore,

\[
P(\mathcal{E}_u) = P\left(T_u(1) \geq \frac{1 - \epsilon}{2(1 - q_1)} \log n \right) \geq P\left(\text{Exp}\left(2 \left(1 - (1 - 1/n)^{\pi(n)}\right)\right) \geq \frac{1 - \epsilon}{2(1 - q_1)} \log n \right).
\]

In the last inequality we used the fact that a sum of a geometric (with parameter \(\pi \)) number of independent exponential random variables of rate \(\mu \) is distributed as an exponential random variable of rate \((1 - \pi)\mu \). Note that this in particular shows that

\[
P(\mathcal{E}_u) \geq (1 - o(1)) \exp \left(- (1 - \epsilon) \log n \right) = (1 - o(1)) n^{-1+\epsilon}.
\]

By the coupling arguments of Section 2.2 (and by using Lemma 4.1), similar to the previous case \(d_{\min} \geq 3 \), we have

\[
P(\mathcal{E}_u') = P(\mathcal{E}_u | \mathcal{E}_u) P(\mathcal{E}_u) \geq (1 \pm o(1)) y n^{-1+\epsilon}.
\]

This shows, as before, that

\[
\mathbb{E}[Y] = \sum_{u \in V^*} P(A_u) \geq (1 \pm o(1)) y p_2 n^\epsilon.
\]

Moreover, for any pair of vertices \(u, v \in V^* \) such that \(C_u \cap C_v = \emptyset \), conditioning on \(A_u \) does not have much effect on the asymptotic of the degree distribution (by Lemma 4.1 the size of each component \(C_u \) is at most \(M \log n \)), and hence, we deduce again, by the coupling argument of Section 2.2, that for \(u \) and \(v \) such that \(C_u \cap C_v = \emptyset \),

\[
P(A_v \cap A_u) = (1 \pm o(1)) P(A_u) P(A_v).
\]
We infer as before,

\[\text{Var}(Y) = E[Y^2] - E[Y]^2 = E \left[\sum_{u,v \in V^*} 1_{A_u} 1_{A_v} \right] - E[Y]^2 \]

\[= E \left[\sum_{u,v \in V^*: C_u \cap C_v \neq \emptyset} 1_{A_u} 1_{A_v} + \sum_{u,v \in V^*: C_u \cap C_v = \emptyset} 1_{A_u} 1_{A_v} \right] - E[Y]^2 \]

\[= E \left[\sum_{u \in V^*} \sum_{v \in V^*: C_u \cap C_v \neq \emptyset} 1_{A_u} 1_{A_v} + \sum_{u,v \in V^*: C_u \cap C_v = \emptyset} 1_{A_u} 1_{A_v} \right] - E[Y]^2 \]

\[\leq (K + 1)(M \log n) E[Y] + E \left[\sum_{u,v \in V^*: C_u \cap C_v = \emptyset} 1_{A_u} 1_{A_v} \right] - E[Y]^2 \quad \text{(By Lemma A.1)} \]

\[= o(E[Y]^2). \]

In the inequality above, we used Lemma A.1 to bound w.h.p. the size of all \(C_w \) by \(M \log n \) (for some large enough \(M \)) for any node \(w \) in the graph, and used the fact that if the event \(A_u \) holds, then there are at most \(K \) edges out-going from \(C_u \). Each of the vertices \(v \) with the property that \(C_u \cap C_v \neq \emptyset \) should be either already on \(C_u \) or connected with a path consisting only of vertices of degree two to \(C_u \) (in which case, this path should belong to \(C_v \)). A simple analysis then shows that the number of nodes \(v \) with the property that \(C_u \cap C_v \neq \emptyset \) is bounded by \((K + 1)M \log n \), and the inequality follows. The rest of the proof follows by using Proposition 4.2, similar to the case \(d_{\min} \geq 3 \).

Proof of the lower bound in the case \(d_{\min} = 1 \). Consider the 2-core algorithm, and stop the process the first time the number of nodes of degree one drops below \(n^{1-\epsilon/2} \). Let \(V^* \) be the set of all nodes of degree one at this time. We denote by \(\tilde{G}_n(V^*) \) the graph constructed by configuration model on the set of remaining nodes (this is indeed the \(V^* \)-augmented 2-core). Observe that proving the lower bound on the graph \(\tilde{G}_n(V^*) \) gives us the lower bound on \(G_n \).

Since \(|V^*| = o(n/\log n) \), and the 2-core has linear size in \(n \), w.h.p. the degree sequence of \(\tilde{G}_n(V^*) \) has the same asymptotic as the degree sequence in the 2-core of \(G_n \) (see Section A.2 Lemma A.2 for more details). In particular, we showed in Section A.2 that for the size-biased degree sequence of the 2-core’s degree distribution, we have \(\tilde{q}_1 = \lambda_* \), and for its mean, we have \(\tilde{\nu} = \nu \).

Repeating the coupling arguments of Section 2.2 and defining \(\tilde{\pi}^{(n)} \) (similar to the definition of \(\pi^{(n)} \)) for the degree sequence of \(\tilde{G}_n(V^*) \), we infer that \(\tilde{\pi}^{(n)}_1 \to \lambda_* \).

Similar as before, call a vertex \(u \) in \(V^* \) good if both the events \(\mathcal{E}_u \) and \(\mathcal{E}'_u \) hold. Recall the definition of the two events

\[\mathcal{E}_u := \left\{ \overline{T_u(1)} \geq \frac{1 - \epsilon}{1 - \lambda_*} \log n \right\}, \quad \text{and} \]

\[\mathcal{E}'_u := \{ \deg(C_u) \leq K \}. \]
here the constant $K \geq 2$ is chosen with the property that $\tilde{q}_K > 0$ (\tilde{q} is the size-biased probability mass function corresponding to the 2-core, c.f. Section A.2).

Consider the exploration process starting from a node $u \in V^*$. At the beginning, each step of the exploration process is an exponential of rate one, and the probability that each new matched node be of forward-degree exactly one is at least $\frac{1}{n!}$. Similar to the case of $d_{\min} = 2$, we obtain

$$
P(A_u) \geq (1 + o(1))\tilde{q}_K \mathbb{P}\left(\text{Exp}\left(1 - \frac{d}{\pi_1(n)}\right) \geq 1 - \epsilon(1 - \lambda_s) \log n\right)$$

$$= (1 + o(1))\tilde{q}_K \exp\left(-\epsilon\frac{1 - \lambda_s}{1 - \frac{d}{\pi_1(n)}} \log n\right)$$

$$= (1 + o(1))\tilde{q}_K n^{-1+\epsilon}.$$

This shows that

$$\mathbb{E}[Y] = \sum_{u \in V^*} \mathbb{P}(A_u) \geq n^{1-\epsilon/2}(1 + o(1))\tilde{q}_K n^{-1+\epsilon} = (1 + o(1))\tilde{q}_Kn^{\epsilon/2},$$

Similarly, we obtain that $\text{Var}(Y) = o(\mathbb{E}[Y]^2)$, and the rest of the proof follows similarly to the precedent cases by using Proposition 1.2 for $\tilde{G}_n(V^*)$. Note that in $\tilde{G}_n(V^*)$, the number of vertices of degree one is $o(n) = o(|\tilde{G}_n(V^*)|)$ and thus, Proposition 1.2 can be applied.

At the present we are only left to prove Proposition 4.2.

4.1 Proof of Proposition 4.2

In this section we present the proof of Proposition 4.2. It is shown in [23, 28] that the giant component of a random graph $G(n, (d_i)_i^n)$ for $(d_i)_i^n$ satisfying Condition 1.1 contains w.h.p. all but $o(n)$ vertices (since $\nu > 1$ and $u_0(n) + u_1(n) = o(n)$). This immediately shows that $\mathbb{P}(\text{dist}_w(C_a, C_b) < \infty) = 1 - o(1)$. Define $t_n := \frac{1}{2(1 - \epsilon)} \log n$. So to prove the proposition, we need to prove that $\text{dist}_w(C_a, C_b)$ is lower bounded by t_n w.h.p. in the case where $\text{deg}(C_b) = O(1)$ and either $\text{deg}(C_a) = O(1)$ or a is chosen uniformly at random.

In the case where a is chosen uniformly at random, it is easy to deduce, by using Markov’s inequality, that we have w.h.p. $\text{deg}(C_a) \leq \log n$. Indeed, this is true since $\text{deg}(C_a)$ is asymptotically distributed as $(D + \tilde{D} - 1 \mid \tilde{D} \geq 2)$, where \tilde{D} is a random variable with the size-biased distribution, and D is independent of \tilde{D} with the degree distribution $\{p_k\}$. (To show this, one can use the coupling argument of Section 2.2 to bound $\text{deg}(C_a)$ stochastically from above.) And, since this latter random variable has finite moment (by Condition 1.1), by applying Markov’s inequality, we obtain w.h.p. $\text{deg}(C_a) \leq \log n$. This shows that in both cases stated in the proposition, we can assume that $\text{deg}(C_b) = O(1)$ and $\text{deg}(C_a) \leq \log n$.

We now consider the exploration process defined in Section 2.1 starting from C_a, i.e., we start the exploration process with $B = C_a$, and apply the steps one and two of the process. In a similar way we defined $T_a(i)$, we define $T_{C_a}(i)$ to be the time of the i-th step in this continuous-time exploration process. Similarly, let $\tilde{d}_{C_a}(i)$ be the forward-degree of the vertex added at i-th exploration step for all $i \geq 1$, and define

$$\tilde{S}_{C_a}(i) := \text{deg}(C_a) + \tilde{d}_{C_a}(1) + ... + \tilde{d}_{C_a}(i) - i,$$ (45)
and define $S_{C_a}(i)$ similarly, so that we have $S_{C_a}(i) \leq \hat{S}_{C_a}(i)$. Note that $T_{C_a}(i)$ obviously satisfies

$$T_{C_a}(i + 1) - T_{C_a}(i) = \text{Exp}(S_{C_a}(i)) \geq_{st} Y_i \sim \text{Exp}(\hat{S}_{C_a}(i)),$$

where the random variables Y_i are all independent.

Also, we infer (by Lemma 2.3) that

$$\hat{S}_{C_a}(i) \leq_{st} \log n + \sum_{j=1}^{i} \mathcal{D}_j^{(n)} - i,$$

where $\mathcal{D}_j^{(n)}$ are i.i.d with distribution $\pi^{(n)}$.

Let $\overline{\pi}^{(n)}$ be the expected value of $\mathcal{D}_i^{(n)}$ which is

$$\overline{\pi}^{(n)} := \sum_k k\pi_k^{(n)},$$

and define $z_n = \sqrt{n/\log n}$. We will show later that the two growing balls in the exploration processes started from C_a and C_b, for a and b as in the proposition, will not intersect w.h.p. provided that they are of size less than z_n. We now prove that $T_{C_a}(z_n) \geq t_n$ with high probability.

For this, let us define

$$T'(k) \sim \sum_{i=1}^{k} \text{Exp} \left(\log n + \sum_{j=1}^{i} \mathcal{D}_j^{(n)} - i \right),$$

where all the exponential variables in the above sum are independent, such that by the above arguments, we have

$$T_{C_a}(z_n) \geq_{st} T'(z_n).$$

We need the following lemma. (We define $\text{Exp}(s) := +\infty$ for $s \leq 0$.)

Lemma 4.3. Let X_1, \ldots, X_t be a random process adapted to a filtration $\mathcal{F}_0 = \sigma[\emptyset], \mathcal{F}_1, \ldots, \mathcal{F}_t$, and let $\mu_i = \mathbb{E}X_i$, $\Sigma_i = X_1 + \ldots + X_i$, $A_i = \mu_1 + \ldots + \mu_i$. Let $Y_i \sim \text{Exp}(\Sigma_i)$, and $Z_i \sim \text{Exp}(A_i)$, where all exponential variables are independent. Then we have

$$Y_1 + \ldots + Y_t \geq_{st} Z_1 + \ldots + Z_t.$$

Proof. By Jensen’s inequality, it is easy to see that for positive random variable X, we have

$$\text{Exp}(X) \geq_{st} \text{Exp}(\mathbb{E}X).$$

Then by induction, it suffices to prove that for a pair of random variables X_1, X_2 we have $Y_1 + Y_2 \geq_{st} Z_1 + Z_2$. We have

$$\mathbb{P}(Y_1 + Y_2 > s) = \mathbb{E}_{X_1} [\mathbb{P}(Y_1 + Y_2 > s|X_1)]$$

\[\geq \mathbb{E}_{X_1} [\mathbb{P}(\text{Exp}(X_1) + \text{Exp}(X_1 + \mu_2) > s)] \]

\[\geq \mathbb{P}(Z_1 + Z_2 > s). \]

36
We infer by Lemma 4.3

\[T'(z_n) \geq \sum_{i=0}^{z_n} \text{Exp} \left(\log n + (\mathcal{P}(n) - 1)i \right) =: T^*(z_n), \]

where all exponential variables are independent.

We now let \(b_n := \log n - (\mathcal{P}(n) - 1) \), so that we have

\[
\mathbb{P}(T^*(z_n) \leq t) \leq \int_0^t e^{-\sum_{i=1}^{z_n} ((\mathcal{P}(n) - 1)i + b_n)x_i} dx_1 \cdots dx_{z_n} \prod_{i=1}^{z_n} ((\mathcal{P}(n) - 1)i + b_n)
\]

\[
= \int_{0 \leq y_1 \leq \cdots \leq y_{z_n} \leq t} e^{-\sum_{i=1}^{z_n} y_i} e^{-b_n y_{z_n}} dy_1 \cdots dy_{z_n} \prod_{i=1}^{z_n} ((\mathcal{P}(n) - 1)i + b_n),
\]

where \(y_k = \sum_{i=0}^{k-1} x_{z_n-i} \). Letting \(y \) play the role of \(y_{z_n} \), and accounting for all permutations over \(y_1, \ldots, y_{z_n-1} \) (giving each such variable the range \([0, y]\)), we obtain

\[
\mathbb{P}(T^*(z_n) \leq t) \leq (\mathcal{P}(n) - 1)^{z_n} \frac{\prod_{i=1}^{z_n} (i + \frac{b_n}{\mathcal{P}(n) - 1})}{z_n!}
\]

\[
= z_n \prod_{i=1}^{z_n} (1 + \frac{b_n}{\mathcal{P}(n) - 1}) (\mathcal{P}(n) - 1)
\]

\[
= z_n \prod_{i=1}^{b_n} (1 - e^{-\mathcal{P}(n)-1})^\mathcal{P}(n) - 1
\]

\[
\leq c z_n^{\mathcal{P}(n)-1} (\mathcal{P}(n) - 1) \int_0^t e^{-\mathcal{P}(n)-1+b_n} (1 - e^{-\mathcal{P}(n)-1})^{z_n-1} dy,
\]

where \(c > 0 \) is an absolute constant. Recall that \(t_n = \frac{1}{2(\nu-1)} \log n \), and \(z_n = \sqrt{n/\log n} \). Now we use the fact that \((1 - e^{-\mathcal{P}(n)-1})^{z_n-1} \leq e^{-n^\alpha} \), for some \(\alpha > 0 \) and for all \(0 \leq y \leq t_n \). We infer

\[
\mathbb{P}(T^*(z_n) \leq t_n) \leq c(\mathcal{P}(n) - 1) z_n^{b_n/(\mathcal{P}(n) - 1)} \int_0^{t_n} e^{-n^\alpha} dy = o(n^{-4}),
\]

since \(b_n = O(\log n) \). Hence, we have w.h.p.

\[
|B_w(C_\alpha, t_n)| \leq z_n.
\]

(Here naturally, for \(W \subseteq V \), we let \(B_w(W, t) = \{b, \text{ such that } \text{dist}_w(W, b) \leq t\} \).)
Similarly for b, and exposing $B_w(C_b, t_n)$, again w.h.p we obtain a set of size at most z_n. Now remark that, because each matching is uniform among the remaining half-edges, the probability of hitting $B_w(C_a, t_n)$ is at most $\hat{S}_{C_a}(z_n)/n$.

Let $\epsilon_n := \log \log n$. By Markov’s inequality we have

$$P\left(\hat{S}_{C_a}(z_n) \geq z_n \epsilon_n\right) \leq \frac{\mathbb{E}\hat{S}_{C_a}(z_n)/z_n \epsilon_n}{z_n \epsilon_n} = o(1).$$

We conclude

$$P\left(B_w(C_a, t_n) \cap B_w(C_b, t_n) \neq \emptyset\right) \leq P\left(|B_w(C_a, t_n)| > z_n\right) + P\left(|B_w(C_b, t_n)| > z_n\right) + P\left(\hat{S}_{C_a}(z_n) \geq z_n \epsilon_n\right) + \epsilon_n z_n^2/n = o(1).$$

This completes the proof of Proposition 4.2.

5 The random graphs $G(n, p)$ and $G(n, m)$

We derive the results for $G(n, p)$ and $G(n, m)$ from our results for $G(n, (d_i)_1^n)$ by conditioning on the degree sequence. Indeed, we can be more general and consider a random graph G_n with n vertices labeled $[1, n]$ and some random distribution of the edges such that any two graphs on $[1, n]$ with the same degree sequence have the same probability of being attained by G_n. Equivalently, conditioned on the degree sequence, G_n is a random graph with that degree sequence of the type $G(n, (d_i)_1^n)$ introduced in the Introduction. We may thus construct G_n by first picking a random sequence $(d_i)_1^n$ with the right distribution, and then choosing a random graph $G(n, (d_i)_1^n)$ for this $(d_i)_1^n$.

We assume that Condition 1.1 holds in probability:

Condition 5.1. For each n, let $d^{(n)} = (d^{(n)}_i)_1^n$ be the random sequence of vertex degrees of G_n and $u^{(n)}_k$ be the random number of vertices with degree k. Then, for some probability distribution $(p_k)_{k=0}^{\infty}$ over integers independent of n and with finite mean $\mu := \sum_{k=0}^{\infty} kp_k \in (0, \infty)$, the following holds:

(i) $u^{(n)}_k/n \rightarrow p_k$ for every $k \geq 1$ as $n \rightarrow \infty$;

(ii) For some $\epsilon > 0$, $\sum_{k=1}^{\infty} k^{2+\epsilon} u^{(n)}_k = O_p(n)$;

The following lemma is similar to Lemma 8.2 in [22].

Lemma 5.2. If Condition 5.1 holds, we may, by replacing the random graph G_n by other random graphs G'_n with the same distribution, assume that the random graphs are defined on a common probability space and that Condition 1.1 holds a.s.
Proof. If only Condition 1.1(i) was required, this lemma would be a direct consequence of the Skorohod coupling theorem (Theorem 3.30 [25]) for the random sequence \((u_{k}^{(n)})_{k=1}^{\infty}\) in the space \(\mathbb{R}^\infty_+\). We now explain how to incorporate Conditions 1.1(ii). Condition 5.1 implies that it is possible to find an increasing sequence \(C_{j}\) for \(j \geq 1\) diverging to infinity so that considering the sets:

\[
A_{j} = \left\{ (x_{k})_{k=1}^{\infty} \in \mathbb{R}^\infty_+, \sum_{k=1}^{\infty} x_{k} < \infty, \sum_{k=1}^{\infty} k^{2+\epsilon} x_{k} \leq C_{j} \sum_{k=1}^{\infty} x_{k} \right\},
\]

we have for all \(n\), \(\mathbb{P}\left((u_{k}^{(n)}) \in A_{j}\right) \geq 1 - (2j)^{-1}\) (note that \(\sum_{k=1}^{\infty} u_{k}^{(n)} = n\)). Let \(q_{j}^{(n)} = \mathbb{P}\left((u_{k}^{(n)}) \in A_{j}\right)\) so that \(q_{j}^{(n)} \geq q_{j}^{(n)} \geq 1 - (2j)^{-1}\) for all \(j \geq 1\). For each \(\ell\), we define an associated finite sequence: \(j_{i}^{(n)}(\ell)\) for \(i = 1, \ldots, k^{(n)}(\ell)\) such that \(j_{1}^{(n)}(\ell) = 1\) and for \(i \geq 1\), \(j_{i+1}^{(n)}(\ell) = \min\{j \geq j_{i}^{(n)}(\ell), q_{j}^{(n)} - q_{j-1}^{(n)}(\ell) \geq \frac{1}{2\ell}\}\) if \(q_{j}^{(n)}(\ell) < 1 - (2\ell)^{-1}\) and if \(q_{j}^{(n)}(\ell) \geq 1 - (2\ell)^{-1}\), we set \(k^{(n)}(\ell) = i\). Let \(J^{(n)}(\ell) = \{j_{1}^{(n)}(\ell) = 1, j_{2}^{(n)}(\ell), \ldots, j_{k^{(n)}(\ell)}(\ell)\}\). Note that, since \(q_{\ell}^{(n)} \geq 1 - (2\ell)^{-1}\), we have \(k^{(n)}(\ell) \leq \ell\).

We now explicitly construct a ‘Skorokhod coupling’. Let \(\theta\) be a uniform random variable in \([0, 1]\) and define the random variable \(J^{(n)}(\ell)\) by: \(J^{(n)}(\ell) = \min\{j \in J^{(n)}(\ell), \theta \leq q_{j}^{(n)}\}\) if \(\theta \leq q_{k^{(n)}(\ell)}^{(n)}\) and if \(\theta > q_{k^{(n)}(\ell)}^{(n)}\), we set \(J^{(n)}(\ell) = \infty\). We set \(j_{0}^{(n)}(\ell) = 0, j_{1}^{(n)}(\ell) = \infty\) for \(i > k^{(n)}(\ell)\), \(A_{0} = 0\) and \(A_{\infty} = \mathbb{R}^\infty_+\). With these definitions, we have for all \(n\) and \(i \geq 1\),

\[
\mathbb{P}(J^{(n)}(\ell) = j_{i}^{(n)}(\ell)) = \mathbb{P}\left((u_{k}^{(n)}) \in A_{j_{i}^{(n)}(\ell)} \setminus A_{j_{i-1}^{(n)}(\ell)}\right).
\]

For a given \(\ell\) and for any \(i \geq 1\), we define the random variables \(\tilde{u}^{(n)}(i) = (\tilde{u}_{k}^{(n)}(i))_{k \in \mathbb{N}} \in \mathbb{R}^\infty_+\) having the law of \((u_{k}^{(n)})\) conditioned on the event \(\{(u_{k}^{(n)}) \in A_{j_{i}^{(n)}(\ell)} \setminus A_{j_{i-1}^{(n)}(\ell)}\}\). Note in particular that by construction, if \(i \leq k^{(n)}(\ell)\), we have \(\mathbb{P}\left((u_{k}^{(n)}) \in A_{j_{i}^{(n)}(\ell)} \setminus A_{j_{i-1}^{(n)}(\ell)}\right) \geq (2\ell)^{-1}\), hence if there exist an infinite sequence of \(n\) such that \(i \leq k^{(n)}(\ell)\), then we can apply the Skorohod coupling theorem and assume that, along this subsequence, Condition 1.1(i) holds.

We can now combine this coupling with the following one: given \(\theta\) taken uniformly at random in \([0, 1]\), take \(\ell = \left\lceil \frac{1}{2(1-\theta)} \right\rceil\) and consider \(\tilde{u}^{(n)}(J^{(n)}(\ell))\) which has the same law as the original \(u^{(n)}\). By construction, Condition 1.1(i) holds. Moreover, we have by construction \(J^{(n)}(\ell) \leq \ell\) since \(q_{\ell}^{(n)} \geq 1 - (2\ell)^{-1} > \theta\), so that \(\tilde{u}^{(n)}(J^{(n)}(\ell)) \in A_{\ell}\) and Condition 1.1(ii) holds.

\[\square\]

We now show that for \(G(n, p)\) and \(G(n, m)\), with \(np \to \mu \in (0, \infty)\) and \(2m/n \to \mu\), Condition 5.1 holds with \((p_{k})\) a Poisson distribution with parameter \(\mu\), i.e., \(p_{k} = e^{-\mu}\frac{\mu^k}{k!}\). Indeed the fact that Condition 5.1(i) holds with such \((p_{k})\) follows by elementary estimates of mean and variance done in Example 6.35 of [24]. Showing that Condition 5.1(ii) holds can be done by similar arguments. Consider \(G(n, p)\) (a similar argument holds for \(G(n, m)\)), we have for all \(k \geq 0\) and for \(n\) sufficiently large

\[
n^{-1} \mathbb{E}u_{k}^{(n)} = \binom{n-1}{k} p^{k}(1-p)^{n-1-k} < (\mu + 1)^k/k!.
\]
Thus, \(n^{-1} \sum_{k=1}^{\infty} k^{2+\epsilon} \mathbb{E} u_k^{(n)} = O(1) \), and Condition 5.1(ii) holds.

Acknowledgements

This paper is a part of the first author’s PhD thesis. We are grateful to Remco van der Hofstad and Laurent Massoulié who reviewed the thesis, and made many valuable comments which helped to improve the presentation. We also thank Omid Amini for helpful comments on the first draft of the paper which helped to improve the readability.

References

[1] H. Amini and M. Lelarge. Large deviations for split times of branching processes. Preprint, 2011.

[2] K. B. Athreya and P. E. Ney. Branching processes. Dover Publications, 2004.

[3] S. Bhamidi. First passage percolation on locally tree-like networks. I. dense random graphs. Journal of Mathematical Physics, 49(12):125218, 2008.

[4] S. Bhamidi and G. H. R. van der Hofstad. First passage percolation on the Erdős-Rényi random graph. Available at http://arxiv.org/abs/1005.4104, 2010.

[5] S. Bhamidi, R. van der Hofstad, and G. Hooghiemstra. Extreme value theory, Poisson-Dirichlet distributions and first passage percolation on random networks. Advances in applied probability, 42(3):706–738, 2010.

[6] S. Bhamidi, R. van der Hofstad, and G. Hooghiemstra. First passage percolation on random graphs with finite mean degrees. Annals of Applied Probability, 20(5):1907–1965, 2010.

[7] B. Bollobás. Random Graphs. Cambridge University Press, 2001.

[8] B. Bollobás and W. F. de la Vega. The diameter of random regular graphs. Combinatorica, 2(2):125–134, 1982.

[9] B. Bollobás, S. Janson, and O. Riordan. The phase transition in inhomogeneous random graphs. Random Structures and Algorithms, 31:3–122, 2007.

[10] F. Chung and L. Lu. The average distance in a random graph with given expected degrees. Internet Mathematics, 1(1):91–113, 2003.

[11] C. Cooper. The cores of random hypergraphs with a given degree sequence. Random Structures & Algorithms, 25(4):353–375, 2004.

[12] J. Ding, J. H. Kim, E. Lubetzky, and Y. Peres. Diameters in supercritical random graphs via first passage percolation. Combinatorics, Probability and Computing, 19:729–751, 2010.
[13] D. Fernholz and V. Ramachandran. Cores and connectivity in sparse random graphs. *Technical Report TR-04-13, The University of Texas at Austin, Department of Computer Sciences*, 2004.

[14] D. Fernholz and V. Ramachandran. The diameter of sparse random graphs. *Random Structures and Algorithms*, 31(4):482–516, 2007.

[15] G. Grimmett and H. Kesten. First-passage percolation, network flows and electrical resistances. *Probability Theory and Related Fields*, 66:335–366, 1984. 10.1007/BF00533701.

[16] O. Häggström and R. Pemantle. First passage percolation and a model for competing spatial growth. *Journal of Applied Probability*, 35(3):683–692, 1998.

[17] R. van der Hofstad, G. Hooghiemstra, and P. V. Mieghem. The flooding time in the random graph. *Extremes*, 5(2):111–129, 2002.

[18] R. van der Hofstad, G. Hooghiemstra, and P. V. Mieghem. Distances in random graphs with finite variance degrees. *Random Structures and Algorithms*, 27(1):76–123, 2005.

[19] R. van der Hofstad, G. Hooghiemstra, and P. Van Mieghem. First-passage percolation on the random graph. *Probability in the Engineering and Informational Sciences*, 15:225–237, April 2001.

[20] S. Janson. One, two and three times log n/n for paths in a complete graph with random weights. *Combinatorics, Probability and Computing*, 8(4):347–361, 1999.

[21] S. Janson and M. Luczak. A simple solution to the k-core problem. *Random Structures & Algorithms*, 30:50–62, 2007.

[22] S. Janson and M. J. Luczak. Asymptotic normality of the k-core in random graphs. *Annals of Applied Probability*, 18:1085, 2008.

[23] S. Janson and M. J. Luczak. A new approach to the giant component problem. *Random Structures and Algorithms*, 34(2):197–216, 2009.

[24] S. Janson, T. Luczak, and A. Rucinski. *Random graphs*. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000.

[25] O. Kallenberg. *Foundations of Modern Probability*. 2nd ed., Springer-Verlag, New York, 2002.

[26] H. Kesten. Aspects of first passage percolation. In *École d’été de probabilités de Saint-Flour, XIV—1984*, volume 1180 of *Lecture Notes in Mathematics*, pages 125–264. Springer, Berlin, 1986.

[27] A. Klenke and L. Mattner. Stochastic ordering of classical discrete distributions. *To appear in Advances in Applied Probability*, 2010.

[28] M. Molloy and B. Reed. The size of the giant component of a random graph with a given degree sequence. *Combinatorics, Probability and Computing*, 7:295–305, 1998.
A Appendix

A.1 Branching process interpretation

In this section, we give the intuition behind the introduction of the parameters λ and λ_*. Let \mathcal{X}_q be a Galton-Watson tree with offspring distribution q given in Equation (1). Then λ is the extinction probability of this branching process. Let $\mathcal{X}_q^+ \subseteq \mathcal{X}_q$ be the set of particles of \mathcal{X}_q that survive, i.e., have descendants in all future generations. Then \mathcal{X}_q^+ contains the root of the original branching process with probability $1 - \lambda$, and is empty otherwise. We denote by D the random variable with distribution $\mathbb{P}(D = k) = q_k$. For $\eta \in [0, 1]$, we let D_η be the thinning of D obtained by taking D points and then randomly and independently keeping each of them with probability η, i.e.,

$$
\mathbb{P}(D_\eta = k) = \sum_{r=k}^{\infty} q_r \binom{r}{k} \eta^k (1 - \eta)^{r-k}.
$$

Note that the number of surviving children has the distribution $D_{1-\lambda}$. Let D^+ denote the offspring distribution in \mathcal{X}_q^+. Conditioning on a particle being in \mathcal{X}_q^+ is exactly the same as conditioning on at least one of its children surviving, so that

$$
\mathbb{P}(D^+ = 1) = \mathbb{P}(D_{1-\lambda} = 1 | D_{1-\lambda} \geq 1) = \frac{\sum_{k \geq 1} k q_k \lambda (1 - \lambda)^{k-1}}{\lambda} = \phi'_q(\lambda) = \lambda_*.
$$

Hence, the probability that the particles in generation k in \mathcal{X}_q^+, consists of a single particle, given that the whole process survives, is exactly λ_*^k. This event corresponds to the branching process staying thin for k generations.

A.2 Structure of the 2-core

The k-core of a given graph G is the largest induced subgraph of G with minimum vertex degree at least k. The k-core of an arbitrary finite graph can be found by removing vertices of degree less than k, in an arbitrary order, until no such vertices exist. The existence of a large k-core in a random graph with a given degree sequence has been studied by several authors, see for example Cooper [11], Fernholz and Ramachandran [13], and Janson and Luczak [21].

Consider now a random graph $G_n \sim G^*(n, (d_i)_{i=1}^n)$. In the process of constructing a random graph G_n by matching the half-edges, the k-core can be found by successively removing the half-edge of a node of degree less than k followed by removing a uniformly random half-edge from the set of all the remaining half-edges until no such vertices (of degree less than k) remain. What remains at this time is the k-core. Since these half-edges are unexposed, the k-core edge set is uniformly random conditional on the k-core half-edge set.
Let \(k \geq 2 \) be a fixed integer, and \(\text{Core}_k^{(n)} \) be the \(k \)-core of the graph \(G_n \sim G^*(n, (d_i)^n_1) \). We shall consider thinnings of the vertex degrees in \(G^*(n, (d_i)^n_1) \). Let \(D \) be the random variable with the distribution \(\mathbb{P}(D = r) = p_r \), which is the asymptotic distribution of the vertex degrees in \(G^*(n, (d_i)^n_1) \). Recall that for \(0 \leq p \leq 1 \), \(D_p \) denote the thinning of \(D \) (obtained by taking \(D \) points and then randomly and independently keeping each of them with probability \(p \)). For integers \(l \geq 0 \) and \(0 \leq r \leq l \), let \(\pi_{lr} \) denote the binomial probabilities

\[
\pi_{lr}(p) = \mathbb{P}(\text{Bin}(l, p) = r) = \binom{l}{r} p^r (1 - p)^{l-r}.
\]

Hence we have

\[
\mathbb{P}(D_p = r) = \sum_{l=r}^{\infty} p_l \pi_{lr}(p).
\]

We further define the functions

\[
h(p) := \mathbb{E}[D_p \mathbb{1}(D_p \geq k)] = \sum_{r=k}^{\infty} \sum_{l=r}^{\infty} r p_l \pi_{lr}(p),
\]

\[
h_1(p) := \mathbb{P}(D_p \geq k) = \sum_{r=k}^{\infty} \sum_{l=r}^{\infty} p_l \pi_{lr}(p).
\]

Theorem A.1 (Fernholz, Ramachandran [13] - Janson, Luczak [21]). Consider a random graph \(G(n, (d_i)^n_1) \) where the degree sequence \((d_i)^n_1\) satisfies Condition 1.1. Let \(k \geq 2 \) be fixed, and let \(\text{Core}_k^{(n)} \) be the \(k \)-core of \(G(n, (d_i)^n_1) \). Let \(\hat{p} \) be the largest \(p \leq 1 \) such that \(\mu p^2 = h(p) \).

(i) If \(\hat{p} = 0 \), i.e., if \(\mu p^2 > h(p) \) for all \(p \in (0, 1) \), then \(\text{Core}_k^{(n)} \) has \(o_p(n) \) vertices and \(o_p(n) \) edges w.h.p.

(ii) If \(\hat{p} > 0 \), and further suppose that \(\hat{p} \) is not a local maximum point of the function \(h(p) - \mu p^2 \). Then

\[
v \left(\text{Core}_k^{(n)} \right) /n \xrightarrow{p} h_1(\hat{p}) > 0,
\]

\[
v_j \left(\text{Core}_k^{(n)} \right) /n \xrightarrow{p} \mathbb{P}(D_{\hat{p}} = j) = \sum_{l=j}^{\infty} p_l \pi_{lj}(\hat{p}), \ j \geq k,
\]

\[
e \left(\text{Core}_k^{(n)} \right) /n \xrightarrow{p} h(\hat{p})/2 = \mu \hat{p}^2/2.
\]

From now on, we consider the case \(k = 2 \), and denote by \(\tilde{G} \) the 2-core of a graph \(G \). In particular applying Theorem A.1 to the case \(k = 2 \), we have

\[
h(\hat{p}) := \mathbb{E}[D_{\hat{p}} \mathbb{1}(D_{\hat{p}} \geq 2)]
\]

\[
= \mathbb{E}[D_{\hat{p}}] - \mathbb{P}(D_{\hat{p}} = 1)
\]

\[
= \mu \hat{p} - \sum_{l} l p_l \hat{p}(1 - \hat{p})^{l-1}
\]

\[
= \mu \hat{p} (1 - G_0(1 - \hat{p})).
\]
Recall from Theorem A.1 that we have to solve the equation \(\mu \hat{p}^2 = h(\hat{p}) \), thus, we obtain \(1 - \hat{p} = G_q(1 - \hat{p}) \), and so \(\hat{p} = 1 - \lambda \).

The graph \(G_n \) obtained from \(G_n \) has the same distribution as a random graph constructed by the configuration model (see e.g., [21]) on \(\tilde{n} \) nodes with a degree sequence \(\tilde{d}_1^{(n)}, ..., \tilde{d}_{\tilde{n}}^{(n)} \) satisfying the following properties. By Theorem A.1,

\[
\tilde{n}/n \xrightarrow{p} h_1(1 - \lambda) := \mathbb{E}[D_{1-\lambda} \geq 2] = 1 - G_p(\lambda) - (1 - \lambda)G'_p(\lambda) = 1 - G_p(\lambda) - \mu \lambda (1 - \lambda) > 0,
\]

and

\[
|\{i, \tilde{d}_i^{(n)} = j\}|/n \xrightarrow{p} \sum_{\ell = j}^{\infty} \frac{\ell}{j} \binom{\ell}{j} (1 - \lambda)^j \lambda^{\ell-j}, \ j \geq 2,
\]

\[
\sum_i \tilde{d}_i^{(n)}/n \xrightarrow{p} \mu(1 - \lambda)^2.
\]

It follows that the sequence \(\{\tilde{d}_1^{(n)}, ..., \tilde{d}_{\tilde{n}}^{(n)}\} \) satisfies also the Condition A.1 for some probability distribution \(\tilde{p}_k \) with mean \(\tilde{\mu} \) (which can be easily calculated from the two above properties).

Let \(\tilde{q} \) be the size-biased probability mass function corresponding to \(\tilde{p} \). We now show that \(\tilde{q} \) and \(q \) have the same mean. Indeed, denoting by \(\tilde{\nu} \) the mean of \(\tilde{q} \), we see that \(\tilde{\nu} \) is given by

\[
\tilde{\nu} := \sum_k k\tilde{q}_k = \frac{1}{\mu} \sum_k k(k - 1)\tilde{p}_k
= \frac{\sum_{k \geq 2} k(k - 1) \sum_{\ell \geq k} p_{\ell} \binom{\ell}{k} (1 - \lambda)^k \lambda^{\ell-k}}{\mu(1 - \lambda)^2}
= \frac{\sum_{\ell} p_{\ell} \sum_{k \leq \ell} k(k - 1) \binom{\ell}{k} (1 - \lambda)^k \lambda^{\ell-k}}{\mu(1 - \lambda)^2}
= \sum_{\ell} \frac{\ell p_{\ell} (\ell - 1)}{\mu} = \nu.
\]

(54)

To find the diameter in the case \(d_{\text{min}} = 1 \), we also need to show that \(\tilde{q}_1 = \lambda_* \):

\[
\tilde{q}_1 = \frac{2\tilde{p}_2}{\tilde{\mu}} = \frac{2 \sum_{\ell \geq 2} p_{\ell} \binom{\ell}{2} (1 - \lambda)^2 \lambda^{\ell-2}}{\mu(1 - \lambda)^2}
= \frac{1}{\mu} G'_p(\lambda) = G'_q(\lambda) = \lambda_*.
\]

(55)

We will also need the following relaxation of the notion of 2-core. Let \(G = (V, E) \) be a graph. For a given subset \(W \subseteq V \), define the \(W \)-augmented 2-core to be the maximal induced subgraph of \(G \) such that every vertex in \(V \setminus W \) has degree at least two, i.e., the vertices in \(W \) are not required to verify the minimum degree condition in the definition of the 2-core. The \(W \)-augmented 2-core of a graph \(G \) will be denoted by \(\tilde{G}(W) \).
It is easy to see that the W-augmented 2-core of a random graph $G_n \sim G^*(n, (d_i)_1^n)$, denoted by $\hat{G}_n(W)$, can be found in the same way as the 2-core, except that now the termination condition is that every node outside of W must have degree at least 2, since the half-edges adjacent to a vertex in W are exempt from this restriction. The conditional uniformity property thus evidently holds in this case as well, i.e., for any subset $W \subseteq V$, the W-augmented 2-core is uniformly random conditional on the W-augmented 2-core half-edge set. We will need the following basic result, the proof of which is easy and can be found for example in [14, Lemma A.7].

Lemma A.2. Consider a random graph $G_n \sim G(n, (d_i)_1^n)$ where the degree sequence $(d_i)_1^n$ satisfies Condition [1.1]. For any subset $W \subseteq V(G_n)$, and any $w \in W$, there exists $C > 0$ (sufficiently large) so that we have

$$\mathbb{P}\left(e(\hat{G}_n(W)) - e(\hat{G}_n(W \setminus \{w\})) \leq C \log n \right) = 1 - o(n^{-1}).$$

Note that the above lemma implies (by removing one vertex from W at a time) that if $|W| = o(n/\log n)$, then w.h.p. the two graphs \hat{G}_n and $\hat{G}_n(W)$ have the same degree distribution asymptotic. We end this section by giving now an overview of the proof.

A.3 Proof of Lemma 2.1

To prove Lemma 2.1 we need the following intermediate result proved in [14, Lemma 3.2].

Lemma A.3. Let A be a set of m points, i.e., $|A| = m$, and let F be a uniform random matching of elements of A. For $e \in A$, we denote by $F(e)$ the point matched to e, and similarly for $X \subseteq A$, we write $F(X)$ for the set of points matched to X. Now let $X \subseteq A$, $k = |X|$, and assume $k \leq m/2$. We have

$$|X \cap F(X)| \leq_{st} \text{Bin}(k, \sqrt{k/m}).$$

Conditioning on all the possible degree sequences $\tilde{d}_a(1), \tilde{d}_a(2), \ldots, \tilde{d}_a(k)$, with the property that $d_a + \sum_{1 \leq i \leq k} \tilde{d}_a(i) = \tilde{S}_a(k)$, the configuration model becomes equivalent to the following process: start from a and at each step $1 \leq i \leq k$, choose a vertex a_i of degree $\tilde{d}_a(i)+1$ uniformly at random from all the possible vertices of this degree outside the set \{a, a_1, \ldots, a_{i-1}\}, choose a half-edge adjacent to a_i uniformly at random and match it with a uniformly chosen half-edge from the yet-unmatched half-edges adjacent to one of the nodes a, a_1, \ldots, a_{i-1}. And at the end, after a_k has been chosen, take a uniform matching for all the remaining $(m^n - 2k)$ half-edges. Now the proof follows from Lemma A.3 by the simple observation that, since $m^n - 2k \geq n$,

$$\mathbb{P}\left(\text{Bin}\left(\tilde{S}_a(k), \sqrt{\tilde{S}_a(k)/m^n - 2k} \right) \geq x \mid \tilde{S}_a(k) \right) \leq \mathbb{P}\left(\text{Bin}\left(\tilde{S}_a(k), \sqrt{\tilde{S}_a(k)/n} \right) \geq x \mid \tilde{S}_a(k) \right).$$

A.4 Proof of Lemma 2.2

Given $F_{T_a(i)}$, the increment $X_a(i+1) - X_a(i)$ is stochastically dominated by the following binomial random variable

$$X_a(i+1) - X_a(i) \leq_{st} \text{Bin}\left(\tilde{d}_a(i+1), \frac{(S_a(i) - 1)^+}{m^n - 2(X_a(i) + i)} \right),$$

45
For $i < \frac{n}{2}$, we have

$$\frac{(S_{a}(i) - 1)^{+}}{m^{(n)} - 2(X_{a}(i) + i)} \leq \frac{\hat{S}_{a}(i) - 2X_{a}(i)}{m^{(n)} - 2(X_{a}(i) + i)} \leq \frac{\hat{S}_{a}(i)}{m^{(n)} - 2i} \leq \frac{\max_{\ell \leq i} \hat{S}_{a}(\ell)}{n - 2i}.$$

Hence, we obtain for $i < n/2$ that

$$X_{a}(i) \leq_{st} \text{Bin} \left(\max_{\ell \leq i} \hat{S}_{a}(\ell) + i, \frac{\max_{\ell \leq i} \hat{S}_{a}(\ell)}{n - 2i} \right).$$

A.5 Proof of Lemma 2.3

Fix the sequence of degrees $\{d_{i}^{(n)}\}$ and the initial vertex a. We now prove that conditionally on the values of $(\hat{d}_{a}(1), ..., \hat{d}_{a}(j - 1))$, the random variable $\hat{d}_{a}(j)$ is stochastically smaller than $\overline{D}_{j}^{(n)}$ provided that $j \leq \beta_{n}$. This can be seen by a simple coupling argument as follows. In the following we will look at the half-edges adjacent to a node i as balls in a bin labeled with i, so the corresponding bin to the node i has d_{i} balls. First order the balls from 1 to m consistently with the order statistics. In other words, the values given to balls in each bin form an interval of consecutive numbers, and the values of the balls in the i-th bin is smaller than the values of the balls in the $(i + 1)$-th bin for each i.

Given the sequence $(d_{a}, \hat{d}_{a}(1), ..., \hat{d}_{a}(j - 1))$, choose uniformly at random a set of $j - 1$ bins containing respectively $\hat{d}_{a}(1) + 1, \ldots, \hat{d}_{a}(j - 1) + 1$ balls and color in red all the balls of these bins. In order to get a sample for $\overline{D}_{j}^{(n)}$, pick a ball at random among all balls in the last $n - (\beta_{n} + 1)\Delta_{n}$ bins and set $\overline{D}_{j}^{(n)}$ to be equal to the size of the selected bin minus one. We now define a random variable \tilde{d}_{j} such that $d_{a}(j) \leq_{st} \tilde{d}_{j} \leq \overline{D}_{j}^{(n)}$, obtaining the desired inequality.

If the ball picked in defining $\overline{D}_{j}^{(n)}$ is white, set $\tilde{d}_{j} = \overline{D}_{j}^{(n)}$. If there are red balls in the last $n - (\beta_{n} + 1)\Delta_{n}$ bins, and if the chosen ball is red, suppose that this ball is the ℓ-th ball among all the red balls in the last $n - (\beta_{n} + 1)\Delta_{n}$ bins for the induced order by the enumeration of the balls, and then define \tilde{d}_{j} to be the size of the bin containing the ℓ-th white ball minus one. Since $d_{a} + \hat{d}_{a}(1) + \cdots + \hat{d}_{a}(j - 1) \leq \beta_{n}\Delta_{n}$, this ball is in one of the first $(\beta_{n} + 1)\Delta_{n}$ bins. In other words, in all cases we have $\tilde{d}_{j} \leq \overline{D}_{j}^{(n)}$. By the definition of \tilde{d}_{j} and the definition of stochastically dominance, it is fairly easy to show that $\hat{d}_{a}(j) \leq_{st} \tilde{d}_{j}$, conditioned on $(\hat{d}_{a}(1), ..., \hat{d}_{a}(j - 1))$.

Thus, we obtain one of the inequalities. A similar argument proves the other inequality $\overline{D}_{j}^{(n)} \leq_{st} \tilde{d}_{j}$ conditioned on the sequence $(d_{a}, \hat{d}_{a}(1), ..., \hat{d}_{a}(j - 1))$, and so the first part of the lemma follows.
The second statement follows directly from the following basic result (whose proof can be found in [14] Lemma 3.2).

Lemma A.4. Let X_1, \ldots, X_t be a random process adapted to a filtration $\mathcal{F}_0 = \sigma[\emptyset], \mathcal{F}_1, \ldots, \mathcal{F}_t$, and let $\Sigma_t = X_1 + \ldots + X_t$. Consider a distribution μ such that $(X_{s+1}|\mathcal{F}_s) \geq_{s,t} \mu$ (resp. $(X_{s+1}|\mathcal{F}_s) \leq_{s,t} \mu$) for all $0 \leq s \leq t - 1$. Then Σ_t is stochastically larger (resp. smaller) than the sum of t i.i.d. μ-distributed random variables.