Lie groups, algebraic groups and lattices

Alexander Gorodnik

Abstract

This is a brief introduction to the theories of Lie groups, algebraic groups and their discrete subgroups, which is based on a lecture series given during the Summer School held in the Banach Centre in Poland in Summer 2011.

Contents

1 Lie groups and Lie algebras 2
2 Invariant measures 13
3 Finite-dimensional representations 18
4 Algebraic groups 22
5 Lattices – geometric constructions 29
6 Lattices – arithmetic constructions 34
7 Borel density theorem 41
8 Suggestions for further reading 42

This exposition is an expanded version of the 10-hour course given during the first week of the Summer School “Modern dynamics and interactions with analysis, geometry and number theory” that was held in the Bedlewo Banach Centre in Summer 2011. The aim of this course was to cover background material regarding Lie groups, algebraic groups and their discrete subgroups that would be useful in the subsequent advanced courses. The presentation is
intended to be accessible for beginning PhD students, and we tried to make most emphasise on ideas and techniques that play fundamental role in the theory of dynamical systems. Of course, the notes would only provide one of the first steps towards mastering these topics, and in §8 we offer some suggestions for further reading.

In §1 we develop the theory of (matrix) Lie groups. In particular, we introduce the notion of Lie algebra, discuss relation between Lie-group homomorphisms and the corresponding Lie-algebra homomorphisms, show that every Lie group has a structure of an analytic manifold, and prove that every continuous homomorphism between Lie groups is analytic. In §2 we establish existence and uniqueness of invariant measures on Lie groups. In §3 we discuss finite-dimensional representations of Lie groups. This includes a theorem regarding triangularisation of representations of solvable groups and a theorem regarding complete reducibility of representations of semisimple groups. The later is treated using existence of the invariant measure constructed in §2. Next, in §4 we develop elements of the theory of algebraic groups. We shall demonstrate that orbits for actions of algebraic groups exhibit quite rigid behaviour, which is responsible for some of the rigidity phenomena in the theory of dynamical systems. In §5 we introduce the notion of a lattice in a Lie group that plays important role in the theory of dynamical systems. In particular, lattices can be used to construct homogeneous spaces of finite volume leading to a rich class of dynamical systems, which are usually called the homogeneous dynamical systems. Classification of smooth actions of higher-rank lattices is an active topic of research now. In §5 we present Poincare’s geometric construction of lattices in $\text{SL}_2(\mathbb{R})$, and in §6 we explain number-theoretic constructions of lattices which use the theory of algebraic groups. These arithmetic lattices play crucial role in many applications of dynamical systems to number theory. Finally, in §7 we illustrate utility of techniques developed in these notes by giving a dynamical proof of the Borel density theorem.

1 Lie groups and Lie algebras

1.1 Lie groups and one-parameter groups

Thought out these notes, $M_d(\mathbb{R})$ denotes the set of $d \times d$ matrices with real coefficients, and $\text{GL}_d(\mathbb{R})$ denotes the group of non-degenerate matrices. The
space $M_d(\mathbb{R})$ is equipped with the Euclidean topology, and distance between the matrices will be measured by the norm:

$$\|X\| = \sqrt{\sum_{i,j=1}^{d} |x_{ij}|^2}, \quad X \in M_d(\mathbb{R}).$$

Definition 1.1. A (matrix) **Lie group** is a closed subgroup of $GL_d(\mathbb{R})$.

For instance, the following well-known matrix groups are examples of Lie groups:

- $SL_d(\mathbb{R}) = \{g \in GL_d(\mathbb{R}) : \det(g) = 1\}$ — the special linear group,
- $O_d(\mathbb{R}) = \{g \in GL_d(\mathbb{R}) : \, ^tgg = I\}$ — the orthogonal group.

In order to understand the structure of Lie groups, we first study one-parameter groups.

Definition 1.2. A **one-parameter group** σ is a continuous homomorphism $\sigma : \mathbb{R} \to GL_d(\mathbb{R})$.

One-parameter groups can be constructed using the exponential map:

$$\exp(A) = \sum_{n=0}^{\infty} \frac{A^n}{n!}, \quad A \in M_d(\mathbb{R}).$$

Since $\|A^n\| \leq \|A\|^n$, this series converges uniformly on compact sets and defines an analytic map.

The exponential map satisfies the following properties:

Lemma 1.3. (i) $\exp(^tA) = ^t\exp(A)$,

(ii) For $g \in GL_d(\mathbb{R})$, $\exp(gAg^{-1}) = g \exp(A)g^{-1}$,

(iii) If $AB = BA$, then $\exp(A + B) = \exp(A) \exp(B)$,

(iv) $\det(\exp(A)) = \exp(\text{Tr}(A))$.

3
Proof. (i) and (ii) are easy to check by a direct computation.

To prove (iii), we observe that by the Binomial Formula,

\[\exp(A) \exp(B) = \sum_{n,m=0}^{\infty} \frac{A^n B^m}{n! m!} = \sum_{\ell=0}^{\infty} \frac{1}{\ell!} \left(\sum_{m+n=\ell} \frac{\ell!}{n! m!} A^n B^m \right) \]

\[= \sum_{\ell=0}^{\infty} \frac{1}{\ell!} (A + B)^\ell = \exp(A + B). \]

To prove (iv), we use the Jordan Canonical Form. Every matrix \(A \) can be written as

\[A = g(A_1 + A_2) g^{-1}, \]

where \(g \in \text{GL}_d(\mathbb{R}) \), \(A_1 \) is a diagonal matrix, and \(A_2 \) is an upper triangular nilpotent matrix that commutes with \(A_1 \). It follows from (ii)–(iii) that once the claim is established for \(A_1 \) and \(A_2 \), then it will also hold for \(A \). Since \(A_1 \) and \(A_2 \) are of special shape, the claim for them can be verified by a direct computation.

Lemma 1.3 implies that

\[\sigma_A(t) = \exp(tA) \]

defines a one-parameter group. We note that in a neighbourhood of zero,

\[\sigma_A(t) = I + tA + O(t^2). \]

This implies that

\[\sigma_A'(0) = A \quad \text{and} \quad (D \exp)_0 = I, \]

where \(DF \) denotes the derivative of a map \(F : \text{M}_d(\mathbb{R}) \to \text{M}_d(\mathbb{R}) \). Hence, by the Inverse Function Theorem, the exponential map gives an analytic bijection from a small neighbourhood of the zero matrix 0 to a small neighbourhood of the identity matrix \(I \) in \(\text{M}_d(\mathbb{R}) \). This observation will play important role below.

Our first main result is a complete description of one-parameter groups:

Theorem 1.4. Every one-parameter group is of the form \(t \mapsto \exp(tA) \) for some \(A \in \text{M}_d(\mathbb{R}) \).
This theorem, in particular, implies a non-obvious fact that every continuous homomorphism $\mathbb{R} \to \text{GL}_d(\mathbb{R})$ is automatically analytic. As we shall see, this is a prevalent phenomenon in the world of Lie groups (cf. Corollary 1.13 below).

Proof. We claim that if for some matrices Y_1 and Y_2, we have
\[||Y_1 - I|| < 1, \quad ||Y_2 - I|| < 1, \quad Y_1^2 = Y_2^2, \]
then $Y_1 = Y_2$. Let us write $Y_i = I + A_i$. Then since $(I + A_1)^2 = (I + A_2)^2$,
\[2A_1 - 2A_2 = A_2^2 - A_1^2 = A_2(A_2 - A_1) + (A_2 - A_1)A_1, \]
and
\[2||A_1 - A_2|| \leq (||A_2|| + ||A_1||)||A_2 - A_1||. \]
Because $||A_2|| + ||A_1|| < 2$, this implies the claim.

Let σ be a one-parameter group. It follows from continuity of the maps σ and \exp that there exist $\delta, \epsilon > 0$ such that
\[\sigma([\epsilon \cdot 1, \epsilon]) \subset \exp(\{ ||X|| < \delta \}) \subset \{ ||Y - I|| < 1 \}. \]
In particular, $\sigma(\epsilon) = \exp(\epsilon A)$ for some A with $||A|| < \delta / \epsilon$. Then $\sigma(\frac{1}{2} \epsilon)^2 = \exp(\frac{1}{2} \epsilon A)^2$, and applying the above claim, we deduce that $\sigma(\frac{1}{2} \epsilon) = \exp(\frac{1}{2} \epsilon A)$. We repeat this argument to conclude that $\sigma(\frac{1}{2m} \epsilon) = \exp(\frac{1}{2m} \epsilon A)$ for all $m \in \mathbb{N}$, and taking powers, we obtain $\sigma(\frac{n}{2m} \epsilon) = \exp(\frac{n}{2m} \epsilon A)$ for all $n \in \mathbb{Z}$ and $m \in \mathbb{N}$. Therefore, it follows from continuity of the maps σ and \exp that $\sigma(t \epsilon) = \exp(t \epsilon A)$ for all $t \in \mathbb{R}$, as required.

1.2 Lie algebras

One of the most basic and very useful ideas in mathematics is the idea of linearisation. In the setting of Lie groups, this leads to the notion of Lie algebra. For $X, Y \in M_d(\mathbb{R})$, we define the *Lie bracket* by
\[[X, Y] = XY - YX. \]
It turns out that the Lie bracket corresponds to the second order term of the Taylor expansion of product map $(g, h) \mapsto g \cdot h$.

Definition 1.5. A subspace of $M_d(\mathbb{R})$ is called a *Lie algebra* if it closed with respect to the Lie bracket operation.
Definition 1.6. The Lie algebra of a Lie group G is defined by

$$\mathcal{L}(G) = \{ X \in \text{Mat}_{d}(\mathbb{R}) : \exp(tX) \in G \text{ for all } t \in \mathbb{R} \}.$$

For example, using Lemma 1.3, one can check that

- $\mathcal{L}(\text{SL}_d(\mathbb{R})) = \{ X \in \text{Mat}_{d}(\mathbb{R}) : \text{Tr}(X) = 0 \}$,
- $\mathcal{L}(\text{O}_d(\mathbb{R})) = \{ X \in \text{Mat}_{d}(\mathbb{R}) : tX + X = 0 \}$.

We prove that

Proposition 1.7. $\mathcal{L}(G)$ is a Lie algebra, namely, it is a vector space and is closed under the Lie bracket operation.

Given $A, B \in \text{Mat}_{d}(\mathbb{R})$ such that $\|A\|, \|B\| < r$ with $r \approx 0$, the product $\exp(A) \exp(B)$ is contained in a small neighbourhood of identity. Hence,

$$\exp(A) \exp(B) = \exp(C),$$

where $C = C(A, B)$ is a uniquely determined matrix contained in a neighbourhood of zero. We compute the Taylor expansion for C:

Lemma 1.8. $C(A, B) = A + B + \frac{1}{2}[A, B] + O(r^3)$.

Proof. We have $\exp(A) = I + O(r)$ and $\exp(B) = I + O(r)$, so that

$$\exp(A) \exp(B) = I + O(r) \quad \text{and} \quad C = \exp^{-1}(I + O(r)) = O(r).$$

This implies that $\exp(C) = I + C + O(r^2)$. On the other hand,

$$\exp(A) \exp(B) = (I + A + O(r^2))(I + B + O(r^2)) = I + A + B + O(r^2).$$

Therefore, $C = A + B + O(r^2)$.

This process can be continued to compute the higher order terms in the expansion of C. We write $C = A + B + S$ where $S = O(r^2)$. Then

$$\exp(C) = I + (A + B + S) + (A + B + S)^2/2 + O(r^3)$$

$$= I + A + B + S + (A + B)^2/2 + O(r^3).$$

On the other hand,

$$\exp(A) \exp(B) = (I + A + A^2/2 + O(r^3))(I + B + B^2/2 + O(r^3))$$

$$= I + A + B + AB + A^2/2 + B^2/2 + O(r^3).$$
Hence,

\[S = (I + A + B + AB + A^2/2 + B^2/2) - (I + A + B + (A + B)^2/2) + O(r^3) = \frac{1}{2} [A, B] + O(r^3). \]

This implies the lemma.

The proof of Lemma 1.8 can be generalised to prove the **Campbell–Baker–Hausdorff formula**:

\[
C(A, B) = \sum_{n=0}^{N} C_n(A, B) + O(r^{N+1}), \quad (1.1)
\]

where \(C_n \) are explicit homogeneous polynomials of degree \(n \) which are expressed in terms of Lie brackets.

For Lemma 1.8, we deduce:

Corollary 1.9. For every \(A, B \in M_d(\mathbb{R}) \),

\((i) \) \(\exp(A + B) = \lim_{n \to \infty} (\exp(A/n) \exp(B/n))^n \),

\((ii) \) \(\exp([A, B]) = \lim_{n \to \infty} (\exp(A/n) \exp(B/n) \exp(-A/n) \exp(-B/n))^{n^2} \).

Proof. By Lemma 1.8,

\[\exp(A/n) \exp(B/n) = \exp(C_n), \quad \text{where} \ C_n = (A + B)/n + O(1/n^2). \quad (1.2) \]

Hence,

\[(\exp(A/n) \exp(B/n))^n = \exp(A + B + O(1/n)) \to \exp(A + B) \]

as \(n \to \infty \). This proves (i).

The proof of (ii) is similar and is left to the reader. \(\square \)

Now we are ready to prove Proposition 1.7.

Proof of Proposition 1.7. It is clear for the definition that if \(A \in \mathcal{L}(G) \), then \(\mathbb{R}A \subset \mathcal{L}(G) \). Hence, it remains to show that for \(A, B \in \mathcal{L}(G) \), the matrices \(A + B \) and \([A, B]\) also belong to \(\mathcal{L}(G) \).
We shall use the following observation:

if \(C_n \in \exp^{-1}(G), \ C_n \to 0, s_n C_n \to D \) for some \(s_n \in \mathbb{R} \), then \(D \in \mathcal{L}(G) \).

(1.3)

To prove this observation, we need to show that \(\exp(tD) \in G \) for all \(t \in \mathbb{R} \).

Let \(m_n = \lfloor ts_n \rfloor \). Then

\[
\lim_{n \to \infty} m_n C_n = \lim_{n \to \infty} ts_n C_n = tD.
\]

Since \(C_n \in \exp^{-1}(G) \), we have \(\exp(m_n C_n) = \exp(C_n)^{m_n} \in G \). Hence, since \(G \) is closed, \(\exp(tD) \in G \), which proves the observation.

Now let us prove that \(A + B \in \mathcal{L}(G) \) when \(A, B \in \mathcal{L}(G) \). For sufficiently large \(n \),

\[
\exp(A/n) \exp(B/n) = \exp(C_n),
\]

where \(C_n \to 0 \). It is clear that \(C_n \in \exp^{-1}(G) \). By (1.2), \(nC_n \to A + B \). Hence, the above observation implies that \(A + B \in \mathcal{L}(G) \).

Similarly, using Corollary 1.9(ii), we obtain that if \(A, B \in \mathcal{L}(G) \), then

\[
\exp(A/n) \exp(B/n) \exp(-A/n) \exp(-B/n) = \exp(C_n),
\]

where \(C_n \in \exp^{-1}(G) \), \(C_n \to 0 \) and \(n^2 C_n \to [A, B] \). Therefore, the above observation shows that \([A, B] \in \mathcal{L}(G) \).

The exponential map can be used to show that a Lie group locally looks like the Euclidean space of dimension \(\dim(\mathcal{L}(G)) \) and has a structure of an analytic manifold.

Proposition 1.10. The exponential map defines a bijection between a neighbourhood of zero in \(\mathcal{L}(G) \) and a neighbourhood of identity in \(G \).

Proof. We write \(M_d(\mathbb{R}) = \mathcal{L}(G) \oplus V \), where \(V \) is a complementary subspace, and denote by \(\pi : M_d(\mathbb{R}) \to \mathcal{L}(G) \) and \(\bar{\pi} : M_d(\mathbb{R}) \to V \) the corresponding projection maps. Let

\[F : M_d(\mathbb{R}) \to M_d(\mathbb{R}) : A \mapsto \exp(\pi(A)) \exp(\bar{\pi}(A)). \]

We have

\[
\frac{d}{dt}(\exp(\pi(tA)) \exp(\bar{\pi}(tA)))|_{t=0} = \pi(A) + \bar{\pi}(A) = A.
\]
Hence, \((DF)_0 = I\), and it follows from the Inverse Function Theorem that for sufficiently small neighbourhood \(\mathcal{O}\) of 0, the map \(F : \mathcal{O} \to F(\mathcal{O})\) is a bijection.

We already remarked above that the exponential map defines a bijection between a neighbourhood of 0 in \(M_d(\mathbb{R})\) and a neighborhood of \(I\) in \(M_d(\mathbb{R})\). To prove the proposition, it remains to show that \(\exp(\mathcal{O} \cap \mathcal{L}(G)) \subset G\) is a neighbourhood of identity in \(G\). Suppose on the contrary that the set \(\exp(\mathcal{O} \cap \mathcal{L}(G))\) is not a neighbourhood of identity in \(G\). Then since the set \(\exp(\mathcal{O}) \cap G\) is a neighbourhood of identity in \(G\), it follows that there exists a sequence \(B_n \to 0\) such that \(\exp(B_n) \in G\) and \(B_n / \in \mathcal{L}(G)\). We can write \(\exp(B_n) = F(A_n)\) with some matrix \(A_n\) such that \(A_n \to 0\). Since \(B_n / \in \mathcal{L}(G)\), we have \(\bar{\pi}(A_n) \neq 0\). We note that \(\exp(\bar{\pi}(A_n)) = \exp(\pi(A_n))^{-1}\exp(B_n) \in G\).

After passing to a subsequence, we may assume that \(\frac{\bar{\pi}(A_n)}{\|\bar{\pi}(A_n)\|} \to C\) for some matrix \(C \in M_d(\mathbb{R})\) with \(\|C\| = 1\). It is clear that \(C \in V\). On the other hand, it follows from the observation (1.3) that \(C \in \mathcal{L}(G)\). This contradiction completes the proof of the proposition.

\begin{remark}
\textbf{Remark 1.11.} The proof of Proposition 1.10 shows that in a neighbourhood of identity, \(G\) coincides with the zero locus \(\bar{\pi} \circ F^{-1}\). Moreover, \(\mathcal{L}(G)\) is the tangent space of this locus at identity.

Proposition 1.10 can be used to define a \textit{manifold structure} on a Lie group \(G\). We fix a neighbourhood \(\mathcal{U}\) of zero in \(M_d(\mathbb{R})\) such that \(\exp\) is an analytic bijection \(\mathcal{U} \to \exp(\mathcal{U})\) and set \(\mathcal{O} = \mathcal{L}(G) \cap \mathcal{U}\). For every \(g \in G\), we define a \textit{coordinate chart} around \(g\) by
\[
\phi : \mathcal{O} \to G : x \mapsto g \exp(x).
\]
This coordinate chart defines a bijection between \(\mathcal{O}\) and a neighbourhood of \(g\). If \(\psi : \mathcal{O} \to G\) is another coordinate chart, then the map
\[
\psi^{-1} \phi : \psi^{-1}(\phi(\mathcal{O}) \cap \psi(\mathcal{O})) \to \psi^{-1}(\phi(\mathcal{O}) \cap \psi(\mathcal{O}))
\]
is analytic. We say that a map \(f : G \to \mathbb{R}^k\) is \textit{analytic} if \(f \circ \phi\) is analytic for all coordinate charts. In particular, the product map \(G \times G \to G : (g_1, g_2) \mapsto g_1 g_2\) and the inverse map \(G \to G : g \mapsto g^{-1}\) are analytic. Now a Lie group \(G\) can be considered as collection of coordinate charts which are glued together according to the maps (1.4) and such that the group operations are analytic. This leads to the notion of an abstract Lie group. For simplicity of exposition, we restrict our discussion to matrix Lie groups.
1.3 Lie-group homomorphisms

In this section we study continuous homomorphisms \(f : G_1 \to G_2 \) between Lie groups. We show that they induce a Lie-algebra homomorphisms between the corresponding Lie algebras, and that every continuous homomorphism is automatically analytic.

Theorem 1.12. Let \(f : G_1 \to G_2 \) be a continuous homomorphism between Lie groups \(G_1 \) and \(G_2 \). Then there exists a Lie-algebra homomorphism \(Df : \mathcal{L}(G_1) \to \mathcal{L}(G_2) \) such that

\[
\exp(Df(X)) = f(\exp(X)) \quad \text{for all } X \in \mathcal{L}(G_1).
\]

Proof. For every \(X \in \mathcal{L}(G_1) \), the map \(t \mapsto f(\exp(tX)) \) is a one-parameter subgroup. Hence, by Theorem 1.4, we have \(f(\exp(tX)) = \exp(tY) \) for some \(Y \in \text{M}_d(\mathbb{R}). \) Since \(f(G_1) \subset G_2 \), we obtain \(Y \in \mathcal{L}(G_2). \) It is also clear that such \(Y \) is uniquely defined. We set \(Df(X) = Y. \) It follows from the definition that

\[
Df(sX) = sDf(X) \quad \text{for all } s \in \mathbb{R}. \quad (1.5)
\]

We claim that \(Df \) is a Lie-algebra homomorphism, namely, we need to check that for every \(X_1, X_2 \in \mathcal{L}(G_1), \)

\[
Df(X_1 + X_2) = Df(X_1) + Df(X_2), \quad (1.6)
\]

\[
Df([X_1, X_2]) = [Df(X_1), Df(X_2)]. \quad (1.7)
\]

To verify the first identity, we use Corollary 1.9(i) and continuity of \(f \):

\[
\exp(Df(X_1 + X_2)) = f(\exp(X_1 + X_2)) = \lim_{n \to \infty} f((\exp(X_1/n) \exp(X_2/n))^n)
\]
\[
= \lim_{n \to \infty} (f(\exp(X_1/n))f(\exp(X_2/n)))^n
\]
\[
= \lim_{n \to \infty} (\exp(Df(X_1)/n) \exp(Df(X_2)/n))^n
\]
\[
= \exp(Df(X_1) + Df(X_2)).
\]

Because of (1.5), it is sufficient to verify (1.6) when \(X_1 \) and \(X_2 \) are sufficiently small. Then the exponential map is one-to-one, and the first identity follows.

The second identity can be proved similarly with a help of Corollary 1.9(ii).

Since the exponential map is analytic, Theorem 1.12 implies
Corollary 1.13. Any continuous homomorphism between Lie groups is analytic.

In view of Theorem 1.12, it is natural to ask whether every Lie-algebra homomorphism $F : \mathcal{L}(G_1) \to \mathcal{L}(G_2)$ corresponds to a homomorphism $f : G_1 \to G_2$ of the corresponding Lie groups. As the following example demonstrates, this is not always the case. Let

$$G = O_2(\mathbb{R}) = \{g : 'gg = I\} = \left\{ \pm \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} : \theta \in [0, 2\pi) \right\}.$$

Its Lie algebra

$$\mathcal{L}(G) = \{x : 'X + X = 0\} = \left\{ \begin{pmatrix} 0 & \theta \\ -\theta & 0 \end{pmatrix} : \theta \in \mathbb{R} \right\}$$

has trivial Lie bracket operation, and every linear map $\theta \mapsto c\theta$ defines a Lie-algebra homomorphism $\mathcal{L}(G) \to \mathcal{L}(G)$. However, this linear map corresponds to a homomorphism $G \to G$ only when $c \in \mathbb{Z}$. This example demonstrates that the Lie algebra captures only local structure of its Lie group.

It turns out that for simply connected Lie groups the answer to the above question is positive. Recall that

Definition 1.14. A topological space X is called simply connected if X is path connected and for any two paths between $x_0, x_1 \in X$ can be continuously deformed into each other, namely, for any continuous maps $\alpha_0, \alpha_1 : [0, 1] \to X$ such that $\alpha_0(0) = \alpha_1(0) = x_0$ and $\alpha_0(1) = \alpha_1(1) = x_1$, there exists a continuous map $\alpha : [0, 1]^2 \to X$ such that

$$\alpha(0, \cdot) = \alpha_0, \quad \alpha(1, \cdot) = \alpha_1, \quad \alpha(\cdot, 0) = x_0, \quad \alpha(\cdot, 1) = x_1.$$

Theorem 1.15. If a Lie group G_1 is simply connected and $F : \mathcal{L}(G_1) \to \mathcal{L}(G_2)$ is a Lie-algebra homomorphism, then there exists a smooth homomorphism $f : G_1 \to G_2$ such that $F = Df$.

Proof. We fix a small neighbourhood \mathcal{U} of identity in G_1 such that the exponential map defines a bijection on \mathcal{U}. We define

$$f(g) = \exp(F(\exp^{-1}(g))) \quad \text{for } g \in \mathcal{U}. \quad (1.8)$$
In order to define f for general $g \in G_1$ we take a continuous path $\alpha : [0, 1] \to G_1$ from I to g and take a partition $\{t_i\}_{i=0}^m$ of $[0, 1]$ such that $\alpha(t_{i+1}) \in U \alpha(t_i)$. Then

$$g = \alpha(1) = \alpha(t_m)\alpha(t_{m-1})^{-1} \cdots \alpha(t_1)\alpha(t_0)^{-1}.$$

We define

$$f(g) = f(\alpha(t_m)\alpha(t_{m-1})^{-1}) \cdots f(\alpha(t_1)\alpha(t_0)^{-1}). \quad (1.9)$$

We shall show that this definition does not depend on the choices of the path and the partition. Take a neighbourhood V of identity in G_1, and let us consider a continuous path $\beta : [0, 1] \to G_1$ which is a continuous perturbation of α defined as follows. We replace the map α on one of the intervals $[t_i, t_{i+1}]$ by another map such that for some $s \in (t_i, t_{i+1})$, we have

$$\beta(t_{i+1})\beta(s)^{-1}, \beta(s)\beta(t_i)^{-1} \in V,$$

and refine the partition by adding the point s. This gives the same value $f(g)$ if

$$f(\beta(t_{i+1})\beta(s)^{-1}) f(\beta(s)\beta(t_i)^{-1}) = f(\beta(t_{i+1})\beta(t_i)^{-1}). \quad (1.10)$$

We write

$$\beta(t_{i+1})\beta(s)^{-1} = \exp(X) \quad \text{and} \quad \beta(s)\beta(t_i)^{-1} = \exp(Y)$$

for some $X, Y \in \exp^{-1}(V)$. Then $\beta(t_{i+1})\beta(t_i)^{-1} = \exp(X) \exp(Y)$. We apply the Baker–Campbell–Hausdorff formula (1.1). Assuming that V is sufficiently small, we obtain

$$f(\exp(X) \exp(Y)) = f(\exp(C(X, Y))) = \exp(F(C(X, Y)))$$

$$= \exp(C(F(X), F(Y))) = \exp(F(X)) \exp(F(Y))$$

$$= f(\exp(X)) f(\exp(Y)).$$

This proves (1.10). In particular, it is clear from the argument that the definition of $f(g)$ in (1.9) is independent of the partition.

Since G_1 is simply connected, given two paths α_0 and α_1 from I to g, we can transform α_0 to α_1 using finitely many perturbations as above. Hence, the definition of $f(g)$ in (1.9) is independent of the path, and we have a well-defined map $f : G_1 \to G_2$.

Now we show that f is a homomorphism. Let $g, h \in G$ and $\alpha, \beta : [0, 1] \to G$ be paths from I to g and h respectively. We define a path from I to gh by

$$\gamma(t) = \begin{cases}
\beta(2t), & t \in [0, 1/2], \\
\alpha(2t-1)h, & t \in [1/2, 1].
\end{cases}$$
Then according to the definition of f,

\[f(gh) = \prod_{i=m}^1 f(\gamma(t_i)\gamma(t_i^{-1})) \]
\[= \left(\prod_{i=m}^{m'} f(\alpha(t_i)\alpha(t_i^{-1})) \right) \left(\prod_{i=m'}^{1} f(\beta(t_i)\beta(t_i^{-1})) \right) \]
\[= f(g)f(h). \]

Hence, f is a homomorphism.

Finally, the relation $Df = F$ follows from (1.8). \hfill \Box

2 Invariant measures

The Lebesgue measure on \mathbb{R}^d plays fundamental role in classical analysis. It can be characterised uniquely (up to a scalar multiple) by the following properties:

- (invariance) For every $f \in C_c(\mathbb{R}^d)$ and $a \in \mathbb{R}^d$,
 \[\int_{\mathbb{R}^d} f(a + x) \, dx = \int_{\mathbb{R}^d} f(x) \, dx. \]

- (local finiteness) For every bounded measurable $B \subset \mathbb{R}^d$,
 \[\text{vol}(B) < \infty. \]

In this section we discuss invariant measures for Lie groups. We first show that the invariant measure is unique as in the case of the Lebesgue measure.

Theorem 2.1. A left-invariant locally finite Borel measure on a Lie group is unique up to a scalar multiple.

Proof. Let m_1 and m_2 be nonzero left-invariant locally finite Borel measures on a Lie group G. Replacing m_1 by $m_1 + m_2$, we may assume that m_2 is absolutely continuous with respect to m_1. Namely, if $m_1(B) = 0$ for some measurable $B \subset G$, then $m_2(B) = 0$ as well.
We fix a nonnegative $\phi \in C_c(G)$ with $\int_G \phi \, dm_1 = 1$ and set $c = \int_G \phi \, dm_2$. Using the Fubini Theorem and invariance of the measures, we deduce that for every $f \in C_c(G)$,

$$c \cdot \int_G f(x) \, dm_1(x) = \int_{G \times G} f(x) \phi(y) \, dm_1(x) \, dm_2(y) \quad (2.1)$$

$$= \int_G \left(\int_G f(x) \, dm_1(x) \right) \phi(y) \, dm_2(y)$$

$$= \int_G \left(\int_G f(y^{-1}x) \, dm_1(x) \right) \phi(y) \, dm_2(y)$$

$$= \int_G \left(\int_G f((x^{-1}y)^{-1}) \phi(y) \, dm_2(y) \right) \, dm_1(x)$$

$$= \int_{G \times G} f(y^{-1}) \phi(xy) \, dm_1(x) \, dm_2(y)$$

$$= \int_G f(y^{-1}) \Delta(y) \, dm_2(y),$$

where $\Delta(y) = \int_G \phi(xy) \, dm_1(x)$. Applying the same argument with m_2 replaced by m_1 twice, we obtain

$$1 \cdot \int_G f(x) \, dm_1(x) = \int_G f(y^{-1}) \Delta(y) \, dm_1(y) \quad (2.2)$$

$$= \int_G f(y) \Delta(y^{-1}) \Delta(y) \, dm_1(y).$$

Let $B = \{ y : \Delta(y^{-1}) \Delta(y) \neq 1 \}$. Since (2.2) holds for all $f \in C_c(G)$, it follows that $m_1(B) = 0$. Then $m_2(B) = 0$ as well, and applying (2.1)-(2.2), we get

$$\int_G f \, dm_2 = \int_G f(y) \Delta(y^{-1}) \Delta(y) \, dm_2(y)$$

$$= c \cdot \int_G f(y^{-1}) \Delta(y) \, dm_1(y)$$

$$= c \cdot \int_G f \, dm_1$$

for every $f \in C_c(G)$. Because the measures m_1 and m_2 are locally finite, one can show that they are uniquely determined by their values on $C_c(G)$. Hence, $m_2 = c \cdot m_1$. \qed
Our next task is to develop the theory of integration using a collection of coordinate charts constructed in the previous section. Here we take the most elementary approach, but if the reader is familiar with the theory of differential forms, most of this discussion might be redundant.

Let $\phi_1 : O_1 \to G$ be a coordinate chart for G, where O_1 is an open subset of \mathbb{R}^d. We fix a measurable bounded function $\delta_1 : O_1 \to \mathbb{R}^+$. Given a function f on G with support contained in $\phi_1(O_1)$. We define

$$\int_G f \, dm_{\delta_1} = \int_{O_1} f(\phi_1(x)) \delta_1(x) \, dx.$$

This definition depends on the choices of the coordinate chart ϕ_1 and the function δ_1. Let $\phi_2 : O_2 \to G$ be another coordinate chart and $\delta_2 : O_2 \to \mathbb{R}^+$. Suppose that the support of f is also contained in $\phi_2(O_2)$. Then using the change of variables formula for the Lebesgue integral, we obtain

$$\int_G f \, dm_{\delta_2} = \int_{O_2} f(\phi_2(y)) \delta_2(y) \, dy = \int_{O_1} f(\phi_1(x)) \delta_2(\phi_2^{-1}\phi_1(x)) \text{Jac}(\phi_2^{-1}\phi_1)_x \, dx,$$

where $\text{Jac}(\phi_2^{-1}\phi_1)_x$ denotes the Jacobian of the map $\phi_2^{-1}\phi_1$. Hence,

$$m_{\delta_1} = m_{\delta_2} \iff \delta_2(\phi_2^{-1}\phi_1(x)) \text{Jac}(\phi_2^{-1}\phi_1)_x = \delta_1(x).$$

(2.3)

Definition 2.2. A *volume density* δ is a collection of bounded measurable functions $\delta_\phi : O \to \mathbb{R}^+$ assigned to each coordinate chart $\phi : O \to \mathbb{R}^+$ that satisfy the compatibility condition (2.3).

Now given a volume density δ on a Lie group G, we define a measure m_δ on G. For every $f \in C_c(G)$, we write $f = f_1 + \cdots + f_\ell$ for $f_i \in C_c(G)$ such that the support of f_i is contained in $\phi_i(O_i)$ for some coordinate charts $\phi_i : O_i \to G$. We define

$$\int_G f \, dm_\delta = \sum_{i=1}^\ell \int_{O_i} f(\phi_i(x)) \delta_{\phi_i}(x) \, dx.$$

One can check using the compatibility condition (2.3) that this definition is independent of the choices of the decomposition of f and the coordinate charts ϕ_i, so that the measure m_δ is well-defined.
We investigate when the measure \(m_\delta \) is left-invariant. Given a function \(f \in C_c(G) \) such that the support of \(f \) is contained in \(\phi(O) \) for a coordinate chart \(\phi : O \to G \), we have

\[
\int_G f d\delta = \int_O f(\phi(x)) \delta_\phi(x) \, dx
\]

To compute the integral of the function \(x \mapsto f(g_0x) \) with \(g_0 \in G \), we observe that its support is contained in \(g_0^{-1}\phi(O) \), so that

\[
\int_G f(g_0x) d\delta = \int_G f(g_0^{-1}\phi(x)) \delta_{g_0^{-1}\phi}(x) \, dx
\]

This computation shows that the measure \(m_\delta \) is left-invariant if and only if

\[
\delta_\phi = \delta_{g_0\phi} \quad \text{for all } g_0 \in G \text{ and all coordinate charts } \phi. \tag{2.4}
\]

Using this construction, we prove

Theorem 2.3. Every Lie group supports an analytic left-invariant measure.

Proof. In view of the above discussion, it is sufficient to show that there exists an analytic volume density satisfying (2.3) and (2.4). We fix a coordinate chart \(\phi_0 : O_0 \to G \) such that \(\phi_0(z_0) = I \) for some \(z_0 \in O_0 \). For every other coordinate chart \(\phi : O \to G \), we define

\[
F_\phi(x, z) = \phi^{-1}(\phi(x)\phi_0(z)),
\]

\[
\delta_\phi(x) = \text{Jac} (F_\phi(x, \cdot))_{z_0}^{-1}.
\]

Given any other coordinate chart \(\psi \), we have

\[
F_\psi(\psi^{-1}\phi(x), z) = \psi^{-1}(\phi(x)\phi_0(z)) = \psi^{-1}\phi(F_\phi(x, z)),
\]

and

\[
\text{Jac} (F_\psi(\psi^{-1}\phi(x), \cdot))_{z_0} = \text{Jac}(\psi^{-1}\phi)_x \text{Jac}(F_\phi(x, \cdot)).
\]

This implies that (2.3) holds.

To check (2.4), we compute

\[
F_{g_0\phi}(x, z) = (g_0\phi)^{-1}(g_0\phi(x)\phi_0(z)) = \phi^{-1}(\phi(x)\phi_0(z)) = F_\phi(x, z),
\]

so that

\[
\text{Jac}(F_{g_0\phi}(x, \cdot))_{z_0} = \text{Jac}(F_\phi(x, \cdot))_{z_0},
\]

and (2.4) holds. This completes the proof of the theorem. \(\square \)
The above construction of the invariant measure is quite explicit. For example, for the group
\[SL_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : ad - bc = 1 \right\} \]
the left-invariant measure is given by \(\frac{\text{dadbdc}}{a} \). This measure is also right-invariant. In general, a left-invariant measure does not have to be right-invariant.

Definition 2.4. A Lie group is called **unimodular** if the left-invariant measure on \(G \) is also right-invariant.

For future reference we also prove

Proposition 2.5. Let \(G \) be a unimodular Lie group and \(G = ST \) where \(S \) and \(T \) are closed subgroups such that \(S \cap T = 1 \). Then the invariant measure on \(G \) is given by
\[
\int_G f \, dm = \int_{S \times T} f(st^{-1}) \, dm_S(s) \, dm_T(t), \quad f \in C_c(G),
\]
where \(m_S \) and \(m_T \) are the left-invariant measures on \(S \) and \(T \) respectively.

Proof. The map \(\Phi(s, t) = st^{-1}, \quad (s, t) \in S \times T \), defines a homeomorphism between \(S \times T \) and \(G \). We consider the measure on \(S \times T \) defined by
\[
f \mapsto \int_G f(\Phi^{-1}(g)) \, dm(g),
\]
where \(m \) is the invariant measure on \(G \). For \((s_0, t_0) \in S \times T\),
\[
\int_G f((s_0, t_0) \cdot \Phi^{-1}(g)) \, dm(g) = \int_G f(\Phi^{-1}(s_0gt_0^{-1})) \, dm(g) \\
= \int_G f(\Phi^{-1}(g)) \, dm(g).
\]
Hence, it follows from the uniqueness of invariant measure (Theorem 2.1) that this measure is proportional to the product measure \(m_S \times m_T \). This implies the proposition. \(\square \)
3 Finite-dimensional representations

A representation of a Lie group G is a continuous homomorphism

$$\rho : G \rightarrow \text{GL}_d(\mathbb{C}).$$

The aim of this section is to explore such representations and, more specifically, find a basis of \mathbb{C}^d such these representations have the most simple form. As we shall see, the situation is very different for two classes of groups — the solvable groups and the semisimple groups.

We start our discussion with the case of a solvable group. For a Lie algebra \mathfrak{g}, we define inductively

$$\mathfrak{g}^{(1)} = \langle [x, y] : x, y \in \mathfrak{g} \rangle, \quad \mathfrak{g}^{(2)} = \langle [x, y] : x, y \in \mathfrak{g}^{(1)} \rangle, \ldots$$

Definition 3.1. A connected Lie group G is called solvable if $\mathcal{L}(G)^{(n)} = 0$ for some n.

A basic example of a solvable Lie group is any closed subgroup of the group of upper triangular matrices. The following theorem shows that this example is typical.

Theorem 3.2 (Lie-Kolchin). Let $\rho : G \rightarrow \text{GL}_d(\mathbb{C})$ be a representation of a connected solvable Lie group G. Then there exists $g \in \text{GL}_d(\mathbb{C})$ such that $g\rho(G)g^{-1}$ is contained in the group of upper triangular matrices.

We start the proof with

Lemma 3.3. Let G be a connected Lie group. Then for every nonempty open $U \subset G$, we have $G = \langle U \rangle$.

Proof. Let $H = \langle U \rangle$. It is clear that H is an open subgroup of G. We have the coset decomposition $G = \bigsqcup_{g \in G/H} gH$ consisting of disjoint open sets. Since G is connected, we conclude that $G = H$.

Proof of Theorem 3.2. By Theorem 1.12, we have a Lie-algebra homomorphism $D\rho : \mathcal{L}(G) \rightarrow \text{M}_d(\mathbb{C})$ such that

$$\rho(\exp(X)) = \exp(D\rho(X)) \quad \text{for all } X \in \mathcal{L}(G).$$

(3.1)

If we prove that $gD\rho(\mathcal{L}(G))g^{-1}$ is of upper triangular form for some $g \in \text{GL}_d(\mathbb{C})$, then it follows from (3.1) that $g\rho(U)g^{-1}$ is also of upper triangular
form for a neighbourhood U of identity in G. Then it follows from Lemma 3.3 that $g\rho(G)g^{-1}$ is of upper triangular form as well. Hence, it remains to show that the Lie algebra $h = D\rho(L(G))$ is upper triangular up to a conjugation.

We claim that there exists a one-dimensional h-invariant subspace. Once this claim is established, the theorem follows by induction on dimension. Since h is solvable, $h^{(1)} \neq h$. We take a codimension one subspace h_0 of h that contains $h^{(1)}$ and $X \in h$ such that $h = \langle X, h_0 \rangle$. We note that $[h_0, h] \subset h_0$. By induction on $\dim(h)$, there exists a nonzero vector v such that $h_0 v \subset C v$.

Let V be the subspace generated by the vectors v_i. In the basis $\{v_i\}$, the transformation $[Y, X]|_V$ is upper triangular with $\lambda([Y, X])$ on the diagonal. Hence,

$$\text{Tr}([Y, X]|_V) = \dim(V)\lambda([Y, X]).$$

On the other hand,

$$\text{Tr}([Y, X]|_V) = \text{Tr}(Y|_V X|_V - X|_V Y|_V) = 0.$$

Hence, $\lambda([Y, X]) = 0$ for every $Y \in h_0$. Then using induction on i, we deduce from (3.2) that $[X, h_0]$ acts trivially on V, and $Y v_i = \lambda(Y) v_i$. This proves that every eigenvector of X in V is also an eigenvector of $h = \langle X, h_0 \rangle$, which implies the claim and completes the proof of the theorem.

Definition 3.4. A connected Lie group is called *semisimple* if it contains no nontrivial normal closed connected solvable subgroups.

An example of a semisimple group is the group $\text{SL}_d(\mathbb{R})$. Representations of semisimple groups behave very differently from representations of solvable groups.

Theorem 3.5. Let G be a connected semisimple Lie group and $\rho : G \to \text{GL}_d(\mathbb{C})$ a representation of G. Then every $\rho(G)$-invariant subspace of \mathbb{C}^d has a $\rho(G)$-invariant complement.
In particular, we deduce

Corollary 3.6. In the setting of Theorem 3.5, \(C^d = V_1 \oplus \cdots \oplus V_s \) where the subspaces \(V_i \) are \(\rho(G) \)-invariant and irreducible (i.e., they don’t contain any proper \(\rho(G) \)-invariant subspaces).

In the proof of the theorem, we use

Lemma 3.7. Let \(\rho : G \to \text{GL}_d(\mathbb{C}) \) a representation of a connected Lie group \(G \). Then a subspace \(V \subset C^d \) is \(\rho(G) \)-invariant if and only if it is \(D\rho(\mathcal{L}(G)) \)-invariant.

Proof. We recall that the following relation holds (see Theorem 1.12):

\[
\rho(\exp(X)) = \exp(D\rho(X)) \quad \text{for all } X \in \mathcal{L}(G). \tag{3.3}
\]

If the subspace \(V \) is \(G \)-invariant, then for every \(X \in \mathcal{L}(G) \), \(t \in \mathbb{R} \), and \(v \in V \), we have

\[
\exp(tD\rho(X))v = \rho(\exp(tX))v \in V,
\]

and taking derivative at \(t = 0 \), we obtain that \(D\rho(X)v \in V \), so that \(V \) is \(D\rho(\mathcal{L}(G)) \)-invariant.

Conversely, if \(V \) is \(D\rho(\mathcal{L}(G)) \)-invariant, then it follows from (3.3) that it is \(\exp(\mathcal{L}(G)) \)-invariant. Since by Lemma 3.3, \(\exp(\mathcal{L}(G)) \) generates \(G \), this proves the claim.

Proof of Theorem 3.5. We give a proof using the so-called “Weyl’s unitary trick”. Surprisingly, the invariant measure introduced in the previous section turns out to be very useful to prove this algebraic fact.

We first assume that \(G \) is compact. Let \(\langle \cdot, \cdot \rangle \) be a positive-definite Hermitian form on \(C^d \). We define a new Hermitian form on \(C^d \) by

\[
\langle v_1, v_2 \rangle_G = \int_G \langle \rho(g^{-1})v_1, \rho(g^{-1})v_2 \rangle \, dm(g), \quad v_1, v_2 \in C^d,
\]

where \(m \) is the left-invariant measure on \(G \) constructed in Section 2. Since \(G \) is compact, the measure \(m \) is finite, and the Hermitian form is well-defined. It is also easy see that it is positive-definite. For \(h \in G \) and \(v_1, v_2 \in C^d \),

\[
\langle \rho(h)v_1, \rho(h)v_2 \rangle_G = \int_G \langle \rho(g^{-1}h)v_1, \rho(g^{-1}h)v_2 \rangle \, dm(h)
= \int_G \langle \rho(g^{-1})v_1, \rho(g^{-1})v_2 \rangle \, dm(h) = \langle v_1, v_2 \rangle_G.
\]
Hence, this form is $\rho(G)$-invariant. Given a $\rho(G)$-invariant subspace V, we have a decomposition $\mathbb{C}^d = V \oplus V^\perp$, where $V^\perp = \{ v : \langle v, V \rangle_G = 0 \}$. For $v \in V^\perp$,
\[
\langle \rho(g)v, V \rangle = \langle v, \rho(g)^{-1} V \rangle = 0.
\]
This shows that V^\perp is $\rho(G)$-invariant, and proves the theorem in this case.

Now we explain how to give a proof in general. In fact, we restrict our attention to $G = \text{SL}_2(\mathbb{R})$. The same argument works for general groups, but this requires some knowledge of the structure theory of semisimple groups, which we don’t discuss here. Let $\mathfrak{g} = \mathcal{L}(G)$ and $D\rho : \mathfrak{g} \to M_d(\mathbb{C})$ the corresponding Lie-algebra homomorphism. We denote by $D\rho_C : \mathfrak{g} \otimes \mathbb{C} \to M_d(\mathbb{C})$ the linear extension of $D\rho$ which is also a Lie-algebra homomorphism. We consider the subgroup
\[
H = \text{SU}(2) = \{ g \in \text{GL}_2(\mathbb{C}) : \quad ^tgg = I, \quad \det(g) = 1 \}
\]
\[
= \left\{ \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix} : \quad a, b \in \mathbb{C}, \quad |a|^2 + |b|^2 = 1 \right\}.
\]
Its Lie algebra is
\[
\mathfrak{h} = \mathcal{L}(H) = \{ X \in M_2(\mathbb{C}) : \quad ^tX + X = 0, \quad \text{Tr}(X) = 0 \}
\]
\[
= \left\{ \begin{pmatrix} iu & v \\ -\bar{v} & -iu \end{pmatrix} : \quad u \in \mathbb{R}, \quad v \in \mathbb{C} \right\}.
\]
It is easy to check that
\[
\mathfrak{h} \otimes \mathbb{C} = \{ X \in M_2(\mathbb{C}) : \quad \text{Tr}(X) = 0 \} = \mathfrak{g} \otimes \mathbb{C}.
\]
(3.4)
Since H is simply connected (H is homeomorphic to the 3-dimensional sphere), it follows from Theorem 1.15 that there exists a representation $\tilde{\rho} : H \to \text{GL}_d(\mathbb{C})$ such that $D\tilde{\rho} = D\rho_C|_{\mathfrak{h}}$. Now, if V is a $\rho(G)$-invariant subspace, then by Lemma 3.7, it is also invariant under $D\rho_C(\mathfrak{g} \otimes \mathbb{C}) = D\rho_C(\mathfrak{h} \otimes \mathbb{C})$, and $\tilde{\rho}(H)$-invariant. Since H is compact, we know that V has an $\tilde{\rho}(H)$-invariant complement V'. Then by Lemma 3.7, V' is $D\rho_C(\mathfrak{h})$-invariant. Hence, it follows from (3.4) that V' is $D\rho(\mathfrak{g})$-invariant. Finally, applying Lemma 3.7 again, we conclude that V' is $\rho(G)$-invariant, which finishes the proof.

We note that the main ingredient of the proof is existence of a compact subgroup H such that (3.4) holds. Such subgroup is called a compact form of G, and it is known that every connected semisimple Lie group has a compact form. \qed
4 Algebraic groups

In this section we introduce algebraic groups and discuss their basis properties.

Definition 4.1. A subgroup G of $\text{GL}_d(\mathbb{C})$ is called *algebraic* if it is the zero set of a family of polynomial functions, namely,

$$G = \{ g : P(g) = 0 \text{ for all } P \in I \}$$

for some subset $I \subset \mathbb{C}[x_1, \ldots, x_d]$.

For example, the special linear group $\text{SL}_d(\mathbb{C})$ and the orthogonal group $\text{O}_d(\mathbb{C})$ are algebraic group. It is clear that every algebraic group can be considered as a Lie group and results of the previous sections apply. The advantage of working with algebraic groups is that they exhibit much more rigid behaviour than Lie groups. As an example, we mention the following theorem which will be proved later.

Theorem 4.2. Let $f : G_1 \to G_2$ be a polynomial homomorphism of algebraic groups G_1 and G_2. Then $f(G_1)$ is an algebraic group, in particular, $f(G_1)$ is closed.

An analogue of this statement fails in the category of Lie groups. There are continuous homomorphisms $f : G_1 \to G_2$ between Lie groups such that $f(G_1)$ is not closed. For instance, consider the homomorphism

$$\mathbb{R} \to \text{GL}_2(\mathbb{C}) : t \mapsto \begin{pmatrix} e^{2\pi \omega_1 t} & 0 \\ 0 & e^{2\pi \omega_2 t} \end{pmatrix},$$

where $\omega_1, \omega_2 \in \mathbb{R}$ are rationally independent. The image of this map is not closed.

Other examples of rigid behaviour of algebraic groups are absence of non-trivial recurrence points (Corollary 4.11 below) and robustness of unipotent and semisimple transformations under polynomial homomorphisms (Theorem 4.13 below).

For $I \subset \mathbb{C}[x_1, \ldots, x_d]$, we define

$$\mathcal{V}(I) = \{ x \in \mathbb{C}^d : P(x) = 0 \text{ for all } P \in I \}.$$

A subset of \mathbb{C}^d is called *algebraic* if it is of the form $\mathcal{V}(I)$ for some I. We list some of the basic properties of the operation \mathcal{V}, which are not hard to check:
(i) \(V(\{1\}) = \emptyset, V(\{0\}) = \mathbb{C}^d \),

(ii) \(\cap_i V(I_i) = V(\cup_i I_i) \),

(iii) \(V(I_1) \cup V(I_2) = V(I_1 \cdot I_2) \),

(iv) If \(f : \mathbb{C}^d_1 \to \mathbb{C}^d_2 \) is a polynomial map, then

\[
 f^{-1}(V(I)) = V(\{P \circ f : P \in I\}).
\]

Properties (i)–(iii) imply that the collection \(\{V(I) : I \subset \mathbb{C}[x_1, \ldots, x_d]\} \) satisfies the axioms of closed sets and defines a topology on \(\mathbb{C}^d \) which is called the Zariski topology. It follows from (iv) that polynomial maps are continuous with respect to this topology. Although the Zariski topology provides a convenient framework for studying polynomial maps, the reader should be warned that this topology exhibits many counter-intuitive properties. In particular, it is not Hausdorff, and has some compactness properties (see Proposition 4.4 below).

The usual notion of connectedness is not very useful in this setting and a natural substitute is the notion of irreducibility:

Definition 4.3. A (Zariski) closed subset \(X \) is called **irreducible** if \(X \neq X_1 \cup X_2 \) for any closed \(X_1, X_2 \subset X \).

We show that

Proposition 4.4. Every closed set \(X \) can be decomposed as \(X = X_1 \cup \cdots \cup X_l \) where \(X_i \)'s are irreducible closed sets.

In order to prove this theorem, it would be convenient to introduce an operation which is in some sense the inverse of the map \(I \mapsto V(I) \). For a subset \(X \subset \mathbb{C}^d \), we set

\[
 \mathcal{I}(X) = \{P \in \mathbb{C}[x_1, \ldots, x_d] : P|_X = 0\}.
\]

It is clear that \(\mathcal{I}(X) \) is an ideal in the polynomial ring, and \(V(\mathcal{I}(X)) \supseteq X \). In fact, one can check that \(V(\mathcal{I}(X)) \) is precisely the closure of \(X \) with respect to the Zariski topology.
Proof of Proposition 4.4. Suppose that the claim of the proposition is false. Then there exists an infinite decreasing chain
\[X \supseteq X_1 \supseteq \cdots \supseteq X_n \supseteq \cdots \] (4.1)
where \(X_i \)'s are closed reducible sets. This gives an increasing chain of ideals
\[\mathcal{I}(X_1) \subset \cdots \subset \mathcal{I}(X_n) \subset \cdots \]
in \(\mathbb{C}[x_1, \ldots, x_d] \). According to the Hilbert Basis Theorem [1, Th. 7.5], every ideal in \(\mathbb{C}[x_1, \ldots, x_d] \) is finitely generated. In particular, the ideal \(\bigcup_{n \geq 1} \mathcal{I}(X_n) \) is finitely generated, and it follows that
\[\mathcal{I}(X_n) = \mathcal{I}(X_{n+1}) = \cdots \]
for sufficiently large \(n \). Since \(X_i \)'s are closed, \(X_i = \mathcal{V}(\mathcal{I}(X_i)) \), so that the chain (4.1) stabilises, which is a contradiction. \(\square \)

The proof of Proposition 4.4 demonstrates that geometric properties of closed sets can be studied using tools from Commutative Algebra. This idea turns out to be extremely fruitful.

Definition 4.5. The coordinate ring of a closed subset \(X \) is defined by
\[\mathcal{A}(X) = \mathbb{C}[x_1, \ldots, x_d]/\mathcal{I}(X) \]
Many geometric properties can reformulated in the language of Commutative Algebra, as demonstrated by Table 4 below.

To check the first line of Table 4, we observe that any \(a \in \mathbb{C}^d \) defines an algebra homomorphism
\[\alpha_a : \mathbb{C}[x_1, \ldots, x_d] \to \mathbb{C} : P \mapsto P(a). \]
Moreover, if \(a \in X \), then \(\mathcal{I}(X) \subset \ker(\alpha_a) \) and \(\alpha_a \) defines a homomorphism \(\mathcal{A}(X) \to \mathbb{C} \). Conversely, any homomorphism \(\mathcal{A}(X) \to \mathbb{C} \) is of the form \(P \mapsto P(a) \), where \(Q(a) = 0 \) for all \(Q \in \mathcal{I}(X) \), i.e., \(a \in X \).

In regard to the third line, we note that any polynomial map \(f : \mathbb{C}^{d_1} \to \mathbb{C}^{d_2} \) defines an algebra homomorphism
\[f_\ast : \mathbb{C}[y_1, \ldots, y_{d_2}] \to \mathbb{C}[x_1, \ldots, x_{d_1}] : P \mapsto P \circ f. \]
Geometry	Commutative Algebra
points in X | algebra homomorphisms $\mathcal{A}(X) \to \mathbb{C}$

X is irreducible | $\mathcal{A}(X)$ has no divisors of zero

polynomial maps $f : X \to Y$ | algebra homomorphisms $f_* : \mathcal{A}(Y) \to \mathcal{A}(X)$

$f(X) = Y$ | f_* is injective

Table 1: Algebraic correspondence

This homomorphism defines a map $\mathbb{C}[y_1, \ldots, y_{d_2}]/\mathcal{I}(Y) \to \mathbb{C}[x_1, \ldots, x_{d_1}]/\mathcal{I}(X)$ if

$$f_*(\mathcal{I}(Y)) \subset \mathcal{I}(X) \iff \forall P \in \mathcal{I}(Y) : P|_{f(X)} = 0 \iff f(X) \subset Y.$$

Conversely, any homomorphism $\mathcal{A}(Y) \to \mathcal{A}(X)$ is of this form.

To check the fourth property in Table 1, we observe that $f(X) = Y$ is equivalent to

$$\forall P \in \mathcal{A}(Y) \setminus \{0\} : P|_{f(X)} \neq 0 \iff \forall P \in \mathcal{A}(Y) \setminus \{0\} : f_*(P) \notin \mathcal{I}(X),$$

which means that $f_* : \mathcal{A}(Y) \to \mathcal{A}(X)$ is injective.

The following proposition will be used in the proof of Theorem 4.2.

Proposition 4.6. Let $f : X \to Y$ be a polynomial map between closed sets X and Y. Then $f(X)$ contains an open subset of $\overline{f(X)}$.

We note that for this proposition it is crucial that the field \mathbb{C} is algebraically closed, and the analogous statement fails for polynomial maps $\mathbb{R}^{d_1} \to \mathbb{R}^{d_2}$.
Proof. Using Proposition 4.4, we may reduce the proof to the case when \(X \) is irreducible, and without loss of generality we may assume that \(Y = f(X) \). Then we have an injective algebra homomorphism \(f_* : \mathcal{A}(Y) \to \mathcal{A}(X) \). We claim that

\[
\exists P \in \mathcal{A}(Y) : \{ P \neq 0 \} \cap Y \subset f(X). \tag{4.2}
\]

Since \(\{ P \neq 0 \} \cap Y \) is open in \(Y \), this implies the proposition. We use the correspondence:

\[
\begin{align*}
\{ \text{points in } Y \} & \quad \longleftrightarrow \quad \{ \text{homomorphisms } \mathcal{A}(Y) \to \mathbb{C} \} \\
\{ \text{points in } f(X) \} & \quad \longleftrightarrow \quad \{ \text{homomorphisms factoring through } f_* \}.
\end{align*}
\]

Let \(A = f_* (\mathcal{A}(Y)) \) and \(B = \mathcal{A}(X) \). The claim (4.2) is equivalent to showing that there exists \(Q \in A \) such that every homomorphism \(\phi : A \to \mathbb{C} \) with \(\phi(Q) \neq 0 \) extends to a homomorphism \(B \to \mathbb{C} \). This statement is proved, for instance, in [1, Prop. 5.23].

Now we finally deduce Theorem 4.2 from Proposition 4.6.

Proof of Theorem 4.2. We consider the subgroup \(L = f(G_1) \). Then its closure \(\overline{L} \) is also a subgroup. Indeed, since the multiplication and inverse operations are continuous in Zariski topology,

\[
\overline{L}^{-1} \cdot \overline{L} \subset \overline{L}^{-1} \cdot \overline{L} \subset \overline{L}.
\]

By Proposition 4.6, \(L \) contains an open subset of \(\overline{L} \), and it follows that \(L \) is an open subgroup of \(\overline{L} \). We have the coset decomposition

\[
\overline{L} = \bigcup_{l \in \overline{L}/L} lL,
\]

where each of the cosets is open in \(\overline{L} \). Hence, \(L \) is closed, which completes the proof.

Definition 4.7. A closed subset \(X \subset \mathbb{C}^d \) is defined over \(K \) (for a subfield \(K \) of \(\mathbb{C} \)) if the ideal \(\mathcal{I}(X) \) is generated by elements in \(K[x_1, \ldots, x_d] \).

For a closed subset defined over \(K \), we set \(X(K) = X \cap K^d \). In general, the set \(X(K) \) could be quite small and even empty, but in the setting of algebraic groups, we have:
Proposition 4.8. Let G be an algebraic group defined over \mathbb{R}. Then $G(\mathbb{R})$ is a Lie group of dimension $\dim_{\mathbb{C}}(G)$.

Proof. Suppose that the group G is defined by a system $P_1 = \cdots = P_s = 0$ of polynomial equations with real coefficients. We recall from Remark 1.11 that the Lie algebra can be computed as the tangent space at identity, so that

$$L(G) = \{ X \in M_d(\mathbb{C}) : (DP_1)_IX = \cdots = (DP_s)_IX = 0 \},$$

$$L(G(\mathbb{R})) = \{ X \in M_d(\mathbb{R}) : (DP_1)_IX = \cdots = (DP_s)_IX = 0 \}.$$

Since $\dim_{\mathbb{C}}(L(G)) = \dim_{\mathbb{R}}(L(G(\mathbb{R})))$, the claim follows. \square

The following result is one of the main theorems of this section, which shows that orbits for polynomial actions behave nicely.

Theorem 4.9. Let G be an irreducible algebraic group defined over \mathbb{R}, $X \subset \mathbb{C}^d$ a Zariski closed set defined over \mathbb{R}, $x \in X(\mathbb{R})$, and $G \times X \to X$ a polynomial action defined over \mathbb{R}. We denote by Y the Zariski closure of $G \cdot x$ in X. Then the map $G(\mathbb{R}) \to Y(\mathbb{R}) : g \mapsto g \cdot x$ is open with respect to the Euclidean topology.

Proof. Without loss of generality, we may assume that $X = Y$. Then since G is irreducible, Y is irreducible. For Proposition 4.6 we know that $G \cdot x$ contains a Zariski open subset X. Since G acts transitively on $G \cdot x$, it follows that $G \cdot x$ is, in fact, Zariski open in X.

Let X_0 be the set of smooth points of X (i.e., the set of points where the tangent space has minimal dimension). This set is Zariski open in X and G-invariant. Since X is irreducible, the intersection of finitely many nonempty Zariski open subsets in X is nonempty. In particular, $G \cdot x \cap X_0 \neq \emptyset$, and it follows that $G \cdot x \subset X_0$.

We consider the orbit map $F : G \to X : g \mapsto g \cdot x$ and its derivative $(DF)_g : T_g(G) \to T_{g \cdot x}(X)$, where $T_g(G)$ and $T_{g \cdot x}(X)$ denote the corresponding tangent spaces. Since $G \cdot x$ is Zariski open in X, the map $(DF)_g$ is onto. Then the map $(DF)_g : T_g(G(\mathbb{R})) \to T_{g \cdot x}(X(\mathbb{R}))$ is also onto. Hence, by the Implicit Function Theorem, the map $F : G(\mathbb{R}) \to X(\mathbb{R})$ is open with respect to the Euclidean topology, as required. \square
Definition 4.10. Let \(\{s(t)\}_{t \in \mathbb{R}} \) be a one-parameter group acting on a topological space \(X \). A point \(x \in X \) is called recurrent if \(s(t_n) \cdot x \to x \) for some sequence \(t_n \to \infty \).

Using Theorem 6.8, we obtain a complete description of recurrent points for algebraic actions.

Corollary 4.11. Let \(S = \{s(t)\}_{t \in \mathbb{C}} \) be a one-dimensional algebraic group defined over \(\mathbb{R} \), \(X \subset \mathbb{C}^d \) a Zariski closed set defined over \(\mathbb{R} \), and \(S \times X \to X \) a polynomial action defined over \(\mathbb{R} \). Then all \(S(\mathbb{R}) \)-recurrent points in \(X(\mathbb{R}) \) are fixed by \(S \).

Proof. By Theorem 4.9, the set \(s((-\epsilon, \epsilon)) \cdot x \) is open in \(\overline{S(\mathbb{R}) \cdot x} \). Hence, if \(s(t_n) \cdot x \to x \), then \(s(t_n) \cdot x \in s((-\epsilon, \epsilon)) \cdot x \) for all sufficiently large \(n \). This implies that \(\text{Stab}_S(x) \) is infinite. Since \(S \) is one-dimensional, \(\text{Stab}_S(x) \) is Zariski dense in \(S \). On the other hand, it is clear that \(\text{Stab}_S(x) \) is Zariski closed. Thus, \(\text{Stab}_S(x) = S \), as claimed.

We complete this section with discussion of semisimple and unipotent elements.

Definition 4.12. • An element \(g \in \text{GL}_d(\mathbb{C}) \) is called semisimple if it is diagonalisable over \(\mathbb{C} \).

• An element \(g \in \text{GL}_d(\mathbb{C}) \) is called unipotent if all of its eigenvalues of \(g \) are equal to one.

We note that it follows from the Jordan Canonical Form that every element \(g \in \text{GL}_d(\mathbb{C}) \) can written as \(g = g_s g_u \) where \(g_s \) and \(g_u \) are commuting semisimple and unipotent elements.

Theorem 4.13. Let \(\rho : \text{GL}_d(\mathbb{C}) \to \text{GL}_N(\mathbb{C}) \) be a polynomial homomorphism. Then

• if \(g \in \text{GL}_d(\mathbb{C}) \) is semisimple, \(\rho(g) \) is also semisimple,

• if \(g \in \text{GL}_d(\mathbb{C}) \) is unipotent, \(\rho(g) \) is also unipotent.

Proof. Suppose that \(g \) is semisimple. Let \(V_\lambda \subset \mathbb{C}^N \) be a Jordan subspace of \(\rho(g) \) with the eigenvalue \(\lambda \). Then the linear map \(\lambda^{-n} \rho(g)^n|_{V_\lambda} \) has coordinates which are polynomials in \(n \). On the other hand, these coordinates can be expressed as polynomials in \(\lambda^{-n}, \lambda_1^n, \cdots, \lambda_s^n \) where \(\lambda_i \)'s are the eigenvalues of
g. This implies that all these coordinates are constant, and \(\lambda^{-n}\rho(g)^n|_{V_\lambda} = 1 \). Hence, \(\rho(g) \) is semisimple.

Suppose that \(g \) is unipotent. Let \(v \in \mathbb{C}^N \) be an eigenvector of \(\rho(g) \) with eigenvalue \(\lambda \). Then \(\rho(g^n)v = \lambda^n v \), but \(\rho(g^n)v \) has coordinates which are polynomials in \(n \). This implies that \(\lambda = 1 \). Hence, \(\rho(g) \) is unipotent.

5 Lattices – geometric constructions

A linear flow on the torus \(T^d = \mathbb{R}^d/\mathbb{Z}^d \) is one of the most basic examples of dynamical systems. More generally, one may consider a factor space \(\Gamma \backslash G \), where \(G \) is a Lie group and \(\Gamma \) is a discrete subgroup, and define a flow on \(X \) acting by a one-parameter subgroup of \(G \). In some cases the space \(\Gamma \backslash G \) can be equipped with a finite invariant measure. This construction provides a rich and very important family of dynamical systems. Besides the theory of dynamical systems, such spaces also play important role in geometry and number theory.

In this section, we cover basic material regarding the factor spaces \(\Gamma \backslash G \). In particular, we define a measure on \(\Gamma \backslash G \), which is induced by the invariant measure on \(G \), and explain the Poincare’s geometric construction of discrete cocompact subgroup \(\Gamma \) in \(\text{SL}_2(\mathbb{R}) \).

Let \(G \) be a Lie group and \(\Gamma \) a discrete subgroup of \(G \).

Definition 5.1. A subset \(F \subset G \) is called a fundamental set for \(\Gamma \) if \(G \) is equal to the disjoint union of the sets \(\gamma F \), \(\gamma \in \Gamma \):

\[
G = \bigcup_{\gamma \in \Gamma} \gamma F.
\]

For example, \(F = [0, 1)^d \) is a fundamental set of \(\mathbb{Z}^d \subset \mathbb{R}^d \).

Lemma 5.2. There exists a Borel fundamental set of \(\Gamma \).

Proof. Since \(\Gamma \) is a discrete subgroup of \(G \), there exists a neighbourhood \(U \) of identity in \(G \) such that

\[
\Gamma \cap U \cdot U^{-1} = \{I\}.
\]

We can write

\[
G = \bigcup_{n=1}^{\infty} Ug_n
\]
for a sequence \(g_n \in G \). Let
\[
F = \bigcup_{n=1}^{\infty} \left(U g_n \setminus \left(\bigcup_{i=1}^{n-1} \Gamma U g_i \right) \right).
\]
It follows from (5.2) that \(G = \Gamma F \), and using (5.1), it is easy to deduce that if \(\gamma_1 F \cap \gamma_2 F \neq \emptyset \), then \(\gamma_1 = \gamma_2 \). Hence, \(F \) is a fundamental set for \(\Gamma \).

We denote by \(m \) the left-invariant measure on \(G \) constructed in Section 2 and by \(\pi : G \to \Gamma \setminus G \) the factor map. Taking a Borel fundamental domain \(F \) for \(\Gamma \), we define a measure on \(\Gamma \setminus G \) by
\[
\mu(B) = m(\pi^{-1}(B) \cap F) \quad \text{for all Borel } B \subset \Gamma \setminus G.
\]

Lemma 5.3.

(i) The definition of \(\mu \) does not depend on a choice of the fundamental domain \(F \).

(ii) If \(m(F) < \infty \), then the measure \(\mu \) is right \(G \)-invariant.

Proof. Let \(F_1, F_2 \subset G \) be Borel fundamental sets for \(\Gamma \). Since
\[
G = \bigcup_{\gamma \in \Gamma} \gamma F_1 = \bigcup_{\gamma \in \Gamma} \gamma F_2,
\]
we obtain using left-invariance of \(m \) that for every Borel \(B \subset \Gamma \setminus G \),
\[
m(\pi^{-1}(B) \cap F_1) = \sum_{\gamma \in \Gamma} m(\pi^{-1}(B) \cap F_1 \cap \gamma F_2)
= \sum_{\gamma \in \Gamma} m(\pi^{-1}(B) \cap \gamma^{-1} F_1 \cap F_2) = m(\pi^{-1}(B) \cap F_2).
\]
This proves (i).

To prove (ii), we consider the measures \(m_g, g \in G \), on \(G \) defined by
\[
m_g(A) = m(A g) \quad \text{for all Borel } A \subset G.
\]
It is clear that \(m_g \) is left-invariant and locally finite, so that by Theorem 2.1, \(m_g = c_g \cdot m \) for some \(c_g > 0 \). Since \(F g^{-1} \) is also a fundamental domain for \(\Gamma \), for every Borel \(B \subset \Gamma \setminus G \),
\[
m(\pi^{-1}(B g) \cap F) = m_g(\pi^{-1}(B) \cap F g^{-1}) = c_g m(\pi^{-1}(B) \cap F g^{-1})
= c_g m(\pi^{-1}(B) \cap F) \quad (5.3)
\]

30
This shows that
\[\mu(Bg) = c_g \mu(B) \quad \text{for all Borel } B \subset \Gamma \setminus G. \]

It follows from (5.3) that \(m(F) = c_g m(F) \). Hence, if \(m(F) < \infty \), then \(c_g = 1 \), and the measure \(\mu \) is \(G \)-invariant. \(\square \)

Definition 5.4. A discrete subgroup \(\Gamma \) of a Lie group \(G \) is called a *lattice* if
\[\mu(\Gamma \setminus G) < \infty. \]

One can show that any lattice in \(\mathbb{R}^d \) is of the form \(\mathbb{Z}^d v_1 + \cdots + \mathbb{Z}^d v_d \), where \(v_1, \ldots, v_d \) is a basis of \(\mathbb{R}^d \). The situation is much more interesting for lattices in \(\text{SL}_2(\mathbb{R}) \), and in the rest of this section we construct some examples of such lattices.

We introduce the upper-half model of the hyperbolic plane. Let
\[\mathbb{H} = \{ x + iy : x \in \mathbb{R}, y > 0 \}. \]

The (hyperbolic) length of a \(C^1 \) curve \(c : [0,1] \to \mathbb{H} \) is defined by
\[L(c) = \int_0^1 \frac{\| c'(t) \|}{\text{Im}(c(t))} \, dt. \]

For \(g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{R}) \), we define
\[T_g : \mathbb{H} \to \mathbb{H} : z \mapsto \frac{az + b}{cz + d}. \]

The following properties are easy to check:

(i) \(T_g = \text{id} \) if and only if \(g = \pm I \),
(ii) \(T_{g_1} T_{g_2} = T_{g_1 g_2} \),
(iii) \(\text{Im}(T_g(z)) = \frac{\text{Im}(z)}{|cz + d|^2} \),
(iv) \(\text{Stab}_{\text{SL}_2(\mathbb{R})}(i) = \text{SO}_2(\mathbb{R}) \),
(v) \(T_g \) preserves length and angles between curves.
Note that (iii) implies that $T_g(\mathbb{H}) \subset \mathbb{H}$. Let
\[
u(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad \alpha(y) = \begin{pmatrix} y^{1/2} & 0 \\ 0 & y^{-1/2} \end{pmatrix}.
\]
Then
\[
T_{\nu(x)\alpha(y)}(i) = x + iy.
\]
This shows that $\text{SL}_2(\mathbb{R})$ acts transitively on \mathbb{H}, and by (iv),
\[
\mathbb{H} \cong \text{SL}_2(\mathbb{R})/\text{SO}_2(\mathbb{R}).
\]
Moreover, we deduce the Iwasawa decomposition:
\[
\text{SL}_2(\mathbb{R}) = \{ u(x)\alpha(y)k : x \in \mathbb{R}, y > 0, k \in \text{SO}_2(\mathbb{R}) \}.
\] (5.5)

Now we identify the shortest paths in \mathbb{H}.

Lemma 5.5. The geodesic (i.e., the shortest path) between $z_1, z_2 \in \mathbb{H}$ is either a vertical line of a semi-circle with the centre on the x-axis.

Proof. We first consider the case when $\text{Re}(z_1) = \text{Re}(z_2)$. Given a path $c : [0, 1] \to \mathbb{H}$ between z_1 and z_2, we have an estimate
\[
L(c) = \int_0^1 \frac{c_2'(t)^2}{c_2(t)} dt \geq \int_0^1 \frac{|c_2'(t)|}{c_2(t)} dt,
\]
where the equality holds when $c_1' = 0$. This implies that the shortest path is a vertical line.

In general, given $z_1, z_2 \in \mathbb{H}$, one can find $g \in \text{SL}_2(\mathbb{R})$ such that
\[
\text{Re}(T_g(z_1)) = \text{Re}(T_g(z_2)) = 0.
\]
Then it follows from the property (v) that the shortest between z_1 and z_2 is the image of the y-axis under the transformation T_g^{-1}. It can be computed directly that this image is either a vertical line or a semi-circle. \[\square\]

Besides the transformations T_g, we also introduce reflection maps R_ℓ with respect to a geodesic ℓ. Given $z \in \mathbb{H}$, we draw a geodesic through z which is orthogonal to ℓ and define $R_\ell(z)$ as the reflection with respect to the intersection point. More explicitly, if ℓ_0 is the y-axis, then $R_{\ell_0} : z \mapsto -\bar{z}$, and in general $R_\ell = T_g^{-1}R_{\ell_0}T_g$, where $g \in \text{SL}_2(\mathbb{R})$ is such that $T_g(\ell) = \ell_0$.

32
We note that the transformations R_ℓ also preserve length and angles between curves, and the group generated by the transformations T_g and R_ℓ is an index two supergroup of $T_{\text{sl}_2(\mathbb{R})}$.

Now we are ready to construct a family of cocompact lattices in $\text{SL}_2(\mathbb{R})$. One can check that for every $\alpha,\beta,\gamma > 0$ such that $\alpha + \beta + \gamma < \pi$ there exists a geodesic triangle with angles α,β,γ. We fix a triangle T with angles $\pi n_1, \pi n_2, \pi n_3$ where n_i’s are integers, and denote by R_1, R_2, R_3 the reflections with respect to the sides of this triangle. Let Λ be the group generated by these transformations. For every $\lambda \in \Lambda$, λT is another triangle with the same dimensions. Since n_1, n_2, n_3 are integers, the images of T fit together perfectly around every vertex. Hence, we obtain the tiling

$$H = \bigcup_{\lambda \in \Lambda} \lambda T, \quad (5.6)$$

and if $\lambda_1 T^o \cap \lambda_2 T^o \neq \emptyset$, then $\lambda_1 T^o = \lambda_2 T^o$ and $\lambda_1 = \lambda_2$. Let Λ_0 be the subgroup of Λ of index two consisting of elements which are products of even number of reflections. Then $\Lambda_0 \subset T_{\text{sl}_2(\mathbb{R})}$. We set

$$\Gamma = T^{-1}(\Lambda_0) \subset \text{SL}_2(\mathbb{R}).$$

Theorem 5.6. The group Γ is a cocompact lattice in $\text{SL}_2(\mathbb{R})$.

Proof. We consider the map

$$p : \text{SL}_2(\mathbb{R}) \to H : g \mapsto T_g(i).$$

It satisfies the equivariance property

$$p(gh) = T_g(p(h)) \quad \text{for all } g, h \in H.$$

Using (5.4) and (5.5), it is easy to deduce that this map is proper, so that

$$F = p^{-1}(T \cup R_1(T))$$

is compact. Since

$$H = \bigcup_{\lambda \in \Lambda_0} \lambda(T \cup R_1(T)),$$

we conclude that $G = \Gamma F$. Hence, Γ is cocompact.
To prove that Γ is discrete, we observe that every compact subset in \mathbb{H} is covered by finitely many tiles in (5.6). This implies that for every compact $\Omega \subset \mathbb{H},$

$$|\{\lambda \in \Lambda : \lambda \Omega \cap \Omega\}| < \infty.$$

Therefore, for any compact $\tilde{\Omega} \subset \text{SL}_2(\mathbb{R}),$

$$|\{\gamma \in \Gamma : \gamma \tilde{\Omega} \cap \tilde{\Omega}\}| < \infty.$$

It follows that every compact subset of $\text{SL}_2(\mathbb{R})$ contains only finitely many elements of Γ, so that Γ is discrete.

\[\square\]

6 Lattices – arithmetic constructions

In this section we discuss arithmetic constructions of lattices in Lie groups beginning with the most basic example:

Theorem 6.1. $\text{SL}_d(\mathbb{Z})$ is a lattice in $\text{SL}_d(\mathbb{R})$.

In order to prove this theorem, it would be convenient to identify the factor space $\text{SL}_d(\mathbb{Z}) \setminus \text{SL}_d(\mathbb{R})$ with the space of unimodular lattices in \mathbb{R}^d. A lattice in \mathbb{R}^d is subgroup of the form $\mathbb{Z}v_1 + \cdots + \mathbb{Z}v_d$ where $\{v_1, \ldots, v_d\}$ is a basis of \mathbb{R}^d. We denote by \mathcal{L}_d the set of lattices in \mathbb{R}^d with covolume one. It would be convenient to write elements of \mathbb{R}^d as row vectors.

We observe that the group $\text{SL}_d(\mathbb{R})$ naturally acts on \mathcal{L}_d:

$$L \mapsto Lg, \quad L \in \mathcal{L}_d, \quad g \in G.$$

This action is transitive and the stabiliser of the lattice \mathbb{Z}^d is $\text{SL}_d(\mathbb{Z})$, so that we have the identification

$$\mathcal{L}_d \simeq \text{SL}_d(\mathbb{Z}) \setminus \text{SL}_d(\mathbb{R}).$$

We introduce the *Iwasawa decomposition* for $\text{SL}_d(\mathbb{R})$, which is a generalisation of (5.5).

Lemma 6.2.

$$\text{SL}_d(\mathbb{R}) = \text{NAK},$$

34
where

\[N = \text{the unipotent upper triangular group}, \]
\[A = \left\{ \text{diag}(a_1, \ldots, a_d) : a_i > 0, \prod_{i=1}^{d} a_i = 1 \right\}, \]
\[K = \text{SO}_d(\mathbb{R}). \]

Lemma 6.2 is easy to proved using the Gramm–Schmidt orthonormalisation process.

In order to prove Theorem 6.1, it is sufficient to construct a set \(\Sigma \subset \text{SL}_d(\mathbb{R}) \) such that \(\text{SL}_d(\mathbb{R}) = \text{SL}_d(\mathbb{Z})\Sigma \) and \(m(\Sigma) < \infty \), where \(m \) is the invariant measure on \(\text{SL}_d(\mathbb{R}) \). Hence, Theorem 6.1 would follow from Lemmas 6.3 and 6.5 below. For this purpose, we introduce the Siegel sets:

\[\Sigma_{s,t} = \{ nak : |n_{ij}| \leq s, a_i/a_{i-1} \leq t, k \in \text{SO}_d(\mathbb{R}) \}. \]

Lemma 6.3. For \(s \geq 1/2 \) and \(t \geq 2/\sqrt{3} \),

\[\text{SL}_d(\mathbb{R}) = \text{SL}_d(\mathbb{Z})\Sigma_{s,t}. \]

Proof. Let \(g \in \text{SL}_d(\mathbb{R}) \) and \(L = \mathbb{Z}^d g \). We would like to find a basis of the lattice \(L \) with the “least complexity”. We say that a basis \((v_1, \ldots, v_d) \) of \(L \) is **reduced** if

(i) The vector \(v_d \) has the smallest norm in \(L \setminus \{0\} \);

(ii) Let \(P : \mathbb{R}^d \to \langle v_d \rangle^\perp \) denote the orthogonal projection. The tuple \((P(v_1), \ldots, P(v_{d-1})) \) is a reduced basis of \(P(L) \).

(iii) The vectors \(P(v_i), i \geq 2 \), have the minimal norms in \(P^{-1}(P(v_i)) \).

Using induction on \(d \), one can show that a reduced basis always exists.

Let \((v_1, \ldots, v_d) \) be a reduced basis of \(L \). There exists \(h \in \text{SL}_d(\mathbb{R}) \) such that \(v_i = e_i h \), where \((e_1, \ldots, e_d) \) is the standard basis. Since \(\mathbb{Z}^d g = \mathbb{Z}^d h \), we have \(g \in \text{SL}_d(\mathbb{Z})h \). Hence, it is sufficient to show that \(h \) belong to the Siegel set \(\Sigma_{s,t} \).

We decompose \(h \) as \(h = nak \) with \(n \in N, a \in A \), and \(k \in K \). Let

\[w_i = v_i k^{-1} = e_i n a = a_i e_i + a_{i+1} n_{i,i+1} e_{i+1} + \cdots + a_d n_{i,d} e_d. \]
Since k preserve the Euclidean product, (w_1, \ldots, w_d) is a reduced basis for the lattice Lk^{-1}. We claim that

$$|n_{ij}| \leq 1/2 \quad \text{and} \quad a_i/a_{i-1} \leq 2/\sqrt{3}. \quad (6.1)$$

Because of property (ii), we may assume inductively that (6.1) holds for $i, j \leq d - 1$. Property (iii) implies that for all $\ell \in \mathbb{Z}$,

$$\|w_i\| = \sqrt{a_i^2 + \cdots + a_d^2 n_{id}^2} \geq \|w_i + \ell w_d\| = \sqrt{a_i^2 + \cdots + a_d^2(n_{id} + \ell)^2}.$$

This implies that $|n_{id}| \leq 1/2$. By property (i),

$$\|w_d\| = a_d \leq \|w_{d-1}\| = \sqrt{a_{d-1}^2 + a_d^2 n_{d-1,d}^2}.$$

Hence,

$$a_d^2 \leq a_{d-1}^2 + a_d^2/4,$$

and $a_d/a_{d-1} \leq 2/\sqrt{3}$. This proves (6.1) and completes the proof of the lemma.

Using the Iwasawa decomposition, we deduce a convenient formula for the left-invariant measure m on $\text{SL}_d(\mathbb{R})$ using the coordinates $n_{ij}, i < j$, $b_i = a_i/a_{i-1}, i = 2, \ldots, d, k \in K$ with respect to the Iwasawa decomposition.

Lemma 6.4. The left-invariant measure m on $\text{SL}_d(\mathbb{R})$ is given by

$$\int_{\text{SL}_d(\mathbb{R})} f \, dm = \int_{N \times A \times K} f(nak) \left(\prod_{i<j} dn_{ij} \right) \left(\prod_{i=2}^d b_i^{r_i} db_i \right) d\nu(k),$$

where $r_i \in \mathbb{N}$ and ν is the (finite) right-invariant measure on K.

Proof. By Lemma 6.2, $\text{SL}_d(\mathbb{R})$ is a product of the groups NA and K. The left-invariant measure on NA can be computed explicitly. Then the lemma follows from Proposition 2.5.

The following lemma can be checked by a direct computation.

Lemma 6.5. $m(\Sigma_{s,t}) < \infty$.

36
Now Theorem 6.1 follows from Lemmas 6.3 and 6.5.

The space $\mathcal{L}_d \simeq \text{SL}_d(\mathbb{Z}) \backslash \text{SL}_d(\mathbb{R})$ is equipped with the factor topology defined by the map $\text{SL}_d(\mathbb{R}) \to \text{SL}_d(\mathbb{Z}) \backslash \text{SL}_d(\mathbb{R})$. A sequence of lattices $L^{(n)}$ converges to L if there exist bases $\{v_i^{(n)}\}$ of $L^{(n)}$ that converge to a basis of L. We observe that the space \mathcal{L}_d is not compact. Indeed, it is clear that the sequence of lattices $\mathbb{Z} \langle \frac{1}{n}e_1 \rangle + \mathbb{Z} \langle ne_2 \rangle + \mathbb{Z}e_3 + \cdots + \mathbb{Z}e_d$ has no convergence subsequences. The following theorem provides a convenient compactness criterion.

Theorem 6.6 (Mahler compactness criterion). A subset $\Omega \subset \mathcal{L}_d$ is relatively compact if and only if there exists $\delta > 0$ such that

$$\|v\| \geq \delta \quad \text{for every } L \in \Omega \text{ and } v \in L \backslash \{0\}. \quad (6.2)$$

Proof. Suppose that (6.2) holds. It follows from Lemma 6.3 that $\Omega = \mathbb{Z}^d \Sigma$ for some $\Sigma \subset \Sigma_{s,t}$. For every $g = nak \in \Sigma$, we have $|n_{ij}| \leq s$ and $a_i \leq ta_{i-1}$. It follows from (6.2) that

$$\|e_dg\| = \|e_da\| = a_d \geq \delta. \quad (6.3)$$

Hence,

$$a_i \geq t^{-1}a_{i+1} \geq \cdots \geq t^{-(d-i)}a_d \geq t^{i-d}\delta. \quad (6.3)$$

Since $a_1 \cdots a_d = 1$, (6.3) implies that all a_i’s are also bounded from above. This proves that Σ is a bounded subset of $\text{SL}_d(\mathbb{R})$, so that $\Omega = \mathbb{Z}^d \Sigma$ is relatively compact.

The converse statement is obvious. \qed

More generally, we consider $G(\mathbb{Z}) \subset G(\mathbb{R})$ where G is an algebraic group defined over \mathbb{Q}. In many cases, $G(\mathbb{Z})$ is a lattice in $G(\mathbb{R})$. In fact the following general criterion holds (see [5, 18]):

Theorem 6.7. Let G be a connected algebraic group defined over \mathbb{Q}. Then $G(\mathbb{Z})$ is a lattice in $G(\mathbb{R})$ if and only there are no nontrivial polynomial homomorphisms $G \to \mathbb{C}^\times$ defined over \mathbb{Q}.

Theorem 6.7 can be proven by generalising the construction of Siegel sets given above, but for this one needs to develop more of structure theory of algebraic groups, and we are not going to give a proof of this theorem here. Instead we prove a related result which also sheds some light into the structure of the space $\text{SL}_d(\mathbb{Z}) \backslash \text{SL}_d(\mathbb{R})$. 37
Theorem 6.8. Let $G \subset \text{SL}_d(\mathbb{C})$ be an algebraic group defined over \mathbb{Q} which doesn’t have any nontrivial polynomial homomorphisms $G \to \mathbb{C}^\times$ defined over \mathbb{Q}. Then the image of the map

$$\iota : G(\mathbb{Z}) \backslash G(\mathbb{R}) \to \mathcal{L}_d : g \mapsto \mathbb{Z}^d g$$

is closed, and the map ι defines a homeomorphism $G(\mathbb{Z}) \backslash G(\mathbb{R}) \simeq \text{Im}(\iota)$.

For the proof, we need two lemmas.

Lemma 6.9. For G as in Theorem 6.8, there exist a polynomial homomorphism $\rho : \text{GL}_d(\mathbb{C}) \to \text{GL}_N(\mathbb{C})$ defined over \mathbb{Q} and $v \in \mathbb{Q}^N$ such that

$$G = \text{Stab}_{\text{GL}_d(\mathbb{C})}(v).$$

Proof. Let

$$V_m = \{ P \in \mathbb{C}[x_{11}, \ldots, x_{dd}] : \deg(P) \leq m \},$$

$$W_m = V_m \cap \mathcal{I}(G) = \{ P \in V_m : P|_G = 0 \}.$$

By the Hilbert Basis Theorem [1, Th. 7.5], the ideal $\mathcal{I}(G)$ is finitely generated. Hence, for sufficiently large m, it is generated by W_m, and we fix such m. We consider the representation

$$\sigma : \text{GL}_d(\mathbb{C}) \to \text{GL}(V_m) : \sigma(g) : P \mapsto P(X \cdot g).$$

We claim that

$$g \in G \iff \sigma(g)(W_m) \subset W_m. \quad (6.4)$$

Indeed, if $g \in G$, then for every $P \in W_m$,

$$\sigma(g)(P)(G) = P(G \cdot g) = P(G) = \{0\},$$

so that $\sigma(g)(W_m) \subset W_m$. Conversely, if $\sigma(g)(W_m) \subset W_m$, then for every $P \in W_m$,

$$P(x \cdot g) \in \mathcal{I}(G) \quad \text{and} \quad P(g) = P(I \cdot g) = 0.$$

Since W_m generates $\mathcal{I}(G)$, it follows that $g \in G$, as required.

Now we consider the wedge-product representation

$$\rho = \wedge^{\dim(W_m)} \sigma : \text{GL}_d(\mathbb{C}) \to \text{GL}(\wedge^{\dim(W_m)} V_m)$$

38
and take a nonzero rational $v \in \wedge^{\dim(W_m)} W_m$. It follows from the properties of the wedge-products that

$$\sigma(g)(W_m) \subset W_m \iff \rho(g)(v) \in \mathbb{C}v. \quad (6.5)$$

Combining (6.4) and (6.5), we deduce that G is precisely the stabiliser of the line $\mathbb{C}v$. Then we obtain a polynomial homomorphism $\chi : G \to \mathbb{C}^\times$ defined over \mathbb{Q}. According to our assumption on G, χ must be trivial, and this implies the lemma.

Lemma 6.10. Let G be an algebraic group defined over \mathbb{Q} and $\rho : G \to \text{GL}_N(\mathbb{C})$ a polynomial representation defined over \mathbb{Q}. Then $\rho(G(\mathbb{Z}))$ preserves a lattice L contained in \mathbb{Q}^N.

Proof. We introduce the family of congruence subgroups of $G(\mathbb{Z})$:

$$\Gamma(m) = \{ \gamma \in G(\mathbb{Z}) : \gamma = I \mod m \}.$$

It is clear that $\Gamma(m)$ is a finite-index normal subgroup of $G(\mathbb{Z})$. We may write

$$\rho(I + X) = I + P(X), \quad (6.6)$$

where P is a polynomial map with rational coefficients such that $P(0) = 0$. We take an integer m which is divisible by all denominators of the coefficients of P. Then it follows from (6.6) that $\rho(\Gamma(m)) \subset M_N(\mathbb{Z})$ and $\rho(\Gamma(m))$ preserves \mathbb{Z}^N. Hence, $\rho(G(\mathbb{Z}))$ preserves $L = \langle \mathbb{Z}^N \rho(G(\mathbb{Z})) \rangle$. Since $|G(\mathbb{Z}) : \Gamma(m)| < \infty$, it is clear that L is a lattice.

Proof of Theorem 6.8. Consider a sequence of lattices $L_n = \mathbb{Z}^d g_n$ with $g_n \in G(\mathbb{R})$. Suppose that $L_n \to L = \mathbb{Z}^d g$ with $g \in \text{SL}_d(\mathbb{R})$. This means that $\gamma_n g_n \to g$ in $\text{SL}_d(\mathbb{R})$ for some sequence $\gamma_n \in \text{SL}_d(\mathbb{Z})$. We take the representation ρ and the rational vector v constructed in Lemma 6.9. Then according to Lemma 6.10, $\rho(\text{SL}_d(\mathbb{Z}))$ stabilises a lattice contained in \mathbb{Q}^N. Since a multiple of v is contained in this lattice, we conclude that the orbit $v \cdot \rho(\text{SL}_d(\mathbb{Z}))$ is discrete in \mathbb{R}^N. Since

$$v \cdot \rho(\gamma_n g_n)^{-1} = v \cdot \rho(g)^{-1} \rightarrow v \cdot \rho(g)^{-1},$$

it follows from discreteness that $v \cdot \rho(\gamma_n)^{-1} = v \cdot \rho(g)^{-1}$ for sufficiently large n. In particular, $v \cdot \rho(\gamma_n)^{-1} = v \cdot \rho(\gamma_m)^{-1}$ and $\gamma_n = \gamma_m \delta_n$ for some $\delta_n \in \text{SL}_d(\mathbb{Z}) \cap \text{Stab}(v) = G(\mathbb{Z})$. Then $\delta_n g_n \to g' = \gamma_n^{-1} g$. Clearly, $g' \in G(\mathbb{R})$ and $\mathbb{Z}^d g' = \mathbb{Z}^d g$. This shows that $\text{Im}(\iota)$ is closed, and $G(\mathbb{Z}) g_n \to G(\mathbb{Z}) g'$ in $G(\mathbb{Z}) \backslash G(\mathbb{R})$, so that ι is a homeomorphism. \hfill \Box
Theorem can be used to construct examples of compact homogeneous spaces $G(\mathbb{Z}) \backslash G(\mathbb{R})$:

Corollary 6.11. Let $G \subset \text{GL}_d(\mathbb{C})$ be an algebraic group as in Theorem 6.8. Suppose that there exists a G-invariant homogeneous polynomial $P \in \mathbb{Q}[x_1, \ldots, x_d]$ such that

$$P(v) = 0 \iff v = 0 \quad \text{for } v \in \mathbb{Z}^d.$$

Then the space $G(\mathbb{Z}) \backslash G(\mathbb{R})$ is compact.

Proof. According to Theorem 6.8, it is sufficient to show that $\text{Im}(\iota)$ is relatively compact. For this we apply Theorem 6.6. Suppose that there exist $g_n \in G(\mathbb{R})$ and $v_n \in \mathbb{Z}^d \setminus \{0\}$ such that $v_n g_n \to 0$. Then $P(v_n g_n) = P(v_n) \to 0$.

Since the set $P(\mathbb{Z}^d)$ is discrete, it follows that $P(v_n) = 0$ for sufficiently large n. Then $v_n = 0$, which gives a contradiction. Hence, $\text{Im}(\iota)$ is relatively compact, as required. \hfill \Box

We illustrate Corollary 6.11 by two examples:

- Let

$$Q(x) = \sum_{i,j=1}^{d} a_{ij} x_i x_j$$

be a nondegenerate quadratic form with rational coefficients and

$$G = \text{SO}(Q) = \{ g \in \text{SL}_d(\mathbb{C}) : Q(x \cdot g) = Q(x) \}$$

the corresponding orthogonal group. Suppose that the equation $Q(x) = 0$ has no nonzero integral solutions. For instance, one can take $Q(x) = x_1^2 + x_2^2 - 3x_3^2$. Then according to Corollary 6.11, the space $G(\mathbb{Z}) \backslash G(\mathbb{R})$ is compact. We note that if the equation $Q(x) = 0$ has nonzero real solutions, then the group $G(\mathbb{R})$ is not compact.

- Fix $a, b \in \mathbb{N}$ such that the equation $w^2 - ax^2 - by^2 + abz^2 = 0$ has no nonzero integral solutions. Consider the matrices

$$i = \begin{pmatrix} \sqrt{a} & 0 \\ 0 & -\sqrt{a} \end{pmatrix}, \quad j = \begin{pmatrix} 0 & 1 \\ b & 0 \end{pmatrix}, \quad k = \begin{pmatrix} 0 & \sqrt{a} \\ -b\sqrt{a} & 0 \end{pmatrix},$$

which satisfy the quaternion relations

$$i^2 = aI, \quad j^2 = bI, \quad i \cdot j = -j \cdot i = k.$$
We claim that
\[\Gamma = (\mathbb{Z}I + \mathbb{Z}i + \mathbb{Z}j + \mathbb{Z}k) \cap \text{SL}_2(\mathbb{R}) \]
is a cocompact lattice in \(\text{SL}_2(\mathbb{R}) \).

To check this, we note that \(\{I, i, j, k\} \) forms a basis of \(\text{M}_2(\mathbb{C}) \). We define the integral structure on \(\text{M}_2(\mathbb{C}) \) with respect to this basis, and embed the group \(G = \text{SL}_2(\mathbb{C}) \) in \(\text{GL}_2(\text{M}_2(\mathbb{C})) \) using the representation \(\rho : G \to \text{GL}_2(\text{M}_2(\mathbb{C})) \) defined by \(\rho(g) : X \mapsto X \cdot g \). Then \(\Gamma = G(\mathbb{Z}) \) and \(G(\mathbb{R}) \simeq \text{SL}_2(\mathbb{R}) \). The polynomial
\[\det(wI + xi + yj + zk) = w^2 - ax^2 - by^2 + abz^2. \]
is \(G \)-invariant, so that the claim follows from Corollary 6.11.

\[7\] Borel density theorem

We conclude these lectures with a version of the Borel Density Theorem [3], which illustrates how dynamical systems techniques can be used to address arithmetic questions.

Theorem 7.1 (Borel density). Let \(\Gamma \) a lattice in \(\text{SL}_d(\mathbb{R}) \). Then given a polynomial representation \(\rho : \text{SL}_d(\mathbb{R}) \to \text{GL}_N(\mathbb{C}) \), every vector \(v \in \mathbb{C}^N \) which is fixed by \(\rho(\Gamma) \) is also fixed by \(\rho(\text{SL}_d(\mathbb{R})) \).

This theorem can be refined to show that the Zariski closure of \(\Gamma \) is equal to \(\text{SL}_d(\mathbb{C}) \). As we shall see, the proof that we present applies more generally if \(\text{SL}_d(\mathbb{R}) \) is replaced by any Lie group \(G \subset \text{GL}_d(\mathbb{R}) \) which is generated by unipotent one-parameter subgroups.

The main idea of the proof is to compare the recurrence property of orbits for measure-preserving actions (Lemma 7.2) with the rigid behaviour of orbits for polynomial actions (Lemma 7.3).

Lemma 7.2 (Poincare recurrence). Let \(T : X \to X \) be a homeomorphism of a compact metric space \(X \) and \(\mu \) a Borel probability \(T \)-invariant measure on \(X \). Then for \(\mu \)-almost every \(x \in X \), \(T^{n_k}(x) \to x \) along a subsequence \(n_k \).

Lemma 7.2 is a standard fact from ergodic theory (see, for instance, [7, Sec. 4.2]).
Lemma 7.3. Let $T \in \text{GL}_d(\mathbb{C})$ be a unipotent element acting on the projective space \mathbb{P}^{d-1}. Suppose that for $[v] \in \mathbb{P}^{d-1}$, we have $T^{n_k}([v]) \to [v]$ along a subsequence n_k. Then the vector v is fixed by T.

Lemma 7.3 is a version of Corollary 4.11, but it is easy to prove it directly using the Jordan Canonical Form for T.

Proof of Theorem 7.1. We consider the map

$$\pi : \Gamma \setminus \text{SL}_d(\mathbb{R}) \to \mathbb{P}^{N-1} : g \mapsto [v \cdot \rho(g)],$$

and define a finite $\rho(\text{SL}_d(\mathbb{R}))-\text{invariant measure } \nu$ on \mathbb{P}^{N-1} by

$$\nu(B) = \mu(\pi^{-1}(B)) \quad \text{for Borel } B \subset \mathbb{P}^{N-1},$$

where μ denotes the finite invariant measure on $\Gamma \setminus \text{SL}_d(\mathbb{R})$. We take a unipotent element $g \in \text{SL}_d(\mathbb{R})$ such that $g \neq I$. The map $T = \rho(g)$ is also unipotent by Proposition 4.13, so that by Lemma 7.2, ν-almost every $x \in \mathbb{P}^{N-1}$ is a limit point of the sequence $T^n(x)$. Hence, by Lemma 7.3, for almost every $h \in G$,

$$v \cdot \rho(h)\rho(g) = v \cdot \rho(h).$$

This implies that the stabiliser of v contains an infinite normal subgroup of $\text{SL}_d(\mathbb{R})$. Hence, v is fixed by $\rho(\text{SL}_d(\mathbb{R}))$, as required.

8 Suggestions for further reading

This exposition is intended to provide the reader with a first glimpse into the beautiful theories of Lie groups, algebraic groups, and their discrete subgroups. While we were trying to present some of the most important and ideas and techniques, it is impossible to give a comprehensive treatment of these topics in a 10-hour course. We hope that these notes would encourage the reader to study the subject in more details and offer the following suggestions for further reading:

- the theory of Lie groups: [8, 9, 10, 15, 17, 20, 21];

- the theory of algebraic groups: [4] for a concise introduction and [6, 11, 22] for a comprehensive treatment;
• lattices in $\text{SL}_2(\mathbb{R})$: [2, 14];
• lattices in general Lie groups: [16, 19];
• arithmetic lattices: [5, 12, 13, 16, 18].

Acknowledgement: I would like to thank the organisers of the Summer School “Modern dynamics and interactions with analysis, geometry and number theory” for providing excellent working conditions. The author was supported by the EPSRC grant EP/H000091/1 and the ERC grant 239606.

References

[1] Atiyah, M. F.; Macdonald, I. G. *Introduction to commutative algebra*. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969.

[2] Benoist, Yves *Pavages du plan*. Pavages, 1–48, Ed. Éc. Polytech., Palaiseau, 2001.

[3] Borel, Armand *Density properties for certain subgroups of semi-simple groups without compact components*. Ann. of Math. 72 (1960), 179–188.

[4] Borel, Armand *Linear algebraic groups*. 1966 Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) pp. 3–19 Amer. Math. Soc., Providence, R.I.

[5] Borel, Armand *Introduction aux groupes arithmétiques*. Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, No. 1341 Hermann, Paris 1969.

[6] Borel, Armand *Linear algebraic groups*. Second edition. Graduate Texts in Mathematics, 126. Springer-Verlag, New York, 1991.

[7] Brin, Michael; Stuck, Garrett *Introduction to dynamical systems*. Cambridge University Press, Cambridge, 2002.

[8] Duistermaat, J. J.; Kolk, J. A. C. *Lie groups*. Universitext. Springer-Verlag, Berlin, 2000.
[9] Bump, Daniel *Lie groups*. Graduate Texts in Mathematics, 225. Springer-Verlag, New York, 2004.

[10] Hall, Brian C. *Lie groups, Lie algebras, and representations. An elementary introduction*. Graduate Texts in Mathematics, 222. Springer-Verlag, New York, 2003.

[11] Humphreys, James E. *Linear algebraic groups*. Graduate Texts in Mathematics, No. 21. Springer-Verlag, New York-Heidelberg, 1975.

[12] Humphreys, James E. *Arithmetic groups*. Lecture Notes in Mathematics, 789. Springer, Berlin, 1980.

[13] Ji, Lizhen *Arithmetic groups and their generalizations*. What, why, and how. AMS/IP Studies in Advanced Mathematics, 43. American Mathematical Society, Providence, RI; International Press, Cambridge, MA, 2008.

[14] Katok, Svetlana *Fuchsian groups*. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1992.

[15] Kirillov, Alexander, Jr. *An introduction to Lie groups and Lie algebras*. Cambridge Studies in Advanced Mathematics, 113. Cambridge University Press, Cambridge, 2008.

[16] Morris, Dave *Introduction to arithmetic groups*. Arxiv.math/0106063.

[17] Onishchik, A. L.; Vinberg, E. B. *Lie groups and algebraic groups*. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1990.

[18] Platonov, Vladimir; Rapinchuk, Andrei *Algebraic groups and number theory*. Pure and Applied Mathematics, 139. Academic Press, Inc., Boston, MA, 1994.

[19] Raghunathan, M. S. *Discrete subgroups of Lie groups*. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68. Springer-Verlag, New York-Heidelberg, 1972.

[20] Rossmann, Wulf *Lie groups. An introduction through linear groups*. Oxford Graduate Texts in Mathematics, 5. Oxford University Press, Oxford, 2002.
[21] Serre, Jean-Pierre *Lie algebras and Lie groups*. Lecture Notes in Mathematics, 1500. Springer-Verlag, Berlin, 2006.

[22] Springer, T. A. *Linear algebraic groups*. Second edition. Progress in Mathematics, 9. Birkhäuser Boston, Inc., Boston, MA, 1998.

School of Mathematics, University of Bristol, UK
a.gorodnik@bristol.ac.uk