Intra-Articular Bupivacaine Injection is An Ideal Method for Postoperative Pain Control in Children with Supracondylar Humeral Fracture

Qian Wang
Chengde Medical University Affiliated Hospital
https://orcid.org/0000-0002-8042-3489

Jingxin Zhao
Chengde Medical University Affiliated Hospital

Yu Wang
Chengde Medical University Affiliated Hospital

Man He (✉ w741366430@126.com)
Affiliated Hospital of Chengde Medical College
https://orcid.org/0000-0003-0492-7543

Research article

Keywords: Intra-articular, bupivacaine, postoperative pain control, supracondylar humeral fracture, children.

DOI: https://doi.org/10.21203/rs.3.rs-658964/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Objective: Supracondylar humeral fracture is the most common fracture in children. Currently there are a large number of studies on supracondylar humeral fractures addressing the epidemiology of supracondylar fractures, injury mechanisms, treatments and complications, however there are few studies on how to control the pain in children after fractures and operation. Therefore, we retrospectively analyzed the effectiveness of an intra-articular injection of 0.25% bupivacaine on pain control after CRPP of supracondylar humeral fractures in children. To our knowledge, this is the largest study on the use of an intra-articular injection for pain control after surgery for supracondylar humeral fractures.

Methods: This clinical trial was designed to evaluate the efficacy of intra-articular injection of 0.25% bupivacaine as a postoperative pain control in children with supracondylar humeral fractures who underwent closed reduction and percutaneous pinning (CRPP). Subjects (n = 120) were randomized to treatment with 0.25% bupivacaine (treatment group) (n = 60) or no injection (control group) (n =71). After surgery, all patients were prescribed Ibuprofen for analgesia. The Ibuprofen doses and the times of administration were recorded. The Faces Pain Scale-Revised (FPS-R) scores were blindly recorded during postoperative day 1.

Results: The results suggested that the use of intra-articular injection of 0.25% bupivacaine improved pain control and decreased the need for Ibuprofen on postoperative day 1. FPS-R scores were also significantly lower in the treatment group as compared with those of the control group. No intra-articular injection-associated complications were reported.

Conclusion: Therefore, the intra-articular injection of bupivacaine significantly improves postoperative pain control following CRPP of supracondylar humeral fractures in children.

Introduction

Supracondylar humeral fracture is the most common fracture in children, accounting for approximately 60% of elbow fractures in children and 20% of all fractures in children [1]. Supracondylar humeral fractures can be divided into two categories: extension and flexion types, and about 97%-99% are extension type fractures [2]. Extended supracondylar humeral fractures are usually classified according to the modified Gartland classification, and surgical treatment is usually recommended for Gartland II and III supracondylar humeral fractures in children [3]. There are many surgical methods for the treatment of supracondylar humeral fractures in children [4, 5], and the standard surgical method is closed reduction and percutaneous pinning (CRPP) [6, 7]. However, children with CRPP usually experience severe pain [8]. Currently there are a large number of studies on supracondylar humeral fractures addressing the epidemiology of supracondylar fractures, injury mechanisms, treatments and complications, however there are few studies on how to control the pain in children after fractures and operation.
Intra-articular injection is a routine procedure in orthopedics. At present, in the field of adult orthopedics, such as in joint surgeries [9] and sports medicine [10,11], intra-articular injection has shown a promising effect in relieving postoperative pain. The efficacy of intra-articular injection in supracondylar humeral fracture in children has not been extensively studied yet. Only one study [12] has shown that intra-articular injection of 0.25% bupivacaine significantly reduces postoperative pain in children with supracondylar humeral fractures undergoing CRPP.

Therefore, we retrospectively analyzed the effectiveness of an intra-articular injection of 0.25% bupivacaine on pain control after CRPP of supracondylar humeral fractures in children. To our knowledge, this is the largest study on the use of an intra-articular injection for pain control after surgery for supracondylar humeral fractures.

Materials And Methods

A retrospective study was performed on 120 children with Gartland II and III extended supracondylar humeral fractures who underwent CRPP in our hospital from January 2015 to January 2020. The age of the children ranged from 4 to 14 years. The exclusion criteria were: open fractures, flexion-type supracondylar humeral fractures, co-existing fractures of other parts and injuries of other organs. The parents signed informed consent forms, and the study was approved by the hospital ethics committee. The baseline characteristics of patients, such as age, sex, height, weight, affected side, the number of needles and the time from admission to operation were recorded (Table I).

Children were randomly assigned to the intra-articular injection group and the control group. All children were operated under general anesthesia. Midazolam at 0.05 mg/kg, Propofol at 2 mg/kg and Fentanyl at 2 µg/kg were routinely used for sedation and anesthesia, while Remifentanil at 0.1 µg/kg/min and Sevoflurane at 1.2% were inhaled continuously to maintain a BIS between 40–60. Children were treated with CRPP under a C-arm fluoroscope. Lateral entry pinning has become the first choice for the surgical treatment of supracondylar humeral fracture [13,14]. The operations were performed by the same group of surgeons. Sixty children in the intra-articular injection group received an elbow joint injection with 0.25% bupivacaine after surgery (children younger than 7 years old were injected with 4 mL and children older than 7 years old were injected with 5 mL [12]). Seventy-one children who did not receive a bupivacaine intra-articular injection served as the control group. The injection was located in the "soft spot" between the lateral humeral epicondyle, the olecranon of the ulna and the head of the radius. After the injection, the elbow was flexed at 90 degrees and fixed with a plaster cast. Children were sent to the anesthetic resuscitation room after surgery.

When the patient returned to the ward, ibuprofen (30mg/kg) was given as a pain reliever. The first dose of ibuprofen and overall time in use of ibuprofen were recorded. Ibuprofen was used at the request of parents after surgery; the shortest interval was 4 hours. Severity of pain was measured using the Faces Pain Scalee Revised (FPS-R) [15] survey 24 hours after the surgery. The FPS-R scores were 0-2-4-6-8-10,
ranging from painless (0) to the maximum pain that can be described (10). The statistical analyzes were carried out by staff who were blinded with regards to the grouping and treatment.

Statistical analysis

The data were analyzed by the SPSS 22.0 software. Descriptive statistics including means and frequencies were calculated for each of the examined variables. The treatment outcomes of the two groups were compared using independent sample t-test for continuous data or \(X^2\) test and Fisher's exact test for categorical data. \(P < 0.05\) was considered statistically significant.

Results

In this study, there was no significant difference in the baseline information between the two groups of children (Table I). Age had no significant association with postoperative pain of supracondylar fractures (Table II). Children with a higher fracture classification (Gartland III) (Table III) and more K-wires (3 pins) (Table IV) had higher levels of postoperative pain and a higher FPS-R score. Compared with the control group, postoperative pain was significantly reduced and FPS-R scores were significantly lower in the group treated with an intra-articular bupivacaine injection (\(P = 0.003\)) (Table V). The time of the first ibuprofen dose after surgery was longer in the experimental group than that of the control group (\(P = 0.039\)) (Table I). The doses of ibuprofen applied in the injection group were significantly lower than those of the control group (\(P = 0.017\)) (Table I). No injection site infection, chondrolysis, compartment syndrome or iatrogenic injuries were observed.

Discussion

The results of this study showed that the level of fracture displacement was associated with postoperative pain. The degree of postoperative pain was correlated with the number of K-wires used. Intra-articular injection of 0.25% bupivacaine could effectively relieve pain in children after CRPP.

Postoperative pain in children with fractures is a serious problem. How to control postoperative pain in children safely and effectively is a recurrent goal of pediatric orthopedic surgeons and parents. Most children with supracondylar humeral fracture experienced severe pain after CRPP\(^{[16]}\). It was described that the pain is most intense on the first day after surgery, and there is no clinical pain on the third day after surgery\(^{[17]}\). Bupivacaine has a long half-life of up to 8 hours and studies have shown that intra-articular injection of bupivacaine could induce an analgesic effect up to 12 hours after anterior cruciate ligament surgery\(^{[18]}\). Therefore, bupivacaine injection could reduce pain in children with CRPP within 24 hours after surgery.

There are several studies involving postoperative pain of supracondylar humeral fractures in children. Except for oral and intravenous analgesics\(^{[19]}\), hematoma block is another commonly used pain control
method for children with fractures. Bear et al. [20] performed local hematoma block with 1% lidocaine for children undergoing closed reduction of distal radius fracture, and Herrera et al. [21] performed intraoperative hematoma block with bupivacaine at the fracture site for children undergoing femoral elastic intramedullary nail. The results showed that hematoma block could relieve pain and reduce the dose of postoperative morphine, codeine and other analgesics. In a recent study, Astacio et al. [22] performed a 0.25% bupivacaine local hematoma block in children with humeral supracondylar fracture after CRPP. Compared with the control group, postoperative use of morphine doses and pain score were not significantly different between groups, therefore the author suggested that hematoma block is not an effective method to relieve postoperative pain of supracondylar humeral fracture [22]. Intra-articular injection has shown good results in the treatment of pain after orthopedic surgery in adults. However, it is rarely used in children. Only one randomized controlled study [12] showed that intra-articular injection of 0.25% bupivacaine could significantly reduce postoperative pain in children with supracondylar humeral fracture after CRPP. Because the fracture line of supracondylar humeral fracture is located within the elbow joint capsule [12, 23], bupivacaine injected into the joint could be applied to the fracture site to provide an analgesic effect.

However, there are some limitations of intra-articular injections. One is the risk that intra-articular injections may cause chondrolysis. Although bupivacaine, lidocaine, ropivacaine and levobupivacaine are all toxic to cartilage, bupivacaine was shown to be the least cytotoxic [24]. Indeed, a single injection of bupivacaine in the articular cavity does not have harmful effects on chondrocytes [25], therefore, the intra-articular injection of bupivacaine is considered safe. Similar to the results of previous studies, there was no case of chondrolysis in our study.

Another risk is postoperative osteofascial compartment syndrome. Osteofascial compartment syndrome is a rare but catastrophic complication after fracture in children. It often occurs in children with elbow fracture [26], and the incidence is less than 0.5% [27]. Early detection is the key to avoid the occurrence of osteofascial compartment syndrome. In the control group, one child developed osteofascial compartment syndrome and ischemic contracture of the forearm, and neurotenolysis was performed 3 months after operation. The clinical symptoms of osteofascial compartment syndrome in children are not typical, especially for those children with fractures complicated with nerve injury. Attention is therefore recommended to the occurrence of fascial compartment syndrome in order to avoid limb disabilities in children [28]. Although studies have shown that ultrasound-guided regional block and one additional shot of brachial plexus block [29] can relieve postoperative pain in children with supracondylar humeral fracture, these may increase the risk of osteofascial compartment syndrome. We speculate that a small dose of bupivacaine injected into the joint capsule does not increase the risk of osteofascial compartment syndrome.

Ibuprofen is the most commonly used painkiller for children in our hospital. Because of its efficacy and safety, ibuprofen is a good choice for pain relief after musculoskeletal trauma in children [30]. Compared with other drugs such as morphine, acetaminophen and codeine, ibuprofen can effectively relieve pain.
after fracture in children, with fewer side effects and higher satisfaction of children and parents. Therefore, it is recommended to use ibuprofen for postoperative pain management[31, 32, 33]. One of the indicators for evaluating the efficacy of intra-articular injection was the postoperative doses of ibuprofen. The results showed that an intra-articular injection with 0.25% bupivacaine could significantly reduce the postoperative doses of ibuprofen.

The main limitation of this study is that this is a retrospective study. In addition, the surgeon was not blinded. In order to reduce possible bias, we blinded the staff responsible for statistical analysis. In the future, we will conduct a randomized controlled study to evaluate the analgesic efficacy of intra-articular bupivacaine in children with supracondylar humeral fractures with a larger sample size.

In conclusion, the intra-articular injection of 0.25% bupivacaine is a safe and effective method to significantly reduce postoperative pain following CRPP of supracondylar humeral fractures in children.

Declarations

- Ethics approval and consent to participate

Ethics approval and consent to participate in present study was approved by the Ethics Committee of Affiliated Hospital of Chengde Medical College

 - Consent for publication

Not applicable.

 - Availability of data and materials

All data generated or analyzed during this study are included in this manuscript.

 - Competing interests

The authors declare that they have no competing interests.

 - Funding

Supported by the Scientific Research Fund Project of Hebei Provinical Health Commission, (Project Number: 20210846). The funding body has no responsibilities in study design, the collection, analysis, and interpretation of data, the writing of the report, and the decision to submit the manuscript.

 - Authors' contributions

MH contributed to the study design and is the corresponding author. MH, YW and JZ contributed to the study design, data analysis and interpretation, and manuscript draft. MH, QW and YW contributed to the
data collection and analysis. YW, JZ, QW, and MH contributed to the literature search and manuscript revision. All authors have read and approved the final manuscript.

• Acknowledgements

We thank all of the patients involved in the study

References

1. Talbot C, Madan S. Paediatric humeral supracondylar fractures[J]. Orthopaedics and Trauma; 2018.
2. Herzog MA, Oliver SM, Ringler JR. Mid-America Orthopaedic Association Physician in Training Award: Surgical Technique: Pediatric Supracondylar Humerus Fractures: A Technique to Aid Closed Reduction[J]. Clinical Orthopaedics Related Research. 2013;471:1419–26., Jones, C B, Sietsema, D L.
3. Mulpuri K, Hosalkar H, Howard A. AAOS clinical practice guideline: the treatment of pediatric supracondylar humerus fractures.[J]. Journal of the American Academy of Orthopaedic Surgeons. 2012;20(5):328–30.
4. Sinikumpu JJ, Pokka T, Sirviö M, Pajtler K. A Künkele, Schramm A.. Gartland Type II Supracondylar Humerus Fractures, Their Operative Treatment and Lateral Pinning Are Increasing: A Population-Based Epidemiologic Study of Extension-Type Supracondylar Humerus Fractures in Children[J]. Eur J Pediatr Surg, 2017, 27(05):455–61.
5. Helenius I, Lamberg TS, Kääriäinen S, Impinen A. Pakarinen M P. Operative Treatment of Fractures in Children Is Increasing: A Population-Based Study from Finland.[J]. Journal of Bone & Joint Surgery, American Volume, 2009, 91-A(11):2612–2616.
6. St.Clair JB, Schreiber VM. Supracondylar Humerus Fractures[J]. Operative Techniques in Orthopaedics. 2019;29:11–6.
7. Picado AV, Morán GG, Moraleda L. Management of supracondylar fractures of The humerus in children [J]. EFORT open reviews. 2018;3:526–40.
8. Glover CD, Paek JS, ,Patel N, Manyang P, Watcha M.Postoperative pain and the use of ultrasound-guided regional analgesia in pediatric supracondylar humerus fractures[J]. Journal of Pediatric Orthopaedics B, 2015, 24(3).
9. Chen DW, Hu CC, Chang YH, Lee MS. Chang C J, Hsieh, P H. Intra-Articular Bupivacaine Reduces Postoperative Pain and Meperidine Use After Total Hip Arthroplasty: A Randomized, Double-Blind Study[J]. J Arthroplasty, 2014, 29(12):2457–61.
10. Middleton F, Coakes J, ,Umarji S, Palmer S. Venn R, Panayiotou S. The efficacy of intra-articular bupivacaine for relief of pain following arthroscopy of the ankle.[J]. Journal of Bone Joint Surgery British Volume, 2006, 88(12):1603.
11. Talu GK, Süleyman zyaln, Koltka K, Ertürk E. Aknc Z, Ak M, et al. Comparison of efficacy of intraarticular application of tenoxicam, bupivacaine and tenoxicam: bupivacaine combination in arthroscopic knee surgery[J]. Knee Surgery Sports Traumatology Arthroscopy, 2002, 10(6):355–60.
12. Georgopoulos G, Carry P, Pan Z, Chang F, Heare T, Rhodes J, et al. The Efficacy of Intra-Articular Injections for Pain Control Following the Closed Reduction and Percutaneous Pinning of Pediatric Supracondylar Humeral Fractures[J]. Journal of Bone & Joint Surgery-american Volume, 2012, 94(18):pp. 1633–42.

13. Eggert A, Schulte J H, Astrahantseff K, Pajtler K, A Künkele, Schramm A.. Gartland Type II Supracondylar Humerus Fractures, Their Operative Treatment and Lateral Pinning Are Increasing: A Population-Based Epidemiologic Study of Extension-Type Supracondylar Humerus Fractures in Children[J]. Eur J Pediatr Surg, 2017, 27(05):455–61.

14. Skaggs DL, Hale JM, Bassett J, Kaminsky C, Kay R M. Operative Treatment of Supracondylar Fractures of the Humerus in Children: The Consequences of Pin Placement[J]. The Journal of Bone and Joint Surgery, 2001, 83-A(5):735–740.

15. Spagrud L J, Baeyer P. Children's Self-Report of Pain Intensity[J]. The American Journal of Nursing. 2003;103(12):62–4.

16. Drendel AL, Lyon R, Bergholte J, Kim MK. Outpatient Pediatric Pain Management Practices for Fractures[J]. Pediatr Emerg Care. 2006;22(2):94–9.

17. Nelson SE, Adams AJ, Buczek MJ, Anthony CA. Shah A S. Postoperative Pain and Opioid Use in Children with Supracondylar Humeral Fractures: Balancing Analgesia and Opioid Stewardship[J]. JBJS, 2019, 101(2):119–26.

18. Davey MS, Hurley ET, Anil U, Moses A, Campbell K A. Pain Management Strategies Following Anterior Cruciate Ligament Reconstruction – A Systematic Review with Network Meta-Analysis[J]. Arthroscopy The Journal of Arthroscopic and Related Surgery, 2021(6).

19. Adams AJ, Buczek MJ, Flynn JM, Shah AS. Perioperative Ketorolac for Supracondylar Humerus Fracture in Children Decreases Postoperative Pain, Opioid Usage, Hospitalization Cost, and Length-of-Stay[J]. Journal of Pediatric Orthopaedics, 2019, Publish Ahead of Print(&NA;):1.

20. David M, Bear NA. Lupo, Raymond Hematoma Block Versus Sedation for the Reduction of Distal Radius Fractures in Children[J]. The Journal of Hand Surgery. 2015;40(1):57–61, Friel, Charles L.

21. Herrera JA, Wall EJ, Foad HL. Hematoma Block Reduces Narcotic Pain Medication After Femoral Elastic Nailing in Children[J]. Journal of Pediatric Orthopaedics. 2004;24(3):254–6.

22. Astacio E, Echegaray G, Rivera L, Otero J. Foy C A. Local Hematoma Block as Postoperative Analgesia in Pediatric Supracondylar Humerus Fractures[J]. Journal of Hand Surgery Global Online, 2020.

23. Parikh SN, Lykissas MG, Roshdy M, Mineo RC. Wall E J. Pin tract infection of operatively treated supracondylar fractures in children: long-term functional outcomes and anatomical study[J]. Journal of Childrens Orthopaedics, 2015, 9(4):295–302.

24. Articular cartilage and local anaesthetic. A systematic review of the current literature[J]. J Orthop. 2015;12:200–10.

25. Ravnihar K, Barli? A, Drobní? M. Effect of intra-articular local anestheisa on articular cartilage in the knee.[J]. Arthroscopy the Journal of Arthroscopic Related Surgery. 2014;30(5):607–12.
26. Diesselhorst MM, Deck JW, Davey JP. Compartment Syndrome of the Upper Arm After Closed Reduction and Percutaneous Pinning of a Supracondylar Humerus Fracture[J]. J Pediatr Orthop. 2013;34(2):1–4.

27. Armstrong DG, Macneille R, Lehman EB, Henrickus WL. Compartment Syndrome in Children with a Supracondylar Fracture. Not Everyone has Risk Factors[J]. Journal of Orthopaedic Trauma, 2020, Publish Ahead of Print.

28. Chang L, Kay L-M. Silent compartment syndrome in children: a report of five cases.[J]. Journal of Pediatric Orthopedics Part B, 2014, 23(5):467–471.

29. Li J, Rai S, Liu R, Xu R. Hong P. One additional shot of brachial plexus block equates to less postoperative pain for younger children with elbow surgeries.[J]. Journal of Orthopaedic Surgery and Research, 2020.

30. Parri N, Lazzeri S.. Efficacy of ibuprofen in musculoskeletal post-traumatic pain in children: A systematic review.[J]. PLOS ONE, 2020, 15.

31. Drendel AL, Gorelick MH, Weisman SJ, Lyon R. Brousseau D C, Kim M K. A randomized clinical trial of ibuprofen versus acetaminophen with codeine for acute pediatric arm fracture pain.[J]. Ann Emerg Med, 2009, 54(4):553–60.

32. Poonai N. Bhullar G, Lin K, Papini A, Mainprize D, Howard J, et al. Oral administration of morphine versus ibuprofen to manage postfracture pain in children: a randomized trial[J]. CMAJ: Canadian Medical Association journal = journal de l'Association medicale canadienne, 2014, 186(18):pp. 1358–63.

33. Nuelle J, Coe KM, Oliver HA, Cook JL. Hoenschemeyer D G, Gupta S K.. Effect of NSAID Use on Bone Healing in Pediatric Fractures: A Preliminary, Prospective, Randomized, Blinded Study[J]. Journal of Pediatric Orthopaedics, 2020, 40: e683–9.

Tables

Table 1. Basic situation of children
	Control group	Test group	P
Age (year)	6.04±3.28	5.93±3.17	0.644
Gender (male / female)*	47:24	39:21	0.886
Weight(kg)	32.51±14.93	28.22±10.41	0.055
Affected side (example, left / right)*	36:35	29:31	0.787
Time from admission to operation(h)	46.61±34.76	32.38±29.57	0.213
Operation time(min)	40.42±9.81	31.38±6.92	0.971
Anesthesia time(min)	44.44±4.43	46.56±4.30	0.579
Hospitalization time(d)	4.40±1.48	3.89±0.98	0.435
Number of cases with nerve injure before operation	3	2	0.003
Number of outer Kirschner wires*			
two	20	32	
three	51	28	
time to first dose(h)	2.26±0.85	2.48±0.75	0.039
Number of uses within 24 hours after surgery*	0	0	0.017
0 dose	0	0	
1 dose	27	27	
2 dose	21	26	
3 dose	23	7	

*Chi-square test

Table II. FPS-R by age

Mean	Control group	Test group	P
8	4.09	3.03	P1<0.690
8	4.12	3.62	P2<0.724

P using Fisher's exact test
Table III. FPS-R by fracture type

Mean	Control group	Test group	\(P \)
Gartland II	4.16	3.53	\(P_1 \leq 0.008 \)
	3.28	3.46	\(P_2 \leq 0.010 \)
	\(P_3 \leq 0.017 \)	\(P_4 \leq 0.012 \)	

\(P \) using Fisher's exact test

Table IV. FPS-R by number of outer Kirschner wires

	Control group	Test group	\(P \)
two	3.41	2.60	\(P_1 \leq 0.007 \)
three	4.36	3.43	\(P_2 \leq 0.028 \)
	\(P_3 \leq 0.030 \)	\(P_4 \leq 0.013 \)	

\(P \) using Fisher's exact test

Table V. Comparison of FPS-R scores between the two groups of children

FPS-R	Control group	Test group	\(P \)
0(no pain)	0	0	
1-2(little pain)	32	26	
3-4(a little more pain)	24	22	
5-6(even more pain)	9	10	
7-10(whole to worse pain)	6	2	
FPS-R(mean)	3.69	3.60	0.003
Using Fisher’s exact test

Figures

Figure 1

Intraoperative intra-articular bupivacaine injection