Infections in Solid Organ Transplant (SOT) Recipients

- SOT is a life-saving intervention
- >750,000 SOTs performed in U.S. since 1988
- 39,718 SOTs performed in 2019

- SOT recipients
 - have compromised immunity / increased infection risk
 - are targets for common & emerging opportunistic pathogens encountered pre- and post-transplant
 - often have atypical infection presentation owing to their compromised immunity / decreased inflammatory response
 - are on complex medical regimens; drug interactions common

Data from Organ Procurement and Transplantation Network database as of June 29, 2020

WHAT YOU SHOULD KNOW FOR THE BOARD EXAM:

- Infection risk varies based on
 - Organ transplanted
 - Time post transplant
 - Degree of immunosuppression
 - Prophylaxis regimen
 - Unique exposures

- Key drug interactions and drug-induced syndromes
 - Calcineurin inhibitors and azoles, macrolides, rifampin (covered in Dr. Gilbert’s antibiotic lecture)
 - Sirolimus associated pneumonitis
 - Calcineurin inhibitors and TTP and PRESS

WHAT YOU SHOULD KNOW FOR THE BOARD EXAM:

- The following major clinical syndromes:
 - CMV syndrome & disease
 - EBV & Post Transplant Lymphoproliferative Disorder (PTLD)
 - BK virus nephropathy
 - Aspergillosis, Mucormycosis & Cryptococcosis
 - Tuberculosis
 - Toxoplasmosis
 - Donor derived infections

PLAY THE ODDS

The data in the stem let’s you “play the odds” as to the most likely diagnosis

- Patient completing valganciclovir prophylaxis 6 weeks prior presenting with fatigue, low grade fever and leukopenia
 - CMV Syndrome

- Donor died from skiing accident in fresh water lake in Florida and recipient presents 3 weeks post transplant with encephalitis
 - ACANTHAMOEBA

- Renal transplant recipient on valganciclovir prophylaxis presents with asymptomatic renal dysfunction
 - NOCARDIA

- Lung transplant recipient planted vegetable garden 2 weeks prior while on posaconazole prophylaxis and presents with productive cough and cavitary lung lesion

Disclosures of Financial Relationships with Relevant Commercial Interests

- Consultant – Scynexis, Astellas, Shionogi
- Research Grant – Lediant
- Clinical Trials (Site PI/Study PI) – Ansun, Astellas, Cidara, Scynexis, Shire, F2G
- Royalties (Chapter Author) – UpToDate

©2020 Infectious Disease Board Review, LLC
FREQUENCY, TYPE & INFECTION SOURCE IN THE 1ST POST TRANSPLANT YEAR

Transplant Type	Infection Episodes per Patient	Bacteremia	CMV Disease * (%)	Fungal Infections (%)	Most Common Source
Kidney	0.98	5-10	8	1.3	Urinary tract
Heart	1.36	8-11	25	3.4	Lung
Lung Heart-Lung	3.19	8-25	39	8.6	Lung
Liver	1.86	10-23	29	4.7	Abdomen & Biliary tract

*CMV: Cytomegalovirus. Numbers reflect CMV disease rates in the absence of routine antiviral prophylaxis.

CLASSIC TIMING OF INFECTIONS FOLLOWING SOLID ORGAN TRANSPLANTATION

Timing altered by:
- Enhanced immunosuppression
- Prophylaxis regimen
- Unique exposures

LATE BACTERIAL INFECTIONS FOLLOWING SOT

80% of late bacterial infections are community-acquired
- Streptococcus pneumoniae
 - Incidence significantly > in SOT (146/100,000) vs general population (12/100,000)
 - Vaccination recommended
- Listeria monocytogenes
 - Bacteremia (Gram + Rods) / Diarrhea / Meningitis
 - Ampicillin treatment of choice
 - High relapse rate, treat for at least 3-6 wks

Kumar D et al., Am J of Transplant 2007;7:1209

“EARLY” BACTERIAL INFECTIONS FOLLOWING SOT

Type & site of early bacterial infection varies based on organ transplanted, surgical approach/technique & transplant center
- Risk of peritoneal infection greater in liver transplantation with Roux-en-Y biliary drainage
- Recipient colonization with resistant organisms (e.g. MRSA, VRE, CRE) pre-transplant, confers risk of post-transplant infection
- Cluster with unusual pathogen & environmental problem? (e.g. Legionella, M. abscessus from hospital water distribution systems)

CMV DISEASE AFTER SOT

INDIRECT AND DIRECT EFFECTS

INDIRECT Effects:
- Acute and Chronic Rejection
- Opportunistic Super-Infections (Gram negative bacteria & Molds)

DIRECT Effects:
- CMV Syndrome – most common presentation
 - CMV in blood + fever + malaise, leukopenia, atypical lymphocytosis, thrombocytopenia, or elevated liver enzymes
- Tissue Invasive Disease
 - Evidence of CMV on biopsy + compatible signs/symptoms
RISK OF CMV DISEASE AFTER SOT

CMV Serologic Status	Risk Category	Incidence of Disease (%)
D+/R-	High	50+
D+/R+ or D-/R+	Intermediate	10-15
D-/R-*	Low	0
ALA Therapy (R+)		
Induction	Intermediate	25-30
Rejection	High	65

D, Donor; R, Recipient; ALA, Antilymphocyte Antibody
*Should receive leukocyte depleted blood products

CMV DISEASE AFTER SOT

- Typically occurs 1-3 months post-transplant
 - Or after prophylaxis is stopped
- Disease of GI Tract and Eye may not have concurrent viremia
 - Diagnosis often requires biopsy/aspiration
- Viral load may continue to rise during first 2 weeks of Rx
 - Don't repeat PCR until Day 14 of treatment
- Treat for 2-3 weeks...
 - DO NOT STOP TIL VIREMIA CLEARs (high risk for relapse)

CMV DISEASE AFTER SOT
PROPHYLACTIC APPROACHES

UNIVERSAL
- All SOT recipients receive therapy during highest risk periods
 - Options include IV or oral ganciclovir or valganciclovir
 - Expensive, may induce resistance, some pts exposed unnecessarily

PREEMPTIVE
- Treatment based on asymptomatic viral replication in blood
 - Requires serial monitoring with detection assay
 - Optimal duration of treatment, drug to use, & viral threshold for initiating therapy not yet determined

NOTE: Letermovir not studied / approved for use in SOT population, only HSCT

CMV DISEASE AFTER SOT
ANTIVIRAL RESISTANCE

Key mutations have been associated with resistance
- UL97 CMV Phosphotransferase gene mutations (most common)
 - Imply ganciclovir resistance
- UL54 CMV DNA Polymerase gene mutations
 - May confer resistance to ganciclovir, foscarnet, & cidofovir

CMV DISEASE AFTER SOT
PROPHYLAXIS

Bottomline:
- D+/R- or ALA for rejection → Universal
 - First 3-6 months post-transplant
 - At least 1 month post-ALA for rejection
- R+ → Universal or Preemptive
 - First 3-6 months post-transplant

©2020 Infectious Disease Board Review, LLC
CMV DISEASE AFTER SOT
ANTIVIRAL RESISTANCE (ON THE HORIZON)

Letermovir (LMV)
- Interferes with cleavage / packaging of viral genome by inhibiting pUL56 subunit of CMV terminase complex
- Resistance mutations usually in pUL56 (rarely pUL89 or pUL51 subunits) of CMV terminase complex; do not confer cross-resistance to other antiviral drugs
- Appears to have low barrier to resistance; only a few case reports for use in SOT with GCV resistant infections
- Only approved for prophylaxis in HSCT population
- No activity against other herpes viruses

Maribavir (MBV)
- Interferes with viral nuclear egress by inhibiting viral pUL97 kinase.
- UL97 inhibition also prevents 1st phosphorylation step of ganciclovir (GCV) resulting in antagonistic effect when used together
- Resistance mutations usually in UL97 gene; can confer cross-resistance to GCV
- Phase 3 clinical trial of GCV resistant disease just finished enrolling...stay tuned!

CASE 1
• 54 yo male 60 days post-cardiac transplant was treated for rejection with steroids when fever and a non-tender anterior cervical mass appeared.
• Biopsy showed nodal replacement by lymphocytes, many of which stained positively for Epstein-Barr virus as well as for the B cell marker, CD20.
• His plasma EBV viral load was 10,000 copies /ml.

QUESTION #1
The most appropriate treatment for this condition is:
A. Cidofovir
B. Ganciclovir
C. Acyclovir
D. Cyclophosphamide
E. Rituximab

EPSTEIN BARR VIRUS POST TRANSPLANT LYMPHOPROLIFERATIVE DISORDER (PTLD)

EBV transformed B-lymphocytes give rise to PTLD
• A few cases may arise from T-lymphocytes

Risk factors:
• 1° EBV infection
• Donor seropositive, Recipient seronegative
• Antilymphocytic antibody therapy (T-cell depletion)
• Organ transplanted
 • Intestine > Lung > Heart > Liver > Kidney

EPSTEIN BARR VIRUS POST TRANSPLANT LYMPHOPROLIFERATIVE DISORDER (PTLD)
• ~3% Cumulative 10 year incidence in SOT population
• Incidence varies based on organ transplanted
 - Small Bowel / Multivisceral – up to 32%
 - Lung / Heart / Liver - 3-12%
 - Kidney - 1-2%
• Biphasic pattern of disease after SOT:
 - First peak (20% cases) occurs 1st post-tx year
 - Second peak occurs 7-10 years post-tx

Olagne, J, et al. Am J Transplant. 2011 Jun;11(6):1260-9.

EPSTEIN BARR VIRUS POST TRANSPLANT LYMPHOPROLIFERATIVE DISORDER (PTLD)
• Clinical manifestation - wide range
 • Febrile mononucleosis-like illness with lymphadenopathy
 • Solid tumors
 • Often involve transplanted graft
 • 50% are extranodal masses
 • 25% involve CNS
• Definitive diagnosis requires tissue biopsy
 • Classification based on histology and clonality
 • Molecular (PCR) tests available
 - WHO Standard for Assay Calibration available
 - Whole Blood vs Plasma controversial
 - Misses EBV-negative, localized, and donor-derived PTLD
 • Used as an aid for Diagnosis and Pre-emptive monitoring with stepwise reduction in immunosuppression to reduce PTLD rates

Petit B, et al. Transplantation. 2002;73(2):265.
Peters AC, et al. Transplantation. 2018; 102(9):1553.
EPSTEIN BARR VIRUS POST TRANSPLANT LYMPHOPROLIFERATIVE DISORDER (PTLD)

Treatment:
- Antivirals not effective on latently infected lymphocytes
- Reduce Immunosuppression (Response ~ 45%)
- Rituximab: Anti-CD20 monoclonal antibody (Response ~ 55%)
- Cytotoxic Combination (CHOP, ACVBP) Chemotherapy
 - Reserved for non-responsive disease
 - High treatment associated mortality (13%-50%)
- Adoptive Immunotherapy (EBV cytotoxic T-cells)
 - Under study, not readily available

POLYOMAVIRUS BK VIRUS NEPHROPATHY

- Ubiquitous, DNA virus
 - 1st infxn – URI during early childhood
 - 80% worldwide population sero+
 - Renal & uroepithelial cells, site of latency
 - Cause of nephropathy post renal transplant
 - Up to 15% of renal recipients affected
 - Time to onset 28-40 weeks (majority within 1st yr post bi)
 - Manifests as unexplained renal dysfunction (as does rejection)

CASE 2

- 52 yo female S/P cadaveric renal transplant receiving tacrolimus, prednisone and mycophenylate.
- Week 30 post transplant serum creatinine rose from 1.5 to 2.3 mg/dl.
- Tacrolimus levels were in therapeutic range.
- Urinalysis revealed one plus protein and no cells or casts.

BK VIRUS NEPHROPATHY DIAGNOSIS

- Replication in urine precedes replication in blood precedes nephropathy
- Renal Bx - “Gold Standard” for diagnosis
- Blood PCR
 - Sensitive (100%) but less specific (88%)
 - Cannot rule out rejection
 - Useful as indicator for biopsy
- Urine Cytology, Electronmicroscopy, & PCR
 - Detection in urine: Low PPV but High NPV

BK VIRUS NEPHROPATHY TREATMENT

- Reduce immunosuppression
- Case series with variable success using:
 - Low-dose cidofovir
 - Leflunomide
- New drugs & randomized controlled trials needed
- Preemptive monitoring key to prevention
INVASIVE FUNGAL INFECTIONS IN SOLID ORGAN TRANSPLANT RECIPIENTS

Type of fungal infection varied depending on organ transplanted:
- Aspergillus, 15%
- Candida, 55%
- Cryptococcus, 5.4%
- Zygomycetes, 1.9%
- Other yeasts, 2.8%
- Endemic, 5.7%
- Other molds, 5.8%

INVASIVE FUNGAL INFECTIONS ACCORDING TO ORGAN TRANSPLANTED (N=16,808)

Type	Kidney	Heart	Pancreas	Liver	Lung	Small Bowel	
12 Month IFI	Incident (%)	1.3	3.4	4.0	4.7	8.6	11.6
IFI Type (%)	Candidiasis	49	49	76	66	23	55
	Aspergillosis	14	23	5	11	44	0
	Other molds	7	10	3	6	26	0
	Cryptococcus	15	10	5	6	26	5
	Endemic	10	3	6	5	1	0
	Pneumocystosis	1	3	1	0	2	0
	Other	4	2	4	4	2	10

ANTIFUNGAL PROPHYLAXIS FOR SOLID ORGAN TRANSPLANT RECIPIENTS

- Per ISHLT Guidelines
- Per AST Guidelines

- Lung
 - All recipients
 - High-risk recipients: Candida

- Liver
 - All recipients
 - High-risk recipients: Candida

- Pancreas
 - All recipients
 - Candida

- Small bowel
 - All recipients
 - Candida

TUBERCULOSIS

- 34-74 fold higher risk of active disease in SOT recipients than general population
- Incidence 1% - 6% (up to 15% in endemic areas)
- Median onset 9 months post-tx (0.5-144 months)
- 33% of infections are disseminated at diagnosis
- Treatment
 - Rifampin-based regimens associated with graft loss/rejection in 25%
 - Mortality ~30%
 - Treat latent TB prior to transplant when possible

CASE 3

- 35 yo female s/p heart transplant in France 90 days prior presented with fever, dyspnea and a diffuse pneumonia on chest CT.
- She was receiving prednisone, tacrolimus & mycophenolate.
- Both recipient & donor were CMV negative; she was not on CMV prophylaxis.
- She was on inhaled pentamidine for PCP prophylaxis.
Trimethoprim-sulfamethoxazole was started empirically and she began improving. Bronchoalveolar lavage (BAL) was negative for:

- pneumocystis by direct fluorescent antibody stain & PCR
- fungi by calcoflour white / potassium hydroxide stain
- mycobacteria by AFB smear
- bacteria by Gram stain, and
- respiratory viruses by multiplex PCR

Routine bacterial BAL and blood cultures were negative.

CASE 4
Liver transplant recipient presented 21 days post transplant with confusion, tremors, lethargy, anorexia
- On bactrim & valganciclovir prophylaxis
- Rapid progressive neurologic decline → agitation & delirium → intubation
- Blood & urine cultures: negative
- CSF: lymphocytic pleocytosis (25 WBC/mm³) & elevated protein
 - Gram stain: bacterial, fungal cultures negative
- Brain MRI: non-revealing
- Empiric intravenous ganciclovir, vancomycin, ceftriaxone & ampicillin
- Day 6 Repeat MRI: diffuse encephalitis
- Expired 13 days after neurologic symptom onset
- Donor was previously healthy presenting with subarachnoid hemorrhage
- Toxicology screen: + cocaine & marijuana
 - Brain CT: expanding subarachnoid hemorrhage
 - Recently on camping trip

QUESTION #4
This presentation is most consistent with:
A. CMV encephalitis
B. HHV6 encephalitis
C. VZV encephalitis
D. Rabies encephalitis
E. Cryptococcal meningitis
43 – Infections in Solid Organ Transplant Recipients

Speaker: Barbara Alexander, MD

“EXPECTED” DONOR- DERIVED INFECTIONS

- Expected = known before tx or for which there are recognized standard prevention guidelines
 - Cytomegalovirus (CMV)
 - Epstein–Barr virus (EBV)
 - Toxoplasmosis

*United Network for Organ Sharing / Organ Procurement and Transplant Network
 Ison M et al. Am J Transplant. 2009;9:1929-1935.

“UNEXPECTED” DONOR- DERIVED INFECTIONS

VIRUSES, VIRUSES, & PARASITES, OH MY...

- Lymphocytic choriomeningitis virus (LCMV) & Hamsters and rodents
 - 4 outbreaks (3 USA, 1 Australia); 9 deaths
- Rabies virus & Unreported bat bite in donor
 - 3 outbreaks (2 USA, 1 Germany); 8 deaths
- Chagas’ Disease (Trypanosoma cruzi) & Reduviid bug (Latin America)
 - Screening tests lack sensitivity
 - Multiple transmissions reported
- HIV, Hep C, Hep B, West Nile Virus (WNV)
 - Remember the “Window” prior to development of antibodies
 - Nucleic Acid Tests decrease “window” to ~5-10 days (HIV), 6-9 days (HCV)

Fisher SA et al. N Engl J Med. 2006;354:2235-2249. MMWR Morb Mortal Wkly Rep. 2008;57:799-801. Kusne S et al. Transpl. 2005;11:1295-1297.

SOLID ORGAN TRANSPLANT PATIENT TRAVEL

- REGIONAL EXPOSURES
 - COCCIDIODOMYCOSIS: Southwest U.S.
 - HISTOPLASMOSIS: Central/Mid-Atlantic U.S.
 - VISCERAL LEISHMANIASIS: Spain, Mediterranean Basin
 - MALARIA: Tropics
 - BABESIA MICROTI: Northeast & Upper Midwest U.S.
- AND ALL THE “NORMAL” RISKS TO TRAVELERS
 - DIARRHEA
 - STDs
 - MDR-TB
 - BLOOD SUPPLY (need for TRANSFUSIONS), etc....
- AVOID LIVE VACCINES: Yellow Fever, Oral typhoid, etc.
- DRUG INTERACTIONS → Transplant meds + travel related prophylactic agents

TYPICAL PRESENTATIONS OF UNEXPECTED DONOR DERIVED INFECTIONS

- Most present in the first 3 months post transplant
- Look for epidemiologic clues for potential donor exposure in the stem (e.g. donor from Latin America)

KEY DRUG TOXICITIES / SYNDROMES

- TTP / PRESS (RPLS) induced by calcineurin inhibitors
- Sirolimus-induced pneumonitis
 - Progressive interstitial pneumonitis (22% in one study)
 - Risk factors: late switch to sirolimus & impaired renal function
 - Symptoms: dyspnea, dry cough, fever, and fatigue
 - Radiographic & bronchoalveolar lavage consistent with bronchiolitis obliterans organizing pneumonia & lymphocytic alveolitis
 - Recovery with sirolimus withdrawal

Euvrard S et al. N Engl J Med. 2012;367(4):329. Champion L et al. Am J Transplant 2006;6:144-156. Weinb M et al. Hepatol Clin Transplant 2017;21(1):A101.

©2020 Infectious Disease Board Review, LLC
OTHER PEARLS FOR BOARDS...

If you’re thinking PCP but it’s not → think TOXO

Patient presenting atypically during first month post transplant →
think donor transmitted infection
• Rabies, WNV, Coccidioides, Chagas, LCMV (look for epidemiologic clues in stem)

Remember drug interactions and syndromes
• TTP and PRES (RPLS) induced by calcineurin inhibitors
• Sirolimus-induced pneumonitis

Remember Strongyloides hyperinfection syndrome
TB- Don’t miss a case!
BK, CMV and EBV/PTLD – know how to diagnose and manage

Thank you