Short Communication

Absence of BRAF gene mutations in uveal melanomas in contrast to cutaneous melanomas

SC Edmunds1,2, IA Cree*,2,3, F Di Nicolantonio2,3, JL Hungerford4, JS Hurren5 and DP Kelsell1

1Centre for Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, 2 Newark Street, Whitechapel E1 2AT, UK; 2Translational Oncology Research Centre, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK; 3Department of Pathology, Institute of Ophthalmology, Bath Street, London EC1V 9EL, UK; 4Ocular Oncology Service, St Bartholomew’s and Moorfields Eye Hospital, City Road, London EC1V 9EL, UK; 5Department of Surgery, Queen Alexandra Hospital, Portsmouth PO9 6AH, UK

The recent discovery of activating mutations in the BRAF gene in many cutaneous melanomas led us to screen the genomic sequence of BRAF exons 11 and 15 in a series of 48 intraocular (uveal) melanomas, together with control samples from three cutaneous melanomas and the SK-Mel-28 cell line, which has a BRAF mutation. The same mutation was detected in two-thirds of our cutaneous melanoma samples, but was not present in any uveal melanomas. This finding further underlines the distinction between uveal and cutaneous melanomas, and suggests that BRAF inhibitors are unlikely to benefit patients with uveal melanoma.

British Journal of Cancer (2003) 88, 1403–1405. doi:10.1038/sj.bjc.6600919 www.bjcancer.com

© 2003 Cancer Research UK

Keywords: melanoma; BRAF; DNA sequence; mutation

Uveal melanoma is the most frequent primary intraocular tumour in Caucasian adults, having an annual incidence rate of 0.7 per 100 000 people (Prescher et al, 1994). The eye is the most common site for noncutaneous melanomas, accounting for approximately 80% of such lesions (Sisley et al., 1994) and accounting for 13% of all deaths from melanoma because of its very high mortality rate (Albert et al., 1992). Both uveal and cutaneous melanomas originate from the melanocyte, but little is known about the underlying molecular pathogenesis of uveal melanoma. This is in contrast to cutaneous melanoma where there have been more substantial advances in detecting mutations (Chin et al., 1998). Both tumours differ significantly in their aetiology, with UV light appearing to play little or no part in the causation of uveal melanoma, whereas cutaneous melanoma spreads mainly via the lymphatics, whereas cutaneous melanomas spread haematogenously leading to liver metastasis, where uveal melanoma samples were removed as part of patient treatment and

found in more than 30% of human tumours, predominantly pancreatic, colonic, and in up to 36% of cutaneous melanomas (Demunter et al., 2001). BRAF is a gene that is regulated by RAS binding, and was shown to have missense mutations in 66% of primary melanoma tumours, 59% of melanoma cell lines, and 80% of melanoma short-term cultures (Brose et al., 2002; Davies et al., 2002). Mutations have also been detected in up to 82% of cutaneous melanocytic nevi (Pollock et al., 2003). Activation of this pathway has been noted in uveal melanoma tumours although mutations have not been detected in any of the RAS genes (H-, K-, and N-RAS) (Mooy et al., 1991; Soparker et al., 1993). This makes BRAF an interesting candidate gene to screen in uveal melanoma tumours because of BRAF mutation being a potential mechanism for the activation of this pathway, and the fact that BRAF mutations are not thought to be related to the effects of UV light (Davies et al., 2002).

BRAF mutations were predominantly found in two small regions of the kinase domain of the BRAF molecule. The majority of the mutations were a single T → A base substitution at nucleotide 1796 in exon 15 of the BRAF gene, and in some of the adjacent codons. A smaller number of mutations were also found in a region of exon 11, and other lower levels of mutations have been reported in these codons in cancers including ovarian, sarcomas, lung (Brose et al., 2002), and colorectal tumours (Rajagopalan et al., 2002).

MATERIALS AND METHODS

We screened the genomic sequence of BRAF exons 11 and 15 in a series of 48 uveal melanoma tumours, using primers taken from Davies et al. (2002). DNA was extracted from tumours removed from enucleated eyes from Moorfields Eye Hospital as described previously and used in a previous study (Edmunds et al., 2002). All tumour samples were removed as part of patient treatment and
with local ethical committee approval for use of the tissue in this study, and the study protocol adhered to the tenets of the Declaration of Helsinki. The median age of the patients was 61 years old, with a small bias towards male subjects (56%). These tumours were predominantly choroidal (74% of tumours), with smaller numbers of ciliary body (14%), and mixed choroidal–ciliary body (12%) type. We also tested DNA from three cutaneous melanoma metastases.

Polymerase chain reaction (PCR) products were amplified using Bioline Taq (Bioline, London, UK) in the following conditions: 5 min 96 °C initial denaturation, 96 °C 30 s, 55 °C 1 min, 72 °C 30 s for 30 cycles, followed by a final extension cycle for 5 min at 72 °C (Hybaid, Ashford, UK). Polymerase chain reaction products were purified using a QIAquick PCR purification kit (QIAGEN, Crawley, UK). Purified PCR products are then directly sequenced using BigDye terminator chemistry and analysed on an AB Biosystems 377 automated sequencer (AB, Warrington, UK). As a positive control, the cutaneous melanoma cell-line SK-MEL-28 DNA was used, that was known to contain the exon 15 T1796A (V599E) mutation (Davies et al, 2002). As a negative control, blood DNA from several unaffected individuals was used.

Sequences were compared to the assumed wild-type sequence from the nontumour DNA, and to the human BRAF sequence (Genbank accession number: GI:179532). Sequences were aligned with wild-type sequence traces and compared by eye. Particular attention was given to the sequence around the two small regions of the kinase domain of the BRAF molecule located in exons 11 and 15 that contain all of the published mutations.

RESULTS

The SK-MEL-28 cell-line exon 15 T1796A (V599E) mutation was detected by sequencing, and the same mutation was also detected in two-thirds of the skin melanoma tumours studied. This result was expected as Davies et al (2002) had shown that 66% of the malignant melanoma tumours screened had BRAF mutations, and predominantly the T1796A mutation. In contrast to this finding, we could not detect exon 11 or 15 BRAF mutations in any of the uveal melanoma tumours screened. We were able to produce high-quality sequencing to screen for mutations in 35 samples for exon 15 and 23 samples for exon 11 (Figure 1).

DISCUSSION

It is possible that, with direct sequencing, low levels of mutation could have been missed, as it is not as sensitive a technique as SSCP or DHPLC. Our tumour DNA samples were very pure though, and there was unlikely to be any contamination from normal tissues. Sequencing would not be able to detect mutant alleles present at low frequency because of somatic mosaicism, but the significance of very low levels of mutant tumour cells would be questionable. It is also possible that there were mutations in other areas of the BRAF gene, as we only screened exons 11 and 15, and predominantly concentrated on the mutated hotspots. All previously reported mutations have been concentrated to these two hotspot regions in the BRAF kinase domain, hence, mutations in different regions of the molecule are unlikely to be able to activate the oncogene in such a strong manner.

Here, we show another potentially important cancer-associated gene that is not mutated in sporadic uveal melanoma. Many other studies have found significant genetic (Naus et al, 2000; Soufir et al, 2000; Edmunds et al, 2002) and cytogenetic differences (Sisley et al, 2000) between the tumour types, despite both cells originating from the same cell type. Uveal melanoma is less studied in comparison to cutaneous melanoma, but to date no significant levels of mutated tumour-suppressor genes have so far been convincingly linked to it (Edmunds et al, 2002). Epigenetic mechanisms of gene inactivation may play a more important role in this tumour. If the RAS/RAF pathway is activated in uveal melanoma, then it is unlikely to be because of activating mutations in RAS or B-RAF, but other members of this pathway have yet to be studied, including A-RAF, C-RAF (RAFI), and GAP1.

Our findings further highlight the fact that cutaneous and uveal melanomas are very different tumours, and that the oncogenesis of uveal melanoma uses very different mechanisms and genes to cutaneous melanoma. This has implications for treatment, as BRAF inhibitors are now undergoing clinical trials from which uveal melanoma patients are unlikely to benefit. (Chow et al, 2001; Coudert et al, 2001; Ruden et al, 2001; Cripps et al, 2002).

ACKNOWLEDGEMENTS

We are grateful to Moorfields Eye Hospital Special Trustees, the Joint Research Board of St Bartholomew’s Hospital, Portsmouth Hospitals NHS Trust, and Cancer Research UK for supporting this work.

REFERENCES

Albert DM, Niffenegger AS, Willson JK (1992) Treatment of metastatic uveal melanoma: review and recommendations. Surv Ophthalmol 36: 429–438
Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrerro R, Einhorn E, Herlyn M, Minna J, Nicholson A, Roth JA, Albelda SM, Davies H, Cox C, Brignell G, Stephens P, Futreal PA, Wooster R, Stratton MR, Weber BL (2002) BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 62: 6997–7000
Chin L, Merlino G, DePinho RA (1998) Malignant melanoma: modern black plague and genetic black box. Genes Dev 12: 3467–3481
Chow S, Patel H, Hedley DW (2001) Measurement of MAP kinase activation by flow cytometry using phospho-specific antibodies to MEK and ERK: potential for pharmacodynamic monitoring of signal transduction inhibitors. Cytometry 46: 72–78
Coudert B, Anthoney A, Fiedler W, Droz JP, Dieras V, Borner M, Smyth JF, Morant R, de Vries MJ, Roedvink M, Fumoleau P (2001) Phase II trial
Absence of BRAF gene mutations in uveal melanomas

SC Edmunds et al

Absence of BRAF gene mutations in uveal melanomas

Naus NC, Zuidervaart W, Rayman N, Slater R, van Drunen E, Ksander B, Luyten GP, Klein A (2000) Mutation analysis of the PTEN gene in uveal melanoma cell lines. *Int J Cancer* 87: 151–153

Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, Moses TY, Hostetter G, Wagner U, Kakareka J, Salem G, Pohida T, Heenan P, Duray P, Kallioniemi O, Hayward NK, Trent JM, Meltzer PS (2003) High frequency of BRAF mutations in nevi. *Nat Genet* 33: 19–20

Pollock PM, Meltzer PS (2002) A genome-based strategy uncovers frequent BRAF mutations in melanoma. *Cancer Cell* 2: 5–7

Prescher G, Bornfeld N, Hirche H, Horshemken B, Jockel KH, Becher R (1996) Prognostic implications of monosomy 3 in uveal melanoma. *Lancet* 347: 1222–1225

Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE (2002) Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. *Nature* 418: 934

Rudin CM, Holmlund J, Fleming GF, Mani S, Stadler WM, Schumm P, Monia BF, Johnston JE, Geary R, Yu RZ, Kwoh TJ, Dorr FA, Ratain MJ (2001) Phase I trial of ISIS 5132, an antisense oligonucleotide inhibitor of c-raf-1, administered by 24-hour weekly infusion to patients with advanced cancer. *Clin Cancer Res* 7: 1214–1220

Seftor RE, Seftor EA, Hendrix MJ (1999) Molecular role(s) for integrins in human melanoma invasion. *Cancer Metast Rev* 18: 359–375

Sisley K, Parsons MA, Garnham J, Potter AM, Curtis D, Rees RC, Rennie IG (2000) Association of specific chromosome alterations with tumour phenotype in posterior uveal melanoma. *Br J Cancer* 82: 818–822

© 2003 Cancer Research UK

British Journal of Cancer (2003) 88(9), 1403–1405