Confinement-Deconfinement transition and Z_2 symmetry in Z_2+Higgs theory

Minati Biswal,1,* Sanatan Digal,2,3,† Vinod Mamale,2,3,‡ and Sabiar Shaikh2,3,§

1Indian Institute of Science Education and Research, Mohali 140306, India
2The Institute of Mathematical Sciences, Chennai 600113, India
3Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India

Abstract

We study the Polyakov loop and the Z_2 symmetry in the lattice Z_2+Higgs theory in four dimensional space using Monte Carlo simulations. The results show that this symmetry is realised in the Higgs symmetric phase for large number of “temporal” lattice sites. To understand this dependence on the number of “temporal” sites, we consider a one dimensional model by keeping terms of the original action corresponding to a single spatial site. In this approximation the partition function can be calculated exactly as a function of the Polyakov loop. The resulting free energy is found to have the Z_2 symmetry in the limit of large temporal sites. We argue that this is due to Z_2 invariance as well as dominance of the distribution or density of states corresponding to the action.

* biswalmnt@gmail.com
† digal@imsc.res.in
‡ mvinod@imsc.res.in
§ sabiarshaikh@imsc.res.in
I. INTRODUCTION

Z_N symmetry plays an important role in the confinement-deconfinement (CD) transition in pure $SU(N)$ gauge theories [1–3]. In these theories, at finite temperature, the allowed gauge transformations are classified by the centre of the gauge group, i.e Z_N. Under these Z_N gauge transformations, i.e Z_N symmetry, the Polyakov loop (L) transforms like magnetisation, in spin models [4]. In the confinement and deconfinement phases the Polyakov loop acquires vanishing and non-zero thermal average values respectively, hence plays the role of an order parameter for the confinement-deconfinement (CD) transition, [5–9]. In the deconfined phase, the Z_N symmetry is spontaneously broken which leads to N-degenerate states [10–12].

The Z_N symmetry of pure $SU(N)$ gauge theory is spoiled when matter fields are included. Gauge transformations which are not periodic in temporal directions can not act on the matter fields. These may act only on the gauge fields but in the process the action does not remain invariant. There are many studies on the effect of matter fields on this symmetry. Perturbative loop calculations of the Polyakov loop effective potential show that this symmetry is explicitly broken by matter fields in the fundamental representation [13–15]. The mean-field approximations of lattice partition functions in the strong coupling limit also show the explicit breaking of the Z_N symmetry [16, 17]. On the other hand, non-perturbative studies of CD transition in 2–colour QCD show a sharp transition suggesting small explicit breaking of Z_2 symmetry [18].

Recent non-perturbative Monte Carlo simulations of $SU(2)+$Higgs theory show that the strength of Z_2 explicit breaking depends on the Higgs condensate [19]. These studies find that the CD transition exhibits critical behaviour in the Higgs symmetric phase for large number of temporal sites (N_τ) [19]. The distributions of the Polyakov loop are found to be Z_2 symmetric, albeit within statistical errors, suggesting the realisation of Z_2 symmetry in the Higgs symmetric phase. In reference [20], it was argued that the emergence of Z_2 symmetry is due to enhancement of the configuration/ensemble space with N_τ. This enhancement makes it possible that the change in the Euclidean action due to Z_2 “rotation” of gauge links can be compensated by changing the Higgs field appropriately. This was numerically tested by updating the Higgs field using Monte Carlo steps after Z_2 rotating the gauge fields.
The non-invariance of the action under Z_2 gauge transformation which are not periodic in temporal directions does not necessarily imply the explicit breaking of Z_2 symmetry. The presence of Z_2 symmetry or it’s explicit breaking can only be inferred from the free energy of the Polyakov loop. In the free energy or the partition function calculations, two factors play important roles. They are the distribution of the action, which is also known as the density of states (DoS) and the Boltzmann factor. The latter clearly does not respect the Z_2 symmetry. So the realisation of the Z_2 symmetry must come from the DoS and it’s dominance over the Boltzmann factor. Computing the DoS in $SU(N)$+Higgs theory is a difficult task as the configuration space is infinite. In this situation, the Z_2+Higgs theory in four dimensions provides a suitable alternative. Since the field variables take values ± 1, it is possible to calculate the DoS with some simplifications.

The Z_2+Higgs theory has been extensively studied in literature [21–27]. The phase diagram of this theory is found to be similar to that of $SU(N)$+Higgs theories in 3 and 4–dimensions [28, 29]. Though, in this theory there is no analog of the beta-functions of $SU(N)$+Higgs theories and the temperature is controlled by the couplings of the theory [30]. The similarity with the $SU(N)$+Higgs theories arises when periodic/anti-periodic boundary condition is imposed on the Higgs field, in any one of the four dimensions. As a consequence gauge transformations which are not periodic in this “temporal” direction are not allowed and the Z_2 symmetry is explicitly broken similar to the explicit breaking of Z_N symmetry in $SU(N)$+Higgs theories. It is important to note the difference on the role of N_τ between Z_2+Higgs and $SU(N)$+Higgs theories. Though in both cases increase in N_τ introduces additional degrees of freedom, in $SU(N)$+Higgs theory to study Z_N symmetry at fixed temperature the couplings need to be tuned.

In this paper, the Z_2 symmetry of the Polyakov loop and the nature of CD transition are studied by varying the number of lattice points, N_τ, along the temporal direction. The computations are mostly done on the Higgs symmetric side of the Higgs transition line. Our results show that the Z_2 symmetry is realised for large N_τ. Also the behaviour of the CD transition is found to be similar to the pure gauge case apart from the location of the critical point. To understand the role of N_τ a 0 + 1 dimensional model is considered by keeping temporal component of the gauge Higgs interaction corresponding to a single spatial coordinate. The reason for this choice is the fact that only the temporal component of the gauge Higgs interaction is sensitive to the Z_2 gauge transformations. For the one
dimensional model the Polyakov loop can take values ±1. For each of these cases the free energy can be calculated exactly. The free energy calculations show the emergence of Z_2 symmetry in the large N_τ limit for arbitrary interaction coupling. Further the Monte Carlo results for the distribution of the interaction term is reproduced well by 0 + 1 dimensional DoS with a simple Boltzmann factor, though with a different value of the coupling strength. The DoS for both values of the Polyakov loop is sharply peaked at zero. Z_2 symmetry is clearly observed near the peak, the differences appear when the action takes the limiting values. Since the peak height grows with N_τ, the DoS will dominate the thermodynamics in the $N_\tau \to \infty$, leading to vanishingly small Z_2 explicit symmetry breaking.

This paper is organised as follows. In section II, we discuss the Z_2 symmetry in Z_2+Higgs theory. This is followed by numerical simulations of CD transition and the Z_2 symmetry in pure gauge theory and in the presence of Higgs in section III. In section IV, we derive the free energy of the Polyakov loop in a 0 + 1 dimensional model, and relate the results to 4−dimensional Monte Carlo simulations. In section V, discussions and conclusions are presented.

II. Z_2 SYMMETRY IN Z_2+HIGGS GAUGE THEORY.

The action for the Z_2+Higgs theory in four dimensional lattice ($N_s^3 \times N_\tau$) is given by,

$$S = -\beta g \sum_P U_P - \kappa \sum_{n,\hat{\mu}} \Phi_{n+\hat{\mu}} U_{n,\hat{\mu}} \Phi_n. \quad (1)$$

Here $n = (n_1, n_2, n_3, n_4)$ represents a point on the lattice with $1 \leq n_1, n_2, n_3 \leq N_s$ and $1 \leq n_4 \leq N_\tau$. As mentioned above we assume that the fourth direction is the temporal direction. $U_{n,\hat{\mu}}$ represents the gauge links in $\hat{\mu}$ direction between the lattice point n and $n + \hat{\mu}$. The Higgs field Φ_n lives at the site n. Both $U_{n,\hat{\mu}}$ and Φ_n take values ±1. βg is the gauge coupling and κ is the gauge Higgs interaction strength. Figure. 1 shows a schematic layout of the gauge links and Higgs variable on the lattice.
The plaquette U_P which is path ordered product of the links along an elementary square on the $\mu - \nu$ plane, i.e

\[U_P = U_{n,\hat{\mu}}U_{n,\hat{\nu}}U_{n+\hat{\nu},\hat{\mu}}U_{n,\hat{\nu}}. \] (2)

Figure 2 shows the sketch of an elementary plaquette. The pure gauge part of the action, first term in Eq.1, is invariant under the Z_2 gauge transformations,

\[U_{n,\hat{\mu}} \rightarrow V_n U_{n,\hat{\mu}} V_{n+\hat{\mu}}^{-1} \] (3)

where $V_n = \pm 1 \in Z_2$. The V_n’s satisfy the following boundary condition,

\[V(\bar{n}, n_4 = 1) = zV(\bar{n}, n_4 = N_\tau). \] (4)

$z = \pm 1 \in Z_2$. So the gauge transformations can be classified by the group Z_2. For $z = -1$ the gauge transformations are anti-periodic in the temporal direction.

The Polyakov loop, which is defined as the product of links along the temporal direction,
i.e,

\[
L(\vec{n}) = \prod_{n_4=1}^{N_\tau} U(\vec{n}, n_4, \lambda)
\]

transforms non-trivially under \(Z_2\) gauge transformations [9]. It is easy to see that the Polyakov loop transforms as,

\[
L(\vec{n}) \rightarrow zL(\vec{n}).
\]

This transformation property of the Polyakov loop under \(Z_2\) (or \(Z_N\) in general) gauge transformation is similar to that of magnetisation in the Ising model. The partition function in the pure gauge case (\(\kappa = 0\)) is given by,

\[
\mathcal{Z} = \int DU e^{-S}.
\]

Since the action for \(\kappa = 0\) is invariant under \(Z_2\) gauge transformations, any configuration and its gauge rotated counterpart will contribute equally to the partition function. Therefore the distribution of the Polyakov loop exhibits \(Z_2\) symmetry in this case. Equivalently the free energy of the Polyakov loop will have \(Z_2\) symmetry.

The presence of the Higgs field changes the space of allowed gauge transformations. The reason being that the Higgs field is required to be periodic in the temporal direction. Under a gauge transformation, \(\Phi_n\) transforms as,

\[
\Phi_n \rightarrow V_n \Phi_n.
\]

Now the periodic boundary condition of \(\Phi\) would be spoiled if non-periodic gauge transformations, characterised by \(z = -1\) are allowed. In this case given a configuration, one can define a \(Z_2\) counterpart in which only the gauge links are \(Z_2\) rotated. Obviously these pair of configurations will not contribute equally to the partition function for \(\kappa \neq 0\). So according to the Boltzmann factor, \(\sum_{\vec{n}} L(\vec{n})\) and \(-\sum_{\vec{n}} L(\vec{n})\) are non degenerate. This situation is similar to the presence of an external field in the Ising model. However, the status of \(Z_2\) symmetry in the free energy can be answered only after integrating out the Higgs field for a given \(L(\vec{n})\) and its \(Z_2\) rotated configurations.

The Polyakov loop and Ising spins are similar in how they transform under respective
transformations. However there is an important difference between them. This becomes clear when one compares $L(\vec{n})$ and an Ising spin at a spatial point $\vec{n} = \{n_1, n_2, n_3\}$. A given value of $L(\vec{n})$ is associated with an entropy factor. This is because there are many different combinations of $U(\vec{n}, n_4)$ and $\Phi_{\vec{n}, n_4}$ are possible for a given value of $L(\vec{n})$. Larger the N_τ, larger is the corresponding entropy. This aspect of the Polyakov loop needs to be taken into account to understand the explicit breaking or realisation of $Z_2 (Z_N)$ symmetry, which is done in section IV. In the following section, we discuss the algorithm of the Monte Carlo simulations [31], present simulation results for the phase diagram in the $\beta_g - \kappa$ plane, distribution of the Polyakov loop and CD transition in the Higgs symmetric phase etc.

III. NUMERICAL TECHNIQUE AND MONTE CARLO SIMULATION RESULTS.

In the Monte Carlo simulations, the Metropolis algorithm is used for sampling the statistically significant configurations [32]. To update a particular gauge link $U_{n,\mu}$, we consider the change in the action by flipping it. If the action decreases then the flipped gauge link is accepted for the new configuration. If the action increases by ΔS then the new link is accepted with probability $Exp(-\Delta S)$. The same procedure is adopted for Φ_n. The process of updating is carried out over all n and μ in multiple sweeps. Configurations separated by 10 sweeps are used in our analysis, which brings down the autocorrelation between successive configurations to an acceptable level. For this simulations, $N_\tau = 4 - 24$ and $N_s = 16 - 84$ with $N_s/N_\tau = 4$ lattices have been considered [33].

The pure gauge simulations are initially performed to understand the nature of CD transition and Z_2 symmetry of the Polyakov loop. The simulations were repeated in the presence of Φ to study its effects. The pure gauge transition has been studied previously in the mean-field approximations [21], which finds the transition is first order in four dimensions. Also using duality transformations it can be shown that the critical $\beta_g \sim 0.4407$ for $\kappa = 0$ [22]. These results are supported by Monte Carlo simulations of smaller lattices [23].

The simulations carried out in this work are also consistent with these results. In figure 3 the average of the Polyakov loop is plotted vs β_g for $N_\tau = 4, 8$. There is a range in β_g for which clearly separated peaks in the distribution of the Polyakov loop has been observed. We take average of the Polyakov loop values corresponding to each peak separately. There-
Therefore we have two points in the figure for a given β_g. The two peaks also suggest that the transition is first order. For larger lattice sizes the range of β_g over which two states are observed increases [34]. This is expected as strength of fluctuations relatively decrease with volume (when correlation length is smaller than the spatial size of the system), making it difficult for the field to climb over the barrier and cross to the other side.

![Graph](image)

FIG. 3. The average of the Polyakov loop vs β_g for $N_\tau = 4$ and 8.

The effect of the Φ field on the $C D$ transition and Z_2 symmetry is expected to depend on κ. To relate these two aspects of pure gauge theory to the phases of the Higgs field, simulations were performed to obtain the Higgs transition line. For a given β_g, $\kappa > \kappa_c$ corresponds to the Higgs broken phase. In this phase the action term dominates. For $\kappa < \kappa_c$ the fluctuations of the Higgs rather than the action dominate the thermodynamic properties. This situation is similar to the Ising model at high temperatures. In Fig. 4 the Higgs transition line is plotted in the $\beta_g - \kappa$ plane. The location of the phase boundary is obtained by studying the κ dependence of the interaction term and its fluctuations for different values of β_g. In our simulations the Higgs transition is found to be first order for intermediate range of β and crossover for both small and large β, as observed in previous studies [28, 29]. For large β_g critical κ_c remains flat and increases with β_g in the small β_g range. In our simulations the critical values (β_c, κ_c) were found to vary mildly with N_τ.

In the Higgs broken phase, i.e large κ, the interaction term dominates over the entropy. The action takes the largest value when all the temporal links are +1. So it is expected that in the Higgs phase Z_2 symmetry is badly broken, also observed in our simulations. In the Higgs symmetric phase, it is the fluctuations of Higgs in other words the distribution of the interaction term dominate. In this phase there is a possibility for realisation of Z_2 symmetry.
symmetry. In figure 5 we show CD transition in the Higgs symmetric phase ($\kappa = .13$). For comparison, $\kappa = 0$ results also have been included. The CD transition is first order even in the presence of Φ, though the transition point shifts to lower values of β_g.

FIG. 5. The average of the Polyakov loop vs β_g for $N_r = 4$ and 8.

To check the N_r dependence of the Z_2 symmetry at $\kappa = .13$, the distribution of Polyakov loop is computed both in the confined and the deconfined phases for $N_r = 2, 3,$ and 8. In the deconfined phase, $L < 0$ data is Z_2 rotated and then compared with $L > 0$ data. The distributions/histograms are shown in figures. 6-11. For $N_r = 2$ the histograms clearly show there is no Z_2 symmetry. In the deconfinement side there is no Z_2 symmetry as the two Polyakov loop sectors do not overlap. For $N_r = 3$ the two peaks corresponding to the two sectors are approaching towards each other. For $N_r = 8$, the histogram of Polyakov loop for
two Z_2 sectors agree well with each other.

The κ dependence of the Z_2 symmetry is studied by computing the thermal average
of the temporal part of the interaction, i.e $sk_4 = \sum_n \Phi_n U_{n,4} \Phi^\dagger_{n+4}$, and the corresponding susceptibility χ_{sk_4}. These simulations are carried out in the deconfined phase, as there are two Z_2 states corresponding to each sector of the Polyakov loop. The results for $(\langle sk_4 \rangle, \chi_{sk_4})$ are shown in figures 12-15. For all N_τ values the difference in $(\langle sk_4 \rangle, \chi_{sk_4})$ for these two sectors is vanishingly small for small enough κ. For larger N_τ, the kappa value at which the two polyakov loop sectors differ significantly in sk_4 and χ_{sk_4} is higher. For the largest considered, $N_\tau = 24$, the two sectors agree in $(\langle sk_4 \rangle, \chi_{sk_4})$ up to the Higgs crossover point $\kappa < \kappa_c$. When Higgs transition is first order the Z_2 symmetry is observed in the Higgs symmetric phase even for $\kappa > \kappa_c$. Note that for $\kappa > \kappa_c$ the Higgs symmetric phase is meta-stable.

It is clear from our 3 + 1 dimensional simulations that the Z_2 symmetry is realised in the Higgs symmetric phase for large N_τ, i.e the partition function averages of physical observables exhibit the Z_2 symmetry. Though we have focussed mostly on simulations
around the Higgs transition region, it is important to look at the consequence of the Z_2 symmetry realisation across the CD transition. The CD transition line originates from the $\beta-$axis, runs parallel to $\kappa-$axis for small κ. For larger κ, $\beta_g = \beta_c$ decreases and the transition line merges with the Higgs transition line [28, 29]. For small but non-zero κ the CD transition is first order for $N_\tau \geq 3$. For large N_τ, for $\beta_g \geq \beta_c$ the Polyakov loop distribution shows two Z_2 symmetric peaks. In the confined phase, for $\beta_g \leq \beta_c$, the distribution exhibits a single peak. With increase in N_τ the peak of the distribution steadily approaches $L = 0$ and simultaneously the distribution exhibiting Z_2 symmetry.

For large N_τ, below $\beta_c(N_\tau)$ thermal average of the Polyakov loop $\langle L \rangle = 0$. Note that $\langle L \rangle \propto \exp(-F/T)$, where F is the free energy between static charges. This suggests that for $\beta \leq \beta_c(N_\tau)$ static charges are confined. Previously confinement was observed only in the $\beta \rightarrow 0$ limit [24]. It would be interesting to study the confinement aspects of the Z_N symmetry realisation in $SU(N)$ gauge theories. For fixed κ and β in the confinement phase we observe that the free energy F saturates for large N_τ. This implies that the approach $\langle L \rangle \rightarrow 0$ is merely due to the temperature $T \rightarrow 0$.

To understand the realisation of Z_2 symmetry in the current theory, we consider a 0 + 1 dimensional model keeping only the temporal component of the interaction term corresponding to a single spatial coordinate in the following section.

IV. THE PARTITION FUNCTION AND DENSITY OF STATES IN 0+1 DIMENSIONS

The temporal component of the gauge Higgs interaction corresponding to a particular spatial site can be written as,

$$S_{1D} = -\kappa s k_4, \quad s k_4 = \sum_{n=1}^{N_\tau} \Phi_n U_n \Phi_{n+1}. \tag{9}$$

n denotes the temporal lattice site, i.e $1 \leq n \leq N_\tau$. Φ_n satisfies the periodic boundary condition $\Phi_{N_\tau+1} = \Phi_1$. Since the action will not be invariant if a $z = -1$ gauge transformation is made on U_i’s, the action breaks the Z_2 symmetry explicitly. For this model the Polyakov loop can take values ± 1. To see the N_τ dependence of the Z_2 symmetry we calculate the free energy $V(L, N_\tau)$. To simplify the calculations we set $U_i = 1$, for $i = 1, 2, ..., N_\tau - 1$.
and $U_{N_r} = L$. All other configurations of U_i corresponding to a given value of L are gauge equivalent. Now the partition function for $L = 1$ is nothing but that of the one dimensional Ising chain. For $L = -1$ the only difference is that the coupling between Φ_{N_r} and Φ_1 is anti-ferromagnetic. For each choice of L the partition function can be calculated exactly, i.e,

$$Z(L = 1) = \lambda_1^{N_r} + \lambda_2^{N_r}, \quad Z(L = -1) = \lambda_1^{N_r} - \lambda_2^{N_r},$$

where $\lambda_1 = e^\kappa + e^{-\kappa}$ and $\lambda_2 = e^\kappa - e^{-\kappa}$. The corresponding free energies in the large N_r limit are given by,

$$V(L = 1) = V(L = -1) = -TN_r\log(\lambda_1).$$

This results show that there is Z_2 symmetry in $0 + 1$ dimensions in the limit of $N_r \to \infty$.

As noted previously the realisation of the Z_2 symmetry (vanishingly small explicit breaking) must come from the Z_2 symmetry of the entropy or the DoS. For $L = 1$ the sequence of allowed value of sk_4 is \{\(N_r, N_r - 4, \ldots, \geq -N_r\}\}. On the other hand for $L = -1$ the corre-
The corresponding sequence is \{N_r - 2, N_r - 6, \ldots \geq 2 - N_r\}. The DoS or \(\rho(sk_4)\) for \(N_r = 4, 8, 12\) and 16 are shown in figures 16-19. For small \(N_r\) there are clear difference for \(L = \pm 1\). The difference persists for the largest as well as smallest values of \(sk_4\). For large \(N_r\), \(\rho(sk_4)\)'s for both \(L = \pm 1\) are well described by a gaussian centred at \(sk_4 = 0\), with \(\sqrt{N_r}\) as standard deviation. The logarithm of the peak height is given by \(\simeq \log(N_r! - 2\log(N_r/2)! + \log 2)\) for \(N_r\) even. For \(N_r = 2n + 1\) the same can be approximated by \(\log(N_r! - \log(n^2 + n) + \log 2)\). The thermodynamics in the \(N_r \to \infty\) limit will be dominated by peak height and distribution of \(\rho(sk_4)\) around the peak, which is \(Z_2\) symmetric, for all finite \(\kappa\). Interestingly this situation is similar to one dimensional Ising chain where entropy dominates for any non-zero finite temperature.

In order to take into account the effect of nearest neighbour coupling along the spatial direction we consider 1 + 1 dimensional model with \(N_s = 2\) and vary \(N_r\). In this case the Polyakov loop can take value \(L = 0, \pm 2\). The exact calculation of \(\rho(sk)\) get increasingly difficult with \(N_r\). One can however consider generating configurations randomly by giving equal probability for each allowed value of a given variable. The results for the distribution of the total action for \(N_r = 4\) and \(N_r = 16\) are shown in Figs. 20-21. As one can see that for higher \(N_r\), \(\rho(sk)\) around the peak \(sk = 0\) do not depend on \(L\).

To find out how well the \(\rho(sk_4)\) describe the Monte Carlo simulations of the 4D partition function, the thermal average of the distribution function \(H(sk_4)\) of \(sk_4\) has been computed. For each configuration \(H(sk_4)\) is given by the number of spatial sites with a given value of \(sk_4\). Note that the distribution of \(sk_4\) takes into account the Boltzmann factor which shifts the peak of \(\rho(sk_4)\) to the right. The figure 22 shows the distribution \(H(sk_4)\) for \(N_r = 16\).
at $\kappa = 0.1$ and $\beta_g = 0.435$. For these values of κ and β_g, the system is found to be in the deconfined and Higgs symmetric phase. The thermal average of the Polyakov loop for the two sectors are found to be $\langle L \rangle = 0.5896 \pm 0.002$ and -0.5897 ± 0.00199. Since the $\langle L \rangle \neq 1$ there is a smaller but finite fraction of spatial site where the Polyakov loop takes opposite value. This results in the lower envelope in $H(sk_4)$. The results clearly show that $H(sk_4)$ for both the Polyakov loop sectors can be approximately described by single function in other words the presence of Z_2 symmetry.

In figure 23, we try to fit the $3+1$ dimensional simulation result with $0+1$ dimensional DoS by including an extra Boltzmann factor, i.e $\exp(\kappa' sk_4)$. The resulting fit agree very well with $H(sk_4)$. We expect that the $0+1$ results can describe the $3+1$ Monte Carlo simulations in most of the phase diagram except for critical points. Note here, $H(sk_4)$ values correspond to $\kappa = 0.1$, however to fit DoS one needs a κ value which is higher. This is due to the fact that in $3+1$ dimensions sk_4 at a given spatial point interacts with sk_4 at the nearest neighbour sites. Considering a mean-field approximation one can compute the free energy difference between $L = 1$ and $L = -1$ at $\kappa = \kappa'$ for the $3+1$ dimensional system at $\kappa = 0.1$, which turns out to be 10^{-10}.

V. CONCLUSIONS

In this paper the CD transition and Z_2 symmetry are studied in Z_2+Higgs theory in four dimensional space. The results show that for large N_T the Z_2 symmetry is realised in the Higgs symmetric phase within statistical errors. To understand the mechanism of emergence
of the Z_2 symmetry a simplified one dimension model of Z_2+Higgs is considered by keeping only the temporal interaction terms at a given spatial site. The partition function and the corresponding free energy for each of the two Polyakov loop sectors is exactly calculated. It is shown that the free energy difference between the two Polyakov loop sectors vanishes in the large N_τ limit, which leads to Z_2 symmetry purely due to dominance of entropy. The DoS for finite N_τ are calculated exactly where the asymmetry between the different Polyakov loop sectors rapidly decreases with N_τ. The effect of nearest neighbour interaction along the spatial directions in a simple model shows the persistence of Z_2 symmetry in the DoS. Further it is shown that the $3+1$ Monte Carlo simulations can be reproduced using the DoS of the one dimensional model.

For a better understanding of the effects of Z_2 or Z_N realisation on the confinement of static charges need to be studied in $SU(N)$ gauge theories in view of the Z_2+Higgs results, which we plan to do in future. The realisation of Z_N symmetry due to dominance of DoS, it’s effect on the CD transition and the Z_N states in the deconfined phase will play an important role in the study of the early Universe.

REFERENCES

[1] G. ’t Hooft, Nucl. Phys. B 138, 1-25 (1978) doi:10.1016/0550-3213(78)90153-0
[2] L. D. McLerran and B. Svetitsky, Phys. Rev. D 24, 450 (1981) doi:10.1103/PhysRevD.24.450
[3] V. M. Belyaev, Phys. Lett. B 254, 153-157 (1991) doi:10.1016/0370-2693(91)90412-J
[4] J. B. Kogut, Rev. Mod. Phys. 51, 659 (1979) doi:10.1103/RevModPhys.51.659
[5] J. Kuti, J. Polonyi and K. Szlachanyi, doi:10.1016/0370-2693(81)90987-4
[6] L. D. McLerran and B. Svetitsky, doi:10.1016/0370-2693(81)90986-2
[7] N. Weiss, Phys. Rev. D 24, 475 (1981) doi:10.1103/PhysRevD.24.475
[8] M. Creutz, Phys. Rev. D 21, 2308-2315 (1980) doi:10.1103/PhysRevD.21.2308
[9] B. Svetitsky and L. G. Yaffe, Nucl. Phys. B 210, 423-447 (1982) doi:10.1016/0550-3213(82)90172-9
[10] L. G. Yaffe and B. Svetitsky, Phys. Rev. D 26, 963 (1982) doi:10.1103/PhysRevD.26.963
[11] B. Svetitsky, Phys. Rept. 132, 1-53 (1986) doi:10.1016/0370-1573(86)90014-1
[12] T. Celik, J. Engels and H. Satz, Phys. Lett. B 125, 411-414 (1983) doi:10.1016/0370-
[13] N. Weiss, Phys. Rev. D 25, 2667 (1982) doi:10.1103/PhysRevD.25.2667
[14] V. M. Belyaev, I. I. Kogan, G. W. Semenoff and N. Weiss, Phys. Lett. B 277, 331-336 (1992) doi:10.1016/0370-2693(92)90754-R
[15] Y. Guo and Q. Du, JHEP 05, 042 (2019) doi:10.1007/JHEP05(2019)042 [arXiv:1810.13090 [hep-ph]].
[16] F. Green and F. Karsch, Nucl. Phys. B 238, 297-306 (1984) doi:10.1016/0550-3213(84)90452-8
[17] F. Karsch, E. Laermann, A. Peikert, C. Schmidt and S. Stickan, Nucl. Phys. B Proc. Suppl. 94, 411-414 (2001) doi:10.1016/S0920-5632(01)00988-4 [arXiv:hep-lat/0010040 [hep-lat]].
[18] H. Satz, Phys. Lett. B 157, 65-69 (1985) doi:10.1016/0370-2693(85)91213-4
[19] M. Biswal, S. Digal and P. S. Saumia, Nucl. Phys. B 910, 30-39 (2016) doi:10.1016/j.nuclphysb.2016.06.025 [arXiv:1511.08295 [hep-lat]].
[20] M. Biswal, M. Deka, S. Digal and P. S. Saumia, Phys. Rev. D 96, no.1, 014503 (2017) doi:10.1103/PhysRevD.96.014503 [arXiv:1610.08265 [hep-lat]].
[21] R. Balian, J. M. Drouffe and C. Itzykson, Phys. Rev. D 10, 3376 (1974) doi:10.1103/PhysRevD.10.3376
[22] R. Balian, J. M. Drouffe and C. Itzykson, Phys. Rev. D 11, 2104 (1975) [erratum: Phys. Rev. D 19, 2514 (1979)] doi:10.1103/PhysRevD.11.2104
[23] M. Creutz, doi:10.1103/PhysRevD.21.1006
[24] E. H. Fradkin and S. H. Shenker, Phys. Rev. D 19, 3682-3697 (1979) doi:10.1103/PhysRevD.19.3682
[25] D. J. E. Callaway and L. J. Carson, Phys. Rev. D 25, 531-537 (1982) doi:10.1103/PhysRevD.25.531
[26] G. Bhanot and B. A. Freedman, Nucl. Phys. B 190, 357-364 (1981) doi:10.1016/0550-3213(81)90566-6
[27] G. Bhanot and M. Creutz, BNL-27833.
[28] G. A. Jongeward and J. D. Stack, Phys. Rev. D 21, 3360 (1980) doi:10.1103/PhysRevD.21.3360
[29] M. Creutz, L. Jacobs and C. Rebbi, Phys. Rept. 95, 201-282 (1983) doi:10.1016/0370-1573(83)90016-9
[30] M. Caselle and M. Hasenbusch, Nucl. Phys. B 470, 435-453 (1996) doi:10.1016/0550-
3213(96)00161-7 [arXiv:hep-lat/9511015 [hep-lat]].

[31] M. Creutz, L. Jacobs and C. Rebbi, Phys. Rev. Lett. 42, 1390 (1979) doi:10.1103/PhysRevLett.42.1390

[32] W. K. Hastings, Biometrika 57, 97-109 (1970) doi:10.1093/biomet/57.1.97

[33] J. Engels, F. Karsch and H. Satz, Nucl. Phys. B 205, 239-252 (1982) doi:10.1016/0550-3213(82)90387-X

[34] P. H. Damgaard and U. M. Heller, Phys. Lett. B 171, 442-448 (1986) doi:10.1016/0370-2693(86)91436-X