The population genomics of structural variation in a songbird genus

Matthias H. Weissensteiner1,2, Ignas Bunikis3, Ana Catalán2, Kees-Jan Francoïjs6, Ulrich Knief2, Wieland Heim5, Valentina Peona1, Saurabh D. Pophaly2, Fritz J. Sedlazeck4, Alexander Suh1, Vera M. Warmuth2, Jochen B.W. Wolf1,2

1Department of Evolutionary Biology and Science for Life Laboratory, Uppsala University, SE-752 36, Uppsala, Sweden.
2Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany
3SciLife Lab Uppsala, Uppsala University SE-751 85 Uppsala, Sweden
4Human Genome Sequencing Center at Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
5Institute of Landscape Ecology, University of Münster, Heisenbergstrasse 2, 48149, Münster, Germany
6BioNanoGenomics, San Diego, CA 92121, USA

Correspondence should be addressed to M.H.W. (email: matthias.weissensteiner@ebc.uu.se) or J.B.W.W. (email: j.wolf@biologie.uni-muenchen.de).
Abstract

Structural variation (SV) accounts for a substantial part of genetic mutations segregating across eukaryotic genomes with important medical and evolutionary implications. Here, we characterized SV across evolutionary time scales in the songbird genus *Corvus* using *de novo* assembly and read mapping approaches. Combining information from short-read (*N* = 127) and long-read re-sequencing data (*N* = 31) as well as from optical maps (*N* = 16) revealed a total of 201,738 insertions, deletions and inversions. Population genetic analysis of SV in the Eurasian crow speciation model revealed an evolutionary young (~530,000 years) *cis*-acting 2.25-kb retrotransposon insertion reducing expression of the *NDP* gene with consequences for premating isolation. Our results attest to the wealth of SV segregating in natural populations and demonstrate its evolutionary significance.

Mutations altering the structure of DNA have the potential to drastically change phenotypes with medical and evolutionary implications (1–3). Yet, technological constraints have long impeded genome-wide characterization of (4). The detection of SV requires highly contiguous genome assemblies accurately representing the repetitive fraction of genomes which is known to be a vibrant source and catalyst of SV (5). Moreover, SV likely remains hidden unless sequence reads traverse it completely (6, 7). As a consequence, despite the rapidly increasing number of short-read (SR) based genome assemblies (8) and associated population genomic investigations (9), SV generally remains unexplored. Even in genetic model organisms, population-level analysis of SV has been restricted to pedigrees (10) or organisms with smaller, less complex genomes (11, 12), and few studies have provided a comprehensive account of SV segregating in natural populations (12, 13).

To investigate the dynamics of SV and uncover its role in causing phenotypic differences, we first generated high-quality phased *de novo* genome assemblies combining long-read (LR) data from single-molecule, real-time (SMRT, PacBio) sequencing and nanochannel optical mapping (OM) for the hooded crow (*Corvus (corone) cornix*; data from (14)), and the European jackdaw (*Corvus monedula*). For the former, we also generated chromatin interaction mapping data (Hi-C) to obtain a chromosome-level reference genome (Fig. 1A, see Supplementary Table S1 for assembly statistics). In addition, we included a previously published LR assembly of the Hawaiian crow (*Corvus hawaiiensis*) in the analyses (15). All assemblies were generated with the diploid-aware FALCON-UNZIP assembler (16), facilitating the comparison of haplotypes within species to identify heterozygous variants and determine genetic diversity at the level of single individuals. After aligning the two haplotypes of each assembly, we identified single-nucleotide polymorphisms (SNPs), insertions and deletions in all three species (Table 1). Genome-wide numbers of SV and SNPs per 1 Mb window were highest in jackdaw and lowest in the highly inbred Hawaiian crow (Fig. 1B), consistent with a positive correlation between census population size and genetic diversity (15, 17).
Fig. 1 | Sampling setup and assembly-based structural and single-nucleotide variation. (A), Phylogeny of sampled species in the genus *Corvus* (after (50)). Numbers in columns represent individual numbers for short-read sequencing (SR), long-read sequencing (LR) and optical mapping (OM). (B), Density histogram showing the abundance of genetic variation within single individuals. Counts of variants per 1 Mb windows are based on comparing the two haplotypes of each assembly. The upper panel reflects structural variation (SV) densities, the lower panel reflects densities for single-nucleotide polymorphisms (SNP).
Table 1 | Assembly-based structural variation and single-nucleotide polymorphism detection.

Species	Total number	Mean density per 1 Mb	Median density per 1 Mb	Total number	Mean density per 1 Mb	Median density per 1 Mb
Hooded crow	1637609	1568	1558	9916	9.19	5
Jackdaw	2262079	2189	2228	9903	9.29	7
Hawaiian crow	414229	366	0	4841	3.82	0

Next, to uncover SV segregating within and between natural populations, we generated LR re-sequencing data for 31 individuals. Spanning the phylogeny of the genus, this dataset included samples from the European and Daurian jackdaw (C. monedula, C. d. dauricus), the American crow (C. brachyrhynchos) and the Eurasian crow complex (C. (corone) spp.). The latter comprised individuals from the phenotypically divergent hooded crow (Sweden and Poland), and carrion crow populations (Spain and Germany) (18) (Fig. 1A). Individuals were sequenced to a mean sequence coverage of 15 (range: 8.47 – 27.91) with a mean read length of 7,535 bp (range: 5,219 - 10,034 bp; Supplementary Table S2). Mapping reads to the hooded crow reference allowed us to identify variants and genotypes for each diploid individual, which resulted in a set of 47,346 variants. SV genotyping is nontrivial and associated with high uncertainty (7). Thus, we utilized the sampling scheme to filter for variants complying with basic population genetic assumptions (Fig. 2A) (19). Variants that were excluded according to these criteria were enriched for deletions and clustered near the end of chromosomes (linear model, p = 10^{-16}, Fig. 2B, C). Increased densities of repetitive elements (Fig. 2D), particularly tandem repeats, in these regions are conducive to erroneous genotype calling, though it is possible that a subset of these phylogenetically recurring variants indeed represent true positive, hypermutable sites.

Fig. 2 | Phylogenetic filtering of read mapping-based structural variants. (A), Example genotype plots of LR-based variants according to phylogenetically informed filtering. Given the large divergence time of 13 million years (50) between the crow and jackdaw lineage, the proportion of polymorphisms...
shared by descent is negligible (§1) and therefore likely constitutes false positives or hypermutable sites (left panel). Variants segregating exclusively in the jackdaw or crow clade (middle and right panel), however, comply with the infinite sites model and were retained accordingly. Plotted are genotypes of one representative chromosome (chromosome 18), with genotypes of variants in different colors, where each row corresponds to one individual (N = 8 individuals jackdaw clade and N = 24 individuals crow clade). Note that, due to the tolerance of a certain number of mis-genotyped variants per clade, some variants are present in both clades. (B), Excluded versus retained variants in relation to SV class and chromosomal distribution. Excluded variants are enriched for deletions (LMM, p < 10^{-16}) and c repeats are most abundant at chromosome ends, coinciding with (D), an increased repeat density.

After the phylogenetically informed filtering step, we retained a final set of 41,868 variants (88.43% of the initial, unfiltered set) segregating within and between species. Of these, a small proportion was classified as inversions (694, 1.657%), whereas the vast majority was attributed to insertions (23,235, 55.495%) and deletions (17,939, 42.846%) relative to the hooded crow reference. Variant sizes were largest for inversions, with a median size of 980 bp (range: 51–99,824 bp), followed by insertions (248 bp, range: 51–45,373 bp) and deletions (154 bp, range: 51–94,167 bp). The latter showed noticeable peaks in the size distribution at around 900, 2,400 and 6,500 bp (Fig. 3A, for inversions see Supplementary Fig. S1), which likely stem from an overrepresentation of paralogous repeat elements. The five most common repeat motifs in insertions and deletions belonged to endogenous retrovirus-like LTR retrotransposon families and accounted for 22.78% of all matches to a manually curated repeat library (Supplementary Table S3). This suggests recent activity of this transposable element group, as has been previously reported in other songbird species (20). More than half of all insertions and deletions could not be associated with any known repeat motif (52.19%). The remainder was distributed approximately equally between tandem repeats (e.g. simple and low complexity repeats) and interspersed repeats. The latter category was dominated by LTR and LINE/CR retrotransposons with only a small number of SINE retrotransposons (Fig. 3B, Table 2). These different types of repeat elements exhibit fundamentally different mutation mechanisms (21) and effects on neighboring genes (22), such that repeat annotations are of crucial importance for the downstream population genetic analysis of SV.
Fig. 3 | Characterization and allele frequencies of SV. (A) Length distributions of deletions and insertions shorter than 10 kb identified with LR (upper panel) and OM (lower panel) data. Pronounced peaks at 0.9, 2.2 kb in the LR and at 2.3 and 6.5 kb in the OM variants likely stem from an overrepresentation of specific repeats. Indeed, among the five most common repeats found in insertions and deletions are LTR retrotransposons with a consensus sequence length of 670, 1,315, 6,022 bp, respectively. (B) Content of insertion and deletion sequences. About half of all variants were assigned to a known repeat family, of which transposable elements from the LTR retrotransposon subclass were
most common, followed by simple repeats (including microsatellites) and low complexity repeats. (C)

Folded allele frequency spectra of structural variants. Upper and lower panels correspond to the jackdaw
and crow clade, respectively. The five left panels depict the minor allele frequencies of insertions and
deletions, and the rightmost panel that of inversions.

Table 2 | Characterization of LR insertions and deletions.

Classification	Number	Percentage
Tandem repeat total	8847	21.48
Simple repeat	7167	17.4
Low complexity repeat	1595	3.87
Satellite	75	0.18
rRNA	5	< 0.05
tRNA	3	< 0.05
Macrosatellite	1	< 0.05
Interspersed repeat total	10828	26.3
LTR retrotransposon	9692	23.53
LINE / CR1 retrotransposon	1123	2.27
SINE retrotransposon	11	< 0.05
D/hAT-Charlie element	2	< 0.05
No match	21492	52.19

We then scrutinized structural variation segregating within clades sharing recent
common ancestry. A total of 35,723 and 29,555 variants remained after filtering in the
jackdaw (N = 8 individuals; C. monedula, C. dauuricus) and crow clade (N = 24; C.
(corone) spp., C. brachyrhynchos), respectively. Using the full data set across all
populations within each clade allowed us to compare folded allele frequency spectra
between SV classes and repeat types with high resolution (for population specific
spectra unbiased by population structure see Supplementary Fig. S2). Consistent with
recent studies in grapevine and Drosophila SV (12, 23), the distribution of allele
frequencies was skewed towards rare alleles (Fig. 3C). However, allele frequency
spectra of different SV classes differed in shape. While insertions and deletions
associated with LTR elements, LINE/CR1 elements or without any known match as
well as inversions exhibited the typical pattern of a strongly right-skewed frequency
distribution, allele frequencies of simple and low complexity repeats were shifted
towards intermediate frequencies. Besides a potential technical bias due to the more
difficult genotyping and variant discovery of these classes (24), this pattern is consistent
with convergence to intermediate allele frequencies due to high mutation rates (21).
These results illustrate how different underlying mutation dynamics potentially impact
the analysis of population genetic parameters for SV.

To improve our ability to detect larger SV and to provide an independent orthogonal
approach for SV discovery, we generated an additional 14 optical maps (Fig. 1A) and
compared them to the hooded crow reference assembly. Following that approach, we
identified 12,807 insertions, 8,799 deletions and 293 inversions. As expected from the
increased size of individually assessed DNA molecules (mean molecule N50 = 223.38 kb), variants identified with this approach exhibited a different size range (Fig. 3A) after applying the same upper limit (100 kb) as for the LR SV calls and a lower limit of resolution (1 kb) (25). Interestingly, insertion and deletions were not only enriched at lengths around 0.9 and 2.4 kb as seen in the LR-based SV calling, but also at ~ 6.5 kb, indicating an influence of the TguERV1-Ld_1_corCor LTR retrotransposon, which was the third most common single repeat in the LR variant set with a consensus sequence length of 6,022 bp (Supplementary Table S3). Thus, independent approaches targeting different size ranges of SV are vital to increase sensitivity in detecting hidden genetic variation.

To increase our sample size and expand our analysis to further populations and species (Fig. 1A), we applied a combination of three different short-read (SR) based SV detection approaches on previously published data of 127 individuals (18, 26). In total, we identified 132,025 variants of which 97,524 (73.87%) were unique to single individuals. In total, only 11,951 variants overlapped with the final set of variants identified in the long-read data set (corresponding to 9.05 % of SR and 28.54 % LR calls). This disconnect cannot be explained solely by differences in sample size. More likely, it indicates a high number of false-positives and false-negatives in the SR-based approach known for its sensitivity to the calling method (27) and disparity to LR-based calls (7). Therefore, we focused on the LR-based SV calls in the subsequent analysis and considered SR calls only for specific mutations.

Next, we investigated population structure using principal component analyses (PCA). The pattern in Fig. 4A (based on LR data) recapitulates the pattern of population stratification found in Vijay et al. based on 16.6 million SNPs (18), and thus supports the general suitability of SV genotypes for population genetic analyses (for SR data see Supplementary Fig. S3). In order to identify SV associated with prezygotic reproductive isolation, we calculated genetic differentiation between phenotypically divergent populations connected by gene flow (18, 26) and allopatric populations within the same phenotype (18). Mean FST was low overall with values ranging from 0.03 in the hooded versus carrion crow comparison to 0.156 in the hooded versus American crow comparison.
Fig. 4 | SV-based population structure and LTR retrotransposon insertion upstream of the NDP gene. (A) Principal component analysis based on SV genotypes. The first two principal components separate the crow and jackdaw clade, while principal components 3 to 5 separate lineages within the crow clade. (B) A 2.25-kb LTR retrotransposon insertion into the crow lineage (black bar: ancestral state, grey bar: derived, reference allele) belongs to the endogenous retrovirus-like family ERVK and the subfamily TguERV1-Ld-I and is located 20 kb upstream of the NDP gene. In close proximity, variation in copy number is associated with plumage pattern variation in pigeons. (C) Genotypes of the LTR element in short-read (SR) and long-read (LR) data. In both datasets, the LTR element insertion (blue) is fixed in all hooded crow populations. Species and populations with a black plumage are either polymorphic (light green) or fixed non-insertion (green). (D) Gene expression of NDP. Normalized gene counts of 18 individuals are significantly associated with the insertion genotypes (LMM, p = 0.002).

A total of 103 variants fell into the 99th percentile of FST in the gray-coated hooded versus all-black carrion crow population comparison in central Europe. These variants, located on in total 23 chromosomes, were considered as ad hoc candidate outlier loci subject to divergent selection (9), and were found at a median distance of 14.32 kb to...
adjacent genes (range: 0 - 695.84 kb). (Supplementary Table S4). Ten of these outliers (10.31 %) were placed on chromosome 18, which only represents 1.22 % of the entire assembly, corresponding to an ~8.5-fold enrichment. Given that outliers are located in the proximity of previously identified genes presumably under divergent selection (such as AXIN2 and RGS9, Supplementary Table S5), this supports a crucial role of chromosome 18 in maintaining plumage divergence (26, 28).

The three highest F_{ST} outliers included an 86 bp indel on chromosome 18 inside of a tandem repeat array, a 1.56 kb indel on chromosome 3 and a 2.25 kb indel on chromosome 1 (Supplementary Table S5). The latter, an LTR retrotransposon insertion, was located 20 kb upstream of the NDP gene on chromosome 1 (Fig. 4B), a gene known to contribute to the maintenance of color divergence across the European crow hybrid zone (28). Molecular dating based on the LTR region suggest an insertion event at <534,000 years ago upon diversification of the European crow lineage (Fig. 4C) (18). In current day populations, the insertion still segregates in all-black crows including C (c.) corone in Europe and C (c.) orientalis in Russia (N individuals with LR = 14 and with SR = 45 genotypes) (Fig. 4C). All hooded crow C. (c.) cornix individuals, however, genotyped with LR (N = 9) and SR data (N = 61) were homozygous for the insertion regardless of their population of origin. This finding is consistent with a selective sweep in proximity to the NDP gene that has previously been suggested for hooded crow populations (26, 28). Recent work has also shown that the NDP gene exhibits decreased gene expression in grey feather follicles of hooded crows, suggesting a role in modulating overall plumage color patterning (29). Following re-analysis of normalized gene expression data for 8 carrion and 10 hooded crows (29), we found a significant association between the homozygous insertion genotype and decreased NDP gene expression levels (linear model, p = 0.002) (Fig. 4D), consistent with reduced pigmentation in hooded crows (29).

To further investigate the relationship between the abovementioned insertion and phenotypic differences between all-black C (c.) corone and gray-coated C. (c.) cornix populations, we genotyped 120 individuals from the European hybrid zone using PCR (Methods, (28)). Including data of adjacent SNPs for the same individuals, we tested the association between genotype and pigmentation phenotype. A statistical model including the insertion fit best to the observed phenotypes (ΔAICc = 2.33, but ΔBIC = -0.12) explaining an additional 10.32% of the variance of the phenotype-derived PC1 relative to the adjacent SNPs. The insertion lies upstream of NDP in close proximity to an orthologous region in pigeons containing a copy number variation shown to modulate plumage patterning (Fig. 4B) (30). Reminiscent of the wing color altering TE insertion in the peppered moth (3), this insertion thus constitutes a prime candidate causal mutation modulating gene expression with phenotypic consequences; reminiscent of the TE insertion in the peppered moth altering wing coloration (3). While such insertions have usually been associated with increased expression of the affected gene (31), there are also examples of TE insertions repressing gene activity, as observed here (32).

In conclusion, this study provides the first comprehensive population-level SV catalogue in a non-model organism, further elucidating the role of SV on modulating expression of evolutionary important genes with phenotypic consequences. Given that the majority of SV is likely still uncovered in most organisms (33), these results mark
an important hallmark for the field highlighting the evolutionary importance of SV in natural populations and the need for rigorous methodological approaches.

Material and Methods

Short-read sequencing data

We compiled raw short-read sequencing data from Poelstra et al. 2014 and Vijay et al. 2016 (18, 26) for *Corvus (corone)* spp., *C. frugilegus, C. dauricus, C. monedula* and *C. brachyrhynchos* (for more information on the origin of samples and accession numbers of the data see Supplementary Table S5). Overall, 127 individuals had an average 12.6-fold sequencing coverage using paired-end libraries (primarily) sequenced on an Illumina HiSeq2000 machine.

DNA extraction and long-read sequencing

First, we extracted high-molecular weight DNA from a total of 32 samples using either a modified phenol-chloroform extraction protocol (14), or the Qiagen Genomic-tip kit (following manufacturer’s instructions) from frozen blood samples. For sampling details, see Supplementary Table S5. Extracted DNA was eluted in 10 mM Tris buffer and stored at -80 °C. The quality and concentration of the DNA was assessed using a 0.5 % agarose gel (run for >8 h at 25 V) and a Nanodrop spectrophotometer (ThermoFisherScientific). Long-read sequencing DNA libraries were prepared using the SMRTbell Template Prep Kit 1.0 (Pacific Biosciences). For each library, 10 µg genomic DNA was sheared into 20-kb fragments with the Hydroshear (ThermoFisherScientific) instrument. SMRTbell libraries for circular consensus sequencing were generated after an Exo VII treatment, DNA damage repair and end-repair before ligation of hairpin adaptors. Following an exonuclease treatment and PB AMPure bead wash, libraries were size-selected using the BluePippin system with a minimum cutoff value of 8,500 bp. All libraries were then sequenced on either the RSII or Sequel instrument from Pacific Biosciences, totaling 324 RSII and 76 Sequel SMRT cells, respectively, resulting in 754 Gbp of raw data.

Genome assembly

In birds, females are the heterogametic sex (ZW). For this study, we were interested in a high-quality assembly of all autosomes and the shared sex chromosome (Z) and accordingly chose male individuals for the genome assemblies. Note, however, that this choice excludes the female-specific W chromosome a priori. Diploid genome assembly was performed for both a hooded crow and a jackdaw individual. For the former a long-read based genome assembly has previously been published (14) and is available under the accession number GCA_002023255.2 at the repository of the National Center for Biotechnology Information (NCBI, www.ncbi.nlm.nih.gov). Here, we (re)assembled raw reads using updated filtering and assembly software. First, all SMRT cells for the respective individuals (102 for the hooded crow individual S_Up_H32, 70 for the jackdaw individual S_Up_J01) were imported into the SMRT Analysis software suite (v2.3.0). Subreads shorter than 500 bp or with a quality (QV) <80 were filtered out. The resulting data sets were used for *de novo* assembly with FALCON UNZIP v0.4.0 (16). Initial FALCON UNZIP assemblies of hooded crow and jackdaw consisted of primary and associated contigs with a total length of 1,053.37 Mb and 965.95 Mb for the hooded crow and 1,073.84 and 1,092.55 Mb for the jackdaw, presumably corresponding to the two chromosomal haplotypes (for assembly statistics see Supplementary Table S1). To further improve the assembly, we performed consensus
calling of individual bases using ARROW (16). In addition, we obtained the genome
of the Hawaiian crow (Corvus hawaiiensis) from the repository of NCBI with accession
number GCA_003402825.1. This genome had been likewise derived from long-reads
generated with the SMRT technology and assembled using FALCON UNZIP (16). To
assess the completeness of the newly assembled genomes we used BUSCO v2.0.1 (34).
The aves and the vertebrate databases were used to identify ultra conserved
orthologous gene sets (Supplementary Table S1).

Optical mapping data and assembly

We generated additional optical map assemblies for two jackdaw individuals, 8 carrion
crow individuals and 4 additional hooded crow individuals, following the same
approach used for the optical map assembly of the hooded crow individual (see
Weissensteiner et al. (14)). In brief, we extracted nuclei of red blood cells and captured
them in low-melting point agarose plugs. DNA extraction was followed by melting and
digesting of the agarose resulting in a high-molecular weight DNA solution. After
digestion with a nicking endonuclease (Nt.BspQI) which inserts a fluorescently labelled
nick strand, the sample was loaded onto an IrysChip, which was followed by
fluorescent label detection on the Irys instrument. The assembled consensus maps were
then used to perform SV calling as part of the Bionano Access 1.3.1 Bionano Solve
pipeline 3.3.1 (pipeline version 7841). As reference an in-silico map of the hooded crow
reference assembly was used. Molecule and assembly statistics of optical maps can be
found in Supplementary Table S6. For details regarding the hybrid scaffolding see
Weissensteiner et al. 2017 (14).

Hi-C chromatin interaction mapping and scaffolding

One Dovetail Hi-C library was prepared from a hooded crow sample following
Lieberman-Aiden et al. (2009) (35). In brief, chromatin was fixed in place with
formaldehyde in the nucleus and extracted thereafter. Fixed chromatin was digested
with DpnII, the 5’ overhangs filled with biotinylated nucleotides and free blunt ends
were ligated. After ligation, crosslinks were reversed and the DNA purified from the
protein. Purified DNA was treated such that all biotin was removed that was not internal
to ligated fragments. The DNA was then sheared to ~350 bp mean fragment size and
sequencing libraries were generated using NEBNext Ultra enzymes and Illumina-
compatible adapters. Biotin-containing fragments were isolated using streptavidin
beads before PCR enrichment of each library. The library was then sequenced on an
Illumina HiSeq X (rapid run mode). The Dovetail Hi-C library reads and the contigs of
the primary FALCON UNZIP assembly were used as input data for HiRise, a software
pipeline designed specifically for using proximity ligation data to scaffold genome
assemblies (36). An iterative analysis was conducted. First, Hi-C library sequences
were aligned to the draft input assembly using a modified SNAP read mapper
(http://snap.cs.berkeley.edu). The separation of read pairs mapped within draft
scaffolds were analyzed by HiRise to produce a likelihood model for genomic distance
between read pairs, and the model was used to identify and break putative misjoins, to
score prospective joins and make joins above a threshold. The resulting 48 super-
scaffolds were assigned to 27 chromosomes based on synteny to the flycatcher genome
version (NCBI accession GCA_000247815.2) (37) using LASTZ (38). The final Hi-C
scaffolded hooded crow assembly is available as a Dryad repository, file XX.
Assembly-based SV and SNP detection

We aligned the associated contigs of all three assemblies (hooded crow, jackdaw and Hawaiian crow) to the primary contigs (super-scaffolded to chromosome level for hooded crow) using MUMmer (39). SNPs were then identified using show-snps with the options --Clr and --T following a filtering step with delta-filter --r and --q. We only considered single-nucleotide differences in this analysis.

Structural variants between the two haplotypes of each assembly were identified using two independent approaches. First, we used the alignments produced with MUMmer to identify variants using the Assemblytics tool (40). We then converted the output to a vcf file using SURVIVOR (v1.0.3) (27). Independently, we used the smartie-sv pipeline to identify structural variants (41), and then converted and merged the output with the Assemblytics-based variant set with SURVIVOR. This final unified variant set was then used to calculated SV-density in non-overlapping 1-Mb windows.

Repeat annotation and characterization of insertions and deletions

To characterize the repeat content of the hooded crow assembly, we used the repeat library from Vijay et al. (18). Raw consensus sequences were manually curated following the method used in Suh et al. (2018) (20). Every consensus sequence was aligned back to the reference genome, then the best 20 BLASTN (42) hits were collected, extended by 2 kb and aligned to one another using MAFFT (v6; (43)). The alignments were manually curated applying a majority-rule and the superfamily of each repeat assessed following Wicker et al. (44). We then masked the new consensus sequences in CENSOR (http://www.girinst.org/censor/index.php) and named them according to homology to known repeats present in Repbase (45). Repeats with high sequence similarity to known repeats were given the name of the known repeat + suffix "_corCor"; repeats with partial homology were named with the suffix "-L_corCor" where "L" stands for "like" (20). Repeats with no homology to other known repeats were considered as new families and named with the prefix "corCor" followed by the name of their superfamilies. Using this fully curated repeat library (Supplementary file S1), we performed a RepeatMasker (46) search on all sequences reported for insertion and deletion variants. In case of multiple different matches per variant or individual, we took the match with the highest overlap with the query sequence to yield a single match for each variant. We also performed a RepeatMasker search with the curated library to estimate repeat density per 1 Mb window in the hooded crow reference assembly.

Read-mapping based SV and SNP detection

We aligned PacBio long-read data of all re-sequenced individuals to both the hooded crow and jackdaw reference assembly using NGM-LR (47) (v0.2.2) with the --pacbio option and sorted and indexed resulting alignments with samtools (48)(v1.9). Initial SV calling per individual was then performed using Sniffles (47) (v1.0.8) with parameters set to a minimum support of 5 reads per variant (--min_support 5) and enabled --genotype, --cluster and --report_seq options. We removed abundant translocation calls indicative of an excess of false positives and filtered remaining variants for a maximum length of 100 kb and a maximum read support of 60 with bcftools (49). Both of these filtering steps have been shown to be necessary to remove erroneously called variants.

Next, we generated a merged multi-sample vcf file consisting of all individuals from both the crow and the jackdaw clades with SURVIVOR merge and options set to 1000 1 1 0 0 50. This merged vcf file was then used as an input to reiterate SV calling with
Sniffles for each individual with the --lvcf option enabled, effectively genotyping each variant per individual. Resulting single individual vcf files were again merged with the SURVIVOR command described above and variants overlapping with assembly gaps were removed. We converted the vcf file into a genotype file with vcftools (49) (v0.1.15) for downstream analysis.

To account for the high amount of genotyping errors and false positives after initial filtering, we employed a 'phylogenetic' filtering strategy. The crow and jackdaw clades diverged roughly 13 million years ago (50), such that the proportion of polymorphisms shared by descent is near negligible (51). Moreover, under the infinite sites model, recurrent mutations are not expected, such that polymorphisms segregating in both lineages most likely constitute false positives. For population genetic analyses of the jackdaw clade, we therefore considered only variants which were homozygous for the reference in crow clade individuals, allowing for a maximum of four genotyping errors. In the crow clade analyses, we only retained variants which were either fixed for the reference or the variant allele in the jackdaw clade, allowing for 2 genotyping errors. It is likely that this conservative approach excludes variants with a high mutation rate (52). However, since it is difficult to differentiate such variants from genotyping errors, we deemed this filter necessary to yield a set of more reliable variants. Due to the tolerance of genotyping errors, there is a number of variants present in both clades, most of them fixed or almost fixed in both clades. Extensive manual curation would be necessary to differentiate between genotyping errors and variants truly polymorphic between clades. To find common features in filtered versus kept variants, we applied a generalized linear mixed-effects model with a binomial error structure, in which we coded the dependent variable as 1 for a retained variant and as 0 for a filtered variant. As covariates we included the distance to the chromosome end and variant class as a factor (insertion, deletion or inversion). We further fitted chromosome identity as a random intercept term. All models were run in R (v3.2.3, R Core Team) using the lme4 package (53) (v1.1-19).

The short-read data were mapped using BWA-MEM with the --M option to the hooded crow reference assembly (34). We used LUMPY (55), DELLY (56) and Manta (57) to obtain SV calls for each sample using their respective default parameters. Subsequently the individual SV calls per sample were merged using SURVIVOR (27) merge with the parameters: “1000 2 1 0 0 0”. This filtering step retained only SV calls for which 2 out of the 3 callers had reported a call within 1 kbp. Next, we computed the coverage of low mapping quality reads (MQ<5) for each sample independently and recorded regions where the low MQ coverage exceeded 10. SV calls which overlapped these regions were filtered out.

Optical mapping-based SV detection

The assembled optical maps were used to identify SV compared to the provided reference, which is part of the assembly pipeline or can be run manually. SV calling was based on the alignment between an individual assembled consensus cmap and the in-silico generated map of the reference using a multiple local alignment algorithm and detecting SV signatures. The detection algorithm identifies insertions, deletions, translocation breakpoints, inversion breakpoints and duplications. The results are in a generated file in the Bionano specific format snap in which the SVs are classified as homozygous or heterozygous. This resulting snap file was converted to vcf format (version 4.2) for further downstream processing.
Population genetic analysis of structural variants

To investigate population structure, we performed principal component analyses (PCA) with both the long-read and short-read variant sets using the R packages SNPrelate (v1.4.2) and gdsfmt (v1.6.2) (58). We further calculated the folded allele frequency spectrum using minor allele frequencies of variants for all populations and clades.

To estimate genetic differentiation of structural variations, we calculated F_{ST} for each variant using vcftools (59). We employed the Weir and Cockerham estimator for F_{ST} (60), variants with an F_{ST} exceeding the 99th percentile were considered as outliers.

Analyses of SV in the vicinity of the NDP gene

The LTR retrotransposon insertion identified upstream of the NDP gene on chromosome 1 - an ERV1 element belonging to the subfamily TguERV1-Ld-I - has initially been called as a deletion relative to the reference (hooded crow) assembly. To estimate its age, we assumed that the two long terminal repeats of the full-length LTR retrotransposon were identical at the time of insertion (61). Thus, we quantified the number of substitutions and 1-bp indels between the left and right LTR of the insertion at position 112,179,329 on chromosome 1 of the hooded crow reference. The LTRs showed 5 differences which we then divided by the length of the LTR (296 bp) and by twice the neutral substitution rate per site and million years (0.0158 (18)). Assuming that all differences between the left and right LTR of this insertion are fixed, this estimate yields an upper bound of the insertion age. However, overlap with SNPs segregating in the hooded crow population suggests that all 5 differences were not fixed and the insertion could thus be considerably younger.

To investigate a potential link between the LTR insertion and differences in plumage coloration, we re-analyzed gene expression data from 10 black-and-grey hooded crows and 8 all-black carrion crows raised under common garden conditions (29). Expression was measured for messenger RNA derived from feather buds at the torso, where carrion crows have black feathers and hooded crows are grey. We inferred the insertion genotype for each individual using short-read sequencing data via visual inspection of the alignments to the hooded crow reference. We then fitted a linear model with normalized NDP expression data as the dependent variable and NDP indel genotype as the predictor. We decomposed the effect of the insertion genotype into an additive component (the number of non-inserted minor allele copies – 0, 1, or 2 – as a covariate) and a dominance component (homozygous = 0, heterozygous = 1).

To further establish a link between the LTR retrotransposon insertion and phenotypic differences, we made use of a hybrid admixture data set from the European hybrid zone (28). We designed three sets of PCR primers to genotype the insertion for 120 phenotyped individuals from the European hybrid zone of all-black C. (c.) corone and black-and-grey C. (c.) cornix crows. For absence of the insertion, a pair of primers located in the sequence flanking the insertion was used (A_F_3 ‘AGTAACTGTCCTCTGTAGTGCAGG’ and A_R_3 ‘CCTGGGTAAGATCACAGTTTG’C) resulting in a 197 bp fragment. For presence of the insertion, a pair of primers with one in the flanking and one in either left or right LTR region of the insertion (P_L_F_1 ‘TCCTCTGTAGTGAAGTAGG’ and P_L_R_2 ‘CACCCATGTTTTCCCTACA’, as well as P_R_F_1 ‘GGATCGGGGATCGTTCTGCT’ and P_R_R_1 ‘CACAGCCCAAGATGTGC’), resulting in fragments of 659 and 564 bp, respectively. A representative gel picture used for genotyping can be found in the

Supplementary Fig. S4. Phenotypic data was taken from Knief et al. (28) who summarized 11 plumage color measures on the dorsal and ventral body into a principal
component (PC1), explaining 78% of the phenotypic variation. We then tested whether
the interaction between chromosome 18 and the insertion genotype explained more
variation in plumage color than the interaction between chromosome 18 and the most
significant SNP near the NDP gene (28). We fitted two linear regression models on the
same subset of the data that contained no missing genotypes (N = 120 individuals). In
both models, we used color PC1 as our dependent variable. In the first model, we fitted
the interaction between chromosome 18 and the insertion genotype, and in the second
model the interaction between chromosome 18 and the SNP genotype as our
independent variables. Both variables were coded as 0, 1, 2 copies of the derived allele
and fitted as factors. We selected the model with the better fit to the data by estimating
the AICc and BIC and deemed a ΔAICc ≥ 2 as significant.

Competing interests
Kees-Jan Francoijs is an employee of BioNano Genomics (San Diego, CA).

Acknowledgements
We thank John Marzluff, Vittorio Bagglione and Kristaps Sokolovskis for providing
sample material. Reto Burri and Sergio Tusso Gomez provided helpful input for the
downstream analysis. We are thankful for being able to use the UPPMAX Next-
Generation Sequencing Cluster and Storage (UPPNEX) project, funded by the Knut
and Alice Wallenberg Foundation and the Swedish National Infrastructure for
Computing. This work was supported by the Swedish Research Council (grant number
621-2010-5553 to J.B.W.W. and grant number 2016-05139 to A.S.), the European
Research Council (grant number ERCStG-336536 to J.B.W.W.) and the National
Institutes of Health (grant number UM1 HG008898 to F.J.S).

Author contributions
M.W. and J.W. conceived of the study, conducted field work and wrote the manuscript
with input from all other authors. M.W. conducted lab work and all bioinformatic
analyses with help from V.P., V.W., S.D.P., A.S. (repeat annotation) and U.K.
(statistical analyses). W.H. conducted field work. I.B. generated genome assemblies
and F.J.S. performed short-read based SV calling.

References and Notes
1. L. Feuk, A. R. Carson, S. W. Scherer, Structural variation in the human
genome. *Nat. Rev. Genet.* **7**, 85–97 (2006).
2. C. Küpper, M. Stocks, J. E. Risse, N. dos Remedios, L. L. Farrell, S. B. McRae, T.
C. Morgan, N. Karionova, P. Pinchuk, Y. I. Verkuil, A. S. Kitaysky, J. C.
Wingfield, T. Piersma, K. Zeng, J. Slate, M. Blaxter, D. B. Lank, T. Burke, A
supergene determines highly divergent male reproductive morphs in the
ruff. *Nat. Genet.* **48**, 79–83 (2016).
3. A. E. van’t Hof, P. Campagne, D. J. Rigden, C. J. Yung, J. Lingley, M. A. Quail, N.
Hall, A. C. Darby, I. J. Saccheri, The industrial melanism mutation in British
peppered moths is a transposable element. *Nature*. **534**, 102–105 (2016).
4. J. Huddleston, E. E. Eichler, An Incomplete Understanding of Human Genetic
Variation. *Genetics*. **202**, 1251–1254 (2016).
580 5. B. Weckselblatt, M. K. Rudd, Human Structural Variation: Mechanisms of
Chromosome Rearrangements. *Trends Genet.* **31**, 587–599 (2015).

582 6. M. J. P. Chaisson, R. K. Wilson, E. E. Eichler, Genetic variation and the de novo
assembly of human genomes. *Nat. Rev. Genet.* **16**, 627–640 (2015).

584 7. F. J. Sedlazeck, H. Lee, C. A. Darby, M. C. Schatz, Piercing the dark matter:
bioinformatics of long-range sequencing and mapping. *Nat. Rev. Genet.* **19**,
329–346 (2018).

587 8. S. Goodwin, J. D. McPherson, W. R. McCombie, Coming of age: ten years of
next-generation sequencing technologies. *Nat. Rev. Genet.* **17**, 333–351
(2016).

590 9. J. B. W. Wolf, H. Ellegren, Making sense of genomic islands of differentiation
in light of speciation. *Nat. Rev. Genet.* **18**, 87–100 (2017).

592 10. M. J. P. Chaisson, A. D. Sanders, X. Zhao, A. Malhotra, D. Porubsky, T. Rausch, E.
J. Gardner, O. Rodriguez, L. Guo, R. L. Collins, X. Fan, J. Wen, R. E. Handsaker,
S. Fairley, Z. N. Kronenberg, X. Kong, F. Hormozdiari, D. Lee, A. M. Wenger, A.
Hastie, D. Antaki, P. Audano, H. Brand, S. Cantsilieris, H. Cao, E. Cerveira, C.
Chen, X. Chen, C.-S. Chin, Z. Chong, N. T. Chuang, C. C. Lambert, D. M. Church,
L. Clarke, A. Farrell, J. Flores, T. Galeev, D. Gorkin, M. Gujral, V. Guryev, W.
Haynes Heaton, J. Korlach, S. Kumar, J. Y. Kwon, J. E. Lee, J. Lee, W.-P. Lee, S.
P. Lee, S. Li, P. Marks, K. Viaud-Martinez, S. Meiers, K. M. Munson, F. Navarro,
B. J. Nelson, C. Nodzak, A. Noor, S. Kyriazopoulou-Panagiotopoulou, A. Pang,
Y. Qiu, G. Rosanio, M. Ryan, A. Stutz, D. C. J. Spierings, A. Ward, A. E. Welch,
M. Xiao, W. Xu, C. Zhang, Q. Zhu, X. Zheng-Bradley, E. Lowy, S. Yakneen, S.
McCarroll, G. Jun, L. Ding, C. L. Koh, B. Ren, P. Fliceck, K. Chen, M. B. Gerstein,
P.-Y. Kwok, P. M. Lansdorp, G. Marth, J. Sebat, X. Shi, A. Bashir, K. Ye, S. E.
Devine, M. Talkowski, R. E. Mills, T. Marschall, J. O. Korbel, E. E. Eichler, C.
Lee, Multi-platform discovery of haplotype-resolved structural variation in
human genomes (2018), doi:10.1101/193144.

598 11. S. Tusso, B. P. S. Nieuwenhuis, F. J. Sedlazeck, J. W. Davey, D. C. Jeffares, J. B. W.
Wolf, Ancestral Admixture Is the Main Determinant of Global Biodiversity in
Fission Yeast. *Mol. Biol. Evol.* **36**, 1975–1989 (2019).

601 12. M. Chakraborty, J. J. Emerson, S. J. Macdonald, A. D. Long, Structural variants
exhibit widespread allelic heterogeneity and shape variation in complex
traits. *Nat. Commun.* **10** (2019), doi:10.1038/s41467-019-12884-1.

604 13. L. E. Flagel, J. H. Willis, T. J. Vision, The Standing Pool of Genomic Structural
Variation in a Natural Population of Mimulus guttatus. *Genome Biol. Evol.* **6**,
53–64 (2014).

607 14. M. H. Weissensteiner, A. W. C. Pang, I. Bunikis, I. H?ijer, O. Vinnere-Pettersson,
A. Suh, J. B. W. Wolf, Combination of short-read, long-read, and optical
mapping assemblies reveals large-scale tandem repeat arrays with
population genetic implications. *Genome Res.* **27**, 697–708 (2017).
15. T. Sutton, M. Helmkampf, C. C. Steiner, M. R. Bellinger, J. Korlach, R. Hall, P. Baybayan, J. Muehling, J. Gu, S. Kingan, B. M. Masuda, O. A. Ryder, A High-Quality, Long-Read De Novo Genome Assembly to Aid Conservation of Hawaii’s Last Remaining Crow Species. *Genes.* 9, 393 (2018).

16. C.-S. Chin, P. Peluso, F. J. Sedlazeck, M. Nattestad, G. T. Concepcion, A. Clum, C. Dunn, R. O’Malley, R. Figueroa-Balderas, A. Morales-Cruz, G. R. Cramer, M. Delledonne, C. Luo, J. R. Ecker, D. Cantu, D. R. Rank, M. C. Schatz, Phased diploid genome assembly with single-molecule real-time sequencing. *Nat. Methods.* 13, 1050 (2016).

17. R. B. Corbett-Detig, D. L. Hartl, T. B. Sackton, Natural Selection Constrains Neutral Diversity across A Wide Range of Species. *PLOS Biol.* 13, e1002112 (2015).

18. N. Vijay, C. M. Bossu, J. W. Poelstra, M. H. Weissensteiner, A. Suh, A. P. Kryukov, J. B. W. Wolf, Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex. *Nat. Commun.* 7, 13195 (2016).

19. See Supplementary Materials. Online.

20. A. Suh, L. Smeds, H. Ellegren, Abundant recent activity of retrovirus-like retrotransposons within and among flycatcher species implies a rich source of structural variation in songbird genomes. *Mol. Ecol.* 27, 99–111 (2018).

21. B. Charlesworth, P. Sniegowski, W. Stephan, The evolutionary dynamics of repetitive DNA in eukaryotes. *Nature.* 371, 215–220 (1994).

22. E. B. Chuong, N. C. Elde, C. Feschotte, Regulatory activities of transposable elements: from conflicts to benefits. *Nat. Rev. Genet.* 18, 71–86 (2017).

23. Y. Zhou, A. Minio, M. Massonnet, E. Solares, Y. Lv, T. Beridze, D. Cantu, B. S. Gaut, The population genetics of structural variants in grapevine domestication. *Nat. Plants.* 5, 965–979 (2019).

24. M. Gymrek, A genomic view of short tandem repeats. *Curr. Opin. Genet. Dev.* 44, 9–16 (2017).

25. M. Levy-Sakin, S. Pastor, Y. Mostovoy, L. Li, A. K. Y. Leung, J. McCaffrey, E. Young, E. T. Lam, A. R. Hastie, K. H. Y. Wong, C. Y. L. Chung, W. Ma, J. Sibert, R. Rajagopalan, N. Jin, E. Y. C. Chow, C. Chu, A. Poon, C. Lin, A. Naguib, W.-P. Wang, H. Cao, T.-F. Chan, K. Y. Yip, M. Xiao, P.-Y. Kwok, Genome maps across 26 human populations reveal population-specific patterns of structural variation. *Nat. Commun.* 10 (2019), doi:10.1038/s41467-019-08992-7.

26. J. W. Poelstra, N. Vijay, C. M. Bossu, H. Lantz, B. Ryll, I. Müller, V. Baglione, P. Unneberg, M. Wikelski, M. G. Grubbherr, J. B. W. Wolf, The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. *Science.* 344, 1410–1415 (2014).
27. D. C. Jeffares, C. Jolly, M. Hoti, D. Speed, L. Shaw, C. Rallis, F. Balloux, C.
Dessimoz, J. Bähler, F. J. Sedlazeck, Transient structural variations have
strong effects on quantitative traits and reproductive isolation in fission
yeast. Nat. Commun. 8, 14061 (2017).

28. U. Knief, C. M. Bossu, N. Saino, B. Hansson, J. Poelstra, N. Vijay, M.
Weissensteiner, J. B. W. Wolf, Epistatic mutations under divergent selection
govern phenotypic variation in the crow hybrid zone. Nat. Ecol. Evol. (2019),
doi:10.1038/s41559-019-0847-9.

29. J. W. Poelstra, N. Vijay, M. P. Hoeppner, J. B. W. Wolf, Transcriptomics of
colour patterning and coloration shifts in crows. Mol. Ecol. 24, 4617–4628
(2015).

30. A. I. Vickrey, R. Bruders, Z. Kronenberg, E. Mackey, R. J. Bohlender, E. T.
Maclary, R. Maynez, E. J. Osborne, K. P. Johnson, C. D. Huff, M. Yandell, M. D.
Shapiro, Introngression of regulatory alleles and a missense coding mutation
drive plumage pattern diversity in the rock pigeon. eLife. 7 (2018),
doi:10.7554/eLife.34803.

31. E. B. Chuong, N. C. Elde, C. Feschotte, Regulatory activities of transposable
elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71–86 (2017).

32. M. F. L. Derks, K. M. Schachtschneider, O. Madsen, E. Schijlen, K. J. F.
Verhoeven, K. van Oers, Gene and transposable element methylation in
great tit (Parus major) brain and blood. BMC Genomics. 17 (2016),
doi:10.1186/s12864-016-2653-y.

33. M. Chakraborty, N. W. VanKuren, R. Zhao, X. Zhang, S. Kalsow, J. J. Emerson,
Hidden genetic variation shapes the structure of functional elements in
Drosophila. Nat. Genet. 50, 20–25 (2018).

34. F. A. Simão, R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, E. M. Zdobnov,
BUSCO: assessing genome assembly and annotation completeness with
single-copy orthologs. Bioinformatics. 31, 3210–3212 (2015).

35. E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, T. Tagoczy, A.
Telling, I. Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner, R. Sandstrom, B.
Bernstein, M. A. Bender, M. Groudine, A. Gnirke, J. Stamatoyannopoulos, L. A.
Mirny, E. S. Lander, J. Dekker, Comprehensive Mapping of Long-Range
Interactions Reveals Folding Principles of the Human Genome. Science. 326,
289–293 (2009).

36. N. H. Putnam, B. L. O’Connell, J. C. Stites, B. J. Rice, M. Blanchette, R. Calef, C. J.
Troll, A. Fields, P. D. Hartley, C. W. Sugnet, D. Haussler, D. S. Rokhsar, R. E.
Green, Chromosome-scale shotgun assembly using an in vitro method for
long-range linkage. Genome Res. 26, 342–350 (2016).

37. T. Kawakami, L. Smeds, N. Backström, A. Husby, A. Qvarnström, C. F. Mugal, P.
Olason, H. Elleeg, A high-density linkage map enables a second-generation
collared flycatcher genome assembly and reveals the patterns of avian
recombination rate variation and chromosomal evolution. *Mol. Ecol.* **23**, 4035–4058 (2014).

38. R. S. Harris, *Improved Pairwise Alignment of Genomic DNA* (Pennsylvania State Univ., 2007), PhD thesis.

39. S. Kurtz, A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway, C. Antonescu, S. L. Salzberg, Versatile and open software for comparing large genomes. *Genome Biol.* **5**, R12 (2004).

40. M. Nattestad, M. C. Schatz, Assemblytics: a web analytics tool for the detection of variants from an assembly. *Bioinformatics* **32**, 3021–3023 (2016).

41. Z. N. Kronenberg, I. T. Fiddes, D. Gordon, S. Murali, S. Cantsilieris, O. S. Meyerson, J. G. Underwood, B. J. Nelson, M. J. P. Chaisson, M. L. Dougherty, K. M. Munson, A. R. Hastie, M. Diekhans, F. Hormozdiari, N. Lorusso, K. Hoekzema, R. Qiu, K. Clark, A. Raja, A. E. Welch, M. Sorensen, C. Baker, R. S. Fulton, J. Armstrong, T. A. Graves-Lindsay, A. M. Denli, E. R. Hoppe, P. Hsieh, C. M. Hill, A. W. C. Pang, J. Lee, E. T. Lam, S. K. Dutcher, F. H. Gage, W. C. Warren, J. Shendure, D. Haussler, V. A. Schneider, H. Cao, M. Ventura, R. K. Wilson, B. Paten, A. Pollen, E. E. Eichler, High-resolution comparative analysis of great ape genomes. *Science* **360**, eaar6343 (2018).

42. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, Basic local alignment search tool. *J. Mol. Biol.* **215**, 403–410 (1990).

43. K. Katoh, H. Toh, Recent developments in the MAFFT multiple sequence alignment program. *Brief. Bioinform.* **9**, 286–298 (2008).

44. T. Wicker, F. Sabot, A. Hua-Van, J. L. Bennetzen, P. Capy, B. Chalhoub, A. Flavell, P. Leroy, M. Morgante, O. Panaud, E. Paux, P. SanMiguel, A. H. Schulman, A unified classification system for eukaryotic transposable elements. *Nat. Rev. Genet.* **8**, 973–982 (2007).

45. J. Jurka, V. V. Kapitonov, A. Pavlcek, P. Klonowski, O. Kohany, J. Walichiewicz, Repbase Update, a database of eukaryotic repetitive elements. *Cytogenet. Genome Res.* **110**, 462–467 (2005).

46. A. F. Smit, R. Hubley, P. Green, RepeatMasker. Open-3.0 (1996).

47. F. J. Sedlazeck, P. Rescheneder, M. Smolka, H. Fang, M. Nattestad, A. von Haeseler, M. C. Schatz, Accurate detection of complex structural variations using single-molecule sequencing. *Nat. Methods* **15**, 461–468 (2018).

48. H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, 1000 Genome Project Data Processing Subgroup, The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078–2079 (2009).
49. P. Danecek, S. A. McCarthy, BCFtools/csq: haplotype-aware variant consequences. *Bioinformatics*. 33, 2037–2039 (2017).

50. K. A. Jønsson, P.-H. Fabre, J. D. Kennedy, B. G. Holt, M. K. Borregaard, C. Rahbek, J. Fjeldså, A supermatrix phylogeny of corvoid passerine birds (Aves: Corvides). *Mol. Phylogenet. Evol.* 94, 87–94 (2016).

51. C. F. Mugal, V. E. Kutschera, F. Botero-Castro, J. B. W. Wolf, I. Kaj, Polymorphism Data Assist Estimation of the Nonsynonymous over Synonymous Fixation Rate Ratio ω for Closely Related Species. *Mol. Biol. Evol.* (2019), doi:10.1093/molbev/msz203.

52. H. Ellegren, Microsatellite mutations in the germline: Implications for evolutionary inference. *Trends Genet.* 16, 551–558 (2000).

53. D. Bates, M. Maechler, B. Bolker, S. Walker, *lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1–7. 2014* (2015).

54. H. Li, R. Durbin, Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics*. 26, 589–595 (2010).

55. R. M. Layer, C. Chiang, A. R. Quinlan, I. M. Hall, LUMPY: a probabilistic framework for structural variant discovery. *Genome Biol.* 15, R84 (2014).

56. T. Rausch, T. Zichner, A. Schlattl, A. M. Stutz, V. Benes, J. O. Korbel, DELLY: structural variant discovery by integrated paired-end and split-read analysis. *Bioinformatics*. 28, i333–i339 (2012).

57. X. Chen, O. Schulz-Trieglaff, R. Shaw, B. Barnes, F. Schlesinger, M. Källberg, A. J. Cox, S. Kruglyak, C. T. Saunders, Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. *Bioinformatics*. 32, 1220–1222 (2016).

58. X. Zheng, D. Levine, J. Shen, S. M. Gogarten, C. Laurie, B. S. Weir, A high-performance computing toolset for relatedness and principal component analysis of SNP data. *Bioinformatics*. 28, 3326–3328 (2012).

59. P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, G. McVean, R. Durbin, 1000 Genomes Project Analysis Group, The variant call format and VCFtools. *Bioinformatics*. 27, 2156–2158 (2011).

60. B. S. Weir, C. C. Cockerham, Estimating F-Statistics for the Analysis of Population Structure. *Evolution*. 38, 1358 (1984).

61. T. E. Kijima, H. Innan, On the Estimation of the Insertion Time of LTR Retrotransposable Elements. *Mol. Biol. Evol.* 27, 896–904 (2010).