Retinal Degeneration Caused by Rod-Specific Dhdds Ablation Occurs without Concomitant Inhibition of Protein N-Glycosylation

HIGHLIGHTS

- Deletion of Dhdds in rod cells caused rapid retinal degeneration in mice
- Retinal dolichol levels markedly decreased before onset of degeneration
- Protein N-glycosylation was uncompromised despite Dhdds deletion
- Degeneration also involved gliosis, microglial activation, and phagoptosis
Retinal Degeneration Caused by Rod-Specific Dhdds Ablation Occurs without Concomitant Inhibition of Protein N-Glycosylation

Sriganesh Ramachandra Rao,1,2,3 Lara A. Skelton,1,2,3 Fuguo Wu,1,3,4 Agnieszka Onysk,5 Grzegorz Spolnik,7 Witold Danikiewicz,7 Mark C. Butler,1,2,8 Delores A. Stacks,6 Liliana Surmacz,5 Xiuzqian Mu,1,3,4 Ewa Swieszewska,5 Steven J. Pittler,6 and Steven J. Fliesler1,2,3,7,*

SUMMARY
Dehydrodolichyl diphosphate synthase (DHDDS) catalyzes the committed step in dolichol synthesis. Recessive mutations in DHDDS cause retinitis pigmentosa (RP59), resulting in blindness. We hypothesized that rod photoreceptor-specific ablation of Dhdds would cause retinal degeneration due to diminished dolichol-dependent protein N-glycosylation. Dhddsflx/flx mice were crossed with rod-specific Cre recombinase-expressing (Rho-iCre75) mice to generate rod-specific Dhdds knockout mice (Dhddsflx/flx iCre+). In vivo morphological and electrophysiological evaluation of Dhddsflx/flx iCre+ retinas revealed mild retinal dysfunction at postnatal (PN) 4 weeks, compared with age-matched controls; however, rapid photoreceptor degeneration ensued, resulting in almost complete loss of rods and cones by PN 6 weeks. Retina dolichol levels were markedly decreased by PN 4 weeks in Dhddsflx/flx iCre+ mice, relative to controls; despite this, N-glycosylation of retinal proteins, including opsin (the dominant rod-specific glycoprotein), persisted in Dhddsflx/flx iCre+ mice. These findings challenge the conventional mechanistic view of RP59 as a congenital disorder of glycosylation.

INTRODUCTION
Retinitis pigmentosa (RP) represents a large class of inherited retinal dystrophies caused by mutations in several families of genes, leading to pigmentary retinopathy and progressive, irreversible blindness. Typically, RP is characterized by the initial loss of rod photoreceptors (PRs), deposition of pigment granules, and peripheral vision loss (Ferrari et al., 2011; Hamel, 2006). Defective asparagine-linked glycosylation (N-glycosylation) of proteins in rod cells, particularly the visual pigment rhodopsin (RHO), results in progressive, irreversible rod cell degeneration and death, with concomitant loss of vision (Murray et al., 2009, 2015; Kaushal et al., 1994; Fliesler et al., 1984a). Successful glycosylation of RHO is necessary for its vectorial trafficking through the inner segment (cell body) of the rod cell to the site of rod outer segment (ROS) membrane assembly at the base of the ROS. Retinal degeneration has been observed in patients harboring RHO mutations involving the N-glycosylation consensus sites, and animal models involving comparable RHO mutations (Van Den Born et al., 1994, Zhu et al., 2004; Sullivan et al., 1993; Murray et al., 2015; Iwabe et al., 2016), as well as by tunicamycin-induced and genetic inhibition of global/RHO N-glycosylation (Fliesler and Basinger, 1985; Fliesler et al., 1985; Sabry et al., 2016; Thompson et al., 2013; Murray et al., 2015). Protein N-glycosylation involves the following steps (schematic representation, Figure 1): generation of dolichol (Dol, an important isoprenoid arising from the mevalonate pathway) and dolichyl phosphate (Dol-P, the obligate glycan carrier necessary for N-linked glycosylation, O-mannosylation, and C-mannosylation) (Burda and Aebi, 1999; Endo et al., 2003; Park et al., 2014; Cantagrel et al., 2010; Burton et al., 1979; Maeda et al., 2000; Doucey et al., 1998), generation of complex Dol-P-linked oligosaccharides (DLO) (Krasnova and Wong, 2016; Gandini et al., 2017; Behrens and Leloir, 1970), and transfer of those oligosaccharides from DLO to the N-glycosylation consensus site on the target polypeptide (Welplly et al., 1983). Genetic defects affecting the glycosylation mechanism constitute a large family of syndromes termed “congenital disorders of glycosylation” (CDGs), with more than 150 causative genes (Ng and Freeze, 2018; Sparks and Krasnewich, 1993). A family of genetic diseases pertaining to Dol synthesis is classified as CDG-I (the class of CDG involving defective glycan assembly and/or their transfer in the endoplasmic reticulum [ER]) due to
the requirement of DLO for N-glycosylation. Common clinical features of CDGs include failure to thrive, retarded development, protein-losing enteropathy, early-onset encephalopathy, as well as retinopathies such as RP (Sparks and Krasnewich, 1993; Thompson et al., 2013; Hamdan et al., 2017; Morava et al., 2009).

Two key intermediate metabolites in the mevalonate pathway, farnesyl pyrophosphate (FPP), also called farnesyl diphosphate, and isopentenyl pyrophosphate (IPP), also called isopentyl diphosphate, serve as precursors for squalene, cholesterol, and Dol synthesis (see Figure 1) (Grabowska et al., 1998). The committed enzymatic step in the pathway toward Dol synthesis is the catalytic condensation of FPP with multiple IPP molecules to generate polyisoprenyl pyrophosphate (diphosphate), and ultimately the obligate glycan carrier, Dol-PP. Gene products involved in synthesis of dolichol and Dol-P-saccharide/oligosaccharide intermediates, and hence implicated in CDG-1 (Congenital Disorders of Glycosylation), have been represented. The enzymatic activity provided by DHDDS and NUS1 catalyzes the commitment step of dolichol synthesis; hence mutations in either DHDDS or NUS1 are hypothesized to block protein N-glycosylation, and are classified as CDG-I. Dolichol (structure in inset), is an acyclic isoprenoid consisting of 18–21 isoprene units.

The mevalonate pathway, dolichol synthesis, and the requirement of dolichyl phosphate (Dol-P) for N-linked oligosaccharide generation

Farnesyl pyrophosphate (FPP), an important pre-squalene intermediate of the mevalonate pathway, undergoes DHDDS/NUS1-catalyzed condensation with multiple isopentenyl pyrophosphate (IPP) units to generate polyisoprenyl pyrophosphate (diphosphate), and ultimately the obligate glycan carrier, Dol-PP. Gene products involved in synthesis of dolichol and Dol-P-saccharide/oligosaccharide intermediates, and hence implicated in CDG-1 (Congenital Disorders of Glycosylation), have been represented. The enzymatic activity provided by DHDDS and NUS1 catalyzes the commitment step of dolichol synthesis; hence mutations in either DHDDS or NUS1 are hypothesized to block protein N-glycosylation, and are classified as CDG-I. Dolichol (structure in inset), is an acyclic isoprenoid consisting of 18–21 isoprene units.
and availability of Dol-P in the ER (Heessen et al., 1994; Wu et al., 2003; Ashida et al., 2006) are necessary for DLO-dependent protein glycosylation (Jakobsson et al., 1989). Genetic defects affecting Dol-P de novo synthesis at the level of DHDDS, NgBR, SRD5A3, or DOLK are classified within the CDG-1 subgroup of CDGs (Sparks and Krasnewich, 1993; Park et al., 2014).

Heretofore, animal model or in vitro studies have employed approaches such as inhibition of the Dol-P-dependent oligosaccharyltransferase (OST, e.g., using tunicamycin) (Fliesler et al., 1984a, 1984b, 1985; Fliesler and Basinger, 1985) or mutation of the glycosylation consensus sites on specific target proteins (e.g., rhodopsin; Murray et al., 2015) to evaluate the requirement of protein N-glycosylation in the retina. In our model, we addressed this requirement by genetic blockade of the rate-limiting step in dolichol synthesis, i.e., the cis-prenyltransferase (CPT) activity of DHDDS.

Recent studies involving genetic screening of families with a rare autosomal recessive form of retinitis pigmentosa (RP59) demonstrated a founder missense mutation (K42E) in the DHDDS gene (Zelinger et al., 2011; Zuchner et al., 2011). Two other rare, pathogenic DHDDS mutations (T206A, R98W), both found heterozygously with the K42E mutation, also have been reported (Wen et al., 2013; Biswas et al., 2017; Kimchi et al., 2018). In patients homozygous for the K42E mutation, the peripheral retina underwent thinning, but the cone-rich fovea is well-preserved. Functionally, in one patient examined, dark-adapted (“scotopic,” rod-driven) electroretinographic (ERG) responses were extinguished by 21–24 years of age, leading to a visual field limited to a small central island, consistent with rod-cone dystrophy or early-onset retinal degeneration. In an infant presenting as a compound heterozygote (W64X and p.Cys148GlufsX11), ERG responses were undetectable at 2 months of age, but the patient died at 7 months of age from multiple systemic complications due to insufficient DHDDS activity (Sabry et al., 2016), and thus is distinctly different from the K42E phenotype. The mutations in the “severe” phenotype infant led to loss of FPP/IPP-binding sites, much similar to the excision of Dhdds Exon 3 used in the current study (see Figures S1 and S2; Sabry et al., 2016). Retinal degeneration also has been observed in patients of Romani origin harboring mutations in the gene coding for the DHDDS-heterodimeric partner NgBR (Park et al., 2014). The pathological mechanisms and defective cell processes attributed to RP59, although currently hypothesized to be hypoglycosylation driven, remain to be directly tested. This is largely due to the lack of a validated vertebrate animal model on a C57BL/6J background and examined the functional, morphological, and biochemical consequences to the retina. Contrary to expectation, although a profound retinal degeneration was observed, we found no evidence for defective protein N-glycosylation in this mouse model, despite confirmed ablation of Dhdds in essentially the entire population of retinal rod cells.

RESULTS

Verification of Rod Photoreceptor-Specific Dhdds Deletion

A graphical representation of the genotyping strategy utilized for the verification of Dhddslox/lox iCre+ mice is provided in Figures S4, 2A, and 2B. Exon 3, coding for critical FPP- and IPP-binding sites, was chosen for targeted deletion (Figures S2 and S3). Initially, tail snip genotyping analysis was performed to detect floxed Dhdds allele and Rho-iCre transgenes: Dhdds allele with loxP modification and wild-type (WT) Dhdds allele yielded 393-bp and 517-bp PCR products, respectively (Figures S4A and S4C). Similarly, Rho-iCre transgene yielded a 650-bp PCR product, as shown previously (Figure S4B) (Li et al., 2005). To further validate excision of the floxed Dhdds allele in rod PRs, genomic DNA extracted from Dhddslox/lox iCre+ retinas (lanes 2, 4, 6 in Figure 2C) and Dhddslox/lox iCre+ retinas (lanes 1, 3, 5 in Figure 2C (n = 3/group) (already verified by tail snip genotyping as demonstrated in Figure S4A and S4B) was subjected to PCR amplification using intronic primers designed upstream and downstream of the targeted exon (see Figures 2B and S4C). Genomic material from tail snip genotype-verified Dhddslox/lox iCre+ retinas yielded a 650-bp PCR product for Cre recombinase, as previously reported (Li et al., 2005) (top panel, Figure 2C), as well as a 584-bp
Rod PR-specific excision of Dhdds exon 3 is a function of spatiotemporal expression and activity of Cre recombinase (driven by the Rho promoter) (Li et al., 2005). Cre recombinase activity in Rho-iCre75 mice was verified using a reporter mouse strategy. Briefly, the Rho-iCre75 mouse line was crossed with a ZsGreen Ai6 reporter mouse line: a representative confocal micrograph (D) shows ZsGreen expression exclusively in majority of cells (overwhelmingly rods) in the photoreceptor layer at PN 4 weeks (scale bar, 20 μm). In situ hybridization with a probe corresponding to exon 3 of Dhdds suggests successful ablation of Dhdds in Dhddsflx/flx iCre+ mice (F), when compared with Dhddsflx/flx iCre/C0 mice (E). (Scale bars: 20 μm in (E and F)).

Rod PR-specific excision of Dhdds exon 3 is a function of spatiotemporal expression and activity of Cre recombinase (driven by the Rho promoter) (Li et al., 2005). Cre recombinase activity in Rho-iCre75 mice was verified using a reporter mouse strategy. Briefly, the Rho-iCre75 mouse line was crossed with a ZsGreen Ai6 reporter mouse line (harboring CAG artificial promoter-driven ZsGreen [variant of GFP] with an upstream floxed transcriptional termination cassette (Figure 2D). Cell type/tissue-specific Cre activity, if present, relieves the ZsGreen transcription blockade by excising the upstream, loxP-modified transcription termination cassette, allowing ZsGreen expression. Retinas harvested from the first filial (F1) generation of the Rho-iCre-ZsGreen Ai6 reporter mouse crossing at PN 15 days (Figure S5) and PN 30 days (lower panel, Figure 2D) were tested for rod-specific ZsGreen expression using laser confocal fluorescence microscopy. Representative fluorescence micrographs (Figure 2D) revealed ZsGreen expression in the vast majority of rod PR nuclei by PN 15 and PN 30 days, in good agreement with the published literature (Li et al., 2005).

Retinal expression of Dhdds transcript was directly tested utilizing customized BaseScope in situ hybridization (ISH) probes (two ZZ probes) designed against a murine Dhdds transcript region corresponding to coding exon 3 (bp 361–455 of NM_026144.4). A single mRNA transcript appears as single, red chromogenic product that corresponds to the remnant intronic region upon excision of exon 3 (middle panel, Figure 2C) (see Methods for primer details, and Discussion for rationale). Dhdds WT allele (arising from other retinal cell types) would yield a predicted, larger (1.4 kbp) product (consisting of exon 3 as well as the flanking intronic regions) that is not amplified by a PCR protocol involving a short extension period of 45 s (See Methods) (Figures 2C and S4C). A non-specific, unaltered gene region (Dhcr7, 375-bp product) was PCR amplified as a positive control to verify genomic DNA quality (bottom panel, Figure 2C).

Figure 2. Verification of Rod Photoreceptor-Specific Deletion of Dhdds
(A–E) Rod-specific ablation of Dhdds was achieved by generating a mouse model harboring homozygous loxP sites flanking Dhdds exon 3 (gene locus: murine chromosome 4, 66.47 cM) (A) and cross-breeding against a transgenic mouse line consisting of opsin promoter-driven Cre recombinase (Rho-iCre75, (B)). The cross ultimately generated the knockout line of interest: Dhddsflx/flx iCre+. Dhddsflx/flx iCre+ mice were first identified using tail snip genotyping (see also Figure S4). To verify photoreceptor-specific gene excision, whole retinas harvested from mice identified as Dhddsflx/flx iCre+ and age-matched WT controls were subjected to direct tissue genotyping (C, see also Figure S4 for primer design strategy). Retinas from Dhddsflx/flx iCre+ mice yielded short PCR product (584 bp, upper panel, (C) corresponding to the flanking intronic region only (white arrow, B), while positive for Rho-iCre transgene (middle panel, C). Control retinal tissue, negative for Cre recombinase (upper panel, C), did not exhibit excision of exon 3 (middle panel, C). PCR reaction against a housekeeping gene (Dhcr7) demonstrates intact genomic content in all biological samples (bottom panel, C). Direct tissue genotyping targeting Cre recombinase does not provide morphological context regarding its expression or activity. Rho-iCre75 line was crossed with a ZsGreen reporter mouse: a representative confocal micrograph (D) shows ZsGreen expression exclusively in majority of cells (overwhelmingly rods) in the photoreceptor layer at PN 4 weeks (scale bar, 20 μm). In situ hybridization with a probe corresponding to exon 3 of Dhdds suggests successful ablation of Dhdds in Dhddsflx/flx iCre+ mice (F), when compared with Dhddsflx/flx iCre/C0 mice (E). (Scale bars: 20 μm in (E and F)).
Profound and Rapid Retinal Degeneration and Dysfunction Are Observed in Dhdds^{flx/flx} iCre^{+} Mice

Age-matched Dhdds^{flx/flx} iCre^{−} and Dhdds^{flx/flx} iCre^{+} mice were subjected to in vivo retinal imaging and quantitative morphometric analysis using spectral domain optical coherence tomography (SD-OCT). ONL thickness was measured (in mm) around the optic nerve head. Figure 3A (left panel) shows a set of representative SD-OCT images of retinas from PN 5-week-old controls versus PN 4-, 5-, and 6-week-old Dhdds^{flx/flx} iCre^{−} mice. ONL thickness values for PN 4-week-old Dhdds^{flx/flx} iCre^{−} mice were comparable to those of control mice at PN 5 weeks of age (see Figure 3A, right panel). The ONL in the SD-OCT images appears as a hyporeflective region (demarcated by yellow dotted lines, Figure 3A, left panel). The ONL in Dhdds^{flx/flx} iCre^{+} mice underwent significant thinning (ca. 50% compared with age-matched controls, n = 4, p < 0.01) by PN 5 weeks and was essentially absent by PN 6 weeks of age (n = 4, p < 0.01). A graphical comparison of ONL thickness (in mm) is provided in Figure 3A (right panel). The SD-OCT data correlate well with results obtained by conventional, paraffin-embedding histological analysis (see Figures S13A and S13B).

Scotopic ERG responses in Dhdds^{flx/flx} iCre^{+} mice were diminished at all tested time points, relative to age-matched Dhdds^{flx/flx} iCre^{−} controls (n = 7–12/group/time point) (Figure 3B). Scotopic a- and b-waves were recorded using a customized 16-step regimen over a range of flash intensities spanning 10^{-8} to 500 cd-s/m^{2}. The a-wave amplitude is a measure of PR hyperpolarization in response to photon flash stimulus. Scotopic a-wave amplitudes (at PN weeks 4, 5, and 6) were significantly lower, compared with those of age-matched controls, at all flash intensities ≥0.4 cd-s/m^{2}. Scotopic a-wave amplitudes in Dhdds^{flx/flx} iCre^{−} mice at PN 4 weeks (n = 9) were significantly diminished at all flash intensities (~75% of the maximal control response amplitude [n = 12]). At PN 5 weeks of age (n = 12), a time point at which significant thinning of the ONL was observed, a-wave response amplitudes were significantly diminished (~35% of control values). The a-wave ERG responses in Dhdds^{flx/flx} iCre^{−} were essentially extinguished by PN 6 weeks of age (n = 7) (Figure 3B, upper panel). A similar time-dependent, significant decrease was observed in scotopic b-wave responses of Dhdds^{flx/flx} iCre^{+} mice, when compared with controls (Figure 3B, middle panel). Interestingly, b-wave response amplitudes were significantly reduced in all age groups of Dhdds^{flx/flx} iCre^{+} mice compared with age-matched controls (for all flash intensities ≥10^{-7} cd-s/m^{2}), even at low flash intensities that may correspond to pure rod-mediated responses. Scotopic b-wave response amplitudes of Dhdds^{flx/flx} iCre^{+} mice at PN 6 weeks of age (n = 7) exhibited about a 7-fold decrease compared with controls. Representative scotopic ERG traces for Dhdds^{flx/flx} iCre^{+} mice and age-matched controls, at a saturating flash intensity of 500 cd-s/m^{2}, are provided in Figure 5D. Under these conditions, whereas control responses were robust at all ages tested, the Dhdds^{flx/flx} iCre^{+} mice exhibited diminishing response amplitudes, being nearly extinguished by PN 6 weeks.

Scotopic b:a wave amplitude ratios were significantly increased at PN 5 weeks of age in Dhdds^{flx/flx} iCre^{+} mice at all flash intensities ≥0.4 cd-s/m^{2}, compared with age-matched controls. However, at PN 4 weeks of age, Dhdds^{flx/flx} iCre^{+} mice showed increased scotopic b:a wave amplitude ratios only at flash intensities ≥150 cd-s/m^{2} (Figure 3C, left panel). Also, implicit time values for scotopic b-wave were significantly elevated at both PN 4 and 5 weeks of age in Dhdds^{flx/flx} iCre^{+} mice (Figure 3C, right panel), compared with age-matched controls.

In contrast, cone PR-driven (photopic) ERG responses (calculated as the difference between the photopic b-wave and a-wave maxima) in Dhdds^{flx/flx} iCre^{+} mice at PN 4 and 5 weeks were comparable with those of age-matched controls at all flash intensities (ranging from 10^{-1} to 30 cd-s/m^{2}) (Figure 3B, bottom panel). However, photopic responses at PN 6 weeks of age were extinguished (n = 7) (i.e., equivalent to background noise levels), consistent with a rod-cone dystrophy (see Discussion).

Immunohistochemical (IHC) analysis of retinas from controls and Dhdds^{flx/flx} iCre^{+} mice at PN 5 weeks (a time point at which structural and functional deficits in the retina were observed) with antibodies against rod opsin and glial fibrillary acidic protein (GFAP) suggested several key degenerative features. The GFAP immunoreactivity pattern demonstrated gliosis of the degenerating Dhdds^{flx/flx} iCre^{+} retina (green...
channel, Figure 4B). GFAP decorates only astrocytes and the Müller glial “endfeet” (i.e., the so-called inner limiting membrane) in a representative control retina (green channel, Figure 4A). Anti-opsin immunohistochemistry (red channel, Figure 4B) revealed dramatic shortening of ROS in Dhdds^{flu/flx} iCre+ mice at PN 5 weeks, when compared with controls (red channel, Figure 4A), fully consistent with the ERG results (see earlier discussion).

Defective trafficking (“mislocalization”) of opsin has been observed in animal models using either tunicamycin-induced or genetic inhibition of global proteome glycosylation (Murray et al., 2015; Fliesler and...
However, in the Dhddsflx/flx iCre+ retina at an intermediate degenerative stage (PN 5 weeks), we did not observe such defects, e.g., inner segment/cytoplasmic accumulation of rhodopsin, plasma membrane localization along the inner segment, and even to the synaptic terminal. GFAP labeling was limited to Müller glial endfeet and astrocytes (comprising the internal limiting membrane at the vitreoretinal interface) in controls (A). Dhddsflx/flx iCre+ mice did not exhibit anti-opsin immunostaining in either the inner segments (IS) or the photoreceptor perinuclear space, suggesting unhindered opsin trafficking (scale bars, 20 μm).

(C and D) Electron micrographs of Dhddsflx/flx iCre+ outer retina at PN 5 weeks, indicating grossly shortened and poorly aligned, but otherwise ultrastructurally normal, outer segments (OS) (blue arrows, D) and functional RPE phagocytosis (yellow arrow, D). Note pyknotic nuclei (blue arrowheads, C) and thinning of ONL (6 nuclei in a row, yellow bracket, C). Scale bars: 10 μm in (C) and 500 nm in (D).

(E) Dhddsflx/flx iCre+ retina did not exhibit TUNEL labeling. Iba-1 immunoreactivity of microglial cell bodies and arbors was limited to few cell bodies in PN 4- to 5-week-old Dhddsflx/flx iCre+ retina (see Figure S8D) (scale bar: 20 μm).

(F) Retinal dystrophy in Dhddsflx/flx iCre+ mice was characterized by photoreceptor-specific autonomous cell death, as evidenced by TUNEL labeling (white arrows, 488-nm channel). Autonomous cell death in Dhddsflx/flx iCre+ mice was accompanied by infiltration of Iba-1-positive microglia (red channel) into the ONL and subretinal space (white arrows). Furthermore, we observed microglial phagocytosis of TUNEL-negative photoreceptors ("phagoptosis") leading to non-autonomous cell death (denoted by asterisks) (scale bar: 20 μm).

(G) Western blot analysis and semi-quantitative densitometry indicates significant up-regulation of GFAP (marker of gliosis) and ICAM-1 (facilitates trans-endothelial migration of leukocytes and breakdown of the blood-retinal barrier). GLUL and ACTB served as loading controls for Müller glia and total protein, respectively. (H) Quantification of GFAP levels in Dhddsflx/flx iCre+ (black) vs. Dhddsflx/flx iCre+ (gray) mouse retinas on Western blots (see G), normalized to ACTB. *p < 0.05, **p < 0.01; Welch’s (unpaired) t test.

(H) Quantification of ICAM1 levels in Dhddsflx/flx iCre+ (black) vs. Dhddsflx/flx iCre+ (gray) mouse retinas on Western blots (see G), normalized to ACTB. *p < 0.05, **p < 0.01; Welch’s (unpaired) t test.

However, in the Dhddsflx/flx iCre+ retina at an intermediate degenerative stage (PN 5 weeks), we did not observe such defects, e.g., inner segment/cytoplasmic accumulation of rhodopsin, plasma membrane localization along the inner segment, and even to the synaptic terminal. Despite shortening of ROS, opsin trafficking was comparable to that of age-matched control (Figures 4A and 4B). We utilized an established murine model of autosomal dominant RP (adRP)—the Nogflx/flx mouse, harboring mutations of the two N-terminal asparagine residues, N2 and N15—to demonstrate the trafficking fate of opsin in an animal model of true opsin hypoglycosylation. IHC revealed...
opsin accumulation in the inner segment, perinuclear space, as well as synapses of Nog^{Rob}−/− retinas (white arrows, Figure S7). Furthermore, low- and high-magnification electron micrographs (Figures 4C and 4D, respectively) of Dhdds^{flu/flx} iCre⁺ retinas also suggested thinning of the ONL (yellow bracket, Figure 4C) and disorganized ROS (blue arrows, Figure 4D), but with normal lamellar disk membrane ultrastructure (Figure 4D). Surprisingly, despite the rod-specific and essentially quantitative ablation of Dhdds, these observations are not comparable with pathological features in models of opsin glycosylation defects.

We evaluated whether the rapid thinning of the outer retina was due exclusively to rod cell death, owing to the rod-specific deletion of Dhdds. For this purpose, formaldehyde-fixed, paraffin-embedded sections of eyes from Dhdds^{flu/flx} iCre⁺ and control mice (at PN 5 weeks, a time point at which the retina is in an intermediate stage of degeneration) were subjected to TUNEL analysis. Confocal fluorescence microscopy revealed TUNEL labeling (green channel) exclusively in the ONL of the Dhdds^{flu/flx} iCre⁺ retina (Figure 4F; white arrows, Figures S8A–S8C); the labeling pattern was consistent with that expected for rod (not cone) PRs. Control retinas did not exhibit TUNEL-positive labeling, as expected (Figure 4E). These data are consistent with the ERG data described earlier in the discussion, suggesting a role for autonomous rod PR cell death in the observed ONL thinning.

We further observed that PR cell death was accompanied by phagocytosis of live, TUNEL-negative neurons by activated microglia, as has been reported for other models of retinal degeneration (Zhao et al., 2015). IHC analysis using antibodies to Iba-1 (a faithful marker of microglia) in Dhdds^{flu/flx} iCre⁺ mice revealed infiltration of activated microglia into the ONL (asterisk; Figure 4H) as well as the subretinal space (i.e., the zone normally occupied by PR outer segments) (arrows, Figures 4H and S9A–S9C). By contrast, age-matched control retinas showed horizontally ramified microglia in the inner retinal layers only, as expected (Figures 4G and S8D). Representative high-magnification confocal microscopic images of activated microglia with phagocytic cups engulfing PR soma were observed (red arrows, Figure S8F). Activated microglia/macrophages in the subretinal space were quantified (utilizing hematoxylin and eosin [H&E] staining) as the number of nuclei in the typically acellular subretinal space (n = 3 sections of 10 μm thickness per animal, n = 8/group) (black arrows, Figures S8A and S8B). Dhdds^{flu/flx} iCre⁺ mice exhibited a 4-fold increase in the number of nuclei in the subretinal space, when compared with the same region of the retina in age-matched controls (nuclei in the subretinal space were observed only in peripheral retina of WT mice). This was further observed as DAPI-positive, Iba-1-positive cells (interpreted as microglia/macrophages) in the subretinal space (white arrowheads, Figures 4F, S8E, S9A, and S9B).

Because Iba-1 immunoreactivity is indicative of an endogenous immune response, we adopted an unbiased (“shotgun”) cytokine screening approach to reveal other molecular players in the observed retinal degeneration. Surprisingly, the only two prominent targets with significant change (>2-fold increase) that emerged in microarray analysis were CXCL-10. Cytokine array data along with quantification are provided in Figure S10. Up-regulation of ICAM-1 and GFAP in Dhdds^{flu/flx} iCre⁺ retinas (n = 3/group) was further validated by western blot analysis and semi-quantitative densitometry. Whole retinal ICAM-1 and GFAP levels were approximately 8- and 4-fold higher (n = 3/group), respectively, in Dhdds^{flu/flx} iCre⁺ retinas compared with age-matched controls (Figures 4G–4I). Glutamine synthetase (GLUL) and β-actin (ACTB) served as loading controls for Müller glia and total retinal protein, respectively (Figure 4G).

Protein N-glycosylation Is Active in the Dhdds^{flu/flx} iCre⁺ Retina

We investigated the glycosylation status of proteins in PN 5-week-old Dhdds^{flu/flx} iCre⁺ retinas compared with retinas from age-matched Dhdds^{flu/flx} iCre⁺ mice (which served as controls, instead of WT mice). This was achieved by adopting a dual-lectin staining strategy that exhibits differential binding of lectins to rod versus cone PRs: Concanavalin-B (Con-A, a lectin with specific affinity for non-reducing α-D-mannosyl and α-D-glucosyl residues and which binds to the interphotoreceptor rod matrix sheath) and peanut agglutinin (PNA, a lectin that preferentially binds to galactosyl-α(1,3)-N-acetylgalactosamine, a constituent of the interphotoreceptor cone matrix sheath) (Varner et al., 1987; Hageman and Johnson, 1986). If Dhdds ablation inhibited N-glycosylation as hypothesized, we expected to observe a lack of Con-A binding to rod PRs. Surprisingly, Con-A labeling of the rod-rich outer retinal layer of Dhdds^{flu/flx} iCre⁺ mice at PN 5 weeks was robust (including ROS, ONL, and outer plexiform layer [OPL]), comparable to age-matched controls (green channel, Figures 5A and S8). PNA staining (far-red channel, pseudocolored magenta) suggested that cone PR density and distribution in rod-Dhdds-null mice was not altered at PN 5 weeks (Figures 5A–SD). PNGase-
F-treated sections subsequently subjected to dual lectin staining were utilized as true "negative" controls (Figures 5C and 5D), as PNGase-F treatment should remove all N-linked glycans and, hence, abolish Con-A binding. Similar to Con-A labeling, wheat germ agglutinin (which detects N-acetyl-D-glucosamine residues) also exhibited robust binding to Dhddsflx/flx iCre+ retinas, comparable to that of controls (Figure S11).

We further verified protein N-glycosylation in Dhddsflx/flx iCre+ retinas by examining PNGase-F sensitivity of opsin (the most abundant rod PR-specific glycoprotein) and LAMP2 (lysosome-associated membrane glycoprotein). Opsin and LAMP2 western blot analysis of PNGase F-treated versus untreated retinal protein extracts from Dhddsflx/flx iCre+ retinas (C and D, respectively) were sensitive to PNGase-F activity and exhibited markedly reduced Con-A binding. Furthermore, cone density and distribution (as indicated by PNA binding) was comparable in both control and Dhddsflx/flx iCre+ retinas. PNA labeling was unaffected by PNGase-F treatment, because PNGase-F does not cleave the cognate disaccharide Gal-(1,3):GalNAc to which PNA binds. Scale bars: 20 μm in (A–D).

Retinal protein extracts from Dhddsflx/flx iCre+ and control mice (n = 3/group, at PN 5 weeks) were subjected to PNGase-F treatment, and western blot analysis was performed, probing the blot with antibodies to opsin (RHO) and LAMP2 (E and F, respectively). Untreated protein extracts served as negative controls for PNGase-F treatment. Opsin and LAMP2 proteins from Dhddsflx/flx iCre+ retinas exhibited PNGase-F sensitivity, and a subsequent M, mobility shift (from ~37 to ~35 kDa, and from ~120 to ~40 kDa, respectively) as a consequence of cleaving their N-linked glycans, relative to the lanes containing untreated retinal extracts. This same behavior was observed when retinal extracts from control mice were subjected to PNGase-F treatment. Hence, RHO and LAMP2 were N-glycosylated in Dhddsflx/flx iCre+ mice. Note the decreased levels of opsin in lanes corresponding to Dhddsflx/flx iCre+, when compared with controls.

Age-dependent reduction of PR number in Dhddsflx/flx iCre+ retinas (Figures 3A and 3B) presents a challenge in delineating the expected decrease in total dolichol content due to ablation of Dhdds, as opposed to the decrease in the PR population (cell mass). Therefore, we utilized retinas from PN 4-week-old Dhddsflx/flx iCre- and Dhddsflx/flx iCre+ mice to measure whole retinal dolichol content—a time point at which no significant attrition in PR mass was observed (Figures 3A and 3B). For mass spectrometry
quantification of dolichol, five retinas were pooled per sample to obtain sufficient tissue mass (n = 3 for Dhddsflu/flox iCre- mice, n = 4 for Dhddsflu/flox iCre+ mice). Liquid chromatography-mass spectrometry (LC-MS) analysis was performed to quantify the two dominant dolichol species—C90 (Dol-18) and C95 (Dol-19) (denoting dolichol species with 18 or 19 isoprene units and containing 90 or 95 carbon atoms, respectively); the sum of C90 plus C95 species was taken to represent the total retinal dolichol content.

As shown in Figure 6 (top panel, Figure 6A), retinas from Dhddsflu/flox iCre- (control) and Dhddsflu/flox iCre+ retinas. Note that signals of ammoniated [M + NH\textsubscript{4}]+ and sodiated [M + Na]+ forms of respective Dol isotopologues are clearly visible. Each sample analyzed was prepared by pooling five retinas from the respective genotype group. *p < 0.05; Welch’s (unpaired) t test.

DISCUSSION
Several in vivo biochemical, pharmacological, and genetic studies (Fliesler et al., 1984a, 1985; Kean, 1980; Fliesler and Basinger, 1985; Murray et al., 2015) have demonstrated retinal de novo synthesis of dolichol and the requirement of dolichol-dependent N-glycosylation in maintaining the normal structure and function of the retina, particularly as regards the intracellular trafficking and incorporation of opsin, the predominant PR-specific glycoprotein, into ROS membranes. Recent whole-exome sequencing studies have revealed the RP59-causative missense mutations in the gene coding for DHDDS, which catalyzes the committed step of the mevalonate pathway directed toward dolichol synthesis (Zelinger et al., 2011; Zuchner et al., 2011). The present study is the first to employ a genetic approach, using conditional deletion of DHDDS in retinal rod PRs, to study the effects of altered PR dolichol homeostasis, as a tractable step toward understanding the pathological mechanisms underlying RP59. The following discussion provides broad insights into the challenges in modeling a complex metabolic disorder pertaining to dolichol homeostasis and compares the findings of this study (i.e., rapid structural and functional degeneration of PRs and markedly decreased dolichol content, but without any obvious impact on protein N-glycosylation), using a murine model, with the human RP59 disease.
Important Considerations in Generation and Verification of Rod PR-Specific Dhdds Knockout Mice

Multiple rod PR-specific, Cre recombinase-expressing mouse lines (driven by rod PR-specific Nrl/LMOP/RHO promoters) may be utilized for the targeted excision of the loxP-modified gene of interest selectively in rod cells (Brightman et al., 2016; Le et al., 2006; Li et al., 2005). We set out to compare the spatiotemporal expression/activity of Cre recombinase in two Cre lines (LMOP-Cre and Rho-iCre75), utilizing the ZsGreen reporter strategy (Figures 2D, S3, and S5). The Rho-iCre75 mouse line exhibited Cre recombinase activity in almost all terminally differentiated rod PRs (Figure S5 and 2D), in good agreement with the original report describing the Rho-iCre75 mouse line (Li et al., 2005), whereas the LMOP-Cre line exhibited mosaic Cre-recombinase activity (ZsGreen reporter expression in ~30%-40% of rod PRs only at PN 90 day) (Figure S12). Therefore, we utilized the Rho-iCre75 line to generate the Dhddsflx/flx iCre+ model, which successfully induced Dhdds deletion in terminally differentiated rod PRs. Importantly, Cre expression in the Rho-iCre75 line commences at around PN day 7; at that stage of retinal development, rod cell fate has been determined, but initiation of ROS assembly has just barely commenced and full maturation of rods has yet to be achieved.

Tail snip genotyping does not provide direct evidence for exon excision in the target tissue/cell type. Owing to the lack of availability of reliable antibodies against murine DHDDS, it is challenging to directly verify DHDDS protein levels, or cell type-specific knockout of the target. Therefore, we verified the establishment of this model by multiple approaches: (1) indirect tail snip genotype analysis (Figure S4), (2) direct retinal genotyping (testing whole tissue genomic DNA extract for Dhdds excision, Figure 2C), (3) the ZsGreen reporter mouse approach to detect Cre-recombinase activity (Figure 2D), and (4) ISH (Figures 2E and 2F) to obtain histology-level verification of cell type-specific Dhdds ablation. PCR assay involving whole retinal genetic material utilized a short extension period to only select for the 584-bp intronic PCR product (upon exon excision). One would predict that using a long extension period would amplify the long, non-excised Dhdds allele arising from other retinal cell types and may not distinguish heterozygous from homozygous knockouts. Therefore, retinal genotyping, when preceded by preliminary tail snip analysis (to confirm loxP homozygosity), and the reporter mouse strategy may provide better qualitative evidence for target excision. ISH using an RNA-based technology (BaseScope; ACD Bio) to probe control context regarding Dhdds expression in the retina, as well as direct verification of successful Dhdds excision in a cell type-specific manner. Importantly, ISH labeling of the adjacent INL provides an on-section internal positive control for validating Dhdds mRNA detection by the BaseScope ZZ probes.

DHDDS belongs to the superfamily of CPT enzymes involved in the synthesis of long-chain polyisoprenoid products upon cis-condensation of FPP and IPP (yielding ≥C55 long-chain products). Structural elucidation of E. coli undecaprenyl pyrophosphate synthase (UPPS) has revealed critical amino acids involved in hydrogen bonding and hydrophatic interactions with FPP and IPP (Guo et al., 2005). Multiple sequence analysis using CLUSTALW2 algorithm suggests that these critical amino acids are well conserved in murine DHDDS CPT and other mammalian CPT enzymes (compare Figures S1 and S2) (Larkin et al., 2007). Targeted ablation of coding exon 3 of Dhdds is predicted to render the enzyme fully inactive due to the loss of the amino acids required for hydrophatic interaction with FPP and hydrogen bonding with the phosphate groups of IPP (Figures S1 and S2). Furthermore, compensatory mechanisms for dolichol synthesis can be ruled out due to the absence of DHDDS homologs.

Whole-exome sequencing of patients with RP59 revealed point mutations in the DHDDS gene, the predominant mutation being K42E. The K42E mutation renders the human DHDDS gene product hypoactive, unlike the mouse rod-specific Dhdds exon 3 knockout (with expected total loss of function of DHDDS activity) (Figure S2). Another reported pathogenic DHDDS mutation is W64X (phenylalanine to STOP codon), which resulted in early postnatal lethality (Sabry et al., 2016). This clinically “severe” mutation generates a fully dysfunctional gene product comparable to the loss of the DHDDS catalytic activity in the Dhddsflx/flx iCre+ mouse model. The Dhddsflx/flx iCre+ mouse model differs from the human RP59 disease in at least two respects: (1) the RP59-causing DHDDS mutations (see Figure S3) globally affect all tissues and cell types, including the retina, whereas our mouse knockout model employs targeted Dhdds ablation only in rod PRs and (2) the predominant RP59 point mutation, K42E, is only hypomorphic, whereas our knockout model is a total loss-of-function insult, although cell type specific. Despite these differences, the findings in this study suggest that conditional deletion of Dhdds in rod PRs is sufficient to elicit a profound and rapid retinal degeneration. Furthermore, the Dhddsflx/flx iCre+ mouse line serves as a reliable biochemical model (owing to the presumed complete loss of DHDDS activity) to investigate the rod PR requirement for the dolichol pathway (Figure S2).
Structural, Functional, and Pathological Consequences of Rod Photoreceptor-Specific Dhdds Deletion

The current study was aimed at investigating the PR-specific disease mechanism(s) of RPS9. In vivo retinal imaging (SD-OCT analysis, Figure 3A) suggested that ONL thickness in Dhddsflx/flx iCre+ mice was comparable to that of age-matched controls at PN 4 weeks. Surprisingly, the unaltered structural integrity at PN 4 weeks in Dhddsflx/flx iCre+ retinas did not correspond to full functional integrity (see Figures 3B, and S6): scotopic ERG responses (a- and b-waves) at all flash intensities (10^-4 to 500 cd/m²) were significantly lower compared with those of age-matched (PN 4 weeks) controls. Dhddsflx/flx iCre+ retinas exhibited both profound structural and functional deficits at PN 5 and 6 weeks. ONL thickness was significantly reduced at PN 5 weeks (by ~50% [p < 0.05], compared with age-matched WT C57BL/6J controls, Figure 3B). Low-magnification images of H&E-stained sections of eyes from PN 5-week-old Dhddsflx/flx iCre+ mice showed PR thinning (Figures S13B and S13D) compared with age-matched controls (Figures S13A and S13C). The rapid PR loss observed in Dhddsflx/flx iCre+ mice can be attributed to the following two degenerative processes: (1) autonomous rod PR-specific cell death, as observed by TUNEL labeling, and (2) phagocytosis of live PRs by activated, Iba-1-positive microglia (Figures 4F, S8E, S8F, and S9), leading to non-autonomous loss of PRs. The exact details of rod PR-autonomous defective cell processes leading to cell death upon Dhdds deletion remain to be elucidated. The Dhddsflx/flx iCre+ mice also exhibited activated microglia in the subretinal space, i.e., between the outer neural retina and the underlying retinal pigment epithelium (Figures 4F, S8E, S8F, and S9), which is normally “virtual” space filled with PR outer segments and associate extracellular matrix constituents. By contrast, the microglial population in retinas of young, age-matched control mice was notably sparse, and restricted to just the inner retinal layers (inner plexiform layer [IPL], ganglion cell layer [GCL]), as judged by Iba-1 immunostaining (Figures 4E and S10D). Although previous investigators have made similar observations regarding the distribution of microglia in the normal C57BL/6 mouse retina (Ku et al., 2007; Kaneko et al., 2008; Chen and Xu, 2013), often the Iba-1-positive cells were more numerous than what we observed in the present study. The reasons for these differences are not fully apparent, but could be due to age-dependent population differences (e.g., prior studies tended to use older mice than those employed here), or possibly to differences in the type of embedment media used (i.e., optimal cutting temperature embedment medium [O.C.T.] frozen sections versus paraffin sections) (Atiskova et al., 2019; Noailles et al., 2019). Proteomic and/or transcriptomic approaches offer potentially fruitful avenues to investigate the downstream cellular and molecular processes that are altered upon Dhdds-dependent inhibition of dolichol synthesis. Pharmacological inhibition of microglial activity in the retina also may provide a therapeutic avenue for preventing the rapid retinal degeneration observed in the Dhddsflx/flx iCre+ mouse model. Our cytokine array analysis (and correlative western blot analysis) revealed >8-fold up-regulation of ICAM-1 levels in Dhddsflx/flx iCre+ retinas compared with age-matched controls; such has been implicated in leukocyte adhesion, as well as breakdown in the blood-retinal barrier (Williams and Luscinskas, 2011; Devine et al., 1996; Mesri et al., 1994). The presumed involvement of ICAM-1 in microglial recruitment and in the observed retinal degeneration in this animal model also remains to be investigated further. Another key degenerative feature of the Dhddsflx/flx iCre+ retina is gliosis, as evidenced by significant up-regulation of GFAP relative to that of the Müller glial marker glutamine synthetase (Figures 4B and 4G–I).

The SD-OCT results (i.e., ONL thinning) demonstrated rapid retinal degeneration in Dhddsflx/flx iCre+ mice; however, whereas most of that loss reasonably could be attributed to rod cell degeneration and demise (given that rods account for ~97% of the PRs in the mouse retina; Carter-Dawson and Lavail, 1979), the involvement of cone degeneration and demise is more difficult to determine. Cone function was directly assessed utilizing photopic ERG analysis at all tested time points (PN 4, 5, and 6 weeks) (Figure 3B, bottom panel). Electrophysiological responses of cone PRs were unaltered and robust until massive rod dropout was observed at PN 6 weeks (Figure 3B, bottom panel), suggesting a rapid rod-cone dystrophy. The rod-cone dystrophy observed in this animal model, although consistent with the rod-cone dystrophy observed in patients with RP59 (Kimchi et al., 2018), should be interpreted with caution. The rod-cone dystrophy observed in the Dhddsflx/flx iCre+ mouse model is “by design,” i.e., rod PR primary cell death is attributable to the rod-targeted excision of Dhdds, whereas cone PRs exhibit secondary dysfunction (i.e., a “bystander effect”; Ripp, 2002; Cusato et al., 2006; Ma et al., 2018), which is independent of Dhdds activity. Cone-specific PNA staining, as expected, did not reflect any significant cone PR dropout even at PN 5 weeks (Figures S5C and S5D). The density and distribution of PNA-positive structures in Dhddsflx/flx iCre+ mouse retinas appeared qualitatively comparable to that of age-matched controls, in agreement with the photopic ERG responses observed at PN 5 weeks (Figure 4C). PNA binds to O-linked glycans (specifically, the disaccharide Gal-(1→3)-GalNAc), and therefore its binding to cone PRs is unaltered by PNGase-F treatment. We further documented cone arrestin distribution in PN 5-week-old Dhddsflx/flx iCre+ retinas, compared with age-
matched controls. We observed cone arrestin-positive structures both in the inner/outer segment region and in the OPL (PR synapses) (Figures S13C and S13D).

Furthermore, we observed age-dependent increase in the scotopic b:a wave ratio (Figure 3C, left panel), in accordance with severe reductions in scotopic a-wave amplitudes, in relation to the reduction in b-wave amplitude. A similar increase in b:a wave ratio has been described in patients with PMM2-CDG (Thompson et al., 2012). However, we observe a significant decrease in both scotopic b-wave and a-wave amplitudes in the Dhddsflx/flxCre+ mice. Given that the Dhdds excision occurs exclusively in rod PRs, we interpret the increase in b:a wave ratio to be due to a significant and specific decrease in the a-wave component of the ERG. In addition, implicit times for Dhddsflx/flxCre+ mice were significantly longer compared with those of controls (Figure 3C, right panel). This finding along with the ERG amplitude analysis at all flash intensities clearly suggest less robust and more sluggish scotopic response in Dhddsflx/flxCre+ mice compared with age-matched controls. The increased b:a wave ratio in the conditional Dhddsflx/flxCre+ mouse model may not be directly suggestive of similar trends in patients carrying systemic DHDDS point mutations; however, a:b wave ratios have not been characterized, to date, in the DHDDS-CDG patient population.

In summary, the key features of this novel Dhddsflx/flxCre+ model include progressive ROS shortening, gliosis, PR cell death, and microglial activation, microglial migration to ONL and subretinal space, and phagoptosis of entire PR cells, leading to rapid rod-cone dystrophy by PN 5–6 weeks (Figures 2, 3, and 4). The findings in this model (characterized by presumed total loss of DHDDS CPT activity) may be important in ultimately understanding the underlying mechanisms involved in RP59 (caused by homozygous point mutations with mildly hindered CPT activity). Parallel efforts to this work in our laboratories currently involve generation of DHDDS dual point mutant knock-in mice harboring both K42E and T206A mutations, to create a potentially more representative model of RP59 (unpublished studies). Surprisingly, the K42E homozygous knock-in model (even up to PN 1 year of age) does not replicate the structural or functional deficit features observed either in patients with RP59 or in the Dhddsflx/flxCre+ model reported here, with the exception of marked gliosis (Ramachandra Rao et al., 2020).

Biochemical Features of the Degenerating Dhddsflx/flx Cre+ Retina

We originally predicted that rod-specific Dhdds ablation would cause defective protein N-glycosylation in rods because of the biochemical requirement of protein glycosylation for Dol-P (see Figure 1) (Denecke and Kranz, 2009; Buczkowska et al., 2015; Kean, 1977, 1980, 1999; Behrens and Leloir, 1970). We first verified excision of Dhdds exon 3 in terminally differentiated rod PRs (Figures S5S and Figure 2) and utilized this model to analyze dolichol content and N-glycosylation status. However, contrary to our initial expectations, the observed rapid PR degeneration was not accompanied by a glycosylation defect (Figures S5 and S11). In vitro and in vivo studies involving deletion of genes encoding enzymes involved in dolichol synthesis have utilized different model systems, different genes of interest, various gene editing techniques, and different time points during cell growth/tissue differentiation. A study utilizing global ablation of Dhdds at the one-cell embryo stage in zebrafish, which has a cone-rich retina (unlike mouse), indicated defective protein glycosylation in the PRs, as evidenced by lack of cone PR-specific PNA staining (Zuchner et al., 2011). Mouse embryonic/conditional ablation of NUS1, the gene encoding NgBR, the dimeric partner of the gene product of Dhdds, causes embryonic lethality before E6.5, as well as loss of N-glycosylation (Park et al., 2014, 2016). However, curiously, biological samples (blood, urine, and fibroblasts) from patients with RP59 have been reported to exhibit a shift toward shorter dolichol chain length (increased Dol-18:Dol-19 mole ratios), without any appreciable hypoglycosylation defects (Wen et al., 2013; Lam et al., 2014). Furthermore, DHDDS knockdown experiments in fully confluent cell culture models did not lead to an observable glycosylation defect (Sably et al., 2016). One possible explanation for the divergent observations across various models may involve elevated dolichol synthesis during tissue development and the unusual biological stability (long half-life) of dolichol, particularly in neural tissue. The rate of dolichol synthesis and accumulation is highest during cell growth and tissue development (Sakakihara and Volpe, 1984; Wong and Lennarz, 1982; Carson and Lennarz, 1981; Volpe et al., 1987; Adair and Cafmeyer, 1987; Doyle and Kandutsch, 1988; Larsson and Wejde, 1992). Furthermore, dolichols are biologically very stable lipids with long half-lives, and the only known forms of dolichols are the free alcohol, phosphorylated derivatives, and esters of carboxylic acids (Chojnacki and Dallner, 1988; Parentini et al., 2005). Oxidative catabolism of dolichol, although postulated, has not yet been fully documented in vivo (Swiezewska and Danikiewicz, 2005). It should be noted that the control and Dhddsflx/flxCre+ mice utilized in this study were on a C57BL/6J background, and this study did not directly test the potential effects of other modifier mutations on the severity of the phenotype. However, we posit that the Dhdds K42E point knock-in mouse model may provide a better avenue to investigate the effects of genetic
background on the RP59 phenotype (Westphal et al., 2002; Slijkerman et al., 2015; Ramachandra Rao et al., 2020). LC-MS analysis of whole retinal dolichol content suggests ~50% reduction upon Rho-iCre-mediated deletion of Dhdds in rod PRs (see Figures 2 and 6). Retinal dolichol content in our Dhddsflx/flx iCre+ model was significantly reduced, whereas the Dol-18/Dol-19 ratio was unaltered, unlike observations as mentioned earlier regarding tissues and fluids obtained from patients with RP59 (Wen et al., 2013) (see Figure 6). Reduction in whole retinal dolichol levels can be reasonably attributed to PR-specific loss of Dhdds. However, this finding may not account for any residual dolichol in PRs that may have been synthesized before Rho-iCre-mediated deletion of Dhdds had taken place in rod PRs (Figures 2 and S5). Future investigations into the role of mammalian DHDDS and its heterodimeric partner, NgBR, during PR genesis and retinal development may more fully explain the “hypoglycosylation-free” phenotype observed in the Dhddsflx/flx iCre+ mouse model described in this study (see Figures 5 and S10), as well as provide a deeper understanding of dolichol synthesis and homeostasis in retinal PRs. In addition, studying the effects of PR-specific Dhdds deletion on other important glycan modifications of proteins, such as O-mannosylation, may provide additional clues regarding the underlying mechanism driving RP59 pathology.

Inhibition of N-linked glycosylation perturbs vectorial trafficking of opsin and other ROS-destined proteins in PR cells and consequently compromises the inability to form PR outersegments (Fliesler et al., 1984a, 1985; Fliesler and Basinger, 1985; Ulshafer et al., 1986; Defoe et al., 1986; St Jules et al., 1990). However, surprisingly, although we observed shortening of ROS, we did not observe mislocalization of opsin, e.g., aberrant accumulation in the inner segment or in the perinuclear space of the ONL (see Figures 5A and S8). In fact, we observed successful outer segment formation (see Figures 4C and 4D). Thus, our observations (see Figures 5 and 6) would argue against defective N-glycosylation upon Rho-iCre-mediated Dhdds excision, where Rho-iCre recombinase is expressed (starting at PN 7 days) after cell fate commitment to rod PR terminal differentiation (Li et al., 2005). However, the PR-specific ablation of Dhdds is sufficient to elicit primary degeneration of PRs, suggesting the requirement of continued endogenous dolichol synthesis in terminally differentiated rod PRs.

Limitations of the Study

RP59 is an autosomal recessive, non-syndromic form of RP, caused by mutations in DHDDS (Zelinger et al., 2011; Zuchner et al., 2011). Hence, although all cells require dolichol derivatives to carry out protein N-glycosylation, only the retina seems to be negatively impacted by such mutations in this disease. The present study was aimed at neither addressing the question of why RP59 is non-syndromic nor creating a faithful animal model that replicates the human disease phenotype. The immediate goal of the present study was to create a tractable in vivo model that would allow a further understanding of the requirement for dolichol homeostasis and DHDDS activity in retinal PR cells specifically. This targeted approach was taken because (1) global deletion of Dhdds likely would be embryonic lethal, and (2) PRs represent the predominant cell type affected in the RP59 retinal degeneration. Such targeted gene ablation in rods is best achieved by using the Dhddsflx/flx iCre+ model as employed here. Also, the synthesis of dolichol and its derivatives requires the activity of two enzymes—DHDDS and Nogo-B receptor (NgBR)—functioning together as a heterodimeric complex (Park et al., 2014, 2016). In this study, we have modeled the effect of PR-specific deletion of the gene that encodes only one of the two heterodimeric partners. In addition, this cell-type-specific targeted gene ablation occurs only in rod PRs and is dependent on the onset of opsin gene expression (the promoter driving Cre expression), which starts at PN day 4–7 (after the onset of expression of the transcription factor Nrl, which determines rod cell fate). This scenario is significantly different from what occurs in human patients with RP59: first, RP59 involves DHDDS point mutations, rather than gene ablation; second, those mutations are found in every cell type throughout the retina (and the entire body), rather than being restricted just to rod cells; third, the global expression of mutant DHDDS in humans is initiated in utero during early embryogenesis, rather than commencing after birth.

The lack of an observable defect in protein N-glycosylation in the retina in the Dhddsflx/flx iCre+ model may be attributed to at least two factors: (1) the other heterodimeric partner, NgBR (gene: Nus1), required for dolichol synthesis (which, presumably, remains active in the absence of Dhdds) may be able to at least partly take over the role of Dhdds (i.e., enzyme activity is impaired, but not completely lost) and/or (2) the dolichol synthesized in PR cells (or their precursors) before onset of Cre-recombinase expression may persist and be sufficient to support protein N-glycosylation even after Dhdds has been ablated in the rod cells. The lack of suitable reagents or methods to directly study the distribution and turnover rates of dolichol and its derivatives at the single cell
and subcellular levels also presents a further impediment to obtaining a more complete understanding of exactly how PR-specific ablation of Dhdds alters this aspect of isoprenoid homeostasis in those cells.

Resource Availability

Lead Contact

Dr. Steven J. Fliesler, VA Western NY Healthcare System, Buffalo, NY 14215 U.S.A.; Email: fliesler@buffalo.edu.

Materials Availability

All novel reagents and genetically modified animals, as described herein, are available to qualified researchers per the requirements stipulated by the N.I.H., Department of Health and Human Services, USA. All associated costs must be the responsibility of the requesting investigator or institution, and are subject to review.

Data and Code Availability

Not applicable.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101198.

ACKNOWLEDGMENTS

Supported, in part, by U.S.P.H.S. (NIH) grants 1 R01 EY029341 and a UAB Vision Science Research Center Pilot grant (S.J.P. and S.J.F.), 1UL1 TR001412 (to SUNY-University at Buffalo [S.J.F.]), P30 EY003039 (S.J.P.), EY020545 (K.M.), the National Science Centre of Poland grant no. UMO-2018/29/B/NZ3/01033 (E.S.), and by facilities and resources provided by VA Western New York Healthcare System (S.J.F.). S.J.F. is the recipient of a Research Career Scientist (RCS) Award from the Department of Veterans Affairs, BLR&D Service. S.R.R. was the recipient of two Fight for Sight Summer Student Fellowships (2013 and 2016), a Knights Templar Eye Foundation Career-Start grant award, and a Fight For Sight Postdoctoral Fellowship. We gratefully acknowledge the technical assistance of Rebecca Benz, Cheryl Dann, and Kristie Kilby in the course of this study. We thank Drs. Muna Naash and Muayyad-Al-Ubaidi (University of Houston, Houston, TX, USA) for the generous gift of eyes from the NOGRho-/- genetic murine RP model, Aimee Stablewski (Gene Targeting and Transgenic Shared Facility, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA) for the generation of Dhddslox/flx mice, and Dr. Jack M. Sullivan (SUNY, University at Buffalo, and VA Western NY Healthcare System, Buffalo, NY, USA) for helpful discussions and use of his ERG system during the course of this project. Finally, we thank Dr. Tirthankar Sinha (University of Houston, Houston, TX, USA) for his assistance with graphic arts. Portions of this work have been presented in preliminary form at the Annual Meeting of the Association for Research in Vision and Ophthalmology (ARVO 2017). The opinions expressed herein do not reflect those of the Department of Veteran Affairs, the National Institutes of Health, or the US Government.

AUTHOR CONTRIBUTIONS

S.R.R., S.J.F., and S.J.P. designed the study; D.A.S. and S.J.P. identified initial Dhddslox/flx founders and verified FRT excision; S.R.R., L.A.S., M.C.B., F.W., A.O., L.S., G.S., and W.D. collected the data; S.J.F., S.J.P., S.R.R., E.S., X.M. interpreted the data; S.R.R. wrote the initial manuscript draft and generated the figures; S.J.F. and S.J.P. were primary editors of the manuscript. All persons listed as coauthors reviewed and contributed to editing of drafts of the manuscript contents and approved the final version before submission for publication.

DECLARATION OF INTERESTS

The authors declare no competing interests.
REFERENCES

Adair, W. L., Jr., and Cafmeyer, N. (1987). Cell-cycle dependence of dolichyl phosphate biosynthesis. Arch. Biochem. Biophys. 258, 491–497.

Ashida, H., Maeda, Y., and Kinoshita, T. (2006). DPM1, the catalytic subunit of dolichyl phosphate mannos synthase, is tethered to and stabilized on the endoplasmic reticulum membrane by DPM3. J. Biol. Chem. 281, 896–904.

Atskova, Y., Bartsch, S., Danyukova, T., Becker, E., Hagel, C., Storch, S., and Bartsch, U. (2019). Mice deficient in the lysosomal enzyme palmitoyl-protein thioesterase 1 (PPT1) display a complex retinal phenotype. Sci. Rep. 9, 14185.

Behrens, N. H., and Leloir, L. F. (1970). Dolichol monophosphate glucose: an intermediate in glucose transfer in liver. Proc. Natl. Acad. Sci. U S A

Biswas, P., Duncan, J. L., Maranhao, B., Koakz, I., Branham, K., Gabriel, L., Lin, J. H., Barteselli, G., Navani, M., Suk, J., et al. (2017). Genetic analysis of 10 pedigrees with inherited retinal degeneration by exome sequencing and phenotype-genotype association. Physiol. Genomics 49, 216–229.

Brightman, D. S., Razafsky, D., Potter, C., Hodzic, D., and Chen, S. (2016). NH-Ch transgenic mouse mediates loxP recombination in developing rod photoreceptors. Genesis 54, 129–135.

Buczkowska, A., Swiezewska, E., and Lefeber, D. J. (2015). Genetic defects in dolichol metabolism. J. Inherit. Metab. Dis. 157–169.

Burdz, P., and Aebi, M. (1999). The dolichol pathway of N-linked glycosylation. Biochim. Biophys. Acta 1426, 239–257.

Burton, W. A., Scher, M. G., and Waechter, C. J. (1979). Enzymatic phosphorylation of dolichol in central nervous tissue. J. Biol. Chem. 254, 7129–7136.

Cantagrel, V., Lefeber, D. J., Ng, B. G., Guan, Z., Endo, S., Zhang, Y. W., Takahashi, S., and Koyama, T. (2003). Identification of human dehydrodolichyl diphosphosphate synthase gene. Biochem. Biophys. Acta 1625, 291–295.

Denecke, J., and Kranz, C. (2009). Hypoglycosylation due to dolichol metabolism defects. Biochim. Biophys. Acta 1792, 888–895.

Devine, L., Lightman, S. L., and Greenland, J. (1996). Role of LFA-1, ICAM-1, VLA-4 and VCAM-1 in lymphocyte migration across retinal pigment epithelial monolayers in vitro. Immunology 88, 456–462.

Doucet, M. A., Hess, D., Cacan, R., and Hofsteenge, J. (1998). Protein C-mannosylation is enzyme-catalysed and uses dolichyl-phosphate-mannose as a precursor. Mol. Biol. Cell 9, 291–300.

Doye, J. W., and Kandutsch, A. A. (1988). Requirement for mevalonate in cycling cells. Quantitative and temporal aspects. J. Cell Physiol. 137, 133–140.

Endo, S., Zhang, Y. W., Takahashi, S., and Koyama, T. (2003). Identification of human dehydrodolichyl diphosphosphate synthase gene. Biochem. Biophys. Acta 1625, 291–295.

Ferrari, S., Di Iorio, E., Barbaro, V., Ponzin, D., Sorrentino, F. S., and Parmeggiani, F. (2011). Retinitis pigmentosa: genes and disease mechanisms. Curr. Genomics 12, 238–249.

Fliesler, S. J., and Basinger, S. F. (1985). Tunicamycin blocks the incorporation of asparagine into retinal rod outer segment membranes. Proc. Natl. Acad. Sci. U S A 82, 1116–1120.

Fliesler, S. J., Rapp, L. M., and Hollyfield, J. G. (1984a). Photoreceptor-specific degradation caused by tunicamycin. Nature 311, 575–577.

Fliesler, S. J., Tabor, G. A., and Hollyfield, J. G. (1984b). Glycoprotein synthesis in the human retina: localization of the lipid intermediate pathway. Exp. Eye Res. 39, 153–173.

Grabowska, D., Kant, F., and Szopinska, A. (1998). Effect of squalene synthase gene disruption on synthesis of polyisoprenoids in Saccharomyces cerevisiae. FEBS Lett. 434, 406–408.

Guo, R.T., Ko, T.P., Chen, A.P., Kuo, C.J., Wang, A.H., and Liang, P.H. (2005). Crystal structures of undecaprenyl pyrophosphate synthase in complex with magnesium, isopentenyl pyrophosphate, and farnesyl thio-phosphorylpyrophosphate: roles of the metal ion and conserved residues in catalysis. J. Biol. Chem. 280, 20762–20774.

Hageman, G.S., and Johnson, L.V. (1986). Biochemical characterization of the major peanut-aggulutin-binding glycoproteins in vertebrate retina. J. Comp. Neurol. 249, 499–510, 482-483.

Hamdan, F. F., Myers, C. T., Cossette, P., Lemay, P., Spiegelman, D., Laporte, A. D., Nassif, C., Diallo, O., Monlong, J., Cadieux-Dion, M., et al. (2017). High rate of recurrent de novo mutations in developmental and epileptic encephalopathies. Am. J. Hum. Genet. 101, 664–685.

Hamel, C. (2006). Retinitis pigmentosa. Orphanet J. Rare Dis. 1, 40.

Heessen, S., Lehle, L., Weismann, A., and Aebi, M. (1998). Isolation of the ALG5 locus encoding the UDP-glucose-dolichyl-phosphate glycosyltransferase from Saccharomyces cerevisiae. Eur. J. Biochem. 224, 71–79.

Iwase, S., Ying, G. S., Aguirre, G. D., and Beltran, W. A. (2016). Assessment of visual function and retinal structure following acute light exposure in the light sensitive T4R rhodopsin mutant dog. Exp. Eye Res. 146, 341–353.

Jabokst, A., Swiezewska, E., Chojnacki, T., and Dallner, G. (1989). Uptake and modification of dietary polyisoprenoids and dolichols in rat liver. FEBS Lett. 253, 32–36.

Kaneko, H., Nishiguchi, K. M., Nakamura, M., Kachi, S., and Terasaki, H. (2008). Characteristics of bone marrow-derived microglia in the normal and injured retina. Invest. Ophthalmol. Vis. Sci. 49, 4162–4168.

Kauhal, S., Ridge, K. D., and Khorana, H. G. (1990). Structure and function in rhodopsin: the role of asparagine-linked glycosylation. Proc. Natl. Acad. Sci. U S A 89, 4024–4028.

Kean, E. L. (1977). The biosynthesis of mannosylglycosides and mannos-containing complex glycans by the retina. J. Supramol Struct. 7, 381–395.

Kean, E. L. (1980). The lipid intermediate pathway in the retina for the activation of carbohydrates involved in the glycosylation of rhodopsin. Neurochem. Int. 1C, 59–68.
Kean, E. L. (1999). The dolichol pathway in the retina and its involvement in the glycosylation of rhodopsin. Biochim. Biophys. Acta 1473, 272–285.

Kimchi, A., Khatib, S., Wen, R., Guan, Z., Obolensky, A., Beryozkin, A., Kurtzman, S., Blumenfeld, A., Pras, E., Jacobson, S.G., et al. (2018). Nonsyndromic retinitis pigmentosa in the Ashkenazi Jewish population: genetic and clinical aspects. Ophthalmology 125, 725–734.

Krasnova, L., and Wong, C.H. (2016). Understanding the chemistry and biology of glycosylation with glycan synthesis. Annu. Rev. Biochem. 85, 599–630.

Lam, B.L., Zuchner, S.L., Dallman, J., Wen, R., Alfonso, E.C., Vance, J.M., and Pericak-Vance, M.A. (2014). Mutation K42E in dehydrodolichol diphosphate synthase (DHDDS) causes recessive retinitis pigmentosa. Adv. Exp. Med. Biol. 801, 165–170.

Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., Moir, W., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., et al. (2007). Clustal W and clustal X version 2.0. Bioinformatics 23, 2947–2948.

Larsson, O., and Wejde, J. (1992). Dolichol delays subject to depletion of serum or mevalonate. J. Cell Sci. 102 (Pt 4), 1065–1072.

Le, Y.Z., Zheng, L., Zheng, W., Ash, J.D., Agbaga, M.P., Zhu, M., and Anderson, R.E. (2006). Mouse oesipine promoter-directed Cre recombinase expression in transgenic mice. Mol. Vis. 12, 389–398.

Li, S., Chen, D., Sauve, Y., Mccandless, J., Chen, Y.J., and Chen, C.K. (2005). Rhodopsin-iCre as a biomarker of aging. J. Gerontol. A. Biol. Sci. Med. Sci. 60, 39–43.

Park, E.J., Grabinska, K.A., Guan, Z., and Sessa, W.C. (2016). NagBR is essential for endothelial cell glycosylation and vascular development. EMBO Rep. 17, 167–177.

Park, E.J., Grabinska, K.A., Guan, Z., Stranecky, V., Hartmannova, H., Hodanova, K., Baresova, V., Sovova, J., Jozef, L., Ondruskova, N., et al. (2014). Mutation of Nogo-B receptor, a subunit of ciss-prenyltransferase, causes a congenital disorder of glycosylation. Cell Metab. 20, 448–457.

Ripp, H. (2002). Cell death in retinal pigmentosa: gap junctions and the ‘bystander’ effect. Exp. Eye Res. 74, 327–336.

Rush, J.S., Cho, S.K., Jiang, S., Hofmann, S.L., and Ripps, H. (2002). Cell death in retinitis pigmentosa type II of the cone-rod dystrophy. Invest. Ophthalmol. 137–159.

Sakakihara, Y., and Volpe, J.J. (1984). Dolichol phosphate levels in developing brain: deposition in developing mammalian brain. J. Neurosci. 4, 31696–31704.

Sablovy, S., Vuillaume-Barron, S., Mintet, E., Fasseu, M., Valayannopoulos, V., Heron, D., Dorson, N., Mignot, C., Nata, S., Chantret, I., et al. (2016). A case of fatal type I congenital disorders of glycosylation (CDG I) associated with low dehydrodolichol diphosphate synthase (DHDDS) activity. Orphanet J. Rare Dis. 11, 84.

Sakiyama, Y., and Volpe, J.J. (1984). Dolichol deposition in developing mammalian brain: content of free and fatty-acylated dolichol and phosphomannomutase deficiency. J. Gerontol. A. Biol. Sci. Med. Sci. 130, 51–60.

Varner, H.H., Rayborn, M.E., Osterfeld, A.M., and Holfiely, J.G. (1987). Localization of protooxygen in the extracellular matrix of rat outer segment membrane. J. Cell Sci. 118, 193–200.

Welsh, J.C., Shenbagamurthy, P., Lennarz, W.J., and Naider, F. (1983). Substance recognition by oligosaccharyltransferase. Anal. Biochem. 137–159.

Welply, J.K., and Welter, E.H. (1985). Knock-down of DHDDS expression induces photoreceptor degeneration in zebrafish. In Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, 807, 1–13.

Wen, R., Dallman, J.E., Li, Y., Zuchner, S.L., Vance, J.M., Pericak-Vance, M.A., and Lam, B.L. (2014). Knock-down DHDDS expression induces photoreceptor degeneration in zebrafish. J. Biol. Chem. 289, 11856–11863.
LaVail, and C. Bowes Rickman, eds (Springer), pp. 543–550.

Wen, R., Lam, B.L., and Guan, Z. (2013). Aberrant dolichol chain lengths as biomarkers for retinitis pigmentosa caused by impaired dolichol biosynthesis. J. Lipid Res. 54, 3516–3522.

Westphal, V., Kjaergaard, S., Schollen, E., Martens, K., Grunewald, S., Schwartz, M., Matthijs, G., and Freeze, H.H. (2002). A frequent mild mutation in ALG6 may exacerbate the clinical severity of patients with congenital disorder of glycosylation Ia (CDG-Ia) caused by phosphomannomutase deficiency. Hum. Mol. Genet. 11, 599–604.

Williams, M.R., and Luscinskas, F.W. (2011). Leukocyte rolling and adhesion via ICAM-1 signals to endothelial permeability. Focus on "Leukocyte rolling and adhesion both contribute to regulation of microvascular permeability to albumin via ligation of ICAM-1". Am. J. Physiol. Cell Physiol. 301, C777–C779.

Wong, T.K., and Lennarz, W.J. (1982). Biosynthesis of dolichol and cholesterol during embryonic development of the chicken. Biochim. Biophys. Acta 710, 32–38.

Wu, X., Rush, J.S., Karaoglu, D., Krasnewich, D., Lubinsky, M.S., Waechter, C.J., Gilmore, R., and Freeze, H.H. (2003). Deficiency of UDP-GlcNAc:dolichol phosphate N-acetylglucosamine-1 phosphate transferase (DPAGT1) causes a novel congenital disorder of glycosylation type Ij. Hum. Mutat. 22, 144–150.

Xu, H., Chen, M., Mayer, E.J., Forrester, J.V., and Dick, A.D. (2007). Turnover of resident retinal microglia in the normal adult mouse. Glia 55, 1189–1198.

Zelinger, L., Banin, E., Obolensky, A., Mizrahi-Meissonnier, L., Beryozkin, A., Bandah-Rosenfeld, D., Frenkel, S., Ben-Yosef, T., Menin, S., Schwartz, S.B., et al. (2011). A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in Ashkenazi Jews. Am. J. Hum. Genet. 88, 207–215.

Zhao, L., Zhang, M.K., Wang, X., Ma, W., Shah, P., Fariss, R.N., Qian, H., Parkhurst, C.N., Gan, W.B., and Wong, W.T. (2015). Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol. Med. 7, 1179–1197.

Zhu, L., Jang, G.F., Jastrzebska, B., Filipek, S., Pearce-Kelling, S.E., Aguirre, G.D., Stenkamp, R.E., Acland, G.M., and Palczewski, K. (2004). A naturally occurring mutation of the opsin gene (T4R) in dogs affects glycosylation and stability of the G protein-coupled receptor. J. Biol. Chem. 279, 53808–53817.

Zuchner, S., Dallman, J., Wen, R., Beecham, G., Naj, A., Farooq, A., Kohli, M.A., Whitehead, P.L., Hulme, W., Konidari, I., et al. (2011). Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa. Am. J. Hum. Genet. 88, 201–206.
Supplemental Information

Retinal Degeneration Caused by Rod-Specific Dhdds Ablation Occurs without Concomitant Inhibition of Protein N-Glycosylation

Sriganesh Ramachandra Rao, Lara A. Skelton, Fuguo Wu, Agnieszka Onysk, Grzegorz Spolnik, Witold Danikiewicz, Mark C. Butler, Delores A. Stacks, Liliana Surmacz, Xiuqian Mu, Ewa Swiezewska, Steven J. Pittler, and Steven J. Fliesler
Antibody	Source/Vendor	Identifier
Anti-Opsin	Abcam	ab5417, RRID: AB_304874
Anti-GFAP	Dako Agilent	Z0334, RRID: AB_10013382
Anti-Iba1	Abcam	ab178846, RRID: AB_2636859
Anti-Cone Arrestin	Gift: Dr. Cheryl Craft USC, California, USA	PMID: 18701071
Anti-LAMP2	Abcam	ab13524, RRID: AB_2134736
Anti-GLUL	BD Biosciences	610517, RRID: AB_397879
Anti-ICAM1	R&D Systems	AF796
Anti-ACTB	Cell Signaling Technologies	4970, RRID: AB_2223172
Rabbit IgG	Sigma Aldrich	12-370
Mouse IgG	Sigma Aldrich	12-371
LECTIN		
Biotinylated Concanavalin-A	Vector Laboratories	B-1005, RRID: AB_2336346
AF647-Peanut Agglutinin	Thermo Fisher Scientific	L32460
AF647-Wheat Germ Agglutinin	Thermo Fisher Scientific	W32466
ASSAY		
PNGase-F Assay	New England Biolabs	P0704S
BaseScope ISH Assay	ACD Biotech	323900, 323910
Mouse Cytokine Assay	R&D Biosystems	ARY006
TUNEL Assay	Promega Corp.	G3250

Table S1. Vendor information and identifiers for key reagents utilized in the study. Related to Figures 1 through 6 and Figures S1 through S13.
TRANSPARENT METHODS

Materials and reagents

All reagents and materials utilized for SDS-PAGE and Western blot analyses were obtained from Bio-Rad Laboratories (Hercules, CA, USA). Other reagents were obtained from Sigma-Aldrich (St. Louis, MO, USA), unless otherwise stated. Plasticware (Falcon™) and all other general lab supplies were obtained from ThermoFisher Scientific (Waltham, MA, USA), unless otherwise indicated.

Generation of rod photoreceptor-specific DHDDS KO mouse

Two constructs containing lacZ flanked by FLP-FRT and Dhdds exon 3 flanked by loxP sites were obtained from the Knockout Mouse Project (Clones EPD0137_7_D05, EPD0137_7_D06; KOMP, UC Davis) and were linearized and introduced into mouse ES cells at the Roswell Park Comprehensive Cancer Center (RPCCC) Gene Targeting and Transgenic Facility (Buffalo, NY, USA) using standard technology. The lacZ cassette was excised from the established ES cells with FLP-FRT recombinase, and excision was confirmed by PCR with primers Dhdds-FWD: 5’-GTGTCATCCCCTGCTGCAGAT-3’ and Dhdds-REV: 5’-TGGGTGTAGTGGCTCAGGTC-3’, designed in a region that is conserved in both WT and floxed alleles and in the region around the loxP sites. PCR products amplified are 393 and 517 bp for the WT and floxed alleles, respectively. These primers were used to verify the presence of the Dhdds^{flx/flx} alleles in all subsequent breedings. Verified Dhdds^{flx/+} heterozygous mice were crossbred to generate homozygotes. In the Rho-iCre (iCre-75) mouse line, Cre recombinase transgene expression in rod photoreceptors is driven by the opsin (RHO) promoter (Li et al., 2005). Dhdds^{flx/flx} mice were crossed with Rho-iCre (iCre-75) mice (Stock 015850, RRID: IMSR_JAX:015850, The Jackson Laboratory, Bar Harbor, MN, USA) to generate first filial generation (F1) rod photoreceptor-specific heterozygous
knockouts (Dhddsflx/+ iCre*), which were bred to homozygous Dhddsflx/flx mice to generate an F2 Dhdds knockout line that is homozygous for the floxed allele and heterozygous for iCre (Dhddsflx/flx iCre*). PCR verification of Cre transgene modification was carried out using forward and reverse primers, 5’-TCAGTGCCTGGAGTTGCG-3’ and 5’-CTTAAAGGCCAGGGCCTTGTCG-3’ yielding a 650 bp product. The PCR assay for Cre-recombinase does not differentiate between homozygous and heterozygous transgenic mice. For the PCR assay involving direct tissue genotyping, primers [FWD: 5’-GTGTCATCCCTGCT-GCAGAT-3’, REV: 5’-GTGAAACAAGAACCATTACCT-3’] were designed upstream of the upstream loxP site, and downstream of downstream loxP site [Fig. 2], predicted to yield a specific 584 bp remnant intronic region (due to exon 3 excision). Primers were designed to amplify an unaltered gene loci (Dhcr7) as a positive control using the following primer set: FWD 5’ – CCCTAGTCACAACTTATGGCCCT – 3’, and REV 5’ – TAGTTCCACAGGTGACATTA – 3’, which generates a 375 bp product.

Rod-photoreceptor-specific expression and activity of Cre-recombinase in Rho-iCre75 mice was verified by breeding the mouse line to ZsGreen reporter mouse strain (B6.Cg-Gt(ROSA)26Sortm6(CAG-ZsGreen1)Hze/J, Stock# 007906, RRID: IMSR_JAX:007906; The Jackson Laboratory). The first filial, iCre* progeny of the cross would yield ZsGreen expression exclusively in Cre recombinase-expressing cell types, by deleting the loxP sites flanking the STOP codon upstream of the ZsGreen gene.

Animals were maintained on a 12-h light:12-h dark cyclic light schedule (20-40 lux ambient light intensity at cage level), at 22-25°C, and typically were sacrificed 6 h into the light phase. All procedures conformed to the National Research Council’s \textit{Guide for the Care and Use of Laboratory Animals} (https://grants.nih.gov/grants/olaw/Guide-for-the-Care-and-use-of-laboratory-animals.pdf).
PCR and mutation verification

Genomic DNA from mouse tail snips was extracted using a Proteinase K-based method (Malumbres et al., 1997). Briefly, mouse tail snips were incubated for 4 h at 55°C in Alltele-In-One™ Mouse Tail Direct PCR buffer (Allele Biotechnology, San Diego, CA, USA; ABP-PP-MT01500). The one-step reaction makes the tail genomic DNA available for PCR amplification without purification. PCR amplification was performed using GreenTaq® DNA Polymerase (Sigma-Aldrich, S4438), and the MyIQ™ Single Color Real-Time PCR Detection System (Bio-Rad Laboratories; 170-9740) with cycles of 95°C denaturation. Extension period for indirect and direct (tail snip and retina) genotyping was 45s at 54°C. The PCR products obtained using the primers described above were electrophoretically separated in a 1.5% agarose gel and stained with EtBr to verify product size, in comparison with a DNA size standard (ThermoFisher Scientific, 15628019), and visualized using a FOTODYNE FOTO/UV® 21 Transilluminator (FOTODYNE Inc.).

SDS-PAGE, Western blot and densitometric analyses

Retinas from age-matched WT and *Dhdds*^{flx/flx} iCre⁺ mice were harvested, and flash frozen immediately. Retinas were lysed with RIPA buffer (ThermoFisher Scientific, 89900) supplemented with protease inhibitor cocktail (ThermoFisher Scientific, 78441) at 1:100 dilution. Protein yield was estimated using a Pierce™ BCA Protein Assay Kit (ThermoFisher Scientific, 23225). Western blot analysis was performed essentially as described previously (Ramachandra Rao et al., 2018), utilizing the following antibodies: mouse anti-opsin monoclonal antibody (Abcam, Burlingame, CA, USA; ab5417, RRID: AB_304874; 1:2000); rat anti-LAMP2 (Abcam, ab13524, RRID: AB_2134736; 1:1000); mouse anti-GLUL [BD Biosciences, San Jose, CA, USA; 610517, RRID: AB_397879; 1:1000], goat anti-ICAM-1 [R&D Systems, Minneapolis, MN, USA, AF796; 1:1000],
rabbit anti-ACTB (Cell Signaling Technology, Danvers, MA, USA; 4970, RRID: AB_2223172; 1:1000), and rabbit anti-GFAP (Dako Agilent, Santa Clara, CA, USA; Z0334; 1:1000). Blots were then probed with appropriate host-specific alkaline phosphatase-tagged secondary antibodies (1h at room temperature). Detection of antibody binding was achieved using chemifluorescent enzyme substrate (GE Healthcare Life Sciences, Marlborough, MA, USA; 45000947) and a ChemiDoc™ MP Imaging System (Bio-Rad Laboratories). Semi-quantitative densitometry was performed using BioRad ImageLab® software.

Immunohistochemistry, on-section PNGase-F assay, and confocal microscopy

Eyes from WT and Dhdds-knockout animals were enucleated (6 h post light onset), fixed in 4% (w:v) formaldehyde (prepared from paraformaldehyde; Electron Microscopy Sciences, Hatfield, PA, USA; 30525-89-4) in PBS on ice overnight, and then rinsed in chilled PBS three times. Fixed eyes were paraffin embedded, and 10-µm thick sections were collected onto glass Gold Seal™ UltraFrost™ microscope slides. The sections were de-paraffinized and antigen retrieval was carried out as described previously (Emoto et al., 2005). Immunohistochemistry was performed as described previously (Ramachandra Rao et al., 2018) using the following antibodies: mouse anti-opsin (Abcam, RRID: AB_304874; 1:200); rabbit anti-GFAP (Dako Agilent, Z0334, RRID: AB_10013382, 1:100); anti-Iba-1 (Abcam, ab178846, RRID: AB_2636859; 1:100); rabbit anti-cone arrestin (kind gift by Dr. Cheryl Craft, University of South California, USA). Negative controls consisted of nonimmune IgG (10 µg/ml) (Sigma-Aldrich; rabbit: 12-370, mouse: 12-371): from the same host species as that from which the primary antibody was derived. After three rinses with TBST (Tris-buffered saline, containing 0.2% (v/v) Tween-20), tissue sections were incubated for 45 min at room temperature with secondary IgG from suitable host species, conjugated with Alexa Fluor® 488/568/647 (1:500 in antibody diluent; ThermoFisher).
On-section PNGase-F N-glycosidase assay (New England Biolabs Inc., Ipswich, MA, USA; P0704S) was carried out as per manufacturer’s instructions. Briefly, each retinal section was treated with 200 U of PNGase F in 1X Glycobuffer 2 (10X buffer provided with the kit) supplemented with 1% NP-40 detergent at 37°C, overnight. WT and Dhdds<sup>flx/flx iCre⁺ retinal sections ± PNGase-F were incubated with biotinylated Concanavalin-A (Vector Laboratories, Burlingame, CA, USA: B-1005, RRID: AB_2336346; 1:100), followed by incubation with AF488-conjugated streptavidin (Thermo Fisher Scientific, S11223) and AF647-conjugated Peanut Agglutinin (Thermo Fisher Scientific, L32460). AF647-conjugated Wheat germ agglutinin (Thermo Fisher Scientific, W32466) was utilized to test the synthesis of glycans containing N-acetyl-D-glucosamine.

Slides were rinsed with TBS, counterstained with DAPI (4',6-diamido-2-phenylindole), coverslip mounted using Vectashield® mounting medium (Vector Laboratories, Burlingame, CA; H-1000), and examined with a Leica TCS SPEII DMI4000 scanning laser confocal fluorescence microscope (Leica Microsystems, Buffalo Grove, IL). Images were captured using a 40X oil immersion (RI-1.518) objective under nominal laser intensity (10% of maximum intensity), gain (850) and offset (-0.5) values, to optimize the signal-to-noise ratio.

In Situ Hybridization (ISH)

For the purpose of morphologic verification of successful deletion of exon 3 of Dhdds, we utilized an ISH methodology called BaseScope™ (ACDBio, CA, USA). Two sets of short 50 bp complimentary probes (which bind to the target mRNA, spanning a total of ~100bp), conventionally called “ZZ probes”, were custom-designed to detect transcript region corresponding to Dhdds exon 3 (bp 361-455 of NM_026144.4). ISH was performed according to manufacturer instruction protocol (ACDBio, 323910 and 323900). High signal/noise ratio enables
visualization of specific stretches of the Dhdds target mRNA (in this case, Dhdds) as a single red chromogenic dot. Corresponding brightfield images were captures using Nikon 80i Fluorescence Microscope equipped with a digital camera and Image Pro analysis software (Nikon Instruments Inc., New York, USA)

Spectral Doman Optical Coherence Tomography (SD-OCT) analysis

All mice were maintained under a 12:12 light/dark cycle, at 20-40 Lux ambient room illumination. Overall retinal morphology and ONL thickness were periodically monitored and recorded non-invasively in age-matched C57BL/6J control and Dhdds^{flx/flx}Cre^{+} mice, using a Bioptigen 840 nm UHR-SD-OCT instrument (Bioptigen, NC, USA) essentially as described previously (Butler and Sullivan, 2018). Mice were anesthetized using ketamine-xylazine (75 mg/kg-5 mg/kg) by intraperitoneal injection. Both pupils were dilated using 1% Atropine (Acorn Inc., NDC 17478-215-05). Following dilation, mice were positioned into the instruments AIM-RAS (animal imaging mount and rodent alignment stage) positioning setup, which allows for proper alignment of the mouse eye with the mouse retina bore. Horizontal SD-OCT scans (1.4 mm) were acquired, and B-scan cross-sectional images were analyzed. The image resolution allowed accurate determination of the integrity of the ONL and other retinal layers. The total ONL thickness was defined as the hyporeflective layer observed between the hyper-reflective OS and hyper-reflective OPL. ONL thickness around the optic nerve head (ONH) was measured in control and Dhdds^{flx/flx}Cre^{+} mice, at PN 4, 5 and 6 weeks (n=4/group), utilizing Bioptigen InVivoVue® Clinic software. Layer thicknesses were measured manually. The measured ONL thickness was plotted as a function of distance from the ONH, and for statistical analysis one-way ANOVA was performed within GraphPad Prism® software (GraphPad Software, San Diego, CA, USA; RRID: SCR_002798).
Electron microscopy

Mouse eyes were processed for plastic embedment ultramicrotomy, and EM analysis as described in detail previously (Fliesler et al., 2004). In brief, a slit was made in the superior cornea with a razor blade and the eyes were fixed overnight at 4°C in fresh Karnovsky's fixative (0.125 M sodium cacodylate buffer (pH 7.4), containing 2.5% (v/v) glutaraldehyde, 2.0% formaldehyde and 0.025% CaCl\(_2\)). The fixed eyes were then rinsed with 0.1 M sodium cacodylate buffer (pH 7.4) containing 0.025% CaCl\(_2\), and post-fixed for 1 h in 1% (w/v) osmium tetroxide in 0.1 M sodium cacodylate buffer. After post-fixation, the eyes were rinsed twice in 0.1 M sodium cacodylate buffer and once in distilled water, then dehydrated using a graded ethanol series followed by propylene oxide and infiltrated overnight with Spurr's epoxy resin (Spurr Low Viscosity Embedding Kit; Sigma-Aldrich, EM0300-1KT). The eyes were then embedded in Spurr's resin and allowed to polymerize in a 70°C oven for 48 h. Tissue sections were obtained with an ultramicrotome (UltraCut-E; Reichert Technologies Life Sciences, NY, USA) using glass or diamond knives. Thin (70- to 80-nm thickness) sections were collected on copper 75/300 mesh grids and stained with 2% (v/v) uranyl acetate and Reynolds' lead citrate. Sections were viewed and micrographs obtained with a JEOL Model 100CX electron microscope (JEOL, USA; Peabody, MA, USA) at an accelerating voltage of 60 keV.

Electroretinography (ERG)

Scotopic (dark-adapted) electroretinograms were recorded from control C57BL/6J and \textit{Dhdds}flx/flx iCret mice after overnight dark adaptation. Animals were anesthetized by intraperitoneal injection of a ketamine-xylazine mixture, followed by pupil dilation with an ophthalmic Atropine solution. Flash stimuli were applied using a ColorDome system (DiagnoSys LLC, Lowell, MA, USA). The ERGs were recorded from both eyes simultaneously using DTL thread contact electrodes.
(OcuScience®, Henderson, NV, USA), contacting the corneal surface with a conductive medium (Goniovisc® (hydroxypropylmethylcellulose 2.5%), Hub Pharmaceuticals, 17238061015-EA). A bite bar and a platinum electrode under the skin served as reference and ground leads, respectively. Scotopic responses were obtained in 16 increasing flash intensity steps (10^{-3} to 500 cd-sec/m^2). Individual scotopic a-wave and b-wave responses for each strain examined were averaged (n=7-12). Individual b:a wave ratios were calculated at all flash intensities ≥1.25 cd-sec/m^2, and group averages and standard errors were calculated (n=7-12). Following rod desensitization achieved by maintaining a constant background illumination, photopic (light-adapted) ERG responses were elicited with green light (520 nm) flicker illumination at 30 Hz, using an 8-step custom protocol with increasing flash intensities (10^{-1} to 30 cd-sec/m^2). Statistical analysis using one-way ANOVA and Student’s t-test were performed on data acquired at individual flash intensities, using GraphPad® software.

TUNEL assay

To visualize cell death, the in situ fluorescence-based Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay (for detection of apoptotic cell death) was utilized as described previously (Tu et al., 2013). Paraffin sections of control and Dhdds^flx/flx^iCre^+ eyes were deparaffinized, and citrate buffer antigen retrieval was performed. Sections were subjected to TUNEL assay, using a DeadEnd™ Fluorometric TUNEL System (G3250; Promega Corporation, Madison, WI, USA), per the manufacturer’s instructions. Permeabilized sections were treated with equilibration buffer (provided by manufacturer), followed by Terminal Deoxynucleotidyl Transferase (TdT) labeling for one hour at 37°C. Labeling reaction was halted by incubating in SSC Stop Buffer (provided by manufacturer) for 15 min. Sections were quickly rinsed three times in PBS and immunohistochemistry using Iba-1 monoclonal antibodies (Abcam, Cat. #ab178846; 1:100, RRID: AB_2636859) was performed as described above. Sections were DAPI stained, and
mounted using Vectashield® mounting medium (Vector Laboratories). Confocal fluorescence micrograph images were captured using the 488 nm wavelength channel to detect TUNEL-positive cells.

PNGase-F assay

Retinas from PN 5-week-old wild type and $Dhdds^{flx/flx}$ iCre$^+$ retina were isolated and lysed in SDS-free homogenization buffer (SDS interferes with PNGase-F activity). After protein quantification using BCA assay (see Western blot section, above), 50 µg of protein was subjected to non-denaturing PNGase-F assay (New England Biolabs Inc., P0704S) as per manufacturer’s instructions. Briefly, the protein sample (50 µg) was treated with 2,500 U of PNG-ase F in 1X Glycobuffer (10X buffer provided with the kit) supplemented with 1% NP-40 detergent at 37°C, overnight. PNGase-F-treated WT and $Dhdds^{flx/flx}$ iCre$^+$ retinal protein extract were compared with untreated extract by Western blot analysis, probing the blots with anti-RHO antibody (see pertinent section above)

Cytokine Array

An unbiased, broad screening approach was utilized to test the upregulation of cytokines in the observed retinal degeneration. For this purpose, a membrane-based sandwich assay [Proteome Profiler Mouse Cytokine Array Kit, R&D Systems, Minneapolis, MN, USE; ARY006] was adapted as per manufacturer’s instructions. PN 5 week old $Dhdds^{flx/flx}$ iCre$^+$ and $Dhdds^{flx/flx}$ iCre$^-$ retinal protein extract (n=3/group; 200 µg of protein extract/array) were mixed with a cocktail of biotinylated detection antibodies (kit content), and subsequently incubated with the mouse cytokine array membrane. The membrane was washed, and incubated with streptavidin-horseradish peroxidase for 1 h. Femto Chemiluminescence detection system (ThermoFisher,
34094) was used for signal amplification, and array imaging/signal detection was carried out on a BioRad ChemiDoc™ MP Imaging System. Background noise was subtracted from the cytokine-specific signal utilizing ImageLab software, and background-corrected signal ratio between $Dhdds^{\text{flx/flx} iCre^+}$ and $Dhdds^{\text{flx/flx} iCre^-}$ was calculated for individual cytokines.

Analysis of dolichol content

Five retinas were pooled and subjected to alkaline hydrolysis at 95°C for 1 h in hydrolytic solution (25% (w/v) KOH in 65% (v/v) ethanol,aq.). Nonsaponifiable lipids were then extracted three times with hexane, pooled extracts were evaporated to dryness under a stream of nitrogen, and the residue was dissolved in 2-propanol. UHPLC-ESI-HR-MS analyses of polyisoprenoids were performed by the method described in detail previously (Jozwiak et al., 2017), using an ACQUITY I-Class Ultra-Performance Liquid Chromatograph (Waters Corporation, Milford, MA, USA) coupled with a Synapt G2-S HDMS mass spectrometer (Waters) equipped with an electrospray ion source and quadrupole time-of-flight (q-TOF) mass analyzer. The chromatographic separation of polyisoprenoids was carried out using an Acquity BEH C18 column (2.1 x 100 mm, 1.7 µm) (Waters). Mass spectra of polyisoprenoid alcohols were recorded in the positive ion mode with the resolving power of a TOF analyzer 20000 FWHM. The exact mass measurements for all peaks were performed within 3 mDa mass error. The instrument was controlled and recorded data were processed using a MassLynx V4.1 software package (Waters).
SUPPLEMENTAL REFERENCES

BUTLER, M. C. & SULLIVAN, J. M. 2018. Ultrahigh Resolution Mouse Optical Coherence Tomography to Aid Intraocular Injection in Retinal Gene Therapy Research. J Vis Exp.

EMOTO, K., YAMASHITA, S. & OKADA, Y. 2005. Mechanisms of heat-induced antigen retrieval: does pH or ionic strength of the solution play a role for refolding antigens? J Histochem Cytochem, 53, 1311-21.

FLIESLER, S. J., PEACHEY, N. S., RICHARDS, M. J., NAGEL, B. A. & VAUGHAN, D. K. 2004. Retinal degeneration in a rodent model of Smith-Lemli-Opitz syndrome: electrophysiologic, biochemical, and morphologic features. Arch Ophthalmol, 122, 1190-200.

JOZWIAK, A., LIPKO, A., KANIA, M., DANIKIEWICZ, W., SURMACZ, L., WITEK, A., WOJCIK, J., ZDANOWSKI, K., PACZKOWSKI, C., CHOJNACKI, T., POZNANSKI, J. & SWIEZEWSKA, E. 2017. Modeling of Dolichol Mass Spectra Isotopic Envelopes as a Tool to Monitor Isoprenoid Biosynthesis. Plant Physiol, 174, 857-874.

LI, S., CHEN, D., SAUVE, Y., MCCANDLESS, J., CHEN, Y. J. & CHEN, C. K. 2005. Rhodopsin-iCre transgenic mouse line for Cre-mediated rod-specific gene targeting. Genesis, 41, 73-80.

MALUMBRES, M., MANGUES, R., FERRER, N., LU, S. & PELLICER, A. 1997. Isolation of high molecular weight DNA for reliable genotyping of transgenic mice. Biotechniques, 22, 1114-9.

RAMACHANDRA RAO, S., PFEFFER, B. A., MAS GOMEZ, N., SKELTON, L. A., KEIKO, U., SPARROW, J. R., ROWSAM, A. M., MITCHELL, C. H. & FLIESLER, S. J. 2018. Compromised phagosome maturation underlies RPE pathology in cell culture and whole animal models of Smith-Lemli-Opitz Syndrome. Autophagy, 1-22.

TU, C., LI, J., JIANG, X., SHEFLIN, L. G., PFEFFER, B. A., BEHRINGER, M., FLIESLER, S. J. & QU, J. 2013. Ion-current-based proteomic profiling of the retina in a rat model of Smith-Lemli-Opitz syndrome. Mol Cell Proteomics, 12, 3583-98.
Figure S1. Multiple sequence alignment and comparison of FPP and IPP binding sites in the DHDDS complex. Related to Figure 1.

DHDDS is required for FPP and IPP condensation to generate polyprenol. Sequence alignment of murine (*M. musculus*) Dhdds against *E. coli* UPPS suggests conservation of critical amino acids required for FPP and IPP binding (yellow, green highlights), and hydrophobic interactions (cyan highlights). The conserved region required for FPP/IPP binding is lost upon Cre-mediated excision of exon 3 of Dhdds (*solid red underline* corresponds to the region coded by exon 3; *dashed red underline* represents the peptide coded by downstream exons, which may not be translated due to the frameshift generated by deletion of exon 3). Notations: fully conserved (*); mostly conserved (:); partially conserved (.).
Figure S2. Multiple sequence alignment reveals species conservation of DHDDS FPP/IPP binding sites at the protein level. Related to Figure 1.

The peptide region coded by murine exon 3 of Dhdds (the targeted exon in this study, highlighted in yellow) is required for FPP binding, and is very well conserved between species. Critical FPP and IPP binding sites coded by exon 3 and downstream exons are highly conserved (see Figure S1). Known RP-associated DHDDS point mutations (K42E [green box], W64X [red box], T204A [blue box]) are shown. Downstream exons, which may not be translated due to the frameshift generated by deletion of exon 3, have been highlighted in cyan. Notations: fully conserved (*); mostly conserved (:); partially conserved (•).
Figure S3. Knockout Mouse Project (KOMP) DHDDS conditional knockout alleles. Related to Figure 2.

A validated Dhdds plasmid construct was obtained from KOMP (U.C. Davis; Davis, CA, USA). The plasmid was linearized and introduced into mouse C57BL/6J mouse ES cells. Transformed cells were treated with FLP recombinase to excise the lacZ cassette, leaving a single FRT site. Confirmed FRT-excised ES cells were used to generate Dhdds^{floxed} mice containing two loxP sites surrounding exon 3. Expression of Cre recombinase leads to excision of all sequence between the two loxP sites including all of exon 3, leaving behind a single loxP site.
Fig. S4. Representative agarose gel image of initial PCR genotyping analysis using tail snip. Related to Figure 1.
A. Genomic DNA extracted from tail snips of Dhddsflu/+iCre, Dhddsflu/+iCre, and Dhddsflu/+iCre mice was subjected to PCR genotyping to differentiate the floxed vs. wild type alleles, as well as Cre recombinase status. The Dhdds WT allele yields a 393 bp product, while the Dhdds floxed allele yields a 517 bp product. B. PCR genotyping for the Rho-iCre allele. The Rho-iCre transgene yields a 650 bp product. C. The gene sequence of the loxP-modified Dhdds allele is shown, along with the PCR genotyping strategy and primer choices for tail snip and retinal genotyping (see Figure 1). The intronic region is highlighted in cyan, Dhdds exon 3 is highlighted in green, upstream and downstream loxP sites are highlighted in yellow. Forward and reverse primers used in retinal genotyping are shown (yellow text, black highlight). Tail snip genotyping utilized the same forward primer as used for retinal genotyping; reverse primer for tail snip genotyping is shown (white text, black highlight).
Figure S5. Cre recombinase activity is present in the majority of rod photoreceptors by PN 15 days. Related to Figure 2. ZsGreen expression is exclusively expressed in rods, suggesting Rho-iCre activity. DAPI and GFP channels are shown separately to demonstrate ZsGreen expression exclusively in the majority of cells in the photoreceptor layer (~97% of which are rods) at PN 15 days. (See Figure 2 for ZsGreen expression at PN 30 days.) [Scale bar: 20 µm.]
Figure S6. Representative scotopic ERG traces of age-matched Dhdds^{flx/flx} iCre- and Dhdds^{flx/flx} iCre+ mice. Related to Figure 3.

Representative ERG traces of Dhdds^{flx/flx} iCre+ mice (B,D,F) at highest flash intensity (500 cd-s/m²) suggests rapid, age-related decline in scotopic response, compared to Dhdds^{flx/flx} iCre- mice (A,C,E), as observed in Figure 3. Scotopic ERG response in Dhdds^{flx/flx} iCre+ mice were essentially extinguished by PN 6 weeks.
Figure S7. Demonstration of opsin trafficking defect in an established hypoglycosylation model. Related to Figure 5.

Immunohistochemistry using anti-opsin antibody to localize rhodopsin in the NogRho\,-/- mouse retina (a positive control for opsin hypoglycosylation) demonstrates defective intracellular trafficking of opsin. Opsin mislocalization leads to IS (arrows) and perinuclear (arrowheads) accumulation. DAPI staining (blue) is shown on the left-hand side of each micrograph. This is in agreement with the lack of obvious N-glycosylation defects observed in Figure 5. [Scale bar: 20 μm.]
Figure S8. Dhdds^{flx/flx} iCre^+ retina exhibits significant increase in cells in the subretinal space. Related to Figure 4.
Further characterization of microglial infiltration and phagoptosis. (A, B) Histology of control and Dhdds^{flx/flx} iCre^+ retinas, respectively, at PN 5 weeks of age (H&E staining). Quantification of cells in the subretinal space was performed on retinal tissue sections of each genotype (8 eyes per genotype, 3 sections per eye; 10-μm thickness). This compartment of the retina normally is occupied by photoreceptor outer segments and extracellular matrix, but not other cells. However, H&E-stained cells were present in this retinal layer in Dhdds^{flx/flx} iCre^+ mice (B, black arrows). The same region shown in a control retina (A, open bracket) is devoid of mislocalized cells, although the far peripheral regions of control retinas were observed to contain such cells (not shown). (C) Quantitative analysis of mislocalized cells as a function of genotype; a 4-fold increase was observed in the number of such cells in Dhdds^{flx/flx} iCre^+ retinas, relative to controls. (D-F) In the young, control mouse retina, horizontally ramified, Iba-1-positive microglia were observed only in the inner retinal layers (D). By contrast, the Dhdds^{flx/flx} iCre^+ mouse retina shows microglial infiltration into the ONL (E, asterisks), as well as in the subretinal space and outer segment (OS) layer (E, arrowheads). A representative higher magnification image of a Dhdds^{flx/flx} iCre^+ mouse retina shows activated, Iba-1-positive microglia surrounding photoreceptor nuclei, indicative of active “phagoptosis” of live photoreceptors by microglia (F, red arrows). [Scale bars: D, E, 20 μm; F, 10 μm.]
Figure S9. Cell-autonomous photoreceptor cell death and phagoptosis in $Dhdds^{flx/flx}\ iCre^+$ mice. Related to Figure 4.
Additional representative confocal micrographs (A-C) demonstrate TUNEL-positive photoreceptor cells (white arrows, green channel), as well as phagocytic uptake of live, TUNEL-negative photoreceptors by Iba-1-positive microglial cells (asterisk, red channel). Iba-1-positive microglial cells were found in the subretinal space (white arrow head, red channel). DAPI labeling of the nuclear layers is shown on the right-hand side of each image. [Scale bars: (A, B) 20 µm; (C) 10 µm.]
Figure S10. Sandwich ELISA-based cytokine array analysis of retinal extracts from PN 5-week old Dhdds^{flx/flx} iCre^{+} and control mice. Related to Figure 4.
Representative ELISA assay results for the presence of selected cytokines (CXCL-10 and ICAM-1). Background-subtracted luminescence signal was measured using ImageLab® software. Significant increases in retinal ICAM-1 and CXCL-10 levels ("p<0.01, n=5/group) were observed in Dhdds^{flx/flx} iCre^{+} mice, compared to controls. This is further characterization of ICAM1 upregulation as observed by Western blot analysis (see Figure 4).
Fig. S11. Lectin cytochemistry demonstrates fluor-conjugated wheat germ agglutinin (WGA) binding to retinal photoreceptors in Dhdds$^{flx/flx}$ iCre$^-$ mice. Related to Figure 5.

WGA (pseudocolored magenta) selectively binds to β-1,4-GlcNAc-containing extracellular matrix components surrounding rod, but not cone, photoreceptors as well as the extracellular matrix in the ONL. Note the comparable, robust WGA staining of retinas from PN 5-week old Dhdds$^{flx/flx}$ iCre$^+$ (right panel) and control (left panel) mice. This is in agreement with the lack of glycosylation as observed in Figure 5. [Scale bar: 20 µm.]
Figure S12. Mozaicism of Cre recombinase activity in the LMOP Cre mouse line. Related to Figure 2.
LMOP-Cre mice were crossed with ZsGreen reporter mice. Representative confocal microscopy images of mouse retinas (n=3, PN 3-month old) exhibit patchy expression of ZsGreen, which is inconsistent with the expected uniform distribution of rhodopsin in that layer of the mouse retina. [Scale bar: 100 μm.] Hence, for this study, we chose instead to utilize the Rho-iCre75 mouse line for generation of the rod-specific Dhdhs knockout mouse line (Dhdhs^{floxtx iCre+}) described herein.
Figure S13. Low magnification image depicting retinal thinning and persistence of cone photoreceptors. Related to Figures 2 and 3.

Spectral domain optical coherence tomography (SD-OCT) imaging demonstrated significant thinning of the Dhdds^{flx/flx} iCre^{+} retina (see Figure 2). Low-magnification light micrographs of H&E-stained control (A) and PN 5-week old Dhdds^{flx/flx} iCre^{+} mice (B) also demonstrate significant thinning of the photoreceptor layer in Dhdds^{flx/flx} iCre^{+} mice. Immunohistochemical analysis of ocular tissue sections from control (C) and Dhdds^{flx/flx} iCre^{+} (D) mice, stained with anti-cone arrestin antibody (pseudocolor: red), demonstrating arrestin-positive cone synaptic termini as well as immunopositive elements in the inner and outer segment layer regions. [Scale bar: (A,B) 500 µm; (C,D) 20 µm.]